高级工程数学 2021-2022 (1)

沈超敏 计算机科学与技术学院 cmshen@cs.ecnu.edu.cn

教书院 219

上次课内容回顾

- 内积和范数的一些公式和性质. 推广: 柯西-施瓦茨不等式(Cauchy-Schwarz)推出的两边之和大于第三边和勾股定理
- 关于欧氏范数, 范数取 p=2 情况下的一些定义, 范数也可以描述连续函数, 还可以运用让 $||x-x^*||$ 取最小, 即最接近解, 进而得出最优解

根据线性方程组求最优解,都需要用到内积和范数,运用性质得出最优解。

其目的是让我们知道解方程组不是仅仅得出无解就可以了, 而是让我们理解优化的过程, 往 最优的方向努力。

2.4 Inner Products and Norms

The Euclidean norm of a vector ||x|| has the following properties:

- 1. Positivity: ||x|| > 0, ||x|| = 0 iff x = 0.
- 2. Homogeneity: $||rx|| = |r| \cdot ||x||$, $r \in \mathbb{R}$.
- 3. Triangle inequality: $\|x + y\| \le \|x\| + \|y\|$.

2.4 Inner Products and Norms

The Euclidean norm of a vector ||x|| has the following properties:

- 1. Positivity: ||x|| > 0, ||x|| = 0 iff x = 0.
- 2. Homogeneity: $||r\boldsymbol{x}|| = |r| \cdot ||\boldsymbol{x}||$, $r \in \mathbb{R}$.
- 3. Triangle inequality: $\|x + y\| \le \|x\| + \|y\|$.

三角不等式可用 Cauchy-Schwarz 不等式证明:

$$||\mathbf{x} + \mathbf{y}||^2 \stackrel{def}{=} ||\mathbf{x}||^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + ||\mathbf{y}||^2$$

$$\stackrel{C-S}{\leq} ||\mathbf{x}||^2 + 2||\mathbf{x}|| ||\mathbf{y}|| + ||\mathbf{y}||^2$$

$$= (||\mathbf{x}|| + ||\mathbf{y}||)^2$$

2.4 Inner Products and Norms

The Euclidean norm of a vector ||x|| has the following properties:

- 1. Positivity: $\|\boldsymbol{x}\| > 0$, $\|\boldsymbol{x}\| = \mathbf{0}$ iff $\boldsymbol{x} = \mathbf{0}$.
- 2. Homogeneity: $||r\boldsymbol{x}|| = |r| \cdot ||\boldsymbol{x}||, r \in \mathbb{R}$.
- 3. Triangle inequality: $\|x + y\| \le \|x\| + \|y\|$.

三角不等式可用 Cauchy-Schwarz 不等式证明:

$$||\mathbf{x} + \mathbf{y}||^2 \stackrel{def}{=} ||\mathbf{x}||^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + ||\mathbf{y}||^2$$

$$\stackrel{C-S}{\leq} ||\mathbf{x}||^2 + 2||\mathbf{x}|| ||\mathbf{y}|| + ||\mathbf{y}||^2$$

$$= (||\mathbf{x}|| + ||\mathbf{y}||)^2$$

If $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 0$, then $\|\boldsymbol{x} + \boldsymbol{y}\|^2 = \|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2$.

投影的例子

复彰的例子
$$\begin{cases}
x+y=1 \\
x-y=1 \\
x+2y=3
\end{cases}$$
归结为
$$\begin{pmatrix}
1 & 1 \\
1 & -1 \\
1 & 2
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
1 \\
1 \\
3
\end{pmatrix}$$

京が出り。
$$x + y = x - y$$

$$x + y =$$

$$+y=1$$

$$+y=1$$

Ax = b $A^{\top}A\boldsymbol{x} = A^{\top}\boldsymbol{b}$

 $\boldsymbol{x} = \left(A^{\top}A\right)^{-1}A^{\top}\boldsymbol{b}$

4/32

投影的例子 给了一个向量 b,和一个平面(由 a_1 和 a_2 生成),要求 P,使 (Pb) 在平面内,i.e.,

 $m{b} = Pm{b} + (m{b} - Pm{b})$,且 $(Pm{b})^{\top} \cdot (m{b} - Pm{b}) = 0$.
如何求:从上次课, $m{b}$ 就是上次课的 $m{b}$,上次课的 $A = (m{a}_1, m{a}_2)$,且: $Am{x} = m{b}$ 的最优解(误

