Amendments to the Claims

	1.	(Currently Amended)	In a scheduler having at least one target
2	processor, a	method for ordering instruc	tions in a code file having a plurality of
	instructions,	the method comprising:	

- 4 (a) determining dependencies between instructions in said plurality of instructions;
- (b) creating a directed acyclic graph showing said dependencies in said
 plurality of instructions, where said directed acyclic graph's nodes each correspond to an
 instruction from said plurality of instructions;
- (c) <u>identifying one or more queues, including a first creating at least one</u>
 10 queue;
 - (d) traversing said directed acyclic graph in a dependency-preserving manner;
- (e) creating a ready set of nodes <u>comprising</u> by identifying which nodes in said directed acyclic graph <u>having corresponding instructions</u> are in a ready state and
 which instructions correspond to said nodes;
- (f) finishing if there are no nodes <u>having corresponding instructions</u> found to
 be in a ready state;
- (g) identifying a threshold level in said first queue, said threshold
 18 corresponding to a maximum desirable fullness of said first queue; said at least one queue's needs to have queue elements added in accordance with said at least one target
 20 processor;
 - (h) identifying said at least one queue's needs to have queue elements subtracted in accordance with said at least one target processor;
- (hi) if said first queue is less full than said threshold, choosing a node in said
 ready set that corresponds to an instruction that would increase the fullness of said queue, if any such node exists in said ready set; choosing one of said nodes and its
 corresponding instruction in said ready set and one of said at least one queues such that said chosen node and said queue satisfy at least one of said queue's needs;
- 28 (ij) if said first queue is at least as full as said threshold, choosing a node in said ready set that corresponds to an instruction that would decrease the fullness of said

30 queue, if any such node exists in said ready set; choosing one of said nodes and			
	corresponding instruction in said ready set and one of said at least one queue heuristically		
32	2 if no node can satisfy at least one of said queue's needs;		
	(j) if no node is chosen in (h) or (i), heuristically choosing a node in	said	
34 <u>ready set;</u>			
	(k) removing said chosen node from said directed acyclic graph;		
36 (l) modifying said <u>first</u> ehosen queue in accordance with said		n node	
	and its corresponding associated instruction;		
38 (m) modifying the order of instructions in said code file in		e with	
	said chosen node and its corresponding associated instruction; and,		
40 (n) continuing processing at (d).			
	2. (Currently Amended) The scheduler of claim 1, wherein	<u>: after</u>	
2 creating at least one queue, the method further comprising:			
	said first queue is configured to facilitate scheduling of the instructions;		
4	said node chosen in (h) corresponds to an instruction that will add an element to		
	said first queue; and		
said node chosen in (i) corresponds to an instruction that w		least one	
	element from said first queue.		
8	(a) using one queue for said at least one queue;		
	(b) determining a maximum desirable number of elements identified	for said	
10	one queue;		
	(c) choosing one of said nodes in said ready set that will add an element	nent to	
12	said queue if said queue has fewer elements than said identifier;		
	(d) choosing one of said nodes in said ready set that will remove at	least one	
14	element from said queue if said queue has an equal number of elements as said	identifier;	
	and,		
16	(e) choosing one of said nodes in said ready set that will remove at	least one	
	element from said queue if said queue has more than the number of elements a	s said	

18

identifier.

3. (Cancelled)

	4.	(Currently Amended)	The scheduler of claim 1, wherein said (c)	
2	comprises ide	entifying a load queue, a pro	efetch queue and a store queue, after creating at	
	least one queu	ue, the method further comp	orising:	
4	(a)	using a load queue, a prefetch queue, and a store queue for said at least		
	one queue;			
6	(<u>aa</u> b)	determining and correlating a maximum desirable number of elements		
	identifier for each of said load queue, said prefetch queue, and said store queue; and			
8	(bbe) determining a precedence ordering between said load queue, said prefeto		ordering between said load queue, said prefetch	
	queue, and said store queue; and,			
10	(c)	(c) choosing one of said nodes in said ready set that will change the number		
	of elements in	n one of said load queue, sa	id prefetch queue, or said store queue in	
12	accordance w	ith said precedence order a	nd one of said correlated identifiers.	
	5.	(Currently Amended)	The scheduler of claim 1, wherein: after	
2	creating at lea	ast one queue, the method f	urther comprising:	
	said (c	said (c) comprises:		
4		(cla) determining a which number of queues to use in accordance with a		
	target process	sor;		
6	(a) using said determined number of queues for said at least one queue;		mber of queues for said at least one queue;	
		_(<u>c2</u> b) determining a max	ximum desirable fullness number of elements	
8	identifier for	each of said determined nu	mber of queues; and	
	(c) —	coupling a maximum des	irable number of elements identifier to each of	
10	said determin	ed number of queues;		
	(c3d) determining a precedence ordering between each of said		cedence ordering between each of said	
12	determined number of queues; and			
		of said (h) and said (i) comp		
14			es in said ready set that will change the number	
			imber of queues, in accordance with said	
16	precedence order and said maximum desirable fullness coupled identifier if one of said			

