

Failure is not the Opposite of Success: Reinforcement Learning

1st Seminar, 2023 AVE Lab Summer Internship Hongtae Kim

2023.07.20

Contents

- 1. Introduction
- 2. Markov Decision Process (MDP)
- 3. Value Function
- 4. Bellman Equation
- 5. Q-Learning
- 6. Outro

Reinforcement Learning

- Trend: Rule-based AI → Data-based AI
- Supervised Learning, Unsupervised Learning → Only one time solution
- When reinforcement learning can be used?
 - Answer to an action sequence, which is a series of decisions over time
 - Action sequence (also called 'Policy')

Rule-based AI & Data-based AI Machine Learning

Supervised Learning, Classification

Reinforcement Learning, Action Sequences

⁻ Janner, Michael, Qiyang Li, and Sergey Levine. "Offline reinforcement learning as one big sequence modeling problem." Advances in neural information processing systems 34 (2021): 1273-1286.

⁻ Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009.

Reinforcement Learning – Setting

- The general RL problem is formalized as a **discrete-time stochastic control process** where an agent interacts with its environment as follows:
- Step 1) Agent starts in a given environment state $s_0, s_0 \in S$ and gathering an initial observation $\omega_0, \omega_0 \in \Omega$
- Step 2) At each time step t, the agent take an action $a_t, a_t \in A$ Action follows three consequences
 - 1) obtains a reward r_t
 - 2) state transitions to s_{t+1}
 - 3) obtains an observation ω_{t+1}

discrete-time stochastic control process

t t+1 t+2 t+3 ···

RL Diagram

Markov Decision Process (MDP)

- How can we solve RL? MDP!
- MDP provides <u>mathematical model</u>, discrete-time stochastic control process problems
- RL is an algorithm for solving problems represented by MDP

	State Transition			
State	Action	Probability	Reward	Discount Factor
S	A	P	R	γ

Components of MDP

Markov Decision Process (MDP) – State

- How can we solve RL? MDP!
- MDP provides <u>mathematical model</u>, discrete-time stochastic control process problems
- RL is an algorithm for solving problems represented by MDP

	State Transition			
State	Action	Probability	Reward	Discount Factor
\mathbf{S}	A	P	R	γ

- **State** of the agent in the environment
- Grid world: Location (x, y)
- s_0 : starting state
- s : current state
- s': next state
- s_t : state at time t

Markov Decision Process (MDP) – Action

- How can we solve RL? MDP!
- MDP provides <u>mathematical model</u>, discrete-time stochastic control process problems
- RL is an algorithm for solving problems represented by MDP

State	Action	State Transition Probability	Reward	Discount Factor
S	A	P	R	γ

- Agent can change its state by taking an action
- Up, Down, Left, Right
- $s \rightarrow s'$

Markov Decision Process (MDP) – State Transition Probability

State Transition

- How can we solve RL? MDP!
- MDP provides <u>mathematical model</u>, discrete-time stochastic control process problems
- RL is an algorithm for solving problems represented by MDP

- When an action is taken, the state becomes probabilistic (not deterministic)
- Disturbances and control errors

Discount Factor

• P(s'|s,a)

Markov Decision Process (MDP) – Reward

- How can we solve RL? MDP!
- MDP provides <u>mathematical model</u>, discrete-time stochastic control process problems
- RL is an algorithm for solving problems represented by MDP

		State Transition		
State	Action	Probability	Reward	Discount Factor
S	A	P	R	γ

- Value that received when a specific Action is taken in a specific State
- Determine good and bad actions
- Start of Value Function
- R(s, a, s')

Markov Decision Process (MDP) – Discount Factor

- How can we solve RL? MDP!
- MDP provides <u>mathematical model</u>, discrete-time stochastic control process problems
- RL is an algorithm for solving problems represented by MDP

	State Transition			
State	Action	Probability	Reward	Discount Factor
S	A	P	R	γ

- Penalty for future rewards
- Ensure rewards converge to finite values
- $0 \le \gamma \le 1$
- $\gamma \approx$ 0, Future rewards are less valuable
- Blue: 1 + 10 = 11
- Green: 1+1+1+1+1+10=15

Value Function – Return & Q-Function

- Returns are totals for single episodes
- But, RL handles stochastic situations (not deterministic)
- So, we use the expected return
- Q Function (= Action Value Function)
 - Agent's expected reward for a given **state-action pair**
 - Indicator of what actions the agent will take

