Unit: Polynomials

Contents

1	Poly	vnomials	2
	1.1	Multiplying Polynomials	3
	1.2	Dividing Polynomials and GCF Factoring	5
	1.3	Factoring by Grouping	7
	1.4	Factoring Trinomials	8
	1.5	Factoring Special Products	9
	1.6	Solving Polynomial Equations (Factoring)	10
	1.7	Problem-Solving with Polynomials	14
	1.8	Completing the Square	15
	1.9	Quadratic Formula	16
	1.10	Unit Review	18

1 Polynomials

Unit Overview

In this unit, students will explore various operations and problem-solving strategies involving polynomials. Topics include multiplication, division, factoring, solving equations, and polynomial functions. The unit culminates in problem-solving applications and graphing polynomial functions.

1.1 Multiplying Polynomials

Objectives

- Multiply a monomial by a polynomial using the distributive property.
- Multiply binomials
- Multiply a binomial by a trinomial
- Multiply any size polynomial by any polynomial

Steps for Multiplying Polynomials

- 1. Use the distributive property to multiply terms.
- 2. Combine like terms to simplify the expression.

Example 2: Multiply (x+3)(x-5)

Example 3: Multiply
$$(x+2)(x^2-3x+4)$$

1.
$$2x(x^2 + 3x + 1)$$

2.
$$(x+4)(x-2)$$

3.
$$(2x+1)(x^2-x+5)$$

4.
$$3(x+2)(x-1)$$

5.
$$x(x^2 + 5x - 6)$$

6.
$$(2x-3)(x+4)$$

7.
$$(x+1)(x^2+2x+3)$$

8.
$$4(x-2)(x+3)$$

9.
$$2x(x+1)(x-5)$$

10.
$$(x-3)(2x^2+x+4)$$

11.
$$5x(x^2 - 4x + 3)$$

12.
$$(3x+2)(x-1)(x+5)$$

13.
$$x^2(x-2)(x+6)$$

14.
$$3(x+2)(x^2-x-4)$$

15.
$$(x+3)(x-1)(x+2)$$

16.
$$6x(x+5)(x-4)$$

17.
$$(x^2 + 4x + 4)(x - 3)$$

18.
$$2(x+1)(2x-3)(x+5)$$

19.
$$(x-2)^2(x+4)$$

20.
$$4(x+3)(x^2+x-2)$$

21.
$$(2x-1)(x+5)(x-3)$$

22.
$$x(x+4)(x^2-3x+2)$$

23.
$$(3x^2 + x - 4)(x - 1)$$

24.
$$2(x-5)(x+2)(x-1)$$

1.2 Dividing Polynomials and GCF Factoring

Objectives

- Divide polynomials by monomials.
- Simplify expressions by reducing coefficients and exponents.
- Factor polynomials using the greatest common factor (GCF).

Steps for Division

- 1. Divide each term of the polynomial by the monomial.
- 2. Simplify by dividing coefficients and subtracting exponents.

Example 1: Divide
$$6x^3 + 12x^2 - 9x$$
 by $3x$

Example 2: Divide $9x^4 + 27x^2 - 12x^3$ by $3x$

Steps for GCF Factoring

- 1. Identify the greatest common factor of all terms.
- 2. Factor out the GCF.

