Network of SSQ

Network of SSQ

- Assume that k≥1 single-server service nodes are indexed by s=1, 2, ...,k. The index s=0 is reserved for the "super node" that represents the exterior of the network the source of the jobs that flowing into the network and the sink of the jobs flowing out of the network.
- Each service node has its own queue and its own type of queueing discipline (FIFO, LIFO, ect.), its own service-time distribution and infinite capacity. The service rate for node *i* is μ_i, *i* ∈ {1, 2, ..., *k*}.

Node-transition probability

$$P[s, s'] \neq Pr(s \rightarrow s')$$

= Pr (transition from node s to node s ')

P[0, s'] = Pr(external arrival at node s')

P[s, 0] = Pr(flow out to sink at node s)

Node-transition probability matrix

$$p[0,0], p[0,1], p[0,2], ..., p[0,k]$$

$$p[1,0], p[1,1], p[1,2], ..., p[1,k]$$

$$p[2,0], p[2,1], p[2,2], ..., p[2,k]$$

$$...$$

$$p[k,0], p[k,1], p[k,2], ..., p[k,k]$$

• p[i, j], $i, j \in \{0, 1, 2, ..., k\}$.

Open and closed network

Definition 1

If P[0, s'] = P[s, 0] = 0, for all $s, s' \in \{0, 1, 2, ..., k\}$, then the network is said to be closed. Otherwise, it is an open network.

Total arrival rate

Definition 2 For each service node i, let λ_i be the total arrival rate. Then

$$\lambda_i = \lambda_0 p[0,i] + \lambda_1 p[1,i] + \lambda_2 p[2,i] + \dots + \underbrace{\lambda_k p[k,i]}, \quad i \in \{1,2,\dots k\}$$

$$\lambda_{4} = P[0,4] \lambda_{0} + P[2,4] \lambda'_{2} + P[3,4] \lambda'_{3}$$

Steady State Analysis

If the system can reach steady state, then:

1) For every node, the flow-in rate = the flow-out rate (balance equation).

$$\lambda_i = \lambda_0 p[0,i] + \lambda_1 p[1,i] + \lambda_2 p[2,i] + ... + \lambda_k p[k,i] = \lambda_i'$$
2) Each server utilization:

$$\rho_i = \frac{\lambda_i}{\mu_i} < 1, \quad i \in \{1, 2, ..., k\}$$

Example – Open Network

$$\gamma_1 = \lambda_0 p[0, 1],$$
 $\gamma_3 = \lambda_0 p[0, 3]$
(γ_1 and γ_3 are known external arrival rates),

all other p[i, j]=0.

$$(\lambda' = \lambda_1)$$

Node 1
$$-\lambda_1 = \lambda_1$$

$$\frac{\partial d^{2}}{\partial x_{1}} = \lambda_{1} = \lambda_{1} = \lambda_{2} = \lambda_{1} = \lambda_{2} = \lambda_{3} = \lambda_{4} = \lambda_{5} = \lambda_{1} = \lambda_{1} = \lambda_{2} = \lambda_{3} = \lambda_{4} = \lambda_{5} = \lambda_{1} = \lambda_{2} = \lambda_{3} = \lambda_{4} = \lambda_{5} = \lambda_{1} = \lambda_{1} = \lambda_{2} = \lambda_{2} = \lambda_{3} = \lambda_{4} = \lambda_{5} = \lambda_{1} = \lambda_{2} = \lambda_{2} = \lambda_{3} = \lambda_{4} = \lambda_{5} = \lambda_{1} = \lambda_{2} = \lambda_{2} = \lambda_{3} = \lambda_{4} = \lambda_{4}$$

(3)
$$\lambda_3 = 0.5\lambda_1 + \lambda_3 = 0.5\lambda_1 + \lambda_3$$

$$\langle 4 \rangle \langle \lambda_4 = \lambda_3' + \lambda_2' = \lambda_2 + \lambda_3$$

