

Machine Vision

Lecture 5: Image Segmentation & Binary Images

Segmentation

- The goal of image segmentation is to partition the image into two (or more) image objects
- We typically consider one of the segments the background and the rest the foreground objects

Segmentation

- We have already seen how thresholding can be used to segment into foreground and background
- This approach decided pixel by pixel if it belongs to the foreground or the background
- The drawback of this is, that it cannot take into account coherence across larger areas nor is it able to deal with textures

Texture descriptors

 Instead of using single pixels we can use texture descriptors, such as gradient histograms or windowed Fourier transformation

$$= \begin{pmatrix} \phi_1[x, y] \\ \vdots \\ \phi_n[x, y] \end{pmatrix}$$

K-means clustering

• The image is then considered a set of features $\{\phi[x,y]\}$ for which unsupervised learning techniques, such as k-means clustering, can be applied to identify compact clusters in the descriptor data

Machine Vision

Smooth contours

- Typically we want objects to be delineated by smooth and closed curves, which neither thresholding nor k-means clustering is taking into consideration
- A contour can be described as a function $\Gamma:[0,1]\to\mathbb{R}^2$
- We can now state the problem of segmentation as finding an optimal contour that best fits the image while being smooth, or as minimising the energy function

$$E[\Gamma] = \int_0^1 \alpha E_{int} [\Gamma[c]] + \beta E_{img} [I[\Gamma[c]]] dc$$

Where

$$E_{img} = -|\nabla I|$$

And

$$E_{int} = w_1 |\Gamma'| + w_2 |\Gamma''|$$

Level sets

• A closed curve Γ can be described by a level-set of an implicit function

$$\psi(x,y) = \begin{cases} 0 & (x,y) \in \Gamma \\ -\epsilon & (x,y) \in \Gamma_{in} \\ +\epsilon & (x,y) \in \Gamma_{out} \end{cases}$$

Segmentation cost functions

• The segmentation problem can therefore be stated as a cost optimisation on the implicit function ψ

$$E[\psi] = \sum_{x,y} \alpha E_{int}[\psi] + \beta E_{img}[\psi]$$

- Where E_{int} enforces smoothness and E_{img} enforces consistency with the image data
- The benefit over curve representations is, that the function $\psi[x,y]$ is defined over the image domain, so the definition of E_{img} is more straightforward

Markov-Random-Fields

- A discretised view on the segmentation problem is to consider it as a Markov-Random-Field
- The image is considered a graph of pixels, with each pixel's segment assignment depending only on its neighbouring pixels
- For each node a cost is incurred for the dissimilarity of the image descriptors as well as for the dissimilarity of the assignments

$$E[x,y] = \sum_{(x',y') \in N[x,y]} \alpha e^{-\lambda(\psi[x,y] = \psi'[x',y'])(\phi[x,y] - \phi[x',y'])^2} + \beta e^{-\lambda(\psi[x,y] \neq \psi'[x',y'])}$$

• The total cost $E = \sum_{x,y} E[x,y]$ can then be minimised using Markov-Chain-Monte-Carlo optimisation

Binary images

- The result of segmentation is typically a binary image
- These binary images have only values 0 or 1, typically 1 signifies some relevant object while 0 is the background
- We will now look into image processing algorithms explicitly for binary images, which can be used to further process the segmentation results

Connected regions

 Often we are interested in connected regions in a binary image, as these are usually individual "objects"

Connected regions

- Often we are interested in connected regions in a binary image, as these usually individual "objects"
- For example in Optical Character Recognition (OCR) we are interested in isolating individual letters for further processing

Neighbourhoods

- Connectedness of regions requires a definition of neighbourhood
- Typically, we work with two different types of neighbourhoods on a raster
- The 4-neighbourhood of a pixel (x, y) is the set

$$N_4(x,y) = \{(x+1,y), (x-1,y), (x,y+1), (x,y-1)\}$$

• The 8-neighbourhood of a pixel (x, y) is the set

$$N_8(x,y) = N_4 \cup \{(x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)\}$$

Neighbourhoods

- For example, a diagonal line is connected using a N_8 definition of neighbourhood, but not connected using a N_4 definition of neighbourhood
- Therefore, we need to be careful to understand what neighbourhood to use

- A connected component in a binary image is a region in which every pair of points can be connected by a line passing solely through the region
- We also can define holes to be the connected components of the inverse image

We can consider the binary image as a graph

$$G = (V, E)$$

• Where every pixel is a vertex $V = \{(x, y)\}$ and the neighbourhood relation defines the edges

$$E = \{ ((x_1, y_1), (x_2, y_2)) \mid (x_2, y_2) \in N_8(x_1, x_2) \}$$

- We can now apply standard graph algorithms to this data structure
- However, this is not very efficient

- The graph approach does not exploit the specific neighbourhood structure imposed by the image grid
- It is more efficient to move a 2×2 grid over the image and assign labels sequentially for as follows:

