▼ IMPORT LIBRARY

```
import pandas as pd
import numpy as np
```

▼ LOAD DATASET

```
df = pd.read_csv('kidney_disease.csv')
df.head()
```

	id	age	bp	sg	al	su	rbc	рс	рсс	ba	 pcv	WC	rc	htn	dm	cad	appet	pe	ane	classifica
0	0	48.0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent	 44	7800	5.2	yes	yes	no	good	no	no	
1	1	7.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent	 38	6000	NaN	no	no	no	good	no	no	
2	2	62.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	 31	7500	NaN	no	yes	no	poor	no	yes	
3	3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	 32	6700	3.9	yes	no	no	poor	yes	yes	
4	4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent	 35	7300	4.6	no	no	no	good	no	no	

5 rows × 26 columns

→ DROP FIELD

```
df = df.drop(['id','age'], axis=1)
df.head()
```

	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	 pcv	WC	rc	htn	dm	cad	appet	pe	ane	classifi
0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent	121.0	36.0	 44	7800	5.2	yes	yes	no	good	no	no	
1	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent	NaN	18.0	 38	6000	NaN	no	no	no	good	no	no	
2	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	423.0	53.0	 31	7500	NaN	no	yes	no	poor	no	yes	
3	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.0	56.0	 32	6700	3.9	yes	no	no	poor	yes	yes	
df.info)()																			

<class 'pandas.core.frame.DataFrame'> RangeIndex: 400 entries, 0 to 399 Data columns (total 24 columns):

Data #	Columns (total	24 columns): Non-Null Count	Dtype
0	bp	388 non-null	float64
1	sg	353 non-null	float64
2	al	354 non-null	float64
3	su	351 non-null	float64
4	rbc	248 non-null	object
5	рс	335 non-null	object
6	pcc	396 non-null	object
7	ba	396 non-null	object
8	bgr	356 non-null	float64
9	bu	381 non-null	float64
10	SC	383 non-null	float64
11	sod	313 non-null	float64
12	pot	312 non-null	float64
13	hemo	348 non-null	float64
14	pcv	330 non-null	object
15	WC	295 non-null	object
16	rc	270 non-null	object
17	htn	398 non-null	object
18	dm	398 non-null	object
19	cad	398 non-null	object
20	appet	399 non-null	object
21	pe	399 non-null	object
22	ane	399 non-null	object
23	classification	400 non-null	object
d+vnc	oc. floo+64(10)	objec+(14)	

dtypes: float64(10), object(14)
memory usage: 75.1+ KB

→ BREAKDOWN 1 DATATYPE

```
numerical = []
catgcols = []
for col in df.columns:
    if df[col].dtype=="float64":
        numerical.append(col)
    else:
        catgcols.append(col)
for col in df.columns:
    if col in numerical:
        df[col].fillna(df[col].median(), inplace=True)
    else:
        df[col].fillna(df[col].mode()[0], inplace=True)
numerical
     ['bp', 'sg', 'al', 'su', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hemo']
catgcols
     ['rbc',
     'pc',
      'pcc',
      'ba',
      'pcv',
      'wc',
      'rc',
      'htn',
      'dm',
      'cad',
      'appet',
      'pe',
      'ane',
      'classification'l
```

→ BREAKDOWN CLASSIFICATION TYPE NUMERIC

```
df['classification'].value_counts()

ckd    248
notckd    150
```

```
ckd\t 2
Name: classification, dtype: int64
```

▼ DATA ANOMALI OUTLIER ckd\t

▼ TRANSFORM INDEX & LABEL DATASET

▼ TRANSFORM DATASET MODELING

```
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

for col in catgcols:
    df[col] = le.fit_transform(df[col])

df['classification'] = le.fit_transform(df['classification'])
```

```
x = df[index_col]
y = df[label_col]
```

▼ DATASET CLEAN

df.head()