nodes can be found; and,

- (hilf) choosing one of said nodes in said ready set that will not change the number of elements in one of said determined number of queues, in accordance with said precedence order and said maximum desirable fullness coupled identifier, if none of said nodes in said ready set can be found that will change the number of elements in one of said determined number of queues, in accordance with said precedence order and said coupled identifier.
- 6. (Currently Amended) The scheduler of claim 1, where said ordering of said instructions in said code file uses a hardware scheduler in accordance with said chosen node and its <u>corresponding associated</u> instruction.
 - 7. (Currently Amended) The scheduler of claim 1, wherein said (l) comprises: replacing modifying said chosen queue, the method further comprising:
- (aa) adding an element corresponding to said chosen node to said <u>first at least</u>
 one queue if said <u>first queue is less full than said threshold</u> at least one queue's needs is to have queue elements added; and,
- 6 (bb) removing at least one element in accordance with said chosen node from to said first at least one queue if said first queue is at least as full as said threshold at least 8 one queue's needs is to have queue elements removed.
- 8. (Currently Amended) A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform a method for ordering instructions in a code file having a plurality of
- 4 instructions, the method comprising:
- (a) determining dependencies between instructions in said plurality of6 instructions;
- (b) creating a directed acyclic graph showing said dependencies in said
 8 plurality of instructions, where said directed acyclic graph's nodes each correspond to an instruction from said plurality of instructions;
- 10 (c) identifying one or more queues, including a first creating at least one

queue;

- 12 (d) traversing said directed acyclic graph in a dependency-preserving manner;
- (e) creating a ready set of nodes <u>comprising</u> by identifying which nodes in said directed acyclic graph <u>having corresponding instructions</u> are in a ready state and which instructions correspond to said nodes;
- 16 (f) finishing if there are no nodes <u>having corresponding instructions</u> found to be in a ready state;
- (g) identifying a threshold level in said first queue, said threshold corresponding to a maximum desirable fullness of said first queue; said at least one
 queue's needs to have queue elements added in accordance with said at least one target processor;
- 22 (h) identifying said at least one queue's needs to have queue elements subtracted in accordance with said at least one target processor;
- (hi) if said first queue is less full than said threshold, choosing a node in said ready set that corresponds to an instruction that would increase the fullness of said queue,
 if any such node exists in said ready set; choosing one of said nodes and its corresponding instruction in said ready set and one of said at least one queues such that
- 28 said chosen node and said queue satisfy at least one of said queue's needs;
- (ij) if said first queue is at least as full as said threshold, choosing a node in
 said ready set that corresponds to an instruction that would decrease the fullness of said queue, if any such node exists in said ready set; choosing one of said nodes and its
 corresponding instruction in said ready set and one of said at least one queue heuristically if no node can satisfy at least one of said queue's needs;
- 34 (j) if no node is chosen in (h) or (i), heuristically choosing a node in said ready set;
- 36 (k) removing said chosen node from said directed acyclic graph;
 - (l) modifying said <u>first ehosen</u> queue in accordance with said chosen node and its <u>corresponding associated</u> instruction;
- (m) modifying the order of instructions in said code file in accordance with said chosen node and its corresponding associated instruction; and
 - (n) continuing processing at (d).

