Содержание

- Поворот плоской кривой
 - Определение и свойства
 - Восстановление кривой по кривизне
 - Поворот простой замкнутой кривой
- Выпуклые кривые
 - Выпуклость и касательные
 - Выпуклость и знак кривизны
- Кривые в старших размерностях
 - ullet Кривизна кривой в \mathbb{R}^n
 - ullet Кручение и формулы Френе в \mathbb{R}^3

Направляющая идея

Неформальное описание сути дела:

Рассматриваем натурально параметризованную кривую γ на плоскости.

 E ё кривизна — скорость движения вектора скорости v(t) по окружности.

Зная кривизну в каждый момент времени, можно найти, насколько вектор скорости изменился по сравнению с начальным положением.

Эта информация позволяет восстановить кривую, если известна её кривизна и начальные данные.

Содержание

- Поворот плоской кривой
 - Определение и свойства
 - Восстановление кривой по кривизне
 - Поворот простой замкнутой кривой
- Выпуклые кривые
 - Выпуклость и касательные
 - Выпуклость и знак кривизны
- Кривые в старших размерностях
 - ullet Кривизна кривой в \mathbb{R}^n
 - ullet Кручение и формулы Френе в \mathbb{R}^3

Определение поворота

Определение

Поворот натурально параметризованной кривой $\gamma\colon [a,b] \to \mathbb{R}^2$ — это

$$\int_a^b \kappa(t)\,dt,$$

где κ — кривизна этой кривой.

Определение поворота

Определение

Поворот натурально параметризованной кривой $\gamma\colon [a,b] o \mathbb{R}^2$ — это

$$\int_a^b \kappa(t) dt,$$

где κ — кривизна этой кривой.

Замечание

Для не натурально параметризованной кривой $\gamma\colon [a,b] \to \mathbb{R}^2$ поворот можно найти по формуле

$$\int_a^b \kappa(t) |\gamma'(t)| dt$$

Краткая запись (интеграл по длине): $\int_{a}^{b} \kappa \, d\ell$.

$$|X| = |Y| \cdot dt$$

$$|X| = |Y| \cdot dt$$

$$|Y| - |Y| = |Y| \cdot dt$$

$$|Y| = |Y| \cdot dt$$

$$\int K(t) \cdot \varphi'(t) dt =$$

$$= \int K(\varphi(t)) \cdot \varphi'(t) dt =$$

$$= \int K(x) dx - \omega \delta \circ \rho \circ \tau.$$

Напоминание: непрерывный аргумент

Напоминание

Непрерывный аргумент функции $v:[a,b] \to \mathbb{S}^1$ — такая непрерывная функция $\alpha:[a,b] \to \mathbb{R}$, что

$$v(t) = (\cos \alpha(t), \sin \alpha(t))$$

для всех $t \in [a, b]$.

Непрерывный аргумент существует у любой непрерывной функции $v\colon [a,b] o \mathbb{S}^1.$

Он единственен с точностью до константы, кратной 2π .

Produce 6 haup.

$$p: \mathbb{R} \rightarrow S'$$

 $p(x) = (\omega_0 \times , \sin_x).$

Поворот и непрерывный аргумент скорости

Теорема

Пусть v(t) — скорость натурально параметризованной кривой γ , $\alpha(t)$ — непрерывный аргумент для v(t). Тогда

- **1** $\alpha(t)$ гладкая функция от t;
- ② $\alpha'(t) = \kappa(t)$, где κ кривизна γ .

V: [a,6] -> 51

Поворот и непрерывный аргумент скорости

Теорема

Пусть v(t) — скорость натурально параметризованной кривой γ , $\alpha(t)$ — непрерывный аргумент для v(t). Тогда

- **1** $\alpha(t)$ гладкая функция от t;
- 2 $\alpha'(t) = \kappa(t)$, где κ кривизна γ .

Следствие

Поворот кривой $\gamma\colon [a,b] o \mathbb{R}^2$ равен изменению аргумента вектора $\gamma'(t)$ от t=a до t=b.

Поворот и непрерывный аргумент скорости

Теорема

Пусть v(t) — скорость натурально параметризованной кривой γ , $\alpha(t)$ — непрерывный аргумент для v(t). Тогда

- **①** $\alpha(t)$ гладкая функция от t;
- 2 $\alpha'(t) = \kappa(t)$, где κ кривизна γ .

