Convolutional Neural Net.

Seyoung Yun

 http://cs231n.stanford.edu/slides/2017/ cs231n_2017_lecture5.pdf

 http://www.di.ens.fr/~lelarge/dldiy/slides/lecture_6/ index.html#80

Why we need CNN?

• With a single neuron?

Why we need CNN?

With FNN?

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

32x32x3 image -> preserve spatial structure

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

What is Convolution?

Convolution

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n).$$

Cross-correlation

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n).$$

Edge Detection

Edge Detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

*

Edge Detection

1	0	-1
1	0	-1
1	0	-1

Vertical

Horizontal

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

*

Padding

Stride

Example

Types of layer in a convolutional network

- Convolution
- Pooling
- Fully connected

Max pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

CNN

