11 Publication number:

0 351 856 A2

12

EUROPEAN PATENT APPLICATION

- ② Application number: 89113362.1
- ② Date of filing: 20.07.89

(5) Int. Cl.4 CO7D 513/04 , A61K 31/55 , //(C07D513/04,277:00,223:00)

- Priority: 22.07.88 JP 184220/8805.04.89 JP 86536/89
- ② Date of publication of application: 24.01.90 Bulletin 90/04
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- 7) Applicant: TAKEDA CHEMICAL INDUSTRIES, LTD.
 3-6, Doshomachi 2-chome Chuo-ku
 Osaka(JP)
- 2 Inventor: Aono, Tetsuya
 7-4, Takadai 3-chome
 Nagaokakyo Kyoto 617(JP)
 Inventor: Suno, Masahiro
 2-17-403, 1 Ryugadai 1-chome Suma-ku
 Kobe Hyogo 654(JP)
 Inventor: Kito, Go
 23-201, 8 Honmachi 5-chome Yao
 Osaka 581(JP)
- Representative: Lederer, Franz, Dr. et al Van der Werth, Lederer & Riederer Patentanwälte Lucile-Grahn-Strasse 22 D-8000 München 80(DE)
- Thiazolo[5,4-b]azepine compounds.
- (5) New thiazolo [5,4-b]azepine compounds represented by

wherein R¹ is a hydrogen atom, an aliphatic group which may be substituted, a carboxylic acyl group which may be substituted or a sulfonic acyl group which may be substituted; R² is a hydrogen atom, an aromatic group which may be substituted or an aliphatic group which may be substituted, which are capable of e.g., inhibiting lipoperoxide formation.

P 0 351 856 A2

THIAZOLO[5,4-b]AZEPINE COMPOUNDS

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to novel thiazolo[5,4-b]azepine derivatives or salts thereof, and their manufacturing method and pharmaceutical compositions. More particularly, it provides a novel inhibitory agent for lipoperoxide formation or lipoxygenase which is useful in the prevention or treatment of various diseases such as cancers, arteriosclerosis, hepatic diseases, cerebrovascular diseases, inflammation or the

2. Description of the Prior Art

15

The formation of lipoperoxide in the living body and its accompanying radical reactions have been proven to have various ill effects in the living body causing various membrane and enzyme disorders. Accordingly, the application of antioxidative lipoperoxide formation inhibitors as medicines has been attempted. However, most lipoperoxide formation inhibitors used in the art at present are derivatives of natural antioxidants such as vitamin C or vitamin E, and phenol derivatives, and accordingly have not been satisfactory for practical use. In order to utilize lipoperoxide formation inhibitors widely in medicinal fields, the development of lipoperoxide formation inhibitors having new chemical structures has been required. The main object of the present invention is to provide new compounds which are capable of inhibiting lipoperoxide formation.

25

SUMMARY OF THE INVENTION

In order to solve the above mentioned problem, the inventors of the present invention synthesized many new compounds and examined their inhibitory action on lipoperoxide formation.

Thus, we succeeded in the creation of thiazolo [5,4-b]azepine derivatives having a new chemical structure of the formula (I):

35

40

wherein R¹ is a hydrogen atom, an aliphatic group which may be substituted, or a carboxylic acyl or sulfonic acyl group which may be substituted; R² is a hydrogen atom or an aromatic or aliphatic group which may be substituted. This class of compounds was found to possess action useful as medicines, such as potent inhibitory action on lipoperoxide formation, inhibitory or supressive action on 12-hydroxy heptadecatrienoic acid (hereinafter abbrebiated as HHT) and lipoxygenase and/or antagonistic action on leukotriene D₄ (LTD₄)-acceptor.

According to the present invention, it provides new thiazolo[5,4-b]azepine derivatives of the above mentioned formula (I) and salts thereof, their manufacturing method and pharmaceutical composition containing said compound as the active ingredient.

PREFERRED EMBODIMENTS OF THE INVENTION

In the formula (I), the aliphatic group which may be substituted represented by R¹ may be saturated or unsaturated and includes a straight, branched or cyclic alkyl group as the saturated group and a straight or branched alkenyl and alkynyl group as the unsaturated group. The alkyl group is suitably a lower alkyl group containing 1 to 6 carbon atoms, e.g., methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, hexyl, cyclopropyl, cyclobutyl or cyclopentyl. The alkenyl group is suitably a lower alkenyl group containing 2 to 6 carbon atoms, e.g., vinyl, allyl, propenyl, i-propenyl, 2-butenyl, 2,4-butadienyl, 1,3-butadienyl, 2-carbon atoms, e.g. ethynyl or 2-propynyl.

Substituents on the aliphatic groups which may be substituted are not particularly limited but normally could be conventional ones used in the pharmaceutical field. Examples of the substituents are hydroxy; a C_{1-3} alkoxy such as methoxy, ethoxy, n-propoxy or i-propoxy (thus forming e.g., methoxymethyl or 1-mercapto; a C_{1-3} alkylthio such as phenoxy or naphthoxy; a phenylalkoxy such as benzyloxy or phenethyloxy; phenylalkylthio such as benzylthio or phenethylthio; an arythio such as phenylthio or naphthylthio; a alkylamino such as methylamino, ethylamino or dimethylamino; a halogen such as chlorine or bromine (forming e.g., 2-bromoethyl); an esterified carboxyl such as C_{2-4} alkoxycarbonyl (e.g., methoxycarbonyl or propionyl, or benzyloxycarbonyl; a C_{2-4} alkoxycarbonyloxy; formyl; an alkanoyl such as acetyl or propionyl, or benzyloxycarbonyl as acetoxy, propionyloxy or pivaloyloxy, or benzoyloxy; cyano; phthalimido; an alkanoylamino such as acetamido, or benzamido; a C_{2-5} alkoxycarbonylamino such as benzyloxycarbonylamino; a cyclic amino such as pyrrodino morpholino; carboxyl; and carbamoyl (these groups being hereinafter called as Group A).

Among the group in Group A, particularly preferred are carboxyl, an esterified carboxyl, carbamoyl and a C_{1-3} alkylamino groups.

The sulfonic acyl group which may be substituted represented by R_1 may be a C_{1-3} alkyl sulfonyl such as methanesulfonyl, ethanesulfonyl or propanesulfonyl, or phenylsulfonyl. The alkyl sulfonyl group may possess substituent(s) selected from the above Group A. The preferred substituents are mono- or $di-C_{1-3}$ alkyl amino such as dimethylamino or diethylamino. In the case of phenylsulfonyl as R1 having substituent-(s) on the phenyl ring, examples of these substituents are a halogen; nitro; an amino (which may be substituted by a C_{1-3} alkyl, a C_{2-4} alkenyl, a C_{3-8} cycloalkyl or phenyl); sulfo; mercapto; hydroxy; sulfoxy; sulfamoyi; a C_{1-6} alkyl (which may be substituted by amino, a di C_{1-3} alkylamino; a mono C_{1-3} alkylamino, a halogen, hydroxy, cyano or carboxy); a C_{1-6} alkoxy (which may be substituted by a C_{1-3} alkylthio); benzyloxy; a C_{1-3} alkylthio; a C_{1-3} alkylsulfonamido; an amidino (which may be substituted by a C_{1-3} alkyl and benzyl); methylenedioxy; alkoxy formimidoyl; a C_{1-3} alkylsulfonyl; a C_{1-3} alkylsulfonylamino; an esterified carboxy such as a C_{2-4} alkoxycarbonyl (especially methoxycarbonyl or ethoxycarbonyl) or benzyloxycarbonyl; formyl; an alkanoyl such as acetyl or propionyl, or benzoyl; an alkanoyloxy such as acetoxy, propionyloxy or pivaloyloxy; cyano; phthalimido; an alkanoylamino such as acetamido, or benzamido; a C_{2-4} alkoxycarbonylamino such as methoxycarbonylamino or ethoxycarbonylamino; a phenylalkoxycarbonylamino such as benzyloxycarbonylamino; a cyclic amino such as pyrolidino or morpholino; carboxy; carbamoyl or phenyl which may be substituted by a halogen, methoxy C_{1-3} alkyl and the like (these substituents are hereinafter called as Group P). Among these substituents, preferred is hydroxy, a C_{1-6} alkoxy, a C_{1-6} alkyl, a halogen, nitro, amino, a mono- or di-(C_{1-6} alkyl) amino, a C_{1-6} alkylthio, a C_{1-6} alkoxycarbonyl, a C_{1-6} alkoxycarbonyloxy, amidino, an amino- C_{1-6} alkyl, cyano, phenyl, phenylamino or an alkoxyformimidoyl. Particularly, methyl, methoxy, chlorine, fluorine, amino or a mono- or di-(C1-6 alkyl) amino is preferable.

Also, the carboxylic acyl group which may be substituted represented by R_1 may be a group of the formula: R^3CO - in which R^3 is a saturated or unsaturated aliphatic group which may be substituted or an aromatic group which may be substituted.

The aromatic group of R³ includes an aromatic carbocyclic group and an aromatic heterocyclic group. Examples of the aromatic carbocyclic groups are phenyl and naphthyl. Preferable examples of the aromatic heterocyclic groups containing 1 to 4 (preferably 1 or 2) of hetero atoms such as nitrogen, oxygen and sulfur atoms. Specifically, the aromatic heterocyclic group may be pyridyl, furyl, thienyl, pyrazinyl, oxazolyl, thiazolyl, pyrrolyl, imidazolyl or isoxazolyl, without limitation thereof. Other preferred examples include aromatic groups condensed with an aromatic heterocyclic or carbocyclic ring. As these condensed aromatic groups, mention is made of, for example, indolyl, quinolyl, benzimidazolyl, imidazopyridyl and thiazolopyridyl.

Examples of substituents on the aromatic carbocyclic groups are groups selected from the above mentioned Group P. Examples of substituents on the aromatic heterocyclic group are an amino (optionally possessing substituent(s) such as a C_{2-10} alkanoyl, benzoyl, a halogen substituted C_{2-4} alkanoyl, phenyl or a C_{1-3} alkyl), a halogen, nitro, sulfo, cyano, hydroxy, carboxy, oxo, a C_{1-10} alkyl (optionally possessing substituent(s) such as phenyl, a halogen, amino, hydroxy, carboxy, a C_{1-3} alkoxy, a C_{1-3} alkylsulfonyl or a C_{1-3} dialkylamino), a C_{3-6} cycloalkyl, a C_{1-3} alkoxy, a C_{2-10} alkanoyl, benzoyl, a phenyl (optionally possessing substituent(s) such as a halogen, nitro, or alkyl, an alkoxy, amino, sulfo, hydroxy or cyano), oxo or a C_{1-10} alkylthio (op tionally possessing substituent(s) such as phenyl, a halogen, amino, hydroxy, carboxy, a C_{1-3} alkoxy, a C_{1-3} alkylsulfonyl or a di- C_{1-3} alkylamino) (these substituents being hereinafter called as Group H). Among the groups in Group H, particularly preferred are C_{1-10} alkyls, amino, mono- or di- C_{1-3} alkyl) amino and halogens.

Among the groups in Group H, particularly preferred are C_{1-10} alkyls, amino, mono- or di-(C_{1-3} alkyl) amino and halogens.

The aliphatic group of R³ may be one which is either saturated on unsaturated, e.g., alkyl, alkenyl and alkynyl groups. The alkyl group includes the lower alkyl as mentioned above and a higher alkyl group containing 7 or more carbon atoms, such as heptyl, octyl, nonyl, decyl, undecyl, dodecyl, heptadecyl or octadecyl. The alkyl group of R³ is preferably an alkyl group containing 1 - 18 carbon atoms. As the alkenyl group and alkynyl group represented by R³, preferred are the alkenyl and alkynyl groups as mentioned above for R¹. The carbon number of the alkenyl group and alkynyl group is preferably 2 - 4.

