FYS2130 regneoppgaver uke 01

Frie svingninger

OBLIG innlevering med frist 27.01.2021, kl. 0900

Monday 25^{th} January, 2021, 15:38

OPPGAVE 1: Les av koeffisientene

I denne oppgaven skal vi se på frie svingninger beskrevet med likningen $f(t) = A\cos(\omega t + \phi)$. For alle oppgavene gjelder at du skal skissere figuren og markere alle mål du gjør for å finne de forskjellige parametrene i likningen.

a) Finn amplituden A og periodetiden T til svingningen i figuren under.

b) Finn amplituden A og frekvensen f til svingningen i figuren under.

c) Finn vinkelfrekvensen ω og faseforskyvningen ϕ i svingningen i figuren under.

OPPGAVE 2: Enkel harmonisk bevegelse

En harmonisk bevegelse i sin enkleste form er løsningen av likningen

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -ax$$

Ofte ser vi på et svingesystem der en kloss med masse m er festet i en lineær fjær med fjærkonstant k, og der vi ser bort ifra luftmotstand.

- a) Bruk Newtons 2. lov til å skrive opp bevegelseslikningen til systemet med en kloss og en lineær fjær.
- b) Løs likningen med k=8 N/m, m=2 kg og initialbetingelsene x(0)=0.4 m og $\dot{x}(0)=-2$ m/s.
- c) Bruk løsningen av likningen til å skrive et uttrykk for den mekaniske energien $(E_{\rm pot}+E_{\rm kin})$ til systemet når det svinger. Kommentér løsningen.
- d) Plott løsningen av likningen i *faserommet*, altså rommet av posisjon og bevegelsesmengde. Hvilken form får plottet?
- e) Gjør aksene dimesjonsløse på en slik måte at plottet får en mer regulær form. Hvilken form får nå plottet?

OPPGAVE 3: Fjærpendel og energifordeling

- a) Et lodd med masse m henger i en masseløs fjær med fjærstivhet k. Multipliser diff'ligningen $m\ddot{x} = -kx$ med hastigheten \dot{x} og vis at summen av den kinetiske og potensielle energien er konstant over tid.
- b) Amplituden er A. Hvor stort er utslaget fra likevektsstillingen når den kinetiske energien er lik halvparten av den potensielle energien?

OPPGAVE 4: Sprettball

En annen type svingebevegelse er bevegelsen til en sprettball. Anta at vi har en tapsfri sprettball, altså at den spretter like høyt hver gang.

- a) Tegn bevegelsen til en sprettball i tidrommet.
- b) Tegn bevegelsen til en sprettball i faserommet.
- c) Kan denne bevegelsen betegnes som harmonisk?

OPPGAVE 5: Masse i fjær

En fjær henger loddrett ned og har en lengde L. Når du henger en masse i fjæra, blir den i likevektsposisjon 1,85 cm lenger ($\Delta L=1,85$ cm). Du finner dessuten ut at massen oscillerer 10 ganger på 4,44 s. Hvilken planet er du på? *Hint:* Finn tyngdeakselerasjonen g!

FASIT FOR OPPGAVE 1

a) $A \approx 1$ m, $T \approx 4$ s

b)

$$A\approx 3~\mathrm{m}$$

$$f=\frac{1}{T}\approx\frac{1}{1,5~\mathrm{s}}=0, 7\frac{1}{\mathrm{s}}=0, 7~\mathrm{Hz}$$

c)

$$\phi \approx 1,3$$

$$\omega = \frac{2\pi}{T} \approx \frac{2\pi}{5 \text{ s}} = 1,3 \text{ rad/s}$$

FASIT FOR OPPGAVE 2

a) Newtons 2. lov i én dimensjon sier at $\sum F=m\ddot{a}$. I dette tilfellet er den eneste kraften i systemet den gjenopprettende kraften fra fjæra. Dermed er

$$m\ddot{x} = -kx$$

siden fjørkonstanten sier hvor stor kraften er per strekklengde. Vi antar nå at likevektspunktet for klossen er x=0.

b) Basert på erfaring med slike likninger gjetter vi på løsningen

$$x(t) = A\cos(\omega t + \phi)$$

Når vi deriverer denne funksjonen en og to ganger får vi

$$\dot{x}(t) = -\omega A \sin(\omega t + \phi)$$

$$\ddot{x}(t) = -\omega^2 A \cos(\omega t + \phi).$$

Vi kan dermed se at $\ddot{x}(t) = -\omega^2 x(t)$. Om vi prøver å sette denne ansatz'en inn i differensiallikningen som vi ønsker å løse får vi at

$$m\ddot{x} = -kx$$

$$m(-\omega^2)x(t) = -kx.$$

Dermed er likningen løst om vi
 velger $-m\omega^2=-k,$ altså $\omega=\sqrt{\frac{k}{m}}=2~{\rm s}^{-1}$

Deretter må vi velge en spesifikk løsning som passer med initialbetingelsene.