差最小解) $x^* = \left(A^{\top}A\right)^{-1}A^{\top}b$,而 Ax^* 就是 $Pb\cdot : Ax^* = A\left(A^{\top}A\right)^{-1}A^{\top}b$. 由 $Ax^* = Pb$ 得 $P = A\left(A^{\top}A\right)^{-1}A^{\top}$

下面验证: $(P\boldsymbol{b})^{\top}(\boldsymbol{b} - P\boldsymbol{b}) = 0$

%证:

:
$$(P\boldsymbol{b})^{\top}(\boldsymbol{b} - P\boldsymbol{b})$$

$$= (Aoldsymbol{x}^*)^ op (oldsymbol{b} - Aoldsymbol{x}^*) \ = oldsymbol{x}^{* op} oldsymbol{b} - oldsymbol{x}^{* op} A^ op Aoldsymbol{x}^*$$

 $= \boldsymbol{x}^{++} A^{+} \boldsymbol{b} - \boldsymbol{x}^{++} A^{+} A \boldsymbol{x}^{+}$ $= \underline{x^{*} = (A^{\top}A)^{-1} A^{\top} b} \quad \boldsymbol{x}^{*\top} A^{\top} \boldsymbol{b} - \boldsymbol{x}^{*\top} A^{\top} A \left(A^{\top}A\right)^{-1} A^{\top} \boldsymbol{b}$

提问

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \\ 24 \end{bmatrix}$$
 的解集 $\boldsymbol{x} = \underline{\qquad}$

问: [1,1,1]' 是不是某种意义下的最优解? (如要证明是 2-范数下的最优解, 需要证明任何一个解 2- 范数均 $>= (1\ 1\ 1)$ 的 2-范数)

[0 3 0] 是 0-范数下的最优解

这次课提问

习题 3.5 对
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 5 & 2 \\ -1 & 1 & 0 \end{bmatrix}$$

习题 3.5 对 $A = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 5 & 2 & 1 \\ -1 & 1 & 0 & 3 \end{bmatrix}$ 给出的 linear transform, 找一组基, 使在这组基下 A 对应

的矩阵是对角阵.

解: 该题意思是: A 代表一个变换, 将 x 变成 y, 即 Ax = y(这里 A 就是变换对应的矩阵, A,x,y, 均在自然基下表示).

该颢问,如果换了一组基,在新基下 A 对应的矩阵如记成 B, 要使 B 是对角阵,基应如何 取法.

claim: 新基就是 A 的特征向量 $\left\{v_1,v_2,v_3,....v_n
ight\}$ (如果他们构成基),B 就是 A 的特征值构

成的
$$\begin{bmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{bmatrix}$$
.

7/32

理由:
$$x$$
 在 $\{e_1, \cdots e_n\}$ 下的坐标是 $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, 在 $\{v_1, \cdots v_n\}$ 下坐标 $\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$.

 y 在 $\{e_1, \cdots e_n\}$ 下的坐标是 $\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$, 在 $\{v_1, \cdots v_n\}$ 下坐标 $\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$.

则 $\{e_1, \cdots e_n\}$ $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \{v_1, \cdots v_n\}$ $\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \Longrightarrow V \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$. (1)

 $\{oldsymbol{e}_1,\cdotsoldsymbol{e}_n\}\left[egin{array}{c} y_1\ dots\ \end{array}
ight]=oldsymbol{V}\left[egin{array}{c} b_1\ dots\ \end{array}
ight]$ (2)

对(1)两端左乘 A. 得

8/32

而
$$A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = y = V \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$
 (由 (2) 式可得).

所以, $V \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = V \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$

$$\begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

所以在 V 下, A 对应的 B 是对角阵.

