Multi-agent learning

No-regret learning

Gerard Vreeswijk, Intelligent Software Systems, Computer Science Department, Faculty of Sciences, Utrecht University, The Netherlands.

Monday 11th May, 2020

Author: Gerard Vreeswijk. Slides last modified on May 11^{th} , 2020 at 17:21

■ Reinforcement
Learning. Play those
actions that were
successful in the past.

- Reinforcement
 Learning. Play those
 actions that were
 successful in the past.
- **No-regret learning**: might be considered as an extension of reinforcement learning. *Play those actions that would have been successful in the past*.

- Reinforcement
 Learning. Play those
 actions that were
 successful in the past.
- Similarities:

- Reinforcement
 Learning. Play those
 actions that were
 successful in the past.
- Similarities:
 - 1. Driven by past payoffs.

- Reinforcement
 Learning. Play those
 actions that were
 successful in the past.
- Similarities:
 - 1. Driven by past payoffs.
 - 2. Not interested in (the behaviour of) the opponent.

- Reinforcement
 Learning. Play those
 actions that were
 successful in the past.
- Similarities:
 - 1. Driven by past payoffs.
 - 2. Not interested in (the behaviour of) the opponent.
 - 3. Probabilistic.

■ Reinforcement
Learning. Play those
actions that were
successful in the past.

Similarities:

- 1. Driven by past payoffs.
- 2. Not interested in (the behaviour of) the opponent.
- 3. Probabilistic.
- 4. Smooth adaptation.

- Reinforcement
 Learning. Play those
 actions that were
 successful in the past.
- No-regret learning: might be considered as an extension of reinforcement learning. Play those actions that would have been successful in the past.

- Similarities:
 - 1. Driven by past payoffs.
 - 2. Not interested in (the behaviour of) the opponent.
 - 3. Probabilistic.
 - 4. Smooth adaptation.
 - 5. Myopic.

- Reinforcement
 Learning. Play those
 actions that were
 successful in the past.
- Similarities:
 - 1. Driven by past payoffs.
 - 2. Not interested in (the behaviour of) the opponent.
 - 3. Probabilistic.
 - 4. Smooth adaptation.
 - 5. Myopic.

- **No-regret learning**: might be considered as an extension of reinforcement learning. *Play those actions that would have been successful in the past*.
- *Differences*:

■ Reinforcement
Learning. Play those
actions that were
successful in the past.

■ Similarities:

- 1. Driven by past payoffs.
- 2. Not interested in (the behaviour of) the opponent.
- 3. Probabilistic.
- 4. Smooth adaptation.
- 5. Myopic.

■ **No-regret learning**: might be considered as an extension of reinforcement learning. *Play those actions that would have been successful in the past*.

■ *Differences*:

1. Keeping counts of hypothetical actions rests on the assumption that a player is able to estimate payoffs of actions that were actually not played.

■ Reinforcement
Learning. Play those
actions that were
successful in the past.

■ Similarities:

- 1. Driven by past payoffs.
- 2. Not interested in (the behaviour of) the opponent.
- 3. Probabilistic.
- 4. Smooth adaptation.
- 5. Myopic.

■ **No-regret learning**: might be considered as an extension of reinforcement learning. *Play those actions that would have been successful in the past*.

■ *Differences*:

1. Keeping counts of hypothetical actions rests on the assumption that a player is able to estimate payoffs of actions that were actually not played.

(Knowledge of the payoff matrix helps, but is a stronger assumption.)

■ Reinforcement
Learning. Play those
actions that were
successful in the past.

■ Similarities:

- 1. Driven by past payoffs.
- 2. Not interested in (the behaviour of) the opponent.
- 3. Probabilistic.
- 4. Smooth adaptation.
- 5. Myopic.

■ **No-regret learning**: might be considered as an extension of reinforcement learning. *Play those actions that would have been successful in the past*.

Differences:

- Keeping counts of hypothetical actions rests on the assumption that a player is able to estimate payoffs of actions that were actually not played.
 (Knowledge of the payoff matrix helps, but is a stronger assumption.)
- 2. It is more easy to obtain results regarding performance.

■ Reinforcement
Learning. Play those
actions that were
successful in the past.

■ Similarities:

- 1. Driven by past payoffs.
- 2. Not interested in (the behaviour of) the opponent.
- 3. Probabilistic.
- 4. Smooth adaptation.
- 5. Myopic.

■ **No-regret learning**: might be considered as an extension of reinforcement learning. *Play those actions that would have been successful in the past*.

■ *Differences*:

- Keeping counts of hypothetical actions rests on the assumption that a player is able to estimate payoffs of actions that were actually not played.
 (Knowledge of the payoff matrix helps, but is a stronger assumption.)
- 2. It is more easy to obtain results regarding performance. (*Correlated equilibrium*.)

1. **Probabilistic choice**. A choice of action is never completely determined by history but has a random component.

- 1. **Probabilistic choice**. A choice of action is never completely determined by history but has a random component.
 - The randomness ensures exploration.

- 1. **Probabilistic choice**. A choice of action is never completely determined by history but has a random component.
 - The randomness ensures exploration.
 - The different magnitudes of the probabilities (arisen through experience) ensures exploitation of past experience.

- 1. **Probabilistic choice**. A choice of action is never completely determined by history but has a random component.
 - The randomness ensures exploration.
 - The different magnitudes of the probabilities (arisen through experience) ensures exploitation of past experience.
- 2. **Smooth adaptation**. The strategy of play changes gradually.

- 1. **Probabilistic choice**. A choice of action is never completely determined by history but has a random component.
 - The randomness ensures exploration.
 - The different magnitudes of the probabilities (arisen through experience) ensures exploitation of past experience.
- 2. **Smooth adaptation**. The strategy of play changes gradually.
 - No-regret learning. Select a pure strategy that would have been most successful, given past play.

- 1. **Probabilistic choice**. A choice of action is never completely determined by history but has a random component.
 - The randomness ensures exploration.
 - The different magnitudes of the probabilities (arisen through experience) ensures exploitation of past experience.
- 2. **Smooth adaptation**. The strategy of play changes gradually.
 - No-regret learning. Select a pure strategy that would have been most successful, given past play.
 - Smoothed fictitious play. Give a soft-max response to the (recent) empirical frequency of opponents' actions.

- 1. **Probabilistic choice**. A choice of action is never completely determined by history but has a random component.
 - The randomness ensures exploration.
 - The different magnitudes of the probabilities (arisen through experience) ensures exploitation of past experience.
- 2. **Smooth adaptation**. The strategy of play changes gradually.
 - No-regret learning. Select a pure strategy that would have been most successful, given past play.
 - Smoothed fictitious play. Give a soft-max response to the (recent) empirical frequency of opponents' actions.
 - Hypothesis testing with smoothed best responses. Give a best response to maintained beliefs about *patterns of play*.

Three parts.

Three parts.

1. Basic concepts.

Three parts.

- 1. Basic concepts.
- 2. **Proportional regret matching**. Hart and Mas-Colell (2000).

Three parts.

- 1. Basic concepts.
- 2. **Proportional regret matching**. Hart and Mas-Colell (2000).
- 3. ϵ -Greedy off-policy regret matching. Foster and Vohra (1999).

Three parts.

- 1. Basic concepts.
- 2. **Proportional regret matching**. Hart and Mas-Colell (2000).
- 3. ϵ -Greedy off-policy regret matching. Foster and Vohra (1999).

This presentation almost exclusively follows the second half of Ch. 2 of (Peyton Young, 2004).

Three parts.

- 1. Basic concepts.
- 2. **Proportional regret matching**. Hart and Mas-Colell (2000).
- 3. ϵ -Greedy off-policy regret matching. Foster and Vohra (1999).

This presentation almost exclusively follows the second half of Ch. 2 of (Peyton Young, 2004).

Peyton Young, H. (2004): *Strategic Learning and it Limits*, Oxford UP. Ch. 2: "Reinforcement and Regret"

Three parts.

- 1. Basic concepts.
- 2. **Proportional regret matching**. Hart and Mas-Colell (2000).
- 3. ϵ -Greedy off-policy regret matching. Foster and Vohra (1999).

This presentation almost exclusively follows the second half of Ch. 2 of (Peyton Young, 2004).

Peyton Young, H. (2004): Strategic Learning and it Limits, Oxford UP. Ch. 2: "Reinforcement and Regret"

Foster, D., and Vohra, R. (1999). "Regret in the on-line decision problem". *Games and Economic Behavior*, **29**, pp. 7-36.

Three parts.

- 1. Basic concepts.
- 2. **Proportional regret matching**. Hart and Mas-Colell (2000).
- 3. ϵ -Greedy off-policy regret matching. Foster and Vohra (1999).

This presentation almost exclusively follows the second half of Ch. 2 of (Peyton Young, 2004).

Peyton Young, H. (2004): Strategic Learning and it Limits, Oxford UP. Ch. 2: "Reinforcement and Regret"

Foster, D., and Vohra, R. (1999). "Regret in the on-line decision problem". *Games and Economic Behavior*, **29**, pp. 7-36.

