Теория автоматов и формальных языков Регулярные языки

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

13 сентября 2016г.

В предыдущей серии

- Формальные языки повсюду. Язык множество строк над алфавитом
- Существует множество способов описать язык
- Задачи теории формальных языков
 - Как представить язык?
 - Какие есть характеристики у разных представлений языка?
 - ▶ Как определить, принадлежит ли строка данному языку?

В предыдущей серии

- Формальная грамматика
 - (Терминалы, Нетерминалы, Правила, Стартовый нетерминал)
 - Однозначность (любая строка имеет единственный вывод) и неоднозначность
- Вывод: транзитивное и рефлексивное замыкание отношения выводимости
 - Левосторонний (на каждом шаге заменяем самый левый нетерминал) и правосторонний
- Дерево вывода
 - Дерево: листья соответствуют терминалам, внутренние вершины нетерминалам; для каждого внутреннего узла существует правило грамматики, правая часть которого совпадает с метками детей узла
- Контекстно-свободная грамматика
 - ightharpoonup все правила имеют вид A olpha

Конечный автомат

Конечный автомат — $\langle Q, \Sigma, \delta, q_0, F \rangle$

- ullet $Q
 eq \emptyset$ конечное множество состояний
- Σ Конечный входной алфавит
- ullet δ отображение типа $Q imes \Sigma o Q$
- ullet $q_0 \in Q$ начальное состояние
- ullet $F\subseteq Q$ множество конечных состояний

KA называется **полным**, если существует переход из каждого состояния по каждому символу алфавита

• Обычно добавляют "дьявольскую"вершину, она же сток.

Пример конечного автомата

$$Q = \{0, 1, 2, 3\}, \Sigma = \{0, 1, -\}, q_0 = 0, F = \{1, 2\}$$

$$\delta(0, 0) = 1; \delta(0, 1) = 2; \delta(0, -) = 3; \delta(3, 1) = 2; \delta(2, 0) = 2; \delta(2, 1) = 2$$

Пример полного конечного автомата

Путь в конечном автомате

- Путь кортеж $\langle q_0, e_1, q_1, \dots, e_n, q_n \rangle$
 - n > 0
 - $\forall i.e_i = \langle q_{i-1}, w_i, q_i \rangle \in \delta$
 - ▶ q₀ начало пути
 - ▶ q_n конец пути
 - ▶ w_0, w_1, \dots, w_n **метка** пути
 - ▶ п длина пути
- ullet Путь успешен, если q_0 начальное состояние, а $q_n \in F$
- Состояние q достижимо из состояния p, если существует путь из состояния p в состояние q

Пример пути

 $\langle 0, \langle 0, '-', 3 \rangle, 3, \langle 3, '1', 2 \rangle, 2, \langle 2, '1', 2 \rangle, 2, \langle 2, '0', 2 \rangle, 2 \rangle$ — успешный путь с меткой "-110" длины 4

Такт работы КА (шаг)

- Конфигурация (Мгновенное описание) КА $\langle q,\omega
 angle$, где $q \in Q, \omega \in \Sigma^*$
- Такт работы бинарное отношение \vdash : если $\langle p, x, q \rangle \in \Delta$ и $\omega \in \Sigma^*$, то $\langle p, x\omega \rangle \vdash \langle q, \omega \rangle$
- Бинарное отношение \vdash^* рефлексивное, транзитивное замыкание \vdash

Распознавание слова конечным автоматом

- ullet Цепочка ω распознается КА, если \exists успешный путь с меткой ω
- Язык, распознаваемый конечным автоматом:

```
\{\omega \in \Sigma^* \mid \exists p — успешный путь с меткой \omega\}
```

Распознавание слова конечным автоматом

Теорема

Рассмотрим конечный автомат $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. Слово $\omega \in \Sigma^*$ принадлежит языку $L(M) \Leftrightarrow \exists q \in F. \langle q_0, \omega \rangle \vdash^* \langle q, \varepsilon \rangle$.

