100-50000 0500000
LOWISTIC REGRESSION (ox almost)
(5) 15 (1.50 0)
Pore-Requisite: Data Should be linearly separable
Pear ceptaion Taick
When = Word + $M(Y_i - \hat{Y})X_i$ (leavining rate.)
(leauning mater)
e (maximy)
onzan Best Line
8UT Problem is oversfitting on training data and under-performance on test data. Logistic Regression
BUT Problem is overfitting on training data and
under-performance on test data.
Logistic Regression
0 0
why because it works
only when something is wrongly classified. it it's
correctly clamitied use to potting
only when something is wrongly classified, if it's correctly classified we so nothing.
If mis-classified, we were moving the line towards that point (pul)else do nothing.
that point (Pullelse do nothing.
Now in Logistic Regression
If point has been correctly classified, then Push the line, if point has been incorrectly classified then Pull the line > light will be achieved.
line, it point has been incorrectly classified then
PULL the line => llabor will be achieved.
Marei L. Ja
Magnitude 100
PULL { low Misclassified Pt Near to Line High " for off " "
riigh " Fair off
Migh classified Pt Near to line

```
ω<sub>ν = ω<sub>ν</sub> + η ( γ<sub>ι</sub> - γ<sub>ι</sub>) χ;</sub>
      But if it is a and 1; then again we will smeach to
      Penceptron trick > i don't want 0 on
                    want some other number
                         Vis fined it's either oor 1
                      - Îi = we are calulating; using
                        > we can only change this.
                        USE SIGMOID for to calculate Yi
Mon were we calculating, Yi
           \hat{Y}_i = \hat{Z} w_i X_i then we were using Step f^n = \sum_{i=0}^n w_i x_i
      using <u>sigmoid</u>
e.g.,
                        Yi - Ŷi
        Yi
              0.8
                                  Wn = Wo + 1(0.2) Xi (Push)
                        0.2
                                  wn = Wo - 7 (0.65) X; (Pull)
              0.65
                       -0.65
                                                          ( Posts)
                                  wn = wo + 1 (0.7) X;
                       0.7
              0.3
        0
              0.15
                       - 0.15
                                  Wn = W0 - 7 (0.15) Xi
                                                          ( Push)
                               adding something > line Azt of stra
```


This gives us Anxwest BUT Problem is after multiplication numbers will be in small incase there are seven 1000 points. use summation after the using log " log (ab) = log a + log b Model = 0.7 x 0.4 x 0.4 x 0.8 log (Max) = log (0.7) + log (0.4) + log (0.4) + log (0.8) Problem: $\log x = -ve$ when $x \in (0,1)$ to make $\log (\max) + ve$ CROSS ENTROPY log (Man) = -log (0.7) -log (0.4) - log (0.4) - log (0.8) In MLE we were maximising while In cross Entropy we need to minimise.

** Log for > Log (0.9) : f(x) ring cont f?

> log (f(x)) is also ring ⇒ log(f(x)) is also ting cont. of n

⇒ minimise - log(f(x)) I write loss of as $L = -\log(\hat{Y}_1) - \log(\hat{Y}_2) - \log(\hat{Y}_2) - \log(\hat{Y}_4)$ (NO) here we are calculating the Prob of actual event not of Predicted

Red E IT Red Green & of meen

 $\log \mathcal{S}^{\circ} = \frac{5}{i=1} - \frac{1}{\log (\hat{Y}_i)} - (1-\hat{Y}_i) \log (1-\hat{Y}_i)$ ": we want to find Aug Errox $lom f' = -\frac{1}{N} \sum_{i=1}^{N} Y_i log(\hat{Y}_i) + (1-Y_i) log(1-\hat{Y}_i)$ 4 log loss ennon La Binary Cross Entropy # any close form sol unlike, in linear Regression

