Fairly Dividing Mixtures of Goods and Chores under Lexicographics Preferences

Hosseini, Sikdar, Vaish & Xia

Soham Samaddar Aditya Tanwar Akanksha Singh

April 2024

Acknowledgement

Before we begin, we would like to thank:

- The authors of the paper: Hadi Hosseini (PSU), Sujoy Sikdar (BU), Rohit Vaish (IITD), and Lirong Xia (RPI)
- Our course instructor Dr. Sunil Simon

Introduction

- Lexicographic Preferences
 - Have we seen them before?
- Fair Division lack of envy

Real World Significance

Division of indivisible goods between players that have lexicographic preferences has several real world applications:

- Course allocation in universities
- Distribution of various medical supplies to hospitals
- Allocation of public housing units

Allocation Problem

An allocation problem is a tuple (N, M, G, C, \succ) defined as:

- *N* is a set of *n* agents, $\{1, 2, \dots, n\}$
- M is a set of m items, $\{1, 2, \dots, m\}$
- $G := (G_1, G_2, \dots, G_n)$ is a set of subsets of M, G_i are goods for the i^{th} agent
- $C := (C_1, C_2, \dots, C_n)$ is a set of subsets of M, C_i are chores for the i^{th} agent
- $\succ := (\succ_1, \succ_2, \cdots, \succ_n)$ is a set of lexicographic preference profiles, \succ_i denotes the preference ordering over M for the i^{th} agent

An allocation $A = (A_1, A_2, \dots, A_n)$ is a **partition** of M such that the i^{th} agent receives the items in A_i .

Allocation Problem

An allocation problem is a tuple (N, M, G, C, \succ) defined as:

- N is a set of n agents, $\{1, 2, \dots, n\}$
- M is a set of m items, $\{1, 2, \dots, m\}$
- $G := (G_1, G_2, \dots, G_n)$ is a set of subsets of M, G_i are goods for the i^{th} agent
- $C := (C_1, C_2, \dots, C_n)$ is a set of subsets of M, C_i are chores for the i^{th} agent
- $\succ := (\succ_1, \succ_2, \cdots, \succ_n)$ is a set of lexicographic preference profiles, \succ_i denotes the preference ordering over M for the i^{th} agent

An allocation $A = (A_1, A_2, \dots, A_n)$ is a **partition** of M such that the i^{th} agent receives the items in A_i .

Allocation Problem

An allocation problem is a tuple (N, M, G, C, \succ) defined as:

- N is a set of n agents, $\{1, 2, \dots, n\}$
- M is a set of m items, $\{1, 2, \dots, m\}$
- $G := (G_1, G_2, \dots, G_n)$ is a set of subsets of M, G_i are goods for the i^{th} agent
- $C := (C_1, C_2, \dots, C_n)$ is a set of subsets of M, C_i are chores for the i^{th} agent
- $\succ := (\succ_1, \succ_2, \cdots, \succ_n)$ is a set of lexicographic preference profiles, \succ_i denotes the preference ordering over M for the i^{th} agent

An allocation $A = (A_1, A_2, \dots, A_n)$ is a **partition** of M such that the i^{th} agent receives the items in A_i .

Allocation Problem

An allocation problem is a tuple (N, M, G, C, \succ) defined as:

- N is a set of n agents, $\{1, 2, \dots, n\}$
- M is a set of m items, $\{1, 2, \dots, m\}$
- $G := (G_1, G_2, \dots, G_n)$ is a set of subsets of M, G_i are goods for the i^{th} agent
- $C := (C_1, C_2, \dots, C_n)$ is a set of subsets of M, C_i are chores for the i^{th} agent
- $\succ := (\succ_1, \succ_2, \cdots, \succ_n)$ is a set of lexicographic preference profiles, \succ_i denotes the preference ordering over M for the i^{th} agent

An allocation $A = (A_1, A_2, \dots, A_n)$ is a **partition** of M such that the i^{th} agent receives the items in A_i .

Allocation Problem

An allocation problem is a tuple (N, M, G, C, \succ) defined as:

- N is a set of n agents, $\{1, 2, \dots, n\}$
- M is a set of m items, $\{1, 2, \dots, m\}$
- $G := (G_1, G_2, \dots, G_n)$ is a set of subsets of M, G_i are goods for the i^{th} agent
- $C := (C_1, C_2, \dots, C_n)$ is a set of subsets of M, C_i are chores for the i^{th} agent
- $\succ := (\succ_1, \succ_2, \cdots, \succ_n)$ is a set of lexicographic preference profiles, \succ_i denotes the preference ordering over M for the i^{th} agent

An allocation $A = (A_1, A_2, \dots, A_n)$ is a **partition** of M such that the ith agent receives the items in A_i .

Allocation Problem

An allocation problem is a tuple (N, M, G, C, \succ) defined as:

- N is a set of n agents, $\{1, 2, \dots, n\}$
- M is a set of m items, $\{1, 2, \dots, m\}$
- $G := (G_1, G_2, \dots, G_n)$ is a set of subsets of M, G_i are goods for the i^{th} agent
- $C := (C_1, C_2, \dots, C_n)$ is a set of subsets of M, C_i are chores for the i^{th} agent
- $\succ := (\succ_1, \succ_2, \cdots, \succ_n)$ is a set of lexicographic preference profiles, \succ_i denotes the preference ordering over M for the i^{th} agent

An allocation $A = (A_1, A_2, \dots, A_n)$ is a **partition** of M such that the i^{th} agent receives the items in A_i .

Allocation Problem

An allocation problem is a tuple (N, M, G, C, \succ) defined as:

- N is a set of n agents, $\{1, 2, \dots, n\}$
- M is a set of m items, $\{1, 2, \dots, m\}$
- $G := (G_1, G_2, \dots, G_n)$ is a set of subsets of M, G_i are goods for the i^{th} agent
- $C := (C_1, C_2, \dots, C_n)$ is a set of subsets of M, C_i are chores for the i^{th} agent
- $\succ := (\succ_1, \succ_2, \cdots, \succ_n)$ is a set of lexicographic preference profiles, \succ_i denotes the preference ordering over M for the i^{th} agent

An allocation $A = (A_1, A_2, \dots, A_n)$ is a **partition** of M such that the i^{th} agent receives the items in A_i .

