Adversarial Path of Cartesian Product

by Sven Nilsen, 2018

In this paper I represent the adversarial path of Cartesian products. This is based on ideas from a discussion with Adam Nemecek.

A Cartesian product is just a tuple:

The paper "Adversarial Paths" introduced choices and adversarial choices. Making a choice `A` is written ` $A \sim 0$ `, which has the type:

$$A \sim 0 : T \rightarrow A \sim 1$$

A Cartesian product of choices is itself a choice. In the case of a making a choice of a Cartesian product of choices:

$$(a, b) \sim 0 \le (a \sim 0, b \sim 0)$$

For example, when `a` and `b` are lists:

(a, b) : [A]
$$\times$$
 [B]
(a, b) \sim 0 : ([A] \times [B]) \sim 0
(a \sim 0, b \sim 0) : [A] \sim 0 \times [B] \sim 0
(a \sim 0, b \sim 0) : (nat \rightarrow A \sim 1) \times (nat \rightarrow B \sim 1)
(a \sim 0, b \sim 0) : nat \times nat \rightarrow A \sim 1 \times B \sim 1
(a \sim 0, b \sim 0) : nat \times nat \rightarrow (A \times B) \sim 1

Therefore:

A such tuple of list of choices is called "undecidable" because it lacks the necessary information to arrive at any concrete new resource $(A \times B) \sim 1$. To do this, one has to apply the tuple to arguments: