ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

CoO_x and FeO_x supported on ZrO_2 for the simultaneous abatement of NO_x and N_2O with C_3H_6 in the presence of O_2

Maria Cristina Campa ^{a,*}, Daniela Pietrogiacomi ^{a,b}, Canio Scarfiello ^b, Lea Roberta Carbone ^b, Manlio Occhiuzzi ^{a,b}

^a CNR-Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Chimica, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy

ARTICLE INFO

Article history: Received 30 September 2016 Received in revised form 1 March 2017 Accepted 12 April 2017 Available online 14 April 2017

Keywords: NO abatement N $_2$ O abatement Simultaneous SCR abatement with C $_3$ H $_6$ CoO $_x$ supported on ZrO $_2$ FeO $_x$ supported on ZrO $_2$

ABSTRACT

 MeO_x/ZrO_2 (Me=Co and Fe) catalysts were studied for the simultaneous selective catalytic reduction of NO and N_2O in the presence of O_2 using C_3H_6 as reducing agent (SCR_{sim}). To give a better insight in the simultaneous process we investigated the reactions related to SCR_{sim} (SCR_{NZO} , SCR_{NO} , N_2O decomposition and C_3H_6 combustion) as well as the abatements in the absence of O_2 (CR_{sim} , CR_{N2O} , CR_{NO}).

Catalytic results showed that, in the presence of O_2 excess, CoO_x/ZrO_2 and FeO_x/ZrO_2 catalysts were scarcely active and unselective for the separate NO and N_2O abatements with C_3H_6 and are ineffective for their simultaneous abatement. Because C_3H_6 preferentially reacted with O_2 , NO was poorly reduced and N_2O was abated, at a temperature above that of complete C_3H_6 conversion, via both SCR_{N2O} and decomposition. Conversely, in the absence of O_2 in the feed, on both catalysts NO and N_2O were efficiently reduced by C_3H_6 , but undesired by-products formed.

The activity for SCR_{sim} strongly depended on the C_3H_6/O_2 feeding ratio. With suitable feeding mixture O_2 was completely consumed and the residual propene efficiently and simultaneously reduced NO and N_2O , with negligible formation of by-products. In hydrothermal conditions both catalysts were slightly and reversibly deactivated.

Characterization by XRD, UV-vis DRS and FTIR after catalytic experiments showed that dispersed Co^{2+} and Fe^{3+} species were stable on zirconia surface and that no significant segregation phenomena occurred in hydrothermal conditions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays a goal of environmental protection is the abatement of harmful NO_x and greenhouse gases, whose emissions need to be significantly reduced. Recent focus of this approach is on N_2O , whose global warming potential is about 300 times higher than that of CO_2 and that represents 6% of the total greenhouse gas emission per year [1]. Anthropogenic N_2O and NO_x are generated by fossil fuel combustion, industrial processes, stationary and mobile combustion sources [2]. In the exhaust gas composition of industrial (nitric and adipic acid plants) and combustion sources emitting simultaneously N_2O and NO_x , the co-existence of O_2 , H_2O and CO_x , in amount depending on the process, should be always taken into consideration [3]. In nitric acid plants $EnviNOx^{\oplus}$ process performs

the tail-gas abatement of NO_x and N_2O over iron-containing zeolite in two catalytic beds, where NO_x was abated by NH_3 , and N_2O by hydrocarbons or via decomposition [4,5]. In mobile combustion sources the three-way catalytic converters (TWCs) essentially abate NO_x , but, depending on the operation conditions, release N_2O . The challenge of simultaneous abatement of N_2O and NO_x , that allows to reduce both pollutants in one catalytic bed with one reducing agent in the presence of O_2 , is interesting to lower costs of removal strategies

A lot of studies reviewed the separate abatement of NO_x [6–9] and of N_2O [2,3,10–12], whereas thus far few papers addressed the attempt to abate both NO_x and N_2O emitted from the same process in two catalytic beds [13–16] or in one catalytic bed [17–19]. Among the investigated catalysts for the process in one catalytic bed, Feexchanged-MFI with C3-hydrocarbons [17], Ag-ZSM5 with propene [18] and Co-MOR with CH₄ [19] were found active for the simultaneous abatement of NO_x and N_2O in the presence of excess O_2 . Because zeolite catalysts are well known to be unstable in the pres-

^b Dipartimento di Chimica, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy

^{*} Corresponding author.

