

Analogue Electronics

general course description of EEE331 / EEE6037:

- 1. description and explanation of generic integrated circuit (IC) elements and their properties, such as operational amplifiers (OpAmps), filters etc.
- 2. analysis and design of very large-scale integration (VLSI) circuits and systems

teaching:

- 10 lectures, Tuesdays, 11:00-12:50, SG LT04 on the following days in 2013: 12, 19, 26 Feb.; 5, 12 March; 16, 23, 30 April; 7, 14 May
- examination: exam; consisting of 2 questions on analogue IC building blocks and 2 on high-level implementation; 3 of 4 questions must be answered
- course notes (revised 2012) : http://www.shef.ac.uk/eee/t walther.html
- old tutorial and exam sheets are posted on: http://hercules.shef.ac.uk/eee/teach/resources/eee331/eee331.html

lecturer: Dr Thomas Walther

contact: t.walther@sheffield.ac.uk

telephone: (22) 25891

office: Mappin Building, Electronic & Electrical Eng., E150d

EEE331 Analogue Electronics

Lecture 1

EEE331

Analogue Electronics

Outline syllabus first half:

- circuit operating characteristics of transistors:
 - BJTs
 - MOSFETs
- Miller transformation
- single transistor circuit elements:
 - · common emitter
 - · common base
 - · emitter follower
- two transistor circuit elements:
 - · Darlington pair
 - · cascode pair
- simple IC topologies:
 - · differential amplifiers
 - · current mirrors
 - output stages of amplifiers

Outline syllabus second half:

- BJT vs MOSFET
- CMOS OpAmps
- leapfrog design and signal flow graphs of analogue filters:
 - LC ladders
 - active RC filters
 - switched capacitor filters (SCF)
 - g_m-C filters

EEE331 Analogue Electronics

ecture 1

Analogue Electronics

Introduction, part I: diode vs. transistor

- **diode** = single pn-junction
- · diode conducts under forward bias
- diode blocks under reverse bias due to depletion region
- diode has a single I-V characteristic like so:

hence 2 types (pnp, npn) and 4 characteristics

textbooks recommended for further reading:

- P.R. Gray, P.J. Hurst, S.H. Lewis and R.G. Meyer: Analysis and design of analog integrated circuits, Wiley (New York), 2001, 4th ed.
- J. Millman and A. Grabel: Microelectronics, McGraw-Hill (Singapore), 1988, 2nd ed.
- R. Schaumann and M.E. van Valkenburg: Design of analog filters, Oxford University Press (New York), 2001
- A.S. Sedra and K.C. Smith: Microelectronic circuits, Oxford University Press (New York), 2004, 5th ed.

EEE331 Analogue Electronics

Lecture 1

EEE331

Analogue Electronics

Introduction, part II: general transistor behaviour

- 3 terminal devices with 1 terminal common to control input and current flow path (usually the emitter [source] for a BJT [FET]). The MOS-FET has an extra terminal called 'substrate' connected either to the source or to the most negative part of the circuit, i.e. minus of power supply.
- output characteristic: relationship between controlled current (output) and voltage across current flow path terminals
- **transconductance:** relationship between input control voltage ($V_{\rm BE}$ for a BJT; $V_{\rm GS}$ for a FET) and output (controlled) current ($I_{\rm C}$ for BJT, $I_{\rm D}$ for FET). These curves are similar in shape for all transistor types, with a rapid current increase after some threshold is reached. The slope of these curves is called **mutual conductance**, $g_{\rm m}$, or transconductance.

EEE331 Analogue Electronics

Lecture 1

Analogue Electronics

Introduction, part V: small signal behaviour

general:

large signal behaviour: appropriate for DC conditions or any signals large enough to alter the biasing conditions significantly, e.g. slew rate limiting

The large signal current gain of a BJT transistor is defined as the ratio $h_{FE} = I_C/I_B$

- small signal behaviour: appropriate for small perturbations on top of DC conditions that do not change the properties of the device significantly, e.g. high-frequency amplification of a small AC signal using a transistor near mid-point operation. Small signal models are helpful in understanding how circuit parameters affect circuit performance.
- We use lower case characters to describe small signal voltages and currents, whereas large signal quantities are denoted by Upper Case letters. For example, a DC bias voltage may be written as V_1 , and a small voltage varying in time (e.g. input into an audio amplifier) may be written as $v_{\rm s}$.

The small signal current gain of a BJT transistor is defined as the slope $\beta = dI_C/dI_B$

EEE331 Analogue Electronics

Lecture 1

EEE331

Analogue Electronics

Introduction, part VI: the Early effect

The base-collector depletion region (hatched) increases with increasing base-collector voltage, $V_{\rm cb}$. The **base width shrinks** correspondingly. Then more carriers (e⁻ in the case of an npn-BJT) transit the base because

- 1. the time for crossing the narrower base decreases and more charge carriers can transit the base without recombination, hence I_c increases.
- 2. the charge gradient across the base increases, hence also $I_{\rm e}$ increases.

The result of a larger net current gain α is a finite slope on the output characteristic, corresponding to a smaller output impedance, r_0 . This is bad if one wants to construct a current source which ideally would have $r_0 \to \infty$ so that any voltage change across the BJT would not cause any change in the output current (all ideal curves would be horizontal). So, if the transistor has a high impedance load, such as a current source, then we need to model the Early effect of reduced base width by including serial resistors r_{ce} (and sometimes also r_{cb}).

