Package 'twomodeclusteringGA'

September 15, 2025

550000000000000000000000000000000000000
Title Genetic Algorithm Based Two-Mode Clustering
Version 1.0.0
Description Implements two-mode clustering (biclustering) using genetic algorithms. The method was first introduced in Hageman et al. (2008) <doi:10.1007 s11306-008-0105-7="">. The package provides tools for fitting, visualization, and validation of two-mode cluster structures in data matrices.</doi:10.1007>
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>= 3.6)
Imports GA, stats, utils, ggplot2
<pre>URL https://github.com/joshageman/twomodeclusteringGA</pre>
BugReports https://github.com/joshageman/twomodeclusteringGA/issues
NeedsCompilation no
Author Jos Hageman [aut, cre]
Maintainer Jos Hageman < jos.hageman@wur.nl>
Repository CRAN
Date/Publication 2025-09-15 09:10:07 UTC
Contents
as.data.frame.twomodeClustering gaintegerMutation . gaintegerOnePointCrossover gaintegerPopulation . gaintegerTwoPointCrossover . monitorFactory . plotTwomodeClustering . print.summary.twomodeClustering .

Index	1	6
	validateTwomodePartition	3
	twomodeToy	3
	twomodeFitnessFactory	2
	twomodeClusteringGA	0
	summary.twomodeClustering	9
	print.twomodeClustering	8

```
as. {\tt data.frame.two modeClustering} \\ Convert\ a\ two modeClustering\ object\ to\ a\ data.frame
```

Description

This function creates a data.frame representation of a twomodeClustering object, listing the cluster assignments for both rows and columns.

Usage

```
## S3 method for class 'twomodeClustering'
as.data.frame(x, row.names = NULL, optional = FALSE, myMatrix = NULL, ...)
```

Arguments

X	An object of class 'twomodeClustering'.
row.names	Optional vector of row names for the resulting data.frame.
optional	Logical. If TRUE, allows optional parameters for data.frame.
myMatrix	Optional matrix to provide row and column names.
	Additional arguments (currently ignored).

Value

A data.frame with columns: name, type (row/col), and cluster assignment.

gaintegerMutation 3

Description

Performs mutation on a genetic algorithm individual by randomly changing cluster assignments with a specified probability.

Usage

```
gaintegerMutation(object, parent, ...)
```

Arguments

object GA object containing algorithm parameters.

parent Integer index of the parent individual to mutate.

... Additional arguments (not used).

Value

Numeric vector representing the mutated individual.

```
gaintegerOnePointCrossover
```

One-point crossover for genetic algorithm with integer encoding

Description

Performs one-point crossover between two parent individuals in the genetic algorithm, exchanging genetic material at a single randomly selected point.

Usage

```
gaintegerOnePointCrossover(object, parents, ...)
```

Arguments

object GA object containing algorithm parameters.

parents Integer vector of length 2 containing indices of parent individuals.

. . . Additional arguments (not used).

Value

List containing:

children Matrix with two rows representing the offspring **fitness** Vector of NA values (fitness will be calculated later)

gaintegerPopulation

Integer population initialization for genetic algorithm

Description

Generates an initial population for the genetic algorithm where each individual represents a clustering solution with integer cluster assignments.

Usage

```
gaintegerPopulation(object, ...)
```

Arguments

object GA object containing algorithm parameters.

... Additional arguments (not used).

Value

Matrix where each row represents an individual in the population and each column represents a cluster assignment.

```
gaintegerTwoPointCrossover
```

Two-point crossover for genetic algorithm with integer encoding

Description

Performs two-point crossover between two parent individuals in the genetic algorithm, exchanging genetic material between two randomly selected points.

Usage

```
gaintegerTwoPointCrossover(object, parents, ...)
```

Arguments

object GA object containing algorithm parameters.

parents Integer vector of length 2 containing indices of parent individuals.

... Additional arguments (not used).

Value

List containing:

children Matrix with two rows representing the offspring **fitness** Vector of NA values (fitness will be calculated later)

monitorFactory 5

monitorFactory

Two mode clustering monitoring function factory for GA progress

Description

Creates a monitoring function that prints the current generation and the best fitness score to the console at specified intervals. Intended for use as a monitor function in GA runs.

Usage

```
monitorFactory(interval = 100)
```

Arguments

interval

An integer specifying the interval for printing progress updates. Default is 100 (prints every 100 generations).

Value

A monitoring function that can be used with GA. The returned function takes a GA object and prints progress information at the specified interval.

