(MV) Optimal Risky Portfolio

$$x = \underset{x}{\operatorname{arg\,max}} \frac{E(R_p) - r_f}{\sigma_P}$$

subject to

$$\sum_{i} x_i = 1$$

and other applicable constraints

- Numerical solution
 - e.g. Excel Solver

(MV) Optimal Risky Portfolio

Analytical solution

[1] Solve
$$E(R) - r_f = \Sigma x$$

[2] Scale \boldsymbol{x} such that $\sum_{i} x_{i} = 1$

Derivation (1)

- Maximize $f(x) = \ln SR_P = \ln \left[E(R_P) r_f \sum_i x_i \right] \frac{1}{2} \ln \sigma_P^2$ subject to $\sum_i x_i = 1$
- Set $\frac{\partial f}{\partial x_i} = \frac{E(R_i) r_f}{E(R_P) r_f} \frac{\sigma_{iP}}{\sigma_P^2} = 0$ $E(R_i) r_f = \left[\frac{E(R_P) r_f \sum_i x_i}{\sigma_P^2} \right] \sigma_{iP} = k \sigma_{iP}$
- Easy to show $f(k\mathbf{x}) = \ln \frac{kE(R_P) r_f \sum_i kx_i}{k\sigma_P} = f(\mathbf{x})$

Derivation (2)

$$E(R_i) - r_f = k\sigma_{iP}$$

• WLOG, set k = 1. Solve for x and scale

$$E(R_i) - r_f = \sigma_{iP} = \sum_j x_j \sigma_{ij}$$
, $i = 1, ..., n$
 $E(R) - r_f = \Sigma x$

That was