E-mail address: mariacristina.campa@uniroma1.it (M.C. Campa).

ence of water vapour, leading to the active transition metal ion (tmi) segregation, ZrO₂, stable at high-temperature and able to disperse tmi at quasi-atomic level, is an alternative support. MeOx/ZrO2 (Me = Co or Fe) were active for the selective catalytic reduction (SCR) of NO_x with C_3H_6 [20,21] and for N_2O decomposition [22] and therefore they are possible catalysts for the simultaneous abatement. For these systems, when Me-content was below the limit up to the tmi were highly dispersed (2.0 atoms nm^{-2} for Co [20], and 2.8 atoms nm⁻² for Fe [21]), Meⁿ⁺ species were active sites for both SCR of NO_x [20,21] and N_2O decomposition [22]. With the aim to find a catalytic system active for the simultaneous SCR of NO_x and N₂O in the presence of excess O₂ (SCR_{sim}), and stable under real conditions, in the present paper, after explorative tests with CH₄, we studied SCR_{sim} on CoO_x/ZrO₂ and FeO_x/ZrO₂ samples with Me-content 2.2 atoms nm^{-2} using C_3H_6 as reductant. To give a better insight in the simultaneous process we investigated the reactions related to SCR_{sim} (SCR_{N2O}, SCR_{NO}, N₂O decomposition and C₃H₆ combustion) as well as the abatements in the absence of O₂ (CR_{sim}, CR_{N2O}, CR_{NO}). We also investigated the catalyst performance in hydrothermal condition (water vapor addition) and verified the stability of Men+ species by XRD, UV-vis DRS and FTIR characterization after catalytic experiments.

2. Experimental

2.1. Sample preparation

The zirconia was prepared by hydrolysis of zirconium oxychloride with ammonia, as already described [23]. Before its use as a support, the material was dried at 383 K for 24 h and calcined at 823 K for 5 h. After calcination, the BET surface area of the ZrO_2 support (Z), measured by N_2 adsorption at 77 K, was ZRO_2 spectra showed that ZRO_2 was in the monoclinic phase.

 MeO_x/ZrO_2 catalysts (Me/Z), with Me = Co or Fe, were obtained by impregnation of Z with aqueous solution of Co(acetate)₂, or Fe(nitrate)₃ salt, drying at 383 K and calcining at 823 K for 5 h (*calcined* samples). Co and Fe content was 2.2 atoms nm⁻² (Atomic Absorption, Varian SpectrAA-30).

2.2. Characterization measurements

Characterization was performed on calcined samples and at the end of all catalytic measurement (*aged* samples).

XRD measurements were done with a Philips PW 1729 diffractometer ($Cu \, K\alpha$, Ni-filtered radiation) equipped with an IBM computer (software APD-Philips).

The UV-vis DRS spectra were recorded in air by using a Varian Cary 5E spectrometer equipped with a computer for data acquisition and analysis (software Cary Win UV).

FTIR spectra were recorded at RT by using a Perkin Elmer Frontier spectrometer equipped with an MCT detector, collecting 64 scans at a resolution of $4\,\mathrm{cm}^{-1}$. Powdered materials were pelleted (pressure $1.5 \times 10^4\,\mathrm{kg\,cm}^{-2}$) in self-supporting disks of ca. $50\,\mathrm{mg\,cm}^{-2}$ and 0.1- $0.2\,\mathrm{mm}$ thickness. All samples were placed into an IR quartz cell allowing thermal treatments in vacuo or in a controlled atmosphere. Before experiments, samples were activated by heating in O_2 from RT to 773 K, keeping at this temperature for 1 h, and evacuating thereafter at the same temperature for 1 h. Spectra after adsorption of NO are difference spectra obtained by subtracting to the collected spectrum that of the blank activated sample.