Examples of substituents on the saturated or unsaturated aliphatic groups of R³ are the groups belonging to the above mentioned Group A; a phenyl group which may be substituted by substituent(s) selected from the Group P as mentioned above; a phenethylamino or benzyl amino group optionally having on its ring substituent(s) selected from the above mentioned Group P; and a heterocyclic group which may be substituted by substituent(s) selected from the above mentioned Group H. The heterocyclic groups include partially or totally saturated heterocyclic groups(e.g., morpholino, piperidinyl, piperidino, piperazinyl or pyrrolidinyl), in addition to the aromatic heterocyclic groups mentioned in the aromatic group of R³.

The aliphatic groups of R² include the saturated or unsaturated aliphatic groups as described with respect to R¹. Further, the unsaturated aliphatic groups include not only the lower alkenyl or alkynyl groups as described with respect to R¹ mentioned above but also those having 7 -10 carbon atoms. Preferably, the aliphatic group of R² is a group of the formula R⁴ X (R⁴ is an aromatic group which may be substituted and X is an unsaturated aliphatic group being capable of conjugating the thiazole ring in the thiazoloazepine ring and R⁴). Examples of the groups of the formula R⁴X are alkenyl or alkynyl groups substituted by a phenyl optionally having substituent(s) selected from the Group P or possessing an oxo group.

The aromatic groups of R² Include the aromatic carbocyclic or aromatic heterocyclic groups or their condensed aromatic groups as described with respect to R³. Examples of substituents on the aromatic heterocyclic group are groups selected from the Group P and examples of substituents on the aromatic heterocyclic group are groups selected from the Group H.

The number of substituents in the groups which may be substituted for R¹ and R² is 1 - 5, preferably 1 - 3.

With respect to R¹, preferred compounds of the formula (I) are compounds where R¹ is a hydrogen atom or a carboxylic acyl (preferably acetyl or propionyl which may be substituted on the methyl or ethyl moiety). Particularly, preferred are compounds of the formula (I) wherein R¹ is a hydrogen atom. With respect to R², preferred are compounds of the formula (I) wherein R² is a phenyl, an aromatic heterocyclic group, or an alkenyl which may also be substituted by an aromatic groups. Preferred are compounds of the formula (I) in which the aliphatic group which may be substituted for R² is a group of the formula : R⁴ X wherein R⁴ is an aromatic group which may be substituted and X is an unsaturated aliphatic group being capable of conjugating the thiazole ring in the thiazoloazepine ring and R⁴. More preferred ones are those where R¹ is hydrogen atom and R² is a phenyl, an aromatic heterocyclic group, or a C₂-4 alkenyl which may be substituted by phenyl, thienyl, furyl, pyridyl, pyrazinyl or imidazolyl, which is conjugated with the thiazo ring. Most preferably, R² is a vinyl or butadienyl substituted by a phenyl or an aromatic heterocyclic group which may be substituted.

Besides, the compounds of the formula (I) may form their stereoisomers depending upon the kind of the substituents R^1 and R^2 . The present invention intends to include a single form of such stereoisomers as well as a mixture thereof.

The salts of the compounds of the formula (I) are preferably the pharmaceutically acceptable salts, e.g., salts with an inorganic acid such as hydrogen halide (e.g., hydrogen chloride or hydrogen bromide), phosphoric acid or sulfuric acid; or an organic acid such as an organic carboxylic acid (e.g., oxalic acid, phthalic acid, fumaric acid or maleic acid) or a sulfonic acid (e.g., methanesulfonic acid or benzenesulfonic

acid). When the compounds (I) possess an acidic group such as a carboxyl group, it can form its salt with an inorganic base such as an alkali metal (e.g., sodium or potassium) or alkali earth metal (e.g., magnesium) compound, or with an organic base such as an amine (e.g., dicyclohexylamine, triethylamine or 2,6-lutidine).

The compound of the formula (I) and its salt are hereinafter stated by a general term of the compound (I).

The compound (I) of the present invention can be prepared e.g., by the method illustrated by Chart-I.

In Chart-I, R^1 and R^2 have the same meanings as defined above and R^2 COX is a reactive derivative of a carboxylic acid.

That is, the compound (III) or salt thereof (the salt of the compound (I) as mentioned above being applicable) is acylated with a reactive derivative of a carboxylic acid having the formula: R²COX to yield the compound (II), which then is treated with a thiation agent to obtain the compound (I). More specifically, the reactive derivative of R²COX may be an acid chloride, acid bromide, imidazolide, acid anhydride, acid azide, N-phthalimido ester or N-oxysuccinimido ester. Instead of using the above active ester, a carboxylic acid having the formula: R² COOH may be caused to react directly with the compound (III) in the presence of a coupling agent such as N,N-dicyclohexylcarbodimide (sometimes abbreviated as DCC).

The reactive derivative of R²COX is used in about 1 - 3 mols, preferably about 1 - 1.2 mols, to one mol of the compound (III). On the other hand, the carboxylic acid of the formula R²COOH is used in about 1 - 3 one mol of the compound (III).

The reaction will proceed smoothly generally at a temperature range extending from the temperature of cooling ice to room temperature (room temperature used here and hereinafter in the explanation of the preparation method refers specifically to the temperature range 5 - 35 °C). Solvents employed may be any dioxane or dimethylformamide is frequently used. When an acid chloride or acid bromide is used as the acylating agent, it is preferable to add an amine such as triethylamine or pyridine in the reaction system. The reaction time is generally between 30 minutes to 12 hours, depending upon the reagent, solvent and

The reaction of converting the compound (II) into the compound (I) is conducted in the presence of a thiation agent such as phosphorus pentasulfide or Lawesson's reagent. The amount of the thiation agent to be employed is generally about 1 - 3 mols, or preferably an amount which is equivalent to one mol of the compound (II). The reaction solvent is preferably pyridine, but is not limited to pyridine. The reaction is

conducted at a temperature of about 50 - 120°C, preferably at about 80 - 120°C. The reaction time depends mainly upon the reaction temperature, but is generally between 3 - 12 hours, for example, approximately 5 hours at about 100 - 120°C.

in Chart-I, the substituent of R¹ may be converted to another substituent of R¹ at any stage in the process. However, it is generally advantageous to convert only after the formation of the compound (I). Typical examples of the conversion reaction of R¹ is to subject a compound wherein R¹ is a hydrogen atom to an alkylation, sulfonation or acylation thus creating the object compound wherein R¹ is an alkyl, sulfonic acyl or carboxylic acyl group which may be substituted.

These reactions may be conducted in accordance with the methods known per se, but also by the following methods.

The conversion of R¹ in the compound (I) from being a hydrogen atom hereinafter sometimes abbreviated as the compound (I) (R¹ = H) into R¹ which is an acyl group is achieved through an acylation of the compound (I) (R¹ = H). For obtaining R¹ being carboxylic acyl, a reactive derivative of a desired carboxylic acyl is caused to react with the compound (I) (R¹ = H). The kind of the reactive derivatives and the reaction conditions mentioned in the reaction from the compound (III) into the compound (II) are generally those applicable for that in the above acylation. Under such conditions, the acylation will proceed smoothly. In order to convert the compound (I) (R¹ = H) into the compound (I) of R¹ which is a sulfonic acyl, it is convenient to cause a reaction of the compound (I) (R¹ = H) with a halogenated sulfonyl. This reaction is usually conducted in the presence of an amine such as triethylamine or pyridine. The reaction tetrahydrofuran, chloroform or methylenechloride. Under certain circumstances, pyridine may be used as the solvent. The reaction will proceed smoothly at 0°C to room temperature and will be completed in 30 minutes to 5 hours. In the above reaction, about 1 - 3 mols of the amine and about 1 - 2 mols of the acylation agent are used for one mol of the compound (I).

In order to obtain the compound (I) wherein R¹ is an alkyl, the compound (I) (R¹ = H) is subjected to an alkylation. Examples of the alkylating agents are halogenated alkyls (halogen being chlorine, bromine or iodine) and sulfonic acid alkyl esters (e.g., p-toluenesulfonic acid alkylester or methanesulfonic acid alkyl ester). The alkylating agent is used in a proportion of about 1 - 2 mol, to one mol of the compound (I). The reaction is usually conducted in the presence of an inorganic base such as potassium carbonate or sodium is equivalent to the amount of the alkylating agent. The solvent may be suitably tetrahydrofuran, dioxane, dimethylformamide or dimethylacetamide, without particular limitation thereof. The reaction is usually conducted under heating, suitably at about 30 °C - 100 °C.

The compound (I) where R¹ is alkyl can also be obtained by reducing the compound (I) where R¹ is a carboxylic acyl. The reduction can be conducted in accordance with conventional methods, but is suitably conducted by use of a reducing agent such as lithium aluminum hydride or diborane. Such solvent as tetrahydrofuran or dioxane is used and the reaction will usually proceed under refluxing.

Furthermore, the compound (III) where R¹ is a hydrogen atom as the starting material in the preparation method of the present invention is known and the compounds (III) where R¹ are groups other than a hydrogen atom can be synthesized in accordance with, e.g., J.P.Snyder et al's method, J.Med. Chem. 29, 251 (1986), as shown by Chart-II.

45

10

25

50

Chart-II

NH₂

$$\frac{(BOC)_{2}O}{Et_{2}N}$$
NHBOC
$$\frac{R^{2}-X}{H}$$

In the formulae, R1 has the same meaning as defined before, X is a halogen atom and BOC stands for tert-butoxycarbonyl group.

Also, the compound (III) may be prepared from the corresponding compound of R1 being a hydrogen atom in accordance with the conversion reactions of R1 moiety in the compound (I) into other R1 moieties as mentioned above.

Some of the compounds (I) can be produced also by a known method or a method analogous thereto. The compound (i) as obtained by the above methods may be isolated and purified by conventional separation means such as recry stallization, distillation or chromatography. The resulting compound (I) in free form can be converted into the corresponding salt in accordance with the method known per se, e.g., neutralization reaction. Alternatively, the compound (I) in salt form may be converted into the free form in accordance with the conventional method.

The compounds (I) of the present invention possess improving actions on the circulatory system and antiallergic action, such as improving the metabolism of polyunsaturated fatty acids (e.g., linoleic acid, γ linolenic acid, y-linolenic acid, arachidonic acid, di-homo-y-linolenic acid or elcosapentalnoic acid), especially inhibitory action on the formation of lipoperoxide (antioxydative action), inhibitory action on the formation of 5-lipoxygenase metabolites (e.g., leucotrienes, 5-hydroperoxyeicosatetraenoic acid (HPETE), 5hydroxyeicosatetraenenoic acid (HETE), lipoxins or leukotoxins), inhibitory action for thromboxane A2 synthetic enzyme, promoting action for prostaglandin I2 synthetic enzyme, antagonistic action for LTD4 acceptor or eliminating action for active oxygen species. Among these actions, the compounds (I) tend to exert remarkable inhibitory action on the formation of lipoperoxide (i.e., antioxydative action).

The compounds (I) have low toxicity and side effects.