Hart, S., and Mas-Colell, A. (2000). "A simple adaptive procedure leading to correlated equilibrium". *Econometrica*, **68**, pp. 1127-1150.

Part I: Basic concepts

■ Suppose *A* is offered to replay the first 11 periods, under the proviso that he must play one pure strategy (i.e., action) throughout.

Suppose A is offered to replay the first 11 periods, under the proviso that he must play one pure strategy (i.e., action) throughout.

Rounds 1-11: 3
Had L played: 6 6-3 (6-3)/11Had R played: 5 5-3 (5-3)/11

Suppose A is offered to replay the first 11 periods, under the proviso that he must play one pure strategy (i.e., action) throughout.

Rounds 1-11: 3
Had L played: 6 6-3 (6-3)/11Had R played: 5 5-3 (5-3)/11

■ It is ignored that *B* likely would have played different if he knew *A* would have played different.

No-regret: example

Suppose A is offered to replay the first 11 periods, under the proviso that he must play one pure strategy (i.e., action) throughout.

Rounds 1-11: 3
Had
$$L$$
 played: $6 6-3 (6-3)/11$
Had R played: $5 5-3 (5-3)/11$

■ It is ignored that *B* likely would have played different if he knew *A* would have played different.

So no-regret does not take the interactive nature of play into account.

Author: Gerard Vreeswijk. Slides last modified on May 11^{th} , 2020 at 17:21

■ The average payoff up to and including round t is

$$\bar{u}^t =_{Def} \frac{1}{t} \sum_{s=1}^t u(x^s, y^s).$$

The average payoff up to and including round t is

$$\bar{u}^t =_{Def} \frac{1}{t} \sum_{s=1}^t u(x^s, y^s).$$

For each action x, the hypothetical average payoff for playing x is

$$\bar{h}_{x}^{t} =_{Def} \frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}).$$

The average payoff up to and including round t is

$$\bar{u}^t =_{Def} \frac{1}{t} \sum_{s=1}^t u(x^s, y^s).$$

For each action x, the hypothetical average payoff for playing x is

$$\bar{h}_x^t =_{Def} \frac{1}{t} \sum_{s=1}^t u(x, y^s).$$

For each action x, the average regret from not having played x is

$$\bar{r}_x^t =_{Def} \bar{h}_x^t - \bar{u}^t.$$

The average payoff up to and including round t is

$$\bar{u}^t =_{Def} \frac{1}{t} \sum_{s=1}^t u(x^s, y^s).$$

For each action x, the hypothetical average payoff for playing x is

$$\bar{h}_{x}^{t} =_{Def} \frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}).$$

For each action x, the average regret from not having played x is

$$\bar{r}_{x}^{t} =_{Def} \bar{h}_{x}^{t} - \bar{u}^{t}.$$

Average regret may be represented as a vector

$$\bar{r}^t =_{Def} (\bar{r}_1^t, \dots, \bar{r}_k^t)^T.$$

The average payoff up to and including round t is

$$\bar{u}^t =_{Def} \frac{1}{t} \sum_{s=1}^t u(x^s, y^s).$$

For each action x, the hypothetical average payoff for playing x is

$$\bar{h}_{x}^{t} =_{Def} \frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}).$$

For each action x, the average regret from not having played x is

$$\bar{r}_{x}^{t} =_{Def} \bar{h}_{x}^{t} - \bar{u}^{t}.$$

 Average regret may be represented as a vector

$$\bar{r}^t =_{Def} (\bar{r}_1^t, \dots, \bar{r}_k^t)^T.$$

■ A given realisation of play

$$\omega = (x_1, y_1), \ldots, (x_t, y_t), \ldots$$

is said to have no regret if, for all actions x,

The average payoff up to and including round t is

$$\bar{u}^t =_{Def} \frac{1}{t} \sum_{s=1}^t u(x^s, y^s).$$

■ For each action *x*, the hypothetical average payoff for playing *x* is

$$\bar{h}_{x}^{t} =_{Def} \frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}).$$

For each action x, the average regret from not having played x is

$$\bar{r}_{x}^{t} =_{Def} \bar{h}_{x}^{t} - \bar{u}^{t}.$$

 Average regret may be represented as a vector

$$\bar{r}^t =_{Def} (\bar{r}_1^t, \dots, \bar{r}_k^t)^T.$$

■ A given realisation of play

$$\omega = (x_1, y_1), \ldots, (x_t, y_t), \ldots$$

is said to have no regret if, for all actions x,

$$\limsup_{t\to\infty} \bar{r}_x^t(\omega) \le 0$$

The average payoff up to and including round t is

$$\bar{u}^t =_{Def} \frac{1}{t} \sum_{s=1}^t u(x^s, y^s).$$

For each action x, the hypothetical average payoff for playing x is

$$\bar{h}_{x}^{t} =_{Def} \frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}).$$

For each action x, the average regret from not having played x is

$$\bar{r}_{x}^{t} =_{Def} \bar{h}_{x}^{t} - \bar{u}^{t}.$$

 Average regret may be represented as a vector

$$\bar{r}^t =_{Def} (\bar{r}_1^t, \dots, \bar{r}_k^t)^T.$$

■ A given realisation of play

$$\omega = (x_1, y_1), \ldots, (x_t, y_t), \ldots$$

is said to have no regret if, for all actions x,

$$\limsup_{t\to\infty} \bar{r}_{x}^{t}(\omega) \leq 0$$

i.e. $\lim_{T\to\infty} \sup\{ \bar{r}_x^t(\omega) \mid T \le t \} \le 0$

The average payoff up to and including round t is

$$\bar{u}^t =_{Def} \frac{1}{t} \sum_{s=1}^t u(x^s, y^s).$$

For each action x, the hypothetical average payoff for playing x is

$$\bar{h}_{x}^{t} =_{Def} \frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}).$$

For each action x, the average regret from not having played x is

$$\bar{r}_{x}^{t} =_{Def} \bar{h}_{x}^{t} - \bar{u}^{t}.$$

 Average regret may be represented as a vector

$$\bar{r}^t =_{Def} (\bar{r}_1^t, \dots, \bar{r}_k^t)^T.$$

■ A given realisation of play

$$\omega = (x_1, y_1), \ldots, (x_t, y_t), \ldots$$

is said to have no regret if, for all actions x,

$$\limsup_{t\to\infty} \bar{r}_{x}^{t}(\omega) \leq 0$$

i.e. $\lim_{T\to\infty} \sup\{\bar{r}_x^t(\omega) \mid T \leq t\} \leq 0$

$$\Leftrightarrow \lim_{t\to\infty} [\bar{r}_x^t(\omega)]_+ = 0.$$

Part II: proportional regret matching

A strategy $g: H \to \Delta(X)$ is said to have no regret if almost all of its realisations of play have no regret.

A strategy $g: H \to \Delta(X)$ is said to have no regret if almost all of its realisations of play have no regret. The objective is to formulate a strategy without regret.

A strategy $g: H \to \Delta(X)$ is said to have no regret if almost all of its realisations of play have no regret. The objective is to formulate a strategy without regret.

One candidate strategy is proposed by Hart and Mas-Colell (2000):

$$q_x^{t+1} =_{Def} \frac{[\bar{r}_x^t]_+}{\sum_{x' \in X} [\bar{r}_{x'}^t]_+}$$

where $[z]_{+} =_{Def} z \ge 0 ? z : 0$.

A strategy $g: H \to \Delta(X)$ is said to have no regret if almost all of its realisations of play have no regret. The objective is to formulate a strategy without regret.

One candidate strategy is proposed by Hart and Mas-Colell (2000):

$$q_x^{t+1} =_{Def} \frac{[\bar{r}_x^t]_+}{\sum_{x' \in X} [\bar{r}_{x'}^t]_+}$$

where $[z]_+ =_{Def} z \ge 0$? z : 0. This rule is called proportional regret matching, or regret matching (RM for short).

A strategy $g: H \to \Delta(X)$ is said to have no regret if almost all of its realisations of play have no regret. The objective is to formulate a strategy without regret.

One candidate strategy is proposed by Hart and Mas-Colell (2000):

$$q_x^{t+1} =_{Def} \frac{[\bar{r}_x^t]_+}{\sum_{x' \in X} [\bar{r}_{x'}^t]_+}$$

where $[z]_+ =_{Def} z \ge 0$? z : 0. This rule is called proportional regret matching, or regret matching (RM for short). Indeed:

Theorem (Hart & Mas-Colell, 2000). *In a finite game, regret matching yields no regret a.s.*

A strategy $g: H \to \Delta(X)$ is said to have no regret if almost all of its realisations of play have no regret. The objective is to formulate a strategy without regret.

One candidate strategy is proposed by Hart and Mas-Colell (2000):

$$q_x^{t+1} =_{Def} \frac{[\bar{r}_x^t]_+}{\sum_{x' \in X} [\bar{r}_{x'}^t]_+}$$

where $[z]_+ =_{Def} z \ge 0$? z : 0. This rule is called proportional regret matching, or regret matching (RM for short). Indeed:

Theorem (Hart & Mas-Colell, 2000). *In a finite game, regret matching yields no regret a.s.*

Hart & Mas-Colell (2000). "A simple adaptive procedure leading to correlated equilibrium". *Econometrica*, **68**, pp. 1127-1150.

