UNIVERSIDADE FEDERAL DO ABC (UFABC)

Notas de Aula

GEOMETRIA DIFERENCIAL II

MARCOS AGNOLETTO FORTE¹
Estagiário

MÁRCIO FABIANO DA SILVA Professor

Santo André, 2023

 $^{^{1}}$ Conta com apoio de bolsa da CAPES - Código de Financiamento: 88887.667684/2022-00.

Sumário

L	No	otas de Aula	1
1	Rev	evisão de geometria diferencial I	
	1.1	Curvas	2 2
	1.2	Superfícies	4
	1.3	A faixa de Möbius	6
		1.3.1 Parametrização	7
	1.4	Orientabilidade	11
	1.5	O gradiente	15
2	A segunda forma fundamental		16
	2.1	Consequências geométricas	17
	2.2	A curvatura normal	17
		2.2.1 Exemplos	18
3	A aplicação normal de Gauss		22
	3.1	Exemplos	23
	3.2	dN_p é uma aplicação autoadjunta	24
	3.3	Consequências geométricas	26
	3.4	Exemplos	27
	3.5	A fórmula de Euler	27
	3.6	Expressão em coordenadas locais para as curvaturas Gaussiana e média	28
4	Classificação de pontos de uma superfície		31
	4.1	Caracterização das superfícies totalmente umbílicas do \mathbb{R}^3	40
5	Curvas especiais sobre uma superfície		43
	5.1	Linhas de curvatura	43
	5.2	Linhas assintóticas	47
	5.3	Geodésicas	40

Parte I. Notas de Aula

1.1. Curvas

Definição 1.1. Uma curva diferenciável parametrizada no \mathbb{R}^3 é uma aplicação diferenciável $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$. Escrevemos $\alpha(t)=(x(t),y(t),z(t))$, para $t\in I$, o conjunto $\alpha(I)$ é chamado de traço da curva α .

Exemplo 1.1. $\alpha(t) := (\cos(t), \sin(t), t), t \in \mathbb{R}$, é uma curva diferenciável parametrizada no \mathbb{R}^3 (\mathcal{C}^{∞}) cujo traço está contido em um cilindro.

Definição 1.2. Sejam $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva parametrizada diferenciável e $t_0 \in I$ tal que $\alpha'(t_0) \neq 0$. Neste caso, dizemos que $\alpha'(t_0)$ é o **vetor tangente a** α **no ponto** $\alpha(t_0)$ e que $\alpha(t_0)$ é um **ponto regular de** α .

Definição 1.3. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva parametrizada diferenciável. Dizemos que α é **regular** se $\alpha(t_0)$ for um ponto regular de α para todo $t_0 \in I$.

Note que uma curva parametrizada diferenciável $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ é regular se $\alpha'(t_0) \neq 0$ para todo $t_0 \in I$.

Exemplo 1.2. $\alpha(t):=(t^2,t^3),\,t\in\mathbb{R}$, é uma curva diferenciável (\mathcal{C}^∞) que não é regular.

Definição 1.4. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular. Dizemos que β é uma **reparametrização de** α se existir um difeomorfismo $h: J \subset \mathbb{R} \to I$ tal que $\beta = \alpha \circ h$.

Definição 1.5. Seja $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ uma curva regular. O comprimento de arco de α é dado por

$$L_{\alpha}(I) = L(\alpha(I)) := \int_{I} ||\alpha'(t)|| dt.$$

Definição 1.6. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular. Dizemos que α está **parametrizada pelo comprimento de arco** (p.p.c.a.) se

$$L_{\alpha}([t_0, t_1]) = t_1 - t_0,$$

para todos $t_0, t_1 \in I$ tais que $t_0 < t_1$.

Proposição 1.1. Seja $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ uma curva regular. Então α está p.p.c.a. se, e somente se, $||\alpha'(t_0)||=1$ para todo $t_0\in I$.

Proposição 1.2. Seja $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ uma curva regular. Então α pode ser reparametrizada pelo comprimento de arco.

Seja $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ uma curva regular p.p.c.a.. Denotaremos por $\overrightarrow{t}(s):=\alpha'(s)$ o vetor tangente de α no ponto $\alpha(s)$ para todo $s\in I$. Como α está p.p.c.a., para todo $s\in I$ temos que

$$||\alpha'(s)|| = 1$$

$$||\alpha'(s)||^2 = 1$$
$$\langle \alpha'(s), \alpha'(s) \rangle = 1$$
$$\langle \alpha''(s), \alpha'(s) \rangle + \langle \alpha'(s), \alpha''(s) \rangle = 0$$
$$\langle \alpha''(s), \alpha'(s) \rangle = 0.$$

Consequentemente, $\alpha''(s) \perp \alpha'(s)$.

Definição 1.7. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a.. Definimos a *curvatura* de α em $s \in I$ como sendo o número $\kappa(s) := ||\alpha''(s)||$.

Geometricamente, $\kappa(s)$ mede o quanto uma curva se afasta de uma reta.

Definição 1.8. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a. tal que $\kappa(s) \neq 0$ para todo $s \in I$. Definimos o **normal** (**principal**) **de** α **em** $s \in I$ como sendo o vetor

$$\overrightarrow{n}(s) := \frac{1}{\kappa(s)} \alpha''(s).$$

Note que $\overrightarrow{t}(s) \perp \overrightarrow{n}(s)$ para todo $s \in I$.

Definição 1.9. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a. tal que $\kappa(s) \neq 0$ para todo $s \in I$. Definimos o *binormal de* α *em* $s \in I$ como sendo o vetor

$$\overrightarrow{b}(s) := \overrightarrow{t}(s) \wedge \overrightarrow{n}(s).$$

Note que $\{\overrightarrow{t}(s), \overrightarrow{n}(s), \overrightarrow{b}(s)\}$ é uma base ortonormal de \mathbb{R}^3 centrada em $\alpha(s)$ para cada $s \in I$, ou seja, um referencial móvel sobre α , o qual chamamos de **triedro de Frenet-Serret**¹ ou **referencial de Frenet-Serret** ou **referencial TNB**.

Para todo $s \in I$ temos que

$$\langle \overrightarrow{b}(s), \overrightarrow{b}(s) \rangle = 1$$

 $\left\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{b}(s) \right\rangle = 0,$

e

$$\langle \overrightarrow{b}(s), \overrightarrow{t}(s) \rangle = 0$$

$$\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{t}(s) \rangle + \langle \overrightarrow{b}(s), \frac{d\overrightarrow{t}}{ds}(s) \rangle = 0$$

$$\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{t}(s) \rangle + \kappa(s) \langle \overrightarrow{b}(s), \overrightarrow{n}(s) \rangle = 0$$

$$\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{t}(s) \rangle = 0.$$

Consequentemente,

$$\frac{d\overrightarrow{b}}{ds}(s) \parallel \overrightarrow{n}(s),$$

para todo $s \in I$.

¹Em homenagem aos matemáticos Jean Frédéric Frenet e Joseph Alfred Serret.

Definição 1.10. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a. tal que $\kappa(s) \neq 0$ para todo $s \in I$. Definimos a **torção de** α **em** $s \in I$ como sendo o numero

$$\tau(s) := \left\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{n}(s) \right\rangle.$$

Geometricamente, $\tau(s)$ mede o quanto a curva deixa de ser plana. Além disso, note que

$$\frac{d\overrightarrow{b}}{ds}(s) = \left\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{t}(s) \right\rangle \overrightarrow{t}(s) + \left\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{b}(s) \right\rangle \overrightarrow{b}(s) + \left\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{n}(s) \right\rangle \overrightarrow{n}(s) = \tau(s)\overrightarrow{n}(s).$$

Proposição 1.3 (Equações de Frenet-Serret). Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a. tal que $\kappa(s) \neq 0$ para todo $s \in I$. Então, para todo $s \in I$, valem que

$$\frac{d\overrightarrow{t}}{ds}(s) = 0 + \kappa(s)\overrightarrow{n}(s) + 0,$$

$$\frac{d\overrightarrow{n}}{ds}(s) = -\kappa(s)\overrightarrow{t}(s) + 0 - \tau(s)\overrightarrow{b}(s),$$

$$\frac{d\overrightarrow{b}}{ds}(s) = 0 + \tau(s)\overrightarrow{n}(s) + 0.$$

Ou ainda, matricialmente,

$$\begin{pmatrix} \overrightarrow{t}' \\ \overrightarrow{n}' \\ \overrightarrow{b}' \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix} \begin{pmatrix} \overrightarrow{t} \\ \overrightarrow{n} \\ \overrightarrow{b} \end{pmatrix}.$$

Teorema 1.1 (Teorema fundamental da teoria local de curvas). Dadas duas funções κ, τ : $I \subset \mathbb{R} \to \mathbb{R}$ tais que $\kappa(s) > 0$ para todo $s \in I$, então existe uma curva $\alpha : I \subset \mathbb{R} \to \mathbb{R}^3$ cuja curvatura é $\kappa(s)$ e cuja torção é $\tau(s)$. Além disso, qualquer outra curva com a mesma propriedade é congruente a α .

1.2. Superfícies

Definição 1.11. Um subconjunto $S \subset \mathbb{R}^3$ é uma *superfície regular* se, para cada $p \in S$, existe uma vizinhança V de p em \mathbb{R}^3 e uma aplicação $X: U \to V \cap S$ de um aberto U de \mathbb{R}^2 sobre $V \cap S \subset \mathbb{R}^3$ tal que

- 1. X é um homeomorfismo diferenciável.
- 2. A diferencial $dX_q: \mathbb{R}^2 \to \mathbb{R}^3$ é injetiva para todo $q \in U$.

Proposição 1.4 (Mudança de parâmetros). Sejam $p \in S$ um ponto de uma superfície regular $S, X_1 : U \subset \mathbb{R}^2 \to S$ e $X_2 : V \subset \mathbb{R}^2 \to S$ duas parametrizações de S tais que $p \in X_1(U) \cap X_2(V) =: W$. Então

$$h := X_1^{-1} \circ X_2 : X_2^{-1}(W) \to X_1^{-1}(W)$$

é um difeomorfismo, isto é, h é diferenciável e tem inversa diferenciável.

Sejam $X:U\subset\mathbb{R}^2\to\mathbb{R}^3$ uma parametrização de uma superfície regular S e $q\in U$. Chamamos o subespaço vetorial de dimensão 2

$$T_{X(q)}S := dX_q\left(\mathbb{R}^2\right) \subset \mathbb{R}^3,$$

de **espaço tangente** a S **em** X(q). Este espaço vetorial coincide com o conjunto dos vetores tangentes $\alpha'(0)$ de curvas parametrizadas diferenciáveis $\alpha:]-\varepsilon, \varepsilon[\to S, \text{ com } \alpha(0) = X(q).$

A escolha de uma parametrização X determina uma base

$$\{dX_q(u), dX_q(v)\} = \left\{\frac{\partial X}{\partial u}(q), \frac{\partial X}{\partial v}(q)\right\} =: \{X_u(q), X_v(q)\}$$

de $T_{X(q)}S$ e um vetor normal unitário em cada ponto $p \in X(U)$ dado por

$$N(p) := \frac{X_u \wedge X_v}{||X_u \wedge X_v||}(q).$$

Nem sempre é possível estender a aplicação diferenciável $N:U\to\mathbb{R}^3$ de maneira diferenciável à superfície S.

O produto interno canônico do \mathbb{R}^3 induz em cada plano tangente T_pS de uma superfície regular S um produto interno, que denotaremos por $\langle \cdot, \cdot \rangle_p$. A esse produto interno, que é uma forma bilinear simétrica, corresponde uma forma quadrática $I_p: T_pS \to \mathbb{R}$ dada por

$$I_p(w) := \langle w, w \rangle_p = ||w||_p^2 \ge 0.$$

Tal forma quadrática em T_pS é chamada de **primeira forma fundamental de** S **em** $p \in S$.

Vamos, agora, expressar a primeira forma fundamental na base $\{X_u, X_v\}$ associada a parametrização X(u, v) em p. Como um vetor $w \in T_pS$ é o vetor tangente a uma curva parametrizada $\alpha(t) = X(u(t), v(t)), t \in]-\varepsilon, \varepsilon[$, com $p = \alpha(0)$, obtemos

$$I_{p}(w) = I_{p}(\alpha'(0))$$

$$= \langle \alpha'(0), \alpha'(0) \rangle_{p}$$

$$= \langle X_{u}(u(0), v(0))u'(0) + X_{v}(u(0), v(0))v'(0), X_{u}(u(0), v(0))u'(0) + X_{v}(u(0), v(0))v'(0) \rangle_{p}$$

$$= \langle X_{u}(q), X_{u}(q) \rangle_{p} (u'(0))^{2} + 2\langle X_{u}(q), X_{v}(q) \rangle_{p} u'(0)v'(0) + \langle X_{v}(q), X_{v}(q) \rangle_{p} (v'(0))^{2}$$

$$= E(q) (u'(0))^{2} + 2F(q)u'(0)v'(0) + G(q) (v'(0))^{2},$$

onde

$$\begin{cases} E(q) := \langle X_u(q), X_u(q) \rangle_p, \\ F(q) := \langle X_u(q), X_v(q) \rangle_p, \\ G(q) := \langle X_v(q), X_v(q) \rangle_p \end{cases}$$

são os coeficientes da primeira forma fundamental na base $\{X_u, X_v\}$ de T_pS . Fazendo q variar numa vizinhança coordenada correspondente à parametrização X, obtemos funções E, F, G que são diferenciáveis nesta vizinhança. Quando não houver ambiguidade, os índices p e q serão omitidos.

Assim, podemos representar a primeira forma fundamental como uma matriz simétrica

$$I(w) = w^{\top} \begin{pmatrix} E & F \\ F & G \end{pmatrix} w = \begin{pmatrix} u'(0)v'(0) \end{pmatrix} \begin{pmatrix} E(q) & F(q) \\ F(q) & G(q) \end{pmatrix} \begin{pmatrix} u'(0) \\ v'(0) \end{pmatrix}.$$

Definição 1.12. Uma superfície S é *orientável* se ela admite uma cobertura por vizinhanças coordenadas $X_{\alpha}(U_{\alpha})$, em que $X_{\alpha}:U_{\alpha}\to S$, de tal modo que se $p\in X_{\alpha_1}(U_{\alpha_1})\cap X_{\alpha_2}(U_{\alpha_2})$, com $(u,v)\in U_{\alpha_1}$ e $(\overline{u},\overline{v})\in U_{\alpha_2}$, então

$$\operatorname{Jac}((\overline{u}, \overline{v}) \mapsto (u, v)) = \frac{\partial(\overline{u}, \overline{v})}{\partial(u, v)} = \det \begin{pmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{u}}{\partial v} \\ \frac{\partial \overline{v}}{\partial u} & \frac{\partial \overline{v}}{\partial v} \end{pmatrix} > 0.$$

A escolha de uma tal família de vizinhanças coordenadas que cobrem S é chamada de orientação de S e S, neste caso, diz-se orientada. Se uma tal escolha não é possível, diz-se que S é não-orientável. Se S é orientada, uma parametrização local X é compatível com a orientação de S se, unindo X à família de parametrizações dada pela orientação, obtém-se ainda uma (logo, a mesma) orientação.

Proposição 1.5. Uma superfície regular $S \subset \mathbb{R}^3$ é orientável se, e somente se, existe um campo diferenciável $N: S \to \mathbb{R}^3$ de vetores normais em S, isto é, $N(p) \perp T_p S$ para todo $p \in S$.

1.3. A faixa de Möbius

A faixa de Möbius² é obtida tomando-se um retângulo e identificando-se dois lados opostos depois de uma rotação de 180° , como ilustra a Figura 1.1.

Figura 1.1.: Construção de uma faixa de Möbius.

A faixa de Möbius, além de suas inúmeras aplicações artísticas, como em logotipos de centros de estudo de matemática em todo o mundo, também encontra frequentemente uso na engenharia, especialmente na produção de correias que desgastam "ambos" os lados igualmente.

A seguir, apresentaremos uma parametrização da faixa de Möbius e calcularemos os coeficientes de sua primeira forma fundamental.

²Em homenagem ao matemático August Ferdinand Möbius.

1.3.1. Parametrização

Considere a faixa de Möbius, denotada por \mathbf{M} , ao redor do eixo z com raio 2 e largura 1. Sejam $(u, v) \in]0, 2\pi[\times[-1, 1]$ e note que para $p = (x, y, z) \in \mathbf{M}$ temos que

$$\begin{cases} x(u,v) &= \left(2 + v \cos\left(\frac{u}{2}\right)\right) \cos(u) \\ y(u,v) &= \left(2 + v \cos\left(\frac{u}{2}\right)\right) \sin(u) \\ z(u,v) &= v \sin\left(\frac{u}{2}\right). \end{cases}$$

A Figura 1.2 auxilia a entender as equações acima. Note que cada ponto do segmento que rotacionamos identificamos com um valor de $v \in [-1,1]$ e esta é uma variável da parametrização, que segue a mesma ideia do Toro.

Figura 1.2.: Facilitador para a parametrização da faixa de Möbius.

Portanto, um sistema de coordenadas locais para a faixa de Möbius é dado por

$$X:]0,2\pi[\times[-1,1]\subset\mathbb{R}^2\to\mathbf{M}\subset\mathbb{R}^3$$
$$(u,v)\mapsto(x(u,v),y(u,v),z(u,v)).$$

A vizinhança coordenada correspondente omite os pontos u=0, como ilustra a Figura 1.3.

Figura 1.3.: Plot de X.

Logo, tomando-se $(\overline{u},\overline{v})\in \left]0,2\pi\right[\times\left[-1,1\right]$ de modo que

$$\begin{cases} x(\overline{u}, \overline{v}) &= \left(2 + \overline{v} \cos\left(\frac{\overline{u}}{2} + \frac{\pi}{4}\right)\right) \cos\left(\overline{u} + \frac{\pi}{2}\right) \\ y(\overline{u}, \overline{v}) &= \left(2 + \overline{v} \cos\left(\frac{\overline{u}}{2} + \frac{\pi}{4}\right)\right) \sin\left(\overline{u} + \frac{\pi}{2}\right) \\ z(\overline{u}, \overline{v}) &= \overline{v} \sin\left(\frac{\overline{u}}{2} + \frac{\pi}{4}\right) \end{cases}$$

obtemos outro sistema de coordenadas locais para a faixa de Möbius é dado por

$$\overline{X}:]0,2\pi[\times[-1,1]\subset\mathbb{R}^2\to\mathbf{M}\subset\mathbb{R}^3\\ (\overline{u},\overline{v})\mapsto(x(\overline{u},\overline{v}),y(\overline{u},\overline{v}),z(\overline{u},\overline{v})).$$

A vizinhança coordenada correspondente omite os pontos no intervalo aberto u=0, como ilustra a Figura 1.4.

