Lecture 3: Stochastic Differential Equations

David Nualart

Department of Mathematics Kansas University

Gene Golub SIAM Summer School 2016
Drexel University

Strong solutions

- Let $B = \{B_t^j, t \ge 0, j = 1, ..., d\}$ be a d-dimensional Brownian motion and ξ an m-dimensional random vector independent of B.
- Let \mathcal{F}_t be the σ -field generated by $\{B_s, 0 \leq s \leq t\}$, ξ and the null sets.
- Consider measurable coefficients $b_i(t, x)$ and $\sigma_{ij}(t, x)$, $1 \le i \le m$, $1 \le j \le d$ from $[0, \infty) \times \mathbb{R}^m$ to \mathbb{R} .
- ullet Our aim to give a meaning to the *stochastic differential equation* on \mathbb{R}^m :

$$dX_t^i = b_i(t, X_t)dt + \sum_{j=1}^d \sigma_{ij}(t, X_t)dB_t^j, \quad 1 \le i \le m$$
(1)

with initial condition $X_0 = \xi$.

Definition

We say that an adapted and continuous process $X = \{X_t, t \ge 0\}$ is a solution to equation (1) if for all $t \ge 0$,

$$X_t = \xi + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s$$
, a.s.

or

$$X_t^i = \xi_i + \int_0^t b_i(s, X_s) ds + \sum_{i=1}^d \int_0^t \sigma_{ij}(s, X_s) dB_s^j, \quad 1 \leq i \leq m, \text{ a.s.}$$

• b is called the drift and σ is called the diffusion coefficient.

Theorem

Suppose that the coefficients are locally Lipschitz in the space variable, that is, for each $N \ge 1$, there exists $K_N > 0$ such that for each $\|x\|, \|y\| \le N$ and $t \ge 0$

$$||b(t,x)-b(t,y)|| + ||\sigma(t,x)-\sigma(t,y)|| \le K_N ||x-y||.$$

Then, two solutions with the same initial condition coincide almost surely (strong uniqueness holds).

• In the absence of the locally Lipschitz condition equation (1) might fail to be solvable or have multiple solutions.

Example : $X_t = \int_0^t |X_s|^{\alpha} ds$, where $\alpha \in (0,1)$. Then $X_t = 0$ is a solution and also, for any $s \ge 0$,

$$X_t = \left(\frac{t-s}{\beta}\right)^{\beta} \mathbf{1}_{[s,\infty)}(t), \quad \beta = 1/(1-\alpha),$$

is also a solution.

Lemma (Gronwall lemma)

Let u be a nonnegative continuous function on $[0, \infty)$ such that

$$u(t) \leq \alpha(t) + \int_0^t \beta(s)u(s)ds, \quad t \geq 0$$

with $\beta \geq 0$ and α non-decreasing. Then,

$$u(t) \leq \alpha(t) \exp\left(\int_0^t eta(s) ds
ight), \quad t \geq 0.$$

• In particular, if α and β are constant, we get

$$u(t) \leq \alpha e^{\beta t}$$
.

Proof:

• Let X and \tilde{X} two solutions. Define

$$S_n = \inf\{t \geq 0 : \|X_t\| \geq n \quad \text{or} \quad \|\tilde{X}_t\| \geq n\}.$$

Clearly S_n are stopping times such that $S_n \uparrow \infty$.

Then,

$$\begin{split} E\|X_{t\wedge S_n} - \tilde{X}_{t\wedge S_n}\|^2 & \leq & 2E\left[\int_0^{t\wedge S_n} \|b(u,X_u) - b(u,\tilde{X}_u\|du\right]^2 \\ & + 2E\sum_{i=1}^m \left|\sum_{j=1}^d \int_0^{t\wedge S_n} (\sigma_{ij}(u,X_u) - \sigma_{ij}(u,\tilde{X}_u))dB_u^j\right|^2 \\ & \leq & 2tE\int_0^{t\wedge S_n} \|b(u,X_u) - b(u,\tilde{X}_u\|^2du \\ & + 2E\int_0^{t\wedge S_n} \|\sigma(u,X_u) - \sigma(u,\tilde{X}_u\|^2du. \end{split}$$

• Using the local Lipschitz property, we obtain for any $t \ge 0$,

$$E\|X_{t\wedge S_n}-\tilde{X}_{t\wedge S_n}\|^2\leq 2(t+1)K_n^2\int_0^t E\|X_{u\wedge S_n}-\tilde{X}_{u\wedge S_n}\|^2du.$$

• Then $g(t) = E \|X_{t \wedge S_n} - \tilde{X}_{t \wedge S_n}\|^2$ satisfies

$$g(t) \leq 2(t+1)K_n^2 \int_0^t g(u)du,$$

which, by Gronwall's lemma, implies that g = 0.

• Letting $n \to \infty$ we conclude that $X_t = \tilde{X}_t$.

 A local Lipschitz condition is not sufficient to guarantee global existence of a solution.

Example:

$$X_t=1+\int_0^t X_s^2 ds.$$

the solution is $X_t = \frac{1}{1-t}$, which explodes as $t \uparrow 1$.

