SEMICONDUCTOR SEMICONDUCTOR

Application Note: Telink Position Solution Introduction

AN-19052700-E4

Ver 1.3.0

2019/11/18

Brief:

This document is the brief introduction for Telink Position Solution.

Published by Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd, Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor All Right Reserved

Legal Disclaimer

Telink Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Telink Semiconductor does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling Telink Semiconductor products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Telink Semiconductor for any damages arising or resulting from such use or sale.

Information:

For further information on the technology, product and business term, please contact Telink Semiconductor Company (www.telink-semi.com).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

AN-19052700-E4 1 Ver 1.3.0

Revision History

Version	Major Changes	Date	Author
1.0.0	Initial release	2019/5	HHL,YY,JF,TJB
1.1.0	Updated Section 3	2019/8	HHL,YY,JF,TJB
1.2.0	1. Updated Section 4.3.1	2019/9	YY,JF
1.2.0	2. Updated Section 4.3.3	2013/3	1 1,31
1.3.0	1. Updated wording	2019/10	HHL, YY
1.5.0	2.Updataed Section 4	2013/10	חחב, זו

AN-19052700-E4 2 Ver 1.3.0

Table of contents

1	AO	A/AOD	6
	1.1	Angle of Arrival (AOA) Method	6
	1.2	Angle of Departure (AOD) Method	7
2	Pac	ket Format	8
	2.1	Constant Tone Extension	8
	2.2	Antenna Switch	9
	2.3	IQ Sampling	9
	2.4	RSSI	10
3	Hard	lware	10
4	Firm	ware and API	13
	4.1	API and Raw Data	13
	4.2	Demo	13
	4.2.	1 Demo Parameter	13
	4.2.	2 User Guide	15
	4.3 Te	link Solution Release	17
	4.3.	1 How to use	17
	4.3.	2 Continue Mode	18
	4.3.	3 Save Mode	19
5	Field	l Test Result	23
	5.1	Field Test Result of Reference Board 1	23
	5.2	Field Test Result of Reference Board 2	24
	5.3	Reference Design for Reference Board 1	27
	5.3.	1 Schematic for Reference Board 1	27
	5.3.	2 BOM for Reference Board 1	29
	5.3.	3 Layout for Reference Board 1	32
	5.4	Reference Design for Reference Board 2	33
	5.4.	1 Schematic for Reference Board 2	33
	5.4.	2 BOM for Reference Board 2	34
	5.4.	3 Layout for Reference Board 2	37

Ver 1.3.0

Table of figures

Figure 1-1 Angle of Arrival Method	6
Figure 1-2 Angle of Departure Method	7
Figure 2-1 Packet Format	8
Figure 2-2 Constant Tone Extension Structure	9
Figure 3-1 Reference Board Design 1	11
Figure 3-2 Illustration of Angle for Reference Board Design 1	11
Figure 3-3 Reference Board Design 2	12
Figure 3-4 Illustration of Angle for Reference Board Design 2	12
Figure 4-1 Change BDT to usb log mode	16
Figure 4-2 Enter Log Windows Interface	16
Figure 4-3 Enter Log Windows Interface	16
Figure 4-4 AOA/AOD Tool Interface 1	17
Figure 4-5 AOA/AOD Tool Interface 2	17
Figure 4-6 Tscript Interface	18
Figure 4-7 Continue Mode	18
Figure 4-8 AoA Receiver Slot Chart	19
Figure 4-9 Testing Data	19
Figure 4-10 Receive packet format	20
Figure 4-11 Example packet of triangle board	20
Figure 4-12 Example packet of pologon board	21
Figure 4-13 Example packet of polygon board	21
Figure 4-14 Example packet of polygon board	22
Figure 5-1 Test Environment for Reference Board 1	23
Figure 5-2 5 meters Indoor Test Result	23
Figure 5-3 Mean of Absolute Value of Error Versus Real Angle	24
Figure 5-4 Test Environment for Reference Board 2	25
Figure 5-5 Estimation of alpha vs. real alpha	26
Figure 5- 6 Estimation of theta vs. real alpha	26
Figure 5-7 Schematic for Reference Board 1	28
Figure 5-8 Layout for Reference Board 1	32
Figure 5-9 Schematic for Reference Board 2	33
Figure 5-10 Schematic for Reference Board 2	37

Table of Tables

Table 5-1 BOM Table for Reference Board 1	29
Table 5-2 BOM Table for Reference Board 2	34

AN-19052700-E4 5 Ver 1.3.0

1 AOA/AOD

Telink Position Solution supports AOD/AOD features defined in Core 5.1. Client device is hereinafter referred to as "the LE radio that we want to get direction information". Server device is hereinafter referred to as "the LE radio that set as the basepoint of the direction information". Client device can get its direction information for a server device though AOA/AOD method. Using direction information from several server devices and profile-level information giving their locations, a client radio can calculate its own position.