2.3. Catalytic experiments

The catalytic activity was measured in a flow apparatus at atmospheric pressure. The apparatus included a feeding section where

five gas streams (He, 3% N₂O in He, 3% NO in He, 1.5% C₃H₆ in He, 10% O₂ in He) were regulated by means of independent mass flow controller-meters (MKS mod. 647C) and mixed in a glass ampoule before entering the reactor. Gas mixtures were purchased from RIVOIRA and used without further purification. The reactor was made of silica with an internal sintered frit of about 12 mm diameter supporting the powdered catalyst. Reactants and products were analysed by a gas-chromatograph (Agilent 7890A GC system), equipped with three columns (Molsieve 5A, for detecting O_2 , N_2 , NO and CO; Porapack O for detecting CO₂ and N₂O; Na₂SO₄-doped alumina for detecting CH₄ and C₃H₆) and two detectors (TCD and FID). The C-balance was calculated for all experiments, whereas the N-balance only for experiments in the absence of O₂ in the feed, being NO₂ not detectable by GC-analysis. Before each run, a portion of sample (0.250 g) was heated in flow of 2% O₂/He mixture $(100 \,\mathrm{cm}^3 \,\mathrm{min}^{-1})$ at 773 K for 1 h. After this treatment, the reactor was by-passed and the temperature adjusted to the desired value. The reaction temperature was changed at random without intermediate activation treatment. For all reactions, the catalyst was stable as a function of the time on stream, throughout experiments lasting up to about 8 h.

The total flow rate was maintained at $50\,\mathrm{cm^3}_\mathrm{STP}/\mathrm{min^{-1}}$ (space velocity $24,000\,h^{-1}$). Conversions obtained at various (sample weight)/(flow rate) ratios (W/F) indicated that, in our conditions, reaction is under kinetic control without diffusion effect. Catalysis was run by contacting the catalyst with mixtures of various composition (v/v, He as balance): N_2O (4000 or 0 ppm), NO (4000 or 0 ppm), NO (4000 or 0 ppm), NO (20000, 10000 or 0 ppm), and NO (10000 or 0 ppm).

Percent N₂O, C₃H₆ and O₂ conversion was calculated from (molecules-consumed)/(molecules-injected). Percent NO conversion was calculated (i) for separate abatement from $2 \cdot (N_2 \text{ produced})/(NO \text{ injected})$, and (ii) for simultaneous abatement from $2 \cdot (N_2 \text{ produced}-N_2O \text{ converted})/(NO \text{ injected})$. The percent CO₂ selectivity (CO₂ rather than CO) was calculated as (CO₂ formed)/((CO₂ + CO) molecules-formed).

3. Results and discussion

3.1. Catalytic activity

Pure ZrO_2 , that we previously found to be little active for N_2O decomposition (N_2O conversion of 32% at 773 K) [22], was inactive for the abatement of NO with CH_4 or C_3H_6 in O_2 excess, and resulted, as expected, ineffective for simultaneous abatement of NO and N_2O (data not shown).

Co/Z and Fe/Z catalysts, that we previously found to be active for N_2O decomposition [22], were inactive for SCR_{NO} with CH_4 . In simultaneous abatement, SCR_{sim} , with CH_4 both catalysts abated no NO and little amount of N_2O above 723 K, being therefore ineffective (data not shown).

3.1.1. Simultaneous abatement of NO_x and N_2O with C_3H_6 in the presence of excess O_2 and related reactions (SCR_{N2O}, SCR_{NO}, N_2O decomposition, and C_3H_6 combustion).

For SCR $_{\rm sim}$ using C $_3$ H $_6$ as reducing agent both Co/Z and Fe/Z were scarcely effective, because NO and N $_2$ O abatements overlapped in a little temperature region (Fig. 1). In particular, NO conversion showed a volcano-shaped curve with a low maximum value, whereas N $_2$ O conversion increased with temperature when that of NO was decreasing. On both catalysts C $_3$ H $_6$ conversion (CO $_2$ selectivity and C-balance about 100%) markedly increased with temperature reaching 100% when N $_2$ O abatement started. This result suggests that C $_3$ H $_6$ reacted with O $_2$ and NO, whereas N $_2$ O,

Fig. 1. SCR_{sim} reaction on Co/Z (Section a) and Fe/Z (Section b): percent NO, N_2O and C_3H_6 conversion as a function of temperature. Reactant mixture: $N_2O:NO:C_3H_6:O_2 = 4000:4000:2000:20000$ ppm (v/v).

depending on the C_3H_6 selectivity, could be reduced or decomposed.

