

IN THE CLAIMS:

- 1 1. (Currently amended) A device for attaching to a living subject having a joint,
2 comprising a first sensor, a second sensor, a processor, and a non-volatile storage
3 device, said first sensor for attaching to a first body segment above the joint, said
4 second sensor for attaching to a second body segment below the joint, wherein
5 said first sensor and said second sensor each comprise a solid state inclination
6 measuring device for determining inclination with respect to the gravity vector,
7 wherein said inclination inclinations with respect to the gravity vector determined
8 from said first sensor and from said second sensor is are processed in said
9 processor and stored in said non-volatile storage device for distinguishing lying,
10 sitting, and standing positions, wherein said processor and said non-volatile
11 storage device are part of the device for attaching to the living subject.

- 1 2. (Canceled)

- 1 3. (Previously amended) A device as recited in claim 1, wherein said inclination
2 measuring device comprises a dc accelerometer.

- 1 4. (original) A device as recited in claim 1, wherein said inclination measuring
2 device comprises three accelerometers orthogonally mounted.

- 1 5. (original) A device as recited in claim 1, wherein said inclination measuring
2 device further comprises a magnetometer.

- 1 6. (Previously amended) A device as recited in claim 1, wherein said inclination
2 measuring device comprises a plurality of magnetometers.

- 1 16. (Previously amended) A device as recited in claim 15, further comprising a
2 housing, wherein said first sensor, said storage device, said processor, and said
3 feedback mechanism are all within said housing.

1 17. (original) A device as recited in claim 15, further comprising a housing separate
2 from said first sensor and said second sensor, wherein said feedback mechanism is
3 within said housing.

1 18. (original) A device as recited in claim 17, wherein said first sensor and said
2 second sensor are wirelessly connected to said housing containing said feedback
3 mechanism.

1 19. (original) A device as recited in claim 18, wherein said wireless connection is an
2 RF connection.

1 20. (currently amended) A device as recited in claim 15, wherein said processor is
2 programmed to activate said feedback mechanism is activated if a preset range of
3 motion threshold has been exceeded more than a specified number of times.

1 21. (currently amended) A device as recited in claim 15, wherein said feedback
2 mechanism includes a vibrator provides vibratory or auditory feedback.

1 22. (original) A device as recited in claim 15, wherein said feedback mechanism
2 comprises a piezo-electric buzzer or an electromagnetic shaker.

1 23. (currently amended) A device as recited in claim 15, wherein said feedback
2 mechanism includes a vibratory or audio signal to provide provides feedback to
3 provide one or more of the following: warn of a problem, discourage a movement,
4 support a desired result, or and encourage a movement.

5

1 24. (currently amended) A device as recited in claim 23, wherein said processor is
2 programmed to provide feedback if the living subject problem comprises
3 repeatedly exceeding exceeds a pre-programmed inclination angle.

1 25. (original) A device as recited in claim 1, wherein said processor comprises a
2 microprocessor, a signal processor, or a personal computer.

1 26. (Previously amended) A device as recited in claim 1, wherein data from said
2 inclination determination comprises body segment inclination data as a function
3 of time.

1 27. (Previously amended) A device as recited in claim 1, wherein data from said
2 inclination determination comprises posture data as a function of time.

1 28. (currently amended) A device as recited in claim 1, further comprising an output
2 to provide wherein data from said inclination determination is used for use to
3 adjust physical therapy.

1 29. (original) A device as recited in claim 1, wherein said device further comprises a
2 data entry system.

1 30. (original) A device as recited in claim 29, wherein said data entry system
2 comprises a button.

1 31. (currently amended) A device as recited in claim 29, wherein said data entry
2 system includes an input unit is for recording the presence of pain.

- 1 32. (currently amended) A device as recited in claim 29, wherein one or more of the
2 following time, date or other data are recorded when said data entry system is
3 used: time, date, and other data.

- 1 33. (Previously amended) A device as recited in claim 1, further comprising a
2 program for displaying data from said inclination determination as a histogram
3 showing number of inclinations at each angle range during a time period.

- 1 34. (Previously amended) A device as recited in claim 1, further comprising a
2 program for displaying data from said inclination determination as inclination v.
3 time.

- 1 35. (original) A device as recited in claim 1, further comprising a digital filter.

- 1 36. (Previously amended) A device as recited in claim 35, wherein said device may be
2 subject to linear accelerations, wherein said digital filter is for reducing effect of
3 said linear accelerations on the data.

- 1 37. (original) A device as recited in claim 35, wherein said digital filter comprises a
2 low pass filter or a high pass filter.

- 1 38. (Previously amended) A device as recited in claim 1, wherein said inclination
2 measuring device comprises dc accelerometers, wherein said device further
3 comprises a high pass filter, wherein output of said accelerometers that passes
4 through said high pass filter is subsequently integrated and used to compute a
5 resultant velocity which is used to calculate energy used.

1 39. (currently amended) A device as recited in claim 1, wherein said processor uses
2 inclination data from said first and second sensors device is further for
3 determining body posture in said sitting position.

1 40. Cancel

1 41. Cancel

1 42. (Previously canceled)

1 43-91. Cancel

1 92. (Previously presented) A device as recited in claim 1, wherein said joint is a hip
2 joint.

1 93. (Previously presented) A device as recited in claim 1, further comprising a sensor
2 for further detecting posture based on curvature of the spine.

1 94. (Previously presented) A device as recited in claim 93, wherein said sensor is
2 capable of detecting a kyphotic curvature of the spine.

1 95. (Previously presented) A device as recited in claim 94, wherein said processor is
2 programmed to measure the time the subject has said kyphotic curvature of the
3 spine and determines whether said time exceeds a preset value, and wherein said
4 processor is further programmed to prompt the subject to move if said time
5 exceeds said preset value.

1 105. (currently amended) A device as recited in claim 1, wherein said processor uses
2 inclination data from said first and second sensors solid-state inclination
3 measuring devices are further for distinguishing bending in one said position.

1 106. (currently amended) A device as recited in claim 1, wherein said processor uses
2 inclination data from said first and second sensors solid-state inclination
3 measuring devices are for distinguishing forward bending, backward bending, or
4 and lateral bending.