1、实验名称及目的

QGC 实时调整控制器参数实验: 在进行硬件在环仿真和真机实验时,常常需要在 QG C 地面站中观察飞行状态,并对控制器参数进行实时调整,以使得飞机达到最佳的控制效果。

2、实验效果

通过在 Simulink 模型文件中新建参数并上传固件,在 QGC 中查看并修改参数。

3、文件目录

文件夹/文件名称	说明	
Init_control.m	初始化文件。	
px4_simulink_app_params.c	px4的固件参数定义源文件。	
PX4QGCTune.slx	Simulink 控制器模型文件。	

4、运行环境

序号	软件要求	硬件要求	
11, 4	从□安 本	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版	卓翼 H7 飞控 ^②	1
3	MATLAB 2017B 及以上	数据线	1

- ①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: droneyee_zyfc-h7_default, 固件版本为: 1.12.1。其他配套飞控请见: http://doc.rflysim.com/hardware.html。

5、实验步骤

Step 1:

打开 MATLAB 软件,运行 Init_control.m 文件,同时将打开 PX4QGCTune.slx 文件,在 Si mulink 中,点击编译命令。

Step 2:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图为生成的编

译报告。

Step 3:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行或 点击 PX4 PSP: Upload code to Px4FMU, 弹出 CMD 对话框,显示正在上传固件至飞控中, 等待上传成功。

Step 4:

打开 QGroundControl 软件。确认无人机机架及遥控器通道设置如下:

Step 5:

上传成功后,双击打开 QGroundControl 软件,等待连接成功后,在 QGC 的 Logo 处点击在弹出对话框中选择 Vehicle_Steup。在界面中选择参数,上方搜索框中输入: SL_,即可弹出 MATLAB 中定义的两个参数: SL_RFLY_FLT、SL_RFLY_INT。如下图所示。

Step 6:

上图中的任意参数进行修改,如修改 SL_RFLY_INT 为 200,在点击保存,点击左上角 Back,回到 QGC 初始界面,在 QGC 的 Logo 处点击在弹出对话框中选择 Analyze Tools。

在弹出的界面中选择 MAVLink 检测->ACTUATPR_CONTROL_TARGET,即可看到修改之后的值,如下图所示。