Minimize error using Gradient Discent. GRADIENT DISCENT y. Hypothetical e.g., 910WS = M col¹ = 0 Kmi Km2 Xma ym we know If we have a input column then we have (n+1) coefficient assuming coefficients are (wo, w, w2, ..., wn) $\hat{y_i} = \sigma(z)$ where $z = \sum w_i x_i$ y = σ (ωο + ω, χη + ω, χη + ω, χη + ω, χη) ŷ2 = σ (ωο + ω, χ21 + ω, χ22 + + ωη χ2η)

wy
$\sum_{i=1}^{m} Y_i \log (\hat{Y}_i) = Y_i \log \hat{Y}_i + Y_2 \log \hat{Y}_2 + \dots + Y_m \log \hat{Y}_m$
$= \begin{bmatrix} Y_1 & Y_2 & \dots & Y_m \end{bmatrix} \begin{bmatrix} \log(\hat{Y}_1) \\ \log(\hat{Y}_2) \end{bmatrix}$ $= \begin{bmatrix} \log(\hat{Y}_2) \\ \log(\hat{Y}_m) \end{bmatrix}$
$= \begin{bmatrix} Y_1 & Y_2 & & Y_m \end{bmatrix} \log \begin{pmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_m \end{bmatrix}$ $= e e e e e e e e e e e e e e e e e e e$
$= Y \log \hat{Y}$
Now my low of becomes
$L = -\frac{1}{m} \left[Y \log \hat{Y} + (1-Y) \log (1-\hat{Y}) \right]$
where $\hat{Y} = \sigma(xw)$
we con't solve this > use con't solve this > use con't solve this such that down is minimum

low function in Matrix form - [Y log (o (wx)) + (1-Y) log (1-o (wx))] to minimise , we will use gradient descent to find all the coefficient we will initialise with any value -I [Y log Ŷ + (1-Y) log (1-Ŷ) 4 d (€) o (wx) = o (wx) [1- o(wx)] y σ(NX) [1-σ(NX)]·X dw

Taking derivative of
$$T$$
.

$$\frac{d}{dW} \frac{(1-Y)}{(1-\hat{Y})} \frac{(\log(1-\hat{Y}))}{(1-\hat{Y})} = \frac{(1-Y)}{dW} \frac{d}{dW} \frac{(1-\hat{Y})}{(1-\hat{Y})} \frac{d}{dW}$$

$$\Rightarrow \frac{(1-Y)}{(1-\hat{Y})} \frac{d}{dW} = \frac{(1-Y)}{dL} \frac{d}{(1-\hat{Y})} \times \frac{d}{dL}$$

$$\Rightarrow \frac{-(1-Y)}{(1-\hat{Y})} \frac{\hat{Y}}{(1-\hat{Y})} \times \frac{d}{dL}$$

$$\Rightarrow \frac{-(1-Y)}{(1-\hat{Y})} \frac{\hat{Y}}{(1-\hat{Y})} \times \frac{d}{dL}$$

$$\Rightarrow \frac{-(1-Y)}{(1-\hat{Y})} \times \frac{\hat{Y}}{(1-\hat{Y})} \times \frac{d}{dL}$$

Combining T and T

$$\frac{dL}{dW} = \frac{-1}{m} \left[\frac{Y}{(1-\hat{Y})} \times - \hat{Y}(1-\hat{Y}) \times \right]$$

$$\Rightarrow \frac{-1}{m} \left[\frac{Y-Y\hat{Y}}{-\hat{Y}} - \hat{Y} + \hat{Y}Y \right] \times \frac{dL}{dW}$$

Now (produced detect)

$$W = W + Y \prod_{m} \left(\frac{Y-\hat{Y}}{-\hat{Y}} \right) \times \frac{\hat{Y}}{\sqrt{2}}$$

$$W = W + Y \prod_{m} \left(\frac{Y-\hat{Y}}{-\hat{Y}} \right) \times \frac{\hat{Y}}{\sqrt{2}}$$

$$W = W + Y \prod_{m} \left(\frac{Y-\hat{Y}}{-\hat{Y}} \right) \times \frac{\hat{Y}}{\sqrt{2}}$$

$$W = W + Y \prod_{m} \left(\frac{Y-\hat{Y}}{-\hat{Y}} \right) \times \frac{\hat{Y}}{\sqrt{2}}$$

$$W = W + Y \prod_{m} \left(\frac{Y-\hat{Y}}{-\hat{Y}} \right) \times \frac{\hat{Y}}{\sqrt{2}}$$