[CoLike]

for Latent Variable Models

Mikhail Arkhipov

Mary Vikhreva

Complete Likelihood Objective

Generative Modelling Supervised Setting

Given a model

$$p_{\theta}(x, z) = p(z)p_{\theta}(x|z)$$

and a sample of data

$$\{(x_1, z_1), ..., (x_N, z_N)\}\$$

Parameters heta can be obtained by maximization of complete log-likelihood of the data

$$\theta^* = \underset{\theta}{\operatorname{arg\,max}} \mathcal{L}_c(\theta) = \underset{\theta}{\operatorname{arg\,max}} \sum_i \log p_{\theta}(x_i, z_i)$$

Generative Modelling Latent Variable Setting

Given a model

$$p_{\theta}(x, z) = p(z)p_{\theta}(x|z)$$

and an incomplete sample of data

$$\{x_1, ..., x_N\}$$

Parameters heta can be obtained by maximization of marginal log-likelihood of the data

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \sum_{i} \log p_{\theta}(x_i) = \underset{\theta}{\operatorname{argmax}} \sum_{i} \log \int_{z} p_{\theta}(x_i, z) dz$$

Additional Assumptions to Latent Variable Setting

Given a model

$$p_{\theta}(x, z) = p(z)p_{\theta}(x|z)$$

and an incomplete sample of data

$$\{x_1, ..., x_N\}$$

We add

a sample $\{z_1,...,z_N\}$ from prior p(z)

and say that

 $\{z_1,...,z_N\}$ are pairs for $\{x_1,...,x_N\}$ with unknown order

Generative Modelling with Complete Likelihood Objective

Given a model

$$p_{\theta}(x, z) = p(z)p_{\theta}(x|z)$$

and an incomplete sample of data

$$\{x_1,...,x_N\}$$

We add

a sample $\{z_1,...,z_N\}$ from prior p(z)

and say that

 $\{z_1,...,z_N\}$ are pairs for $\{x_1,...,x_N\}$ with unknown order

Under these assumptions Complete Likelihood is known up to a permutation

$$\mathcal{L}_c(\theta, \pi) = \sum_i \log p_{\theta}(x_i, z_{\pi(i)})$$

This allows us to perform Maximum Likelihood estimation over both permutation and parameters

$$\theta^*, \pi^* = \operatorname*{arg\,max} \mathscr{L}_c(\theta, \pi)$$

Marginal Likelihood vs. Complete Likelihood

Links to Supervised Settings

Threre is a known supervised problem Broken Sample¹ or Linear Regression With Shuffled Labels²:

$$y_i = \mathbf{w}^T \mathbf{x}_{\pi(i)} + \varepsilon_i$$

This problem is common e.g. in tracking³ and signal processing⁴.

¹[DeGroot et al. 1976] The Matching Problem for Multivariate Normal Data

²[Hsu et. al 2017] Linear Regression Without Correspondence

³[Bewley et al. 2016] Simple Online and Realtime Tracking

⁴[Haghighatshoar and Caire 2017] Signal Recovery from Unlabeled Samples

Link to Unsupervised Learning by Predicting Noise⁵

```
Setting: data sample \{x_1,...,x_N\} sample from spherical prior \{y_1,...,y_N\} model f_\theta that maps x to y domain Objective:
```

$$\max_{\theta} \max_{\pi} \sum_{i} \mathbf{y_i}^T f_{\theta}(\mathbf{x}_{\pi(i)})$$

⁵[Bojanowski and Joulin 2017] Unsupervised Learning by Predicting Noise

The Optimal Transport task for matching distributions P_X and P_Y is stated as

$$W_c(P_X, P_Y) = \inf_{\Gamma(P_X, P_Y)} \mathbb{E}_{X, Y \sim \Gamma}[c(X, Y)]$$

where $\Gamma(P_X,P_Y)$ is a family of joint distributions with marginals P_X and P_Y . This problem is equivalent to⁶

$$W_c(P_X, P_Y) = \inf_{\substack{Q(Z|X):\\Q_Z = P_Z}} \mathbb{E}_{X \sim P_X} \mathbb{E}_{Z \sim Q(Z|X)}[c(X, G(Z))]$$

where Q_Z is the marginal of Q(Z|X), while G and Q(Z|X) are a deterministic functions

⁶[Tolstikhin et al. 2017] Wasserstein auto-encoders

The objective is hard to optimize due to $Q_Z = P_Z$ constraint

$$W_c(P_X, P_Y) = \inf_{\substack{Q(Z|X):\\ \mathbf{Q_z} = \mathbf{P_z}}} \mathbb{E}_{X \sim P_X} \mathbb{E}_{Z \sim Q(Z|X)}[c(X, G(Z))]$$

Wasserstein AutoEncoder suggests relaxation of original objective

$$\min_{G} \min_{Q(Z|X)} \mathbb{E}_{X \sim P_X} \mathbb{E}_{Z \sim Q(Z|X)} [c(X, G(Z))] + \beta D(Q_Z, P_Z)$$

where D is arbitrary discrepancy measure

Consider encoderless case

$$W_c = \sup_{\Gamma \in \Pi(P_X, P_Y)} \mathbb{E}_{x, y \sim \Gamma} \left[c(X, Y) \right] = \sup_{\Gamma \in \Pi(P_X, P_Z)} \mathbb{E}_{X, Z \sim \Gamma} \left[c(X, G(Z)) \right]$$

