Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	P3115	К работе допущен
Студент	Девяткин А.Ю.	Работа выполнена
Преподав	атель Каретников Н.А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.02

«Изучение скольжения тележки по наклонной плоскости»

1. Цель работы:

- Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- II) Определение величины ускорения свободного падения q.

2. Задачи, решаемые при выполнении работы:

- -- Получение необходимых экспериментальных данных;
- -- Вычисление ускорения свободного падения на основании этих данных;
- -- Сравнение полученных данных с ожидаемыми.
- 3. Объект исследования: Тележка на наклонной плоскости.
- 4. Метод экспериментального исследования: Наблюдение, расчёт, эксперимент.

5. Рабочие формулы и исходные данные:

Таблица 3

Измеренные величины			Ы	Рассчитанные величины		
x1, м	x2, м	t1, c	t2, c	Y = x2-x1, M	Z = (t2^2 - t1^2)/2, c^2	
0,15	0,4	1,2	2,4	0,25	2,16	
0,15	0,5	1,2	2,7	0,35	2,925	
0,15	0,7	1,2	3,2	0,55	4,4	
0,15	0,9	1,2	3,8	0,75	6,5	
0,15	1,1	1,1	4,1	0,95	7,8	
	x1, м 0,15 0,15 0,15 0,15	x1, m x2, m 0,15 0,4 0,15 0,5 0,15 0,7 0,15 0,9	x1, m x2, m t1, c 0,15 0,4 1,2 0,15 0,5 1,2 0,15 0,7 1,2 0,15 0,9 1,2	x1, m x2, m t1, c t2, c 0,15 0,4 1,2 2,4 0,15 0,5 1,2 2,7 0,15 0,7 1,2 3,2 0,15 0,9 1,2 3,8	x1, m x2, m t1, c t2, c Y = x2-x1, m 0,15 0,4 1,2 2,4 0,25 0,15 0,5 1,2 2,7 0,35 0,15 0,7 1,2 3,2 0,55 0,15 0,9 1,2 3,8 0,75	

$$a=rac{\sum\limits_{i=1}^{N}Z_{i}Y_{i}}{\sum\limits_{i=1}^{N}Z_{i}^{2}};$$
 - ускорение тележки $\sigma_{a}=\sqrt{\frac{\sum\limits_{i=1}^{N}\left(Y_{i}-aZ_{i}
ight)^{2}}{\left(N-1
ight)\sum\limits_{i=1}^{N}Z_{i}^{2}}},$ - Среднеквадратичное отклонение $\Delta_{a}=2\sigma_{a}$, - абсолютная погрешность при $lpha=0.90$

Таблица 4

N пластин	h, mm	h', mm	Nº	t1, c	t2, c
	158	164	1	1	4
			2	0,9	3,9
1			3	1	4
			4	1,1	4,1
			5	1,1	4,1
		164	1	0,8	3
			2	0,8	2,9
2	149		3	0,8	3
			4	0,8	2,9
			5	0,8	2,9
		163	1	0,7	2,5
			2	0,7	2,5
3	140		3	0,7	2,5
			4	0,7	2,5
			5	0,7	2,5
		163	1	0,6	2,1
			2	0,6	2,1
4	130		3	0,6	2,2
			4	0,6	2,1
			5	0,6	2,1
	121	162	1	0,6	1,9
			2	0,6	1,9
5			3	0,6	1,9
			4	0,6	1,9
			5	0,6	1,9

$$\sin\alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x} \quad \langle a \rangle = \frac{2 \left(x_2 - x_1\right)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2}$$
 Для каждой серии экспериментов: 1) ср. ускорение 2) синус угла наклона к рельсу ($(x_2 - x_1)^2 + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{\langle (t_2 \rangle^2 - \langle t_1 \rangle^2)^2}$ 3) погрешность ускорения

$$B\equiv g=\frac{\sum\limits_{i=1}^{N}a_{i}\sin\alpha_{i}-\frac{1}{N}\sum\limits_{i=1}^{N}a_{i}\sum\limits_{i=1}^{N}\sin\alpha_{i}}{\sum\limits_{i=1}^{N}\sin\alpha_{i}^{2}-\frac{1}{N}\left(\sum\limits_{i=1}^{N}\sin\alpha_{i}\right)^{2}}$$
Рассчитанное значение g

$$A=rac{1}{N}\left(\sum_{i=1}^{N}a_i-B\sum_{i=1}^{N}\sinlpha_i
ight)$$
 Коэффициент А для второго графика

$$\sigma_g = \sqrt{\frac{\sum\limits_{i=1}^N d_i^2}{D(N-2)}}.$$
 СКО для ускорения свободного падения

$$\Delta g = 2\sigma_g$$
 Абсолютная погрешность при $\, \alpha = 0.90 \,$ g(табл) = 9.81908 м/с^2 (значение g для Санкт – Петербурга)

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Линейка на рельсе	Линейка	0 – 120 см	5 мм
2	Линейка на угольнике	Линейка	0 – 40 см	0,5 мм
3	ПКЦ-3 в режиме секундомера	Часы	0 - 60 c.	0,1 c

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов):

Таблица №5

Nº				
пластины	sin a	<t1> +- dt1, c</t1>	<t2>+- dt2, c</t2>	<a>+-da, м/с^2
1	0,0114	1,02 +- 0,0069	4,02 +- 0,0078	0,1032 +- 0,0010
2	0,0230	0,8 +- 0	2,94 +- 0,0045	0,1949 +- 0,0018
3	0,0333	0,7 +- 0	2,5 +- 0	0,2708 +- 0,0024
4	0,0461	0,6 +- 0	2,12 +- 0,0037	0,3773 +- 0,0174
5	0,0564	0,6 +- 0	1,9 +- 0	0,48 +- 0,0043

10. Расчет погрешностей измерений (для прямых и косвенных измерений):

Для всех прямых измерений времени: $t = t_x +- 0.1 c$ Для всех прямых измерений высоты: $h = h_x +- 0.5 mm$ Для всех прямых измерений длины: $x = x_x +- 5 mm$ dY = 4,714 mm

dt1	dt2	da	dZ, c^2
0,006935	0,007775	0,001033	0,268328
0	0,00454	0,001883	0,295466
0	0	0,002455	0,34176
0	0	0,003421	0,398497
0	0	0,004351	0,4245

10. Графики (перечень графиков, которые составляют Приложение 2):

11. Окончательные результаты:

$$a = (0.189 + -0.087); \epsilon_a = 46.31 \%$$
 $a = 0.9$

$$g = (8,294 +- 0,509); \epsilon_q = 6,14 \%$$
 $a = 0,9$

12. Выводы и анализ результатов работы:

Вывод: так как график зависимости Y от Z близок к прямой, мы можем однозначно сказать, что движение, которое описывает данный график является равноускоренным. График несколько отличается от прямой ввиду малого кол-ва измерений и наличия некоторых допущений.

Разница между табличным значение и экспериментальным значением $g \mid g_{\,\,\,\,\,\,\,\,\,}$ равна 1,524 м/c^2, а абсолютная погрешность $\Delta g = 0,509$ м/c^2. Таким образом результаты измерений соответствуют, насколько это возможно, соответствуют действительному значению ускорения свободного падения, хотя и отличаются т. к. были приняты некоторые условности, описанные в работе.