

Algorithms for Data Science

Statistical Algorithms: Introduction

Module Learning Objectives

- 1. Define the foundational principles of statistical algorithms, including their reliance on probability and statistics for modeling uncertainty.
- 2. Compare different statistical algorithms, such as Bayes Classifier, Naive Bayes, Gaussian Mixture Models, and Expectation-Maximization, based on their assumptions, strengths, and limitations.
- 3. Apply statistical algorithms to real-world problems, such as text classification, anomaly detection, and image segmentation, to derive insights from data.
- 4. Analyze the computational complexity and theoretical correctness of statistical algorithms, including their convergence and sensitivity to initialization.
- Evaluate the suitability of specific statistical algorithms for various data-driven tasks, considering factors like data dimensionality, independence assumptions, and application requirements.

Statistical Algorithms: Overview

Expectation Maximization

Bayes Classifier

Naïve Bayes

Gaussian Mixture Models

What Are Statistical Algorithms?

Algorithms that leverage probability and statistics to model uncertainty, infer relationships, and make predictions.

Key Characteristics

- Operate under uncertainty and noise.
- Use probability distributions to model data.
- Provide interpretable insights.

Applications

Spam Detection

Segmentation

Density Estimation

