统计分析方法第一章作业

16337203 屈博雅

1. 股票 000001 分析

结果: 日均值= 14.2709769459

中位数= 12.825

0.25 分位数= 9.985

0.75 分位数= 16.785

方差= 43.4839227212

标准差= 6.59423405114

变异系数= 0.462073064523

极差= 42.85

四分位极差= 6.8

偏度= 1.80139315107

峰度= 4.41917340895

分析: 首先将每日股价通过 每日股价 = (每日最低价 low+每日最高价 high) /2 算出来,然后通过 python 的函数算出各个数据值。

代码: 运行 1.py

2. 股票 000006 分析

对股票 000006 股价进行分析,选取合适组距,进行统计,画出的直方图 (价格-频率) 和正态 QQ 图,直观判断数据是否来自正态分布总体,给出简要的 判断依据。如果对 000006 股价的差值,同理计算差值的直方图和正态 QQ 图,判 断差值是否服从正态分布,给出简要的判断依据。

分析:

分为了 50 组,组距为 0.7,数据不来自正态分布,因为图中红线是根据 06 股票股价数据得到的正态分布函数曲线,明显不能与直方图相合。

选择这个组数是因为,

组数选小后最左边的信息会损失,如(组数为20),

组数太大会造成直方图过窄,如(组数为300)

所以对比之下,50是个合理的组数。

这是股票 06 的每日股价的正态 QQ 图,蓝点没有在红线周围,看上去无特别关系,明显,数据不来自正态分布总体。

同样,分为100组,组距为0.16。差值数据来自正态分布,因为图中红线是根据06股票股价数据得到的正态分布函数曲线,能与直方图相合。

选择 100 组的原因同上,

这是差值的正态 QQ 图,蓝色的点基本拟合红线,只有少数几个点明显偏离, 所以数据来自正态分布总体。

(5)代码:运行 2.py

3. 股票 000012 分析

对股票 000012 进行分析,求股价和成交量的 Pearson, Spearman 相关系数。

结果:

pearsonr= 0.029815915194 spearsonr= -0.018695952028

分析:对于股票 000012, 它的股价与交易量的相关性比较差。

代码: 运行 3.py

4. 数据分析

(1) 股票 01 与 06 的分析

结果:

PearmanrResult= (0.77719365433573362, 0.0)

SpearmanrResult=(correlation=0.50989796095176776,pvalue=7.7006772434924242e-276)

(2) 全部股票的分析

结果见 2.xls, 一共有 8 个列表。

介绍如下:

p_0_sheet —— 存放 pearmanr 的 r 值

s_0_sheet —— 存放 spearmanr 的 r 值

p all sheet —— 存放 pearmanr

s_all_sheet —— 存放 spearmanr

p_all_p_10_sheet —— 存放 p 算法十对的 pearmanr 值

p_all_s_10_sheet —— 存放 p 算法十对的 spearmanr 值

s_all_s_10_sheet — 存放 s 算法十对的 pearmanr 值 s_all_s_10_sheet — 存放 s 算法十对的 spearmanr 值

p_0_sheet 节选

	Α	В	С	D	Е	F	G	Н	1	J	K	L
1	1	0.77719	0.63277	0.26197	0.27204	0.38157	-0.14402	0.39945	0.76994	-0.07587	0.15656	0.28248
2	0.77719	1	0.61296	0.52844	0.44222	0.56878	0.10743	0.53651	0.8593	-0.06112	0.49364	0.54752
3	0.63277	0.61296	1	0.38509	0.54345	0.62801	-0.04283	0.63501	0.60721	-0.06146	0.45496	0.52154
4	0.26197	0.52844	0.38509	1	0.28183	0.24739	0.67648	0.55679	0.41013	0.63478	0.54394	0.30835
5	0.27204	0.44222	0.54345	0.28183	1	0.88254	-0.00618	0.41993	0.40196	-0.04431	0.7102	0.57649
6	0.38157	0.56878	0.62801	0.24739	0.88254	1	0.00556	0.45058	0.52496	-0.15854	0.72916	0.57285
7	-0.14402	0.10743	-0.04283	0.67648	-0.00618	0.00556	1	0.25781	-0.09251	0.80068	0.47238	0.05546
8	0.39945	0.53651	0.63501	0.55679	0.41993	0.45058	0.25781	1	0.45757	0.21755	0.48489	0.61409
9	0.76994	0.8593	0.60721	0.41013	0.40196	0.52496	-0.09251	0.45757	1	-0.14196	0.28678	0.50036
10	-0.07587	-0.06112	-0.06146	0.63478	-0.04431	-0.15854	0.80068	0.21755	-0.14196	1	0.28543	0.00365
11	0.15656	0.49364	0.45496	0.54394	0.7102	0.72916	0.47238	0.48489	0.28678	0.28543	1	0.57514
12	0.28248	0.54752	0.52154	0.30835	0.57649	0.57285	0.05546	0.61409	0.50036	0.00365	0.57514	1

