Карточки теста №3

Вариант І

Во всех задачах требуется обосновать ответ!

- Пусть $\{x^k\}$ и $\{y^k\}$ последовательности в \mathbb{R}^n , обладающие пределами в $\overline{\mathbb{R}^n}$. Верно ли, что последовательность $\{x^k+y^k\}$ является сходящейся в себе?
 - **2** Является ли компактом множество $E = \{(x,y) \in \mathbb{R}^2 : |6x| + 9y^2 + \cos(x 4y) \le 100\}$?
- $\boxed{\bf 3}$ Пусть $f:\mathbb{R}^n \to \mathbb{R}$, и все частные производные первого порядка функции f в каждой точке существуют и постоянны. Означает ли это, что функция f линейна?

Вариант 2

Во всех задачах требуется обосновать ответ!

- **1** Найти предел $\lim_{(x;y)\to(0;0)} \frac{\ln(x+e^y)}{\sqrt[3]{|x|^3+|y|^3}}$, либо установить его отсутствие.
- **2** Пусть B некоторый замкнутый шар в \mathbb{R}^3 , $f(x,y,z) \in C(B)$. Верно ли, что график $\Gamma = \{(x,y,z,t) : (x,y,z) \in B, \ t = f(x,y,z)\}$ функции f является компактом в \mathbb{R}^4 ?

Вариант 3

Во всех задачах требуется обосновать ответ!

- П Найти предел $\lim_{(x:y)\to(0:0)} (x^2+y^2)^{xy}$, либо установить его отсутствие.
- $oxed{2}$ Пусть $f(x,y)\in C([0;1]^2)$. Верно ли, что график $\Gamma=\{(x,y,z):(x,y)\in [0;1]^2,\ z=f(x,y)\}$ функции f является компактом в \mathbb{R}^3 ?
- **3** Найти вторую производную по вектору v=(5,1,0) функции $P(x,y,z)=x^3+2xy^2-3x^2-4y^3+4xz-8z^3$ в точке (0;1;2).

Вариант 4

Во всех задачах требуется обосновать ответ!

- 1 Верно ли, что из существования двойного предела следует существование повторного?
- $\fbox{f 2}$ Пусть множество E задается в $\Bbb R^3$ системой условий:

$$E = \{(x, y, z) : P(x, y, z) = 0, |x|, |y|, |z| \le 5\}$$

где P(x,y,z) — многочлен. Верно ли, что множество E компактно?

3 Пусть $f: \mathbb{R}^n \to \mathbb{R}$, и все частные производные первого порядка функции f в некоторой точке $a \in \mathbb{R}^n$ существуют и равны единице. Означает ли это, что функция f дифференцируема в точке a?

Вариант 5

Во всех задачах требуется обосновать ответ!

- $\boxed{\mathbf{1}}$ Верно ли, что из любой последовательности в \mathbb{R}^n можно извлечь подпоследовательность, обладающую пределом в $\overline{\mathbb{R}^n}$?
 - **2** Является ли компактом множество $E = \{(x,y) \in \mathbb{R}^2 : x^2 + 3y^2 + \sin(x-4y) \le 10\}$?
- $\boxed{\bf 3}$ Пусть $f:\mathbb{R}^n \to \mathbb{R}$, и все частные производные первого порядка функции f в каждой точке существуют и равны нулю. Означает ли это, что функция f постоянна?

Вариант 6

Во всех задачах требуется обосновать ответ!

- **1** Найти предел $\lim_{(x;y)\to\infty} \frac{3x+y}{2x^2+y^2-xy}$, либо установить его отсутствие.
- **2** Пусть $a,b \in \mathbb{R}, \ f \in C([a;b])$. Верно ли, что график $\Gamma = \{(x,y) : a \le x \le b, \ y = f(x)\}$ функции f является компактом в \mathbb{R}^2 ?
 - **3** Найти четвертую производную по вектору v = (5,1) функции $P(x,y) = \ln(x+2y)$.

Вариант 7

Во всех задачах требуется обосновать ответ!

- Пусть $\{x^k\}$ и $\{y^k\}$ последовательности в \mathbb{R}^n , обладающие пределами в \mathbb{R}^n . Верно ли, что последовательность скалярных произведений $\{\langle x^k, y^k \rangle\}$ является сходящейся в себе?
 - $\fbox{f 2}$ Пусть множество E задается на плоскости $\Bbb R^2$ системой условий:

$$E = \{(x, y) : P(x, y) = 0, x^4 + y^4 \le 10^4\},\$$

где P(x,y) — многочлен. Верно ли, что множество E компактно?

 $oxed{3}$ Пусть для некоторой функций f(x) в некоторой внутренней точке a области определения $D\subseteq\mathbb{R}^n$ этой функции существует производная по любому направлению. Означает ли это, что f(x) дифференцируема в точке a?

Вариант 8

Во всех задачах требуется обосновать ответ!

- **1** Пусть $\{x^k\}$ сходящаяся последовательность в \mathbb{R}^n , $a=(1,2,3,\ldots,n)$ и $r_k=\|x^k-a\|, \ \forall n\in\mathbb{N}$. Верно ли, что $\{r_k\}$ является сходящейся в себе?
- **2** Пусть B некоторый замкнутый шар в \mathbb{R}^n , $f: B \to \mathbb{R}$, $f \in C(B)$, I (замкнутый) отрезок. Верно ли что прообраз $f^{-1}(I)$ этого отрезка является компактом?
 - **3** Вычислить $d^5 \ln(3x + 5y)$.