CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (I E II GRUPPO) 6 SETTEMBRE 2012

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Si studi l'operazione * definita in \mathbb{Z}_{10} da

$$a * b = \bar{3}ab - a - b + \bar{4}$$

per ogni $a, b \in \mathbb{Z}_{10}$, stabilendo:

- (i) se * è commutativa;
- (ii) se * è associativa;
- (iii) se * ammette elemento neutro;
- (iv) quali tra $\bar{0}$, $\bar{1}$, $\bar{2}$ e $\bar{6}$ sono invertibili in $(\mathbb{Z}_{10}, *)$, determinando gli eventuali inversi;
- (v) che genere di struttura è $(\mathbb{Z}_{10},*)$.

Esercizio 2. Sia σ la relazione d'ordine definita in $\mathbb{N} \times \mathbb{N}$ da:

$$(\forall a, b, c, d \in \mathbb{N}) ((a, b) \sigma (c, d) \iff a + 1 \mid c + 1 \land b \leq d).$$

- (i) Individuare gli eventuali minimo, massimo, elementi minimali, elementi massimali in $(\mathbb{N} \times \mathbb{N}, \sigma)$.
- (ii) Determinare i maggioranti di $X := \{0, 1, 2, 3\} \times \{7\}$ in $(\mathbb{N} \times \mathbb{N}, \sigma)$ e, se esiste, sup X (sempre in $(\mathbb{N} \times \mathbb{N}, \sigma)$).
- (iii) Posto $S = \{(0,0), (1,1), (3,3), (3,7), (5,5), (11,1), (11,11), (119,11)\}$, si disegni il diagramma di Hasse di (S,σ) . (S,σ) è un reticolo? È un reticolo booleano? È un reticolo complementato? È un reticolo distributivo?

Esercizio 3. Data una relazione di equivalenza α su un insieme K, cosa è, per definizione, la classe di equivalenza rispetto ad α di un elemento $t \in K$? E cosa è l'insieme quoziente K/α ?

Sia ora \sim la relazione binaria definita in $J := \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ ponendo

$$a \sim b \iff a^2 - 1 \equiv_8 b^2 - 1$$

per ogni $a, b \in J$. Dopo aver verificato che \sim è una relazione di equivalenza,

- (i) si descrivano esplicitamente $[2]_{\sim}$ e $[9]_{\sim}$.
- (ii) Quanti e quali sono gli elementi di J/\sim ?
- (iii) Descrivere, se possibile, un sottoinsieme A di J tale che, |A|=6 e, rispetto alla relazione di equivalenza indotto su esso da \sim , A abbia esattamente due classi.

Infine, si consideri la relazione di equivalenza τ definita in \mathbb{Z} ponendo $a \tau b \iff a^2 - 1 \equiv_8 b^2 - 1$ per ogni $a, b \in \mathbb{Z}$.

(iv) Quanti elementi ha \mathbb{Z}/τ ?

Esercizio 4. Determinare gli interi n tali che il polinomio $f := \bar{3}x^5 + \bar{2}x^4 + \bar{5}x^3 + \bar{6}\bar{n}x^2 - \bar{4}x + \bar{1} \in \mathbb{Z}_{31}[x]$ sia divisibile (in $\mathbb{Z}_{31}[x]$) per $x - \bar{2}$.