黎曼几何基础

作者: thzt

可微函数

n 维**欧氏空间**,简记为 Rn,是有序的 n 元实数组的集合,并赋予标准的距离 d 所构成的空间,其元素称为"点"。

Rn中任意两点 $a=(a1,\dots,an)$, $b=(b1,\dots,bn)$ 之间的距离定义为, $d(a,b)=\sqrt{5}$ 有 $\Gamma i=1\sum n(bi-ai)$ 2。

设 U 是 Rn的一个开集,r为正数,如果 U 上的实函数 $f:U\rightarrow R$ 具有直到 r 阶的各阶连续偏导数,则称 f 为 U 上的一个 r 次**可微函数**。

U 上的 r 次可微函数的集合记为 Cr(U),依此记法,U 上的连续函数的集合记作 CO(U)。

给定函数 $f:U\to R$,如果对于任意的非负整数 r,都有 $f\in Cr(U)$,则称函数 f 是 U 上的一个**光滑函数**,U 上的光滑函数的集合记作 $C\infty(U)$ 。

为了方便起见,把Cr(U)中的函数,称为(U上的)Cr函数。

欧氏空间之间的映射

设 U 是 Rn的一个开子集, $f:U\rightarrow R$ 是从 U 到 k 维欧氏空间 Rk的映射, 显然,映射 f 可以用 U 上的 k 个实函数 $f\alpha(1\leqslant \alpha\leqslant k)$ 表示为, $f=(f1,\cdots,fk)$, 其中, $f\alpha(1\leqslant \alpha\leqslant k)$ 称为映射 f 的**分量**。

如果对于每一个 $\alpha(1 \le \alpha \le k)$, $f\alpha$ 都是 U 上的 Cr函数,则称映射 f 为(从 U 到 Rk的) Cr映射。

特别的,如果 $U \in R$ 的一个开区间,

则 C∞ 映射 $f:U\rightarrow Rk$ 又称为 Rk中的一条**光滑曲线**。

拓扑流形和微分流形

设 M 是一个非空的 Hausdorff 空间,如果对于每一点 p \in M ,都存在 p 点的开邻域 U \subseteq M ,以及从 U 到 m 维欧氏空间 R m 的某个开集上的同胚 φ :U \to R m ,则称 M 为一个 m 维**拓扑流形**。

上述定义中的(U, φ)称为 M 的一个**坐标卡**,

此时,开集 U 称为点 $p \in M$ 的**坐标邻域**, φ 称为**坐标映射**。

于是,所谓的拓扑流形实际上就是在局部上同胚于 m 维欧氏空间的 Hausdorff 空间,即它的每一点都有同胚于 Rn中某个开集的坐标邻域。

设 M 是一个 m 维拓扑流形, (U,φ) 与 (V,ψ) 是 M 的两个坐标卡,如果 $U \cap V = \emptyset$,或者当 $U \cap V \neq \emptyset$ 时,映射 $\psi \circ \varphi - 1 : \varphi(U \cap V) \rightarrow \psi(V)$ 和 $\varphi \circ \psi - 1 : \psi(U \cap V) \rightarrow \varphi(U)$,都是 Cr 映射,则称坐标卡 (U,φ) 与 (V,ψ) 是 Cr 相容的。

显然, 拓扑流形 M 的任意两个坐标卡必定是 C0相容的。

设 M 是一个拓扑流形,

 $A=\{(Ulpha, \varphilpha); lpha\in I\}$ 是 M 的若干坐标卡构成的集合,I 为指标集。 如果 A 满足下列三个条件,

则称 A 为拓扑流形 M 的一个 Cr微分结构,

- (1) $\{U\alpha;\alpha\in I\}$ 是 M 是一个开覆盖,
- (2) $\forall \alpha, \beta \in I$,($U\alpha, \varphi\alpha$)与($U\beta, \varphi\beta$)是 Cr相容的,
- (3) A 是**极大的**,换句话说,对于 M 的任意一个坐标卡(U, φ),如果它和 A 中的每一个成员都是 Cr相容的,则它一定属于 A。

C∞微分结构,称为**光滑结构**。

设 *M* 是一个 *m* 维拓扑流形,A 是 *M* 的一个 *Cr*微分结构,则称(*M*,A)是一个 *m* 维 *Cr*微分流形。 此时,A 中的坐标卡统称为 *Cr*微分流形(*M*,A)的**容许坐标卡**。 特别的, $C \infty$ 微分流形,又称为**光滑流形**。 在不引起混淆的情况下,也用 M 表示一个 Cr微分流形(M.A)。

局部坐标系

设(U, φ)是 m 维微分流形 M 的一个容许坐标卡,则对于 $\forall p \in U$,把 $x = \varphi(p)$ 在 Rm中的坐标($x1(p), \dots, xm(p)$),称为点 p 的**局部坐标**。

以这样的方式,在 U 上确定了一个坐标系,称为 M 在 p 点的一个(由局部坐标卡(U, φ)给出的)**局部坐标系**,记为(U, φ ;xi),或(U;xi), 其中,定义在 U 上的 m 个函数 xi: $U \to R$ ($i=1,\cdots,m$),称为**(局部)坐标函数**。

对于 M 的任意两个 Cr相容的局部坐标系 $(U,\varphi;xi)$ 和 $(V,\psi;yi)$,如果 $U\cap V\neq\emptyset$,则称映射, $\psi\circ\varphi-1:\varphi(U\cap V)\to\psi(U\cap V)$, 为从 $(U,\varphi;xi)$ 到 $(V,\psi;yi)$ 的 **(局部) 坐标变换**, 它可以表示为, $yi=(\phi\circ\varphi-1)i=yi(x1,\cdots,xm)$, $1\leqslant i\leqslant m$ 。

由此所得到的 m 阶方阵, $f(x;y)=(\partial xi\partial yi)$,称为局部坐标变换 $\psi\circ \varphi-1$ 的 Jacobi **矩阵**,相应的行列式称为 $\psi\circ \varphi-1$ 的 Jacobi **行列式**,

