

MySQL for Data Analytics

Lecturer: Yong Liu

Contact me at: Yong.liu@aalto.fi

- Last class but the start of a new journey
- Content difficulty beyond the beginner level.
 - Albeit as a beginner, you should 'look far'.
 - Need to spend time after the class to 'digest'
 - No worries if you don't fully understand the last class's content.
 - Useful for your future and in the long term

Content

- Association analysis
- Connecting database to R
- Commands for Root Users
- Text mining
- Close of the course

Principles Behind Common Analytic Tasks

- Prediction e.g. daily revenue of next 7 days
- Optimization e.g. logistic planning
- $\bullet \ \ Recommendation e.g. \boxed{association \ analysis}$
- Classification
- Clustering

Allocating your resources properly

- The first few lectures demand more memorization work, and very limited critical thinking.
- The last few lectures demand more critical thinking, in addition to some memorization work.

Advices:

- Keep pace with the lectures. Otherwise, you will find the course tremendously difficult in the last few lectures, if you do not get familiar with basic MySQL vocabulary.

Association Analysis

- Association analysis (AA) discovers the probability of the cooccurrence of items in a collection.
- **Association rules**: the relationships between co-occurring items.
- Applications of AA: Market-basket analysis & network analysis

Association Analysis – Example I

Customers who viewed this item also viewed

How I Saved the World > Jesse Watters ★★★★☆ 3,301

Hardcover #1 Best Seller in

<

<

Journalist Biographies \$17.64

+ \$35.48 shipping In Stock.

The Constitution and the Declaration of Independence: The... The Founding Fathers **★★★★** 5,232 Paperback

#1 Best Seller in Political

Reference \$6.95

+ \$35.48 shipping In Stock.

Liberty and Tyranny: A Conservative Manifesto > Mark R. Levin **★★★★** 4,643

Paperback 96 offers from \$3.37

\$8.99

SUMMARY OF AMERICAN MARXISM BV Mark R. Levin Alex John

** 1 A A A 27 Paperback

+ \$35.48 shipping In Stock.

The Long Slide: Thirty Years in American Journalism

> Tucker Carlson ★★★★☆ 41

Hardcover \$17.23

+ \$35.48 shipping In Stock.

Page 1 of 9

>

United States of Socialism: Who's Behind It. Why It's Evil. How to

Stop It.

> Dinesh D'Souza **★★★★** 4,841

Hardcover \$14.99

+ \$35.48 shipping In Stock.

Page

Customers who bought this item also bought

How I Saved the World > Jesse Watters ★★★★★ 3,301 Hardcover

#1 Best Seller (in Journalist Biographies \$17.64

+ \$35.48 shipping In Stock.

The Authoritarian Moment: How the Left Weaponized America's...

> Ben Shapiro ★★★★ 1,486

Hardcover #1 Best Seller in Fascism

\$17.44 + \$35.48 shipping In Stock.

Killing the Mob: The Fight Against Organized Crime in America (Bill... > Bill O'Reilly

★★★★★ 6,919 Hardcover #1 Best Seller in Organized Crime True

Accounts \$17.98 + \$35.48 shipping

In Stock.

Liberty and Tyranny: A Conservative Manifesto Mark R. Levin **★★★★** 4,643 Paperback

96 offers from \$3.37

The Constitution and the Declaration of Independence: The... The Founding Fathers **★★★★** 5,232 Paperback

#1 Best Seller in Political Reference \$6.95

+ \$35.48 shipping In Stock.

The Long Slide: Thirty Rediscovering Years in American Americanism: And the Journalism Tyranny of Progressivism > Tucker Carlson > Mark R. Levin ★★★★☆ 41 ★★★★ 2,659 Hardcover Paperback 40 offers from \$6.03

\$17.23 + \$35.48 shipping In Stock.

16.10.2023

Market Basket Example

Example II

https://www.analyticsvidhya.com/blog/2014/08/effective-cross-selling-market-basket-analysis/

Association Analysis – Example III

Translation of the Finnish words:

With children the time is rushing. Can you believe it's been a year since these wear-resistant clothes arrived for you?! Hopefully the little heroes will settle their Reima clothes even more. However, it would be time to check that the size is still suitable and the products are in good condition.

