中国传媒大学

2016—2017 学年第<u>二</u>学期期末考试试卷 (A卷)

参考答案及评分标准

考试科目:	概率论与数理统计 A	_ 课程编	码:	123012
考试班级:	16 工科	_ 考试方	式:	闭卷
一、说	选择题(在每小题给出的	的四个选项中,	选择正确	角答案填在
题中的括号	号内,本大题共4小题,	每小题 3 分, 共	に 12 分)	
1、设	A, B, C是任意事件,	下列各式不成立	立的是(B).
(A)	$(A-B)\bigcup B=A\bigcup B;$			
(B)	$(A \bigcup B) - A = B;$			
(<i>C</i>)	$(A \bigcup B) - AB = A\overline{B} \bigcup \overline{A}B$	3;		
(D)	$(A \bigcup B)\overline{C} = (A - C) \bigcup (B$	(B-C).		
2、设连续型随机变量 X 的概率密度函数和分布函数分别为 $f(x)$				
和 $F(x)$,	则下列选项中正确的是	(C).		
(A) ($0 \le f(x) \le 1;$	(B) $P\{X\}$	$\leq x\} \leq F($	(x);
(C)	$P\{X \le x\} = F(x) ;$	(D) $P\{X$	$=x\}=f$	(x).
3、设	随机变量 $X \sim U(0, 6)$,	$Y \sim b(12, \frac{1}{4})$,	$\exists X, Y$	相互独立,
根据切比氫	雪夫不等式有: <i>P</i> {X −3	$< Y < X + 3 \} ($	D)	
(A) s	$\leq 0.25; (B) \leq \frac{5}{12};$	$(C) \geq 0.75;$	(<i>D</i>)	$\geq \frac{5}{12}$.
4、设	总体 X 服从分布 P{X =	$= k$ $= \frac{\lambda^k}{k!} e^{-\lambda}, k =$	= 0,1,2,	,

(A) \overline{X} 是 λ 的矩法估计量;

 X_1, X_2, \cdots, X_n 为样本, \overline{X} 为样本均值,则以下结论中错误的是(D).

- (B) $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$ 是 λ 的矩法估计量;
- (C) \overline{X} 是 λ 的最大似然估计量;
- (D) $\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$ 是 λ 的最大似然估计量.
- 二、填空题(把正确答案填在题中的横线上,本大题共 4 小题,每小题 3 分,共 12 分)
- 1、设事件 A, B 仅有一个发生的概率为 0.3,且 P(A) + P(B) = 0.5,则 A, B 至少有一个不发生的概率为 0.9.
- 2、设随机变量 X 服从泊松分布,且 $P\{X \le 1\} = 4P\{X = 2\}$,则 $P\{X = 3\} = \frac{1}{6}e^{-1}.$
 - 3、设随机变量 X 在区间 (0, 2) 上服从均匀分布,则随机变量

$$Y = X^2$$
在区间 $(0,4)$ 内的概率密度函数 $f_Y(y) = \begin{cases} \frac{1}{4\sqrt{y}}, & 0 < y < 4, \\ 0, & 其它. \end{cases}$

4、设 X_1, X_2, X_3, X_4, X_5 是总体 $X \sim N(0,1)$ 的一个简单随机样

本,已知
$$Y = \frac{k(X_1 + X_2)}{\sqrt{X_3^2 + X_4^2 + X_5^2}} \sim t(3)$$
,则 $k = \sqrt{\frac{3}{2}}$.

- 三、解答题(本大题共8小题,每题8分,共计64分)
- 1、设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是 $\frac{3}{10}$, $\frac{1}{5}$, $\frac{1}{10}$, $\frac{2}{5}$.如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来,迟到的概率分别是 $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$.事实上此

人迟到了,请问他乘哪一种交通工具的可能性最大?

解: 设事件 A_1 , A_2 , A_3 , A_4 分别表示交通工具"火车、轮船、汽车和飞机",其概率分别等于 $\frac{3}{10}$, $\frac{1}{5}$, $\frac{1}{10}$, $\frac{2}{5}$. 事件 B 表示"迟到".

已知概率 $P(B|A_i)$, i=1,2,3,4 分别等于 $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$ 和 0.

则
$$P(B) = \sum_{i=1}^{4} P(A_i) P(B \mid A_i) = \frac{23}{120}$$
, (4分)

$$P(A_1 \mid B) = \frac{P(A_1)P(B \mid A_1)}{P(B)} = \frac{9}{23}, \quad P(A_2 \mid B) = \frac{P(A_2)P(B \mid A_2)}{P(B)} = \frac{8}{23}$$

$$P(A_3 \mid B) = \frac{P(A_3)P(B \mid A_3)}{P(B)} = \frac{6}{23}, \quad P(A_4 \mid B) = \frac{P(A_4)P(B \mid A_4)}{P(B)} = 0$$

由概率判断他乘火车的可能性最大.