To better investigate catalytic behaviour in the simultaneous process, we measured Co/Z and Fe/Z activity in reactions related to SCR_{sim} (SCR_{N2O} , SCR_{NO} , N_2O decomposition, and C_3H_6 combustion) (Fig. 2).

As regards C_3H_6 consumption (Fig. 2 a and b), in combustion (CO_2 selectivity 100%) both systems showed high activity and Co/Z was more active than Fe/Z. In fact, combustion started and was complete at lower temperatures on Co/Z than on Fe/Z. On both catalysts propene conversion in SCR_{N2O} , SCR_{NO} and SCR_{sim} reactions was similar to that measured in combustion.

As regards NO abatement (Fig. 2c and d), both Co/Z and Fe/Z, that were completely inactive for NO decomposition, were poorly active for the SCR_{NO}. In agreement with previous results [20,21], in SCR_{NO} C₃H₆ was mainly consumed by O₂ rather than NO, with a C₃H₆ selectivity (C₃H₆ consumed by NO with respect to total C₃H₆ consumed) markedly decreasing with increasing temperature. On both systems, NO conversion showed similar volcano-shaped curve in SCR_{NO} and SCR_{sim}, suggesting that also in SCR_{sim} C₃H₆ was mainly consumed by O₂ rather than NO. The addition of N₂O to the feed (SCR_{sim}) had no effect on NO abatement.

As regards N_2O abatement (Fig. 2e and f), Co/Z and Fe/Z were active in SCR_{N2O} . It must be considered that N_2O abatement occurred in a significant amount in the temperature region in which C_3H_6 was completely converted, and both catalysts were also active for N_2O decomposition in the presence of O_2 (Fig. 2e and f) and for C_3H_6 combustion (Fig. 2a and b). Because the same consideration can be made for N_2O abatement in SCR_{sim} (Fig. 2e and f), it can be suggested that combustion competed with reduction of N_2O in both SCR_{N2O} and SCR_{sim} . Taking into account that both catalysts were also active for decomposition, N_2O abatement could occur via reduction or via decomposition.

To assess whether the N_2O abatement occurred via reduction and/or via decomposition, we analysed on both samples the O_2 consumed/ C_3H_6 consumed ratio (O_2/C_3H_6) in SCR_{N2O} and compared it with that in combustion (Fig. 3). If the O_2/C_3H_6 ratio is constant as a function of temperature and equal to 4.5 ($C_3H_6+4.5O_2\rightarrow 3CO_2+3H_2O$), no reduction occurs. Because the O_2/C_3H_6 ratio was not constant and lower than 4.5, C_3H_6 reacted with both O_2 and O_2O . Being the stoichiometry of the reduction reaction unknown, no quantitative evaluation of O_3H_6 consumption by O_2O can be made and therefore the extent of O_2O decomposition cannot be assessed.

On the whole both systems were scarcely effective for SCR_{sim} with C_3H_6 , due to the competition of hydrocarbon combustion. In particular, NO was poorly abated via SCR_{NO} , whereas, in a different

Fig. 2. Comparison between SCR_{sim} and related reactions (C_3H_6 combustion, SCR_{NO}, SCR_{N2O} and N₂O decomposition in the presence of O₂) on Co/Z (Section a, c, e) and Fe/Z (Section b, d, f). Percent C_3H_6 , NO and N₂O conversion as a function of temperature.

Reactant mixtures: $N_2O(4000 \text{ or } 0 \text{ ppm})$, NO(4000 or 0 ppm), $C_3H_6(2000 \text{ or } 0 \text{ ppm})$, $O_2(20000 \text{ ppm})$. Reactions as indicated.

Fig. 3. O_2 consumed/ C_3H_6 consumed ratio (O_2/C_3H_6) as a function of temperature for SCR_{N2O} reaction on Co/Z and Fe/Z. Reactant mixture: $N_2O:C_3H_6:O_2 = 4000:2000:20000$ ppm (v/v).

