AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently Amended) A method of queuing InfiniBand receive
2	traffic, comprising:
3	maintaining a single contiguous memory structure for queuing InfiniBand
4	traffic received via multiple virtual lanes and multiple queue pairs;
5	queuing one or more InfiniBand Send commands in a single queue,
6	wherein each said Send command comprises an encapsulated communication;
7	queuing a set of InfiniBand RDMA Read descriptors in said single queue;
8	selecting an entry in said single queue, wherein said entry comprises a
9	Send command or a set of said RDMA Read descriptors;
0	if said selected entry is a set of said RDMA Read descriptors:
1	issuing a set of RDMA Read requests to retrieve portions of a
2	communication described by said RDMA Read descriptors; and
3	as RDMA Read responses are received in response to said RDMA
4	Read requests, assembling said described communication in said single
5	queue; and
6	forwarding a communication associated with said selected entry, for
7	transmission on an external communication link, wherein said communication is
8	one of:
9	said encapsulated communication if said selected entry is a Send
0	command; and
1	said described communication if said selected entry is a set of

1

1

2

4

2	(Cancel	led)

- 3. (Currently Amended) The method of claim 23, wherein said single
 queue comprises one or more linked lists of memory buffers within said single
 memory structure.
- 4. (Currently Amended) The method of claim 1, further comprising:
 maintaining an assembly area of said single queue, in which said described
 communication is assembled; and
 maintaining a queuing area of said single queue, in which said one or more
 Send commands and said set of RDMA Read descriptors are queued.
 - (Original) The method of claim 4, wherein said RDMA Read responses are placed directly into said assembly area upon receipt.
- 1 6. (Currently Amended) The method of claim 4, further comprising, if 2 said selected entry is a set of RDMA Read descriptors: 3 appending space to said assembly area of said <u>single</u> queue based on an
- 7. (Currently Amended) The method of claim 4, further comprising:
 maintaining a first head pointer configured to identify a head of said
 assembly area of said single queue;
 maintaining a first tail pointer configured to identify a tail of said assembly
 area of said single queue;
- 6 maintaining a second head pointer configured to identify a head of said

expected size of said described communication.

7	queuing area of said single queue;
8	maintaining a second tail pointer configured to identify a tail of said
9	queuing area of said single queue; and
10	maintaining a next entry pointer configured to identify a next entry in said
11	single queue to be processed after said forwarding.

- 8. (Original) The method of claim 7, wherein said first head pointer is
 further configured to identify a beginning of said communication.
- 1 9. (Currently Amended) The method of claim 7, wherein said second
 2 tail pointer is configured to identify where in said single queue a next Send
 3 command or set of RDMA Read descriptors is to be queued.
- 1 10. (Original) The method of claim 1, further comprising:
 2 maintaining a set of pointers configured to identify a beginning and an end
 3 of said communication.
- 1 11. (Currently Amended) The method of claim 10, wherein said set of pointers includes a head pointer configured to identify a head of said single queue.
 - (Original) The method of claim 1, wherein said assembling comprises dropping an RDMA Read response received out of order.
- 1 13. (Currently Amended) A computer readable medium storing
 instructions that, when executed by a computer, cause the computer to perform a
 method of queuing InfiniBand receive traffic, the method comprising:
 maintaining a single contiguous memory structure for queuing InfiniBand
 traffic received via multiple virtual lanes and multiple queue pairs;

2

6	queuing one or more InfiniBand Send commands in a single queue,
7	wherein each said Send command comprises an encapsulated communication;
8	queuing a set of InfiniBand RDMA Read descriptors in said single queue;
9	selecting an entry in said single queue, wherein said entry comprises a
10	Send command or a set of said RDMA Read descriptors;
11	if said selected entry is a set of said RDMA Read descriptors:
12	issuing a set of RDMA Read requests to retrieve portions of a
13	communication described by said RDMA Read descriptors; and
14	as RDMA Read responses are received in response to said RDMA
15	Read requests, assembling said described communication in said $\underline{\text{single}}$
16	queue; and
17	forwarding a communication associated with said selected entry, for
18	transmission on an external communication link, wherein said communication is
19	one of:
20	said encapsulated communication if said selected entry is a Send
21	command; and
22	said described communication if said selected entry is a set of
23	RDMA Read descriptors.
1	14. (Currently Amended) The computer readable medium of claim 13,
2	wherein the method further comprises:
3	maintaining an assembly area of said single queue, in which said described
4	communication is assembled; and
5	maintaining a queuing area of said single queue, in which said one or more
6	Send commands and said set of RDMA Read descriptors are queued.