(8分)

2、设连续型随机变量 X 的概率密度函数为:

$$f(x) = \begin{cases} \frac{1}{2}x, & 0 \le x \le 2, \\ 0, & \text{ 其它.} \end{cases}$$

求: (1) $P\{|2X-1|<2\}$; (2) $Y=X^2$ 的概率密度函数 $f_v(y)$;

(3) E(2X-1).

解: (1)
$$P\{|2X-1|<2\} = P\{-0.5 < X < 1.5\} = \frac{9}{16}$$
. (2分)

(2)
$$f_{Y}(y) = \begin{cases} \frac{1}{2\sqrt{y}} (f(\sqrt{y}) + f(-\sqrt{y})), & 0 \le y \le 4, \\ 0, & otherwise. \end{cases}$$

$$= \begin{cases} \frac{1}{4}, & 0 \le y \le 4, \\ 0, & otherwise. \end{cases}$$

$$(5 \%)$$

(3)
$$E(2X-1) = 2EX - 1 = 2 \times \frac{4}{3} - 1 = \frac{5}{3}$$
. (8 $\%$)

3、设随机变量 X 与 Y 相互独立,概率密度函数分别为:

$$f_X(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{ 其他.} \end{cases} \qquad f_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & \text{ 其他.} \end{cases}$$

求随机变量Z = 2X + Y的概率密度函数.

解:
$$Z = 2X + Y$$
的分布函数为: $F_Z(z) = P\{Z \le z\} = P\{2X + Y \le z\}$
当 $z < 0$ 时, $F_Z(z) = 0$ (2分)
当 $0 \le z \le 2$ 时,

$$F_{Z}(z) = \iint_{2x+y \le z} f_{X}(x) f_{Y}(y) dx dy = \int_{0}^{z/2} dx \int_{0}^{z-2x} e^{-y} dy = \frac{1}{2} (z - 1 + e^{-z}) (4 \%)$$

当z > 2时,

$$F_Z(z) = \iint_{2x+y \le z} f_X(x) f_Y(y) dx dy = \int_0^1 dx \int_0^{z-2x} e^{-y} dy = 1 - \frac{1}{2} (e^2 - 1) e^{-z} (6 \%)$$

故
$$Z = 2X + Y$$
 的概率密度为: $f_Z(z) = \begin{cases} 0 & z < 0 \\ \frac{1}{2}(1 - e^{-z}) & 0 \le z \le 2. \\ \frac{1}{2}(e^2 - 1)e^{-z} & z > 2 \end{cases}$

4、从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯是相互独立的,并且概率都是 $\frac{2}{5}$. 设X为途中遇到红灯的次数,求X的概率分布律、分布函数、数学期望和方差.

解:
$$X$$
的概率分布律: $P\{X=k\}=C_3^k\left(\frac{2}{5}\right)^k\left(\frac{3}{5}\right)^{3-k}$ $(k=0,1,2,3)$

X 的分布函数为:

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{27}{125}, & 0 \le x < 1, \\ \frac{81}{125}, & 1 \le x < 2, \\ \frac{117}{125}, & 2 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$
 (3 $\%$)

$$EX = 3 \times \frac{2}{5} = \frac{6}{5}, \qquad DX = 3 \times \frac{2}{5} \times \frac{3}{5} = \frac{18}{25}.$$
 (8 \(\frac{1}{27}\))

5、设各零件的重量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总重量超过2510kg的概率是多少?($\Phi(1.414)=0.9215$, $\sqrt{2}=1.414$)

解: 设
$$X_i$$
={第 i 个零件的重量} (i =1,2,…,5000)

则
$$X_1, X_2, \cdots X_{5000}$$
 独立同分布 (2分)

$$\perp E(X_i) = 0.5$$
 $D(X_i) = 0.1^2$ $(i = 1, 2, \dots, 5000)$

由独立同分布的中心极限定理知随机变量

$$Z = \frac{\sum_{i=1}^{5000} X_i - 5000 \times 0.5}{\sqrt{5000 \times 0.1^2}} = \frac{\sum_{i=1}^{5000} X_i - 2500}{\sqrt{50}} \sim N(0,1)$$
 (4 \(\frac{1}{12}\))

$$\text{III } P\{\sum_{i=1}^{5000} X_i > 2510\} = P\{\frac{\sum_{i=1}^{5000} X_i - 2500}{\sqrt{50}} \ge \frac{2510 - 2500}{\sqrt{50}}\}$$

$$=1-\Phi(\frac{10}{\sqrt{50}})=1-\Phi(1.414)=1-0.9215=0.0785. \tag{8 $\%$}$$

6、设在总体 $N(\mu, \sigma^2)$ 中抽得一容量为16的样本,这里 μ, σ^2 均已知. $(\chi^2_{001}(15) = 30.577)$

求: (1)
$$P\left\{\frac{S^2}{\sigma^2} \le 2.041\right\}$$
, 其中 S^2 为样本方差; (2) $D(S^2)$.