If your child has grown out of old clothes or shoes, or they are worn out, no worries: choose a larger size or check out our range of other waterproof, durable and multi-purpose products!

These you might like.

Market-basket analysis

- Valuable for direct marketing, sales promotions, and for discovering business trends. Market-basket analysis can also be used effectively for store layout, catalog design, and crosssell.
- In e-commerce, association rules may be used for Web page personalization.

Example: An association model might find that a user who visits pages A and B is 70% likely to also visit page C in the same session. Based on this rule, a dynamic link could be created for users who are likely to be interested in page C.

Association Analysis – Example IV

Words association

How do consumers evaluate different attributes of your products or services?

Association rules

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$	2/5	2/4	5/6
$A \Rightarrow C$	2/5	2/3	5/6
$B \& C \Rightarrow D$	1/5	1/3	5/9

An example of Association Rules

- 1. Assume there are 100 customers.
- 2. 10 of them bought milk, 8 bought butter and 6 bought both of them.
- 3. bought milk => bought butter.
- 4. support = P(Milk & Butter) = 6/100 = 0.06.
- 5. confidence = support/P(Butter) = 0.06/0.08 = 0.75.
- 6. lift = confidence/P(Milk) = 0.75/0.10 = 7.5.

Please note the rule $A \Rightarrow D$ differs from the rule $D \Rightarrow A$

16.10.2023

Core Function of Association Analysis

SELECT a.uid as Product1, b.uid as Product2,
COUNT(*) as Frequency
FROM EXAMPLE1 as a JOIN EXAMPLE1 as b
ON a.id = b.id AND a.uid > b.uid
GROUP BY a.uid, b.uid

example1 (3×10)					
Product1	Product2	Frequency			
Product b	Product a	2			
Product c	Product a	2			
Product d	Product a	1			
Product c	Product b	3			
Product d	Product b	2			
Product d	Product c	2			
Product e	Product a	1			
Product e	Product b	2			
Product e	Product c	2			
Product e	Product d	1			

Raw data

Co-occurrence frequency

SELECT a.id, a.uid as Person1, b.id, b.uid as Person2 FROM EXAMPLE1 as a JOIN EXAMPLE1 as b

ON a.id = b.id **AND** a.uid > b.uid

∫ Ⅲ EX	EXAMPLE1 (4×18)						
id	Person1	id	Person2				
1	Product d	1	Product a				
1	Product c	1	Product a				
1	Product b	1	Product a				
1	Product d	1	Product b				
1	Product c	1	Product b				
1	Product d	1	Product c				
2	Product e	2	Product a				
2	Product c	2	Product a				
2	Product b	2	Product a				
2	Product e	2	Product b				

EXAMPLE1 (4×18) id Person1 id Person2 1 Product d 1 Product a 1 Product c 1 Product a 1 Product a 1 Product b 1 Product d 1 Product b 1 Product b 1 Product c 1 Product d 1 Product c 2 Product e 2 Product a 2 Product c 2 Product a 2 Product b 2 Product a 2 Product e 2 Product b SELECT a.id, a.uid as Person1, b.id, b.uid as Person2
FROM EXAMPLE1 as a JOIN EXAMPLE1 as b
ON a.id = b.id AND a.uid > b.uid

SELECT a.uid as Person1, b.uid as Person2,

COUNT(*) as Frequency

FROM EXAMPLE1 as a JOIN EXAMPLE1 as b

ON a.id = b.id AND a.uid > b.uid

GROUP BY a.uid, b.uid

example	1 (3×10)	
Product1	Product2	Frequency
Product b	Product a	2
Product c	Product a	2
Product d	Product a	1
Product c	Product b	3
Product d	Product b	2
Product d	Product c	2
Product e	Product a	1
Product e	Product b	2
Product e	Product c	2
Product e	Product d	1

Compute the support for products

SELECT tb1.Product1, tb1.Product2, tb1.Frequency, tb1.Frequency/tb2.overall_frequency **from**

