This homework is due at 23:59, June 22, 2019.

Problem 1

In this problem, we will solve an online regression problem using online gradient descent. Consider the following game of *online regression*. For every $t \in \mathbb{N}$, the following happen sequentially.

- 1. REALITY announces $x_t \in \mathbb{R}^p$.
- 2. LEARNER announces $\gamma_t \in \mathbb{R}$.
- 3. REALITY announces $y_t \in [-L, L]$ for some L > 0.
- 4. Learner suffers the loss

$$f(y_t, \gamma_t) := \frac{1}{2} (y_t - \gamma_t)^2.$$

We aim at competing with linear regression functions. Then, the associated regret is given by

$$R_T(w) := \sum_{t=1}^T f(y_t, \gamma_t) - \sum_{t=1}^T f(y_t, \langle x_t, w \rangle), \quad \forall w \in \mathbb{R}^p, T \in \mathbb{N}.$$

1. (10 points) Consider the following algorithm. Let w_1 be the zero vector in \mathbb{R}^p . For every $t \in \mathbb{N}$, the algorithm computes

$$\tilde{w}_{t+1} \leftarrow w_t + \eta \left(y_t - \langle x_t, w_t \rangle \right) x_t,$$

$$w_{t+1} \leftarrow \begin{cases} \tilde{w}_{t+1} & \text{, if } \|\tilde{w}_{t+1}\| \leq 1, \\ \frac{\tilde{w}_{t+1}}{\|\tilde{w}_{t+1}\|_2} & \text{, otherwise.} \end{cases}$$

$$\gamma_{t+1} \leftarrow \langle \chi_{t+1}, w_{t+1} \rangle,$$

for some $\eta > 0$. Show that the algorithm is an instance of online (projected) gradient descent. Specify the corresponding sequence of loss functions and constraint set.

Solution. Define

$$f_t(w) := \frac{1}{2} (y_t - \langle x_t, w_t \rangle)^2.$$

Then, we can solve the online regression problem via solving online convex optimization with f_t on a constraint set to be defined and setting $\gamma_t = \langle x_t, w_t \rangle$. We have

$$\nabla f_t(w) = -(\gamma_t - \langle x_t, w \rangle) x_t.$$

Let \mathscr{B} be the unit 2-norm ball in \mathbb{R}^p and $\Pi_{\mathscr{B}}$ be the projection onto \mathscr{B} , i.e.,

$$\Pi_{\mathscr{B}}(w) \coloneqq \underset{w' \in \mathscr{B}}{\operatorname{arg\,min}} \frac{1}{2} \| w' - w \|_2^2.$$

Notice that

$$\Pi_{\mathcal{B}}(w) \coloneqq \frac{w}{\|w\|_2}, \quad \forall w \in \mathbb{R}^p.$$

Then, we can write the algorithm equivalently as

$$w_{t+1} \leftarrow \Pi_{\mathcal{B}} \left(y_t - \eta \nabla f_t(w_t) \right),$$

showing the algorithm is simply online gradient descent (OGD) with respect to the constraint set \mathscr{B} .

2. (10 points) Let \mathscr{B} be the unit 2-norm ball in \mathbb{R}^p . Suppose $x_t \in \mathscr{B}$ for all $t \in \mathbb{N}$. Show the algorithm in the previous problem can achieve

$$R_T(w) = O(L\sqrt{T}), \quad \forall w \in \mathscr{B}.$$

How should we set η ?

Solution. By Cauchy-Schwarz inequality, we obtain

$$\|\nabla f_t(w)\|_2 \le |y_t - \langle x_t, w \rangle| \le |y_t| + |\langle x_t, w \rangle| \le L + 1, \quad \forall w \in \mathcal{B}.$$

By the triangle inequality, we have

$$\max_{w' \in \mathcal{B}} \|w - w'\|_2^2 \le (\|w\|_2 + \|w'\|_2)^2 \le 4, \quad \forall w \in \mathcal{B}.$$

Applying the regret bound for OGD in Lecture 8, we obtain

$$R_T(w) \le \frac{2}{\eta} + \frac{\eta T (L+1)^2}{2}.$$

Choosing

$$\eta = \frac{2}{(L+1)\sqrt{T}},$$

the desired regret bound follows.

Problem 2

In this problem, we will show Hedge solves an *adversarial multi-armed bandit problem*, with minor modification. The bandit problem is as follows. Let $\mathcal{K} = \{1, ..., K\}$ for some $K \in \mathbb{N}$. Let $T \in \mathbb{N}$. We consider the *oblivious adversary model*, in which REALITY chooses a sequence $(\omega_t)_{t \in \mathbb{N}}$ of vectors in $[0,1]^K$ before the first round. For each round t, $1 \le t \le T$, the following happen sequentially.

