PROBLEMAS DE VALORES INICIALES (Segunda parte)

ANÁLISIS NUMÉRICO/MÉTODOS MATEMÁTICOS Y NUMÉRICOS

(75.12/95.04/95.13)

CURSO TARELA

Ejemplo

Dada la ecuación diferencial ordinaria:

$$\begin{cases} y' = -y + t^2 + 2t - 2 \\ y(0) = 0 \end{cases}$$

Resolver el sistema en el intervalo [0, 2] por métodos numéricos (Ponderado implícito, Euler modificado y Runge Kutta de orden 4). Utilizar pasos de cálculo 0,4; 0,2 y 0,1.

Solución analítica:

$$y(t) = 2e^{-t} + t^2 - 2.$$

$$y' = f(y(t), t)$$

$$u^{(n+1)} = u^{(n)} + h * \left[\beta \left(f(u^{(n+1)}, t^{(n+1)})\right) + (1 - \beta) \left(f(u^{(n)}, t^{(n)})\right)\right]$$

$$\beta = 0$$
 Euler explícito

$$\beta = 1$$
 Euler implícito

$$\beta = 0,5$$
 Crank Nicolson

En nuestro ejemplo:

$$u^{(n+1)} = u^{(n)} + h * \left[\beta \left(-u^{(n+1)} + ((n+1)h)^2 + 2 * ((n+1)h) - 2\right) + (1-\beta)\left(-u^{(n)} + (nh)^2 + 2 * (nh) - 2\right)\right]$$

Para simplificar notación:

$$a = ((n+1)h)^2 + 2 * ((n+1)h) - 2$$

$$b = -u^{(n)} + (nh)^2 + 2 * (nh) - 2$$

$$u^{(n+1)} = u^{(n)} + h * \left[\beta \left(-u^{(n+1)} + a\right) + (1 - \beta)b\right]$$

Despejando $u^{(n+1)}$:

$$u^{(n+1)} = \frac{u^{(n)} + h * [\beta a + (1-\beta)b]}{1 + h\beta}$$

$$u^{(0)} = 0$$

n	$t^{(n)}$	$u^{(n)}$	а	b	$u^{(n+1)}$	$y(t^{(n+1)})$	e
0	0	0	-1,04	-2	-0,50666667	-0,49935991	-0,00730676
1	0,4	-0,50666667	0,24	-0,53333333	-0,47111111	-0,46134207	-0,00976904
2	0,8	-0,47111111	1,84	0,71111111	0,03259259	0,04238842	-0,00979583
3	1,2	0,03259259	3,76	1,80740741	0,95506173	0,96379304	-0,00873131
4	1,6	0,95506173	6	2,80493827	2,26337449	2,27067057	-0,00729608

Euler modificado

$$y' = f(y(t), t)$$

$$y' = -y + t^2 + 2t - 2$$

$$u^{*(n+1)} = u^{(n)} + h * f(u^{(n)}, t^{(n)})$$
$$u^{(n+1)} = u^{(n)} + \frac{h}{2} * [f(u^{(n)}, t^{(n)}) + f(u^{*(n+1)}, t^{(n+1)})]$$

PASO PREDICTOR

PASO CORRECTOR

- ■Método explícito
- ■Primero calculo $u^{*(n+1)}$ para luego conocer $u^{(n+1)}$

$$u^{*(n+1)} = u^{(n)} + h * (-u^{(n)} + t^{(n)2} + 2t^{(n)} - 2)$$

$$u^{(n+1)} = u^{(n)} + \frac{h}{2} * \left[\left(-u^{(n)} + t^{(n)2} + 2t^{(n)} - 2 \right) + \left(-u^{*(n+1)} + t^{(n+1)2} + 2t^{(n+1)} - 2 \right] \right]$$

Euler modificado

n	$t^{(n)}$	$u^{(n)}$	$u^{*(n+1)}$	$u^{(n+1)}$	$y(t^{(n+1)})$	e
0	0	0	-0,8	-0,448	-0,49935991	0,05135991
1	0,4	-0,448	-0,6848	-0,38144	-0,46134207	0,07990207
2	0,8	-0,38144	-0,132864	0,1374208	0,04238842	0,09503238
3	1,2	0,1374208	0,81845248	1,06624614	0,96379304	0,10245311
4	1,6	1,06624614	2,14374769	2,37624738	2,27067057	0,10557681