Accordingly, the compound (I) is effective for treating or preventing the following diseases in mammals (mouse, rat, rabbit, dog, monkey and man): Thrombosis caused by platelet aggregation, ischemic diseases caused by smooth muscle-contraction or vasospasm of arterial vessels of the heart, lung, brain and kidney (e.g., cardiac infarction cerebral apoplexy), neuronal degeneration (e.g., Parkinson's disease, Alzheimer's disease, Lou-Gehrig's diseases or muscular dystrophy), functional, memory and emotional disorders caused by damage to the central nervous system such as head or spinal injuries (disturbances due to necrosis of nerve cells induced by oxygen deficiency, brain damage, cerebral apoplexy, cerebral infarction or cerebral thrombosis), seizure and epilepsy after cerebral apoplexy, cerebral infarction, cerebral surgery and head injury, nephritis, pulmonary insufficiency, bronchial asthma, inflammation, arteriosclerosis, atherosclerosis, hepatitis, acute hepatitis, liver cirrhosis, hypersensitive pneumonitis, immunodeficiency, circulatory diseases (myocardial infarction, cerebral apoplexy, cerebral edema, nephritis and so on) induced by disturbances of enzyme, tissues or cells which are caused by active oxygen species (e.g., superoxide or hydroxy radical), and other diseases such as tissue-fibrogenesis or cancer. Thus, it is useful as medicine, e.g., antithrombogenic agent, anti-angiospastic agent, anti-asthmatic agent, anti-allergic agent, agent for improving circulatory organs such as heart and brain, agent for improving nephritis and hepatitis, inhibitor for tissuefibrogenesis, agent for eliminationg active oxygen species or as an agent for controlling and improving

15

20

The compound (I) may be safely administered through oral or parenteral routes as it is or in its pharmaceutical composition mixed with a pharmaceutically acceptable carrier or excipient, or the like (e.g., tablets, capsules, liquids, injections or suppository). The dosage depends upon subjects, routes and symptoms. However, for example, its oral dosage for adult patients suffering from circulatory diseases is usually about 0.1 - 20 mg/kg body weight/once, preferably about 0.2 - 10 mg/kg body weight given once to three times a day.

It will be understood that the compounds (I) possess inhibitory action for the formation of lipoperoxide (anti-oxidating action) and inhibitory action for the formation of of lipoxygenase metabolites, and HHT as illustrated by the following tests and hence are useful as medicines for treating or preventing circulatory diseases, inflammation or allergic diseases.

The compound (I) of the invention (I) has, as shown in the following test example, inhibitory action for the formation of lipoperoxide, antioxidative action, and inhibitory actions for lipoxygenase and the formation of HHT, being useful as medicine for treatment or prevention of circulatory diseases, inflammation and allergic diseases.

Test examples, examples and reference examples are described in the following. The invention is not limited to these examples.

Test Example 1

20

75

Inhibitory action on 5-lipoxygenase.

RBL-1 cells (rat basophilic leukemia cells) of 10^7 were suspended in 0.9 m1 of MCM (mast cell medium). To the suspension was added the test solution (the final concentration of $10~\mu\text{M}$, $1~\mu\text{M}$ and $0.1~\mu\text{M}$) prepared in advance. The mixture was incubated at 37~C for 5 minutes. Then, 0.1~m1 of MCM containing 50 μg of arachidonic acid and $10~\mu\text{g}$ of calcium ionophore A-23187 was added and further the mixture was incubated at 37~C for 15 minutes. After the reaction, 1~m1 of ethanol was added, well shaken and subjected to high performance liquid chromatography to determine 5-HETE. The absorption at 240 nm due to 5-HETE was measured by an ultraviolet abosorption monitor. The inhibition rate of 5HETE formation calculated from the peak area is shown in Table 1.

The inhibition rate of 5-HETE formation is represented by (1-b/a)x100, wherein a is the peak height or area in the presence of the compound (I) and b is that in the presence of the compound (I).

35

40

45

Table 1

Compound Example No.	Inhibition rate (%)			
	10-6*	10-7-	10-8-	
9	100	79	12	
2	100	56	14	
28	95	56	9	
22	100	49	4	
20	100	44	2	
24	93	53	- 26	

*Concentration of test compound (M)

50

By the above results, the compounds of the invention are proved to inhibit lipoxygenase even at low concentration and also to inhibit the formation of 5-HETE.

Test Example 2

Inhibitory action for the formation of HHT (12-hydroxyheptadeca-5,8,10-trienoic acid) in rat's platelet.

Eight m1 of blood was gathered from the abdominal aorta of a rat (JcI : Wistar, male, 12 - 15 weeks age) subjected to abdominal incision under anesthesia by the use of 3.2 % sodium citrate (1 volume of sodium citrate solution to 9 volume of whole blood). The blood was centrifuged at 800 rpm for 10 minutes at room temperature to gather PRP (platelet rich plasma), and the residual blood was further centrifuged at 3000 rpm for 10 minutes to gather PPP (platelet poor plasma). The platelet number in PRP was measured and the PRP was adjusted by diluting with PPP so that the concentration of platelet was one million/μ1. To 0.25 m1 of the PRP, 125 μg of arachidonic acid and the test compound (the final concentration of 100 μM, 10 μM, 10 μM and 0.1 μM) were added, and the mixture was incubated at 37°C for 15 minutes. After the reaction, 1.1 m1 of ethanol was added, well shaken and centrifuged at 2000 rpm for 10 minutes to separate liquid chromatography to determine HHT. The absorption at 240 nm due to HHT was measured by an in Table 2.

The inhibition rate of HETE formation is represented by (1-b/a)x100, wherein a is the peak height or area in the absence of the compound (I) and b is that in the presence of the compound (I)

Table 2

2	ĺ)	

Compound Inhibition rate (%) Example No. 10-44 10-5* 10-6-

*Concentration of test compound (M)

From the above results, the compounds of the invention are proved to inhibit the formation of HHT.

Test Example 3

Inhibitory action for lipoperoxide formation in rat's brain homogenate.

According to the method by Suno et al. (Japan J. Pharmacol., 35, 196(1984), the concentration of the compound necessary for 50% inhibition of lipoperoxide formation in rat's brain homogenate was determined by examining the lipoperoxide formation using the thiobarbituric acid method. The results obtained are shown in Table 3.

Table 3

75

10

5

From the above results, the compounds of the invention proved to have an excellent inhibitory action for lipoperoxide formation.

20

Test Example 4

Evaluation

Action of the drug on behavior change due to the spinal intrathecal injection (i.t.) of ferrous chloride in mice.

In male S1c : ICR mouse of 5 weeks age 10 mice per group were used. After 5 μ 1/mouse of saline dissolved 50 mM of ferrous chloride was intrathecally injected from the 6th lumbar segment to the 1st sacral segment, the mouse's behavior was observed for 15 minutes to an hour. The evaluation point of behavior change was scored according to the following criterion.

35

30

Behavior change point 0 Normal Repeated bites on the legs and abdomen 1 2 a) Violent bites on the abdomen sometimes tumbling about. b) Sensitive response to external stimulus and aggressiveness c) Tremor 3 Clonus 4 Tetanus or paralysis in uni- or bi-lateral leg 5 Death

40

The inhibition rate was shown based on the evaluation point under the above criterion. The test 45 compound was orally administered 30 minutes before the i.t. injection of ferrous chloride. Table 4 shows the average score and inhibition rate when 100 mg/kg of the compound (I) was orally

administered.

50

Table 4

5

Compound Average score Inhibition Example No. rate (%) 100 mg/kg saline dose dose 21 1.7 4.6 63.0 2 1.2 4.7 74.5 16 0.3 5.0 94.0 5 0.9 5.0 82.0 28 1.1 4.7 76.6

15

10

From the above results, the compounds of the invention are proved to have an excellent inhibitory action on the central nervous disorders accompanied by lipoperoxide formation due to ferrous chloride.

20 Test Example 5

Leukotriene D₄ (LTD₄) receptor antagonism.

According to the method by S. S. Pong , and R. N. DeHaven (Proceedings of the National Academy of Sciences of the United States of America, 80, 7415-7419 (1983) , the leukotriene D₄(LTD₄) receptor antagonism was measured by using [3H]LTD₄ and guinea pigs' lung membrane fraction. The results are shown in Table 5.

30

Table 5

35

,,

40

Compound Example No.	Inhibition rate (%)		
	10-6*	10-7*	10-8*
30	100	98.8	76.0
6	100	94.3	64.4
8	94.6	92.4	54.8
13	100	92.5	61.0

* Concentration of test compound (M)

45

From the above results, the compounds of the invention are proved to have excellent LTD4 receptor antagonism.

50 Test Example 6

Effect on cerebral blood flow after complete cerebral ischemia-reperfusion in dogs.

Fourteen adult mongrel dogs were anesthetized with a combination of α-chloralose and urethane. Polyethylene catheters were introduced into the femoral artery and vein. Systemic blood pressure was measured through the cannulated femoral artery with an electromanometer. Heart rate was recorded with a cardiotachometer. The regional cerebral blood flow (γ-CBF) was measured using a thermal diffusion flow

probe incorporating a Peltier stack. The animals were subjected to positive-pressure ventilation with roomair. A thoracotomy was performed in the third right intercostal space. The ligatures were loosely placed around the ascending aorta, inferior vena cava, and superior vena cava above the azygos vein. Occlusion was maintained for 10 minutes. After reperfusion, all physiological variables were continuously recorded for 3 hours. After 3 hours of reperfusion, animals were sacrificed. The regional cerebral cortex was removed. weighed and then dried (48 hours at 120°C) to remove water content. The test drugs were given intravenously 5 minutes before ischemia.

In the group treated with the compound of Example 106, γ -CBF after reperfusion transiently increased, with reactive hyperemia to the same extent as that of the control group. Thereafter γ -CBF recovered to the pre-occlusion level 30 minutes after reperfusion, and then decreased gradually. However, the compound of Example 106 (1 mg/kg, i.v.) significantly inhibited a decrease in γ -CBF 3 hours after reperfusion (Decrease rate 3 hours after reperfusion: Compound of Example 106 18.0 ± 3.1 %, Control 44.3 ± 1.4 %). Whereas the compound of Example 106 at 10 mg/kg (i.v.) almost completely inhibited the post-ischemia hypoperfusion in γ -CBF (Decrease rate 3 hours after reperfusion : compound of example 106 6.5 ± 2.5%). The compound of Example 106 significantly inhibited the increase in water content in the cerebral cortex 3

20

		Water Content (%)
Control		79.81 ± 0.21
Compound of Example 106	1 mg/kg, i.v.	78.22 ± 0.08 (p 0.01)
Compound of Example 106	10 mg/kg, i.v.	77.56 ± 0/36 (p 0.01)

25

30

These results show that the compounds of the present invention offer potential protective effects in the case of complete cerebral ischemia-reperfusion.

This invention is illustrated in further detail in the Reference Examples and Examples, which are only examples, and do not limit this invention. Modification within the scope of this invention are permissible.

Elution in a column chromatography in the Reference Examples and Examples was conducted while monitoring with TLC (Thin Layer Chromatography). In the TLC monitoring, the TLC plate used was Kieselgel 60F₂₅₀ manufactured by Merck Co. (70 - 230 mesh), the developing solvent was the same as the one for eluting in the column chromatography, and the detection was conducted with a UV detector. The silica gel for the column was Kieselgel 60 manufactured by Merck Co. (West Germany) (70 - 230 mesh). NMR spectra were indicated in TH-NMR and measured using tetramethylsilane as an internal standard with a spectrometer Varian EM390 (90 MHz) or a Gemini-200 (200 MHz) and all δ values are expressed in ppm. The symbols in Reference Examples and Examples have the following meaning.

br.: broad

d : doublet

t: triplet

q: quartet

m: multiplet

dd: doublet of doublets

J: coupling constant

Hz: Hertz

CDCl3: deutero-chloroform

D₅-DMSO: deutero-dimethylsulfoxide

% : percentage by weight

THF: tetrahydrofuran

Further, room temperature means 15 - 25 °C, and all of melting points and temperatures were shown on the centigrade.

Reference Example 1

3-(4-Chloro-cinnamoyl)amino-e-caprolactam

N,N'-Carbonyldiimidazole (13.9 g) was added to a solution of p-cholorocinnamic acid (13.0 g) in THF (500 ml), and the whole was stirred for 20 mins. at room temperature, following by addition of 3-amino-e-dried under reduced pressure to give the title compound (Yield 11 g). This compound was used in the following reaction without purification. m.p. 256 - 257°.

IR(KBr)cm⁻¹: 3198, 1686, 1644, 1614, 1563, 1348, 814.

