HRDD Risk Assessment Tool

Mathematical Formulation & Implementation Guide

Enhanced Focus-Based Risk Allocation with Budget Optimization Version 7.0 - December 2024

Enhanced with Budget Optimization

This version includes both rank preservation mechanisms and a sophisticated multialgorithm budget optimization system that maximizes risk reduction per dollar spent while maintaining total budget constraints.

1) Overview

This document provides the complete mathematical formulation for a coverage-based Human Rights Due Diligence (HRDD) risk assessment system with enhanced rank preservation mechanisms and budget optimization. The methodology incorporates country-specific coverage distribution, focus-based targeting, real-time effectiveness tracking, and cost-aware optimization to maximize risk reduction within budget constraints across multinational supply chains.

2) Portfolio Risk Foundation

Volume-Weighted Baseline Risk

$$B = (\Sigma_i \ w_i \cdot b_i) / \Sigma_i \ w_i$$

Where:

- w_i = volume weight for country i
- b_i = baseline risk score for country i (0-100)
- B = portfolio baseline risk

Risk Concentration Factor

$$C = (\Sigma_{i} (W_{i}/W) \cdot b_{i}^{2}) / B^{2}$$

Properties:

- C ≥ 1 always (mathematical constraint)
- C = 1 when all countries have identical risk
- C > 1 indicates risk concentration in specific countries
- Higher C values amplify focus effectiveness

3) Enhanced Focus-Based Coverage Distribution

Coverage is distributed individually to each country based on their risk profile, focus settings, and resource conservation constraints, with new rank preservation mechanisms.

Modified Focus Exponent Calculation

MODIFICATION 1: Reduced Maximum Exponent

Maximum focus exponent reduced from 3.5 to 2.0 to prevent extreme biasing that could cause rank reversals.

```
\phi = \{\ 1+f\ \cdot\ (\phi_{\text{max}}-1)\ \cdot\ (f/0.5)\ \text{if}\ f\le 0.5\ 1+(\phi_{\text{max}}-1)\ \cdot\\ [0.5+(f-0.5)^1.8\ \cdot\ 0.5]\ \text{if}\ f>0.5\ \}\ \text{Where:}\ \phi_{\text{max}}=2.0 (FURTHER REDUCED from 2.8)
```

Characteristics:

- Linear growth up to 50% focus threshold
- Accelerated exponential growth beyond 50% (exponent 1.8)
- Modified: Maximum exponent of 2.0 for controlled targeting

2 Enhanced Biased Risk Ratio with Dual Compression

MODIFICATION 2: Enhanced Compression System

Added secondary compression layer for extreme cases and reduced maximum ratio from 5.0 to 2.5.

Further Reduced Parameters:

$\Gamma_{ m min}$	0.05	0.05	0.08	Reduced low-risk penalties
r _{max}	5.0	4.0	2.5	Significantly reduced maximum benefits
Secondary Compression Threshold	None	2.0	1.5	Earlier compression activation
Compression Strength	None	$0.6 + 0.4 \times $	$0.5 + 0.5 \times $	Stronger compression factor

3 Modified Country-Specific Coverage Allocation

MODIFICATION 3: Gradual High-Risk Boost

Replaced sharp threshold (risk \geq 60) with gradual curve starting at risk \geq 40, and reduced maximum boost from 80% to 30%.

```
c_{ij} = c_j \cdot [(1-f) + f \cdot r_i'] \cdot \eta_i MODIFIED: If f > 0.3 AND b_i \ge 40: riskNormalized = min(1, (b_i - 40) / 40) focusNormalized = min(1, (f - 0.3) / 0.7) boostFactor = 1 + (riskNormalized × focusNormalized × 0.3) c_{ij} = c_{ij} \cdot \text{boostFactor}
```

Gradual Boost Characteristics:

- Risk 40-80: Normalized to 0-1 scale
- Focus 0.3-1.0: Normalized to 0-1 scale
- Maximum boost: 30% (reduced from 80%)
- Prevents sudden jumps in coverage allocation

Resource Conservation

The system maintains total resource usage close to original levels while allowing up to 30% expansion for high-focus scenarios to accommodate targeting benefits. Conservation factors (η_i) now apply the gradual boost system as well.

