Rule	Expression
Commutativity	X + Y = Y + X
	$X \cdot Y = Y \cdot X$
Associativity	(X+Y)+Z=X+(Y+Z)
	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
Distributivity	$X \cdot Y + X \cdot Z = X \cdot (Y + Z)$
	$(X+Y)\cdot(X+Z)=X+Y\cdot Z$
Covering	$X + X \cdot Y = X$
	$X \cdot (X + Y) = X$
Combining	$X \cdot Y + X \cdot Y = X$
	$(X+Y)\cdot(X+Y)=X$
Consensus	$X \cdot Y + X \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$
	$(X+Y)\cdot(X+Z)\cdot(Y+Z) = (X+Y)\cdot(X+Z)$
Generalized Idempotency	$X + X + \cdots + X = X$
	$X \cdot X \cdot \cdots \cdot X = X$
DeMorgan's Theorems	$(X_1 \cdot X_2 \cdot \dots \cdot X_n)' = X_1' + X_2' + \dots + X_n'$
	$(X_1 + X_2 + \cdots + X_n)' = X_1' \cdot X_2' \cdot \cdots \cdot X_n'$
Generalized DeMorgan's	$F(X_1, X_2,, X_n, +, \cdot) = F(X_1, X_2,, X_n, \cdot, +)'$
Shannon's Expansion	$F(X_1, X_2,, X_n) = X_1 \cdot F(1, X_2,, X_n) + X'_1 \cdot F(0, X_2,, X_n)$
	$F(X_1, X_2,, X_n) = [X_1 + F(0, X_2,, X_n)] \cdot [X'_1 + F(1, X_2,, X_n)]$

```
module my_module (
  input logic clk, // clock
  input logic rst, // reset
  output logic out
);
  // Module internals here
endmodule
```

```
// Sequential (synchronous) logic
always_ff @(posedge clk or posedge rst) begin
  if (rst)
    out <= 0;
else
    out <= ~out;
end

// Combinational logic
always_comb begin
    // assignments that depend solely on input combinatorics
end</pre>
```

```
interface simple_if (input logic clk);
logic data;
modport master (output data);
modport slave (input data);
endinterface
```

```
property p_reset;
  @(posedge clk) disable iff (rst) (a |-> b);
endproperty
assert property(p_reset);
```

```
class Packet;
  rand bit [7:0] addr;
  rand bit [31:0] data;
  constraint addr_range { addr < 100; }
endclass</pre>
```

A	Output
О	О
1	1

NOT

A	Output
0	1
1	О

OR

A	В	Output
О	О	О
О	1	1
1	О	1
1	1	1

_	_	
١		
- 1	/	
- 1		

AND

A	В	Output
О	O	0
О	1	0
1	0	0
1	1	1

NAND

A	В	Output
О	O	1
О	1	1
1	0	1
1	1	О

NOR

A	В	Output
0	o	1
О	1	0
1	О	0
1	1	0

XOR

A	В	Output
О	O	О
О	1	1
1	О	1
1	1	О

XNOR

A	В	Output
o	О	1
О	1	0
1	О	0
1	1	1

