ANL251 Python Programming

Study Unit 6 Data Analysis with Python

Learning Outcomes and Learning Resources

- 1. Use appropriate Pandas functions to import datasets into DataFrame structures
 - SU6 Chapters 1.1 and 1.2
 - https://vimeo.com/59324550
 - http://pandas.pydata.org/pandasdocs/stable/generated/pandas.read_csv.html
 - http://pandas.pydata.org/pandas-docs/stable/generated/pandas.merge.html
- 2. Apply indexing, sorting and selection to DataFrames, and inspect missing values in DataFrames
 - SU6 Chapters 1.2, 1.3, 2 and 3
 - http://pandas.pydata.org/pandasdocs/stable/generated/pandas.DataFrame.set_index.html
 - http://pandas.pydata.org/pandasdocs/stable/generated/pandas.DataFrame.sort_values.html
- 3. Analyse data by grouping and aggregation
 - SU6 Chapter 4
 - http://pandas.pydata.org/pandasdocs/stable/generated/pandas.DataFrame.groupby.html

Learning Outcomes and Learning Resources

- 4. Prepare and examine time series data
 - SU6 Chapters 5.1 and 5.2
 - http://pandas.pydata.org/pandas docs/stable/generated/pandas.to_datetime.html
 - http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offsetaliases
 - http://pandas.pydata.org/pandas-docs/stable/timeseries.html#partialstring-indexing
- Construct basic statistical charts.
 - SU6 Chapter 5.3
 - http://pandas.pydata.org/pandasdocs/stable/generated/pandas.DataFrame.plot.html
 - http://pandas.pydata.org/pandasdocs/stable/generated/pandas.Series.rolling.html

Seminars: discussion and activities to reinforce students' understanding

1. Reading CSV File into DataFrame

Why pandas?

NumPy arrays can only have data of the same type. In practice, you work with data of different types. The pandas package is a high-level data manipulation tool to efficiently handle this.

pandas library handles time-series data via native methods it provides to ingest, transform, and analyze time-series data effectively.

If you're looking for a functionality to perform some data transformation, chances are pandas already has it. It is actively supported by developer community and constantly increasing in functionality. (http://pandas.pydata.org/pandas-docs/stable/api.html)

Reading CSV file into DataFrame

```
FAO.csv

Area Abbreviation, Area Code, Area, Item Code, Item, Element Code, Element, Unit, latitude, longitude, Year, Production AFG, 2, Afghanistan, 2511, Wheat and products, 5142, Food, 1000 tonnes, 33.94, 67.71, 1961, 1928.0

AFG, 2, Afghanistan, 2511, Wheat and products, 5142, Food, 1000 tonnes, 33.94, 67.71, 1962, 1904.0

AFG, 2, Afghanistan, 2511, Wheat and products, 5142, Food, 1000 tonnes, 33.94, 67.71, 1963, 1666.0

AFG, 2, Afghanistan, 2511, Wheat and products, 5142, Food, 1000 tonnes, 33.94, 67.71, 1964, 1950.0

AFG, 2, Afghanistan, 2511, Wheat and products, 5142, Food, 1000 tonnes, 33.94, 67.71, 1965, 2001.0

AFG, 2, Afghanistan, 2511, Wheat and products, 5142, Food, 1000 tonnes, 33.94, 67.71, 1966, 1808.0
```

Figure 6.2 FAO.csv opened in a text editor

Note: One of the biggest advantages of using pandas is its ability to ingest data in a variety of data types and formats.

