

Alexander Neuwirth

 Z^0 Resonanz Z^0 Resonanz

Z°-Resonanz
Alexarder Browletts
wissen, lebels

- 1. Begrüßung
- 2. Thema

wissen.leben

Z⁰ Resonanz —Gliederun -Gliederung 2018-12

-Gliederung

Gliederung

Gliederung

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

1. Historie

2. Theorie

3. Messung/Experiment

4. Zusammenfasssung

Z⁰ Resonanz Historisch 2018-12

• Zunächst Historie

-Historischer Überblick

Historischer Überblick

2018

Z⁰ Resonanz

Historischer Überblick

1979 Nobelpreis an Steven Weinberg, Sheldon Glashow und Abdus Salam [1]

Alexander Neuwirth 3

Z⁰ Resonanz ⊢Historischer Überblick

∟Historischer Überblick

- 1. Vereinheitlichung von elektr.magn. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^0
- 2. 1979 Nobelpreis für GWS

Historischer Überblick

Z⁰ Resonanz Historischer Überblick ☐ Historischer Überblick

1. Gargamelle-Blasenkammer am CERN

Historischer Überblick

Meer [2]

Z⁰ Resonanz Historischer Überblick

- 1. Am Large Electron Positorn Collider, fokus
- 2. Nobelpreis für Carlo Rubbia and Simon van der Meer für experimentelle Beitrag Proton-Antiproton-Kollisionen
- 3. Mehr später
- 4. Weil führte mit zum Nachweis der Z und W Bosonen

Historischer Überblick

- 1. Large Electron Positron Ring (CERN) Präzessionsmessungen
- 2. weiter Bestätigung der Theorie/Standardmodell und W-Z-Bosonen
- 3. bis 2000

Historischer Überblick

Z⁰ Resonanz
Historischer Überblick

Historischer Überblick

- 1. Higgs Theorie in 60er-Jahren
- 2. 2013 Francois Englert und Peter Higgs Nobelpreis
- 3. Alle Nachweise am CERN!
- 4. Randnotitz

Alexander Neuwirth

3

Z⁰ Resonanz Theorie

Theorie

Binordung im Standardmodell der Elementartellchen
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung

Historischer Überblic

Theorie

Einordnung im Standardmodell der Elementarteilchen Elektroschwache Vereinheitlichung

Experimentelle Untersuchung

Zusammenfassui

Einordnung im Standardmodell der Elementarteilchen

 7^0 -Boson:

- ► Halbwertszeit $t_{1/2} \approx 3 \cdot 10^{-25} \, s$
- ungeladen
- eigenes Antiteilchen

Standardmodell[3]

Z⁰ Resonanz

Theorie
Einordnung im Standardmodell der
Elementarteilchen
Einordnung im Standardmodell der

- lila(Quarks), grün(Leptonen), rot(Eichbosonen), gelb(Higgs)
- Generationen, Fermion, s=1/2
- Boson s=1
- Ladung Fermionen 2/3 -1/3 0 1 Bosonen 0 außer W ±1
- Antiteilchen invers
- •
- Masse steigt mit Generation
- schwache WW
- W+- => elek. Teilchen WW (beta Zerfall)
- Z0 => auch neutral Teilchen WW (Neutrino)
- Z0 eigenes Antiteilchen
- Higgs aus Vollständigkeit
- Nur durch Z-Boson lässt sich Neutrino-Neutrino-WW erklären, da sie nicht elektrisch sind.

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► Gluon → starke Wechselwirkung
- ► W,Z-Boson → schwache Wechselwirkung

Z⁰ Resonanz

Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

Photon → elektromagnetische Wechselwirkung
 Gluon → starke Wechselwirkung
 W,Z-Boson → schwache Wechselwirkung

- 1. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 2. Vereint QED mit schwacher WW.
- 3. Kräfte durch Austauschteilchen
- 4. Photon elektro magn. beispielweise Elektron-Elektron-Streuung, Rutherford Streuung
- 5. W,Z bsplw. Beta-Zerfall, Elektron-Positron-Streuung (Energieabhänig)
- 6. Gluon Kernzusammenhalt, Farbladung, 8 (n-p-Anziehung), Quarkanziehung