• Exercise : Given $x \in \mathbb{R}^m$, we can find a strictly positive stopping time τ and a stochastic process $\{X_t, t < \tau\}$ such that

$$X_t = x + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s, \quad t < \tau.$$

The process $\{X_t, t < \tau\}$ is unique in the sense that if ρ is another strictly positive stopping time and $\{Y_t, t < \rho\}$ satisfies

$$Y_t = x + \int_0^t b(s, Y_s) ds + \int_0^t \sigma(s, Y_s) dB_s, \quad t < \rho,$$

then $\rho \leq \tau$ and for every $t \geq 0$, $Y_t \mathbf{1}_{\{t < \rho\}} = X_t \mathbf{1}_{\{t < \rho\}}$.

Theorem

Suppose that the coefficients b and σ satisfy the global Lipschitz and linear growth conditions :

$$||b(t,x) - b(t,y)|| + ||\sigma(t,x) - \sigma(t,y)|| \leq K(||x - y||, ||b(t,x)||^2 + ||\sigma(t,x)||^2 \leq K^2(1 + ||x||^2),$$

for every $x, y \in \mathbb{R}^m$, $t \ge 0$. Suppose also that

$$E\|\xi\|^2 < \infty$$
.

Then, there exist a unique solution such that for any T > 0

$$E\left(\sup_{0\leq t\leq T}\|X_t\|^2\right)\leq C_{T,K}(1+E\|\xi\|^2),$$

where $C_{T,K}$ depends on T and K.

Proof:

(i) Define the Picard iterations by putting $X_t^{(0)} = \xi$ and for $k \ge 0$,

$$X_t^{(k+1)} = \xi + \int_0^t b(s, X_s^{(k)}) ds + \int_0^t \sigma(s, X_s^{(k)}) dB_s.$$

It is easy to check that

$$E\left(\sup_{0 \le t \le T} \|X_t^{(1)}\|^2\right) \le C_{T,K}(1+E\|\xi\|^2).$$

Then $X_t^{(k+1)} - X_t^{(k)} = V_t + M_t$, where

$$V_t = \int_0^t [b(s, X_s^{(k)}) - b(s, X_s^{(k-1)})] ds$$

and

$$M_t = \int_0^t [\sigma(s, X_s^{(k)}) - \sigma(s, X_s^{(k-1)})] dB_s.$$

←□ → ←□ → ←□ → ←□ → へ○

(ii) By the maximal inequality for square integrable martingales,

$$E\left[\sup_{0 \le t \le T} \|M_t\|^2\right] \le 4E \int_0^T \|\sigma(s, X_s^{(k)}) - \sigma(s, X_s^{(k-1)})\|^2 ds$$

$$\le 4K^2 \int_0^T E \|X_s^{(k)} - X_s^{(k-1)}\|^2 ds.$$

On the other hand,

$$E\left[\sup_{0 \le t \le T} \|V_t\|^2\right] \le K^2 T \int_0^T E \|X_s^{(k)} - X_s^{(k-1)}\|^2 ds,$$

which leads to

$$E\left[\sup_{0\leq t\leq T}\|X_t^{(k+1)}-X_t^{(k)}\|^2\right]\leq L\int_0^T E\|X_s^{(k)}-X_s^{(k-1)}\|^2ds,$$

where $L = 2K^2(4 + T)$.

<ロ > → □ > → □ > → □ > → □ → ○ へ ○

(iii) By iteration,

$$E\left[\sup_{0 \le t \le T} \|X_t^{(k+1)} - X_t^{(k)}\|^2\right] \le C^* \frac{(LT)^k}{k!},$$

where $C^* = E\left[\max_{0 \leq t \leq T} \|X^{(1)} - \xi\|^2\right] < \infty$. Consider the Banach space \mathcal{E}_T of continuous adapted processes $X = \{X_t, t \in [0, T]\}$ such that

$$\|X\|_{\mathcal{E}_{\mathcal{T}}} := \left(E\left(\sup_{0 \leq t \leq \mathcal{T}} \|X_t\|^2\right)\right)^{\frac{1}{2}} < \infty.$$

Then the sequence $X^{(k)}$ converges in $\mathcal{E}_{\mathcal{T}}$ to a limit X which satisfies the equation. \square

• Under the assumptions of the theorem, if $E\|\xi\|^p < \infty$ for some $p \ge 2$, then the solution satisfies the following moments estimate,

$$E\left[\sup_{t\in[0,T]}\|X_t\|^p\right]\leq C_{T,K,p}(1+E[\|\xi\|^p]),$$

where C depends on K, T and p.

The proof uses Burkholder-David-Gundy inequality.

Linear stochastic differential equations

The geometric Brownian motion

$$X_t = \xi e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma B_t}$$

solves the linear SDE

$$dX_t = \mu X_t dt + \sigma X_t dB_t.$$

More generally, the solution of the homogeneous linear SDE

$$dX_t = b(t)X_tdt + \sigma(t)X_tdB_t$$

where b(t) and $\sigma(t)$ are continuous functions, is

$$X_t = \xi \exp \left[\int_0^t \left(b(s) - \frac{1}{2}\sigma^2(s) \right) ds + \int_0^t \sigma(s) dB_s \right].$$

Ornstein-Uhlenbeck process

Consider the SDE (Langevin equation)

$$dX_t = a(\mu - X_t) dt + \sigma dB_t$$

with initial condition $X_0 = x$, where $a, \sigma > 0$ and μ is a real number.

