Dedução Natural

	Sumário da Aula
7.1	Validando argumentos por meio de regras de inferência
7.2	Falácias
7.0	Exercícios

7.1 Validando argumentos por meio de regras de inferência

Uma forma eficiente para demonstrar a validade de um argumento $P_1, P_2, ..., P_n \vdash Q$ consiste em deduzir a conclusão Q a partir das premissas $P_1, P_2, ..., P_n$ por meio da aplicação das regras de inferência. Para os exemplos, considere as seguintes regras:

Regras de Inferência	Nomes
$P \vdash P$	$\{ID\}$
$P \vdash \neg \neg P$	$\{\neg I\}$
$\neg\neg P \vdash P$	$\{\neg E\}$
$P,Q \vdash P \land Q \text{ ou } P,Q \vdash Q \land P$	$\{\wedge I\}$
$P \wedge Q \vdash P$	$\{\wedge Ee\}$
$P \wedge Q \vdash Q$	$\{\wedge Ed\}$
$P \vdash P \lor Q$	$\{ \forall I \}$
$P \lor Q, P \to T, Q \to T \vdash T$	$\{ \lor E \}$
$F \vdash P$	$\{CTR\}$
$\frac{[\neg P] \vdash F}{P}$	$\{RRA\}$

Regras de Inferência	Nomes
$P \lor Q, \neg Q \vdash P \text{ ou } P \lor Q, \neg P \vdash Q$	$\{SD\}$
$P \to Q, Q \to R \vdash P \to R$	$\{SH\}$
$P \to Q, R \to S, P \lor R \vdash Q \lor S$	$\{DC\}$
$P \to Q, R \to S, \neg Q \lor \neg S \vdash \neg P \lor \neg R$	$\{DD\}$
$P \to Q \vdash P \to P \land Q$	$\{RA\}$
$P \lor Q, \neg P \lor R \vdash Q \lor R$	$\{RR\}$
$P, \neg P \vdash F$	$\{\perp I\}$
$P, P \rightarrow Q \vdash Q$	$\{ \to E \}$ ou $\{ Modus Ponens \}$
$\neg Q, P \rightarrow Q \vdash \neg P$	$\{ \to E_{MT} \}$ ou $\{ \text{Modus Tollens} \}$
$\frac{Q [P]}{P \to Q}$	{RPC}

Existem duas formas de escrever as demonstrações em dedução natural: utilizando um **método linear** ou **árvores de derivação (árvores de dedução)**. Nos exemplos 7.1 e 7.2 as demonstrações são escritas utilizando estes dois formatos.

Exemplo 7.1. Prove o seguinte argumento: $p \land q \vdash q \land p$.

Prova: (por árvore de dedução)

$$\frac{p \wedge q}{q} \ \{ \land Ed \} \quad \frac{p \wedge q}{p} \ \{ \land Ee \}$$

$$\frac{q \wedge p}{q \wedge p} \ \{ \land I \}$$

Prova: (pelo método Linear)

- 1. $p \wedge q$ Hipótese 1
- **2.** q **1,** $\{ \land Ed \}$
- **3.** p **1,** $\{ \land Ee \}$
- **4.** $q \wedge p$ **2. 3.** $\{\wedge I\}$ **(Conclusão)**

Exemplo 7.2. Prove o seguinte argumento: $a \wedge b, a \rightarrow c, b \rightarrow d \vdash c \wedge d$.

Prova: (por árvore de dedução)

Prova: (pelo método linear)

- 1. $a \wedge b$ Hipótese 1
- **2.** $a \rightarrow c$ **Hipótese 2**
- 3. $b \rightarrow d$ Hipótese 3
- **4.** a **1,** $\{ \land Ee \}$
- **5.** b **1,** $\{ \land Ed \}$
- **6.** c **4,2,** $\{ \rightarrow E \}$
- 7. d 5,3, $\{ \rightarrow E \}$
- 8. $c \wedge d$ 6,7, $\{\wedge I\}$ (Conclusão)

Observação:

Na árvore de dedução, a raiz é a conclusão e os filhos as derivações que geram a conclusão. O sistema de dedução natural apresenta regras que unem árvores (geradas a partir de um conjunto finito de premissas e hipóteses) até que se deduza a conclusão. As folhas abertas da árvore representam as premissas e as folhas fechadas representam as hipóteses (geralmente marcadas com []). Todas as folhas devem possuir marcas (geralmente um número natural para identificar as folhas) e deve-se evitar o conflito de marcas, ou seja, ter duas fórmulas diferentes com uma mesma marca. Cada derivação realizada, na árvore, deve ser baseada em uma das regras de dedução natural.

