C	ontents		8 Geometry 1	19
_			8.1 Default Code	19
			8.2 Convex hull*	
1	Basic	1	8.3 Heart	
-		1	8.5 Polar Angle Sort*	
		1	8.6 Intersection of two circles*	
		1	8.7 Intersection of polygon and circle*	20
	1.4 readchar	1		20
	1.5 Black Magic	2		20
			'	20
2	Graph	2		20
	2.1 BCC Vertex*	2	'	21 21
	2.2 Bridge*	2		22
	2.3 2SAT (SCC)*	2	8.15Triangulation Vonoroi*	
	2.4 MinimumMeanCycle*	3	8.16Tangent line of two circles	
	2.5 Virtual Tree*	3	<u> </u>	23
	2.6 Maximum Clique Dyn*	3	8.18PointSegDist	
	2.7 Minimum Steiner Tree*	3	8.19PointInConvex	
		4	8.20Minkowski Sum*	
	2.9 Minimum Arborescence*	4	8.21RotatingSweepLine	24
		4	0.5300	٠,
		5	9 Else 9.1 Mo's Alogrithm(With modification)	24
	2.12NumberofMaximalClique*	5	9.2 Mo's Alogrithm On Tree	
_	Partie Characterist	_	9.3 Additional Mo's Algorithm Trick	
3		5	9.4 Hilbert Curve	
		5	9.5 DynamicConvexTrick*	
		5	9.6 All LCS*	
	3.3 Heavy light Decomposition	6	9.7 DLX*	25
	•	6	9.8 Matroid Intersection	25
		6	9.9 AdaptiveSimpson	
	3.6 KDTree	7	9.10Simulated Annealing	26
1	Flow/Matching	7	40 Duthan	20
-		7	10 Python 2 10.1Misc	26
		8	10.1P15C	20
		8		
		9		
	4.5 SW-mincut	٩	1 Basic	
		9		
	4.7 Gomory Hu tree*			
	4.8 Minimum Cost Circulation		1.1 Shell script	
	4.9 Flow Models		F -	
	4.5 1 200 1100 (23)	Ĭ	g++ -O2 -std=c++17 -Dbbq -Wall -Wextra -Wshadow -o \$1	
5	String 1:	1	\$1.cpp	
	5.1 KMP	1	chmod +x compile.sh	
	5.2 Z-value*	1	Chimod TX Compile:311	
	5.3 Manacher*	1		
	5.4 Suffix Array	1	1.2 Default code	
	5.5 SAIS*	1	212 BCIGGIC COGC	
	5.6 Aho-Corasick Automatan	2	<pre>#include<bits stdc++.h=""></bits></pre>	
	5.7 Smallest Rotation	2		
	5.8 De Bruijn sequence*	2	using namespace std;	
	5.9 SAM	2	typedef long long ll;	
	5.10PalTree*	2	typedef pair <int, int=""> pii;</int,>	
			<pre>typedef pair<ll, ll=""> pll; #dofine V finet</ll,></pre>	
6	Math 1	-	#define X first	
	6.1 ax+by=gcd*	i	#define Y second	
	6.2 floor and ceil		#define SZ(a) ((int)a.size())	
	6.3 Gaussian integer gcd	3	<pre>#define ALL(v) v.begin(), v.end()</pre>	
	6.4 Miller Rabin*		#define pb push_back	
	6.5 Fraction			
	6.6 Simultaneous Equations		4.3 vima	
	6.7 Pollard Rho*	3	1.3 vimrc	
	6.8 Simplex Algorithm	4		
	6.8.1 Construction	4	"This file should be placed at ~/.vimrc"	
	6.9 Schreier-Sims Algorithm*	4	se nu ai hls et ru ic is sc cul	
	6.10 chinese Remainder		se re=1 ts=4 sts=4 sw=4 ls=2 mouse=a	
	6.11Factorial without prime factor*		syntax on	
	6.12QuadraticResidue*		hi cursorline cterm=none ctermbg=89	
	6.13PiCount*		set bg=dark	
	6.14Discrete Log*		<pre>inoremap {<cr> {<cr>}<esc>ko<tab></tab></esc></cr></cr></pre>	
	6.15Primes			
	6.16Theorem			
	6.17Estimation		1.4 readchar	
	6.18Euclidean Algorithms			
	6.19General Purpose Numbers		<pre>inline char readchar() {</pre>	
	6.20Tips for Generating Functions	7	static const size_t bufsize = 65536;	
_	Polament of	_	static char buf[bufsize];	
1	Polynomial 1	i	static char *p = buf, *end = buf;	
	7.1 Fast Fourier Transform	i	if (p == end) end = buf + fread_unlocked(buf, 1,	
	7.2 Number Theory Transform*	i	· · · · · · · · · · · · · · · · · · ·	
	7.3 Fast Walsh Transform*		<pre>bufsize, stdin), p = buf; return *n++</pre>	
	7.4 Polynomial Operation	- 1	return *p++;	
	7.5 Value Polynomial		}	
	7.6 Newton's Method	ŏ		

1.5 Black Magic

```
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/assoc_container.hpp> // rb_tree
#include <ext/rope> // rope
using namespace __gnu_pbds;
using namespace __gnu_cxx; // rope
typedef
         __gnu_pbds::priority_queue<<mark>int</mark>> heap;
int main() {
 heap h1, h2; // max heap
  h1.push(1), h1.push(3), h2.push(2), h2.push(4);
 h1.join(h2); // h1 = {1, 2, 3, 4}, h2 = {};
 tree<11, null_type, less<11>, rb_tree_tag,
      tree_order_statistics_node_update> st;
 tree<11, 11, less<11>, rb_tree_tag,
      tree_order_statistics_node_update> mp;
 for (int x : {0, 2, 3, 4}) st.insert(x);
 cout << *st.find_by_order(2) << st.order_of_key(1) <<</pre>
       endl; //31
 rope<char> *root[10]; // nsqrt(n)
 root[0] = new rope<char>();
 root[1] = new rope<char>(*root[0]);
 // root[1]->insert(pos, 'a');
 // root[1]->at(pos); 0-base
 // root[1]->erase(pos, size);
    _int128_t,__float128_t
// for (int i = bs._Find_first(); i < bs.size(); i = bs</pre>
    ._Find_next(i));
```

2 Graph

2.1 BCC Vertex*

```
vector<int> G[N]; // 1-base
vector<int> nG[N], bcc[N];
int low[N], dfn[N], Time;
int bcc_id[N], bcc_cnt; // 1-base
bool is_cut[N]; // whether is av
bool cir[N];
int st[N], top;
void dfs(int u, int pa = -1) {
  int child = 0;
  low[u] = dfn[u] = ++Time;
  st[top++] = u;
  for (int v : G[u])
    if (!dfn[v]) {
      dfs(v, u), ++child;
      low[u] = min(low[u], low[v]);
      if (dfn[u] <= low[v]) {</pre>
        is_cut[u] = 1;
        bcc[++bcc_cnt].clear();
        int t;
        do {
          bcc_id[t = st[--top]] = bcc_cnt;
          bcc[bcc_cnt].push_back(t);
        } while (t != v);
        bcc_id[u] = bcc_cnt;
        bcc[bcc_cnt].pb(u);
    } else if (dfn[v] < dfn[u] && v != pa)</pre>
      low[u] = min(low[u], dfn[v]);
  if (pa == -1 && child < 2) is_cut[u] = 0;</pre>
void bcc_init(int n) {
  Time = bcc_cnt = top = 0;
  for (int i = 1; i <= n; ++i)</pre>
    G[i].clear(), dfn[i] = bcc_id[i] = is_cut[i] = 0;
void bcc_solve(int n) {
  for (int i = 1; i <= n; ++i)</pre>
    if (!dfn[i]) dfs(i);
  // block-cut tree
  for (int i = 1; i <= n; ++i)</pre>
    if (is_cut[i])
      bcc_id[i] = ++bcc_cnt, cir[bcc_cnt] = 1;
```

```
for (int i = 1; i <= bcc_cnt && !cir[i]; ++i)
    for (int j : bcc[i])
    if (is_cut[j])
        nG[i].pb(bcc_id[j]), nG[bcc_id[j]].pb(i);
}</pre>
```

2.2 Bridge*

```
int low[N], dfn[N], Time; // 1-base
vector<pii> G[N], edge;
vector<bool> is_bridge;
void init(int n) {
  for (int i = 1; i <= n; ++i)</pre>
    G[i].clear(), low[i] = dfn[i] = 0;
void add_edge(int a, int b) {
 G[a].pb(pii(b, SZ(edge))), G[b].pb(pii(a, SZ(edge)));
  edge.pb(pii(a, b));
void dfs(int u, int f) {
 dfn[u] = low[u] = ++Time;
  for (auto i : G[u])
    if (!dfn[i.X])
      dfs(i.X, i.Y), low[u] = min(low[u], low[i.X]);
    else if (i.Y != f) low[u] = min(low[u], dfn[i.X]);
  if (low[u] == dfn[u] && f != -1) is_bridge[f] = 1;
void solve(int n) {
 is_bridge.resize(SZ(edge));
  for (int i = 1; i <= n; ++i)</pre>
    if (!dfn[i]) dfs(i, -1);
```

2.3 2SAT (SCC)*

```
struct SAT { // 0-base
  int low[N], dfn[N], bln[N], n, Time, nScc;
  bool instack[N], istrue[N];
  stack<int> st;
  vector<int> G[N], SCC[N];
  void init(int _n) {
    n = _n; // assert(n * 2 <= N);</pre>
    for (int i = 0; i < n + n; ++i) G[i].clear();</pre>
  void add_edge(int a, int b) { G[a].pb(b); }
  int rv(int a) {
    if (a >= n) return a - n;
    return a + n;
  void add_clause(int a, int b) {
    add_edge(rv(a), b), add_edge(rv(b), a);
  void dfs(int u) {
    dfn[u] = low[u] = ++Time;
    instack[u] = 1, st.push(u);
    for (int i : G[u])
      if (!dfn[i])
         dfs(i), low[u] = min(low[i], low[u]);
      else if (instack[i] && dfn[i] < dfn[u])</pre>
        low[u] = min(low[u], dfn[i]);
    if (low[u] == dfn[u]) {
      int tmp;
      do {
        tmp = st.top(), st.pop();
instack[tmp] = 0, bln[tmp] = nScc;
      } while (tmp != u);
      ++nScc;
    }
  bool solve() {
    Time = nScc = 0;
    for (int i = 0; i < n + n; ++i)</pre>
      SCC[i].clear(), low[i] = dfn[i] = bln[i] = 0;
    for (int i = 0; i < n + n; ++i)</pre>
      if (!dfn[i]) dfs(i);
    for (int i = 0; i < n + n; ++i) SCC[bln[i]].pb(i);</pre>
```

```
for (int i = 0; i < n; ++i) {
    if (bln[i] == bln[i + n]) return false;
    istrue[i] = bln[i] < bln[i + n];
    istrue[i + n] = !istrue[i];
    }
    return true;
}
</pre>
```

2.4 MinimumMeanCycle*

```
11 road[N][N]; // input here
struct MinimumMeanCycle {
  11 dp[N + 5][N], n;
  pll solve() {
    11 a = -1, b = -1, L = n + 1;
    for (int i = 2; i <= L; ++i)
      for (int k = 0; k < n; ++k)
        for (int j = 0; j < n; ++j)</pre>
          dp[i][j] =
            min(dp[i - 1][k] + road[k][j], dp[i][j]);
    for (int i = 0; i < n; ++i) {
      if (dp[L][i] >= INF) continue;
      11 ta = 0, tb = 1;
      for (int j = 1; j < n; ++j)</pre>
        if (dp[j][i] < INF &&</pre>
          ta * (L - j) < (dp[L][i] - dp[j][i]) * tb)
          ta = dp[L][i] - dp[j][i], tb = L - j;
      if (ta == 0) continue;
      if (a == -1 || a * tb > ta * b) a = ta, b = tb;
    if (a != -1) {
      ll g = \_gcd(a, b);
      return pll(a / g, b / g);
    return pll(-1LL, -1LL);
  void init(int _n) {
    for (int i = 0; i < n; ++i)
      for (int j = 0; j < n; ++j) dp[i + 2][j] = INF;
};
```

2.5 Virtual Tree*

```
vector<int> vG[N];
int top, st[N];
void insert(int u) {
 if (top == -1) return st[++top] = u, void();
  int p = LCA(st[top], u);
  if (p == st[top]) return st[++top] = u, void();
 while (top \Rightarrow 1 && dep[st[top - 1]] \Rightarrow dep[p])
    vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
   vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
void reset(int u) {
  for (int i : vG[u]) reset(i);
  vG[u].clear();
void solve(vector<int> &v) {
 top = -1;
  sort(ALL(v),
  [&](int a, int b) { return dfn[a] < dfn[b]; });
for (int i : v) insert(i);</pre>
 while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
  // do something
  reset(v[0]);
```

2.6 Maximum Clique Dyn*

```
const int N = 150;
struct MaxClique { // Maximum Clique
  bitset<N> a[N], cs[N];
```

```
int ans, sol[N], q, cur[N], d[N], n;
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; i++) a[i].reset();</pre>
  void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
  void csort(vector<int> &r, vector<int> &c) {
    int mx = 1, km = max(ans - q + 1, 1), t = 0,
        m = r.size();
    cs[1].reset(), cs[2].reset();
    for (int i = 0; i < m; i++) {
  int p = r[i], k = 1;</pre>
       while ((cs[k] & a[p]).count()) k++;
       if (k > mx) mx++, cs[mx + 1].reset();
      cs[k][p] = 1;
      if (k < km) r[t++] = p;
    c.resize(m);
    if (t) c[t - 1] = 0;
    for (int k = km; k \le mx; k++)
      for (int p = cs[k]._Find_first(); p < N;</pre>
           p = cs[k]._Find_next(p))
         r[t] = p, c[t] = k, t++;
  void dfs(vector<int> &r, vector<int> &c, int 1,
    bitset<N> mask) {
    while (!r.empty()) {
      int p = r.back();
       r.pop_back(), mask[p] = 0;
      if (q + c.back() <= ans) return;</pre>
      cur[q++] = p;
      vector<int> nr, nc;
      bitset<N> nmask = mask & a[p];
       for (int i : r)
         if (a[p][i]) nr.push_back(i);
      if (!nr.empty()) {
         if (1 < 4) {
           for (int i : nr)
             d[i] = (a[i] \& nmask).count();
           sort(nr.begin(), nr.end(),
             [&](int x, int y) { return d[x] > d[y]; });
         csort(nr, nc), dfs(nr, nc, l + 1, nmask);
      } else if (q > ans) ans = q, copy_n(cur, q, sol);
       c.pop_back(), q--;
  int solve(bitset<N> mask = bitset<N>(
               string(N, '1'))) { // vertex mask
    vector<int> r, c;
    ans = q = 0;
    for (int i = 0; i < n; i++)</pre>
      if (mask[i]) r.push_back(i);
     for (int i = 0; i < n; i++)</pre>
      d[i] = (a[i] \& mask).count();
     sort(r.begin(), r.end(),
      [&](int i, int j) { return d[i] > d[j]; });
    csort(r, c), dfs(r, c, 1, mask);
    return ans; // sol[0 ~ ans-1]
  }
} graph;
```

2.7 Minimum Steiner Tree*

```
for (int k = 0; k < n; ++k)
       for (int i = 0; i < n; ++i)</pre>
         for (int j = 0; j < n; ++j)</pre>
           dst[i][j] =
             min(dst[i][j], dst[i][k] + dst[k][j]);
  int solve(const vector<int> &ter) {
    shortest_path();
    int t = SZ(ter);
    for (int i = 0; i < (1 << t); ++i)
    for (int j = 0; j < n; ++j) dp[i][j] = INF;
for (int i = 0; i < n; ++i) dp[0][i] = vcost[i];</pre>
    for (int msk = 1; msk < (1 << t); ++msk) {</pre>
       if (!(msk & (msk - 1))) {
         int who = __lg(msk);
         for (int i = 0; i < n; ++i)</pre>
           dp[msk][i] =
             vcost[ter[who]] + dst[ter[who]][i];
       for (int i = 0; i < n; ++i)
         for (int submsk = (msk - 1) & msk; submsk;
              submsk = (submsk - 1) \& msk)
           dp[msk][i] = min(dp[msk][i],
             dp[submsk][i] + dp[msk ^ submsk][i] -
               vcost[i]);
       for (int i = 0; i < n; ++i) {</pre>
         tdst[i] = INF;
         for (int j = 0; j < n; ++j)
           tdst[i] =
             min(tdst[i], dp[msk][j] + dst[j][i]);
       for (int i = 0; i < n; ++i) dp[msk][i] = tdst[i];</pre>
    int ans = INF;
    for (int i = 0; i < n; ++i)</pre>
      ans = min(ans, dp[(1 << t) - 1][i]);
    return ans;
  }
};
```

