

APPENDIX A

- 1 initialization
- 1.1 set $c=0$, $j=0$, and $i=0$
- 2 if ($0 \leq i \leq m$) e.g., within the range of S , then
 - 5 2.1 if (group j not fully matched AND $i \leq m$), then
 - 2.1.1 match event i against group j
 - 2.1.2 increase i by 1
 - 2.1.3 if all event categories in group j are matched BUT ω_j violated), then
 - 10 2.1.3.1 make h to be the smallest index such that $T(e_h) \geq T(e_i) - \omega_j$
 - 2.1.3.2 set i to h
 - 2.1.3.3 remove all matches in group j
 - 2.1.4 go to 2.1
 - 2.2 if group j cannot be matched and $i > m$, then go to 3
 - 15 2.3 else if β_{j-1} is violated, then
 - 2.3.1 make i the smallest index such that $T(e_h) \geq (\text{latest time in group } j) - \beta_j$
 - 2.3.2 decrease j by 1 to rework the previous group
 - 2.4 else // group j succeed
 - 20 2.4.1 increase i so that $T(e_i) > \alpha_j + \epsilon$. e.g., make i the latest time in group j
 - 2.4.2 if $c > 0$, then
 - 2.4.2.1 increase i so that $T(e_i) > (\text{earliest time in group } j) \text{ in the last matched occurrence}$
 - 25 2.4.3 increase j by 1
 - 2.5 if j equals g , i.e., current occurrence is fully matched, then
 - 2.5.1 increase c by 1
 - 2.5.2 remove event instances in current matched occurrence
 - 2.5.3 reset $j = 0$
 - 30 2.5.4 direct i to point to the event right after earliest event in the current matched occurrence
 - 2.6 go to 2
 - 3 report c

APPENDIX B

- 1 Method initialization
 - 1.1 Determine $\varphi_{1,z}$ and λ_1
 - 1.2 Determine δ
 - 5 Set $\psi_e = 0$, $\psi_o = \psi_1$
 - 1.4 Determine γ_1
 - 1.5 Assume $\sigma = 1$
 - 1.6 Assume $\mu^- = \delta + \psi_e$ and $\mu^+ = \delta + \psi_o + \gamma_1$
- 2 if $\mu^+ - \mu^- \leq p\mu^-$, then break, if not then
 - 10 2.1 Determine $\varphi_{k,z}$ and λ_k for $k = 2\sigma, 2\sigma + 1$
 - 2.2 If $2\sigma \geq x$, then go to 3
 - 2.3 Update ψ_e
 - 2.4 Update μ^-
 - 2.5 If $\mu^+ - \mu^- \leq p\mu^-$, then go to 3
 - 15 2.6 If $2\sigma + 1 \geq x$, then go to 3
 - 2.7 Update ψ_o
 - 2.8 Update μ^+
 - 2.9 Set $\sigma = \sigma + 1$
 - 2.10 Go to 2
- 20 3 Output μ^+ and μ^-

APPENDIX C

1 Method initialization

1.1 Determine $\varphi_{1,z}$ and λ_1 :

$$\varphi_{1,0} = 1$$

5 $\varphi_{1,1} = -1$

$$\lambda_1 = q^{2(y-x+1)}$$

1.2 Determine δ : $\delta = x - (q^{y-x+1}(1-q^x))/(1-q)$

1.3 Set $\psi_e = 0$, $\psi_o = \psi_1$: where

$$\psi_1 = q^{2y-2x+3}(1-q)$$

10 1.4 Determine γ_1

$$\gamma_1 = \lambda_1 ((q^2-q^x)/(1-q) - (q^4-q^{2x})(1-q^2))$$

1.5 Set $\sigma = 1$

1.6 Set $\mu^- = \delta + \psi_e$ and $\mu^+ = \delta + \psi_o + \gamma_1$

2 2 while ($\mu^+ - \mu^- \leq p\mu^-$), then break, if not then

15 2.1 Determine $\varphi_{k,z}$ and λ_k for $k = 2\sigma, 2\sigma + 1$:

$$\varphi_{k,0} = \sum_{z=1}^k -\varphi_{k,z}q^z$$

$$\varphi_{k,z} = -(\varphi_{k-1,z-1})/(1-q^z)$$

$$\lambda_k = -\lambda_{k-1}(1-q^k)q^{y-x+1}$$

2.2 If ($2\sigma \geq x$), then go to 3

20 2.3 Update ψ_e :

$$\text{increase } \psi_e \text{ by } \sum_{z=1}^{2\sigma-2} [\lambda_z \sum_{w=0}^z \varphi_{z,w}(q^{(2\sigma+1)(w+1)} + q^{2\sigma(w+1)})]$$

2.4 Update μ^- : Set $\mu^- = \delta + \psi_{2\sigma} + \gamma_{2\sigma}$

2.5 If ($\mu^+ - \mu^- \leq p\mu^-$), then go to 3

2.6 If ($2\sigma + 1 \geq x$), then go to 3

25 2.7 Update ψ_o :

$$\text{increase } \psi_o \text{ by } \sum_{z=1}^{2\sigma-1} [\lambda_z \sum_{w=0}^z \varphi_{z,w}(q^{(2\sigma+1)(w+1)} + q^{2\sigma(w+1)})]$$

2.8 Update μ^+ : Set $\mu^+ = \delta + \psi_{2\sigma+1} + \gamma_{2\sigma+1}$

2.8 Set $\sigma = \sigma + 1$

3 3 Output μ^+ and μ^-