Figura 1.4.: Plot de \overline{X} .

Essas duas vizinhanças coordenadas formam uma cobertura para a faixa de Möbius, como ilustra a Figura 1.5.

Figura 1.5.: Plot de X e \overline{X} juntos.

Assim, temos que a faixa de Möbius é uma superfície regular. De fato, a intersecção dessas duas vizinhanças coordenadas é constituída por duas componentes conexas

$$W_1 := \left\{ X(u, v) : 0 < u < \frac{\pi}{2}, -1 \le v \le 1 \right\} \ \text{e} \ W_2 := \left\{ X(u, v) : \frac{\pi}{2} < u < 2\pi, -1 \le v \le 1 \right\}.$$

A mudança de coordenada é dada por (a Figura 1.5 ilustra a mudança de orientação de v em W_1 pela sobreposição ou não das partes mais escuras)

$$\begin{cases} \overline{u} = u + \frac{\pi}{2} \\ \overline{v} = -v \end{cases} \text{ em } W_1 \text{ e} \begin{cases} \overline{u} = u + \frac{\pi}{2} \\ \overline{v} = v \end{cases} \text{ em } W_2.$$

Donde temos que

$$\operatorname{Jac}((\overline{u}, \overline{v}) \mapsto (u, v)) = \frac{\partial(\overline{u}, \overline{v})}{\partial(u, v)} = \det \begin{pmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{u}}{\partial v} \\ \frac{\partial \overline{v}}{\partial u} & \frac{\partial \overline{v}}{\partial v} \end{pmatrix} = \det \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -1$$

em W_1 , e

$$\operatorname{Jac}((\overline{u}, \overline{v}) \mapsto (u, v)) = \frac{\partial(\overline{u}, \overline{v})}{\partial(u, v)} = \det \begin{pmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{u}}{\partial v} \\ \frac{\partial \overline{v}}{\partial u} & \frac{\partial \overline{v}}{\partial v} \end{pmatrix} = \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1$$

em W_2 .

Primeira forma fundamental

Para obtermos a primeira forma fundamental basta calcularmos as expressões de E, F, G da métrica pelas expressões em coordenadas obtidas anteriormente.

Derivamos x(u,v) com relação a u

$$x_u(u,v) = \frac{\partial}{\partial u} \left(2 + v \cos\left(\frac{u}{2}\right) \right) \cos(u) + \left(2 + v \cos\left(\frac{u}{2}\right) \right) \frac{\partial}{\partial u} \left(\cos(u) \right)$$
$$= -\frac{v}{2} \sin\left(\frac{u}{2}\right) \cos(u) - \left(2 + v \cos\left(\frac{u}{2}\right) \right) \sin(u),$$

e com relação a v

$$x_v(u,v) = \frac{\partial}{\partial v} \left(2 + v \cos\left(\frac{u}{2}\right) \right) \cos(u) + \left(2 + v \cos\left(\frac{u}{2}\right) \right) \frac{\partial}{\partial v} \left(\cos(u) \right)$$
$$= \cos\left(\frac{u}{2}\right) \cos(u).$$

Derivamos y(u, v) com relação a u

$$y_u(u,v) = \frac{\partial}{\partial u} \left(2 + v \cos\left(\frac{u}{2}\right) \right) \sin(u) + \left(2 + v \cos\left(\frac{u}{2}\right) \right) \frac{\partial}{\partial u} \left(\sin(u) \right)$$
$$= -\frac{v}{2} \sin\left(\frac{u}{2}\right) \sin(u) + \left(2 + v \cos\left(\frac{u}{2}\right) \right) \cos(u),$$

e com relação a v

$$y_v(u,v) = \frac{\partial}{\partial v} \left(2 + v \cos\left(\frac{u}{2}\right) \right) \sin(u) + \left(2 + v \cos\left(\frac{u}{2}\right) \right) \frac{\partial}{\partial v} \left(\sin(u) \right)$$
$$= \cos\left(\frac{u}{2}\right) \sin(u).$$

Derivamos z(u, v) com relação a u

$$z_u(u,v) = \frac{\partial}{\partial u} \left(v \sin\left(\frac{u}{2}\right) \right) = \frac{v}{2} \cos\left(\frac{u}{2}\right),$$

e com relação a v

$$z_v(u,v) = \frac{\partial}{\partial v} \left(v \sin\left(\frac{u}{2}\right) \right) = \sin\left(\frac{u}{2}\right).$$

Logo,

$$\begin{split} E &= \langle X_u, X_u \rangle \\ &= \langle (x_u, y_u, z_u), (x_u, y_u, z_u) \rangle \\ &= x_u^2 + y_u^2 + z_u^2 \\ &= \left(-\frac{v}{2} \sin\left(\frac{u}{2}\right) \cos(u) - \left(2 + v \cos\left(\frac{u}{2}\right)\right) \sin(u) \right)^2 \\ &\quad + \left(-\frac{v}{2} \sin\left(\frac{u}{2}\right) \sin(u) + \left(2 + v \cos\left(\frac{u}{2}\right)\right) \cos(u) \right)^2 \\ &\quad + \left(\frac{v}{2} \cos\left(\frac{u}{2}\right) \right)^2 \\ &= \frac{v^2}{4} \sin^2\left(\frac{u}{2}\right) \cos^2(u) + \left(2 + v \cos\left(\frac{u}{2}\right)\right)^2 \sin^2(u) + 2\frac{v}{2} \sin\left(\frac{u}{2}\right) \cos(u) \left(2 + v \cos\left(\frac{u}{2}\right)\right) \sin(u) \\ &\quad + \frac{v^2}{4} \sin^2\left(\frac{u}{2}\right) \sin^2(u) + \left(2 + v \cos\left(\frac{u}{2}\right)\right)^2 \cos^2(u) - 2\frac{v}{2} \sin\left(\frac{u}{2}\right) \sin(u) \left(2 + v \cos\left(\frac{u}{2}\right)\right) \cos(u) \\ &\quad + \frac{v^2}{4} \cos^2\left(\frac{u}{2}\right) \\ &= \frac{v^2}{4} \sin^2\left(\frac{u}{2}\right) + \left(2 + v \cos\left(\frac{u}{2}\right)\right)^2 + \frac{v^2}{4} \cos^2\left(\frac{u}{2}\right) \\ &= \frac{v^2}{4} + 4 + v^2 \cos^2\left(\frac{u}{2}\right) + 4v \cos\left(\frac{u}{2}\right) \\ &= v^2 \left(\frac{1}{4} + \cos^2\left(\frac{u}{2}\right)\right) + 4v \cos\left(\frac{u}{2}\right) + 4. \end{split}$$

$$F = \langle X_u, X_v \rangle$$

$$= \langle (x_u, y_u, z_u), (x_v, y_v, z_v) \rangle$$

$$= x_u x_v + y_u y_v + z_u z_v$$

$$= \left(-\frac{v}{2} \sin\left(\frac{u}{2}\right) \cos(u) - \left(2 + v \cos\left(\frac{u}{2}\right)\right) \sin(u) \right) \left(\cos\left(\frac{u}{2}\right) \cos(u)\right)$$

$$+ \left(-\frac{v}{2} \sin\left(\frac{u}{2}\right) \sin(u) + \left(2 + v \cos\left(\frac{u}{2}\right)\right) \cos(u) \right) \left(\cos\left(\frac{u}{2}\right) \sin(u)\right)$$

$$+ \left(\frac{v}{2} \cos\left(\frac{u}{2}\right)\right) \left(\sin\left(\frac{u}{2}\right)\right)$$

$$= -\frac{v}{2} \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right) \cos^2(u) - \left(2 + v \cos\left(\frac{u}{2}\right)\right) \sin(u) \cos\left(\frac{u}{2}\right) \cos(u)$$

$$- \frac{v}{2} \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right) \sin^2(u) + \left(2 + v \cos\left(\frac{u}{2}\right)\right) \cos(u) \cos\left(\frac{u}{2}\right) \sin(u)$$

$$+ \frac{v}{2} \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right)$$

$$= -\frac{v}{2} \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right) + \frac{v}{2} \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right)$$

$$= 0.$$

$$G = \langle X_v, X_v \rangle$$

$$= \langle (x_v, y_v, z_v), (x_v, y_v, z_v) \rangle$$

$$= x_v^2 + y_v^2 + z_v^2$$

$$= \left(\cos\left(\frac{u}{2}\right)\cos(u)\right)^2 + \left(\cos\left(\frac{u}{2}\right)\sin(u)\right)^2 + \left(\sin\left(\frac{u}{2}\right)\right)^2$$

$$= \cos^2\left(\frac{u}{2}\right)\cos^2(u) + \cos^2\left(\frac{u}{2}\right)\sin^2(u) + \sin^2\left(\frac{u}{2}\right)$$

$$= \cos^2\left(\frac{u}{2}\right) + \sin^2\left(\frac{u}{2}\right)$$

$$= 1.$$

Donde obtemos a primeira forma fundamental

$$I = \begin{pmatrix} v^2 \left(\frac{1}{4} + \cos^2 \left(\frac{u}{2} \right) \right) + 4v \cos \left(\frac{u}{2} \right) + 4 & 0 \\ 0 & 1 \end{pmatrix}.$$

1.4. Orientabilidade

A seguir apresentaremos alguns exemplos de superfícies orientáveis:

Exemplo 1.3. Superfícies que podem ser cobertas por uma única vizinhança coordenada são trivialmente orientáveis. Por exemplo, superfícies dadas como gráficos de uma função diferenciável.

Exemplo 1.4 (Esfera unitária (\mathbb{S}^2)). Considere $X_1(u,v)$ a projeção estereográfica pelo polo norte, $X_2(u,v)$ a projeção estereográfica pelo polo sul e

$$W := X_1(\mathbb{R}^2) \cap X_2(\mathbb{R}^2) = \mathbb{S}^2 \setminus \{ N := (0, 0, 2), S := (0, 0, 0) \}.$$

Note que W é um conjunto conexo e fixe $p \in W$. A Figura 1.6 ilustra a mudança de parâmetros entre as duas parametrizações da esfera.

Figura 1.6.: O mapa de transição para as parametrizações estereográficas.

Onde

$$\Pi_N^{-1}(u,v) := \left(\frac{4u}{u^2 + v^2 + 4}, \frac{4v}{u^2 + v^2 + 4}, \frac{2(u^2 + v^2)}{u^2 + v^2 + 4}\right),$$

e

$$\Pi_S^{-1}(\overline{u},\overline{v}) := \left(\frac{4\overline{v}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{4\overline{u}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{8}{\overline{u}^2 + \overline{v}^2 + 4}\right).$$

Consequentemente,

$$\Pi_N(x, y, z) = \left(\frac{2x}{2-z}, \frac{2y}{2-z}\right).$$

Portanto,

$$(u,v) = h(\overline{u},\overline{v}) = \left(\Pi_N \circ \Pi_S^{-1}\right)(\overline{u},\overline{v})$$

$$= \Pi_N \left(\frac{4\overline{v}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{4\overline{u}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{8}{\overline{u}^2 + \overline{v}^2 + 4}\right)$$

$$= \left(\frac{8\overline{v}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{8\overline{u}}{\overline{u}^2 + \overline{v}^2 + 4}\right)$$

$$= \left(\frac{8\overline{v}}{2(\overline{u}^2 + \overline{v}^2)}, \frac{8\overline{u}}{2(\overline{u}^2 + \overline{v}^2)}\right)$$

$$= \left(\frac{4\overline{v}}{\overline{u}^2 + \overline{v}^2}, \frac{4\overline{u}}{\overline{u}^2 + \overline{v}^2}\right).$$

Donde obtemos:

$$\begin{split} \frac{\partial u}{\partial \overline{u}} &= -\frac{8\overline{v}\overline{u}}{(\overline{u}^2 + \overline{v}^2)^2}.\\ \frac{\partial u}{\partial \overline{v}} &= \frac{4(\overline{u}^2 + \overline{v}^2) - 4\overline{v}2\overline{v}}{(\overline{u}^2 + \overline{v}^2)^2} = \frac{4(\overline{u}^2 - \overline{v}^2)}{(\overline{u}^2 + \overline{v}^2)^2} \end{split}$$

$$\begin{split} \frac{\partial v}{\partial \overline{v}} &= -\frac{8\overline{u}\overline{v}}{(\overline{u}^2 + \overline{v}^2)^2} \\ \frac{\partial v}{\partial \overline{u}} &= \frac{4(\overline{u}^2 + \overline{v}^2) - 4\overline{u}2\overline{u}}{(\overline{u}^2 + \overline{v}^2)^2} = \frac{4(\overline{v}^2 - \overline{u}^2)}{(\overline{u}^2 + \overline{v}^2)^2} = -\frac{4(\overline{u}^2 - \overline{v}^2)}{(\overline{u}^2 + \overline{v}^2)^2} \end{split}$$

Logo,

$$\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} = \det \begin{pmatrix} \frac{\partial u}{\partial \overline{u}} & \frac{\partial u}{\partial \overline{v}} \\ \frac{\partial v}{\partial \overline{u}} & \frac{\partial v}{\partial \overline{v}} \end{pmatrix}$$

$$= \frac{1}{(\overline{u}^2 + \overline{v}^2)^4} \det \begin{pmatrix} -8\overline{u}\overline{v} & 4(\overline{u}^2 - \overline{v}^2) \\ -4(\overline{u}^2 - \overline{v}^2) & -8\overline{u}\overline{v} \end{pmatrix}$$

$$= \frac{64\overline{u}^2\overline{v}^2 + 16(\overline{u}^2 - \overline{v}^2)^2}{(\overline{u}^2 + \overline{v}^2)^4}$$

$$> 0$$

Como a função de transição $h(\overline{u}, \overline{v})$ é um difeomorfismo temos que $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}$ é diferente de zero em W. Além disso, como o Jacobiano $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}$ é uma função contínua, $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}(p)>0$ e W é conexo, segue do Teorema de Bolzano que $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}>0$ em W. Portanto, S é orientável. De modo análogo, se uma superfície pode ser coberta por duas vizinhanças coordenadas cuja intersecção é conexa, então a superfície é orientável.

Proposição 1.6. Uma superfície regular $S \subset \mathbb{R}^3$ é orientável se, e somente se, existe um campo diferenciável $N: S \to \mathbb{R}^3$ de vetores normais em S, isto é, $N(p) \perp T_p S$ para todo $p \in S$.

 $Demonstração.\ (\Longrightarrow):$ Como S é orientável, podemos cobri-la com uma família de vizinhanças coordenadas de tal modo que, na vizinhança de duas quaisquer delas, a mudança de coordenadas tenha Jacobiano positivo.

Nos pontos p = X(u, v) de cada vizinhança coordenada, definimos:

$$N(p) := N(u, v) = \frac{X_u \wedge X_v}{||X_u \wedge X_v||}(p).$$

Note que N(p) está bem definido. De fato, sejam $X:U\to S$ e $\overline{X}:\overline{U}\to S$ duas parametrizações tais que $X(U)\cap \overline{X}(\overline{U})=:W\neq\emptyset$ e $h:U\to\overline{U}$ tal que $h(u,v)=(\overline{u},\overline{v})$. Assim, $X=\overline{X}\circ h$ e, consequentemente,

$$X_{u} = \frac{\partial X}{\partial u} = \frac{\partial (\overline{X} \circ h)}{\partial u} = \frac{\partial \overline{X}}{\partial \overline{u}} \frac{\partial \overline{u}}{\partial u} + \frac{\partial \overline{X}}{\partial \overline{v}} \frac{\partial \overline{v}}{\partial u} = \frac{\partial \overline{u}}{\partial u} \overline{X}_{\overline{u}} + \frac{\partial \overline{v}}{\partial u} \overline{X}_{\overline{v}}.$$

 $X_{v} = \frac{\partial X}{\partial v} = \frac{\partial (\overline{X} \circ h)}{\partial v} = \frac{\partial \overline{X}}{\partial \overline{u}} \frac{\partial \overline{u}}{\partial v} + \frac{\partial \overline{X}}{\partial \overline{v}} \frac{\partial \overline{v}}{\partial v} = \frac{\partial \overline{u}}{\partial v} \overline{X}_{\overline{u}} + \frac{\partial \overline{v}}{\partial v} \overline{X}_{\overline{v}}.$

Logo,

$$X_u \wedge X_v = \left(\frac{\partial \overline{u}}{\partial u} \overline{X}_{\overline{u}} + \frac{\partial \overline{v}}{\partial u} \overline{X}_{\overline{v}}\right) \wedge \left(\frac{\partial \overline{u}}{\partial v} \overline{X}_{\overline{u}} + \frac{\partial \overline{v}}{\partial v} \overline{X}_{\overline{v}}\right)$$

$$= \frac{\partial \overline{u}}{\partial u} \frac{\partial \overline{v}}{\partial v} \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}} + \frac{\partial \overline{v}}{\partial u} \frac{\partial \overline{u}}{\partial v} \overline{X}_{\overline{v}} \wedge \overline{X}_{\overline{u}}$$

$$= \left(\frac{\partial \overline{u}}{\partial u} \frac{\partial \overline{v}}{\partial v} - \frac{\partial \overline{v}}{\partial u} \frac{\partial \overline{u}}{\partial v}\right) \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}$$

$$= \det \begin{pmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{u}}{\partial v} \\ \frac{\partial \overline{v}}{\partial u} & \frac{\partial \overline{v}}{\partial v} \end{pmatrix} \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}$$

$$= \frac{\partial (\overline{u}, \overline{v})}{\partial (u, v)} \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}.$$

Portanto, para $p \in W$ arbitrário, temos que os vetores N(u, v) e $N(\overline{u}, \overline{v})$ coincidem, pois

$$\begin{split} N(u,v) &= \frac{X_u \wedge X_v}{||X_u \wedge X_v||} \\ &= \frac{\operatorname{Jac}(h)\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}}{||\operatorname{Jac}(h)\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}||} \\ &= \frac{\frac{\partial(\overline{u},\overline{v})}{\partial(u,v)}}{\left|\frac{\partial(\overline{u},\overline{v})}{\partial(u,v)}\right|} \frac{\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}}{||\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}||} \\ &= \operatorname{sign}\left(\frac{\partial(\overline{u},\overline{v})}{\partial(u,v)}\right) N(\overline{u},\overline{v}) \\ &= N(\overline{u},\overline{v}). \end{split}$$

Além disso, as coordenadas de N(u,v) em \mathbb{R}^3 são funções diferenciáveis de (u,v) e, portanto, a aplicação $N:S\to\mathbb{R}^3$ é diferenciável. Por construção $N(p)\perp T_pS$ para todo $p\in S$.

