IE613: Online Machine Learning

Jan-Apr 2016

Lecture 4: Weighted Majority Algorithm

Lecturer: M. K. Hanawal Scribes: Manan Doshi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Recap

For the unrealizable (agnostic case), we have computed the expected value of regret as follows:

$$\mathbb{E}(R(A,T)) = \sup_{\substack{\{(x_i,y_i),i \in [T]\}\\ \in (x,y)^T}} \left\{ \sum_{t=1}^T |p_t - y_t| - \inf_{h \in \mathcal{H}} \sum_{t=1}^T |h(x_t) - y_t| \right\}$$
(4.1)

where $p_t = Pr(\hat{y}_t = 1)$. Thus,

$$\mathbb{E}(|\hat{y}_t - y_t|) = |p_t - y_t|$$

4.2 Bounds of expected regret for agnostic case

Theorem 4.1 For every hypothesis class \mathcal{H} , \exists an Online Learning Algorithm, A, whose predictions come from [0,1] and has a regret bound such that

$$\mathbb{E}(R(A,T)) \le O(\sqrt{T}) \qquad \forall h \in \mathcal{H}$$

In this chapter we will show an algorithm that achieves this upper bound. Specifically, we will show that

$$\sum_{t=1}^{T} |p_t - y_t| - \inf_{h \in \mathcal{H}} \sum_{t=1}^{T} |h(x_t) - y_t| \le \sqrt{2 \log(|\mathcal{H}|)T} = O(\sqrt{T}) \qquad \forall h \in \mathcal{H}$$

4.2.1 Weighted Majority Algorithm

The algorithm that achieves the above bound is the weighted majority algorithm. Consider the hypothesis class $\mathcal{H} = \{h_1, h_2, h_3...h_d\}$, where h_i 's are various hypothesis and $|\mathcal{H}| = d$. The loss at a time instance is $l_{t,i} = |h_i(x_t) - y_t|$ where $h_i(x_t) = \hat{y}_t$ is the prediction by our online learning algorithm and y_t is the actual label.

Algorithm 4.1: The Weighted Majority Algorithm

Input : Hypothesis class \mathcal{H}

 $\begin{array}{l} \textbf{Parameter: } \eta \in [0,1] \\ \textbf{Initialize} \quad \textbf{: } \tilde{w}^{(1)} = [1,1,1,...,1] \text{ in } \mathbb{R}^d \\ \end{array}$

for $t \leftarrow 1$ to T do

Set
$$w_i^{(t)} = \frac{\tilde{w}_i^{(t)}}{\sum_i \tilde{w}_i^{(t)}}$$

Play i according to the distribution $w^{(t)}$

Receive loss vector $l_t = \{l_{t,i} : \forall i \in d\}$ where $l_{t,i}$ is the error in prediction of hypthesis h_i Update $\forall i, \tilde{w}_i^{(t+1)} = \tilde{w}_i^{(t)} e^{-\eta l_{t,i}}$

Theorem 4.2 Let $d = |\mathcal{H}|$ and $T > 2\log(d)$, then,

$$\mathbb{E}(R(A,T)) \le \sqrt{2\log(dT)} = \sqrt{2\log(|\mathcal{H}|)T}$$

We need a couple of inequalities for this proof:

$$e^{-a} \le 1 - a + \frac{a^2}{2}$$
 $\forall a \in (0,1)$ (4.2)

