TD2 : Sélection de modèles/variables en régression

Le but de ce deuxième TD est de présenter les différents algorithmes de sélection de modèles/variables en régression (linéaire). Ces techniques seront mises en oeuvre à l'aide de R, pour la base de données Carseats du package ISLR.

Taille d'un modèle et précision

Lorsque la taille du modèle de RLM et petite (ou nombre petit de variables explicatives):

- (i) variance faible, biais très élevé;
- (ii) erreur théorique de prévision élevée;
- (iii) erreur empirique (d'ajustement) élevée.

Lorsque la taille du modèle et grande (ou nombre élevé de variables explicatives) :

- (i) variance très élevée, biais faible;
- (ii) erreur théorique de prévision élevée;
- (iii) erreur empirique (d'ajustement) très faible (problème de sur-ajustement).

D'où la nécessité de développer des procédures de sélection de modèles (de variables).

Le cadre

On considère un modèle de RLM

$$Y = w_0 + w_1 X_1 + \ldots + w_n X_n + \varepsilon.$$

On dispose d'un échantillon $(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)$ du vecteur $(\mathbf{X}, Y) =: (X_1, \dots, X_p, Y) \in \mathbb{R}^p \times \mathbb{R}$.

L'objectif est d'obtenir le sous-ensemble de variables explicatives qui conduit au "meilleur' modèle RLM au sens d'un critère donné.

Avec p variables explicatives candidates, X_1, \ldots, X_p , on peut construire $2^p - 1$ modèles de régression linéaires différents (les modèles à une variable, à deux variables, ..., à p variables).

Exemples de critères de sélection de modèles

(1) L'Akaike Information Criterion (AIC), d'un modèle de RLM, constitué de k variables explicatives, est défini par

$$AIC = -2 \mathcal{L}_n(\widehat{\mathbf{w}}, \widetilde{\sigma}^2) + 2(k+2),$$

- où $\mathcal{L}_n(\widehat{\mathbf{w}}, \widetilde{\sigma}^2)$ est la log-vraisemblance du modèle, définie ci-dessus, sous les hypothèses d'homoscédasticité et de normalité des erreurs;
- (2) Le Bayesian Information Criterion (BIC):

$$BIC = -2 \mathcal{L}_n(\widehat{\mathbf{w}}, \widetilde{\sigma}^2) + \log(n) (k+2);$$

(3) R^2 -ajusté :

$$R_a^2 := 1 - \frac{n-1}{n-k-1} (1 - R^2);$$

(4) Le C_p de Mallow d'un modèle de régression utilisant k variables explicatives $(1 \le k \le p)$ est donné par :

$$C_p := \frac{1}{n} \left(\|\mathbf{Y} - \widehat{\mathbf{Y}}_0 \mathbf{1}\|^2 + 2(1+k) \widehat{\sigma}^2 \right),$$

où $\hat{\mathbf{Y}}_0$ est le vecteur des valeurs ajustées selon le modèle utilisant les k variables explicatives;

(5) Le critère F de Fisher : Notons $\hat{\mathbf{Y}}$ le vecteur des valeurs ajustées selon le modèle de RLM complet à p variables explicatives, et $\hat{\mathbf{Y}}_0$ le vecteur des valeurs ajustées selon le modèle réduit à p-q variables explicatives ($1 \le q < p$). Le critère F du modèle réduit est défini par

$$F := \frac{\|\widehat{\mathbf{Y}}_0 - \widehat{\mathbf{Y}}\|^2 / q}{\|\mathbf{Y} - \widehat{\mathbf{Y}}\|^2 / (n - p - 1)}.$$

Algorithme de recherche exhaustive

- (1) Construire les $2^p 1$ modèles;
- (2) Choisir celui qui optimise un critère donné.

Excercice 1

- (1) Donner les modèles optimaux selon les critères R^2 -ajusté, BIC et C_p , par recherche exhaustive : utiliser la fonction regsubsets() du package leaps;
- (2) Reprendre la question précédente en utilisant cette fois-ci la fonction glmulti() du package glmulti.

