Álgebra Conmutativa (examen 2)

Eduardo León (梁遠光)

Octubre 2020

Part I

Preliminaries. The following exercises are taken from [AM69].

Exercise 5.10. A ring homomorphism $\phi: A \to B$ is said to have the *going-up property* (resp. the *going-down property*) if the conclusion of the going-up theorem (resp. the going-down theorem) holds for B and its subring f(A).

Let $\varphi : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ be the induced morphism of affine schemes.

- 1. Consider the following statements:
 - (a) φ is a closed map.
 - (b) ϕ has the going-up property.
 - (c) $\varphi : \operatorname{Spec}(B/\mathfrak{q}) \to \operatorname{Spec}(A/\mathfrak{p})$ is surjective for any $\mathfrak{q} \in \operatorname{Spec}(B)$ and $\mathfrak{p} = \mathfrak{q}^c$.

Show that (a) \implies (b) \iff (c).

- 2. Consider the following statements:
 - (a') φ is an open map.
 - (b') ϕ has the going-down property.
 - (c') $\varphi : \operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A_{\mathfrak{p}})$ is surjective for any $\mathfrak{q} \in \operatorname{Spec}(B)$ and $\mathfrak{p} = \mathfrak{q}^c$.

Show that (a') \implies (b') \iff (c').

Solution.

- 1. Let $\mathfrak{q} \in \operatorname{Spec}(B)$. Recall that
 - $V(\mathfrak{q})$ is the canonical image of $\operatorname{Spec}(B/\mathfrak{q})$ in $\operatorname{Spec}(B)$.

Let $\mathfrak{p} = \varphi(\mathfrak{q})$. The following statements are equivalent:

- $\varphi \circ V(\mathfrak{q})$ is a closed subset of $\operatorname{Spec}(A)$.
- $\varphi \circ V(\mathfrak{q})$ contains every point of $V(\mathfrak{p})$.
- $\varphi : \operatorname{Spec}(B/\mathfrak{q}) \to \operatorname{Spec}(A/\mathfrak{p})$ is surjective.

Notice that

- (a) is stronger than "the first statement holds for every $\mathfrak{q} \in \operatorname{Spec}(B)$ ".
- (b) is equivalent to "the second statement holds for every $\mathfrak{q} \in \operatorname{Spec}(B)$ ".
- (c) is equivalent to "the third statement holds for every $\mathfrak{q} \in \operatorname{Spec}(B)$ ".

Therefore (a) \implies (b) \iff (c).

- 2. Let $\mathfrak{q} \in \operatorname{Spec}(B)$. Recall that
 - $B_{\mathfrak{q}} = \lim_{f \to g} B_f$, where f ranges over $B \mathfrak{q}$.
 - $L(\mathfrak{q}) = \bigcap_{f \notin \mathfrak{q}} D_f$ is the canonical image of $\operatorname{Spec}(B_{\mathfrak{q}})$ in $\operatorname{Spec}(B)$.

Let $\mathfrak{p} \in \varphi(\mathfrak{q})$ and $\mathfrak{p}' \in L(\mathfrak{p})$. Since the tensor product is a left adjoint functor,

- $k(\mathfrak{p}') \otimes_A B_{\mathfrak{q}} = \varinjlim \left(k(\mathfrak{p}') \otimes_A B_f \right)$, where f ranges over $B \mathfrak{q}$.
- $k(\mathfrak{p}') \otimes_A B_{\mathfrak{q}} \neq 0$ if and only if $k(\mathfrak{p}') \otimes_A B_f \neq 0$ for every $f \notin \mathfrak{q}$.
- $\mathfrak{p}' \in \varphi \circ L(\mathfrak{q})$ if and only if $\mathfrak{p}' \in \varphi(D_f)$ for every $f \notin \mathfrak{q}$.
- $\varphi \circ L(\mathfrak{q}) = \bigcap_{f \notin \mathfrak{q}} \varphi(D_f)$

Thus, the following statements are equivalent:

- $\varphi(D_f)$ contains every point of $L(\mathfrak{p})$.
- $\varphi \circ L(\mathfrak{q})$ contains every point of $L(\mathfrak{p})$.
- $\varphi : \operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A_{\mathfrak{p}})$ is surjective.

Notice that

- (a') is stronger than "the first statement holds for every $\mathfrak{q} \in \operatorname{Spec}(B)$ ".
- (b') is equivalent to "the second statement holds for every $\mathfrak{q} \in \operatorname{Spec}(B)$ ".
- (c') is equivalent to "the third statement holds for every $\mathfrak{q} \in \operatorname{Spec}(B)$ ".

Therefore (a') \Longrightarrow (b') \Longleftrightarrow (c').

Exercise 5.13. Let G be a finite subgroup of the automorphisms of a ring B.

