Controlli Automatici T Parte 8: Luogo delle radici

Prof. Giuseppe Notarstefano Prof. Andrea Testa

Department of Electrical, Electronic, and Information Engineering
Alma Mater Studiorum Università di Bologna
giuseppe.notarstefano@unibo.it
a.testa@unibo.it

a. oob oasanibo.io

Queste slide sono ad uso interno del corso Controlli Automatici T dell'Università di Bologna a.a. 22/23.

Schema di controllo in retroazione

Consideriamo il seguente schema di controllo in retroazione

in cui abbiamo messo in evidenza il guadagno k. La funzione di trasferimento in anello chiuso è

$$F(s) = \frac{kR(s)G(s)}{1 + kR(s)G(s)}$$

Obiettivo: studiare come variano nel piano complesso i poli di F(s) al variare di k.

Schema di controllo in retroazione

Consideriamo il seguente schema di controllo in retroazione

in cui abbiamo messo in evidenza il guadagno k. La funzione di trasferimento in anello chiuso è

$$F(s) = \frac{kL(s)}{1 + kL(s)}$$

Obiettivo: studiare come variano nel piano complesso i poli di F(s) al variare di k.

Esempio: sistema del primo ordine

Sistema del primo ordine $L(s) = \frac{1}{s+1}$ (polo in -1)

Funzione di trasferimento in anello chiuso

$$F(s) = \frac{kL(s)}{1 + kL(s)} = \frac{k\frac{1}{s+1}}{1 + k\frac{1}{s+1}} = \frac{k}{s+1+k}$$
 (polo in $-1-k$)

Luogo delle radici: posizione nel piano complesso del polo di F(s) al variare di $k \ge 0$

Definizione di luogo delle radici

Sia

$$L(s) = \frac{N(s)}{D(s)}$$

si ha

$$F(s) = \frac{kL(s)}{1 + kL(s)} = \frac{kN(s)}{D(s) + kN(s)}$$

- Gli zeri di F(s) sono le radici di kN(s) e quindi sono gli zeri di L(s)
- ullet I poli di F(s) sono le radici di D(s)+kN(s) e quindi dipendono da poli e zeri di L(s)

Nota: la retroazione non sposta gli zeri del sistema, ma solo i poli

Luogo diretto: posizione dei poli di F(s) al variare di $k \ge 0$ (ci concentreremo su questo) Luogo inverso: posizione dei poli di F(s) al variare di $k \le 0$

Equazione caratteristica

I poli del sistema retroazionato sono le soluzione dell'equazione caratteristica

$$D(s) + kN(s) = 0$$

• $k = 0 \longrightarrow D(s) = 0$

I poli di F(s) coincidono con quelli di L(s)

• $k \to \infty \longrightarrow N(s) = 0$

I poli di F(s) coincidono con gli zeri di L(s)

Nota: Per sistemi propri il polinomio D(s) ha grado maggiore o uguale a quello di N(s), l'ordine del polinomio D(s)+kN(s)=0 è lo stesso di quello di D(s) \Rightarrow il numero di poli del sistema retroazionato è uguale a quello del sistema ad anello aperto

Osservazioni

Fissato un valore di k le soluzioni dell'equazione caratteristica determinano n punti nel piano complesso, con n ordine di L(s)

$$D(s) + kN(s) = 0$$

Esempio: sistema del terzo ordine

$$L(s) = \frac{1}{(s+1)^3} \quad \text{(tre poli in } -1\text{)}$$

Il luogo delle radici è costituito da n "rami" parametrizzati nel valore di k. Una volta fissato ad es. $k = k_1$, gli n punti sugli n rami identificano i poli del sistema retroazionato per quel k

I coefficienti dell'equazione caratteristica sono reali ⇒ luogo simmetrico rispetto all'asse reale

Regole di tracciamento (1)

Sia n il numero di poli e m il numero di zeri di L(s) (con $n \ge m$).

Regola 1. Il luogo ha tanti rami quanti sono i poli del sistema in catena aperta.

Regola 2. Ogni ramo parte da un polo di L(s) e termina in uno zero di L(s) o all'infinito. In particolare, m rami terminano negli zeri di L(s) e n-m rami terminano all'infinito.

Regola 3. Il luogo è simmetrico rispetto all'asse reale.

Regola 4. I punti dell'asse reale che appartengono al luogo sono quelli che lasciano alla propria destra un numero dispari di singolarità (cioè poli o zeri) di L(s).

