ECMM409 Coursework 1

Experiment Report

Implementation and Experimentation

1. First experiment

Initial parameters: gen = 10000 (Number of iterations), t = 2 (Tournament size), pm = 0.05 (Mutation rate), mu = 1 (Number of mutations), popsize=100 (Population size), n = 100 (Chromosome size), w = weight (List of weights of each bag), c = value (List of values of each),b = bag (List of number of each bag), W = 277 (Capacity limit) Experiment result:

Generation of optimal value: 1151

Optimal value: 3823

2. Results of different Tournament size(t)

t = 20, other parameters stay the same

Experiment result:

Generation of optimal value: 3901

Optimal value: 3722

t = 50, other parameters stay the same

Experiment result:

Generation of optimal value: 2360

Optimal value: 3754

According to the results of different t, when we increase the select pressure, the optimal value has not changed significantly, but converge more slowly.

3. Results of different Population size(popsize)

Popsize = 20 other parameters stay the same as the first experiment.

Experiment result:

Generation of optimal value: 1310

Optimal value: 3509

Popsize = 500 other parameters stay the same as the first experiment.

Experiment result:

Generation of optimal value: 8824

Optimal value: 4214

4. Results of different Mutation rate(pm)

Mutation rate=1, other parameters stay the same as the first experiment.

Experiment result:

Generation of optimal value: 2182

Optimal value: 4086

Mutation rate=0.5, other parameters stay the same as the first experiment.

Generation of optimal value: 951

Optimal value: 3707

Mutation rate=0.2, other parameters stay the same as the first experiment.

Generation of optimal value: 1283

Optimal value: 3913

Mutation rate=0.01, other parameters stay the same as the first experiment.

Generation of optimal value: 951

Optimal value: 3707

Analysis

Question 1:

gen = 10000 (Number of iterations), t = 2 (Tournament size), pm = 0.2 (Mutation rate), mu = 1 (Number of mutations), popsize=500 (Population size), n = 100 (Chromosome size), w = weight (List of weights of each bag), c = value (List of values of each),b = bag (List of number of each bag), W = 277 (Capacity limit)

In my experiments, this combination of parameters produces the best results, which ar e the optimal value: 4234, generation of optimal value: 8857, the weight of the optimal value: 275.4, selected bags of this optimal value: [2, 3, 4, 5, 6, 8, 9, 11, 12, 16, 19, 20, 21, 22, 24, 25, 27, 28, 31, 32, 33, 34, 36, 38, 40, 42, 44, 45, 46, 47, 48, 5 0, 51, 53, 54, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 73, 76, 77, 78, 81, 83, 84, 87, 89, 90, 91, 95, 96, 98, 100]

Question 2:

In this case, although we got the max value, converge too slowly, and according to the curve, we cannot rule out that 4234 is only a local optimal solution, so if increase the number of iterations, we may get better results. So, I try to change the generation number to 20000, the result is better, which is 4314 and converge in 17389th.

Question 3:

Base on the experiment of question 1, when I moved the mutation, set the mutation r ate = 0, the results changed to the optimal value: 4222 and the generation of optimal value: 7463

when I moved the crossover, the results changed to the optimal value: 3330 and the generation of optimal value: 1345, although the convergence is fast, the result is not good.

Question 4:

If my EA needs to work with a multi-objective version of this problem, the fitness function needs to be changed, because, in this task, I directly use the value to represent the fitness, but a multi-objective task needs to combine other parameters to calculate the fitness. Such as I can use the Pareto solution to calculate the fitness based on different elements.