

Algorithmen und Datenstrukturen

Dynamische Programmierung:

Maximale Teilsumme ♦
RNA-Sekundärstruktur-Problem

Noch einmal Maximale Teilsumme

Maximale Teilsumme

Name: Maximale Teilsumme

Eingabe: Sequenz *L* von *n* ganzen Zahlen

Ausgabe: größte Summe von Elementen einer Teilsequenz

zwei Algorithmen:

■ Brute-Force: O(n³)

■ Teile und Herrsche: *O*(*n* log *n*)

Maximale Teilsumme (Brute-Force)

```
def maxTeilsumme 1(L):
    maxSumme = 0 # mindestens 0 (leere Teilsequenz)
    for i in range(0, len(L)): # untere Grenze
        for j in range(i, len(L)): # obere Grenze
            summe = 0
            for k in range(i, j+1): # Summe bilden
                summe += L[k]
            if summe > maxSumme:
                maxSumme = summe
    return maxSumme
```


Unnötige Berechnungen

```
• i = 0:

j = 0:

j = 1:

j = 1:

j = 2:

j = 2:

j = 3:

j
```

- eigentlich ist die nächste Teilsumme immer die vorherige plus dem nächsten Element der Sequenz
- Idee: Speichern der zuvor berechneten Teilsummen in einer Tabelle (Matrix T, wobei an T(i,j) die Teilsumme von L[i] bis L[j] gespeichert wird)

Tabellarischer Brute-Force-Algorithmus

 Idee: Speichern der zuvor berechneten Teilsummen in einer Tabelle (Matrix T, wobei an T(i,j) die Teilsumme von L[i] bis L[j] gespeichert wird)

i	0	1	2	•••
0	<i>L</i> [0]	<i>L</i> [0]+ <i>L</i> [1]	L[0]+L[1]+L[2]	•••
1	0	<i>L</i> [1]	<i>L</i> [1]+ <i>L</i> [2]	•••
2	0	0	<i>L</i> [2]	•••

Tabellierter Brute-Force-Algorithmus

```
def maxTeilsumme 2(L):
    maxSumme = 0 # mindestens 0 (leere Teilsequenz)
    T = []
    for i in range(0,len(L)):
        T.append([])
                                     # j < i
        for j in range(0,i):
            T[i].append(0)
                                     # j = i
        T[i].append(L[i])
        if T[i][i] > maxSumme: maxSumme = T[i][i]
        for j in range(i+1, len(L)): # j > i
            T[i].append(T[i][j-1] + L[j])
            if T[i][j] > maxSumme: maxSumme = T[i][j]
    return maxSumme
```


Zeit-Raum-Verschiebung

- Bisher: Zeitkomplexität O(n³) und
 Platzbedarf für sechs Variablen (also O(1))
 (ohne Platz für die Eingabe L)
- Jetzt: nur eine Zuweisung für T(i,j) mit $j \le i$
- nur eine Addition und eine Zuweisung für $T(i,j) \rightarrow T(i,j+1)$
- neuen Wert sofort mit maxSumme vergleichen und maxSumme ggf. aktualisieren
- \rightarrow $\Theta(n^2)$ Zeit und Platz

Universitate Political Pol

Verallgemeinerung

- Lösung des Problems durch Lösung von (kleineren) Teilproblemen
- Lösung aller Teilprobleme nur einmal,
 Speichern der Ergebnisse in einer Tabelle
- werden Lösungen von Teilproblemen zur Lösung eines größeren Problems benötigt: Auslesen des Tabelleneintrags
- → Dynamische Programmierung
- kann oft statt Rekursion verwendet werden

DP versus Rekursion

■ Beispiel: Berechne Anzahl der Teilmengen mit k Elementen einer Menge mit n Elementen, also berechne $\binom{n}{k}$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

DP versus Rekursion

■ Beispiel: Berechne Anzahl der Teilmengen mit k Elementen einer Menge mit n Elementen, also berechne $\binom{n}{k}$

Basisfälle:

$$\binom{n}{0} = 1 \ (n \ge 0), \qquad \binom{0}{k} = 0 \ (k > 0)$$

Teilmengenproblem mit Rekursion

```
def compNChooseK(n,k):
    if n>=0 and k==0:
        return 1
    elif n==0 and k>0:
        return 0
    else:
        return compNChooseK(n-1,k-1)
        + compNChooseK(n-1,k)
```


Überlappende Aufrufe bei Rekursion

• • •

Teilmengenproblem mit DP

- ' '	1 1	
Tabel	\Box	Chc
iauei		
1000		

n

3

mit

$$Chs(n,k) = \binom{n}{k}$$

für $0 \le k \le n$

und

$$Chs(n,k) = 0$$

für *k* > *n*

1	3	3	1	0	0
1	2	1	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0
0	1	2	3	4	5