Следствие

Поворот кривой $\gamma\colon [a,b] o \mathbb{R}^2$ равен изменению аргумента вектора $\gamma'(t)$ от t=a до t=b.

Следствие

Векторы $\gamma'(a)$ и $\gamma'(b)$ определяют поворот кривой γ с точностью до прибавления $2\pi m$, где $m \in \mathbb{Z}$.

Доказательство теоремы

1. В окрестности любого t аргумент записывается формулой с arcsin или arccos.

Например, если v(t)=(x(t),y(t)) и $x(t_0)>0$ то в окрестности t_0 непрерывный аргумент имеет вид $\alpha(t)=\arcsin y(t)+2\pi m$. Другие случаи аналогичны.

 $V(t) = (x(t), y(t)), x, y \in (\infty)$ $x(t) = (x(t), y(t)), x, y \in (\infty)$ $x(t) = (x(t), y(t)), x, y \in (\infty)$ $y(t) = (x(t), y(t)), x, y \in (\infty)$

Лекция 4 23 сентября 2020 г.

Доказательство теоремы

1. В окрестности любого t аргумент записывается формулой с arcsin или arccos.

Например, если v(t) = (x(t), y(t)) и $x(t_0) > 0$ то в окрестности t_0 непрерывный аргумент имеет вид $\alpha(t) = \arcsin y(t) + 2\pi m$.

Другие случаи аналогичны.

$$v = (\cos \alpha, \sin \alpha)$$

$$v' = \alpha' \cdot (-\sin \alpha, \cos \alpha)$$

$$n = (-\sin \alpha, \cos \alpha)$$

 $v' = \kappa n$ (из формул Френе) $\implies \kappa = \alpha'$.

$$V = U(t)$$

 $x = x/t$

Содержание

- 1 Поворот плоской кривой
 - Определение и свойства
 - Восстановление кривой по кривизне
 - Поворот простой замкнутой кривой
- Выпуклые кривые
 - Выпуклость и касательные
 - Выпуклость и знак кривизны
- Кривые в старших размерностях
 - ullet Кривизна кривой в \mathbb{R}^n
 - ullet Кручение и формулы Френе в \mathbb{R}^3

Формулировка

Теорема

Для любой гладкой функции $\kappa: I \to \mathbb{R}$ существует регулярная натурально параметризованная кривая $\gamma: I \to \mathbb{R}^2$, у которой кривизна равна этой функции.

Такая кривая единственна с точностью до движения, сохраняющего ориентацию.

I = IR - unterban

Формулировка

Теорема

Для любой гладкой функции $\kappa\colon I\to\mathbb{R}$ существует регулярная натурально параметризованная кривая $\gamma\colon I\to\mathbb{R}^2$, у которой кривизна равна этой функции.

Такая кривая единственна с точностью до движения, сохраняющего ориентацию.

Пусть $\kappa\colon I\to\mathbb{R}$ — гладкая функция, $t_0\in I$, $p_0\in\mathbb{R}^2$, $v_0\in\mathbb{S}^1$. Тогда существует единственная натурально параметризованная кривая $\gamma\colon I\to\mathbb{R}^2$ такая, что

- $\gamma(t_0) = p_0$
- $\gamma'(t_0) = v_0$ \vee
- \bullet $\kappa_{\gamma}(t) = \kappa(t)$ для всех $t \in I$.

Доказательство – 1: из второй теоремы следует первая

 $T_2 = T_1$

Выведем первую теорему из второй. Существование очевидно.

Единственность с точностью до движения, сохраняющего ориентацию:

Пусть $\gamma_1, \gamma_2 \colon I \to \mathbb{R}^2$ — натурально параметризованые кривые, и их кривизна — одна и та же функция $\kappa(t)$.

Зафиксируем $t_0 \in I$.

Существует сохраняющее ориентацию движение $F: \mathbb{R}^2 \to \mathbb{R}^2$ такое, что

$$\begin{cases} F(\gamma_1(t_0)) = \gamma_2(t_0) \\ \overrightarrow{F}(\gamma_1'(t_0)) = \gamma_2'(t_0) \end{cases}$$

Рассмотрим $\gamma = F \circ \gamma_1$. Она имеет ту же кривизну и те же начальные данные, что γ_2 . Значит, $\gamma_2 = F \circ \gamma_1$.

F-MHENHAR -> (200)

no boopon reopene.

