UCLA Department of Statistics Statistical Consulting Center

Graphics for Exploratory Data Analysis in R: Part I

Irina Kukuyeva ikukuyeva@stat.ucla.edu

August 20, 2009

Outline

- Preliminaries
- 2 Summary Plots
- 3 Time Series Plots
- 4 Geographical Plots
- 3D Plots
- Simulations
- Online Resources for R

Preliminaries

Prelim

- Software Installation
- R Help
- Importing Data Sets into R
 - Importing Data from the Internet
 - Importing Data from Your Computer
 - Using Data Available in R
- Summary Plots
- Time Series Plots
- 4 Geographical Plots
- 5 3D Plots
- Simulations
- Online Resources for R

Prelim

Installing R on a Mac

- Go to http://cran.r-project.org/ and select MacOS X
- Select to download the latest version: 2.9.1 (2009-06-26)
- Install and Open. The R window should look like this:

R Help

For help with any function in R, put a question mark before the function name to determine what arguments to use, examples and background information.

?plot

Importing Data

Data from the Internet

When downloading data from the internet, use read.table(). In the arguments of the function:

- header: if TRUE, tells R to include variables names when importing
- sep: tells R how the entires in the data set are separated
 - sep=",": when entries are separated by COMMAS
 - $sep="\t":$ when entries are separated by TAB
 - sep=" ": when entries are separated by SPACE

```
data <- read . table ("http://www.stat.ucla.edu
2 /~vlew/stat130a/datasets/twins.csv",
```

```
header=TRUE, sep=",")
```


Importing Data

Prelim

Importing Data from Your Computer

- Oheck what folder R is working with now:
 - 1 getwd()
- Tell R in what folder the data set is stored (if different from (1)). Suppose your data set is on your desktop:
 - 1 setwd("~/Desktop")
- Now use the read.table() command to read in the data. substituting the name of the file for the website.

Prelim

Using Data Available in R

- To use a data set available in one of the R packages, install that package (if needed).
- 2 Load the package into R, using the library() function.
 - 1 library(alr3)
- Extract the data set you want from that package, using the data() function. In our case, the data set is called UN2.
 - 1 data(UN2)

- Preliminaries
- Summary Plots
 - Preliminaries
 - Segmented Bar Charts
 - Pie Charts
 - Histograms
- Time Series Plots
- Geographical Plots
- 5 3D Plots
- 6 Simulations
- Online Resources for R

Preliminaries

Loading data into R ¹

```
survey = read.table("http://www.stat.ucla.edu
        /~mine/students_survey_2008.txt", header =
          TRUE, sep = "\t")
      To see the variable names
   names(survey)
    # To refer to the variables by name:
    attach (survey)
[1] "gender"
              "hand"
                        "eyecolor"
                                   "glasses"
                                             "california"
              "birthday"
                                   "ageinmonths"
[6] "birthmonth"
                        "birthyear"
                                             "height"
[11] "graduate"
              "oncampus"
                        "time"
                                   "walk"
                                             "hsclass"
[16] "HSCA"
              "calculus"
                        "AP"
                                   "cell"
                                             "ipod"
[21] "sleep"
              "alcohol"
                                   "UCLA"
                                             "book"
                        "speed"
[26] "relax"
              "instructor"
                        "tire"
                                   "Quarter"
```

Segmented Bar Charts

Segmented bar charts

Displays two categorical variables at a time:

```
barplot(table(gender, hand
     ), col = c("skyblue", "
     blue"), main = "
     Segmented Bar Plot \n
     of Gender")
 legend("topleft", c("
     females", "males"), col
     = c("skyblue", "blue"),
      pch = 16, inset =
     0.05)
```


	ambidextrous	left	right]
female	9	67	806	l. 1.
male	11	45	387ul	ltin
	•		COTT	Uch

Pie Charts

Pie charts

Pie charts display counts as percentages of individuals in each category:

table (gender)

	gender
female	882
male	443

pie(<u>table</u>(gender))

Pie Chart of Gender

Adding Summary Statistics to Plots

Add the mean and median to a histogram:

```
hist(ageinmonths, main="
   Histogram of Age (Mo)")
abline(v=mean(ageinmonths)
, col = "blue")
abline(v=median(
   ageinmonths), col = "
   green")
legend("topright", c("Mean
   ", "Median"), pch = 16,
   col = c("blue", "green"))
```


Checking Normality

One of the methods to test for normality of a variable is to look at the histogram (the sample density is in red, the theoretical normal density in blue):

Histograms II

Checking Normality

Box and Whisker Plot I

Another method of looking at the distribution of the data is via boxplot:

```
data(quakes)
# Subset the magnitude:
ind<-ifelse(quakes[, 4]<4.5, 0, 1)
ind<-as.factor(ind)
boxplot(quakes[, 4]~ind)
# Alternatively:
library(lattice)
bwplot(quakes[, 4]~ind, xlab=c("Mag<4.5", "Mag")
>=4.5"), ylab="Magnitude")
```


