Statistique en grande dimension - partie non supervisée

Laurent Rouvière

30 novembre 2022

Table des matières

1	Partitionnement : les k-means	3
2	Méthodes hiérarchiques2.1La Classification Ascendante Hiérarchique2.2Mesures de dissemblances2.3Compléments	12
3	Méthodes fondées sur la densité - DBSCAN	20
4	Clustering spectral	30

Présentation

D'efinition

Action de *répartir en classes*, en catégories, des choses, des objets, ayant des caractères communs afin notamment d'en faciliter l'étude.

Nombreuses applications

• Astronomie : classification d'étoiles

• Médecine : diagnostic de maladies à partir d'observation cliniques

• Géographie : délimitation de zones homogènes

- Marketing : détermination de segments de marchés (groupes de consommateurs ayant les mêmes habitudes)
- Réseaux sociaux : extraction de communautés

• . . .

Documents/supports

MOOC de François Husson

- disponible ici https://husson.github.io/MOOC_AnaDo/classif.html
- vidéos Quiz Supports

Objectifs divers

- Beaucoup de groupes avec peu d'individus à l'intérieur (réduire n)
- Peu de groupes avec beaucoup d'individus à l'intérieur (extraire des profils que l'on interprète par la suite).

Cons'equence

Les algorithmes seront proches mais pas calibrés de la même façon.

Modélisation statistique

• n observations x_1, \ldots, x_n à valeurs dans \mathbb{R}^d .

Le problème

Trouver une partition de $\{x_1, \ldots, x_n\}$: on cherche donc $\mathcal{C}_1, \ldots, \mathcal{C}_K$ tels que

$$\bigcup_{k=1}^{K} C_k = \{x_1, \dots, x_n\} \quad \text{et} \quad C_k \cap C_{k'} = \emptyset \quad \text{si} \quad k \neq k'.$$

Chaque élément de la partition C_k est appelé cluster.

- Notions de ressemblance, similarité, hiérarchie.
- Choix du nombre de classes K.

Un exemple jouet

4 types d'algorithmes

- 1. Méthodes de partitionnement (k-means)
- 2. Méthodes *hiérarchiques* (CAH)
- 3. Algorithmes basés sur les *densités* (DBSCAN)
- 4. Approches basées sur les *graphes* (clustering spectral)

1 Partitionnement : les k-means

Le critère des k-means

- *Idée* : Définir les clusters C_k à partir de représentants c_k .
- Nombre de groupes K fixé.

Le critère des k-means

On cherche la partition $\mathcal C$ et les représentants c qui minimise le critère

$$g(C, c) = \sum_{k=1}^{K} \sum_{i \in C_k} ||x_i - c_k||^2.$$

• Impossible de trouver (C^*, c^*) qui minimise g(C, c).

Équivalences

1. Quand on fixe une partition C^* , les meilleurs représentants [2] sont les moyennes $\hat{c} = (\bar{x}_{C_1}, \dots, \bar{x}_{C_K})$

$$\forall c \quad g(\mathcal{C}^*, c) \ge g(\mathcal{C}^*, \widehat{c})$$

2. Quand on fixe des représentants c, la meilleure partition $\widehat{\mathcal{C}} = \{\widehat{\mathcal{C}}_1, \dots, \widehat{\mathcal{C}}_K\}$ est celle de la distance minimale (partition de Voronoi) définie par

$$\widehat{C}_k = \{i \in \{1, \dots, n\} \text{ tels que } ||x_i - c_k||^2 = \min_j ||x_i - c_j||^2\}$$

Elle réalise le minimum à représentants fixés:

$$\forall \mathcal{C} \quad g(\mathcal{C}, c) \ge g(\widehat{\mathcal{C}}, c)$$

Idée

Construire les centres et la partition de manière récursive.

Comment?

En utilisant un algorithme :

- Lloyd [7]
- Forgy [4]
- MacQueen [9]
- Hartigan et Wong [5]

on pour ra consulter https://towardsdatascience.com/three-versions-of-k-means-cf939b65f4 ea.

