

Session 2.4

**Module 2** 

**Mouli Sankaran** 

Theorems in Boolean Algebra

#### Session 2.4: Focus

- Introduction to Boolean Algebra
- Ordinary Algebra Vs Boolean Algebra
- Boolean Expressions
  - Variables, literals and terms
  - Complement and Dual
- DeMargon's Theorems



**Introduction to Boolean Algebra** 

# George Boole



- **George Boole** (2 November 1815 8 December 1864)
- He was an English mathematician, educator, philosopher and logician.
- He worked in the fields of differential equations and algebraic logic, and is best known as the author of **The Laws of Thought** (1854) which contains **Boolean algebra**.
- Boolean logic is credited with laying the foundations for the information age.

# **Boolean Algebra**

- Founded by **George Boole**, in **1854**.
- Boolean algebra is **mathematics of logic**, a systematic way of expressing and analyzing the operations of **logic circuits**
- It is one of the most basic tools available to the logic designer
  - It can be effectively used for simplification of complex logic expressions
- Now, let us have a closer look at the different postulates and theorems of Boolean algebra
- Their applications in minimizing Boolean expressions

# Introduction to Boolean Algebra

- Boolean algebra, quite interestingly, is simpler than ordinary algebra.
- It is also composed of a set of **symbols** and a set of **rules to manipulate** these symbols



# Ordinary Algebra Vs Boolean Algebra

# Ordinary Algebra Vs Boolean Algebra

| Ordinary Algebra                                                   | Boolean Algebra                                                   |
|--------------------------------------------------------------------|-------------------------------------------------------------------|
| Letter symbols can take on any number of values including infinity | Letter symbols can take on either of two values, that is, 0 and 1 |

# Ordinary Algebra Vs Boolean Algebra

Repeated again for the pdf copy

| Ordinary Algebra                                                      | Boolean Algebra                                                                              |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Letter symbols can take on any number of values including infinity    | Letter symbols can take on either of two values, that is, 0 and 1                            |
| Values assigned to a variable have a numerical significance           | Values assigned to a variable have a logical significance                                    |
| '.' and '+' are respectively the signs of multiplication and addition | ".' means an AND operation and "+" means an OR operation                                     |
| A+B is read as A plus B                                               | A+B is read as A OR B Basic logic operations are AND, OR and NOT                             |
|                                                                       | Captures both logic operations and set operations such as intersection, union and complement |



# **Boolean Expressions**

#### Variables, Literals and Terms

- Variables are different symbols in a Boolean expression
- They may take on the values '0' or '1'
- Complement of a variable is **not** considered as a **separate** variable
- Each occurrence of a variable or its complement is called a literal
- A term is the expression formed by literals and operations at one level.
- Each term requires a gate and each variable within the term designates an input to the gate

 $\overline{A} + A.B$ 

Quiz:

Variables: 2

Literals : 3

Terms : 2

# Quiz 1: Variables, Literals and Terms

- How many Variables, literals and Terms are there in these two Boolean expressions?
- How many **gates** are needed to construct them?

| <b>Boolean Expressions</b> | Variables | Literals | Terms | Gates                     |
|----------------------------|-----------|----------|-------|---------------------------|
| $F_2 = x'y'z + x'yz + xy'$ | 3         | 8        | 3     | NOT: 2<br>AND: 3<br>OR: 1 |
| $F_2 = xy' + x'z$          | 3         | 4        | 2     | NOT: 2<br>AND: 2<br>OR: 1 |

**Note**: Assume both 2-input and 3-input gates are available to construct these expressions, without minimization.



# Equivalent and Complement of Boolean Expressions

# Equivalent and Complement of Boolean Expressions

- Two given Boolean expressions are said to be equivalent
  - If one of them equals '1' only when the other equals '1' and also one equals '0' only when the other equals '0'
- They are said to be the **complement** of each other
  - If one expression equals '1' only when the other equals '0', and vice versa
- The complement of a given Boolean expression is obtained by
  - Complementing each literal,
  - Changing all '.' to '+' and all '+' to '.', all 0s to 1s and all 1s to 0s.

