

Figure 1

Sheet 2 of 2

ATGGACCATGCTAATGAGGGTACATCGTATTTGTAGCACTGGAAATCCATAAT
 TTCAGAAGAGGAAAGGAAAAGGAAACTAGGGACTGCTCCCTTTTCCCAATAATCATA
 GGAAGAAAACCTGGTAGTACTAGITCACCTAACGGCTTATCACCTCCTCCCTC
 TGTGGATTCAAATTACCCAACAGGAGAGATAGAGCATCTTCACAGAAATGGTC
 ATGCATAGTGTGCTCTCCAACACAGGCACCAATCTTAATCCCTCTATGGT
 TACAATGAAGGACTGGCTTACAACACTACAGCTCTGGAACAGAACATCTCTT
 CTAATAGTCTAAAAGATTGTCTTCTAACATCAGCTCTGGAACAGAACATCTCTT
 TTTGTGAAAATGTTGGTGGGCTACAGTTAACAGTGGACTAGTGGAGCTGTGGGT
 TCAGTTAATGATGGTCCCAGTTGGTGTGCAAGGAGGTGCTTCTATCA
 GTTATACCTCACCACAAATGGTCAACAAACTAGGTATGGAGAAAATGAA
 ACCAGACTACATCAAACAGAAATTACAGTGTCTTCCATCTTTGATGT
 TTTCTAATCCGACTCTAATTTCTATTGA

>SAK amino acid seq. (SEQ ID NO:2)

MATCIGEKIEDFKVGNLLGKGSFAGVYRAESIHTGLEVAIKMIDKKAMYKAGMV
 QRVQNEVKIHCQLKHP
 SILELYNYFEDNSVYVYLVLEMCHNGEMNRYLKNRVPKFSENEARHPMHQIITGM
 LYLHSHGILHRLDTLS
 NLLLTRNMNIKIADFGIATQLKMPHEKHYTLCGTPNYISPEIATRSHAHGLESDVW
 SLGCMFYTLLIGRPP
 FDTDTVKNTLNKVLADYEMPSFLSIEAKDLIHLQLLRRNPADRLSLSVLDHPFM
 SRNSSTSKDLDGTVE
 DSIDSIGHATISTAITASSSTSISGSLFDKRLLIQQLPLPNKMTVFPKNKSSTDFSSSG
 DGNSFYTQWGNQ
 ETSNSGRGRVIQDAEERPHSRYLRRAYSSDRSGTSNSQSQAKEYTYTMERCHSAEM
 LSVSKRSGGGEENEERY
 SPTDNNANIFNFFKEKTSSSGSFERPDNNQALSNHLCPGKTPFPFADPTPQTETV
 QWFGNLIQINAHLR
 KTTEYDSISPNRDFQGHQPDQLQKDTSKNAWTLTKVKKNSDASDNAHSVKQQNTM
 KYMTALHSKPEIIQQEC
 VFGSDPLSEQSKTRGMEEPWGYZQNRRLSITSPLVAHRLKPIRQTKKAVVSILD
 SEEVCVELVKEYASQ
 EYVKEVLQISSLGDNTITIYYPNGGRGFPLADRPPSPTDNISRYSFDNLPEKYWRKY
 QYASRFPQLVRSKS
 PKITYFTRYAKCILMENS PGADFEVWFYDGVKIHKTEDFIQVIEKTGKSYTLKSES
 EVNSLKEEIKMYMD
 HANEGRHICLASESISEERKTRSAPFFPIIGRKPGSTSSPKALSPPPSVDSNYPTR
 DRASFNRMVMH
 SAASPTQAPILNPSMVTEGLGLTTASGTDISSNSLKDCLPKSAQLLKSVFVKNV
 GWATQLTSGAVWVQ
 FNDGSQLVVAQGVSSIYTSPNGQTTRYGENEKLPDYIKQKLQCLSSILLMFSNPT
 PNPH

Alignment of the Kinase Domain of SAK with Other Mitotic Kinases

Two sSAK Mutants Generated for the Dominant negative Studies: D154A and K41M

FIG. 2.

