Práctica 2 - Funciones S-computables -

Ejercicio 1.

a. Definir *macros* para las siguientes pseudo-instrucciones (con su interpretación natural) e indicar en cada caso qué variables y qué etiquetas se asumen "frescas":

- $V_i \leftarrow k$
- $V_i \leftarrow V_j + k$
- IF $V_i = 0$ GOTO L
- \blacksquare GOTO L

b. Definir dos pseudo-programas distintos en el lenguaje S (usando las macros convenientes del punto anterior) que computen la función de dos variables $f(x_1, x_2) = x_1 + x_2$. Para alguno de los dos, expandir las macros utilizadas prestando atención a la instanciación de variables y etiquetas frescas.

c. Sea P el programa en S que resulta de expandir todas las macros en alguno de los códigos del punto anterior. Determinar cuál es la función computada en cada caso:

- $\bullet \Psi_P^{(1)}: \mathbb{N} \to \mathbb{N}$
- $\Psi_P^{(2)}: \mathbb{N}^2 \to \mathbb{N}$
- $\Psi_{\mathcal{P}}^{(3)}: \mathbb{N}^3 \to \mathbb{N}$

Ejercicio 2.

a. Sea $C_S = \{\Psi_P^{(n)} \mid P \text{ es un programa en } S, n \geq 1\}$ la clase de funciones S-parciales computables. Mostrar que C_S es una clase PRC.

b. Demostrar (sin definir un programa en S) que la función $*: \mathbb{N}^2 \to \mathbb{N}$ definida por $*(x, y) = x \cdot y$ es S-computable.

c. Si $f: \mathbb{N}^n \to \mathbb{N}$ es una función primitiva recursiva. ¿Qué podemos decir acerca de la existencia de un programa en el lenguaje S que la compute?

Ejercicio 3. Decimos que un programa P es *autocontenido* si en cada instrucción $IF\ V \neq 0\ GOTO\ L$ que ocurre en P, L es una etiqueta definida en P.

a. Demostrar que todo programa P tiene un programa autocontenido P' equivalente (P y P' son programas equivalentes si $\Psi_P^{(n)} = \Psi_{P'}^{(n)} \ \forall n \geq 1$).

b. Sean P y Q dos programas autocontenidos con etiquetas disjuntas y sea $r: \mathbb{N}^n \to \{0,1\}$ un predicado primitivo recursivo. Definir macros para las siguientes pseudo-instrucciones (con su interpretación natural):

- IF $r(V_1, \ldots, V_n)$ GOTO L
- IF $r(V_1, \ldots, V_n)$ THEN P ELSE Q
- WHILE $r(V_1, \ldots, V_n)$ P

c. Dadas las funciones $f, g: \mathbb{N} \to \mathbb{N}$ definidas por

$$f(x) = \begin{cases} 1 & \text{si } x = 3 \\ \uparrow & \text{en otro caso} \end{cases} \quad \mathbf{y} \qquad g(x) = 2x$$

Demostrar que es \mathcal{S} -parcial computable la función

$$h(x) = \begin{cases} f(x) & \text{si } x \ge 5 \ \lor \ x = 3\\ g(x) & \text{en otro caso} \end{cases}$$

Ejercicio 4.

a. Se definen las siguientes variantes del lenguaje \mathcal{S} :

- S_1 : Igual que S pero sin la instrucción $V \leftarrow V + 1$
- S_2 : Igual que S pero sin la instrucción IF $V \neq 0$ GOTO L
- S_3 : Igual que S pero sin la instrucción $V \leftarrow V \doteq 1$

Demostrar que para cada uno de estos lenguajes existe al menos una función S-parcial computable que no es computable en este nuevo lenguaje.

b. Sea S' el lenguaje de programación definido como S salvo que sus instrucciones (etiquetadas o no) son de los siguientes tres tipos (con su interpretación natural):

$$\begin{aligned} V \leftarrow V' \\ V \leftarrow V + 1 \end{aligned}$$
 IF $V \neq V'$ GOTO L

Demostrar que una función es parcial computable en \mathcal{S}' si solamente si lo es en \mathcal{S} .

Ejercicio 5.

a. Demostrar que si $p: \mathbb{N}^{n+1} \to \{0,1\}$ es un predicado S-computable (total), entonces es S-parcial computable:

$$\mbox{minimoNA}_p(x_1,\dots,x_n,y) = \begin{cases} \min\{t \mid y \leq t \land p(x_1,\dots,x_n,t)\} & \mbox{si existe algún tal } t \\ \uparrow & \mbox{en otro caso} \end{cases}$$

b. Mostrar, usando el resultado anterior, que si $f: \mathbb{N} \to \mathbb{N}$ es biyectiva y S-computable (total), entonces también lo es su inversa, f^{-1} .

Ejercicio 6. Un programa P en el lenguaje S con instrucciones $I_1, I_2, ..., I_n$ se dice *optimista* si $\forall i = 1, ..., n$, si I_i es la instrucción IF $V \neq 0$ GOTO L entonces L no aparece como etiqueta de ninguna instrucción I_i con $j \leq i$.

Demostrar que el siguiente predicado es primitivo recursivo:

$$r(x) = \begin{cases} 1 & \text{si el programa cuyo número es } x \text{ es optimista} \\ 0 & \text{caso contrario} \end{cases}$$

Ejercicio 7. Utilizando las funciones primitivas-recursivas $STP^{(n)}$ y $SNAP^{(n)}: \mathbb{N}^{n+2} \to \mathbb{N}$ vistas en clase, mostrar que las siguientes son funciones S-parciales computables:

$$f_{1}(x,y) = \begin{cases} 1 & \text{si } y \in \text{Dom } \Phi_{x}^{(1)} \\ \uparrow & \text{si no} \end{cases} \qquad f_{2}(x) = \begin{cases} 1 & \text{si Dom } \Phi_{x}^{(1)} \neq \emptyset \\ \uparrow & \text{si no} \end{cases}$$
$$f_{3}(x,y) = \begin{cases} 1 & \text{si } y \in \text{Im } \Phi_{x}^{(1)} \\ \uparrow & \text{si no} \end{cases} \qquad f_{4}(x,y) = \begin{cases} 1 & \text{si Dom } \Phi_{x}^{(1)} \neq \emptyset \\ \uparrow & \text{si no} \end{cases}$$

Ejercicio 8. Sea $f: \mathbb{N} \to \mathbb{N}$ una función \mathcal{S} -parcial computable en tiempo polinomial (i.e., existe un programa P tal que $\Psi_P^{(1)}(x) = f(x)$ y tal que, para algún polinomio Q(x), P no requiere más que $Q(\lceil \log_2 x \rceil)$ pasos para terminar).

- a. Mostrar que f es primitiva recursiva.
- b. ¿Sucede lo mismo si la cota es exponencial, doblemente exponencial, etc.?
- c. ¿Qué podemos decir, en general, sobre la complejidad temporal de una función computable que no sea primitiva recursiva?

Ejercicio 9. Se dice que un programa P en el lenguaje S se pisa con n entradas si para alguna entrada $x_1, x_2, ..., x_n$ y algún tiempo t, la variable de salida Y luego de t pasos de la ejecución de P con entradas $x_1, x_2, ..., x_n$ vale #P.

Demostrar que para cualquier $n \in \mathbb{N}$ es \mathcal{S} -parcial computable la función:

$$f_n(x) = \begin{cases} 1 & \text{si el programa cuyo número es } x \text{ se pisa con n entradas} \\ \uparrow & \text{caso contrario} \end{cases}$$