1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2021	1	인문.사회 6		6
2021	1	공학	135	127
2021	1	예,체능	3	3
2022	1	인문.사회	6	6
2022	1	자연과학	3	3
2022	1	공학	154	143
2022	1	예,체능	3	3
2023	1	인문.사회	5	4
2023	1	자연과학	1	0
2023	1	공학	167	146
2023	1	예,체능	3	2
2024	1	인문.사회	3	2
2024	1	자연과학	2	1
2024	1	공학	199	170
2024	1	예,체능	1	1
2025	1	인문.사회	1	0
2025	1	자연과학	1	0
2025	1	공학	189	0

2. 평균 수강인원

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2018	1	39.54	61.09	35.36	43.75	
2017	2	37.26	63.09	32.32		
2017	1	38.26	65.82	33.5		
2016	2	37.24	72.07	31.53	39	
2016	1	37.88	73.25	32.17		

3. 성적부여현황(평점)

2015

2

3.51

3.28

3.6

3.55

비율

16.67

21.84

9.2

교과목 포트폴리오 (ITE2031 컴퓨터구조론)

4. 성적부여현황(등급)

2023

1

C0

8

				- 6.				
수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원
2021	1	Α+	30	22.06	2024	1	Α+	29
2021	1	A0	27	19.85	2024	1	Α0	30
2021	1	B+	55	40.44	2024	1	B+	38
2021	1	ВО	16	11.76	2024	1	ВО	39
2021	1	C+	2	1.47	2024	1	C+	22
2021	1	C0	3	2.21	2024	1	C0	16
2021	1	D+	3	2.21	0.0			
2022	1	Α+	44	28.39				
2022	1	Α0	37	23.87				
2022	1	B+	23	14.84				
2022	1	В0	26	16.77				
2022	1	C+	14	9.03				
2022	1	C0	9	5.81				
2022	1	D+	2	1.29				
2023	1	Α+	33	21.71				
2023	1	Α0	30	19.74				
2023	1	B+	37	24.34				
2023	1	ВО	26	17.11				
2023	1	C+	18	11.84				

5.26

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	1	91.5	93.79	91.1	90.33	
2023	2	91.8	93.15	91.56		
2023	1	91.47	93.45	91.13	89.67	
2022	2	90.98	92.48	90.7		
2022	1	90.98	92.29	90.75	87.5	

6. 강의평가 문항별 현황

	평가문항 <u>년</u> 호		인평 균 소속학과,대학평균과의 가중 차이 (+초과,-:미달)		점수별 인원분포				
번호					매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
			학과	대학	- 1점	2점	3점	4점	디
	교강사:	미만	차이 평균	차이 평균	12	22	2.5	42	5점

No data have been found.

7. 개설학과 현황

학과	2025/1	2024/1	2023/1	2022/1	2021/1
컴퓨터소프트웨어학부	4강좌(12학점)	3강좌(9학점)	3강좌(9학점)	2강좌(6학점)	3강좌(9학점)

8. 강좌유형별 현황

강좌유형	2021/1	2022/1	2023/1	2024/1	2025/1
일반	3강좌(144)	2강좌(166)	3강좌(177)	3강좌(206)	4강좌(191)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정		컴퓨터구조론은 컴퓨터 하드웨어 설계를 위한 핵심 이슈들을 다룬다. 구체적으로 이 교과목에 서는 컴퓨팅의 개념, 컴퓨터 성능 평가 방법, 명 령어 셋의 원리, ALU 설계, 프로세서의 데이터 통로 및 콘트롤 설계, 파이프라이닝, 그리고 메 모리 시스템 설계와 입출력 시스템을 다룬다. 각 토픽에 대해 기본적인 원리를 강의한 후, 가장 단순한 구현 예를 보인 다음, 실제 응용 사례를 학습한다.	This class teaches fundamental issues in modern computer organization and design. Topics covered will include performance metrics, instruction set principles, computer arithmetic, data path and control, pipelining, memory hierarchy, and I/O systems. For each topic, the class will start with fundamental principles, demonstrate the simplest realization of the principles, and extend the principles to realistic application examples.	
학부 2020 - 2023 교육과 정	서울 공과대학 컴퓨터소프트 웨어학부	컴퓨터구조론은 컴퓨터 하드웨어 설계를 위한 핵심 이슈들을 다룬다. 구체적으로 이 교과목에 서는 컴퓨팅의 개념, 컴퓨터 성능 평가 방법, 명 령어 셋의 원리, ALU 설계, 프로세서의 데이터 통로 및 콘트롤 설계, 파이프라이닝, 그리고 메 모리 시스템 설계와 입출력 시스템을 다룬다. 각 토픽에 대해 기본적인 원리를 강의한 후, 가장 단순한 구현 예를 보인 다음, 실제 응용 사례	This class teaches fundamental issues in modern computer organization and design. Topics covered will include performance metrics, instruction set principles, computer arithmetic, data path and control, pipelining, memory hierarchy, and I/O systems. For each topic, the class will start with fundamental principles,	

