RACHUNEK PRAWDOPODOBIEŃSTWA 1R Lista zadań nr 5

- 1. Czy λ -układ jest zawsze σ -ciałem?
- **2.** Pokaż, że jeżeli rodzina \mathcal{L} jest jednocześnie π -układem oraz λ -układem, to jest σ -ciałem.
- 3. Niech X i Y będą zmiennymi losowymi. Oznaczmy przez μ_X i μ_Y ich rozkłady. Pokaż, że rodzina

$$\mathcal{L} = \{ A \in \mathcal{B}(\mathbb{R}) : \ \mu_X(A) = \mu_Y(A) \}.$$

jest λ -układem.

 ${\bf 4}^*$. Dane są miary probabilistyczne μ na $\mathbb R$ oraz ν na $\mathbb R^2$ takie, że dla dowolnych s,t

$$\mu((-\infty, s]) \cdot \mu([t, \infty)) = \nu((-\infty, s] \times [t, \infty)).$$

Pokaż, że $\nu = \mu \otimes \mu$.

- **5.** Punkt x nazywamy punktem skokowym rozkładu μ na \mathbb{R} , gdy $\mu(\{x\}) > 0$. Pokaż, że rozkład prawdopodobieństwa μ może mieć co najwyżej przeliczalną liczbę punktów skokowych.
- **6.** a) Niech X będzie zmienna losową o rozkładzie jednostajnym na przedziale [-5, 10] ($X \sim U([-5, 10])$. Oblicz $\mathbb{P}[X > 0]$, $\mathbb{P}[5 < X < 7]$, $\mathbb{P}[X^2 - 12X + 35 > 0]$, $\mathbb{P}[X \in \mathbb{Q}]$.
- b) Rozwiąż to samo zadanie, ale przy założeniu, że X jest liczbą losową z przedziału [-5, 10] o rozkładzie zadanym gestością f(x) = Cx, dla odpowiedniej stałej C.
- 7. Podaj przykład dystrybuanty, której zbiór wszystkich punktów nieciągłości jest gęsty w zbiorze $[0,1] \cup [2,3].$
- 8. $(Rozkład geometryczny \operatorname{Geom}(p))$ Wykonujemy doświadczenia Bernoulliego (z prawdopodobieństwem pojedynczego sukcesu p) aż do chwili otrzymania pierwszego sukcesu. Wyznacz rozkład zmiennej losowej X oznaczającej liczbę wykonanych doświadczeń.
- 9. (Rozkład wykładniczy $\text{Exp}(\lambda)$) Przypuśćmy, że doświadczenia opisane w zadaniu poprzednim wykonuje się n razy na sekundę, zaś prawdopodobieństwo sukcesu wynosi λ/n , $\lambda>0$. Wyznaczyć dystrybuantę czasu oczekiwania na pierwszy sukces X_n i zbadać jej zachowanie gdy $n \to \infty$.
- 10. Wykaż, że rozkłady z dwóch poprzednich zadań mają tzw. własność braku pamięci: jeśli X ma rozkład geometryczny bądź wykładniczy, to

$$\mathbb{P}(X > t + s | X > t) = \mathbb{P}(X > s),$$

gdzie $s,t\in\mathbb{N}$ w przypadku rozkładu geometrycznego oraz $s,t\in\mathbb{R}^+$ w przypadku rozkładu wykładniczego. (*) Udowodnij, że są to jedyne procesy z własnością braku pamięci: geometryczny na N, wykładniczy jest jedynym bezatomowym rozkładem z brakiem pamięci na \mathbb{R}^+ .

11. (Rozkład Poissona $Poi(\lambda)$) Niech $p_{k,n}$ będzie prawdopodobieństwem zajścia dokładnie k sukcesów w n próbach Bernoulliego o prawdopodobieństwie pojedynczego sukcesu p_n . Dla każdego ustalonego $k \in \mathbb{N}$ wyznacz

$$\lim_{n\to\infty} p_{k,n} , \quad \text{jeśli} \quad \lim_{n\to\infty} np_n = \lambda > 0$$

 $\lim_{n\to\infty}p_{k,n}\;,\qquad \text{jeśli}\quad \lim_{n\to\infty}np_n=\lambda>0\;.$ 12. Zmienna losowa X ma rozkład Cauchy'ego, tzn. rozkład z gęstością

$$g(x) = \frac{1}{\pi} \frac{1}{1+x^2}$$

Udowodnij, że 1/X ma ten sam rozkład, co X.

13. Niech (X,Y) będzie 2-wymiarową zmienną losową o rozkładzie zadanym gęstością f(x,y)=3x dla $0 \le y \le x \le 1$ i f(x,y) = 0 poza tym zbiorem. Znajdź rozkłady brzegowe. Czy X i Y są niezależne?

- 14. Zmienna losowa (X,Y) ma rozkład z gęstością $g(x,y) = C \cdot xy \cdot \mathbbm{1}_{[0,1]^2}(x,y)$.
 - a) Wyznaczyć C.
 - b) Obliczyć $\mathbb{P}(X + Y \leq 1)$.
 - c) Wyznaczyć rozkład zmiennej losowej X/Y.
 - d) Czy zmienne X i Y są niezależne?
 - e) Czy X/Y i Y są niezależne?
- **15.** Z talii 52 kart losujemy ze zwracaniem 5 razy po jednej karcie. Niech X oznacza liczbę wyciągniętych pików, Y liczbę wyciągniętych kierów, Z liczbę wyciągniętych asów. Czy zmienne X i Y są niezależne? Czy zmienne X i Z są niezależne?
- **16.** Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładzie $\mathcal{U}[0,1]$. Znaleźć prawdopodobieństwo, że a) X+Y<1/2, b) XY<1/2, c) |X-Y|<1/2, d) $X^2+Y^2\leq 1/2$, e) równanie $t^2+Xt+Y=0$ ma dwa rzeczywiste pierwiastki.
- 17. Romeo i Julia umówili się na spotkanie pomiędzy godziną 22, a 23. Każde z nich przybywa na spotkanie niezależnie z jednostajnym prawdopodobieństwem. Niech X będzie czasem oczekiwania pierwszej przybyłej osoby. Znajdź dystrybuantę i gęstość X.