(\Leftarrow): Reciprocamente, seja $N: S \to \mathbb{R}^3$ um campo diferenciável unitário de vetores normais em S, e considere uma família de vizinhanças coordenadas cobrindo S. Para os pontos $p \in X(u,v)$ de cada vizinhança coordenada $X(U), U \subset \mathbb{R}^2$, é possível, pela continuidade de N e, se necessário, intercambiar u e v, fazer com que

$$N(u,v) = \frac{X_u \wedge X_v}{||X_u \wedge X_v||}.$$

De fato, como ||N(p)||=1, $\left|\left|\frac{X_u\wedge X_v}{||X_u\wedge X_v||}\right|\right|=1$, $N(p)\perp T_pS$ e $\frac{X_u\wedge X_v}{||X_u\wedge X_v||}\perp T_pS$, temos que

$$f(p) := \left\langle N(p), \frac{X_u \wedge X_v}{||X_u \wedge X_v||} \right\rangle = \pm 1.$$

Como f(p) é uma função contínua em X(U) e X(U) é um conjunto conexo, então o sinal de f é constante em X(U). Se f(p) = -1, podemos intercambiar o u, v na parametrização, e então f(p) = 1.

Procedendo desse modo com todas as vizinhanças coordenadas, teremos que na intersecção de duas quaisquer delas, digamos X(u,v) e $\overline{X}(\overline{u},\overline{v})$ o Jacobiano $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}$ é positivo.

De fato, suponha por absurdo que $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} < 0$. Logo,

$$N(u,v) = \frac{X_u \wedge X_v}{||X_u \wedge X_v||}$$

$$= \frac{\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}}{\left| \left| \frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}} \right| \right|}$$

$$= \frac{\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}}{\left| \frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} \right|} \frac{\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}}{||\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}||}$$

$$= \operatorname{sign} \left(\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} \right) N(\overline{u},\overline{v})$$

$$= -N(\overline{u},\overline{v}).$$

Absurdo! Portanto, a dada família de vizinhanças coordenadas, com eventuais intercâmbios de u, v, torna S orientável.

Exemplo 1.5 (Esfera unitária (\mathbb{S}^2)). Note que a aplicação N(x, y, z) := (x, y, z) quando restrita aos pontos de \mathbb{S}^2 é uma campo normal diferenciável (prova usando coordenadas). Além disso, sua diferencial em $p \in \mathbb{S}^2$ aplicada ao vetor $v \in T_p \mathbb{S}^2$ é dada por

$$dN_p(v) = v.$$

1.5. O gradiente

Definição 1.13. Seja $S \subset \mathbb{R}^3$ uma superfície regular e $f: S \to \mathbb{R}$ uma função diferenciável. Definimos o *gradiente de* f *em* $p \in S$ como o campo de vetores $\nabla f: S \to \mathbb{R}^3$ tal que

$$\langle \nabla f(p), v \rangle = df_p(v),$$

para todo $v \in T_p S$.

Lema 1.1. Seja $f: \mathbb{R}^3 \to \mathbb{R}$ uma função diferenciável (pelo menos C^2) e $a \in \mathbb{R}$ um valor regular de f. Então $S:=f^{-1}(a)$ é uma superfície regular orientável.

Rascunho da Demonstração. Use o Teorema da função inversa para mostrar que S é uma superfície regular. Para mostrar que S é orientável mostre que $N(p) := \frac{\nabla f(p)}{||\nabla f(p)||}$ é um campo normal unitário em S e, pela 1.6 temos que S é orientável.

A segunda forma fundamental

Sejam S = X(U), $U \subset \mathbb{R}^2$, uma superfície parametrizada regular, p = X(u, v), $v \in T_pS$ e $\alpha(t) = X(u(t), v(t))$ uma curva em S tal que $\alpha(t_0) = p$ e $\alpha'(t_0) = v$.

Primeiramente, note que

$$v = \alpha'(t) = \frac{d\alpha}{dt}$$

$$= \frac{dX(u(t), v(t))}{dt}$$

$$= \frac{\partial X}{\partial u} \frac{du}{dt} + \frac{\partial X}{\partial v} \frac{dv}{dt}$$

$$= u'(t)X_u(u(t), v(t)) + v'(t)X_v(u(t), v(t)),$$

е

$$\begin{split} \alpha''(t) &= \frac{d^2\alpha}{dt^2} \\ &= \frac{d}{dt} \left(u'(t) X_u(u(t), v(t)) + v'(t) X_v(u(t), v(t)) \right) \\ &= u''(t) X_u(u(t), v(t)) + u'(t) \frac{d X_u(u(t), v(t))}{dt} + v''(t) X_v(u(t), v(t)) + v'(t) \frac{d X_v(u(t), v(t))}{dt} \\ &= u''(t) X_u(u(t), v(t)) + u'(t) \left(\frac{d X_u}{du} \frac{du}{dt} + \frac{d X_u}{dv} \frac{dv}{dt} \right) + v''(t) X_v(u(t), v(t)) + v'(t) \left(\frac{d X_v}{du} \frac{du}{dt} + \frac{d X_v}{dv} \frac{dv}{dt} \right) \\ &= u''(t) X_u(u(t), v(t)) + (u'(t))^2 X_{uu}(u(t), v(t)) + u'(t) v'(t) X_{uv}(u(t), v(t)) \\ &\quad + v''(t) X_v(u(t), v(t)) + v'(t) u'(t) X_{vu}(u(t), v(t)) + (v'(t))^2 X_{vv}(u(t), v(t)) \\ &= u''(t) X_u(u(t), v(t)) + v''(t) X_v(u(t), v(t)) \\ &\quad + (u'(t))^2 X_{uu}(u(t), v(t)) + 2u'(t) v'(t) X_{uv}(u(t), v(t)) + (v'(t))^2 X_{vv}(u(t), v(t)). \end{split}$$

No ponto $p = \alpha(t_0)$ temos que $\{X_u(u_0, v_0), X_v(u_0, v_0), N(u_0, v_0)\}$ é uma base do \mathbb{R}^3 , onde $(u_0, v_0) = (u(t_0), v(t_0))$. Calculemos a componente de $\alpha''(t_0)$ na direção $N(u_0, v_0)$.

Observação 2.1. As componentes de $\alpha''(t_0)$ nas direções $X_u(u_0, v_0)$ e $X_v(u_0, v_0)$ serão calculadas posteriormente e levarão aos símbolos de Christoffel.

$$\langle \alpha''(t_0), N(u_0, v_0) \rangle = u''(t_0) \langle X_u, N \rangle + v''(t_0) \langle X_v, N \rangle$$

$$+ (u'(t_0))^2 \langle X_{uu}, N \rangle + 2u'(t_0)v'(t_0) \langle X_{uv}, N \rangle + (v'(t_0))^2 \langle X_{vv}, N \rangle$$

$$= (u'(t_0))^2 \langle X_{uu}, N \rangle + 2u'(t_0)v'(t_0) \langle X_{uv}, N \rangle + (v'(t_0))^2 \langle X_{vv}, N \rangle$$

$$= \langle v, X_u \rangle^2 \langle X_{uu}, N \rangle + 2\langle v, X_u \rangle \langle v, X_v \rangle \langle X_{uv}, N \rangle + \langle v, X_v \rangle^2 \langle X_{vv}, N \rangle.$$

Observação 2.2 (Exercício). O número $\langle \alpha''(t_0), N(u_0, v_0) \rangle$ não depende da parametrização da curva $\alpha(t)$.

Definição 2.1. Seja S = X(U), $U \subset \mathbb{R}^3$, uma superfície parametrizada regular e $p \in S$. Definimos a **segunda forma fundamental de** S **em** p como sendo a forma quadrática $\Pi_p: T_pS \to \mathbb{R}$ dada por

$$II_p(v) := a^2 \langle X_{uu}, N \rangle + 2ab \langle X_{uv}, N \rangle + b^2 \langle X_{vv}, N \rangle$$
$$= a^2 e(u, v) + 2ab f(u, v) + b^2 g(u, v).$$

onde $v = aX_u + bX_v$ e

$$\begin{cases} e(u,v) &:= \langle X_{uu}(u,v), N(u,v) \rangle \\ f(u,v) &:= \langle X_{uv}(u,v), N(u,v) \rangle \\ g(u,v) &:= \langle X_{vv}(u,v), N(u,v) \rangle \end{cases}$$

Chamamos as funções $e, f, g: U \subset \mathbb{R}^2 \to \mathbb{R}$ de coeficientes da segunda forma fundamental de S.

2.1. Consequências geométricas

Sejam $S=X(U),\,U\subset\mathbb{R}^2$, uma superfície parametrizada regular, $p=X(u,v),\,v\in T_pS$ e $\alpha(s)=X(u(s),v(s))$ uma curva p.p.c.a. em S tal que $\alpha(s_0)=p$ e $\alpha'(s_0)=v$.

Considere $\{\overrightarrow{t}, \overrightarrow{n}, \overrightarrow{b}\}$ o triedro de Frenet-Serret de α . Neste caso,

$$\langle \alpha''(s), N(\alpha(s)) \rangle = \langle \kappa(s) \overrightarrow{n}(s), N(\alpha(s)) \rangle = \kappa(s) \langle \overrightarrow{n}(s), N(\alpha(s)) \rangle = \kappa(s) \cos(\theta(s)),$$
onde $\theta(s) := \angle (\overrightarrow{n}(s), N(\alpha(s))).$

Suponha que o traço de α seja uma seção normal de S em p, isto é, $\alpha = \Pi \cap S$, em que Π é o plano nas direções $\alpha'(s)$ e $N(\alpha(s))$ em p.

Como α é uma curva plana então Π é o plano osculador que passa por p e cujos vetores vetores diretores são $\alpha'(s)$ e $\overrightarrow{n}(s)$. Mas como $\alpha'(s) \perp N(\alpha(s))$ e $\alpha'(s) \perp \overrightarrow{n}(s)$ temos que $\overrightarrow{n}(s) = \pm N(\alpha(s))$ e daí

$$\langle \alpha''(s), N(\alpha(s)) \rangle = \pm \kappa(s).$$

2.2. A curvatura normal

Definição 2.2. Sejam $S=X(U),\,U\subset\mathbb{R}^2$, uma superfície parametrizada regular, $p\in S$ e $v\in T_pS$. Definimos a *curvatura normal de* S *em* p *na direção* v por

$$\kappa_{\mathbf{n},p}(v) := \frac{\mathrm{II}_p(v)}{\mathrm{I}_p(v)}.$$

Note que a curvatura normal de uma superfície S em um ponto p depende somente da direção de v. De fato, para $\lambda \in \mathbb{R}$,

$$\kappa_{n,p}(\lambda v) = \frac{II_p(\lambda v)}{I_p(\lambda v)}$$

$$= \frac{(\lambda a)^2 e + 2(\lambda a)(\lambda b)f + (\lambda b)^2 g}{(\lambda a)^2 E + 2(\lambda a)(\lambda b)F + (\lambda b)^2 G}$$

$$= \frac{II_p(v)}{I_p(v)}$$

$$= \kappa_{n,p}(v).$$

2.2.1. Exemplos

Agora faremos alguns exemplos de como calcular a segunda forma fundamental e a curvatura normal.

Exemplo 2.1 (Esfera). Valos calcular a primeira e a segunda formas fundamentais de uma esfera em um ponto da vizinhança coordenada pela parametrização

$$X(u,v) = (a\cos(u)\sin(v), a\sin(u)\sin(v), a\cos(v)),$$

com a > 0. Primeiro observe que

$$X_{u}(u,v) = (-a\sin(u)\sin(v), a\cos(u)\sin(v), 0),$$

$$X_{v}(u,v) = (a\cos(u)\cos(v), a\sin(u)\cos(v), -a\sin(v)),$$

$$X_{uu}(u,v) = (-a\cos(u)\sin(v), -a\sin(u)\sin(v), 0),$$

$$X_{uv}(u,v) = (-a\sin(u)\cos(v), a\cos(u)\cos(v), 0),$$

$$X_{vv}(u,v) = (-a\cos(u)\sin(v), -a\sin(u)\sin(v), -a\cos(v)).$$

Agora calculemos o vetor normal em p:

$$\begin{split} N(p) &= \frac{X_u \wedge X_v}{||X_u \wedge X_v||} \\ &= \frac{\begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ -a\sin(u)\sin(v) & a\cos(u)\sin(v) & 0 \\ a\cos(u)\cos(v) & a\sin(u)\cos(v) & -a\sin(v) \end{pmatrix}}{||X_u \wedge X_v||} \\ &= \frac{(-a\sin(v)a\cos(u)\sin(v))\hat{i} + (-a\sin(v)a\sin(u)\sin(v))\hat{j} + (-a\sin(u)\cos(v)a\sin(u)\sin(v) - a\cos(u)\sin(v)a\cos(u)\cos(v))\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\sin^2(u)\cos(v)\sin(v) - a^2\cos^2(u)\sin(v)\cos(v))\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos^2(u)\sin(v)\sin^2(v) + \cos^2(v))\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{(-a^2\sin^2(v)\cos(u))^2 + (-a^2\sin^2(v)\sin(u))^2 + (-a^2\cos(v)\sin(v))\hat{k}}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v)\cos^2(u)a^4\sin^4(v)\sin^2(u)a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v)a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v)a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v)a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^2(v)\cos^2(u)a^4\sin^2(v)\cos(u)}\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^2(v)\cos^2(v)a^4\sin^2(v)\cos(u)}\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^2(v)\cos(u)}\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{a^2\sqrt{\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{a^2\sqrt{\sin^2(v)}} \\ &= (-(\sin(v))\cos(u), -|\sin(v)|\sin(u),\cos(v)). \end{split}$$

Finalmente podemos calcular os coeficientes da primeira e segunda formas fundamentais:

$$E(u, v) = \langle X_u, X_u \rangle = a^2 \sin^2(v)$$

$$F(u, v) = \langle X_u, X_v \rangle = 0$$

$$G(u, v) = \langle X_v, X_v \rangle = a^2$$

$$e(u, v) = \langle X_{uu}, N \rangle = a \sin^2(v)$$

$$f(u, v) = \langle X_{uv}, N \rangle = 0$$

$$g(u, v) = \langle X_{vv}, N \rangle = a.$$

Obteremos a primeira e segunda formas fundamentais para v, um vetor tangente a esfera no ponto p, dado na base associada a X(u, v) por

$$v = v_1 X_u + v_2 X_v.$$

Logo,

$$I_p(v) = v_1^2(a^2 \sin^2(v)) + v_2^2 a^2$$

$$II_p(v) = v_1^2(a \sin^2(v)) + v_2^2 a.$$

Por fim, calculamos a curatura normal:

$$\kappa_{n,p}(v) = \frac{II_p(v)}{I_p(v)} = \frac{v_1^2(a\sin^2(v)) + v_2^2a}{v_1^2(a^2\sin^2(v)) + v_2^2a^2} = \frac{1}{a}.$$

 $\kappa_{n,p}(v)$ é a curvatura do círculo máximo determinado por p, N, v.

Exemplo 2.2 (Plano). Vamos calcular a primeira e segunda formas fundamentais do plano S = X(U) cuja equação é ax + by + cz + d = 0, com $c \neq 0$, em um ponto da vizinhança coordenada pela parametrização

$$X(u,v) = \left(u, v, \frac{-d - au - bv}{c}\right).$$

Primeiro observe que

$$X_{u}(u,v) = \left(1,0,-\frac{a}{c}\right),$$

$$X_{v}(u,v) = \left(0,1,-\frac{b}{c}\right),$$

$$X_{uu}(u,v) = (0,0,0),$$

$$X_{uv}(u,v) = (0,0,0),$$

$$X_{vv}(u,v) = (0,0,0).$$

Agora calculamos o vetor normal em p:

$$N(p) = \frac{X_u \wedge X_v}{||X_u \wedge X_v||}$$

$$= \frac{\begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & -\frac{a}{c} \\ 0 & 1 & -\frac{b}{c} \end{pmatrix}}{||X_u \wedge X_v||}$$

$$= \frac{(\frac{a}{c})\hat{i} + (\frac{b}{c})\hat{j} + (1)\hat{k}}{||X_u \wedge X_v||}$$

$$= \frac{(\frac{a}{c})\hat{i} + (\frac{b}{c})\hat{j} + (1)\hat{k}}{\sqrt{(\frac{a}{c})^2 + (\frac{b}{c})^2 + 1}}$$

$$= \frac{1}{\sqrt{(\frac{a}{c})^2 + (\frac{b}{c})^2 + 1}} \left(\frac{a}{c}, \frac{b}{c}, 1\right).$$

Finalmente podemos calcular os coeficientes da primeira e segunda formas fundamentais:

$$E(u, v) = \langle X_u, X_u \rangle = 1 + \frac{a^2}{b^2}$$

$$F(u, v) = \langle X_u, X_v \rangle = \frac{ab}{c^2}$$

$$G(u, v) = \langle X_v, X_v \rangle = 1 + \frac{b^2}{c^2}$$

$$e(u, v) = \langle X_{uu}, N \rangle = 0$$

$$f(u, v) = \langle X_{uv}, N \rangle = 0$$

$$g(u, v) = \langle X_{vv}, N \rangle = 0.$$

Obteremos a primeira e segunda formas fundamentais para v, um vetor tangente ao plano no ponto p, dado na base associada a X(u, v) por

$$v = v_1 X_u + v_2 X_v.$$

Logo,

$$I_p(v) = v_1^2 \left(1 + \frac{a^2}{b^2} \right) + 2v_1 v_2 \left(\frac{ab}{c^2} \right) v_2^2 \left(1 + \frac{b^2}{c^2} \right)$$

$$II_p(v) = 0.$$

Por fim, calculamos a curvatura normal:

$$\kappa_{\mathbf{n},p}(v) = \frac{\Pi_p(v)}{\Pi_p(v)} = \frac{0}{v_1^2 \left(1 + \frac{a^2}{b^2}\right) + 2v_1v_2 \left(\frac{ab}{c^2}\right)v_2^2 \left(1 + \frac{b^2}{c^2}\right)} = 0.$$

A curvatura de qualquer seção normal do plano é igual a 0, pois são retas.