교육과정	관장학과	국문개요	영문개요	수업목표
		를 학습한다.	demonstrate the simplest realization of the principles, and extend the principles to realistic application examples.	
학부 2016 - 2019 교육과 정	서울 공과대학 컴퓨터공학부 소프트웨어전 공	컴퓨터구조론은 컴퓨터 하드웨어 설계를 위한 핵심 이슈들을 다룬다. 구체적으로 이 교과목에 서는 컴퓨팅의 개념, 컴퓨터 성능 평가 방법, 명 령어 셋의 원리, ALU 설계, 프로세서의 데이터 통로 및 콘트롤 설계, 파이프라이닝, 그리고 메 모리 시스템 설계와 입출력 시스템을 다룬다. 각 토픽에 대해 기본적인 원리를 강의한 후, 가장 단순한 구현 예를 보인 다음, 실제 응용 사례를 학습한다.	This class teaches fundamental issues in modern computer organization and design. Topics covered will include performance metrics, instruction set principles, computer arithmetic, data path and control, pipelining, memory hierarchy, and I/O systems. For each topic, the class will start with fundamental principles, demonstrate the simplest realization of the principles, and extend the principles to realistic application examples.	
	서울 공과대학 컴퓨터공학부 컴퓨터전공	컴퓨터구조론은 컴퓨터 하드웨어 설계를 위한 핵심 이슈들을 다룬다. 구체적으로 이 교과목에 서는 컴퓨팅의 개념, 컴퓨터 성능 평가 방법, 명 령어 셋의 원리, ALU 설계, 프로세서의 데이터 통로 및 콘트롤 설계, 파이프라이닝, 그리고 메 모리 시스템 설계와 입출력 시스템을 다룬다. 각 토픽에 대해 기본적인 원리를 강의한 후, 가장 단순한 구현 예를 보인 다음, 실제 응용 사례를 학습한다.	This class teaches fundamental issues in modern computer organization and design. Topics covered will include performance metrics, instruction set principles, computer arithmetic, data path and control, pipelining, memory hierarchy, and I/O systems. For each topic, the class will start with fundamental principles, demonstrate the simplest realization of the principles, and extend the principles to realistic application examples.	
학부 2016 - 2019 교육과 정	서울 공과대학 컴퓨터소프트 웨어학부	컴퓨터구조론은 컴퓨터 하드웨어 설계를 위한 핵심 이슈들을 다룬다. 구체적으로 이 교과목에 서는 컴퓨팅의 개념, 컴퓨터 성능 평가 방법, 명 령어 셋의 원리, ALU 설계, 프로세서의 데이터 통로 및 콘트롤 설계, 파이프라이닝, 그리고 메 모리 시스템 설계와 입출력 시스템을 다룬다. 각 토픽에 대해 기본적인 원리를 강의한 후, 가장 단순한 구현 예를 보인 다음, 실제 응용 사례를 학습한다.	This class teaches fundamental issues in modern computer organization and design. Topics covered will include performance metrics, instruction set principles, computer arithmetic, data path and control, pipelining, memory hierarchy, and I/O systems. For each topic, the class will start with fundamental principles, demonstrate the simplest realization of the principles, and extend the principles to realistic application examples.	
학부 2013 - 2015 교육과 정	서울 공과대학 컴퓨터공학부 소프트웨어전 공	컴퓨터구조론은 컴퓨터 하드웨어 설계를 위한 핵심 이슈들을 다룬다. 구체적으로 이 교과목에 서는 컴퓨팅의 개념, 컴퓨터 성능 평가 방법, 명 령어 셋의 원리, ALU 설계, 프로세서의 데이터 통로 및 콘트롤 설계, 파이프라이닝, 그리고 메 모리 시스템 설계와 입출력 시스템을 다룬다. 각 토픽에 대해 기본적인 원리를 강의한 후, 가장 단순한 구현 예를 보인 다음, 실제 응용 사례를 학습한다.	This class teaches fundamental issues in modern computer organization and design. Topics covered will include performance metrics, instruction set principles, computer arithmetic, data path and control, pipelining, memory hierarchy, and I/O systems. For each topic, the class will start with fundamental principles, demonstrate the simplest realization of the principles, and extend the principles to realistic application examples.	
학부 2009 - 2012 교육과 정	서울 공과대학 컴퓨터공학부 소프트웨어전 공	컴퓨터구조론은 컴퓨터 하드웨어 설계를 위한 핵심 이슈들을 다룬다. 구체적으로 이 교과목에 서는 컴퓨팅의 개념, 컴퓨터 성능 평가 방법, 명 령어 셋의 원리, ALU 설계, 프로세서의 데이터 통로 및 콘트롤 설계, 파이프라이닝, 그리고 메 모리 시스템 설계와 입출력 시스템을 다룬다. 각 토픽에 대해 기본적인 원리를 강의한 후, 가장 단순한 구현 예를 보인 다음, 실제 응용 사례	This class teaches fundamental issues in modern computer organization and design. Topics covered will include performance metrics, instruction set principles, computer arithmetic, data path and control, pipelining, memory hierarchy, and I/O systems. For each topic, the class will start with fundamental principles,	

교육과정	관장학과	국문개요	영문개요	수업목표
			demonstrate the simplest realization of the principles, and extend the principles to realistic application examples.	

10. CQI 등록내역	
No data hav	e been found.