

Loop Optimizations
Dr William Harrison

## **Loop Optimizations**

- Empirical studies show that much of program execution occurs within loops
  - So, it makes sense to identify loops & concentrate optimization efforts on that code
  - But what is a loop?
    - Within source code, it's obvious
    - Within IR/CFG, however,...
      - Loops aren't precisely what your first guess would be

## Simple loop optimization

within the source code, that is...

for 
$$(i = 1; i++; i = 10) \{c\}$$
  $\longrightarrow$  c;

10 times

#### Caveat:

- seems reasonable (removes branches)
- not terribly general: would like to use on while loops but how do you identify the induction variable "i"?
- also, how does this apply at the IR/CFG level?

## Ex: Loop invariant code hoisting

- Say the assignment "a←b+c" occurs within a loop
  - But "b" and "c" aren't assigned in the loop
  - Would like to move "a b+c" somewhere "right in front of" the loop
    - Thereby avoiding redundant reassignments to "a"
- Problem IR/CFG is a directed graph of basic blocks
  - Where, for example, is the "front of" a loop?

## A flow graph



Say "a ←b+c" occurs in 9, To where might we hoist it?

## A flow graph



Say "a←b+c" occurs in 9, To where might we hoist it?

- Nodes 5,4,2,1 seem likely
  - how would I determine that automatically?
  - Impact on other optimizations?
  - Identifying loops with "dominator tree"

### **Dominators**

- Assume we have a flow graph with entry node s<sub>0</sub> with no predecessors
  - I.e., no edge into s<sub>0</sub>
- Node d dominates n means that
  - d occurs in every path from s<sub>0</sub> to n
- Note that every node dominates itself

## A flow graph



- for each pair of nodes d,n
  - does d dominate n?
  - can think of "ddominates n" as a newkind of directed arc in anew graph
- Question: is it possible that for d≠n that:
  - d dominates n, and
  - n dominates d?

# Theorem

Let d ≠ e both dominate n. Then, either d dominates e or e dominates d (but not both)

Proof sketch. Assume neither d dominates e nor vice versa.



# Theorem

Let d ≠ e both dominate n. Then, either d dominates e or e dominates d (but not both)

Proof sketch. Assume neither d dominates e nor vice versa.









## flow graph & its dominator tree





### **Immediate Dominators**

- An immediate dominator of node n is a node idom(n) such that
  - idom(n) ≠n
  - idom(n) dominates n
  - idom(n) does not dominate any other dominator of n
- Every node has (at most) one immediate dominator
  - How do we know this?

## **Calculating Dominators**

Let D[n] be the set of nodes that dominate n in a particular flow graph G, we get the following two simultaneous equations\*

$$D[s_0] = \{s_0\}$$

$$D[n] = \{n\} \cup (\bigcap_{p \in pred(n)} D[p]) \text{ for } n \neq s_0$$

### Iterative solution

```
change := true
D[s_0] := \{s_0\}
foreach n \in (Nodes(G) \setminus \{s_n\}) \{ D[n] := \{n\} \}
repeat
   change := false
   foreach n \in (Nodes(G) \setminus \{s_0\})
          T := Node
         foreach p \in (pred(n) \setminus \{s_0\}) \{ T := T \cap D[p] \}
         X := \{n\} \cup T
         if X \neq D[n] then
             change := true
             D[n] = X
until (not change)
```



# Backedges are edges n→h where h dominates n





## "Natural" Loops

- The natural loop of a backedge n→h is
  - The set of x such that
    - h dominates x
    - there is a path from x to n not containing h
- h is called the header of this loop



## Backedges induce natural loops



The four natural loops are:

{2,3} {2,4} {5,8,9,10} {8,9}

# Identifying loops



By merging natural loops with identical headers, one identifies all **loops** 

- note that a natural loop is what you think of as a loop
- while a loop inside a compiler is a slightly different animal

## Identifying nested loops



Defn: Let A,B be loops with headers a,b s.t. a≠b.B is nested within A iff B⊂A

- generally start optimizing inside the innermost loop
- Ex: {8,9} nested within {5,8,9,10}
- Reminder: "⊂" means proper subset
  - i.e., A≠B

## Loop pre-header

- Many loop optimizations require moving code from inside a loop to just before its header
- To guarantee that we uniformly have such a place available, we may insert a loop preheader
  - initially empty basic block with a single edge into the header
  - potentially reduces code duplication, among other things
  - the pre-header block dominates the loop (that's important)



