

Device boots → Presents serial/cert/code

 \downarrow

Technician → Enters into portal (React + API Gateway)

 \downarrow

Lambda Function → Verifies identity against internal records (DynamoDB)

Fleet Provisioning by Claim or Template \rightarrow AWS IoT Core issues cert and registers device

Device connects securely to AWS IoT Core using MQTT

Reporting and Auditing Logs:

Device → AWS IoT Core → Rules Engine

Lambda Function stores

- → Device metadata → DynamoDB
- → Audit logs → RDS (User actions, updates, errors)

User requests report → API Gateway + Lambda

Lambda creates CSV/JSON \rightarrow Uploads to S3 \rightarrow Returns download URL

Role-Based Access Control (RBAC):

User logs in (Cognito)

JWT contains custom claims like role

 \downarrow

Frontend and Lambda check role before permitting action

OTA Firmware Update System:

Admin uploads firmware file via UI

↓

Lambda stores binary in S3 and metadata in DB

↓

Admin selects devices or groups (by tag)

↓

Lambda creates an AWS IoT Job → targets selected devices

↓

Devices receive job document (with download URL)

↓

Devices download firmware from S3 and apply update

↓

Devices report update status → stored in DB

↓

Frontend shows: Queued / In Progress / Completed / Failed

WorkFlow Steps:

Device Auto-Onboarding Workflow:

Device boots up with identity info
 Device starts with a unique serial number or preloaded certificate.

- 2. Technician enters code into portal A technician inputs the device serial or code into a web app to initiate onboarding.
- 3. Backend verifies device authenticity
 A Lambda function checks the device info against an internal DB (ex: DynamoDB) to ensure it's valid and unregistered.
- 4. AWS IoT Fleet Provisioning registers the device The system uses IoT Core's Fleet Provisioning to create a unique certificate and register the device.
- Device connects to AWS IoT Core using credentials
 The device securely connects to AWS IoT Core over MQTT with its new certificate and starts sending telemetry.

Role-Based Access Control (RBAC):

- User logs in via Cognito
 Admin, Technician, or Viewer signs in using Amazon Cognito and receives a JWT with their role in token claims.
- 2. Token sent with API requests
 All frontend-to-backend communication includes this token for role-based enforcement.
- 3. Backend checks role before action Lambda or API Gateway inspects the token to allow or deny actions like firmware updates or report downloads.
- Frontend hides unauthorized actions
 The UI conditionally shows or hides buttons and actions based on the user's role.

Reporting and Audit Logging:

- 1. Telemetry data stored in DynamoDB / Timestream
 Real-time data from devices (heartbeat, health, firmware info) is written to time-series DBs for reporting.
- Audit events logged in RDS
 Actions like updates, login attempts, firmware pushes, or failures are logged in a structured SQL DB.

- 3. User requests report download A user calls an API (e.g., /generate-report?format=csv), choosing format and filters.
- Backend compiles data and stores in S3
 Lambda queries data, generates CSV/JSON, uploads to S3, and returns a signed URL.
- 5. Audit logs viewable per user or device Logs can be filtered by user, device ID, or action type for accountability and debugging.

Over-The-Air (OTA) Firmware Update Workflow:

- Admin uploads firmware via UI
 Admin uploads a new firmware binary to the portal, which is stored in S3 and versioned.
- Firmware metadata saved in DB
 Metadata like version number, hash, upload date, and description is
 saved in RDS or DynamoDB.
- 3. Admin selects devices or groups for update Devices can be targeted individually or by group/tag through a dropdown or search.
- Backend creates an IoT Job
 A Lambda function triggers an AWS IoT Job that includes the firmware download link and instructions.
- 5. Device receives job and downloads firmware
 The device receives the job, verifies the version and checksum, and
 downloads firmware from a secure S3 link.
- 6. Device installs update and reboots
 After validating the binary, the device applies the update and restarts.
- 7. Device reports update status
 The device sends back its status (In Progress, Completed, Failed) which is logged and shown in the UI dashboard.

Summary of the Complete Platform Flow:

- Devices are automatically registered only after verification.
- Users are securely authenticated and restricted by role.
- The system maintains a full audit trail and downloadable reports.
- Admins manage OTA updates in bulk with real-time progress tracking.