DO FIVE OF THE SIX PROBLEMS

- 1. Let α be an element of the alternating group A_n . Prove that the number of conjugates of α in A_n (i.e., under conjugacy by the elements of A_n) is either the same as or only half as large as the number of conjugates of α in the symmetric group S_n that contains A_n .
- 2. Let G be a group of order $780 = 2^2 \cdot 3 \cdot 5 \cdot 13$ which is not solvable. What are the orders of its composition factors? Explain your reasoning. (You may assume without proof that all groups of order less than 60 are solvable.)
- 3. (a) Prove that prime elements in an integral domain are irreducible.
 - (b) Let D be a principal ideal domain. Prove that if P is a nonzero prime ideal in D, then P is a maximal ideal.
 - (c) Let R[x] be the ring of polynomials in one indeterminate over an integral domain R. Prove that if R[x] is a principal ideal domain, then R is a field.
- 4. Let R be a commutative ring (not necessarily with multiplicative identity). Prove that if the only ideals in R are (0) and R, then either:
 - (a) R is the zero ring: $R = \{0\}$,
 - (b) R contains a prime number p of elements, and $a \cdot b = 0$ for all $a, b \in R$, or
 - (c) R is a field.
- 5. (a) Let \mathbb{F}_p denote a finite field with p elements, where p is an arbitrary prime, x be transcendental over \mathbb{F}_p , $K = \mathbb{F}_p(x)$, and $f(z) = z^p x \in K[z]$, where K[z] is the ring of polynomials in a transcendental element z over the field K. Prove:
 - (i) f(z) is irreducible in K[z].
 - (ii) If θ is a root of f(z) in its splitting field over K, then $K(\theta)$ is an inseparable (algebraic) extension of K.
 - (b) Prove: If F is a subfield of a field E such that [E:F]=n= (degree of E over F) $<\infty$, x is transcendental over F, $f(x) \in F[x]$ is irreducible of degree $d \ge 1$ in F[x] and (d, n) = 1, then f(x) is irreducible in E[x].
- 6. (a) Let \mathbb{Q} denote the field of rational numbers. Determine the subfield K of the complex field \mathbb{C} that is the splitting field over \mathbb{Q} of the polynomial $f(x) = x^4 x^2 6$.
 - (b) Determine the Galois group $Gal(K/\mathbb{Q}) = Gal(f/\mathbb{Q})$ and all of its subgroups.

AUGUST 1984

1. G is a finite group of order 2p, where p is a positive odd prime number. You are given that x, yare elements of G of order 2, p, respectively.

- (a) Prove from first principles (i.e., using only the notion of a group) that $xyx^{-1} = y^m$ for some integer m.
- (b) Prove that one may take m = 1 or p 1.
- 2. There exists a simple group G or order 168. Prove that G is isomorphic to a subgroup of S_8 , the symmetric group on eight letters. [Hint: Consider Sylow subgroups of G.]

3. Let $R = \mathbb{Z}[x, y]$, where \mathbb{Z} denotes the ring of rational integers and x, y are algebraically independent over \mathbb{Z} . For each of the ideals I in R as defined below:

- (i) Briefly describe the quotient ring R/I. (If you wish, you may describe an isomorphic image.)
- (ii) Determine whether or not I is prime. (Justify your answer.)
- (iii) Determine whether or not I is maximal. (Justify your answer.)

- (a) I = (y), the principal ideal generated by y in R. (b) $I = (y, 5, x^2 + 1)$, the ideal generated by the three elements $y, 5, x^2 + 1$ in R. (c) $I = (y, 3, x^2 + 1)$, the ideal generated by the three elements $y, 3, x^2 + 1$ in R.

4. Let $M \neq \{0\}$ be an arbitrary left R-module of an arbitrary ring $R \neq \{0\}$. M is called a simple left R-module if and only if its only proper left R-submodule is $\{0\}$. Prove:

- (a) If M is simple, then either
 - (i) $RM = \{0\}$ and M is finite of prime order, or
 - (ii) $RM \neq \{0\}$ and M is a unitary cyclic left R-module generated by each of its nonzero elements.
- (b) If either (i) or (ii) above holds, then M is simple.

5. Let $\mathbb{F} = GF(2)$, the field with two elements. Let K be a splitting field for $f(x) = x^4 + x + 1$ over F. Let α be an element of K such that $f(\alpha) = 0$. Find all elements $\beta \in K$ such that $K = F(\beta)$. (Express each β as a polynomial in α over $\mathbb F$ of least possible degree.) Prove that your list is complete.