Доказательство – 2: единственность

Пусть γ удовлетворяет условиям $\gamma(t_0)=p_0,\ \gamma'(t_0)=v_0,\ \kappa_\gamma(t)=\kappa(t)$ при всех $t\in I$). Пусть $v(t)=\gamma'(t),\ \alpha(t)$ — непрерывный аргумент $v(t),\ \alpha_0=\alpha(t_0).$

Тогда по предыдущей теореме $\alpha'(t)=\kappa(t)$ $\Longrightarrow \alpha(t)$ определено однозначно:

$$\alpha(t) = \alpha_0 + \int_{t_0}^t \kappa \qquad (//)$$

 $\implies v(t)$ определено однозначно:

$$v(t) = (\cos \alpha(t), \sin \alpha(t))$$

 $\implies \gamma(t)$ определено однозначно:

$$\gamma(t) = p_0 + \int_{t_0}^t v \tag{3}$$

Доказательство – 3: существование

Для построения кривой используем формулы из доказательства единственности:

- Выберем α_0 так, что $\nu_0 = (\cos \alpha_0, \sin \alpha_0)$.
- Положим $\alpha(t) = \alpha_0 + \int_{t_0}^t \kappa$.
- Положим $v(t) = (\cos \alpha(t), \sin \alpha(t))$
- Положим $\gamma(t) = p_0 + \int_{t_0}^t v$.

Кривая γ подходит: $\gamma(t_0) = p_0$,

$$\gamma'(t) = v(t) = (\cos \alpha(t), \sin \alpha(t))$$

 $\implies \gamma$ натурально параметризована, $\gamma'(t_0) = v_0$.

$$\gamma'' = \alpha' n_{\gamma} = \kappa n_{\gamma}$$

 $\implies \kappa_{\gamma} \equiv \kappa$.

Теорема доказана

(2)
(3)
(4)
$$|y'| = 1$$

(1)

$$y''=V'=a'\cdot\left(-\sin a,\cos a\right)=a'\cdot N.$$

Содержание

- 1 Поворот плоской кривой
 - Определение и свойства
 - Восстановление кривой по кривизне
 - Поворот простой замкнутой кривой
- Выпуклые кривые
 - Выпуклость и касательные
 - Выпуклость и знак кривизны
- Привые в старших размерностях
 - ullet Кривизна кривой в \mathbb{R}^n
 - ullet Кручение и формулы Френе в \mathbb{R}^3

Замкнутые кривые

Определение

Кривая $\gamma\colon [a,b]\to \mathbb{R}^2$ — замкнутая, если ее можно продолжить до гладкой (b-a)-периодической функции $\widetilde{\gamma}\colon \mathbb{R}\to \mathbb{R}^n$.

Следствие (из теоремы про поворот и аргумент)

Поворот замкнутой кривой равен $2\pi m$, где $m\in\mathbb{Z}$.

Замкнутые кривые

Определение

Кривая $\gamma \colon [a,b] \to \mathbb{R}^2$ — замкнутая, если ее можно продолжить до гладкой (b-a)-периодической функции $\widetilde{\gamma} \colon \mathbb{R} \to \mathbb{R}^n$.

Следствие (из теоремы про поворот и аргумент)

Поворот замкнутой кривой равен $2\pi m$, где $m \in \mathbb{Z}$.

Определение

Число т из последнего следствия называется числом вращения данной кривой.

(Замечание: это индекс v(t) относительно 0.)

Поворот простой замкнутой кривой

Определение

Простая замкнутая кривая — замкнутая кривая $\gamma \colon [a,b] \to \mathbb{R}^2$ у которой нет самопересечений, т.е. $\gamma(t_1) \neq \gamma(t_2)$ для любых различных t_1, t_2 , кроме концов.

Поворот простой замкнутой кривой

Определение

Простая замкнутая кривая — замкнутая кривая $\gamma\colon [a,b] \to \mathbb{R}^2$ у которой нет самопересечений, т.е. $\gamma(t_1) \neq \gamma(t_2)$ для любых различных t_1,t_2 , кроме концов.

Теорема

Поворот простой замкнутой кривой равен $\pm 2\pi$.

Замечание

Знак \pm зависит от направления обхода.

Доказательство — 1: подготовка

Пусть γ — данная кривая. Параметризуем её натурально отрезком [0,L], где $L=\ell(\gamma)$, так, что $\gamma(0)$ — самая нижняя точка кривой (минимум y-координаты). Это можно сделать, так как кривая замкнутая.

