Formulario Fisica della Materia

Grufoony

8 gennaio 2022

1 Insieme microcanonico

• $S = k_B \ln \Omega$ entropia di Boltzmann

2 Insieme canonico

- $Z_1 = \sum_s e^{-\beta \epsilon_s}$ funzione di partizione (particella singola)
- $Z = (Z_1)^N$ funzione di partizione (N particelle distinguibili)
- $Z = \frac{(Z_1)^N}{N!}$ funzione di partizione (N particelle indistinguibili)
- $F = -k_B T \ln Z$ energia libera di Helmoltz
- $\langle E \rangle = \frac{\partial \ln Z}{\partial \beta}$ energia media

3 Insieme gran canonico

- $\mu = \frac{\partial F}{\partial N}|_{T,V} = -T\frac{\partial S}{\partial N}|_{U,V}$ potenziale chimico
- $\Xi = \sum_N e^{\beta \mu N} Z(N)$ funzione di partizione gran canonica
- $\Phi = k_B T \ln \Xi$ gran potenziale

4 Cose cinetiche

• $f(v) = \sqrt{\frac{m}{2\pi k_B T}} e^{-\frac{m}{2k_B T} v^2}$ distribuzione velocità di Maxwell-Boltzmann

5 Cose quantistiche

- $n_Q = \left(\frac{mk_BT}{2\pi\hbar^2}\right)^{\frac{3}{2}}$ concentrazione quantistica
- $\epsilon_j = \hbar\omega\left(j+\frac{1}{2}\right)$ energia oscillatore armonico quantistico

6 Cose termodinamiche

- $S = -\frac{\partial F}{\partial T}|_{N,V}$ entropia
- $C_V = \frac{\partial U}{\partial T}|_V$ capacità termica
- $P = -\frac{\partial U}{\partial V}|_{N,S} = -\frac{\partial F}{\partial V}|_{N,T} = T\frac{\partial S}{\partial V}|_{N,U}$ pressione
- $S = \frac{\partial \Phi}{\partial T}|_{\mu,V}$

•
$$P = \frac{\partial \Phi}{\partial V}|_{U,T}$$

•
$$\langle N \rangle = \frac{\partial \Phi}{\partial \mu}|_{V,T}$$

7 Cose matematiche

• $\lim_{N>>1} N! \simeq \sqrt{2\pi N} N^N e^{-N}$ approssimazione di Stirling

•
$$\int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} = \frac{1}{2} \sqrt{\frac{\pi}{\alpha^3}}$$

•
$$\sum_{n=0}^{\infty} ne^{-an} = \frac{e^a}{(e^a - 1)^2}$$