WAHRSCHEINLICHKEITSTHEORIE

by RÉMY

Bemerkung:

Der Oberbegriff **Stochastik** wird hier nicht verwendet, da wir uns SMP nicht mit der überflüssigen **Statistik** beschäftigen.

1.1 Wiederholungen: Unter- & Mittelstufe

1.1.1 Zufallsexperimente

Definition

Als Zufallsexperiment bezeichnet man Versuche, deren Ergebnisse sich nicht vorhersagen lassen, also vom Zufall abhängig sind.

Vor der Durchführung eines Zufallsexperiments muss eine **Ergebnismenge** S festgelegt werden. Sie beinhaltet alle möglichen Ergebnisse: $S=\{e_1,e_2,...,e_n\}$

Ein Versuch heißt Zufallsexperiment, falls:

- er unter gleichen Bedingungen beliebig oft wiederholbar ist
- alle möglichen Ergebnisse vor Durchführung bekannt sind
- sein Ergebnis sich nicht mit Sicherheit vorhersagen lässt
- ullet bei jeder Durchführung genau ein Ergebnis aus S auftritt

Beispiel:

Bekannte Zufallsexperimente sind:

- das Werfen einer Münze
- das Werfen eines Würfels
- das Ziehen einer Kugel aus einer Urne
- ...

Definition - Laplace-Experiment

Laplace-Experimente sind Experimente, deren Ergebnisse jeweils gleichwahrscheinlich sind.

Beispiel:

Ein Beispiel hierfür wäre der Wurf eines perfekten Würfels.

Theorem

In einem Laplace-Experiment gilt für die Wahrscheinlichkeit P, dass ein Ergebnis A von n möglichen Ergebnis eintritt:

$$P(A) = \frac{1}{n}$$

Mehrstufige Zufallsexperimente

Definition

Werden mehrere (n) Zufallsexperimente nacheinander ausgerführt, so kann man sie als ein einziges Zufallsexperiment zusammenfassen. Man nennt dies ein **mehrstufiges Zufallsexperiment**. Die Ergebnisse eines solchen Experiments kann man als geordnete n-Tupel auffassen.

Beispiel:

Zweifaches Werfen einer Münze: $S = \{(Z/Z), (Z/K), (K/Z), (K/K)\}.$

Bemerkung:

Alternativ kann man S als einfache Menge definieren. Bei zweifachem Münzwurf wäre eine mögliche Darstellung $S = \{0, 1, 2\}$ mit der Anzahl an Kopf-Würfen als Ergebnis möglich.

Ereignisse

Definition - Ereignisse

Jede Teilmenge A von der Ergebnismenge S nennt man ein Ereignis. Endet das Zufallsexperiment mit einem Ergebnis aus A, sagt man: A ist eingetreten.

Beispiel:

Werfen eines Würfels: $S = \{1, 2, 3, 4, 5, 6\}$

```
A: \text{Augenzahl ist gerade:} \qquad A = \{2,4,6\} B: \text{Augenzahl ist ungerade:} \qquad B = \{1,3,5\} C: \text{Augenzahl ist Primzahl:} \qquad C = \{2,3,5\} D: \text{Augenzahl} < 7: \qquad D = S E: \text{Augenzahl} = 6: \qquad E = \{6\} F: \text{Augenzahl} > 6: \qquad F = \{\}
```

Bemerkung:

Definition

- Ein Ereignis, das nur aus einem Ergebnis besteht, heißt Elementarereignis.
- $B = \bar{A}$ (A quer) ist das **Gegenereignis** von A. Es gilt: $B = S \setminus A$
- Ein Ereignis, das immer eintritt, heißt sicheres Ereignis
- Ein Ereignis, das niemals eintritt, heißt unmögliches Ereignis

Baumdiagramme

Definition - Bernoulli-Experiment

Bei Bernoulli-Experimenten gibt es nur 2 mögliche Ausgänge: Erfolg / Miserfolg (= $\overline{\text{Erfolg}}$). Mehrfaches Ausführen (l Mal) von Bernoulli-Experimenten ergibt eine **Bernoulli-Kette** der Länge l.

Eine Bernoulli-Kette kann als Baumdiagramm dargestellt werden:

E bezeichnet das Erfolgs-Ereignis, \overline{E} bezeichnet somit den Miserfolg. Jeder Pfad trägt 2 Informationen: das jeweilige Ereignis und seine Wahrscheinlichkeit.