并且记,

 $\partial(x1,\dots,xm)\partial(y1,\dots,ym)=det(\partial xi\partial yi)_{\circ}$

流形间的映射

设 M 是一个 m 维光滑流形,G 为 M 的非空子集, $f:G\to R$ 是定义在 G 上的实值函数, 如果对于 M 的任意一个容许坐标卡(U,φ),当 $U\cap G\neq \emptyset$ 时, $f\circ \varphi-1:\varphi(G\cap U)\to R$,是 Cs 函数, 则称 f 是 G 上的 Cs 函数。 G 上的 $C\infty$ 函数又称为**光滑函数**。

开集 G 上全体 C s函数的集合记作 C s(G),特别的,M 上全体光滑函数的集合记作 C ∞ (M)。不难看出,C s(G) 关于函数的加法和乘法构成一个环。

设 M 为光滑流形, $p \in M$,f 是定义在 p 点某个邻域 A 上的函数,如果存在 p 的开邻域 $U \subseteq A$,使得 $f \mid U$ 是 U 上的 Cs 函数,则称 f 是定义在 p 点**附近**的 Cs 函数,简称为在 p 点的 Cs 函数。

全体在 p 点的 Cs函数构成的集合记作 Cps,一般的,Cps中两个函数可以有不同的定义域,但是它们在 p 点的某一个开邻域上都有定义并且是 Cs的,因此,Cps中可以定义加法和乘法。

设 M,N 分别是 m,n 维光滑流形, $f:M\to N$ 为映射, $p\in M$,如果存在 M 在点 p 的容许坐标卡(U,φ),以及 N 在点 f(p)的容许坐标卡(V,ψ),使得 $f(U)\subseteq V$,并且复合映射, $f\sim=\psi\circ f\circ \varphi-1:\varphi(U)\to \psi(V)$,是 $C\infty$ 映射,则称映射 f 在 p 点是 $C\infty$ 的(或**光滑的**)。

设 $f:M\to N$ 是光滑流形 M,N 间的映射,如果 f 在 M 的每一点 p 处都是 $C\infty$ 的,则称 f 为 $C\infty$ 映射,或**光滑映射**。

设 M 和 N 是两个光滑流形, $f:M\rightarrow N$ 是一个同胚,如果 f 及其逆映射 $f-1:N\rightarrow M$ 都是光滑的,则称 f 是从 M 到 N 的**光滑同胚**,或**微分同胚**。此时,也称 M 和 N 彼此光滑(或微分)同胚。

如果 $f:M\to N$ 是一个光滑映射,并且对于每一点 $p\in M$,都有 p 的一个开邻域 U 使得 f(U)是 N 中的开子集,并且, f(U)0 是从 U1 到 f(U)0 的光滑同胚,则称 f 是从 M1 到 N1 的**局部光滑同胚**。

显然,如果 f 是从 M 到 N 的光滑同胚,

则 f-1是从 N 到 M 的光滑同胚。

切向量

假定 M 是一个 m 维光滑流形, $p \in M$, $Cp \infty$ 表示在 p 点的光滑函数的集合。 光滑流形 M 在点 $p \in M$ 的一个**切向量** v 指的是,满足以下两个条件的映射 $v: Cp \infty \to R$,

- (1) $\forall f,g \in Cp \infty$, $\forall \lambda \in R$, $v(f+\lambda g)=v(f)+\lambda v(g)$,
- (2) $\forall f,g \in Cp \infty$, $v(fg)=v(f)g(p)+f(p)v(g)_{\circ}$

设(U, φ ;xi)是 p 点的一个局部坐标系,对于任意的 $f \in Cp \infty$,记,

 $\partial x i \partial f(p) = \partial x i \partial (f \circ \varphi - 1) (\varphi(p))_{\circ}$

设 M=Rm,x0∈Rm,对于向量 v∈Rm,我们定义映射 Dv:Cx0∞→R 如下,对于任意的函数 f∈Cx0∞,令, Dvf=dtdf(x0+tv)|||t=0,则 Dvf 是函数 f 在点 x0沿向量 v 的**方向导数**。

容易验证,方向导数算子 *Dv*满足切向量的条件, 所以它是 *Rm*在 *x*0点的一个切向量。

假定 $v=(v1,\cdots,vm)$,则, $Dvf=i=1\sum m\partial xi\partial f(x0)\cdot vi$ 。 因此,算子 Dv是由向量 v 唯一决定的。

反之,可以证明,如果映射 $\sigma:Cx0 \times AR$ 满足切向量的条件,则必有唯一的一个向量 $v \in Rm$,使得相应的方向导数算子 $Dv = \sigma$ 。

所以,向量v与方向导数算子Dv是一一对应的,这就是说,可以把v和Dv等同起来。

设 M 是一个 m 维光滑流形, $\gamma:(-\varepsilon,\varepsilon)\to M$ 是 M 上的一条光滑曲线,记 $p=\gamma(0)$, 利用 γ 可以定义一个映射 $v:Cp\infty\to R$ 如下,

对于任意的 $f \in Cp \infty$,令, $v(f) = dtd||t = 0f \circ \gamma(t) = dtdf(\gamma(t))||t = 0$ 。

容易验证,映射 $v:Cp \to R$ 满足切向量的条件,因此,v 是光滑流形 M 在 p 点的一个切向量,称为曲线 γ 在 t=0 点处的**切向量**,记为 $\gamma'(0)$,这样上式成为, $\gamma'(0)(f)=dtdf(\gamma(t))|||t=0$ 。

切空间

把光滑流形 M 在点 p 处的切向量构成的集合,记为 TpM,在 TpM 中,引入加法和数乘运算如下,对于任意的 $u,v \in TpM$, $\lambda \in R$,以及 $f \in Cp \infty$,定义,(u+v)(f)=u(f)+v(f), $(\lambda u)(f)=\lambda \cdot u(f)$ 。

