In the claims:

- 1. (original): An electroluminescent device comprising an anode, a cathode and one or a plurality of organic compound layers sandwiched therebetween, in which said organic compound layers comprise an organic compound containing one ore more pyrimidine moieties.
- 2. (cancelled).
- **3. (currently amended):** An electroluminescent device according to claim 18, 2, comprising a pyrimidine compound of formula

$$W^2$$
 W^3
 W^4
 W^5
(III), wherein

$$X^1$$
 X^2
 X^3
 Y^1
 Y^2
 Y^3
 Y is X^4 , or X is X^5 , or X is X^7 , if Y is

R¹ is H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl, C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy; C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; or -NR⁵R⁶; wherein W¹-to W⁵, X¹-to X⁵, Y¹-to Y⁵, E, D, R⁵-and R⁶-are as defined in claim 2; and V is H.

4. (currently amended): An electroluminescent device according to claim 18, 2, comprising a pyrimidine compound of formula

$$X^4$$
 X^3
 X^2
 X^5
 X^1
 X^2
 X^5
 X^1
 X^2
 X^3
 X^4
 X^5
 X^1
 X^2
 X^3
 X^4
 X^5
 X^4
 X^5
 X^4
 X^5
 X^4
 X^5
 X^5
 X^4
 X^5
 X^4
 X^5
 X^5
 X^4
 X^5
 X^5

wherein

V, W^4 to W^5 , X^4 to X^5 and Y^4 to Y^6 are as defined in claim 2, especially W^3 , X^3 and Y^3 are selected from the group consisting of C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by C_6 - C_{24} heteroaryl; C_2 - C_{24} heteroaryl which is substituted by C_6 - C_{18} alkoxy, $-SR^5$; $-NR^5R^6$, wherein C_6 , C_6 -and C_6 -are as defined in claim C_6 .

V is H, and W¹ and W⁵, Y¹ and Y⁵ as well as X¹ and X⁵ are independently of each other H; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is substituted by E and/or interrupted by D_., wherein E and D are as defined in claim 2.

5. (currently amended): An electroluminescent device according to claim 18, 2, wherein V is a

$$V^{1} \underbrace{ \bigvee_{j=1}^{2} \bigvee_{j=1}^{3} }_{V^{4}}$$

group of the formula V, H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl, C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy; C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; or -NR⁵R⁶; and

$$W^1$$
 W^2
 W^3
 Z
, [[or]]
 W^3
 Z
, in particular

W is a group of the formula

$$R^{101}$$
 R^{102} R^{1

-_H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or

interrupted by D; C_2 - C_{18} alkenyl, C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy; C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; $-SR^5$; or $-NR^5R^6$; wherein W^4 -to W^5 , D, V^4 -to V^5 , E, A^4 , B^4 , B^2 , R^5 , R^6 ,

6. (currently amended): An electroluminescent device according to claim <u>17, 2,</u> comprising a pyrimidine compound of formula

$$W^{13}$$
 W^{12}
 W^{15}
 W^{31}
 W^{35}
 W^{35}
 W^{25}
 W^{24}
 W^{23}
 W^{22}
 W^{21}
 W^{41}
 W^{41}
 W^{42}
 W^{43}
 W^{43}
 W^{43}
 W^{43}
 W^{44}
 W^{45}
 W

wherein

Ar is a group of formula , or , especially
$$A^{18}$$
 A^{19}

W¹¹ to W¹⁵, W²¹ to W²⁵, W³¹ to W³⁵, W⁴¹ to W⁴⁵, Y¹¹ to Y¹⁵, Y²¹ to Y²⁵, Y³¹ to Y³⁵ and Y⁴¹ to Y⁴⁵ are independently of each other H; C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkenyl; C_7 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_7 - C_8 alkoxy which is substituted by E and/or interrupted by D; C_7 - C_8 alkoxy, C_7 - C_8 alkoxy which is substituted by E and/or interrupted by D; C_8 - C_8 - C_8 -corrected by D; C_8 - C_8 -corrected by C₈- C_8 -correct

V is H; C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; $-SR^5$; or $-NR^5R^6$; C_2 - C_2 4heteroaryl; C_2 - C_2 4heteroaryl which is substituted by L; $-SOR^4$; $-SO_2R^4$; $-COR^8$; $-COOR^7$; $-CONR^5R^6$; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkyl which is substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkenyl; C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D;

 A^{18} and A^{19} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E,

B¹¹ to B¹⁴ and B²¹ to B²⁴ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkoxyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C₂-C₁₈heteroaryl; C₂-C₁₈heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; or -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D; -, especially H; wherein D, E, G, L, R⁴, R⁵, R⁶, R⁷ and R⁸ are as defined in claim 2.

