

UAV For Forest Surveillance

AS5100

Group-9

Members

AE21B001 - ABEL VIJI GEORGE

AE23M003 - SUSHANT KUMAR THAKUR

AE23M019 - KARTHICK M

AE23M028 - ROHAN ANAND

AE23M043 - SWITHIN DONDAPATI

Aerodynamic Review

- Surveillance of Forest areas to detect Forest Fires
- To aid in rescue operations
- Helps in keeping poaching and smuggling in check

0.	

UAV DETAILS			
Wing Span	1.84 m		
Wing Chord	23 cm		
Total Length	1.69 m		
DTOW	5.47 Kg		
Aspect Ratio of Wing	8		
Wing Airfoil	NACA2412		
Tail Airfoil	NACA0012		

MISSION DETAILS		
Cruise Speed, V_{cr}	$20 \mathrm{m/s}$	
Cruise Altitude	100 m	
Maximum Cruise Speed, V_{max}	$25 \mathrm{m/s}$	
Takeoff speed, V_{TO}	12.86 m/s	
Stall Speed, V_{stall}	$12.2 \mathrm{m/s}$	
Corner Velocity, V_{corner}	19.29 m/s	
Red Line Speed	$30 \mathrm{m/s}$	
Positive Limit Load Factor n_+	2.5	
Negative Limit Load Factor n_{-}	-1	
Lift Coefficient at zero AOA, C_{L_0}	0.2	
Cruise Lift Coefficient, $C_{L_{cr}}$	0.53	
Maximum Lift Coefficient	1.5	
Ostwald's efficiency, e	0.82	
Parasitic Drag, C_{D_0}	0.023	

Lift Distribution - Schrenk's Method

Spar Design

Design Criteria;

$$\sigma_{allowable} \leqslant rac{\sigma_{yield}}{k imes f imes n imes \eta_{fatigue}} \Longrightarrow \hspace{0.2cm} \sigma_{allowable} = rac{\sigma_{yield}}{10.5} = rac{M_{max} imes t_{max}}{2 imes I_{total}}$$

- Al-6061 (Yield Stress = 270 MPa) for skin, of uniform thickness 0.5mm.
- $I_{total} = 8.78 \times 10^{-9} m^4$
- $I_{skin} = 24.35 imes 10^{-9} m^4$ (20 individual skin sections for calculation)
- $\bullet \ I_{spar} = -15.57 \times 10^{-9} m^4$
- Hence, no spar is required. However, we will attach 'Root-Rib' of wing via a flat plate. This plate is attached to the bulkhead.

Stringers

$$N_{cr} = rac{K \pi^2 E}{12(1-
u^2)} {(rac{t}{b})}^2$$

- Top and bottom surfaces of airfoil were divided into 20 strips for idealization and shear flow calculation.
- The Force per unit area in the idealized section corresponding to the maximum shear flow and bending stresses is 8.11 N/sq.mm and 7.07
 N/sq.mm in the two panels respectively whereas the critical buckling load per unit area is 9.81 N/sq.mm and 9.11 N/sq.mm respectively.
 Stringers are not required as the critical buckling load we have is lesser than the calculated one.

SFD and BMD of Fuselage

Longerons

$$\bullet \ \ \text{For fuselage,} \ I_{skin} = 2[\frac{bt^3}{12} + bt(\frac{h}{2})^2 + \frac{th^3}{12}] = 996579.5mm^4 \\ \bullet \ \ \text{q1(s)} = \frac{Lhst}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}} \\ \bullet \ \ \text{q2(s)} = \ q1(b/2) + \frac{L\,(h-s)st}{2I_{skin}}$$

• q1(s) =
$$\frac{Lhst}{2I_{skin}}$$

• q2(s) =
$$q1(b/2) + \frac{L(h-s)st}{2I_{skin}}$$

Net force per unit area due to shear stress and bending moment is,

$$F_{net} = rac{q}{t} + rac{M_{max,fus}y}{I_{skin}}$$

- The maximum value of this comes out to be **0.58 N/sq.mm**.
- The allowable stress is **22.95 N/sq.mm**. Hence, no requirement of longerons. We will use 4 (x2) L sections at each corner, as longerons, to attach skin to the bulkheads.