显然,这样定义的 u+v 和 λu 仍然是 M 在 p 点的切向量,即 TpM 关于这样的加法和数乘运算是封闭的。进一步可以验证,TpM 关于上述的加法和数乘运算构成一个实向量空间。

向量空间 *TpM*,称为光滑流形 *M* 在点 *p* 的**切空间**。

设 $(U,\varphi;xi)$ 是 M 在 p 点的一个局部坐标系, xi(p)=x0i, $1 \le i \le m$, 对于每一个 i, 设 $\gamma i:(-\varepsilon,\varepsilon) \to M$ 是通过点 p 的第 i 条坐标曲线(称为 xi曲线),即对于任意的 $t \in (-\varepsilon,\varepsilon)$, $\gamma i(t)=\varphi-1(x01,\cdots,x0i+t,\cdots,x0m)$ 。

因此, $\gamma i'(0)$ 是 M 在 p 点的一个切向量,以后记为 $\partial x i \partial ||| p$ 。由定义,对于任意的 $f \in Cp \infty$, $\partial x i \partial ||| p(f) = dt df(\gamma i(t))||| t = 0$ $= dt dt = 0 f \circ \varphi - 1(x 0 1, \cdots, x 0 i + t, \cdots, x 0 m)$ $= \partial x i \partial (f \circ \varphi - 1)(\varphi(p))$ $= \partial x i \partial f(p)$ 。

设M是一个m维光滑流形,p∈M,

(U;xi)是包含 p 点的任意一个容许的局部坐标系,则 M 在 p 点的 m 个切向量, $\partial xi\partial |||p$, $1 \le i \le m$,构成了切空间 TpM 的一个基底,特别的,dimTpM=m。

通常把基底 $\{\partial x i \partial | | | p, 1 \leq i \leq m \}$, 称为在 p 点处由局部坐标系(U;xi)给出的**自然基底**。

可证,任何一个切向量 v,在自然基底 $\{\partial xj\partial | || p, 1 \leq j \leq m\}$ 下的分量 vi,恰好是该切向量,在第 i 个局部坐标函数 xi上作用得到的值,v(xi), $v=i=1\sum mv(xi)\partial xi\partial || p$ 。

余切向量

切空间 TpM 的对偶空间,称为光滑流形 M 在 p 点的**余切空间**,记为 Tp*M,其中的元素,即线性函数 $\alpha:TpM\to R$,称为 M 在 p 点的**余切向量**。

为了强调切空间与余切空间的对偶性,

常常把一个余切向量 $\alpha \in Tp*M$ 在切向量 $v \in TpM$ 上的作用记为 $\alpha(v) = \langle v, \alpha \rangle$ 。 由 $(v,\alpha) \mapsto \langle v,\alpha \rangle$ 确定的映射,

 $\langle \cdot, \cdot \rangle : TpM \times Tp * M \rightarrow M,$

称为 TpM 与 Tp*M 之间的**配合**。

设 f∈Cp∞,定义映射 df:TpM→R 如下,对于任意的 v∈TpM,(v,df)=df(v)=v(f)∈R。

显然 df 是 TpM 上的线性函数,即 df \in Tp*M,有时,为了强调 df 是在 p 点的一个余切向量,也把 df 记为 df |p,或 df (p)。

设(U;xi)是光滑流形 M 的一个容许局部坐标系, $p \in U$,由于每个坐标函数都是 U 上的光滑函数,因而 $dxi|p \in Tp*M$,并且, $(\partial xj\partial |||p,dxi|p)=\partial xj\partial xi|||p=\delta ji$ 。

由此可见, $\{dxi|p; 1 \leq i \leq m\}$ 是Tp*M中与自然基底

 $\{\partial x i \partial | | | p; 1 \leq i \leq m\}$

对偶的基底。

一般的,对于任意的 $\alpha \in Tp*M$,有 $\alpha = i = 1\sum m\alpha i dx i | p = i = 1\sum m\langle \partial x i \partial | | | p, \alpha \rangle dx i | p$,特别的,对于任意的 $f \in Cp \infty$, $df|p = i = 1\sum m\partial x i\partial f(p) dx i | p$ 。 因此,余切向量 df|p = df(p),也称为函数 f 在 p 点的**微分**。

切映射和余切映射

设 M,N 分别是 m,n 维光滑流形,F:M→N 是光滑映射,p∈M,对于任意的 v∈TpM,我们可以通过映射 F 得到切向量 F*(v)∈TF(p)N,其定义为,F*(v)(f)=v(f∘F), \forall f∈CF(p) ∞ 。

这样,就得到一个映射 $F*:TpM\to TF(p)N$, 易知,F*是线性映射,称为光滑映射 F 在 p 点的**切映射**,或微分,它的对偶映射 $F*:TF(p)*N\to Tp*M$, 称为光滑映射 F 在 p 点的**余切映射**,或拉回映射。

由对偶映射的定义,余切映射 $F*:TF(p)*N\to Tp*M$ 也是线性映射,并且对于任意的 $\omega\in TF(p)*N$, $F*\omega$ 由下式定义, $(F*\omega)(v)=\omega(F*(v))$, $\forall v\in TpM$ 。

为了强调对于点 p 的依赖性, 常常用 F*p和 Fp*来表示映射 F 在 p 点的切映射和余切映射。

切向量场

设 M 是一个 m 维光滑流形,M 在每一点 p 处都有切空间 TpM,记 $TM=p\in M\cup TpM$ 。

M上的一个**切向量场** X 是指,在 M 的每一个点 p 处指定了 M 在该点的一个切向量 X(p),换句话说,M 上的切向量场是一个映射 $X:M\to TM$,使得对于任意一点 $p\in M$, $X(p)\in TpM$ 。

