

ORDERED PAIR PROJECTIONS

Why

The product of two sets is a (sub)set of ordered pairs. Is every set or ordered pairs a subset of a product of two sets?

Result

The answer is easily seen to be yes. Let R denote a set or ordered pairs. So for $x \in R$, $x = \{\{a\}, \{a,b\}\}$. First consider $\bigcup R$. Then $\{a\} \in \bigcup R$ and $\{a,b\} \in \bigcup R$. Next consder $\bigcup \bigcup R$. Then $a,b \in \bigcup \bigcup R$. So if we want to sets—denote them by A and B—so that $R \subset A \times B$, we can take both A and B to be the set $\bigcup \bigcup R$.

We often want to shrink the sets A and B to only include the relevant members. In other words, we specify the elements of $\bigcup \bigcup R$ which are actually a first coordinate or second coordinate for some ordered pair in the set R. In other words, we define $A' = \{a \in A \mid (\exists b)((a,b) \in R)\}$ and likewise $B' = \{b \in B \mid (\exists a)((a,b) \in R)\}$. We call A' the projection of R onto the first coordinate and B' the projection of R onto the second coordinate.

