The Discrete Line Array

Steering the Beam Using a Soundspeed Gradient (refraction)

Consider N simple sources spaced d apart, all possessing the same source strength and radiating in phase. The pressure in the far field...

$$\mathbf{p}(r,\theta,t) = \sum_{i=1}^{N} \frac{A}{r_i} e^{-i(\omega r - kr_i)}$$

$$\mathbf{p}(r,\theta,t) = \frac{A}{r} e^{-i(\omega r - kr)} \left[\frac{\sin(\frac{N}{2} k\Delta r)}{\sin(\frac{1}{2} k\Delta r)} \right]$$

V Factor of an axial pressure amplitude and a non-dimensional Directional The amplitude of the far field pressure can be written as the product

$$P(r,\theta) = |\mathbf{p}(r,\theta,t)| = P_{ax}(r)H(\theta)$$

$$P_{ax}(r) = \frac{NA}{r}$$

$$H(\theta) = \left| \frac{1}{N} \frac{\sin(\frac{N}{2}kd\sin\theta)}{\sin(\frac{1}{2}kd\sin\theta)} \right|$$
[3.12]

 \bigvee Note that there are multiple main lobes, since there are multiple values for which $H(\theta) = 1$:

$$\frac{1}{2}kd\sin\theta = m\pi \quad \text{or} \quad \left|\sin\theta\right| = \frac{2m\pi}{kd} = m\frac{\lambda}{d} \quad ; \quad m = 0, 1, 2, \dots \left|\frac{d}{\lambda}\right|$$

V The regions of zero pressure, or nodal surfaces, occur for:

$$\frac{N}{2}kd\sin\theta = n\pi$$
 or $|\sin\theta| = \frac{2n\pi}{Nkd} = \frac{n}{m}\frac{\lambda}{d}$; $\frac{n}{m} \neq m$

V If we now insert a time delay nr into the transmit signal for the nth element

$$\mathbf{p}_{n} = \frac{A}{r_{n}} e^{-i(\omega(t+n\tau)-kr_{i}')}$$

The Directional Factor becomes:

$$H(\theta) = \frac{1}{N} \frac{\sin\left[\frac{N}{2}kd\left(\sin\theta - \frac{c\tau}{d}\right)\right]}{\sin\left[\frac{1}{2}kd\left(\sin\theta - \frac{c\tau}{d}\right)\right]}$$
 [3.13]

V The 1st major lobe (m=0) now points in the direction of $\theta_{
m o}$:

$$\sin \theta_o = \frac{c\tau}{d}$$
 [3.14]

which means that the beam is now steered in the direction of θ_{\circ}

BME2 – Biomedical Ultrasonics

Lecture 4: Sources of Sound – the Continuous Line Source and the Baffled Piston Source

Dr. Constantin-C. Coussios Biomedical Ultrasonics & Biotherapy Laboratory

Office: 43 Banbury Road Tel: 01865-(2)74750

Email: constantin.coussios@eng.ox.ac.uk

Acknowledgments: Prof. Ronald A. Roy, George Eastman Visiting Professor 2006-07

Department o f Engineering Scienc

Contents

- 4.1 The continuous line source
- 4.2 The baffled piston source
- 4.3 The focused piston source
- 4.4 Reciprocity, resolution and competing transducer characteristics
- 4.5 Case study: blood characterization using pulse-echo techniques

4.1 The continuous line source

Long, thin radially pulsating cylinder

- V The radiated pressure field is axisymmetric.
- V The amplitude of the far field pressure can be written as the product of an axial pressure amplitude and a non-dimensional Directional

$$P(r,\theta) = |\mathbf{p}(r,\theta,t)| = P_{ax}(r)H(\theta)$$

$$P_{ax}(r) = \frac{1}{2} \rho_o c U_o \frac{a}{r} kL$$
 [4.1]

$$H(\theta) = \left| \frac{\sin \eta}{\eta} \right| \quad where \quad \eta = \frac{1}{2}kL\sin \theta$$

V These lobes are bounded by conical nodal surfaces for which lobes (or main lobes).

