

O que são redes neurais

Classe de modelos para resolução de problemas

 Aprendizado supervisionado ou não-supervisionado

 Podem ser aplicadas em inúmeras áreas de conhecimento

Cada tarefa é uma tarefa

- Para qualquer área, existem problemas
 - + simples
 - + complexos
- Muito dependente da base de dados disponível
- NNs são
 - Fáceis de implementar
 - Difíceis de alcançarem o resultado ótimo

Porque RNAs estão decolando?

O Perceptron

Output of neuron = Y = f(w1. X1 + w2. X2 + b)

RNA Vs. Regressão

Processo de ajuste da regressão

Processo de ajuste da RNA

Qual a diferença?

- Uma RNA possui funções de ativação
 - sigmoid
 - hiperbólica
 - o relu...
- Uma RNA tem um número de parâmetros muito maior

Porque funções de ativação?

- Limita alguns elementos da função resposta em um limite
- No caso da regressão logística
 - Função sigmoid
 - Limitante entre (0,1)

$$ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 x$$

$$=> P = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Porque um grande número de parâmetros?

- Quanto mais parâmetros
 - + flexibilidade para a função

Treinamento

- Assim como qualquer regressão
 - Função de custo
 - Depende do problema
 - Cálculo do custo para o modelo
 - Forward Propagation
 - Otimização dos parâmetros
 - Backward Propagation

Forward e Backward Propagation

- Um jeito de achar o conjunto de parâmetros que minimiza a perda
 - Diferença entre o observado e o predito
- Muita matemática
 - Álgebra Linear
 - Cálculo
- Gradient Descent (jogo)
 - https://www.i-am.ai/gradientdescent.html

Pro Jupyter!