CONJUNTOS NUMÉRICOS

Centro Universitário Senac TADS

MTI

História

- Contar objetos e ter registros numéricos.
- Abstrair a natureza por meio de processos de determinação de quantidades.
- Primeiro princípio de contagem foi as mãos. Depois pedras, ossos, desenhos.
- E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos

CONJUNTO DOS NÚMEROS NATURAIS

Chama-se **conjunto dos números naturais** — símbolo \mathbb{N} — o conjunto formado pelos números 0, 1, 2, 3,

$$\mathbb{N} = \{0, 1, 2, 3, ...\}$$

Observações:

- operações soma e multiplicação estão definidas.
- Como o zero originou-se depois dos outros números e possui algumas propriedades próprias, algumas vezes teremos a necessidade de representar o conjunto dos números naturais sem incluir o zero. Notação:

62. Seja H o conjunto $\{n \in \mathbb{N} \mid 2 \le n \le 40, n \text{ múltiplo de 2}, n \text{ não múltiplo de 3}\}$. Qual é o número de elementos de H?

$$H = \{ 2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 38, 40 \}$$

 $n(H) = 14$

63. Um subconjunto X de números naturais contém 12 múltiplos de 4, 7 múltiplos de 6, 5 múltiplos de 12 e 8 números ímpares. Qual é o número de elementos de X?

QUANTDADE	Sub conjunto X de números naturais (total)					Sub conjunto X de números naturais (total)			
	Mult. 4	Mult. 6	Mult. 12	nº impar	QUANTDADE	Mult. 4	Mult. 6	Mult. 12	nº impar
1	4	6	12	1	1	4	6		1
2	8	12	24	3	2	8			3
3	12	18	36	5	3	12	18		5
4	16	24	48	7	4	16			7
5	20	30	60	9	5	20	30	60	9
6	24	36		11	6	24		1	11
7	28	42		13	7	28	42		13
8	32			15	8	32			15
9	36				9	36			
10	40				10	40			
11	44				11	44			
12	48				12	48			
TOTAL	32 elementos			TOTAL	25 elementos				

64. Sendo $A = \{n \mid n = 2p - 1 e p \in B\}$, qual é a condição sobre B para que n seja um número natural impar?

$$B = I\{1,2,3,4,5,6,7,8....\}$$
 Por tanto: $B = N^*$

CONJUNTO DOS NÚMEROS INTEIROS

Chama-se **conjunto dos números inteiros** — símbolo \mathbb{Z} — o seguinte conjunto:

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

No conjunto \mathbb{Z} distinguimos três subconjuntos notáveis:

$$\mathbb{Z}_{+} = \{0, 1, 2, 3, ...\} = \mathbb{N}$$

(chamado conjunto dos inteiros não negativos);

$$\mathbb{Z}_{-} = \{0, -1, -2, -3, ...\}$$

(chamado conjunto dos inteiros não positivos);

$$\mathbb{Z}^* = \{..., -3, -2, -1, 1, 2, 3, ...\}$$

(chamado conjunto dos inteiros não nulos).

Uma importante noção que devemos ter sobre números inteiros é o conceito de divisor.

Dizemos que o inteiro a é **divisor** do inteiro b — símbolo $a \mid b$ — quando existe um inteiro c tal que ca = b.

$$a \mid b \Leftrightarrow (\exists c \in \mathbb{Z} \mid ca = b)$$

Exemplos:

1º)
$$2 \mid 12$$
 pois $6 \cdot 2 = 12$
2º) $3 \mid -18$ pois $(-6) \cdot 3 = -18$
3º) $-5 \mid 20$ pois $(-4) \cdot (-5) = 20$
4º) $-2 \mid -14$ pois $7 \cdot (-2) = -14$
5º) $4 \mid 0$ pois $0 \cdot 4 = 0$
6º) $0 \mid 0$ pois $1 \cdot 0 = 0$

Quando a é divisor de b, dizemos que "b é **divisível** por a" ou "b é **múltiplo** de a".