- Goods: $(g_i \text{ or } o_i^+)$
- Chores: $(c_i \text{ or } o_i^-)$
- **Bundles**: Any subset $X \subseteq M$ of items. For any bundle X, let $X^{i+} := X \cap G_i$ and $X^{i-} := X \cap C_i$.
- $\succ_i (k)$: k^{th} ranked item in the preference ordering of i
- $\succ_i (k, S)$: k^{th} ranked item in the bundle S according to the preference order of i $\succ_i (k) = \succ_i (k, M)$
- >:= (>₁,>₂,···,>_n) is a set of preferences over bundles such that >_i denotes the preference ordering over 2^M for the i^{th} agent, induced by \succ_i

- Goods: $(g_i \text{ or } o_i^+)$
- Chores: $(c_i \text{ or } o_i^-)$
- **Bundles**: Any subset $X \subseteq M$ of items. For any bundle X, let $X^{i+} := X \cap G_i$ and $X^{i-} := X \cap C_i$.
- $\succ_i (k)$: k^{th} ranked item in the preference ordering of i
- $\succ_i (k, S)$: k^{th} ranked item in the bundle S according to the preference order of i $\succ_i (k) = \succ_i (k, M)$
- >:= (>₁,>₂,···,>_n) is a set of preferences over bundles such that >_i denotes the preference ordering over 2^M for the i^{th} agent, induced by \succ_i

- Goods: $(g_i \text{ or } o_i^+)$
- Chores: $(c_i \text{ or } o_i^-)$
- **Bundles**: Any subset $X \subseteq M$ of items. For any bundle X, let $X^{i+} := X \cap G_i$ and $X^{i-} := X \cap C_i$.
- $\succ_i (k)$: k^{th} ranked item in the preference ordering of i
- $\succ_i (k, S)$: k^{th} ranked item in the bundle S according to the preference order of i $\succ_i (k) = \succ_i (k, M)$
- >:= $(>_1, >_2, \cdots, >_n)$ is a set of preferences over bundles such that $>_i$ denotes the preference ordering over 2^M for the i^{th} agent, induced by \succ_i

- Goods: $(g_i \text{ or } o_i^+)$
- Chores: $(c_i \text{ or } o_i^-)$
- **Bundles**: Any subset $X \subseteq M$ of items. For any bundle X, let $X^{i+} := X \cap G_i$ and $X^{i-} := X \cap C_i$.
- $\succ_i (k)$: k^{th} ranked item in the preference ordering of i
- $\succ_i (k, S)$: k^{th} ranked item in the bundle S according to the preference order of i• $\succ_i (k) = \succ_i (k, M)$
- >:= (>₁,>₂,···,>_n) is a set of preferences over bundles such that >_i denotes the preference ordering over 2^M for the i^{th} agent, induced by \succ_i

- Goods: $(g_i \text{ or } o_i^+)$
- Chores: $(c_i \text{ or } o_i^-)$
- **Bundles**: Any subset $X \subseteq M$ of items. For any bundle X, let $X^{i+} := X \cap G_i$ and $X^{i-} := X \cap C_i$.
- $\succ_i (k)$: k^{th} ranked item in the preference ordering of i
- $\succ_i (k, S)$: k^{th} ranked item in the bundle S according to the preference order of i• $\succ_i (k) = \succ_i (k, M)$
- >:= (>₁,>₂,···,>_n) is a set of preferences over bundles such that >_i denotes the preference ordering over 2^M for the i^{th} agent, induced by \succ_i

- Objectivity over items: $\forall i, j \in N, G_i = G_j, C_i = C_j$
- Subjectivity over items
- Goods only: $\forall i \in N, G_i = M$
- Chores only: $\forall i \in N, C_i = M$

- Objectivity over items: $\forall i, j \in N, G_i = G_j, C_i = C_j$
- Subjectivity over items
- Goods only: $\forall i \in N, G_i = M$
- Chores only: $\forall i \in N, C_i = M$

- Objectivity over items: $\forall i, j \in N, G_i = G_j, C_i = C_j$
- Subjectivity over items
- Goods only: $\forall i \in N, G_i = M$
- Chores only: $\forall i \in N, C_i = M$

- Objectivity over items: $\forall i, j \in N, G_i = G_j, C_i = C_j$
- Subjectivity over items
- Goods only: $\forall i \in N, G_i = M$
- Chores only: $\forall i \in N, C_i = M$

- Objectivity over items: $\forall i, j \in N, G_i = G_j, C_i = C_j$
- Subjectivity over items
- Goods only: $\forall i \in N, G_i = M$
- Chores only: $\forall i \in N, C_i = M$

Lexicographic Preferences

- Goods: Prefer to have them
- Chores: Prefer to not have them
- A preference, \succ , over M thus induces a preference, \gt , over 2^M .
- Example: $c_1^- \succ g_2^+ \succ c_3^- \succ g_4^+$
- Sample allocations:

$$\{g_2^+, g_4^+\} >_i \{g_2^+, c_3^-, g_4^+\} >_i \{g_2^+, c_3^-\} >_i \{c_1^-, g_2^+\}$$

Lexicographic Preferences

- Goods: Prefer to have them
- Chores: Prefer to not have them
- A preference, \succ , over M thus induces a preference, \gt , over 2^M .
- Example: $c_1^- \succ g_2^+ \succ c_3^- \succ g_4^+$
- Sample allocations:

$$\{g_2^+, g_4^+\} >_i \{g_2^+, c_3^-, g_4^+\} >_i \{g_2^+, c_3^-\} >_i \{c_1^-, g_2^+\}$$

 $\{c_1^-, g_2^+\} ? \{c_3^-, g_4^+\}$

Lexicographic Preferences

- Goods: Prefer to have them
- Chores: Prefer to not have them
- A preference, \succ , over M thus induces a preference, \gt , over 2^M .
- Example: $c_1^- \succ g_2^+ \succ c_3^- \succ g_4^+$
- Sample allocations:

$$\{g_2^+, g_4^+\} >_i \{g_2^+, c_3^-, g_4^+\} >_i \{g_2^+, c_3^-\} >_i \{c_1^-, g_2^+\}$$