Definition - Pfadregeln

- Die Summe der Wahrscheinlichkeiten auf den Ästen, die von einem Knoten (Ort der Verzweigung), ist = 1.
- Die Wahrscheinlichkeit eines Pfades (also eines Elementarereignisses) ist gleich dem **Produkt** der Wahrscheinlichkeiten aller Äste des Pfades.
- Die Wahrscheinlichkeit eines Ereignissesb ist gleich der Summe der Wahrscheinlichkeit der Pfade, die zu diesem Ereignis führen.

Bemerkung:

Besonders beim Urnenmodell eines Zufallsexperiments muss beachtet werden, ob nach dem Ziehen zurückgelegt wird, oder nicht, weil sich die Wahrscheinlichkeiten der Äste sonst entsprechend verändern.

Wahrscheinlichkeitsverteilung

Definition - Häufigkeiten

Nach der n-fachen Durchführung eines Zufallsexperiments betrachtet man, wie oft Ereignisse eingetreten sind.

Ist das Ereignis A H-mal eingetreten, so nennt man H die **absolute Häufigkeit** und $\frac{H}{n}$ die **relative Häufigkeit** von A.

Theorem - Empirisches Gesetz der großen Zahlen

Wird ein Zufallsexperiment sehr häufig durchgeführt, so stabilisieren sich die relativen Häufigkeiten der Ereignisse. Es gilt:

$$\lim_{n \to \infty} \left(\frac{H_n(E)}{n} \right) = P(E)$$

mit E einem Ereignis, und H_n seiner Häufigkeit nach n Wiederholungen.

Definition

Man nennt $P(e_i)$ Wahrscheinlichkeit und die Zuordnung $e_i \mapsto P(e_i)$ Wahrscheinlichkeitsverteilung, wenn gilt:

- $e_i \in S = \{e_1, e_2, ..., e_n\} \land P(e_i) \in \mathbb{R}$
- $!\exists P(e_i) \forall e_i \in S$
- $0 \le P(e_i) \le 1 \forall i \le n$
- $P(e_1) + P(e_2) + ... + P(e_n) = 1$
- ?

Darstellung:

Bemerkung:

Dieses Balkendiagramm wird als Histogramm bezeichnet und ist in vielen Fällen eine gute Darstellungsmöglichkeit.

GTR-Tipp:

- Mit seq() (in LIST > OPS) wird die Liste mit allen X-Werten generiert: seq(X,X,0,<Anzahl an Versuchen>,1)→<Variable>. (→ wird durch die Taste STO> aufgerufen)
- 2. Mit <gewünschte Verteilung>() (in DISTR > DISTR) wird die Liste mit allen Y-Werten generiert: <Verteilung>(<Anzahl an Versuchen>,<Erfolgswahrscheinlichkeit>) →<Variable>.
- 3. Im Menü STAT PLOT > Plot 1 kann der gewünschte Anzeigemodus gewählt werden, für die Xlist wird die erste Liste gewählt, für Freq die zweite. Beim Anzeige achte man auf die richtigen Maßstäbe: Die Anzahl an Versuchen für Xmax, 1 für Ymax.

Bemerkung:

Der GTR ist ab einer Anzahl von über 48 überfordert, dann können die Balken wegen der niedrigen Auflösung nicht alle angezeigt werden. In einem solchen Fall kann nur ein Ausschnitt des Histogramms angezeigt werden, sonst erscheint eine Fehlermeldung.

Bemerkung:

Alternativ kann eine Funktion definiert werden über <Verteilung>(<Anzahl an Versuchen>, <Erfolgswahrscheinlich und anschließend angezeigt werden.

Dies funktionniert nur für ganze x, weshalb X durch round(X,0) (zu finden in... (KP, catalog durchsuchen)) auf den nächsten ganzen Wert gerundet wird.

1.1.2 Zufallsvariable

Definition

Sind die Ergebnisse eines Zufallsexperiments Zahlen, oder kann man den Ergebnissen Zahlen zuornen, so nennt man die Variable für diese Zahlen **Zufallsvariable** X.

Mit Hilfe von Zufallsvariablen kann man Zufallsexperimente einfacher bechreiben.

