Introduction to Group Theory - Notes

Dom Hutchinson

April 17, 2018

Contents

1	Symmetries	2
2	Groups	3
3	Elementary Consequences of the Definition	3
4	Dihedral Groups	4
5	Subgroups	5
6	Order of Elements	5
7	Cyclic Groups & Cyclic Subgroups	6
8	Groups from Modular Arithmetic	6
9	Isomorphic Groups	7
10	Direct Product	8
11	Lagrange's Theorem	8
12	Some Consequences and Applications of Lagrange's Theorem	9
13	Symmetric Groups	10
14	Transpositions and Alternating Groups	10

1 Symmetries

Definition 1.01 - Permutation

A permutation of a set, G, is a bijection of the form $f: G \to G$.

 $\underline{\text{N.B.}}$ - Since the composition of two bijections is also a bijection, then the composition of two permutations is a permutation.

Definition 1.02 - Symmetries of a Polygon

A symmetry of an n-sided polygon is a permutation of the vertices which preserves adjacency. So if the vertices u & v are adjacent then the permutation f is a symmetry if f(u) & f(v) are adjacent.

Remark 1.03 - Symmetries

When dealing with symmetries of a shape then they can only be rotations or reflections.

Definition 1.04 - *Identity*

The trivial symmetry, which maps an element to itself, is known as the identity.

Remark 1.05 - Composition of Permutations

Let R, S & T be permutations.

Then (RS)T means do T, then S, then R. So

$$(RS)T = R(ST)$$

Remark 1.06 - One-Line Notation

Let $S = \{a_1, \ldots, a_n\}$ be a set and $\sigma: S \to S$ be a permutation.

One-Line notation denotes the result of σ by

$$(\sigma(a_1) \ldots \sigma(a_n))$$

So if σ maps $1 \to 2, 2 \to 3, \dots, n \to 1$ then it can be denoted by

$$\begin{pmatrix} 2 & 3 & \dots & n & 1 \end{pmatrix}$$

Remark 1.07 - Two-Line Notation

Let $S = \{a_1, \ldots, a_n\}$ be a set and $\sigma : S \to S$ be a permutation.

Two-Line notation denotes the result of σ by

$$\begin{pmatrix} a_1 & \dots & a_n \\ \sigma(a_1) & \dots & \sigma(a_n) \end{pmatrix}$$

So if σ maps $1 \to 2, 2 \to 3, \dots, n \to 1$ then it can be denoted by

$$\begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ 2 & 3 & \dots & n & 1 \end{pmatrix}$$

Remark 1.08 - Cycle Decomposition Notation

Let $S = \{a_1, \ldots, a_n\}$ be a set and $\sigma: S \to S$ be a permutation.

Cycle Decomposition Notation denotes σ as the product of disjoint cycles.

Each element in a cycle goes the position of the element after it in the list, the last element goes to the position of the first.

() denotes no variation. The operation of σ is denoted by

$$(a_1 \quad \sigma(a_1) \quad \sigma(\sigma(a_1)) \quad \dots \quad \sigma(\dots \sigma(a_1) \dots))$$

2 Groups

Definition 2.01 - Binary Operation

A binary operation on a set X is a function of the form $f: X \times X \to X$.

Remark 2.02 - Asteriks Notation

Binary operations are general denoted by an *.

$$f(x,y) = x * y$$

Remark 2.03 - Multiplicty Notation

Multiplicity notation is used to simplify equations with a single binary operator, by not writting *.

$$x * y = xy$$

Remark 2.04 - Set of Permutations

A set of permutations have a binary operation for composition.

Let f, g, h be permutations of a set X and $x \in X$

$$f(x) \times g(x) \to h(x)$$

Definition 2.05 - Commutativity

A binary operation, *, on a set X is *commutative* if order of input doesn't affected the outcome.

$$x * y = y * x, \forall x, y \in X$$

Definition 2.06 - Commute

If $x, y \in G$ satisfy x * y = y * x then it is said that x & y commute.

Defintion 2.07 - *Group*

A group is a set, G, with an associated binary operation, *, that

- i) Is associative, $(x * y) * z = x * (y * z) \forall x, y, z \in G$;
- ii) Has as an identity element, $\exists e \in G$ such that x * e = x = e * x; and,
- iii) Has an inverse element $\forall x \in G \exists x^{-1} \in G \text{ st } xx^{-1} = e = x^{-1}x.$

Remark 2.08 - Group Notation

The group of set G and binary operation * is denoted by (G, *).

