Medical Marijuana in Neurological Disease

Metha Apiwattanakul MD.

Department of Neurology

Prasat Neurological Institute

Neurological disease

- Multiple Sclerosis
- Neuropathic pain
- Epilepsy

ข้อมูลกัญชาที่เอามาใช้ทางการแพทย์

- •สำหรับโรคทางระบบประสาทที่มีการศึกษากันเป็น สารสกัดจากกัญชา ที่มีอัตราส่วนของสารออกฤทธิ์ คือ THC และ CBD ในอัตราส่วนที่ ชัดเจน
- การศึกษาที่มีมาก และมีข้อมูลที่อาจได้ผล ได้แก่
 โรค MS (ปลอกประสาทเสื่อมแข็ง) ใช้ในเรื่องของอาการเกร็งหรือปวดจาก ตัวโรค แต่ไม่ได้ใช้ในการรักษาตัวโรคโดยตรง
 โรคลมชักบางชนิด ที่ดื้อต่อยามาตรฐาน
- •อาการปวดจากเส้นประสาท ที่ดื้อต่อยามาตรฐาน •ยังไม่มีการศึกษาที่เป็นระบบเกี่ยวกับการใช้น้ำมันสกัดจากกัญชาว่า ได้ผลอย่างไร

ข้อมูลกัญชาที่เอามาใช้ทางการแพทย์

- •ในโรคพาร์คินสัน (Parkinson disease) หรือโรคสมองเสื่อม (Alzheimer disease) ที่มีการศึกษาอยู่บ้างในเรื่องของอาการของ ตัวโรค
 - •พาร์คินสัน ในกรณีที่มีการเคลื่อนไหวผิดปกติจากยาที่ใช้อยู่ ในช่วงท้าย ๆ ของโรคุ → ข้อมูลการศึกษายังไม่ชี้ชัดว่าได้ประโยชน์
 - •สมองเสื่อม ในก[้]ารศึกษาที่ทำมาใช้ควบคุมอารมณ์ในผู้ป่วยกลุ่มนี้ ยังไม่ชื้ ชัดว่าได้ประโยชน์

Multiple Sclerosis

- Relapsing-remitting & chronic progressive neurological deficit
- Demyelination in central nervous system (brain, spinal cord & optic nerve)
- Affect young female > male (30-40 yrs)
- Cause functional disability

Normal structure & function of neuron with myelin

Myelin sheath: allow nerve conduction 400 km/hr

How Multiple Sclerosis Works Demyelinization

Pathogenesis of MS

- Autoreactive T cell is activated in peripheral
- Break blood-brainbarrier: T cell invade CNS
- Reactivation in CNS
 - → demyelination

eCB in CNS

- CB1 receptor: CNS in cortical neurons, interneurons, astrocytes, oligodendrocytes & precursor cell
- CB2 receptor: immune cells, microglia & astrocytes

Clinical features

- Optic neuritis (unilateral, rare bilateral simultaneous)
- Myelitis: paraparesis, quadriparesis, bowel & bladder dysfunction
- Brain: hemiparesis, hemianesthesia
- Brainstem : opthalmoparesis, hemiparesis, hemianesthesia
- Cerebellum: ataxia

Multiple Sclerosis

Myelitis: Motor weakness, spasticity

Optic neuritis:
Blurred vision

Clinical features

- Neurological deficits usually acute to sub-acute onset
- •Usually progress in days to few weeks (1-2 weeks), rarely progress more than 4 weeks
- May recovery by itself (partial or full)
- Usually relapse

Clinical presentation of MS is the tip of iceberg

MS disability progression

Disability α genetic?? + time

Chronic symptom related to MS

- Fatigue: most common & most concerning by patient
- Spasticity: 2nd most common and cause limitation of ambulation
- Central neuropathic pain: disturb ADL
- Tremor (cerebellar)
- Urinary incontinence
- Constipation

Endocannabinoid & MS

Major (endo)cannabinoids, and main metabolic enzymes of eCBs with a role in neuroinflammation.