 $\{c_1^-, g_2^+\} \prec \{c_3^-, g_4^+\}$

- Envy-free (EF): $\forall i, j \in N, A_i \succ_i A_j$
- Envy-free upto one item (EF1): $\forall i, j \in N$ such that $A_i^{i-} \cup A_j^{i+} \neq \Phi, \exists o \in A_i^{i-} \cup A_j^{i+}$ such that either $A_i \succ_i A_j \setminus \{o\}$ or $A_i \setminus \{o\} \succ_i A_j$
 - Essentially, every agent becomes envy free by removing some chore from their bundle or some good from the other agent's bundle
- Envy-free upto any item (EFX): $\forall i, j \in N$ such that $A_i^{i-} \cup A_j^{i+} \neq \Phi, \forall o \in A_i^{i-} \cup A_j^{i+}$ it must be that:
 - if $o \in A_i^{i+}$, $A_i \succ_i A_j \setminus \{o\}$
 - if $o \in A_i^{i-}$, $A_i \setminus \{o\} \succ_i A_i$
 - Essentially, every agent becomes envy free by removing **any one chore** from their bundle or **any one good** from the other agent's bundle
- Increasing strength: EF < EFX < EF1

- Envy-free (EF): $\forall i, j \in N, A_i \succ_i A_j$
- Envy-free upto one item (EF1): $\forall i,j \in N$ such that $A_i^{i-} \cup A_j^{i+} \neq \Phi, \exists o \in A_i^{i-} \cup A_j^{i+}$ such that either $A_i \succ_i A_j \setminus \{o\}$ or $A_i \setminus \{o\} \succ_i A_j$
 - Essentially, every agent becomes envy free by removing **some chore** from their bundle or **some good** from the other agent's bundle
- Envy-free upto any item (EFX): $\forall i, j \in N$ such that $A_i^{i-} \cup A_j^{i+} \neq \Phi, \forall o \in A_i^{i-} \cup A_j^{i+}$ it must be that:
 - if $o \in A_i^{i+}$, $A_i \succ_i A_j \setminus \{o\}$
 - if $o \in A_i^{i-}$, $A_i \setminus \{o\} \succ_i A_i$
 - Essentially, every agent becomes envy free by removing any one chore from their bundle or any one good from the other agent's bundle
- Increasing strength: EF < EFX < EF1

- Envy-free (EF): $\forall i, j \in N, A_i \succ_i A_j$
- Envy-free upto one item (EF1): $\forall i,j \in N$ such that $A_i^{i-} \cup A_j^{i+} \neq \Phi, \exists o \in A_i^{i-} \cup A_j^{i+}$ such that either $A_i \succ_i A_j \setminus \{o\}$ or $A_i \setminus \{o\} \succ_i A_j$
 - Essentially, every agent becomes envy free by removing some chore from their bundle or some good from the other agent's bundle
- Envy-free upto any item (EFX): $\forall i, j \in N$ such that $A_i^{i-} \cup A_j^{i+} \neq \Phi, \forall o \in A_i^{i-} \cup A_j^{i+}$ it must be that:
 - if $o \in A_j^{i+}$, $A_i \succ_i A_j \setminus \{o\}$
 - if $o \in A_i^{i-}$, $A_i \setminus \{o\} \succ_i A_i$
 - Essentially, every agent becomes envy free by removing any one chore from their bundle or any one good from the other agent's bundle
- Increasing strength: EF < EFX < EF1

- Envy-free (EF): $\forall i, j \in N, A_i \succ_i A_j$
- Envy-free upto one item (EF1): $\forall i,j \in N$ such that $A_i^{i-} \cup A_j^{i+} \neq \Phi, \exists o \in A_i^{i-} \cup A_j^{i+}$ such that either $A_i \succ_i A_j \setminus \{o\}$ or $A_i \setminus \{o\} \succ_i A_j$
 - Essentially, every agent becomes envy free by removing some chore from their bundle or some good from the other agent's bundle
- Envy-free upto any item (EFX): $\forall i, j \in N$ such that $A_i^{i-} \cup A_j^{i+} \neq \Phi, \forall o \in A_i^{i-} \cup A_j^{i+}$ it must be that:
 - if $o \in A_j^{i+}$, $A_i \succ_i A_j \setminus \{o\}$
 - if $o \in A_i^{i-}$, $A_i \setminus \{o\} \succ_i A_i$
 - Essentially, every agent becomes envy free by removing any one chore from their bundle or any one good from the other agent's bundle
- Increasing strength: EF < EFX < EF1

- Maximin Share (MMS): $MMS_i := \max_P \min_i \{P_1, P_2, \dots, P_n\}$ comparison w.r.t. $>_i$ Intuition: Cake cutting problem/Security A satisfies MMS if $\forall i \in N, A_i \geq_i MMS_i$
- Pareto Optimality (PO): A is PO if $\not\exists B$ s.t. $\forall i \in N, B_i \geq_i A_i$ and $\exists j \in N, B_j >_j A_j$

- Maximin Share (MMS): $MMS_i := \max_P \min_i \{P_1, P_2, \dots, P_n\} \text{comparison w.r.t.} >_i$ Intuition: Cake cutting problem/Security A satisfies MMS if $\forall i \in N, A_i \geq_i MMS_i$
- Pareto Optimality (PO): A is PO if $\not\exists B$ s.t. $\forall i \in N, B_i \geq_i A_i$ and $\exists j \in N, B_j >_j A_j$

- Maximin Share (MMS): $MMS_i := \max_P \min_i \{P_1, P_2, \dots, P_n\}$ comparison w.r.t. $>_i$ Intuition: Cake cutting problem/Security A satisfies MMS if $\forall i \in N, A_i \geq_i MMS_i$
- Pareto Optimality (PO): A is PO if $\not\exists B$ s.t. $\forall i \in N, B_i \geq_i A_i$ and $\exists j \in N, B_j >_j A_j$

- Maximin Share (MMS): $MMS_i := \max_P \min_i \{P_1, P_2, \dots, P_n\}$ comparison w.r.t. $>_i$ Intuition: Cake cutting problem/Security A satisfies MMS if $\forall i \in N, A_i \geq_i MMS_i$
- Pareto Optimality (PO): A is PO if $\not\exists B$ s.t. $\forall i \in N, B_i \geq_i A_i$ and $\exists j \in N, B_j >_j A_j$

- EFX may not exist for objective mixed items with lexicographic preferences.
- **Proof by counterexample**: Consider an objective mixed items instance with four agents and 7 objects. This is an objective instance, each item is either a good for all agents or a chore for all agents. o_1 is a good for all agents and all the other objects are chores.
 - Agents 1 and 2 have the same preference order, as do agents 3 and 4:

$$1,2: o_{2}^{-} \succ o_{3}^{-} \succ o_{4}^{-} \succ o_{1}^{+} \succ o_{5}^{-} \succ o_{6}^{-} \succ o_{7}^{-} > 0_{1}^{+} \succ o_{5}^{-} \succ o_{6}^{-} \succ o_{7}^{-} \succ o_{1}^{+} \succ o_{5}^{-} \succ o_{3}^{-} \succ o_{4}^{-} > 0_{5}^{-} \succ o_{5}^{-} \succ o_{5}^{-}$$