Regole di tracciamento (2)

Siano
$$-p_1,\ldots,-p_n$$
 i poli e $-z_1,\ldots,-z_m$ gli zeri di $L(s)=\frac{(s+z_1)\cdots(s+z_m)}{(s+p_1)\cdots(s+p_n)}$.

Regola 5. I rami che tendono all'infinito lo fanno lungo asintoti che si intersecano sull'asse reale nel punto con ascissa pari a

$$x_a = \frac{1}{n-m} \left(\sum_{i=1}^m z_i - \sum_{i=1}^m p_i \right)$$

Regola 6. Gli asintoti dividono il piano complesso in parti uguali. In particolare l'angolo che il j-esimo asintoto forma con l'asse reale è

$$\theta_{a,j} = \frac{(2j+1)\pi}{n-m}, \qquad j = 0, \dots n-m-1$$

Regola 7. Quando il grado relativo del sistema è maggiore di 1 (cioè $n-m \geq 2$), la somma dei poli è costante al variare di k, quindi il baricentro del luogo è il punto dell'asse reale con ascissa

$$x_b = -\frac{1}{n} \sum_{i=1}^m p_i$$

Asintoti

Prof. Giuseppe Notarstefano, Prof. Andrea Testa - Controlli Automatici T - Parte 8 8 | 16

Regole di tracciamento (3)

Le regole di seguito enunciate si applicano ai poli semplici di L(s) (per i poli multipli le regole sono più complesse).

Regola 8. La tangente al ramo uscente da un polo semplice $-p_j$ forma con l'asse reale l'angolo

$$\alpha_j = 180^\circ + \sum_{i=1}^m \theta_i - \sum_{i \neq j} \varphi_i$$

dove θ_i (risp. φ_i) è l'angolo formato con il semiasse reale positivo dal vettore che congiunge il polo in considerazione con lo zero $-z_i$ (risp. con il polo $-p_i$).

Regola 9. La tangente al ramo entrante in uno zero semplice $-z_i$ forma con l'asse reale l'angolo

$$\beta_j = 180^{\circ} - \sum_{i \neq j} \theta_i + \sum_{i=1}^n \varphi_i$$

dove gli angoli θ_i e φ_i sono definiti in modo analogo alla precedente regola.

Angoli di uscita

Esempio: determinare l'angolo di uscita α_3 del ramo che parte dal polo in $-p_3$

Calcolo degli angoli θ_i e φ_i

Angolo di uscita: $\alpha_3 = 180^{\circ} + \theta_1 + \theta_2 - \varphi_1 - \varphi_2$

Angoli di ingresso

Esempio: determinare l'angolo di ingresso β_2 del ramo che entra nello zero in $-z_2$

Calcolo degli angoli θ_i e φ_i

Angolo di ingresso: $\beta_2=180^{\circ}-\theta_1+\varphi_1+\varphi_2+\varphi_3$

Regole di tracciamento (4)

Regola 10. Eventuali punti di incrocio di rami sull'asse reale si possono determinare trovando i massimi e i minimi relativi della funzione

$$\gamma(x) = -\frac{D(x)}{N(x)}.$$

Nello specifico, se \bar{x} è un punto di minimo e $s=\bar{x}$ appartiene al luogo, esistono due rami complessi che confluiscono sull'asse reale in \bar{x} ; se \bar{x} è invece un punto di massimo e $s=\bar{x}$ appartiene al luogo, esistono due rami reali che si incontrano in \bar{x} e poi si separano diventando complessi.

Sistemi del primo ordine

Senza zero

$$L(s) = \frac{1}{s+p}$$

Con zero

$$L(s) = \frac{s+s}{s+s}$$

Sistemi del secondo ordine con poli reali

Senza zero

$$L(s) = \frac{1}{(s+p_1)(s+p_2)}$$

Con zero

$$L(s) = \frac{s+z}{(s+p_1)(s+p_2)}$$

Sistemi del secondo ordine con poli c.c.

$$L(s) = \frac{s+z}{(s^2 + 2\xi\omega_n s + \omega_n^2)}$$

Luogo delle radici su Matlab

Luogo delle radici di un sistema del secondo ordine con zero $G(s)=\frac{s+2}{s^2+2s+2}$

```
s = tf('s');
G = zpk([-2], [-1+j,-1-j], 1);
rlocus(G);
```

