Math Template

Rohan Mukherjee

January 30, 2025

1. Writing

$$A = \begin{pmatrix} a_1^T \\ \vdots \\ a_n^T \end{pmatrix}$$

we can see that,

$$\left\| A \frac{a_i}{|a_i|} \right\| = \frac{1}{\|a_i\|} \sum_{i=1}^n (a_i^T a_i)^2 \ge |a_i|$$

Since this holds for every row, $||A||_{op} \ge \sup_{1 \le i \le m} \left(\sum_{j=1}^{n} |A_{ij}|^2 \right)$.

For ||x|| = 1,

$$||ABx|| = ||Bx|| \cdot ||A(Bx/||Bx||)|| \le ||Bx|| \cdot ||A||_{op} \le ||A||_{op} ||B||_{op}$$

Notice from that last part,

$$||ABx|| \le ||Bx|| \cdot ||A||_{op}$$

Now, $\sup_{\|x\|=1} \|Bx\|^2 = \sup_{\|x\|=1} x^T B^T Bx$ is the largest eigenvalue of $B^T B$, say λ . Recall that $\|B\|_F^2$ can be written as $\operatorname{Tr}(B^T B)$. By properties of trace, $\operatorname{Tr}(B^T B) = \sum_i \lambda_i$ where λ_i is the ith largest eigenvalue of $B^T B$ (breaking ties arbitrarily). Then clearly, since $B^T B$ is PSD, $\lambda_1 \leq \sum_i \lambda_i$. This shows that $\|B\|_{op} \leq \|B\|_F$. Using that above completes the proof.

2. Consider any centrally symmetric convex set Ω , which is compact, and let B be the largest ellipse contained in Ω . Via an affine transformation, we can ensure that B is the unit ball. Let $C = \inf\{t > 0 \mid \Omega \subset tB\}$. Assume by contradiction that C were large. Then there is some point of Ω of magnitude at least bigger than C. By connecting this point to the origin, we can find a point in Ω with norm precisely equal to C. By symmetry, the opposite of this point is also in Ω , and after a rotation, we may assume that these two points are $(\pm C, 0)$. By connecting the top and bottom of the unit circle with these points, we get the following shape fully contained in Ω :

Now the idea is simply to show that there is a ellipse other than the unit ball that has larger volume contained in this smaller shape. Consider the ellipse:

$$\frac{x^2}{C^2} + y^2 = \frac{1}{2}$$

It just might be that these coefficients were specifically chosen to make this algebra work better. To show that this ellipse is fully contained in our shape, we need only consider $0 \le x \le C$, and then show that all the points the boundary of that ellipse are below the line y = -1/Cx + 1 in the first quadrant. Plugging in, we need to show that, if (x, y) is a point on the ellipse, then:

$$y \le (-1/C)x + 1$$

This is equivalent to (since all the values are positive):

$$y^2 \le \frac{x^2}{C^2} - \frac{2}{C}x + 1$$

plugging in the value for *y*,

$$\frac{1}{2} - \frac{x^2}{C^2} \le \frac{x^2}{C^2} - \frac{2}{C}x + 1$$

$$\iff 0 \le \frac{2x^2}{C^2} - \frac{2}{C}x + \frac{1}{2} = \frac{(C - 2x)^2}{2C^2}$$

This shows that the ellipse is fully contained in the set. Rewriting the ellipse in a familiar form:

$$\frac{x^2}{(C/\sqrt{2})^2} + \frac{y^2}{(1/\sqrt{2})^2} = 1$$

The area of this ellipse becomes $\pi C/2$. So we have a larger ellipse contained in Ω whenever C > 2, a contradiction. Thus C = 2 suffices.

- 3. Consider $g(x) = \frac{1}{2}x^TAx + b^Tx$. By compactness g has a maxmium on the sphere S^{n-1} , say g. The only way that g(g) could be maximal is if the gradient of g were perpendicular to the sphere, because otherwise we could walk in a projected direction and increase our value. The perpendicular to the sphere is precisely g, so we need $\nabla g(g) = \lambda g$ for some g. Notice that $\nabla g(g) = \frac{1}{2}(A + A^T)x + b$, and since g is symmetric, we get $\nabla g(x) = Ax + b$. Thus we have found a vector g with g is a desired.
- 4. We prove by Rolle's theorem. Since p(x) is d dimensional and d distinct roots, we know that p'(x) has $\leq d-1$ distinct roots, since it has dimension d-1. Labeling the roots of p(x) as x_1, \ldots, x_d , we know by Rolle's theorem that since $p(x_i) = p(x_{i+1})$, there is some y_i so that $p'(y_i) = 0$. Then $x_1 < y_1 < \cdots < y_{d-1} < x_d$. This gives d-1 distinct roots for p'(x), so these must be all the roots, and we are done.