

## Últimas aulas

- Revisão de Complexidade Computacional
- Revisão de Autômatos

 Na última aula, terminamos a aula falando sobre os autômatos com pilha

### Autômato com Pilha

- Uma evolução da ideia dos autômatos finitos.
- Possui uma pilha como componente adicional.
- A pilha é usada como uma memória para o autômato.

#### • Pilha:

- Estrutura de dados que permite armazenar e recuperar informações de forma LIFO (last-in, first-out)
- LIFO = O último elemento inserido na pilha é o primeiro a ser removido
- As inserções e remoções são executadas exclusivamente no topo da pilha

### Autômato com Pilha

 A pilha armazena informações sobre o histórico das transições realizadas pela máquina.

 O autômato pode ler um símbolo de entrada, fazer uma transição de estado e, opcionalmente, modificar a pilha adicionando ou removendo elementos.

- A transição de estado é determinada por três fatores:
  - o estado atual
  - o símbolo lido da fita de entrada
  - o topo da pilha

### Autômatos com Pilha

 Assim como em um autômato finito, um AP pode ser determinístico ou não-determinístico.

- Em autômatos determinísticos com pilha:
- Para cada combinação de estado, símbolo de entrada e topo da pilha existe apenas uma transição possível.

### Autômatos com Pilha

- Um autômato com pilha é formado por um 6-upla:
- $M = (\Sigma, \Gamma, Q, \delta, q_0, F)$
- Onde:
  - Σ é o alfabeto de símbolos de entrada (símbolos que a máquina reconhece)
  - Γ é o alfabeto de símbolos que podem ser escritos na pilha
  - Q é um conjunto finito de estados possíveis para o autômato
  - $\delta$  é o programa do autômato:  $\delta: Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma$
  - $q_0$  é o estado inicial do autômato (ao ser iniciado, ele começa no estado  $q_0$ )
  - F é um subconjunto de Q chamado de estados finais. Se M terminar em um estado  $q \in Q$  então a máquina "aceitou" ou "reconheceu" a entrada.
- Vale observar que  $\varepsilon \in \Sigma$  e  $\varepsilon \in \Gamma$ . Onde  $\varepsilon$  significa uma entrada vazia (seja para a fila de entrada ou para a pilha)

### Autômatos com Pilha

- Observe que cada transição é formada por:
  - $(q_i, a, b) \rightarrow (q_j, c)$

#### Onde:

- $q_i \in Q$  é o estado atual da máquina
- $a \in \Sigma$  é a informação lida da fita de entrada
- $b \in \Gamma$  é a informação que consta no topo da pilha
- $q_i \in Q$  é o estado para o qual a máquina deve transacionar
- $c \in \Gamma$  é a informação que deve ser escrita no topo da pilha
- Se estou no estado  $q_i$  E li a na fila E b está no topo da pilha então vá para o estado  $q_i$  E escreva c na pilha

### **Atividade:**

• Pense em um AFD com Pilha para reconhecer uma linguagem formada por  $0^n 1^n$ .

- Por exemplo:
  - 000111 e 01 são aceitos
  - Enquanto 001100 e 00110011 não são aceitos

- Dica: Como verificar se a pilha está vazia?
  - Escrever um símbolo logo no início do autômato.

## Resposta

- $M = (\{0,1,\varepsilon\}, \{\$, Z, \varepsilon\}, \{q_{1},q_{2},q_{3},q_{4},q_{5}\}, \delta, q_{1}, \{q_{5}\})$
- Função de Transição  $\delta$ :

| Estado Atual | Símbolo lido da fila | Valor lido da pilha | $\rightarrow$ | Novo Estado | Valor escrito na pilha |
|--------------|----------------------|---------------------|---------------|-------------|------------------------|
| $q_1$        | ε                    | ${\cal E}$          |               | $q_2$       | \$                     |
| $q_2$        | 0                    | ${\cal E}$          |               | $q_2$       | Z                      |
| $q_2$        | 1                    | \$                  |               | $q_3$       | ε                      |
| $q_2$        | ε                    | Z                   |               | $q_3$       | ε                      |
| $q_2$        | 1                    | Z                   |               | $q_4$       | ε                      |
| $q_3$        | 0,1                  | ${\cal E}$          |               | $q_3$       | ε                      |
| $q_3$        | ${\cal E}$           | \$                  |               | $q_3$       | ε                      |
| $q_4$        | 1                    | Z                   |               | $q_4$       | ε                      |
| $q_4$        | 1                    | \$                  |               | $q_3$       | ε                      |
| $q_4$        | 0                    | ${\cal E}$          |               | $q_3$       | ε                      |
| $q_4$        | ε                    | Z                   |               | $q_3$       | ε                      |
| $q_4$        | ${\cal E}$           | \$                  |               | $q_5$       | ε                      |

## Resposta



### Pilha

 O uso da pilha implica que a leitura e escrita deve ser realizada em um único ponto: o topo da pilha.

