Design and Professional Practice 2

Tolerance, Clearance and Fit

Dr Ian Radcliffe

 The permissible limits of this variation is known as the tolerance.

- This variation depends upon:
 - The material;
 - The manufacturing process;
 - The nature of dimension.

Tolerance Stack Example

- In this example the components are unlikely to fit in the recess more than 50% of the time.
- The worst case example has the stack length as:

Maximum stack length 10 + 20 + 10 + (0.3 + 0.5 + 0.4) = 41.2 mmMinimum stack length 10 + 20 + 10 - (0.3 + 0.5 + 0.4) = 38.8 mm

The clearance is therefore between -1.7mm and 1.7mm

Tolerance Stack Example

 Having adjusted the stack nominal dimensions the worst case scenario now stacks up as:

> Maximum stack length 9 + 19 + 9 + (0.3 + 0.5 + 0.4) = 38.2 mmMinimum stack length 9 + 19 + 9 - (0.3 + 0.5 + 0.4) = 35.8 mm

- Giving a clearance of between 1.3mm and 4.7mm
- An alternative solution would be to adjust the tolerances of the components in the stack, however these are linked to the manufacturing process.

Tolerance Stack Example

- Instead of using the worst case scenario, it is preferred to use statistical techniques such as Root Mean Square (RSS) to total up the system variance.
- In this example the system variance would be:

Stack variance = $\sqrt{0.3^2 + 0.5^2 + 0.4^2}$ = 0.71 mm Maximum stack length = 9 + 19 + 9 + 0.71 = 37.71 mm Minimum stack length = 9 + 19 + 9 - 0.71 = 36.29 mm

This gives a clearance of between 1.79mm and 4.21mg

- The fit is defined as the designed-in clearance or interference between two parts.
- This fit will depend on the intended function.
- There are a variety of fits:
 - Running / sliding fit
 - Location fit
 - Clearance fit
 - Transition fit
 - Interference fit
 - · Shrink (force) fit

		ISO Sy	mbol								
		Hole Basis	Shaft ^a Basis	Description							
	its	H11/c11	C11/h11	Loose-running fit for wide commercial tolerances or allowances on external members.	1						
	Clearance Fits	H9/d9	D9/h9	Free-running fit not for use where accuracy is essential, but good for large temperature variations, high running speeds, or heavy journal pressures.	1)						
	Clear	H8/f7	F8/h7	Close-running fit for running on accurate machines and for accurate location at moderate speeds and journal pressures.							
		H7/g6	G7/h6	Sliding fit not intended to run freely, but to move and turn freely and locate accurately.	More clearance						
	Transition Fits	H7/h6	H7/h6	Locational clearance fit provides snug fit for locating stationary parts; but can be freely assembled and disassembled.	Mc						
		H7/k6	K7/h6	Locational transition fit for accurate location, a compromise between clearance and interference.	9						
	Tra	H7/n6	N7/h6	Locational transition fit for more accurate location where greater interference is permissible.	More interference						
	Interference Fits	H7/p6	P7/h6	Locational interference fit for parts requiring rigidity and alignment with prime accuracy of location but without special bore pressure requirements.							
Secretary Section 1		H7/s6	S7/h6	Medium drive fit for ordinary steel parts or shrink fits on light sections, the tightest fit usable with cast iron.	_ N						
	Int	H7/u6	U7/h6	Force fit suitable for parts which can be highly stressed or for shrink fits where the heavy pressing forces required are impractical.							

	1000	Clearance fits												Trans	tion fits			Interfer	rence fits		1		
Holes Shafts Basic size (mm)		+		H9		H9		H8 9///2		H7 2222 g6		H7 h6		H7	k6	H7 977723	n6	H7	р6	H7	s6	Holes	
																						Shafts	
								Upper an									-			117	-	Basic size (mm)	
		H11	c11	H9	d10	H9	69	H8	17	H7	96	H7	h6	H7	k6	H7	n6	H7	p6	H7	s6	Unito	
Above	Up to and incl.	+	-	+	-	+	-	+	-	+	-	+	+	+	+	+	+	+	+	+	+	Above	and inc
0	3	60	50 120	25	80	25	14 39	14	16	10	2	10	6	10	0	10	10	10	12	10	20 14	0	3
3	6	75	70 145	30	30 78	30	20 50	18	10 22	12	12	15	9	15	10	15	19	15	24 15	15	32 23	3	6
6	10	90	170	36	96	38	25 61	22	13 28	15	14	18	11	18	12	18	23 12	18	29 15	18	39 28	6	10
10	18	110	95 205	43	50 120	43	32 75	27	16 34	18	17	21	13	21	15	21	28 15	21	35 22	21 0	48 35	10.	/ 18
18	30	130	110				He							25			33 17	25 0	42 26		1195	18	30
30	40	160	120 280	62	180	62	112	39	25 50	25	3	25	25 16 0		16	25				25	59 43	30	. 40
40	50	160	130	-	100											1						40	50
50	65	190	330	24	100	74	60	46	30	30	10	30	19	30	21	30	39 20	30	51 32	30	72 53	50	65
65	80	180	150	74	100 220	74	134	46	90	30	29	- 6	0	0	. 5					50	78 59	65	80
80	100	220	170		120	87	79	54	26	35	12 34	35	22	35	25	35	45 23	35 0	59 57	35	93 71	80	100
100	120	220	180	87	120 250	87	159	54	36 71	35		35								35	101 79	100	120
120	140	250	200 450	100	145 305	100	84 186	- 100			14 39		1	40	28 3	40	52 27	40	847	40	117 92	120	140
140	160	250	210					63	43 83	40		40	25							40	125 100	140	160
160	180	250	230		1000	1000	- Care		37.5	10/										40	133 108	160	180
180	200	290	240				To be		1				29	46	33	46	60 31	46	79 50	46	151	180	200
200	225	290	250 550	115	170	115	100 215	72	50 96	46	15	16								46	159	200	225
225	250	290	280 570									-								45	169 140	225	250
250	280	320	300 630	130 11		130 130	110	81 0			17	**	-	52	26	25	66 34	52	85 50	52	150	250	280
280	315	320	355 650		190				108	52		52	0 0							52	202 170	280	315
315	355	360	360 720					69			15 54	47	9-	67	45	67	25	57	95 58	57	226 190	31	355
355	400	360	400 760	140 Z1 0 44	210 440	140	125 265		119	57		97	36	57	40	0	23 37			57	244	355	400
400	450	400	440 840	155 230 0 480	75000	140	1				102	63	40	63	45	63	60	60	108	63	272	400	450
450	500	400	640 660 860		230 480	155	135 290	97	131	63	60 20	0	0	0	5	0	40	0	68	63	27A 252	450	500

- A Tolerance stack is the variation over a collection of connected components
- Clearance is the space left to make sure interconnecting parts will fit
- Fit describes the different allowances of clearance and tolerance for interconnecting parts

For further information:

Mechanical Design – by Peter R. N. Childs (ISBN 0-340-69236-7)