University,

DP versus Rekursion

- **Rekursion:** *Top-Down-Ansatz:* Berechnung von *f*(*n*) durch
 - Bestimmung von $m_1, m_2, ..., m_k$ kleiner als n so, dass
 - f(n) einfach aus $f(m_1)$, $f(m_2)$, ..., $f(m_k)$ berechnet werden kann
 - → z.T. müssen nicht alle Teilprobleme gelöst werden, manche dafür aber mehrfach
- **DP:** Bottom-Up-Ansatz:
 - Berechnung der einfachsten Teilprobleme zuerst
 - Errechnung der nächst größeren aus den bereits errechneten Lösungen, bis f(n) berechnet ist
 - → Berechnung aller Teilprobleme, aber jedes nur einmal

DP versus Rekursion (2)

 Vorteil von DP gegenüber Rekursion, falls viele überlappende Teilprobleme (also falls viele Teilprobleme die rekursive Funktion mit denselben Parametern aufrufen): Keine wiederholten Aufrufe der rekursiven Funktion mit denselben Parametern bei DP.

 Nachteil von DP: Speicherplatz für Tabellengröße muss die gesamte Laufzeit im Speicher gehalten werden.

Das RNA-Sekundärstruktur-Problem

DNA

gewundene Doppelhelix, bestehend aus:

- Adenin- (A),
- Cytosin-(C),
- Guanin-(G),
- Thymin- (T)

Nukleotiden

Watson-Crick-Komplementarität: nur A und T sowie C und G können Bindungen eingehen

Joiversita,

RNA

- Einfachstrang statt Doppelstrang
- Uracil (U) statt Thymin (T)
- verantwortlich für Proteinbildung
 - "stückweises Auftrennen" des Doppelstrangs und
 - "Ablesen" der DNA-Information mit Hilfe der Watson-Crick-Komplementarität
- besitzt Sekundärstruktur (Faltung)
 durch Bindung von komplementären Nukleotiden

Sekundärstruktur – Beispiel

Die stabilste Sekundärstruktur (mit minimaler freier Energie) wird angenommen, wenn eine maximale Anzahl von Nukleotid-Paaren Bindungen eingehen.

Universitate Posterior

RNA-Sekundärstruktur-Problem

- Gegeben ein RNA-Strang (ohne Bindungen).
- Finde maximale Anzahl von Paaren von Nukleotiden, die eine Bindung eingehen können.
- Eingabe: RNA-Sequenz
- Ausgabe: maximale Anzahl der bindungsfähigen Nukleotiden-Paare in RNA-Sequenz

Algorithmisches Denken: Vom Problem zur Lösung

Universitate of Stadent

- 1. Identifizieren des Problems
- 2. Formulieren des Problems
- 3. Entwurf des Algorithmus
- 4. Implementierung des Algorithmus
- 5. Anwendung des Algorithmus

→ Problemlösung

Vom Problem zum Algorithmus

Identifizieren des Problems: Kriterien Bindungsfähigkeit

- 1. Watson-Crick-Komplementarität
- 2. weiche Wendungen
- 3. Eindeutige Bindungen
- 4. Überlappungsfreiheit

Formulieren des Problems

- Gegeben RNA-Sequenz w der Länge n.
- Modell für einen RNA-Strang: String $w \in \{A, C, G, U\}^*$
- $nuc(i) := Nukleotid an Position i (1 \le i \le n)$
- wcc(i,j) $(1 \le i < j \le n)$ ist **True** gdw. Nukleotide an Positionen i und j sind Watson-Crick-komplementär, d.h.

```
\operatorname{nuc}(i) = A \longrightarrow \operatorname{nuc}(j) = U

\operatorname{nuc}(i) = C \longrightarrow \operatorname{nuc}(j) = G

\operatorname{nuc}(i) = G \longrightarrow \operatorname{nuc}(j) = C

\operatorname{nuc}(i) = U \longrightarrow \operatorname{nuc}(j) = A
```

Kriterien Bindungsfähigkeit im Modell

- Gegeben RNA-Sequenz w der Länge n. nuc(i) := Nukleotid an Position i $(1 \le i \le n)$
- Ein Paar (i,j), $1 \le i < j \le n$, ist Matching Pair wenn es folgende Kriterien erfüllt:
 - 1. Watson-Crick-Komplementarität: wcc(i,j)
 - 2. weiche Wendungen: j > i + 4
 - 3. Eindeutige Bindungen: wenn (i,l) oder (k,j) Matching Pair, dann l=j bzw. k=i
 - 4. Überlappungsfreiheit: wenn (k, l) Matching Pair, dann j < k oder l < i oder i < k < l < j oder k < i < j < l

Universitate Political and Pol

Entwurf des Algorithmus

 OPT(i,j): maximale Anzahl von Matching Pairs von Position i bis j

- Suchen OPT(1,n)
- 1. Fall: *n* ist <u>keine</u> Komponente in einem Matching Pair in maximaler Menge
 - \rightarrow OPT(1,n) = OPT(1,n-1)
- 2. Fall: (t,n) ist Matching Pair in maximaler Menge

→ OPT(1,n) = 1 + OPT(1,
$$t$$
-1) + OPT(t +1,n-1)

■ OPT(1,n) ist das Maximum der Werte aus den beiden Fällen.