比如,在M的任意一个容许局部坐标系(U;xi)下,

 $\partial xi\partial = U$ 上的切向量场,

特别的,这样一组切向量场在 U 中每一点 p 处的值,构成该点的切空间 TpM 的一个基底。通常称这样一组切向量场为 U 上的一个**标架场**,

为了叙述的方便,以后把 $\{\partial x i \partial | || p\}$ 称为,M在局部坐标系(U; x i)下的**自然标架场**。

设 $X:M\to TM$ 是 m 维光滑流形 M 上的切向量场,如果对于每一点 $p\in M$,存在 p 点的容许局部坐标系(U;xi),使得 X 限制在 U 上的局部坐标表达式,

 $X|U=i=1\sum mXi\partial xi\partial$

中的分量 Xi都是 U 上的光滑函数($1 \le i \le m$),则称 X 是 M 上的**光滑切向量场**。

由定义和局部坐标系的 $C \infty$ 相容性可得, M 上的一个切向量场 X 为光滑切向量场 $\Rightarrow X$ 关于每一个自然标架场的分量是光滑函数 $\Rightarrow X$ 在每一个容许坐标系(U;xi)上的限制 $X \mid U$ 是 U 上的光滑切向量场。

M 上光滑切向量场的集合,记为 X(M),显然,X(M)关于加法和数乘是封闭的,因而它是一个向量空间。

张量场

M 在点 p 处的一个(r,s)型张量 τ ,是指一个 r+s 重线性映射, r: $Tp*M\times \cdots \times Tp*M\times TpM\times \cdots \times TpM\to R$, 其中,Tp*M 有 r 个,称为**反变阶数**,TpM 有 s 个,称为**协变阶数**。

若以 Tsr(p)表示 M 在 p 点的所有(r,s)型张量构成的集合,则有, $Tsr(p)=L(Tp*M,\cdots,Tp*M,TpM,\cdots,TpM;R)$ 。

不难看出,Tsr(p)是一个 mr+s维向量空间, 并且,在 p 点的容许局部坐标系(U;xi)下,Tsr(p)有一个自然基底,即, $\partial xi1\partial |||p\otimes \cdots \otimes \partial xir\partial |||p\otimes dxj1|p\otimes \cdots \otimes dxjs|p$, $1 \leq i1, \cdots, ir, j1, \cdots, js \leq m$ 。

由此可见, $Tsr(p)=TpM\otimes \cdots \otimes TpM\otimes Tp*M\otimes \cdots \otimes Tp*M$,其中TpM有r个,Tp*M有s 个。

令, $Tsr(M) = p \in M \cup Tsr(p)$, 光滑流形 M 上的一个(r,s)型**张量场** τ , 是指从 M 到 Tsr(M)的一个映射 $\tau:M\to Tsr(M)$,使得对于任意的 $p\in M$,都有 $\tau(p)\in Tsr(p)$ 。

M上的(r,0)型和(0,s)型张量场,分别称为r阶反变张量场和s 阶协变张量场。

M 上光滑的(r,s)型张量场构成的集合记作 Jsr(M),特别的,J01(M)=X(M),J00(M)=C∞(M)。

在集合 Jsr(M)中有自然的加法,数乘等运算, 任意两个光滑张量场能够逐点作张量积运算,另外,张量场还可以与光滑函数相乘, 使得 Jsr(M)成为一个 $C\infty(M)$ -模。

光滑的一阶协变张量场(即余切向量场),又称为 **1 次微分式**。 把光滑流形 M 上的 1 次微分式的集合记为 A1(M),即 A1(M)=|10(M)。

外微分

光滑流形 M 上的一个光滑的 r 阶协变张量场 φ 是**反对称的**,如果它作为映射, φ :X(M)×···×X(M)→C∞(M),关于所有的自变量是反对称的,即交换任意两个自变量的位置,所得的值反号。或等价的说,在任意的局部坐标系下, φ 的分量关于下指标是反对称的。

光滑流形 M 上的一个光滑的 r 阶反对称协变张量场 φ ,

称为 M 上的一个 r 次**外微分式**。

同时,还约定,M上的 1 次外微分式,就是 M 上的 1 次微分式,即光滑的一阶协变张量场。 M 上的 0 次外微分式,指的是 M 上的光滑函数。

M上的 r次外微分式的集合记作 Ar(M),特别的,A1(M)=J10(M), $A0(M)=C\infty(M)$ 。

由定义可知,若 $\varphi \in Ar(M)$,则在每一点 $p \in M$,

 $\varphi(p)$ 是 TpM 上的一个 r 次外形式,即, $\varphi(p)$: $TpM \times \cdots \times TpM \rightarrow R$,是一个反对称的 r 重线性函数。

此外,每一个r次外微分式 φ ,可以等同于反对称的r重C ∞ (M)-线性映射, φ : $X(M) \times \cdots \times X(M) \rightarrow C$ ∞ (M)。

通过逐点定义的方式,可以引入外微分式的加法,数乘和外积运算,比如,外积的定义如下, $\forall \varphi \in Ar(M), \psi \in As(M),$ $(\varphi \land \psi)(p) = \varphi(p) \land \psi(p)$ $= r!s!(r+s)!Ar+s(\varphi(p)\otimes\psi(p))$ $= r!s!(r+s)!Ar+s(\varphi\otimes\psi)(p), \forall p \in M.$

即有, $\varphi \wedge \psi = r! s! (r+s)! Ar + s(\varphi \otimes \psi)$,这里的 Ar + s是反对称化算子。

进而,若令 $A(M)=r=0 \oplus mAr(M)$, $m=dim\ M$,则在 A(M)上可以引入外微分运算。

设 $M \in m$ 维光滑流形,则存在唯一的一个映射, $d:A(M) \rightarrow A(M)$,使得对于任意的非负整数 r,有 $d(Ar(M)) \subseteq Ar + 1(M)$,并且满足以下条件,

