Lecture 16: Clustering

Machine Learning, Summer Term 2019

Michael Tangermann Frank Hutter Marius Lindauer

University of Freiburg

Lecture Overview

Motivation

2 Criteria for Clustering

3 K-Means

DBSCAN

What is Cluster Analysis?

Also called: clustering, segmentation analysis, taxonomy analysis, automatic classification, numerical taxonomy, botryology, typological analysis, community detection, ...

Unsupervised task:

Group objects such that objects within a group are more similiar/related to each other (in some sense) than to objects of another group.

What is Cluster Analysis?

Also called: clustering, segmentation analysis, taxonomy analysis, automatic classification, numerical taxonomy, botryology, typological analysis, community detection, ...

Unsupervised task:

Group objects such that objects within a group are more similar/related to each other (in some sense) than to objects of another group.

ML Design Cycle

Cluster analysis is an unsupervised learning task

ullet Ground truth about clusters is not provided o evaluation is tricky!

Given:

- N high dimensional data points $\mathbf{x}_i \in \mathbb{R}^D$ with $i=1\dots N$.
- ullet Data is collected in matrix $\mathbf{X} \in \mathbb{R}^{N imes D}$

Applications

preprocessing systems

preprocessing discrete

onthes detection

object detection, squedation

Spike sorting

Example Applications (I)

- Medical imaging (fMRI, CT, PET): differentiate between different types of tissues, find tissue boundaries
- Biology: determine communities of organisms in space and time, compute data-driven phylogenetic trees
- Genetics: group DNA sequences into gene families
- Biochemistry / chemistry / pharmacology: group compounds according to their reaction mechanism
- Market research: detect clusters of <u>customers</u> with <u>similar behavior</u>, find market segments
- Social networks: recognize communities
- Search engines: Post-processing of search results into groups of hits that refer to vastly different topics

Example Applications (II)

- Image segmentation: border detection, track objects
- Anomaly detection: identify outliers in data streams, network attacks, misbehaving software, sensor failures (robotics, production lines), predictive maintenance
- Finance: find stock clusters of similar behaviour
- Text analysis: clustering of documents into topics
- ...

Lecture Overview

Motivation

2 Criteria for Clustering

3 K-Means

DBSCAN

How could Clusters be Determined?

Which metrics might be used to define clusters?

How could Clusters be Determined?

Which metrics might be used to define clusters?

Zoo of clustering methods available, that exploit e.g.:

- distance/similarity function (between cluster members, between members of different clusters)
- <u>connectivity structure</u> using distances → single/avg/max linkage clustering, graph-based → clique
- centroid + neighborhood
- densities
- expected distributions

Lecture Overview

Motivation

2 Criteria for Clustering

3 K-Means

4 DBSCAN

K-Means Clustering (Steinhaus, 1957)

Find set $C = C_1, ..., C_k$ of k clusters represented by cluster centroids μ_k such, that the clusters have equal variance.

→ Minimize the *inertia* or *within-cluster sum-of-squares* criterion:

$$\underset{C}{\operatorname{argmin}} \sum_{i=1}^{k} \underbrace{\sum_{\mathbf{x} \in C_i} ||\mathbf{x} - \mu_i||^2}_{($$

Observations:

- ullet Cluster centroids μ_j do not need to be points of the training data sets
- Unfortunately NP-hard problem!
- Clustering can be represented by Voronoi tesselation

K-Means Clustering

Practical solution by heuristic approximation (e.g. <u>Lloyd's</u> algorithm (1957, 1982), similar to expectation-maximization): Initialize k data points as cluster centroids.

Then iterate these two steps until convergence of the centroids:

Assign each data point to its nearest centroid (\rightarrow approximations necessary for high dimensions!)

 $m{\varnothing}$ Create k new centroids by taking the mean value of all of the eta data points assigned to each novel centroid

(o approximations necessary for many data points)

K-Means Clustering

Problematic data sets for k-means:

K-Means Clustering

Pros:

- conceptually simple algorithm
- mini-batches and different kind of initialization strategies are available $(\rightarrow k\text{-means}++)$
- scales to many data points (if approximations are utilized)

Cons:

- sensitive to initialization of centroids
- can not model noise or outliers
- concave cluster shapes are problematic
- can not deal with uneven variance between clusters
- ullet number k of clusters needs to be provided

Lecture Overview

Motivation

2 Criteria for Clustering

3 K-Means

DBSCAN

DBSCAN (Ester et al., 1996)

Key idea: DBSCAN assumes that clusters are areas of high density, which are separated by areas of lower density.

DBSCAN (Ester et al., 1996)

Key idea: DBSCAN assumes that clusters are areas of high density, which are separated by areas of lower density.

A cluster is formed by two types of data points:

- "core samples" are data points in areas of high density (defined by at least min samples within an eps-neighborhood)
- "non-core samples" are data points which are close to a core sample but that are not core samples themselves (e.g. at the fringes of a cluster)

Samples which have a distance of more than eps to a core sample are considered outliers.

DBSCAN

DBSCAN creates clusters by sequentially considering the training data points.

Pros:

- DBSCAN is fast and deterministic for a fixed sequence of data points.
- Number of clusters is determined automatically.
- Hyperparameter min samples can express prior knowledge about noise.
- Different distance metrics can be utilized
- Hierarchical variant HDBSCAN available

Cons:

- Varying the sequence of data points processed can lead to different clusterings.
- Hyperparameter eps is critical, no good default!

Comparison of K-Means and DBSCAN

A few Clustering Algorithms on Toy Data

https://scikit-learn.org/stable/modules/clustering.html

Criteria for the Choice of Clustering Algorithms

Does the algorithm...

- expects each cluster to follow a specific distribution? (e.g. Gaussian)?
- considers density of data points?
- deal well with noisy data / high-dimensional data / redundant dimensions / irrelevant dimensions?
- deliver hard / soft clustering?
- deliver a strict partitioning (i.e. each object belongs to exactly one cluster)?
- deliver a hierarchical clustering?

Wrap-Up: Summary by Learning Goals

Having heard this lecture and doing the assignment on clustering, you will be able to:

- Explain, which metrics can be used to create a clustering from unlabeled data
- formulate the optimization problem for k-means clustering and implement an iterative heuristic
- Describe pros and cons of k-means and DBSCAN
- Derive a metric for the quality of a given clustering (e.g. via the "silhouette score", see assignment)