Energy is projected into regions of pressure maxima called diffraction

V

$$\frac{1}{2}kL\sin\theta = \pm n\pi \quad \text{or} \quad |\sin\theta| = \frac{2n\pi}{kL} = \frac{n\lambda}{L} \quad ; \quad n = 1, 2, \dots \left|\frac{L}{\lambda}\right|$$

 \bigvee The larger the value of kL, the more narrow the lobes.

Beam Pattern For A Continuous Line Source Directional Factor for kL = 24

Beam Pattern For A Continuous Line Source Directional Factor for kL = 10

4.2 The baffled piston source

- \bigvee now integrate over the surface of a disk and assume baffled simple sources (see Eq [3.10]). We follow the same procedure as for the line source, except that we
- ightarrow Radiating surface moves uniformly with speed $U_0 e^{-i\omega t}$

×

The source strength therefore is:

$$dQ = U_0 ds$$

Summing over all the cources:

$$\mathbf{p}(r,\theta,t) = -i\frac{\rho_o c U_o k}{2\pi} \int_S \frac{e^{-i(\omega t - kr')}}{r'} ds$$

V The field along the acoustic axis is given by:

$$\mathbf{p}(r,0,t) = \rho_o c U_o e^{-i\omega t} \left| e^{ikr} - e^{\left(ik\sqrt{r^2+a^2}\right)} \right|$$

The pressure amplitude follows...

$$P_{ax}(r) = 2\rho_o c U_o \left| \sin \left(\frac{1}{2} kr \left[\sqrt{1 \left(+ \frac{a^2}{r^2} \right) 1 \right)} \right) \right|$$

For
$$r/a >> 1$$
 and $r/a >> ka$

For
$$\frac{1}{a} >> 1$$
 and $\frac{1}{a} >> ka$

$$P_{ax}(r) = \frac{1}{2} \rho_o c U_o \frac{a}{r} ka \quad \text{(a simple source!)}$$

Axial Response of a Baffled Piston Source

 $\frac{1}{2}kr \left| \sqrt{1 + \frac{a^2}{r^2} - 1} \right| = m\frac{\pi}{2}$ $\frac{r}{m} =$ a4 $\frac{m \lambda}{4 a}$ 7 Ш ka^2 2π 4 $\lambda \approx$ 2π

V pressure response and the Directional Factor The pressure in the far field can be written as the product of the axial

$$P(r,\theta) = |\mathbf{p}(r,\theta,t)| = P_{ax}(r)H(\theta)$$

$$P_{ax}(r) = \frac{1}{2} \rho_o c U_o \frac{a}{r} ka$$

[4.2]

$$H(\theta) = \left| \frac{2J_1(ka\sin\theta)}{ka\sin\theta} \right|$$

V for $\theta = \theta_{\rm m}$ There is a maximum in the beam pattern for $\theta = 0$ and nodal surfaces

$$ka\sin\theta_m=j_{1m}$$

where j_{1m} is the argument corresponding to the m^{th} zero of J_1 . Note that the larger the value of ka, the more "spread out" the beam pattern is.

Beam Pattern of a Baffled Piston Source

Directional Factor for ka = 10

Beam Pattern of a Baffled Piston Source Directional Factor for *ka* = 2

4.3 The focussed piston source

- V wavefront (The same thinking applies to a single radiating surface!) Arrays can be focused by adding time delays that simulate the curved
- r x 70 11 11 11 constant delay added to avoid negative delays distance from origin to center of nth element (np) distance from origin to focal point
 - $= \frac{\tau}{\tau}$ $\sqrt{(x_r-x_n)^2+z_r^2}$

Diagnostic Focused Piston Transducers Panametrics Corp.

$$BD_{-6dB} = 1.02 \frac{Fc}{fD}$$
$$F_{z} = NS_{F}^{2} \left[\frac{2}{1 + 0.5S_{F}} \right]$$

- Beam Diameter
- Focal Length Material Sound Velocity
- Frequency Element Diameter

 $\mathbf{z}|\mathbf{z}$

Normalized Focal Length

Measured Beam Patterns for a Therapy Transducer

Sonic Concepts Model H101 Focal length: 62.64 mm Aperture: 70 mm Driven at 1 MHz in water

CASE STUDY:

Use of Speed of Sound, Acoustic Impedance and Attenuation to Measure Blood Haematocrit and Haemolysis in Artificial Circuits

Biomedical Ultrasonics and Biotherapy Laboratory
Institute of Biomedical Engineering
University of Oxford

Motivation: monitoring of haemolysis

No effective method for measuring haemolysis **on-line** and **in real time**.

