Aaron Grabowy: 345766 Timo Bergerbusch: 344408 Felix Linhart: 318801

Exercise 1

a)

• "At next":
$$\sigma \models \varphi \text{ AX } \psi \quad \text{iff} \quad \text{there exists a } i \geq 0 \text{ s.t.}$$
$$A_i A_{i+1} A_{i+2} \dots \models \psi \text{ and}$$
$$A_i A_{i+1} A_{i+2} \dots \models \varphi$$

- "While": $\sigma \models \varphi \text{ WH } \psi \quad \text{iff} \quad \text{there exists } k, n, \text{ s.t. for every } k \leq i \leq n \\ A_k A_{k+1} A_{k+2} \dots A_n \models \psi \to A_k A_{k+1} A_{k+2} \dots A_{n-1} \models \varphi \text{ and } \\ A_n \not\models \psi$
- "Before": $\sigma \models \varphi \to \psi \quad \text{iff} \quad \text{for every } i > 0$ $A_i \models \psi \to A_{i-1} \models \varphi$

b)

•
$$\varphi$$
 AX $\psi \stackrel{def.}{=} true$ U $(\psi \to \varphi)$

•
$$\varphi$$
 WH $\psi \stackrel{def.}{=} (\psi \wedge \varphi)$ U $(\neg \psi)$

•
$$\varphi \to \psi \stackrel{def.}{=} \Box(\bigcirc \psi \to \varphi)$$

Exercise 2

a)

$$\varphi = (a \to \bigcirc \neg b) \text{ W } (a \land b)$$

$$\neg \varphi = \neg [(a \to \bigcirc \neg b) \text{ W } (a \land b)]$$

$$\Leftrightarrow (\neg (a \land b)) \text{ U } (\neg (a \to \bigcirc \neg b) \land \neg (a \land b))$$

$$\Leftrightarrow (\neg a \lor \neg b) \text{ U } (\neg (a \to \bigcirc \neg b) \land \neg (a \land b))$$

$$\Leftrightarrow (\neg a \lor \neg b) \text{ U } (\neg (\neg a \lor \bigcirc \neg b) \land \neg (a \land b))$$

$$\Leftrightarrow (\neg a \lor \neg b) \text{ U } ((a \land \bigcirc b) \land \neg (a \land b))$$

$$\Leftrightarrow (\neg a \lor \neg b) \text{ U } ((a \land \bigcirc b) \land (\neg a \lor \neg b))$$

$$\Leftrightarrow (\neg a \lor \neg b) \text{ U } ((a \land \bigcirc b) \land (\neg a \lor \neg b))$$

$$\Leftrightarrow (\neg a \lor \neg b) \text{ U } (a \land \bigcirc b) \land (\neg a \lor \neg b)$$

Model Checking Exercise Sheet 6

Aaron Grabowy: 345766 Timo Bergerbusch: 344408 Felix Linhart: 318801

b)

 $P = Words(\varphi)$:

Is a safety property.

Every trace σ , with $\sigma \not\models \varphi$ has the prefix $\{a\}^*\{b\}$. For that we can not find any addition, s.t. φ is again fulfilled.

$$P' = Words(\neg \varphi)$$
:

Is not a safety property.

In order to be a safety property there has to exists a finite BadPrefix for every word, which is not in the language. Considering the word $\sigma = (\emptyset \vee \{a\} \vee \{b\})^{\omega}$, which is obviously not in $Words(\neg \varphi)$ we can not find a finite BadPrefix to rule it out. So it can not be a safety property.

Exercise 3

 \mathbf{a}

For every σ , with $\sigma \models \Diamond \Box \varphi$, also $\sigma \models \Box \Diamond \varphi$ holds, since having from some point on consecutively φ fulfilled also means to encounter infinitely many.

But the other way around does not hold, since having $\sigma = A_0 A_1 \dots$, s.t. $A_i \models \varphi$ if $i \mod 2 = 0$ and $A_i \not\models \varphi$ if $i \mod 2 = 1$ (alternating fulfilling φ), then $\sigma \not\models \Diamond \Box \varphi$. Therefore $\Diamond \Box \varphi \subset \Box \Diamond \varphi$

b)

 $\Diamond\Box\varphi\wedge\Diamond\Box\psi\equiv\Diamond(\Box\varphi\wedge\Box\psi)$, since if for some point $i\geq 0$ it holds that $\Box\varphi$ and for some point $j\geq 0, j>i$ it holds that $\Box\psi$, then from J on both φ and ψ both hold continuously. So there ex. a point (j) from where $\Box\varphi\wedge\Box\psi$ holds.