NMR(CDCl₃) δ : 1.30 - 2.20(6H,m), 3.20 - 3.42(2H,m), 4.55 - 4.78(1H,m), 6.43(1H,d,J=16Hz), 7.10(2H,m), 7.39(2H,m), 7.56(1H,d,J=16Hz).

The following compounds were obtained in the method of the above Reference Example 1.

10

Reference Example 2

15 3-(4-Methoxycinnamoyl)amino-ε-caprolactam

m.p. 238 - 239°.

IR(KBr)cm⁻¹: 1672, 1650, 1604, 1532, 1511, 1275, 1172.

NMR(d₆-DMSO) δ : 1.18 - 1.85(6H,m), 3.07 - 3.25(2H,m), 3.76(3H,s), 4.52(1H,dd,J=7Hz,10Hz), 6.77- (1H,d,J=16Hz), 6.95(2H,d,J=8Hz), 7.34(1H,d,J=16Hz), 7.51(2H,d,J=8Hz), 7.84(1H,t,J=5Hz), 7.97- (1H,d,J=7Hz).

Reference Example 3

25

3-Cinnamoylamino-e-caprolactam

m.p. 194 - 196°.

IR(KBr)cm⁻¹: 3294, 2924, 1656, 1619, 1536, 1480, 1433, 1226.

30 MNR(CDCl₃)δ: 1.28 - 2.23(6H,m), 3.09 - 3.40(2H,m), 4.56 - 4.79(1H,m), 6.49(1H,d,J=15Hz), 6.90 - 7.60-(5H,m), 7.61(1H,d,J=15Hz).

Reference Example 4

35

3-(2-Phenylbutyryl)amino-ε-caprolactam

m.p. 152 - 153°.

IR(KBr)cm⁻¹: 3280, 2934, 1641, 1531, 1479, 1436.

40 NMR(CDCl₃)5: 0.88(3H,t,J=7Hz), 1.33 - 2.32(8H,m), 3.13 - 3.37(2H,m), 4.00(1H,t,J=7Hz), 4.36 - 4.61(1H,m), 7.30(5H,s).

Reference Example 5

45

3-(4-Methoxybenzoyl)amino-e-caprolactam

m.p. 214 - 215°.

IR(KBr)cm⁻¹: 2926, 1641, 1548, 1505, 1246, 1187.

NMR(d₅-DMSO)δ: 1.17 - 2.02(6H,m), 3.11 - 3.30(2H,m), 3.82(3H,s), 4.56 - 4.64(1H,m), 7.00(2H,d,J=9Hz), 7.83(2H,d,J=9Hz), 8.09(1H,d,J=6Hz).

Reference Example 6

55

3-(4-Methylcinnamoyl)amino-ε-caprolactam

m.p. 229 - 230°.

IR(KBr)cm $^{-1}$: 3196, 2932, 1685, 1610, 1347, 807. NMR(CDCl₃) δ : 1.22 - 2.28(6H,m), 2.37(3H,s), 3.23 - 3.50(2H,m), 4.59 - 4.81(1H,m), 6.46(1H,d,J=16Hz), 7.20-(2H,d,J=9Hz), 7.43(2H,d,J=9Hz), 7.63(1H,d,J=16Hz).

5 Reference Example 7

3-(4-Ethoxycinnamoyl)amino-e-caprolactam

m.p. 236 - 237°. $IR(KBr)cm^{-1}$: 1686, 1644, 1605, 1562, 1513, 1304, 1233, 1173. $NMR(d_{\varsigma}-DMSO)\delta$: 1.32(3H,t,J=7Hz), 1.20 - 2.00(6H,m), 3.09 - 3.33(2H,m), 4.06(2H,q,J=7Hz), 4.44 - 4.63-(1H,m), 6.72(1H,d,J=16Hz), 6.93(2H,d,J=9Hz), 7.32(1H,d,J=16Hz), 7.50(2H,d,J=9Hz).

75 Reference Example 8

3-(4-Isopropylcinnamoyl)amino-e-caprolactam

20 m.p. 199 - 200°.
IR(KBr)cm⁻¹: 3320, 1670, 1651, 1615, 1528, 1430.
NMR(d₆-DMSO)₈: 1.18(6H,d,J=6Hz), 1.33 - 2.00(6H,m), 2.81 -2.98(1H,m), 3.04 - 3.25(2H,m), 4.43 - 4.63-(1H,m), 6.83(1H,d,J=16Hz), 7.24(2H,d,J=7Hz), 7.38(1H,d,J=16Hz), 7.50(2H,d,J=7Hz).

25 Reference Example 9

3-[5-(4-Methoxyphenyl)pentadienoyl]amino-e-caprolactam

30 m.p. 204 - 206°.
IR(KBr)cm⁻¹: 1645, 1598, 1510, 1480, 1435, 1255, 1176, 1029.
NMR(d₆-DMSO)δ: 1.15 - 1.93(6H,m), 3.00 - 3.20(2H,m), 3.77(3H,s), 4.38 - 4.61(1H,m), 6.26(1H,d,J=14Hz), 6.83 - 7.05(3H,m), 6.91(2H,d,J=8Hz), 7.50(2H,d,J=8Hz).

35 Reference Example 10

3-(4-Isopropoxycinnamoyl)amino-ε-caprolactam

m.p. 225 - 226°.

IR(KBr)cm⁻¹: 1671, 1651, 1606, 1535, 1510, 1254.

NMR(CDCl₃)δ: 1.16 - 2.30(6H,m), 1.32(6H,d,J=6Hz), 3.12 - 3.40(2H,m), 4.42 - 4.78(2H,m), 6.33-(1H,d,J=16Hz), 6.83(2H,d,J=9Hz), 7.41(2H,d,J=9Hz), 7.55(1H,d,J=16Hz).

45 Reference Example 11

3-(3,5-Di-tert-butyl-4-hyroxycinnamoyl)amino-e-caprolactam

50 m.p. 112 - 113°.
IR(KBr)cm⁻¹: 2956, 1657, 1615, 1479, 1435, 1208.
NMR(d₆-DMSO)δ: 1.10 - 2.00(6H,m), 1.39(18H,s), 3.04 - 3.32(2H,m), 4.43 - 4.65(1H,m), 6.76(1H,d,J=16Hz), 7.29(1H,d,J=16Hz), 7.31(2H,s).

55 Reference Example 12

3-(2-Methoxycinnamoyl)amino-e-caprolactam

m.p. 213 - 214°

IR(KBr)cm⁻¹: 3216, 1685, 1643, 1613, 1557, 1448, 1245.

 $NMR(d_6-DMSO)\delta: \ 1.18-1.96(6H,m), \ 3.03-3.27(2H,m), \ 3.83(3H,s), \ 4.43-4.65(1H,m), \ 6.76-7.56(6H,m).$

5 Reference Example 13

3-(3,4-Methylenedioxycinnamoyl)amino-e-caprolatam

10 m.p. 275 - 276°.

IR(KBr)cm⁻¹: 1669, 1652, 1616, 1532, 1500, 1488, 1250.

NMR(d₆-DMSO) δ : 1.17 - 1.95(6H,m), 3.05 - 3.32(2H,m), 4.40 - 4.60(1H,m), 6.03(2H,s), 6.73(1H,d,J=16Hz), 6.80 - 7.17(3H,m), 7.30(1H,d,J=16Hz).

15 Reference Example 14

3-(α-Phenylcinnamoyl)amino-ε-caprolactam

20 m.p. 159 - 160°.

IR(KBr)cm⁻¹: 3354, 3254, 1656, 1617, 1501, 1445, 709.

 $NMR(d_{5}-DMSO)\delta: \ 1.22-1.98(6H,m), \ 3.00-3.19(2H,m), \ 4.40(1H,dd,J=4Hz,7Hz), \ 6.95-7.56(11H,m).$

Reference Example 15

3-(2,3,4-Trimethoxycinnamoyl)amino-«-caprolactam

m.p. 208 - 209 .

30 IR(KBr)cm $^{-1}$: 1673, 1646, 1614, 1495, 1464, 1297, 1097. NMR(d₆-DMSO) δ : 1.18 -1.97(6H,m), 3.08 - 3.22(2H,m), 3.75(3H,s), 3.80(3H,s), 3.82(3H,s), 4.43 - 4.63(1H,m), 6.79(1H,d,J=16Hz), 6.89(1H,d,J=9Hz), 7.32(1H,d,J=9Hz), 7.53(1H,d,J=16Hz).

Reference Example 16

35

25

3-(3,4-Dimethoxycinnamoyl)amino-e-caprolactam

m.p. 185 - 186*.

40 IR(KBr)cm⁻¹: 3302, 1650, 1611, 1514, 1468, 1260, 1137. NMR(d₅-DMSO) δ : 1.18 - 1.96(6H,m), 3.08 - 3.29(2H,m), 3.79(3H,s), 3.81(3H,s), 4.49 - 5.08(1H,m), 6.86-(1H,d,J=16Hz), 6.98(1H,d,J=8Hz), 7.13(1H,dd,J=2Hz,8Hz), 7.23(1H,d,J=2Hz), 7.34(1H,d,J=16Hz).

Reference Example 17

45

3-(3,4-Dimethoxybenzoyl)amlno-ε-caprolactam

N,N'-Carbonyldiimidazole (9.79 g) was added to a solution of 3,4-dimethoxybenzoic acid (10.0 g) in THF (300 ml) and the whole was stirred for 30 mins. at room temperature. Then, following by addition of 3-mino-ε-caprolactam (7.04 g), the mixture was stirred for 5 hrs. The resultant precipitate was collected by filtration, washed and dried under reduced pressure to give the title compound (8.5 g). This product was used in the following reaction without purification. m.p. 190 - 191. IR(KBr)cm⁻¹: 1657, 1617, 1574, 1510, 1476, 1263.

55 NMR(d_6 -DMSO) δ : 1.16 - 2.00(6H,m), 3.03 - 3.25(2H,m), 3.81(6H,s), 4.57 - 4.65(1H,m), 7.02(1H,d,J=8Hz), 7.43 - 7.50(2H,m), 7.83 - 7.89(1H,m), 8.15(1H,d,J=7Hz).

The following compounds were obtained in the method of the above Reference Example 17.

Reference Example 18

3-(3-Methoxycinnamoyl)amino-e-caprolactam

m.p. 173 - 174°.

IR(KBr)cm⁻¹: 3312, 1671, 1653, 1621, 1578, 1540, 1434, 1289.

 $NMR(d_6-DMSO)\delta: \ 1.15 - 2.00(6H,m), \ 3.12 - 3.28(2H,m), \ 3.79(3H,s), \ 4.54(1H,dd,J=3Hz,7Hz), \ 6.92 - 7.41-1.00(2H,m), \$ (6H,m), 7.88(1H,t,J=4Hz), 8.05(1H,d,J=7Hz).

10

5

Reference Example 19

3-(3,5-Dimethoxycinnamoyl)amino-ε-caprolactam

15

m.p. 174 - 175°.

IR(KBr)cm⁻¹: 1654, 1619, 1535, 1426, 1208, 1160.

 $NMR(d_{6}-DMSO)\delta: \ 1.20 \ - \ 1.97(6H,m), \ 3.09 \ - \ 3.32(2H,m), \ 3.77(6H,s), \ 4.53(1H,dd,J=4Hz,7Hz), \ 6.50-1.00$ (1H,t,J=2Hz), 6.77(2H,d,J=2Hz), 6.98(1H,d,J=16Hz), 7.32(1H,d,J=16Hz), 7.88(1H,t,J=6Hz), 8.01-4(1H,d,J=7Hz).

Reference Example 20

3-(2,3-Dimethoxycinnamoyl)amino-ε-caprolactam

m.p. 187 - 188 .

IR(KBr)cm⁻¹: 3208, 1686, 1613, 1577, 1480, 1270.