Fig. 4. CR_{sim} reaction on Co/Z (Section a) and Fe/Z (Section b): percent NO, N_2O and C_3H_6 conversion as a function of temperature. Reactant mixture: $N_2O:NO:C_3H_6$ = 4000:4000:2000 ppm (v/v).

range of temperature, N_2O was abated via reduction and possibly via decomposition.

3.1.2. Simultaneous abatement of NO and N_2O with C_3H_6 in the absence of O_2

Because propene combustion was a competitive reaction in the abatement of both NO and N_2O , we investigated on Co/Z and Fe/Z the simultaneous and separate abatements in the absence of oxygen (CR_{sim} , CR_{NO} , and CR_{N2O}).

Both catalysts, in the absence of O2, were effective for N2O and NO simultaneous abatement, because NO and N2O were significantly abated in the same temperature region. NO and N₂O conversion in CR_{sim} was much higher and C₃H₆ conversion (CO₂ selectivity > 90%) lower than in the presence of O₂ (compare Fig. 4 with Fig. 1). In CR_{sim} whereas on both catalysts N₂O conversion increased with temperature up to 100%, NO conversion showed different trends. On Co/Z (Fig. 4a) the NO conversion monotonically increased and above 673 K the N-balance slightly decreased from 100 to 92%, suggesting formation of by-products. On Fe/Z (Fig. 4b) NO conversion showed a volcano-shaped curve, that above 623 K markedly decreased and by-products formed, as indicated by the parallel decrease of both C (from 100 to 91%) and N balance (from 100 to 78%). As concerns the N-balance decrease in CR_{sim}, the Nessler's reagent revealed NH3 in the solution obtained by bubbling in water (for 60 min) the outlet mixture. Ammonia by-product possibly formed during C₃H₆ reforming in the presence of nitrogen oxides. On the contrary, in SCR_{sim} no NH₃ was revealed. As concerns the C-balance decrease, GC-FID analysis revealed small amount of C-containing by-products and the presence of a C_xN_y-containing species cannot be excluded.

In CR_{NO} both catalysts were highly active and the NO conversion curve had the same shape than that in CR_{sim} (Fig. 5). The addition of N_2O to the feed (CR_{sim}) caused a slight decrease of NO conversion.

In CR_{N2O} on both catalysts N_2O abatement occurred at a temperature much lower than that of N_2O decomposition (Fig. 5e and f) and with a N_2O consumed/ C_3H_6 consumed ratio about 9 ($C_3H_6 + 9N_2O \rightarrow 3CO_2 + 3H_2O + 9N_2$) or lower, indicating that in CR_{N2O} N_2O completely reacted with C_3H_6 . The addition of NO to the feed (CR_{sim}) had no effect on N_2O reduction.

3.1.3. Simultaneous abatement of NO_x and N_2O : dependence of activity on C_3H_6 and O_2 amount in the feed

The comparison between catalytic results in the presence and in the absence of O_2 indicated on both catalysts a selectivity problem: notwithstanding in the absence of O_2 C_3H_6 reacted with NO and N_2O , in the presence of O_2 it preferentially burned. Because O_2 is a co-existent reagent in real exhaust gases, to find the gas-mixture

Fig. 5. Comparison between CR_{sim} and related reactions (CR_{NO} , CR_{N2O} and N_2O decomposition) on Co/Z (Section a, c, e) and Fe/Z (Section b, d, f). Percent C_3H_6 , NO and N_2O conversion as a function of temperature. Reactant mixtures: N_2O (4000 or 0 ppm), NO (4000 or 0 ppm), C_3H_6 (2000 or 0 ppm). Reactions as indicated.

composition yielding an efficient NO and N_2O simultaneous abatement, we modified the C_3H_6 and O_2 relative amount in the feed

By doubling C_3H_6 content from 2000 to 4000 ppm (Fig. 6) on both Fe/Z and Co/Z in SCR $_{sim}$ (i) the maximum value of NO conversion in the volcano-shaped curve increased, (ii) N_2O conversion increased on Fe/Z and remained unchanged on Co/Z, (iii) C_3H_6 conversion was 100% above 673 K, and (iv) O_2 conversion increased, remaining below 100%.

