M.Sc. in ,Transportation Systems'

Applied Statistics in Transport

Exercises: Hypotheses Testing, Statistical Tests

1. In road construction for highways, the pavement is specified to be at least 0.5 centimetres thick by one of the many quality measures. The thickness is known to be $N(\mu, \sigma=0.2)$. The quality control system uses a significance level of 0.05. In 50 samples on one day, the mean thickness was 0.43 centimetres. Should the operator adjust the machine or is the thickness sufficient?

Solution:

- a) The engineer would act by adjusting the machines only if the pavement was too thin. H₀: $\mu \ge \mu_0 = 0.5 \ cm$, H₁: $\mu < \mu_0$ (if 0.5cm are not reached, re-adjustment is necessary)
- b) Choose a significance level α . $\alpha = 0.05$
- c) Decision Rule: Reject H₀: $\mu \ge \mu_0 = 0.5 \ cm$ in favour of H₁: $\mu < \mu_0$ if $z \le z_{0.05} = -1.645$ (one sided hypothesis).
- d) $\hat{z} = \frac{\overline{x} \mu}{\sigma / \sqrt{n}} = \frac{0.43 0.5}{0.2 / \sqrt{50}} = -2.4749$, (0.43-0.5)/(0.2/sqrt(50))
- e) Reject H₀ and adjust the machine, the pavement is too thin.

2. In a nuclear power plant, the cold start procedure consists of bringing the reactor to 35% of power, and then to 65% of power, before full operation. At each stage, engineers make measurements of several critical reactor attributes. If the binding energy does not have an exact mean rate of 11.5 MeV at 35% power, then the reactor could cascade into a critical configuration at subsequent power levels. Set up the hypothesis for a decision system at the 35% power level stage using $\alpha=0.05$. It is known that the population of measurement errors is normal with standard deviation $\sigma=1.5$. On this day's power-up, the sample mean of nine observations is 10.2 MeV. What should the operators of the reactor do?

Solution:

- a) The plant operators would not continue to power up the reactor if the binding energy did not meet specification. The action to be taken would be to shut down. H₀: $\mu = \mu_0 = 11.5$, H₁: $\mu \neq \mu_0$ (stop if 11.5 are not reached)
- b) Choose a significance level α . $\alpha = 0.05$
- c) Decision Rule: Reject H₀: $\mu = \mu_0 = 11.5$ in favour of H₁: $\mu \neq \mu_0$ if $|z| \geq z_{0.025} = 1.96$ (two sided hypothesis).
- d) $\hat{z} = \frac{\overline{x} \mu}{\sigma / \sqrt{n}} = \frac{10.2 11.5}{1.5 / \sqrt{9}} = -2.6000$
- e) Reject H₀ and shut down the power-up.

3. Compute these two t-tests including the p-value and the confidence interval without the command t.test:

```
> t.test(1:10,7:20)
          Welch Two Sample t-test
 data: 1:10 and 7:20
 t = -5.4349, df = 21.982, p-value = 1.855e-05
 alternative hypothesis: true difference in means is not equal to 0
 95 percent confidence interval:
  -11.052802 -4.947198
 sample estimates:
 mean of x mean of y
        5.5
              13.5
 > t.test(1:10)
          One Sample t-test
 data: 1:10
 t = 5.7446, df = 9, p-value = 0.0002782
 alternative hypothesis: true mean is not equal to 0
 95 percent confidence interval:
  3.334149 7.665851
 sample estimates:
 mean of x
       5.5
Solution:
length(1:10)=10, length(7:20)=14,means: 5.5,13.5
sd(1:10)= 3.027650, sd(7:20)= 4.1833 (R always divides by n-1)
var(1:10) #9.166667, sqrt(9.166667)=3.027650
var(7:20) #17.5, sqrt(17.5)=4.1833
  #variance of the means of the differences (unequal variances):
sqrt((var(1:10)/length(1:10))+(var(7:20)/length(7:20))) # 1.47196
sqrt((9.166667/9)+(17.5/13)) # 1.47196
(t<-(5.5-13.5)/1.47196) #-5.43493
Reject H<sub>0</sub> if |t| \le t_{0.05,22} = -2.074
Conclusion: The difference between the two means is significant at the 95% level, we cannot
accept the null hypothesis.
p-value: 2*pt(-5.4349,21.982) #gives 1.855473e-05
   ((mean(1:10)-mean(7:20))-(qt(0.975,22)*(1.47196))) #-11.05266
  ((mean(1:10)-mean(7:20))+(qt(0.975,22)*(1.47196))) #-4.947342
However, we should have used the argument var.equal=T because the variances of the two
```

sample do not differ significantly:

```
We can assume equal variances because of the F-test:
> var.test(7:20,1:10)
       F test to compare two variances
  data: 7:20 and 1:10
  F = 1.9091, num df = 13, denom df = 9, p-value = 0.3343
```

```
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.4983797 6.3229710
sample estimates:
ratio of variances
      1.909091
#variance of the means of the differences (equal variances):
t.test(1:10,c(7:20),var.equal=T)
(var_mean_equal_var < -sqrt(((9*(3.027650^2))+(13*(4.1833^2)))/22)*sqrt(1/10+1/14)) #=
1.554215
(t<-(13.5-5.5)/1.554215) #5.147293
2*pt(-5.147293,length(1:10)+length(7:20)-2) #p-value: gives 3.690576e-05 (woher hatte
ich hier die exakte reale Zahl für die d.f.?
#CI:
((mean(1:10)-mean(7:20))-(qt(0.975,22)*(1.554215))) #-11.22324
((mean(1:10)-mean(7:20))+(qt(0.975,22)*(1.554215))) #-4.776755
Conclusion: The difference between the two means is significant at the 95% level, we
cannot accept the null hypothesis.
```

The command t.test(1:10) tests the hypothesis whether the sample mean significantly differs from zero: t.test(1:10) length(1:10) #=10 mean(1:10) #=3.5 sd(1:10) #=3.027650

var(1:10) #9.166667, sqrt(9.166667)=3.027650 (t_value<-(mean(1:10)-0)/(sqrt(var(1:10)/length(1:10)))) #5.744563

qt(0.975,9) #2.262157

2*pt(-5.744563,9) #0.0002781959=(1-pt(5.744563,9))*2, two-tailed test #CI:

mean(1:10)-(qt(0.975,9)*(sqrt(var(1:10)/length(1:10)))) #3.334149 mean(1:10)+(qt(0.975,9)*(sqrt(var(1:10)/length(1:10)))) #7.66585 #The mean lies between 3.33 and 7.67 in 95% of sampling.