Web Data Mining

Lecture 1: Introduction and Course Overview

Milan Dojčinovski

milan.dojchinovski@fit.cvut.cz

Czech Technical University in Prague - Faculty of Information Technologies - Software and Web Engineering

Summer semester 2019/2020 Humla v0.3

Overview

- Introduction
- Web Data Mining
- Course at a Glance
- Communication and Resources
- Python

Hellos

- Milan Dojčinovski
 Assistant professor, researcher
 - Czech Technical Uninversity in Prague, Czech Republic
 - Institute of Applied Informatics at Leipzig University, Germany
 - Research interests
 - → Semantic web, Linked Data, Web services, Information Extraction

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

Overview

- Introduction
- Web Data Mining
- Course at a Glance
- Communication and Resources
- Python

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

-4-

Web Data Mining

Web

- A huge, widely-distributed, diverse & heterogeneous, semi-structured, linked, redundant and dynamic information repository.

Mining

- Extracting something useful or valuable from a baser substance.

• Data Mining

- A process of analyzing data from different perspectives and summarizing it into useful information.

• Web Data Mining

- Is an application of the data mining techniques to find interesting and potentially useful knowledge from web data and services.

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 5 -

Areas Overlap Data Mining Web Mining Text Mining NLP Statistics, Pattern recognition, ...

Web Mining

- Web Content Mining (WCM)

 Process of extracting information from the content of web documents.
 - Using of intelligent web agents crawlers, robots, ...
 - Information Retrieval, Natural Language Processing, Computer Vision.

• Web Structure Mining (WSM)

- Web pages as nodes, hyperlinks as edges.
- Process of discovering structure information on the web.
- Intra-page vs Inter-page.
- Hyperlink analysis.

Web Usage Mining (WUM)

- Extracting useful information from server logs.
- Process of finding out what users are looking on Internet.
- User identification, sessionization, pattern discovery.
- WCM \rightarrow WSM \rightarrow WUM

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

-7-

Web Mining Applications

- Web Content Mining (WCM)
 - document clustering or categorization
 - topic identification/tracking
 - concept discovery
 - -focused crawling
 - content-based personalization
 - intelligent search tools
 - search engines, ...

• Web Structure Mining (WSM)

- document retrieval and ranking
- discovery of hubs and authorities
- discovery of web communities
- social network analysis
- search engines, SEO, ...

• Web Usage Mining (WUM)

- user and customer behavior modeling
- web sites optimization
- web marketing/advertising
- recommender systems
- web analytics, ...

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

-9-

Overview

- Introduction
- Web Data Mining
- Course at a Glance
- Communication and Resources
- Python

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 10 -

Motivation in Brief

- Rapid data growth
 - huge amounts of freely available data on the Web
 - largest publicly available dataset
 - wide and diverse coverage of information
 - dynamic changes of the content
 - about 62 billion webpages (estimated size of Google's *index*)
- Social Web
 - users generate huge amount of data
 - \rightarrow connections, comments, likes
 - for the people and by the people
 - users are prosumers
 - → at the same time generate and consume information
 - Facebook, Twitter, YouTube, Instagram, etc.

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 11 -

Motivation in Brief (cont.)

- Data processing is difficult
 - Big Data!
 - very large and complex datasets
 - existing database management tools do not meet the needs
- Open challengesHow to capture data

 - How to store data
 - How to process and analyze data
 - How to search for data
 -in a reasonable time!

Scope

- Accessing Data
 - Crawling and information extraction
- Storage
 - Indexing principles
- Data Analysis methods
 - Text mining
 - Social network analysis
 - Web usage mining
 - Recommender systems
- Applications
 - Use case examples
 - Visualizations
- Algorithms

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 13 -

Prerequisites

- Web Architecture
 - Basics of HTTP, XML, XPath, HTML, URI
- Programming skillsObject-oriented programming
 - Principles
 - \rightarrow class, object, inheritance, encapsulation, ...
 - \rightarrow basis for service concepts
- Others
 - Graph theory and basic algorithms.

