S&DS 220: Homework 2

Due Friday January 26th, 11:59 pm

Braeden Cullen

Instructions

Complete the questions below. Upload your knitted PDF solutions to Gradescope by January 26th, 11:59PM.

Question 1: Exercise 1.4

In this exercise, you will graph the function f(p) = p(1-p) for $p \in [0,1]$.

(a) Use seq to create a vector **p** of numbers from 0 to 1 spaced by 0.2.

```
# your code here
p <- seq(0, 1, by = 0.2)
p</pre>
```

```
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
```

(b) Use plot to plot p in the x coordinate and p(1-p) in the y coordinate. Read the help page for plot and experiment with the type argument to find a good choice for this graph.

```
# your code here
plot(p, p*(1-p), type = "l")
```


(c) Repeat, but with creating a vector **p** of numbers from 0 to 1 spaced by 0.01.

```
# your code here
p <- seq(0, 1, by = 0.01)
plot(p, p*(1-p), type = "1")</pre>
```


Question 2: Exercsie 1.7

R has a built-in vector rivers which contains the lengths of major North American rivers.

(a) Use ?rivers to learn about the data set.

?rivers

(b) Find the mean and standard deviation of the rivers data using the base R functions mean and sd.

```
# your code here
mn <- mean(rivers)
s <- sd(rivers)
mn
## [1] 591.1844
s</pre>
```

[1] 493.8708

(c) Make a histogram (hist) of the rivers data.

```
# your code here
hist(rivers, col = rainbow(10))
```

Histogram of rivers

(d) Get the five number summary (summary) of rivers data.

```
# your code here
summary(rivers)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 135.0 310.0 425.0 591.2 680.0 3710.0
```

(e) Find the longest and shortest lengths of rivers in the set.

```
# your code here
mx <- max(rivers)
mn <- min(rivers)
mx</pre>
```

[1] 3710

mn

[1] 135

(f) Make a list of all (lengths of) rivers longer than 1000 miles.

```
# your code here
river_lst <- rivers[rivers > 1000]
river_lst
```

[1] 1459 1450 1243 2348 1171 3710 2315 2533 1306 1054 1270 1885 1100 1205 1038 ## [16] 1770

Question 3: Exercise 1.9

There is a built-in data set state, which is really seven separate variables with names such as

```
state.name, state.region, and state.area.
```

(a) What are the possible regions a state can be in? How many states are in each region?

```
# your code here
table(state.region)
```

```
## state.region
## Northeast South North Central West
## 9 16 12 13
```

(b) Which states have area less than 10,000 square miles?

```
# your code here
less_than <- state.name[state.area < 10000]
less_than</pre>
```

```
## [1] "Connecticut" "Delaware" "Hawaii" "Massachusetts"
## [5] "New Hampshire" "New Jersey" "Rhode Island" "Vermont"
```

(c) Which state's geographic center is furthest south? (Hint: use which.min)

```
# your code here
lat = state.center$y
min_index = which.min(lat)
state.name[min_index]
```

```
## [1] "Florida"
```

Question 4: Exercise 1.11

Consider the mtcars data set.

(a) Convert the am variable to a factor with two levels, auto and manual, by typing the following:

```
mtcars$am <- factor(mtcars$am, levels = c(0, 1), labels = c("auto", "manual")).</pre>
```

```
# your code here
data(mtcars)
mtcars$am <- factor(mtcars$am, levels = c(0, 1), labels = c("auto", "manual"))
head(mtcars$am)</pre>
```

```
## [1] manual manual manual auto auto auto
## Levels: auto manual
```

(b) How many cars of each type of transmission are there?

```
# your code here
num_auto <- table(mtcars$am)[1]
num_manual <- table(mtcars$am)[2]
# num_auto
num_auto</pre>
```

```
## auto
## 19
```

```
# num_manual
num_manual
```

```
## manual
## 13
```

```
# 19 auto, 13 manual
```

(c) How many cars of each type of transmission have gas mileage estimates greater than 25 mpg?

```
# your code here
num_auto <- mtcars$mpg[mtcars$am == "auto"]
num_auto_greater <- sum(num_auto > 25)
num_auto_greater
```

```
## [1] 0
```

```
num_manual <- mtcars$mpg[mtcars$am == "manual"]
num_manual_greater <- sum(num_manual > 25)
num_manual_greater
```

```
## [1] 6
```

O auto, 6 manual

Question 5: Exercise 1.12

This problem uses the data set hot_dogs from the package fosdata. See the section called Libraries in the Preface of the text under "Software Installation" (page xii).

Important: never install a package in an R script or R Markdown document. Always use the console!

(a) How many observations of how many variables are there? What types are the variables?

```
# your code here
library(fosdata)
dim(hot_dogs)

## [1] 54 3

# 54 observations of 3 variables
str(hot_dogs)

## 'data.frame': 54 obs. of 3 variables:
## $ type : Factor w/ 3 levels "Beef", "Meat", ...: 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
## $ calories: int 186 181 176 149 184 190 158 139 175 148 ...
## $ sodium : int 495 477 425 322 482 587 370 322 479 375 ...

# the variables are type, calories, and sodium
```

(b) What are the three kinds of hot dogs in this data set?

```
# your code here
table(hot_dogs$type)

##
## Beef Meat Poultry
## 20 17 17

# Beef Meat Poultry
```

(c) What is the highest sodium content of any hot dog in this data set?

```
# your code here
max(hot_dogs$sodium)
## [1] 645
```

(d) What is the mean calorie content for Beef hot dogs?

645

```
# your code here
mean(hot_dogs$calories[hot_dogs$type=="Beef"])
```

[1] 156.85

156.85