## Inserting a loop pre-header



## Loop invariant computations

- Let L be a loop and d be "t←a⊗b"
  - d is loop invariant for L iff
    - "a" and "b" are constant, or
    - definitions reaching "a" and "b" occur outside L, or
    - only one definition reaches "a" and one reaches "b" and they are loop invariant for L
- This is a conservative estimate of loop invariance
  - i.e., it may report d is not loop invariant when it is
    - but it will never say it is loop invariant when it is not

#### Q: when is it safe to hoist **t←a**⊗**b**?

```
L0
__t←0
L1
 i←i+1
-t←a⊗b
 M[i] \leftarrow t
 if i<N
     goto L1
L2
 x←t
```

```
L0
t←0
L1
 i←i+1
t∉a⊗b
M[i] \leftarrow t
 t←0
M[j]←t
 if i<N
    goto L1
L2
 x←t
```

```
L0
↓ t←0
L1
 M[j] ←t
 i←i+1
t←a⊗b
 M[i] \leftarrow t
 t←0
 if i<N
     goto L1
L2
 x←t
```

#### Before

```
L0
 t←0
L1
 i←i+1
 t←a⊗b
 M[i] \leftarrow t
 if i<N
     goto L1
L2
 x←t
```

#### **After**

```
L0
 t←0
 t←a⊗b
L1
 i←i+1
 M[i] \leftarrow t
 if i<N
     goto L1
L2
 x←t
```

<sup>\*</sup> We must determine the criteria for hoisting

### Determining the criteria for safe hoisting



#### Before

```
LO
 t←0
L1
 branch (i≥N) L2
 i←i+1
 t←a⊗b
 M[i] \leftarrow t
 goto L1
L2
 x←t
```

#### **After**

```
L0
 t←0
 t∉a⊗b
L1
 branch (i≥N) L2
 i←i+1
 M[i] \leftarrow t
 goto L1
L2
 x←t
```



#### **Before**

```
L0
 t←0
L1
 i←i+1
 t←a⊗b
 M[i] \leftarrow t
 t←0
 if i<N
     goto L1
L2
```

#### After

```
L0
 t←0
 t←a⊗b
L1
 i←i+1
 M[i] \leftarrow t
 t←0
 if i<N
     goto L1
L2
```



**Observe**: multiple definitions of t inside L1 complicate matters





- d dominates all loop exits where t is live, and
- only one definition of t in the loop, and
- t is not live-out in the preheader
- assumes d is loop invariant

#### This is only a conservative approximation!

- will say some hoistings are unsafe when they are safe
- will not say a hoisting is safe when it isn't



\*Therefore, hoist!

## Induction Variable Analysis

- Some loops have an induction variable
  - a variable "i" that is incremented by a constant or loop invariant amount each iteration
    - for loop-inv. "c", only definitions of the form:
      - "i ← i + c" or "i ← i c"
- Other variables may depend entirely on "i"
  - these are called derived induction variables
- Identifying induction variables within a loop enables a variety of loop optimizations
  - strength reduction: replacing an expensive operation by a less expensive one
  - induction variable elimination: removing the variable, thereby (perhaps) shortening the code and reducing register pressure

## An Example

```
s < 0
i < 0
L1
branch (i>n) L2
j < i * 4
k < j + a
x < M[k]
s < s + x
i < i + 1
goto L1
L2
Before</pre>
```

- i is an induction variable
- i\*4 has values 0,4,8,12,...
- can perform strength reduction

```
s—0
 i←0
 j←0
L1
 branch (i>n) L2
 j←j+4
 k←j+a
 x \leftarrow M[k]
 s \leftarrow s + x
 i←i+1
 goto L1
                 After
L2
```

### **Basic Induction Variables**

- Given a loop L with header h
  - "i" is a basic induction variable within L iff
    - the only definitions of "i" have the form:
      - "i ← i + c" or "i ← i c"
      - for loop-invariant "c"
- Detection of basic induction variables is done by inspecting their form

### Derived Induction Variables in the family of "i"

- If "i" is an induction variable (basic or otherwise) for loop L, then
  - "j" is a derived induction variable in the family of "i" means
    - all definitions of "j" in L are of the form
      - j ← c\*i + d
        - where c,d are loop invariant
        - may be more than one instruction
        - Lingo: j is determined by (i,c,d)

### Derived induction variables in the family of "i"

- definitions of such a "j" may be rewritten without reference to "i"
  - That is, replace definition(s) with the effect of "j ← c\*i + d" with "j ← j + c\*a"
    - where "i" is incremented by "a"
    - c,d --- loop invariant for L
    - N.b., "c\*a" is either
      - constant: in which case, calculate it
      - loop-inv, but not constant
        - in which case compute in the pre-header