• The process $Y_t = X_t e^{at}$, satisfies

$$dY_t = aX_te^{at}dt + e^{at}dX_t = a\mu e^{at}dt + \sigma e^{at}dB_t.$$

Thus,

$$Y_t = x + \mu(e^{at} - 1) + \sigma \int_0^t e^{as} dB_s,$$

which implies

$$X_t = \mu + (x - \mu)e^{-at} + \sigma e^{-at} \int_0^t e^{as} dB_s.$$

• The process X_t is Gaussian with mean and covariance given by :

$$E(X_t) = \mu + (x - \mu)e^{-at},$$

$$Cov(X_t, X_s) = \sigma^2 e^{-a(t+s)} E\left[\left(\int_0^t e^{ar} dB_r\right) \left(\int_0^s e^{ar} dB_r\right)\right]$$

$$= \sigma^2 e^{-a(t+s)} \int_0^{t \wedge s} e^{2ar} dr$$

$$= \frac{\sigma^2}{2a} \left(e^{-a|t-s|} - e^{-a(t+s)}\right).$$

• The law of X_t is the normal distribution

$$N\left(\mu+(x-\mu)e^{-at},\frac{\sigma^2}{2a}\left(1-e^{-2at}\right)\right)$$

and it converges, as t tends to infinity to the normal law

$$\nu = N(\mu, \frac{\sigma^2}{2a}).$$

This distribution is called invariant or stationary.

Exercise: Show that if $\mathcal{L}(\xi) = \nu$, then X_t has law ν , $\forall t \geq 0$.

General linear SDEs

Consider the equation

$$dX_t = (a(t) + b(t)X_t) dt + (c(t) + d(t)X_t) dB_t$$

with initial condition $\xi = x$, where a, b, c and d are continuous functions. The solution to this equation is given by

$$X_t = U_t \left(x + \int_0^t \left[a(s) - c(s)d(s) \right] U_s^{-1} ds + \int_0^t c(s) \ U_s^{-1} dB_s \right),$$

where

$$U_t = \exp\left(\int_0^t b(s)ds + \int_0^t d(s)dB_s - \frac{1}{2}\int_0^t d^2(s)ds\right).$$

Proof: Write $X_t = U_t V_t$, where $dV_t = \alpha(t) dt + \beta(t) dB_t$, and find α and β . \square

Stochastic flows

- Suppose that the coefficients are globally Lipschitz with linear growth.
- Denote by X_t^x the solution with initial condition $x \in \mathbb{R}^m$.

Proposition

Let T > 0. For every $p \ge 2$, there exists a constant $C_{p,T}$ such that for each $0 \le s \le t \le T$ and $x, y \in \mathbb{R}^m$,

$$E(\|X_t^x - X_s^y\|^p) \le C_{p,T}(\|x - y\|^p + |t - s|^{p/2}).$$

As a consequence, there exists a version $\{\widetilde{X}^x_t, t \geq 0, x \in \mathbb{R}^m\}$ of the process $\{X^x_t, t \geq 0, x \in \mathbb{R}^m\}$ which is continuous in $(t, x) \in [0, \infty) \times \mathbb{R}^m$.

• The continuous process of continuous maps $\Psi_t : x \to X_t^x$ is called the *stochastic flow* associated to equation (1).

• Denote by $\{X_s^{t,x}, s \ge t\}$ the solution to equation (1) starting at time t with initial condition x:

$$X_s^{t,x} = x + \int_t^s b(\theta, X_{\theta}^{t,x}) d\theta + \int_t^s \sigma(\theta, X_{\theta}^{t,x}) dB_{\theta}, \quad s \geq t.$$

• One can also snow that there is a version of the process $\{X_s^{t,x}, s \ge t \ge 0, x \in \mathbb{R}^m\}$ which is continuous in all its variables.

Proposition (Flow property)

If
$$s \geq t$$
,

$$X_s^{0,x} = X_s^{t,X_t^{0,x}},$$
 a.s.

Proof:

• Almost surely, for any $y \in \mathbb{R}^m$,

$$\textit{X}_{s}^{t,y} = \textit{y} + \int_{t}^{s}\textit{b}(\theta,\textit{X}_{\theta}^{t,y})\textit{d}\theta + \int_{t}^{s}\sigma(\theta,\textit{X}_{\theta}^{t,y})\textit{d}B_{\theta}.$$

Substituting y by $X_t^{0,x}$ yields

$$X_{s}^{t,X_{t}^{0,x}} = X_{t}^{0,x} + \int_{t}^{s} b(\theta, X_{\theta}^{t,X_{t}^{0,x}}) d\theta + \int_{t}^{s} \sigma(\theta, X_{\theta}^{t,X_{t}^{0,x}}) dB_{\theta}.$$

• On the other hand, $X_s^{0,x}$ is also a solution to this equation for $s \ge t$ because

$$X_s^{0,x} = X_t^{0,x} + \int_t^s b(\theta, X_\theta^{0,x}) d\theta + \int_t^s \sigma(\theta, X_\theta^{0,x}) dB_\theta.$$

