Bölüm 2Mantık ve İspatlar (Logic and Proofs)

Mantık (Logic)

- Mantık (Logic) = doğru çıkarımı elde etme çalışmasıdır
- ■Mantığın kullanımı
 - Matematikte kullanımı:
 - Teoremleri ispatlamak
 - ■Bilgisayar Bilimlerinde kullanımı:
 - □Programların kendilerinden beklenen sonucu üretip üretmediğinin kontrolüdür

Önermeler (Propositions)

Sonucu doğru (true) veya yanlış (false) olan ifadelere proposition (önerme) denir.

□Örnekler:

- "Cüneyt programcıdır" bu bir önermedir
- "Keşke bilge kişi olsaydım" bu bir önerme değildir

Birleştiriciler (Connectives)

Önermeleri (propositions) göstermek için p,q,r,s,t,... gibi değişkenler kullanılır.

En çok kullanılan birleştiriciler:

■Conjunction AND Sembol ^

Inclusive disjunction OR
Sembol v

Exclusive disjunction OR Sembol v

Negation
Sembol ~

■Implication Sembol →

■Double implication Sembol ↔

AND (conjunction) doğruluk tablosu

- □ p ve q bir önerme ise, conjunction (p ^ q) veya (p and q) olarak gösterilir
- Conjunction doğruluk tablosu

р	q	p ^ q
Т	Τ	Т
Т	F	F
F	Т	F
F	F	F

□ Sadece p ve q nun her ikisinin de doğru olduğu durumda p ^ q doğrudur

p = "kaplan vahşi bir hayvandır" q = "balina bir sürüngendir" p ^ q = " kaplan vahşi bir hayvandır **and** balina bir sürüngendir " Yanlış

OR (disjunction) doğruluk tablosu

- p ve q bir önerme ise, *disjunction* (p v q) veya (p or q) olarak gösterilir
- Disjunction doğruluk tablosu

р	q	pvq
Т	Τ	Т
Т	F	Т
F	Т	Т
F	F	F

- □ Sadece p ve q nun her ikisinin de yanlış olduğu durumda p ∨ q yanlıştır
 - □ Örnek: p = "Cüneyt programcıdır", q = "Zeynep avukattır"
 - □ p v q = " Cüneyt programcıdır or Zeynep avukattır " Doğru

Exclusive disjunction OR(XOR)

- □ p ve q bir önerme ise, exclusive disjunction OR (xor) p ∨ q olarak gösterilir
- Exclusive disjunction doğruluk tablosu

р	q	р <u>v</u> q
Т	Τ	F
Т	F	Т
F	Т	Т
F	F	F

- □ Sadece p doğru ve q yanlış ise, veya p yanlış ve q doğru ise p ∨ q doğrudur
- Örnek: p = "Cüneyt programcıdır", q = "Zeynep avukattır"
- p v q = "Ne Cüneyt programcıdır ne de Zeynep avukattır Yanlış

Tersi (Negation)

□ p' nin tersi: ~p veya p' ile gösterilir

р	~ p
Т	F
F	Т

p doğru iken ~p yanlıştır p yanlış iken ~p doğrudur

□ Örnek: p = "Cüneyt programcıdır"
~p = "Cüneyt programcı değildir"

Birden Fazla Önermenin Birleştirilmesi

- p, q, r basit önermeler olsun
- Birleştirilmiş ifadeleri aşağıdaki gibi gösterebiliriz
 - **■**(p∨q)^r
 - **p**√(**q^r**)
 - **■**(~p)∨(~q)
 - **■**(p∨q)^(~r)
 - ■ve diğer durumlar...