2.8 Dominator Tree*

```
struct dominator_tree { // 1-base
  vector<int> G[N], rG[N];
  int n, pa[N], dfn[N], id[N], Time;
int semi[N], idom[N], best[N];
  vector<int> tree[N]; // dominator_tree
  void init(int _n) {
   n = _n;
for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), rG[i].clear();
  void add_edge(int u, int v) {
   G[u].pb(v), rG[v].pb(u);
  void dfs(int u) {
    id[dfn[u] = ++Time] = u;
    for (auto v : G[u])
      if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
  int find(int y, int x) {
    if (y <= x) return y;</pre>
    int tmp = find(pa[y], x);
    if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
    return pa[y] = tmp;
  void tarjan(int root) {
    Time = ∅;
    for (int i = 1; i <= n; ++i) {</pre>
      dfn[i] = idom[i] = 0;
      tree[i].clear();
      best[i] = semi[i] = i;
    dfs(root);
    for (int i = Time; i > 1; --i) {
      int u = id[i];
      for (auto v : rG[u])
        if (v = dfn[v]) {
          find(v, i);
          semi[i] = min(semi[i], semi[best[v]]);
```

```
}
tree[semi[i]].pb(i);
for (auto v : tree[pa[i]]) {
    find(v, pa[i]);
    idom[v] =
        semi[best[v]] == pa[i] ? pa[i] : best[v];
}
tree[pa[i]].clear();
}
for (int i = 2; i <= Time; ++i) {
    if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
    tree[id[idom[i]]].pb(id[i]);
}
}
}
</pre>
```

2.9 Minimum Arborescence*

```
struct zhu_liu { // O(VE)
  struct edge {
    int u, v;
    11 w;
  };
  vector<edge> E; // 0-base
  int pe[N], id[N], vis[N];
  11 in[N];
  void init() { E.clear(); }
  void add_edge(int u, int v, ll w) {
    if (u != v) E.pb(edge{u, v, w});
  11 build(int root, int n) {
    ll ans = 0;
    for (;;) {
      fill_n(in, n, INF);
      for (int i = 0; i < SZ(E); ++i)</pre>
        if (E[i].u != E[i].v && E[i].w < in[E[i].v])</pre>
          pe[E[i].v] = i, in[E[i].v] = E[i].w;
      for (int u = 0; u < n; ++u) // no solution</pre>
        if (u != root && in[u] == INF) return -INF;
      int cntnode = 0;
      fill_n(id, n, -1), fill_n(vis, n, -1);
      for (int u = 0; u < n; ++u) {
        if (u != root) ans += in[u];
        int v = u:
        while (vis[v] != u && !~id[v] && v != root)
          vis[v] = u, v = E[pe[v]].u;
         if (v != root && !~id[v]) {
           for (int x = E[pe[v]].u; x != v;
                x = E[pe[x]].u)
             id[x] = cntnode;
           id[v] = cntnode++;
        }
      if (!cntnode) break; // no cycle
      for (int u = 0; u < n; ++u)
        if (!~id[u]) id[u] = cntnode++;
      for (int i = 0; i < SZ(E); ++i) {</pre>
        int v = E[i].v:
        E[i].u = id[E[i].u], E[i].v = id[E[i].v];
        if (E[i].u != E[i].v) E[i].w -= in[v];
      }
      n = cntnode, root = id[root];
    }
    return ans;
};
```

2.10 Vizing's theorem

```
auto color = [&](int u, int v, int c) {
   int p = G[u][v];
    G[u][v] = G[v][u] = c;
    C[u][c] = v, C[v][c] = u;
    C[u][p] = C[v][p] = 0;
    if (p) X[u] = X[v] = p;
    else update(u), update(v);
    return p;
  auto flip = [&](int u, int c1, int c2) {
    int p = C[u][c1];
    swap(C[u][c1], C[u][c2]);
if (p) G[u][p] = G[p][u] = c2;
    if (!C[u][c1]) X[u] = c1;
    if (!C[u][c2]) X[u] = c2;
    return p;
  for (int i = 1; i <= N; i++) X[i] = 1;
  for (int t = 0; t < E.size(); t++) {</pre>
    int u = E[t].first, v0 = E[t].second, v = v0,
        c0 = X[u], c = c0, d;
    vector<pair<int, int>> L;
    int vst[kN] = {};
    while (!G[u][v0]) {
      L.emplace_back(v, d = X[v]);
      if (!C[v][c])
        for (a = (int)L.size() - 1; a >= 0; a--)
          c = color(u, L[a].first, c);
      else if (!C[u][d])
        for (a = (int)L.size() - 1; a >= 0; a--)
          color(u, L[a].first, L[a].second);
      else if (vst[d]) break;
      else vst[d] = 1, v = C[u][d];
    if (!G[u][v0]) {
      for (; v; v = flip(v, c, d), swap(c, d))
      if (C[u][c0]) {
        for (a = (int)L.size() - 2;
             a >= 0 && L[a].second != c; a--)
        for (; a >= 0; a--)
          color(u, L[a].first, L[a].second);
      } else t--;
   }
 }
} // namespace vizing
```

2.11 Minimum Clique Cover*

```
struct Clique_Cover { // 0-base, 0(n2^n)
  int co[1 << N], n, E[N];</pre>
  int dp[1 << N];</pre>
  void init(int _n) {
    n = _n, fill_n(dp, 1 << n, 0);
    fill_n(E, n, 0), fill_n(co, 1 << n, 0);
  void add_edge(int u, int v) {
    E[u] = 1 << v, E[v] = 1 << u;
  int solve() {
    for (int i = 0; i < n; ++i)</pre>
      co[1 << i] = E[i] | (1 << i);
    co[0] = (1 << n) - 1;

dp[0] = (n & 1) * 2 - 1;
    for (int i = 1; i < (1 << n); ++i) {
      int t = i & -i;
      dp[i] = -dp[i ^ t];
      co[i] = co[i ^ t] & co[t];
    for (int i = 0; i < (1 << n); ++i)
      co[i] = (co[i] \& i) == i;
    fwt(co, 1 \ll n, 1);
    for (int ans = 1; ans < n; ++ans) {
  int sum = 0; // probabilistic</pre>
       for (int i = 0; i < (1 << n); ++i)</pre>
         sum += (dp[i] *= co[i]);
      if (sum) return ans;
```

2.12 NumberofMaximalClique*

```
struct BronKerbosch { // 1-base
  int n, a[N], g[N][N];
  int S, all[N][N], some[N][N], none[N][N];
  void init(int _n) {
    n = n:
     for (int i = 1; i <= n; ++i)</pre>
       for (int j = 1; j <= n; ++j) g[i][j] = 0;</pre>
  void add_edge(int u, int v) {
    g[u][v] = g[v][u] = 1;
  void dfs(int d, int an, int sn, int nn) {
    if (S > 1000) return; // pruning
     if (sn == 0 && nn == 0) ++S;
     int u = some[d][0];
     for (int i = 0; i < sn; ++i) {</pre>
       int v = some[d][i];
       if (g[u][v]) continue;
       int tsn = 0, tnn = 0;
       copy_n(all[d], an, all[d + 1]);
       all[d + 1][an] = v;
       for (int j = 0; j < sn; ++j)</pre>
         if (g[v][some[d][j]])
           some[d + 1][tsn++] = some[d][j];
       for (int j = 0; j < nn; ++j)</pre>
         if (g[v][none[d][j]])
           none[d + 1][tnn++] = none[d][j];
       dfs(d + 1, an + 1, tsn, tnn);
       some[d][i] = 0, none[d][nn++] = v;
  int solve() {
    iota(some[0], some[0] + n, 1);
    S = 0, dfs(0, 0, n, 0);
     return S;
};
```

3 Data Structure

3.1 Discrete Trick

3.2 Leftist Tree

```
struct node {
    11 v, data, sz, sum;
    node *1, *r;
    node(11 k)
        : v(0), data(k), sz(1), l(0), r(0), sum(k) {}
};

11 sz(node *p) { return p ? p->sz : 0; }

11 V(node *p) { return p ? p->v : -1; }

11 sum(node *p) { return p ? p->sum : 0; }

node *merge(node *a, node *b) {
    if (!a | !b) return a ? a : b;
    if (a->data < b->data) swap(a, b);
    a->r = merge(a->r, b);
    if (V(a->r) > V(a->l)) swap(a->r, a->l);
    a->v = V(a->r) + 1, a->sz = sz(a->l) + sz(a->r) + 1;
    a->sum = sum(a->l) + sum(a->r) + a->data;
```

```
return a;
}
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->1, o->r);
  delete tmp;
}
```

3.3 Heavy light Decomposition

```
struct Heavy_light_Decomposition { // 1-base
  int n, ulink[N], deep[N], mxson[N], w[N], pa[N];
  int t, pl[N], data[N], dt[N], bln[N], edge[N], et;
  vector<pii> G[N];
  void init(int _n) {
    n = _n, t = 0, et = 1;
for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), mxson[i] = 0;
  void add_edge(int a, int b, int w) {
    G[a].pb(pii(b, et));
    G[b].pb(pii(a, et));
    edge[et++] = w;
  void dfs(int u, int f, int d) {
    w[u] = 1, pa[u] = f, deep[u] = d++;
    for (auto &i : G[u])
      if (i.X != f) {
         dfs(i.X, u, d), w[u] += w[i.X];
         if (w[mxson[u]] < w[i.X]) mxson[u] = i.X;</pre>
      } else bln[i.Y] = u, dt[u] = edge[i.Y];
  void cut(int u, int link) {
  data[pl[u] = t++] = dt[u], ulink[u] = link;
    if (!mxson[u]) return;
    cut(mxson[u], link);
for (auto i : G[u])
       if (i.X != pa[u] && i.X != mxson[u])
         cut(i.X, i.X);
  void build() { dfs(1, 1, 1), cut(1, 1), /*build*/; }
int query(int a, int b) {
    int ta = ulink[a], tb = ulink[b], re = 0;
    while (ta != tb)
      if (deep[ta] < deep[tb])</pre>
         else /*query*/, ta = ulink[a = pa[ta]];
    if (a == b) return re;
    if (pl[a] > pl[b]) swap(a, b);
    /*query*,
    return re;
};
```

3.4 Centroid Decomposition*

```
struct Cent_Dec { // 1-base
  vector<pll> G[N];
  pll info[N]; // store info. of itself
  pll upinfo[N]; // store info. of climbing up
 int n, pa[N], layer[N], sz[N], done[N];
ll dis[__lg(N) + 1][N];
  void init(int _n) {
   n = _n, layer[0] = -1;
fill_n(pa + 1, n, 0), fill_n(done + 1, n, 0);
    for (int i = 1; i <= n; ++i) G[i].clear();</pre>
  void add_edge(int a, int b, int w) {
    G[a].pb(pll(b, w)), G[b].pb(pll(a, w));
  void get_cent(
    int u, int f, int &mx, int &c, int num) {
    int mxsz = 0;
    sz[u] = 1;
    for (pll e : G[u])
      if (!done[e.X] && e.X != f) {
        get_cent(e.X, u, mx, c, num);
        sz[u] += sz[e.X], mxsz = max(mxsz, sz[e.X]);
    if (mx > max(mxsz, num - sz[u]))
      mx = max(mxsz, num - sz[u]), c = u;
```

```
void dfs(int u, int f, ll d, int org) {
  // if required, add self info or climbing info
  dis[layer[org]][u] = d;
  for (pll e : G[u])
    if (!done[e.X] && e.X != f)
      dfs(e.X, u, d + e.Y, org);
int cut(int u, int f, int num) {
 int mx = 1e9, c = 0, lc;
  get_cent(u, f, mx, c, num);
  done[c] = 1, pa[c] = f, layer[c] = layer[f] + 1;
  for (pll e : G[c])
    if (!done[e.X]) {
      if (sz[e.X] > sz[c])
        lc = cut(e.X, c, num - sz[c]);
      else lc = cut(e.X, c, sz[e.X]);
      upinfo[lc] = pll(), dfs(e.X, c, e.Y, c);
 return done[c] = 0, c;
void build() { cut(1, 0, n); }
void modify(int u) {
 for (int a = u, ly = layer[a]; a;
       a = pa[a], --ly) {
    info[a].X += dis[ly][u], ++info[a].Y;
    if (pa[a])
      upinfo[a].X += dis[ly - 1][u], ++upinfo[a].Y;
 }
11 query(int u) {
  11 rt = 0;
 for (int a = u, ly = layer[a]; a;
    a = pa[a], --ly) {
    rt += info[a].X + info[a].Y * dis[ly][u];
    if (pa[a])
      rt -=
        upinfo[a].X + upinfo[a].Y * dis[ly - 1][u];
  return rt;
```

3.5 Link cut tree*

```
struct Splay { // xor-sum
  static Splay nil;
  Splay *ch[2], *f;
  int val, sum, rev, size;
  Splay(int _val = 0)
    : val(\_val), sum(\_val), rev(0), size(1) {
    f = ch[0] = ch[1] = &nil;
  bool isr() {
    return f->ch[0] != this && f->ch[1] != this;
  int dir() { return f->ch[0] == this ? 0 : 1; }
  void setCh(Splay *c, int d) {
   ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void push() {
    if (!rev) return;
    swap(ch[0], ch[1]);
    if (ch[0] != &nil) ch[0]->rev ^= 1;
    if (ch[1] != &nil) ch[1]->rev ^= 1;
    rev = 0;
  void pull() {
    // take care of the nil!
    size = ch[0]->size + ch[1]->size + 1;
    sum = ch[0] -> sum ^ ch[1] -> sum ^ val;
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil;
Splay *nil = &Splay::nil;
void rotate(Splay *x) {
  Splay *p = x \rightarrow f;
  int d = x->dir();
```

```
if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
 p->setCh(x->ch[!d], d);
 x->setCh(p, !d);
 p->pull(), x->pull();
void splay(Splay *x) {
  vector<Splay *> splayVec;
  for (Splay *q = x;; q = q \rightarrow f) {
    splayVec.pb(q);
    if (q->isr()) break;
  reverse(ALL(splayVec));
  for (auto it : splayVec) it->push();
 while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir() == x->f->dir())
      rotate(x->f), rotate(x);
    else rotate(x), rotate(x);
 }
Splay *access(Splay *x) {
  Splay *q = nil;
  for (; x != nil; x = x->f)
   splay(x), x \rightarrow setCh(q, 1), q = x;
  return q;
void root_path(Splay *x) { access(x), splay(x); }
void chroot(Splay *x) {
 root_path(x), x->rev ^= 1;
  x->push(), x->pull();
void split(Splay *x, Splay *y) {
 chroot(x), root_path(y);
void link(Splay *x, Splay *y) {
  root_path(x), chroot(y);
  x->setCh(y, 1);
void cut(Splay *x, Splay *y) {
 split(x, y);
 if (y->size != 5) return;
 y->push();
 y - ch[0] = y - ch[0] - f = nil;
Splay *get_root(Splay *x) {
 for (root_path(x); x->ch[0] != nil; x = x->ch[0])
   x->push();
  splay(x);
 return x;
bool conn(Splay *x, Splay *y) {
 return get_root(x) == get_root(y);
Splay *lca(Splay *x, Splay *y) {
  access(x), root_path(y);
  if (y->f == nil) return y;
  return y->f;
void change(Splay *x, int val) {
  splay(x), x->val = val, x->pull();
int query(Splay *x, Splay *y) {
  split(x, y);
  return y->sum;
```

3.6 KDTree

```
namespace kdt {
int root, lc[maxn], rc[maxn], xl[maxn], xr[maxn],
  yl[maxn], yr[maxn];
point p[maxn];
int build(int l, int r, int dep = 0) {
  if (l == r) return -1;
  function<bool(const point &, const point &)> f =
    [dep](const point &a, const point &b) {
    if (dep & 1) return a.x < b.x;
    else return a.y < b.y;
  };
int m = (l + r) >> 1;
```

```
nth_element(p + 1, p + m, p + r, f);
  x1[m] = xr[m] = p[m].x;
  yl[m] = yr[m] = p[m].y;
  1c[m] = build(1, m, dep + 1);
  if (~lc[m]) {
    xl[m] = min(xl[m], xl[lc[m]]);
    xr[m] = max(xr[m], xr[lc[m]]);
    yl[m] = min(yl[m], yl[lc[m]]);
    yr[m] = max(yr[m], yr[lc[m]]);
  rc[m] = build(m + 1, r, dep + 1);
  if (~rc[m]) {
    xl[m] = min(xl[m], xl[rc[m]]);
    xr[m] = max(xr[m], xr[rc[m]]);
    yl[m] = min(yl[m], yl[rc[m]]);
    yr[m] = max(yr[m], yr[rc[m]]);
  }
  return m;
bool bound(const point &q, int o, long long d) {
  double ds = sqrt(d + 1.0);
  if (q.x < x1[o] - ds || q.x > xr[o] + ds ||
    q.y < y1[o] - ds || q.y > yr[o] + ds
    return false;
  return true:
long long dist(const point &a, const point &b) {
  return (a.x - b.x) * 111 * (a.x - b.x) +
    (a.y - b.y) * 111 * (a.y - b.y);
void dfs(
  const point &q, long long &d, int o, int dep = 0) {
  if (!bound(q, o, d)) return;
  long long cd = dist(p[o], q);
  if (cd != 0) d = min(d, cd);
  if ((dep & 1) && q.x < p[o].x ||</pre>
    !(dep & 1) && q.y < p[o].y) {
    if (~lc[o]) dfs(q, d, lc[o], dep + 1);
    if (~rc[o]) dfs(q, d, rc[o], dep + 1);
  } else {
    if (~rc[o]) dfs(q, d, rc[o], dep + 1);
    if (~lc[o]) dfs(q, d, lc[o], dep + 1);
void init(const vector<point> &v) {
  for (int i = 0; i < v.size(); ++i) p[i] = v[i];</pre>
  root = build(0, v.size());
long long nearest(const point &q) {
  long long res = 1e18;
  dfs(q, res, root);
  return res;
} // namespace kdt
```

