Images dynamiques

Transformation du photomaton

On part d'un tableau $n \times n$, avec n pair, chaque élément du tableau représente un pixel.

Pour chaque couple (i, j), on calcule son image (i', j') par la transformation du photomaton selon les formules suivantes :

- Si i et j sont pairs : (i', j') = (i//2, j//2).
- Si *i* est pair et *j* est impair : (i', j') = (i//2, (n+j)//2).
- Si *i* est impair et *j* est pair : (i', j') = ((n+i)//2, j//2).
- Si i et j sont impairs : (i', j') = ((n+i)//2, (n+j)//2).

Exemple.

1	2	3	4	1	3	2	4
5	6	7	8	9	11	10	12
9	10	11	12	5	7	6	8
13	14	15	16	13	15	14	16

Voici une image 256×256 et sa première transformation :

Voici ce qui se passe si on répète plusieurs fois la transformation du photomaton :


```
Tu peux initialiser un nouveau tableau par la commande :
```

 $nouv_tableau = \hbox{\tt [[0 for j in range(n)] for i in range(n)]} \\ Puis le remplir par des commandes du type :$

nouv_tableau[ii][jj] = tableau[i][j]

Format « pgm »

Fichier image au format « pgm » à partir d'un tableau de niveaux de gris.

P2					
5 5					
255					
128	192	128	192	128	
224	0	228	0	224	
228	228	228	228	228	
224	64	64	64	224	
192	192	192	192	192	

Transformation du boulanger

On part d'un tableau $n \times n$, avec n pair dont chaque élément représente un pixel. On va appliquer deux transformations élémentaires à chaque fois.

Étirer. Le principe est le suivant : les deux premières lignes (chacune de longueur n) produisent une seule ligne de longueur 2n en mixant les valeurs de chaque ligne en alternant un élément du haut, un élément du bas.

Formules. Un élément en position (i, j) du tableau d'arrivée, correspond à un élément (2i, j//2) (si j est pair) ou bien (2i + 1, j//2) (si j est impair) avec ici $0 \le i < \frac{n}{2}$ et $0 \le j < 2n$.

Exemple. Voici un tableau 4×4 à gauche, et le tableau étiré 2×8 à droite. Les lignes 0 et 1 à gauche donnent la ligne 0 à droite. Les lignes 2 et 3 à gauche donne la ligne 1 à droite.

1	2	3	4									
5	6	7	8		1	5	2	6	3	7	4	8
9	10	11	12		9	13	10	14	11	15	12	16
13	14	15	16									

Replier. Le principe est le suivant : la partie droite d'un tableau étiré est retournée, puis ajoutée sous la partie gauche. Partant d'un tableau $\frac{n}{2} \times 2n$ on obtient un tableau $n \times n$.

Formules. Pour $0 \leqslant i < \frac{n}{2}$ et $0 \leqslant j < n$ les éléments en position (i,j) du tableau sont conservés. Pour $\frac{n}{2} \leqslant i < n$ et $0 \leqslant j < n$ un élément du tableau d'arrivée (i,j), correspond à un élément $\left(\frac{n}{2}-i-1,2n-1-j\right)$ du tableau de départ.

Exemple. À partir du tableau étiré 2×8 à gauche, on obtient un tableau replié 4×4 à droite.

1 5 2 6 3 7 4 8 9 13 10 14 11 15 12 16 1 5 2 6 9 13 10 14 16 12 15 11 8 4 7 3 La *transformation du boulanger* est la succession d'un étirement et d'un repliement. Partant d'un tableau $n \times n$ on obtient encore un tableau $n \times n$.

Voyons un exemple de l'action de plusieurs transformations du boulanger. À gauche l'image initiale de taille 128×128 , puis le résultat de k = 1, 2, 3 itérations.

Voici les images pour k=12,13,14,15 itérations :

