

Graduation Project for DEPi

Presented by : Sherif Mahmoud - Polus Fayez

Gehad Naser - Mohamed Ibrahim

Moamen Ahmed - Basem Ibrahim

Project Overview

OBJECTIE

Analyze a supply chain dataset to uncover insights and visualize key findings

PROCESS OVERVIEW

Data Cleaning and Preprocessing using Python

Analyzing data to answer key business questions

Visualizing insights with Tableau

TOOLS USED

Python (Pandas, Matplotlib), Tableau

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # for visualization
import plotly.express as px
import seaborn as sns
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor, GradientBoo
from statsmodels.tsa.arima.model import ARIMA
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_e
from sklearn.preprocessing import OneHotEncoder
pd.set_option('display.max_columns', None)
```

```
# Read CSV file into DataFrame
df = pd.read_csv("./supply_chain_data.csv")
```

df.head()

	Product type	SKU	Price	Availability	Number of products sold	Revenue generated	Customer demographics
0	haircare	SKU0	69.808006	55	802	8661.996792	Non-binary
1	skincare	SKU1	14.843523	95	736	7460.900065	Female
2	haircare	SKU2	11.319683	34	8	9577.749626	Unknown
3	skincare	SKU3	61.163343	68	83	7766.836426	Non-binary
4	skincare	SKU4	4.805496	26	871	2686.505152	Non-binary

<class 'pandas.core.frame.dataframe'=""></class>									
RangeIndex: 100 entries, 0 to 99									
Data	Data columns (total 24 columns):								
#	Column	Non-Null Count Dtype							
0	Product type	100 non-null object							
1	SKU	100 non-null object							
2	Price	100 non-null float64							
3	Availability	100 non-null int64							
4	Number of products sold	100 non-null int64							
5	Revenue generated	100 non-null float64							
6	Customer demographics	100 non-null object							
7	Stock levels	100 non-null int64							
8	Lead times	100 non-null int64							
9	Order quantities	100 non-null int64							
10	Shipping times	100 non-null int64							
11	Shipping carriers	100 non-null object							
12	Shipping costs	100 non-null float64							
13	Supplier name	100 non-null object							
14	Location	100 non-null object							
15	Lead time	100 non-null int64							
16	Production volumes	100 non-null int64							
17	Manufacturing lead time	100 non-null int64							
18	Manufacturing costs	100 non-null float64							
19	Inspection results	100 non-null object							
20	Defect rates	100 non-null float64							
21	Transportation modes	100 non-null object							
22	Routes	100 non-null object							
23	Costs	100 non-null float64							
1.0	(2) (54/5) (1.54/5)	1.1 (0)							

RangeIndex: 100 entries, 0 to 99								
Data columns (total 24 columns):								
#	Column	Non-Null Count	Dtype					
0	Product type	100 non-null	category					
1	SKU	100 non-null	category					
2	Price	100 non-null	float64					
3	Availability	100 non-null	int64					
4	Number of products sold	100 non-null	int64					
5	Revenue generated	100 non-null	float64					
6	Customer demographics	100 non-null	category					
7	Stock levels	100 non-null	int64					
8	Lead times	100 non-null	int64					
9	Order quantities	100 non-null	int64					
10	Shipping times	100 non-null	int64					
11	Shipping carriers	100 non-null	category					
12	Shipping costs	100 non-null	float64					
13	Supplier name	100 non-null	category					
14	Location	100 non-null	category					
15	Lead time	100 non-null	int64					
16	Production volumes	100 non-null	int64					
17	Manufacturing lead time	100 non-null	int64					
18	Manufacturing costs	100 non-null	float64					
19	Inspection results	100 non-null	category					
20	Defect rates	100 non-null	float64					
21	Transportation modes	100 non-null	category					
22	Routes	100 non-null	category					
23	Costs	100 non-null	float64					
dtypes: category(9), float64(6), int64(9)								

- Check for duplicates

Check for duplicate data

