Viterbi Algorithm for Intrusion Type Identification in Anomaly Detection System¹

Bleuzen Jonathan Flora Gautheron Maxence Grand M2 MOSIG

january 14th 2019

¹Ja-Min Koo and Sung-Bae Cho (2003). "Viterbi Algorithm for Intrusion Type Identification in Anomaly Detection System". In: Information Security Applications, 4th International Workshop, WISA 2003, Jeju Island, Korea, August 25-27, 2003, Revised Papers, pp. 97-110 ← □ ト ← □ ⊢

Outline

Introduction

Backgroung

Proposed Method

Limitations & Remarks

Other Method

Conclusion

Introduction

. Number of intrusions is increasing with time and can cause a lot of damage

Context

- . Number of intrusions is increasing with time and can cause a lot of damage
- . In 2005, among 7,818 businesses
 - . Nearly 60% detected one or more types of cyber attack. (National Computer Security Survey (NCSS))
 - . Approximately 68% of the victims of cyber theft sustained monetary loss of \$10,000 or more.

²Sasha Romanosky (2016). "Examining the costs and causes of cyber incidents". In: *Journal of Cybersecurity* 2.2, pp. 121–135 ← E → E → 9.0 → 3/41

Intrusion Type

- . Buffer overflow
 - . xlock vulnerability
 - . lpset vulnerability
 - . kcms_sparc vulnerability
- . S/W security vulnerability
- . Setup vulnerability
- . Denial of service

Intrusion Detection Systems (IDS)

- . host-based: related to OS information
- . **network based**: network related events

- misuse-based: seek defined patterns, or signatures, within the analyzed data
- . anomaly-based: estimate the "normal" behaviour of the system to be protected, and generate an anomaly alarm whenever the deviation between a given observation at an instant and the normal behaviour exceeds a predefined threshold

Intrusion Detection Systems (IDS)

- . host-based: related to OS information
- . **network based**: network related events

- misuse-based: seek defined patterns, or signatures, within the analyzed data
- . anomaly-based: estimate the "normal" behaviour of the system to be protected, and generate an anomaly alarm whenever the deviation between a given observation at an instant and the normal behaviour exceeds a predefined threshold

Outline

Introduction

Backgroung

Proposed Method

Limitations & Remarks

Other Method

Conclusion

Markov Chain

A markov Chain ³ is defined by :

- . S. A finite set of N states
- . π , A vector of initial probabilities over S :

$$\pi_i = P(S_1 = i), 1 \le i \le N$$

. A, A matrix of probabilities of transitions over SxS:

$$a_{ij} = P(S_t = j | S_{t-1} = i), 1 \le i \le N$$

. Markov assumption : $P(S_t|S_{t-1},S_{t-2},\ldots,S_1)=P(S_t|S_{t-1})$

$$A = \begin{pmatrix} 0.6 & 0.4 \\ 0.9 & 0.1 \end{pmatrix}$$

Figure: Simple example of Markov Chain

³A.A Markov (1906). "Rasprostranenie zakona bol'shih chisel na velichiny, zavisyaschie drug ot druga". In: Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete 15.2, pp. 135-156 > ⟨≣⟩ ⟨≣⟩ ⟨≣⟩ ⟨ ≣⟩ ⟨ В⟩ ⟨⟨8/41

HMM - Hidden Markov Model

 Hidden Markov Model ⁴ is a statistical model in which the modeled system is supposed to be a Markovian process of unknown parameters.

