from previous time $\mu_1 = A \mu_{fused} + B u$	1.	predicted estimate: state	$\mathbf{\hat{x}}_{k k-1} = \mathbf{A}\mathbf{\hat{x}}_{k-1 k-1} + \mathbf{B}\mathbf{u}_{k-1}$
$\sigma_1^2 = A\sigma_{fused}^2 A + Q$ $= A^2\sigma_{fused}^2 + Q$	2.	predicted estimate: state-covariance	$\mathbf{P}_{k k-1} = \mathbf{A}\mathbf{P}_{k-1 k-1}\mathbf{A}^T + \mathbf{Q}_k$
$K = \sigma_1^2 C (C\sigma_1^2 C + \sigma_2^2)^{-1}$ $= \frac{C\sigma_1^2}{C^2 \sigma_1^2 + \sigma_2^2}$	3.	gain	$\mathbf{K}_k = \mathbf{P}_{k k-1}\mathbf{C}^T \bigg(\underbrace{\mathbf{C}\mathbf{P}_{k k-1}\mathbf{C}^T + \mathbf{R}_k}_{ ext{innovation: covariance}} \bigg)^{-1}$
$\mu_{fused} = \mu_1 + K(\mu_2 - C\mu_1)$	4.	updated estimate: state	$\mathbf{\hat{x}}_{k k} = \mathbf{\hat{x}}_{k k-1} + \mathbf{K}_k \left(\mathbf{y}_k - \mathbf{C}\mathbf{\hat{x}}_{k k-1}\right)$ imnovation: measurement
$\sigma_{fused}^2 = (1 - KC)\sigma_1^2$	5.	updated estimate: state-covariance	$\mathbf{P}_{k k} = (\mathbf{I} - \mathbf{K}_k \mathbf{C}) \mathbf{P}_{k k-1}$