MAHOUT-817 PCA options for SSVD working notes

November 30, 2011

1 Mean of rows

1.1 Recap of SSVD flow.

Modified SSVD Algorithm. Given an $m \times n$ matrix **A**, a target rank $k \in \mathbb{N}_1$, an oversampling parameter $p \in \mathbb{N}_1$, and the number of additional power iterations $q \in \mathbb{N}_0$, this procedure computes an $m \times (k+p)$ SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ (some notations are adjusted):

- 1. Create seed for random $n \times (k+p)$ matrix Ω . The seed defines matrix Ω using Gaussian unit vectors per one of suggestions in [?].
- 2. $\mathbf{Y} = \mathbf{A}\mathbf{\Omega}, \ \mathbf{Y} \in \mathbb{R}^{m \times (k+p)}$.
- 3. Column-orthonormalize $\mathbf{Y} \to \mathbf{Q}$ by computing thin decomposition $\mathbf{Y} = \mathbf{Q}\mathbf{R}$. Also, $\mathbf{Q} \in \mathbb{R}^{m \times (k+p)}$, $\mathbf{R} \in \mathbb{R}^{(k+p) \times (k+p)}$. I denote this as $\mathbf{Q} = \operatorname{qr}(\mathbf{Y}).\mathbf{Q}$.
- 4. $\mathbf{B}_0 = \mathbf{Q}^{\top} \mathbf{A} : \mathbf{B} \in \mathbb{R}^{(k+p) \times n}$. (Another way is $\mathbf{R}^{-1} \mathbf{Y}^{\top} \mathbf{A}$, depending on whether we beleive if size of A less than size of Q).
- 5. If q>0 repeat: for i=1..q: $\mathbf{B}_i^\top=\mathbf{A}^\top\mathrm{qr}\left(\mathbf{A}\mathbf{B}_{i-1}^\top\right).\mathbf{Q}$ (power iterations step)
- 6. Compute Eigensolution of a small Hermitian $\mathbf{B}_q \mathbf{B}_q^\top = \hat{\mathbf{U}} \Lambda \hat{\mathbf{U}}^\top$. $\mathbf{B}_q \mathbf{B}_q^\top \in \mathbb{R}^{(k+p)\times(k+p)}$.
- 7. Singular values $\Sigma = \Lambda^{0.5}$, or, in other words, $s_i = \sqrt{\sigma_i}$.
- 8. If needed, compute $\mathbf{U} = \mathbf{Q}\hat{\mathbf{U}}$.
- 9. If needed, compute $\mathbf{V} = \mathbf{B}_q^{\top} \hat{\mathbf{U}} \mathbf{\Sigma}^{-1}$. Another way is $\mathbf{V} = \mathbf{A}^{\top} \mathbf{U} \mathbf{\Sigma}^{-1}$.

1.2 B₀ pipeline mods

This option considers that data points are rows in the $m \times n$ input matrix

$$\mathbf{A} = egin{pmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ dots \ \mathbf{a}_m \end{pmatrix}$$

Mean of rows is n-vector

$$\boldsymbol{\xi} = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}$$
$$= \frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_{i}.$$

Let $\tilde{\mathbf{A}}$ be \mathbf{A} with the mean subtracted.

$$ilde{\mathbf{A}} = egin{pmatrix} \mathbf{a_1} - oldsymbol{\xi} \ \mathbf{a_2} - oldsymbol{\xi} \ dots \ \mathbf{a}_m - oldsymbol{\xi} \end{pmatrix}.$$

We denote $m \times n$ mean matrix

$$oldsymbol{\Xi} = egin{pmatrix} oldsymbol{\xi} \ oldsymbol{\xi} \ dots \ oldsymbol{\xi} \end{pmatrix}$$

 ${\bf B}_0$ pipeline starts with notion that since $\tilde{\bf A}$ is dense, its mutliplications are very expensive. Hence, we factorize ${\bf Y}$ as

$$\mathbf{Y} = \tilde{\mathbf{A}}\Omega$$

= $\mathbf{A}\Omega - \Xi\Omega$

Current \mathbf{B}_0 pipeline already takes care of $\mathbf{A}\Omega$, but the term $\mathbf{\Xi}\Omega$ will need more work.

