Análise de Métricas de Código Fonte: Além das Métricas de *Design* de Código

Lucas Kanashiro Duarte

Universidade de Brasília

kanashiro.duarte@gmail.com

25 de Novembro de 2014

Agenda

- Introdução
 - Problema
 - ObjetivosMetodologia
- 2 Métricas
 - Métricas de Software
 - Métricas de Código fonte
 - Métricas de Vulnerabilidade
- Bestudo de Caso
 - Hipóteses
 - MetodologiaTeste de Hipóteses
 - Análise Qualitativa
 - 4 Considerações Preliminares
 - Resultados obtidos
 - Atividades futuras

- Surgimento de novas classes de métricas de código fonte
- Como interpretar???
- Como monitorar???

Como deve-se interpretar e acompanhar outras métricas de código fonte que não as de *design*?

- Métricas de vulnerabilidade
- Métricas de anotação

- Revisão Bibliográfica
- Estudo de caso
- Modelar problema utilizando Machine Learning

Como definir uma métrica?!

- Descrição
- Escala
- Como obter
- Como determinar
- Cálculo
- INTERPRETAÇÃO

- Métricas extraídas a partir do código fonte
- Utilização de ferramentas especializadas
- Métricas de design são as mais conhecidas e utilizadas

- Foco em segurança no últimos tempos
- Aplicações seguras != Aplicações de segurança
- Importante entender métricas de design para encontrar falhas
- Definição de cenários de vulnerabilidade a partir de lista de CWEs

Métricas de Software Métricas de Código fonte Métricas de Vulnerabilidade

Erros são inevitáveis, mas deve existir uma forma de medi-los e controla-los (Chess e West, 2007)

- H1: As métricas de vulnerabilidade de código fonte podem ser observadas de maneira similar as métricas de design de código fonte.
- H2: A média dos valores das métricas de vulnerabilidade de código fonte, geralmente, não é representativa para o acompanhamento das mesmas.
- H3: Os valores das métricas de vulnerabilidade de código fonte se comportam como distribuições estatísticas de cauda longa, e não distribuições estatísticas normalizáveis.

Ferramentas utilizadas na análise do projeto Linux Kernel:

- Clang
- Scripts para análise estatística
- Analizo (necessidade de melhoria)

A hipótese *H1* foi negada, a *H2* foi confirmada e a *H3* não foi testada.

Métrica	Mínimo	1%	5%	10%	25%	50%	75%	90%	95%	99%	Máximo
AN	0	0	0	0	0	0	0	0	0	0	0
ASOM	0	0	0	0	0	0	0	0	0	0	0
AUV	0	0	0	0	0	0	0	0	0	0	0
BD	0	0	0	0	0	0	0	0	0	0	0
BF	0	0	0	0	0	0	0	0	0	0	0
DBZ	0	0	0	0	0	0	0	0	0	0	0
DF	0	0	0	0	0	0	0	0	0	0	0
DNP	0	0	0	0	0	1	1,75	2	2,75	11,1499	17
DUPV	0	0	0	0	0	0	0	0	0	1,3499	2
FGBO	0	0	0	0	0	0	0	0	0	0	0
MLK	0	0	0	0	0	0	0	0	0	0	0
OBAA	0	0	0	0	0	0	0	0	0	0	0
OSF	0	0	0	0	0	0	0	0	0	0	0
PITFC	0	0	0	0	0	0	0	0	0	0	0
ROGU	0	0	0	0	0	0	0	0	0	0	0
RSVA	0	0	0	0	0	0	0	0	0	0	0
SAIGV	0	0	0	0	0	0	0	0	0	0	0
UA	0	0	0	0	0	0	0	0	0	0	0
UAF	0	0	0	0	0	0	0	0	0	0	0
UAV	0	0	0	0	0	0	0	0	0	0	0