Bulkhead Sizing

• We use the shear flow along the fuselage and calculate the bending moment on the bulkhead.

Example for Top member

$$H_1 = F_A - rac{Lhx^2t}{4I}$$

$$M_1 = M_A + V_1 x$$

$$H_1 = F_A - rac{Lhx^2t}{4I} \ V_1 = V_A$$

• Castigliano's second theorem,

• Castigliano's second theorem,
$$U_{bending} = \frac{1}{2} \int_0^L \frac{M^2}{EI} dx \qquad U_{shear} = \frac{1}{2} \int_0^L \frac{H^2}{EA} dx \qquad U_{axial} = \frac{1}{2} \int_0^L \frac{V^2}{GA} dx$$
• Since we have fixed ends, we can write,
$$\frac{\delta U_{total}}{\delta M_A} = 0 \qquad \frac{\delta U_{total}}{\delta F_A} = 0$$
• A C-section of 35 mm x 35 mm x 1 mm Cross section is sufficient
$$\frac{I}{y} req \geqslant 1142.55mm^3 \qquad \frac{I}{y} = 1327.46mm^2$$

$$rac{\delta U_{total}}{\delta M_A} = 0 \qquad \qquad rac{\delta U_{total}}{\delta F_A} = 0$$

• Similarly, solving for the vertical and bottom member, We get that

$$F_A=12.99N,\, M_A=-28.09Nm$$
 and $V_A=-13.415N$ Bending Moment Diagram of Bulkhead

$$rac{My}{I} \leqslant \sigma_{allowable}$$

$$rac{I}{v}req\geqslant 1142.55mm$$

$$I = 23230.6mm^4, y_{max} = 17.5mm$$
 $\frac{I}{-} = 1327.46mm^2$

Landing Gear Design

From Aerodynamic report

Parameter	Value
Wheel Base	$55~\mathrm{cm}$
Wheel Track	$20.1~\mathrm{cm}$
Landing Gear Height	$21.56~\mathrm{cm}$
Clearance Angle	16°
Tire Diameter	6 cm
Tire Width	$1.98~\mathrm{cm}$

- 85% load by Main Landing Gear
- 15% by Nose Landing Gear

Main Landing Gear Design

Longitudinal Analysis

$$M_1 = M_0 + x_1 F \sin(\theta); \quad x_1 \in [0, L]$$

$$M_0 = F imes rac{w_t}{2}$$
 (about ground)

$$F=0.85 imesrac{W}{2}$$

$$I = rac{1}{12} ig(b_{out}{}^4 - b_{in}{}^4 ig) \implies \overline{t_{max}} \geq 6.204 \; \mathrm{mm}$$

Maximum Bending
 Moment = 2.52 Nm.

$$t_{max}$$
 (mm)

Landing Gear Design

Main Landing Gear

Lateral Analysis

 Maximum Lateral moment is 10.085 Nm. We need hollow square section of side greater than 10.31 mm and thickness 2 mm.

Nose Landing Gear

Buckling Analysis

 Design should consider a factor of magnitude higher than the buckling stress. This includes Stress concentration factor = 2, Factor of safety = 1.4, fatigue factor = 1.5, Impact Factor = 1.5.

$$\sigma_{NLG} = rac{0.15W}{A} \qquad \quad \sigma_{cr} = rac{\pi^2 EI}{(KL)^2}$$

- K = 0.707, for fixedpinned end
- We get $I = 1.74 \text{ mm}^4$.
- We use the available Lsection.

Calculated Weights of Components

Component	Number	Total Weight
• Longeron	4	241.96 g
• Bulkhead	3	523.23 g
• Main Landing Gear	1	286.75 g
Nose Landing Gear	1	41.7 g

Fabrication - Fuselage

Bulkheads

Bulkhead Assembly

Fuselage before folding

Longerons

Nose Mount

Finished Fuselage

Fabrication - Wing

Ribs of wing

Wing Adapter

Assembly showing coupler on the bulkhead

Wing-to-bulkhead coupler

Motor Mount

Finished Wing

Fabrication - Tail and Landing Gear

Tail Adapter

Finished Main Landing Gear

Finished Tail

Finished Nose Landing Gear

Fabrication - Finished Structure

Finished
Structure of
the UAV

Thank you!