- 1. Show that B is integral over $A = B^G$, the subring of fixed points of G.
- 2. Show that each fiber of the canonical map $\varphi : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is a G-orbit, hence finite.

Solution.

1. Let $x \in B$ and $x_i = g_i(x)$, where g_1, \ldots, g_n are the elements of G. Then,

$$0 = (x - x_1) \cdots (x - x_n) = x^n - a_1 x^{n-1} + a_2 x^{n-2} - a_3 x^{n-3} + \dots$$

Then x is integral over A, because

- a_1, \ldots, a_n are the elementary symmetric polynomials evaluated at x_1, \ldots, x_n .
- The action of G merely permutes x_1, \ldots, x_n .
- The action of G fixes $a_1, \ldots, a_n \in A$.
- 2. Let $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\mathfrak{q}, \mathfrak{q}' \in \varphi^{-1}(\mathfrak{p})$. Given $x \in \mathfrak{q}$, we deduce that
 - \mathfrak{q}' contains the product $x_1 \cdots x_n$.
 - \mathfrak{q}' contains at least one of the factors x_1, \ldots, x_n .

Let $O = G \cdot \mathfrak{p}$ be the G-orbit of \mathfrak{p} . Since x is arbitrary,

- \mathfrak{q}' is contained in $\bigcup O$.
- \mathfrak{q}' is contained in some $g_i(\mathfrak{q}) \in O$, by the prime avoidance lemma.
- $\mathfrak{q}' = g_i(\mathfrak{q})$, because φ has the going-up property.

Therefore, $\varphi^{-1}(\mathfrak{p}) = O$ is a G-orbit, hence finite.

Exercise 5.15. Let A be an integrally closed domain and K its field of fractions. Consider a finite Galois extension L/K with Galois group G. Let B be the integral closure of A in L.

- 1. Show that B is a G-invariant subset of L.
- 2. Show that $A = B^G$.
- 3. Show that the canonical morphism $\varphi : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ has finite fibers.

Solution.

- 1. Let $x \in B$ and $\sigma \in G$. Then $\sigma(x) \in B$, because
 - There exists a monic polynomial $p(t) \in A[t]$ such that p(x) = 0.
 - p(t) is G-invariant, because its coefficients are in $K = L^G$.
 - $p \circ \sigma(x) = \sigma \circ p(x) = 0$, hence $\sigma(x)$ is integral over A.
- 2. This follows from a two-step calculation:
 - Since L/K is Galois, $K = L^G$.
 - Since A is integrally closed, $A = B \cap K = B \cap L^G = B^G$.
- 3. This also follows from a two-step proof:
 - By the preceding two items, G is a finite group of automorphisms of B, and $A = B^G$.
 - By exercise 5.13, the canonical morphism φ has finite fibers.

Exercise 6.11. Let $\phi: A \to B$ be a ring homomorphism. Suppose further that Spec(B) is a *Noetherian* topological space, i.e., its closed subsets satisfy the descending chain condition.

- 1. Show that every closed subset of Spec(B) is a finite union of *irreducible* closed subsets.
- 2. Show that the induced morphism $\varphi : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is closed if and only if ϕ has the going-up property.

Solution.

- 1. Let us call a closed subset of $\operatorname{Spec}(B)$ unwieldy if it is not a union of finitely many irreducible closed subsets. Suppose $Y \subset \operatorname{Spec}(B)$ is an unwieldy subset. Then,
 - By Noetherian induction, we may assume Y is a minimal unwieldy subset.
 - By definition, Y is not irreducible. (Irreducible closed subsets are trivially not unwieldy.)

We may take two proper closed subsets Y_1, Y_2 whose union is Y. Then,

- At least one of Y_1, Y_2 must be unwieldy as well.
- Hence, Y is not a minimal unwieldy set, a contradiction.
- Hence, Spec(B) has no unwieldy subsets.
- 2. By exercise 5.10, if φ is a closed map, then ϕ has the going-up property. Thus, we only need to show the reverse implication. Let $Y \subset \operatorname{Spec}(B)$ be a closed subset. Then,
 - Y is the union of finitely many irreducible closed subsets Y_1, \ldots, Y_n .
 - Each $\varphi(Y_i)$ is closed, because φ has the going-up property.
 - Hence, $\varphi(Y) = \varphi(Y_1) \cup \cdots \cup \varphi(Y_n)$ is closed.
 - Hence, φ is a closed map.

Exercise 7.15. Let A be a Noetherian local ring, \mathfrak{m} its maximal ideal and k its residue field. Show that the following statements about a finitely generated A-module M are equivalent:

- (a) M is free.
- (b) M is flat.
- (c) The canonical map $\varphi : \mathfrak{m} \otimes_A M \to M$ is injective.
- (d) $\text{Tor}_{1}^{A}(k, M) = 0$

Solution.

