Практика 1.12

Везде e_i $(1 \le i \le n)$ — базис $V, e^i \in V^*$ — двойственный базис. Для X из $\bigwedge^k V$, или $\bigwedge^k V^*$, или $V^{\otimes k}$, или $(V^*)^{\otimes k}$ и т.д. мы будем обозначать через |X| число k.

- 1. В какой эндоморфизм пространства V переходит при изоморфизме $End(V) \cong V^* \bigotimes V$ так называемый элемент Казимира $\sum e^i \otimes e_i = e^1 \otimes e_1 + \dots + e^n \otimes e_n \in V^* \bigotimes V$? Докажите, что этот элемент не зависит от выбора базиса e_i .
- 2. Рассмотрим линейный фунционал $F: End(V) \to k$, полученный как композиция канонического изоморфизма $End(V) \cong V^* \bigotimes V$ и свёртки $V^* \bigotimes V \to k$. Что это за (известный) функционал?
- 3. Выберем какой-нибудь базисный вектор v в одномерном пространстве $\Lambda^n V$. Пусть $k \leq n$. Зададим билинейное спаривание $\langle -, \rangle : \bigwedge^k V \times \bigwedge^{n-k} V \to k$ следующим образом: $w_1 \wedge w_2 = \langle w_1, w_2 \rangle \cdot v$, где $w_1 \in \bigwedge^k V, w_2 \in \bigwedge^{n-k} V$. Проверьте, что это спаривание невырожено.
- 4. Для $f_1, \ldots, f_k \in V^*, v_1, \ldots, v_k \in V$ определим $\langle f_1 \wedge \cdots \wedge f_k, v_1 \wedge \cdots \wedge v_k \rangle$ как определитель матрицы с элементами $f_i(v_j)$. Докажите, что $\langle -, \rangle$ (после продолжения по линейности) определяет невыроженное спаривание между $\bigwedge^k V^*$ и $\bigwedge^k V$.
- 5. Для $T \in \bigwedge^m V$ и $F \in \bigwedge^k V^*$ (k < m) определим $\partial_F(T) \in \bigwedge^{m-k} V$ равенством $\langle G, \partial_F(T) \rangle = \langle F \wedge G, T \rangle$, которое должно выполняться для всех $G \in \bigwedge^{m-k} V^*$ $(\langle -, \rangle -$ спаривание из предыдущей задачи, корректность определения следует из неё же). Таким образом, мы определили $\partial_F : \bigwedge^m V \to \bigwedge^{m-k} V$. Докажите, что
 - (a) $\partial_{F \wedge G} = \partial_F \circ \partial_G$ (сами можете понять, для каких F и G). В частности, $\partial_F \circ \partial_G = (-1)^{|F||G|} \partial_G \circ \partial_F$.
 - (b) Для $F \in V^*$: $\partial_F(X \wedge Y) = \partial_F(X) \wedge Y + (-1)^{|X|} X \wedge \partial_F(Y)$.
 - (c) Чему равно $\partial_{e^{j_1}\wedge\cdots\wedge e^{j_k}}(e_{i_1}\wedge\cdots\wedge e_{i_m})$?
- 6. Пусть U-k-мерное подпространство V. Выберем базис u_1, \ldots, u_k подпространства U и определим $\phi(U) = u_1 \wedge \cdots \wedge u_k \in \bigwedge^k V$. Докажите, что таким образом мы получили взаимно однозначное соответствие между k-мерными подпространствами U и ненулевыми разложимыми элементами $\bigwedge^k V$ по модулю домножения на скаляр.
- 7. Пусть $w \in \bigwedge^k V$ и $e_1 \wedge \cdots \wedge e_r \neq 0$ для некоторых $e_i \in V$. Докажите, что $w = w_1 \wedge e_1 \wedge \cdots \wedge e_r$ для некоторого $w_1 \in \bigwedge^{k-r} V$ тогда и только тогда, когда $w \wedge e_i = 0$ для любого $i = 1, \dots, r$.
- 8. Пусть $T \in \bigwedge^k V$. Докажите, что
 - (a) Если T разложим, то $\partial_F(T) \wedge T = 0$ для любого $F \in \bigwedge^{k-1} V^*$.
 - (b) Если $\partial_F(T) \wedge T = 0$ для любого $F \in \bigwedge^{k-1} V^*$, то $T = \phi(U)$, где U подпространство, порождённое всеми векторами вида $\partial_F(T)$.
- 9. Разложим ли тривектор $x = -e_1 \wedge e_2 \wedge e_3 + 2e_1 \wedge e_2 \wedge e_4 + 4e_1 \wedge e_3 \wedge e_4 + 3e_2 \wedge e_3 \wedge e_4$? Если да, то выпишите явное разложение $x = u \wedge v \wedge w$.
- 10. (a) Пусть e_1, \ldots, e_{2n} базис V и $w = e_1 \wedge e_2 + e_3 \wedge e_4 + \cdots + e_{2n-1} \wedge e_{2n}$. Докажите, что $\bigwedge^n w = n! e_1 \wedge \cdots \wedge e_{2n}$.
 - (b) Докажите, что любой кососимметрический тензор $p \in \bigwedge^2 V$ в некотором базисе $\{e_i\}$ записывается в виде $p = e_1 \wedge e_2 + e_3 \wedge e_4 + \cdots + e_{2k-1} \wedge e_k$.
- 11. Докажите, что кососимметрический тензор $w \in \bigwedge^2(\mathbb{R}^4)$ разложим тогда и только тогда, когда $w \wedge w = 0$.

- 12. (а) Проверьте, что линейный оператор $A:V\to V$ каноническим образом определяет оператор $\bigwedge^k A:\bigwedge^k V\to \bigwedge^k V.$ (b) Докажите, что при $k=\dim(V)-1$ этот оператор либо нулевой, либо невырожден, либо

 - (c) Вычислите определитель $\bigwedge^k A$, если известен определитель A.