64-210 Eingebettete Systeme

-VLSI-Entwurf / Methoden und Werkzeuge-

http://tams.informatik.uni-hamburg.de/ lectures/2013ss/vorlesung/es

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

Sommersemester 2013

Die folgenden Folien sind ein Auszug aus den Unterlagen der Vorlesung 64-613 Rechnerarchitekturen und Mikrosystemtechnik vom Wintersemester 2011/2012.

Das komplette Material findet sich auf den Web-Seiten unter http://tams.informatik.uni-hamburg.de/lectures/2011ws/vorlesung/ram

Gliederung

- 1. Entwurfsmethodik
 - Motivation
 - Abstraktion im VLSI-Entwurf
 - Vorgehensweise
- 2. EDA-Werkzeuge
- 3. Entwurfsstile

Motivation

Moore's Law

Die Zahl der Transistoren pro IC verdoppelt sich alle 2 Jahre

Gordon Moore 1965:

"Cramming more components onto integrated circuits"

Motivation (cont.)

[ITRS07]

Motivation (cont.)

1. Technologie

1995

2000

2005

2010

- Verkleinerung der Strukturbreite
- ▶ Höhere Integrationsdichte

2015

2020

2025

Motivation (cont.)

[ITRS07]

Motivation (cont.)

Entwurfsmethodik - Motivation

Motivation (cont.)

2. Applikationen

- von Standardbausteinen zu ASICs und Systemen
- Digitale Anwendungen

Coprozessoren, Grafik
Applikationsspezifische ICs
Signalverarbeitung
Eingebettete Systeme

Entwurfsmethodik - Motivation

Motivation (cont.)

- ► + Analoge Komponenten
- ▶ + Mikrosysteme

Entwurfsmethodik - Motivation

Motivation (cont.)

Übergang zu Systemen

Motivation (cont.)

neue Anwendungsfelder

- "Computing"
- "Consumer Products"
- "Automotive"
- "Telecommunication"
- "mobile Applications"
- 3. Methoden und Werkzeuge im Chipentwurf
 - enges Zusammenwirken mit der technischen Entwicklung und den Anforderungen durch die Applikationen

Entwurfsmethodik - Motivation

Wie wird Entworfen?

Hardwareentwurf

Wie wird Entworfen?

Hardwareentwurf

...so nicht

Entwurfsmethodik - Motivation

Wie wird Entworfen?

Hardwareentwurf

Wie wird Entworfen?

Hardwareentwurf

... so auch nicht

Wie wird Entworfen?

Hardwareentwurf

Entwurfsmethodik - Motivation

Wie wird Entworfen? (cont.)

```
mainP: process (clk. rst) is
 type stateTy is (Gr, Yr, Rr, Rq, RYr);
 variable timer : integer range 0 to maxWalkC:
 variable state : stateTy;
 variable request : boolean;
begin
 if rst = '0' then
                                ----- asvnc. reset
   liCar <= "001"; liWalk <= "10";
   request := false:
                          ----- clock edge
 elsif rising_edge(clk) then ------
  case state is
  when Gr => ----
                 ----- Green + red
   liCar <= "001"; liWalk <= "10";
   if (regWalk = '1') then request := true; -- store request
    end if:
    if (timer > 0) then timer := timer - 1; -- no timeout
    end if:
                                  ----- Yellow + red
  when Yr => ------
   -- init timer
  when Rr => -----
                          ----- Red + red
```

Abstraktion im VLSI-Entwurf

Abstraktionsebenen

- keine einheitliche Bezeichnung in der Literatur
- Architekturebene
 - ► Funktion/Verhalten Leistungsanforderungen
 - ► Struktur Netzwerk

 - ► Geometrie Systempartitionierung

Abstraktion im VLSI-Entwurf (cont.)

- ► Hauptblockebene (Algorithmenebene, funktionale Ebene)
 - ► Funktion/Verhalten Algorithmen, formale Funktionsmodelle
 - Struktur aus

Blockschaltbild Hardwaremodule, Busse...

Nachrichten

Protokolle

Geometrie

Cluster

Abstraktion im VLSI-Entwurf (cont.)

- ► Register-Transfer Ebene
 - ► Funktion/Verhalten Daten- und Kontrollfluss, Automaten...
 - Struktur aus

RT-Diagramm
Register, Multiplexer, ALUs...

Nachrichten

Zahlencodierungen, Binärworte...

Geometrie

Floorplan

- ► Logikebene (Schaltwerkebene)
 - ► Funktion/Verhalten Boole'sche Gleichungen
 - ► Struktur Gatternetzlis aus Gatter, Flipf
 - Nachrichten
 - Geometrie

Gatternetzliste, Schematic Gatter, Flipflops, Latches. . .

