# Measure Theory

Ikhan Choi

November 23, 2022

# **Contents**

| Ι  | Me   | asures                                       | 3  |
|----|------|----------------------------------------------|----|
| 1  | Mea  | asure spaces                                 | 4  |
|    | 1.1  | Measurable spaces                            | 4  |
|    | 1.2  | Measure spaces                               | 4  |
|    | 1.3  | Carathéodory extension                       | 4  |
| 2  | Mea  | asures on the real line                      | 8  |
| 3  | Mea  | asurable functions                           | 9  |
|    | 3.1  | Simple functions                             | 9  |
|    | 3.2  | Almost everywhere convergence                | 9  |
| II | Le   | ebesgue integral                             | 13 |
| 4  | Con  | evergence theorems                           | 14 |
|    | 4.1  | Definition of Lebesgue integral              | 14 |
|    | 4.2  | Convergence theorems                         | 14 |
|    | 4.3  | Radon-Nikodym theorem                        | 14 |
| 5  | Proc | duct measures                                | 15 |
|    | 5.1  | Fubini-Tonelli theorem                       | 15 |
|    | 5.2  | Lebesgue measure on Euclidean spaces         | 15 |
| 6  | Mea  | asures on metric spaces                      | 16 |
|    | 6.1  | Continuous functions on metric spaces        | 16 |
|    | 6.2  | Locally compact metric spaces                | 17 |
|    | 6.3  | Riesz-Markov-Kakutani representation theorem | 18 |
|    | 6.4  | Hausdorff measures                           | 20 |
| II | [ Li | inear operators                              | 21 |
| 7  | Leb  | esgue spaces                                 | 22 |
|    |      | $L^p$ spaces                                 | 22 |
|    | 7.2  | $L^1$ spaces                                 |    |
|    | 7.3  | L <sup>2</sup> spaces                        | 22 |
|    | 7.4  | $L^{\infty}$ spaces                          | 22 |

| 8                        | Bounded linear operators        |                                          |                 |  |
|--------------------------|---------------------------------|------------------------------------------|-----------------|--|
|                          | 8.1                             | Continuity                               | 23              |  |
|                          | 8.2                             | Density arguments                        | 23              |  |
|                          |                                 | Interpolation                            |                 |  |
| 9                        | Convergence of linear operators |                                          |                 |  |
|                          | 9.1                             | Translation and multiplication operators | 26              |  |
|                          | 9.2                             | Convolution type operators               | 26              |  |
|                          | 9.3                             | Computation of integral transforms       | 26              |  |
| IV                       | Fı                              | undamental theorem of calculus           | 27              |  |
| 10                       | Wea                             | ak derivatives                           | 28              |  |
| 11 Absolutely continuity |                                 |                                          | 29              |  |
|                          | 11.1                            | 1 Absolute continuous measures           | 29              |  |
|                          | 11.2                            | 2 Absolute continuous functions          | 29              |  |
|                          |                                 |                                          |                 |  |
|                          | 11.3                            | 3 Functions of bounded variation         | 29              |  |
| 12                       |                                 | esgue differentiation theorem            | 29<br><b>30</b> |  |

# Part I

# Measures

## Measure spaces

#### 1.1 Measurable spaces

1.1 (Measurable spaces).

#### 1.2 Measure spaces

**1.2** (Definition of measures). Let  $(\Omega, \mathcal{M})$  be a measurable space. A *measure* on  $\mathcal{M}$  is a set function  $\mu: \mathcal{M} \to [0, \infty]: \varnothing \mapsto 0$  that is *countably additive*: we have

$$\mu\Big(\bigsqcup_{i=1}^{\infty} E_i\Big) = \sum_{i=1}^{\infty} \mu(E_i)$$

for  $(E_i)_{i=1}^{\infty} \subset \mathcal{M}$ . Here the squared cup notation reads the disjoint union.

- 1.3 (Continuity of measures).
- 1.4 (Pushforward measures).
- 1.5 (Complete measures).

#### 1.3 Carathéodory extension

**1.6** (Outer measures). Let  $\Omega$  be a set. An *outer measure* on  $\Omega$  is a set function  $\mu^* : \mathcal{P}(\Omega) \to [0, \infty] : \emptyset \mapsto 0$  such that

(i)  $\mu^*$  is monotone: we have

$$S_1 \subset S_2 \Rightarrow \mu^*(S_1) \leq \mu^*(S_2)$$

for  $S_1, S_2 \in \mathcal{P}(\Omega)$ ,

(ii)  $\mu^*$  is countably subadditive: we have

$$\mu^* \Big( \bigcup_{i=1}^{\infty} S_i \Big) \le \sum_{i=1}^{\infty} \mu^* (S_i)$$

for 
$$(S_i)_{i=1}^{\infty} \subset \mathcal{P}(\Omega)$$
.

Compairing the definition of measures, we can see the outer measures extend the domain to the power set, but loosen the countable additivity to monotone countable subadditivity.

(a) A set function  $\mu^* : \mathcal{P}(\Omega) \to [0, \infty] : \varnothing \mapsto 0$  is an outer measure if and only if  $\mu^*$  is monotonically countably subadditive:

$$S \subset \bigcup_{i=1}^{\infty} S_i \Rightarrow \mu^*(S) \leq \sum_{i=1}^{\infty} \mu^*(S_i)$$

for  $S \in \mathcal{P}(\Omega)$  and  $(S_i)_{i=1}^{\infty} \subset \mathcal{P}(\Omega)$ .

(b) For  $\emptyset \in \mathcal{A} \subset \mathcal{P}(\Omega)$ , let  $\rho : \mathcal{A} \to [0, \infty] : \emptyset \mapsto 0$  be a set function. We can associate an outer measure  $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$  by defining as

$$\mu^*(S) := \inf \left\{ \sum_{i=1}^{\infty} \rho(B_i) : S \subset \bigcup_{i=1}^{\infty} B_i, \ B_i \in \mathcal{A} \right\},$$

where we use the convention  $\inf \emptyset = \infty$ .

 $\square$ 

**1.7** (Carathéodory measurability). Let  $\mu^*$  be an outer measure on a set  $\Omega$ . We want to construct a measure by restriction of  $\mu^*$  on a properly defined  $\sigma$ -algebra. A subset  $E \subset \Omega$  is called *Carathéodory measurable* relative to  $\mu^*$  if

$$\mu^*(S) = \mu^*(S \cap E) + \mu^*(S \setminus E)$$

for every  $S \in \mathcal{P}(\Omega)$ . Let  $\mathcal{M}$  be the collection of all Carathéodory measurable subsets relative to  $\mu^*$ .

- (a)  $\mathcal{M}$  is an algebra and  $\mu^*$  is finitely additive on  $\mathcal{M}$ .
- (b)  $\mathcal{M}$  is a  $\sigma$ -algebra and  $\mu^*$  is countably additive on  $\mathcal{M}$ .
- (c) The measure  $\mu := \mu^*|_{\mathcal{M}} : \mathcal{M} \to [0, \infty]$  is complete.

Proof.  $\Box$ 

1.8 (Carathéodory extension theorem). The Carathéodory extension is a construction method for a measure extending a given set function  $\rho$ . The idea is to restrict the outer measure  $\mu^*$  associated to  $\rho$  in order to obtain a measure  $\mu$ . We want to find a sufficient condition for  $\mu$  to be a measure on a  $\sigma$ -algebra containing  $\mathcal{A}$ .

For  $\emptyset \in \mathcal{A} \subset \mathcal{P}(\Omega)$ , let  $\rho : \mathcal{A} \to [0, \infty] : \emptyset \mapsto 0$  be a set function. Let  $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$  be the associated outer measure of  $\rho$ , and  $\mu : \mathcal{M} \to [0, \infty]$  the measure defined by the restriction of  $\mu^*$  on Carathéodory measurable subsets.

