Chapter 1

Mike Desgrottes

October 2020

1 Ι

Theorem 1. If r is rational $(r \neq 0)$ and x is irrational. Prove that r + x and rx are irrational.

Proof. Suppose that r+x and rx were rational with $r+x=\frac{p}{q}$ and $rx=\frac{a}{b}$. Then we see that $x=\frac{a}{rb}=\frac{p-qr}{q}$ which is a contradiction which is a contradiction.

Theorem 2. Prove that there is no rational number whose square is 12.

Proof. Let $12 = \frac{p^2}{q^2}$ with (p, q) = 1.

$$12q^2 = p^2 \implies 2\sqrt{3}q = p \implies 3|p$$

and

$$3=\frac{p^2}{4q^2}=\frac{3k}{4q^2}\implies (p,q)\geq 3$$

which is a contradiction.

Theorem 3. Prove the following

- (a) If $x \neq 0$, $xy = xz \implies y = z$
- (b) If $x \neq 0$, $xy = x \implies x = 1$
- (c) If $x \neq 0$, $xy = 1 \implies y = \frac{1}{x}$
- (d) If $x \neq 0$ $\frac{1}{1} = x$

Proof. (a) $xy = xz \implies x^{-1}(xz) = x^{-1}(xy) \implies x = y$ (b) $xy = x \implies x^{-1}xy = x^{-1}x \implies y = 1$ (c) $xy = 1 \implies x^{-1}(xy) = x^{-1} \implies y = x^{-1} = \frac{1}{x}$

$$(\mathrm{d}) \left(\frac{1}{x}\right) \left(\frac{1}{\underline{1}}\right) = \frac{x}{x} = 1$$

Theorem 4. Let E be a nonempty ssubset of an ordered set. Suppose α is a lower bound of E, β an upper bound of E. Prove that $\alpha \leq \beta$.

Proof. $\alpha \leq x \leq \beta$ for all $x \in E$, then it follows that $\alpha \leq \beta$.

Theorem 5. Let A be a nonempty set of real numbers which is bounded below. Let -A be the set of -x for $x \in A$. Prove that $\inf A = -\sup(-A)$.

Proof. Let B be the set of all lower bound of A. For all $\beta \in B$, $\beta \leq x$ for all x in A. Then $-x \leq -\beta$. So, -Bis the set of all upper bound of -A and inf $A \ge \beta$. This implies that $-\beta \le -\inf A = -\sup(-A)$. As the infinum is the smallest upper bound for -A, it implies that $-\sup(-A) \leq \inf A$ and the result follows.

Theorem 6. For b > 1, prove the following

(a) If m, n, p, q are integers with n > 0 and q > 0,

$$r = \frac{m}{n} = \frac{p}{q}$$

. Prove that $(b^m)^{\frac{1}{n}} = (b^p)^{\frac{1}{q}}$.

- (b) Prove that $b^{r+s} = b^r b^s$ if r, s are rational.
- (c) If $x \in \mathbb{R}$, define $B(x) = \{b^t : t \le x\}$. Prove that $b^r = \sup B(r)$ when r is rational.
- (d) Prove that $b^{r+s} = b^r b^s$ for all real number r,s.

Theorem 7. Prove that no order can be defined in the complex field that turn it into an ordered field.

Proof. Let < be an order of \mathbb{C} , then either $i > 0 \implies i^2 > 0$ or $-i > 0 \implies (-i)^2 < 0$. In either case, the ordered will violate one of the axiom of an ordered field.

Theorem 8. Prove that $||x| - |y|| \le |x - y|$

Proof.

$$|x| = |x - y + y| \le |x - y| + |y| \implies |x| - |y| \le |x - y|$$

2