

(12) 按照专利合作条约所公布的国际申请

(19) 世界知识产权组织
国际局(43) 国际公布日:
2004年6月17日(17.06.2004)

PCT

(10) 国际公布号:
WO 2004/050082 A1

- (51) 国际分类号⁷: A61K 31/37, C07D 311/20, A61P 13/12, 3/10, 9/10, 9/12, 35/00
- (21) 国际申请号: PCT/CN2003/001046
- (22) 国际申请日: 2003年12月5日(05.12.2003)
- (25) 申请语言: 中文
- (26) 公布语言: 中文
- (30) 优先权:
02155525.7 2002年12月5日(05.12.2002) CN
- (71) 申请人(对除美国以外的所有指定国): 中国医学科学院药物研究所(INSTITUTE OF MATERIAL MEDICA, CHINESE ACADEMY OF MEDICAL SCIENCES) [CN/CN]; 中国北京市宣武区先农坛街一号, Beijing 100050 (CN).
- (72) 发明人;及
- (75) 发明人/申请人(仅对美国): 徐世平(XU, Shiping) [CN/CN]; 陈晓光(CHEN, Xiaoguang) [CN/CN]; 徐嵩(XU, Song) [CN/CN]; 李兰敏(LI, Lanmin) [CN/CN]; 谢龙飞(XIE, Longfei) [CN/CN]; 李洪燕(LI, Hongyan) [CN/CN]; 李燕(LI, Yan) [CN/CN]; 程桂芳(CHENG, Guifang) [CN/CN]; 中国北京市宣武区先农坛街一号, Beijing 100050 (CN).
- (74) 代理人: 中国国际贸易促进委员会专利商标事务所(CCPIT PATENT AND TRADEMARK LAW OFFICE); 中国北京市阜成门外大街2号万通新世界广场8层, Beijing 100037 (CN).
- (81) 指定国(国家): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
- (84) 指定国(地区): ARIPO专利(BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), 欧亚专利(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧洲专利(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI专利(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

本国际公布:
— 包括国际检索报告。

所引用双字母代码和其它缩写符号, 请参考刊登在每期PCT公报期刊起始的“代码及缩写符号简要说明”。

(54) Title: THE NOVEL COUMARIN-AMIDE DERIVATIVES AND ITS PREPARATION, SAID DRUG COMPOSITION AND ITS USE

(54) 发明名称: 新的香豆素酰胺衍生物及其制法和其药物组合物与用途

(57) Abstract: This invention discloses a novel coumarin compounds and its amide derivatives, the method for preparing said compounds or the derivatives. The invention also discloses the drug composition comprising said compounds and the derivatives, and the use for especially kidney protection, treatment for hypertension, cerebrovascular and cardiovascular diseases, diabetes II, tumour, precancerous lesion and dropsy.

(57) 摘要

本发明公开了新的香豆素和其酰胺类衍生物, 其制备方法, 含有他们的药物组合物, 及其作为药物, 尤其作为肾保护, 治疗高血压、心脑血管疾患、II型糖尿病、肿瘤、癌前病变以及水肿药物的应用。

WO 2004/050082 A1

新的香豆素酰胺衍生物 及其制法和其药物组合物与用途

技术领域

本发明涉及新的香豆素和其酰胺类衍生物，其制备方法，含有他们的药物组合物，及其作为药物，尤其作为肾保护，治疗高血压、心脑血管疾患、II型糖尿病、肿瘤、癌前病变以及水肿药物的应用。

背景技术

1990年，联邦德国医药研究所在Meliloti Herba上发表专论称一些中草药中的香豆素类化合物治疗水肿血栓性静脉炎，淋巴淤滞等疾患。Scheel等(Microbiol Toxins 8 47—66， 1972)报道香豆素能抗菌、抗病毒、抗肿瘤作用。Kovach等(Arzneim-Forsch/Drug Res 20 1630—33, 1970)证明香豆素增加血流量，改善心肌缺血。Casley-Smith, (Vasomed 6 232—4, 1994), Gaffney, (J Pathol 133:229—42, 1981), Piller, (Br J Exp Pathol 59:319—26, 1978)和Knight, (Clin Sci 77:69—76, 1989)证明香豆素有内皮保护和促进淋巴循环等作用。Nair等, (Carcinogenesis 12 (1): 65—69, 1991)证明香豆素类化合物的抗癌作用。Ishizuka等, (美国专利No. 5,096,924, 证明取代的香豆素有抗癌作用。Marshall等, (L. Biol. Resp. Mod. 8: 62, 1989), 报道香豆素的增强免疫功能。如使癌症患者的单核细胞显著增加，因而增加抗癌能力。Preuss-Ueberschar等, (Drug Res. 34: 1305, 1313, 1984), 证明香豆素是不致畸的。Takagaki, Hidetsugu等证明3-, 4-, 7-羟基或烷氧基取代香豆素治疗心脏病的作用 (EP 0796854 A1, 1997)。Markal等证明取代的4-芳基香豆素治疗病毒感染，特别是带状疱疹，

单纯疱疹等有较好效果 (WO 98/25608, 1998)。Trkovnik等报告 7-羟基 4-甲基香豆素等能治疗或预防肾硬变、胰腺炎、膀胱和消化道疾病 (WO 99/21550, 1999)。Takagaki, Hideji等报道了香豆素衍生物对streptozotocin诱发的大鼠糖尿病有抑制作用 (Jpn. Kokai Tokkyo Koho JP 07277972, 1995)。Scott等报道了 3-酰胺 4-羟基香豆素类化合物对II型糖尿病模型有效 (US 005723476A, 1998)。韩兴梅等报道了 6, 7-二甲氧基香豆素对内毒素诱发的急性肾衰有效 (中国药理学通报, 1999, 15, 4: 332—5)。len报道, TGF- β 的对抗物质, 可以用来防治慢性肾炎等疾患 (PCT Int. Appl. WO 2001019396A1)

我们在研究工作中合成了一系列香豆素衍生物, 并研究了有关生物活性; 如, 黄晓龙等研究证明, 3-乙酰基和3-酮醛基取代香豆素有较好的抗致突作用 (药学学报, 1996, 31, 6: 431—436; 药学学报, 1996, 31, 7: 509—516)。徐世平等研究的维甲酰香豆素类化合物具有较强的诱导分化, 抗致突和抗致癌等作用 (中国专利, 申请号: 97116602.1, 公开号: CN1207392—15卷, 6期, 1999)。徐嵩等研究的6-或7-取代苯乙烯基、4-苯乙烯基和4-, 6-或7-取代苯亚胺次甲基香豆素类化合物, 有抗癌活性 (药学学报, 2000, 35, 2: 103—107; 药学学报, 2001, 36, 4: 269—273; 药学学报, 2002, 37, 2: 113—116)。

在继续对香豆素类化合物的研究中合成了一系列新的香豆素及其酰胺类化合物, 发现, 这类香豆素酰胺化合物对转化生长因子- β 1 (TGF-?) 有较好的抑制作用, 香豆素对TGF- β 的抑制, 至今尚未见有其他文献报道。抑制TGF- β 的物质是治疗慢性肾功能障碍, 糖尿病性肾功能障碍等有关的物质。同时也能非常显著地降低血管紧张素 II (AII), 所以本发明的药物, 对慢性肾衰、肾炎、高血压、甚至肝

硬变以及肺纤维化的药物研究都是相关的。如len报道，TGF- β 的对抗物质，可以用来防治慢性肾炎等疾患(PCT Int. Appl. WO 2001019396A1)

肾功能不全，尤其是慢性肾功能不全，均是由各种病因引起肾脏损害及进行性恶化的结果。在原发性肾脏病中，常见为慢性肾小球肾炎，其次为小管间质性肾炎。在继发性肾病中，常见为糖尿病肾病等。目前慢性肾功能不全病因中，糖尿病肾病占第一位，为27%，而且还在日益增多，高血压病占22.7%，而肾小球肾炎已由以前的第一位降为第三位，占21.2%，其它病因共占26.6%。肾脏疾病是常见病，不论何种病因，也不论是免疫机制或非免疫机制，如果得不到有效治疗，都将造成慢性肾功能不全和不可逆转的损伤。

研究表明，转化生长因子- β 1(transforming growth factor β 1, TGF- β 1)和肾素血管紧张素系统与多种原因引起的肾功能不全关系密切。大鼠肾脏部分切除后4小时，TGF- β 1开始升高，进而影响肾素血管紧张素系统，TGF- β 1的持续增高和过度表达，抑制基质降解，促进基质的整合作用，并且与肾功能不全的蛋白尿及基质纤维化成正比。因此肾小球硬化、间质纤维化与TGF- β 1直接相关。所以肾素血管紧张素系统和TGF- β 1是与肾功能不全有关的两个最重要因素，并且前者的抑制与TGF- β 1产生的减少有密切关系，提示TGF- β 1增高可能是肾脏损伤发展成为晚期肾功能不全的重要原因，是寻找理想的抗肾衰新药的靶点。

香豆素有着广泛的生物活性，但在治疗慢性肾衰方面尚未见有其它报道，本发明的化合物是一类新型的，有非常明显的抑制TGF- β 的作用，TGF- β 增高是肾损伤发展成晚期肾衰的重要原因。经验证，本发明的化合物有较好的治疗肾功能不全的作用。肾功能不全，尤其是慢性肾功能不全，是一种难以治疗的慢性病，随着糖尿病、高

血压等疾患的不断增加，其发病率越来越高，而且至今尚无非常有效的药物及其他较好的防治方法。本发明的目的就是研制治疗肾功能不全的新型药物。

发明内容

为了克服现有技术的不足，本发明的目的在于提供一种新的香豆素，特别是毒性低的酰胺类衍生物。

本发明的另一目的在于提供一种香豆素酰胺类衍生物的制备方法。

本发明一方面涉及药物组合物，其中包括作为活性成份的通式(I)的化合物，其异构体及制药领域中常用的载体。

本发明的另一目的在于提供一种新的香豆素酰胺类衍生物及其组合物作为转化生长因子- β 1抑制剂，血管紧张素II抑制剂的应用。

本发明的另一目的在于提供一种新的香豆素酰胺类衍生物及其组合物在制备治疗肾脏疾患（如各类慢性肾炎、糖尿病肾病及高血压性肾损害）、II型糖尿病、心脑血管、高血压的药物中的应用。

具体讲，本发明一方面涉及如通式(I)所示的化合物

其中：

R₃选自H，羧基，酯基，5'-(苯基噁二唑基-2')，5'-(吡啶基-4"-噁二唑基-2')，CONHR₁，

其中R₉选自C₂—C₈脂肪酸，苯甲酰氨基，异烟酰氨基，未取代、单取代或多取代的苯基，苯环上的取代基可以为OH，C₁—C₈烷氧基，CF₃，羧基，酯基，OCH₂CO₂H，NO₂，卤素，SO₃H，SO₂NHR₁₁，其中R₁₁选自H，脒基，2”-噻唑基，3”-(5”-甲基异噁唑基)，2”-嘧啶基，2”-(4”，6”-二甲基嘧啶基)，4”-(5”，6”-二甲氧基嘧啶基)；

R₄选自H，CONHR₁₀，R₁₀选自C₂—C₈脂肪酸，苯甲酰氨基，异烟酰氨基，未取代、单取代或多取代的苯基，苯环上的取代基可以为OH，C₁—C₈烷氧基，CF₃，羧基，酯基，OCH₂CO₂H，NO₂，卤素，SO₃H，SO₂NHR₁₂，其中R₁₂为H，脒基，2”-噻唑基，3”-(5”-甲基异噁唑基)，2”-嘧啶基，2”-(4”，6”-二甲基嘧啶基)，4”-(5”，6”-二甲氧基嘧啶基)；

R₅选自H，C₁—C₄的烷基；

R₆选自H，C₁—C₁₂的烷基，卤素，NO₂，CONHR₁₃，其中R₁₃选自取代苯基；

R₇选自H，OH，C₁—C₄烷基，烷氧基，烷氧基酸，OCH₂CONHR₁₄，其中R₁₄选自未取代、单取代、多取代苯基，苯环上的取代基可以是OH，OCH₃，CF₃，CO₂H，CO₂C₂H₅，NO₂；

R₈选自H，C₁—C₄烷基，烷氧基，NO₂；

为完成本发明的目的，优选的化合物包括但不限于下列化合物：

R₉选自H，COOH，CO₂C₂H₅，5’-(苯基噁二唑基-2’), 5’-(吡啶基-4”-噁二唑基-2’), , CONHR₉，其中R₉为n-丁酸基，O⁻，m-，p-苯酚基，O⁻，m-，p-苯甲酸基，O⁻，m-，p-烷氧羰基苯基，甲氧苯基，m-羧基亚甲氧苯基，3’-水杨酸基，

4' - 水杨酸基, $m\text{-CF}_3$ - 苯基, 3' - CF_3 -4' - NO_2 - 苯基, 2' - COOH -4' -I 苯基, 异烟酰氨基, 苯甲酰氨基, 4' -氨磺酰苯基, 4' -胍磺酰苯基, 4' -(2' -噻唑基磺酰) 苯基, 4' -(5" -甲基异噁唑-3" -氨磺酰) 苯基, 4' -嘧啶基磺酰苯基, 4' (4" ,6" -二甲基嘧啶-2") 氨磺酰苯基, 4-(5" ,6" -二甲氧基嘧啶-4") 氨磺酰苯基等;

R_4 选自 H, CONHR_{10} , R_{10} 选自 H, 4-COOH-苯基, 4-CO₂C₂H₅-苯基, 3-CF₃-苯基;

R_5 选自 H, CH₃;

R_6 选自 H, C₂H₅, n-C₆H₁₃, NO₂, NH₂, Cl, Br, CONHR₁₃, 其中 R_{13} 选自羧基和酯基取代的苯基;

R_7 选自 H, OH, CH₃, OCH₃, OCH₂CONHR₁₄, 其中 R_{14} 为苯基, O-, m-, p-羟基苯基, o-, m-, p-羧基苯基, 4' -乙氧羰基苯基, 3' -乙氧羰基苯基, 3' -三氟甲基苯基, 3' -三氟甲基-4-硝基苯基, 4' -甲氧苯基, 4' -水杨酸基, 3' -水杨酸基;

R_8 选自 H, CH₃, OCH₃, NO₂;

为完成本发明的目的, 优选的化合物包括但不限定于如通式(Ia)所示的化合物:

Ia

其中 R_4 、 R_5 、 R_6 、 R_7 、 R_8 所代表的与通式 I 的各种情况下所代表的相同;

为完成本发明的目的，优选的化合物包括但不限于如通式(Ib)所示的化合物：

Ib

其中R₄、R₅、R₆、R₇、R₈所代表的与通式I的各种情况下所代表的相同；

R'₂选自H, OH, COOH等；

R'₃选自H, OH, COOH, CF₃, OCH₂COOH等；

R'₄选自H, OH, COOH, COOEt, I, NO₂, OCH₃, SO₃H, SO₂NH₂, SONH(C=NH)NH₂, , ,

, 等

R'₅, R'₆为H

为完成本发明的目的，优选的化合物包括但不限于如通式下列表中所示的化合物：其中R₄—R₈基团，除标出者外，其它均为H；表中R'₂—R'₆基团，除标出者外，其它均为H。

化合物编号	$R_4—R_8$	结构式	MP°C
1	7-OCH ₃	$4'-\text{COOH}$	>300
2	7-OCH ₃	$3'-\text{COOH}$	>300
3	7-OCH ₃	$2'-\text{COOH}$	>300
4	7-OCH ₃	$2'-\text{OH}$	>300
5	7-OCH ₃	$3'-\text{OH}$	265
6	7-OCH ₃	$4'-\text{OH}$	>300
7	7-OCH ₃	$3'-\text{OH}, 4'-\text{COOH}$	279d
8	7-OCH ₃	$3'-\text{COOH}, 4'-\text{OH}$	230d
9	7-OCH ₃	$2'-\text{COOH}, 4'-\text{I}$	>300
10	7-OCH ₃	$4'-\text{COOEt}$	247
11	7-OCH ₃	$3'-\text{CF}_3$	218
12	7-OCH ₃	$3'-\text{CF}_3, 4'-\text{NO}_2$	>300
13	7-OCH ₃	$4'-\text{SO}_2\text{NH}_2$	>300
14	7-OCH ₃	$4'-\text{SO}_2\text{NH}(\text{C}=\text{NH})\text{NH}$	>300
15	7-OCH ₃	$4'-\text{SO}_2\text{NH}-\text{C}_5\text{H}_4-\text{S}$	>300
16	7-OCH ₃	$4'-\text{SO}_2\text{NH}-\text{C}_6\text{H}_4-\text{N}$	>300
17	7-OCH ₃	$4'-\text{SO}_2\text{NH}-\text{C}_6\text{H}_3(\text{CH}_3)_2-\text{N}$	298
18	7-OCH ₃	$4'-\text{SO}_2\text{NH}-\text{C}_6\text{H}_3(\text{OCH}_3)_2-\text{N}$	300
19	7-OCH ₃	$4'-\text{SO}_2\text{NH}-\text{C}_5\text{H}_4-\text{O}-\text{CH}_3$	282d
20	7-OCH ₃	$4'-\text{OCH}_3$	233
21	7-OCH ₃	$4'-\text{SO}_3\text{H}$	284
22	6-Et 7-OCH ₃	$4'-\text{COOH}$	>300
23	6-Et 7-OCH ₃	$3'-\text{COOH}$	298
24	6-Et 7-OCH ₃	$2'-\text{COOH}$	294
25	6-Et 7-OCH ₃	$4'-\text{OH}$	304
26	6-Et 7-OCH ₃	$3'-\text{OH}, 4'-\text{COOH}$	266
27	6-Et 7-OCH ₃	$3'-\text{COOH}, 4'-\text{OH}$	298
28	6-Et 7-OCH ₃	$4'-\text{COOEt}$	233
29	6-Et 7-OCH ₃	$3'-\text{CF}_3$	224
30	6-Et 7-OCH ₃	$3'-\text{CF}_3, 4'-\text{NO}_2$	234
31	6-Et 7-OCH ₃	$4'-\text{SO}_2\text{NH}_2$	>300
32	6-Et 7-OCH ₃	$4'-\text{SO}_2\text{NH}(\text{C}=\text{NH})\text{NH}$	299
33	6-Et 7-OCH ₃	$4'-\text{SO}_2\text{NH}-\text{C}_5\text{H}_4-\text{S}$	>300
34	6-Et 7-OCH ₃	$4'-\text{SO}_2\text{NH}-\text{C}_6\text{H}_4-\text{N}$	>300
35	6-Et 7-OCH ₃	$4'-\text{SO}_2\text{NH}-\text{C}_6\text{H}_3(\text{CH}_3)_2-\text{N}$	278