4) Rank Preservation Mechanisms

NEW SECTION: Critical Rank Preservation Features

These mechanisms ensure that risk rankings remain logically consistent after strategy application.

1 Progressive Effectiveness Caps

```
For each country i:  \text{CapEffectiveness}_{i} = 0.50 + 0.20 \times (1 - b_{i}/100)
```

Strengthened Progressive Cap System:

Country Risk Level	Original Max Reduction	Current Max Reduction	Minimum Managed Risk
Very High Risk (80+)	65%	50%	40+ points
High Risk (60-79)	69%	55%	27-36 points
Medium Risk (40- 59)	73%	60%	16-24 points
Low Risk (20-39)	81%	70%	6-12 points

2 Enhanced Risk Floor Preservation

```
riskFloor_i = b_i \times 0.25 (INCREASED from 0.12)

m_i f^{i_{nal}} = max(m_i calculated, riskFloor_i)
```

Strengthened Floor Protection:

- No country can have managed risk below 25% of baseline (increased from 12%)
- Prevents unrealistic low-risk outcomes
- Maintains stronger proportional relationships between countries

3 NEW: Direct Rank Preservation Constraint

```
After calculating all managed risks: Sort countries by baseline risk: b_1 \geq b_2 \geq \ldots \geq b_n For each country i (from highest to lowest baseline risk): If m_i \geq m_{i+1}: m_i = \max(b_i \times b_i)
```

```
0.25, m_{i+1} - 0.5) Recalculate portfolio: M = (\Sigma_i w_i \cdot m_i corrected) / \Sigma_i w_i
```

Mathematical Guarantee:

- Countries are sorted by baseline risk in descending order
- Each country's managed risk must be at least 0.5 points lower than the previous
- Still respects the 25% risk floor constraint
- Provides absolute guarantee against rank inversions
- Portfolio risk is recalculated using corrected values

5) Budget Optimization System (Panel 6)

Advanced Multi-Algorithm Optimization

The budget optimization system employs a sophisticated multi-strategy approach combining three algorithms to find the optimal allocation of HRDD tools and response methods that maximizes risk reduction within budget constraints.

1 Cost Model Formulation

```
Total Cost = \Sigma_j (External Costs_j + Internal Costs_j) For each tool j in Panel 3: External Costs_j = Annual Programme_j × (c_j/100) + Per Supplier_j × S_j Internal Costs_j = Internal Hours_j × S_j × Hourly Rate Where: c_j = Coverage percentage for tool j (0-100) S_j = Number of suppliers using tool j = [Total Suppliers × (c_j/100)]
```

Cost Components:

Component	Description	Unit	Typical Range
Annual Programme Cost	Fixed annual cost for tool infrastructure	USD/year	\$0 - \$50,000
Per Supplier Cost	Variable cost per supplier using the tool	USD/supplier/year	\$0 - \$2,000
Internal Hours	Staff time required per supplier	hours/supplier/year	0 - 500
Hourly Rate	Internal staff cost rate	USD/hour	\$20 - \$200

2 Optimization Problem Definition

```
Minimize: M (Managed Risk) Subject to: 1. Total Cost \leq Target Budget \times (1 + tolerance) 2. 0 \leq c_j \leq 100 for all tools j 3. 0 \leq r_k \leq 100 for all response methods k 4. c_0 = r_0 (Voice linkage constraint) 5. Improvement \geq 0.1 percentage points Where: tolerance = 0.02 (2% budget flexibility)
```

3 Multi-Strategy Optimization Algorithm

The optimizer employs a sophisticated three-phase approach with multiple restart strategies:

Phase 1: Enhanced Simulated Annealing

Temperature Schedule: T(i) = T₀ × 0.95^i Acceptance Probability: P(Δ E) = exp($-\Delta$ E/T) if Δ E > 0, else 1 Neighbor Generation: - Step size: [-6, +6] for standard tools - Voice bonus: +3 additional for voice-priority strategy - Budget pre-check before expensive evaluation

Phase 2: Budget-Constrained Genetic Algorithm

Population Size: 20 individuals Selection: Tournament selection preferring valid solutions Crossover: α -blending with α \in [0.3, 0.9] Mutation: Gaussian noise with σ = 6 Elitism: Top 3 valid solutions preserved Budget Enforcement: After each generation, adjust allocations to meet budget

Phase 3: Local Search Refinement

Search Strategy: Coordinate descent with adaptive step size Step Size: $\max(3, 10 \times (1 - iteration/max_iterations))$ For each dimension: - Try $\pm step_size$ changes - Accept if improves fitness and maintains budget - Terminate at local optimum

4 Optimization Strategies

The system employs four distinct optimization strategies in rotation:

Strategy	Priority	Budget Adjustment Method	Focus
Balanced	Equal reduction across tools	Proportional scaling	Overall effectiveness
Voice Priority	Preserve worker voice tools	Reduce non-voice first	Worker engagement
Efficiency Focused	Maximize effectiveness/cost ratio	Cut inefficient tools first	Cost-effectiveness
Preserve Voice	Maintain voice coverage	Adjust other tools only	Worker voice protection

5 Budget Adjustment Algorithm

adjustToBudget(allocation, target_budget): While |current_cost - target_budget| > tolerance: If current_cost > target_budget: // Reduce allocation strategically If strategy == 'preserve_voice': Reduce non-voice tools by 8% Else if strategy == 'efficiency_focused': Reduce least efficient tool by 10% Else: Reduce highest allocation by 5-8% Else: // Increase allocation to use budget If voice < 85%: Increase voice by 6-8% Else: Increase most effective tool by 6%

6 Performance Metrics

```
Fitness Function: F = M + \lambda × |Cost - Budget|/Budget Where: M = Managed risk after allocation \lambda = 2 (penalty weight for budget violation) Success Criteria: - Risk reduction improvement \geq 0.1 percentage points - Budget violation \leq 2% - At least 12 valid solutions found
```

7 Convergence and Termination

The optimization terminates when:

- Maximum time reached (4.5 seconds)
- Sufficient valid solutions found (≥12) with good fitness
- 5 restart attempts completed
- No improvement possible (re-optimization returns same solution)

Re-optimization Handling

The system caches optimization results using a state hash. If re-optimization is attempted with identical parameters, the system checks if the new solution meets improvement criteria:

- Criteria A: Lower budget with same or better risk reduction
- Criteria B: At least 0.1 percentage point better risk reduction within budget

If neither criterion is met, the previous solution is retained as optimal.

6) Country-Specific Transparency Calculation

1 Per-Country Category Transparency

For each country i and category k:
$$T_{\text{i}k} = 1 - \prod_{j} \in J_k \ (1 - (c_{\text{i}j}/100) \cdot (e_{\text{j}}^{\text{base}} + e_{\text{j}}^{\text{user}})/2)$$

Tool Categories:

Category	Tools	Base Effectiveness	Category Weight (α _k)
Worker Voice	Continuous (j=0), Surveys (j=1)	90%, 45%	1.0
Audit	Unannounced (j=2), Announced (j=3)	25%, 15%	0.85
Passive	Evidenced Self-Report (j=4), Unevidenced Self-Report (j=5)	12%, 5%	0.70

2 Combined Country Transparency

$$T_{i} = min(1 - \prod_{k=1}^{3} (1 - T_{ik} \cdot \alpha_{k}), 0.90)$$

3 Portfolio-Wide Transparency

$$T = (\Sigma_i \ w_i \cdot T_i) / \Sigma_i \ w_i$$

This represents the volume-weighted average transparency across all countries in the portfolio, accounting for their individual focus-adjusted coverage allocations.

