Методы оптимизации в машинном обучении, ШАД, весна 2018

Домашняя работа 3: Условия Каруша–Куна–Таккера. Двойственность Фенхеля

Срок сдачи: 22 апреля 2018 (воскресенье), 23:59

Условия Каруша-Куна-Таккера

- 1 Для каждого из следующих множеств в пространстве \mathbb{R}^n вычислите евклидову проекцию точки $v \in \mathbb{R}^n$ на множество:
 - (a) Аффинное подпространство $\{x \in \mathbb{R}^n : Ax = b\}$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\mathrm{Rank}(A) = m$.
 - (b) Полупространство $\{x \in \mathbb{R}^n : \langle a, x \rangle \leq b\}$, где $a \in \mathbb{R}^n$, $b \in \mathbb{R}$, $a \neq 0$.
- 2 Для каждой из следующих задач найдите множество всевозможных решений:
 - (a) $\min_{x \in \mathbb{R}^n} \{ \langle c, x \rangle : \langle a, x \rangle \leq b \}$, где $a, c \in \mathbb{R}^n \setminus \{0\}, b \in \mathbb{R}$
 - (b) $\min_{x \in \mathbb{R}^n} \left\{ \langle c, x \rangle : x \in \mathbb{R}^n_+; \sum_{i=1}^n x_i = 1 \right\}$, где $c \in \mathbb{R}^n$.
 - (c) $\min_{x \in \mathbb{R}^n_{++}} \{ \langle c, x \rangle + \sum_{i=1}^n x_i \ln x_i : \sum_{i=1}^n x_i = 1 \}$, где $c \in \mathbb{R}^n$.
 - (d) $\min_{x \in \mathbb{R}^n} \{ \langle c, x \rangle : \langle Ax, x \rangle \leq 1 \}$, где $c \in \mathbb{R}^n \setminus \{0\}$ и $A \in \mathbb{S}^n_{++}$.
 - (e) $\min_{x \in \mathbb{R}^n} \{ \langle Bx, x \rangle : \langle Ax, x \rangle \leq 1 \}$, где $A \in \mathbb{S}^n_{++}, B \in \mathbb{S}^n_{+}$.
- **3** Пусть $a, c \in \mathbb{R}^n_{++}, b > 0$. Покажите, что следующая задача имеет единственное решение и найдите его:

$$\min_{x \in \mathbb{R}_{++}^n} \sum_{i=1}^n \frac{c_i}{x_i} \quad \text{s. t. } \langle a, x \rangle \le b.$$

- 4 Пусть $A \in \mathbb{S}^n_{++}, b > 0$. Для каждой из следующих задач покажите, что решение единственное и найдите ero:
 - (a) $\max_{X \in \mathbb{S}_+^n} \{ \text{Det}(X) : \langle A, X \rangle \leq b \}.$
 - (b) $\min_{X \in \mathbb{S}_{++}^n} \{ \langle X^{-1}, I_n \rangle : \langle A, X \rangle \leq b \}.$
- 5 Пусть e_1,\ldots,e_n стандартный базис в \mathbb{R}^n . Покажите, что задача

$$\max_{X \in \mathbb{S}^n_{\perp}} \mathrm{Det}(X)$$
 s.t. $\|Xe_i\| \leq 1$ для всех $1 \leq i \leq n$

имеет единственное решение, равное I_n . Установите отсюда частный случай неравенства $A \partial a Mapa$

$$Det(X) \leq ||Xe_1|| \dots ||Xe_n||,$$

справедливого для любой матрицы $X \in \mathbb{S}^n_+$. (Π одсказка: преобразуйте целевую функцию, чтобы она стала строго выпуклой. Используйте тот факт, что задача со строго выпуклой целевой функцией имеет не более одного решения.)