- Consider, wlog, that the good o_1^+ is allocated to agent 1, then we have 3 possible allocations.
- Case 1: If $A_1 \cap \{o_2^-, o_3^-, o_4^-\} \neq \Phi$ A_2 must be empty, otherwise, regardless of what agent 2 gets, it will prefer A_1 even after removing a chore from A_2 . Thus, $\{o_5^-, o_6^-, o_7^-\}$ must be distributed among A_3, A_4 . Whoever gets 2 or more chores out of these, prefers empty A_2 even after one chore is removed. Thus, EFX is not possible

- EFX may not exist for objective mixed items with lexicographic preferences.
- **Proof by counterexample**: Consider an objective mixed items instance with four agents and 7 objects. This is an objective instance, each item is either a good for all agents or a chore for all agents. o_1 is a good for all agents and all the other objects are chores.
 - Agents 1 and 2 have the same preference order, as do agents 3 and 4:

$$1,2: o_{2}^{-} \succ o_{3}^{-} \succ o_{4}^{+} \succ o_{1}^{+} \succ o_{5}^{-} \succ o_{6}^{-} \succ o_{7}^{+}$$

$$3,4: o_{5}^{-} \succ o_{6}^{-} \succ o_{7}^{-} \succ o_{1}^{+} \succ o_{2}^{-} \succ o_{2}^{-} \succ o_{7}^{-}$$

- Consider, wlog, that the good o_1^+ is allocated to agent 1, then we have 3 possible allocations.
- Case 1: If $A_1 \cap \{o_2^-, o_3^-, o_4^-\} \neq \Phi$ A_2 must be empty, otherwise, regardless of what agent 2 gets, it will prefer A_1 even after removing a chore from A_2 . Thus, $\{o_5^-, o_6^-, o_7^-\}$ must be distributed among A_3, A_4 . Whoever gets 2 or more chores out of these, prefers empty A_2 even after one chore is removed. Thus, EFX is not possible.

- EFX may not exist for objective mixed items with lexicographic preferences.
- **Proof by counterexample**: Consider an objective mixed items instance with four agents and 7 objects. This is an objective instance, each item is either a good for all agents or a chore for all agents. o_1 is a good for all agents and all the other objects are chores.
 - Agents 1 and 2 have the same preference order, as do agents 3 and 4:

$$1,2: o_2^- \succ o_3^- \succ o_4^- \succ o_1^+ \succ o_5^- \succ o_6^- \succ o_7^- 3,4: o_5^- \succ o_6^- \succ o_7^- \succ o_1^+ \succ o_2^- \succ o_3^- \succ o_4^-$$

- Consider, wlog, that the good o_1^+ is allocated to agent 1, then we have 3 possible allocations.
- Case 1: If $A_1 \cap \{o_2^-, o_3^-, o_4^-\} \neq \Phi$ A_2 must be empty, otherwise, regardless of what agent 2 gets, it will prefer A_1 even after removing a chore from A_2 . Thus, $\{o_5^-, o_6^-, o_7^-\}$ must be distributed among A_3, A_4 . Whoever gets 2 or more chores out of these, prefers empty A_2 even after one chore is removed. Thus, EFX is not possible.

- EFX may not exist for objective mixed items with lexicographic preferences.
- **Proof by counterexample**: Consider an objective mixed items instance with four agents and 7 objects. This is an objective instance, each item is either a good for all agents or a chore for all agents. o_1 is a good for all agents and all the other objects are chores.
 - Agents 1 and 2 have the same preference order, as do agents 3 and 4:

1,2:
$$o_2^- \succ o_3^- \succ o_4^- \succ o_1^+ \succ o_5^- \succ o_6^- \succ o_7^-$$

3,4: $o_5^- \succ o_6^- \succ o_7^- \succ o_1^+ \succ o_2^- \succ o_3^- \succ o_4^-$

- Consider, wlog, that the good o_1^+ is allocated to agent 1, then we have 3 possible allocations.
- Case 1: If $A_1 \cap \{o_2^-, o_3^-, o_4^-\} \neq \Phi$ A_2 must be empty, otherwise, regardless of what agent 2 gets, it will prefer A_1 even after removing a chore from A_2 . Thus, $\{o_5^-, o_6^-, o_7^-\}$ must be distributed among A_3, A_4 . Whoever gets 2 or more chores out of these, prefers empty A_2 even after one chore is removed. Thus, EFX is not possible.

Results on Non-existence of EFX

- EFX may not exist for objective mixed items with lexicographic preferences.
- Proof by counterexample: Consider an objective mixed items instance with four agents and 7 objects. This is an objective instance, each item is either a good for all agents or a chore for all agents. o₁ is a good for all agents and all the other objects are chores.
 - Agents 1 and 2 have the same preference order, as do agents 3 and 4:

1,2:
$$o_2^- \succ o_3^- \succ o_4^- \succ o_1^+ \succ o_5^- \succ o_6^- \succ o_7^-$$

3,4: $o_5^- \succ o_6^- \succ o_7^- \succ o_1^+ \succ o_2^- \succ o_3^- \succ o_4^-$

- Consider, wlog, that the good o_1^+ is allocated to agent 1, then we have 3 possible allocations.
- Case 1: If $A_1 \cap \{o_2^-, o_3^-, o_4^-\} \neq \Phi$ A_2 must be empty, otherwise, regardless of what agent 2 gets, it will prefer A_1 even after removing a chore from A_2 . Thus, $\{o_5^-, o_6^-, o_7^-\}$ must be distributed among A_3, A_4 . Whoever gets 2 or more chores out of these, prefers empty A_2 even after one chore is removed. Thus, EFX is not possible.

Results on non-existence of EFX

- Case 2: If $A_1 \cap \{o_5^-, o_6^-, o_7^-\} \neq \Phi$ If items are assigned to agent 3 or 4, they will envy A_1 even after one chore is removed, since the good o_1^+ is the most important item in A_1 for them. Thus, A_3 and A_4 must be empty. Thus, $\{o_5^-, o_6^-, o_7^-\}$ must all be in A_2 . Even after removing one chore from A_2 , agent 2 will envy the empty bundle A_3 . Thus, EFX is not possible.
- Case 3: If $A_1 \cap \{o_2^-, o_3^-, o_4^-\} \neq \Phi$ and $A_1 \cap \{o_5^-, o_6^-, o_7^-\} \neq \Phi$. Choose any $x \in A_1 \cap \{o_2^-, o_3^-, o_4^-\}$ and $y \in A_1 \cap \{o_5^-, o_6^-, o_7^-\}$. For EFX, agent 1 should not be envious of any other bundle after y is removed. Which means all 3 bundles must have at least one chore that is ranked higher than x in the preference order of agent 1. However, there exist at most 2 such chores. Thus, EFX is not possible.