Regret matching differs from reinforcement learning

0 0 0 1 1 0 0 0 1 0 0

A L R L L R R L R R R R ?

B R L R L R L R L R L R .

Regret matching differs from reinforcement learning

	0	0	0	1	1	0	0	0	1	0	0	
\boldsymbol{A}	L	R	L	L	R	R	L	R	R	R	R	?
В	R	L	R	L	R	L	R	L	R	L	L	?

Proportional regret matching:

	Payoff	Average regret	Regret matching
Rounds 1-11:	3		
Had <i>L</i> been played:	6	(6-3)/11	3/5
Had <i>R</i> been played:	5	(5-3)/11	2/5

Regret matching differs from reinforcement learning

	0	0	0	1	1	0	0	0	1	0	0	
A	L	R	L	L	R	R	L	R	R	R	R	?
B	R	L	R	L	R	L	R	L	R	L	L	?

Proportional regret matching:

	Payoff	Average regret	Regret matching
Rounds 1-11:	3		
Had L been played:	6	(6-3)/11	3/5
Had <i>R</i> been played:	5	(5-3)/11	2/5

Cumulative payoff matching:

	Accumulated payoff	Mixed strategy
Action <i>L</i> :	1	1/3
Action R :	2	2/3

Regret matching in a 5-person 5-action game

Payoff matrix uninformative. Omitted ...

Netlogo simulation of regret matching in a 5-person 5-action game.

Regret matching in Shapley's game

	R	Y	В
R	(1,0)	(0,0)	(0,1)
Y	(0,1)	(1,0)	(0,0)
В	(0,0)	(0,1)	(1,0)

Column is "fashion leader", row is "fashion follower". Column wants to wear a different color than row.

Regret matching in Shapley's game

Column is "fashion leader", row is "fashion follower". Column wants to wear a different color than row.

Netlogo simulation of regret matching in Shapley's game.

Quantities:

Author: Gerard Vreeswijk. Slides last modified on May 11th, 2020 at 17:21

Quantities:

 $r_x^t =_{Def}$ total regret for not playing x, up to and including t

Quantities:

 $r_x^t =_{Def}$ total regret for not playing x, up to and including t $\bar{r}_x^t =_{Def}$ average regret for not playing x, up to and including t

Quantities:

 $r_x^t =_{Def}$ total regret for not playing x, up to and including t $\bar{r}_x^t =_{Def}$ average regret for not playing x, up to and including t $[\bar{r}_x^t]_+ =_{Def}$ positive average regret for not playing x

Quantities:

 $r_x^t =_{Def}$ total regret for not playing x, up to and including t $\bar{r}_x^t =_{Def}$ average regret for not playing x, up to and including t $[\bar{r}_x^t]_+ =_{Def}$ positive average regret for not playing x $\Delta r_x^t =_{Def}$ incremental regret for not playing $x : r_x^t - r_x^{t-1}$

Quantities:

```
r_x^t =_{Def} total regret for not playing x, up to and including t
\bar{r}_x^t =_{Def} average regret for not playing x, up to and including t
[\bar{r}_x^t]_+ =_{Def} positive average regret for not playing x
\Delta r_x^t =_{Def} \text{ incremental regret for not playing } x : r_x^t - r_x^{t-1}
E[\Delta r_x^t] = \text{ expected incremental regret for not playing } x
```

Quantities:

```
r_x^t =_{Def} total regret for not playing x, up to and including t
\bar{r}_x^t =_{Def} average regret for not playing x, up to and including t
[\bar{r}_x^t]_+ =_{Def} positive average regret for not playing x
\Delta r_x^t =_{Def} \text{ incremental regret for not playing } x : r_x^t - r_x^{t-1}
E[\Delta r_x^t] = \text{ expected incremental regret for not playing } x
```

Vector versions: r^t , \bar{r}^t , $[\bar{r}^t]_+$, ..., $E[r^t]$, $E[\Delta r^t]$.

Quantities:

```
r_x^t =_{Def} total regret for not playing x, up to and including t
\bar{r}_x^t =_{Def} average regret for not playing x, up to and including t
[\bar{r}_x^t]_+ =_{Def} positive average regret for not playing x
\Delta r_x^t =_{Def} \text{ incremental regret for not playing } x : r_x^t - r_x^{t-1}
E[\Delta r_x^t] = \text{ expected incremental regret for not playing } x
```

Vector versions: r^t , \bar{r}^t , $[\bar{r}^t]_+$, ..., $E[r^t]$, $E[\Delta r^t]$.

Quantities:

 $r_x^t =_{Def}$ total regret for not playing x, up to and including t $\bar{r}_x^t =_{Def}$ average regret for not playing x, up to and including t $[\bar{r}_x^t]_+ =_{Def}$ positive average regret for not playing x $\Delta r_x^t =_{Def} \text{ incremental regret for not playing } x : r_x^t - r_x^{t-1}$ $E[\Delta r_x^t] = \text{ expected incremental regret for not playing } x$

Vector versions: r^t , \bar{r}^t , $[\bar{r}^t]_+$, ..., $E[r^t]$, $E[\Delta r^t]$.

Objective:

$$\lim_{t\to\infty} \left[\bar{r}^t\right]_+ = 0 \text{ a.s.}$$

Quantities:

 $r_x^t =_{Def}$ total regret for not playing x, up to and including t $\bar{r}_x^t =_{Def}$ average regret for not playing x, up to and including t $[\bar{r}_x^t]_+ =_{Def}$ positive average regret for not playing x $\Delta r_x^t =_{Def} \text{ incremental regret for not playing } x : r_x^t - r_x^{t-1}$ $E[\Delta r_x^t] = \text{ expected incremental regret for not playing } x$

Vector versions: r^t , \bar{r}^t , $[\bar{r}^t]_+$, ..., $E[r^t]$, $E[\Delta r^t]$.

Objective:

$$\lim_{t\to\infty} \left[\bar{r}^t\right]_+ = 0 \text{ a.s.}$$

i.e., the regret vector must approach the negative orthant with probability one.

Incremental regret and expected incremental regret

Suppose there are only two actions, "1" and "2," say.

Incremental regret and expected incremental regret

Suppose there are only two actions, "1" and "2," say.

1. If 1 is executed at t + 1 then

- 1. If 1 is executed at t + 1 then
 - $ightharpoonup r_1^{t+1}$ will not change.

- 1. If 1 is executed at t + 1 then
 - $ightharpoonup r_1^{t+1}$ will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1})$.

- 1. If 1 is executed at t + 1 then
- 2. If 2 is executed at t + 1 then

- \blacksquare r_1^{t+1} will not change.
- r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1})$.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1})$.

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1})$.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1})$.

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1})$.
 - \blacksquare r_2^{t+1} will not change.

Suppose there are only two actions, "1" and "2," say.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1})$.

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1})$.
 - \blacksquare r_2^{t+1} will not change.

If $\alpha^{t+1} =_{Def} u(1, y^{t+1}) - u(2, y^{t+1})$ then incremental regret will be either $(0, -\alpha^{t+1})$

Suppose there are only two actions, "1" and "2," say.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1})$.

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1})$.
 - \blacksquare r_2^{t+1} will not change.

If $\alpha^{t+1} =_{Def} u(1, y^{t+1}) - u(2, y^{t+1})$ then incremental regret will be either $(0, -\alpha^{t+1})$ or $(\alpha^{t+1}, 0)$.

Suppose there are only two actions, "1" and "2," say.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1}).$

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1}).$
 - \blacksquare r_2^{t+1} will not change.

If $\alpha^{t+1} =_{Def} u(1, y^{t+1}) - u(2, y^{t+1})$ then incremental regret will be either $(0, -\alpha^{t+1})$ or $(\alpha^{t+1}, 0)$.

Suppose in round t + 1 a mixed strategy $q^{t+1} = (q_1^{t+1}, q_2^{t+1})$ is played.

Suppose there are only two actions, "1" and "2," say.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1})$.

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1})$.
 - $ightharpoonup r_2^{t+1}$ will not change.

If $\alpha^{t+1} =_{Def} u(1, y^{t+1}) - u(2, y^{t+1})$ then incremental regret will be either $(0, -\alpha^{t+1})$ or $(\alpha^{t+1}, 0)$.

$$E[\Delta r^{t+1}] = ($$

Suppose there are only two actions, "1" and "2," say.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1}).$

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1}).$
 - $ightharpoonup r_2^{t+1}$ will not change.

If $\alpha^{t+1} =_{Def} u(1, y^{t+1}) - u(2, y^{t+1})$ then incremental regret will be either $(0, -\alpha^{t+1})$ or $(\alpha^{t+1}, 0)$.

$$E[\Delta r^{t+1}] = (q_1^{t+1} \cdot 0, q_2^{t+1}) \cdot q_2^{t+1} \cdot q_2^{t+1$$

Suppose there are only two actions, "1" and "2," say.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1})$.

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1}).$
 - \blacksquare r_2^{t+1} will not change.

If $\alpha^{t+1} =_{Def} u(1, y^{t+1}) - u(2, y^{t+1})$ then incremental regret will be either $(0, -\alpha^{t+1})$ or $(\alpha^{t+1}, 0)$.

$$E[\Delta r^{t+1}] = (q_1^{t+1} \cdot 0 + q_2^{t+1} \cdot \alpha^{t+1}),$$

Suppose there are only two actions, "1" and "2," say.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1})$.

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1})$.
 - \blacksquare r_2^{t+1} will not change.

If $\alpha^{t+1} =_{Def} u(1, y^{t+1}) - u(2, y^{t+1})$ then incremental regret will be either $(0, -\alpha^{t+1})$ or $(\alpha^{t+1}, 0)$.

$$E[\Delta r^{t+1}] = (q_1^{t+1} \cdot 0 + q_2^{t+1} \cdot \alpha^{t+1}, q_1^{t+1} \cdot -\alpha^{t+1})$$

Suppose there are only two actions, "1" and "2," say.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1}).$

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1})$.
 - \blacksquare r_2^{t+1} will not change.

If $\alpha^{t+1} =_{Def} u(1, y^{t+1}) - u(2, y^{t+1})$ then incremental regret will be either $(0, -\alpha^{t+1})$ or $(\alpha^{t+1}, 0)$.

$$E[\Delta r^{t+1}] = (q_1^{t+1} \cdot 0 + q_2^{t+1} \cdot \alpha^{t+1}, q_1^{t+1} \cdot -\alpha^{t+1} + q_2^{t+1} \cdot 0)$$

Suppose there are only two actions, "1" and "2," say.

- 1. If 1 is executed at t + 1 then
 - \blacksquare r_1^{t+1} will not change.
 - r_2^{t+1} changes with $u(2, y^{t+1}) u(1, y^{t+1}).$

- 2. If 2 is executed at t + 1 then
 - r_1^{t+1} changes with $u(1, y^{t+1}) u(2, y^{t+1})$.
 - \blacksquare r_2^{t+1} will not change.

If $\alpha^{t+1} =_{Def} u(1, y^{t+1}) - u(2, y^{t+1})$ then incremental regret will be either $(0, -\alpha^{t+1})$ or $(\alpha^{t+1}, 0)$.

$$E[\Delta r^{t+1}] = (q_1^{t+1} \cdot 0 + q_2^{t+1} \cdot \alpha^{t+1}, q_1^{t+1} \cdot -\alpha^{t+1} + q_2^{t+1} \cdot 0)$$

$$= \alpha^{t+1}(q_2^{t+1}, -q_1^{t+1}).$$

Why does regret matching work?

Take
$$q_1^t = q_2^t = 1/2$$
 for all t . Then

$$E[\bar{r}_1^t + \bar{r}_2^t] = E[\frac{r_1^{t-1} + \Delta r_1^t}{t} + \frac{r_2^{t-1} + \Delta r_2^t}{t}]$$

$$E[\bar{r}_1^t + \bar{r}_2^t] = E\left[\frac{r_1^{t-1} + \Delta r_1^t}{t} + \frac{r_2^{t-1} + \Delta r_2^t}{t}\right]$$

$$= E\left[\frac{r_1^{t-1} - \alpha^t/2}{t} + \frac{r_2^{t-1} + \alpha^t/2}{t}\right]$$

$$E[\bar{r}_1^t + \bar{r}_2^t] = E\left[\frac{r_1^{t-1} + \Delta r_1^t}{t} + \frac{r_2^{t-1} + \Delta r_2^t}{t}\right]$$

$$= E\left[\frac{r_1^{t-1} - \alpha^t/2}{t} + \frac{r_2^{t-1} + \alpha^t/2}{t}\right]$$

$$= E\left[\bar{r}_1^{t-1} + \bar{r}_2^{t-1}\right]$$

$$E[\bar{r}_1^t + \bar{r}_2^t] = E[\frac{r_1^{t-1} + \Delta r_1^t}{t} + \frac{r_2^{t-1} + \Delta r_2^t}{t}]$$

$$= E[\frac{r_1^{t-1} - \alpha^t/2}{t} + \frac{r_2^{t-1} + \alpha^t/2}{t}]$$

$$= E[\bar{r}_1^{t-1} + \bar{r}_2^{t-1}]$$

$$= \bar{r}_1^{t-1} + \bar{r}_2^{t-1}$$

Take $q_1^t = q_2^t = 1/2$ for all t. Then

$$E[\bar{r}_1^t + \bar{r}_2^t] = E[\frac{r_1^{t-1} + \Delta r_1^t}{t} + \frac{r_2^{t-1} + \Delta r_2^t}{t}]$$

$$= E[\frac{r_1^{t-1} - \alpha^t/2}{t} + \frac{r_2^{t-1} + \alpha^t/2}{t}]$$

$$= E[\bar{r}_1^{t-1} + \bar{r}_2^{t-1}]$$

$$= \bar{r}_1^{t-1} + \bar{r}_2^{t-1}$$

Inductively then

$$E[\bar{r}_1^t + \bar{r}_2^t] = 0,$$

Take $q_1^t = q_2^t = 1/2$ for all t. Then

$$E[\bar{r}_1^t + \bar{r}_2^t] = E\left[\frac{r_1^{t-1} + \Delta r_1^t}{t} + \frac{r_2^{t-1} + \Delta r_2^t}{t}\right]$$

$$= E\left[\frac{r_1^{t-1} - \alpha^t/2}{t} + \frac{r_2^{t-1} + \alpha^t/2}{t}\right]$$

$$= E\left[\bar{r}_1^{t-1} + \bar{r}_2^{t-1}\right]$$

$$= \bar{r}_1^{t-1} + \bar{r}_2^{t-1}$$

Inductively then

$$E[\bar{r}_1^t + \bar{r}_2^t] = 0,$$

so that $\lim_{t\to\infty} \bar{r}_1^t + \bar{r}_2^t = 0$ with probability one.

Take $q_1^t = q_2^t = 1/2$ for all t. Then

$$E[\bar{r}_1^t + \bar{r}_2^t] = E[\frac{r_1^{t-1} + \Delta r_1^t}{t} + \frac{r_2^{t-1} + \Delta r_2^t}{t}]$$

$$= E[\frac{r_1^{t-1} - \alpha^t/2}{t} + \frac{r_2^{t-1} + \alpha^t/2}{t}]$$

$$= E[\bar{r}_1^{t-1} + \bar{r}_2^{t-1}]$$

$$= \bar{r}_1^{t-1} + \bar{r}_2^{t-1}$$

Inductively then

$$E[\bar{r}_1^t + \bar{r}_2^t] = 0,$$

so that $\lim_{t\to\infty} \bar{r}_1^t + \bar{r}_2^t = 0$ with probability one.

However, the two terms may neutralise each other.

Author: Gerard Vreeswijk. Slides last modified on May 11^{th} , 2020 at 17:21

Each round t, choose an action that would have minimised regret in the previous round.

- Each round t, choose an action that would have minimised regret in the previous round.
- However: Matching Pennies.

- Each round t, choose an action that would have minimised regret in the previous round.
- However: Matching Pennies.

- \blacksquare Each round t, choose an action that would have minimised regret in the previous round.
- However: Matching Pennies.

• Switch actions if regret in previous round; else stay.

- Each round t, choose an action that would have minimised regret in the previous round.
- However: Matching Pennies.

• Switch actions if regret in previous round; else stay.

 Won't work: suppose you meet an opponent who happens to switch every round as well . . .

- Each round t, choose an action that would have minimised regret in the previous round.
- However: Matching Pennies.

• Switch actions if regret in previous round; else stay.

- Won't work: suppose you meet an opponent who happens to switch every round as well . . .
- Won't work in general: your corrections may by coincidence be out of phase with the path of play of your opponent. Peyton Young:

"Recall that no-regret must hold even when Nature is malevolent." (p. 26)

The objective is to find a (mixed) strategy $g: H \to \Delta(\{1,2\})$ such that

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] < \bar{r}^t \tag{1}$$

The objective is to find a (mixed) strategy $g: H \to \Delta(\{1,2\})$ such that

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] < \bar{r}^t \tag{1}$$

because then Blackwell's approachability theorem can be applied to conclude $\lim_{t\to\infty} [\bar{r}^t]_+ = 0$.

