Cogs 109: Modeling and Data Analysis

Homework 2

Due Friday 10/13 in class

- 1. For each of the three data sets plotted above (I, II and III), answer the following:
 - a. (3 points) Does the data show a positive or negative correlation between x and y?

 No correlation, positive, and negative, respectively.
 - b. (3 points) Which function (equation) best describes each data set?

i.
$$f(x) = 1 + 2x + \epsilon$$

Plot II

ii.
$$f(x) = 20 + \epsilon$$

Plot I

iii.
$$f(x) = 20 - x + \epsilon$$

Plot III

c. (3 points) Which regression table corresponds to each plot?

i.	Estimate	SE	tStat	pValue
(Intercept)	1.2478	0.61327	2.0347	0.056077
x1	2.0417	0.052459	38.92	1.3891e-19
Plot II				
ii.	Estimate	SE	tStat	pValue
(Intercept)	20.273	1.7491	11.591	4.6458e-10
x1	-1.0082	0.14962	-6.7383	1.9406e-06
Plot III				
iii.	Estimate	SE	tStat	pValue

(Intercept)	21.808	2.4438	8.9236	3.1883e-08
v 1	-0 2323	0 20905	_1 1112	0 28033

Plot I

- 2. (A: 3 points, B: 1 point, C: 2 points) ISLR chapter 3, problem 3 (page 120)
 - A) For a fixed value of IQ and GPA, males earn more on average than females provided that the GPA is high enough.
 - B) 137.1
 - C) False. We use the p-value to determine whether a regression coefficient is significant or not.
- 3. (2 points for each part) ISLR chapter 3, problem 4 (pages 120-121)
 - A) The cubic model would have a lower RSS because more flexible models always have a lower RSS in the training data.
 - B) If the true model is linear, then the cubic model would have a higher RSS in our testing data because of overfitting.
 - C) Again, the cubic model will have a lower RSS because more flexible models always have a lower RSS in the training data.
 - D) Because we do not know the true model for the data, we cannot say.
- 4. **UPDATED:** In this problem, we will simulate a dataset and use multiple linear regression to investigate it. Imagine we conduct a survey of N=100 students and ask them how much time per week they spend on work (x_1) and how much time on play (x_2) . We also ask them about their overall level of satisfaction (y), which we take to be the outcome. Download the dataset HW2.csv from the course website, which contains these data.
 - a. (3 points) Make a scatter plot showing y vs. x_1 . Comment on the relationship between these variables: do they appear correlated (positively or negatively)? Is their relationship linear or non-linear?
 - b. (4 points) Fit a simple linear regression of y vs. x_1 . In MATLAB, you could use the function regress or fitlm. Report the estimated intercept and slope, and make a plot showing the data points together with the regression line. Is there a statistically significant effect of x_1 on y? NOTE: The Matlab function regress sdf
 - c. (1 point) What is the 95% confidence interval for the slope of x_1 ?
 - d. (2 points) Now fit a multiple linear regression with x_1 and x_2 as independent variables. Report a table with the regression results (similar to Table 3.9 on page 88 in ISLR). Which parameters have a statistically significant effect?
 - e. (2 points) Make a scatter plot showing y vs. \hat{y} , the predicted value of y.
 - f. (3 points) Create a categorical variable with 3 levels called WorkType, where WorkType="Idle" for $x_1 < 10$, WorkType="Diligent" for $10 \le x_1 < 30$, and WorkType="Workaholic" for $x_1 \ge 30$. Fit a linear regression of y against WorkType and x_2 , and report the regression table.

g.	(2 point) In part (f) you should have obtained two different coefficients for WorkType corresponding to different "levels" of this categorical variable. What is your interpretation of the term corresponding to WorkType=Workaholic?

HW2Solutions

October 10, 2018

```
In [1]: import numpy as np
       import pandas as pd
       import matplotlib.pyplot as plt
       import statsmodels.api as sm
       from patsy import dmatrices
In [8]: df = pd.read_csv('HW2.csv', header=0, names=["x1", "x2", "y"])
       print(df.head())
       x1
                x2
0 36.2320 31.7710 1.0401
1 5.0795 12.4490 1.3170
2 36.5350 21.1410 2.3423
3 25.2940 6.6259 1.5134
4 3.9016 24.0790 1.3138
In [17]: # 4 (a)
        fig, ax = plt.subplots()
        ax.scatter(df.x1, df.y)
        ax.set_xlabel('Work Time')
        ax.set_ylabel('Satisfaction')
        plt.show()
```



```
In [10]: # 4 (b) (c)
         ### do linear regression
         # setup input data
         y, X = dmatrices('y ~ x1', data=df, return_type='dataframe')
         # print(y.head())
         # print(X.head())
         # describe model
         mod = sm.OLS(y, X)
         # fit model
         res = mod.fit()
         # look at results
         print(res.summary())
         yhat = np.dot(X.values, res.params.values)
         fig, ax = plt.subplots()
         ax.scatter(df.x1, df.y)
         ax.plot(df.x1, yhat, color='C1')
         ax.set_xlabel('x1')
         ax.set_ylabel('y')
         plt.show()
```

