Esercizio su scheduling della CPU

Traccia

Sulla base di questa tabella andiamo a vedere i seguenti 3 grafici.

Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	2 secondi	1 secondo
P2	2 secondi	1 secondo	-
P3	1 secondo	_	-
P4	4 secondi	1 secondo	-

Mono-tasking

I sistemi operativi che gestiscono l'esecuzione di un solo programma per volta sono detti mono-tasking. L'inefficienza dei sistemi mono-tasking, sta nel fatto che la CPU passa una percentuale non trascurabile del suo tempo in attesa di eventi esterni, senza compiere nessuna azione

tempo (1s per quadrato)

Multi-tasking

Il multitasking si riferisce alla capacità di svolgere contemporaneamente o alternare rapidamente tra più compiti. Nel contesto dei sistemi informatici e del software, multitasking indica spesso l'esecuzione simultanea di molteplici compiti o processi su un singolo computer o su un gruppo di computer connessi. Questo è un sistema più efficiente per la nostra traccia.

tempo (1s per quadrato)

Time-sharing

Questo è l'evoluzione dei sistemi multi-tasking. Nei sistemi time-sharing i processi sono in esecuzione per un lasso di tempo standard detto **quanto**. Il processo viene interrotto per passare ad eseguire un altro processo per un **quanto** e così via.

tempo (1s per quadrato)