 $NMR(d_{6}-DMSO)\delta; \ 1.18 - 1.89(6H,m), \ 3.09 - 3.28(2H,m), \ 3.75(3H,s), \ 3.82(3H,s), \ 4.54(1H,dd,J=3Hz,7Hz),$

6.93(1H,d,J=16Hz), 7.03-7.22(3H,m), 7.64(1H,d,J=16Hz), 7.85(1H,t,J=6Hz), 8.13(1H,d,J=7Hz).

Reference Example 21

35 3-(2,5-Dimethoxycinnamoyl)amino-ε-caprolactam

m.p. 190 - 191 .

IR(KBr)cm⁻¹: 1655, 1600, 1524, 1494, 1431, 1223.

 $NMR(d_{6}-DMSO)\delta: 1.20-1.93(6H,m), \ 3.00-3.26(2H,m), \ 3.75(3H,s), \ 3.80(3H,s), \ 4.54(1H,dd,J=2Hz,6Hz), \ 6.92-1.93(6H,m), \ 3.92-1.93(6H,m), \ 3.92-1.93(6H,m),$ - 7.01(3H,m), 7.14(1H,d,J=3Hz), 7.64(1H,d,J=16Hz), 7.88(1H,t,J=7Hz), 8.02(1H,d,J=6Hz).

Reference Example 22

3-(4-Methoxy-3-methylcinnamoyl)amino-ε-caprolactam

m.p. 218 - 219°.

IR(KBr)cm⁻¹: 3280, 2920, 1660, 1640, 1600, 1500, 1248, 1122.

(1H,d,J=16Hz), 6.97(1H,d,J=9Hz), 7.31(1H,d,J=16Hz), 7.39 - 7.42(2H,m), 7.86(1H,t,J=5Hz), 7.95-

Reference Example 23

3-[4-Methoxy-3-(2-methylthioethoxy)cinnamoyl]-amono-e-caprolactam

m.p. 192 - 193°.

IR(KBr)cm⁻¹: 1673, 1650, 1610, 1511, 1428, 1262, 1143. NMR(d_6 -DMSO) δ : 1.19 - 1.97(6H,m), 2.18(3H,s), 2,87(2H,tJ=7Hz), 3.02 - 3.28(2H,m), 3.79(3H,s), 4.17-1.00(3H,s), 4.17-1.0 $(2H,t,J=7Hz), \quad 4.52(1H,dd,J=3Hz,5Hz), \quad 6.84(1H,d,J=16Hz), \quad 6.98(1H,d,J=8Hz), \quad 7.13(1H,dd,J=3Hz,8Hz), \quad 7.13(1H,dd,J$ 7.24(1H,d,J=3Hz), 7.32(1H,d,J=16Hz), 7.85 - 7.91(2H,m).

Reference Example 24

10

15

20

3-(3.4,5-Trimethoxycinnamoyl)amino -caprolactam

m.p. 197 - 198°. IR(KBr)cm⁻¹: 1667, 1645, 1600, 1578, 1502, 1411, 1122.

 $NMR(d_6-DMSO)\delta: \ 1.18 \ - \ 1.97(6H,m), \ 3.03 \ - \ 3.24(2H,m), \ 3.69(3H,s), \ 3.82(6H,s), \ 4.53(1H,dd,J=3Hz,7Hz).$ 6.95(2H,s), 6.96(1H,d,J=16Hz), 7.34(1H,d,J=16Hz), 7.89-7.93(2H,m).

Reference Example 25

3-(2,4-Dimethoxycinnamoyl)amino-e-caprolactam

m.p. 207 - 208° IR(KBr)cm⁻¹: 3294, 1678, 1644, 1599, 1519, 1212, 1159. $NMR(d_{\delta}-DMSO)\delta; \ 1.21 - 1.89(6H,m), \ 3.07 - 3.20(2H,m), \ 3.81(3H,s), \ 3.86(3H,s), \ 4.53(1H,dd,J=3Hz, \ 7Hz), \ 3.81(3H,s), \ 3.81(3H,$ 6.56 - 6.61(2H,m), 6.78(1H,d,J=16Hz), 7.49(1H,d,J=9Hz), 7.58(1H,d,J=16Hz), 7.84(1H,t,J=6Hz), 7.95-40(1H,d,J=16Hz)25 (1H,d,J=7Hz).

Reference Example 26

3-(3-Bromo-4-methoxycinnamoyl)amino-ε-caprolactam

m.p. 226 - 227 .

IR(KBr)cm⁻¹: 1671, 1649, 1619, 1598, 1496, 1260.

 $NMR(d_{6}-DMSO)\delta: \ 1.19 - 1.96(6H,m), \ 3.08 - 3.25(2H,m), \ 3.89(3H,s), \ 4.48 - 4.57(1H,m), \ 6.89(1H,d,J=16Hz), \ 6.89(1H,d,J=16H$ 7.16(1H,d,J=9Hz), 7.33(1H,d,J=16Hz), 7.59(1H,dd,J=2Hz,9Hz), 7.85(1H,d,J=2Hz).

Reference Example 27

3-(3,5-Di-tert-butyl-4-hydroxybenzoyl)amino-ε-caprolactam

m.p. 131 - 132°.

IR(KBr)cm⁻¹: 2954, 1710, 1675, 1644, 1479, 1427, 1231.

 $NMR(d_{\delta}-DMSO)\delta: \ 1.23-1.98(6H,m), \ 1.41(18H,s), \ 3.09-3.28(2H,m), \ 4.53-4.62(1H,m), \ 7.59(2H,s).$

Reference Example 28

3-(2,4-Dimethoxybenzoyl)amino- ϵ -caprolactam

m.p. 196 - 197°.

50

IR(KBr)cm⁻¹: 3310, 1669, 1494, 1328, 1261, 1210, 1013.

 $NMR(d_{5}-DMSO)\delta; \ 1.18 \ - \ 2.09(6H,m), \ 3.04 \ - \ 3.24(2H,m), \ 3.83(3H,s), \ 3.95(3H,s), \ 4.50 \ - \ 4.58(1H,m), \ 6.63 \ - \ 4.58(1H,m)$

55

Reference Example 29

3-(3,4-Dimethylcinnamoyl)amino-e-caprolactam

m.p. 226 - 227°.

IR(KBr)cm⁻¹: 2934, 1685, 1643, 1613, 1562, 1479, 1242.

5 NMR(d_5 -DMSO) δ : 1.16 - 1.98(6H,m), 2.24(6H,s), 3.03 -3.21(2H,m), 4.49 - 4.58(1H,m), 6.88 (1H,d,J=16Hz), 7.17(1H,d,J=8Hz), 7.29 - 7.37(3H,m).

Reference Example 30

10

3-(2-Methoxy-3-methylcinnamoyl)amino-e-caprolactam

m.p. 186 - 187°.

IR(KBr)cm⁻¹: 3270, 3222, 1684, 1638, 1621, 1569, 1467.

NMR(d_6 -DMSO) δ : 1.19 - 1.98(6H,m), 2.26(3H,s), 3.06 -3.24(2H,m), 3.68(3H,s), 4.51 - 4.60(1H,m), 6.94-(1H,d,J=16Hz), 7.09(1H,t,J=6Hz), 7.24(1H,d,J=6Hz), 7.47(1H,d,J=6Hz), 7.63(1H,d,J=16Hz), 7.87-(1H,t,J=5Hz), 8.15(1H,d,J=7Hz).

Reference Example 31

20

3-(3-Methoxybenzoyl)amino-e-caprolactam

m.p. 148 - 149°.

IR(KBr)cm⁻¹: 1680, 1648, 1587, 1542, 1487, 1300. NMR(d₆-DMSO)δ: 1.19 - 2.00(6H,m), 3.03 - 3.27(2H,m), 3.81(3H,s), 4.57 - 4.68(1H,m), 7.07 -7.14(1H,m), 7.35 - 7.42(3H,m).

Reference Example 32

30

3-(α -Methylcinnamoyl)amino- ϵ -caprolactam

m.p. 160 - 161 .

IR(KBr)cm⁻¹: 3384, 1672, 1660, 1593, 1511, 1475. NMR(d₆-DMSO)δ: 1.18 - 1.96(6H,m), 2.03(3H,s), 3.02 -3.27(2H,m), 4.46 - 4.54(1H,m), 7.29 -7.43(6H,m).

Reference Example 33

40

3-(4-Trifluoromethylbenzoyl)amino-e-caprolactam

m.p. 283 - 284°.

IR(KBr)cm⁻¹: 1687, 1636, 1324, 1295, 1174, 1116.

45 NMR(d₆-DMSO)δ: 1.14 - 2.00(6H,m), 3.04 - 3.24(2H,m), 4.60 - 4.71(1H,m), 7.86(2H,d,J=8Hz), 8.07- (2H,d,J=8Hz).

Reference Example 34

50

3-(3,4-Methylenedioxybenzoyl)amino-e-caprolactam

m.p. 196 - 197°.

IR(KBr)cm⁻¹: 1660, 1635, 1602, 1475, 1253, 1033.

55 NMR(d₆-DMSO)δ: 1.12 - 1.99(6H,m), 3.08 - 3.27(2H,m), 4.55 - 4.62(1H,m), 6.11(2H,s), 6.99(1H,d,J=8Hz), 7.39(1H,d,J=2Hz), 7.45(1H,dd,J=2Hz,8Hz).

Reference Example 35

3-(p-ToluoyI)amino-ε-caprolactam

m.p. 202 - 203°.

IR(KBr)cm⁻¹: 3262, 3200, 1654, 1539, 1295, 1282.

 $NMR(d_6-DMSO)\delta: \ 1.22 - 1.98(6H,m), \ 2.36(3H,s), \ 3.03 - 3.24(2H,m), \ 4.56 - 4.64(1H,m), \ 7.28(2H,d,J=8Hz), \ 3.03 - 3.24(2H,m), \ 4.56 - 4.64(1H,m), \ 7.28(2H,d,J=8Hz), \ 3.03 - 3.24(2H,m), \ 4.56 - 4.64(1H,m), \ 7.28(2H,d,J=8Hz), \ 3.03 - 3.24(2H,m), \ 4.56 - 4.64(1H,m), \ 7.28(2H,d,J=8Hz), \ 3.03 - 3.24(2H,m), \ 4.56 - 4.64(1H,m), \ 7.28(2H,d,J=8Hz), \ 3.03 - 3.24(2H,m), \ 4.56 - 4.64(1H,m), \ 4$ 7.76(2H,d,J = 8Hz).

Reference Example 36

10

3-(2,3,4-Trimethoxybenzoyl)amino-ε-caprolactam

m.p. 240 - 241 .

IR(KBr)cm⁻¹: 3262, 1678, 1656, 1634, 1519, 1482, 1093.

NMR(d₆-DMSO)&: 1.15 - 2.08(6H,m), 3.08 - 3.21(2H,m), 3.78(3H,s), 3.85(3H,s), 3.90(3H,s), 4.52 - 4.61(1 6.95(1H,d,J=9Hz), 7.70(1H,d,J=9Hz).

Reference Example 37

20

3-(3-Trifluoromethylcinnamoyl)amino-e-caprolactam

m.p. 203 - 204°.

IR(KBr)cm⁻¹: 1673, 1651, 1624, 1347, 1162, 1121.

NMR(d_6 -DMSO) δ : 1.17 - 1.98(6H,m), 3.09 - 3.36(2H,m), 4.50 - 4.59(1H,m), 7.15(1H,d,J=16Hz), (1H,d,J=16Hz), 7.61 - 7.98(4H,m).

Reference Example 38

3-(N-tert-Butoxycarbonyl-β-alanyl)amino-ε-caprolactam

m.p. 110 - 111°.

IR(KBr)cm⁻¹: 3346, 1677, 1632, 1526, 1285, 1173.

NMR(d_6 -DMSO) δ : 1.25 - 2.18(6H,m), 1.42(9H,s), 2.41(2H,t,J=6Hz), 3.14 - 3.47(4H,m), 4.41 - 4.60(1H,m),

Reference Example 39

3-(4-Methoxycarbonylbenzoyl)amino-e-caprolactam

m.p. 226 - 227°.

