COMP 330/543 001 SP24 ASSIGNMENT 2 NAMAN GUPTA(NG63)

1. CONNECTED COMPONENTS

PROCEDURE:

```
CREATE PROCEDURE BFS
AS
BEGIN
  DECLARE @curNode INT;
  DECLARE @componentID INT = 1;
  IF OBJECT ID('tempdb..#CurrentComponent', 'U') IS NOT NULL DROP TABLE
#CurrentComponent;
  CREATE TABLE #CurrentComponent (NodeID INT PRIMARY KEY);
  IF OBJECT ID('tempdb..#UniquePapers', 'U') IS NOT NULL DROP TABLE
#UniquePapers;
  CREATE TABLE #UniquePapers (
  ID INT
  );
  INSERT INTO #UniquePapers (ID)
  SELECT DISTINCT paperID AS ID FROM edges
  UNION
  SELECT DISTINCT citedPaperID AS ID FROM edges;
  IF OBJECT ID('tempdb..#Components', 'U') IS NOT NULL DROP TABLE
#Components;
  CREATE TABLE #Components (
    ComponentID INT,
    NodeID INT,
  IF OBJECT ID('tempdb..#Visited', 'U') IS NOT NULL DROP TABLE #Visited;
  CREATE TABLE #Visited (
    NodeID INT PRIMARY KEY
  );
  DECLARE nodeCursor CURSOR FOR SELECT ID FROM #UniquePapers;
  OPEN nodeCursor;
  FETCH NEXT FROM nodeCursor INTO @curNode;
  WHILE @@FETCH STATUS = 0
  BEGIN
    IF NOT EXISTS (SELECT 1 FROM #Visited WHERE NodeID = @curNode)
```

```
BEGIN
      TRUNCATE TABLE #CurrentComponent;
      INSERT INTO #CurrentComponent (NodeID) VALUES (@curNode);
      WHILE 1 = 1
        BEGIN
          INSERT INTO #CurrentComponent (NodeID)(
          SELECT e.paperID FROM edges e
          WHERE EXISTS (SELECT 1 FROM #CurrentComponent cc WHERE
cc.NodeID = e.citedPaperID)
             AND NOT EXISTS (SELECT 1 FROM #CurrentComponent cc WHERE
cc.NodeID = e.paperID)
          UNION
          SELECT e.citedPaperID FROM edges e
          WHERE EXISTS (SELECT 1 FROM #CurrentComponent cc WHERE
cc.NodeID = e.paperID)
             AND NOT EXISTS (SELECT 1 FROM #CurrentComponent cc WHERE
cc.NodeID = e.citedPaperID));
          IF @@ROWCOUNT = 0 BREAK;
        END
      INSERT INTO #Components (ComponentID, NodeID)
      SELECT @componentID, NodeID FROM #CurrentComponent;
      INSERT INTO #Visited (NodeID)
      SELECT NodeID FROM #CurrentComponent;
      SET @componentID = @componentID + 1;
    END
    FETCH NEXT FROM nodeCursor INTO @curNode;
  END:
  CLOSE nodeCursor;
  DEALLOCATE nodeCursor;
  with comp as (select ComponentID, Count(*) as comp Count from #Components group by
ComponentID having Count(*)>4 and Count(*)<=10)
  select c.ComponentID, d.NodeID as PaperID,n.paperTitle from comp c join #Components
d on d.ComponentID=c.ComponentID join nodes n on n.paperID= d.NodeID order by
c.ComponentID asc
END;
Go
EXEC BFS;
```

OUTPUT:

