

Internet of Things Homework

Andrea Pesciotti 10715428

Teachers:

Redondi Alessandro Enrico Cesare Fabio Palmese Boiano Antonio

1 Exercise 3: RFID System - Dynamic Frame ALOHA

1.1 Task Summary

In this exercise, my task was to analyze an RFID system based on Dynamic Frame ALOHA (DFSA). The system is composed of N=4 tags. My objectives were:

- 1. To find the overall collision resolution efficiency (η) for different initial frame sizes $(r_1 \in \{1, 2, 3, 4, 5, 6\})$. I assumed that after the first frame, the frame size is correctly set to the current backlog size.
- 2. To produce a plot showing the values of η over the initial frame sizes r_1 .
- 3. To determine for what value(s) of r_1 the maximum efficiency η is achieved and to comment on this.

1.2 System Parameters and Given Information

For my analysis, I used the following parameters:

- Number of tags (N): 4.
- L_k^* : Expected number of slots to resolve k tags when the frame size r is set to k.

$$-L_0^* = 0$$

$$-L_1^* = 1$$

$$-L_2^* = 4$$

$$-L_3^* = 51/8 = 6.375$$

1.3 1. Overall Collision Resolution Efficiency (η)

The efficiency is then defined as:

$$\eta = \frac{N}{L_N}$$

 L_n is calculated using the recursive formula presented in the lecture slides:

$$L_n = \frac{r + \sum_{i=1}^{n-1} P(S=i) L_{n-i}}{1 - P(S=0)}$$

The resulting efficiencies and total expected slots for N=4 tags, based on this methodology, are as follows:

Initial Frame Size (r_1)	L_n	Efficiency (η)
1	9.8241	0.4072
2	9.5995	0.4167
3	8.9544	0.4467
4	8.8241	0.4533
5	9.0377	0.4426
6	9.4661	0.4226

1.4 2. Plot of Efficiency (η) over r_1

Figure 1: Efficiency (η) over values of initial frame size (r_1) for N=4 tags.

1.5 3. Optimal Initial Frame Size (r_1) and Comment

Based on my calculations and the plot:

Result:

This maximum efficiency is achieved at $r_1 = 4$

Comment: For this system with N=4 tags, I found that the maximum overall collision resolution efficiency of approximately 0.4533 is achieved when the initial frame size (r_1) is set to 4. This result aligns with the general principle in ALOHA-based systems, including Dynamic Frame ALOHA, where setting the initial frame size close to the number of contending tags (N) yields the best performance. Thus, $r_1=N=4$ provides an optimal balance in this specific scenario.