Complexity of Pivot Algorithms

Qi Wang, Sean Kelley

December 16, 2020

Overview

- Pivot Rules
 - S-monotone index selection rules

- 2 Complexity Analysis
 - Worst Case Klee Minty Cube
 - Kitahara and Mizuno Analysis

2/13

Other Pivot Rules

- Best improvement rule: choose entering $j := \arg\max_{j \in N} (c_B^T A_B^{-1} A_j c_j) \times t_j$ where $t_j = \min_{i \in \{B: (A_B^{-1} A_j)_i > 0\}} \frac{x_i}{(A_B^{-1} A_j)_i}$
- Steepest edge rule: choose entering $j := \arg\max_{j \in N} \frac{c_B^i A_B^{-1} A_j c_j}{\|A_B^{-1} A_j\|}$
- Last-in-first-out rule (LIFO): choose the most recently moved variable.
- Most-often-selected-variable (MOSV): choose the variable that has been selected the largest amount of times before.

S-monotone index selection rules[1]

What is s?

- At iteration k, $s_k \in \mathbb{N}^n$. Generate s_k at each iteration. And choose the candidate of entering basis indices $j := \arg\max_j s_k^j$. How to generate s_k ?

- Bland's rule: $s_k = (n, n-1, \dots, 1)^T$ for all k.
- LIFO.

$$s_{k+1}^i = \begin{cases} k, & \text{if } i \in \{i_k, o_k\}, \\ s_k^i & \text{otherwise.} \end{cases}$$

MOSV.

$$s_{k+1}^i = egin{cases} s_k^i + 1, & ext{if } i \in \{i_k, o_k\}, \\ s_k^i & ext{otherwise.} \end{cases}$$

S-monotone index selection rules I

What is "s-monotone"?

- For iteration k-1 and k, $s_{k-1}^i \leq s_k^i$ for all $i=1,\cdots,n$.

Theorem 1

The simplex algorithms and the criss-cross algorithm with s-monotone index selection rules are finite for linear programming problems.

S-monotone index selection rules II

Revise steepest-edge rule to be s-monotone version.

- **①** At the beginning, define a strictly increasing sequence $\{p_k\}$.
- \bigcirc At iteration k, let

$$\gamma = \max_{j \in N} \frac{c_{B^k}^T A_{B^k}^{-1} A_j - c_j}{\|A_{B^k}^{-1} A_j\|},$$

and adjust p_k by

$$p_k = \begin{cases} p_k + \delta, & \text{if } p_{k-1} \geq \gamma, \\ \gamma, & \text{otherwise.} \end{cases}$$

where $\delta > 0$ is a given number.

$$s_k^i = egin{cases} p_k, & ext{if } i \in \{i_k, o_k\}, \ s_{k-1}^i & ext{otherwise}. \end{cases}$$

Worst Case - Klee Minty Cube

Klee-Minty Cube LO problem

$$\max \sum_{j=1}^{n} 2^{n-j} x_{j}$$
s.t. $2 \sum_{j=1}^{i-1} 2^{i-j} x_{j} + x_{i} \le 5^{i}, \quad i = 1, \dots, n$

$$x_{j} \ge 0, \quad j = 1, \dots, n$$

Primal simplex with Dantzig's rule may visit all vertices before finally finding the optimal solution $(2^n - 1)$ iterations.

4□ > 4□ > 4 = > 4 = > = 90

Qi Wang, Sean Kelley Short title

Worst Case - Klee Minty Cube

Klee-Minty Cube LO problem (n = 2 and n = 3)

$$\begin{array}{ll} \max & 2x_1 + x_2 \\ \text{s.t.} & x_1 \leq 5 \\ & 4x_1 + x_2 \leq 25 \\ & x_1 \geq 0, \ x_2 \geq 0. \end{array}$$

max
$$4x_1 + 2x_2 + x_3$$

s.t. $x_1 \le 5$
 $4x_1 + x_2 \le 25$
 $8x_1 + 4x_2 + x_3 \le 125$
 $x_1 > 0, x_2 > 0, x_3 > 0.$