The objective is to find a (mixed) strategy $g: H \to \Delta(\{1,2\})$ such that

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] < \bar{r}^t \tag{1}$$

because then Blackwell's approachability theorem can be applied to conclude $\lim_{t\to\infty} [\bar{r}^t]_+ = 0$. Since $\Delta E[r^{t+1}]$ is known, we have

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] = E[\frac{r^t + \Delta r^{t+1}}{t+1} \mid r^t, \dots, r^1]$$

The objective is to find a (mixed) strategy $g: H \to \Delta(\{1,2\})$ such that

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] < \bar{r}^t \tag{1}$$

because then Blackwell's approachability theorem can be applied to conclude $\lim_{t\to\infty} [\bar{r}^t]_+ = 0$. Since $\Delta E[r^{t+1}]$ is known, we have

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] = E[\frac{r^t + \Delta r^{t+1}}{t+1} \mid r^t, \dots, r^1]$$

$$= \frac{t}{t+1} E[\frac{r^t}{t} \mid r^t, \dots, r^1] + \frac{1}{t+1} E[\Delta r^{t+1} \mid r^t, \dots, r^1]$$

The objective is to find a (mixed) strategy $g: H \to \Delta(\{1,2\})$ such that

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] < \bar{r}^t \tag{1}$$

because then Blackwell's approachability theorem can be applied to conclude $\lim_{t\to\infty} [\bar{r}^t]_+ = 0$. Since $\Delta E[r^{t+1}]$ is known, we have

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] = E[\frac{r^t + \Delta r^{t+1}}{t+1} \mid r^t, \dots, r^1]$$

$$= \frac{t}{t+1} E[\frac{r^t}{t} \mid r^t, \dots, r^1] + \frac{1}{t+1} E[\Delta r^{t+1} \mid r^t, \dots, r^1]$$

$$= \frac{t}{t+1} \bar{r}^t + \frac{1}{t+1} E[\Delta r^{t+1} \mid r^t, \dots, r^1]$$

Decrease of expected regret

The objective is to find a (mixed) strategy $g: H \to \Delta(\{1,2\})$ such that

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] < \bar{r}^t \tag{1}$$

because then Blackwell's approachability theorem can be applied to conclude $\lim_{t\to\infty} [\bar{r}^t]_+ = 0$. Since $\Delta E[r^{t+1}]$ is known, we have

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] = E[\frac{r^t + \Delta r^{t+1}}{t+1} \mid r^t, \dots, r^1]$$

$$= \frac{t}{t+1} E[\frac{r^t}{t} \mid r^t, \dots, r^1] + \frac{1}{t+1} E[\Delta r^{t+1} \mid r^t, \dots, r^1]$$

$$= \frac{t}{t+1} \bar{r}^t + \frac{1}{t+1} E[\Delta r^{t+1} \mid r^t, \dots, r^1]$$

$$= \frac{t}{t+1} \bar{r}^t + \frac{1}{t+1} (-\alpha^{t+1} q_2^{t+1}, \alpha^{t+1} q_1^{t+1})$$

Decrease of expected regret

The objective is to find a (mixed) strategy $g: H \to \Delta(\{1,2\})$ such that

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] < \bar{r}^t \tag{1}$$

because then Blackwell's approachability theorem can be applied to conclude $\lim_{t\to\infty} [\bar{r}^t]_+ = 0$. Since $\Delta E[r^{t+1}]$ is known, we have

$$E[\bar{r}^{t+1} \mid r^t, \dots, r^1] = E[\frac{r^t + \Delta r^{t+1}}{t+1} \mid r^t, \dots, r^1]$$

$$= \frac{t}{t+1} E[\frac{r^t}{t} \mid r^t, \dots, r^1] + \frac{1}{t+1} E[\Delta r^{t+1} \mid r^t, \dots, r^1]$$

$$= \frac{t}{t+1} \bar{r}^t + \frac{1}{t+1} E[\Delta r^{t+1} \mid r^t, \dots, r^1]$$

$$= \frac{t}{t+1} \bar{r}^t + \frac{1}{t+1} (-\alpha^{t+1} q_2^{t+1}, \alpha^{t+1} q_1^{t+1})$$

So, the objective is to find a strategy such that $\alpha^{t+1}(-q_2^{t+1}, q_1^{t+1}) < \bar{r}^t$.

Author: Gerard Vreeswijk. Slides last modified on May 11^{th} , 2020 at 17:21

Recall: our objective is $[\bar{r}^t]_+ \to 0$.

- Recall: our objective is $[\bar{r}^t]_+ \to 0$.
- To this end, choose q^{t+1} such that

$$E[\Delta r^{t+1}] \perp [\bar{r}^t]_+$$

- Recall: our objective is $[\bar{r}^t]_+ \to 0$.
- To this end, choose q^{t+1} such that

$$E[\Delta r^{t+1}] \perp [\bar{r}^t]_+$$

So:

$$E[\Delta r^{t+1}] \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow (-\alpha^{t+1}q_2^{t+1}, \alpha^{t+1}q_1^{t+1}) \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow \alpha^{t+1}(q_1^{t+1}[\bar{r}_2^t]_+ - q_2^{t+1}[\bar{r}_1^t]_+) = 0$$

$$\Leftrightarrow q_1^{t+1} : q_2^{t+1} = [\bar{r}_1^t]_+ : [\bar{r}_2^t]_+.$$

- Recall: our objective is $[\bar{r}^t]_+ \to 0$.
- To this end, choose q^{t+1} such that

$$E[\Delta r^{t+1}] \perp [\bar{r}^t]_+$$

So:

$$E[\Delta r^{t+1}] \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow (-\alpha^{t+1}q_2^{t+1}, \alpha^{t+1}q_1^{t+1}) \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow \alpha^{t+1}(q_1^{t+1}[\bar{r}_2^t]_+ - q_2^{t+1}[\bar{r}_1^t]_+) = 0$$

$$\Leftrightarrow q_1^{t+1} : q_2^{t+1} = [\bar{r}_1^t]_+ : [\bar{r}_2^t]_+.$$

The last equation amounts to proportional regret matching.

- Recall: our objective is $[\bar{r}^t]_+ \to 0$.
- To this end, choose q^{t+1} such that

$$E[\Delta r^{t+1}] \perp [\bar{r}^t]_+$$

So:

$$E[\Delta r^{t+1}] \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow (-\alpha^{t+1}q_2^{t+1}, \alpha^{t+1}q_1^{t+1}) \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow \alpha^{t+1}(q_1^{t+1}[\bar{r}_2^t]_+ - q_2^{t+1}[\bar{r}_1^t]_+) = 0$$

$$\Leftrightarrow q_1^{t+1} : q_2^{t+1} = [\bar{r}_1^t]_+ : [\bar{r}_2^t]_+.$$

The last equation amounts to proportional regret matching.

- Recall: our objective is $[\bar{r}^t]_+ \to 0$.
- To this end, choose q^{t+1} such that

$$E[\Delta r^{t+1}] \perp [\bar{r}^t]_+$$

So:

$$E[\Delta r^{t+1}] \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow (-\alpha^{t+1}q_2^{t+1}, \alpha^{t+1}q_1^{t+1}) \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow \alpha^{t+1}(q_1^{t+1}[\bar{r}_2^t]_+ - q_2^{t+1}[\bar{r}_1^t]_+) = 0$$

$$\Leftrightarrow q_1^{t+1} : q_2^{t+1} = [\bar{r}_1^t]_+ : [\bar{r}_2^t]_+.$$

The last equation amounts to proportional regret matching.

(Notice that α^{t+1} has left the stage.)

Boundary cases are obvious and can be treated as follows:

- Recall: our objective is $[\bar{r}^t]_+ \to 0$.
- To this end, choose q^{t+1} such that

$$E[\Delta r^{t+1}] \perp [\bar{r}^t]_+$$

So:

$$E[\Delta r^{t+1}] \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow (-\alpha^{t+1}q_2^{t+1}, \alpha^{t+1}q_1^{t+1}) \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow \alpha^{t+1}(q_1^{t+1}[\bar{r}_2^t]_+ - q_2^{t+1}[\bar{r}_1^t]_+) = 0$$

$$\Leftrightarrow q_1^{t+1} : q_2^{t+1} = [\bar{r}_1^t]_+ : [\bar{r}_2^t]_+.$$

The last equation amounts to proportional regret matching.

- Boundary cases are obvious and can be treated as follows:
 - If $\bar{r}_1^t \le 0$ and $\bar{r}_2^t > 0$, then let $q^{t+1} =_{Def} (0,1)$.

- Recall: our objective is $[\bar{r}^t]_+ \to 0$.
- To this end, choose q^{t+1} such that

$$E[\Delta r^{t+1}] \perp [\bar{r}^t]_+$$

So:

$$E[\Delta r^{t+1}] \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow (-\alpha^{t+1}q_2^{t+1}, \alpha^{t+1}q_1^{t+1}) \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow \alpha^{t+1}(q_1^{t+1}[\bar{r}_2^t]_+ - q_2^{t+1}[\bar{r}_1^t]_+) = 0$$

$$\Leftrightarrow q_1^{t+1} : q_2^{t+1} = [\bar{r}_1^t]_+ : [\bar{r}_2^t]_+.$$

The last equation amounts to proportional regret matching.

- Boundary cases are obvious and can be treated as follows:
 - If $\bar{r}_1^t \le 0$ and $\bar{r}_2^t > 0$, then let $q^{t+1} =_{Def} (0,1)$.
 - If $\bar{r}_1^t > 0$ and $\bar{r}_2^t \le 0$, then let $q^{t+1} =_{Def} (1,0)$.