⁴Leonard E Baum and Ted Petrie (1966). "Statistical inference for probabilistic functions of finite state Markov chains". In: *The annals of mathematical statistics* 37.6, pp. 1554–1563

HMM - Hidden Markov Model

- Hidden Markov Model ⁴ is a statistical model in which the modeled system is supposed to be a Markovian process of unknown parameters.
- Hidden Markov Model can be viewed as a Bayesian Network

⁴Leonard E Baum and Ted Petrie (1966). "Statistical inference for probabilistic functions of finite state Markov chains". In: *The annals of mathematical statistics* 37.6, pp. 1554–1563

- Hidden Markov Model ⁴ is a statistical model in which the modeled system is supposed to be a Markovian process of unknown parameters.
- Hidden Markov Model can be viewed as a Bayesian Network
- We define a HMM including :
 - V, A finite set of M observations
 - B, A a matrix of probabilities of observations over state :

$$b_i(k) = P(0_t = V_k | S_t = i)$$

⁴Leonard E Baum and Ted Petrie (1966). "Statistical inference for probabilistic functions of finite state Markov chains". In: The annals of mathematical statistics 37.6, pp. 1554–1563

HMM - Forward Algorithm

input : λ The model, O Observed sequence

output : $P(0|\lambda)$

Step 1, Initialization : $\forall i, \alpha_1(i) = \pi_i b_i(O_1)$

Step 2, Induction:

for $t \leftarrow 2 : T$ do

$$\forall i, lpha_t(i) = \left[\sum\limits_{j=1}^N lpha_{t-1}(i) a_{ij}
ight] b_j(O_t)$$

end

Step 3, Termination :
$$P(0|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

⁵L. R. Rabiner (1989). "A tutorial on hidden Markov models and selected applications in speech recognition". In: Proceedings of the IEEE 77.2.

HMM - Viterbi Algorithm

```
input : O Observed sequence
output: arg max P(0|\lambda)
Step 1, Initialization :
for i \leftarrow 1 : N do
      \delta_1(i) = \pi_i b_i(0_1)
      \psi_1(i) = 0
end
Step 2. Recursion:
for t \leftarrow 2 \cdot T do
      for j \leftarrow 1 : N do
           \begin{split} \delta_t(j) &= \max_i [\delta_{t-1}(i)a_{ij}]b_j(0_t) \\ \psi_t(j) &= \arg\max_i [\delta_{t-1}(i)a_{ij}]b_j(0_t) \end{split}
                                                                                                               6
      end
end
Step 3, Termination:
P^* = \max_{s \in S} [\delta_T(s)]
S_T^* = \underset{s \in S}{\operatorname{arg\,max}} [\delta_T(s)]
Step 4. Backtracking:
for t \leftarrow T - 1:1 do
      S_t^* = \psi_{t+1}(s_{t+1}^*)
end
return S*
```

⁶A. Viterbi (1967). "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm". In: IEEE Transactions on Information Theory 13.2, pp. 260-269

Outline

Introduction

Backgroung

Proposed Method Intrusion Detection Intrusion Type Identification

Limitations & Remarks

Other Method

Conclusion

Normal Behaviour Modeling

Normal Behaviour is modelised by a left-to-right HMM λ .

Figure: Left-to-Right Model with jumps

The forward allgorithm is used to decide whether normal or not with a threshold.

$$S = \{1, 2, 3, 4\}$$

$$M = \{1, 2, 3, 4\}$$

$$\pi = \{1.0, 0, 0\}$$

$$O = \{2, 1, 2, 4, 2, 3, 4, 3, 4, 3\}$$

$$A = \begin{pmatrix} 0.28 & 0.34 & 0.28 & 0 \\ 0.0 & 0.32 & 0.21 & 0.47 \\ 0.0 & 0.0 & 0.32 & 0.68 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0.28 & 0.34 & 0.28 & 0 \\ 0.0 & 0.32 & 0.21 & 0.47 \\ 0.0 & 0.0 & 0.32 & 0.68 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{pmatrix} \qquad B = \begin{pmatrix} 0.8 & 0.04 & 0.1 & 0.06 \\ 0.0 & 0.13 & 0.45 & 0.42 \\ 0.0 & 0.9 & 0.1 & 0.0 \\ 0.64 & 0.12 & 0.06 & 0.18 \end{pmatrix}$$

