1. Sicurezza Wireless

La sicurezza nelle reti wireless è fondamentale poiché la trasmissione in aria rende i dati potenzialmente accessibili a chiunque si trovi nel raggio di copertura.

1.1 WEP (Wired Equivalent Privacy)

- Introduzione: Primo protocollo di sicurezza per 802.11 (1999)
- Meccanismo: Utilizza algoritmo RC4 con chiavi da 64 o 128 bit
- Problemi critici:
 - Vettore di inizializzazione (IV) troppo corto (24 bit)
 - Riutilizzo di chiavi
 - Autenticazione debole
 - Metodo di gestione delle chiavi inadeguato
 - CRC-32 non crittografico per l'integrità

1.1.1 Vulnerabilità

- Collisioni degli IV (dopo circa 5000 pacchetti)
- Attacchi statistici (FMS/KoreK)
- Possibile decifrazione completa in pochi minuti
- WEP è considerato completamente insicuro oggi
- Non deve essere mai utilizzato in ambienti di produzione

1.1.2 Funzionamento

- 1. L'access point e il client condividono una chiave segreta
- 2. Viene generato un IV casuale
- 3. IV + chiave segreta formano la chiave di cifratura
- 4. RC4 genera uno stream di chiavi basato sulla chiave di cifratura
- 5. I dati vengono cifrati con XOR tra dati e stream di chiavi
- 6. Il pacchetto inviato contiene IV in chiaro + dati cifrati

1.2 WPA (Wi-Fi Protected Access)

- Introduzione: Soluzione intermedia introdotta nel 2003 dopo i problemi di WEP
- Meccanismo: Usa TKIP (Temporal Key Integrity Protocol) basato ancora su RC4

1.2.1 Miglioramenti rispetto a WEP

IV più lungo (48 bit)

- Mixing function per le chiavi
- Message Integrity Check (MIC) con algoritmo Michael
- Distribuzione chiavi dinamica (chiavi cambiate periodicamente)
- Contromisure attive contro attacchi

1.2.2 Modalità operative

- WPA-Personal (WPA-PSK):
 - Usa passphrase condivisa
 - Adatto per piccole reti
 - Vulnerabile ad attacchi di dizionario sulla passphrase

WPA-Enterprise:

- Autenticazione basata su server RADIUS e 802.1X
- Ogni utente ha credenziali individuali
- Più sicuro, ma richiede infrastruttura aggiuntiva

1.2.3 Vulnerabilità

- TKIP può essere attaccato (Beck-Tews attack)
- Vulnerabile ad attacchi di dizionario offline su PSK
- Possibili attacchi DoS causando rikeying

1.3 WPA2

- Introduzione: Standard IEEE 802.11i rilasciato nel 2004
- Meccanismo: Usa CCMP basato su AES invece di RC4/TKIP

1.3.1 Caratteristiche principali

- Cifratura AES-CCMP sicura ed efficiente
- · Gestione chiavi robusta
- Integrità e autenticazione integrate
- Protezione contro replay attack

1.3.2 Modalità

- Personal (PSK):
 - Chiave precondivisa
 - Adatta per reti domestiche/piccoli uffici
 - Protocollo handshake a 4 vie

Enterprise:

- Autenticazione basata su 802.1X e RADIUS
- EAP (Extensible Authentication Protocol)

Per organizzazioni più grandi con gestione centralizzata

1.3.3 Vulnerabilità note

- KRACK (Key Reinstallation Attack) scoperto nel 2017
 - Sfrutta vulnerabilità nel handshake a 4 vie
 - Permette di forzare la reinstallazione di chiavi già in uso
 - Può portare a decifrazione del traffico
- Attacchi di forza bruta su password deboli
- Alcune implementazioni vulnerabili a Denial of Service

1.4 WPA3

- Introduzione: Introdotto nel 2018 come successore di WPA2
- Obiettivo: Risolvere le vulnerabilità di WPA2 e migliorare la sicurezza

1.4.1 Caratteristiche principali

- SAE (Simultaneous Authentication of Equals Dragonfly)
 - Sostituisce il PSK
 - Handshake resistente agli attacchi di dizionario
 - Forward secrecy (compromettere una sessione non compromette le altre)
- Protezione dagli attacchi di dizionario offline
- Crittografia robusta: minimo 128 bit (Personal), 192 bit (Enterprise)
- Protezione migliorata per reti pubbliche:
 - OWE (Opportunistic Wireless Encryption)
 - Crittografia anche senza autenticazione
- PMF (Protected Management Frames) obbligatorio

1.4.2 Differenze con WPA2

Caratteristica	WPA2	WPA3
Handshake	4-way PSK	SAE (Dragonfly)
Protezione dizionario	No	Sì
Forward secrecy	No	Sì
Protezione reti aperte	No	Sì (OWE)
PMF	Opzionale	Obbligatorio
Complessità minima password	Nessuna	Maggiore

2. HTTPS (HTTP Secure) e SSL/TLS

HTTPS è HTTP su una connessione cifrata con SSL/TLS, essenziale per proteggere le comunicazioni web.

