ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ Катедра "Теория на механизмите и машините"

ПРОТОКОЛ №12	ПРОТОКОЛ №12 Студент: Мисоком Сер	Caroline	Cumonal	Плотоноводе
	Shionell	icop i	CACACO	преподаватель
Дата:	Фак. №: 161219 049		Група:55	

Тема: ДИНАМИЧНО БАЛАНСИРАНЕ НА РОТОРИ

1. Теоретични предпоставки, схема на опитната постановка

Опорни реакции на неуравновесен ротор

$$R_A^x + R_B^x = \Phi_x; \qquad R_A^y + R_B^y = \Phi_y$$

$$R_A^x a - R_B^x b = M_{\Phi}^y; \qquad -R_A^y a + R_B^y b = M_{\Phi}^x.$$

$$\Phi = \omega^2 m \sqrt{x_c^2 + y_c^2} = \omega^2 m \, \rho_c = \omega^2 \Delta_s; \quad M_{\Phi} = \omega^2 \sqrt{I_{yz}^2 + I_{xz}^2} = \omega^2 \Delta_d$$

 $\Phi_x = \omega^2 m x_c; \ \Phi_y = \omega^2 m x_y; \ M_\Phi^x = -\omega^2 I_{yz}; \ M_\Phi^y = \omega^2 I_{xz}$

$$\begin{aligned} &a_1 = v |\Phi'|, \\ &a_2 = v |\Phi' + \Phi_c| = v |\Phi_1|, \\ &a_3 = v |\Phi' + \Phi_c| = v |\Phi_1|, \\ &a_3 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_4 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_2|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi_3|, \\ &a_5 = v |\Phi' - \Phi_c| = v |\Phi' - \Phi' - \Phi' |\Phi' - \Phi$$

- пилипакр;
- прътова пружива; - panka;
- 4 болт; 5 дискове; 6 допълнителни маси;
 - 7 фиксираци винтове;
- 8 индикаторен часовник;
 - 9 електродвигател;
- 10 фрикционно колело;
 - 11 ръкохватка.

Схема на опитната уредба

2. Числени данни, обработка на резултатите

E G	a _{1,1} a _{1,2}	18 11	14	cosac de= 58	la youm
	,2 (4,3	1 14	A THE STREET	. 98,65	m m
	42.1	19			
42	92,2	3.0	20		
	42,3	77			
	03.1	20	1		
(a)	03.2	61	196		
	03,3	6)			

3. Опитно балансиранс

AMERICAN a

Положение

T-ac

T+a.

Potopor e Sancupan