The term $\Xi \Omega$ will have identical rows $\xi \Omega$ so we need to precompute just one dense n-vector $\boldsymbol{\xi}\Omega$. This computation is very expensive since matrix Ω is dense (potentially several orders of magnitude bigger than input A) and the median $\boldsymbol{\xi}$ is dense as well, even that we don't actually have to materialize any of Ω . Question is whether we could just ignore it since $\mathbb{E}(\boldsymbol{\xi}\Omega) = 0$.

←Outstanding issue!!!

Alternatively, we could just brute-force it by creating a separate distributed computation of this over n.

Moving onto **B** and \mathbf{BB}^{\top} . Here and on we assume $\mathbf{B} \equiv \mathbf{B}_0$ and omit the index for compactness.

$$\mathbf{B} = \mathbf{Q}^{\top} \tilde{\mathbf{A}}$$

$$= \mathbf{Q}^{\top} \mathbf{A} - \mathbf{Q}^{\top} \mathbf{\Xi}.$$
(1)

$$= \mathbf{Q}^{\mathsf{T}} \mathbf{A} - \mathbf{Q}^{\mathsf{T}} \mathbf{\Xi}. \tag{2}$$

Again, current pipeline takes care of $\mathbf{Q}^{\mathsf{T}}\mathbf{A}$ but product $\mathbf{Q}^{\mathsf{T}}\Xi$ would need more work.

Let $\mathbf{W} = \mathbf{Q}^{\mathsf{T}} \mathbf{\Xi}$.

$$\mathbf{W} = \sum_{i,*}^{m} \mathbf{Q}_{i,*} \mathbf{\Xi}_{i,*}^{\top}$$
$$= \mathbf{s}_{Q} \boldsymbol{\xi}^{\top}$$

where

$$\mathbf{s}_Q = \sum_{i=1}^m \mathbf{Q}_{i,*} \tag{3}$$

is sum of all rows of \mathbf{Q} .

Since B_0 pipeline computes $\mathbf{Q}^{\mathsf{T}}\mathbf{A}$ column-wise over columns of \mathbf{Q} and \mathbf{A} , the first thought is that (2) can be computed column-wise as well with computation seeded by the \mathbf{s}_Q and $\boldsymbol{\xi}$ vectors.

One problem with our first thought is that the \mathbf{s}_Q term is not yet known at the time of formation of ${\bf B}$ columns because formation of final ${\bf Q}$ blocks happens in the same distributed map task that produces initial $\mathbf{Q}^{\mathsf{T}}\mathbf{A}$ blocks. Hence, the sum of Q rows at that moment would not be available. But we probably can fix our output later at the time when \mathbf{s}_Q would already have been known.

Let $\mathbf{b}_i = \mathbf{B}_{*,i}$, $\tilde{\mathbf{b}}_i = (\mathbf{Q}^{\top} \mathbf{A})_{*,i}$. Then correction for **B** output would be

$$\mathbf{b}_i = \tilde{\mathbf{b}}_i - \xi_i \mathbf{s}_Q. \tag{4}$$

Moving on to $\mathbf{B}\mathbf{B}^{\top}$:

$$\mathbf{B}\mathbf{B}^{ op} = \sum_{i}^{n} \mathbf{b}_{i} \mathbf{b}_{i}^{ op}$$

$$\mathbf{b}_{i}\mathbf{b}_{i}^{\top} = (\tilde{\mathbf{b}}_{i} - \xi_{i}\mathbf{s}_{Q})(\tilde{\mathbf{b}}_{i} - \xi_{i}\mathbf{s}_{Q})^{\top}$$