4 Flow/Matching

4.1 Kuhn Munkres

```
struct KM { // 0-base
  int w[MAXN][MAXN], h1[MAXN], hr[MAXN], s1k[MAXN], n;
  int fl[MAXN], fr[MAXN], pre[MAXN], qu[MAXN], ql, qr;
  bool v1[MAXN], vr[MAXN];
  void init(int _n) {
    n = _n;
for (int i = 0; i < n; ++i)</pre>
      for (int j = 0; j < n; ++j) w[i][j] = -INF;</pre>
  void add_edge(int a, int b, int wei) {
    w[a][b] = wei;
  bool Check(int x) {
    if (vl[x] = 1, \sim fl[x])
      return vr[qu[qr++] = fl[x]] = 1;
    while (~x) swap(x, fr[fl[x] = pre[x]]);
    return 0:
  void Bfs(int s) {
    fill(slk, slk + n, INF);
```

```
fill(vl, vl + n, 0), fill(vr, vr + n, 0);
    ql = qr = 0, qu[qr++] = s, vr[s] = 1;
    while (1) {
      int d:
      while (ql < qr)</pre>
        for (int x = 0, y = qu[ql++]; x < n; ++x)
          if (!v1[x] &&
            slk[x] >= (d = hl[x] + hr[y] - w[x][y]))
            if (pre[x] = y, d) slk[x] = d;
            else if (!Check(x)) return;
      d = INF:
      for (int x = 0; x < n; ++x)
        if (!v1[x] && d > s1k[x]) d = s1k[x];
      for (int x = 0; x < n; ++x) {
        if (vl[x]) hl[x] += d;
        else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
      for (int x = 0; x < n; ++x)
        if (!v1[x] && !slk[x] && !Check(x)) return;
    }
  }
  int Solve() {
    fill(fl, fl + n, -1), fill(fr, fr + n, -1),
      fill(hr, hr + n, 0);
    for (int i = 0; i < n; ++i)</pre>
      hl[i] = *max\_element(w[i], w[i] + n);
    for (int i = 0; i < n; ++i) Bfs(i);</pre>
    int res = 0;
    for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
    return res;
  }
}:
```

4.2 MincostMaxflow

```
struct MCMF { // 0-base
 struct edge {
   11 from, to, cap, flow, cost, rev;
 } * past[MAXN];
 vector<edge> G[MAXN];
 bitset<MAXN> inq;
 11 dis[MAXN], up[MAXN], s, t, mx, n;
  bool BellmanFord(11 &flow, 11 &cost) {
   fill(dis, dis + n, INF);
    queue<ll> q;
    q.push(s), inq.reset(), inq[s] = 1;
    up[s] = mx - flow, past[s] = 0, dis[s] = 0;
    while (!q.empty()) {
      11 u = q.front();
      q.pop(), inq[u] = 0;
      if (!up[u]) continue;
      for (auto &e : G[u])
        if (e.flow != e.cap &&
          dis[e.to] > dis[u] + e.cost) {
          dis[e.to] = dis[u] + e.cost, past[e.to] = &e;
          up[e.to] = min(up[u], e.cap - e.flow);
          if (!inq[e.to]) inq[e.to] = 1, q.push(e.to);
        }
    if (dis[t] == INF) return 0;
    flow += up[t], cost += up[t] * dis[t];
    for (ll i = t; past[i]; i = past[i]->from) {
      auto &e = *past[i];
      e.flow += up[t], G[e.to][e.rev].flow -= up[t];
    return 1;
  11 MinCostMaxFlow(ll _s, ll _t, ll &cost) {
    s = _s, t = _t, cost = 0;
    11 flow = 0;
    while (BellmanFord(flow, cost))
    return flow;
  void init(ll _n, ll _mx) {
   n = _n, mx = _mx;
for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void add_edge(ll a, ll b, ll cap, ll cost) {
    G[a].pb(edge{a, b, cap, 0, cost, G[b].size()});
```

```
G[b].pb(edge{b, a, 0, 0, -cost, G[a].size() - 1});
};
```

4.3 Maximum Simple Graph Matching*

```
struct GenMatch { // 1-base
  int V, pr[N];
  bool el[N][N], inq[N], inp[N], inb[N];
  int st, ed, nb, bk[N], djs[N], ans;
  void init(int _V) {
    V = V;
    for (int i = 0; i <= V; ++i) {
  for (int j = 0; j <= V; ++j) el[i][j] = 0;</pre>
      pr[i] = bk[i] = djs[i] = 0;
      inq[i] = inp[i] = inb[i] = 0;
  void add_edge(int u, int v) {
    el[u][v] = el[v][u] = 1;
  int lca(int u, int v) {
    fill_n(inp, V + 1, \emptyset);
    while (1)
      if (u = djs[u], inp[u] = true, u == st) break;
      else u = bk[pr[u]];
    while (1)
      if (v = djs[v], inp[v]) return v;
      else v = bk[pr[v]];
    return v;
  void upd(int u) {
    for (int v; djs[u] != nb;) {
      v = pr[u], inb[djs[u]] = inb[djs[v]] = true;
      u = bk[v];
      if (djs[u] != nb) bk[u] = v;
    }
  }
  void blo(int u, int v, queue<int> &qe) {
    nb = lca(u, v), fill_n(inb, V + 1, 0);
    upd(u), upd(v);
    if (djs[u] != nb) bk[u] = v;
    if (djs[v] != nb) bk[v] = u;
    for (int tu = 1; tu <= V; ++tu)</pre>
      if (inb[djs[tu]])
        if (djs[tu] = nb, !inq[tu])
          qe.push(tu), inq[tu] = 1;
  void flow() {
    fill_n(inq + 1, V, 0), fill_n(bk + 1, V, 0);
    iota(djs + 1, djs + V + 1, 1);
    queue<int> qe;
    qe.push(st), inq[st] = 1, ed = 0;
    while (!qe.empty()) {
      int u = qe.front();
      qe.pop();
      for (int v = 1; v \le V; ++v)
        if (el[u][v] && djs[u] != djs[v] &&
          pr[u] != v) {
           if ((v == st) ||
             (pr[v] > 0 \&\& bk[pr[v]] > 0)) {
            blo(u, v, qe);
          } else if (!bk[v]) {
            if (bk[v] = u, pr[v] > 0) {
               if (!inq[pr[v]]) qe.push(pr[v]);
             } else {
               return ed = v, void();
          }
        }
    }
  void aug() {
    for (int u = ed, v, w; u > 0;)
      v = bk[u], w = pr[v], pr[v] = u, pr[u] = v,
      u = w;
  int solve() {
    fill_n(pr, V + 1, 0), ans = 0;
    for (int u = 1; u <= V; ++u)</pre>
      if (!pr[u])
```

```
if (st = u, flow(), ed > 0) aug(), ++ans;
     return ans;
  }
|};
```

Minimum Weight Matching (Clique ver-4.4

```
struct Graph { // 0-base (Perfect Match), n is even
  int n, match[N], onstk[N], stk[N], tp;
  11 edge[N][N], dis[N];
  void init(int _n) {
    n = _n, tp = 0;
    for (int i = 0; i < n; ++i) fill_n(edge[i], n, 0);</pre>
  void add_edge(int u, int v, ll w) {
     edge[u][v] = edge[v][u] = w;
  bool SPFA(int u) {
     stk[tp++] = u, onstk[u] = 1;
     for (int v = 0; v < n; ++v)
       if (!onstk[v] && match[u] != v) {
         int m = match[v];
         if (dis[m] >
           dis[u] - edge[v][m] + edge[u][v]) {
           dis[m] = dis[u] - edge[v][m] + edge[u][v];
           onstk[v] = 1, stk[tp++] = v;
if (onstk[m] || SPFA(m)) return 1;
           --tp, onstk[v] = 0;
         }
     onstk[u] = 0, --tp;
     return 0;
  11 solve() { // find a match
     for (int i = 0; i < n; ++i) match[i] = i ^ 1;</pre>
     while (1) {
       int found = 0;
       fill_n(dis, n, 0);
       fill_n(onstk, n, 0);
for (int i = 0; i < n; ++i)
         if (tp = 0, !onstk[i] && SPFA(i))
           for (found = 1; tp >= 2;) {
             int u = stk[--tp];
             int v = stk[--tp];
             match[u] = v, match[v] = u;
       if (!found) break;
     ll ret = 0;
     for (int i = 0; i < n; ++i)</pre>
      ret += edge[i][match[i]];
     return ret >> 1;
  }
};
```

4.5 SW-mincut

```
struct SW{ // global min cut, O(V^3)
 #define REP for (int i = 0; i < n; ++i)
static const int MXN = 514, INF = 2147483647;</pre>
  int vst[MXN], edge[MXN][MXN], wei[MXN];
  void init(int n) {
    REP fill_n(edge[i], n, 0);
  void addEdge(int u, int v, int w){
    edge[u][v] += w; edge[v][u] += w;
  int search(int &s, int &t, int n){
    fill_n(vst, n, 0), fill_n(wei, n, 0);
    s = t = -1;
    int mx, cur;
    for (int j = 0; j < n; ++j) {</pre>
      mx = -1, cur = 0;
      REP if (wei[i] > mx) cur = i, mx = wei[i];
      vst[cur] = 1, wei[cur] = -1;
      s = t; t = cur;
      REP if (!vst[i]) wei[i] += edge[cur][i];
    return mx;
```

```
int solve(int n) {
    int res = INF;
    for (int x, y; n > 1; n--){
      res = min(res, search(x, y, n));
      REP edge[i][x] = (edge[x][i] += edge[y][i]);
      REP {
        edge[y][i] = edge[n - 1][i];
        edge[i][y] = edge[i][n - 1];
      } // edge[y][y] = 0;
    return res;
  }
} sw;
```

BoundedFlow*(Dinic*) 4.6

```
struct BoundedFlow { // 0-base
  struct edge {
    int to, cap, flow, rev;
  vector<edge> G[N];
  int n, s, t, dis[N], cur[N], cnt[N];
  void init(int _n) {
    n = _n;
for (int i = 0; i < n + 2; ++i)</pre>
      G[i].clear(), cnt[i] = 0;
  void add_edge(int u, int v, int lcap, int rcap) {
  cnt[u] -= lcap, cnt[v] += lcap;
    G[u].pb(edge{v, rcap, lcap, SZ(G[v])});
    G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  void add_edge(int u, int v, int cap) {
    G[u].pb(edge{v, cap, 0, SZ(G[v])});
    G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
      edge &e = G[u][i];
      if (dis[e.to] == dis[u] + 1 && e.cap != e.flow) {
         int df = dfs(e.to, min(e.cap - e.flow, cap));
         if (df) {
           e.flow += df, G[e.to][e.rev].flow -= df;
           return df;
        }
      }
    dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n + 3, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (edge &e : G[u])
        if (!~dis[e.to] && e.flow != e.cap)
           q.push(e.to), dis[e.to] = dis[u] + 1;
    return dis[t] != -1;
  int maxflow(int _s, int _t) {
    s = _s, t = _t;
int flow = 0, df;
    while (bfs()) {
      fill_n(cur, n + 3, 0);
while ((df = dfs(s, INF))) flow += df;
    return flow;
  bool solve() {
    int sum = 0;
    for (int i = 0; i < n; ++i)</pre>
      if (cnt[i] > 0)
         add_edge(n + 1, i, cnt[i]), sum += cnt[i];
      else if (cnt[i] < 0) add_edge(i, n + 2, -cnt[i]);</pre>
    if (sum != maxflow(n + 1, n + 2)) sum = -1;
```

```
for (int i = 0; i < n; ++i)
    if (cnt[i] > 0)
        G[n + 1].pop_back(), G[i].pop_back();
    else if (cnt[i] < 0)
        G[i].pop_back(), G[n + 2].pop_back();
    return sum != -1;
}
int solve(int _s, int _t) {
    add_edge(_t, _s, INF);
    if (!solve()) return -1; // invalid flow
    int x = G[_t].back().flow;
    return G[_t].pop_back(), G[_s].pop_back(), x;
}
};</pre>
```

4.7 Gomory Hu tree*

```
MaxFlow Dinic;
int g[MAXN];
void GomoryHu(int n) { // 0-base
  fill_n(g, n, 0);
  for (int i = 1; i < n; ++i) {
    Dinic.reset();
    add_edge(i, g[i], Dinic.maxflow(i, g[i]));
    for (int j = i + 1; j <= n; ++j)
        if (g[j] == g[i] && ~Dinic.dis[j])
        g[j] = i;
  }
}</pre>
```

4.8 Minimum Cost Circulation

```
struct Edge { int to, cap, rev, cost; };
vector<Edge> g[kN];
int dist[kN], pv[kN], ed[kN];
bool mark[kN];
int NegativeCycle(int n) {
  memset(mark, false, sizeof(mark));
memset(dist, 0, sizeof(dist));
  int upd = -1;
  for (int i = 0; i <= n; ++i) {</pre>
    for (int j = 0; j < n; ++j) {
      int idx = 0;
      for (auto &e : g[j]) {
        if (e.cap > 0 && dist[e.to] > dist[j] + e.cost)
          dist[e.to] = dist[j] + e.cost;
          pv[e.to] = j, ed[e.to] = idx;
          if (i == n) {
            upd = j;
            while (!mark[upd]) mark[upd] = true, upd =
                pv[upd];
            return upd;
          }
        idx++;
     }
   }
  }
  return -1;
int Solve(int n) {
  int rt = -1, ans = 0;
  while ((rt = NegativeCycle(n)) >= 0) {
    memset(mark, false, sizeof(mark));
    vector<pair<int, int>> cyc;
    while (!mark[rt]) {
      cyc.emplace_back(pv[rt], ed[rt]);
      mark[rt] = true;
      rt = pv[rt];
    reverse(cyc.begin(), cyc.end());
    int cap = kInf;
    for (auto &i : cyc) {
      auto &e = g[i.first][i.second];
      cap = min(cap, e.cap);
    for (auto &i : cyc) {
      auto &e = g[i.first][i.second];
      e.cap -= cap;
      g[e.to][e.rev].cap += cap;
```

```
ans += e.cost * cap;
}
return ans;
}
```

4.9 Flow Models

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.
 - 2. For each edge (x,y,l,u), connect $x \to y$ with capacity u-l.
 - 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v\to T$ with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer
 - the answer. To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f+f' \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge e on the graph.
- Construct minimum vertex cover from maximum matching ${\cal M}$ on bipartite graph (X,Y)
 - 1. Redirect every edge: $y \to x$ if $(x,y) \in M$, $x \to y$ otherwise.
 - 2. DFS from unmatched vertices in \boldsymbol{X} .
 - 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- Minimum cost cyclic flow
 - 1. Consruct super source ${\cal S}$ and sink ${\cal T}$
 - 2. For each edge (x,y,c), connect $x \to y$ with (cost,cap)=(c,1) if c>0, otherwise connect $y \to x$ with (cost,cap)=(-c,1)
 - 3. For each edge with c<0 , sum these cost as K , then increase d(y) by 1, decrease d(x) by 1
 - 4. For each vertex v with d(v)>0 , connect $S\to v$ with (cost,cap)=(0,d(v))
 - 5. For each vertex v with d(v)<0 , connect $v\to T$ with (cost,cap)=(0,-d(v))
 - 6. Flow from ${\cal S}$ to ${\cal T}$, the answer is the cost of the flow C+K
- Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer ${\cal T}$
 - 2. Construct a max flow model, let ${\cal K}$ be the sum of all weights
 - 3. Connect source $s \to v$, $v \in G$ with capacity K
 - 4. For each edge (u,v,w) in G, connect $u\to v$ and $v\to u$ with capacity w
 - 5. For $v \in G$, connect it with sink $v \to t$ with capacity $K+2T-(\sum_{e \in E(v)} w(e))-2w(v)$
 - 6. T is a valid answer if the maximum flow f < K |V|
- Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v' , and connect $u' \to v'$ with weight w(u,v) .
 - 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - 3. Find the minimum weight perfect matching on G^{\prime} .
- Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge (v,t) with capacity $-p_v$.
 - 2. Create edge (u,v) with capacity w with w being the cost of choosing u without choosing v.
 - The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x}x + \sum_{y} c_{y}\bar{y} + \sum_{xy} c_{xy}x\bar{y} + \sum_{xyx'y'} c_{xyx'y'}(x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with capacity $c_y\, .$
- 2. Create edge (x,y) with capacity c_{xy} .
- 3. Create edge (x,y) and edge (x^{\prime},y^{\prime}) with capacity $c_{xyx^{\prime}y^{\prime}}$.

