cycle

nguyenngockhanh.pbc

April 2021

Is there an natural number function that always has a cycle and the cycle length is unbounded?

1 Problem

Firstly, let define precisely the notations we are using in this text.

Definition 1 (Natural Number Set)

$$\mathbb{N} = \{1, 2, 3, \dots\} \tag{1}$$

Definition 2 (Natural Number Function) All functions that have the domain and codomain \mathbb{N}

$$f: \mathbb{N} \to \mathbb{N} \tag{2}$$

Denote $f^m(n)$ where $n \in \mathbb{N}$ be the value of m-times recursive call of function f to input n. More formally,

$$f^{1}(n) = f(n),$$

$$f^{m+1}(n) = f(f^{m}(n))$$

Definition 3 (Cycle number of a Natural Number Function) Let $f : \mathbb{N} \to \mathbb{N}$. A cycle set of n is the set of all numbers $m \in \mathbb{N}$ such that $f^m(n) = n$

$$c^{(f)}(n) = \{m : m \in \mathbb{N} \land f^{m}(n) = n\}$$
(3)

 $if\ cycle\ set\ is\ non-empty,\ define\ the\ cycle\ number\ as\ the\ smallest\ number\ in\ the\ cycle\ set$

$$c_{\min}^{(f)}(n) = \min c^{(f)}(n)$$
 (4)

In this text, we ignore the trivial case where cycle number is 1. Our main theorem is stated as follows

Theorem 1 (Cycle) There exists a natural number function such that (1) it has a non-trivial cycle number for every input and (2) the set of all cycle numbers is unbounded.

$$\exists f: \mathbb{N} \to \mathbb{N}, (\forall n \in \mathbb{N}, c_{\min}^{(f)}(n) > 1) \land (\forall m_0 \in \mathbb{N}, \exists n \in \mathbb{N}, c_{\min}^{(f)}(n) \ge m_0)$$
 (5)

In other words, this function partitions the natural number set into infinitely number of finite subsets where the cardinality of them are unbounded. Each cycle is associated with a subset.

2 Proof

A simple construction satisfies those properties is as follows:

Suppose we found partition on \mathbb{N} of (1^*) infinitely many finite subsets where (1^{**}) each of them has the cardinality of at least 2, (2^*) the cardinality of these subsets is unbounded.

$$\mathbb{P} = \{P_i\}_{i=1}^{\infty} = \{P_1, P_2, P_3, \dots\}$$
 (6)

Where we order all elements in each P_i , so that for every P_i , we have a minimum element, a maximum element and a function to yield the successor element if the input is not the maximum element namely

$$succ_i: P_i \setminus \{\max P_i\} \to P_i \setminus \{\min P_i\}$$
 (7)

Define a function $f_i: P_i \to P_i$ that returns minimum element of P_i if the input is the maximum element of P_i , otherwise return its successor.

$$f_i(n) = \begin{cases} \min P_i & \text{if } n = \max P_i. \\ succ_i(n) & \text{otherwise.} \end{cases}$$
 (8)

This function has a cycle number of the cardinality of P_i Since \mathbb{P} is a partition, these P_i are disjoint and their union is \mathbb{N} . We define the function $f: \mathbb{N} \to \mathbb{N}$

$$f(n) = f_i(n) \text{ if } n \in P_i \tag{9}$$

 $(1^* \wedge 1^{**} \to 1)$ For every input n, the cycle number is $|P_i| \ge 2$ where P_i is the associated subset. $(2^* \to 2)$ Since these subsets are unbounded in size, the set of all cycle numbers of f is also unbounded.

In order to finish the proof, we will show a partition on \mathbb{N} that satisfies (1^*) , (1^{**}) and (2^*) .

Let S_i be the set of all natural numbers in the range $[2^i, 2^{i+1})$ for $i = 0, 1, 2, \ldots$ e.g. $S_0 = \{1\}, S_1 = \{2, 3\}, S_2 = \{4, 5, 6, 7\}, S_3 = \{8, 9, \ldots, 15\}$, etc. Our partition is in the form

$$\mathbb{P} = \{ \{ S_0 \cup S_1 \} \} \cup \{ S_i \}_{i=2}^{\infty}$$
 (10)