6 * Покажите, что следующая задача имеет единственное решение и найдите его:

$$\min_{X \in \mathbb{S}_{+}^n} \langle C^{-1}, X \rangle - \ln \operatorname{Det}(X) \quad \text{s. t. } \langle Xa, a \rangle \le 1,$$

где $C \in \mathbb{S}^n_{++}$, $a \in \mathbb{R}^n$, $a \neq 0$. В ответе не должно быть обратной матрицы C^{-1} . (Подсказка: используйте формулу Шермана–Моррисона.)

 $^{^{1}}$ В некоторых задачах используется понятие евклидовой проекции, которое определяется следующим образом. Пусть C — множество в евклидовом пространстве V, и пусть $v \in V$. Евклидовой проекцией точки v на множество C называется точка $\pi_C(v) := \operatorname{argmin}_{x \in C} \|x-v\|$. Известно, что если C — непустое выпуклое замкнутое множество, то евклидова проекция $\pi_Q(v)$ существует и единственна.

7 * Пусть $A \in \mathbb{S}^n_{++}$ и $b \in \mathbb{R}^n,\, b \neq 0$. Покажите, что задача

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle \qquad \text{s.t. } ||x|| \le 1,$$

имеет единственное решение, равное $(A + \lambda_0 I_n)^{-1}b$, где $\lambda_0 := \max\{0, \bar{\lambda}\}$, и $\bar{\lambda}$ — наибольшее из решений нелинейного уравнения

$$\langle (A + \lambda I_n)^{-2} b, b \rangle = 1.$$

Двойственность Фенхеля

- 8 Для каждой из следующих функций f вычислите сопряженную функцию f^* по определению:
 - (a) $f: \mathbb{R} \to \mathbb{R}$ функция $f(x) := e^x$.
 - (b) $f:[0,+\infty)\to\mathbb{R}$ функция $f(x):=x\ln x-x$ при x>0 и f(x):=0 при x=0.
 - (c) $f: \mathbb{R} \to \mathbb{R}$ функция $f(x) := |x|^p/p$, где p > 1.
 - (d) $f: \mathbb{R} \to \mathbb{R}$ функция $f(x) := \sqrt{1+x^2}$.
 - (e) $f: [-1,1] \to \mathbb{R}$ функция $f(x) := -\sqrt{1-x^2}$.
 - (f) $f:(0,+\infty)\to\mathbb{R}$ функция $f(x):=-\ln x$.
 - (g) $f: (-\infty, 0) \to \mathbb{R}$ функция $f(x) := -1 \ln(-x)$.
 - (h) $f:(0,+\infty)\to\mathbb{R}$ функция $f(x):=\frac{1}{x}$.
 - (i) $f:(-\infty,0]\to\mathbb{R}$ функция $f(x):=-2\sqrt{-x}$.
 - (j) $f: \mathbb{R} \to \mathbb{R}$ функция f(x) := |x|.
 - (k) $f: [-1,1] \to \mathbb{R}$ функция f(x) := 0.
 - (1) $f: \mathbb{R} \to \mathbb{R}$ функция $f(x) := [x]_+ := \max\{x, 0\}$.
 - (m) $f:[0,1] \to \mathbb{R}$ функция f(x) := 0.
- 9 Для каждой из следующих задач минимизации постройте двойственную задачу Фенхеля и покажите, что выполняется сильная двойственность, и при этом множества решений прямой и двойственной задач непустые.
 - (a) (Гребневая регрессия) $\min_{x\in\mathbb{R}^n}\frac{1}{2}\|Ax-b\|^2+\frac{\lambda}{2}\|x\|^2$, где $A\in\mathbb{R}^{m\times n},\,b\in\mathbb{R}^m,\,\lambda>0$.
 - (b) (LASSO) $\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax b\|^2 + \lambda \|x\|_1$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\lambda > 0$.
 - (c) (SVM) $\min_{x \in \mathbb{R}^n} \sum_{i=1}^m [1 \langle a_i, x \rangle]_+ + \frac{\lambda}{2} ||x||^2$, где $a_1, \dots, a_m \in \mathbb{R}^n$, $\lambda > 0$.
 - (d) $(l^1$ -SVM) $\min_{x \in \mathbb{R}^n} \sum_{i=1}^m [1 \langle a_i, x \rangle]_+ + \lambda ||x||_1$, где $a_1, \dots, a_m \in \mathbb{R}^n$, $\lambda > 0$.
- 10 Покажите, что $\delta_{\mathbb{S}^n_+}^* = \delta_{\mathbb{S}^n_-}$ (сопряженная функция индикатора конуса \mathbb{S}^n_+ равна индикатору полярного конуса конуса \mathbb{S}^n_-). (Π одсказка: воспользуйтесь спектральным разложением и заменой переменных; сперва покажите, что область определения $\delta_{\mathbb{S}^n_+}^*$ вложена в \mathbb{S}^n_- ; далее докажите и используйте неравенство $\langle A,B\rangle \geq 0$ для $A,B\in\mathbb{S}^n_+$.)
- 11 Пусть $A_1,\ldots,A_n\in\mathbb{S}^m,$ и пусть $A:\mathbb{R}^n\to\mathbb{S}^m$ линейный оператор