1	15. (Currently Amended) The computer readable medium of claim 14,
2	wherein the method further comprises, if said selected entry is one of said RDMA
3	Read commands:
4	appending space to said assembly area of said single queue based on an
5	expected size of said described communication.
1	16. (Currently Amended) The computer readable medium of claim 15,
2	wherein the method further comprises:
3	maintaining a first head pointer configured to identify a head of said
4	assembly area of said single queue;
5	maintaining a first tail pointer configured to identify a tail of said assembly
6	area of said single queue;
7	maintaining a second head pointer configured to identify a head of said
8	queuing area of said single queue;
9	maintaining a second tail pointer configured to identify a tail of said
10	queuing area of said single queue; and
11	maintaining a next entry pointer configured to identify a next entry in said
12	single queue to be processed after said forwarding.
1	17. (Currently Amended) A method of queuing multiple types of
2	traffic in a single receive queue of a communication interface, the method
3	comprising:
4	maintaining a single contiguous memory structure for queuing InfiniBand
5	traffic received via multiple communication streams;
6	queuing a first entry comprising a first communication forwarded to the
7	communication interface by a host;
8	queuing a second entry comprising a set of descriptors configured to

9	describe a second communication stored on the host;
10	processing said first entry, wherein processing said first entry comprises:
11	determining whether said first communication is complete; and
12	forwarding said first communication to a communication module
13	for transmission; and
14	processing said second entry, wherein processing said second entry
15	comprises:
16	issuing requests to obtain portions of said second communication
17	described by said descriptors;
18	assembling said second communication in said single queue; and
19	forwarding said second communication to the communication
20	module for transmission.
1	18. (Original) The method of claim 17, wherein processing said second
2	entry further comprises:
3	determining whether said second communication has been fully
4	assembled.
1	19. (Original) The method of claim 17, further comprising:
2	maintaining a queuing area for queuing Send commands; and
3	maintaining an assembly area for assembling said second communication
4	from said portions of said second communication.
1	20. (Original) The method of claim 19, wherein processing said second
2	entry further comprises:
3	placing said portions of said second communication directly into said

assembly area upon receipt.

1	21. (Original) The method of claim 17, further comprising:
2	forwarding a previous communication to the communication module; and
3	selecting whichever of said first entry and said second entry has been
4	queued for the longest time.
1	22. (Currently Amended) The method of claim 21, wherein said
2	selecting comprises advancing a next entry pointer to the next entry in the single
3	receive queue.
1	23. (Original) The method of claim 22, wherein said selecting further
2	comprises reading a portion of a payload of said next entry to determine a traffic
3	type of said next entry.
1	24. (Currently Amended) The method of claim 17, wherein the single
2	receive queue comprises a set of linked memory buffers within said a single
3	contiguous memory structure configured as queues for one or more InfiniBand
4	queue pairs.
1	25. (Currently Amended) The method of claim 24, wherein processing
2	said second entry further comprises:
3	appending one or more free memory buffers of the single contiguous
4	memory structure to the single receive queue;
5	wherein said assembling comprises assembling said second
6	communication in said one or more memory buffers.
1	26. (Currently Amended) A computer readable medium storing
2	instructions that, when executed by a computer, cause the computer to perform a
3	method of queuing multiple types of traffic in a single receive queue of a

4	communication interface, the method comprising:
5	maintaining a single contiguous memory structure for queuing InfiniBand
6	traffic received via multiple communication streams;
7	queuing a first entry comprising a first communication forwarded to the
8	communication interface by a host;
9	queuing a second entry comprising a set of descriptors configured to
10	describe a second communication stored on the host;
11	processing said first entry, wherein processing said first entry comprises:
12	determining whether said first communication is complete; and
13	forwarding said first communication to a communication module
14	for transmission; and
15	processing said second entry, wherein processing said second entry
16	comprises:
17	issuing requests to obtain portions of said second communication
18	described by said descriptors;
19	assembling said second communication in said single queue; and
20	forwarding said second communication to the communication
21	module for transmission.
1	27. (Original) The computer readable medium of claim 26, wherein the
2	method further comprises:
3	maintaining a queuing area for queuing Send commands; and
4	maintaining an assembly area for assembling said second communication
5	from said portions of said second communication.
1	28. (Original) The computer readable medium of claim 27, wherein
2	processing said second entry further comprises:
3	placing said portions of said second communication directly into said

4 assembly area upon receipt.

