

Data Sheet

VL670 USB2.0 to USB3.0 Transaction Translator

January 23, 2014 Revision 1.15

VIA Labs, Inc. www.via-labs.com

7F, 529-1, Chung-Cheng Road, Hsin-Tien, New Taipei City, Taiwan Tel: (886-2) 2218-1838 Fax: (886-2) 2218-8924 Email: sales@via-labs.com.tw

Revision History

Rev	Date	Initial	Note
0.1	01/21/2013	HJ	Preliminary release
0.2	06/30/2013	HJ	Updated pin descriptions
0.9	08/15/2013	HJ	Updated some wordings
1.0	12/10/2013	HJ	Updated for formal release
1.1	01/15/2014	HJ	Updated top side marking information
1.15	01/23/2014	HC	Re-organized format Renamed GPIO pins Added USB electrical characteristics

Table of Contents

Revision History	2
Table of Contents	3
List of Figures	3
List of Tables	3
Product Features	
VL670 System Overview	5
Typical Applications	7
Pinout	8
Pin List	9
Pin Descriptions	
Signal Type Definition	. 10
Upstream USB Interface	
Downstream USB Interface	. 10
Analog Command Block	
Serial EEPROM Interface	
General Purpose I/O and Miscellaneous	. 11
Test Pin	
Power and Ground	
Timing Requirements for SPI Flash	
Electrical Specification	
Package Mechanical Specifications	
Package Top Side Marking & Ordering Information	. 17
List of Figures	
2.50 01 11941 05	
Figure 1 - VL670 Block Diagram	6
Figure 2 – Digital Signage System with VL670	7
Figure 3 – High speed industrial printers with VL670	7
Figure 4 - VL670 QFN-48 Pin Diagram	8
Figure 5 – SPI Flash timing requirement	
Figure 6 - QFN 48L 6x6x0.85 mm Mechanical Specification	
Figure 7 – VL670 Package Top Side Marking	. 17
List of Tables	
LIST OF TADIES	
Table 1 - VI 670 OFN-48 Pin List	9

Product Features

VL670

High-Speed USB to Super-Speed USB Transaction Translator

Super-Speed USB (5Gb/s) and High-Speed USB (480Mb/s)

- Compliant to Universal Serial Bus 3.0 Specification Revision 1.0
- Compliant to Universal Serial Bus Specification Revision 2.0
- Support converting Bulk-Only Transport/Control/Interrupt/Isochronous type transaction between USB2.0 and USB3.0 protocol
- Downstream port support USB 2.0 Hub
- Integrated in-house Super-Speed USB PHY and USB2.0 PHY

High Performance 32-bit Microprocessor

Powerful RISC processor

• Built-in Voltage Regulators

- 5.0V to 3.3V LDO
- 5.0V to 1.5V switching DC-DC
- 1.5V to 1.2V LDO

GPIOs for Special Function Usage

- 8 GPIOs for customer special usage
- External interrupt input x 1
- UART interface x 1
- SPI Slave interface x 1

• Misc

- Support power saving mode
- Support external SPI flash for firmware upgrade
- Integrated Watch Dog
- Integrated PLL with external 25MHz crystal

Physical

QFN 48L green package (6x6x0.85 mm)

Applications

- Digital Signage System
- Zero-Client
- Industrial printer
- Mass production system for USB products
- HD smart video surveillance system
- High speed data acquisition system

VL670 System Overview

VIA Lab's VL670 is the world's first and unique High-speed USB2.0 to Super-speed USB3.0 transaction translator. VL670 effectively converts USB High-speed transactions to Super-speed transactions and vice-versa. With this capability, VL670 enables USB2.0 devices to work under a USB3.0 downstream port which only provides Super-speed interface (no USB2.0 capability under this USB3.0 downstream port for specific reasons). Unlike all connected USB2.0 devices share single 480Mb/s bandwidth on the regular USB2.0 bus, the VL670-enabled USB2.0 device have whole 480Mb/s bandwidth for its own use since the upstream of VL670 has converted to the Super-speed USB transaction whose communication protocol is point-to-point based.

VL670 integrates in-house Super-speed PHY and USB 2.0 PHY and are well-tuned to provide excellent signal integrity. Both are compliant to their respective signal specification and can pass USB-IF's electrical tests as part of the certification requirements.

To provide best user experience, VL670 also provides bypass mode. When the upstream port of the VL670 is connected to an USB 2.0 downstream port, the USB 2.0 signals are bypassed from the upstream port to the downstream port directly, and vice-versa. In the case that a Super-speed capable device is attached to the downstream port of the VL670, the Super-speed signals are bypassed from the upstream to the downstream port, and vice-versa. The signal switches to enable the bypass mode are integrated in the VL670.

