Material permitido: Solo calculadora no programable	Aviso 1: Todas las respuestas deben estar debida-
	mente razonadas.
Tiempo: 2 horas	Aviso 2: Escriba con buena letra y evite los tachones.
R	Aviso 3: Fecha de revisión en
	http://www.uned.es/71902048/

1. Conteste razonadamente a las siguientes preguntas:

- a) (1 p) Para el caso de un núcleo con estructura extensible explicar qué es y de qué tareas se encarga: a) El micronúcleo. b) Una extensión del núcleo.
- b) (1 p) ¿En qué consiste la técnica de segmentación con paginación? ¿Cuál es el formato de una dirección lógica cuando se usa esta técnica?

2. Enumerar las ventajas y los inconvenientes de:

- a) (1 p) Los hilos a nivel de usuario.
- b) (1 p) Los hilos a nivel del núcleo.
- **3.** (2 p) Enumerar y describir **brevemente** las diferentes áreas que se distinguen de forma general en la estructura de un sistema de archivos.
- **4.** En un computador con x instancias de un recurso R_1 , y instancias de un recurso R_2 y z instancias de un recurso R_3 se están ejecutando los procesos P_1 , P_2 , P_3 , P_4 y P_5 . En un cierto instante de tiempo T la matriz \mathbf{N} de recursos máximos necesitados, la matriz \mathbf{A} de recursos asignados y el vector de recursos disponibles $\mathbf{R_D}$ son:

$$\mathbf{N} = \begin{pmatrix} 4 & 4 & 4 \\ 1 & 4 & 6 \\ 3 & 2 & 5 \\ 4 & 4 & 8 \\ 5 & 1 & 10 \end{pmatrix} \quad \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \\ 1 & 0 & 3 \\ 1 & 1 & 0 \end{pmatrix} \quad \mathbf{R_D} = (3 \ 3 \ 2)$$

En cada matriz se ha asociado la fila i al proceso P_i (i = 1, 2, 3, 4 y 5) y la columna j al recurso R_j (j = 1, 2 y 3). Se pide:

- a) (0.5 p) Calcular x, y y z.
- b) (0.5 p) Determinar si el estado en el instante T es seguro.
- c) (1 p) Aplicando el algoritmo del banquero determinar si el sistema puede admitir una petición del proceso P₃ de una instancia del recurso R₂.

SISTEMAS OPERATIVOS (Código: 71902048)

Septiembre 2019

Material permitido: Solo calculadora no programable	Aviso 1: Todas las respuestas deben estar debida-
	mente razonadas.
Tiempo: 2 horas	Aviso 2: Escriba con buena letra y evite los tachones.
R	Aviso 3: Fecha de revisión en
	http://www.uned.es/71902048/

5. (2 p) En una oficina de Correos existen 3 ventanillas. Cuando un cliente entra en la oficina para realizar alguna gestión debe guardar una única cola hasta que alguna ventanilla queda libre. Escribir el pseudocódigo de un programa que coordine la actividad de los clientes en la oficina usando **semáforos binarios**. El pseudocódigo del programa que se realice debe tener tres partes: declaración de variables, código de un proceso cliente y código para inicializar los semáforos y lanzar la ejecución concurrente de los procesos.

Nota 1: Antes de escribir el pseudocódigo se debe explicar adecuadamente el significado de cada uno de los semáforos binarios y variables que se van a utilizar en el mismo.

Nota 2: Recuerde que un semáforo binario S únicamente soporta las operaciones:

- init_sem(S, valor), donde valor puede tomar los valores 0 o 1.
- wait_sem(S)
- signal_sem(S)