- **13.** a) Ábrázolja a [-2; 4]-on értelmezett, $x \mapsto (x-1,5)^2 + 0,75$ hozzárendeléssel megadott függvényt!
 - b) Állapítsa meg a fenti függvény minimumának helyét és értékét!
 - c) Oldja meg a valós számok halmazán a $\sqrt{x^2 3x + 3} = 1 2x$ egyenletet!
- **14.** Egy tanulmányi verseny döntőjében 8 tanuló vett részt. Három feladatot kellett megoldaniuk. Az első feladat maximálisan elérhető pontszáma 40, a másodiké 50, a harmadiké 60. A nyolc versenyző feladatonkénti eredményeit tartalmazza az alábbi táblázat:

versenyző sorszáma	I.	II.	III.	összpontszám	százalékos teljesítmény
1.	28	16	40		
2.	31	35	44		
3.	32	28	56		
4.	40	42	49		
5.	35	48	52		
6.	12	30	28		
7.	29	32	45		
8.	40	48	41		

- a) Töltse ki a táblázat hiányzó adatait! A százalékos teljesítményt egészre kerekítve adja meg! Melyik sorszámú versenyző nyerte meg a versenyt, ki lett a második, és ki a harmadik helyezett?
- **b)** A nyolc versenyző dolgozata közül véletlenszerűen kiveszünk egyet. Mennyi a valószínűsége annak, hogy 75%-osnál jobb teljesítményű dolgozat került a kezünkbe?
- c) Egy tanuló betegség miatt nem tudott megjelenni a döntőn. Másnap megkapta, és megoldotta a feladatokat. Eredményét később összehasonlította a nyolc döntős versenyző eredményével. Észrevette, hogy az első feladatot a versenyzők I. feladatra kapott pontszámainak a mediánjára teljesítette (egészre kerekítve), a második feladatot pedig a nyolc versenyző II. feladata pontszámainak a számtani közepére (szintén egészre kerekítve). A III. feladatot 90%-ra teljesítette. Mennyi lett ennek a tanulónak az összpontszáma? Ezzel hányadik helyen végzett volna?
- 15. Az erdőgazdaságban háromféle fát nevelnek (fenyő, tölgy, platán) három téglalap elrendezésű parcellában. A tölgyfák parcellájában 4-gyel kevesebb sor van, mint a fenyőfákéban, és minden sorban 5-tel kevesebb fa van, mint ahány fa a fenyő parcella egy sorában áll. 360-nal kevesebb tölgyfa van, mint fenyőfa. A platánok telepítésekor a fenyőkéhez viszonyítva a sorok számát 3-mal, az egy sorban lévő fák számát 2-vel növelték. Így 228-cal több platánfát telepítettek, mint fenyőt.
 - a) Hány sor van a fenyők parcellájában? Hány fenyőfa van egy sorban?
 - b) Hány platánfát telepítettek?

A 16 – 18. feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát egyértelműen jelölje meg!

16. Egy útépítő vállalkozás egy munka elkezdésekor az első napon 220 méternyi utat aszfaltoz le. A rákövetkező napon 230 métert, az azutánin 240 métert és így tovább: a munkások létszámát naponta növelve minden következő munkanapon 10 méterrel többet, mint az azt megelőző napon.

- a) Hány méter utat aszfaltoznak le a 11-edik munkanapon?
- **b)** Az összes aszfaltozandó út hossza ebben a munkában 7,1 km. Hányadik munkanapon készülnek el vele?
- c) Hány méter utat aszfaltoznak le az utolsó munkanapon?
- **d**) A 21-edik napon kétszer annyian dolgoztak, mint az első napon. Igaz-e az a feltételezés, hogy a naponta elkészült út hossza egyenesen arányos a munkások létszámával? (Válaszát indokolja!)
- **17.** Egy háromszög egyik oldalának hossza 6 cm. Az ezeken nyugvó két szög 50° és 60°. A háromszög beírt körének középpontját tükröztük a háromszög oldalaira. E három pont a háromszög csúcsaival együtt egy konvex hatszöget alkot.
 - a) Mekkorák a hatszög szögei?
 - **b**) Számítsa ki a hatszög azon két oldalának hosszát, amely a háromszög 60°-os szögének csúcsából indul!
 - c) Hány négyzetcentiméter a hatszög területe?
 - A b) és a c) kérdésekben a választ egy tizedes pontossággal adja meg!
- **18.** A szociológusok az országok statisztikai adatainak összehasonlításánál használják a következő 6000-*G*

tapasztalati képletet: $\dot{E} = 75.5 - 5.10^{\frac{6000 - 4}{6090}}$

A képletben az $\not E$ a születéskor várható átlagos élettartam években, G az ország egy főre jutó nemzeti összterméke (a GDP) reálértékben, átszámítva 1980-as dollárra.

- **a)** Mennyi volt 2005-ben a várható élettartam abban az országban, amelyben akkor a *G* nagysága 1090 dollár volt?
- **b)** Mennyivel változhat ebben az országban a várható élettartam 2020-ra, ha a gazdasági előrejelzések szerint ekkorra *G* értéke a 2005-ös szint háromszorosára nő?
- c) Egy másik országban 2005-ben a születéskor várható átlagos élettartam 68 év. Mekkora volt ekkor ebben az országban a GDP (*G*) nagysága (reálértékben, átszámítva 1980-as dollárra)?

Pontszámok:

13a	13b	13c	14a	14b	14c	15a	15b	16a	16b	16c	16d	17a	17b	17c	18a	18b	18c
2	2	8	5	2	5	10	2	3	8	3	3	6	5	6	4	5	8