This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

TENT COOPERATION TRE. /

	From the INTERNATIONAL BUREAU				
PCT	То:				
NOTIFICATION OF THE RECORDING OF A CHANGE (PCT Rule 92bis.1 and Administrative Instructions, Section 422) Date of mailing (day/month/year)	ÖRTENBLAD, Bertil Noréns Patentbyrå AB Box 10198 S-100 55 Stockholm SUÈDE				
16 October 2000 (16.10.00)					
Applicant's or agent's file reference 990034PC	IMPORTANT NOTIFICATION				
International application No. PCT/SE00/00292	International filing date (day/month/year) 15 February 2000 (15.02.00)				
The following indications appeared on record concerning: X the applicant					
Name and Address ALTITUN AB	State of Nationality State of Residence SE SE				
Isafjordsgatan 9 S-164 40 Kista	Telephone No.				
Sweden	Facsimile No.				
	Teleprinter No.				
The International Bureau hereby notifies the applicant that the the person					
Name and Address ALTITUN AB	State of Nationality State of Residence SE SE				
Box 911 S-175 29 Järfälla Sweden	Telephone No.				
	Facsimile No.				
	Teleprinter No.				
3. Further observations, if necessary:					
4. A copy of this notification has been sent to:					
X the receiving Office	the designated Offices concerned				
the International Searching Authority	X the elected Offices concerned				
X the International Preliminary Examining Authority	other:				
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer A. Karkachi				
Facsimile No.: (41-22) 740.14.35	ephone No.: (41-22) 338.83.38				

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU Luxembourg		SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	บร	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway Z		Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	PL Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation	eration	
DE	Germany	LI	Liechtenstein	SD	Sudan	dan	
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
H01S 5/068, 3/10, H01L 33/00

A1

(11) International Publication Number: WO 00/54380

(43) International Publication Date: 14 September 2000 (14.09.00)

(21) International Application Number: PCT/SE00/00292

(22) International Filing Date: 15 February 2000 (15.02.00)

9900536-5 17 February 1999 (17.02.99) SE

(71) Applicant (for all designated States except US): ALTITUN AB [SE/SE]; Isafjordsgatan 9, S-164 40 Kista (SE).

(72) Inventor; and

(30) Priority Data:

(75) Inventor/Applicant (for US only): ANDERSSON, Lars [SE/SE]; Kristinavägen 7, S-177 56 Järfälla (SE).

(74) Agents: ÖRTENBLAD, Bertil et al.; Noréns Patentbyrå AB, Box 10198, S-100 55 Stockholm (SE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: A METHOD OF CHARACTERISING A TUNEABLE LASER

(57) Abstract

A method of evaluating a tuneable laser (15) and determining suitable laser operation points, wherein said laser includes two or more tuneable sections in which injected currents can be varied, of which sections at least one is a reflector section and one is a phase section. The invention is characterised by leading part of the light emitted by the laser (15) to an arrangement which includes a Fabry-Perot filter (32) and a first detector (33) and a second detector (34), said detectors being adapted to measure the power of the laser and to deliver a corresponding detector signal (I1, I2); arranging the detectors relative to the Fabry-Perot filter so that the detector signals (I1, I2) will contain information relating at least to the wavelength of the detected light; sweeping the currents through the tuning sections (17, 18, 19) such as to pass

through different current combinations; measuring the ratio between the two detector signals (I1, I2) during said sweep, wherein the reflector current (17) is the inner sweep variable which is swept in one direction and then in an opposite direction back to its start value; and storing the control combination for said tuning currents when the ratio between the detector signals (I1, I2) lies within a predetermined range signifying that the emitted light lies within one of a number of wavelengths given by the Fabry-Perot filter (32) and said ratio lies within said predetermined range for a given reflector current in both sweep directions of said reflector current.

ţŧ

P.