1.1 Angle of Arrival (AOA) Method

Client device can make its angle of arrival (AoA) information available to server device by transmitting direction finding enabled packets using a single antenna.

Server device, consisting of an RF switch and antenna array, switches antennae while receiving those packets and captures IQ samples. The IQ samples can be used to calculate the phase difference in the radio signal received using different elements of the antenna array, which in turn can be used to estimate angle.

Figure 1-1 Angle of Arrival Method

AN-19052700-E4 6 Ver 1.3.0

1.2 Angle of Departure (AOD) Method

Client device, consisting of an RF switch and antenna array, can make its angle of departure (AoD) detectable by transmitting direction finding enabled packets, switching antennae during transmission.

Server device receives those packets and captures IQ samples. The IQ samples can be used to calculate the phase difference in the radio signal received using different elements of the antenna array, which in turn can be used to estimate angle.

Figure 1-2 Angle of Departure Method

AN-19052700-E4 7 Ver 1.3.0

2 Packet Format

LSB			MSB
Preamble (1 or 2 octets)	Access-Address (4 octets)	CRC (3 octets)	Constant Tone Extension (16 to 160 µs)

Figure 2-1 Packet Format

Telink Position Solution supports packet format specified for AOA and AOD feature: consisting of Preamble, Access-Address, PDU, CRC (Cyclic Redundancy Check) and Constant Tone Extension. Header in PDU contains controlling information of AOA AOD.

2.1 Constant Tone Extension

Constant Tone Extension is specified for AOA AOD feature. The Constant Tone Extension has a variable length; it is at least 16 μ s and not greater than 160 μ s.

The first 4 μ s of the Constant Tone Extension are termed as the guard period and the next 8 μ s are termed as the reference period. After the reference period, the constant Tone Extension consists of a sequence of alternating switch slots and sample slots, each either 1 μ s or 2 μ s long as specified by the Host. The structure of the Constant Tone Extension is shown in Figure 2-2 Constant Tone Extension Structure.

AN-19052700-E4 8 Ver 1.3.0

	Continues t	ransmission							
AOA receiver: 1us switch slot and s	sample slots								
Guard period (4 µs)	Reference period (8 μs)	Switch slot	Sample slot 1	Switch slot	Sample slot 2	 Switch slot	Sample slot 73	Switch slot	Samp slot 7
AOA receiver: 2us switch slot and s	sample slots								
Guard period (4 µs)	Reference period (8 µs)	Switc	ch slot	Sample	e slot 1	 Switc	h slot	Samp 3	le slo 7
	T								
AOD transmitter: 1us switch slot and	d sample slots								
Guard period	Reference period	Switch	Sample	Switch	Sample	 Switch			
Guard period (4 µs)	Reference period (8 μs)	Switch slot	Sample slot 1	Switch slot	Sample slot 2	 Switch slot	Sample slot 73	Switch slot	Sam
*	(8 μs)								
(4 μs)	(8 μs)							slot	
(4 µs) AOD receiver: 1us switch slot and	(8 μs)		slot 1		slot 2		slot 73	slot	slot
(4 μs) AOD receiver: 1us switch slot and Guard period	sample slots Reference period (8 μs)		slot 1		slot 2		slot 73	slot	slot
(4 µs) AOD receiver: 1us switch slot and Guard period (4 µs)	sample slots Reference period (8 μs)	slot	slot 1		Sample slot 2	slot	slot 73	slot	Sam slot
(4 µs) AOD receiver: I us switch slot and Guard period (4 µs) AOD transmitter: 2 us switch slot and Guard period	sample slots Reference period (8 μs) d sample slots Reference period (8 μs)	slot	Sample slot 1	slot	Sample slot 2	 slot	Sample slot 73	slot	San slot
AOD receiver: Ius switch slot and Guard period (4 μs) AOD transmitter: 2us switch slot an Guard period (4 μs)	sample slots Reference period (8 μs) d sample slots Reference period (8 μs)	slot	Sample slot 1	slot	Sample slot 2	 slot	Sample slot 73	slot	Sam slot

Figure 2-2 Constant Tone Extension Structure

2.2 Antenna Switch

The device switches between the antennae either while receiving the AoA Constant Tone Extension or while transmitting the AoD Constant Tone Extension. The switching takes place during time periods called switch slots. The first 4 μ s of the Constant Tone Extension are termed as the guard period and the next 8 μ s are termed as the reference period. The receiving Link Layer captures IQ samples during the reference period and during time periods are called sample slots.