	Mín	1%	5%	10%	25%	50%	75%	90%	95%	99%	Máx
Linux	1,0	1,0	1,0	1,0	1,3	2,3	3,6	5,3	7,0	14,0	173,0
FreeBSD	0,0	0,0	0,0	0,0	1,0	2,0	4,5	8,0	11,1	22,8	830,0
A ndroid	1	1	1	1	1	1	2	4	6	13	110
Bash	1	1	1	1	2	3	6	10	18	30	214
Chromium OS	1	1	1	1	1	2	3	6	8	15	163
GCC	1	1	1	1	1	1	2	4	6	13	214
Gimp	1	1	1	1	1	2	3	5	7	12	226
Git	1	1	1	2	3	4	6	9	10	22	46
Gnome	1	1	1	1	1	2	3	5	6	12	527
HTTP Server	1	1	1	1	2	4	6	9	12	18	26
KVM	1	1	1	1	2	3	6	10	13	20	20
MPlayer	1	1	1	1	2	4	6	9	12	21	91
OpenLDAP	1	1	1	1	2	5	9	17	23	36	89
PHP	1	1	1	1	1	2	5	10	16	37	640
Postgresql	1	1	1	1	1	3	6	10	15	32	106
Python	1	1	1	1	1	3	5	8	11	20	424
Subversion	1	1	1	1	1	2	4	7	9	17	68
VLC	1	1	1	1	1	2	4	7	8	14	36

Figura: Tabela de percentis da métrica ACCM (MEIRELLES, 2013)

- Apenas métricas Dereference of Null Pointer e Dereference of Undefined Pointer Value n\u00e30 nulas
- Se concentram nas faixas mais altas de percentis
- Valores das métricas não variam muito entre os módulos

- Selecionou-se mais 10 projetos de software livre
- Utilizou-se basicamente a mesma metodologia
- Alterou-se o processo de análise estatística

Projeto	Nº total de Médules	Nº total de Módulos vulneráveis	% de Módulos vulneráveis
Frojeto	iv total de Modulos	iv total de Modulos vullieraveis	70 de ivioudios vullieraveis
Bash	253	36	14.2292
Blender	1472	106	7.2010
FFmpeg	1776	100	5.6306
Firefox	12404	328	2.6443
Gstreamer	264	22	8.3333
Inetutils	2576	27	1.0481
Linux Kernel	23056	43	0.1865
OpenSSH	248	14	5.6451
OpenSSL	974	26	2.6694
Python2.7	551	32	5.8076
Ruby-2.1	381	20	5.2493

Tabela: Análise de Módulos por Projeto

Projeto	Nº total de Módulos	Nº total de Módulos vulneráveis	% de Módulos vulneráveis
Bash	253	22	8.6956
Blender	1472	93	6.3179
FFmpeg	1776	37	2.0833
Firefox	12404	218	1.7574
Gstreamer	264	16	6.0606
Inetutils	2576	6	0.2329
Linux Kernel	23056	40	0.1734
OpenSSH	248	7	2.8225
OpenSSL	974	14	1.4373
Python2.7	551	18	3.2667
Ruby-2.1	381	10	2.6246

Tabela: Métrica DNP por projeto

- A partir da análise qualitativa se encontrou um lista de métricas de vulnerabilidade mais frequentes
 - DNP (Dereference of Null Pointer)
 - AN (Argument with 'nonnull' attribute passed null)
 - ROGU (Result of operation is garbage or undefined)
 - 4 AUV (Assigned value is garbage or undefined)
- Análise qualitativa se apresentou mais produtiva do que a quantitativa

- Adicionar novos projetos de software livre
- Adicionar métricas de anotações
- Modelar a problemática de como interpretar e analisar as classes de métricas apresentadas usando uma abordagem de Aprendizado de Máquina

Atividade	Data de Início	Data de Término
Selecionar novos projetos para análise de vulnerabilidades	02/02	08/02
Extrair e Analisar métricas de todos os projetos	09/02	15/03
Adicionar Métricas de Anotações	16/03	29/03
Selecionar projetos para análise de anotações	30/03	05/04
Extrair e Analisar métricas de anotação	06/04	03/05
Desenvolver modelo para métricas de vulnerabilidade	04/05	31/05
Desenvolver modelo para métricas de anotação	01/06	21/06
Entrega final do trabalho	22/06	28/06

Tabela: Cronograma

References

CHESS, Bryan; WEST, Jacob

Secure programming with static analysis

MEIRELLES, Paulo R. M.

Monitoramento de métricas de código-fonte em projetos de software livre

Fim.