	Theory 6.	/15/11
_	- Kohn-Sham basis	
	Consider an orthonormal set of eigenstates, [Ppo!	r)}
	(where k & o are orbital & spin quantum numbers), satisfy self-consistent Kohn-Sham equations,	_
	$h_{\nu}(ir) \phi_{k\sigma}(ir) = C_{k\sigma} \phi_{k\sigma}(ir)$	(1)
	$R(Ir) = \frac{\hbar^2}{2m} \nabla^2 + \frac{2}{2m} (Ir) + \int \frac{e^2 P(Ir')}{ Ir-Ir' } + \frac{\delta E_{XC}}{\delta P(Ir)}$	(2)
<u> </u>	$V_{H}(1r)$ $V_{XC}[1r; P(1r)]$	
	VHXC(Ir)	
	$\rho(ir) = \sum_{k\sigma} f_{k\sigma} \phi_{k\sigma}(ir) ^2$	(3)
	In Eq.(3), $f_{bo} \in [0,1]$ is an occupation number. Here,	we
	restrict ourselves to $f_{ko} = 0$ or 1, and further to t	
#1	ground state, To, which is a Slater determinant cons	eisting
	of the lowest-energy Kohn-Sham orbitals,	V
	Φ ₁₊ (11,) ··· Φ ₁₊ (11, Net)	2 = m/2 ==
	$\Phi_0 = \frac{1}{N}$	(4)
	Proposition Proposition	<u> </u>
	where Net is the number of electrons and we have	e assumed
	a closed shell. Note that, rather than introducing:	spin
0	coordinates, we simply impose orthogonality condi	tions,
	(\$\delta_{ko} \phi_{ko} \righta \in \delta_{ko} (\righta r) \phi_{ko} (\righta r) = \delta_{ko} \delta_{oo} \del	(5)

П

Time-dependent Kohn-Sham equation The temporal evolution of a many-electron system is governed by $ik \frac{\partial}{\partial t} + \frac{\partial}{\partial x} (in, t) = \left[\frac{\partial}{\partial x} (in, t) + \frac{\partial}{\partial x} (in, t) \right] + \frac{\partial}{\partial x} (in, t)$ $\frac{h(ir,t)}{2m} = \frac{h^2}{2m} \sqrt{2} + 2 \frac{h(ir,t)}{2m} + \frac{e^2 \rho(ir,t)}{1r-ir} + \frac{SAxc}{S\rho(ir,t)}$ $V_H(ir,t)$ $V_{XC}(ir,t)$ Vixx (ir, t) P(11,t) = \(\int_{k\sigma} \langle \l where virt) is an external potential. We assume that the system was in the ground state, To, at remote past, $t = -\infty$, after which $v(\mathbf{r}, t)$ was turned on. The (9)

· ·		3
_	Perturbation	
	Consider perturbation of P(t) on V(1r,t), where	
	8(1rt) = \$\frac{1}{2} \frac{1}{2} \frac{1}	irit').
	$+ \frac{\partial v_{(ir,t)}}{\partial v_{(ir,t)}} + \int \frac{\partial v_{(ir,t)}}{\partial v_{(ir,t)}} + \int \frac{\partial v_{(ir,t)}}{\partial v_{(ir,t)}} \frac{\partial v_{(ir,t)}}{\partial v_{(ir,t)}} $	(10)
	$\delta V_{H}(ir,t)$ $\delta V_{\chi_{C}}(ir,t)$	
	$\delta V_{Hxc}(1r,t)$	
	$= h(ir) + V(ir,t) + SV_{HXC}(ir,t)$ $V(ir,t)$	(11)
0		
-		
		11-11-11-11

Н

		4)
_	- Linear response	
	we seek the solution of	
	$i\hbar \frac{\partial}{\partial t} \Phi_{k\sigma}(\mathbf{i}\mathbf{r},t) = [\hat{R}(\mathbf{i}\mathbf{r}) + \hat{V}(\mathbf{i}\mathbf{r},t)] \Phi_{k\sigma}(\mathbf{i}\mathbf{r},t)$	(12)
	in the form	
7-10-mg 440		(13)
	The formal Solution (2/11/10) is	
	$\widehat{S}(t,-\infty) = T \exp\left(-\frac{i}{\hbar} \int_{-\infty}^{t} dt' \widehat{V}_{\widehat{K}}(t')\right)$	(14a)
	$=1-\frac{i}{\hbar}\int_{-\infty}^{t}dt'\widehat{V}_{R}(t')+O(v^{2})$	(146)
0	where	
12	$\widehat{v}_{R}(t) = e^{i\widehat{R}t/\hbar} \widehat{v}(t) e^{-i\widehat{R}t/\hbar}$	(15)
	Substituting Eq. (146) in (13)	
	$\Phi_{k\sigma}(\mathbf{u},t) = \left[e^{-i\hat{h}t/\hbar} \frac{i}{\hbar} \int_{-\infty}^{t} dt' e^{-i\hat{h}(t-t)/\hbar} \hat{v}(t') e^{-i\hat{h}t/\hbar} \right] \Phi_{k\sigma}(\mathbf{u},t') = \left[e^{-i\hat{h}t/\hbar} \frac{i}{\hbar} \int_{-\infty}^{t} dt' e^{-i\hat{h}(t-t)/\hbar} \hat{v}(t') e^{-i\hat{h}t/\hbar} \right] \Phi_{k\sigma}(\mathbf{u},t') = \left[e^{-i\hat{h}t/\hbar} \frac{i}{\hbar} \int_{-\infty}^{t} dt' e^{-i\hat{h}(t-t)/\hbar} \hat{v}(t') e^{-i\hat{h}t/\hbar} \right] \Phi_{k\sigma}(\mathbf{u},t')$	(ir)
	+0(v²)	(16)