36	6-Et	7-OCH ₃		260d
37	6-Et	7-OCH ₃		>300
38	6-Et	7-OCH ₃	4'-OCH ₃	202
39	6-Et	7-OCH ₃	4'-SO ₃ H	>300
40	7-OCH ₃	8-CH ₃	4'-COOH	>300
41	7-OCH ₃	8-CH ₃	3'-COOH	>300
42	7-OCH ₃	8-CH ₃	2'-COOH	264
43	7-OCH ₃	8-CH ₃	3'-OH, 4'-COOH	279
44	7-OCH ₃	8-CH ₃	3'-COOH, 4'-OH	290
45	7-OCH ₃	8-CH ₃	2'-COOH, 4'-I	284
46	7-OCH ₃	8-CH ₃	4'-COOEt	270
47	7-OCH ₃	8-CH ₃	3'-CF ₃	258
48	7-OCH ₃	8-CH ₃	3'-CF ₃ , 4'-NO ₂	252
49	7-OCH ₃	8-CH ₃	4'-SO ₂ NH ₂	300
50	7-OCH ₃	8-CH ₃	4'-SO ₂ NH(C=NH)NH	>300
51	7-OCH ₃	8-CH ₃		>300
52	7-OCH ₃	8-CH ₃		277
53	7-OCH ₃	8-CH ₃		220d
54	7-OCH ₃	8-CH ₃		286
55	7-OCH ₃	8-CH ₃		286
56	7-OCH ₃	8-CH ₃	4'-OCH ₃	258
57	7-OCH ₃	8-CH ₃	4'-SO ₃ H	286
58	7-OCH ₃	8-OCH ₃	4'-COOH	315
59	7-OCH ₃	8-OCH ₃	3'-OH, 4'-COOH	264
60	7-OCH ₃	8-OCH ₃	3'-COOH, 4'-OH	264
61	7-OCH ₃	8-OCH ₃	4'-COOEt	236
62	7-OCH ₃	8-OCH ₃	3'-CF ₃	243
63	7-OCH ₃	8-OCH ₃	3'-CF ₃ , 4'-NO ₂	283
64	7-OCH ₃	8-OCH ₃	3'-OCH ₂ COOH	188
65	7-OCH ₃	8-OCH ₃	4'-SO ₂ NH ₂	280
66	7-OCH ₃	8-OCH ₃	4'-SO ₂ NH(C=NH)NH	252
67	5-CH ₃	7-OCH ₃	4'-COOH	299
68	5-CH ₃	7-OCH ₃	3'-COOH	>300
69	5-CH ₃	7-OCH ₃	2'-COOH	>300
70	5-CH ₃	7-OCH ₃	2'-OH	246
71	5-CH ₃	7-OCH ₃	3'-OH	292
72	5-CH ₃	7-OCH ₃	4'-OH	255
73	5-CH ₃	7-OCH ₃	3'-OH, 4'-COOH	284
74	5-CH ₃	7-OCH ₃	3'-COOH, 4'-OH	>300
75	5-CH ₃	7-OCH ₃	4'-COOEt	265

76	5-CH ₃	7-OCH ₃	3'-CF ₃	221
77	5-CH ₃	7-OCH ₃	3'-CF ₃ , 4'-NO ₂	>300
78	5-CH ₃	7-OCH ₃	4'-SO ₂ NH ₂	283
79	5-CH ₃	7-OCH ₃	4'-SO ₂ NH(C=NH)NH	293
80	5-CH ₃	7-OCH ₃	4'-SO ₂ NH	288
81	5-CH ₃	7-OCH ₃	4'-SO ₂ NH	>300
82	5-CH ₃	7-OCH ₃	4'-SO ₂ NH	274d
83	5-CH ₃	7-OCH ₃	4'-SO ₂ NH	268
84	5-CH ₃	7-OCH ₃	4'-SO ₂ NH	271
85	5-CH ₃	7-OCH ₃	4'-OCH ₃	210
86	6-Cl	7-OCH ₃	4'-COOH	>300
87	6-Cl	7-OCH ₃	3'-OH, 4'-COOH	253
88	6-Cl	7-OCH ₃	3'-COOH, 4'-OH	>300
89	6-Cl	7-OCH ₃	4'-COOEt	294
90	6-Cl	7-OCH ₃	3'-CF ₃	282
91	6-Cl	7-OCH ₃	4'-SO ₂ NH ₂	>300
92	6-Cl	7-OCH ₃	4'-SO ₂ NH(C=NH)NH	302
93	6-Cl	7-OCH ₃	4'-SO ₂ NH	317
94	6-Br	7-OCH ₃	4'-COOH	>300
95	6-Br	7-OCH ₃	2'-COOH	288
96	6-Br	7-OCH ₃	3'-OH, 4'-COOH	298
97	6-Br	7-OCH ₃	2'-COOH, 4'-I	>300
98	6-Br	7-OCH ₃	4'-COOEt	298
99	6-Br	7-OCH ₃	3'-CF ₃	284
100	6-Br	7-OCH ₃	4'-SO ₂ NH ₂	298
101	6-Br	7-OCH ₃	4'-OCH ₃	262
102	6-nHex	7-OCH ₃	4'-COOH	248
103	6-nHex	7-OCH ₃	2'-COOH	272
104	6-nHex	7-OCH ₃	3'-OH, 4'-COOH	268
105	6-nHex	7-OCH ₃	2'-COOH, 4'-I	249
106	6-nHex	7-OCH ₃	4'-COOEt	160
107	6-nHex	7-OCH ₃	3'-CF ₃	201
108	6-nHex	7-OCH ₃	4'-SO ₂ NH ₂	242
109	6-nHex	7-OCH ₃	4'-OCH ₃	170
110	6-NO ₂	7-OCH ₃ 8-OCH ₃	4'-COOH	>300
111	6-NO ₂	7-OCH ₃ 8-OCH ₃	3'-COOH	232
112	6-NO ₂	7-OCH ₃ 8-OCH ₃	4'-OCH ₃	256
113	6-NO ₂	7-OCH ₃ 8-OCH ₃	3'-OH	160
114	6-NO ₂	7-OCH ₃ 8-OCH ₃	2'-OH	217
115	6-NO ₂	7-OCH ₃ 8-OCH ₃	4'-COOEt	193

116	6-NO ₂ 7-OCH ₃ 8-OCH ₃	3'-OH, 4'-COOH	>300
117	6-NO ₂ 7-OCH ₃ 8-OCH ₃	3'-COOH, 4'-OH	266d
118	6-NO ₂ 7-OCH ₃ 8-OCH ₃	3'-CF ₃	218
119	6-NO ₂ 7-OCH ₃ 8-OCH ₃	3'-CF ₃ , 4'-NO ₂	217
120	6-NO ₂ 7-OCH ₃ 8-OCH ₃	4'-SO ₂ NH ₂	290d
121	6-NO ₂ 7-OCH ₃ 8-OCH ₃	4'-SO ₂ NH(C=N)NH	284
122	6-NO ₂ 7-OCH ₃ 8-OCH ₃		190d
123	6-NO ₂ 7-OCH ₃ 8-OCH ₃		220d
124	6-NO ₂ 7-OCH ₃ 8-OCH ₃		200d
125	6-C ₂ H ₅ , 7-OH 8-NO ₂	4'-COOH	234
126	6-C ₂ H ₅ , 7-OH 8-NO ₂	4'-OCH ₃	218d
127	6-C ₂ H ₅ , 7-OH 8-NO ₂	3'-OH	>300
128	6-C ₂ H ₅ , 7-OH 8-NO ₂	2'-OH	248d
129	6-C ₂ H ₅ , 7-OH 8-NO ₂	4'-COOEt	160
130	6-C ₂ H ₅ , 7-OH 8-NO ₂	3'-OH, 4'-COOH	>300
131	6-C ₂ H ₅ , 7-OH 8-NO ₂	3'-COOH, 4'-OH	>300
132	6-C ₂ H ₅ , 7-OH 8-NO ₂	3'-CF ₃	169
133	6-C ₂ H ₅ , 7-OH 8-NO ₂	4'-SO ₂ NH ₂	206d
134	6-C ₂ H ₅ , 7-OH 8-NO ₂	4'-SO ₂ NH(C=N)NH	181
135	6-C ₂ H ₅ , 7-OH 8-NO ₂		>300
136	6-C ₂ H ₅ 7-OCH ₃ 8-NO ₂	4'-COOH	273
137	6-C ₂ H ₅ 7-OCH ₃ 8-NO ₂	4'-OH	252
138	6-C ₂ H ₅ 7-OCH ₃ 8-NO ₂	4'-OCH ₃	169
139	6-C ₂ H ₅ 7-OCH ₃ 8-NO ₂	4'-COOEt	186
140	6-C ₂ H ₅ 7-OCH ₃ 8-NO ₂	4'-SO ₂ NH(C=N)NH	206d
141	6-NO ₂ , 7-OH, 8-CH ₃	4'-COOH	>300
142	6-NO ₂ , 7-OH, 8-CH ₃	2'-COOH	227
143	6-NO ₂ , 7-OH, 8-CH ₃	4'-OH	>300
144	6-NO ₂ , 7-OH, 8-CH ₃	3'-OH	>300
145	6-NO ₂ , 7-OH, 8-CH ₃	2'-OH	>300
146	6-NO ₂ , 7-OH, 8-CH ₃	4'-OCH ₃	254
147	6-NO ₂ , 7-OH, 8-CH ₃	4'-COOEt	>300
148	6-NO ₂ , 7-OH, 8-CH ₃	3'-OH, 4'-COOH	271
149	6-NO ₂ , 7-OH, 8-CH ₃	3'-COOH, 4'-OH	>300
150	6-NO ₂ , 7-OH, 8-CH ₃	3'-CF ₃	231
151	6-NO ₂ , 7-OH, 8-CH ₃	3'-CF ₃ , 4'-NO ₂	226
152	6-NO ₂ , 7-OH, 8-CH ₃	4'-SO ₂ NH ₂	>300
153	6-NO ₂ , 7-OH, 8-CH ₃	4'-SO ₂ NH(C=N)NH	>300
154	6-NO ₂ , 7-OH, 8-CH ₃		>300
155	6-NO ₂ , 7-OH, 8-CH ₃		254

156	6-NO ₂ , 7-OH, 8-CH ₃		>300
157	6-NO ₂ , 7-OH, 8-CH ₃	2'-COOH, 4'-I	262
158	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	4'-COOH	301
159	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	3'-COOH	280
160	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	2'-COOH	282
161	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	4'-OH	>300
162	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	3'-OH	231
163	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	2'-OH	285
164	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	4'-OCH ₃	209
165	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	4'-COOEt	230
166	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	3'-OH, 4'-COOH	249
167	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	3'-CF ₃	182
168	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	3'-CF ₃ , 4'-NO ₂	236
169	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	4'-SO ₂ NH(C=NH)NH	>300
170	6-NO ₂ , 7-OCH ₃ , 8-CH ₃	4'-SO ₂ NH ₂	301
171	6-NO ₂ , 7-OCH ₃ , 8-CH ₃		276
172	6-NO ₂ , 7-OCH ₃ , 8-CH ₃		270
173	6-NO ₂ , 7-OCH ₃ , 8-CH ₃		299
174	6-NO ₂ , 7-OH, 8-NO ₂	4'-COOH	>300
175	6-NO ₂ , 7-OH, 8-NO ₂	4'-OH	260
176	6-NO ₂ , 7-OH, 8-NO ₂	3'-OH	>300
177	6-NO ₂ , 7-OH, 8-NO ₂	2'-OH	>300
178	6-NO ₂ , 7-OH, 8-NO ₂	4'-OCH ₃	>300
179	6-NO ₂ , 7-OH, 8-NO ₂	4'-COOEt	281
180	6-NO ₂ , 7-OH, 8-NO ₂	3'-CF ₃	197
181	6-NO ₂ , 7-OH, 8-NO ₂	4'-SO ₂ NH ₂	>300
182	6-NO ₂ , 7-OH, 8-NO ₂	4'-SO ₂ NH(C=NH)NH	216
183	6-NO ₂ , 7-OH, 8-NO ₂		>300
184	6-NO ₂ , 7-OH, 8-NO ₂		170
185	6-NO ₂ , 7-OH, 8-NO ₂		>300
186	6-NO ₂ , 7-OH, 8-NO ₂	2'-COOH	285
187	6-NO ₂ , 7-OCH ₃ , 8-NO ₂	4'-OH	257
188	6-NO ₂ , 7-OCH ₃ , 8-NO ₂	4'-COOEt	236
189	6-NO ₂ , 7-OCH ₃ , 8-NO ₂	4'-OCH ₃	205
190	6-Cl, 7-OH, 8-NO ₂	4'-OCH ₃	285
191	6-Cl, 7-OH, 8-NO ₂	4'-SO ₂ NH(C=NH)NH	300d
192	6-Cl, 7-OH, 8-NO ₂	3'-OH, 4'-COOH	>300
193	5-CH ₃ , 6-, 8-(NO ₂) ₂ , 7-OH	4'-COOH	>300
194	5-CH ₃ , 6-, 8-(NO ₂) ₂ , 7-OH	3'-COOH	246

195	5-CH ₃ 6-,8- (NO ₂) ₂ 7- OH	2'-COOH	214
196	5-CH ₃ 6-,8- (NO ₂) ₂ 7- OH	4'-OCH ₃	242
197	5-CH ₃ 6-,8- (NO ₂) ₂ 7- OH	4'-COOEt	244
198	5-CH ₃ 6-,8- (NO ₂) ₂ 7- OH	4'-SO ₂ NH ₂	256
199	5-CH ₃ ,6-,8-(NO ₂) ₂ 7- OH	4'-SO ₂ NH(C=NH)NH	>300
200	5-CH ₃ 6-,8- (NO ₂) ₂ 7- OH		>300
201	5-CH ₃ 6-,8- (NO ₂) ₂ 7- OH		220
202	5-CH ₃ 6-,8- (NO ₂) ₂ 7- OH		276
	R ₄ —R ₈	R ₃	
203	7-OCH ₃	CONH(CH) ₃ CO ₂ H	193
204	7-OCH ₃		293
205	7-OCH ₃		248
206	7-OCH ₃		238
207	6-C ₂ H ₅ ,7-OCH ₃	CONH(CH) ₃ CO ₂ H	226
208	6-C ₂ H ₅ ,7-OCH ₃		293
209	6-C ₂ H ₅ ,7-OCH ₃		196
210	5-CH ₃ ,7-OCH ₃		248
211	5-CH ₃ ,7-OCH ₃		176
212	5-CH ₃ ,7-OCH ₃		240
213	7-OCH ₃ ,5-CH ₃		254
214	7-OCH ₃ ,8-CH ₃		254
215	7-OCH ₃ 8-CH ₃		278
216	7-OCH ₃ 8-CH ₃		270
217	6-Br 7-OCH ₃		248
218	6-Br 7-OCH ₃		>300
219	6-Br 7-OCH ₃		295
220	6-n-C ₆ H ₁₃ 7-OCH ₃		198
221	6-n-C ₆ H ₁₃ 7-OCH ₃		196

222	6-n-C ₆ H ₁₃	7-OCH ₃		139
223	6-NO ₂ ,7-OH,	8-CH ₃		>300
224	6-NO ₂ ,7-OCH ₃ ,	8-CH ₃		220
225	6-NO ₂	7,8-(OCH ₃) ₂		199
226	6-NO ₂	7,8-(OCH ₃) ₂		>300