5

11

12

- 29. (Currently Amended) An apparatus for queuing multiple types of 2 receive traffic in a communication interface, comprising:
- 3 a single queue for queuing multiple types of receive traffic commands, wherein each said command is associated with a communication to be transmitted 4 from the communication interface;
- a single contiguous memory structure shared by multiple communication 6 7 streams:
- 8 a head pointer configured to identify a head of said single queue;
- 9 a tail pointer configured to identify a tail of said single queue, wherein said traffic commands are enqueued at said tail; and 10
 - a next entry pointer configured to identify a next entry in said single queue to be processed.
- 30. (Currently Amended) The apparatus of claim 29, wherein said 2 single queue comprises an assembly area for assembling a communication 3 associated with a first type of receive traffic command.
- 31 (Currently Amended) The apparatus of claim 30, wherein said 2 single queue further comprises a queuing area for queuing a second type of receive traffic command. 3
- 1 32. (Original) The apparatus of claim 31, wherein said assembly area 2 and said queuing area are each delimited by a head pointer and a tail pointer.
- 1 33. (Original) The apparatus of claim 30, wherein said first type of 2 receive traffic command is an InfiniBand Send command comprising a set of

- 3 RDMA read descriptors configured to identify the communication associated with said first type of receive traffic command. 4
 - 34. (Original) The apparatus of claim 33, wherein a second type of receive traffic command is an InfiniBand Send command configured to encapsulate the communication associated with said second type of receive traffic command

1

2

3

4

1

- 35. (Original) The apparatus of claim 30, wherein: 2 said first type of receive traffic command comprises a set of descriptors, 3 wherein each said descriptor is configured to describe a portion of the communication associated with said command; and 4
- 5 the apparatus is configured to issue read requests to retrieve the portions of the communication described by the set of descriptors and assemble said portions 6 in said assembly area. 7
- 1 36. (Currently Amended) The apparatus of claim 29, further 2 comprising:
- 3 a transmit module configured to transmit the communications associated with said receive traffic commands: 4
- wherein each communication associated with a receive traffic command is 5 6 forwarded from said single queue to said transmit module after the 7 communication is determined to be complete.
- 37 (Currently Amended) The apparatus of claim 36, wherein a 2 communication is forwarded from said queue to said transmit module by passing 3 to the transmit module a set of pointers delimiting the communication within said single queue rather than passing the communication.

1	38. (Currently Amended) The apparatus of claim 29, wherein said
2	single queue comprises one or more linked lists of buffers within a single
3	contiguous memory structure configured to queue receive traffic for multiple
4	communication connections.
1	39. (Currenty Amended) A method of maintaining ordering of
2	transmission of outbound communications from an InfiniBand channel adapter,
3	the method comprising:
4	receiving on a first queue pair a first InfiniBand packet payload comprising
5	a set of RDMA (Remote Direct Memory Access) Read descriptors describing a
6	first communication;
7	after receiving said first InfiniBand packet, receiving on the first queue
8	pair a second InfiniBand packet payload comprising a portion of a second
9	communication;
10	after receiving said second InfiniBand packet, processing said first
11	InfiniBand packet payload by:
12	dispatching RDMA Read requests corresponding to said set of
13	RDMA Read descriptors;
14	receiving responses to said RDMA Read requests, said responses
15	comprising portions of the first communication;
16	assembling the first communication; and
17	transmitting the first communication from the channel adapter; and
18	only after said processing said first InfiniBand packet, processing said
19	second InfiniBand packet; and
20	maintaining a single contiguous memory structure for queuing InfiniBand
21	traffic received via multiple communication streams.

(Original) The method of claim 39, wherein said processing said

1

40.

- second InfiniBand packet comprises transmitting the second communication from
 the channel adapter.
- 1 41. (Currently Amended) The method of claim 39, wherein: 2 said receiving a first InfiniBand packet payload comprises queuing said
- 3 first InfiniBand packet payload in a first portion of a <u>single queue</u> associated with
 4 the first queue pair; and
- said receiving a second InfiniBand packet payload comprises queuing said
 second InfiniBand packet payload in the first portion of the single queue.
- 1 42. (Currently Amended) The method of claim 41, wherein said 2 assembling comprises:
- assembling said portions of the first communication in a second portion of
 the <u>single</u> queue.