

Michael Mossinghoff Davidson College

Introduction to Topics
Summer@ICERM 2014
Brown University

Quantities of Interest

- For a convex polygon P, several quantities:
- Area, A.
- Perimeter, L.
- Diameter, d.
- Width, w.

Some Problems on Polygons

- P a convex polygon in the plane.
- Fix number of sides, n.
- Fix one of area, perimeter, diameter, and width, and optimize another.
- Produces six nontrivial problems.
- Isoperimetric problem: regular *n*-gon is the unique solution.

Three Extremal Problems

- Fix diameter, maximize perimeter.
 - Reinhardt (1922), Vincze (1950), Larman & Tamvakis (1984), Datta (1997).
- Fix diameter, maximize width.
 - Bezdek & Fodor (2000).
- Fix perimeter, maximize width.
 - Audet, Hansen, & Messine (2009).
- When $n \neq 2^m$, precisely the same polygons are optimal in all three problems: Reinhardt polygons.

Reuleaux Polygons

- Convex planar region bounded by a finite number of circular arcs of the same radius.
- Constant width.
- Perimeter = πd .
- If P has diameter d, then there exists a Reuleaux polygon with diameter d containing P.

• Reuleaux polygons have an odd number of vertices.

Spotting Reuleaux Polygons

Reinhardt Polygons

- Equilateral.
- If all vertices of P at maximal distance are connected, then a cycle occurs (star polygon).
 - I.e., P may be inscribed in a Reuleaux polygon R with the property that every vertex of R is a vertex of P.

Yes!

• n = 12: Two Reinhardt polygons.

- Each interior angle of the star polygon is an integer multiple of π/n .
- How many Reinhardt polygons are there for fixed n?
- Dihedral equivalence classes.

Example: Construct P for [1, 2, 1, 1, 2, 1, 1, 2, 1].

Requires:

$$1 - e^{i\pi k_1/n} + e^{i\pi(k_1 + k_2)/n} - \dots + e^{i\pi(k_1 + \dots + k_{r-1})/n} = 0.$$

Example: Construct P for [1, 2, 1, 1, 2, 1, 1, 2, 1].

 $1 - z + z^3 - z^4 + z^5 - z^7 + z^8 - z^9 + z^{11}$ $= (z^3 - z + 1)\Phi_{24}(z).$

Cyclotomic Polynomials

$$\Phi_n(z) = \frac{z^n - 1}{\prod_{\substack{d \mid n \\ d \neq n}} \Phi_d(z)}.$$

$$\Phi_2(z) = \frac{z^2 - 1}{z - 1} = z + 1,$$

 $\Phi_1(z) = z - 1,$

$$\Phi_3(z) = \frac{z^3 - 1}{z - 1} = z^2 + z + 1,$$

$$\Phi_4(z) = \frac{z^4 - 1}{(z - 1)(z + 1)} = z^2 + 1,$$

$$\Phi_p(z) = 1 + z + \dots + z^{p-1}.$$

For n > 1 odd: $\Phi_{2n}(z) = \Phi_n(-z)$.

Equivalent Polynomial Problem

- A Reinhardt polygon corresponds to a polynomial F(z) satisfying:
 - $\deg(F) < n$.
 - F(0) = 1.
 - Nonzero coefficients of F alternate ± 1 .
 - Odd number of terms.
 - $F(e^{i\pi/n}) = 0$, i.e., $\Phi_{2n}(z) \mid F(z)$.

Example: n = 55

n=21: Reinhardt Henicosagons

Compositions

- Composition of $n = \underline{\text{sequence}}$ of positive integers whose sum is n.
- Number of compositions of n is 2^{n-1} .
- Partition of n = equivalence class of compositions under action by the symmetric group.
- Dihedral composition: equivalence class of compositions under action by the dihedral group.

Dihedral

Reinhardt Polygon

Composition of *n* into an odd number of parts

- Not every dihedral composition with an odd number of parts produces a Reinhardt polygon.
- Theorem: Every periodic such composition does.

- Let $E_0(n) = \text{number of } periodic \text{ Reinhardt } n\text{-gons.}$
- So $E_0(n)$ = number of periodic dihedral compositions of n into an odd number of parts.

