

IN THE SPECIFICATION

Please replace the paragraph at page 4, lines 9-15, with the following rewritten paragraph:

The resources comprise for example time slots, spectral spreading codes intended to separate the different communications and/or transmission frequencies.

The random sequence for the dynamic allocation is preferably calculated by:

$$X(1)=x_0$$

$$X(i+1)=\text{mod}((a \cdot X(i)+b-1,2^N)+1$$

$$\underline{X(i+1)=\text{mod}((a \cdot X(i)+b-1,2^N)+1}$$

where x_0 is a word of N bits, x_0 constituting the seed of the sequence, $a-1$ is a non-zero integer which is a multiple of 4, i is a sequence index, and b is an odd number,

and where N is an integer such that 2^N is greater than the maximum number of available resources.

Please replace the paragraph at page 8, lines 3-6, with the following rewritten paragraph:

Assume now, after connected grouping, that the available values of R_1 are indexed by $j=1,\dots,J$ and the available values of R_2 are indexed by $s=1,\dots,S$. The total number of available values will be denoted $\underline{T=J \cdot S}$ $\underline{T=J \cdot S}$ and the number of values to be allocated according to the fast dynamic allocation will be denoted A .

Please replace the paragraph at page 8, lines 7-8, with the following rewritten paragraph:

Putting $r=(s-1) \cdot J + j$ ($s-1) \cdot J + j$, the index r is an index of scanning of the set of available resources.

Please replace the paragraph at page 8, lines 11-16, with the following rewritten paragraph:

Such a sequence can advantageously be generated by recurrence in the following manner:

$$X(1)=x_0 \quad (1)$$

$$X(i+1) = \text{mod}((a \cdot X(i) + b - 1, 2^N) + 1$$

$$\underline{X(i+1) = \text{mod}((a \cdot X(i) + b - 1, 2^N) + 1}$$

where x_0 is a word of N bits, x_0 constituting the seed of the sequence, $a-1$ is a non-zero integer which is a multiple of 4, i is a sequence index, and b is an odd number.