Bit

Moduln

Entwurfsmethodik - Abstraktion im VLSI-Entwurf

Abstraktion im VLSI-Entwurf (cont.)

- elektrische Ebene (Schaltkreisebene)

 - Struktur aus
 - Nachrichten
 - Geometrie

► Funktion/Verhalten Differentialgleichungen

elektrisches Schaltbild

Transistoren, Kondensatoren...

Ströme, Spannungen

Polygone, Layout → physikalische Ebene

- physikalische Ebene (geometrische Ebene)
 - ► Funktion/Verhalten partielle DGL
 - Struktur Dotierungsprofile

Entwurfsmethodik - Abstraktion im VLSI-Entwurf

Abstraktion im VLSI-Entwurf (cont.)

Y-Diagramm

D. Gajski, R. Kuhn 1983: "New VLSI Tools"

Abstraktion im VLSI-Entwurf (cont.)

Y-Diagramm / Gajski-Diagramm

- Visualisiert Abstraktionsebenen
- Sichtweisen
 - ► Funktion / Verhalten
 - Struktur
 - ► Geometrie (historisch, inzwischen überholt)

- Unterscheidung von Struktur und Verhalten
- ▶ Auf jeder Abstraktionsebene gibt es *elementare Einheiten* mit definiertem Verhalten
- Entwurfsaufgabe
 - ein gegebenes Verhalten in eine Strukturbeschreibung (aus elementaren Einheiten) der jeweiligen Ebene umzusetzen
 - ▶ jede dieser Einheiten ist ihrerseits in der nächst niedrigeren Abstraktionsebene entsprechend zu realisieren
 - hierarchischer Entwurf, top-down

Entwurfsvorgehen (cont.)

- ⇒ top-down: typisches Entwurfsvorgehen
- ⇒ bottom-up: Einflüsse auf höhere Abstraktionsebenen
 - Zeitverhalten
 - ► Schaltungstechniken
 - Arithmetiken
 - **>**
 - ▶ Zentrale Bedeutung der Simulation, bzw. der Verifikation
 - Entwurf als iterativer Prozess
 - ► Alternativen: "exploring the design-space"
 - Versionen
 - ► Teamarbeit

Gliederung

- 1. Entwurfsmethodik
- 2. EDA-Werkzeuge

Hierarchischer Entwurf Werkzeuge Probleme

3. Entwurfsstile

Hierarchischer Entwurf

Nur durch neue Methoden und Werkzeuge konnte die Produktivität beim Chipentwurf während der letzten Jahre mit Moore's Law mithalten

- Anderungen in der Entwurfsmethodik
 - ⇒ Verhalten Struktur grafische Eingabe ⇒ Hardwarebeschreibungssprachen
- Entwurf auf höheren Abstraktionsebenen
- Automatische Transformationen bis zum Layout
 - Synthese: Register-Transfer, High-Level
 - Datenpfad-/Makrozellgenerierung
 - Zellsynthese
 - Platzierung & Verdrahtung

EDA-Werkzeuge - Hierarchischer Entwurf

Entwurfswerkzeuge

Entwurfswerkzeuge

- Synthese
 - automatische Generierung von Strukturbeschreibungen aus Verhaltensmodellen
 - Trend: IP-Komponenten (Intellectual Property) und "behavioral Code"

Entwurfswerkzeuge (cont.)

► High-Level Synthese

- Einschränkung des "Suchraums"
- spezielle Zielarchitekturen
- spezielle Anwendungsfelder
- Datenflussdominiert DSPs Kontrollflussdominiert Prozessoren

Entwurfswerkzeuge (cont.)

▶ CoDesign → CoSynthese

- Partitionierung Hardware / Software ?
- nur manuell möglich

EDA-Werkzeuge - Werkzeuge

Entwurfswerkzeuge (cont.)

- Simulation
 - ► Trend: wachsender Aufwand, Systemsimulation
 - ► Problem der Simulationsauswertung ⇒ auch dort Abstraktion
 - Programmiersprachen-Schnittstellen (VHPI, Verilog-PLI...)
 Beispiele: → Signalverarbeitung
 → Bildverarbeitung
 - Hardwarebeschleunigung
 - ► Emulation von Gatternetzlisten durch FPGA-Boards
 - Beispiel: Betriebssystem auf Simulationsmodell vom Mikroprozessor booten (Sun Microsystems)
 - gemischte Simulation
 - ► Hardware- und Software
 - auf verschiedenen Abstraktionsebenen
 - ► + IP-Modelle
 - + analoge Modelle

Entwurfswerkzeuge (cont.)

