Part 1: A simple linear regression: Power posing and testosterone

```
import pandas as pd
# Load the dataset
df powerpose = pd.read csv('/content/df powerpose.csv')
# Calculating the change in testosterone levels after treatment
df powerpose['delta testosterone'] = df powerpose['testm2'] -
df_powerpose['testm1']
# Perform linear regression using statsmodels
import statsmodels.api as sm
# Define the dependent variable (delta_testosterone) and independent
variable (hptreat)
# Convert 'Low' and 'High' categories to numerical (0 and 1)
A = df_powerpose['hptreat'].map({'Low': 0, 'High': 1})
B = df powerpose['delta testosterone']
# Add a constant to the independent variable (intercept)
A = sm.add constant(A)
# Fit the linear regression model
model = sm.OLS(B, A).fit()
# summary of the regression results
print(model.summary())
# Interpreting the results
print("Summary of linear regression results:\n", model.summary())
# Interpretation
# A significantly positive coefficient for 'hptreat' suggests that
high power posing is associated
# with a higher increase in testosterone levels compared to low power
posing.
# To assess if this association is statistically significant, we check
the p-value of
# the 'hptreat' coefficient. A value < 0.05 typically indicates
statistical significance.'''
```

OLS Regression Results						
======= ====== Dep. Variable:	======= : delta	a testosterone	==== e R	==== - saı	======================================	
0.048 Model:		_ 0L9		•	R-squared:	
0.022						
Method: 1.869		Least Squares	s F	-sta	ntistic:	
Date:	Mor	n, 01 Jul 2024	l P	rob	(F-statistic)	
0.180 Time:		19:55:44	l L	og - L	ikelihood:	
-171.48 No. Observation	nc :	39	λ Λ	IC:		
347.0)113 .					
Df Residuals: 350.3		37	' В	IC:		
Df Model:		1				
Covariance Typ	oe:	nonrobust				
======						
0.975]	coef	std err		t	P> t	[0.025
const	-4.3666	4.628	-0.9	44	0.351	-13.743
5.010 hptreat	8.8346	6.462	1.3	67	0.180	-4.259
21.928	0.0540	0.402	1.5	07	0.100	-4.233
========						
Omnibus: 2.135		0.353	B D	urbi	n-Watson:	
Prob(Omnibus):		0.838	3 J	arqı	ue-Bera (JB):	
0.524 Skew:		0.146	; P	roh([JB):	
0.770						
Kurtosis: 2.65		2.513	s C	ond.	No.	
		:=======				
======						
Notes: [1] Standard Errors assume that the covariance matrix of the errors is						
correctly specified. Summary of linear regression results:						
Summary of lir	near regres	ssion results: OLS Regr		on F	Results	
·· g. 000						

==========		=======					
====== Dep. Variable:	delta	_testosteron	е	R-squa	red:		
0.048 Model:		0L	.S	Adj. R-squared:			
0.022 Method:		Least Square	S	F-statistic:			
1.869 Date:		, 01 Jul 202		Prob (F-statistic):			
0.180	Piori						
Гіme: -171.48		19:55:4	4	Log-Likelihood:			
No. Observatio 347.0	ns:	3	9	AIC:			
Df Residuals: 350.3		3	7	BIC:			
Df Model:			1				
Covariance Typ	e:	nonrobus	t				
			===	======			
0.0751	coef	std err		t	P> t	[0.025	
0.975] 							
const	-4.3666	4.628	- 0	.944	0.351	-13.743	
5.010 hptreat	8.8346	6.462	1	. 367	0.180	-4.259	
21.928	0.05.0	01.102	_		0.200	255	
			===				
Omnibus: 2.135		0.35	3	Durbin	-Watson:		
Prob(Omnibus): 0.524		0.83	8	Jarque	-Bera (JB):		
Skew:		0.14	6	Prob(JB):			
0.770 Kurtosis: 2.65		2.51	.3	Cond. No.			
======================================	=======		===	======	========	========	
Notes:							
[1] Standard E correctly spec		me that the	COV	ariance	matrix of	the errors i	

