Combining the k-CNF and XOR Phase-Transitions

Jeffrey M. Dudek, Kuldeep S. Meel, & Moshe Y. Vardi

Rice University

Random k-CNF Satisfiability [Franco and Paull, 1983]

- Definition: Let $CNF_k(n,r)$ be a random variable denoting a uniformly chosen k-CNF formula with n variables and $\lfloor nr \rfloor$ k-CNF clauses.
 - n: The number of variables.
 - **k** : The width of every CNF clause.
 - *r* : CNF clause density = Ratio of # of CNF clauses to # of variables.
- Ex: $(X_1 \lor \neg X_5 \lor X_6) \land (\neg X_1 \lor X_3 \lor X_5)$ is one possible value for CNF₃(6, 1/3).
- **Problem**: Fixing k and r, what is the asymptotic probability that $CNF_k(n,r)$ is satisfiable as n goes to infinity?

k-CNF Phase Transition

Probability that $CNF_3(400, r)$ is satisfiable

k-CNF Phase Transition

Probability that $CNF_3(400, r)$ is satisfiable

k-CNF Phase-Transition Conjecture:

For every $k \ge 2$, there is a constant $r_k > 0$ such that:

$$\lim_{n \to \infty} \Pr(\mathsf{CNF}_k(n, r) \text{ is sat.}) = \begin{cases} 1 & \text{if } r < r_k \\ 0 & \text{if } r > r_k \end{cases}$$

XOR Phase-Transition [Creignou and Daudé, 1999]

• **Definition**: An **XOR clause** is the *exclusive-or* of a set of variables, possibly including 1 as well.

Ex: $X_2 \oplus X_4$, $1 \oplus X_1 \oplus X_2 \oplus X_7$

- Definition: Let XOR(n, s) be a random variable denoting a uniformly chosen XOR formula with n variables and $\lfloor ns \rfloor$ XOR clauses.
 - *n*: The number of variables.
 - s : XOR clause density = Ratio of # of XOR clauses to # of variables.

Problem: Fixing s, what is the asymptotic probability that XOR(n, s) is satisfiable as n goes to infinity?

XOR Phase-Transition [Creignou and Daudé, 1999]

• **Definition**: An **XOR clause** is the *exclusive-or* of a set of variables, possibly including 1 as well.

Ex: $X_2 \oplus X_4$, $1 \oplus X_1 \oplus X_2 \oplus X_7$

- Definition: Let XOR(n, s) be a random variable denoting a uniformly chosen XOR formula with n variables and $\lfloor ns \rfloor$ XOR clauses.
 - *n*: The number of variables.
 - s : XOR clause density = Ratio of # of XOR clauses to # of variables.

Problem: Fixing s, what is the asymptotic probability that XOR(n, s) is satisfiable as n goes to infinity?

$$\lim_{n \to \infty} \Pr(XOR(n, s) \text{ is sat.}) = \begin{cases} 1 & \text{if } s < 1 \\ 0 & \text{if } s > 1 \end{cases}$$

Combining k-CNF and XOR Together

- Motivation: Hashing-based sampling and counting algorithms use formulas with both k-CNF and XOR clauses.
 - [Gomes et al. 2007], [Chakraborty et al., 2013], [Ermon et al. 2013]
- Definition: A k-CNF-XOR formula is the conjunction of k-CNF and XOR clauses.
- Goal: Analyze the "behavior" of k-CNF-XOR formulas.
- In this work we analyze the asymptotic satisfiability of random k-CNF-XOR formulas.

Random k-CNF-XOR Satisfiability

- Definition: Let $\psi_k(n,r,s)$ be a random variable denoting $CNF_k(n,r) \wedge XOR(n,s)$
 - i.e. the conjunction of [nr] random k-CNF clauses and [ns] random XOR clauses.
 - *n*: The number of variables.
 - **k**: The width of every CNF clause.
 - *r* : k-CNF clause density.
 - *s* : XOR clause density.

Problem: Fixing k, r, and s, what is the asymptotic probability that $\psi_k(n, r, s)$ is satisfiable as n goes to infinity?

k-CNF-XOR: What Do We Expect to See?

Probability that $\psi_5(n,r,s) = \text{CNF}_5(n,r) \wedge \text{XOR}(n,s)$ is satisfiable

Probability that $\psi_5(100,r,s)=\mathrm{CNF}_5(100,r)$ \wedge $\mathrm{XOR}(100,s)$ is satisfiable

Theorem 1: The k-CNF-XOR Phase-Transition Exists

 $\psi_k(n,r,s) = \text{CNF}_k(n,r) \land \text{XOR}(n,s)$ is a random variable denoting a uniformly chosen k-CNF-XOR formula over n variables with CNF-density r and XOR-density s.

Thm 1: For all $k \ge 2$, there are functions ϕ_k and constants $\alpha_k \ge 1$ such that random k-CNF-XOR formulas have a phase-transition located at $s = \phi_k(r)$ when $r < \alpha_k$.

For all $s \ge 0$, and $0 \le r \le \alpha_k$ (except for at most countably many r):

$$\lim_{n\to\infty} \Pr(\psi_k(n,r,s) \text{ is sat.}) = \begin{cases} 1 & \text{if } s < \phi_k(r) \\ 0 & \text{if } s > \phi_k(r) \end{cases}$$

What can we say about ϕ_k ?

Theorem 2: Locating the Phase-Transition

What can we say about ϕ_k , the location of the k-CNF-XOR phase-transition?

Thm 2: For $k \ge 3$, we have linear upper and lower bounds on $\phi_k(r)$.

Conclusion

- There is a phase-transition in the satisfiability of random k-CNF-XOR formulas at k-CNF clause densities below α_k .
- We have some explicit bounds on the location.

Future Work:

- Conjecture: There is a phase-transition in k-CNF-XOR formulas at all k-CNF clause densities.
- Conjecture: $\phi_k(r)$ is linear for k-CNF clause densities below some $\alpha_k^* > 0$.
- How does the runtime of SAT solvers on k-CNF-XOR equations behave near the phase-transition?

Thanks!

14

Citations

- [Ermon et al. 2013] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimensionality: Discrete integration by hashing and optimization. In *Proc. of ICML*, pages 334–342, 2013.
- [Franco and Paull, 1983] J. Franco and M. Paull. Probabilistic analysis of the Davis—Putnam procedure for solving the satisfiability problem. *Discrete Applied Math*ematics, 5(1):77–87, 1983.
- [Chakraborty et al. 2013] S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable and nearly uniform generator of SAT witnesses. In *Proc. of CAV*, pages 608–623, 2013.
- [Creignou and Daudé, 1999] N. Creignou and H. Daudé. Satisfiability threshold for random xor-cnf formulas. Discrete Applied Mathematics, 9697:41 – 53, 1999.
- [Gomes et al. 2007] C.P. Gomes, A. Sabharwal, and B. Selman. Near-Uniform sampling of combinatorial spaces using XOR constraints. In Proc. of NIPS, pages 670–676, 2007
- [Goerdt, 1996] A. Goerdt. A threshold for unsatisfiability. *Journal of Computer and System* Sciences, 53(3):469 486, 1996.

Runtime Behavior at the Transition

Average satisfiability and solve time of $F_3(200, 200r)$

