Шпоры

22 сентября 2025 г. 16:48

1. $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C_{\alpha}(\alpha \neq -1)$	1.50
$2. \int \frac{dx}{x} = \ln x + C$	$10. \int \frac{dx}{1+x^2} = arctgx + C$
3. $\int a^x dx = \frac{a^x}{\ln a} + C, (a > 0)$	11. $\int \frac{dx}{\sqrt{x^2 \pm 1}} = \ln \left x + \sqrt{x^2 \pm 1} \right + C$
$4. \int e^x dx = e^x + C$	12. $\int \frac{dx}{x^2 - 1} = \frac{1}{2} \ln \left \frac{x - 1}{x + 1} \right + C$
$5. \int \sin x dx = -\cos x + C$	13. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$
$6. \int \cos x dx = \sin x + C$	14. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} arctg \frac{x}{a} + C$
$7. \int \frac{dx}{\sin^2 x} = -ctgx + C$	15. $\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left x + \sqrt{x^2 \pm a^2} \right +$
$8. \int \frac{dx}{\cos^2 x} = tgx + C$	16. $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$