Theorem: (M., 2011) Let $n \neq 2^m$. Then

$$E_0(n) = \sum_{\substack{d|n\\d>1}} \mu(2d)D(n/d),$$

where

$$D(m) = 2^{\lfloor (m-3)/2 \rfloor} + \frac{1}{4m} \sum_{\substack{d \mid m \\ 2 \nmid d}} 2^{m/d} \varphi(d).$$

• E.g., $E_0(21) = D(7) + D(3) - 1 = 9 + 2 - 1 = 10$.

- Are all Reinhardt polygons periodic?
- Let $E_1(n)$ = number of sporadic Reinhardt polygons.
- $E_1(n) = 0$ for n < 30.

All n < 100 with $E_1(n) > 0$

n	Factorization	$oldsymbol{E}$	$oldsymbol{E}$
30	$2 \cdot 3 \cdot 5$	38	3
42	$2 \cdot 3 \cdot 7$	329	9
45	3	633	144
60	2	13,464	4392
63	3	25,503	1308
66	$2 \cdot 3 \cdot 11$	48,179	93
70	$2 \cdot 5 \cdot 7$	358	27
75	3	338,202	153,660
78	$2 \cdot 3 \cdot 13$	647,330	315
84	2	2,400,942	161,028
90	2	8,959,826	5,385,768
99	3	65,108,083	192,324

More n with $E_1(n) > 0$

\boldsymbol{n}	Factorization	$oldsymbol{E}$	$oldsymbol{E}$
102	$2 \cdot 3 \cdot 17$	126,355,340	3855
110	$2 \cdot 5 \cdot 11$	48,208	279
114	$2 \cdot 3 \cdot 19$	1,808,538,359	13,797
117	3	3,524,338,001	2,587,284
130	$2 \cdot 5 \cdot 13$	647,359	945
140	2	2,414,204	633,528
154	$2 \cdot 7 \cdot 11$	48,499	837
170	$2 \cdot 5 \cdot 17$	126,355,369	11,565
182	$2 \cdot 7 \cdot 13$	647,650	2835
190	$2 \cdot 5 \cdot 19$	1,808,538,388	41,391
238	$2 \cdot 7 \cdot 17$	126,355,660	34,695
286	$2 \cdot 11 \cdot 13$	695,500	29,295

Results (Hare & M.; 2011, 2013)

Theorem: If n has exactly one odd prime divisor, then $E_1(n) = 0$.

Proof: Suppose $n = 2^a p^{b+1}$ and F(z) is a Reinhardt polynomial for n.

$$F(z) = \Phi_{2n}(z)f(z), \ \deg(F) < n,$$

$$\deg(\Phi_{2n}) = \varphi(2n) = n - n/p,$$

$$\deg(f) < n/p,$$

$$\Phi_{2n}(z) = 1 - z^{n/p} + z^{2n/p} - \dots + z^{(p-1)n/p},$$

$$f(z) = 1 - z^{a_1} + z^{a_2} - \dots + z^{a_t}.$$

Results (Hare & M.; 2011, 2013)

Theorem: There is exactly one Reinhardt n-gon precisely when n = p or 2p, for p an odd prime.

Theorem: Let p and q be distinct odd primes. Then $E_1(pq) = 0$.

Theorem: Let p and q be distinct odd primes, and let $r \geq 2$. Then $E_1(pqr) > 0$.

Question: Is $E_1(n)$ ever larger than $E_0(n)$?

Key Fact

- de Bruijn (1953): If n has distinct prime divisors $p_1, ..., p_r$, then the ideal $(\Phi_n(z))$ is generated by $\{\Phi_{p_i}(z^{n/p_i}): 1 \leq i \leq r\}$.
- It follows that if F(z) is a Reinhardt polynomial for n, with odd prime divisors $p_1, ..., p_r$, then there exist polynomials $f_1(z), ..., f_r(z)$ so that

$$F(z) = f_0(z)(z^n + 1) + \sum_{i=1}^{n} f_i(z) \Phi_{p_i}(-z^{n/p_i}).$$

• Periodic case: each $f_i(z) = 0$ except one with i > 0.

