Intervals, Transformations, and Slope Solution (version 108)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7,1) \cup (4,9)$
Negative	$(-9, -7) \cup (1, 4)$
Increasing	$(-9, -5) \cup (3, 7)$
Decreasing	$(-5,3) \cup (7,9)$
Domain	(-9,9)
Range	(-6,6)

Intervals, Transformations, and Slope Solution (version 108)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=64$ and $x_2=99$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 25 & 64 \\ 53 & 99 \\ 64 & 53 \\ 99 & 25 \\ \hline \end{array}$$

$$\frac{f(99) - f(64)}{99 - 64} = \frac{25 - 53}{99 - 64} = \frac{-28}{35}$$

The greatest common factor of -28 and 35 is 7. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-4}{5}$$

2