Intrusion Detection Initialization

$$\forall i, \alpha_1(i) = \pi_i b_i(O_1)$$

Intrusion Detection Initialization

$$\forall i, \alpha_1(i) = \pi_i b_i(O_1)$$

$$O_1 = 2$$

$$b_i(O_1) = (0.04, 0.13, 0.9, 0.12)$$

Proposed Method

$$\forall i, \alpha_1(i) = \pi_i b_i(O_1)$$

$$O_1 = 2$$

$$b_i(O_1) = (0.04, 0.13, 0.9, 0.12)$$

$$\alpha_1(1) = \pi_1 * b_1(O_1) = 1 * 0.04 = 0.04$$

Intrusion Detection Initialization

$$\forall i, \alpha_1(i) = \pi_i b_i(O_1)$$

$$O_1 = 2$$

$$b_i(O_1) = (0.04, 0.13, 0.9, 0.12)$$

$$\alpha_1(1) = \pi_1 * b_1(O_1) = 1 * 0.04 = 0.04$$

$$\alpha_1(2) = \pi_2 * b_2(O_1) = 0 * 0.13 = 0$$

Intrusion Detection Initialization

$$\forall i, \alpha_1(i) = \pi_i b_i(O_1)$$

$$O_1 = 2$$

$$b_i(O_1) = (0.04, 0.13, 0.9, 0.12)$$

$$\alpha_1(1) = \pi_1 * b_1(O_1) = 1 * 0.04 = 0.04$$

$$\alpha_1(2) = \pi_2 * b_2(O_1) = 0 * 0.13 = 0$$
...
$$\alpha_1 = (0.04 \ 0 \ 0 \ 0)$$

Induction

$$t = 2
O_2 = 1
b(O_t) = (0.8 0 0 0.64)
\alpha_1 = (0.04 0 0 0)$$

Proposed Method

$$t = 2$$

$$O_2 = 1$$

$$b(O_t) = \begin{pmatrix} 0.8 & 0 & 0 & 0.64 \end{pmatrix}$$

$$\alpha_1 = \begin{pmatrix} 0.04 & 0 & 0 & 0 \end{pmatrix}$$

$$\alpha_2(1) = \begin{bmatrix} \sum_{j=1}^{N} \alpha_{t-1}(1) a_{1j} \\ j = 0.00896 \end{bmatrix}$$

$$t = 2$$

$$O_2 = 1$$

$$b(O_t) = \begin{pmatrix} 0.8 & 0 & 0 & 0.64 \end{pmatrix}$$

$$\alpha_1 = \begin{pmatrix} 0.04 & 0 & 0 & 0 \end{pmatrix}$$

$$\alpha_2(1) = \begin{bmatrix} \sum_{j=1}^{N} \alpha_{t-1}(1) a_{1j} \\ j = 0.00896 & 0 & 0 \end{pmatrix}$$

$$\dots$$

$$\alpha_2 = \begin{pmatrix} 0.00896 & 0 & 0 & 0 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 0.04 & 0 & 0 & 0 \\ 0.00896 & 0 & 0 & 0 \\ 0.00010035 & 0.00039603 & 0.0022579 & 0 \\ 1.8882e^{-08} & 2.8849e^{-06} & 1.3193e^{-05} & 4.0995e^{-05} \\ 1.6859e^{-06} & 5.3227e^{-05} & 0 & 0.00027637 \\ 5.287e^{-10} & 4.1831e^{-07} & 4.8329e^{-07} & 3.0793e^{-06} \\ 8.8822e^{-12} & 5.6297e^{-08} & 0 & 6.4882e^{-07} \\ 2.487e^{-13} & 8.1081e^{-09} & 1.1825e^{-09} & 4.0517e^{-08} \\ 4.1782e^{-15} & 1.0898e^{-09} & 0 & 8.1237e^{-09} \\ 1.1699e^{-16} & 1.5693e^{-10} & 2.2885e^{-11} & 5.1816e^{-10} \end{pmatrix}$$

