Photoluminescence

Tyler Smart

8/12/19

Theory

Absolute luminescence intensity:

$$I(\hbar\omega) = \frac{n_D \omega^3}{3\epsilon_0 \pi c^3 \hbar} |\vec{\mu}_{eg}|^2 \sum_{m} |\langle \chi_{gm} | \chi_{e0} \rangle|^2 \delta(ZPL - E_{gm} - \hbar\omega)$$

Normalized luminescence intensity:

$$L(\hbar\omega) = C\omega^3 A(\hbar\omega), \qquad A(\hbar\omega) = \sum_m \left| \langle \chi_{gm} | \chi_{e0} \rangle \right|^2 \delta(ZPL - E_{gm} - \hbar\omega)$$

Fourier transform of generating function (with Lorentzian broadening):

$$A(ZPL - \hbar\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(t)e^{i\omega t - \gamma|t|}dt$$

Generating function (where S(t) is the Fourier transform of S):

$$G(t) = e^{S(t) - S(0)}, \qquad S(t) = \int_0^\infty S(\hbar\omega) e^{-i\omega t} d(\hbar\omega)$$

Huang-Rhys function:

$$S(\hbar\omega) = \sum_{k} S_{k} \delta(\hbar\omega - \hbar\omega_{k}), \qquad S_{k} = \frac{\omega_{k} q_{k}^{2}}{2\hbar}, \qquad q_{k} = \sum_{\alpha} \sqrt{m_{\alpha}} (R_{e;\alpha} - R_{g;\alpha}) \Delta r_{k;\alpha}$$

Reproduce Anikeya results

The Python Code

- Improved organization of code itself
 - More use of method makes it easier for future users to grab and modify chunks of the code
- Read directly from QE output
- Input file
 - Can specify: path_to_qe, zpl, skfile, smear, limit, gamma, tolerance, hw_min, hw_max, more...

- Parameters to consider:
 - 1. Number of points
 - 2. Gamma Lorentzian smearing for ZPL
 - 3. Smear gaussian broadening which replaces direc delta
 - 4. Limit finite limit used in integration

- Parameters to consider:
 - 1. Number of points
 - → at least 600/eV
 - 2. Gamma Lorentzian smearing for ZPL
 - → around 1e12 to 1e13 improving other parameters make width fit more reliable
 - 3. Smear gaussian broadening which replaces direc delta
 - → around 6 meV seems good; does not effect ZPL
 - 4. Limit finite limit used in integration
 - \rightarrow at least 1e-12

Spectrum tests (limit = 1e-12)

Comparing with Alkauskas 2014

NV center in diamond calculations - Stockpile

Code	Functional	Cell Size	ZPL (eV)	HR
QE	PBE	2x2x2	1.641	2.20
QE	PBE	3x3x3	1.720	phonon IP
QE	PBE	4x4x4	1.704	phonon IP
QE	HSE06	2x2x2	2.025	
QE	HSE06	3x3x3	1.994	
QE	HSE06	4x4x4	1.965	
VASP	PBE	2x2x2	1.618	phonon IP
VASP	HSE06	2x2x2	1.993	
VASP	PBE	4x4x4	1.706 [1]	
VASP	HSE06	4x4x4	1.955 [1]	
VASP	PBE	4x4x4	1.757 [2]	2.78*
VASP	HSE06	4x4x4	2.035 [2]	3.67* (3.63, 3.02)
Experiment			1.945 [3]	3.5** [4]

^[1] A. Gali, E. Janzén, P. Deák, G. Kresse, E. Kaxiras, Phys. Rev. Lett. 103, 186404 (2009).

^[2] A. Alkauskas, B. B. Buckley, D. D. Awschalom, C. G. Van de Walle, New J. Phys. 16, 073026 (2014). *phonon always at PBE & supercell implant method (3.63@4x4x4 3.02@2x2x2)

^[3] G. Davies and M. F. Hamer, Proc. R. Soc. A 348, 285 (1976).

^[4] A. Gali, arXiv 1906.0047 (2019). **approximated from experimental debye walle factor (DW) where S = -In DW

Conclusions & Outlook

Conclusions

- Code improved for better usability
- Tests parameters show some parameters needed better converging (# of points, limit) others can be tuned as discussed by Alkauskas (gamma, smear)
- NV center in diamond is useful testing—having many calculations is useful for PL, ZFS, and more

Outlook

- We decided last week to switch to DLTS so this work will be done in the background as focus is now on implementing full-phonon
- Phonon dispersion for NV diamond supercell are great calculations to run on the weekend or whenever the cluster is empty