

1 Composição e inversa

A função $f \circ g$ ("f após g") é a composição de f e g, caracterizada por

- expressão $f \circ g(x) = f(g(x))$ e
- domínio $D_{f \circ g} = \{x \in D_g : g(x) \in D_f\}$

A função f é invertível $\iff \exists g: D_g = CD_f$ e $\forall x \in D_f, g \circ f(x) = x$

f é invertível \iff f é injetiva

f é **estritamente** monótona \Rightarrow f é invertível

- g é a *inversa* de f e denota-se por f^{-1}
- f é a inversa de f^{-1} , ou seja, $D_f = CD_{f^{-1}}$, $CD_f = D_{f^{-1}}$ e $(f^{-1})^{-1} = f$
- logo, $\forall x \in D_f, f^{-1} \circ f(x) = x \in \forall x \in CD_f, f \circ f^{-1}(x) = x$

Se $f \circ g$ é invertível, então $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$

2 Composição e condições

Função F:	$(a,b\in D_F)$		
qualquer	a = b	\Rightarrow	F(a) = F(b)
crescente	a > b $a \ge b$	\Rightarrow	$F(a) \ge F(b)$
decrescente	a > b $a \ge b$	\Rightarrow	$F(a) \leq F(b)$
injetiva	a = b	\Leftrightarrow	F(a) = F(b)
estritamente crescente	$a > b$ $a \ge b$	$\Leftrightarrow \\ \Leftrightarrow$	F(a) > F(b) $F(a) \ge F(b)$
estritamente decrescente	$a > b$ $a \ge b$	⇔	$F(a) < F(b)$ $F(a) \le F(b)$

3 Composição e condições: exemplos

Aplicando a função *F* a ambos os membros de uma condição . . .

$$\frac{1}{x} = 4 \Leftrightarrow x = \frac{1}{4}$$

$$\frac{1}{x} < 4 \not\Rightarrow x > \frac{1}{4}$$

$$F(x) = \frac{1}{x}, x \neq 0 \text{ nño monótona (decr.)}$$

$$\frac{1}{x^2} < 4 \Leftrightarrow x^2 > \frac{1}{4}$$

$$F(x) = \frac{1}{x}, x \neq 0 \text{ nño monótona (decr.)}$$

$$F(x) = \frac{1}{x}, x > 0 \text{ estritamente decr.}$$

$$F(x) = \sqrt{x}, x \geq 0 \text{ estritamente cr.}$$

$$F(x) = \sqrt{x}, x \geq 0 \text{ estritamente cr.}$$

$$F(x) = x^2, x \in \mathbb{R} \text{ qualquer}$$

$$F(x) = x^2, x \in \mathbb{R} \text{ nño monótona (cr.)}$$

Uma consequência importante

$$F \in G \text{ (estr.) monotonas, } \begin{cases} \text{com o mesmo sentido} & \Rightarrow F \circ G \text{ (estr.) cr.} \\ \text{com sentidos diferentes} & \Rightarrow F \circ G \text{ (estr.) decr.} \end{cases}$$

Limite e derivada da composição

Supondo que $\lim_{x \to a} f(x) = b$ e que $\lim_{x \to b} g(x) = c$ podemos concluir que $\lim_{x \to a} g \circ f(x) = c$ SE

- g não está definida em b ou
- g é contínua em b ou
- $f(x) \neq a$ para qualquer x "perto" de a ou ...

Regra da cadeia: sendo f diferenciável em a (no interior de D_f) e g diferenciável em f(a) (no interior de D_g) então $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$

Esquema da demonstração:

- $h(y) = \begin{cases} \frac{g(y) g(f(a))}{y f(a)}, & y \neq f(a) \\ g'(f(a)), & y = f(a) \end{cases}$ é contínua em y = f(a)
- $h(f(x))\frac{f(x)-f(a)}{x-a} = \frac{g(f(x))-g(f(a))}{x-a}, \forall x \in D_{g \circ f} \setminus \{a\} \text{ (verificar!!), e se } x \to a \dots$

Inversas e derivadas

1. Justifica a invertibilidade e caracteriza a inversa de:

(a)
$$f(x) = \arccos e^x$$

(b)
$$g(x) = \arcsin \frac{\sqrt{x}}{x-2}$$
 (c) $h(x) = x \cdot |x| + 1$

(c)
$$h(x) = x \cdot |x| + 1$$

Se f é contínua, injetiva no intervalo I, diferenciável em a (no interior de I)

$$f'(a) \neq 0 \Leftrightarrow f^{-1}$$
 é diferenciável em $b = f(a)$ e $(f^{-1})'(b) = \frac{1}{f'(a)}$

Assim, quando as hipóteses são satisfeitas e existe a derivada de f^{-1} , podemos escrever:

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

2. Calcula, usando a fórmula da derivada da inversa, a derivada de:

(a)
$$\sqrt{x}$$

(b)
$$\ln x$$

(c)
$$\arccos x$$

(d)
$$\operatorname{arsenh} x = \operatorname{senh}^{-1}(x)$$

Algumas observações

Inequações com radicais (analisa e verifica também os casos '≤' e '≥')

$$\sqrt{A} < B \iff \begin{cases} A \ge 0 \\ B \ge 0 \\ A < B^2 \end{cases} \qquad \sqrt{A} > B \iff \begin{cases} A \ge 0 \\ B < 0 \end{cases} \text{ ou } \begin{cases} A > B^2 \\ B \ge 0 \end{cases}$$

- Dada uma função f, $f^p(x)$ significa a) $\underbrace{f \circ f \circ \cdots \circ f}_{p \text{ vezes}}(x)$ ou b) $(f(x))^p$
 - a) usa-se raramente, mas a notação de inversa f^{-1} nasce neste contexto
 - b) é a notação (atalho) mais comum: $sen^3 x = (sen(x))^3$
- Lembrete: $(\operatorname{tg} x)' = 1 + \operatorname{tg}^2 x = \frac{1}{\cos^2 x} = \sec^2 x$ (verificar!!)
- Se f restrita a I tem inversa $g, g \circ f(x) = x, \forall x \in I \text{ mas } g \circ f(x) \neq x, \forall x \in D_f$

$$\sqrt{x^2} = x, \ x \ge 0;$$

$$\operatorname{arcsen}(\operatorname{sen} x) = x, \ x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right];$$

$$\operatorname{arcsen}(\operatorname{sen} x) = ?!?, \ x \in \mathbb{R}$$

7 Exercício de revisão

Considere a função $f: D \to \mathbb{R}$ definida pela expressão $f(x) = \ln(\frac{\pi}{2} - \arccos x)$.

- (a) Defina a sua inversa, apresentando o domínio, o contradomínio e a expressão analítica.
- (b) Calcule $f(\cos(\frac{23\pi}{12}))$, apresentando o resultado na sua forma mais simples.
- (c) Encontre a expressão analítica da função derivada de f.
- (d) Aplicando o Teorema da derivada da função inversa, calcule $(f^{-1}(x))'$.
- (e) Calcule $\lim_{x\to 0^+} \frac{f(x)}{\ln x}$.
- (f) Enuncie o Teorema de Lagrange. Justifique usando este teorema que

$$0 < x < 1 \Rightarrow f(x) < \ln(\frac{\pi}{2}).$$

(Teste 1 de Cálculo I, Agr. 1, 2020/21)