6. Determine the Galois group G of x^6-3 over $\mathbb Q$ (the rational number field).

4. Let $w(x,y) = x^{m_1}y^{n_1} \cdots x^{m_r}y^{n_r}$, m_i and n_j are any integers (of any sign), different from 0 and $r \ge 1$. Find two permutations p and q of a finite set such that

$$w(p,q)=p^{m_1}q^{n_1}\cdots p^{m_r}q^{n_r}$$

is a permutation different from the identity.

5. (a) Consider the matrix

$$A = \frac{1}{25} \left[\begin{array}{rrr} 15 & 12 & -16 \\ -20 & 9 & -12 \\ 0 & 20 & 15 \end{array} \right]$$

as a linear mapping from \mathbb{R}^3 into itself. You may assume without proof that this mapping is a rotation around a certain axis through an angle θ . Find the axis and find θ .

- (b) Find two different square roots of A, one a rotation and one not. For full credit, include a numerical solution; up to 6 out of 8 points will be awarded for a geometric description and a description of how one would proceed in calculating \sqrt{A} , in lieu of the calculation itself.
- 6. In the following problem, you may assume the following fact, which holds for cubic polynomials over any field:

if
$$x^3 + px + q = (x - \alpha)(x - \beta)(x - \gamma)$$
, then $[(\gamma - \alpha)(\gamma - \beta)(\beta - \alpha)]^2 = -4p^3 - 27q^2$.

You may assume the fundamental facts of Galois theory, but apart from these assumptions, please base your proofs on fundamentals of field theory.

- (a) Prove that $f(x) = x^3 3x + 1$ is irreducible over the field $\mathbb Q$ of rational numbers.
- (b) Prove that f(x) has three distinct real roots (alias "zeros"). Let us call them α, β, γ with $\alpha < \beta < \gamma$.

AUGUST 1983

- 1. Let Z_n denote the (additive) cyclic group of order n. Let $G=Z_{15}\oplus Z_9\oplus Z_{54}\oplus Z_{50}\oplus Z_6$.
 - (a) What is the order of the largest cyclic subgroup in G?
 - (b) How many elements are there of order 5?
 - (c) How many elements are there of order 25?
 - (d) How many subgroups are there of order 25?
- 2. Let $K = GF(p^n)$ be a finite field of characteristic p which has degree n over its prime field GF(p).
 - (a) Prove that K has p^n elements.
 - (b) Prove that K is a Galois extension of GF(p) and describe its Galois group.
 - (c) Prove: $GF(p^m)$ is (isomorphic to) a subfield of $GF(p^n)$ if and only if m divides n. Show that in this case $GF(p^n)$ has exactly one subfield with p^m elements.
- 3. Let P_3 be the vector space of all polynomials over the real field \mathbb{R} of degree ≤ 3 . Define a mapping
- $\phi: P_3 \to \mathbb{R}$ by $\phi(a_0 + a_1x + a_2x^2 + a_3x^3) = a_0 + a_1 + a_2 + a_3$ for every $a_0 + a_1x + a_2x^2 + a_3x^3 \in P_3$.
 - (a) Prove: $\phi \in P_3^*$, the dual space of P_3 (by definition, the dual space of a real vector space is the space of all linear functions from the space to \mathbb{R}).
 - (b) Let $\phi_0, \phi_1, \phi_2, \phi_3$ be the basis of P_3^* which is dual to the basis $\{1, x, x^2, x^3\}$, i.e., $\phi_j(x^i) = 0$ if $i \neq j$ and $\phi_i(x^i) = 1$, for i = 0, 1, 2, 3. Express the linear function ϕ of part (a) in terms of this dual basis.

JANUARY 1983

- 1. (a) What is meant by the statement that a field is a normal extension of the rational field Q?
 - (b) Let $K = \mathbb{Q}(2^{1/2}, 2^{1/3})$. Determine the relative degree $[K : \mathbb{Q}]$.
 - (b) Prove that K is not a normal extension of \mathbb{Q} .
- 2. (a) State any one of Sylow's Theorems on finite groups. Consider the set of nonsingular matrices $\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$ with elements α, β in the field with 3 elements.
 - (b) Prove that they form a group under multiplication.
 - (c) Determine the structure of this group, in particular whether it is abelian.
- 3. Let K be an arbitrary field and K(x) the field of rational functions in one variable over K. Let u be an element of K(x) not in K. Show:
 - (a) u is not algebraic over K.
 - (b) If u = f(x)/g(x) where f(x) and g(x) are relatively prime polynomials in K[x] then [K(x): K(u)] = m where $m = \max\{\deg f(x), \deg g(x)\}$.
- 4. Let \mathbb{Q} be the rational field and let α be a root of $x^4 + 1$. Show:
 - (a) $[\mathbb{Q}(\alpha):\mathbb{Q}]=4$.
 - (b) $\mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} .
 - (c) The Galois group of $\mathbb{Q}(\alpha)$ over \mathbb{Q} is the Klein 4-group.