Intrusion Detection Termination

Proposed Method

$$P(0|\lambda)) = \sum_{i=1}^{N} \alpha_{T}(i)$$
= 1.1699e⁻¹⁶ + 1.5693e⁻¹⁰ + 2.2885e⁻¹¹ + 5.1816e⁻¹⁰
= 6.9797e⁻¹⁰

000000**●**0 000000000

Intrusion Detection Decision

```
\begin{array}{ll} \textbf{if } log\big(P(0|\lambda)\big) > \ threshold \ \textbf{then} \\ | \ \ \textbf{return } \textit{Normal Behaviour} \\ \textbf{else} \\ | \ \ \textbf{return } \textit{Intrusion} \\ \textbf{end} \end{array}
```

$$log(P(0|\lambda) = -21.083 < threshold(-20.83) \implies Intrusion$$

Results

Table: The performance of HMM-based IDS. Best results are in bold

Length	Thresold	Detection Rate	F-P Error
10	-9.43	100%	2.626
15	-9.43	100%	3.614
10	-14.42	100%	1.366
15	-14.42	100%	2.718
10	-16.94	100%	0.789
15	-16.94	100%	2.618
10	-18.35	100%	0.553
15	-18.35	100%	2.535
10	-19.63	100%	0.476
15	-19.63	100%	2.508
10	-20.83	100%	0.372
15	-20.83	100%	2.473

•000000000

Intrusion Type Identification

Process in two steps:

Viterbi algorithm is used to find the optimal state sequence Euclidean distance is used to identify the intrusion type with the optimal state sequence

$$S = \{1, 2, 3, 4\}$$

$$M = \{1, 2, 3, 4\}$$

$$\pi = \{1.0, 0, 0\}$$

$$O = \{2, 1, 2, 4, 2, 3, 4, 3, 4, 3\}$$

$$A = \begin{pmatrix} 0.28 & 0.34 & 0.28 & 0 \\ 0.0 & 0.32 & 0.21 & 0.47 \\ 0.0 & 0.0 & 0.32 & 0.68 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0.28 & 0.34 & 0.28 & 0 \\ 0.0 & 0.32 & 0.21 & 0.47 \\ 0.0 & 0.0 & 0.32 & 0.68 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{pmatrix} \qquad B = \begin{pmatrix} 0.8 & 0.04 & 0.1 & 0.06 \\ 0.0 & 0.13 & 0.45 & 0.42 \\ 0.0 & 0.9 & 0.1 & 0.0 \\ 0.64 & 0.12 & 0.06 & 0.18 \end{pmatrix}$$

Intrusion Type Identification Initialization

for
$$i \leftarrow 1 : N$$
 do
$$\begin{cases} \delta_1(i) = \pi_i b_i(0_1) \\ \psi_1(i) = 0 \end{cases}$$

end

$$O_1 = 2$$

 $b(0_1) = (0.04, 0.13, 0.9, 0.12)$

Intrusion Type Identification

$$\begin{array}{ll} \textbf{for } i \leftarrow 1: \textit{N do} \\ & \delta_1(i) = \pi_i b_i(0_1) \\ & \psi_1(i) = 0 \\ \textbf{end} \end{array}$$

$$O_1 = 2$$

 $b(0_1) = (0.04, 0.13, 0.9, 0.12)$
 $\delta_1(1) = \pi_1 * b_1(0_1) = 1 * 0.04 = 0.04$

Intrusion Type Identification Initialization

$$\begin{array}{ll} \mbox{for } i \leftarrow 1 : N \mbox{ do} \\ \mid & \delta_1(i) = \pi_i b_i(0_1) \\ \mid & \psi_1(i) = 0 \end{array}$$
 end

$$O_1 = b(0_1) =$$

$$b(0_1) = \\ \delta_1(1) = \\ \delta_1(2) =$$

2

$$(0.04, 0.13, 0.9, 0.12)$$

 $\pi_1 * b_1(0_1) = 1 * 0.04 = 0.04$
 $\pi_2 * b_2(0_1) = 0 * 0.13 = 0$

Intrusion Type Identification

$$\begin{array}{ll} \mbox{for } i \leftarrow 1 : N \mbox{ do} \\ \mid & \delta_1(i) = \pi_i b_i(0_1) \\ \mid & \psi_1(i) = 0 \end{array}$$
 end