# **Quiz 2: Find Complements**

• Find the complement of below Boolean expressions:

| <b>Boolean Expression</b>                              | Complement                                         |
|--------------------------------------------------------|----------------------------------------------------|
| $\overline{A}.B + A.\overline{B}$                      | $(A + \overline{B}).(\overline{A} + B)$            |
| $(A+B).(\overline{A}+\overline{B})$                    | $\overline{A}.\overline{B} + A.B$                  |
| $[(A.\overline{B} + \overline{C}).D + \overline{E}].F$ | $[(\overline{A}+B).C+\overline{D}].E+\overline{F}$ |



# Dual of Boolean Expressions

# **Dual of Boolean Expressions**

The dual of a Boolean expression is obtained by replacing

- All '.' operations with '+' operations
- All '+' operations with '.' operations,
- All 0s with 1s and all 1s with 0s and
- Leaving all literals unchanged

# Quiz 3: Find Dual

• Find the dual of below Boolean expressions:

| <b>Boolean Expression</b>                          | Dual                                                 |
|----------------------------------------------------|------------------------------------------------------|
| $\overline{A}.B + A.\overline{B}$                  | $(\overline{A}+B).(A+\overline{B})$                  |
| $(A+B).(\overline{A}+\overline{B})$                | $A.B + \overline{A}.\overline{B}$                    |
| $A.\overline{B} + B.\overline{C} + C.\overline{D}$ | $(A+\overline{B}).(B+\overline{C}).(C+\overline{D})$ |

# Quiz 4: Find Dual and Complement

• Find the dual and Complement of below Boolean expression:

| <b>Boolean Expression</b> | $[(A.\overline{B} + \overline{C}).D + \overline{E}].F$  |
|---------------------------|---------------------------------------------------------|
| Dual                      | $[(A+\overline{B}). \overline{C} + D].\overline{E} + F$ |
| Complement                | $[(\overline{A}+B).C+\overline{D}].E+\overline{F}.$     |

# What is Dual of a Boolean Expression?

The principle of duality pronounces that given an expression which is always valid in boolean algebra, the dual expression is also always valid

- For example:
  - $\circ$  A (B + C) = A . B + A . C
  - It's dual is also valid
  - $\bullet$  A + (B . C) = (A + B) . (A + C)

# Rules of Boolean Algebra

• A, B or C can represent a single variable or a combination of variables

$$1.A + 0 = A$$

$$2.A + 1 = 1$$

$$3. A \cdot 0 = 0$$

**4.** 
$$A \cdot 1 = A$$

5. 
$$A + A = A$$

**6.** 
$$A + \overline{A} = 1$$

7. 
$$A \cdot A = A$$

$$8.A \cdot \overline{A} = 0$$

9. 
$$\overline{A} = A$$

**10.** 
$$A + AB = A$$

**11.** 
$$A + AB = A + B$$

**12.** 
$$(A + B)(A + C) = A + BC$$

• These 12 rules are useful in simplifying Boolean expressions

$$\bullet A + 0 = A$$

$$A = 1 \longrightarrow X = 1$$

$$A = 0 \longrightarrow X = 0$$

$$X = A + 0 = A$$

• 
$$A + 1 = 1$$

$$A = 1$$

$$1$$

$$X = A + 1 = 1$$

$$A = 0$$

$$1$$

$$X = A + 1 = 1$$

 $\bullet \mathbf{A} \cdot \mathbf{0} = \mathbf{0}$ 

$$A = 1$$

$$0$$

$$X = A \cdot 0 = 0$$

$$X = A \cdot 0 = 0$$

 $\bullet A.1 = A$ 

$$A = 0$$

$$1$$

$$X = 0$$

$$X = A \cdot 1 = A$$

$$A = 1$$

$$1$$

$$X = A \cdot 1 = A$$

• A + A = A (Idempotent or Identity Law)



- Valid for any number of the same input:
- A + A + A + + + + A = A

$$\bullet A + \overline{A} = 1$$

$$\begin{array}{c}
A = 0 \\
\bar{A} = 1
\end{array}
\qquad X = 1$$

$$\begin{array}{c}
A = 1 \\
\bar{A} = 0
\end{array}
\qquad X = 1$$

$$X = A + \bar{A} = 1$$

• A.A = A (Idempotent or Identity Law)