编号	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	MP°C
227	CO ₂ C ₂ H ₅	H	H	NO ₂	OCH ₃	OCH ₃	191
228	CO ₂ H	H	H	NO ₂	OCH ₃	OCH ₃	188
229	CO ₂ C ₂ H ₅	H	H	NO ₂	OH	CH ₃	210
230	CO ₂ H	H	H	NO ₂	OH	CH ₃	251
231	CO ₂ C ₂ H ₅	H	H	NH ₂	OH	CH ₃	203
232	CO ₂ H	H	H	NO ₂	OCH ₃	CH ₃	178
233	CO ₂ C ₂ H ₅	H	H	C ₂ H ₅	OH	NO ₂	143
234	CO ₂ H	H	H	C ₂ H ₅	OH	NO ₂	178
235	CO ₂ C ₂ H ₅	H	H	C ₂ H ₅	OCH ₃	NO ₂	140
236	CO ₂ H	H	H	C ₂ H ₅	OCH ₃	NO ₂	176
237	CO ₂ C ₂ H ₅	H	H	NO ₂	OH	NO ₂	176
238	CO ₂ H	H	H	NO ₂	OH	NO ₂	296
239	CO ₂ C ₂ H ₅	H	H	NO ₂	OCH ₃	NO ₂	152
240	CO ₂ H	H	H	NO ₂	OCH ₃	NO ₂	246
241	CO ₂ C ₂ H ₅	H	H	Cl	OH	NO ₂	195
242	CO ₂ H	H	H	Cl	OH	NO ₂	>300
243	CO ₂ H	H	CH ₃	NO ₂	OH	NO ₂	211
244	CO ₂ C ₂ H ₅	H	CH ₃	NO ₂	OH	NO ₂	104
245	H		H	H	CH ₃	H	223
246	H		H	H	CH ₃	H	>300
247	H		H	H	CH ₃	H	197
248	H	CH ₃	H	H		H	230
249	H	CH ₃	H	H		H	220
250	H	CH ₃	H	H		H	240
251	H	CH ₃	H	H		H	196
252	H	CH ₃	H	H		H	304

253	H	CH ₃	H	H		H	>300
254	H	CH ₃	H	H		H	296
255	H	CH ₃	H	H		H	207
256	H	CH ₃	H	H		H	157
257	H	CH ₃	H	H		H	243
258	H	CH ₃	H	H		H	301
259	H	CH ₃	H	H		H	180
260	H	CH ₃	H	H		H	215
261	H	CH ₃	H	H		H	277
262	H	CH ₃	H	H		CH ₃	216
263	H	CH ₃	H	H		CH ₃	205
264	H	CH ₃	H	H		CH ₃	260
265	R ₃ =R ₄ =R ₅ =R ₇ =R ₈ =H						214
266	R ₃ =R ₄ =R ₅ =R ₇ =R ₈ =H						300

在本发明中，术语“卤素”是指氟、氯、溴、碘。术语“低级烷基”“低级烷”是1-6碳原子的直链或支链的烷基。

根据本发明，本发明化合物可以异构体的形式存在，而且通常所述的“本发明化合物”包括该化合物的异构体。

本发明化合物可存在双键的顺反异构体，不对称中心具有S构型或R构型，本发明包括所有可能的立体异构体以及两种或多种异构体的混合物。如果存在顺/反异构体，本发明涉及顺式形式和反式形式以及这些形式的混合物，如果需要单一异构体可根据常规方法分离或通过立体选择合成制备。

根据本发明的实施方案，所述的本发明化合物还包括其药效学上可接受的盐、盐的水合物、酯或前体药物。

根据本发明还涉及制备本发明化合物的方法，用各种取代的3-酯基或羧酸香豆素类化合物进行硝化或双硝化，得部分本发明的化合物，也是部分本发明化合物的中间体。以这些中间体的酸、3-羧基的各种取代香豆素、4-羧基的各种取代香豆素、6-羧基的各种取代香豆素或7-羧基烷氧基的各种取代香豆素与相应的各种取代氨类化合物反应制备。酰氯化反应是在合适的反应剂、催化剂及合适的溶剂条件下进行的。这些反应剂包括三氯化磷、三氯氧磷、五氯化磷、二氯亚砜、1,3-二环己基亚胺(DCC)、二吡啶碳酸酯(2-DPC)、1,3-二异丙基碳酰亚胺(DIPC)、1-(3-二甲胺丙基)-3-乙基碳酰亚胺(EDCI)等。其中优选的反应剂为五氯化磷、三氯化磷和二氯亚砜，更优选五氯化磷、二氯亚砜。制备本发明化合物所使用的催化剂包括三级胺、吡啶、4-二甲氨基吡啶和4-吡咯烷基吡啶等。其中优选为三级胺和吡啶。更优选为吡啶。反应在适宜的溶剂中或上述缩合剂中进行，如无水非质子溶剂，二甲基亚砜(DMSO)、甲苯、二氯甲烷、1,2-二氯乙烷、乙二醇二甲醚、四氢呋喃和N,N-二甲基甲酰胺(DMF)等。其中优选为甲苯、DMSO和DMF，更优选甲苯和DMF。反应温度为10—110℃，优选为20—90℃，更优选为30—80℃，特别优选为50—70℃。

下列反应方程式 IIa、IIb、IIc、IId、IIe、IIIf具体说明

IIa

IIb

IIc

IId

IIe

本发明因此还涉及含有作为活性成份的本发明化合物和常规药物赋形剂或辅剂的药物组合物。通常本发明药物组合物含有0.1-95重量%的本发明化合物。

本发明化合物的药物组合物可根据本领域公知的方法制备。用于此目的时，如果需要，可将本发明化合物与一种或多种固体或液体药物赋形剂和/或辅剂结合，制成可作为人药或兽药使用的适当的施用形式或剂量形式。

本发明化合物或含有它的药物组合物可以单位剂量形式给药，给药途径可为肠道或非肠道，如口服、肌肉、皮下、鼻腔、口腔粘膜、皮肤、腹膜或直肠等。

本发明化合物或含有它的药物组合物的给药途径可为注射给药。注射包括静脉注射、肌肉注射、皮下注射、皮内注射和穴位注射等。

给药剂型可以是液体剂型、固体剂型。如液体剂型可以是真溶液类、胶体类、微粒剂型、乳剂剂型、混悬剂型。其他剂型例如片剂、胶囊、滴丸、气雾剂、丸剂、粉剂、溶液剂、混悬剂、乳剂、颗粒剂、栓剂、冻干粉针剂等。

本发明化合物可以制成普通制剂、也可以是缓释制剂、控释制剂、靶向制剂及各种微粒给药系统。

为了将单位给药剂型制成片剂，可以广泛使用本领域公知的各种载体。关于载体的例子是，例如稀释剂与吸收剂，如淀粉、糊精、硫酸钙、乳糖、甘露醇、蔗糖、氯化钠、葡萄糖、尿素、碳酸钙、白陶土、微晶纤维素、硅酸铝等；湿润剂与粘合剂，如水、甘油、聚乙二醇、乙醇、丙醇、淀粉浆、糊精、糖浆、蜂蜜、葡萄糖溶液、阿拉伯胶浆、明胶浆、羧甲基纤维素钠、紫胶、甲基纤维素、磷酸钾、聚乙烯吡咯烷酮等；崩解剂，例如干燥淀粉、海藻酸盐、琼脂粉、褐藻淀粉、碳酸氢钠与枸橼酸、碳酸钙、聚氧乙烯山梨糖醇脂肪酸酯、十二烷基磺酸钠、甲基纤维素、乙基纤维素等；崩解抑制剂，例如蔗糖、三硬脂酸甘油酯、可可脂、氢化油等；吸收促进剂，例如季铵盐、十二烷基硫酸钠等；润滑剂，例如滑石粉、二氧化硅、玉米淀粉、硬脂酸盐、硼酸、液体石蜡、聚乙二醇等。还可以将片剂进一步制成包衣片，例如糖包衣片、薄膜包衣片、肠溶包衣片，或双层片和多层片。

例如为了将给药单元制成丸剂，可以广泛使用本领域公知的各种载体。关于载体的例子是，例如稀释剂与吸收剂，如葡萄糖、乳糖、淀粉、可可脂、氢化植物油、聚乙烯吡咯烷酮、Gelucire、高

岭土、滑石粉等；粘合剂，如阿拉伯胶、黄蓍胶、明胶、乙醇、蜂蜜、液糖、米糊或面糊等；崩解剂，如琼脂粉、干燥淀粉、海藻酸盐、十二烷基磺酸钠、甲基纤维素、乙基纤维素等。

例如为了将给药单元制成胶囊，将有效成分本发明化合物与上述的各种载体混合，并将由此得到的混合物置于硬的明胶胶囊或软胶囊中。也可将有效成分本发明化合物制成微囊剂，混悬于水性介质中形成混悬剂，亦可装入硬胶囊中或制成注射剂应用。

例如，将本发明化合物制成注射用制剂，如溶液剂、混悬剂溶液剂、乳剂、冻干粉针剂，这种制剂可以是含水或非水的，可含一种和/或多种药效学上可接受的载体、稀释剂、粘合剂、润滑剂、防腐剂、表面活性剂或分散剂。如稀释剂可选自水、乙醇、聚乙二醇、1,3-丙二醇、乙氧基化的异硬脂醇、多氧化的异硬脂醇、聚氧乙烯山梨醇脂肪酸酯等。另外，为了制备等渗注射液，可以向注射用制剂中添加适量的氯化钠、葡萄糖或甘油，此外，还可以添加常规的助溶剂、缓冲剂、pH调节剂等。这些辅料是本领域常用的。

此外，如需要，也可以向药物制剂中添加着色剂、防腐剂、香料、矫味剂、甜味剂或其它材料。

为达到用药目的，增强治疗效果，本发明的药物或药物组合物可用任何公知的给药方法给药。

本发明化合物药物组合物的给药剂量取决于许多因素，例如所要预防或治疗疾病的性质和严重程度，患者或动物的性别、年龄、体重、性格及个体反应，给药途径、给药次数、治疗目的，因此本发明的治疗剂量可以有大范围的变化。一般来讲，本发明中成药成分的使用剂量是本领域技术人员公知的。可以根据本发明化合物组合物中最后的制剂中所含有的实际药物数量，加以适当的调整，以达到其治疗有效量的要求，完成本发明的预防或治疗目的。本发明

化合物的每天的合适剂量范围本发明的化合物的用量为0.001—150mg/Kg体重，优选为0.1—100mg/Kg体重，更优选为1—60mg/Kg体重，最优选为2—30mg/Kg体重。上述剂量可以单一剂量形式或分成几个，例如二、三或四个剂量形式给药这受限于给药医生的临床经验以及包括运用其它治疗手段的给药方案。

每一种治疗所需总剂量可分成多次或按一次剂量给药。本发明的化合物或组合物可单独服用，或与其他治疗药物或对症药物合并使用并调整剂量。

用已知体内外试验方法测定本发明化合物和/或组合物的活性和效果，如对TGF- β 1的拮抗试验，治疗肾功能不全等，这些方法都是公知的。近年研究证实，TGF- β 1是导致进展期肾衰肾小球硬化和间质纤维化的最关键因子之一。药理实验表明本发明化合物具有阻断转化生长因子- β 1与受体结合和抑制转化生长因子- β 1产生的作用。在10 μ g/ml剂量下受试的33个化合物中，活性超过50%的化合物有11个，超过60%的化合物有8个，超过70%的化合物有7个，超过80%的化合物有5个，超过90%的化合物有4个。对TGF- β 1诱发的水貂肺上皮细胞的生长抑制，在受试的5个化合物中有三个化合物的活性超过60%，两个化合物超过70%，一个化合物超过90%。因此本发明化合物能用于治疗慢性肾脏疾患，包括：①原发性肾脏病，常见的有慢性肾小球肾炎、间质性肾炎、慢性肾盂肾炎等；②继发性肾病，常见的有糖尿病肾病、高血压肾病、狼疮性肾病等；③先天性及梗阻性疾病，如多囊肾、后尿道瓣膜病、神经源性膀胱增生症、前列腺增生症、尿路结石等。

进一步的试验表明本发明的化合物具有非常明显的抑制血管紧张素Ⅱ（AⅡ，P<0.01）的作用。转化生长因子- β 1和肾素血管紧张

素系统与上述提到的多种原因引起的肾功能不全密切相关，是肾病进行性恶化的两个最重要因素，并且血管紧张素Ⅱ的抑制与转化生长因子- β 1产生的减少有密切关系。血管紧张素Ⅱ在各种高血压的产生过程中起到了重要作用。所以本发明的化合物可以治疗由各种因素引起的肾性高血压、糖尿病性高血压及外周血管疾病性高血压，以及由上述原因所引起的心脑血管疾病。

体内试验表明，对大鼠5/6肾切除致慢性肾衰的作用，与阳性对照药Benazepril和Losartan比较，证明本发明化合物在降低血清尿素氮(BUN)、肌酐(Cre)，抑制转化生长因子- β 1(TGF- β 1)和血管紧张素II(AII)方面均好于Benazepril，而与Losartan相当(略好)。

对大鼠单侧输尿管结扎所致肾间质纤维化的作用表明，受试化合物149在各项生化指标中均好于Losartan，而与Benazepril相当(略好)，但病理结果表明，本发明的化合物好于Benazepril而与Losartan相当。

受试化合物毒性很小，在剂量5g/Kg和10g/Kg时，连续观察二周，未见动物死亡，也未见小鼠有其它异常表现，说明其毒性小，安全系数较大。另外，受试化合物149的微生物回复突变试验结果均为阴性，表明没有致突变作用。

具体实施方式

本发明实施例众所用的起始化合物，可根据本领域的常规方法和/或本领域技术人员熟知的方法制备的，并可按如下举例的反应路线制备。

(1) 3-乙氧羰基-7-羟基香豆素 和 3-羧基-7-甲氧基香豆素

(2) 3-乙氧羰基-6-氯-7-羟基香豆素 和 3-羧基-6-氯-7-甲氧基香豆素

(3) 3-乙氧羰基-6-乙基-7-羟基香豆素 和 3-羧基-6-乙基-7-甲氧基香豆素

(4) 3-乙氧基羰基-6-己基-7-羟基香豆素 和 3-羧基-6-己基-7-甲氧基香豆素

(5) 3-乙氧羰基-6-溴-7-羟基香豆素 和 3-羧基-6-溴-7-甲氧基香豆素

(6) 3-乙氧羰基-7,8-二羟基香豆素 和 3-羧基-7,8-二甲氧基香豆素

(7) 3-乙氧羰基-7-羟基-8-甲基香豆素 和 3-羧基-7-甲氧基-8-甲基香豆素

(8) 3-乙氧羰基-7-羟基-5-甲基香豆素 和 3-羧基-7-甲氧基-5-甲基香豆素

(9) 3-乙氧羰基-6-硝基-7-羟基-8-甲基香豆素
和 3-羧基-6-硝基-7-甲氧基-8-甲基香豆素

(10) 3-乙氧羰基-6-硝基-7,8-二羟基香豆素
和 3-羧基-6-硝基-7,8-二甲氧基香豆素

(11) 3-乙氧羰基-5-甲基-6,8二硝基-7-羟基香豆素
和3-羧基-5-甲基-6,8二硝基-7-羟基-香豆素

(12) 3-乙氧羰基-5-甲基-6,8二硝基-7-甲氧基香豆素
和3-羧基-5-甲基-6,8二硝基-7-甲氧基-香豆素

(13) 3-乙氧羰基-5-甲基-6,8二硝基-7-羟基香豆素
和3-羧基-5-甲基-6,8二硝基-7-羟基-香豆素

(14) 3-乙氧羰基-6-乙基-7-羟基-8-硝基香豆素
和 3-羧基-6-乙基-7-羟基-8-硝基香豆素

(15) 3-乙氧羰基-6-氯-7-羟基-8-硝基香豆素
和 3-羧基-6-氯-7-羟基-8-硝基香豆素

(16) 6-羧基香豆素

(17) 4-羧基-7-甲基香豆素

(18) 4-甲基-7-羧基甲氧基香豆素

(19) 4,8-二甲基-7-羧基甲氧基香豆素

下面的实施例用来进一步说明本发明，但是这并不意味着对本发明的任何限制。

实施例1 3-乙氧羰基-6-氯-7-羟基-8-硝基香豆素(241)的合成

将2.75g(10.2mmol)3-乙氧羰基-6-氯-7-羟基香豆素，加入10ml浓硫酸中，在冰盐浴冷却下分批加入浓硝酸1.74g(20.4mmol)薄层析跟踪至反应完全后，加入冰终止反应，过滤，以水洗涤，干燥得产品1.52g标题化合物(241)。

H-NMR 300MHz(DMSO): 1.266(t, 3H, CH₃) ; 4.232(q, 2H, CH₂) ; 8.017(s, 1H, 5-H) ; 8.593(s, 1H, 4-H)

表中化合物229—246，都可按此法制备

实施例2 3-乙氧羰基-6-乙基-7-羟基-8-硝基香豆素(233)的合成

根据实施例化合物241的制备方法，化合物233的制备，不同点在于以3-乙氧羰基-6-乙基-7-甲氧基香豆素进行硝化反应，得化合物233

H-NMR 300MHz (DMSO) : 1. 262 (t, 3H, 6-乙基-CH₃)， 1. 401 (t, 3H, 酯基-CH₃)， 2. 753 (q, 2H, 6-乙基-CH₂)， 3. 988 (s, 3H, 7-OCH₃)， 4. 408 (q, 2H, 酯基-CH₂)， 7. 527 (s, 1H, 5-H)， 8. 479 (s, 1H, 4-H)

