УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 63

> Студент Нодири Хисравхон Р3131

Преподаватель Поляков Владимир Иванович $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $8 < (1x_4x_5 + x_1x_2x_3) \le 11$, и неопределенное значение при $|x_5x_1x_2 - x_4x_3| = 3$.

Таблица истинности

№	x_1	x_2	x_3	x_4	x_5	$1x_4x_5$	$x_1 x_2 x_3$	$x_5 x_1 x_2$	x_4x_3	f
0	0	0	0	0	0	4	0	0	0	0
1	0	0	0	0	1	5	0	4	0	0
2	0	0	0	1	0	6	0	0	2	0
3	0	0	0	1	1	7	0	4	2	0
4	0	0	1	0	0	4	1	0	1	0
5	0	0	1	0	1	5	1	4	1	d
6	0	0	1	1	0	6	1	0	3	d
7	0	0	1	1	1	7	1	4	3	0
8	0	1	0	0	0	4	2	1	0	0
9	0	1	0	0	1	5	2	5	0	0
10	0	1	0	1	0	6	2	1	2	0
11	0	1	0	1	1	7	2	5	2	d
12	0	1	1	0	0	4	3	1	1	0
13	0	1	1	0	1	5	3	5	1	0
14	0	1	1	1	0	6	3	1	3	1
15	0	1	1	1	1	7	3	5	3	1
16	1	0	0	0	0	4	4	2	0	0
17	1	0	0	0	1	5	4	6	0	1
18	1	0	0	1	0	6	4	2	2	1
19	1	0	0	1	1	7	4	6	2	1
20	1	0	1	0	0	4	5	2	1	1
21	1	0	1	0	1	5	5	6	1	1
22	1	0	1	1	0	6	5	2	3	1
23	1	0	1	1	1	7	5	6	3	d
24	1	1	0	0	0	4	6	3	0	d
25	1	1	0	0	1	5	6	7	0	1
26	1	1	0	1	0	6	6	3	2	0
27	1	1	0	1	1	7	6	7	2	0
28	1	1	1	0	0	4	7	3	1	1
29	1	1	1	0	1	5	7	7	1	0
30	1	1	1	1	0	6	7	3	3	0
31	1	1	1	1	1	7	7	7	3	0

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, x_2 \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \vee x_2 \vee x_3 \vee x_4 \vee x_5 \vee x_1 \vee x_2 \vee x_1 \vee x_2 \vee x_3 \vee x_4 \vee x_5 \vee x_1 \vee x_2 \vee x_1 \vee x_2 \vee x_3 \vee x_1 \vee x_2 \vee x_2 \vee x_1 \vee x_2 \vee$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$ $(x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5})$ $(x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)$ $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$ $(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$^{-1}(f)$		$K^2(f)$		Z(f)
m_{17}	10001	✓	m_6 - m_{14}	0X110		m_{20} - m_{21} - m_{22} - m_{23}	101XX	0X110
$ m_{18} $	10010	✓	m_{18} - m_{19}	1001X	\checkmark	m_{18} - m_{19} - m_{22} - m_{23}	10X1X	1100X
m_{20}	10100	✓	m_{17} - m_{19}	100X1	\checkmark	m_{17} - m_{19} - m_{21} - m_{23}	10XX1	11X00
m_5	00101	✓	m_{20} - m_{21}	1010X	\checkmark			1X001
m_6	00110	✓	m_{20} - m_{22}	101X0	\checkmark			1X100
m_{24}	11000	✓	m_{17} - m_{21}	10X01	✓			X0101
m_{14}	01110	√	m_{18} - m_{22}	10X10	✓			X0110
m_{19}	10011	✓	m_{24} - m_{25}	1100X				0111X
m_{21}	10101	✓	m_{24} - m_{28}	11X00				01X11
m_{22}	10110	✓	m_{17} - m_{25}	1X001				101XX
m_{25}	11001	✓	m_{20} - m_{28}	1X100				10X1X
m_{28}	11100	✓	m_5 - m_{21}	X0101				10XX1
m_{11}	01011	✓	m_6 - m_{22}	X0110				
m_{15}	01111	√	m_{14} - m_{15}	0111X				
m_{23}	10111	✓	m_{11} - m_{15}	01X11				
			m_{22} - m_{23}	1011X	✓			
			m_{21} - m_{23}	101X1	✓			
			m_{19} - m_{23}	10X11	✓			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

	0-кубы										
		0	0	1	1	1	1	1	1	1	1
		1	1	0	•	0	0	0	0	1	1
Простые импликанты		1	1	0	•	0	1	1	1	0	1
	_		1	0	1	1	0	0	1	0	0
		0	1	1	•	1	0	1		1	0
			15	17	18	19	20	21	22	25	28
A	0X110	X									
В	1100X									X	
С	11X00										X
D	1X001			X						X	
E	1X100						X				X
F	X0101							X			
	X0110								X		
G	0111X	X	X								
Н	01X11		X								
I	101XX						X	X	Х		
	10X1X				X	X			X		
J	10XX1			X		X		X			