Definition 2.09 - Abelian Group

An Abelian group, (G, *) is one where * is commutative.

3 Elementary Consequences of the Definition

Proposition 3.01 - Right Cancellation

If $a, b, x \in G$ and ax = bx then a = b.

Proposition 3.02 - Left Cancellation

If $a, b, x \in G$ and x => then a = xba = b.

Proposition 3.03 - *Uniqueness of Identity*

If $a, x, e \in G$ with e as the identity of G then

$$ax = a \Longrightarrow e = x$$

Proposition 3.04 - *Uniqueness of Inverses*

If $x, y, e \in G$ with e as the identity of G then

$$xy = e \implies x = y^{-1} \& y = x^{-1}$$

Proposition 3.05 - Inverse of Inverse

Let $x \in G$ then

$$(x^{-1})^{-1} = x$$

Proposition 3.06 - Composite Inverses

Let $x, y \in G$ then

$$(xy)^{-1} = y^{-1}x^{-1}$$

Definition 3.07 - Caley Table

Let e, x, y be all the elements of G then the result of all compositions can be displayed in a Caley Table.

The operation of the column is done first, then the operation of the row.

N.B. - All values in any given column or row are unique, so all elements of G appear exactly once.

Definition 3.08 - Powers of Elements

If n > 0 then x^n means $x * \cdots * x n$ times.

$$x^{-n} = (x^n)^{-1} = (x^{-1})^n, \quad x^0 = e$$

Definition 3.09 - Composition of Powers

For $m, n \in \mathbb{Z}$

$$x^m x^n = x^{m+n}$$

4 Dihedral Groups

Definition 4.01 - Order

The *order* of a group G is the number of elements in G.

N.B. - Order of G is denoted by |G|.

Definition 4.02 - Dihedral Groups

The dihedral group D_{2n} is the group of symmetries of a regular n-sided polygon, with $n \geq 3$. N.B. - $|D_{2n}| = 2n$.

Proposition 4.03 - Elements of Dihedral Group

Let a describe a rotation by $\frac{2\pi}{n}$ and b a reflection then

$$D_{2n} = \{e, a, a^2, \dots, a^{n-1}, b, ab, \dots, a^{n-1}b\}$$

N.B. -
$$a^n = e = b^2$$
, $a^{-1} = a^{n-1}$, $b = b^{-1}$.

Proposition 4.04 - Reflections & Rotations

Let a denote a rotation and b denoted a reflection then

$$ab = ba^{-1}$$

5 Subgroups

Definition 5.01 - Subgroup

A subgroup of a group G is a group formed of a subset of G with the same associated operation. N.B. - H being a subgroup of G is denoted by $H \leq G$.

Definition 5.02 - Non-Trivial Subgroup

A subgroup H of G is non-trivial if $H \neq \{e\}$.

Definition 5.03 - Proper Subgroup

A subgroup H of G is a proper subgroup if $H \neq G$.

Theorem 5.04 - Subgroup

A subset H of a group G is a subgroup iff

- i) It is closed under the binary operation $x, y \in H => xy \in H$;
- ii) It has an identity element $\exists e \in H \text{ st } xe = x \ \forall x \in H$; and,
- iii) All elements have an inverse $\forall x \in H \exists x^{-1} \in H \text{ st } xx^{-1} = e$.

Proposition 5.05 - Pairs of Subgroups

Let G, H & K be groups with $H \leq G \& K \leq G$ then $H \cap K \leq G$.

6 Order of Elements

Definition 6.01 - Order of an Element

Let $x \in G$ such that $x^n = e$, then the order of x is the smallest such n.

$$ord(x) = n$$

N.B. - If there is no such n then $ord(x) = \infty$.

Proposition 6.02 - *Uniqueness of Powers*

Let $x \in G$ with $ord(x) = \infty$ then

$$x^i \neq x^j \ \forall \ i \neq i$$

Theorem 6.03 - Order Elements in a Finite Group

Every element of a finite group has finite order.

Theorem 6.04 - Properties of Order of an Element

Let $x \in G$ such that $ord(x) = n < \infty$ then if

- i) $x^i = e \iff n|i;$
- ii) $x^i = x^j \iff i \equiv j \pmod{n}$;
- iii) $x^{-1} = x^{n-1}$; and,
- iv) The powers of x less than n are all distinct.

Proposition 6.05 - Order of Powers of Elements Let $x \in G, i \in \mathbb{Z}$.