The first antenna in the pattern will be used during the reference period. The second antenna in the pattern will be used during the first sample slot, the third antenna during the second sample slot, and so on. The same antenna ID may appear more than once in the pattern. The antenna in use will only be changed during the guard period and switch slots.

2.3 IQ Sampling

When receiving a packet that contains an AoD Constant Tone Extension, the AN-19052700-E4 9 Ver 1.3.0

receiver does not need to switch antennae. When receiving a packet that contains an AoA Constant Tone Extension, the receiver performs antenna switching at the rate and follows the switching pattern configured by the Host. In both cases, the receiver takes an IQ sample each microsecond during the reference period and an IQ sample each sample slot (thus there will be 8 reference IQ samples, 1 to 37 IQ samples with 2 μ s slots, and 2 to 74 IQ samples with 1 μ s slots, meaning 9 to 82 samples in total). The Controller reports the IQ samples to the Host. The receiver samples the entire Constant Tone Extension, irrespective of length, unless it will conflict with other activities.

2.4 RSSI

The receiver measure the RSSI of received packets on the antenna used for receiving the body of the packet (in both cases excluding any Constant Tone Extension).

3 Hardware

There are two selections of reference design, reference design 1 for board on the wall and reference design 2 for board on the ceiling. The reference board design 1 is shown in Figure 3-1. The Figure 3-2 shows the illustration of angle. The X axis points to 0 degree while the Y axis points to 90 degree. The reference board 2 design is show in Figure 3-3 and the illustration of angle see Figure 3-4. Set RF8-RF1 as x axis pointing to 0 degree while taking RF5-RF4 as y axis pointing to 90 degree.

AN-19052700-E4 10 Ver 1.3.0

Figure 3-1 Reference Board Design 1

Figure 3-2 Illustration of Angle for Reference Board Design 1

AN-19052700-E4 11 Ver 1.3.0

Figure 3-3 Reference Board Design 2

Figure 3-4 Illustration of Angle for Reference Board Design 2

AN-19052700-E4 12 Ver 1.3.0

4 Firmware and API

For ease of use, we can provide calculated API and raw data. User can choose to call API to get input angle directly (calculated by our inner arithmetic) or get raw data to do other arithmetic. We also provide a Demo to help user realize AOA or AOD test.

4.1 API and Raw Data

aoa.c and aoa.h in driver include all necessary parts for aoa signal, thus user can add these two files to the project. Both angle-calculated API and raw data is provided in aoa.c.

User can call function get_input_angle (unsigned char *ptr_packet) or get input angle for polygon(unsigned char *ptr packet) to get input angle as below:

Then user can get a char parameter of angle and rx_packet in it should be received as buffer.

User can call function get_raw_data (unsigned char *data_table, unsigned char *ptr packet, unsigned int number) as below to get raw data:

```
unsigned char raw_data[90];
get_raw_data(&raw_data[0],&rx_packet[0],90);
```

Then raw data is copied to raw_data[0],raw_data[1], raw_data[2] ... raw_data[89], which stand real part of IQ0, image part of IQ0, real part of IQ1 ...image part of IQ44. User need an unsigned char table which has at least 90 parameters because there are 45 sample data and each data includes real part and image part.

4.2 Demo

Demo of AOA transmitter and receiver is provided for reference. Download demo program to referenced hardware to realize transmitter continually sending data while receiver outputting angle through USB.

4.2.1 Demo Parameter

Variable parameters in drivers/8258/aoa.h:

```
#define RF_REAL_FREQ 2450 //set TX/RX frequency.here is 2450MHz
It defines transmit frequency.
```


Variable parameters in app.c:

```
/*************IO pin define****************/
#define LED2
                                GPIO_PA3
#define LED3
                                GPIO_PA4
#define LED4
                                GPIO_PB0
#define LED5
                                GPIO_PB1
#define SW2
                                GPIO PC1
#define SW3
                                GPIO PC0
                                     GPIO_PC6
#define V1
#define V2
                                     GPIO_PC5
#define V3
                                     GPIO_PC7
```

It defines some GPIO as multiplex function to switch antenna and to debug.

It defines board as transmitter or receiver.

```
/************Choose AOA or AOD**************/
#define RF_AOA_MODE 1
#define RF_AOD_MODE 2
#define AOA_OR_AOD_MODE RF_AOD_MODE
```

It defines board as AOA or AOD.

AN-19052700-E4 14 Ver 1.3.0

It defines board antenna.