PATENT COOPERATION TREATY

PCT

REC'D 23 MAR 2001

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)			
990034PC	Freminially Examination Report (1 or m 1 or 1 or 1 or 1 or 1 or 1 or 1 o				
International application No.	International filing date (day/month/year		Priority date (day/month/year)		
PCT/SE00/00292	15.02.2000		17.02.1999		
International Patent Classification (IPC) o	r national classification and IPC	7			
н 01 S 3/133, н 01 S	3/10, H 01 L 33/				
Applicant					
Altitun AB et al					
Authority and is transmitted to the 2. This REPORT consists of a total This report is also accompand and are the seen amended and are the	of 4 sheets, including to Article of 4 sheets, including the ANNEXES, i.e., sheets basis for this report and/or sheets in 607 of the Administrative Institute.	36. Iding this cove of the descrips containing re	tion, claims and/or drawings which have ectifications made before this Authority		
3. This report contains indications relating to the following items: I Basis of the report II Priority III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability					
IV Lack of unity of invention V Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement					
VI Certain documents	cited ·				
VII Certain defects in the international application					
VIII Certain observations on the international application					
Date of submission of the demand	Dat	e of completion	on of this report		
03.08.2000 07.03.2001					
Name and mailing address of the IPEA/S Patent- och registreringsverker Box 5055 S-102 42 STOCKHOLM Facsimile No. 08-667 72 88	Telex 17978 PATOREG-S Må		tlund/MN 8-782 25 00		

Form PCT/IPEA/409 (cover sheet) (January 1998)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/SE00/00292 Basis of the report 1. With regard to the elements of the international application:* the international application as originally filed , as originally filed the description: , filed with the demand pages , filed with the letter of pages pages , as originally filed the claims: , as amended (together with any statement) under article 19 pages , filed with the demand pages , filed with the letter of pages pages , as originally filed the drawings: , filed with the demand pages , filed with the letter of pages pages the sequence listing part of the description: , as originally filed , filed with the demand pages , filed with the letter of pages pages 2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item. which is: These elements were available or furnished to this Authority in the following language the language of a translation furnished for the purposes of international search (under Rule 23.1(b)). the language of publication of the international application (under Rule 48.3(b)). the language of the translation furnished for the purposes of international preliminary examination (under Rules 55.2 and/ 3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing: contained in the international application in written form. filed together with the international application in computer readable form. furnished subsequently to this Authority in written form. furnished subsequently to this Authority in computer readable form. The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished. The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished. The amendments have resulted in the cancellation of: the description, pages the claims, Nos. the drawings, sheet/fig This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2 (c)).** Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are annexed to this report since they do not contain amendments (Rules 70.16 Any replacement sheet containing such amendments must be referred to under item I and annexed to this report.

International application No.

PCT/SE00/00292

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

	Chaudis and explanations supporting such statement				
1.	Statement				
	Novelty (N)	Claims Claims	1-6	YES NO	
	Inventive step (IS)	Claims Claims	1-6	YES NO	
	Industrial applicability (IA)	Claims Claims	1-6	YES NO	

2. Citations and explanations (Rule 70.7)

relates to method of evaluating The invention а semiconductor tunable laser, including two or more sections, said sections including at least a reflector section and a section for phase section. Current is injected in each controlling different output parameters such as wavelength and output power. A problem in controlling the laser parameters arises due to hysteresis i.e. different output parameters occurs at the same current injection values depending earlier variations of the current combinations. In order to overcome this problem, the method according to the invention, part of the light emitted is lead to an arrangement including a Fabry-Perot filter and two detectors. The detectors measure the power and delivers corresponding detector signals. detectors are arranged relative to the Fabry-Perot filter so that the detector signals contain information relating to the wavelength of the detected light. The currents through the sections of the laser are swept. When the ratio between the detector signals signifies that the emitted light lies within one of a number of wavelengths, given by the Fabry-Perot filter, for a given current through the reflector section in both sweep directions, the combination is stored.

Documents cited in the International Search Report:

D1: EP 0529732 A1 D2: EP 0774684 A2 D3: GB 2163286 A D4: US 4792956 A

D5: HECHT, "OPTICS", Addison Wesley, 1998

. . . / . . .

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/SE00/00292

Supplemental Box

(To be used when the space in any of the preceding boxes is not sufficient)

Continuation of: V

Through D1 the problem of hysteresis in tunable lasers is known. In order to avoid frequency jumps due to mode hopping, the frequency jumps presenting hysteresis, D1 suggests giving the control currents a certain disproportional relation by a control unit. In page 5 of document D1 it is suggested that the tunable laser is a Distributed Bragg Reflector (DBR) laser, comprising three sections: Amplifying-, Transmissionand Bragg-section. The relation of the currents injected to the transmission and Bragg-sections is disproportional in order to avoid different oscillation modes due to hysteresis.