- i) If $ord(x) = \infty$ then $ord(x^i) = \infty$ if $i \neq 0$; and,
- ii) If $ord(x) = n < \infty$ then $ord(x^i) = \frac{n}{\gcd(n, i)}$.

7 Cyclic Groups & Cyclic Subgroups

Definition 7.01 - Generating Cyclic Groups

Let G be a group and $x \in G$.

We define a $cyclic\ group\ generated\ by\ x$

$$\langle x \rangle = \{x^i : i \in \mathbb{Z}\} \le G$$

Theorem 7.02 - Cyclic Subgroup

Let $x \in G$ then $\langle x \rangle$ is a subgroup of G.

Definition 7.03 - Cyclic Group

A group G is cyclic if $G = \langle x \rangle$ for some $x \in G$.

N.B. - Here x is called the *generator* of G.

Theorem 7.04 - Abelian Cyclic Groups

Every cyclic group is abelian.

Theorem 7.05 - Finding Cyclic Groups

Let G be a group with $|G| = n < \infty$.

G is cyclic iff $\exists x \in G$ such that ord(x) = n.

Theorem 7.06 - Subgroups of Cyclic Groups

Every subgroup of a cyclic group is also a cyclic group.

8 Groups from Modular Arithmetic

Definition 8.01 - Congurence Class

Let $n \in \mathbb{N}$ then $a \equiv b \pmod{n}$ means n|a-b.

There are n congurence classes $[0], [1], \ldots, [n-1]$ where every integer is in exactly one of these classes.

$$[x] = \{ y \in \mathbb{Z} : x \equiv y \pmod{n} = \{ \dots, a - n, a, a + n, a + 2n, \dots \}$$

Definition 8.02 - Conqueence groups

Let $n \in \mathbb{N}$ then we denoted a congurence group of n by

$$\frac{\mathbb{Z}}{n\mathbb{Z}} = [0], [1], \dots, [n-2], [n-1]$$

<u>N.B.</u> - Addition and multiplication are valid binary operations for congurence groups.

Definition 8.03 - Properties of Congurence Groups

Let $[a], [b] \in \frac{\mathbb{Z}}{n\mathbb{Z}}$ for some $n \in \mathbb{N}$ then

$$[a] + [b] = [a + b], \quad [a].[b] = [a.b]$$

Theorem 8.04 - Abelian Congurence Groups

Let $n \in \mathbb{N}$ then $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is an abelian group.

Theorem 8.05 - Cyclic Abelian Congurence Groups

The group $\left(\frac{\mathbb{Z}}{n\mathbb{Z}},+\right)=\langle[1]\rangle$, so it is a cyclic group.

The group $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}, \cdot\right)$ is never a group for n > 1 as $[0][x] = [0] \neq [1] = e$.

Theorem 8.06 - Multiplicative Inverse of Congurence Groups $[a] \in \frac{\mathbb{Z}}{n\mathbb{Z}}$ has a multiplicative inverse if, and only if, gcd(a, n) = 1.

Definition 8.07 - Subset of $\frac{\mathbb{Z}}{n\mathbb{Z}}$ with multiplicative inverses U_n is the subset of $\frac{\mathbb{Z}}{n\mathbb{Z}}$ such that

$$U_n = \left\{ [a] \in \frac{\mathbb{Z}}{n\mathbb{Z}}; gcd(a, n) = 1 \right\}$$

N.B. - (U_n, \cdot) is an abelian group.

9 Isomorphic Groups

Definition 9.01 - *Isomorphism*

Let (G, *) and (H, \cdot) be groups.

An isomorphism from G to H is a bijective function $\phi: G \to H$ such that

$$\phi(x * y) = \phi(x) \cdot \phi(y), \quad \forall \ x, y \in G$$

<u>N.B.</u> - Since ϕ is bijective then there exists an inverse such that $\phi^{-1}: H \to G$.

Definition 9.02 - Isomorphic

Let G and H be groups.

G and H are said to be *isomorphic* if there exists an isomorphism $\phi: G \to H$. This is denoted by $G \cong H$.

Proposition 9.03 - Transitive property of Isomorphisms

Let G, H and I be groups.

If $G \cong H$ and $H \cong I$, then $G \cong I$.

If $G \cong H$ and H is abelian, then G is albelian.

If $G \cong H$ and H is cyclic, then H is cyclic.

