How to: Controls

ETH Zurich

Manuel Dangel Jose Vazquez

Control Approaches at FS Driverless

One control system to rule all disciplines.

- ✓ Less development time
- Generality is hard to achieve

Specific controllers for each discipline

- More development time
- Exploits the structure of each discipline

Disciplines:

- Acceleration
- Skidpad
- AutoX
- Trackdrive

Unstructured vs Structured Environments

Unstructured

- Objective: Go as fast as possible without a global map
- Noisy signals from upper stack

Structured

- Objective: Go as fast as possible with an a-priori knowledge of the map
- ✓ Aggressive controls benefit from the cleaner signals

Control as tracking

Control in FSD can be seen as a standard **reference tracking** problem

The main ingredients are:

- A reference
- A feedback controller

And there is **plenty** of to choose from in each category

Reference:

- Centerline
- Precomputed Raceline
- Constant Speed
- Optimal speed profile

Feedback Controller:

- PID
- Pure Pursuit
- LQR
- Linear MPC
- Non-linear MPC

Simple Reference Trajectory

First steps:

- The simplest lateral reference to track is the track's center-line.
- You can also control your vehicle to reach a "safe" constant longitudinal speed

29.08.2020

Steady State Velocity Profile

There is a **simple way** to compute a velocity profile

 Max speed given curvature and max acceleration

$$v = \sqrt{\frac{a_y}{\kappa}}$$

- Forward pass: simulate with acceleration limit
- Backward pass: simulate with deceleration limit
- Min of all is the achievable velocity

PID + Feedforward

Remarks:

- A PID alone is only a disturbance rejector
 - It follows a changing reference with a phase shift
- To track a varying reference always use a feedforward
- Beware of Integrator Windup
- If possible measure the derivative error directly
- Choose control gains on "the right errors"

Alternatives:

- Optimal Control: For example LQR
 - Different only if higher order system is modeled and measured

velocity

Pure Pursuit Controller

Simple all-in-one Lateral Controller

- Combines feedforward and feedback
- bias-free tracking of steady state corners

Tips and Tricks:

- Keep controller frequency constant with speed
- Compensate for an estimated Slip Angle

Alternatives:

- Curvature Feedforward & Feedback P(I)D
- Stanley Control

[Couler] Implementation of the Pure Pursuit Path tracking Algorithm

Intermezzo - Optimization

Objective function: What are you minimizing?

■ Time? Energy? Space?

$$\min_{x} f(x)$$

Convex objective functions:

- √ Easier to optimize
- × Sometimes less expressive
- ✓ Only one optimum

Non-Convex objective functions:

- × Harder to optimize
- ✓ Sometimes more expressive
- × Can have several optima

Intermezzo - Optimization

Objective function: What do you want to do?

 $\min_{x} f(x)$

Constraints: What you really don't want to do?

Defines where your solution <u>shouldn't</u> be

Intermezzo - Solvers for Optimization

Examples of open-source and commercial solvers:

Convex Optimization

- OSQP
- CVX
- qpOASES
- HPIPM

Non-convex optimization

- IPOPT
- ACADOS/ACADO (For control applications)
- FORCES PRO (For control applications)

Curvature Optimal Reference

Remarks:

- Easy solution to get a smoother, better reference than the middle line
- Velocity profile can be computed using the curvature

[Heilmeier, et al.] Minimum curvature trajectory planning and control for an autonomous race car

Time Optimal Reference

$$\min_x f(x)$$
 Lap-time $\mathrm{s.t.} \quad g_1(x) \leq 0$ Obeying vehicle dynamics $g_2(x) = 0$ Staying within the track bounds

Remarks:

- Uses a vehicle model to minimize laptime.
- The output is a full-state trajectory that can be used by a full-state tracking controller

[Vazquez, et al.] Optimization-Based Hierarchical Motion Planning for Autonomous Racing

Model Predictive Control (MPC)

Different flavours of MPC

Linear MPC:

- Numerically easier (Quadratic problem)
- More Assumptions made
- Harder to formulate (Linearization)

Non-Linear MPC:

- Numerically harder (Non-convex)
- √ Less Assumptions made
- √ Easier to formulate
- Gets stuck in local minima

$$\min_{u} \sum_{t=0}^{T} x^{T} Q x + u^{T} R u \leftarrow \text{Quadratic cost} \qquad \min_{u} \sum_{t=0}^{T} j(x_{t}, u_{t}) \leftarrow \text{General cost}$$

$$\text{s.t.} \quad x_{t+1} = A x_{t} + B u_{t} \leftarrow \text{Linear dynamics} \qquad \text{s.t.} \quad x_{t+1} = f(x_{t}, u_{t}) \leftarrow \text{Non-linear dynamics}$$

$$x_{t+1} = Ax_t + Bu_t$$
 Linear dynamics s.t. $Mx \leq 0$ Linear constraints $x_0 = \hat{x}$

$$\min_{u} \sum_{t=0}^{T} j(x_t, u_t)$$
 General cost

$$s.t.$$
 $x_{t+1} = f(x_t, u_t)$ Non-linear dynamics $g(x_t, u_t) \leq 0$ General constraints $x_0 = \hat{x}$

Non-linear MPC in Trackdrive

Model Predictive Contouring Control MPCC

- Optimization-based autonomous racing of 1:43 scale RC cars [Liniger, et al.]
- Amz driverless: The full autonomous racing system [Kabzan, et al.]

