Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	×

[5559]-116

S.E. (Mechanical and Automobile Engineering) (Second Semester)

EXAMINATION, 2019

ENGINEERING METALLURGY (2015 PATTERN)

Time: 2 Hours

Maximum Marks: 50

Please read the following instruction carefully:

- 1. Answer four questions: Q.No.1 or Q.No.2, Q.No.3 or Q.No.4, Q.No.5 or Q.No.6, Q.No.7 or Q.No.8
- 2. Neat diagram should be drawn wherever necessary
- 3. Use of non programmable electronic pocket calculator is allowed
- 4. Figures to the right indicate full marks. (Marks in square bracket are maximum marks.)

1	a	Explain with the help of neat, well labelled sketch, the term 'Dendrite'.	[4]marks
	b	Differentiate between solid solution and intermetallic compound.	[4]marks
	С	What are the variables that determine the microstructure of an alloy?	[4]marks
2	a	Define the following terms a) Eutectectic Transformation b) Grain c) Solvus line. d) Deoxidation:	[4] marks
	b	What is a spark test? What is its use?	[4]marks
	С	List the steps in process used to prepare a metallographic sample for observation under optical microscope.	[4]marks

3	a .	As the tempering temperature of a hardenend component is increased, the hardness of the component decreases, Explain why the hardness of the component decreases with temperature?	[4]marks
	b	Draw neat diagram of microstructures and indicate phases present and their amounts in the following plain carbon steels under equilibrium conditions: i. 0.4 % carbon steel ii. 1.2% carbon steel:	[4]marks
	С	Rank the following iron-carbon alloys and associated microstructures from the highest to the lowest tensile strength:	[4]marks
		(a) 0.25 wt% C with spheroidite (b) 0.25 wt% C with coarse pearlite (c) 0.60 wt% C with fine pearlite (d) 0.60 wt% C with coarse pearlite Justify your answer	
4	a	OR Sketch and label microstructure of the following steels – i. Hypoeutectoid steel ii. Eutectoid steel	[4]marks
	b	State two advantages of alloy steels over plain carbon steel and two advantages of plain carbon steel over alloy steel	[4]marks
-	С	What is martempering? What are the advantages of martempering over conventional hardening?	[4]marks
5	а	Explain why thicker sections are more susceptible to cracking during hardening heat treatment. Which heat treatment will you recommend to prevent cracking?	[5] marks:
	b	Mention the names of alloying elements used and percent of alloy used in the following steels- 1. T70 2.• XT75W18Cr4V1	[4]marks
	C .	Give two major differences between martensitic and pearlitic transformations.	[4]marks
6	a	OR What influence does Molybdenum (Mo) addition have on steel? Why is Mo used as an alloying element?	[5]marks
	ь	What is stainless steel? Why are these steels stainless?	[4]marks

С		
	Mention the names of alloying elements used and the amount in percent of alloy used in the following steels-	[4]marks
	1. C40 2. AISI 1040	
7 a	Differentiate between ferrous and on ferrous metals and alloys. Give examples of each.	[5]marks
ь	Why is it not advisable to repair by welding a structure made of non heat treatable Aluminium alloy?	[4]marks
С	What is the difference between natural and artificial aging	[4]marks
	process of a precipitation hardening alloy?	96
8 a	OR What is precipitation hardening? Explain how the hardness of	151-00 who
8 a	Aluminium—4.5% copper alloy can be increased by precipitation hardening? Illustrate with sketch.	[5]marks
ь	What is season cracking of brasses? How can it be avoided?	[4]marks
. с	Which alloy is used for soldering of electronic components? Why?	[4]marks
	~6·W	
		2019 9: X: 1. 6 x 3