Основные теоремы дифференциального исчисления

Теоремы о среднем

Теорема 11.1. (теорема Ферма). Пусть в интервале (a;b) определена функция f(x), которая в некоторой точке $x_0 \in (a;b)$ имеет наибольшее или наименьшее значение. Тогда или $f'(x_0) = 0$, или $f'(x_0)$ не существует.

Для дифференцируемой на (a;b) функции f(x) геометрический смысл теоремы Ферма в том, что, если такая функция имеет в точке $x_0 \in (a;b)$ наибольшее или наименьшее значение, то в точке $(x_0;f(x_0))$ касательная к графику функции y = f(x) параллельна оси Ox.

Теорема 11.2. (теорема Ролля). Пусть функция f(x) непрерывна на [a;b], дифференцируема в (a;b) и имеет равные значения на концах отрезка: f(a) = f(b). Тогда существует хотя бы одно значение $c \in (a;b)$ такое, что f'(c) = 0.

Теорему Ролля, по понятной причине, называют **теоремой о корнях производной** дифференцируемой функции.

Геометрически она означает, что у графика функции y = f(x), удовлетворяющей условиям теоремы, f(a) = f(b) существует на (a;b) точка (c;f(c)), в которой касательная параллельна оси 0x (см.

Теорема 11.3. *(теорема Коши)*. Если функции f(x) и $\varphi(x)$ непрерывны на [a;b], дифференцируемы в (a;b) и при $\forall x \in (a;b)$: $\varphi'(x) \neq 0$, то существует точка $c \in (a;b)$ такая, что $\frac{f(b)-f(a)}{\varphi(b)-\varphi(a)} = \frac{f'(c)}{\varphi'(c)}$.

Теорема 11.4 (теорема Лагранжа). Если функция f(x) непрерывна на [a;b] и дифференцируема в (a;b), то существует хотя бы одна точка $c \in (a;b)$ такая, что $\frac{f(b)-f(a)}{b-a}=f'(c)$ или f(b)-f(a)=(b-a)f'(c).

При этом последнее равенство называется формулой Лагранжа или формулой конечных приращений.

В силу того, что величина $\frac{f(b)-f(a)}{b-a}$ является угловым

коэффициентом секущей (хорды) M_1M_2 графика функции y=f(x)

(где $M_1(a; f(a)), M_2(b; f(b)))$, а f'(c) – угловой коэффициент касательной

к графику функции в точке (c; f(c)), геометрический смысл теоремы Лагранжа заключается в том, что в интервале (a;b) существует, по крайней мере, одна точка c, в которой касательная к графику y = f(x) параллельна секущей (хорде) M_1M_2 (см. рис. 11.2)

Правило Лопиталя

Теорема 11.5 *(теорема Лопиталя)*. Пусть функции f(x) и $\varphi(x)$ определены и дифференцируемы в окрестности точки x_0 , за исключением, быть может, самой точки x_0 , и пусть $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} \varphi(x) = 0$ или ∞ ,

 $\varphi(x) \neq 0$ и $\varphi'(x) \neq 0$ в этой окрестности. Тогда, если существует $\lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)}$

(конечный или бесконечный), то существует и $\lim_{x \to x_0} \frac{f(x)}{\varphi(x)}$ при

неопределенности (0/0) или (∞/∞) , и при этом имеет место равенство

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)}.$$

Замечания.

- 1. Правила Лопиталя применимы и тогда, когда функции f(x) и g(x) не определены при x = a.
- 2. Если при вычисления предела отношения производных функций f(x) и g(x) снова приходим к неопределённости вида 0/0 или ∞/∞ , то правила Лопиталя следует применять многократно (минимум дважды).
- 3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a, а к бесконечности ($x \to \infty$).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Пример 1. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{\ln(x^2 - 3)}.$$

Решение. Подстановка в заданную функцию значения x=2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

$$\lim_{\kappa \to 2} \frac{x^2 - 3x + 2}{\ln(x^2 - 3)} = \left(\frac{0}{0}\right) = \lim_{\kappa \to 2} \frac{\left(x^2 - 3x + 2\right)'}{\left[\ln(x^2 - 3)\right]'} =$$

$$= \lim_{\kappa \to 2} \frac{2x - 3}{2x/(x^2 - 3)} = \lim_{\kappa \to 2} \frac{\left(2x - 3\right)\left(x^2 - 3\right)}{2x} = \frac{1}{4}.$$

В числителе вычисляли производную многочлена, а в знаменателе - производную сложной логарифмической функции.

$$\lim_{x\to +\infty} \frac{\ln x}{x}$$

Пример 2. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞ . Поэтому применим правило Лопиталя:

$$\lim_{x \to +\infty} \frac{\ln x}{x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to +\infty} \frac{(\ln x)^{-1}}{x^{-1}} = \lim_{x \to +\infty} \frac{1}{x \cdot 1} = 0$$

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

$$\lim_{\kappa\to\infty}\frac{x^2}{e^{2\kappa}}.$$

Решение. Находим

$$\lim_{\kappa \to \infty} \frac{x^2}{e^{2\kappa}} = \left(\frac{\infty}{\infty}\right) = \lim_{\kappa \to \infty} \frac{2x}{2e^{2\kappa}} = \left(\frac{\infty}{\infty}\right) =$$
$$= \lim_{\kappa \to \infty} \frac{2}{4e^{2\kappa}} = \lim_{\kappa \to \infty} \frac{1}{2e^{2\kappa}} = 0.$$

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 4. Вычислить

$$\lim_{x \to 0} \frac{3x^3 + 12x^2}{7x^3 + x^2}$$

Решение. Находим

$$\lim_{x \to 0} \frac{3x^3 + 12x^2}{7x^3 + x^2} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{9x^2 + 24x}{21x^2 + 2x} = \left(\frac{0}{0}\right) =$$

$$= \lim_{x \to 0} \frac{18x + 24}{42x + 2} = 12.$$

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида 0/0.