| Computation structures 2014. The 24                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| S3 I recap                                                                                                                                |
| I Boolean algebra and combinational devices.  two injet gates  multiple impet gates                                                       |
| · Recap · algebra and simplification                                                                                                      |
| - We have learned now to represent 1s and 0s in a circuit A combinational device can be written as                                        |
| in I do I do                                                                                                                              |
| {- It must satisfy voltage transfer disciplines<br>- capacitor effect delays. NFET HET PRET - I Herrfor by noting                         |
| buffer means inverter means invert.                                                                                                       |
|                                                                                                                                           |
| How do we build arbitrary combinational logic devices?  Shuffer and inverter (1)  more inputs? Combination of godes (AND =D- more outputs |
| Math first and their hardware                                                                                                             |

· algebra

- British mathematician
George Bool
1850s "the mathematics of logic"

[domain] fo, 13 representing { False, True} values.

[ Boolean functions] because of this, binary algebra )
- The subject of Boolean algebra (is also called logic, or Boolean algebra)
- takes one or more inputs, gives one output.

| e.g. | I 0                       | *                                                                                |
|------|---------------------------|----------------------------------------------------------------------------------|
| AND  | I4 I0 0                   | NAND, NOR, XOR                                                                   |
| OR   | I, Io 0 0 0 0 0 1 1 1 0 1 | 22 Yows, 22 functions.  Why are AND and De and NOT special?  Then are universal. |

- The above tables are called <u>Truth tables</u>; they enumerate all possible inputs and define the output. All Boolean-functions can be exhaustively described using truth table.
- Boolean functions are naturally connected to M-to-1 device

each defice is such a Boolean function, and can be described using a truth table

-[M-to-N] devices can be treated as N
M-to-1 devices in parallel, although there may
be better solutions.

- [M-to-1] devices can be simplified as a combination of 2-1 and 1-1 devices.
  - Given a truth table, it is easy to find a Boolean function

|             | WATER AND IS IS IN IO | 0  |
|-------------|-----------------------|----|
|             | 0 1 1 1 1 0 0 0 0     | 0  |
| Note        | 1                     | 0  |
| how         | 1                     | 0  |
|             | 3- 0011               | 0  |
| 2 numerated | 4-9-0 (00             | 0  |
|             | 5 0 1 0 1             | 0  |
|             | 6 0110                | .0 |
|             | 7                     | 1  |
|             | 8 1000                | 0  |
|             | 9 1001                | 0  |
|             |                       | 0  |
|             | (0 - 1 - 1 - 1        | 0  |
|             |                       | 0  |
|             | 12                    | Ĭ  |
|             | (3                    | 0  |
|             | 14 (1 (0              |    |
|             | 15 38 [ 1 1 1         | 1  |

There are three combinations of inputs that makes to output 1.

OfMIJ3) AND IZ AND I, AND IO) OR ( IS AND IZ AND (NOTZ) AND IO) OR (IS AND IS A

- In Boolean algebra, AND is also expressed as X, OR as +, NOT A as A

0 = I3 I2 I, I o + I3 I2 I, I o + I3 I2 I, I o (0 is 1 only in cases)

The 16 terms are mutually exclusive, and covers all the cases.)
- The above rule is useful for any froth table.

> Any Boolean function can be used written in AND, OR, NOT

> Any combinational device can be made from D D -De

and gate ID-

or gate =D-

inverter -Do-

## ]3 12 1, 10 + 13 12 1, 20 + 13 12 1, 10 = 0



## - Can it be simpler?

[Boolean algebra] (proof truth table).

TI: Commotative A+B=B+A AB=BA

TZ= Associative (A+B)+(=A+(B+c) A(Bc)=(AB)(

T3: Distributive A (Btc)= AB+ AC

A+(BC) = (A+B)(A+C)

Symmetric

T4: Identity

A+A=A A=A

TTS:

AB+AB=A (A+B)·(A+B)=A SA(BtB) SA+BB

76: Redundence

ALTAB=A A (A+B)=A

OtA=A OA=O

1+A=1 1A=A

AtA=1 ÄA =0

TIO:

A+AB=A+B A(A+B)=AB

TII: De Morgan

AB+AB+AB (T6)  $\overline{AtB} = \overline{AB}$   $\overline{AB} = \overline{A+B}$ 

$$O = I_{3}I_{2}I_{1}J_{0} + I_{3}I_{1}I_{1}J_{0} + I_{3}I_{2}I_{1}J_{0}$$

$$= (I_{3}I_{1} + I_{3}I_{1} + I_{3}I_{1})I_{2}I_{0}$$

$$= (I_{3}I_{1} + I_{3})I_{2}I_{0}$$

$$= (I_{3} + I_{1})I_{2}I_{0}$$





$$C=0 \rightarrow Y=A$$

$$C=1 \rightarrow Y=B$$

(data selection)