$$O_1 = b(0_1) = \delta_1(1) = \delta_1(2) =$$

$$\delta_1(1) = \\
\delta_1(2) = \\
\dots \\
\delta_1 = \begin{pmatrix} 0.04 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{l} (0.04, 0.13, 0.9, 0.12) \\ \pi_1 * b_1(0_1) = 1 * 0.04 = 0.04 \\ \pi_2 * b_2(0_1) = 0 * 0.13 = 0 \end{array}$$

Intrusion Type Identification

$$\begin{array}{ll} \textbf{for } i \leftarrow 1 : N \textbf{ do} \\ \mid & \delta_1(i) = \pi_i b_i(0_1) \\ \mid & \psi_1(i) = 0 \end{array}$$

 $\delta_1 = \begin{pmatrix} 0.04 & 0 & 0 & 0 \end{pmatrix}$

$$O_1 = 2$$

 $b(0_1) = (0.04, 0.13, 0.9, 0.12)$
 $\delta_1(1) = \pi_1 * b_1(0_1) = 1 * 0.04 = 0.04$
 $\delta_1(2) = \pi_2 * b_2(0_1) = 0 * 0.13 = 0$

$$\psi_1 = egin{pmatrix} \mathtt{0} & \mathtt{0} & \mathtt{0} & \mathtt{0} \end{pmatrix}$$

Intrusion Type Identification

Recursion

```
 \begin{cases} \text{for } t \leftarrow 2: T \text{ do} \\ & \text{for } j \leftarrow 1: N \text{ do} \\ & \delta_t(j) = \max_{i} [\delta_{t-1}(i)a_{ij}]b_j(0_t) \\ & \psi_t(j) = \arg\max_{i} [\delta_{t-1}(i)a_{ij}]b_j(0_t) \\ & \text{end} \end{cases}
```

$$t = 2$$
 $O_2 = 1$
 $\delta_1 = \begin{pmatrix} 0.04 & 0 & 0 & 0 \end{pmatrix}$

Intrusion Type Identification

```
 \begin{cases} \text{for } t \leftarrow 2: T \text{ do} \\ & \text{for } j \leftarrow 1: N \text{ do} \\ & & \delta_t(j) = \max_i [\delta_{t-1}(i)a_{ij}]b_j(0_t) \\ & \psi_t(j) = \arg\max_i [\delta_{t-1}(i)a_{ij}]b_j(0_t) \\ & \text{end} \end{cases}
```

$$t = 2$$

$$O_2 = 1$$

$$\delta_1 = \begin{pmatrix} 0.04 & 0 & 0 & 0 \\ \delta_2(1) = & \max_{i} [\delta_{t-1}(i)a_{i1}]b_1(0_2) \\ = & 0.00896 \\ \delta_2 = \begin{pmatrix} 0.00896 & 0 & 0 & 0 \end{pmatrix}$$

Intrusion Type Identification

```
 \begin{cases} \text{for } t \leftarrow 2: T \text{ do} \\ & \text{for } j \leftarrow 1: N \text{ do} \\ & & \delta_t(j) = \max_i [\delta_{t-1}(i)a_{ij}]b_j(0_t) \\ & \psi_t(j) = \arg\max_i [\delta_{t-1}(i)a_{ij}]b_j(0_t) \\ & \text{end} \end{cases}
```

$$\begin{array}{lll} t = & 2 \\ O_2 = & 1 \\ \delta_1 = & \left(0.04 \ 0 \ 0 \ 0\right) \\ \delta_2(1) = & \max_i [\delta_{t-1}(i)a_{i1}]b_1(0_2) \\ = & 0.00896 \\ \delta_2 = & \left(0.00896 \ 0 \ 0 \ 0\right) \\ \psi_2(1) = & \arg\max_i [\delta_{t-1}(i)a_{i1}]b_1(0_2) \\ - & 0 \end{array}$$