2.1 Funzionamento HTTPS

- 1. Client richiede connessione sicura al server
- 2. Server invia il suo certificato X.509
- 3. Client verifica il certificato contro CA (Certificate Authority) attendibili
- 4. Client genera una chiave di sessione
- 5. La chiave viene scambiata in modo sicuro
- 6. La comunicazione prosegue cifrata con la chiave di sessione

2.2 Vantaggi di HTTPS

- Confidenzialità: Protezione contro intercettazioni
- Integrità: Garanzia che i dati non siano stati alterati
- Autenticazione: Verifica dell'identità del server
- SEO: Miglior posizionamento nei motori di ricerca
- Nuove funzionalità: Accesso a Service Workers, HTTP/2, ecc.
- Trust indicator: Indicatore di sicurezza nel browser

2.3 Evoluzione dei protocolli SSL/TLS

- SSL 2.0/3.0: Obsoleti e vulnerabili (POODLE, BEAST)
- TLS 1.0/1.1: Deprecati (vulnerabili a BEAST, CRIME)
- TLS 1.2: Ancora ampiamente utilizzato
 - Supporta suite di cifratura moderne (AES-GCM)
 - Ancora standard in molte implementazioni
- TLS 1.3 (2018): Versione attuale, più veloce e sicura
 - Handshake ridotto (1-RTT, 0-RTT)
 - Rimozione di algoritmi obsoleti/insicuri
 - Forward secrecy obbligatoria
 - Cifratura dei metadati del certificato

2.4 Handshake TLS 1.2 vs 1.3

TLS 1.2 Handshake (2-RTT):

- 1. Client → Server: ClientHello (cipher suites, random)
- 2. Server → Client: ServerHello, Certificate, ServerKeyExchange, ServerHelloDone
- 3. Client → Server: ClientKeyExchange, ChangeCipherSpec, Finished
- 4. Server → Client: ChangeCipherSpec, Finished
- 5. Comunicazione cifrata

TLS 1.3 Handshake (1-RTT):

- 1. Client → Server: ClientHello (guess key share, cipher suites, random)
- 2. Server → Client: ServerHello, CertificateVerify, Finished
- Client → Server: Finished
- Comunicazione cifrata

2.5 Certificati SSL/TLS

Componenti:

- Chiave pubblica del server
- Nome del soggetto (dominio)
- Firme digitali
- Periodo di validità
- Autorità di certificazione emittente

Tipi:

- DV (Domain Validation): verifica solo il controllo del dominio
- **OV** (Organization Validation): verifica anche l'organizzazione
- EV (Extended Validation): verifica approfondita dell'identità legale

Certificate Transparency:

- Log pubblici di tutti i certificati emessi
- Permette di rilevare certificati fraudolenti
- Obbligatorio per molti browser

3. Altri protocolli di sicurezza

3.1 IPsec (IP Security)

- **Definizione**: Suite di protocolli per sicurezza a livello IP (livello 3)
- Componenti:
 - AH (Authentication Header): integrità e autenticazione
 - ESP (Encapsulating Security Payload): confidenzialità, integrità, autenticazione
 - **IKE** (Internet Key Exchange): gestione delle chiavi e SA (Security Association)

3.1.1 Modalità operative

Transport mode:

- Protegge solo il payload del pacchetto IP
- Header IP originale rimane intatto
- Utilizzato principalmente per comunicazioni host-to-host

• Tunnel mode:

Protegge l'intero pacchetto IP (header + payload)

- Incapsula il pacchetto originale in un nuovo pacchetto IP
- Utilizzato principalmente per VPN site-to-site

3.1.2 Utilizzi comuni

- VPN site-to-site
- Protezione del traffico sensibile
- Implementazione del modello di sicurezza end-to-end
- Autenticazione senza cifratura (AH)
- Cifratura con autenticazione (ESP)

3.2 VPN (Virtual Private Network)

- Definizione: Tecnologia che crea un tunnel sicuro attraverso una rete non sicura (Internet)
- Scopo: Estendere una rete privata attraverso una rete pubblica

3.2.1 Tipi di VPN

Remote Access VPN:

- Connette un singolo utente a una rete
- Utilizzata per lavoro remoto o accesso a risorse aziendali

