

lab:
prepare – praktische und theoretische Grundlagen für studentische Wissenschaftskommunikation
 Sommersemester 2020

Visualisierung eines neuronalen Netzes

Abgabetermin: 30.09.2020

Gruppe:

Pablo Osinaga Arze Philipp Pirlet Annabella Kadavanich

1 Einleitung

1.1 Projektziel

- Visualisierung eines neuronalen Netzes (NN)
- Zielgruppe: Menschen ohne Machine Learning (ML) Vorkenntnisse
- Input: Zahlen (Digit-Recognition)
- Visualisierung der Neuronengewichte m.H.e. UI (Python / JavaScript / TypeScript basiert)

1.2 Projektbegründung

- NN sind oftmals für Menschen ohne IT-Hintergrund schwer verständlich
- Die Interaktive Darstellung erlaubt Menschen ohne ML Kenntnisse, dieses Thema zumindest in den Grundzügen besser zu verstehen

1.3 Projektabgrenzung

- Wir beschränken uns auf kleinere NN, da jedes Neuron durch eine LED repräsentiert wird
- Anwendungsfall: Digit Recognition, Sound / Bilder Kategorisierung
- ggfs. nur Änderung der Input Gewichte, ansonsten reine Visualisierung

2 Projektplanung

2.1 Projektphasen

Projektdauer: 01.05. - 30.09.2020

Beispiel Tabelle 1 zeigt ein Beispiel für eine grobe Zeitplanung.

Projektphase	Geplante Zeit
Analysephase	18.05 31.05.2020
Entwurfsphase	01.06 14.06.2020
Implementierungsphase	15.06 31.08.2020
Abnahmetest / Proof of concept	01.09 14.09.2020
Einführungsphase	15.09 30.09.2020
Erstellen der Dokumentation	15.08 30.09.2020
Gesamt	70 h

Tabelle 1: Zeitplanung

Eine detailliertere Zeitplanung findet sich im Anhang A.1: Detaillierte Zeitplanung auf Seite i.

2.2 Ressourcenplanung

- Hardware: Raspberry Pi 3, LED Matrix / Streifen, Monitor (bereits vorhanden)
- LED Matrix oder LED Streifen (ggfs. vom lab:prepare Team oder bestellen)
- Berücksichtigung von Wartezeiten (Bestellungen) → Programmierung der Visualisierungs-UI trotzdem möglich (reine Programmierung)

2.3 Entwicklungsprozess

- Agiler Entwicklungsprozess (je nach Arbeitsload durch die Uni)
- \bullet Hauptentwicklungsphase ab Juli, da wegen Corona während dem Semester Klausuren aus dem WiSe 20/21 nachgeschrieben werden müssen

${\it 3\ Analyse phase}$

3 Analysephase

3.1 Projektkosten

- LED Matrix Amazon (256 Pixel): ca. 25 35 Euro
- ggfs. Raspberry Pi 4: ca. 38 Euro

3.2 Lastenheft/Fachkonzept

- Interaktive Darstellung m.H.v. LEDs (aktivierte Neuronen leuchten heller)
- Sinnvolle Darstellung der Neuronengewichte
- Visuell ansprechende User UI
- Implementierung einer Hardware API (Raspberry Pi, LEDs, Joystick)
- Implementierung einer (REST) API zum Laden des Models von dem Raspberry Pi

3.3 Lastenheft (optional / nice-to-have)

- Erhöhung der Interaktivität durch User Eingaben (z.B. Anpassung der Input-Gewichte)
- Nutzer können Zahlen z.B. mit einem Magic Board eingeben oder Musik vorspielen

4 Implementierungsphase

4.1 Zielplattform

- Programmiersprachen: Python für NN, ggfs. JavaScript / TypeScript für UI
- UI lokal deployen oder via Server
- Hardware Platform: Linux

4.2 Implementierung des NN

- Wahl eines sinnvollen NN (Größe des NN muss m.H.d. LEDs abbildbar sein, einzelne Neuronen sollen stark aktiviert werden, sodass dies visuell für den Nutzer bemerkbar ist)
- Implementierung des NN
- Sinnvolle Darstellung der Gewichte in der UI
- ggfs. zusammenfassen von Layern des NN
- Testen des NN mit verschiedenen Inputs (Audio / Bilder / Digits)

4.3 Implementierung der Benutzeroberfläche

- Programmierung der UI
- Implementierung der Schnittstellen zum Pi
- Testen der UI Funktionalitäten (Anzeigen der richtigen Gewichte? Ggfs. User-Input? Formatierung in verschiedenen Browsern / Endgeräten)

4.4 Aufgabenaufteilung

- Implementierung des NN: Philipp
- UI & APIs: Annabella
- Hardware, Raspberry Pi LED Programmierung: Pablo

$5\ Dokumentation$

4.5 Meilensteine

- MS1: Beschaffung aller Hardware Materialien & grobe Implementierung des NN (bis 30.06.20)
- MS2: Implementierung aller APIs & Testen des Zusammenspiels aller Komponenten (bis 15.08.20)
- MS3: Optimierung des NN, ggfs. Erweiterung auf weitere Anwendungsfälle, Dokumentation, Projektbericht (bis 20.09.20)

5 Dokumentation

- Technische Dokumentation der Anwendung auf GitHub
- $\bullet\,$ ggfs. Benutzerhandbuch als PDF
- Projektbericht

A Anhang

A.1 Detaillierte Zeitplanung

Analysephase			18.05 31.05.2020
1. Einlesen NN		19 h	
1.1. Coursera Kurse machen	9 h		
1.2. Einlesen TensorFlow	3 h		
1.3. Implementierung von kleinen NN auf Colab	7 h		
2. Erstellen aller benötigten GitHub Issues		2 h	
Entwurfsphase			01.06 14.06.2020
1. Wahl des passenden NN		2 h	
2. Festlegung APIs		4 h	
2.1. Hardware (Raspberry Pi – NN)	3 h		
2.2. Software (NN – UI)	3 h		
3. Entwurf UI		4 h	
4. Designentscheidungen NN		10 h	
4.1. Darstellung der Gewichte	5 h		
4.2. Größe des NN	5 h		
5. Raspberry Pi – LED Kommunikation		8 h	
6. Beschaffung aller benötigter Hardware	10 h		
6.1. Monitor	1 h		
6.2. Raspberry Pi 3	1 h		
6.3. Laptops	1 h		
6.4. Rechencluster zum Trainieren des NN	1 h		
Implementierungsphase			15.06 31.08.2020
1. Implementierung		20 h	
1.1. Finalen NN	5 h		
1.2. UI	5 h		
1.3. Pi – LED Kommunikation	5 h		
4. Implementierung der APIs		6 h	
4.1. Pi – NN API	3 h		
4.2. NN – UI API	3 h		
Abnahmetest / Proof of concept			01.09 14.09.2020
1. Verbindung von NN, Pi & UI		5 h	
2. Testen aller Komponenten		1 h	
3. Finden möglicher Edge cases		1 h	
Einführungsphase			15.09 30.09.2020
1. Einführung / Präsentation in der ISIS Gruppe		1 h	
Erstellen der Dokumentation			15.08 30.09.2020
1. Erstellen der Benutzerdokumentation		2 h	
2. Erstellen der Projektdokumentation		6 h	
3. Programmdokumentation		2 h	
Pufferzeit			10 h
1. Puffer (21.09 - 30.09)		10 h	
Gesamt			93 h