Lloyd [7]

- 1. Initialisation : choix de k points au hasard comme centroïde.
- 2. Affectation de chaque observation au centroïde le plus proche.
- 3. Mise à jour des centroïdes.

Exemple

Hartigan et Wong [5]

1. Initialisation : choix de K points au hasard comme centroïde

- 2. Pour i = 1, ..., n
 - a. Pour $k = 1, \dots, K$
 - Affecter x_i à c_k
 - calculer $\alpha_k = \sum_{i=1}^n ||x_i c_{k,i}||^2$
 - b. Affecter x_i au centroïde qui minimise α_k
 - c. Mettre à jour les centroïdes
- 3. Répéter 2 jusqu'à convergence

Remarque

Généralement recommandé avec plusieurs initialisations.

Le coin R

Bilan

Avantages

- Facile à mettre en œuvre
- Faible complexité O(n)

Inconvénients

- Clusters "sphériques".
- Choix de k.
- Choix de la distance (grande dimension?).

2 Méthodes hiérarchiques

Objectif

Créer une suite de partitions emboitées en partant de la partition la plus fine (n classes) jusqu'à obtenir une seule classe.

Le processus hiérarchique

Visualisation

2.1 La Classification Ascendante Hiérarchique

L'algorithme CAH

Algorithme

Entrées : données, distance (entre individus et clusters d'individus)

- 1. Calculer une matrice de distances entre individus.
- 2. Chaque observation forme 1 singleton.
- 3. Agréger les deux objets les plus proches.
- 4. Mettre à jour la matrice de distances.
- 5. Itérer jusqu'à obtenir *un seul groupe*.

Sorties: une suite de partitions emboîtées.

De quoi a t-on besoin?

Pas grand chose... il suffit de savoir calculer des distances et/ou indicateurs de similarités entre

- des observations. On notera d une telle distance
- des groupes d'observations, i.e. entre clusters. On notera Δ une telle distance.

2.2 Mesures de dissemblances

Saut minimum

• Également appelé *minimu linkage* ou *single linkage*.

$$\Delta(C_i, C_j) = \min_{x_i \in C_i, x_j \in C_j} d(x_i, x_j)$$

Commentaires

- Groupes généralement "étirés".
- "Le voisin de mon voisin est mon voisin".

Saut maximum

• Également appelé complete linkage.

$$\Delta(C_i, C_j) = \max_{x_i \in C_i, x_j \in C_j} d(x_i, x_j)$$

Commentaires

Groupes généralement "compacts".

Saut moyen (average linkage)

Moyenne de toutes les distances entre deux objets des deux groupes :

$$\Delta(\mathcal{C}_i, \mathcal{C}_j) = \frac{1}{|\mathcal{C}_i||\mathcal{C}_j|} \sum_{x_i \in \mathcal{C}_i, x_j \in \mathcal{C}_j} d(x_i, x_j)$$

Commentaires

Intermédiaires entre le min et le max...

Lien de Ward

$Id\acute{e}e$

Se baser sur l'inertie :

$$\mathcal{I}_{\text{tot}} = \frac{1}{n} \sum_{i=1}^{n} d^{2}(x_{i} - \bar{x})$$

$$= \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in \mathcal{C}_{k}} d^{2}(x_{i}, \bar{x}_{\mathcal{C}_{k}}) + \frac{1}{n} \sum_{k=1}^{K} n_{k} d^{2}(\bar{x}_{\mathcal{C}_{k}}, \bar{x})$$

$$= \mathcal{I}_{\text{intra}} + \mathcal{I}_{\text{inter}}$$

en minimisant \mathcal{I}_{intra} et/ou maximisant \mathcal{I}_{inter} .

Cas extrêmes

- $K = n \Longrightarrow \mathcal{I}_{intra} = 0$ et $\mathcal{I}_{inter} = \mathcal{I}_{tot}$. $K = 1 \Longrightarrow \mathcal{I}_{intra} = \mathcal{I}_{tot}$ et $\mathcal{I}_{inter} = 0$.