Exemplo 2.3 (Cilindro circular). Vamos calcular a primeira e segunda formas fundamentais de um cilindro circular em um ponto da vizinhança coordenada pela parametrização

$$X(u,v) = (r\cos(u), r\sin(u), v),$$

com r > 0. Primeiro observe que

$$X_{u}(u, v) = (-r\sin(u), r\cos(u), 0),$$

$$X_{v}(u, v) = (0, 0, 1),$$

$$X_{uu}(u, v) = (-r\cos(u), -r\sin(u), 0),$$

$$X_{uv}(u, v) = (0, 0, 0),$$

$$X_{vv}(u, v) = (0, 0, 0).$$

Agora calculemos o vetor normal em p:

$$N(p) = \frac{X_u \wedge X_v}{||X_u \wedge X_v||}$$

2. A segunda forma fundamental

$$= \frac{\begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ -r\sin(u) & r\cos(u) & 0 \\ 0 & 0 & 1 \end{pmatrix}}{||X_u \wedge X_v||}$$

$$= \frac{(r\cos(u))\hat{i} + (r\sin(u))\hat{j} + (0)\hat{k}}{||X_u \wedge X_v||}$$

$$= \frac{(r\cos(u))\hat{i} + (r\sin(u))\hat{j} + (0)\hat{k}}{\sqrt{(r\cos(u))^2 + (r\sin(u))^2 + 0}}$$

$$= \frac{(r\cos(u))\hat{i} + (r\sin(u))\hat{j} + (0)\hat{k}}{r}$$

$$= (\cos(u), \sin(u), 0).$$

Finalmente podemos calcular os coeficientes da primeira e segunda formas fundamentais:

$$E(u, v) = \langle X_u, X_u \rangle = r^2$$

$$F(u, v) = \langle X_u, X_v \rangle = 0$$

$$G(u, v) = \langle X_v, X_v \rangle = 1$$

$$e(u, v) = \langle X_{uu}, N \rangle = -r$$

$$f(u, v) = \langle X_{uv}, N \rangle = 0$$

$$g(u, v) = \langle X_{vv}, N \rangle = 0.$$

Obteremos a primeira e segunda formas fundamentais para v, um vetor tangente a esfera no ponto p, dado na base associada a X(u, v) por

$$v = v_1 X_u + v_2 X_v.$$

Logo,

$$I_p(v) = v_1^2(r^2) + v_2^2 1$$

$$II_p(v) = v_1^2(-r).$$

Por fim, calculamos a curvatura normal:

$$\kappa_{n,p}(v) = \frac{\Pi_p(v)}{\Pi_p(v)} = \frac{-v_1^2 r}{v_1^2(r^2) + v_2^2} \le 0.$$

O máximo de $\kappa_{n,p}(v)$ ocorre para $v_1=0$, isto é, $v=v_2X_v$ e neste caso $\kappa_{n,p}(v)=0$. O mínimo de $\kappa_{n,p}(v)$ ocorre para $v_2=0$, isto é, $v=v_1X_u$ e neste caso $\kappa_{n,p}(v)=-\frac{1}{r}$.

3. A aplicação normal de Gauss

Como medir a taxa de variação do plano tangente em um ponto p de uma superfície regular S?

Isso será feito a partir da aplicação linear de T_pS em T_pS dada pela variação do campo normal N, ilustrado na Figura 3.1 no caso em que S é a esfera de centro na origem e raio 5.

Figura 3.1.: Campo normal unitário sobre um meridiano da esfera de centro na origem e raio 5.

Note que a escolha de um vetor normal $N(p) \in T_pS^{\perp}$ determina uma orientação de T_pS . Neste caso, dizemos que **a base** $\{u,v\}$ **de** T_pS **está orientada positivamente** (resp. negativamente) em relação ao normal N(p) se $\{u,v,N(p)\}$ é uma base de \mathbb{R}^3 orientada positivamente (resp. negativamente), isto é, $\langle u \wedge v, N(p) \rangle > 0$ (resp. $\langle u \wedge v, N(p) \rangle < 0$).

Definição 3.1. Uma superfície orientada é um par (S, N) em que S é uma superfície orientável e $N: S \to \mathbb{R}^3$ é uma aplicação diferenciável tais que $N(p) \in T_p S^{\perp}$ e ||N(p)|| = 1 para todo $p \in S$.

Definição 3.2. Seja (S, N) uma superfície orientada. A *aplicação normal de Gauss de* (S, N) é a aplicação $\mathbf{N} : S \to \mathbb{S}^2$ que associa a casa ponto $p \in S$ o representante de N(p) com origem na origem de \mathbb{R}^3 .

A Figura 3.2 ilustra a aplicação normal de Gauss N.

Figura 3.2.: A aplicação normal de Gauss N.

Observação 3.1. Note que como N é diferenciável por definição, temos que a aplicação normal de Gauss \mathbf{N} é diferenciável. Além disso, como $T_pS \parallel T_{\mathbf{N}(p)}\mathbb{S}^2$ temos que $T_pS \sim T_{\mathbf{N}(p)}\mathbb{S}^2$. Assim, através desta identificação, podemos olhar a diferencial da aplicação normal de Gauss dN_p como uma aplicação linear em T_pS .

Sejam S_1, S_2 duas superfícies regulares e $f: S_1 \to S_2$ uma aplicação diferenciável. Para $p \in S_1$ e $v \in T_pS_1$, assim calculamos $df_p(v)$:

Seja $\alpha:]-\varepsilon,\varepsilon[\to S_1$ uma curva em S_1 tal que $\alpha(0)=p$ e $\alpha_1'(0)=v.$ Assim,

$$df_p(v) = \frac{d}{dt}\Big|_{t=0} (f \circ \alpha) = \beta'(0),$$

onde $\beta(t) = f(\alpha(t))$ é uma curva em S_2 tal que $\beta(0) = f(p)$.

3.1. Exemplos

Agora faremos alguns exemplos de como calcular a diferencial da aplicação normal de Gauss.

Exemplo 3.1 (Esfera). Vamos calcular a diferencial da aplicação normal de Gauss da esfera \mathbb{S}^2 . Note que a aplicação $N: \mathbb{S}^2 \to \mathbb{S}^2$, dada por N(p) = -p para todo $p \in \mathbb{S}^2$ é a aplicação normal de Gauss na esfera. Em coordenadas,

$$N(x, y, z) := (-x, -y, -z).$$

Sejam $p \in \mathbb{S}^2$, $v \in T_p\mathbb{S}^2$ arbitrários e $\alpha :]-\varepsilon, \varepsilon[\to \mathbb{S}^2$ uma curva na esfera dada por $\alpha(t) = (x(t), y(t), z(t))$ tal que $\alpha(0) = p$, $\alpha'(0) = v$. Logo,

$$dN_{p}(v) = \frac{d}{dt}\Big|_{t=0} (N \circ \alpha)(t)$$

$$= \frac{d}{dt}\Big|_{t=0} N(x(t), y(t), z(t))$$

$$= \frac{d}{dt}\Big|_{t=0} (-x(t), -y(t), -z(t))$$

$$= -(x'(0), y'(0), z'(0))$$

$$= -\alpha'(0)$$

$$=-v$$

Portanto, $dN_p:T_p\mathbb{S}^2\to T_p\mathbb{S}^2$ é menos a aplicação identidade. Em breve, interpretaremos geometricamente esta relação.

Exemplo 3.2 (Plano). Vamos calcular a diferencial da aplicação normal de Gauss do plano S cuja equação é ax + by + cz + d = 0, com $c \neq 0$. Note que a aplicação $N: S \to \mathbb{S}^2$, dada por

$$N(x,y,z) = \frac{1}{\sqrt{\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 + 1}} \left(\frac{a}{c}, \frac{b}{c}, 1\right),\,$$

é a aplicação normal de Gauss de S. Sejam $p \in S$, $v \in T_p S$ arbitrários e $\alpha :]-\varepsilon, \varepsilon[\to S$ uma curva no plano dada por $\alpha(t) = (x(t), y(t), z(t))$ tal que $\alpha(0) = p, \alpha'(0) = v$. Logo,

$$dN_p(v) = \frac{d}{dt}\Big|_{t=0} (N \circ \alpha)(t) = \frac{d}{dt}\Big|_{t=0} N(x(t), y(t), z(t)) = \frac{d}{dt}\Big|_{t=0} \frac{1}{\sqrt{\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 + 1}} \left(\frac{a}{c}, \frac{b}{c}, 1\right) = 0.$$

Portanto, $dN_p:T_pS\to T_pS$ é a aplicação identicamente nula.

Exemplo 3.3 (Cilindro circular). Vamos calcular a diferencial da aplicação normal de Gauss do cilindro circular S dado por $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$. Note que a aplicação $N: S \to \mathbb{S}^2$, dada por

$$N(x, y, z) = (x, y, 0),$$

é a aplicação normal de Gauss de S. Sejam $p \in S$, $v \in T_p S$ arbitrários e $\alpha :]-\varepsilon, \varepsilon[\to S$ uma curva no cilindro circular dada por $\alpha(t) = (x(t), y(t), z(t))$ tal que $\alpha(0) = p$, $\alpha'(0) = v$. Logo,

$$dN_p(v) = \frac{d}{dt}\Big|_{t=0} (N \circ \alpha)(t) = \frac{d}{dt}\Big|_{t=0} N(x(t), y(t), z(t)) = \frac{d}{dt}\Big|_{t=0} (x(t), y(t), 0) = (x'(0), y'(0), 0).$$

Portanto, $dN_p: T_pS \to T_pS$ é a projeção sobre o plano Oxy.

3.2. dN_p é uma aplicação autoadjunta

Definição 3.3. Seja V um espaço vetorial de dimensão finita com produto interno $\langle \cdot, \cdot \rangle$ e $T: V \to V$ uma aplicação linear. Dizemos que T é autoadjunta se

$$\langle Tv, w \rangle = \langle v, Tw \rangle,$$

para todos $v, w \in V$.

Sejam V um espaço vetorial de dimensão finita com produto interno $\langle \cdot, \cdot \rangle$ e $T: V \to V$ uma aplicação linear autoadjunta. Associamos T à forma bilinear simétrica

$$B_T(v, w) = \langle Tv, w \rangle,$$

e à forma quadrática

$$Q_T(v) = \langle Tv, v \rangle,$$

que estão relacionadas pela seguinte identidade:

$$B_T(v, w) = \frac{1}{4}(Q_T(v + w) - Q_T(v - w)).$$

Proposição 3.1. Sejam (S, N) uma superfície orientada e \mathbb{N} a aplicação normal de Gauss de (S, N). A diferencial $d\mathbb{N}_p$ da aplicação normal de Gauss é uma aplicação linear autoadjunta para todo $p \in S$.

Demonstração. Sejam $p \in S$, $X : U \subset \mathbb{R}^2 \to S$ uma carta de S tal que $p \in X(U)$, $v, w \in T_pS$ arbitrários e $\alpha :]-\varepsilon, \varepsilon[\to S \text{ e }\beta :]-\delta, \delta[\to S \text{ curvas em }S \text{ dadas por }\alpha(t)=X(u_1(t),v_1(t)) \text{ e }\beta(t)=X(u_2(t),v_2(t)) \text{ tais que }\alpha(0)=\beta(0)=p, \ \alpha'(0)=v \text{ e }\beta'(0)=w.$ Assim,

$$d\mathbf{N}_{p}(v) = \frac{d}{dt} \Big|_{t=0} (\mathbf{N} \circ \alpha)(t)$$

$$= \frac{d}{dt} \Big|_{t=0} (\mathbf{N} \circ X(u_{1}(t), u_{2}(t)))$$

$$= \frac{\partial}{\partial u} (\mathbf{N} \circ X)(p)u'_{1}(0) + \frac{\partial}{\partial v} (\mathbf{N} \circ X)(p)v'_{1}(0)$$

$$= u'_{1}(0)\mathbf{N}_{u} + v'_{1}(0)\mathbf{N}_{v}.$$

Analogamente, $d\mathbf{N}_p(w) = u_2'(0)\mathbf{N}_u + v_2'(0)\mathbf{N}_v$. Consequentemente,

$$\langle d\mathbf{N}_{p}(v), w \rangle = \langle u'_{1}(0)\mathbf{N}_{u} + v'_{1}(0)\mathbf{N}_{v}, u'_{2}(0)X_{u} + v'_{2}(0)X_{v} \rangle$$

$$= u'_{1}(0)u'_{2}(0)\langle \mathbf{N}_{u}, X_{u} \rangle + u'_{1}(0)v'_{2}(0)\langle \mathbf{N}_{u}, X_{v} \rangle$$

$$+ v'_{1}(0)u'_{2}(0)\langle \mathbf{N}_{v}, X_{u} \rangle + v'_{1}(0)v'_{2}(0)\langle \mathbf{N}_{v}, X_{v} \rangle$$

е

$$\langle v, d\mathbf{N}_p(w) \rangle = \langle u_1'(0)X_u + v_1'(0)X_v, u_2'(0)\mathbf{N}_u + v_2'(0)\mathbf{N}_v \rangle$$

= $u_1'(0)u_2'(0)\langle \mathbf{N}_u, X_u \rangle + u_1'(0)v_2'(0)\langle \mathbf{N}_v, X_u \rangle$
+ $v_1'(0)u_2'(0)\langle \mathbf{N}_u, X_v \rangle + v_1'(0)v_2'(0)\langle \mathbf{N}_v, X_v \rangle$

Portanto, se $\langle \mathbf{N}_u, X_v \rangle = \langle \mathbf{N}_v, X_u \rangle$ então temos que

$$\langle d\mathbf{N}_p(v), w \rangle = \langle v, d\mathbf{N}_p(w) \rangle.$$

Portanto, pela arbitrariedade de p, v e w, temos que $d\mathbf{N}_p$ é uma aplicação linear autoadjunta.

Agora vamos mostrar que $\langle \mathbf{N}_u, X_v \rangle = \langle \mathbf{N}_v, X_u \rangle$. Para ver isso derivamos $\langle N, X_u \rangle = 0$ com relação a v, donde obtemos

$$\langle N_v, X_u \rangle = -\langle N, X_{uv} \rangle.$$

E derivamos $\langle N, X_v \rangle = 0$ com relação a u, donde obtemos

$$\langle N_u, X_v \rangle = -\langle N, X_{vu} \rangle = -\langle N, X_{uv} \rangle.$$

Portanto, $\langle N_v, X_u \rangle = \langle N_u, X_v \rangle$ como requerido.

3.3. Consequências geométricas

Com o resultado obtido para a diferencial da aplicação normal de Gauss de uma superfície orientada podemos ter uma nova caracterização para a segunda forma fundamental desta superfície.

Sejam (S, N) uma superfície orientada e \mathbb{N} a aplicação normal de Gauss de (S, N). Afirmamos que

$$II_p(v) = -Q_{d\mathbf{N}_p}(v) = \langle -d\mathbf{N}_p(v), v \rangle,$$

onde $Q_{d\mathbf{N}_p}$ é a forma quadrática associada a diferencial $d\mathbf{N}_p$ da aplicação normal de Gauss. De fato, sejam $p \in S$, $v \in T_p S$ arbitrários e $\alpha :]-\varepsilon, \varepsilon[\to S$ tal que $\alpha(0) = p$ e $\alpha'(0) = v$. Como $\langle \mathbf{N}(\alpha(t)), \alpha'(t) \rangle = 0$ para todo $t \in]-\varepsilon, \varepsilon[$ temos que

$$\frac{d}{dt}\Big|_{t=0} \langle \mathbf{N}(\alpha(t)), \alpha'(t) \rangle = 0$$

$$\left\langle \frac{d}{dt}\Big|_{t=0} \mathbf{N}(\alpha(t)), \alpha'(0) \right\rangle + \left\langle \mathbf{N}(\alpha(0)), \frac{d}{dt}\Big|_{t=0} \alpha'(t) \right\rangle = 0$$

$$\left\langle d\mathbf{N}_{p}(v), v \right\rangle + \left\langle \mathbf{N}(p), \alpha''(0) \right\rangle = 0$$

$$Q_{d\mathbf{N}_{p}}(v) + \mathrm{II}_{p}(v) = 0.$$

Teorema 3.1 (Teorema espectral). Sejam V um espaço vetorial bidimensional com produto interno e $T:V\to V$ uma aplicação linear autoadjunta. Então existe uma base ortonormal $\{e_1,e_2\}$ de V tal que $T(e_1)=\lambda_1e_1$, $T(e_2)=\lambda_2e_2$ e os autovalores λ_1,λ_2 são o máximo e o mínimo da forma quadrática Q_T no círculo unitário de V.

Como $-d\mathbf{N}_p$ é autoadjunta então existe uma base ortonormal $\{e_1, e_2\}$ tal que

$$\begin{cases} -d\mathbf{N}_p(e_1) &= \kappa_1 e_1 \\ -d\mathbf{N}_p(e_2) &= \kappa_2 e_2 \end{cases},$$

onde κ_1, κ_2 são o mínimo e o máximo de $\Pi_p(v)$ com ||v||=1, respectivamente. Chamamos κ_1, κ_2 de *curvaturas principais de* S *em* p e os respectivos e_1, e_2 de *direções principais de* S *em* p.

Chamamos de operador de Weingarten de S em p (ou operador forma de S em p) o operador linear $S := -d\mathbf{N}_p$.

Definição 3.4. Sejam S uma superfície orientada e $p \in S$. Definimos a curvatura Gaussiana de S em p por

$$K(p) := \det(\mathcal{S}).$$

Definimos também a curvatura média de S em p por

$$H(p) := \frac{1}{2} \operatorname{tr}(\mathcal{S}).$$

Seja $\mathcal{B} = \{e_1, e_2\}$ uma base de direções principais de S em p com respectivas curvaturas principais κ_1, κ_2 ($\kappa_1 \leq \kappa_2$). Assim, a matriz de S na base S é dada por

$$[\mathcal{S}]_{\mathcal{B}} = \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}.$$

E as curvaturas Gaussiana e média são dadas por

$$K(p) = \kappa_1 \kappa_2$$
 e $H(p) = \frac{\kappa_1 + \kappa_2}{2}$.

3.4. Exemplos

Agora faremos alguns exemplos de como calcular as curvaturas principais, Gaussiana e normal.

Exemplo 3.4 (Esfera). Sejam S a esfera de centro na origem e raio $r, p \in S$ e $v \in T_pS$ arbitrários tais que ||v||=1 (isto é, v está no círculo unitário de T_pS). Note que

$$II_p(v) = \frac{II_p(v)}{I_p(v)} = \kappa_{n,p}(v) = \frac{1}{r}.$$

Portanto o mínimo e o máximo da forma quadrática Π_p no círculo unitário de T_pS são dados por $\kappa_1 = \frac{1}{r}$ e $\kappa_2 = \frac{1}{r}$. Portanto,

$$K(p) = \frac{1}{r^2}$$
 e $H(p) = \frac{1}{r}$.

Exemplo 3.5 (Plano). Seja S o plano cuja equação é ax+by+cz+d=0, com $c\neq 0, p\in S$ e $v\in T_pS$ arbitrários tais que ||v||=1 (isto é, v está no círculo unitário de T_pS). Note que

$$II_p(v) = \frac{II_p(v)}{I_n(v)} = \kappa_{n,p}(v) = 0.$$

Portanto o mínimo e o máximo da forma quadrática II_p no círculo unitário de T_pS são dados por $\kappa_1 = 0$ e $\kappa_2 = 0$. Portanto,

$$K(p) = 0$$
 e $H(p) = 0$.

