Darcy-forchheimer Equation 的块中心差分方法

李奥

October 9, 2018

目录

1	二维问题	2
	1.1 符号	 2
	1.2 模型	 2

1 二维问题

1.1 符号

符号说明		
符号	意义	
Ω	(0,1)×(0,1)(二维区域)	
p	压强 (压力)	
u	流体速度	
μ	黏性系数	
K	渗透张量	
k	正数且 K = kI(I 是单位矩阵)	
β	非线性项系数	
ρ	流体密度	
$f(\mathbf{x})$	$f(\mathbf{x}) \in L^2(\Omega)$, a scalar function	
nx	x 方向剖分的段数	
ny	y 方向剖分的段数	
h_x	x 方向剖分的步长	
h_y	y 方向剖分的步长	
NC	单元个数	
NE	边的个数	

1.2 模型

$$\begin{cases} (\frac{\mu}{k} + \beta \rho |\mathbf{u}|)\mathbf{u} + \nabla p = \mathbf{f} & in \ \Omega = (0,1) \times (0,1) \quad (i) \\ \nabla \cdot \mathbf{u} = g & in \ \Omega \quad (ii) \\ \mathbf{u} = 0 & on \ \partial \Omega \quad (iii) \end{cases}$$

且有

$$\int_{\Omega} g dx dy = 0$$

由 (i) 可知

$$\mathbf{u} = \frac{\mathbf{f} - \nabla p}{\mu/k + \beta \rho \, |\mathbf{u}|}$$

对于(i),把 ∇p 移到等式右边后,对等式两边求模,即

$$(\frac{\mu}{k} + \beta \rho |\mathbf{u}|) |\mathbf{u}| = |\mathbf{f} - \nabla p|$$

其中

$$|\mathbf{f} - \nabla p| = \sqrt{(f - \nabla p)_x^2 + (f - \nabla p)_y^2}$$

可求得

$$|\mathbf{u}| = \frac{-\frac{\mu}{k} + \sqrt{\frac{\mu^2}{k^2} + 4\beta\rho |\mathbf{f} - \nabla p|}}{2\beta\rho}$$

因此

$$\mathbf{u} = \frac{\mathbf{f} - \nabla p}{\frac{\mu}{2k} + \sqrt{\frac{\mu^2}{4k^2} + \beta \rho \, |\mathbf{f} - \nabla p|}}$$

代入到 (ii) 中得

$$\nabla \cdot \frac{\mathbf{f} - \nabla p}{\frac{\mu}{2k} + \sqrt{\frac{\mu^2}{4k^2} + \beta \rho \, |\mathbf{f} - \nabla p|}} = g$$

记
$$\frac{1}{\frac{\mu}{2k} + \sqrt{\frac{\mu^2}{4k^2} + \beta\rho |\mathbf{f} - \nabla p|}}$$
 为 $C(\nabla p)$, 则上式等于

$$\nabla \cdot C(\nabla p)(\mathbf{f} - \nabla p) = g$$

$$\Rightarrow C(\nabla p)(f_x - \nabla_x p) + C(\nabla p)(f_y - \nabla_y p) = g$$

对 $p_{i,j}$ 使用一阶向前差分可得

$$C(\nabla p)(f_x - \frac{p_{i+1,j} - p_{i,j}}{h_x}) + C(\nabla p)(f_y - \frac{p_{i,j+1} - p_{i,j}}{h_y}) = g_{i,j}$$

整理得

$$(\frac{C(\nabla p)}{h_x} + \frac{C(\nabla p)}{h_y})p_{i,j} = g_{i,j} - C(\nabla p)(f_x - \frac{p_{i+1,j}}{h_x}) - C(\nabla p)(f_y - \frac{p_{i,j+1}}{h_y})$$

再求解 u:

$$u = (f_x - \nabla_x p) / (\frac{\mu}{k} + \beta \rho |\mathbf{u}|)$$
$$v = (f_y - \nabla_y p) / (\frac{\mu}{k} + \beta \rho |\mathbf{u}|)$$

参考文献