Agenda

The lecture contains: A discussion on the information theoretic framework for tracking locations of mobile terminals on the basis of personal mobility patterns.

More specifically, the discussion is centered around Lezi-Update focusing on the following aspects of the framework, namely:

- Developing a personal mobility model.
- Applying information theoretic bound on personal mobility.
- Mathematical underpinning through Markov process.

Randomness in Personal Mobility

Personal and terminal mobility relationship

- Terminal mobility personal mobility closely tied.
- Sufficient knowledge on the past locations of an MT helps to make sense out of inherent randomness in mobility.
- Future locations can be predicted with high probability, even if updates lag behind in time.
- Approach, thus, leads to minimization of signal overheads incurred for both update and paging.
- The randomness is measured by entropy, so Shannon's formulation is applied to obtain an information theoretic bound on personal mobility.

Randomness in Personal Mobility Measuring Information

- Information is measured in terms of number of bits.
- For example, 3000 bits are needed to transmit the results of 1000 rollings of a 8 sided (hypothetical) die in absence of any information.
- If the die is known to be biased, and the probability distribution is known, then a variable length coding can be used.
- The code should have prefix property ensuring that no code is a prefix of any code.

Randomness in Personal Mobility

Example

For example, let the probability distribution for a biased die be:

$$p(i) = \begin{cases} 1/2^{i}, & \text{for } i \le 7\\ 1/2^{i-1}, & \text{for } i = 8, \end{cases}$$

- We use a variable length encoding which satisfies prefix property.
- The results of 1000 rollings of above biased die can be transmitted using only 1984 bits.
- So, with more information, the average number of bits required per result is reduced from 3 to 1.984.

Randomness in Personal Mobility Example

- As another example, consider flipping of a biased coin.
- Let head show up just once in 1000 flips.
- Suppose the coin is tossed 1 million times.
- Let a 0 represent that the result of a toss is a head, and a 1 represents a tail.
- Without any clever encoding 1 bit will be required for result of each toss.
- But by transmitting the sequence number of the toss in which a head showed, the requirement reduces to $\log 10^6 = 20$ bits per 1000 flips.

Randomness in Personal Mobility Length of Optimal Code

- Consider a conventional die with six faces to find an answer to above question.
- If the die is unbiased, the probability of occurrence of any value is p=1/6, the number of bits required = $\log 6 = -\log(1/6) = -\log p$.
- The result of one throw requires $\log 6 = 2.58$ bits:
 - Of course, the result a particular throw requires at least 3 bits.
 - However, by grouping g successive throws, the results can coded by less than 6^g bits.
- For a biased probability distribution, the number of bits required optimal code is determined by $\sum_{x} p(x) \times (-\log p(x)).$

Rare events and encoding

- Rare events have low probabilities and hence high information content.
- In the coin toss example, the information content in occurrence of a head is $-\log(1/1000) = \log 1000 = 9.9658$. So 10 bits are needed.
- But information contents in appearance of a tail is $-\log(999/1000) = 0.0044$ bit.
- So average information content is $(1/1000) \times 10 + (999/1000) \times 0.0044 = 0.0114$ bit

Self information in events

• If the probability of an outcome A_i of a random event A to be $p(A_i)$, then the expected value of self information of A is

$$H(A) = \sum_{i=1}^{n} p(A_i) \times \log \left(\frac{1}{p(A_i)}\right)$$
$$= -\sum_{i=1}^{n} p(A_i) \times \log p(A_i)$$

• According to Shannon H(A) represents **entropy** of A.

Conditional entropy

• If X and Y are pair of discrete random variables with joint probability distribution p(x, y), $x \in \mathcal{X}$, $y \in \mathcal{Y}$ then

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

• Conditional entropy H(Y|X) is defined as:

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x) = -\sum_{x \in \mathcal{X}} p(x)\sum_{y \in \mathcal{Y}} p(y|x)\log p(y|x)$$
$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y)\log p(x|y)$$

Joint entropy

$$H(X, Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log (p(x)p(y|x))$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x)$$

$$-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \log p(x) + H(Y|X)$$

$$= H(X) + H(Y|X)$$

Personal Mobility as a Stochastic Process

Mobility as stochastic process

- A user's movement can be viewed as a random process.
- A user's movement can be captured as a sequence of cells.
- In GSM, each symbol represents a LAI consisting of several cells.
- Repetitions are possible and represents locality of movement.
- Characterizing mobility as probabilistic sequence, mobility can interpreted as a stochastic process.

