Кристаллооптика. Двойное лучепреломление

Гончаров Марк

17 июня 2021 г.

Аннотация

Данная статья написана для презентации вопроса по выбору на экзамене МФТИ 2021 года 4 семестр, курс "Оптика".

Научный руководитель: Николай Леонидович Меньших - преподаватель кафедры общей физики МФТИ, научный сотрудник ИТПЭ РАН.

Преподаватель: Владимир Валерьевич Вановский - сотрудник кафедры общей физики.

1 Цель работы

Научиться анализировать необыкновенную волну. Для этого будем определять главные показатели преломления n_o и n_e исландского шпата двумя способами:

- 1. Снимем зависимость $\psi = f(\varphi)$ для обоих волн. По полученным данным определим показатели преломления.
- 2. Измерим для каждого из лучей угол падения φ в условиях полного внутреннего отражения.

2 Общая теория

Рассмотрим волну, распространяющуюся вдоль оси Oz, тогда мы можем записать для неё уравнения Максвелла

$$\begin{cases} (rot \, \mathbf{E})_x = \frac{\partial E_y}{\partial z} = \frac{1}{c} \, \frac{\partial H_x}{\partial t}, \\ (rot \, \mathbf{H})_y = \frac{\partial H_x}{\partial z} = \frac{1}{c} \, \frac{\partial E_y}{\partial t}, \end{cases}$$
(1.1)

Важными частными решениями этой системы являются

$$E_y = H_x = A_y \cos(\omega t - kz + \varphi_y). \tag{1.2.1}$$

$$E_x = H_y = A_x \cos(\omega t - kz + \varphi_x). \tag{1.2.2}$$

Так как в любой точке пространства концы векторов **E** и **H** движутся по отрезкам прямых линий в плоскости, то такая волна называется **линейно поляризованной**.

Если волны (1.2.1) и (1.2.2) распространяются одновременно, то концы векторов **E** и **H** движутся по эллипсам в плокости (E_x, E_y) . Такая волна называется эллиптически поляризованной.

Устройства, с помощью которых из естественного света получают поляризованный, называются **поляризаторами**. Они основаны на одном из принципов:

1. **Дихроизм** - способность вещества поглощать свет по-разному в зависимости от его поляризации. На его действии основано действие используемых в лабораториях *поляроидных плёнок* (например, хинин). Такая плёнка сильно поглощает свет, плоскость поляризации которого перпендикулярна направлению выравнивания кристаллов (линейный дихроизм).

Интересно также явление кругового дихроизма - различное поглощения излучения с левой и правой поляризациями.

- 2. Двойное лучепреломление наблюдаем его в анизотропных кристаллах. Анизотропия проявляется в зависимости этих кристаллов коэффициента преломления от поляризации световой волны
- 3. Поляризация света при отражении и преломлении. Мы можем воспользоваться, тем, что из формулы Френеля для волны, плоскость ${\bf E}$ которой находится в плоскости падения коэффициент отражения $ho_{||}$:

$$\rho_{||} = \frac{\tan^2(\varphi - r)}{\tan^2(\varphi + r)},\tag{1.3}$$

где φ - угол падения и r - угол преломления. Тогда при $\varphi_B = \arctan n$ имеем $\rho_{||} = 0$, то есть волна вся проходит внутрь, не отражаясь. Такой угол называется углом Брюстера.

4. При *рассеянии* света на частицах пыли волна также оказывается поляризованной, причём преимущественно перпендикулярно падающему лучу.

При пропускании поляризованого света через поляризатор для интенсивности света выполуняется закон **Малюса**

$$I = I_0 \cos^2 \varphi \tag{1.4},$$

где φ - угол между направлением электрических колебаний волны и разрешённым направлением поляризатора.

Степень поляризации будем вычислять, как

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}. (1.5).$$

3 Двойное лучепреломление

Рассмотрим потенциальные ямы вблизи узлов решётки

$$U = a_x x^2 + a_y y^2 + a_z z^2. (2.1)$$

Мы работаем с одноосными кристаллами, то есть с теми для которых $a_y = a_z = a_{\perp}, a_x = a_{||}$. В данном случае Ox - оптическая ось кристалла.

Соответственно введём коэффициенты α - поляризуемость, ε - диэлектрическая проницаемость. Тогда

$$\mathbf{P} = \alpha_{\perp} \mathbf{E}_{\perp} + \alpha_{\parallel} \mathbf{E}_{\parallel}, \ \mathbf{D} = \varepsilon_{\perp} \mathbf{E}_{\perp} + \varepsilon_{\parallel} \mathbf{E}_{\parallel}$$
 (2.2).