```
if df.duplicated().any():
    print(f"There are as many as {df.duplicated().sum()} duplicate data.")
else:
    print("There are no duplicate data.")
There are no duplicate data.
```

- Check for negative values

Check for negative values

df.describe()

from min row no negative

	Price	Availability	Number of products sold	Revenue generated	Stock levels	Lead times	Order quantities	Shipping times	
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	1
mean	49.462461	48.400000	460.990000	5776.048187	47.770000	15.960000	49.220000	5.750000	
std	31.168193	30.743317	303.780074	2732.841744	31.369372	8.785801	26.784429	2.724283	
min	1.699976	1.000000	8.000000	1061.618523	0.000000	1.000000	1.000000	1.000000	
25%	19.597823	22.750000	184.250000	2812.847151	16.750000	8.000000	26.000000	3.750000	
50%	51.239831	43.500000	392.500000	6006.352023	47.500000	17.000000	52.000000	6.000000	
75%	77.198228	75.000000	704.250000	8253.976921	73.000000	24.000000	71.250000	8.000000	
max	99.171329	100.000000	996.000000	9866.465458	100.000000	30.000000	96.000000	10.000000	

- Detect Outlier

```
#Outlier detection
flag=0
for column in df.columns:
    if df[column].dtype=="int64" or df[column].dtype =="float64":
        max_value = df[column].max()
        Q1 = df[column].quantile(0.25)
        Q3 = df[column].quantile(0.75)
        IQR = Q3 - Q1
        outlier_threshold = Q3 + 1.5 * IQR
        if max_value > outlier_threshold :
            print(f"{column} has an outlier: {max_value}")
            flag=1

if flag==0:
        print("There is No Outlier")
```

There is No Outlier

```
plt.boxplot(df["Costs"])
plt.xlabel('Data')
plt.ylabel('Values')
plt.title('Box Plot')
plt.show()
                                       Box Plot
   1000
    800
    200
                                         Data
```

- Conduct Univariate Analysis (box plot & histograms)

- Check Correlation

There is no Correlation except
 - a week one between Defect
 rates and Lead time
 - a week negative one between
 Price and Manufacturing costs

1- What is the impact of Product Category on Revenue?

```
data = df.groupby('Product type', observed=True) ['Revenue generated'].sum()
#create the pie chart
plt.figure(figsize = (6, 6))
plt.pie(data, labels=data.index,autopct='%1.1f%%', startangle=90)
plt.title('Revenue Distribution by Product Type')
plt.show()
```


2- How do customers demographics influence purchasing behaviour?

```
plt.figure(figsize=(6, 4)) # Set the size of the chart
plt.bar(df['Customer demographics'], df['Revenue generated'], color='skyblue')
# Add LabeLs and title
plt.xlabel('Customer demographics') # X-axis LabeL
plt.ylabel('Revenue Generated') # Y-axis LabeL
plt.title('Revenue vs Customer demographics') # Title
# Display the chart
plt.show()
```


3- How do customers demographics influence purchasing behavior of different Product types?

4- How do Supplier influence purchasing behavior of different Product types?

5- What is the Impact of Transportation modes on Manufacturing lead time?

```
revenue_by_product = df.groupby('Transportation modes', observed=True)['Manufacturing lead time'].sum().reset_index()

# Calculate the total revenue

total_revenue = revenue_by_product['Manufacturing lead time'].sum()

# Calculate the percentage of total revenue for each product type

revenue_by_product['Percent of Total'] = ((revenue_by_product['Manufacturing lead time'] / total_revenue) * 100).round(2).astype(str) + '%'

fig = px.bar(revenue_by_product, x='Transportation modes', y='Manufacturing lead time', title='Impact of Transportation modes on Manufacturing lead time'
fig.update_xaxes(title_text='Transportation modes') # Update x-axis label
fig.update_yaxes(title_text='Manufacturing lead time') # Update y-axis label
fig.show()
```


Tableau Dashboard

Important Numbers

Revenue generated	Number of products sold	Availability	Shipping costs
577,605	46,099	4,840	555

Number of products sold by category

Shipping cost by Inspection result

Revenue generated by customer demography

Transportation modes

Revenue generated by category

Product type cosmetics hair care

skin care

Revenue generated 577,605

Shipping costs

Shipping costs 554.8

Product type

- ✓ cosmetics
- ✓ hair care
- ✓ skin care

Customer demographics

- ✓ Female
- ✓ Male
- ✓ Non-binary ✓ Unknown

