Modelos Lineares Generalizados - Profa. Terezinha Ribeiro Lista de Exercícios 1

Exercício 1

Seja Y a variável aleatória que representa o número de ensaios independentes até a ocorrência do r-ésimo sucesso, em que π denota a probabilidade de sucesso em cada ensaio. Dizemos que Y segue uma distribuição de Pascal, $Y \sim \text{Pascal}(\mathbf{r}, \pi)$, e sua função de probabilidades é dada por

$$f(y; r, \pi) = {y-1 \choose r-1} \pi^r (1-\pi)^{y-r},$$

com $y = r, r + 1, \dots e 0 < \pi < 1$.

- (a) Mostre que $Y^* = Y/r$ pertence a família exponencial uniparamétrica canônica.
- (b) Obtenha $\mu = E(Y^*)$, a função de variância $V(\mu)$, e $Var(Y^*)$.
- (c) Particularize os resultados para r=1 (distribuição geométrica).

Exercício 2

Considere $Y \sim \mathrm{ES}(\mu,\phi)$ (distribuição estável) cuja função densidade de probabilidade é dada por

$$f(y; \theta, \phi) = a(y, \phi) \exp\{\phi[\theta(y+1) - \theta \log(\theta)]\},\$$

com $\theta > 0, y \in \mathbb{R}, \phi > 0$, e $a(\cdot, \cdot)$ é uma função normalizadora.

- (a) Mostre que Y pertence a família exponencial uniparamétrica canônica.
- (b) Obtenha $\mu = E(Y)$, a função de variância $V(\mu)$, e Var(Y).

Exercício 3

Suponha que $Y_i \stackrel{\text{ind}}{\sim} \text{NI}(\mu_i, \phi)$, em que $\mu_i = g^{-1}(\eta_i)$ com i = 1, 2, ..., n. Obtenha a estimativa de máxima verossimilhança de ϕ e mostre que o critério de Akaike equivale a mimimizar

$$n\log\left(\frac{D(oldsymbol{y};\widehat{oldsymbol{\mu}})}{n}
ight)+2p,$$

em que $D(\boldsymbol{y}; \widehat{\boldsymbol{\mu}}) = \sum_{i=1}^{n} (y_i - \widehat{\mu}_i)^2 / (y_i \widehat{\mu}_i^2)$. Lembre-se que AIC = $-2\ell(\widehat{\boldsymbol{\theta}}) + 2p$.

Exercício 4

Suponha que $Y_i \stackrel{\text{ind}}{\sim} \operatorname{Pascal}(\mathbf{r}, \pi_{\mathbf{i}}),$ para $i=1,2,\ldots,n,$ com componente sistemático dado por

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha.$$

Obtenha a estimativa de máxima verossimilhança de α e a variância assintótica $\text{Var}(\widehat{\alpha})$.

Exercício 5

Suponha que $Y_i \stackrel{\text{ind}}{\sim} \text{Poisson}(\mu_i)$, em que $\sqrt{\mu_i} = \eta_i \text{ com } \eta_i = \alpha + \beta(x_i - \overline{x})$, para $i = 1, 2, \dots, n$. Queremos testar H_0 : $\beta = 0$ contra H_1 : $\beta \neq 0$.

- (a) Expresse a matriz do modelo X.
- (b) Obtenha a matriz de covariâncias assintótica $\operatorname{Var}(\widehat{\boldsymbol{\beta}})$, em que $\boldsymbol{\beta} = (\alpha, \beta)^{\top}$.