Lien de Ward

Assembler les clusters de manière à minimiser la perte de $\mathcal{I}_{inter} \iff$ minimiser le lien de Ward:

$$\Delta(\mathcal{C}_i, \mathcal{C}_j) = \frac{|\mathcal{C}_i| \, |\mathcal{C}_j|}{|\mathcal{C}_i| + |\mathcal{C}_j|} d^2(\bar{x}_{\mathcal{C}_i}, \bar{x}_{\mathcal{C}_j})$$

Commentaires

- Bien adapté à la distance euclidienne
- liens forts avec l'ACP.

Exemple

```
> class1 <- hclust(D,method = "single")
> ggdendrogram(class1)
```



```
> class2 <- hclust(D,method = "ward")
> ggdendrogram(class2)
```


$> G1 \leftarrow cutree(class1,k = 2)$

> G2 <- cutree(class2,k =2)

Choix du nombre de classes

• Toujours *difficile*... On se base généralement sur la *perte d'inertie inter* obtenue en agrégeant les clusters :

Le coin R : hclust

```
> DD <- dist(tbl)
> classif <- hclust(DD,method = "ward.D2")
> library(ggdendro)
> ggdendrogram(classif,labels = FALSE)
```


Le coin R : agnes de cluster

```
> library(cluster)
> classif1 <- agnes(DD,method = "ward")
> plot(classif1,which.plots=2)
```

Dendrogram of agnes(x = DD, method = "ward")

DD
Agglomerative Coefficient = 0.98

Bilan

Avantages

- Pas besoin de connaître le nombre de classes a priori
- Visualisation dendrogramme

Inconvénients

- Coupure du dendrogramme pas toujours simple
- Complexité algorithmique élevée lorsque n est grand $\Longrightarrow O(n^3)$.

2.3 Compléments

n grand \Longrightarrow Classification mixte

• La CAH est souvent trop couteuse en temps de calcule lorsque n est grand.

Classification Mixte

- 1. Faire un k-means sur les données avec k grand (par exemple k = 1000)
- 2. Lancer la CAH sur les centroïdes obtenus dans le k-means (en prenant en considération les effectifs des clusters)
- ullet Sur ${f R}$ on peut utiliser la fonction HCPC du package ${f FactoMineR}$.

Exemple

```
> dim(tbl)
[1] 70000     2
> aa <- dist(tbl)
Error: vecteurs de mémoire épuisés (limite atteinte ?)</pre>
```

d grand

- CAH et k-means reposent sur des distances entre individus.
- Les distances standards ne sont pas forcément pertinentes en grande dimension.

Réduction de dimension

- Souvent pertinent d'effectuer une analyse factorielle au préalable (ACP-ACM...) pour réduire la dimension.
- On fait ensuite le k-means et/ou la CAH sur les premiers axes de l'analyse factorielle.
- Sur R: fonction HCPC de FactoMineR.

Fastcluster et flashClust

Packages qui proposent d'autres algorithmes pour le calcul de la CAH.

```
> tbl1 <- tbl |> slice(sample(70000,10000));D <- dist(tbl1)</pre>
> system.time(aa <- stats::hclust(D,method = "ward.D2"))</pre>
utilisateur
              système
                            écoulé
                0.219
> system.time(bb <- fastcluster::hclust(D,method="ward.D2"))
utilisateur
             système
                            écoulé
      1.293
                0.114
                             1.461
> system.time(cc <- flashClust::flashClust(D,method="ward"))
utilisateur
             système
                            écoulé
      3.739
                 0.227
                             4.024
```

3 Méthodes fondées sur la densité - DBSCAN

Introduction

- Le principe est de déterminer les *classes* d'une partition à partir des *zones de forte* densité.
- Les zones de faible densité sont utilisées pour délimiter les classes.
- Les éléments sont *regroupés de proche en proche* et les éléments éloignés des zones de forte densité sont ignorés et considérés comme des outliers.
- Ester et al. [3]: DBSCAN (Density-based spatial clustering of applications with noise)

L'idée

L'idée

Noyaux et points de bordure

- Soit $\varepsilon > 0$ et MinPts $\leq n$ fixés.
- On note $B_{\varepsilon}(y)$ le voisinage centré sur y et de rayon ε et $|B_{\varepsilon}(y)|$ le nombre de points dans $B_{\varepsilon}(y)$.

