Республиканская олимпиада по математике, 2019 год, 11 класс

- **1.** Для положительных вещественных чисел a, b и c докажите неравенство $\sqrt[3]{\frac{a}{b}} + \sqrt[5]{\frac{b}{c}} + \sqrt[7]{\frac{c}{a}} > \frac{5}{2}$. (Аубекеров Д.)
- **2.** Множество Φ состоит из конечного числа точек на плоскости. Расстояние между любыми двумя точками из Φ по крайней мере $\sqrt{2}$. Известно, что вырезанным из бумаги правильным треугольником со стороной 3 можно накрыть все точки множества Φ . Из какого наибольшего количества точек может состоять Φ ? (Ильясов C.)
- **3.** Пусть p простое число вида 4k+1, а $\frac{m}{n}$ такая несократимая дробь, что $\sum_{a=2}^{p-2}\frac{1}{a^{\frac{p-1}{2}}+a^{\frac{p+1}{2}}}=\frac{m}{n}$. Докажите, что m+n делится на p. (Жанахметов C.)
- **4.** Найдите все натуральные $n,\,k,\,a_1,a_2,\dots,a_k$ такие, что $n^{k+1}+1$ делится на $(na_1+1)(na_2+1)\dots(na_k+1)$. (Ануарбеков Т.)
- **5.** Дан клетчатый прямоугольник размером $n \times m$. Всегда ли можно отметить 3 или 4 узла прямоугольника так, что на каждой прямой, содержащей сторону прямоугольника, лежал хотя бы один из отмеченных узлов, а несамопересекающийся многоугольник с вершинами в этих узлах имеет площадь, равную $\frac{1}{2} \min \left(\text{HOД}(n,m), \frac{n+m}{\text{HOД}(n,m)} \right)$? (Аханов Н.)
- 6. Касательная прямая l к описанной окружности остроугольного треугольника ABC пересекает прямые AB, BC и CA в точках C', A' и B' соответственно. Пусть H ---ортоцентр треугольника ABC. На прямых A'H, B'H и C'H соответственно отмечены точки A_1 , B_1 и C_1 (отличные от H) такие, что $AH = AA_1$, $BH = BB_1$ и $CH = CC_1$. Доказать, что окружности, описанные около треугольников ABC и $A_1B_1C_1$, касаются. (Ильясов C.)