实施例3 3-乙氧羰基-6-硝基-7, 8-二甲氧基香豆素（227）的合成

根据实施例化合物241的制备方法，化合物227的制备，不同点在于以3-乙氧羰基-7, 8-二甲氧基香豆素进行硝化反应，得化合物227

H-NMR 300MHz (DMSO) : 1. 397 (t, 3H, 酯基-CH₃)， 4. 063-4. 118 (d, 6H, 7, 8-OCH₃)， 4. 423 (q, 2H, 酯基-CH₂)， 7. 757 (s, 1H, 5-H)， 9. 252 (s, 1H, 4-H)

实施例4 3-乙氧羰基-6, 8-二硝基-7-甲氧基香豆素（239）的合成

根据实施例化合物241的制备方法，化合物239的制备，不同点在于以3-乙氧羰基-7-甲氧基香豆素进行双硝化反应，得化合物239

H-NMR 300MHz (DMSO) : 1. 290 (t, 3H, 酯-CH₃)， 4. 011 (s, 3H, 7-OCH₃)， 4. 292 (q, 2H, 酯-CH₂)， 8. 873 (s, 1H, 4-H)， 8. 955 (s, 1H, 5-H)

实施例5 3-乙氧羰基-6, 8-二硝基-7-羟基香豆素（237）的合成

根据实施例化合物241的制备方法，化合物237的制备，不同点在于以3-乙氧羰基-7-羟基香豆素进行双硝化反应，得化合物237

H-NMR 300MHz (DMSO) : 1. 237 (t, 3H, 酯-CH₃)， 4. 196 (q, 2H, 酯-CH₂)， 8. 399 (s, 1H, 4-H)， 8. 636 (s, 1H, 5-H)

实施例6 3-(3' -羟基-4' -羧基苯胺羰基)-6-乙基-7-甲氧基香豆素(26)的合成

将248mg (1mol) 3-羧基-6-乙基-7-甲氧基香豆素和2ml SOCl₂加热使反应完全后，去除SOCl₂，加入153mg (1mol) 4-氨基水杨酸及2ml吡啶，加热使反应完全，所得产物以DMSO精制，得产品140mg标题化合物(26)。

H-NMR 300MHz (DMSO) : 1.142 (t, 3H, CH₃) , 2.569 (q, 2H, CH₂) , 3.906 (s, 3H, 7-OCH₃) ; 7.069 (d, 1H, 6' -H) , 7.098 (s, 1H, 8-H) , 7.509 (s, 1H, 2' -H) , 7.758 (d, 1H, 5-H) , 8.856 (s, 1H, 4-H) , 10.848 (s, 1H, CONH) , 11.399 (s, 1H, OH)

表1中1—109号化合物, 204—206, 208, 209, 213, 214, 217, 218, 220, 222—228表2中247—249号化合物, 均按以上操作步骤进行制备。

实施例7 3-(3' -羧基-4' 羟基苯胺羰基)-6-乙基-7-甲氧基香豆素(27)的合成

根据实施例化合物26的制备方法，化合物27的制备，不同点在于以5-氨基水杨酸代替4-氨基水杨酸进行反应，得化合物27

H-NMR 500MHz (DMSO): 1.162 (t, 3H, 乙基-CH₃) , 2.602 (q, 2H, 乙基-CH₂) , 3.937 (s, 3H, 7-OCH₃) , 6.786 (d, 1H, 5' -H) , 7.178 (s, 1H, 6-H) , 7.746 (d, 1H, 6' -H) , 7.770 (s, 1H, 5-H) , 8.239 (s, 1H, 2' -H) , 8.834 (s, 1H, 4-H) , 10.583 (s, 1H, CONH)

元素分析: C₂₀H₁₇NO₇

计算值: C62.66, H4.47, N3.65

测定值: C62.87, H4.49, N3.71

实施例8 3-(m-羧基苯胺羰基)-7-甲氧基香豆素(2)的合成

根据实施例化合物26的制备方法，化合物2的制备，不同点在于以3-羧基7-甲氧基香豆素与m-氨基苯甲酸进行反应，得化合物2

元素分析：C₁₈H₁₃NO₆ · 1/2H₂O

计算值：C62.07, H4.05, N4.02

测定值：C62.72, H3.74, N4.55

实施例9 3-(3'-羟基-4'-羧基苯胺羧基)-7-甲氧基香豆素(7)的合成

根据实施例化合物26的制备方法，化合物7的制备，不同点在于以3-羧基-7-甲氧基香豆素与4-氨基水杨酸进行反应，得化合物7

H-NMR300MHz (DMSO) : 3.91(s, 3H, 7-OCH₃), 7.08(d, 1H, 6-H), 7.11(s, 1H, 6' -H),

7.53(s, 1H, 2' -H), 7.77(d, 1H, 5-H), 7.95(d, 1H, 5' -H),

8.91(s, 1H, 4-H), 10.83(s, 1H, CONH), 11.40(br, 1H, OH)

元素分析：C₁₈H₁₃NO₇

计算值：C60.85, H3.69, N3.94

测定值：C60.52, H3.59, N4.10

实施例10 3-(3'-羧基-4'-羟基苯胺羧基)-7-甲氧基香豆素(8)的合成

根据实施例化合物26的制备方法，化合物8的制备，不同点在于以3-羧基-7-甲氧基香豆素和5-氨基水杨酸进行反应。得化合物8

H-NMR 300MHz (DMSO) : 3.906(s, 3H, 7-OCH₃), 6.964(d, 1H, 5' -H),

7.037(d, 1H, 6-H), 7.083(s, 1H, 8-H), 7.745(d, 1H, 6' -H),

8.001(d, 1H, 5-H), 8.234(s, 1H, 2' -H), 8.877(s, 1H, 4-H),

10.547(s, 1H, CONH), 11.103(br, OH)

元素分析：C₁₈H₁₃NO₇

计算值：C60.85, H3.69, N3.94

测定值: C60.50, H3.62, N3.64

实施例11 3-[4'-(5'-甲基异噁唑-3')-氨基磺酰基-苯胺羧基]-7-甲氧基香豆素(19)的合成

根据实施例化合物26的制备方法, 化合物19的制备, 不同点在于以3-羧基-7-甲氧基香豆素和磺胺甲基异噁唑(SMZ)进行反应。

得化合物19

元素分析: C₂₁H₁₇N₃O₇S · 1/2H₂O

计算值: C54.31, H3.91, N9.05

测定值: C54.56, H3.49, N8.90

实施例12 3-(3'-羧基丙氨基)-7-甲氧基香豆素(203)的合成

根据实施例化合物26的制备方法, 化合物203的制备, 不同点在于以3-羧基-7-甲氧基香豆素和γ-氨基丁酸进行反应。得化合物203
H-NMR300MHz(DMSO): 1.719(t, 2H, 3'-CH₂), 2.235(t, 2H, 2'-CH₂),
3.311(t, 2H, 4'-CH₂), 3.861(s, 3H, 7-OCH₃), 7.001(d, 1H, 6-H),
7.074(s, 1H, 8-H), 7.861(d, 1H, 5-H), 8.771(s, 1H, 4-H)

元素分析: C₁₅H₁₅NO₆

计算值: C59.01, H4.95, N4.59

测定值: C, 59.05 H4.60, N4.73

实施例13 3-[4'-(5'-甲基异噁唑-3')-氨基磺酰基苯胺羧基]-7-甲氧基-8-甲基香豆素(55)

根据实施例化合物26的制备方法, 化合物55的制备, 不同点在于以3-羧基-7-甲氧-8-甲基香豆素和磺胺甲基异噁唑(SMZ)进行反应。得化合物55

元素分析: C₂₂H₁₉N₃O₇S

计算值: C56.28, H4.08, N8.95

测定值: C56.61, H4.06, N9.01

实施例14 3-(m-羧基亚甲氧基苯胺羧基)-7,8-二甲氧基香豆素(64)的合成

根据实施例化合物26的制备方法, 化合物64的制备, 不同点在于以3-羧基-7,8-二甲氧基香豆素和m-羧基亚甲氧基苯胺进行反应得化合物64

H-NMR300MHz (DMSO): 3.852 (s, 3H, 8-OCH₃), 3.951 (s, 3H, 7-OCH₃), 4.641 ((s, 2H, OCH₂), 6.676 (q, 1H, 5' -H), 7.198-7.420 (m, 3H, 4' , 6' , 6-H), 7.502 (s, 1H, 2' -H), 7.751 (d, 1H, 5-H), 8.853 (s, 1H, 4-H), 10.584 (s, 1H, CONH)

元素分析: C₂₀H₁₇NO₈

计算值: C60.15, H4.29, N3.51

测定值: C60.41, H4.65, N3.75

实施例15 3-(4'-胍基磺酰基苯胺羧基)-7,8-二甲氧基香豆素(66)的合成

根据实施例化合物26的制备方法, 化合物66的制备, 不同点在于以3-羧基-7,8-二甲氧基香豆素和磺酰胺(SG)进行反应得化合物66

元素分析: C₁₉H₁₈N₄O₇S · 2H₂O

计算值: C47.30, H4.56, N11.61

测定值: C47.34, H4.08, N11.00

实施例16 3-(3'-羧基-4'-羟基苯胺羧基)-7,8-二甲氧基香豆素(60)的合成

根据实施例化合物26的制备方法, 化合物60的制备, 不同点在于以3-羧基-7,8-二甲氧基香豆素和5-氨基水杨酸进行反应得化合物60

H-NMR 300MHz (DMSO) : 3.849-3.947 (d, 6H, 7, 8-bis-OCH₃) ,
 6.962 (d, 1H, 5' -H) , 7.233 (d, 1H, 6-H) ,
 7.727-7.755 (d, 2H, 5, 6' -H) , 8.210 (s, 1H2' -H) ,
 8.813 (s, 1H, 4-H) , 10.495 (s, 1H, CONH)

元素分析: C₁₉H₁₅NO₈ · 1/4H₂O

计算值: C58.61, H4.01, N3.59

测定值: C58.27, H3.86, N3.92

实施例17 3-(苯甲酰肼基)-5-甲基-7-甲氧基香豆素(210)的合成

根据实施例化合物26的制备方法, 化合物210的制备, 不同点在于以3-羧基-5-甲基-7-甲氧基香豆素和苯甲酰肼进行反应得化合物210

H-NMR 300MHz (DMSO) : 2.482 (s, 3H, 5-CH₃) , 3.888 (s, 3H, 7-OCH₃) ,
 6.979 (d, 2H, 6, 8-H) , 7.477-7.583 (q, 2H, 3' , 5' -H) ,
 7.500 (t, 1H, 5' -H) , 7.889 (d, 2H, 2' , 6' -H) , 8.792 (s, 1H, 4-H) ,
 10.24 (s, 1H, CONH) , 10.868 (s, 1H, CONH)

实施例18 3-(异烟肼基羰基)-5-甲基-7-甲氧基香豆素(213)的合成

根据实施例化合物26的制备方法, 化合物213的制备, 不同点在于以3-羧基-5-甲基-7-甲氧基香豆素和异烟肼进行反应得化合物213

H-NMR 300MHz (DMSO) : 2.553 (s, 3H, 5-CH₃) , 3.878 (s, 3H, 7OCH₃) ,
 6.979 (d, 2H, 6, 8-H) , 7.935 (d, 2H, 3' , 5' -H) , 8.781 (s, 1H, 4-H) ,
 10.545 (s, 1H, CONH) , 11.362 (s, 1H, CONH)

实施例19 3-(3' -羧基-4' -羟基苯胺羰基)-5-甲基-7-甲氧基香豆素(74)的合成

根据实施例化合物26的制备方法，化合物74的制备，不同点在于以3-羧基-5-甲基-7-甲氧基香豆素和5-氨基水杨酸进行反应得化合物74

元素分析: C₁₉H₁₅NO₇

计算值: C61.79, H4.09, N3.79

测定值: C61.57, H4.07, N3.81

实施例20 3-(3'-羟基-4'-羧基苯胺羰基)-6-氯-7-甲氧基香豆素(87)的合成

根据实施例化合物26的制备方法，化合物87的制备，不同点在于以3-羧基-6-氯-7-甲氧基香豆素和4-氨基水杨酸进行反应得化合物87

H-NMR 300MHz (DMSO): 3.996(s, 3H, 7-OCH₃), 7.114(d, 1H, 6' -H), 7.376(s, 1H, 8-H), 7.485(s, 1H, 2' -H), 7.768(d, 1H, 5' -H), 8.146(s, 1H, 5-H), 8.839(s, 1H, 4-H), 10.721(s, 1H, CONH)

元素分析: C₁₈H₁₂ClNO₇

计算值: C55.47, H3.11, N3.59

测定值: C55.97, H3.13, N4.48

实施例21 3-(3'-羧基-4'-羟基苯胺羰基)-6-Cl-7-甲氧基香豆素(88)的合成

根据实施例化合物26的制备方法，化合物88的制备，不同点在于以3-羧基-6-Cl-7-甲氧基香豆素和5-氨基水杨酸进行反应得化合物88

H-NMR 300MHz (DMSO): 4.010(s, 3H, 7-OCH₃), 6.968(d, 1H, 5' -H), 7.380(s, 1H, 8-H), 7.752(d, 1H, 6' -H), 8.153(s, 1H, 5-H), 8.211(s, 1H, 2' -H), 8.817(s, 1H, 4-H), 10.475(s, 1H, CONH)

元素分析: C₁₈H₁₂ClNO₇

计算值: C55.47, H3.11, N3.59

测定值: C55.60, H3.18, N4.1

实施例22 3-(3'-羟基-4'-羧基苯胺羧基)-6-溴-7-甲氧基香豆素(96)的合成

根据实施例化合物26的制备方法, 化合物96的制备, 不同点在于以3-羧基-6-溴-7-甲氧基香豆素和4-氨基水杨酸进行反应得化合物96

H-NMR 300MHz (DMSO): 3.996(s, 3H, 7-OCH₃), 7.118(d, 1H, 6'-H), 7.343(s, 1H, 8-H), 7.496(s, 1H, 2'-H), 7.774(d, 1H, 5'-H), 8.306(s, 1H, 5-H), 8.846(s, 1H, 4-H), 10.722H(s, 1H, CONH)

实施例23 3-(4'-胍基磺酰基苯胺羧基)-6-乙基-7-甲氧基香豆素(32)的合成

根据实施例化合物26的制备方法, 化合物32的制备, 不同点在于以3-羧基-6-乙基-7-甲氧基香豆素和磺胺胍(SG)进行反应得化合物32

H-NMR 300MHz (DMSO): 1.148(t, 3H, 乙基-CH₃), 2.572(q, 2H, 乙基-CH₂), 3.896(s, 3H, OCH₃), 6.690(br, 4H, 胍基-H), 7.125(s, 1H, 8-H), 7.709(s, 1H, 5-H), 7.739(q, 4H, Ar-H), 8.827(s, 1H, 4-H), 10.841(s, 1H, CONH)

元素分析: C₂₀H₂₀N₄O₆S · 1/4H₂O

计算值: C53.55, H4.60, N12.48

测定值: C53.49, H4.63, N12.40

实施例24 3-(4'-胍基磺酰基苯胺羧基)-6-氯-7-甲氧基香豆素(92)

根据实施例化合物26的制备方法，化合物92的制备，不同点在于以3-羧基-6-氯-7-甲氧基香豆素和磺胺胍(SG)进行反应得化合物92

H-NMR 300MHz (DMSO): 3.999 (s, 3H, 7-OCH₃) , 7.407 (s, 1H, 8-H), 7.776 (q, 4H, Ar-H), 8.172 (s, 1H, 5-H), 8.860 (s, 1H, 4-H), 10.787 (s, 1H, CONH)

元素分析: C₁₈H₁₅C1N₄O₆S

计算值: C47.95, H3.35, N12.43

测定值: C47.54, H3.45, N12.15

实施例25 3-(3' -羟基-4' -羧基苯胺羧基)-7-甲氧基-8-甲基香豆素(43)的合成

根据实施例化合物26的制备方法，化合物43的制备，不同点在于以3-羧基-7-甲氧基-8-甲基香豆素和4-氨基水杨酸进行反应得化合物43

H-NMR 300MHz (DMSO): 2.215 (s, 3H, 8-CH₃) , 3.912 (s, 3H, 7-OCH₃) , 7.081 (d, 1H, 6' -H), 7.182 (d, 1H, 6-H), 7.612 (s, 1H, 2' -H), 7.747 (d, 1H, 5-H), 7.872 (d, 1H, 5' -H), 8.834 (s, 1H, 4-H), 10.813 (s, 1H, CONH)

元素分析: C₁₉H₁₅NO₇ · 1/2H₂O

计算值: C60.32, H4.26, N3.70

测定值: C60.26, H4.03, N4.14

实施例26 3-(3' -羧基-4' -羟基苯胺羧基)-7-甲氧基-8-甲基香豆素(44)的合成

根据实施例化合物26的制备方法，化合物44的制备，不同点在于以3-羧基-7-甲氧基-8-甲基香豆素和5-氨基水杨酸进行反应得化合物44

H-NMR 300MHz (DMSO) : 2.209 (s, 3H, 8-CH₃) , 3.753 (s, 3H, 7-OCH₃) , 6.959 (d, 1H, 5' -H) , 7.168 (d, 1H, 6-H) , 7.723 (d, 1H, 6' -H) , 7.848 (d, 1H, 5-H) , 8.197 (s, 1H, 2' -H) , 8.794 (s, 1H, 4-H) , 10.504 (s, 1H, CONH)