/*************************************	quency**************	
[Brief Description]:		
RF Frequency,In order to change frequency,	please change RF_REAL_FREQ in drivers/82	258/aoa.h
***********	**********	
#define RF_FREQ	RF_REAL_FREQ-2400 // TX/RX frequency	1

RF frequency should be verified in aoa.h,by changing RF_REAL_FREQ ,but not here.

It defines TX power, RF_POWER_P10p46dBm here is 10dbm.

It defines ACCESS_CODE.

```
/******TX interval,16000000 equal 1 second******/
#define TX INTERVAL 400000
```

It defines transmition frequency. 16000000 means send packet per second.

4.2.2 User Guide

Software:

Telink IDE 1.3

Telink Burning and Debugging Tool (BDT)

Progress:

- a. Change RF_TRX_MODE in app.c to TX, then use Telink IDE 1.3 build project to generate .\8258_AOA_Demo\ 8258_AOA_Demo.bin.
- b. Connect single antenna board by usb or SW, download TX program.
- c. Change RF_TRX_MODE in app.c to RX, then rebuild project to generate a new .\8258_AOA_Demo\ 8258_AOA_Demo.bin.
- d. Connect multi-antenna board by usb or SW, download RX program.
- e. Use usb connect multi-antenna RX board to supply power and communicate, then change BDT to usb log mode by View -> usb log as shown in Figure 4-0-1.

AN-19052700-E4 15 Ver 1.3.0

Figure 4-1 Change BDT to usb log mode

f. Open Log windows. Then user can see input angle once receive AOA packets. Make sure print it out if use print function in program, or program will come out unknown mistake.

Figure 4-2 Enter Log Windows Interface

g. If user want to use UART to print , there are some definition need to be changed in drivers/8258/ printf.h. Change DEBUG_BUS as DEBUG_IO, set PRINT_BAUD_RATE and DEBUG_INFO_TX_PIN , then GPIO will emulate UART and print out message with bandrate up to 1000000.

```
#define DEBUG IO
#define
        DEBUG USB
#define
        DEBUG BUS
                        DEBUG IO
#if (DEBUG BUS==DEBUG USB)
* @brief
               This function serves to printf string by USB.
 * @param[in]
              *format - format string need to print
 * @param[in]
                        - variable number of data
              . . .
 * @return
              none.
void usb printf(const char *format, ...);
#define printf
                  usb printf
#elif (DEBUG BUS==DEBUG IO)
                                            1000000
#define PRINT BAUD RATE
                                                      //1M baud rate,
#define DEBUG INFO TX PIN
                                            GPIO PB4
```

Figure 4-3 Enter Log Windows Interface

AN-19052700-E4 16 Ver 1.3.0

4.3 Telink Solution Release

Telink AOA/AOD solution is provided besides Demo. It is used to show AOA/AOD result and collect raw date with referred hardware. The solution includes bin file and debug tool - Tscript. The interface is as follows.

Figure 4-4 AOA/AOD Tool Interface 1

Figure 4-5 AOA/AOD Tool Interface 2

4.3.1 How to use

Step1: download specified bin file to the chip. Then connect board to computer with USB or SWS to power on and communicate. Connect polygon board to the computer through SWS especially when testing AOA with polygon board since there is no USB on the board.

Step2: open Tscript.exe, double click RF_AutoTest_Kite\AoA.lua as follows. Then interface is shown as the below Figure 4-0-2. Choose AoA_Sniffer_draw_by_sws_V1.4.lua or AoA_Sniffer_draw_by_usb_V1.4.lua according to the different connection mode between computer and board.

AN-19052700-E4 17 Ver 1.3.0

Figure 4-6 Tscript Interface

Step3: choose continue mode or save mode to start, these two modes will be introduced in Section 4.3.2 Continue Mode and 4.3.3 Save Mode.

4.3.2 Continue Mode

Continue mode is designed to show calculation angle result of inner API. The receive board will continually receive data and calculate angle once receiving AOA/AOD data. After average angle data of fixed window, the result will show in interface and the pointer in table will point to corresponding position. In addition, received packet number and Frequency/Access Code/RSSI will show in interface as follows.

Figure 4-7 Continue Mode

AN-19052700-E4 18 Ver 1.3.0

4.3.3 Save Mode

Save mode is designed to collect AOA/AOD raw data. Click start button after inputting Save File Name and Packet Number. Then user can get Save_File_Name.txt that includes decimal sampled IQ value and Save_File_Name_backup.txt that includes hexadecimal source receive data. Users can use other algorithms to process these data or do other experiment.