	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	 pcv	WC	rc	htn	dm	cad	appet	pe	ane	classification	
0	80.0	1.020	1.0	0.0	1	1	0	0	121.0	36.0	 32	72	34	1	4	1	0	0	0	0	ılı
1	50.0	1.020	4.0	0.0	1	1	0	0	121.0	18.0	 26	56	34	0	3	1	0	0	0	0	
2	80.0	1.010	2.0	3.0	1	1	0	0	423.0	53.0	 19	70	34	0	4	1	1	0	1	0	
3	70.0	1.005	4.0	0.0	1	0	1	0	117.0	56.0	 20	62	19	1	3	1	1	1	1	0	
4	80.0	1.010	2.0	0.0	1	1	0	0	106.0	26.0	 23	68	27	0	3	1	0	0	0	0	

5 rows × 24 columns

▼ EXPORT DATASET CLEAN

```
df.to_csv('kidney_disease_updated.csv')
```

→ MODELING BUILD

```
max_depth=4, max_features=None, max_leaf_nodes=None,
    min_impurity_decrease=0.0,
    min_samples_split=2,min_weight_fraction_leaf=0.0,
    random_state=42, splitter='best'
model = dtc.fit(x train, y train)
dtc_acc = accuracy_score(y_test, dtc.predict(x_test))
print(f"Akurasi Data Training = {accuracy_score(y_train, dtc.predict(x_train))}")
print(f"Akurasi Data Testing = {dtc acc} \n")
print(f"Confusion Matrix : \n{confusion_matrix(y_test, dtc.predict(x_test))}\n")
confusion = confusion_matrix(y_test, dtc.predict(x_test))
tn,fp,fn,tp = confusion.ravel()
print(f"classification_report : \n{classification_report(y_test, dtc.predict(x_test))}\n")
    Akurasi Data Training = 0.99375
    Akurasi Data Testing = 1.0
     Confusion Matrix:
     [[52 0]
     [ 0 28]]
    classification_report :
                                recall f1-score
                   precision
                                                   support
                0
                        1.00
                                  1.00
                                            1.00
                                                        52
                1
                        1.00
                                  1.00
                                            1.00
                                                        28
                                            1.00
                                                        80
         accuracy
                                            1.00
                                                        80
        macro avg
                        1.00
                                  1.00
    weighted avg
                        1.00
                                  1.00
                                            1.00
                                                        80
```

▼ SIMULASI MODEL

```
input_data = (80,1.02,1,0,1,1,0,0,121,36,1.2,138,4.4,15.4,32,72,34,1,4,1,0,0,0)
```

```
input_data_as_numpy_array = np.array(input_data)
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)

print(prediction)

if (prediction[0] == 0):
    print('Pasien tidak terkena batu ginjal')

else:
    print('Pasien terkena batu ginjal')

[0]
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but Decision

▼ VISUALISASI

Pasien tidak terkena batu ginjal

warnings.warn(

```
hemo <= 12.95
                                      entropy = 0.959
                                       samples = 320
                                     value = [198, 122]
                                         class = ckd
                     sc <= 1.15
                                                            sq <= 1.017
                  entropy = 0.206
                                                          entropy = 0.569
                   samples = 186
                                                           samples = 134
                   value = [180, 6]
                                                          value = [18, 116]
                     class = ckd
                                                           class = not ckd
          sq <= 1.017
                                                                       al <= 0.5
                              entropy = 0.0
                                                 entropy = 0.0
         entropy = 0.736
                                                                     entropy = 0.17
                             samples = 157
                                                 samples = 15
          samples = 29
                                                                     samples = 119
                            value = [157, 0]
                                                 value = [15, 0]
         value = [23, 6]
                                                                    value = [3, 116]
                               class = ckd
                                                   class = ckd
           class = ckd
                                                                     class = not ckd
                      al <= 0.5
entropy = 0.0
                                                           entropy = 0.0
                                                                               entropy = 0.0
                  entropy = 0.996
                                                           samples = 116
samples = 16
                                                                                samples = 3
                    samples = 13
                                                                               value = [3, 0]
value = [16, 0]
                                                          value = [0, 116]
                    value = [7, 6]
                                                           class = not ckd
 class = ckd
                                                                                class = ckd
                     class = ckd
         entropy = 0.811
                              entropy = 0.0
                              samples = 5
          samples = 8
          value = [2, 6]
                              value = [5, 0]
         class = not ckd
                               class = ckd
```