1. Pedro Talk

The standard gradient descent dynamics is given by

$$dx(t) = -\nabla U(x(t))dt + \sigma dW(t), \quad x(0) = x_0.$$

In this note we will try to study the modified dynamics

$$dX_{\varepsilon}(t) = -e^{-\gamma \left(U(X_{\varepsilon}(t)) - \min_{s \le t} U(X_{\varepsilon}(s))\right)} \nabla U(X_{\varepsilon}(t)) dt + \varepsilon dW(t),$$

$$(1) X_{\varepsilon}(0) = x_0$$

2. Idea of Analysis

In the analysis of (1), let us assume that x_0 is a local minimum and a stationary point; that is, $\nabla U(x_0) = 0$. Define the deterministic flow induced by the vector field ∇U starting at an arbitrary point $x \in \mathbb{R}^d$:

(2)
$$\frac{d}{dt}S^tx = -\nabla U(S^tx), \quad S^0x = x.$$

Then, consider the proxy process to (1) given by

(3)
$$d\hat{X}_{\varepsilon}(t) = -e^{-\gamma \left(U(\hat{X}_{\varepsilon}(t)) - \min_{s < t - \tau_i} U(S^s \hat{X}_{\varepsilon}(\tau_i))\right)} \nabla U(\hat{X}_{\varepsilon}(t)) dt + \varepsilon dW(t),$$

on the interval $\tau_i < t < \tau_{i+1}$, where the times τ_i are the innovation times defined via

$$\tau_i = \inf \left\{ t \ge \tau_{i-1} : U(\hat{X}_{\varepsilon}(t)) < U(\hat{X}_{\varepsilon}(\tau_{i-1}) \right\},$$

with $\tau_0 = 0$ and the same initial condition as X_{ε} , $\hat{X}_{\varepsilon}(0) = x_0$. Let us now make some observations.

The time τ_1 is bounded below by the exit time of \hat{X}_{ε} from the basin of attraction, $\mathcal{B}(x_0)$, of x_0 ; that is, $\tau_1 > \sigma(x_0) = \inf \left\{ t : \hat{X}_{\varepsilon}(t) \in \partial \mathcal{B}(x_0) \right\}$, since for every $y \in \mathcal{B}(x_0)$, $\nabla U(y) \neq 0$. Now, from FW theory, it is well known that $\sigma(x_0)$ is exponentially distributed with mean $\varepsilon^{-2} \left(\min_{y \in \partial \mathcal{B}(x_0)} V(y) - V(x_0) \right)$, where V is the quasi-potential of (3). Since, \hat{X}_{ε} does not find a new minimum of the function U before time $\sigma(x_0)$, and since $\min_{t>0} U(S^t x_0) = U(x_0)$ we observe that the drift in equation (3) is given by $b(x) = -\nabla \left(1 - e^{-\gamma(U(y) - U(x_0))}\right)$ the quasi-potential is given by

$$V(y) = 2 - 2e^{-\gamma(U(y) - U(x_0))}.$$

As a consequence,

$$\mathbf{E}\sigma(x_0) = 2\varepsilon^{-2} \left(1 - e^{-\gamma \left(\min_{y \in \partial \mathcal{B}(x_0)} U(y) - U(x_0) \right)} \right)$$

$$\approx 2 \frac{\gamma}{\varepsilon^2} \left(\min_{y \in \partial \mathcal{B}(x_0)} U(y) - U(x_0) \right) + \mathcal{O}\left(\frac{\gamma}{\varepsilon^2} \right).$$

Claim 1. By choosing $\gamma = \varepsilon^2$, as $\varepsilon \to 0$, the exit happens in almost constant time.