Örnek: (pvq)^r nin doğruluk tablosu

р	q	r	(p ∨ q) ^ r
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	Т
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	F

Şartlı Önermeler ve Mantıksal Denklik (Conditional Propositions and Logical Equivalence)

- □ Şartlı önerme (*conditional* proposition)

 "If p then q"
- şeklinde gösterilir
- □ Sembolü: p → q
- □ Örnek:
 - p = " Cüneyt programcıdır"
 - q = " Zeynep avukattır "
 - ■p → q = "If Cüneyt programcıdır then Zeynep avukattır Doğru

p → q 'nun Doğruluk Tablosu

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

□ Sadece p ve q 'nun her ikiside doğru veya p'nin yanlış olduğu durumlarda p → q önermesi doğrudur

Hipotez ve Sonuç (Hypothesis and conclusion)

- □ p → q şartlı önermesinde
 p antecedent veya hypothesis
 q consequent or conclusion
 olarak adlandırılır.
- "if p then q" mantiksal olarak "p only if q" ile aynıdır

Gereklilik ve Yeterlilik (Necessary and Sufficient)

- Gerekli şart (necessary condition) sonuç (conclusion) tarafından ifade edilir
- Yeterli şart (sufficient condition) hipotez (hypothesis) tarafından ifade edilir
 - Örnek:
 - If Cüneyt programcıdır then Zeynep avukattır"
 - Necessary condition: "Zeynep avukattır"
 - Sufficient condition: "Cüneyt programcıdır"

Mantıksal Denklik (Logical Equivalence)

 Doğruluk tablosundaki değerleri aynı olan iki önerme için aralarında mantıksal denklik vardır denir

р	q	~p ∨ q	$p \rightarrow q$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

□ Örnek: ~p ∨ q önermesi p → q ile *logically* equivalent 'dır. Yani aralarında mantıksal denklik vardır

Yer değiştirme (Converse)

 \square p \rightarrow q'nun *converse* q \rightarrow p dir

р	q	$p \rightarrow q$	$q \rightarrow p$
Т	Т	Т	Т
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

■ Bu iki önerme arasında mantıksal denklik mevcut değildir (<u>not</u> logically equivalent)

Contrapositive (Devrik)

ightharpoonup p ightharpoonup q önermesinin *contrapositive* ightharpoonup ightharpoonup şeklinde gösterilir

р	q	$p \rightarrow q$	~q → ~p
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

■ Bu önermeler logically equivalent'dır

Çift Yönlü Önerme (Biconditional Proposition)

□ Çift Yönlü önerme (biconditional proposition)
 "p if and only if q" olarak tanımlanır
 p ↔ q sembolü ile gösterilir

р	q	$p \leftrightarrow q$	$(p \rightarrow q) \land (q \rightarrow p)$
Т	T	Т	Т
Т	F	F	F
F	Т	F	F
F	F	Т	Т

Totoloji-Tutarlılık (Tautology)

■ Eğer doğruluk tablosunda önermelerin her bir durumu için doğru sonuç (true) elde edilmiş ise, birleştirilmiş önerme (*compound proposition*) bir *tautology* 'dir

 \square Örnek: $p \rightarrow p v q$

р	q	$p \rightarrow p v q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	T

Çelişki (Contradiction)

■ Eğer doğruluk tablosunda önermelerin her bir durumu için yanlış sonuç (false) elde edilmiş ise, birleştirilmiş önerme (compound proposition) bir contradiction 'dır

□ Örnek: p ^ ~p

р	p ^ (~p)
Т	F
F	F

De Morgan Kanunu

Aşağıdaki önerme çiftleri birbirleri ile mantıksal olarak denktir

$$\sim (p \lor q) \rightarrow (\sim p) \land (\sim q)$$

$$(p \land q) \rightarrow (\sim p) \lor (\sim q)$$

Nicelikler (Quantifiers)

- □ P(x), x değişkeni ile ilişkili bir önerme olsun Örneğin, P(x): 2x çift tamsayı
- D'de içerisindeki her x değeri için, P(x)'i önerme yapan bir küme olsun Örneğin: x, tamsayılar kümesinin bir elemanıdır
- D, P(x)'nin ayrıntılı bilgi alanı (domain of discourse) olarak adlandırılır

□ D'deki her x değeri, P(x)'i sonucu doğru veya yanlış olan bir önerme yapar

Örneğin: P(n): n²+2n tek sayıdır

D kümesi pozitif tam sayılardan oluşsun
if *n* tek sayı then n²+2n tek sayıdır
if *n* çift sayı then n²+2n tek sayı değildir

■ Bu sınıftakiler 18 yaşından büyüktür
 D kümesi, sınıftaki öğrenciler olsun
 Öğrencilerin bazıları önermeyi doğru, bazıları da yanlış yapar

Her ve Bazı (For every and for some)

Matematik ve Bilgisayar Bilimlerindeki çoğu ifadede for every ve for some kullanılır

□ Örneğin:

For every triangle T, the sum of the angles of T is 180 degrees.