Définition

- Si $|B_{\varepsilon}(y)| \ge \text{MinPts}$ alors y est un noyau et est dans une zone de forte densité.
- Si $|B_{\varepsilon}(y)| <$ MinPts alors y est un *point bordure* et n'est pas dans une zone de forte densité.

Accéssibilité

Définition

- x est directement accessible depuis y si $x \in B_{\varepsilon}(y)$ et y est un noyau.
- x est accessible depuis y si il existe une chaîne de points $p_1 = y, p_2, \dots, p_k = x$ telle que $\forall i, p_{i+1}$ est directement accessible depuis p_i .

Définition

- Deux éléments x et y sont connectés s'ils sont tous les deux accessibles depuis un même élément z (l'éléments z peut éventuellement être x ou y).
- Un cluster est *constitué* par un ensemble d'éléments connectés.

Exemple: MinPts = 4

x bordure, y noyau

x accessible depuis y y non accessible depuis x

 \boldsymbol{x} et \boldsymbol{y} connectés

Un exemple

```
> is.corepoint(tbl[,1:2],eps=0.25,minPts = 4)
[1] TRUE FALSE TRUE FALSE FALSE
```


Résultats

```
> (db <- dbscan(tbl[,1:2],eps=0.25,minPts = 3))
DBSCAN clustering for 6 objects.
Parameters: eps = 0.25, minPts = 3
Using euclidean distances and borderpoints = TRUE
The clustering contains 1 cluster(s) and 2 noise points.

0 1
2 4
Available fields: cluster, eps, minPts, dist, borderPoints
> db$cluster
[1] 1 1 1 0 0
```

R'esultats

1 cluster de 4 points et 2 outliers.

Choix des paramètres

- 2 paramètres sont à calibrer ε et minPts ; Leur choix est *crucial*...
- $\min \text{Pts} \nearrow \Longrightarrow \text{moins de noyaux} \Longrightarrow \text{moins de clusters}$
- $\varepsilon \searrow \Longrightarrow$ moins de noyaux \Longrightarrow plus d'outliers

Cons'equence

Il faut calibrer ces paramètres

Heuristique

 $\bullet\,$ On devra bien entendu faire plusieurs essais et analyser les résultats.

Heuristique

- Choisir min Pts de l'ordre de la dimension des données + 1
- Tracer le graphe des kNNdisplot en utilisant $k = \min \text{Pts} 1$.
- Utiliser un *critère du coude* pour choisir ε .

Exemple 1

> kNNdistplot(tbl[,2:3],k=2)

 \Longrightarrow on pourra prendre ε autour de 1

Résultats

```
> db <- dbscan(tbl[,2:3],eps=1,minPts = 3)
> noyau <- is.corepoint(tbl[,2:3],eps=1,minPts = 3)
> tbl_db <- tbl |> mutate(dbscan=as.factor(db$cluster),noyau=noyau)
> ggplot(tbl_db)+aes(x=V1,y=V2,color=dbscan,shape=noyau)+geom_point()
```


Exemple 2

Points (sample) sorted by distance

 \Longrightarrow on pourra prendre ε autour de 1

Résultats

```
> db1 <- dbscan(tbl1[,2:3],eps=1,minPts = 3)
> noyau <- is.corepoint(tbl1[,2:3],eps=1,minPts = 3)
> tbl_db <- tbl1 |> mutate(dbscan=as.factor(db1$cluster),noyau=noyau)
> ggplot(tbl_db)+aes(x=V1,y=V2,color=dbscan,shape=noyau)+geom_point()
```


Exemple 3

> kNNdistplot(tbl,k=2)

Points (sample) sorted by distance

 \implies on pourra prendre ε autour de 0.3.