Exemplo 3.6 (Cilindro circular). Seja S = X(U) o cilindro circular de raio $r, p \in S$ e $v \in T_pS$ arbitrários tais que ||v|| = 1 (isto é, v está no círculo unitário de T_pS). Note que

$$II_p(v) = \frac{II_p(v)}{I_p(v)} = \kappa_{n,p}(v) = \frac{-v_1^2 r}{v_1^2(r^2) + v_2^2} \le 0,$$

onde $v = v_1 X_u + v_2 X_v$. Portanto o mínimo e o máximo da forma quadrática Π_p no círculo unitário de $T_p S$ são dados por $\kappa_1 = -\frac{1}{r}$ e $\kappa_2 = 0$ (para ver isso basta usar a identidade $v_1^2 + v_2^2 = 1$ na curvatura normal e maximizar e minimizar as funções para v_1 e v_2). Portanto,

$$K(p) = 0$$
 e $H(p) = -\frac{1}{2r}$.

3.5. A fórmula de Euler

A fórmula de Euler calcula a curvatura normal de um vetor unitário no espaço tangente através das curvaturas principais.

Proposição 3.2 (Fórmula de Euler). Sejam κ_1 e κ_2 as curvaturas principais de S = X(U) em p, e_1 e e_2 as direções principais correspondentes. Se $w \in T_pS$, ||w|| = 1 e θ é o ângulo entre w e e_1 , então

$$\kappa_{n,p}(w) = \kappa_1 \cos^2(\theta) + \kappa_2 \sin^2(\theta).$$

Demonstração. Note que $w = \langle w, e_1 \rangle e_1 + \langle w, e_2 \rangle e_2 = \cos(\theta) e_1 + \sin(\theta) e_2$. Assim,

$$\kappa_{\mathbf{n},p}(w) = \frac{\Pi_p(w)}{\Pi_p(w)}
= \Pi_p(w)
= -\langle d\mathbf{N}_p(w), w \rangle
= -\langle d\mathbf{N}_p(\cos(\theta)e_1 + \sin(\theta)e_2), \cos(\theta)e_1 + \sin(\theta)e_2 \rangle
= \langle -\cos(\theta)d\mathbf{N}_p(e_1) - \sin(\theta)d\mathbf{N}_p(e_2), \cos(\theta)e_1 + \sin(\theta)e_2 \rangle
= \langle \cos(\theta)\kappa_1 e_1 + \sin(\theta)\kappa_2 e_2, \cos(\theta)e_1 + \sin(\theta)e_2 \rangle
= \kappa_1 \cos^2(\theta) + \kappa_2 \sin^2(\theta).$$

3.6. Expressão em coordenadas locais para as curvaturas Gaussiana e média

Seja (S,N) uma superfície orientada, $X:U\subset\mathbb{R}^2\to S$ um sistema de coordenadas locais em $p=X(q)\in S,\, N:=\frac{X_u\wedge X_v}{||X_u\wedge X_v||}$ e $\alpha:I\subset\mathbb{R}\to S$ uma curva tal que $\alpha(t)=X(u(t),v(t))$ e $\alpha(0)=p$.

Note que como $\langle N, N \rangle = 1$ temos que $\langle N_u, N \rangle = 0$ e $\langle N_v, N \rangle = 0$ e, consequentemente, $N_u, N_v \in T_p S$. Logo,

$$\begin{cases} N_u &:= a_{11}X_u + a_{21}X_v \\ N_v &:= a_{12}X_u + a_{22}X_v \end{cases}.$$

Assim,

$$A := \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

é a matriz associada ao operador linear $d\mathbf{N}_p: T_pS \to T_pS$ na base $\{X_u, X_v\}$ de T_pS . Observe que $e = \langle X_{uu}, N \rangle$, mas como $\langle X_u, N \rangle = 0$ temos que $\langle X_{uu}, N \rangle + \langle X_u, N_u \rangle = 0$, de modo que $\langle N_u, X_u \rangle = -e$. Portanto,

$$\begin{cases} e &= -\langle N_u, X_u \rangle = -\langle a_{11} X_u + a_{21} X_v, X_u \rangle = -a_{11} E - a_{21} F \\ f &= -\langle N_u, X_v \rangle = -\langle a_{11} X_u + a_{21} X_v, X_v \rangle = -a_{11} F - a_{21} G \\ f &= -\langle N_v, X_u \rangle = -\langle a_{12} X_u + a_{22} X_v, X_u \rangle = -a_{12} E - a_{22} F \\ g &= -\langle N_v, X_v \rangle = -\langle a_{12} X_u + a_{22} X_v, X_v \rangle = -a_{12} F - a_{22} G \end{cases}.$$

Em notação matricial,

$$\begin{pmatrix} e & f \\ f & g \end{pmatrix} = - \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix}.$$

Como $EG - F^2 > 0$ temos que a matriz

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix}$$

é inversível. Portanto,

$$\begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} = -\begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1}$$

$$= -\frac{1}{EG - F^2} \begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} G & -F \\ -F & E \end{pmatrix}$$

$$= \begin{pmatrix} \frac{-eG + fF}{EG - F^2} & \frac{eF - fE}{EG - F^2} \\ \frac{-fG + gF}{EG - F^2} & \frac{fF - gE}{EG - F^2} \end{pmatrix}.$$

Portanto,

$$K = \det(S)$$

$$= \det(-d\mathbf{N}_p)$$

$$= \det\begin{pmatrix} -a_{11} & -a_{12} \\ -a_{21} & -a_{22} \end{pmatrix}$$

$$= a_{11}a_{22} - a_{12}a_{21}$$

$$= \frac{1}{(EG - F^2)^2} \left((-eG + fF)(fF - gE) - (eF - fE)(-fG + gF) \right)$$

$$= \frac{1}{(EG - F^2)^2} \left(-efFG + egEG + f^2F^2 - fgEF + efFG - egF^2 - f^2EG + fgEF \right)$$

$$= \frac{1}{(EG - F^2)^2} \left(eg(EG - F^2) - f^2(EG - F^2) \right)$$

$$= \frac{1}{(EG - F^2)^2} \left((eg - f^2)(EG - F^2) \right)$$

$$= \frac{eg - f^2}{EG - F^2}$$

е

$$H = \frac{1}{2} \text{tr}(S)$$

$$= \frac{1}{2} \text{tr}(-d\mathbf{N}_p)$$

$$= \frac{1}{2} \text{tr}\begin{pmatrix} -a_{11} & -a_{12} \\ -a_{21} & -a_{22} \end{pmatrix}$$

$$= \frac{-a_{11} - a_{22}}{2}$$

$$= \frac{eG - fF - fF + gE}{2(EG - F^2)}$$

$$= \frac{eG - 2fF + gE}{2(EG - F^2)}.$$

Note que como $K=\kappa_1\kappa_2$ e $H=\frac{\kappa_1+\kappa_2}{2}$ temos que κ_1 e κ_2 são soluções de

$$\lambda^2 - 2H\lambda + K = 0.$$

3. A aplicação normal de Gauss

De outro modo,

$$\det(\mathcal{S} - \lambda \operatorname{Id}) = 0$$

$$\det\begin{pmatrix} -a_{11} - \lambda & -a_{12} \\ -a_{21} & -a_{22} - \lambda \end{pmatrix} = 0$$

$$(-a_{11} - \lambda)(-a_{22} - \lambda) - (-a_{12})(-a_{21}) = 0$$

$$\lambda^2 + (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21} = 0$$

$$\lambda^2 - 2H\lambda + K = 0$$

Definição 3.5. Se $X:U\subset\mathbb{R}^2\to\mathbb{R}^3$ é tal que H(p)=0 para todo $p\in S=X(U),$ dizemos que S é uma *superfície mínima*.

Note que se $H\equiv 0$ então $\kappa_1+\kappa_2=0$, ou seja, $\kappa_1=-\kappa_2$ e, portanto, $K=\kappa_1\kappa_2=-(\kappa_1)^2\leq 0$.

Classificação de pontos de uma superfície

Definição 4.1. Seja $X:U\subset\mathbb{R}^2\to\mathbb{R}^3$ e S=X(U) uma superfície parametrizada regular. Dizemos que $p\in S$ é um ponto

- 1. *elíptico*, se K(p) > 0,
- 2. hiperbólico, se K(p) < 0,
- 3. **parabólico**, se K(p) = 0 e $H(p) \neq 0$, e
- 4. **planar**, se K(p) = H(p) = 0.

Nas condições da Definição 4.1 temos que se o ponto é elíptico então $\kappa_1(p) \leq \kappa_2(p) < 0$ ou $\kappa_2(p) \geq \kappa_1(p) > 0$, se o ponto é hiperbólico então $\kappa_1(p) < 0 < \kappa_2(p)$, se o ponto é parabólico então $\kappa_1(p) = 0$ e $\kappa_2(p) > 0$ ou $\kappa_1(p) < 0$ e $\kappa_2(p) = 0$ e se o ponto é planar então $\kappa_1(p) = \kappa_2(p) = 0$. Em especial, dizemos que p é um ponto $\boldsymbol{umbílico}$ se $\kappa_1(p) = \kappa_2(p)$. Neste caso, p é elíptico ou planar. Além disso,

$$(H^{2} - K)(p) = \left(\frac{\kappa_{1}(p) + \kappa_{2}(p)}{2}\right)^{2} - \kappa_{1}(p)\kappa_{2}(p)$$

$$= \frac{(\kappa_{1}(p))^{2} + 2\kappa_{1}(p)\kappa_{2}(p) + (\kappa_{2}(p))^{2}}{4} - \frac{4\kappa_{1}(p)\kappa_{2}(p)}{4}$$

$$= \left(\frac{\kappa_{1}(p) - \kappa_{2}(p)}{2}\right)^{2}.$$

Logo, p é um ponto úmbilico se $(H^2 - K)(p) = 0$.

Definição 4.2. Uma superfície regular $S \subset \mathbb{R}^3$ é dita (totalmente) umbílica se todos os seus pontos forem umbílicos.

Veremos que, em \mathbb{R}^3 , as únicas superfícies totalmente umbílicas são o plano e a esfera.

Exemplo 4.1 (Esfera). Seja S a esfera de centro na origem e raio r. Como vimos anteriormente, $\kappa_1(p) = \frac{1}{r}$, $\kappa_2(p) = \frac{1}{r}$, $K(p) = \frac{1}{r^2}$ e $H(p) = \frac{1}{r}$ para todo $p \in S$. Logo, todos os pontos de uma esfera são elípticos. Além disso, a esfera é uma superfície totalmente umbílica.

Exemplo 4.2 (Plano). Seja S a esfera de centro na origem e raio r. Como vimos anteriormente, $\kappa_1(p) = 0$, $\kappa_2(p) = 0$, K(p) = 0 e H(p) = 0 para todo $p \in S$. Logo, todos os pontos de um plano são planares. Além disso, o plano é uma superfície mínima.

Exemplo 4.3 (Cilindro circular). Seja S o cilindro circular de raio r. Como vimos anteriormente, $\kappa_1(p) = -\frac{1}{r}$, $\kappa_2(p) = 0$, K(p) = 0 e $H(p) = -\frac{1}{2r} \neq 0$ para todo $p \in S$. Logo, todos os pontos de um cilindro são parabólicos.

Exemplo 4.4 (Paraboloide hiperbólico). Seja S o paraboloide hiperbólico dado por $\{(x,y,z)\in\mathbb{R}^3:z=y^2-x^2\}$, ilustrado na Figura 4.1.

Figura 4.1.: Paraboloide hiperbólico

Note que $X: \mathbb{R}^2 \to \mathbb{R}^3$ dada por $X(u,v)=(u,v,v^2-u^2)$ é uma parametrização para o paraboloide hiperbólico. Observe que

$$X_{u}(u, v) = (1, 0, -2u),$$

$$X_{v}(u, v) = (0, 1, 2v),$$

$$X_{uu}(u, v) = (0, 0, -2),$$

$$X_{uv}(u, v) = (0, 0, 0),$$

$$X_{vv}(u, v) = (0, 0, 2).$$

Agora calculamos o vetor normal em p:

$$N(p) = \frac{X_u \wedge X_v}{||X_u \wedge X_v||}$$

$$= \frac{\det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & -2u \\ 0 & 1 & 2v \end{pmatrix}}{||X_u \wedge X_v||}$$

$$= \frac{1}{\sqrt{4u^2 + 4v^2 + 1}} (2u, -2v, 1)$$

Finalmente podemos calcular os coeficientes da primeira e segunda formas fundamentais:

$$E(u,v) = \langle X_u, X_u \rangle = 1 + 4u^2$$

4. Classificação de pontos de uma superfície

$$F(u,v) = \langle X_u, X_v \rangle = -4uv$$

$$G(u,v) = \langle X_v, X_v \rangle = 1 + 4v^2$$

$$e(u,v) = \langle X_{uu}, N \rangle = -\frac{2}{\sqrt{4u^2 + 4v^2 + 1}}$$

$$f(u,v) = \langle X_{uv}, N \rangle = 0$$

$$g(u,v) = \langle X_{vv}, N \rangle = \frac{2}{\sqrt{4u^2 + 4v^2 + 1}}.$$

Desse modo,

$$K(p) = \frac{eg - f^2}{EG - F^2}$$

$$= \frac{\left(-\frac{2}{\sqrt{4u^2 + 4v^2 + 1}}\right) \left(\frac{2}{\sqrt{4u^2 + 4v^2 + 1}}\right)}{(1 + 4u^2)(1 + 4v^2) - (-4uv)^2}$$

$$= \frac{-\frac{4}{4u^2 + 4v^2 + 1}}{1 + 4u^2 + 4v^2 + 16u^2v^2 - 16u^2v^2}$$

$$= \frac{-\frac{4}{4u^2 + 4v^2 + 1}}{1 + 4u^2 + 4v^2}$$

$$= -\frac{4}{(4u^2 + 4v^2 + 1)^2}$$

$$< 0.$$

Portanto, todos os pontos de um paraboloide hiperbólico são hiperbólicos.

Exemplo 4.5 (Chapéu de Sherlock). Seja S a superfícies gerada pela rotação da curva $z=y^3$, no plano Oyz, com -1 < y < 1, em relação à reta z=1, ilustrado na Figura 4.2.

Figura 4.2.: Chapéu de Sherlock

Uma parametrização para o chapéu de Sherlock é obtida da seguinte maneira:

1. Parametrização da curva $z = y^3$, no plano Oyz, com -1 < y < 1:

$$\alpha:]-1,1[\to\mathbb{R}^3$$
$$u\mapsto (0,u,u^3).$$

2. Translação de $\alpha(u)$:

$$\overline{\alpha}:]-1,1[\to\mathbb{R}^3$$
 $u\mapsto (0,u,u^3-1).$

3. Rotação ao redor do eixo Oy:

$$\overline{X}:]-1,1[\times]0,2\pi[\to \mathbb{R}^3$$
 $(u,v) \mapsto ((u^3-1)\cos(v),u,(u^3-1)\sin(v)).$

4. Translação para a posição final:

$$X:]-1,1[\times]0,2\pi[\to \mathbb{R}^3$$

 $(u,v) \mapsto ((u^3-1)\cos(v),u,(u^3-1)\sin(v)+1).$

Observe que

$$X_{u}(u,v) = (3u^{2}\cos(v), 1, 3u^{2}\sin(v)),$$

$$X_{v}(u,v) = (-(u^{3}-1)\sin(v), 0, (u^{3}-1)\cos(v)),$$

$$X_{uu}(u,v) = (6u\cos(v), 0, 6u\sin(v)),$$

$$X_{uv}(u,v) = (-3u^{2}\sin(v), 0, 3u^{2}\cos(v)),$$

$$X_{vv}(u,v) = (-(u^{3}-1)\cos(v), 0, -(u^{3}-1)\sin(v)).$$

Agora calculamos o vetor normal em p:

$$\begin{split} N(p) &= \frac{X_u \wedge X_v}{||X_u \wedge X_v||} \\ &= \frac{\det \begin{pmatrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 3u^2 \cos(v) & 1 & 3u^2 \sin(v) \\ -(u^3 - 1) \sin(v) & 0 & (u^3 - 1) \cos(v) \end{pmatrix}}{||X_u \wedge X_v||} \\ &= \frac{1}{\sqrt{(u^3 - 1)\cos(v))^2 + (-3u^2(u^3 - 1))^2 + ((u^3 - 1)\sin(v))^2}} \left((u^3 - 1)\cos(v), -3u^2(u^3 - 1), (u^3 - 1)\sin(v) \right) \\ &= \frac{1}{\sqrt{(u^3 - 1)^2 + (3u^2(u^3 - 1))^2}} \left((u^3 - 1)\cos(v), -3u^2(u^3 - 1), (u^3 - 1)\sin(v) \right) \\ &= \frac{1}{\sqrt{(1 + 9u^4)(u^3 - 1)^2}} \left((u^3 - 1)\cos(v), -3u^2(u^3 - 1), (u^3 - 1)\sin(v) \right) \\ &= \frac{1}{|u^3 - 1|\sqrt{1 + 9u^4}} \left((u^3 - 1)\cos(v), -3u^2(u^3 - 1), (u^3 - 1)\sin(v) \right) \\ &= \frac{\sin(u^3 - 1)}{\sqrt{1 + 9u^4}} \left(\cos(v), -3u^2, \sin(v) \right) \\ &= -\frac{1}{\sqrt{1 + 9u^4}} \left(\cos(v), -3u^2, \sin(v) \right) . \end{split}$$

Finalmente podemos calcular os coeficientes da primeira e segunda formas fundamentais:

$$E(u,v) = \langle X_u, X_u \rangle = 1 + 9u^4$$

$$F(u,v) = \langle X_u, X_v \rangle = 0$$

$$G(u,v) = \langle X_v, X_v \rangle = (u^3 - 1)^2$$

$$e(u,v) = \langle X_{uu}, N \rangle = \frac{-6u}{\sqrt{1 + 9u^4}}$$

$$f(u,v) = \langle X_{uv}, N \rangle = 0$$

$$g(u,v) = \langle X_{vv}, N \rangle = \frac{u^3 - 1}{\sqrt{1 + 9u^4}}.$$

Desse modo,

$$K(p) = \frac{eg - f^2}{EG - F^2} = \frac{\left(\frac{-6u}{\sqrt{1 + 9u^4}}\right) \left(\frac{u^3 - 1}{\sqrt{1 + 9u^4}}\right)}{(1 + 9u^4)(u^3 - 1)^2}$$
$$= \frac{-6u(u^3 - 1)}{(1 + 9u^4)^2(u^3 - 1)^2}$$
$$= -\frac{6u}{(1 + 9u^4)^2(u^3 - 1)}$$

e

$$H(p) = \frac{eG - 2fF + gE}{2(EG - F^2)}$$

$$= \frac{\left(\frac{-6u}{\sqrt{1 + 9u^4}}\right)(u^3 - 1)^2 + \left(\frac{u^3 - 1}{\sqrt{1 + 9u^4}}\right)(1 + 9u^4)}{2(1 + 9u^4)(u^3 - 1)^2}$$

$$= \frac{(1 + 9u^4 - 6u(u^3 - 1))(u^3 - 1)}{2(1 + 9u^4)^{\frac{3}{2}}(u^3 - 1)^2}$$

$$= \frac{1 + 9u^4 - 6u(u^3 - 1)}{2(1 + 9u^4)^{\frac{3}{2}}(u^3 - 1)}.$$

Note que as curvaturas Gaussiana e média dependem somente da variável u, assim podemos plotar os gráficos de H(u) e K(u) para -1 < u < 1, como ilustram as Figuras 4.3 e 4.4, respectivamente.

