Boolean Algebra and Its Relation to GatesAn Introduction to CS233

233 in one slide!

- The class consists roughly of 4 quarters:
 - 1. You will build a simple computer processor
 - 2. You will learn how high-level language code executes on a processor
 - 3. You will learn why computers perform the way they do
 - 4. You will learn about hardware mechanisms for parallelism
- We will have a SPIMbot contest!
- Section begins this week, so I must teach you something!
 - More on class mechanics on Wednesday...

Today's lecture

- Basic Boolean expressions
 - Booleans
 - AND, OR and NOT
 - Expressing Boolean functions:
 - as truth tables
 - as mathematical expressions
 - as digital circuits made of gates
 - using hardware description languages

Computing: It is all just ones and zeros

- Computers use voltages to represent information.
- For reliability and ease of design, however, we group ranges of voltages into two discrete, or digital, values: 1 and 0.
 - This two-valued domain is referred to as BINARY
 - Often 1 is used for TRUE and o for FALSE.

We'll show you how.

Boolean values

Volts

- If we think of our digital voltages as two logical values, true and false, we call these "Booleans"
 - After the mathematician George Boole

- For simplicity, we often still write digits instead:
 - 1 is true
 - 0 is false

Boolean algebra is the mathematics defined over this binary domain.

Boolean functions

Just like in other mathematics, we can define functions:

$$y = f(x)$$

- The output is specified purely by the function & inputs
- Because there are a finite number (2) of boolean values...
 - There are a finite number of boolean functions
- For 1-input functions (e.g., f(x)) there are only 4 possible
 - (let's first see how to represent these...)

Truth tables

- A truth table shows all possible inputs & outputs of a function.
- Each input variable is either 1 or 0. (so are the outputs.)
 - Because there are only a finite number of values (1 and 0), truth tables themselves are finite.

A function with n variables has 2ⁿ possible combinations of

inputs.

X	У	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

1-input Boolean functions

$$y = f(x)$$

A 1-input Boolean function has 2¹ = 2 possible inputs:

X	f(x)
0	f(0)
1	f(1)

- There are 2^(# of inputs) possible functions
 - For each input, there are 2 possible outputs
 - The outputs are independent for each input (hence the multiplication)
- The 4 possible 1-input Boolean functions

X	$f_0(x)$
0	0
1	0

X	$f_1(x)$				
0	0				
1	1				
Buffer					
_ /					

X	$f_3(x)$
0	1
1	1

2-input Boolean functions

$$z = f(x, y)$$

4 possible inputs, 16 possible functions:

×	У	fO	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

OR

We'll focus on 2 for now

AND

Basic Boolean operations

There are three basic operations for logical values.

Operation:

AND (product) of two inputs

OR (sum) of two inputs

NOT (complement) on one input

Expression

Notation: xy, or x•y

x + y

x' or \overline{x}

Truth table:

X	У	ху
0	0	0
0	1	0
1	0	0
1	1	1

X	У	х+у
0	0	0
0	1	1
1	0	1
1	1	1

X	x'		
0	1		
1	0		

These are sufficient to implement any Boolean function

Boolean expressions (formally)

Use these basic operations to form more complex expressions:

$$f(x,y,z) = (x + y')z + x'$$

- Some terminology and notation:
 - f is the name of the function.
 - (x,y,z) are the input variables, each representing 1 or 0. Listing the inputs is optional, but sometimes helpful.
 - A literal is any occurrence of an input variable or complement.
 The function above has four literals: x, y', z, and x'.
- Precedences are important, but not too difficult.
 - NOT has the highest precedence, followed by AND, and then OR.
 - Fully parenthesized, the function above would be kind of messy:

$$f(x,y,z) = (((x + (y'))z) + x')$$

Boolean expressions to Truth tables

- To compute a truth table given a Boolean expression:
 - Evaluate the function for every combination of inputs.

Primitive logic gates

- Each of our basic operations can be implemented in hardware using a primitive logic gate.
 - Symbols for each of the logic gates are shown below.
 - These gates output the product, sum or complement of their inputs.

Operation:	AND (product) of two inputs	OR (sum) of two inputs	(complement) on one input
Expression:	xy, or x•y	x + y	χ'
Logic gate:	х—	x —	x———x'
			Negation

NOT

Boolean expressions to circuits

- Any Boolean expression can be converted into a circuit in a straightforward way.
 - Write a gate for each operation in the expression in precedence order.
 - We typically draw circuits with inputs on left and outputs on right.

Converting circuits to expressions

What Boolean expression does this circuit implement?

- a) (x + y)y'
- b) x + y + y'
- c) xy' + y
- d) (xy) + y'
- e) (x+y)(x+y')

Hardware Description Languages (HDL)

- Textual descriptions of circuits
 - (We're very good at manipulating text...)


```
Verilog
HDL Code:
wire x, y, z, a, w;
and a1(a, x, y); // gatetype name(out, in1, in2);
or o1(w, a, z);
```

- Not like a normal programming language
 - Each statement describes one or more gates and/or wires.

Boolean functions summary

- We can interpret high and low voltages as true and false.
- A Boolean variable can be either 1 or 0.
- AND, OR, and NOT are the basic Boolean operations.
- We can express Boolean functions in many ways:
 - Expressions, truth tables, circuits, and HDL code
 - These are different representations for equivalent things

Discussion Section starts this week!

- We'll introduce you to the tools designing, testing, and debugging digital logic circuits
 - Verilog
 - Waveform Viewers