Week 01 (19.9.2-6) SE102, Fall 2019 DGIST

Vectors

- 1. What is a vector?
 - How do we define a vector?
 - Why do we need vectors?
 - What is a *vector space*? (can be skipped for later)
- 2. What is an *inner product*?
 - Why do we need an inner product?
 - What is a geometric meaning of an inner product?
- 3. What is a *projection*?
 - When (why) do we need a projection?

Matrices

- 1. What is a matrix?
 - What kinds of operations available for matrices?
 - Why do we need matrices?
 - Is a matrix a vector?
- 2. What is a determinant?
 - How do we compute determinants for 2×2 or 3×3 matrices? (How about for $n \times n$ matrices?)
- 3. What is a *cross product*?
 - What does cross product computes geometrically?
 - How do we compute the volume of a parallelopiped?
 - What does it imply when the determinant of a 3×3 matrix is zero?

Week 01 (19.9.2-6) SE102, Fall 2019 DGIST

Homework

- Reading assignment
 - Chapter §1.1 ~§1.3
- Writing assignment (due Sep. 7th, 11:59pm)
 - Answer the following question in complete sentences. Note that there is no correct answer to all questions. Freely write your thoughts and ideas with logical explanations.
 - 1. (4 points) Is the set of all $n \times n$ matrices a vector space?
 - 2. (4 points) For *n*-dimensional vectors

$$\mathbf{x} = (x_1, \cdots, x_n), \quad \mathbf{y} = (y_1, \cdots, y_n),$$

the inner product $\mathbf{x} \cdot \mathbf{y}$ can be defined as

$$\mathbf{x}\cdot\mathbf{y}=x_1y_1+\cdots+x_ny_n.$$

If the formula

$$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cdot \cos \theta$$

holds, how can we define the angle θ between x and y?

3. (4 points) Let x and y be 2-dimensional vectors. Let the *cone* (shown below) of x, y be the region between two vectors from x to y counter clockwise. Given a third 2-dimensional vector z, how can we check whether z lies in the cone of x and y?

- Type or write neatly, convert to pdf, then upload to LMS.