Figura 4.3.: Função H(u).

Figura 4.4.: Função K(u).

Para 0 < u < 1, temos que K(u,v) > 0, de modo que os pontos p = X(u,v), com 0 < u < 1, são elípticos.

Para -1 < u < 0, temos que K(u,v) < 0, de modo que os pontos p = X(u,v), com -1 < u < 0, são hiperbólicos.

Além disso, K(0, v) = 0 e $H(0, V) = -\frac{1}{2} \neq 0$, de modo que os pontos p = X(0, v) são parabólicos.

Definição 4.3. Sejam $S \subset \mathbb{R}^3$ uma superfície regular e $p \in S$. Os conjuntos $\{(x, y, z) \in \mathbb{R}^3 : \langle (x, y, z) - p, N(p) \rangle > 0\}$ e $\{(x, y, z) \in \mathbb{R}^3 : \langle (x, y, z) - p, N(p) \rangle < 0\}$ são chamados de **semiespaços abertos de origem** T_pS .

Definição 4.4. Sejam $S \subset \mathbb{R}^3$ uma superfície regular e $p \in S$. Os conjuntos $\{(x, y, z) \in \mathbb{R}^3 : \langle (x, y, z) - p, N(p) \rangle \geq 0\}$ e $\{(x, y, z) \in \mathbb{R}^3 : \langle (x, y, z) - p, N(p) \rangle \leq 0\}$ são chamados de **semiespaços fechados de origem** T_pS .

Proposição 4.1. Sejam S = X(U) uma superfície parametrizada regular, $q = (u_0, v_0) \in U$ e p = X(q). Então

- 1. se p é um ponto elíptico, então existe uma vizinhança W de q em U tal que X(W) está contida num dos semiespaços fechados de origem T_pS .
- 2. se p é um ponto hiperbólico, então para qualquer vizinhança W de q em U existem q_1 e q_2 em W tais que $X(q_1)$ e $X(q_2)$ pertencem a semiespaços abertos distintos de origem T_pS .

Demonstração. Sem perda de generalidade, suponha que q=(0,0) e N=N(0,0). Considere $h:U\subset\mathbb{R}^2\to\mathbb{R}$ dada por $h(u,v):=\langle X(u,v)-p,N\rangle$.

Temos que h é contínua e h(0,0) = 0. Tomando-se o polinômio de Taylor de $2^{\underline{a}}$ ordem de X(u,v) ao redor de q = (0,0), temos:

$$X(u,v) = X(0,0) + X_u(0,0)u + X_v(0,0)v + \frac{1}{2} (X_{uu}(0,0)u^2 + 2X_{uv}(0,0)uv + X_{vv}(0,0)v^2) + R(u,v),$$

onde $\lim_{(u,v)\to(0,0)} \frac{R(u,v)}{||(u,v)||^2} = 0$. Assim,

$$h(u, v) = \frac{1}{2} (e(q)u^2 + 2f(q)uv + g(q)v^2) + \widetilde{R}(u, v),$$

onde $\widetilde{R}(u,v):=\langle R(u,v),N(0,0)\rangle$. Ou seja, $h(u,v)=\frac{1}{2}\Pi_p(w)+\widetilde{R}(u,v)$, onde $w:=uX_u+vX_v$.

(1): No caso em que p é um ponto elíptico (K(p) > 0), tem-se

$$0 < \kappa_1(p) \le \kappa_{n,p} \le \kappa_2(p) \tag{4.1}$$

$$\kappa_1(p) \le \kappa_{n,p} \le \kappa_2(p) < 0 \tag{4.2}$$

Se ocorrer (4.1), então $\kappa_{n,p}(w) > 0$, donde $II_p(w) > 0$. Já se ocorrer (4.2), então $\kappa_{n,p}(w) < 0$, donde $II_p(w) < 0$. Ou seja, em qualquer um dos casos temos que $II_p(w) \neq 0$ para todo $w \in T_pS$.

Afirmamos que se $II_p(w) \neq 0$ para todo $w \in T_pS$ então existe uma vizinhança de q na qual o sinal de h(u, v) está determinado pelo sinal de $II_p(w)$.

De fato, note que

$$h(u, v) = \frac{1}{2} II_p(w) + \widetilde{R}(u, v)$$
$$= II_p(w) \left(\frac{1}{2} + \frac{\widetilde{R}(u, v)}{II_p(w)} \right).$$

Como $II_p(w) \neq 0$ para todo $w \in T_pS$ temos que

$$\lim_{(u,v)\to(0,0)} \frac{\widetilde{R}(u,v)}{\mathrm{II}_{p}(w)} = \lim_{(u,v)\to(0,0)} \frac{\langle R(u,v), N(0,0)\rangle \mathrm{I}_{p}(w)}{\mathrm{II}_{p}(w)}$$

$$= \lim_{(u,v)\to(0,0)} \frac{\langle \frac{R(u,v)}{||(u,v)||^{2}}, N(0,0)\rangle ||(u,v)||^{2}}{\mathrm{II}_{p}(w)}$$

$$= \lim_{(u,v)\to(0,0)} \frac{\langle \frac{R(u,v)}{||(u,v)||^{2}}, N(0,0)\rangle \mathrm{I}_{p}(w)}{||(u,v)||^{2}}$$

$$= 0$$

Assim, temos que existe uma vizinhança $\overline{U} \subset U$ de q tal que

$$\left|\frac{\widetilde{R}(u,v)}{\mathrm{II}_p(w)}\right| < \frac{1}{4}.$$

Portanto, para $(u, v) \in \overline{U}$, temos que

$$\operatorname{sign}(h(u,v)) = \operatorname{sign}(\operatorname{II}_p(w)) \operatorname{sign}\left(\frac{1}{2} + \frac{\widetilde{R}(u,v)}{\operatorname{II}_p(w)}\right) = \operatorname{sign}(\operatorname{II}_p(w)).$$

Se ocorrer (4.1), então $\kappa_{n,p}(w) > 0$, donde $\Pi_p(w) > 0$. Pelo Lema de conservação de sinal, existe uma vizinhança W de q em \overline{U} para a qual h(u,v) > 0.

Se ocorrer (4.2), então $\kappa_{n,p}(w) < 0$, donde $II_p(w) < 0$. Pelo Lema de conservação de sinal, existe uma vizinhança \widetilde{W} de q em \overline{U} para a qual h(u,v) < 0.

Como h(0,0)=0, concluímos que existe uma vizinhança de q=(0,0) em que $h(u,v)\geq 0$ ou $h(u,v)\leq 0$.

(2): No caso em que p é um ponto hiperbólico (K(p) < 0), tem-se

$$\kappa_1(p) < 0 < \kappa_2(p).$$

Sejam $\{e_1, e_2\}$ as direções principais correspondentes a $\kappa_1(p)$ e $\kappa_2(p)$, isto é,

$$\begin{cases} \kappa_{n,p}(e_1) = \kappa_1(p) < 0 \\ \kappa_{n,p}(e_2) = \kappa_2(p) > 0 \end{cases}$$

Em coordenadas, sejam $(u_1, v_1), (u_2, v_2) \in U$ tais que $e_1 = dX_q(u_1, v_1)$ e $e_2 = dX_q(u_2, v_2)$. Para qualquer vizinhança W de q existe $\lambda_0 > 0$ suficientemente pequeno tal que

$$\begin{cases} \lambda(u_1, v_1) = (\lambda u_1, \lambda v_1) \in W \\ \lambda(u_2, v_2) = (\lambda u_2, \lambda v_2) \in W \end{cases},$$

para todo $\lambda < \lambda_0$. Além disso, para $\lambda < \lambda_0$, temos que

$$\kappa_{n,p}(dX_q(\lambda u_1, \lambda v_1)) = \kappa_{n,p}(\lambda dX_q(u_1, v_1))$$

$$= \kappa_{n,p}(dX_q(u_1, v_1))$$

$$= \kappa_{n,p}(e_1)$$

$$= \kappa_1(p)$$

$$< 0$$

e

$$\kappa_{\mathbf{n},p}(dX_q(\lambda u_2, \lambda v_2)) = \kappa_{\mathbf{n},p}(\lambda dX_q(u_2, v_2))$$

$$= \kappa_{\mathbf{n},p}(dX_q(u_2, v_2))$$

$$= \kappa_{\mathbf{n},p}(e_2)$$

$$= \kappa_2(p)$$

$$> 0.$$

Assim, tomemos $q_1(\lambda) := (\lambda u_1, \lambda v_1)$ e $q_2(\lambda) := (\lambda u_2, \lambda v_2)$ para todo $\lambda < \lambda_0$. Primeiramente note que para $\lambda < \lambda_0$ temos que

$$h(q_{1}(\lambda)) = \frac{1}{2} \Pi_{p}(dX_{q}(\lambda u_{1}, \lambda v_{1})) + \widetilde{R}(q_{1}(\lambda))$$

$$= \frac{\Pi_{p}(dX_{q}(\lambda u_{1}, \lambda v_{1}))}{\Pi_{p}(dX_{q}(\lambda u_{1}, \lambda v_{1}))} \left(\frac{\Pi_{p}(dX_{q}(\lambda u_{1}, \lambda v_{1}))}{2} + \frac{\widetilde{R}(q_{1}(\lambda))\Pi_{p}(dX_{q}(\lambda u_{1}, \lambda v_{1}))}{\Pi_{p}(dX_{q}(\lambda u_{1}, \lambda v_{1}))} \right)$$

$$= \kappa_{n,p}(dX_{q}(\lambda u_{1}, \lambda v_{1})) \left(\frac{\Pi_{p}(dX_{q}(\lambda u_{1}, \lambda v_{1}))}{2} + \frac{\widetilde{R}(q_{1}(\lambda))}{\kappa_{n,p}(dX_{q}(\lambda u_{1}, \lambda v_{1}))} \right)$$

$$= \kappa_{1}(p) \left(\frac{\lambda^{2}\Pi_{p}(dX_{q}(u_{1}, v_{1}))}{2} + \frac{\widetilde{R}(q_{1}(\lambda))}{\kappa_{1}(p)} \right)$$

$$= \kappa_{1}(p) \left(\frac{\lambda^{2}\Pi_{p}(e_{1})}{2} + \frac{\widetilde{R}(q_{1}(\lambda))}{\kappa_{1}(p)} \right)$$

$$= \kappa_{1}(p) \left(\frac{\lambda^{2}\Pi_{p}(e_{1})}{2} + \frac{\widetilde{R}(q_{1}(\lambda))}{\kappa_{1}(p)} \right).$$

Como $\kappa_1(p) \neq 0$ temos que

$$\lim_{q_1(\lambda) \to (0,0)} \frac{\widetilde{R}(q_1(\lambda))}{\kappa_1(p)} = \lim_{q_1(\lambda) \to (0,0)} \frac{\langle R(q_1(\lambda)), N(0,0) \rangle}{\kappa_1(p)}$$

$$= \lim_{q_1(\lambda) \to (0,0)} \frac{\langle R(q_1(\lambda)), N(0,0) \rangle}{\langle ||q_1(\lambda)||^2} \frac{\langle R(q_1(\lambda)), N(0,0) \rangle}{\kappa_1(p)}$$

$$= 0.$$

Assim, temos que existe $\lambda_1 > 0$ tal que, para todo $\lambda < \lambda_1$, temos que

$$\left| \frac{\widetilde{R}(q_1(\lambda))}{\kappa_1(p)} \right| < \frac{\lambda^2}{4}.$$

Portanto, para $\lambda < \min\{\lambda_1, \lambda_0\}$ temos que

$$\operatorname{sign}(h(q_1(\lambda))) = \operatorname{sign}(\kappa_1(p))\operatorname{sign}\left(\frac{\lambda^2}{2} + \frac{\widetilde{R}(q_1(\lambda))}{\kappa_1(p)}\right) = \operatorname{sign}(\kappa_1(p)).$$

Consequentemente, $h(q_1(\lambda)) < 0$ para todo $\lambda < \min\{\lambda_0, \lambda_1\}$. Por outro lado, para $\lambda < \lambda_0$, temos que

$$\begin{split} h(q_2(\lambda)) &= \frac{1}{2} \Pi_p(dX_q(\lambda u_2, \lambda v_2)) + \widetilde{R}(q_2(\lambda)) \\ &= \frac{\Pi_p(dX_q(\lambda u_2, \lambda v_2))}{\Pi_p(dX_q(\lambda u_2, \lambda v_2))} \left(\frac{\Pi_p(dX_q(\lambda u_2, \lambda v_2))}{2} + \frac{\widetilde{R}(q_2(\lambda))\Pi_p(dX_q(\lambda u_2, \lambda v_2))}{\Pi_p(dX_q(\lambda u_2, \lambda v_2))} \right) \\ &= \kappa_{\mathrm{n},p}(dX_q(\lambda u_2, \lambda v_2)) \left(\frac{\Pi_p(dX_q(\lambda u_2, \lambda v_2))}{2} + \frac{\widetilde{R}(q_2(\lambda))}{\kappa_{\mathrm{n},p}(dX_q(\lambda u_2, \lambda v_2))} \right) \\ &= \kappa_2(p) \left(\frac{\lambda^2 \Pi_p(dX_q(u_2, v_2))}{2} + \frac{\widetilde{R}(q_2(\lambda))}{\kappa_2(p)} \right) \\ &= \kappa_2(p) \left(\frac{\lambda^2 \Pi_p(e_2)}{2} + \frac{\widetilde{R}(q_2(\lambda))}{\kappa_2(p)} \right) \\ &= \kappa_2(p) \left(\frac{\lambda^2}{2} + \frac{\widetilde{R}(q_2(\lambda))}{\kappa_2(p)} \right). \end{split}$$

Como $\kappa_2(p) \neq 0$ temos que

$$\lim_{q_2(\lambda) \to (0,0)} \frac{\widetilde{R}(q_2(\lambda))}{\kappa_2(p)} = \lim_{q_2(\lambda) \to (0,0)} \frac{\langle R(q_2(\lambda)), N(0,0) \rangle}{\kappa_2(p)}$$

$$= \lim_{q_2(\lambda) \to (0,0)} \frac{\langle \frac{R(q_2(\lambda))}{\kappa_2(p)}, N(0,0) \rangle ||q_2(\lambda)||^2}{\kappa_2(p)}$$

$$= 0.$$

Assim, temos que existe $\lambda_2 > 0$ tal que, para todo $\lambda < \lambda_2$, temos que

$$\left| \frac{\widetilde{R}(q_2(\lambda))}{\kappa_2(p)} \right| < \frac{\lambda^2}{4}.$$

Portanto, para $\lambda < \min\{\lambda_2, \lambda_0\}$ temos que

$$\operatorname{sign}(h(q_2(\lambda))) = \operatorname{sign}(\kappa_2(p))\operatorname{sign}\left(\frac{\lambda^2}{2} + \frac{\widetilde{R}(q_2(\lambda))}{\kappa_2(p)}\right) = \operatorname{sign}(\kappa_2(p)).$$

Consequentemente, $h(q_2(\lambda)) > 0$ para todo $\lambda < \min\{\lambda_0, \lambda_2\}$.

Finalmente, seja $r < \min\{\lambda_0, \lambda_1, \lambda_2\}$ e note que para toda vizinhança W de q temos que $q_1(r), q_2(r) \in W$. Além disso, $h(q_1(r)) < 0$ e $h(q_2(r)) > 0$. Portanto, $X(q_1(r))$ e $X(q_2(r))$ estão em semiespaços abertos opostos de origem T_pS .

4.1. Caracterização das superfícies totalmente umbílicas do \mathbb{R}^3

Lema 4.1. Seja S = X(U) uma superfície parametrizada regular. Então $p \in S$ é um ponto umbílico se, e somente se, existe $\lambda \in \mathbb{R}$ tal que

$$\begin{cases} e(q) &= \lambda E(q) \\ f(q) &= \lambda F(q) \\ g(q) &= \lambda G(q) \end{cases}$$

com $q \in U$ tal que X(q) = p. Neste caso, $\kappa_{n,p} \equiv \lambda$ em T_pS .

 $Demonstração. \ (\Longrightarrow)$: Vimos que

$$\begin{pmatrix} e & f \\ f & g \end{pmatrix} = \begin{pmatrix} -d\mathbf{N}_p \end{pmatrix}_{\mathcal{B}} \begin{pmatrix} E & F \\ F & G \end{pmatrix}.$$

Sendo \mathcal{B} a base de direções principais em $p \in S$ relativas às curvaturas principais $\kappa_1(p)$ e $\kappa_2(p)$, temos

$$\begin{pmatrix} e & f \\ f & g \end{pmatrix} = \begin{pmatrix} \kappa_1(p) & 0 \\ 0 & \kappa_2(p) \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix}.$$

Mas, por hipótese p é um ponto umbílico. Logo, se $\lambda = \kappa_1(p) = \kappa_2(p)$, então

$$\begin{pmatrix} e & f \\ f & g \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \lambda E & \lambda F \\ \lambda F & \lambda G \end{pmatrix}.$$

Neste caso, para todo $w = uX_u + vX_v \in T_pS$, temos que

$$\kappa_{n,p}(w) = \frac{II_p(w)}{I_p(w)}$$

$$= \frac{u^2e + 2uvf + v^2g}{u^2E + 2uvF + v^2G}$$

$$= \frac{u^2\lambda E + 2uv\lambda F + v^2\lambda G}{u^2E + 2uvF + v^2G}$$

$$= \lambda$$

 (\Leftarrow) : Temos que

$$(H^{2} - K)(p) = \left(\frac{eG - 2fF + gE}{2(EG - F^{2})}\right)^{2} - \frac{eg - f^{2}}{EG - F^{2}}$$

$$= \left(\frac{\lambda EG - 2\lambda F^{2} + \lambda GE}{2(EG - F^{2})}\right)^{2} - \frac{\lambda^{2}EG - \lambda^{2}F^{2}}{EG - F^{2}}$$

$$= \left(\frac{2\lambda(EG - F^{2})}{2(EG - F^{2})}\right)^{2} - \frac{\lambda^{2}(EG - F^{2})}{EG - F^{2}}$$

$$= \lambda^{2} - \lambda^{2}$$

$$= 0.$$

Portanto, p é um ponto umbílico.