- LEARNER announces $\gamma_t \in \mathcal{K}$.
- REALITY announces $\omega_t(\gamma_t)$, the γ_t -th entry of ω_t (while keeping the entire vector ω_t secret).
- LEARNER suffers loss $\lambda(\omega_t, \gamma_t) := \omega_t(\gamma_t)$.

The regret is now given by

$$R_T(k) := \mathsf{E}\left[\sum_{t=1}^T \lambda(\omega_t, \gamma_t) - \sum_{t=1}^T \lambda(\omega_t, k)\right], \quad \forall k \in \mathcal{K},$$

where the expectation is with respect to the possible randomness of Learner's algorithm.

Consider the following algorithm. Let π_1 be the uniform probability distribution on \mathcal{K} . For each round t, Learner chooses $\gamma_t \in \mathcal{K}$ randomly following π_t , and computes π_{t+1} such that

$$\pi_{t+1}(k) \propto \pi_t(k) e^{-\eta \tilde{\lambda}(\omega_t, k)}, \quad \forall k \in \mathcal{K},$$

where

$$\tilde{\lambda}(\omega_t,k) \coloneqq \frac{\lambda(\omega_t,k)}{\pi_t(k)} \mathbb{1}_{\{\gamma_t = k\}}, \quad \forall k \in \mathcal{K}.$$

Recall that $\mathbb{1}_{\{\gamma_t=k\}}$ denotes the indicator function of the event $\{\gamma_t=k\}$.

1. (10 points) Show that

$$\mathsf{E}_{\gamma_t \sim \pi_t} \tilde{\lambda}(\omega_t, k) = \lambda(\omega_t, k), \quad \forall k \in \mathscr{K}.$$

That is, $\tilde{\lambda}(\omega_t, k)$ is an unbiased estimate of $\lambda(\omega_t, k)$.

2. (10 points) The following theorem provides an upper bound of the mixability gap.

Theorem 1 ([1]). Let ξ be a non-negative random variable and $\eta > 0$. Then, it holds that

$$\log \mathsf{E} e^{-\eta(\xi - \mathsf{E}\xi)} \le \frac{\eta^2}{2} \mathsf{E} \xi^2.$$

Use the theorem to show that

$$\sum_{t=1}^T \lambda(\omega_t, \gamma_t) \leq \frac{\eta}{2} \sum_{t=1}^T \sum_{k \in \mathcal{K}} \pi_t(k) \left[\tilde{\lambda}(\omega_t, k)\right]^2 - \frac{1}{\eta} \log \sum_{k \in \mathcal{K}} \pi_1(k) \mathrm{e}^{-\eta \sum_{t=1}^T \tilde{\lambda}(\omega_t, k)}.$$

3. (10 points) Show that the algorithm can achieve

$$R_T = O\left(\sqrt{TK\log K}\right).$$

How should we choose η ?

Solution. See Peter Bartlett's lecture slides https://www.stat.berkeley.edu/~bartlett/courses/2014fall-cs294stat260/lectures/bandit-adversarial-notes.pdf.

Problem 3

In this problem, we will derive Fixed Share as a special case of the aggregating algorithm. Consider the following protocol. Let $\mathcal{K} := \{1, ..., K\}$ be the *pool of predictors* for some $K \in \mathbb{N}$, and let π be the uniform probability distribution on \mathcal{K} . Let $k^* \in \mathcal{K}$ be a random variable following π . Let Γ be the prediction space, and Ω be the outcome space. For every $t \in \mathbb{N}$, the following happen in order.

1. Stochastic Expert announces a function $\Phi_t : \mathcal{K} \to \Gamma$ and the corresponding random prediction

$$\xi_t := \Phi_t(k^*).$$

- 2. Learner announces $\gamma_t \in \Gamma$.
- 3. Reality announces $\omega_t \in \Omega$.
- 4. Learner suffers the loss $\lambda(\omega_t, \gamma_t)$, for some η -mixable loss function $\lambda: \Omega \times \Gamma \to \mathbb{R}$.

Assume the conditions on Ω , Γ , and λ for the aggregating algorithm hold in this protocol.

