Optimización del Modelo de Detección de Fraude minimizando Falsas Alarmas en Clientes Frecuentes

Adrian Rodríguez

29 de mayo de 2025

1 Resumen Ejecutivo

El presente informe sintetiza las actividades de exploración, ingeniería de características, modelado y evaluación realizadas sobre un conjunto de **1 852 394 transacciones** (enero-2019 \rightarrow diciembre-2020) con el fin de reducir las **falsas alarmas** (FP) en el segmento de **clientes frecuentes legítimos** sin sacrificar la capacidad de detección de fraude (recall).

Los hallazgos clave son:

- Clientes frecuentes (≥ 4 compras/mes en el mismo comercio) representan 1.4 % de las transacciones y exhiben tasas de fraude sensiblemente menores al promedio.
- El modelo base LightGBM (AUC ≈ 0.993) logró un recall ≈ 0.79 con un FP Rate global 0.057 % y FP Rate en clientes frecuentes 0.052 % tras optimizar el umbral.
- Introducir métricas personalizadas —especialmente business_fp_tp_ratio— y pesos diferenciados para transacciones legítimas de clientes frecuentes, seguido de búsqueda bayesiana con Optuna, produjo un modelo optimizado que:
 - Eliminó los FP en clientes frecuentes (0 incidencias).
 - Redujo los FP globales a 0.017 % (-70 % vs. base).
 - **Aumentó** el recall a **0,86** (+8 pp).
 - Mejoró la relación (TP+FP)/TP de $1,384 \rightarrow 1,103$.

Estos resultados confirman que la estrategia de costos asimétricos y métrica compuesta alinea efectivamente el entrenamiento con los objetivos de negocio.

2 Metodología

La metodología sigue cinco fases iterativas (Fig. 1):

- 1. Exploración de Datos (EDA) Revisión de integridad, desbalance de clases (fraude 0,52 %), identificación de correlaciones y patrones temporales.
- 2. **Definición de Clientes Frecuentes** Análisis específico (Notebook 1) para establecer un umbral de 4 compras/mes/comercio basado en la relación inversa frecuencia-fraude.
- 3. Ingeniería de Características Generación de 50+ variables que capturan comportamiento, temporalidad, geolocalización y anomalías de monto (Notebook 2).
- Modelado Supervisado LightGBM → modelo base y variantes con métricas feval custom; esquema train (≤ sep-2020) / valid (oct-nov) / test (dic-2020) (Notebook 3).

5. Optimización y Evaluación

- Búsqueda de umbral para F1-score.
- Definición y prueba de 5 métricas personalizadas.
- Optuna (50 iteraciones) minimizando business_fp_tp_ratio.

3 Descripción de la Implementación Práctica

3.1 Infraestructura y Librerías

- Python 3.11, pandas, numpy, LightGBM 3.3, Optuna 3.6, Matplotlib y Seaborn.
- Ejecución local (JupyterLab) con GPU deshabilitada (dataset ~400 MB).
- Versionado de notebooks en Git.

3.2 Preparación de Datos

Paso	Descripción	Resultado	
Carga CSV	transactions.csv (35 cols)	1 852 394 filas	
Limpieza	Sin nulos ni duplicados	_	
Split temporal	Train $\leq 2020\text{-}09$ / Valid 2020-10-01 \rightarrow 11-30 / Test 2020-12	Distribuciones consistentes	

Table 1: Resumen de la preparación de datos.

3.3 Ingeniería de Características

- is_frequent_customer (flag clave, 1,4 %): times shopped at merchant month \geq 4.
- Variables de recencia (days_since_prev_txn), regularidad (amt_zscore_last5), desviación geográfica (dist_vs_cust_median) y ciclo horario (hour_sin, hour_cos).
- Total final: **56 columnas** (41 numéricas, 15 categóricas tipo *category*).

3.4 Modelo Base

```
params = {
    "objective": "binary",
    "learning_rate": 0.05,
    "num_leaves": 64,
    "feature_fraction": 0.8,
    "bagging_fraction": 0.8,
    "bagging_freq": 5,
    "class_weight": "balanced",
    "metric": "auc",
    "n_estimators": 500,
    "early_stopping_rounds": 50,
}
```

- **AUC valid:** 0,993 (iter 70).
- Umbral óptimo F1 (valid) \rightarrow 0,921.