Solving 2-d Klee Minty Cube using Simplex method with Dantzig's rule

		rhs	x_1	<i>X</i> ₂	s_1	<i>s</i> ₂	
	Z	0	2	1	0	0	at vetex $(0,0)$, x_1 enter, s_1 leave
	s_1	5	1*	0	1	0	
_	<i>s</i> ₂	25	4	1	0	1	
_	Z	-10	0	1	-2	0	at vetex $(5,0)$, x_2 enter, s_2 leave
	<i>x</i> ₁	5	1	0	1	0	
_	<i>s</i> ₂	5	0	1*	-4	1	
_	Z	-15	0	0	2	-1	at vetex $(5,5)$, s_1 enter, x_1 leave
	<i>x</i> ₁	5	1	0	1*	0	
_	<i>x</i> ₂	5	0	1	-4	1	
_	Z	-25	-2	0	0	-1	at vetex (0,25), optimal
	<i>s</i> ₁	5	1	0	1	0	
_	<i>X</i> ₂	25	4	1	0	1	

Kitahara and Mizuno Analysis[2]

Notations:

- BFS: a basic feasible solution for primal standard LO problem.
- δ and γ : the minimum and the maximum values of all the positive elements of all BFSs. That is, for any BFS $\hat{x} \in \mathbb{R}^n$, if $\hat{x}_j \neq 0, \ j \in \{1, \cdots, n\}$ where j represents the jth entry of \hat{x} , we have

$$\delta \le \hat{x}_j \le \gamma$$

Theorem 2

When applying simplex method with the Dantzig's rule or the best improvement rule for LO having optimal solutions, we encounter at most

$$n\lceil m\frac{\gamma}{\delta}\log(m\frac{\gamma}{\delta})\rceil$$

different basic feasible solutions.

Kitahara and Mizuno Analysis

Corollary 3

If the primal problem is nondegenerate, the simplex method finds an optimal solution in at most $n\lceil m_{\overline{\delta}}^{\gamma} \log(m_{\overline{\delta}}^{\gamma}) \rceil$ iterations.

In practice, the ratio of $\frac{\gamma}{\delta}$ is not easy to get prior to solving the problem. However, for some specific LP, $\frac{\gamma}{\delta}$ can be bounded by LP coefficients.

Definition 4

A matrix A is totally unimodular if every square submatrix has determinant 0, -1 or 1. In particular, this implies that all entries are 0, -1 or 1.

E.g., the node-arc incidence matrix of a directed graph is a totally unimodular matrix.

$$A = \begin{pmatrix} -1 & -1 & 0 & 0 & 0 & +1 \\ +1 & 0 & -1 & -1 & 0 & 0 \\ 0 & +1 & +1 & 0 & -1 & 0 \\ 0 & 0 & 0 & +1 & +1 & -1 \end{pmatrix}$$

Qi Wang, Sean Kelley

Kitahara and Mizuno Analysis

With totally unimodular A and integral b, all the elements of any BFS are integers, so

$$\delta \geq 1$$
.

For a BFS $x=(x_B,x_N)$, $x_N=0$ and $x_B=A_B^{-1}b\geq 0$, and A_B^{-1} are all 0,-1,1. Thus for any $j\in B$, we have $x_j\leq \|b\|_1$, so

$$\gamma \leq \|b\|_1$$
.

Thus $\frac{\gamma}{\delta} \leq \frac{\|b\|_1}{1}$.

Corollary 5

Assume that the constraint matrix A of an LO is totally unimodular and vector b is integral. When we apply the simplex method with the Dantzig's rule or the best improvement rule for LO, we encounter at most $n\lceil m\lVert b\rVert_1 \log(m\lVert b\rVert_1)\rceil$ different basic feasible solutions. Moreover if the LO is nondegenerate, this is the most iterations to find optimal solution.

References

Zsolt Csizmadia, Tibor Illés, and Adrienn Nagy. "The s-monotone index selection rules for pivot algorithms of linear programming". In: European journal of operational research 221.3 (2012), pp. 491–500.

Tomonari Kitahara and Shinji Mizuno. "A bound for the number of different basic solutions generated by the simplex method". In: *Mathematical Programming* 137.1-2 (2013), pp. 579–586.