

BIOLOGY Chapter 7

FOTOSÍNTESIS

METABOLISMO

Es el conjunto de REACCIONES QUÍMICAS que se producen en el interior de la célula, cuyo fin es la obtención de la energía necesaria para los procesos fisiológicos (catabolismo), o la utilización de dicha energía para el desempeño de las funciones de la célula o la reposición de estructuras celulares (anabolismo).

EL ATP

Son moléculas transportadoras de energía.

Estrutura da adenosina trifosfato

La energía que se necesita para las reacciones endergónicas se obtiene de la hidrólisis del ATP.

FOTOSÍNTESIS

Es el proceso ANABÓLICO mediante el cual se sintetizan compuestos orgánicos como la glucosa a partir de CO2 y el H2O, empleando como fuente de energía la luz solar. En la fotosíntesis la energía luminosa se convierte en energía química.

ELEMENTOS NECESARIOS PARA LA FOTOSISNTESIS

- A. La luz
- B. Clorofilas (Fotopigmentos)
- C. Agua
- D. CO2
- E. Enzimas fotosintéticas

LUGAR DE REALIZACIÓN EN PLANTAS

CUANTOSOMA

CUANTOSOMA, formado por:

- Fotosistema I (P700)
- Fotosistema II (P680)
- Cadena transportadora de electrones.
- ATP Sintetasa.

PIGMENTOS FOTOSINTÉTICOS

- Los eucariotas fotosintéticos (plantas y algas), la clorofila a es el principal pigmento
 - ✓ Absorbe luz violeta, azul, anaranjadorojizo, rojo
- Pigmentos accesorios:
 - ✓ incluyen a la clorofila b, c, d y e
 - ✓ Los carotenoides que pueden ser de dos tipos: los carotenos (amarillos) y las xantofilas (naranjas).
 - ✓ Las ficobilinas: ficocianina y ficoeretrina, pigmentos presentes el algas y cianobacterias
 - ✓ Estos absorben la energía que la clorofila no puede absorber

FASES DE LA FOTOSÍNTESIS

FASE LUMINOSA

FASE OSCURA

SE REALIZA EN EL ESTROMA

EVENTOS:

- 1. Activación energética de la ribulosa.
 - Reactivación de la ribulosa.
- 2. Fijación del CO2. (Carboxilación)
- 3. Reducción.
- 4. Regeneración y obtención de la glucosa.

FASE OSCURA

RuMP: Ribulosa monofosfato

RuBP: Ribulosa difosfato

PGA: fosfoglicerato

PGAL: fosfogliceraldehído

PRODUCTO FINAL: GLUCOSA

HELICO | THEORY

Estroma

Mencione.

Los compuestos químicos que intervienen en la AGUA
DIÓXIDO DE CARBONO
PIGMENTOS FOTOSINTÉTICOS

 El oxígeno liberado por las plantas durante la fotosíntesis proviene de
 FOTÓLISIS DEL AGUA

DIFFERENCE TOTAL

- En el cloroplasto, la fase oscura de la fotosíntesis se realiza en .
 EL ESTROMA DEL CLOROPLASTO
- Mencione dos diferencias entre la fase luminosa y la fase oscura de la fotosíntesis.

Sustentación

F.L: SE REALIZA EN EL TILACOIDE, DEPENDE DE LA LUZ F.O: SE REALIZA EN EL ESTROMA, NO DEPENDE DE LA LUZ Mencione la importancia de la fase oscura de la fotosíntesis.

Sustentación

PRODUCCIÓN DE GLUCOSA

HELICO | PRACTICE

6. Al visitar un jardín botánico se observó variedad de vegetales, Lucia recordó su clase de fotosíntesis y preguntó ¿cuáles son los productos finales de la fase luminosa?

Oxígeno molecular, ATP y NAPPH2

7. En la clase el profesor coloco un papelografo con la estructura de la clorofila. Pregunto. ¿Cual es el componente que promueve la asimilación del la energia luminosa?

A) K

B) Ca

C) Mg

D) Cl

C) Mg