Evrensel/Genel Niteliyiciler (Universal Quantifier)

□ The universal quantification of P(x) is the proposition "P(x) is true for all values of x in the universe of discourse."

P(x) önermesi, D kümesi içerisindeki her x değeri için doğru olmalıdır.

 $\forall x \ P(x) \ \text{veya}$ for all $x \ P(x) \ \text{veya}$ for every $x \ P(x) \ \text{şeklinde yazılır}$

□ En az bir *x* değeri için doğru değilse, P(x) yanlış olur

"Every student in this class has studied calculus"

 $P(x) \rightarrow "x$ has studied calculus"

 $\forall x P(x)$

Bilgi

Bilgi

When all of the elements in the universe of discourse can be listed $-x_1, x_2,...,x_n$ – it follows that the universal quantification $\forall x \ P(x)$ is the same as the conjunction $P(x_1)\Lambda P(x_2)\Lambda ... \Lambda P(x_n)$,

 $P(x_1)\Lambda P(x_2)\Lambda \dots \Lambda P(x_n),$ since the conjunction is true if and only if $P(x_1)$, $P(x_2)$,..., $P(x_n)$ are all true.

Önerme fonksiyonun doğruluğu

- □ ∀x P(x) ifadesi
 - Doğrudur. Eğer P(x) doğruysa for every x ∈ D
 - Yanlıştır. Eğer P(x) doğru değilse for some x ∈ D
- Örneğin: P(n) propositional bir fonksiyon
 ve P(n): n² + 2n tek bir sayıdır.
 ∀n ∈ D = {bütün tam sayılar}
- □ P(n) sadece n tek sayı olduğunda doğrudur.
 P(n) n çift sayı ise yanlıştır

- □ For every real number x, $x^2 \ge 0$ TRUE
- □ For every real number x, if x > 1 then x + 1 > 1
- \square For every real number x, if $x \ge 0$ then x+1>1 FALSE
- □ For every positive integer *n*, if n is even then

n²+n+19 prime FALSE

Soru: Verilen cümleyi mantıksal ifadeler ile yazısınız.

'You can not ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old'

q: you can ride the roller coaster

r: you are under 4 feet tall

s: you are older than 16 years old

$$(r \land \sim s) \rightarrow \sim q$$

$$(\sim r V s) \rightarrow q$$

Varoluşsal Niteleyiciler (Existential Quantifier)

□ The existential quantification of P(x) is the proposition "There exists an element x in the universe of discourse such that P(x) is true"

P(x) önermesi, *D* kümesi içerisindeki en az bir x değeri için doğru olmalıdır.

 $\exists x P(x) veya$

"There is an x such that P(x)" veya

"There is at least one x such that P(x)"

şeklinde yazılır.

Bilgi

When all of the elements in the universe of discourse can be listed – $x_1, x_2,...,x_n$ – the existential quantification $\exists x$

P(x) is the same as the disjunction

$$P(x_1)VP(x_2)V \dots VP(x_n),$$

since this disjunction is true if and only if at least one of $P(x_1)$, $P(x_2)$,..., $P(x_n)$ is true.

□ For some real number x, $x/(x^2+1) = 2/5$ TRUE

□ For some positive integer *n*, if n is prime then n+1, n+2, n+3 and n+4 are not prime TRUE n=23

Translating Sentences into Logical Expressions

Cümlemiz "Everyone has exactly one best friend" olarak verilmiş olsun.

B(x,y) ifadesi "y is the best friend of x".

Cümlemiz ne diyor?

for every person x there is another person y such that y is the best friend of x

and that if z is a person other than y, then z is not the best friend of x.