元素分析: C₁₉H₁₅NO₇ · 1/2H₂O

计算值: C60.32, H4.26, N3.70

测定值: C59.66, H3.92, N3.81

实施例27 3-(4' -甲氧苯胺羰基)-6-硝基-7-羟基-8-甲基香豆素(146)

将160mg(0.604mmol) 3-羧基-6-硝基-7-羟基-8-甲基香豆素和2ml二氯亚砜, 加热使反应完全, 除去多余的二氯亚砜, 加入74.3mg(0.604mmol) p-氨基苯甲醚及1ml吡啶和1mlDMF, 加热使反应完全, 过滤, 以水、稀盐酸、水和乙醇洗涤, 干燥, 冰醋酸精制, 得产品(146)170mg

H-NMR 300MHz (DMSO) : 2.280 (s, 3H, Ar-CH₃) ; 3.740 (s, 3H, OCH₃) ; 6.941 (d, 2H, 3' , 5' -H) ; 7.621 (d, 2H, 2' , 6' -H) ; 8.673 (s, 1H, 5-H) ; 8.897 (s, 1H, 4-H) ; 10.374 (s, 1H, CONH)

表1中110—203, 225—228号化合物按以上操作步骤制备。

实施例28 3-(4' -胍基磺酰基苯胺羰基)-6-硝基-7-甲氧基-8-甲基香豆素(169)

根据实施例化合物146的制备方法, 化合物169的制备, 不同点在于以磺胺胍(SG)和3-羧基-6-硝基-7-甲氧基-8-甲基香豆素进行反应, 以DMF精制。得化合物169H-NMR 300MHz (DMSO) : 2.382 (s, 3H, 8-CH₃) , 3.940 (s, 3H, 7-OCH₃) , 6.677 (br, 4H, 脏基-H) , 7.790 (q, 4H, Ar-H) , 8.593 (s, 1H, 5-H) , 8.903 (s, 1H, 4-H) , 10.707 (s, 1H, CONH)

元素分析: C₁₉H₁₇N₅O₈S · 1/2H₂O

计算值: C47.10, H3.75, N14.46

测定值: C47.27, H3.73, N14.58

实施例29 3-(4'-羧基苯胺羰基)-6-硝基-7,8-二甲氧基香豆素(110)

根据实施例化合物146的制备方法, 化合物110的制备, 不同点在于以p-氨基苯甲酸和3-羧基-6-硝基-7,8-二甲氧基香豆素进行反应。得化合物110

H-NMR 300MHz (DMSO) : 3.99-4.06 (q, 6H, 7,8-bis-OCH₃), 7.82 (d, 2H, J=8.7, Ar-H), 7.9 (d, 2H, J=8.7, Ar-H), 8.15 (s, 1H, 5-H), 9.09 (s, 4-H) 10.91 (s, 1H, CONH)

实施例30 3-(3'-羧基苯胺羰基)-6-硝基-7,8-二甲氧基香豆素(111)

根据实施例化合物146的制备方法, 化合物111的制备, 不同点在于, 以m-氨基苯甲酸和3-羧基-6-硝基-7,8-二甲氧基香豆素进行反应。得化合物111

H-NMR 300MHz (DMSO) : 3.97-4.05 (q, 6H, 7,8-bis-OCH₃), 7.49 (t, 1H, 5' -H), 7.67 (d, 1H, 6' -H), 7.76 (d, 1H, 4' H), 7.93 (s, 1H, 2' -H), 8.32 (s, 1H, 5-H), 9.08 (s, 1H, 4-H), 10.66 (s, 1H, CONH)

实施例31 3-[4'-(5'',6''-二甲氧基嘧啶-4'')-胺磺酰基苯胺羰基]-6-硝基-7,8-二甲氧基香豆素(123)

根据实施例化合物146的制备方法, 化合物111的制备, 不同点在于, 以磺胺5,6-二甲氧基嘧啶(SDM')和3-羧基-6-硝基-7,8-二甲氧基香豆素进行反应。得化合物123

H-NMR 300MHz (DMSO) : 3.694 (s, 3H, 嘧啶- -OCH_3) ,
 3.894 (s, 3H, 8- OCH_3) ,
 4.064 (s, 3H, 7- OCH_3) , 7.886-7.996 (q, 4H, Ar-H) ,
 7.974 (s, 1H, 2" -H) , 8.109 (s, 1H, 5-H) , 9.092 (s, 1H, 4-H) ,
 10.791 (s, 1H, CONH) , 10.947 (br, 1H, SO₂NH)

实施例32 3-(3' -羟基-4' -羧基苯胺羧基)-6-硝基-7-羟基-8-甲基香豆素(148)

根据实施例化合物146的制备方法, 化合物148的制备, 不同点在于以4-氨基水杨酸和3-羧基-6-硝基-7-羟基-8-甲基香豆素进行反应,

得化合物148

H-NMR 300MHz (DMSO) : 2.27 (s, 3H, Ar-CH₃) , 7.11 (dd, 1H, J=7.8Hz, 1.8Hz, 6' -H) , 7.498 (d, 1H, J=1.8Hz, 2' -H) , 7.775 (d, 1H, J=7.8, 5' -H) , 8.65 (s, 1H, 5-H) , 8.892 (s, 1H, 4-H) , 10.69 (s, 1H, CONH)

实施例33 3-(3' -羧基-4' -羟基苯胺羧基)-6-硝基-7-羟基-8-甲基香豆素(149)

根据实施例化合物146的制备方法, 化合物149的制备, 不同点在于以5-氨基水杨酸和3-羧基-6-硝基-7-羟基-8-甲基香豆素进行反应, 得化合物149

H-NMR 300MHz (DMSO) : 2.268 (s, 3H, Ar-H) , 6.971 (d, 1H, J=8.7Hz, 5' -H) , 7.747 (dd, 1H, J=8.7Hz, 2.7Hz, 6' -H) , 8.208 (d, 1H, J=2.7Hz, 2' -H) , 8.658 (s, 1H, 5-H) , 8.867 (s, 1H, 4-H) , 10.403 (s, 1H, CONH)

实施例34 3-[4' -(2" -嘧啶氮磷酰基)苯胺羧基]-5甲基-6,8-二硝基-7-羟基香豆素(200)

根据实施例化合物146的制备方法，化合物200的制备，不同点在于以磺氨嘧啶（SD）和3-羧基-5甲基-6,8-二硝基-7-羟基香豆素进行反应，得化合物200

H-NMR 300MHz (DMSO) : 2.291(s, 3H, 5-CH₃) , 7.025(t, 1H, 5" -H), 7.884

(q, 4H, Ar-H), 8.483(d, 2H, 4" , 6" -H), 8.640(s, 1H, 4-H), 10.705(s, 1H, CONH)

实施例35 3-(4' -氨基磺酰基苯胺羧基)-5甲基-6,8-二硝基-7-羟基香豆素(198)

根据实施例化合物146的制备方法，化合物198的制备，不同点在于以氨基苯磺酰氯和3-羧基-5甲基-6,8-二硝基-7-羟基香豆素进行反应，得化合物198

H-NMR 300MHz (DMSO) : 2.254(s, 3H, 5-CH₃) , 7.240(br, 2H, NH₂) , 7.788(q, 4H, Ar-H), 8.666(s, 1H, 4-H), 10.676(s, 1H, CONH)

实施例36 3-(2" -噻唑氨基磺酰基苯胺羧基)-5甲基-6,8-二硝基-7-羟基香豆素(201)

根据实施例化合物146的制备方法，化合物201的制备，不同点在于以磺胺噻唑(ST) 和3-羧基-5甲基-6,8-二硝基-7-羟基香豆素进行反应，得化合物201

H-NMR 300MHz (DMSO) : 2.291(s, 3H, 5-CH₃) , 6.802(d, 1H, 噻唑-H), 7.225(d, 1H, 噻唑-H), 7.737(q, 4H, Ar-H), 8.651(s, 1H, 4-H), 10.667(s, 1H, CONH)

实施例37 3-(4' -胍基磺酰基苯胺羧基)-5甲基-6,8-二硝基-7-羟基香豆素(199)

根据实施例化合物146的制备方法，化合物199的制备，不同点在于以磺胺胍(SG)和3-羧基-5甲基-6,8-二硝基-7-羟基香豆素进行反应，得化合物199

H-NMR 300MHz (DMSO): 2.293(s, 3H, 5-CH₃)，6.685(br, 4H, 脏基-H)，7.746(q, 4H, Ar-H)，8.657(s, 1H, 4-H)，10.647(s, 1H, CONH)

实施例38 3-(2' -苯基-1' , 3' , 4' -噁二唑-5')-7-甲氧基-8-甲基香豆素(216)

将295mg (0.84mmol) 3-(苯甲酰肼基羧基)-7-甲氧基-8-甲基香豆素和4.6ml三氯氧磷，在100℃反应5小时，逐渐冷却后，倾入冰水中，过滤，以水洗涤，干后得290mg，以DMF精制后，得160mg，
H-NMR 300MHz (DMSO): 2.252(s, 3H, 8-CH₃)；3.968(s, 3H, 7-OCH₃)；7.174(d, 1H, 6-H)；7.634(m, 3H, Ar' -H)；7.812(d, 1H, 5-H)；8.088(m, 2H, Ar' -H)；8.874(s, 1H, 4-H)

表2中207, 210—212, 215, 216, 219, 221号化合物都按以上操作步骤制备。

实施例39 3-(2' -苯基-1' , 3' , 4' -噁二唑-5')-7-甲氧基香豆素(206)

根据实施例化合物216的制备方法，化合物206的制备，不同点在于以3-(苯甲酰肼基羧基)-7-甲氧基香豆素代替3-(苯甲酰肼基羧基)-7-甲氧基-8-甲基香豆素进行反应得化合物206

H-NMR 300MHz (DMSO) : 3.929(s, 3H, 7-OCH₃)，7.021(d, 1H, 6-H)，7.085(s, 1H, 8-H)，7.599-7.668(m, 3H, Ar-H)，7.871(d, 1H, 5-H)，8.095(m, 2H, Ar-H)，8.898(s, 1H, 4-H)

元素分析: C₁₈H₁₂N₂O₄

计算值: C67.49, H3.78, N8.75

测定值: C67.57, H3.98, N8.41

实施例40 3-[2'-(吡啶基-4')-1',3',4'-噁二唑-5']-6-己基-7-甲氧基香豆素(221)

根据实施例化合物216的制备方法，化合物221的制备，不同点在于以3-(异烟肼基羧基)-6己基-7-甲氧基香豆素代替3-(苯甲酰肼基羧基)-7-甲氧基-8-甲基香豆素进行反应得化合物221

H-NMR 300MHz (DMSO): 0.869(t, 3H, 己基-CH₃)，1.240(br, 6H, 己基-CH₂)，1.574(t, 2H, 己基-CH₂)，2.734(t, 2H, 己基-CH₂)，3.959(s, 3H, 7-OCH₃)，7.116(s, 1H, 8-H)，7.699(s, 1H, 5-H)，8.070(br, 2H, 吡啶-H)，8.920(br, 2H, 吡啶-H)，8.921(s, 1H, 4-H)

元素分析: C₂₃H₂₃N₃O₄ · 3H₂O

计算值: C60.12, H6.36, N9.15

测定值: C59.51, H5.51, N8.96

实施例41 4-甲基-7-(4'-乙氧羰基苯胺羧基亚甲氧基)香豆素(255)

将4-甲基-7-羧基亚甲氧基香豆素60mg(0.256mmol)与2ml二氯亚砜加热使反应完全后除去多余的二氯亚砜，残余物溶于5ml二氯甲烷，加入对-氨基苯甲酸乙酯44mg(0.267mmol)在5ml二氯甲烷的溶液和吡啶3ml，搅拌半小时析出固体，再继续搅拌1小时，过滤，以二氯甲烷洗涤干燥80mg，

H-NMR 300MHz (DMSO): 1.293(t, 3H, 酯甲基)；2.389(s, 3H, 4-甲基)；4.269(q, 2H, 酯-CH₂)；4.881(s, 2H, OCH₂)；6.219(s, 1H, 3-H)；7.018(d, 1H, 8-H)；7.056(d, 1H, 6-H)；7.712(d, 1H, 5-H)；7.760(d, 2H, 2', 6' -H)；7.919(d, 2H, 3', 5' -H)；10.479(s, 1H, CONH)

元素分析: C₂₁H₁₉NO₆

计算值: C66.13, H5.02, N3.67

测定值: C66.26, H4.91, N3.81

表2中 250—264号化合物按以上步骤进行制备。

实施例42 4-甲基-7-苯胺羧基亚甲氧基香豆素(248)

根据实施例化合物255的制备方法, 化合物248的制备, 不同点在于以苯胺代替p-氨基苯甲酸乙酯进行反应, 得化合物248

H-NMR 300MHz (DMSO): 2.377(s, 3H, 4-CH₃), 4.825(s, 2H, 7OCH₂),
6.208(s, 1H, 3-H), 6.997(m, 3H, 4', 6, 8-H),
7.306(t, 2H, 3', 5' -H), 7.593(d, 2H, 2', 6' -H),
7.711(d, 1H, 5-H), 10.144(s, CONH)

元素分析: C₁₈H₁₅NO₄

计算值: C69.89, H4.89, N4.53

测定值: C69.61, H4.891, N4.58

实施例43 4-甲基-7-(4'-羧基苯胺羧基亚甲氧基)-香豆素(252)

根据实施例化合物255的制备方法, 化合物252的制备, 不同点在于以p-氨基苯甲酸代替p-氨基苯甲酸乙酯进行反应, 得化合物252

H-NMR 300MHz (DMSO): 2.404(s, 3H, 4-CH₃), 4.899(s, 2H, 7-OCH₂),
6.235(s, 1H, 3-H), 7.036(s, 1H, 8-H), 7.073(d, 1H, 6-H),
7.713(d, 1H, 5-H), 7.739-7.924(q, 4H, Ar-H), 10.491(s, 1H, CONH)

元素分析: C₁₉H₁₅NO₆ · 1/4H₂O

计算值: C63.77, H4.37, N3.92

测定值: C63.76, H4.28, N4.24

实施例44 4-甲基-7-(4'-羟基苯胺羧基亚甲氧基)香豆素(249)

根据实施例化合物255的制备方法, 化合物249的制备, 不同点在于以p-氨基苯酚代替p-氨基苯甲酸乙酯进行反应, 得化合物249

H-NMR 300MHz (DMSO) : 2.084 (s, 3H, 4-CH₃), 4.781 (s, 2H, 7-OCH₂), 6.230 (s, 1H, 3-H), 6.705-7.390 (q, 4H, Ar-H), 7.014 (s, 1H, 8-H), 7.060 (d, 1H, 6-H), 7.723 (d, 1H, 5-H), 9.905 (s, 1H, CONH)

元素分析: C₁₈H₁₅NO₅

计算值: C66.45, H4.65, N4.31

测定值: C66.14, H4.62, N4.32

实施例45 4-甲基-7-(3'-羧基-4'-羟基苯胺羧基亚甲氧基)-香豆素(261)

根据实施例化合物255的制备方法, 化合物261的制备, 不同点在于以5-氨基水杨酸代替p-氨基苯甲酸乙酯进行反应, 得化合物261

H-NMR 300MHz (DMSO) : 2.495 (s, 3H, 4-CH₃), 4.818 (s, 2H, 7-OCH₂), 6.233 (s, 1H, 3-H), 6.940 (d, 1H, 6-H), 7.052 (s, 1H, 8-H), 7.077 (d, 1H, 5'-H), 7.705 (d, 1H, 6'-H), 7.739 (d, 1H, 5-H), 8.138 (s, 1H, 2'-H)

元素分析: C₁₉H₁₅NO₇

计算值: C61.79, H4.09, N3.79

测定值: C61.49, H3.96, N3.86

实施例46 4-甲基-7-(3'-三氟甲基苯胺羧基亚甲氧基)-香豆素(257).

