A2版本机器人 灯控芯片AW20036QNR文档

一、灯控芯片的参数介绍以及效果实现

灯控芯片:

产品名称	封装	最大/小 供电电 压	最大 调光 电流	调光 电流 级别	调 光 混 色	拓扑结构	声光同步	LED 通 道
AW20036QNR 灯控芯片	WBQFN 4x4-32L	5.5/2.4 V	160 mA	256级	不支持	矩阵	不支持	36 通 道

RGB LED灯待定,这里以产品XL-3528RGBW-HM为例。

使用该款灯控芯片,在实际应用场景中,以一主三从多设备同步连接方式下,可以控制144个通道,即最多可以同步刷新144个单色LED或者48个RGB LED,亦或者使用多个单色LED和RGB混合搭配的方案。该灯控芯片支持3.3mA~160mA的全局最大电流输出,可以覆盖市面绝大部分LED的工作情况。功能上,该芯片支持呼吸灯效果,支持每个LED的单独控制。

可能需要注意的问题:由于该灯控芯片不支持PWM控制,它的每个灯的光强直接由电流大小控制,它的 混色调光效果可能并不细腻。

二、灯控芯片介绍

AW20036QNR灯控芯片(以下简称"灯控芯片")是艾为电子一款带有自主呼吸功能、以I2C通信方式驱动 3x12 LED的芯片,支持任一独立的LED亮度控制。

灯控芯片支持功能如下:

含有3个可控电流开关与12个灌电流(current sink),单个灯控芯片最多控制36个LED 或 12个 RGB LED

矩阵演示模式、三组用于自主呼吸功能或组调光控制功能的控制器

16级可控全局电流输出、独立LED控制、64级独立LED的DIM电流控制和256级独立LED的FADE电流控制

400kHZ I2C通信传输、支持INTN中断输出

多设备下的快速刷新与同时显示、多设备同下含有4个可选地址

低压锁定功能(UVLO)与过温保护功能(OTP)

主要控制引脚:

Package_DFN_QFN:QFN-32-1EP_4x4mm_P0.4mm_EP2.9x2.9mm AW20036QNR 电源输入。29 VDD VBA[‡]3,23 } 輸入。<mark>31</mark> INTN C1 22 输出 C2 21 輸出 C3 20 輸出 SCL ₩入 <u>26</u> SDA ₩X 32 HWEN R1 R2 R3 3 输出 R4 4 • * R5 R6 6 R7 R8 8 輪出 R9 9 输出 R10 10 輪出 ₩X 24 CLKIO R11 11 输出 R12 12 输出 GND 28 輸入

上图仅供参考

引脚 (编 号)	描述
R1~R12 (1~12)	灌直流(Constant current sink):连接至LED阴极
C3~C1 (20~22)	电流开关(Current switch): 在矩阵演示模式下连接至LED的阳极
CLKIO (24)	时钟同步引脚:多设备模式下,主设备与从设备使用CLKIO同步时钟
AD (25)	I2C设备地址选择: 主从设备可连接至 GND / VDD / SCL / SDA 来设置不同的设备地址 0x3A / 0x3B / 0x38 / 0x39
SDA (26)	I2C通信接口的串口数据 I/O
SCL (27)	I2C通信接口的串口时钟输入信号
INTN (31)	中断输出: 开漏输出,低电平激活
HWEN (32)	硬件使能控制: 高电平激活

官方功能模块图:

官方多设备模式下模块连接图(四设备时钟同步):这个方式连接时,可以同步刷新144个通道

I2C通信接口时间要求:

PARAMETER			ТҮР	МАХ	UNIT
F _{SCL}	Interface Clock frequency	-		400	kHz
T _{HD:STA}	(Repeat-start) Start condition hold time	0.6		-	μs
T _{LOW}	Low level width of SCL	1.3		-	μs
T _{HIGH}	High level width of SCL	0.6		-	μs
T _{SU:STA}	(Repeat-start) Start condition setup time	0.6		-	μs
T _{HD:DAT}	Data hold time	0		-	μs
T _{SU:DAT}	Data setup time	0.1		-	μs
T _R	Rising time of SDA and SCL	-		0.3	μs
T _F	Falling time of SDA and SCL	\-(-)		0.3	μs
T _{SU:STO}	Stop condition setup time	0.6	•	-	μs
T _{BUF}	Time between start and stop condition	1.3		-	μs

