学院______专业____

班

年级 学

姓名

共6页 第1页

2020~2021 学年第一学期期末考试试卷

《模拟电子技术基础 1》(A卷 共 6 页)

(考试时间: 2020年12月20日)

题号	1	1_	111	四	五	六	七	八	九	成绩	核分人签字
得分											

- 一、(每空1分,共16分)选择题
- 1. 温度升高时,本征半导体中的载流子数量会()。
 - A. 增多 B. 不变 C. 减少 D. 不确定
- 2. 下列不属于 PN 结特性的是()。
 - A. 温度特性 B. 电容效应 C. 单向导电性 D. 线性特性
- 3. 若将 220V 交流电压变为 12V 稳定直流电压,下列不需要的模块是()。
 - A. 变压器 B. 整流模块 C. 放大模块 D. 稳压模块
- 4. 分压式偏置的共射极放大电路如图所示, 若将发射极电阻的并联电容 C。移除, 电压增益幅值将(); 若增大集电极电阻 R。, 电压增益幅值将()。
 - A. 增大 B. 减小 C. 不变 D. 不确定

- 5. 三极管放大电路三种基本接法相对比,若要求输入电阻大、输出电阻小,应选择()。
 - A. 共射放大电路 B. 共集放大电路 C. 共基放大电路 D. 以上均不对

- 6. 场效应管是()控制()元件。
- A. 电压 B. 电流 C. 电阻 D. 电容
- 7. 绝缘栅型场效应管可分为()和()两种。
- A. 增强型 B. 结型 C. 耗尽型 D. 双极型
- 8. 集成运算放大器双端输入,已知 u_1 =1.5V, u_2 =2.5V,则输入的共模信号为()。
 - A. 2V B. 1V C. -2V D. -1V
- 9. 集成运算放大器本质上为多级放大器, 其极间耦合方式采用()。
 - A. 变压器耦合 B. 直接耦合 C. 阻容耦合 D. 光电耦合
- 10. 为了减小放大电路的输入电阻并增强电路的带负载能力,应引入()负反馈。
- A. 电压串联 B. 电压并联 C. 电流串联 D. 电流并联
- 11. 欲得到电压-电流转换电路,应在放大电路中引入()负反馈。
- A. 电压串联 B. 电压并联 C. 电流串联 D. 电流并联
- 12. 如图所示,单相全波整流电路中, $u_2 = \sqrt{2}U_2\sin wt$, 则输出电压的平均值 $U_{O(AV)} = ($),

A. 0.9*U*₂ B. 1.0*U*₂ C. 1.1*U*₂ D. 1.2*U*₂

流过每个二极管的电流平均值为()。

A. $\frac{0.45U_2}{R_L}$ B. $\frac{0.5U_2}{R_L}$ C. $\frac{1.0U_2}{R_L}$ D. $\frac{0.9U_2}{R_L}$

二、(4分)已知 $u_i=10$ sinwt, VD 为理想二极管,请在相应位置画出 u_o 波形图。

三、 $(20\,
m f)$ 放大电路电路图和晶体管的输出特性曲线及直流负载线如图所示,其中晶体管 R_s =1k Ω , R_L =2k Ω , r_{be} =1k Ω , U_{BE} 可忽略不计,电容 C_1 、 C_2 容量足够大,交、直流电流放大系数近似相等 $\beta = \bar{\beta}$ 。

- (1) 根据输出特性曲线求解电源电压 U_{CC} 和静态工作点 Q (I_{BQ} 、 I_{CQ} 、 U_{CEQ});
- (2) 若电路输出信号出现截止失真,如何调整 Rb 才能消除截止失真?
- (3) 由右图求解电阻 R_b 、 R_c 和 $\bar{\beta}$;
- (4) 画出放大电路的简化 H 参数小信号等效电路;
- (5) 求输入电阻 R_i 和输出电阻 R_o ;
- (6) 求电压增益 $\dot{A}_{\!\scriptscriptstyle u}$ 和源电压增益 $\dot{A}_{\!\scriptscriptstyle us}$ 。

学院 专业

学号 年级

姓名

共6页第3页

四、 $(6\, \mathcal{G})$ 电路如图所示,电源电压 $U_{CC}=U_{EE}=20\,\mathrm{V}$,假设 R_1 、 VD_1 、 VD_2 、 R_2 支路的 五、 $(7\, \mathcal{G})$ 电路如图所示, $U_{CC}=U_{EE}=12\,\mathrm{V}$,电流源 $I=2\,\mathrm{mA}$, $R_B=100\Omega$,三极管 T_1 、 T_2 的 功耗很小,运放功耗很小。图中 $R_3=1$ k Ω , $R_f=9$ k Ω , $R_L=10$ k Ω ,晶体管输出功率和耐 $\beta=50$,已知静态时, T_1 、 T_2 的集电极电压为 T_1 0、求: 压值足够大,运放和晶体管的频率响应足够。

- (1) 假设晶体管的饱和管压降 $U_{CES} = 0$ V, 当正弦波输入时的, 求解最大不失真输出 电压 U_{OM} 以及此时的输出功率 P_{O} 、电源功率 P_{W} 、效率 η 及功率管的耗散功率 P_{T} 。
- (2) 电路中的二极管 VD₁、VD₂ 的作用是什么?

- (1) 电阻 Rc 的值;
- (2) 计算电路的差模放大倍数;
- (3) 当 *u*_{i1}=10mV、*u*_{i2}=-10mV 时, 求输出电压 *u*_o。

 共6页第4页

六、(15分)反馈放大电路如图所示,设运放 A 均为理想运放。 1、放大电路如图(a)所示,试求:

- (1) 指出图中的级间交流反馈支路,并判断级间交流反馈类型;
- (2) 设电路满足深度负反馈条件,估算电压增益 $A_{\rm uf} = \frac{u_{\rm O}}{u_{\rm i}}$ 。

- 2. 放大电路如图(b)所示。试:
- (1) 如果引入级间交流负反馈,请在图中标出集成运放 A 的同相输入端和反相输入端;
- (2) 判断级间交流反馈类型(电压还是电流反馈、串联还是并联反馈)。

学号

学院 专业

班 年级

姓名

共6页 第5页

- 七、(19 分)电路如图所示,已知 A_1 、 A_2 、 A_3 为理想运算放大器,电容 C 上的初始电 八、(6 分)判断下面电路能否振荡 $\mathbb{E}\,u_c(0)=0\mathrm{V}$ 。
- (1) 分别说明 A_1 、 A_2 、 A_3 三个运放各组成什么电路,并说明 A_1 、 A_2 、 A_3 是工作在线性 状态还是非线性状态;
- (2) 写出 A_1 的输出 u_{01} 和输入 u_i 的关系式 $u_{01} = f(u_i)$;
- (3) 写出 A_2 的输出 u_{02} 和输入 u_{01} 的关系式 $u_{02} = f(u_{01})$;
- (4) 画出 A₃ 的输出 u_{03} 和输入 u_{02} 的关系曲线 $u_{03} = f(u_{02})$;
- (5) u_i 是一个从时间为零时开始跳变成 0.11V 的阶跃信号,求信号加上后一秒钟, u_{01} 、 u_{02} 、 u_{03} 所达到的数值。

九、(7 分) 电路如图所示, u_{i2} 和 K 均大于 0,试写出电压 u_0 和输入 u_{i1} 、 u_{i2} 的关系式;