Example: Factor $4x^3 + 8x^2 + 12x$

Example: Factor $4x^5 + 12x^3 + 24x$

1. Divide
$$10x^4 - 15x^3$$
 by $5x$.

2. Factor
$$6x^2 + 18x + 12$$
.

3. Factor
$$3x^4 - 9x^3 + 6x^2$$
.

4. Divide
$$x^3 + 2x^2 + x$$
 by x .

5. Divide
$$8x^3 - 12x^2 + 16x$$
 by $4x$.

6. Factor
$$5x^2 + 10x + 15$$
.

7. Factor
$$4x^3 + 8x^2 - 12x$$
.

8. Divide
$$x^4 + 3x^3 - x^2$$
 by x^2 .

9. Divide
$$6x^5 - 9x^4 + 12x^3$$
 by $3x^2$.

10. Factor
$$2x^2 + 14x + 24$$
.

11. Factor
$$9x^3 - 27x^2 + 18x$$
.

12. Divide
$$2x^4 + 6x^3 + 4x^2$$
 by $2x^2$.

13. Divide
$$12x^3 - 18x^2 + 6x$$
 by $6x$.

14. Factor
$$10x^2 + 20x - 30$$
.

15. Factor
$$6x^3 - 24x^2 + 18x$$
.

16. Divide
$$x^5 + 2x^4 + x^3$$
 by x^3 .

17. Divide
$$15x^4 - 5x^3 + 10x^2$$
 by $5x^2$.

18. Factor
$$8x^2 + 16x + 24$$
.

19. Factor
$$4x^3 - 16x^2 + 12x$$
.

20. Divide
$$9x^4 + 27x^3 - 18x^2$$
 by $3x^2$.

1.3 Factoring by Grouping

Objectives

- Factor polynomials with four or more terms by grouping.
- Apply grouping techniques to simplify expressions.

Steps for Factoring by Grouping

- 1. Group the terms into two pairs.
- 2. Factor out the greatest common factor (GCF) from each group.
- 3. If the remaining binomials are the same, factor them out.

Example: Factor $x^3 + 3x^2 + 2x + 6$

$$x^3 + 3x^2 + 2x + 6$$

- 1. Group terms: $(x^3 + 3x^2) + (2x + 6)$.
- 2. Factor out GCF from each group: $x^2(x+3) + 2(x+3)$.
- 3. Factor out the common binomial: $(x+3)(x^2+2)$.

- 1. Factor $x^3 + 2x^2 + x + 2$.
- 2. Factor $2x^3 + 4x^2 + 3x + 6$.
- 3. Factor $3x^3 9x^2 + 4x 12$.
- 4. Factor $x^4 2x^3 + 3x 6$.
- 5. Factor $x^3 x^2 + 2x 2$.
- 6. Factor $4x^3 + 8x^2 2x 4$.
- 7. Factor $3x^3 + 6x^2 x 2$.
- 8. Factor $x^4 + 3x^3 2x 6$.
- 9. Factor $2x^3 + 3x^2 + 4x + 6$.
- 10. Factor $x^3 3x^2 + 2x 6$.

- 11. Factor $3x^3 x^2 + 6x 2$.
- 12. Factor $2x^4 + 4x^3 + 6x 12$.
- 13. Factor $x^3 + 5x^2 4x 20$.
- 14. Factor $2x^3 + 6x^2 + x + 3$.
- 15. Factor $x^3 4x^2 3x + 12$.
- 16. Factor $3x^3 6x^2 + 2x 4$.
- 17. Factor $4x^4 + 8x^3 3x 6$.
- 18. Factor $x^3 + x^2 x 1$.
- 19. Factor $2x^3 + 4x^2 + 3x + 6$.
- 20. Factor $x^4 3x^3 + 2x 6$.

1.4 Factoring Trinomials

Objectives

• Factor trinomials of the form $ax^2 + bx + c$, where:

Steps for Factoring Trinomials

- 1. Factor by decomposition. Multiply a and c, then find factors of ac that add to b.
- 2. Split the middle term and factor by grouping.

Example: Factor $2x^2 + 7x + 3$

1. Factor
$$x^2 + 6x + 8$$
.

2. Factor
$$3x^2 + 10x + 8$$
.

3. Factor
$$x^2 - 4x - 12$$
.

4. Factor
$$5x^2 + 14x + 8$$
.

5. Factor
$$x^2 + 5x + 6$$
.

6. Factor
$$4x^2 + 12x + 9$$
.

7. Factor
$$x^2 - 9x + 20$$
.

8. Factor
$$2x^2 + 7x + 3$$
.

9. Factor
$$x^2 - 6x + 8$$
.

10. Factor
$$3x^2 + 11x + 10$$
.

11. Factor
$$x^2 - 5x - 6$$
.

12. Factor
$$4x^2 + 8x + 3$$
.

13. Factor
$$x^2 + 4x + 3$$
.

14. Factor
$$5x^2 + 13x + 6$$
.

15. Factor
$$x^2 - 7x + 10$$
.

16. Factor
$$6x^2 + 15x + 9$$
.

17. Factor
$$2x^2 + 6x + 4$$
.

18. Factor
$$3x^2 - 8x - 3$$
.

19. Factor
$$x^2 + 3x - 10$$
.

20. Factor
$$2x^2 + 5x - 3$$
.

1.5 Factoring Special Products

Objectives

- Recognize and factor difference of squares.
- Recognize and factor perfect square trinomials.

