CS 254: Computability and Complexity

Problem Set #06

Anonymous submission

October 24, 2019

2. Proof concatenation under decideable languages is closed.

Let L_1 and L_2 be decideable languages. The concatenation of languages L_1 and L_2 is the language $L_1L_2 = w$ where w = xy, $x \in L_1$ and $y \in L_2$.

Since L_1 and L_2 are decideable there exists a TM that decides each of the languages.

To construct a TM such that $M_{L_1L_2}$ we combine M_{L_1} with M_{L_2} and we non-deterministically move our way through string w. Since there are a finite amount of possible partitions of w into xy we can try every partition. So we split w into strings x and y and feed x into M_{L_1} and y into M_{L_2} . $M_{L_1L_2}$ accepts if both M_{L_1} and M_{L_2} accept on some partition of w.

If there is an accepting branch, then we have found the split of the string that is in L_1L_2 . If all paths reject then it is not in L_1L_2 . Regardless this language is still decideable as machine $M_{L_1L_2}$ always halts.