

planetmath.org

Math for the people, by the people.

union of countable sets

Canonical name UnionOfCountableSets
Date of creation 2013-03-22 19:02:56
Last modified on 2013-03-22 19:02:56

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

Author CWoo (3771)

Entry type Result
Classification msc 03E10

In this entry, we prove a useful property of countability which will gives us many more examples of countable sets.

Proposition 1. $A \cup B$ is countable iff A and B are countable.

Proof. Clearly, if $A \cup B$ is countable, then A and B are each countable, as they are subsets of a countable set.

Conversely, suppose $f: \mathbb{N} \to A$ and $g: \mathbb{N} \to B$ are two surjections. Let $C = A \cup B$. Define $h: \mathbb{N} \to C$ as follows: h(2n+1) = f(n) for n = 0, 1, ..., and h(2n) = g(n), for n = 1, 2, ... Then h is a well-defined function, for each $i \in \mathbb{N}$ is either even or odd, so h(i) is defined in either case. Finally, h is onto, for if $c \in C$, then $c \in A$ or $c \in B$. If $c \in A$, then h(2p+1) = c for some p, and if $c \in B$, then h(2q) = c for some q. Hence C is countable. \square

The idea behind the above proof is to realize that we can list elements of C in the following manner:

$$f(1)$$
 $f(2)$ $f(3)$ $f(4)$ $f(5)$ \cdots
 $g(1)$ $g(2)$ $g(3)$ $g(4)$ $g(5)$ \cdots

Therefore, h is defined so its first value is f(1), its second value is g(1), third is f(2), fourth g(2), etc... In the end, all of the elements of C are exhausted by this way of counting.

As a corollary, we have

Corollary 1. $A_1 \cup A_2 \cup \cdots \cup A_n$ is countable iff each A_i is.

Proof. This is true by induction.

The property can easily be extended to the countably infinite case, the proof of which is just a variant of the above methodology:

Proposition 2. $\bigcup \{A_i \mid i \in \mathbb{N}\}\$ is countable iff each A_i is.

Proof. Again, one direction is obvious, so we concentrate on the other direction.

Let $A = A_1 \cup A_2 \cup \cdots$. Suppose we have surjections $f_i : \mathbb{N} \to A_i$ for $i = 1, 2, \ldots$. Then listing elements of A in the following manner (table below on the left)

$i\backslash j$	1	2	3	• • •	$i\backslash j$	1	2	3	• • •
1	$f_1(1)$	$f_1(2)$	$f_1(3)$		1	f(1)	f(2)	f(4)	
2	$f_2(1)$	$f_1(2) f_2(2)$	$f_2(3)$		2	f(3)	f(5)	f(8)	
3	$f_3(1)$	$f_3(2)$	$f_3(3)$		3	f(6)	f(9)	f(13)	• • •
		÷			÷	÷	÷	÷	٠

provides a surjection $f:\mathbb{N}\to A$ (table above on the right). The first few values of f are

$$f(1) = f_1(1), \quad f(2) = f_1(2), \quad f(3) = f_2(1), \quad f(4) = f_1(3), \quad f(5) = f_2(2), \quad \dots$$

Notice the similarity between the function f above, and the pairing function used in the proof that \mathbb{N}^2 is countable http://planetmath.org/ProductOfCountableSetshere Remark. However, the property fails when there are uncountably many sets to deal with. For example, the union of $\{r\}$ for each $r \in \mathbb{R}$ is uncountable.