Proyecto de Algorísmia

Víctor Giménez, Guillem Ferrer y Jordi Armengol Enero 2018

1 Breve descripción de la implementación

Hemos considerado el enunciado como un problema de asignación en el cual tendremos flujos representando a pilotos. Para trazar la red, basándonos en el material recomendado de [Kleinberg and Tardos, 2009], tendremos una red de flujos con demandas y lower bounds. En concreto, tendremos un 'source' S que proporciona un número k de pilotos y un 'sink' T que los absorbe, conectados por un arco de peso k (el flujo que pase por dicho arco no habrá sido usado para solucionar el problema). Además, para cada vuelo, tendremos dos vertices (salida y llegada), conectados por arcos respectivamente a S y a T, con capacidad infinita (en realidad es sencillamente el doble del numero de vuelos pues k \leq numero de vuelos y hay maxflow de m+k). Podría ser capacidad de 1 pero eso solo se aplica en la primera versión del problema. Por último, conectaremos estos dos vertices por un arco con capacidad mínima de 1 y máxima de 1.

Además, si este vuelo es accesible desde otro anterior, conectaremos la llegada del previo a nuestra salida con otro arco de capacidad infinita (de nuevo, $2 \times m$). De esta manera, si el grafo se puede satisfacer (is feasible), entonces significa que: usamos k pilotos y todas los arcos con lowerbound (los vuelos en sí) están cubiertas. Esto es equivalente a decir que se pueden cubrir todos los vuelos con K pilotos. Ahora, sencillamente tendremos que probar con una K más baja. En concreto, nosotros bajamos la k según el numero de pilotos no usados (por el arco de S a T), y usamos una búsqueda dicotómica para determinar la K mínima. Como último punto, a la hora de implementar dicho grafo, lo transformamos en un grafo de capacidades normales, con dos vertices extra para suplir las ofertas de S y las que se forman en eliminar los lowerbounds, y tragarse las demandas de T y las formadas en eliminar

los lowerbounds. Por último, hemos implementado tres algoritmos: Ford-Fulkerson, Edmonds-Karp y Dinic, para obtener las redes de flujos.

2 Complejidad temporal

Usaremos: n: numero de ciudades; m: numero de vuelos.

Transformar al grafo de capacidades desde el input es aproximadamente $O((m \times m)/n)$. $\frac{m}{n}$ es la carga esperada por casilla del vector Arrivals. Para calcular el resultado final, llamaremos a la función de maxflow (depende de qué algoritmo, tendrá un coste diferente) un máximo de log m veces, ya que realizamos una búsqueda dicotómica para encontrar la k. Realmente el coste es muchísimo menor que $\log(m)$ en la mayoría de casos, pues el problema no se reduce a la mitad sino a la mitad menos los pilotos no usados (arco s-t) en caso de que sea 'feasible'. Experimentalmente, vemos que en caso de m con valores de 250, esperamos que el problema se reduzca a menos de 70 en la primera llamada a la función.

Por último, la transformación a resultado (los pilotos) es $O(k \times (|V| + |E|))$: para cada piloto, recorrer el grafo de S a T en un DFS, pues |V| es O(m) y |E| es $O(m^2)$.

Como k es también O(m) estamos hablando de un coste $O(m^3)$.

A continuación, viene el coste detallado para cada algoritmo y versión, teniendo en cuenta lo mencionado préviamente.

• Ford-Fulkerson 1:

- transformación $O(m \times m/n)$
- numero de arcos en el grafo: $O(3+4m(m\times m)) = O(m\times m) = |E|$
- numero de vertices: O(4+2m) = O(m) = |V|
- Capacidad máxima: $2 \times m = O(m) = C$
- maxflow: $O(C \times |E|) = O(m^3)$
- maxflow se ejecuta $O(\log(m))$ veces
- Coste de computar solución = $O(m^3)$
- coste temporal total = $O(m \times m/ + (log(m)) \times *(m^3) + m^3) = O((log(m))*(m^3))$

• Ford-Fulkerson 2:

- transformación $O(m \times m/n)$
- numero de arcos en el grafo: $O(3+5m(m\times m)) = O(m\times m) = |E|$
- numero de vertices: O(4+2m) = O(m) = |V|
- Capacidad máxima: $2 \times m = O(m) = C$
- maxflow: $O(C \times |E|) = O(m^3)$
- maxflow se ejecuta O(log(m)) veces
- Coste de computar solución = $O(m^3)$
- coste temporal total = $O(m \times m/ + (log(m)) \times *(m^3) + m^3) = O((log(m))*(m^3))$