- ► Analysewerkzeuge
 - ► Leistungsverbrauch
 - Timing
 - jeweils: statisch, geschätzt oder in Verbindung mit Simulation
- Verifikation, wenn möglich
 - Verifikation: Aussagen gelten für alle möglichen Eingaben
 Simulation: Beschränkung auf Stimuli
 - ▶ formale Methoden, um Eigenschaften zu überprüfen
 - meist Vergleich verschiedener Modelle
 - ▶ in Verbindung mit Extraktion
 - Referenzmodell, woher?
 - Ersatz von Simulationen

EDA-Werkzeuge - Werkzeuge

- ► Layoutwerkzeuge / Platzierung & Verdrahtung
 - ► NP-vollständige Probleme
 - ⇒ Heuristiken
 - ⇒ sehr starke Spezialisierung, z.B. Routing bei Standardzell Entwürfen:
 - 1. Verdrahtung der Spannungsversorgung: Power-Routing
 - 2. Clock-Tree Synthese / -Routing
 - 3. zeitkritische Netze bearbeiten: "constraint driven" Routing
 - 4. normale Verdrahtung
 - 5. nachträgliche Optimierung: DRC-Fehler, thermische Modelle...
- Test des Entwurfs
 - Testbarkeit: Fertigungsfehler (physikalisch) feststellen
 Simulation: Überprüfung der Funktion
 - ► Ziel: defekte ICs aussortieren, vor Verpackung in Gehäuse

Entwurfswerkzeuge (cont.)

- Problem
 - ▶ alle internen Leitungen/Gatter ansprechen
 - nur die Padzellen sind direkt zugänglich
- ► Fehlermodelle: "stuck-at", bridging, open...
- Verfahren um Testbarkeit zu gewährleisten
 - ► Selbsttest, z.B. BIST (Build In Self Test)
 - ► Scan-Path: Flipflops als Schieberegister
 - **.**..
 - ▶ Dabei wird zusätzliche Logik integriert (bis zu 30%)
 - ▶ (teil-)automatisch bei der Synthese
- Fehlersimulation: überprüft die Fehlerüberdeckung "Wie viele Fehler können erkannt werden?"
- ► Testmustergenerierung: erzeugt automatisch Testvektoren

Beispiel

- Signalverarbeitung
- ▶ digitales Filter

◆ Simulation

EDA-Werkzeuge - Werkzeuge

Beispiel

- ► Bildverarbeitung
- Segmentierung

◆ Simulation

Probleme

Moore's Law heißt in der Praxis

- ► Entwurf immer größerer und komplexerer Systeme
- Produktivitätssteigerungen

Probleme (cont.)

Universität Hamburg

Entwurfskosten

Probleme (cont.)

- Geänderte Systemanforderungen
 - Performance
 - Größe
 - ökonomische Randbedingungen
 - Low-Power: Leistungsaufnahme, Abwärme...
 - Umgebung: EMV, Temperatur, mechanische Eigenschaften...
 - Wie können all diese Anforderungen (formal) spezifiziert werden?

Gliederung

- 1. Entwurfsmethodik
- 2. EDA-Werkzeuge
- 3. Entwurfsstile

Full-Custom

Makro- und Standardzellentwurf

Gate-Array Entwurf

programmierbare Logik: PLDs, FPGAs

Vergleich

Entwurfsstile

mehrere Möglichkeiten Schaltungen zu entwerfen

► Unterscheidungsmerkmale

► Zeitaufwand: Entwurfsdauer, Fertigungszeit

Kosten: Fertigung, pro Stück, EDA-Werkzeuge

▶ IC-Eigenschaften: Größe, Taktfrequenz, Leistungsaufnahme...

- Entwurfsstile
 - ► Full-Custom
 - Standardzell
 - Gate-Array
 - ► FPGA / programmierbare Schaltungen

Full-Custom

Vollkundenspezifischer Entwurf / Full-Custom

- ► Layout aller geometrischer Strukturen
- ▶ viel manuelle Arbeit mit Layout-Editoren
- ▶ optimal kleine, schnelle Entwürfe
- sehr lange Entwurfsdauer (Effizienz)
- Ausnutzen von Regularität
- ► Teamarbeit nötig, Schnittstellen
- erfordert erfahrene Entwerfer

Entwurfsstile - Full-Custom

Full-Custom (cont.)