- Valid for any number of the same input:
- $\bullet A . A . A . . . . . A = A$

•  $\mathbf{A} \cdot \overline{\mathbf{A}} = \mathbf{0}$ 

$$\overline{\overline{A}} = A$$

#### (Involution law)



- A + AB = A (Absorption or Redundancy Law)
- A + AB = A(1 + B): Factoring (Distributive law)
- $= A \cdot 1$  : By Rule 2, (1 + B) = 1
- = A : By Rule 4, A. 1 = A
- $\bullet A + AB = A$

| A | B  | AB      | A + AB   |                       |
|---|----|---------|----------|-----------------------|
| 0 | 0  | 0       | 0        |                       |
| 0 | 1  | 0       | 0        | $B \longrightarrow B$ |
| 1 | 0  | 0       | 1        | . ↓                   |
| 1 | 1  | 1 1     | 1        | A straight connection |
| 1 | ea | ual ——— | <b>†</b> |                       |

$$\bullet \mathbf{A} + \overline{\mathbf{A}} \mathbf{B} = \mathbf{A} + \mathbf{B}$$

$$A + \overline{A}B = (A + AB) + \overline{A}B$$

Rule 10: 
$$A = A + AB$$

| A   | В | AB | $A + \overline{A}B$ | A + B       | $A \rightarrow \bigcirc$ |
|-----|---|----|---------------------|-------------|--------------------------|
| 0   | 0 | 0  | 0                   | 0           |                          |
| 0   | 1 | 1  | 1                   | 1           |                          |
| 1   | 0 | 0  | 1                   | 1           | $A \longrightarrow$      |
| 1 1 | 1 | 0  | 1                   | 1           | $B \longrightarrow$      |
|     |   |    | t equ               | a1 <b>Å</b> |                          |

• 
$$A + \overline{A} B = A + B$$

$$A + \overline{A}B = (A + AB) + \overline{A}B$$

$$= (AA + AB) + \overline{A}B$$

$$= AA + AB + A\overline{A} + \overline{A}B$$

$$= (A + \overline{A})(A + B)$$

$$= 1 \cdot (A + B)$$

$$= A + B$$

Rule 10: 
$$A = A + AB$$

Rule 7: 
$$A = AA$$

Rule 8: adding 
$$AA = 0$$

Rule 6: 
$$A + \overline{A} = 1$$

| A | В | AB  | $A + \overline{A}B$ | A + B |   |
|---|---|-----|---------------------|-------|---|
| 0 | 0 | 0   | 0                   | 0     | В |
| 0 | 1 | 1   | 1                   | 1     |   |
| 1 | 0 | 0   | 1                   | 1     |   |
| 1 | 1 | 1 0 | $1 \qquad 1$        | 1     |   |
|   |   |     | equ                 | ual   |   |



•  $(A + B) \cdot (A + C) = A + BC$ 

$$(A + B)(A + C) = AA + AC + AB + BC$$
 Distributive law

| A | В   | C   | A + B | A + C | (A+B)(A+C) | BC    | A + BC   | $A \bullet \bigcirc$ |
|---|-----|-----|-------|-------|------------|-------|----------|----------------------|
| 0 | 0   | 0   | 0     | 0     | 0          | 0     | 0        |                      |
| 0 | 0   | 1   | 0     | 1     | 0          | 0     | 0        |                      |
| 0 | 1   | 0   | 1     | 0     | 0          | 0     | 0        | c                    |
| 0 | 1   | 1 1 | 1     | 1     | 1          | 1     | 1        |                      |
| 1 | 0   | 0   | 1     | 1     | 1          | 0     | 1        | Į.                   |
| 1 | 0   | 1 1 | 1     | 1     | 1          | 0     | 1        | A                    |
| 1 | 1   | 0   | 1     | 1     | 1          | 0     | 1        | B                    |
| 1 | 1 1 | 1   | 1     | 1     | 1          | 1     | 1        | $C \longrightarrow$  |
|   |     |     |       |       | <u>t</u>   | equal | <u> </u> |                      |