芯片启动时间顺序:

从芯片断电时间点开始,灯控芯片需要从**待机模式(Standby Mode)**进入到**活动模式(Active Mode)**后才可以使用I2C通信配置相关寄存器数据。

灯控芯片在**断电状态(Shut-down)**下,当开始供电并且HWEN引脚被拉高的瞬间,芯片进入待机模式,并且需要至少等待200us以等待过温保护信息载入完毕。

这之后,当SLPCR寄存器(PAGE: 0x00, Address: 0x01)中的SLEEP位置"0"时,灯控芯片进入活动模式,此时需要至少等待200us以等待晶振稳定和Dispaly SRAM初始化。等待完毕后,便可以使用I2C通信接口配置Page0~Page5的寄存器数据。

配置模式:

断电模式: 当HWEN引脚拉低时,内部电路和配置寄存器重置,灯控芯片处于断电模式;

待机模式:当HWEN引脚拉高或者在活动模式下往SLPCR寄存器写入0x80(即SLEEP位置"1"),灯控芯片处于待机模式,此时仅能通过I2C方式配置Page0的寄存器。

活动模式:灯控芯片在待机模式下将0x00写入SLPCR寄存器(即SLEEP位置"0"),设备进入活动模式,此时可以用I2C方式配置所有页的寄存器。

软件中断:在待机模式或活动模式下往PSTR寄存器(page0, address=0x02)写入0x01,灯控芯片将重置所有内部电路和配置寄存器。之后需要至少1ms才能获取新的I2C数据命令。

I2C通信接口: 灯控芯片支持I2C串口总线和数据传输保护,在I2C总线上作为从设备运行,并且支持最大400KHz的的I2C通信速率,需要配置SCL引脚和SDA引脚为开楼输出。设备支持I2C通信接口以1.8V~3.3V范围的有效高电平。

设备地址: I2C设备地址是7位(A7~A1),A0是读/写位(Read=1/Write=0),根据AD引脚连接的不同位置(GND/VDD/SCL/SDA),设备地址将被定义为 0x3A / 0x3B / 0x38 / 0x39,[7:3]位被固定为 01110。

AD pin	A7:A3	A2:A1	A0	Device address
VDD /	01110	11	0/1	3BH
GND		10		3AH
SCL		00		38H
SDA		01		39H

欠压锁定功能(Under Voltage Lock Out)

功能介绍:该功能包括欠压锁定UVLOPE和欠压锁定检测UVLOE;欠压锁定开启后,芯片如果检测到引脚VDD电压值低于阈值,将立刻停止LED驱动,并立即进入待机模式;而当引脚VDD的电压值升高到阈值以上时,芯片将再次进入活动模式;欠压锁定检测开启后,芯片如果检测到引脚VDD电压值低于阈值,ISRFLT寄存器(page0,address=0x0B)的UVLOIS将被置"1",直至I2C读取一次ISRFLT寄存器状态后复位;

开启UVLO: FLTCFG1寄存器(page0, address=0x09)的UVLOPE位被置"1",开启欠压保护功能;

关闭UVLO: FLTCFG1寄存器的UVLOPE被置"0",关闭欠压锁定功能; UVLOE被置"0",关闭欠压锁定检测功能;

其他信息:默认状态下欠压锁定和欠压锁定检测功能关闭;可以在FLTCFG2寄存器的 [3:2] UVTH位设定电压阈值 2.0 / 2.1 / 2.2 / 2.3 伏;也可以为这个欠压锁定功能设置中断使能,当FLTCFG1寄存器的UVIE位和UVLOIS位被置"1"时,一旦欠压锁定功能触发,中断请求将会把INTN引脚下拉至低电平来触发。