EEE331 Analogue Electronics

Analogue Electronics

BJT, part I: hybrid- π model of small signal circuit of a BJT

symbol r _{bb}	meaning Emitter base spreading resistance = series resistance between pacckge wire and active part of semiconductor; can be ignored in many cases; typically $0.5\Omega < r_{\rm bb} < 50\Omega$
$r_{ m be}$	base incremental resistance of base-emitter junction ($\propto 1/I_b$); inverse gradient of $I_b(V_{bo})$

base incremental resistance of base-emitter junction (
$$\propto 1/I_{\rm b}$$
); inverse gradient of $I_{\rm b}(V_{\rm be})$ feedback resistance modelling the Early effect ($\propto 1/I_{\rm c}$); may be ignored for analytical purposes **unless the transistor has a high impedance load** models the small slope of output characteristic, mostly due to the Early effect ($\propto 1/I_{\rm c}$); may also be ignored **unless transistor has a high impedance load** base-collector depletion capacitance ($\propto V_{\rm cb}$)

$$\beta$$
 small signal current gain for the current through $r_{\rm be}$

transconductance which operates on the voltage across r_{he} $g_{
m m}$ transfer EEE331 Analogue Electronics

Lecture 1

EEE331

Analogue Electronics

BJT, part II: important relationships

param. relationship

small signal current gain for the current through r_{be} : $\beta = dI_c/dI_b$ β transconductance, defined as

$$g_m = \frac{\mathrm{d}I_c}{\mathrm{d}V_{be}} \bigg| V_{ce} = const$$

 $g_{m} = \frac{1}{dV_{be}} |V_{ce}|_{C_{co}} V_{ce}$ From $I_{C} = I_{C_{0}}$ [exp $(qV_{BE}/kT) - 1$] $\approx I_{C_{0}}$ [exp (qV_{BE}/kT)] we get in forward bias:

$$g_m = \frac{q}{kT} I_{co} \exp \left(\frac{qV_{be}}{kT} \right) \approx \frac{qI_{co}}{kT}$$
, if h_{FE}>>1

small signal input impedance, defined as $r_{be} = \frac{\mathrm{d}V_{be}}{|V_{be}|}$

From $g_{\rm m}=dI_{\rm c}/dV_{\rm be}=dI_{\rm c}/dI_{\rm b}\times dI_{\rm b}/dV_{\rm be}=\beta r_{\rm be}^{-1}$ we directly get $r_{\rm be}=\beta/g_{\rm m}$

Note that in small signal terms, $r_{be} = v_{be}/i_b$, hence also $\beta i_b = g_m v_{be}$

This means the BJT can be considered as a current or as a voltage amplifier.

EEE331 Analogue Electronics

Analogue Electronics

BJT, part III: cut-off frequency

param. relationship

emitter diffusion capacitance can be determined from measurements of the transition frequency, f_t , which is the intrinsic no-load figure-of-merit of speed for a BJT

$$f_{t} = \frac{g_{m}}{2\pi (C_{e} + C_{cb})} \approx \frac{g_{m}}{2\pi C_{e}}$$
, if $C_{e} >> C_{cb}$

deduction: Consider frequency $f=\omega'(2\pi)$ of a resonant circuit with $R_{\rm eff}||C_{\rm eff}$, when all energy is alternatingly stored in $R_{\rm eff}$ and in $C_{\rm eff}$, so that $R_{\rm eff}=1/(\omega C_{\rm eff})$. This gives $\omega=1/(R_{\rm eff}C_{\rm eff})$. Here, $i_{\rm e}=0$ if the voltage $v_{\rm be}=i_{\rm b}r_{\rm be}$ across $r_{\rm be}$ corresponds to the voltage drop across $C_{\rm eff}=C_{\rm e}+C_{\rm cb}$ (as $C_{\rm e}$, $C_{\rm cb}$ are in parallel) where a larger current $\beta i_{\rm b}$ flows. Setting $r_{\rm be}i_{\rm b}=v_{\rm be}=\beta i_{\rm b}$ / $(\omega C_{\rm eff})$ with $r_{\rm be}=\beta l_{\rm gm}$ gives above equation.

EEE331 Analogue Electronics

Lecture 1

EEE331

Analogue Electronics

The small signal circuit of a MOSFET

NB: Occasionally, you may also see a substrate on a MOSFET small signal circuit diagram as the substrate can act like an extra gate. Usually the substrate is connected to $-V_{\rm dd}$. This needs to be taken into account only if there is ripnle on $V_{\rm co}$.

symbol	meaning v_{dd} .
C_{qs}	capacitance between gate and source contact
$C_{\rm gd}$	capacitance between gate and drain contact
$V_{\rm gs}$	voltage between gate and source
$V_{\rm thresh}$	threshold voltage that must be applied to the gate-source connection to create a conducting channel (enhancement mode MOSFET), typically a few volts
r _{ds}	apparent resistance of the conducting channel between source and drain. As $V_{\rm ds}$ is increased above $V_{\rm thresh}$ the conducting channel changes shape (shortens) and $I_{\rm d}$ therefore depends on $V_{\rm ds}$ in the saturation region ($V_{\rm ds}$ > $V_{\rm gs}$ - $V_{\rm thresh}$ = 'overdrive voltage').
I_{d}	drain current: $I_d = \frac{1}{2} \mu C_{ox} W/L (V_{gs} - V_{thresh})^2 (1 + \lambda V_{ds})$, if $V_{ds} > V_{gs} - V_{thresh} > 0$
	where μ is charge-carrier mobility, $C_{\rm ox}$ the gate oxide capacitance per unit area, W the gate width, L the gate length and λ the chan <u>nel-length modulation</u> parameter
g_{m}	transconductance of the MOSFET device: $g_m=2I_d/(V_{qs}-V_{thresh})$
f_{t}	transition frequency: $f_{\rm l} \approx g_{\rm m}/(2\pi C_{\rm gs})$

EEE331 Analogue Electronics

Lecture 1

