Bedding Bathing & Yonder: Sales Prediction

Francia F. Riesco CSCI E-96 Spring 2022

Today Agenda

Case Introduction

Predictive model data analysis

Exploratory Data Analysis

Review training, test and prospective dataset

Predictive Modeling

Linear Regression, KNN, RandomForest

Results

Which model is both accurate and consistent

01Introduction

Predictive model data analysis

Bedding Bathing & Yonder

BBY is an American chain of domestic merchandise retail stores with an online presence. The chain primarily operates stores throughout the United States.

• • •

O2Exploratory Data Analysis

Categorical

- Donate Environment Cause In Home
- Donate To Charity In Home
- Residence HH Gender Description
- EthnicDescription
- BroadEthnicGroupings
- Presence Of Children Code
- HomeOwner Renter
- Media Education Years
- Education
- Occupation Industry
- ComputerOwnerInHome
- FirstName
- Last Name
- Gender
- Telephone FreePhone
- county
- city
- state
- Dwelling Unit Size
- store Visit Frequency
- PropertyType
- Parties Description
- **Religions Description**
- Gun Owner
- Veteran

Fields

Numeric

- tmpID lat
- - lon
 - Age
- NetWorth
- fips
- state Fips
- Land Value
- EstHomeValue
- **ISPSA**

Dependent Variable

yHat The average household spend with BBY in USD

fields

Discarded incomplete Fields

- Religious Contribution In Home
- PoliticalContributerInHome
- Donate to Animal Welfare
- Donate to Arts and Culture
- Donates Children Causes
- Donate to Healthcare
- DonatestoInternationalAidCauses
- Donate to Veterans Causes
- Donate to Healthcare 1
- DonatestoInternationalAidCauses1
- Donate to Wildlife Preservation
- DonatestoLocalCommunity
- Mosaic 74
- Investor
- Business Owner
- Horse Owner
- CatOwner
- Dog Owner
- OtherPetOwner
- HomeOffice
- BookBuyerInHome
- Upscale Buyer Home
- Buyer of Antiques in Household

- BuyerofArtinHousehold
- GeneralCollectorinHousehold
- BooksAudioReadinginHousehold
- Home Purchase Price
- Family Magazine Home
- Female Oriented Magazines In Home
- Religious Magazine In Home
- Gardening MagazineS Home
- Culinary Interest Magazine In Home
- Health Fitness Magazine In Home
- Do It Yourself Magazine Home
- Financial Magazine In Home
- Interest in Current Affairs Politics In Household
- Likely Union Member
- supports Affordable Care Act
- supportsGayMarriage
- supports Gun Control
- supports Taxes Raise
- overall social views
- DonatestoConservativeCauses
- DonatestoLiberalCauses

Exploring dataset

Exploring dataset

03 Predictive Modeling

Residuals

The shape of the residuals histogram is almost symmetric. If it is not symmetric our hypothesis assumption has been violated, and our model fails.

Residuals vs Fitters

When model is suitable for a data set, then the residuals are more or less randomly distributed around the 0 line

Modeling Goals

Hypotheses

All the Informative variables are significant predictor of the spend yHat variable

Main Libraries

Caret MLmetrics ggplot

ME: Mean Error RMSE: Root Mean Squared Error MAE: Mean Absolute Error MPE: Mean Percentage Error MAPE: Mean Absolute Percentage Error

KPI Performance

Low RMSE, high R² *
Low RMSE, low R²
High RMSE, high R²
High RMSE, low R² **

The Models

Linear

Random Forest

Regression

It builds the multiple decision trees which are known as forest and glue them together to urge a more accurate and stable prediction

KNN is a method for estimating the likelihood that a data point will become a member of one group based on the nearest point that it belong

RF: Residual Histogram

RF: Residual vs Fitter

KNN: Residual Histogram

KNN: Residual vs Fitter

04 Results

Model Compare

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's lm 50.70070 51.52673 51.90028 51.85798 52.28586 52.63721 0 rf 54.40517 55.25211 55.55989 55.57421 55.92425 56.86639 0 knn 77.65335 78.07331 78.31594 78.46230 78.70848 79.94792 0

RMSE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 72.50220 73.37546 73.90708 73.84974 74.36589 74.81487 78.18727 79.44482 79.85081 79.81323 80.20784 81.36492 knn 99.15408 99.91990 100.29815 100.41223 100.76845 102.06685

Rsquared

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's lm 0.42737532 0.4362772 0.43903642 0.44051561 0.44443571 0.45616243 0 rf 0.33811871 0.3517198 0.36233822 0.35982318 0.36587561 0.37667955 0 knn 0.02982649 0.0338112 0.03697643 0.03716604 0.03896898 0.04693728 0

