Bank Regulation: Capital and Liquidity Requirements

Jordan Pandolfo

Federal Reserve Bank of Kansas City¹

¹Views and opinions expressed reflect those of the author and do not necessarily reflect those of the KC Fed or Federal Reserve System.

Introduction

- Dodd-Frank Act (DFA) reformed U.S. bank regulations
 - (1) Capital requirements
 - ▶ Hold sufficient equity to fund assets
 - Intent: limit insolvency default risk
 - (2) Liquidity requirements
 - ► Hold sufficient liquid assets relative to runnable debt
 - Intent: limit liquidity default risk and asset firesales

Introduction

- Pre-DFA
 - Capital requirements at 4% (leverage and risk-weighted)
 - No liquidity requirements
- Post-DFA
 - Capital requirements raised to 6%
 - New liquidity requirement:

$$\frac{\text{Liquid Assets}}{\text{Runnable Debt}} \geq \textbf{100\%}$$

- Ongoing debate over policy efficacy
 - ► Too stringent, too lax?

Research Question

- Question: What was the impact of DFA bank regulation?
 - How do the requirements interact?
- Approach
 - (1) Model: dynamic GE with heterogeneous banks
 - Policy role: addresses moral hazard and firesale risk
 - (2) Baseline economy, calibrated to pre-DFA
 - U.S. Call Reports
 - (3) Evaluate DFA
 - Decompose effects of capital and liquidity requirements
 - (4) Other: optimal policy and aggregate shocks

Related Literature

Bank Capital Requirements

➤ Van den Heuvel [2008], Corbae and D'Erasmo [2010], Nguyen [2015], Davydiuk [2018], Begenau and Landvoigt [2018], Begenau [2019], Pancost and Robatto [2019]

Bank Capital + Liquidity Requirements

➤ Covas and Driscoll [2014], De Nicolo et al. [2014], Corbae and D'Erasmo [2021], Van den Heuvel [2019]

Firesale and Liquidity Risk

➤ Schleifer and Vishny [1992], Lorenzoni [2008], **Bianchi and Bigio** [2018]

Contribution: more comprehensive treatment of

- (1) regulatory framework
- (2) bank portfolio problem
- (3) default risk (insolvency + liquidity)
- (4) cross-sectional moments (capital, liquidity ratios)

Summary of Main Results

Dodd-Frank Act

- Threefold reduction in banking sector default risk
- Welfare improving
 - Mostly attributed to capital requirements
- Liquidity requirements alone increase total default risk

Policy Interactions

- Capital requirement: complementary effect on bank liquidity
- Liquidity requirement: **adverse** effect on bank equity

Optimal Policy

- Joint optimal policy
 - ► Capital requirement: **6.75%**
 - Liquidity requirement: 95%

Model

Model Agents

1. Banks

- intermediate between HH and loan projects
- hold portfolio of assets + liabilities
- subject to liquidity + insolvency default

2. Money market lenders

- provide wholesale funding to banks
- wholesale funds subject to early withdrawal shocks

Outside investors

- buy firesold assets on secondary, spot market
- 4. Government
 - provides deposit insurance

5. Households

- pay lump sum tax
- equity owners of bank, money market sectors

Key Friction

- Banks can default
 - (1) insolvency default
 - (2) liquidity default
- Banks don't internalize the costs of default
 - ▶ Due to deposit insurance, limited liability
- Implication: unregulated banks are excessively risky
- ► Capital and Liquidity requirements reduce default risk

Banks

What is a Bank?

- ▶ A bank is a chartered firm with intermediation technology
- ► Bank charter includes
 - deposit insurance
 - regulatory requirements
- ▶ Intermediation technology affects cost of
 - lending
 - debt funding

Decisions: Two Stages

- (1) Initial stage
 - insolvency default decision
 - portfolio decisions
- (2) Settlement stage: given funding shock,
 - liquidity default decision
 - asset liquidations

- ▶ *j*: fixed type j = 1, 2, ..., J
 - affects cost of lending, deposit-taking
 - probability mass p_j
- $ightharpoonup \bar{d}_j$: deposit borrowing constraint
 - fixed and stochastic component
- ▶ n_b: initial net worth