- 1. (a) Consider a group G of order 2n which contains exactly n elements of order 2. Show that n must be odd.
 - (b) Let $A = \{a_1, \ldots, a_n\}$ be the set of those elements of G which are of order 2. Prove that $a_i a_j \neq a_j a_i$ for all $i \neq j$.
 - (c) Give an example of a group of the type given in part (a).
- 2. (a) Let G be a finite group, H a normal subgroup, p a prime, $p \nmid [G:H]$. Show that H contains every Sylow p-subgroup of G.
 - (b) Show that a group of order $992 (= 31 \cdot 32)$ is not simple.
- 3. Let R be a commutative ring with 1, and let I, J be ideals in R with I + J = R.
 - (a) Let $a, b \in R$. Prove that there exists $c \in R$ such that $c \equiv a \mod I$ and $c \equiv b \mod J$.
- (b) Deduce from the above that $R/I \cap J$ is isomorphic to the direct product $(R/I) \times (R/J)$. [Note: You may do part (b) for partial credit, assuming the result for part (a), even if you haven't done part (a).]
- 4. Let R be a commutative ring with 1. Let f_1, f_2, \ldots, f_r be r elements of R and let (f_1, \ldots, f_r) be the ideal generated by this set. Suppose that g and h are elements of R and that a certain positive power of g belongs to (f_1, \ldots, f_r, h) while a positive power of gh belongs to (f_1, \ldots, f_r) . Show that there is a positive power of g which belongs to (f_1, \ldots, f_r) .

SOLVING COMPLETELY ANY 4 OF THE PROBLEMS SECURES THE MAXIMUM SCORE OF 100 POINTS

- 1. Let $\omega = e^{2\pi i/5}$.
 - (a) If possible, find a field $F \subset \mathbb{Q}(\omega)$ such that $[F(\omega):F]=2$.
 - (b) If possible, find a field $F \subset \mathbb{Q}(\omega)$ such that $[F(\omega):F]=3$.
- 2. If p is a prime, let \mathbb{F}_p denote the finite field with p elements. Find the Galois group of $x^4 3$ over each of the following fields:
 - (a) \mathbb{F}_7 .
 - (b) \mathbb{F}_{13} .
- 3. Let G be a finite group with nm elements and K a subset with m elements. Define a "coset" of K to be $Kg = \{kg : k \in K\}$ where g is an element chosen from G.

Suppose that there exist exactly n distinct cosets of K in G. Prove that one of these "cosets" is a subgroup H and that the other "cosets" are then really the right cosets of the subgroup H in G.

- 4. (a) Show that a group of order 12 is not simple.
 - (b) Show that a group of order p^2q is not simple where p and q are distinct odd primes.
- 5. (a) Let B be a nontrivial Boolean ring (so $B \neq \{0\}$ and for all $b \in B$, $b^2 = b$). Prove:
 - (i) B is commutative.
 - (ii) If P is any prime ideal in B, then P is maximal.
 - (b) Let R be a noncommutative ring with multiplicative identity 1.
 - (i) Let $x \in R$ be arbitrary. If $r(x) = \{y \in R : xy = 0\}$, prove that r(x) is a right ideal in R.

- 1. Let K be a field and K[x] the ring of all formal power series with coefficients in K. Prove:
 - (a) $\sum_{n=0}^{\infty} a_n x^n$ is a unit in K[x] if and only if $a_0 \neq 0$.
 - (b) K[x] has only one maximal ideal.
- 2. Let R be a commutative ring with only one maximal ideal P. Let M be a finitely generated R-module for which PM = M. Prove that M = 0.
- 3. Prove: There is no simple group of order 36.
- 4. Prove: The order of $GL_n(\mathbb{F}_q)$ is $\prod_{j=0}^{n-1} (q^n q^j)$.
- 5. Let k be a field and k(x) the field of rational functions in one variable over k. Prove: $GL_2(k)/k^* = PGL_2(k)$ is the Galois group of k(x) over k.
- 6. Let K be the fixed field of $PGL_2(\mathbb{F}_q)$ acting on $\mathbb{F}_q(x)$. Prove $K = \mathbb{F}_q(y)$ where $y = \frac{(x^{q^2} x)^{q+1}}{(x^q x)^{q^2 + 1}}$.