3.5 Métricas Personalizadas y Pesos

Métrica (feval)	Fórmula	Intención
fp_tp_ratio	(TP+FP)/TP	Métrica global compacta
business_fp_tp_ratio	<pre>fp_tp_ratio + penalizaciones</pre>	Enfoca precisión sin sacri-
	por $recall < 0.70$ o ratio > 5	ficar recall
balanced_cost	$3 \cdot \text{FP_freq} + 10 \cdot \text{FN}$	Castiga FP en frecuentes y
		FN
f05_score	-F-beta ($\beta = 0.5$)	Prioriza precisión
freq_fpr	FP_freq / Legít_freq	Monitor directo de FP fre-
		cuentes

Table 2: Métricas personalizadas definidas para la optimización.

Función de pesos make_weights eleva x10 el peso de transacciones legítimas de clientes frecuentes.

3.6 Optuna

- Objetivo: minimizar business_fp_tp_ratio.
- 50 trials, sampler=TPESampler(seed=42).
- Mejores hiperparámetros: learning_rate ≈ 0,0375, num_leaves 95, feature_fraction 0,63, bagging_fraction 0,74, bagging_freq 7, min_child_weight 4.

4 Análisis de Resultados y Comparativa de Estrategias

4.1 Indicadores Principales (Test dic-2020)

Modelo	Recall	FP Rate (%)	FP Frecuentes	(TP+FP)/TP
Base (umbral 0,921)	0.7868	0.0567	3	1.384
Optimizado (Optuna + business)	0.8643	0.0165	0	1.103

Table 3: Indicadores principales en el conjunto de test (diciembre 2020).

Figure 1: Comparación de matrices de confusión entre modelo base y modelo optimizado con métricas personalizadas y Optuna.

Eliminación total de falsos positivos en clientes frecuentes y reducción del 70 % de FP globales, mientras el recall aumenta 8 puntos.

4.2 Contribución de las Métricas Personalizadas

- 1. **fp_tp_ratio** sirvió de métrica de arranque, bajando FP totales a 0,009 %, pero sin mejorar recall.
- 2. **business_fp_tp_ratio** integró penalización de *recall* y límites aceptables de ratio; fue determinante para el *trade-off* recall/FP.
- 3. **balanced_cost** expuso la importancia de calibrar pesos; con parámetros actuales generó sobreajuste a recall (FP \u227).
- 4. freq_fpr útil como monitor secundario; sola no guió bien la optimización global.

4.3 Impacto de los Pesos Asimétricos

Sin pesos, la probabilidad de etiquetar **legítimos frecuentes** como fraude era 3 × mayor que el promedio. Aplicar **legit_freq_w** = 10 redujo ese riesgo drásticamente incluso antes de optimizar hiperparámetros.

4.4 Importancia de Características

LightGBM gain (top-10): amt, is_frequent_customer, merchant_share_of_cust_month, days_since_prev_txn, is_night, amt_zscore_last5, dist_vs_cust_median, hour_sin, category, is_first_time_merchant. La presencia explícita de is_frequent_customer permite al algoritmo diferenciar dinámicamente, disminuyendo la dependencia del peso manual en inferencia.

5 Conclusiones y Próximos Pasos

1. Validación de Hipótesis – Los clientes con ≥ 4 compras/mes/comercio muestran menores tasas de fraude; protegerlos mediante pesos y métrica dedicada mejora experiencia sin comprometer seguridad.

- 2. **Modelo Óptimo** La combinación LightGBM + business_fp_tp_ratio + Optuna logra el mejor balance: recall 0,86 y 0 FP en frecuentes.
- 3. **Generalización** El esquema temporal de *hold-out* sugiere robustez; se recomienda *back-testing* con 2021-Q1 para confirmar.
- 4. **Despliegue** Implementar calibración de umbral en producción (monitorización diaria) y registrar métricas separadas para clientes frecuentes.

5. Extensiones –

- Explorar **post-processing** con reglas expertas para FP residuales.
- Probar modelos deep learning tabulares (TabNet, FT-Transformer) bajo mismo feval.
- Ajustar dinámica del peso legit freq w según estacionalidad.