String 5

5.1 KMP

```
int F[MAXN];
vector<int> match(string A, string B) {
 vector<int> ans;
 F[0] = -1, F[1] = 0;
  for (int i = 1, j = 0; i < SZ(B); F[++i] = ++j) {
   if (B[i] == B[j]) F[i] = F[j]; // optimize
    while (j != -1 && B[i] != B[j]) j = F[j];
  for (int i = 0, j = 0; i < SZ(A); ++i) {
   while (j != -1 \&\& A[i] != B[j]) j = F[j];
    if (++j == SZ(B)) ans.pb(i + 1 - j), j = F[j];
  return ans;
```

5.2 Z-value*

```
int z[MAXn];
void make_z(const string &s) {
  int 1 = 0, r = 0;
for (int i = 1; i < SZ(s); ++i) {
     for (z[i] = max(0, min(r - i + 1, z[i - 1]));
          i + z[i] < SZ(s) && s[i + z[i]] == s[z[i]];
          ++z[i])
     if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
}
```

5.3 Manacher*

```
int z[MAXN];
// Length: (z[i] - (i & 1)) / 2 * 2 + (i & 1)
void Manacher(string tmp) {
  string s = "\&";
  int 1 = 0, r = 0;
  for (char c : tmp) s.pb(c), s.pb('%');
  for (int i = 0; i < SZ(s); ++i) {</pre>
    z[i] = r > i ? min(z[2*1-i], r - i) : 1;
    while (s[i + z[i]] == s[i - z[i]]) ++z[i];
    if (z[i] + i > r) r = z[i] + i, l = i;
  }
}
```

5.4 Suffix Array

```
struct suffix_array {
  int box[MAXN], tp[MAXN], m;
  bool not_equ(int a, int b, int k, int n) {
  return ra[a] != ra[b] || a + k >= n ||
      b + k >= n \mid | ra[a + k] != ra[b + k];
  void radix(int *key, int *it, int *ot, int n) {
    fill_n(box, m, ∅);
    for (int i = 0; i < n; ++i) ++box[key[i]];</pre>
    partial_sum(box, box + m, box);
for (int i = n - 1; i >= 0; --i)
      ot[--box[key[it[i]]]] = it[i];
  void make_sa(const string &s, int n) {
    int k = 1;
    for (int i = 0; i < n; ++i) ra[i] = s[i];</pre>
    do {
      iota(tp, tp + k, n - k), iota(sa + k, sa + n, 0);
      radix(ra + k, sa + k, tp + k, n - k);
      radix(ra, tp, sa, n);
      tp[sa[0]] = 0, m = 1;
      for (int i = 1; i < n; ++i) {</pre>
         m += not_equ(sa[i], sa[i - 1], k, n);
         tp[sa[i]] = m - 1;
      copy_n(tp, n, ra);
    } while (k < n && m != n);</pre>
  void make_he(const string &s, int n) {
```

```
for (int j = 0, k = 0; j < n; ++j) {
      if (ra[j])
         for (; s[j + k] == s[sa[ra[j] - 1] + k]; ++k)
      he[ra[j]] = k, k = max(0, k - 1);
  int sa[MAXN], ra[MAXN], he[MAXN];
  void build(const string &s) {
    int n = SZ(s);
     fill_n(sa, n, 0), fill_n(ra, n, 0), fill_n(he, n,
    fill_n(box, n, 0), fill_n(tp, n, 0), m = 256;
    make_sa(s, n), make_he(s, n);
};
```

```
5.5 SAIS*
namespace sfx {
bool _t[N * 2];
int SA[N * 2], H[N], RA[N];
int _s[N * 2], _c[N * 2], x[N], _p[N], _q[N * 2];
// zero based, string content MUST > 0
// SA[i]: SA[i]-th suffix is the i-th lexigraphically
     smallest suffix.
// H[i]: longest common prefix of suffix SA[i] and
     suffix SA[i - 1].
void pre(int *sa, int *c, int n, int z)
{ fill_n(sa, n, \emptyset), copy_n(c, z, x); }
void induce(int *sa, int *c, int *s, bool *t, int n,
     int z) {
  copy_n(c, z - 1, x + 1);
  for (int i = 0; i < n; ++i)</pre>
    if (sa[i] && !t[sa[i] - 1])
       sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
  copy_n(c, z, x);
for (int i = n - 1; i >= 0; --i)
     if (sa[i] && t[sa[i] - 1])
       sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
void sais(int *s, int *sa, int *p, int *q, bool *t, int
      *c, int n, int z) {
  bool uniq = t[n - 1] = true;
  int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
       last = -1:
  fill_n(c, z, 0);
  for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;
  partial_sum(c, c + z, c);
  if (uniq) {
    for (int i = 0; i < n; ++i) sa[--c[s[i]]] = i;</pre>
     return;
  for (int i = n - 2; i >= 0; --i)
    t[i] = (s[i] == s[i + 1] ? t[i + 1] : s[i] < s[i +
         1]);
  pre(sa, c, n, z);
  for (int i = 1; i <= n - 1; ++i)
    if (t[i] && !t[i - 1])
       sa[--x[s[i]]] = p[q[i] = nn++] = i;
  induce(sa, c, s, t, n, z);
for (int i = 0; i < n; ++i)
     if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
       bool neq = last < 0 \mid | !equal(s + sa[i], s + p[q[
           sa[i]] + 1], s + last);
       ns[q[last = sa[i]]] = nmxz += neq;
  sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz +
        1);
  pre(sa, c, n, z);
  for (int i = nn - 1; i >= 0; --i)
    sa[--x[s[p[nsa[i]]]] = p[nsa[i]];
  induce(sa, c, s, t, n, z);
void mkhei(int n) {
  for (int i = 0, j = 0; i < n; ++i) {
     if (RA[i])
       for (; _s[i + j] == _s[SA[RA[i] - 1] + j]; ++j);
    H[RA[i]] = j, j = max(0, j - 1);
  }
}
```

```
void build(int *s, int n) {
  copy_n(s, n, _s), _s[n] = 0;
  sais(_s, SA, _p, _q, _t, _c, n + 1, 256);
copy_n(SA + 1, n, SA);
  for (int i = 0; i < n; ++i) RA[SA[i]] = i;</pre>
  mkhei(n);
}}
```

5.6 Aho-Corasick Automatan

```
const int len = 400000, sigma = 26;
struct AC_Automatan {
  int nx[len][sigma], fl[len], cnt[len], pri[len], top;
  int newnode() {
    fill(nx[top], nx[top] + sigma, -1);
    return top++:
  void init() { top = 1, newnode(); }
  int input(
    string &s) { // return the end_node of string
    int X = 1;
    for (char c : s) {
  if (!~nx[X][c - 'a']) nx[X][c - 'a'] = newnode();
      X = nx[X][c - 'a'];
    }
    return X;
  }
  void make_fl() {
    queue<int> q;
    q.push(1), fl[1] = 0;
    for (int t = 0; !q.empty();) {
      int R = q.front();
      q.pop(), pri[t++] = R;
      for (int i = 0; i < sigma; ++i)</pre>
        if (~nx[R][i]) {
          int X = nx[R][i], Z = fl[R];
           for (; Z && !~nx[Z][i];) Z = fl[Z];
          fl[X] = Z ? nx[Z][i] : 1, q.push(X);
    }
  }
  void get_v(string &s) {
    int X = 1;
    fill(cnt, cnt + top, 0);
    for (char c : s) {
      while (X \&\& !\sim nx[X][c - 'a']) X = fl[X];
      X = X ? nx[X][c - 'a'] : 1, ++cnt[X];
    for (int i = top - 2; i > 0; --i)
      cnt[fl[pri[i]]] += cnt[pri[i]];
};
```

5.7

```
string mcp(string s) {
  int n = SZ(s), i = 0, j = 1;
  s += s;
  while (i < n && j < n) {</pre>
    while (k < n \&\& s[i + k] == s[j + k]) ++k;
    if (s[i + k] <= s[j + k]) j += k + 1;
    else i += k + 1;
    if (i == j) ++j;
  int ans = i < n ? i : j;</pre>
  return s.substr(ans, n);
```

De Bruijn sequence* 5.8

```
constexpr int MAXC = 10, MAXN = 1e5 + 10;
struct DBSeq {
 int C, N, K, L, buf[MAXC * MAXN]; // K <= C^N
  void dfs(int *out, int t, int p, int &ptr) {
    if (ptr >= L) return;
    if (t > N) {
      if (N % p) return;
      for (int i = 1; i <= p && ptr < L; ++i)</pre>
        out[ptr++] = buf[i];
```

```
} else {
      buf[t] = buf[t - p], dfs(out, t + 1, p, ptr);
      for (int j = buf[t - p] + 1; j < C; ++j)</pre>
        buf[t] = j, dfs(out, t + 1, t, ptr);
  void solve(int _c, int _n, int _k, int *out) {
    int p = 0;
    C = _c, N = _n, K = _k, L = N + K - 1;
dfs(out, 1, 1, p);
    if (p < L) fill(out + p, out + L, 0);</pre>
} dbs;
5.9 SAM
const int MAXM = 1000010;
struct SAM {
  int tot, root, lst, mom[MAXM], mx[MAXM];
  int nxt[MAXM][33], cnt[MAXM], in[MAXM];
  int newNode() {
    int res = ++tot;
    fill(nxt[res], nxt[res] + 33, 0);
    mom[res] = mx[res] = cnt[res] = in[res] = 0;
    return res;
  }
  void init() {
    tot = 0;
    root = newNode();
    mom[root] = 0, mx[root] = 0;
    lst = root;
  void push(int c) {
    int p = lst;
    int np = newNode();
    mx[np] = mx[p] + 1;
    for (; p && nxt[p][c] == 0; p = mom[p])
      nxt[p][c] = np;
    if (p == 0) mom[np] = root;
    else {
      int q = nxt[p][c];
      if (mx[p] + 1 == mx[q]) mom[np] = q;
      else {
        int nq = newNode();
        mx[nq] = mx[p] + 1;
        for (int i = 0; i < 33; i++)</pre>
          nxt[nq][i] = nxt[q][i];
        mom[nq] = mom[q];
        mom[q] = nq;
        mom[np] = nq;
        for (; p && nxt[p][c] == q; p = mom[p])
```

```
Smallest Rotation
```

5.10 PalTree*

}

}

} sam;

```
struct palindromic_tree {
  struct node {
    int next[26], fail, len;
```

nxt[p][c] = nq;

for (int i = 0; str[i]; i++)
 push(str[i] - 'a' + 1);

for (int i = 1; i <= tot; ++i)</pre>

for (int i = 1; i <= tot; ++i)</pre> if (!in[i]) q.push(i);

lst = np, cnt[np] = 1;

void push(char *str) {

++in[mom[i]];

while (!q.empty()) {

int u = q.front();

q.push(mom[u]);

cnt[mom[u]] += cnt[u]; if (!--in[mom[u]])

queue<int> q;

q.pop();

void count() {

}

```
int cnt, num; // cnt: appear times, num: number of
                    // pal. suf.
    node(int 1 = 0) : fail(0), len(1), cnt(0), num(0) {
      for (int i = 0; i < 26; ++i) next[i] = 0;</pre>
  };
  vector<node> St;
  vector<char> s;
  int last, n;
  palindromic_tree() : St(2), last(1), n(0) {
    St[0].fail = 1, St[1].len = -1, s.pb(-1);
  inline void clear() {
    St.clear(), s.clear(), last = 1, n = 0;
    St.pb(0), St.pb(-1);
    St[0].fail = 1, s.pb(-1);
  inline int get_fail(int x) {
    while (s[n - St[x].len - 1] != s[n])
      x = St[x].fail;
    return x;
  inline void add(int c) {
  s.push_back(c -= 'a'), ++n;
    int cur = get_fail(last);
    if (!St[cur].next[c]) {
      int now = SZ(St);
      St.pb(St[cur].len + 2);
      St[now].fail =
         St[get_fail(St[cur].fail)].next[c];
      St[cur].next[c] = now;
      St[now].num = St[St[now].fail].num + 1;
    last = St[cur].next[c], ++St[last].cnt;
  inline void count() { // counting cnt
    auto i = St.rbegin();
    for (; i != St.rend(); ++i) {
      St[i->fail].cnt += i->cnt;
  inline int size() { // The number of diff. pal.
    return SZ(St) - 2;
|};
```

6 Math

6.1 ax+by=gcd*

```
pll exgcd(ll a, ll b) {
   if (b == 0) return pll(1, 0);
   ll p = a / b;
   pll q = exgcd(b, a % b);
   return pll(q.Y, q.X - q.Y * p);
}
```

6.2 floor and ceil

```
int floor(int a,int b)
{ return a / b - (a % b && a < 0 ^ b < 0); }
int ceil(int a,int b)
{ return a / b + (a % b && a < 0 ^ b > 0); }
```

6.3 Gaussian integer gcd

6.4 Miller Rabin*

6.5 Fraction

```
struct fraction {
  11 n, d;
  fraction(const 11 &_n=0, const 11 &_d=1): n(_n), d(_d
    11 t = gcd(n, d);
    n /= t, d /= t;
    if (d < 0) n = -n, d = -d;
  fraction operator-() const
  { return fraction(-n, d); }
  fraction operator+(const fraction &b) const
  { return fraction(n * b.d + b.n * d, d * b.d); }
  fraction operator-(const fraction &b) const
  { return fraction(n * b.d - b.n * d, d * b.d); }
  fraction operator*(const fraction &b) const
  { return fraction(n * b.n, d * b.d); }
  fraction operator/(const fraction &b) const
  { return fraction(n * b.d, d * b.n); }
  void print() {
    cout << n;
     if (d != 1) cout << "/" << d;</pre>
};
```

6.6 Simultaneous Equations

```
struct matrix { //m variables, n equations
   int n, m;
   fraction M[MAXN][MAXN + 1], sol[MAXN];
   int solve() { //-1: inconsistent, >= 0: rank
     for (int i = 0; i < n; ++i) {</pre>
       int piv = 0;
       while (piv < m && !M[i][piv].n) ++piv;</pre>
       if (piv == m) continue;
       for (int j = 0; j < n; ++j) {
         if (i == j) continue;
         fraction tmp = -M[j][piv] / M[i][piv];
         for (int k = 0; k \le m; ++k) M[j][k] = tmp * M[
              i][k] + M[j][k];
      }
     int rank = 0;
     for (int i = 0; i < n; ++i) {</pre>
       int piv = 0;
       while (piv < m && !M[i][piv].n) ++piv;</pre>
       if (piv == m && M[i][m].n) return -1;
       else if (piv < m) ++rank, sol[piv] = M[i][m] / M[</pre>
           i][piv];
     }
     return rank;
  }
};
```

6.7 Pollard Rho*

```
map<ll, int> cnt;
void PollardRho(ll n) {
  if (n == 1) return;
  if (prime(n)) return ++cnt[n], void();
```

```
if (n % 2 == 0) return PollardRho(n / 2), ++cnt[2],
    void();

ll x = 2, y = 2, d = 1, p = 1;
#define f(x, n, p) ((mul(x, x, n) + p) % n)
while (true) {
    if (d != n && d != 1) {
        PollardRho(n / d);
        PollardRho(d);
        return;
    }
    if (d == n) ++p;
    x = f(x, n, p), y = f(f(y, n, p), n, p);
    d = gcd(abs(x - y), n);
}
```

6.8 Simplex Algorithm

```
const int MAXN = 11000, MAXM = 405;
const double eps = 1E-10;
double a[MAXN][MAXM], b[MAXN], c[MAXM];
double d[MAXN][MAXM], x[MAXM];
int ix[MAXN + MAXM]; // !!! array all indexed from 0
// max{cx} subject to {Ax<=b,x>=0}
// n: constraints, m: vars !!!
// x[] is the optimal solution vector
// usage :
// value = simplex(a, b, c, N, M);
double simplex(int n, int m){
  ++m:
  fill_n(d[n], m + 1, 0);
  fill_n(d[n + 1], m + 1, 0);
  iota(ix, ix + n + m, \theta);
  int r = n, s = m - 1;
  for (int i = 0; i < n; ++i) {</pre>
    for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];</pre>
    d[i][m - 1] = 1;
    d[i][m] = b[i];
    if (d[r][m] > d[i][m]) r = i;
  copy_n(c, m - 1, d[n]);
  d[n + 1][m - 1] = -1;
  for (double dd;; ) {
    if (r < n) {
      swap(ix[s], ix[r + m]);
      d[r][s] = 1.0 / d[r][s];
      for (int j = 0; j <= m; ++j)</pre>
        if (j != s) d[r][j] *= -d[r][s];
      for (int i = 0; i <= n + 1; ++i) if (i != r) {
        for (int j = 0; j <= m; ++j) if (j != s)</pre>
          d[i][j] += d[r][j] * d[i][s];
        d[i][s] *= d[r][s];
      }
    }
    r = s = -1;
    for (int j = 0; j < m; ++j)</pre>
      if (s < 0 || ix[s] > ix[j]) {
        if (d[n + 1][j] > eps ||
            (d[n + 1][j] > -eps && d[n][j] > eps))
    if (s < 0) break;</pre>
    for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {</pre>
      if (r < 0 ||
          (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s])
               < -eps ||
          (dd < eps && ix[r + m] > ix[i + m]))
        r = i;
    if (r < 0) return -1; // not bounded</pre>
  if (d[n + 1][m] < -eps) return -1; // not executable</pre>
  double ans = 0;
  fill_n(x, m, 0);
  for (int i = m; i < n + m; ++i) { // the missing</pre>
      enumerated x[i] = 0
    if (ix[i] < m - 1){</pre>
      ans += d[i - m][m] * c[ix[i]];
      x[ix[i]] = d[i-m][m];
 }
```

```
return ans;
}
```