Fiji EQ since 1964

Beanplot I

An alternative to the boxplot is the beanplot():

```
library(beamplot)
par(mfrow=c(1,2))
data(airquality)
boxplot(airquality[, 2], main="Boxplot", xlab=
   "Solar")
beamplot(airquality[, 2], main="Beamplot",
   xlab="Solar")
```


Beanplot II

Scatterplots I

A method of looking at the distribution and correlation of the data is via scatterplot.matrix():

```
data(quakes)
library(car)
scatterplot.matrix(quakes[, 1:4])
```


Scatterplots II

Checking Equality of Distributions I

A method of checking equality of distributions is via qq():

```
library(lattice)
  survey = read.table("http://www.stat.ucla.edu
     /~mine/students_survey_2008.txt", header
      TRUE, sep = "\t")
3 attach(survey)
  qq(gender ageinmonths)
```


Checking Equality of Distributions II

Identify-ing Observations I

Preliminaries

```
# Generate data and fit a regression curve:
set.seed(3012008)
x=rnorm(100); y=-x+I(x^2) +rnorm(100)
fit<-lm(y_x+I(x^2)); fit</pre>
```

Intercept	Х	x^2
0.1307	-0.9701	0.9549

```
1 # Plot the resulting regression curve:
2 plot(y_x, pch=19)
3 curve(expr=fit[[1]][1]+fit[[1]][2]*x+fit
        [[1]][3]*I(x^2), from=range(x)[1], to=
        range(x)[2], add=TRUE, col="blue", lwd=2)
```

4日 > 4周 > 4 至 > 4 至 >

Identify-ing Observations II Preliminaries

Identify-ing Observations I

Left-click on the observations in the graphics window to see the row number.

Right-click on the observation to exit the function.

```
# Plot the data and fit the regression curve:
plot(y_x, pch=19)
curve(expr=fit[[1]][1]+fit[[1]][2]*x+fit
[[1]][3]*I(x^2), from=range(x)[1], to=
    range(x)[2], add=TRUE, col="blue", lwd=2)
# Identify the "outlying" observations:
index<-identify(y_x); index</pre>
```


Identify-ing Observations II

- Preliminaries
- 2 Summary Plots
- Time Series Plots
 - Univariate Plots
 - Multivariate Plots
- 4 Geographical Plots
- 5 3D Plots
- 6 Simulations
- Online Resources for R

Univariate Time Series Plot ²

To plot one variables one at a time, use plot():

```
data (EuStockMarkets)
dax <- EuStockMarkets[, 1]
plot(dax)
```


²This section is from the SCC Mini-Course "Introductory Time Series with R" by Irina Kukuyeva ∢□→ ∢圖→ ∢差→ ∢差→

Multivariate Time Series Plots I

Approach 1

To plot more than variables one at a time, use plot():

```
# Convert data to a time series via ts() or
      zoo():
2 data(airquality)
  a <- airquality [, 1:3]
4 time <-ts(1:nrow(a), start=c(1973, 5),
      frequency=365)
  # If your data is stored as a data frame,
  # coerce it to be a matrix via as.matrix()
  class(a)
  a.mat<-as.matrix(a)
g
10
```


Multivariate Time Series Plots II

Approach 1

Multivariate Time Series Plots III

Approach 1

Plots of Ozone and Solar

Multivariate Time Series Plots I

Approach 2

To plot more than variables one at a time, use mvtsplot():

- For documentation, go to: www.jstatsoft.org/v25/c01/paper
- Go to: http://www.biostat.jhsph.edu/~rpeng/RR/mvtsplot/
- Copy the relevant R Code and paste it into the R Console.
 Press ENTER.
- Plot your data

```
1  # After processing data as in Approach 1
2  # Plot the variables
3  mvtsplot(name.zoo)
```

3 mvtsplot(name.200)

```
# Purple=low, grey=medium, green=high,
    white=missing values
```


Multivariate Plots

Multivariate Time Series Plots II

Approach 2

Multivariate Time Series Plots I

Approach 3

To plot more than variables one at a time, use xyplot():

After processing data as in Approach 1

Multivariate Plots

Multivariate Time Series Plots II

Approach 3

- Preliminaries
- 2 Summary Plots
- Time Series Plots
- 4 Geographical Plots
 - Maps
 - Projection Maps
- 5 3D Plots
- Simulations
- Online Resources for R

Irina Kukuyeva ikukuyeva@stat.ucla.edu

Maps

Geographic Maps

Map of Fiji Earthquakes Since 1964

To overlay a map to a plot containing latitude and longitude, load the package maps:

```
data (quakes)
library (maps)
plot(quakes[, 2],
    quakes[, 1], xlim=
   c(100, 190), ylim=
   c(-40, 0)
map("world", add=T)
```