D2 describes a way of sweeping the reflector current of a two section laser, comprising a amplifying-section and a DBR-section. By measuring the wavelength the relation between injected reflector current and wavelength can be established. D2 also mentions the problem of mode hopping.

D3 describes a way of controlling the output power and stabilizing the wavelength of a semiconductor laser.

D4 describes a control unit for controlling the wavelength and intensity of a laser diode.

D5 describes a Fabry-Perot filter, page 422.

Both D1 and D2 is primarily concerned in how to operate the laser, once the current combinations that give rise to mode hopping in a hysteresis fashion, is known. This problem is however not the same problem solved in the present invention. The invention according to claim 1 differs from what is known from D1 and D2 in that it gives a method for detecting and storing the current combinations giving rise to mode hopping free operation of the laser.

D3 and D4 describe controlling of <u>non-tunable</u> lasers and are only considered defining the general state of the art.

D5 states the general state of the art of one component of the arrangement and is not considered relevant.

In the light of the aforementioned:

-The invention claimed in claims 1 - 6 is novel (N), is considered to involve an inventive step (IS) and is considered to have industrial applicability (IA).

建筑建筑美术的政治。然而这个一个是不可以在中心的

WO 00/54380

10

20.

REPLACED BY PCT/SE00/00292

+46 8 54587429

for each wavelength included in a channel plane which contains desired wavelengths and exhibits a transmission that deviates therefrom with respect to other wavelengths.

13

- 3. A method according to Claim 1 or 2, characterised by delivering the signal from one detector (33) at the front mirror of the laser to a power regulating circuit (20) which is adapted to control the laser (15) to emit light with a constant power from the front mirror.
- 4. A method according to Claim 1, 2 or 3, characterised by causing a monitor diode (40) placed on the side of the laser (15) opposite to that side on which the first (32) and the second (33) detectors are placed to measure the light emitted by the laser; and adjusting one or more of the tuning currents so as to minimize the ratio between the power of the rearwardly emitted light and the power of the forwardly emitted light, therewith optimising an operation point for the laser (15).
 - by sweeping one or more other tuning currents to sections that exhibit an hysteresis effect, excluding the reflector current so as to determine whether or not hysteresis occurs in a contemplated operation point.
 - 6. A method according to Claim 1, 2, 3, 4 or 5, characterised by measuring the wavelength transmitted by the laser (15) in a number of the possible operation points taken out until one operation point has been obtained for each desired wavelength, and storing the control combination for each operation point.

A WE THEN STONE SOLVED TO CLEAR TO

ene shrun, the transportation burning the

an dysteresis effect, end

5

30

alpita

PCT/SE00/00292

A METHOD OF CHARACTERISING A TUNEABLE LASER

1

The present invention relates to a method of enabling a tuneable laser to be characterised quickly.

The method can be applied for evaluating and selecting lasers with respect to emitted wavelength and to find good operation points systematically.

- Tuneable semiconductor lasers have a number of different sections through which current is injected, typically three or four such sections. The wavelength, power and mode purity of the lasers can be controlled by adjusting the current injected into the various sections. Mode purity implies that the laser shall be in an operation point, i.e. at a distance from a combination of the drive currents where so-called mode jumps take place and where lasering is stable and side mode suppression is high.
- In the case of telecommunications applications, it is necessary that the laser is able to retain its wavelength to a very high degree of accuracy and over very long periods of time, after having set the drive currents and the temperature. A typical accuracy in this respect is 0.1 nanometer and a typical time period is 20 years.

In order to be able to control the laser, it is necessary to map the behaviour of the laser as a function of the various drive currents. This is necessary prior to using the laser after its manufacture.

PCT/SE00/00292

2

Mapping of the behaviour of a laser is normally effected by connecting the laser to different measuring instruments and then varying the drive currents systematically. Such instruments are normally power meters, optical spectrum analysers for measuring wavelength and sidemode suppression, and line width measuring devices. This laser measuring process enables all of these parameters to be fully mapped as a function of all different drive currents.

