MAT1110

LH 4.6 Linearbombinationer og basis

- · lineart spenn, } basis

Lineart likewingszystem AX > 5 $\begin{cases} a_{11}x_{17}...+a_{11}x_{12} > 5 \\ a_{11}x_{17}...+a_{11}x_{13} > 5 \end{cases}$ Note tikewing lyger en $\begin{cases} x_1 \\ x_2 \end{cases} \in \mathbb{R}^n$ bedryelse p_2 $\overline{x}_1 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^n$ $\begin{cases} x_1 \\ x_2 \end{cases} \in \mathbb{R}^n$

Hilke $\vec{b} \in \mathbb{R}^m$ er linearkombinnsjoner av $\vec{a}_1,...,\vec{a}_n \in \mathbb{R}^m$?

Def Spermet av $\vec{a}_1,...,\vec{a}_n$ er mengden $\vec{b} = \vec{b} = \vec{$

Gitt u relativer $\overline{q}_1, \dots, \overline{q}_n \in \mathbb{R}^m$ of $\overline{b} \in \mathbb{R}^n$.

Er \overline{b} er i spennet av $\overline{q}_1, \dots, \overline{q}_n$? \overline{b} er en directembination $\overline{x}_1, \overline{q}_1 + \dots + \overline{x}_n, \overline{q}_n$ \overline{b} er en directembination $\overline{x}_1, \overline{q}_1 + \dots + \overline{x}_n, \overline{q}_n$ \overline{b} A $\overline{x}_1 = \overline{b}$ har en tooning

A $\overline{x}_2 = \overline{b}$ har en tooning

Svor: Utridet motrise $(A \mid b)$ radredusere $(C \mid d)$ particular probability.

I d er ilke en pirotogle, $(a \mid b)$

Now er Sp(a, , , a,) = 12m ? Ter; spermot av ap-..., an for hour I's R AX=B haven looning for thru BERM C har ett pivotetement

i hver rad man matriser Def an intspenner 12th his Sp(a,,,, an) = Rm Lemma Hvis anatspenner RM er n 3 M.

Linear narhenzishet

Def anson i Rm er lineat varhensige hvis

for hiver

To sp(a1,..., an)

er = x, a1 + ... + x, an

for et entylis n-tuppel (x1,..., x1).

Eller sier is et an,..., an er lineart auhengige.

Lemma din-, an er lineart narhapige

 $x_1 \overrightarrow{a_1} + \dots + x_n \overrightarrow{a_n} = \overrightarrow{o}$ bare this $x_1 = \dots = x_n = 0$, $0 \overrightarrow{a_1} + \dots + 0 \overrightarrow{a_n}$

Bens I de Il hostapositivt

Anda at a, ..., an er lineart arleyise

Y(a) + ... + 4, an = b = 2, a) + ... + 2, an

der (41,..., yn) + (21,..., 2n).

1, - w (v. ×) & (o, ... o).

MAT1110

12.04.11

$$\vec{q}_1 = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} \quad \vec{q}_2 = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix} \quad \vec{q}_3 = \begin{bmatrix} 5 \\ 6 \\ 1 \end{bmatrix}$$

Ex disse linear unchensise?

A = $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$ A =

Lemma His an, ..., an & R'm en lineast wantenzige er n < m.

Bers? A mxn majerse

C et protetement i Ever suple

Def n veltorer a, , ..., an & Tem som

utspenner 12m os er lineat uarthengise

kultes en basis for 12m

Lemms His qu-jàn en en basis for Ph

Lemma an - an er en bass for Pr

(=) AZ=3 har en entiplig borning x6 R for lover B & R

 $(A = (\vec{a}_1 \cdots \vec{a}_n))$

2=> den reducerte trappeformen di) A er In

(A er invertibed)

Eksemped A = In
$$\overline{d}_1 = \overline{d}_1 = \overline{d$$

Hvordan velge ut en baks for en moyde veldour Rem reproduce 15m s La ais..., an Expense Rm. La A = [a][--·[an] ~ C trappetorm har eit picotetement ; how as be m radienc La lejacjez... zjan 64 vor privotsøylene. Da er ajn, ajz,..., ajm en bass for RM $A = \left(\vec{a}_1 \cdot - |\vec{a}_{j_1}| \cdot - |\vec{a}_{j_m}| \cdot - |\vec{a}_n| \right) \sim C$ $A' = \left\{ f_i \mid \overrightarrow{a_{ji}} \mid - |\overrightarrow{a_{jm}}| \dots |\overrightarrow{a_{jl}}| \sim C' \mid \begin{bmatrix} \overrightarrow{a_{jm}} \mid \cdots \mid \overrightarrow{a_{jl}} \mid \\ \overrightarrow{a_{jm}} \mid \cdots \mid \overrightarrow{a_{jl}} \mid \end{bmatrix} \right\}$ A invertibel aj,,..., ajm er en basis

Elso
$$\overline{a}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $\overline{a}_2 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $\overline{a}_3 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$

3 vertices in \overline{R}_2^2
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Gitt n lineart anthonyise reldour i Pm,

broodon atride dem di) en bacis?

nem

A = [a] - [an] m C = [a] - [