C5 With Polynomial Answers P3

1	(i)		mpt to solve for m the equation $p(-2) = 0$ or equivalent ain $m = 6$	M1 A1	[2]
		Att	ernative: empt $p(z) \div (z+2)$, equate a constant remainder to zero and solve for m . ain $m=6$	M1 A1	
	(ii)	(a)	State $z = -2$ Attempt to find quadratic factor by inspection, division, identity, Obtain $z^2 + 4z + 16$ Use correct method to solve a 3-term quadratic equation	B1 M1 A1 M1	
			Obtain $-2 \pm 2\sqrt{3}i$ or equivalent	A1	[5]
		(b)	State or imply that square roots of answers from part (ii)(a) needed Obtain $\pm i\sqrt{2}$ Attempt to find square root of a further root in the form $x+iy$ or in polar form Obtain $a^2-b^2=-2$ and $ab=(\pm)\sqrt{3}$ following their answer to part (ii)(a) Solve for a and b Obtain $\pm (1+i\sqrt{3})$ and $\pm (1-i\sqrt{3})$	M1 A1 M1 A1√ M1 A1	[6]
			© UCLES 2010	9709/33/O/N/10	
4	2 (i	Z	substitute $x = 2$ and equate to zero, or divide by $x - 2$ and equate constant remainder to ero, or equivalent btain $a = 4$	M1 A1	[2]
	(i	i) (a	Find further (quadratic or linear) factor by division, inspection or factor theorem or equivalent Obtain $x^2 + 2x - 8$ or $x + 4$ State $(x-2)^2(x+4)$ or equivalent	M1 A1 A1	[3]
		(l	State any two of the four (or six) roots State all roots ($\pm\sqrt{2}$, $\pm2i$), provided two are purely imaginary	B1√ B1√	
			© UCLES 2012	9709/	31/M/J/12

(i)	EITHER Substitute $x = 1 + \sqrt{2}$ i and attempt the expansions of the x^2 and x^4 terms						
		Use $i^2 = -1$ correctly at least once			B1		
		Complete the verification			A1		
	OD 1	State second root $1 - \sqrt{2}i$ State second root $1 - \sqrt{2}i$			B1 B1		
	OR 1						
		Carry out a complete method for find Obtain $x^2 - 2x + 3$, or equivalent	ing a quadrati	c factor with zeros $1 \pm \sqrt{4}$ i	M1 A1		
		Show that the division of $p(x)$ by $x^2 - 2x + 3$ gives zero remainder and complete the verification					
	OR 2	Substitute $x = 1 + \sqrt{2}$ i and use correct			M1		
	Obtain x^2 and x^4 in any correct polar form (allow decimals here)						
		Complete an exact verification			A1		
		State second root $1 - \sqrt{2}$ i, or its polar	r equivalent (allow decimals here)	B1	[4]	
(!!)	C	1-4 1 - 1 C C	-4:- C4i	1 1 	M1*		
(11)	Obtain x^2	Carry out a complete method for finding a quadratic factor with zeros $1 \pm \sqrt{2}$ i Obtain $x^2 - 2x + 3$, or equivalent					
	Attempt division of $p(x)$ by $x^2 - 2x + 3$ reaching a partial quotient $x^2 + kx$,						
	or equival	,		(dep*			
	Obtain qu		A1	(1			
	Find the zeros of the second quadratic factor, using $i^2 = -1$ Obtain roots $-1 + i$ and $-1 - i$					(dep* [6]	
	[The second M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an equation in B and/or C, or an unknown factor $Ax^2 + Bx + (6/3)$ and an equation in A and/or B						
	[If part (i) is attempted by the <i>OR 1</i> method, then an attempt at part (ii) which uses or quotes relevant working or results obtained in part (i) should be marked using the scheme for						
(i)	State answer	$r-1-\sqrt{3}i$	B1	If $-\frac{1}{2}$ given as well at this point, still just	+ R1		
	ATTACK TO THE PARTY OF THE PARTY.	3		2 given as wen at ans point, surrigast			
			1				
(i)	Substitute	-2 and equate to zero or divide by $x + 2$	2 and equate	remainder to zero or use			
	−2 in syntl	netic division	_		M1		
	Obtain $a =$	= -1			A1	[2]	
(ii)	Attempt to	find quadratic factor by division reach	$ing x^2 + kx o$	r inspection as far as			

(ii) Attempt to find quadratic factor by division reaching $x^2 + kx$, or inspection as far as $(x+2)(x^2+Bx+c)$ and equations for one or both of B and C, or $(x+2)(Ax^2+Bx+7)$ and equations for one or both of A and B.

Obtain $x^2 - 3x + 7$ Use discriminant to obtain -19, or equivalent, and **confirm one root**wo A1 [3]

© UCLES 2013 9709/33/O/N/13

5 (i)	Commence division by $x^2 - x + 2$ and reach a partial quotient $4x^2 + kx$ Obtain quotient $4x^2 + 4x + a - 4$ or $4x^2 + 4x + b / 2$ Equate x or constant term to zero and solve for a or b Obtain $a = 1$ Obtain $b = -6$	M1 A1 M1 A1 A1	[5]
(ii)	Show that $x^2 - x + 2 = 0$ has no real roots Obtain roots $\frac{1}{2}$ and $-\frac{3}{2}$ from $4x^2 + 4x - 3 = 0$	B1 B1	[2]

© UCLES 2016 9709/33/O/N/16

Using factor theorem, obtain $f\left(-\frac{1}{2}\right) = 0$

1

(ii)	Substitute $x = -1 + \sqrt{3}i$ in the equation and attempt expansions of x^2 and x^3	M1	Need to see sufficient working to be convinced that a calculator has not been used.
	Use $i^2 = -1$ correctly at least once	M1	Allow for relevant use at any point in the solution
	Obtain k = 2	A1	
	Carry out a complete method for finding a quadratic factor with zeros $-1+\sqrt{3}i$ and $-1-\sqrt{3}i$	M1	Could use factor theorem from this point. Need to see working. M1 for correct testing of correct root or allow M1 for three unsuccessful valid attempts.

Obtain root $x =$	$-\frac{1}{2}$, or equivalent, <i>via</i> division or
-------------------	--

Obtain $x^2 + 2x + 4$

A1 Final answer

Alternative method 1			
Carry out a complete method for finding a quadratic factor with zeros $-1+\sqrt{3}i$ and $-1-\sqrt{3}i$ (multiplying two linear factors or using sum and product of roots)	MI	Need to see sufficient working to be convinced that a calculator has not been used.	
Use $i^2 = -1$ correctly at least once	M1	Allow for relevant use at any point in the solution	
Obtain $x^2 + 2x + 4$	A1	Allow M1A0 for $x^2 + 2x + 3$	
Obtain linear factor $kx + 1$ and compare coefficients of x or x^2 and solve for k	M1	Can find the factor by inspection or by long division Must get to zero remainder	
Obtain k = 2	A1		
Obtain root $x = -\frac{1}{2}$	Al	Final answer	
	8	Note: Verification that $x = -\frac{1}{2}$ is a root is worth no may without a clear demonstration of how the root was obtain	

Use equation for sum of roots of cubic and use equation for product of roots of cubic

Use $i^2 = -1$ correctly at least once

Obtain $-\frac{5}{k} = -2 + \gamma$, $-\frac{4}{k} = 4\gamma$ Solve simultaneous equations for k and γ

Obtain k = 2

Obtain root $\gamma = -\frac{1}{2}$

Alternative method 2

(ii)

M1 Allow for relevant use at any point in the solution

A1

M1

A1

A1

Final answer

M1