Instructions for preparing the solution script:

- Write your name, ID#, and Section number clearly in the very front page.
- Write all answers sequentially.
- Start answering a question (not the pat of the question) from the top of a new page.
- Write legibly and in orderly fashion maintaining all mathematical norms and rules. Prepare a single solution file.
- Start working right away. There is no late submission form. If you miss the deadline, you need to use the make-up assignment to cover up the marks.
- 1. In the classes, there are three forms of floating number representation,

Lecture Note Form :
$$F = \pm (0.d_1 d_2 d_3 \cdots d_m)_\beta \beta^e$$
, (1)

Normalized Form :
$$F = \pm (1.d_1 d_2 d_3 \cdots d_m)_\beta \beta^e$$
, (2)

Denormalized Form :
$$F = \pm (0.1d_1d_2d_3\cdots d_m)_\beta \beta^e$$
, (3)

where $d_i, \beta, e \in \mathbb{Z}$, $0 \le d_i \le \beta - 1$ and $e_{\min} \le e \le e_{\max}$. Now, let's take, $\beta = 2$, m = 4 and $-3 \le e \le 6$. Based on these, answer the following:

- (a) (3 marks) What are the maximum numbers that can be stored in the system by the three forms defined above?
- (b) (3 marks) What are the non-negative minimum numbers that can be stored in the system by the three forms defined above?
- (c) (4 marks) Using Eq.(1), find all the decimal numbers for e = -1, plot them on a real line and show if the number line is equally spaced or not.
- 2. Let $\beta = 2$, m = 4, $e_{\min} = -1$ and $e_{\max} = 2$. Answer the following questions:
 - (a) (2 marks) Compute the minimum of |x| for normalized form.
 - (b) (2 marks) Compute the Machine Epsilon value for the normalized form.
 - (c) (2 marks) State what you can see about the relation between Machine Epsilon value and the exponent.
 - (d) (2 marks) Compute the Machine Epsilon value for the denormalized form.
 - (e) (2 marks) Compute the maximum delta value for the form given in Eq.(1).
- 3. Consider the function $f(x) = xe^x$. In the following, the interpolating polynomial, $p_3(x)$, is computed by using Taylor expansion. To do so, do the following tasks:
 - (a) (2 marks) Using Taylor expansion write f(x) as an infinite series.
 - (b) (2 marks) Find the values of a_0 , a_1 , a_2 and a_3 if the function is interpolated by a degree three polynomial $p_3(x)$.
 - (c) (2 marks) Compute f(0.1) and $p_3(0.1)$ up to seven significant figures.
 - (d) (2 marks) Find the percent error for interpolating f(x) by $p_3(x)$.
- 4. Consider the same function $f(x) = xe^x$ again. Now, we are going to find the interpolating polynomial by using the Vandermonde matrix method:
 - (a) (1 mark) Construct the Vandermonde matrix V if f(x) passes through the nodes -1, 0 and 1.
 - (b) (1 mark) Compute: det(V).
 - (c) (4 marks) Find the inverse matrix V^{-1} .
 - (d) (2 marks) The coefficients a_0 , a_1 , a_2 of the interpolating polynomial $p_2(x)$ can be computed by using the equation $A = V^{-1}F$, where the symbols have their usual meanings. Using V^{-1} and the function values at the nodal points, find the values of A up to five decimal places.
 - (e) (2 marks) Write down the expression for $p_2(x)$. Also compute $p_2(0.25)$ and f(0.25) up to five decimal places.
 - (f) (2 marks) Find the percent error of interpolating f(0.25) by $p_2(0.25)$.