Permit Numbers 101616, PSDTX696M2, N214M2, and GHGPSDTX26M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Source Name (2) Air Contaminant Name (3) Emission Rates		ion Rates			
			lbs/hour	TPY (4)			
GENERAL CONTROL DE	GENERAL CONTROL DEVICES						
FLR-5	Flare Routine	со	2.29	10.01			
		NOx	1.03	4.50			
		voc	2.74	12.02			
		SO ₂	<0.01	<0.01			
		H ₂ S	<0.01	<0.01			
		CH₄ (Train 7 only)	-	1.06			
		N₂O (Train 7 only)	-	< 0.01			
		CO ₂ (Train 7 only)	-	972.85			
		CO₂e (Train 7 only)	-	999.88			
	Controlled Planned Maintenance, Startup, and	СО	27.47	1.40			
	Shutdown (MSS) Emissions	NO _X	13.40	0.66			
		voc	193.78	22.08			
		SO ₂	0.09	< 0.01			
		H ₂ S	< 0.01	< 0.01			
		CH₄ (Train 7 only)	-	0.15			
		N₂O (Train 7 only)	-	< 0.01			
		CO ₂ (Train 7 only)	-	1,291.49			
		CO₂e (Train 7 only)	-	1,293.55			

		-		
FLR-6	Flare 6 Routine	со	1.79	7.85
		NO _X	0.55	2.40
		voc	2.98	13.07
		SO ₂	<0.01	<0.01
		H ₂ S	<0.01	<0.01
		CH ₄ (Trains 8 & 9 only)	-	2.46
		N ₂ O (Trains 8 & 9 only)	-	< 0.01
		CO ₂ (Trains 8 & 9 only)	-	1,999.83
		CO₂e (Trains 8 & 9 only)	-	2,062.16
	Controlled Planned MSS Emissions	со	22.83	1.32
		NO _x	10.34	0.52
	\	voc	146.78	16.58
		SO ₂	0.28	0.02
		H ₂ S	< 0.01	< 0.01
		CH ₄ (Trains 8 & 9 only)	-	0.30
		N₂O (Trains 8 & 9 only)	-	< 0.01
		CO ₂ (Trains 8 & 9 only)	-	2,582.97
		CO₂e (Trains 8 & 9 only)	-	2,587.10

TDAINE			
TRAIN 5			

F-07	Hot Oil Heater	со	5.34	23.41
		NOx	0.72	3.16
		VOC	0.09	0.38
		SO ₂	0.08	0.37
		PM	0.58	2.53
		PM ₁₀	0.58	2.53
		PM _{2.5}	0.58	2.53
		NH ₃	0.46	1.99
	Hot Oil Heater MSS	со	42.73	1.54
		NOx	2.63	0.09
F-08	Hot Oil Heater	со	5.34	23.41
		NOx	0.72	3.16
		voc	0.09	0.38
		SO ₂	0.08	0.37
		РМ	0.58	2.53
		PM ₁₀	0.58	2.53
		PM _{2.5}	0.58	2.53
		NH₃	0.46	1.99
	Hot Oil Heater MSS	со	42.73	1.54
		NO _X	2.63	0.09
AU-4	Amine Still Vent	voc	0.15	0.65
		H ₂ S	0.05	0.20
FUG-FRAC5	Train 5 Fugitives (5)	voc	0.40	1.74
FUG-CT-9	Cooling Tower 9	РМ	0.55	2.43
		PM ₁₀	0.17	0.73
		PM _{2.5}	0.17	0.73
Project Number: 310456				

		VOC	0.81	3.56
TK-2	Ucarsol Storage Tank	voc	0.01	0.01
MSS-TRAIN5	Train 5 Uncontrolled Planned MSS Emissions	VOC	11.68	0.24

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emissi	on Rates
			lbs/hour	TPY (4)
TRAIN 6				
F-10	Hot Oil Heater	со	5.96	26.11
		NO _x	0.81	3.53
		voc	0.10	0.44
		SO ₂	0.10	0.43
		РМ	0.64	2.82
		PM ₁₀	0.64	2.82
		PM _{2.5}	0.64	2.82
		NH ₃	0.51	2.22
	Hot Oil Heater MSS	со	47.66	1.72
		NOx	2.94	0.11
F-11	Hot Oil Heater	со	5.96	26.11
		NO _x	0.81	3.53
		voc	0.10	0.44
		SO ₂	0.10	0.43
		РМ	0.64	2.82
		PM ₁₀	0.64	2.82
		PM _{2.5}	0.64	2.82
		NH ₃	0.51	2.22
	Hot Oil Heater MSS	со	47.66	1.72
		NO _X	2.94	0.11
AU-5	Amine Still Vent	VOC	0.15	0.65
		H₂S	0.05	0.20
FUG-FRAC6	Train 6 Fugitives (5)	VOC	1.02	4.45

