Compact Directed Percolation

Random Walk and CDP's critical exponents

Leonardo Salicari Università degli studi di Padova

Table of contents

- 1 Introduction: Directed Percolation
- 2 Compact Directed Percolation
- 3 Critical exponents for CDP
- β' : Discrete RW with 2 absorbing barriers
- Numerical experiment
 - Β
- θ : Continuous isotropic RW with one trap
- ν_{\parallel} : Continuous anisotropic RW with one trap
- ν_{\perp}

Introduction Directed (Bond) Percolation

Introduction DP's properties

Transition probabilities:

$$P(1|0,0) = 0$$

 $P(1|0,1) = P(1|1,0) = p$
 $P(1|1,1) = q$

DP:
$$q_{DP} = p(2 - p)$$

Properties:

- ullet One absorbing state \longrightarrow Detail Balance violated
- Critical phase transition between active and inactive phases

Order parameters:

- $N(t) = \langle \sum_i s_i(t) \rangle$ = number of active sites
- $P(t) = \langle 1 \prod_i (1 s_i(t)) \rangle$ = survival probability

Introduction (p,q) phase diagram

$$q_{CDP}=1$$

Transition probabilities:

$$P(1|0,0) = 0$$

 $P(1|0,1) = P(1|1,0) = p$
 $P(1|1,1) = q$

CDP: $q_{CDP} = 1$

Properties:

- ullet Two Absorbing states \longrightarrow Different universality class
- Symmetry between active and inactive sites $\longrightarrow p_c = 1/2$
- Denser clusters

The evolution can be studied through the dynamics of domain walls

Observations:

- Domanin walls can't be created thanks to P(0|1,1) = P(1|0,0) = 0, but can disappear
- They can "diffuse"

L(t) = number of contiguous active sites at time t with evolution rule:

$$L(t+1) = \left\{ \begin{array}{ll} L(t)+1, & \text{with probability } p^2 \\ L(t)-1, & \text{with probability } (1-p)^2 \\ L(t), & \text{with probability } 2p(1-p) \end{array} \right.$$

CDP From CDP to Random Walk

Mapping:

Compact directed percolation dynamics

$$\iff$$

L(t) performs a RW with absorbing barriers at L(t) = 0 and L(t) = N

Transition probabilities:

$$W_{i+1,i} = \frac{p^2}{p^2 + (1-p)^2} = r$$

 $W_{i-1,i} = 1 - r$

For a single site IC, the probability to have at least one active site at time t is:

$$P(t) = \langle 1 - \prod_{i=0}^{\infty} (1 - s_i(t)) \rangle$$

For $t \to \infty$ and $p \ge p_c = 1/2$:

$$P(\infty) \sim (p - p_c)^{\beta'}$$

What is the probability to grow an infinite cluster in time?

or

What is the probability to not be absorbed by the state L(t) = 0?

Transition matrix:

$$W = \begin{pmatrix} 1 & 1-r & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1-r & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & r & 0 & 1-r & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & r & 0 & 1-r & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & r & 1 \end{pmatrix}$$

 p_j = probability to be trapped at 1 given that the RW started in j at t = 0 Equation to solve¹:

$$p_{j} = W_{j+1,j} p_{j+1} + W_{j-1,j} p_{j-1}$$

= $r p_{j+1} + (1 - r) p_{j-1}$

¹Formally equal to the one for the probability distribution of a RW on a ring.

Assuming $p_k = \psi^k$:

$$\psi^{j} = r\psi^{j+1} + (1-r)\psi^{j-1} \quad \Rightarrow \quad 0 = r\psi^{2} - \psi + (1-r)$$

Asymmetric case $r \neq 1/2$:

$$p_j^{as} = \frac{s^{j-1} - s^{N-1}}{1 - s^{N-1}}$$
 (1)

where (1 - r)/r := s

Symmetric case r = 1/2:

$$\left| p_j^s = \frac{N - j}{N - 1} \right| \tag{2}$$

eta' Thermodynamic limit and the exponent

For r > 1/2 (i.e. s < 1):²

$$p_j^{\mathrm{as}} \xrightarrow{N \to \infty} s^{j-1}$$

Going back to $P(\infty)$:

$$P(\infty) = 1 - p_2^{as} = 1 - s^1 = 1 - \left(\frac{1 - r}{r}\right) = \frac{2}{p^2} \left(p - \frac{1}{2}\right) = \frac{2}{p^2} \left(p - p_c\right)$$