By subsequently halving O_2 content from 20000 to 10000 ppm (Fig. 6) on both catalysts NO and N_2O conversion markedly increased. With this mixture, above $600\,\mathrm{K}\,O_2$ was completely consumed and C_3H_6 was not, driving the reaction conditions near to that of CR_{sim} . In fact, residual C_3H_6 , still available above $600\,\mathrm{K}$, reduced N_2O and NO, as in CR_{sim} : (i) N_2O conversion reached 100% on both catalysts, and (ii) NO conversion increased, monotonically on C_0/C_1 , and volcano-shaped on C_0/C_2 (compare Fig. 6 with Fig. 4). Unlike CR_{sim} , by using this feeding mixture, with C_3H_6 4000 ppm and C_1/C_2 10000 ppm, no by-products were formed and the two systems efficiently abated NO and C_1/C_2 selectivity C_1/C_2 in the range C_1/C_2 in th

Fig. 6. SCR_{sim} reaction on Co/Z (Section a, c, e, g) and Fe/Z (Section b, d, f, h), using $C_3H_6+NO+N_2O+O_2$ gas mixtures with different C_3H_6 and O_2 amount in the feed, C_3H_6 : O_2 ratio as indicated. Percent NO, N_2O , C_3H_6 , and O_2 conversion as a function of temperature.

3.1.4. Simultaneous abatement of NO_x and N_2O : activity in the presence of water vapour

In the mixture condition in which both efficiently abated NO N_2O catalysts $(NO:N_2O:C_3H_6:O_2 = 4000:4000:4000:10000 \text{ ppm})$ we investigated the stability of catalyst activity after water addition (10000 ppm) to the feed. On both catalysts, at the temperature at which each system yielded the maximum NO and N2O conversion in dry feed, after H₂O addition the activity little decreased or did not, remaining stable as a function of time on stream. The activity was reversibly restored when H₂O was eliminated from the feed (Fig. 7).

Fig. 7. SCR_{sim} reaction on Co/Z (Section a) and Fe/Z (Section b), in the presence or in the absence of H_2O vapour in the reactant mixture: percent NO and N_2O conversion as a function of time on stream.

 $\label{eq:Reactant mixtures: in SCR} Reactant mixtures: in SCR_{sim}, NO:N_2O:C_3H_6:O_2 = 4000:4000:4000:10000 \ ppm \ (v/v); in \quad (SCR_{sim} + H_2O), \quad NO:N_2O:C_3H_6:O_2:H_2O = 4000:4000:4000:10000:10000 \ ppm \ (v/v).$

On the whole, on both catalysts the reversibility of the deactivation by $\rm H_2O$ suggested that it was due to reversible $\rm H_2O$ adsorption/desorption phenomena. On the contrary, analogous treatment on tmi-zeolites failed to restore the activity [24], because zeolite exposure to $\rm H_2O$ at the reaction temperature may cause irreversible de-alumination or tmi-metal oxide segregation.

3.2. Stability of Meⁿ⁺ species after catalytic experiments: XRD, UV–vis DRS, and FTIR characterization

To verify the stability of Meⁿ⁺ active species, we characterized Co/Z and Fe/Z at the end of catalytic experiments (aged samples) by XRD, Uv-vis DRS and FTIR. We compared the results on aged samples with those on calcined samples, that we extensively reported in previous papers [20,21] and now briefly summarise.

On calcined CoO_x/ZrO_2 [20] and FeO_x/ZrO_2 [21] with different Me-content (Co up to 5.1 and Fe up to 5.8 atoms nm⁻²) FTIR characterization by CO and NO adsorption showed that tmi species were highly dispersed, up to 2.0 atoms nm⁻² for cobalt and up to 2.8 atoms nm⁻² for iron. Previous characterization of calcined Co/Z and Fe/Z with 2.2 atoms nm⁻² (XRD, UV-vis DRS and FTIR by NO adsorption) indicated that they contained mainly dispersed Meⁿ⁺ species. XPS characterization showed that Fe³⁺ (with low amount of Fe²⁺), and Co²⁺ (with low amount of Co³⁺) oxidation states were stabilized on ZrO_2 [20–22].