- ▶ *j*: fixed type j = 1, 2, ..., J
 - affects cost of lending, deposit-taking
 - probability mass p_j
- $ightharpoonup \bar{d}_j$: deposit borrowing constraint
 - fixed and stochastic component
- ▶ n_b: initial net worth

limited availability of deposit funding

Assets	Liabilities	
loans ℓ	deposits d	
gov't sec. s	wholesale <i>a</i>	
cash <i>c</i>	equity	

or

rigination cost $g(\ell_j; \theta_j)$;	Assets	Liabilities
idiosyncratic risk	loans ℓ	deposits d
	gov't sec. s	wholesale <i>a</i>
	cash <i>c</i>	equity

no interest revenue; settlement properties

Initial Stage Dynamic Program

- ▶ Define choice set as $\mathbf{y} = (div, \ell, s, c, d, a)$
- ► Given no default, the bank solves

$$V^b(n_b;j,ar{d}_j) = \max_{\mathbf{y}} \quad div + E_{\delta'} igg[\underbrace{maxig\{0,\widetilde{V}^b(\mathbf{y};j,ar{d}_j,\delta')\}}_{ ext{liquidity default}} igg]$$

s.t. market constraintsregulatory constraintsnon-negativity constraints

Market Constraints

budget constraint

$$div + \underbrace{s + c + \ell}_{\mathsf{Assets}} + g(\ell; \theta_{\pmb{j}}) = n_b + \underbrace{a + d}_{\mathsf{Debt}}$$

collateral constraint

$$(1+h)s \geq a$$

given haircut h

deposit constraint

$$d \leq \bar{d}_j$$

financial friction

$$div \ge 0$$

Regulatory Constraints

ightharpoonup leverage requirement $\left(\frac{\text{Equity}}{\text{Assets}}\right)$

$$\frac{\ell+s+c-[a+d]}{\ell+s+c} \ge \phi^{\textit{lev}}$$

ightharpoonup risk-weighted capital requirement $\left(\frac{\mathsf{Equity}}{\mathsf{Loans}}\right)$

$$\frac{\ell+s+c-[a+d]}{\ell}\geq \phi^{cr}$$

$$\frac{c+(1-h^s)s}{a} \geq \phi^{hr}$$

- \blacktriangleright δ' : wholesale funding shock
 - fraction $\delta' \in [0,1]$ of funds withdrawn
 - idiosyncratic risk

- $ightharpoonup ilde{s}$: securities liquidation
 - ▶ liquidation price p*
- $ightharpoonup \tilde{c}$: cash settlement

▶ liquidation price p*

 \triangleright \tilde{c} : cash settlement

sold on spot market to outside investors

 $ightharpoonup n_b'$: after-tax net worth

$$\begin{aligned} n_b' = & \tau \max \Big\{ 0, \underbrace{i_\ell' \ell + i_s(s - \tilde{s}) - r^d d - r^a(1 - \delta') a}_{\text{earnings before taxes}} \Big\} + \\ & + \ell + s - \tilde{s} + c - \tilde{c} - d - (1 - \delta') a \end{aligned}$$

Settlement Stage Dynamic Program

$$\begin{split} \tilde{V}^b(\mathbf{y};j,\bar{d}_j,\delta') &= \max_{\tilde{s},\tilde{c}} \quad \gamma \beta E_{i'_\ell,\bar{d}'} \left[\underbrace{\max \left\{ 0, \overbrace{V^b(n'_b;j,\bar{d}'_j)}^{\text{Value if operate}} \right\}}_{\text{insolvency default}} \right] \\ s.t. \quad \delta' a &= p^* \tilde{s} + \tilde{c} \\ s.t. \quad \tilde{c} &\in [0,c] \quad \text{and} \quad \tilde{s} \in [0,s] \\ s.t. \quad n'_b \text{ law of motion} \end{split}$$

where $\gamma \beta \leq \beta$ (i.e. banks less patient than households)

Settlement Stage Dynamic Program

$$\tilde{V}^b(\mathbf{y};j,\bar{d}_j,\delta') = \max_{\tilde{s},\tilde{c}} \quad \gamma \beta E_{i'_\ell,\bar{d}'} \left[\underbrace{\max \left\{ 0, V^b(n'_b;j,\bar{d}'_j) \right\}}_{\text{insolvency default}} \right]$$
 s.t. $\delta' a = p^* \tilde{s} + \tilde{c}$ s.t. $\tilde{c} \in [0,c]$ and $\tilde{s} \in [0,s]$ s.t. n'_b law of motion where $\gamma \beta \leq \beta$ (i.e. banks less patient than households) settlement decisions constrained by