Constructing Sporadic Polygons

- Let n = pqr, p and q distinct odd primes, $r \ge 2$.
- Construct nontrivial $f_1(z)$ and $f_2(z)$ so:
 - $F(z) = f_1(z)\Phi_q(-z^{pr}) + f_2(z)\Phi_p(-z^{qr}).$
 - F(0) = 1, $\deg(F) < n$, leading coefficient 1, and nonzero coefficients alternate ± 1 .
- Then F(z) corresponds to a Reinhardt polygon.
- Verify it is sporadic.

- Take $f_1(z) = 1 z$.
- Take $f_2(z) =$ a polynomial with coefficient sequence: 0 $A_1 B_1 A_2 B_2 \cdots A_t B_t C$, where
 - t = (q-1)/2,
 - Each A_i and B_i has length r, C has length r-1, each one a sequence over $\{-1, 0, +1\}$.
 - Nonzero entries in each A_i and C alternate ± 1 , beginning and ending with +1.
 - Nonzero entries in each B_i alternate ∓ 1 , beginning and ending with -1.

n=30: $p=3,\ q=5,\ r=2$

$$A_1 = 0+$$
, $B_1 = 0-$, $A_2 = +0$, $B_2 = 0-$, $C = +.$

$$f_1$$
 +-0000 -+0000+-0000 -+0000 +-0000

$$f_2$$
 00+0-+00-+00-0+-00+-00+-

[7, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1]

n=30: $p=3,\ q=5,\ r=2$

$$A_1 = 0+, B_1 = 0-, A_2 = 00+, B_2 = 0-, C = +.$$

$$f_1$$
 +-0000 -+0000+-0000 -+0000 +-0000

$$f_2$$
 00+0-\(\theta\)00-0+0-0+- 00+0-\(\theta\)00+0-\(\theta\)00+

$$F +-+0-\theta\theta+-+000-+\theta\theta00000+00\theta\theta0-+$$

[6, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 2]

$$n=30$$
: $p=3,\ q=5,\ r=2$

$$A_1 = 0+, B_1 = 0-, A_2 = 0+, B_2 = 0+, C = +.$$

$$f_1$$
 +-0000 -+0000+-0000 -+0000 +-0000

$$f_2$$
 00+0-0+0+ 00-0+0-+0- 00+0-0+0+

$$F +-+0-0000+000-+0-0000+00-+00+$$

[5, 4, 1, 2, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 2]

Sporadic Polygons

- Construction produces a sporadic polygon, unless $A_1 = \cdots = A_t = C0 = -B_1 = \cdots = -B_t$.
- Sporadic polygons constructed: $2^{q(r-1)-1} 2^{r-2}$.
- Even more: $2^p 2$ choices for $f_1(z)$.

Number Constructed, $\hat{E}_1(n)$

\boldsymbol{n}	Factorization	$oldsymbol{E}$	$\hat{m{E}}$
30	$2 \cdot 3 \cdot 5$	3	3
42	$2 \cdot 3 \cdot 7$	9	9
45	3	144	144
60	2	4392	3492
63	3	1308	1308
66	$2 \cdot 3 \cdot 11$	93	93
70	$2 \cdot 5 \cdot 7$	27	27
75	3	153,660	107,400
78	$2 \cdot 3 \cdot 13$	315	315
84	2	161,028	150,444
90	2	5,385,768	3,371,568
99	3	192,324	192,324

Number Constructed, $\hat{E}_1(n)$

\boldsymbol{n}	Factorization	$oldsymbol{E}$	$\hat{m{E}}$
102	$2 \cdot 3 \cdot 17$	3855	3855
110	$2 \cdot 5 \cdot 11$	279	279
114	$2 \cdot 3 \cdot 19$	13,797	13,797
117	3	2,587,284	2,587,284
130	$2 \cdot 5 \cdot 13$	945	945
140	2	633,528	478,548
154	$2 \cdot 7 \cdot 11$	837	837
170	$2 \cdot 5 \cdot 17$	11,565	11,565
182	$2 \cdot 7 \cdot 13$	2835	2835
190	$2 \cdot 5 \cdot 19$	41,391	41,391
238	$2 \cdot 7 \cdot 17$	34,695	34,695
286	$2 \cdot 11 \cdot 13$	29,295	29,295

Number of Sporadic Polygons

• If n has smallest odd prime divisor p then

$$E_0(n) \sim \frac{p}{4n} \cdot 2^{n/p}.$$

• Let $E(n) = E_0(n) + E_1(n)$.

