Grafos Eurelianos

Ronald Mas, Angel Ramirez

8 de julio de 2020

Contenido

- Grafos Eurelianos
- Grafos Eurelianos dirigidos
- Principio del Palomar

Introducción

Empecemos estudiando el problema más antiguo que usa dibujo de grafos: **Problema:** Dibujar un grafo G = (V, E) con una sola linea cerrada sin levantar el lapiz del papel y pasar por cada arista solo una vez.

En términos matemáticos se puede formalizar como: Encontrar un camino cerrado

$$(v_0, e_1, v_1, \cdots, e_m, v_0)$$

conteniendo todos lo vértices y todas las aristas exactamente una vez (los vértices pueden repetirse).

Definición

Definamos el recorrido cerrado Eureliano en G como el camino

$$(v_0, e_1, v_1, e_2, \cdots, e_{m-1}, v_{m-1}, e_m, v_0).$$

Definición

Un grafo que posee un recorrido cerrado Eureliano es llamado **Grafo Eureliano**.

Ejemplo: El dibujo muestra un grafo eureliano

con recorrido Eureliano:

 $\big(v_0,e_1,v_1,e_2,v_2,e_3,v_3,e_4,v_4,e_5,v_5,e_6,v_6,e_7,v_7,e_8,v_8,e_9,v_9,e_{10},v_0\big),$

donde $v_6=v_3$, $v_7=v_0$, $v_8=v_5$ y $v_9=v_2$.

Caracterización de grafos Eurelianos

Teorema

Un grafo G = (V, E) es Eureliano si y sólo si este es conexo y cada vértice posee grado par.

Prueba:

Veamos la vuelta, definamos el recorrido en G como un camino en el que ninguna arista se repite (vértices se pueden repetir). Sea el recorrido

$$T = (v_0, e_1, v_1, e_2, \cdots, e_{m-1}, v_{m-1}, e_m, v_0).$$

en G de mayor longitud posible. Afirmación:

- i) $v_0 = v_m y$
- ii) $\{e_i: i = 1, 2, \cdots, m\} = E$

Continua prueba:

En efecto:

- i) Si $v_0 \neq v_m$ entonces el vértice v_0 incidente a un número impar de aristas del recorrido T, pero como $deg_G(v_0)$ es par entonces existe una arista $e \in E(G)$ no contenido en T, por tanto T puede ser extendido con esta arista, lo que contradice la maximalidad de la longitud de T.
- ii) Si $V(T) \neq V(G)$ y como G conexo entonces existe $e = \{v_k, v'\} \in E(G)$ tal que $v_k \in V(T)$ pero $v' \not V(T)$. Luego existe un recorrido:

$$T' = (v', e, v_k, e_{k+1}, v_{k+1}, \dots v_{m-1}, e_m, v_0, e_1, v_1, e_2, \dots, e_k, v_k).$$

con longitud m+1 lo que contradice la maximalidad de m.

Continua prueba:

Si V(T) = V(G) y $E(T) \neq E(G)$, sea $e \in E(G) \setminus E(T)$ con $e = \{v_k, v_l\}$. Procedamos de modo similar como el caso anterior, al considerar un nuevo recorrido:

$$T' = (v_k, e_{k+1}, v_{k+1}, \dots v_{m-1}, e_m, v_0, e_1, v_1, e_2, \dots, e_k, v_k, e, v_l)$$

llegamos a una contradicción.

Lema

Si un grafo G = (V, E) posee todos sus vértices de grado par entonces el conjunto E(G) puede ser particionado en conjuntos disjuntos E_1, E_2, \dots, E_k tal que cada E_i es el conjunto de aristas de un ciclo.

Ejemplo: Dado el grafo Eureliano

se tiene la partición para E(G) en:

$$\begin{array}{lll} E_1 &=& \{\{v_1,v_2\},\{v_2,v_6\},\{v_1,v_6\}\} \\ E_2 &=& \{\{v_2,v_3\},\{v_3,v_5\},\{v_2,v_5\}\} \\ E_3 &=& \{\{v_3,v_4\},\{v_4,v_5\},\{v_5,v_6\},\{v_3,v_6\}\} \end{array}$$

Grados Eurelianos dirigidos

Definición

Un grafo dirigido G es un par (V, E), donde $E \subset V \times V$. Los pares ordenados $(x, y) \in E$ son llamados aristas dirigidas.

Observación:

• Si e = (x, y) diremos que la arista viene de x a y.

Definición

Definamos el recorrido dirigido en un grafo dirigido G = (V, E) como la secuencia:

$$(v_0,e_1,v_1,e_2,\cdots,e_m,v_m)$$

tal que $e_i = (v_{i-1}, v_i) \in E \ \forall i \in \{1, 2, \cdots, m\} \ \text{con} \ e_i \neq e_j \ \text{si} \ i \neq j$.

Observación:

• Un grafo dirigido (V, E) es **Eureliano** si este posee un recorrido dirigido cerrado conteniendo todos los vértices y pasando cada arista dirigida exactamente una vez.

Consecuencias

Sea G = (V, E) un grafo dirigido.

Observaciones:

- Denotamos $deg_G^+(v)$ como el número de aristas dirigidas que terminan en v.
- Denotamos $deg_G^-(v)$ como el número de aristas dirigidas que se originan en v.
- Cada grafo dirigido G = (V, E) puede ser asignado un grafo no dirigido $sym(G) = (V, \overline{E})$ donde

$$\overline{E} = \{ \{x, y\} : (x, y) \in E \text{ o } (y, x) \in E \}.$$

El grafo sym(G) es llamado la **simetrización** del grafo G.

Proposición

Un grafo dirigido es Eureliano si y sólo si su simetrización es conexo y $deg_G^+(v) = deg_G^-(v), \ \forall v \in V(G).$

Aplicación:

Una rueda tiene una secuencia de n dígitos 0 y 1 escritos a lo largo de su circunferencia. Podemos leer k dígitos consecutivos a través de un espacio:

Continua la aplicación

La secuencia de n dígitos debe ser tal que la posición de la rueda siempre se puede detectar desde los k dígitos en la ranura, no importa cómo se gire la rueda. Analicemos el siguiente problema

Problema: Encuentre una secuencia cíclica de dígitos 0 y 1 de mayor longitud tal que no coincidan dos k-uplas de dígitos consecutivos (aquí una secuencia cíclica significa colocar los dígitos en la alrededor de un círculo).

Proposición

Sea $\ell(k)$ el número máximo posible de dígitos en tal secuencia para un k dado. Para cada $k \ge 1$ se tiene que $\ell(k) = 2^k$.

Ejemplo: Para k=2, se puede encontrar un recorrido 00,01,11,10 y la correspondiente secuencia cíclica es 0011 y para k=3 se tiene el recorrido 000,001,011,111,110,101,010,100 y la correspondiente secuencia cíclica es 00011101 como muestra el grafo dirigido siguiente:

