Example 2

Kai Chung, Ying April 4, 2017

```
library(knitr)
setwd("/Users/KevQuant/Desktop/Depaul/csc495/wk2/ex2")
read_chunk("example02_2.R")
knitr::opts_chunk$set(echo = TRUE)
```

Working with different types of data

Step 1: Load the necessary libraries and data

```
library("ggplot2")
# Must load other packages first
library("sand")
library("intergraph")
```

Loading the Southern Women network (Davis data). GraphML format.

```
# Load data
setwd("/users/KevQuant/Desktop/Depaul/csc495/wk2/ex2")
davis<-read.graph("davis.graphml", format="graphml")</pre>
```

Step 2: Examine the bipartite network

Verify that it is bipartite.

```
# Examine data
summary(davis)

## IGRAPH U-WB 32 89 --
## + attr: id (v/c), x (v/n), y (v/n), type (v/l), label (v/c),
## | weight (e/n)

Plot using bipartite layout (better if rotated)

# Plot using bipartite layout
lo<-layout_as_bipartite(davis)
lo2<-cbind(lo[,2],lo[,1])

#View #1 align in Y-axis (O=bottom,1=top) by looking at the type
plot(davis,layout=layout_as_bipartite)</pre>
```

```
Cally Brown Fill Manuarine
#For Ref, plot(davis, layout=lo)
#View #2 align in x-axis() by looking at the type
plot(davis,layout=1o2)
E09:04/08
E08:09/16
E07(08/15
E06:05/19
Look at labels and types
# Look at labels and types
#False Part
V(davis)$label[1:5]
## [1] "Evelyn"
                 "Laura"
                            "Theresa"
                                       "Brenda"
                                                  "Charlotte"
V(davis)$type[1:5]
## [1] FALSE FALSE FALSE FALSE
#True part
V(davis)$label[20:25]
## [1] "E02:03/02" "E03:04/12" "E04:09/26" "E05:02/25" "E06:05/19" "E07:03/15"
V(davis)$type[20:25]
## [1] TRUE TRUE TRUE TRUE TRUE TRUE
```

So, FALSE is people

Step 3: Create projection

Create person-person projection

```
# Create person-person projection
#subset and transfer to single mode the network
#by the "which" argument ("TRUE" or "FALSE"or "BOTH")
davis.p2p<-bipartite_projection(davis, which="FALSE")
summary(davis.p2p)

## IGRAPH U-W- 18 139 --
## + attr: id (v/c), x (v/n), y (v/n), label (v/c), weight (e/n)
Plot the projected graph
# Plot the projected graph
plot(davis.p2p)</pre>
```


Plot the distribution of edge weights

```
# Plot the distribution of edge weights
davis.wts<-E(davis.p2p)$weight
hist(davis.wts)</pre>
```

Histogram of davis.wts

Step 4: Filtered version of the network

Create a new network removing the edges of weight 1 and 2.

```
# Create a new network removing the edges of weight 1 and 2.
davis.filt<-delete_edges(davis.p2p,E(davis.p2p)[E(davis.p2p)$weight<=2])
plot(davis.filt,layout=layout_with_kk)</pre>
```


Plot the weighted degree distribution of the new network

```
# Plot the weighted degree distribution of the new network
davis.deg<-graph.strength(davis.filt)
p<-ggplot(data.frame(Degree=davis.deg),aes(x=Degree))
p<-p+geom_histogram(col="white",fill="blue")</pre>
```

```
p<-p+ggtitle("Histogram of Weighted Degree")
print(p)</pre>
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Histogram of Weighted Degree

Step 5: Ego networks

Extract the ego networks for Laura and Sylvia

```
# Extract the ego networks for Laura and Sylvia
V(davis.filt)$label=="Laura"

## [1] FALSE TRUE FALSE FALSE
which(V(davis.filt)$label=="Laura")

## [1] 2
which(V(davis.filt)$label=="Sylvia")

## [1] 13
```

#Make ego graph with order=1 for each of nodes("Laura", "Sylvia")

egos<-make_ego_graph(davis.filt,1,node=c(2,13))</pre>

```
## [[1]]
## IGRAPH U-W- 8 24 --
```

egos

```
## + attr: id (v/c), x (v/n), y (v/n), label (v/c), weight (e/n)
## + edges:
## [1] 1--2 1--3 1--4 1--5 1--6 1--7 1--8 2--3 2--4 2--5 2--6 2--7 2--8 3--4
## [15] 3--5 3--6 3--7 3--8 4--5 4--6 4--7 4--8 6--7 7--8
## [[2]]
## IGRAPH U-W- 8 21 --
## + attr: id (v/c), x (v/n), y (v/n), label (v/c), weight (e/n)
## + edges:
## [1] 1--2 1--3 1--6 1--7 2--3 2--6 3--4 3--5 3--6 3--7 3--8 4--5 4--6 4--7
## [15] 4--8 5--6 5--7 5--8 6--7 6--8 7--8
#Laura eqo
laura<-egos[[1]]</pre>
#Sylvia eqo
sylvia <- egos [[2]]
Plot side-by-side use layout_as_star
# Plot side-by-side (use par(mfrow...) to do this).
#Check labels order in their (laura, sylvia) own network
V(laura)$label
## [1] "Evelyn"
                    "Laura"
                                "Theresa"
                                             "Brenda"
                                                          "Charlotte" "Frances"
## [7] "Eleanor"
                    "Ruth"
V(sylvia)$label
## [1] "Theresa"
                                                         "Katherine" "Sylvia"
                    "Ruth"
                                "Verne"
                                             "Myrna"
## [7] "Nora"
                    "Helen"
#From above, we got the location of labels in #2(laura) and #6(sylvia)
laura.lo<-layout_as_star(laura, V(laura)[2])</pre>
sylvia.lo<-layout_as_star(sylvia, V(sylvia)[6])</pre>
par(mfrow=c(1,2))
plot(laura,layout=laura.lo)
plot(sylvia,layout=sylvia.lo)
                                                         Verne.
         Brenda
                    Theresa
                                                                     Ruth
                                                Mona
Charlotte
                         Evelyn
                                                            Sylvia
                                                                        Theresa
             Laura
Frances
                                              Katherine
                      Ruth
                                                                    Helen
         Eleanor
                                                          Nora
par(mfrow=c(1,1))
```

Compare the two ego networks by weighted degree. First create data frame with the right structure. wdeg, ego 10, Laura 24, Sylvia 34, Laura

Create comparative data frame

Then plotting with ggplot is straightforward.

```
# Plot histogram
```

Step 6: New example: loading edge and attribute data

Load CSV files for edges and attributes. stringAsFactors is false because we can't use factors as node attributes.

```
# Edge and attribute data
edge.df <- read.csv("edgelist-sample.csv",stringsAsFactors = FALSE)
node.df <- read.csv("nodeattr-sample.csv",stringsAsFactors = TRUE)

class(edge.df)
## [1] "data.frame"</pre>
```

```
## [1] "data.frame"
```

class(node.df)

Convert to a graph from the two data frames. Note that the names of the vertices in the edge data frame have to match the first column of the vertices data frame.

```
# Convert to graph
gr<-graph.data.frame(edge.df,vertices = node.df,directed = TRUE)
summary(gr)

## IGRAPH DNW- 9 20 --
## + attr: name (v/c), Age (v/n), Sex (v/c), weight (e/n)
Plot
# Plot
plot(gr)</pre>
```