Não existe a opção de salvar em um outro ponto da pilha.

Isso limita a capacidade do autômato.

## Máquina de Turing

Proposta por Alan Turing em 1936

 A máquina de Turing é um autômato que usa uma fita para armazenar as informações

• Essa fita pode ser lida, escrita e movimentada para a esquerda e para a direita.

 A fita possibilita uma memória infinita para a máquina e assegura a habilidade de ler as entradas mais de uma vez. Permite também sobrescrever valores das entradas.

## Autômatos Finitos vs Máquina Turing

 Os autômatos de pilha possuem uma fita com a entrada. Essa fita pode ser lida e a cada leitura a fita se movimenta para a próxima entrada. A pilha é usada como uma memória auxiliar pelo autômato.

 Nas máquinas de Turing a entrada e a memória formam uma única fita. Os dados da entrada são escritos na fita, que pode ser alterada e movimentada livremente (para esquerda e para direita) pela máquina.

 Ao permitir escrever na fita, a Máquina de Turing permite alterar os dados codificados na fita.

## Autômato Finitos vs Máquina Turing

• Uma máquina de Turing pode ler e escrever na fita

A cabeça de leitura pode ser mover para a esquerda e para a direita

A fita é infinita

# Máquina de Turing

- Composta por três partes:
  - Fita
  - Unidade de Controle
  - Programa



## Máquina de Turing "Física"



## Definição formal

- Uma máquina de Turing é definida por um 7-upla:
- $M = (Q, \Sigma, \Gamma, Q, \delta, q_0, q_{aceita}, q_{rejeita})$
- Onde:
  - Q é um conjunto finito de estados possíveis para a máquina
  - $\Sigma$  é o alfabeto de símbolos de entrada (sem o símbolo de branco  $\beta$ )
  - $\Gamma$  é o alfabeto da fita ( $\beta \in \Gamma$  e  $\Sigma \subseteq \Gamma$ )
  - $\delta$  é o programa da máquina:  $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{E, D\}$
  - $q_0$  é o estado inicial da máquina (ao ser iniciada, ela começa no estado  $q_0$ )
  - $q_{aceita}$  é o estado de aceitação da máquina  $(q_{aceita} \in Q)$
  - $q_{rejeita}$  é o estado de rejeição da máquina  $(q_{rejeita} \in Q \text{ e } q_{rejeita} \neq q_{aceita})$
- Diferente dos autômatos finitos, os estados de aceitação e rejeição fazem efeito imediatamente: a máquina para ao entrar em um desses estados.

## Programa do Autômato

- $\delta$  é o programa da máquina (função de transição):
- $q_i \times \gamma_a \rightarrow q_j \times \gamma_b \times s$
- Se
  - a máquina está no estado  $q_i \in Q$  e
  - lê o símbolo  $\gamma_a \in \Gamma$  da fita

- Então:
  - vá para o estado  $q_i \in Q$  e
  - escreva o símbolo  $\gamma_h \in \Gamma$  na fita e
  - mova a fita no sentido  $s \in \{E, D\}$  (esquerda ou direita)

## **Atividade Proposta**

- Suponha uma fita que é formada por dois números na base binária separadas por um sinal de #.
- Como escrever um "programa" capaz de verificar se os dois números são iguais usando uma máquina de Turing?
- Pergunta 1: Qual é o alfabeto de entrada Σ na fita?
- Pergunta 2: Quais símbolos precisamos ler ou escrever na fita ( $\Gamma$ ) além de  $\Sigma$  e  $\beta$  (branco)?
- Pergunta 3: Quais e quantos estados (além de  $q_0$ ,  $q_{aceita}$  e  $q_{rejeita}$ ) vamos precisar?
- Pergunta 4: Como definir as transições (o programa)?

