

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2019/2020 - UC 47166 (1º Ano/2º Sem)

Exercícios de MD F. 6 - Recorrência e Funções Geradoras

- 1. Para subir uma certa escada, o Pedro consegue, com um único passo, avançar um, dois ou três degraus. Encontre uma relação de recorrência para a sucessão $(a_n)_{n\in\mathbb{N}}$, onde a_n é o número de maneiras possíveis em que o Pedro consegue subir n degraus. Apresente as condições iniciais.
- 2. Uma experiência é executada lançando-se um dado até que apareçam 2 números pares. Determine uma relação de recorrência para o número de experiências que terminam no *n*-ésimo lançamento ou antes.
- 3. Determine uma relação de recorrência para o número de sequências binárias de comprimento n com 3 zeros consecutivos. Indique as condições iniciais.
- 4. Suponha que um par de coelhos tem o primeiro par de descendentes após dois meses de estarem juntos e que, posteriormente, no final de cada mês têm mais um par de descendentes. Começando com um par de coelhos, deduza uma relação de recorrência para o número c_n de pares de coelhos que nasceram nos primeiros n meses.
- 5. Suponha que uma equação de recorrência linear homogénea tem como raízes características 1 e 3 com multiplicidade um, e 2 com multiplicidade dois.
 - (a) Explicite a equação de recorrência.
 - (b) Determine a solução geral desta equação de recorrência linear homogénea.
- 6. Resolva as seguintes relações de recorrência:
 - (a) $a_{n+2} = a_{n+1} + 6a_n 6$, $n \ge 0$, com $a_0 = 0$ e $a_1 = 6$;
 - (b) $a_n 4a_{n-1} + 4a_{n-2} = n + 2^n, n \ge 2$, com $a_0 = 0$ e $a_1 = 1$;
- 7. Sendo $p(x) = 2x^2 + x$, determine uma fórmula fechada para o cálculo da soma $S_n = \sum_{i=1}^n p(i)$ começando por estabelecer uma relação de recorrência apropriada.
- 8. Determine a relação de recorrência linear não homogénea com solução geral $a_n = (c_1 + c_2 n)2^n + c_3 + 4n$, onde c_1, c_2 e c_3 são constantes.
- 9. Sendo p_n o número de partições de um conjunto de cardinalidade n em dois subconjuntos não vazios, deduza uma relação de recorrência para p_n e encontre a respectiva solução.
- 10. Usando transformações adequadas, resolva as seguintes relações de recorrência não lineares:
 - (a) $a_n = na_{n-1} + n!$, com condição inicial $a_0 = 2$;
 - (b) $5na_n + 2na_{n-1} = 2a_{n-1}, n \ge 3$, com condição inicial $a_2 = -30$;
 - (c) $a_n^3 = a_{n-1}^2, n \ge 2, a_1 = 2$ (assume-se que $a_n \ge 0, \forall n \in \mathbb{N}$);
 - (d) $a_n = 2(a_{n-1} + 2(a_{n-2} + \dots + 2(a_1 + 2(a_0 + a_o)^2)^2 \dots)^2)^2$, com $a_0 = 2$ e $a_1 = 2(a_0 + a_o)^2$.
- 11. Seja h(k,n) o número de possibilidades de colocação de k pacientes numa sala de espera com n cadeiras em linha, de tal forma que os pacientes não se sentam em cadeiras vizinhas, deduza uma relação de recorrência para h(k,n).
- 12. Defina a função geradora para a sucessão $(a_n)_{n\in\mathbb{N}}$, onde a_n é o número de soluções inteiras da equação $x_1+x_2+x_3+x_4=n$, nos casos em que

MD 2019-2020 Folha 6 1/5

- (a) $0 \le x_1 \le 5, 0 \le x_2 \le 3, 2 \le x_3 \le 8, 0 \le x_4 \le 4$;
- (b) $0 \le x_i \le 8$, para $i = 1, 2, 3, 4, x_1$ é par e x_2 é impar.
- 13. (a) Use uma função geradora para modelar o número de diferentes resultados numa eleição para eleger o delegado de uma turma com 27 alunos, dos quais 4 são candidatos? Qual é o coeficiente dessa função geradora que nos dá a resposta?
 - (b) Suponha que cada aluno que é candidato vota em si próprio. Neste caso qual é a função geradora e o coeficiente desejado?
 - (c) Suponha que nenhum candidato recebe a maioria dos votos. Repita a alínea (a).
- 14. Calcule o número de possibilidades de troca de 50 euros em notas de 20 euros, 10 euros e 5 euros e moedas de 2 euros e 1 euro, sabendo que dispõe no máximo de cinco moedas de 1 euro, cinco moedas de 2 euros e cinco notas de 5 euros (não havendo qualquer limitação em relação às restantes notas).
- 15. Determine o número de soluções inteiras não negativas da equação

$$3a + 2b + 4c + 2d = r$$
.