- (1) d 是线性的,即对于任意的 φ , ψ \in A(M), λ \in R,有, $d(\varphi+\lambda\cdot\psi)=d\varphi+\lambda d\psi$,
- (2) $\forall \varphi \in Ar(M), \psi \in A(M)$, 有, $d(\varphi \wedge \psi) = d\varphi \wedge \psi + (-1)r\varphi \wedge d\psi$,
 - (3) ∀*f*∈A0(*M*), *df* 是 *f* 的微分,
- (4) $d2=d \circ d=0$

这样的映射 d, 称为**外微分(算子)**。

外微分算子 d 满足 $d \circ d = 0$, 这意味着 $d:Ar(M) \rightarrow Ar + 1(M)$ 可以看做拓扑学忠的上边缘算子, 在这里,Ar(M)被看做加法群。

令 $Zr(M) = \{\alpha \in Ar(M): d\alpha = 0\}$, $Br(M) = d(Ar - 1(M)) = \{\alpha \in Ar(M): \exists \beta \in Ar - 1(M), \alpha = d\beta\}$, Zr(M)中的元素称为 M 上的 r 次**闭微分式**, Br(M)中的元素称为 M 上的**恰当微分式**, 这样,性质 $d \circ d = 0$,表明 Br(M)是 Zr(M)的子群。

商群 Hr(M)=Zr(M)/Br(M)称为光滑流形 M 上的第 r 个 de Rham 上同调群。

应该注意的是,de Rham 上同调群 Hr(M)是光滑流形的光滑结构的产物,

但是,著名的 de Rham 定理说,当 M 是紧致光滑流形时,de Rham 上同调群 Hr(M)与 M 的第 r 个实系数上同调群是同构的,

由此可见,de Rham 上同调群 Hr(M)是流形 M 的拓扑不变量。

向量丛

设 E,M 是两个光滑流形,π: $E \rightarrow M$ 是一个光滑的满映射,V = Rq是 q 维向量空间,如果在 M 上存在一个开覆盖 $\{U\alpha; \alpha \in I\}$,以及一组映射 $\{\psi\alpha; \alpha \in I\}$,它们满足下列条件,

- (1) $\forall \alpha \in I$,映射 $\psi \alpha$ 是从 $U\alpha \times Rq$ 到 $\pi 1(U)$ 的光滑同胚,并且对于任意的 $p \in U\alpha$, $y \in Rq$ 有, $\pi \circ \psi \alpha(p,y) = p$ 。
- (2) 对于任意固定的 $p \in U\alpha$,令, $\psi\alpha, p(y) = \psi\alpha(p,y)$, $\forall y \in Rq$,则映射 $\psi\alpha, p: Rq \to \pi-1(p)$ 是同胚,而当 $p \in U\alpha \cap U\beta \neq \emptyset$ 时,映射 $g\beta\alpha(p) = \pi\beta, p-1 \circ \psi\alpha, p: Rq \to Rp$,是线性同构,即 $g\beta\alpha(p) \in GL(q)$ 。
- (3) 当 $U\alpha \cap U\beta \neq \emptyset$ 时, 映射 $g\beta\alpha: U\alpha \cap U\beta \rightarrow GL(q)$ 是光滑的。

则称(E,M, π)为光滑流形 M 上的秩为 q 的**向量丛**,其中,E 称为**丛空间**,M 称为**底流形**,映射 π : $E \rightarrow M$ 称为**丛投影**。

为了方便,以后也把向量丛(E,M,π),记为 π:E→M,或 E。

易证,对于任意的 $p \in M$,在 $\pi - 1(p)$ 上具有自然的线性结构,使得映射 $\psi \alpha, p: Rq \to \pi - 1(p)$ 为线性同构,以后把 $\pi - 1(p)$ 称为向量丛 E 在点 $p \in M$ 的**纤维**,也记为 Ep。

由此可见,向量丛 $\pi: E \to M$,是一簇"栽种在"光滑流形 M 上的 q 维向量空间。映射 $\psi \alpha: U\alpha \times Rq \to \pi-1(U\alpha)$,称为向量丛 E 的**局部平凡化**。

 $\pi:TM\to M$ 是 M 上秩为 m 的向量丛, 称为光滑流形 M 上的**切向量丛**,简称为 M 的**切丛**。

设 $\pi: E \to M$ 是光滑流形 M 上的向量丛, $U \subseteq M$ 为开集,若有光滑映射 $s: U \to E$,使得, $\pi \circ s = id: U \to U$,则称 s 为向量丛(E, M, π)的定义在 U 上的一个**光滑截面**,特别的,当 U = M 时,则称 s 为向量丛 E 的一个光滑截面。

向量丛 $\pi: E \to M$ 的光滑截面的集合记为 $\Gamma(E)$,不难验证,集合 $\Gamma(E)$ 是一个 $C \times (M)$ -模,因而也是 R 上的向量空间,一般而言, $\Gamma(E)$ 作为实向量空间是无限维的。

因此,流形 M 上的光滑切向量场,是切丛 TM 的光滑截面,反之亦然,因此 $X(M) = \Gamma(TM)$ 。

设 $\pi: E \to M$ 是光滑流形 M 上秩为 q 的向量丛, $U \subseteq M$,如果存在 q 个局部光滑截面, $sa \in \Gamma(U)$, $1 \le a \le q$,使得 $\{sa\}$ 是处处线性无关的,即对于任意的 $p \in U$, $\{sa(p)\}$ 构成向量空间 $\pi-1(p)$ 的一个基底,则称 $\{sa\}$ 是向量丛 E 的(定义在 U 上的)一个**局部标架场**。

特别的,当 U=M 时,称 $\{sa\}$ 是大范围的定义在 M 上的标架场。一般来说,向量丛的定义在整个底流形上的标架场未必是存在的,而局部标架场总是存在的。

对偶丛

设 $\pi: E \to M$ 是光滑流形 M 上的秩为 q 的向量丛,对于任意的 $p \in M$,用 Ep*=(Ep)*表示 q 维实向量空间 Ep的对偶空间,并记 $E*=p \in M \cup Ep*$,