JANUARY 1980

- 1. Let \mathbb{F}_q be a finite field with q elements. What is the number of quadratic (of exact degree 2) irreducible polynomials in $\mathbb{F}_q[x]$?
- 2. (a) Prove that the polynomial $x^4 3$ is irreducible over the field $\mathbb Q$ of rational numbers.
 - (b) What is the degree of a splitting field K of $x^4 3$ over \mathbb{Q} ? Give a set of field generators for K over \mathbb{Q} . (Take K to be a subfield of the complex numbers.)
 - (c) Prove $x^4 3$ is irreducible over $\mathbb{Q}(i)$.
 - (d) Determine the Galois group of $x^4 3$ over $\mathbb{Q}(i)$ as an abstract group.
- 3. Let V be a vector space over a field K, R a subring of the ring $\mathrm{Hom}(V)$ of linear transformations from V to V, and $\mathrm{Hom}_R(V)$ the ring $\{S \in \mathrm{Hom}(V) : ST = TS \text{ for all } T \in R\}$. Prove: If R is 1-transitive, i.e., for all $x, y \in V$ with $x \neq 0$ there is a $T \in R$ with T(x) = y, then $\mathrm{Hom}_R(V)$ is a division ring.
- 4. Let G be a finite group of order n. Assume that, for each prime dividing n, G has a unique Sylow p-subgroup P, and that P is cyclic. Prove that G is cyclic.
- 5. Let p, q, r be distinct primes.
 - (a) Show that $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}] = 4$.
 - (b) Show that $[\mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{r}) : \mathbb{Q}] = 8$.
- 6. (a) Determine for which pairs k, n with $1 \le k \le n$ there is a $k \times k$ matrix A over the rationals \mathbb{Q} such that $A^n = 2I$.
 - (b) Give, with proof, an example, for each n, of a linear transformation $T: \mathbb{Q}^n \to \mathbb{Q}^n$ such that the only T-invariant subspaces of \mathbb{Q}^n are $\{0\}$ and \mathbb{Q}^n .

- 1. Let G be an arbitrary group whose center is trivial. Prove: The center of the automorphism group of G is also trivial.
- 2. Let L be a separable extension of degree n of the field K. Assume L is contained in a given algebraic closure \overline{K} of K. Let $\{v_1, \ldots, v_n\}$ be a vector space basis for L over K. Let $v_i^{(j)}$, $j = 1, \ldots, n$ be the conjugates of v_i in \overline{K} . Prove

- 3. Determine all maximal ideals in the polynomial ring $\mathbb{Z}[x]$. (\mathbb{Z} is the ring of rational integers.)
- 4. How many irreducible factors does the polynomial $x^{2^{10}-1}-1$ have over GF(2)?
- 5. Let ω_1, ω_2 be two complex numbers whose ratio $\omega = \omega_1/\omega_2$ is not real. Let $\Lambda = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}$ be the abelian group generated by ω_1 and ω_2 . Let $R = \{\lambda \in \mathbb{C} : \lambda \Lambda \subseteq \Lambda\}$ (\mathbb{C} is the field of complex numbers).
 - (a) Prove: R is a ring.
 - (b) Prove: If λ is a unit in R then λ is a root of unity. $(\lambda^n = 1 \text{ for some } n > 0.)$
 - (c) If λ is an n^{th} root of unity in R then n is a divisor of ??.
- 6. Let R be a ring (associative with identity) for which $b^2 = b$ for every b in R. Let p be a prime ideal of R.
 - (a) Prove: R is commutative.
 - (b) Prove: R/\mathfrak{p} is a field.

- 1. An element r in a ring is called nilpotent if $r^n = 0$ for some positive integer n.
 - (a) Show that in a commutative ring R the set of nilpotent elements forms an ideal N.
 - (b) In the notation of (a) show that R/N has no nilpotent elements.
 - (c) Show by example that part (a) need not be true for noncommutative rings.
- 2. Let $F = \mathbb{Q}(\theta)$ where \mathbb{Q} denotes the rational number field and θ the fifth root of unity $e^{2\pi i/5}$. Discuss the Galois group of the polynomial $x^5 7$ over $\mathbb{Q}(\theta)$, including a determination of the degree of the root field (justify this), a description of the Galois group in purely group-theoretic language, and a representation of each automorphism as a permutation.
- 3. Either: Let G be a finite group of order 2p, p and odd prime.