Name (abbreviation)	Chemical structure	
Δ^9 -Tetrahydrocannabinol (THC)	OH X	THC
Cannabidiol (CBD)	он	CBD
N-Arachidonoylethanolamine (Anandamide, AEA)	Z A A A A A A A A A A A A A A A A A A A	
2-Arachidonoylglycerol (2-AG)	OH OH	
Biosynthetic enzyme of AEA N -acylphosphatidyl ethanolamines (NAPE)-specific phospholipase D (NAPE-PLD) Biosynthetic enzymes of 2-AG Diacylglycerol lipase α (DAGL α) Diacylglycerol lipase β (DAGL β) Degrading enzyme of AEA Fatty acid amide hydrolase (FAAH) Degrading enzyme of 2-AG Monoacylglycerol lipase (MAGL)	Intracellular localization Membrane-associated Intracellular localization Membrane-associated Membrane-associated Intracellular localization Membrane-associated (mainly ER) Intracellular localization Membrane-associated and cytosolic	

ECS element	Model	Sample	Variation	Effects	Reference
AEA	Chronic EAE	Brain, spinal cord	1	Early inhibition of spasticity	Baker et al. (2001)
	Lewis EAE rats	Brain	Ţ	Worsening of disease development and neurological impairment	Cabranes et al. (2005)
	RR-MS	Autopsied brain	1	Microglia-induced neuroprotection	Eljaschewitsch et al. (2006
	EAE and RR-MS patients	Brain, CSF, plasma, T cells	1	Neuroprotection	Centonze et al. (2007a)
	RR-MS, SP-MS	CSF	1	-	Di Filippo et al. (2008)
	RR-MS, PP-MP, SP-MS	Plasma	1	Disease progression	Jean-Gilles et al. (2009)
	RR-MS	T cells, B cells, NK cells	1	-	Sánchez López et al. (2015)
NAPE-PLD/ EAE and patients SP-MS RR-MS	EAE and RR-MS patients	Brain, CSF, plasma, T cells	† NAPE-PLD and JFAAH	Neuroprotection	Centonze et al. (2007a)
	SP-MS	Plasma	↓FAAH	Disease progression	Jean-Gilles et al. (2009)
	RR-MS	mDC and pDC	↓FAAH in mDC and ↑ in pDC	Lack of immunoregulation	Chiurchiù et al. (2013)
	RR-MS	T cells, B cells, NK cells	$\leftarrow \rightarrow$	-	Sánchez López et al. (2015
F 7	Chronic EAE	Brain, spinal cord	1	Late inhibition of spasticity	Baker et al. (2001)
	Lewis EAE rats	Brain	1	Worsening of disease development and neurological impairment	Cabranes et al. (2005)
	RR-MS patients	CSF	$\leftarrow \rightarrow$	-	Centonze et al. (2007a)
	RR-MS, SP-MS	CSF	1	-	Di Filippo et al. (2008)
	TMEV-IDD	Spinal cord	1	-	Loría et al. (2008)
	RR-MS	T cells, B cells, NK cells	Increased in NK cells	-	Sánchez López et al. (2015
DAGL/ MAGL	EAE	-	-	Inhibition of MAGL ameliorates EAE progression	Hernández-Torres et al. (2014)
	Lewis EAE rats	Brain	1	Worsening of disease development and neurological impairment	Cabranes et al. (2005)
	P-MS	Plasma	1	Disease progression	Jean-Gilles et al. (2009)
	MS plaques	Neurons, oligodendrocytes, infiltrated T cells	1	Disease progression	Benito et al. (2007)
	RR-MS	T cells, B cells, NK cells	†in T cells	-	Sánchez López et al. (2015
CB ₂	TMEV-IDD	Spinal cord	1	-	Loría et al. (2008)
	P-MS	Plasma	1	Disease progression	Jean-Gilles et al. (2009)
	MS plaques	Infiltrated T cells, astrocytes, microglia	1	Disease progression	Benito et al. (2007)
	RR-MS	mDC and pDC	†in mDC and ←→in pDC	Lack of immunoregulation	Chiurchiù et al. (2013)
	RR-MS	T cells, B cells, NK cells	Increased in B cells	-	Sánchez López et al. (2015

