3_2_LCD

Amaury Efraín Gutiérrez Chávez

Programación de Sistemas embebidos

Ing. Mecatrónica 8°A En esta práctica vamos realizar un contador utilizando la psoc, en el cual mostrara los números del 1 al 31 utilizando el código binario y si se pone **0 0 0 0 0** deberá mostrar en la pantalla el nombre del alumno.

Materiales

- Protoboard
- Resistencias
- LCD de 16x2
- Microcontrolador PsoC 5LP
- Cables
- PsoC Creator

Comenzamos creando una tabla con todas las combinaciones del código binario para llegar del numero 1 al 31

\mathbf{E}	D	\mathbf{C}	В	A	LCD
0	0	0	0	0	Amaury Gutierrez
0	0	0	0	1	1
0	0	0	1	0	2
0	0	0	1	1	3
0	0	1	0	0	4
0	0	1	0	1	5
0	0	1	1	0	6
0	0	1	1	1	7
0	1	0	0	0	8
0	1	0	0	1	9
0	1	0	1	0	10
0	1	0	1	1	11
0	1	1	0	0	12
0	1	1	0	1	13
0	1	1	1	0	14
0	1	1	1	1	15
1	0	0	0	0	16
1	0	0	0	1	17
1	0	0	1	0	18
1	0	0	1	1	19
1	0	1	0	0	20
1	0	1	0	1	21
1	0	1	1	0	22
1	0	1	1	1	23
1	1	0	0	0	24
1	1	0	0	1	25
1	1	0	1	0	26
1	1	0	1	1	27

1	1	1	0	0	28
1	1	1	0	1	29
1	1	1	1	0	30
1	1	1	1	1	31

Creamos un proyecto en psoc creator, hacemos el circuito que se necesita, que consta de 5 interruptores y el LCD

Ya hecho el circuito se asignarán los pines que necesitarán para la comunicación

Ya al a asignarlos comenzamos a escribir el código, primero hay que definir los switch como A, B, C. D y E luego utilizamos && el cual es comparador lógico AND nos ayudara a escribir los if. Se utiliza CyDelay para dar un retraso de 1.5 segundos y ClearDisplay es para limpiar la pantalla antes de mostrar el siguiente mensaje

```
int main(void)
int A, B, C, D, E;
CyGlobalIntEnable;
myLCD Start();
myLCD ClearDisplay();
for(;;)
    A = Sw | Read();
    B = Sw 2 Read();
    C = Sw 3 Read();
    D = Sw + Read();
    E = Sw 5 Read();
    if(!E && !D && !C && !B && !A) {
        myLCD ClearDisplay();
        myLCD Position(0,1);
        myLCD PrintString("Amaury");
        myLCD_Position(1,5);
        myLCD PrintString("Gutierrez");
        CyDelay(1500);
```

Conclusiones

Fue interesante hacer esta practica pues ya hemos hecho combinaciones de código binario, pero nunca lo habíamos hecho utilizando un LCD solo con leds, también ver como se conecta.