Let a be an element of order 2, b an element of order p.

Let H be the subgroup of G which is generated by b.

- (i) Prove H is a normal subgroup of G.
- (ii) Prove that $aba = b^r$ for some integer r, and hence that $b^{r^2} = b$.

Deduce that one of the relations aba = b; $aba = b^{-1}$ must hold.

Or: State some theorem involving Sylow subgroups and use it to show that a group of order 30 cannot be simple.

4. $f_j(x)$, j = 1, ..., k $(k \ge 2)$ are polynomials in x with complex coefficients. Assume that they have no common root; thus for any x

- 1. (a) Let G be a cyclic group of order n. Let $d \in \mathbb{Z}^+$, and let $\nu = \gcd(d, n)$. Show that n/ν of the elements of G are d^{th} powers (i.e., are of the form y^d for some $y \in G$).
 - (b) Let $d, s \in \mathbb{Z}^+$, and let $p \in \mathbb{Z}^+$ be an odd prime (so the group of units U of the ring $\mathbb{Z}/p^s\mathbb{Z}$ is cyclic). When is the d^{th} power mapping $(y \to y^d)$ on U surjective?
- 2. Let G be the abelian, non-cyclic group of order 25. Let the field K be a Galois (finite, separable, normal) extension of the field F, with Galois group G.
 - (a) Find [K:F], the degree of the field extension.
 - (b) How many intermediate fields Σ are there between F and K? $(F \leq \Sigma \leq K)$
 - (c) Which of the above fields Σ are normal extensions of F?
- 3. Let ω_1, ω_2 be a pair of complex numbers that are linearly independent over the reals. Let Λ be the free abelian group generated by ω_1, ω_2 . That is, $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. Now let $R = \{\lambda \in \mathbb{C} : \lambda \Lambda \leq \Lambda\}$. Show:
 - (a) R is a commutative ring containing \mathbb{Z} as a subring.
 - (b) $\mathbb{Z} \subseteq R \iff \omega = \omega_1/\omega_2$ generates a quadratic extension of \mathbb{Q} .
 - (c) Suppose that $[\mathbb{Q}(\omega):\mathbb{Q}]=2$ and $\omega^2+r\omega+s=0$ with suitable $r,s\in\mathbb{Q}$. Let $r=r_1/r_2$, $s=s_1/s_2$ where r_1,r_2,s_1,s_2 are integers and $\gcd(r_1,r_2)=\gcd(s_1,s_2)=1$. Finally let $c=\operatorname{lcm}(r_2,s_2)$. Prove $R=\mathbb{Z}[c\omega]$.

1. Let K be a field of degree n over the rational numbers, \mathbb{Q} . Moreover, let $\{w_1, \ldots, w_n\}$ be a basis for K as a vector space over \mathbb{Q} . Next, when $\alpha \in K$ let $p_{\alpha}(x)$ be its minimal polynomial over \mathbb{Q} and $n_{\alpha} = [\mathbb{Q}(\alpha) : \mathbb{Q}]$. Since $\alpha K \subset K$ we can write $\alpha w_i = \sum_{i=1}^n a_{ji} w_j$, $i = 1, \ldots, n$. Let

$$A_{lpha}=\left(egin{array}{cccc} &dots & &dots \ & \cdots & a_{ji} & \cdots \ & dots \end{array}
ight).$$

We define $\Phi: K \to M_n(\mathbb{Q})$ by $\Phi(\alpha) = A_{\alpha}$.

- (a) Show that Φ is a monomorphism of the field K into the ring $M_n(\mathbb{Q})$.
- (b) For a given $\alpha \in K$ what are the minimal and characteristic polynomials of A_{α} ? (Give these explicitly.)
- (c) Compute the minimal and characteristic polynomials in the case: $K = \mathbb{Q}(i, \sqrt{2}), \alpha = i,$ $w_1 = 1, w_2 = i, w_3 = \sqrt{2}, w_4 = i\sqrt{2}$. Also find $\Phi(\alpha)$ in this case.
- 2. Let $R = \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$ be the ring of all complex numbers of the form $m + n\left(\frac{1+\sqrt{-11}}{2}\right)$ where m and n are ordinary integers. When $a \in R$ we let |a| be its length as a complex number.
 - (a) Show that R is a Euclidean ring. That is, show that for all $a, b \neq 0$ in R there exist q, r in R such that a = bq + r and |r| < |b|.
 - (b) Since Euclidean rings are unique factorization domains, factor 37 into prime factors in R.
- 3. Let H be a subgroup of a group G. Let $N_G(H)$, $C_G(H)$ be, respectively, the normalizer and the centralizer of H, i.e., $N_G(H) = \{x \in G : x^{-1}Hx = H\}$, $C_G(H) = \{x \in G : xg = gx \text{ for all } g \in G\}$.
 - (a) Prove that $C_G(H)$ is a normal subgroup of $N_G(H)$, and that $N_G(H)/C_G(H)$ is isomorphic to a subgroup of the automorphism group of H.
 - (b) A celebrated theorem (credited to Burnside) is: "Let the order of a finite group G be $p^{\alpha}m$, where p is a prime, and (p,m)=1. Let P be a Sylow p-subgroup of G. Suppose $N_G(P)=C_G(P)$. Then G has a normal subgroup of order m."