Personal Mobility as a Stochastic Process

Graph modeling

At first we need to be clear on two issues:

- How a user would move in a service area?
- ② How movement can be recorded? In a GSM type deployment group cells define a location area (LA).

Location Updates

Update types

- Updates can be distance based, time based, movement based or combinations thereof.
 - Distance based: by keeping track of Euclidean distance, mobile sends update, if distance travelled from last update crosses a threshold D.
 - Movement based: mobile sends an update if it has performed n cell crossings since the last update.
 - Time based: mobile sends periodic update.

Location Updates

Example

• Let service be started at 9.00AM. An example of zone crossings is provided in table below.

LAI Crossings until 5.00PM						
Time	11:04	11:32	11:57	3:18	4:12	4:52
Crossing	$a \rightarrow b$	b o a	$a \rightarrow b$	b o a	$a \rightarrow b$	b o c

LAI Crossings after 5.00PM				
Time	5:13	6:11	6:33	6:54
Crossing	c o d	$d \rightarrow c$	$c \rightarrow b$	b o a

Location Updates

Example

 With the movement history shown in previous slide, the zone sequences reported by various update schemes will be as shown below.

```
T=1 \mathrm{hr} aaabbbbacdaaa...

T=1/2 \mathrm{hr} aaaaabbbbbbbbbaabcddcaaaa...

M=1 abababcdcba...

M=2 aaacca...

T=1 \mathrm{hr},\ M=1 aaababbbbbaabccddcbaaaa...
```

Movement history

- The movement history is a string $v_1v_2v_3...$ of symbols from the alphabet ϑ , where v_i denotes the LAI reported in i th update.
- Mobility of a user is characterized as a stationary stochastic process $\mathcal{V} = \{V_i\}$ such that $V_i = v_i \in \vartheta$ if event i reported that user is in LAI v_i .

Movement histroy

• Joint distribution of any subsequence of V_i 's is invariant with respect to shift in time axis.

$$Pr[V_1 = v_1, V_2 = v_2, \dots V_n = v_n] = Pr[V_{l+1} = v_1, V_{l+2} = v_2, \dots V_{n+l} = v_{n+l}]$$

for every shift I and for all $v_i \in \vartheta$

ullet Movement history is a simple path or trajectory in ${\cal V}.$

Modeling movement history

- The above general model could aid in learning if and only a universal predictor can be constructed.
- Common models used for interpreting the movement history are:
 - Ignorant Model (IM)
 - Identically Independent Distribution (IID)
 - Markov Model (MM)
- IM disbelieves and disregards history. So all zone residence probabilities are same: 1/8 for each of the 8 zones for the running example.

IID Model

- Assumes that value random variables defining stochastic process are Identically and Independently Distributed.
- It uses relative frequencies of symbols as estimates of zone residence probabilities
- For the string: aaababbbbbbaabccddcbaaaa, assuming time and movement based scheme,

$$p(a) = 10/23, p(b) = 8/23, p(c) = 3/23, p(d) = 2/23,$$

 $p(e) = p(f) = p(g) = p(h) = 0.$

Markov chain

 Simplest MM assumes the stochastic process to be a time-invariant Markov chain defined by:

$$Pr[V_k = v_k | V_1 = v_1, \dots, V_{k-1} = v_{k-1}]$$

$$= Pr[V_k = v_k | V_{k-1} = v_{k-1}]$$

$$= Pr[V_i = v_i | V_{i-1} = v_{i-1}]$$

for arbitrary choices for k and i.

 LAIs e, f, g, h not visited at all, and each acquire zero probability. The effective state space: {a, b, c, d}.

