north-east regional e-science centre

DAIS Data Services Day

Savas Parastatidis

DISCLAIMER!!!

The specifications were just released. I only had a quick chance to look at them.

Also...

I prepared these slides during the last 3 hours.

Overview

- Initial impressions on WS-Resource
- Web services vs distributed objects
- Grid Applications Requirements (true for DAIS too)
 - The WS-GAF approach to building Grid applications
- DAIS choices
- Conclusions
- Future

Initial Impressions

- A clear separation between the terms "service" and "resource"
- Services are not dynamically created; they are deployed
- Services provide operations on multiple resources (one-to-many; no implicit one-to-one association between the two)
- Factorisation on the functionality into separate specs (not all the way though)
- A document-based approach to resource properties
- WSA-friendly specs (no more GWSDL)
- Respect to existing tooling; use it without modifications
- Still issues with the conceptual model (scalability, loose coupling, is there an actual need for it... use cases?)
- Please refer to our August 2003 http://www.neresc.ac.uk/ws-gaf

105

Initial impressions

From our GGF9 presentation:

Grid Applications

OGSA

Web Services

north-east regional e-science centre

Web services vs distributed objects

Service Orientation

- Built around the concepts of service and message
- A service may be defined as a logical manifestation of some physical resources (like databases, programs, devices, or humans) that an organization exposes to the network and
- Services interaction are facilitated by exchanging messages
- A service adheres to a contract
 - Describes the format of the messages exchanged
 - Defines the message exchange patterns in which a service is prepared to participate

105

Service Orientation

- Don Box's four tenets about Service Orientation
 - Boundaries are explicit
 - Services are autonomous
 - Services share schema and contract, not class
 - Service compatibility is determined based on policy

Source: "A Guide to Developing and Running Connected Systems with Indigo" http://msdn.microsoft.com/Longhorn/understanding/mag/default.aspx?pull=/msdnmag/issues/04/01/Indigo/default.aspx and various talks

The Anatomy of a Web Service

- Large grained, loosely coupled
 - Performance, scalability, maintenance, re-use, etc.

A Web Service

www.neresc.ac.uk

Distributed objects

Distributed objects using SOAP and WSDL

Services

Talking directly to resources

- Tight-coupling
- Easily breakable applications
- Poor scalability

Talking directly to resources

WS-Resource

north-east regional e-science centre

Grid applications

STATE!!!

- Two types of state
 - State internal to a service (we can't cross service boundaries; we are not concerned with that)
 - Interaction state

Grid requirements

- Stateful interactions
 - Contextualisation

WS-Context, WS-Security, WS-Transactions, WS-Coordination, BPEL (message correlation), etc. etc. etc.

Resource identification

URN: Uniform **Resource** Names

- Metadata
 - Grid Resource Specification (just an XML Schema document)
- Lifetime management of resources
 - Just a high-level service interface

At the OGSA leve

- Lifetime information
 - Part of the metadata

Resources

- There is a many-to-many relationship between resources and services
- If resources are exposed outside an organisation's boundaries there may be a need for
 - Ontologies
 - Relationships
 - Location information
 - Lifetime information
 - Ownership/access restrictions information
 - Provenance
 - etc.
- Please note that it's not the norm to expose resources outside the boundaries of an organisation
- Metadata

Resource identification in WS-GAF

- Resources are usually hidden
- There are cases where resources need to be identifiable outside an organisation's boundaries

Identify

urn:dais:dataset:b4136aa4-2d11-42bd-aa61-8e8aa5223211

Organisation offening a sexchanged

Enterprise-tc-Bank

Messages exchanged

Fesources

Identity

- Grid Resource Identifier (GRI) (like an LSID)
 - Everlasting, unique resource identifier (Uniform Resource Name, URN)
 - Can be stored in a database or printed in a journal
 - Decoupling of identity from interface

The resource is identified separately from the interface that can provide access to it

A service could be seen as a resource

105

The Grid Resource Metadata Document

- Functionality equivalent to Service Data Elements
- Everything implemented using existing technologies and tooling

Not Grid-technology specific (it's just an XML Schema

document)

Possible Uses

- Infrastructure does not need to be aware of the differences in metadata documents
 - Generic metadata Web services
 - Generic tools for Peer-to-Peer metadata propagation
 - Generic metadata registries
 - Databases
 - etc

Lifetimes in WS-GAF

- Separate out and define orthogonal lifetimes
 - Grid Resource lifetime (for identified resources outside the organisation boundaries)
 - Grid Resource Metadata document lifetime
 - Endpoint lifetime
 - Metadata entry lifetime

Context lifetime (for stateful interactions)

Example: Using a registry

Benefits

- Simplicity and Minimalism
 - Meets Grid requirements without inventing new infrastructure
 - Uses existing contextualisation and addressing specs
 - Uses URN for resource identification
 - Low entry and maintenance costs for new Grid services
- Distributed technology independence

north-east regional e-science centre

DAIS

- Sessions
- Datasets

Naming

Naming

Naming

WS-Resource approach

WS-Resource approach

Problem with a stateful interaction that involves multiple

WS-Resource approach

Problem with a stateful interaction that involves multiple

WS-Context (just an example)

Multiple participants

WS-Context (just an example)

Multiple participants

WS-Context (just an example)

Multiple participants

Other issues

- Notifications from DAI services
 - If resources are not modelled directly using WS-Resource topics could still be used
- Data access Interfaces
 - May have to change depending on what approach you adopt
 - My proposal is to be flexible and allow implicit and explicit contextualisation (WS-Resource vs argument passing)
- Data management interfaces
 - Same as above
- Metadata about resources
 - Metadata document and associated interface
- "Perform" documents
 - Call it "workflow" or "grouped actions" or "savas"
 - They are just XML documents

10

north-east regional e-science centre

Conclusions

Conclusions

- We believe that WS-GAF meets the same requirements as OGSI v1.0 by using today's WS specifications and practices
- We believe that WS-GAF has a range of benefits

What's next?

north-east regional e-science centre

Searching for "White Dwarfs"

WS-GAF applications

- Aims
 - Define the characteristics of a "typical" Grid application
 - Demonstrate the applicability of the WS-GAF approach in building Grid applications
 - Learn from the challenges of constructing a truly global, distributed, scalable, loosely-coupled application
- Working on two "typical", global-scale Grid applications with international partners
 - Built on the WS-GAF concepts
 - Investigate the need for WS-Resource
 - Document the experiences and report to the community
- We encourage everyone's involvement

"White Dwarfs"

- Search for "white dwarfs" in our galaxy
- Utilise Jim Gray's SkyServer
- Utilise computational resources
- Security from the beginning
- Visualisation

 Working with many people from the US, UK, and even one in Australia :-)

People and Links

- Paul Watson (Paul.Watson@newcastle.ac.uk)
- Savas Parastatidis (Savas.Parastatidis@newcastle.ac.uk)
- Jim Webber (Jim.Webber@newcastle.ac.uk)

Web Services Grid Application Framework (WS-GAF)

http://www.neresc.ac.uk/ws-gaf

ws-gaf@newcastle.ac.uk

Join by sending a message to mailbase@newcastle.ac.uk including the following line in the body

join ws-gaf YourFirstName YourLastName

105

Thanks

- DTI
- JISC
- UK e-Science Core programme

Different focus?

- Is there a difference in the focus between WS-Resource and WS-GAF?
 - Perhaps, single view of a system that can be managed vs global-scale, services-based, loosely-coupled applications

10