Contouring Control in curvilinear coordinates

Optimization-Based Hierarchical Motion Planning for Autonomous Racing [Vazquez, et al.]

 $\min_{u} \sum_{t=0}^{T} j(x_t, u_t)$

 $egin{aligned} ext{s.t.} & x_{t+1} = f(x_t, u_t) \ & g(x_t, u_t) \leq 0 \ & x_0 = \hat{x} \end{aligned}$

Maximize tangential distance along track

Minimize deviation from the track

Non-linear bicycle model

Tire forces within friction ellipse

Stay within track boundaries

Practical tips and tricks for MPC

Common problems in MPC for trackdrive:

- Solving the MPC takes time (computation delay):
 - Control action is sent too late!
- Actuators add have a lot of delay
 - The vehicle acts too late!

- MPC solution is too jerky
 - Could break actuators if not careful!

Quick solutions:

- 1. Measure avg computation delay
- 2. Integrate measurement before solving MPC

- 1. Measure actuator delay
- 2. Choose a control action in the "future" (hacky?)
- 1. Reformulate problem to use control input rates instead of control inputs

Improving Feedforward: Better Models

How to achieve better models:

- Make fewer assumptions
- Remove simplifications
- Use domain knowledge
- Compensate for system dynamics
- Validate the Model Parameters

Example:

curvature = f(steering)

Fewer simplifications

Improving Feedforward: System Identification

Know your vehicle

• Accurate models for easier control!

Tire Model fitting from Skidpad data

Improving Feedforward: Better Actuators

How can you improve your actuators?

- increase speed
- reduce delay
- no overshoot
- no backlash!

Improving Feedforward: Better Actuators

How can you improve your actuators?

- increase speed
- reduce delay
- no overshoot
- no backlash!

Improving Feedforward: ML & Estimation

- Online Parameter Estimation
 - Grip estimation
- Supervised ML to improve the model
 - MPC with Gaussian processes [Kabzan, et al.]
- Online Model adaptation is adaptive control
 - Difficult and potentially dangerous
 - Very active research field

29.08.2020

[Kabzan, et al.] Learning-based Model Predictive Control for Autonomous Racing

Improving the Feedback: Embed Structure

Use **domain knowledge** to embed the problem structure into the control architecture

- Know some **vehicle dynamics**
- Choose the right variables to control for
- Place controllers on errors whose dynamics are not strongly state dependent
- Example: Stanford Matry [Goh, et al.]

https://dynamicdesignlab.sites.stanford.edu/content/beyond-the-limits

29.08.2020

Goal: Minimize Skidpad time

- Maximize lateral acceleration given radius
- Control speed given max acceleration

Which control set-point to choose?

Should we control for target velocity?

$$v = \sqrt{a_y R}$$

Caution! maximum lateral acceleration is uncertain

Caution! Friction level is very uncertain

 We need a **not so fast**, conservative velocity target

A **better idea** is to use a target **slip angle** instead / additionally

- At the peak, slip angle's influence on friction is smaller.
- Thus, the **velocity uncertainty** is reduced compared to targeting a peak friction
- **Disadvantage:** Needs accurate slip angle measurement

Author: M. Dangel. J. Vazguez

Improving the Feedback: Low-level Controls

Better lower-level controllers will improve your performance

Good steering and e-motor controllers are crucial!

- Low-level Controllers can be used to better track higher level signals
 - Cascaded control
 - Longitudinal acceleration
 - Curvature / Yaw-rate

Improving the Feedback: Tune Closed Loop

Planning and Controls are the **only** part of the autonomous stack that need testing in closed loop

- Perception and Estimation can be tuned mostly on recorded data
- Control needs on-track testing!
- Efficient Testing is important
 - Have real-time tuning capability
 - Have log data analysis ready
 - Have visualization ready
 - Have simulation to compare

Reinforcement Learning

RL in FSD is still a **big open question**

- Does it follow the "start simple" approach?
- How do you do reward engineering on track?
 - Track time is expensive
 - Cars are too expensive
- Sim2Real is hard!
- Idea: RES could be a good query signal for DAGGER (Dataset aggregation)

What kind of controls should you do?

Be aware of the strengths and weaknesses within your team

Look for expertise inside your university:

This can range from Vehicle Dynamics to Optimal Control practitioners

Start simple Make it work Make it better

Thank you for your attention