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
			lbs/hour	TPY (4)
FUG-CT-10	Cooling Tower 10	РМ	0.55	2.43
		PM ₁₀	0.17	0.73
		PM _{2.5}	0.17	0.73
		voc	0.81	3.56
MSS-TRAIN6	Train 6 Uncontrolled Planned MSS Emissions	voc	11.80	0.24

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emissi	on Rates
			lbs/hour	TPY (4)
TRAIN 7 ⁶				
F-12	Hot Oil Heater – Train 7	со	5.96	26.10
		NOx	0.81	3.53
		voc	0.10	0.44
		SO ₂	0.10	0.43
		РМ	0.64	2.82
		PM ₁₀	0.64	2.82
		PM _{2.5}	0.64	2.82
		NH₃	0.51	2.22
		CH ₄	-	1.56
		N ₂ O	-	0.16
		CO ₂	-	82,577.21
		CO ₂ e	-	82,662.50
F-12	Hot Oil Heater MSS Activities – Train 7	СО	47.68	1.72
		NOx	2.94	0.11
F-13	Hot Oil Heater – Train 7	со	5.96	26.10
		NO _x	0.81	3.53
		voc	0.10	0.44
		SO ₂	0.10	0.43
		РМ	0.64	2.82
		PM ₁₀	0.64	2.82
		PM _{2.5}	0.64	2.82
		NH ₃	0.51	2.22
		CH ₄	-	1.56

•				
		N ₂ O	-	0.16
		CO ₂	-	82,577.21
		CO₂e	-	82,662.50
	Hot Oil Heater MSS Activities – Train 7	со	47.68	1.72
		NOx	2.94	0.11
FUG-FRAC7	FRAC7 Fugitives	voc	0.87	3.83
		CH ₄	-	1.51
		CO ₂	-	22.93
		CO ₂ e	-	574.80
FUG-TERM7	TERM7 Fugitives	voc	0.12	0.51
		CH ₄	-	0.13
		CO ₂	-	0.20
		CO ₂ e	-	5.21
FUG-CT-11	Cooling Tower 11	РМ	0.61	2.67
		PM ₁₀	0.19	0.82
		PM _{2.5}	< 0.01	< 0.01
		voc	0.89	3.92
MSS-TRAIN 7	Uncontrolled Planned MSS- Train 7	voc	11.80	0.24
		CH ₄	-	0.19
		CO₂e	-	4.84
PLOAD7	Pressurized Propane Loading – Train 7	VOC	0.40	< 0.01

TO-7	Thermal Oxidizer – Train 7	со	0.17	0.76
		NO _X	0.10	0.45

$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$,			
$ \begin{tabular}{l lllllllllllllllllllllllllllllllllll$			voc	< 0.01	< 0.01
PM 0.03 0.11 PM ₁₀ 0.03 0.11 PM ₂₅ 0.03 0.11 CH ₄ - 0.29 N ₂ O - 0.01 CO ₂ - 2,885.31 CO ₂ - 2,893.00 TO-7-MSS Thermal Oxidizer – MSS Train 7 CO 0.04 < 0.01 NOx 0.03 < 0.01 VOC < 0.01 < 0.01 PM ₂₅ < 0.01 < 0.01 PM ₂₅ < 0.01 < 0.01 CH ₄ - 0.01 N ₂ O - 0.01 CO ₂ - 0.29			SO ₂	0.10	0.21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			H ₂ S	< 0.01	< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			РМ	0.03	0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM ₁₀	0.03	0.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM _{2.5}	0.03	0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH ₄	-	0.29
TO-7-MSS Thermal Oxidizer – MSS Train 7 CO 0.04 0.01 NOx 0.03 <0.01 VOC \$0.01 \$0.01 \$0.01 PM \$0.01 \$			N ₂ O	-	< 0.01
Thermal Oxidizer – MSS Train 7 CO 0.04 0.03 <0.01 VOC SO ₂ 0.01 CO 0.01 PM 0.01 PM 0.01 0.01 PM 0.01 0.01 0.01 PM 0.01			CO ₂	-	2,885.31
Train 7 NOx 0.03 0.01 VOC 0.01 SO ₂ 0.01 CO ₂ 0.01 0.01			CO₂e	-	2,893.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TO-7-MSS		со	0.04	< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\	NOx	0.03	< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			voc	< 0.01	< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			SO ₂	< 0.01	< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM	< 0.01	< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM ₁₀	< 0.01	< 0.01
N_2O - <0.01 CO ₂ - 0.29			PM _{2.5}	< 0.01	< 0.01
CO ₂ - 0.29			CH ₄	-	< 0.01
			N ₂ O	-	< 0.01
CO ₂ e - 0.30			CO ₂	-	0.29
			CO₂e	-	0.30