Beispiel:

Zählen von Erfolgen (1) und Miserfolgen (0) bei Bernoulli-Ketten: statt P((Erfolg, Erfolg, ..., Erfolg,)) (n Mal) schreibt man einfach: P(x = k * 1) mit k der gewünschten Anzahl an Erfolgen.

1.1.3 Das Pascal'sche Dreieck

$$(1) \qquad (1) \qquad (1) \qquad (1) \qquad (1) \qquad (1) \qquad (2) \qquad (1) \qquad (1) \qquad (3) \qquad (3) \qquad (1) \qquad (1) \qquad (4) \qquad (6) \qquad (4) \qquad (1) \qquad (1) \qquad (5) \qquad (10) \qquad (5) \qquad (1) \qquad (1) \qquad (6) \qquad (15) \qquad (21) \qquad (15) \qquad (6) \qquad (1) \qquad (1) \qquad (7) \qquad (21) \qquad (35) \qquad (35) \qquad (21) \qquad (7) \qquad (1)$$

Bekannt aus der Mittelstufe. Es ergibt sich, wenn man die Summe von zwei Werten eine Stufe tiefer, zwischen die beiden Werte schreibt. Es wird vor Allem für Binomialkoeffizienten verwendet, findet aber auch in der Wahrscheinlichkeitsrechnung Verwendung.

1.2 Kombinatorik

1.2.1 Binomialkoeffizienten

Definition

Der Binomialkoeffizient ist die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge.

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$
 (gesprochen "n über k") $\forall 0 \le k \le n$

Bemerkung:

Anschaulich entspricht das den Möglichkeiten, genau k bestimmte Kugeln von n Kugeln zu ziehen, wobei die gezogenen Kugeln nicht zurückgelegt werden, und die Reihenfolge, in der sie gezogen wurden, nicht beachtet wird.

Bemerkung:

Die gefundenen Werte entsprechen den Vorfaktoren, die man für das k-te Element aus der nten Reihe aus dem Pascalschen Dreieck ablesen kann.

Das bedeutet, dass Potenzen von Binomen auch über Binomialkoeffizienten darstellbar sind:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Bemerkung:

Die obige Definition gilt nur für $0 \le k \le n$ da die Fakultät (!) nicht für negative Zahlen definiert ist.

Im englischen wird $\binom{n}{r}$ als "n choose r"gesprochen. Auf dem GTR findet sich die Option unter MATH > PRB. Es handelt sich um nCr.

 $\mbox{Benutzung: <ZAHL}_1 \mbox{> nCr <ZAHL}_2 \mbox{>. (Entspricht } \binom{Z_1}{Z_2}))$

Theorem

Für Binomialkoeffizienten gelten mehrere Eigenschaften, unter ihnen wollen wir folgende zwei hervorheben:

1.

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$
$$\binom{n}{k} = \binom{n}{n-k}$$

2.

$$\binom{n}{k} = \binom{n}{n-k}$$

Beweis

1.

$$\binom{n+1}{k+1} = \frac{(n+1)!}{(n-k)!k!}$$

$$= \frac{n!}{k!} \frac{(n+1)}{(n-k)!(k+1)}$$

$$= \frac{n!}{k!} \frac{n-k+k+1}{(n-k)!(k+1)}$$

$$= \frac{n!}{k!} \left(\frac{n-k}{(n-k)!(k+1)} + \frac{k+1}{(n-k)!(k+1)} \right)$$

$$= \frac{n!}{k!} \left(\frac{1}{(n-k-1)!(k+1)} + \frac{1}{(n-k)!} \right)$$

$$= \frac{n!}{k!} \left(\frac{1}{(n-(k+1))!(k+1)} + \frac{1}{(n-k)!} \right)$$

$$= \frac{n!}{(n-k)!k!} + \frac{n!}{(n-k-1)!(k+1)!}$$

$$= \binom{n}{k} + \binom{n}{k+1}$$

2.

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

$$= \frac{n!}{k!(n-k)!}$$

$$= \frac{n!}{(n-(k-n))!(n-k)!}$$

$$= \binom{n}{n-k}$$

Bemerkung:

- 1. Entspricht der Aussage, dass ein Glied im Pascal'schen Dreieck sich aus der Summe der zwei überliegenden Glieder ergibt.
- 2. Entspricht der Aussage, dass das Pascal'sche Dreieck symmetrisch ist.

