Aufgabe 1

\mathcal{T}_1	\mathcal{T}_2	$\mid \mathcal{T}_3 \mid$
		sharedLock(X)
•		r(X)
<pre>sharedLock(X)</pre>		
r(X)		
•	<pre>sharedLock(Y)</pre>	
•	r(Y)	•
<pre>exclusiveLock(Y)</pre>		•
w(Y)		•
unlock(X)		•
unlock(Y)		•
•	<pre>sharedLock(X)</pre>	
•	r(X)	
•	unlock(X)	•
•	unlock(Y)	•
•		exclusiveLock(X)
•		w(X)
•		unlock(X)
С		
•	С	
	· _	c

Dieses Szenario erzeugt nach 2PL Regeln das gefragte Schedule.

Aufgabe 2

1.

$$\begin{split} S_1 &= \langle rl_3(Z), r_3(Z), rl_2(X), r_2(X), rl_2(Y), r_2(Y), wl_2(X), w_2(X), ul_2(X), ul_2(Y), c_2, \\ & wl_3(Z), w_3(Z), rl_1(X), r_1(X), wl_1(Y), w_1(Y), ul_1(X), ul_1(Y), c_1, rl_3(X), r_3(X), \\ & ul_3(X), ul_3(Z), c_3 \rangle \\ S_2 &= \langle rl_1(X), r_1(X), rl_3(W), r_3(W), rl_2(Y), r_2(Y), wl_2(X), wl_2(X), wl_3(Y), wl_3(Y), \\ & rl_3(Z), r_3(Z), ul_3(W), ul_3(X), ul_3(Z), c_3, wl_1(Z), wl_1(Z), ul_1(W), ul_1(X), c_1, \\ & rl_2(W), r_2(W), ul_2(W), ul_2(X), ul_2(Y), c_2 \rangle \end{split}$$

Mit S_2 folgt eine Deadlock! Siehe

$$wl_2(X)$$
 denied - X is locked by $\mathcal{T}_1,$ $[\ldots],$ $wl_3(Y)$ denied - Y is locked by $\mathcal{T}_2,$ $[\ldots],$ $wl_1(W)$ denied - W is locked by \mathcal{T}_3

$$S_{3} = \langle rl_{1}(Y), r_{1}(Y), rl_{3}(X), r_{3}(X), wl_{3}(X), wl_{3}(X), rl_{2}(X), rl_{2}(X), wl_{1}(x), wl_{1}(Y), ul_{1}(Y), c_{1}, rl_{3}(Y), rl_{3}(Y), wl_{2}(Y), wl_{2}(Y), ul_{2}(X), ul_{2}(Y), c_{2}, rl_{3}(Z), rl_{3}(Z), ul_{3}(X), ul_{3}(Y), ul_{3}(Z), c_{3} \rangle$$

2.

Nicht konservativ?