6.8.1 Construction

```
Standard form: maximize \mathbf{c}^T\mathbf{x} subject to A\mathbf{x} \leq \mathbf{b} and \mathbf{x} \geq 0. Dual LP: minimize \mathbf{b}^T\mathbf{y} subject to A^T\mathbf{y} \geq \mathbf{c} and \mathbf{y} \geq 0. \bar{\mathbf{x}} and \bar{\mathbf{y}} are optimal if and only if for all i \in [1,n], either \bar{x}_i = 0 or \sum_{j=1}^m A_{ji}\bar{y}_j = c_i holds and for all i \in [1,m] either \bar{y}_i = 0 or \sum_{j=1}^n A_{ji}\bar{x}_j = b_j holds.
```

- 1. In case of minimization, let $c_i'=-c_i$ 2. $\sum_{1\leq i\leq n}A_{ji}x_i\geq b_j\to \sum_{1\leq i\leq n}-A_{ji}x_i\leq -b_j$ 3. $\sum_{1\leq i\leq n}A_{ji}x_i=b_j$
 - $\sum_{1 \le i \le n} A_{ji} x_i \le b_j$ $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j$
- 4. If x_i has no lower bound, replace x_i with $x_i x_i'$

6.9 Schreier-Sims Algorithm*

```
namespace schreier {
int n;
vector<vector<int>>> bkts, binv;
vector<vector<int>> lk;
vector<int> operator*(const vector<int> &a, const
    vector<int> &b) {
  vector<int> res(SZ(a));
  for (int i = 0; i < SZ(a); ++i) res[i] = b[a[i]];</pre>
  return res;
vector<int> inv(const vector<int> &a) {
  vector<int> res(SZ(a));
  for (int i = 0; i < SZ(a); ++i) res[a[i]] = i;</pre>
  return res;
int filter(const vector<int> &g, bool add = true) {
  n = SZ(bkts);
  vector<int> p = g;
  for (int i = 0; i < n; ++i) {</pre>
    assert(p[i] >= 0 && p[i] < SZ(lk[i]));
    if (lk[i][p[i]] == -1) {
      if (add) {
        bkts[i].pb(p);
        binv[i].pb(inv(p));
        lk[i][p[i]] = SZ(bkts[i]) - 1;
      return i:
    p = p * binv[i][lk[i][p[i]]];
  }
  return -1;
bool inside(const vector<int> &g) { return filter(g,
    false) == -1; }
void solve(const vector<vector<int>> &gen, int _n) {
  bkts.clear(), bkts.resize(n);
  binv.clear(), binv.resize(n);
  lk.clear(), lk.resize(n);
vector<int> iden(n);
  iota(iden.begin(), iden.end(), 0);
  for (int i = 0; i < n; ++i) {
    lk[i].resize(n, -1);
    bkts[i].pb(iden);
    binv[i].pb(iden);
    lk[i][i] = 0;
  for (int i = 0; i < SZ(gen); ++i) filter(gen[i]);</pre>
  queue<pair<pii, pii>> upd;
  for (int i = 0; i < n; ++i)</pre>
    for (int j = i; j < n; ++j)</pre>
      for (int k = 0; k < SZ(bkts[i]); ++k)</pre>
        for (int 1 = 0; 1 < SZ(bkts[j]); ++1)</pre>
          upd.emplace(pii(i, k), pii(j, l));
  while (!upd.empty()) {
    auto a = upd.front().X;
    auto b = upd.front().Y;
    upd.pop();
    int res = filter(bkts[a.X][a.Y] * bkts[b.X][b.Y]);
    if (res == -1) continue;
```

```
pii pr = pii(res, SZ(bkts[res]) - 1);
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < SZ(bkts[i]); ++j) {
            if (i <= res) upd.emplace(pii(i, j), pr);
            if (res <= i) upd.emplace(pr, pii(i, j));
        }
    }
}
ll size() {
    ll res = 1;
    for (int i = 0; i < n; ++i) res = res * SZ(bkts[i]);
    return res;
}}</pre>
```

6.10 chineseRemainder

```
11 solve(11 x1, 11 m1, 11 x2, 11 m2) {
    11 g = gcd(m1, m2);
    if ((x2 - x1) % g) return -1; // no sol
    m1 /= g; m2 /= g;
    p11 p = exgcd(m1, m2);
    11 lcm = m1 * m2 * g;
    11 res = p.first * (x2 - x1) * m1 + x1;
    // be careful with overflow
    return (res % lcm + lcm) % lcm;
}
```

6.11 Factorial without prime factor*

```
// O(p^k + Log^2 n), pk = p^k
11 prod[MAXP];
11 fac_no_p(l1 n, l1 p, l1 pk) {
  prod[0] = 1;
  for (int i = 1; i <= pk; ++i)
    if (i % p) prod[i] = prod[i - 1] * i % pk;
    else prod[i] = prod[i - 1];
11 rt = 1;
  for (; n; n /= p) {
    rt = rt * mpow(prod[pk], n / pk, pk) % pk;
    rt = rt * prod[n % pk] % pk;
  }
  return rt;
} // (n! without factor p) % p^k</pre>
```

6.12 QuadraticResidue*

```
int Jacobi(int a, int m) {
 int s = 1;
  for (; m > 1; ) {
   a %= m;
   if (a == 0) return 0;
    const int r = __builtin_ctz(a);
   if ((r \& 1) \& \& ((m + 2) \& 4)) s = -s;
    a >>= r;
    if (a \& m \& 2) s = -s;
   swap(a, m);
 }
 return s;
int QuadraticResidue(int a, int p) {
 if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
 if (jc == -1) return -1;
 int b, d;
  for (; ; ) {
   b = rand() % p;
    d = (1LL * b * b + p - a) \% p;
    if (Jacobi(d, p) == -1) break;
 int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
   if (e & 1) {
      tmp = (1LL * g0 * f0 + 1LL * d * (1LL * g1 * f1 % 
           p)) % p;
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
     g0 = tmp;
    tmp = (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p
        )) % p;
```

```
f1 = (2LL * f0 * f1) % p;
f0 = tmp;
}
return g0;
}
```

6.13 PiCount*

```
ll PrimeCount(ll n) { // n \sim 10^13 \Rightarrow < 2s
  if (n <= 1) return 0;
  int v = sqrt(n), s = (v + 1) / 2, pc = 0;
  vector<int> smalls(v + 1), skip(v + 1), roughs(s);
  vector<ll> larges(s);
  for (int i = 2; i <= v; ++i) smalls[i] = (i + 1) / 2;</pre>
  for (int i = 0; i < s; ++i) {</pre>
    roughs[i] = 2 * i + 1;
    larges[i] = (n / (2 * i + 1) + 1) / 2;
  for (int p = 3; p <= v; ++p) {</pre>
    if (smalls[p] > smalls[p - 1]) {
  int q = p * p;
      int q = p
       ++pc;
       if (1LL * q * q > n) break;
       skip[p] = 1;
       for (int i = q; i <= v; i += 2 * p) skip[i] = 1;</pre>
       int ns = 0;
       for (int k = 0; k < s; ++k) {
         int i = roughs[k];
         if (skip[i]) continue;
         11 d = 1LL * i * p;
         larges[ns] = larges[k] - (d <= v ? larges[</pre>
              smalls[d] - pc] : smalls[n / d]) + pc;
         roughs[ns++] = i;
      }
       s = ns;
       for (int j = v / p; j >= p; --j) {
  int c = smalls[j] - pc, e = min(j * p + p, v +
             1);
         for (int i = j * p; i < e; ++i) smalls[i] -= c;</pre>
      }
    }
  for (int k = 1; k < s; ++k) {
    const 11 m = n / roughs[k];
    ll t = larges[k] - (pc + k - 1);
     for (int 1 = 1; 1 < k; ++1) {
      int p = roughs[1];
       if (1LL * p * p > m) break;
       t -= smalls[m / p] - (pc + 1 - 1);
    larges[0] -= t;
  return larges[0];
}
```

6.14 Discrete Log*

```
int DiscreteLog(int s, int x, int y, int m) {
  constexpr int kStep = 32000;
  unordered_map<int, int> p;
  int b = 1;
  for (int i = 0; i < kStep; ++i) {</pre>
    p[y] = i;
    y = 1LL * y * x % m;
    b = 1LL * b * x % m;
  for (int i = 0; i < m + 10; i += kStep) {
   s = 1LL * s * b % m;</pre>
    if (p.find(s) != p.end()) return i + kStep - p[s];
  }
  return -1;
int DiscreteLog(int x, int y, int m) {
  if (m == 1) return 0;
  int s = 1;
  for (int i = 0; i < 100; ++i) {
    if (s == y) return i;
s = 1LL * s * x % m;
  if (s == y) return 100;
  int p = 100 + DiscreteLog(s, x, y, m);
```

```
if (fpow(x, p, m) != y) return -1;
return p;
```

6.15 **Primes**

```
/* 12721 13331 14341 75577 123457 222557 556679 999983
    1097774749 1076767633 100102021 999997771
    1001010013 1000512343 987654361 999991231 999888733
     98789101 987777733 999991921 1010101333 1010102101
     1000000000039 1000000000000037 2305843009213693951
     4611686018427387847 9223372036854775783
    18446744073709551557 */
```

6.16 Theorem

• Cramer's rule

$$\begin{aligned} ax + by &= e \\ cx + dy &= f \end{aligned} \Rightarrow \begin{aligned} x &= \frac{ed - bf}{ad - bc} \\ y &= \frac{af - ec}{ad - bc} \end{aligned}$$

• Kirchhoff's Theorem

Denote L be a n imes n matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$. The number of directed spanning tree rooted at r in G is
- $|\det(\tilde{L}_{rr})|$.
- Tutte's Matrix

Let D be a n imes n matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on \widehat{G} .

- Cayley's Formula
 - Given a degree sequence d_1, d_2, \dots, d_n for each $\emph{labeled}$ ver-
 - tices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees. Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.
- Erdős-Gallai theorem

A sequence of nonnegative integers $d_1 \ge \cdots \ge d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+\cdots+d_n$ is even and $\sum^k d_i \leq k(k-1)+ \ \sum^n \ \min(d_i,k)$ holds for every $1 \leq k \leq n$.

• Gale-Ryser theorem

A pair of sequences of nonnegative integers $a_1 \geq \cdots \geq a_n$ and b_1,\dots,b_n is bigraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i \le$ $\sum_{i=1}^{n} \min(b_i, k)$ holds for every $1 \leq k \leq n$.

• Fulkerson-Chen-Anstee theorem

A sequence $(a_1,b_1),\ldots,(a_n,b_n)$ of nonnegative integer pairs with $a_1 \geq \cdots \geq a_n$ is digraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i \leq \sum_{i=1}^k \min(b_i,k-1) + \sum_{i=1,1}^n \min(b_i,k) \text{ holds for every } 1 \leq k \leq n.$

- Möbius inversion formula
 - $f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$ $f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$
- Spherical cap

 - A portion of a sphere cut off by a plane. r: sphere radius, a: radius of the base of the cap, h: height of the cap, θ : $\arcsin(a/r)$. Volume = $\pi h^2(3r-h)/3 = \pi h(3a^2+h^2)/6 = \pi r^3(2+\cos\theta)(1-\cos\theta)^2/3$. Area = $2\pi rh = 7(-2+h^2)$
 - Area $= 2\pi rh = \pi(a^2 + h^2) = 2\pi r^2(1 \cos\theta)$.

6.17 Estimation

- Estimation
 - The number of divisors of n is at most around 100 for n<5e4 , 500 for n<1e7 , 2000 for n<1e10 , 20000 for
 - The number of ways of writing n as a sum of positive integers, disregarding the order of the summands. 1,1,2,3,5,7,11,15,22,30 for $n=0\sim 9$, 627 for n=20, $\sim 2e5$ for n=50, $\sim 2e8$ for n=100.

 Total number of partitions of n distinct elements: B(n)=1
 - 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437

6.18 Euclidean Algorithms

- $m = \lfloor \frac{an+b}{c} \rfloor$
- Time complexity: $O(\log n)$

$$\begin{split} f(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)}{2} + \lfloor \frac{b}{c} \rfloor \cdot (n+1) \\ + f(a \mod c, b \mod c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \\ nm - f(c, c - b - 1, a, m - 1), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} g(a,b,c,n) &= \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor \cdot \frac{n(n+1)}{2} \\ +g(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1) \\ -h(c, c-b-1, a, m-1)), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} h(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2 \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor^2 \cdot (n+1) \\ &+ \lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1) \\ &+ h(a \bmod c, b \bmod c, c, n) \\ &+ 2 \lfloor \frac{a}{c} \rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ &+ 2 \lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ nm(m+1) - 2g(c, c-b-1, a, m-1) \\ &- 2f(c, c-b-1, a, m-1) - f(a, b, c, n), & \text{otherwise} \end{cases} \end{split}$$

6.19 General Purpose Numbers

• Bernoulli numbers

$$\begin{split} B_0 - 1, B_1^{\pm} &= \pm \tfrac{1}{2}, B_2 = \tfrac{1}{6}, B_3 = 0 \\ &\sum_{j=0}^m \binom{m+1}{j} B_j = 0 \text{, EGF is } B(x) = \tfrac{x}{e^x - 1} = \sum_{n=0}^\infty B_n \frac{x^n}{n!} \,. \\ S_m(n) &= \sum_{j=0}^n k^m = \frac{1}{m+1} \sum_{j=0}^m \binom{m+1}{k} B_k^+ n^{m+1-k} \end{split}$$

- Stirling numbers of the second kind Partitions of n distinct elements into exactly k groups.

$$\begin{split} S(n,k) &= S(n-1,k-1) + kS(n-1,k), S(n,1) = S(n,n) = 1 \\ S(n,k) &= \frac{1}{k!} \sum_{i=0}^k (-1)^{k-i} {k \choose i} i^n \\ x^n &= \sum_{i=0}^n S(n,i)(x)_i \end{split}$$

• Pentagonal number theorem

$$\prod_{n=1}^{\infty} (1 - x^n) = 1 + \sum_{k=1}^{\infty} (-1)^k \left(x^{k(3k+1)/2} + x^{k(3k-1)/2} \right)$$

• Catalan numbers

$$C_n^{(k)} = \frac{1}{(k-1)n+1} \binom{kn}{n}$$

$$C^{(k)}(x) = 1 + x[C^{(k)}(x)]^k$$

• Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} {n+1 \choose j} (k+1-j)^{n}$$

6.20 Tips for Generating Functions

```
• Ordinary Generating Function A(x)=\sum_{i\geq 0}a_ix^i
\begin{array}{l} -A(rx)\Rightarrow r^na_n\\ -A(x)+B(x)\Rightarrow a_n+b_n\\ -A(x)B(x)\Rightarrow \sum_{i=0}^na_ib_{n-i}\\ -A(x)^k\Rightarrow \sum_{i_1+i_2+\cdots+i_k=n}a_{i_1}a_{i_2}\ldots a_{i_k}\\ -xA(x)'\Rightarrow na_n\\ -\frac{A(x)}{1-x}\Rightarrow \sum_{i=0}^na_i \end{array}
• Exponential Generating Function A(x)=\sum_{i\geq 0}\frac{a_i}{i!}x_i
\begin{array}{l} -A(x)+B(x)\Rightarrow a_n+b_n\\ -A(x)B(x)\Rightarrow \sum_{i=0}^n(i)a_ib_{n-i}\\ -A(x)B(x)\Rightarrow \sum_{i=0}^n(i)a_ib_{n-i}\\ -A(x)\Rightarrow na_n \end{array}
• Special Generating Function
\begin{array}{l} -(1+x)^n=\sum_{i\geq 0}\binom{n}{i}x^i\\ -\frac{1}{(1-x)^n}=\sum_{i\geq 0}\binom{n}{i}x^i\\ -\frac{1}{(1-x)^n}=\sum_{i\geq 0}\binom{n}{i}x^i\\ -\frac{1}{(1-x)^n}=\sum_{i\geq 0}\binom{n}{(n-1)}x^i \end{array}
```

7 Polynomial

7.1 Fast Fourier Transform

```
template<int MAXN>
struct FFT {
   using val_t = complex<double>;
   const double PI = acos(-1);
   val_t w[MAXN];
   FFT() {
      for (int i = 0; i < MAXN; ++i) {
           double arg = 2 * PI * i / MAXN;
           w[i] = val_t(cos(arg), sin(arg));
      }
   void bitrev(val_t *a, int n); // see NTT
   void trans(val_t *a, int n, bool inv = false); // see NTT;
   // remember to replace LL with val_t
};</pre>
```

7.2 Number Theory Transform*

```
//(2^16)+1, 65537, 3
//7*17*(2^23)+1, 998244353, 3
//1255*(2^20)+1, 1315962881, 3
//51*(2^25)+1, 1711276033, 29
template<int MAXN, 11 P, 11 RT> //MAXN must be 2^k
struct NTT {
  11 w[MAXN];
  11 mpow(ll a, ll n);
  11 minv(ll a) { return mpow(a, P - 2); }
  NTT() {
   11 dw = mpow(RT, (P - 1) / MAXN);
    w[0] = 1;
    for (int i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw
         % P;
  void bitrev(ll *a, int n) {
    for (int j = 1; j < n - 1; ++j) {
      for (int k = n >> 1; (i ^= k) < k; k >>= 1);
      if (j < i) swap(a[i], a[j]);</pre>
   }
  void operator()(ll *a, int n, bool inv = false) { //0
       \langle = a[i] \langle P
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {</pre>
        for (int j = i, x = 0; j < i + d1; ++j, x += dx
          11 tmp = a[j + d1] * w[x] % P;
          if ((a[j + d1] = a[j] - tmp) < 0) a[j + d1]
          if ((a[j] += tmp) >= P) a[j] -= P;
        }
```