- Recall: our objective is $[\bar{r}^t]_+ \to 0$.
- To this end, choose q^{t+1} such that

$$E[\Delta r^{t+1}] \perp [\bar{r}^t]_+$$

So:

$$E[\Delta r^{t+1}] \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow (-\alpha^{t+1}q_2^{t+1}, \alpha^{t+1}q_1^{t+1}) \cdot [\bar{r}^t]_+ = 0$$

$$\Leftrightarrow \alpha^{t+1}(q_1^{t+1}[\bar{r}_2^t]_+ - q_2^{t+1}[\bar{r}_1^t]_+) = 0$$

$$\Leftrightarrow q_1^{t+1} : q_2^{t+1} = [\bar{r}_1^t]_+ : [\bar{r}_2^t]_+.$$

The last equation amounts to proportional regret matching.

- Boundary cases are obvious and can be treated as follows:
 - If $\bar{r}_1^t \le 0$ and $\bar{r}_2^t > 0$, then let $q^{t+1} =_{Def} (0,1)$.
 - If $\bar{r}_1^t > 0$ and $\bar{r}_2^t \le 0$, then let $q^{t+1} =_{Def} (1,0)$.
 - If all regret is non-positive, then play an action at random.

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

- $E[\bar{r}^{t+1}]$ is a convex combination of \bar{r}_+^t and $E[\Delta r^{t+1}]$.
- Since $E[\Delta r^{t+1}] \perp \bar{r}_+^t$, $E[\bar{r}^{t+1}]$ lies closer to the non-positive orthant than \bar{r}_+^t does, provided t is large.
- Ultimately, the result follows from Blackwell's approachability theorem (Strategic Learning and its Limits, 2004, Ch. 4).

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

- $E[\bar{r}^{t+1}]$ is a convex combination of \bar{r}_+^t and $E[\Delta r^{t+1}]$.
- Since $E[\Delta r^{t+1}] \perp \bar{r}_+^t$, $E[\bar{r}^{t+1}]$ lies closer to the non-positive orthant than \bar{r}_+^t does, provided t is large.
- Ultimately, the result follows from Blackwell's approachability theorem (Strategic Learning and its Limits, 2004, Ch. 4).

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

- $E[\bar{r}^{t+1}]$ is a convex combination of \bar{r}_+^t and $E[\Delta r^{t+1}]$.
- Since $E[\Delta r^{t+1}] \perp \bar{r}_+^t$, $E[\bar{r}^{t+1}]$ lies closer to the non-positive orthant than \bar{r}_+^t does, provided t is large.
- Ultimately, the result follows from Blackwell's approachability theorem (Strategic Learning and its Limits, 2004, Ch. 4).

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

- $E[\bar{r}^{t+1}]$ is a convex combination of \bar{r}_+^t and $E[\Delta r^{t+1}]$.
- Since $E[\Delta r^{t+1}] \perp \bar{r}_+^t$, $E[\bar{r}^{t+1}]$ lies closer to the non-positive orthant than \bar{r}_+^t does, provided t is large.
- Ultimately, the result follows from Blackwell's approachability theorem (Strategic Learning and its Limits, 2004, Ch. 4).

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

- $E[\bar{r}^{t+1}]$ is a convex combination of \bar{r}_+^t and $E[\Delta r^{t+1}]$.
- Since $E[\Delta r^{t+1}] \perp \bar{r}_+^t$, $E[\bar{r}^{t+1}]$ lies closer to the non-positive orthant than \bar{r}_+^t does, provided t is large.
- Ultimately, the result follows from Blackwell's approachability theorem (Strategic Learning and its Limits, 2004, Ch. 4).

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

- $E[\bar{r}^{t+1}]$ is a convex combination of \bar{r}_+^t and $E[\Delta r^{t+1}]$.
- Since $E[\Delta r^{t+1}] \perp \bar{r}_+^t$, $E[\bar{r}^{t+1}]$ lies closer to the non-positive orthant than \bar{r}_+^t does, provided t is large.
- Ultimately, the result follows from Blackwell's approachability theorem (Strategic Learning and its Limits, 2004, Ch. 4).

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

- $E[\bar{r}^{t+1}]$ is a convex combination of \bar{r}_+^t and $E[\Delta r^{t+1}]$.
- Since $E[\Delta r^{t+1}] \perp \bar{r}_+^t$, $E[\bar{r}^{t+1}]$ lies closer to the non-positive orthant than \bar{r}_+^t does, provided t is large.
- Ultimately, the result follows from Blackwell's approachability theorem (Strategic Learning and its Limits, 2004, Ch. 4).

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

Because at *A* does not know what *B* will play next, this is crucial.

■ $E[\bar{r}^{t+1}]$ is a convex combination of \bar{r}_+^t and $E[\Delta r^{t+1}]$.

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

- $E[\bar{r}^{t+1}]$ is a convex combination of \bar{r}_+^t and $E[\Delta r^{t+1}]$.
- Since $E[\Delta r^{t+1}] \perp \bar{r}_+^t$, $E[\bar{r}^{t+1}]$ lies closer to the non-positive orthant than \bar{r}_+^t does, provided t is large.

Expected incremental regret, $E[\Delta r^{t+1}]$ is made orthogonal to the current regret, independently of the unknown α^{t+1} .

- $E[\bar{r}^{t+1}]$ is a convex combination of \bar{r}_+^t and $E[\Delta r^{t+1}]$.
- Since $E[\Delta r^{t+1}] \perp \bar{r}_+^t$, $E[\bar{r}^{t+1}]$ lies closer to the non-positive orthant than \bar{r}_+^t does, provided t is large.
- Ultimately, the result follows from Blackwell's approachability theorem (Strategic Learning and its Limits, 2004, Ch. 4).

Part III: *ϵ*-Greedy Off-policy Regret Matching

 ϵ -greedy regret matching. Let $\epsilon > 0$ small.

- 1. **Explore**. Play randomly ϵ % of the time.
- 2. Exploit. Else, play off-policy regret matching.

 ϵ -greedy regret matching. Let $\epsilon > 0$ small.

- 1. **Explore**. Play randomly ϵ % of the time.
- 2. Exploit. Else, play off-policy regret matching.

Define off-policy regret for x in round t as

$$\bar{r}_x^t =_{Def} \bar{u}_x^t(E) - \bar{u}^t$$
, where $\bar{u}_x^t(E) = \left[\frac{1}{|E_x|} \sum_{t \in E_x} u(x^t, y^t) \right]$

and $E_x = \{ t \mid \text{player } A \text{ experimented in round } t \text{ and played } x \}.$

 ϵ -greedy regret matching. Let $\epsilon > 0$ small.

- 1. **Explore**. Play randomly ϵ % of the time.
- 2. Exploit. Else, play off-policy regret matching.

Define off-policy regret for x in round t as

$$\bar{r}_x^t =_{Def} \bar{u}_x^t(E) - \bar{u}^t$$
, where $\bar{u}_x^t(E) = \left[\frac{1}{|E_x|} \sum_{t \in E_x} u(x^t, y^t) \right]$

and $E_x = \{ t \mid \text{player } A \text{ experimented in round } t \text{ and played } x \}.$

■ Proposed as a forecasting heuristic by Foster and Vohra (1993).

 ϵ -greedy regret matching. Let $\epsilon > 0$ small.

- 1. **Explore**. Play randomly ϵ % of the time.
- 2. Exploit. Else, play off-policy regret matching.

Define off-policy regret for x in round t as

$$\bar{r}_x^t =_{Def} \bar{u}_x^t(E) - \bar{u}^t$$
, where $\bar{u}_x^t(E) = \left[\frac{1}{|E_x|} \sum_{t \in E_x} u(x^t, y^t) \right]$

and $E_x = \{ t \mid \text{player } A \text{ experimented in round } t \text{ and played } x \}.$

- Proposed as a forecasting heuristic by Foster and Vohra (1993).
- Does not need to know the actions of its opponents.

 ϵ -greedy regret matching. Let $\epsilon > 0$ small.

- 1. **Explore**. Play randomly ϵ % of the time.
- 2. Exploit. Else, play off-policy regret matching.

Define off-policy regret for x in round t as

$$\bar{r}_x^t =_{Def} \bar{u}_x^t(E) - \bar{u}^t$$
, where $\bar{u}_x^t(E) = \left[\frac{1}{|E_x|} \sum_{t \in E_x} u(x^t, y^t) \right]$

and $E_x = \{ t \mid \text{player } A \text{ experimented in round } t \text{ and played } x \}.$

- Proposed as a forecasting heuristic by Foster and Vohra (1993).
- Does not need to know the actions of its opponents.
- Turns out to estimate regrets.

Theorem (Foster et al., 1998). For all $\delta > 0$ there exists an $\epsilon > 0$ such that ϵ -greedy regret matching has at most δ regret.

Theorem (Foster et al., 1998). For all $\delta > 0$ there exists an $\epsilon > 0$ such that ϵ -greedy regret matching has at most δ regret.

If $\epsilon_t \to 0$ at a rate $\mathcal{O}(t^{-1/3})$, there is no regret in the long run.