再定义映射 $\pi\sim:E*\to M$,使得, $\pi\sim(\omega)=p$, \forall $\omega\in Ep*$,于是, $\pi\sim-1(p)=Ep*$ 。

假定 $\psi\alpha$: $U\alpha \times Rq \rightarrow \pi - 1(U\alpha)$, $\alpha \in I$,

是向量丛(E,M,π)的局部平凡化,且{ $U\alpha;\alpha\in I$ }是 M 的一个开覆盖,

取定 Rq的一个标准基底 $\delta = \{\delta a; a=1, \dots, q\}$,它的对偶基底记作 $\delta * = \{\delta a\}$,

对于任意的 α \in *I* ,设 *E* 在 $U\alpha$ 上的局部截面 $e\alpha$, a 由

 $e\alpha,a=\psi\alpha(p,\delta a)$ 确定,

 $\forall p$ ∈ $U\alpha$,用 $\{e\alpha a(p)\}$ 表示 $\{e\alpha,a(p)\}$ 在纤维 $\pi\sim-1(p)$ 中的对偶基底。

于是,可以定义映射,

 $\psi \sim \alpha: U\alpha \times Rq \rightarrow \pi \sim -1(U\alpha),$

使得,

 $\psi \sim \alpha(p,y)a\sum yae\alpha a(p), \forall p\in U\alpha,$

 $y=ya\delta a \in (Rq)*=Rq_{\circ}$

类似于切丛的构造方法,在 E*中可以引入微分结构,使得 $E*=(E*,M,\pi\sim)$ 成为秩是 q 的向量丛,

 $m\{\psi \sim \alpha\}$ 就是它的局部平凡化。

新构造出的向量丛 E*称为已知向量丛 E 的**对偶丛**。

特别的,光滑流形 M 的切丛 TM 的对偶丛(TM)*,

就是M上的所有余切向量构成的向量M,

称为 M 的**余切向量丛**,或**余切丛**,并记为 T*M,

T*M 的(局部)标架场,称为**(局部)余切标架场**。

向量丛的直和与张量积

设 $\pi: E \to M$ 和 $\pi \sim : E \sim \to M$ 是光滑流形 M 上的两个向量丛,它们的秩分别是 q 和 $q \sim ,$ 则由 E 和 $E \sim ,$ 可以构造出**向量丛的直和** $E \oplus E \sim ,$

和**张量积** $E \otimes E \sim$,具体做法如下。

 $\forall p$ ∈M,向量丛E和E~在p点的纤维,

分别记为 $Ep和E\sim p$,

它们是两个实向量空间,并且 $dim\ Ep=q$, $dim\ E\sim p=q\sim$,令,

 $E \oplus E \sim = p \in M \cup Ep \oplus E \sim p$,

 $E\otimes E\sim =p\in M\cup Ep\otimes E\sim p_\circ$

可以自然的引入投影映射,

π1:E⊕E~→M, π1:E⊗E~→M,

以及相应的微分构造,使得, $(E \oplus E \sim M, \pi 1)$,和 $(E \otimes E \sim M, \pi 2)$

分别成为秩是 $q+q\sim \pi$ $qq\sim \pi$ 的向量丛,称为向量丛 E 和 $E\sim \pi$ 的直和及张量积。

特别的,光滑流形 M 的 r 个切丛 TM,和 s 个余切丛 T*M 的张量积, $Tsr(M) = TM \otimes \cdots \otimes TM \otimes T*M \otimes \cdots \otimes T*M$, 是由 M 上在各点处的(r,s)型张量构成的集合, 它是秩为 mr+s的向量丛,即有, $Tsr(M) = p \in M \cup Tsr(p)$, 其中, $Tsr(p) = TpM \otimes \cdots \otimes TpM \otimes Tp*M \otimes \cdots \otimes Tp*M$, 是流形 M 在一点 p 处的(r,s)型张量空间。

向量丛 Tsr(M)称为光滑流形 M 上的(r,s)型**张量丛**,它的光滑截面就是 M 上的光滑张量场。

类似的,对于任意的 $p \in M$,若以 $\bigwedge rTp * M$ 表示 M 在点 p 的 r 次外形式空间,并设 $\bigwedge rT * M = p \in M \bigcup \bigwedge rTp * M$,则 $\bigwedge rT * M$ 也是一个向量丛,称为 M 上的 r 次**外形式丛**。

外形式丛的光滑截面是 M 上的外微分式,于是有 $\Gamma(\Lambda rT*M)=Ar(M)$ 。

黎曼向量丛

设 $\pi: E \to M$ 是光滑流形 M 上的一个向量丛,如果对于每一点 $p \in M$,在纤维 $\pi-1$ 上指定了一个欧氏内积 $(\cdot,\cdot)p$,并且 $(\cdot,\cdot)p$ 光滑的依赖于点 p,则称 $(\cdot,\cdot)p$ 是向量丛 (E,M,π) 上的一个**黎曼结构**,指定了一个黎曼结构的向量丛,称为**黎曼向量丛**。

内积

在 n 维向量空间 V 上,**内积**是指满足下列条件的双线性形式, $(\cdot,\cdot):V\times V\to R$,

(1) 对称性: ⟨*u*,*v*⟩=⟨*v*,*u*⟩, ∀*u*,*v*∈*V*,

(2) 正定性: $\forall u \in V$, $(u,u) \ge 0$, 其中等号成立当且仅当 u=0。

换句话说,V上的一个内积,就是V上的一个对称,正定的二阶协变张量,指定了一个内积的向量空间V,称为**欧氏向量空间**,在这样的空间中,能够定义向量的长度以及向量之间的夹角。

设 M 是一个 m 维光滑流形,g 是 M 上的一个光滑的二阶协变张量场,如果 g 是对称,正定的,即对于每一点 $p \in M$,g(p) 是切空间 TpM 上的一个对称,正定的二阶协变张量,