 Use this theorem to prove the following: Let G be a finite group of order $p^{\alpha}m$, where p is the smallest prime dividing the order of G, and (m,p)=1. Suppose P is cyclic, where P is a Sylow p-subgroup of G. Then G has a normal subgroup of order m.
- 4. Let K be a splitting field of $x^{12} 1$ over \mathbb{Q} , where \mathbb{Q} is the field of rational numbers.
 - (a) Describe the Galois group of K over \mathbb{Q} (what are its elements and what is the group structure?).
 - (b) How many subfields does K have and what are their degrees over \mathbb{Q} ?
 - (c) Let θ be a primitive 12^{th} root of unity in an extension field of \mathbb{Q} (i.e., $\theta^{12} = 1$ and $\theta^m \neq 1$ if 0 < m < 12). Find the irreducible polynomial for θ over \mathbb{Q} .

- 5. Let R be a ring with identity and M a unitary R-module.
 - (a) If $m \in M$ show that $\{x \in R : xm = 0\}$ is a left ideal of R.
 - (b) Let A be a left ideal of R and $m \in M$. Show that $\{xm : x \in A\}$ is a submodule of M.
 - (c) Suppose it is given that M has no submodules other than $\{0\}$ and M itself (one says that M is *irreducible*). Let $m_0 \in M$, $m_0 \neq 0$. Show that $A = \{x : xm_0 = 0\}$ is a maximal left ideal of R (that is, if A is contained properly in a left ideal B, then B = R).
- 6. Let ω_1, ω_2 be a pair of complex numbers such that $\omega = \omega_1/\omega_2$ lies in the upper half plane (i.e., $\operatorname{Im}(\omega) > 0$). Let $\Lambda = \{m\omega_1 + n\omega_2 \in \mathbb{C} : m, n \in \mathbb{Z}\}$. Let $E(\Lambda) = \{\alpha \in \mathbb{C} : \alpha\Lambda \leq \Lambda\}$. (Note: $\mathbb{Z} \leq E(\Lambda)$.)
 - (a) Show: if $\mathbb{Z} \nsubseteq E(\Lambda)$ then $[\mathbb{Q}(\omega) : \mathbb{Q}] = 2$.
 - (b) Show: If $[\mathbb{Q}(\omega):\mathbb{Q}]=2$ then $\mathbb{Z} \nleq E(\Lambda)$ and every $\alpha \in E(\Lambda)$ satisfies an integral equation (i.e., $\alpha^2 + a\alpha + b = 0$ for some a, b in \mathbb{Z}).
 - (c) Compute $E(\Lambda)$ explicitly in the case $\omega = \sqrt{-1}$. (Be careful of this one!)

AUGUST 1976

- 1. Suppose R is a Boolean ring, i.e., a ring such that $x^2 = x$ for all $x \in R$.
 - (a) Prove that R is commutative and of characteristic 2.

From now on assume there is a unit element $1 \in R$. For $a \in R$, we let (a) denote the principal ideal generated by a.

- (b) Prove that for $a \in R$, (a) is itself a Boolean ring with unit element a.
- (c) Prove that, for any $a \in R$, the ring R is the direct sum of the ideals (a), (1+a):

$$R=(a)\oplus (1+a).$$

- (d) Prove that any finite Boolean ring is isomorphic to a direct power of the two-element ring \mathbb{Z}_2 (a direct sum of several copies of \mathbb{Z}_2).
- 2. (a) A group G is decomposable if it is isomorphic to a direct product of two proper subgroups. Otherwise G is indecomposable.

Prove that a finite abelian group G is indecomposable if and only if G is cyclic of prime power order.