As demonstrações em dedução natural feita nos próximos exemplos são escritas utilizando o método linear.

Exemplo 7.3. Verifique se o argumento $[(p \land q) \land r] \land (s \land t) \rightarrow (q \land s)$ é válido.

```
Prova:
```

```
      1.
      (p \wedge q) \wedge r
      Hipótese 1

      2.
      s \wedge t
      Hipótese 2

      3.
      p \wedge q
      1, \{ \wedge Ee \}

      4.
      q
      3, \{ \wedge Ed \}

      5.
      s
      2, \{ \wedge Ee \}

      6.
      q \wedge s
      4,5, \{ \wedge I \}
```

Exemplo 7.4. Verifique se o argumento $A \wedge (B \to C) \wedge [(A \wedge B) \to (D \vee \neg C)] \wedge B \to D$ é válido.

```
Prova:
```

```
1.
      A
                                   Hipótese 1
      B \to C
2.
                                   Hipótese 2
      (A \wedge B) \rightarrow (D \vee \neg C) Hipótese 3
4.
      B
                                  Hipótese 4
5. C
                                   2,4, \{ \to E \}
                                   1,4, \{ \land I \}
6. A \wedge B
7. D \vee \neg C
                                   3,6, \{ \rightarrow E \}
8.
      \neg C \lor D
                                   7, \{ \lor - comutatividade \}
9.
      C \to D
                                   8, {implicação}
10. D
                                   5,9, \{ \rightarrow E \}
```

Exemplo 7.5. Deduza P.

Prova:

- 1. P hipótese
- 2. $[\neg P]^1$ introdução de uma premissa adicional
- **3.** $P \wedge \neg P$ **1,2** $\{\wedge I\}^1$
- **4.** F **3,** $\{ \pm I \}$
- 5. $\neg \neg P$ 2,3 {RRA}
- **6.** *P*

Exemplo 7.6. Deduza $P \to Q, Q \to R \vdash P \to R$.

Prova:

- 1. $P \rightarrow Q$ hipótese 1
- 2. $Q \rightarrow R$ hipótese 2
- 3. $[P]^1$ hipótese adicional
- **4.** Q **1,3** $\{RPC\}^1$
- **5.** R **2,4** $\{ \rightarrow E \}$
- **6.** $P \to R$ **3,5** $\{RPC\}^1$

Exemplo 7.7. Verifique se o argumento seguinte é válido:

Se as taxas de juros caírem, o mercado imobiliário vai melhorar. Ou a taxa federal de descontos vai cair ou o mercado imobiliário não vai melhorar. As taxas de juros vão cair.

Portanto, a taxa federal de descontos vai cair.

Sejam as proposições:

- p: A taxa de juros vai cair.
- q: O mercado imobiliário vai melhorar.
- r: A taxa federal de descontos vai cair.

O argumento é escrito como: $(p \to q), (r \lor \neg q), p \vdash r$ e a demonstração da validade dada por:

Prova:

- 1. $(p \rightarrow q)$ hipótese 1
- **2.** $(r \lor \neg q)$ hipótese 2
- **3.** *p* **hipótese 3**
- **4.** $\neg q \lor r$ $\{\lor \mathbf{comutatividade}\}$
- 5. $q \rightarrow r$ {implicação}
- **6.** $p \to r$ **1,5** $\{SH\}$
- 7. r 3,6, $\{ \rightarrow E \}$

Exemplo 7.8. Mostre que as hipóteses:

 H_1 : Não esta ensolarada esta tarde e está mais frio que ontem.

 H_2 : Vamos nadar se estiver ensolarado.

 H_3 : Se não formos nadar, então vamos fazer um passeio de barco.