(a) We have  $\mu^*|_A = \rho$  if  $\rho$  satisfies the monotone countable subadditivity:

$$A \subset \bigcup_{i=1}^{\infty} B_i \Rightarrow \rho(A) \leq \sum_{i=1}^{\infty} \rho(B_i)$$

for  $A \in \mathcal{A}$  and  $(B_i)_{i=1}^{\infty} \subset \mathcal{A}$ .

(b) We have  $A \subset M$  if  $\rho$  satisfies the following property: for every  $B, A \in A$ , and for any  $\varepsilon > 0$ , there are  $\{C_j\}_{j=1}^{\infty}$  and  $\{D_j\}_{j=1}^{\infty} \subset A$  such that

$$B \cap A \subset \bigcup_{j=1}^{\infty} C_j$$
 and  $B \setminus A \subset \bigcup_{j=1}^{\infty} D_j$ ,

and

$$\rho(B) + \varepsilon > \sum_{j=1}^{\infty} \rho(C_j) + \sum_{j=1}^{\infty} \rho(D_j).$$

*Proof.* (a) Clearly  $\mu^*(A) \le \rho(A)$  for  $A \in \mathcal{A}$ . We may assume  $\mu^*(A) < \infty$ . For arbitrary  $\varepsilon > 0$  there is  $\{B_i\}_{i=1}^{\infty}$  such that  $A \subset \bigcup_{i=1}^{\infty} B_i$  and

$$\mu^*(A) + \varepsilon > \sum_{i=1}^{\infty} \rho(B_i) \ge \rho(A).$$

Limiting  $\varepsilon \to 0$ , we get  $\mu^*(A) \ge \rho(A)$ .

(b) Let  $S \in \mathcal{P}(\Omega)$  and  $A \in \mathcal{A}$ . It is enough to check the inequality  $\mu^*(S) \ge \mu^*(S \cap A) + \mu^*(S \setminus A)$  for S with  $\mu^*(S) < \infty$ , so we may assume there is a countable family  $\{B_i\}_{i=1}^{\infty} \subset \mathcal{A}$  such that  $S \subset \bigcup_{i=1}^{\infty} B_i$ . Then, we have  $B_i \cap A \subset \bigcup_{j=1}^{\infty} C_{i,j}$  and  $B_i \setminus A \subset \bigcup_{j=1}^{\infty} D_{i,j}$  satisfying

$$\mu^*(S) + \varepsilon > \sum_{i=1}^{\infty} (\rho(B_i) + \frac{\varepsilon}{2^{i+1}}) > \sum_{i,j=1}^{\infty} \rho(C_{i,j}) + \sum_{i,j=1}^{\infty} \rho(D_{i,j}) \ge \mu^*(S \cap A) + \mu^*(S \setminus A).$$

Therefore, A is Carathéodory measurable relative to  $\mu^*$ .

**1.9** (Uniqueness of extension of measures). The existence of the Carathéodory extension provides a uniqueness theorem for the extension of measures. The important property here is  $\sigma$ -finiteness: for  $\emptyset \in \mathcal{A} \subset \mathcal{P}(\Omega)$ , let  $\rho : \mathcal{A} \to [0, \infty] : \emptyset \mapsto 0$  be a set function. Then, we say  $\rho$  is  $\sigma$ -finite if there is a countable cover  $(B_i)_{i=1}^{\infty} \subset \mathcal{A}$  of  $\Omega$  such that  $\rho(B_i) < \infty$  for each i.

Let  $\mu^*$  be the outer measure associated to  $\rho$ . Let  $\mathcal{M}$  be a  $\sigma$ -algebra such that the restriction  $\mu^*|_{\mathcal{M}}: \mathcal{M} \to [0, \infty]$  is a measure, and  $\mu: \mathcal{M} \to [0, \infty]$  be any measure. Suppose further that  $\mu^*(A) = \rho(A) = \mu(A)$  for all  $A \in \mathcal{A}$ . Let  $E \in \mathcal{M}$ .

- (a)  $\mu(E) \le \mu^*(E)$ .
- (b) If  $E_1, E_2 \in \mathcal{M}$  satisfy  $\mu(E_1) = \mu^*(E_1)$  and  $\mu(E_2) = \mu^*(E_2)$ , then  $\mu(E_1 \cup E_2) = \mu^*(E_1 \cup E_2)$ .
- (c)  $\mu(E) = \mu^*(E)$  if  $\mu^*(E) < \infty$ .
- (d) If  $\rho$  is  $\sigma$ -finite, then  $\mu(E) = \mu^*(E)$  for  $\mu^*(E) = \infty$ .

*Proof.* (a) If  $\mu^*(E) = \infty$ , then  $\mu(E) \le \mu^*(E)$  trivially. Suppose  $\mu^*(E) < \infty$ . By the definition of the outer measure, there is  $\{B_i\}_{i=1}^{\infty} \subset \mathcal{A}$  such that  $E \subset \bigcup_{i=1}^{\infty} B_i$ . Also, we have

$$\mu(E) \le \mu\left(\bigcup_{i=1}^{\infty} B_i\right) \le \sum_{i=1}^{\infty} \mu(B_i) = \sum_{i=1}^{\infty} \rho(B_i)$$

whenever  $E \subset \bigcup_{i=1}^{\infty} B_i$ , so  $\mu(E) \leq \mu^*(E)$ .

(b) In the light of the inclusion-exclusion principle,

$$\mu^*(E_1 \cup E_2) = \mu^*(E_1) + \mu^*(E_2) - \mu^*(E_1 \cap E_2) \le \mu(E_1) + \mu(E_2) - \mu(E_1 \cap E_2) = \mu(E_1 \cup E_2)$$

proves the identity we want.

(c) Because  $\mu^*(E) < \infty$ , for any  $\varepsilon > 0$  we have a sequence  $(B_i)_{i=1}^{\infty} \subset A$  such that  $E \subset \bigcup_{i=1}^{\infty} B_i$  and

$$\mu^*(E) + \varepsilon > \sum_{i=1}^{\infty} \rho(B_i).$$

Applying the part (b) inductively, we have for every n that

$$\mu\left(\bigcup_{i=1}^{n} B_{i}\right) = \mu^{*}\left(\bigcup_{i=1}^{n} B_{i}\right),$$

and by limiting  $n \to \infty$  the continuity from below gives

$$\mu\Big(\bigcup_{i=1}^{\infty}B_i\Big)=\mu^*\Big(\bigcup_{i=1}^{\infty}B_i\Big).$$

Then, we have

$$\mu^*(E) \le \mu^*\left(\bigcup_{i=1}^{\infty} B_i\right) = \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \mu\left(\bigcup_{i=1}^{\infty} B_i \setminus E\right) + \mu(E)$$

and

$$\mu\Big(\bigcup_{i=1}^{\infty}B_i\setminus E\Big)\leq \mu^*\Big(\bigcup_{i=1}^{\infty}B_i\setminus E\Big)=\mu^*\Big(\bigcup_{i=1}^{\infty}B_i\Big)-\mu^*(E)\leq \sum_{i=1}^{\infty}\mu^*(B_i)-\mu^*(E)=\sum_{i=1}^{\infty}\rho(B_i)-\mu^*(E)<\varepsilon,$$

we get  $\mu^*(E) < \mu(E) + \varepsilon$  and  $\mu^*(E) \le \mu(E)$  by limiting  $\varepsilon \to 0$ .