(http://pandas.pydata.org/pandas-docs/stable/io.html)

Reading CSV file into DataFrame (SU6 Chapters 1.1 and 1.2, http://pandas.pydata.org/pandas.
http://pandas.pydata.org/pandas.
http://pandas.pydata.org/pandas.
http://pandas.pydata.org/pandas.pydata.org/pandas.read_csv.html)

Note: Open the command line and execute *pip install pandas* if you haven't installed the pandas library.

```
>>> import pandas as pd
>>> df = pd.read_csv('FAO.csv')
>>> df.head()
  Area Abbreviation Area Code
                                        Area Item Code
                                                                        Item \
                              2 Afghanistan
                                                   2511 Wheat and products
                AFG
                             2 Afghanistan 2511 Wheat and products
2 Afghanistan 2511 Wheat and products
2 Afghanistan 2511 Wheat and products
                AFG
                AFG
                AFG
                              2 Afghanistan
                                                   2511 Wheat and products
                AFG
                                 Unit latitude longitude Year Production
   Element Code Element
                                          33.94
                                                      67.71 1961
           5142
                   Food 1000 tonnes
                                                                       1928.0
                                          33.94
1
           5142
                   Food 1000 tonnes
                                                      67.71 1962
                                                                       1904.0
                   Food 1000 tonnes 33.94
Food 1000 tonnes 33.94
           5142
                                                      67.71 1963
                                                                       1666.0
                                                      67.71 1964
           5142
                                                                       1950.0
                                          33.94
           5142
                                                      67.71 1965
                   Food 1000 tonnes
                                                                       2001.0
```

Figure 6.3 Getting CSV data into a DataFrame

Merging DataFrames

- Study the exemples at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.merge.html.
- Discuss the output if we assign other values from {'left', 'right', 'outer', 'inner'} to the parameter how?

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)

2. Indexing, Sorting, Selection and Missing Values

Indexing DataFrame (SU6 Chapter 1.2,

http://pandas.pydata.org/pandasdocs/stable/generated/pandas.DataFrame.set_index.html)

>>> d1	r.nea	ad()											
			Area	Abb:	revia	tion	Area	Code		Area	Item	Code	1
Item													
Wheat	and	products				AFG		2	Afgha	anistan		2511	
Wheat	and	products				AFG		2	Afgha	anistan		2511	
Wheat	and	products				AFG		2	Afgha	enistan		2511	
Wheat	and	products				AFG		2	Afgha	anistan		2511	
Wheat	and	products				AFG		2	Afgha	anistan		2511	
			Elen	nent	Code	Elem	ent		Unit	latitud	de 1	ongitud	le
Item													
Wheat	and	products			5142	F	ood :	1000	tonnes	33.9	94	67.7	1
Wheat	and	products			5142	F	ood :	1000	tonnes	33.9	94	67.7	1
Wheat	and	products			5142	F	ood :	1000	tonnes	33.9	94	67.7	1
Wheat	and	products			5142	F	ood :	1000	tonnes	33.9	94	67.7	1
Wheat	and	products			5142	F	ood	1000	tonnes	33.9	94	67.7	1
			Year	r P	roduc	tion							
Item													
Wheat	and	products	1961	L	193	28.0							
Wheat	and	products	1962	2	190	34.0							
Vheat	and	products	1963	3	16	56.0							
Vheat	and	products	1964	4	19	50.0							
Wheat	and	products	1965	5	200	01.0							

Figure 6.4 Setting index for a DataFrame

Reseting index

```
>>> df.reset_index(inplace=True)
>>> df.head()
                Item Area Abbreviation Area Code
                                                                Item Code
                                                           Area
  Wheat and products
                                                   Afghanistan
                                                                      2511
                                    AFG
  Wheat and products
                                    AFG
                                                   Afghanistan
                                                                      2511
2 Wheat and products
                                   AFG
                                                   Afghanistan
                                                                      2511
                                                  Afghanistan
3 Wheat and products
                                    AFG
                                                                      2511
  Wheat and products
                                                 2 Afghanistan
                                                                      2511
                                   AFG
   Element Code Element
                               Unit latitude
                                                                Production
                                               longitude Year
           5142
                   Food
                         1000 tonnes
                                         33.94
                                                   67.71
                                                          1961
                                                                    1928.0
          5142
                       1000 tonnes
                                         33.94
                                                    67.71 1962
                                                                    1904.0
1
                   Food
          5142
                                         33.94
                                                   67.71 1963
                  Food 1000 tonnes
                                                                     1666.0
          5142
                                         33.94
                                                   67.71 1964
                                                                    1950.0
                  Food
                         1000 tonnes
           5142
                  Food 1000 tonnes
                                         33.94
                                                    67.71 1965
                                                                     2001.0
```