根据实施例化合物255的制备方法, 化合物257的制备, 不同点在于以3-三氟甲基苯胺代替p-氨基苯甲酸乙酯进行反应, 得化合物257

H-NMR 300MHz (DMSO) : 2.389 (s, 3H, 4-CH₃), 4.872 (s, 2H, 7-OCH₂), 6.220 (s, 1H, 3-H), 7.027-7.075 (m, 2H, 6, 8-H), 7.429 (d, 1H, 6'-H), 7.567 (t, 1H, 5'-H), 7.719 (d, 1H, 5-H), 7.857 (d, 1H, 4'-H), 8.096 (s, 1H, 2'-H), 10.446 (s, 1H, CONH)

元素分析: C₁₉H₁₄F₃N₀₄

计算值: C60. 48, H3. 74, N3. 71

测定值: C60. 17, H3. 45, N3. 79

实施例47 4-甲基-7-(3'-三氟甲基-4'-硝基苯胺羧基亚甲氧基)-香豆素(258)

根据实施例化合物255的制备方法, 化合物258的制备, 不同点在于以3-三氟甲基-4-硝基苯胺代替p-氨基苯甲酸乙酯进行反应, 得化合物258

H-NMR 300MHz (DMSO) : 2. 409 (s, 3H, 4-CH₃), 4. 955 (s, 2H, 7-OCH₂), 6. 243 (s, 1H, 3-H), 7. 061 (s, 1H, 8-H), 7. 086 (d, 1H, 6-H), 7. 734 (d, 1H, 5' -H), 8. 127 (d, 1H, 6' -H), 8. 215 (d, 1H, 5-H), 8. 331 (s, 1H, 2' -H), 10. 945 (s, 1H, CONH)

元素分析: C₁₉H₁₃F₃N₂O₆ · 1/2H₂O

计算值: C52. 91, H3. 27, N6. 50

测定值: C53. 19, H3. 05, N6. 76

实施例48 4, 8-二甲基-7-(3'-三氟甲基苯胺羧基亚甲氧基)-香豆素(262)

根据实施例化合物255的制备方法, 化合物262的制备, 不同点在于以3-三氟甲基苯胺和4-甲基-7-羧基亚甲氧基-8-甲基香豆素进行反应, 得化合物262

H-NMR 300MHz (DMSO) : 2. 291 (s, 3H, 8-CH₃), 2. 392 (s, 3H, 4-CH₃), 4. 934 (s, 2H, 7-OCH₂), 6. 237 (s, 1H, 3-H), 7. 002 (d, 1H, 6-H), 7. 440 (d, 1H, 6' -H), 7. 564 (d, 1H, 5' -H), 7. 603 (d, 1H, 5-H), 7. 816 (d, 1H, 4' -H), 8. 103 (s, 1H, 2' -H), 10. 503 (s, 1H, CONH)

元素分析: C₂₀H₁₆F₃N₀₄

计算值: C61. 38, H4. 12, N3. 58

测定值: C61. 16, H4. 03, N3. 67

实施例49 4, 8-二甲基-7-(3' -羟基-4' -羧基苯胺羧基亚甲氧基)香豆素(264)

根据实施例化合物255的制备方法, 化合物264的制备, 不同点在于以4-氨基水杨酸和4-甲基-7-羧基亚甲氧基-8-甲基香豆素进行反应, 得化合物264

H-NMR 300MHz (DMSO): 2. 270(s, 3H, 8-CH₃), 2. 371(s, 3H, 4-CH₃), 4. 931(s, 2H, 7-OCH₂), 6. 215(s, 1H, 3-H), 6. 958(d, 1H, 6-H), 7. 087(d, 1H, 6' -H), 7. 337(s, 1H, 2' -H), 7. 546(d, 1H, 5' -H), 7. 717(d, 1H, 5-H), 10. 455(s, 1H, CONH)

元素分析: C₂₀H₁₇NO₇

计算值: C62. 66, H4. 47, N3. 65

测定值: C62. 43, H4. 43, N3. 88

实施例50 6-(4' -乙氧羧基苯胺羧基)香豆素(265)

将6-羧基香豆素95mg(0. 5mmol)和五氯化磷210mg(1mmol), 在50ml 甲苯回流1小时, 浓缩后, 加入83mg(0. 5mol) p-氨基苯甲酸乙酯和1ml 吡啶继续回流10分钟, 冷后以盐酸酸化得固体, 以乙醇精制得100mg 产物(265)。

H-NMR 300MHz (DMSO): 1. 31(t, 3H, 酯基-CH₃), 4. 28(q, 2H, 酯基-CH₂), 6. 59(d, 1H, 3-H), 7. 55(d, 1H, 8-H), 7. 92(d, 2H, Ar' -H), 7. 96(d, 2H, Ar' -H), 8. 16(m, 2H, 4, 7-H), 8. 34(d, 1H, 5-H), 10. 68(s, 1H, CONH)

元素分析: C₁₉H₁₅NO₅ · 1/2H₂O

计算值: C65. 80, H4. 65, N4. 04

测定值: C66. 07, H4. 59, N4. 06

化合物266按本法制备。

药理实验

实验例 1 本发明的化合物对TGF- β 诱导的水貂肺上皮细胞增殖的抑制作用

将水貂肺上皮细胞接种到24孔板，密度为 3×10^4 个细胞/孔，培养条件为37℃，5% CO₂，MEM培养基（含10%胎牛血清）。次日将培养基更换成含0.2%胎牛血清的MEM。24小时后，弃去培养基，加入含有10 pmol/L的TGF- β 1及受试化合物的新鲜培养基，温孵24小时。在温孵结束前2小时加入[³H]胸腺嘧啶。弃去培养基并用PBS洗涤细胞。用0.5mol/L NaOH溶液溶解细胞，测定其放射性。受试化合物对[³H]胸腺嘧啶掺入的抑制作用可反映其对细胞增殖的抑制作用。（结果列于表3）

表3 受试化合物对TGF- β 诱导的水貂肺上皮细胞增殖的抑制作用

实施例化合物编号(10 μg/ml)	26	92	73	7	2
对水貂肺上皮细胞增殖的抑制百分率(%)	70.7	95.0	15.1	67.1	27.1

实验例 2 本发明的化合物对TGF- β 1受体结合试验的拮抗作用

将Balb/c 3T3 细胞接种到24孔板，培养条件为37℃，5% CO₂，DMEM培养基（含10%胎牛血清）。培养2—4天后，在细胞接近融合时，将培养液换成结合缓冲液（50mmol/L HEPES中含有NaCl，KCl，MgSO₄和CaCl₂），加入50 pmol/L [¹²⁵I]TGF- β 1 激发试验，同时加入受试化合物。细胞培养210—240分钟后，弃去培养基，用冰冷的结合缓冲液洗涤细胞。测定10nmol/L TGF- β 1的非特异性结合。细胞溶解在Triton X-100 缓冲液中，测定放射性。（结果见表4）

表4. 本发明化合物对TGF- β 1受体结合的拮抗作用

实施例化合物 (10 μ g/ml)	抑制作用 (%)	IC ₅₀ (μ g/ml)	实施例化合物(10 μ g/ml)	抑制作用 (%)	IC ₅₀ (μ g/ml)
1	32.2		42	4.1	
2	74.1	13.8	49	15.5	
3	11.7		55	52.3	
6	-6.0		66	52.3	
7	94.2	7.8	67	16.2	
9	11.4		73	60.0	
12	5.1		79	16.2	
14	35.9		83	21.2	
21	10.1		87	91.1	
22	37.4		88	111.2	5.3
25	11.6		91	34.7	
26	95.4	8.5	92	106.4	
27	77.2		93	29.7	
31	29.2		96	82.3	
33	32.1		104	42.8	
34	36.4		206	-0.7	
37	41.4				

实验例3 本发明化合物对5/6大鼠肾切除致慢性肾衰的保护作用

参照《新药临床前研究指导原则》建立大鼠部分肾脏切除引起的慢性肾衰模型。

取体重200g左右的雄性Wistar大鼠，腹腔注射戊巴比妥钠35mg/kg，待麻醉后，手术摘除右肾，切除左肾上下极肾实质，止血，关闭腹腔，缝合。手术4周后检测大鼠血清尿素氮、肌酐、尿蛋白，放免法测定血管紧张素II(AII)水平，ELISA法测定TGF- β 1水平。随机分组并开始给药。每组30只鼠，设假手术组、模型对照组、

Benazepril (4mg/kg) 和 Losartan(10mg/kg) 阳性对照药组、受试药（实施例149）7.5mg/kg、15mg/kg和 30mg/kg 三个剂量组。均为灌胃给药，每日一次，每周6次，持续到手术后16周。每周称体重，观察大鼠生长状况；于术后8周（给药4周）、术后12周（给药8周）、术后16周（给药12周），各组分别测定上述指标，并处死部分动物，取肾脏做病理。

大鼠慢性肾衰模型肾脏病理损伤主要为肾小球硬化和间质纤维化，肾小球硬化按程度分为五级（0 - IV），0级为肾小球无任何变化，IV级为肾小球完全硬化，玻璃样变性。各组每例动物切片连续观察50个肾小球，分别按五个等级归类计算出每组动物各级肾小球病变百分比。

模型建立4周后血清BUN升高111.21%($p<0.01$)，尿蛋白升高86.13%($p<0.01$)，TGF- β 1水平增高70.48%($p<0.02$)，表明模型建立成功。

模型建立12周（给药8周）病理结果表明，实施例149化合物30mg/kg剂量组和Losartan 组残肾保留0 级以上肾小球多于模型组，有显著差异，($p<0.05$)，肾小球病变积分明显低于模型组。Benazepril组部分动物炎性细胞浸润比较严重，小管扩张严重多数有蛋白样物质沉淀。

模型建立16周（给药12周）病理结果表明，受试化合物(149)30mg/kg剂量组，III级病变小球明显少于模型组 ($p<0.01$)，阳性药Losartan 也小于对照组($p<0.05$)。阳性药Benazepril 组小球病变积分最高，肾间质炎性细胞浸润为中度偏重，纤维组织增生，小管扩张严重多数有蛋白样物质沉淀。

试验结果主要数据列于表5A-E。

表5. 本发明化合物对5/6大鼠肾切除致慢性肾衰的保护作用

A. 给药8周(术后12周)血清肌酐(Scr.)及尿素氮(BUN)变化

组别	剂量 (mg/kg)	Scr. (mg/dL)	变化率(%)	BUN (mg/dL)	变化率(%)
对照组	-	2.08 ± 0.742		13.00 ± 2.328	
模型组	-	3.06 ± 0.768	47.93 ↑	29.37 ± 3.079*	125.90 ↑
Benazepril 4		3.54 ± 1.140	15.36 ↑	37.66 ± 8.895	28.23 ↑
Losartan 10		2.34 ± 0.268*	23.46 ↓	25.64 ± 5.116	12.70 ↓
化合物149 7.5		2.14 ± 0.500*	30.26 ↓	22.35 ± 3.120*	23.89 ↓
化合物149 15		1.80 ± 0.550*	41.34 ↓	26.04 ± 4.234	11.33 ↓
化合物149 30		1.89 ± 0.184	38.20 ↓	30.54 ± 1.697	3.98 ↑

*: P<0.05, 与模型组相比较; #: P<0.05, 与对照组相比较; ↑: 表示增加; ↓: 表示降低

B. 给药8周(术后12周)血清TGF-β1、血管紧张素Ⅱ(AII)及尿蛋白(UP)变化

组别	剂量 (mg/ kg)	TGF-β1 (ng/ml)		AII (pg/ml)		UP (mg/day)	
		变化率(%)		变化率(%)		变化率(%)	
对照组	-	20.1 ± 6.2		154.5 ± 22.7	12.7	18.3 ± 2.5	
模型组	-	46.3 ± 14.74	130.5 ↑	94.5 ± 7.4#	73.4 ↑	40.7 ± 12.5	
Benazepril 4		40.9 ± 26.6	11.72 ↓	74.3 ± 13.2*	21.4 ↓	51.1 ± 23.6	25.8 ↑
Losartan 10		18.7 ± 9.2	59.6 ↓	96.7 ± 32.1	2.2 ↑	32.7 ± 10.3	19.6 ↓
化合物149 7.5		20.0 ± 6.7	56.8 ↓	63.9 ± 13.2*	32.4 ↓	30.1 ± 6.6	26.0 ↓
化合物149 15		18.6 ± 12.2	59.9 ↓	49.9 ± 21.3*	47.2 ↓	30.4 ± 6.2	25.3 ↓
化合物149 30		18.9 ± 0.1	59.2 ↓	41.0 ± 12.5*	56.6 ↓	34.3 ± 2.1	15.7 ↓

*: P<0.05, 与模型组相比较; #: P<0.05, 与对照组相比较;

↑: 表示增加; ↓: 表示降低。

C. 给药 12 周(术后 16 周)血清肌酐(Scr.)及尿素氮(BUN)变化

组别	剂量 (mg/kg)	Scr.(mg/dL) 变化率(%)	BUN(mg/dL) 变化率(%)
对照组	—	2.25±0.39	21.24±3.354
模型组	—	2.71±0.49 [#]	38.93±8.755 [#]
Benazepril	4	2.28±0.70	19.01 ↓
Losartan	10	2.21±0.48*	22.73 ↓
化合物149	7.5	2.73±0.78	0.75 ↑
化合物 149	15	2.63±0.38	37.32±5.467
化合物 149	30	2.10±0.71*	28.82 ↓
			36.60±5.422
			5.99 ↓

*: P<0.05, 与模型组相比较; #: P<0.05, 与对照组相比较; ↑: 表示增加; ↓: 表示降低

D. 给药 12 周(术后 16 周)血清TGF-β 1、血管紧张素Ⅱ(A II)及尿蛋白(UP)变化

组别	剂量 (mg/kg)	TGF- β 1(ng/ml) 变化率(%)	A II(pg/ml) 变化率(%)	UP(mg/day) 变化率(%)
对照组	—	18.2±8.9	30.0±37.6	16.5±17.3
模型组	—	12.8±7.9	61.7±24.3	105.7 ↑
Benazepril	4	12.8±14.8 0.57 ↑	47.8±12.0	22.6 ↓
Losartan	10	11.8±12.6 7.48 ↓	38.9±17.4*	37.2 ↓
化合物149	7.5	13.6±7.1 6.28 ↑	48.3±48.5	21.6 ↓
化合物 149	15	12.3±7.7 3.91 ↓	41.3±28.4	33.0 ↓
化合物 149	30	11.6±6.7 9.38 ↓	19.2±9.19*	68.6 ↓
			52.3±34.4	0.06 ↓
			48.2±31.6	11.1 ↓

*: P<0.05, 与模型组相比较; #: P<0.05, 与对照组相比较; ↑: 表示增加; ↓: 表示降低

E. 病理结果

给药 后周 数	组别	肾小球硬化分级					
		0 级	I 级	II 级	III 级	IV 级	总分
8 周	模型组	10.0±17.3	38.7±21.2	31.5±17.3	13.6±18.3	1.8±3.3	4.9±1.5
	Benazepril	12.2±19.0	29.6±23.9	28.1±18.1	19.6±24.4	5.9±11.2	5.5±2.6
	Losartan	54.4±29.2 ^{**}	31.9±20.0	13.7±14.0	1.1±3.3 ^{**}	0	2.8±1.0 ^{**}
	7.5mg/kg组	28.3±20.8	34.2±23.0	7.5±8.8 [*]	17.5±30.7	6.7±13.4	4.9±3.5
	15mg/kg组	37.5±29.3 ^{**}	27.5±16.3	18.8±9.9	13.3±20.7	2.9±8.2	3.9±1.7 [*]
	30mg/kg组	15.7±19.0	24.0±21.1	30.0±20.8	23.3±28.5	8.0±13.0	5.7±2.9
12 周	模型组	0	3.3±6.4	29.0±23.4	50.5±18.7	17.6±14.1	8.5±1.3
	Benazepril	0	0	19.1±27.1	46.2±15.6	34.8±29.9	9.8±1.4
	Losartan	0	10.0±2.9	45.7±17.7	41.9±25.6	2.8±4.8	7.2±1.3 [*]
	7.5mg/kg组	0	2.0±4.5	71.3±11.5 ^{**}	26.7±7.8 ^{**}	0	6.7±0.2 ^{**}
	15mg/kg组	0	8.1±14.1	38.1±27.4	46.2±26.1	9.1±12.6	7.7±1.7
	30mg/kg组	0	2.3±6.3	37.1±16.0	51.4±8.6	13.8±20.6	8.6±1.9

*: P<0.05, 与模型组相比较

以上结果表明, 受试化合物(149)在各项生化指标中, 均好于 Benazepril, 而与 Losartan 相当(略好)。此外, 病理结果显示受试化合物在给药三个月后, 各剂量组对主要脏器如心、肝、脾和肺均无明显影响。

实验例 4 本发明化合物对大鼠单侧输尿管结扎所致肾间质纤维化的抑制作用

取雄性Wistar大鼠, 180—230g, 腹腔注射戊巴比妥钠35mg/kg, 待麻醉后在下腹正中略偏左侧切口, 近膀胱端行左侧输尿管结扎术。设假手术组、模型对照组、Benazepril (4mg/kg) 和 Losartan (10mg/kg) 阳性对照药组、受试药(实施例149) 5mg/kg、10mg/kg 和 20mg/kg 三个剂量组。于手术前2天开始灌胃给药, 每日一次, 每周6次, 持续给药至术后2周。于手术后14天(给药后16天) 测定肌酐和尿素氮等, 结果列于表6。模型组手术9天血清尿素氮

(BUN) 增加78.70%($p<0.01$)，肌酐(Scr.)增加20.73%($p<0.05$)，说明模型建立成功。

表6 本发明化合物对大鼠单侧输尿管结扎所致肾间质纤维化的抑制作用

组别	剂量 (mg/kg)	Scr.(mg/dL) (%)	变化率	BUN(mg/dL)	变化率(%)
对照组	—	1.45±0.44		16.23±2.70	
模型组	—	2.20±0.14 [#]	51.58↑	27.54±3.32 [#]	69.73↑
Benazepril	4	1.92±0.29	12.50↓	20.99±1.58*	23.78↓
Losartan	10	2.15±0.51	2.31↓	23.88±2.94	13.30↓
化合物149	7.5	1.58±0.49*	28.24↓	23.71±4.17	13.92↓
化合物149	15	1.61±0.36*	26.50↓	20.76±1.56*	24.61↓
化合物149	30	1.60±0.14*	27.27↓	20.77±2.04*	24.58↓

