Yakeen NEET 2.0 2026

Physical Chemistry by Amit Mahajan Sir Thermodynamics & Thermochemistry

DPP: 6

- **Q1** $0.16 \, \mathrm{g}$ of methane was subjected to combustion at $27^{\circ}\mathrm{C}$ in a bomb calorimeter system. The temperature of the calorimeter system (including water) was found to rise by $0.5^{\circ}\mathrm{C}$. Heat of combustion of methane at constant pressure is(Heat capacity of the calorimeter system is $17.7 \mathrm{~kJ~K^{-1}}$).
 - (A) 890 kJ
 - (B) -885 kJ
 - (C) + 890 kJ
 - (D) +885 kJ
- Q2 Standard enthalpy of formation is zero for
 - (A) $C_{diamond}$
 - (B) Br(g)
 - (C) $C_{
 m graphite}$
 - (D) $O_{3(g)}$
- $\mathbf{Q3}$ 18 g of water is taken to prepare the tea. Find out the internal energy of vaporization at $100^{\circ} C (\Delta_{vap} H \text{ for water at } 373 \text{ K})$ $40.66 \text{ kJ mol}^{-1}$
 - (A) $37.56 \text{ kJ mol}^{-1}$
 - (B) $-37.56 \text{ kJ mol}^{-1}$
 - (C) $43.73 \text{ kJ mol}^{-1}$
 - (D) $-43.76 \text{ kJ mol}^{-1}$
- **Q4** When 0.5~g of sulphur is burnt to $SO_2, 4.6~kJ$ of heat is liberated. What is the enthalpy of formation of Sulphur dioxide.
 - (A) +147.2 kJ
 - (B) -147 kJ
 - (C) -294.4 kJ

- (D) +294.4 kJ
- Q5 The enthalpy change for the reaction, $\mathrm{H}_2\mathrm{O}(\mathrm{s}) o \mathrm{H}_2\mathrm{O}(\ell)$ is called
 - (A) Enthalpy of formation
 - (B) Enthalpy of fusion
 - (C) Enthalpy of vaporisation
 - (D) Enthalpy of transition
- **Q6** The ΔH° for the reaction. $4 \text{ S(s)} + 6 \text{O}_2(\text{g}) \rightarrow 4 \text{SO}_3(\text{g}) \text{ is - } 1583.2 \text{ kJ}.$ Standard enthalpy of formation of sulphur trioxide is:
 - (A) -3166.4 kJ
 - (B) 3166.4 kJ
 - (C) -395.8 kJ
 - (D) 395.8 kJ
- dissociation enthalpy Q7 Bond is used to defining enthalpy change of a reaction as
 - (A) $\Delta H_r = \Sigma (Bond dissociation enthalpy)_{Reactant}$ Σ(Bond dissociation enthalpy)_{Product}
 - (B) $\Delta H_r = \Sigma (Bond dissociation enthalpy)_{Product}$ $-\Sigma$ (Bond dissociation enthalpy)_{Reactant}
 - (C) $\Delta H_r = \Sigma (Bond dissociation enthalpy)_{Product}$ + Σ (Bond dissociation enthalpy)_{Reactant}
 - (D) None of these
- **Q8** The heat released in neutralization of HCl and NaOH is 13.7kcal/mol, the heat released on neutralization of NaOH with CH_3COOH is 3.7 kcal/mol. The ΔH° of ionization of CH₃OOOH is
 - (A) 10.2kcal

- (B) 10kcal
- (C) 3.7kcal
- (D) 9.5kcal
- Q9 Heat of neutralization of strong acid by a strong base is equal to ΔH of
 - (A) $\mathrm{H}^+ + \mathrm{OH}^- \longrightarrow \mathrm{H}_2\mathrm{O}$
 - (B) $H_2O + H^+ \longrightarrow H_3O^+$
 - (C) $2H_2+O_2 \longrightarrow 2H_2O$
 - (D) $NH_4OH + HCl \longrightarrow NH_4Cl + H_2O$
- Q10 The Enthalpy of neutralization of acetic acid and sodium hydroxide is $-55.4 \mathrm{\ kJ}$. What is the enthalpy of ionisation of acetic acid?
 - (A) -5.54 kJ
 - (B) +5.54 kJ
 - (C) +1.9 kJ
 - (D) -1.9 kJ
- Q11 Which of the following acid has the lowest value (magnitude) of heat neutralization?
 - (A) CH_3COOH
 - (B) HCl
 - (C) HBr
 - (D) HI
- Q12 The enthalpy of neutralization of any strong acid and strong base is nearly equal to
 - (A) +57.3 kJ/mol
 - (B) -75.3 kJ/mol
 - (C) +75.3 kJ/mol
 - (D) -57.3 kJ/eq

Answer Ke	y
------------------	---

Q1	(A)	Q7	(A)
Q2	(C)	Q8	(B)
Q3	(A)	Q7 Q8 Q9 Q10 Q11	(A)
Q4	(C)	Q10	(C)
Q5	(B)	Q11	(A)
Q6	(C)	Q12	(D)

Android App | iOS App | PW Website