Figure 6.16 Resetting the DataFrame index

Sorting DataFrame (SU6 Chapter 1.3,

http://pandas.pydata.org/pandasdocs/stable/generated/pandas.DataFrame.sort_values.html)

[>>> df.sort	t_values(t	oy='Pı	roduction	',asce	ending=Fa	lse).head	()		
	Area Abbi	reviat	tion Are	a Code	9	Area	Item Code	\	
Item									
Vegetables			CHN	41	L China,	mainland	2918		
Vegetables			CHN	41	L China,	mainland	2918		
Vegetables			CHN	41	L China,	mainland	2918		
Vegetables			CHN	41	L China,	mainland	2918		
Vegetables			CHN	41			2918		
	Element	Code	Element		Unit	latitude	longitude	Year	١
Item									
Vegetables		5142	Food		tonnes	35.86	104.2	2013	
Vegetables		5142	Food		tonnes	35.86	104.2	2012	
Vegetables		5142	Food	1000	tonnes	35.86	104.2	2011	
Vegetables		5142	Food	1000	tonnes	35.86	104.2	2010	
Vegetables		5142	Food	1000	tonnes	35.86	104.2	2009	
Thom	Product	ion							
Item	40000								
Vegetables	489299								
Vegetables	479028								
Vegetables	462696								
Vegetables	451838								
Vege <u>t</u> ables	43472	4.0							

Figure 6.5 Sorting the column 'Production' in a descending order

Selection (SU6 Chapter 2)

Note: While Numpy expressions for selecting and setting are intuitive, for production code, we recommend the optimized pandas data access methods, .loc and .iloc.

Figure 6.6 Selecting one column using indexing operator

Selection (SU6 Chapter 2)

```
>>> df['Raw Production'] = df['Production'] * 1000
>>> df.head()
                   Area Abbreviation Area Code
                                                        Area Item Code \
Item
Wheat and products
                                 AFG
                                              2 Afghanistan
                                                                   2511
                                              2 Afghanistan
Wheat and products
                                 AFG
                                                                   2511
                                              2 Afghanistan
Wheat and products
                                 AFG
                                                                   2511
Wheat and products
                                              2 Afghanistan
                                AFG
                                                                   2511
                                              2 Afghanistan
Wheat and products
                                 AFG
                                                                   2511
                    Element Code Element
                                                Unit latitude longitude \
Item
                                    Food 1000 tonnes
Wheat and products
                            5142
                                                          33.94
                                                                     67.71
                                                          33.94
Wheat and products
                            5142
                                    Food 1000 tonnes
                                                                     67.71
Wheat and products
                            5142
                                    Food 1000 tonnes
                                                          33.94
                                                                     67.71
                                                         33.94
Wheat and products
                            5142
                                    Food 1000 tonnes
                                                                     67.71
Wheat and products
                            5142
                                    Food 1000 tonnes
                                                          33.94
                                                                     67.71
                    Year Production Raw Production
Item
Wheat and products
                    1961
                              1928.0
                                           1928000.0
Wheat and products 1962
                              1904.0
                                           1904000.0
Wheat and products 1963
                             1666.0
                                           1666000.0
Wheat and products 1964
                             1950.0
                                           1950000.0
Wheat and products 1965
                              2001.0
                                           2001000.0
```

Figure 6.9 Adding a new column

Selection (SU6 Chapter 2)

Note: While Numpy expressions for selecting and setting are intuitive, for production code, we recommend the optimized pandas data access methods, .loc and .iloc.