(d) Let  $(B_i)_{i=1}^{\infty} \subset A$  be such that  $\rho(B_i) < \infty$  and  $\Omega = \bigcup_{i=1}^{\infty} B_i$ . Define  $E_1 := B_1$  and  $E_n := B_n \setminus \bigcup_{i=1}^{n-1} B_i$  for  $n \ge 2$ . Then,  $(E_i)_{i=1}^{\infty}$  is a pairwise disjoint cover of  $\Omega$  with

$$\mu^*(E \cap E_i) \le \mu^*(E_i) \le \mu^*(B_i) = \rho(B_i) < \infty$$

for each i, so we have by the part (c) that

$$\mu(E) = \sum_{i=1}^{\infty} \mu(E \cap E_i) = \sum_{i=1}^{\infty} \mu^*(E \cap E_i) = \mu^*(E).$$

#### **Exercises**

**1.10** (Semi-rings and semi-algebras). We will prove a simplified Carathéodory extension with respect to *semi-rings* and *semi-algebras*. Let  $\mathcal{A}$  be a collection of subsets of a set  $\Omega$  such that  $\emptyset \in \mathcal{A}$ . We say  $\mathcal{A}$  is a semi-ring if it is closed under finite intersection, and the complement is a finite union of elements of  $\mathcal{A}$ . We say  $\mathcal{A}$  is a semi-algebra

Let  $\mathcal{A}$  be a semi-ring of sets over  $\Omega$ . Suppose a set function  $\rho: \mathcal{A} \to [0, \infty]: \emptyset \mapsto 0$  satisfies

(i)  $\rho$  is disjointly countably subadditive: we have

$$\rho\Big(\bigsqcup_{i=1}^{\infty} A_i\Big) \le \sum_{i=1}^{\infty} \rho(A_i)$$

for 
$$(A_i)_{i=1}^{\infty} \subset \mathcal{A}$$
,

(ii)  $\rho$  is finitely additive: we have

$$\rho(A_1 \sqcup A_2) = \rho(A_1) + \rho(A_2)$$

for 
$$A_1, A_2 \in \mathcal{A}$$
.

A set function satisfying the above conditions are occasionally called a pre-measure.

- (a)
- (b)
- **1.11** (Monotone class lemma). A collection  $C \subset \mathcal{P}(\Omega)$  is called a *monotone class* if it is closed under countable increasing unions and countable decreasing intersections.

Let H be a vector space closed under bounded monotone convergence. If  $\operatorname{span}\{\mathbf{1}_A:A\in\mathcal{A}\}\subset H$  then  $B^{\infty}(\sigma(\mathcal{A}))\subset H$ .

## Measures on the real line

- **2.1** (Borel  $\sigma$ -algebra).
- 2.2 (Distribution functions).
- 2.3 (Helly selection theorem).
- 2.4 (Non-Lebesgue measurable set).

#### **Exercises**

- **2.5** (Steinhaus theorem). Let  $\lambda$  denote the Lebesgue measure on  $\mathbb{R}$  and let  $\mathbb{E} \subset \mathbb{R}$  be a Lebesgue measurable set with  $\lambda(E) > 0$ .
  - (a) For any  $0 < \alpha < 1$ , there is an interval I = (a, b) such that  $\lambda(E \cap I) > \alpha \lambda(I)$ .
  - (b)  $E E = \{x y : x, y \in E\}$  contains an open interval containing zero.

*Proof.* (a) We may assum  $\lambda(E) < \infty$ . Since  $\lambda$  is outer measure and  $\lambda(E) \neq 0$ , we have an open subset U of  $\mathbb{R}$  such that  $\lambda(U) < \alpha^{-1}\lambda(E)$ . Because U is a countable disjoint union of open intervals  $U = \bigsqcup_{i=1}^{\infty} (a_i, b_i)$ , we have

$$\sum_{i=1}^{\infty} \lambda((a_i,b_i)) = \lambda(U) < \alpha^{-1}\lambda(E) = \alpha^{-1}\sum_{i=1}^{n} \lambda(E \cap (a_i,b_i)).$$

Therefore, there is *i* such that  $\alpha \lambda((a_i, b_i)) < \lambda(E \cap (a_i, b_i))$ .

#### **Problems**

\*1. Every Lebesgue measurable set in  $\mathbb{R}$  of positive measure contains an arbitrarily long arithmetic progression.

## **Measurable functions**

#### 3.1 Simple functions

**3.1** (Measurability of pointwise limits). Conversely, every measurable extended real-valued function is a pointwise limit of simple functions.

*Proof.* Let  $f(x) = \lim_{n \to \infty} s_n(x)$ .

#### 3.2 Almost everywhere convergence

**3.2** (Almost everywhere convergence). Let  $(\Omega, \mu)$  be a measure space and let  $f_n : \Omega \to \overline{\mathbb{R}}$  and  $f : \Omega \to \overline{\mathbb{R}}$  be measurable functions. The set of convergence of the sequence  $f_n$  is defined as the set

$$\{x \in \Omega : \lim_{n \to \infty} f_n(x) = f(x)\},\$$

and the set of divergence is defined as its complement. We say  $f_n$  converges to f alomst everywhere with respect to  $\mu$  if the set of divergence is a null set in  $\mu$ . We simply write

$$f_n \to f$$
 a.e.

if  $f_n$  converges to f almost everywhere, and we frequently omit the measure  $\mu$  if it has no confusion.

- (a) If  $\mu$  is complete and, if  $f_n \to f$  a.e., then f is measurable.
- **3.3** (Borel-Cantelli lemma). Let  $(\Omega, \mu)$  be a measure space and let  $f_n : \Omega \to \overline{\mathbb{R}}$  and  $f : \Omega \to \overline{\mathbb{R}}$  be a sequence of measurable functions. Note that the set of divergence is given by

$$\bigcup_{\varepsilon>0} \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} \{x : |f_n(x) - f(x)| \ge \varepsilon\}.$$

Each measurable set of the form

$${x:|f_n(x)-f(x)|\geq \varepsilon}$$

is sometimes called the tail event, coined in probability theory.

(a)  $f_n \to f$  a.e. if and only if for each  $\varepsilon > 0$  we have

$$\mu(\lbrace x: \limsup_{n\to\infty} |f_n(x)-f(x)| \geq \varepsilon\rbrace) = 0.$$

(b)  $f_n \to f$  a.e. if and only if for each  $\varepsilon > 0$  we have

$$\mu(\limsup_{n\to\infty}\{x:|f_n(x)-f(x)|\geq\varepsilon\})=0.$$

(c)  $f_n \to f$  a.e. if for each  $\varepsilon > 0$  we have

$$\sum_{n=1}^{\infty} \mu(\{x: |f_n(x)-f(x)| \ge \varepsilon\}) < \infty.$$

*Proof.* (b) The set of divergence of the sequence  $f_n$  is given by

$$\bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} \{x : |f_i(x) - f(x)| \ge \frac{1}{m}\} = \bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} (\Omega \setminus E_n^m).$$

(c) Since

$$\mu\Big(\bigcup_{i=1}^{\infty} \{x: |f_i(x) - f(x)| \ge \varepsilon\}\Big) \le \sum_{i=1}^{\infty} \mu(\{x: |f_i(x) - f(x)| \ge \varepsilon\}) < \infty,$$

we have by the continuity from above that

$$\mu(\limsup_{n\to\infty} \{x: |f_n(x) - f(x)| \ge \varepsilon\}) = \mu\left(\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} \{x: |f_i(x) - f(x)| \ge \varepsilon\}\right)$$

$$= \lim_{n\to\infty} \mu\left(\bigcup_{i=n}^{\infty} \{x: |f_i(x) - f(x)| \ge \varepsilon\}\right)$$

$$\leq \lim_{n\to\infty} \sum_{i=n}^{\infty} \mu(\{x: |f_i(x) - f(x)| \ge \varepsilon\}) = 0.$$

**3.4** (Convergence in measure). Let  $(\Omega, \mu)$  be a measure space and let  $f_n : \Omega \to \overline{\mathbb{R}}$  be a sequence of measurable functions. We say  $f_n$  converges to a measurable function  $f : \Omega \to \overline{\mathbb{R}}$  in measure if for each  $\varepsilon > 0$  we have

$$\lim_{n\to\infty}\mu(\{x:|f_n(x)-f(x)|\geq\varepsilon\})=0.$$

- (a) If  $f_n \to f$  in measure, then there is a subsequence  $f_{n_k}$  such that  $f_{n_k} \to f$  a.e.
- (b) If every subsequence  $f_{n_k}$  of  $f_n$  has a further subsequence  $f_{n_{k_j}}$  such that  $f_{n_{k_j}} \to f$  a.e., then  $f_n \to f$  in measure.