Example: Factor $x^2 - 9$ (Difference of Squares)

Example: Factor $x^2 + 6x + 9$ (Perfect Square Trinomial)

1. Factor
$$x^2 - 16$$
.

2. Factor
$$4x^2 - 25$$
.

3. Factor
$$x^2 + 10x + 25$$
.

4. Factor
$$9x^2 - 12x + 4$$
.

5. Factor
$$x^2 - 9$$
.

6. Factor
$$16x^2 - 1$$
.

7. Factor
$$x^2 + 8x + 16$$
.

8. Factor
$$25x^2 - 36$$
.

9. Factor
$$4x^2 - 49$$
.

10. Factor
$$x^2 + 12x + 36$$
.

11. Factor
$$9x^2 - 1$$
.

12. Factor
$$x^2 - 6x + 9$$
.

13. Factor
$$36x^2 - 49$$
.

14. Factor
$$4x^2 + 4x + 1$$
.

15. Factor
$$x^2 - 25$$
.

16. Factor
$$16x^2 + 24x + 9$$
.

17. Factor
$$49x^2 - 64$$
.

18. Factor
$$x^2 + 14x + 49$$
.

19. Factor
$$81x^2 - 16$$
.

20. Factor
$$x^2 - 4x + 4$$
.

1.6 Solving Polynomial Equations (Factoring)

Objectives

- Solve polynomial equations by factoring.
- Use the zero product property to find solutions.

The Zero Product Property

The **Zero Product Property** states that if the product of two or more factors is zero, then at least one of the factors must be zero. Mathematically, if:

$$a \cdot b = 0$$
,

then either:

$$a = 0$$
 or $b = 0$.

Steps for Solving Polynomial Equations

- 1. Factor the polynomial completely.
- 2. Set each factor equal to zero.
- 3. Solve for the variable in each equation.

Example: Solve $x^2 + 5x + 6 = 0$ Example: Solve $9x^2 + 12x - 5 = 3x^2 - 7x + 2$ Example: Solve $16x^4 + 4x - 200 = 4(x+14)$

Real world Example 1

Imagine you want to create a rectangular flower bed in your garden. The design calls for the length to be 3 meters more than the width, and you need the area to be 70 square meters.

Real world Example 2

you're coaching a basketball team and want to know how long a shot stays in the air. Suppose a player releases the ball from a height of 8 feet with an upward force so that its height (in feet) is modeled by:

$$h(t) = -2t^2 + 6t + 8$$

Where h is height, and t is time in seconds.

1. Solve
$$x^2 + 7x + 12 = 0$$
.

2. Solve
$$3x^2 - 15x = 0$$
.

3. Solve
$$x^2 - 16 = 0$$
.

4. Solve
$$4x^2 + 12x + 9 = 0$$
.

5. Solve
$$x^2 + 5x + 6 = 0$$
.

6. Solve
$$2x^2 - 8x = 0$$
.

7. Solve
$$x^2 - 9 = 0$$
.

8. Solve
$$3x^2 + 6x + 3 = 0$$
.

9. Solve
$$x^2 + 4x + 3 = 0$$
.

10. Solve
$$5x^2 - 10x = 0$$
.

11. Solve
$$x^2 - 25 = 0$$
.

12. Solve
$$4x^2 + 8x + 4 = 0$$
.

13. Solve
$$x^2 + 6x + 8 = 0$$
.

14. Solve
$$2x^2 - 4x = 0$$
.

15. Solve
$$x^2 - 4 = 0$$
.

16. Solve
$$9x^2 + 12x + 4 = 0$$
.

17. Solve
$$x^2 + 3x + 2 = 0$$
.

18. Solve
$$3x^2 - 9x = 0$$
.

19. Solve
$$x^2 - 1 = 0$$
.

20. Solve
$$2x^2 + 4x + 2 = 0$$
.

1.7 Problem-Solving with Polynomials

Objectives

- Solve word problems involving polynomial equations.
- Apply polynomial operations to real-world scenarios, such as area, perimeter, and business contexts.