Elektroschwache Vereinheitlichung Schwacher Isospin

		Fermionmultipletts			T	T_3	$z_{ m f}$
	Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{ m L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{ au} \\ au \end{array}\right)_{ ext{L}}$	1/2	$^{+1/2}_{-1/2}$	$0 \\ -1$
	Lej	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
	Quarks	$\left(\begin{array}{c} u \\ d' \end{array} \right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\begin{pmatrix} t \\ b' \end{pmatrix}_{L}$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
	Qua	u_{R}	c_{R}	t_{R}	0	0	+2/3
		d_{R}	s_{R}	b_{R}	0	0	-1/3

Schwacher Isospin[4]

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. Einführung von schwachem Isospin, analogon zu starkem Isospin
- 2. Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände ± 1
- 3. Rechtshändige e, μ, τ Singulett Zustand.
- 4. Chiralität (l/r), Spinor Symmetrie
- 5. Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- 6. Der ' bedeuted != Masseneigenzustände, sondern Quarkmisch-Matrix CKM
- 7. T_3 Werte Bereich analog zu anderen Spins
- 8. z_f beschreibt Ladung
- 9. invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt ($T = 0 = T_3$)
- 10. Umwandung durch Absorption von W^{\pm} -Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)

Alexander Neuwirth

7

Elektroschwache Vereinheitlichung Schwacher Isospin

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$

Elektroschwache Vereinheitlichung

Schwacher Isospin

Z⁰ Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

1. T₃ Erhaltungsgröße

Elektroschwache Vereinheitlichung

Schwacher Isospin

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

 β^- -Zerfall[5]

Z⁰ Resonanz -Theorie -Elektroschwache Vereinheitlichung -Elektroschwache Vereinheitlichung

- 1. T: d(-1/2)=W(?)+u(1/2)
- 2. T: W(?)=e(-1/2)+v(-1/2)

Elektroschwache Vereinheitlichung

Schwacher Isospin

- $ightharpoonup T_3$ soll erhalten bleiben
- $W^-: T_3 = -1$
- $W^+: T_3 = 1$

 β^- -Zerfall[5]

Alexander Neuwirth 8

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

1. analog u \rightarrow d + W^+

Elektroschwache Vereinheitlichung

Schwacher Isospin

- $ightharpoonup T_3$ soll erhalten bleiben
- $W^-: T_3 = -1$
- $W^+: T_3 = 1$
- W^0 : $(T = 1, T_3 = 0)$
- $\triangleright B^0$: $(T = 0, T_3 = 0)$

 β^- -Zerfall[5]

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- 1. B^0 postuliert
- 2. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

Z⁰ Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 : $|Y\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination

Elektroschwache Vereinheitlichung

▶ Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}} |B^{0}\rangle + \sin\theta_{\mathrm{W}} |W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}} |B^{0}\rangle + \cos\theta_{\mathrm{W}} |W^{0}\rangle$

► Weinbergwinkel:

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

► Photon und Z⁰ als orthogonale Linearkombination von B⁰ un

 $|\gamma\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

 $\cos \theta_W = \frac{M_W}{M_2} \approx 0.88$

- 1. experimentelle Bestimmung, später mehr
- 2. Masse für Z⁰ leichter zu Bestimmen, da W-Boson in Neutrino zerfällt. => bestimmung über fehlenden Transversalimpuls

Elektroschwache Vereinheitlichung

Photon und Z^0 als orthogonale Linearkombination von B^0 und W^0 :

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

➤ Weinbergwinkel:

$$\cos heta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

► Gekoppelte Ladungen:

$$e=g\cdot sin heta_{\scriptscriptstyle \mathrm{W}}$$

- 1. schwache Ladung g (Analogon zu e) aus schwache WW. aus QFT
- 2. beschreibbar durch elektrische und schwache Ladung
- 3. Umformung zu e/g und M/M

