- 1. Let T be the triangle with vertices P = (3, 8, 7), Q = (4, 1, 3), and R = (3, 7, 7), with the given order.
 - a. Find an orientation vector for T .

b. Is T visible to a viewer located at the point E = (0, 4, 4)?

c. Suppose that a single light source shines light parallel to the vector L = < 2, 4, 2 >. Moreover, T has color (112, 62, 215) at normal incidence. Using the diffuse shading model discussed in class, what color does T appear to be? We are using an integer color model with 8-bit components

- 2. Let T be the triangle with vertices P = (9, 6, 4), Q = (3, 5, 2), and R = (6, 3, 3), with the given order.
 - a. Find an orientation vector for T

b. Is T visible to a viewer located at the point E = (4, 1, -2)?

c. Suppose that a single light source shines light parallel to the vector L = < 4, 0, 7 >. Moreover, T has color (124, 89, 127) at normal incidence. Using the diffuse shading model discussed in class, what color does T appear to be? We are using an integer color model with 8-bit components 3. Explain why surface receives the maximum amount of light when the light direction is parallel to the surface normal.

- 4. Suppose that the center of projection is the point E = (0, 0, 15) and the plane of projection is z = 10.
 - a. Find the values of Δ and Δ' , the distances indicated in the diagram below. Here P = (x, y, z) is a point, and P' = (x', y', z') is its perspective projection.

b. Find a formula for P' = (x', y', z') in 1

c. Find a 4×4 matrix that represents perspective projection in this case.

d. Use this matrix to compute the perspective projection of the point P = (2, 2, 4)

5.

We wish to construct a 3D triangular mesh for the star. The vertex array and face list are indicated by the diagram (vertex[10] and vertex[11] are the center of the polygon and they are separated by certain distance.)

- a. What is the total number of vertices for polygon above?
- b. What is the total number of faces for polygon above?
- c. What is the total number of edges for polygon above?