Then, the uniqueness of the solution implies the result. \Box

Markov property

Theorem

The solution X_t is a Markov process with respect to the Brownian filtration \mathcal{F}_t . Furthermore, for any $f \in C_b(\mathbb{R}^m)$ and $t \geq s$, we have

$$E[f(X_t)|\mathcal{F}_s] = (P_{s,t}f)(X_s),$$

where $P_{s,t}f(x) = E[f(X_t^{s,x})].$

• If the coefficients are time independent, $P_{s,t}$ can be written as P_{t-s} , where $\{P_t, t \ge 0\}$ is the semigroup of operators with infinitesimal generator

$$L = \frac{1}{2} \sum_{i,k=1}^{m} a_{ik} \frac{\partial^2 f}{\partial x_i \partial x_k} + \sum_{i=1}^{m} b_i \frac{\partial f}{\partial x_i},$$

where $a_{ik} = \sum_{j=1}^{d} \sigma_{ij} \sigma_{kj}$.

Sketch of the proof:

(i) $X_t^{s,x}$ is a measurable function of x and the Brownian increments $\{B_{s+u} - B_s, u \ge 0\}$, that is

$$X_t^{s,x} = \Phi(x, B_{s+u} - B_s, u \ge 0).$$

(ii) This implies, by the flow property, that

$$X_t^{0,x} = \Phi(X_s^{0,x}, B_{s+u} - B_s, u \ge 0),$$

where $X_s^{0,x}$ is \mathcal{F}_s -measurable and $\{B_{s+u}-B_s, u\geq 0\}$ is independent of \mathcal{F}_s .

(iii) Therefore,

$$E[f(\Phi(X_s^{0,x},B_{s+u}-B_s,u\geq 0))|\mathcal{F}_s] = E[f(\Phi(y,B_{s+u}-B_s,u\geq 0))]|_{y=X_s^{0,x}},$$

which yields the result. \square

Numerical approximations

Euler's scheme :

• Fix T > 0 and set $t_i = \frac{iT}{n}$, = 0, 1, ..., n. The *Euler's method* consists in the recursive scheme :

$$X^{(n)}(t_i) = X^{(n)}(t_{i-1}) + b(t_{i-1}, X^{(n)}(t_{i-1})) \frac{T}{n} + \sigma(t_{i-1}, X^{(n)}(t_{i-1})) \Delta B_i,$$

i = 1, ..., n, where $\Delta B_i = B_{t_i} - B_{t_{i-1}}$.

The initial value is $X_0^{(n)} = x_0$.

• Inside the interval (t_{i-1}, t_i) the value of the process $X_t^{(n)}$ is given by linear interpolation, or by the equation

$$X_t^{(n)} = x_0 + \int_0^t b(\kappa_n(s), X_{\kappa_n(s)}) + \int_0^t \sigma(\kappa_n(s), X_{\kappa_n(s)}) dB_s,$$

where $\kappa_n(s) = t_{i-1}$ if $s \in [t_{i-1}, t_i)$.

Proposition

The error of the Euler's method is of order $n^{-\frac{1}{2}}$:

$$\sqrt{E\left[\left(X_T-X_T^{(n)}\right)^2\right]}\leq C\sqrt{\frac{T}{n}}.$$

• In order to simulate a trajectory of the solution using Euler's method, it suffices to simulate the values of n independent random variables ξ_1, \ldots, ξ_n with distribution N(0,1), and replace ΔB_i by $\sqrt{\frac{7}{n}}\xi_i$.

Milstein scheme :

• Euler's method can be improved by adding a correction term. To simplify we assume m = d = 1 and that the coefficients are time independent. We can write

$$X(t_i) = X(t_{i-1}) + \int_{t_{i-1}}^{t_i} b(X_s) ds + \int_{t_{i-1}}^{t_i} \sigma(X_s) dB_s.$$
 (2)

Euler's method is based on the approximations

$$\int_{t_{i-1}}^{t_i} b(X_s) ds \approx b(X(t_{i-1})) \frac{T}{n},$$

$$\int_{t_{i-1}}^{t_i} \sigma(X_s) dB_s \approx \sigma(X(t_{i-1})) \Delta B_i.$$

• Applying Itô's formula to the processes $b(X_s)$ and $\sigma(X_s)$, we obtain

$$X(t_{i}) - X(t_{i-1})$$

$$= \int_{t_{i-1}}^{t_{i}} \left[b(X(t_{i-1})) + \int_{t_{i-1}}^{s} \left(bb' + \frac{1}{2}b''\sigma^{2} \right) (X_{r}) dr \right]$$

$$+ \int_{t_{i-1}}^{s} (\sigma b') (X_{r}) dB_{r} ds$$

$$+ \int_{t_{i-1}}^{t_{i}} \left[\sigma(X(t_{i-1})) + \int_{t_{i-1}}^{s} \left(b\sigma' + \frac{1}{2}\sigma''\sigma^{2} \right) (X_{r}) dr \right]$$

$$+ \int_{t_{i-1}}^{s} (\sigma \sigma') (X_{r}) dB_{r} dB_{s}$$

$$= b(X(t_{i-1})) \frac{T}{n} + \sigma(X(t_{i-1})) \Delta B_{i} + \int_{t_{i-1}}^{t_{i}} \left(\int_{t_{i-1}}^{s} (\sigma \sigma') (X_{r}) dB_{r} dB_{s} + R_{i,n} dB_{r} dB_{s} \right)$$

where the term $R_{i,n}$ is of lower order.

