3. Conditional distribution and conditional expectation

3.1 Conditional distribution

3.1.1 Discrete case

Definition Let X and Y be discrete r.v's. The conditional distribution of X given Y is given by:

$$P(X=x|Y=y)=rac{(P(X=x,Y=u))}{P(Y=y)}$$

$$P(X = x|Y = y): f_{X|Y} = y(x), f_{X|Y}(x|y) \leftarrow ext{conditional probability mass function})$$

Conditional pmf is a legitimate pmf: given any y , $f_{X|Y=y}(x) \geq 0, orall x$

$$\sum_x f_{X|Y=y}(x) = 1$$

Note that given Y=y, as x changes, the value of the function $f_{X\mid Y=y}(x)$ is proportional to the joint probability.

$$f_{X|Y=y}(x) \propto P(X=x,Y=y)$$

This is useful for solving problems where the denominator P(Y=y) is hard to find.

3.1.1.1 Example

$$X_1 \sim Poi(\lambda_1), X_2 \sim Poi(\lambda_2)$$
 . $X_1 \perp \!\!\! \perp X_2$, $Y = X_1 + X_2$

Q:
$$P(X_1 = k|Y = n)$$
 ?

Note
$$P(X_1=k|Y=u)=f_{X_1|Y=n}(k)$$

A: $P(X_1=k|Y=n)$ can only be non-zero for $k=0,\cdots,n$ in this case,

$$egin{aligned} P(X_1 = k | Y = n) &= rac{P(X_1 = k, Y = n)}{P(Y = n)} \ &\propto P(X_1 = k, Y = n) \ &= P(X_1 = k, X_2 = n - k) \ &= e^{-\lambda_1} rac{\lambda_1^k}{k!} \cdot e^{-\lambda_2} rac{\lambda_2^{n-k}}{(n-k)!} \ &\propto (rac{\lambda_1}{\lambda_2})^k / k! (n-k)! \end{aligned}$$

we can get P(X=k|Y=n) by normalizing the above expression.

$$P(X_1 = k, Y = n) = rac{(rac{\lambda_1}{\lambda_2})^k/k!(n-k)!}{\sum_{k=0}^n (rac{\lambda_1}{\lambda_2})^k/k!(n-k)!}$$

but then we will need to fine $\sum_{k=0}^n (rac{\lambda_1}{\lambda_2})^k/k!(n-k)!$

An easier way is to compare $\sum_{k=0}^n (\frac{\lambda_1}{\lambda_2})^k/k!(n-k)!$ with the known results for common distribution. In particular, if $X\sim Bin(n,p)$

$$egin{aligned} P(X=k) &= \binom{n}{k} p^k (1-p)^{n-k} \ &\propto (rac{p}{1-p})^k / k! (n-k)! \end{aligned}$$

 $\Rightarrow P(X_1=k|Y=n)$ follows a binomial distributions with parameters n and p given by $rac{p}{1-p}=rac{\lambda_1}{\lambda_2}\Rightarrow p=rac{\lambda_1}{\lambda_1+\lambda_2}$

Thus, given $Y=X_1+X_2=n$, the conditional distribution of X_1 is binomial with parameter n and $rac{\lambda_1}{\lambda_1+\lambda_2}$

3.1.2 Continuous case

Definition: Let X and Y be continuous r.v's. The conditional distribution of X given Y is given by

$$f_{X|Y}(x|y)=f_{X|Y=y}(x)=rac{f(x,y)}{f_Y(y)}$$

A conditional pdf is a legitimate pdf

$$egin{aligned} f_{X|Y}(x|y) &\geq 0 & x,y \in \mathbb{R} \ \int_{-\infty}^{\infty} f_{X|Y}(x|y) dx &= 1, & y \in \mathbb{R} \end{aligned}$$

Suppose $X\sim Exp(\lambda)$, $Y|X=x\sim Exp(x)=f_{Y|X}(y|x)=xe^{-xy}, y=e\leftarrow$ conditional distribution of Y given X=x

Q: Find the condition pdf $f_{X|Y}(x|y)$

A:

$$egin{aligned} f_{X|Y}(x|y) &= rac{f(x,y)}{f_Y(y)} \ &\propto f(x,y) \ &= f_{Y|X}(y|x) \cdot f_X(x) \ &= x e^{xy} \lambda e^{-\lambda x a} \ &\propto x e^{-x(y+\lambda)}, \qquad x>0,y>0 \end{aligned}$$

Normalization (make the total probability 1)

$$f_{X|Y}(x|y) = rac{xe^{-x(y+\lambda)}}{\int_0^\infty xe^{-x(y+\lambda)}dx} \ \int_0^\infty xe^{-x(y+\lambda)}dx = rac{1}{\lambda+t}^2 \leftarrow ext{integration by parts}$$

Thus,
$$f_{X|Y}(x|y)=(\lambda+y)^2xe^{-x(y+\lambda)}$$
 , $x>0$.

This is a gamma distribution with parameters γ and $\lambda+y$

3.1.2.1. Example 2

Find the distribution of z = XY.

Attention: the following method is wrong:

$$f_Z(z) = \int_0^\infty f_{Y|X}(rac{z}{x}|x) \cdot f_X(x) dx$$

If we want to directly work with pdf's, we will need to use the change of variable formula for multivariables. The right formula have turns out to be

$$egin{align} f_Z(z) &= \int_0^\infty f_{X,Z}(x,z) dx = \int_0^\infty f_{Z|X}(z|x) f_X(x) dx \ &= \int_0^\infty f(x,rac{z}{x}) \cdot rac{1}{x} dx \ &= f_{Y|X}(rac{z}{x}|x) f_X(x) \cdot rac{1}{x} dx \ \end{aligned}$$

As an easier way is to use cdf, which gives probability rather than density:

$$egin{aligned} P(Z=z) &= P(XY \leq z) \ &= \int_0^\infty P(XY \leq z | X=x) f_X(x) dx & ext{(law of total probability)} \ &= \int_0^\infty P(Y \leq rac{z}{x} | X=x) \cdot f_X(x) dx \end{aligned} \ Y|X=x \sim Exp(x) \ &= \int_0^\infty (1-e^{-x\cdot rac{z}{x}}) \cdot \lambda e^{-\lambda x} dx \ &= 1-e^{-z} \int_0^\infty \lambda e^{-\lambda x} dx \end{aligned} \ \Rightarrow Z \sim Exp(1)$$

Notation $X,Y|\{Z=k\}\stackrel{iid}{\sim}\cdots$ means that given Z=k, X and Y are conditionally independent, and they follow certain distribution.

(the conditional joint cdf/pmf/pdf equals the predict of the conditional cdf's/pmf's/pdf's)

3.2 Conditional expectation

We have seen that conditional pmf/pdf are legitimate pmf/pdf. Correspondingly, a conditional distribution is nothing else but a probability distributions. It is simply a (potentially) different distribution, since it takes more information into consideration.

As a result, we can define everything which are previously defined for unconditional distributions also for conditional distributions.

In particular, it is natural to define the conditional expectation.

Definition. The conditional expectation of g(X) given Y=y is defined as

$$\mathbb{E}(g(X)|Y=y) = egin{cases} \sum_{i_1}^{\infty} g(x_i) P(X=x_u|Y=y) & ext{if } X|Y=y ext{ is discrete} \ \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) dx & ext{if } X|X=y ext{ is continuous} \end{cases}$$

Fix y, the conditional expectation is nothing but the expectation taken under the conditional distribution.