G is E; K; heteroaryl; heteroaryl which is substituted by C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E and/or K;

K is C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; or C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D;

L is E; K;C₆-C₁₈aryl; or C₆-C₁₈aryl which is substituted by G, E and/or K;

 R^4 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-; or two substituents selected from V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 which are in neighborhood to each other form a five to seven membered ring.

7. (currently amended): An electroluminescent device according to claim 17, 2, wherein the pyrimidine compound has the following formula

$$W^3$$
 X^5
 X^5

wherein

V is H, or C₁-C₈-alkyl,

 X^3 and X^4 are independently of each other H, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 thioalkyl, or phenyl, X^5 is H, or C_1 - C_8 alkoxy,

W⁵ is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

 Y^5 is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

 Y^3 , Y^4 , W^3 and W^4 are independently of each other C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_8 thioalkyl, halogen, in particular Br, phenyl, or $O(CH_2)_{n1}$ -X, wherein n1 is an integer of 1 to 5 and X is - O- $(CH_2)_{m1}CH_3$, -OC(O)- $(CH_2)_{m1}CH_3$, -C(O)-O- C_1 - C_8 alkyl, $-NR^{103}R^{104}$, wherein m1 is an integer of 0 to 5 and R^{103} and R^{104} are independently of each other H, or C_1 - C_8 -alkyl, or R^{103} and R^{104}

together form a five or six membered heterocyclic ring; , in particular ;

or the following formula

wherein

V is H, or C₁-C₈alkyl,

W³ is H, C₁-C₈alkyl, or C₁-C₈alkoxy,

 X^3 is H, C₁-C₈alkoxy, phenyl or O(CH₂)_{n1}-X,

 X^5 is H, C₁-C₈alkoxy, phenyl or O(CH₂)_{n1}-X,

 Y^3 is H, C₁-C₈alkyl, or C₁-C₈alkoxy, wherein n1 is an integer of 1 to 4 and X is -O-(CH₂)_{m1}CH₃, -O-(CH₂)_{m1}CH₃, -C(O)-O-C₁-C₈alkyl, wherein m1 is an integer of 0 to 5;

or the following formula

or

wherein

 W^3 and W^4 are independently of each other H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, Y^3 and Y^4 are independently of each other H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl.

 W^5 is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

 Y^5 is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

wherein n1 is an integer of 1 to 5 and X is $-O-(CH_2)_{m1}CH_3$, $-OC(O)-(CH_2)_{m1}CH_3$, $-C(O)-O-C_1-C_8$ alkyl, $-NR^{103}R^{104}$, wherein m1 is an integer of 0 to 5 and R^{103} and R^{104} are independently of

each other H, or C₁-C₈-alkyl, or R¹⁰³ and R¹⁰⁴ together form a five or six membered heterocyclic

-or the following formula

wherein

W³ is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy,

 Y^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl,

 R^{101} and R^{102} are independently of each other H, C_1 - C_8 alkyl, phenyl, or C_5 - C_7 cycloalkyl, in particular cyclohexyl;

or the following formula

wherein

 Y^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy,

 X^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl;

or the following formula

wherein

 Y^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy,

 X^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl, and R¹⁰¹ and R¹⁰² are independently of each other H, C₁-C₈alkyl, phenyl, or C₅-C₇cycloalkyl, in particular cyclohexyl.

8. (currently amended): An electroluminescent device according to claim 17, 2, wherein W and Y are groups of the formula

9. (currently amended): An electroluminescent device according to claim 18, -2, comprising a pyrimidine compound of formula

$$\begin{array}{c} W^2 \\ W^3 \\ W^4 \\ R^9 \\ R^9 \end{array} \begin{array}{c} W^2 \\ W^3 \\ W^4 \\ R^9 \end{array} \begin{array}{c} W^2 \\ W^3 \\ W^4 \\ W^3 \\ W^4 \end{array} \begin{array}{c} W^2 \\ W^3 \\ W^4 \\ W^3 \\ W^4 \end{array} \begin{array}{c} W^2 \\ W^3 \\ W^4 \\ R^9 \end{array} \begin{array}{c} W^2 \\ W^3 \\ W^4 \\ R^9 \end{array} \begin{array}{c} W^1 \\ W^2 \\ W^3 \\ W^4 \\ W^3 \\ W^4 \\ W^3 \\ W^4 \\ W^5 \\$$

are as defined in claim 2.