Note: The position starts at 0.

```
>>> df.iloc[2]
Area Abbreviation
                              AFG
Area Code
                      Afghanistan
Area
Item Code
                             2511
Element Code
                             5142
Element
                             Food
Unit
                      1000 tonnes
latitude
                            33.94
longitude
                            67.71
Year
                             1963
Production
                             1666
Raw Production
                        1.666e+06
Name: Wheat and products, dtype: object
```

Figure 6.11 Selecting a row by position

Selection (SU6 Chapter 2)

Note: Similar to the column access, the .loc attribute is also used to add new rows or update existing rows. If the row index label passed in doesn't exist, a new entry is added. Otherwise, the existing row is updated.

>>> df.loc['Coffee and products'].sort_values(by='Production',ascending=False).head() Area Abbreviation Area Code Item Coffee and products USA 231 United States of America 231 United States of America Coffee and products USA Coffee and products USA 231 United States of America 231 United States of America Coffee and products USA Coffee and products USA 231 United States of America Item Code Element Code Element Unit latitude \ Coffee and products 2630 5142 Food 1000 tonnes 37.09 2630 5142 37.09 Coffee and products Food 1000 tonnes Coffee and products 2630 5142 Food 1000 tonnes 37.09 Coffee and products 2630 5142 Food 1000 tonnes 37.09 Coffee and products 2630 5142 37.09 Food 1000 tonnes longitude Year Production Raw Production Item Coffee and products -95.71 2013 1367.0 1367000.0 -95.71 1962 1356.0 Coffee and products 1356000.0

1351.0

1340.0

1338.0

1351000.0

1340000.0

1338000.0

Figure 6.10 Selecting rows by label

-95.71 1968

-95.71 1963

-95.71 1964

Coffee and products

Coffee and products

Coffee and products

Selection (SU6 Chapter 2)

Figure 6.12 Selecting elements by specifying both column and row labels

Boolean masking (SU6 Chapter 2.4)

	Area Abbreviation	Area	Code		A	rea	Item (Code \		
Item										
Vegetables, Other	CHN		41	China,	mainla	and		2605		
Vegetables, Other	CHN		41	China,	mainla	and		2605		
Vegetables, Other	CHN		41	China,	mainla	and		2605		
Vegetables	CHN		41	China,	mainla	and		2918		
Vegetables	CHN		41	China,	mainla	and	:	2918		
Vegetables	CHN		41	China,	mainla	and	:	2918		
Vegetables	CHN		41	China,	mainla	and		2918		
				-						
	Vegetables			5	142	Food	100	0 tonnes	35.86	104.2
	Vegetables				142	Food		0 tonnes	177.7.377	104.2
							S. 1. T. 1. S.		660000000000000000000000000000000000000	
			Ye	ar Pro	duction	n Ra	w Pro	duction		
	Item									
	Vegetables	, Othe	er 20	11 4	02338.	0	4023	38000.0		
	Vegetables			12 4	19262.	0	4192	62000.0		
	Vegetables			13 4	26850.	0	4268	50000.0		
	Vegetables		20	07 4	02975.	0	4029	75000.0		
	Vegetables		20	08 4	25537.	0	4255	37000.0		
	Vegetables		20	09 4	34724.	0	4347	24000.0		
	Vegetables		20	10 4	51838.	0	4518	38000.0		
	Vegetables		20	11 4	62696.	0	4626	96000.0		
	Vegetables		20	12 4	79028.	0	4790	28000.0		
	Vegetables		20	13 4	89299.	0	4892	99000.0		

Figure 6.13 Using one column for Boolean masking

Boolean masking (SU6 Chapter 2.4)