Examples

```
# Create monitor that prints every 100 generations (default)
monitor <- monitorFactory()
# ga(..., monitor = monitor)

# Create monitor that prints every 50 generations
monitor <- monitorFactory(50)
# ga(..., monitor = monitor)</pre>
```

 $\verb|plotTwomodeClustering|| \textit{Plot two-mode clustering results (validation-aware, compact labels)}|$

Description

Heatmap of the clustered matrix with clear cluster boundaries. If result\$validation is present, each block shows one label with the chosen value plus significance stars.

Usage

```
plotTwomodeClustering(
 myMatrix,
 result,
 title = "",
 xlabel = "",
 ylabel = "",
 varOrder = 0,
 objOrder = 0,
 palette = c("diverging", "viridis", "grey"),
  showBoundaries = TRUE,
  boundaryColor = "white",
  boundarySize = 1,
  showMeans = TRUE,
  fixAspect = TRUE,
  showValidation = TRUE,
  value = c("mean", "standardized", "effectSS"),
  digits = 2,
  sigLevels = c(0.001, 0.01, 0.05, 0.1),
  showMarginal = TRUE,
  labelColor = "white",
  showGlobal = TRUE
)
```

Arguments

myMatrix	Numeric matrix or coercible data.frame with the data.
result	Result from $two mode Clustering GA()$, with $row Clusters$, $col Clusters$, and optionally validation.
title	Text for title.
xlabel	Text for x-axis label.
ylabel	Text for y-axis label.
var0rder	Order of column clusters ($0 = automatic$).
obj0rder	Order of row clusters $(0 = automatic)$.
palette	Color scale: "diverging", "viridis", or "grey".
showBoundaries	Logical; show cluster boundaries.
boundaryColor	Color of the boundaries.
boundarySize	Width of the boundaries.
showMeans	Logical; show block labels (value + stars if validation).
fixAspect	Logical; square cells.
showValidation	Logical; use validation information if available.
value	Which block statistic to label: "mean", "standardized", or "effectSS". For "standardized", sign(mean) * sqrt(chi^2_1) is shown if validation is available.
digits	Number of decimals in the label.

Value

A ggplot object.

Examples

```
data("twomodeToy")
myMatrix_s <- scale(twomodeToy)</pre>
#Run the GA-based two-mode clustering
result <- twomodeClusteringGA(</pre>
 myMatrix = myMatrix_s,
 nRowClusters = 2,
 nColClusters = 3,
 seeds = 1,
 maxiter = 200,
 popSize = 30,
 elitism = 1,
 validate = TRUE,
 verbose = TRUE
)
#Inspect the result
print(result)
summary(result)
myTwomodeResult <- as.data.frame(result)</pre>
head(myTwomodeResult)
#Plot the clustered heatmap
plotTwomodeClustering(
 myMatrix = myMatrix_s,
 result = result,
           = "Two-mode clustering Toy example",
 title
 fixAspect = FALSE
)
```

print.summary.twomodeClustering

Print method for summary.twomodeClustering objects

Description

Prints key information about a two-mode clustering result, including matrix dimensions, cluster sizes, fitness, and (if available) validation highlights.

Usage

```
## S3 method for class 'summary.twomodeClustering' print(x, \ldots)
```

Arguments

- x An object of class 'summary.twomodeClustering'.
- ... Additional arguments (currently ignored).

Value

Invisibly returns x.

```
print.twomodeClustering
```

Print method for two mode Clustering objects

Description

Prints a concise summary of a twomodeClustering object, including matrix dimensions, cluster counts, fitness, and (if available) validation results.

Usage

```
## S3 method for class 'twomodeClustering' print(x, ...)
```

Arguments

- x An object of class 'twomodeClustering'.
- . . . Additional arguments (currently ignored).

Value

Invisibly returns x.

```
summary.twomodeClustering
```

Summary method for two mode Clustering objects

Description

Creates a summary of a twomodeClustering object, including matrix dimensions, cluster sizes, fitness, optional bicluster summaries (if matrix available), and optional validation highlights (if validation is present).

Usage

```
## S3 method for class 'twomodeClustering'
summary(object, ...)
```

Arguments

object An object of class 'twomodeClustering'.
... Additional arguments (currently ignored).

