ΜΙΓΑΔΙΚΉ ΑΝΑΛΎΣΗ ΦΥΛΛΑΔΙΟ ΑΣΚΉΣΕΩΝ Ι

Διδάσκων: Γ. Σμυρλής

1. Έστω $f: \mathbb{C} \to \mathbb{C}$ με

$$f(z) = \begin{cases} \frac{\overline{z}^3}{|z|^2}, & z \neq 0 \\ 0, & z = 0. \end{cases}$$

Να δείξετε ότι ικανοποιούνται οι συνθήκες Cauchy-Riemann στο σημείο $z_0=0$ αλλά η f δεν είναι διαφορίσιμη στο σημείο αυτό.

- 2. Να βρείτε το ευρύτερο πεδίο του $\mathbb C$ πάνω στο οποίο η συνάρτηση $\operatorname{Log}\left(\frac{1+z}{1-z}\right)$ είναι ολόμορφη.
- 3. Δείξτε ότι η συνάρτηση $f(z)=e^y\cos x+ie^y\sin x$ δεν είναι διαφορίσιμη σε κανένα σημείο $z\in\mathbb{C}$.
- 4. Να βρείτε τα σημεία στα οποία η συνάρτηση $f(z)=\overline{z}e^{-|z|^2}$ είναι διαφορίσιμη και να υπολογίσετε την παράγωγο στα σημεία αυτά.
- 5. Αν η $f:\mathbb{C}\to\mathbb{C}$ είναι ολόμορφη, δείξτε ότι και η $g(z)=\overline{f(\overline{z})}$ είναι ολόμορφη.
- 6. Να βρείτε ολόμορφη συνάρτηση $f=u+iv:\mathbb{C}\to\mathbb{C}$ τέτοια ώστε:
 - (i) $u(x,y) = -e^{-x}\sin y + \frac{y^2 x^2}{2}, (x,y) \in \mathbb{R}^2, f(0) = 0.$
 - (ii) $u(x,y) = 3x^2y y^3 + e^{2y}\cos(2x)$, $(x,y) \in \mathbb{R}^2$, f(0) = 1.
- 7. Έστω $A\subseteq\mathbb{C}$ πεδίο και $f=u+iv\in\mathcal{H}(A)$ με $u_x+v_y=0$ στο A. Να δείξετε ότι υπάρχουν $c\in\mathbb{R},\ d\in\mathbb{C}$ τέτοια ώστε

$$f(z) = icz + d, \quad z \in A.$$

8. Έστω $f(z)=z^3, \ z_1=\frac{-1+i\sqrt{3}}{2}, \ z_2=\frac{-1-i\sqrt{3}}{2}$. Δείξτε ότι δεν υπάρχει z_0 πάνω στο ευθύγραμμο τμήμα $[z_1,\ z_2]$ τέτοιο ώστε

$$f(z_2) - f(z_1) = f'(z_0)(z_2 - z_1).$$

Αυτό σημαίνει ότι το θεώρημα της μέσης τιμής δεν ισχύει στις μιγαδικές συναρτήσεις.

9. Έστω $A\subseteq\mathbb{C}$ ανοικτό, $z_0=x_0+iy_0\in A$ και $f=u+iv:A\to\mathbb{C}$. Υποθέτουμε ότι οι u,v έχουν συνεχείς μερικές παραγώγους σε κάποια περιοχή του (x_0,y_0) και ότι το όριο

$$\lim_{z \to z_0} \operatorname{Re} \left(\frac{f(z) - f(z_0)}{z - z_0} \right)$$

υπάρχει στο \mathbb{R} . Να δείξετε ότι η f είναι διαφορίσιμη στο z_0 .

- 10. Έστω $A \subseteq \mathbb{C}$ πεδίο. Να δείξετε ότι:
 - (i) Εάν $f \in \mathcal{H}(A)$ με $\overline{f} \in \mathcal{H}(A)$, τότε f σταθερή.
 - (ii) Εάν $f \in \mathcal{H}(A)$ και |f| σταθερή, τότε f σταθερή.
 - (iii) Εάν $f:A\to\mathbb{C}$ με $f^5,\ \overline{f}^2\in\mathcal{H}(A),$ τότε f σταθερή.
- 11. Έστω $A\subseteq\mathbb{C}$ πεδίο και $f\in\mathcal{H}(A)$. Να δείξετε ότι:
 - (i) Αν το f(A) είναι υποσύνολο μιας ευθείας του μιγαδιχού επιπέδου, τότε η f είναι σταθερή.
 - (ii) Αν το f(A) είναι υποσύνολο ενός χύχλου του μιγαδιχού επιπέδου, τότε η f είναι σταθερή.
- 12. (i) Εάν x_0 αρνητικός πραγματικός αριθμός, να δείξετε ότι δεν υπάρχει το όριο $\lim_{w\to x_0} \mathrm{Log} w$.

(Υπόδειξη: Να θεωρήσετε τις αχολουθίες $|x_0|e^{i(\pi-1/n)}, |x_0|e^{i(-\pi+1/n)}, n \ge 1.$)

(ii) Να δείξετε ότι δεν υπάρχει ολόμορφη συνάρτηση $f=u+iv:\mathbb{C}\setminus\{0\}\to\mathbb{C}$ τέτοια ώστε

$$u(x,y) = \frac{1}{2}\ln(x^2 + y^2), \quad (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$$