Quantum Mechanics

Homework Assignment 07

Fall, 2019

1. Starting from the time-dependent Schrödinger equation in the Dirac notation, $i\hbar\frac{d\left|\psi(t)\right\rangle}{dt}=\left[\frac{\hat{\vec{p}}^{\,2}}{2m}+\hat{V}(\hat{\vec{r}})\right]\left|\psi(t)\right\rangle,$ derive the time-dependent Schrödinger equation in the $\{|\vec{p}\,\rangle\}$ representation,

$$i\hbar\frac{\partial}{\partial t}\overline{\psi}(\vec{p},t) = \left[\ \frac{\vec{p}^{\;2}}{2m} + \hat{V}(i\hbar\vec{\nabla}_{\vec{p}}\,) \ \right] \overline{\psi}(\vec{p},t)$$

2. Introducing the Fourier transform of the potential energy $V(\vec{r})$ in the $\{|\vec{r}\rangle\}$ representation, $\overline{V}(\vec{p}) = \frac{1}{(2\pi\hbar)^{3/2}} \int d^3r \ e^{-i\vec{p}\cdot\vec{r}/\hbar}V(\vec{r})$, show that the time-dependent Schrödinger equation in the $\{|\vec{p}\rangle\}$ representation can be also written as

$$i\hbar\frac{\partial}{\partial t}\overline{\psi}(\vec{p},t) = \frac{\vec{p}^{\,2}}{2m}\overline{\psi}(\vec{p},t) + \frac{1}{(2\pi\hbar)^{3/2}}\int d^3p'\;\overline{V}(\vec{p}-\vec{p}^{\,\prime})\overline{\psi}(\vec{p}^{\,\prime},t).$$

3. In the $\{|p_x\rangle\}$ representation, find the energy eigenvalue and eigenfunction of a particle of mass m in the one-dimensional δ -function potential well

$$V(x) = -\lambda \delta(x), \ \lambda > 0.$$

- 4. In the $\{|\vec{p}'\rangle\}$ representation, the wave function of a particle at a given time is given by $\overline{\psi}(\vec{p}) = Ne^{-\alpha|\vec{p}|/\hbar}$ with $\alpha > 0$. Find the value of the normalization constant N and the wave function $\psi(\vec{r})$ in the $\{|\vec{r}'\rangle\}$ representation.
- 5. For a particle in one-dimensional space, find the expression of the operator $\hat{x}^{-1} = \frac{1}{\hat{x}}$ in the $\{|p_x\rangle\}$ representation and the expression of the operator $\hat{p}_x^{-1} = \frac{1}{\hat{p}_x}$ in the $\{|x\rangle\}$ representation.

Note that \hat{x}^{-1} is the inverse of \hat{x} and that \hat{p}_x^{-1} is the inverse of \hat{p}_x .