- 9. (Currently Amended) The program storage device of claim 8,
- 2 <u>wherein:</u> after creating at least one queue, the method further comprising:

said first queue is configured to facilitate scheduling of the instructions;

- 4 said node chosen in (h) corresponds to an instruction that will add an element to said first queue; and
- 6 said node chosen in (i) corresponds to an instruction that will remove at least one element from said first queue.
- 8 (a) using one queue for said at least one queue;
- (b) determining a maximum desirable number of elements identifier for said one queue;
- (c) choosing one of said nodes in said ready set that will add an element to said queue if said queue has fewer elements than said identifier;
- (d) choosing one of said nodes in said ready set that will remove at least one element from said queue if said queue has an equal number of elements as said identifier; and,
- (e) choosing one of said nodes in said ready set that will remove at least one element from said queue if said queue has more than the number of elements as said
 identifier;

10. (Cancelled)

- 11. (Currently Amended) The program storage device of claim 8,
 wherein said (c) comprises identifying a load queue, a prefetch queue and a store queue,
 after creating at least one queue, the method further comprising:
- 4 (a) using a load queue, a prefetch queue, and a store queue for said at least one queue;
- 6 (<u>aab</u>) determining and correlating a maximum desirable number of elements identifier for each of said load queue, said prefetch queue, and said store queue; <u>and</u>
- 8 (<u>bbe</u>) determining a precedence ordering between said load queue, said prefetch queue, and said store queue; and,

10	(c) choosing one of said nodes in said ready set that will change the number		
	of elements in one of said load queue, said prefetch queue, or said store queue in		
12	accordance with said precedence order and one of said correlated identifiers.		
	12. (Currently Amended) The program storage device of claim 8,		
2	wherein: after creating at least one queue, the method further comprising:		
	said (c) comprises:		
4	(cla) determining a which number of queues to use in accordance with a		
	target processor;		
6	6 (a) using said determined number of queues for said at least one queue;		
	(c2b) determining a maximum desirable <u>fullness</u> number of elements		
8	identifier for each of said determined number of queues; and		
	(c) — coupling a maximum desirable number of elements identifier to each of		
10	said determined number of queues;		
	(<u>c3</u> d) determining a precedence ordering between each of said		
12	determined number of queues; and		
	each of said (h) and said (i) comprises:		
14	(hile) choosing one of said nodes in said ready set that will change the number		
	of elements in one of said determined number of queues, in accordance with said		
16	precedence order and said maximum desirable fullness coupled identifier, if one of said		
	nodes can be found; and,		
18	(hilf) choosing one of said nodes in said ready set that will not change the		
	number of elements in one of said determined number of queues, in accordance with said		
20	precedence order and said maximum desirable fullness coupled identifier, if none of said		
	nodes in said ready set can be found that will change the number of elements in one of		
said determined number of queues, in accordance with said precedence order and			
	coupled identifier.		
	13. (Currently Amended) The program storage device of claim 8,		
2	where said ordering of said instructions in said code file uses a hardware scheduler in		
	accordance with said chosen node and its corresponding associated instruction.		

	14.	(Currently Amended)	The program storage device of claim 8,	
2	wherein said (1) comprises: replacing modifying said chosen queue, the method further			
	comprising:			
4	(a <u>a</u>)	adding an element corresp	ponding to said chosen node to said first at least	
	one queue if	said first queue is less full t	han said threshold at least one queue's needs is to	
6	have queue e	have queue elements added; and,		
	(b <u>b</u>)	removing at least one elem	ment in accordance with said chosen node from	
8			t queue is at least as full as said threshold at least	
	one queue's needs is to have queue elements removed.			
		•		
	15.	(Currently Amended)	A queue modeling instruction scheduler	
2	apparatus for	use in compiling a program	n, the apparatus executable in a device having a	
	processor ope	eratively coupled to a memo	ory, the apparatus comprising:	
4	<u>(a)</u>	_a directed acyclic graph o	reation module operatively disposed within said	
	apparatus, co	nfigured to:		
6		(a1) determine depend	encies between instructions in a program to be	
	comp	iled; and to		
8		(a2) create a directed a	cyclic graph showing said dependencies in said	
	progra	am, and where <u>in</u> said direct	ed acyclic graph's nodes correspond to	
10	instru	ctions in said program;		
	<u>(b)</u>	_a directed acyclic graph t	raversal and ready set identification module	
12	operatively d	isposed within said apparat	us and configured to:	
		(b1) traverse said direct	eted acyclic graph in a dependency-preserving	
14	mann	er; and to		
		(b2) create a ready set	of nodes;	
16	(c)	_a ready set evaluation mo	odule operatively disposed within said apparatus	
	and configure	ed to:		
18	-	(c1) identify which no	des in said ready set correspond to which	
	instru	actions in said program; and	d to	
20		(c2) evaluate said inst	ructions for their effect on memory operations;	