#### Repeated again for the pdf copy

•  $(A + B) \cdot (A + C) = A + BC$ 

$$(A + B)(A + C) = AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1 + C) + AB + BC$$

$$= A \cdot 1 + AB + BC$$

$$= A(1 + B) + BC$$

$$= A \cdot 1 + BC$$

$$= A + BC$$

Distributive law

Rule 7: AA = A

Factoring (distributive law)

Rule 2: 1 + C = 1

Factoring (distributive law)

Rule 2: 1 + B = 1

Rule 4:  $A \cdot 1 = A$ 

| A   | В | 6                                 | A + B | A + C | (A+B)(A+C) | ВС       | A + BC   | $A \leftarrow \Box$   |
|-----|---|-----------------------------------|-------|-------|------------|----------|----------|-----------------------|
| 0   | 0 | 0                                 | 0     | 0     | 0          | 0        | 0        | B+U                   |
| 0   | 0 | 1 1                               | 0     | 1     | 0          | 0        | 0        |                       |
| 0   | 1 | 0                                 | 1     | 0     | 0          | 0        | 0        | $C \longrightarrow C$ |
| 0   | 1 | 1 1                               | 1     | 1 1   | 1          | 1        | 1        |                       |
| 1   | 0 | 0                                 | 1     | 1     | 1          | 0        | 1        |                       |
| 1   | 0 | 1 1                               | 1     | 1 1   | 1          | 0        | 1        | A                     |
| 1   | 1 | 0                                 | 1     | 1 1   | 1          | 0        | 1        | B                     |
| 1 1 | 1 | $\begin{vmatrix} 1 \end{vmatrix}$ | 1     | 1     | 1          | 1        | 1        | c                     |
|     |   |                                   |       |       | <b>†</b>   | equal —— | <b>†</b> |                       |



#### Augustus De Morgan



Augustus De Morgan,

(born June 27, 1806, Madura, India) English mathematician and logician whose major **contributions** to the study of logic include the formulation of **De Morgan's** laws

DeMorgan, a mathematician who knew Boole, proposed two important theorems of Boolean Algebra

- Theorem 1:
- The complement of a sum of variables is equal to the product of the complements of the variables

$$\overline{X + Y} = \overline{X}\overline{Y}$$

- It can also be stated as:
- The complement of two or more **ORed variables** is equivalent to the **AND** of the complements of the individual variables.
- Valid for any number of variables:

$$[\overline{X_1 + X_2 + X_3 + \ldots + X_n}] = \overline{X_1}.\overline{X_2}.\overline{X_3}.\ldots.\overline{X_n}$$

| Inp | outs | Output |    |  |  |
|-----|------|--------|----|--|--|
| X   | Y    | X + Y  | XY |  |  |
| 0   | 0    | 1      | 1  |  |  |
| 0   | 1    | 0      | 0  |  |  |
| 1   | 0    | 0      | 0  |  |  |
| 1   | 1    | 0      | 0  |  |  |

- Theorem 2:
- The complement of a product of variables is equal to the sum of the complements of the variables  $\overline{XY} = \overline{X} + \overline{Y}$
- It can also be stated as:
- The complement of two or more ANDed variables is equivalent to the OR of the complements of the individual variables.
- Valid for any number of variables:

$$[\overline{X_1.X_2.X_3.\ldots.X_n}] = [\overline{X_1} + \overline{X_2} + \overline{X_3} + \ldots + \overline{X_n}]$$



| Inputs |   | Output |                               |
|--------|---|--------|-------------------------------|
| X      | Y | XY     | $\overline{X} + \overline{Y}$ |
| 0      | 0 | 1      | 1                             |
| 0      | 1 | 1      | 1                             |
| 1      | 0 | 1      | 1                             |
| 1      | 1 | 0      | 0                             |

Home work:
Proof for Theorem 2

#### Session 2.4: Summary

- Introduction to Boolean Algebra
- Ordinary Algebra Vs Boolean Algebra
- Boolean Expressions
  - Variables, literals and terms
  - Complement and Dual
- DeMargon's Theorems