Richter Earthquake Damage

By Jessica Daniella Girsang (U2221579J) and Muhammad Aditya Alifadhilah (U2120345C)

CONTENTS

Motivation

A destructive earthquake of 7.8 magnitude occurred in **Nepal** in **April 2015.**

This earthquake claimed almost 9,000 lives and around \$10 billion in damages. Millions of people lost everything and became homeless in a few moments.

Objectives

Our objective is to see how each buildings' characteristics affects their damage grade in the case of an earthquake.

By finding the most important features, we can help developers during reconstruction so that they can apply corrections. especially on these characteristics, and minimize their risk of experiencing the same level of damage in the case of another earthquake.

The Dataset

The data is used in a competition hosted by **DRIVENDATA** "Richter's Predictor: Modeling Earthquake Damage" and contains information such as damage grade, building conditions, and variables involved

DATA PREPARATION

Check Null and Duplicate Data
Encode Object Data to Categorical Data
Merge Numeric and Categorical Feature
Clear Outliers

NUMERICAL

```
INCOALNUEX: ZOWOWI ENCILES, OWZ9WO CO /4/394
Data columns (total 29 columns):
     Column
                                              Non-Null Count
                                                               Dtype
     geo level 1 id
                                              260601 non-null
                                                               int64
     geo_level_2_id
                                              260601 non-null
                                                               int64
     geo level 3 id
                                              260601 non-null
                                                               int64
     count floors pre eq
                                              260601 non-null
                                                               int64
     age
                                              260601 non-null
                                                               int64
     area percentage
                                              260601 non-null
                                                               int64
     height_percentage
                                              260601 non-null
                                                               int64
     has_superstructure_adobe_mud
                                              260601 non-null
                                                               int64
     has_superstructure_mud_mortar_stone
                                              260601 non-null
                                                               int64
     has superstructure_stone_flag
                                              260601 non-null
                                                               int64
     has superstructure_cement_mortar_stone
                                              260601 non-null
                                                               int64
     has superstructure mud mortar brick
                                              260601 non-null
                                                               int64
     has superstructure cement mortar brick
                                              260601 non-null
                                                               int64
     has superstructure timber
                                              260601 non-null
                                                               int64
     has_superstructure_bamboo
                                              260601 non-null
                                                               int64
     has superstructure rc non engineered
                                              260601 non-null
                                                               int64
     has superstructure rc engineered
                                              260601 non-null
                                                               int64
     has_superstructure_other
                                              260601 non-null
                                                               int64
     count families
                                              260601 non-null
                                                               int64
     has_secondary_use_hotel
                                              260601 non-null
                                                               int64
     has secondary use rental
                                              260601 non-null
                                                               int64
     has secondary use institution
                                              260601 non-null
                                                               int64
     has_secondary_use_school
                                              260601 non-null
                                                               int64
     has secondary use industry
                                              260601 non-null
                                                               int64
     has_secondary_use_health_post
                                              260601 non-null
                                                               int64
     has_secondary_use_gov_office
                                                               int64
                                              260601 non-null
     has_secondary_use_use_police
                                              260601 non-null
                                                               int64
     has_secondary_use_other
                                              260601 non-null
                                                               int64
     damage grade
                                              260601 non-null
                                                               int64
```

dtypes: int64(29)