Results on non-existence of EFX

- Case 2: If $A_1 \cap \{o_5^-, o_6^-, o_7^-\} \neq \Phi$ If items are assigned to agent 3 or 4, they will envy A_1 even after one chore is removed, since the good o_1^+ is the most important item in A_1 for them. Thus, A_3 and A_4 must be empty. Thus, $\{o_5^-, o_6^-, o_7^-\}$ must all be in A_2 . Even after removing one chore from A_2 , agent 2 will envy the empty bundle A_3 . Thus, EFX is not possible.
- Case 3: If $A_1 \cap \{o_2^-, o_3^-, o_4^-\} \neq \Phi$ and $A_1 \cap \{o_5^-, o_6^-, o_7^-\} \neq \Phi$. Choose any $x \in A_1 \cap \{o_2^-, o_3^-, o_4^-\}$ and $y \in A_1 \cap \{o_5^-, o_6^-, o_7^-\}$. For EFX, agent 1 should not be envious of any other bundle after y is removed. Which means all 3 bundles must have at least one chore that is ranked higher than x in the preference order of agent 1. However, there exist at most 2 such chores. Thus, EFX is not possible.

Results on EFX+PO

- Existence of EFX not guaranteed in general
- Can we categorise classes of games that admit an EFX?

 - $\bigcirc \cap_i C_i = \Phi$

Class: $\exists i \in N : \succ_i (1) \in G_i$

Idea: Satisfy the current agent with the highest-ranking good. Push the remaining common chores under the current agent's umbrella to get rid of them.

Sketch:

- ① (WLOG) Assume for $1 \in \mathcal{N} : \succ_1 (1) \in \mathcal{G}_1$
- ② Allocate \succ_1 (1) to 1
- Allocate "common chores" to 1
- Identify j with highest-ranking good
- Solution
 Solution</p

Observation: $A_j \subseteq G$

Class: $\exists i \in \mathbb{N} : \succ_i (1) \in G_i$

Idea: Satisfy the current agent with the highest-ranking good. Push the remaining common chores under the current agent's umbrella to get rid of them.

- Sketch:
 - (WLOG) Assume for $1 \in N :\succ_1 (1) \in G_1$
 - ② Allocate \succ_1 (1) to 1
 - Allocate "common chores" to 1
 - Identify j with highest-ranking good
 - Allocate the good to j as well as the "common chores"

Observation: $A_j \subseteq G_j$

Class: $\exists i \in N : \succ_i (1) \in G_i$

Idea: Satisfy the current agent with the highest-ranking good. Push the remaining common chores under the current agent's umbrella to get rid of them.

Sketch:

- (WLOG) Assume for $1 \in N :\succ_1 (1) \in G_1$
- ② Allocate \succ_1 (1) to 1
- 4 Allocate "common chores" to 1
- Identify j with highest-ranking good
- **1** Allocate the good to *j* as well as the "common chores"

Observation: $A_j \subseteq G_j$

Class: $\exists i \in \mathbb{N} : \succ_i (1) \in G_i$ EEX – Inductive

- 1 is not envious of anyone else
- Reduced instance(s) has no common chores
- Let $i(\neq 1)$ be the agent in the current round, then
 - \bullet $A_i \subseteq G_i$
 - $\bullet \Rightarrow A_i \cap C_i = \Phi$
 - Need only check $A_i \cap G_i$ for EFX
- i is not envious of anyone that came before $-|A_{j< i}\cap G_i|\leq 1$
- i is not envious of anyone that comes after
 - i received highest-ranking good (amongst the remaining G_i)
 - $A_i \cap C_i = \Phi$ and need only check goods for EFX

Class:
$$\exists i \in \mathbb{N} : \succ_i (1) \in G_i$$

EFX – Inductive

- 1 is not envious of anyone else
- Reduced instance(s) has no common chores
- Let $i(\neq 1)$ be the agent in the current round, then
 - $A_i \subseteq G_i$
 - $\Rightarrow A_i \cap C_i = \Phi$
 - Need only check $A_j \cap G_i$ for EFX
- i is not envious of anyone that came before $-|A_{j< i}\cap G_i|\leq 1$
- i is not envious of anyone that comes after
 - i received highest-ranking good (amongst the remaining G_i)
 - $A_i \cap C_i = \Phi$ and need only check goods for EFX

Class:
$$\exists i \in N : \succ_i (1) \in G_i$$

EFX – Inductive

- 1 is not envious of anyone else
- Reduced instance(s) has no common chores
- Let $i(\neq 1)$ be the agent in the current round, then
 - $A_i \subseteq G_i$
 - $\Rightarrow A_i \cap C_i = \Phi$
 - Need only check $A_i \cap G_i$ for EFX
- *i* is not envious of anyone that came before $-|A_{i< i}\cap G_i|\leq 1$
- i is not envious of anyone that comes after
 - i received highest-ranking good (amongst the remaining G_i)
 - $A_i \cap C_i = \Phi$ and need only check goods for EFX

Class:
$$\exists i \in N : \succ_i (1) \in G_i$$

PO - Contradiction

- $\succ_i (1, A_i) \in B_i$
 - Need to compensate *i* otherwise
 - True for i=1 since $\succ_i (1,A_i)=\succ_i (1)\in G_1$
 - i picks highest-ranking good remaining
 - Inductively, $\forall j < i : \succ_i (1, A_i) \in B_i$. The other items in A_i are chores for i
 - $\forall j > i, j$ receives less valuable items or chores
 - i does not have chores cannot be compensated

Class:
$$\exists i \in N : \succ_i (1) \in G_i$$

PO - Contradiction

- $\bullet \succ_i (1, A_i) \in B_i$
 - Need to compensate *i* otherwise
 - True for i=1 since $\succ_i (1,A_i)=\succ_i (1)\in G_1$
 - i picks highest-ranking good remaining
 - Inductively, $\forall j < i : \succ_i (1, A_i) \in B_i$. The other items in A_i are chores for i
 - $\forall j > i, j$ receives less valuable items or chores
 - i does not have chores cannot be compensated

