•		
Surname	Other name	es
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Further Pu	ire Mathe	ematics
Friday 12 January 2018 – I	Morning	Paper Reference 4PM0/01

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	f(x)) =	6 +	5x -	$2x^2$	2

Given that f(x) can be written in the form $p(x + q)^2 + r$, where p, q and r are rational numbers,

(a) find the value of p, the value of q and the value of r.

(3)

- (b) Hence, or otherwise, find
 - (i) the maximum value of f(x),
 - (ii) the value of x for which this maximum occurs.

(2)

$$g(x) = 6 + 5x^3 - 2x^6$$

- (c) Write down
 - (i) the maximum value of g(x),
 - (ii) the exact value of x for which this maximum occurs.

(3)

2 (a) On the grid opposite,	draw
------------------------------------	------

- (i) the line with equation y = 3x 3
- (ii) the line with equation 3x + 2y = 12

(2)

(b) Show, by shading, the region R defined by the inequalities

$$y \leqslant 3x - 3$$

$$3x + 2y \leqslant 12$$

$$y \geqslant -1$$

(2)

For all points in R with coordinates (x, y)

$$P = 4x - y$$

(c) Find the greatest value of P.

(4)

Question 2 continued

Turn over for a spare grid if you need to redraw your graph

Question 2 continued

Question 2 continued

Only use this grid if you need to redraw your graph

(Total for Question 2 is 8 marks)

3	The volume of a right circular cone is increasing at a constant rate of 27 cm ³ /s. The radius of the base of the cone is always 1.5 times the height of the cone. Calculate the rate of change of the height of the cone, in cm/s to 3 significant figures, when the height of the cone is 4 cm.			
		(6)		

4	A particle <i>P</i> moves along the <i>x</i> -axis. At time <i>t</i> seconds ($t \ge 0$), the displacement of <i>P</i> from the origin is <i>x</i> metres and the velocity, v m/s, of <i>P</i> is given by $v = 2t^2 - 16t + 30$				
	(a) Find the times at which P is instantaneously at rest.	(2)			
	(b) Find the acceleration of <i>P</i> at each of these times.	(3)			
	When $t = 0$, P is at the point where $x = -4$				
	(c) Find the distance of P from the origin when P first comes to instantaneous rest.	(3)			

5 (a) Complete the table of values for $y = \frac{x^3 + 2}{x + 1}$ giving your answers to 2 decimal places where appropriate.

X	0	0.5	1	1.5	2	3	4
y		1.42		2.15		7.25	

(2)

(b) On the grid opposite draw the graph of $y = \frac{x^3 + 2}{x + 1}$ for $0 \le x \le 4$

(2)

(c) By drawing a suitable straight line on your graph obtain an estimate, to 1 decimal place, of the root of the equation $x^3 + x^2 - 3x - 2 = 0$ in the interval $0 \le x \le 4$

(5)

Question 5 continued

Turn over for a spare grid if you need to redraw your graph

Question 5 continued

Only use this grid if you need to redraw your graph

(Total for Question 5 is 9 marks)

x cm (x + 4) cm C

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows the triangle ABC with AB = x cm, BC = (2x - 2) cm, AC = (x + 4) cm and $\angle BAC = \theta^{\circ}$

Given that $\tan \theta^{\circ} = \sqrt{255}$ and without finding the value of θ ,

(a) show that $\cos \theta^{\circ} = \frac{1}{16}$

(2)

Hence find

(b) the value of x,

(5)

(c) the size, in degrees to 1 decimal place, of $\angle ABC$,

(2)

(d) the area, in cm² to 3 significant figures, of triangle ABC.

(2)

			2	۲	
			S		
			7	۱	
			S		
				1	
			୬		
				2	
				1	
			\rangle		
				2	
			/	١	
				2	
			1	١	
	ς,	à	í	ù	í
	4				
	3		è	а	ρ
		2	₹	7	
	2		ě	۹	ы
	Я	ľ	N	0	
		9	é	ρ	ĸ
	N	4	è	4	à
			ú	ø	۴
	À		ğ	'n	ú
		ď	ě	Z	
	S				
	А	L	4	S	
	Κ,	2	Ĺ	۵	
	?	₹	7	₹	
			>		7
		2	2	à	á
	А			Z	2
	À	4	200		ų
	♂	9	ĕ	ù	۷
	2	S	2	S	
	Я	7		7	
	S				ø
	Z	S	2		2
	Ì	è	Ś	è	9
	Ì	è	Ś	è	9
	3	Ì	Ź		į
	3	Ì	Ź		į
	3	è	Ź	è	į
	3	Ì	Ź		į
	3				
			2		
			2		
<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>					
/>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>					
				D. C.	
				D. C.	

Question 6 continued	

(a) Expand $(1-4x^2)^{-\frac{1}{2}}$ in ascending powers of x, up to and including the term in x^6 , giving each coefficient as an integer.

(b) Write down the range of values of x for which your expansion is valid.

in ascending powers of x up to and including the term in x^4 , giving each coefficient as an integer.

121	
(1)	

(d) Hence, use algebraic integration to obtain an estimate, to 3 significant figures, of

$$\int_{0}^{0.3} \frac{3+x}{\sqrt{(1-4x^2)}} \, \mathrm{d}x$$

1	а	٦	١.	
4	ı.		п	

Question 7 continued	

8	The sixth term of a geometric series G , with common ratio r ($r \neq 0$), is four times the second term.	
	(a) Find the two possible exact values of r .	(2)
	The sum of the third and seventh terms of G is 30	
	(b) Find the first term of the series.	(3)
	Given that $r > 0$	
	(c) find the sum of the first 10 terms of G .	(2)
	Given that t_n is the <i>n</i> th term of G ,	
	(d) find the least value of n for which $t_n > 2400$	(3)

Question 8 continued

(2)

- **9** It is given that α and β are such that $\alpha + \beta = -\frac{5}{2}$ and $\alpha\beta = -5$
 - (a) Form a quadratic equation with integer coefficients that has roots α and β

Without solving the equation found in part (a)

- (b) find the value of
 - (i) $\alpha^2 + \beta^2$
 - (ii) $\alpha^3 + \beta^3$ (5)
- (c) Hence form a quadratic equation with integer coefficients that has roots

$$\left(\alpha - \frac{1}{\alpha^2}\right)$$
 and $\left(\beta - \frac{1}{\beta^2}\right)$ (6)

Question 9 continued	

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

(a) Show that
$$\cos^2 \theta = \frac{1}{2}(\cos 2\theta + 1)$$

(3)

Given that $f(\theta) = 8\cos^4\theta + 8\sin^2\theta - 7$

(b) show that
$$f(\theta) = \cos 4\theta$$

10

(5)

(c) Solve, for $0 \leqslant \theta \leqslant \frac{\pi}{2}$, the equation

$$16\cos^{4}\left(\theta - \frac{\pi}{6}\right) + 16\sin^{2}\left(\theta - \frac{\pi}{6}\right) - 15 = 0$$
(4)

(d) Using calculus, find the exact value of

$$\int_0^{\frac{\pi}{2}} (8\cos^4\theta + 8\sin^2\theta + 2\sin 2\theta) d\theta \tag{4}$$

DO NOT WRITE IN THIS AREA

Question 10 continued

Question 10 continued		
	(Total for Question 10 is 16 marks)	
	TOTAL FOR PAPER IS 100 MARKS	