VL670 employs a very powerful 32-bit RISC microprocessor which allows the VL670 to quickly convert transactions/protocols between USB2.0 and USB3.0 with minimal delay. The external SPI ROM provides the flexibility for future firmware update and customization. GPIO pins, UART interface, SPI slave interface, watch-dog timer, and external interrupt are also supported to satisfy the requirements for different applications. VL670 works perfectly with a single power input from USB 5V bus to save customer BOM cost and is available on QFN 64L green package (6x6x0.85 mm).

Figure 1 - VL670 Block Diagram

Typical Applications

Figure 2 - Digital Signage System with VL670

Figure 3 - High speed industrial printers with VL670

Pinout

Figure 4 - VL670 QFN-48 Pin Diagram

Pin List

Table 1 - VL670 QFN-48 Pin List

Pin	Pin Name	Pin	Pin Name
1	DCGND	25	DMU
2	LX	26	DPU
3	DCVDD5	27	VCCU
4	GPIO3_0	28	OSCXO
5	VPP	29	OSCXI
6	GPIO2_1	30	VDD
7	GPIO2_0	31	STRP2
8	TESTEN	32	STRP1
9	LDOVDD330	33	STRP0
10	LDOVDD5	34	RESET#
11	REXT	35	VPP
12	MVDD15	36	GPIO1_1
13	USB3TXN	37	GPIO1_3
14	USB3TXP	38	GPIO1_2
15	U3TXVDD15	39	GPIO1_0
16	USB3RXN_D	40	SCLK_M
17	USB3RXP_D	41	SSn_M
18	USB3RXN	42	MOSI_M
19	USB3RXP	43	MISO_M
20	U3RXVDD15	44	VPP
21	USB3TXN_D	45	GPIO3_1
22	USB3TXP_D	46	LDOVDD120
23	DPD	47	LDOVDD15
24	DMD	48	DCVDD15FB

Pin Descriptions

Signal Type Definition

Name	Туре	Signal Description
Input	I	A standard input-only signal
Output	0	A standard active driver
Input/Output	I/O	A bi-directional signal
Analog bias	A _{BIAS}	Analog bias or reference signal. Must be tied to external resistor and/or capacitor bias network
Power	PWR	A power pin
Ground	GND	A ground pin

Upstream USB Interface

Pin Name	Pin #	I/O	Signal Description	
USB3TXN	13	0	USB 3.0 Differential Transmit Data-	
USB3TXP	14	0	USB 3.0 Differential Transmit Data+	
U3TXVDD15	15	PWR	Analog 1.5V Power	
USB3RXN	18	I	USB 3.0 Differential Receive Data-	
USB3RXP	19	I	USB 3.0 Differential Receive Data+	
USB3RXVDD15	20	PWR	Analog 1.5V Power	
DMU	25	I/O	USB 2.0 Bus Data Minus(D-)	
DPU	26	I/O	USB 2.0 Bus Data Plus(D+)	

Downstream USB Interface

Pin Name	Pin #	I/O	Signal Description
USB3TXN_D	21	0	USB 3.0 Differential Transmit Data-
USB3TXP_D	22	0	USB 3.0 Differential Transmit Data+
USB3RXN_D	16	I	USB 3.0 Differential Receive Data-
USB3RXP_D	17	I	USB 3.0 Differential Receive Data+
DMD	24	I/O	USB 2.0 Bus Data Minus(D-)
DPD	23	I/O	USB 2.0 Bus Data Plus(D+)
VCCU	27	PWR	Analog 3.3V Power

Analog Command Block

Pin Name	Pin #	I/O	Signal Description	
OSCXO	28	0	25M crystal output	
OSCXI	29	I	25M crystal input	
REXT	11	A_{BIAS}	USB 3.0 reference resistor	

Serial EEPROM Interface

Pin Name	Pin #	I/O	Signal Description	
SCLK_M	40	0	Clock for SPI Master; Serial Flash Clock	
SSn_M	41	0	Chip select for SPI Master; Serial Flash Chip Enable	
MOSI_M	42	0	MOSI for SPI Master; Serial Flash Data Input	

MISO_M 43 I MISO for SPI Master; Serial Flash Data Output

General Purpose I/O and Miscellaneous

Pin #	I/O	Signal Description
34	I	External Chip Reset
33	I	Mode setting pin 0
32	I	Mode setting pin 1
31	I	Mode setting pin 2
39	I/O	General purpose input output pin Default: SCLK for SPI Slave External interrupt, high active
36	I/O	General purpose input output pin Default: Chip select for SPI slave
38	I/O	General purpose input output pin Default: MOSI for SPI Slave
37	I/O	General purpose input output pin Default: MISO for SPI Slave
6	I/O	General purpose input output pin Default: TX of UART
7	I/O	General purpose input output pin Default: RX of UART
4	I/O	General purpose input output pin
45	I/O	General purpose input output pin
	34 33 32 31 39 36 38 37 6 7 4	34 I 33 I 32 I 31 I 39 I/O 36 I/O 38 I/O 37 I/O 6 I/O 7 I/O 4 I/O