Note: Two Boolean masks being compared with bitwise logical operator

[>>> df[(df[Produc	tion! 154	aaaaa) & (df[Vear	1>=2010)	1		
izzz di [(di [Area Abb					Area	Item Code	\
Item									
Vegetables,	Other			CHN	41	L China	, mainland	2605	
Vegetables,	Other			CHN	41	L China	, mainland	2605	
Vegetables,	Other			CHN	41	L China	, mainland	2605	
Vegetables				CHN	41	L China	, mainland	2918	
Vegetables				CHN	41	L China	, mainland	2918	
Vegetables				CHN	41	L China	, mainland	2918	
Vegetables				CHN	41	L China	, mainland	2918	
		Element	Code	Element		Unit	latitude	longitude	\
Item									
Vegetables,			5142	Food		tonnes	35.86	104.2	
Vegetables,			5142	Food		tonnes	35.86	104.2	
Vegetables,	Other		5142	Food		tonnes	35.86	104.2	
Vegetables			5142	Food		tonnes	35.86	104.2	
Vegetables			5142	Food		tonnes	35.86	104.2	
Vegetables			5142	Food		tonnes	35.86	104.2	
Vegetables			5142	Food	1000	tonnes	35.86	104.2	
		Year P	roduct	tion Do	v Produ	otion			
Item		rear P	roduci	cion Rav	v Produ	iction			
Vegetables,	Other	2011	40233	38 A	402338	aaa a			
Vegetables,		2011	41926		419262				
Vegetables,		2012	42685		426850				
Vegetables	Other	2010	45183		451838				
Vegetables		2011	46269		462696				
Vegetables		2012	47902		479028				
Vegetables		2013	48929		489299				
rogordoros		2020							

Figure 6.14 Using multiple columns for Boolean masking

Missing Values (SU6 Chapter 3, http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html)

Note: pandas primarily uses the value *np.nan* to represent missing data. When we use statistical functions on DataFrames, these functions typically ignore missing values. This is usually what we want but we should be aware that values are being excluded.

The function read_csv() provides control for missing values using two function parameters.

- the **na_values** parameter: It is to indicate other strings which could refer to missing values. By default, the following values are interpreted as NaN: ", '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'.
- the **na_filter** parameter: It is to turn off white space filtering, if white space is an actual value of interest. The default is True.

Study the read_csv() function (http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html).

pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='''', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)

To get the boolean mask where values are NumPy nan.

- Study the examples at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.isna.html.
- Write code to check whether any missing value exists in the DataFrame.

>>> d	f.hea	ad()	1.7		038										
			Area	Abb	revia	tion	Area	Code	9		Area	Item	Code	١	
Item															
Wheat	and	products				AFG		- 1	2 Afg	han:	istan		2511		
Wheat	and	products				AFG		- 1	2 Afg	han:	istan		2511		
Wheat	and	products				AFG		1	2 Afg	han:	istan		2511		
Wheat	and	products				AFG		1	2 Afg	han:	istan		2511		
Wheat	and	products				AFG		4	2 Afg	ghan	istan		2511		
			Elem	ent	Code	Elen	nent		Uni	it :	latitu	de 1	ongitu	de	١
Item													[2006		
Wheat	and	products			5142	F	Food	1000	tonne	es	33.	94	67.	71	
Wheat	and	products			5142	F	Food	1000	tonne	es	33.	94	67.	71	
Wheat	and	products			5142	F	Food	1000	tonne	es	33.	94	67.	71	
Wheat	and	products			5142		Food	1000	tonne	es	33.	94	67.	71	
Wheat	and	products			5142	F	Food	1000	tonne	es	33.	94	67.	71	
			Year	P	roduc	tion	Raw	Produ	uction	1					
Item															
Wheat	and	products	1961	8	193	28.0		1928	8000.0	3					
Wheat	and	products	1962		190	04.0		1904	4000.6	9					
Wheat	and	products	1963		16	66.0		1666	5000.0	3					
Wheat	and	products	1964		19	50.0		1956	9,000	3					
Wheat	and	products	1965		200	01.0		2001	1000.6	9					