Initial Stage portfolio decisions

Settlement Stage Dynamic Program

$$ilde{V}^b(\mathbf{y};j,ar{d}_j,\delta') = \max_{ ilde{s}, ilde{c}} \quad \gamma \beta E_{i'_\ell,ar{d}'} \left[\underbrace{\max\{0,\overline{V}^b(n'_b;j,ar{d}'_j)\}}_{ ext{insolvency default}}
ight]$$

$$s.t. \quad \delta' a = p^* ilde{s} + ilde{c}$$

$$s.t. \quad ilde{c} \in [0,c] \quad \text{and} \quad ilde{s} \in [0,s]$$

$$s.t. \quad n'_b \text{ law of motion}$$

where
$$\gamma\beta \leq \beta$$
 (i.e. banks less patient than households) lower γ banks discount the $cost$ of default (i.e. foregone dividends)

Other Financial Intermediaries

- 1. Money market lenders
- 2. Securities spot market

Money Market and Securities Spot Market

Money Market Lenders

- \triangleright Provide wholesale funding a_m and issue dividends div_m
- Not covered by deposit insurance
- Equity shares held by households

Securities Spot Market

- Downward-sloping demand for liquidated bank securities
- External investors with limited demand
 - e.g. segmented markets

Residual Claimants

- 1. Government
- 2. Households

Government and Households

Government

- Sets lump sum tax to balance budget
- **Deposit** insurance: fraction ξ of bank assets lost in default

Households

- ightharpoonup CRRA utility and discount with β
- ▶ Choices over consumption, deposit savings and equity shares
 - Equity in money market and banking sectors

Equilibrium

- 1. Concept
- 2. Characterization

Equilibrium Concept

- Stationary recursive competitive equilibrium
- ▶ Invariant bank distribution $\lambda^{j}(n_{b}, \bar{d}_{j})$
- Market clearing
 - 1. equity markets (banking, money market) at price (p_b, p_m)
 - 2. deposits at rate R^d
 - 3. wholesale funding at rate R^a
 - 4. liquidated securities at price p*

Bank Portfolio Decisions

Debt funding pecking order

- Cost of Funds
- ▶ Deposits preferred to wholesale funds $(d \succ a)$
- Interior asset portfolio
 - ► Risk-return tradeoff for securities & loans
 - Cash as precautionary buffer

Proposition

In the Settlement Stage, banks always settle with available cash before liquidating securities.

Wholesale Size Correlations

- Capital requirements target equity ratios
 - ► Reduce insolvency default risk
- Liquidity requirements target liquidity ratios
 - Reduce liquidity default risk
- ► Policy Interactions
 - (i) Capital requirements **improve** bank liquidity
 - lackbox higher cap req ightarrow lower liquidity default
 - (ii) Liquidity requirements deteriorate bank equity
 - ightharpoonup higher insolvency default

- Capital requirements target equity ratios
 - ► Reduce insolvency default risk
- Liquidity requirements target liquidity ratios
 - Reduce liquidity default risk
- Policy Interactions
 - (i) Capital requirements **improve** bank liquidity
 - $\blacktriangleright \ \ \mathsf{higher} \ \mathsf{cap} \ \mathsf{req} \to \mathsf{lower} \ \mathsf{liquidity} \ \mathsf{default}$
 - (ii) Liquidity requirements **deteriorate** bank equity
 - ightharpoonup higher insolvency default

Illustration

Illustration

Mechanism

- Capital requirements target equity ratios
 - ► Reduce insolvency default risk
- Liquidity requirements target liquidity ratios
 - Reduce liquidity default risk
- Policy Interactions
 - (i) Capital requirements **improve** bank liquidity
 - $\blacktriangleright \ \ \mathsf{higher} \ \mathsf{cap} \ \mathsf{req} \to \mathsf{lower} \ \mathsf{liquidity} \ \mathsf{default}$
 - (ii) Liquidity requirements deteriorate bank equity
 - ▶ higher liq req → higher insolvency default

Illustration

Illustration

Mechanism

Wicehallishi

Mechanism

► Capital requirements target equity ratios

Illustration

- Reduce insolvency default risk
- Liquidity requirements target liquidity ratios

- Reduce liquidity default risk
- Policy Interactions
 - (i) Capital requirements **improve** bank liquidity