Theorem (Foster et al., 1998). For all $\delta > 0$ there exists an $\epsilon > 0$ such that ϵ -greedy regret matching has at most δ regret.

If $\epsilon_t \to 0$ at a rate $\mathcal{O}(t^{-1/3})$, there is no regret in the long run.

Proof. Suppose there are *k* different actions.

Theorem (Foster *et al.*, 1998). For all $\delta > 0$ there exists an $\epsilon > 0$ such that ϵ -greedy regret matching has at most δ regret.

If $\epsilon_t \to 0$ at a rate $\mathcal{O}(t^{-1/3})$, there is no regret in the long run.

Proof. Suppose there are k different actions. Let $e^t \in \mathbb{R}^k$ such that

 $e_x^t = ($ player A explores at t and chooses x) ? 1:0.

Theorem (Foster et al., 1998). For all $\delta > 0$ there exists an $\epsilon > 0$ such that ϵ -greedy regret matching has at most δ regret.

If $\epsilon_t \to 0$ at a rate $\mathcal{O}(t^{-1/3})$, there is no regret in the long run.

Proof. Suppose there are k different actions. Let $e^t \in \mathbb{R}^k$ such that

 $e_x^t = ($ player A explores at t and chooses x) ? 1 : 0.

For each action *i*

$$Pr(x^t = i \mid A \text{ explores at round } t) = \frac{1}{k}.$$

Theorem (Foster *et al.*, 1998). For all $\delta > 0$ there exists an $\epsilon > 0$ such that ϵ -greedy regret matching has at most δ regret.

If $\epsilon_t \to 0$ at a rate $\mathcal{O}(t^{-1/3})$, there is no regret in the long run.

Proof. Suppose there are k different actions. Let $e^t \in \mathbb{R}^k$ such that

 $e_x^t = ($ player A explores at t and chooses x) ? 1 : 0.

For each action *i*

$$Pr(x^t = i \mid A \text{ explores at round } t) = \frac{1}{k}.$$

It follows that

$$E[e^t] = \left(\frac{\epsilon}{k}, \dots, \frac{\epsilon}{k}\right).$$

Define

$$z_x^t =_{Def} \left(\frac{\mathbf{k}}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

Define

$$z_x^t =_{Def} \left(\frac{\mathbf{k}}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

Define

$$z_x^t =_{Def} \left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

Define

$$z_x^t =_{Def} \left(\frac{\mathbf{k}}{\epsilon} \cdot e_x^t \cdot u(x, y^t)\right) - u(x, y^t).$$

$$E[z_x^t]$$

Define

$$z_x^t =_{Def} \left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

$$E[z_x^t] = E\left[\left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t)\right) - u(x, y^t)\right]$$

Define

$$z_x^t =_{Def} \left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

$$E[z_x^t] = E\left[\left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t)\right) - u(x, y^t)\right]$$
$$= \frac{k}{\epsilon} \cdot E\left[e_x^t \cdot u(x, y^t)\right] - E[u(x, y^t)]$$

Define

$$z_x^t =_{Def} \left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

$$E[z_x^t] = E\left[\left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t)\right) - u(x, y^t)\right]$$

$$= \frac{k}{\epsilon} \cdot E\left[e_x^t \cdot u(x, y^t)\right] - E[u(x, y^t)]$$

$$= \frac{k}{\epsilon} \cdot E[e_x^t] \cdot E[u(x, y^t)] - E[u(x, y^t)] \quad (e^t \text{ and } u^t \text{ are independent})$$

Define

$$z_x^t =_{Def} \left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

In words, z_x^t is the difference between the properly magnified empirical payoff for x and the (correct but) virtual payoff for x. It follows that

$$E[z_x^t] = E\left[\left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t)\right) - u(x, y^t)\right]$$

$$= \frac{k}{\epsilon} \cdot E\left[e_x^t \cdot u(x, y^t)\right] - E[u(x, y^t)]$$

$$= \frac{k}{\epsilon} \cdot E[e_x^t] \cdot E[u(x, y^t)] - E[u(x, y^t)] \quad (e^t \text{ and } u^t \text{ are independent})$$

$$= \frac{k}{\epsilon} \cdot \frac{\epsilon}{k} \cdot E[u(x, y^t)] - E[u(x, y^t)]$$

Define

$$z_x^t =_{Def} \left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

In words, z_x^t is the difference between the properly magnified empirical payoff for x and the (correct but) virtual payoff for x. It follows that

$$E[z_x^t] = E\left[\left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t)\right) - u(x, y^t)\right]$$

$$= \frac{k}{\epsilon} \cdot E\left[e_x^t \cdot u(x, y^t)\right] - E[u(x, y^t)]$$

$$= \frac{k}{\epsilon} \cdot E[e_x^t] \cdot E[u(x, y^t)] - E[u(x, y^t)] \quad (e^t \text{ and } u^t \text{ are independent})$$

$$= \frac{k}{\epsilon} \cdot \frac{\epsilon}{k} \cdot E[u(x, y^t)] - E[u(x, y^t)]$$

$$= 0.$$

Strong law of large numbers for dependent random variables. Let $\{w^t\}^t$ be a bounded sequence of possibly dependent random variables in R^k . Let $z^t = E[w^t | w^{t-1}, w^{t-2}, \dots, w^1] - w^t$, and \bar{z}^t the average of the z^t 's. Then $\lim_{t\to\infty} \bar{z}^t = 0$ with probability one.

^aPY refers to Loève, 1978, Book II, Th. 32.E.1.

Strong law of large numbers for dependent random variables. Let $\{w^t\}^t$ be a bounded sequence of possibly dependent random variables in R^k . Let $z^t = E[w^t | w^{t-1}, w^{t-2}, \dots, w^1] - w^t$, and \bar{z}^t the average of the z^t 's. Then $\lim_{t\to\infty} \bar{z}^t = 0$ with probability one.

^aPY refers to Loève, 1978, Book II, Th. 32.E.1.

We have

$$z_x^t =_{Def} \left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

Strong law of large numbers for dependent random variables. Let $\{w^t\}^t$ be a bounded sequence of possibly dependent random variables in R^k . Let $z^t = E[w^t | w^{t-1}, w^{t-2}, \dots, w^1] - w^t$, and \bar{z}^t the average of the z^t 's. Then $\lim_{t\to\infty} \bar{z}^t = 0$ with probability one.

^aPY refers to Loève, 1978, Book II, Th. 32.E.1.

We have

$$z_x^t =_{Def} \left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

and

$$E[z_x^t] = 0.$$

Strong law of large numbers for dependent random variables. Let $\{w^t\}^t$ be a bounded sequence of possibly dependent random variables in R^k . Let $z^t = E[w^t | w^{t-1}, w^{t-2}, \dots, w^1] - w^t$, and \bar{z}^t the average of the z^t 's. Then $\lim_{t\to\infty} \bar{z}^t = 0$ with probability one.

^aPY refers to Loève, 1978, Book II, Th. 32.E.1.

We have

$$z_x^t =_{Def} \left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

and

$$E[z_x^t] = 0.$$

If

$$\bar{z}^t =_{Def} \text{average of } z^s, s \leq t$$

Strong law of large numbers for dependent random variables. Let $\{w^t\}^t$ be a bounded sequence of possibly dependent random variables in R^k . Let $z^t = E[w^t | w^{t-1}, w^{t-2}, \dots, w^1] - w^t$, and \bar{z}^t the average of the z^t 's. Then $\lim_{t\to\infty} \bar{z}^t = 0$ with probability one.

^aPY refers to Loève, 1978, Book II, Th. 32.E.1.

We have

$$z_x^t =_{Def} \left(\frac{k}{\epsilon} \cdot e_x^t \cdot u(x, y^t) \right) - u(x, y^t).$$

and

$$E[z_x^t] = 0.$$

If

$$\bar{z}^t =_{Def} \text{average of } z^s, s \leq t$$

then from the strong law of large numbers for dependent random variables it follows that $\lim_{t\to\infty} \bar{z}^t = 0$ a.s.

$$\bar{z}_{x}^{t} = \underbrace{\frac{1}{t} \sum_{s=1}^{t} \frac{k}{\epsilon} \cdot e_{x}^{s} \cdot u(x, y^{s}) - \bar{u}^{t}}_{\text{scaled}} - \underbrace{\frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}) - \bar{u}^{t}}_{\text{true regret}}$$
scaled
empirical regret

Now write \bar{z}_x^t as follows (!):

$$\bar{z}_{x}^{t} = \underbrace{\frac{1}{t} \sum_{s=1}^{t} \frac{k}{\epsilon} \cdot e_{x}^{s} \cdot u(x, y^{s}) - \bar{u}^{t}}_{\text{scaled}} - \underbrace{\frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}) - \bar{u}^{t}}_{\text{true regret}}$$
scaled
empirical regret