7.3 Fast Walsh Transform*

```
/* x: a[j], y: a[j + (L >> 1)]
or: (y += x * op), and: (x += y * op)
xor: (x, y = (x + y) * op, (x - y) *
invop: or, and, xor = -1, -1, 1/2 */
void fwt(int *a, int n, int op) { //or
  for (int L = 2; L <= n; L <<= 1)</pre>
    for (int i = 0; i < n; i += L)</pre>
      for (int j = i; j < i + (L >> 1); ++j)
         a[j + (L >> 1)] += a[j] * op;
const int N = 21;
int f[N][1 << N], g[N][1 << N], h[N][1 << N], ct[1 << N</pre>
    ];
void subset_convolution(int *a, int *b, int *c, int L)
  // c_k = \sum_{i = 0} a_i * b_j
  int n = 1 << L;
  for (int i = 1; i < n; ++i)</pre>
    ct[i] = ct[i & (i - 1)] + 1;
  for (int i = 0; i < n; ++i)</pre>
    f[ct[i]][i] = a[i], g[ct[i]][i] = b[i];
  for (int i = 0; i <= L; ++i)</pre>
    fwt(f[i], n, 1), fwt(g[i], n, 1);
  for (int i = 0; i <= L; ++i)
  for (int j = 0; j <= i; ++j)</pre>
      for (int x = 0; x < n; ++x)
h[i][x] += f[j][x] * g[i - j][x];</pre>
  for (int i = 0; i <= L; ++i)</pre>
    fwt(h[i], n, -1);
  for (int i = 0; i < n; ++i)</pre>
    c[i] = h[ct[i]][i];
```

7.4 Polynomial Operation

```
#define fi(s, n) for (int i = (int)(s); i < (int)(n);
    ++i)
template<int MAXN, 11 P, 11 RT> // MAXN = 2^k
struct Poly : vector<ll> { // coefficients in [0, P)
  using vector<ll>::vector;
  static NTT<MAXN, P, RT> ntt;
  int n() const { return (int)size(); } // n() >= 1
  Poly(const Poly &p, int m) : vector<ll>(m) {
    copy_n(p.data(), min(p.n(), m), data());
  Poly& irev() { return reverse(data(), data() + n()),
      *this; }
  Poly& isz(int m) { return resize(m), *this; }
  Poly& iadd(const Poly &rhs) { // n() == rhs.n()
    fi(0, n()) if (((*this)[i] += rhs[i]) >= P) (*this)
        [i] -= P;
    return *this;
  Poly& imul(ll k) {
    fi(0, n()) (*this)[i] = (*this)[i] * k % P;
    return *this;
  Poly Mul(const Poly &rhs) const {
    int m = 1;
    while (m < n() + rhs.n() - 1) m <<= 1;</pre>
    Poly X(*this, m), Y(rhs, m);
ntt(X.data(), m), ntt(Y.data(), m);
    fi(0, m) X[i] = X[i] * Y[i] % P;
    ntt(X.data(), m, true);
    return X.isz(n() + rhs.n() - 1);
  Poly Inv() const { // (*this)[0] != 0, 1e5/95ms
    if (n() == 1) return {ntt.minv((*this)[0])};
    int m = 1;
```

```
while (m < n() * 2) m <<= 1;</pre>
  Poly Xi = Poly(*this, (n() + 1) / 2).Inv().isz(m);
  Poly Y(*this, m);
  ntt(Xi.data(), m), ntt(Y.data(), m);
  fi(0, m) {
    Xi[i] *= (2 - Xi[i] * Y[i]) % P;
    if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
 ntt(Xi.data(), m, true);
  return Xi.isz(n());
Poly Sqrt() const { // Jacobi((*this)[0], P) = 1, 1e5
    /235ms
  if (n() == 1) return {QuadraticResidue((*this)[0],
      P)};
  Poly X = Poly(*this, (n() + 1) / 2).Sqrt().isz(n())
  return X.iadd(Mul(X.Inv()).isz(n())).imul(P / 2 +
}
pair<Poly, Poly> DivMod(const Poly &rhs) const { // (
   rhs.)back() != 0
  if (n() < rhs.n()) return {{0}, *this};</pre>
  const int m = n() - rhs.n() + 1;
  Poly X(rhs); X.irev().isz(m);
  Poly Y(*this); Y.irev().isz(m);
  Poly Q = Y.Mul(X.Inv()).isz(m).irev();
  X = rhs.Mul(Q), Y = *this;
  fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
  return {Q, Y.isz(max(1, rhs.n() - 1))};
Poly Dx() const {
 Poly ret(n() - 1);
  fi(0, ret.n()) ret[i] = (i + 1) * (*this)[i + 1] %
  return ret.isz(max(1, ret.n()));
Poly Sx() const {
 Poly ret(n() + 1);
  fi(0, n()) ret[i + 1] = ntt.minv(i + 1) * (*this)[i
      1 % P;
  return ret;
Poly _tmul(int nn, const Poly &rhs) const {
 Poly Y = Mul(rhs).isz(n() + nn - 1);
  return Poly(Y.data() + n() - 1, Y.data() + Y.n());
vector<ll> _eval(const vector<ll> &x, const vector<
    Poly> &up) const {
  const int m = (int)x.size();
  if (!m) return {};
  vector<Poly> down(m * 2);
  // down[1] = DivMod(up[1]).second;
  // fi(2, m * 2) down[i] = down[i / 2].DivMod(up[i])
      .second:
  down[1] = Poly(up[1]).irev().isz(n()).Inv().irev().
  _tmul(m, *this);
fi(2, m * 2) down[i] = up[i ^ 1]._tmul(up[i].n() -
      1, down[i / 2]);
  vector<11> y(m);
  fi(0, m) y[i] = down[m + i][0];
  return y;
static vector<Poly> _tree1(const vector<ll> &x) {
  const int m = (int)x.size();
  vector<Poly> up(m * 2);
  fi(0, m) up[m + i] = \{(x[i] ? P - x[i] : 0), 1\};
  for (int i = m - 1; i > 0; --i) up[i] = up[i * 2].
      Mul(up[i * 2 + 1]);
  return up;
vector<ll> Eval(const vector<ll> &x) const { // 1e5,
  auto up = _tree1(x); return _eval(x, up);
static Poly Interpolate(const vector<11> &x, const
    vector<ll> &y) { // 1e5, 1.4s
  const int m = (int)x.size();
  vector<Poly> up = _tree1(x), down(m * 2);
  vector<11> z = up[1].Dx()._eval(x, up);
  fi(0, m) z[i] = y[i] * ntt.minv(z[i]) % P;
  fi(0, m) down[m + i] = \{z[i]\};
```

```
for (int i = m - 1; i > 0; --i) down[i] = down[i *
         2].Mul(up[i * 2 + 1]).iadd(down[i * 2 + 1].Mul(
         up[i * 2]));
    return down[1];
  Poly Ln() const { // (*this)[0] == 1, 1e5/170ms
    return Dx().Mul(Inv()).Sx().isz(n());
  Poly Exp() const { // (*this)[0] == 0, 1e5/360ms
    if (n() == 1) return {1};
    Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
    Poly Y = X.Ln(); Y[0] = P - 1;
    fi(0, n()) if ((Y[i] = (*this)[i] - Y[i]) < 0) Y[i]
    return X.Mul(Y).isz(n());
  // M := P(P - 1). If k >= M, k := k % M + M.
  Poly Pow(ll k) const {
    int nz = 0:
    while (nz < n() && !(*this)[nz]) ++nz;</pre>
    if (nz * min(k, (11)n()) >= n()) return Poly(n());
    if (!k) return Poly(Poly {1}, n());
    Poly X(data() + nz, data() + nz + n() - nz * k);
    const ll c = ntt.mpow(X[0], k % (P - 1));
    return X.Ln().imul(k % P).Exp().imul(c).irev().isz(
        n()).irev();
  static ll LinearRecursion(const vector<ll> &a, const
      vector<11> &coef, 11 n) { // a_n = \sum_{j=1}^{n} a_{j}(n-1)
      i)
    const int k = (int)a.size();
    assert((int)coef.size() == k + 1);
    Poly C(k + 1), W(Poly \{1\}, k), M = \{0, 1\}; fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
    C[k] = 1;
    while (n) {
      if (n % 2) W = W.Mul(M).DivMod(C).second;
      n /= 2, M = M.Mul(M).DivMod(C).second;
    11 ret = 0;
    fi(0, k) ret = (ret + W[i] * a[i]) % P;
    return ret;
  }
};
#undef fi
using Poly_t = Poly<131072 * 2, 998244353, 3>;
template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
```

7.5 Value Polynomial

```
struct Poly {
  mint base; // f(x) = poly[x - base]
  vector<mint> poly;
  Poly(mint b = 0, mint x = 0): base(b), poly(1, x) \{\}
  mint get_val(const mint &x) {
     if (x >= base && x < base + SZ(poly))
       return poly[x - base];
    mint rt = 0;
    vector<mint> lmul(SZ(poly), 1), rmul(SZ(poly), 1);
    for (int i = 1; i < SZ(poly); ++i)
lmul[i] = lmul[i - 1] * (x - (base + i - 1));</pre>
     for (int i = SZ(poly) - 2; i >= 0; --i)
      rmul[i] = rmul[i + 1] * (x - (base + i + 1));
     for (int i = 0; i < SZ(poly); ++i)</pre>
       rt += poly[i] * ifac[i] * inegfac[SZ(poly) - 1 -
           i] * 1mul[i] * rmul[i];
    return rt:
  void raise() { // g(x) = sigma\{base:x\} f(x)
    if (SZ(poly) == 1 && poly[0] == 0)
      return;
    mint nw = get_val(base + SZ(poly));
    poly.pb(nw);
    for (int i = 1; i < SZ(poly); ++i)</pre>
       poly[i] += poly[i - 1];
  }
};
```

7.6 Newton's Method

Given F(x) where

$$F(x) = \sum_{i=0}^{\infty} \alpha_i (x - \beta)^i$$

for β being some constant. Polynomial P such that F(P)=0 can be found iteratively. Denote by Q_k the polynomial such that $F(Q_k)=0$ (mod ${x^2}^k$), then

$$Q_{k+1} = Q_k - \frac{F(Q_k)}{F'(Q_k)} \pmod{x^{2^{k+1}}}$$

8 Geometry

8.1 Default Code

```
typedef pair<double,double> pdd;
typedef pair<pdd,pdd> Line;
struct Cir{pdd 0; double R;};
const double eps=1e-8;
pdd operator+(const pdd &a, const pdd &b)
{ return pdd(a.X + b.X, a.Y + b.Y);}
pdd operator-(const pdd &a, const pdd &b)
{ return pdd(a.X - b.X, a.Y - b.Y);}
pdd operator*(const pdd &a, const double &b)
{ return pdd(a.X * b, a.Y * b);}
pdd operator/(const pdd &a, const double &b)
{ return pdd(a.X / b, a.Y / b);}
double dot(const pdd &a,const pdd &b)
{ return a.X * b.X + a.Y * b.Y;}
double cross(const pdd &a,const pdd &b)
{ return a.X * b.Y - a.Y * b.X;}
double abs2(const pdd &a)
{ return dot(a, a);}
double abs(const pdd &a)
{ return sqrt(dot(a, a));}
int sign(const double &a)
{ return fabs(a) < eps ? 0 : a > 0 ? 1 : -1;}
int ori(const pdd &a,const pdd &b,const pdd &c)
{ return sign(cross(b - a, c - a));}
bool collinearity(const pdd &p1, const pdd &p2, const
{ return sign(cross(p1 - p3, p2 - p3)) == 0;}
bool btw(const pdd &p1,const pdd &p2,const pdd &p3) {
  if(!collinearity(p1, p2, p3)) return 0;
  return sign(dot(p1 - p3, p2 - p3)) <= 0;</pre>
bool seg_intersect(const pdd &p1,const pdd &p2,const
    pdd &p3,const pdd &p4) {
  int a123 = ori(p1, p2, p3);
  int a124 = ori(p1, p2, p4);
  int a341 = ori(p3, p4, p1);
  int a342 = ori(p3, p4, p2);
  if(a123 == 0 && a124 == 0)
  return btw(p1, p2, p3) || btw(p1, p2, p4) || btw(p3, p4, p1) || btw(p3, p4, p2); return a123 * a124 <= 0 && a341 * a342 <= 0;
pdd intersect(const pdd &p1, const pdd &p2, const pdd &
    p3, const pdd &p4) {
  double a123 = cross(p2 - p1, p3 - p1);
  double a124 = cross(p2 - p1, p4 - p1);
  return (p4 * a123 - p3 * a124) / (a123 - a124);
pdd perp(const pdd &p1)
{ return pdd(-p1.Y, p1.X); }
pdd projection(const pdd &p1, const pdd &p2, const pdd
    &p3)
{ return (p2 - p1) * dot(p3 - p1, p2 - p1) / abs2(p2 -
    p1); }
```

8.2 Convex hull*

8.3 Heart

```
pdd circenter(pdd p0, pdd p1, pdd p2) { // radius = abs
    (center)
  p1 = p1 - p0, p2 = p2 - p0;
  double x1 = p1.X, y1 = p1.Y, x2 = p2.X, y2 = p2.Y;
  double m = 2. * (x1 * y2 - y1 * x2);
center.X = (x1 * x1 * y2 - x2 * x2 * y1 + y1 * y2 * (
      y1 - y2)) / m;
  center.Y = (x1 * x2 * (x2 - x1) - y1 * y1 * x2 + x1 *
       y2 * y2) / m;
  return center + p0;
pdd incenter(pdd p1, pdd p2, pdd p3) { // radius = area
     / s * 2
  double a = abs(p2 - p3), b = abs(p1 - p3), c = abs(p1
       - p2);
  double s = a + b + c;
  return (a * p1 + b * p2 + c * p3) / s;
pdd masscenter(pdd p1, pdd p2, pdd p3)
{ return (p1 + p2 + p3) / 3; }
pdd orthcenter(pdd p1, pdd p2, pdd p3)
{ return masscenter(p1, p2, p3) * 3 - circenter(p1, p2,
     p3) * 2; }
```

8.4 Minimum Enclosing Circle*

```
pdd Minimum_Enclosing_Circle(vector<pdd> dots, double &
  pdd cent;
  random_shuffle(ALL(dots));
  cent = dots[0], r = 0;
  for (int i = 1; i < SZ(dots); ++i)</pre>
    if (abs(dots[i] - cent) > r) {
      cent = dots[i], r = 0;
for (int j = 0; j < i; ++j)</pre>
         if (abs(dots[j] - cent) > r) {
           cent = (dots[i] + dots[j]) / 2;
           r = abs(dots[i] - cent);
           for(int k = 0; k < j; ++k)
             if(abs(dots[k] - cent) > r)
               cent = excenter(dots[i], dots[j], dots[k
                    ], r);
        }
  return cent;
```

8.5 Polar Angle Sort*

8.6 Intersection of two circles*

```
bool CCinter(Cir &a, Cir &b, pdd &p1, pdd &p2) {
  pdd o1 = a.0, o2 = b.0;
  double r1 = a.R, r2 = b.R, d2 = abs2(o1 - o2), d =
        sqrt(d2);
  if(d < max(r1, r2) - min(r1, r2) || d > r1 + r2)
        return 0;
  pdd u = (o1 + o2) * 0.5 + (o1 - o2) * ((r2 * r2 - r1
        * r1) / (2 * d2));
  double A = sqrt((r1 + r2 + d) * (r1 - r2 + d) * (r1 +
        r2 - d) * (-r1 + r2 + d));
```

```
pdd v = pdd(o1.Y - o2.Y, -o1.X + o2.X) * A / (2 * d2)
;
p1 = u + v, p2 = u - v;
return 1;
}
```

8.7 Intersection of polygon and circle*

```
// Divides into multiple triangle, and sum up
const double PI=acos(-1);
double _area(pdd pa, pdd pb, double r){
  if(abs(pa)<abs(pb)) swap(pa, pb);</pre>
 if(abs(pb)<eps) return 0;</pre>
  double S, h, theta;
  double a=abs(pb),b=abs(pa),c=abs(pb-pa);
  double cosB = dot(pb,pb-pa) / a / c, B = acos(cosB);
  double cosC = dot(pa,pb) / a / b, C = acos(cosC);
 if(a > r){
   S = (C/2)*r*r;
    h = a*b*sin(C)/c;
   if (h < r \&\& B < PI/2) S -= (acos(h/r)*r*r - h*sqrt
        (r*r-h*h));
  else if(b > r){
    theta = PI - B - asin(sin(B)/r*a);
   S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
  else S = .5*sin(C)*a*b;
 return S;
double area_poly_circle(const vector<pdd> poly,const
    pdd &0, const double r){
  double S=0;
  for(int i=0;i<SZ(poly);++i)</pre>
    S+=_area(poly[i]-0,poly[(i+1)%SZ(poly)]-0,r)*ori(0,
        poly[i],poly[(i+1)%SZ(poly)]);
 return fabs(S);
```