Markov chain

- One step transition probabilities are: $P_{i,j} = Pr[V_k = v_j | V_{k-1} = v_i]$, where $v_i, v_j \in \{a, b, c, d\}$, are estimated by relative counts.
- So, movement profile can be represented by:

Markov chain

The corresponding transition probability matrix is:

$$P = \begin{bmatrix} 2/3 & 1/3 & 0 & 0 \\ 3/8 & 1/2 & 1/8 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 1/2 & 1/2 \end{bmatrix}$$

Adaptive modeling

- Let $\Pi = [p(a) \ p(b) \ p(c) \ p(d)]^T$ be steady state probability vector.
- Solving $\Pi = \Pi \times P$ with p(a) + p(b) + p(c) + p(d) = 1, we obtain p(a) = 9/22, p(b) = 4/11, p(c) = 3/22 and p(d) = 1/11.

Adaptability of models

- Ignorant model can never be adaptive.
- IID model is the first step toward adaptive modeling. paging strategy dependent on probabilities of $\{a, b, c, d, e, f, g, h\}$.
- Order-1 Markov model carries information to the extent of one symbol context.
- For uniformity IM can referred to as -1 order, and IID model as 0-order Markov models respectively.

Higher order contexts

 Order-2 Markov model consisting of all order 2 contexts in the sequence aaababbbbbaabccddcbaaaa with their respective frequencies are:

Order-0	Order-1	Order-2		
2(10)	a a(6) $b c(1)$	a aa(3) $a ba(2)$ $a cb(1)$		
a(10)	b a(3) c c(1)	b aa(2) $b ba(1)$ $d cc(1)$		
b(8)	a b(3) $d c(1)$	a ab(1) $a bb(1)$ $d cd(1)$		
c(3)	b b(4) c d(1)	b ab(1) $b bb(3)$ $b dc(1)$		
d(2)	c b(1) $d d(1)$	c ab(1) $c bc(1)$ $c dd(1)$		

Corresponding trie

Example of order-1 probability

- To compute steady state probability of the route abcbcd being taken
 - Relevant contexts are: $a|\Lambda, b|a, c|b, b|c, c|b, d|c$ = $(9/22) \times (1/3) \times (1/8) \times (1/3) \times (1/8) \times (1/3)$ = $1/4224 = 2.37 \times 10^{-4}$

Effects of higher order contexts

- Richness of information helps.
- Storing movement history for every movement is not practical.
- What order of context could lead to good prediction?
- Not that conditional is a decreasing function of the number of symbols in a stationary process.
- This implies that the advantage of higher order contexts dies out after a finite value.

Entropy of order-(-1) model

- V_i s are independently and uniformly distributed, so p(v) = 1/8 for all $v \in \{a, b, c, d, e, f, g, h\}$ in the chosen running example.
- Due to independence $p(v_n|v_1, \dots v_{n-1}) = p(v_n)$, therefore
 - $p(v_1, v_2, \ldots, v_n) = \{p(v_1)\}^n$
 - Both per symbol entropy $H(\mathcal{V})$ and conditional per symbol entropy $H'(\mathcal{V})$ are same.
- So, $H(V) = H'(V) = \log 8 = 3$ bits

Entropy of order-0 model

- V_i s are Independently and Identically Distributed.
- Due to independence $p(v_n|v_1, \dots v_{n-1}) = p(v_n)$, therefore

$$H(\mathcal{V}) = H'(\mathcal{V}) = -\sum_{v} p(v) \log p(v)$$

$$= (10/23) \times \log(23/10) + (8/23) \times \log(23/8)$$

$$+ (3/23) \times \log(23/3) + (2/23) \times \log(23/2)$$

$$\approx 1.742 \text{ bits}$$

Entropy of order-1 model

- V_i s form Markov chains. So $p(v_n|v_1...v_{n-1}) = p(v_n|v_{n-1}) = P_{v_{n-1},v_n}$.
- Substituting steady state probabilities p(a) = 9/22, p(b) = 4/11, p(c) = 3/22 and p(d) = 1/11.

$$H'(\mathcal{V}) = -\sum_{v} p(v) \left(\sum_{j} P_{i,j} \log P_{i,j} \right) = \frac{9}{22} \left(\frac{2}{3} \log \frac{3}{2} + \frac{1}{3} \log \frac{3}{1} \right)$$

$$+ \frac{4}{11} \left(\frac{3}{8} \log \frac{8}{3} + \frac{1}{2} \log \frac{2}{1} + \frac{1}{8} \log \frac{8}{1} \right)$$

$$+ \frac{3}{22} \left(3 \times \frac{1}{3} \log \frac{3}{1} \right) + \frac{1}{11} \left(2 \times \frac{1}{2} \log \frac{2}{1} \right) \approx 1.194 \text{ bits}$$

Trade-off between update and paging

- A mobile's location unknown for the duration since last update.
- The period of uncertainty is restricted to gap between two successive updates.
- Approach in LeZi update is to delay update if the path traversed by mobile is familiar.
- Information lag should not impact paging, because system can use prefix matching to predict location with high probability.