- 16. Determine as funções geradoras das seguintes sucessões:
 - (a) $b_n = nk^n$, para $n \in \mathbb{N}_0$;
 - (b) $c_n = k + 2k^2 + 3k^3 + \dots + nk^n$, para $n \in \mathbb{N}_0$;
 - (c) $a_n = C_1 a_{n-1} + C_2 a_{n-2}$, com $a_0 = -1$ e $a_1 = 2$, onde $a_1 = 2$, onde $a_2 = 2$.
- 17. Determine as sucessões $(a_n)_{n\in\mathbb{N}_0}$ associadas às seguintes funções geradoras:
 - (a) $g(x) = (2+x)^4$;
 - (b) $f(x) = \frac{6x}{(1+2x)^2} + 2 x^2$
- 18. Resolva as equações seguintes utilizando o método da função geradora:
 - (a) $a_n = na_{n-1}, n > 2, \text{ com } a_1 = 1;$
 - (b) $a_n = a_{n-1} + n$, $n \ge 1$, com $a_0 = 1$;
 - (c) $a_n = 3a_{n-1}$, para $n \ge 1$, com $a_0 = 2$;
 - (d) $u_n = u_{n-1} + n^2$, para $n \ge 1$, com $u_0 = 2$;
 - (e) $u_{n+1} = 3u_n 1$, para $n \ge 0$, com $u_0 = 1$;
 - (f) $u_{n+2} 5u_{n+1} + 6u_n = 0, n \ge 0, \text{ com } u_0 = 0 \text{ e } u_1 = 1.$
- 19. Considere a relação de recorrência $u_n 2u_{n-1} = 4^n$, $n \ge 1$, $u_0 = 1$.
 - (a) Mostre que a função geradora da sucessão (u_n) é $f(x) = \frac{1}{(1-2x)(1-4x)}$.
 - (b) Determine uma fórmula não recursiva para $u_n, n \ge 0$.

- 20. (a) Escreva a função geradora ordinária $a_0 + a_1x + a_2x^2 + \cdots$ como uma função racional para a sucessão dos números naturais $a_n = n$.
 - (b) Mostre que a função racional $f(x) = \frac{x(x+1)}{(1-x)^3}$ é a função geradora da sucessão definida por $a_n = n^2$.
 - (c) Seja $(a_n)_{n\in\mathbb{N}_0}$ definida por $a_0=0,\,a_1=\alpha$ e

$$a_n = a_{n-2} - n^2, \ n \ge 2.$$

Obtenha a função geradora ordinária desta sucessão como soma de funções racionais. Use as respostas das questões anteriores.

- (d) Obtenha uma fórmula fechada para a sucessão dada na alínea anterior.
- 21. Resolva o sistema de equações de recorrência

$$\begin{cases} a_n = 3a_{n-1} + 2b_{n-1} \\ b_n = a_{n-1} + b_{n-1} \end{cases}$$

com condições iniciais $a_0 = b_0 = 1$.

Soluções:

- 1. Tenha em conta que podemos partir o número de maneiras de subir n degraus em três conjuntos disjuntos. O conjunto X_1 de todas as subidas possíveis em que no primeiro passo se avança apenas um degrau (cuja cardinalidade é a_{n-1}), o conjunto X_2 de todas as subidas possíveis em que no primeiro passo se avançam dois degraus (cuja cardinalidade é a_{n-2}) e o conjunto X_3 de todas as subidas possíveis em que no primeiro passo se avançam três degraus (cuja cardinalidade é a_{n-3}).
- 2. $a_0 = 0, a_1 = 0$ e $a_n = a_{n-1} + (n-1) \times 3 \times 3^{n-2} \times 3$, para $n \ge 2$.
- 3. Note que o número de sequências que terminam em 1 é a_{n-1} , o número de sequências que terminam em 10 é a_{n-2} , o número de sequências que terminam em 100 é a_{n-3} e o número de sequências que terminam em 000 é 2^{n-3} .
- 4. $c_n = n^o$ de pares de coelhos que nasceram nos primeiros n-1 meses+um par de coelhos que nasce por cada par de coelhos que nasceu nos primeiros n-2 meses, ou seja, $c_1 = 1$, $c_2 = 2$, $c_n = c_{n-1} + c_{n-2}$.
- 5. (a) $a_n 8a_{n-1} + 23a_{n-2} 28a_{n-3} + 12a_{n-4} = 0$.
 - (b) $a_n = A + B3^n + C2^n + Dn2^n$, para todo $n \ge 0$, com A, B, C e D constantes.
- 6. (a) $a_n = \frac{3^{n+1}}{5} + \frac{(-2)^{n+3}}{5} + 1$, para $n \ge 0$.
 - (b) $a_n = (-4 + \frac{3}{2}n)2^n + n^22^{n-1} + 4 + n$, para $n \ge 0$.
- 7. $S_1 = 3 \text{ e } S_n = S_{n-1} + 2n^2 + n, n \ge 2.$ $S_n = 2\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)(4n+5)}{6}, n \ge 1.$
- 8. $a_n 5a_{n-1} + 8a_{n-2} 4a_{n-3} = 4$.
- 9. Se $\{A \cup \{n\}, B\}$ é uma partição de [n], então ou $\{A, B\}$ é partição de [n-1] ou $A = \emptyset$ e B = [n-1]. Note-se que $\{A, B\} = \{B, A\}$, $a_1 = 0$ (e $a_2 = 1$). Logo, $a_n = 2a_{n-1} + 1$, $n \ge 2$ (ou $a_{n+1} = 2a_n + 1$, $n \ge 1$). Esta equação de recorrência tem como solução $a_n = 2^{n-1} - 1$, $n \ge 1$.
- 10. (a) Substituição: $a_n = b_n \times n!$. Fórmula fechada: $a_n = (n+2) \cdot n!$, para todo $n \ge 0$.
 - (b) Substituição: $a_n=b_n/n$. Fórmula fechada: $a_n=\frac{-3\times(-2)^n}{n5^{n-3}}$, para todo $n\geq 2$. 5 Fórmula fechada:
 - (c) Substituição: $b_n=\log_2 a_n$. Fórmula fechada: $a_n=2^{\left(\frac{2}{3}\right)^{n-1}}$, para todo $n\geq 1$.
 - (d) Substituição: $b_n = \log_2 a_n$. Fórmula fechada: $a_n = 2^{2^{n+2}-3}$ para $n \ge 0$.
- 11. h(k,n) = h(k,n-1) + kh(k-1,n-2), para $k \ge 1$ e $n \ge 1$.
- 12. (a) $f(x) = (1 + x + \dots + x^5)(1 + x + x^2 + x^3)(x^2 + x^3 + \dots + x^8)(1 + x + \dots + x^4)$.
 - (b) $f(x) = (1 + x^2 + x^4 + x^6 + x^8)(x + x^3 + x^5 + x^7)(1 + x + x^2 + x^3 + \dots + x^8)^2$.
- 13. (a) $f(x) = (1 + x + x^2 + \dots + x^{27})^4$, coeficiente de x^{27} .
 - (b) $f(x) = (x + x^2 + \dots + x^{24})^4$, coeficiente de x^{27} .
 - (c) $f(x) = (1 + x + x^2 + \dots + x^{13})^4$, coeficiente de x^{27} .
- 14. Coeficiente c_{50} do polinómio gerador $p(x) = \sum_{n=0}^{130} c_n x^n$, onde

$$p(x) = (1 + x + \dots + x^5)(1 + x^2 + \dots + x^{10})(1 + x^5 + \dots + x^{25})(1 + x^{10} + \dots + x^{50})(1 + x^{20} + x^{40}).$$

4/5

MD 2019-2020 Folha 6

- 15. Coeficiente de x^r na série de potências da função g definida por $g(x) = (1+x^3+x^6+x^9+\cdots)(1+x^2+x^4+x^6+\cdots)^2(1+x^4+x^8+x^{12}+\cdots) = \frac{1}{(1-x^3)(1-x^2)^2(1-x^4)}$
- 16. (a) $B(x) = \frac{kx}{(1-kx)^2}$.
 - (b) $C(x) = \frac{kx}{(1-x)(1-kx)^2}$
 - (c) $A(x) = \frac{-1 + (2 + C_1)x}{1 C_1x C_2x^2}$.
- 17. (a) $a_0 = 16$, $a_1 = 32$, $a_2 = 24$, $a_3 = 8$, $a_4 = 1$, $a_n = 0$, para todo $n \ge 5$.
 - (b) $a_0 = 2$, $a_1 = 6$, $a_2 = -25$, $a_n = -3(-2)^n n$, para $n \ge 3$.
- 18. (a) $a_n = n!$, para todo $n \ge 1$.
 - (b) $a_n = 1 + \binom{n+1}{2}$, para todo $n \ge 0$.
 - (c) $a_n = 2(3)^n$, para todo $n \ge 0$.
 - (d) $u_n = \frac{n(n+1)(2n+1)}{6} + 2$, para todo $n \ge 0$. (e) $u_n = \frac{1+3^n}{2}$, para todo $n \ge 0$.

 - (f) $u_n = -2^n + 3^n$, para todo $n \ge 0$.
- 19. (b) $u_n = 2^{2n+1} 2^n$, para todo $n \ge 0$.
- 20. (a) $f(x) = \frac{x}{(1-x)^2}$.
 - (c) $f(x) = (\alpha + 1) \frac{x}{1 x^2} \frac{x}{(1 x)^4}$.
 - (d) $a_n = \frac{\alpha+1}{2} \frac{\alpha+1}{2}(-1)^n \frac{(n+2)(n+1)n}{6}$, para todo $n \ge 0$.
- 21. $a_n = \frac{1+\sqrt{3}}{2}(2+\sqrt{3})^n + \frac{1-\sqrt{3}}{2}(2-\sqrt{3})^n$ e $b_n = \frac{1}{2}\left((2+\sqrt{3})^n + (2-\sqrt{3})^n\right)$, para todo $n \ge 0$.