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emissi	on Rates
			lbs/hour	TPY (4)
TRAIN 8 ⁶				
F-14	Hot Oil Heater – Train 8	со	5.96	26.10
		NOx	0.81	3.53
		voc	0.10	0.44
		SO ₂	0.10	0.43
		РМ	0.64	2.82
		PM ₁₀	0.64	2.82
		PM _{2.5}	0.64	2.82
		NH₃	0.51	2.22
		CH ₄	-	1.56
		N ₂ O	-	0.16
		CO ₂	-	82,577.21
		CO₂e	-	82,662.50
	Hot Oil Heater MSS Activities – Train 8	СО	47.68	1.72
		NOx	2.94	0.11
F-15	Hot Oil Heater – Train 8	СО	5.96	26.10
		NOx	0.81	3.53
		voc	0.10	0.44
		SO ₂	0.10	0.43
		РМ	0.64	2.82
		PM ₁₀	0.64	2.82
		PM _{2.5}	0.64	2.82
		NH ₃	0.51	2.22
		CH ₄	-	1.56

		N ₂ O	-	0.16
		CO ₂	-	82,577.21
		CO₂e	-	82,662.50
	Hot Oil Heater MSS Activities – Train 8	со	47.68	1.72
		NO _X	2.94	0.11
FUG-FRAC8	FRAC8 Fugitives	voc	0.87	3.83
		CH ₄	-	1.51
		CO ₂	-	22.93
		CO ₂ e	-	574.80
FUG-TERM8	TERM8 Fugitives	voc	0.12	0.51
		CH ₄	-	0.13
	,	CO ₂	-	0.20
		CO₂e	-	5.21
FUG-CT-9	Cooling Tower 12	PM	0.61	2.67
		PM_{10}	0.19	0.82
		PM _{2.5}	< 0.01	< 0.01
		VOC	0.89	3.92
MSS-TRAIN8	Uncontrolled Planned MSS Train 8	VOC	11.80	0.24
		CH ₄	-	0.19
		CO₂e	-	4.84
PLOAD8	Pressurized Propane Loading - Train 8	voc	0.40	< 0.01
TO-8	Thermal Oxidizer – Train 8	со	0.17	0.76
		NO _X	0.10	0.45
		voc	< 0.01	< 0.01
		SO ₂	0.10	0.21