 H_4 : Se fizermos um passeio de barco, então estaremos em casa ao anoitecer.

Levam à conclusão: Estaremos em casa ao anoitecer.

p = está ensolarada esta tarde; q = está mais frio que ontem; r = vamos nadar; s = vamos fazer um passeio de barco; t = estaremos em casa ao anoitecer.

A demonstração do argumento para mostrar que as hipóteses levam à conclusão é dada por:

Prova:

```
hipótese 1
1. \neg p \wedge q
                     hipótese 2
     r \rightarrow p
3.
                    hipótese 3
     \neg r \rightarrow s
                    hipótese 4
4.
     s \to t
5.
      \neg p
                     1 \{ \land Ee \}
6.
                     5,2, \{ \rightarrow E_{MP} \}
7.
                     6,3, \{ \rightarrow E \}
8.
    t
                     7,4, \{ \rightarrow E \}
```

7.2 Falácias

Defini-se por falácia um argumento falso ou um argumento mal conduzido (falha num argumento). Em outras palavras, um erro no raciocínio que resulta em um argumento inválido é chamado de falácia.

As falácias se assemelham com as regras de inferência, mas baseiam-se em contingências em vez de tautologias. As mais comuns acontecem quando:

- usa-se uma premissa vaga ou ambígua;
- assume-se como verdadeiro o que deve ser provado;
- conclui-se uma premissa sem a argumentação adequada; ou
- comete-se um erro oposto ou erro inverso.

Para mostrar que um argumento é inválido, basta construir a tabela verdade e mostrar que o argumento trata-se de uma contingência, ou seja, encontre **uma linha da tabela verdade com premissas verdadeiras e conclusão falsa**.

Exemplo 7.9. (Erro Oposto)

Considere o argumento:

João vai contrair COVID-19 somente se ele não tomar hidroxicloroquina preventivamente. João não tomou hidroxicloroquina preventivamente. Então, João contraiu COVI-19.

Este argumento é escrito na forma simbólica como: $q \over p$

e lembra muito a regra *Modus Ponens*. Porém, como mostra a tabela verdade seguinte, tratase de argumento inválida, visto que a linha 3 possui premissas verdadeiras e conclusão é falsa.

			P_1	P_2	Q
	p	q	$p \rightarrow q$	q	p
1.	T	T	T	T	T
2.	T	F	F	F	T
3.	F	T	T	T	F
4.	F	F	T	F	F

Exemplo 7.10. (Erro Inverso)

Considere o argumento:

Se fizer todos os exercícios de Matemática Discreta, então será aprovado na disciplina.

Você não fez todos os exercícios de Matemática Discreta.

Logo, não será aprovado na disciplina.

e lembra muito a regra *Modus Tollens*. Porém, como mostra a tabela verdade seguinte, trata-se de uma contingência e portanto não é uma forma de argumento válida. O que ser verificado na linha linha 3, onde as premissas são verdadeiras e a conclusão falsa.

			P_1	P_2	Q
	p	q	$p \rightarrow q$	$\neg p$	$\neg q$
1.	T	T	T	F	F
2.	T	F	F	F	T
3.	F	Т	T	T	F
4.	F	F	T	T	T

7.3 Exercícios

E. 1. Para cada grupo de premissas abaixo, escreva quais as conclusões que podem ser retiradas. Explique as regras de inferência utilizadas para obter cada conclusão.

- a) Se eu tiro o dia de folga, chove ou faz frio. Eu tirei folga na terça-feira ou na quinta-feira. Fez sol na terça-feira. Não nevou na quinta-feira.
- b) Se eu como comida apimentada, então tenho pesadelos. Eu tenho pesadelos quando chove enquanto eu durmo. Eu não tive pesadelos.
- c) Eu sou esperto ou sortudo. Eu não tenho sorte. Se eu tivesse sorte, então ganharia na loteria.

E. 2. Considere o seguinte raciocínio:

 H_1 : O computador está ok, ou está com virus.

 H_2 : O computador não está com virus.

 H_3 : Se o computador está ok, então eu vou programar.

C: Eu vou programar.

