60080079 Introduction to Statistical Methods Semester 2 2023-2024 Handout 12

A Brief Introduction to Two-Way ANOVA in SPSS

1. Set up the <u>Week12_2way</u> data, which require one variable (e.g., Score) to be quantitative, and the two other variables (e.g., A and B) to be categorical.

🔖 *SPSS_2way.sav [DataSet2] - IBM SPSS Statistics Data Editor						
<u>F</u> ile <u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze <u>G</u>	Γā	
		Ü,		Z	J	
20 :						
	Score		Α	В		
1	10.00		1.00	1.00		
2	9.00		1.00	1.00		
3		8.00	1.00	1.00		
4	7.00		1.00	1.00		
5	11.00		1.00	2.00		
6	8.00		1.00	2.00		
7		0.00	1 00	2 00		

2. From the menu, Analyze → General Linear Model → Univariate.

3. In the **Univariate** dialog box, click in Score in the **Dependent Variable** box, and A and B in the **Fixed Factor(s)** box.

4. Click **OK**.

We should get the following output.

1) For each factor, a table that indicates how many subjects there are for each level of the factor.

Between-Subjects Factors

		N
Α	1.00	12
	2.00	12
	3.00	12
В	1.00	12
	2.00	12
	3.00	12

2. The ANOVA table for the two-way model.

Tests of Between-Subjects Effects

Dependent Variable: Score

Dopondont variable.	00010				
	Type III Sum of				
Source	Squares	df	Mean Square	F	Sig.

Corrected Model	453.389 ^a	8	56.674	22.420	.000
Intercept	4601.361	1	4601.361	1820.319	.000
Α	413.556	2	206.778	81.802	.000
В	2.056	2	1.028	.407	.670
A * B	37.778	4	9.444	3.736	.015
Error	68.250	27	2.528		
Total	5123.000	36			
Corrected Total	521.639	35			

a. R Squared = .869 (Adjusted R Squared = .830)

The results for the overall effect is given in the Corrected Model row; the results for the main effects due to Factor A, Factor B, and interactions are given in rows A, B ad A * B, respectively.

The results indicate that the 9 groups are not identical, and there is a main effect due to Factor A, an interaction effect, but no main effect due to Factor B.

Aside: To visualize the pattern of the cell means, we can use **Plots** button in the Univariate dialog box.

Click in one factor in the **Horizontal Axis** box, and another factor in the **Separate Lines** box.

Make sure to click the **Add** button to specify A*B in the **Plots** box.

We should get the following plot:

The graph shows that the means of Factor A are different (Group 2 is much higher); the means of Factor B are quite similar; and there is an interaction between Factors A and B (the lines intersect).