Save_File_Name.txt will include decimal sampled IQ value of n packets, which n is the packet number set by user. Each packet contains 45 groups including 90 numbers corresponding to 45 sample point messages. Every group contains two numbers, the first number indicates the real part and the second number represents the virtual part of sample point. Figure 4-7 below indicates the slot chart of AoA receiver. In reference period, Chip will sample message every 1us, obtaining totally 8 groups of number. After that, Chip will sample message in each sample slot, totally 37 groups of number. So each packet includes 37 + 8 = 45 groups for total of 90 numbers.

Guard period	Reference period	Switch	Sample	Switch	Sample	Switch	Sample
(4 µs)	(8 µs)	slot	slot 1	slot	slot 2	 slot	slot 37

Figure 4-8 AoA Receiver Slot Chart

For example, Figure 4-8 indicates one packet of AOA testing containing totally 90 numbers mentioned before. The first line lists 16 numbers sampled in reference period and the sample results are:

-97 - 18i, 2 - 86i, 88 - 14i, 2 + 88i, -90 + 23i, -34 - 97i, 79 - 26i, 41 + 90i User can also get other 37 sample slot data by this way.

```
-97 -18 2 -86 88 -14 2 88 -90 23 -34 -97 79 -26 41 90 64 63 74 78 95 47 94 27 92 -1 94 1 72 -38 83 -62 106 -119 47 -69 -6 -91 9 -102 -24 -74 -37 -68 -100 -127 -66 -58 -89 -38 -103 -12 -98 22 -74 17 -75 39 -46 75 -49 87 -17 68 19 100 20 82 42 81 116 87 70 38 75 27 95 -6 89 -1 88 -31 79 -64 93 -114 32 -89 32 -83 RSSI :-80 Input angle :1
```

Figure 4-9 Testing Data

File is located in .\kite_RF_AoA\project\RF_AutoTest_Kite\AutoTest_Report.

The default transmission frequency is 2460 and antenna switch sequence is RF2-> RF4-> RF6-> RF8 for triangle board, RF2 as the primary antenna during reference period, and RF1-> RF2-> RF3-> RF4-> RF5-> RF6-> RF7-> RF8for polygon board, RF1 as the primary antenna during reference period.

4.3.4 Packet format

This part will introduce packet format and make an example. Packets formate are

AN-19052700-E4 19 Ver 1.3.0

as bellows:

Packet Length (4 bytes) *1	Header 0 Payload Lengt (1 byte) (1 byte)	AOA/AOD Specied data (1 byte) *2		Raw Data (90 bytes or 164 bytes) *3	Packet State Message (8 bytes)
-------------------------------	--	--	--	--	-----------------------------------

*1 This 4 bytes are not included in length

*2 AOA: 0x14 AOD: 0x94

*3 Switch slot 1us : 164 bytes Switch slot 2us : 90 bytes

Figure 4-10 Receive packet format

To make an example, here is a AOA packet of 2us switch slot received by triangle board(saved by Tscript). If multiple antenna board is triangle board, it can be analysed in following way according to packet format. In save mode of solution that we mentioned before, receiver will call function to calculate angle and rsquare once receiving a AOA/AOD packet, then put it behind rx_packet. Tscript will read total 130 bytes to get them all.

Figure 4-11 Example packet of triangle board

Raw data in rx_packet need to be treated as char variables. So the highest bit is sign bit and lower 7 bits are data bits. They can be transferred to decimal number in standard method. For the example, raw data in example can be converted to:

AN-19052700-E4 20 Ver 1.3.0

RI	F2	RI	F4	RF6			F8
Real Par	Imag Par	Real Par	Imag Par	Real Par	Imag Par	Real Par	Imag Part
6A	B1	45	6D	8D	43	C1	8A
76	C6	37	75	8B	34	CD	89
B8	3E	4D	23	CA	A5	9B	E9
48	66	DA	9C	12	5E	34	8F
9A	ED	1B	50	17	9A	CD	A5
EO	78	33	A2	C2	49	78	DE
CA	A8	D7	46	5C	CE	1F	9A
90	36	68	E6	A1	6	69	41
1A	9A	AE	С	5E	29	55	D0
86	D7	5A	3A	B7	BB	15	78
5A	CE	B9	D1	27	60	5D	25
D3	8E						
RI	F2		Conve	rt to) F6	R	F8
Real Par	Imag Par	Real Par	Imag Par	Real Par	Imag Par	Real Par	Imag Part
106	-79	69	109	-115	67	-63	-118
118	-58	55	117	-117	52	-51	-119
-72	62	77	35	-54	-91	-101	-23
72	102	-38	-100	18	94	52	-113
-102	-19	27	80	23	-102	-51	-91
-32	120	51	-94	-62	73	120	-34
-54	-88	-41	70	92	-50	31	-102
-112	54	104	-26	-95	6	105	65
26	-102	-82	12	94	41	85	-48
-122	-41	90	58	-73	-69	21	120
90	-50	-71	-47	39	96	93	37
-45	-114						