Linear Regression Model

KPI

Lowest RMSE highest R²

Residuals

The shape of the residuals symmetric and normally distributed

Residual vs Fitters

scatter plot of residuals are more or less randomly distributed around the O line

Hypothesis

We can assume LR Model can accurate predict the household spends in BBY

Sample of the predictions

tmpID	FirsName	LastName	prospectSpend
1504	Horace	Goodwin	\$249.65
328	Louise	Wisozk	\$388.86
5448	Dorian	Douglas	\$225.07
3907	Eden	Tremblay	\$382.45
1728	Yer	King	\$302.53
3716	Chong	Wilderman	\$319.90
1920	Lamar	Dickinson	\$299.72
5190	Roscoe	Grant	\$296.54
4395	Wilburn	Collins	\$303.44
1458	Virgil	Reichert	\$300.65
4835	Marcos	Casper	\$249.10
5943	Wally	Hegmann	\$321.12
2090	Jeromy	Bashirian	\$309.66
491	Hunter	Daugherty	\$267.93
3909	Brunilda	Jewess	\$275.01
51	Norberto	Lehner	\$303.49
1732	Leeanne	Feeney	\$274.75

Awards Best Model

Linear Regression

Thanks!

Do you have any questions?

frf921@g.harvard.edu

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories

References

"Accuracy Measures for a Forecast Model — Accuracy." n.d. Accessed May 9, 2022.

https://pkg.robjhyndman.com/forecast/reference/accuracy.html.

"Correlation Test Between Two Variables in R - Easy Guides - Wiki - STHDA." n.d. Accessed May 9, 2022.

http://www.sthda.com/english/wiki/correlation-test-between-two-variables-in-r.

"Ggplot2 Density Plot: Quick Start Guide - R Software and Data Visualization - Easy Guides - Wiki - STHDA." n.d. Accessed May 9, 2022.

http://www.sthda.com/english/wiki/ggplot2-density-plot-quick-start-guide-r-software-and-data-visualization_n.

"Ggplot2 Quick Reference: Colour (and Fill) | Software and Programmer Efficiency Research Group." n.d.

Accessed May 9, 2022. http://sape.inf.usi.ch/quick-reference/gaplot2/colour.

Holtz, Yan. n.d. "Basic Barplot with Ggplot2." Accessed May 9, 2022a.

https://www.r-graph-gallery.com/218-basic-barplots-with-ggplot2.html

https://www.r-graph-gallery.com/21-distribution-plot-using-gaplot2.html.

"How Do I Export Results from R Console? - QuickAdviser." n.d. Accessed May 9, 2022.

https://quick-adviser.com/how-do-i-export-results-from-r-console/.

Johnson, Daniel. 2020. "R ANOVA Tutorial: One Way & Two Way (with Examples)." May 10, 2020.

https://www.guru99.com/r-anova-tutorial.html.

"Kruskal-Wallis Test in R - Easy Guides - Wiki - STHDA." n.d. Accessed May 9, 2022.

http://www.sthda.com/english/wiki/kruskal-wallis-test-in-r.

References

Mount, John. 2019. "What Is Vtreat? | R-Bloggers." August 14, 2019.

https://www.r-bloggers.com/2019/08/what-is-vtreat/.

"Plotting a Scatter Plot with Categorical Data. - General." 2020. RStudio Community. June 11, 2020. https://community.rstudio.com/t/plotting-a-scatter-plot-with-categorical-data/69456.

"Predictive Modeling and Machine Learning in R with the Caret Package." 2017. *Technical Tidbits From Spatial Analysis & Data Science* (blog). September 19, 2017.

http://zevross.com/blog/2017/09/19/predictive-modeling-and-machine-learning-in-r-with-the-caret-package/.

"Random Forest Regression in R: Code and Interpretation | HackerNoon." n.d. Accessed May 9, 2022. https://hackernoon.com/random-forest-regression-in-r-code-and-interpretation.

"RMSE: Root Mean Square Error." n.d. Statistics How To. Accessed May 9, 2022.

https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-root-mean-square-error/.

"RPubs - Correlation Coefficient Between Categorical and Continuous Variable." n.d. Accessed May 9, 2022. https://rpubs.com/riazakhan94/correlation_between_categorical_and_continuous_variable.

Vandeput, Nicolas. 2021. "Forecast KPI: RMSE, MAE, MAPE & Bias." Medium. July 30, 2021. https://towardsdatascience.com/forecast-kpi-rmse-mae-mape-bias-cdc5703d242d.

Wheeler, Willie. 2021. "Evaluating Linear Regression Models Using RMSE and R²." *Wwblog* (blog). June 24, 2021.

https://medium.com/wwblog/evaluating-regression-models-using-rmse-and-r%C2%B2-42f77400efee