Quiz

The variable **df** refers to the DataFrame below

	one	two
apple	100.0	111.0
ball	200.0	222.0
cerill	NaN	333.0
clock	300.0	NaN
dancy	NaN	4444.0

Write code to

- print the first column 'one'.
- print the first two values in the first column 'one'.
- print the first row
- print the first and third rows
- print the index
- add a new column 'three', with its values equal to the product of the first two columns' values.
- add a new column 'flag' to check whether the first column's value is greater than 250.
- add a new row with the values 150, 300 for the two columns

Methods for Descriptive Stats

>>> d		3017						0-4	257			T+	0-4-		
			Area	ADD:	revia	cion	Area	Code	е		Area	Item	Code	1	
Item	- 53	9 0				10000		03					22333		
		products				AFG				-	nistan		2511		
Wheat	and	products				AFG				fgha	nistan		2511		
Wheat	and	products				AFG		- 3	2 /	fgha	nistan		2511		
Wheat	and	products				AFG		1	2 /	fgha	nistan		2511		
Wheat	and	products				AFG		4	2 /	fgha	nistan		2511		
			Elen	nent	Code	Elem	ent		t	Unit	latit	ude 1	ongitu	de	١
Item															
Wheat	and	products			5142	F	ood	1000	tor	nes	33	.94	67.	71	
Wheat	and	products			5142	F	ood	1000	tor	nes	33	.94	67.	71	
Wheat	and	products			5142	F	ood	1000	tor	nes	33	.94	67.	71	
Wheat	and	products			5142	F	ood	1000	tor	nes	33	.94	67.	71	
Wheat	and	products			5142	F	ood	1000	tor	nes	33	.94	67.	71	
			Year	P	roduct	tion	Raw	Produ	ucti	ion					
Item															
Wheat	and	products	1961		192	28.0		1928	8000	0.0					
Wheat	and	products	1962	2	196	34.0		1904	4000	0.6					
		products		3	166	56.0		1666	6000	0.0					
		products				0.0		1956							
		products	200000000000000000000000000000000000000			1.0		2001	50 D. 50 S						

- Write code to compute the descriptive stats for Column 'Production' using the describe() method http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.describe.html
- Understand other methods for descriptive stats
 http://pandas.pydata.org/pandas-docs/stable/api.html#computations-descriptive-stats

3. Grouping and Aggregation

Grouping and aggregation (SU6 Chapter 4, <a href="http://pandas.pydata.org/pandas-pydata.org/pandas-pydata.org/pandas-pydata.org/pandas-pydata.org/pandas-pydata-py

<pre>[>>> df.groupby('Area').agg({'Production': .</pre>	np.average}) Production
Area	
Afghanistan	156.663333
Albania	36.386256
Algeria	232.899117
Angola	122.211528
Antigua and Barbuda	0.716981
Argentina	503.171192
Armenia	40.240260
Australia	335.213149
Austria	173.193566

Figure 6.15 Computing average production per area using the agg method

Grouping and aggregation

- Any other ways for the calculation in Figure 6.15?
- Count the number of records for each area.

4. Time Series

Time series data(SU6 Chapters 5.1 and 5.2)

	df.set_inde	x('Year',	inplace	=True)							
[>>>	df.head()	Ttem	Area A	bbreviati	on Area	Code		Area	Ttom	Code	\
Year		1 (6111	Alea A	DDIEVIGLI	OII Alea	Code		VICA	I Com	code	`
1961	L Wheat and	products		Α	FG	2	Afghan	istan		2511	
1962	2 Wheat and	products		Α	FG	2	Afghan	istan		2511	
1963	3 Wheat and	products		Α	FG	2	Afghan	istan		2511	
1964	Wheat and	products		Α	FG	2	Afghan	istan		2511	
1965	Wheat and	products		Α	FG	2	Afghan	istan		2511	
	Element C	ode Eleme	nt	Unit	latitude	e lon	gitude	Produ	ction		
Year											
1961	L 5	142 Fo	od 100	0 tonnes	33.94	4	67.71	1	928.0		
1962	2 5	142 Fo	od 100	0 tonnes	33.94	4	67.71	1	904.0		
1963	3 5	142 Fo	od 100	0 tonnes	33.94	4	67.71	1	666.0		
1964	¥ 5	142 Fo	od 100	0 tonnes	33.94	4	67.71	1	950.0		
1965	5 5	142 Fo	od 100	0 tonnes	33.94	4	67.71	2	001.0		