Vi vet at x(0) = 0,4 m. Dermed kan vi si at $A\cos(\phi) = 0,4$ m. Vi vet videre at $\dot{x}(0) = -2$ m/s, slik at $-A\omega\sin(\phi) = 2$ m/s. Dette gir oss at $\tan\phi = \frac{5}{\omega}$ s⁻¹ = $\frac{5}{2}$. Dette gir oss at $\phi \approx 1,19$.

(Husk at arctan gir 2 muligheter for ϕ . Vi kan alltid se hvilken som er riktig ved å sjekke fortegnet til sin og cos av vinkelen når vi har likninger for disse.)

Når vi kjenner vinkelen ϕ kan vi til slutt finne

$$A = \frac{0.4 \text{ m}}{\cos(1.19)} \approx 1.1,$$

slik at

$$x(t) = A\cos(\omega t + \phi)$$

med $A\approx 1,1$ m, $\omega=2~{\rm s}^{-1}$ og $\phi\approx 1,19$ rad.

c) Den potensielle energien i systemet, dersom x=0 er nullpunkt for den potensiell energien, er gitt ved $\int_x^0 -kx \; \mathrm{d}x = \frac{1}{2}kx^2$. Den kinetiske energien er $\frac{1}{2}mv^2 = \frac{1}{2}m\dot{x}^2$. Om vi setter inn at $x(t) = A\cos(\omega t + \phi)$ får vi

$$E_{\text{tot}} = \frac{1}{2}k(A\cos(\omega t + \phi))^2 + \frac{1}{2}m(-\omega A\cos(\omega t + \phi))^2$$
 (1)

$$= \frac{1}{2}kA^2(\cos^2(\omega t + \phi) + \sin^2(\omega t + \phi)) \tag{2}$$

$$=\frac{1}{2}kA^2. (3)$$

Som vi
 kan se er den totale mekaniske energien uavhengig av tiden. Den er
 bevart.

d)

e)

Siden forrige figur ble en ellipse, så er det naturlig å se om vi kan få den til å bli en sirkel. For å gjøre det kan vi for eksempel dele x-aksen på A, og p-aksen på $p_{\max} = m\omega A$ slik at vi får følgende plottet.

Plottet viser fjærsvingning i faserommet på dimesjonsløse akser.

FASIT FOR OPPGAVE 3

a)
$$m\ddot{x} = -kx \leftrightarrow m\ddot{x}\dot{x} = -kx\dot{x} \leftrightarrow \frac{d}{dt}\left(\frac{1}{2}m\dot{x}^2\right) = \frac{d}{dt}\left(-\frac{1}{2}kx^2\right) \leftrightarrow \frac{d}{dt}\left(E_k + E_p\right) = 0$$

b) Energien er bevart, så når den kinetiske energien er lik halvparten av den potensielle, finner vi ${\rm at}$

$$E_{\text{tot}} = E_k + E_p = \frac{1}{2}E_p + E_p \quad \Rightarrow \quad E_p = \frac{2}{3}E_{\text{tot}}$$

Ved maksimalt utslag er den totale energien lik den potensielle energien, og vi har at

$$E_{\rm tot} = 0.5kA^2$$

I vårt tilfelle er da

$$\frac{2}{3}0.5kA^2 = 0.5kx^2 \quad \Rightarrow \quad x = \sqrt{\frac{2}{3}}A$$

FASIT FOR OPPGAVE 4

a) Vi antar at den eneste kraften som virker er gravitasjon, slik at $z(t) = x_0 + v_0 t + \frac{1}{2} a t^2$. Dermed er hastigheten $v(t) = v_0 + a t$. Dette gjelder fra sprettballen er på vei oppover, og fram til den når bakken. Vi kan se på bakken som en elastisk vegg, slik at sprettballens hastighet bare bytter fortegn i det sprettballen kommer i kontakt med bakken. Tiden det tar for sprettballen å gå fra bakken, opp og ned igjen til bakken er gitt ved $v(t) = -v_0$, altså $t = 2v_0/a$. Den analytiske løsningen av sprettballens bevegelse er dermed $z(t) = v_0 \mod (t, T) + \frac{1}{2} a \mod (t, T)^2$. En sprettball i tidrommet:

b) En sprettball i faserommet.

c) Harmoniske svingninger er løsninger av den lineære svingeligningen. Det er ikke denne bevegelsen. Derfor kan ikke bevegelsen betegnes som harmonisk.

FASIT FOR OPPGAVE 5

Vi begynner med det vi vet om svingetider, fjærer og masser:

$$k = \frac{F}{\Delta L} = \frac{mg}{\Delta L}$$
$$\omega = \sqrt{\frac{k}{m}} \implies k = m\omega^2$$

Når vi setter dette sammen får vi at

$$m\omega^2 = \frac{mg}{\Delta L}$$
$$g = \omega^2 \Delta L = \frac{4\pi^2 \Delta L}{T^2}$$
$$g = \frac{4\pi^2 0.0185 \text{ m}}{\left(\frac{4.44}{10} \text{ s}\right)^2}$$
$$g = 3,70 \text{ m/s}^2$$

Verdien for g
 er rimelig konsistent med både Mars og Merkur.