OLS Regression Results

Dep. Variable: y R-squared: 0.256
Model: OLS Adj. R-squared: 0.248
Method: Least Squares F-statistic: 33.34

Date:	Wed,	10 Oct 2018	<pre>Prob (F-statistic):</pre>	9.32e-08
Time:		20:19:41	Log-Likelihood:	-174.00
No. Observations:		99	AIC:	352.0
Df Residuals:		97	BIC:	357.2

Df Model: 1
Covariance Type: nonrobust

=========	=======		:=======	=========	-========	
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0737	0.290	0.254	0.800	-0.503	0.650
x1	0.0696	0.012	5.774	0.000	0.046	0.093
=========		=========		========		
Omnibus:		1.6	886 Durbi	n-Watson:		2.230
Prob(Omnibus)):	0.4	l30 Jarqu	e-Bera (JB):	:	1.202
Skew:		0.0	004 Prob(JB):		0.548
Kurtosis:		3.5	Cond.	No.		49.2
=========						

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.


```
# setup input data
y, X = dmatrices('y ~ x1 + x2', data=df, return_type='dataframe')
# print(y.head())
# print(X.head())
# describe model
mod = sm.OLS(y, X)
# fit model
res = mod.fit()
# look at results
print(res.summary())
```

OLS Regression Results

Dep. Variable: y R-squared: 0.568

 Model:
 OLS
 Adj. R-squared:
 0.559

 Method:
 Least Squares
 F-statistic:
 63.01

 Date:
 Wed, 10 Oct 2018
 Prob (F-statistic):
 3.32e-18

 Time:
 20:19:54
 Log-Likelihood:
 -147.12

 No. Observations:
 99
 AIC:
 300.2

Df Residuals: 96 BIC: Df Model: 2

Covariance Type: nonrobust

308.0

=========	========	========	========	========	=========	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.8557	0.309	6.009	0.000	1.243	2.469
x1	0.0564	0.009	6.021	0.000	0.038	0.075
x2	-0.0800	0.010	-8.321	0.000	-0.099	-0.061
Omnibus:		 1	======= .820	======== in-Watson:	========	2.211
Prob(Omnibus	s):	0	.403 Jarq	ue-Bera (JB):	1.312
Skew:		0	.093 Prob	(JB):		0.519
Kurtosis:		3	.532 Cond	. No.		85.4

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
A - Satisfaction
```

```
In [14]: # 4(f)
        WorkType = []
        for item in df.x1:
             if item < 10:
                WorkType.append('Idle')
            elif 10 <= item < 30:
                WorkType.append('Diligent')
            elif item >=30:
                WorkType.append('Workaholic')
        print(WorkType)
        df['WorkType'] = WorkType
        print(df.head())
['Workaholic', 'Idle', 'Workaholic', 'Diligent', 'Idle', 'Diligent', 'Diligent', 'Workaholic',
                x2
                              WorkType
        x1
                         у
0 36.2320 31.7710 1.0401 Workaholic
  5.0795 12.4490 1.3170
1
                                  Idle
2 36.5350 21.1410 2.3423 Workaholic
3 25.2940
           6.6259 1.5134
                              Diligent
   3.9016 24.0790 1.3138
                                  Idle
```

In [15]: # 4(f)