ComponentID	PaperID	paperTitle	
2	9509135	Classical and Quantum Mechanics of Non-Abelian Chern-Simons Particles	
2	304155	Exact String-like Solutions of the Gauged Nonlinear O(3) Model	
2	9805010	On the Gauged Non-compact Spin System	
2	9507015	Topological and Nontopological Solitons in a Gauged O(3) Sigma Model	
2	9703185	N=2 Supersymmetric Gauged O(3) Sigma Model	
2	9506015	Statistical Mechanics of Non-Abelian Chern-Simons Particles	
2	9303080	Non-Abelian Chern-Simons Quantum Mechanics	
2	9707150	Bogomolnyi Solitons and Hermitian Symmetric Spaces	
16	9502105	FIELD THEORETICAL AND QUANTUM MECHANICAL DESCRIPTIONS OF COLLIDING AND	
16	9703200	The Low Energy Limit of the Chern-Simons Theory Coupled to Fermions	
16	9402020	Perturbative Bosonic End Anyon Spectra and Contact Interactions	
16	7080	Relativistic scalar Aharonov-Bohm scattering	
	9703090	-	
16		Perturbative Expansion in the Galilean Invariant Spin One-Half	
16	9603185 9510085	The Aharonov-Bohm scattering : the role of the incident wave	
16		Calculation of the Aharonov-Bohm wave function	
16	9906170	Radiative Corrections to the Aharonov-Bohm Scattering	
16	9411175	Aharonov-Bohm Scattering of a Localized Wave Packet: Analysis of the	
16	9710025	On the Nonrelativistic Limit of the Scattering of Spin One-half	
19	9212110	Three Dimensional Chern-Simons Theory as a Theory of Knots and Links III	
19	9812105	Vassiliev Invariants in the Context of Chern-Simons Gauge Theory	
19	9312215	Knot invariants from rational conformal field theories	
19	9401095	Chirality of Knots 9_{42} and 10_{71} and Chern-Simons Theory	
19	9607030	Vassiliev Invariants for Links from Chern-Simons Perturbation Theory	
19	9807155	Combinatorial Formulae for Vassiliev Invariants from Chern-Simons Gauge	
30	9706080	Moving Frames Hierarchy and BF Theory	
30	9712255	Chiral solitons from dimensional reduction of Chern-Simons gauged	
30	9709075	Chiral solitons from dimensional reduction of Chern-Simons gauged	
30	9611185	A Nonrelativistic Chiral Soliton in One Dimension	
30	9507110	Calogero-Sutherland model from excitations of Chern-Simons vortices	
43	9904055	Finiteness following from underlying theory: a natural strategy	
43	9906015	Two- and Three-particle States in a Nonrelativistic Four-fermion Model	
43	9412050	Generalised Point Interactions for the Radial Schrodinger Equation via	
43	5195	A differential equation approach for examining the subtraction schemes	
43	3255	Dimensional Transmutation and Dimensional Regularization in Quantum	
43	9511010	The regulated four parameter one dimensional point interaction	
43	9706070	Non-perturbative regularization and renormalization: simple examples	
48	8110	Understanding Skyrmions using Rational Maps	
48	12215	Solitonic fullerene structures in light atomic nuclei	
48	9904160	Spherically Symmetric Solutions of the SU(N) Skyrme Models	
48	206160	Skyrmed Monopoles	
48	210310	Homotopy of Rational Maps and the Quantization of Skyrmions	

63	9611150	Dimensional Renormalization in phi^3 theory: ladders and rainbows	
63	9805025	A dilogarithmic 3-dimensional Ising tetrahedron	
63	9612010	Weight Systems from Feynman Diagrams	
63	9712140	Non-zeta knots in the renormalization of the Wess-Zumino model?	
63	9807125	How useful can knot and number theory be for loop calculations?	
141	9511210	Modular Invariance and the Odderon	
141	9508025	Quasiclassical QCD Pomeron	
141	9802100	Solution of the Odderon Problem	
141	9611025	Direct solution of the hard pomeron problem for arbitrary conformal	
141	9805135	New Results on the Odderon in QCD	