10. (currently amended):An electroluminescent device according to claim 17, 2, comprising a pyrimidine compound of formula I, wherein V is hydrogen,

W and Y are independently of each other a group of formula

or
$$\mathbb{R}^{19}$$
 \mathbb{R}^{18} \mathbb{R}^{19} \mathbb{R}^{18} \mathbb{R}^{13} \mathbb{R}^{14} , and

$$R^{11}$$
 R^{12}
 R^{13}
 R^{14}
 R^{17}
 R^{16}
 R^{15}

X is a group of formula

wherein

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} and R^{17} are independently of each other H, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E; E, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E;

 R^{18} and R^{19} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E;

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C=C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen; wherein R^5 , R^7 and R^8 are as defined in claim 2.

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-; or two substituents selected from V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 which are in neighborhood to each other form a five to seven membered ring.

11. (currently amended): An electroluminescent device according to claim 17, 2, comprising a pyrimidine compound of formula

wherein

 R^{110} is C_6 - C_{10} -aryl, C_6 - C_{10} -aryl which is substituted by C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy

12. (currently amended): A pyrimidine compound according to claim 17 of formula

wherein

$$\begin{array}{c} W^2 \\ W^3 \\ W^5 \\ W^5 \\ X^5 \\ X^5 \\ X^1 \\ \text{and Y is} \end{array}$$
 and Y is

V, W¹ to W⁵, X¹ to X⁵ and Y¹ to Y⁵ are as defined in claim 2.

13. (currently amended): A pyrimidine compound according to claim 17 of formula

$$W^{13}$$
 W^{12}
 W^{15}
 W^{15}
 W^{31}
 W^{35}
 W^{35}
 W^{25}
 W^{25}
 W^{21}
 W^{21}
 W^{41}
 W^{42}
 W^{43}
 W^{43}
 W^{43}
 W^{44}
 W^{45}
 W

wherein Ar is a group of formula

 W^{11} to W^{15} , W^{21} to W^{25} , W^{31} to W^{35} , W^{41} to W^{45} , Y^{11} to Y^{15} , Y^{21} to Y^{25} , Y^{31} to Y^{35} and Y^{41} to Y^{45} are independently of each other H; C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by D; C_7 - C_8 alkylaryl; C_8 - C_8 alkylaryl which is substituted by E and/or interrupted by D; C_9 - C_{18} alkynyl; C_9 - C_{18} alkynyl which is substituted by E

and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C_2 - C_{24} heteroaryl; C_2 - C_{24} heteroaryl which is substituted by L; -SOR⁴; -SO2R⁴; -COR⁸; -CONR⁵R⁶; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkyl which is substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkenyl; C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D;

V is H; C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; $-SR^5$; or $-NR^5R^6$; C_2 - C_2 4heteroaryl; C_2 - C_2 4heteroaryl which is substituted by L; $-SOR^4$; $-SO_2R^4$; $-COR^8$; $-COOR^7$; $-CONR^5R^6$; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkyl which is substituted by E and/or interrupted by D; C_4 - C_{18} cycloalkenyl which is substituted by E and/or interrupted by D; A^{18} and A^{19} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E,

B¹¹ to B¹⁴ and B²¹ to B²⁴ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C₂-C₁₈heteroaryl; C₂-C₁₈heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; or -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D; wherein D, E, G, L, R⁴, R⁶, R⁶, R⁷ and R⁸ are asdefined in claim 2.

G is E; K; heteroaryl; heteroaryl which is substituted by C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E and/or K;

K is C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E

and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; or C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D;

L is E; K;C₆-C₁₈aryl; or C₆-C₁₈aryl which is substituted by G, E and/or K;

 R^4 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

R⁸ is H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is interrupted by -O-; or two substituents selected from V¹ to V⁵, W¹ to W⁵, X¹ to X⁵, Y¹ to Y⁵ which are in neighborhood to each other form a five to seven membered ring.