Site-to-Site VPN:

- Connette intere reti tra loro
- Usata per collegare filiali, uffici, data center

3.2.2 Protocolli VPN comuni

IPsec:

- Sicuro e robusto
- Supportato da molti dispositivi
- Può essere bloccato in alcune reti

SSL/TLS (OpenVPN):

- Più facile da attraversare firewall (usa porta 443)
- Flessibile e open-source
- Può essere più lento di altre soluzioni

WireGuard:

- Moderno, veloce, codice compatto
- Crittografia di ultima generazione
- Minori funzionalità di gestione rispetto ad alternative

L2TP/IPsec:

Combina tunneling L2TP con sicurezza IPsec

Supportato nativamente da molti sistemi

• PPTP:

- · Legacy, non considerato sicuro oggi
- Facile da configurare e veloce
- Da evitare per dati sensibili

3.2.3 Vantaggi delle VPN

- Privacy e anonimato online
- Accesso sicuro a risorse aziendali
- Protezione su reti Wi-Fi pubbliche
- Bypassare restrizioni geografiche
- Connessione sicura tra sedi distaccate

3.3 Bluetooth e sua sicurezza

3.3.1 Caratteristiche Bluetooth

- Topologia: piconet e scatternet
- Beacon: segnali periodici per sincronizzazione
- Frequenza: 2.4 GHz, frequency hopping
- Classi di potenza: Classe 1 (100m), Classe 2 (10m), Classe 3 (1m)
- Versioni: da 1.0 a 5.2, con miglioramenti di velocità e sicurezza

3.3.2 Meccanismi di sicurezza Bluetooth

- Pairing: processo di stabilimento della fiducia tra dispositivi
- Bonding: memorizzazione delle informazioni di pairing
- Encryption: cifratura dei dati usando AES-CCM
- Authentication: verifica dell'identità dei dispositivi
- Authorization: controllo dell'accesso alle risorse

3.3.3 Vulnerabilità Bluetooth

- Bluejacking: invio di messaggi non autorizzati
- Bluesnarfing: accesso non autorizzato ai dati
- Bluebugging: prendere il controllo di un dispositivo
- KNOB (Key Negotiation Of Bluetooth): forzare chiavi deboli
- BlueBorne: esecuzione di codice remoto senza pairing

4. Tecniche di attacco e difesa

4.1 Man in the Middle (MITM)

- Definizione: Attacco in cui l'aggressore si posiziona tra due parti comunicanti
- Obiettivo: Intercettare, leggere o modificare le comunicazioni senza essere rilevato

4.1.1 Metodi

- ARP spoofing/poisoning:
 - Corruzione tabelle ARP per reindirizzare traffico
 - Funziona solo in reti locali (stesso segmento)
- DNS spoofing:
 - Modificare le risoluzioni DNS
 - Reindirizza utenti a siti falsi
- Rogue access point:
 - AP malevolo che imita una rete legittima
 - Utenti si connettono pensando sia la rete corretta
- SSL stripping:
 - Downgrade da HTTPS a HTTP
 - Intercetta traffico prima della cifratura

4.1.2 Difese

- HTTPS (certificati validi e HSTS)
- Certificate pinning: verifica hardcoded dei certificati nelle app
- Mutual authentication: client e server si autenticano a vicenda
- VPN: traffico cifrato end-to-end
- Monitoraggio tabelle ARP
- Packet filtering
- 802.1X: autenticazione a livello di porta

4.2 DOS/DDOS (Denial of Service)

- Definizione: Attacco che mira a rendere un servizio non disponibile ai legittimi utenti
- DDoS: versione distribuita che utilizza molti sistemi compromessi

4.2.1 Tipi

- Volumetric: sovraccarica la banda
 - UDP flood: invio massivo di pacchetti UDP
 - ICMP flood: invio massivo di pacchetti ICMP
 - Amplification: sfrutta servizi che generano risposte più grandi delle richieste
- **Protocol**: consuma risorse server
 - SYN flood: apertura di molte connessioni parziali
 - Fragmentation attack: pacchetti frammentati malformati

4.2.2 Difese

- Filtraggio del traffico: blocca pacchetti con caratteristiche sospette
- Rate limiting: limita numero di richieste da uno stesso IP
- Load balancing: distribuisce il carico su più server
- Servizi anti-DDoS: servizi specializzati come Cloudflare, AWS Shield
- Anycast: distribuisce il traffico su server geograficamente dispersi
- Monitoraggio: rileva pattern anomali
- Sovradimensionamento: capacità superiore al traffico massimo atteso
- Blackholing: indirizza il traffico malevolo verso un "buco nero"