*Proof.* (a) Since for each positive integer k we have  $\mu(\{x: |f_n(x)-f(x)| \ge \frac{1}{k}\}) \to 0$  as  $n \to \infty$ , there exists  $n_k$  such that

$$\mu(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) < \frac{1}{2^k}.$$

By the Borel-Cantelli lemma, we get

$$\mu(\limsup_{k\to\infty}\{x:|f_{n_k}(x)-f(x)|\geq \frac{1}{k}\})=0.$$

Then, for each  $\varepsilon > 0$ ,

$$\begin{split} \limsup_{k \to \infty} \{x: |f_{n_k}(x) - f(x)| &\geq \varepsilon\} = \bigcap_{k = \lceil \varepsilon^{-1} \rceil}^{\infty} \bigcup_{j = k}^{\infty} \{x: |f_{n_j}(x) - f(x)| \geq \varepsilon\} \\ &\subset \bigcap_{k = \lceil \varepsilon^{-1} \rceil}^{\infty} \bigcup_{j = k}^{\infty} \{x: |f_{n_j}(x) - f(x)| \geq \frac{1}{k}\} \\ &= \limsup_{k \to \infty} \{x: |f_{n_k}(x) - f(x)| \geq \frac{1}{k}\} \end{split}$$

implies the limit superior of the tail events is a null set, hence  $f_{n_k} \to f$  a.e.

**3.5** (Egorov theorem). Egorov's theorem informally states that an almost everywhere convergent functional sequence is "almost" uniformly convergent. Through this famous theorem, we introduce a convenient " $\varepsilon/2^m$  argument", occasionally used throughout measure theory to construct a measurable set having a special property.

Let  $(\Omega, \mu)$  be a finite measure space and let  $f_n : \Omega \to \overline{\mathbb{R}}$  be a sequence of measurable functions such that  $f_n \to f$  a.e. For each positive integer m, which indexes the tolerance 1/m, consider an increasing sequence of measurable subsets

$$E_n^m := \bigcap_{i=n}^{\infty} \{x : |f_i(x) - f(x)| < \frac{1}{m}\}.$$

- (a)  $E_n^m$  converges to a full set for each m.
- (b) For every  $\varepsilon > 0$  there is a measurable  $K \subset \Omega$  such that  $\mu(\Omega \setminus K) < \varepsilon$  and for each m there is finite n satisfying  $K \subset E_n^m$ .
- (c) For every  $\varepsilon > 0$  there is a measurable  $K \subset \Omega$  such that  $\mu(\Omega \setminus K) < \varepsilon$  and  $f_n \to f$  uniformly on K.

*Proof.* (a) Recall that the a.e. convergence  $f_n \to f$  means that for every fixed m the intersection

$$\bigcap_{n=1}^{\infty} (\Omega \setminus E_n^m) = \limsup_{n} \{x : |f_n(x) - f(x)| \ge \frac{1}{m} \}$$

is a null set. Since  $\mu(\Omega) < \infty$ , it is equivalent to  $E_n^m$  converges to a full set for each m by the continuity from above.

(b) For each m, we can find  $n_m$  such that

$$\mu(\Omega \setminus E_{n_m}^m) < \frac{\varepsilon}{2^m}.$$

If we define

$$K:=\bigcap_{n_m}^{\infty}E_{n_m}^m,$$

then it satisfies the second conclusion, and also have

$$\mu(\Omega \setminus K) = \mu\Big(\bigcup_{m=1}^{\infty} (\Omega \setminus E_{n_m}^m)\Big) \leq \sum_{m=1}^{\infty} \mu(\Omega \setminus E_{n_m}^m) < \sum_{m=1}^{\infty} \frac{\varepsilon}{2^m} = \varepsilon.$$

(c) Fix m > 0. Since  $n \ge n_m$  implies  $K \subset E^m_{n_m} \subset E^m_n$ , we have

$$n \ge n_m \quad \Rightarrow \quad \sup_{x \in K} |f_n(x) - f(x)| < \frac{1}{m}.$$

#### **Exercises**

- **3.6** (Cauchy's functional equation). Let  $f : \mathbb{R} \to \mathbb{R}$  be a function. Cauchy's functional equation refers to the equation f(x + y) = f(x) + f(y), satisfied for all  $x, y \in \mathbb{R}$ . Suppose f satisfies the Cauchy functional equation. We ask if f is linear, that is f(x) = ax for all  $x \in \mathbb{R}$ , where a := f(1).
  - (a) f(x) = ax for all  $x \in \mathbb{Q}$ , but there is a nonlinear solution of Cauchy's functional equation.
  - (b) If f is conitnuous at a point, then f is linear.
  - (c) If f is Lebesgue measurable, then f is linear.
- **3.7** (Pointwise approximation by simple functions). Let  $(\Omega, \mu)$  be a measure space and X a metric space with Borel measurable structure. By a *simple function* we mean a measurable function  $s: \Omega \to X$  of finite image.

- (a) For each open set  $U \subset X$  there is a sequence of open sets  $U_i$  such that  $U = \bigcup_i U_i$  and  $\overline{U}_i \subset U$ . Let  $f: \Omega \to X$  be any function.
- (b) If f is the pointwise limit of a sequence of measurable functions, then f is measurable.
- (c) If f is measurable, then f is the pointwise limit of a sequence of simple functions, if X is separable.
- \*(d) The pointwise limit of a net of simple functions may not be measurable.

*Proof.* (b) Suppose a sequence  $(f_n)_n$  of measurable functions converges pointwisely to a function f. For fixed open  $U \subset X$  we claim

$$f^{-1}(U) = \bigcup_{i=1}^{\infty} \liminf_{n \to \infty} f_n^{-1}(U_i).$$

If it is true, then  $f^{-1}(U)$  is the countable set operation of measurable sets  $f_n^{-1}(U_i)$ . Let  $U_i$  be the sequence associated to U taken by the part (a).

- ( $\subset$ ) If  $\omega \in f^{-1}(U)$ , then for some i we have  $f(\omega) \in U_i$ , so  $f_n(\omega)$  is eventually in  $U_i$ , thus we have  $\omega \in \liminf_{n \to \infty} f_n^{-1}(U_i)$ .
- ( $\supset$ ) If  $\omega \in \liminf_{n \to \infty} f_n^{-1}(U_i)$  for some i, then  $f_n(\omega)$  is eventually in  $U_i$ , so  $f(\omega) \in \overline{U}_i \subset U$ , thus we have  $\omega \in f^{-1}(U)$ .
- (c) Suppose there is a increasing sequence of finite tagged partitions  $\mathcal{P}_n \subset \mathcal{B}$  satisfying the following property: for each open-neighborhood pair (x,U) there is n and i such that  $P_{n,i} \in \mathcal{P}_n$  and  $x \in P_{n,i} \subset U$ . We denote the tags by  $t_{n,i} \in P_{n,i}$  for each  $P_{n,i} \in \mathcal{P}_n$ . Define

$$s_n(\omega) := t_{n,i}$$
 for  $f(\omega) \in P_{n,i}$ .

To show  $s_n(\omega) \to f(\omega)$ , fix an open  $f(\omega) \in U \subset X$ . Then, there is  $n_0$  such that there is a sequence  $(P_{n,i_n})_{n=n_0}^{\infty}$  satisfying  $P_{n,i_n} \in \mathcal{P}_n$  and  $f(\omega) \in P_{n,i_n} \subset U$ . Then, for all  $n \ge n_0$ , we have for  $f(\omega) \in P_{n,i_n}$  that  $s_n(\omega) = t_{n,i_n} \in P_{n,i_n} \subset U$ .

