Laboratorio 66.02 /

Calificación

Introducción a la Ingeniería Electrónica 86.02

	VAR. 1 / S=1,17	A Region of the Control of the Contr				
Evaluación Parcial	_	1ª. oportunidad	_	1er. cuatrimestre 2017	_	18-05-2017
Apellido y Nombres _						·
Padrón; Turno	o de TP	; Carre	era	; Plan Ho	jas en	tregadas

1) a)	1) b)	2) a)	2) b)	3) a)	3) b)	4) a)	4) b)	5) a)	5) b)	Final

- √1) Explique las diferencias entre los conceptos: a) incertidumbre y error y b) exactitud y precisión.
- Se desea medir la forma de onda de período T de la figura usando un MMD de valor medio de 3 % dígitos con escalas V_{DC} [\pm (0,3% + 1)] y V_{AC} (45Hz a 1KHz) [\pm (1,9% + 2)] y una "Rent = 10 M Ω ":
 - a) ¿Cuál es el resultado de la medición en VDC y en VAC?
 - b) ¿Cuál sería la lectura de un Voltímetro de Valor Eficaz Verdadero en modo V_{DC+AC} ?
- Una vez realizada la medición anterior, se desea que la señal pase por un circuito compuesto por un resistor $(R = 100 \ \Omega)$ y un capacitor $(C = 10 \ \mu\text{F})$ en serie. Suponiendo que la señal vale cero para t < 0 ms:

- a) ¿Cuánto vale la ddp sobre el capacitor para t = 4 ms? Muestre en un gráfico lo que se vería en un osciloscopio, indicando los valores de la configuración del acoplamiento del canal, la escala vertical, la escala horizontal y el disparo.
- b) ¿Cuál es la frecuencia de corte del filtro definido por estos componentes? ¿De qué tipo de filtro se trata si la salida se toma sobre el capacitor?

- Φ) Dado el circuito de la siguiente figura, con V1 = 5 V (constante); V2 = 10 V sen(ωt), con ω = 2πf y f = 50 Hz
- a) Calcular la caída de tensión en el resistor R1.
- b) Calcular la potencia media en R1.
- 5) En el circuito de la figura, los valores de resistencia están en el rango [1 Ω, 10 ΜΩ]:
 - a) Si $R4 = 6 \text{ k}\Omega$, calcular R5 para que la potencia disipada en R5 sea máxima.
 - b) Si R4 = 6 kΩ, calcular R5 para que la potencia disipada en R3 sea máxima.

ACLARACIONES:

ddp=Diferencia de Potencial

MMD=Multimetro Digital

Por favor ponga en cada hoja su nombre y apellido, número de padrón y el número de hoja correspondiente. Cuente la cantidad total de hojas entregadas INCLUYENDO ésta y complete el cuadro de arriba de esta hoja.

Resuelva cada ejercicio en HOJAS SEPARADAS. Indique todos los razonamientos e hipótesis a los que recurre. Las condiciones que se creen no especificadas deberán ser establecidas explícitamente antes de hacer los cálculos. Si hay errores, indíquelos. Si sobran datos o son incompatibles, justifique cuáles usa.

Expresar correctamente las unidades de medida, las incertidumbres y proponer respuestas breves; todos estos factores afectan la calificación. Un error conceptual o una cantidad incorrecta pueden invalidar la respuesta.

(*) Las preguntas 1, 2, 3, 4 y 5 evalúan distintos conceptos por lo que la evaluación es global.