Part 2: Poisson regression models and hypothesis testing

Exercise 2.1

- 1. A function calculate_crossings is defined wherein lambda_i is calculated using the formula given. After that, crossings are generated as random values samples taken from the poisson distribution of lambda_i calculated above.
- 2. Usage of the above model demonstrated using example values of parameters sentence_length, alpha and beta. It prints the number of crossings.

```
import numpy as np
def calculate crossings(sentence length, alpha, beta):
    Calculates the number of crossings in a sentence using a Poisson
model.
    Parameters:
    sentence length (int): Length of the sentence in number of words.
    alpha (float): Expected rate of crossings in a sentence of average
lenath.
    beta (float): Change in rate of crossings as a function of
sentence length.
    Returns:
    int: Number of crossings.
    # Compute lambda i (rate parameter for Poisson distribution) from
log of lambda i,
    # which is (alpha + (beta*sentence length))
    lambda i = np.exp(alpha + (beta * sentence length))
    # Generating number of crossings from Poisson distribution of
lambda i, by taking random samples.
    crossings = np.random.poisson(lambda i)
    return crossings
# Example usage of above model
sentence length = 11 # sentence length
alpha = 0.2 # Example alpha (expected crossings for average length
sentence)
beta = 0.03 # Example beta (change in crossings with sentence length)
# Calculate and print the number of crossings
num crossings = calculate crossings(sentence length, alpha, beta)
print("Number of crossings:", num crossings)
Number of crossings: 4
```

Exercise 2.2

We use the given prior data:

```
\alpha \sim Normal(0.15, 0.1)
```

$\beta \sim Normal(0.25, 0.05)$

and the sentence length = 4, as given. Prior predictions are calculated using the same calculate_crossings function. The result of the function, ni is the number of crossings sampled from the poisson distribution of lambda_i. These results are stored in a predictions[] array, which gives the required prior predictions for given sentence length of 4.

```
import numpy as np
# Function to calculate the expected rate parameter lambda i from
alpha and beta, same as part 2.1
def calculate crossings(alpha, beta, sentence length):
   # Calculate lambda i using equation (2) in question,
     lambda i = np.exp(alpha + beta * sentence length)
     # Draw samples from Poisson distribution with lambda i
     ni = np.random.poisson(lambda i)
     return ni
# Function to generate prior predictions for crossing dependencies
def generate prior predictions(sentence length, samples=10000):
    # Define prior distributions for alpha and beta
    alpha prior = np.random.normal(0.15, 0.1, samples) # Prior for
alpha
    beta prior = np.random.normal(0.25, 0.05, samples) # Prior for
beta
    # Generate predictions based on the Poisson distribution
    predictions = []
    for alpha, beta in zip(alpha prior, beta prior):
        #The samples generated in calculate crossings are the prior
predictions of the model.
        ni = calculate crossings(alpha, beta, sentence length)
        predictions.append(ni)
    return predictions
# Generate prior predictions for sentence length 4
sentence length = 4
prior predictions = generate prior predictions(sentence length)
# Display the results
print(f"Prior predictions of the model for sentence length
{sentence length}:")
print(prior predictions[:20]) # Display first 20 predictions
```

```
Prior predictions of the model for sentence length 4: [2, 4, 2, 3, 5, 5, 2, 2, 2, 1, 1, 4, 2, 5, 2, 1, 4, 5, 3, 4]
```

Exercise 2.3

We defined separate variables for both models M1 and M2

X_M1: stores sentence length

Y_M1: stores number of crossings

X_M2: stores sentence length along with an id indicating language(0 for English, 1 for German)

Y_M2: stores number of crossings

Model M1:

We use sentence length data independent of language to see its effect on number of crossings.