This double stochastic integral can also be approximated by

$$(\sigma\sigma')(X(t_{i-1}))\int_{t_{i-1}}^{t_i}\left(\int_{t_{i-1}}^s dB_r\right)dB_s.$$

The rules of Itô stochastic calculus lead to

$$\begin{split} \int_{t_{i-1}}^{t_i} \left(\int_{t_{i-1}}^{s} dB_r \right) dB_s &= \int_{t_{i-1}}^{t_i} \left(B_s - B_{t_{i-1}} \right) dB_s \\ &= \frac{1}{2} \left(B_{t_i}^2 - B_{t_{i-1}}^2 \right) - B_{t_{i-1}} \left(B_{t_i} - B_{t_{i-1}} \right) - \frac{T}{2n} \\ &= \frac{1}{2} \left[(\Delta B_i)^2 - \frac{T}{n} \right]. \end{split}$$

• The Milstein's method consists in the recursive scheme :

$$X^{(n)}(t_i) = X^{(n)}(t_{i-1}) + b(X^{(n)}(t_{i-1}))\frac{T}{n} + \sigma(X^{(n)}(t_{i-1})) \Delta B_i + \frac{1}{2} (\sigma \sigma') (X^{(n)}(t_{i-1})) \left[(\Delta B_i)^2 - \frac{T}{n} \right].$$

• One can show that the error is of order $\frac{T}{n}$, that is,

$$\sqrt{E\left[\left(X_T-X_T^{(n)}\right)^2\right]}\leq C\frac{T}{n}.$$

Proposition (Yamada-Watanabe '71)

Consider the 1-dimensional SDE

$$dX_t = b(t, X_t) + \sigma(t, X_t)dB_t,$$

where the coefficients have linear growth and satisfy

$$|b(t,x) - b(t,y)| \le K|x - y|$$

$$|\sigma(t,x) - \sigma(t,y)| \le h(|x - y|),$$

with $h:[0,\infty)\to[0,\infty)$ is strictly increasing, h(0)=0 and

$$\int_0^{\epsilon} h^{-2}(x) dx = \infty, \quad \forall \epsilon > 0.$$

Then strong uniqueness holds.

• Example : $\sigma(x) = |x|^{\alpha}$ with $\alpha \ge \frac{1}{2}$ (Girsanov '62).

◆ロ > ◆団 > ◆ 注 > ◆ 注 → り へ ②

Proof in the case b = 0, $\sigma(x) = |x|^{\alpha}$, $\alpha \in (\frac{1}{2}, 1]$:

• Let X and \tilde{X} be two solutions with the same initial condition. Then $Y = X - \tilde{X}$ satisfies

$$Y_t = \int_0^t \left[|X_{\mathtt{S}}|^{lpha} - | ilde{X}_{\mathtt{S}}|^{lpha}
ight] dB_{\mathtt{S}}.$$

• Applying Ito's formula to $\psi_n(x)$ such that $\psi''(x) = n\mathbf{1}_{[-\frac{1}{n},\frac{1}{n}]}(x)$, yields

$$E[\psi_n(Y_t)] = \frac{n}{2} E\left[\int_0^t \mathbf{1}_{\left[-\frac{1}{n},\frac{1}{n}\right]}(Y_s) \left[|X_s|^{\alpha} - |\tilde{X}_s|^{\alpha}\right]^2 ds\right].$$

which implies

$$E[\psi_n(Y_t)] \leq \frac{n}{2}E\left[\int_0^t \mathbf{1}_{[-\frac{1}{n},\frac{1}{n}]}(Y_s)|Y_s|^{2\alpha}ds\right] \leq \frac{t}{2}n^{1-2\alpha} \to 0.$$

Therefore, $E[|Y_t|] = 0$.

Weak solutions

Definition

A *weak solution* is a triple (X, B), (Ω, \mathcal{F}, P) and \mathcal{F}_t , such that :

- (i) \mathcal{F}_t is a filtration in a probability space (Ω, \mathcal{F}, P) , right-continuous and containing all P-null sets.
- (ii) X_t is a continuous m-dimensional adapted process and B_t is an \mathcal{F}_t -Brownian motion on \mathbb{R}^d .
- (iii) Equation (1) is satisfied.
 - The filtration \mathcal{F}_t may not be the augmentation of the filtration generated by B and the initial condition.

Example:

Consider the SDE

$$X_t = \int_0^t \operatorname{sgn}(X_s) dB_s$$

where
$$sgn(x) = \mathbf{1}_{(0,\infty)}(x) - \mathbf{1}_{(-\infty,0]}(t)$$
.

• One can construct a weak solution by choosing a Brownian motion X_t and

$$B_{s}=\int_{0}^{t}\operatorname{sgn}(X_{s})dX_{s}.$$

- In this case, strong uniqueness does not hold, but there is uniqueness in law of all weak solutions.
- The filtration generated by X_t is strictly larger than the filtration generated by B_t (which is the filtration generated by $|X_t|$).