Encoding algorithm

 Lempel-Ziv algorithm for text compression has been used due to the requirement of having a fixed length coding scheme.

```
// Encoder at mobile or compressing algorithm.
dictionary = null;
phrase w = null;
while (true) {
    wait for next symbol v;
    if (w.v in dictionary) w = w.v;
    else {
        encode <index(w), v>;
        add w.v to dictionary; w = null;
    }
}
```

Encoding example

#	entry	phrase	Output:
1	a	a	0 a
2	1+a	aa	1 a
3	b	b	0 b
2 3 4 5 6	1+b	ab	1 b
5	3+b	bb	3 b
6	5+a	bba	5 a
7	4+c	abc	4 c
8	С	С	0 c
9	d	d	0 d
10	9+c	dc	9 c
11	3+a	ba	3 a
12	2+a	aaa	2 a

Decoding algorithm

Responsibility of decoding rests on the system side.

```
// Decoder at the system.
// It basically decompresses the string
while (true) {
   wait for the next code word <i, s>;
   decode phrase = dictionary[i].s;
   add phrase to dictinary;
   increment frequency of every prefix of the phrase;
}
```

Decoding example

input	#	entry	phrase
0 a	1	a	a
1 a	2	1+a	a a
0 b	3	b	b
1 b	4	1+b	a b
3 b	5	3+b	b b
5 a	6	5+a	b b a
4 c	7	4+c	a b c
0 c	8	c	c
0 d	9	d	d
9 c	10	9+c	d c
3 a	11	3+a	b a
2 a	12	2+a	aaa

a a a b a b b b b b a a b c c d d c b a a a a

LZ algorithm

Boundary cases

- Due to incremental parsing, repetition of a phrase will occur only at end.
- Encoding of a repeated phrase is: $\langle index, \lambda \rangle$
- Decoding of input < index, $\lambda >$ outputs: dictionary[index]

Storing dictionary

- Location updates is that the input string $v_1v_2...v_n$ for $v_i \in \vartheta$ can be parsed into distinct substrings $w_1w_2...w_k$ such that for all $j \geq 1$
 - Prefix of of substring w_j is a some w_i , $1 \le i < j$.
- Due to prefix property substrings parsed can be stored in a trie.

Trie for classical LZ model

Convergence

- Larger and larger phrases are inserted into dictionary as incremental parsing progresses.
- Conditional probabilities for larger contexts start to build up.
- Predictability or richness of higher order Markov models also builds up.
- Therefore, the models based on Lempel-Ziv's compression eventually converge to a universal model

Problems with LZ model

- However, LZ compression based model fail to capture conditional entropy early on due to following reasons:
 - It works on one phrase at a time.
 - Decoding algorithm counts only the frequencies of prefixes of a decoded phrase.
 - It remains unaware about the contexts that straddle phrase boundaries.
 - All of the above slow down the rate of convergence.
- LeZi update uses an enhanced trie, where frequencies of all prefixes of all suffixes are updated.
- By doing so, it captures the straddling effect.

Frequency counting for LeZi Update

- Find all the prefix of all the suffixes of each incoming phrase.
- Increment the frequency each time a particular prefix is encountered starting from zero.
- Consider, phrase aaa:
 - Suffixes are aaa, aa and a, so frequency counts of all prefixes of aaa, aa, and a are incremented.
 - Frequency counts of aa incremented by 2.
 - Frequency counts of a incremented by 3.
- Total count for a can be found by considering phrases a, aa, ab, ba, abc, and bba.