Analogously if j < i.

If i = j obviously also the first formula holds.

c)

$$\varphi \wedge \Box(\varphi \to \bigcirc) \Diamond \varphi) \subset \Box \Diamond \varphi$$

- \subset : Let $\sigma \models \varphi \land \Box(\varphi \to \bigcirc \Diamond \varphi)$. Then φ holds at the very first element of σ . Also this element fulfills the premise of the implication. So there is an other φ in σ , since $\sigma \models \varphi \land \Box(\varphi \to \bigcirc \Diamond \varphi)$. This new φ again fulfills the premise demand and so on. Therefore we will encounter infinitely many φ 's.
- $\not\supseteq$: Let $\sigma = A_0 A_1 \dots \models \Box \Diamond \varphi$, but the very first element $A_0 \not\models \varphi$. Then $\sigma \not\models \varphi \land \Box (\varphi \rightarrow \bigcirc \Diamond \varphi)$, since $A_0 \models \varphi$ would have to hold.

Felix Linhart: 318801

$$\not\subset: \text{ Let } \sigma = A_0 A_1 \dots, \text{ with} \\
-A_i \models \varphi \text{ for } i \in \{1, 2, 3, 5, 6, 7\} \\
-A_i \models \psi \text{ for } i \in \{4, 8\} \\
-A_9 \models \pi$$
Then $\sigma \models (\varphi \cup \psi) \cup \pi, \text{ but } \sigma \not\models \varphi \cup (\psi \cup \pi)$

$$\not\subset: \text{ Let } \sigma = A_0 A_1 \dots, \text{ with} \\
-A_i \models \varphi \text{ for } i \in \{1, 2, 3, 4\} \\
-A_i \models \psi \text{ for } i \in \{5, 6, 7, 8\} \\
-A_9 \models \pi$$
Then $\sigma \not\models (\varphi \cup \psi) \cup \pi, \text{ but } \sigma \models \varphi \cup (\psi \cup \pi)$
So $(\varphi \cup \psi) \cup \pi \neq \varphi \cup (\psi \cup \pi)$

Exercise 4

a)

$$\varphi \ \mathbf{R} \ \psi = \neg(\neg \varphi \ \mathbf{U} \ \neg \psi)$$

$$= \neg(\varphi' \ \mathbf{U} \ \psi'), \text{ where } \varphi' = \neg \varphi \text{ and } \psi' = \neg \psi$$

$$\stackrel{\exp. \ \text{law of } \mathbf{U}}{=} \neg(\psi' \lor (\varphi' \land \bigcirc (\varphi' \ \mathbf{U} \ \psi')))$$

$$= \neg \psi' \land \neg(\varphi' \land \bigcirc (\varphi' \ \mathbf{U} \ \psi'))$$

$$= \neg \psi' \land (\neg \varphi' \lor \neg \bigcirc (\varphi' \ \mathbf{U} \ \psi'))$$

$$\stackrel{\text{def of } \varphi', \psi'}{=} \neg \neg \psi \land (\neg \neg \varphi \lor \bigcirc \neg (\neg \varphi \ \mathbf{U} \ \neg \psi))$$

$$= \psi \land (\varphi \lor \bigcirc \neg (\neg \varphi \ \mathbf{U} \ \neg \psi))$$

$$\stackrel{\text{def. of } \mathbf{R}}{=} \psi \land (\varphi \lor \bigcirc (\varphi \ \mathbf{R} \ \psi))$$

Felix Linhart: 318801

b)

$$\varphi \ \mathbf{R} \ \psi = \neg(\neg \varphi \ \mathbf{U} \ \neg \psi)$$

$$= \neg(\varphi' \ \mathbf{U} \ \psi'), \text{ where } \varphi' = \neg \varphi \text{ and } \psi' = \neg \psi$$

$$\stackrel{\text{book page } 271}{=} (\varphi' \land \neg \psi') \ \mathbf{W} \ (\neg \varphi' \land \neg \psi')$$

$$\stackrel{\text{def of } \varphi', \psi'}{=} (\neg \varphi \land \neg \neg \psi) \ \mathbf{W} \ (\neg \neg \varphi \land \neg \neg \psi)$$

$$= (\neg \varphi \land \psi) \ \mathbf{W} \ (\varphi \land \psi)$$