

SMLab short talk on

NeoBERT

ADHILSHA ANSAD

06. 03. 2025

Stand on the shoulders of GIANTS

License: CC BY 4.0

arXiv:2502.19587v1 [cs.CL] 26 Feb 2025

NeoBERT: A Next-Generation BERT

Lola Le Breton^{1,2,3} Quentin Fournier² Mariam El Mezouar⁴ Sarath Chandar^{1,2,3,5}

¹Chandar Research Lab ²Mila – Quebec AI Institute ³Polytechnique Montréal

⁴Royal Military College of Canada
⁵Canada CIFAR AI Chair

PREREQUISITES & MOTIVATION

- Bidirectional Encoder Representations from Transformers
- Masked Language Model (MLM) objective and Next Sentence Prediction (NSP) objective
- Produces different <u>semantic</u> meanings for same word by context
- **Motivation**: Recent innovations in architecture, pre-training, and fine-tuning

Fig. 3: Bidirectional BERT [CLS] dog cute [SEP] likes play ##ing [SEP] Emy E_{cute} E_[CLS] E_[SEP] E_{play} Eis E_[SEP] EA

OpenAl GPT

Fig. 4: Input embeddings

BERT (Ours)

E

RELATED WORKS

Table 1:	Comparison of Mod	el Architectures.	Training Data	. and Pre-Traini	g Configurations.

	BERT		Roberta		NomicBERT	ModernBERT		NeoBERT
	base	large	base	large	base	base	large	medium
Layers	12	24	12	24	12	22	28	28
Hidden Size	768	1,024	768	1,024	768	768	1,024	768
Attention Heads	12	16	12	16	12	12	16	12
Parameters	120M	350M	125M	355M	137M	149M	395M	250M
Activation Function	GeLU			SwiGLU	GeGLU		SwiGLU	
Positional Encoding	Positional Embeddings			RoPE	RoPE		RoPE	
ormalization		Post-	Post-LayerNorm		${\bf Post\text{-}LayerNorm}$	Pre-LayerNorm		Pre-RMSNorn
Data Sources		Corpus pedia	OpenWebText		BooksCorpus Wikipedia	Undisclosed		RefinedWeb
Dataset Size	130	GB	160GB		13GB	-		2.8 TB
Dataset Year	20	19	2019		2023			2023
Tokenizer Level	Character Byte		Character	Character		Character		
Vocabulary Size	30K		50K		30K	50K		30K
Sequence Length	512		512		2,048	$1,024 \to 8,192$		$1,024 \to 4,09$
Objective	MLM + NSP		MLM		MLM	MLM		MLM
Masking Rate	15% 1		15%	30%	30%		20%	
Masking Scheme	80/10/10		80/10/10		-	-		100
Optimizer	Adam Adam		dam	AdamW	${\bf Stable Adam W}$		AdamW	
Scheduler	ler		_		WSD		CosineDecay	
Batch Size	Size 131k tokens 131k		31k	8M 448k to $5M$		2M		
Tokens Seen	13	1B	131B		-	$\sim 2 \mathrm{T}$		2.1T
Training	DI	DDP DDP		DeepSpeed FlashAttention	Unpadding		DeepSpeed FlashAttentio	

IMPORTANT DESIGN ASPECTS

Optimal Depth-to-Width ratio

- BERT-like models in a width-inefficiency regime
- increase depth to achieve optimal ratio

Pre-Layer Normalization

- improves stability, allows for larger learning rates, and accelerates model convergence
- substitute the classical LayerNorm with RMSNorm

RoPE and YaRN Positional Encodings

• well-suited for tasks requiring extended context.

SwiGLU Activation Function

• scale the number of hidden units to keep the number of parameters constant. (extra weight matrix in SwiGLU)

TRAINING

- two-stage pre-training (compute-efficient strategy):
 - o 1M steps (2T tokens) with sequences of 1, 024 tokens
 - o 50k steps (100B tokens), with sequences upto 4, 096 tokens
- Mitigate the distribution shift when filtering for longer sequences, by sampling from different lengths with certain probabilities.
- Pseudo-perplexity:
 - o independently masked each token
 - Compute perplexity calculation with cross-entropy losses of these tokens
- Extensive Results on GLUE benchmark and MTEB benchmark

Fig. 5: Stage 1(1024 tokens) on the left, and stage 2 (upto 4096 tokens) on the right

TRAINING DETAILS

- 8 H100 for 1,050,000 steps, for a total of 6,000 GPU hours
- Fine-tune strategy:
 - \circ cosine similarity and $\tau = 0.07$ as a temperature parameter in the contrastive learning loss

$$\mathcal{L} = -\log \frac{e^{s(q,d^+)/\tau}}{e^{s(q,d^+)/\tau} + \sum_{d^- \in N_q} e^{s(q,d^-)/\tau}}$$

• Sampled datasets with a multinomial distribution based on their sizes, with $\alpha = 0.5$.

$$\pi = \frac{n_i^{\alpha}}{\sum_{j=1}^m n_j^{\alpha}}$$

• fine-tune every model for 2,000 steps and evaluate on MTEB in float16.

CONCLUSIONS & LIMITATIONS

GLUE benchmark

- NeoBERT outperforms BERT(L) and NomicBERT
- comparable with RoBERTa(L) 100M params lesser and supporting 8x longer sequences

MTEB benchmark

- isolating the effects of pre-training and fine-tuning
- NeoBERT consistently outperforms all baselines

Biases

- inherits the biases and limitations of its pre-training data.
- retraining will likely be needed once newer, larger, and more diverse datasets become available

Open Source!

- all code, data, model checkpoints, and training scripts available.
- fully open-source model

Papers

- Breton, L. L., Fournier, Q., Mezouar, M. E., & Chandar, S. (2025). **NeoBERT: A Next-Generation BERT**. arXiv preprint arXiv:2502.19587.
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers) (pp. 4171-4186).

Figures

- [Fig. 1] <u>Sentence Transformers</u>. *MLM*.
- [Fig. 2] Qiu, X., Liao, S., Xie, J., Nie, J.. (2022). Tapping the Potential of Coherence and Syntactic Features in Neural Models for Automatic Essay Scoring. 10.48550/arXiv.2211.13373.
- [Fig. 3] AraBERT transformer model for Arabic comments and reviews analysis Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Differences-in-pre-training-model-architectures_fig1_357796027
- [Fig. 4] OpenGenus IO | Adith Narein T. Embeddings in BERT.

Model & Codes

- https://github.com/chandar-lab/NeoBERT
- https://huggingface.co/chandar-lab/NeoBERT

THANK YOU...