Para um inteiro a qualquer, indicamos com D(a) o conjunto de seus divisores e com M(a) o conjunto de seus múltiplos.

Exemplos:

19)
$$D(2) = \{1, -1, 2, -2\}$$
 $M(2) = \{0, \pm 2, \pm 4, \pm 6, ...\}$

2°)
$$D(-3) = \{1, -1, 3, -3\}$$
 $M(-3) = \{0, \pm 3, \pm 6, \pm 9, ...\}$

39)
$$D(0) = \mathbb{Z}$$
 $M(0) = \{0\}$

Dizemos que um número inteiro p é **primo** quando $p \neq 0, 1 e -1 e$ $D(p) = \{1, -1, p, -p\}.$

Exemplos:

$$2, -2, 3, -3, 5, -5, 7e - 7$$
 são primos.

Determine os seguintes números inteiros:

a) mdc (2, 3)

c) mdc (-6, -14) e) mmc (-4, 6)

b) mdc (-4, 6) d) mmc (2, 3)

f) mmc (-6, -14)

Respostas:

a)
$$\pm 1$$

b)
$$\pm 2$$

c)
$$\pm 1$$

$$d) \pm 6$$

e)
$$\pm 12$$

https://www.youtube.com/watch?v=krttBn90kh4

Máximo Divisor Comum (mdc)

O maior elemento encontrado na divisão de dois ou mais números naturais

$$MDC (50 e 20) = 2.5 = 10$$

(Vunesp) Em um colégio de São Paulo, há 120 alunos na 1.ª série do Ensino Médio, 144 na 2.ª e 60 na 3.ª. Na semana cultural, todos esses alunos serão organizados em equipes, com o mesmo número de elementos, sem que se misturem alunos de séries diferentes. O número máximo de alunos que pode haver em cada equipe é igual a:

- a) 7
- b) 10
- c) 12
- d) 28
- e) 30

Mínimo Múltiplo Comum (mmc)

O menor número positivo, diferente de 0 (zero), que é múltiplo ao mesmo tempo de dois ou mais números naturais)

MMC (12 e 45) = 180

Três navios fazem viagens entre dois portos. O primeiro a cada 4 dias, o segundo a cada 6 dias e o terceiro a cada 9 dias. Se esses navios partirem juntos, depois de quantos dias voltarão a sair juntos, novamente?

- a) 18
- b) 24
- c) 36
- d) 54
- e) 216

Conjunto dos Números Racionais

Chama-se **conjunto dos números racionais** — símbolo \mathbb{Q} — o conjunto dos pares ordenados (ou frações) $\frac{a}{b}$, em que $a \in \mathbb{Z}$ e $b \in \mathbb{Z}^*$, para os quais adotam-se as seguintes definições:

$$Q = \{a/b \mid a, b \in Z \ e \ b \neq 0\}.$$

- 1ª) igualdade: $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$
- 2ª) adição: $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$
- 3ª) multiplicação: $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

No conjunto dos racionais destacamos os subconjuntos:

- \mathbb{Q}_+ (conjunto dos racionais não negativos);
- \mathbb{Q}_{-} (conjunto dos racionais não positivos);
- Q* (conjunto dos racionais não nulos).

Todo número racional pode ser escrito em forma de fração. Exemplos:

- Decimais finitos;
- Dízimas periódicas;
- Raízes exatas;

Representação Decimal

Notemos que todo número racional $\frac{a}{b}$ pode ser representado por um número decimal. Passa-se um número racional $\frac{a}{b}$ para a forma de número decimal dividindo o inteiro a pelo inteiro b. Na passagem de uma notação para outra podem ocorrer dois casos:

1º) o número decimal tem uma quantidade finita de algarismos, diferentes de zero, isto é, é uma decimal exata.

Exemplos:

$$\frac{3}{1} = 3$$
 $\frac{1}{2} = 0.5$ $\frac{1}{20} = 0.05$ $\frac{27}{1000} = 0.027$

2º) o número decimal tem uma quantidade infinita de algarismos que se repetem periodicamente, isto é, é uma **dízima periódica**.