The existence of such sequence of partitions...

Another approach: mimicking Pettis measurability theorem.

# Part II Lebesgue integral

# **Convergence theorems**

- 4.1 Definition of Lebesgue integral
- 4.2 Convergence theorems
- **4.1** (Monotone convergence theorem).

#### 4.3 Radon-Nikodym theorem

An integrable function as a measure  $\sigma$ -finite measures

#### **Exercises**

**4.2** (Convergence of one-parameter family).

# **Product measures**

- 5.1 Fubini-Tonelli theorem
- 5.2 Lebesgue measure on Euclidean spaces

## Measures on metric spaces

#### 6.1 Continuous functions on metric spaces

Urysohn and Tietze.

**6.1** (Regular Borel measures on metric spaces). Let  $\mu$  be a Borel measure on a metric space  $\Omega$ . We say  $\mu$  is *outer regular* if

$$\mu(E) = \inf{\{\mu(U) : E \subset U, U \text{ open}\}},$$

and say  $\mu$  is inner regular if

$$\mu(E) = \sup{\{\mu(F) : F \subset E, F \text{ closed}\}},$$

for every Borel subset  $E \subset \Omega$ . If  $\mu$  is both outer and inner regular, we say  $\mu$  is regular.

- (a) Let *E* be  $\sigma$ -finite. Then, *E* is  $\mu$ -regular if and only if for any  $\varepsilon > 0$  there are open *U* and closed *F* such that  $F \subset E \subset U$  and  $\mu(U \setminus F) < \varepsilon$ .
- (b) If  $\mu$  is  $\sigma$ -finite, then the set of  $\mu$ -regular subsets is a  $\sigma$ -algebra. (may be extended?)
- (c) Every closed set is  $G_{\delta}$ .
- (d) Every finite Borel measure on  $\Omega$  is regular.

Proof.

- **6.2** (Luzin's theorem). Let  $\mu$  be a regular Borel measure on a metric space  $\Omega$ . Let  $f: \Omega \to \mathbb{R}$  be a Borel measurable function. Two proofs: direct and Egoroff.
  - (a) If  $E \subset \Omega$  is  $\sigma$ -finite, then there is a continuous g blabla
  - (b) If f vanishes outside a  $\sigma$ -finite set, then for any  $\varepsilon > 0$  there is a closed set  $F \subset \Omega$  such that  $f|_F : F \to \mathbb{R}$  is continuous and  $\mu(\Omega \setminus F) < \varepsilon$ .
  - (c) If f vanishes outside a  $\sigma$ -finite set, then for any  $\varepsilon > 0$  there is a closed set  $F \subset \Omega$  and continuous  $g: \Omega \to \mathbb{R}$  such that  $f|_F = g|_F$  and  $\mu(\Omega \setminus F) < \varepsilon$ .
  - (d) If f is further bounded, then g also can be taken to be bounded.

*Proof.* (a) Let  $\varepsilon > 0$  and suppose  $E \subset \Omega$  is measurable with  $\mu(E) < \infty$ . Since E is  $\sigma$ -finite, we have open U and closed F such that  $F \subset E \subset U$  and  $\mu(U \setminus F) < \varepsilon/2$ . By the Urysohn lemma, there is a continuous function  $g: \Omega \to [0,1]$  such that  $g|_{U^c} = 0$  and  $g|_F = 1$ . Then,

$$\int |\mathbf{1}_E - g| d\mu = \int_{U \setminus F} |\mathbf{1}_E - g| d\mu \le 2\mu(U \setminus F) < \varepsilon.$$

(b) Since  $\mathbb{R}$  is second countable, we have a base  $(V_n)_{n=1}^{\infty}$  of  $\mathbb{R}$ . Since  $\mu$  is  $\sigma$ -finite, for each n we can take open  $U_n$  and closed  $F_n$  such that

$$F_n \subset f^{-1}(V_n) \subset U_n$$

and  $\mu(U_n \setminus F_n) < \varepsilon/2^n$ . Define  $F := (\bigcup_{n=1}^{\infty} (U_n \setminus F_n))^c$  so that  $\mu(\Omega \setminus F) < \varepsilon$  and F is closed. Then,

$$U_n \cap F = U_n \cap ((U_n^c \cup F_n) \cap F)$$

$$= (U_n \cap (U_n^c \cup F_n)) \cap F$$

$$= (\emptyset \cup (U_n \cap F_n)) \cap F$$

$$\subset F_n \cap F$$

proves  $f^{-1}(V_n)$  is open in F for every n, hence the continuity of  $f|_F$ . (In fact, we require that X to be just a topological space.)

(b') We can alternatively use the part (a) and the Egoroff theorem. By the part (a), we can construct a sequence  $(f_n)$  of continuous functions  $X \to \mathbb{R}$  such that  $f_n \to f$  in  $L^1$ . By taking a subsequence, we may assume  $f_n \to f$  pointwise. Assuming  $\mu$  is finite, by the Egorov theorem, there is a measurable  $A \subset X$  such that  $f_n \to f$  uniformly on A and  $\mu(X \setminus A) < \varepsilon/2$ . Since  $\mu$  is inner regular, we have closed  $F \subset A$  such that  $\mu(A \setminus F) < \varepsilon/2$ , so that we have  $\mu(X \setminus F) < \varepsilon$ . Then, f is continuous on A, and of course on F.

6.2 Locally compact metric spaces

compact closed set not containing infty open open not containing infty closed closed set containing infty

for a measure that "vanishes at infty" = tight two definitions of inner regularity is equivalent.

inner regular on compact sets -> inner regular on closed sets inner regular on compact sets + sigma finite -> tight

- **6.3** (One-point compactification).
- 6.4 (Regular Borel measures on locally compact metric spaces). sss
  - (a)  $C_c(\Omega)$  is dense in  $L^p(\mu)$  for  $1 \le p < \infty$ .
  - (b) If  $\mu$  is  $\sigma$ -finite, then for any  $\varepsilon > 0$  there is compact  $K \subset \Omega$  and continuous  $g : \Omega \to \mathbb{R}$  such that  $f|_K = g|_K$  and  $\mu(\Omega \setminus K) < \varepsilon$ .
- **6.5** (Tightness and inner regularity). We have a similar but confusing concept called tightness; we say a Borel measure  $\mu$  on a topological space X is *tight* if for any  $\varepsilon > 0$  there is a compact  $K \subset X$  such that  $\mu(X \setminus K) < \varepsilon$ .

History of Bourbaki's text.

(a)

#### 6.3 Riesz-Markov-Kakutani representation theorem

**6.6** (Riesz-Markov-Kakutani representation theorem for  $C_0$ ). Let  $\Omega$  be a locally compact metric space. We want to establish the following one-to-one correspondence:

Let I a positive linear functional on  $C_0(\Omega)$ . Let  $\mathcal{T}$  be the set of all open subsets of  $\Omega$  and  $\rho: \mathcal{T} \to [0, \infty]$  a set function such that

$$\rho(U) := \sup \{ I(f) : f \in C_c(U, [0, 1]) \}$$

for open U. Let  $\mu^* : \mathcal{P}(X) \to [0, \infty]$  be the associated outer measure defined from  $\rho$ , and  $\mu := \mu^*|_{\mathcal{M}}$  the Carathéodory measure, where  $\mathcal{M}$  is the  $\sigma$ -algebra of Carathéodory measurable subsets relative to  $\mu^*$ , and  $\mathcal{B}$  is the Borel  $\sigma$ -algebra of  $\Omega$ .

- (a)  $\mu^*|_{\mathcal{T}} = \rho$ .
- (b)  $\mathcal{B} \subset \mathcal{M}$ .
- (c)  $I(f) = \int f d\mu$  for  $f \in C(\Omega)$ .
- (d) The map  $\mu \mapsto (f \mapsto \int f d\mu)$  is injective.

