Naive Bayes and multi-class classification

We are given d predictor attributes X_1, \ldots, X_d . We assume each predictor attribute is binary. Suppose target attribute Y can take on one of k possible values y_1, y_2, \ldots, y_k . For example, if we are classifying spam/ham then $y_1 = \text{spam}$ and $y_2 = \text{ham}$; if we are classifying digits, then $y_1 = 0$, $y_2 = 1$, and $y_{10} = 9$.

Let us define the *joint probability* that $Y = y_j$ and X = x under the Naive Bayes assumption to be the following quantity:

$$P(Y = y_j, X = x) = P(Y = y_j) \prod_{i=1}^{d} P(X_i = x_i | Y = y_j)$$

A naive bayes classifier for computes the above quantity for each j = 1, ..., k.

The classification decision is to predict whichever y_j value maximizes the above quantity.

In class, we did exactly what is described above for the special case when Y takes on two values so we need only compute: $P(Y = y_1, X = x)$ and $P(Y = y_2, X = x)$ and take the larger of the two.

Log Joint Probabilities

To avoid numerical underflow (as discussed DSFS Ch. 13), it is better to compute the logarithm of the joint probability:

$$\log (P(Y = y_j, X = x)) = \log \left(P(Y = y_j) \prod_{i=1}^d P(X_i = x_i | Y = y_j) \right)$$
$$= \log (P(Y = y_j)) + \sum_{i=1}^d \log (P(X_i = x_i | Y = y_j))$$

Observe that taking the log doesn't affect which y_i maximizes the joint probability.

Maximum Odds Ratios

One diagnostic tool for looking at which features are predictive is to look at odds ratios. Let's assume that Y takes on two values, y_1 and y_2 . Let X_i be a categorical attribute that takes on one value from the set a_1, a_2, \ldots, a_m .

Define the maximum odds ratio as:

$$\max \text{Odds}(X_i, y_1, y_2) = \max_{x \in \{a_1, a_2, \dots, a_m\}} \frac{P(X_i = x | Y = y_1)}{P(X_i = x | Y = y_2)}$$

The maximum is over all possible values that X_i can take on. If X_i is a binary attribute, this equation simplifies to:

$$\max \text{Odds}(X_i, y_1, y_2) = \max \left\{ \frac{P(X_i = 1 | Y = y_1)}{P(X_i = 1 | Y = y_2)}, \frac{P(X_i = 0 | Y = y_1)}{P(X_i = 0 | Y = y_2)} \right\}$$

This ratio will be greater than one for features which cause belief in y_1 to increase relative to y_2 .