Transformations

- 3.1 Linear Transformations
- 3.2 Eigenvalues and Eigenvectors
- 3.3 Orthogonal Projections
- 3.4 Quadratic Forms
- 3.5 Matrix Norms

Exercises

A function $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation if:

- 1. $\mathcal{L}(a\mathbf{x}) = a\mathcal{L}(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$ and $a \in \mathbb{R}$.
- 2. $\mathcal{L}(\boldsymbol{x}_1 + \boldsymbol{x}_2) = \mathcal{L}(\boldsymbol{x}_1) + \mathcal{L}(\boldsymbol{x}_2)$ for $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^n$.

A function $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation if:

- 1. $\mathcal{L}(a\mathbf{x}) = a\mathcal{L}(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$ and $a \in \mathbb{R}$.
- 2. $\mathcal{L}(\boldsymbol{x}_1 + \boldsymbol{x}_2) = \mathcal{L}(\boldsymbol{x}_1) + \mathcal{L}(\boldsymbol{x}_2)$ for $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^n$.

If we fix the bases for \mathbb{R}^n and \mathbb{R}^m , then the linear transformation \mathcal{L} can be represented by a matrix.

Suppose that $x \in \mathbb{R}^n$ is a given vector, and x' is the representation of x with respect to the given basis for \mathbb{R}^n . If $y = \mathcal{L}(x)$, and y' is the representation of y with respect to the given basis for \mathbb{R}^m . If there exists $A \in \mathbb{R}^{m \times n}$ such that the following representation holds, then

$$y' = Ax'$$
.

We call A the matrix representation of \mathcal{L} with respect to the given bases for \mathbb{R}^n and \mathbb{R}^m . In the special case where we assume the natural bases for \mathbb{R}^n and \mathbb{R}^m , the matrix representation A satisfies

$$\mathcal{L}(\boldsymbol{x}) = A\boldsymbol{x}.$$

We call A the matrix representation of $\mathcal L$ with respect to the given bases for $\mathbb R^n$ and $\mathbb R^m$.

In the special case where we assume the natural bases for \mathbb{R}^n and \mathbb{R}^m , the matrix representation A satisfies

$$\mathcal{L}(\boldsymbol{x}) = A\boldsymbol{x}.$$

这本书上用以下记号(同华师大大一线性代数教科书不同)

Let $\{e_1,e_2,...,e_n\}$ and $\{e'_1,e'_2,...,e'_n\}$ be two bases for \mathbb{R}^n . Define the matrix

$$T = [e'_1, e'_2, ..., e'_n]^{-1} [e_1, e_2, ..., e_n].$$

We call T the transformation matrix from $\{e_1,e_2,...,e_n\}$ to $\{e'_1,e'_2,...,e'_n\}$. It is clear that

$$[e'_1, e'_2, ..., e'_n]T = [e_1, e_2, ..., e_n];$$

i.e., T 的第 i 列是 e_i 在基 $\{e'_1, \cdots, e'_n\}$ 下的坐标.

这本书上用以下记号(同华师大大一线性代数教科书不同)

Let $\{e_1, e_2, ..., e_n\}$ and $\{e'_1, e'_2, ..., e'_n\}$ be two bases for \mathbb{R}^n . Define the matrix

$$T = [e'_1, e'_2, ..., e'_n]^{-1}[e_1, e_2, ..., e_n].$$

We call T the transformation matrix from $\{e_1, e_2, ..., e_n\}$ to $\{e_1', e_2', ..., e_n'\}$. It is clear that

$$[e'_1, e'_2, ..., e'_n]T = [e_1, e_2, ..., e_n];$$

i.e., T 的第 i 列是 e_i 在基 $\{e'_1, \dots, e'_n\}$ 下的坐标.

我们大一教科书

$$(\eta_1, \eta_2, \cdots, \eta_n) = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)C,$$

我们称矩阵 C 为由基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 到基 $\eta_1, \eta_2, \dots, \eta_n$ 的过渡矩阵.