Proposition

Consider the SDE

$$dX_t = b(t, X_t)dt + dB_t, \quad t \in [0, T]$$

where B_t is a d-dimensional Brownian motion and $b:[0,T]\times\mathbb{R}^d\to\mathbb{R}^d$ satisfies

$$||b(t,x)|| \leq K(1+||x||).$$

Then there is a weak solution for any initial distribution μ .

Proof:

- To simplify we assume that the initial condition is constant $\xi = x$.
- By Girsanov theorem, if X_t is a Brownian motion starting from x, the process

$$B_t = X_t - x - \int_0^t b(s, X_s) ds$$

is a Brownian motion starting from zero under the probability \boldsymbol{Q} such that

$$Z_{T} = \frac{dQ}{dP} = \exp\left\{\sum_{j=1}^{d} \int_{0}^{T} b_{j}(s, X_{s}) dX_{s}^{j} - \frac{1}{2} \int_{0}^{T} \|b(s, X_{s})\|^{2} ds\right\}.$$

• For each $t \ge 0$, consider the second-order differential operator

$$L_t f = \frac{1}{2} \sum_{i,k=1}^m a_{ik} \frac{\partial^2 f}{\partial x_i \partial x_k} + \sum_{i=1}^m b_i \frac{\partial f}{\partial x_i},$$

where $a_{ik} = \sum_{j=1}^{d} \sigma_{ij} \sigma_{kj}$.

Proposition

Let (X, B), (Ω, \mathcal{F}, P) , \mathcal{F}_t , be a weak solution to equation (1). Then, for any $f \in C^{1,2}([0,\infty) \times \mathbb{R}^m)$, the process

$$M_t^f = f(t, X_t) - f(0, X_0) - \int_0^t \left(\frac{\partial f}{\partial s} + L_s f \right) (s, X_s) ds$$

is a continuous local martingale, such that

$$\langle M^f, M^g
angle_t = \sum_{i,k=1}^m \int_0^t a_{ik}(s, X_s) rac{\partial f}{\partial x_i}(s, X_s) rac{\partial g}{\partial x_i}(s, X_s) ds.$$

Proof: Use Ito formula and the stopping times

$$S_n = \inf \left\{ t \geq 0, \|X_t\| \geq n \text{ or } \int_0^t \sigma_{ij}^2(s, X_s) ds \geq n \text{ for some } (i, j) \right\}.$$

Ш

• If f has compact support and the coefficients σ_{ij} are bounded in the support of f, then M_t^f is a square integrable martingale.

Martingale problem

Definition

A probability P on $C([0,\infty);\mathbb{R}^m)$ under which

$$M_t^f = f(y(t)) - f(y(0)) - \int_0^t (L_s f)(y(s)) ds$$

is a continuous local martingale for every $f \in C^2(\mathbb{R}^m)$ is called a solution to the *martingale problem* associated with L_t .

- The existence of solution to the martingale problem is equivalent to the existence of a weak solution.
- If the coefficients b and σ are bounded and continuous, then there exist a solution to the martingale problem for any initial distribution μ such that $\int_{\mathbb{R}^m} \|x\|^{2m} \mu(\mathrm{d}x) < \infty \text{ for some } m > 1.$

Feynman -Kac formula

• Fix T > 0. Consider functions $f : \mathbb{R}^m \to \mathbb{R}$, $k : [0, T] \times \mathbb{R}^m \to [0, \infty)$ such that $|f(x)| \le L(1 + ||x||^{2\lambda})$ for some $\lambda \ge 1$.

Theorem

Let $v:[0,T]\times\mathbb{R}^m\to\mathbb{R}^m$ of class $C^{1,2}$, bounded by $M(1+\|x\|^{2\mu})$, where $\mu\geq 1$, that satisfies the Cauchy problem

$$\boxed{ \frac{\partial v}{\partial t} + L_t v = k v}, \quad (t, x) \in [0, \infty) \times \mathbb{R}^m$$

with terminal condition v(T,x) = f(x), $x \in \mathbb{R}^m$. Then v(t,x) admits the stochastic representation

$$v(t,x) = E^{t,x} \left[f(X_T) \exp \left\{ -\int_t^T k(\theta, X_{\theta}) d\theta \right\} \right],$$

where we denote by $E^{t,x}$ the expectation of X_s starting at time t at the point x.

Proof:

Applying Itô's formula we obtain that the process

$$Y_s = v(s, X_s) \exp\left\{-\int_t^s k(\theta, X_{ heta}) d\theta
ight\}$$

is a continuous local martingale localized by the sequence of stopping times $S_n = \inf\{s \ge t : ||X_s|| \ge n\}$.