Class:
$$\exists i \in \mathbb{N} : \succ_i (1) \in G_i$$

PO - Contradiction

- $\bullet \succ_i (1, A_i) \in B_i$
 - Need to compensate *i* otherwise
 - True for i = 1 since $\succ_i (1, A_i) = \succ_i (1) \in G_1$
 - i picks highest-ranking good remaining
 - Inductively, $\forall j < i : \succ_i (1, A_i) \in B_i$. The other items in A_i are chores for i
 - $\forall j > i, j$ receives less valuable items or chores
 - i does not have chores cannot be compensated

Class:
$$\exists i \in N : \succ_i (1) \in G_i$$

PO - Contradiction

- $\succ_i (1, A_i) \in B_i$
 - Need to compensate *i* otherwise
 - True for i = 1 since $\succ_i (1, A_i) = \succ_i (1) \in G_1$
 - i picks highest-ranking good remaining
 - Inductively, $\forall j < i : \succ_i (1, A_i) \in B_i$. The other items in A_i are chores for i
 - $\forall j > i, j$ receives less valuable items or chores
 - i does not have chores cannot be compensated

Class: $\exists i \in N : \succ_i (1) \in G_i$

PO - Contradiction

- $A_i \subseteq B_i$
 - No chores to lose for i > 1
 - Loss of a good for $i \ge 1$ cannot be compensated by a:
 - ① Good from j > i (reverse) induction
 - ② Good from j < i only possibility is $\succ_j (1, A_j)$, previous result
 - 1 cannot lose anything from A_1 either \succ_1 (1) \in G_1 or the item is a chore for j receiving it $\Rightarrow B_i <_i A_i$
- $\bullet \Rightarrow \forall i \in N, A_i = B_i \Rightarrow A = B \Rightarrow \Leftarrow$

Class: $\exists i \in N : \succ_i (1) \in G_i$

PO - Contradiction

- $A_i \subseteq B_i$
 - No chores to lose for i > 1
 - Loss of a good for $i \ge 1$ cannot be compensated by a:
 - **1** Good from j > i (reverse) induction
 - ② Good from j < i only possibility is $\succ_j (1, A_j)$, previous result
 - 1 cannot lose anything from A_1 either \succ_1 (1) \in G_1 or the item is a chore for j receiving it $\Rightarrow B_i <_i A_i$
- $\bullet \Rightarrow \forall i \in N, A_i = B_i \Rightarrow A = B \Rightarrow \Leftarrow$

Class: $\exists i \in N : \succ_i (1) \in G_i$

PO - Contradiction

- $A_i \subseteq B_i$
 - No chores to lose for i > 1
 - Loss of a good for $i \ge 1$ cannot be compensated by a:
 - **1** Good from j > i (reverse) induction
 - ② Good from j < i only possibility is $\succ_j (1, A_j)$, previous result
 - 1 cannot lose anything from A_1 either \succ_1 (1) \in G_1 or the item is a chore for j receiving it $\Rightarrow B_i <_i A_i$
- $\bullet \Rightarrow \forall i \in N, A_i = B_i \Rightarrow A = B \Rightarrow \Leftarrow$

Class: $\exists i \in N : \succ_i (1) \in G_i$

PO - Contradiction

- $A_i \subseteq B_i$
 - No chores to lose for i > 1
 - Loss of a good for $i \ge 1$ cannot be compensated by a:
 - **1** Good from j > i (reverse) induction
 - ② Good from j < i only possibility is $\succ_j (1, A_j)$, previous result
 - 1 cannot lose anything from A_1 either \succ_1 (1) \in G_1 or the item is a chore for j receiving it $\Rightarrow B_i <_i A_i$
- $\bullet \Rightarrow \forall i \in N, A_i = B_i \Rightarrow A = B \Rightarrow \Leftarrow$

Class: $\bigcap_i C_i = \Phi$

Idea: Same as the first algorithm*

Sketch:

- Identify j with highest-ranking good
- ② Allocate the good to j as well as the "common chores"
- $A_j \subseteq G_j$

- Maximin Share (MMS): $MMS_i := \max_{P} \min_i \{P_1, P_2, \dots, P_n\} \text{comparison w.r.t.} >_i \\ \text{Intuition: Cake cutting problem/Security} \\ A \text{ satisfies MMS if } \forall i \in N, A_i \geq_i MMS_i$
- Characterization of MMS_i
- EFX Allocation ⇒ MMS
- MMS is in P

- Maximin Share (MMS): $MMS_i := \max_P \min_i \{P_1, P_2, \dots, P_n\}$ comparison w.r.t. $>_i$ Intuition: Cake cutting problem/Security A satisfies MMS if $\forall i \in N, A_i \geq_i MMS_i$
- Characterization of MMS_i
- EFX Allocation ⇒ MMS
- MMS is in P

- Maximin Share (MMS): $MMS_i := \max_P \min_i \{P_1, P_2, \dots, P_n\}$ comparison w.r.t. $>_i$ Intuition: Cake cutting problem/Security A satisfies MMS if $\forall i \in N, A_i \geq_i MMS_i$
- Characterization of MMS_i
- EFX Allocation ⇒ MMS
- MMS is in P

- Maximin Share (MMS): $MMS_i := \max_P \min_i \{P_1, P_2, \dots, P_n\}$ comparison w.r.t. $>_i$ Intuition: Cake cutting problem/Security A satisfies MMS if $\forall i \in N, A_i \geq_i MMS_i$
- Characterization of MMS_i
- EFX Allocation ⇒ MMS
- MMS is in P

Intuition: Force i to make |N| partititions of M; What is the worst bundle it can guarantee for itself? Heuristics:

- H1: If it is guaranteed that a bundle **is not** the *worst* possible, make it as bad as possible improve prospects of the *actual worst* bundle
- H2: If it is guaranteed that a bundle **is** the *worst* possible, make it as good as possible

Intuition: Force i to make |N| partititions of M; What is the worst bundle it can guarantee for itself?

