初版正誤表

Effective 量子コンピュータ

第2章の全面書き直し

P.10

- ullet (誤) $IUU_{n-1}^\dagger = VWV^\dagger W^\dagger$
- \bullet (\mathbb{E}) $I = UU_{n-1}^{\dagger} = VWV^{\dagger}W^{\dagger}$

P.12

- ullet (誤) $@<m<\{U_{n-1}\}\$ はノルムを得る性質から除外できます。この誤差を評価するために、 $@<m<\{V_{n-1}\}\$ の
- ullet (oxdots) U_{n-1} はノルムを得る性質から除外できます。この誤差を評価するために、 V_{n-1}, W_{n-1} の

P.13

- (誤) 最も大きな leading order はオーダースケール $\varepsilon^{\sqrt{3}2}$ の $8(\delta\Delta)$
- \bullet (正) 最も大きな leading order はオーダースケール $\varepsilon^{\frac{3}{2}}$ の $8(\delta\Delta)$
- ●(誤)

$$||u - u_n|| \le c' (\varepsilon_{n-1})^{\frac{3}{2}} \varepsilon'$$

 $\approx 8c$

•(正)

$$||u - u_n|| \le c'(\varepsilon_{n-1})^{\frac{3}{2}}$$

 $\varepsilon' \approx 8c$

- (誤) $\cos \frac{\theta}{8} = \cos ^2 \operatorname{frac}\{ \left(\frac{8}{8} \right) \}$ を満たす θ 角、
- ullet (正) $cos rac{ heta}{8} = cos^2 rac{ heta}{8}$ を満たす heta 角、

P.15

- \bullet (誤) 2 つの積における固有値は $e^{i\lambda}$ }となります。
- \bullet (正)2つの積における固有値は $e^{i\lambda}$ となります。

P.16

- ullet(誤) λ は入力される U の固有状態、その固有値 $e^{i2\lambda}$ は次のようになります。
- ullet (oxdot) λ は入力される oxdot の固有状態、その固有値 $e^{i2\pi\lambda}$ は次のようになります。

P.19

- \bullet (誤)なぜなら、 U^{2n-1} は、 2^n 回の作用が必要です。
- \bullet (正)なぜなら、 $U^{2^{n-1}}$ は、 2^n 回の作用が必要です。

P.38

- ullet (\mbox{IE}) $P_n=\pm 1, \pm i imes I, X, Y, Z^{\otimes n}$
- ($\mathbf{i}\mathbf{k}$) P $2 = \pm 1, i \times II, IX, IY, IZ, XI, XX, XY, XZ, YI, YX, YY, YZ, ZI, ZX, ZY, ZZ$
- ullet ($\hbox{$\mathbb{L}$}$)P $2=\pm 1, \pm i imes II, IX, IY, IZ, XI, XX, XY, XZ, YI, YX, YY, YZ, ZI, ZX, ZY, ZZ$

P.54

- (誤) $|\psi\rangle = \frac{1}{2}(|0\rangle + e^{\frac{\pi}{4}i}|1\rangle)$
- ullet ($\mbox{I\!E}$) $|\psi
 angle=rac{1}{\sqrt{2}}(|0
 angle+e^{rac{\pi}{4}i}\,|1
 angle)$

P.70

- (誤) $\left(\frac{Y+Z}{2}\right)e^{-\frac{\pi}{8}iZ}\left|+\right\rangle=e^{-\frac{\pi}{8}iY}\left|+\right\rangle=\left|\frac{\pi}{8}\right\rangle$ (正) $\left(\frac{Y+Z}{\sqrt{2}}\right)e^{-\frac{\pi}{8}iZ}\left|+\right\rangle=e^{-\frac{\pi}{8}iY}\left|+\right\rangle=\left|\frac{\pi}{8}\right\rangle$

量子コンピュータ手習い

P.9

- (誤) XX = YY = ZZ I
- \bullet (\mathbb{E}) XX = YY = ZZ = I

P.25

- (誤) $P_i \neq P_i^{\dagger}$
- (\mathbb{E}) $PP^{\dagger} \neq I$