end

Intrusion Type Identification Recursion

```
for t \leftarrow 2 : T do
           for j \leftarrow 1 : N do
                      \begin{split} \delta_t(j) &= \max_i [\delta_{t-1}(i) a_{ij}] b_j(0_t) \\ \psi_t(j) &= \underset{i}{\operatorname{arg}} \max_i [\delta_{t-1}(i) a_{ij}] b_j(0_t) \end{split}
```

$$\begin{array}{lll} t = & 2 \\ O_2 = & 1 \\ \delta_1 = & \left(0.04 \ 0 \ 0 \ 0\right) \\ \delta_2(1) = & \max_i [\delta_{t-1}(i)a_{i1}]b_1(0_2) \\ = & 0.00896 \\ \delta_2 = & \left(0.00896 \ 0 \ 0 \ 0\right) \\ \psi_2(1) = & \arg\max_i [\delta_{t-1}(i)a_{i1}]b_1(0_2) \\ = & 0 \\ \psi_2 = & \left(1 \ 1 \ 1 \ 1\right) \end{array}$$

Intrusion Type Identification Recursion

```
 \begin{cases} \text{for } t \leftarrow 2: T \text{ do} \\ & \text{for } j \leftarrow 1: N \text{ do} \\ & \delta_t(j) = \max_j [\delta_{t-1}(i)a_{ij}]b_j(0_t) \\ & \psi_t(j) = \arg\max_j [\delta_{t-1}(i)a_{ij}]b_j(0_t) \\ & \text{end} \end{cases}
```

```
S = \begin{pmatrix} 0.04 & 0 & 0 & 0 \\ 0.00896 & 0 & 0 & 0 \\ 0.00010035 & 0.00039603 & 0.0022579 & 0 \\ 1.6859e^{-06} & 5.3227e^{-05} & 0 & 0.00027637 \\ 1.8882e^{-08} & 2.2142e^{-06} & 1.006e^{-05} & 3.3164e^{-05} \\ 5.287e^{-10} & 3.1885e^{-07} & 3.2192e^{-07} & 1.9899e^{-06} \\ 8.8822e^{-12} & 4.2853e^{-08} & 0 & 3.5817e^{-07} \\ 2.487e^{-13} & 6.1709e^{-09} & 8.9992e^{-10} & 2.149e^{-08} \\ 4.1782e^{-15} & 8.2937e^{-10} & 0 & 3.8683e^{-09} \\ 1.1699e^{-16} & 1.1943e^{-10} & 1.7417e^{-11} & 2.321e^{-10} \end{pmatrix}
```

$$\psi = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 3 \\ 1 & 2 & 2 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \\ 1 & 2 & 2 & 4 \\ 1 & 2 & 2 & 4 \\ 1 & 2 & 2 & 4 \end{pmatrix}$$

Intrusion Type Identification Termination

$$P^* = \max_{s \in S} [\delta_T(s)] = 2.321e^{-10}$$

Intrusion Type Identification Backtracking

Intrusion Type Identification Decision

Table: Sequences for each type of intrusion

Туре	Sequence	Distance
xlock	{2,2,3,3,3,4,4,4,4,4}	3.7417
ipset	{2,3,3,3,4,4,4,4,4,4}	4.4721
kcms_sparc	{1,1,2,2,2,2,4,4,4,4}	3

Intrusion Type Identification Results

Table: The performance of Viterbi-based Intrusion Type Identification. (A:xlock, B: lpset, C: kcms_sparc, D: processe creation, E: fill the disk, F: exhausting the memory)

	Α	В	C	D	E	F	Rate
Α	8	1	_	_	_	_	88%
В	_	6	1	_	_	_	86%
С	_	_	4	_	_	_	100%
D	_	_	_	3	_	6	33%
Е	_	_	_	4	_	3	0%
F	_	_	_	2	1	6	66%