Example: Area Problem

The area of a rectangle is $12x^2 + 18x$. If the width is 6x, find the length.

Example: Revenue Problem

A company sells x units of a product at a price of (50-2x) dollars each. Find the revenue function and determine the maximum revenue.

- 1. The area of a triangle is $x^2 + 5x + 6$. If the base is x + 2, find the height.
- 2. The profit function of a business is $P(x) = -2x^2 + 40x 100$. Find the maximum profit.
- 3. The perimeter of a rectangle is $4x^2 + 8x$. If the width is x, find the length.
- 4. A farmer's total cost is $C(x) = 3x^2 5x + 10$. Find the cost when x = 4.

1.8 Completing the Square

Objectives

- Solve quadratic equations by completing the square.
- Rewrite quadratic equations in vertex form.

Steps for Completing the Square

- 1. Rewrite the equation in the form $ax^2 + bx + c = 0$.
- 2. Isolate the constant term on one side.
- 3. Add and subtract $\left(\frac{b}{2}\right)^2$ to complete the square.
- 4. Factor the trinomial and solve.

Example: Solve $x^2 + 6x + 5 = 0$ by completing the square

1. Solve
$$x^2 + 4x + 1 = 0$$

2. Solve
$$x^2 - 10x + 16 = 0$$

3. solve
$$x^2 + 8x + 15 = 8$$

4 solve
$$2x^2 + 14x + 14 = 2x + 5$$

5. Solve
$$x^2 + 5x + 6 = 0$$
.

6. Solve
$$x^2 - 6x + 9 = 0$$
.

7. Solve
$$x^2 + 7x + 10 = 8$$
.

8. Solve
$$2x^2 + 10x + 8 = 3x + 4$$
.

9. Solve
$$x^2 - 4x - 5 = 0$$
.

10. Solve
$$x^2 + 9x + 18 = 10$$
.

11. Solve
$$2x^2 + 12x + 8 = 2x + 7$$
.

12. Solve
$$x^2 + 2x + 1 = 4$$
.

13. Solve
$$x^2 - 12x + 35 = 0$$
.

4. solve
$$2x^2 + 14x + 14 = 2x + 5$$
 14. Solve $3x^2 + 15x + 12 = 5x + 6$.

15. Solve
$$x^2 + 3x - 4 = 0$$
.

16. Solve
$$x^2 + 11x + 30 = 5$$
.

17. Solve
$$2x^2 + 8x + 10 = 4x + 3$$
.

18. Solve
$$x^2 - 5x + 6 = 0$$
.

19. Solve
$$x^2 + 6x + 9 = 3x + 4$$
.

20. Solve
$$3x^2 - 6x + 1 = 2x - 7$$
.

1.9 Quadratic Formula

Objectives

- Derive and use the quadratic formula to solve equations.
- Analyze the discriminant to determine the nature of the roots.

Quadratic Formula

The quadratic formula is:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Steps for Using the Formula

- 1. Identify a, b, and c from the equation $ax^2 + bx + c = 0$.
- 2. Substitute into the formula and simplify.

Example: Solve $x^2 + 4x - 5 = 0$ using the quadratic formula Example: Solve $3x^2 + 2x - 5 = 0$ using the quadratic formula

