CS-E4740 Federated Learning "Network Models"

Dipl.-Ing. Dr. techn. Alexander Helmut Jung

What are main components of ML and how are they combined?

Plain Old Machine Learning.

Train and Validate.

feature x

Basic Idea of Model Selection

choose model with smallest validation error!

19.3.2023

Data and Model Size

crucial parameter is the ratio d/m

19.3.2023

19.3.2023

Networked Data

Networked Weather Data

3/19/23 10

ImageNet.

"...ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns), in which each node of the hierarchy is depicted by hundreds and thousands of images..."

https://image-net.org/

Devopedia. 2021. "ImageNet." Version 16, April 7. Accessed 2023-02-11. https://devopedia.org/imagenet

Noble Networks.

Finance Networks.

Algebraic Networks

Example 4.3. Let $G = D_n$, the dihedral group of order 2n, and take $S = \{r, r^{n-1}, s\}$.

Petteri Kaski, Eigenvectors and spectra of Cayley graphs, 2002

Point Cloud Networks.

Road Network

Business Process

https://www.wikidata.org/wiki/Wikidata:Main_Page

Empirical Graph - Nodes

```
i=1
```

2

each node carries:


```
3
```

```
# the node attribute "X" stores
G.nodes[iter_node]["X"] = X

# the node attribute "y" stores
G.nodes[iter_node]["y"] = y
```

```
4
```

```
G_FMI = nx.Graph()
G_FMI.add_nodes_from(range(0,num_stations))
```

Attach Local Datasets to Nodes

```
for i,station in enumerate(data.station.unique())
    # first filter out rows in dataframe data wit
    # current value of station
    df = data[data.station==station]
   # store the name of the current station in th
    G_FMI.nodes[i]['name'] = station
   # store the lat and lon of the current statio
    G_FMI.nodes[i]['coord'] = np.array([df.latitu
    # store the min. daytime temp_in the node at
    G_FMI.nodes[i]['X'] = df.min_temp.to_numpy().
   # store the max. daytime temp. in the node at
    G_FMI.nodes[i]['y'] = df.max_temp.to_numpy().
```

name of FMI station

latitude, longitude of FMI station

use min. daytime tmp. as feature of datapoint (=some day)

use max. daytime tmp. as labels of datapoint (= some day)

Empirical Graph - Edges

edge weight $A_{3,4}$ = level of similarity

3/19/23 22

How To Measure Statistical Sim.?

```
>>> from scipy.stats import ks_2samp
>>> import numpy as np
>>>
>>> np.random.seed(12345678)
>>> x = np.random.normal(0, 1, 1000)
>>> y = np.random.normal(0, 1, 1000)
>>> z = np.random.normal(1.1, 0.9, 1000)
>>>
>>> ks 2samp(x, y)
>>> ks_2samp(x, z)
Ks_2sampResult(statistic=0.41800000000000004, pvalue=3.7081494119242173e-77)
```

https://stackoverflow.com/questions/10884668/two-sample-kolmogorov-smirnov-test-in-python-scipy

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

Spatio-Temporal Similarity

connect FMI stations with its k nearest neighbours (use geodesic distance)

How to choose Empirical Graph?

empirical graph is design choice

more edges means more comp./comm.

sufficiently many edges between similar datasets

Graph Laplacian Matrix

L is psd with eig.vals $\lambda_1 = 0 \le \lambda_2 ... \le \lambda_{nr \ nodes}$

Spectral Graph Clustering

eig.vecs of **L** corresponding to smallest pos. eig.vals $\lambda_1 = 0 \le \lambda_2$ are piece-wise constant over clusters

What is Component 2 of ML?

Local Model for Local Data

each node carries:

local dataset

```
# the node attribute "X" stores
G.nodes[iter_node]["X"] = X

# the node attribute "y" stores
G.nodes[iter_node]["y"] = y
```

local model

```
# the node attribute "model" stores a ML model of
G.nodes[iter_node]["model"] = LinearRegression()
G.nodes[iter_node]["model"].fit(G.nodes[iter_node]
```

3/19/23 29

Networked Models

Option 1: Train Separately

Pro: Personalization

Con: Overfitting

Option 2: Global Model

Pro: No Oyerfitting

3/19/23

35

Con: Low Accuracy

Option 3: Networked FL

Networked FL

- maintain local models for each node (local dataset)
- local models are trained on local datasets
- couple the training of local models
- coupling via clustering (global model per cluster)
- different clustering methods

Coupling of Local Models

coupling based on edges

 local models at connected nodes should deliver similar predictions

Coupling via Regularization


```
for node_i in G.nodes(data=False):
    tmp_y = G.nodes[node_i]["y"].reshape(-1,1)
    tmp_X = G.nodes[node_i]["X"]
    sample_weight = np.ones((samplesize,1))
    # loop over all neighbours of current node "node_i"
    for node_j in G[node_i]:
        tmp_X = np.vstack((tmp_X,G.nodes[node_i]["X"]))
        tmp_y = np.vstack((tmp_y,G.nodes[node_j]["model"].predict(G.nodes[node_i]["X"]).reshape(-1,1)))
        sample_weight = np.vstack((sample_weight,100*np.ones((samplesize,1))))
# print(tmp_X.shape)
G.nodes[node_i]["model"].fit(tmp_X,tmp_y,sample_weight.reshape(-1))
```

Clustering Assumption

local datasets often too small let's pool or cluster them but how?

Clustering Assumption

the local datasets form clusters.

local datasets in same cluster c contain data points that can be approximated as realizations of i.i.d. RVs with prob. dist p(x,y;c)

Cluster-Wise Training

pool local datasets of nodes in same cluster to train ML model

trained model is used for all nodes in same cluster

43

pooling via regularization

Wrap-Up.

• emp. graph with nodes carrying local datasets and models

undirected weighted edges represent similarities

different sources for similarity

• emp. graph is a design choice

Any Questions?