## Università degli studi di Catania Corso di laurea triennale in Fisica Esame di Meccanica Analitica Appello del 10.02.2023

In un piano  $\Pi$  si consideri un riferimento  $\{O,x,y\}$ , ed in questo piano sia dato un sistema materiale S costituito da da due aste omogenee denominate rispettivamente AC di massa  $m_1$  e lunghezza  $l_1$  e AB di massa  $m_2$  e lunghezza  $l_2$  con  $l_2 > l_1$ , incernierate senza attrito in A. Gli estremi B e C delle due aste possono scorrere senza attrito sulla verticale  $\vec{y}$  di  $\Pi$  (vedi figura), mentre il punto A scorre senza attrito sull'asse  $\vec{x}$  del riferimento (vedi figura). Sul sistema S agiscano solo le due forze elastiche

$$\{F_1 = -k(A-D), A\}$$
  $\{F_2 = -k(B-O), B\}$  con  $k > 0$ 

essendo D=(d,0) un punto fissato sull'asse  $\vec{x}$  positivo. Inoltre il piano verticale  $\Pi$ , contenente il sistema S, ruota con velocitá angolare uniforme  $\vec{\omega}$  attorno all'asse  $\vec{x}$ .

Scegliendo come unica coordinata lagrangiana l'angolo  $\vartheta$  tra la distanza OA e l'asta AC (come in figura) si chiede di determinare, nel riferimento relativo

- Tutte le possibili configurazioni di equilibrio del sistema, studiandone la la stabilitá-instabilitá.
- 2. Scrivere l'equazione di moto, determinando gli eventuali integrali primi.
- Studiare i moti in prima approssimazione attorno alle configurazioni di equilibrio per il sistema.