- ightharpoonup higher cap req ightarrow lower liquidity default
- (ii) Liquidity requirements deteriorate bank equity

ightharpoonup higher insolvency default

inglier liq req -> flighter insolvency default

Main Idea: capital requirements reduce both types of default

Quantitative Results

- 1. Calibration
- 2. DFA Analysis
- 3. Aggregate Shocks
 - 4. Optimal Policy

External Calibration

- Use Call Reports to externally calibrate bank i technology
 - (1) loan origination $\theta_i \frac{\ell^2}{2}$
 - (2) deposit borrowing constraint process

$$ar{d}_j' = ar{\mu}_{d,j} +
ho_j ar{d}_j + \epsilon'$$

where $\epsilon' \sim N(0, \sigma_i^{\epsilon})$

- ightharpoonup Choose J=3 bank types
 - Partition panel data by size (total assets)
 - ▶ j=1: \$1-\$10 billion
 - ▶ j=2: \$10-\$50 billion
 - ▶ i=3: >\$50 billion

Key Externally Calibrated Parameters

Parameter	Label	Value	Source/Target
β	HH Discount Factor	0.99	$R^d = 1.01$
ξ	Default Recovery	0.65	FDIC
ϕ^{lev}	Leverage Requirement	0.04	Pre-DFA
ϕ^{cr}	Capital Requirement	0.04	Pre-DFA
ϕ^{lr}	Liquidity Requirement	0	Pre-DFA
μ	Mean Loan Return	1.04	Call Reports
τ	Corporate Tax Rate	0.32	Call Reports

Internally Calibrated Parameters

Parameter	Value	Label	Target	Model (%)	Data (%)
γ	0.961	Bank Discount	Default Rate	0.79	1.04
$i_s - r^d$	0.56	Risk-free Spread	Loan-Security ratio	3.7	3.4
$\tilde{\alpha}$	-0.02	Firesale Elasticity	Deposit-Wholesale Ratio	3.4	3.2
σ	0.04	Volatility Loan Return	Risk-weighted Eq Ratio	5.2	9.6
$\bar{\mu}_{d,1}$	0.012	Capacity Constraint	Deposit Share	71.7	73.3
$\bar{\mu}_{d,2}$	0.034	Capacity Constraint	Deposit Share	84.3	58.2
$\bar{\mu}_{d,3}$	0.011	Capacity Constraint	Deposit Share	44.8	45.3

Cross-Section Correlations

Non-Targeted Moments

 Model captures cross-sectional size correlations with equity and liquidity ratios

Label	Model (%)	Data (%)
Corr(Size,RWE)	-0.29	-0.22
Corr(Size,Liq)	0.21	0.21
Liquidity Ratio	73.3	53.1
Return on Equity	7.2	11.0
Leverage Ratio	5.2	7.3

Label	Pre-Reform	Reform	Partial I	Partial II
			(6% CR,0% LR)	(4% CR,100% LR)
RW Equity Ratio	5.2	6.4	6.3	5.2
Leverage Ratio	4.1	6.0	6.0	4.0
Liquidity Ratio	73.3	100.1	72.4	102.7
Insolvency Default	0.79	0.23	0.22	0.96
Liquidity Default	0.14	0	0.09	0
Total Default	0.93	0.23	0.31	0.96

Label	Pre-Reform	Reform	Partial I	Partial II
			(6% CR,0% LR)	(4% CR,100% LR)
RW Equity Ratio	5.2	6.4	6.3	5.2
Leverage Ratio	4.1	6.0	6.0	4.0
Liquidity Ratio	73.3	100.1	72.4	102.7
Insolvency Default	0.79	0.23	0.22	0.96
Liquidity Default	0.14	0	0.09	0
Total Default	0.93	0.23	0.31	0.96

DFA significantly reduced default risk: 0.93% to 0.23% (annualized)