(SELECT a.uid as Product1, b.uid as Product2, COUNT(*) as Frequency
FROM EXAMPLE1 as a JOIN EXAMPLE1 as b
ON a.id = b.id AND a.uid > b.uid
GROUP BY a.uid, b.uid) AS tb1

Join

(SELECT uid AS focused_product, COUNT(*) AS overall_frequency
FROM EXAMPLE1 GROUP BY uid) AS tb2

ON tb1.Product2 = tb2.focused_product;

Product1	Product2	Frequency	tb1.Frequency/tb2.overall_frequency
Product b	Product a	2	1.0000
Product c	Product a	2	1.0000
Product d	Product a	1	0.5000
Product c	Product b	3	1.0000
Product d	Product b	2	0.6667
Product d	Product c	2	0.6667
Product e	Product a	1	0.5000
Product e	Product b	2	0.6667
Product e	Product c	2	0.6667
Product e	Product d	1	0.5000

$$Support = \frac{frq(X,Y)}{N}$$

$$Rule: X \Rightarrow Y \longrightarrow Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Lift = \frac{Support}{Supp(X) \times Supp(Y)}$$

Apply the code to real-life data

"Sample solution"

SELECT a.uid as Person1, b.uid as Person2,
COUNT(*) as Frequency
FROM EXAMPLE1 as a JOIN EXAMPLE1 as b
ON a.id = b.id AND a.uid > b.uid

GROUP BY a.uid, b.uid

id	hotel_id	username	review_date
145,862,376	99,453	Clint H	2012-11-21
145,862,934	82,868	ksmccormick	2012-11-21
145,862,957	81,042	GraemeLancashire	2012-11-21
145,863,001	84,095	MrsHollyAnn	2012-11-21
145,863,042	77,714	EMM87	2012-11-21
145,863,224	482,154	Maryann B	2012-11-21
145,863,335	91,042	bsintempe b	2012-11-21
145,863,338	100,617	traveler5125	2012-11-21

Can you revise the code to offer hotel recommendations for travelers?

Submit your answer to Presemo:

https://presemo.aalto.fi/drm/

Apply the code to real-life data

id	hotel_id	username	review_date
145,862,376	99,453	Clint H	2012-11-21
145,862,934	82,868	ksmccormick	2012-11-21
145,862,957	81,042	GraemeLancashire	2012-11-21
145,863,001	84,095	MrsHollyAnn	2012-11-21
145,863,042	77,714	EMM87	2012-11-21
145,863,224	482,154	Maryann B	2012-11-21
145,863,335	91,042	bsintempe b	2012-11-21
145,863,338	100,617	traveler5125	2012-11-21

SELECT a.username as username1,
 b.username as username2,
 COUNT(*) as Frequency
FROM review_df as a JOIN review_df as b
ON a.hotel_id = b.hotel_id
 AND a.username > b.username
GROUP BY a.username, b.username

Or

SELECT a.hotel_id as hotel_id1, b.hotel_id as hotel_id2, COUNT(*) as Frequency FROM review_df as a JOIN review_df as b ON a.username = b.username AND a.hotel_id > b.hotel_id GROUP BY a.hotel_id, b.hotel_id

Apply the code to real-life data

id	hotel_id	username	review_date
145,862,376	99,453	Clint H	2012-11-21
145,862,934	82,868	ksmccormick	2012-11-21
145,862,957	81,042	GraemeLancashire	2012-11-21
145,863,001	84,095	MrsHollyAnn	2012-11-21
145,863,042	77,714	EMM87	2012-11-21
145,863,224	482,154	Maryann B	2012-11-21
145,863,335	91,042	bsintempe b	2012-11-21
145,863,338	100,617	traveler5125	2012-11-21

SELECT a.hotel_id as hotel_id1, b.hotel_id as hotel_id2, COUNT(*) as Frequency
FROM review_df as a JOIN review_df as b
ON a.username = b.username
AND a.hotel_id > b.hotel_id
GROUP BY a.hotel_id, b.hotel_id

Can the code yield correct answers?