Experimentelle Untersuchung

Erzeugung

Nachweis

Präzisionsmessungen

Eigenschaften

Anzahl Neutrinogenerationen

2018-1

Z⁰ Resonanz Experimen Experimentelle Untersuchung

Erzeugung Nachweis Präzisionsmessunge Elgenschaften

Anzahl Neutrinogenerationen

10

Erzeugung

Feynman-Diagramme

Z^o Resonanz
Experimentelle Untersuchung
Erzeugung
Erzeugung

- W/Z-Boson durch Antilepton+Lepton/AntiQuark+Quark Reaktion
- kollidierende Teilchenstrahlen
- feynman diagram
- Zeit nach rechts
- Antiteilchen Zeitlich invers (Aus Dirac-Gleichung (Schrödinger gleichung mit eingesetzter Impuls/Energie Relation wirkt auf vier komponentigen Dirac Spinor) ergeben sich positive und negative Lösungen für die Energie) (bzw. Klein Gordon Gleichung (entkoppelt)) nach Stückelberg-Feynman-Interpretation, bsplw. E-Feld e⁻ vs e⁺ mit
- vorher/definierte, wobei negative Energien besetzt sind und Löcher sich ausbreiten basierend auf Pauli-Ausschlussprinzip, da Bosonen nicht gehorchen => reverse Zeit Interpretation)

anderer Richtung ist gleich. (Dirac sagte Antiteilchen

 über yoder Z zu Fermion und Antifermion paar.
 bei passender Energie approx M_Z dominiert Z⁰, aus QFT+Feynmanregeln

Erzeugung

- **LEP**
 - $e^- + e^+ \rightarrow Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_e \ge M_7 c^2 \approx 91.6 \, GeV$
 - $e^+ + e^- \rightarrow W^+ + W^-$: benötigt $2E_e \ge 2M_W c^2 \approx 160.8 \, GeV$

Z⁰ Resonanz

Experimentelle Untersuchung

Erzeugung

Erzeugung

Erzeugung

▶ LEP

▶ $e^- + e^+ \rightarrow Z^0$; Schwerpunktsenergie $\sqrt{s} = 2E_g \ge M_g \epsilon^2 \approx 91.6$ GeV

▶ $e^+ + e^- \rightarrow W^+ + W^-$; benötigt $2E_g \ge 2M_g \epsilon^2 \approx 160.8$ GeV

- 1. 1989 am Stanford Linear Collider und LEP
- 2. Tritt nicht auf bei Energien $\approx 100~GeV$
- 3. 1996 am LEP, 50 ightarrow 86 ightarrow 104,6 GeV

Erzeugung

- LEP
 - $ightharpoonup e^- + e^+
 ightharpoonup Z^0$: Schwerpunktsenergie $\sqrt{s} = 2E_e > M_7c^2 \approx 91.6 \, GeV$
 - $ightharpoonup e^+ + e^-
 ightharpoonup W^+ + W^-$: benötigt $2E_e
 ightharpoonup 2M_W c^2 \approx 160.8 \, GeV$
- ► SPS/SppS
 - $ightharpoonup u + \overline{u}
 ightharpoonup Z^0$: pp-Kollision benötigt $E_p \gtrapprox 600 \, GeV$
 - ▶ $u + \overline{u} \rightarrow Z^0$: $p\overline{p}$ -Kollision benötigt $E_p \approx 300 \text{ GeV}$

Z⁰ Resonanz
Experimentelle Untersuchung
Erzeugung
Erzeugung

▶ IFP $P = P = P - N^2$, Schwerpunktseranje $\sqrt{\tau} = 2I_1 \ge M_0 e^2 = 91.6 \text{ GeV}$ $P e^+ + e^- = W^- \cdot W^-$ bendigt $2I_2 \ge 2M_0 e^2 = 50.6 \text{ GeV}$ $\Rightarrow P = \frac{1}{2} \sum_{i=1}^{N} P_i \text{ Solition bendigt } I_2 \ge 600 \text{ GeV}$ $\Rightarrow a + \overline{v} - N^2 \cdot p P_i \text{ Solition bendigt } I_3 \ge 600 \text{ GeV}$ $\Rightarrow a + \overline{v} - N^2 \cdot p P_i \text{ Solition bendigt } I_3 \ge 500 \text{ GeV}$

Erzeugune

- 1. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher
- 2. Besser Proton-Antiproton, da weniger Enrgie notwendig.
- 3. in Beschleuniger inverse Rotation

Erzeugung

Einfluss auf Beschleuniger durch Gezeiten

LEP Ausdehnung[7]

Z⁰ Resonanz
Experimentelle Untersuchung
Erzeugung
Erzeugung

- 1. weiter relevanter Effekt
- 2. Energie schwankt im Tagesverlauf
- 3. Güne Linie ist grob Erdrotation

Erzeugung

Einfluss auf Beschleuniger durch Gezeiten

Relative Strahlenergieänderung[8]

