Technology and Application of Big Data

Qing LIAO(廖清)

School of Computer Science and Technology

HIT

Course Details

- Instructor:
 - Qing LIAO, <u>liaoqing@hit.edu.cn</u>
 - Rm. 303B, Building C
 - Office hours: by appointment
- Course web site:
 - liaoqing.me
- Reference books/materials:
 - Big data courses from University of California
 - Book: BIG DATA: A Revolution That Will Transform How We Live, Work, and Think
 - Papers
- Grading Scheme:
 - Paper Report 30%
 - Final Exam 70%
- Exam:
 - 21st July(Friday), 14:00-16:00, A502

What You Learnt: Overview

- Topics:
 - 1) Introduction of Big Data
 - 2) Characterizes of Big Data
 - 3) How to Get Value from Big Data
 - 4) Technologies of Big Data
 - 5) Applications of Big Data
- Prerequisites
 - Statistics and Probability would help
 - But not necessary
 - Machine Learning would help
 - But not necessary

Prevision Section

- Supervised learning (classification)
 - training data (observations, measurements, etc.) are
 accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning(clustering)
 - The class labels of training data is **unknown**
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Classification: Tax Cheating

• Tax Income categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Clustering: K-means Clustering

The mean point can be a virtual point!

Clustering Example: Market Segmentation

• Goal: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs.

• Approach:

- Collect different attributes of customers based on their geographical and lifestyle related information.
- Find clusters of similar customers.
- Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

Technologies of Big Data

What is data visualization?

- "Data visualization is the creation and study of the visual representation of data" wiki
- Input: data Output: visual form Goal: insight

Why visualization?

• Anscombe's Ouartet: Four datasets Anscombes quarte

I		II		III		IV	
X	у	X	У	X	У	X	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Table 1.1: Anscombe's quartet: four different datasets.

Why visualization?

• Anscombe's Quartet: Statistics

Property (in each set)	Value
Mean of x	9.0
Variance of x	10.0
Mean of y	7.50
Variance of y	3.75
Correlation between x and y	0.898
Linear regression line	y = 0.5x + 3.0

Table 1.2: Same statistics in Anscombe's quartet.

Why visualization?

• Anscombe's Quartet: Statistics

Visualization Advantages

• Data Analysis: Remarkable Progress

Image Recognition

Speech Recognition

Natural language Processing

Visualization Advantages

- Black Box
 - No clear understanding of the inner working mechanism
 - A substantial amount of trial-and-error procedures

Visualization Advantages

- Visualization on Big Data
 - Help understand deep learning models intuitively
 - Help train a better model efficiently
 - Make decisions more interpretable

Visualization is young

- VAST (Visual Analytics Science and Technology)
- InfoVis (Information Visualization)
- SciVis (Scientific Visualization)

Visualization Subfield

• Scientific Visualization (SciVis) – Spatial data

• Information Visualization (InfoVis)—Abstract data

• Visual Analytics (VAST) – Analytical reasoning

Visualization Process

Visualization Pipeline

Engineering part

Visual design part

What is Visualization research?

- Techniques/algorithms
- Applications
- Systems
- Evaluations
- Theory/models

Visualization Taxonomy

- A taxonomy based on:
 - the challenges that learning methods faces
 - the purposes that visualization techniques serve

Challenges on Learning:

How a learning model works?

How to improve a learning model?

Purposes of Visualization:

Visualize the **features** learned by a learning model

Visualize the relationships in a learning model

Visualize the whole process of a learning model

Visualization Taxonomy

- A taxonomy based on:
 - the challenges that deep learning faces
 - the purposes that visualization techniques serve

Feature Visualization Example

Donald Trump accepts presidential nomination

By Stephen Collinson, CNN

pdated 1338 GMT (2138 HKT) July 22, 2016

Story highlights

Trump's slams Hillary Clinton

Address gave Trump a chance to soothe party

Trump's RNC speech

Trump sounded like Hillary Clinton

Trump described a

Cleveland (CNN) — Donald Trump conjured a dire picture Thursday of an America sliding deeper into poverty, violence and corruption and declared himself the only person who could avert disaster

Accepting the Republican nomination in Cleveland, the billionaire twice pledged to be a "voice" for working

Americans, restore law and order and to confound elites and doubters by winning the White House in November.

america americans attempt avert better brash broken campaign change cleveland content convention corruption country cruz delivery divisions donald endorse exposed fit fix hour huo ill-fated life message moment nation nobody non-endorsement opportunity party politician refusal republican restore sometimes soothe ted tensions took transformation trump violence whole

Bound Township and the Bounding of the Control of t

Relationship Visualization Example

Process Visualization Example

© 2011 视物 | 致知 vizinsight.com All Rights Reserved.

Challenges for Visualization Research

- Better Scalability
 - **▶** Better Visualization
 - OBetter overview & summarization
 - OBetter data reduction
 - OBetter visual encoding
 - OBetter user interaction

0....

Visualization Tools

Beautifully crafted timelines that are easy and intuitive to use.