Ядро покрытия:

$$T = \{10X1X\}$$

Получим следующую упрощенную импликантную таблицу:

		0-кубы								
		0	0	1	1	1	1	1		
		1	1	0	0	0	1	1		
Пр	остые импликанты	1	1	0	1	1	0	1		
		1	1	0	0	0	0	0		
		0	1	1	0	1	1	0		
		14	15	17	20	21	25	28		
A	0X110	X								
В	1100X						X			
С	11X00							X		
D	1X001			X			X			
Е	1X100				X			X		
F	X0101					X				
G	0111X	X	X							
Н	01X11		X							
Ι	101XX				X	X				
J	10XX1			X		X				

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (A \vee G) (G \vee H) (D \vee J) (E \vee I) (F \vee I \vee J) (B \vee D) (C \vee E)$$

Приведем выражение в ДНФ:

 $Y = ABCHIJ \lor ABEHJ \lor ACDHI \lor ADEFH \lor BCGIJ \lor BEGJ \lor CDGI \lor DEFG$

Возможны следующие покрытия:

$$C_{1} = \begin{cases} T \\ A \\ B \\ C \\ H \\ I \\ J \end{cases} = \begin{cases} 10X1X \\ 0X110 \\ 1100X \\ 11X00 \\ 01X11 \\ 101XX \\ 10XX1 \end{cases} \qquad C_{2} = \begin{cases} T \\ A \\ B \\ E \\ H \\ J \end{cases} = \begin{cases} 10X1X \\ 0X110 \\ 1100X \\ 1X100 \\ 01X11 \\ 10XX1 \end{cases} \qquad C_{3} = \begin{cases} T \\ A \\ C \\ D \\ D \\ H \\ I \end{cases} = \begin{cases} 10X1X \\ 0X110 \\ 11X00 \\ 1X001 \\ 01X11 \\ 101XX \end{cases}$$

$$S_{1}^{a} = 25 \\ S_{2}^{b} = 32 \qquad S_{2}^{a} = 22 \\ S_{2}^{b} = 28 \qquad S_{3}^{a} = 28 \end{cases}$$

$$C_{4} = \begin{cases} T \\ A \\ D \\ E \\ F \\ H \end{cases} = \begin{cases} 10X1X \\ 0X110 \\ 1X001 \\ 1X100 \\ X0101 \\ 01X11 \end{cases} \qquad C_{5} = \begin{cases} T \\ B \\ C \\ G \\ I \\ J \end{cases} = \begin{cases} 10X1X \\ 1100X \\ 111X00 \\ 0111X \\ 100X \end{cases}$$

$$C_{6} = \begin{cases} T \\ B \\ E \\ G \\ J \end{cases} = \begin{cases} 10X1X \\ 1100X \\ 1X100 \\ 0111X \\ 100X \end{cases}$$

$$C_{7} = \begin{cases} T \\ C \\ D \\ G \\ I \end{cases} = \begin{cases} 10X1X \\ 1100X \\ 1X100 \\ 0111X \\ 10XX1 \end{cases}$$

$$C_{8} = \begin{cases} T \\ B \\ E \\ I \end{cases} = \begin{cases} 10X1X \\ 1100X \\ 1X100 \\ 0111X \\ 10XX1 \end{cases}$$

$$C_{7} = \begin{cases} T \\ C \\ D \\ G \\ I \end{cases} = \begin{cases} 10X1X \\ 1100X \\ 1X100 \\ 0111X \\ 1X100 \\ 1X100 \\ X0101 \\ 0111X \end{cases}$$

$$C_{8} = \begin{cases} T \\ D \\ E \\ F \\ G \end{cases} = \begin{cases} 10X1X \\ 1X100 \\ X0101 \\ 0111X \end{cases}$$

$$S_{1}^{a} = 18 \\ S_{1}^{a} = 23 \qquad S_{2}^{a} = 19 \\ S_{2}^{a} = 24 \end{cases}$$

$$S_{1}^{a} = 18 \\ S_{1}^{a} = 23 \qquad S_{2}^{a} = 19 \\ S_{2}^{a} = 24 \end{cases}$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 10X1X\\1100X\\1X100\\0111X\\10XX1 \end{cases}$$
$$S^{a} = 18$$
$$S^{b} = 23$$

Этому покрытию соответствует следующая МДНФ:

$$f = x_1 \,\overline{x_2} \, x_4 \vee x_1 \, x_2 \,\overline{x_3} \, \overline{x_4} \vee x_1 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_2} \, x_5$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = x_1 \,\overline{x_2} \, x_4 \vee x_1 \,\overline{x_2} \, x_5 \vee x_1 \, x_2 \,\overline{x_3} \,\overline{x_4} \vee x_1 \, x_3 \,\overline{x_4} \,\overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, x_4$$

