

Elementen i en $m \times n$ matris A (m rader och n kolumner)

Linear Algebra and Its Applications
$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$
 Elementet på i :te raden och j :te kolumnen: a_{ij}

Addition av matriser

Om A och B är två lika stora matriser kan man addera dem elementvis:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1j} + b_{1j} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & \dots & a_{ij} + b_{ij} & \dots & a_{in} + b_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mj} + b_{mj} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

Om A och B inte har samma antal rader och kolumner, är operationen inte definierad.

Om alla element i en $m \times n$ matris är noll kallar vi den för nollmatrisen

$$0 = \begin{bmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix}$$

En n x n matris D där alla element utom dem på diagonalen D_{ii} är noll kallas för en diagonalmatris

Speciellt identitetsmatrisen:

$$\mathbf{D} = \begin{bmatrix} d_{11} & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & d_{ii} & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & d_{nn} \end{bmatrix} \quad i \neq j \Rightarrow d_{ij} = 0$$

$$\mathbf{I}_{n} = \begin{bmatrix} 1 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 1 \end{bmatrix}$$

Multiplikation med skalär: rA

Varje element multipliceras med *r*:

$$rA = \begin{bmatrix} ra_{11} & \dots & ra_{1j} & \dots & ra_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ ra_{i1} & \dots & ra_{ij} & \dots & ra_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ ra_{m1} & \dots & ra_{mj} & \dots & ra_{mn} \end{bmatrix}$$

Räkneregler för addition och multiplikation med skalär:

$$A + B = B + A$$
 $r(A + B) = rA + rB$
 $(A + B) + C = A + (B + C)$ $(r + s)A = rA + sA$
 $A + 0 = A$ $r(sA) = (rs)A$
 $A - B = A + (-1)B$

Multiplikation av matriser

A är en $m \times n$ matris och B är en $n \times p$ matris med kolumner $\boldsymbol{b_1}$ $\boldsymbol{b_2}$... $\boldsymbol{b_p}$. Produkten AB blir då (definition) $m \times p$ matrisen

$$AB = A[\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_p] = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \dots \ A\mathbf{b}_p]$$

Elementet AB_{ij} i den multiplicerade matrisen AB består av summan av produkterna av elementen i rad i från A och elementen av kolumn j från B:

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

som vi kallar rad-kolumnformeln, en alternativ definition.

Räkneregler

$$A(BC) = (AB)C$$

$$A(B+C) = AB + AC$$

$$I_{m}A = AI_{n} = A$$

$$(A+B)C = AC + BC$$

$$r(AB) = (rA)B = A(rB)$$

För multiplikation mellan matriser gäller i allmänhet

- $AB \neq BA$
- om AB = AC är det inte alls säkert att B = C
- om AB = 0 är det inte givet att A = 0 eller B = 0

Potenser av matriser $A^k = A \cdot A \cdot A \cdot ... k$ gånger

Transponering av matriser

Rader och kolumner byter plats: en $m \times n$ matris blir en n $\times m$ matris. Transponatet av matrisen A skrivs A^T

$$(\mathbf{A}^T)_{ii} = a_{ii}$$

Räkneregler

Under förutsättning att matriserna A och B har rätt storlek gäller

- $(A^T)^T = A$
- $(A + B)^T = A^T + B^T$
- $(rA)^T = rA^T$
- $(AB)^T = B^T A^T$

Bevis för att $(AB)^T = B^TA^T$: Låt A vara m x n och B n x p. Då är AB m x p, $(AB)^T$ p x m, B^T är p x n och A^T är n x m, så B^T är p x m liksom $(AB)^T$, så storlekarna stämmer.

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{ki} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}$$

$$(AB)_{ij}^{T} = (AB)_{ji} = a_{j1}b_{1i} + a_{j2}b_{2i} + ...a_{jn}b_{ni}$$

Kalla för ett ögonblick elementen i B^T för b_{rs} och elementen i A^T för a_{rs} , då gäller:

$$(B^{T}A^{T})_{ij} = b_{i1}a_{1j} + b_{i2}a_{2j} + ...b_{in}a_{nj}$$

Men
$$b'_{i1} = b_{1i}$$
, $a'_{1i} = a_{i1}$ osv, så:

$$(B^{T}A^{T})_{ij} = a_{j1}b_{1i} + a_{j2}b_{2i} + ...a_{jn}b_{ni}$$
 alltså samma som $(AB)_{ij}^{T}$, V.S.B.