*: $P<0.05$, 与模型组相比较; #: $P<0.05$, 与对照组相比较; ↑: 表示增加; ↓: 表示降低

本试验中, 受试化合物149在各项生化指标中, 均好于Losartan, 而与Benazepril相当(略好)。但病理结果有所不同, Benazepril组炎性细胞浸润更明显, 4/7动物肾髓质小脓肿形成, 大量的坏死细胞, 炎性细胞和脓细胞堆积。Losartan组间质炎性细胞浸润和纤维增生明显减轻, 小球囊增厚不明显。给药组, 特别是大剂量组动物间质炎性细胞浸润和纤维增生明显减轻, 小球病变比较轻。因此在病理方面, 好于Benazepril, 与Losartan相当。

实验例5 本发明化合物对小鼠的初步急性毒性试验

灌胃给予小鼠受试化合物(149) 5g/kg和10g/kg两个剂量, 未见小鼠异常, 给药后48小时称体重, 给5g/kg、10g/kg小鼠体重无变化, 给药后14天, 5g/kg的小鼠平均体重增加7g; 10g/kg的小鼠体重增加5g, 其余未见异常, 未出现动物死亡。

实验例 6 本发明化合物的微生物回复突变试验 (Ames试验)

采用组氨酸缺陷型鼠伤寒沙门氏菌TA97, TA98, TA100, TA102菌株。药物浓度为0.5, 5, 50, 500, 5000 $\mu\text{g}/\text{皿}$. S9系苯巴比妥诱导的体重200g的大鼠肝匀浆微粒体组分。受试化合物(149)在加或不加S9平行条件下进行测试。

参照Ames(1983)修订的鼠伤寒沙门氏菌哺乳动物微粒体酶致突变试验方法, 对受试化合物(149)进行代谢活化和非代谢活化的平板掺入检测。将鉴定合格的液氮保存菌液接种到培养基中, 37℃震荡培养15小时。取上述菌液0.1ml, 加入不同浓度的受试药液100 μl 再加入S9混合液或磷酸缓冲液0.5ml, 37℃水浴培养20分钟。然后加入顶层琼脂2ml混匀倒入铺有底层琼脂的平皿中, 37℃培养48小时后, 计数每皿菌落数。

本试验剂量下受试化合物(149)对各菌株的回复突变菌落数均未诱发升高, 说明受试化合物的Ames试验结果为阴性, 无致突变作用。

权利要求

1. 一种如通式(I)所示的化合物

其特征在于，

R_3 选自H, 羧基, 酯基, $5'$ -(苯基噁二唑基- $2'$), $5'$ -(吡啶基- $4'$ -噁二唑基- $2'$), , $CONHR_9$, 其中 R_9 选自 C_2-C_8 脂肪酸, 苯甲酰氨基, 异烟酰氨基, 未取代、单取代或多取代的苯基, 苯环上的取代基可以为OH, C_1-C_8 烷氧基, CF_3 , 羧基, 酯基, OCH_2CO_2H , NO_2 , 卤素, SO_3H , SO_2NHR_{11} , 其中 R_{11} 选自H, 胍基, $2''$ -噻唑基, $3''$ -($5''$ -甲基异噁唑基), $2''$ -嘧啶基, $2''$ -($4''$, $6''$ -二甲基嘧啶基), $4''$ -($5''$, $6''$ -二甲氧基嘧啶基);

R_4 选自H, $CONHR_{10}$, R_{10} 选自 C_2-C_8 脂肪酸, 苯甲酰氨基, 异烟酰氨基, 未取代、单取代或多取代的苯基, 苯环上的取代基可以为OH, C_1-C_8 烷氧基, CF_3 , 羧基, 酯基, OCH_2CO_2H , NO_2 , 卤素, SO_3H , SO_2NHR_{12} , 其中 R_{12} 为胍基, $2''$ -噻唑基, $3''$ -($5''$ -甲基异

噁唑基), 2”-嘧啶基, 2”-(4”, 6”-二甲基嘧啶基), 4”-(5”, 6”-二甲氧基嘧啶基);

R₅选自H, C₁-C₄的烷基;

R₆选自H, C₁-C₁₂的烷基, 卤素, NO₂, CONHR₁₃, 其中R₁₃选自取代苯基;

R₇选自H, OH, C₁-C₄烷基, 烷氨基, 羧基烷氨基, OCH₂CONHR₁₄, 其中R₁₄为未取代、单取代、多取代苯基, 苯环上的取代基可以是OH, OCH₃, CF₃, CO₂H, CO₂C₂H₅, NO₂;

R₈选自H, C₁-C₄烷基, C₁-C₄烷氨基, NO₂;

2. 根据权利要求1所述的化合物, 其特征在于,

R₃选自H, COOH, CO₂C₂H₅, 5’-(苯基噁二唑基-2’), 5’-(吡啶基-4”-噁二唑基-2’), , CONHR₉, 其中R₉为n-丁酸基, O-, m-, p-苯酚基, O-, m-, p-苯甲酸基, O-, m-, p-苯甲酸酯基, 甲氧苯基, 3’-水杨酸基, 4’-水杨酸基, m-CF₃-苯基, 3’-CF₃-4’-NO₂-苯基, 2’-COOH-4’-I苯基, 异烟酰氨基, 苯甲酰氨基, 3’-羧基亚甲氧基苯基, 4-氯磺酰苯基, 4-胍磺酰苯基, 4-(2’-噻唑基磺酰)苯基, 4’-(5’-甲基异噁唑-3’-氨基磺酰)苯基, 4-嘧啶氨基磺酰苯基, 4-(4”, 6”-二甲基嘧啶氨基磺酰)苯基, 4’-(5”, 6”-二甲氧基嘧啶)氨基磺酰苯基;

R₄选自H, CONHR₁₀, R₁₀为H, 4-COOH-苯基, 4-CO₂C₂H₅-苯基, 3-CF₃-苯基;

R₅选自H, CH₃;

R₆选自H, C₂H₅, n-C₆H₁₃, NO₂, NH₂, Cl, Br, CONHR₁₃, 其中R₁₃为4-苯甲酸和4-苯甲酸乙酯;

R_7 选自H, OH, CH_3 , OCH_3 , OCH_2CONHR_{14} , 其中 R_{14} 为苯基, O^- , m^- , p-羟基苯基, O^- , m^- , p-羧基苯基, 4' -乙氧羰基苯基, 3' -乙氧羰基苯基, 3' -三氟甲基苯基, 3' -三氟甲基, 4' -硝基, 苯基, 4' -甲氧苯基, 4' -水杨酸基, 3' -水杨酸基;
 R_8 选自H, CH_3 , OCH_3 , NO_2 ;

3. 根据权利要求1所述的化合物, 其特征在于, 如通式(Ia)所示

其中, R_4 、 R_5 、 R_6 、 R_7 、 R_8 的定义同权利要求1相同,

4. 根据权利要求1所述的化合物, 其特征在于, 如通式(Ib)所示

其中 R_4 、 R_5 、 R_6 、 R_7 、 R_8 的定义同权利要求1相同;

R' ₂选自H, OH, COOH;

R' ₃选自H, OH, COOH, CF₃, OCH₂COOH;

R' ₄选自H, OH, COOH, COOEt, I, NO₂, OCH₃, SO₃H,
SO₂NH₂, SONH(C=NH)NH₂,

R' ₅, R' ₆为H。

5. 权利要求2所述的化合物，其特征在于所述的化合物，选自以下化合物的群组之一，其中，

$R_3=p$ -COOH-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=m$ -COOH-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=o$ -COOH-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=o$ -OH-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=m$ -OH-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=p$ -OH-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=m$ -OH-p-COOH-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=m$ -COOH-p-OH-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=o$ -COOH-p-I-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=4$ -乙氧羰基苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=m$ -CF₃-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=m$ -CF₃-4-NO₂-苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=4$ -氨基磺酰基苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=4$ -胍磺酰基苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=4$ -(2'-噻唑)胺磺酰基苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=4$ -(2'-嘧啶)胺磺酰基苯胺羧基, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;

$R_3=4-(4', 6'-\text{二甲基嘧啶}-2')\text{胺磺酰基苯胺羧基}$, $R_4=R_5=R_6=R_8=H$,
 $R_7=OCH_3$;
 $R_3=4-(5', 6'-\text{二甲氧基嘧啶}-4')\text{胺磺酰基苯胺羧基}$, $R_4=R_5=R_6=H$,
 $R_7=OCH_3$;
 $R_3=4-(5'-CH_3-\text{异噁唑}-3')\text{胺磺酰基苯胺羧基}$, $R_4=R_5=R_6=R_8=H$,
 $R_7=OCH_3$;
 $R_3=p-OCH_3-\text{苯胺羧基}$, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;
 $R_3=p-\text{磷酸基苯胺羧基}$, $R_4=R_5=R_6=R_8=H$, $R_7=OCH_3$;
 $R_3=p-COOH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=m-COOH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=o-COOH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=p-OH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=m-OH-p-CO_2H\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=m-CO_2H-p-OH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=4-\text{乙氧羰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=m-CF_3-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=m-CF_3-4-NO_2-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=4-\text{胺磺酰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=4-\text{脲磺酰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=4-(2'-\text{噻唑})\text{胺磺酰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=4-(2'-\text{嘧啶})\text{胺磺酰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=4-(4', 6'-\text{二甲基嘧啶}-2')\text{胺磺酰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=C_2H_5$, $R_7=OCH_3$;
 $R_3=4-(5', 6'-\text{二甲氧基嘧啶}-4')\text{胺磺酰基苯胺羧基}$, $R_4=R_5=R_8=H$,
 $R_6=C_2H_5$, $R_7=OCH_3$;

$R_3 = (5' - \text{CH}_3 - \text{异噁唑}-3') - 4\text{-胺磷酰基苯胺羧基}$, $R_4 = R_5 = R_8 = \text{H}$, $R_6 = \text{C}_2\text{H}_5$, $R_7 = \text{OCH}_3$;
 $R_3 = p\text{-OCH}_3\text{-苯胺羧基}$, $R_4 = R_5 = R_8 = \text{H}$, $R_6 = \text{C}_2\text{H}_5$, $R_7 = \text{OCH}_3$;
 $R_3 = p\text{-磷酸基苯胺羧基}$, $R_4 = R_5 = R_8 = \text{H}$, $R_6 = \text{C}_2\text{H}_5$, $R_7 = \text{OCH}_3$;
 $R_3 = p\text{-COOH-苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = m\text{-COOH-苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = o\text{-COOH-苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = m\text{-OH-p-COOH-苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = m\text{-COOH-p-OH-苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = o\text{-COOH-p-I-苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = p\text{-乙氧基苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = m\text{-CF}_3\text{-苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = m\text{-CF}_3\text{-4-NO}_2\text{-苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = 4'\text{-胺磷酰基苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = 4'\text{-脲磷酰基苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = 4'\text{-(2''-噻唑)胺磷酰基苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = 4'\text{-(2''-嘧啶)胺磷酰基苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = 4'\text{-(4'',6''-二甲基嘧啶-2')胺磷酰基苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = 4'\text{-(5'',6''-二甲氧基嘧啶-4')胺磷酰基苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = (5' - \text{CH}_3 - \text{异噁唑}-3') - 4\text{-氯磷酰基苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = p\text{-OCH}_3\text{-苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = p\text{-磷酸基苯胺羧基}$, $R_4 = R_5 = R_6 = \text{H}$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;

$R_3 = p\text{-COOH-苯胺羧基}$, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;
 $R_3 = m\text{-OH-p-COOH-苯胺羧基}$, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;
 $R_3 = m\text{-COOH-p-OH-苯胺羧基}$, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;
 $R_3 = p\text{-乙氧羰基苯胺羧基}$, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;
 $R_3 = m\text{-CF}_3\text{-苯胺羧基}$, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;
 $R_3 = m\text{-CF}_3\text{-p-NO}_2\text{-苯胺羧基}$, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;
 $R_3 = m\text{-羧基亚甲氧基苯胺羧基}$, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;
 $R_3 = 4'\text{-胺磺酰基苯胺羧基}$, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;
 $R_3 = 4'\text{-胍磺酰基苯胺羧基}$, $R_4=R_5=R_6=H$, $R_7=R_8=OCH_3$;
 $R_3 = p\text{-COOH-苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = m\text{-COOH-苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = o\text{-COOH-苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = o\text{-OH-苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = m\text{-OH-苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = p\text{-OH-苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = m\text{-OH-p-COOH-苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = m\text{-COOH-p-OH-苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = p\text{-乙氧羰基苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = m\text{-CF}_3\text{-苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = m\text{-CF}_3\text{-p-NO}_2\text{-苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = 4'\text{-胺磺酰基苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = 4'\text{-胍磺酰基苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = 4'\text{-(2''-噻唑)胺磺酰基苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = 4'\text{-(2''-嘧啶)胺磺酰基苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3 = 4'\text{-(4'',6''-二甲基嘧啶-2')胺磺酰基苯胺羧基}$, $R_4=R_6=R_8=H$,
 $R_5=CH_3$, $R_7=OCH_3$;

$R_3=4'-(5',6'-\text{二甲氧基嘧啶}-4')$ 胺磺酰基苯胺羧基, $R_4=R_6=$
 $R_8=H$,
 $R_5=CH_3$, $R_7=OCH_3$;
 $R_3=4'-(5'-CH_3-\text{异噁唑}-3')$ 氨磺酰基苯胺羧基, $R_4=R_6=$ $R_8=H$,
 $R_5=CH_3$, $R_7=OCH_3$;
 $R_3=p-OCH_3-\text{苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=CH_3$, $R_7=OCH_3$;
 $R_3=p-COOH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Cl$, $R_7=OCH_3$;
 $R_3=m-OH-p-COOH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Cl$, $R_7=OCH_3$;
 $R_3=m-COOH-p-OH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Cl$, $R_7=OCH_3$;
 $R_3=p-\text{乙氧羰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Cl$, $R_7=OCH_3$;
 $R_3=m-CF_3-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Cl$, $R_7=OCH_3$;
 $R_3=4-\text{胺磺酰基苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=Cl$, $R_7=OCH_3$;
 $R_3=4-\text{胍磺酰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Cl$, $R_7=OCH_3$;
 $R_3=4-(5',6'-\text{二甲氧基嘧啶}-4')$ 胺磺酰基苯胺羧基, $R_4=R_6=$
 $R_8=H$,
 $R_6=Cl$, $R_7=OCH_3$;
 $R_3=p-COOH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Br$, $R_7=OCH_3$;
 $R_3=o-COOH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Br$, $R_7=OCH_3$;
 $R_3=m-OH-p-COOH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Br$, $R_7=OCH_3$;
 $R_3=o-COOH-p-I\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Br$, $R_7=OCH_3$;
 $R_3=p-\text{乙氧羰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Br$, $R_7=OCH_3$;
 $R_3=m-CF_3-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Br$, $R_7=OCH_3$;
 $R_3=4-\text{胺磺酰基苯胺羧基}$, $R_4=R_6=R_8=H$, $R_5=Br$, $R_7=OCH_3$;
 $R_3=p-OCH_3-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Br$, $R_7=OCH_3$;
 $R_3=p-COOH-\text{苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=n-Hex$, $R_7=OCH_3$;
 $R_3=o-COOH-\text{苯氨基羧基}$, $R_4=R_5=R_8=H$, $R_6=n-Hex$, $R_7=OCH_3$;

$R_3 = m\text{-OH-p-COOH-苯胺羧基}$, $R_4=R_5=R_8=H$, $R=Hex$, $R_7=OCH_3$;
 $R_3=o\text{-COOH-p-I-苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=n\text{-Hex}$, $R_7=OCH_3$;
 $R_3=p\text{-乙氧羰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Hex$, $R_7=OCH_3$;
 $R_3=m\text{-CF}_3\text{-苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Hex$, $R_7=OCH_3$;
 $R_3=4\text{-胺磺酰基苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Hex$, $R_7=OCH_3$;
 $R_3=p\text{-OCH}_3\text{-苯胺羧基}$, $R_4=R_5=R_8=H$, $R_6=Hex$, $R_7=OCH_3$;
 $R_3=p\text{-COOH-苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=m\text{-COOH-苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=p\text{-OCH}_3\text{-苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=m\text{-OH-苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=o\text{-OH-苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=p\text{-乙氧羰基苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=m\text{-OH-p-COOH-苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=m\text{-COOH-p-OH苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=m\text{-CF}_3\text{-苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=m\text{-CF}_3\text{-p-NO}_2\text{-苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=4\text{-胺磺酰基苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=4\text{-胍基磺酰基苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=4\text{-(2'-噻唑)胺磺酰基苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=4\text{-(5',6'-二甲氧基噻啶-4')胺磺酰基苯胺羧基}$, $R_4=R_5=H$,
 $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=4\text{-(2'-噻唑)胺磺酰基苯胺羧基}$, $R_4=R_5=H$, $R_6=NO_2$, $R_7=R_8=OCH_3$;
 $R_3=p\text{-COOH-苯胺羧基}$, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;
 $R_3=p\text{-OCH}_3\text{-苯胺羧基}$, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;
 $R_3=m\text{-OH-苯胺羧基}$, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;
 $R_3=o\text{-OH-苯胺羧基}$, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;