D	С
В	Α

- The graph approach does not exploit the specific neighbourhood structure imposed by the image grid
- It is more efficient to move a 2×2 grid over the image and assign labels sequentially for as follows:

D	C
В	Α

• If A=0, then A=0

- The graph approach does not exploit the specific neighbourhood structure imposed by the image grid
- It is more efficient to move a 2×2 grid over the image and assign labels sequentially for as follows:

D	C
В	Α

- If A=0, then A=0
- If A>0 and B=C=D=0, then assign a new label to A

- The graph approach does not exploit the specific neighbourhood structure imposed by the image grid
- It is more efficient to move a 2×2 grid over the image and assign labels sequentially for as follows:

D	С
В	Α

- If A=0, then A=0
- If A>0 and B=C=D=0, then assign a new label to A
- If A>0 and C>0, then A=C

- The graph approach does not exploit the specific neighbourhood structure imposed by the image grid
- It is more efficient to move a 2×2 grid over the image and assign labels sequentially for as follows:

D	С
В	Α

- If A=0, then A=0
- If A>0 and B=C=D=0, then assign a new label to A
- If A>0 and C>0, then A=C
- If A>0 and B,C,D consistent >0, assign the consistent label to A

- The graph approach does not exploit the specific neighbourhood structure imposed by the image grid
- It is more efficient to move a 2×2 grid over the image and assign labels sequentially for as follows:

D	С
В	Α

- If A=0, then A=0
- If A>0 and B=C=D=0, then assign a new label to A
- If A>0 and C>0, then A=C
- If A>0 and B,C,D consistent >0, assign the consistent label to A

- The graph approach does not exploit the specific neighbourhood structure imposed by the image grid
- It is more efficient to move a 2×2 grid over the image and assign labels sequentially for as follows:

D	C
В	Α

- If A=0, then A=0
- If A>0 and B=C=D=0, then assign a new label to A
- If A>0 and C>0, then A=C
- If A>0 and B,C,D consistent >0, assign the consistent label to A

- The graph approach does not exploit the specific neighbourhood structure imposed by the image grid
- It is more efficient to move a 2×2 grid over the image and assign labels sequentially for as follows:

D	C
В	Α

- If A=0, then A=0
- If A>0 and B=C=D=0, then assign a new label to A
- If A>0 and C>0, then A=C
- If A>0 and B,C,D consistent >0, assign the consistent label to A
- If A>0 and B,C,D inconsistent >0, assign any of B,C,D and take note of equality of labels

- The graph approach does not exploit the specific neighbourhood structure imposed by the image grid
- It is more efficient to move a 2×2 grid over the image and assign labels sequentially for as follows:

D	C
В	Α

- If A=0, then A=0
- If A>0 and B=C=D=0, then assign a new label to A
- If A>0 and C>0, then A=C
- If A>0 and B,C,D consistent >0, assign the consistent label to A
- If A>0 and B,C,D inconsistent >0, assign any of B,C,D and take note of equality of labels

- The graph approach does not exploit the specific neighbourhood structure imposed by the image grid
- It is more efficient to move a 2×2 grid over the image and assign labels sequentially for as follows:

D	C
В	Α

- If A=0, then A=0
- If A>0 and B=C=D=0, then assign a new label to A
- If A>0 and C>0, then A=C
- If A>0 and B,C,D consistent >0, assign the consistent label to A
- If A>0 and B,C,D inconsistent >0, assign any of B,C,D and take note of equality of labels

$${1 = 2, 3 = 4}$$

- Using an efficient implementation of a Union-Set data structure the equality relations can be easily maintained and resolved
- The result is an image in which every pixel value indicates the connected component it belongs to
- We can now easily separate individual components

$$\{1 = 2, 3 = 4\}$$

count,labels = cv2.connectedComponents(binary_image)

The output is the number of connected components and a label image

A connected components algorithm is implemented in OpenCV

Morphological operations

- Morphological image processing uses the topology (i.e. the neighbourhood relations) to define operations
- Two operations are of special interest
 - **Erosion**, which can be used to <u>shrink</u> the foreground and reduce the size of regions
 - **Dilation**, which can be used to <u>expand</u> the foreground and increase the size of regions

Structuring element

- First we define the neighbourhood of a pixel more generically using a structuring element
- A structuring element is a binary mask that describes what surrounding pixels constitute a neighbourhood
- We have already seen two such structuring elements N_4 and N_8 , and these are the most useful, but every other shape is possible

1	0	0	0	0	0	0
0	1	0	0	1	1	0
0	0	0	0	0	1	0
0	0	0	0	0	0	1

- The **erosion** operation moves the structuring element over the image and **removes** all pixels where **not all neighbours** are set
- This means, only inside pixels are retained, all pixels on the boundary of the objects are removed

Erosion

- The **erosion** operation moves the structuring element over the image and **removes** all pixels where **not all neighbours** are set
- This means, only inside pixels are retained, all pixels on the boundary of the objects are removed
- Small structures are removed