Wholesale Funding Use

Label	Pre-Reform	Reform	Partial I	Partial II
			(6% CR,0% LR)	(4% CR,100% LR)
RW Equity Ratio	5.2	6.4	6.3	5.2
Leverage Ratio	4.1	6.0	6.0	4.0
Liquidity Ratio	73.3	100.1	72.4	102.7
Insolvency Default	0.79	0.23	0.22	0.96
Liquidity Default	Q.14	0	, 0.09	0
Total Default	0,93	0.23	0.31	0.96

capital requirements alone reduce liquidity default risk

Wholesale Funding Use

Label	Pre-Reform	Reform	Partial I	Partial II
Laber			$(6\%~\mathrm{CR,}0\%~\mathrm{LR})$	(4% CR,100% LR)
RW Equity Ratio	5.2	6.4	6.3	5.2
Leverage Ratio	4.1	6.0	6.0	4.0
Liquidity Ratio	73.3	100.1	72.4	102.7
Insolvency Default	ρ.79	0.23	0.22	0.96
Liquidity Default	0.14	0	0.09	0
Total Default	0.98	0.23	0.31	0.96

liquidity requirements increase insolvency default risk

Dodd-Frank Analysis (% Change)

Label	Pre-Reform	Reform	Partial I	Partial II
Laber	1 re-Reform	Reform	(6% CR, 0% LR)	(4% CR,100% LR)
Aggregate Lending	_	-2.0	-1.8	-10.0
Aggregate Balance Sheet	_	-15.7	-18.9	-9.2
Aggregate Wholesale Funding	_	-86.0	-88.6	-32.7
Household Consumption	_	0.74	0.70	-1.97

Dodd-Frank Analysis (% Change)

Label	Pre-DFA	DFA	Partial DFA I	Partial DFA II
Label	Pre-DrA I		(6% CR,0% LR)	(4% CR,100% LR)
Aggregate Lending	_	-2.0	-1.8	-10.0
Aggregate Balance Sheet	_	-15.7	-18.9	-9.2
Aggregate Wholesale Funding	_	-86.0	-88.6	-32.7
Household Consumption	_	0.74	0.70	-1.97

welfare gains driven almost entirely by capital regulation

Bank Growth/Level Data

Impact of Dodd-Frank Act

Look at post-DFA aggregate data, relative to trend

Aggregate Shocks

- Consider two types of unanticipated aggregate shocks
 - 1. Loan returns
 - 2. Wholesale funding withdrawal
- Objects of interest:
 - Total lending
 - ► Insolvency default
 - Liquidity default
- ► Today: pre-DFA economy
 - Future: compare pre- and post-DFA economies

-1% Shock to Loan Returns

-10% Wholesale Funding Withdrawal

Optimal Policy

- ▶ Welfare criterion: HH lifetime consumption
- Joint optimal policy
 - Capital requirement: 6.75%
 - ► Liquidity requirement: **95%**
- Higher CRs reduce wholesale funding usage
 - Socially easier to require banks to hold more liquid assets
- Other aggregate changes
 - Lending: -3.4%
 - ► Total balance sheet: -20.5%

Thank You!

Economy Illustration

Money Market Lenders Problem

- \triangleright For each unit of lending a_m , lender receives fractions
 - 1. α^{c} : payoffs from collateral seizures
 - 2. α^{w} : payoffs from early withdrawals
 - 3. $1 \alpha^c \alpha^w$: payoffs from repayment at maturity
- (α^c, α^w) are equilibrium objects
- Money market lenders solve

$$\begin{split} V^m(n_m) &= \max_{a_m, div_m} \ div_m + \beta V^m(n'_m) \\ s.t. \quad div_m + a_m &= n_m \\ s.t. \quad n'_m &= a_m \big[\alpha^c (1+h) + \alpha^w + (1-\alpha^c - \alpha^w) R^a \big] \end{split}$$

Outside Securities Investor Problem

- Investors purchase securities in the Settlement Stage on a spot market
- Investors solve the static problem

$$\max_{s_o} (s_o)^{\alpha} - p^* s_o$$

Deposit Insurance

- ▶ In default, fraction ξ of assets are lost
- For a bank in liquidity default, deposit insurance covers

$$R^d d - \xi [(1+i'_\ell)\ell + (1+i_s)s + c - (1+h)a]$$

► For a bank in insolvency default, deposit insurance covers

$$R^{d}d - \xi [(1+i'_{\ell})\ell + (1+i_{s})(s-\tilde{s}) + (c-\tilde{c}) + \delta' a - (1-\delta')(1+h)a]$$

- In each case, wholesale funding lenders seize collateral first
- Aggregate deposit insurance is summed using the invariant bank distribution $\lambda(n_b, j, \bar{d})$