When both P_X and P_Z are empirical distributions⁷

$$W_c = \sup_{\pi} \sum_{i} c(x_i, y_{\pi(i)})$$

and for quadratic cost function

$$W_c = \sum_{i} ||x_i - y_{\pi(i)}||_2^2 = \sum_{i} ||x_i - G(z_{\pi(i)})||_2^2$$

⁷[Patrini et al. 2018] Sinkhorn AutoEncoders

The function

$$W_c = \sum_{i} ||x_i - y_{\pi(i)}||_2^2 = \sum_{i} ||x_i - G(z_{\pi(i)})||_2^2$$

is identical to CoLike objective for Gaussian $p_{\theta}(x|z)$ and uniform prior p(z)

$$\mathcal{L}_{c} = \sup_{\pi} \sum_{i} \log p_{\theta} \left(x_{i} \middle| z_{\pi(i)} \right) p\left(z_{\pi(i)} \right)$$

$$= \log c_{z} + \sup_{\pi} \sum_{i} \left(-\frac{d}{2} \log 2\pi \sigma^{2} - \frac{1}{2\sigma^{2}} \left\| x_{i} - G\left(z_{\pi(i)} \right) \right\|_{2}^{2} \right)$$

$$= C + \sum_{i} \left\| x_{i} - G\left(z_{\pi(i)} \right) \right\|_{2}^{2}$$

$$(1)$$

Algorithm

Direct evaluation of CoLike objective

$$\mathcal{L}_c(\theta, \pi) = \sum_i \log p_{\theta}(x_i, z_{\pi(i)})$$

requires evaluations of $p_{\theta}(x_i, z_k)$ for every pair x_i and z_k for $i \in \{1, ..., N\}$ and $k \in \{1, ..., N\}$. This amounts to N^2 evaluations of $p_{\theta}(x|z)$.

However, for non-autoregressive models, the neural network can be evaluated only N times, since decoder $p_{\theta}(x|z)$ takes only z as an input, while autoregressive models require x as an input.

Algorithm

Furthermore, finding optimal permutation requires solving combinatorial optimization problem.

The solution can be found with **Hungarian** algorithm with complexity $O(N^3)$.

Algorithm

Problem:

For large datasets, N^2 evaluations might be infeasible.

Solution:

Minibatch approximation for optimal permutation.

- 0. Sample z_i for each x_i
- 1. Sample minibatch of pairs (x_i, z_i)
- 2. Find optimal permutatin π^* for minibatch
- 3. Permute z_i in the training set according to π^*
- 4. Compute loss and perform gradient step for θ according to π^*
- 5. Go to step 1.

Discrete Latents out of the box

Setting:

- ► MNIST dataset
- ightharpoonup Convolutional $p_{\theta}(x|z)$ from DCGAN
- ► 1 categorical latent with 10 classes
- ▶ 2 uniform continuous latents

Rows - distinct categorical latents.

Columns - random samples of continuos variables.

Discrete Latents out of the box

Setting:

- ► MNIST dataset
- ightharpoonup Convolutional $p_{\theta}(x|z)$ from DCGAN
- ► 1 categorical latent with 10 classes
- ► 2 uniform continuous latents

Rows - traverse of one continuos latent.

Columns - samples of categorical and one continuous latents.

Likelihood on binarized MNIST

Setting:

- ► Statically binarized MNIST dataset
- ▶ 2 hidden layer MLP $p_{\theta}(x|z)$ with hidden dimensionality 500
- ► Gaussian latents
- RealNVP to approximate posterior after training
- Evidince is estimated using 1000 importnace weigthed samples from RealNVP posterior

Mehod	dim(z)	p(x)	Dataset size
VAE	2	-205.07	32
CoLike	2	-200.65	32
VAE	2	-171.43	256
CoLike	2	-170.04	256
VAE	2	-176.80	1024
CoLike	2	-151.18	1024
VAE	2	-152.61	50000
CoLike	2	-157.92	50000

Likelihood on binarized MNIST

Mehod	dim(z)	p(x)	Dataset size	Active Units
VAE	2	-152.61	50000	2
CoLike	2	-157.92	50000	2
VAE	8	-100.94	50000	8
CoLike	8	-108.36	50000	8
VAE	32	-93.80	50000	18
CoLike	32	-110.09	50000	32

A latent unit (a single dimension of z) is active when the variance of its expectation with respect to x is larger than 0.01^8 : $A_u > 0.01$ where $A_u = Cov_x(\mathbb{E}_{u \sim q_\phi(u|x)}[u])$

⁸[Burda et al. 2015] Importance weighted autoencoders

Language Modelling with Latent Variables

Setting:

- ► SNLI dataset
- ► Single layer autoregressive unidirectional LSTM $p_{\theta}(x|z)$
- z is concatenated to each input
- ► LSTM hidden size 512
- ► Gaussian latents
- ► dim(z) = 32

Mehod	dim(z)	PPL	Active Units
VAE	32	21.67	1
VAE FB ⁹	32	22.00	32
CoLike	8	25.81	32

⁹VAE FB - VAE with free bits objective with KL constraint to be grater that 7.0 [Kingma et al. 2017] Improved Variational Inference with Inverse Autoregressive Flow

Challenges. Permutation saturation

Challenges. Dimensionality

Challenges. Permutation saturation

Conclusion

- ► New probabilistic objective for training latent variables models
- ► Approximate solution with partial permutation is proposed
- ► Promising results for discrete latentents and low-dimensional latents
- ► Robustness to posterior collapse for autoregressive models

