

Diplôme de Qualification en Physique Radiologique et Médicale

Faisceaux d'électrons de haute énergie : étude de la variation relative de la dose absorbée

Fiche n°4

Alexandre RINTAUD

Encadrant:

Thomas Marsac

Physicien médical, Centre René Gauducheau ICO, Saint Herblain

Table des matières

1	Intr	oducti	on	2				
2	Mat	tériels	et méthodes	2				
	2.1 Facteurs correctifs							
		2.1.1	Pression et température	2				
		2.1.2	Polarisation	3				
		2.1.3	Recombinaisons ioniques	3				
		2.1.4	Humidité	3				
	2.2	Protocole TRS-277						
	2.3	3 Protocole TRS-398						
	2.4	Profils	de dose \hdots	3				
3	Résultats							
	3.1	3.1 Rendements en profondeur						
		3.1.1	Influence de l'énergie	5				
		3.1.2	Influence de la taille de champ $\ \ldots \ \ldots$	5				
		3.1.3	Inlfuence de la DSP	6				
		3.1.4	Influence du détecteur	6				
	3.2	Profils	de dose	6				
		3.2.1	Inlfuence de l'énergie	6				
		3.2.2	Inlfuence de la taille de champ	6				
		3.2.3	Inlfuence de la DSP	6				
		3.2.4	Influence du détecteur	6				
	3.3	Facteu	rs d'ouvertur du collimateur	7				
\mathbf{R}	éfére	nces		10				

1 Introduction

2 Matériels et méthodes

		Référence	Comparaisons
	Champ (cm2)	10x10	6x6, 15x15, 20x20
Rendement	DSP (cm)	100	105, 110
Kendement	Energie (MV)	9	6, 12, 15, 18
	Détecteur	ROOS	CC13
	Champ (cm2)	10x10	6x6, 15x15, 20x20
	Energie (MV)	9	6, 12, 15, 18
Profils	Détecteur	CC13	ROOS
	Orientation du profil	Crossline	Inline
	DSP (cm)	100	105, 110
FOC	Energie (MV)	6	15

Table 1 – Différentes meures réalisées pour la dosimétrie relative

Matériel	Volulme sensible (cm ²)	Matériau	Constructeur	N° de série
Chambre Farmer 30013	0,6	Air	PTW	011924
Chambre ROOS	$0,\!35$	Air	PTW	002030
Electromètre Unidos	/	/	PTW	20505
Cuve à eau Blue Phantom 2	/	/	IBA	8173
Clinac iX 2300 (Clinac 3)		/	Varian	H141033

Table 2 – Matériel utilisé lors des mesures

2.1 Facteurs correctifs

L'utilisation d'une chambre d'ionnisation à cavité d'air étanche pour la mesure de la dose absolue engendre une fluctuation de la réponse du système de mesure en fonction de plusieurs paramètres. Il faut donc appliquer une correction de la mesure grâce à l'équation suivante :

$$M_{Q}^{'} = M_{Q} \times k_{T,P} \times k_{pol} \times k_{rec} \times k_{H} \tag{1}$$

Avec M_Q la charge mesurée sur l'électromètre, $k_{T,P}$ le facteur correctif de la pression et de la température, k_{pol} le facteur correctif de la polarisation de la chambre, k_{rec} le facteur correctif de la recombinaison ionique et k_H le facteur correctif des conditions hygrométriques.

2.1.1 Pression et température

Le facteur $k_{T,P}$ permet de corriger de la pression et de la température et se calcule de la manière suivante :

$$k_{T,P} = \frac{P_0 T}{T_0 P} \tag{2}$$

Avec P_0 et T_0 la pression et la température de référence, respectivement égales à 1013,25 hPa et 273,15 K, P et T sont la pression et la température de la salle lors de la mesure.

N.B.: La température de référence lors de l'étalonnage de la chambre d'ionisation n'est pas forcément 273,15 K. Il faut utiliser celle mentionnée sur le certificat d'étalonnage.

2.1.2 Polarisation

Ce facteur correctif, noté k_{pol} , permet de corriger de l'effet de la polarité appliquée à la chambre lors de la mesure :

$$k_{pol} = \frac{|M_{+}| + |M_{-}|}{2M} \tag{3}$$

Avec M_+ et M_- les charges mesurées pour les tensions V_+ et V_- respectivement et M est la réponse pour la tension utilisée en clinique. Si la tension appliquée lors des mesures est la même que celle pour laquelle la chambre a été étalonnée, le facteur k_{pol} n'est pas à appliquer.