- 1. Resonante depolarisation genaue Enrgiemessung (notwendig)
- 2. Über Verhalten des Spins der beschleunigten Elektronen
- 3. Größe primär relevant für Energie (+Synchrotron strahlung)

Nachweis durch neutrale Ströme

- Neutrinostrahl durch $\pi^+ \rightarrow \mu^+ + \overline{\nu}_{\mu}$
- ▶ Blasenkammer: $ar{v}_{\mu} + e^{-}
 ightarrow ar{v}_{\mu} + e^{-}$
- Elektron sendet
 Bremsstrahlung aus
- e^-e^+ -Paarbildung \rightarrow elektromagnetischer Schauer

[9][10]

Z⁰ Resonanz C-21 Experimentelle Untersuchung Nachweis Nachweis

- 1. Striche und Kreise sind Lamben und Spiegel Reflexionen
- 2. Myonlose Neutrinoreaktion
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer.
- 4. Neutrionstrahl durch bsplw. $\pi^+ o \mu^+ + \overline{v}_\mu$ und Ladungsfilter
- 5. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z)
- 6. Vorhergesagter Winkel und 1/3 Energie des *e*⁻ impliziert Wechselwirkung durch neutrale Ströme.
- 7. 700000 Bilder überprüft. Spiral/Bremsstrahlung.

Nachweis

Entdeckung des Z⁰ Bosons

"Lego-Diagramm" $q + \overline{q} \rightarrow Z^0 \rightarrow e^+ + e^-$ [4]

- ▶ 1983 UA2 Detektor am SppS
- ➤ Masse des Z⁰-Bosons entspricht der Summe der Energie von e⁻ und e⁺
- Entgegengesetzte Impulse von e^- und e^+

Z⁰ Resonanz Experimentelle Untersuchung Nachweis

- nicht L3, aber analog
- Beispiel Event einer der ersten Messung
- Plane unten sind Kaloriemeterzellen
- Energie Summe = Masse Z^0
- Winkel 180° => entgegen gesetzte Richtungen

Präzisionsmessungen

Large Electron Positron Collider (LEP, 1989-2000)

Beschleuniger am CERN 1996 [11]

Z^o Resonanz Experimentelle Untersuchung Präzisionsmessungen

- 1. LEP wurde zu LHC
- 2. L3 wurde zu ALICE
- 3. SppS von 1981 bis 1991 anstelle von SPS
- 4. Erzeugung, Lineare Beschleuniger und Vorstufen

Präzisionsmessungen L3 Detektoraufbau am LEP

L3 Detektor [8]

Von Innen nach Außen:

- 1. Spurdetektor
- 2. Elektromagnetisches Kalorimeter
- 3. Hadronisches Kalorimeter
- 4. Myonkammer

Alexander Neuwirth 17

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. Alles in Magnetfeld
- 2. Spurdetektor: misst elektrische Teilchen
- 3. Krümmung gibt Impuls und Ladung
- 4. EM Kalorimeter: Energie von Elektron und Photon, EM Teilchen wird absorbiert
- 5. Had Kalorimeter: Energie von Hadronen, starke WW Teilchen werden absorbiert
- 6. Myonkammern: Für Myonen, groß, weil geringe WW
- 7. Vortrag speziell zur Teilchendetektion

Präzisionsmessungen L3 Detektoraufbau am LEP

L3 Detektor [8]

Z⁰ Resonanz
Experimentelle Untersuchung
Präzisionsmessungen
Präzisionsmessungen

- 1. Mensch für Größenverhältnis.
- 2. Magnet im ALICE wieder verwendet.

19

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- Energiemessung im elm. Kalorimeter
- ► Entgegengesetzte Ausbreitung

$$e^- + e^+ \to Z^0 \to e^- + e^+$$
 [8]

Z⁰ Resonanz Experimentelle Untersuchung -Präzisionsmessungen

- 1. L3 Detektor LEP
- 2. beispielhafte Ereignisse
- 3. entlang der Strahlachse
- 4. analog zu Lego
- 5. herausgezoomt, weil Enrgie weniger verteilt

-Präzisionsmessungen

- 6. Winkel 180° => entgegen gesetzte Richtungen
- 7. Balken sind die Energien die Kaloriemeter messen