Invertering av matriser

En $n \times n$ matris A är inverterbar om det finns en $n \times n$ matris C som uppfyller villkoret:

$$CA = I \text{ och } AC = I$$

Inversen av A skrivs A^{-1} . Enligt ovan gäller $A^{-1}A = I$ och $AA^{-1} = I$

För 2×2 matriser kan inversen enkelt beräknas med hjälp av determinanter.

Låt
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Determinanten av A blir då

$$det A = ad - bc$$

Om $det A \neq 0$, så är A inverterbar och lika med:

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
 (detta visas i Lay, övning 2.2 36)

Inversa transformen: om A är en inverterbar $n \times n$ matris så har, för varje \mathbf{b} i \mathbb{R}^n , ekvationen $A\mathbf{x} = \mathbf{b}$ den unika lösningen $\mathbf{x} = A^{-1}\mathbf{b}$.

Några samband för matrisinverser

Om en $n \times n$ matris A är inverterbar så är inversen A^{-1} också inverterbar och $(A^{-1})^{-1} = A$

Om A och B är inverterbara n x n matriser är AB också inverterbar och $(AB)^{-1} = B^{-1}A^{-1}$

Bevis: (AB) $B^{-1}A^{-1}$) = A($B^{-1}B$) A^{-1} = AI_n A^{-1} = A A^{-1} = I_n På samma sätt är ($B^{-1}A^{-1}$)AB = I_n

Om A är inverterbar så är A^{T} det också och $(A^{T})^{-1} = (A^{-1})^{T}$

Bevis: Med användning av regeln $(AB)^T = B^TA^T$:

$$(A^{-1})^T A^T = (A A^{-1})^T I^T = I$$
 och
 $A^T (A^{-1})^T = (A^{-1} A)^T = I^T = I$

Elementära matriser är $n \times n$ matriser som erhålls genom en enda elementär radoperation på enhetsmatrisen I. Elementära radoperationer kan representeras av elementära matriser, t.ex. :

Addera en multipel av en rad till en annan rad:

$$E_{1}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} + ka_{11} & a_{32} + ka_{12} & a_{33} + ka_{13} \end{bmatrix}$$

Multiplikation från vänster med E₁ adderar k gånger rad 1 i A till rad 3.

Skifta plats mellan två rader:

$$E_{2}A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Multiplikation från vänster med E₂ skiftar plats för raderna 1 och 2 i A.

Multiplicera en rad med en skalär:

$$E_{3}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ sa_{11} & sa_{32} & sa_{33} \end{bmatrix}$$

Multiplikation från vänster med E₃ medför att rad 3 i A multipliceras med talet s.

Elementära matriser är inverterbara:

Elementära matriser måste vara inverterbara på samma sätt som elementära radoperationer är reversibla. Det är också lätt att visa för de tre typerna t.ex. att:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -k & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -k & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

alltså att
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -k & 0 & 1 \end{bmatrix}$$
 är inversen till $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix}$. $E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -k & 0 & 1 \end{bmatrix}$.

Ett sätt att beräkna A-1:

En inverterbar matris A är radekvivalent med identitetsmatrisen: $A \sim I$

Definitionsmässigt:

$$A \sim E_1 A \sim E_2 E_1 A \sim ... \sim (E_p E_{p-1} ... E_1) A = I$$

Låt $E_p E_{p-1} ... E_1$ vara en sekvens av elementära rådoperationer som

överför A till I: $(E_p E_{p-1}...E_1)A = I$

 $(E_p E_{p-1}...E_1)$ är inverterbar eftersom den är en produkt av inverterbara matriser och följaktligen:

$$(E_{p}E_{p-1}...E_{1})^{-1}(E_{p}E_{p-1}...E_{1})A = (E_{p}E_{p-1}...E_{1})^{-1}I$$

$$A = (E_p E_{p-1} ... E_1)^{-1}$$

$$A^{-1} = (E_p E_{p-1} ... E_1) = (E_p E_{p-1} ... E_1)I$$

A-1 kan alltså beräknas genom att göra samma radoperationer i samma ordning på I som man gör för att transformera A till I.

