Введение в обучение с подкреплением

Михненко Наталья БПМИ182

Reinforcement learning

Обучение с подкреплением — это способ машинного обучения, при котором система обучается, взаимодействуя с некоторой средой.

- Обучается в процессе взаимодействия со средой, без исторических данных
- Основная идея поощрать действий, ведущие к награде, избегать ведущих к неудаче

Примеры прикладных задач

- Стратегические игры: шахматы, Go, дота
- Управление роботами
- Управление ценами и ассортиментом в сетях продаж
- Создание чат ботов
- Обучение трейдинговых ботов
- Обучение беспилотников

Постановка задачи

Постановка задачи

Цель агента – максимизировать суммарное вознаграждение

Постановка задачи

- 1. На каждом шаге среда находится в некотором состоянии s ∈ S
- На каждом шаге агент выбирает из имеющегося набора действий а ∈ А согласно некоторой стратегии π
- Окружающая среда сообщает какое вознаграждение r получил агент и новое состояние среды s* ∈ S
- 4. Агент корректирует стратегию л

Задача агента выработать стратегию, максимизирующую $R = \sum_t \gamma^t r_t$

Типы задач

Эпизодические

В этом случае у нас есть начальная точка и конечная (конечное состояние). Это создает эпизод: список состояний, действий, вознаграждений и новых состояний.

Типы задач

Непрерывные

Это задачи, которые продолжаются вечно (без состояния окончания). В этом случае агент должен научиться выбирать лучшие действия и одновременно взаимодействовать со средой.

Методы обучения

Monte Carlo

Когда эпизод заканчивается, агент смотрит на общее накопленное вознаграждение чтобы увидеть, насколько хорошо он прошел этот эпизод. Таким образом, награды получают только в конце игры.

Максимальный ожидаемый выигрыш, начиная в данной позиции

Предыдущая оценка максимального ожидаемого выигрыша

Методы обучения

Temporal Difference Learning

TD Learning не будет ждать конца эпизода, чтобы обновить максимальную ожидаемую оценку вознаграждения: он будет обновлять свою оценку значения V на каждом шаге t.

Максимальный ожидаемый выигрыш, начиная в данной позиции

Предыдущая оценка максимального ожидаемого выигрыша

Жадный алгоритм

Многорукий бандит

А – множество возможных действий (ручек) p(r|a) – неизвестное распределение вознаграждения $r \in R$ для $a \in A$ π_t - стратегия агента в момент времени t

Взаимодействие агента со средой в момент времени t:

- 1. Агент выбирает действие \mathbf{a}_t
- 2. Среда генерирует вознаграждение \mathbf{r}_t
- 3. Агент корректирует стратегию

$$Q_t(a) = rac{\sum_{i=1}^t r_i[a_i=a]}{\sum_{i=1}^t [a_i=a]}$$
 - средняя премия за t раундов

Жадный алгоритм

Многорукий бандит

$$Q_t(a) = rac{\sum_{i=1}^t r_i[a_i=a]}{\sum_{i=1}^t [a_i=a]}$$
 - средняя премия за t раундов

 $\mathbf{A}_t = Argmax_{a \in A}Q_t(a)$ – множество действий с текущей максимальной ценностью

Жадная стратегия – выбирать любое действие из \mathbf{A}_t

Недостаток – по некоторым действиям можно не набрать статистику

ε-жадный алгоритм

```
\epsilon \in [0; 1]

random_number \in [0; 1]

If random_number < \epsilon:

explore()

else:

exploit()
```

- Со временем предлагается уменьшать є
- Достигается компромисс "изучение применение"

Табличный метод

	Действие а1	Действие а2	Действие а3	•••
Состояние s1	Q(s1, a1)	Q(s1, a2)	Q(s1, a3)	
Состояние s2	Q(s2, a1)	Q(s2, a2)	Q(s2, a3)	
Состояние s3	Q(s3, a1)	Q(s3, a2)	Q(s3, a3)	

Недостатки:

- 1. Храним много данных
- 2. Подходит только для эпизодических задач

Метод кросс-энтропии

repeat:

- провести N эпизодов испытаний
- выбрать М лучших эпизодов (Elite)
- поменять стратегию, отдавая приоритет действиям из лучших эпизодов

$$\pi(a|S) = rac{\sum_{s_t,a_t \in Elite}[s_t = S][a_t = a]}{\sum_{s_t \in Elite}[s_t = S]}$$
 - пересчет стратегии

Метод кросс-энтропии

Проблема: редкие состояния

Решение: сглаживание

$$\pi(a|S) = rac{\sum_{s_t,a_t \in Elite}[s_t = S][a_t = a] + \lambda}{\sum_{s_t \in Elite}[s_t = S] + \lambda N}$$
 - пересчет стратегии

Метод кросс-энтропии

Проблема: стохастические выигрыши

Решение: сэмплировать действия для каждого

состояния и усреднить результат

Некоторые итоги

- В обучении с подкреплением нет правильных ответов, есть только реакция среды
- Для большей части задач не работают табличные методы
- Нужно использовать алгоритм обучения с временными воздействиями
- Компромисс изучение/применение нужно подбирать экспериментально

Источники

https://coursera.org/share/c7bb0ac37e0b179b91ad96a4d5953bd8 — отличный курс, доклад по неделе 1

https://www.coursera.org/lecture/practical-rl/crossentropy-method-TAT8g - конкретно про кросс-энтропию

https://datascience.org.ua/vvedenie-v-reinforcement-learning-ili-obuchenie-s-podkrepleniem - методы обучения

<u>http://www.machinelearning.ru/wiki/images/3/35/Voron-ML-RL-slides.pdf</u> - многорукий бандит