Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung

(Masterarbeit bei Prof. U. Lipeck)

Oberseminar Datenbanksysteme
Universität Hannover
Ulf Mewe (ulf@mewenet.de)
29.04.2008

Kombiniertes Data Mining

- Die sequentielle Ausführung von Data Mining-Verfahren wird als "Kombiniertes Data Mining" bezeichnet. [Hum04]
- Beim "Kombinierten Data Mining" wird ein Fcw'Mining-Verfahren A vor einem Data Mining-Xgthej tgp'B uq'ausgeführt, dass B von A profitiert.

D'mopp'f c| w'das Ergebnis von A und/oder eigens gto kwgng'Hilfsinformationen von A für B nutzen.

"B profitiert dann von A, wenn das Ergebnis von B, gemäß einem geeigneten Gütemaß, besser ist"]cm'qj pg'C_." und/oder sich die Laufzeit von B'xgttkpi gt√0]U¾26_

Mqo dlpcvlqp'' cwu'Enwwgt lpi 'wpf 'Cuuq| lcvlqpucpcr(ug<

- Auswahl der Daten (Selektion)
- Vorbereitung der Daten für das Clustering (Preprocessing / Transformation)
- Clustering der Daten
- Vorbereitung der Daten für die Assoziationsanalyse (Preprocessing / Transformation)
- Assoziationsanalyse (für jeden Cluster)
- Präsentation der Ergebnisse

Ablauf

Auswahl der Daten

Aufteilung der Transaktionen

- 1: item_a,...,item_m
- 2: item_b,...,item_n
- 3: item_c,...,item_o
- 4: item_d,...,item_n
- 5: item_e,...,item_a

- 2: item_b,...,item_n
- 4: item_d,...,item_p
- 1: item_a,...,item_m
- 3: item_c,...,item_o
- 5: item_e,...,item_q

Ziele

- Verbesserung der Ergebnisse
 - Verbesserung der Confidence durch Reduktion der Ausnahmen
 - → durch zusätzliche Assoziationsregeln
 - → durch verbesserte Assoziationsregeln
- Verbesserung der Laufzeit
- Verbesserung des Speicherplatzbedarfs

Wie können Mengen von Assoziationsregeln miteinander verglichen werden?

- keine Notwendigkeit für den Vergleich von Mengen von Assoziationsregeln beim herkömmlichen DM
- Support, Confidence, ... funktionieren nur für den Vergleich von einzelnen Regeln
- → Einführung eines neuen Maßes

Ideen

- Bewertung einer Regelmenge anhand des enthaltenen Wissen (= inhärentes Wissen)
- Wissen ist gleichbedeutend mit der Fähigkeit, Daten zu komprimieren (vgl. MDL-Sicht)
- Komprimierung der Transaktionen mit Hilfe der gefundenen Assoziationsregeln zur Bestimmung des inhärenten Wissens

Assoziationsregelp

 $R_1 \hbox{: Chips} \Rightarrow Cola \\ R_2 \hbox{: Babypuder} \Rightarrow Windeln$

 $R_3 \hbox{: Marmelade, Nutella} \Rightarrow Toast \qquad \qquad R_4 \hbox{: Schraubenzieher} \Rightarrow Muttern$

Transaktionen

T₁: {Chips, Cola} T₂: {Babypuder, Windeln}

T₃: {Chips, Cola, Marmelade, Nutella, Toast} T₄: {Cola}

 T_5 : {Marmelade, Toast} T_6 : {Chips}

T₇: {Schraubenzieher, Schrauben}

Komprimierte Transaktionen

$$T_1$$
: {Chips, Cola}
$$\xrightarrow{R_1} T_1$$
: {Chips}
$$(+1)$$

$$T_2$$
: {Babypuder, Windeln} $\xrightarrow{R_2'}$ T_2 : {Babypuder} (+1)

$$T_3$$
: {Chips, Cola, Marmelade, Nutella, Toast} $\xrightarrow{R_1', R_3'}$ T_3 : {Chips, Marmelade, Nutella} (+2)

$$T_4$$
: {Cola} $\xrightarrow{\emptyset}$ T_4 : {Cola} (0)

$$T_5$$
: {Marmelade, Toast} $\stackrel{\emptyset}{\longrightarrow}$ T_5 : {Marmelade, Toast} (0)

Assoziationsregelp

 $R_1 \hbox{: Chips} \Rightarrow Cola \qquad \qquad R_2 \hbox{: Babypuder} \Rightarrow Windeln$

 R_3 : Marmelade, Nutella \Rightarrow Toast R_4 : Schraubenzieher \Rightarrow Muttern