Value

An object of class summary.twomodeClustering with components:

matrixDim Named integer vector: rows, cols

nRowClusters Number of row clusters

nColClusters Number of column clusters

rowClusterSizes Table of row cluster sizes

colClusterSizes Table of column cluster sizes

biclusters Data frame with bicluster summaries (if myMatrix present), possibly merged with validation per-block stats

fitness Best fitness value if available, else NA

validationGlobal List with r2, fStat, pValue, dfModel, dfResid, pMonteCarlo (if present), or NULL

nSigBlocks Number of BH-significant blocks at 0.05 if available, else NULL

rowContribution Data frame with total effectSS per row cluster (if available), else NULL

colContribution Data frame with total effectSS per column cluster (if available), else NULL

 ${\it two mode Clustering GA} \qquad {\it Two-mode \ clustering \ using \ genetic \ algorithm \ (with \ optional \ validation)}$

Description

Performs two-mode clustering on a numeric matrix using a genetic algorithm. The algorithm simultaneously clusters rows and columns to minimize within-cluster sum of squared errors (SSE). Optionally, a validation step is executed that tests the statistical significance of the found partition using validateTwomodePartition().

Usage

```
twomodeClusteringGA(
 myMatrix,
  nColClusters,
  nRowClusters,
  seeds = 1:5,
  verbose = FALSE,
 maxiter = 2000,
 popSize = 300,
  pmutation = 0.05,
 pcrossover = 0.5,
  elitism = 100,
  interval = 100,
  parallel = FALSE,
  run = NULL,
  validate = FALSE,
  validateCenter = TRUE,
  validatePerBlock = TRUE,
  validateMonteCarlo = 0L,
  validateFixBlockSizes = TRUE,
  validateStoreNull = FALSE,
  validateSeed = NULL
)
```

Arguments

myMatrix	Numeric matrix or data.frame to be clustered. Must be coercible to numeric.
nColClusters	Integer. Number of column clusters to form.
nRowClusters	Integer. Number of row clusters to form.
seeds	Integer vector. Random seeds for multiple GA runs. Default is 1:5.
verbose	Logical. If TRUE, prints progress information. Default is FALSE.
maxiter	Integer. Maximum number of GA iterations. Default is 2000.
popSize	Integer. Population size for the GA. Default is 300.

pmutation Numeric. Probability of mutation (0-1). Default is 0.05. pcrossover Numeric. Probability of crossover (0-1). Default is 0.5.

elitism Integer. Number of best individuals to preserve. Default is 100. If NULL, uses

5% of popSize.

interval Integer. Interval for progress monitoring when verbose=TRUE. Default is 100.

parallel Logical. Whether to use parallel processing. Default is FALSE.

run Integer. Number of consecutive generations without improvement before stop-

ping. If NULL, runs for full maxiter iterations.

validate Logical. If TRUE, run validation on the best partition and attach results under

\$validation. Default FALSE.

validateCenter Logical. Passed to validateTwomodePartition(center=...). Default TRUE.

validatePerBlock

Logical. Passed to validateTwomodePartition(perBlock=...). Default TRUE.

validateMonteCarlo

 $Integer.\ Number of random\ partitions\ for\ MC\ p-value.\ Passed\ to\ validate Two mode Partition (monte Carriago Partition) and the properties of the pr$

Default 0 (disabled).

validateFixBlockSizes

Logical. Keep observed cluster sizes in MC. Default TRUE.

validateStoreNull

Logical. Store full null vector from MC. Default FALSE.

validateSeed Optional integer seed for the validation step. Default NULL.

Details

The function runs multiple GA instances with different random seeds and returns the best solution. The fitness function minimizes the sum of squared errors within clusters. Row and column clusters are optimized simultaneously.

Value

A list of class "twomodeClustering" containing:

bestGa The best GA object from all runs

bestFitness Best fitness value achieved (negative SSE)

bestSeed Seed that produced the best result

rowClusters Integer vector of row cluster assignments

colClusters Integer vector of column cluster assignments

control List of control parameters used

validation List returned by validateTwomodePartition() if validate=TRUE; otherwise NULL

References

Hageman, J. A., van den Berg, R. A., Westerhuis, J. A., van der Werf, M. J., & Smilde, A. K. (2008). Genetic algorithm based two-mode clustering of metabolomics data. *Metabolomics*, 4, 141–149. doi:10.1007/s1130600801057

See Also

ga for the underlying genetic algorithm implementation

Examples

```
data("twomodeToy")
myMatrix_s <- scale(twomodeToy)</pre>
#Run the GA-based two-mode clustering
result <- twomodeClusteringGA(</pre>
  myMatrix = myMatrix_s,
  nRowClusters = 2,
  nColClusters = 3,
  seeds = 1,
  maxiter = 200,
  popSize = 30,
  elitism = 1,
  validate = TRUE,
  verbose = TRUE
#Inspect the result
print(result)
summary(result)
myTwomodeResult <- as.data.frame(result)</pre>
head(myTwomodeResult)
#Plot the clustered heatmap
plotTwomodeClustering(
  myMatrix = myMatrix_s,
  result = result,
  title
         = "Two-mode clustering Toy example",
  fixAspect = FALSE
```

twomodeFitnessFactory Two-mode clustering genetic algorithm evaluation function (fast, ro-bust)

Description

Fast evaluation of a two-mode clustering solution.