Cümleyi mantıksal ifadeler ile yazalım

$$\forall x \exists y \forall z (B(x,y) \land ((z \neq y) \rightarrow \neg B(x,z)))$$

Cümlemiz "If somebody is female and is a parent, then this person is someone's mother" olarak verilsin.

F(x) ifadesi "x is female",

P(x) ifadesi "x is a parent", ve

M(x,y) ifadesi de "x is the mother of y" olsun.

Cümlemizi matematiksel ifadeler ile yazalım.

$$\forall x ((F(x) \land P(x)) \to \exists y M(x, y))$$

Counterexample

- Eğer $\exists x \in D$, P(x)'i yanlış yaparsa universal statement $\forall x P(x)$ 'de yanlış olur
- □ ∀x P(x) ifadesindeki, P(x) yanlış yapan x değeri counterexample olarak adlandırılır
 - Örnek: P(x) = "her x değeri bir asal sayıdır", for every tamsayı x.
 - Fakat eğer x = 4 (bir tamsayı) bu x sayısı asal sayı değildir. Öyleyse 4 değeri bir counterexample olup P(x)'i yanlış yapar

Lojik için Genelleştirilmiş De Morgan Kanunu

$$\sim (\forall x \ P(x)) \rightarrow \exists x \sim P(x)$$

$$\sim (\exists x \ P(x)) \rightarrow \forall x \sim P(x)$$

"Every student in the class has taken a course in calculus" $\forall x \ P(x)$,

P(x): "x has taken a course in calculus"

~P(x): "It is not the case that every student in the class has taken a course in calculus"

Sınıftaki her öğrencinin kalkülüs dersi alması söz konusu değildir

$$\sim \forall x \ P(x) \Leftrightarrow \exists x \sim P(x)$$

"There is a student in the class who has not taken a course in calculus".

Sınıfta kalkülüs dersi almamış öğrenci var

"There is a student in this class who has taken a course in calculus".

 $\exists x \ Q(x)$

Q(x): "x has taken a course in calculus"

~Q(x) : "It is not the case that there is a student in this class who has taken a course in calculus"

Bu sınıfta kalkülüs dersi almış bir öğrenci olması söz konusu değildir

 $\forall x \sim Q(x)$

"Every student in this class has not taken calculus"

Negating Quantifiers			
Negation	Equivalent Statement	When is negation true?	When false?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	P(x) is false for every x	There is an x for which P(x) true
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which P(x) is false	P(x) is true for every x

İspatlar (Proofs)

- Bir matematik sistemi
 - Tanımlanmamış terimler (Undefined terms)
 - Tanımlar (Definitions)
 - Aksiyomlar (Axioms)

Tanımlanmamış Terimler (Undefined Terms)

Tanımlanmamış terimler bir matematik sisteminin temel taşını oluşturur. Bu terimler bir matematiksel sistemin başlangıç kavramları olarak da kabul edilebilir.

- Örnek: Euclidean geometride tanımlanmamış terimler
 - Nokta (Point)
 - Doğru (Line)

Tanımlar (Definitions)

□ Tanım (definition), yeni bir kavram yaratmak amacıyla önceden kabul edilmiş kavramlar ve tanımlanmamış terimlerden bir proposition oluşturmaktır

Örnek: Euclidean geometrideki tanımlar:

- Eğer iki üçgenin karşılıklı kenarları ve açıları birbirinin aynı ise bu iki üçgen eş üçgendir
- İki açının toplamı 180 derece ise bu açılara birbirini tamamlayan açılar denir

Aksiyomlar (Axioms)

- Aksiyom (axiom), matematiksel bir sistem içerisinde ispat yapmaksızın doğru kabul edilen proposition'dır
- Matematikteki aksiyomlara örnek:
 - Örnek: Euclidean geometrideki aksiyomlar
 - İki nokta verilmiş olsun. Bu noktalardan geçen bir doğru her zaman mevcuttur.
 - Bir doğru ve doğru üzerinde yer almayan bir nokta mevcut olsun. Bu noktadan geçen doğruların bir tanesi verilen doğruya mutlaka paraleldir.

