Suppose that  $x_1$  and  $x_2$  are binary valued (0 or 1). Which of the following networks (approximately) computes the boolean function (NOT  $x_1$ ) AND (NOT  $x_2$ )?



Correct



| Suppose you have a multi-class classification problem with 10 classes. Your neural network has 3 layers, and the hidden layer (layer 2) has 5 units. Using the one-vs-all method described here, how many elements does $\Theta^{(2)}$ have? |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O 50                                                                                                                                                                                                                                         |
| O 55                                                                                                                                                                                                                                         |
| <ul><li>60</li></ul>                                                                                                                                                                                                                         |
| Correct                                                                                                                                                                                                                                      |
| O 66                                                                                                                                                                                                                                         |

Continue

Suppose  $x_1$  and  $x_2$  are binary valued (0 or 1). What boolean function does the network shown below (approximately) compute? (Hint: One possible way to answer this is to draw out a truth table, similar to what we did in the video).



 $igcup x_1$  AND  $x_2$ 

 $\bigcirc$  (NOT  $x_1$ ) OR (NOT  $x_2$ )

ullet  $x_1$  OR  $x_2$ 

Correct

 $\bigcirc$  (NOT  $x_1$ ) AND (NOT  $x_2$ )