Лекция 4 23 сентября 2020 г.

Доказательство — 1: подготовка

Пусть γ — данная кривая. Параметризуем её натурально отрезком [0,L], где $L=\ell(\gamma)$, так, что $\gamma(0)$ — самая нижняя точка кривой (минимум y-координаты). Это можно сделать, так как кривая замкнутая.

Касательная в нижней точке горизонтальна: $\gamma'(0) = (\pm 1, 0)$.

Если $\gamma'(0) = (-1,0)$, поменяем направление обхода заменой $t \mapsto L - t$. При этот поворот меняет знак.

Теперь $\gamma'(0)=(1,0).$ Докажем, что поворот γ равен $2\pi.$

Пусть T — треугольник на координатной плоскости, заданный равенством

$$T = \{(x, y) : x, y \in [0, L], x \ge y\}.$$

Определим $F: T \to \mathbb{S}^1$:

$$F(x,y) = \frac{\gamma(y) - \gamma(x)}{|\gamma(y) - \gamma(x)|}$$
 (2)

при $\gamma(x) \neq \gamma(y)$,

$$F(x,x)=\gamma'(x)$$

(3)

$$F(0,L)=(-1,0)$$

(4)

Лекция 4

Отображение F непрерывно.

Заметим, что F(0,0) = F(L,L) = (1,0).

Oupedenlus, 7. k. her cano hepecer. (kyome X= y) y X=0, y= L).

17 / 55

 $x,y \rightarrow x_0$. $y(y) - y(x) \sim y'(x_0) \cdot (y-x)$ $F(x,y) \rightarrow y'(x_0)$

F непрерывно, T односвязно \Longrightarrow существует непрерывный аргумент $A\colon T \to \mathbb{R}$, т.е.

$$F(x,y) = (\cos A(x,y), \sin A(x,y))$$

(поднятие для стандартного накрытия $\mathbb{R} o \mathbb{S}^1$).

$$F: T \rightarrow S'$$

$$P: R \rightarrow S' \qquad (605,5h)$$

$$F: T \rightarrow R$$

Лекция 4 23 сентября 2020 г.

F непрерывно, T односвязно \Longrightarrow существует непрерывный аргумент $A\colon T\to \mathbb{R}$, т.е.

$$F(x,y) = (\cos A(x,y), \sin A(x,y))$$

(поднятие для стандартного накрытия $\mathbb{R} o \mathbb{S}^1$).

Поворот γ равен изменению аргумента $\gamma'(t)$, $t \in [0,L]$

 \implies он равен изменению функции A(x,x), $x\in [0,L]$

 \implies oh pabeh A(L,L)-A(0,0). = has o por -

F непрерывно, T односвязно \Longrightarrow существует непрерывный аргумент $A\colon T \to \mathbb{R}$, т.е.

$$F(x,y) = (\cos A(x,y), \sin A(x,y))$$

(поднятие для стандартного накрытия $\mathbb{R} o \mathbb{S}^1$).

Поворот γ равен изменению аргумента $\gamma'(t)$, $t \in [0, L]$ \Longrightarrow он равен изменению функции A(x, x), $x \in [0, L]$ \Longrightarrow он равен A(L, L) - A(0, 0).

Разложим его в сумму $R_1 + R_2$ где

$$R_1 = A(0, L) - A(0, 0)$$
 (2)

$$R_2 = A(L, L) - A(0, L)$$
 (3)

Докажем, что $R_1 = R_2 = \pi$.

Можно считать, что A(0,0)=0. Рассмотрим $R_1=A(0,L)-A(0,0)=A(0,L)$. Оно равно изменению аргумента

$$w_1(t) := F(0,t) = rac{\gamma(t) - \gamma(0)}{|\gamma(t) - \gamma(0)|}, \qquad t \in [0,L]$$

Значения $w_1(t)$ направлены в верхнюю полуплоскость \Longrightarrow аргумент не принимает значений $-\frac{\pi}{2}$ и $\frac{3}{2}\pi$ \Longrightarrow он изменяется от 0 до π \Longrightarrow $R_1=\pi$.

Лекция 4 23 сентября 2020 г.

