Capstone Project Real / Fake Job Posting Prediction

Purpose

Job search resources are being used by hackers as a method for phishing attacks in order to get personal information resulting in identity theft and money scams.

This Project aims to create a machine learning model that can accurately identify fraudulent jobs postings before they are advertised to the general public

Processes

- 1. Data Analysis
- 2. Cleaning Data
- 3. Training Data
- Validate data with different algorithm
- 5. Check the Result

Data Analysis - Source

- Dataset obtained from Kaggle
- Database Integration with Postgres & AWS RDS
- 17838 Rows by 18 Columns
- Target Feature in dataset it "Fraudulent"

Data Analysis/Cleaning - Dropped Features

The following explains analysis of features that were dropped from the dataset before processing

- Job ID is an identification column and has no relation to the target Feature
- Salary_range was majority null values
 - <graph showing number of null values>
- title contained majority unique values
 - <graph showing number of unique values>

Data Analysis/Cleaning - Features and Target

- Dataset has 17 features
 - 4 features have large amounts of text and provide description of the job posting and the company posting the job
 - NLP using the NLTK library will be used to remove punctuation, stopwords then lemmetize the text before tockenizing and then running Term Frequency (TF-IDF) to determine the relevancy of keywords
 - "company_profile", "description", "requirements", "benefits"

<Graphs showing the 4 features above with number of null values for each>
<graph showing the 4 features above with the how many were fraudulent vs how many were not>

Data Analysis/Cleaning - Features and Target

- Target Feature in dataset it "Fraudulent"
- Dataset has 17 features
 - 3 features identified as text based ordinal data types with specific ordered groupings
 - LabelEncoder used to convert these features to numeric form for the machine learning model
 - 'employment_type','required_experience','required_education'

<Graphs showing the 3 features above with number of null values for each>

<graph showing number if unique values for each feature>

<graph showing the 3 features above with the how many were fraudulent vs how many were not>

Data Analysis/Cleaning - Features and Target

- Target Feature in dataset it "Fraudulent"
- Dataset has 17 features
 - 4 features identified as text based nominal data types with unordered groupings
 - TargetEncoder used to encode in order to convert these features to numerical form based on the mean of the target to the count of each category
 - 'department', 'industry', 'function', 'Country'
- <Graphs showing the 4 features above with number of null values for each>
- <graph showing number if unique values for each feature>
- <graph showing the 4 features above with the how many were fraudulent vs how many
 were not>

Machine Learning

- Main analysis through machine-learning:
 - To predict fraudulent from job-posting data
 - Goal Accuracy: ()
- Supervised Learning (Target Column = Does Exist)
- Classification (Discrete Variable = Fraudulent vs Not Fraudulent)

Fake_job_postings

function

fraudulent

title varchar location varchar department varchar company_profile varchar description varchar requirements varchar benefits varchar telecommuting int has_company_logo int has_questions int employment_type varchar required_experience varchar required_education varchar industry varchar

Data Cleaning & Analysis

Database integration

Machine Learning

Visualization & Presentation

varchar

int

Tools that will be used to create the final dashboard

- Tableau will be used to create the final dashboard
 Once ML is set:
- Classification Model, Confusion Matrix will be displayed in the dashboard

Final Dash Board Outline

Exploratory Data Analysis

- Basic Data analysis:
 - Proportion of Fraudulent vs Non-Fraudulent
 - Count analysis of columns: (Required Education, Industry, Fraud Rate)

ML Part:

- lightGBM + important features
- Classification report and confusion matrix to assess the accuracy