Submit your answer to Presemo: https://presemo.aalto.fi/drm/

Table: EXAMPLE2

id	hotel_id	💡 user_id	username	overall_rating	review_date	checkin_year	
646,693	199,923	(NULL)	(NULL)	5	2002-08-11	2,002	
646,694	228,670	(NULL)	(NULL)	4	2002-08-11	2,002	
809,978	228,670	(NULL)	(NULL)	3	2002-11-23	2,002	
833,841	249,056	(NULL)	(NULL)	5	2003-01-05	2,003	
841,271	206,760	(NULL)	(NULL)	5	2003-01-20	2,003	Uniqueness of the data [?]:
853,633	206,761	E4ED74B155D08686D9C032A5286D	TC1968	4	2003-02-05	2,003	Uniqueness of the data [:].
860,530	267,464	(NULL)	(NULL)	5	2003-02-23	2,003	
908,091	267,464	(NULL)	(NULL)	5	2003-03-04	2,003	A user may visit the same
987,116	263,808	(NULL)	(NULL)	4	2003-05-02	2,003	
1,070,394	228,682	CC9AB0C275A231756D0D1C0E443	Helga88	4	2003-06-04	2,003	hotel multiple times
1,108,965	232,283	C164F53CD27D809BC7210E34703B	Maura C	5	2003-06-25	2,003	Hotel Hullible IIIIles
1,137,703	228,670	(NULL)	(NULL)	4	2003-07-14	2,003	
1,138,665	596,136	8571D7E8520AA15C3EF73567142A	Nils S H	4	2003-07-15	2,003	
1,153,472	263,808	(NULL)	(NULL)	4	2003-07-29	2,003	
1,216,222	206,760	307FFC64E94BB40C7FB0E6674526F	european1	4	2003-08-05	2,003	
1,230,492	228,673	(NULL)	(NULL)	3	2003-08-16	2,003	

How do you prepare the data for the association analysis?

Reflections

- 1. Understanding the nature of your data is very important before any analysis.
- 2. Code that generates no error message does not necessarily generate the right results.
- 3. A good understanding of your data albeit take time and yields no direct output is very important!

Association of more than two products

SELECT a.uid as Person1, b.uid as Person2,

COUNT(*) as Frequency

FROM EXAMPLE1 as a

JOIN EXAMPLE1 as b

ON a.id = b.id AND a.uid > b.uid

GROUP BY a.uid, b.uid

example1 (3×10) Product1 Product2 Frequency Product b Product a Product c Product a Product d Product a Product b Product c Product d Product b Product c Product d Product e Product a Product b Product e Product e Product c Product d Product e

Co-occurrence frequency of **two** products

Solution for three-products cooccurrence frequency? Submit your answer to Presemo

Product1	Product2	Product3	Frequency
Product c	Product b	Product a	2
Product d	Product b	Product a	1
Product d	Product c	Product a	1
Product d	Product c	Product b	2
Product e	Product b	Product a	1
Product e	Product c	Product a	1
Product e	Product c	Product b	2
Product e	Product d	Product c	1
Product e	Product d	Product b	1

Co-occurrence frequency of **three** products

Raw data

Solution for three-products co-occurrence frequency

```
SELECT a.uid as Product1, b.uid as Product2, c.uid as Product3, COUNT(*) as Frequency FROM EXAMPLE1 a

JOIN EXAMPLE1 b ON a.id = b.id AND a.uid > b.uid

JOIN EXAMPLE1 c ON a.id = c.id AND b.uid > c.uid

GROUP BY a.uid, b.uid, c.uid;
```

Product1	Product2	Product3	Frequency
Product c	Product b	Product a	2
Product d	Product b	Product a	1
Product d	Product c	Product a	1
Product d	Product c	Product b	2
Product e	Product b	Product a	1
Product e	Product c	Product a	1
Product e	Product c	Product b	2
Product e	Product d	Product c	1
Product e	Product d	Product b	1

Co-occurrence frequency of **three** products

Analytic mind

Can you generate the solution?

Data preparation:

- 1. What kinds of data would you need?
- 2. Any necessary manipulation of the data before analysis?

Analysis → **Prediction**:

What customers buy before predicts what they will buy now.