Можно считать, что A(0,0)=0. Рассмотрим $R_1=A(0,L)-A(0,0)=A(0,L)$. Оно равно изменению аргумента

$$w_1(t) := F(0,t) = \frac{\gamma(t) - \gamma(0)}{|\gamma(t) - \gamma(0)|}, \qquad t \in [0,L]$$

Значения $w_1(t)$ направлены в верхнюю полуплоскость \Longrightarrow аргумент не принимает значений $-\frac{\pi}{2}$ и $\frac{3}{2}\pi$ \Longrightarrow он изменяется от 0 до π \Longrightarrow $R_1=\pi$.

Аналогично, R_2 — изменение аргумента

$$w_2(t) := F(t, L) = \frac{\gamma(t) - \gamma(L)}{|\gamma(t) - \gamma(L)|}, \qquad t \in [0, L]$$

Значения $w_2(t)$ направлены в нижнюю полуплоскость \Longrightarrow аргумент не принимает значений $\frac{\pi}{2}$ и $2\pi+\frac{\pi}{2}\Longrightarrow$ он изменяется от π до $2\pi\Longrightarrow R_2=\pi\Longrightarrow$ поворот равен 2π .

Теорема доказана

Содержание

- Поворот плоской кривой
 - Определение и свойства
 - Восстановление кривой по кривизне
 - Поворот простой замкнутой кривой
- 2 Выпуклые кривые
 - Выпуклость и касательные
 - Выпуклость и знак кривизны
- Привые в старших размерностях
 - ullet Кривизна кривой в \mathbb{R}^n
 - ullet Кручение и формулы Френе в \mathbb{R}^3

Содержание

- Поворот плоской кривой
 - Определение и свойства
 - Восстановление кривой по кривизне
 - Поворот простой замкнутой кривой
- 2 Выпуклые кривые
 - Выпуклость и касательные
 - Выпуклость и знак кривизны
- Кривые в старших размерностях
 - ullet Кривизна кривой в \mathbb{R}^n
 - ullet Кручение и формулы Френе в \mathbb{R}^3

Два определения выпуклости

Будем рассматривать простые замкнутые регулярные кривые на плоскости.

Образ кривой γ обозначаем той же буквой γ .

Теорема

Пусть γ — простая замкнутая регулярная кривая на плоскости. Тогда два условия эквивалентны:

 γ лежит по одну сторону от любой своей касательной.

Определение

Кривые, удовлетворяющие этим условиям, будем называть выпуклыми.

 $1\implies 2$: Пусть γ — граница выпуклого тела K. Из свойств выпуклых множеств, для любого t существует опорная прямая для K в точке $\gamma(t)$. V Кривая лежит по одну сторону от этой прямой (по определению опорной прямой) \implies это касательная.

y(t)=(x(t), y(t)) l=0K, g(t)= min y(t) y'(to) = 0. y'(to) - espuzoniamo

Лекция 4 23 сентября 2020 г.

 $1\implies 2$: Пусть γ — граница выпуклого тела K. Из свойств выпуклых множеств, для любого t существует опорная прямая для K в точке $\gamma(t)$. Кривая лежит по одну сторону от этой прямой (по определению опорной прямой) \implies это касательная.

 $2 \implies 1$: Пусть γ лежит по одну сторону от любой \bigvee своей касательной. Определим $K = \operatorname{conv}(\gamma)$. K — выпуклый компакт (как выпуклая оболочка компакта) с непустой внутренностью (так как γ не лежит на одной прямой)

 $\Longrightarrow K$ гомеоморфно D^2 , а его граница ∂K гомеоморфна \mathbb{S}^1 .

 $1\implies 2$: Пусть γ — граница выпуклого тела K. Из свойств выпуклых множеств, для любого t существует опорная прямая для K в точке $\gamma(t)$. Кривая лежит по одну сторону от этой прямой (по определению опорной прямой) \implies это касательная.

 $2 \Longrightarrow 1$: Пусть γ лежит по одну сторону от любой своей касательной. Определим $K = \text{conv}(\gamma)$. K — выпуклый компакт (как выпуклая оболочка компакта) с непустой внутренностью (так как γ не лежит на одной прямой)

 $\implies K$ гомеоморфно D^2 , а его граница ∂K гомеоморфна \mathbb{S}^1 .

 γ лежит по одну сторону от касательной в точке $\gamma(t)$ $\Longrightarrow \gamma(t)$ не внутренняя точка K. $\Longrightarrow \gamma \subset \partial K$.

Доказательство

 $1 \implies 2$: Пусть γ — граница выпуклого тела K. Из свойств выпуклых множеств, для любого t существует опорная прямая для K в точке $\gamma(t)$. Кривая лежит по одну сторону от этой прямой (по определению опорной прямой) \implies это касательная.