*Proof.* (a) It suffices to show that  $\rho$  satisfies monotonically countably subadditive. Take an open set U and a countable open cover  $\{U_i\}_{i=1}^{\infty}$  of U. Take any  $f \in C_c(U,[0,1])$  and let  $K := \operatorname{supp} f$ . Since K is compact, there is a finite subcover  $\{U_j\}_{j=1}^n$  of K, and since K is paracompact Hausdorff, there is a partition of unitiy  $\{\chi_j\}_j$  on K subordinate to the open cover  $\{U_j \cap K\}_j$ . Note that  $\operatorname{supp} \chi_j \subset U_j \cap K$  for each j.

The set supp $(f \chi_j)$  is closed in K so the compactness, and we also have the inclusion supp $(f \chi_j) \subset$  supp  $\chi_j \subset U_j$ . For every  $0 < a \le 1$ , since  $(f \chi_j)^{-1}((a,1])$  is open in the interior of K and  $(f \chi_j)^{-1}([a,1])$  is closed in K,  $f \chi_j$  is continuous on  $U_j$ . Now we have checked  $f \chi_j \in C_c(U_j, [0,1])$ .

Then, because I is linear so that it preserves finite sum, we have

$$I(f) = I\left(\sum_{j=1}^{n} f \chi_{j}\right) = \sum_{j=1}^{n} I(f \chi_{j}) \le \sum_{j=1}^{n} \rho(U_{j}) \le \sum_{i=1}^{\infty} \rho(U_{i}).$$

Since f is arbitrary, we get  $\rho(U) \leq \sum_{i=1}^{\infty} \rho(U_i)$ .

(b) It suffices to show  $\mathcal{T} \subset \mathcal{M}$ . Clearly  $\mu^*(E) \leq \mu^*(E \cap U) + \mu^*(E \setminus U)$  for any measurable E and open U. For the opposite direction, take  $\varepsilon > 0$ . Note that we may assume  $\mu^*(E) < \infty$ . There are open  $U_i$  such that  $E \subset \bigcup_{i=1}^{\infty} U_i$  and

$$\mu^*(E) + \frac{\varepsilon}{3} > \sum_{i=1}^{\infty} \rho(U_i).$$

Take  $f_i \in C_c(U_i \cap U, [0, 1])$  such that

$$\rho(U_i \cap U) - \frac{1}{3} \cdot \frac{\varepsilon}{2^i} < I(f_i),$$

and take  $g_i \in C_c(U_i \setminus \text{supp } f_i, [0, 1])$  such that

$$\rho(U_i \setminus \operatorname{supp} f_i) - \frac{1}{3} \cdot \frac{\varepsilon}{2^i} < I(g_i).$$

Then, since  $f_i + g_i \in C_c(U_i, [0, 1])$ , we have

$$\rho(U_i) \ge I(f_i + g_i) > \rho(U_i \cap U) + \rho(U_i \setminus \text{supp } f_i) - \frac{2}{3} \cdot \frac{\varepsilon}{2^i}$$
$$\ge \rho(U_i \cap U) + \rho(U_i \setminus U) - \frac{2}{3} \cdot \frac{\varepsilon}{2^i}.$$

It implies

$$\mu^*(E) + \varepsilon > \sum_{i=1}^{\infty} \rho(U_i \cap U) + \sum_{i=1}^{\infty} \rho(U_i \setminus U)) \ge \mu^*(E \cap U) + \mu^*(E \setminus U)$$

because  $E \cap U \subset \bigcup_{i=1}^{\infty} U_i \cap U$  and  $E \setminus U \subset \bigcup_{i=1}^{\infty} U_i \setminus U$ .

(c) Note that we have

$$\rho(U) = \sup_{f \in C_c(U,[0,1])} I(f), \qquad \mu(E) = \inf_{\substack{E \subset U \\ U \text{ open}}} \rho(U).$$

We first claim that for  $g \in C_c(\Omega, [0, 1])$ , if K and K' are compact sets such that  $g|_K = 1$  and  $g|_{K'^c} = 0$  respectively, then we have

$$\mu(K) \le I(g) \le \mu(K')$$
.

The one inequality directly follows from

$$I(g) \le \inf_{K' \subset U} \rho(U) = \mu(K').$$

For the other, take sufficiently small  $\varepsilon > 0$  such that  $U := g^{-1}((1 - \varepsilon, 1])$  satisfies  $K \subset U \subset \text{supp } g$ . For any  $h \in C_{\varepsilon}(U, [0, 1])$ , the inequality  $(1 - \varepsilon)h \leq g$  implies  $I(h) \leq (1 - \varepsilon)^{-1}I(g)$ , so

$$\mu(K) \le \rho(U) \le I(h) \le (1 - \varepsilon)^{-1} I(g).$$

By limiting  $\varepsilon \to 0$ , we get  $\mu(K) \le I(g)$ , the claim proved.

Since  $C_c(\Omega)$  is the linear span of  $C_c(\Omega, [0, 1])$ , it is enough to show  $I(f) = \int f d\mu$  for  $f \in C_c(X, [0, 1])$ . For a fixed positive integer n and for each index  $1 \le i \le n$ , let  $K_i := f^{-1}([i/n, 1])$  and define

$$f_i(x) := \begin{cases} 0 & \text{if } x \in K_{i-1}^c, \\ f(x) - \frac{i-1}{n} & \text{if } x \in K_{i-1} \setminus K_i, \\ \frac{1}{n} & \text{if } x \in K_i, \end{cases}$$

where  $K_0 := \operatorname{supp} f$ . Note that  $nf_i \in C_c(X,[0,1])$  and  $f = \sum_{i=1}^n f_i$ . For  $1 \le i \le n$  we have  $\mu(K_i) < \infty$  because  $K_i$  is compact subsets contained in a locally compact Hausdorff space  $U := f^{-1}((0,1])$ , but  $\mu(K_0)$  is possibly infinite. By the previous claim and the property of integral, we have

$$\frac{\mu(K_i)}{n} \le I(f_i), \qquad \frac{\mu(K_i)}{n} \le \int f_i \, \mathrm{d}\mu$$

for  $1 \le i \le n$  and

$$I(f_i) \le \frac{\mu(K_{i-1})}{n}, \qquad \int f_i d\mu \le \frac{\mu(K_{i-1})}{n}$$

for  $2 \le i \le n$ . Then, using the above inequalities and  $\mu(K_n) \ge 0$ , we have

$$I(f) \le I(f_1) + \int f d\mu$$
 and  $\int f d\mu \le \int f_1 d\mu + I(f)$ .

Note that  $f_1 = \min\{f, 1/n\}$  is a sequence of functions indexed by n. By the monotone convergence theorem,  $\int f_1 d\mu \to 0$  as  $n \to \infty$ . We now show  $I(f_1)$  converges to zero.

(d) Let  $\mu$  and  $\nu$  be finite Borel measures on  $\Omega$  such that

$$\int g \, d\mu = \int g \, d\nu$$

for all  $g \in C(\Omega)$ . Let E be any measurable set. Since  $\mu + \nu$  is a finite Borel measure, it is regular, and by the Luzin theorem, we have a closed set F and  $g \in C(\Omega)$  with  $0 \le g \le 1$  such that  $\mathbf{1}_E|_F = g|_F$  and  $(\mu + \nu)(\Omega \setminus F) < \varepsilon/2$ . Then,

$$|\mu(E) - \nu(E)| = |\int \mathbf{1}_E d\mu - \int \mathbf{1}_E d\nu|$$

$$\leq \int_{\Omega \setminus F} |\mathbf{1}_E - g| d\mu + \int_{\Omega \setminus F} |g - \mathbf{1}_E| d\nu$$

$$\leq 2\mu(\Omega \setminus F) + 2\nu(\Omega \setminus F) < \varepsilon.$$

By limiting  $\varepsilon \to 0$ , we have  $\mu(E) = \nu(E)$ .