7) Focus Multiplier System

1 Portfolio Focus Multiplier

$$F_0 = (1 - f \cdot \gamma) + f \cdot \gamma \cdot C$$
 Where: $\gamma = 2.75$ (focus concentration weight)

2 Country-Specific Focus Multipliers

For each country i: If f > 0.6 AND
$$b_i \ge 70$$
: $F_i = F_0 \cdot [1 + (f-0.6) \cdot 0.5]$ Else: $F_i = (1 - f \cdot \gamma) + f \cdot \gamma \cdot r_i$

Ultra-High-Risk Bonus: Countries with baseline risk \geq 70 and focus \geq 60% receive additional multiplier benefits up to 20% extra effectiveness.

8) Response Effectiveness

$$R = (\Sigma_j r_j \cdot \rho_j) / \Sigma_j r_j$$

Where:

- r_j = response strategy weight for method j
- ρ_j = response effectiveness rate for method j (0-100%)

9) Final Managed Risk Calculation with Rank Preservation

Enhanced Individual Country Managed Risk

MODIFICATION 4: Multi-Layer Protection System

Managed risk calculation now includes progressive caps and floor protection to prevent rank reversals.

```
Step 1: Calculate base reduction factor baseReduction; = T_i · R · F_i Step 2: Apply progressive effectiveness cap cap; = 0.50 + 0.20 \times (1 - b_i/100) cappedReduction; = min(baseReduction;, cap;) Step 3: Calculate managed risk m_i calc = b_i · (1 - \text{cappedReduction}_i) Step 4: Apply risk floor protection floor; = b_i × 0.25 m_i = max(m_i calc, floor;)
```

2 Portfolio Managed Risk

```
M = (\Sigma_i \ w_i \cdot m_i) / \Sigma_i \ w_i
```

10) Focus Effectiveness Metrics

The system provides comprehensive metrics to evaluate how effectively the focus strategy is targeting high-risk countries while preserving ranking.

Risk Tier Classification

• High Risk: $b_i \ge 60$

• Medium Risk: $40 \le b_i \le 60$

• Low Risk: $b_i < 40$

Enhanced Effectiveness Measures

```
For each risk tier: \bar{e}_{tier} = (\Sigma_i \in \text{tier } (b_i - m_i)/b_i \cdot 100) / \text{|tier|} Differential Benefit = \bar{e}_{high} - \bar{e}_{low} Focus Effectiveness = \min(100, (\text{Differential Benefit})/(f \cdot 50) \cdot 100) NEW: Rank Preservation Check = (Countries maintaining relative ranking / Total countries) × 100
```

Enhanced Performance Indicators:

- Focus Effectiveness ≥70%: Excellent targeting with preserved ranking
- Focus Effectiveness 40-70%: Moderate targeting with good preservation
- Focus Effectiveness <40%: Poor targeting or rank violations detected

• Rank Preservation ≥95%: Successful rank maintenance

11) Implementation Parameters

Enhanced Implementation Parameters

Parameter	Original	First Revision	Current Value	Description
Фmin	1.0	1.0	1.0	Minimum focus exponent (unchanged)
ϕ_{max}	3.5	2.8	2.0	Maximum focus exponent (further reduced)
$r_{ m min}$	0.05	0.05	0.08	Minimum risk ratio (increased)
r _{max}	5.0	4.0	2.5	Maximum risk ratio (further reduced)
High-risk boost threshold	60	40	40	Gradual boost starting point (unchanged)
Maximum boost percentage	80%	30%	30%	Maximum coverage boost (unchanged)
Risk floor	None	12%	25%	Minimum managed risk retention (increased)
Progressive cap	None	65%-85%	50%-70%	Maximum reduction limits (strengthened)
Direct rank constraint	None	None	0.5 pt separation	Mathematical ranking guarantee (new)
Budget tolerance	N/A	5%	2%	Optimization budget flexibility
Min improvement	N/A	N/A	0.1 pp	Minimum risk reduction improvement

