Тема Повторення. «ВІДНОСНА МОЛЕКУЛЯРНА МАСА, ЇЇ ОБЧИСЛЕННЯ ЗА ХІМІЧНОЮ ФОРМУЛОЮ. МАСОВА ЧАСТКА ЕЛЕМЕНТА У СКЛАДНІЙ РЕЧОВИНІ»

Цілі уроку: закріпити знання з курсу хімії 7 класу, систематизувати та узагальнити найважливіші хімічні поняття, розширити та поглибити вміння складати рівняння реакцій та визначати їх тип, повторити поняття про речовини та їх класифікацію; розвити алгоритмічне мислення учнів, розумову активність, навички використовувати отримані знання на практиці; виховати науковий інтерес, розуміння важливості отриманих раніше хімічних знань *Очікувані результати: учень/учения:*

 $\textbf{назива}\epsilon$ хімічні елементи (не менше 20-ти) за сучасною науковою українською номенклатурою, записує їхні символи;

наводить приклади формул і назв простих (метали і неметали) і складних (оксидів, основ, кислот) речовин; рівнянь реакцій: добування кисню з гідроген пероксиду і води; кисню з воднем, вуглецем, сіркою, магнієм, залізом, міддю, метаном, гідроген сульфідом, води з кальцій оксидом, натрій оксидом, фосфор(V) оксидом, карбон(IV) оксидом; реакцій розкладу і сполучення;

обчислює відносну молекулярну масу речовини за її формулою, масову частку елемента в складній речовині. *критично ставиться* до власних знань і умінь із хімії.

Обладнання та реактиви: періодична система хімічних елементів Д. І. Менделєєва, таблиця розчинності, опорні схеми.

Базові поняття та терміни: атом, молекула, йон, хімічна формула, хімічний елемент, проста речовина, складна речовина.

Тип уроку: узагальнення і систематизація знань

ХІД УРОКУ

- 1.ОРГАНІЗАЦІЙНИЙ МОМЕНТ
- ІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ
- III. ЗАКРІПЛЕННЯ, СИСТЕМАТИЗАЦІЯ ТА УЗАГАЛЬНЕННЯ.

ПРИГАДАЙТЕ! Відносну атомну масу елемента A_r знаходять в періодичній системі хімічних елементів і округлюють до цілого значення.

Відносна молекулярна маса Mr речовини (відносна формульна маса) дорівнює сумі відносних атомних мас елементів, які утворюють дану речовину.

- Для визначення відносної молекулярної маси необхідно:
 - а) знайти у періодичній системі хімічних елементів Д. І. Менделєєва округлені значення відносних атомних мас необхідних елементів;
 - б) ці значення помножити на число атомів елементів у формулі речовини;
 - 。 в) додати маси атомів усіх елементів.
- Приклад. Обчислити відносну молекулярну масу сульфатної кислоти, що має формулу H₂SO₄.

Дано:
$$H_2SO_4$$
 $A_r(H) = 1$ $A_r(S) = 32$ $A_r(O) = 16$ $A_r(O) = 16$

• **Відповідь:** $M_r(H_2SO_4) = 98.$

Масова частка - безрозмірна величина. Вона дорівнює відношенню маси хімічного елемента до загальної маси речовини. Знаючи масову частку, можна визначити масу хімічного елемента в будь-якій масі речовини.

Приклад 1

Дано: Cl ₂ O ₇	Розв'язання Спочатку визначимо відносну молекулярну
Знайти: w (Cl) w (O)	масу речовини: $M_r\left(\mathrm{Cl_2O_7}\right) = 2A_r\left(\mathrm{Cl}\right) + 7A_r\left(\mathrm{O}\right) = \\ = 2 \cdot 35, 5 + 7 \cdot 16 = 183.$ Потім обчислимо масові частки хімічних елементів — Хлору та Оксигену: $w\left(\mathrm{Cl}\right) = \frac{2A_r\left(\mathrm{Cl}\right)}{M_r\left(\mathrm{Cl_2O_7}\right)} = \frac{2 \cdot 35, 5}{183} = 0,388, \text{ або } 38,8 \text{ %};$ $w\left(\mathrm{O}\right) = \frac{7A_r\left(\mathrm{O}\right)}{M_r\left(\mathrm{Cl_2O_7}\right)} = \frac{7 \cdot 16}{183} = 0,612, \text{ або } 61,2 \text{ %}.$ Зверніть увагу: сума масових часток Хлору й Оксигену складає 1, або 100 % .
	Відповідь: w (Cl) = 38,8 %; w (O) = 61,2 %.

Приклад 2. Обчисли масову частку Силіцію в кремнеземі SiO₂.

Дано:	Розв'язування:	
SiO ₂	1. Визначаємо відносну молекулярну масу кремнезему	
	$Mr(SiO_2) = 28 + 16 \cdot 2 = 60;$	
Знайти	2. Обчислюємо масову частку елементу Силіцію	
<i>W(Si)</i> − ?	W(Si) = 28/60 = 0,47, або 47%.	
	Відповідь: W(Si) = 47 %.	

Приклад 3. Яку масу фосфору можна дістати з фосфор (V) оксиду масою 10 т, якщо масова частка Фосфору в ньому 0,44.

Дано:	Розв'язування:		
$m(P_2O_5) = 10 m$	1 m Р ₂ О ₅ містить	1 m • 0,44 = 0,44 m P;	
W(P) = 0.44	10 m Р ₂ О₅ містить	<i>0,44</i> • <i>10</i> = <i>4,4</i> m <i>P</i> .	
3найти			
m(P) - ?	Відповідь: m(P) = 4,4 m.		

Допишіть та розв'яжіть рівняння.

Для отриманої сполуки знайдіть масову частку оксигену

B) Mg
$$+O_2 \rightarrow$$

$$\Gamma$$
) P+O₂ \longrightarrow

$$д) H_2O_2 \rightarrow$$

e)*
$$CO_2 + H_2O \rightarrow$$

$$\epsilon$$
)* Na₂O + H₂O \rightarrow

Завдання.

- 1.Опрацювати §3.
- 2.Визначити відносну молекулярну масу натрій сульфату Na_2SO_4 та W(O) в цій молекулі.
- 3. Допоможіть смайлику

Чи правильно я вирішив рівняння?

a)
$$Zn + O_2 = ZnO$$

б)
$$Al + O_2 = Al_2O_3$$

$$B) Mg + HCl = MgCl2 + H_2$$

$$\Gamma$$
) $Fe_2O_3 + H_2SO_4 = Fe_2(SO_4)_3 + H_2O$