2.1.3 Recombinaisons ioniques

Le facteur de recombinaison permet de corriger la réponse de la chambre d'ionisation sur le nombre de charges collectées. La mesure est sous estimée car des paires d'ions sont recombinées et ne rentrent pas en compte dans la mesure.

$$k_{rec} = a_0 + a_1 \left(\frac{M_1}{M_2}\right) + a_2 \left(\frac{M_1}{M_2}\right)^2$$
 (4)

Avec M_1 et M_2 les réponses aux tensions V_1 et V_2 respectivement, et a_0 , a_1 et a_2 sont les facteurs tabulés en fonction du rapport $\frac{V_1}{V_2}$ fournis par le protocole TRS-398 [1].

N.B.: le facteur k_{rec} n'est pas appliqué si la tension utilisée lors des mesures est la même tension qui a été appliqué lors de l'étalonnage par le laboratoire primaire.

2.1.4 Humidité

Ce facteur est égale à 1 lorsque l'humidité de la salle est comprise entre 20% et 80%, sinon il faut lui attribuer la valeur de 0,997.

2.2 Protocole TRS-277

2.3 Protocole TRS-398

$$D_{eau, Q} = M_Q' N_{D_{eau}, Q_0} k_{Q, Q_0}$$
(5)

Avec:

- M_O' la mersure de la charge corrigée des facteurs correctifs
- $\bullet \ N_{D_{eau}Q_0}$ le coefficient d'étalonnage en terme de dose dans l'eau
- k_{Q,Q_0} le facteur correctif de l'indice de qualité du faisceau

2.4 Profils de dose

Les profils de dose permettent d'évaluer la répartition de la dose suivant les axes perpendiculaires à l'axe du faisceau. Les profils sont composés de trois régions principales (voir figure 1) :

- ullet zone centrale
- pénombre
- dose hors champ

Pour évaluer les différents profils, plusieurs métriques sont à notre disposition :

• L'homogénéité permet d'évaluer la planéité de la zone centrale du profil. Cette métrique se calcule comme suit :

$$H = \frac{D_{max} - D_{min}}{D_{max} + D_{min}} \tag{6}$$

• La symétrie est définie de la manière suivante :

$$S = \max\left(\frac{D(-x)}{D(+x)}; \frac{D(+x)}{D(-x)}\right) \tag{7}$$

• La pénombre est la distance séparant le point à 20 % de la dose maximale et celui à 80 %. Il y a donc une valeur pour chacun des côtés du faisceau.

FIGURE 1 – Différentes régions d'un profil de dose

3 Résultats

3.1 Rendements en profondeur

3.1.1 Influence de l'énergie

FIGURE 2 – Inlfuence de l'énergie du faisceau d'électrons sur le rendement en profondeur

3.1.2 Influence de la taille de champ

FIGURE 3 – Inlfuence de la taille de champ du faisceau d'électrons sur le rendement en profondeur

3.2 Profils de dose 3 RÉSULTATS

FIGURE 4 – Influence de la DSP sur le rendement en profondeur

FIGURE 5 – Influence du détecteur sur le rendement en profondeur

- 3.1.3 Inlfuence de la DSP
- 3.1.4 Influence du détecteur
- 3.2 Profils de dose
- 3.2.1 Inlfuence de l'énergie
- 3.2.2 Inlfuence de la taille de champ
- 3.2.3 Inlfuence de la DSP
- 3.2.4 Influence du détecteur

 $\label{eq:figure 6-Influence} Figure 6-Influence de l'énergie du faisceau d'électrons sur le profil de dose$

3.3 Facteurs d'ouvertur du collimateur

 $\label{eq:figure 7-Inluence} Figure 7-Inluence de la taille de champ du faisceau d'électrons sur le profil de dose$

Figure 8 – Influence de la DSP sur le profil de dose

FIGURE 9 – Influence du détecteur sur le profil de dose

Figure 10 – Facteurs d'ouverture du collimateur

RÉFÉRENCES RÉFÉRENCES

Références

[1] Absorbed Dose Determination in External Beam Radiotherapy. Number 398 in Technical Reports Series. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2001.

[2] Charlotte Robert. Distribution de la dose absorbée dans un milieu : faisceau d'électrons de haute énergie. Cours Master 2 Paris.