Exemplos:

$$\frac{1}{3}$$
 = 0,333... = 0, $\overline{3}$ (período 3)
 $\frac{2}{7}$ = 0,285714285714... = 0,285714 (período 285714)
 $\frac{11}{6}$ = 1,8333... = 1,8 $\overline{3}$ (período 3)

Podemos notar também que todo número na forma de decimal exata ou de dízima periódica pode ser convertido à forma de fração $\frac{a}{b}$ e, portanto, representa um número racional.

Quando a decimal é exata, podemos transformá-la em uma fração cujo numerador é o numeral decimal sem a vírgula e cujo denominador é o algarismo 1 seguido de tantos zeros quantas forem as casas decimais do numeral dado.

Exemplos:

$$0,37 = \frac{37}{100} \qquad 2,631 = \frac{2631}{1000} \qquad 63,4598 = \frac{634598}{10000}$$

Quando a decimal é uma dízima periódica, devemos procurar sua **geratriz**. Damos, a seguir, três exemplos de como obter a geratriz de uma dízima periódica.

Exemplo 1: 0,777...

$$x = 0,777...$$
 $\Rightarrow 10x - x = 7 \Rightarrow x = \frac{7}{9}$ então: $0,777... = \frac{7}{9}$.

Obtenha a geratriz dos seguintes números racionais:

- a) 0,32
- b) 5,423423423...

Usando esta calculadora, como faço para obter o resultado da seguinte conta:

- a) 1248 dividido por 5 =
- b) 32,21 dividido por 4 =

$$1248 \div 5 = \frac{1248}{5} = 1248 \times \frac{1}{5} = 1248 \times 0,20 = 249,6$$

$$32,21 \div 4 = \frac{32,21}{4} = 32,21 \times \frac{1}{4} = 32,21 \times 0,25 = 8,0525$$

A pressão P e o volume V de um gás ideal mantido a uma temperatura constante satisfazem a Lei de Boyle descrita como: P x V = constante. Se aumentarmos a pressão em 25%, em quantos porcentos diminuirá o volume deste gás ideal?

$$25\% = \frac{25}{100} = \frac{1}{4}$$

Para um acréscimo de 25% temos:

$$1 + \frac{1}{4} = \frac{4}{4} + \frac{1}{4} = \frac{5}{4}$$

 $P \times V = valor\ constante\ (y)$

$$V = \frac{y}{P} \qquad V = \frac{y}{P} \times 0.80$$

$$V = \frac{y}{P \times \frac{5}{4}} \qquad V = \frac{y}{P} \times \frac{80}{100}$$

$$V = \frac{y}{P} \times \frac{4}{5} \qquad V = \frac{y}{P} \times 80\%$$

Resposta:

O volume diminuirá 20%

CONJUNTO DOS NÚMEROS IRRACIONAIS

Existem números cuja representação decimal com infinitas casas decimais não é periódica. Por exemplo, o numeral decimal 0,1010010001... (em que o número de algarismos 0 intercalados entre os algarismos 1 vai crescendo) é não periódico. Ele representa um número *não* racional. Ele representa um **número irracional**.

Outros exemplos de números irracionais:

1,234567891011

6,202002000...

34.56789101112...

 π = 3,14159265358979323846...

CONJUNTO DOS NÚMEROS REAIS

Chama-se **conjunto dos números reais** — símbolo \mathbb{R} — aquele formado por todos os números com representação decimal, isto é, as decimais exatas ou periódicas (que são números racionais) e as decimais não exatas e não periódicas (que são números irracionais).

 \mathbb{R}_+ (conjunto dos reais não negativos);

 \mathbb{R}_{-} (conjunto dos reais não positivos);

 \mathbb{R}^* (conjunto dos reais não nulos).