Theorem (Hare & M., 2013): If p < q are odd primes, $\epsilon > 0$, and r is sufficiently large with no prime divisor less than p, then

$$\frac{E_1(pqr)}{E(pqr)} > \frac{2^p - 2}{p2^q + 2^p - 2} - \epsilon.$$

• n = 15r : > 5.8% sporadic.

More Recent Work

- Hare & M., 2014.
- Generalized construction for n = pqr, p, q distinct odd primes, $r \ge 2$.

- Form $f_1(z)$ from $A_1, ..., A_p$; $f_2(z)$ from $B_1, ..., B_q$; each size r.
- Choose a composition of r into an even number of parts, $(r_1, r_2, ..., r_{2m})$.
- Use the composition to guide selections of the blocks.

More Recent Work

• Results from Hare & M., 2014:

• As
$$r \to \infty$$
, $\frac{E_1(n)}{E_0(n)} > \frac{r(2^{p-1})}{p2^{q-1}} (1 + o(1))$.

- $E_1(n) > E_0(n)$ for almost all n.
- First occurs at n = 105.

•
$$E_1(2pq) = \frac{2^{p-1}-1}{p} \cdot \frac{2^{q-1}-1}{q}$$
.

Number Constructed, $\ddot{E}_1(n)$

n	Factors	$oldsymbol{E}$	$\hat{m{E}}$	\ddot{E}
60	2	4392	3492	4392
75	3	153,660	107,400	153,660
84	2	161,028	150,444	161,028
90	2	5,385,768	3,371,568	5,385,768
140	2	633,528	478,548	633,528
105	$3 \cdot 5 \cdot 7$?	126,714,582	211,752,810

- $E_0(105) = 245,518,324, E_1(105) \ge 249,597,286.$
- Some polygons for n = 105 need three terms for their construction.

Problems

- Can the construction methods for sporadic Reinhardt polygons be generalized to use three distinct odd prime divisors?
- E.g., say n = lpqr, l, p, q distinct odd primes, $r \ge 1$.
- Construct nontrivial $f_1(z)$, $f_2(z)$, $f_3(z)$ so

$$egin{align} F(z) &= f_1(z) \Phi_q(-z^{lpr}) \, + f_2(z) \Phi_p(-z^{lqr}) \, + \ f_3(z) \Phi_l(-z^{pqr}). \end{aligned}$$

Problems

- Arbitrary number of odd prime divisors?
- Can one find new lower bounds on $E_1(n)$ for some n?
- Are there more nice formulas for $E_1(n)$ in other cases?

Warm-Ups

- Determine all Reinhardt polynomials for n = 15 (say) by searching for suitable multiples of $\Phi_{2n}(z)$.
- Construct some polynomials corresponding to sporadic Reinhardt polygons with n=42 sides.

Possible Avenues

- Generalize one of the constructions to threeterm expressions.
- Test if a new construction produces additional polynomials at n=105.
- Find representations of missing 105-gons as three-term sums.
- Look for patterns that might indicate a method of construction.
- New bound for $E_1(105)$? For $E_1(n)$?

Resources

- M., A \$1 Problem, Amer. Math. Monthly **113** (2006), no. 5, 385-402. (Expository.)
- M., Enumerating isodiametric and isoperimetric polygons, J. Combin. Theory Ser. A 118 (2011), no. 6, 1801-1815. (Periodic case.)
- K. Hare & M., Sporadic Reinhardt polygons, Discrete Comput. Geom. **49** (2013), no. 3, 540-557. (Sporadic construction.)
- K. Hare & M., Sporadic Reinhardt polygons, II, arXiv: 1405.5233, 2014. (More general sporadic construction.)

Good Luck!

