Homework 7

- 1. Let $Z \sim N$ (0, 1). Find E ($\varphi(Z)$) without using LOTUS, where φ is the CDF of Z.
- 2. Let F be a CDF which is continuous and strictly increasing. The inverse function, F^{-1} , is known as the quantile function, and has many applications in statistics and econometrics. Find the area under the curve of the quantile function from 0 to 1, in terms of the mean μ of the distribution F.

Hint: Universality

- 3. Let $Z \sim N$ (0, 1) and let S be a "random sign" independent of Z, i.e., S is 1 with probability 1/2 and -1 with probability 1/2. Show that $SZ \sim N$ (0, 1).
- 4. Let $Z \sim N$ (0, 1). A measuring device is used to observe Z, but the device can only handle positive values, and gives a reading of 0 if $Z \leq 0$; this is an example of censored data. So assume that $X = ZI_{z>0}$ is observed rather than Z, where $I_{z>0}$ is the indicator of Z > 0. Find E(X) and Var(X).