Определение МКНФ

$$f = (x_1 \lor x_4) \ (x_1 \lor x_2) \ (x_3 \lor x_4 \lor x_5) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \ (\overline{x_2} \lor x_3 \lor x_5) \ (\overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=x_1\,\overline{x_2}\,x_4\vee x_1\,\overline{x_2}\,x_5\vee x_1\,x_2\,\overline{x_3}\,\overline{x_4}\vee x_1\,x_3\,\overline{x_4}\,\overline{x_5}\vee\overline{x_1}\,x_2\,x_3\,x_4 \qquad S_Q=23 \quad \tau=2$$

$$f=x_1\,\overline{x_2}\,\left(x_4\vee x_5\right)\vee x_1\,x_2\,\overline{x_3}\,\overline{x_4}\vee x_1\,x_3\,\overline{x_4}\,\overline{x_5}\vee\overline{x_1}\,x_2\,x_3\,x_4 \qquad S_Q=21 \quad \tau=3$$

$$\varphi=\overline{x_4}\,\overline{x_5}$$

$$\overline{\varphi}=x_4\vee x_5$$

$$f=x_1\,\overline{x_2}\,\overline{\varphi}\vee x_1\,x_2\,\overline{x_3}\,\overline{x_4}\vee\varphi\,x_1\,x_3\vee\overline{x_1}\,x_2\,x_3\,x_4 \qquad S_Q=21 \quad \tau=4$$
 Декомпозиция нецелесообразна
$$f=x_1\,\overline{x_2}\,\left(x_4\vee x_5\right)\vee x_1\,x_2\,\overline{x_3}\,\overline{x_4}\vee x_1\,x_3\,\overline{x_4}\,\overline{x_5}\vee\overline{x_1}\,x_2\,x_3\,x_4 \qquad S_Q=21 \quad \tau=3$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \lor x_4) \; (x_1 \lor x_2) \; (x_3 \lor x_4 \lor x_5) \; (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \; (\overline{x_2} \lor x_3 \lor x_5) \; (\overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \qquad S_Q = 23 \quad \tau = 2$$

$$f = (x_1 \lor x_2 x_4) \; (x_3 \lor x_5 \lor \overline{x_2} x_4) \; (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \; (\overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \qquad S_Q = 20 \quad \tau = 3$$

$$\varphi = x_2 x_4$$

$$\overline{\varphi} = \overline{x_2} \lor \overline{x_4}$$

$$f = (x_1 \lor \varphi) \; (x_3 \lor x_5 \lor \overline{x_2} x_4) \; (\overline{\varphi} \lor \overline{x_1}) \; (\overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \qquad S_Q = 20 \quad \tau = 4$$
 Декомпозиция нецелесообразна
$$f = (x_1 \lor x_2 x_4) \; (x_3 \lor x_5 \lor \overline{x_2} x_4) \; (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4}) \; (\overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \qquad S_Q = 20 \quad \tau = 3$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 1]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_1 \,\overline{x_2} \, \left(x_4 \vee x_5 \right) \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \vee x_1 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \quad \left(S_Q = 21, \tau = 3 \right)$$

Схема по упрощенной МКНФ:

$$f = (x_1 \vee x_2 x_4) \ (x_3 \vee x_5 \vee \overline{x_2} x_4) \ (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}) \ (\overline{x_2} \vee \overline{x_3} \vee x_4 \vee \overline{x_5}) \quad (S_Q = 20, \tau = 3)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДН Φ в базисе И, НЕ:

$$f = \overline{x_1 \, \overline{x_2} \, \overline{\varphi} \, \overline{x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \varphi \, x_1 \, x_3} \, \overline{\overline{x_1} \, x_2 \, x_3 \, x_4} \quad (S_Q = 26, \tau = 6)$$
$$\varphi = \overline{x_4} \, \overline{x_5}$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_1} \, \overline{\varphi} \, \overline{x_3} \, \overline{x_5} \, \overline{\overline{x_2} \, x_4} \, \overline{\varphi} \, \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \quad (S_Q = 25, \tau = 5)$$
$$\varphi = x_2 \, x_4$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_1} \, \overline{\overline{\overline{x_2}} \, \overline{\overline{x_4}} \, \overline{\overline{x_5}}} \, \overline{\overline{x_4}} \, \overline{\overline{\overline{x_2}} \, \overline{\overline{x_3}} \, \overline{\overline{x_5}}} \, \overline{\overline{\overline{x_1}} \, \overline{x_2}} \, \overline{\overline{x_3} \, \overline{x_4}}} \quad (S_Q = 28, \tau = 6)$$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

