EXHIBIT 32

FINAL - Oct. 23, 2007 William Longo, Ph.D.

Page 1

IN THE UNITED STATES BANKRUPTCY COURT FOR THE DISTRICT OF DELAWARE

CHAPTER 11

IN RE: W.R. GRACE & CO., et al.

Debtor,

Case No. 01-1139 (JFK)
Jointly Administered

VIDEOTAPED DEPOSITION OF

William E. Longo, Ph.D. October 23, 2007

Duluth, Georgia

Lead: Douglas E. Cameron, Esquire

Firm: Reed Smith

FINAL COPY
JANE ROSE REPORTING 1-800-825-3341

JANE ROSE REPORTING 1-800-825-3341 janerosereporting.com

P	ag	e	1	3	0
•	ay	U		J	v

	Page 130			
1	depends on who was doing it, because there's a			
2	certain amount of water per bag.			
3	Q. And if there was water already in there,			
4	you wouldn't expect it to be as dusty as what you had			
5	in your experiment when you just dumped the dry bag			
6	into the hopper, correct?			
7	 A. I would expect it to be the same. 			
8	Q. The water would have no impact on			
9	repressing			
10	 A. None whatsoever, because where the problem 			
11	is is it's like an elevator shaft or a tunnel. You			
12	have an open area and then you have a solid moving			
13	into that area displaces the air. So you may have			
14	water at the bottom. Really all that does is limit			
15	the displacement. So, I wouldn't expect any			
16	difference.			
17	Q. And you didn't run a work practice			
18	simulation with water in the hopper, did you?			
19	A. Absolutely not. It's the only 50-pound			
20	bag of Monokote we have. And of course once you add			
21	water to it it's no longer in its original form. So			
22	if we had multiple bags of Monokote-3, we may			
23	consider that, but we don't.			
24	Q. And is it your opinion that all of the			
25	fibors that we're counting or that were counted in			

			Page 131
1	the PC	M technique were asbestos fibers?	
2	A.	Yes.	
3	Q.	You didn't do any calculation to determine	
4	what r	atio of those were nonasbestos?	
5	A.	Well, we did PCM and TEM. Don't recall	
6	finding	or remembering back in that analysis that	
7	there's	any nonasbestos fibers, and I wouldn't expect	
8	any.		
9	Q.	So your	
10	A.	The only fibrous component in there is	
11	asbest	os. So, those PCM levels wouldn't be anything	
12	else.		
13	Q.	Is there gypsum in the bag?	
14	A.	There is.	
15	Q.	Is there vermiculite in the bag?	
16	A.	There is.	
17	Q.	And your opinion is that the PCM technique)
18	only p	icks up the asbestos fibers, wouldn't pick up	ı
19	gypsu	m, wouldn't pick up vermiculite?	
20	A.	Um	
21	Q.	I'm talking PCM, not TEM.	
22	A.	PCM, vermiculite is not fibrous. So,	
23	yeah, i	t's going to pick it up. And as you recall,	
24	this is a	an indirect, there is not going to be any	
25	avnsur	n	

		Page 132
1	Q.	And what method is used?
2	A.	Essentially the wash-out method.
3	Sonific	ation but no ashing.
4	Q.	What's the wash-out method?
5	A.	It's essentially taking the air cassette
6	and cle	eaning out the inside dust using a mixture
7	of we	ell, a hundred percent distilled water and
8	then ca	apturing it into a hundred milliliter specimen
9	jar and	then sonicating it.
10	Q.	Can you tell me what the analytical
11	protoc	ol is that you followed, you know, obviously it
12	wasn'i	NIOSH 7400, right?
13	A.	It's just the indirect TEM sample
14	prepar	ation protocol.
15	Q.	There's no agency that's put it out, no
16	numbe	er that it carries?
17	A.	The EPA Level II has that protocol. The
18	ISO ha	s that well, not back then because ISO
19	wasn't	out. But EPA Level II essentially shows you
20	the ind	irect protocol.
21	Q.	So you use the EPA Level II protocol to
22	anaiyz	e these air samples; is that correct?
23	A.	With some modification.
24	Q.	What modifications?
25	A.	We didn't ash the sample and when we

25

FINAL - Oct. 23, 2007 William Longo, Ph.D.