• Edmonds-Karp 1:

- transformación $O(m \times m/n)$
- numero de arcos en el grafo: $O(3+4m(m\times m)) = O(m\times m) = |E|$
- numero de vertices: O(4+2m) = O(m) = |V|
- maxflow: $O(|V| * |E|^2) = O(m^5)$ o bien $O(C \times |E|) = O(m^3)$. El coste menor $(O(m^3))$ es el que nos quedaremos, ya que está más ajustado
- maxflow se ejecuta O(log m) veces
- Coste de computar solución = $O(m^3)$
- coste temporal total = O(m*m/n + (log m)*(m³) + m³) = O((logm) * (m³))

• Edmonds-Karp 2:

- transformación $O(m \times m/n)$
- numero de arcos en el grafo: $O(3+5m(m\times m)) = O(m\times m) = |E|$
- numero de vertices: O(4+2m) = O(m) = |V|
- maxflow: $O(N \times M \times M) = O(m^5)$ o bien $O(C \times |E|) = O(m^3)$. El coste menor $O(m^3)$ es el que nos quedaremos, ya que está más ajustado
- maxflow se ejecuta $O(\log(m))$ veces
- Coste de computar solución = $O(m^3)$

- coste temporal total = $O(m \times m/n + (log(m)) \times (m^3) + m^3) = O((log(m)) \times (m^3))$

• Dinic 1:

- transformación $O(m \times m/n)$
- numero de arcos en el grafo: O(3+4m+m×m) = O(m×m) = E—numero de vertices : O(4+2m) = O(m) = V—axflow : levels → bfs → O(m)blocking flow in level led graph dfs(m×n) bucle → O(n) → maxflow : O(m×n²)
- maxflow: $O(M \times N^2) = O(m^2 \times m^2) = O(m^4)$
- maxflow se ejecuta $O(\log(m))$ veces coste temporal total: $O(m \times m/n + (\log(m)) \times (m^4) + m^3) = O((\log(m)) \times (m^4))$
- Sin embargo, como se puede leer en la última referencia ("On the practical efficiency of various maximum flow algorithms"), en la práctica Dinic tiene una tiempo medio de $O(|V|^2)$ para redes aleatorias, incluso densas. En este caso, implicaría un coste total de: $O((log(m)) \times m^2)$, siendo el más rápido.

• Dinic 2:

- transformación $O(m \times m/n)$
- numero de arcos en el grafo: O(3+5m+m×m) = O(m×m) =—E—numero de vertices : O(4+2m) = O(m) =—V— $axflow : levels → bfs → O(m)blocking flow in level led graph <math>dfs(m\times n)$ bucle → $O(n) → maxflow : O(m\times n^2)$
- maxflow: $O(M \times N^2) = O(m^2 \times m^2) = O(m^4)$
- maxflow se ejecuta $O(\log(m))$ veces coste temporal total: $O(m \times m/n + (\log(m)) \times (m^4) + m^3) = O((\log(m)) \times (m^4))$
- Sin embargo, como se puede leer en la última referencia ("On the practical efficiency of various maximum flow algorithms"), en la práctica Dinic tiene una tiempo medio de $O(|V|^2)$ para redes aleatorias, incluso densas. En este caso, implicaría un coste total de: $O((log(m)) \times m^2)$, siendo el más rápido.

3 Diferencia entre la versión 1 y la 2

Sencillamente subiremos la capacidad del arco que conecta la salida y la llegada de un mismo vuelo, permitiendo a pilotos 'pasar' por este arco sin

ser piloto, o mejor dicho, siendo pasajeros. Además, si no hubieramos puesto capacidad 'infinita' entre vuelos, S y T, ahora tendríamos que hacerlo ahora para dejar que hubiera flujo de pilotos entre un vuelo y otro no limitado a uno.

Un ejemplo de la razón por la cuál tenemos que poner dicha capacidad es el caso siguiente: cien vuelos salen a primera hora desde cien ciudades distintas para ir a la misma. De ahí, tras un buen rato, sale un vuelo a otra ciudad. Por último, de esta última ciudad, salen cien vuelos a las cien ciudades del principio. Si no pusieramos capacidad infinita en los arcos mencionados, solo podrían viajar dos pilotos en el vuelo intermedio.

