1. Determine if the survival rate is associated to passenger class

From the mean survival rate of each class and the bar graph, it appears that class 1 passengers had higher survival rate than class 2 passengers, which had higher survival rate than class 3 passengers.

 H_0 = Survival rate is independent from passenger class H_a = Survival rate is associated with passenger class

```
X<sup>2</sup>: 102.89
p-value: 4.55e-23
DoF: 2 -> Decision point = 5.99
```

 X^2 of 102.89 is greater than of decision point for DoF of 2 (5.99); therefore, H_0 is rejected, and that survival rate is dependent on passenger class.

2. Determine if the survival rate is associated to gender

Sex	
female	0.742038
male	0.188908

The mean survival rate of female almost quadrupled that of male survival rate according to both the table and the bar graph.

 H_0 = Survival rate is independent from gender H_a = Survival rate is associated with gender

```
X<sup>2</sup>: 260.72
p-value: 1.20e-58
DoF: 1 -> Decision point = 3.84
```

As X^2 of 260.72 is much greater than of decision point for DoF of 1 (3.84); therefore, H_0 is rejected, and that survival rate is significantly dependent on the gender.

3. Determine the survival rate is associated to age

AgeGroup	
adults	0.402353
children	0.576923
seniors	0.090909
youth	0.365000

Higher survival rate is observed in children followed by adults, youth, and seniors according to both the table and the bar graph.

 H_0 = Survival rate is independent of age H_a = Survival rate is associated with age

```
X<sup>2</sup>: 15.39
p-value: 1.51e-3
DoF: 3 -> Decision point = 7.82
```

 X^2 of 15.39 is greater than the decision point of 7.82 for DoF of 3; therefore, H_0 is rejected. Survival rate is associated with age.