Video 10 结束

对 \mathbb{R}^n 中的一个向量 v, 如 x 为其在 $\{e_1,\cdots,e_n\}$ 下的坐标, x' 为其在 $\{e_1',\cdots,e_n'\}$ 下的坐标,

定理 7.4 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 和 $\beta_1, \beta_2, \dots, \beta_n$ 是 n 维线性空间 V 的两组基,V 中

$$B = C^{-1}AC. (7.7)$$

证 据定理的条件可知

$$\mathcal{A}(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}) = (\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n})A,$$

$$\mathcal{A}(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n}) = (\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n})B,$$

$$(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n}) = (\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n})C,$$

于是由 ⋈ 的线性性质

$$\mathcal{A}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_n) = \mathcal{A}[(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n)C] = [\mathcal{A}(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n)]C$$
$$= (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n)AC = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_n)C^{-1}AC.$$

因 \mathcal{A} 在基 $\beta_1,\beta_2,\cdots,\beta_n$ 下的矩阵是唯一的,故有

$$B = C^{-1}AC$$
.

Let A be an $n \times n$ real square matrix. A scalar λ (possibly complex) and a nonzero vector v satisfying the equation $Av = \lambda v$ are said to be, respectively, an eigenvalue and an eigenvector of A.

Let A be an $n \times n$ real square matrix. A scalar λ (possibly complex) and a nonzero vector v satisfying the equation $Av = \lambda v$ are said to be, respectively, an eigenvalue and an eigenvector of A.

For λ to be an eigenvalue it is necessary and sufficient for the matrix $\lambda I-A$ to be singular; that is, $\det[\lambda I-A]=0$, where I is the $n\times n$ identity matrix. This leads to an nth-order polynomial equation

$$\det[\lambda I - A] = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0 = 0$$

 $\det[\lambda I - A]$ 称为 A 的特征多项式; 方程称为特征方程

方程有 n 个复数根 (可能有相同的). 若有 n 个不同的特征根, 则有 n 个独立的特征向量.

Theorem 3.1 Suppose that the characteristic equation $\det[\lambda I - A] = 0$ has n distinct roots $\lambda_1, \lambda_2, ..., \lambda_n$. Then, there exist n linearly independent vectors $v_1, ..., v_n$ such that

$$A\mathbf{v}_i = \lambda_i \mathbf{v}_i, \qquad i = 1, 2, ..., n$$

Proof. We now prove the linear independence of $\{v_1, v_2, ..., v_n\}$. To do this, let $c_1, ..., c_n$ be scalars such that $\sum_{i=1}^n c_i v_i = 0$. We show that $c_i = 0$, i = 1, ..., n.

$$Z = (\lambda_2 I - A)(\lambda_3 I - A) \cdots (\lambda_n I - A).$$

1) c_1 =0. 理由

$$Z \mathbf{v}_n = (\lambda_2 I - A)(\lambda_3 I - A) \cdots (\lambda_n I - A) \mathbf{v}_n$$

= $(\lambda_2 I - A)(\lambda_3 I - A) \cdots (\lambda_n \mathbf{v}_n - A \mathbf{v}_n)$
= $\mathbf{0}$

同理: $Zv_k = 0$ for $k = 2, 3, \dots, n$.

$$Z\mathbf{v}_{1} = (\lambda_{2}I - A)(\lambda_{3}I - A) \cdots (\lambda_{n}I - A)\mathbf{v}_{1}$$

$$= (\lambda_{2}I - A)(\lambda_{3}I - A) \cdots (\lambda_{n-1}\mathbf{v}_{1} - A\mathbf{v}_{1})(\lambda_{n} - \lambda_{1})$$

$$\vdots$$

$$= (\lambda_{2} - \lambda_{1})(\lambda_{3} - \lambda_{1}) \cdots (\lambda_{n-1} - \lambda_{1})(\lambda_{n} - \lambda_{1})\mathbf{v}_{1}$$

所以. $c_1 = 0$.

$$egin{array}{lll} Z(\sum_{i=1}^n c_i oldsymbol{v}_i) &=& \sum_{i=1}^N c_i Z oldsymbol{v}_i \ &=& c_1 Z oldsymbol{v}_1 \ &=& c_1 (\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1) \cdots (\lambda_n - \lambda_1) oldsymbol{v}_1 = oldsymbol{0} \end{array}$$

2) 同理 $c_i = 0$ for $i = 2, \dots, n$. 所以, $\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_n\}$ 线性独立

Video 11 结束

若 A 的 n 个线性无关的特征向量是 v_1, \dots, v_n , 则

Theorem 3.2 实对称阵 $(A = A^{\top})$ 的所有特征值是实的.