Summary of Target Validation Studies: SAK

		Dominant negative studies				Normal		
		Tumor				HMEC	PrEC	
Antiproliferative Activity		A549	HeLa	PC-3	MCF7	H1299		
Wt								
GFP fusion	+	+	++	+	+	+	+	+
IRES GFP	+	+	+	+	nd	+	nd	nd
K41M								
GFP fusion	++	++	++	+	+	+	+	+
IRES GFP	++	++	++	+	nd	+	nd	nd
D154A								
GFP fusion	++	nd	++	+	+	+	+	+
IRES GFP	++	nd	++	+	nd	+	nd	nd
Antisense:	HeLa	A549		H1299				
	+		+/.		+/.			

(+ indicates antiproliferative effect in either the GFP positivity study, cell tracker or antisense studies)

FIG. 3

Overexpression of SAK Mutants Have a More Pronounced Antiproliferative Effect than Wild Type in A549 Cells

FIG. 4

SAK Mutants Have a More Pronounced Antiproliferative Effect Relative to Wild Type in A549 Cells

FIG. 5

SAK Mutants Have a More Significant Antiproliferative Effect Than Wild Type in MCF7 Cells

FIG. 6

SAK Wild Type and Mutants Have Similar Antiproliferative Effects in PC-3 Cells

FIG. 7

SAK K41M Mutant has a Weak Antiproliferative Effect in H1299 Cells

FIG. 8

SAK Wild Type and Mutants Have No Antiproliferative Effects in Normal Cells in GFP Positivity Studies

FIG. 9

SAK Wild Type and Mutant Proteins Do Not Have Significant Antiproliferative Activity in Normal Cells

SAK K41M Mutant Does Not Have Strong Antiproliferative Effects in Normal Cells

FIG. 11

Reduction of SAK With Antisense Oligo Transfections is Antiproliferative in HeLa and A549 Cells

FIG. 12

Reduction of SAK With Antisense OligoTransfections is Weakly Antiproliferative in HUVEC Cells

48 hr BrdU Incorporation

FIG. 13

SAKmRNA is Overexpressed in Some Tumor Cell Lines

Relative Expression

FIG. 14

SAK Summary

Identification Proteomics- Chk2 interacting protein

Functional Studies

Dominant Negative Studies

- Mutant SAK has a much stronger antiproliferative phenotype than the wild type SAK in tumor cells while neither wild type or mutant SAK is antiproliferative in normal cells.
- The higher expression level of the mutant SAK relative to wild type makes it difficult to validate SAK only by the dominant negative strategy

Antisense Studies

- Preliminary studies suggests that inhibition of SAK mRNA with antisense oligos is antiproliferative in A549 and HeLa cells

Literature

- Strong supporting literature shows antisense reduction of mouse SAK is antiproliferative and that the mouse SAK knockout results in increased cell cycle arrest and apoptosis

FIG. 15

Model for Antiproliferative Activity Associated with SAK Inhibition

FIG. 16

Biochemical assay for Sak kinaseactivity

FIG. 17

Protocol for Sak Autophosphorylation Assay

Bind Sak from *E. coli* lysates to Ni-NTA agarose O/N at 4°C

Wash Ni-NTA with lysis buffer (20 mM Hepes, pH 7.2, 0.5 M NaCl, 0.5% Tween-20, 25 mM β -glycerol phosphate, 1 mM NaF, 1 mM Na_3VO_4 , 1 mM NaPyP, 10% glycerol

Wash Ni-NTA with kinase buffer (20 mM MOPS, pH 7.2, 25 mM β -glycerol phosphate, 5 mM EGTA, 1 mM Na_3VO_4)

Resuspend resin-bound Sak in 10 μ L kinase buffer
Add 10 μ L of labeling mix (20 mM MgCl₂, 2 mM MnCl₂, 0.2 mM ATP, 0.5 μ Ci/ μ L $\gamma^{32}P$ ATP in kinase buffer
Incubate at 30°C, 15 min.

FIG. 18

Autophosphorylation Activity of
Sak Produced in *E. coli*

FIG. 19