Diagram of Return

Single episode

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots$$
$$= \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

Return function

Expected value of episode

$$q_{\pi}(s, a) = E_{\pi}[G_t \mid S_t = s, A_t = a]$$

Q Function(= Action Value Function)

Value Function – Policy

- Policy is a **strategy** that determines what actions to take in each state in a given episode
- Our goal: Find policy(π) that **maximize the Value**

Optimal policy (π^*) If every state can take 4 actions, there are 4^{13} policies

- Bellman Equation to find the optimal policy
- Relationship between the value function of a state at time t and the value function of a state at time t+1
- Find the value function at time t through the value function at time t+1

$$q_{\pi}(s,a) = R_s^a$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a$$

$$q_{\pi}(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a'|s')$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a'|s') \ q_{\pi}(s',a')$$

- Bellman Equation to find the optimal policy
- Relationship between the value function of a state at time t and the value function of a state at time t+1
- Find the value function at time t through the value function at time t+1

$$q_{\pi}(s,a) = R_s^a$$
Immediate reward

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a'|s')$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a'|s') q_{\pi}(s',a')$$

- Bellman Equation to find the optimal policy
- Relationship between the value function of a state at time t and the value function of a state at time t+1
- Find the value function at time t through the value function at time t+1

$$q_{\pi}(s,a) = R_s^a$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a$$
State Transition
Probability

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a'|s')$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a'|s') q_{\pi}(s',a')$$

- Bellman Equation to find the optimal policy
- Relationship between the value function of a state at time t and the value function of a state at time t+1
- Find the value function at time t through the value function at time t+1

$$q_{\pi}(s,a) = R_s^a$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \frac{\pi(a'|s')}{a'}$$

Probability of Action

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a'|s') \ q_{\pi}(s',a')$$

- Bellman Equation to find the optimal policy
- Relationship between the value function of a state at time t and the value function of a state at time t+1
- Find the value function at time t through the value function at time t+1

$$q_{\pi}(s,a) = R_s^a$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a$$

$$q_{\pi}(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a'|s')$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a'|s') \frac{q_{\pi}(s',a')}{q_{\pi}(s',a')}$$

Q value of s'

- Bellman Equation to find the optimal policy
- Relationship between the value function of a state at time t and the value function of a state at time t+1
- Find the value function at time t through the value function at time t+1

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma q(s_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

$$q_{\pi}(s,a) = R_t^a + \gamma \sum_{a \in A} P_{ss}^a, v_{\pi}(s_{t+1}) \sum_{a \in A} \pi(a|s_{t+1}) q_{\pi}(s_{t+1},a)$$
Immediate Reward

Next Value

Bellman Equation for Q-Function

- Initialization step, Exploration step, Q value update step
- For simplicity, the Discount Factor (γ) and Probability (P) are not considered
- Initial state
 - 1) All 64 Q values are 0
 - 2) Only $R_{S_{15},L} = 1$, all others 0

(1) From
$$S_0$$
 to S_1

•
$$Q(S_0, A_R) = R + \max_{\alpha} Q(S_1, A) = 0 + \max\{0, 0, 0, 0\} = 0$$

(2) From
$$S_{14}$$
 to S_{15}

•
$$Q(S_{14}, A_R) = R + \max_{a} Q(S_{15}, A) = 1 + \max\{0, 0, 0, 0\} = 1$$

(3) From
$$S_{10}$$
 to S_{14}

•
$$Q(S_{10}, A_D) = R + \max_{a} Q(S_{14}, A) = 0 + \max\{0, 1, 0, 0\} = 1$$

- Initialization step, Exploration step, Q value update step
- For simplicity, the Discount Factor (γ) and State Transition Probability (P) are not considered
- Initial state
 - 1) All 64 Q values are 0
 - 2) Only $R_{S_{15},L} = 1$, all others 0

0 0	0 0	0 0	0 0
0 0	0 0	0 0	0 0
0 0	0 0	5 ₁₀ 0 0 0 (3) 0	0 0
0 0	0 0	0 0	POO

Exploration step & Q value update step

(1) From
$$S_0$$
 to S_1
• $Q(S_0, A_R) = R + \max_a Q(S_1, A) = 0 + \max\{0,0,0,0\} = 0$

(2) From
$$S_{14}$$
 to S_{15}
• $Q(S_{14}, A_R) = R + \max_{a} Q(S_{15}, A) = 1 + \max\{0,0,0,0\} = 1$