4 Tabla de resultados experimentales

instance	100	10	v1Dinic	0.055
in stance	100	10	v2Dinic	0.066
instance	100	10	v1Edmond	0.248
instance	100	10	v2Edmond	0.256
instance	100	10	v1Ford	0.403
in stance	100	10	v2Ford	1.433
in stance	100	11	v1Dinic	0.046
in stance	100	11	v2Dinic	0.055
in stance	100	11	v1Edmond	0.209
in stance	100	11	v2Edmond	0.216
in stance	100	11	v1Ford	0.342
in stance	100	11	v2Ford	1.24
in stance	100	12	v1Dinic	0.044
in stance	100	12	v2Dinic	0.053
instance	100	12	v1Edmond	0.208
in stance	100	12	v2Edmond	0.22
instance	100	12	v1Ford	0.351
in stance	100	12	v2Ford	1.251
instance	100	13	v1Dinic	0.043
instance	100	13	v2Dinic	0.052
instance	100	13	v1Edmond	0.214
instance	100	13	v2Edmond	0.228
instance	100	13	v1Ford	0.363
instance	100	13	v2Ford	1.306
instance	100	14	v1Dinic	0.039
instance	100	14	v2Dinic	0.052
instance	100	14	v1Edmond	0.205
instance	100	14	v2Edmond	0.22
instance	100	14	v1Ford	0.347
instance	100	14	v2Ford	1.259
instance	100	15	v1Dinic	0.039
instance	100	15	v2Dinic	0.042
instance	100	15	v1Edmond	0.194
instance	100	15	v2Edmond	0.203
instance	100	15	v1Ford	0.327
instance	100	15	v2Ford	1.099

: 1 100 10 1D: :	0.000
instance 100 16 v1Dinic	0.033
instance 100 16 v2Dinic	0.043
instance 100 16 v1Edmond	0.181
instance 100 16 v2Edmond	0.19
instance 100 16 v1Ford	0.297
instance 100 16 v2Ford	1.031
instance 100 17 v1Dinic	0.037
instance 100 17 v2Dinic	0.045
instance 100 17 v1Edmond	0.199
instance 100 17 v2Edmond	0.211
instance 100 17 v1Ford	0.347
instance 100 17 v2Ford	1.237
instance 100 18 v1Dinic	0.036
instance 100 18 v2Dinic	0.04
instance 100 18 v1Edmond	0.194
instance 100 18 v2Edmond	0.202
instance 100 18 v1Ford	0.324
instance 100 18 v2Ford	1.15
instance 100 19 v1Dinic	0.034
instance 100 19 v2Dinic	0.041
instance 100 19 v1Edmond	0.181
instance 100 19 v2Edmond	0.195
instance 100 19 v1Ford	0.292
instance 100 19 v2Ford	1.053
instance 100 2 v1Dinic	0.14
instance 100 2 v2Dinic	0.158
instance 100 2 v1Edmond	0.561
instance 100 2 v2Edmond	0.58
instance 100 2 v1Ford	1.106
instance 100 2 v2Ford	2.17
instance 100 20 v1Dinic	0.033
instance 100 20 v2Dinic	0.04
instance 100 20 v1Edmond	0.176
instance 100 20 v2Edmond	0.188
instance 100 20 v1Ford	0.302
instance 100 20 v2Ford	1.08

instance	100	21	v1Dinic	0.031
instance	100	21	v2Dinic	0.041
in stance	100	21	v1Edmond	0.174
in stance	100	21	v2Edmond	0.185
in stance	100	21	v1Ford	0.304
in stance	100	21	v2Ford	1.008
in stance	100	22	v1Dinic	0.029
in stance	100	22	v2Dinic	0.038
in stance	100	22	v1Edmond	0.165
instance	100	22	v2Edmond	0.178
in stance	100	22	v1Ford	0.288
instance	100	22	v2Ford	0.988
in stance	100	23	v1Dinic	0.032
instance	100	23	v2Dinic	0.038
instance	100	23	v1Edmond	0.179
instance	100	23	v2Edmond	0.192
in stance	100	23	v1Ford	0.319
instance	100	23	v2Ford	1.053
in stance	100	24	v1Dinic	0.03
instance	100	24	v2Dinic	0.039
in stance	100	24	v1Edmond	0.168
in stance	100	24	v2Edmond	0.171
in stance	100	24	v1Ford	0.291
in stance	100	24	v2Ford	0.926
in stance	100	25	v1Dinic	0.029
in stance	100	25	v2Dinic	0.037
in stance	100	25	v1Edmond	0.164
in stance	100	25	v2Edmond	0.172
in stance	100	25	v1Ford	0.3
in stance	100	25	v2Ford	0.927
in stance	100	26	v1Dinic	0.031
in stance	100	26	v2Dinic	0.039
in stance	100	26	v1Edmond	0.185
in stance	100	26	v2Edmond	0.19
in stance	100	26	v1Ford	0.311
instance	100	26	v2Ford	1.074