**6.7** (Dual of continuous function spaces).

#### 6.4 Hausdorff measures

#### **Exercises**

# Part III Linear operators

# Lebesgue spaces

#### 7.1 $L^p$ spaces

7.1 (Hölder inequality).

Proof.

$$\int f g \le C^p \int \frac{|f|^p}{p} + \frac{1}{C^q} \int \frac{|g|^q}{q}$$

Take C such that

$$C^p \int \frac{|f|^p}{p} = \frac{1}{C^q} \int \frac{|g|^q}{q}.$$

Then,

$$C^p \int rac{|f|^p}{p} + rac{1}{C^q} \int rac{|g|^q}{q} = 2p^{-rac{1}{p}}q^{-rac{1}{q}} \Big(\int |f|^p\Big)^{rac{1}{p}} \Big(\int |g|^p\Big)^{rac{1}{q}}.$$

Note that we can show that  $1 \le 2p^{-\frac{1}{p}}q^{-\frac{1}{q}} \le 2$  and the minimum is attained only if p=q=2, so this method does not provide the sharpest constant.

### 7.2 $L^1$ spaces

7.2 (Convolution?).

7.3 (Approximate identity?).

7.4 (Continuity of translation?).

## 7.3 $L^2$ spaces

7.4  $L^{\infty}$  spaces

# **Bounded linear operators**

#### 8.1 Continuity

Schur test

#### 8.2 Density arguments

extension of operators

#### 8.3 Interpolation

weak Lp, marcinkiewicz

**Definition 8.3.1.** Let f be a measurable function on a measure space  $(X, \mu)$ . The *distribution function*  $\lambda_f: [0, \infty) \to [0, \infty)$  is defined as:

$$\lambda_f(\alpha) := \mu(\{x : |f(x)| > \alpha\}).$$

Do not use  $\mu(\{x: |f(x)| \ge \alpha\})$ . The strict inequality implies the *lower semi-continuity* of  $\lambda_f$ .

(a) For p > 0, we have

$$||f||_{L^p}^p = p \int_0^\infty \left[\alpha \cdot \mu(|f| > \alpha)^{\frac{1}{p}}\right]^p \frac{d\alpha}{\alpha}.$$

Definition 8.3.2.

$$||f||_{L^{p,q}}^q := p \int_0^\infty \left[\alpha \cdot \mu(|f| > \alpha)^{\frac{1}{p}}\right]^q \frac{d\alpha}{\alpha}.$$

Also,

$$\|f\|_{L^{p,\infty}} := \sup_{0 < \alpha < \infty} \left[ \alpha \cdot \mu(|f| > \alpha)^{\frac{1}{p}} \right].$$

**Theorem 8.3.1.** *For*  $p \ge 1$  *we have*  $||f||_{p,\infty} \le ||f||_p$ .

Proof. By the Chebyshev inequality,

$$\sup_{0<\alpha<\infty} \left[\alpha^p \cdot \mu(|f|>\alpha)\right] \le \int_0^\infty p\alpha^{p-1} \cdot \mu(|f|>\alpha) \, d\alpha = \|f\|_{L^p}^p.$$

**8.1** (Marcinkiewicz interpolation). Let X be a  $\sigma$ -finite measure space and Y be a measure space. Let

$$1 < p_0 < p < p_1 < \infty$$
.

If a sublinear operator  $T: L^{p_0}(X) + L^{p_1}(X) \to M(Y)$  has two weak-type estimates

$$||T||_{L^{p_0}(X)\to L^{p_0,\infty}(Y)} < \infty$$
 and  $||T||_{L^{p_1}(X)\to L^{p_1,\infty}(Y)} < \infty$ ,

then it has a strong-type estimate

$$||T||_{L^p(X)\to L^p(X)}<\infty.$$

*Proof.* Let  $f \in L^p(X)$  and denote  $f_h = \chi_{|f| > a} f$  and  $f_l = \chi_{|f| \le a} f$ . It is easy to show  $f_h \in L^{p_0}$  and  $f_l \in L^{p_1}$ . Then,

$$\begin{split} \|Tf\|_{L^{p}(Y)}^{p} \sim \int \alpha^{p} \cdot \mu(|Tf| > \alpha) \frac{d\alpha}{\alpha} \\ \lesssim \int \alpha^{p} \cdot \mu(|T(f \cdot \mathbf{1}_{|f| > \alpha})| > \alpha) \frac{d\alpha}{\alpha} + \int \alpha^{p} \cdot \mu(|Tf_{l}| > \alpha) \frac{d\alpha}{\alpha} \\ \leq \int \alpha^{p} \cdot \frac{1}{\alpha^{p_{0}}} \|Tf_{h}\|_{L^{p_{0}, \infty}}^{p_{0}} \frac{d\alpha}{\alpha} + \int \alpha^{p} \cdot \frac{1}{\alpha^{q_{1}}} \|Tf_{l}\|_{L^{p_{1}, \infty}}^{p_{1}} \frac{d\alpha}{\alpha} \\ \lesssim \int \alpha^{p-p_{0}} \|f_{h}\|_{p_{0}}^{p_{0}} \frac{d\alpha}{\alpha} + \int \alpha^{p-p_{1}} \|f_{l}\|_{p_{1}}^{p_{1}} \frac{d\alpha}{\alpha} \\ \sim \|f\|_{p}^{p}. \end{split}$$

by (1) Fubini, (2) Sublinearlity, (3) Chebyshev, (4) Boundedness, (5) Fubini.

**8.2** (Hadamard's three line lemma). Let f be a bounded holomorphic function on the vertical unit stripe  $\{z: 0 < \text{Re } z < 1\}$ . Then, for  $0 < \theta < 1$ ,

$$||f||_{L^{\infty}(\mathrm{Re}=\theta)} \leq ||f||_{L^{\infty}(\mathrm{Re}=0)}^{1-\theta} ||f||_{L^{\infty}(\mathrm{Re}=1)}^{\theta}.$$

Proof. Define

$$g(z) := \frac{f(z)}{\|f\|_{L^{\infty}(\text{Re}=0)}^{1-z} \|f\|_{L^{\infty}(\text{Re}=1)}^{z}}, \qquad g_n(z) = g(z)e^{\frac{z^2-1}{n}}.$$

Then we have

- 1.  $g_n \to g$  pointwisely as  $n \to \infty$ ,
- 2.  $g_n(z) \to 0$  uniformly as  $\text{Im } z \to \infty$ .

The second one is because g is bounded and for z = x + yi we have

$$|g_n(z)| \lesssim |e^{\frac{z^2-1}{n}}| = e^{\operatorname{Re} \frac{z^2-1}{n}} = e^{\frac{x^2-y^2-1}{n}} \leq e^{\frac{-y^2}{n}}.$$

By (1), it is enough to bound  $g_n$  for each n. Truncating the stripe, the outer region is controlled by (2) and the interior region is controlled by the maximum modulus principle.

**8.3** (Riesz-Thorin interpolation). Let X, Y be  $\sigma$ -finite measure spaces. Let

$$\frac{1}{p_{\theta}} = (1 - \theta)\frac{1}{p_0} + \theta\frac{1}{p_1}, \qquad \frac{1}{q_{\theta}} = (1 - \theta)\frac{1}{q_0} + \theta\frac{1}{q_1}.$$

Then,

$$||T||_{p_{\theta} \to q_{\theta}} \le ||T||_{p_{0} \to q_{0}}^{1-\theta} ||T||_{p_{1} \to q_{1}}^{\theta}$$

Proof. Note that

$$||T||_{p_{\theta} \to q_{\theta}} = \sup_{f} \frac{||Tf||_{q_{\theta}}}{||f||_{p_{\theta}}} = \sup_{f,g} \frac{|\langle Tf, g \rangle|}{||f||_{p_{\theta}} ||g||_{q'_{\theta}}}.$$

Consider a holomorphic function

$$z \mapsto \langle Tf_z, g_z \rangle = \int \overline{g_z(y)} Tf_z(y) dy,$$

where  $f_z$  and  $g_z$  are defined as

$$f_z = |f|^{\frac{p_{\theta}}{p_0}(1-z) + \frac{p_{\theta}}{p_1}z} \frac{f}{|f|}$$

so that we have  $f_{\theta} = f$  and

$$||f||_{p_{\theta}}^{p_{\theta}} = ||f_z||_{p_x}^{p_x}$$

for  $\operatorname{Re} z = x$ .