XRD spectra of aged samples were similar to those of calcined samples, showing reflections of monoclinic ZrO_2 alone: segregated particles of cobalt or iron oxides, if present, were smaller than 5 nm (data not shown).

The UV–vis DRS spectrum of Co/Z aged sample (Fig. 8a) showed bands at 7500 and $14000-22000\,\mathrm{cm^{-1}}$, consistent with both octahedral Co²⁺ [25] and low amount of Co₃O₄ [20], and, despite a higher intensity of octahedral Co²⁺ bands, had a profile similar to that of calcined sample.

The UV-vis DRS spectra of the calcined and aged Fe/Z samples (Fig. 8b) were almost identical, consisting of very weak bands at about 21000, 18800 and $12000\,\mathrm{cm^{-1}}$, typical of Fe³⁺ complexes [21,26].

The FTIR spectra after NO adsorption on aged Me/Z samples showed bands of Meⁿ⁺-nitrosyls (Meⁿ⁺ = Co²⁺ or Fe²⁺) [20,21] in the same position and with similar width of those obtained on the corresponding calcined samples (Fig. 9a and b). This result indicated that the exposed Meⁿ⁺ species on aged catalysts had Lewis acid strength and heterogeneity similar to those in calcined samples. Moreover, the overall intensity of the Meⁿ⁺-nitrosyl bands on aged catalysts was similar to that on the corresponding calcined

Fig. 8. In situ UV-vis DRS spectra of Co/Z (Section a) and Fe/Z (Section b), after calcining at 823 K for 5 h (calcined samples) and at the end of all catalytic experiments (aged samples).

Fig. 9. FTIR spectra of NO adsorbed (at equilibrium pressure 50 Torr) on Co/Z (Section a) and Fe/Z (Section b), after calcining at 823 K for 5 h (calcined samples) and at the end of all catalytic experiments (aged samples).

samples (Fig. 9a and b), indicating after catalytic experiments no change in the amount of dispersed Meⁿ⁺ species.

On the whole characterization of aged samples suggested that both Co/Z and Fe/Z catalysts contained mainly dispersed Meⁿ⁺ species and that, although a rearrangement of surface tmi species during catalysis cannot be excluded, on both catalysts no significant segregation phenomena occurred in hydrothermal conditions.

4. Conclusions

 ${\rm CoO_x/ZrO_2}$ and ${\rm FeO_x/ZrO_2}$ catalysts, containing mainly dispersed tmi species, in the presence of ${\rm O_2}$ excess are scarcely active and unselective for the separate NO and N₂O abatements with C₃H₆ and are ineffective for their simultaneous abatement. Because C₃H₆ preferentially yielded combustion to CO₂, NO is poorly reduced and N₂O is abated via both reduction and decomposition. When the simultaneous abatement is carried out in the absence of O₂, C₃H₆ reduces NO and N₂O. The two systems operate in different temperature ranges with competitive formation of by-products.

The activity for the simultaneous NO and N_2O abatement with C_3H_6 in the presence of O_2 strongly depends on the C_3H_6/O_2 feed-

ing ratio. When the C_3H_6 amount is increased and that of O_2 is decreased (C_3H_6 from 2000 to 4000 ppm and O_2 from 20000 to 10000 ppm), O_2 is completely consumed and the residual C_3H_6 efficiently reduces NO and N_2O in the same temperature range and with negligible formation of by-products.

In hydrothermal conditions, CoO_x/ZrO_2 and FeO_x/ZrO_2 are slightly and reversibly deactivated, with catalytic activity stable as a function of time on stream. Characterization by XRD, UV–vis DRS, and FTIR, after catalytic experiments, showed that dispersed Co^{2+} and Fe^{3+} species are stable on zirconia surface and that no significant segregation phenomena occurs in hydrothermal conditions.

From an applied viewpoint, CoO_x/ZrO_2 and FeO_x/ZrO_2 catalysts, modulating the C_3H_6/O_2 feeding ratio, are possible candidates to carry out in different temperature ranges the simultaneous abatement of NO and N_2O with propene.

Acknowledgements

Financial support (Project C26A15YL4F) was provided by MIUR - "Sapienza", University of Rome, Italy.