1. Does the sequence of purchase matter and how?

Submit your answer to Presemo: https://presemo.aalto.fi/drm/

review (5×	56,709)			
id	💡 user_id	P hotel_id	review_date	new_product_id
853,633	E4ED74B155D08686D9C032A5286D	206,761	2003-02-05	2,003
1,070,394	CC9AB0C275A231756D0D1C0E443	228,682	2003-06-04	2,003
1,108,965	C164F53CD27D809BC7210E34703B	232,283	2003-06-25	2,003
1,138,665	8571D7E8520AA15C3EF73567142A	596,136	2003-07-15	2,003
1,216,222	307FFC64E94BB40C7FB0E6674526F	206,760	2003-08-05	2,003
1,383,626	DD49C7A0F9B575384874F75C9B21	262,286	2003-10-09	2,003
1,496,549	BAA10872C4E4380C336DF0F9EF52	199,923	2003-11-22	2,003
1,541,745	8854F4A62CB84DC2DB48465E2907	202,626	2004-01-06	2,004
1,644,481	2B40B65CFF95534211587D0C3DC0	206,763	2004-02-09	2,004
1,715,016	023696A80B035229F9873306B3D8	293,333	2004-03-08	2,004
1,754,696	07A70590205F70B4329E58749BFAB	199,923	2004-03-29	2,004
1,777,602	E2C4BE6FA54491536BB6DAB1AB10	228,677	2004-04-12	2,004
1,777,683	E2C4BE6FA54491536BB6DAB1AB10	228,682	2004-04-12	2,004
1,785,803	DCB34C13526F81DF5975E7E5CB16	228,682	2004-04-13	2,004
1,869,142	2A8F276D2471783E1053D68A370C	238,453	2004-05-03	2,004
2,078,376	454C2DAAA0BD0F6526D90EF10986	206,765	2004-05-18	2,004
2,078,379	454C2DAAA0BD0F6526D90EF10986	237,708	2004-05-18	2,004
2,128,683	3C9DF04638A7A8228333A3355273	267,464	2004-05-28	2,004
2,268,991	6325AD565B1B895111151F30A963	199,923	2004-07-05	2,004
2,498,342	EC710E4F8F1F7B9365224C9C66CC7	228,674	2004-08-26	2,004

Raw data

Manipulation I

Data Preparation/Manipulation:

If time variable matters now, how to add that factor/variable into the association analysis?

Other considerations:

- 1. Association analysis AND/OR Prediction?
- 2. Association based on this year's sale data?
- 3. Association based on last year's sale data?
- 4. Association based on an integration of this year and last year's sale data?
- 5. An integration of association and prediction analysis?

Raw data

Manipulation I

Question: would this be a completed solution? Are we ready to run the code for association analysis?

Data Preparation/Manipulation:

If time variable matters now, how to add that fact/variable into the association analysis?

(SELECT id, user id, hotel id, review date, checkin year, CONCAT(hotel_id, '_','Predictor') AS new_product_id **FROM** review WHERE user_id IS NOT NULL AND checkin_year < 2015

LIMIT 15) union

(SELECT id, user id, hotel id, review date, checkin year, CONCAT(hotel id, ' ', 'Outcome') AS new product id

FROM review

WHERE user id IS NOT NULL AND checkin year >= 2015 **LIMIT** 10)