Figure 4-12 Example packet of pologon board

To make another example, here is a AOA packet of 2us switch slot received by pylogon board(saved by Tscript), it can be analysed in following way according to packet format. In save mode of solution that we mentioned before, receiver will call function to calculate angle once receiving a AOA/AOD packet , then put it behind rx_ packet. Tscript will read total 130 bytes to get them all.

Figure 4-13 Example packet of polygon board

AN-19052700-E4 21 Ver 1.3.0

Telink Position Solution Introduction

raw data in example can be converted to:

1 (avv da	La III C	Adilipi	c can	DC COI	IVCILC	u to.								
F	RF1	R	F3	R	F5	F	F7	F	uf8	B	F6	B	F4	R	F2
Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part
6A	B1	45	6D	8D	43	C1	8A	76	C6	37	75	8B	34	CD	89
B8	3 E	4D	23	CA	A5	9B	E9	48	66	DA	9C	12	5E	34	8F
9A	ED	1B	50	17	9A	CD	À5	EO	78	33	A2	C2	49	78	DE
CA	A8	D7	46	5C	CE	1 F	9A	90	36	68	E6	À1	6	69	41
1À	9A	ÅE	С	5E	29	55	DO	86	D7	5A	3A	B7	BB	15	78
5A	CE	B9	D1	27	60	5D	25	D3	8E						
	RF1	R	F3	R	F5	l F	F7		uf8	l B	F6	В	F4	R	F2
Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part	Real Part	Imag Part
106	-79	69	109	-115	67	-63	-118	118	-58	55	117	-117	52	-51	-119
-72	62	77	35	-54	-91	-101	-23	72	102	-38	-100	18	94	52	-113
-102	-19	27	80	23	-102	-51	-91	-32	120	51	-94	-62	73	120	-34
-54	-88	-41	70	92	-50	31	-102	-112	54	104	-26	-95	6	105	65
26	-102	-82	12	94	41	85	-48	-122	-41	90	58	-73	-69	21	120
90	-50	-71	-47	39	96	93	37	-45	-114						

Figure 4-14 Example packet of polygon board

AN-19052700-E4 22 Ver 1.3.0

5 Field Test Result

5.1 Field Test Result of Reference Board 1

The indoor test environment is shown in. The multiple antenna side can switch antenna to transmit or receive constant single tone. It is placed 2 meters high from the ground attached to the wall. At the other side, a single antenna BLE modular is placed 5 meters away from the multiple antenna side. It is tested by 5 degrees step. The result is shown in Figure 5-1.

Figure 5-1 Test Environment for Reference Board 1

Figure 5-2 5 meters Indoor Test Result

Figure 5-3 is the test result for various scenarios which indicates the mean of

AN-19052700-E4 23 Ver 1.3.0

absolute value of error versus real angle. The height of reference board 1 is 1 or 2 meters and the height of single antenna BLE module is 1 meter. The distance from wall to single antenna dongle is 0.5, 1, 2, 3 or 5 meters respectively following the below test.

Figure 5-3 Mean of Absolute Value of Error Versus Real Angle

5.2 Field Test Result of Reference Board 2

The indoor test environment is shown in Figure 5-4. The multiple antenna side can switch antenna to transmit or receive constant tone extension. It is hanging on the bracket which is 1.8 meter high. The other side is a single antenna BLE modular, placed on the floor or 0.9 meter high marked as H, 1 or 2 meters far from the bracket marked as D. It is tested by 5 degrees step. The result is shown in Figure 5- and Figure 5-.

Scenario 1: D = 1, H = 0; Scenario 2: D = 2, H = 0; Scenario 3: D = 1, H = 0.9; Scenario 4: D = 2, H = 0.9.

The angle of alpha and theta (Refer to Figure 3-4) is measured simultaneously.