$$V(t) = \begin{cases} 3V & 0 l \neq l^{2}/s + l \\ -2V & 2/s + l \neq l \end{cases}$$

$$Vdc = \int_{0}^{\infty} V(t) dt$$

$$Vdc = \frac{1}{T} \left[\int_{0}^{2/5T} \frac{3v dt}{3v dt} + \int_{-2V}^{T} \frac{dt}{2v dt} \right] = \frac{1}{T} \left[\frac{3V \cdot 2\pi}{5} - \frac{2V}{5} \right]$$

$$V_{AC} = \frac{1.11}{T} \int_{0}^{T} |V(t) - V_{dC}| dt$$

$$V_{AC} = \frac{1.11}{T} \left[\int_{0}^{215T} 3Vdt + \left[\frac{2Vdt}{2VsT} \right] = \frac{1.11}{T} \left[\frac{3V}{5} \frac{27}{5} + \frac{2V}{5} \right] = 2,664V$$

$$V_{4c} = \left\{ \frac{1}{T} \left[\int_{0}^{2/sT} 9v^{2}dt + \left[\frac{4v^{2}dt}{4v^{2}dt} \right] \right]^{1/2} = \left[\frac{1}{T} \left[9v^{2} \cdot \frac{2\gamma}{5} + 4v^{2} \left(\frac{1}{T} - \frac{2\gamma}{5} \right) \right] \right]^{1/2}$$

$$V_{c} = E(1-e) = V_{c}(4ms) = 2,40V$$

Ve = SV

V2 = lovsu(wt) f= 5043

R1 = 1000-2

W=ZTTf.

12= 2751

T=0,02

R3=1000-52

a) i) Plantes el equivalente de Thérenin. Pasiro fuentes abre en le 1) calcula RM

· ii) Calaula V4 con superposicion ii.a) Pariro V2.

ii. L) Pasino Va

$$\begin{cases} R_{2} & A^{"} & R_{3} \\ P_{3} & P_{3} \end{cases} = V_{A}^{"} = V_{2} \frac{R_{2}}{R_{3} + R_{2}} = 0, Z62V \text{ Sun}(wt)$$

Circuito equivalente

$$P_{m} = \frac{1}{T} \left[V(t) \cdot i(t) dt \right] \left(P_{m} = E_{t} \cdot I_{t} \right)$$

(A):
$$\int_{0}^{0.02} 2.2 \times 10^{-2} \text{ wdt} = 4.4 \times 10^{-4} \text{ W}$$

B:
$$\int_{0}^{0.02} 2.3 \times 10^{-3} \text{W.sm}(wt) dt = 1.90 \times 10^{-16} \text{W}$$

$$P_{M} = \frac{1}{0.02} \left[4.4 \times 10^{\frac{1}{4}} W + 7,90 \times 10^{\frac{16}{4}} W + 6,50 \times 10^{\frac{1}{4}} W \right] = 0,0220 W$$

:			
			E = lov
	RI RI	\$ P4	R1 = 10h
(I) E	_w_	Photos and	82=10h=
	S R2	\$ Rs	R3 = 1/ks
			R4 = 6 h.

a) Plantes el equinalente de thevenir alviende en les

ui) Calcula la tensión en A

$$V_{3} - V - \frac{R_{3}}{R_{3} + R_{4}} = \frac{1}{4} \frac{43}{3} V = E_{Th}$$

Equivalente de therenin:

	l etu]	Vor=	ETH .	Rs		
(e &	 		RTH+ RS		
	En 1	 ·				

Teoremo de Maximo transferencie de fatericio: $Pes = V^{2} = 0 \quad \left[\frac{E_{th} \cdot R_{s}}{e} \right] = \frac{E_{th} \cdot R_{s}}{\left[e_{th} + e_{s} \right]^{2}} = \frac{2}{e^{s}}$ $e^{s} = \frac{2}{e^{s}} \cdot \frac{R_{s}}{e^{s}}$ $= \frac{E\pi n^2 \cdot Rs}{(Rrh + Rs)^2}$ $\frac{dPes}{des} = 0 \iff 0 = \frac{E_{Th} \cdot (e_{Th} + e_{S})^{2} - E_{Th} \cdot e_{S} \cdot 2(e_{Th} + e_{S})}{(e_{Th} + e_{S})^{4}} = 0$ $= Rm^{2} + 2em R + 8s^{2} - 2Rm Rs - 1/es^{2} = 0 = 2 Rm^{2} = Rs^{2}$ | Pm = | P5 | =) el valor de Rs debe sur 916,6-a.

.

•