ข้อควรระวัง

- •สารออกฤทธิ์ในกัญชา โดยเฉพาะ THC มีผลต่อจิตประสาท ซึ่ง จำเป็นต้องทำการศึกษาหาอัตราส่วนของสารออกฤทธิ์ที่ชัดเจน ถูกต้อง เพื่อสามารถติดตามอาการและผลข้างเคียงได้
- •กัญชา หรือ สารสกัดจากกัญชา ไม่ใช่ยาครอบจักรวาล แม้แต่ การศึกษาวิจัยอย่างมีระบบในโรค MS ที่มีข้อมูลมากที่สุด ผลลัพธ์ หรือประโยชน์ที่ได้ คือ การคุมกลุ่มอาการบางกลุ่ม (เกร็ง ปวด) ได้ แต่ไม่ได้ครอบคลุมอาการอื่น ๆ ที่พบในโรค MS ได้ เช่น กล้ามเนื้อ อ่อนแรง ตามองไม่เห็น และยังไม่มีข้อมูลว่าสามารถยับยั้งหรือชะลอ การดำเนินโรคได้

ข้อควรระวัง

- •ในโรคลมชักบางชนิดที่ดื้อต่อยากันชักมาตรฐาน ก็มีข้อมูล เฉพาะสารออกฤทธิ์ CBD เท่านั้น
- •ควรพิจารณาและระมัดระวังการนำสารสกัดจากกัญชามาใช้ ทางการแพทย์
- •ควรมีการติดตามการผลการใช้ยาในระยะยาว

Medical marijuana in MS

- Active substance:
 - Tetrahydrocannabinol (THC)
 - Cannabidiol (CBD)
- Medication form:
 - Oral cannabis extract (OCE)
 - Synthetic THC
 - Nabiximols (spray)

Systemic review marijuana in MS

- Symptoms that have some evidences in MS
 - Patient's reported spasticity: THC:CBD 1:1
 - But not reduced spasticity measured by physician
 - Central pain: OCE may reduce central pain
 - Urinary incontinence:
 - OCE & THC → not prove to reduce urinary frequency
 - Nabiximol → may reduce urinary frequency if use in short period (10 weeks)
 - Tremor: no benefit

คำแนะนำการใช้สารสกัดกัญชาใน MS

- •ใช้เฉพาะในกรณีของกล้ามเนื้อหดเกร็ง (Spasticity) ใน MS ที่ ดื้อต่อการรักษาภายใต้ข้อพิจารณาดังนี้
- 1. ไม่แนะนำให้ใช้เป็นการรักษาเริ่มต้น
- 2. แนะนำให้ปรึกษากับผู้ป่วยถึงประโยชน์และความเสี่ยงของ ผลิตภัณฑ์กัญชาก่อนใช้
- 3. แนะนำให้ใช้ในกรณีที่รักษาด้วยวิธีมาตรฐานอย่างเหมาะสม (รวมถึงวิธีที่ไม่ใช้ยา) แล้วไม่ได้ผล

Evidence of marijuana in Neuropathic pain

- Central neuropathic pain (MS)
- Cancer-related neuropathy
- Complex regional pain syndrome (CRPS) type II
- HIV neuropathy
- Painful diabetic neuropathy
- Peripheral polyneuropathy
- Phantom limb pain
- Postherpetic neuralgia
- Postoperative or traumatic nerve lesions
- Spinal cord injury
- Nerve plexus injury
- Trigeminal neuralgia

Cochrane Database of Systematic Reviews

Cannabis-based medicines for chronic neuropathic pain in adults (Review)

Mücke M, Phillips T, Radbruch L, Petzke F, Häuser W

- No high-quality evidence for the efficacy of any cannabis-based medicine, plant-derived THC/CBD combination, in any condition with chronic neuropathic pain
- Some adverse events (somnolence, confusion, psychosis) may limit the clinical usefulness of cannabisbased medicine

คำแนะนำการใช้สารสกัดกัญชาใน Neuropathic pain

- •ไม่แนะนำให้ใช้เป็นการรักษาเริ่มต้น
- •แนะนำให้ปรึกษากับผู้ป่วยถึงประโยชน์และความเสี่ยงของ ผลิตภัณฑ์กัญชาก่อนใช้
- •แนะนำให้ใช้ในกรณีที่รักษาด้วยยาบรรเทาปวดอย่างสมเหตุสมผล แล้ว แต่ผู้ป่วยยังคงมีอาการปวด
- •แนะนำให้ใช้ผลิตภัณฑ์กัญชาเป็นการรักษาเสริมกับการรักษาด้วย ยาบรรเทาอาการปวดอื่น ๆ
- •เมื่อใช้ผลิตภัณฑ์จากกัญชาแล้ว ควรประเมินผลการตอบสนอง ภายหลัง 12 สัปดาห์ ถ้าไม่ได้ผลควรหยุดยา