Teorema 4.1. Sejam S = X(U) uma superfície parametrizada regular, $U \subset \mathbb{R}^2$ conexo tal que S é umbílica. Então S está contida num plano ou numa esfera.

Demonstração. Como S é uma superfície totalmente umbílica, então, pelo Lema 4.1, temos que para todo $p \in S$ existe $\lambda(p) \in \mathbb{R}$ tal que

$$\begin{cases} e(u,v) &= \lambda(p)E(u,v) \\ f(u,v) &= \lambda(p)F(u,v) \\ g(u,v) &= \lambda(p)G(u,v) \end{cases}$$

Deste modo, fica definida uma função $\Lambda: U \subset \mathbb{R}^2 \to \mathbb{R}$ dada por $\Lambda(u,v) := \lambda(X(u,v))$. A seguir mostraremos que Λ é constante em U. De fato,

$$-\langle X_u, N_u \rangle = \Lambda(u, v) \langle X_u, X_u \rangle \tag{4.3}$$

$$-\langle X_u, N_v \rangle = \Lambda(u, v) \langle X_u, X_v \rangle \tag{4.4}$$

$$-\langle X_v, N_u \rangle = \Lambda(u, v) \langle X_u, X_v \rangle \tag{4.5}$$

$$-\langle X_v, N_v \rangle = \Lambda(u, v) \langle X_v, X_v \rangle \tag{4.6}$$

De (4.3) e (4.5) temos

$$\begin{cases} \langle N_u + \Lambda(u, v) X_u, X_u \rangle &= 0\\ \langle N_u + \Lambda(u, v) X_u, X_v \rangle &= 0 \end{cases}$$

enquanto que de (4.4) e (4.6) temos

$$\begin{cases} \langle N_v + \Lambda(u, v) X_v, X_u \rangle &= 0\\ \langle N_v + \Lambda(u, v) X_v, X_v \rangle &= 0 \end{cases}.$$

Consequentemente, $N_u + \Lambda(u, v)X_u$ e $N_v + \Lambda(u, v)X_v$ são ortogonais a T_pS . Mas $N_u + \Lambda(u, v)X_u$ e $N_v + \Lambda(u, v)X_v$ pertencem a T_pS . Assim,

$$\begin{cases} N_u + \Lambda(u, v)X_u = 0\\ N_v + \Lambda(u, v)X_v = 0 \end{cases}$$

$$(4.7)$$

Derivando a primeira equação de (4.7) em relação a v e a segunda em relação a u, chegamos a:

$$\begin{cases} N_{uv} + \Lambda_v X_u + \Lambda(u, v) X_{uv} &= 0 \\ N_{vu} + \Lambda_u X_v + \Lambda(u, v) X_{vu} &= 0 \end{cases}.$$

Então $\Lambda_v X_u - \Lambda_u X_v = 0$. Como $\{X_u, X_v\}$ é uma base de $T_p S$, temos que $\Lambda_u = \Lambda_v = 0$ em p. Como U é conexo, temos que Λ é constante em U.

• Caso $\Lambda \equiv 0$:

Em (4.7), obtemos $N_u = N_v = 0$. Como U é conexo, então N(u, v) é constante em U. Logo,

$$\langle X(u,v) - p, N(u,v) \rangle = 0.$$

Portanto, S está contida no plano que passa por p e cujo normal é N.

4. Classificação de pontos de uma superfície

• Caso $\Lambda \equiv \lambda \neq 0$:

Consideremos $Z(u,v):=X(u,v)+\frac{1}{\lambda}N(u,v).$ Temos que

$$\begin{cases} Z_u = X_u + \frac{1}{\lambda} N_u \\ Z_v = X_v + \frac{1}{\lambda} N_v \end{cases}$$

Como $Z_u=Z_v=0$ e U é conexo, temos que $Z(u,v)\equiv C\in\mathbb{R}^3$. Deste modo,

$$||X(u,v) - C|| = ||X(u,v) - Z(u,v)|| = \left| \left| \frac{1}{\lambda} N(u,v) \right| \right| = \frac{1}{|\lambda|} ||N(u,v)|| = \frac{1}{|\lambda|}.$$

Portanto, S está contida na esfera de centro $C \in \mathbb{R}^3$ e raio $\frac{1}{|\lambda|}.$

Curvas especiais sobre uma superfície

5.1. Linhas de curvatura

Definição 5.1. Seja S = X(U) uma superfície parametrizada regular. Uma curva regular $\alpha(t) = X(u(t), v(t))$ sobre S é um **linha de curvatura** se $\alpha'(t)$ for uma direção principal de S em $\alpha(t)$.

Exemplo 5.1 (Esfera). Todas as curvas regulares sobre a esfera de raio r são linhas de curvatura, pois $\kappa_{n,p} \equiv \frac{1}{r}$ para todo ponto p da esfera, o que implica que todas as direções da esfera são direções principais.

Exemplo 5.2 (Plano). Todas as curvas regulares sobre um plano são linhas de curvatura, pois $\kappa_{n,p} \equiv 0$ para todo ponto p do plano, o que implica que todas as direções do plano são direções principais.

Exemplo 5.3 (Cilindro circular). Seja S o cilindro circular de raio r. Como vimos anteriormente

$$-\frac{1}{r} \le \kappa_{\mathbf{n},p}(w) \le 0,$$

para todo $p \in S$ e $w \in T_pS$. Assim, sendo $C \in \mathbb{R}$, as curvas

$$\alpha(t) := X(C, t) = (r\cos(C), r\sin(C), t),$$

е

$$\beta(t) := X(t, C) = (r\cos(t), r\sin(t), C).$$

são linhas de curvatura sobre o cilindro. De fato,

$$\alpha'(t) = (0, 0, 1) = X_v(t, C)$$

e

$$\beta'(t) = (-r\sin(t), r\cos(t), 0) = X_u(t, C).$$

Como X_u e X_v são direções principais do cilindro temos o desejado.

Exercício 5.1. Prove que em superfícies rotacionais, os paralelos e os meridianos são linhas de curvatura.

Proposição 5.1 (EDO das linhas de curvatura). Sejam S = X(U) uma superfície parametrizada regular e $\alpha(t) = X(u(t), v(t))$ uma curva regular sobre S. Então α é uma linha de curvatura de S se, e somente se,

$$\det\begin{pmatrix} (v')^2 & -u'v' & (u')^2 \\ E & F & G \\ e & f & g \end{pmatrix} = 0.$$

Demonstração. Note que $\alpha'(t)$ é uma direção principal se, e somente se, $\alpha'(t) = u'(t)X_u + v'(t)X_v$ for solução do sistema:

$$-d\mathbf{N}_{\alpha(t)}(\alpha'(t)) = \lambda(t)\alpha'(t)$$

$$\begin{pmatrix} \frac{eG - fF}{EG - F^2} & \frac{fG - gF}{EG - F^2} \\ \frac{fE - eF}{EG - F^2} & \frac{gE - fF}{EG - F^2} \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} = \lambda(t) \begin{pmatrix} u' & v' \end{pmatrix}$$

$$\begin{pmatrix} \frac{eG - fF}{EG - F^2} u' + \frac{fG - gF}{EG - F^2} v' & \frac{fE - eF}{EG - F^2} u' + \frac{gE - fF}{EG - F^2} v' \end{pmatrix} = (\lambda(t)u' \quad \lambda(t)v')$$

para alguma função λ . Equivalentemente,

$$\begin{cases} \frac{eG - fF}{EG - F^2}u' + \frac{fG - gF}{EG - F^2}v' &= \lambda(t)u'\\ \frac{fE - eF}{EG - F^2}u' + \frac{gE - fF}{EG - F^2}v' &= \lambda(t)v' \end{cases}$$

Eliminando-se $\lambda(t)$ no sistema acima, obtemos a EDO das linhas de curvatura

• Suponha que $u' \neq 0$ e $v' \neq 0$.

$$\frac{eG - fF}{EG - F^2} + \frac{fG - gF}{EG - F^2} \frac{v'}{u'} = \frac{fE - eF}{EG - F^2} \frac{u'}{v'} + \frac{gE - fF}{EG - F^2}$$

$$(eG - fF) + (fG - gF) \frac{v'}{u'} = (fE - eF) \frac{u'}{v'} + (gE - fF)$$

$$(eG - fF)u'v' + (fG - gF)(v')^2 = (fE - eF)(u')^2 + (gE - fF)u'v'.$$

Ou ainda,

$$(eG - fF)u'v' + (fG - gF)(v')^{2} - (fE - eF)(u')^{2} - (gE - fF)u'v' = 0$$

$$(eF - fE)(u')^{2} + (eG - gE)u'v' + (fG - gF)(v')^{2} = 0$$

$$(eF - fE)(u')^{2} - (gE - eG)u'v' + (fG - gF)(v')^{2} = 0$$

$$-(fE - eF)(u')^{2} - (gE - eG)u'v' - (gF - fG)(v')^{2} = 0$$

$$-((fE - eF)(u')^{2} - (gE - eG)(-u'v') + (gF - fG)(v')^{2}) = 0$$

$$(fE - eF)(u')^{2} - (gE - eG)(-u'v') + (gF - fG)(v')^{2} = 0$$

que pode ser escrito como

$$\det\begin{pmatrix} (v')^2 & -u'v' & (u')^2 \\ E & F & G \\ e & f & g \end{pmatrix} = 0.$$

• Suponha u'=0. Neste caso, note que $v'\neq 0$, pois $\alpha(t)$ é regular. Assim,

$$\frac{fG - gF}{EG - F^2}v' = 0$$
$$(fG - gF)v' = 0$$

5. Curvas especiais sobre uma superfície

$$(fG - gF)(v')^2 = 0$$
$$-(gF - fG)(v')^2 = 0$$
$$(gF - fG)(v')^2 = 0$$

que pode ser rescrito como

$$\det\begin{pmatrix} (v')^2 & -u'v' & (u')^2 \\ E & F & G \\ e & f & g \end{pmatrix} = 0.$$

• Suponha v'=0. Neste caso, note que $u'\neq 0$, pois $\alpha(t)$ é regular. Assim,

$$\frac{fE - eF}{EG - F^2}u' = 0$$
$$(fE - eF)u' = 0$$
$$(fE - eF)(u')^2 = 0$$

que pode ser rescrito como

$$\det\begin{pmatrix} (v')^2 & -u'v' & (u')^2 \\ E & F & G \\ e & f & g \end{pmatrix} = 0.$$

Teorema 5.1 (Existência das linhas de curvatura). Seja S = X(U) uma superfície parametrizada regular. Se $p = X(q) \in S$ for um ponto não umbílico de X então existe uma vizinhança W de $q = (u_0, v_0)$ tal que para todo $\overline{q} \in W$ existem duas linhas de curvatura $\alpha(t)$ e $\beta(t)$ com $\alpha(0) = \beta(0) = \overline{q}$.

Demonstração. Primeiramente, note que p é um ponto umbílico se, e somente se, $H^2(u_0, v_0) - K(u_0, v_0) \neq 0$. Suponha, sem perda de generalidade, que $H^2(u_0, v_0) - K(u_0, v_0) > 0$.

Pela continuidade de $H^2 - K$, temos que existe uma vizinhança W de $q = (u_0, v_0)$ tal que $H^2(u, v) - K(u, v) > 0$ para todo $(u, v) \in W$.

Caso existam linhas de curvatura para os pontos de W, então κ_1 e κ_2 são soluções da equação do segundo grau $x^2-2Hx+K=0$. Mas $\Delta=(2H)^2-4K=4(H^2-K)>0$. Logo, para cada $(u,v)\in W$, a equação $x^2-2Hx+K=0$ tem duas soluções:

$$\begin{cases} \kappa_1(u,v) = H(u,v) - \sqrt{H^2(u,v) - K(u,v)} \\ \kappa_2(u,v) = H(u,v) + \sqrt{H^2(u,v) - K(u,v)} \end{cases}.$$

Note que $\alpha(t) = X(u(t), v(t))$ é uma linha de curvatura se, e somente se, $-d\mathbf{N}_{\alpha(t)}(\alpha'(t)) = \kappa_1(u(t), v(t))\alpha'(t)$ ou $-d\mathbf{N}_{\alpha(t)}(\alpha'(t)) = \kappa_2(u(t), v(t))\alpha'(t)$. Sendo $\alpha(t) = X(u_1(t), v_1(t))$ uma linha de curvatura, tem-se

$$-d\mathbf{N}_{\alpha(t)}(\alpha'(t)) = \kappa_1(u_1(t), v_1(t))\alpha'(t)$$
$$\frac{d}{dt}N(\alpha(t)) = \kappa_1(u_1(t), v_1(t))\alpha'(t)$$

5. Curvas especiais sobre uma superfície

$$\frac{d}{dt}N(X(u_1(t), v_1(t))) = \kappa_1(u_1(t), v_1(t))\alpha'(t)
(N \circ X)_{u_1}(u_1)' + (N \circ X)_{v_1}(v_1)' = \kappa_1(u_1(t), v_1(t))((u_1)'X_{u_1} + (v_1)'X_{v_1})
N_{u_1}(u_1)' + N_{v_1}(v_1)' = \kappa_1(u_1(t), v_1(t))((u_1)'X_{u_1} + (v_1)'X_{v_1})$$
(5.1)

Fazendo-se o produto interno de (5.1) com X_{u_1} obtemos

$$\langle N_{u_1}, X_{u_1} \rangle (u_1)' + \langle N_{v_1}, X_{u_1} \rangle (v_1)' = \kappa_1(u_1(t), v_1(t)) ((u_1)' \langle X_{u_1}, X_{u_1} \rangle + (v_1)' \langle X_{v_1}, X_{u_1} \rangle) -e(u_1)' - f(v_1)' = \kappa_1(u_1(t), v_1(t)) ((u_1)'E + (v_1)'F) (u_1)' (e - \kappa_1 E) + (v_1)' (f - \kappa_1 F) = 0.$$

E fazendo-se o produto interno de (5.1) com X_{v_1} obtemos

$$\langle N_{u_1}, X_{v_1} \rangle (u_1)' + \langle N_{v_1}, X_{v_1} \rangle (v_1)' = \kappa_1(u_1(t), v_1(t)) \left((u_1)' \langle X_{u_1}, X_{v_1} \rangle + (v_1)' \langle X_{v_1}, X_{v_1} \rangle \right) - f(u_1)' - g(v_1)' = \kappa_1(u_1(t), v_1(t)) \left((u_1)' F + (v_1)' G \right) (u_1)' \left(f - \kappa_1 F \right) + (v_1)' \left(g - \kappa_1 G \right) = 0.$$

Donde obtemos que $\alpha(t)$ é uma linha de curvatura se, e somente se, o sistema homogêneo

$$\begin{cases} (u_1)'(e - \kappa_1 E) + (v_1)'(f - \kappa_1 F) &= 0\\ (u_1)'(f - \kappa_1 F) + (v_1)'(g - \kappa_1 G) &= 0 \end{cases}$$
 (5.2)

tiver solução. Mas como

$$\det \begin{pmatrix} e - \kappa_1 E & f - \kappa_1 F \\ f - \kappa_1 F & g - \kappa_1 G \end{pmatrix} = (e - \kappa_1 E)(g - \kappa_1 G) - (f - \kappa_1 F)(f - \kappa_1 F)$$

$$= eg - \kappa_1 eG - \kappa_1 Eg + (\kappa_1)^2 EG - (f^2 - 2\kappa_1 fF + (\kappa_1)^2 F^2)$$

$$= eg - f^2 - \kappa_1 (eG + Eg - 2fF) + (\kappa_1)^2 (EG - F^2)$$

$$= (EG - F^2) ((\kappa_1)^2 - 2H\kappa_1 + K)$$

$$= 0.$$

O sistema (5.2) tem solução não nula, que é solução de

$$(u_1)'(e - \kappa_1 E) + (v_1)'(f - \kappa_1 F) = 0.$$

Pelo Teorema de Existência e Unicidade de EDO's existe uma única solução não-nula $(u_1(t), v_1(t))$ com a condição inicial $(u_0, v_0) = q$.

De modo análogo, obtemos outra linha de curvatura $\beta(t) = X(u_2(t), v_2(t))$ usando-se que $-d\mathbf{N}_{\beta(t)}(\beta'(t)) = \kappa_2(u_2(t), v_2(t))\beta'(t)$.

Proposição 5.2 (Olinde Rodrigues). Sejam S = X(U) uma superfície parametrizada regular e $\alpha(t) = X(u(t), v(t)), t \in I$, curva regular sobre S. Então $\alpha(t)$ é uma linha de curvatura se, e somente se, existe uma função $\lambda : I \subset \mathbb{R} \to \mathbb{R}$ tal que

$$N'(t) + \lambda(t)\alpha'(t) = 0,$$

em que $N(t) := \frac{X_u(u(t),v(t)) \wedge X_v(u(t),v(t))}{\|X_u(u(t),v(t)) \wedge X_v(u(t),v(t))\|}$. Neste caso, $\kappa_{n,\alpha(t)}(\alpha'(t)) = \lambda(t)$, para todo $t \in I$.

