ECE368: Probabilistic Reasoning

Lab 1: Classification with Binary and Gaussian Models

Name:		Student Number:	
You should hand in: 1) A scanned .pdf version of this sheet with your answers (file size should be under 2 MB); 2) one figure for Question 1.2.(c) and two figures for Question 2.1.(c) in the .pdf format; and 3) two Python files classifier.py and Idaqda.py that contain your code. All these files should be uploaded to Quercus.			
1	Na	ive Bayes Classifier for Spam Filtering	
1.	(a)	Write down the estimators for p_d and q_d as functions of the training data $\{\mathbf{x}_n, y_n\}, n = 1, 2,, N$ using the technique of "Laplace smoothing". (1 pt)	
	(b)	Complete function learn_distributions in python file classifier.py based on the expressions. (1 pt)	
2.	(a)	Write down the posterior distribution $p(y \mathbf{x})$ as a function of \mathbf{x} whose d -th entry is denoted by x_d . Please incorporate parameters p_d and q_d in your expression. Assume that $\pi = 0.5$. (0.5 pt)	
		It is better to work with the log probability $\log p(y \mathbf{x})$ to avoid numerical underflow. Write down the MAP rule to determine the label y based on feature vector \mathbf{x} of a new email. (0.5 \mathbf{pt})	
	, ,	Complete function classify_new_email in classifier.py, and test the classifier on the testing set. The number of Type 1 errors is, and the number of Type 2 errors is (1.5 pt) Write down the modified decision rule in the classifier such that these two types of error can be traded off. Please introduce a new parameter to achieve such a trade-off. (0.5 pt)	

Write your code in file classifier.py to implement your modified decision rule. Test it on the testing set and plot a figure to show the trade-off between Type 1 error and Type 2 error. In the figure, the x-axis should be the number of Type 1 errors and the y-axis should be the number of Type 2 errors. Plot at least 10 points corresponding to different pairs of these two types of error in your figure. The two end points of the plot should be: 1) the point with zero Type 1 error; and 2) the point with zero Type 2 error. Please save the figure with name **nbc.pdf**. (1 **pt**)

2 Linear/Quadratic Discriminant Analysis for Height/Weight Data

1.	(a)	Write down the maximum likelihood estimates of the parameters μ_m , μ_f , Σ , Σ_m , and Σ_f as functions of the training data $\{\mathbf{x}_n, y_n\}$, $n = 1, 2,, N$. (1 pt)
	(b)	In the case of LDA, write down the decision boundary as a linear equation of \mathbf{x} with parameters $\boldsymbol{\mu}_m$, $\boldsymbol{\mu}_f$, and $\boldsymbol{\Sigma}$. Note that we assume $\pi=0.5$. (0.5 pt)
		In the case of QDA, write down the decision boundary as a quadratic equation of \mathbf{x} with parameters $\boldsymbol{\mu}_m$, $\boldsymbol{\mu}_f$, $\boldsymbol{\Sigma}_m$, and $\boldsymbol{\Sigma}_f$. Note that we assume $\pi=0.5$. (0.5 pt)
	(c)	Complete function discrimAnalysis in Idaqda.py to visualize LDA and QDA models and the corresponding decision boundaries. Please name the figures as Ida.pdf, and qda.pdf. (1 pt)
2.	The	misclassification rates are for LDA, and for QDA. (1 pt)