Households

Each period, given networth n_h , solve

$$\begin{split} V^{h}(n_{h}) &= \max_{c_{h}, d_{h}, \{e_{i}\}} \ u(c_{h}) + \beta V^{h}(n'_{h}) \\ s.t. \quad c_{h} + d_{h} + \sum_{i \in \{b, m\}} e_{i}p_{i} = n_{h} \\ s.t. \quad n'_{h} &= (1 + r^{d})d_{h} + \sum_{i \in \{b, m\}} e_{i}(p_{i} + Div_{i}) + T + \omega \end{split}$$

where p_i is share price and Div_i is dividend for share $i \in \{b, m\}$

Equilibrium

Given the idiosyncratic exogenous processes $\{i_l, \delta, \{\bar{d}_j\}_{j=1}^J\}$, a stationary recursive competitive equilibrium is defined as a set of prices $\{R^d, R^a, p_b, p_m, p^*\}$, initial stage bank policy functions

 $\mathbf{g_b}(n_b,j,\bar{d}_j) = \big\{\ell(n_b,j,\bar{d}_j),s(n_b,j,\bar{d}_j),c(n_b,j,\bar{d}_j),d(n_b,j,\bar{d}_j),a(n_b,j,\bar{d}_j),div(n_b,j,\bar{d}_j)\big\},\\ \text{settlement stage bank policy functions } \mathbf{g_b}(\mathbf{y},\delta',j,\bar{d}_j) = \big\{\tilde{c}(\mathbf{y},\delta',j,\bar{d}_j),\tilde{s}(\mathbf{y},\delta',j,\bar{d}_j)\big\},\\ \text{household policy functions } \mathbf{g_h}(n_h) = \big\{c_h(n_h),d_h(n_h),s_b(n_h),s_m(n_h)\big\},\\ \text{ aggregate wholesale lending } a_m, \text{ aggregate security liquidations } s_o \text{ and marginal bank distributions } \big\{\lambda^j(n_b,\bar{d}_j)\big\}_{i=1}^J \text{ such that}$

- 1. $V^h(n_h)$ and $\mathbf{g_h}(n_h)$ solve the household problem,
- 2. $V^b(n_b, j, \bar{d}_j)$, $\tilde{V}^b(\mathbf{y}, \delta', j, \bar{d}_j)$, $\mathbf{g_b}(n_b, j, \bar{d}_j)$ and $\tilde{\mathbf{g_b}}(\mathbf{y}, \delta', j, \bar{d}_j)$ solve the bank problem,
- 3. Money market lenders solve their problem
- 4. Outside securities investors solve their problem
- 5. The marginal distribution of banks follows law of motion

$$\lambda^j = \Gamma^j(\lambda^j) \qquad \forall j = 1, 2, ..., J$$

for transition function Γ^j and is consistent with firm/household maximization

6. Market clearing

6.1
$$e_b = e_m = 1$$
 (Equity Shares)
6.2 $\int_{N_b} \sum_j \sum_{\bar{d}_j} d(n_b, j, \bar{d}_j) d\lambda^j(n_b, j, \bar{d}_j) = d_h(n_h)$ (Deposits)

6.3
$$\int_{N_b} \sum_{j} \sum_{\bar{d}_j} a(n_b, j, \bar{d}_j) d\lambda^j(n_b, j, \bar{d}_j) = a_m$$
 (Wholesale Funds)

6.4
$$\int_{N_b} \sum_j \sum_{\bar{d}_j} \left[\sum_{\delta'} \pi_{\delta'} \tilde{s}(\mathbf{y}, \delta', j, \bar{d}_j) \right] d\lambda^j(n_b, j, \bar{d}_j) = s_o$$
 (Secondary Securities)

Bank Debt Funding Costs

Wholesale Funding Size Correlations

Empirical method:

- (1) Regress wholesale funding shares on bank size
- (2) Control for fixed effects and other lines of business
 - use ratio of non-interest to interest income
- (3) Look at full sample and sub-samples
 - Pre-DFA: 2001 Q1 2010 Q1
 - Post-DFA: 2010 Q2 Present