Algoritm för beräkning av A⁻¹:

Bilda den utökade matrisen [A I] och utför elementära radoperationer på den I syfte att överföra A till I, samma operationer kommer då att överföra I till A⁻¹. Exempel (Lay 2.2 7):

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$
Beräkna A⁻¹!
$$\begin{bmatrix} A I \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -9/2 & 7 & -3/2 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{bmatrix} = \begin{bmatrix} I A^{-1} \end{bmatrix}$$

Om de tre första kolumnerna inte kan reduceras till I så är A inte inverterbar.

Linjära avbildningar

Matrismultiplikation och invers som linjära avbildningar:

Multiplikation med matrisen A avbildar **x** på A**x**. Multiplikation med A⁻¹ avbildar A**x** på **x**.

Multiplikation med B avbildar x på Bx. Multiplikation med A avbildar Bx på ABx

Ekvivalenta satser om $n \times n$ matrisen ATeoremet om inverterbara matriser

(antingen är alla satser sanna, eller också är alla falska).

- A är inverterbar.
- A är radekvivalent till I_n .
- A har n pivot-element.
- Ekvationen Ax = 0 har bara en trivial lösning.
- Kolumnerna i A bildar en linjärt oberoende uppsättning vektorer.
- Den linjära avbildningen $x \to Ax$ är ett-till-ett.
- Ekvationen $A oldsymbol{x} = oldsymbol{b}$ har minst en lösning för varje för varje $oldsymbol{b}$ i $\mathbb{R}^{ ext{n}}$.
- Kolumnerna i A spänner upp \mathbb{R}^n .
- Den linjära transformen $x \to Ax$ avbildar \mathbb{R}^n på \mathbb{R}^n .
- Det finns en $n \times n$ matris C sådan att CA = I.
- Det finns en $n \times n$ matris D sådan att AD = I.
- A^T är en inverterbar matris.

Vi har några gånger delat upp matriser i block, till exempel en matris A i dess kolumner. Ett annat exempel är skrivningen i Lay av matrismultiplikationen AB som $row_i \cdot col_i$: (AB)_{ij}= $row A_i \cdot col B_i$.

Alltså:
$$\begin{bmatrix} a_{11} \ a_{12} \ ... a_{1n} \end{bmatrix} \cdot \begin{bmatrix} b_{11} \ b_{22} \ \vdots \ b_{np} \end{bmatrix}$$
 o.s.v.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix}$$

Man kan faktiskt mer generellt dela in matriser i block eller undermatriser och sedan hantera blocken på liknande sätt som vi vant oss vid att räkna med de enskilda elementen i matrisen. Indelning i block kan vara fördelaktig, antingen för att blocken naturligen beskriver delsystem i problemet, eller för att blockindelningen är numeriskt fördelaktig.

Exempel: värmetransport i en byggnad

D. Kim and J.E. Braun,

Journal of Building Performance Simulation, DOI: 10.1080/19401493.2014.977952

Blockmatriser (partitioned matrices)

Matriser kan delas upp i t ex kolumnvektorer. Mer generellt kan man dela upp matriser i block med valfria dimensioner.

T ex
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
 där varje A_{ij} representerar en undermatris.

Detta är praktiskt användbart om man har stora system som består av mindre delsystem eller för att det kan vara beräkningsmässigt fördelaktigt att dela in matrisen i block.

Många av de räkneregler vi nämnt för matrisoperationer kan tillämpas på blocken i matriser. Så följer lätt ur definitionerna att om A_{ij} har samma dimensioner som motsvarande B_{ii} så är

$$A + B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{bmatrix} \quad \text{och} \quad sA = \begin{bmatrix} sA_{11} & sA_{12} \\ sA_{21} & sA_{22} \end{bmatrix} \quad \text{osv.}$$

Av definitionen av matrismultiplikation AB framgår att sådan är möjlig bara är möjlig om A och B har kompatibla dimensioner:

$$\begin{array}{lll} A & \text{gånger} & B & = & AB \\ \left\{m \times n\right\} & & \left\{n \times p\right\} & & \left\{m \times p\right\} \end{array}$$

Förutsatt både att blockindelningen och aktuella undermatrisers dimensioner är kompatibla med matrismultiplikation kan matrismultiplikation utföras blockvis, exempelvis som:

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$