Let $T \in \mathbb{N}$. Define the cumulative losses of Learner and Stochastic Expert respectively as

$$L_T(\mathbf{L}) := \sum_{t=1}^T \lambda(\omega_t, \gamma_t), \quad L_T(\mathbf{SE}) := \sum_{t=1}^T \lambda(\omega_t, \xi_t).$$

Notice that $L_T(SE)$ is a random variable, while $L_T(L)$ is a deterministic number.

Consider the following strategy for LEARNER. Let $\pi_1 = \pi$. For every $t \in \mathbb{N}$, announce any prediction $\gamma_t \in \Gamma$ such that

$$\lambda(\omega,\gamma_t) \leq \frac{-1}{\eta} \log \sum_{k \in \mathcal{X}} \pi_t(k) \mathrm{e}^{-\eta \lambda(\omega,\Phi_t(k))}, \quad \forall \omega \in \Omega,$$

and then compute π_{t+1} as

$$\pi_{t+1}(k) = \frac{\pi_t(k) \mathrm{e}^{-\eta \lambda(\omega_t, \Phi_t(k))}}{\sum_{k \in \mathcal{K}} \pi_t(k) \mathrm{e}^{-\eta \lambda(\omega_t, \Phi_t(k))}}, \quad \forall \, k \in \mathcal{K} \,.$$

1. (10 points) Show that

$$L_T(\mathbf{L}) \leq \frac{-1}{n} \log \mathsf{E} \, \mathrm{e}^{-\eta L_T(\mathbf{SE})},$$

where the expectation is with respect to π .

2. (10 points) Suppose that

$$P(L_T(SE) \le L) \ge p$$
,

for some L > 0 and $p \in]0,1]$. Show that

$$L_T(\mathbf{L}) \le L + \frac{1}{\eta} \log \frac{1}{p}.\tag{1}$$

3. (10 points) Consider the standard formulation of learning with expert advice (where there does not exist a stochastic expert) with the same outcome space Ω , prediction space Γ , and loss function λ . Suppose there are K experts and we use the uniform distribution as the prior to run the aggregating algorithm. **Use** (1) **to show that**

$$\sum_{t=1}^{T} \lambda(\omega_t, \gamma_t) \leq \sum_{t=1}^{T} \lambda(\omega_t, \gamma_t(k)) + \frac{1}{\eta} \log K, \quad \forall k \in \mathcal{K},$$

where $\gamma_t(k)$ denotes the prediction of EXPERT-k for the t-th round.

- 4. (10 points) Let us modify the behavior of STOCHASTIC EXPERT in the protocol as follows. Let $\alpha \in [0,1]$.
 - Before the first round, STOCHASTIC EXPERT chooses some $k_1 \in \mathcal{K}$ following the uniform distribution.
 - For every $t \in \mathbb{N}$, Stochastic Expert announces $\xi_t = \Phi_t(k_t)$; then, independent of the history, with probability (1α) Stochastic Expert sets $k_{t+1} = k_t$, and with probability α Stochastic Expert sets $k_{t+1} \in \mathcal{K} \setminus \{k_t\}$ randomly following the uniform distribution.

Show how this setting can be equivalently formulated as learning with a time-invariant stochastic expert, with an enlarged pool set $\tilde{\mathcal{K}}$ of cardinality K^T and another probability distribution $\tilde{\pi}$ on $\tilde{\mathcal{K}}$.

5. (10 points) Consider the standard formulation of learning with expert advice (where there does not exist a stochastic expert) with the same outcome space Ω , prediction space Γ , and loss function λ . Suppose there are K experts and we use the uniform distribution as the prior to run the aggregating algorithm. Let $(k_t)_{1 \le t \le T}$ be an arbitrary piecewise constant sequence of integers in \mathcal{K} ; let m be the number of changes in the sequence. Use the results above to show for any $\alpha \in [0,1]$, there is an algorithm (ignoring its computational complexity) achieving the *shifting regret bound*:

$$\sum_{t=1}^T \lambda(\omega_t, \gamma_t) \leq \sum_{t=1}^T \lambda(\omega_t, \gamma_t(k_t)) + \frac{1}{\eta} \left[\log K + m \log (K-1) + m \log \frac{1}{\alpha} + (T-m-1) \log \frac{1}{1-\alpha} \right].$$

6. (Self study, 0 points) Show the algorithm for the shifting regret bound above is indeed equivalent to Fixed Share.

Solution. See Section 3.1 & 3.3 of the paper "Derandomizing stochastic prediction strategies" by V. Vovk.

References

[1] Stoltz, G. *Information incomplète et regret interne en prédiction de suites individuelles.* PhD thesis, Université Paris-XI, 2005.