Intrusion Type Identification Results

Table: The performance of Viterbi-based Intrusion Type Identification

Attack	Trial	Correct	Incorrect	Rate
Buffer Overflow	20	18	2	90%
Denial of Service	25	9	16	36%
All	45	27	18	60%

Outline

Introduction

Backgroung

Proposed Method

Limitations & Remarks

Other Method

Conclusion

☐ Try other distance metrics for Intrusion Type Identification:

Ja-Min Koo and Sung-Bae Cho (2005). "Effective Intrusion
Type Identification with Edit Distance for HMM-Based
Anomaly Detection System". In: Pattern Recognition and
Machine Intelligence. Ed. by Sankar K. Pal,
Sanghamitra Bandyopadhyay, and Sambhunath Biswas.
Springer Berlin Heidelberg

Try other distance metrics for Intrusion Type Identification:
 Ja-Min Koo and Sung-Bae Cho (2005). "Effective Intrusion
 Type Identification with Edit Distance for HMM-Based
 Anomaly Detection System". In: Pattern Recognition and Machine Intelligence. Ed. by Sankar K. Pal,
 Sanghamitra Bandyopadhyay, and Sambhunath Biswas.
 Springer Berlin Heidelberg

 Hypothesis that there is only one sequence of state per each intrusion, and that it never changes.

Try other distance metrics for Intrusion Type Identification :
Ja-Min Koo and Sung-Bae Cho (2005). "Effective Intrusion
Type Identification with Edit Distance for HMM-Based
Anomaly Detection System". In: Pattern Recognition and
Machine Intelligence. Ed. by Sankar K. Pal,
Sanghamitra Bandyopadhyay, and Sambhunath Biswas.
Springer Berlin Heidelberg
Hypothesis that there is only one sequence of state per each
intrusion, and that it never changes.
This model is anomaly-based, but use the fact that we are
supposed to know the sequence of state of the intrusion. they
loose the main advantage of anomaly-based IDS to detect
new types of intrusion.

□ Low detection efficiency, especially due to the high false positive rate usually obtained Stefan Axelsson (1998).

Research in intrusion-detection systems: A survey. Tech. rep. Technical report 98–17. Department of Computer Engineering, Chalmers . . .

☐ Low detection efficiency, especially due to the high false positive rate usually obtained Stefan Axelsson (1998). Research in intrusion-detection systems: A survey. Tech. rep. Technical report 98–17. Department of Computer Engineering, Chalmers . . . ☐ Absence of appropriate metrics and assessment methodologies, as well as a general framework for evaluating and comparing alternative IDS techniques Salvatore J Stolfo et al. (2000). Cost-based modeling for fraud and intrusion detection: Results from the JAM project. Tech. rep. COLUMBIA UNIV NEW YORK DEPT OF COMPUTER SCIENCE

Outline

Introduction

Backgroung

Proposed Method

Limitations & Remarks

Other Method

Conclusion

Methods using HMM

Intrusion Alert Prediction Using a Hidden Markov Mode⁷

Alert prediction method based on prediction of the next alert cluster

Clusters contains:

- source IP address
- destination IP range
- alert type
- alert category.

Prediction of next alert cluster provides more information about future strategies of the attacker and does not depend on specific domain knowledge

⁷Udaya Sampath K Thanthrige, Jagath Samarabandu, and Xianbin Wang (2016). "Intrusion alert prediction using a hidden Markov model". In: arXiv preprint arXiv:1610.07276

Methods using HMM Anomalybased HMMs⁸

Used for intrusion detection, with five states and six observation symbols per state States in the model are interconnected in such a way that any state can be reached from any other state Baum-Welch method is used

⁸Shrijit S Joshi and Vir V Phoha (2005). "Investigating hidden Markov models capabilities in anomaly detection". In: Proceedings of the 43rd annual Southeast regional conference-Volume 1. ACM, pp. 98€103 € ► 4 € ► € 999