- One problem is that lasers exhibit an hysteresis. As a result of these hystereses, the laser will deliver different output signals in the form of power and wavelength in respect of a given drive current set-up, i.e. with respect to a given operation point, depending on the path through which the laser has passed with respect to the change in said drive currents in order to arrive at the working point in question.

 Thus, this means that a given drive current set-up will not unequivocally give the expected wavelength or power.
- In the case of a tuneable laser, the wavelength of the emitted light is determined mainly by the current or voltage across the tuning sections. The power emitted is controlled by current to the gain section of the laser or by the current across said section.

25

30

When characterising a laser, all of the possible control combinations afforded by the tuning sections, or a subset of said sections, are investigated. During the characterising process, the emitted light is studied with respect to wavelength and sidemode suppression and controlling the gain section with regard to power adjustment.

um Dan Okt in

3

+46 8 54587428

PCT/SE00/00292

The enormous number of possible control combinations, typically tens of billions of which fewer than a hundred shall be selected, makes total mapping of the laser impossible in view of the large amount of data generated.

5

The present invention solves this problem and provides a method of quickly sorting away control combinations that do not result in correct wavelengths.

The present invention also relates to a method of evaluating 10. きょうしん き a tuneable laser and determining suitable laser operation points for a laser that includes two or more tuneable sections in which injected current can be varied and of which at least one is a reflector section and one is a phase section, wherein said method is characterised by leading part 15 of the light emitted by the laser to an arrangement that includes a Fabry-Perot filter and a first and a second detector, said detectors being adapted to measure the power of the light and to deliver a corresponding detector signal; 20 arranging the detectors relative to the Fabry-Perot filter such that the data signals will contain information relating at least to the wavelength of the detected light; sweeping the currents through the tuning sections so as to pass through different current combinations; measuring the ratio between the two detector signals during said sweeps; sweeping 25 the reflector current in the inner sweep variable in one direction and then in the opposite direction back to its start value; and storing the control combination for the tuning currents when the ratio between the detector signals lies within a predetermined range that indicates that the 30 light emitted lies within one of a number of wavelengths given by the Fabry-Perot filter and said ratio lies within

5

10

20

25

PCT/SE00/00292

said predetermined range for a given reflector current in both sweep directions of said current.

医二二二甲基甲基基甲基甲基二

The invention will now be described in more detail with reference to exemplifying embodiments thereof and also with reference to the accompanying drawings, in which

- Figure 1 is a perspective, partially cut-away view of a DBR laser;
- Figure 2 is a sectional view of a tuneable Grating Coupled Sampled Reflector (GCSR) laser;
 - Figure 3 is a sectional view of a Sampled Grating DBR laser; and
 - Figure 4 is a schematic block diagram illustrating an arrangement which is used in accordance with the invention.

Shown in Figure 1 is a DBR laser which includes three sections, namely a Bragg reflector 1, a phase section 2 and a gain section 3. Each section is controlled by injecting current into respective sections through respective electric conductors 4, 5, 6.

Figure 2 is a sectional view of a tuneable Grating Coupled Sampled Reflector (GCSR) laser. Such a laser includes four sections, i.e. a Bragg reflector 7, a phase section 8, a coupler 9 and a gain section 10. Each of the sections is controlled by injecting current into respective sections.

Figure 3 is a sectional view of a Sampled Grating DBR laser that also includes four sections 11, 12, 13, 14, of which sections 11 and 14 are Bragg reflectors, section 13 is the phase section, and section 12 is the gain section.

in modia estamos si

.

WO 00/54380

PCT/SE00/00292

These three laser types are common, although other types of lasers exist.

Although the invention is described below essentially with reference to a GCSR laser according to Figure 2, it will be understood that the invention is not too restricted to any particular type of tuneable semiconductor laser, but can be applied correspondingly with tuneable lasers other than those illustrated by way of example in the drawings.

10

15

The present invention relates to a method of evaluating tuneable lasers and determining suitable laser operation points. The laser may thus contain two or more tuneable sections in which injected current can be varied in a known manner. The laser is of the kind which includes at least one reflector section and one phase section.