H ₂ S	ı	1		ı	
PM ₁₀ 0.03 0.11 PM ₂₅ 0.03 0.11 CH ₄ - 0.29 N ₂ O - <0.01 CO ₂ - 2,885.31 CO ₂ e - 2,893.00 TO-8-MSS Train 8 CO 0.04 <0.01 NO _X 0.03 <0.01 VOC <0.01 <0.01 SO ₂ <0.01 <0.01 PM <0.01 <0.01 PM <0.01 <0.01 PM ₂₅ <0.01 <0.01 PM ₂₅ <0.01 <0.01 PM ₂₅ <0.01 <0.01 CH ₄ - <0.01 N ₂ O - <0.01 CO ₂ - 0.29			H ₂ S	< 0.01	< 0.01
PM _{2.5} 0.03 0.11 CH ₄ - 0.29 N ₂ O - < 0.01 CO ₂ - 2.885.31 CO ₂ e - 2.893.00 TO-8-MSS Thermal Oxidizer – MSS Train 8 CO 0.04 < 0.01 NO _X 0.03 < 0.01 VOC < 0.01 < 0.01 SO ₂ < 0.01 < 0.01 PM < 0.01 < 0.01 PM ₁₀ < 0.01 PM _{2.5} < 0.01 < 0.01 PM _{2.5} < 0.01 CH ₄ - < 0.01 N ₂ O - < 0.01 CO ₂ - 0.29			РМ	0.03	0.11
CH4 - 0.29 N2O - <0.01 CO2 - 2,885.31 CO2e - 2,893.00 TO-8-MSS Thermal Oxidizer - MSS Train 8 CO 0.04 < 0.01 NOx 0.03 < 0.01 VOC < 0.01 < 0.01 SO2 < 0.01 < 0.01 PM < 0.01 < 0.01 PM < 0.01 < 0.01 PM < 0.01 < 0.01 PM25 < 0.01 < 0.01 CH4 - <0.001 N2O - <0.001 CO2 - 0.029			PM ₁₀	0.03	0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM _{2.5}	0.03	0.11
CO ₂ - 2,885.31 CO ₂ e - 2,893.00 TO-8-MSS Thermal Oxidizer – MSS Train 8 CO 0.04 < 0.01 NOx 0.03 < 0.01 VOC < 0.01 < 0.01 SO ₂ < 0.01 < 0.01 PM < 0.01 < 0.01 PM ₁₀ < 0.01 < 0.01 PM ₂₅ < 0.01 < 0.01 CH ₄ - < 0.01 N ₂ O - < 0.09			CH ₄	-	0.29
TO-8-MSS Thermal Oxidizer – MSS Train 8 CO 0.04 0.01 NOx 0.03 0.01 VOC 0.01 SO ₂ 0.01 0.01 PM 0.01 0.01 PM 0.01 0.01 PM _{2.5} 0.01 0.01 CH ₄ 0.01 0.01 0.01 0.01 CO ₂ 0.02			N ₂ O	-	< 0.01
Thermal Oxidizer – MSS Train 8 CO 0.04 0.01 NOx 0.03 <0.01 VOC <0.01 SO2 <0.01 PM <0.01 CO1 PM <0.01 CO2 CO2 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 CO2 0.29			CO ₂	-	2,885.31
Train 8 NO _x NO _x 0.03 VOC SO ₂ CO ₁ CO ₂ CO ₃ CO ₄ CO ₄ CO ₄ CO ₄ CO ₄			CO₂e	-	2,893.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TO-8-MSS		со	0.04	< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			NOx	0.03	< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			voc	< 0.01	< 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			SO ₂	< 0.01	< 0.01
PM _{2.5} < 0.01 < 0.01 CH ₄ - < 0.01 N ₂ O - < 0.01 CO ₂ - 0.29			PM	< 0.01	< 0.01
CH ₄ - < 0.01 N ₂ O - < 0.01 CO ₂ - 0.29			PM ₁₀	< 0.01	< 0.01
N ₂ O - < 0.01 CO ₂ - 0.29			PM _{2.5}	< 0.01	< 0.01
CO ₂ - 0.29			CH ₄	-	< 0.01
			N ₂ O	-	< 0.01
CO ₂ e - 0.30			CO ₂	-	0.29
			CO₂e	-	0.30

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
			lbs/hour	TPY (4)
TRAIN 9 ⁶				
F-16	Hot Oil Heater – Train 9	со	5.96	26.10
		NOx	0.81	3.53
		voc	0.10	0.44
		SO ₂	0.10	0.43
		РМ	0.64	2.82
		PM ₁₀	0.64	2.82
		PM _{2.5}	0.64	2.82
		NH₃	0.51	2.22
		CH ₄	-	1.56
		N ₂ O	-	0.16
		CO ₂	-	82,577.21
		CO₂e	-	82,662.50
	Hot Oil Heater MSS Activities – Train 9	СО	47.68	1.72
		NOx	2.94	0.11
F-17	Hot Oil Heater – Train 9	СО	5.96	26.10
		NOx	0.81	3.53
		voc	0.10	0.44
		SO ₂	0.10	0.43
		РМ	0.64	2.82
		PM ₁₀	0.64	2.82
		PM _{2.5}	0.64	2.82
		NH ₃	0.51	2.22
		CH ₄	-	1.56

	•			
		N_2O	-	0.16
		CO ₂	-	82,577.21
		CO ₂ e	-	82,662.50
	Hot Oil Heater MSS Activities – Train 9	со	47.68	1.72
		NO _x	2.94	0.11
FUG-FRAC9	FRAC9 Fugitives	VOC	0.87	3.83
		CH ₄	-	1.51
		CO ₂	-	22.93
		CO ₂ e	-	574.80
FUG-TERM9	TERM9 Fugitives	VOC	0.12	0.51
		CH ₄	-	0.13
		CO ₂	-	0.20
		CO ₂ e	-	5.21
FUG-CT-13	Cooling Tower 13	PM	0.61	2.67
		PM ₁₀	0.19	0.82
		PM _{2.5}	< 0.01	< 0.01
		VOC	0.89	3.92
MSS-TRAIN9	Uncontrolled Planned MSS Train 9	VOC	11.80	0.24
		CH ₄	-	0.19
		CO ₂ e	-	4.84
PLOAD9	Pressurized Propane Loading - Train 9	voc	0.40	< 0.01
TO-9		со	0.17	0.76
	Thermal Oxidizer – Train 9	NO _X	0.10	0.45
		voc	< 0.01	< 0.01
		SO ₂	0.10	0.21