1.2.2 Kombinatorik

Theorem

Kombinatorik bezeichnet die Anzahl der Möglichkeiten der Anordnung von k Elementen auf n Stellen. Es werden 2 Fälle unterschieden:

• Die Reihenfolge der Elemente wird berücksichtigt:

$$n(n-1)(n-2)...(n-(k-1))$$

• Die Reihenfolge der Elemente wird **nicht** berücksichtigt:

$$\binom{n}{k}$$

Bemerkung:

Auch hier gilt die Einschränkung $0 \le k \le n$. Diese ist sinnvoll, denn es ist nicht möglich, eine k-elementige Teilmenge einer n-elementigen Menge zu nehmen, wenn k > n. Deshalb gilt:

Anzahl Möglichkeiten = 0 für
$$n \le k$$

Beweis

Es handelt sich hier eher um eine logische Begründung:

• Reihenfolge berücksichtigt:

1. Auswahl: n Möglichkeiten

2. Auswahl: n-1 Möglichkeiten

k-te Auswahl: n-(k-1) Möglichkeiten

 \Rightarrow Möglichkeiten insgesamt: n(n-1)(n-2)...(n-(k-1))

• Reihenfolge nicht berücksichtigt:

1. Auswahl: n Möglichkeiten, 1 mögliche Permutation

1. Auswahl: n-1 Möglichkeiten, 2 mögliche Permutationen

k-te Auswahl: n - (k - 1) Möglichkeiten, k mögliche Permutationen

$$= \frac{1}{(n-k)!k}$$
$$= \binom{n}{k}$$

Beispiel:

Nehmen wir das Ereignis E: bei einer Lotto-Ziehung "6 aus 49" sind genau 4 Zahlen richtig.

$$P(E) = \frac{\binom{6}{4}\binom{43}{2}}{\binom{49}{6}}$$

Zunächst nimmt man die Anzahl an Möglichkeiten, 4 richtige Kugeln von 6 zu ziehen, man multipliziert diese durch die Anzahl an Möglichkeiten, 2 Kugeln aus den 43 "unerwünschten" zu ziehen. Um die Wahrscheinlichkeit zu erhalten teilt man durch die Gesamtanzahl an Möglichkeite, 6 Kugeln aus 49 zu ziehen.

Theorem

Für eine Bernoulli-Kette der Länge $l \in \mathbb{N}$ und der Trefferwahrscheinlichkeit P (Wahrscheinlichkeit für einen Pfad) gilt:

$$P(X = k) = \binom{l}{k} p^k (1 - p)^{l - k}$$

mit k der gerwünschten Anzahl an Erfolgen.

Außerdem gilt:

$$P(X \le k) = \sum_{i=0}^{k} {l \choose i} p^{i} (1-p)^{l-i}$$

Bemerkung:

Definition

X heißt in diesem Fall **binomialverteilte Zufallsvariable**. Die entsprechende Wahrscheinlichkeitsverteilung heißt Binomialverteilung $B_{l,p}(k)$. l ist die Länge der Bernoulli-Kette, p die Erfolgswahrscheinlichkeit und k ist die gewünschte Anzahl an Erfolgen.

GTR-Tipp:

Beide Berechnungen werden durch einen GTR-Befehl automatisiert:

- $\binom{l}{k}p^k(1-p)^{l-k}$ wird duch den Befehl binomPDF(1,p,k) berechnet.
- $\sum_{i=0}^{k} {l \choose i} p^i (1-p)^{l-i}$ wird duch den Befehl binomCDF(1,p,k) berechnet.

Beide Befehle befinden sich im DISTR-Menü (2ND+VARS)

Darstellung:

1.2.3 Bedingte Wahrscheinlichkeiten

Definition

Sind A und B beliebige Ereignisse mit $P(A) \neq 0$, so bezeichnet man $P_A(B)$ oder P(B|A) die **durch** A **bedingte Wahrscheinlichkeit von** B. Es gilt:

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

Daraus ergibt sich die korrekte Darstellung als Baumdiagramm:

1.2.4 Stochastische Unabhängigkeit

Definition

Die Ergebnisse A und B werden stochastisch unabhängig genannt, wenn das Eintreten As die Wahrscheinlichkeit Bs nicht verändert. Es gilt dann:

$$P_A(B) = P(B)$$