 \mathbf{N} C \mathbf{Z} C \mathbf{Q} C \mathbf{R} \rightarrow N está contido em Z, que está contido em Q e que está contido em R

I C R → I está contido em R

 $\mathbf{Q} \cup \mathbf{I} = \mathbf{R} \rightarrow \mathbf{Q}$ união com I, corresponde a \mathbf{R}

 $\mathbf{Q} \cap \mathbf{I} = \emptyset \rightarrow \mathbf{Q}$ intersecção com I, corresponde a vazio

 $I = R - Q \rightarrow I$ corresponde a R, subtraído de Q

Conjuntos Numéricos

Naturais 0, 1, 2, 3, 4, 5...
Positivos inteiros a partir do 0

Inteiros ... -2, -1, 0, 1, 2, 3...
Naturais + os negativos

Racionais ... -1, 0, 1, 2 e frações (½,¾5...)

Naturais + frações e
dízimas periódicas

Irracionais π, √2, √3, -√5... Raízes não inteiras e dízimas não periódicas

Quais das proposições abaixo são verdadeiras?

(a)
$$3 \in \mathbb{R}$$

$$d) \ \frac{1}{2} \in \mathbb{R} - \mathbb{Q}$$

g)
$$(\sqrt{2} - 3\sqrt{3}) \in \mathbb{R} - \mathbb{Q}$$

$$(b)$$
 $\mathbb{N} \subset \mathbb{R}$

e)
$$\sqrt{4} \in \mathbb{R} - \mathbb{Q}$$

$$\frac{3\sqrt{2}}{\sqrt{5}} \in \mathbb{R} - \mathbb{Q}$$

$$\mathbb{Z} \subset \mathbb{R}$$

f)
$$\sqrt[3]{4} \in \mathbb{R} - \mathbb{Q}$$

$$i) \frac{3\sqrt{2}}{5\sqrt{2}} \in \mathbb{Q}$$

Fonte: IEZZI, G.; MURAKAMI, C. Fundamentos de matemática elementar: conjuntos funções.

São Paulo: Atual, 2004. v. 1.

	por um intervalo	geométrica	uma condição	Leitura	
]a, b[$-\infty$ a b $+\infty$	{x∈R: a <x<b}< th=""><th>x maior do que a e menor do que b</th></x<b}<>	x maior do que a e menor do que b	
	[a, b]	$-\infty$ a b $+\infty$	$\{x \in \mathbb{R}: a \leqslant x \leqslant b\}$	x maior ou igual a a e menor ou igual a b	
Intervalo de números	[a, b[$-\infty$ a b $+\infty$	$\{x \in \mathbb{R}: a \leqslant x < b\}$	x maior ou igual a a e menor que b	
reais]a, b]	$-\infty$ a b $+\infty$	$\{x \in \mathbb{R}: a < x \leq b\}$	x maior que a e menor ou igual a b	
	[a,+∞[$\xrightarrow{-\infty}$ a $+\infty$	$\{x \in \mathbb{R} : x \geqslant a\}$	x maior ou igual a a	
]-∞, a]	$\xrightarrow{-\infty}$ $a + \infty$	{ <i>x</i> ∈ℝ: <i>x</i> ≤ <i>a</i> }	x menor ou igual a a	

Representa geometricamente os seguintes intervalos:

Representa, sob a forma de intervalo de números reais, os conjuntos definidos pelas seguintes condições:

a)
$$\{x \in IR: x < 4\}$$
] $-\infty$, 4[

b)
$$\{x \in IR: x > 0\}$$
] 0, $+\infty$ [

c)
$$\{x \in IR: -1 < x \le \frac{1}{2}\}$$
]-1, $\frac{1}{2}$]

d)
$$\{x \in IR: 0 \le x < 2\}$$
 [0, 2]

Escreve na forma de intervalo de números reais cada uma das representações geométricas seguintes:

$$[-1,+\infty[$$

$$]-\infty,1]$$

d)
$$\xrightarrow{-\infty}$$
 $\sqrt{7}$ $+\infty$

]
$$\sqrt{7}$$
, $+\infty$ [

$$]-\infty,40[$$