```
### do linear regression with categorical variables
       # setup input data
       y, X = dmatrices('y ~ WorkType + x2', data=df, return_type='dataframe')
       print(y.head())
       print(X.head())
       # describe model
       mod = sm.OLS(y, X)
       # fit model
       res = mod.fit()
       # look at results
       print(res.summary())
0 1.0401
1 1.3170
2 2.3423
3 1.5134
4 1.3138
  Intercept WorkType[T.Idle] WorkType[T.Workaholic]
                                                  x2
0
       1.0
                      0.0
                                          1.0 31.7710
1
       1.0
                      1.0
                                          0.0 12.4490
2
      1.0
                      0.0
                                          1.0 21.1410
3
      1.0
                      0.0
                                          0.0 6.6259
4
      1.0
                      1.0
                                          0.0 24.0790
                      OLS Regression Results
______
                             y R-squared:
Dep. Variable:
                                                             0.579
Model:
                            OLS Adj. R-squared:
                                                             0.565
Method:
                  Least Squares F-statistic:
                                                            43.51
Date:
                Wed, 10 Oct 2018 Prob (F-statistic):
                                                         8.77e-18
Time:
                        20:21:17 Log-Likelihood:
                                                          -145.83
No. Observations:
                             99
                                AIC:
                                                            299.7
                                BIC:
Df Residuals:
                             95
                                                             310.0
Df Model:
                             3
                      nonrobust
Covariance Type:
                                                            [0.025
                        coef std err
                                                  P>|t|
                                                                      0.9751
                                           t.
Intercept
                              0.234 11.651
                                                 0.000
                     2.7269
                                                           2.262
                                                                      3.192

    2.7269
    0.204

    -0.2284
    0.283
    -0.808

    1.3862
    0.250
    5.534

WorkType[T.Idle]
                                                 0.421
                                                           -0.789
                                                                      0.333
WorkType[T.Workaholic]
                     1.3862
                                                 0.000
                                                           0.889
                                                                      1.883
                     -0.0837
                               0.010
                                        -8.769
                                                 0.000
                                                            -0.103
                                                                      -0.065
______
                          1.532 Durbin-Watson:
Omnibus:
                                                            2.025
Prob(Omnibus):
                          0.465 Jarque-Bera (JB):
                                                            0.997
                         -0.106 Prob(JB):
Skew:
                                                            0.607
                          3.443
                                 Cond. No.
                                                             68.7
Kurtosis:
______
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Table of Contents

Pro	oblem 4a	. 1

Problem 4a

```
clear
clf
data = readtable('HW2.csv');
data.Properties.VariableNames = {'x1','x2','y'};

figure(1)
plot(data.x1,data.y,'.')
xlabel('x1 - Work')
ylabel('y - Satisfaction')
```


4b

```
p = fitlm(data,'y~x1')
yhat_x1 = predict(p,data);
```

p =

Linear regression model: $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	0.060392	0.29112	0.20745	0.83609
<i>x</i> 1	0.071053	0.012028	5.9072	5.0376e-08

Number of observations: 100, Error degrees of freedom: 98

Root Mean Squared Error: 1.42

R-squared: 0.263, Adjusted R-Squared 0.255

F-statistic vs. constant model: 34.9, p-value = 5.04e-08

4c

4d

```
p = fitlm(data,'y~x1+x2')
yhat_x1_x2 = predict(p,data);

p =

Linear regression model:
    y ~ 1 + x1 + x2
```

Estimated Coefficients:

	Estimate	SE	tStat	pValue
				
(Intercept)	1.8659	0.30828	6.0528	2.683e-08
<i>x</i> 1	0.057066	0.0093256	6.1193	1.987e-08
x2	-0.080764	0.0095621	-8.4462	2.9961e-13

```
Number of observations: 100, Error degrees of freedom: 97
Root Mean Squared Error: 1.08
R-squared: 0.575, Adjusted R-Squared 0.566
F-statistic vs. constant model: 65.6, p-value = 9.39e-19
```

4e

```
figure(2); clf
plot(data.y, yhat_x1_x2, '.')
hold on
%plot([0,6],[0,6],'k-')
xlabel('y')
ylabel('y predicted')
```


4f

```
N = size(data,1);
data.WorkType = repmat({'Idle'},N,1);
data.WorkType(data.x1>=10 & data.x1<30) = {'Diligent'};</pre>
data.WorkType(data.x1>=30) = {'Workaholic'};
p = fitlm(data,'y~1+WorkType+x2')
p =
Linear regression model:
   y \sim 1 + x2 + WorkType
Estimated Coefficients:
                                         SE
                         Estimate
                                                    tStat pValue
                                        0.24919
                                                    16.612
    (Intercept)
                            4.1396
 5.4727e-30
    x2
                         -0.084184
                                      0.0094664
                                                   -8.8929
 3.5502e-14
```

WorkType_Idle -1.6302 0.30179 -5.4017 4.7861e-07 WorkType_Diligent -1.404 0.24728 -5.6777 1.4511e-07

Number of observations: 100, Error degrees of freedom: 96
Root Mean Squared Error: 1.07
R-squared: 0.588, Adjusted R-Squared 0.575
F-statistic vs. constant model: 45.7, p-value = 1.94e-18

Published with MATLAB® R2018b