14. (currently amended): A pyrimidine compound of formula I according to claim 12, wherein

at least one of the groups W, X and Y is a group of formula

and the other groups are independently of each other an aryl group or a heteroaryl group,

wherein

 R^{11} , $R^{11'}$, R^{12} , $R^{12'}$, R^{13} , $R^{13'}$, R^{15} , $R^{15'}$, R^{16} , $R^{16'}$, R^{17} [[,]] and $R^{17'}$, R^{44} , $R^{44'}$, $R^{42'}$, $R^{42'}$, $R^{44'}$, $R^{44'}$, $R^{45'}$, $R^{46'}$, $R^{47'}$ and $R^{47'}$ are independently of each other H, E, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is

substituted by E; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} aralkyl; or C_7 - C_{18} aralkyl which is substituted by E; or

 $R^{11'}$ and R^{12} , $R^{12'}$ and R^{13} , $R^{15'}$ and R^{16} , and $R^{16'}$ and R^{17} , $R^{44'}$ and R^{48} and/or $R^{45'}$ and R^{47} are each a divalent group L^1 selected from an oxygen atom, an sulfur atom, $>CR^{118}R^{119} > SiR^{118}R^{119}$,

 R^{118} and R^{119} are independently of each other C_1 - C_{18} alkyl; C_1 - C_{18} alkoxy, C_6 - C_{18} aryl; C_7 - C_{18} aralkyl;

 R^{11} and $R^{11'}$, R^{12} and $R^{12'}$, R^{13} and $R^{13'}$, $R^{13'}$ and R^{14} , R^{14} and R^{15} , R^{15} and $R^{15'}$, R^{16} and $R^{16'}$, and $R^{17'}$ and $R^{17'}$, R^{41} and $R^{41'}$, R^{42} and $R^{42'}$, $R^{42'}$ and R^{43} , $R^{41'}$ and R^{43} , $R^{44'}$ and $R^{44'}$, R^{45} and $R^{45'}$, R^{45} and $R^{45'}$, $R^{46'}$ and $R^{46'}$, $R^{45'}$ and $R^{47'}$, $R^{46'}$ and $R^{48'}$ and $R^{48'}$ are each a divalent group

$$R^{32}$$
 R^{31}
 R^{30}
, wherei

 R^{30} , R^{31} , R^{32} , R^{33} , R^{49} and R^{50} are independently of each other H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl, which is substituted by E and/or interrupted by D; E; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by E; R^{14} is H, C_2 - C_{30} heteroaryl, C_6 - C_{30} aryl, or C_6 - C_{30} aryl which is substituted by E, C_1 - C_{18} alkyl; or C_1 -

$$R^{21}$$
 R^{22}

C₁₈alkyl which is substituted by E and/or interrupted by D; especially-

 R^{26} -and R^{27} -are independently of each other H, E, C_4 - C_{18} alkyl; C_4 - C_{18} alkyl which is substituted by E-and/or interrupted by D; E; C_2 - C_{48} aralkyl; C_2 - C_{48} aralkyl which is substituted by E; R^{43} -and R^{48} -are independently of each other H, E; C_4 - C_{48} alkyl; C_4 - C_{48} alkyl, which is substituted by E and/or interrupted by D; C_2 - C_{30} heteroaryl; C_2 - C_{48} aralkyl; C_4 - C_{48} aralkyl which is substituted by E;

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; SiR⁵R⁶-; -POR⁵-; -CR⁹=CR¹⁰-; or -C \equiv C-;

E is $-OR^5$; $-SR^5$; $-NR^5R^6$; $-COR^8$; $-COOR^7$; $-CONR^5R^6$; -CN; or halogen, especially F, or Cl; wherein R^5 and R^6 are independently of each other C_6-C_{18} aryl; C_6-C_{18} aryl which is substituted by C_1-C_{18} alkyl, C_1-C_{18} alkyl; or C_1-C_{18} alkyl which is interrupted by -O-; or

R⁵ and R⁶ together form a five or six membered ring, in particular

 R^7 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is C_7 - C_{12} alkylaryl; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; and R^9 and R^{10} are independently of each other H, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-.

15. (original): A pyrimidine compound according to claim 14, whereinV is hydrogen,

W and Y are a group of formula

X is a group of formula

16. (currently amended): A pyrimidine compound according to claim 11, 12 of formula

wherein

R¹¹⁰ is C₆-C₁₀-aryl, such as phenyl, 1-naphthyl, 2-naphthyl, 3- or 4-biphenyl, 9-phenanthryl, 2- or

 X^3 is H, C₁-C₆-alkyl, C₁-C₄-alkoxy, Ph, or

17. (new): An electroluminescent device according to claim 1, wherein the organic compound is a pyrimidine compound of formula

V, W, Y and X are independently of each other C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, which can be substituted or unsubstitutedH; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl, C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_1 -C

wherein

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C \equiv C-; E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COR⁸; -COR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen;

 R^5 and R^6 are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; or

R⁵ and R⁶ together form a five or six membered ring.

with the proviso that at least one of the groups V, W, X and Y is a C_6 - C_{24} aryl, or C_2 - C_{24} heteroaryl group, which can be substituted.