		Page 133
1	counte	d the fibers, we only used 5-to-1 aspect ratio
2	and on	ly counted greater than .5.
3	Q.	Greater than .5 in diameter?
4	A.	In length.
5	Q.	Greater than .5 in length?
6	A.	Length.
7	Q.	Okay.
8	A.	All diameters.
9	Q.	By PCM?
10	A.	PCM was 3-to-1, only greater than five and
11	only gr	eater than .25. TEM was 5-to-1, greater than
12	.25.	
13	Q.	So the protocol that you're referencing
14	that yo	ou use, is that a TEM protocol?
15	A.	Well, TEM and PCM. The PCM samples were
16	too ove	erloaded to analyze so we had to do the
17	indirec	t. The indirect essentially came out of the
18	Level I	I protocol.
19	Q.	I guess where I'm starting to lose you is
20	you di	dn't do a PCM analysis then because they were
21	too ov	erloaded to
22	A.	We didn't prepare it using the direct
23	method	d, but we analyzed it by PCM.
24	Q.	And by analyze it by PCM, you used the PCM

counting rules in terms of what you would count as a

		Page 134	
1	fiber?		
2	A.	Correct.	
3	Q.	And you had indicated that the range that	
4	you fo	und would violate OSHA's current PEL and	
5	excurs	sion limits, correct?	
6	A.	Correct.	
7	Q.	And those are PCM?	
8	A.	Correct. And that's PCM data there, even	
9	though	it's indirect.	
10	Q.	That was my next question. And those	
11	curren	it PELs and excursion limits are based on direct	
12	prepar	ration, correct?	
13	A.	Correct. Obviously if that was a direct	
14	prepara	ation at 129 to 235, it wouldn't be .1 and 1.	
15	That w	ould have been in violation of the '72	
16	excurs	ion limit of 10 fibers per cc, and certainly	
17	the '72	PEL of 5 fibers per cc based on that.	
18	Q.	And those, all of those, all of those	
19	limits 1	that you gave are based on direct preparation,	
20	correc	correct?	
21	A.	Correct.	
22	Q.	How does the number that you arrived at by	
23	using i	indirect preparation compare to the OSHA	
24	regula	tions, can you make a comparison?	
25	Α	Based on all our data we can. If you take	

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

FINAL - Oct. 23, 2007 William Longo, Ph.D.

Page	135

- the pulverization data and the dust and debris data.
- we have both direct and indirect TEM levels in that
- data. And there's about a factor of ten on the
- 4 direct versus the indirect on increase.
 - Q. You mean that the indirect, the fiber counts using indirect, are ten times higher than the fiber count using direct?
 - A. On average.
 - Q. And that's in the pulverization --
 - A. And the dust and debris. So if you look at that factor you can say okay, well the indirect provides you more precise, better analysis, but what's the factor of increase.

And I don't think it's disputed on very heavily loaded samples that you will get an increase, not due to breakup and that sort of stuff, but it's just that it's a more precise analysis.

So you have about a factor of ten. At 129 to 235, I think, in my opinion, stating that that would violate -- if we had been able to do the direct, if we had lower volumes of air where we could have measured this, that, in my opinion, based on those numbers, they would have violated the 1 fiber per cc excursion limit and the .1 PEL.

Q. Okay. But you -- that's after making a

FINAL - Oct. 23, 2007 William Longo, Ph.D.

	Page 136
1	correction to the 129 to 235 fibers per cc, correct?
2	A. Sure.
3	Q. And you make that conversion based on this
4	10-to-1 ratio?
5	A. Well, looking at the 10-to-1 ratio, but
6	because we are looking at the same types of material,
7	Monokote-3, and doing the direct versus the indirect
8	on the same set of samples, I think we can make that
9	conversion there because it's approximately the same
10	material, same samples. Some of them done by direct,
11	some of it by indirect. So it allows us to get a
12	qualitative conversion factor for just this material.
13	Q. And by this material, you're referring
14	to
15	A. Monokote-3.
16	Q. Monokote-3. The pulverization and work
17	practices demonstration was Monokote-3 after being
18	installed, correct?
19	A. Correct.
20	Q. And the mixing was Monokote-3 prior to
21	being applied, correct?
22	A. Correct.
23	Q. It's just dry out of the bag?
24	A. Correct.
25	Q. Okay. And you felt comfortable making

JANE ROSE REPORTING 1-800-825-3341 janerosereporting.com

2425

FINAL - Oct. 23, 2007 William Longo, Ph.D.

		Page	137
1	that co	onversion factor from the pulverization data to	
2	the mi	ixing study data, correct?	
3	A.	Absolutely.	
4	Q.	And that's because you had both direct and	
5	indired	ct samples taken on that one set of data from	
6	the pu	llverization and dust and debris, correct?	
7	A.	Correct.	
8	Q.	So you can make a comparison and,	
9	therefo	ore, do a conversion factor?	
10	A.	Correct.	
11	Q.	Have you ever conducted a simulation	
12	regarding the spraying of Monokote-3?		
13	A.	No.	
14	Q.	The data that you rely upon for the	
15	sprayi	ing of MK-3 is the historical data that we went	
16	over e	earlier today, correct?	
17	A.	That, and I guess there's	
18	Q.	And the references that are in your	
19	rebutta	rebuttal report?	
20	A.	Correct.	
21	Q.	Now, your report also references a work	
22	practio	ces simulation demonstration at reference 30,	
23	and an	m I correct that that is the work practices	

demonstration that had a couple of components, one

component was pulverizing what you refer to as