Elements of Information Theory A Graphical Summary

Pushpendre Rastogi

October 2020

1 Basic Information Theory concepts

Concept	Symbol	Definition
Entropy	H(X)	$-\sum p_x(x)\log p_x(x)$
Joint Entropy	H(X,Y)	$-\sum p_{xy}(x,y)\log p_{xy}(x,y)$
Cond Entropy	H(Y X)	$\mathbf{E}_{x}[\mathbf{H}(Y x)] = -\sum_{x} p_{x}(x) \sum_{y} p_{y x}(y) \log p_{y x}(y)$
Cross Entropy	C(Y;X)	$-\sum p_x(x)\log p_y(x)$
KL-Divergence	$D(X Y) = D(p_x p_y)$	$-\sum p_x(x)\log\left(p_x(x)/p_y(x)\right)$
Mutual Info	MI(X;Y) = MI(Y;X)	$ \operatorname{KL}(p_{xy} p_xp_y) $

These quantities follow three types of relations

- 1. Basic Inequalities. Based on concavity of $\log x$. They are summarized in the diagram below.
- 2. Chain rule.
- 3. Concavity and Convexity. Based on convexity of $x \log x$.
- 4. Data processing inequality.
- 5. Fano's inequality, and a simpler result that for two IID random variables with entropy H. $\Pr(X = X') \ge \exp(-\operatorname{H}(X))$, assuming H is measured in nats.

Figure 1: These concepts obey a lot of inequalities as shown in this diagram.