GARCH - woger

2000+ Grønger, Engle Kosewelce. upenner no suonomme

Eerbir ruger (Ut)
$$E(U_t) = 0$$

$$Vor(U_t) = 3^2 > 0$$

$$(or(U_t, U_s) = 0 \text{ (hyen } t \neq s)$$

Coghoir Cropossos: sporteir muni coay-bero sprossecc.

(gryrosi croports: Con (le, les) = 0 ho janpensaer jobn unocru meny le a os.

Rul Rul negalucurum

$$\begin{array}{ccc}
\text{Rul negalucurum} \\
\text{Cov}(h(R), g(l)) = 0 & \text{Hg, h} \\
\text{Cov}(R, l) = 0 & \text{cov}(R, l^3) = 0 & \dots \\
\text{Cov}(\cos R, l^2) = 0 & \dots \\
\end{array}$$

$$E(R|L) = E(R)$$

$$E(R|L) = E(R)$$

$$E(R|L) = O(R)$$

3 lupet nour nejor bur culio colo [(ou (RI) - 0]

	Crun jobahithe grante upo wir-goxogkon
	yt= ln Pt - ln Pt = ln Pt = Pt-1 * (1+7)
	$= \ln \frac{p_{t-1}(1+t)}{p_{t-1}} = \ln(1+t) \approx$
	ym 2 20.
	* Touche Xbour (no upablichem chopmen
	liegens: $y_t \sim \mathcal{N}(u; \delta^2)$ $\frac{3^2}{P(y_t > u + 2\delta)}$
	Thay: he N
	A humierpur Calle author plangers ha veraniberel hoboers
U	* hyrebane obtonopp que y_t (or $(y_t, y_s) \approx 0$
1	* Mattheyayen bouterule no m.

Sup
$$u_{t} \sim GRR(h(1,1))$$
 $u_{t} = v_{t} \cdot b_{t}$
 $v_{t} = v_{t} \cdot b$

	300gho, ybugeun, ro
	Voe (4t Ut-1, Ut-2, 8t-1, 8t-2,) = (32)
	y a coondit prenepars.
	ARCH couditional heteros le dosticity.
	Vor (y+ 4+-1, 4+2 32 , 2 ,) = cont
	Tauxe bero. grenanc. pag - grecherin washo replue naistrogerus noreper
	GARCH (II) norepark
	Ut -> nochtogaen = 3 8t, 1+ > nenod erogalubr 3
	taubnas $(2) = \sqrt{\frac{2u^2}{7}}$ [kyea coarilis]
	c, L, b, - renjoeconne nop-pre.
1	(u2/4, 6,) ~ N(0; C+ 3, 4, 6, 6, 6)
	$\int \left(u_2 \mid u_1, \delta_1 \right) \leftarrow \text{palm cer or } C_{\mathbf{j}} \beta_{\mathbf{j}}, \lambda_{\mathbf{j}}$ $\text{muyl:} C_{\mathbf{j}} \beta_{\mathbf{j}} $ $\left(u_3 \mid u_2, u_1, \delta_{\mathbf{j}} \right) u_3 = v_3 \cdot \delta_3$
3	$(u_3 u_2,u_1,\delta_1)$ $u_3=v_3\cdot\delta_3$, where $v_3=v_3\cdot\delta_3$

4	KRSV	(tubo - rep	ession	Stechostic	volatility)	
		(lu 22)	C+ X	1. (lu 22-1	$V_{\epsilon} \sim \mathcal{N}(0:1)$ $V_{\epsilon} \sim \mathcal{N}(0:2)$ $V_{\epsilon} \sim \mathcal{N}(0:3)$	
					▼	
	EGAR (CH./TGARC	H/f6	ARCH/	cuolitoir guenep-	
					cert.	\ _/
		TAPYN	yuu	efell.		
						_
						_
						_
						_