```
In [12]: import pandas as pd
from pandas import Series, DataFrame
import numpy as np
#Now we'll learn how to merge on an index
```

```
In [5]: #Show
df_left
```

Out[5]:		data	key
	0	0	X
	1	1	Υ
	2	2	Z
	3	3	X
	4	4	Υ

```
In [7]: #Show df_right
```

Out[7]:		group_data
	X	10
	Υ	20

In [8]: #Now merge, we'll use the key for the left Dframe, and the index for the right
pd.merge(df_left,df_right,left_on='key',right_index=True)

Out[8]:		data	key	group_data
	0	0	Χ	10
	3	3	Х	10
	1	1	Υ	20
	4	4	Υ	20

In [10]: # We can also get a union by using outer
pd.merge(df_left,df_right,left_on='key',right_index=True,how='outer')

Out[10]:

	data	key	group_data
0	0	Х	10
3	3	Х	10
1	1	Υ	20
4	4	Υ	20
2	2	Z	NaN

In [14]: #SHOW df_left_hr

Out[14]:

	data_set	key1	key2
0	0	SF	10
1	1	SF	20
2	2	SF	30
3	3	LA	20
4	4	LA	30

In [15]: #Show, this has a index hierarchy
df_right_hr

Out[15]:

		col_1	col_2
LA	20	0	1
LA	10	2	3
SF	10	4	5
	10	6	7
	20	8	9

In [16]: # Now we can merge the Left by using keys and the right by its index
pd.merge(df_left_hr,df_right_hr,left_on=['key1','key2'],right_index=True)

Out[16]:

	data_set	key1	key2	col_1	col_2
0	0	SF	10	4	5
0	0	SF	10	6	7
1	1	SF	20	8	9
3	3	LA	20	0	1

Out[17]:

	data_set	key1	key2	col_1	col_2
0	0	SF	10	4	5
0	0	SF	10	6	7
1	1	SF	20	8	9
2	2	SF	30	NaN	NaN
3	3	LA	20	0	1
4	4	LA	30	NaN	NaN
4	NaN	LA	10	2	3

In [23]: # WE can also you .join()

Shown on our first two DataFrames
df_left.join(df_right)

Out[23]:

	data	key	group_data
0	0	X	NaN
1	1	Υ	NaN
2	2	Z	NaN
3	3	Х	NaN
4	4	Υ	NaN

In []: # Next we'll learn about the concatenate function!