 $2 \Longrightarrow 1$: Пусть γ лежит по одну сторону от любой своей касательной. Определим $K = \text{conv}(\gamma)$. K - выпуклый компакт (как выпуклая оболочка компакта) с непустой внутренностью (так как γ не лежит на одной прямой)

 $\Longrightarrow K$ гомеоморфно D^2 , а его граница ∂K гомеоморфна \mathbb{S}^1 .

 γ лежит по одну сторону от касательной в точке $\gamma(t)$ $\Longrightarrow \gamma(t)$ — не внутренняя точка K. $\Longrightarrow \gamma \subset \partial K$.

Так как γ и ∂K оба гомеоморфны окружности, из включения $\gamma \subset \partial K$ следует, что $\gamma = \partial K$.

(~ (wodner-by S-193)

Содержание

- Поворот плоской кривой
 - Определение и свойства
 - Восстановление кривой по кривизне
 - Поворот простой замкнутой кривой
- Выпуклые кривые
 - Выпуклость и касательные
 - Выпуклость и знак кривизны
- Кривые в старших размерностях
 - ullet Кривизна кривой в \mathbb{R}^n
 - ullet Кручение и формулы Френе в \mathbb{R}^3

Формулировка

Теорема

Пусть γ — простая замкнутая регулярная кривая. Тогда эквивалентны три условия:

- $\circ \gamma$ выпуклая кривая (лежит по одну сторону от $\circ \gamma$ любой своей касательной).
- ② κ_{γ} имеет нестрого постоянный знак (или всюду ≥ 0 , или всюду ≤ 0).
- **③** Для любой прямой ℓ существуют ровно две касательные к γ , параллельные ℓ .

Формулировка

Теорема

Пусть γ — простая замкнутая регулярная кривая. Тогда эквивалентны три условия:

- \bullet γ выпуклая кривая (лежит по одну сторону от любой своей касательной).
- ② κ_{γ} имеет нестрого постоянный знак (или всюду ≥ 0 , или всюду ≤ 0).
- ③ Для любой прямой ℓ существуют ровно две касательные к γ , параллельные ℓ .

Замечание

Две касательные в последнем пункте имеют противоположные направления, т.е. для каждого ориентированного направления касательная единственна. Это будет видно из доказательства.

Доказательство $1 \implies 2$

Пусть γ лежит слева от своей ориентированной касательной в точке t_0 . Выберем такую систему координат, что эта касательная — первая координатная ось. Тогда $\gamma'(t_0)=(1,0), \gamma''(0)$ имеет неотрицательную y-координату $\Longrightarrow \kappa_{\gamma}(t_0) \geq 0$.

Лекция 4 23 сентября 2020 г.

Доказательство $1 \implies 2$

Пусть γ лежит слева от своей ориентированной касательной в точке t_0 . Выберем такую систему координат, что эта касательная — первая координатная ось. Тогда $\gamma'(t_0)=(1,0),\ \gamma''(0)$ имеет неотрицательную y-координату $\implies \kappa_\gamma(t_0) \geq 0$.

Аналогично, если γ лежит справа от своей ориентированной касательной в точке t_0 , то $\kappa_\gamma(t_0) \leq 0$.

Осталось понять, почему γ не может лежать то слева, то справа от касательных. Определим $\sigma(t)=1$, если γ лежит слева от касательной в точке t, и $\sigma(t)=-1$, если справа. Докажем, что $\sigma(t)$ локально постоянна, тогда из связности отрезка последует, что она постоянна.

$$\frac{1}{3(t)} = \begin{cases} +1, & \text{even } f \text{ crebs} \\ -1, & \text{even } \text{cryaba}. \end{cases}$$

Доказательство $1 \implies 2$

Пусть γ лежит слева от своей ориентированной касательной в точке t_0 . Выберем такую систему координат, что эта касательная — первая координатная ось. Тогда $\gamma'(t_0)=(1,0),\ \gamma''(0)$ имеет неотрицательную y-координату $\implies \kappa_\gamma(t_0) \geq 0$.

Аналогично, если γ лежит справа от своей ориентированной касательной в точке t_0 , то $\kappa_\gamma(t_0) \leq 0$.