Teoremler (Theorems)

□ Teorem, Onceden ispatlanmış teoremleri, aksiyomları, tanımlamaları kullanarak ve p nin doğru olduğunu farzederek doğruluğu önerilebilen p → q formundaki proposition'a denir

İspat Çeşitleri

- İspat (proof), Teoremin doğruluğunu belirlemek için önermeleri kullanan bir seri işlemden oluşan mantıksal çıkarımdır
- \square Doğrudan ispat (Direct proof): p \rightarrow q
 - q önermesinin doğruluğunu elde etmek amacıyla ispatlanmış teoremleri, aksiyomları ve p önermesinin doğruluğunu kabul ederek çözüme ulaşmadır
- □ Dolaylı/Olmayana Ergi ispat (Indirect proof): (~q)→(~p)
 - p→ q önermesinin çelişkisinden çözüme ulaşmaktır

Doğrudan İspat

 $p \rightarrow q$ durumunda kullanılır.

p'nin doğru olduğu kabul edilerek, çıkarım kuralları kullanılarak, q'nun da doğru olduğu gösterilir.

Not : p önermesi n, m gibi sade eşitlikler olmalıdır. n², m+n gibi durumlarda doğrudan ispat yapılmaz.

Adımlar:

- 1. $p \rightarrow q$ için p doğru kabul edilir
- 2. q önermesinin doğruluğu gösterilmeye çalışılır
- 3. $p \rightarrow q$ nun doğruluğu söylenir

Örnek

n çift sayı ise n² de çift sayıdır önermesini ispat ediniz.

- 1. n=2k, k ∈ Z doğru kabul edilir
- 2. $n^2=4k^2=2(2k^2)$
- $P \in Z$, $p=2k^2$ için, $n^2=2p$ olur
- 3. n²=2p bir çift sayı formunda olduğundan n² de çift sayıdır

Not: m+n çift sayı ise, m ve n çift sayıdır önermesi doğrudan ispat yöntemi ile ispat edilemez

Dolaylı İspat / Olmayan Ergi / Indirect İspat

p → q durumlarında doğrudan ispat ile ispatın mümkün olmadığı durumlarda dolaylı ispat kullanılır

Örnek

Bir önermenin p \rightarrow q karşıt tersi (contrapositive) karşılığı bulunur ve bu karşılık doğrudan ispat ile elde edilir

 $p \rightarrow q$ için 'contrapositive' $q' \rightarrow p'$ alınır ve doğrudan ispat yapılır

n² tek sayı ise n' de tek sayıdır önermesini ispat ediniz.

p: n² tek sayıdır p': n² çift sayıdır

q: n tek sayıdır q': n çift sayıdır

Önermenin yeni hali: 'n çift sayı ise n² çift sayıdır'

Yeni önermeyi doğrudan ispat ile ispatlayalım

- 1. n çift sayı ise n² çift sayıdır
- 2. n=2k, k ∈ Z doğru kabul edilir
- 3. $n^2=(2k)^2=4k^2$

 $u \in Z$, $u=2k^2$ için, $n^2=4k^2=2*2k^2=2u$ olur

Karşıt tersi doğru olunca, kendisi de doğrudur. n² tek sayı ise n' de tek sayıdır

n bir tam sayı ve 3n+2 tek ise, n'nin tek olduğunu ispatlayınız

Önce doğrudan ispat yapalım:

3n+2 tek sayı ise, her hangi bir k tam sayısı için 3n+2=2k+1

3n+2 = 2k+1

3n+1=2k olduğunu görüyoruz, fakat n değerinin tek olduğunu gösteremeyiz

Şimdi de dolaylı ispat yapalım:

n çift ise, 3n+2' de çift sayıdır

Her hangi bir k tam sayısı çift n= 2k ise 3n+2 = 3(2k)+2 çift sayıdır

3n+2 = 6k + 2 = 2(3k+1) olur, bu da bize 3n+2'nin çift sayı olduğunu söyler

Koşullu önermenin sonucunun negatifi, hipotezin yanlış olduğunu gerektirdiği için orijinal koşullu önerme doğrudur

