FML论文分享

11.30

Evaluate data by Shapley value 《 What is your data worth? Equitable Valuation of Data 》

How to evaluate shapley value

$$s_i = \frac{1}{N!} \sum_{\pi \in \Pi(D)} \left[U(P_i^{\pi} \cup \{i\}) - U(P_i^{\pi}) \right]$$

$$s_i = \sum_{S \subseteq I \setminus \{i\}} \frac{1}{N\binom{N-1}{|S|}} \left[U(S \cup \{i\}) - U(S) \right]$$

Truncated Monte Carlo Shapley

Algorithm 1 Truncated Monte Carlo Shapley

```
Input: Train data D = \{1, \dots, n\}, learning algorithm \mathcal{A}, performance score V
Output: Shapley value of training points: \phi_1, \ldots, \phi_n
Initialize \phi_i = 0 for i = 1, ..., n and t = 0
while Convergence criteria not met do
   t \leftarrow t + 1
   \pi^t: Random permutation of train data points
   v_0^t \leftarrow V(\emptyset, \mathscr{A})
   for j \in \{1, ..., n\} do
      if |V(D) - v_{j-1}^t| < Performance Tolerance then
         v_j^t = v_{j-1}^t
      else
         v_j^t \leftarrow V(\{\pi^t[1], \dots, \pi^t[j]\}, \mathscr{A})
      end if
      \phi_{\pi^{t}[j]} \leftarrow \frac{t-1}{t} \phi_{\pi^{t-1}[j]} + \frac{1}{t} (v_{j}^{t} - v_{j-1}^{t})
   end for
end while
```

Lemma 4.2. Given the range of an agent's marginal contributions, r, an error bound, ϵ , and a confidence $1 - \delta$, the sample size required such that $\Pr(|\bar{\Phi}_{SRS} - \mathbb{E}[\Phi]| \ge \epsilon) \le \delta$ is:

$$m \ge \frac{\ln(2/\delta) r^2}{2 \epsilon^2} \tag{4.3}$$

$$P[\max_{i} |\hat{s}_{i} - s_{i}| \leq \epsilon] \geqslant 1 - \delta. \qquad \frac{r^{2}}{2\epsilon^{2}} \log \frac{2N}{\delta}.$$

Dog vs Fish Retraining Inception-V3 top layer 10% noisy 0.0005 0.0004 0.0003 Average 0.0002 0.0001 -- Clean Images - Noisy Images 0.0000 0.1 0.2 0.3 0.4 0.5 Noise level

Noise Level = 0.1 Value = 0.00151

Noise Level = 0.3 Value = 0.00146

Noise Level = 0.5 Value = -0.00118

《Towards Efficient Data Valuation Based on the Shapley Value》

Lemma 1. For any $i, j \in I$, the difference in SVs between i and j is

$$s_i - s_j = \frac{1}{N - 1} \sum_{S \subseteq I \setminus \{i, j\}} \frac{U(S \cup \{i\}) - U(S \cup \{j\})}{\binom{N - 2}{|S|}} \tag{4}$$

$$\sum_{i=1}^{N} \hat{s}_i = U_{tot} \tag{5}$$

$$|(\hat{s}_i - \hat{s}_j) - C_{i,j}| \le \epsilon/(2\sqrt{N}) \quad \forall i, j \in \{1, \dots, N\}$$
 (6)

Theorem 3. Algorithm 1 returns an (ϵ, δ) -approximation to the SV with respect to l_2 -norm if the number of tests T satisfies $T \geq 8\log\frac{N(N-1)}{2\delta}/\left((1-q_{tot}^2)h\left(\frac{\epsilon}{Zr\sqrt{N}(1-q_{tot}^2)}\right)\right)$, where $q_{tot} = \frac{N-2}{N}q(1) + \sum_{k=2}^{N-1}q(k)[1+\frac{2k(k-N)}{N(N-1)}]$, $h(u) = (1+u)\log(1+u) - u$, $Z = 2\sum_{k=1}^{N-1}\frac{1}{k}$, and r is the range of the utility function.

Algorithm 1: Group Testing Based SV Estimation.

input: Training set - $D = \{(x_i, y_i)\}_{i=1}^N$, utility function $U(\cdot)$, the number of tests - T

output : The estimated SV of each training point - $\hat{s} \in \mathbb{R}^N$

$$Z \leftarrow 2\sum_{k=1}^{N-1} \frac{1}{k};$$

 $q(k) \leftarrow \frac{1}{Z}(\frac{1}{k} + \frac{1}{N-k}) \text{ for } k = 1, \dots, N-1;$
Initialize $\beta_{ti} \leftarrow 0, t = 1, \dots, T, i = 1, \dots, N;$

for t = 1 to T do

Draw $k \sim q(k)$;

for j = 1 to k_t do

Uniformly sample a length-k sequence S from $\{1, \dots, N\}$; $\beta_{ti} \leftarrow 1$ for all $i \in S$;

end

$$u_t \leftarrow U(\{i: \beta_{ti} = 1\});$$

end

$$\Delta U_{ij} \leftarrow \frac{Z}{T} \sum_{t=1}^{T} u_t (\beta_{ti} - \beta_{tj}) \text{ for } i = 1, ..., N,$$

 $j = 1, ..., N \text{ and } j \geq i;$

Find \hat{s} by solving the feasibility problem

$$\sum_{i=1}^{N} \hat{s}_i = U(D), |(\hat{s}_i - \hat{s}_j) - \Delta U_{i,j}| \le \epsilon/(2\sqrt{N}), \forall i, j \in \{1, \dots, N\};$$

《Rewarding High-Quality Data via Influence for Linear Regression》

$$\begin{split} &\inf(z_j,T,\theta) = R(T,\hat{\theta}_{/j}) - R(T,\hat{\theta}). \\ &\inf(z_{test},z_j) = \frac{1}{n} \nabla_{\theta} L(z_{test},\hat{\theta}) H_{\theta}^{-1} \nabla_{\theta} L(z,\hat{\theta}) \end{split}$$

$$\partial \theta_j = \frac{1}{n} H_{\theta}^{-1} \nabla_{\theta} L(z_i, \hat{\theta}) + \frac{1}{n^2} H_{\theta}^{-1} H_i H_{\theta}^{-1} \nabla_{\theta} L(z_i, \hat{\theta})$$

$$ext{infl}(z_{ ext{test}},z) = \left(
abla_{ heta} L(z_{ ext{test}},\hat{ heta}) + rac{1}{2} H_{ heta,z_{ ext{test}}} \cdot \partial heta
ight) \cdot \partial heta$$

《Measure Contribution of Participants in Federated Learning》

 Vertical Federated Learning raises new issues for measuring contributions of multiple parties where the feature space is divided into different part

Proposition 4. If either of Assumption 1 and 2 holds, then the Shapley group value for a party $g \in G$ with feature set X^g is given by

$$\phi_{X^g} = \sum_{Q \subseteq S \setminus \{j^{fed}\}} \frac{|Q|!(|S| - |Q| - 1)!}{|S|!} (\Delta_{Q \cup \{j^{fed}\}}(x) - \Delta_Q(x)),$$

where j^{fed} is the index of the united federated feature x^{fed} .