Solution:
$$\lambda_1 = \mathcal{V}_1$$

$$\lambda_4 = \lambda_1 + \lambda_3$$

Balance equations - open network

$$\lambda_{1} = \gamma_{1}$$
 $\lambda_{2} = 0.5\lambda_{1} = 0.5\gamma_{1}$
 $\lambda_{3} = 0.5\lambda_{1} + \gamma_{3} = 0.5\gamma_{1} + \gamma_{3}$
 $\lambda_{4} = \lambda_{2} + \lambda_{3} = \gamma_{1} + \gamma_{3}$

- In an open network, λ_i can be found from γ_i (the external arrival rates).
- Given μ_i , sever utilization can be found:

$$\rho_i = \frac{\lambda_i}{\mu_i}, i \in \{1, 2, ..., k\}$$

Balance equations - closed network

Central server model

Mean service time at each server:

$$x_1 = 0.05$$
, $x_2 = 0.08$, $x_3 = 0.04$,

The mean service rates:

$$\mu_1$$
=1/0.05, μ_2 = 1/0.08, μ_3 =1/0.04

Balance equation for each node:

$$\frac{\lambda_2}{\lambda_1} = 0.4, \quad \frac{\lambda_3}{\lambda_1} = 0.6$$

$$\frac{\rho_2}{\rho_1} = \frac{\lambda_2 \mu_1}{\lambda_1 \mu_2} = 0.4 \times \frac{0.08}{0.05} = 0.64, \quad \frac{\rho_3}{\rho_1} = \frac{\lambda_3 \mu_1}{\lambda_1 \mu_3} = 0.6 \times \frac{0.04}{0.05} = 0.48$$

$$\lambda_1 = \lambda_2 + \lambda_3$$

$$\lambda_2 = 0.4\lambda_1$$

$$\lambda_3 = 0.6\lambda_1$$

The upper bound server utilization: ρ_1 <1 \Rightarrow ρ_2 <0.64, ρ_3 <0.48.

$$\rho_1 < 1 \implies \rho_2 < 0.64, \rho_3 < 0.48$$

$$\frac{\lambda}{\lambda^2} = 06$$

$$\lambda_{1} = \lambda_{2} + \lambda_{3}$$

$$\lambda_{2} = 0.4 \lambda_{1}$$

$$\lambda_{3} = 0.6 \lambda_{1}$$

$$\lambda_{1} = \lambda_{2} + \lambda_{3}$$

$$\lambda_{2} = 0.6 \lambda_{1}$$

$$\lambda_{1} = \lambda_{2} + \lambda_{3}$$

$$\lambda_{2} = 0.6 \lambda_{1}$$

$$\lambda_{1} = \lambda_{2} + \lambda_{3}$$

$$\lambda_{2} = 0.6 \lambda_{1}$$

$$\lambda_{1} = \lambda_{2} + \lambda_{3}$$

$$\lambda_{2} = \lambda_{2} + \lambda_{3}$$

$$\lambda_{2} = \lambda_{2} + \lambda_{3}$$

$$\lambda_{1} = \lambda_{2} + \lambda_{3}$$

$$\lambda_{2} = \lambda_{2} + \lambda_{3}$$

$$\lambda_{2} = \lambda_{3} + \lambda_{4}$$

$$\lambda_{2} = \lambda_{3} + \lambda_{4}$$

$$\lambda_{3} = \lambda_{4} + \lambda_{3}$$

$$\lambda_{4} = \lambda_{4} + \lambda_{4}$$

$$\lambda_{4} = \lambda_{4} + \lambda_{4}$$

$$\lambda_{5} = \lambda_{4} + \lambda_{5}$$

$$\lambda_{5} = \lambda_{5} + \lambda_{5}$$

$$\lambda_{5} = \lambda_{5}$$

P₁ < 1, P₂ < 0.64 P₃ < 0.48

Review

- Introduction to discrete event simulation
- Examples: SSQ, inventory systems, optimization
- Monte Carlo Simulation
- Lehmer random number generators
- Empirical tests of randomness
- Discrete event simulation exponential and geometric Variates
- Simulation languages GPSS
- Discrete Random Variables Statistical Models and Generations
- Continuous random variables
- Output analysis Single Server Queue
- ✓ Output analysis Birth Death models
- Network of single-server-queue