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- Einzelnes Quark führt zu Quark-Antiquark-Paar Erzeugung, um isolierte Farbladung zu verhindern (Confinement)
- Reaktion äußert sich in hadronische Jets
- ► Energiemessung im Hadronischen Kalorimeter

 $e^- + e^+ \rightarrow Z^0 \rightarrow \text{hadronische Jets [8]}$

Z⁰ Resonanz Experimentelle Untersuchung Präzisionsmessungen Präzisionsmessungen

1. Hadronische Jets, Farbladung nicht aleine vorkommend, immmer neue Quark-Antiquark-Paare (Confinment)

Präzisionsmessungen

L3 Detektor (1993 am LEP)

- Messung der Spur der Myonen durch mehrere Myonkammern
- ► I.A. keine Absorption

 $e^{-} + e^{+} \rightarrow Z^{0} \rightarrow \mu^{+} + \mu^{-}$ [8]

Z⁰ Resonanz Experimentelle Untersuchung -Präzisionsmessungen

1. Muon erst an äußeren Platten detektiert

-Präzisionsmessungen

Präzisionsmessungen

 $ightharpoonup Z^0$ Resonanz bei $\approx 91 \, GeV$

Wirkungsquerschnitte bei e^-e^+ Kollision [12]

Z⁰ Resonanz Experimentelle Untersuchung -Präzisionsmessungen -Präzisionsmessungen

- 1. Achsen + Farbliche Zuordnung
- 2. Z⁰ Resonanz und weitere Messungen

Eigenschaften

Experimentelle Bestimmung

- ► Messung:
 - $M_7 = 91,188(2) \, GeV/c^2$
 - $\Gamma_7 = 2,495(2) \, GeV$

Z⁰ Resonanz
—Experimentelle Untersuchung
—Eigenschaften
—Eigenschaften

Eigenschaften
Experimentelle Bestimmung

▶ Messung:

▶ M₂ = 91,188(2) GeV/c²

▶ Γ₂ = 2.495(2) GeV

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2. Breite + Maximalstelle

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, GeV/c^2$
 - $\Gamma_7 = 2,495(2) \, GeV$
- > Zerfall:

$$Z^0 \rightarrow e^- + e^+$$
 3,363(4) %
 $\mu^- + \mu^+$ 3,366(7) %
 $\tau^- + \tau^+$ 3,370(8) %
 $v_{e,\mu,\tau} + \overline{v}_{e,\mu,\tau}$ 20,0(6) %
Hadronen 69,91(6) %

Z⁰ Resonanz
—Experimentelle Untersuchung
—Eigenschaften
—Eigenschaften

- 1. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 2. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}

Anzahl Neutrinogenerationen

Wirkungsquerschnitt

$$\sigma_f \propto rac{\Gamma_f \cdot \Gamma_e}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Wirkungsquerschnitt

 $\sigma_f \propto \frac{\Gamma_f \cdot \Gamma_\sigma}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$

- 1. Formel für σ Breit-Wigner
- 2. Einheiten *h* und *c* multiplizieren
- 3. Abhängig von ...
- 4. y unterdrückt

Anzahl Neutrinogenerationen Zerfallsbreite

$$\Gamma_Z = \sum_f \Gamma_{Z \to f \bar{f}}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Zerfallsbreite $\Gamma_{2} = \sum_{f} \Gamma_{2 \rightarrow ff}$

1. Breite ergibt sich aus Partial Breiten

Anzahl Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\mathsf{u,c,d,s,b}} + \Gamma_{\mathsf{e},\mu,\tau} + \Gamma_{\nu_{e},\nu_{\mu},\nu_{\tau}} \end{split}$$

70 Resonanz
Lexperimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen 2erfallsbreite $\Gamma_{z} = \sum_{f} \Gamma_{z \rightarrow eff}$ $= \Gamma_{u,c,c,k,b} + \Gamma_{u,v_{z},v_{c}}$

1. kein top-Quark, da t-Masse ($\approx 175~GeV$)größer als Z^0 -Masse ist

Anzahl Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} & \Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,}\mu,\tau} + \Gamma_{\nu_e,\nu_\mu,\nu_\tau} \\ &= N_C \cdot 2 \cdot \Gamma_u + N_C \cdot 3 \cdot \Gamma_d + 3 \cdot \Gamma_e + N_v \cdot \Gamma_v \end{split}$$