$$Ax := \sum_{i=1}^{n} x_i A_i.$$

Покажите, что сопряженный оператор $A^*: \mathbb{S}^m \to \mathbb{R}^n$ имеет вид

$$A^*U = (\langle A_i, U \rangle)_{1 \le i \le n}$$

для всех $U \in \mathbb{S}^m$. (Считаем, что скалярное произведение в \mathbb{R}^n стандартное.)

12 (SDP двойственность) Рассмотрим задачу полуопределенного программирования в стандартном виде:

$$\min_{x \in \mathbb{R}^n} \langle c, x \rangle \quad \text{s.t. } \sum_{i=1}^n x_i A_i \leq B,$$

где $c \in \mathbb{R}^n$, $A_1, \ldots, A_m, B \in \mathbb{S}^m$.

- (а) Постройте для этой задачи двойственную задачу Фенхеля.
- (b) Покажите, что если исходная задача имеет строго допустимое решение, т. е. существует $x \in \mathbb{R}^n$, такой, что $\sum_{i=1}^n x_i A_i \prec B$, то выполняется сильная двойственность, и супремум в двойственной задаче достигается.
- **13** Пусть $a_1, \ldots, a_m \in \mathbb{R}^n$ ненулевые точки в пространстве \mathbb{R}^n . Рассмотрим задачу поиска эллипсоида минимального объема, накрывающего эти точки:

$$\min_{X\in\mathbb{S}^n_{++}} \{-\ln \mathrm{Det}(X): \langle Xa_i, a_i\rangle \leq 1 \text{ для всех } 1\leq i\leq m\}.$$

Постройте для этой задачи двойственную задачу Фенхеля. Покажите, что если ранг системы a_1, \ldots, a_m равен n, то выполняется сильная двойственность, и при этом множества решений прямой и двойственной задач непустые.

Бонусные задачи

- 14 * Для каждой из следующих функций f вычислите сопряженную функцию f^* по определению:
 - (a) $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) := \ln \sum_{i=1}^n e^{x_i}$.
 - (b) $f: \mathbb{R}^n_+ \to \mathbb{R}$ функция $f(x) := -(\prod_{i=1}^n x_i)^{1/n}$.
 - (c) $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) := \max\{x_1, \dots, x_n\}$.
 - (d) $f: \mathbb{S}_{++}^n \to \mathbb{R}$ функция $f(X) := -\ln \operatorname{Det}(X)$.
 - (e) $f: \mathbb{S}_{++}^n \to \mathbb{R}$ функция $f(X) := \operatorname{Tr}(X^{-1})$.
 - (f) $f: \mathbb{S}^n_+ \to \mathbb{R}$ функция $f(X) := -\operatorname{Det}(X)^{1/n}$.