# Example: i ← i+4, j ← 2\*i+5

| <u>i</u> | 2*i + 5 |
|----------|---------|
| 0        | 5       |
| 4        | 13      |
| 8        | 21      |
| 12       | 29      |
|          |         |

| Initialize      | j ←        | - 5        |
|-----------------|------------|------------|
| iteration       | j <b>←</b> | - j+2*4    |
| O <sup>th</sup> | 5          |            |
| 1 <sup>st</sup> | 13         |            |
| 2 <sup>nd</sup> | 21         | after each |
| 3 <sup>rd</sup> | 29         | iteration  |
|                 |            |            |

a=4,c=2

### Detecting derived induction variables

- Let "j" be an induction variable for L in the family of "i"
- "k" is a derived induction variable for "j" in loop L when:
  - (Case 1) there is only one definition of "k" in L
    - and that definition is of the form:
      - "k ← c \* j"
      - "k ← j + d"
        - where c,d are loop invariant

### Detecting derived induction variables

- Let "j" be an induction variable for L in the family of "i"
- "k" is a derived induction variable for "j" in loop L when:
  - (Case 2) same as Case 1 AND:
    - the only definition of "j" that reaches "k" is in the loop
      - i.e., "k" depends entirely on a single definition of "j"
    - and, no definition of "i" occurs on any path between the definitions of "j" and "k"
      - i.e., the dependence of "k" on "i" via "j" maintained

## Array bounds checking

"Safe" programming languages insert dynamic checks to array references to avoid "out of bounds" references

## Array bounds checking

Under certain circumstances, may be able to determine that the array reference is safe and eliminate the check

- relies on induction variable analysis

```
array m[1..100] of int;
...

m[i] := 77;
...

this is a sign of int;
branch (r1>100) Lerror
branch (r1<1) Lerror
code for assignment>
...
```

## Loop Unrolling Overview

- If the body of a loop L is small, it may be that it spends most of its execution "looping" rather than "computing"; i.e.,
  - incrementing induction variables
  - branching
- Simple example at source level; replace
  - "for (i=0; i++; i<2) { c }" with</p>
  - "i=0; c; i=1; c
    - avoids branching, etc.
- The Problem: how do you do this at the machine code/IR level?
- AKA Software Pipelining

## Unrolling a loop (brute force)

Let L be the loop:



where h is the header and ----→ are backedges

# Unrolling a loop (brute force)

Make a copy of L



## Unrolling a loop (brute force)

Reroute the backedges



## Effects of "brute force" unrolling

#### **Before**

L1: x←M[i] s←s+x i←i+4 branch (i<n) L1 L2:

### After

```
L1: x←M[i]

s←s+x

i←i+4

branch (i≥n) L2

L1': x←M[i]

s←s+x

i←i+4

branch (i<n) L1

L2:
```

Q: Does this constitute an improvement?



### Single Basic Blocks

- i.e., straight line code
- with a limited number of floating point & memory operations
  - why? Limits unrolling to loops that are most likely to benefit from instruction scheduling (i.e., ordering code w.r.t. architectural features such as data caches)

### Small in Length

 otherwise unrolling may have negative impact on instruction cache performance

### Simple Loop Control

simplifies the unrolling transformation

## Typical unrolling candidate

- Note that half of the work is in "looping"
- It's a loop within a single basic block
- few instructions
- has a "repeat-until" structure

```
L1: x←M[i]
s←s+x
i←i+4
branch (i<n) L1
L2:
```

## Fragile\* unrolling (K=2)

#### **Before**

L1: x←M[i] s←s+x i←i+4 branch (i<n) L1 L2:

### After

```
L1: x←M[i]
s←s+x
i←i+4
x←M[i]
s←s+x
i←i+4
branch (i<n) L1
L2:
```

<sup>\*</sup>Fragile: must establish that middle branch may be removed and that loop iterates an even number of times

## "Fragile" unrolling (K=2)

#### **Before**

L1: x←M[i] s←s+x i←i+4 branch (i<n) L1 L2:

### After

```
L1: x←M[i]
s←s+x
i←i+4
x←M[i+4]
s←s+x
i←i+8
branch (i<n) L1
L2:
```

...can do better with induction variable analysis

## Robust\* unrolling (K=2)

#### **Before**

\**Robust*: i.e., works for any number of iterations.

### After



## Robust\* unrolling (K=2)

#### **Before**

L1: x←M[i] s←s+x i←i+4 if (i<n) L1 else L2 L2:

\**Robust*: i.e., works for any number of iterations.

### After



That's all, folks!