Particle Filter Localization for Autonomous AUVs Using Augmented Reality Tags

Ed Kelley, 2013 Szymon Rusinkiewicz aka

Where is the

Motivation

This statue

http://www.asergeev.com/pictures/archives/2007/572/jpeg/05.jpg

I want a 3d model

http://www.asergeev.com/pictures/archives/2007/572/jpeg/05.jpg

Video Games Virtual Reality Movies Archeology Architecture Maps Crash Scenes

Manual Modeling? Laser Scanner? Multi-View Stereo? Microsoft Kinect?

Multi-View Stereo?

Easy Cheap Complete High Quality

Quadcopters:

Related Work

Irschara et al.

Engel et al.

Bills et al.

System Design

AR.Drone 2.0

Localization + Controller = Autonomy

Localization

Local measurements tend

to

No GPS No rangefinders

Kalman Filter? Grid Based Markov? Particle Filter?

Kalman Filter? Grid Based Markov? Particle Filter?

This is a particle

Prediction Step Update the position of each particle using noisy velocity and gyroscope

readings.

Correction Step

- 1. Check for an augmented reality tag.
- 2. Calculate transformation from camera to tag.
- 3. Use known coordinates of the tag to calculate the position of the quadcopter.

Correction Step

- 4. Weight the particles using their similarity to this calculated position.
- 5. Perform weighted resampling of the particles.
- 6. With some probability, replace particles with this calculated position.

Estimate

Use a linear combination of the particle values to create an estimated pose.

Testing

Stationary Gyroscope Measurements

Gyroscope

Ultrasound

Emergency (Battery: 80%)

Emergency (Battery: 78%)

Tag Detection Space

Y Position (mm)

Emergency (Battery: 63%)

Emergency (Battery: 65%)

Manual Flight Test

Conclusion

Particle filter localization using augmented reality tags performs substantially better than integrated velocity alone.

AR Tags are highly dependent on lighting.

Its called Hardware for a reason.

Next steps...

Full integration with controller.

Modeling objects.

Thanks!