Euler modificado

Runge Kutta de orden 4

$$y' = f(y(t), t)$$

$$y' = -y + t^2 + 2t - 2$$

$$q_{1} = h * f(u^{(n)}, t^{(n)})$$

$$q_{2} = h * f\left(u^{(n)} + \frac{q_{1}}{2}, t^{\left(n + \frac{1}{2}\right)}\right)$$

$$q_{3} = h * f\left(u^{(n)} + \frac{q_{2}}{2}, t^{\left(n + \frac{1}{2}\right)}\right)$$

$$q_{4} = h * f\left(u^{(n)} + q_{3}, t^{\left(n + 1\right)}\right)$$

$$u^{(n+1)} = u^{(n)} + \frac{1}{6}(q_{1} + 2q_{2} + 2q_{3} + q_{4})$$

$$q_{1} = h * (-u^{(n)} + t^{(n)2} + 2t^{(n)} - 2)$$

$$q_{2} = h * [-(u^{(n)} + \frac{q_{1}}{2}) + t^{\left(n + \frac{1}{2}\right)2} + 2t^{\left(n + \frac{1}{2}\right)} - 2]$$

$$q_{3} = h * [-(u^{(n)} + \frac{q_{2}}{2}) + t^{\left(n + \frac{1}{2}\right)2} + 2t^{\left(n + \frac{1}{2}\right)} - 2]$$

$$q_{4} = h * [-(u^{(n)} + q_{3}) + t^{(n+1)2} + 2t^{(n+1)} - 2]$$

Runge Kutta de orden 4

n	$t^{(n)}$	$u^{(n)}$	<i>Q</i> 1	q_2	q_3	q_4	$u^{(n+1)}$	$v(t^{(n+1)})$	e
10	U	· · ·	71	92	93	94		<i>y</i> (<i>c</i>)	C
0	0	0	-0,8	-0,464	-0,5312	-0,20352	-0,49898667	-0,49935991	0,00037324
1	0,4	-0,49898667	-0,21640533	0,06687573	0,01021952	0,29150686	-0,46077133	-0,46134207	0,00057074
2	0,8	-0,46077133	0,28030853	0,52824682	0,47865917	0,72884486	0,04305624	0,04238842	0,00066781
3	1,2	0,04305624	0,71877751	0,943022	0,89817311	1,12750826	0,96450223	0,96379304	0,0007092
4	1,6	0,96450223	1,11819911	1,32655929	1,28488725	1,50024421	2,27139163	2,27067057	0,00072106

Runge Kutta de orden 4

1) Analizar la estabilidad de la ecuación diferencial $y' = 2y^2 - y$ con el esquema de Euler explícito.

Particularidad: es una EDO no lineal

Problema: el factor de amplificación no se puede despejar.

Solución: linealizar términos.

$$u^{(n+1)} + \delta u^{(n+1)} = u^{(n)} + \delta u^{(n)} + h * \left[2 \left(u^{(n)} + \delta u^{(n)} \right)^2 - \left(u^{(n)} + \delta u^{(n)} \right) \right]$$

$$u^{(n+1)} + \delta u^{(n+1)} = u^{(n)} + \delta u^{(n)} + h * \left[2 \left(u^{(n)^2} + 2 * u^{(n)} * \delta u^{(n)} + \delta u^{(n)}^2 \right) - \left(u^{(n)} + \delta u^{(n)} \right) \right]$$

DESESTIMABLE

Continuando con el desarrollo:

$$u^{(n+1)} + \delta u^{(n+1)} = u^{(n)} + h * \left(2u^{(n)^2} - u^{(n)}\right) + \delta u^{(n)} + 4h * u^{(n)} * \delta u^{(n)} - h\delta u^{(n)}$$
$$\delta u^{(n+1)} = \delta u^{(n)} (1 + 4h * u^{(n)} - h)$$
$$\frac{\delta u^{(n+1)}}{\delta u^{(n)}} = 1 + h(4u^{(n)} - 1)$$

Para que el método sea estable debe cumplirse que:

$$0 < h < \frac{-2}{4u^{(n)} - 1}$$

$$u^{(n)} < \frac{1}{4}$$

2) Resolver la EDO y'' = 2(2y + t) en el intervalo [0; 1] con paso de cálculo h = 0.05 por Euler explícito y analizar su estabilidad. Los valores iniciales: y(0) = 1 e $y'(0) = -\frac{5}{2}$.

Particularidad: es una EDO de segundo grado

Problema: trabajamos hasta ahora con EDOs de primer grado.