Figure 4 is a block diagram which illustrates an arrangement used in accordance with the present invention. The reference numeral 15 identifies a GCSR laser, while the reference numeral identifies current generators for current into the reflector section, the phase section and the coupler section respectively of said laser, respective conductors 17, 18 and 19. The power of the laser is controlled to its gain section by means of a power 25 regulating circuit 20, via a conductor 21.

The laser emits light from the front mirror to a light conductor 23, for instance light fibre, via a lens pack 22.

This light conductor leads the light to a light splitter or divider 26 which switches part of the light to another light conductor 24. The remainder of the light is led further in

3 3 3 3 1 3 4 5 5

10

15

20

.30

. .

PCT/SE00/00292

the conductor 25. The light splitter 26 switches, e.g., 10% of the light from the conductor 23 to the conductor 24.

The light conductor 24 leads the light to a second light splitter or divider 27 which functions to divide the light equally between two light conductors 28, 29. A lens 30 and a lens 31 are disposed at respective ends of the light conductors. A Fabry-Perot filter 32 is provided in the beam path downstream of the lens 30. The filter 32 is well known and will not therefore be described in more detail in this document. Fabry-Perot filters can be designed to exhibit a certain light transmission solely for certain wavelengths, normally wavelengths that are multiples of a given wavelength. The Fabry-Perot filter exhibits a deviating lower or higher transmission at other wavelengths.

A first detector 33 is provided downstream of the lens 31, and a second detector 34 is provided downstream of the Fabry-Perot filter. The detectors 33, 34 function to measure the power of the light and to deliver a corresponding detector signal to an A/D converter 37, via a respective amplifier 35, 36.

The A/D converter 37, the power regulating circuit 20 and the current generators 16 are all connected to a microprocessor 39 via a data bus 38. The microprocessor is adapted to control the current generators and the power regulating circuit in a desired and a well known manner, in response to the signals from the A/D converter 37 and the power regulating circuit 20.

Segment of the Combiner of

PCT/SE00/00292 ··

According to the invention, part of the forwardly emitted light is thus conducted to the first detector 31 and also to the second detector 34, via the Fabry-Perot filter 32.

- According to the invention, the currents are swept through the tuning sections 18, 19, 21 such as to pass through different current combinations. The ratio between the two detector signals I1 and I2 is measured during said sweeps.
- When sweeping the currents through the tuning sections, the reflector current is the inner sweep variable. It is meant by this that the reflector current is swept for different combinations of other tuning currents while holding said currents constant. The reflector current is swept first in one direction and then in the opposite direction, back to its start value. For instance, the reflector current is swept from a zero value and up to its maximum value and then down to zero again.
- 20 By current control in the present document is meant that the current through the sections is controlled by current generators or, alternatively, by controlling the voltage across the sections.
- In the case of the Figure 4 embodiment, the first detector, the second detector and the Fabry-Perot filter are placed in the proximity of the front mirror of the laser. Alternatively, the components may equally as well be placed in the proximity of the rear mirror of the laser, in which case light emitted from the rear mirror of said laser is used to determine the wavelength.

The same present was the

8

PCT/SE00/00292

The Fabry-Perot filter and the first and the second detector may be arranged relative to one another in a manner different to that shown in Figure 4, so as to detect at least wavelengths. The first and the second detector may be arranged to measure light transmitted through the Fabry-Perot filter and/or light reflected towards the Fabry-Perot filter, such as to detect wavelengths.

The hysteresis effect exhibited by lasers causes the power output of the laser in respect of certain reflector currents, with otherwise constant conditions, to be different due to the reflector current having taken its existing value by virtue of the reflector current having increased to said value or having decreased from a higher value. The wavelength is also influenced by the hysteresis effect. Such operation points as those which lie in the regions of hysteresis with respect to the reflector current, or with respect to other tuning currents for those sections that exhibit hysteresis, are non-preferred operation points for a laser in operation.

Communication lasers shall be adapted to operate at certain given wavelengths that are included in a so-called channel plane, where each channel corresponds to a well defined wavelength. According to the invention, the Fabry-Perot filter 32 is adapted to have a certain given transmission for each wavelength included in the channel plane.

When the ratio between the detector signals I1/I2 from the detectors 32, 33 lies within a predetermined range implying that the emitted light lies within one of a number of wavelengths given by the Fabry-Perot filter and said ratio I1/I2 lies within said range for a given reflector current in

1.4.10

25

10

Binds - Arthur of Parentyth Marie &

WO 00/54380

5

15

20.

