66.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a} \int \frac{1}{\sqrt{ax^2 + b + c}} \, dx$$

67.
$$\int \frac{x}{\sqrt{ax^2 + bx + c}} \, dx = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{1}{\sqrt{ax^2 + bx + c}} \, dx$$

68.
$$\int \frac{1}{x\sqrt{ax^2 + bx + c}} dx = \begin{cases} \frac{-1}{\sqrt{c}} \log \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right| & (c > 0) \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}} & (c < 0) \end{cases}$$

69.
$$\int x^3 \sqrt{x^2 + a^2} dx = \left(\frac{1}{5}x^2 - \frac{2}{15}a^2\right) \sqrt{(a^2 + x^2)^3}$$

70.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \frac{\mp \sqrt{(x^2 \pm a^2)^3}}{3a^2 x^3}$$

71.
$$\int \operatorname{sen} ax \operatorname{sen} bx \, dx = \frac{\operatorname{sen} (a - b)x}{2(a - b)} - \frac{\operatorname{sen} (a + b)x}{2(a + b)} \quad (a^2 \neq b^2)$$

72.
$$\int \sin ax \cos bx \, dx = -\frac{\cos (a-b)x}{2(a-b)} - \frac{\cos (a+b)x}{2(a+b)} \quad (a^2 \neq b^2)$$

73.
$$\int \cos ax \cos bx \, dx = \frac{\sin (a-b)x}{2(a-b)} + \frac{\sin (a+b)x}{2(a+b)} \quad (a^2 \neq b^2)$$

$$74. \int \sec x \tan x \, dx = \sec x$$

$$75. \int \csc x \cot x \, dx = -\csc x$$

77.
$$\int x^n \sin ax \, dx = -\frac{1}{a} x^n \cos ax + \frac{n}{a} \int x^{n-1} \cos ax \, dx$$

78.
$$\int x^n \cos ax \, dx = \frac{1}{a} x^n \sin ax - \frac{n}{a} \int x^{n-1} \sin ax \, dx$$

79.
$$\int x^n e^{ax} \, dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} \, dx$$

80.
$$\int x^n \log ax \, dx = x^{n+1} \left[\frac{\log ax}{n+1} - \frac{1}{(n+1)^2} \right]$$

81.
$$\int x^n (\log ax)^m dx = \frac{x^{n+1}}{n+1} (\log ax)^m - \frac{m}{n+1} \int x^n (\log ax)^{m-1} dx$$

82.
$$\int e^{ax} \sin bx \, dx = \frac{e^{ax} \left(a \sin bx - b \cos bx \right)}{a^2 + b^2}$$

83.
$$\int e^{ax} \cos bx \, dx = \frac{e^{ax} (b \sin bx + a \cos bx)}{a^2 + b^2}$$

84.
$$\int \operatorname{sech} x \tanh x \, dx = -\operatorname{sech} x$$

85.
$$\int \operatorname{csch} x \operatorname{coth} x \, dx = -\operatorname{csch} x$$