Solución: cambio de variables.

$$\begin{cases} z' = 2(2y + t) = f(y(t), z(t), t) \\ y' = z = g(y(t), z(t), t) \end{cases}$$

Dos EDOs de primer grado.

$$y(t^{(n)}) = y^{(n)} \approx u^{(n)}$$
$$z(t^{(n)}) = z^{(n)} \approx v^{(n)}$$

$$\begin{cases} v^{(n+1)} = v^{(n)} + h[2(2u^{(n)} + nh)] \\ u^{(n+1)} = u^{(n)} + hv^{(n)} \end{cases}$$

Estabilidad:

$$\begin{cases} v^{(n+1)} + \delta v^{(n+1)} = v^{(n)} + \delta v^{(n)} + h [2(2(u^{(n)} + \delta u^{(n)}) + nh)] \\ u^{(n+1)} + \delta u^{(n+1)} = u^{(n)} + \delta u^{(n)} + h(v^{(n)} + \delta v^{(n)}) \end{cases}$$

$$\begin{cases} v^{(n+1)} + \delta v^{(n+1)} = v^{(n)} + h[2(2u^{(n)} + nh)] + \delta v^{(n)} + 4h\delta u^{(n)} \\ u^{(n+1)} + \delta u^{(n+1)} = u^{(n)} + hv^{(n)} + \delta u^{(n)} + h\delta v^{(n)} \end{cases}$$

$$\begin{cases} \delta v^{(n+1)} = \delta v^{(n)} + 4h\delta u^{(n)} \\ \delta u^{(n+1)} = \delta u^{(n)} + h\delta v^{(n)} \end{cases}$$

En forma matricial:

$$\begin{pmatrix} \mathbf{1} & \mathbf{h} \\ \mathbf{4h} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \delta u^{(n)} \\ \delta v^{(n)} \end{pmatrix} = \begin{pmatrix} \delta u^{(n+1)} \\ \delta v^{(n+1)} \end{pmatrix}$$

MATRIZ DE AMPLIFICACIÓN

Para que el problema sea estable:

$$\rho(A) < 1$$

$$\lambda = 1 \pm 2h$$

3) Plantear las discretizaciones para el PVI y'' = 2(2y + t); y(0) = 1 e $y'(0) = -\frac{5}{2}$ por medio del método de Euler Modificado (RK O(2))

Particularidad: es una EDO de segundo grado y el esquema posee dos pasos (predictor y corrector)

Problema: muchas ecuaciones.

Solución: paciencia y concentración.

$$\begin{cases} z' = 2(2y + t) = f(y(t), z(t), t) \\ y' = z = g(y(t), z(t), t) \end{cases}$$

Esquema RK2 1 variable
$$\begin{cases} u^{*(n+1)} = u^{(n)} + h * f(u^{(n)}, t^{(n)}) \\ u^{(n+1)} = u^{(n)} + \frac{h}{2} * \left[f(u^{(n)}, t^{(n)}) + f(u^{*(n+1)}, t^{(n+1)}) \right] \end{cases}$$

Esquema RK2 2 variables

EDO
$$u' = v$$

 $v' = 2(2u + t)$

$$\begin{cases} u^{*(n+1)} = u^{(n)} + h * f(u^{(n)}, v^{(n)}, t^{(n)}) \\ v^{*(n+1)} = v^{(n)} + h * g(u^{(n)}, v^{(n)}, t^{(n)}) \end{cases}$$

$$u^{(n+1)} = u^{(n)} + \frac{h}{2} * \left[f(u^{(n)}, v^{(n)}, t^{(n)}) + f(u^{*(n+1)}, v^{*(n+1)}, t^{(n+1)}) \right]$$

$$v^{(n+1)} = v + \frac{h}{2} * \left[g(u^{(n)}, v^{(n)}, t^{(n)}) + g(u^{*(n+1)}, v^{*(n+1)}, t^{(n+1)}) \right]$$

Discretización
$$\begin{cases} u^{*(n+1)} = u^{(n)} + h * v^{(n)} \\ v^{*(n+1)} = v^{(n)} + h * [2(2u^{(n)} + t^{(n)})] \end{cases} \qquad v^{(n+1)} = u^{(n)} + \frac{h}{2} * [h * v^{(n)} + h * v^{*(n+1)}] \\ v^{(n+1)} = v + \frac{h}{2} * [2(2u^{(n)} + t^{(n)}) + 2(2u^{*(n+1)} + t^{(n+1)})] \end{cases}$$

¡MUCHAS GRACIAS!