Then,

$$|\langle Tf_z, g_z \rangle| \leq \|T\|_{p_0 \to q_0} \|f_z\|_{p_0} \|g_z\|_{q_0'} = \|T\|_{p_0 \to q_0} \|f\|_{p_\theta}^{p_\theta/p_0} \|g\|_{q_\theta'}^{q_\theta'/q_0'}$$

for Re z=0, and

$$|\langle Tf_z, g_z \rangle| \leq \|T\|_{p_1 \to q_1} \|f_z\|_{p_1} \|g_z\|_{q_1'} = \|T\|_{p_1 \to q_1} \|f\|_{p_\theta}^{p_\theta/p_1} \|g\|_{q_\theta'}^{q_\theta'/q_1'}$$

for Re z=1. By Hadamard's three line lemma, we have

$$|\langle Tf_z, g_z \rangle| \le ||T||_{p_0 \to q_0}^{1-\theta} ||T||_{p_1 \to q_1}^{\theta} ||f||_{p_{\theta}} ||g||_{q'_{\theta}}$$

for  $\operatorname{Re} z = \theta$ . Putting  $z = \theta$  in the last inequality, we get the desired result.

# **Convergence of linear operators**

- 9.1 Translation and multiplication operators
- 9.2 Convolution type operators

approximation of identity Fejér, Poisson, box?

9.3 Computation of integral transforms

# Part IV Fundamental theorem of calculus

## Weak derivatives

The space of weakly differentiable functions with respect to all variables  $= W_{loc}^{1,1}$ .

**10.1** (Product rule for weakly differentiable functions). We want to show that if u, v, and uv are weakly differentiable with respect to  $x_i$ , then  $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$ .

(a) If u is weakly differentiable with respect to  $x_i$  and  $v \in C^1$ , then  $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$ .

**10.2** (Interchange of differentiation and integration). Let  $f:\Omega_x\times\Omega_y\to\mathbb{R}$  be such that  $\partial_{x_i}f$  is well-defined. Suppose f and  $\partial_{x_i}f$  are locally integrable in x and integrable y. Then,

$$\partial_{x_i} \int f(x,y) dy = \int \partial_{x_i} f(x,y) dy.$$

Do not think the Schwarz theorem as the condition for partial differentiation to commute. We should understand like this: if F is  $C^2$  then the *classical* partial differentiation commute, and if F is not  $C^2$  then the *classical* partial derivatives of order two or more are *meaningless* because it is not compatible with the generalized concept of differentiation.

# **Absolutely continuity**

- (a) f is  $Lip_{loc}$  iff f' is  $L_{loc}^{\infty}$
- (b) f is  $AC_{loc}$  iff f' is  $L^1_{loc}$
- (a) f is Lip iff f' is  $L^{\infty}$
- (b) f is AC iff f' is  $L^1$
- (c) f is BV iff f' is a finite regular Borel measure
- 11.1 Absolute continuous measures
- 11.2 Absolute continuous functions
- 11.3 Functions of bounded variation

## Lebesgue differentiation theorem

#### 12.1 Hardy-Littlewood maximal function

Let  $T_m$  be a net of linear operators. It seems to have two possible definitions of maximal functions:

$$T^*f := \sup_m |T_m f|$$

and

$$T^*f := \sup_{m, \ \varepsilon: |\varepsilon(x)|=1} |T_m(\varepsilon f)|.$$

- **12.1** (Hardy-Littlewood maximal function). The Hardy-Littlewood maximal function is just the maximal function defined with the approximate identity by the box kernel.
- 12.2 (Weak type estimate).

$$||Mf||_{1,\infty} \le 3^d ||f||_{L^1(\Omega)}.$$

(a) Proof by covering lemma.

*Proof.* (a) By the inner regularity of  $\mu$ , there is a compact subset K of  $\{|Mf| > \lambda\}$  such that

$$\mu(K) > \mu(\{|Mf| > \lambda\}) - \varepsilon$$
.

For every  $x \in K$ , since  $|Mf(x)| > \lambda$ , we can choose an open ball  $B_x$  such that

$$\frac{1}{\mu(B_x)} \int_{B_x} |f| > \lambda$$

if and only if

$$\mu(B_x) < \frac{1}{\lambda} \int_{B_x} |f|.$$

With these balls, extract a finite open cover  $\{B_i\}_i$  of K. Since the diameter of elements in this cover is clearly bounded, so the Vitali covering lemma can be applied to obtain a disjoint subcollection  $\{B_k\}_k$  such that

$$K \subset \bigcup_{i} Bi \subset \bigcup_{k} 3B_{k}.$$

Therefore,

$$\mu(K) \le \sum_{k} 3^{d} \mu(B_{k}) \le \frac{3^{d}}{\lambda} \sum_{k} \int_{B_{k}} |f| \le \frac{3^{d}}{\lambda} ||f||_{1}.$$

The disjointness is important in the last inequality which shows the constant does not depend on the number of  $B_k$ 's.

**12.3** (Radially bounded approximate identity). If an approximate identity  $K_n$  is radially bounded, then its maximal function is dominated by the Hardy-Littlewood maximal function:

$$\sup_{n} |K_n * f(x)| \lesssim M f(x)$$

for every n and x, hence has a weak type estimate.

**12.4** (Almost everywhere convergence of operators). Suppose is  $T_m$  is a sequence of linear operators such that the maximal function  $T^*f$  is dominated by Mf. If  $f \in L^1(\Omega)$  and  $T_mg \to g$  pointwise for  $g \in C(\Omega)$ , then  $T_mf \to f$  a.e.

*Proof.* Take  $\varepsilon > 0$  and  $g \in C(\Omega)$  such that  $||f - g||_{L^1(\Omega)} < \varepsilon$ . Since  $T_m g(x) \to g(x)$  pointwise, we have

$$\begin{split} &\mu(\{x: \limsup_{m} |T_{m}f(x) - f(x)| > \lambda\}) \\ &\leq \mu(\{x: \limsup_{m} |T_{m}f(x) - T_{m}g(x)| > \frac{\lambda}{2}\}) + \mu(\{x: |g(x) - f(x)| > \frac{\lambda}{2}\}) \\ &\leq \mu(\{x: M(f - g)(x) > \frac{\lambda}{2}\}) + \frac{2}{\lambda} \|f - g\|_{L^{1}(\Omega)} \\ &\lesssim \frac{1}{\lambda} \varepsilon \end{split}$$

for every  $\lambda > 0$ . Limiting  $\varepsilon \to 0$ , we get

$$\mu(\lbrace x: \limsup_{m} |T_{m}f(x) - f(x)| > \lambda \rbrace) = 0$$

for every  $\lambda > 0$ , hence the continuity from below implies

$$\mu(\{x: \limsup_{m} |T_m f(x) - f(x)| > 0\}) = 0.$$

Definition 12.1.1.

$$f^*(x) := \lim_{r \to 0+} \frac{1}{\mu(B)} \int_B |f(y) - f(x)| \, dy.$$

**Theorem 12.1.1** (Lebesgue differentiation).  $f^* = 0$  a.e.

*Proof.* Note that  $f^* \leq Mf + |f|$  implies

$$||f^*||_{1,\infty} \le ||Mf||_{1,\infty} + ||f||_{1,\infty} \lesssim ||f||_1.$$

Note that  $g^* = 0$  for  $g \in C_c$ . Approximate using  $f^* = (f - g)^*$ .

#### **Exercises**

12.5 (Doubling measure).