(*Подсказка*: в некоторых пунктах полезно воспользоваться неравенством между средним арифметическим и средним геометрическим.)

15 * (Евклидова проекция на симплекс) Пусть $v \in \mathbb{R}^n$, и пусть $\Delta_n := \{x \in \mathbb{R}^n : x \succeq 0; \sum_{i=1}^n x_i = 1\}$ — стандартный n-мерный симплекс. Покажите, что $\pi_{\Delta_n}(v) = [v - \nu 1_n]_+$, где $\nu \in \mathbb{R}$ — корень нелинейного уравнения

$$\langle 1_n, [v - \nu 1_n]_+ \rangle = 1.$$

Здесь $1_n := (1, \dots, 1) \in \mathbb{R}^n$, и для $u \in \mathbb{R}^n$ символ $[u]_+$ обозначает поэлементную положительную срезку: $([u]_+)_i := \max\{0, u_i\}$ для всех $1 \le i \le n$. Нарисуйте схематичный график левой части вышеприведенного уравнения как функции от ν . (Подсказка: удобно рассмотреть упорядоченные компоненты $v_{[1]} \ge \dots \ge v_{[n]}$.)

16 * (Неравенство Гельдера) Для p>1 и $x\in\mathbb{R}^n$ обозначим $\|x\|_p:=\left(\sum_{i=1}^n|x_i|^p\right)^{1/p}$. Пусть p>1, и пусть $s\in\mathbb{R}^n,\ s\neq 0$. Покажите, что задача

$$\max_{x \in \mathbb{R}^n} \langle s, x \rangle \quad \text{s.t. } ||x||_p \le 1.$$

имеет единственное решение (найдите его), а соответствующее оптимальное значение равно $||s||_q$, где q>1 определяется из равенства 1/p+1/q=1. Установите отсюда, что для любых $s,x\in\mathbb{R}^n$ справедливо неравенство Γ ельдера

$$|\langle s, x \rangle| \le ||s||_q ||x||_p.$$

 $(\mathit{Подсказкa}:$ используйте теорему Каруша–Куна–Таккера. При этом могут оказаться полезными следующие два факта: 1) $(||^p/p)'(u) = u|u|^{p-2}$ для всех $u \in \mathbb{R};$ 2) $u,v \in \mathbb{R}$ удовлетворяют $v = u|u|^{p-2},$ если и только если $u = v|v|^{q-2};$ докажите их. При решении задачи постарайтесь не пользоваться знаниями о том, что $\|\|_p$ является нормой.)

17 * (BFGS через дивергенцию Кульбака–Лейблера) Для $\Sigma, \Sigma_0 \in \mathbb{S}^n_{++}$ через $D(\Sigma; \Sigma_0)$ обозначим дивергенцию Кульбака–Лейблера между двумя многомерными нормальными распределениями $N(0,\Sigma)$ и $N(0,\Sigma_0)$:

$$D(\Sigma, \Sigma_0) := \frac{1}{2} (\langle \Sigma_0^{-1}, \Sigma \rangle - \ln \operatorname{Det}(\Sigma_0^{-1} \Sigma) - n).$$

Пусть $H \in \mathbb{S}^n_{++}$, и пусть $y,s \in \mathbb{R}^n$, причем $\langle y,s \rangle > 0$. Рассмотрим задачу поиска матрицы $H_+ \in \mathbb{S}^n_{++}$, удовлетворяющей условию $H_+ y = s$ и минимизирующей дивергенцию $X \mapsto D(X^{-1}; H^{-1})$:

$$\min_{X \in \mathbb{S}^n_{++}} \{ D(X^{-1}, H^{-1}) : Xy = s \}.$$

Покажите, что эта задача имеет единственное решение, равное

$$\left(I_n - \frac{sy^T}{\langle y, s \rangle}\right) H\left(I_n - \frac{ys^T}{\langle y, s \rangle}\right) + \frac{ss^T}{\langle y, s \rangle}.$$