则称 $q \in M$ 上的一个**黎曼度量**,

指定了一个黎曼度量 g 的光滑流形 M,称为**黎曼流形**,记为(M,g),或简记为 M。

根据定义,g(p)是 TpM 上的内积($\forall p \in M$), 所以光滑流形 M 上的黎曼度量,就是以光滑的依赖于点 p 的方式, 在每一点 $p \in M$ 的切空间 TpM 上,指定一个内积,使之成为欧氏向量空间。 特别的,每一个欧氏向量空间,都是黎曼流形。

设(U;xi)是 M 的一个容许的局部坐标系,则黎曼度量 g 有局部坐标表达式, $g|U=gijdxi\otimes dxj$, 其中 $gij=g(\partial xi\partial_i,\partial xj\partial_i)\in C\infty(U)$,gij=gji, d 定义,在每一点 $p\in U$,(gij(p))都是正定矩阵, 如果引入对称化的乘积(对称张量积), $dxidxj=21(dxi\otimes dxj+dxj\otimes dxi)$, 则 g|U可以写成二次微分形式,g|U=gijdxidxj。

弧长

设 γ :[a,b]→M 是 M 中一条光滑曲线,令, $L(\gamma)=\int ab|\gamma'(t)|dt=\int ab\sqrt{\langle\gamma'(t),\gamma'(t)\rangle dt}$,并称之为曲线 γ 的**弧长**(长度)。

如果 $\gamma([a,b])$ 落在区域 U 内,则它可用局部坐标表示为, $xi(t)=xi(\gamma(t))$, $1 \le i \le m$,

因而, $L(\gamma) = \int ab \sqrt{gij}(\gamma(t)) dt dx i dt dx j dt$,

曲线的弧长与曲线的正则参数变换无关,也与光滑流形的局部坐标系的取法无关。

协变微分

设(M,g)是一个m维黎曼流形, $X \in X(M)$,

如果(U;xi)是 M 的一个容许坐标系,并且 $X|U=Xi\partial xi\partial$,则, $D(X|U)=(dXi+Xj\Gamma jkidxk)\otimes \partial xi\partial$ $=(\partial xk\partial Xi+Xj\Gamma jki)dxk\otimes \partial xi\partial$,

是与局部坐标系的选取无关的(1,1)型光滑张量场。

于是,如果令(DX)|U=D(X|U),则 DX 是大范围定义在 M 上的(1,1)型光滑张量场。 DX 称为光滑向量场 X 的**协变微分**,或绝对微分,

相应的映射 D:X(M)→J11(M),

称为黎曼流形(M,g)上的**协变微分算子**,或绝对微分算子。

设*X,Y*∈X(M),

 $DYX=C11(Y\otimes DX)$,称为光滑切向量场 X 沿 Y 的**协变导数**,或协变微商,其中 C11是指张量场关于第一个反变指标和第一个协变指标的缩并运算。

在局部坐标系(U;xi)下,(DYX)|U有如下的局部坐标表达式, (DYX)|U=Yk($\partial xk\partial Xi+Xi\Gamma jki$) $\partial xi\partial$ 。

由此可见,协变微分算子 D 又可视为映射 D:X(M)×X(M)→X(M), 其定义是,对于任意的 X,Y∈X(M),D(X,Y)=DYX∈X(M)。

联络

设 M 是 m 维光滑流形,M 上的一个**联络** D,是指满足下列条件的映射,D:X(M)×X(M)→X(M),

- (1) DY+fZX=DYX+fDZX,
- (2) $DY(X+\lambda Z)=DYX+\lambda DYZ$,
- (3) DY(fX)=Y(f)X+fDYX

其中,DYX=D(X,Y), $X,Y,Z\in X(M)$, $\lambda\in R$, $f\in C\infty(M)$ 。

黎曼流形(M,g)上的协变微分算子 D 是光滑流形 M 上的一个联络,由于在满足第二可数公理的光滑流形 M 上黎曼度量总是存在的,因而 M 上的联络也是存在的。

不过,一般说来,光滑流形上的联络不是唯一的。

指定了一个联络 D 的光滑流形(M,D),称为一个**仿射联络空间**,在这样的空间里,可以对光滑切向量场求协变微分和协变导数,比如,对于任意的 X,Y \in X \in X \in X \in Y \in Y X X Y X

设(M,g)是 m 维黎曼流形,则在 M 上存在唯一的一个与度量 g 相容的无挠联络 D,称为(M,g)的**黎曼联络**,或 Levi-Civita 联络。

微分算子

设 $X \in X(M)$,则 DX 是 M 上的(1,1)型光滑张量场, 讲 DX 进行缩并,便得到 M 上的光滑函数,称它为光滑切向量场 X 的**散度**,并记作 $div\ X$,即有 $div\ X = C11(DX)$ 。

由 $X\mapsto div\ X$ 所确定的线性映射 div: $X(M)\to C∞(M)$,称为黎曼流形(M,q)上的**散度算子**。

设 $f \in C_{\infty}(M)$,则 $df \in A1(M) = J10(M)$,借助黎曼度量 g, df 对应 M 上一个光滑切向量场,记为 ∇f ,使得对于任意的 $X \in X(M)$ 有, $g(\nabla f, X) = df(X) = X(f)$,切向量场 ∇f 称为光滑函数 f 在黎曼度量 g 下的**梯度**,有时也用 $grad\ f$ 或 $grad\ g$ 有表示光滑函数 f 的梯度。

显然,由 $f \mapsto \nabla f$ 确定的映射 $\nabla : C \infty(M) \to X(M)$,是作用在光滑函数上的一阶线性微分算子,称为黎曼流形(M,q)上的**梯度算子**。

把梯度算子 ∇ 与散度算子 div 复合起来,便得到一个新的线性映射, $\triangle = div \circ \nabla : C \infty(M) \rightarrow C \infty(M)$, 称为黎曼流形(M,g)上的 Beltrami-Laplace **算子**。