Matematiksel sonuç çıkarma (Tümevarımsal ispat / Mathematical induction)

- □ ∀ n ∈ A, S(n) formundaki ifadenin ispatına bakalım
 - * N, pozitif tamsayılar veya doğal sayılardan oluşan bir küme
 - * A, N'nin bir alt kümesi
 - * S(n) de bir önerme olsun

Genel olarak özdeşliklerin ispatında kullanılır

- Her pozitif tamsayının, S(n) önermesini doğru veya yanlış yaptığını farzedelim
 - 1. S(1) doğru olduğunu teyit et (ilk eleman ile)
 - 2. n keyfi seçilmiş pozitif bir tamsayı olsun
 i pozitif bir tamsayı olup, i < n olarak belirle
 - 3. S(i) 'nin doğruluğundan yola çıkarak, S(i+1)'in doğru olduğunu göster

$$S(i) \rightarrow S(i+1)$$

 4. Sonuç olarak, tüm pozitif tamsayılar için S(n) doğrudur

Matematiksel sonuç çıkarım: terminoloji

- □ Temel adım (basis step): S(1) 'in doğruluğunun gösterilmesi
 - □ Tümevarımsal adım (Inductive step): S(i)'nin doğru farzedilmesi İspat S(i) → S(i+1) if S(i) is true, for all i<n+1, then S(n+1) is true</p>
 - Sonuç (Conclusion):
 Bütün pozitif tamsayılar için S(n)'nin doğruluğu

İlk n adet pozitif tamsayının toplamı Sn olup, Sn =1+2+3+...+n olarak gösterilsin.

Sn'nin n=1,2,3... için Sn=
$$\frac{n(n+1)}{2}$$
 olduğunu ispatlayınız.

1.
$$n=1$$
 için, $1=1(1+1)/2=1$ (doğru)

2. n=2 için, 1+2 =
$$(2*3)/2=3$$
 (doğru)
n=k için, 1+2+3+...+k = $\frac{k(k+1)}{2}$ (doğru kabul edilir)

3. n=k+1 i cin,

$$1+2+3+...+k+(k+1) = \frac{(k+1)(k+2)}{2}$$

$$\frac{k(k+1)}{2}+(k+1) = \frac{(k+1)(k+2)}{2}$$

$$\frac{k(k+1)+2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$

$$\frac{k^2+k+2k+2}{2} = \frac{(k+1)(k+2)}{2}$$

$$\frac{k^2+3k+2}{2} = \frac{(k+1)(k+2)}{2}$$

$$\frac{(k+1)(k+2)}{2} = \frac{(k+1)(k+2)}{2} \text{ Doğrudur}$$

İlk n adet pozitif tek sayının toplamı n^2 olduğunu ispatlayınız.

$$S_n=1+3+5+...=n^2$$

1. $n=1$ için, $1=1^2=1$ (doğru)

2. $n=2$ için, $1+3=2^2=4$ (doğru)

 $n=k$ için, $1+3+5+...+(2k-1)=k^2$ (doğru kabul edilir)

3. $n=k+1$ için,
$$1+3+5+...+(2k-1)+(2(k+1)-1)=(k+1)^2$$

$$k^2 + (2k+1) = k^2 + 2k + 1$$
Doğrudur

n pozitif tamsayı iken (n³-n)'nin 3'e tam olarak bölünebildiğini ispatlayınız.

$$S_n = (n^3-n) / 3 = mod((n^3-n),3) = 0$$

1. $n=1$ için, $1^3 - 1 = 0$ (0/3 = 0 doğru)
1. $n=2$ için, $(8-2)/3 = 6/3 = 2$ (tam bölünüyor)
 $n=k$ için, $(k^3-k) / 3$ (tam olarak bölündüğü kabul edilir)
3. $n=k+1$ için,
 $(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$
 $= (k^3 + 3k^2 + 3k - k + 1 - 1)$
 $= (k^3 - k) + (3k^2 + 3k) = (k^3 - k) + (3k^2 + 3k)$
 $= (k^3 - k) + 3(k^2 + k)$

Her ikisi de 3'e bölünebiliyorsa Doğrudur