

A.S.T.R.O.COM.

ADVANCED SOLAR TRACKING AND ROVER OBSERVATION COMMUNICATION

Project sponsored by Florida Space Institute (FSI)

MOTIVATION AND BACKGROUND

- South Pole of Moon is area of interest for researchers
- Lunar south pole has many craters that are in permanent darkness due to the sun's path across the lunar south pole's sky
- Approached by FSI to solve a few problems for lunar exploration:
 - 1. Permanently dark locations on the moon are difficult to explore
 - Lack of power infrastructure on the moon limits exploration
 - Permanently dark locations are a valuable location for research
 - 2. Communication on lunar surface is limited
 - Range of communication limits exploration of craters
 - Limited communication infrastructure on moon

MOTIVATION AND BACKGROUND

- Proposed Solution:
 - 1. A heliostat tower
 - To reflect light from the sun into permanently dark locations
 - Equipped with communication capabilities
 - 2. A smaller communication beacon
 - Carriable by rovers
 - Form a communication network with rovers

GOALS

Overall Goals (High Level)

- Build a tower to handle rover communication.
- Build a tower to handle sunlight diversion to targets.

Stretch Goals

- P2P Networking for communication and mirror tower with rovers.
- Wireless charging and/or docking station for communication tower.

OBJECTIVES

Mirror Tower Objectives (Lower Level)

- Identify optimal sun location based on lux value from sensor.
- Receive requests from communication tower using protocols.
- Create a heliostat algorithm to orient towards the target with motors.
- Create a self-sustainable power supply using solar and battery power.

Communication Beacon Objectives (Lower Level)

- Receive requests from target through mesh network protocols.
- Relay requests to mirror tower using communication protocols.
- Create a small and portable tower that can be moved by rovers.

SPECIFICATIONS TABLE

Heliostat Tower				
Minimum Temperature	-40°C			
Reflector				
Minimum Reflectivity	90%			
Response Time	3 minutes			
Solar Panel				
Minimum Power	30W during sunlight hours			
Maximum Voltage	24V			
Battery				
Minimum Lifespan	2 weeks without sun			
Communica	tion Tower			
Minimum Network Range	20m			
Communication Rate	2400MHz			
Maximum Current Draw	500mA			
Latency	1 second			
Maximum Power	5W			

1. A heliostat tower

- Respond time to change reflection target estimated to be maximum 3 minutes
- Minimum power can be usage to all component estimated to be 30W

2. Communication tower

 Maximum power usage estimated to be 5W

HARDWARE BLOCK DIAGRAM

- Fully integrated code software flowchart
 - Perspective of Mirror Tower
 - Yellow is signal from Communication Beacon

Diagram Key

MICROCONTROLLER UNIT

	ESP32	MSP430	Raspberry Pi 0	Arduino MKR1310	Arduino MK1010
Cost (USD)	9.18	20	15	46	38.6
Zigbee	Yes	No	Yes	No	No
I2C	Yes	Yes	Yes	Yes	Yes
Flash Memory	4 MB	128 KB	None	256 KB	256 KB
RAM	520 KB	2 KB	512 MB	32 KB	32 KB
Power (W)	1.3644	1	12.5	0.5082	0.5082

- Microcontroller was chosen over FPGA
 - Low power consumption, cost, and high amounts of documentation.
- ESP32 is low cost, low power and networking capabilities and all connections required.

SOLAR PANELS

A monocrystalline 50W panel from Renogy was selected due to the low cost and high performance.

Model	RNG-50D-SS	HQST-50P-US	SP-52-L
Brand	Renogy	HQST	Solbian
Technology	Monocrystalline	Polycrystalline	Monocrystalline
Price	\$ 59.99	\$ 65.99	\$ 499.00
Pmax at STC	50 W	50 W	52 W
Voc	22.3V	23.3V	10.9V
Vmp	18.6V	19.8V	9.1V
Imp	2.69A	2.53A	5.7A

VOLTAGE REGULATION

Specifications	Linear Regulators	Switching Regulators			
		Buck	Boost	Buck-Boost	
Efficiency	Moderate	High			
Heat	Moderate	Low			
Voltage Output	Step-Down	Step-Down	Step-Up	Up or Down	
Output Ripple	Low	Low	High	Low	
Complexity	Low	Moderate	Moderate	High	
Cost	Low	Moderate	Moderate	High	

Switching Buck regulators were chosen for their simplicity and low cost, being commercially available cheaply from many manufacturers.

VOLTAGE REGULATION

The TPS53JA2 was selected due to the high output current, supported the intended voltage input, and was high efficiency.