Model M2: We use sentence length data along with the language data to see how both of them interact, by observing their effect on number of crossings.

```
import pandas as pd
import statsmodels.api as sm
# Load the data
crossings data = pd.read csv('/content/crossings.csv')
## Model M1: Rate of Crossings as a Function of Sentence Length
# Define the dependent variable (number of crossings) and independent
variables (sentence length)
X_M1 = crossings_data[['s.length']]
X M1 = sm.add constant(X M1) # Add a constant term for the intercept
y M1 = crossings data['nCross']
# Fit the Poisson regression model for Model M1
model M1 = sm.GLM(y_M1, X_M1, family=sm.families.Poisson()).fit()
## Model M2: Different Rates of Crossings for English and German
# Create an indicator variable for language (0 for English, 1 for
German)
crossings data['s.id'] = (crossings data['Language'] ==
'German').astype(int)
# Define the dependent variable and independent variables for Model M2
X M2.loc[:, 'interaction'] = crossings data[['s.length', 's.id']]
X M2.loc[:, 'interaction'] = X M2['s.length'] * X M2['s.id']
\#X M2['interaction'] = X_M2['s.length'] * X_M2['s.id'] # Interaction
term
X M2 = sm.add constant(X M2) # Add a constant term for the intercept
y M2 = crossings data['nCross']
```

```
# Fit the Poisson regression model for Model M2
model M2 = sm.GLM(y M2, X M2, family=sm.families.Poisson()).fit()
# Summary for Model M1
summary M1 = model M1.summary()
print("Summary of Model M1:\n", summary M1)
# Summary for Model M2
summary M2 = model M2.summary()
print("Summary of Model M2:\n", summary M2)
# Interpretation:
# In Model M1, we look at the coefficients for 's.length' to
understand how sentence length affects the number of crossings.
# In Model M2, we look at the coefficients for 's.length', 's.id', and
'interaction' to understand how sentence length and language interact
to affect the number of crossings.
Summary of Model M1:
                 Generalized Linear Model Regression Results
Dep. Variable:
                              nCross No. Observations:
1900
                                 GLM Df Residuals:
Model:
1898
                             Poisson Df Model:
Model Family:
Link Function:
                                 Log Scale:
1.0000
Method:
                                IRLS Log-Likelihood:
-2813.4
Date:
                    Tue, 02 Jul 2024 Deviance:
2272.1
Time:
                            07:55:15 Pearson chi2:
2.08e+03
No. Iterations:
                                   5 Pseudo R-squ. (CS):
0.6070
Covariance Type:
                           nonrobust
                coef std err z P>|z|
                                                          [0.025
0.9751
             -1.4429 0.061 -23.755 0.000 -1.562
const
-1.324
```

s.length 0.157	0.1494	0.004	38.505	0.000	0.142		
======================================							
====== Dep. Variable:		nCros	ss No. Ob:	servations:			
1900 Model:		GL	_M Df Res:	iduals:			
1896 Model Family:		Poisso	on Df Mode	el:			
3 Link Function:		Lo	g Scale:				
1.0000 Method:		IRL	S Log-Lil	kelihood:			
-2677.7 Date:	Tue	, 02 Jul 202	24 Devian	ce:			
2000.7 Time:		07:55:1	L5 Pearsoi	n chi2:			
1.82e+03 No. Iterations: 0.6593			5 Pseudo	R-squ. (CS)	:		
Covariance Type	: :	nonrobus	st				
=======================================	coef	======= std err	======================================	======= P> z	[0.025		
0.975]					-		
const	-0.9057	0.081	-11.168	0.000	-1.065		
-0.747 s.length 0.108	0.0970	0.006	17.521	0.000	0.086		
s.id	-1.0257	0.122	-8.433	0.000	-1.264		
-0.787 interaction 0.111	0.0957	0.008	12.209	0.000	0.080		
=======================================							

Effect of Sentence Length: Both models show a positive and significant effect of sentence length on the number of crossings (nCross).

Language Difference: Model M2 explicitly captures differences between English and German sentences (s.id), showing that German sentences tend to have fewer crossings than English sentences.

Interaction Effect: Model M2 includes an interaction term (interaction), indicating that the effect of sentence length on crossings varies depending on the language.

