Building Neural Maps of Motor Primitives via Self-Organization and Reinforcement Learning

Author: Robbie Schad | Advisor: Dr. Ali Minai

ABSTRACT

Complex animals are thought to construct complex movements by combining fundamental motor primitives. Learning the primitives and a control hierarchy is a complex task in a high degree-of-freedom (DOF) system. Motor control using a hierarchy of primitives is a promising strategy for use in high-DOF robots. This project presents a simple, biologically-inspired neural network model of how an agent capable of very simple drawing movements can learn to generate good motor primitives through a combination of unsupervised and reinforcement learning. The model produces an ordered self-organized control map that could mediate the triggering of specific learned primitives through simple control signals.

BACKGROUND

The model is inspired by a few fundamental biological ideas:

- 1. Georgopolous et al. [1] found that an organism's direction of movement is comprised of a population code of directionally-tuned motor neurons [2].
- 2. Averbeck et al. [3,4] found that each segment of a sequential activity was encoded with decreasing strength in serial order before activity began.
- Mussa-Ivaldi et al. [5,6] found that complex movements are represented as linear combinations of motor primitive encoded in the cortex.
- 4. Graziano et al. [7] found that common movements in the monkey correspond to the stimulation of specific cortical regions.
- 5. Graziano et al. [8,9] also explored how a behavioral repertoire can be algorithmically mapped onto the motor cortex, finding similar results to real life observations.

MODEL

The model has four layers:

- 1. The Effector Layer (E): a motor system of directionallytuned spiking neurons. Further described in the next section.
- 2. The Code Layer (C): an encoder of the serial order of effector activity.
- 3. The Duration Layer (D): an encoder of the duration of firing of each effector.
- 4. The Map layer (M): a Self-Organizing Map (SOM) which organizes "useful" patterns and produces variations of patterns as input into the code layer.

Figure 1: The model architecture. Top to bottom: Canvas containing doodle, E, C, M. Duration Layer not depicted as it was not implemented in this project.

THE EFFECTOR SYSTEM

The Effector layer has 36 effectors, where each effector drives the pen in its preferred direction. Effector *i* activates based on the activity dynamics of four quantities:

- 1. The Membrane Potential (v_i) : represents the stimulation level of i.
- 2. The Depressant Signal (u_i) : deactivates i by lowering v_i .
- 3. The Energy Resource (r_i) : the energy resource of effector i, which depletes while i is active.
- 4. The Effector Activity (z_i) : the activity of i, which is a sigmoidal transform of v_i .

The activity dynamics of the Effector layer are as follows:

$$\frac{dv_{i}}{dt} = \frac{1}{\tau} \left(-\lambda u_{i} v_{i} + r'_{i} \left(1 - \psi \sum_{j \in E: j \neq i} z_{j} \right) \right); \ v_{i}(t = 0)$$

$$\frac{dr'_{i}}{dt} = -\varphi r_{i} z_{i}; \ r'_{i}(t = 0) = r_{i}$$

$$\frac{du_{i}}{dt} = -\rho u_{i} + \frac{\gamma r'_{i} z_{i}}{d_{i} + \epsilon}; \ u_{i}(t = 0) = 0$$

$$z_{i} = f(v_{i}) = \frac{1}{1 + \exp(-\beta_{z}(v_{i} - \mu_{z}))}$$

The parameters of the Effector layer equations are:

 $au = 1, \lambda = 20, \psi = 1.2, \varphi = 1.2, \rho = 0.1, \gamma = 0.1, \beta_z = 200, \mu_z = 0.1.$

The Effector layer demonstrates two salient qualities:

- 1. Robustness input variations that preserve the activity sequence preserve the general shape of the output. Thus, the system is robust to meaningless noise.
- 2. Sensitivity changes in sequence cause changes in resultant shape. Thus, the sensitive to meaningful noise.

Figure 2: Doodles produced from 5 different activity sequences. Each plot has 4 widely-varying activity patterns that preserve the activity sequence and therefore the general doodle shape.

Figure 3: Doodles produced from 5 different activity sequences, with 4 examples of changes in activity sequence in each plot.

LEARNING ALGORITHM

- The model is trained over 1000 epochs.
- During each epoch, the Map layer iteratively propagates forward a signal from which the Effector layer generates a doodle.
- The signals have a decreasing amount of noise throughout training, so early signals are nearly entirely noise.
- As the map encodes higher quality doodles, the map has greater influence on the signals.
- Each doodle is evaluated based on sufficient length and smoothness of curve.
- High-quality curves are encoded in the Map using an SOM learning algorithm.

RESULTS

Figure 4: The final model weights between Code and Map layers.

Figure 5: The final doodles generated by each neuron in the Map layer.

Figure 6: The initial doodle (left) and the final doodle generated by one map neuron (right).

REFERENCES

- [1] AP Georgopoulos, Andrew B. Schwartz, and Ronald E. Kettner. "Neuronal Population Coding of Movement Direction". In: Science 233.4771 (1986), pp. 1416-1419.
- [2] AP Georgopoulos et al. "On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex". In: Journal of Neuroscience 2.11 (1982), pp. 1527–1537 [3] Bruno B. Averbeck et al. "Parallel processing of serial movements in prefrontal cortex". In: Proceedings of the
- National Academy of Sciences 99.20 (2002), pp. 13172–13177. [4] Bruno Averbeck and Daeyeol Lee. "Prefrontal Neural Correlates of Memory for Sequences". In: The Journal of neuroscience: the official journal of the Society for Neuroscience 27 (Mar. 2007), pp. 2204–11. [5] F A Mussa-Ivaldi and E Bizzi. "Motor learning through the combination of primitives." In: Philosophical
- transactions of the Royal Society of London. Series B, Biological sciences 355 1404 (2000), pp. 1755–69. [6] F A Mussa-Ivaldi, S F Giszter, and E Bizzi. "Linear combinations of primitives invertebrate motor control." In: Proceedings of the National Academy of Sciences 91.16 (1994), pp. 7534–7538.
- [7] Michael S.A Graziano, Charlotte S.R Taylor, and Tirin Moore. "Complex Movements Evoked by
- Microstimulation of Precentral Cortex". In: Neuron 34.5 (2002), pp. 841–851. [8] Michael Graziano. "Graziano, M.: The organization of behavioral repertoire in motor cortex. Annu. Rev.
- Neurosci. 29, 105-134". In: Annual review of neuroscience 29 (Feb. 2006), pp. 105-34. [9] Michael S.A. Graziano and Tyson N. Aflalo. "Mapping Behavioral Repertoire onto the Cortex". In: Neuron 56.2 (2007), pp. 239–251. issn: 0896-6273.