instance	100	27 v1Dinic	0.029
in stance	100	27 v2Dinic	0.036
in stance	100	27 v1Edmond	0.17
in stance	100	27 v2Edmond	0.18
in stance	100	27 v1Ford	0.322
in stance	100	27 v2Ford	1.015
in stance	100	28 v1Dinic	0.029
in stance	100	28 v2Dinic	0.034
in stance	100	28 v1Edmond	0.174
in stance	100	28 v2Edmond	0.177
in stance	100	28 v1Ford	0.324
in stance	100	28 v2Ford	1.022
in stance	100	29 v1Dinic	0.029
in stance	100	29 v2Dinic	0.032
in stance	100	29 v1Edmond	0.166
in stance	100	29 v2Edmond	0.175
in stance	100	29 v1Ford	0.297
in stance	100	29 v2Ford	0.967
in stance	100	3 v1Dinic	0.096
in stance	100	3 v2Dinic	0.113
in stance	100	3 v1Edmond	0.399
in stance	100	3 v2Edmond	0.428
in stance	100	3 v1Ford	0.696
in stance	100	3 v2Ford	1.764
instance	100	30 v1Dinic	0.027
in stance	100	30 v2Dinic	0.034
in stance	100	30 v1Edmond	0.162
instance	100	30 v2Edmond	0.167
in stance	100	30 v1Ford	0.305
instance	100	30 v2Ford	0.966
in stance	100	4 v1Dinic	0.082
instance	100	4 v2Dinic	0.097
in stance	100	4 v1Edmond	0.326
instance	100	4 v2Edmond	0.357
instance	100	4 v1Ford	0.577
instance	100	4 v2Ford	1.59

in stance	100 5	5 v1Dinic	0.075
instance	100 5	5 v2Dinic	0.086
instance	100 5	v1Edmond	0.309
instance	100 5	5 v2Edmond	0.303
instance	100 5	5 v1Ford	0.506
instance	100 5	5 v2Ford	1.451
instance	100 6	5 v1Dinic	0.064
instance	100 6	5 v2Dinic	0.075
instance	100 6	5 v1Edmond	0.282
in stance	100 6	5 v2Edmond	0.299
in stance	100 6	5 v1Ford	0.461
in stance	100 6	5 v2Ford	1.412
in stance	100 7	7 v1Dinic	0.065
in stance	100 7	7 v2Dinic	0.07
in stance	100 7	7 v1Edmond	0.273
in stance	100 7	7 v2Edmond	0.295
in stance	100 7	7 v1Ford	0.463
instance	100 7	7 v2Ford	1.456
in stance	100 8	3 v1Dinic	0.057
instance	100 8	8 v2Dinic	0.067
in stance	100 8	8 v1Edmond	0.246
instance	100 8	8 v2Edmond	0.261
instance	100 8	3 v1Ford	0.428
instance	100 8	8 v2Ford	1.409
instance	100 9	v1Dinic	0.059
instance	100 9	9 v2Dinic	0.07
instance	100 9	v1Edmond	0.256
instance	100 9	v2Edmond	0.28
instance	100 9	v1Ford	0.42
instance	100 9	v2Ford	1.472

5 Referencias bibliograficas

- Kleinberg and Tardos, 2005: Kleinberg, J. and Tardos, E. (2009), Algorithm Design.
 - [online] Available at: http://www.icsd.aegean.gr/kaporisa/index_files/Algorithm_Design.pdf [Accessed 27/12/17].
- Diapositivas de clase, 2017. Available at: http://www.cs.upc.edu/~mjserna/docencia/grauA/T17/MaxFlow-fib.pdf
- Borodin, A. (2009). Dinic's max flow algorithm. Available at http://www.cs.toronto.edu/~bor/375s06/dinic-sketch.pdf [Accessed 29/12/17].
- Tarau, P. (2011). Dinic's algorithm. Available at http://www.cse.unt.edu/~tarau/teaching/AnAlgo/Dinic's%20algorithm.pdf [Accessed 29/12/17]. Imai, H. (1983). On the practical efficiency of various maximum flow algorithms. Available at: http://www.orsj.or.jp/~archive/pdf/e_mag/Vol.26_01_061.pdf [Accessed 29/12/17].