PMAT 21562

#Year 02 #Semester 01 #problem sheet 6

R.D.S.H.Jayawardena PS/2017/250

(a)
$$\frac{2}{2\sqrt{n}+3\sqrt{n}}$$
; Have on = $\frac{1}{2(n)^{\frac{1}{2}}}$ (n) $\frac{1}{2}$ Since largest n dominant form in desourator is $2(n)^{\frac{1}{2}}$; for $n > 1$ we expect an to behave like $\frac{1}{2(n)^{\frac{1}{2}}}$; so we let bn = $\frac{1}{\sqrt{n}}$ Since bn is p series with $p = \frac{1}{2} < 1$... bn diverges

Since by series with $P = \frac{1}{2} < 1$ is by diverge also an diverge $\frac{1}{2}$ by past 1 of the limit comparision sest.

Since $\frac{1}{2}$ by diverge also an diverge $\frac{1}{2}$ $\frac{1}{2}$

(b) $\stackrel{2}{=} \frac{3}{n+5n}$; take $a_n = \frac{3}{n+5n}$

Since longest n dominant term in determinter is

n , for nool we expect an to behave like

3/n , so we let bn = /n

Since bn is P P = 1 < 1 is bn diveoges

lim an now not not the limit comparison test,

Since bn diveoges also Ean diveoges / & 3/(n.s.f.n.)

diveoges /

for
$$n > 1$$
 we expect an to behave like $\frac{2n}{9n} = \frac{2}{3} = \frac{1}{2}$

by $n = \frac{2}{3} = \frac{2}{3} = \frac{1}{3}$
 $\frac{2n}{3n-1} > \frac{2}{3}$ (: since determinator of $n = \frac{2}{3} = \frac{1}{3}$

Thus given sesies $\frac{2}{3} = \frac{2}{3} = \frac{1}{3}$
 $\frac{1}{3n-1} > \frac{2}{3} = \frac{1}{3}$
 $\frac{1}{3n-1} > \frac{2}{3} = \frac{1}{3}$
 $\frac{2n}{3n-1} = \frac{2n}{3} = \frac{1}{3}$
 $\frac{2n}{3n-1} = \frac{2n}{3} = \frac{2n}{3} = \frac{2n}{3}$
 $\frac{2n}{3n-1} = \frac{2n}{3} = \frac{2n}{3} = \frac{2n}{3}$
 $\frac{2n}{3n-1} = \frac{2n}{3} = \frac{2n}{3}$

since convergence of a sesies is not affected by a

$$\frac{1}{\left(\ln(n)\right)^2} > \frac{1}{n} \qquad n \geqslant 4$$

au is divergent, sories since P=1 (1

(e)
$$\frac{2}{8} \left(\frac{4nn^3}{n^3}\right)^3$$
; an = $(4nn)^3/n^3$
 $\frac{4nn}{n^3} = \frac{5n}{n^3}$ $\frac{4nn}{n^3}$; since $4nn > 0$ $4nn > 0$

(1 $nn)^3 = \frac{5n}{n^3}$ $\frac{4nn}{n^3}$ $\frac{4nn}{n^3}$ $\frac{4nn}{n^3}$ $\frac{4nn}{n^3}$ $\frac{5nn}{n^3}$ $\frac{4nn}{n^3}$ $\frac{4nn}{$

(a)
$$\frac{1}{2}$$
 $\frac{1}{n^2}$ $\frac{$

(i)
$$\frac{1}{2} \frac{10n+1}{n(n+1)(n+2)}$$
; $\frac{1}{2} \frac{10n+1}{n(n+1)(n+2)}$; $\frac{1}{2} \frac{1}{2} \frac{1}{2$

(02) (a)
$$\frac{1}{N_{n=1}}$$
 ; an $=\frac{1}{\sqrt{n^2+1}}$

too $n > 1$ we expect an behave like

by $n = \frac{1}{\sqrt{n^2}} = \frac{1}{\sqrt{n^2}}$

Ebn is possion with $n = 2 > 1$ since that, it

converges.

The sum parison $n = 1$ given series converges

 $n = \frac{1}{\sqrt{n^2+1}} = \frac{1}{$

E 1.24 86 William

(d)
$$\frac{d}{d}$$
 $\frac{d}{d}$ $\frac{d}{d}$

for non 1 we expect an to behave like bn= == = = 1 x(1)

$$\frac{n}{(n+1)3^n} < \frac{1}{3^n}$$

by is geometric resies with 1-1 = 3 <1 Epu convergos by comparison lest I Ean converges

$$P_{10} \leq T_{10} = \begin{cases} 2 & 3n \\ -2 & 3n \end{cases}$$