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 14 -

Organization of Lectures

- 12 lectures
 - English: Milan Dojčinovski
 - Czech: Jaroslav Kuchař
- Plan
 - 1. Motivation and Course Overview (html)
 - 2. Data Access and Acquisition Methods (html)
 - 3. Data Access and Acquisition Methods 2 (html)
 - 4. Text Mining 1 (html)
 - 5. Text Mining 2 (html)
 - 6. Social Network Analysis 1 (html)
 - 7. Social Network Analysis 2 (html)
 - 8. Page Rank and HITS (html)
 - 9. Web Usage Mining/Web Analytics (html)
 - 10. Recommender Systems (html)
 - 11. Mining Data Streams (html)
 - 12. Reserve (html)

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 15 -

Organization of Tutorials

- Labs every second week *individual work (no teams!)*

 - be prepared for the lab!
 - work alone, ask others for advices
- Number of sessions: 6
 - 1. Data acquisition/crawling
 - 2. Text mining
 - 3. Social Network Analysis
 - 4. Structure mining
 - 5. Web usage mining/Pattern recognition
 - 6. Recommender systems/Data streams

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 16 -

Methodology for Individual Work

- Methodology:
 - 1. Data crawling
 - Non-trivial data acquisition from a web resource
 - 2. Data (pre)processing/Information extraction
 - Automatic/semi-automatic extractions/transformations
 - 3. Storing and indexing data
 - Dealing with issues how to properly store/index data
 - 4. Application of appropriate algorithms
 - Text mining, social network analysis, web usage mining, recommender systems, ...
- Results:
 - work alone, ask others for advices
 - documentation
- (Optionally individual work)

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 17 -

Assessment

- Practicals
 - Tutorials (on-site/online)
 - Homeworks
 - → Every task gives you some amount of points
 - → Total maximal points: 40, to pass: 20
- Labs
- Final Exam
 - Mandatory written test: 2-3 exercises, ~1 hour
 → each gives you a max. of 20-30 points, the total is 60 points
- Final score:
 - practical (max 40) + final exam (max 60) = 100 max points
 - discussion may adjust your points freely

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 18 -

Final Marks

Grade	Points	Verbal (Czech)	Verbal (English)
А	100-90	výborně	excellent
В	89-80	velmi dobře	very good
С	79-70	dobře	good
D	69-60	uspokojivě	satisfactory
Е	59-50	dostatečně	sufficient
F	<50	nedostatečně	failed

Source: Study and examination regulations

• Everything good and bad will count – practicals, coding, (pro)activity, passiveness, hacking (bad and good), lectures, exam, cheating, ...

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

Overview

- Introduction
- Web Data Mining
- Course at a Glance
- Communication and Resources
- Python

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 20 -

Communication

- Language
 - Text: English (slides, tweets, posts, instructions, etc.)
 - Voice: English and Czech
- Direct
 - You can always contact me directly at
 - → English: milan.dojchinovski@fit.cvut.cz

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 21 -

Overview of Resources

- Lectures
- Course Page
- Books
 - 1. Liu, B. Web Data Mining, Springer-Verlag Berlin Heidelberg, 2011. ISBN 978-3-642-19459-7.
 - 2. Charu C. Aggarwal. Machine Learning for Text. Springer Publishing Company, Incorporated, 2018. ISBN: 9783319735313.
 - 3. Easley, D., Kleinberg, J. Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010. ISBN 978-0521195331.
 - 4. Ricci, F., Rokach, L., Shapira, B., B. Kantor, P. Recommender Systems Handbook, Springer, 2010. ISBN 978-0387858197.
 - 5. Charu C. Aggarwal. Recommender Systems: The Textbook. Springer Publishing Company, Incorporated, 2016. ISBN: 9783319296579.

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 22 -

Overview of Resources (cont.)

Books

- 1. Kaushik, A. Web Analytics 2.0: The Art of Online Accountability and Science of Customer Centricity, Sybex, 2009. ISBN 978-0470529393.
- 2. Marmanis, H., Babenko, D. Algorithms of the Intelligent Web, Manning Publications, 2009. ISBN 978-1933988665.
- 3. A. Russel, M. Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More (3rd edition), O'Reilly Media, 2019. ISBN 978-1491985045.
- 4. Chakrabarti, S. Mining the Web: Discovering Knowledge from Hypertext Data, Morgan Kaufmann, 2002. ISBN 1558607544.
- 5. Mitchell, R. Web Scraping with Python: Collecting Data from the Modern Web, O'Reilly Media; 2 edition, 2018, ISBN 978-1491985571