解:(1)由正态总体样本方差的分布可得:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
, 故 $\frac{15S^2}{\sigma^2} \sim \chi^2(15)$, 所以,

$$P\left\{\frac{S^2}{\sigma^2} \le 2.041\right\} = P\left\{\frac{15S^2}{\sigma^2} \le 15 \times 2.041\right\} = P\left\{\frac{15S^2}{\sigma^2} \le 30.615\right\}, \quad (2 \%)$$

查表的
$$\chi_{0.01}^2(15) = 30.577$$
, $P\left\{\frac{S^2}{\sigma^2} \le 2.041\right\} = 0.99$ (5分)

$$D(S^2) = 2\sigma^4 / 15. (8 \%)$$

7、设总体 X 的概率密度函数为:

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$
 $(\theta > 0)$

 X_1, X_2, \dots, X_n 是取自总体 X 的简单随机样本.

求: (1) 参数 θ 的最大似然估计量 $\hat{\theta}$;

(2) 验证估计量 $\hat{\theta}$ 是否是参数 θ 的无偏估计量.

解出:
$$\hat{\theta} = \bar{X}$$
. (6分)

(2) : $E\hat{\theta} = E\overline{X} = EX = \theta$.

 $\therefore \hat{\theta}$ 是 θ 的无偏估计量. (8分)

8、设某机器生产的零件长度为随机变量 X (单位: cm),且 $X \sim N(\mu, \sigma^2)$,今抽取容量为16的样本,测得样本均值 $\bar{x}=10$,样本 方差 $s^2=0.16$. $(t_{0.025}(15)=2.132,~\chi^2_{0.05}(15)=24.996)$

求: (1) μ 的置信度为0.95的置信区间;

(2) 检验假设 $H_0: \sigma^2 \le 0.1$ (显著性水平为0.05).

解: (1) μ 的置信度为1- α 下的置信区间为:

$$(\overline{X} - t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}, \quad \overline{X} + t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}})$$
 (2 $\frac{s}{\sqrt{n}}$)

 $\overline{X} = 10$, s = 0.4, n = 16, $\alpha = 0.05$, $t_{0.025}(15) = 2.132$

所以 μ 的置信度为 0.95 的置信区间为 (9.7868, 10.2132). (4分)

(2)
$$H_0: \sigma^2 \le 0.1$$
 的拒绝域为 $\chi^2 \ge \chi_\alpha^2(n-1)$. (6分)

$$\chi^2 = \frac{15S^2}{0.1} = 15 \times 1.6 = 24$$
, $\chi^2_{0.05}(15) = 24.996$

因为 $\chi^2 = 24 < 24.996 = \chi_{0.05}^2 (15)$,所以接受 H_0 . (8分)

四、证明题(本大题2小题,每小题6分,共计12分)

1、设 0 < P(B) < 1,且事件 A与事件 B 互不相容,试证:

$$P(A \mid \overline{B}) = \frac{P(A)}{1 - P(B)}.$$

证明: 由 $AB = \Phi$ 知 $A \subset \overline{B}$, 得 $A\overline{B} = A$ (3分)

所以
$$P(A \mid \overline{B}) = \frac{P(A\overline{B})}{P(\overline{B})} = \frac{P(A)}{1 - P(B)}$$
 (6分)

2、对来自具有方差 σ^2 的总体的容量为2的简单样本,证明:

$$S^{2} = \frac{1}{2} \sum_{i=1}^{2} (X_{i} - \overline{X})^{2}$$
 的期望值是 $\frac{\sigma^{2}}{2}$.

证明: 设样本为 X_1 , X_2 , 则其均值 $\overline{X} = \frac{1}{2}(X_1 + X_2)$.

$$E(S^{2}) = \frac{1}{2}E\sum_{i=1}^{2}(X_{i} - \overline{X})^{2} = \frac{1}{2}E\sum_{i=1}^{2}[(X_{i} - \mu) - (\overline{X} - \mu)]^{2} 其中 \mu 为总体$$

均值. 即:
$$E(S^2) = \frac{1}{2} E \left[\sum_{i=1}^{2} (X_i - \mu)^2 - 2(\overline{X} - \mu)^2 \right]$$
 (2分)

$$= \frac{1}{2} \left[E \sum_{i=1}^{2} (X_i - \mu)^2 - 2E(\overline{X} - \mu)^2 \right]$$

$$=\frac{1}{2}\left[2\sigma^2 - 2\frac{\sigma^2}{2}\right] = \frac{1}{2}\sigma^2. \tag{4 \(\frac{1}{12}\)}$$

或利用
$$E[\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2]=DX$$
,得

$$E[\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}] = E[\frac{1}{2}\cdot\frac{1}{1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}] = \frac{1}{2}DX = \frac{1}{2}\sigma^{2}. \quad (6\%)$$