Осталось понять, почему γ не может лежать то слева, то справа от касательных. Определим $\sigma(t)=1$, если γ лежит слева от касательной в точке t, и $\sigma(t)=-1$, если справа. Докажем, что $\sigma(t)$ локально постоянна, тогда из связности отрезка последует, что она постоянна.

Если $\sigma(t_0)=1$, то найдётся \widehat{t} такое, что $q:=\gamma(\widehat{t})$ строго левее касательной. Это значит, что $[\gamma'(t_0),q-\gamma(t_0)]>0$ \Longrightarrow по непрерывности $[\gamma'(t),q-\gamma(t)]>0$ для всех t, достаточно близких к t_0 \Longrightarrow 0 для этих t.

Доказательство $2 \implies 3$

Пусть $\kappa=\kappa_{\gamma}\geq 0$ (иначе поменяем направление обхода). Пусть γ натурально параметризована отрезком [0,L]. Пусть $\alpha(t)$ — непрерывный аргумент v(t). Можно считать, что $\alpha(0)=0$.

$$\alpha' = \kappa$$
 и $\int \kappa = 2\pi$

 $\Rightarrow \alpha$ изменяется монотонно от 0 до 2π .

 $\implies \alpha$ принимает каждое значение $\alpha_0 \in (0,\pi)$ либо в одной точке, либо на интервале

 \implies все касательные ориентированного направления с аргументов $lpha_0$ совпадают

 \implies есть ровно одна касательная каждого ориентированного направления (кроме, может быть, случая $lpha_0=0$).

Случай α_0 можно свести к разобранному заменой начальной точки.

\square оказательство $3 \implies 1$

От противного: пусть у кривой γ ровно две касательные каждого направления, но она не выпукла.

Тогда существует такая касательная ℓ , что на γ есть точки по обе стороны от ℓ .

Выберем координаты так, что ℓ — горизонтальная ось. Тогда есть 3 различные горизонтальные касательные: ℓ , касательная в самой нижней точке и касательная в самой верхней точке.

Теорема доказана

y(+x) - max y(+)

Содержание

- Поворот плоской кривой
 - Определение и свойства
 - Восстановление кривой по кривизне
 - Поворот простой замкнутой кривой
- Выпуклые кривые
 - Выпуклость и касательные
 - Выпуклость и знак кривизны
- 3 Кривые в старших размерностях
 - ullet Кривизна кривой в \mathbb{R}^n
 - ullet Кручение и формулы Френе в \mathbb{R}^3

Содержание

- Поворот плоской кривой
 - Определение и свойства
 - Восстановление кривой по кривизне
 - Поворот простой замкнутой кривой
- Выпуклые кривые
 - Выпуклость и касательные
 - Выпуклость и знак кривизны
- 3 Кривые в старших размерностях
 - ullet Кривизна кривой в \mathbb{R}^n
 - ullet Кручение и формулы Френе в \mathbb{R}^3

Лекция 4

30 / 5<u>5</u>

Определение

Определение

Пусть $\gamma:I\to\mathbb{R}^n$ — натурально параметризованная регулярная кривая, $t\in I$.

Вектор $\gamma''(t)$ — вектор кривизны γ в точке t.

Его длина $\kappa(t):=|\gamma''(t)|$ — кривизна.

Его направление $n_{\gamma}(t):=\frac{\gamma''(t)}{|\gamma''(t)|}$ — главная нормаль $\sqrt{}$ (далее — просто нормаль).

Плоскость, порожденная векторами $\gamma'(t)$ и $\gamma''(t)$ — соприкасающаяся плоскость.

Комментарии

- ullet $v=\gamma'(t)$ и $n=n_{\gamma}(t)$ ортонормированная пара
- Верно равенство $v' = \gamma'' = \kappa n$
- В точках, где $\kappa(t)=0$, нормаль не определена, κ теряет гладкость. Но равенство $\gamma''=\nu'=\kappa n$ верно при любом выборе вектора n.
- Кривизна сохраняется при движениях.

K = 18"1. 20.

Для не натурально параметризованной кривой кривизна и т.д. определяются как кривизна натуральной параметризации в соответствующей точке.

Для не натурально параметризованной кривой кривизна и т.д. определяются как кривизна натуральной параметризации в соответствующей точке.

Разложение ускорения на касательную и нормальную компоненты и следствия:

• Если $s(t) = |\gamma'(t)|$, то

$$\gamma' = sv \qquad (1)$$

$$\gamma'' = s'v + s^2kn \qquad (2)$$

где v и n — скорость и нормаль для натуральной параметризации.