$$e^{-a} \ge 1 - a \qquad \forall a \le 1 \tag{4.3}$$

Figure 4.1: Plots demonstrating inequalities 4.2 and 4.3

$$\begin{aligned} & \text{Proof: Let } Z_t = \sum_{i=1}^d \tilde{w}_i^{(t)} \cdot e^{-\eta l_{t,i}} \\ & \frac{Z_{t+1}}{Z_t} = \frac{\sum_{i=1}^d \tilde{w}_i^{(t)} \cdot e^{-\eta l_{t,i}}}{Z_t} \\ & = \sum_{i=1}^d w_i^{(t)} e^{-\eta l_{t,i}} \\ & \leq \sum_{i=1}^d w_i^{(t)} \left\{ 1 - \eta l_{t,i} + \frac{\eta^2 l_{t,i}^2}{2} \right\} & \text{from equation } 4.2 \\ & \leq 1 - \sum_{i=1}^d w_i^{(t)} \left\{ \eta l_{t,i} - \frac{\eta^2 l_{t,i}^2}{2} \right\} & \text{Since } \sum w_i^{(t)} = 1 \\ & \leq e^{-\sum_{i=1}^d w_i^{(t)} \left\{ \eta l_{t,i} - \frac{\eta^2 l_{t,i}^2}{2} \right\}} & \text{from equation } 4.3 \\ & \log \frac{Z_{t+1}}{Z_t} \leq - \left[\eta \sum_{i=1}^d l_{t,i} w_i^{(t)} - \frac{\eta^2}{2} \sum_{i=1}^d w_i^{(t)} l_{t,i}^2 \right] & \text{Taking } log \text{ on both sides} \\ & \sum_{t=1}^T \log \frac{Z_{t+1}}{Z_t} \leq -\sum_{t=1}^T \left[\eta \sum_{i=1}^d l_{t,i} w_i^{(t)} - \frac{\eta^2}{2} \sum_{i=1}^d w_i^{(t)} l_{t,i}^2 \right] & \text{Summing over } t \\ & \log \frac{Z_{T+1}}{Z_1} \leq -\eta \sum_{t=1}^T \langle l_t, w^{(t)} \rangle + \frac{\eta^2}{2} T & \sum w_i^{(t)} l_{t,i}^2 \leq 1 \text{ since } \sum w_i^{(t)} = 1 \text{ and } l_{t,i}^2 \leq 1 \forall l_i \\ & \log \frac{Z_{T+1}}{d} \leq -\eta \sum_{t=1}^T \langle l_t, w^{(t)} \rangle + \frac{\eta^2}{2} T & \text{Since } Z_1 = d \end{aligned}$$

We have an upper bound for the intermediate quantity for $\log \frac{Z_{T+1}}{d}$. Now we try and get a lower bound.

$$\tilde{w}_{i}^{(t+1)} = \tilde{w}_{i}^{(t)} e^{-\eta l_{t,i}}$$

$$= e^{-\sum_{t=1}^{T} \eta l_{t,i}}$$

$$Z_{T+1} = \sum_{i=1}^{d} e^{-\sum_{t=1}^{T} \eta l_{t,i}}$$

$$\geq \max\left(e^{-\sum_{t=1}^{T} \eta l_{t,i}}\right)$$

$$\log \frac{Z_{T+1}}{d} \geq -\eta \min_{i} \sum_{t=1}^{T} l_{t,i} - \log d$$

Taking log on both sides and subtracting $\log d$

Combining both the inequalities

$$-\eta \min_{i} \sum_{t=1}^{T} l_{t,i} - \log d \le \log \frac{Z_{T+1}}{d} \le -\eta \sum_{t=1}^{T} \langle l_{t}, w^{(t)} \rangle + \frac{\eta^{2}}{2} T$$
$$\sum_{t=1}^{T} \langle l_{t}, w^{(t)} \rangle - \min_{i} \sum_{t=1}^{T} l_{t,i} \le \frac{\log d}{\eta} + \frac{\eta T}{2}$$

Note that $\langle l_t, w^{(t)} \rangle$ is the expected loss and is equal to $|p_t - y_t|$. Also, $l_{t,i}$ is the actual loss due to a prediction and is equal to $|h_i(x_t) - y_t|$. This leads us to the statement of theorem 4.2. It can be easily shown that the best bound is achieved by $\eta = \sqrt{\frac{2 \log d}{T}}$