Model	LM1085IT- 5.0/NOPB	DROK MiniBuck Converter	LM2596	TPS54JA2 0
Brand	Texas Instruments	DROK	Texas Instruments	Texas Instruments
Input Voltage	2.6-26V	2.5-24V	3-40V	2.7–16V
Output Voltage	3.3 or 5	3.3 or 5	1.5 to 35	0.5 to 5.5V
Output Current	3A	3A	3A	12A
Price	2.19	1.97	1.495	0.65
Type	LDO Buck	Buck	Buck	Buck

CHARGE CONTROLLER

• Two broad categories of Solar Charge Controllers:

1. PWM

- Basic pulse width modulation
- Lower efficiency
- Cheaper

2. MPPT

- Tracks highest power producing operating point
- Higher efficiency
- Typically, more expensive

CHARGE CONTROLLER

The SRII004 from SMARAAD offered the right voltage output, and was compatible with the selected battery chemistry for the lowest price.

Model	BQ25798RQM R	SR11004	Adventurer
Brand	Texas Instruments	SMARA AD	Renogy
Input Voltage	24V max	26V max	50V max
Output Voltage	18.8V max, Programmable	12/24V	12/24V
Output Current	5A	10A	30A
Price	6.25	39.99	59.99
Power	Not Specified	260W	1500W
Type	MPPT	MPPT	PWM

REFLECTORS

- Material Chosen to fabricate:
- 1. Aluminum: high heat resistance, durable, and high reflectivity in the moon environment.
- 2. Mylar: increase reflectivity, high heat change resistance, won't crack, and don't reduce quality of refection
- Proof of concept: Acrylic panel as cheaper alternative and easier to fabricate.

MOTORS

- 1. Stepper motor: Nema 23 robustness and strong torque to control the rotation of the whole tower. Can be used on DC system
- 2. Servo Motors: a cheaper alternative for smaller part movements.
- Incorporated gearbox to increase movement range and control for stepper motor.

Types of Motors	AC	Stepper	Servo
Financial Cost	\$200-\$2,000	\$20-\$200	\$10-\$50
Torque	203000Ncm- 610000Ncm	10- 10000Nc m	10- 1000Ncm
Speed	1800-3600 rmp	Low	High
Voltages requiremen t	115V/208V/230 V	3V-100V	3V-100V
Durability	High	High	Low

MOTOR CONTROLLERS

- 1. Stepper Controller TB6560-V2, cheap and can handle the at least 2 amperage from Nema23
- 2. PCA9685 PWM: Design specific for servo and can control all three servos planned in the system

Controller Models	DRV8434S, 2A Max.	TB6560	Stepper Motor Driver 36v4	HiLetgo PCA9685
Cost (USD)	\$12.95	\$11.39	\$29.95	\$9
continuous current (A)	1.2	3.5	4	3A
Micro stepping	1/256	1/16	1/256	I2C
Operating Voltage (V)	4.5-48	10-35	8-50	5-10

BATTERIES

- The battery selected was a Howell Energy LiFePO4 battery.
 - Higher amp hours
 - Lower weight
 - Smaller size
 - Higher price

Model	ML5-12	HW-4F7	PQ12V/6AH
Brand	Mighty Max	Howell Energy	Power Queen
	Battery		
Voltage	12	12	12.8V
Amp Hour	5	7	6
Technology	SLA AGM	LiFePO4	LiFePO4
Price	16.99	32.99	19.59
Charging	CV	CC 3.5A, CV 14.6V, Built-in	Not Specified, Built in
Requirements		BMS	BMS

ANTENNA

- The combination of the certain gain range, circular polarization, high-efficiency and wideband characteristics made patch and helical antenna types the ideal choices.
- The PC140's circular polarization while also being above average in gain and efficiency made it the preferred antenna product.
- The sponsor chose for us to replace the antenna with their choice of the wlaniot.

	PC140	WPC.25A	FXP74	PC17	FXP70
Avg Gain (dB)	-1.92	-1.14	-2	-3.6	-2
Peak Gain (dBi)	1.67	5.15	4	.9	1.1
Efficiency (%)	64	76.9	50	44	63.7
VSWR	<2	<2	<2	<1.5	<1.5
Polarization	RHCP	Linear	Linear	Linear	Linear
Cost (USD)	\$27.26	\$9.21	\$7.69	\$16.60	\$27.09

SENSOR

Sensor Final 4 Options:

- VL6180X and SI1145 include IR which is not needed
- MAX44009 only has breakout board; does not work for PCB
- VEML7700 best choice for price/ability

	VL6180X	MAX44009	SI1145	VEML7700
Cost (USD)	\$14.49	\$5.96	\$9.95	\$4.95
Measuring Principle	TOF/IR Laser Photodiode	Photodiode	IR-LED Photodiode	Photodiode
Max Lux	100000	188000	128000	120000
Ambient Light Sensing	Yes	Yes	Yes	Yes
Operating Current (mA)	0.3	0.003	7	0.045
12C	Yes	Yes	Yes	Yes

DEVELOPMENT ENVIRONMENT: LANGUAGES AND REPOSITORIES

Programming Languages

- C: best choice for MCU programming, low-level
- Java: best for object-oriented programming, low-level
- Python: best for existing libraries, high-level

Choice: C

Repositories

- GitHub: most popular repo, widely used among many software devs
- Bitbucket: Git based repo, includes task scheduling and team goal software

Choice: GitHub

VECTORING AND POSITIONING / SOLAR TRACKING ALGORITHM

 Heliostat algorithm chosen as it is open source and availability.
 Good capability with ESP32-C6 and C language

Algorithms	Heliostat	Kalman Filtering	Ray Tracing
Financial	Open Source	Ambiguous	Not available
Cost			
Sensor	Ambient	Ambient	Ambient
	Light	Light	Light
Algorithm	Available on	Available in	Available in
code library	GitHub	python	Research
			paper
Efficiency	High	Low	Medium
MCU	Good (C	Fair (Python)	Good (C
compatibility	Language)		Language)

COMMUNICATION TECHNOLOGIES

NICATION TECHNOLOGIES

 The combination of low power consumption, suitable range, options for frequency and high scalability made Zigbee the ideal communication technology to implement.

Criteria	Wi-Fi	Bluetooth	Zigbee	Z-Wave
Range (m)	45	10	980	800
Data rate	54 Mbps	1 Mbps	250 Kbps	100 Kbps
Power consumption	30 uA- 250 mA	9 uA-39 mA	12 uA- 54 mA	1 uA-23 mA
Max devices	255	3-4	100	232
Scalability	√	×	\checkmark	✓
Frequency	2.4/5/6 GHz	2.4 GHz	915 MHz/2.4 GHz	908-916 MHz

HARDWARE DESIGN

- Design two separate towers, each with their own design constraints
- Majority of focus is on heliostat tower, as it is more complex
- Schematics and PCB designs
- Heliostat structure
- Tripod on a "Lazy Susan"
- Communication Beacon
- Antenna on an enclosure

POWER DELIVERY/ ELECTRICAL POWER SYSTEM

SERVO MOTOR CONTROLS

SENSOR CONTROL

MCU SYSTEM

LOWER-LEVEL SUBSYSTEM

LOWER-LEVEL SUBSYSTEM

POWER CONTROL ALGORITHM

- Goal was to reduce power consumption when the sun would not be visible
- Reducing usage of nonessential components during these times would preserve battery charge

Component	Essential/Non- Essential	Low-Power Considerations
MCU	Essential	Low-Power Mode, only essential functions
Antenna	Essential	Receive only
Sensors	Essential	Sensors will be turned on periodically
Stepper Motor	Non-Essential	
Servo Motors	Non-Essential	

MCU PCB

MCU PCB

SENSORS PCB

SERVO MOTOR CONTROLLER PCB

SOFTWARE DESIGN

- Details on software design for the overall system which includes:
- Communications through the mesh network
- Collecting sensor information
- Positioning reflector to deliver sunlight to target
- Represented with software diagrams

System Communication Zigbee Tower not Communication found <<includes>> Protocols <<extends>> Sends <<includes>> coordinates for light Communication Tower request Relays communication to Mirror <<includes>>Sensor starts I2C protocols Tower reading lux to relay values information to MCU Rover Find optimal Point mirror in <<includes>> Uses location for direction of *algorithm* requester Mirror Tower <<extends>> <<extends>> <<includes>> Diagram Key Requester Requester Uses receives needs more Use case heliostat sufficient light Relationship algorithm sunlight Actor

