EXERCISE SET 8.2

Find the linear least squares polynomial approximation to f(x) on the indicated interval if

a. $f(x) = x^2 + 3x + 2$, [0, 1];

b. $f(x) = x^3$, [0, 2];

c. $f(x) = \frac{1}{x}$, [1, 3];

d. $f(x) = e^x$, [0,2];

e. $f(x) = \frac{1}{2}\cos x + \frac{1}{3}\sin 2x$, [0,1]; **f.** $f(x) = x \ln x$, [1,3].

Find the linear least squares polynomial approximation on the interval [-1,1] for the following functions.

a. $f(x) = x^2 - 2x + 3$

b. $f(x) = x^3$

 $\mathbf{c.} \quad f(x) = \frac{1}{x+2}$

d. $f(x) = e^x$

e. $f(x) = \frac{1}{2}\cos x + \frac{1}{3}\sin 2x$

 $f. \quad f(x) = \ln(x+2)$

- Find the least squares polynomial approximation of degree two to the functions and intervals in
- Find the least squares polynomial approximation of degree 2 on the interval [-1, 1] for the functions in Exercise 3.
- 5. Compute the error *E* for the approximations in Exercise 3.
- Compute the error E for the approximations in Exercise 4.
- Use the Gram-Schmidt process to construct $\phi_0(x)$, $\phi_1(x)$, $\phi_2(x)$, and $\phi_3(x)$ for the following intervals.

a. [0, 1]

[0, 2]

- 8. Repeat Exercise 1 using the results of Exercise 7.
- Obtain the least squares approximation polynomial of degree 3 for the functions in Exercise 1 using the results of Exercise 7.
- 10. Repeat Exercise 3 using the results of Exercise 7.
- Use the Gram-Schmidt procedure to calculate L_1 , L_2 , and L_3 , where $\{L_0(x), L_1(x), L_2(x), L_3(x)\}$ is an orthogonal set of polynomials on $(0,\infty)$ with respect to the weight functions $w(x)=e^{-x}$ and $L_0(x) \equiv 1$. The polynomials obtained from this procedure are called the **Laguerre polynomials**.
- Use the Laguerre polynomials calculated in Exercise 11 to compute the least squares polynomials of degree one, two, and three on the interval $(0, \infty)$ with respect to the weight function $w(x) = e^{-x}$ for the following functions:

a. $f(x) = x^2$

b. $f(x) = e^{-x}$

c. $f(x) = x^3$

Suppose $\{\phi_0, \phi_1, \dots, \phi_n\}$ is any linearly independent set in \prod_n . Show that for any element $Q \in \prod_n$, there exist unique constants c_0, c_1, \ldots, c_n , such that

$$Q(x) = \sum_{k=0}^{n} c_k \phi_k(x).$$

- 14. Show that if $\{\phi_0, \phi_1, \dots, \phi_n\}$ is an orthogonal set of functions on [a, b] with respect to the weight function w, then $\{\phi_0, \phi_1, \dots, \phi_n\}$ is a linearly independent set.
- Show that the normal equations (8.6) have a unique solution. [Hint: Show that the only solution for the function $f(x) \equiv 0$ is $a_i = 0, j = 0, 1, \dots, n$. Multiply Eq. (8.6) by a_i , and sum over all j. Interchange the integral sign and the summation sign to obtain $\int_a^b [P(x)]^2 dx = 0$. Thus, $P(x) \equiv 0$, so $a_j = 0$, for $j = 0, \dots, n$. Hence, the coefficient matrix is nonsingular, and there is a unique solution to Eq. (8.6).

Chebyshev Polynomials and Economization of Power Series 8.3

The Chebyshev polynomials $\{T_n(x)\}$ are orthogonal on (-1,1) with respect to the weight function $w(x) = (1 - x^2)^{-1/2}$. Although they can be derived by the method in the previous