Technique: basics	■ Pros	Subtypes		
	■ Cons			
A) Statistical-based: stochastic behaviour	 Prior knowledge about normal activity not required. Accurate notification of malicious activities. 	A.1) Univariate models (independent Gaussian random variables)		
	 Susceptible to be trained by attackers. Difficult setting for parameters and metrics. Unrealistic quasi-stationary process assumption. 	A.2) Multivariate models (correlations among several metrics) A.3) Time series (interval timers, counters and some other time-related metrics)		
B) Knowledge-based: availability of prior knowledge/data	Robustness. Flexibility and scalability. Difficult and time-consuming availability for high-quality knowledge/data.	B.1) Finite state machines (states and transitions) B.2) Description languages (N-grams, UML,) B.3) Expert systems (rules-based classification)		
c) Machine learning-based: categorization of patterns	Flexibility and adaptability. Capture of interdependencies. High dependency on the assumption about the behaviour accepted for the system. High resource consuming.	C.2) Markov models (stochastic Markov theory) C.3) Neural networks (himan brain foundations) C.4) Fuzzy logic (approximation and uncertainty) C.5) Genetic algorithms (evolutionary biology inspired)		
availability of prior knowledge/data C) Machine learning-based:	process assumption. Ribitation and time-consuming availability for high-quality knowledge/data. Flexibility and adaptability. Capture of interdependencies. High dependency on the assumption about the behaviour accepted for the system.	B.1) Finite state machines (states and transitions) B.2) Description languages (N-grams, UML,) B.3) Expert systems (rules-based classification) C.1) Bayesian networks (trobalistic relationships among van C.2) Markov models (stochastic Markov theory) C.3) Neural networks (human brain foundations) C.4) Fuzzy) [osi] (opproximation and uncertainty)		

⁹Pedro Garcia-Teodoro et al. (2009). "Anomaly-based network intrusion detection: Techniques, systems and challenges". In: computers & security 28.1-2, pp. 18-28

Other Methods

TABLE VII

COMPLEXITY OF ML AND DM ALGORITHMS DURING TRAINING

Algorithm	Typical Time Complexity	Streaming Capable	Comments
			Jain et al. [107]
ANN	O(emnk)	low	e: number of epochs
			k: number of neurons
Association Rules	>> O(n ³)	low	Agrawal et al. [108]
Bayesian Network	>> O(mn)	high	Jensen [41]
			Jain and Dubes [46]
Clustering, k-means	O(kmni)	high	i: number of iterations until threshold is reached
			k: number of clusters
Clustering, hierarchical	O(n ³)	low	Jain and Dubes [46]
Clustering, DBSCAN	O(n log n)	high	Ester et al. [109]
Decision Trees	O(mn ²)	medium	Quinlan [54]
			Oliveto et al. [110]
GA	O(gkmn)	medium	g: number of generations
			k: population size
Naïve Bayes	O(mn)	high	Witten and Frank [89]
Nearest Neighbor k-NN	O(n log k)	high	Witten and Frank [89]
ivearest ivergnoor k-iviv	O(n log k)	mgn	k: number of neighbors
HMM	O(nc ²)	medium	Forney [111]
HMM	O(ne-)	medium	c: number of states (categories)
Random Forest	O(Mmn log n)	medium	Witten and Frank [89]
Random Potest	O(Minin log ii)	medium	M: number of trees
Sequence Mining	>> O(n ³)	low	Agrawal and Srikant [92]
SVMs	O(n ²)	medium	Burges [112]

¹⁰Anna L Buczak and Erhan Guven (2016). "A survey of data mining and machine learning methods for cyber security intrusion detection". In: *IEEE Communications Surveys & Tutorials* 18.2, pp. 1153–1176 ← 1 → 1 → 2 → 2 → 2 → 38/41

Outline

Introduction

Backgroung

Proposed Method

Limitations & Remarks

Other Method

Conclusion

Conclusion

Good results for Intrusion detection For type indentification :

Good results for Buffer Overflow (90%) Bad results for Denial of Service (36%) Thank you for your attention Any question ?