Proposition 9.04 - Indentity element and Isomorphisms

Let $\phi: G \to H$ be an isomorphism, $e_G \& e_H$ be the identity elements of these groups and $x \in G$. Then

- i) $\phi(e_G) = e_H$;
- ii) $\phi(x^{-1}) = \phi(x)^{-1}$;
- iii) $\phi(x^i) = \phi(x)^i$, $\forall i \in \mathbb{Z}$; and,
- iv) $ord_G(x) = ord_H(\phi(x))$.

Proposition 9.05 - Order of Isomorphic Groups

Let G & H be isomorphic then |G| = |H|.

Proposition 9.06 - Order of Elements of Isomorphic Groups

Let G & H be isomorphic and $n \in \mathbb{N}$.

Then G and H have the same number of elements of order n.

10 Direct Product

Definition 10.01 - Direct Product

Let G & H be groups with the same binary operator.

The direct product, $G \times H$, is the cartesian product of the sets of G and H with the binary operator

$$(x,y)(x',y') = (xx',yy'), \quad x,x' \in G \ y,y' \in H$$

Proposition 10.02 - Direct Product as a group

The direct product of two groups is itself a group.

Proposition 10.03 - Properties of Direct Product

Let G and H be groups with the same binary operator.

- i) $G \times H$ is *infinite* iff both G and H are infinite;
- ii) $G \times H$ is abelian iff both G and H are abelian; and,
- iii) If $G \times H$ is *cyclic*, then G and H are cyclic.

Proposition 10.04 - Order of Elements of Direct Product

Let $g \in G, h \in H$ with $ord_G(g) = m \in \mathbb{N}$ and $ord_H(h) = n \in \mathbb{N}$ then for $(g,h) \in G \times H$

$$ord_{G\times H}(g,h) = lcm(m,n)$$

Theorem 10.05 - Cycle Direct Products

Let G & H be finite cyclic groups.

Then $G \times H$ is a cyclic group iff gcd(|G|, |H|) = 1.

Definition 10.06 - Klein 4-Group

A Klein 4-Group is a group of order 4 such that every element, except the identity, has order 2.

Proposition 10.07 -

Let $m, n \in \mathbb{N}$ such that gcd(m, n) = 1. Then

$$U_{mn} \cong U_m \times U_n$$

11 Lagrange's Theorem

Theorem 11.01 - Lagrange's Theorem

Let G be a finite group, and $H \leq G$, then |H| divides |G|.

Definition 11.02 - Co-Sets

Let G be a group, $H \leq G$ and $x \in G$.

The *left co-set* is defined as $xH = \{xh \in G : h \in H\} \subseteq G$.

The right co-set is defined as $Hx = \{hx \in G : h \in H\} \subseteq G$.

Theorem 11.03 - Order of Co-set

There exists a bijection, $\phi: H \to xH$, where $\phi(h) = xh$ so

$$|H| = |xH|$$

Theorem 11.04 - Relationship between Co-sets

Let $x, y \in G$ and $H \leq G$ then either

$$xH = yH \text{ or } xH \cap yh = \emptyset$$

Theorem 11.05 - Cosets of Abelian Groups Let G be an abelian group and $H \leq G$ then xH = Hx.

Definition 11.06 - Index

Let $H \leq G$.

Then index, |G:H|, is the number of left co-sets, xH, in G.

12 Some Consequences and Applications of Lagrange's Theorem

Propostion 12.01 - Lagrange for Order of Elements Let G be a finite group with |G| = n. Then $\forall x \in G$, ord(x)|n meaning $x^n = e$.

Theorem 12.02 - Fermat's Little Theorem Let $p \in \mathbb{N}$ and $a \in \mathbb{Z}$ such that $p \not| a$. Then

$$a^{p-1} \equiv 1 \pmod{p}$$

Definition 12.03 - Euler's Phi Function Euler's phi function is the function, $\phi : \mathbb{N} \to \mathbb{N}$, where

$$\phi(m) = |\{a \in \mathbb{Z} : 0 \le a \le m; gcd(a, m) = 1\}|$$

Theorem 12.04 - Fermat-Euler Theorem Let m > 0 and $a \in \mathbb{Z}$ with gcd(a, m) = 1. Then

$$a^{\phi(m)} \equiv 1 \pmod{m}$$

Theorem 12.05 - Properties of Prime-Ordered Groups Let $p \in \mathbb{N}$ be prime and G be a group such that |G| = p. Then

- i) G is cyclic;
- ii) $\forall x \in G \setminus \{e\}, ord(x) = p \text{ and } G = \langle x \rangle; \text{ and,}$
- iii) G only has two subgroups, both trivial, $\{e\}$ and G itself.

