

Model Optimization and Tuning Phase Template

Date	7 July 2024
Team ID	SWTID1720434734
Project Title	Ecommerce shipping prediction
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression CV	Define the parameter grid for logistic Engression CV log_reg_cc_perms_grid = { (5': [1, 10, 100],	# Print best parameters and score print("Best parameters for Logistic Regression ON", log reg or grid.best params) print("Best score for Logistic Regression ON", log reg or grid.best_score) ### Best parameters for Logistic Regression ON: {"Cs": 10, rov": 5, 'penalty': '11', 'solver': 'liblinear'} Best score for Logistic Regression ON: 0.636418936379142
SVC	■ Define the parameter grid for SVC svc_param_grid = { "Cr: (0.1, 1.0), "kernel: ('lioner', 'rbf'), "gamma': ('scale', 'auto') } # Initialize and fit GridSearchCV for SVC svc_prid = GridSearchCV(SVC(random_state=1234), svc_param_grid, cv=5, scoring='accuracy', n_jobs=-1, verbose=2) svc_prid.fit(x_train_normalized, y_train) ## Fitting 5 folds for each of 12 candidates, totalling 60 fits "GridSearchCV" estimator: SVC [-SVC]	[] # Print best parameters and score print("Best parameters for SVC:", svc_grid.best_params_) print("Best score for SVC:", svc_grid.best_score_) Best parameters for SVC: {'c': 10, 'gamma': 'scale', 'kernel': 'rbf'} Best score for SVC: 0.6546212982583078

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
Logistic Regression	Example Logistic Regression Classification Report precision recall f1-score support
	0 0.00 0.00 895
	1 0.59 1.00 0.74 1305
	accuracy 0.59 2200 macro avg 0.30 0.50 0.37 2200 weighted avg 0.35 0.59 0.44 2200
	[] confusion_matrix(y_test, y_pred_lr)
	æ array([[0, 895],

KNN	T 1000 C3 100 100 100	
	KNN Classification Report precision recall f1-score support	
	0 0.55 0.58 0.56 895 1 0.70 0.67 0.68 1305	
	0.53	
	accuracy 0.63 2200 macro avg 0.62 0.62 0.62 2200	
	weighted avg	
	confusion_matrix(y_test, y_pred_knn)	
	→ array([[519, 376],	
	[432, 873]])	
Random Forest	Random Forest Classification Report:	
	precision recall f1-score support	
	0 0.58 0.71 0.63 895	
	1 0.76 0.64 0.70 1305	
	accuracy 0.67 2200	
	macro avg 0.67 0.68 0.67 2200	
	weighted avg 0.69 0.67 0.67 2200	
	[] confusion_matrix(y_test, y_pred_rf)	
	array([[632, 263],	
	[464, 841]])	
Ridge Classifier	₹ Ridge Classifier Classification Report	
	precision recall f1-score support	
	0 0.00 0.00 0.00 895	
	1 0.59 1.00 0.74 1305	
	accuracy 0.59 2200	
	macro avg 0.30 0.50 0.37 2200 weighted avg 0.35 0.59 0.44 2200	
	weighted avg 0.33 0.39 0.44 2200	
	[] confusion_matrix(y_test, y_pred_rc)	
	<pre>→ array([[0, 895],</pre>	
	[0, 1305]])	

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest	The Random forest model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Efficiently processes massive amounts of data. Can work with both numerical and categorical data. Combining multiple trees reduces the risk of overfitting. Helps identify the most influential features. Can handle
	datasets with missing values.