

Non-Intrusive Heat Flux Quantification Using Acoustic Sensing and Machine Learning

Christy Dunlap, Hari Pandey, Jackson Marsh, Ethan Weems, Han Hu Department of Mechanical Engineering, University of Arkansas

Significance of Temporal Features Image Sequence-Based Heat Flux Quantification Sequences Sampling Regression Feature Extraction MLP 909000 Effect of Temporal and Spatial Features on Model Accuracy Temporal Feature: Sequence Length Heat flux prediction accuracy is sensitive to 100 pcs 0.9454 temporal features. Dunlap et al. 2023

Pandey et al. ASME HT2023-106015

Multimodal sensor fusion improves the accuracy of heat flux predictions.

Acknowledgment

Acknowledgement: This work was supported by Arkansas EPSCoR Data Analytics that are Robust & Trusted (DART) seed grant number 22-EPS4-0028 under National Science Foundation grant number OIA-1946391. This work used Bridges2 GPU at Pittsburgh Supercomputing Center (PSC) through allocation MCH200010 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296 and Neocortex CS-1 through PSC grant MCH220003P.

