

Exercise 9C

Question 11:

Given: ABCD is a square in which E, F, G and H are the mid points of AB, BC, CD and AD, respectively. The mid points are joined together.

To prove :EFGH is a square. Construction :Join AC and BD

Proof:

Midpoint Theorem: The line segment joining the midpoints of any two sides of a triangle is parallel to the third side and equal to half of it.

In AABC

E and F are the mid – points and by the Mid points Theorem , we have

 $EF \parallel AC$ and $EF = \frac{1}{2}AC$

Similarly, in AADC,

H and G are the midpoints and by the Mid points Theorem , we have

 $HG \parallel AC \text{ and } HG = \frac{1}{2}AC$

Thus, we have,

EF || HG and EF= HG = $\frac{1}{2}$ AC.....(1)

In ABAD,

H and E are the midpoints and by the Mid points Theorem , we have,

HE || BD and HE = $\frac{1}{2}$ BD

In ABCD,

G and F are the midpoints and by the

Mid points Theorem , we have, GF || BD and GF = $\frac{1}{2}$ BD

Thus, we have,

HE || GF and HE = GF = $\frac{1}{2}$ BD....(2)

The diagonals of a square are equal.

 \Rightarrow AC=BD

.....(3)

From (1), (2) and (3), we have $GF \parallel BD$ and $HE \parallel GF$.

Also, we have EF = GF = GH = HE

So, EFGH is a rhombus

Now, as diagonals of a square are equal

and intersect at right angles.

So,
$$\angle DOC = 90^{\circ}$$

In a parallelogram the sum of adjacent angles is 180°.

So,
$$\angle DOC + \angle GKO = 180^{\circ}$$

$$\Rightarrow$$
 $\angle GKO = 180^{\circ} - 90^{\circ} = 90^{\circ}$

But
$$\angle GKO = \angle EFG$$
 [Corresponding angles]

.. EFGH is a square.

********* END ********