18. (new): An electroluminescent device according to claim 17, wherein when V is C₆-C₃₀aryl it is

$$V^1$$
 V^2
 V^3

when W is C₆-C₃₀aryl it is

$$W^1$$
 W^2
 W^3
 W^5

when Y is C₆-C₃₀aryl it is

$$Y^1$$
 Y^2
 Y^3
 Y^5

when X is C₆-C₃₀aryl it is

$$X^1$$
 X^2
 X^4

wherein the groups

 V^1 to V^5 , W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are independently of each other H; halogen, C_6 - C_{24} aryl; C_6 - C_{24} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by

D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; Ar², wherein Ar¹ is C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, Ar² is C_6 - C_{30} aryl or C_2 - C_{30} heteroaryl, H, C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C_2 - C_2 4heteroaryl; C_2 - C_2 4heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; -CONR⁵R⁶; C_4 - C_{18} cycloalkyl; C_4 - C_{18} cycloalkyl which is substituted by E and/or interrupted by D; or

 W^5 or Y^5 together with V form a group $-CR^9_{2^-}$, $-CR^9_{2^-}CR^9_{2^-}$, $-C(=O)CR^9_{2^-}$, -C(=O)-, or $-CR^9=CR^9$ -. or

$$-CR^{9}$$
 $-CR^{9}$ $-CR^$

wherein R⁹ is H; C₁-C₁₈alkyl, C₁-C₁₈alkyl which is interrupted by -O-, C₆-C₁₈aryl, C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, or C₁-C₁₈alkoxy, or

one of the substituents V, W, X, or Y is a group of the formula -Z, -Ar-Z, wherein Ar is C₆-C₂₄aryl or C₂-C₂₄heteroaryl, which can be substituted, wherein Z is a group of formula

one of the substituents

 V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , or Y^1 to Y^5 is a group of the formula -Z', -Ar-Z', wherein Ar is C_{6} - C_{24} aryl or C_{2} - C_{24} heteroaryl, which can be substituted, wherein Z' is a group of formula

wherein

 A^1 , B^1 and B^2 are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by G; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkoxy which is substituted by E and/or interrupted by D; C_1 - C_1 8alkoxy which is substituted by E

and/or interrupted by D; $-SR^5$; $-NR^5R^6$; C_2-C_{18} heteroaryl; C_2-C_{18} heteroaryl which is substituted by L; $-SOR^4$; $-SO_2R^4$; $-COR^8$; $-COR^7$; $-CONR^5R^6$; C_4-C_{18} cycloalkyl; C_4-C_{18} cycloalkyl which is substituted by E and/or interrupted by D; C_4-C_{18} cycloalkenyl; C_4-C_{18} cycloalkenyl which is substituted by E and/or interrupted by D; or

two substituents A¹, B¹, B² or B¹ and B² form a five to seven membered ring, which can be substituted.

m is an integer of 1 to 4; and W¹, W², Y¹, Y², X¹, X², V, W, X and Y are as defined above;

G is E; K; heteroaryl; heteroaryl which is substituted by C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by E and/or K;

K is C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_7 - C_{18} alkylaryl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl; C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_1 alkoxy, C_1 - C_1 alkoxy which is substituted by E and/or interrupted by D; C_4 - C_1 acycloalkyl; C_4 - C_1 acycloalkyl which is substituted by E and/or interrupted by D; C_4 - C_1 acycloalkenyl; or C_4 - C_1 acycloalkenyl which is substituted by E and/or interrupted by D;

L is E; K;C₆-C₁₈aryl; or C₆-C₁₈aryl which is substituted by G, E and/or K;

 R^4 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

 R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-;

 R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by -O-.

or two substituents selected from V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 which are in neighborhood to each other form a five to seven membered ring.

19. (new): An electroluminescent device according to claim 17, wherein when R⁵ and R⁶ together

$$-$$
Nor $-$ N

form a five or six membered ring the group is

20. (new): An electroluminescent device according to claim 18, wherein when one of the substituents V, W, X, or Y is -Ar-Z, Ar is

$$Z$$
, Z , or Z

and

when one of the substituents V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , or Y^1 to Y^5 is -Ar-Z', Ar is

$$Z'$$
, or Z'

21. (new): An electroluminescent device according to claim 11, wherein R¹¹⁰ is