Default Coverage Values

• Continuous Worker Voice: 35% (rare, expensive)

• Worker Surveys: 15% (moderate deployment)

• Unannounced Audits: 25% (targeted approach)

• Announced Audits: 60% (common practice)

• Evidenced Supplier Self-Reporting: 80% (widespread)

• Unsupported Supplier Self-Reporting: 90% (universal baseline)

Enhanced Focus Strategy Guidelines

Focus Level	Strategy Type	Rank Preservation	Recommended Use
f = 0.1 - 0.3	Legacy audit programs	Excellent	Calendar-driven, even spread
f = 0.4 - 0.6	Risk-led programs	Very Good	Periodic risk-based allocation
f = 0.7 - 0.9	Continuous voice + risk triage	Good	Highly targeted with preservation
f = 0.9 - 1.0	Crisis response mode	Monitored	Emergency surge with safeguards

12) Budget Optimization Example

Initial Setup

Portfolio with 500 suppliers, \$40/hour internal rate, initial budget of \$500,000:

Step 1: Calculate Current Cost

```
Current allocation: [35%, 15%, 25%, 60%, 80%, 90%] (Panel 3 tools) Current response: [35%, 5%, 25%, 25%, 10%, 10%] (Panel 4 methods) Tool costs: - Worker Voice: $12,000 \times 0.35 + $120 \times 175 \text{ suppliers} = $25,200 - \text{Surveys}: $0 \times 0.15 + $0 \times 75 \text{ suppliers} + 20 \text{hrs} \times 75 \times $40 = $60,000 - \text{Unannounced Audits}: $0 \times 0.25 + $1000 \times 125 = $125,000 \dots Total current budget: $486,000 Current risk reduction: 42.3%
```

Step 2: Run Multi-Strategy Optimization

```
Strategy 1 - Balanced: Phase 1 (Simulated Annealing): 200 iterations Phase 2 (Genetic Algorithm): 120 generations Phase 3 (Local Search): 100 iterations Result: 48.1\% risk reduction at $488,000 Strategy 2 - Voice Priority: [Same phases] Result: 49.2\% risk reduction at $492,000 Strategy 3 - Efficiency Focused: [Same phases] Result: 50.3\% risk reduction at $485,000 \leftarrow BEST Strategy 4 - Preserve Voice: [Same phases] Result: 47.8\% risk reduction at $490,000
```

Step 3: Optimized Allocation

```
Optimized tool allocation: [52%, 8%, 45%, 35%, 65%, 72%] Optimized response: [52%, 12%, 35%, 18%, 8%, 5%] Key changes: - Worker Voice: +17% (leverage high effectiveness) - Unannounced Audits: +20% (costeffective detection) - Announced Audits: -25% (reduce low-effectiveness spend) - Response reallocation to match detection increases Total optimized budget: $485,000 (-$1,000) Optimized risk reduction: 50.3% (+8.0 percentage points)
```

Step 4: Validation

```
√ Budget constraint met: $485,000 ≤ $500,000 × 1.02 √ Minimum improvement met: 8.0\% > 0.1\% √ All allocations within bounds: 0\% \le all \le 100\% √ Voice linkage maintained: c_0 = r_0 = 52\% √ Valid solutions found: 127 > 12 Result: OPTIMIZATION SUCCESSFUL Improvement: 8.0 percentage points better risk reduction Budget savings: $1,000 Efficiency gain: 19\% more risk reduction per dollar
```

Document Version: 7.0 Enhanced with Budget Optimization | **Last Updated:** December 2024 | **Implementation:** HRDD Risk Assessment Tool with Rank Preservation and Cost Optimization

Technical Notes: All calculations maintain numerical stability through bounded parameters, progressive safeguards, and multi-strategy optimization. The budget optimizer employs sophisticated algorithms to

maximize risk reduction within financial constraints while preserving logical risk rankings. The system prevents rank reversals while finding cost-effective allocations through intelligent multi-phase optimization.