

Semester: August 2021 – December 2021 Examination: ESE Examination						
Programme code: 01 Programme: B.TECH		Cl	ass: SY	Semester: III(SVU 2020)		
Name of the Constituent College: K. J. Somaiya College of Engineering			Name of the Department COMP			
Course Code: 116U01C305	Name of the Course: Discrete Mathematics					
Duration: 1 Hour 45 Minutes (15 minutes extra for uploading)	Maximum Marks: 50					
Instructions:						
1)Draw neat diagrams 2) Assume suitable data if necessary						

Question No.		Max Marks
Q1 (A)	Solve the following Objective questions.	10
	 1) What is the Cartesian product of A = {1, 2} and B = {a, b}? a){(1,a), (1,b), (2,a),(b,b)} b){(1, 1), (2, 2), (a, a), (b, b)} c){(1, a), (2, a), (1, b), (2, b)} d) {(1, 1), (a, a), (2, a), (1, b)} 	
	2) What is the cardinality of the set of odd positive integers less than 10.	
	a)10 b)5 c)3 d) 20	
	3) The set of positive integers is a) Infinite b) Finite c) Subset d) Empty	
	 4) What is the Cardinality of the Power set of the set {0, 1, 2}? a) 8 b) 6 c) 7 d) 9 	
	5) Let P and Q be statements, then P \leftrightarrow Q is logically equivalent to a) P \leftrightarrow \sim Q b) \sim P \leftrightarrow Q c) \sim P \leftrightarrow \sim Q	
	d) None of the mentioned	

	6) A function is said to be if and only if f(a) = f(b)	
	implies that $a = b$ for all a and b in the domain of f.	
	a) One-to-many	
	b) One-to-one	
	c) Many-to-many	
	d) Many-to-one	
	7) The function $f(x)=x+1$ from the set of integers to itself is onto. Is it	
	True or False?	
	a) True	
	b) False	
	8) Let f and g be the function from the set of integers to itself, defined	
	by $f(x) = 2x + 1$ and $g(x) = 3x + 4$. Then the composition of f and g	
	is	
	a) $6x + 9$	
	b) $6x + 7$	
	c) $6x + 7$	
	d) 6x + 8	
	9) For a symmetric digraph, the adjacency matrix is	
	a) Asymmetric	
	b) Symmetric	
	c) Antisymmetric	
	d) asymmetric and antisymmetric	
	a) usymmetre and anasymmetre	
	10) A normal form contains all minterms, is called	
	a) a contradiction	
	b) a contingency	
	c) a tautology	
	d) both a and b.	
Q1 (B)	Attempt any FIVE questions out of the following (any 5 out of 7)	10
	1) Show that if any five numbers are chosen from 1 to 8, then two of them	
	will add upto 9.	
	2) What are the different conditions for Euler path to exist, Justify with example.	
	3) What are the different conditions for Euler circuit to exist. Justify with	
	example.	
	4) Consider the Hasse Diagram of a set $A = \{1,2,3,4\}$ with R is defined as	
	aRb iff a b (a divides b) .Is it Lattice? Justify.	
	5) Represent partitions of set with diagram. Justify with mathematical equations.	
	6) Give an example of equivalence relation with justification.	
	7) Write down the relation which is asymmetric, and transitive. Justify with	
	suitable example.	
0.2	Draw the Hesse Diagram of a set $A = (1.2.2.46.0.12.19.26.72)$	10
Q. 2	Draw the Hasse Diagram of a set $A = \{1,2,3,4,6,9,12,18,36,72\}$ with R is defined as aRb iff a b (a divides b). Is it Lattice? If yes, Is it bounded lattice?	10
	defined as after iff april a divides of its it battlee? If yes, is it bounded fattlee?	<u> </u>

: to
10
10
10 (5+5)