(3) From
$$S_{10}$$
 to S_{14}
• $Q(S_{10}, A_D) = R + \max_{a} Q(S_{14}, A) = 0 + \max\{0, 1, 0, 0\} = 1$

Blue : Q-Table Red : Reward

- Initialization step, Exploration step, Q value update step
- For simplicity, the Discount Factor (γ) and State Transition Probability (P) are not considered
- Initial state
 - 1) All 64 Q values are 0
 - 2) Only $R_{S_{15},L} = 1$, all others 0

(1)From
$$S_0$$
 to S_1

•
$$Q(S_0, A_R) = R + \max_a Q(S_1, A) = 0 + \max\{0, 0, 0, 0\} = 0$$

(2) From
$$S_{14}$$
 to S_{15}

•
$$Q(S_{14}, A_R) = R + \max_{a} Q(S_{15}, A) = 1 + \max\{0, 0, 0, 0\} = 1$$

(3) From
$$S_{10}$$
 to S_{14}

•
$$Q(S_{10}, A_D) = R + \max_{a} Q(S_{14}, A) = 0 + \max\{0, 1, 0, 0\} = 1$$

- Initialization step, Exploration step, Q value update step
- For simplicity, the Discount Factor (γ) and State Transition Probability (P) are not considered
- Initial state
 - 1) All 64 Q values are 0
 - 2) Only $R_{S_{15},L} = 1$, all others 0

(1) From
$$S_0$$
 to S_1
• $Q(S_0, A_R) = R + \max_{a} Q(S_1, A) = 0 + \max\{0,0,0,0\} = 0$

(2) From
$$S_{14}$$
 to S_{15}
• $Q(S_{14}, A_R) = R + \max_{a} Q(S_{15}, A) = 1 + \max\{0, 0, 0, 0\} = 1$

(3) From
$$S_{10}$$
 to S_{14}
• $Q(S_{10}, A_D) = R + \max_{a} Q(S_{14}, A) = 0 + \max\{0, 1, 0, 0\} = 1$

- Initialization step, Exploration step, Q value update step
- For simplicity, the Discount Factor (γ) and State Transition Probability (P) are not considered
- Initial state
 - 1) All 64 Q values are 0
 - 2) Only $R_{S_{15},L} = 1$, all others 0

(1) From
$$S_0$$
 to S_1
• $Q(S_0, A_R) = R + \max_{a} Q(S_1, A) = 0 + \max\{0,0,0,0\} = 0$

(2) From
$$S_{14}$$
 to S_{15}
• $Q(S_{14}, A_R) = R + \max_{a} Q(S_{15}, A) = 1 + \max\{0,0,0,0\} = 1$

(3) From
$$S_{10}$$
 to S_{14}
• $Q(S_{10}, A_D) = R + \max_{a} Q(S_{14}, A) = 0 + \max\{0, 1, 0, 0\} = 1$

- Initialization step, Exploration step, Q value update step
- For simplicity, the Discount Factor (γ) and State Transition Probability (P) are not considered
- Initial state
 - 1) All 64 Q values are 0
 - 2) Only $R_{S_{15},L} = 1$, all others 0

(1) From
$$S_0$$
 to S_1

•
$$Q(S_0, A_R) = R + \max_a Q(S_1, A) = 0 + \max\{0, 0, 0, 0\} = 0$$

(2) From
$$S_{14}$$
 to S_{15}

•
$$Q(S_{14}, A_R) = R + \max_{\alpha} Q(S_{15}, A) = 1 + \max\{0,0,0,0\} = 1$$

(3) From
$$S_{10}$$
 to S_{14}

•
$$Q(S_{10}, A_D) = R + \max_{a} Q(S_{14}, A) = 0 + \max\{0, 1, 0, 0\} = 1$$

Outro – Summary

Outro – 2nd Seminar, August 9 2023

- **DQN**: Combining deep learning neural networks and Q-learning
- DDPG: Operates on a continuous behavior space, an extended form of the Actor-Critic method
- A3C: Multiple agents interact with the environment in parallel to learn
- Multi Agent Reinforcement Learning (MARL) : Dealing with multiple agents interact

Deep Q-Network

Asynchronous Advantage Actor-Critic

Deep Deterministic Policy Gradient

Multi Agent Reinforcement Learning

- Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).
- Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).
- Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International conference on machine learning. PMLR, 2016.

