Homework 3: Support Vector Machines

Writeup due 23:59 on Friday 27 March 2015

You will do this assignment individually and submit your answers as a PDF via the Canvas course website. There is a mathematical component and a programming component to this homework. Do not submit code.

1. Composing Kernel Functions [4pts]

Prove that

$$K(x, x') = \exp\{-||x - x'||_2^2\},$$

where $x, x' \in \mathbb{R}^D$ is a valid kernel, using only the following properties. If $K_1(\cdot, \cdot)$ and $K_2(\cdot, \cdot)$ are valid kernels, then the following are also valid kernels:

$$K(x, x') = c K_1(x, x')$$
 for $c > 0$
 $K(x, x') = K_1(x, x') + K_2(x, x')$
 $K(x, x') = K_1(x, x') K_2(x, x')$
 $K(x, x') = \exp\{K_1(x, x')\}$
 $K(x, x') = f(x) K_1(x, x') f(x')$ where f is any function from \mathbb{R}^D to \mathbb{R}

2. Slack Variables and Importances [5pts]

Derive the dual problem in the "soft margin" case of the support vector machine, where the data are not linearly separable and there are "slack variables" ξ_n for each datum. Now, imagine that each data point has an "importance" to it in forming our classifier, $r_n > 0$, much like in the regression homework. Derive a dual problem for this case and explain how you arrived at it.

3. SVM as Quadratic Program [5pts]

Quadratic programs are optimization problems that have the following form:

$$z^\star = rg \min_z rac{1}{2} z^\mathsf{T} P z + q^\mathsf{T} z$$
 such that $Gz \geq h$ and $Az = b$

To solve the primal "hard margin" case of the SVM with a quadratic program, what would we use for P, q, G, h, A and b? What are these values for the dual version of the problem? [Hint: for the primal problem you'll need to make z include both the weights and the bias term.]

4. Implementing an SVM [10pts]

In the previous homework, you studied a simple data set of fruit measurements. Code up a simple linear SVM to classify lemons from apples. Use a quadratic programming solver, such as qp from CVXOPT¹. First, implement the primal problem and plot your decision boundary and margins. Then, implement the dual version of the problem. Which data are the support vectors?

5. Calibration [1pt]

Approximately how long did this homework take you to complete?

Changelog

- v1.0 14 March 2015 at 12:00
- v1.1 14 March 2015 at 13:00 Fixed small typo.

¹http://cvxopt.org/