Erosion

- The **erosion** operation moves the structuring element over the image and **removes** all pixels where **not all neighbours** are set
- This means, only inside pixels are retained, all pixels on the boundary of the objects are removed
- Small structures are removed
- The boundary is shaved off, so that only larger objects are retained

• The **dilation** operation moves the structuring element over the image and **adds** pixels where **any neighbour** is set

• The **dilation** operation moves the structuring element over the image and **adds** pixels where **any neighbour** is set

• The **dilation** operation moves the structuring element over the image and **adds** pixels where **any neighbour** is set

- The **dilation** operation moves the structuring element over the image and **adds** pixels where **any neighbour** is set
- A layer is added to the outside of every object

- The **dilation** operation moves the structuring element over the image and **adds** pixels where **any neighbour** is set
- A layer is added to the outside of every object
- This can lead to structures being connected together

- The **dilation** operation moves the structuring element over the image and **adds** pixels where **any neighbour** is set
- A layer is added to the outside of every object
- This can lead to structures being connected together
- Holes are filled

- The **dilation** operation moves the structuring element over the image and **adds** pixels where **any neighbour** is set
- A layer is added to the outside of every object
- This can lead to structures being connected together
- Holes are filled
- Objects get larger and finer structures are removed

Closing

- A useful property of dilation is that is closes small holes and removes smaller details that could be caused by noise
- The problem is, that the foreground grows with each iteration
- The closing operation tries to solve this by first dilating the image to close holes and then eroding the image again to remove the extra boundary

Opening

- Similar to closing, we can first erode and the dilate
- This operation is called opening
- It is used to remove smaller objects and structures while retaining the larger objects

Morphological operations

The structuring element is defined as NumPy array

```
structuring_element = np.ones((3,3),np.uint8)
erosion = cv2.erode(binary_img,structuring_element, iterations=1)
```

Erosion

```
dilation = cv2.dilate(binary_img,structuring_element, iterations=1)
```

Dilation

All morphological operations can be iterated, resulting in more layers being added/removed

Morphological operations

```
opening = cv2.morphologyEx(binary,
                                      cv2.MORPH_OPEN,
                                      structuring_element,
                                      iterations = 1)
                                                                 The type of
   Other
                                                                 operation is
morphological
                                                                  passed as
operations are
                                                                  parameter
called like this
             closing = cv2.morphologyEx(binary,
                                            cv2.MORPH CLOSE,
                                            structuring element,
                                            iterations = 1)
```

Features of binary images

- There are some feature descriptors that are specific to binary images
- They can the categorised in two groups
 - Topological feature descriptors that characterise the neighbourhood structure of the object (e.g. the number of connected components)
 - **Geometric feature descriptors** that characterise the shape of the object (e.g. the area or the perimeter)

Topological descriptors

• The **Euler characteristic** is the difference between the number of components and the number of holes

$$E = \#components - \#holes$$

• For example: E = 2 - 3 = -1

Topological feature descriptors are invariant to geometric distortions

Area and perimeter

 The area of a binary image is simply the number of foreground pixels

$$A = \sum_{x,y} I[x,y]$$

 The perimeter is the number of background pixels with a foreground pixel in their neighbourhood

$$P = |\{(x, y) \mid \exists (x', y') \in N_4(x, y) : I[x', y'] = 1\}|$$

Area and perimeter

- To calculate area and perimeter, we scan over all $2x^2$ patches and consider a pixel sized rectangle between the four pixels
- Depending on the configuration of points we accumulate

A += 1/2

P += 1

Form factor

- Area and perimeter are invariant to translation, but not to scale changes
- The form factor is the normalised ratio between squared perimeter and area

$$k = \frac{P^2}{4\pi A}$$

- It is invariant to scale changes
- A circle has a form factor of k=1

Moments

• The raw moment of a binary image is defined as

$$M_{ij} = \sum_{x,y} x^i y^j I[x,y]$$

- The area is m_{00} , the centroid is $\left(\frac{M_{10}}{M_{00}}, \frac{M_{01}}{M_{00}}\right)$
- Subtracting the centroid yields the central moments defined as

$$\mu_{ij} = \sum_{x,y} \left(x - \frac{M_{10}}{M_{00}} \right)^i \left(y - \frac{M_{10}}{M_{00}} \right)^j I[x,y]$$

Moments

 The eigenvalues and eigenvectors of the second moment matrix (or covariance matrix)

$$\Sigma = \begin{pmatrix} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{pmatrix}$$

- Tell us the orientation and shape of the object
- From this we can derive quantities like eccentricity

$$e = \sqrt{1 - \frac{\lambda_2}{\lambda_1}}$$

or the direction of the major axis

$$\theta = \arctan \frac{2\mu_{11}}{\mu_{20} - \mu_{02}}$$

Thank you for your attention!