## Neha Maddali

## Problem 1:

a) Optimal K = 5

| t         | es1 | .Y |    |    |      |    |   |   |   |   |
|-----------|-----|----|----|----|------|----|---|---|---|---|
| knn. pred | 0   | 1  | 2  | 3  | 4    | 5  | 6 | 7 | 8 | 9 |
| 0         | 8   | 0  | 0  | 0  | 0    | 0  | 0 | 0 | 0 | 0 |
| 1         | 0   | 17 | 0  | 0  | 0    | 0  | 0 | 0 | 0 | 0 |
| 2         | 0   | 0  | 10 | 0  | 0    | 0  | 0 | 0 | 0 | 0 |
| 3         | 0   | 0  | 0  | 13 | 0    | 0  | 0 | 0 | 0 | 0 |
| 4         | 0   | 0  | 0  | 0  | 8    | 0  | 0 | 0 | 0 | 0 |
| 5         | 0   | 0  | 0  | 0  | 0    | 13 | 0 | 0 | 0 | 0 |
| 6         | 0   | 0  | 0  | 0  | 0    | 0  | 6 | 0 | 0 | 0 |
| 7         | 0   | 0  | 0  | 0  | 0    | 0  | 0 | 6 | 1 | 0 |
| 8         | 0   | 0  | 0  | 0  | 0    | 0  | 0 | 0 | 9 | 0 |
| 9         | 0   | 0  | 0  | 0  | 0    | 0  | 0 | 1 | 1 | 7 |
| /.        |     |    |    |    | - 15 |    |   |   |   |   |

Misclassifcation rate: 0.03

```
> lda.fit = lda(train$y~train$x, data=df)
Error in lda.default(x, grouping, ...) :
   variables 1 2 3 4 5 6 7 8 9 10 11 12 17 1
8 19 20 21 22 23 24 25 26 27 28 29 30 31 32 53 54
55 56 57 58 83 84 85 86 112 113 141 142 169 477 561 645 64
6 672 673 674 700 701 702 728 729 730 731 755 756 757 758 759 760
781 782 783 784 appear to be constant within groups
```

The error means that the variance for these predictors are either zero or close to zero

c) KNN doesn't make any assumptions about the data since it non-parametric. KNN doesn't cause an error when there is not much variation in the variables while LDA does. LDA only works with continuous and categorical variables.

## Problem 2:

a)



b) Optimal K = 5

| t         | es1 | t.Y |   |   |   |   |   |    |   |    |
|-----------|-----|-----|---|---|---|---|---|----|---|----|
| knn. pred | 0   | 1   | 2 | 3 | 4 | 5 | 6 | 7  | 8 | 9  |
| 0         | 9   | 0   | 0 | 0 | 0 | 0 | 1 | 0  | 0 | 0  |
| 1         | 0   | 10  | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0  |
| 2         | 0   | 0   | 8 | 0 | 1 | 0 | 1 | 0  | 1 | 0  |
| 3         | 0   | 0   | 0 | 8 | 1 | 0 | 0 | 0  | 0 | 0  |
| 4         | 0   | 0   | 3 | 0 | 6 | 0 | 0 | 0  | 0 | 0  |
| 5         | 0   | 0   | 0 | 0 | 0 | 9 | 0 | 0  | 0 | 0  |
| 6         | 1   | 0   | 0 | 2 | 1 | 0 | 5 | 0  | 0 | 0  |
| 7         | 0   | 0   | 0 | 0 | 0 | 1 | 0 | 11 | 0 | 0  |
| 8         | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0  | 6 | 0  |
| 9         | 0   | 0   | 0 | 0 | 0 | 1 | 0 | 0  | 0 | 14 |

Misclassification rate: 0.14

Compared to 1a, this misclassification is larger so the model in 1a has better results.

## Problem 3:

a. False positives seem highly problematic. I do not want a potentially important email to be marked as spam. Therefore, I can tune the threshold for logistic regression that my spam filter is more conservative and makes it harder to mark emails as spam.



b.

|   | preds | 0    | 1   |
|---|-------|------|-----|
|   | 0     | 1351 | 89  |
| _ | 1     | 64   | 797 |

False positive rate: 0.06180556 False negative rate: 0.07433217

d. Threshold of 0.15

| preds | 0    | 1   |
|-------|------|-----|
| 0     | 1172 | 16  |
| 1     | 243  | 870 |

False positive rate: 0.01346801 False negative rate: 0.2183288