Связь этих же векторов из уранений Максвелла

$$\mathbf{D} = -\frac{c}{\omega}[\mathbf{k}, \mathbf{H}], \quad \mathbf{H} = \frac{c}{\omega}[\mathbf{k}, \mathbf{E}]$$
 (2.3).

Вектор Пойнтинга, то есть вектор плотности потока энергии в данном случае вычисляется, как

$$\mathbf{S} = \frac{4\pi}{c} [\mathbf{E}, \mathbf{H}] \tag{2.4}.$$

Одновременно условия (2.2) и (2.3) могут выполняться только в двух случаях. Для их характеристики введём понятие **главного сечения** - плоскость ветора **k** и оптической оси ψ . Обозначим эту плоскость Θ .

Тогда обыкновенная волна: $\mathbf{D} \perp \Theta$, необыкновенная: $\mathbf{D} \in \Theta$. Если с обыкновенной волной мы умеем работать, то для необыкновенной необхдимо вывести важные соотношения.

Найдём фазовую скорость $v=\frac{\omega}{k}$. Из рисунка $|[\mathbf{k},\mathbf{H}]|=kH,\,|[\mathbf{k},\mathbf{E}]|=kE\cos\alpha,$ поэтому из первого и второго уравнений (2.3) соотвественно:

$$v = c\frac{H}{D}, \quad v = c\frac{E}{H}\cos\alpha$$
 (2.4).

Рис. 1: Обыкновенная (а), необыкновенная (б)

Умножаем равенства:

$$v = c\sqrt{\frac{E\cos\alpha}{D}} = c\sqrt{\frac{(\mathbf{E}\cdot\mathbf{D})}{D^2}}$$
 (2.5).

Самое интересное - скалярное проивздение. Мы писали проекции вектора ${\bf D}$ - (2.2). Также очевидно из геометрии, что $D_{||}=D\sin\theta, D_{\perp}=D\cos\theta$. Поэтому для фазовой скорости можем получить окончательное соотношение

$$v = c\sqrt{\frac{\sin^2\theta}{\varepsilon_{||}} + \frac{\cos^2\theta}{\varepsilon_{\perp}}}.$$

4 Ход лучей в пластинке

Рис. 2: Построение Гюйгенса

Пусть оптическая ось кристалла составляет угол α с поверхностью и лежит в плоскости рисунка выше. В падающем свете будем считать, что содержатся обе компоненты вектора ${\bf E}$.

1. Волна одновременно достигла поверхности МN.

- 2. Возбуждаются вторичные волны. Источники: возбуждаемые падающей волной осцилляторы среды.
- 3. Если **E** $\perp \psi$, где ψ плоскость рисунка, то возникают легко описываемые сферичные волны с $n_o = const.$ Это случай обыкновенной волны (на рисунке a).
- 4. Для случая $\mathbf{E} \notin \psi$ наблюдаем необыкновенные волны эллипсоиды. На рисунке обозначим волновой фронт (поверхность одной фазы). Т.к. $v_{phase} \propto n^{-1}$, то видно на рисунке изображён отрицательный кристалл ($n_e < n_o$) из-за вытягивания волнового фронта перпендикулярно оптической оси.
- 5. Получается необыкновенная волна "убегает" своей фазой в сторону, тем самым энергия переносится не перпендикулярно MN. При этом волновой вектор $\mathbf{k} \perp MN$ для согласования с законами преломления. С помощью этого явления можно рассеивать энергию необыкновенной волну, тем самым создавать неплохие поляроиды.
- 6. В нашем эксперименте оптическая ось сонаправлена длинному катету, поэтому мы не наблюдаем этого явления. Расхождения лучей на выходе шпата в нашем случае обусловлено разным показателем преломления для разных поляризаций **E**, что влияет на закон Снелиуса на выходе из призмы.

5 Экспериментальная установка

Рис. 3: Схема экспериментальной установки

В нашем случае источник излучения He-Ne лазер. Причём излучение его линейно поляризовано, засчёт брюстеровских окошек в кювете лазера. Ход лучей будем анализировать по углам φ_1 и φ_2 , связанными соотношением:

$$\varphi_2 + \varphi_1 = A + \psi.$$

6 Выполнение лабораторной работы

- 1. Запишим показания установки: $\lambda = 650 \pm 5$ нм.
- 2. Отъюстируем установку.
- 3. Для определения угла A при вершине призмы измерим положение отчётной риски на лимбе, когда луч строго идёт назад для длинного катета и гипотенузы. По формуле $A=\varphi_1-\varphi_2$ найдём угол при вершине призмы

$$A = 39.0 \pm 0.5$$
.

Абсолютная погрешность 0.5 = 0.25 + 0.25 для каждого из измерений углов.

