Physics 4310 Homework #2

3 problems
Due by January 29

> 1

Given $A \doteq \begin{pmatrix} 1 & 2 \\ 3i & 4 \end{pmatrix}$ and $|\psi\rangle \doteq \begin{pmatrix} i \\ -1 \end{pmatrix}$, find the matrix representations of

- (a) $A|\psi\rangle$
- (b) $\langle \psi | A$
- (c) $\langle \psi | A \dagger$

> 2.

Suppose B is a Hermitian operator which is represented in the S_z basis by the matrix

$$\begin{pmatrix} 1 & 2 - i \\ a & 2 \end{pmatrix}$$

- (a) What is a?
- (b) If I apply this measurement to a system in arbitrary state $|\psi\rangle$, what are the possible outcomes of this measurement? What could the final state of the system be?
- (c) Find the probability of the outcomes, if $|\psi\rangle = |\uparrow\rangle$.

> 3.

Consider the operator $S_{\hat{n}}$ for a Stern-Gerlach device oriented along the vector

$$\hat{n} = \hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta$$

(a) Prove that it is represented (in the S_z basis) by the matrix

$$\frac{\hbar}{2} \begin{pmatrix} \cos \theta & \sin \theta e^{-i\phi} \\ \sin \theta e^{i\phi} & -\cos \theta \end{pmatrix}$$

- (b) Prove that $\cos \frac{\theta}{2} |\uparrow\rangle + \sin \frac{\theta}{2} e^{i\phi} |\downarrow\rangle$ is an eigenvector of $S_{\hat{n}}$, and find the corresponding eigenvalue.
- (c) For what values of θ and ϕ does $S_{\hat{n}} = S_y$?