1. Since $\lim_{t\to\infty} \bar{z}^t = 0$, scaled empirical regret converges to true regret a.s.

$$\bar{z}_{x}^{t} = \underbrace{\frac{1}{t} \sum_{s=1}^{t} \frac{k}{\epsilon} \cdot e_{x}^{s} \cdot u(x, y^{s}) - \bar{u}^{t}}_{\text{scaled}} - \underbrace{\frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}) - \bar{u}^{t}}_{\text{true regret}}$$
scaled
empirical regret

- 1. Since $\lim_{t\to\infty} \bar{z}^t = 0$, scaled empirical regret converges to true regret a.s.
- 2. ϵ % of the time *A* explores.

$$\bar{z}_{x}^{t} = \underbrace{\frac{1}{t} \sum_{s=1}^{t} \frac{k}{\epsilon} \cdot e_{x}^{s} \cdot u(x, y^{s}) - \bar{u}^{t}}_{\text{scaled}} - \underbrace{\frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}) - \bar{u}^{t}}_{\text{true regret}}$$
scaled
empirical regret

- 1. Since $\lim_{t\to\infty} \bar{z}^t = 0$, scaled empirical regret converges to true regret a.s.
- 2. ϵ % of the time *A* explores.
- 3. (1ϵ) % of the time *A* plays empirical regret

$$\bar{z}_{x}^{t} = \underbrace{\frac{1}{t} \sum_{s=1}^{t} \frac{k}{\epsilon} \cdot e_{x}^{s} \cdot u(x, y^{s}) - \bar{u}^{t}}_{\text{scaled}} - \underbrace{\frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}) - \bar{u}^{t}}_{\text{true regret}}$$
scaled
empirical regret

- 1. Since $\lim_{t\to\infty} \bar{z}^t = 0$, scaled empirical regret converges to true regret a.s.
- 2. ϵ % of the time *A* explores.
- 3. $(1 \epsilon)\%$ of the time *A* plays empirical regret \rightsquigarrow true regret.

$$\bar{z}_{x}^{t} = \underbrace{\frac{1}{t} \sum_{s=1}^{t} \frac{k}{\epsilon} \cdot e_{x}^{s} \cdot u(x, y^{s}) - \bar{u}^{t}}_{\text{scaled}} - \underbrace{\frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}) - \bar{u}^{t}}_{\text{true regret}}$$
scaled
empirical regret

- 1. Since $\lim_{t\to\infty} \bar{z}^t = 0$, scaled empirical regret converges to true regret a.s.
- 4. In the long run, empirical regret is within 2ϵ from true regret.

- 2. ϵ % of the time *A* explores.
- 3. (1ϵ) % of the time *A* plays empirical regret \rightsquigarrow true regret.

$$\bar{z}_{x}^{t} = \underbrace{\frac{1}{t} \sum_{s=1}^{t} \frac{k}{\epsilon} \cdot e_{x}^{s} \cdot u(x, y^{s}) - \bar{u}^{t}}_{\text{scaled}} - \underbrace{\frac{1}{t} \sum_{s=1}^{t} u(x, y^{s}) - \bar{u}^{t}}_{\text{true regret}}$$
scaled
empirical regret

- 1. Since $\lim_{t\to\infty} \bar{z}^t = 0$, scaled empirical regret converges to true regret a.s.
- 2. ϵ % of the time *A* explores.
- 3. $(1 \epsilon)\%$ of the time *A* plays empirical regret \rightsquigarrow true regret.

- 4. In the long run, empirical regret is within 2ϵ from true regret.
- 5. If ϵ is set to $\delta/2$, then empirical regret remains within $2 \cdot \delta/2$ from zero.

Author: Gerard Vreeswijk. Slides last modified on May 11^{th} , 2020 at 17:21

Regret matching can be traced to Blackwell's approachability theorem and Hannan's notion of universal consistency.

- Regret matching can be traced to Blackwell's approachability theorem and Hannan's notion of universal consistency.
- The diagram on regret matching is taken from Peyton Young, and Foster and Vohra (who formulate the problem from a decision theoretic point of view).

- Regret matching can be traced to Blackwell's approachability theorem and Hannan's notion of universal consistency.
- The diagram on regret matching is taken from Peyton Young, and Foster and Vohra (who formulate the problem from a decision theoretic point of view).
- The regret-matching algorithm and the analysis of its convergence to coarse correlated equilibria (a generalisation of Nash

equilibria) is given by Hart and Mas-Colell.

- Regret matching can be traced to Blackwell's approachability theorem and Hannan's notion of universal consistency.
- The diagram on regret matching is taken from Peyton Young, and Foster and Vohra (who formulate the problem from a decision theoretic point of view).
- The regret-matching algorithm and the analysis of its convergence to coarse correlated equilibria (a generalisation of Nash

equilibria) is given by Hart and Mas-Colell.

Blackwell, D. (1956). "Controlled random walks". *Proc. of the Int. Congress of Mathematicians*, North-Holland Publishing Comp., pp. 336-338.

- Regret matching can be traced to Blackwell's approachability theorem and Hannan's notion of universal consistency.
- The diagram on regret matching is taken from Peyton Young, and Foster and Vohra (who formulate the problem from a decision theoretic point of view).
- The regret-matching algorithm and the analysis of its convergence to coarse correlated equilibria (a generalisation of Nash

equilibria) is given by Hart and Mas-Colell.

Blackwell, D. (1956). "Controlled random walks". *Proc. of the Int. Congress of Mathematicians*, North-Holland Publishing Comp., pp. 336-338.

Hannan, J. F. (1957). "Approximation to Bayes risk in repeated plays". *Contributions to the Theory of Games*, **3**, pp. 97-139.

- Regret matching can be traced to Blackwell's approachability theorem and Hannan's notion of universal consistency.
- The diagram on regret matching is taken from Peyton Young, and Foster and Vohra (who formulate the problem from a decision theoretic point of view).
- The regret-matching algorithm and the analysis of its convergence to coarse correlated equilibria (a generalisation of Nash

equilibria) is given by Hart and Mas-Colell.

Blackwell, D. (1956). "Controlled random walks". *Proc. of the Int. Congress of Mathematicians*, North-Holland Publishing Comp., pp. 336-338.

Hannan, J. F. (1957). "Approximation to Bayes risk in repeated plays". *Contributions to the Theory of Games*, **3**, pp. 97-139.

Hart, S., and Mas-Colell, A. (2000). "A simple adaptive procedure leading to correlated equilibrium". *Econometrica*, **68**, pp. 1127-1150.

- Regret matching can be traced to Blackwell's approachability theorem and Hannan's notion of universal consistency.
- The diagram on regret matching is taken from Peyton Young, and Foster and Vohra (who formulate the problem from a decision theoretic point of view).
- The regret-matching algorithm and the analysis of its convergence to coarse correlated equilibria (a generalisation of Nash

equilibria) is given by Hart and Mas-Colell.

Blackwell, D. (1956). "Controlled random walks". *Proc. of the Int. Congress of Mathematicians*, North-Holland Publishing Comp., pp. 336-338.

Hannan, J. F. (1957). "Approximation to Bayes risk in repeated plays". *Contributions to the Theory of Games*, **3**, pp. 97-139.

Hart, S., and Mas-Colell, A. (2000). "A simple adaptive procedure leading to correlated equilibrium". *Econometrica*, **68**, pp. 1127-1150.

Foster, D., and Vohra, R. (1999). "Regret in the on-line decision problem". GEB: *Games and Economic Behavior*, **29**, pp. 7-36.

Author: Gerard Vreeswijk. Slides last modified on May 11^{th} , 2020 at 17:21

■ **Fictitious Play**. Monitor actions of opponent(s) and play a best response to most frequent actions. As opposed to no-regret, fictitious play is interested in the opponent's behaviour to predict future play.

- **Fictitious Play**. Monitor actions of opponent(s) and play a best response to most frequent actions. As opposed to no-regret, fictitious play is interested in the opponent's behaviour to predict future play.
- Smoothed fictitious play. With fictitious play, the probability to play sub-optimal responses is zero. Smoothed fictitious play plays sub-optimal responses proportional to their expected payoff, given opponents' play.

- **Fictitious Play**. Monitor actions of opponent(s) and play a best response to most frequent actions. As opposed to no-regret, fictitious play is interested in the opponent's behaviour to predict future play.
- Smoothed fictitious play. With fictitious play, the probability to play sub-optimal responses is zero. Smoothed fictitious play plays sub-optimal responses proportional to their expected payoff, given opponents' play.
- Conditional no-regret. Conditions on particular actions. There is regret if there is a pair of actions (x, x') such that, with hindsight, playing x' was better than playing x.

- **Fictitious Play**. Monitor actions of opponent(s) and play a best response to most frequent actions. As opposed to no-regret, fictitious play is interested in the opponent's behaviour to predict future play.
- Smoothed fictitious play. With fictitious play, the probability to play sub-optimal responses is zero. Smoothed fictitious play plays sub-optimal responses proportional to their expected payoff, given opponents' play.
- Conditional no-regret. Conditions on particular actions. There is regret if there is a pair of actions (x, x') such that, with hindsight, playing x' was better than playing x.
- **Satisficing Play**. While payoffs equal or supersede the average of past payoffs, keep playing the same action.