Week 5 Recitation Problems

MATH:114, Recitations 309 and 310

Curve Length and Surface Area

1. Given a function $f(x)$, how might we approximate the length of $f(x)$ on the closed interval
[a,b]? Draw an annotated picture or write a few words to explain, and include relevant geo-
metric formulas or ideas. (Hint 1: use the Euclidean distance formula, which you are free to
look up. Hint 2: break the curve up into chunks!)

2. Using your strategy from Problem 1, translate your approximation into an exact continuous calculation (that is, one which uses an integral). Draw an annotated picture or write a few words to explain, and include relevant calculus theorems or geometric ideas. (*Hint: think about the rectangle or trapezoid methods for estimating the area under a curve, which you are free to look up.*)

3. Let

$$f(x) = \frac{x^3}{6} + \frac{1}{2x}.$$

Find the length of f(x) when $1 \le x \le 3$.

4. The formula

$$S = 2\pi \int_a^b g(x) \cdot \sqrt{1 + g'(x)^2} \, dx$$

describes how to find the surface area of the solid generated by the curve g(x) on the closed interval [a,b]. What is familiar about this formula? Using annotated pictures or a few words, describe the geometric ideas at work here.

5. Let $g(x) = \sqrt{4 - x^2}$, and $-1 \le x \le 1$. Find the surface area of the solid generated by rotating g(x) around the x axis.