Anzahl Neutrinogenerationen Zerfallsbreite $\Gamma_{z} = \sum_{f} \Gamma_{z \rightarrow ff}$ $= \int_{u_{d,C}d_{c}b} + \Gamma_{u_{d}u_{c}} + \Gamma_{u_{c}u_{c}u_{c}}$ $= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v}$

1.
$$\Gamma_f = \frac{G_F M_Z^2}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. G_F Fermikonstante

3. Q_f Ladung des Fermions

4. Quantenmechanisch Herleitung der Formel nicht notwendig

5. primär von Ladung abhängig

6. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}

7. Had: u,c=2/3; d,s,b=-1/3

8. Neutrinos

9. N_C Anzahl Farbledungsnmöglichkeiten

Anzahl Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{v_{e},v_{\mu},v_{\tau}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

$$\begin{split} & \text{Anzah Neutrinogeneratione} \\ & \Gamma_{x} = \sum_{f} \Gamma_{x-g} \\ & = \int_{\pi_{h}, \ell_{h}, h_{h}} + \Gamma_{\mu_{h}, \nu_{h}, h_{h}} \\ & = \int_{\pi_{h}, \ell_{h}, h_{h}} + \Gamma_{\mu_{h}, \nu_{h}, h_{h}} \\ & = H_{h} \cdot 2 \cdot \Gamma_{h} \cdot H_{h} \cdot 3 \cdot \Gamma_{g} + H_{h} \cdot \Gamma_{g} \\ & = 3 \cdot 2 \cdot 9 \cdot 9 \cdot MeV + 3 \cdot 3 \cdot 122 \cdot A \cdot MeV + 3 \cdot 165 \cdot 8 \cdot MeV \\ \end{split}$$

1. Einsetzen, vgl Maximal für minimale Ladung

25

Anzahl Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} &= \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{u,c,d,s,b} + \Gamma_{e,\mu,\tau} + \Gamma_{v_{e},v_{\mu},v_{\tau}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \\ &= 2,42 \, \text{GeV} \end{split}$$

Z⁰ Resonanz

Experimentelle Untersuchung

Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Zerfalbreite $t_2 = \sum_{f_2 = 0}^{r_2 - 0} = - \frac{1}{r_{e_1 e_2 e_2}} + \frac{1}{r_{e_2 e_2 e_3}} + \frac{1}{r_{e_2 e_2}} + \frac{1}{r_{e_2 e_2}} + \frac{1}{r_{e_2 e_3}} + \frac{1}{r_{e_2 e_3}} + \frac{1}{r_{e_2 e_3}} + \frac{1}{r_{e_3 e_3}} + \frac{1$

1. Summe

Anzahl Neutrinogenerationen

Zerfallsbreite

$$\begin{split} &\Gamma_{Z} = \sum_{f} \Gamma_{Z \to f\bar{f}} & \Gamma_{f} = \frac{G_{F} M_{Z}^{3}}{24 \sqrt{2} \pi} \cdot (1 + (1 - e|Q_{f}|\sin^{2}\theta_{W})^{2}) \\ &= \Gamma_{\text{u,c,d,s,b}} + \Gamma_{\text{e,\mu,\tau}} + \Gamma_{\text{v_e,v_{\mu},v_{\tau}}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + N_{v} \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \\ &= 2,42 \, \text{GeV} \\ &\xrightarrow{\text{Strahlungs-korrektur}} 2,497 \, \text{GeV} \end{split}$$

Z⁰ Resonanz
Experimentelle Untersuchung
Anzahl Neutrinogenerationen
Anzahl Neutrinogenerationen

Anzah Neutrinogenerationen Zerfalbreiten $\frac{1}{2} \sum_{i=1}^{n} f_{i-i} = \frac{1}{2} \sum_{j=1}^{n} f_{j-j} = \frac{1}{2} \sum_{i=1}^{n} f_{i-j} = \frac{1}{2} \sum_{i=1}^{n} f_{i-j} = \frac{1}{2} \sum_{j=1}^{n} f_{$

- 1. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 2. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 3. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Anzahl Neutrinogenerationen

Vergleich Theorie und Experiment

Z ⁰ Zerfall	theoretisch	experimentell
$e^- + e^+$	3,34%	3,363(4)%
$v + \overline{v}$	19,92%	20,0(6)%
Hadronen	66,92%	69,91(6)%
ΓΖ	2,497 GeV	2,495(2) GeV