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 23 -

Code Examples

- Example code in various languages
 - Python, Java, JavaScript, xml, command line (bash) and plain text (e.g., BNFlike syntax, regular expressions, etc.)
- Code colors
 - different colors of the listings' gutters based on the language

```
public String test() {
    // this is a Java code
}

| <test><!-- this is a XML code --></test>
| echo "this is a bash test"
```

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 24 -

Overview

- Introduction
- Web Data Mining
- Course at a Glance
- Communication and Resources
- Python

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 25 -

Python Introduction

- Python *high-level*
 - interpreted
 - interactive
 - object-oriented
 - easy-to-use syntax
 - general-purpose

```
num1 = 3
2 \quad \text{num2} = 5
3 sum = num1+num2
4 print(sum)
def myFun(x, y=1):
   return x+y
  print (myFun(3))
```

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 26 -

Others

- Installations
 - Available for many OS \rightarrow Linux, Windows, macOS, ...
- Python 2 vs Python 3 better Unicode support

 - print and exec being statements, integers using floor division
 - worse library support
 - some OS still use 2.x as default

• Python 2.7 has officially reached the end of life - January 1st, 2020

```
1 # Python 2
print 'Hello, World!'
print '3 / 2 = ', 3 / 2 # 1
    # Python 3
   print('Hello, World!')
print('3 / 2 = ', 3 / 2) # 1.5
```

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 27 -

Running Python

• Python interpreter

```
Python 3.6.3 |Anaconda, Inc.| (default, Oct 6 2017, 12:04:38) [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello, World!')
Hello, World!
```

Executing scripts

```
$ cat hello.py
if __name__ == "__main__":
    print('Hello, World!')
$ python hello.py
Hello, World!
```

• package installation

```
1 pip install package-name
```

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 28 -

Python basics

Numbers

```
1 >>> tax = 12.5 / 100
2 >>> price = 100.50
3 >>> price * tax
4 12.5625
```

Strings

• Lists

```
1 >>> squares = [1, 4, 9, 16, 25]
2 >>> squares[0]
3 1
```

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 29 -

Python basics (cont.)

• Flow controls

Functions

```
def myFun(x, y=1):
    return x+y
print(myFun(3))
```

Data Structures

```
# list
fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
# set
basket = {'orange', 'banana', 'pear', 'apple'}
# dictionary
counts = {'orange': 1, 'apple': 2}
```

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 30 -

Python basics (cont.)

Iterators

Generators

- you can only iterate over them once
- they generate the values on the fly
- calculation on-demand, also called lazy evaluation

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 31 -

Tools

Virtualenv

- a tool to create isolated Python environments
- solving problems with
 - → dependencies and versions
 - \rightarrow indirectly permissions

Workflow

```
# create new environment
virtualenv mi-ddw

# activate
source mi-ddw/bin/activate

# operations ...
pip install ...

# deactivate and remove
deactivate
rm -r ./mi-ddw
```

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 32 -

Tools (cont.)

Anaconda

- data science and machine learning distribution
- hundreds of popular data science packages
 - \rightarrow a collection of 1,000+ open source packages
- open-source package manager, environment manager

```
# package installation
conda install package-name

# update package
conda update package-name

# environments
conda create --name my_env python=3
source activate my_env
...
source deactivate
```

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 33 -

Tools (cont.)

Jupyter

- open-source web application allowing documents that contain live code, equations, visualizations and narrative text
- data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more

Important packages

NumPy

- N-dimensional array object, linear algebra, Fourier transform, and random number capabilities

Pandas

 Python Data Analysis Library, Great for data munging and preparation, fast and efficient DataFrame object for data manipulation with integrated indexing

Natural Language Toolkit - NLTK

- Python implementation of Text Mining, Natural Language Processing algorithms, ...

NetworkX

- Python language software package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.
- •

Lecture 1: Introduction and Course Overview - Milan Dojčinovski

- 35 -

Python Resources

- Recommended tutorials
 - Czech
 - \rightarrow http://naucse.python.cz/
 - English
 - \rightarrow https://docs.python.org/
- Books
 - https://wiki.python.org/moin/PythonBooks
 - https://www.amazon.com/Best-Sellers-Books-Python-Programming/zgbs/books/285856

– ...