Demonstração. Seja $w(t) := N'(t) + \kappa_{n,\alpha(t)}(\alpha'(t))\alpha'(t)$ para todo $t \in I$. Como $N'(t), \alpha'(t) \in T_{\alpha(t)}S$ então $w(t) \in T_{\alpha(t)}S$. Além disso,

$$\langle w(t), X_u(u(t), v(t)) \rangle = \langle N_u u' + N_v v' + \kappa_{\mathbf{n}, \alpha(t)}(\alpha'(t)) (u' X_u + v' X_v), X_u \rangle$$

$$= -eu' - fv' + \kappa_{\mathbf{n}, \alpha(t)}(\alpha'(t)) Eu' + \kappa_{\mathbf{n}, \alpha(t)}(\alpha'(t)) Fv'$$

$$= - \left(u' (e - \kappa_{\mathbf{n}, \alpha(t)}(\alpha'(t)) E) + v' (f - \kappa_{\mathbf{n}, \alpha(t)}(\alpha'(t)) F) \right).$$

De modo análogo,

$$\langle w(t), X_{v}(u(t), v(t)) \rangle = \langle N_{u}u' + N_{v}v' + \kappa_{\mathbf{n}, \alpha(t)}(\alpha'(t)) (u'X_{u} + v'X_{v}), X_{v} \rangle$$

$$= -fu' - gv' + \kappa_{\mathbf{n}, \alpha(t)}(\alpha'(t))Fu' + \kappa_{\mathbf{n}, \alpha(t)}(\alpha'(t))Gv'$$

$$= -\left(u'(g - \kappa_{\mathbf{n}, \alpha(t)}(\alpha'(t))F) + v'(g - \kappa_{\mathbf{n}, \alpha(t)}(\alpha'(t))G)\right).$$

Assim, como α é uma linha de curvatura se, e somente se,

$$\begin{cases} u'(e - \kappa_{\mathbf{n},\alpha(t)}(\alpha'(t))E) + v'(f - \kappa_{\mathbf{n},\alpha(t)}(\alpha'(t))F) &= 0\\ u'(g - \kappa_{\mathbf{n},\alpha(t)}(\alpha'(t))F) + v'(g - \kappa_{\mathbf{n},\alpha(t)}(\alpha'(t))G) &= 0 \end{cases}.$$

Temos que $\alpha(t)$ é uma linha de curvatura se, e somente se, w(t) = 0, isto é,

$$N'(t) + \kappa_{\mathbf{n},\alpha(t)}(\alpha'(t))\alpha'(t) = 0.$$

5.2. Linhas assintóticas

Definição 5.2. Seja S = X(U) uma superfície parametrizada regular. Uma curva regular $\alpha(t) = X(u(t), v(t)), t \in I$, é uma *linha assintótica de* S se $\kappa_{n,\alpha(t)}(\alpha'(t)) = 0$ para todo $t \in I$. Neste caso, dizemos que $\alpha'(t)$ é uma direção assintótica.

Proposição 5.3. Sejam S = X(U) uma superfície parametrizada regular e $p \in S$. Então

- 1. Se p é um ponto elíptico então não existem direções assintóticas de S em p.
- 2. Se p é um ponto hiperbólico então existem duas direções assintóticas de S em p.
- 3. Se p é um ponto parabólico então existe uma direção assintótica de S em p, que também é uma direção principal.
- 4. Se p é um ponto planar então todas as direções são assintóticas.

Demonstração. (1): Como K(p) > 0 então $\kappa_{n,p} \neq 0$, de modo que não existem direções assintóticas de S em p.

(2): Como K(p) < 0 então $\kappa_1(p) < 0 < \kappa_2(p)$. De modo que existe uma direção $v \in T_pS$ para a qual $\kappa_{n,p}(v) = 0$. Como p é não-umbílico, podemos considerar $\{e_1, e_2\}$ uma base de direções principais de S em p. Sendo θ a medida do ângulo entre v e e_1 , temos que $0 = \kappa_{n,p}(v) = \kappa_1(p)\cos^2(\theta) + \kappa_2(p)\sin^2(\theta)$. Donde segue

$$\kappa_1(p)\cos^2(\theta) + \kappa_2(p)\sin^2(\theta) = 0$$

$$\kappa_1(p)\cos^2(\theta) + \kappa_2(p)\left(1 - \cos^2(\theta)\right) = 0$$

5. Curvas especiais sobre uma superfície

$$\cos^{2}(\theta) \left(\kappa_{1}(p) - \kappa_{2}(p)\right) = -\kappa_{2}(p)$$

$$\cos^{2}(\theta) = \frac{\kappa_{2}(p)}{\kappa_{2}(p) - \kappa_{1}(p)}$$

$$\cos(\theta) = \pm \sqrt{\frac{\kappa_{2}(p)}{\kappa_{2}(p) - \kappa_{1}(p)}}.$$

De modo que existem duas direções assintóticas de S em p.

(3): Como K(p) = 0 podemos supor que $\kappa_1(p) = 0$ e $\kappa_2(p) \neq 0$. Neste caso, como p é não-umbílico, podemos considerar $\{e_1, e_2\}$ uma base de direções principais de S em p. Temos que

$$\kappa_{n,p}(e_1) = \kappa_1(p)\cos^2(0) + \kappa_2(p)\sin^2(0) = \kappa_1(p) = 0.$$

Portanto e_1 é uma direção assintótica de S em p que também é uma direção principal. (4): Trivial.

Exemplo 5.4. Toda reta contida numa superfície é uma linha assintótica.

Proposição 5.4 (EDO das linhas assintóticas). Sejam S = X(U) uma superfície parametrizada regular e $\alpha(t) = X(u(t), v(t))$ uma curva regular sobre S. Então $\alpha(t)$ é uma curva assintótica se, e somente se,

$$(u')^{2}e + 2u'v'f + (v')^{2}g = 0.$$

Demonstração. Note que $\alpha(t)$ é uma linha assintótica se, e somente se,

$$\kappa_{\mathbf{n},\alpha(t)}(\alpha'(t)) = 0$$

$$\frac{\mathrm{II}_{\alpha(t)}(\alpha'(t))}{\mathrm{I}_{\alpha(t)}(\alpha'(t))} = 0$$

$$\mathrm{II}_{\alpha(t)}(\alpha'(t)) = 0$$

$$(u')^2 e + 2u'v'f + (v')^2 g = 0.$$

Proposição 5.5 (Existência das linhas assintóticas). Sejam S = X(U) uma superfície parametrizada regular e $p = X(u_0, v_0)$ um ponto hiperbólico. Então existe uma vizinhança W de (u_0, v_0) tal que por qualquer ponto X(q), $q \in W$, passam duas linhas assintóticas.

Demonstração. Como $p = X(u_0, v_0)$ é um ponto hiperbólico temos que $K(u_0, v_0) < 0$. Pela continuidade de K, existe uma vizinhança W de (u_0, v_0) tal que

$$K(u,v) = \frac{e(u,v)g(u,v) - f^2(u,v)}{E(u,v)G(u,v) - F^2(u,v)} < 0,$$

para todo $(u, v) \in W$. Assim,

$$e(u, v)q(u, v) - f^{2}(u, v) < 0,$$

para todo $(u, v) \in W$.

• Suponha que $g(u, v) \neq 0$ para todo $(u, v) \in W$: Neste caso, podemos resolver a equação

$$(u')^2 e + 2u'v'f + (v')^2 g = 0$$

como equação do segundo grau em v', cujo discriminante é

$$\Delta = (2u'f)^2 - 4g(u')^2 e = 4(u')^2 (f^2 - eg) > 0,$$

para todo $(u, v) \in W$. Assim, as linhas assintóticas são dadas por:

$$v' = \frac{-2u'f \pm \sqrt{4(u')^2(f^2 - eg)}}{2g} = \frac{u'\left(-f \pm \sqrt{f^2 - eg}\right)}{g}.$$

• Suponha que g(u, v) = 0 para todo $(u, v) \in W$: Neste caso, podemos resolver a equação

$$(u')^2 e + 2u'v'f = 0$$

 $u'(u'e + 2fv') = 0.$

Donde segue-se que u' = 0 ou u'e + 2fv' = 0. Para a última temos duas possibilidades:

$$\begin{cases} v' = 0, & \text{se } e = 0, \\ u' = \frac{-2f}{e}v' & \text{se } e \neq 0. \end{cases}$$

Assim, as linhas assintóticas são dadas por:

$$\begin{cases} u' = 0 \text{ e } v' = 0, \\ u' = 0 \text{ e } u' = \frac{-2f}{e}v' \end{cases}$$

5.3. Geodésicas

Definição 5.3. Seja S = X(U) uma superfície parametrizada regular. Uma curva regular $\alpha(t) = X(u(t), v(t)), t \in I$, é uma **geodésica de** S **em** p se $\alpha''(t)$ for normal à superfície S em $\alpha(t)$ para todo $t \in I$, isto é, $\alpha''(t) \perp T_{\alpha(t)}S$, para todo $t \in I$.

Exemplo 5.5 (Esfera). Todo círculo máximo da esfera é uma geodésica, pois $\overrightarrow{n}(t) = \pm N(\alpha(t))$.

Exemplo 5.6 (Plano). Toda reta contida em um plano é uma geodésica, pois se $\alpha(t) = \overrightarrow{a}t + \overrightarrow{b}$ for uma parametrização para a reta, temos que $\alpha''(t) = 0$.

Observação 5.1. Se $\alpha(t)$ é uma geodésica de S então

$$\frac{d}{dt}\langle \alpha'(t), \alpha'(t) \rangle = 2\langle \alpha''(t), \alpha'(t) \rangle = 0.$$

Donde segue que $||\alpha'(t)||$ é constante.

Observação 5.2. Se $\alpha(s)$ é uma geodésica de S e está p.p.c.a. então $\alpha''(s) = \kappa(s) \overrightarrow{n}(s)$, de modo que $\alpha''(s) \parallel N(\alpha(s))$.

Assim, $\overrightarrow{n}(s) = \pm N(\alpha(s))$ e

$$\pm dN_{\alpha(s)}(\alpha'(s)) = \pm \frac{d}{ds}N(\alpha(s)) = \frac{d}{ds}\overrightarrow{n}(s) = -\kappa(s)\overrightarrow{t}(s) - \tau(s)\overrightarrow{b}(s).$$

Considere a base $\mathcal{B} = \{X_u, X_v, N\}$ de \mathbb{R}^3 . Queremos $(\alpha''(t))_{\mathcal{B}}$. Seja

$$\alpha(t) := X(u(t), v(t)).$$

Assim,

$$\alpha'(t) = u'(t)X_u(u(t), v(t)) + v'(t)X_v(u(t), v(t))$$

e

$$\alpha''(t) = u''X_u + u'(X_{uu}u' + X_{uv}v') + v''X_v + v'(X_{vu}u' + X_{vv}v')$$

= $u''X_u + v''X_v + (u')^2X_{uu} + 2u'v'X_{uv} + (v')^2X_{vv}$.

Vamos escrever X_{uu}, X_{uv} e X_{vv} na base \mathcal{B} da seguinte maneira:

$$X_{uu} = \Gamma_{11}^{1} X_u + \Gamma_{11}^{2} X_v + eN \tag{5.3}$$

$$X_{uv} = \Gamma_{12}^{1} X_u + \Gamma_{12}^{2} X_v + fN \tag{5.4}$$

$$X_{vv} = \Gamma_{22}^{1} X_u + \Gamma_{22}^{2} X_v + gN \tag{5.5}$$

Queremos encontrar $\Gamma_{ij}^{\ k}$, para i, j, k = 1, 2. Para isso, note que

$$\langle X_u, X_u \rangle = E \implies \langle X_{uu}, X_u \rangle = \frac{E_u}{2}$$
 (5.6)

$$\langle X_u, X_u \rangle = E \implies \langle X_{uv}, X_u \rangle = \frac{E_v}{2}$$
 (5.7)

$$\langle X_v, X_v \rangle = G \implies \langle X_{vv}, X_v \rangle = \frac{G_v}{2}$$
 (5.8)

$$\langle X_v, X_v \rangle = G \implies \langle X_{vu}, X_v \rangle = \frac{G_u}{2}$$
 (5.9)

$$\langle X_u, X_v \rangle = F \implies \langle X_{uu}, X_v \rangle + \langle X_u, X_{vu} \rangle = F_u \implies \langle X_{uu}, X_v \rangle = F_u - \frac{E_v}{2}$$
 (5.10)

$$\langle X_u, X_v \rangle = F \implies \langle X_{uv}, X_v \rangle + \langle X_u, X_{vv} \rangle = F_v \implies \langle X_{vv}, X_u \rangle = F_v - \frac{G_u}{2}.$$
 (5.11)

De (5.3), (5.6) e (5.10) obtemos o seguinte sistema para as incógnitas Γ_{11}^{1} e Γ_{11}^{2} :

$$\begin{cases} \Gamma_{11}^{1}E + \Gamma_{11}^{2}F = \frac{E_{u}}{2} \\ \Gamma_{11}^{1}F + \Gamma_{11}^{2}G = F_{u} - \frac{E_{v}}{2} \end{cases}.$$

Donde obtemos que

$$\Gamma_{11}^{1} = \frac{GE_u - 2FF_u + FE_v}{2(EG - F^2)}$$
$$\Gamma_{11}^{2} = \frac{2EF_u - EE_v - FE_u}{2(EG - F^2)}$$

De (5.4), (5.7) e (5.9) obtemos o seguinte sistema para as incógnitas Γ_{12}^{1} e Γ_{12}^{2} :

$$\begin{cases} \Gamma_{12}{}^{1}E + \Gamma_{12}{}^{2}F &= \frac{E_{v}}{2} \\ \Gamma_{12}{}^{1}F + \Gamma_{12}{}^{2}G &= \frac{G_{u}}{2} \end{cases}.$$

Donde obtemos que

$$\Gamma_{12}{}^{1} = \frac{GE_v - FG_u}{2(EG - F^2)}$$

$$\Gamma_{12}^2 = \frac{EG_u - FE_v}{2(EG - F^2)}$$

De (5.5), (5.8) e (5.11) obtemos o seguinte sistema para as incógnitas Γ_{22}^{1} e Γ_{22}^{2} :

$$\begin{cases} \Gamma_{22}^{1}E + \Gamma_{22}^{2}F &= F_{v} - \frac{G_{u}}{2} \\ \Gamma_{22}^{1}F + \Gamma_{22}^{2}G &= \frac{G_{v}}{2} \end{cases}.$$

Donde obtemos que

$$\Gamma_{22}^{1} = \frac{2GF_v - GG_u - FG_v}{2(EG - F^2)}$$

$$\Gamma_{22}^{2} = \frac{EG_v - 2FF_v + FG_u}{2(EG - F^2)}.$$

Proposição 5.6 (EDO das geodésicas). Sejam S = X(U) uma superfície parametrizada regular e $\alpha(t) = X(u(t), v(t))$ uma curva regulara sobre S. Então $\alpha(t)$ é uma geodésica de S se, e somente se,

$$\begin{cases} u'' + \Gamma_{11}^{1}(u')^2 + 2\Gamma_{12}^{1}u'v' + \Gamma_{22}^{1}(v')^2 &= 0\\ v'' + \Gamma_{11}^{2}(u')^2 + 2\Gamma_{12}^{2}u'v' + \Gamma_{22}^{2}(v')^2 &= 0 \end{cases}$$
 (5.12)

Demonstração. Note que

$$\alpha''(t) = u''X_u + v''X_v + (u')^2 X_{uu} + 2u'v'X_{uv} + (v')^2 X_{vv}$$

$$= u''X_u + v''X_v + (u')^2 \left(\Gamma_{11}^1 X_u + \Gamma_{11}^2 X_v + eN\right)$$

$$+ 2u'v' \left(\Gamma_{12}^1 X_u + \Gamma_{12}^2 X_v + fN\right) + (v')^2 \left(\Gamma_{22}^1 X_u + \Gamma_{22}^2 X_v + gN\right)$$

$$= \left(u'' + \Gamma_{11}^1 (u')^2 + 2\Gamma_{12}^1 u'v' + \Gamma_{22}^1 (v')^2\right) X_u$$

$$+ \left(v'' + \Gamma_{11}^2 (u')^2 + 2\Gamma_{12}^2 u'v' + \Gamma_{22}^2 (v')^2\right) X_v$$

$$+ \left((u')^2 e + 2u'v'f + (v')^2 g\right) N.$$

Assim, $\alpha(t)$ é uma geodésica se, e somente se, $\alpha''(t) \in T_{\alpha(t)}S$, isto é, $\langle \alpha''(t), X_u \rangle = 0$ e $\langle \alpha''(t), X_v \rangle = 0$. Donde temos que $\alpha''(t)$ é uma geodésica se, e somente se,

$$\begin{cases} u'' + \Gamma_{11}^{1}(u')^2 + 2\Gamma_{12}^{1}u'v' + \Gamma_{22}^{1}(v')^2 &= 0 \\ v'' + \Gamma_{11}^{2}(u')^2 + 2\Gamma_{12}^{2}u'v' + \Gamma_{22}^{2}(v')^2 &= 0 \end{cases}.$$

Corolário 5.1. Sejam S = X(U) e $\overline{S} = \overline{X}(U)$ duas superfícies parametrizadas regulares e isométricas (isto é, X e \overline{X} injetoras com $E = \overline{E}$, $F = \overline{F}$ e $G = \overline{G}$ em U) e $\phi := \overline{X} \circ X^{-1}$ isometria então α é uma geodésica de S se, e somente se, $\phi(\alpha)$ é uma geodésica de \overline{S} .

Demonstração. Observe que os símbolos de Christoffel $\Gamma_{ij}^{\ k}$, i, j, k = 1, 2, são intrínsecos, isto é, dependem somente dos coeficientes da primeira forma fundamental.

Observação 5.3 (Cilindro circular). O cilindro circular é isométrico à faixa do plano dada por $\overline{X}(u,v) = (u,v,0), \ 0 < u < 2\pi \ e \ v \in \mathbb{R}$.

Proposição 5.7 (Existência de geodésicas). Seja S = X(U) uma superfície parametrizada regular. Para todo $p \in S$ e todo $w \in T_pS$ não nula existe uma única geodésica $\alpha(t) = X(u(t), v(t))$ tal que $\alpha(0) = p$ 3 $\alpha'(0) = w$.

Demonstração. Basta aplicar o Teorema de Existência e Unicidade de EDO's com as condições iniciais $\alpha(0) = p$ e $\alpha'(0) = w$ para o sistema (5.12).

Exemplo 5.7 (Cilindro circular). Seja S o cilindro circular de raio r. Como vimos anteriormente,

$$E(u, v) = r^{2}$$

$$F(u, v) = 0$$

$$G(u, v) = 1$$

Donde temos que $\Gamma_{ij}^{\ k} \equiv 0$ para todo i, j, k = 1, 2. Portanto, o sistema (5.12) é dado por

$$\begin{cases} u''(t) &= 0 \\ v''(t) &= 0 \end{cases}.$$

Cujas soluções são

$$\begin{cases} u(t) = at + b \\ v(t) = ct + d \end{cases}.$$

Assim, as geodésicas do cilindro são dadas por

$$\alpha(t) = X(u(t), v(t)) = (r\cos(at+b), r\sin(at+b), ct+d).$$

- Suponha que $a \neq 0$ e $c \neq 0$. Neste caso $\alpha(t)$ é uma hélice.
- Suponha que a = 0 e $c \neq 0$. Neste caso $\alpha(t)$ é uma reta.
- Suponha que $a \neq 0$ e c = 0. Neste caso $\alpha(t)$ é uma circunferência.