

2024 Autumn Introduction to Machine Learning Homework 4 Announcement

Release Date: 2024/11/26 15:00

Homework 4

- Deadline: 23:59, Dec. 17th (Tue), 2024
- **Kaggle and Report** (70%): Participat in the **Kaggle competition** and write reports.
 - Competition (50%): Get good score.
 - Report (20%): Description and implementation related to your method.
- **Handwritten Questions** (30%): Answer questions about deep learning.
 - Answer the questions in the report.
 - You <u>must use the template</u> and in <u>digital-typed</u> (no handwritten scan)
 - In English

Links

- Questions and Report template
- Link to Kaggle

Face Emotion Image Classification

- 7 facial emotion categories
 - Angry / Disgust / Fear / Happy /
 Neutral / Sad / Surprise
- 48 x 48 pixel, grayscale image

Hint

- Convolution Neural Network
- Transfer Learning

Join the Competition

• Link

Overview

HW4 - Classify images into the correct emotion type.

In this homework, you should train a model to classify images by their facial expression.

- · There are 7 facial emotions.
- Each image is a grayscale, 48 × 48-pixel image.

Don't forget to rename the team name to your [STUDENT_ID]

Download the Dataset

Set the Team Name

• You must set your team name as your **student ID**.

Your Team

Everyone that competes in a Competiton does so as a team - even if you're competing by yourself. Learn more.

General

412345678

This name will appear on your team's leaderboard position.

Competition Rules

You are allowed to use any open-source resources/libraries but you must specify them in the report.

- o model architecture (ex: ResNet, ViT, etc.)
- o pre-trained weights (ex: ImageNet)
- Your model size (parameters) have to <u>less than 100M</u>.
- You cannot use any external data.
- You have to train (finetune) your model by yourself!

Violation of the above three rules will result in <u>0 pts</u> for this part.

Grading Criteria – Performance (50%)

- Public leaderboard
 - For you as a reference (similar distribution to the private)

Grading Criteria – Report (20%)

- Implementation details (10%)
 - Model architecture & hyperparameters (5%)
 - Training strategy (5%)
- Experimental results (10%)
 - Evaluation metrics and learning curve (5%)
 - Ablation Study (5%)
 - To prevent submission counts that affect final rank, you can run ablations on individual validation set split from training set by yourself.

Numpy & PyTorch

- Numpy Tutorial: <u>Link</u>
- PyTorch Tutorial: <u>Link</u>
 - Free to use any modules and functions

Environment

- Python version: 3.9 or higher
- If you have a GPU
 - o <u>Conda</u>
 - o <u>Miniconda</u>
 - o <u>virtualenv</u>
 - 0 ...
- If you don't have a GPU
 - Google Colab

Handwritten Questions (30%)

2-1 (10%) Explain the support vector in SVM and the slack variable in Soft-margin SVM. Please provide a precise and concise answer. (each in two sentences)

 $\underline{2-2}$ (10%) In training an SVM, how do the parameter C and the hyperparameters of the kernel function (e.g., γ for the RBF kernel) affect the model's performance? Please explain their roles and describe how to choose these parameters to achieve good performance.

Handwritten Questions (30%)

<u>2-3</u> (10%) SVM is often more accurate than Logistic Regression. Please compare SVM and Logistic Regression in handling outliers.

Report

- Please follow the report template format. (-5pts if not use the template)
- <u>Link</u>

Submission

- Compress your **code** and **report** into a **.zip file** and submit it to E3.
- Report should be written in English. (-5 pts if not English)
- STUDENT ID>_HW4.zip
 - [YOUR CODE] (Make sure it is well-organized and can be executed)
 - Training code, Inference code, README, etc. (README should contains how to setup your env and run the code)
 - Model weights: <STUDENT ID>_weight.txt (which contains a link to your google drive & ensure the permission is granted)
- Don't put the <u>data</u> (e.g. train.csv / test.csv) and <u>model weights</u> into submission file
 - -10 pts if you put the wrong things into zip file

Kaggle Submission Reproduction

- Your inference script should be able to reproduce your kaggle submission.
 - Build and load the model (with the model weights you provide) and then generate your kaggle submission file.
- For python file (inference.py)
 - It will be checked on our lab's servers. (NVidia 1080Ti, cuda 11.3)
 - Please provide a **environment setup instruction** which can help us quickly rebuild your environment and accurately reproduce your results.
- For jupyter notebook file (inference.ipynb)
 - It will be checked on <u>Google Colab</u>.
 - Please include the necessary **pip install instructions** in the first cell.

Other rules

- <u>Late Policy</u>: No Delay allowed this time. (delayed, a.k.a. submission closed)
 - You will get 0 pts on HW4

- **No Plagiarism**: You should complete the assignment by yourself. Students engaged in plagiarism will be penalized heavily. Super serious penalty.
 - o Opt for the assignment or failed this course, etc
 - Report to academic integrity office

AI-Assistant

- Not recommended but no forbidden.
- Copy-and-Paste answers from the Al-Assiant will be seen as Plagiarism
 - However, you can have your own answer first then rephrase it by Al-Assiant.
- Some questions might be parts of final exam, make sure you understand the

concept

FAQs

- If you have other questions, ask on **E3 forum** first! We will reply as soon as possible.
 - Also, feel free to write email to TAs (And remember to cc all TAs).

Have Fun!

Machine learning students at the beginning of a project

Machine learning VS. students at the end of a project