$R_3=p$ -乙氧羰基苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;
 $R_3=m$ -OH-p-COOH-苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;
 $R_3=m$ -COOH-p-OH-苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;
 $R_3=m$ -CF₃-苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;
 $R_3=4$ -胺磺酰基-苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;
 $R_3=4$ -胍磺酰基-苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;
 $R_3=4-(2'$ -噻唑)胺磺酰基-苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$,
 $R_8=NO_2$;
 $R_3=p$ -COOH-苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OCH_3$, $R_8=NO_2$;
 $R_3=p$ -OH-苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OCH_3$, $R_8=NO_2$;
 $R_3=p$ -OCH₃-苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OCH_3$, $R_8=NO_2$;
 $R_3=p$ -乙氧羰基苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OH$, $R_8=NO_2$;
 $R_3=4$ -胍磺酰基-苯胺羧基, $R_4=R_5=H$, $R_6=C_2H_5$, $R_7=OCH_3$, $R_8=NO_2$;
 $R_3=p$ -COOH-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$;
 $R_3=o$ -COOH-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$;
 $R_3=p$ -OH-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$;
 $R_3=m$ -OH-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$;
 $R_3=o$ -OH-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$;
 $R_3=p$ -OCH₃-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$;
 $R_3=p$ -乙氧羰基苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$;
 $R_3=m$ -OH-p-COOH-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$;
 $R_3=m$ -COOH-p-OH-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$
 $R_3=m$ -CF₃-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$
 $R_3=m$ -CF₃-p-NO₂-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$
 $R_3=4$ -胺磺酰基-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$;
 $R_3=4$ -胍基磺酰基-苯胺羧基, $R_4=R_5=H$, $R_6=NO_2$, $R_7=OH$, $R_8=CH_3$;

$R_3=4-(2'-\text{嘧啶})\text{胺磺酰基}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OH}$,
 $R_8=\text{CH}_3$;

$R_3=4-(5',6'-\text{二甲氧基嘧啶}-4')\text{胺磺酰基苯胺羧基}$, $R_4=R_5=\text{H}$,
 $R_6=\text{NO}_2$, $R_7=\text{OH}$, $R_8=\text{CH}_3$;

$R_3=4-(2'-\text{噻唑})\text{胺磺酰基}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OH}$,
 $R_8=\text{CH}_3$;

$R_3=o-\text{COOH}-p-\text{I}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OH}$, $R_8=\text{CH}_3$;

$R_3=p-\text{COOH}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=m-\text{COOH}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=o-\text{COOH}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=p-\text{OH}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=m-\text{OH}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=o-\text{OH}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=p-\text{OCH}_3-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=p-\text{乙氧羰基苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=m-\text{OH}, p-\text{COOH}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=m-\text{CF}_3-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=m-\text{CF}_3-\text{NO}_2-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=4-\text{胍基磺酰基}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=4-\text{胺磺酰基}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=4-(5',6'-\text{二甲氧基嘧啶}-4')\text{胺磺酰基苯胺羧基}$, $R_4=R_5=\text{H}$,
 $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$, $R_8=\text{CH}_3$;

$R_3=4-(2'-\text{噻唑})\text{胺磺酰基}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$,
 $R_8=\text{CH}_3$;

$R_3=4-(2'-\text{嘧啶})\text{胺磺酰基}-\text{苯胺羧基}$, $R_4=R_5=\text{H}$, $R_6=\text{NO}_2$, $R_7=\text{OCH}_3$,
 $R_8=\text{CH}_3$;

$R_3=p\text{-COOH-苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=p\text{-OH-苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=m\text{-OH-苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=o\text{-OH-苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=p\text{-OCH}_3\text{-苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=\text{乙氧羰基苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=CF_3\text{-苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=4\text{-胺磺酰基苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=4\text{-胍磺酰基苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=4\text{-}(2'\text{-嘧啶)胺磺酰基苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=4\text{-}(5',6'\text{-二甲氧基嘧啶-4')胺磺酰基苯胺羧基}$, $R_4=R_5=H$,
 $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=4\text{-}(2'\text{-噻唑)胺磺酰基苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=o\text{-COOH-苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OH$;
 $R_3=p\text{-OH-苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OCH_3$;
 $R_3=\text{乙氧羰基苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OCH_3$;
 $R_3=p\text{-OCH}_3\text{-苯胺羧基}$, $R_4=R_5=H$, $R_6=R_8=NO_2$, $R_7=OCH_3$;
 $R_3=p\text{-OCH}_3\text{-苯胺羧基}$, $R_4=R_5=H$, $R_6=Cl$, $R_7=OH$, $R_8=NO_2$;
 $R_3=4\text{-胍磺酰基苯胺羧基}$, $R_4=R_5=H$, $R_6=Cl$, $R_7=OH$, $R_8=NO_2$;
 $R_3=m\text{-OH-pCOOH-苯胺羧基}$, $R_4=H$, $R_5=CH_3$, $R_7=OH$, $R_6=Cl$, $R_8=NO_2$;
 $R_3=p\text{-COOH-苯胺羧基}$, $R_4=H$, $R_5=CH_3$, $R_7=OH$, $R_6=R_8=NO_2$;
 $R_3=m\text{-COOH-苯胺羧基}$, $R_4=H$, $R_5=CH_3$, $R_7=OH$, $R_6=R_8=NO_2$;
 $R_3=o\text{-COOH-苯胺羧基}$, $R_4=H$, $R_5=CH_3$, $R_7=OH$, $R_6=R_8=NO_2$;
 $R_3=p\text{-OCH}_3\text{-苯胺羧基}$, $R_4=H$, $R_5=CH_3$, $R_7=OH$, $R_6=R_8=NO_2$;
 $R_3=p\text{-乙氧羰基苯胺羧基}$, $R_4=H$, $R_5=CH_3$, $R_7=OH$, $R_6=R_8=NO_2$;
 $R_3=p\text{-胺磺酰基苯胺羧基}$, $R_4=H$, $R_5=CH_3$, $R_7=OH$, $R_6=R_8=NO_2$;

$R_3 = p\text{-}(\text{氨基})\text{磺酰基苯胺} \text{羧基}$, $R_4=\text{H}$, $R_5=\text{CH}_3$, $R_7=\text{OH}$, $R_6=R_8=\text{NO}_2$;
 $R_3 = 4-(2'\text{-嘧啶})\text{氨基磺酰基苯胺} \text{羧基}$, $R_4=\text{H}$, $R_5=\text{CH}_3$, $R_7=\text{OH}$,
 $R_6=R_8=\text{NO}_2$;
 $R_3 = 4-(2'\text{-噻唑})\text{氨基磺酰基苯胺} \text{羧基}$, $R_4=\text{H}$, $R_5=\text{CH}_3$, $R_7=\text{OH}$,
 $R_6=R_8=\text{NO}_2$;
 $R_3 = 4-(4',6'\text{-二甲基嘧啶}-2')\text{磺酰基苯胺} \text{羧基}$, $R_4=\text{H}$, $R_5=\text{CH}_3$,
 $R_7=\text{OH}$, $R_6=R_8=\text{NO}_2$;
 $R_3 = \text{CONH}(\text{CH}_2)_3\text{COOH}$, $R_4=R_5=R_6=R_8=\text{H}$, $R_7=\text{OCH}_3$;

 $R_4=R_5=R_6=R_8=\text{H}$, $R_7=\text{OCH}_3$;

 $R_4=R_5=R_6=R_8=\text{H}$, $R_7=\text{OCH}_3$;

 $R_4=R_5=R_6=R_8=\text{H}$, $R_7=\text{OCH}_3$;
 $R_3 = \text{CONH}(\text{CH}_2)_3\text{COOH}$, $R_4=R_5=R_8=\text{H}$, $R_6=\text{C}_2\text{H}_5$, $R_7=\text{OCH}_3$;

 $R_4=R_5=R_8=\text{H}$, $R_6=\text{C}_2\text{H}_5$, $R_7=\text{OCH}_3$;

 $R_4=R_5=R_8=\text{H}$, $R_6=\text{C}_2\text{H}_5$, $R_7=\text{OCH}_3$;

 $R_4=R_6=R_8=\text{H}$, $R_5=\text{CH}_3$, $R_7=\text{OCH}_3$;

 $R_4=R_6=R_8=\text{H}$, $R_5=\text{CH}_3$, $R_7=\text{OCH}_3$;

 $R_4=R_6=R_8=\text{H}$, $R_5=\text{CH}_3$, $R_7=\text{OCH}_3$;

 $R_4=R_6=R_8=\text{H}$, $R_7=\text{OCH}_3$, $R_5=\text{CH}_3$;

 $R_4=R_6=R_8=\text{H}$, $R_7=\text{OCH}_3$, $R_5=\text{CH}_3$;

 $R_4=R_6=R_8=\text{H}$, $R_7=\text{OCH}_3$, $R_5=\text{CH}_3$;

 $R_4=R_6=R_8=\text{H}$, $R_7=\text{OCH}_3$, $R_5=\text{Br}$, $R_6=\text{OCH}_3$;

 $R_4=R_5=R_8=\text{H}$, $R_6=\text{Br}$, $R_7=\text{OCH}_3$;

 $R_4=R_5=R_8=\text{H}$, $R_6=\text{Br}$, $R_7=\text{OCH}_3$;

$R_3 = \text{CONHNHCO} - \text{C}_6\text{H}_4 -$ (benzene ring), $R_4 = R_5 = R_8 = \text{H}$, $R_6 = \text{Hex}$, $R_7 = \text{OCH}_3$;

 $R_3 =$ (Chemical structure of a substituted benzene ring with a CONHNHCO group at position 1 and a CH2 group at position 4), $R_4 = R_5 = R_8 = \text{H}$, $R_6 = \text{Hex}$, $R_7 = \text{OCH}_3$;

 $R_3 =$ (Chemical structure of a substituted benzene ring with a CONHNHCO group at position 1 and a CH2 group at position 4), $R_4 = R_5 = R_8 = \text{H}$, $R_6 = \text{Hex}$, $R_7 = \text{OCH}_3$;

 $R_3 = \text{CONHNHCO} - \text{C}_6\text{H}_4 -$ (benzene ring), $R_4 = R_5 = \text{H}$, $R_6 = \text{NO}_2$, $R_7 = \text{OH}$, $R_8 = \text{CH}_3$;

 $R_3 = \text{CONHNHCO} - \text{C}_6\text{H}_4 -$ (benzene ring), $R_4 = R_5 = \text{H}$, $R_6 = \text{NO}_2$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;

 $R_3 = \text{CONHNHCO} - \text{C}_6\text{H}_4 -$ (benzene ring), $R_4 = R_5 = \text{H}$, $R_6 = \text{NO}_2$, $R_7 = R_8 = \text{OCH}_3$;

 $R_3 = \text{CONHNHCO} - \text{C}_6\text{H}_4 -$ (benzene ring), $R_4 = R_5 = \text{H}$, $R_6 = \text{NO}_2$, $R_7 = R_8 = \text{OCH}_3$;
 $R_3 = \text{CO}_2\text{C}_2\text{H}_5$, $R_4 = R_5 = \text{H}$, $R_6 = \text{NO}_2$, $R_7 = R_8 = \text{OCH}_3$;
 $R_3 = \text{CO}_2\text{H}$, $R_4 = R_5 = \text{H}$, $R_6 = \text{NO}_2$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = \text{CO}_2\text{H}$, $R_4 = R_5 = \text{H}$, $R_6 = \text{NO}_2$, $R_7 = \text{OH}$, $R_8 = \text{CH}_3$;
 $R_3 = \text{CO}_2\text{C}_2\text{H}_5$, $R_4 = R_5 = \text{H}$, $R_6 = \text{NH}_2$, $R_7 = \text{OH}$, $R_8 = \text{CH}_3$;
 $R_3 = \text{CO}_2\text{H}$, $R_4 = R_5 = \text{H}$, $R_6 = \text{NO}_2$, $R_7 = \text{OCH}_3$, $R_8 = \text{CH}_3$;
 $R_3 = \text{CO}_2\text{C}_2\text{H}_5$, $R_4 = R_5 = \text{H}$, $R_6 = \text{C}_2\text{H}_5$, $R_7 = \text{OH}$, $R_8 = \text{NO}_2$;
 $R_3 = \text{CO}_2\text{H}$, $R_4 = R_5 = \text{H}$, $R_6 = \text{C}_2\text{H}_5$, $R_7 = \text{OH}$, $R_8 = \text{NO}_2$;
 $R_3 = \text{CO}_2\text{C}_2\text{H}_5$, $R_4 = R_5 = \text{H}$, $R_6 = \text{C}_2\text{H}_5$, $R_7 = \text{OCH}_3$, $R_8 = \text{NO}_2$;
 $R_3 = \text{CO}_2\text{H}$, $R_4 = R_5 = \text{H}$, $R_6 = \text{C}_2\text{H}_5$, $R_7 = \text{OCH}_3$, $R_8 = \text{NO}_2$;
 $R_3 = \text{CO}_2\text{C}_2\text{H}_5$, $R_4 = R_5 = \text{H}$, $R_6 = \text{R}_8 = \text{NO}_2$, $R_7 = \text{OH}$;
 $R_3 = \text{CO}_2\text{H}$, $R_4 = R_5 = \text{H}$, $R_6 = \text{R}_8 = \text{NO}_2$, $R_7 = \text{OH}$;
 $R_3 = \text{CO}_2\text{C}_2\text{H}_5$, $R_4 = R_5 = \text{H}$, $R_6 = \text{R}_8 = \text{NO}_2$, $R_7 = \text{OCH}_3$;
 $R_3 = \text{CO}_2\text{H}$, $R_4 = R_5 = \text{H}$, $R_6 = \text{R}_8 = \text{NO}_2$, $R_7 = \text{OCH}_3$;
 $R_3 = \text{CO}_2\text{C}_2\text{H}_5$, $R_4 = R_5 = \text{H}$, $R_6 = \text{Cl}$, $R_7 = \text{OH}$, $R_8 = \text{NO}_2$;
 $R_3 = \text{CO}_2\text{H}$, $R_4 = R_5 = \text{H}$, $R_6 = \text{Cl}$, $R_7 = \text{OH}$, $R_8 = \text{NO}_2$;
 $R_3 = \text{CO}_2\text{H}$, $R_4 = \text{H}$, $R_5 = \text{CH}_3$, $R_6 = R_8 = \text{NO}_2$, $R_7 = \text{OH}$;
 $R_3 = \text{CO}_2\text{C}_2\text{H}_5$, $R_4 = \text{H}$, $R_5 = \text{CH}_3$, $R_6 = R_8 = \text{NO}_2$, $R_7 = \text{OH}$;

6. 根据权利要求 1 所述的化合物，其特征在于，该化合物还包括其药用盐、盐的水合物、酯或前体药物。

7. 制备如权利要求 1-6 所述的化合物的方法，其特征在于，用取代的 3-羧基香豆素、取代的 4-羧基的香豆素，取代的 6-羧基香豆素或者取代的 7-羧基亚甲氧基香豆素与相应的取代胺类或肼类化合物缩合。

8. 制备如权利要求 7 所述的化合物的方法，其特征在于，用取代的 3-羧基香豆素、取代的 4-羧基的香豆素，取代的 6-羧基香豆素或者取代的 7-羧基香豆素与相应的取代肼类化合物缩合后，形成的酰肼经一步环和形成杂环衍生物。

9. 根据权利要求 7 和 8 中任一制备方法，其特征在于，所述的酰氯化反应所用的反应试剂包括三氯化磷、三氯氧磷、五氯化磷、二氯亚砜、1, 3-二环己基亚胺(DCC)、二吡啶碳酸酯(2-DPC)、1, 3-二异丙基碳酰亚胺(DIPC)、1-(3-二甲胺丙基)-3-乙基碳酰亚胺(EDCI)；所用的催化剂包括三级胺、吡啶、4-二甲氨基吡啶和4-吡咯烷基吡啶；所用的有机溶剂包括二甲基亚砜(DMSO)、甲苯、二氯甲烷、乙二醇二甲醚，1, 2-二氯乙烷、四氢呋喃和 N, N-二甲基甲酰胺(DMF)。

10. 一种药物组合物，其特征在于，含有药物有效剂量的如权利要求1-6所述的任一化合物，及药用载体。

11. 根据权利要求10的药物组合物，其特征在于，所述的药物组合物可以是片剂、胶囊、丸剂、注射剂、缓释制剂、控释制剂及各种微粒给药系统。

12. 如权利要求1-6任一化合物作为制备转化生长因子- β 1(TGF- β 1)抑制剂中的应用。

13. 如权利要求1-6任一化合物作为制备血管紧张素II(AII)转化酶受体拮抗剂中的应用。

14. 如权利要求1-6任一化合物在制备治疗肾脏疾患的药物中的应用。

15. 如权利要求1-6任一化合物在制备治疗心脑血管疾患的药物中的应用。

16. 如权利要求1-6任一化合物在制备治疗II型糖尿病的药物中的应用。

17. 根据权利要求15的应用，其特征在于，所述的心脑血管疾患是高血压、心、脑栓塞、心肌梗塞、脑中风。

18. 如权利要求 1 - 6 任一化合物作为治疗/或预防肿瘤以及癌前病变的药物。