Heuristics:

- H1: If it is guaranteed that a bundle **is not** the *worst* possible, make it as bad as possible improve prospects of the *actual worst* bundle
- H2: If it is guaranteed that a bundle is the worst possible, make it as good as possible

$$\bullet \ (\succ_i (1) \in G_i) \land (|G_i| \ge n) \Rightarrow \mathit{MMS}_i = G_i \backslash \succ_i ([n-1], G_i)$$

•
$$(\succ_i (1) \in G_i) \land (|G_i| < n) \Rightarrow MMS_i = \Phi$$

$$\bullet \ (\succ_{i} (1) \in C_{i}) \Rightarrow MMS_{i} = \{\succ_{i} (1)\} \cup G_{i}$$

•
$$MMS_i \stackrel{?}{=} \Phi$$

•
$$(\succ_i (1) \in G_i) \land (|G_i| \ge n) \Rightarrow MMS_i = G_i \setminus \succ_i ([n-1], G_i)$$

•
$$(\succ_i (1) \in G_i) \land (|G_i| < n) \Rightarrow MMS_i = \Phi$$

$$\bullet \ (\succ_{i} (1) \in C_{i}) \Rightarrow MMS_{i} = \{\succ_{i} (1)\} \cup G_{i}$$

•
$$MMS_i \stackrel{?}{=} \Phi$$

•
$$(\succ_i (1) \in G_i) \land (|G_i| \ge n) \Rightarrow MMS_i = G_i \setminus \succ_i ([n-1], G_i)$$

•
$$(\succ_i (1) \in G_i) \land (|G_i| < n) \Rightarrow MMS_i = \Phi$$

$$\bullet \ (\succ_i (1) \in C_i) \Rightarrow \textit{MMS}_i = \{\succ_i (1)\} \cup G_i$$

•
$$MMS_i \stackrel{?}{=} \Phi$$

$\mathsf{EFX} \Rightarrow \mathsf{MMS}$

Let A be an EFX allocation that does not satisfy MMS for i. Then, we arrive at a contradiction (specifically, A is not EFX) in each of the following cases, inspired by the characterization of MMS:

- $\bullet \succ_i (1) \in C_i$

Since A does not satisfy MMS for i, we have $MMS_i >_i A_i$

$EFX \Rightarrow MMS$

Case 1:
$$\succ_i$$
 (1) \in C_i \Rightarrow $MMS_i = \{\succ_i$ (1) $\} \cup G_i$

- Observation: $\succ_i (1) \in A_i$
- Observation: i prefers any bundle without \succ_i (1)
- If A_i misses out on some good g,
 Some j ≠ i receives g in A_i
 A_i\{g\} > i A_i
- *If $G_i \subset A_i$
 - Since A_i <_i MMS_i, A_i must contain a chore other than ≻_i (1), say c
 A_j >_i A_i\{c}

$EFX \Rightarrow MMS$

Case 1:
$$\succ_i$$
 (1) \in C_i \Rightarrow $MMS_i = \{\succ_i$ (1) $\} \cup G_i$

- Observation: $\succ_i (1) \in A_i$
- Observation: *i* prefers any bundle without \succ_i (1)
- If A_i misses out on some good g,
 - Some $j \neq i$ receives g in A_j
 - $A_j \setminus \{g\} >_i A_i$
- *If $G_i \subset A_i$

Since A_i <_i MMS_i, A_i must contain a chore other than ≻_i (1), say c
A_j >_i A_i\{c}

$\overline{\mathsf{EFX}} \Rightarrow \mathsf{MMS}$

Case 1:
$$\succ_i$$
 (1) \in C_i \Rightarrow $MMS_i = \{\succ_i$ (1) $\} \cup G_i$

- Observation: $\succ_i (1) \in A_i$
- Observation: *i* prefers any bundle without \succ_i (1)
- If A_i misses out on some good g,
 - Some $j \neq i$ receives g in A_j
 - $A_j \setminus \{g\} >_i A_i$
- *If $G_i \subset A_i$
 - Since $A_i <_i MMS_i, A_i$ must contain a chore other than \succ_i (1), say c
 - $A_j >_i A_i \setminus \{c\}$

$\overline{\mathsf{EFX}} \Rightarrow \mathsf{MMS}$

Case 1:
$$\succ_i$$
 (1) \in C_i \Rightarrow $MMS_i = {\succ_i$ (1)} \cup G_i

- Observation: $\succ_i (1) \in A_i$
- Observation: *i* prefers any bundle without \succ_i (1)
- If A_i misses out on some good g,
 - Some $j \neq i$ receives g in A_j
 - $A_j \setminus \{g\} >_i A_i$
- *If $G_i \subset A_i$
 - Since $A_i <_i MMS_i, A_i$ must contain a chore other than \succ_i (1), say c
 - $A_j >_i A_i \setminus \{c\}$

$\mathsf{EFX} \Rightarrow \mathsf{MMS}$

Case 2:
$$\succ_i$$
 (1) $\in G_i, |G_i| < n$
 $\Rightarrow MMS_i = \Phi$

- Let $g \coloneqq \succ_i (1)$ and $c \coloneqq \succ_i (1, A_i)$
- $c \in C_i, g \notin A_i$ as $\Phi >_i A_i$
- Some $j \neq i$ receives g in A_j
- $A_j >_i A_i \setminus \{c\}$

$\mathsf{EFX} \Rightarrow \mathsf{MMS}$

Case 2:
$$\succ_i$$
 (1) \in G_i , $|G_i| < n$
 $\Rightarrow MMS_i = \Phi$

- Let $g := \succ_i (1)$ and $c := \succ_i (1, A_i)$
- $c \in C_i, g \notin A_i$ as $\Phi >_i A_i$
- Some $j \neq i$ receives g in A_i
- $A_j >_i A_i \setminus \{c\}$

$EFX \Rightarrow MMS$

Case 3:
$$\succ_i (1) \in G_i, |G_i| \ge n, A_i \cap C_i \ne \Phi$$

 $\Rightarrow MMS_i = G_i \setminus \succ_i ([n-1], G_i)$

- $\exists c \in A_i \cap C_i$
- Let $g := \succ_i (1)$
- $A_i <_i MMS_i \Rightarrow g \notin A_i$
- Some $j \neq i$ receives g in A_j
- $A_j >_i A_i \setminus \{c\}$

$EFX \Rightarrow MMS$

Case 3:
$$\succ_i (1) \in G_i, |G_i| \ge n, A_i \cap C_i \ne \Phi$$

 $\Rightarrow MMS_i = G_i \setminus \succ_i ([n-1], G_i)$

- $\exists c \in A_i \cap C_i$
- Let $g := \succ_i (1)$
- $A_i <_i MMS_i \Rightarrow g \not\in A_i$
- Some $j \neq i$ receives g in A_i
- $A_j >_i A_i \setminus \{c\}$

