Durée 2 heures

Tout document interdit

Exercice 1. (2, 2)

Question 1. On considère Γ et $\Delta \subset \Gamma$ deux ensembles de formules d'un langage propositionnel L. Soient β_1 et β_2 deux formules de L telles que :

$$\Gamma \models \beta_1 \text{ et } \Delta \models \beta_2$$

Laquelle ou lesquelles des propositions suivantes est (sont) valide(s)?

 $P_1: \Gamma \cup \{\neg \beta_1\}$ satisfiable.

 $P_2: \Gamma \cup \{\neg \beta_2\}$ non satisfiable.

 $P_3: \Gamma \cup \{\neg \beta_1 \lor \neg \beta_2\}$ satisfiable.

 $P_4: \Lambda \cup \{\neg \beta_1\}$ satisfiable.

Question 2. On considère Γ , $\Delta_1 \subset \Gamma$ et $\Delta_2 \subset \Gamma$ trois ensembles de formules de L et α_1 et α_2 deux formules de L telles que :

$$\Gamma \models \alpha_1 \vee \alpha_2 \text{ et } \Delta_1 \models \neg \alpha_1 \text{ et } \Delta_2 \models \neg \alpha_2$$

Laquelle ou lesquelles des propositions suivantes est (sont) valide(s)?

 P_1 : Γ est non satisfiable.

 P_2 : $\Lambda_1 \cup \Delta_2$ non satisfiable.

 $P_3: \Lambda_1$ ou Δ_2 non satisfiable.

 P_4 : Γ contient un sous ensemble non satisfiable.

Exercice 2. (1)

La figure ci-dessous représente deux circuits logiques C_1 et C_2 dont les sorties sont respectivement s_1 et s_2 .

Question. Donner l'expression logique du circuit C_3 dont la sortie (s_3) est V lorsque C_1 et C_2 délivrent le même résultat et F lorsque C_1 et C_2 délivrent des résultats différents.

Exercice 3. (2, 2, 2, 2, 2)

Question 1. Construire, à partir de l'arbre sémantique clos de la figure ci-dessous, un ensemble non satisfiable de clauses à deux littéraux chacune. On appellera S₀ cet ensemble.

Question 2. Construire, à partir de S_0 un ensemble non satisfiable de clauses S_1 tel que $S_0 \subset S_1$.

Page 1 sur 2

Question 3. Montrer, sans utiliser la propriété de complétude de la résolution que l'ensemble S₀ est inconsistant.

Question 4. Montrer que l'ensemble $S_2 = \{c_1, c_2, c_4, c_6\}$ est consistant.

Question 5. Trouver une clause c telle que $S_2 = c$.

Exercice 4.
$$((1, 1, 1) - (1) - (1))$$

Question 1. Ecrire les énoncés suivants dans le langage des prédicats du premier ordre :

E₁. Ceux qui trichent n'ont pas de mérite.

E₂. Le plus fort d'entre tous n'est pas le plus juste d'entre tous.

E₃. Si deux nombres ont le même successeur, alors ils sont égaux.

Question 2.

Lesquelles des expressions suivantes ne sont pas des formules :

exp.1
$$\forall x.y(P(y) \rightarrow Q(x))$$

exp.2
$$P(y) \rightarrow Q(x) \rightarrow P(f(y))$$

$$exp.3$$
 $Q(P(z))$

exp.4
$$f(x, g(x))$$

Question 3.

Soient $\beta \quad \forall x P(y, x) \rightarrow Q(x)$ et t = g(x).

- t est-il libre pour x dans β ?
- t est-il libre pour y dans β ?

N. B. Remettre un carnet d'examen sans feuille intercalaire.