. .

.9.3

PCT/SE00/00292

both sweep directions of the reflector current, the control combination for the tuning currents is stored in accordance with the invention.

This range is given by the permitted channel width in the channel plane.

These control combinations thus fulfil the criteria that will give desired wavelengths and not result in any hysteresis effect.

In certain cases, it is preferred that one or more other tuneable currents to sections that exhibit an hysteresis effect, excluding the reflector current, are swept so as to determine whether or not hysteresis occurs in a contemplated operation point.

According to one preferred embodiment, the signal I2 is delivered from the first detector 33 to the power regulating circuit 20. The regulating circuit is adapted to control the laser so that said laser will emit light at a constant power. This enables the ratio I1/I2 to be followed very easily in determining possible operation points.

According to another preferred embodiment of the invention, a monitored diode is placed on the side of the laser opposite to that side on which the first and the second detectors are placed, said monitor diode being caused to measure the light emitted by the laser. The detector signal is led through an amplifier 41 to an A/D converter 42, whose output signal is delivered to the microprocessor 39. In this embodiment, one or more of the tuneable currents is chosen so as to minimise

The second of the second of the second

10

15

PCT/SE00/00292

the ratio between the power of the rearwardly emitted light and the power of the forwardly emitted light, thereby enabling an optimum operation point for a channel to be selected from said possible operation points.

The monitor diode 40 is placed adjacent the rear mirror of the laser in the Figure 4 embodiment.

operation points taken out to measure the wavelength emitted by the laser until an operation point has been obtained with each desired wavelength, wherewith the control combination for each operation point is stored. Thus, one control combination for each channel in the channel plane will be stored in the memory of the microprocessor.

It will be evident from the aforegoing that the use of a Fabry-Perot filter enables all those control combinations that do not fulfil the criterion that the ratio between the currents I1/I2 shall lie within a certain given range to be sorted out. Moreover, it is sufficient for communications purposes to identify one control combination for each wavelength in the channel plane that lies in a region in which the laser exhibits no hysteresis.

The present invention thus solves the problem mentioned in the introduction.

Although different embodiments have been described, and therewith in respect of a GCSR laser, it will be obvious that the structural design of the described arrangement can be

वैद्यालय है है है । जा का का का का का का

The man of the control of the contro

Tevos tar tana Survey

ACDOB 24 FO

an Bunk in M. Butt

11

PCT/SE00/00292

varied while achieving the same result. The invention can also be applied to lasers of a type other than GCSR lasers.

It will therefore be understood that the present invention is not restricted to the aforedescribed and illustrated exemplifying embodiments thereof and that variations can be made within the scope of the following Claims.

3F61-61-15

cos mand edit parms row

-3.5

Great de day

10

To the Table

20

25

12

PCT/SE00/00292 *

CLAIMS

A method of evaluating a tuneable laser (15) and determining suitable laser operation points, wherein said laser includes two or more tuneable sections in which injected currents can be varied, of which sections at least one is a reflector section and one is a phase section, characterised by leading part of the light emitted by the laser (15) to an arrangement which includes a Fabry-Perot filter (32) and a first detector (33) and a second detector (34), said detectors being adapted to measure the power of the laser and to deliver a corresponding detector signal (II, 12); arranging the detectors relative to the Fabry-Perot filter so that the detector signals (I1, I2) will contain information relating at least to the wavelength of the detected light; sweeping the currents through the tuning sections (17, 18, 19) such as to pass through different current combinations; measuring the ratio between the two कर रुक्ताक, द्वाराजनारेची detector signals (I1, I2) during said sweep, wherein the reflector current (17) is the inner sweep variable which is swept in one direction and then in an opposite direction back to its start value; and storing the control combination for said tuning currents when the ratio between the detector signals (I1, I2) lies within a predetermined range signifying that the emitted light lies within one of a number of wavelengths given by the Fabry-Perot filter (32) and said ratio lies within said predetermined range for a given reflector current in both sweep directions of said reflector ACTALLY COLL SWEEDING TO CAPTALLA

2 A method according to Claim 1, characterised in that the Fabry-Perot filter (32) exhibits a certain transmission