• Therefore, $v(t,x) = E[Y_{T \wedge S_n}]$ and we obtain

$$v(t,x) = E^{t,x} \left[v(S_n, X_{S_n}) \exp \left\{ - \int_t^{S_n} k(\theta, X_{\theta}) d\theta \right\} \mathbf{1}_{\{S_n \le T\}} \right]$$

$$+ E^{t,x} \left[f(X_T) \exp \left\{ - \int_t^T k(\theta, X_{\theta}) d\theta \right\} \mathbf{1}_{\{S_n > T\}} \right].$$

We know that

$$E^{t,x}\left[\sup_{t\leq s\leq T}\|X_s\|^{2n}\right]\leq C(1+\|x\|^{2n}).$$

By dominated convergence, the second term converges to

$$E^{t,x}\left[f(X_T)\exp\left\{-\int_t^T k(\theta,X_{\theta})d\theta\right\}\right].$$

The first term can be estimated by

$$E^{t,x}[|v(S_n,X_{S_n})|\mathbf{1}_{\{S_n\leq T\}}]\leq M(1+n^{2\mu})P^{t,x}(S_n\leq T).$$

and

$$P^{t,x}(S_n \le T) = P^{t,x} \left(\sup_{t \le s \le T} \|X_s\| \ge n \right) \le n^{-2N} E^{t,x} \left[\sup_{t \le s \le T} \|X_s\|^{2N} \right]$$

\$\leq Cn^{-2N} (1 + \|x\|^{2N}),\$

and it suffices to choose $N>\mu$ to show that the second term tends to zero. \square

The Malliavin calculus

- Consider a *d*-dimensional Brownian motion $B = \{B_t, 0 \le t \le T\}$ and let \mathcal{F}_t be its filtration augmented with the null sets.
- An \mathcal{F}_T -measurable random variable F is said to be *cylindrical* if it can be written as

$$F = f(\int_0^T h_s^1 dB_s, \dots, \int_0^T h_s^n dB_s),$$

where $h^i \in L^2([0,T];\mathbb{R}^d)$ and $f:\mathbb{R}^n \to \mathbb{R}$ is a C^∞ function such that f all its partial derivatives have polynomial growth.

• The space S of cylindrical random variables is dense in $L^p(\Omega, \mathcal{F}_T, P)$ for any $p \ge 1$.

Definition

The Malliavin derivative of $F \in \mathcal{S}$ is the \mathbb{R}^d -valued process given by

$$D_t F = \sum_{i=1}^n h_t^i \frac{\partial f}{\partial x_i} (\int_0^T h_s^1 dB_s, \dots, \int_0^T h_s^n dB_s).$$

Proposition (Integration by parts formula)

Let $F \in \mathcal{S}$ and let $\{u_t, t \in [0, T]\}$ be an m-dimensional progressively measurable process that satisfies Novikov condition. Then

$$E\left(\int_0^T \langle D_s F, u_s \rangle ds\right) = E\left(F\int_0^T u_s dB_s\right).$$

Proof:

(i) Let $F = f(\int_0^T h_s^1 dB_s, \dots, \int_0^T h_s^n dB_s)$. Fix $\epsilon > 0$ and write

$$\textit{F}_{\epsilon} = \textit{f}\left(\int_{0}^{T}\textit{h}_{s}^{1}\textit{d}\left(\textit{B}_{s} + \epsilon\int_{0}^{s}\textit{u}_{r}\textit{d}r\right), \ldots, \int_{0}^{T}\textit{h}_{s}^{n}\textit{d}\left(\textit{B}_{s} + \epsilon\int_{0}^{s}\textit{u}_{r}\textit{d}r\right)\right).$$

(ii) From Girsanov's theorem, we have

$$E[F_{\epsilon}] = E\left(\exp\left(\epsilon\int_{0}^{T}u_{r}dB_{s} - \frac{\epsilon^{2}}{2}\int_{0}^{T}u_{r}^{2}dr\right)F\right),$$

which implies

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} (E[F_\epsilon] - E[F]) = E\left(F \int_0^T u_s dB_s\right).$$

(iii) On the other hand.

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} (E[F_{\epsilon}] - E[F])$$

$$= E\left(\int_{0}^{T} \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \left(\int_{0}^{T} h_{s}^{1} dB_{s}, \dots, \int_{0}^{T} h_{s}^{n} dB_{s}\right) \langle h_{s}^{i}, u_{s} \rangle ds\right)$$

$$= E\left(\int_{0}^{T} \langle D_{s}F, u_{s} \rangle ds\right). \quad \Box$$

• For any $p \ge 1$ we denote by \mathcal{L}_T^p the space of d-dimensional measurable processes $\{X_t, t \in [0, T]\}$ such that

$$E\left(\left(\int_0^T \|X_t\|^2 dt\right)^{\frac{\rho}{2}}\right) < \infty.$$

Proposition

The operator D is closable from $L^p(\Omega, \mathcal{F}_T, P)$ into \mathcal{L}_T^p , for any $p \geq 1$.

Proof in the case p > 1:

- (i) Let $F_n \in \mathcal{S}$, $F_n \stackrel{L^p}{\to} 0$ and such that $DF_n \stackrel{\mathcal{L}^p}{\to} X$. We claim that X = 0.
- (ii) For any $h \in L^2([0, T]; \mathbb{R}^d)$ and $G \in \mathcal{S}$, we have

$$\lim_{n\to\infty} E\left(\int_0^T G\langle D_s F_n,h_s\rangle ds\right) = E\left(G\int_0^T \langle X_s,h_s\rangle ds\right)$$

and

$$egin{aligned} E\left(\int_0^T G\langle D_sF_n,h_s
angle ds
ight) &= E\left(\int_0^T \langle D_s(GF_n),h_s
angle ds
ight) \ &- E\left(\int_0^T F_n\langle D_sG,h_s
angle ds
ight) \ &= E\left(F_n\left[G\int_0^T h_s dB_s - \int_0^T \langle D_sG,h_s
angle ds
ight]
ight)
ightarrow 0. \end{aligned}$$