Test Pin

Pin Name	Pin #	I/O	Signal Description
TESTEN	8	I	Test Mode Enable

Power and Ground

Pin Name	Pin #	I/O	Signal Description	
DCGND	1	GND	Ground for internal DC-DC regulator	
LX	2	0	1.5V voltage output for internal DC-DC regulator	
DCVDD5	3	PWR	5.0V voltage input for internal DC-DC regulator	
VPP	5,35,44	PWR	3.3V IO power	
LDOVDD330	9	0	3.3V voltage output for 5V to 3.3V LDO	
LDOVDD5	10	PWR	5.0V voltage input for 5V to 3.3V LDO	
MVDD15	12	PWR	1.5V Master analog power	
VDD	30	PWR	1.2V Core power	
LDOVDD120	46	0	1.2V voltage output for 1.5V to 1.2V LDO	
LDOVDD15	47	PWR	1.5V voltage input for 1.5V to 1.2V LDO	
DCVDD15FB	48	I	1.5V feedback for internal DC-DC regulator	

Timing Requirements for SPI Flash

SPI flash ROM is used to store the FW code for VL670. Timing guidelines are provided to assist selecting appropriate and compatible SPI flash. To make sure the selected SPI flash is compatible, not only should the timing requirements conform to the provided guidelines, but actual testing with VL670 should also be done. Note that the clock frequency for read cannot be less than 20MHz.

Figure 5 - SPI Flash timing requirement

Electrical Specification

Absolute Maximum Rating

Symbol	Parameter	Min	Max	Unit	Note
T _{STG}	Storage Temperature	-55	125	°C	_
DCVDD5	Power Supply Voltage of 5V to 1.5V DC-DC	-0.3	5.5	V	_
LDOVDD5	Power Supply Voltage of 5V to 3.3V LDO	-0.3	5.5	V	_
V _{IN}	Input Voltage at I/O pins	-0.3	3.63	V	_
V _{ESD}	Electrostatic Discharge	_	2	kV	Human Body Model

Note: Stress above conditions may cause permanent damage to the device.

Functional operation of this device should be restricted to the conditions described.

Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
T _A	Ambient Temperature	0	25	70	°C
DCVDD5	Power Supply Voltage of 5V to 1.5V DC-DC	4.75	5	5.25	V
LDOVDD5	Power Supply Voltage of 5V to 3.3V LDO	4.75	5	5.25	V
DCGND	Ground	_	0	_	V
I _C	Power consumption	Active mode: 150 Power Saving mode: 100 Suspend mode: 10		100	mA

General IO DC Characteristics

Symbol	Parameter	Min	Max	Unit	Note
V_{IL}	Input Low Voltage	-	0.4	V	_
V_{IH}	Input High Voltage	2.0	_	V	_
V _{OL}	Output Low Voltage	_	0.4	V	IOL=-4.0mA
V _{OH}	Output High Voltage	2.0	_	V	IOH=4.0mA

USB Full Speed DC/AC Characteristics

Symbol	Parameter	Min	Max	Unit	Note
V_{FSIH}	Full-speed Input High	2.0		V	_
V_{FSIL}	Full-speed Input Low		0.8	V	_
V _{FSCM}	Differential Common Mode Voltage	0.8	2.5	V	_
V_{FSOL}	Full-speed Output Low	0.0	0.3	V	_
V _{FSOH}	Full-speed Output High	2.8	3.6	V	_
T _{FSR}	Full-speed Rise Time	4	20	ns	_
T _{FSF}	Full-speed Fall Time	4	20	ns	_
V _{FSCRS}	Full-speed Output Signal Crossover Voltage	1.3	2.0	V	_

USB High Speed DC/AC Characteristics

Symbol	Parameter	Min	Max	Unit	Note
V_{HSSQ}	High-speed squelch detection threshold	100	150	mV	_
V_{HSCM}	High-speed data signaling common mode voltage	-50	500	mV	-
V _{HSOI}	High-speed idle level	-10	10	mV	_
V_{HSOH}	High-speed data high	360	440	mV	_
V_{HSOL}	High-speed data low	-10	10	mV	_
V _{CHIRPJ}	Chirp J level	700	1100	mV	_
V _{CHIRPK}	Chirp K level	-900	-500	mV	_
Z _{HSDRV}	Drive output resistance	40.5	49.5	Ω	_
T _{HSR}	High-speed Rise Time	500		ps	_
T _{HSF}	High-speed Fall Time	500		ps	_