Wholesale Funding Size Correlations

WHOLESALE FUNDING SHARES REGRESSION

	(Pre-DFA) wholesale share	(Post-DFA) wholesale share	(Full Sample) wholesale share
Intercept	1,670***	675***	1,071***
	(11.4)	(4.37)	(5.07)
Size	19.1^{***}	-0.23	3.51^{***}
	(1.37)	(0.34)	(0.44)
Income Ratio	-26.5***	-1.25***	-2.02***
	(3.29)	(0.30)	(0.43)
Time FE	✓	✓	✓
Time Periods	37	39	76
Entities	842	1061	1407
R^2	0.017	0.001	0.002

 $^{^{***}}p<0.001,\ ^{**}p<0.01,\ ^{*}p<0.05$

Interaction: Capital Requirements Improve Liquidity

- Higher liquidity requirements reduce bank balance sheets
 Response to less profitability
- (II) Liability side: substitution from wholesale to deposits $(\downarrow \textbf{\textit{a}})$
 - debt funding preference for deposits
- (III) Asset side: stable liquid asset share $(\leftrightarrow c + s)$
- (IV) Net effect:
 - ▶ increase in bank liquidity $(\uparrow \frac{c+s}{a})$
 - reduction in liquidity default

<u>Interaction</u>: Liquidity Requirements Deteriorate Equity

- (I) Higher capital requirements reduce bank balance sheets
- (II) Asset side: large substitution into loans $(\uparrow \ell)$
 - ▶ higher marginal benefit from DRS + balance sheet shrink
- (III) Liability side: stable equity share $(\leftrightarrow equity)$
- (IV) Net effect:
 - decrease in risk-weighted equity ratios $(\downarrow \frac{equity}{\ell})$
 - increase in insolvency default

Call Report Data

- ► <u>Source</u>: U.S. Reports of Condition and Income (Call reports)
 - panel data
 - bank (charter)- level balance sheet data
- Frequency: quarterly
- ► Range: 2000-2018
- ► Restrictions: Nominal assets >\$1 billion

Capital Requirements Reduce Insolvency Default

 $Prob(Insolvency Default) = Prob(n_b \le 0)$

Capital Requirements Reduce Insolvency Default

 $Prob(Insolvency Default) = Prob(R^A \times Assets \leq R^D \times Debt)$

Capital Requirements Reduce Insolvency Default

$$Prob(Insolvency Default) = Prob(R^A \le R^D(1-e))$$

Capital Requirements Reduce Insolvency Default

$$Prob(Insolvency Default) = Prob(R^A \le R^D(1 - e'))$$

Prob(Liquidity Default) = Prob(liq assets < funding withdrawal)

 $Prob(Liquidity Default) = Prob(c + s < \delta'a)$

$$Prob(Liquidity Default) = Prob(\delta' > \frac{c+s}{a})$$

$$Prob(\mathsf{Liquidity\ Default}) = Prob(\delta' > \frac{c' + s'}{a'})$$

Cost Function Estimation

- ▶ Use Call Report panel data (FFIEC Form 041, 051) to infer bank θ 's with empirical cost functions
- ► Construct data analogue to $\theta \frac{\ell^2}{2}$:
 - net non-interest expenditures
- Steps
 - 1. Filter data
 - 2. Create bank quantile groups (by size)
 - 3. Estimate quantile bank cost function
 - 4. Recover $\hat{\theta}$ s by equating model/empirical marginal costs

Cost Function Estimation

- Filter data
 - ▶ Drop banks with assets < \$1B
 - Drop observations with negative (i) lending, (ii) labor expense,
 (iii) fixed input and (iv) borrowings
- 2. Create quantile groups
 - Quantile thresholds: {0.8, 0.95}
 - Corresponds to \$10 billion, \$50 billion
- 3. Estimate quantile bank cost function:

$$\textit{Cost}_{\textit{it}}^{\textit{q}} = \beta_{0}^{\textit{q}} + \alpha_{t}^{\textit{q}} + \beta_{1}^{\textit{q}} \ell_{\textit{it}}^{\textit{q}} + \beta_{2}^{\textit{q}} \ell_{\textit{it}}^{\textit{q}2} + \underbrace{\sum_{k} \beta_{k}^{\textit{q}} \ell_{\textit{it}}^{\textit{q}} x_{k,(i,t)}^{\textit{q}}}_{\text{interactions}} + \sum_{j} \beta_{j}^{\textit{q}} x_{j,(i,t)}^{\textit{q}}$$

for each quantile group q

Cost Function Estimation

- 4. Recover $\hat{\theta}$ s
 - ► Model marginal cost: $\theta_j \ell$
 - ► Empirical marginal cost:

$$MC^{j}(\ell, \mathbf{x}) = \hat{\beta}_{1}^{j} + \left[2\hat{\beta}_{2}^{j} + \sum_{k} \hat{\beta}_{k} x_{k}\right] \ell$$