- (b) Determine all positive integers n for which it is true that the only abelian groups of order n are the cyclic ones. Justify your answer.
- 3. Let S be the set of all 2×2 Hermitian matrices of trace 0, i.e., $\{A : \overline{A}^t \text{ and } \operatorname{tr}(A) = 0\}$ $\{B^t = 1\}$ transpose of B.
 - (a) Prove that the mapping

$$(x,y,z) \rightarrow \left(\begin{array}{ccc} x & y+iz \\ y-iz & -x \end{array} \right)$$

is an isomorphism of \mathbb{R}^3 onto S.

Let G be the set of all unitary 2×2 complex matrices, i.e., $\{A : A \cdot \overline{A}^t = \overline{A}^t \cdot A = I\}$. For each matrix $A \in G$ define $\varphi_A(B) = ABA^{-1}$ for any 2×2 complex matrix B.

- (b) Prove that φ_A maps $S \to S$, and is a linear transformation of S into itself.
- (c) Making use of the isomorphism in part (a), prove that the mapping $A \to \varphi_A$ is a group homomorphism of G onto a group of distance-preserving linear transformations of \mathbb{R}^3 .
- 4. (a) List, without proof, the standard results you know on finite fields (including their Galois theory).

For any prime p, let $\mathbb{F} = \mathbb{Z}_p$, the field with p elements. Let K be an algebraic closure of \mathbb{F} , and let G be the group of automorphisms of K.

You may use, in the following, any result quoted in part (a).

- (b) Prove that for any positive integer n, K contains one and only one subfield with $q = p^n$ elements.
- (c) Let E be any finite subfield of K, and let $\sigma \in G$. Prove $\sigma(E) = E$.
- (d) Prove that G is an abelian group.

- 1. (a) Determine the splitting field K for the polynomial x^4-5 over $\mathbb Q$ (the field of rational numbers) and give the degree $[K:\mathbb Q]$.
 - (b) Find a set of automorphisms of K which generate the Galois group of K over \mathbb{Q} (but do not list all the elements of the Galois group).
 - (c) What is the order of the Galois group G of K over \mathbb{Q} ?
 - (d) Give an example of intermediate fields $F_1, F_2 : \mathbb{Q} \subsetneq F_1 \subsetneq K$, $\mathbb{Q} \subsetneq F_2 \subsetneq K$ such that F_1 is normal over \mathbb{Q} and F_2 is not normal over \mathbb{Q} .
 - (e) Find the subgroups H_1 and H_2 of G which correspond to F_1 and F_2 , respectively, under the Galois correspondence.
- 2. If a matrix A has a minimal polynomial $(x-3)^3(x-5)^2(x-2)$ and characteristic polynomial $(x-3)^5(x-5)^5(x-2)$, give the possible Jordan canonical forms that might correspond to A.
- 3. Let R be a noncommutative ring with multiplicative identity 1.
 - (a) Let $x \in R$. If $r(x) = \{y \in R : xy = 0\}$ prove that r(x) is a right ideal of R.
 - (b) Let x be an element of R which has a right multiplicative inverse z in R. Prove that z is also a left inverse of x if and only if r(x) = 0.
 - (c) Prove that if an element x of R has more than one right inverse then it has infinitely many. [Hint: Note if xz = 1 and $a \in r(x)$ then x(z + a) = 1.
- 4. Prove the theorem: If G is a nonabelian group then G/Z(G) is not cyclic (where Z(G) denotes the center of the group G).
- 5. Let G be a group of order p^2q where p and q are distinct odd primes. Prove that G contains a normal Sylow subgroup.

- 1. Prove that all groups of order 45 are abelian, and determine how many nonisomorphic groups of order 45 there are.
- 2. Let p be an odd prime. For any positive integer n, call an integer, a, a quadratic residue mod p^n if (a, p) = 1 and the equation $x^2 = a$ is solvable mod p^n . Prove that for any n, the quadratic residues mod p^n are precisely the quadratic residues mod p. [Hint: Use the fact that the group of units of the ring \mathbb{Z}_{p^n} form a cyclic group of order $p^{n-1}(p-1)$.
- 3. Prove that the multiplicative group of an infinite field is never cyclic.
- 4. Let K be the splitting field of $(x^3-2)(x^2-2)$ over the rational numbers \mathbb{Q} . Determine all subfields of K which are of degree four over \mathbb{Q} . Explain how you know you have found them all.
- 5. Let A be a 4×4 matrix over the field F. Suppose that
 - (i) $A \neq I$,
 - (ii) A-I is nilpotent, i.e., there exists a positive integer n such that $(A-I)^n=0$, and
- (iii) A has finite multiplicative order, i.e., there exists a positive integer m such that $A^m = I$. For what fields F does such a matrix A exist? Clearly indicate your reasoning.
- 6. Let T be a linear transformation of V into V, where V is a finite-dimensional vector space over the complex numbers. Let p be any polynomial with complex coefficients. Show p(T) has exactly the eigenvalues $p(\lambda_1), \ldots, p(\lambda_n)$ if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of T.

