

Boommethode

¬-regel	∧-regels		∨-regels		
$\neg \neg A$	$A \wedge B$	$\neg (A \land B)$	$A \lor B$	$\neg(A \lor B)$	
:	:	:	:	:	
A	A	$ \neg \mathbf{A} \lor \neg \mathbf{B} $		$\neg \mathbf{A} \wedge \neg \mathbf{B}$	
	В		A B		
\rightarrow -regels		↔ -regels			
	$\neg (A \to B)$	$A \leftrightarrow B$	$\neg(A \leftrightarrow B)$		
$A \to B$	\ /	l .		:	
$A \to B$:		:		:	
$A \to B$ \vdots $\neg \mathbf{A} \lor \mathbf{B}$: A∧¬B	$egin{array}{c} dots \ \mathbf{A} ightarrow \mathbf{B} \end{array}$	$ abla (\mathbf{A} o \mathbf{B}) $	$\vdots \\) \vee \neg (\mathbf{B} \to \mathbf{A})$	

Naam: Yunus Coskun

Studentnummer: 1788301

Klas: V1A

Datum: 23-02-2023

Docent: Brian van der Bijl

Inleiding

Voor het vak Analytical Reasoning moet er een boommethode worden toegepast. In dit document wordt er bepaald met de boommethode of de formule $q \land r$ een logisch gevolg is van $\neg((r \to p) \lor (q \land r))$. In andere woorden; $\neg((r \to p) \lor (q \land r)) \vdash q \land r$. Om dit te kunnen bepalen wordt er gebruik gemaakt van de contingentie-regels, deze staan ook op de voorpagina. Tot slot volgt een conclusie

Alvast bedankt voor uw tijd en aandacht.

Veel leesplezier!

Opdracht

Bepaal met de boommethode of de formule $q \land r$ een logisch gevolg is van $\neg((r \rightarrow p) \lor (q \land r))$; dat wil zeggen, laat zien of $\neg((r \rightarrow p) \lor (q \land r)) \vdash q \land r$.

Uitwerking:

```
\neg ((r \rightarrow p) \lor (q \land r)) \vdash q \land r
                                                                                                    Logisch gevolg
1)
          \neg((r \rightarrow p) \lor (q \land r))
                                                                                          (Premisse 1)
2)
          \neg (q \land r)
                                                                                          (Negatie van conclusie)
3)
          \neg(r \rightarrow p) \land \neg(q \land r)
                                                                                          V-regel op 1
4)
          ¬q V ¬r
                                                                                          ∧-regel op 2
5)
         \neg (r \rightarrow p)
                                                                                          Λ-regel op 3
6)
         \neg (q \land r)
                                                                                          ∧-regel op 3
7)
                                                                                          →-regel op 5
         r∧¬p
                                                                                          Λ-regel op 6
8)
         ¬q V ¬r
9)
                                                                                          ∧-regel op 7
                                                                                          Λ-regel op 7
10)
          ¬р
11)
                                                  / (4) \
12)
                                              ¬q
13)
                                            / (8) \
14)
                                                             (9)r
                                                   ¬r
15)
                                                             X(9, 12)
                                                       (9)r
16)
17)
                                                       X(9, 14)
                                                                                                    QED
18)
          ¬q blijft open.
```

Conclusie

Er is een tak die niet sluit($\neg q$), dus de premissen zijn vervulbaar in combinatie met de negatie van de conclusie. **Het logisch gevolg is** derhalve <u>niet geldig</u>. Een tegenvoorbeeld is met:

Premissen: r = 1, $\neg p = 1$, $\neg q = 1$

Uitwerking tegenvoorbeeld:

r = 1 p = 0 q = 0
-((r
$$\rightarrow$$
 p) \lor (q \land r)) \vdash q \land r
(r \rightarrow p) = 1 \rightarrow 0 = 0
(q \land r) = 0 \land 1 = 0
-(0 \lor 0) = 1
q \land r = 0 \land 1 = 0
1 \vdash 0 = 0
0 = \bot = False