- (a) \implies (b): Every free module is automatically flat.
- (b) \implies (c): Consider the short exact sequence

$$0 \longrightarrow \mathfrak{m} \longrightarrow A \longrightarrow k \longrightarrow 0$$

Since M is flat, after tensoring with M, we obtain

$$0 \longrightarrow \mathfrak{m} \otimes_A M \stackrel{\varphi}{\longrightarrow} M \longrightarrow k \otimes_A M \longrightarrow 0$$

Therefore, φ is injective.

 \bullet (c) \Longrightarrow (d): Consider the following fragment of the long exact sequence

$$\dots \longrightarrow \operatorname{Tor}_1^A(k,A) \xrightarrow{\pi} \operatorname{Tor}_1^A(k,M) \xrightarrow{\zeta} \mathfrak{m} \otimes_A M \xrightarrow{\varphi} M \longrightarrow \dots$$

We then perform diagram chasing:

- Since φ is injective, ζ is the zero map.
- Since ζ is the zero map, π is surjective.
- Since A is free, $\operatorname{Tor}_{1}^{A}(k, A) = 0$.
- Therefore, $\operatorname{Tor}_1^A(k, M) = \rho \circ \operatorname{Tor}_1^A(k, A) = \rho(0) = 0.$
- (d) \implies (a): Let $n \in \mathbb{N}$ be the minimal number of generators of M. We have

$$0 \longrightarrow L \longrightarrow A^n \longrightarrow M \longrightarrow 0$$

Consider the following fragment of the long exact sequence

$$\dots \longrightarrow \operatorname{Tor}_1^A(k,M) \stackrel{\pi}{\longrightarrow} k \otimes_A L \stackrel{\zeta}{\longrightarrow} k^n \stackrel{\phi}{\longrightarrow} k \otimes_A M \longrightarrow 0$$

Let x_1, \ldots, x_m be a k-basis of $k \otimes_A M$. Then,

- By Nakayama's lemma, x_1, \ldots, x_m lifts to a generating set of M. Hence m = n.
- Since ϕ is a surjective, ϕ is an isomorphism.

We then perform diagram chasing:

- Since ϕ is an isomorphism, ζ is the zero map.
- Since ζ is the zero map, π is surjective.
- By (d), we have $k \otimes_A L = \pi \circ \operatorname{Tor}_1^A(k, M) = \pi(0) = 0$.
- By Nakayama's lemma, L = 0.

Exercise 7.16. Let A be a Noetherian ring and M a finitely generated A-module. Show that the following statements are equivalent:

- (a) M is a flat A-module.
- (b) $M_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ -module, for each point $\mathfrak{p} \in \operatorname{Spec}(A)$.
- (c) $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module, for each closed point $\mathfrak{m} \in \operatorname{Spec}(A)$.

Solution. Let $\mathfrak{p} \in \operatorname{Spec}(A)$. Notice that

- $A_{\mathfrak{p}}$ is a Noetherian ring:
 - Every ascending chain of ideals of $A_{\mathfrak{p}}$ contracts to an ascending chain in A.
 - This ascending chain in A is a fortiori stationary, since A is Noetherian.
 - This ascending chain in A extends back to the *original* chain in $A_{\mathfrak{p}}$.
 - Hence the original chain $A_{\mathfrak{p}}$ is also stationary.
- $M_{\mathfrak{p}}$ is a finitely generated $A_{\mathfrak{p}}$ -module:
 - Any (finite) generating set of M extends to a (finite) generating set of M_p .
- $M_{\mathfrak{p}}$ is free \iff $M_{\mathfrak{p}}$ is flat, by the previous exercise.

Consider an arbitrary A-monomorphism, i.e., an exact sequence of the form

$$0 \longrightarrow N \stackrel{\phi}{\longrightarrow} P$$

After tensoring with M, we have a short exact sequence

$$0 \longrightarrow L \longrightarrow M \otimes_A N \longrightarrow M \otimes_A P$$

For each $\mathfrak{p} \in \operatorname{Spec}(A)$, we also have the short exact sequence

$$0 \longrightarrow L_{\mathfrak{p}} \longrightarrow M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} N_{\mathfrak{p}} \longrightarrow M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} P_{\mathfrak{p}}$$

Then we may rephrase the original statements as follows:

- (a) L = 0, no matter what ϕ is.
- (b) $L_{\mathfrak{p}} = 0$ for each point $\mathfrak{p} \in \operatorname{Spec}(A)$, no matter what ϕ is.
- (c) $L_{\mathfrak{m}} = 0$ for each closed point $\mathfrak{m} \in \operatorname{Spec}(A)$, no matter what ϕ is.

These statements are now obviously equivalent, since being zero is a local property.