References

- [1] WMO, WMO Greenhouse Gas Bull. 7 (2011) 1-4.
- 2 F. Kapteijn, J. Rodriguez-Mirasol, J.A. Moulijn, Appl. Catal. B 9 (1996) 25-64.
- 3] M. Konsolakis, ACS Catal. 5 (2015) 6397-6421.
- [4] Brochures of EnviNOx, are available at http://www.uhde.biz.
- [5] M.A.G. Hevia, J. Pérez-Ramírez, Appl. Catal. B 77 (2008) 248–254.
- [6] G. Busca, M.A. Larrubia, L. Arrighi, G. Ramis, Catal. Today 107–108 (2005) 139–148.
- [7] K. Skalska, J.S. Miller, S. Ledakowicz, Sci. Total Environ. 408 (2010) 3976-3989.
- [8] R. Mrad, A. Aissat, R. Cousin, D. Courcot, S. Siffert, Appl. Catal. A 504 (2015) 542–548.
- [9] P. Granger, V.I. Parvulescu, Chem. Rev. 111 (2011) 3155–3207.
- [10] J. Pérez-Ramirez, F. Kapteijn, K. Schöffel, J.A. Moulijn, Appl. Catal. B 44 (2003) 117–151.
- [11] P. Taniou, Z. Ziaka, S. Vasileiadis, Am. Trans. Eng. Appl. Sci. 2 (2013) 149–188.
- [12] M. Jabłońska, R. Palkovits, Catal. Sci. Technol. 6 (2016) 49–72.
- [13] A. Guzmán-Vargas, G. Delahay, B. Coq, Appl. Catal. B 42 (2003) 369–379.
 [14] Y. Wu, C. Dujardin, C. Lancelot, J.P. Dacquin, V.I. Parvulescu, M. Cabié, C.R.
- [14] Y. Wu, C. Dujardin, C. Lancelot, J.P. Dacquin, V.I. Parvulescu, M. Cabié, C.R Henry, T. Neisius, P. Granger, J. Catal. 328 (2015) 236–247.
- [15] Y. Li, J.N. Armor, Appl. Catal. B 3 (1993) 55-60.
- [16] F. Schuricht, W. Reschetilowski, Micropor. Mesopor. Mater. 164 (2012) 135–144.
- [17] M. Kögel, R. Mönnig, W. Schwieger, A. Tissler, T. Turek, J. Catal. 182 (1999) 470–478.
- [18] F. Schuricht, W. Reschetilowski, Microp. Mesopor. Mater. 164 (2012) 135–144.
- [19] M.C. Campa, D. Pietrogiacomi, M. Occhiuzzi, Appl. Catal. B 168–169 (2015) 293–302.
- [20] D. Pietrogiacomi, S. Tuti, M.C. Campa, V. Indovina, Appl. Catal. B 28 (2000) 43–54.
- [21] S. Tuti, F. Pepe, D. Pietrogiacomi, V. Indovina, Catal. Today 75 (2002) 373–378.
- [22] D. Pietrogiacomi, M.C. Campa, L.R. Carbone, S. Tuti, M. Occhiuzzi, Appl. Catal. B 187 (2016) 218–227.
- [23] A. Cimino, D. Cordischi, S. De Rossi, G. Ferraris, D. Gazzoli, V. Indovina, G. Minelli, M. Occhiuzzi, M. Valigi, J. Catal. 127 (1991) 744–760.
- [24] F. Kapteijn, G. Mul, G. Marbán, J. Rodriguez-Mirasol, J.A. Moulijn, in: J.W. Hightower, W.N. Delgass, E. Iglesia, A.T. Bell (Eds.), Studies in Surface Science and Catalysis, vol. 101, Elsevier Science Publ., Amsterdam, The Netherlands, 1996 (p. 641).
- [25] M. Che, F. Bozon-Verduraz, in: G. Ertl, H. Knözinger, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, vol. 2, Wiley, New York, 1997 (p. 641).
- [26] A.B.P. Lever, Inorganic Electron Spectroscopy, 2nd edition, Elsevier, Amsterdam, 1984 (p. 450, Table 6.13).