29 Numerical Columns

+++++

CATEGORICAL

#	Column	Non-Null Count	Dtype
0	land surface condition n	260601 non-null	uint8
1	land_surface_condition_o	260601 non-null	uint8
2	land_surface_condition_t	260601 non-null	uint8
3	foundation_type_h	260601 non-null	uint8
4	foundation_type_i	260601 non-null	uint8
5	foundation_type_r	260601 non-null	uint8
6	foundation_type_u	260601 non-null	uint8
7	foundation_type_w	260601 non-null	uint8
8	roof_type_n	260601 non-null	uint8
9	roof_type_q	260601 non-null	uint8
10	roof_type_x	260601 non-null	uint8
11	ground_floor_type_f	260601 non-null	uint8
12	ground_floor_type_m	260601 non-null	uint8
13	ground_floor_type_v	260601 non-null	uint8
14	ground_floor_type_x	260601 non-null	uint8
15	ground_floor_type_z	260601 non-null	uint8
16	other_floor_type_j	260601 non-null	uint8
17	other_floor_type_q	260601 non-null	uint8
18	other_floor_type_s	260601 non-null	uint8
19	other_floor_type_x	260601 non-null	uint8
20	position_j	260601 non-null	uint8

```
20 position j
                              260601 non-null
                                              uint8
                              260601 non-null
    position_o
                                              uint8
    position_s
                              260601 non-null uint8
    position_t
                              260601 non-null uint8
    plan_configuration_a
                              260601 non-null uint8
    plan_configuration_c
                              260601 non-null uint8
    plan_configuration_d
                              260601 non-null uint8
    plan configuration f
                              260601 non-null uint8
    plan_configuration_m
                              260601 non-null uint8
    plan configuration n
                              260601 non-null uint8
    plan_configuration_o
                              260601 non-null uint8
    plan_configuration_q
                              260601 non-null uint8
    plan_configuration_s
                              260601 non-null uint8
    plan_configuration_u
                              260601 non-null uint8
    legal_ownership_status_a
                              260601 non-null uint8
    legal ownership status r
                              260601 non-null uint8
    legal_ownership_status_v
                              260601 non-null uint8
    legal_ownership_status_w 260601 non-null uint8
dtypes: uint8(38)
```


38 Categories

POSITIVE AND NEGATIVE

NEGATIVE CORRELATIONS

NO CORRELATIONS

POSITIVE CORRELATIONS

CORRELATION MATRIX

DAMAGE GRADES SUMMARY

Summary

Number of building with Low Damage level: 25124 Number of building with Medium Damage level: 148259 Number of building with High Damage level: 87218

Percentage of building with Low Damage Level: 9.64% Percentage of building with Medium Damage Level: 56.89% Percentage of building with High Damage Level: 33.47%

We make a new dataframe with y as Damage
Grade and X as the other features.

S

DETERMINING MOST RELEVANT CATEGORIES

Using SelectKBest and Chi 2 score to get the Top 10 Categorical Variables

#We use Chi2score>100 and k=38
category_rank_feature = SelectKBest(score_func=chi2, k=38)

Feature 32465.421066 ground_floor_type_v 28048.595012 roof_type_x foundation type i 27929.304672 other floor type s 18549.408221 foundation type w 8315.794578 other floor type j 7422.919931 6391.952318 foundation_type_r 5494,248443 foundation_type_u 5108.461280 other floor type q 3684.892346 ground floor type f

Machine Learning Models

Decision Tree

Decision Tree

Machine Learning Models

Logistic Regression

Machine Learning Models

Random Forest

Random Forest

Machine Learning Models

Extreme Gradient Boosting

Extreme Gradient Boosting

MODEL ANALYSIS - COMPARISON

PERFORMANCE METRICS

F1 SCORE MICRO

Calculated using precision and recall of the test.

Algorithm	CV F1 Score
0 Logistic Regression	0.56938
1 Decision Tree	0.6544
2 Random Forest	0.71302
3 Extreme Gradient Boosting	0.72639

Best Model Performance

1

Extreme Gradient Boosting

F1 Score: 0.7264

CONCLUSION

1

From Machine Learning models, we found that **foundation and ground floor type** are the most important features in predicting damage grade.

2

From EDA, we found that only 9.64% building that has low Damage level, the rest is 56.89% building has Medium Damage level, and 33.47% building has High Damage level

We found that these models may help hotel developers to reconstruct after the earthquake and know the **most important factors** which lead to earthquake stability.

CONTRIBUTIONS

Jan	Feb	Маг	Арг	May	Jun
		•			
Task	Description	1			Status
JESSICA	Extreme Gradient E Random Forest	Boosting,	Performance Me	etrics (F1-Score)	Completed
ALI	Logistic Regression	n, Decision Tree,	Data extraction		Completed

+++

Thank You!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon** and infographics & images by **Freepik**

$$+++$$

References

- https://www.drivendata.org/competitions/57/ nepal-earthquake/
- https://www.analyticssteps.com/blogs/how-d oes-linear-and-logistic-regression-work-mach ine-learning
- https://dataaspirant.com/catboost-algorithm /#t-1609567161998
- https://analyticsindiamag.com/7-types-classi fication-algorithms/
- https://dataaspirant.com/catboost-algorithm /#t-1609567161998
- https://medium.com/analytics-vidhya/richter s-predictor-modeling-earthquake-damage-b4 4e3dbdaef