Résultats

```
> db1 <- dbscan(tbl,eps=0.3,minPts = 3)
> noyau <- is.corepoint(tbl,eps=0.3,minPts = 3)
> tbl_db <- tbl |> mutate(dbscan=as.factor(db1$cluster),noyau=noyau)
> ggplot(tbl_db)+aes(x=V1,y=V2,color=dbscan,shape=noyau)+geom_point()
```


Compléments

• Le nombre de groupes n'est pas un paramètre de l'algorithme.

Si trop de groupes ou d'outliers

- assembler les groupes à faibles effectifs à des groupes aux effectifs plus conséquents
- affecter les outliers aux clusters les plus proches.
- \implies par exemple avec un algorithme du 1 plus proche voisin.

Bilan

Avantages

- Permet d'identifier différentes structures géométriques.
- Inutile de spécifier le nombre de clusters.
- Identifie les potentiels outliers.

Inconvénients

- 2 paramètres à choisir (comme toujours...).
- Trouver la "bonne" distance, en particulier en grande dimension.

4 Clustering spectral

- Cadre identique : G = (V, E) un graphe et on veut trouver une partition de V en clusters ou communautés.
- Approche basée sur la décomposition spectrale du Laplacien du graphe.
- Approche utilisée dans un cadre plus large :
 - Problème : clustering sur un jeu de données standards $n \times p$;
 - L'approche peut être appliquée à une matrice de similarité.
- On pourra consulter [8] dont cette partie est fortement inspirée.

* Notations

- G = (V, E) un graphe non dirigé valué avec n = |V|.
- $w_{ij} \ge 0$ poids de l'arête entre i et j et $W = (w_{ij})_{1 \le i,i \le n}$ la matrice d'adjacence.
- $d_i = \sum_{j \neq i} w_{ij}$ degré du nœud i et $D = \text{diag}(d_i)_{1 \leq i \leq n}$ la matrice des degrés.

Laplacien non normalisé

Le Laplacien non normalisé de G est la matrice $n \times n$ définie par :

$$L = D - W$$
.

* Quelques propriétés

Les deux propositions suivantes sont fondamentales pour l'algorithme de *clustering spectral*.

Proposition 1

1. Pour tout vecteur $f \in \mathbb{R}^n$ on a

$$f'Lf = \frac{1}{2} \sum_{1 \le i,j \le n} w_{ij} (f_i - f_j)^2.$$

- 2. L est symétrique et semi définie positive.
- 3. La plus petite valeur propre de L est 0, le vecteur propre correspondant est $\mathbf{1}_n$.
- 4. L a n valeurs propres non nulles $0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$.

* Valeurs propre et nombre de compo. connexes

Proposition 2

Soit G un graphe $non\ dirigé$. Alors

- 1. le degrés de multiplicité k de la valeur propre 0 de L est égal au nombre de composantes connexes A_1, \ldots, A_k dans G.
- 2. l'espace propre associé à la valeur propre 0 est engendré par les vecteurs d'indicatrices $\mathbf{1}_{A_1},\dots,\mathbf{1}_{A_k}$.

Conséquence importante

Le spectre de L permet d'identifier les composantes connexes de G..

- En pratique : 1 communauté n'est pas forcément égale à une composante connexe.
- On peut par exemple vouloir *extraire des communautés* dans un graphe à une composante connexe.

$Id\acute{e}e$

Considérer les k plus petites valeurs propres du Laplacien.

* Spectral clustering non normalisé

Algorithme

Entrées : un graphe non dirigé G, k le nombre de clusters.

- 1. Calculer le Laplacien non normalisé L de G.
- 2. Calculer les k premiers vecteurs propres u_1, \ldots, u_k de G.
- 3. On note U la matrice $n \times k$ qui contient les u_k et y_i la ieme ligne de U.
- 4. Faire un k-means avec les points $y_i, i = 1, ..., n \Longrightarrow A_1, ..., A_k$.