IR(KBr)cm⁻¹: 3306, 1714, 1672, 1632, 1428, 1284.

 $NMR(d_6-DMSO)\delta: \ 1.20 - 2.02(6H,m), \ 3.10 - 3.22(2H,m), \ 3.89(3H,s), \ 4.60 - 4.68(1H,m), \ 7.98(2H,d,J=9Hz), \ 3.89(3H,s), \ 4.60 - 4.68(1H,m), \ 4.60 - 4.68(1H,$ 45 8.06(2H,d,J=9Hz).

Reference Example 40

3-(4-Ethoxycarbonylstyryl)amino-ε-caprolactam

m.p. 208 - 209 .

IR(KBr)cm⁻¹: 1715, 1670, 1655, 1619, 1282, 1272.

 $NMR(d_6-DMSO)\delta: \ 1.21 - 1.98(6H,m), \ 1.33(3H,t,J=7Hz), \ 3.07 - 3.22(2H,m), \ 4.33(2H,q,J=7Hz), \ 4.50 - 4.59-1.00 + 1.00 +$

55 (1H,m), 7.09(1H,d;J=16Hz), 7.46(1H,d,J=16Hz), 7.72(2H,d,J=8Hz), 7.98(2H,d,J=8Hz).

Reference Example 41

3-[(4-tert-Butoxycarbonylaminomethyl)benzoyl]amino-e-caprolactam

m.p. 174 - 175°.

IR(KBr)cm⁻¹: 3364, 1683, 1637, 1527, 1288, 1170.

NMR(d₆-DMSO) δ : 1.21 - 2.00(6H,m), 1.40(9H,s), 3.02 - 3.28(2H,m), 4.17(2H,d,J=8Hz), 4.56 - 4.65(1H,m), 7.32(2H,d,J=8Hz), 7.80(2H,d,J=8Hz).

Reference Example 42

10

3-(4-Ethoxycarbonyloxycinnamoyl)amino-e-caprolactam

Ethyl-chloroformate (22.2 ml) was added dropwise to a mixture of 3-hydroxy-4-methoxycinnamic acid (22.5 g), triethylamine (32.3 ml) and THF (400 ml) under ice-cooling and stirring, followed by stirring for 15 mins. Subsequently, to the mixture was added dropwise a solution of 3-amino-e-caprolactam (14.9 g) in THF (200 ml), and then the whole was stirred for 1 hr. at room temperature. After completing the dropping, the reaction mixture was concentrated under reduced pressure, and the residue was dissolved in chloroform. This solution was washed with water, dried and distilled under reduced pressure to remove the solvent. The residue was washed with ethyl acetate, dried under reduced pressure to give the title compound (28 g). This compound was used in the following reaction without purification. m.p. 209 - 210°. IR(KBr)cm⁻¹: 1770, 1650, 1613, 1515, 1249, 1217.

 $NMR(CDCI_3)\delta: 1.23 - 1.95(6H,m), \ 1.37(3H,t,J=7Hz), \ 3.20 - 3.40(2H,m), \ 3.86(3H,s), \ 4.41 \ (2H,q,J=7Hz), \ 4.55 \ (2H,q,J=7Hz), \$ - 4.78(1H,m), 6.35(1H,d,J=16Hz), 6.92(1H,d,J=9Hz), 7.30 -7.40(2H,m), 7.51(1H,d,J=16Hz).

The following compound was obtained by the method of the above Reference Example 42.

25

Reference Example 43

(4-Ethoxycarbonyloxybenzoyl)amino-ε-caprolactam

m.p. 195 - 196°.

IR(KBr)cm⁻¹: 3312, 3266, 1766, 1683, 1634, 1290, 1252, 1212.

 $NMR(d_6-DMSO)\delta$: 1.40(3H,t,J=9Hz), 1.53 - 2.36(6H,m), 3.20 - 3.41(2H,m), 4.31(2H,q,J=9Hz), 4.58 - 4.80-(1H,m), 7.26(2H,d,J=8Hz), 7.90(2H,d,J=8Hz).

Reference Example 44

3-(4-cyanobenzoyl)amino-ε-caprolactam

The title compound was obtained in the method of Reference Example 17. m.p. 189 - 190°.

IR(KBr)cm⁻¹: 2224, 1643, 1549, 1300, 937, 758.

NMR(d₆-DMSO) δ : 1.17 - 2.01(6H,m), 3.10 - 3.26(2H,m), 4.59 - 4.60(1H,m), 7.96(2H,d,J=8Hz), 8.03-

Reference Example 45

50

3-(3-Cyanobenzoyl)amino-e-caprolactam

The title compound was obtained in the method of Reference Example 17. m.p. 221 - 222°.

IR(KBr)cm⁻¹: 2932, 1682, 1669, 1647, 1551, 1301.

 $NMR(d_{6}-DMSO)\delta; \ 1.20 \ - \ 2.00(6H,m), \ 3.09 \ - \ 3.28(2H,m), \ 4.60 \ - \ 4.71(1H,m), \ 7.70(1H,t,J=8H), \ 7.84-1.00(1H,t,J=8H), \ 7.84-1.00($ (1H,t,J=6Hz), 7.99 - 8.04(1H,m), 8.15 - 8.20(1H,m), 8.31 - 8.32(1H,m), 8.58(1H,d,J=7Hz).

Reference Example 46

3-(5-Benzimidazolecarbonyl)amino-є-caprolactam

The title compound was obtained in the method of Reference Example 17. m.p. 297 - 299*.

IR(KBr)cm⁻¹: 3258, 1672, 1623, 1540, 1305, 1289.

NMR(d_{δ} -DMSO) δ : 1.15 - 2.02(6H,m), 3.09 - 3.26(2H,m), 4.64(1H,dd,J=7Hz,10Hz), 7.64 - 8.34 (6H,m).

Reference Example 47

10

75 3-Nicotinoylamino-e-caprolactam

The title compound was obtained in the method of Reference Example 17. m.p. 220 - 221°.

IR(KBr)cm⁻¹: 3338, 1667, 1646, 1528, 1418, 1334.

NMR(d_6 -DMSO) δ : 1.15 - 2.01(6H,m), 3.02 - 3.28(2H,m), 4.60 - 4.70(1H,m), 7.46 - 7.55-(1H,m,J=1H,5Hz,8Hz), 7.83(1H,t,J=7Hz), 8.20(1H,dt,J=2Hz,8Hz), 8.54(1H,d,J=7Hz), 8.70-(1H,dd,J=2Hz,5Hz), 9.02(1H,dd,J=1Hz,2Hz).

25 Reference Example 48

3-Picolinoylamino-∈-caprolactam

The title compound was obtained in the method of Reference Example 17. m.p. 177 - 178

IR(KBr)cm⁻¹: 1685, 1653, 1509, 1487, 1469, 1424.

NMR(d_6 -DMSO) δ : 1.22 - 2.11(6H,m), 3.03 - 3.19(2H,m), 4.52 - 4.62(1H,m), 7.60 - 7.68(1H,m), 7.98 - 8.16-(3H,m), 8.66 - 8.72(1H,m), 9.04(1H,d,J=6Hz).

Reference Example 49

40 3-[4-(4-Methylpiperazinyl)benzoyl]amino-ε-caprolactam

The title compound was obtained in the method of Reference Example 17. m.p. 232 - 234°.

IR(KBr)cm⁻¹: 3282, 1679, 1544, 1513, 1451, 1293, 1244.

⁴⁵ NMR(d_6 -DMSO) δ : 1.16 - 1.98(θ H,m), 2.22(θ H,s), 2.44(θ H,t,J= θ Hz), 3.12 - 3.21(θ H,m), 3.25(θ H,t,J= θ Hz), 4.53 - 4.63(θ H,m), 6.96(θ H,d,J= θ Hz), 7.73(θ H,d,J= θ Hz).

Reference Example 50

50

35

3-(1-Methyl-1H-1,2,3-triazole-4-carbonyl)amino-ε-caprolactam

The title compound was obtained in the method of Reference Example 17. 55 m.p. 259 - 260°.

IR(KBr)cm⁻¹: 3388, 3108, 1677, 1640, 1571, 1502.

NMR(d_6 -DMSO) δ : 1.13 - 2.07(6H,m), 3.03 - 3.28(2H,m), 4.09(3H,s), 4.55(1H,dd,J=6Hz,10Hz), 8.05-(1H,t,J=6Hz), 8.26(1H,d,J=6Hz), 8.54(1H,s).

Reference Example 51

3-(Indole-3-carbonyl)amino-ε-caprolactam

The title compound was obtained in the method of Reference Example 17. m.p. 243 - 244 .

IR(KBr)cm⁻¹: 3272, 1675, 1620, 1548, 1439, 1310, 1209.

NMR(d_6 -DMSO) δ : 1.17 - 2.01(6H,m), 3.05 - 3.26(2H,m), 4.66(1H,dd,J=7Hz,10Hz), 7.11 - 7.20(2H,m), 7.42 - 7.47(1H,m), 7.71(1H,d,J=7Hz), 7.88 - 7.93(1H,m), 8.04 - 8.09(2H,m), 11.63(1H,br.).

Example 1

15

5

2-(4-Chlorostyryl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

3-(4-Chlorocinnamoyl)amino- ϵ -caprolactam (11.0 g) and phosphorus pentasulfide (8.37 g) were added to 500 ml of pyridine, and the whole was refluxed for 1.5 hrs. After cooling, the reaction mixture was added to a sodium hydrogen carbonate solution and extracted with chloroform. The extract was washed with water, chromatography on silica gel, and recrystallized from cyclohexane to give the title compound as crystals, 18/KPs) contracts and 19.0714 and 19.0714

IR(KBr)cm⁻¹: 3274, 2926, 1543, 1432, 1355, 1090, 807.

NMR(CDCl₃)δ: 1.50 - 1.98(4H,m), 2.83 - 2.97(2H,m), 3.07 - 3.16(2H,m), 3.96(1H,br.s), 6.98(2H,d,J=1Hz), 7.32(4H,d,J=1Hz).

Elemental an	alysis for C1	H15N2SCI	
Calculated:	C, 61.95;	1	N, 9.63.
Found:	C, 62.08;		N, 9.90.

30

35

Example 2

2-(4-Methoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(4-methoxycinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1.

m.p. 130 - 131° (recrystallized from cyclohexane).
IR(KBr)cm⁻¹: 2914, 1601, 1547, 1510, 1251, 1175, 949.
NMR(CDCl₃)δ: 1.67 - 1.84(4H,m), 2.89(2H,t,J=6Hz), 3.11(2H,t,J=5Hz), 3.82(3H,s), 6.88(2H,d,J=9Hz), 6.98-(2H,s), 7.41(2H,d,J=9Hz).

Elemental analysis for C₁₆H₁₈N₂OS

Calculated: C, 67.10; H, 6.33; N, 9.78.
Found: C, 67.29; H, 6.23; N, 9.70.

55

50

Example 3

2-Styryl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-cinnamoylamino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1.

Yield 40.3 %.

m.p. 169 - 170° (recrystallized from cyclohexane).

IR(KBr)cm⁻¹: 3220, 2918, 1523, 1439, 1362, 1269, 938.

NMR(CDCl₃)δ: 1.50 - 1.93(4H,m), 2.80 - 2.92(2H,m), 3.01 - 3.12(2H,m), 7.05(2H,s), 7.23 -7.59(5H,m).

10

Elemental an	alysis for C1	5H16N2S	
Calculated:	C, 70.27;	H, 6.29;	N, 10.93.
Found :	C, 70.53;	H, 6.30;	N, 10.94.

15

Example 4

20

2-(1-Phenylpropyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(2-phenylbutyryl)amino-ε-caprolactam and phosphorus pentasulfide in a manner similar to that described in Example 1. Yield 31.9 %.

m.p. 106 - 107° (recrystallized from hexane).

