- 1. Suppose $f(n) = n^x + an^y$, where a, x, and y are positive integers such that x > y. Given this, it follows that $n^x + an^y \le n^x + an^x$, since x > y. By factoring the right side of the equality, we find that $n^x + an^y \le (a+1) \cdot n^x$. Thus, given that a+1 may be represented by some constant c, this equality may be represented as $n^x + an^y \le c \cdot n^x$ where c = a+1, for all $n \ge 1$. This proves that $f(n) = O(n^x)$.
- 2. <u>B/C</u>: When n=1, this equation is equivalent to $(1!)^2 \le (2 \cdot 1)! \to 1 \le 2$, which is true. <u>I/S</u>: Let n=k; suppose $(k!)^2 \le (2k)!$ for n=1,2,...,k, and that c=1 and $n_0=1$. $[(k+1)!]^2 \le [2 \cdot (k+1)]!$ $(k+1)! \cdot (k+1)! \le (2k+2)!$ $(k+1) \cdot k! \cdot (k+1) \cdot k! \le (2k+2) \cdot (2k+1) \cdot (2k)!$ $k^2 + 2k + 1 \cdot (k!)^2 \le 4k^2 + 6k + 2 \cdot (2k)!$

Since $k^2 + 2k + 1 \le 4k^2 + 6k + 2$ is true and, by our induction hypothesis, $(k!)^2 \le (2k)!$, this final statement must also be true.