Algorithme de recherche pas-à-pas

L'approche exhaustive permet de comparer tous les modèles; l'inconvénient est que le temps de calcul devient très important si le nombre de variables est grand;

Lorsque le nombre de variables est grand, on privilégie souvent les méthodes pas-à-pas qui consistent à construire les modèles de façon récursive, en ajoutant/supprimant une variable explicative à chaque étape.

Méthode ascendante (forward selection, version 1)

- (1) Construire \mathcal{M}_0 le modèle trivial (avec uniquement l'intercept);
- (2) Pour k = 0, ..., p 1:
- (i) Construire les p-k modèles consistant à ajouter une variable dans \mathcal{M}_k ;
- (ii) Choisir, parmi ces p-k modèles, le modèle \mathcal{M}_{k+1} qui optimise un critère donné;
- (3) Choisir, parmi $\mathcal{M}_1, \dots, \mathcal{M}_p$, le meilleur modèle au sens du critère considéré.

Méthode descendante (backward elimination, version 1)

- (1) Construire \mathcal{M}_p le modèle complet (avec les p variables);
- (2) Pour k = p, ..., 2:
- (i) Construire les k modèles consistant à supprimer une variable dans \mathcal{M}_k ;
- (ii) Choisir, parmi ces k modèles, le modèle \mathcal{M}_{k-1} qui optimise un critère donné;
- (3) Choisir, parmi $\mathcal{M}_1, \dots, \mathcal{M}_p$, le meilleur modèle au sens du critère considéré.

Exercice 2

Appliquer les deux algorithmes précédents pour sélectionner les modèles optimaux selon les critères BIC, C_p et R^2 -ajusté : Utiliser la fonction regsubsets().

Méthode ascendante (forward selection, version 2)

- (1) Modèle sans variables;
- (2) Insertion de la variable qui diminue le plus le critère;
- (3) Insertion de la deuxième variable qui diminue le plus le critère, ... arrêt quand on ne diminue plus le critère.

Méthode descendante (backward elimination, version 2)

- (1) Modèle complet;
- (2) Enlever la variable qui diminue le plus le critère;
- (3) Enlever la deuxième variable qui diminue le plus le critère, ... arrêt quand on ne diminue plus le critère.

Exercice 3

Appliquer les deux algorithmes précédents pour sélectionner les modèles optimaux selon les critères AIC, BIC et Fisher : Utiliser la fonction step().

Méthode ascendante bidirectionnelle (bidirectional selection)

- (1) Ascendante avec remise en cause à chaque étape des variables déjà inclues ;
- (2) Permet d'exclure des variables qui redeviennent plus significatives compte tenu de celle qui vient d'être intégrée.

Méthode descendante bidirectionnelle (bidirectional elimination)

- (1) Descendante avec remise en cause à chaque étape des variables déjà exclues ;
- (2) Permet de réintégrer des variables qui redeviennent significatives compte tenu de celle qui vient d'être exclue.

Exercice 4

Appliquer les deux algorithmes précédents pour sélectionner les modèles optimaux selon les critères AIC, BIC et Fisher : Utiliser la fonction step().

Sélection par algorithme génétique

- (1) On l'utilise quand le nombre de variables devient de plus en plus grand et qu'une recherche exhaustive est impossible et une recherche pas à pas peut mener à une solution qui n'est pas tout à fait optimale;
- (2) Cet algorithme est implémenté dans la fonction glmulti() du package glmulti en spécifiant l'argument method = "g";
- (3) Cette méthode est donc supposée trouver le meilleur modèle sans avoir besoin de calculer le critère à considérer sur tous les modèles possibles (recherche exhaustive).

Exercice 5

Appliquer l'algorithme précédent pour sélectionner les modèles optimaux selon les critères AIC et BIC : Utiliser la fonction glmulti() du package glmulti.

Exercice 6

Reprendre toutes les questions de l'exercice 1 du TD1 en utilisant cette fois-ci seulement le sous-ensemble de variables explicatives sélectionnées par le critère BIC.