Makrozellentwurf

Makrozellentwurf

- ► Zellen wie Speicher, ALUs oder Datenpfade werden über Generatoren erzeugt
- Makrozellen in Full-Custom Qualität
- meist in Verbindung mit Standardzellentwurf

Chipgröße variabel **7**ellenanzahl variabel Zellengröße variabel Anschlusslage variabel l eiterbahnkanäle variabel

句

Standardzellentwurf

Standardzellentwurf

- vorgefertigte Zellen aus Bibliotheken benutzen
- ▶ Layout der Standardzellen in Full-Custom Qualität
- schneller flexibler Entwurf
- ▶ meist in Verbindung mit Makrozellgeneratoren

Chipgröße	variabel
Zellenanzahl	variabel
Zellenhöhe	fest
Zellenbreite	variabel
Anschlusslage	variabel
Leiterbahnkanäle	variabel

A. Mäder

Standardzellentwurf (cont.)

Zell-Layout

Standardzellentwurf (cont.)

Standardzell Layout

Gate-Array Entwurf

Gate-Array / Sea-of-Gate Entwurf

- vorgefertigte Transistoren
- Layout durch Verbindungsstruktur (Verdrahtung, Kontakte)
- intra-Zell Verdrahtung aus Zellbibliotheken
- vorgegebene Master: Komplexität eingeschränkt, Verschnitt
- schnelle Verfügbarkeit

Chipgröße	fest
Zellenanzahl	fest
Zellengröße	fest
Anschlusslage	fest
l eiterhahnkanäle	fest

句

Gate-Array Entwurf (cont.)

Uncommited Cell

Committed Cell (4-input NOR)

Gate-Array

programmierbare Schaltungen

programmierbare Schaltungen: FPGA, PLD, LCA...

- fertig vorgegebene Schaltung: Logik und Verbindungsstruktur
- ▶ Entwurf: Programmierung durch Anwender ⇒ sofort verfügbar
- Einschränkung durch vorgegebene Struktur
- Rekonfiguration möglich
- ▶ in-Circuit programmierbar

Chipgröße fest Blockanzahl fest Anschlusslage fest Verbindungsnetz fest Blockfunktion progr. Verbindungen progr.

Vergleich der Entwurfsstile

Full-Custoffi	+++	+++	+++	- /N//		VOII	10
Standard-/Makrozell	++	++	++	7 4 4	7170	voll	10 ⁴
Gate-Array	+	0	+	0	0	4-10	10 ³
programmierbare Logik	_		>==/	++	+++	0	$< 10^{3}$

Entwurfsstile - Vergleich

Vergleich der Entwurfsstile (cont.)

Wirtschaftlichkeit der Entwurfsstile

Vergleich der Entwurfsstile (cont.)

Wahl des Entwurfsstils

- Kostenüberlegungen
- ► Entwurfsdauer: "time-to-Market"
- ▶ technische Randbedingungen, oft als K.O.-Kriterium
 - Fläche
 - Leistungsaufnahme
 - Sicherheitsaspekte
- organisatorische Randbedingungen
 - vorhandene Werkzeuge
 - Know-How
 - "Faktor: Mensch" (Erfahrungen, Vorlieben)
- ⇒ vielfältige Wechselwirkungen

Literaturliste

Literaturliste

[BE95] Abdellatif Bellaouar, Mohamed I. Elmasry:

Low-power digital VLSI design – Circuits and systems.

Kluwer Academic Publishers; Boston, MA, 1995.

ISBN 0-7923-9587-5

- [ITRS07] International Technology Roadmap for Semiconductors 2007 Edition. Semiconductor Industry Association, 2007. URL www.itrs.net/Links/2007ITRS/Home2007.htm
- [ITRS11] International Technology Roadmap for Semiconductors 2011 Edition. Semiconductor Industry Association, 2011. URL www.itrs.net/Links/2011ITRS/Home2011.htm

Literaturliste

Literaturliste (cont.)

[MC80] Carver Mead, Lynn Conway:

Introduction to VLSI systems.

2nd ed. Addison-Wesley; Reading, MA, 1980.

ISBN 0-201-04358-0

[She95] Naveed A. Sherwani:

Algorithms for VLSI physical design automation.

2nd ed. Kluwer Academic Publishers; Boston, MA, 1995.

ISBN 0-7923-9592-1

Literaturliste

Literaturliste (cont.)

[T⁺90] Donald E. Thomas [u. a.]:

Algorithmic and register-transfer level synthesis

- The system architect's workbench.

Kluwer Academic Publishers; Boston, MA, 1990.

ISBN 0-7923-9053-9

[WE94] Neil H. E. Weste, Kamran Eshraghian:

Principles of CMOS VLSI design

A systems perspective.

2nd ed. Addison-Wesley; Reading, MA, 1994.

ISBN 0-201-53376-6