InCRIMP: a versatile computational model for the integrative analysis of multi-omics data

Abbas Salavaty (mania_abbas) and Mark Pinese

Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia

The code will be deployed on the GitHub: github.com/asalavaty

Introduction

Despite recent advancements in precision medicine, for most patients a targeted treatment cannot be identified. High-throughput studies have aimed to address our imperfect understanding of cancer biology through unbiased discovery of cancer risk and driver genes based on single omics profiles. As genes work in concert to drive cancer, we hypothesise that an integrative approach that considers multiple molecular data, in the context of multi-gene pathways, will yield the best understanding of cancer biology. Here we present InCRIMP (Integratomic Cancer Risk Influential Module Prioritization) which integrates multiple molecular measurements and state-of-the-art network analysis to achieve comprehensive molecular dissection of cancer cohorts, and unlock the true potential of molecular profiling to understand the risk genes and drivers of cancer.

Methods

Pre-processing, filtration, and normalization of raw data. SNV data were filtered and a deleteriousness score was assigned to each SNV based on CADD scores. The transcriptomic data was TPM-normalized after filtering out the noise genes. The PPI data was obtained from the STRING database.

Germline and Somatic SNV Data

Removing low depth variants

Removing intergenic and mitochondrial variants

gnomAD-based filtration of highly frequent variants

CADD-based deleteriousness analysis

Ensembl-based imputation of missing CADD scores

GAM-based calibration of CADD scores

Cancer and Normal Expression Data

Removing noise genes

TPM normalization

Association Analysis and Un-weighted Multi-layer Network Reconstruction. Two multi-layer networks were reconstructed; a three-layer multi-omics Risk network and a a three-layer multi-omics driver network.

*** Risk Net ***

01 Germline Gene co-Deleteriousness

Normal Gene co-Expression

Protein-Protein Interaction (PPI)

*** Driver Net ***

01 Somatic Gene co-Deleteriousness

Cancer Gene co-Expression

Protein-Protein Interaction (PPI)

Functional module identification. Initially primitive risk and driver scores were calculated and assigned as the node weights. Then, functional modules were identified based on the Leiden algorithm. Lastly, final node scores were calculated by integrating the primitive scores and node mean neighborhood scores.

Node-weighted Risk Net Mean germline deleteriousness

Node-weighted Driver Net

Mean somatic deleteriousness

Results

An example based on HGG

First-ranked Risk Module of HGG

Top 20 Candidate Drivers of HGG

Gene =	Final Driver Score
TP53	1083.8597
BYSL	721.0372
WDR12	672.4505
RBM28	633.7224
PIK3CA	613.4044
RPS16	605.9326
EP300	594.3892
NOP58	580.3518
UTP20	519.7518
UTP6	517.2224

Gene [‡]	Final Driver Score
NFKB1	513.1011
PNO1	503.1376
MPHOSPH10	490.5041
DDX49	485.9314
KRR1	464.0030
RRP9	460.6994
NFKBIA	442.9822
UTP18	442.0950
CREBBP	439.3800
FBL	438.5238

Conclusion