- Die Option rekursive Aufrufe von OPT(i,j) wird zu häufigen Aufrufen der Prozedur für dieselben Parameter i, j führen
- besser: systematisch für alle Paare (i,j) aufrufen und tabellarisch die Ergebnisse speichern
- Reihenfolge der Aufrufe so, dass für die Berechnung eines neuen Wertes nur bereits berechnete Werte aus der Tabelle ausgelesen werden müssen

Pseudocode

```
Eingabe: w \in \{A,C,G,U\}^* mit |w| = n
Ausgabe: OPT(1,n)
Für alle 1 \le i \le n und 0 \le j \le i + 4
   \mathsf{OPT}(i,j) \longleftarrow 0
Für 5 \le k \le n-1 # Distanz zwischen i und j
    Für 1 \le i \le n-k
       j \leftarrow i + k
                                                                                           n
        OPT(i,j) \leftarrow max \{ OPT(i,j-1), \}
                          max { 1 + OPT(i,t-1) + OPT(t+1,j-1) | (t,j) Matching Pair }}
Gib OPT(1,n) aus
```


1 2 3 4 5 6 7 8 9 (n=9)

Für
$$5 \le k \le n-1$$
 # Distanz zwischen i und j

Für $1 \le i \le n-k$
 $j \longleftarrow i+k$
 $OPT(i,j) \longleftarrow \max \{ OPT(i,j-1), \max \{ 1 + OPT(i,t-1) + OPT(t+1,j-1) \mid (t,j) \text{ Matching Pair } \} \}$

Beispiel: A C C G G U A G U

(n=9)

i					k=5
4	0	0	0	0	k=6
3	0	0	1	1	k=7
2	0	0	1	1	k=8
1	1	1	1	2	
	6	7	8	9	j

```
Für 5 \le k \le n-1 # Distanz zwischen i und j
   Für 1 \le i \le n-k
       j \leftarrow i + k
       OPT(i,j) \leftarrow max \{ OPT(i,j-1), 
                          max { 1 + OPT(i,t-1) + OPT(t+1,j-1) | (t,j) Matching Pair }}
```

Beispiel: A C C G G U A G U

(n=9)

OPT(2,8) = max { OPT(2,7),
max{1+OPT(2,1)+OPT(3,7),
(
$$t$$
=2,3)
1+OPT(2,2)+OPT(4,7)}}
= max { 0, 1+0+0,
1+0+0}
= 1

```
Für 5 \le k \le n-1 # Distanz zwischen i und j

Für 1 \le i \le n-k

j \leftarrow i + k

OPT(i,j) \leftarrow \max { OPT(i,j-1),

\max { 1 + \text{OPT}(i,t-1) + \text{OPT}(t+1,j-1) \mid (t,j) \text{ Matching Pair }}}

t
```

Beispiel: A C C G G U A G U

(n=9)


```
Für 5 \le k \le n-1 # Distanz zwischen i und j
    Für 1 \le i \le n-k
        j \leftarrow i + k
        OPT(i,j) \leftarrow max \{ OPT(i,j-1), 
                            \max \{ 1 + OPT(i,t-1) + OPT(t+1,j-1) \mid (t,j) \text{ Matching Pair } \}
```



```
Eingabe: w \in \{A,C,G,U\}^* mit |w| = n
Ausgabe: OPT(1,n)
Für alle 1 \le i \le n und 0 \le j \le i + 4
                                                      O(n^2)
   OPT(i,j) \leftarrow 0
                         O(n)
                                                      O(n^3)
Für 5 \le k \le n-1
                            O(n)
    Für 1 \le i \le n-k
        j \leftarrow i + k
        OPT(i,j) \leftarrow max \{ OPT(i,j-1), \}
                            \max \{ 1 + \mathsf{OPT}(i,t-1) + \mathsf{OPT}(t+1,j-1) \mid (t,j) \text{ Matching Pair } \} 
                            O(n)
Gib OPT(1,n) aus
```

Joiversital, Poladani

Abschließende Bemerkungen

- Finden der maximalen Menge der Matching Pairs durch "Mitschreiben" der (t,j), die den maximalen Wert bei der Berechnung der OPT(i,j) liefern
- Für Algorithmen nach dynamischer Programmierung: Tabellengröße ist untere Schranke der Laufzeit
 - ▶ beim RNA-Sekundärstrukturproblem: Tabellengröße ist quadratisch in der Länge der RNA-Sequenz
 - wäre diese z.B. exponentiell in der Größe der Eingabe: mindestens exponentielle Laufzeit