4.3 Firewall

- Definizione: Sistema che filtra il traffico di rete in base a regole predefinite
- Scopo: Proteggere reti interne da minacce esterne

4.3.1 Tipi di firewall

Packet filtering:

- Filtra in base a informazioni dell'header (livello 3-4)
- Controlla IP sorgente/destinazione, porte, protocollo
- Semplice ma limitato, non analizza il contenuto
- Stateless: non considera lo stato della connessione

Stateful inspection:

- Tiene traccia dello stato delle connessioni
- · Verifica che i pacchetti appartengano a connessioni legittime
- Più sicuro del packet filtering
- Mantiene una tabella delle connessioni attive

Application layer (proxy):

- Analizza il traffico a livello applicativo (livello 7)
- Comprende i protocolli applicativi (HTTP, FTP, ecc.)
- Può filtrare contenuti specifici
- Più lento ma molto più sicuro

Next-generation:

- Integra funzionalità avanzate:
 - IPS (Intrusion Prevention System)
 - Antivirus
 - Deep packet inspection
 - URL filtering
 - Analisi del comportamento

4.3.2 Regole tipiche

- Default deny (blocca tutto tranne ciò che è esplicitamente permesso)
- Allow/Block in base a indirizzo IP, porta, protocollo
- Limitazione delle connessioni
- Content filtering
- Logging degli eventi

4.3.3 Architetture firewall

- DMZ (Demilitarized Zone):
 - Zona intermedia tra rete interna ed esterna
 - Ospita servizi accessibili dall'esterno (web, mail)
 - Protegge la rete interna anche se la DMZ è compromessa

Firewall perimetrali:

- Proteggono il confine tra rete aziendale e Internet
- Prima linea di difesa

Firewall interni:

- Segmentano la rete interna
- Limitano la propagazione di minacce interne

4.3.4 Firewall personali vs. di rete

Personali:

- Installati su singoli dispositivi
- Proteggono il singolo sistema
- Spesso integrati nei sistemi operativi

Di rete:

- Dispositivi dedicati
- Proteggono l'intera rete
- Gestione centralizzata
- Maggiore potenza di elaborazione

5. Architetture di rete sicure

5.1 DMZ (Demilitarized Zone)

- Definizione: Sottorete fisica o logica che contiene ed espone i servizi esterni di un'organizzazione
- Scopo: Fornire un livello di sicurezza aggiuntivo isolando i server esposti

5.1.1 Configurazioni di DMZ

Single Firewall (Three-legged):

- Un firewall con tre interfacce (interna, DMZ, esterna)
- Economico ma meno sicuro

Dual Firewall:

- Firewall esterno tra Internet e DMZ
- Firewall interno tra DMZ e rete interna
- Maggiore sicurezza ma più costoso

5.1.2 Servizi tipicamente in DMZ

- Web server
- Email server
- DNS server pubblici
- Proxy server
- VPN concentrator
- FTP server

5.2 Difesa in profondità (Defense in Depth)

- Definizione: Strategia che utilizza molteplici livelli di sicurezza
- Principio: Se un meccanismo fallisce, ce n'è un altro che continua a fornire protezione

5.2.1 Livelli di difesa

- Perimetro: Firewall, router, IDS/IPS
- Rete: Segmentazione, VLAN, controllo accessi
- Host: Firewall locali, antivirus, hardening
- Applicazione: Sicurezza del codice, autenticazione
- Dati: Crittografia, controllo accessi
- Utenti: Formazione, policy di sicurezza

5.2.2 Vantaggi

- Nessun singolo punto di vulnerabilità
- Mitigazione del rischio in profondità
- Tempo aggiuntivo per rilevare attacchi
- Protezione da minacce interne ed esterne

5.3 Zero Trust Architecture

- Definizione: Modello di sicurezza che non si fida di nessuno, nemmeno degli utenti interni
- Principio: "Never trust, always verify"

5.3.1 Componenti chiave

- Verifica continua: Autenticazione per ogni accesso a risorsa
- Micro-segmentazione: Divisione della rete in zone isolate
- Principio del privilegio minimo: Accesso solo a ciò che è necessario
- Multi-factor authentication: Più fattori per l'autenticazione
- Monitoraggio continuo: Analisi comportamentale e anomalie

5.3.2 Implementazione

- Identity and Access Management (IAM)
- Software Defined Perimeter (SDP)
- Micro-segmentation
- Encryption
- Continuous monitoring e analytics

5.3.3 Vantaggi rispetto al modello tradizionale

- Riduzione della superficie di attacco
- Migliore visibilità
- Limitazione del movimento laterale degli attaccanti
- Semplificazione della conformità
- Protezione equivalente per utenti remoti e locali