LOAN COST FUNCTION ESTIMATES

Bank Group	1	2	3
Probability Mass	0.85	0.1	0.05
$\hat{ heta}_{j}$	0.033	0.024	0.021

Funding Shock Process δ'

- ▶ Model: Intra-period, fraction δ' of wholesale funds withdrawn
 - $\qquad \qquad \delta' \text{ is a discrete, iid process: } \left\{ \left(\delta_1, \delta_2, ..., \delta_J\right), \left(p_1^{\delta}, p_2^{\delta}, ..., p_J^{\delta}\right) \right\}$
- Empirical Method:
 - (i) create wholesale funds data analogue a_{it}
 - repo + fed funds + large time deposits (<1yr maturity) + trading liabilities + other borrowed money (<1yr maturity)</p>
 - (ii) Compute wholesale *run-off* rates $r_{it} = \frac{a_{i,t-1} a_{i,t}}{a_{i,t-1}}$
 - (iii) For specific t, generate cross-section distribution
 - (iv) Pick percentiles $\{\bar{p}_1,\bar{p}_2,...,\bar{p}_{J-1}\} o \{\bar{r}_1,\bar{r}_2,...,\bar{r}_{J-1}\}$

Funding Shock Process δ'

- (v) for each j = 1, 2, ..., J
 - $lackbr{igspace}$ if j=1, then $egin{cases} \delta_1=rac{ar{r}_{min}+ar{r}_1}{2}\ p_1^\delta=ar{p}_1 \end{cases}$

 - $\qquad \text{if } j = J \text{, then } \begin{cases} \delta_J = \frac{\bar{r}_J + \bar{r}_{\text{max}}}{2} \\ p_J^{\delta} = 1 \bar{p}_J \end{cases}$

Deposit Capacity Constraint Process \bar{d}

- Model: banks choose deposits d
 - Choice bounded above by \bar{d} (i.e. $d \leq \bar{d}$)
 - $lackbox{d}$ is individual, exogenous first-order process (\bar{D}, P_d)
- ► Intuition: banks prefer deposits to wholesale funds (it's cheaper) but...
 - face uninsurable deposit inflow/outflow
 - rely on wholesale funding to optimally finance assets.
 - i.e. $a > 0 \Rightarrow d = \bar{d}$
- ► Empirical Method: estimate AR(1) process at the bank-level for deposits
 - Discretize with Tauchen method

Deposit Capacity Constraint Process \bar{d}

- (1) Create bank groups 1,2 and 3 (as in loan cost estimation)
- (2) Deflate series
- (3) For each bank
 - (a) normalize deposits with average
 - (b) de-trend with hp filter
 - (c) estimate AR(1) process
- (4) For each bank group
 - (i) Take average of estimates $(\hat{\rho}, \hat{\sigma}_{\epsilon})$
 - (ii) Discretize with Tauchen

Deposit Capacity Constraint Process \bar{d}

Bank Group	Bank Size (\$ Billion)	ρ̂	$\hat{\sigma}_{\epsilon}$	$\hat{\sigma}_d$	
		persistence	error vol	deposit vol	
1	≤ 10	0.62	0.18	0.23	
2	(10, 50)	0.67	0.15	0.21	
3	≥ 50	0.60	0.09	0.11	

Table: Deposit Process Estimation

Cross-Section Correlations

TABLE 10								
		Bank Cro	SS-SECTION	Correla	ΓΙΟΝ MATRIX			
	Size	RWE	Lev	Liq	Ins Def	Liq Def	ROE	
Size	1	_	_	_	_	_	_	
RWE	-0.29	1	_	_	_	_	_	
Lev	0.21	-0.09	1	_	_	_	_	
Liq	0.21	-0.05	-0.05	1	_	_	-	
Ins Def	-0.26	-0.08	-0.15	-0.08	1	_	_	
Liq Def	0.27	-0.07	0.01	-0.06	-0.12	1	-	
ROE	-0.01	-0.57	-0.19	-0.03	0.69	-0.21	1	

Wholesale Funding Use Declined

Banking Sector Aggregates

Balance Sheet Growth