Для не натурально параметризованной кривой кривизна и т.д. определяются как кривизна натуральной параметризации в соответствующей точке.

Разложение ускорения на касательную и нормальную компоненты и следствия:

ullet Если $s(t) = |\gamma'(t)|$, то

$$\gamma' = sv$$
$$\gamma'' = s'v + s^2 \kappa n$$

где v и n — скорость и нормаль для натуральной параметризации.

• При $\kappa \neq 0$, векторы v, n получается ортогонализацией из векторов γ' и γ'' .

Для не натурально параметризованной кривой кривизна и т.д. определяются как кривизна натуральной параметризации в соответствующей точке.

Разложение ускорения на касательную и нормальную компоненты и следствия:

ullet Если $s(t) = |\gamma'(t)|$, то

$$\gamma' = sv$$
$$\gamma'' = s'v + s^2 \kappa n$$

где v и n — скорость и нормаль для натуральной параметризации.

- При $\kappa \neq 0$, векторы v,n получается ортогонализацией из векторов γ' и γ'' .
- Вектор кривизны $= \frac{\Pr_{v^{\perp}}(\gamma'')}{|\gamma'|^2}$

Лекция 4

Для не натурально параметризованной кривой кривизна и т.д. определяются как кривизна натуральной параметризации в соответствующей точке.

Разложение ускорения на касательную и нормальную компоненты и следствия:

ullet Если $s(t) = |\gamma'(t)|$, то

$$\gamma' = sv$$
$$\gamma'' = s'v + s^2 \kappa n$$

где v и n — скорость и нормаль для натуральной параметризации.

- При $\kappa \neq 0$, векторы v, n получается ортогонализацией из векторов γ' и γ'' .
- ullet Вектор кривизны $=rac{\mathsf{Pr}_{oldsymbol{v}^\perp}(\gamma'')}{|\gamma'|^2}$
- \bullet $\kappa = \frac{|\gamma' \wedge \gamma''|}{|\gamma'|^3}$, где $|\gamma' \wedge \gamma''|$ площадь парадлелограмма на данных векторах.

//// - mpo ujado 18'121x"/2 < 8',0">2

Для записей

Поворот

Определение

Поворот регулярной кривой в \mathbb{R}^n — интеграл кривизны по натуральному параметру.

Для не натурально параметризованной кривой γ , поворот равен $\int \kappa \, d\ell = \int \kappa_{\gamma}(t) \, |\gamma'(t)| \, dt$

Поворот

Определение

Поворот регулярной кривой в \mathbb{R}^n — интеграл кривизны по натуральному параметру.

Для не натурально параметризованной кривой γ , поворот равен $\int \kappa \, d\ell = \int \kappa_{\gamma}(t) \, |\gamma'(t)| \, dt$

Свойство

Для кривой $\gamma\colon [\mathsf{a},\mathsf{b}] o \mathbb{R}^{\mathsf{n}}$,

$$\angle(\gamma'(a),\gamma'(b)) \leq \int_a^b \kappa \,d\ell$$

 $V = \chi' : [q, 6] \longrightarrow S^{h-1}$ k = |v'| -V-upular na Appe.

23 сентября 2020 г.

Поворот

Определение

Поворот регулярной кривой в \mathbb{R}^n — интеграл кривизны по натуральному параметру.

Для не натурально параметризованной кривой γ , поворот равен $\int \kappa \ d\ell = \int \kappa_{\gamma}(t) \, |\gamma'(t)| \, dt$

Свойство

Для кривой $\gamma\colon [\mathsf{a},\mathsf{b}] o \mathbb{R}^n$,

$$\angle(\gamma'(a),\gamma'(b)) \leq \int_a^b \kappa \,d\ell$$

Доказательство.

Поворот γ — длина кривой $v(t)=\gamma'(t)$ на сфере. Её длина не меньше углового расстояния между концами.

Лекция 4

Теорема Фенхеля

Как и в \mathbb{R}^2 , поворот кривой в \mathbb{R}^n — интеграл кривизны по натуральному параметру.

Напоминание: регулярная кривая замкнута, если она продолжается до гладкой периодической.

Теорема (Фенхель)

У любой замкнутой регулярной кривой в \mathbb{R}^n , поворот $\geq 2\pi$.

$$\int K_{3H} = \int K_{+} + \int K_{-}$$

$$- 77.$$

Лекция 4 23 сентября 2020 г.