Result #1 (6×15)				
id	A ↓ user_id	hotel_id	review_date	checkin_year	new_product_id
314,109,325	000A1DFEFDAE9CAB77EB	228,682	2015-09-27	2,015	228682_Outcome
275,334,075	000ECDFA5D2DDBDF7479	228,686	2015-05-28	2,015	228686_Outcome
275,341,210	000ECDFA5D2DDBDF7479	228,673	2015-05-28	2,015	228673_Outcome
147,423,657	0004FF72BDDF25A752B70	267,464	2012-12-13	2,012	267464_Predictor
312,100,406	0008D1BACA977284D9DD	232,150	2015-09-20	2,015	232150_Outcome
225,432,633	00017FF6229848D7515CB	232,143	2014-08-30	2,014	232143_Predictor
227,105,065	00017FF6229848D7515CB	1,840,189	2014-09-05	2,014	1840189_Predictor
294,869,698	00044C8B32E2D18B687E6	2,151,632	2015-08-01	2,015	2151632_Outcome
106,676,859	000491C9528EBE3302CA4	232,307	2011-05-03	2,011	232307_Predictor
256,942,638	000859B4AFE2A75400EDD	281,329	2015-02-28	2,015	281329_Outcome
293,192,416	0002576AD91EE9065846B	578,920	2015-07-27	2,015	578920_Outcome
335,151,566	0003911E45A14147EF812	578,920	2015-12-26	2,015	578920_Outcome
336,762,288	0003976319D8996F54F4A	293,333	2016-01-02	2,016	293333_Outcome
					20

Connect R to MySQL: Building Connection

```
#install R package to obtain the relevant functions
install.packages("RMySQL")
#activate the package and relevant functions
library(RMySQL)
#Connect R to MySQL (template):
mydb = dbConnect(MySQL(), user='user', password='password',
dbname='database_name', host='host / database url')
#An example of the connection
mydb = dbConnect(MySQL(), user='b00009', password='Pb00009',
dbname='Db00009', host='johnson.org.aalto.fi')
```

Connect R to MySQL: Fetch Data

#Show the list of the tables in our database connection.

dbListTables(mydb)

#Retrieve data from the database.

rs = dbSendQuery(mydb, "select * from payments")

#Save the retrieved data to a R dataframe.

df = fetch(rs, n=-1)

#This function saves retrieved MySQL data as a data frame object. The n in the function specifies the number of records to retrieve, using n=-1 retrieves all pending records.

View(df) #This function helps you to see the data.

Connect R to MySQL: Descriptive Statistics

plot(attitude) #plot an embedded dataset termed as attitude

install.packages("skimr")

#install a package to get function for descriptive statistics

library(skimr) #activate the package skim(attitude) skim(df) #activate the package cor(attitude) #correlation analysis

Other functions for root users

Task: create a new database and a new user account (including both ID and password), and grant permission to the user to use the database

```
create database newdatabase;
```

create USER 'user' identified BY 'password';

- create USER 'newtest5' identified BY 'newtest5' password expire; grant all ON newdatabase.* TO 'newtest5';

Other functions for root users

Importing large file: MySQL only allows to import relatively small size file in default. For importing large file, you need to change settings.

```
ERROR 1153 (08S01) at line 96: Got a packet bigger than 'max_allowed_packet' bytes
```

```
Set global max_allowed_packet = 2*1024*1024*10;
Set global wait_timeout=1000;
Set global interactive_timeout=1000;
```


Text mining using MySQL

- Your company received a huge amount of customer reviews on the products of the company from e.g., product review website or Facebook.
- You are supposed to compute associations between words, customers emotion expressed in the review, and how an emotion is associated with a particular product attribute.
- You have found and download the list of positive and negative emotion words.

Using MySQL for an analytic project

- 1. Code is a treasure!
- 2. The code can be copied and reused to do association or emotion analysis on any textual data, if imported into MySQL.

Bonus of sending your feedback

- Method: Webropol-survey, link of which will be sent to your email address.
- **Bonus**: One additional points (the full mark is 100 points)

Reflection

• Programming???

- R? Python?
- Stata Matlab?
- SPSS is not recommended you cannot remember what you have done to your data

Finally

- Statistics Explained A Guide for Social Science Students
- R, Stata, Matlab, Python?
- Econometrics

Summary of the MySQL skills (1)

- 1. Skills of Managing MySQL data file
 - Nature of .sql file (a summary MySQL commands).
 - Import .sql file
 - Import .csv file
 - Export .sql file (drop versus not drop)
 - Export to be .csv file (ctrl + End)

Summary of the MySQL skills (2)

- 2. Skills of managing MySQL account
 - Remote server account
 - Local user account

Summary of the MySQL skills (3)