How does haemolysis 'change' Blood?

- Mechanical haemolysis causes:
- A decresase in the concentration of healthy cells.
- The appearance of irregularly shaped, damaged (ghost) cells.
- The dissipation of free hemoglobin (fHb) in the plasma.
- with initial number of cells N

Current Methods for Measuring Hemolysis

Measurement of Hematocrit.

- Measurement of fHb in plasma by spectrophotometry.
- Both methods require sampling(unsuitable for on-line systems).
- ⇒ fHb measurements inaccurate.

• In Extracorporeal Liver Perfusion circuit:

Experimental Apparatus

Mechanically haemolyzed samples

Sample	Haem Hae	Haemolysis from Free Haemaglobin Data	ı Free Data	Free Haemoglobin Data Predicted	Standard Deviation	Average Haematocrit	Haematocrit Predicted
	Sample 1	Sample 1 Sample 2 Sample 3	Sample 3	Haemolysis	(%)	Павінаюсін	Haemolysis
Prime (0)	0	0	0	0.00%	0	35%	0.00%
	5.26	4.99	5.34	5.20%	0.18	33.67%	3.80%
2	10.70	10.60	11.03	10.78%	0.23	31.33%	10.49%
သ	15.71	16.20	16.28	16.06%	0.31	30%	14.29%
4	31.18	30.72	31.42	31.10%	0.36	26.17%	25.23%
5	45.93	47.47	48.84	47.41%	1.45	23%	34.29%
6	56.99	50.88	52.50	53.46%	3.17	20%	42.86%
7	81.77	83.13	80.97	81.96%	1.09	17%	51.43%
8	83.91	86.43	83.36	84.57%	1.64	12.75%	63.57%
9	83.59	84.87	81.35	83.27%	1.78	8.50%	75.71%
10	95.96	97.59	95.79	96.45%	0.99	4%	88.57%
11	99.76	98.70	93.50	97.32%	3.35	1%	97.14%

acoustic impedance Measuring attenuation, speed of sound and

$$Z_{bl} = \frac{1 - R_{ag - bl}}{1 + R_{ag - bl}}$$

$$c = \frac{2d}{(\Delta t_{farwall} - \Delta t_{nearwall})}$$

$$\alpha = \frac{1}{2L} 20 \log(\frac{1}{\beta} \frac{v_{ptp}(near)}{v_{ptp}(far)})$$

where
$$\beta = \frac{v_{ptp}(nearsaline)}{v_{ptp}(farsaline)}$$

 $\begin{array}{c} \nu_{pip} (farsaline) \\ \hline \end{array}$

Validation: speed of sound in pure water

as a function of haematocrit Attenuation through healthy blood at 15 MHz

blood Attenuation through increasingly haemolyzed at 15 MHz (initial Hct: 35%)

as Speed of sound through healthy blood at 15 MHz മ function of haematocrit

haemolyzed blood at 15 MHz (initial Hct: 35%) Speed of sound through increasingly

haemolyzed blood at 15 MHz Acoustic impedance of increasingly

Conclusions & Future work

- the way up to 90% haemolysis and speed of sound acoustic impedance exhibits significant variation all cell damage in the range 15% - 75% haemolysis, but attenuation are equally sensitive to increasing red Speed of sound, acoustic impedance and varies most significantly at low haemolysis levels.
- inverse problem? Can combinations of parameters be used to solve
- Acknowledgments: Adam White, Andrew Connelly, Andrew Talbot, Jim Fisk.

