

Sheet	Number
zturn lite	1/14
Project	Revision
Axiom micro rev3	0
Drawn by	
anuejn & vup	
License	
CERN-OHL-S V2	_ *
Date	
20200324	open source hardware

The Quad Enable (QE) bit is a non-volatile read/write bit in the status register (S9) that allows Quad SPI operation. When the DE bit is set to a 0 state (factory default for part numbers with ordering options FMP), the /WP pin and /HOLD are enabled. When the QE bit is set to a 1 (factory default for Quad Enabled part numbers with ordering option FlQF), the Quad lO32 and lO3 pins are enabled, and /WP and /HOLD functions are disabled.

/CS must track VCC during VCC Ramp Up/Down

Sheet	Number
ecp config	3/14
Project	Revision
Axiom micro rev3	0
Drawn by	•
anuejn & vup	
License CERN-OHL-S V2	*
Dote 20200324	open source hardware

⇔GND

1V2 VCCA / VCCHRX

positive terminal of the VTT gin output capacitor(s) as a separate trace from the high—current path from VTI. Consider adding a low-pass R-C filter at the VTTSNS pin in asset the ESR of the VTT output capacitor(s) is larger than 2 mfl. The R-C filter time constant should be approximately the same or slightly lower than the time constant of the VTT output capacitance and ESR.

Sheet	Number
power fixed	8/14
Project	Revision
Axiom micro rev3	0
Drawn by	
anuejn & vup	
License	
CERN-OHL-S V2	7
Date	~ ~
20200324	open source hardware

all rails apart from the one use for jtag are disabled by default (as we need to setup the voltages on the first start)

- If the input supply is located more than a few inches from the TPS65400 converter, additional bulk capacitance may be required in addition to the

Sheet	Number
power adjustable 1	9/14
Project	Revision
Axiom micro rev3	0
Drawn by	•
anuejn & vup	
CERN-OHL-S V2	*
Dote 20200324	open source hardware

Sheet	Number
current sense	11/14
Project	Revision
Axiom micro rev3	0
Drawn by	•
anuejn & vup	
CERN-OHL-S V2	**
Date 20200324	open source hardware

place near connectors

image sensor	Number 12/14
Axiom micro rev3	Revision
anuejn & vup	1
CERN-OHL-S V2	**
Date 20200324	open source hardware

Sheet	Number
shield	13/14
Project	Revision
Axiom micro rev3	0
Drawn by	•
anuejn & vup	
License	
CERN-OHL-S V2	

open source hardware

Date

20200324

2V5 VCC means about 1V8 voltage clamping by the pass through transistors. That sholud work for most applications, we just need to be careful with nothing with 1V2 is on the bus

Unused channels have to be tied to GND or VCC

D1401 -2 11 150060GS75000

Sheet	Number
i2c mux	14/14
Project	Revision
Axiom micro rev3	0
Drawn by	
anuejn & vup	
License	
CERN-OHL-S V2	₹
Date	—
20200324	open source hardware
	1