Exercise 2.4

```
import pandas as pd
import numpy as np
import statsmodels.api as sm
from sklearn.model selection import KFold
import matplotlib.pyplot as plt
# Load the data
crossings data = pd.read csv('/content/crossings.csv')
# Visualize the average rate of crossings by sentence length by bar
graph
crossings data.groupby('s.length')['nCross'].mean().plot(kind='bar')
plt.xlabel('Sentence Length')
plt.ylabel('Average Rate of Crossings')
plt.title('Average Rate of Crossings by Sentence Length')
plt.show()
# Center the predictors sentence length and language id
crossings data['sentence length centered'] =
crossings data['s.length'] - crossings data['s.length'].mean()
crossings data['language ind centered'] = crossings data['s.id'] -
crossings_data['s.id'].mean()
# Set up k-fold cross-validation
k = 10 # Number of folds = 10
kf = KFold(n splits=k, shuffle=True, random state=1)
# Initialize arrays to store log predictive densities(lpd)
lpd M1 = np.zeros(k)
lpd M2 = np.zeros(k)
# Function to calculate log predictive density
def calculate lpd(model, X test, y test):
                                                           # test data
    predictions = model.get prediction(X test)
taken
    mean pred = predictions.predicted mean
                                                           # mean of
test data
    lpd = np.sum(y test * np.log(mean pred) - mean pred) # Poisson
log likelihood
    return lpd
# Fit the Models on training data and evaluate on test tata
for i, (train index, test index) in
enumerate(kf.split(crossings data)):
    # Split the data into training and test sets
```

```
train data, test_data = crossings_data.iloc[train_index],
crossings data.iloc[test index]
    #### M1 ####
    # Prepare training and test data for Model M1
    X_train_M1 = train_data[['sentence_length_centered']]
    X train M1 = sm.add constant(X train M1)
    y train M1 = train data['nCross']
    X test M1 = test data[['sentence length centered']]
    X test M1 = sm.add constant(X test M1)
    y test M1 = test data['nCross']
    # Fit Model M1
    model M1 = sm.GLM(y train M1, X train M1,
family=sm.families.Poisson()).fit()
    # Calculate log predictive density for Model M1
    lpd M1[i] = calculate lpd(model M1, X test M1, y test M1)
    #### M2 ####
    # Prepare training and test data for Model M2
    X train M2 = train data[['sentence length centered',
'language ind centered']].copy()
    X train M2['interaction'] = X train M2['sentence length centered']
* X train M2['language ind centered']
   X_train_M2 = sm.add_constant(X_train_M2)
    v train M2 = train data['nCross']
    X test M2 = test data[['sentence length centered',
'language ind centered']].copy()
    X_test_M2['interaction'] = X test M2['sentence length centered'] *
X_test_M2['language_ind_centered']
    X \text{ test } M2 = \text{sm.add constant}(X \text{ test } M2)
    y test M2 = test_data['nCross']
    # Fit Model M2
    model_M2 = sm.GLM(y_train_M2, X_train_M2,
family=sm.families.Poisson()).fit()
    # Calculate log predictive density for Model M2
    lpd M2[i] = calculate lpd(model M2, X test M2, y test M2)
# Calculate the mean log predictive density for both models M1 & M2
mean lpd M1 = np.mean(lpd M1)
mean lpd M2 = np.mean(lpd M2)
print(f'Mean log predictive density for Model M1: {mean lpd M1}')
print(f'Mean log predictive density for Model M2: {mean_lpd_M2}')
```

```
# Evidence in favor of M2 over M1
evidence = mean_lpd_M2 - mean_lpd_M1
print(f'Evidence in favor of Model M2 over Model M1: {evidence}')
```


Mean log predictive density for Model M1: -65.64008731874553 Mean log predictive density for Model M2: -65.38386264638359 Evidence in favor of Model M2 over Model M1: 0.25622467236193813

Visualizing Data: We start by visualizing the average rate of crossings by sentence length to get an initial understanding of the data (bar graph of the same).

Centering Predictors: We center the predictors s.length(sentence length) and s.id (language id) to ensure they have a mean of zero, which is a standard preprocessing step.

k-fold Cross-Validation Setup: We set up a 10-fold cross-validation (k=10) using KFold from sklearn.model_selection. This splits the data into 10 folds for training and testing.

Model Fitting and Evaluation: Inside the cross-validation loop:

We fit Model M1 and Model M2 using sm.GLM from statsmodels.api, specifying Poisson family for the likelihood. For each fold, we calculate the log predictive density (lpd) using a helper function calculate_lpd that computes the Poisson log likelihood based on predicted means.

Comparing Models: After cross-validation, we compute the mean log predictive density for both Model M1 and Model M2 across all folds.

Evidence Calculation: Finally, we calculate the evidence in favor of Model M2 over Model M1 by subtracting their mean log predictive densities.