1 A unit is often expressed with a prefix. example, the gram may be written with the prefix 'kilo' as the kilogram. The prefix represents a power-of-ten. In this case, the power-of-ten is 10³.

Complete Fig. 1.1 to show each prefix with its symbol and power-of-ten.

prefix	symbol	power-of-ten
kilo	k	10 ³
nano	n	
centi		10 ⁻²
	М	10 ⁶
	Т	10 ¹²

Fig. 1.1

[4]

2 (a) Complete Fig. 2.1 to show whether each of the quantities listed is a vector or a scalar.

	vector / scalar
distance moved	
speed	
acceleration	

Fig. 2.1

[3]

(b) A ball falls vertically in air from rest. The variation with time *t* of the distance *d* moved by the ball is shown in Fig. 2.2.

Fig. 2.2

(i)	By reference to Fig. 2.2, explain how it can be deduced that
	1. the ball is initially at rest,
	[2]
	2. air resistance is not negligible.
	[41]
<i>(</i> 11)	[1]
(ii)	Fig. 2.2 to determine the speed of the ball at a time of 0.40s after it has been released.
	speed = $m s^{-1} [2]$
(iii)	On Fig. 2.2, sketch a graph to show the variation with time <i>t</i> of the distance <i>d</i> moved by the ball for negligible air resistance. You are not expected to carry out any further calculations.

3 (a) The variation with extension x of the tension F in a spring is shown in Fig. 3.1.

Fig. 3.1

Fig. 3.1 to calculate the energy stored in the spring for an extension of 4.0 cm. Explain your working.

(b) The spring in **(a)** is used to join together two frictionless trolleys A and B of mass M_1 and M_2 respectively, as shown in Fig. 3.2.

Fig. 3.2

The trolleys rest on a horizontal surface and are held apart so that the spring is extended.

The trolleys are then released.

(i)	Explain why, as the extension of the spring is reduced, the momentum of trolley A is equal in magnitude but opposite in direction to the momentum of trolley B.
	[2]
	[-]
(ii)	At the instant when the extension of the spring is zero, trolley A has speed $V_{\rm 1}$ and trolley B has speed $V_{\rm 2}$. Write down
	1. an equation, based on momentum, to relate V_1 and V_2 ,
	[1]
	2. an equation to relate the initial energy <i>E</i> stored in the spring to the final energies of the trolleys.
	[1]

(iii)	1.	Show that the kinetic energy $E_{\rm K}$ of an object of mass m is related to its momentum p by the expression
		$E_{K} = \frac{p^2}{2m}.$
		[1]
	2.	Trolley A has a larger mass than trolley B. your answer in (ii) part 1 to deduce which trolley, A or B, has the larger kinetic energy at the instant when the extension of the spring is zero.
		[1]

4	(a)	State what is meant by the <i>diffraction</i> of a wave.
		[2]
		ے]۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔

(b) A laser produces a narrow beam of coherent light of wavelength 632 nm. The beam is incident normally on a diffraction grating, as shown in Fig. 4.1.

Fig. 4.1

Spots of light are observed on a screen placed parallel to the grating. The distance between the grating and the screen is 165 cm.

The brightest spot is P. The spots formed closest to P and on each side of P are X and Y.

X and Y are separated by a distance of 76 cm.

Calculate the number of lines per metre on the grating.

number per metre =[4]

(c) The grating in (b) is now rotated about an axis parallel to the incident laser beam, as shown in Fig. 4.2.

Fig. 4.2

State what effect, if any, this rotation will have on the positions of the spots P, X and Y.
[2
In another experiment using the apparatus in (b) , a student notices that the distance XP and PY, as shown in Fig. 4.1, are not equal. Suggest a reason for this difference.
[1

J	(a)	State what is meant by an <i>electric field</i> .	
			11

(b) The electric field between an earthed metal plate and two charged metal spheres is illustrated in Fig. 5.1.

Fig. 5.1

- (i) On Fig. 5.1, label each sphere with (+) or (–) to show its charge. [1]
- (ii) On Fig. 5.1, mark a region where the magnitude of the electric field is
 - 1. constant (label this region C), [1]
 - 2. decreasing (label this region D). [1]

(c) A molecule has its centre P of positive charge situated a distance of 2.8×10^{-10} m from its centre N of negative charge, as illustrated in Fig. 5.2.

Fig. 5.2

The molecule is situated in a uniform electric field of field strength $5.0 \times 10^4 \text{V m}^{-1}$. The axis NP of the molecule is at an angle of 30° to this uniform applied electric field. The magnitude of the charge at P and at N is $1.6 \times 10^{-19} \text{ C}$.

- (i) On Fig. 5.2, draw an arrow at P and an arrow at N to show the directions of the forces due to the applied electric field at each of these points. [1]
- (ii) Calculate the torque on the molecule produced by the forces in (i).

torque = N m [2]

6	1.0 × The I	10 hea	tric heater is to be made from nichrome wire. Nichrome has a resistivity of $^{-6}\Omega$ m at the operating temperature of the heater. ter is to have a power dissipation of 60W when the potential difference across its s is 12V.
	(a)		the heater operating at its designed power,
	((i)	calculate the current,
			current = A [2]
	(ii)	show that the resistance of the nichrome wire is 2.4 Ω .
			[2]
	(b) (Cal	culate the length of nichrome wire of diameter 0.80 mm required for the heater.
			length = m [3]

(c)	A second heater, also designed to operate from a 12V supply, is constructed using the same nichrome wire but using half the length of that calculated in (b) . Explain quantitatively the effect of this change in length of wire on the power of the heater.
	[3]

		he isotopes of uranium is uranium-2	92 07.	
(a)	Sta	te what is meant by <i>isotopes</i> .		
/ b\				
(b)	4 15	a nucleus of uranium-238, state		
	(i)	the number of protons,		
			number =	
	(ii)	the number of neutrons.		
			number =	
(c)	A u	ranium-238 nucleus has a radius of	8.9×10^{-15} m.	
	Cal	culate, for a uranium-238 nucleus,		
	(i)	its mass,		
	()	,		
			mass =	. kg
	(ii)	its mean density.		

atom.				
	 	 	 	••••