USB Super Speed TX Characteristics

Symbol	Parameter	Min	Max	Unit	Note
V _{TX-DIFF-PP}	Differential p-p Tx swing	0.8	1.2	V	_
V _{TX-DE-RATIO}	Tx de-emphasis	3.0	4.0	dB	_
$R_{TX\text{-}DIFF\text{-}DC}$	DC differential impedance	72	120	Ω	_
V _{TX-RCV-DETECT}	The Voltage Change allowed during Receiver Detection		0.6	V	_
T _{TX-EYE}	Transmitter Eye	0.625		UI	_
T _{TX-DJ-DD}	Tx Deterministic Jitter		0.205	UI	_
R _{TX-DC}	Transmitter DC Common Mode Impedance	18	30	Ω	_
V _{TX-DC-CM}	Transmitter DC Common Mode Voltage	0	2.2	V	_
V _{TX-CM-AC-PP-AC}	Tx AC Common Mode Voltage Active		100	mV	_
V _{TX-IDLE-DIFF-AC}	Electrical Idle Differential P-P Output Voltage	0	10	mV	_
V _{TX-IDLE-DIFF-DC}	DC Electrical Idle Differential Output Voltage	0	10	mV	_

USB Super Speed RX Characteristics (5.0 GT/s)

Symbol	Parameter	Min	Max	Unit	Note
UI	Unit Interval	199.94	200.06	ps	UI does not account for SSC caused variations
R_{RX-DC}	Receiver DC common mode impedance	18	30	Ω	DC impedance limits are needed to guarantee Receiver detect
					Measured with respect to ground over a voltage of 500mV maximum
R _{RX-DIFF-DC}	DC differential impedance	72	120	Ω	

 $\frac{\text{VL670 USB2.0 to USB3.0 Transaction Translat}}{\Omega} \text{Rx DC CM}$ DC Input CM Input 25k Ω $Z_{\scriptscriptstyle RX\text{-}HIGH\text{-}IMP\text{-}DC\text{-}POS}$ impedance with the Impedance for V>0 Rx terminations not during Reset or power powered, measured down over the range 0 -500mv with respect to ground Below the minimum LFPS Detect Threshold 100 300 mV V_{RX-LFPS-DET-DIFF} is noise Must wake up above the maximum Measured after the Differential Rx 30 m۷ $V_{\text{RX-DIFF-PP-POST-EQ}}$ Rx EQ function peak-to-peak voltage (Section 6.8.2) Measured after the Max Rx inherent timing 0.45 UI t_{RX-TJ} Rx EQ function error (Section 6.8.2) Maximum Rx Max Rx inherent 0.3 UI $t_{RX-DJ-DD}$ inherent deterministic timing deterministic error timing error Rx input capacitance for 1.1 pf $\boldsymbol{C}_{\text{RX-PARASITIC}}$ return loss Rx AC common mode 150 m۷ Measured at Rx $\boldsymbol{V}_{\text{RX-CM-AC-P}}$ pins into a pair of $50\,\Omega$ terminations voltage Peak into ground Includes Tx and channel conversion, AC range up to 5 GHz Rx AC common mode Measured at Rx $V_{\substack{\text{RX-CM-DC-ACTIVE-}\\ \text{IDLE-DELTA-P}}}$ 200 mV voltage during the U1 to pins into a pair of Peak U0 transition 50Ω terminations into ground Includes Tx and channel conversion, AC range up to 5 GHz

Package Mechanical Specifications

QFN-48 Pb-free Maximum Temperature for IR Reflow

Parameter	Value	Unit
Maximum Temperature Tp	250	°C
Max Time within 5°C of Tp	30	seconds

Figure 6 - QFN 48L 6x6x0.85 mm Mechanical Specification

Package Top Side Marking & Ordering Information

Figure 7 - VL670 Package Top Side Marking

Part Number	Description	Package
VL670-Q4	Standard configuration	48-pin QFN (6x6mm)

VIA Labs, Inc. www.via-labs.com

7F, 529-1, Chung-Cheng Road, Hsin-Tien, New Taipei City, Taiwan (886-2) 2218-1838 Tel: Fax: (886-2) 2218-8924

sales@via-labs.com.tw Email:

Copyright © 2013 VIA Labs, Inc. All Rights Reserved.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Labs, Inc. The material in this document is for information only and is subject to change without notice. VIA Labs, Inc. reserves the right to make changes in the product design without reservation and without notice to its users.

All trademarks are the properties of their respective owners.

No license is granted, implied or otherwise, under any patent or patent rights of VIA Labs, Inc. VIA Labs, Inc. makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Labs, Inc. assumes no responsibility for any errors in this document. Furthermore, VIA Labs, Inc. assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.