ASSIGNMENT #8

Please do not write your answers on a copy of this assignment, use blank paper. As with all assignments, there will conceptual and computational questions. For computational problems you may check your work using any tool you wish; however you must clearly explain each step that you make in your computation.

For this assignment I encourage you to work with others; however, you are expected to **submit your own work in your own words**. All questions except the true and false will be graded for completion. **If you would like feedback on a problem, please indicate it somehow.** You must make an honest attempt on each problem for full points on the completion aspect of your grade.

- (1) Find bases for the following subspaces. Some of these spaces may look familar...
 - (a) The subspace $\{(v_1, v_2, 0) \mid v_1, v_2 \in R\}$ of \mathbb{R}^3 .
 - (b) The vector space $\mathbb{R}[x]_{\leq 4}$.
 - (c) Let A be any $m \times n$ matrix. Is the image of the linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ (recall T_A is multiplication by A on the left) a subspace of \mathbb{R}^m ?
 - (d) Is the set of points inside and on the unit circle in \mathbb{R}^2 a subspace of \mathbb{R}^2 ? *Hint:* the set of points inside on the unit circle can be described as $H = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$?
 - (e) The set of polynomials of $\mathbb{R}[x]_{\leq 21}$ that has 1 and 2 as roots.
 - (f) The subspace $V = \{ax^2 \in \mathbb{R}[x] \mid a \in \mathbb{R}\}\$ of $\mathbb{R}[x]_{\leq 2}$.
- (2) Using your answers to problem (1), find the dimensions of the following spaces.
 - (a) The subspace $\{(v_1, v_2, 0) \mid v_1, v_2 \in R\}$ of \mathbb{R}^3 .
 - (b) The vector space $\mathbb{R}[x]_{\leq 4}$.
 - (c) Let A be any $m \times n$ matrix. Is the image of the linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ (recall T_A is multiplication by A on the left) a subspace of \mathbb{R}^m ?
 - (d) Is the set of points inside and on the unit circle in \mathbb{R}^2 a subspace of \mathbb{R}^2 ? *Hint:* the set of points inside on the unit circle can be described as $H = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$?
 - (e) The set of polynomials of $\mathbb{R}[x]_{\leq 21}$ that has 1 and 2 as roots.
 - (f) The subspace $V = \{ax^2 \in \mathbb{R}[x] \mid a \in \mathbb{R}\}\$ of $\mathbb{R}[x]_{\leq 2}$.
- (3) Write down two different bases for \mathbb{R}^3 that are not the standard basis (remember, the standard basis for \mathbb{R}^3 is $\{(1,0,0),(0,1,0),(0,0,1\})$.
- (4) Find a basis for the subspace of $\mathbb{R}_{\leq 2}[x]$ spanned by the vectors $-1 + x 2x^2, 3 + 3x + 6x^2, 9$.

- (5) Answer the following true and false questions. You do not need to provide justification.
 - (a) The vector space $\mathbb{R}[x]_{\leqslant n}$ is isomorphic to \mathbb{R}^{n+1} .
 - (b) The vector space \mathbb{R}^3 is isomorphic to \mathbb{R}^2 .
 - (c) Let V be a vector space with two subspaces (not necessarily the same) U and W. The subset $U \cup W := \{v \in V \mid v \in U \text{ or } v \in W\}$ is a subspace of V.

There is a set of 11 vectors that span \mathbb{R}^1 7.