	(d) a queue management module operatively disposed within said apparatus
22	and configured to:
	(d1)manage at least one queue, wherein managing a queue further
24	comprises adding and removing elements from said at least one queue, and
	wherein said elements correspond to nodes from said directed acyclic graph; and
26	(e)a code scheduling module operatively disposed within said apparatus and
	operably connected to said program, and said directed acyclic graph traversal and ready
28	set identification module, and said ready set evaluation module, and said queue
	management module and said directed acyclic graph, wherein said code scheduling
30	module is configured to:
	(e1)add and remove nodes to and from said directed acyclic graph; and
32	(e2) to determine and correlate a maximum desirable number of
	elements identifier for said at least one queue;
34	(e3) choose one of said nodes in said ready set that will change the
	number of elements in said at least one queue in accordance with said correlated
36	identifier;
	(e3)have elements of said at least one queue added and removed; and
38	(e4) to change the order of instructions in said program in accordance
	with said instructions, said nodes, and said at least one queue.
	16. (Currently Amended) The apparatus of claim 15, wherein said at
2	least one queue comprises queue manager is further configured to manage a load queue, a
	prefetch queue, and a store queue, and wherein said code scheduling module is further
4	configured to:
	(e5) determine and correlate a maximum desirable number of elements
6	identifier for each of said load queue, said prefetch queue, and said store queue;, and
	(e6) <u>further configured to</u> determine a precedence ordering between said load
8	queue, said prefetch queue, and said store queue; and
	(e7) <u>further configured to</u> choose one of said nodes in said ready set that will
10	change the number of elements in one of said load queue, said prefetch queue, or said
	store queue in accordance with said precedence order and one of said correlated

1 1	• •	~
12	identi	fiers.

	17. (0	Currently Amended)	The apparatus of claim 15, wherein:
2	said queue <u>management module</u> manager is further configured to:		
	(d2)d	etermine <u>a</u> what number o	of queues to use in accordance with a target
4 processor; and			
	(d3) m	anage managing said det	ermined number of queues;, and wherein
said code scheduling module is further configured to:			rther configured to:
	<u>(e5)</u> de	etermine a precedence ord	dering between each of said determined number
8	of queues	s; and is further configure	2d to
	<u>(e6)</u> cl	noose one of said nodes in	n said ready set that will affect the elements in
10	one of sa	id determined number of	queues in accordance with said precedence
	order.		

- 18. (Currently Amended) The apparatus of claim 15, wherein said code scheduler module further comprises a hardware scheduler.
- 19. (New) A method of scheduling a set of instructions during compilation of a program comprising the instructions, the method comprising:
- (a) constructing a directed acyclic graph depicting dependencies among
 4 instructions in the set of instructions, wherein each node in the graph corresponds to an instruction in the set of instructions;
- 6 (b) identifying a ready set of nodes representing instructions having no dependencies on other instructions;
 - (c) identifying a target level of fullness within a queue configured to facilitate reordering of the set of instructions;
- 10 (d) if the queue is less full than said target level:
- (d1) selecting a node in said ready set that corresponds to an instruction that would generate a memory operation; and
- if said ready set includes no such node, heuristically selecting a
 node in said ready set;

- (e) if the queue is at least as full as said target level:
- 16 (e1) selecting a node in said ready set that corresponds to an instruction that requires completion of a previous memory operation; and
- 18 (e2) if said ready set includes no such node, heuristically selecting a node in said ready set;
- 20 (f) removing the selected node from the ready set and the graph; and
 - (g) scheduling the instruction corresponding to the selected node.
 - 20. (New) The method of claim 19, wherein:
- said instruction that would generate a memory operation comprises one of: a load, a prefetch and a store; and
- said instruction that requires completion of a previous memory operation is an instruction dependent upon one or more of: a load, a prefetch and a store.