- 1. Let $N: GF(q^n)^* \to GF(q)^*$ by $N(a) = a^{1+a+\cdots+a^{q^{n-1}}}$. Prove: N is onto.
- 2. Let V be an n-dimensional vector space over the field k. Let S be a set of pairwise commuting linear transformations of V into V. Prove: If each f in S can be represented by a diagonal matrix with respect to some basis of V (depending on f), then there is a basis of V with respect to which all of the endomorphisms in S are diagonal.
- 3. Prove: The group of units of the ring $\mathbb{Z}/p^n\mathbb{Z}$ is a cyclic group of order $(p-1)p^{n-1}$ when p is an odd rational prime. [Hint: Use induction on n.]
- 4. Let K be the splitting field of $x^7 3x^3 6x^2 + 3$ over \mathbb{Q} . Let E_1, E_2 be subfields of K such that $[K:E_1] = [K:E_2] = 7$. Prove $E_1 \cong E_2$.
- 5. Find the Galois group of the splitting field K of $x^4 2$ over \mathbb{Q} . Find two subfields E_1, E_2 of K such that $[K:E_1] = [K:E_2] = 2$ but E_1 and E_2 are not isomorphic.
- 6. Let K be a field in which -1 cannot be represented as a sum of squares and such that in every proper algebraic extension -1 can be represented as a sum of squares. Prove: If $a \in K$ is not a square in K then a is not a sum of squares in K.

ALGEBRA PRELIM

PLEASE DO 5 OUT OF 6 PROBLEMS

- 1. Show that no real 3×3 matrix satisfies $x^2 + 1 = 0$. Show that there are complex 3×3 matrices which do. Show that there are real 2×2 matrices that satisfy the equation.
- 2. Prove: Let G be a finite group, let H be a subgroup of G. Let i(H) be the index of H. Let o(G) be the order of G. Suppose o(G) does not divide i(H). Then H must contain a nontrivial normal subgroup of G. In particular, G cannot be simple.

[Hint: Let S be the set of right cosets of H. Let $a, g \in G$. Let $\theta_a : Hg \to Hga$. θ_a is a one-to-one mapping of S. Consider the collection of $\{\theta_a : a \in G\}$.]

Use this theorem to show that a group of order 75 cannot be simple. You may use Sylow's theorem.

- 3. Let G be a group of order p^n , where p is a fixed prime and n is a positive integer. Prove:
 - (a) The center of G is nontrivial, i.e., there is a $g \in G$, $g \neq 1$, $g \in$ center of G. The center of a group is $\{x \in G : xg = gx \text{ for all } g \in G\}$.
 - (b) For every m, m < n, G has a subgroup of order p^m .
 - (c) Every subgroup of order p^{n-1} is normal.
- 4. Let R be a unique factorization domain, and let K be its field of quotients. In the following we fix a prime element p in R.
 - (a) Let $R_p = \{\frac{a}{b} \in K : a \in R, b \in R \text{ and } p \text{ does not divide } b \text{ in } R\}$. Prove R_p is a subring of K.
 - (b) Find the units of R_p . What are the primes of R_p ? Prove R_p is a unique factorization domain.
 - (c) Show that R_p has a unique maximal ideal.
 - (d) Prove that R_p is a maximal subring of K, i.e., if S is a subring of K which contains R_p then $S = R_p$ or S = K.
- 5. Let R be a ring with more than one element and with the property that for each element $a \neq 0$ in R there exists a *unique* element b in R such that aba = a. Prove:
 - (a) R has no nonzero divisors of zero.
 - (b) bab = b.
 - (c) R has a unity.
 - (d) R is a division ring.

Note: If you can't do one part of this problem assume the result and go on to the next part.

6. Consider $p(x) = x^8 + 1$ as a polynomial over the rationals \mathbb{Q} . Let K be the splitting field of p(x) over \mathbb{Q} . Find the Galois group G of p(x), i.e., the group of automorphisms of K relative to \mathbb{Q} . Is this group abelian? If so, express it as a direct sum of cyclic groups. List all the subgroups of G.