실험계획법 실습 - 12주차

Chapter4 Experiments with Blocking Factors

```
proc anova data=ex1;
class brand car position;
model y=brand car position;
means brand car/tukey;
run;
```

proc anova data=ex1;
class brand car;
model y=brand car;
run;

```
proc anova data=bibd;
class treat block;
model y=treat block;
run;
```

```
proc glm data=bibd;
class treat block;
model y=treat block;
means treat block/tukey;
run;
```

The Randomized Complete Block Design

● 기획(3): Data

	자동차				
	1	2	3	4	
브	B(14)	D(11)	A(13)	C(9)	
랜 드	C(12)	C(12)	B(13)	D(9)	
	A(17)	B(14)	D(11)	B(8)	
	D(13)	A(14)	C(10)	A(13)	

⁻ 자동차 마다 타이어 브랜드 효과가 다름을 확인함!!

The Latin Square Design

Data

01+1	자동차				
위치	1	2	3	4	
1	C(12)	D(11)	A(13)	B(8)	
2	B(14)	C(12)	D(11)	A(13)	
3	A(17)	B(14)	C(10)	D(9)	
4	D(13)	A(14)	B(13)	C(9)	

- 만약, 타이어의 위치에 따른 효과가 존재하지 않을까?
- 위 모형에 대해서 생각해보세요.

The Latin Square Design

Latin Square Design

- 모형: $y_{ijk} = \mu + \tau_i + \beta_j + \gamma_k + \varepsilon_{ijk}, \varepsilon_{ijk} \sim NID(o, \sigma^2)$
- $-\tau_i$: 처리 i에 대한 효과.(i = 1, 2, 3, 4)
- $-\beta_i$: j 번째 블록(열)에 대한 효과.(j = 1, 2, 3, 4): 차에 대한 효과
- $-\gamma_k$: k 번째 블록(행)에 대한 효과. (k=1,2,3,4): 위치에 대한 효과
- τ , β , γ 에 대해서 검정을 해보세요.

● 균형불완비블록설계

- 위의 예(타이어브랜드)에 대한 예를 들자면, 현재는 타이어 4개를 가지고 비교했지만, 6개의 타이어 브랜드를 비교하고 싶을 경우, 한 차에 4개 브랜드만 배치할 수 있어 모든 처리를 동일한 환경에서 실험할 수 없을 때, 부족한대로 블록마다 처리의 일부만 배치하여 실험을 하게 되는데 이것을 불완비블록설계(Incomplete Block Designs) 이 중에서 균형불완비블록설계(Balanced Incomplete Block Designs:BIBD)를 알아보도록 하겠습니다.

● 예시: 처리는 3개이지만 한 블록에 2개 처리만 가능한 경우

+171	블록			
처리	1	2	3	
Α	Α		Α	
В	В	В		
С		С	С	

● 예시: 처리는 4개이지만 한 블록에 2개 처리만 가능한 경우

처리	블록					
	1	2	3	4	5	6
Α	Α	Α	Α		•	
В	В	•		В	В	
С		C		C		C
D	•	•	D	•	D	D

BIBD

- 모형: $y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}, \varepsilon_{ij} \sim NID(o, \sigma^2)$
- $-\tau_i$: 처리 i에 대한 효과.(i = 1, 2, 3, ..., a)
- $-\beta_i$: j 번째 블록(열)에 대한 효과.(j = 1, 2, 3, ..., b)
- 랜덤화 블록 설계(RCBD)와 모형은 같지만 다른 점?
 - 1) 일부 y_{ij} 에 대한 값이 존재 하지 않음.
 - 2) $a \times b \neq$ 총관측치수
 - 3) $SST = SS_{block} + SS_{treatment} + SSE$ 의 차이!!

• P 168: Table 4.22

ᅯᆁᄼᄎᄜᆌ	블록(원료의 배치)				
처리(촉매제)	1	2	3	4	
1	73	74		71	
2	•	75	67	72	
3	73	75	68		
4	75		72	75	

- BIBD의 경우 PROC ANOVA 랑 PROC GLM 값이 다름!! 여기에서는 PROC GLM을 사용해야함!!

 $-SST = SS_{block} + SS_{treatment} + SSE$

처리제곱합은 블록을 조정한 후의 제곱하기에!!(Page:144 랑 Page:169 비교)