8.8 Intersection of line and circle*

```
vector<pdd> circleLine(pdd c, double r, pdd a, pdd b) {
  pdd p = a + (b - a) * dot(c - a, b - a) / abs2(b - a)
  ;
  double s = cross(b - a, c - a), h2 = r * r - s * s /
      abs2(b - a);
  if (h2 < 0) return {};
  if (h2 == 0) return {p};
  pdd h = (b - a) / abs(b - a) * sqrt(h2);
  return {p - h, p + h};
}</pre>
```

8.9 point in circle

```
// return p4 is strictly in circumcircle of tri(p1,p2,
    p3)

ll sqr(ll x) { return x * x; }

bool in_cc(const pll& p1, const pll& p2, const pll& p3,
    const pll& p4) {

ll u11 = p1.X - p4.X; ll u12 = p1.Y - p4.Y;

ll u21 = p2.X - p4.X; ll u22 = p2.Y - p4.Y;

ll u31 = p3.X - p4.X; ll u32 = p3.Y - p4.Y;

ll u13 = sqr(p1.X) - sqr(p4.X) + sqr(p1.Y) - sqr(p4.Y
    );

ll u23 = sqr(p2.X) - sqr(p4.X) + sqr(p2.Y) - sqr(p4.Y
    );

ll u33 = sqr(p3.X) - sqr(p4.X) + sqr(p3.Y) - sqr(p4.Y
    );

__int128 det = (__int128)-u13 * u22 * u31 + (__int128
    )u12 * u23 * u31 + (__int128)u13 * u21 * u32 - (
    __int128)u11 * u23 * u32 - (__int128)u12 * u21 *
    u33 + (__int128)u11 * u22 * u33;

return det > eps;
}
```

8.10 Half plane intersection

```
bool isin( Line 10, Line 11, Line 12 ) {
   // Check inter(l1, l2) in l0
   pdd p = intersect(l1.X, l1.Y, l2.X, l2.Y);
   return sign(cross(10.Y - 10.X,p - 10.X)) > 0;
 /* Having solution, check intersect(ret[0], ret[1])
  * in all the lines. (use (l.Y - l.X) ^ (p - l.X) > 0
 /* --^-- Line.X --^-- Line.Y --^-- */
 vector<Line> halfPlaneInter(vector<Line> lines) {
   vector<double> ata(SZ(lines)), ord(SZ(lines));
   for(int i = 0; i < SZ(lines); ++i) {</pre>
     ord[i] = i;
     pdd d = lines[i].Y - lines[i].X;
     ata[i] = atan2(d.Y, d.X);
   sort(ALL(ord), [&](int i, int j) {
     if (fabs(ata[i] - ata[j]) >= eps)
       return ata[i] < ata[j];</pre>
     return ori(lines[i].X, lines[i].Y, lines[j].Y) < 0;</pre>
   vector<Line> fin(1, lines[ord[0]]);
   for (int i = 1; i < SZ(lines); ++i)</pre>
     if (fabs(ata[ord[i]] - ata[ord[i - 1]]) > eps)
       fin.pb(lines[ord[i]]);
   deque<Line> dq;
   for (int i = 0; i < SZ(fin); ++i) {</pre>
     while (SZ(dq) \ge 2 \&\& !isin(fin[i], dq[SZ(dq) - 2],
          dq.back()))
       dq.pop_back();
     while (SZ(dq) >= 2 \&\& !isin(fin[i], dq[0], dq[1]))
       dq.pop_front();
     dq.pb(fin[i]);
   while (SZ(dq) >= 3 \&\& !isin(dq[0], dq[SZ(dq) - 2], dq
       .back()))
     dq.pop_back();
   while (SZ(dq) >= 3 \&\& !isin(dq.back(), dq[0], dq[1]))
     dq.pop_front();
   return vector<Line>(ALL(dq));
```

8.11 CircleCover*

```
const int N = 1021;
struct CircleCover {
      int C;
       Cir c[N];
       bool g[N][N], overlap[N][N];
       // Area[i] : area covered by at least i circles
       double Area[ N ];
       void init(int _C){ C = _C;}
       struct Teve {
              pdd p; double ang; int add;
              Teve() {}
              Teve(pdd
                                               (_c){}
              bool operator<(const Teve &a)const
              {return ang < a.ang;}
       }eve[N * 2];
       // strict: x = 0, otherwise x = -1
bool disjuct(Cir &a, Cir &b, int x)
       {return sign(abs(a.0 - b.0) - a.R - b.R) > x;}
       bool contain(Cir &a, Cir &b, int x)
       {return sign(a.R - b.R - abs(a.0 - b.0)) > x;}
       bool contain(int i, int j) {
              /* c[j] is non-strictly in c[i]. *,
              return (sign(c[i].R - c[j].R) > 0 \mid | (sign(c[i].R - c[i].R) \mid | (sign(c[i].R) \mid |
                               c[j].R) == 0 && i < j)) && contain(c[i], c[j],
                                -1);
       void solve(){
             fill_n(Area, C + 2, 0);
              for(int i = 0; i < C; ++i)</pre>
                     for(int j = 0; j < C; ++j)</pre>
                            overlap[i][j] = contain(i, j);
              for(int i = 0; i < C; ++i)</pre>
                    for(int j = 0; j < C; ++j)</pre>
                            g[i][j] = !(overlap[i][j] || overlap[j][i] ||
                                         disjuct(c[i], c[j], -1));
              for(int i = 0; i < C; ++i){</pre>
```

```
int E = 0, cnt = 1;
      for(int j = 0; j < C; ++j)</pre>
        if(j != i && overlap[j][i])
          ++cnt;
      for(int j = 0; j < C; ++j)</pre>
        if(i != j && g[i][j]) {
          pdd aa, bb;
           CCinter(c[i], c[j], aa, bb);
          double A = atan2(aa.Y - c[i].O.Y, aa.X - c[i
               ].O.X);
           double B = atan2(bb.Y - c[i].0.Y, bb.X - c[i
               ].0.X);
           eve[E++] = Teve(bb, B, 1), eve[E++] = Teve(aa
               , A, -1);
          if(B > A) ++cnt;
      if(E == 0) Area[cnt] += pi * c[i].R * c[i].R;
      else{
        sort(eve, eve + E);
        eve[E] = eve[0];
        for(int j = 0; j < E; ++j){</pre>
          cnt += eve[j].add;
          Area[cnt] += cross(eve[j].p, eve[j + 1].p) *
          double theta = eve[j + 1].ang - eve[j].ang;
          if (theta < 0) theta += 2. * pi;</pre>
          Area[cnt] += (theta - sin(theta)) * c[i].R *
               c[i].R * .5;
        }
      }
    }
  }
};
```

8.12 3Dpoint*

```
struct Point {
  double x, y, z;
  Point(double _x = 0, double _y = 0, double _z = 0): x
      (_x), y(_y), z(_z){}
  Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
Point operator-(const Point &p1, const Point &p2)
{ return Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z);
    }
Point cross(const Point &p1, const Point &p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x -
     p1.x * p2.z, p1.x * p2.y - p1.y * p2.x); }
double dot(const Point &p1, const Point &p2)
{ return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z; }
double abs(const Point &a)
{ return sqrt(dot(a, a)); }
Point cross3(const Point &a, const Point &b, const
    Point &c)
{ return cross(b - a, c - a); }
double area(Point a, Point b, Point c)
{ return abs(cross3(a, b, c)); }
double volume(Point a, Point b, Point c, Point d)
{ return dot(cross3(a, b, c), d - a); }
pdd proj(Point a, Point b, Point c, Point u) {
// proj. u to the plane of a, b, and c
 Point e1 = b - a;
  Point e2 = c - a;
  e1 = e1 / abs(e1);
  e2 = e2 - e1 * dot(e2, e1);
 e2 = e2 / abs(e2);
 Point p = u - a;
  return pdd(dot(p, e1), dot(p, e2));
```

8.13 Convexhull3D*

```
struct CH3D {
   struct face{int a, b, c; bool ok;} F[8 * N];
   double dblcmp(Point &p,face &f)
   {return dot(cross3(P[f.a], P[f.b], P[f.c]), p - P[f.a]);}
   int g[N][N], num, n;
   Point P[N];
   void deal(int p,int a,int b) {
     int f = g[a][b];
```

```
face add;
  if (F[f].ok) {
    if (dblcmp(P[p],F[f]) > eps) dfs(p,f);
    else
      add.a = b, add.b = a, add.c = p, add.ok = 1, g[
          p][b] = g[a][p] = g[b][a] = num, F[num++]=
 }
void dfs(int p, int now) {
 F[now].ok = 0;
  deal(p, F[now].b, F[now].a), deal(p, F[now].c, F[
      now].b), deal(p, F[now].a, F[now].c);
bool same(int s,int t){
 Point &a = P[F[s].a];
  Point \&b = P[F[s].b];
  Point &c = P[F[s].c];
  return fabs(volume(a, b, c, P[F[t].a])) < eps &&</pre>
      fabs(volume(a, b, c, P[F[t].b])) < eps \&\& fabs(
      volume(a, b, c, P[F[t].c])) < eps;
void init(int _n){n = _n, num = 0;}
void solve() {
  face add:
  num = 0;
  if(n < 4) return;</pre>
  if([&](){
      for (int i = 1; i < n; ++i)</pre>
      if (abs(P[0] - P[i]) > eps)
      return swap(P[1], P[i]), 0;
      return 1;
      }()[&]|| (){
      for (int i = 2; i < n; ++i)
      if (abs(cross3(P[i], P[0], P[1])) > eps)
      return swap(P[2], P[i]), 0;
      }() || [&](){
      for (int i = 3; i < n; ++i)
      if (fabs(dot(cross(P[0] - P[1], P[1] - P[2]), P
          [0] - P[i])) > eps)
      return swap(P[3], P[i]), 0;
      return 1;
      }())return;
  for (int i = 0; i < 4; ++i) {
    add.a = (i + 1) \% 4, add.b = (i + 2) \% 4, add.c =
         (i + 3) % 4, add.ok = true;
    if (dblcmp(P[i],add) > 0) swap(add.b, add.c);
    g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.
        a] = num;
    F[num++] = add;
  for (int i = 4; i < n; ++i)
    for (int j = 0; j < num; ++j)</pre>
      if (F[j].ok && dblcmp(P[i],F[j]) > eps) {
        dfs(i, j);
        break;
  for (int tmp = num, i = (num = 0); i < tmp; ++i)
    if (F[i].ok) F[num++] = F[i];
double get_area() {
  double res = 0.0;
  if (n == 3)
   return abs(cross3(P[0], P[1], P[2])) / 2.0;
  for (int i = 0; i < num; ++i)</pre>
   res += area(P[F[i].a], P[F[i].b], P[F[i].c]);
 return res / 2.0;
double get_volume() {
 double res = 0.0;
  for (int i = 0; i < num; ++i)</pre>
    res += volume(Point(0, 0, 0), P[F[i].a], P[F[i].b
        ], P[F[i].c]);
  return fabs(res / 6.0);
int triangle() {return num;}
int polygon() {
 int res = 0;
  for (int i = 0, flag = 1; i < num; ++i, res += flag</pre>
      , flag = 1)
    for (int j = 0; j < i && flag; ++j)</pre>
```

```
flag &= !same(i,j);
    return res;
  Point getcent(){
    Point ans(0, 0, 0), temp = P[F[0].a];
    double v = 0.0, t2;
    for (int i = 0; i < num; ++i)</pre>
       if (F[i].ok == true) {
         Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].b]
             i].c];
         t2 = volume(temp, p1, p2, p3) / 6.0;
         if (t2>0)
           ans.x += (p1.x + p2.x + p3.x + temp.x) * t2,
               ans.y += (p1.y + p2.y + p3.y + temp.y)
               t2, ans.z += (p1.z + p2.z + p3.z + temp.z
) * t2, v += t2;
    ans.x /= (4 * v), ans.y /= (4 * v), ans.z /= (4 * v)
        );
    return ans;
  double pointmindis(Point p) {
    double rt = 99999999;
     for(int i = 0; i < num; ++i)</pre>
       if(F[i].ok == true) {
         Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].b]
             i].c];
         double a = (p2.y - p1.y) * (p3.z - p1.z) - (p2.
             z - p1.z) * (p3.y - p1.y);
         double b = (p2.z - p1.z) * (p3.x - p1.x) - (p2.
             x - p1.x) * (p3.z - p1.z);
         double c = (p2.x - p1.x) * (p3.y - p1.y) - (p2.
             y - p1.y) * (p3.x - p1.x);
         double d = 0 - (a * p1.x + b * p1.y + c * p1.z)
         double temp = fabs(a * p.x + b * p.y + c * p.z
             + d) / sqrt(a * a + b * b + c * c);
         rt = min(rt, temp);
    return rt;
  }
};
```

8.14 DelaunayTriangulation*

```
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)\%3], u.p[(i+2)\%3]
Voronoi diagram: for each triangle in triangulation,
the bisector of all its edges will split the region.
nearest point will belong to the triangle containing it
const ll inf = MAXC * MAXC * 100; // Lower_bound
    unknown
struct Tri;
struct Edge {
  Tri* tri; int side;
 Edge(): tri(0), side(0){}
 Edge(Tri* _tri, int _side): tri(_tri), side(_side){}
struct Tri {
 pll p[3];
 Edge edge[3];
 Tri* chd[3];
  Tri() {}
 Tri(const pl1& p0, const pl1& p1, const pl1& p2) {
    p[0] = p0; p[1] = p1; p[2] = p2;
    chd[0] = chd[1] = chd[2] = 0;
 bool has_chd() const { return chd[0] != 0; }
 int num_chd() const {
   return !!chd[0] + !!chd[1] + !!chd[2];
  bool contains(pll const& q) const {
    for (int i = 0; i < 3; ++i)
```

```
if (ori(p[i], p[(i + 1) % 3], q) < 0)</pre>
         return 0;
    return 1:
  }
} pool[N * 10], *tris;
void edge(Edge a, Edge b) {
  if(a.tri) a.tri->edge[a.side] = b;
  if(b.tri) b.tri->edge[b.side] = a;
struct Trig { // Triangulation
  Trig() {
    the_root = // Tri should at least contain all
         points
       new(tris++) Tri(pll(-inf, -inf), pll(inf + inf, -
           inf), pll(-inf, inf + inf));
  Tri* find(pll p) { return find(the_root, p); }
  void add_point(const pll &p) { add_point(find(
       the_root, p), p); }
  Tri* the root;
  static Tri* find(Tri* root, const pll &p) {
     while (1) {
       if (!root->has_chd())
         return root;
       for (int i = 0; i < 3 && root->chd[i]; ++i)
         if (root->chd[i]->contains(p)) {
           root = root->chd[i];
           break;
         }
     assert(0); // "point not found"
  void add_point(Tri* root, pll const& p) {
    Tri* t[3];
     /* split it into three triangles */
     for (int i = 0; i < 3; ++i)</pre>
       t[i] = new(tris++) Tri(root->p[i], root->p[(i +
           1) % 3], p);
     for (int i = 0; i < 3; ++i)</pre>
       edge(Edge(t[i], 0), Edge(t[(i + 1) % 3], 1));
     for (int i = 0; i < 3; ++i)</pre>
       edge(Edge(t[i], 2), root->edge[(i + 2) % 3]);
     for (int i = 0; i < 3; ++i)</pre>
      root->chd[i] = t[i];
     for (int i = 0; i < 3; ++i)
       flip(t[i], 2);
  void flip(Tri* tri, int pi) {
     Tri* trj = tri->edge[pi].tri;
     int pj = tri->edge[pi].side;
     if (!trj) return;
     if (!in_cc(tri->p[0], tri->p[1], tri->p[2], trj->p[
         pj])) return;
     /* flip edge between tri,trj */
     Tri* trk = new(tris++) Tri(tri->p[(pi + 1) % 3],
         trj->p[pj], tri->p[pi]);
     Tri* trl = new(tris++) Tri(trj->p[(pj + 1) % 3],
         tri->p[pi], trj->p[pj]);
     edge(Edge(trk, 0), Edge(trl, 0));
     edge(Edge(trk, 1), tri->edge[(pi + 2) % 3]);
     edge(Edge(trk, 2), trj->edge[(pj + 1) % 3]);
    edge(Edge(trl, 1), trj->edge[(pj + 2) % 3]);
edge(Edge(trl, 2), tri->edge[(pi + 1) % 3]);
     tri->chd[0] = trk; tri->chd[1] = trl; tri->chd[2] =
     trj->chd[0] = trk; trj->chd[1] = trl; trj->chd[2] =
     flip(trk, 1); flip(trk, 2);
     flip(trl, 1); flip(trl, 2);
};
vector<Tri*> triang; // vector of all triangle
set<Tri*> vst;
void go(Tri* now) { // store all tri into triang
  if (vst.find(now) != vst.end())
    return;
  vst.insert(now);
  if (!now->has_chd())
    return triang.pb(now);
  for (int i = 0; i < now->num_chd(); ++i)
     go(now->chd[i]);
}
```

```
void build(int n, pll* ps) { // build triangulation
  tris = pool; triang.clear(); vst.clear();
  random_shuffle(ps, ps + n);
  Trig tri; // the triangulation structure
  for (int i = 0; i < n; ++i)
     tri.add_point(ps[i]);
  go(tri.the_root);
}</pre>
```

