TRABAJO PRÁCTICO 2 - EJERCICIO 53 a

53) a) Se desea estudiar si la ecuación $2x-3y^2+xz=1$ define a z implícitamente como una función de x y de y. Para ello, considere la función $F(x,y,z)=2x-3y^2+xz$ y, analizando las condiciones correspondientes, verifique que F(x,y,z)=1 define a z implícitamente como función de x y de y en un entorno de (1,-1,2). (Ayuda: página 781 del libro de Thomas.)

Solución: En la clase de Teoría vimos un Teorema que dice:

Si F es una función de tres variables y las derivadas parciales F_x , F_y y F_z son continuas en una región abierta $R \subset \mathbb{R}^3$ que contiene al punto (x_0,y_0,z_0) y si $F(x_0,y_0,z_0)=c$, para alguna constante c, y si $F_z(x_0,y_0,z_0)\neq 0$, entonces la ecuación F(x,y,z)=c define a z implícitamente como una función derivable de x y de y en un entorno de (x_0,y_0) y las derivadas parciales de esta función z están dadas por

$$\frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)};$$
 $y \frac{\partial z}{\partial y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}.$

En este ejemplo, tenemos $F(x, y, z) = 2x - 3y^2 + xz$ y $P_0(x_0, y_0, z_0) = (1, -1, 2)$. También teenmos que las derivadas parciales

$$F_x(x, y, z) = 2 + z;$$
 $F - y(x, y, z) = -6y;$ $F_z(x, y, z) = x,$

son continuas en \mathbb{R}^3 (región abierta $R \subset \mathbb{R}^3$ que contiene al punto (x_0, y_0, z_0)); $F(P_0) = F(1, -1, 2) = 1$ y $F_z(1, -1, 2) = 1 \neq 0$. Luego, en virtud del teorema anterior, la ecuación $2x - 3y^2 + xz = 1$ (F(x, y, z) = c) define a z implícitamente como una función derivable de x y de y en un entorno de $(x_0, y_0) = (1, -1)$.

b) A la luz de lo concluido en el ítem anterior, calcule la derivada de f en la dirección de $\vec{\mathbf{v}}=(2,-1)$ en el punto (1,-1). (Ayuda: página 780 del libro de Thomas.)

Según el Teorema anterior, $f_x(1,-1) = -4$ y $f_y(1,-1) = -6$; ambas derivadas parciales son continuas de manera que la función f es diferenciable y la derivada direccional se puede calcular haciendo un producto escalar:

$$D_{\mathbf{u}}f(1,-1) = \nabla f(1,-1) \cdot (\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}) = (-4,-6) \cdot (\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}) = -\frac{2}{\sqrt{5}}.$$

1