IR(KBr)cm⁻¹: 3244, 2924, 1474, 1261, 701.

 $NMR(CDCl_3)\delta: 0.89(3H,t,J=7Hz), 1.38 - 2.38(6H,m), 2.77 - 3.05(4H,m), 3.32(1H,br.s), 4.93(1H,t,J=8Hz), 7.28-1.05(4H,m), 2.77 - 2.05(4H,m), 2$

35

30

Elemental analysis for C ₁₆ H ₂₀ N ₂ S				
Calculated:	C, 70.55;	H, 7.40;	N, 10.28.	
Found :	C, 70.45;	H, 7.27;	N, 10.15.	

Example 5

2-(4-Methoxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By using the method of Example 1, the title compound was obtained by reacting 3-(4-methoxybenzoyl)-45 amino-ε-caprolactam and phosphorus pentasulfide, purifying and then making a salt from hydrochloric acid.

m.p. 177 - 178° (recrystallized from a mixture of methanol and ethyl ether). IR(KBr)cm⁻¹: 1605, 1533, 1292, 1281, 1263, 1190, 832.

 $NMR(CDCl_3)\delta$: 1.50 - 1.90(4H,m), 3.03 - 3.30(4H,m), 3.80(3H,s), 6.89(2H,d,J=9Hz), 7.98(2H,d,J=9Hz),

Elemental an				
Calculated:	C, 56.65;	H, 5.77;	N, 9.44;	Cl, 11.94.
Found :	C, 56.48;	H, 5.87;	N, 9.40;	Cl, 12.17.

Example 6

2-(4-Methylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(4-methylcinnamoyl)amino- ϵ -caprolactam and phosphorus pentasulfide in the method described in Example 1. Yield 49.5 %.

m.p. 166 - 167° (recrystallized from cyclohexane).

IR(KBr)cm⁻¹: 2920, 1546, 1438, 1355, 1270, 955, 802.

NMR(CDCl₃) δ : 1.51 - 1.95(4H,m), 2.35(3H,s), 2.80 - 2.93(2H,m), 3.01 - 3.15(2H,m), 7.05(2H,s), 7.15-(2H,d,J=8Hz).

15

Elemental an	alysis for C1	H18N2S	
Calculated:	C, 71.07;	H, 6.71;	N, 10.36.
Found:	C, 71.02;	H, 6.57;	N, 10.23.

20

Example 7

2-(4-Ethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(4-ethoxycinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide the method described in Example 1.

m.p. 159 - 160° (recrystallized from cyclohexane).

IR(KBr)cm⁻¹: 2924, 1601, 1550, 1510, 1268, 1244, 1176.

NMR(CDCl₃) δ : 1.40(3H,t,J=7Hz), 1.60 - 1.93(4H,m), 2.89(2H,dd,J=4H,6Hz), 3.11(2H,t,J=5Hz), 4.03-(2H,q,J=7Hz), 6.84(2H,d,J=9Hz), 6.96(2H,s), 7.36(2H,d,J=9Hz).

35

Elemental an	alysis for C1:	H ₂₀ N ₂ OS	
Calculated:	C, 67.97;	H, 6.71;	N, 9.32
Found:	C, 68.06;	H, 6.63;	N, 9.45

40

Example 8

45

2-(4-Isopropylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(4-isopropylcinnamoyl)amino-ε-caprolactam and phos-50 phorus pentasulfide in the method described in Example 1. Yield 47.8 %.

m.p. 148 - 149°.

IR(KBr)cm⁻¹: 3258, 2950, 2922, 1547, 1438, 1357, 1266.

NMR(CDCl₃) δ : 1.23(6H,d,J=7Hz), 1.61 - 1.93(4H,m), 2.72 - 3.18(5H,m), 7.19(2H,d,J=9Hz), 7.20(2H,s), 7.38-(2H,d,J=9Hz).

Elemental analysis for C ₁₈ H ₂₂ N ₂ S				
Calculated:	C, 72.44;	H, 7.43;	N, 9.39	
Found:	C, 72.11;	H, 7.34;	N, 9.35	

Example 9

5

2-[4-(4-Methoxyphenyl)butadienyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-[5-(4-methoxyphenyl)pentadienoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1.

Yield 19.4 %.

m.p. 140 - 142 (recrystallized from cyclohexane).

IR(KBr)cm⁻¹: 1542, 1509, 1441, 1368, 1251, 1172, 986.

NMR(CDCl₃) δ : 1.52 - 1.93(4H,m), 2.80 - 2.92(2H,m), 3.03 - 3.14(2H,m), 3.80(3H,s), 6.43 -6.76(4H,m), 6.83- (2H,d,J=9Hz), 7.35(2H,d,J=9Hz).

Elemental analysis for C ₁₈ H ₂₀ N ₂ OS				
Calculated:	C, 69.20;	H, 6.45;	N, 8.97.	
Found:	C, 68.90;	H, 6.62;	N, 8.80.	

30

25

Example 10

2-(4-Isopropoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(4-isopropoxycinnamoyl)amino- ϵ -caprolactam and phosphorus pentasulfide in the method described in Example 1. Yield 35.5 %.

m.p. 161 - 162° (recrystallized from cyclohexane).

P IR(KBr)cm⁻¹: 3266, 1547, 1509, 1442, 1359, 1239, 943. NMR(CDCl₃)δ: 1.30(6H,d,J=6Hz), 1.58 - 1.92(4H,m), 2.80 - 2.95(2H,m), 3.03 - 3.13(2H,m), 4.53(1H,m), 6.82-(2H,J=9Hz), 6.92(2H,s), 7.34(2H,d,J=9Hz).

Elemental an	alysis for C18	H ₂₂ N ₂ OS	
Calculated: Found:	C, 68.75; C, 69.10;		

50

Example 11

⁵ 2-(3,5-Di-tert-butyl-4-hydroxystyryl))-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine oxalate

By using the method of Example 1, the title compound was obtained by reacting 3-(3,5-di-tert-butyl-4-hydroxycinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide, purifying and then neutralizing with

oxalic acid. Yield 37.4 %. m.p. 205 - 206°.

IR(KBr)cm⁻¹: 2958, 1729, 1592, 1437, 1374, 1237, 1208.

NMR(CDCl₃) 5: 1.40(18H,s), 1.53 - 1.83(4H,m), 2.60 - 2.76(2H,m), 2.86 - 3.03(2H,m), 6.94(2H,s), 7.28(2H,s).

Elemental an C ₂₃ H ₃₂ N ₂ OS	alysis for °C ₂ H ₂ O ₄ °H	₂ O	
Calculated:	C, 60.95;	H, 7.37;	N, 5.69
Found:	C, 60.97;	H, 7.30;	N, 5.72

15

10

Example 12

2-(2-Methoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b] azepine oxalate

By using the method of Example 1, the title compound was obtained by reacting 3-(2-methoxycinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide, purifying and then neutralizing with oxalic acid.

m.p. 171 - 172°.

IR(KBr)cm⁻¹: 1592, 1519, 1378, 1352, 1253, 1207. $NMR(d_{\delta}-DMSO)\delta$: 1.33 - 1.82(4H,m), 2.68 - 2.80(2H,m), 2.90 - 3.02(2H,m), 3.84(3H,s), 6.83 -7.63(4H,m),

30

Elemental an C ₁₆ H ₁₈ N ₂ OS	alysis for C2H2O4 °0.	3H₂O	
Calculated:	C, 56.62;	H, 5.44;	N, 7.34
Found :	C, 56.67;	H, 5.13;	N, 7.14

40

Example 13

2-(3,4-Methylenedioxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo [5,4-b]azepine hydrochloride

By using the method of Example 1, the title compound was obtained by reacting 3-(3,4-methylenedioxycinnamoyl)amino-e-caprolactam and phosphorus pentasulfide, purifying and then neutralizing with hy-Yield 42.3 %.

m.p. 196 - 197* (recrystallized from a mixture of chloroform and ethyl ether). IR(KBr)cm⁻¹: 1597, 1505, 1487, 1449, 1356, 1256.

NMR(d₆-DMSO) δ : 1.50 - 1.91(4H,m), 2.75 - 2.93(3H,m), 2.99 -3.15(2H,m), 6.06(2H,s), 6.90 -7.55(5H,m).

Elemental an C ₁₆ H ₁₆ N ₂ O ₂	alysis for S • HCI • 0.3H ₂	20	
Calculated:	C, 56.15;	H, 5.18;	N, 8.19.
Found:	C, 56.38;	H, 4.89;	N, 8.22.

Example 14

2-(α-Phenylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By using the method of Example 1, the title compound was obtained by reacting 3-(α -phenylcin-namoyl)amino- ϵ -caprolactam and phosphorus pentasulfide, purify ing and then neutralizing with hydrochloric acid.

Yield 13.5 %.

n.p. 188 - 189°.

IR(KBr)cm⁻¹: 3180, 1595, 1506, 1490, 1352, 693.

NMR(d₆-DMSO)&: 1.47 - 1.90(4H,m), 2.83 - 3.11(4H,m), 6.90 - 7.56(11H,m).

15

Elemental an C ₂₁ H ₂₀ N ₂ S*			
Calculated:	C, 67.71;	H, 5.79;	N, 7.52.
Found:	C, 67.79;	H, 5.68;	N, 7.53.

20

Example 15

25

2-(2,3,4-Trimethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine oxalate

By using the method of Example 1, the title compound was obtained by reacting 3-(2,3,4-trimethoxycin-namoyl)amino-ε-caprolactam and phosphorus pentasulfide, purifying and then neutralizing with oxalic acid.

m.p. 145 - 146° (recrystallized from ethyl acetate).

IR(KBr)cm⁻¹: 1742, 1588, 1495, 1283, 1203, 1108, 1098.

NMR(d_6 -DMSO) δ : 1.56 - 1.69(4H,m), 2.73(2H,t,J=5Hz), 2.94 - 2.99(2H,m), 3.76(3H,s), 3.80(3H,S), 3.82-(3H,s), 6.83(1H,d,J=9Hz), 7.06(2H,s), 7.39(1H,d,J=9Hz).

Elemental an C ₁₈ H ₂₂ N ₂ O ₃	alysis for S°C ₂ H ₂ O ₄ °().5H ₂ O	
Calculated:	C, 53.92;	H, 5.66;	N, 6.29.
Found :	C, 53.66;	H, 5.41;	N, 6.14.

~

45

50

Example 16

2-(3,4-Dimethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By using the method of Example 1, the title compound was obtained by reacting 3-(3,4-dimethoxycin-namoyl)amino-ε-caprolactam and phosphorus pentasulfide, purifying and then neutralizing with hydrochloric

Yield 23.7 %.

55 m.p. 159 - 160° (recrystallized from a mixture of chloroform and ehtyl ether). IR(KBr)cm⁻¹: 3438, 3220, 1609, 1593, 1516, 1268.

NMR(d_6 -DMSO) δ : 1.62 - 1.73(4H,m), 2.80 - 2.85(2H,m), 3.04 - 3.09(2H,m), 3.80(3H,s), 3.82(3H,s), 7.01-(1H,d,J=8Hz), 7.17(1H,dd,J=8Hz,2Hz), 7.26(1H,d,J=2Hz), 7.24(1H,d,J=16Hz), 7.43(1H,d,J=16Hz).

Elemental an C ₁₇ H ₂₀ N ₂ O ₂	alysis for S°HCI°1.3H;	20	
Calculated:	C, 54.26;	H, 6.32;	N, 7.44.
Found:	C, 54.48;	H, 6.31;	N, 7.46.