As a consequence, we obtain $E\left(G\int_0^T \langle X_s,h_s\rangle ds\right)=0$, which implies X=0. \square

• The domain of D, denoted by $\mathbb{D}^{1,p}$ is the closure of S under the norm

$$\|F\|_{1,p} = \left(E(|F|^p) + E(\|DF\|_{L^2([0,T];\mathbb{R}^d)}^p\right)^{\frac{1}{p}}.$$

• For p > 1 we can consider the adjoint operator δ of D. It is a densely defined operator from \mathcal{L}_T^p into $L^p(\Omega, \mathcal{F}_T, P)$, characterized by the duality relation

$$E(F\delta(u)) = E\left(F\int_0^T u_s dB_s\right), \quad F \in \mathbb{D}^{1,p}.$$

• The domain of δ in $\mathcal{L}^{\rho}_{\mathcal{T}}$ contains the space of d-dimensional progressively measurable processes u in $\mathcal{L}^{\rho}_{\mathcal{T}}$ and

$$\delta(u) = \int_0^T u_s dB_s.$$

Clark-Ocone formiula

Proposition

Let $F \in \mathbb{D}^{1,2}$. Then,

$$F = E(F) + \int_0^T E(D_t F | \mathcal{F}_t) dB_t.$$

Proof:

• Assume d = 1. For any $v \in L^2(\mathcal{P})$ we can write, using the duality relationship

$$E\left(F\int_0^T v_t dB_t\right) = E(F\delta(v)) = E\left(\int_0^T D_t F v_t dt\right)$$
$$= \int_0^T E[E(D_t F | \mathcal{F}_t) v_t] dt.$$

• If we assume that $F = E(F) + \int_0^T u_t dB_t$, then by the Itô isometry

$$E\left(F\int_0^T v_t dB_t\right) = \int_0^T E(u_t v_t) dt.$$

Comparing these two expressions we deduce that

$$u_t = E(D_t F | \mathcal{F}_t)$$

almost everywhere in $\Omega \times [0, T]$.

• If $F \in \mathcal{S}$, the kth derivative of F is the k-parameter process with values in $\mathbb{R}^{d \times k}$ given by

$$D_{t_1,\ldots,t_k}^k F = D_{t_1}\cdots D_{t_k} F.$$

• For any $p \ge 1$ the operator D^k is closable on S. We denote by $\mathbb{D}^{k,p}$ the closure of S with respect to the norm

$$||F||_{k,p} = \left(E[|F|^p] + \sum_{j=1}^k E(||DF||_{L^2([0,T]^j;\mathbb{R}^d)}^p)\right)^{\frac{1}{p}}.$$

Set

$$\mathbb{D}^{\infty} = \cap_{p>1} \cap_{k>1} \mathbb{D}^{k,p}.$$

Existence and regularity of densities

- Let $F = (F^1, \dots, F^m)$ be such that $F^i \in \mathbb{D}^{1,2}$ for $i = 1, \dots, m$.
- The Malliavin matrix of F is

$$\gamma_F = (\langle DF^i, DF^j \rangle_{L^2([0,T];\mathbb{R}^d)})_{1 \leq i,j \leq m}.$$

Theorem (Criterion for absolute continuity)

If det $\gamma_F > 0$ a.s., then the law of F is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^m .

Theorem (Criterion for smoothness of the density)

If $F_i \in \mathbb{D}^{\infty}$ and $E[(\det \gamma_F)^{-p}] < \infty$ for all $p \ge 1$, then the law of F possesses and infinitely differentiability density.

Let $F = X_t$, where $\{X_t, t \ge 0\}$ is the diffusion process on \mathbb{R}^m

$$dX_t = b(X_t)dt + \sum_{k=1}^d \sigma_k(X_t)dB_t^k, \qquad X_0 = x_0.$$

Theorem

If the Lie algebra spanned by $\{\sigma_1,\ldots,\sigma_d\}$ at $x=x_0$ is \mathbb{R}^m , where $\sigma_k=\sum_{i=1}^m\sigma_{ik}\frac{\partial}{\partial x_i}$, then for any t>0 $(\det\gamma_{X_t})^{-1}\in\cap_{p\geq 2}L^p(\Omega)$ and the density $p_t(x)$ of X_t is \mathcal{C}^∞ .

• $p_t(x)$ satisfies the Fokker-Planck equation

$$\left(-\frac{\partial}{\partial t}+L^*\right)p_t=0,$$

where

$$L = \frac{1}{2} \sum_{i,i=1}^{m} (\sigma \sigma^{T})_{ij} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{m} b_{i} \frac{\partial}{\partial x_{i}}.$$

Then, $p_t \in C^{\infty}$ means that $\frac{\partial}{\partial t} - L^*$ is hypoelliptic (Hörmander's theorem).

References:

- F. Baudoin: Diffusion Processes and Stochastic Calculus. EMS, 2010.
- 2 I. Karatzas and S. E. Shreve: *Brownian Motion and Stochastic Calculus*. Springer, 1998.
- On D. Nualart: Lecture Notes on Stochastic Processes.
- D. Nualart : The Malliavin calculus and related topics. Springer, 2005.