- 3. Skills of operating MySQL database
 - Creating a new database
 - Create database [if not exists] DatabaseName;
 - Removing an existing database
 - Drop database [if exists] DatabaseName;
 - Activate a database (default database)
 - Use DatabaseName
 - Show the names of the all the databases
 - Show databases

Summary of the MySQL skills (4)

- 4. Skills of operating MySQL tables (2)
 - Show columns information of a table
 - Show columns from *TableName*;
 - Describe *TableName*;
 - Desc TableName;

COLUMNS (6×8)					
Field	Type	Null	Key	Default	Extra
employeeNumber	int(11)	NO	PRI	(NULL)	
lastName	varchar(50)	NO		(NULL)	
firstName	varchar(50)	NO		(NULL)	
extension	varchar(10)	NO		(NULL)	
email	varchar(100)	NO		(NULL)	
officeCode	varchar(10)	NO	MUL	(NULL)	
reportsTo	int(11)	YES	MUL	(NULL)	
jobTitle	varchar(50)	NO		(NULL)	

Summary of the MySQL skills (5)

- 5. Skills of operating MySQL tables (3)
 - Copy the structure and indexes, but not the data:
 - create table new_table like old_table;
 - Copy the structure, indexed and the data
 - Create table new_table like old_table;
 - Insert new table select * from old table;
 - Copy the data and the structure, but not the indexes:
 - create table new_table as select * from old_table;

Summary of the MySQL skills (6)

- 6. Skills of adding comment to MySQL query
 - From a "#" character to the end of the line.
 - From a "-- " sequence to the end of the line.
 - From a /* sequence to the following */ sequence.

Summary of the MySQL skills (7)

• 7. Skills of creating a table

Summary of the MySQL skills (8)

- 8. Skills of operating datatype
 - Numeric Types (integer, decimal and float)
 - Date and Time Types (year, date, datatime)
 - String Types (Char, Varchar)

Summary of the MySQL skills (9)

- 9. Skills of operating key in a table
 - Primary key, unique key and Foreign key
 - Adding key
 - Removing key
 - Set not null and auto_increment function
 - Entity-relationship diagram (ERD)

Summary of the MySQL skills (10)

- Skills of using select commands
 - Select for calculation and other function
 - Select 5+5; Select curtime(), curdate();
 - Select reserved word using `
 - Select all columns and rows using *
 - Select ... where...
 - =, <, <=, >, >=, !=
 - And / or / not
 - ()

- Between... and ...
- Not between ... and ...

Summary of the MySQL skills (11)

- Skills of using select commands
 - Select ... limit x, y
 - Select ... order by desc | asc

Summary of the MySQL skills (12)

- Select...like [binary]...
- Select... IN...
- Select ... REGEXP...
- Select...Distinct...
- Select ... LEFT(str,len) ...
- Select ... LENGTH(str) ...

Summary of the MySQL skills (13)

- Select ... TRIM ...
- Select ... SUBSTRING(str, pos, len) ...
- SUBSTRING_INDEX(str,delim,count)
- Select... REPLACE(str,from_str,to_str) ...
- Select...Group by...
- Count() + group by

Summary of the MySQL skills (14)

- Count(Distinct)+ Group by
- group_concat()+ Group by
- Select...Group by + having
- As [alias]
- = " != " is null is not null

Summary of the MySQL skills (15)

- DATE(expr)
- STR_TO_DATE()
- DAYNAME(date)
- DAYOFMONTH(date)
- DATE_ADD(date, INTERVAL expr unit)
- DATEDIFF(expr1,expr2)

Summary of the MySQL skills (15)

- Alter Table table_name Add column_name datatype
- Alter Table table_name Drop column_name

Delete from table_name [where conditions]

Summary of the MySQL skills (16) Sub-Queries

• The result of a select command represents one column (or a list of values). E.g.:

```
Select attributes

from table_1
Where attributes IN NOT IN

(Select ONE_column
from table_2
Where attributes)
```

Summary of the MySQL skills (17)

 Update table_name Set column_name1 = value|expression, column_name2 = value|expression, column_nameN = value|expression Where conditions;

Summary of the MySQL skills (I)

- **If**
- Case when
- Join
- Table and view
- Association analysis