Proposition 12.06 - Relationship between Prime-Ordered Subgroups Let $p \in \mathbb{N}$ be prime and $H, I \leq G$ such that |H| = p = |I|, then either

$$P = Q$$
 or $P \cap Q = \{e\}$

Proposition 12.07 - Relationship between Relatively-Prime-Ordered Subgroups Let $m, n \in \mathbb{N}$, with gcd(m, n) = 1 and $H, I \leq G$ such that |H| = m, |I| = n, then

$$H \cap I = \{e\}$$

Theorem 12.08 - Odd Primed-Ordered Groups Let $p \in \mathbb{N}$ be an odd-prime. Then

- i) Every group of order 2p is either *cyclic* or *isomorphic* to D_{2p} ; and,
- ii) Every group of order p^2 is either *cyclic* or *isomorphic* to $(\frac{\mathbb{Z}}{p\mathbb{Z}}) \times (\frac{\mathbb{Z}}{p\mathbb{Z}})$.

13 Symmetric Groups

Definition 13.01 - Symmetric Group

Let X be a set.

The symmetric group on X is the group, S(X), of all permutations of X under composition. <u>N.B.</u> - S_n is the group of all permutations of $\{1, \ldots, n\}$.

Proposition 13.02 - Order of Symmetric Group

$$|S_n| = n!$$

Definition 13.03 - k-cycle

A k-cycle in S_n , where $k \leq n$, is a permutation where

$$\sigma(x_i) = x_{i+1}, \quad \sigma(x_k) = x_1$$

<u>N.B.</u> - denoted by $\sigma = (x_1 \ x_2 \ \dots \ x_k)$.

Theorem 13.04 - Order of a k-cycle

Let σ be a k-cycle then $ord_{S_n}(\sigma) = k$.

Definition 13.05 - Transposition

A transposition is a permutation that swaps two-elements and leaves all other elements unchanged.

<u>N.B.</u> - $\sigma(x_m) = x_n$, $\sigma(x_n) = x_m$ is denoted by $\sigma = (x_m, x_n)$. This can be extended for any number of elements.

Definition 13.06 - Disjoint Cycles

Disjoint cycles are cycles of S_n that have no elements share a common position.

Theorem 13.07 - Order of Products of Disjoint Cycles

Let f be the product of disjoint cycles of length k_1, k_2, \ldots, k_n then

$$ord(f) = lcm(k_1, k_2, \dots, k_n)$$

14 Transpositions and Alternating Groups

Definition 14.01 - Transposition

A transposition is a 2-cycle.

i.e. - A permutation where only two elements are swapped.

Theorem 14.02 - Permutations as Transpositions

Any permutation, $\sigma \in S_n$, is the product of a series of transpositions.

<u>N.B.</u> - The identity transposition, id_{S_n} , is the product of zero transpositions.

Proposition 14.03 - K-Cycles as Transpositions

Let k > 1.

Then a k-cycle is a product of k-1 transpositions.

N.B. -
$$(1, 2, ..., k) = (1, 2)(2, 3) ... (k - 1, k)$$
.

Definition 14.04 - Even & Odd Permutations

Let $\sigma \in S_n$.

We say σ is *even* if it is the product of an even number of transpositions.

We say σ is odd if it is the product of an odd number of transpositions. N.B. - The identity is even.

Theorem 14.05 - Exclusivity of Even & Odd Permutations

Every $\sigma \in S_n$ is either even or odd, never both.

Proposition 14.06 - Composition of Even & Odd Permutations

Let $\sigma, \tau \in S_n$.

If $\sigma \& \tau$ are both even then, $\sigma \tau$ is even.

If σ is even & τ is odd then, $\sigma\tau$ is odd.

If σ is odd & τ is even then, $\sigma\tau$ is odd.

If $\sigma \& \tau$ are both odd then, $\sigma \tau$ is even.

Proposition 14.07 - Even & Oddness of K-Cycles

Let $\sigma \in S_n$.

If $\sigma = \tau_1 \tau_2 \dots \tau_k$, where τ_i is a k_i -cycle.

Then σ is even if the number of odd τ_i is even.

 σ is odd if the number of odd τ_i is odd.

Proposition 14.08 - Even Permutations

The set of even permutations in S_n is a subgroup of S_n .

Definition 14.09 - Alternating Group

The subgroup of even permutations in S_n is called the Alternating Group, A_n .

Theorem 14.10 - Order of an Alternating Group

Let n > 1.

Then $|A_n| = \frac{n!}{2} = \frac{1}{2}|S_n|$.