Projection Maps I

Map of Fiji Earthquakes Since 1964

For a different perspective of a map, use mapproject():

```
library(mapproj)
2 library(maps)
3 m <- map('world',plot=FALSE)</pre>
 # Projection is Azimuthal with equal-area
  map('world', proj='azequalarea', orient=c(
     longitude=0,latitude=180,rotation=0))
  map.grid(m,col=2)
  points(mapproject(list(y=quakes[which(quakes[,
      4] >= 6), 1], x = quakes[which(quakes[, 4] >= 6)
      , 2])), col="blue", pch="x", cex=2)
```


Summary TS Geo 3D Plots Simulations Resource

Projection Maps

Projection Maps II

Map of Fiji Earthquakes Since 1964

Projection Maps

Bonus Feature of the maps package:

To determine in which part of the world the observations are (based on latitude and longitude), use map.where():

```
in.what.country <- map.where(database="world",
   quakes[, 2], quakes[, 1])
```

To determine which observations are in the ocean:

```
# Number of points in ocean after filtering:
ind <- sum (is. na (in. what. country)); ind
# Number of observations: 1000
# Number in Ocean: 993
```


- Preliminaries
- 2 Summary Plots
- Time Series Plots
- 4 Geographical Plots
- 3D Plots
 - lattice library
 - rgl library
- Simulations
- Online Resources for R

One way to create 3D images is with the package lattice:

```
Method 1: Using
wireframe():
  library(lattice)
   wireframe (volcano,
      color.palette =
      terrain.colors,
      asp = 1, color.key
      =TRUE, drape=TRUE,
       scales = list(
      arrows = FALSE))
```


Method 2: Same image with the levelplot():

```
library(lattice)
levelplot(volcano,
    color.palette =
    terrain.colors,
    asp = 1, color.key
    =TRUE, drape=TRUE,
    scales = list(
    arrows = FALSE))
contour(volcano, add=
    TRUE, lwd=1.3,
    labcex=1.3)
```


Another way to create 3D images is with the package rgl:

```
library(rgl)
data(quakes)
plot3d(x=quakes[, 2],
    y=quakes[, 1], z=
   quakes[, 3], xlab=
   "Longitude", ylab=
   "Latitude", zlab="
   Depth")
```


- 1 Preliminaries
- 2 Summary Plots
- Time Series Plots
- 4 Geographical Plots
- 3D Plots
- 6 Simulations
- Online Resources for R

Simulations I

Preliminaries: The function outer()

```
couter(x,y)
[,1] [,2] [,3]
[1,] 5 10 15
[2,] 6 12 18
```

x=5:6; y=1:3

```
fcn<-function(x,y){z=x+y}
tuber(x,y,fcn)

[,1] [,2] [,3]
[1,] 6 7 8
[2,] 7 8 9</pre>
```


Simulations II

Suppose we want to know what the function $y \times sin(x)$ looks like:

```
# Sample from the random uniform:
2 x <- sort(runif(100, min=0, max=10))</pre>
y \leftarrow x+runif(1)
4 f \leftarrow function(x,y) { r \leftarrow y*sin(x)}
5 z \leftarrow outer(x,y,f)
6 persp(x, y, z, col = "lightblue", shade = 0.1,
       ticktype = "detailed", expand=0.7)
```


Simulations III

Simulations IV

To visually see its maximum and minimum values, look at the contours of the function:

contour(x,y,z)

- Preliminaries
- 2 Summary Plots
- Time Series Plots
- 4 Geographical Plots
- 5 3D Plots
- 6 Simulations
- Online Resources for R

Download R: http://cran.stat.ucla.edu/

Resources

Download R: http://cran.stat.ucla.edu/

Search Engine for R: http://rseek.org

Resources

Download R: http://cran.stat.ucla.edu/

Search Engine for R: http://rseek.org

R Reference Card:

http://cran.r-project.org/doc/contrib/Short-refcard.pdf

Resources

Download R: http://cran.stat.ucla.edu/

Search Engine for R: http://rseek.org

R Reference Card:

http://cran.r-project.org/doc/contrib/Short-refcard.pdf

R Graphics Gallery:

http://addictedtor.free.fr/graphiques/

Download R: http://cran.stat.ucla.edu/

Search Engine for R: http://rseek.org

R Reference Card:

http://cran.r-project.org/doc/contrib/Short-refcard.pdf

R Graphics Gallery:

http://addictedtor.free.fr/graphiques/

UCLA Statistics Information Portal: http://info.stat.ucla.edu/grad/


```
Download R: http://cran.stat.ucla.edu/
```

Search Engine for R: http://rseek.org

R Reference Card:

http://cran.r-project.org/doc/contrib/Short-refcard.pdf

R Graphics Gallery:

http://addictedtor.free.fr/graphiques/

UCLA Statistics Information Portal: http://info.stat.ucla.edu/grad/

UCLA Statistical Consulting Center: http://scc.stat.ucla.edu