Alexander Neuwirth 26

Z⁰ Resonanz
—Experimentelle Untersuchung
—Anzahl Neutrinogenerationen
—Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen Vergleich Theorie und Experiment

Zº Zerfall	theoretisch	experimentel
$e^- + e^+$	3,34%	3,363(4)%
$V + \overline{V}$	19,92%	20,0(6)%
Hadronen	66,92 %	69,91(6)%
T ₂	2,497 GeV	2,495(2) GeV

- 1. e⁻ exemplarisch für Leptonen
- 2. passt alles gut

Anzahl Neutrinogenerationen

- ► OPAL-Detektor am LEP
- ➤ 3 Neutrinogenerationen passen zu Messungen
- ► Hinweis für 3 Generationen von Leptonen und Quarks

Wirkungsquerschnitt $e^+e^- \rightarrow \text{Hadronen}$ [4]

- 1. Cern Experiment
- 2. Wirkungsquerschnitt gegen Schwerpunktenergie
- 3. Ähnlich der Breit Wigner Funktion aber nicht passend symmetrisch durch Korrekturen höherer Ordnung udn Bremstrahlung durch e
- 4. Verschiedene Anzahl-Neutrinogenerationen-Kurven
- 5. 3 Neutrinogenerationen \rightarrow 3 Leptonen 3 Quarks Generationen

Z⁰ Resonanz – Zusamme -Zusammenfassung 2018-12

Zusammenfassung

Zusammenfassung

- ► Weinbergwinkel $\cos \theta_{\rm W} \approx 0.88$
- ightharpoonup Zerfallsbreite $\Gamma_Z \approx 2,4 \, GeV$
- ▶ 3 Neutrinogeneration

- 1. Weinbergwinkel Massenverhältniss W,Z Boson
- 2. Zerfallsbreite aus QFT großer Erfolg in Übereinstimmung mit Experiment
- 3. Bestätigung, dass es 3 Neutrinogenerationen gibt
- 4. Weiterfüherend Große Vereinheitlichung Analog ab 10¹⁶ GeV ⇒ keine Differenzierung Fermionen, Quarks und Leptonen. (Astrovorträge, Universumentwicklungröhre)
- 5. Noch Weiterfüherend Quantengravitation kombiniert mit GUT

Quellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225-puttingthe-puzzle-together (besucht am 12.11.2018).

The Nobel Prize in Physics 1984. URL: https://www.nobelprize.org/prizes/physics/1984/summary/ (besucht am 03. 12. 2018).

Standardmodell. URL: https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).

Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Kap. 12.

Z⁰ Resonanz Zusammenfassung $\dot{\infty}$ -Quellen

Ouellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg, uss.

The Nobel Prize in Physics 1984, upp.

Standardmodell. uss:

Povh et al. Teilchen und Keme. Springer Spektrum, 2014. Kap. 12.

30

Quellen II

Versuch ZO-Resonanz. URL: https://www.physik.hu-berlin.de/de/eephys/teaching/lab/zOresonance/index_html (besucht am 25.11.2018).

Z⁰ Resonanz

Zusammenfassung

Batabaga, 202 1879-7/10 x 1825 parts or gravital Protestands

Double Protest Production 18 12 2028.

Double Protest Production 18 2028 18 2

Quellen III

Weak neutral current, URL: https://www.symmetrymagazine.org/article/august-2009/weakneutral-current (besucht am 03.12.2018).

The LEP Accelerator, URL: http://www.hep.ucl.ac.uk/~jpc/all/ulthesis/node15.html (besucht am 03. 12. 2018).

L3 Home Page. URL: http://l3.web.cern.ch/l3/ (besucht am 03.12.2018).

 $\dot{\infty}$

Z⁰ Resonanz

Zusammenfassung

-Quellen

F.J. Hasert u.a. "Search for elastic muon-neutrino electron scattering".

Weak neutral current up -

The LEP Accelerator, usu:

L3 Home Page, URL: http://l3.web.cem.ch/l3/(besucht am

32

Z⁰ Resonanz Zusamme

-Zusammenfassung

Vielen Dank für eure Aufmerksamkeit!

Vielen Dank für eure Aufmerksamkeit!

Fragen?

33