证因为 $Ax = \lambda x$ for $x \neq 0$, 则

$$\langle A\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \lambda \boldsymbol{x}, \boldsymbol{x} \rangle = \lambda \langle \boldsymbol{x}, \boldsymbol{x} \rangle.$$

另一方面,

$$\langle A\boldsymbol{x}, \boldsymbol{x} \rangle = \langle \boldsymbol{x}, A^{\top} \boldsymbol{x} \rangle = \langle \boldsymbol{x}, A\boldsymbol{x} \rangle = \bar{\lambda} \langle \boldsymbol{x}, \boldsymbol{x} \rangle.$$

因为 $\langle x, x \rangle$ 是实的, 所以 > 0. 因此 $\lambda = \lambda$.

Theorem 3.3 Any real symmetric $n \times n$ matrix has a set of n eigenvectors that are mutually orthogonal.

证这里只证 n 个特征值不同的情形.

Suppose that $A oldsymbol{v}_1 = \lambda_1 oldsymbol{v}_1$, $A oldsymbol{v}_2 = \lambda_2 oldsymbol{v}_2$, where $\lambda_1
eq \lambda_2$. Then

$$\langle A \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = \langle \lambda_1 \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = \lambda_1 \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle.$$

因为
$$A = A^{\top}$$
,

$$\langle A \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = \langle \boldsymbol{v}_1, A^{\top} \boldsymbol{v}_2 \rangle = \langle \boldsymbol{v}_1, A \boldsymbol{v}_2 \rangle = \lambda_2 \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle.$$

所以

$$\lambda_1 \langle oldsymbol{v}_1, oldsymbol{v}_2
angle = \lambda_2 \langle oldsymbol{v}_1, oldsymbol{v}_2
angle.$$

因为
$$\lambda_1 \neq \lambda_2$$
, 所以 $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = 0$.

Video 12 结束

3.3 Orthogonal Projections

 \mathcal{V} is a subspace of \mathbb{R}^n if $x_1, x_2 \in \mathcal{V} \Rightarrow \alpha x_1 + \beta x_2 \in \mathcal{V}$ for all $\alpha, \beta \in \mathbb{R}$.

Furthermore, the dimension of a subspace \mathcal{V} is equal to the maximum number of linearly independent vectors in \mathcal{V} . If \mathcal{V} is a subspace of \mathbb{R}^n , then the orthogonal complement of \mathcal{V} , denoted \mathcal{V}^{\perp} , consists of all vectors that are orthogonal to every vector in \mathcal{V} . Thus,

$$\mathcal{V}^{\perp} = \{ \boldsymbol{x} : \boldsymbol{v}^{\top} \boldsymbol{x} = 0 \text{ for all } \boldsymbol{v} \in \mathcal{V} \}.$$

 $\mathcal V$ and $\mathcal V^\perp$ span 成 $\mathbb R^n$, i.e., $orall x \in \mathbb R^n$ 可唯一表为

$$\boldsymbol{x} = \boldsymbol{x}_1 + \boldsymbol{x}_2,$$

where $x_1 \in \mathcal{V}$ and $x_2 \in \mathcal{V}^{\perp}$. 正交分解. x_1 and x_2 are orthogonal projections of x onto the subspaces \mathcal{V} and \mathcal{V}^{\perp} , respectively. $\mathbb{R}^n = \mathcal{V} \oplus \mathcal{V}^{\perp}$.

A linear transformation P is an orthogonal projector onto $\mathcal V$ if for all $x\in\mathbb R^n$, we have $Px\in\mathcal V$ and $x-Px\in\mathcal V^\perp$.