Sortie: clusters C_1, \ldots, C_k avec

$$C_i = \{i | y_i \in A_i\}.$$

* Remarque

- Si G ne possède pas k composantes connexes alors U n'est pas composé que de 1 et de 0.
- On ne peut donc pas extraire directement les composantes à cette étape.
- Mais si il existe (presque) k composantes, alors les $y_i \in \mathbb{R}^k$ risquent de se rapprocher de cette configuration 0-1.
- C'est pourquoi on fait un k-means en 4.
- Il existe *plusieurs versions* d'algorithme de clustering spectral.
- Les plus utilisées s'appliquent à une version normalisée du Laplacien, par exemple :

$$L_{\text{norm}} = I - D^{-1/2} W D^{-1/2}.$$

• Les propriétés de L_{norm} sont *proches* de celles de L. On a par exemple la propriété suivante.

Proposition 3

Soit G un graphe $non\ dirigé$. Alors

- 1. le degrés de multiplicité k de la valeur propre 0 de L_{norm} est égal au nombre de composantes connexes A_1, \ldots, A_k dans G.
- 2. l'espace propre associé à la valeur propre 0 est engendré par les vecteurs d'indicatrices $D^{1/2}\mathbf{1}_{A_1},\ldots,D^{1/2}\mathbf{1}_{A_k}.$

* Clustering spectral normalisé

• On déduit de cette propriété *la version la plus courante* de clustering spectral du à [10].

Algorithme

Entrées : un graphe non dirigé G, k le nombre de clusters.

- 1. Calculer le Laplacien normalisé L_{norm} de G.
- 2. Calculer les *k premiers vecteurs propres* u_1, \ldots, u_k de G. On note U la matrice $n \times k$ qui les contient.

- 3. Calculer T en normalisant les lignes de $U: t_{ij} = u_{ij}/(\sum_{\ell} u_{i\ell}^2)^{1/2}$.
- 4. Faire un k-means avec les points $y_i, i=1,\ldots,n$ (iieme ligne de T) $\Longrightarrow A_1,\ldots,A_k$.

Sortie: clusters C_1, \ldots, C_k avec

$$C_j = \{i | y_i \in A_j\}.$$

* Remarques

- Algorithme *quasi similaire* au clustering spectral non normalisé.
- Une étape de *normalisation* en plus.
- Cette étape se justifie par la théorie de la perturbation du spectre d'une matrice.
- On pourra consulter [8] pour des justifications.

* Choix de k

- Comme souvent en *clustering*, cet algorithme nécessite de connaître le nombre de groupes.
- Utilisation de *connaissances métier* pour ce choix
- ou étude des *valeurs propres* du Laplacien.

* Généralisation

Remarque importante

- L'algorithme n'utilise pas nécessairement la structure du graphe.
- Il est entièrement basé sur la matrice (d'adjacence) W des poids qui contient des arêtes.
- Cette matrice peut également être vue comme une matrice de similarité.

Conséquence

- On peut donc *généraliser cet algorithme* à n'importe quel problème où on *possède une matrice de similarité*.
- *Exemple* : problème de clustering standard sur des données $n \times p$ (il "suffit" de construire une matrice de similarité).
- * Clustering spectral sur un tableau de données
 - Données: tableau $n \times p$ n individus, p variables.
 - Problème: classification non supervisée des n individus.
 - *Méthodes classiques* : *k*-means, CAH...

$Alternative: clustering\ spectral$

- 1. construire un graphe de similarité;
- 2. lancer l'algorithme de clustering spectral sur ce graphe (ou plutôt sur sa matrice de similarité.
- * Construction du graphe de similarités
 - On peut utiliser les techniques vues dans la section ??: ε -neighborhood graph ou plus proches voisins (mutuels ou non).
 - De façon plus générale, la matrice de similarités s'obtient souvent à partir d'un noyau K :

$$K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$$

 $(x,y) \mapsto \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}}$

où $\Phi: \mathbb{R}^p \to \mathcal{H}$ est une fonction qui plonge les observations dans un espace de Hilbert \mathcal{H} appelé feature space.