	1			
		H ₂ S	< 0.01	< 0.01
		РМ	0.03	0.11
		PM ₁₀	0.03	0.11
		PM _{2.5}	0.03	0.11
		CH ₄	-	0.29
		N ₂ O	-	< 0.01
		CO ₂	-	2,885.31
		CO ₂ e	-	2,893.00
TO-9-MSS	Thermal Oxidizer – MSS Train 9	со	0.04	< 0.01
		NOx	0.03	< 0.01
		voc	< 0.01	< 0.01
		SO ₂	< 0.01	< 0.01
		РМ	< 0.01	< 0.01
		PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01
		CH ₄	-	< 0.01
		N ₂ O	-	< 0.01
		CO ₂	-	0.29
		CO ₂ e	-	0.30

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
			lbs/hour	TPY (4)
TRAIN 10				

F-18	Hot Oil Heater	со	5.96	26.10
		NO _x	0.81	3.53
		voc	0.10	0.44
		SO ₂	0.10	0.43
		РМ	0.64	2.82
		PM ₁₀	0.64	2.82
		PM _{2.5}	0.64	2.82
		NH ₃	0.51	2.22
F-18-MSS	Hot Oil Heater MSS	со	47.68	0.43
		NO _X	2.94	0.03
F-19	Hot Oil Heater – Train 9	СО	5.96	26.10
		NOx	0.81	3.53
		VOC	0.10	0.44
		SO ₂	0.10	0.43
		РМ	0.64	2.82
		PM ₁₀	0.64	2.82
		PM _{2.5}	0.64	2.82
		NH ₃	0.51	2.22
F-19-MSS	Hot Oil Heater MSS	СО	47.68	0.43
		NO _x	2.94	0.03
FUG-FRAC10	Fugitives (5)	voc	1.20	5.28
FUG-TERM10	Fugitives (5)	voc	0.12	0.51

1		1	•
Cooling Tower 14	РМ	0.61	2.67
	PM ₁₀	0.19	0.82
	PM _{2.5}	<0.01	<0.01
	voc	0.89	3.92
Planned MSS Emissions to Atmosphere	voc	5.91	0.12
Pressurized Propane Loading	voc	0.40	<0.01
Train 10 Thermal Oxidizer	со	0.17	0.76
	NO _X	0.10	0.45
	voc	<0.01	<0.01
	SO ₂	0.10	0.21
	H ₂ S	<0.01	<0.01
	PM	0.03	0.11
	PM ₁₀	0.03	0.11
	PM _{2.5}	0.03	0.11
Train 10 TO Startup Emissions	CO	0.04	<0.01
	NO _X	0.03	<0.01
	voc	<0.01	<0.01
	SO ₂	<0.01	<0.01
	РМ	<0.01	<0.01
	PM ₁₀	<0.01	<0.01
	PM _{2.5}	<0.01	<0.01
	Planned MSS Emissions to Atmosphere Pressurized Propane Loading Train 10 Thermal Oxidizer	PM ₁₀ PM _{2.5} VOC	PM10 0.19 PM2.5 <0.01 VOC 0.89 Planned MSS Emissions to Atmosphere VOC 5.91 Pressurized Propane Loading VOC 0.40 Train 10 Thermal Oxidizer CO 0.17 NOx 0.10 VOC <0.01 SO2 0.10 H2S <0.01 PM 0.03 PM10 0.03 PM2.5 0.03 Train 10 TO Startup Emissions CO 0.04 NOx 0.03 VOC <0.01 SO2 <0.01 PM <0.01 PM <0.01 PM <0.01 PM <0.01 PM <0.01 PM <0.01 PM10 <0.01

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

NH₃ - ammonia

H₂S - hydrogen sulfide

 CH_4 methane N_2O - nitrous oxides CO_2 carbon dioxide

CO₂e - carbon dioxide equivalents

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) The construction and operation of Trains 7, 8, and 9 are represented as phased construction. The permit holder is required to comply with applicable conditions and emission limitations for both normal operations and planned maintenance, start-up and shut-down (MSS) upon start of operation of each fractionation train (DRAFT 08/18)