2. PAGERANK

PROCEDURE:

```
CREATE PROCEDURE CalculatePageRank
AS
BEGIN
  DECLARE @n INT,
      @dampingFactor FLOAT,
      @convergenceThreshold FLOAT,
      @iteration INT,
      @difference FLOAT;
  SET @dampingFactor = 0.85;
  SET @convergenceThreshold = 0.01;
  SET @iteration = 0;
  SET @difference = 0;
  SELECT @n = COUNT(DISTINCT paperID) FROM nodes;
  CREATE TABLE #Pagerank (
    PaperID INT PRIMARY KEY,
    PageRank FLOAT
  INSERT INTO #Pagerank (PaperID, PageRank)
  SELECT DISTINCT PaperID, 1.0 / @n as Rank
  FROM nodes;
  CREATE TABLE #edges updated (
    PAPERID INT,
    CITEDPAPERID Int
  insert into #edges updated (PAPERID, CITEDPAPERID) (select e.PAPERID,
e.CITEDPAPERID
         from edges e
         union
```

```
select sn.sink paperid as PAPERID, no.paperid as CITEDPAPERID
          from (select DISTINCT e.citedPaperID as sink paperid from edges e where
e.citedPaperID not in (select Distinct e1.paperID from edges e1 join edges e2 on
  e2.citedPaperID=e1.paperID)) sn join nodes no on sn.sink paperid!=no.paperID)
  CREATE TABLE #num citations (
    PaperID INT PRIMARY KEY,
    Citations INT
  );
  INSERT INTO #num citations (PaperID, Citations)
  SELECT paperID, COUNT(*) as Num of Citations
  FROM #edges updated
  GROUP BY paperID;
  CREATE TABLE #iteration Pagerank (
    PaperID INT PRIMARY KEY,
    PageRank FLOAT
  );
  WHILE 1 = 1
  BEGIN
    INSERT INTO #iteration Pagerank (PaperID, PageRank)
    SELECT
      p.PaperID,
      ((1 - @dampingFactor) / @n )+ (@dampingFactor * (SUM(pr.PageRank /
c.Citations)))
    FROM
      #Pagerank p
     JOIN #edges updated e ON e.citedPaperID = p.PaperID
       JOIN #Pagerank pr ON pr.PaperID = e.PaperID
       JOIN #num citations c ON c.PaperID = e.PaperID
    GROUP BY
      p.PaperID;
    SELECT @difference = SUM(ABS(pr.PageRank - ipr.PageRank))
    FROM #Pagerank pr
    INNER JOIN #iteration Pagerank ipr ON pr.PaperID = ipr.PaperID;
    UPDATE pr
    SET pr.PageRank = ipr.PageRank
    FROM #Pagerank pr
    INNER JOIN #iteration Pagerank ipr ON pr.PaperID = ipr.PaperID;
    IF @difference <= @convergenceThreshold
      BREAK;
    SET @iteration = @iteration + 1;
    Delete from #iteration Pagerank where PageRank is not null;
  END
  Declare @Sum Float;
  Select @Sum=Sum(PageRank) from #Pagerank
```

select top 10 pr.PaperID,pr.PageRank/@sum as PageRank,n.paperTitle from #Pagerank pr join nodes n on n.paperID=pr.PaperID order by pr.PageRank desc

END

go

Exec CalculatePageRank;

OUTPUT:

PaperID	PageRank	paperTitle
9504090	0.014724248584604100	Massless Black Holes and Conifolds in String Theory
9510135	0.014446305360815100	Bound States Of Strings And p-Branes
9711200	0.013647582829266400	The Large N Limit of Superconformal Field Theories and Supergravity
9802150	0.009697907266117290	Anti De Sitter Space And Holography
208020	0.008629895477463100	Open strings and their symmetry groups
9602065	0.007716301077518260	Dbranes and Spinning Black Holes
9305185	0.007549767481589170	Duality Symmetries of 4D Heterotic Strings
9611050	0.00712937877170942	TASI Lectures on D-Branes
9501030	0.005815454823456700	Strong/Weak Coupling Duality from the Dual String
9602135	0.005416172003172840	Entropy and Temperature of Black 3-Branes