AN-19052700-E4 24 Ver 1.3.0

Figure 5-4 Test Environment for Reference Board 2

AN-19052700-E4 25 Ver 1.3.0

Figure 5-5 Estimation of alpha vs. real alpha

Figure 5-6 Estimation of theta vs. real alpha

AN-19052700-E4 26 Ver 1.3.0

5.3 Reference Design for Reference Board 1

5.3.1 Schematic for Reference Board 1

Figure 5-7 Schematic for Reference Board 1

AN-19052700-E4 28 Ver 1.3.0

5.3.2 BOM for Reference Board 1

Table 5-1 BOM Table for Reference Board 1

Quantity	Reference	Value					
0	C1	CAP, 0.1uF ±10% 16V, 0402					
2	C18	CAP, 0.1uF ±10% 16V, 0402					
1	C2	CAP, 2.2uF ±10% 6.3V, 0402					
1	C5	CAP, 2.7pF ±0.1pF 50V, 0402					
2	C6	CAP, 1.5pF ±0.1pF 50V, 0402					
2	C7	CAP, 1.5pF ±0.1pF 50V, 0402					
1	C8	CAP, 220pF ±10% 50V, 0402					
1	C9	CAP, 18pF ±1% 50V, 0402					
	C12	CAP, 1uF ±10% 25V, 0402					
	C13	CAP, 1uF ±10% 25V, 0402					
6	C15	CAP, 1uF ±10% 25V, 0402					
O	C17	CAP, 1uF ±10% 25V, 0402					
	C33	CAP, 1uF ±10% 25V, 0402					
	C41	CAP, 1uF ±10% 25V, 0402					
2	C14	CAP, 1uF ±10% 25V, 0402					
2	C16	CAP, 1uF ±10% 25V, 0402					
1	C19	CAP, 1uF ±10% 25V, 0402					
1	C26	CAP, 10uF ±10% 10V, 0603					
	C32	CAP, 10uF ±10% 10V, 0603					
3	C34	CAP, 10uF ±10% 10V, 0603					
	C49	CAP, 10uF ±10% 10V, 0603					
	C35	CAP, 22pF ±5% 50V, 0402					
9	C36	CAP, 22pF ±5% 50V, 0402					
3	C37	CAP, 22pF ±5% 50V, 0402					
	C38	CAP, 22pF ±5% 50V, 0402					

Telink Position Solution Introduction

Quantity	Reference	Value
	C39	CAP, 22pF ±5% 50V, 0402
	C44	CAP, 22pF ±5% 50V, 0402
	C45	CAP, 22pF ±5% 50V, 0402
	C46	CAP, 22pF ±5% 50V, 0402
	C47	CAP, 22pF ±5% 50V, 0402
1	C40	CAP, 10nF ±5% 16V, 0402
	C42	CAP, 10pF ±5% 50V, 0402
3	C43	CAP, 10pF ±5% 50V, 0402
	C48	CAP, 10pF ±5% 50V, 0402
1	D2	LED, Blue, 0603
1	D3	LED, Green, 0603
1	D4	LED, White, 0603
1	D5	LED, Red, 0603
1	J24	Pin headers,HDR254F-1X6X850
1	J26	USB, MiniABF
2	J30	Pin headers, HDR254F-1X2X850
2	J36	Pin headers, HDR254F-1X2X850
2	LD1	Laser LED Red/Blue
2	LD2	Laser LED Red/Blue
1	L1	IND, 1.3nH ±0.3nH 1A, 0402
1	L2	IND, 2.7nH ±0.3nH 0.8A, 0402
1	L3	IND, 47uH ±20%, 0805
	Q8	NPN, S8050
	Q9	NPN, S8050
6	Q10	NPN, S8050
	Q11	NPN, S8050
	Q12	NPN, S8050

Telink Position Solution Introduction

Quantity	Reference	Value
	Q13	NPN, S8050
0	R10	RES, 10K ±5%, 0402
2	R19	RES, 10K ±5%, 0402
2	R11	RES, 1.5K ±5%, 0402
2	R20	RES, 1.5K ±5%, 0402
2	R12	RES, 4.7R ±5%, 0402
2	R22	RES, 4.7R ±5%, 0402
2	R13	RES, 3.6K ±5%, 0402
2	R21	RES, 3.6K ±5%, 0402
1	R14	RES, 3.3K ±5%, 0402
	R15	RES, 750R ±5%, 0402
3	R16	RES, 750R ±5%, 0402
	R17	RES, 750R ±5%, 0402
2	R23	RES, 33R ±5%, 0402
2	R24	RES, 33R ±5%, 0402
	R26	RES, 0R, 0402
	R27	RES, 0R, 0402
5	R28	RES, 0R, 0402
	R29	RES, 0R, 0402
	R30	RES, 0R, 0402
2	SW2	KEY, SW4PIN_4.5x4.5
2	SW3	KEY, SW4PIN_4.5x4.5
1	U1	SOC, TLSR8258F512ET48,
		qfn_7x7_48pin_0p5_4p20x4p20
1	U5	LDO, CE1132-33M
1	U6	LDO, 2.2V
1	U7	SWITCH, S1318

