readme

Introduction:

In Q4, to implement the EM algorithm, we mainly adopt the method instructed in the lecture. and following the method.

Methods:

E:

- 1. Initially, let c1 = (0,0,0,0,0,0) and c2 = (1,1,1,1,1,1)
- 2. Step2: assign the objects to clusters: c1 and c2;
- 3. Calculate the weight for each object for each cluster by the relative distance and get the partition matrix.

M:

- 1. Recalculate the centroids according to the partition matrix;
- 2. And then repeat the same process, assign new objects to new clusters:c1 and c2.

Results:

The overall iteration step is 34 iteration.

	C1	C2	SSE
1_iteration	[2.98792136	[2.69065848	367111.5055774729
	7.30724305	5.55601619	
	16.48227403	12.26620984	
	10.65664851	7.48120434	
	0.23655629	0.24285351	
	1.00679373]	0.99747068]	
2_iteration	[3.3178565	[2.50680171	364992.69540533435
	8.76258517	4.77056093	
	20.6221998	10.16570693	
	13.79747907	5.82192441	
	0.28891998	0.20821519	
	1.08775325]	0.95235302]	
Total_iteration	[4.62056755,	[2.39808449,	
	14.72014621,	4.13452911,	
	38.4113867,	8.33493857,	
	27.06530661,	4.39337388,	
	0.28272855,	0.22207279,	
	1.36682765]	0.9255393]	