* Exemples de noyau

- Linéaire (vanilladot) : $K(x, y) = \langle x, y \rangle$.
- Gaussien (rfbdot): $K(x,y) = \exp(-\sigma ||x-y||^2)$.
- Polynomial (polydot) : $K(x, y) = (scale\langle x, y \rangle + offset)^{degree}$.
- ...

Références

On pourra trouver dans exemples de noyau dans [6].

- * Matrice de similarités avec un noyau
 - Etant données n observations $x_i \in \mathbb{R}^p$ et un noyau K
 - on peut construire une matrice de similarité, par exemple pour un noyau Gaussien :

$$w_{ij} = \begin{cases} \exp(-\sigma ||x_i - x_j||^2) & \text{si } i \neq j \\ 0 & \text{sinon.} \end{cases}$$

$Clustering\ spectral$

Le clustering spectral consiste à appliquer l'algorithme vu précédemment en calculant le Laplacien normalisé à partir de cette matrice de similarités (voir [10, 1]).

* Clustering spectral sur des données $n \times p$

Algorithme

Entrées : tableau de données $n \times p$, K un noyau, k le nombre de clusters.

- 1. Calculer la matrice de *similarités W* sur les données avec le *noyau K*.
- 2. Calculer le Laplacien normalisé L_{norm} à partir de W.
- 3. Calculer les *k premiers vecteurs propres* u_1, \ldots, u_k de G. On note U la matrice $n \times k$ qui les contient.
- 4. Calculer T en normalisant les lignes de $U: t_{ij} = u_{ij}/(\sum_{\ell} u_{i\ell}^2)^{1/2}$.
- 5. Faire un k-means avec les points $y_i, i = 1, ..., n$ (iieme ligne de T) $\Longrightarrow A_1, ..., A_k$.

Sortie: clusters C_1, \ldots, C_k avec

$$C_j = \{i | y_i \in A_j\}.$$

- * Le coin R
 - La fonction *specc* du package kernlab permet de faire le clustering spectral.
 - Exemple : données *spirals*

* Visualisation du nuage de points

```
> ggplot(spirals1)+aes(x=X1,y=X2)+geom_point()+theme_classic()
```


* Le clustering spectral

```
> groupe <- specc(spirals,centers=2,kernel="rbfdot")
> head(groupe)
## [1] 2 2 1 1 2 1
> spirals1 <- spirals1 %>% mutate(groupe=as.factor(groupe))
> ggplot(spirals1)+aes(x=X1,y=X2,color=groupe)+geom_point(size=2)+theme_classic()
```


Références

- [1] E. Arias-Castro. "Clustering based on pairwise distances when the data is of mixed dimensions". In: *IEEE Transaction on Information Theory* 57.3 (2011), p. 1692-1706.
- [2] Hans-Hermann Bock. "Origins and extensions of the k-means algorithm in cluster analysis". In: Electronic journal for history of probability and statistics 4 (2008), p. 1-18.
- [3] M. ESTER et al. "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96). 1996.
- [4] E. W. FORGY. "Cluster analysis of multivariate data: efficiency vs interpretability of classifications". In: *Biometrics* 21 (1965), p. 768-769.
- [5] J. A. Hartigan et M. A. Wong. "Algorithm AS 136: A K-means clustering algorithm". In: *Applied Statistics* 28 (1979), p. 100-108.
- [6] A KARATZOGLOU et al. "kernlab An S4 Package for Kernel Methods in R". In: Journal of Statitstical Software 11.9 (2004).
- [7] S. P. Lloyd. "Least squares quantization in PCM". In: *IEEE Transactions on Information Theory* 28 (1982), p. 128-137.

- [8] U. von Luxburg. "A tutorial on spectral clustering". In: Statistics and computing 17 (2017), p. 395-416.
- [9] J. MACQUEEN. "Some methods for classification and analysis of multivariate observations". In: *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*. Sous la dir. de L. M. Le Cam & J. NEYMAN. T. 28. Berkeley, 1967, p. 281-297.
- [10] A. NG, M. JORDAN et Y. WEISS. "On spectral clustering analysis". In: Advances in Neural Information Processing Systems (NIPS), t. 14, 2002, p. 849-856.