s 0 sheet 节选

```
Е
                      С
                               D
         1 0.509898 0.652607 0.252553 0.280422 0.334924 0.205404 0.435712 0.518636
             1 0.729001 0.644775 0.704019 0.746312 0.536311 0.61688 0.69039
  0.509898
  0.652607 0.729001
                         1 0.466016 0.540928 0.668094 0.367936 0.698213 0.716902
4 0.252553 0.644775 0.466016
                                  1 0.443587 0.374184 0.827764 0.56795 0.313295
  0.280422 0.704019 0.540928 0.443587
                                          1 0.876847 0.444065 0.569927 0.636528
   0.334924 0.746312 0.668094 0.374184 0.876847
                                                   1 0.354789 0.585423 0.734969
   0.205404 0.536311 0.367936 0.827764 0.444065 0.354789
                                                           1 0.630546 0.119584
   1 0.425444
           0.69039 0.716902 0.313295 0.636528 0.734969 0.119584 0.425444
   0.518636
10 0.174512 0.040994 0.061656 0.597067 -0.09464 -0.18945 0.750418 0.271781 -0.21723
11 0.119535 0.71253 0.452584 0.635865 0.752539 0.723498 0.709487 0.554358 0.339387
12 0.211867 0.511819 0.467603 0.274733 0.701169 0.623559 0.389293 0.59775 0.455625
```

以下各十对(显示的是股票的 code),前五个为相关性小的,后五个为大的。

Pearsonrs:

```
第 1 对股票是( 525, 632 )
第 2 对股票是( 49, 90 )
```

Spearmanrs:

```
第 1 对股票是(567,667)
```

按照排序(0-99),10支股票的序号为

Pearsonrs:

```
ij_p0_pos= [[45, 80], [14, 25], [43, 84], [74, 84], [10, 37], [16, 97], [1, 21], [6, 62], [1, 13], [13, 21]]
```

Spearmanrs:

所需十对的 p 值:

Pearsonrs 算法求出的 10 对股票:

Pearsonrs 算法的 p 值:

pea_10_pea_pvalue=

- - 0.95647843421478063, 0.94526373334347769,
 - 0.91267462875677452, 0.0, 0.0, 0.0, 0.0, 0.0]

Spearmanrs 算法的 p 值:

pea_10_spea_pvalue=

- [6.4444131291881671e-13, 8.7987478779004736e-41,
 - 6.904237548268161e-111, 6.1196742427551438e-06,
 - 0.51593188492860498, 0.0, 0.0, 0.0, 0.0, 0.0]

Spearmanrs 算法求出的 10 对股票:

Pearsonrs 算法的 p 值:

spea 10 pear pvalue=

- [4.9790929293911055e-08, 4.2848767275261499e-08,
 - 1.501553477406247e-11, 1.0339494366222513e-26,
 - 0.013307418053292877, 0.0, 0.0, 0.0, 0.0, 0.0]

Spearmanrs 算法的 p 值:

spea_10_spear_pvalue=

- [0.98059952399803763, 0.97922531724940554,
 - 0.96482347586905515, 0.96119318211375626,
 - 0.93131916837179762, 0.0, 0.0, 0.0, 0.0, 0.0]

(3) 实现方法简单介绍

代码 4_2.py 为主体实现程序。首先处理得到每日股价, 筛选时间, 通过库函数得到两个 100x100 的矩阵, 然后通过排序得到相关性最强 (绝对值接近 1) 的 5 对股票和相关性弱 (绝对值最接近 0) 的 5 对股票, 因为求相关性最强时对角线的值 1 和下三角的对称值会进行干扰, 以及我的排序实现的形式, 加上数据不大, 所以我人工筛选了数据, 去重去 1, 得到 Pearmanr、Spearmanr 各十对股票, 然后得到其两种 p 值, 得到结果。

(4) 代码

运行代码 4_2.py