Usage

```
twomodeFitnessFactory(myMatrix)
```

Arguments

myMatrix Numeric matrix or coercible data.frame.

twomodeToy 13

Value

Function(string, ...) -> numeric fitness value = negative SSE (higher is better).

twomodeToy

Toy matrix with one multiplicative and one additive bicluster

Description

A small 12×9 matrix with a 2 x 3 two-mode cluster structure to demonstrate twomodeclusteringGA in a controlled setting.

Usage

```
data(twomodeToy)
```

Format

A numeric matrix of dimension 12×9 with a 2 x 3 two-mode cluster structure

Examples

```
data("twomodeToy")
str(twomodeToy)
image(t(twomodeToy))
```

validateTwomodePartition

Validate a two-mode clustering partition by global and per-block significance

Description

Given a numeric matrix and a full two-mode partition (exclusive row and column clusters), this function tests whether the fitted block-means model explains more structure than expected under a no-structure null. The global test uses an F-statistic based on SS_fit and SSE derived from your fitness definition. Optionally, it also reports per-block chi-square tests and a fast Monte Carlo p-value using random partitions (no GA reruns).

14 validateTwomodePartition

Usage

```
validateTwomodePartition(
  myMatrix,
  rowClusters,
  colClusters,
  center = TRUE,
  perBlock = TRUE,
  monteCarlo = 0,
  fixBlockSizes = TRUE,
  storeNull = FALSE,
  seed = NULL
)
```

Arguments

myMatrix Numeric matrix or coercible data.frame.

rowClusters Integer vector of length nrow(myMatrix) with cluster labels (1..kR, arbitrary

labels allowed).

colClusters Integer vector of length ncol(myMatrix) with cluster labels (1..kC, arbitrary la-

bels allowed).

center Logical, center the matrix by its global mean before testing (default TRUE).

Centering aligns the null with zero-mean noise and generally stabilizes infer-

ence.

perBlock Logical, compute per-block tests (default TRUE).

monteCarlo Integer, number of random partitions to draw for a MC p-value (default 0 dis-

ables).

fixBlockSizes Logical, if TRUE keep row and column cluster sizes equal to the observed sizes

when generating random partitions (default TRUE). If FALSE, only kR and kC

are fixed

storeNull Logical, store the vector of null F statistics from random partitions (default

FALSE). If FALSE, only quantiles are stored.

seed Optional integer seed for reproducibility (default NULL).

Value

A list of class "twomodeValidation" with elements:

- nR, nC, kR, kC
- dfModel, dfResid
- ssTot, ssFit, sse, sigma2Hat, r2
- fStat, pValue (global F test)
- perBlock (data.frame with per-block stats) if perBlock=TRUE
- mc (list with nSim, pMonteCarlo, fNull or fNullQuantiles) if monteCarlo>0

validateTwomodePartition 15

Examples

```
data("twomodeToy")
myMatrix_s <- scale(twomodeToy)</pre>
#Run the GA-based two-mode clustering
result <- twomodeClusteringGA(</pre>
  myMatrix = myMatrix_s,
  nRowClusters = 2,
  nColClusters = 3,
  seeds = 1,
  maxiter = 200,
  popSize = 30,
  elitism = 1,
  validate = FALSE,
  verbose = TRUE
)
result$validation <- validateTwomodePartition(myMatrix_s,</pre>
                                 rowClusters=result$rowClusters,
                                 colClusters=result$colClusters)
#Inspect the result
print(result)
summary(result)
myTwomodeResult <- as.data.frame(result)</pre>
head(myTwomodeResult)
#Plot the clustered heatmap
plotTwomodeClustering(
  myMatrix = myMatrix_s,
  result = result,
  title = "Two-mode clustering Toy example",
  fixAspect = FALSE
)
```

Index

```
\ast datasets
    twomodeToy, 13
as.data.frame.twomodeClustering, 2
ga, 12
gaintegerOnePointCrossover, 3
gaintegerPopulation, 4
gaintegerTwoPointCrossover, 4
monitorFactory, 5
plotTwomodeClustering, 5
print.summary.twomodeClustering, 7
{\tt print.twomodeClustering, 8}
\verb|summary.twomodeClustering|, 9
twomodeClusteringGA, 10
twomodeFitnessFactory, 12
twomodeToy, 13
validate Two mode Partition, \\ 13
```