$\mathsf{EFX} \Rightarrow \mathsf{MMS}$

Case 3:
$$\succ_i (1) \in G_i, |G_i| \ge n, A_i \cap C_i \ne \Phi$$

 $\Rightarrow MMS_i = G_i \setminus \succ_i ([n-1], G_i)$

- $\exists c \in A_i \cap C_i$
- Let $g := \succ_i (1)$
- $A_i <_i MMS_i \Rightarrow g \not\in A_i$
- Some $j \neq i$ receives g in A_j
- $A_j >_i A_i \setminus \{c\}$

$EFX \Rightarrow MMS$

*Case 4:
$$\succ_i (1) \in G_i, |G_i| \ge n, A_i \cap C_i = \Phi$$

 $\Rightarrow MMS_i = G_i \setminus \succ_i ([n-1], G_i)$

- "In particular, agent i does not receive any of its favorite (n-1) goods under A"
- "Thus, there are n items, namely o_1, \ldots, o_{n-1} and o', that are allocated among (n-1) other agents"

$EFX \Rightarrow MMS$

Counterexample

- $N = \{1, 2, 3\}$ and $M = \{o_1, o_2, o_3, o_4, o_5\}$
- $1: o_1^+ \succ_1 o_2^- \succ_1 o_3^- \succ_1 o_4^+ \succ_1 o_5^+$
- $2: \succ_2 (1) = o_2^+, 3: \succ_3 (1) = o_3^+$
- $MMS_1 = \{o_5^+\}$
- $A_1 = \phi, A_2 = \{o_1, o_2\}, A_3 = \{o_3, o_4, o_5\}$
- Allocation A is EFX
- Allocation A is **NOT** MMS; $MMS_1 >_1 A_1$

MMS always exists

The paper claims that *MMS* always exists (in mixed items), but we provide a counter-example:

Counterexample

- $N = \{1, 2, 3\}$ and $M = \{o_1^+, o_2^-, o_3^-, o_4^+, o_5^+\}$
- All agents have the same preference >, and the items are objective
- $o_1^+ \succ o_2^- \succ o_3^- \succ o_4^+ \succ o_5^+$
- $MMS_{1,2,3} = \{o_5^+\}$
- ullet Under a complete allocation, some agent must get a chore o_3^- that agent is MMS unsatisfied

MMS exists in a subclass

• However, the paper does manage to guarantee MMS for the following subclass:

SC_0

If an allocation instance (N, M, G, C, \succ) has $\forall i \in N, \succ_i (1) \in C_i$, then an MMS allocation always exists.

• In essence, every agents' top-ranked item is a chore

MMS exists in a subclass

• However, the paper does manage to guarantee MMS for the following subclass:

SC_0

If an allocation instance (N, M, G, C, \succ) has $\forall i \in N, \succ_i (1) \in C_i$, then an MMS allocation always exists.

• In essence, every agents' top-ranked item is a chore

- In an SC_0 instance, each agents' MMS bundle contains their most hated chore i.e $\succ_i (1)$
- We create an allocation where at most one agent gets their most hated chore, and give the same agent all their goods - the MMS bundle
- C' is the set of all common chores σ is an ordering of all the agents
- Allow agents to pick chores from C' according to σ as long as $|C'| \ge 2$, an agent can ensure that they do not get their most hated chore
- |C'| = 1 is the only situation where an agent runs the risk of choosing their hated chore give them all their goods in such an instance
- Allocate all other items to agents who considers that item as a good

- In an SC_0 instance, each agents' MMS bundle contains their most hated chore i.e $\succ_i (1)$
- We create an allocation where at most one agent gets their most hated chore, and give the same agent all their goods - the MMS bundle
- C' is the set of all common chores σ is an ordering of all the agents
- Allow agents to pick chores from C' according to σ as long as $|C'| \ge 2$, an agent can ensure that they do not get their most hated chore
- |C'| = 1 is the only situation where an agent runs the risk of choosing their hated chore give them all their goods in such an instance
- Allocate all other items to agents who considers that item as a good

- In an SC_0 instance, each agents' MMS bundle contains their most hated chore i.e $\succ_i (1)$
- We create an allocation where at most one agent gets their most hated chore, and give the same agent all their goods - the MMS bundle
- C' is the set of all common chores σ is an ordering of all the agents
- Allow agents to pick chores from C' according to σ as long as $|C'| \ge 2$, an agent can ensure that they do not get their most hated chore
- |C'| = 1 is the only situation where an agent runs the risk of choosing their hated chore give them all their goods in such an instance
- Allocate all other items to agents who considers that item as a good

- In an SC_0 instance, each agents' MMS bundle contains their most hated chore i.e $\succ_i (1)$
- We create an allocation where at most one agent gets their most hated chore, and give the same agent all their goods - the MMS bundle
- C' is the set of all common chores σ is an ordering of all the agents
- Allow agents to pick chores from C' according to σ as long as $|C'| \ge 2$, an agent can ensure that they do not get their most hated chore
- |C'| = 1 is the only situation where an agent runs the risk of choosing their hated chore give them all their goods in such an instance
- Allocate all other items to agents who considers that item as a good

- In an SC_0 instance, each agents' MMS bundle contains their most hated chore i.e $\succ_i (1)$
- We create an allocation where at most one agent gets their most hated chore, and give the same agent all their goods - the MMS bundle
- ullet C' is the set of all common chores σ is an ordering of all the agents
- Allow agents to pick chores from C' according to σ as long as $|C'| \ge 2$, an agent can ensure that they do not get their most hated chore
- |C'| = 1 is the only situation where an agent runs the risk of choosing their hated chore give them all their goods in such an instance
- Allocate all other items to agents who considers that item as a good

- In an SC_0 instance, each agents' MMS bundle contains their most hated chore i.e $\succ_i (1)$
- We create an allocation where at most one agent gets their most hated chore, and give the same agent all their goods - the MMS bundle
- ullet C' is the set of all common chores σ is an ordering of all the agents
- Allow agents to pick chores from C' according to σ as long as $|C'| \ge 2$, an agent can ensure that they do not get their most hated chore
- |C'| = 1 is the only situation where an agent runs the risk of choosing their hated chore give them all their goods in such an instance
- Allocate all other items to agents who considers that item as a good

Concluding Remarks

- EFX does not always exist
- EFX exists for some subclasses:
 - Some agent has a good at their highest priority
 - There are no common chores
- MMS always exists and is in P
 - MMS does not always exist
 - There exists a subclass for which an MMS allocation can be found in PTIME
- Future prospects: $\exists MMS \in P$?

But hey, that's just a theory ...