3.3 Orthogonal Projections

Let $A \in \mathbb{R}^{m \times n}$. Let the range, or image, of A be denoted

$$\mathcal{R}(A) = \{A\boldsymbol{x} : \boldsymbol{x} \in \mathbb{R}^n\},\$$

and the nullspace, or kernel, of A be denoted

$$\mathcal{N}(A) = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} = \boldsymbol{0} \}.$$

Note that $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are subspaces.

Theorem 3.4 Let A be a given matrix. Then, 1) $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^{\top})$, and 2) $\mathcal{N}(A)^{\perp} = \mathcal{R}(A^{\top})$.

Proof. 1) Suppose that $\boldsymbol{x} \in \mathcal{R}(A)^{\perp}$. Then, $\boldsymbol{y}^{\top}(A^{\top}\boldsymbol{x}) = (A\boldsymbol{y})^{\top}\boldsymbol{x} = 0$ for all \boldsymbol{y} , so that $A^{\top}\boldsymbol{x} = \mathbf{0}$. Hence, $\boldsymbol{x} \in \mathcal{N}(A^{\top})$. This implies that $\mathcal{R}(A)^{\top} \subset \mathcal{N}(A^{\top})$.

If now $\boldsymbol{x} \in \mathcal{N}(A^{\top})$, then $(A\boldsymbol{y})^{\top}\boldsymbol{x} = \boldsymbol{y}^{\top}(A^{\top}\boldsymbol{x}) = 0$ for all \boldsymbol{y} , so that $\boldsymbol{x} \in \mathcal{R}(A)^{\perp}$, and consequently, $\mathcal{N}(A^{\top}) \subset \mathcal{R}(A)^{\perp}$. Thus, $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^{\top})$.

2) 利用 1), and $(\mathcal{V}^{\perp})^{\perp} = \mathcal{V}$.

Video 13 结束

3.3 Orthogonal Projections

Theorem 3.5 A matrix P is an orthogonal projector [onto the subspace $\mathcal{V} = \mathcal{R}(P)$] \iff $P^2 = P = P^{\top}$.

证: 利用 1)
$$\boldsymbol{x} = P\boldsymbol{x} + (\boldsymbol{x} - P\boldsymbol{x})$$

2) $\mathcal{R}(P)^{\perp} = \mathcal{N}(P^{\top})$

$$\Rightarrow$$
 由 1) $\mathcal{R}(I-P) \subset \mathcal{R}(P)^{\perp}$,由 2) $\mathcal{R}(P)^{\perp} = \mathcal{N}(P^{\top})$,所以 $\mathcal{R}(I-p) \subset N(P^{\top})$. 所以 $P^{\top}(I-P)\mathbf{y} = 0$ for all \mathbf{y} ,所以 $P^{\top}(I-P) = \mathbf{O}$. 所以 $P^{\top} = P^{\top}P$,i.e., $P = P^{\top} = P^{2}$.

$$\Leftarrow$$
 若 $P=P^{\top}=P^2$, 对任意 x , 我们有 $(Py)^{\top}(I-P)x=y^{\top}P^{\top}(I-P)x=y^TP(I-P)x=0$ for any y . Thus, $(I-P)x\in\mathcal{R}(P)^{\perp}$, 这即意味着 P 是 orthogonal projector.

Video 14 结束

Transformations

- 3.1 Linear Transformations
- 3.2 Eigenvalues and Eigenvectors
- 3.3 Orthogonal Projections
- 3.4 Quadratic Forms
- 3.5 Matrix Norms

Exercises

3.4 Quadratic Forms

A quadratic form $f: \mathbb{R}^n \to \mathbb{R}$ is a function

$$f(\boldsymbol{x}) = \boldsymbol{x}^{\top} Q \boldsymbol{x},$$

where Q is an $n \times n$ real matrix.

假设 Q 是对称的.

称 quadratic form $x^\top Q x$ 是 positive definite, if $x^\top Q x > 0$ for all nonzero x. Semidefinite if $x^\top Q x \geq 0$ for all nonzero x.

Negative definite, negative semidefinite.

Video 15 结束