If $\lambda = 0$ we sometimes drop it and write $\Omega \in \mathbb{C}^{k,0} \Leftrightarrow \Omega \in \mathbb{C}^k$, if $k = 0, \lambda = 1$ we call $\Omega \in \mathbb{C}^{0,1}$ to be a Lipschitz domain. Remember that $\lambda(\Omega) < \infty$ is a part of the definition.

Theorem 5 (Global approximation by smooth functions up to the boundary). Let $\Omega \in C^{0,0}$, $k \in \mathbb{N}, p \in [1, \infty)$. Then $C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d)$ is dense in $W^{k,p}(\Omega)$.

Proof. Let $u \in W^{k,p}(\Omega)$, and $\varepsilon > 0$, be given. We wish to find $v \in C^{\infty}(\overline{\Omega})$ s.t. $||u - v||_{W^{k,p}(\Omega)} < \varepsilon$. The sketch is simple:

- 1. covering of $\overline{\Omega}$,
- 2. partition of unity,
- 3. approximation of u on the covering sets,
- 4. glue it together.

Set $U_0 = \Omega$, and let $\{U_j\}_{j=1}^m$ be from the definition of $\mathbb{C}^{0,0}$ boundary. Then⁴

$$\overline{\Omega} \subset \bigcup_{j=0}^m U_j,$$

Take $\{\varphi_j\}$ to be the partition of unity on $\overline{\Omega}$, subordinate to $\{U_j\}_{j=0}^m$. Since

$$u = \sum_{j=0}^{m} u \varphi_j$$
, on Ω

observe that $u_j := u\varphi_j \in W^{k,p}(\Omega)$, supp $u_j \subset \text{supp } \varphi_j \subset U_j$. Also, we define $u(x) = 0, \forall x \in \mathbb{R}^d/\Omega$. The proofs differs in the cases j = 0 and $j \in \{1, ..., m\}$.

Case j = 0. We have supp $u\varphi_0 \subset U_0 = \Omega$. That means that after the extension of $u\varphi_0$ by zero outside of Ω , it holds $u\varphi_0 \in W^{k,p}(\mathbb{R}^d)$. Since $W^{k,p}(\mathbb{R}^d) = W_0^{k,p}(\mathbb{R}^d) = \overline{\mathcal{D}(\mathbb{R}^d)}^{\|\cdot\|_{W^{k,p}(\mathbb{R}^d)}}$, we can find $v_0 \in \mathcal{D}(\mathbb{R}^d)$ s.t.

$$||v_0 - u\varphi_0||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} < \frac{\varepsilon}{m+1}.$$

Case $j \in \{1, ..., m\}$. We have a problem now: $\{U_j\}_{j=1}^m$ covers $\partial \Omega$, which is a closed set and we cannot simply use local approximation theorem. One could imagine if we were to mollify in the neighbourhood of $\partial \Omega$, the kernel would pick up values from outside of Ω , where u = 0 and the mollification would not be a good approximation. Instead, we approximate u_j on a larger open domain containing $\overline{\Omega}$ and then show this is also a good approximation of u_j on $\Omega \subset \overline{\Omega}$.

Set $w_i = u\varphi_i$, and denote

$$S_j = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} < x_d < a_j(x'), x' \in U(0, \alpha) \right\} \right),$$

$$\Omega_j = \mathbb{R}^d / \overline{S_j},$$

i.e.,

"
$$\Omega_j = \Omega \cup \mathbb{A}_j \left(\left\{ (x', x_d) | x_d \le a_j(x') - \frac{\beta}{2} \right\} \right)$$
,"

⁴Our choice $U_0 = \Omega$ is important, as without it the definition of $\mathbb{C}^{0,0}$ boundary only means $\partial \Omega \subset \bigcup_{i=1}^m U_i$.