CS 1810 Notation Glossary

CS 1810 Staff

March 2, 2025

Numbers and Arrays

a A scalar (real number)

a A vector (by default, a column)

A A matrix

 I_n Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

 $e^{(i)}$ Standard basis vector $[0, \dots, 0, 1, 0, \dots, 0]$ with a 1 at position i diag(a) A square, diagonal matrix with diagonal entries given by a

Indexing

 a_i Element i of vector \boldsymbol{a} , with indexing starting at 1 a_{-i} All elements of vector \boldsymbol{a} except for element i

 $A_{i,j}$ Element i, j of matrix \boldsymbol{A}

Data

 x_d Dimension d of input data point $\boldsymbol{x} \in \mathbb{R}^D$

 $\boldsymbol{x}^{(n)}$ or \boldsymbol{x}^n The *n*-th input data point from a dataset of N total observations.

X The $N \times D$ dimensional model matrix with row n corresponding to $x^{(n)}$

 $y^{(n)}$ The target/response for observation ny The N-dimensional vector of targets

Probability and Statistics

 $\mathbb{P}(A)$ Probability of event A

p(x) Probability distribution (PMF/PDF) p for random variable x

 $x \sim p(x)$ Random variable x has probability distribution p $\mathbb{E}_{D \sim p(D)}[\cdot]$ Expectation over D, which has distribution p

 $\mathbf{1}_A$ Indicator of event A

 $\mathcal{N}(x;\mu,\sigma^2)$ The PDF of a Normal with mean μ and variance σ^2 , evaluated at x

 θ General notation for parameter vector

Supervised Learning

 $oldsymbol{w}$ Weights for linear regression

 ϵ Noise terms

 $p(D; \boldsymbol{\theta})$ Likelihood (frequentist) for data D and parameters $\boldsymbol{\theta}$

 $p(D|\boldsymbol{\theta})$ Likelihood (Bayesian) ϕ Basis transform

 \hat{y} Prediction for the true y C_k Class k, out of K classes

 $\sigma(z)$ Sigmoid function

W Weights in neural nets. J often used for first hidden layer dimension, then K, etc.

 $K(\boldsymbol{x}, \boldsymbol{x'})$ Kernel function

 ξ Slack variables for SVMs α Lagrangian variables for SVMs

Unsupervised Learning

 C_k Cluster k, out of K clusters. Often one-hot encoded, so K-dimensional

 Z_{nk} For K-Means: indicator of whether observation n is in cluster k

 n_k Size of the cluster k

 μ_k Center of cluster k (note that this is a vector).

 $z^{(n)}$ Latent variable for observation n, usually one-hot encoded so K-dimensional

 $q(z^{(n)})$ Proxy distribution for latent variables

 \boldsymbol{u}_k Principal component k

U A $D \times K$ matrix where column k is u_k

 $x^{(n)}$ Document n out of N, which is a list of length L, where each element is a word

 θ_n Parameter for document n's distribution over all K topics

 ϕ_k Parameter for topic k's distribution over all D words in the dictionary

 $x_l^{(n)}$ Word l in document n

 $z_l^{(n)}$ Topic from which $x_l^{(n)}$ is drawn

HMMs, MDPs, RL

 z_t Hidden state at time t

 x_t Observed state at time t

 $\alpha_t(z_t)$ Equal to $p(x_1, \dots, x_t, z_t)$, used in Forward-Backward algorithm Equal to $p(x_{t+1}, \dots, x_T | z_t)$, used in Forward-Backward algorithm

 γ Discount rate

S, A, r State, action, reward

r(s, a) Reward from taking action a at state a

p(s'|s,a) Transition distribution of ending up in state s' after taking action a from state s

 π Policy

 $V^{\pi}(s)$ Value of policy π at state s

 $Q^{\pi}(s,a)$ Action value function

Learning rate for RL methods

 $\begin{matrix} \alpha_t \\ V^*, Q^* \end{matrix}$ Optimal value and action-value functions

Probability of exploration in an ϵ -greedy algorithm

References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http: //www.deeplearningbook.org.