平行移动

设(M,D)是一个 m 维仿射联络空间, γ :[a,b] $\rightarrow M$ 是 M 中的一条光滑曲线, $X \in X(M)$,如果沿曲线 γ 有, $D\gamma'(t)X=0$, $\forall t \in [a,b]$, 则称切向量场 X 沿曲线 γ 是平行的, 或称 X 是沿曲线 γ 的平行向量场。

此时 $\gamma(ti)$, $(1 \le i \le r-1)$ 称为曲线 γ 的**顶点**,向量 $t \to ti-\lim \gamma(t)$ 与 $t \to ti+\lim \gamma(t)$,之间的夹角称为曲线 γ 在顶点 $\gamma(ti)$ 处的**转角**。

上述定义中的划分,称为分段光滑曲线 γ 的一个**光滑划分**。

设 γ 是 M 上的一条分段光滑曲线,X 是 M 上沿曲线 γ 定义的连续切向量场,如果存在 γ 的一个光滑划分, $a=t0 < t1 < \cdots < tN-1 < tN=b$,使得 X 在每一个小区间[ti-1,ti]上的限制都光滑的依赖于自变量 t,则称 X 是沿曲线 γ 定义的**分段光滑(切)向量场**。

如果对于任意的 i, X 沿光滑曲线段 $\gamma[ti-1,ti]$ 都是平行的,则称切向量场 X 沿 γ 是平行的,或称 X 是沿 γ 的(分段光滑的)平行向量场。

设(M,D)是一个 m 维仿射联络空间, $p \in M$, γ : $[0,b] \to M$ 是从点 $p = \gamma(0)$ 出发的一条分段光滑曲线, 则对于任意的 $X0 \in TpM$,沿曲线 γ 存在唯一的一个分段光滑平行向量场 X = X(t), 满足初始条件 X(0) = X0。

因此,沿分段光滑曲线 γ 的平行向量场的集合,构成一个与 TpM 同构的向量空间,特别的,对于任意取定的 t, $0 \le t \le b$,沿 γ 的平行向量场给出了从 TpM 到 $T\gamma(t)M$ 的线性同构,

 $POt:TpM \rightarrow T\gamma(t)M$, 称为沿曲线 γ 从 t=0 到 t 的**平行移动**。

这样,由切向量 $X0 \in TpM$ 确定的沿曲线 γ 平行的向量场 X 可以表示为, X(t) = P0t(X0), $0 \le t \le b$ 。

总之,在光滑流形上只要指定了联络,就可以建立平行移动的概念, 反过来,切向量场的协变导数(联络)也可以借助平行移动来得到。

设(M,D)是一个 m 维仿射联络空间, γ :[0,b] $\rightarrow M$,是 M 中任意一条光滑曲线,则对于任意的 $X \in X(M)$, $D\gamma'(t)X = \Delta t \rightarrow 0 \text{lim} \Delta t P t + \Delta t t (X \circ \gamma(t + \Delta t)) - X \circ \gamma(t)$ 。

曲率张量场

设(M,D)是 m 维仿射联络空间,对于任意的 X, $Y \in X(M)$, 定义映射 $R: X(M) \to X(M)$ 如下, R(X,Y)Z = DXDYZ - DYDXZ - D[X,Y]Z, $\forall Z \in X(M)$, 并称 R(X,Y)为仿射联络空间(M,D)关于光滑切向量场 X,Y的**曲率算子**。

由曲率算子可以定义如下三重线性映射, $R:X(M)\times X(M)\times X(M)\to X(M)$, $(Z,X,Y)\mapsto R(X,Y)Z$, $\forall X,Y,Z\in X(M)$ 。可知,R 对于每一个自变量都是 $C\infty(M)$ -线性的,故 R 是 M 上的(1,3)型光滑张量场,称为仿射联络空间(M,D)的**曲率张量(场)**。

作为张量场,R 在每一点 $p \in M$ 给出一个(1,3)型张量, $Rp:TpM \times TpM \times TpM \to TpM$,使得 $(w,u,v) \mapsto R(u,v)w$, $\forall u,v,w \in TpM$ 。Rp称为(M,D)在p点的**曲率张量**。

利用 D 在局部坐标系下的联络系数,可以算出曲率张量 R 的分量。 $R=Rkijldxk\otimes\partial xl\partial\otimes dxi\otimes dj$, 其中, $Rkijl=\partial xi\partial\Gamma kjl-\partial xj\partial\Gamma kil+\Gamma jkh\Gamma hil-\Gamma kih\Gamma hil$ 。

因此,对于任意的 $X,Y \in X(M)$,如果

 $X=Xi\partial xi\partial$, $Y=Yj\partial xj\partial$,

则作为(1,1)型张量场的曲率算子 R(X,Y)有下述局部坐标表达式, $R(X,Y)=XiYjRkijldxk\otimes\partial xl\partial$ 。

特别的,对于黎曼流形(M,g)来说,它具有唯一确定的黎曼联络 D,它的曲率张量称为黎曼流形(M,g)或度量 g 的曲率张量。 在局部坐标系(U;xi)下,黎曼流形(M,g)的曲率张量的分量,让然由上式给出,只是其中的联络系数 Γijk 是度量张量的分量,

 $gij=g(\partial xi\partial,\partial xj\partial)$

的 Christoffel 记号。

设(*M*,*g*)是黎曼流形,令

 $R(X,Y,Z,W)=g(R(Z,W)X,Y), \forall X,Y,Z,W \in X(M),$

则得到一个四重线性映射,

 $R:X(M)\times X(M)\times X(M)\times X(M)\rightarrow C\infty(M)_{\circ}$

显然 R 对每一个自变量是 $C\infty(M)$ -线性的,

因此, $R \in M$ 上的四阶协变张量场,称为黎曼流形(M,q)的**黎曼曲率张量(场)**。