Hence

$$\beta' = 1$$

²For $r \le 1/2$, the thermodynamic limit gives $p_i = 1 \ \forall j$.

$$p_j^{\text{as/s}} = \frac{\text{Number of absorbed walkers in 1}}{\text{Total number of walkers}}$$

Simulation Results

$$p_j^{as} = \frac{s^{j-1} - s^{N-1}}{1 - s^{N-1}}$$

$$p_j^s = \frac{N-j}{N-1}$$

Simulation Results

$$p_j^{as} = \frac{s^{j-1} - s^{N-1}}{1 - s^{N-1}}$$

$$p_j^s = \frac{N-j}{N-1}$$

Simulation Results: thermodynamic limit

Simulation Results: thermodynamic limit

Intermezzo RW in the continuum

Fokker-Planck equation:

$$\frac{\partial P(X,t)}{\partial t} = -\frac{\partial}{\partial X}(a(X,t)P(X,t)) + \frac{1}{2}\frac{\partial^2}{\partial X^2}\left(b^2(X,t)P(X,t)\right)$$

Continuity equation:

$$\frac{\partial P(X,t)}{\partial t} + \frac{\partial J(X,t)}{\partial X} = 0$$

where the probability current is:

$$J(X,t) = a(X,t)P(X,t) - \frac{1}{2}\frac{\partial}{\partial X}\left(b^2(X,t)P(X,t)\right)$$

Having a flux F of random walkers injected in X_0 , the probability that a walker is absorbed in X_1 is³

$$\Pi(X_1|X_0) = \frac{J_-}{F} = \frac{X_2 - X_0}{X_2 - X_1}$$

³Isotropic and stationary diffusion.

For homogeneous random initial sites, the fraction of active sites at time t:

$$\rho(t) = \frac{N(t)}{M} = \frac{\sum_{i} \langle s_i(t) \rangle}{M}$$

For $t \to \infty$ and $p \ge p_c = 1/2$:

$$ho(\infty) \sim (p-p_c)^{eta}$$

For $p \ge p_c = 1/2$, we have $\rho(\infty) = 1$.

Hence:

$$\beta = 0$$

Remark: $\beta \neq \beta'$, hence different universality class respect to DP

$\boldsymbol{\theta}$ Continuous isotropic RW with one trap

For a single site as IC and at $p = p_c = 1/2$:

$$L(t) \stackrel{t\gg 1}{\sim} t^{\theta}$$

L(t) diffuses symmetrically following:

$$\frac{\partial p}{\partial t} = D \frac{\partial^2 p}{\partial x^2}$$

with an absorbing trap at $x_t = 0$.

Def: x_t is an absorbing trap if $p(x_t, t) = 0 \ \forall t$

heta Continuous isotropic RW with one trap

Solution which satisfy $p(x_t, t) = 0 \ \forall t$:

$$p(x,t) = \frac{1}{\sqrt{4\pi Dt}} \left[\exp\left(-\frac{(x-x_0)^2}{4Dt}\right) - \exp\left(-\frac{(x+x_0)^2}{4Dt}\right) \right]$$

with
$$p(x,0) = \delta(x - x_0)$$

$$\begin{split} L(t) &\equiv \langle x(t) \rangle = \int_0^\infty dx \frac{x}{\sqrt{4\pi Dt}} \left[\exp\left(-\frac{(x-x_0)^2}{4Dt}\right) - \exp\left(-\frac{(x+x_0)^2}{4Dt}\right) \right] \\ &= \int_0^\infty dx \frac{x}{\sqrt{4\pi Dt}} \exp\left(-\frac{(x-x_0)^2}{4Dt}\right) + \int_{-\infty}^0 dx \frac{x}{\sqrt{4\pi Dt}} \exp\left(-\frac{(x-x_0)^2}{4Dt}\right) \\ &= \int_{-\infty}^\infty dx \frac{x}{\sqrt{4\pi Dt}} \exp\left(-\frac{(x-x_0)^2}{4Dt}\right) \\ &= x_0 \end{split}$$