- 4. Определим, какой луч соответствует вертикально поляризованному, а какой горизонатльно поляризованному свету. Для этого я воспользовался установкой 3.7.3, в которой рассматривали луч, отражённый от чёрного зеркала под углом Брюстера. Минимум интенсивности наблюдался при горизонтальной поляризации поляроида. Таким образом, по шкале поляроида: 159° горизонтальная и 69° вертикальная поляризации.
- 5. Для вычисления коэффициента преломления по двум направлениям, непосредственно снимем показания φ_1 и ψ . Далее вычисляем угол $\psi = \varphi_1 + \varphi_2 A$, затем вычисляем тригонометрические функции от данных углов и окончательно подставляем значения в

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \varphi_1 + \sin^2 \varphi_2 + 2 \sin \varphi_1 \sin \varphi_2 \cos A}.$$

Получаем таблицу:

φ2	33	31	29,5	28,5	27,5	27	27	28	29	31	34	40
φ1	60	55	50	45	40	35	30	25	20	15	10	5
σ(φ)	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
ψ	12	15	18,5	22,5	26,5	31	36	42	48	55	63	74
σ(ψ)	1	1	1	1	1	1	1	1	1	1	1	1
φ1	1,047	0,960	0,873	0,785	0,698	0,611	0,524	0,436	0,349	0,262	0,175	0,087
σ(φ)	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004
Ψ	0,21	0,26	0,32	0,39	0,46	0,54	0,63	0,73	0,84	0,96	1,10	1,29
σ(ψ)	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
n	1,65	1,64	1,64	1,64	1,63	1,63	1,63	1,64	1,64	1,64	1,64	1,64
σ(n)	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03

Рис. 4: Полученные данные для обыкновенной волны

6. Погрешность для n нашли через сумму относительных погрешностей $\frac{1}{\sin A}$ и половины относительной погрешности от подкоренного выражения. Для тригонометрический величин относительная погешность

$$\delta = \left| \frac{\sin(\alpha + \Delta\alpha) - \sin(\alpha)}{\sin\alpha} \right|.$$

Основная погрешность набегала из-за косвенности измерения ψ . Мы компенсируем эту погрешность большим количеством измерений.

- 7. Как видим, получили значения очень близкие с табличными. Более того, подтвердили теорию о том, что в исландском шпате $n_o \approx const$, то есть не зависит от угла падения.
- 8. Проведём аналогичный эксперимент, но уже для необыкновенной волны. Для этого изменил поляризацию света, проходящего через исландский шпат.

Теперь явно видна зависимость показателя преломления от угла падения луча, что и подтверждает теорию двойного лучепреломления.

9. В конце немного исследуем область отрицательных углов падения. При некотором значении мы получаем эффект полного внутреннего отражения (луч исчезает). Найдём эти углы: $\varphi_{1o}=(-1\pm0.25)^\circ$, $\varphi_{1e}=(-6\pm0.25)^\circ$. Тогда по аналогичной формуле, считая $\psi=\pi/2$:

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \varphi_1 + \sin^2 \varphi_2 + 2 \sin \varphi_1 \sin \varphi_2 \cos A}.$$

Итого: $n_o = 1.63 \pm 0.06$, $n_e = 1.46 \pm 0.06$.

φ2	27,5	25,5	24,5	23	22	21,5	21	21	21	22	23	25
φ1	60	55	50	45	40	35	30	25	20	15	10	5
σ(φ)	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
ψ	6,5	9,5	13,5	17	21	25,5	30	35	40	46	52	59
σ(ψ)	1	1	1	1	1	1	1	1	1	1	1	1
φ1	1,047	0,960	0,873	0,785	0,698	0,611	0,524	0,436	0,349	0,262	0,175	0,087
σ(φ)	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004
ψ	0,11	0,17	0,24	0,30	0,37	0,45	0,52	0,61	0,70	0,80	0,91	1,03
σ(ψ)	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
n	1,52	1,51	1,52	1,51	1,51	1,51	1,50	1,49	1,48	1,49	1,48	1,47
σ(n)	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03

Рис. 5: Полученные данные для необыкновенной волны

7 Вывод

- 1. Мы познакомились с основными явлениями, лежащими в основе создания поляроидов.
- 2. Научились экспериментально отличать обыкновенную и необыкновенную волны.

8 Приложение

Рис. 6: Слева поляризованная необыкновенная волна. Справа волна от источника.

9 Литература

- 1. Кириченко Н.А. "Принципы оптики". Глава 12: "Элементы кристаллооптики".
- 2. Максимычев А.В. "Лабораторный практикум по общей физике". Том 2: "Оптика". Раздел 7: "Поляризация. Кристаллооптика".
- 3. Локшин Г.Р. "Основы волновой оптики". Глава 5: "Волны в анизотропных средах. Элементы кристаллооптики".