Распознавание слова конечным автоматом

Обобщаем функцию перехода:

- $\delta'(q,\varepsilon) = q$
- $\delta'(q,xa)=\delta(\delta'(q,x),a)$, где $x\in\Sigma^*,a\in\Sigma$

Теорема

Цепочка ω распознается КА $\langle Q, \Sigma, \delta, q_0, F \rangle \Leftrightarrow \exists p \in F.\delta'(q, \omega) = p$

Язык, распознаваемый конечным автоматом:

$$\{\omega \in \Sigma^* \mid \exists p \in F.\delta'(q_0, \omega) = p\}$$

Свойство конкатенации строк

Теорема

$$\langle \mathbf{q}_1, \alpha \rangle \vdash^* \langle \mathbf{q}_2, \varepsilon \rangle, \langle \mathbf{q}_2, \beta \rangle \vdash^* \langle \mathbf{q}_3, \varepsilon \rangle \Rightarrow \langle \mathbf{q}_1, \alpha \beta \rangle \vdash^* \langle \mathbf{q}_3, \varepsilon \rangle$$

Эквивалентность конечных автоматов

- Конечные автоматы A_1 и A_2 эквивалентны, если распознают один и тот же язык
- Как проверить что автоматы эквиваленты?

Проверка на эквивалентность автоматов

- Запустить одновременный обход в ширину двух автоматов
- Каждый переход должен приводить в терминальные или нетерминальные вершины в обоих автоматах соответственно

Минимальный конечный автомат

• Минимальный конечный автомат — автомат, имеющий наименьшее число состояний, распознающий тот же язык, что и данный

Классы эквивалентности

Отношение эквивалентности — рефлексивное, симметричное, транзитивное отношение

• xRx; $xRy \Leftrightarrow yRx$; xRy, $yRz \Rightarrow xRz$

Теорема

 $\forall R$ — отношение эквивалентности на множестве S Можно разбить S на k непересекающихся подмножеств $I_1 \dots I_k$, т.ч. $aRb \Leftrightarrow a,b \in I_i$

Множества $I_1 \dots I_k$ называются классами эквивалентности

Эквивалентные состояния

- $\omega \in \Sigma^*$ различает состояния q_i и q_j , если $\delta'(q_i,\omega) = t_1, \delta'(q_i,\omega) = t_2 \Rightarrow (t_1 \notin F \Leftrightarrow t_2 \in F)$
- q_i и q_j эквивалентны $(q_i \sim q_j)$, если $orall \omega \in \Sigma^*.\delta'(q_i,\omega) = t_1, \delta'(q_j,\omega) = t_2 \Rightarrow (t_1 \in F \Leftrightarrow t_2 \in F)$
 - Является отношением эквивалентности

Лемма

$$\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F
angle,$$
 $p_1,p_2,q_1,q_2\in Q,$ $q_i=\delta(p_i,c)$ $\omega\in\Sigma^*$ различает q_1 и $q_2.$ Тогда с ω различает p_1 и p_2

Доказательство

$$\delta'(p_i, c\omega) = \delta'(\delta(p_i, c), \omega) = \delta'(q_i, \omega) = t_i$$

TLDR: разбиваем состояния на классы эквивалентности, которые делаем новыми состояниями

Q — очередь; marked — таблица размером $n \times n$ (n — количество состояний KA).

Помечаем в таблице пары неэквивалентных состояний и кладем их в очередь

- Если автомат не полный дополнить дьявольской вершиной
- ullet Строим отображение δ^{-1} обратные ребра
- Находим все достижимые из стартового состояния
- Добавляем в Q и отмечаем в marked пары состояний, различимые ε
- Можем пометить пару (u,v), если $\exists c \in \Sigma.(\delta(u,c),\delta(v,c))$. Для этого, пока $Q \neq \emptyset$:
 - Извлекаем (u, v) из Q
 - ▶ $\forall c \in \Sigma$ перебираем $(\delta^{-1}(u,c), \delta^{-1}(v,c))$ если пара не помечена, помечаем и кладем в очередь
- ullet В момент опустошения Q непомеченные пары являются эквивалентными
- За проход по таблице выделяем классы эквивалентности
- За проход по таблице формируем новые состояния и переходы

- Стартовое состояние класс эквивалентности, которому принадлежит стартовое состояние исходного KA
- Конечные состояния классы эквивалентности, которым принадлежат конечные состояния исходного КА

