

Autoencoders

Machine Learning: Jordan Boyd-Graber

University of Maryland

Problems of Autoencoders

- Unsupervised
 - Lots of data
 - Need priors / regularization
- Probabilistic loss function
 - does not work well for discrete data (more later)
 - hard to explain hidden layer probabilistically

Problems of Autoencoders

- Unsupervised
 - Lots of data
 - Need priors / regularization
- Probabilistic loss function
 - does not work well for discrete data (more later)
 - hard to explain hidden layer probabilistically
- So let's use variational inference

$$\ell_i \equiv -\mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log p_\phi(x_i|z) \right] + \mathsf{KL}(q_\theta(z|x_i)||p(z)) \tag{1}$$

- Reconstruction error
- Variational representation distribution
- Regularization

$$\ell_i \equiv -\mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log p_\phi(x_i|z) \right] + \mathsf{KL} \left(q_\theta(z|x_i) || p(z) \right) \tag{1}$$

- Reconstruction error
- Variational representation distribution
- Regularization

$$\ell_i \equiv -\mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log p_\phi(x_i|z) \right] + \mathsf{KL}(q_\theta(z|x_i)||p(z)) \tag{1}$$

- Reconstruction error
- Variational representation distribution
- Regularization

$$\ell_i \equiv -\mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log p_\phi(x_i|z) \right] + \mathsf{KL}(q_\theta(z|x_i)||p(z)) \tag{1}$$

- Reconstruction error
- Variational representation distribution
- Regularization

Interpretation

- Lower bound on reconstruction of decoder
- Keep representation constrained
- Probabilistic parameterization

Make this Concrete

- $KL(q_{\theta}(z|x_i)||p(z))$
- $q(z|x_i)$: normal distribution with output of NN as mean [variational distribution]
- p(z): standard normal distribution
- Decoder $p_{\phi}(x|z)$ depends on model / data:
 - Grayscale Image? Bernoulli distribution for each pixel
 - Words? Multinomial over vocabulary

Make this Concrete

- $KL(q_{\theta}(z|x_i)||p(z))$
- $q(z|x_i)$: normal distribution with output of NN as mean [variational distribution]
- p(z): standard normal distribution
- Decoder $p_{\phi}(x|z)$ depends on model / data:
 - Grayscale Image? Bernoulli distribution for each pixel
 - Words? Multinomial over vocabulary

Make this Concrete

- $KL(q_{\theta}(z|x_i)||p(z))$
- $q(z|x_i)$: normal distribution with output of NN as mean [variational distribution]
- p(z): standard normal distribution
- Decoder $p_{\phi}(x|z)$ depends on model / data:
 - Grayscale Image? Bernoulli distribution for each pixel
 - Words? Multinomial over vocabulary

Variational Inference Story

$$\ell_i(\lambda) = \mathbb{E}_{q_{\lambda}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right] - \mathsf{KL}(q_{\theta}(z|x_i)||p(z))$$
 (2)

- Want to optimize $p_{\phi}(x|z)$ (likelihood)
- ELBO remains lower bound
- Difference is KL between variational distribution and p(z)

Variational Inference Story

$$\ell_i(\lambda) = \mathbb{E}_{q_{\lambda}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right] - \mathsf{KL}(q_{\theta}(z|x_i) || p(z))$$
 (2)

- Want to optimize $p_{\phi}(x|z)$ (likelihood)
- ELBO remains lower bound
- Difference is KL between variational distribution and p(z)
- Actually simpler than LDA
 - No global latent variables (only z)
 - Can minibatch the data

Variational Inference Story

$$\ell_i(\lambda) = \mathbb{E}_{q_{\lambda}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right] - \mathsf{KL}(q_{\theta}(z|x_i) || p(z))$$
 (2)

- Want to optimize $p_{\phi}(x|z)$ (likelihood)
- ELBO remains lower bound
- Difference is KL between variational distribution and p(z)
- Actually simpler than LDA
 - No global latent variables (only z)
 - Can minibatch the data
 - □ But what about ϕ ? (encoder)

Variational EM

- Learn variational parameters
- Update ϕ using supervised backprop

Variational EM

- Learn variational parameters
- Update ϕ using supervised backprop
- What if x is discrete? (Later)