Figure 6.17 Setting the index using the Year column

Time series data(SU6 Chapters 5.1 and 5.2,

http://pandas.pydata.org/pandas-

docs/stable/generated/pandas.to_datetime.html,

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-

aliases)

```
>>> df.index=pd.to_datetime(df.index,format='%Y').to_period('A')
>>> df.head()
     Area Abbreviation Area Code
                                         Area Item Code
                                                                        Item \
Year
                               2 Afghanistan
1961
                  AFG
                                                    2511 Wheat and products
                               2 Afghanistan
                                                    2511 Wheat and products
1962
                  AFG
                               2 Afghanistan2 Afghanistan
1963
                  AFG
                                                    2511 Wheat and products
                                                    2511 Wheat and products
1964
                  AFG
1965
                  AFG
                               2 Afghanistan
                                                    2511 Wheat and products
                                  Unit latitude longitude Production
      Element Code Element
Year
1961
                                           33.94
             5142
                     Food
                           1000 tonnes
                                                      67.71
                                                                 1928.0
                                           33.94
                                                      67.71
1962
             5142
                     Food 1000 tonnes
                                                                 1904.0
1963
             5142
                     Food 1000 tonnes
                                           33.94
                                                      67.71
                                                                 1666.0
                                           33.94
                                                      67.71
1964
              5142
                     Food 1000 tonnes
                                                                 1950.0
                                                      67.71
1965
              5142
                     Food 1000 tonnes
                                           33.94
                                                                 2001.0
>>> type(df.index)
<class 'pandas.core.indexes.period.PeriodIndex'>
```

Figure 6.18 Converting the index to PeriodIndex

Time series data(SU6 Chapters 5.1 and 5.2)

```
>>> import pandas as pd
>>> df = pd.read_csv('GOOGL.csv', index_col='Date', parse_dates=True)
>>> df.head()
                             Low Close
                                           Volume
                    High
                                                    Name
             Open
Date
2006-01-03 211.47 218.05 209.32 217.83 13137450
                                                   GOOGL
2006-01-04 222.17 224.70 220.09 222.84 15292353 GOOGL
2006-01-05 223.22 226.00 220.97 225.85 10815661 GOOGL
2006-01-06 228.66 235.49 226.85 233.06 17759521 GOOGL
2006-01-09 233.44 236.94 230.70 233.68 12795837 GOOGL
>>> type(df.index)
<class 'pandas.core.indexes.datetimes.DatetimeIndex'>
```

Figure 6.19 Importing data with the index as DatetimeIndex

Study the read_csv() function (http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html).

pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar=''', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)

In Figure 6.19, if we decide to set index later, what values should be given to parse_dates?

df = pd.read_csv('GOOGL.csv', parse_dates = ???)

DatetimeIndex slicing

Study the examples at http://pandas.pydata.org/pandas-docs/stable/timeseries.html#partial-string-indexing