$$\delta \rho(\mathbf{r},t) = \sum_{k\sigma} \int_{k\sigma} \left(-\frac{i}{\hbar} \right) \Phi_{k\sigma}^{*}(\mathbf{r}) \int_{k\sigma}^{t} dt' e^{-i\hat{h}(t-t)/\hbar} \hat{\mathcal{V}}(t) e^{-iG_{k\sigma}(t-t)/\hbar} \Phi_{k\sigma}^{*}(\mathbf{r})$$

$$+ \frac{i}{\hbar} \Phi_{k\sigma}^{*}(\mathbf{r}) \int_{-\infty}^{t} dt' e^{-i\hat{h}(t-t)/\hbar} \hat{\mathcal{V}}(t) e^{-iG_{k\sigma}(t-t)/\hbar} \Phi_{k\sigma}^{*}(\mathbf{r})$$

$$= -\frac{i}{\hbar} \sum_{k\sigma} \int_{k\sigma} \Phi_{k\sigma}^{*}(\mathbf{r}) \int_{k\sigma}^{t} dt' e^{-i(\hat{h}-G_{k\sigma})(t-t)/\hbar} \hat{\mathcal{V}}(t) \Phi_{k\sigma}^{*}(\mathbf{r})$$

$$= \int_{k\sigma}^{\infty} \left(-\frac{i}{\hbar} \right) \Phi_{k\sigma}^{*}(\mathbf{r}) \int_{k\sigma}^{t} dt' e^{-i(\hat{h}-G_{k\sigma})(t-t)/\hbar} \hat{\mathcal{V}}(t) \Phi_{k\sigma}^{*}(\mathbf{r})$$

$$= \int_{k\sigma}^{\infty} \left(-\frac{i}{\hbar} \right) \Phi_{k\sigma}^{*}(\mathbf{r}) \Phi_{k\sigma}^{*}(\mathbf{r}) \Phi_{k\sigma}^{*}(\mathbf{r}) \Phi_{k\sigma}^{*}(\mathbf{r}) \Phi_{k\sigma}^{*}(\mathbf{r})$$

$$= \int_{k\sigma}^{\infty} \left(-\frac{i}{\hbar} \right) \Phi_{k\sigma}^{*}(\mathbf{r}) \Phi_{k\sigma$$

 $\chi_{ks}(\pi,\pi';t-t') = \frac{1}{\hbar} \left(\frac{d\omega}{2\pi} e^{-i\omega(t-t')} + \frac{1}{ik\sigma} \int_{k\sigma}^{k\sigma} e^{-i\omega(t-t')} d\omega \right)$

「中ないの中でいからいかかいか W- Wiko +io

Prolin Piolin Piolin por (ir) W+ Wiko +i0

Comparing Egs. (31) and (33), we obtain

 $\chi_{KS}(ir,ir';\omega) = \frac{1}{\sqrt{ik\sigma}} \int_{k\sigma}^{*} \left[\frac{\varphi_{k\sigma}^{*}(ir) \varphi_{i\sigma}(ir) \varphi_{i\sigma}(ir') \varphi_{k\sigma}(ir')}{\psi_{i\sigma}(ir') \varphi_{k\sigma}(ir')} \right] dr$

W+Wiko +iD

Or, interchanging the indices j +> k in the second term,

 $\chi_{ks}(ir,ir;\omega) = \frac{1}{t_{ijk\sigma}} \sum_{k\sigma} (f_{k\sigma} f_{j\sigma}) \frac{\varphi_{k\sigma}^{*}(ir) \varphi_{j\sigma}(ir) \varphi_{j\sigma}^{*}(ir) \varphi_{k\sigma}(ir)}{\omega - \omega_{jk\sigma} + io}$ (35)

Note that

fko(1-fjo) - fjo(1-fko)

= for - forfir - fort forfar

Thus

XKS(11, 11;w) = 1 E [fer (1-for) - for (1-for)]

 $\times \begin{array}{c} \phi_{k\sigma}^{*}(ir) \, \phi_{j\sigma}(ir) \, \phi_{j\sigma}^{*}(ir) \, \phi_{k\sigma}(ir) \\ \omega - \omega_{jk\sigma} + io \end{array}$

Interchanging the indices back j+k in the second term,