CASE DIAGRAM

ACTIVITY DIAGRAM

Start MOTOR POSITIONING OF REFLECTOR BASED ON READ VEML7700 AMBIENT LUX, SET APPROPRIATE BACKLIGHT STRENGTH LIGHT INTENSITY ALGORITHM. WRITE TO UPPER LUX THRESHOLD. LOWER LUX THRESHOLD, AND LUX THRESHOLD TIMER REGISTERS Ν ALL SENSORS A ADJUST SENSORS POSITION WITH Z, W Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 REAK LUMEN INPUT AXIS MOTOR GET CONTROL X.Y REDIRECTION COORDINATES AXIS MOTOR REQUEST TO LOCATION FRPM MCU Yes Highest Idle Highest Lowest WORK ON TASKS/SLEEP UNTIL WOKEN Lumen? Idle Lumen? Lumen? HARDWARE INTERRUPT Yes Request Algorithm for best Reflection angle Coordinate Rotate Nο Ν WOKEN BY INTERRUPT? Yes Feedback MCU Rotate Idle Light recieve? CHECK OTHER READ INTS BIT TO CONFIRM INTERRUPT SOURCES Motor_x Motor_y Motor_z Motor_z VEML7700 CAUSED INTERRUPT?

HARDWARE TESTING

- Tested components and had great success.
- Did have a few issues during implementation including:
 - Strapping pins and UART TX/RX mix-ups
 - Higher than expected channel capacitance causing low rise time for I²C
 - Voltage drop from servos, resetting the servo controller
- These issues were resolved with a mix of software and hardware changes.

SOFTWARE TESTING

- Transforming individual parts code to integrated code
 - Included interrupts to handle events
 - Sensors in certain locations are averaged and divided by each other to dynamically track movements
 - Scaling operations were needed to transform step sizes from different servos
 - Zigbee operations included to switch targets
- Created our own coordinator for testing but will use rover from G16 in live demo
 - This coordinator will relay information from communication box (Zigbee end device) to the reflector tower (Zigbee end device)

ADMINISTRATIVE CONTENTS

Electrical Engineering	Responsibilities	
	PSU Design and Implementation	
Alexandre Fiset	PCB Design	
Alexandre Fiset	MPPT Tracking Implementation	
	Administrative Documentation	
Computer Engineering	Responsibilities	
	Reflector Technology and Design	
	Motor and Motor Controls	
Binh Pham	Vectoring Technology	
	Project Lead	
	Positioning and Vectoring Algorithm	
Computer Engineering	Responsibilities	
	MCU Selection and Implementation	
Pedro Kasprzykowski	Software Design and Implementation	
1 curo ixaspizykowski	Antenna and Communications	
	Website Design and Management	
Computer Engineering	Responsibilities	
	Sensor Selection and Implementation	
Stephen Martin	MCU Selection and Implementation	
Stephen warun	Positioning and Vectoring Algorithm	
	Software Design and Implementation	

Component	Name	Price/unit	Quantity
Mirror	0.032" x 24" x 24", 3003- H14 Aluminum Sheet	\$28.86	1
Mirror Coating	Mylar Sheet	\$25.99	1
Frame	ADJ LTS-6 T-Bar Tripod Lightweight Lighting Stand	\$54.99	1
Base Panels	Plywood Panels 4ftx8ft	\$25.60	2
Communication Tower Box	Junction Box	\$26.89	1
Wheel Hub Bearing	Rear Wheel Hub	\$44.90	1

Component	Name	Price	Quantity
Battery	Howell Energy hw- 4f7	32.99	1
Motor w	Nema 23	\$30.73	1
Motor x-y-z	9.5-11kg*cm Servo Motor	\$17.59	3
Charge Controller/BMS	Smaraad SR11004	\$39.99	1
Solar Panel	RNG-50D-SS	\$49.99	1
Microcontroller	ESP32-C6- DEVKITC-1-N8	\$9.00	1
External Antenna	Wlaniot 2.4G	\$17.98	2
MicroSD card	5251	\$4.50	2
MicroSD card breakout board+	254	\$7.50	1

Component	Name	Price	Quantity
Microcontroller for	ESP32-C6-WROOM-1U	\$3.48	1
PCB			
Stepper Motor	DRV8833PW	\$2.84	1
Controller			
Servos Motor	PCA9685PW,112	\$2.64	1
Controller			
3.3V Regulator	TPS54JA20	\$1.50	1
5V Regulator	TPS54JA20	\$1.50	1
USB-A Connector	2057-USB-AP-S-RA-SMT-	\$0.55	3
	ND		
Sensor-MUX	TCA9548APWR	\$1.78	1
Sensor	VEML7700	\$1.88	5
USB-to-UART Bridge	CP2102N-A02-GQFN28	\$4.07	1
Controller			
MicroSD Socket	1660	\$1.95	1
Misc.	Resistors, Capacitors, Inductr,	~\$20.00	
	Jumpers, Etc		

PCB'S BUDGET