PROJET D'INSTALLATION D'UNE STATION MÉTÉO

LES TECHNOLOGIES DE TRANSMISSION SANS FIL

Technologies Compared

LPWAN Local Area Networks Cellular Low Powered Wide Area Network (Bluetooth, ZigBee, WiFi) (3G, 4GLTE, 5G CDMA) LoRaWAN, NBIOT, Sigfox CA DATA RATE ~100kbps-100mbps ~100kbps-100mbps ~10kbps ≈ RANGE Short Long Long BATTERY LIFE Varies Short Long COST Efficient Expensive Expensive In-home/Building & Consumer Traditional M2M 55% of IoT Market **EXAMPLE USE CASES** Metering Temp CCTV Monitoring Smart grid 0 WiFi Networks Asset tracking Asset tracking communication Copyright © 2017, Senet. Proprietary & Confidential.

PROJET D'INSTALLATION D'UNE STATION MÉTÉO

PROJET D'INSTALLATION D'UN RÉSEAU LORA

COMMENT CONNECTER PLUSIEURS DEVICES?

COMMENT RAJOUTER UNE COUCHE DE SÉCURITÉ

COMMENT CRÉER UN RÉSEAU LORAWAN

ARCHITECTURE LORAWAN

BANDE DE FRÉQUENCES UTILISÉES

En Europe, certaines fréquences sont libres:

Bande	Quelques protocoles
13,56 MHz	RFID, NFC
433 MHz	Talkie-walkie, télécommande, LoRa
868 MHz	Sigfox, LoRa, LoRaWAN
2,4 GHz	WiFi, Bluetooth, Zigbee, LoRa
5 GHz	WiFi

Parmi ces fréquences, seul 433 MHz, 868 MHz et 2,4GHz sont utilisables en LoRa. Seul 868 MHz est utilisé pour LoRaWAN.

MÉTHODE D'ÉTALEMENT DE SPECTRE

LoRa utilise une méthode d'étalement de spectre. La finalité est la suivante :

Pouvoir transmettre en même temps, sur le même canal. Le protocole LoRa utilise 6 « codes d'étalement de spectre » appelés Spreading Factor (SF7, SF8, SF9, SF10, SF11 et SF12) qui lui permet d'avoir 6 transmissions simultanées sur un même canal.

- La modulation LoRa utilise l'étalement de spectre pour transmettre les informations.
- Elle utilise le méthode appelée Chirp Spread Spectrum. Cela permet plusieurs transmissions dans le même canal, provoquant un étalement du spectre.

- La fréquence de départ est la fréquence centrale du canal moins la Bande Passante divisée par deux.
- La fréquence de fin est la fréquence centrale plus la bande passante divisée par deux.
- La fréquence centrale est appelée le canal.
- La bande passante est la largeur de bande occupée autour du canal.

Le symbole:

En LoRa, chaque symbole représente un certain nombre de bits transmis. La règle est la suivante :

Nombre de bits transmis dans un symbole = Spreading Factor.

Par exemple, si la transmission utilise un Spreading Factor de 10 (SF10), alors un symbole représente 10 bits.

C'est-à-dire qu'à l'émission, les bits sont regroupés par paquet de **SF** bits, puis chaque paquet est représenté par un symbole particulier parmi 2^{SF} formes de symboles possibles.

Voici un exemple théorique d'une modulation en SF2 à 868 Mhz, sur une bande passante de 125 kHz. Chaque symbole représente donc 2 bits.

Exemple:

Le Spreading factor utilisé est SF10.

Nous regroupons donc les bits par paquet de 10. Chaque paquet de 10 bits sera représenté par un symbole (sweep) particulier. Il y a 1024 symboles différents pour coder les 1024 combinaisons binaires possibles (2¹⁰).

<u>Durée d'émission d'un</u> <u>symbole :</u>

- En LoRa, la durée d'émission de chaque symbole (Chirp) dépend du spreading factor utilisé. Plus le SF est grand, plus le temps d'émission sera long.
- Pour une même bande passante, le temps d'émission d'un symbole en SF8 est 2 fois plus long que pour un SF7.

Le débit :

On voit que plus le spreading factor sera élevé, plus le débit binaire sera faible.

Plus la bande passante sera grande, plus le débit binaire sera élevé.

$$Dur\acute{e}e~d'un~symbole:~Ts = \frac{2^{SF}}{Bandwith}$$

débit symbolique :
$$Fs = \frac{1}{Ts} = \frac{Bandwith}{2^{SF}}$$

débit binaire :
$$D_b = \frac{Bandwith}{2^{SF}}$$
. S_F

INFLUENCE DU SPREADING FACTEUR

COMMENT TRANSMETTRE DU SERVEUR AU DEVICE (DOWNLINK)

COMMENT TRANSMETTRE DU SERVEUR AU DEVICE (DOWNLINK)

COMMENT TRANSMETTRE DU SERVEUR AU DEVICE (DOWNLINK)

End-device