Refer to Figure 6.19. Write code to slice

- rows from 2006-01-05 to 2006-01-09
- all rows in the month 2006-01

5. Plotting with pandas

Construct statistical charts using pandas (SU6 Chapter 5.3, http://pandas.pydata.org/pandas.DataFrame.plot.html, http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.rolling.html)

```
[>>> import matplotlib.pyplot as plt
[>>> df['Close 30 Moving Ave']=df['Close'].rolling(30).mean()
>>> df.head()
                     High
                                    Close
                                                     Name \
             0pen
                              Low
                                             Volume
Date
2006-01-03 211.47 218.05 209.32 217.83 13137450
                                                     GOOGL
2006-01-04 222.17 224.70 220.09 222.84 15292353 GOOGL
2006-01-05 223.22 226.00 220.97 225.85 10815661 GOOGL
2006-01-06 228.66 235.49 226.85 233.06 17759521 GOOGL
2006-01-09 233.44 236.94 230.70 233.68 12795837 GOOGL
           Close 30 Moving Ave
Date
2006-01-03
                           NaN
2006-01-04
                           NaN
2006-01-05
                           NaN
2006-01-06
                           NaN
2006-01-09
                           NaN
>>> df[['Close','Close 30 Moving Ave']].plot();plt.show()
<matplotlib.axes._subplots.AxesSubplot object at 0x10e400e10>
```

Figure 6.20 Plotting the close price and its 30-day moving average

Note: The plot() method is a wrapper of plt.plot().

Bar plot

Study the examples at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.bar.html

Write code to draw a bar plot for the top 10 production areas, from the output below.

<pre>[>>> df.groupby('Area').agg({'Production':</pre>	np.average}) Production
Area	
Afghanistan	156.663333
Albania	36.386256
Algeria	232.899117
Angola	122.211528
Antigua and Barbuda	0.716981
Argentina	503.171192
Armenia	40.240260
Australia	335.213149
Austria	173.193566

Box plot

Study the examples at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.boxplot.html

Write code to draw a box plot of wheat and products production, for the two areas France and Germany.

[>>>	df.head()											
	Area Abb	revia	tion Ar	ea Code)	Area	Item	Code			Item	\
Year												
1961			AFG	2	2 Afgha	anistan		2511	Wheat	and	products	
1962			AFG	2	2 Afgha	nistan		2511	Wheat	and	products	
1963			AFG	2	2 Afgha	nistan		2511	Wheat	and	products	
1964			AFG	2	2 Afgha	nistan		2511	Wheat	and	products	
1965			AFG	2	2 Afgha	anistan		2511	Wheat	and	products	
	Element	Code	Element		Unit	latitu	de l	ongitud	de Pro	oduct	tion	
Year												
1961		5142	Food	1000	tonnes	33.9	94	67.7	71	192	28.0	
1962		5142	Food	1000	tonnes	33.9	94	67.7	71	196	94.0	
1963		5142	Food	1000	tonnes	33.9	94	67.7	71	166	56.0	
1964		5142	Food	1000	tonnes	33.9	94	67.7	71	195	50.0	
1965		5142	Food	1000	tonnes	33.9	94	67.7	71	200	01.0	

Histogram

Study the examples at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.hist.html

Write code to draw histograms of wheat and products production, for the two areas France and Germany.

[>>>	df.head()											
	Area Abb	revia	tion Ar	ea Code)	Area	Item	Code			Item	\
Year												
1961			AFG	2	2 Afgha	anistan		2511	Wheat	and	products	
1962			AFG	2	2 Afgha	nistan		2511	Wheat	and	products	
1963			AFG	2	2 Afgha	nistan		2511	Wheat	and	products	
1964			AFG	2	2 Afgha	nistan		2511	Wheat	and	products	
1965			AFG	2	2 Afgha	anistan		2511	Wheat	and	products	
	Element	Code	Element		Unit	latitu	de l	ongitud	de Pro	oduct	tion	
Year												
1961		5142	Food	1000	tonnes	33.9	94	67.7	71	192	28.0	
1962		5142	Food	1000	tonnes	33.9	94	67.7	71	196	94.0	
1963		5142	Food	1000	tonnes	33.9	94	67.7	71	166	56.0	
1964		5142	Food	1000	tonnes	33.9	94	67.7	71	195	50.0	
1965		5142	Food	1000	tonnes	33.9	94	67.7	71	200	01.0	

