(d.1) The definition of Inot is as follows, in Fibe $\mathcal{T}_{M_0 \mathcal{I}}^b = \sum_{i=1}^N m_i \left(\Delta \vec{\gamma}_i^b \right)^T \left(\Delta \vec{\gamma}_i^b \right) \mathcal{T}_{3x3} - \left(\Delta \vec{\gamma}_i^b \right) \left(\Delta \vec{\gamma}_i^b \right)^T \right)$ where, $\Delta \vec{r}_i^b = \vec{r}_i - \vec{r}_{cm}$ then let P' be the principle axis frame. IMOI = RIPT IMOI RPP Where, Rpr is a notation mathix from F-5 So, we can white the plunciple moments of Sutha $\mathcal{I}_{MoI} = \mathcal{R}_{pr}^{T} \left[\sum_{i=1}^{N} m_{i} \left(\Delta \overrightarrow{r_{i}} \right) \left(\Delta \overrightarrow{r_{i}} \right) \mathcal{I}_{3\times3} - \left(\Delta \overrightarrow{r_{i}} \right) \left(\Delta \overrightarrow{r_{i}} \right)^{T} \right) \mathcal{R}_{pr}$ $=\sum_{i=1}^{N}m_{i}\left(\Delta\vec{r}_{i}^{b}\right)^{T}\left(\delta\vec{r}_{i}^{b}\right)R_{pr}^{T}\left(\Delta\vec{r}_{i}^{b}\right)R_{pr}^{T}\left(\Delta\vec{r}_{i}^{b}\right)\left(\Delta\vec{r}_{i}^{b}\right)R_{pr}^{T}\left(\Delta\vec{r}_{i}^{b}\right)$ $=\sum_{i=1}^{N}m_{i}\left(\Delta\vec{r}_{i}^{b}\right)^{T}\left(\delta\vec{r}_{i}^{b}\right)R_{pr}^{T}\left(\Delta\vec{r}_{i}^{b$ $(A \overrightarrow{r_i} b) (\overrightarrow{r_i} b) = (A \overrightarrow{r_i} c) (A \overrightarrow{r_i} c)$

This fact can also be proved as below
$$\Delta \vec{r}_i^b = R_i^T \Delta \vec{r}_i^c$$
 i $(\Delta \vec{r}_i^b)^T = \Delta \vec{r}_i^c R_{pr}$ $(\Delta \vec{r}_i^b)^T (\Delta \vec{r}_i^c)^T = (\Delta \vec{r}_i^c)^T + ($