8.15 Triangulation Vonoroi*

```
vector<Line> ls[N]:
pll arr[N];
Line make_line(pdd p, Line l) {
  pdd d = 1.Y - 1.X; d = perp(d);
pdd m = (1.X + 1.Y) / 2;
  l = Line(m, m + d);
  if (ori(1.X, 1.Y, p) < 0)
    l = Line(m + d, m);
  return 1:
double calc_area(int id) {
  // use to calculate the area of point "strictly in
       the convex hull"
  vector<Line> hpi = halfPlaneInter(ls[id]);
  vector<pdd> ps;
  for (int i = 0; i < SZ(hpi); ++i)</pre>
    ps.pb(intersect(hpi[i].X, hpi[i].Y, hpi[(i + 1) %
         SZ(hpi)].X, hpi[(i + 1) % SZ(hpi)].Y));
  double rt = 0;
  for (int i = 0; i < SZ(ps); ++i)</pre>
    rt += cross(ps[i], ps[(i + 1) % SZ(ps)]);
  return fabs(rt) / 2;
void solve(int n, pii *oarr) {
  map<pll, int> mp;
  for (int i = 0; i < n; ++i)</pre>
    arr[i] = pll(oarr[i].X, oarr[i].Y), mp[arr[i]] = i;
  build(n, arr); // Triangulation
  for (auto *t : triang) {
    vector<int> p;
    for (int i = 0; i < 3; ++i)
       if (mp.find(t->p[i]) != mp.end())
        p.pb(mp[t->p[i]]);
    for (int i = 0; i < SZ(p); ++i)</pre>
       for (int j = i + 1; j < SZ(p); ++j) {
         Line l(oarr[p[i]], oarr[p[j]]);
         ls[p[i]].pb(make_line(oarr[p[i]], 1));
         ls[p[j]].pb(make_line(oarr[p[j]], 1));
  }
}
```

8.16 Tangent line of two circles

```
vector<Line> go( const Cir& c1 , const Cir& c2 , int
    sign1 ){
  // sign1 = 1 for outer tang, -1 for inter tang
  vector<Line> ret;
  double d_sq = abs2( c1.0 - c2.0 );
  if (sign(d_sq) == 0) return ret;
  double d = sqrt(d_sq);
  pdd v = (c2.0 - c1.0) / d;
  double c = (c1.R - sign1 * c2.R) / d;
  if (c * c > 1) return ret;
  double h = sqrt(max( 0.0, 1.0 - c * c));
  for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
  pdd n = pdd(v.X * c - sign2 * h * v.Y,
      v.Y * c + sign2 * h * v.X);
    pdd p1 = c1.0 + n * c1.R;
    pdd p2 = c2.0 + n * (c2.R * sign1);
    if (sign(p1.X - p2.X) <= 0 and</pre>
        sign(p1.Y - p2.Y) <= 0)
      p2 = p1 + perp(c2.0 - c1.0);
    ret.pb(Line(p1, p2));
 }
  return ret;
```

8.17 minMaxEnclosingRectangle*

```
const double INF = 1e18, qi = acos(-1) / 2 * 3;
pdd solve(vector<pll> &dots) {
#define diff(u, v) (dots[u] - dots[v])
#define vec(v) (dots[v] - dots[i])
 hull(dots);
  double Max = 0, Min = INF, deg;
  int n = SZ(dots);
  dots.pb(dots[0]);
  for (int i = 0, u = 1, r = 1, l = 1; i < n; ++i) {
    pll nw = vec(i + 1);
    while (cross(nw, vec(u + 1)) > cross(nw, vec(u)))
     u = (u + 1) \% n;
    while (dot(nw, vec(r + 1)) > dot(nw, vec(r)))
     r = (r + 1) \% n;
    if (!i) l = (r + 1) % n;
    while (dot(nw, vec(1 + 1)) < dot(nw, vec(1)))
      1 = (1 + 1) \% n;
    Min = min(Min, (double)(dot(nw, vec(r)) - dot(nw,
        vec(1))) * cross(nw, vec(u)) / abs2(nw));
    deg = acos(dot(diff(r, 1), vec(u)) / abs(diff(r, 1)
        ) / abs(vec(u)));
    deg = (qi - deg) / 2;
    Max = max(Max, abs(diff(r, 1)) * abs(vec(u)) * sin(
        deg) * sin(deg));
  return pdd(Min, Max);
```

8.18 PointSegDist

```
double PointSegDist(pdd q0, pdd q1, pdd p) {
  if (sign(abs(q0 - q1)) == 0) return abs(q0 - p);
  if (sign(dot(q1 - q0, p - q0)) >= 0 && sign(dot(q0 -
        q1, p - q1)) >= 0)
    return fabs(cross(q1 - q0, p - q0) / abs(q0 - q1));
  return min(abs(p - q0), abs(p - q1));
}
```

8.19 PointInConvex

8.20 Minkowski Sum*

```
vector<pll> Minkowski(vector<pll> A, vector<pll> B) {
  hull(A), hull(B);
  vector<pll> C(1, A[0] + B[0]), s1, s2;
  for(int i = 0; i < SZ(A); ++i)
    s1.pb(A[(i + 1) % SZ(A)] - A[i]);
  for(int i = 0; i < SZ(B); i++)
    s2.pb(B[(i + 1) % SZ(B)] - B[i]);
  for(int p1 = 0, p2 = 0; p1 < SZ(A) || p2 < SZ(B);)
  if (p2 >= SZ(B) || (p1 < SZ(A) && cross(s1[p1], s2[
        p2]) >= 0))
        C.pb(C.back() + s1[p1++]);
  else
        C.pb(C.back() + s2[p2++]);
  return hull(C), C;
}
```

8.21 RotatingSweepLine

```
void rotatingSweepLine(vector<pii> &ps) {
  int n = SZ(ps), m = 0;
  vector<int> id(n), pos(n);
  vector<pii> line(n * (n - 1));
  for (int i = 0; i < n; ++i)</pre>
    for (int j = 0; j < n; ++j)
      if (i != j) line[m++] = pii(i, j);
  sort(ALL(line), [&](pii a, pii b) {
    return cmp(ps[a.Y] - ps[a.X], ps[b.Y] - ps[b.X]);
  }); // cmp(): polar angle compare
  iota(ALL(id), 0);
sort(ALL(id), [&](int a, int b) {
    if (ps[a].Y != ps[b].Y) return ps[a].Y < ps[b].Y;</pre>
    return ps[a] < ps[b];</pre>
  }); // initial order, since (1, 0) is the smallest
  for (int i = 0; i < n; ++i) pos[id[i]] = i;</pre>
  for (int i = 0; i < m; ++i) {</pre>
    auto 1 = line[i];
    // do something
    \label{eq:tie-pos} \mbox{tie-(pos[1.X], pos[1.Y], id[pos[1.X]], id[pos[1.Y]])} \\
          = make_tuple(pos[1.Y], pos[1.X], 1.Y, 1.X);
  }
}
```

9 Else

9.1 Mo's Alogrithm(With modification)

```
Mo's Algorithm With modification
Block: N^{2/3}, Complexity: N^{5/3}
struct Query {
  int L, R, LBid, RBid, T;
  Query(int 1, int r, int t):
     L(1), R(r), LBid(1 / blk), RBid(r / blk), T(t) {}
  bool operator<(const Query &q) const {</pre>
    if (LBid != q.LBid) return LBid < q.LBid;</pre>
     if (RBid != q.RBid) return RBid < q.RBid;</pre>
    return T < b.T;</pre>
  }
void solve(vector<Query> query) {
  sort(ALL(query));
  int L=0, R=0, T=-1;
for (auto q : query) {
    while (T < q.T) addTime(L, R, ++T); // TODO while (T > q.T) subTime(L, R, T--); // TODO
    while (R < q.R) add(arr[++R]); // TODO
     while (L > q.L) add(arr[--L]); // TODO
    while (R > q.R) sub(arr[R--]); // TODO
     while (L < q.L) sub(arr[L++]); // TODO</pre>
     // answer query
}
```

9.2 Mo's Alogrithm On Tree

```
Mo's Algorithm On Tree
Preprocess:
1) LCA
2) dfs with in[u] = dft++, out[u] = dft++
3) ord[in[u]] = ord[out[u]] = u
4) bitset < MAXN > inset
struct Query {
 int L, R, LBid, lca;
 Query(int u, int v) {
    int c = LCA(u, v);
    if (c == u || c == v)
      q.lca = -1, q.L = out[c ^ u ^ v], q.R = out[c];
    else if (out[u] < in[v])</pre>
     q.lca = c, q.L = out[u], q.R = in[v];
      q.lca = c, q.L = out[v], q.R = in[u];
    q.Lid = q.L / blk;
```

```
bool operator<(const Query &q) const {</pre>
    if (LBid != q.LBid) return LBid < q.LBid;</pre>
    return R < q.R;</pre>
};
void flip(int x) {
    if (inset[x]) sub(arr[x]); // TODO
    else add(arr[x]); // TODO
    inset[x] = ~inset[x];
void solve(vector<Query> query) {
  sort(ALL(query));
  int L = 0, R = 0;
  for (auto q : query) {
    while (R < q.R) flip(ord[++R]);</pre>
    while (L > q.L) flip(ord[--L]);
while (R > q.R) flip(ord[R--]);
    while (L < q.L) flip(ord[L++]);</pre>
    if (~q.lca) add(arr[q.lca]);
     // answer query
    if (~q.lca) sub(arr[q.lca]);
}
```

9.3 Additional Mo's Algorithm Trick

• Mo's Algorithm With Addition Only

```
– Sort querys same as the normal Mo's algorithm. 

– For each query [l,r]: 

– If l/blk = r/blk, brute-force. 

– If l/blk \neq curL/blk, initialize curL := (l/blk + 1) \cdot blk, curR := curL - 1 

– If r > curR, increase curR 

– decrease curL to fit l, and then undo after answering
```

• Mo's Algorithm With Offline Second Time

```
- Require: Changing answer \equiv adding f([l,r],r+1). - Require: f([l,r],r+1)=f([1,r],r+1)-f([1,l),r+1). - Part1: Answer all f([1,r],r+1) first. - Part2: Store curR\to R for curL (reduce the space to O(N)), and then answer them by the second offline algorithm. - Note: You must do the above symmetrically for the left
```

9.4 Hilbert Curve

9.5 DynamicConvexTrick*

```
// only works for integer coordinates!!
struct Line {
  mutable 11 a, b, p;
  bool operator<(const Line &rhs) const { return a <</pre>
       rhs.a; }
  bool operator<(11 x) const { return p < x; }</pre>
struct DynamicHull : multiset<Line, less<>>> {
  static const ll kInf = 1e18;
  ll Div(ll a, ll b) { return a / b - ((a ^ b) < 0 && a
        % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) { x->p = kInf; return 0; }
    if (x->a == y->a) x->p = x->b > y->b ? kInf : -kInf
    else x \rightarrow p = Div(y \rightarrow b - x \rightarrow b, x \rightarrow a - y \rightarrow a);
    return x->p >= y->p;
  void addline(ll a, ll b) {
    auto z = insert({a, b, 0}), y = z++, x = y;
```

9.6 All LCS*

```
void all_lcs(string s, string t) { // 0-base
  vector<int> h(SZ(t));
  iota(ALL(h), 0);
  for (int a = 0; a < SZ(s); ++a) {
    int v = -1;
    for (int c = 0; c < SZ(t); ++c)
        if (s[a] == t[c] || h[c] < v)
            swap(h[c], v);
    // LCS(s[0, a], t[b, c]) =
    // c - b + 1 - sum([h[i] >= b] | i <= c)
    // h[i] might become -1 !!
  }
}</pre>
```

9.7 DLX*

```
#define TRAV(i, link, start) for (int i = link[start];
   i != start; i = link[i])
template < bool A, bool B = !A> // A: Exact
struct DLX {
 int lt[NN], rg[NN], up[NN], dn[NN], cl[NN], rw[NN],
      bt[NN], s[NN], head, sz, ans;
  int columns;
 bool vis[NN];
 void remove(int c) {
    if (A) lt[rg[c]] = lt[c], rg[lt[c]] = rg[c];
    TRAV(i, dn, c) {
      if (A) {
        TRAV(j, rg, i)
          up[dn[j]] = up[j], dn[up[j]] = dn[j], --s[cl[
              j]];
      } else {
       lt[rg[i]] = lt[i], rg[lt[i]] = rg[i];
   }
  void restore(int c) {
   TRAV(i, up, c) {
      if (A) {
        TRAV(j, lt, i)
          ++s[cl[j]], up[dn[j]] = j, dn[up[j]] = j;
      } else {
       lt[rg[i]] = rg[lt[i]] = i;
      }
    if (A) lt[rg[c]] = c, rg[lt[c]] = c;
  void init(int c) {
    columns = c;
    for (int i = 0; i < c; ++i) {</pre>
      up[i] = dn[i] = bt[i] = i;
      lt[i] = i == 0 ? c : i - 1;
      rg[i] = i == c - 1 ? c : i + 1;
      s[i] = 0;
   rg[c] = 0, lt[c] = c - 1;
    up[c] = dn[c] = -1;
   head = c, sz = c + 1;
  void insert(int r, const vector<int> &col) {
    if (col.empty()) return;
    int f = sz;
    for (int i = 0; i < (int)col.size(); ++i) {</pre>
      int c = col[i], v = sz++;
      dn[bt[c]] = v;
      up[v] = bt[c], bt[c] = v;
      rg[v] = (i + 1 == (int)col.size() ? f : v + 1);
```

```
rw[v] = r, cl[v] = c;
      ++s[c];
      if (i > 0) lt[v] = v - 1;
    lt[f] = sz - 1;
  int h() {
    int ret = 0;
    memset(vis, 0, sizeof(bool) * sz);
     TRAV(x, rg, head) {
      if (vis[x]) continue;
      vis[x] = true, ++ret;
      TRAV(i, dn, x) TRAV(j, rg, i) vis[cl[j]] = true;
    return ret;
  void dfs(int dep) {
     if (dep + (A ? 0 : h()) >= ans) return;
     if (rg[head] == head) return ans = dep, void();
     if (dn[rg[head]] == rg[head]) return;
     int w = rg[head];
    TRAV(x, rg, head) if (s[x] < s[w]) w = x;
     if (A) remove(w);
     TRAV(i, dn, w) {
      if (B) remove(i);
      TRAV(j, rg, i) remove(A ? cl[j] : j);
       dfs(dep + 1);
      TRAV(j, lt, i) restore(A ? cl[j] : j);
      if (B) restore(i);
     if (A) restore(w);
  int solve() {
    for (int i = 0; i < columns; ++i)</pre>
      dn[bt[i]] = i, up[i] = bt[i];
     ans = 1e9, dfs(0);
     return ans;
};
```

9.8 Matroid Intersection

Start from $S=\emptyset$. In each iteration, let

```
• Y_1 = \{x \notin S \mid S \cup \{x\} \in I_1\}
• Y_2 = \{x \notin S \mid S \cup \{x\} \in I_2\}
```

If there exists $x \in Y_1 \cap Y_2$, insert x into S. Otherwise for each $x \in S, y \not \in S$, create edges

```
• x \to y if S - \{x\} \cup \{y\} \in I_1.
• y \to x if S - \{x\} \cup \{y\} \in I_2.
```

Find a shortest path (with BFS) starting from a vertex in Y_1 and ending at a vertex in Y_2 which doesn't pass through any other vertices in Y_2 , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if $x \in S$ and -w(x) if $x \not\in S$. Find the path with the minimum number of edges among all minimum length paths and alternate it.

9.9 AdaptiveSimpson

```
using F_t = function<double(double)>;
pdd simpson(const F_t &f, double 1, double r
  double f1, double fr, double fm = nan("")) {
  if (isnan(fm)) fm = f((1 + r) / 2);
return {fm, (r - 1) / 6 * (f1 + 4 * fm + fr)};
double simpson_ada(const F_t &f, double 1, double r,
  double f1, double fm, double fr, double eps) {
  double m = (1 + r) / 2,
  s = simpson(f, 1, r, f1, fr, fm).second;
auto [f1m, s1] = simpson(f, 1, m, f1, fm);
  auto [fmr, sr] = simpson(f, m, r, fm, fr);
  double delta = sl + sr - s;
  if (abs(delta) <= 15 * eps)</pre>
    return sl + sr + delta / 15;
  return simpson\_ada(f, 1, m, fl, flm, fm, eps / 2) +
    simpson_ada(f, m, r, fm, fmr, fr, eps / 2);
double simpson_ada(const F_t &f, double 1, double r) {
  return simpson_ada(
    f, 1, r, f(1), f((1 + r) / 2), f(r), 1e-9 / 7122);
double simpson_ada2(const F_t &f, double 1, double r) {
    double h = (r - 1) / 7122, s = 0;
```

```
for (int i = 0; i < 7122; ++i, l += h)
    s += simpson_ada(f, l, l + h);
return s;
}</pre>
```

9.10 Simulated Annealing

10 Python

10.1 Misc