Transaktionen

T₁: {Chips, Cola} T₂: {Babypuder, Windeln}

T₃: {Chips, Cola, Marmelade, Nutella, Toast} T₄: {Cola}

 T_5 : {Marmelade, Toast} T_6 : {Chips}

T₇: {Schraubenzieher, Schrauben}

Komprimierte Transaktionen

 T_6 : {Chips} $\xrightarrow{R_1}$ T_6 : {Chips, Cola}

$$T_6: \{Chips\}$$
 $\xrightarrow{R'_1}$ $T_6: \{Chips, \neg Cola\}$ (-1)

$$T_7$$
: {Schraubenzieher, Schrauben} $\xrightarrow{R_4'}$ T_7 : {Schraubenzieher, Schrauben, $\neg Muttern$ } (-1)

Definition des inhärenten Wissens

- Sei *k* der Speicherplatz, der zur Speicherung der mit den Assoziationsregeln aus *A* komprimierten Transaktionen benötigt wird,
- """und *u* der Speicherplatz, 'f gt 'pqw gpf ki 'y ®g. um die unkomprimierten "Vtcpucmkqpgp"V"
- ""dann ist das kpj @tgpvg'Y kuugp'KY *C.V+'f ghkpkgtv'cnk'

$$IW(A,T) = 1 - \frac{k}{u}$$

Durchgeführte Experimente

- 6 unterschiedliche Ausschnitte aus einer Filmdatenbank (MovieDB)
- Clustering nach unterschiedlichen Informationen zu den Filmen (Budget, Genre, Rating, ...)
- Assoziationsanalyse mit Schauspielern

Blockbuster

- Kinofilme aus den USA mit einem Rating ≥ 7
- betrachtet werden die 4 erstgenannten Schauspieler
- 3691 Filme mit 3662 verschiedenen Schauspielern
- o kp0Support = 3 Filme
- o &p0Confidence = 50%

Blockbuster

Ref.	Quelle	Clusterattribute	#Cluster	#Regeln	IW	ΔIW
3	Blockbuster (USA)			53	0,79 (29/3650)	
3	Blockbuster (USA)	Dekade	3	23	0,49 (18/3650)	-38%
3	Blockbuster (USA)	Genre	3	52	1,04 (38/3650)	+31%
3	Blockbuster (USA)	Rating	3	53	0,85 (31/3650)	+7%
3	Blockbuster (USA)	Dekade, Genre	3	17	0,85 (31/3650)	+7%
3	Blockbuster (USA)	Genre, Rating	3	52	0,85 (31/3650)	+7%

Analyse des Ergebnises (Blockbuster:Genre)

- 3 Cluster
 - Cluster 1: unterschiedliche Genres
 - Cluster 2: Kriminalfilme
 - Cluster 3: Dramen
- Verlust einer Assoziationsregel

```
'Pesci, Joe' => 'De Niro, Robert' (Confidence=0.75)
```

• keine neuen Assoziationsregeln

Analyse des Ergebnises (Blockbuster:Genre)

- Verbesserung von 7 Assoziationsregeln
 - herkömmliches Data Mining

```
'Shatner, William' => 'Doohan, James' (Confidence=0.75)
'Shatner, William' => 'Kelley, DeForest' (Confidence=0.75)
'Shatner, William' => 'Nimoy, Leonard' (Confidence=0.75)
'Jackman, Hugh' => 'Stewart, Patrick' (Confidence=0.75)
'Jackman, Hugh' => 'McKellen, Ian' (Confidence=0.75)
'Farrow, Mia' => 'Allen, Woody' (Confidence=0.57)
'Keaton, Diane' => 'Allen, Woody' (Confidence=0.56)
```

• "Kombiniertes Data Mining"

```
'Shatner, William' => 'Doohan, James' (Confidence=1)
'Shatner, William' => 'Kelley, DeForest' (Confidence=1)
'Shatner, William' => 'Nimoy, Leonard' (Confidence=1)
'Jackman, Hugh' => 'Stewart, Patrick' (Confidence=1)
'Jackman, Hugh' => 'McKellen, Ian' (Confidence=1)
'Farrow, Mia' => 'Allen, Woody' (Confidence=0.8)
'Keaton, Diane' => 'Allen, Woody' (Confidence=1)
```

Rrc wkdkks®v

- Aufteilung der Transaktionen, sodass
 - Ausnahmen (von den Regeln) reduziert werden
 - → Erhöhung der Confidence der einzelnen Regeln
- Attributwerte bewegen sich in einem bestimmten Kontext
 - Schauspieler drehen Filme eines bestimmten Typ, eines bestimmten Genres, ...
 - dreht ein Schauspieler einen "ungewöhnlichen" Film, dann tut er dies vermutlich mit anderen Schauspielern

Fazit

- Verbesserung / Verschlechterung der Ergebnisse f wtej 'die Kombination von Clustering und Assoziationsanalyse möglich
- deutliche Verbesserung der Laufzeit möglich