

King Mongkut's University of Technology Thonburi

Midterm Examination Semester 1 Academic Year 2014

CVE 338: Structural Analysis II

Date: 24th September 2014 Time 9:00 –12:00

Instructions:

- 1. The exam has 4 questions in 12 pages. Total points are 40 points with each question not of equal points.
- 2. Read the questions carefully and strictly follow instruction.
- 3. Textbooks and written materials are not allowed in the examination room.
- 4. A calculator is allowed.
- 5. Write your name on every page.
- 6. Perform your work in the examination paper.

Examiner: Assistant Professor Dr. Aphinat Ashakul Tel. 02-470-9148

This examination paper has been approved by the Department of Civil Engineering

Associate Professor Dr. Sutat Leelataviwat Head of the Civil Engineering Department

Student Name & I.D.______

1. Calculate all the reactions of the frame shown by using the slope-deflection method, and then complete the free body diagram of all the members (member AB, BC, and CD). (15 Points)

Student Name & I.D		
Student Name & I.D.		
	3	

Student Name & I.D		 	
	4		

2. Calculate rections of the beam shown by using the slope deflection method. EI is constant. Point load **P** is equal to 15 tons, whereas uniform load **w** is equal to 2.4 t/m. (10 Points)

Student Name & I.D.	
	,

Student Name & I.D	,		

•

3. Write integrals necessary to perform the Castigliano's method (method of least work) for the frame shown. **DO NOT** perform integration. El is constant. (6 Points)

Student Name & I.D		
	9	

4. Calculate reactions for the beam shown by using any of the Force Method. EI is constant. (9 Points)

Student Name & I.D.	
·	

Selected Fixed End Moments

Load Characteristics	FEMAB	FEMBA
±	PL	PI
	$-\frac{12}{8}$	$\frac{PL}{8}$
		8
a 🛊 b	Pab ²	Pa^2b
<u> </u>	$-\frac{L^2}{L^2}$	$\frac{L^2}{L^2}$
	L	<i>L</i> -
FIGURE AND ALTERNATION	$-\frac{wL^2}{12} = -\frac{WL}{12}$	$\frac{wL^2}{12} = \frac{WL}{12}$
	$-\frac{1}{12} = -\frac{1}{12}$	$\frac{1}{12} = \frac{1}{12}$
W= wL	12 12	
C A Laborator	$-\frac{Wa}{12L^2}[12a^2b+c^2(L$	$\frac{Wa}{12L^2}[12ab^2 + c^2(L - 3a)]$
< a → < b →		$\frac{12L^2}{12L^2}[12ab^2+c^2(L-3a)]$
W= wc	-3b)]	
W= wa	$-\frac{Wa}{12L^2}(6L^2 - 8aL + 3a^2)$	$\frac{Wa^2}{12L^2}(4L-3a)$
a	$12L^{2} $	$\frac{12L^2}{12L^2}(4L-3a)$
If a = L/2 in the case above	$11wL^2$	$5wL^2$
,	$-\frac{1102}{192}$	192
	192	192
M	$\frac{Mb}{L^2}(3a-L)$	$\frac{Ma}{L^2}(3b-L)$
	$\frac{1}{L^2}(3a-L)$	$\frac{1}{L^2}(3b-L)$
a b		
Δ	6 <i>Ε1</i> Δ	6 <i>EI</i> ∆
	L^2	$\overline{L^2}$

Slope-Deflection Equations

$$M_{ij} = 2E(K)_{relative} \big(2\theta_i + \theta_j - 3\psi_{ij} \big) + FEM_{ij}$$

Modification for Simple End Support (When i is the simple end)

$$M_{ji} = 3E(K)_{relative} (\theta_j - \psi_{ij}) + FEM_{ji} - FEM_{ij}/2$$