Trie representation

Effect of using only prefixes

Conditional entropy without considering suffixes (see trie slide #39):

$$H(V_1) = \frac{5}{12} \log \frac{12}{5} + \frac{1}{3} \log 3 + \frac{1}{12} \log 12 + \frac{1}{6} \log 6$$

 ≈ 1.784 . bits, and

$$H(V_2|V_1) = \frac{5}{12} \left(2 \times \frac{1}{2} \log 2 \right) + \frac{4}{12} \left(\frac{1}{3} \log 3 + \frac{2}{3} \log \frac{3}{2} \right)$$

$$\approx 0.723 \text{ bits (excludes terms contributing 0 to entropy)}.$$

• Estimate for H(V) = (1.784 + 0.723)/2 = 1.254 bits. Conditional probabilities of all order-2 contexts are 0.

Effect of using prefixes of suffixes

With enhanced tries (see slide #43), we still have

$$H(V_1) = \frac{10}{23} \log \frac{23}{10} + \frac{8}{23} \log \frac{23}{8} + \frac{3}{23} \log \frac{23}{3} + \frac{2}{23} \log \frac{23}{2}$$

$$\approx 1.742. \text{ bits, and}$$

$$H(V_2|V_1) = \frac{10}{23} \left(\frac{3}{5} \log \frac{5}{3} + \frac{2}{5} \log \frac{5}{2} \right) + \frac{8}{23} \left(2 \times \frac{2}{5} \log \frac{5}{2} + \frac{1}{5} \log 5 \right)$$

 $\approx 0.952 \text{ bits.}$

- So the estimate for H(V) = (1.742 + 0.952)/2 = 1.347 bits.
- Since entropy is more, it captures more information.

- The prediction of a location for MN is guided by probability estimates of its possible locations.
- The underlying principle behind probability computation is PPM (prediction by partial matching).
- Our interest is in estimate of probability of occurrence of next symbol (zone) on path segment to be reported by next update.
- The segments are zones sequence generated when traversing from root to leaves of sub-tries representing current context.
- The estimated conditional probabilities for all zones at the current context gives the conditional probability distribution.

- Suppose no LeZi type update received after receiving aaa and we want to find probability of predicting next symbol as a.
- Contexts that can be used are: aa and a and Λ .
- Possible paths that can be predicted with these contexts:

aa (Order-2)	a (Order-1)	Λ (Order-0)		
a aa(1) Λ aa(2)	a a(2)	a(5)	ba(2)	d(1)
	aa a(1)	aa(2)	bb(1)	dc(1)
	b a(1)	ab(1)	bba(1)	$\Lambda(1)$
	bc a(1)	abc(1)	bc(1)	
	Λ a(5)	b(3)	ba(a)	

- Start form highest order: context aa, the probability a is 1/3.
- Then fall back with probability 2/3 to order 1 (with null prediction), where the probability of a's occurrence is 2/10 = 1/5.
- Now fall back to order-0 (with null prediction), which has probability 5/10=1/2.
- The probability of a's occurrence in order-0 is 5/23.
- So blended probability of next symbol being a is

$$\frac{1}{3} + \frac{2}{3} \left(\frac{1}{5} + \frac{1}{2} \left(\frac{5}{23} \right) \right) = 0.5319$$

- Consider occurrence of phrase bba after receiving aaa.
- bba does not occur in any of the contexts 1 or 2.
- Probability of escape from order-1 and order-2 contexts with null prediction is $(2/3) \times (1/2)$
 - for order 2 context (with phrase aa) probability of null prediction is 2/3 (out of 3 occurrence of aa.
 - for order 1 context (with phrase a) probability of null prediction is 1/2, because Λ occurs 5 times out of 10.
- The idea is to predict starting with some pre-determined highest order of context, and escape to lower orders until order 0 is reached.

• Therefore, the blended probability of phrase bba is

$$0 + \frac{2}{3} \left(0 + \frac{1}{2} \left(\frac{1}{23} \right) \right) = 0.0145$$

• Now individual probabilities of symbols are: for a $(1/3) \times 0.0145 = .0048$ (since a occurs 1 once in phrase bba), for b it is $0.0145 \times (2/3) = .0097$.

Summary

- In this module we learned how terminal mobility can be managed by capturing personal mobility patterns.
- We studied how information theoretic bounds can be applied to terminal mobility based on the characterization of personal mobility patterns.
- The discussion mainly centered around LeZi update which was modeled after Lempel-Ziv text compression algorithm.
- LeZi update sends path based updates instead of zone based updates.
- It proposes a profile based paging strategy to overcome the gap between two successive location updates.