$$= \tilde{\mathbf{b}}_{i}\tilde{\mathbf{b}}_{i}^{\top} - \xi_{i}\tilde{\mathbf{b}}_{i}\mathbf{s}_{Q}^{\top} - \xi_{i}\mathbf{s}_{Q}\tilde{\mathbf{b}}_{i}^{\top} - \xi_{i}^{2}\mathbf{s}_{Q}\mathbf{s}_{Q}^{\top}$$

$$= \tilde{\mathbf{b}}_{i}\tilde{\mathbf{b}}_{i}^{\top} - \left[\xi_{i}\tilde{\mathbf{b}}_{i}\mathbf{s}_{Q}^{\top} + (\xi_{i}\tilde{\mathbf{b}}_{i}\mathbf{s}_{Q}^{\top})^{\top}\right] + \xi_{i}^{2}\mathbf{s}_{Q}\mathbf{s}_{Q}^{\top}.$$

Let $\mathbf{C} = \left[\sum_{i=1}^{n} \xi_{i} \tilde{\mathbf{b}}_{i}\right] \mathbf{s}_{Q}^{\top}$, then

$$\mathbf{B}\mathbf{B}^{\top} = \sum_{i}^{n} \tilde{\mathbf{b}}_{i} \tilde{\mathbf{b}}_{i}^{\top} \tag{5}$$

$$- \left[\mathbf{C} + \mathbf{C}^{\top}\right]$$

$$+ n \|\boldsymbol{\xi}\|_{2}^{2} \mathbf{s}_{Q} \mathbf{s}_{Q}^{\top}.$$

$$(6)$$

$$+ n \|\boldsymbol{\xi}\|_2^2 \mathbf{s}_Q \mathbf{s}_Q^{\top}. \tag{7}$$

So we can compute $\tilde{\mathbf{B}} = \sum_i \tilde{\mathbf{b}}_i \tilde{\mathbf{b}}_i^{\top}$ right away, that's what Bt-job does.

We also can add the term $n\|\boldsymbol{\xi}\|_2^2 \mathbf{s}_Q \mathbf{s}_Q^\top$ in front end before we do eigendecomposition since it is a tiny matrix and at that point \mathbf{s}_Q is already known.

Bt-job can also aggregate and collect vector

$$\mathbf{s}_{\tilde{B}} = \sum_{i}^{n} \xi_{i} \tilde{\mathbf{b}}_{i}. \tag{8}$$

Then we also can produce

$$\mathbf{C} = \mathbf{s}_{\tilde{B}} \mathbf{s}_{Q}^{\top} \tag{9}$$

in the front end.

So, Bt job needs to be amended to produce (3) and 8.

PCA would be primarily interested in V or V_{σ} output of the decomposition in order to fold in new items back into PCA space, so we need to correct V job as well in this case to fix output of Bt-job per (4) which we must seed with ξ and \mathbf{s}_Q .

Power Iterations (aka B_i pipeline) additions 1.3

Power iterations pipeline produces $\mathbf{B}_i^{\top} = \tilde{\mathbf{A}}^{\top} \operatorname{qr} \left(\tilde{\mathbf{A}} \mathbf{B}_{i-1}^{\top} \right) \cdot \mathbf{Q}$. Similarly to versions of **B**, each iteration would produce corrective vector \mathbf{w}_{i-1} .

First, we need to amend power iteration work flow to fix output of previous Bt-job on the fly with to reconstruct correct \mathbf{B}_{i-1} similarly to what is done in the \mathbf{V} job per (4):

$$\mathbf{B}_{i-1} = \tilde{\mathbf{B}}_{i-1} - \mathbf{W}_{i-1}.$$

Second, again, $\tilde{\mathbf{A}}$ multipliers are a problem because they would be dense and perhaps should be decomposed in a way similar to \mathbf{B}_0 pipeline.

=======> to be ctd. <========

Another note is that we run eigendecomposition only after the last iteration so the term $\mathbf{s}_{\tilde{B}}$ needs to be computed only during the last iteration.