1. Solve
$$x^2 + 6x + 9 = 0$$
.

2. Solve
$$2x^2 - 4x - 6 = 0$$
.

3. Solve
$$x^2 + 2x + 5 = 0$$
.

4. Solve
$$3x^2 - 12x + 9 = 0$$
.

5. Solve
$$x^2 + 6x + 9 = 5$$
.

6. Solve
$$2x^2 - 4x - 6 = 8$$
.

7. Solve
$$x^2 + 2x + 5 = 3x + 7$$
.

8. Solve
$$3x^2 - 12x + 9 = 15$$
.

9. Solve
$$x^2 - 4x + 3 = 10$$
.

10. Solve
$$2x^2 + 5x + 4 = 6x + 9$$
.

11. Solve
$$x^2 + 8x + 16 = 2x + 7$$
.

12. Solve
$$4x^2 - 3x - 2 = 1$$
.

13. Solve
$$x^2 + 10x + 25 = 12$$
.

14. Solve
$$2x^2 - 6x + 5 = 3x - 4$$
.

15. Solve
$$x^2 - 7x + 12 = 15$$
.

16. Solve
$$3x^2 + 9x + 6 = 5x + 4$$
.

17. Solve
$$x^2 + 3x + 2 = 10$$
.

18. Solve
$$5x^2 - 8x + 3 = x + 2$$
.

19. Solve
$$x^2 - 2x - 8 = 7$$
.

20. Solve
$$4x^2 + 6x + 1 = 2x + 10$$
.

1.10 Unit Review

Objectives

• Review all topics in the unit, including operations with polynomials, factoring, solving.

Expand the Following:

- 1. $2x(x^2+3x+1)$
- 2. (x+4)(x-2)
- 3. $(3x+1)(x^2-x+5)$
- 4. 4(x+2)(x-1)
- 5. $(x-3)(x^2+5x-4)$
- 6. 2x(x+1)(x-5)
- 7. $(x+3)(2x^2+x-1)$
- 8. 5(x-2)(x+4)
- 9. $x^2(x+3)(x-1)$
- 10. $3(x+5)(x^2-2x+3)$

Divide the Following:

- 11. $10x^4 15x^3$ by 5x
- 12. $x^3 + 2x^2 + x$ by x
- 13. $6x^5 9x^4 + 12x^3$ by $3x^2$
- 14. $x^4 + 3x^3 x^2$ by x^2
- 15. $12x^3 18x^2 + 6x$ by 6x
- 16. $8x^3 + 4x^2 16x$ by 4x
- 17. $2x^4 + 4x^3 6x^2$ by $2x^2$
- 18. $15x^4 10x^3 + 5x^2$ by $5x^2$
- 19. $4x^4 + 8x^3 12x^2$ by $2x^2$
- 20. $9x^3 18x^2 + 27x$ by 3x

Factor the Following:

21.
$$x^3 + 2x^2 + x + 2$$

22.
$$3x^3 - 9x^2 + 4x - 12$$

23.
$$x^4 - 2x^3 + 3x - 6$$

24.
$$2x^3 + 6x^2 + 4x + 12$$

25.
$$x^3 - 4x^2 + 3x - 12$$

26.
$$4x^3 + 8x^2 - 2x - 4$$

27.
$$3x^3 + 6x^2 - x - 2$$

28.
$$x^4 + 5x^3 - x - 5$$

29.
$$x^3 + 3x^2 - 2x - 6$$

30.
$$6x^3 + 18x^2 + 12x + 36$$

Factor the Following Trinomials:

31.
$$x^2 + 6x + 8$$

32.
$$3x^2 + 10x + 8$$

33.
$$x^2 - 4x - 12$$

$$34. 5x^2 + 14x + 8$$

35.
$$x^2 + 5x + 6$$

36.
$$2x^2 - 8x + 6$$

37.
$$x^2 - 9x + 20$$

38.
$$2x^2 + 7x + 3$$

39.
$$x^2 + 8x + 16$$

40.
$$4x^2 + 8x + 3$$

Solve the Following:

41.
$$x^2 + 7x + 12 = 0$$

42.
$$3x^2 - 15x = 0$$

43.
$$x^2 - 16 = 0$$

44.
$$4x^2 + 12x + 9 = 0$$

45.
$$x^2 + 5x + 6 = 0$$

46.
$$x^2 - 6x + 9 = 0$$

47.
$$x^2 + 7x + 10 = 8$$

$$48. \ 2x^2 + 10x + 8 = 3x + 4$$

49.
$$x^2 - 12x + 35 = 0$$

$$50. \ 3x^2 + 15x + 12 = 5x + 6$$

Factor the Following Special Products:

51.
$$x^2 - 16$$

52.
$$4x^2 - 25$$

53.
$$x^2 + 10x + 25$$

54.
$$9x^2 - 12x + 4$$

55.
$$x^2 - 25$$

56.
$$36x^2 - 49$$

57.
$$x^2 + 14x + 49$$

58.
$$16x^2 - 9$$

59.
$$x^2 - 4$$

60.
$$81x^2 - 16$$