过温保护功能(Over Temperature Protection)

功能介绍:该功能包括过温保护OTPE与过温检测OTE;过温保护功能开启后,一旦过温条件被触发,灯控芯片将停止驱动LED,并进入待机模式。而当温度低于阈值后,灯控芯片将返回至活动模式;过温检测功能被开启后,一旦过温条件被触发,ISRFLT寄存器(page0, address=0x0B)的OTPIS位将被置"1",直至I2C读取一次ISRFLT寄存器状态后复位;

开启OTP: FLTCFG1寄存器(page0, address=0x09)的OTPE位被置"1",开启过温检测;当FLTCFG1寄存器的OTE位被置"1",开启过温保护检测;

关闭OTP: FLTCFG1寄存器的OTPE位被置"0",关闭过温检测; 当OTE位被置"0"时,关闭过温检测;

矩阵扫描演示模式

这是一个LED的演示模式,矩阵灯会一列列点亮LED,其中R1~R12控制每一行的LED,C1~C3控制每一列的LED。扫描频率是555Hz。

独立LED电流控制

每一个LED的光强都能被独立配置,其光强级别由Imax、DIM、FADE和DUTY四个参数确定。

当然,也可以通过配置LEDONx寄存器(page0, address=0x31~0x36)来直接控制LED的亮灭,但如果在GCCR寄存器中使ALLON位置"1",那么所有LED将被开启并忽略LEDONx寄存器的内容。

具体来说,Imax是所有LED的全局电流,在GCCR寄存器(page0, address=0x03)的IMAX位中可配置 3.3mA~160mA。

DIM是DIMn寄存器(page1, address=0x00~0x23, n=0~35)配置的单个直流电流(the individual DC current),FADE是FADEm寄存器(page2, address = 0x00~0x23, m=0~35)配置的单个直流缩放控制(the individual scaling control of DC current),DUTY是SIZE寄存器(page0, address=0x80)配置的扫描显示的占空比,与电流开关的数量有关。

自主呼吸模式

功能介绍:呼吸灯模式需要配置12个参数:FADE参数、DIM参数、LED开关、PATn模式控制器、FADEH与FADEL

参数、T1: 淡入时间(fade-in time)、T2: LED亮度保持时间(keep-in time)、T3: 淡出时间(fade-out time)、T4: LED熄灭时间(Led-off time)、重复次数(Repeat times)、开始切入点(start point)、结束切出点(stop point)。然后在寄存器上配置自主呼吸功能打开即可。

开启自主呼吸功能: PATnCFG寄存器(PageO, address=0x56~0x58, n=0,1,2)的PATMD位置"1",

关闭自主呼吸功能: PATGO寄存器(PageO, address=0x59)的RUNx位置"0";

手动控制呼吸模式

功能介绍:手动控制呼吸模式,除了自主呼吸模式需要设置的参数以外,还可以设置和FADE值相关的淡入淡出倾向(ramp up to FADEH and ramp down to FADEL)。

开启自主呼吸功能: PATnCFG寄存器 (PageO, address=0x56~0x58, n=0,1,2) 的PATMD位置"0",

关闭自主呼吸功能: PATGO寄存器 (Page0, address=0x59) 的RUNx位置"0";

多设备同步

功能介绍:开启多设备同步,可以使多块灯控芯片驱动以主从模式同步驱动至多144个通道;开启这个功能时,需要将四个灯控芯片的AD引脚分别连接至 GND / VDD / SDA /SCL以获得不同的设备地址;将其中一个灯控芯片作为主设备(Master),为其CLKSYS寄存器(page0, address=0x05)的CLK_IO与CLK_SEL设置为"1"与"0"以输出内容时钟至CLKIO引脚;其余从设备(Slave),为其CLKSYS寄存器的CLK_IO与CLK_SEL设置为"0"与"1"以获取CLKIO引脚的外部时钟信号。