L(t) is constant in time, thus

 $\theta = 0$

Time correlation function:

$$c(t) = \left\langle \lim_{L \to \infty} \frac{1}{L} \sum_{i=1}^{L} \left(s_i(0) - \overline{s} \right) \left(s_i(t) - \overline{s} \right) \right\rangle \sim e^{-t/\xi_{\parallel}}$$

where ξ_{\parallel} is the time correlation length

Near criticality and $p < p_c$:

$$\xi_{\parallel} \sim (p_{c}-p)^{-
u_{\parallel}}$$

RW's context: ξ_{\parallel} = average first passage time

Because $p < p_c$, we consider a FP equation with negative drift term -v (v > 0):

$$\frac{\partial p}{\partial t} = v \frac{\partial p}{\partial x} + D \frac{\partial^2 p}{\partial x^2}$$

If we impose p(0,t)=0, $p(x,0)=\delta(x-x_0)$ and $L(0)=x_0=1$, the solution is

$$p(x,t) = \frac{1}{\sqrt{4\pi Dt}} \left[\exp\left(-\frac{(x-x_0+vt)^2}{4Dt}\right) - \exp\left(\frac{vx_0}{D}\right) \exp\left(-\frac{(x+x_0+vt)^2}{4Dt}\right) \right]$$

Probability current:

$$J(x,t) = -v p(x,t) - D \frac{\partial p}{\partial x}$$

Probability to be absorbed in [t, t + dt]:

$$f(t) = \left| J(x,t) \right|_{x=0} = D \left| \frac{\partial p}{\partial x} \right|_{x=0}$$
$$= \frac{x_0}{\sqrt{4\pi Dt^3}} \exp \left(-\frac{(x_0 - vt)^2}{4Dt} \right)$$

$$\begin{split} \xi_{\parallel} &= \langle t_{\rm rr} \rangle = \int_0^\infty dt \ t \ f(t) = \frac{x_0}{\sqrt{4\pi D}} \int_0^\infty \frac{dt}{\sqrt{t}} \exp\left(-\frac{(x_0 - vt)^2}{4Dt}\right) \\ &= \frac{x_0}{\sqrt{4\pi D}} \exp\left(\frac{x_0 v}{2D}\right) \int_0^\infty \frac{dt}{\sqrt{t}} \exp\left(-\left(\frac{x_0^2}{4D}\frac{1}{t} + \frac{v^2}{4D}t\right)\right) \\ &= \sqrt{\frac{x_0^3}{\pi D v}} \exp\left(\frac{x_0 v}{2D}\right) K_{1/2}\left(\frac{x_0 v}{2D}\right) \end{split}$$

where $K_{1/2}(x)$ is the modified Bessel function of the second kind

For small v, i.e. near criticality,

$$K_{1/2}(x) \simeq \sqrt{\pi/(2x)}$$

Hence:

$$\xi_{\parallel} \simeq \frac{x_0}{v} \exp\left(\frac{x_0 v}{2D}\right) \sim v^{-1} \qquad \text{for } v \to 0$$

In the isotropic case $t f(t) \sim 1/\sqrt{t}$ hence the average is divergent.

v is related to the asymmetry δ :

$$\delta = \frac{p^2 - (1-p)^2}{p^2 + (1-p)^2} = -\frac{1-2p}{1+2p(1-p)} \stackrel{p \to p_c}{\simeq} -(p_c - p)$$

Finally:

$$\xi_{\parallel} \sim v^{-1} \sim |\delta|^{-1} \simeq (p_c - p)^{-1}$$
 $u_{\parallel} = 1$

Spatial correlation function:

$$c_{|i-j|} = \left\langle \lim_{t \to \infty} \frac{1}{t} \sum_{\tau=0}^t \left(s_i(\tau) - \overline{s} \right) \left(s_j(\tau) - \overline{s} \right) \right\rangle \sim \mathrm{e}^{-|i-j|/\xi_\perp}$$

where ξ_{\perp} is the spatial correlation length

Near criticality and $p < p_c$:

$$\xi_{\perp} \sim (p_{c}-p)^{-\nu_{\perp}}$$

Interpretation: $\xi_{\perp}=$ average cluster's size at time ξ_{\parallel}

From the RW theory:

$$\xi_{\perp} \sim \xi_{\parallel}^{1/2} \sim (p - p_{\rm c})^{-1/2}$$

Hence:

$$u_{\perp} = \frac{1}{2}$$

Exponents Recap

Mapping:

Connection between CDP's dynamics and RW performed by L(t)

Exponents:

Exponent	Mean field DP	CDP
β'	1	1
β	1	0
θ	None	0
$ u_{ }$	1	1
$ u_{\perp}^{"}$	1/2	1/2