### Ideias:

- Pergunta 1: Qual é o alfabeto de entrada Σ na fita?
  - $\Sigma = \{0,1,\#\}$
- Pergunta 2: Quais símbolos precisamos ler ou escrever na fita além de  $\Sigma$  e  $\beta$  (branco)?
  - $\Gamma = \{\beta, \$, 0, 1, \#\}$  (trocar símbolos já lidos e processados por \$)
- Pergunta 3: Quais e quantos estados (além de  $q_0$ ,  $q_{aceita}$  e  $q_{rejeita}$ ) vamos precisar?
  - Meu modelo tem 9 estados (inicial, aceitação, rejeição e outros 6)
- Pergunta 4: Como definir as transições (o programa)?
  - O que fazer ao encontrar um 0 ou 1 no número da esquerda?
  - Como buscar o mesmo dígito no número da direita?

### Teste seu modelo

https://turingmachinesimulator.com/

• init: q0

o estado inicial

accept: qaceita

o estado de aceitação

• q0,\$

estando no estado q0, se ler \$

• q0,\$,>

vá para o estado q0, escreva \$ e se desloque

para direita



## Exemplo 2:

• Escreva um programa para uma máquina de Turing verificar se um número na base dois é par.



### **Curiosidades:**

- É possível gerar um loop infinito em autômato de pilha?
- E em uma máquina de Turing?



## Variações da Máquina de Turing

- Máquinas de Turing Não Determinísticas
  - Consideram todas as possibilidades de transições
  - Toda máquina de Turing não determinística tem uma máquina determinística equivalente.
- Existem variantes da Máquina de Turing que admitem que a cabeça de leitura permaneça parada (além de se movimentar para esquerda e para a direita).
- Mas essa alteração não muda em nada a máquina: bastaria trocar essa possibilidade "ficar parado" por dois movimentos seguidos: vá para direita e, em seguida, vá para esquerda.

## Variações da Máquina de Turing

- Existem ainda Máquinas de Turing com múltiplas fitas.
- Nesse caso, a função de transição deve indicar:
  - O que fazer considerando o valor de cada fita
  - Como atualizar as fitas (o que escrever e para onde movimentar)
- Embora máquinas com várias fitas pareçam mais poderosas, sua capacidade é a mesma de máquinas com apenas uma única fita.
- A fita é infinita. Basta considerar que cada uma das fitas está contida em uma única, sendo que o conteúdo de cada fita está separada por um símbolo especial (como no exemplo dos números iguais).

## Máquinas de Turing e Computadores

 O conceito de máquina de Turing é a base na qual os computadores foram construídos.

- Todo computador é uma máquina de Turing?
  - +/- ....
  - Máquina de Turing tem memória infinita (fita infinita)
  - Computadores tem memória finita
- Tudo o que um computador pode fazer uma máquina de Turing também pode.

# Algoritmos e Máquinas de Turing

- Em 1900, um matemático chamado David Hilbert disse que todo problema matemático bem formulado por ser resolvido por uma sequência bem estruturada de passos.
- Ele deu um exemplo: É possível escrever uma sequência de instruções para verificar se um polinômio apresenta ou não uma raiz inteira.
- Hoje sabemos que essa afirmação é falsa. Mas para demonstrar isso foi necessário definir formalmente o que é um algoritmo. Em 1936, Alonzo Church e Alan Turing definiram formalmente (ao mesmo tempo usando abordagens diferentes) o que são algoritmos.

## Tese de Church-Turing

- A noção intuitiva de um algoritmo é igual aos algoritmos de Máquinas de Turing.
- Isso é:
  - Todo algoritmo (como conhecemos hoje) apresenta uma versão equivalente em uma Máquina de Turing.
  - Em outras palavras, todo algoritmo pode ser transformado em um conjunto de estados e funções de transições (um algoritmo) da Máquina de Turing.
- Esse conceito permitiu demonstrar os limites da computação.
- Isso é: problemas que não podem ser tratados computacionalmente (não é possível definir um algoritmo para resolver esse problema).
- Dois casos interessantes:
  - Problema da Parada (tema da próxima aula)
  - Em 1970 foi demonstrado que o problema das raízes inteiras dos polinômios não pode ser tratado computacionalmente (não é possível construir um algoritmo que resolva esse problema).