LOQ4057 - Operações Unitárias III

Unit Operations III

Créditos-aula: 4 Créditos-trabalho: 0 Carga horária: 60 h Ativação: 01/01/2024

Departamento: Engenharia Química

Curso (semestre ideal): EB (7), EQD (7), EQN (8)

Objetivos

1.Destilação

2. Absorção

3.Extração líquido-líquido

4.Adsorção

5. Cristalização

1) Distillation; 2) Absorption; 3) Liquid-liquid extraction; 4) Adsorption; 5) Crystallization.

Docente(s) Responsável(eis)

Relacionar os conceitos de Transferência de Massa e Fenômenos de Transporte III com as principais operações de separação da indústria química. Serão abordadas as principais variáveis de projeto e operação, relacionadas às operações de separação em estágios simples e em múltiplos estágios, visando alcançar as especificações de pureza e rendimento, com bom desempenho econômico e respeito ao meio ambiente. Os tópicos abordados são de grande importância para estudos posteriores de Processos Químicos Industriais.

Programa resumido

- 1) Equilíbrio líquido-vapor (Tempo estimado: 2 horas); Separação simples: Destilação flash (Tempo estimado: 2 horas e Destilação Diferencial (Tempo estimado: 2 horas); Destilação contínua (Retificação): Método de McCabe-Thiele; Eficiência de estágio e eficiência global (Tempo estimado: 16 horas); Destilação multicomponentes método FUG (Tempo estimado: 8 horas);
- 2) Absorção e dessorção: tipos de torres; Solubilidade de gases em líquidos; Operações em paralelo e contracorrente; Taxas de transferência de massa; Operações multiestágios em contracorrente (Tempo estimado: 8 horas);
- 3) Extração líquido-líquido: equilíbrio líquido-líquido; Extração em estágio único e em múltiplos estágios; Coeficientes de distribuição (Tempo estimado: 14 horas);
- 4) Adsorção: fundamentos; Operações em único estágio e em contato contínuo (Tempo estimado: 4 horas);
- 5) Cristalização: Caracterização de partículas e Projeto de Cristalizadores (Tempo estimado: 4 horas).

Relate the concepts of Mass Transfer and Transport Phenomena III with the main separation operations in the chemical industry. The main design and operation variables related to single-

stage and multi-stage separation operations will be addressed, with a view to achieving purity and yield specifications, with good economic performance and respect for the environment. The topics covered are of great importance for further studies of Industrial Chemical Processes.

Programa

Aplicação de provas escritas e trabalhos em grupo.

- 1) Vapor-liquid equilibrium (Estimated time: 2 hours); Simple separation: Flash distillation (Estimated time: 2 hours and Differential distillation (Estimated time: 2 hours); Continuous distillation (Rectification): McCabe-Thiele method; Stage efficiency and overall efficiency (Estimated time: 16 hours); Multicomponent distillation FUG method (Estimated time: 8 hours);
- 2) Absorption and desorption: types of towers; Solubility of gases in liquids; Parallel and countercurrent operations; Mass transfer rates; Countercurrent multistage operations (Estimated time: 8 hours);
- 3) Liquid-liquid extraction: liquid-liquid balance; Single-stage and multi-stage extraction; Distribution coefficients (Estimated time: 14 hours);
- 4) Adsorption: fundamentals; Single stage and continuous contact operations (Estimated time: 4 hours);
- 5) Crystallization: Characterization of particles and Design of Crystallizers (Estimated time: 4 hours).

Avaliação

Método: Média aritmética das avaliações aplicadas. Alunos com média final igual ou superior a 5,0 estarão aprovados, desde que tenham frequência mínima de 70% (regimental). Alunos com média inferior a 3,0 e/ou frequência inferior a 70% estarão reprovados (regimental). Alunos com média superior ou igual a 3,0 e inferior a 5,0 e que tenham frequência mínima de 70% serão submetidos ao período de recuperação (regimental).

Critério: A média final após a recuperação será a média aritmética entre a média do período e a nota da recuperação. Durante o período de recuperação, poderá ser marcada uma aula com a finalidade de sanar dúvidas e/ou revisar conceitos fundamentais. Em data posterior os alunos serão submetidos a uma avaliação de recuperação.

Norma de recuperação: 1) TREYBAL, R. E. Mass-Transfer Operations. 3ed. Auckland: McGraw-Hill, 784p. 1980;

2)FOUST, A. S.; WENZEL, L. A.; CLUMP, C. W.; MAUS, L.; ANDERSEN, L. B. 2ed. Princípios das operações unitárias. Rio de Janeiro: Guanabara Dois/LTC, 670p. 2008; 3)MCCABE, W. L.; SMITH, J. C.; HARRIOT, P. Unit operations of chemical engineering. 7ed. Boston: McGraw-Hill, 1140 p. 2005.

Bibliografia Complementar:

- 1)COULSON, J. M.; RICHARDSON; J.F. Chemical Engineering. v. 2: Particle Technology e Separation Processes. 5ed. Amsterdan: Butterworth Heinemann, 1229p. 2005;
- 2)COULSON & Richardson's Chemical Engineering: chemical engineering design by R.K. Sinnott. 6ed. Amsterdam: Elsevier Butterworth Heinemann, 895p. 2004;
- 3)COUPER, J. R.; PENNEY, W. R.; FAIR, J. R.; W.; Stanley. M. Chemical Process Equipment: Selection and Design. 2ed. Amsterdam: Elsevier, 814p. 2005;

4)GEANKOPLIS, C. J. Transport Processes and Separation Process Principles. 4ed. New York: Prentice Hall, 1026p. 2010;

5)PERRY's chemical engineers handbook. Editor in Chief Don W. Green; Late Editor Robert H. Perry New York: McGraw-Hill, 2008;

6)SEADER, J. D; HENLEY, E. J. Separation Process Principles. 2ed. Hoboken, N.J: Wiley, 756p. 2006.

Bibliografia

5817372 - Simone de Fátima Medeiros Sampaio

Requisitos

LOQ4054 - Fenômenos de Transporte III (Requisito fraco)