Esercizi di Relativitá Generale: II gruppo

Consegnacon file pdf o da latex o da scanning

Consideriamo la sfera bidimensionale S^2 di raggio R con coordinate (θ, ϕ) dove $0 \le \theta \le \pi$ è la latitudine e $0 \le \phi \le 2\pi$ è la longitudine. Calcolare i seguenti punti.

• Calcolare la relazione fra (θ, ϕ) e le coordinate z_N, z_S dell'atlante $\{(U_N, z_N), (U_S, z_S)\}$. La coordinata z_N è definita dalla proiezione stereografica dal polo nord sul piano complesso che interseca la sfera sull'equatore $\theta = \frac{\pi}{2}$. Simil-

mente per z_S .

- La relazione fra z_N e z_S in $U_N \cap U_S$ im modo che sia olomorfa.
- Le relazioni fra z_N, z_S e w_N, w_S . w_N è definita tramite la proiezione stereografica dal polo nord al piano tangente alla sfera al polo sud e similmente per w_S .
- Consideriamo i generatori delle rotazioni infinitesime (che sono delle sezioni del fibrato tangente e dei vettori di Killing quando si definisca la metrica naturale)

$$L_z = -i\frac{\partial}{\partial \phi}$$

$$L_{\pm} = \pm e^{\pm i\phi} \left(\frac{\partial}{\partial \theta} \pm i \cot \theta \, \frac{\partial}{\partial \phi} \right) \tag{1}$$

Riscriverli usando le coordinate z.

• Verificare l'algebra

$$[L_+, L_-] = 2L_z$$
 (2)

nella coordinate z.

 \bullet Verificare che la autofunzione generale avente la terza componente del momento angolare pari a m è

$$F_m(z_N, \bar{z}_N) = z_N^m f(z_N \bar{z}_N), \quad L_z F_m = m F_m$$
(3)

per un'arbitraria f funzione di $\rho=z_N\bar{z}_N.$

- Calcolare la forma di f che corrisponde a Y_l^l imponendo che $L_+Y_l^l=0.$
- Calcolare $Y_{l-1}^l = L_- Y_.^l$
- Calcolare le precedenti funzioni nelle coordinate z_S .