

# "(Talk) Photorealistic Image Stylization:

Image Stylization using Convolutional Neural Networks

Leon A. Gatys, Alexander S. Ecker, Matthias Bethge CVPR 2016

Presented by: Abhishek Jha

#### Related Work

Efros and Freeman, 2001.





#### **Motivation**

- Any image can be factorize into content and style.
- Content provides the semantics of the entities present in the image.
- Style provide the textures corresponding to those entities.



#### Motivation

- Any image can be factorize into content and style.
- Content provides the semantics of the entities present in the image.
- Style provide the textures corresponding to those entities.



#### Feature selection



are features Depth from which the reconstructed detail of the level Pixel

#### **Content Representation**

For any image  $\chi$ ; the filter response in layer  $\ell$ :  $F^l \in \mathcal{R}^{N_l \times M_l}$ Where  $N_\ell$  is number of filters in layer  $\ell$  and  $M_\ell$  = HxW of the feature map.

#### **Content Loss:**

If  $F_{ij}^l$  is the activation of *i-th* filter in the position j in the layer  $\ell$ .

Let  $p \rightarrow original image$ 



Let  $x \rightarrow$  generated image



S.t.  $P^l$  and  $F^l$  are their respective feature response in layer  $\ell$ .

$$\mathcal{L}_{\mathrm{content}}(\vec{p}, \vec{x}, l) = \frac{1}{2} \sum_{i,j} \left( F_{ij}^l - P_{ij}^l \right)^2$$
 (1)

$$\frac{\partial \mathcal{L}_{\text{content}}}{\partial F_{ij}^l} = \begin{cases} \left(F^l - P^l\right)_{ij} & \text{if } F_{ij}^l > 0\\ 0 & \text{if } F_{ij}^l < 0 \end{cases}, \tag{2}$$

## Style Representation

For any image  $\chi$ ; the Gram matrix for layer  $\ell$ :  $G^l \in \mathcal{R}^{N_l \times N_l}$  is the inner product between the vectorised feature maps i and j in layer  $\ell$ .

#### **Style Loss:**

 $G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l.$ 

If  $F_{i,j}^l$  is the activation of *i-th* filter in the position j in the layer  $\ell$ .

Let  $a \rightarrow original image$ 



Let  $x \rightarrow$  generated image



S.t.  $A^l$  and  $G^l$  are their respective feature response in layer  $\ell$ .

$$E_{l} = \frac{1}{4N_{l}^{2}M_{l}^{2}} \sum_{i,j} (G_{ij}^{l} - A_{ij}^{l})^{2}$$

$$(4)$$

$$\mathcal{L}_{\text{style}}(\vec{a}, \vec{x}) = \sum_{l=0}^{L} w_{l} E_{l},$$

#### Style Representation

For any image  $\chi$ ; the Gram matrix for layer  $\ell$ :  $G^l \in \mathcal{R}^{N_l \times N_l}$  is the inner product between the vectorised feature maps i and j in layer  $\ell$ .



$$E_{l} = \frac{1}{4N_{l}^{2}M_{l}^{2}} \sum_{i,j} (G_{ij}^{l} - A_{ij}^{l})^{2}$$

$$(4)$$

$$\mathcal{L}_{\text{style}}(\vec{a}, \vec{x}) = \sum_{l=0}^{L} w_{l} E_{l},$$

## Style Transfer Algorithm



$$\mathcal{L}_{\text{total}}(\vec{p}, \vec{a}, \vec{x}) = \alpha \mathcal{L}_{\text{content}}(\vec{p}, \vec{x}) + \beta \mathcal{L}_{\text{style}}(\vec{a}, \vec{x})$$

# Trade-off between Content and Style: $\alpha/\beta$



# Trade-off between Content and Style: $\alpha/\beta$



# Selection of layer for content matching





#### Effect of different initialization





**Content image** 

Style image

## Effect of different initialization (different white noises)



# Thanks!