Telink	Position	Solution	Introduction

Quantity	Reference	Value
1	Y1	Crystal, 24MHz-12pF-+/-20ppm, 3225

5.3.3 Layout for Reference Board 1

Figure 5-8 Layout for Reference Board 1

Bottom

AN-19052700-E4 32 Ver 1.3.0

5.4 Reference Design for Reference Board 2

5.4.1 Schematic for Reference Board 2

Figure 5-9 Schematic for Reference Board 2

AN-19052700-E4 33 Ver 1.3.0

5.4.2 BOM for Reference Board 2

Table 5- 2 BOM Table for Reference Board 2

Quantity	Reference	Description
2	C1	CAP, 0.1uF ±10% 16V, 0402
	C18	CAP, 0.1uF ±10% 16V, 0402
1	C2	CAP, 2.2uF ±10% 6.3V, 0402
1	C5	CAP, 2.7pF ±0.1pF 50V, 0402
0	C6	CAP, 1.5pF ±0.1pF 50V, 0402
2	C7	CAP, 1.5pF ±0.1pF 50V, 0402
1	C8	CAP, 220pF ±10% 50V, 0402
1	C9	CAP, 18pF ±1% 50V, 0402
	C12	CAP, 1uF ±10% 25V, 0402
	C13	CAP, 1uF ±10% 25V, 0402
	C14	CAP, 1uF ±10% 25V, 0402
0	C15	CAP, 1uF ±10% 25V, 0402
8	C16	CAP, 1uF ±10% 25V, 0402
	C17	CAP, 1uF ±10% 25V, 0402
	C41	CAP, 1uF ±10% 25V, 0402
	C19	CAP, 1uF ±10% 25V, 0402
1	C26	CAP, 10uF ±10% 10V, 0603
1	C33	CAP, 1uF ±10% 6.3V, 0603
	C35	CAP, 22pF ±5% 50V, 0402
	C36	CAP, 22pF ±5% 50V, 0402
	C37	CAP, 22pF ±5% 50V, 0402
9	C38	CAP, 22pF ±5% 50V, 0402
	C39	CAP, 22pF ±5% 50V, 0402
	C44	CAP, 22pF ±5% 50V, 0402
	C45	CAP, 22pF ±5% 50V, 0402

AN-19052700-E4 34 Ver 1.3.0

Quantity	Reference	Description
	C46	CAP, 22pF ±5% 50V, 0402
	C47	CAP, 22pF ±5% 50V, 0402
1	C40	CAP, 10nF ±5% 16V, 0402
1	C42	CAP, 10pF ±5% 50V, 0402
2	C43	CAP, 10pF ±5% 50V, 0402
2	C48	CAP, 10pF ±5% 50V, 0402
1	D2	LED, Blue, 0603
1	D3	LED, Green, 0603
1	D4	LED, White, 0603
1	D5	LED, Red, 0603
	J1	SMA, SMA-V
	J2	SMA, SMA-V
	J3	SMA, SMA-V
0	J4	SMA, SMA-V
8	J5	SMA, SMA-V
	J6	SMA, SMA-V
	J7	SMA, SMA-V
	J8	SMA, SMA-V
1	J36	Pin headers, HDR254F-1X2X850
1	L1	IND, 1.3nH ±0.3nH 1A, 0402
1	L2	IND, 2.7nH ±0.3nH 0.8A, 0402
1	L3	IND, 47uH ±20%, 0805
1	R14	RES, 3.3K ±5%, 0402
	R15	RES, 750R ±5%, 0402
3	R16	RES, 750R ±5%, 0402
	R17	RES, 750R ±5%, 0402
11	R19	RES, 0R, 0402

Quantity	Reference	Description
	R20	RES, 0R, 0402
	R21	RES, 0R, 0402
	R22	RES, 0R, 0402
	R23	RES, 0R, 0402
	R24	RES, 0R, 0402
	R25	RES, 0R, 0402
	R29	RES, 0R, 0402
	R26	RES, 0R, 0402
	R27	RES, 0R, 0402
	R28	RES, 0R, 0402
4	U1	SOC, TLSR8258F512ET48,
1		qfn_7x7_48pin_0p5_4p20x4p20
1	U7	Switch, SKY13418
1	1 Y1	Crystal, 24MHz-12pF-+/-20ppm,
		3225

5.4.3 Layout for Reference Board 2

Figure 5-10 Schematic for Reference Board 2

AN-19052700-E4 37 Ver 1.3.0