Алгоритм минимизации КА: корректность

- Пусть в результате применения алгоритма к КА A получили КА A_{min} . Покажем, что этот автомат минимальный и единственный с точностью до изоморфизма
- ullet Пусть $\exists A'.A'$ и A эквивалентны, но количество состояний A' меньше, чем у A_{min}
- Стартовые состояния $s \in A_{min}$ и $s' \in A'$ эквивалентны (КА допускают один язык)
- $\forall \alpha = a_1 a_2 \dots a_k, a_i \in \Sigma : \langle s, \alpha \rangle \vdash^* \langle u, \varepsilon \rangle; \langle s', \alpha \rangle \vdash^* \langle u', \varepsilon \rangle$
- $\sphericalangle\langle s,a_1 \rangle \vdash^* \langle I,\varepsilon \rangle; \langle s',a_1 \rangle \vdash^* \langle I',\varepsilon \rangle. \ s,s'$ эквивалентны $\Rightarrow I,I'$ эквивалентны
- Аналогично для всех $a_i \mapsto u, u'$ эквивалентны
- ullet $\Rightarrow orall q$ состояние $A_{min} \exists q'$ эквивалентное состояние A'
- Состояний A' меньше, чем состояний $A_{min} \Rightarrow 2$ состояниям A_{min} соответствует 1 состояние $A' \Rightarrow$ они эквивалентны. Но по построение A_{min} в нем не может быть эквивалентных состояний. Противоречие

Недетерминированный КА

Недетерминированный конечный автомат — $\langle Q, \Sigma, \delta, q_0, F \rangle$

- $Q \neq \emptyset$ конечное множество состояний
- Σ Конечный входной алфавит
- ullet δ отображение типа $Q imes \Sigma o 2^Q$
- ullet $q_0 \in Q$ начальное состояние
- ullet $F\subseteq Q$ множество конечных состояний

Распознавание слова НКА

- ullet Конфигурация (Мгновенное описание) КА $\langle q,\omega
 angle$, где $q\in Q,\omega\in \Sigma^*$
- Такт работы бинарное отношение \vdash : если $q \in \delta(p,x)$ и $\omega \in \Sigma^*$, то $\langle p,x\omega \rangle \vdash \langle q,\omega \rangle$
- Бинарное отношение \vdash^* рефлексивное, транзитивное замыкание \vdash
- НКА допускает слово α , если $\exists t \in F. \langle s, \alpha \rangle \vdash^* \langle t, \varepsilon \rangle$
- Язык НКА $\mathit{L}(A) = \{\omega \in \Sigma^* \, | \, \exists t \in \mathit{F}. \langle \mathit{s}, \omega \rangle \vdash^* \langle \mathit{t}, \varepsilon \rangle \}$
- ДКА частный случай НКА

Алгоритм, определяющий допустимость слова

- $R(\alpha) = \{p | \langle s, \alpha \rangle \vdash^* \langle p, \varepsilon \rangle \}$
- $R(\varepsilon) = \{q_0\}$
- $R(\alpha c) = \{q | q \in \delta(p, c), p \in R(\alpha)\}$
- ullet НКА допускает слово $lpha \Leftrightarrow \exists t \in \mathit{F}.t \in \mathit{R}(lpha)$

Построение ДКА по НКА: алгоритм Томпсона

- ullet Помещаем в Queue множество $\{q_0\}$
- Пока очередь не пуста, выполняем:
 - ightharpoonup q = Queue.pop()
 - Строим множество $q' = \{t = \delta(s,c) | s \in q, c \in \Sigma\}$. Если $q' \notin Queue$, добавить его в очередь. Каждое такое множество новая вершина ДКА; добавляем переходы по соответствующим символам
 - Если во множестве есть хотя бы одна вершина, являющаяся терминальной в данном НКА, то соответствующая вершина ДКА будет конечной
- ullet Результат: $\langle \Sigma, Q, q_0 \in Q, T \subset Q, \delta : Q imes \Sigma o 2^Q
 angle$

13 сентября 2016г.

Эквивалентность языков, распознаваемых ДКА и НКА

Теорема

ДКА и НКА распознают один и тот же класс языков

Доказательство.

⇒: очевидно

⇐: Рассмотрим произвольный НКА и покажем, что алгоритм

Томпсона строит по нему эквивалентный ДКА.

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o aB или A o a, где $A,B\in V_N,a\in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Ba или A o a, где $A,B\in V_N,a\in V_T$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o aB или A o a, где $A,B\in V_N,a\in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Ba или A o a, где $A,B\in V_N,a\in V_T$

Теорема

Пусть L — формальный язык.

 $\exists G_r$ — праволинейная грамматика, т.ч. $L = L(G_r) \Leftrightarrow \exists G_l$ — леволинейная грамматика, т.ч. $L = L(G_l)$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o aB или A o a, где $A,B\in V_N,a\in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Ba или A o a, где $A,B\in V_N,a\in V_T$

Теорема

Пусть L — формальный язык.

 $\exists G_r$ — праволинейная грамматика, т.ч. $L = L(G_r) \Leftrightarrow \exists G_l$ — леволинейная грамматика, т.ч. $L = L(G_l)$

Регулярная грамматика — праволинейная или леволинейная грамматика