Nas perguntas a seguir considere as seguintes variáveis proposicionais e seus respectivos significados:

O: O computador está ok.

N: O computador está com virus.

P: Eu vou programar.

a) Preencha a tabela abaixo com a fórmula correspondente a cada uma das sentenças acima:

H_1 :	
H_2 :	
H_3 :	
C :	

- b) Escreva um sequente que representa o argumento.
- c) Mostre o raciocínio anterior está correto, provando o sequente que você escreveu no item anterior, por meio das regras do Sistema de Dedução Natural.

E. 3. Escreva o argumento usando fórmulas bem formadas (use as letras de proposições fornecidas). Em seguida, prove que o argumento é valido.

- a) Se o programa for eficiente, executará rapidamente. O programa é eficiente ou tem algum *bug*. No entanto, o programa não executa rapidamente. Logo, ele tem algum *bug*. E, Q, B.
- b) Se houver frango no cardápio, não peça peixe, mas você deve pedir peixe ou salada. Logo, se houver frango no cardápio, peça salada. C(frango), F(peixe), S.
- c) Se o anúncio for bom, o volume de vendas aumentará. O anúncio é bom ou a loja vai fechar. O volume de vendas não vai aumentar. Portanto, a loja vai fechar. A, S(vendas), C(loja).

E. 4. Prove cada um dos subsequentes seguintes, usando as regras de inferência de Dedução Natural ou os teoremas já demonstrados em aula.

85

a)
$$(A \land \neg A) \vdash False$$

b)
$$B \vee (\neg B), A \rightarrow B \vdash (\neg A) \vee B$$

c)
$$(A \wedge (B \wedge C)) \vdash ((A \wedge B) \wedge C)$$

d)
$$\neg (A \lor \neg B) \land (B \to C) \to (\neg A \land C)$$

e)
$$\neg A \land (A \lor B) \rightarrow B$$
]

f)
$$(P \lor Q), \neg P \vdash Q$$

g)
$$(\neg Q \rightarrow \neg P), P \vdash Q$$

h)
$$(P \to Q) \land (\neg P \to Q) \to Q$$

i)
$$[(A \lor \neg B) \to C] \land (C \to D) \land A \to D$$

j)
$$A \lor B \vdash B \lor A$$

k)
$$A \rightarrow B, B \rightarrow C \vdash A \rightarrow C$$

1)
$$P \rightarrow Q, \neg Q \vdash \neg P$$

m)
$$P \lor Q, \neg Q \vdash P$$

n)
$$\neg (A \lor B) \vdash \neg (B \lor A)$$

o)
$$\neg (A \lor B) \vdash \neg A$$

p)
$$\neg (A \lor B) \vdash \neg B$$

q)
$$\neg (P \lor Q) \vdash \neg P \land \neg Q$$

r)
$$\neg P \land \neg Q \vdash \neg (P \lor Q)$$

- E. 5. Você está indo para a faculdade de manhã e percebe que não está usando os óculos. Ao tentar descobrir onde estão os óculos você começa a pensar sobre os seguintes fatos que são verdadeiros:
- a) Se os óculos estão na mesa da cozinha, então eu os vi no café da manhã;
- b) Eu estava lendo o jornal na sala de estar ou eu estava lendo o jornal na cozinha;
- c) Se eu estava lendo o jornal na sala de estar, então meus óculos estão na mesa do café;
- d) Eu não vi meus óculos no café da manhã;
- e) Se eu estava lendo um livro na cama, então meus óculos estão no criado-mudo;
- f) Se eu estava lendo o jornal na cozinha, então meus óculos estão na mesa da cozinha.

Diante dos fatos, onde estão os seus óculos?

- E. 6. Determine se cada um dos argumentos abaixo é correto ou incorreto e explique o porquê.
 - a) Todos os estudantes nesta sala entendem lógica. Flávia é uma aluna desta sala. Por isso, Flávia entende lógica.
 - b) Todo graduando em ciência da computação faz matemática discreta. Lucas está fazendo matemática discreta. Por isso, Lucas é um graduando em ciência da computação.
 - c) Todos que comem granola todo dia são saudáveis. Alan não é saudável. Por isso, Alan não come granola todos os dias.