Examplé 17

5

10

2-(9-Decenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

75 1,1'-Carbonyldiimidazole (15.8 g) was added to a solution of undecylenic acid (15 g) in THF, and the whole was stirred for 15 mins. at room temperature. After addition of 3-amino-ε-caprolactam (10.4 g), the mixture was stirred for 5 hrs. at room temperature, and then distilled under reduced pressure to remove the solvent. The resultant crude 3-(10-undecenoyl)amino-ε-caprolactam and phosphorus pentasulfide (18.1 g), were added to 500 ml of pyridine, and the whole was refluxed under stirring for 1 hr. After cooling, the reaction mixture was added to a saturated sodium hydrogen carbonate solution and extracted with chloroform. The extract was washed with water, dried and distilled under reduced pressure to remove the solvent. The residue was purified by a column chromatography on silica gel and made a salt of oxalic acid. It was recrystallized from isopropyl ether to give the title compound (yield 7.7 g, 24.7 %). m.p. 94 - 95°.

IR(KBr)cm⁻¹: 2928, 2854, 1607, 1528, 1404, 1279, 720. $NMR(CDCl_3)\delta: 1.30(12H,br.s), \ 1.50 - 2.16(6H,m), \ 2.78 - 3.17(6H,m), \ 4.89 - 5.07(2H,m), \ 5.58 - 6.03(1H,m).$

> Elemental analysis for $C_{17}H_{28}N_2S^{\bullet}C_2H_2O_4$ Calculated: C, 59.66: H, 7.90; N. 7.32. Found: C, 59.78; H, 8.13; N, 7.28.

35

30

25

Exapmie 18

2-(2,6-Difluorophenyl)-5,6,7.8-tetrahydro-4H-thiazolo[5,4-b]azepine

1,1'-Carbonyldiimidazole (14.8 g), was added to a solution of 2,6-difluorobenzoic acid (12 g) in THF (200 ml) and followed by stirring for 15 mins. at room temperature. Then to the mixture was added 9.73 g of 3-amino-e-caprolactam, and the whole was stirred for 5 hrs. at room temperature and the solvent was distilled off under reduced pressure. The residue was washed with methylenechloride to give 3-(2,6difluorobenzoyl)amino-ε-caprolactam (13.5 g) as crude crystals. The crude crystals and phosphorus pentasulfide (8.96 g) were added to 200 ml of pyridine, and the whole was refluxed under stirring for 24 hrs. After cooling, the mixture was distilled to remove the solvent. To the residue was added a saturated sodium hydrogen carbonate solution and extracted with chloroform. The extract was washed with water, dried and concentrated under re duced pressure. The residue was purified by a column chromatography on silica gel and then recrystallized from a mixture of methylenechloride and isopropyl ether to give the title compound

m.p. 143 - 144".

IR(KBr)cm⁻¹: 3230, 2912, 1467, 1355, 1013, 990, 783.

NMR(CDCl₃) 5: 1.50 - 2.00(4H,m), 2.91 - 3.25(4H,m), 6.78 - 7.45(3H,m).

Elemental an	alysis for C1:	3H12N2SF2	····
Calculated:	C, 58.63;	H, 4.54;	N, 10.52.
Found :	C, 58.72;	H, 4.52;	N, 10.32.

Example 19

2-(2,4-Difluorophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2,4-diffuorobenzoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18.

m.p. 105.5 - 107.0° (recrystallized from cyclohexane). IR(KBr)cm⁻¹: 1545, 1504, 1479, 1436, 1351, 1095.

NMR(CDCl₃)5: 1.50 - 1.98(4H,m), 2.90 - 3.16(4H,m), 3.76(1H,br.s), 6.73 - 7.03(2H,m), 8.03 - 8.30(1H,m).

Elemental analysis for C ₁₃ H ₁₂ N ₂ SF ₂				
Calculated:	C, 58.63;	H, 4.54;	N, 10.52.	
Found :	C, 58.68;	H, 4.47;	N, 10.59.	

20

25

30 Example 20

2-(3,4-Dichlorostyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3,4-dichlorocinnamic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18.

m.p. 191 - 192 (recrystallized from isopropanol).

IR(KBr)cm⁻¹: 3276, 2922, 1539, 1428, 1355, 940.

NMR(CDCl₃) δ : 1.65 - 1.72(2H,m), 1.80 - 1.88(2H,m), 2.92(2H,t,J=6Hz), 3.13(2H,t,J=5Hz), 6.93-0 (1H,d,J=16Hz), 7.10(1H,d,J=16Hz), 7.28(1H,dd,J=8Hz,2Hz), 7.40(1H,d,J=8Hz), 7.52(1H,d,J=2Hz).

Elemental an	alysis for C1	H14N2SCl2	
Calculated:	C, 55.39;	H, 4.34;	N, 8.61.
Found :	C, 55.22;	H, 4.26;	N, 8.91.

Example 21

45

2-(4-Phenylbutadienyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 5-phenyl-2,4-pentadienic acid, 3-amino-←-caprolactam and phosphorus pentasulfide in the method described in Example 18.

m.p. 156 - 157° (recrystallized from cyclohexane).

 $IR(KBr)cm^{-1}$: 3278, 2914, 1547, 1509, 1495, 1369 980. NMR(CDCl₃) δ : 1.53 - 1.92(4H,m), 2.80 - 2.92(2H,m), 3.03 - 3.16(2H,m), 6.70 - 6.87(4H,m), 7.18 - 7.46(5H,m).

Elemental analysis for C ₁₇ H ₁₈ N ₂ S			
Calculated:	C, 72.30;	H, 6.42;	N, 9.92.
Found :	C, 72.12;	H, 6.35;	N, 9.66.

10

s

Example 22

2-(4-Nitrostyryl)-5,6,7,8-tetrahydro-4H-thiazolo-[5,4-b]azepine

The title compound was obtained reacting 4-nitrocinnamic acid, 3-amino-←caprolactam and phosphorus pentasulfide in the method described in Example 18.

Yield 20.2 %.

m.p. 219 - 220° (recrystallized from isopropanol). IR(KBr)cm⁻¹: 3278, 1595, 1531, 1514, 1435, 1356, 1338, 1270, 936. NMR(d_c -DMSO)&: 1.65(4H,br.s), 2.70 - 2.83(2H,m), 2.93 - 3.04(2H,m), 7.10(1H,d,J=16Hz), 7.46-(1H,d,J=16Hz), 7.87(2H,d,J=9Hz), 8.21(2H,d,J=9Hz).

25

20

Elemental analysis for C ₁₅ H ₁₅ N ₃ O ₂ S			
Calculated: Found:		H, 5.02; H, 4.88;	

30

Example 23

35

2-(2-Fluorophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

3-Amino-s-caprolactam (11.0 g) and triethylamine (15.7 ml) were added to 200 ml of methylenechloride. Then a solution of 2-fluorobenzoyl chloride (15.0 g) in methylenechloride (30 ml) was added dropwise to the mixture under ice-cooling and stirring. Thereafter, the mixture was stirred for 1.5 hrs. at room temperature, and the resultant precipitate was collected by filtration to give 3-(2-fluorobenzoyl)amino-s-caprolactam as crude crystals. This crystals and phosphorus pentasulfide (16.5 g) were added to 200 ml of pyridine, and the whole was refluxed for 12 hrs. After cooling, the pyridine was removed by distillation, and to the residue was added a saturated sodium hydrogen carbonate solution and extracted with chloroform. The extract was washed with water, dried, and the solvent was distilled off under reduced pressure. The residue was purified by a column chromatography on silica gel, and then recrystallized from ethyl ether to give the title compound (4.55 g, 24.7 %).

m.p. 115 - 116°.

IR(KBr)cm⁻¹: 3236, 2944, 2916, 1496, 1453, 1371, 1357, 1102, 757.

NMR(CDCl₃)δ: 1.36 - 2.03(4H,m), 2.92 - 3.20(4H,m), 3.66(1H,br.s), 6.93 - 7.32(3H,m), 8.08 - 8.27(1H,m).

Elemental analysis for C ₁₃ H ₁₃ N ₂ SF				
Calculated: - Found:			N, 11.28. N, 11.36.	

Example 24

2-(4-Nitrophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 4-nitrobenzoylchloride, 3-amino- ϵ -caprolactam and phosphorus pentasulfide in the method described in Example 23. Yield 44.8 %.

m.p. 159 - 160° (recrystallized from cyclohexane).

10 IR(KBr)cm⁻¹: 2920, 1592, 1534, 1510, 1490, 1430, 1355, 1303, 1103.

NMR(CDCl₃) δ : 1.49 - 1.96(4H,m), 2.90 - 3.00(2H,m), 3.10 - 3.20(2H,m), 4.14(1H,br.s), 7.86(2H,d,J=9Hz), 8.21(2H,d,J=9Hz).

15

Elemental analysis for C ₁₃ H ₁₃ N ₃ O ₂ S			
Calculated:	C, 56.71;	H, 4.76;	N, 15.26.
Found :	C, 56.90;	H, 4.69;	N, 15.39.

20

25

Example 25

2-(3-Nitrophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-nitrobenzoylchloride, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 23. Yield 45.7%.

m.p. 168 - 169 (recrystallized from a mixture of chloroform and isopropyl ether). IR(KBr)cm⁻¹: 2920, 1520, 1450, 1370, 1345, 1300, 1270, 735. NMR(CDCl₃)s: 1.49 - 1.99(4H m), 2.93(9H dd 1-4H m), 2.93(9H

NMR(CDCl₃) δ : 1.49 - 1.99(4H,m), 2.93(2H,dd,J = 4Hz, 6Hz), 3.06 - 3.16(2H,m), 3.83 - 4.19(1H,br.s), 7.50-(1H,t,J=8Hz), 8.00 - 8.16(2H,m), 8.57(1H,t,J=2Hz).

35

Elemental analysis for C ₁₃ H ₁₃ N ₃ O ₂ S				
Calculated:	C, 56.71;	H, 4.76;	N, 15.26.	
Found:	C, 56.66;	H, 4.71;	N, 15.10.	

ഹ

Example 26

2-Phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting benzoyl chloride, 3-amino-ε-caprolactam and phosphrus pentasulfide in the method described in Example 23.

Yield 44.5 %.

m.p. 122.0 - 123.5 (recrystallized from a mixture of ethanol and water). IR(KBr)cm⁻¹: 3228, 3004, 2926, 1564, 1524, 1502, 1462, 1370, 1270, 757.

NMR(CDCl₃)δ: 1.50 - 1.96(4H,m), 2.89 - 3.15(4H,m), 3.56(1H,br.s), 7.26 - 7.48(3H,m), 7.69 - 7.80(2H,m).

Elemental an	alysis for C1	3H14N2S	
Calculated:	C, 67.79;	H, 6.13;	N, 12.16.
Found:	C, 67.55;	H, 6.04;	N, 12.17.

Example 27

2-Ethyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine oxalate

The title compound was obtained by reacting propionyl bromide, 3-amino-c-caprolactam and phosphorus pentasulfide, purifying and then neutralizing with oxalic acid in the method described in Example 23.

Yield 34.0 %.

m.p. 145 - 146° (recrystallized from isopropanal).

IR(KBr)cm⁻¹: 2930, 1720, 1600, 1370, 1275, 1200, 720.

NMR(d₆-DMSO)₈: 1.16(3H,t,J=7Hz), 1.32 - 1.81(4H,m), 2.46 - 2.73(4H,m), 2.81 - 2.92(2H,m).

Elemental analysis for C ₉ H ₁₄ N ₂ S • C ₂ H ₂ O ₄				
Calculated:	C, 48.52;	H, 5.92;		
Found:	C, 48.52;	H, 5.98;		

30

35

25

Example 28

2-Styryl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine oxalate

The title compound was obtained by reacting cinnamoyl chloride, 3-amino-ε-caprolactam and phosphorus pentasulfide, purifying and then neutralizing with oxalic acid in the method described in Example 23.

m.p. 188 - 189 (recrystallized from ethyl ether).

40 IR(KBr)cm⁻¹: 3280, 2920, 1610, 1590, 1520, 1380, 1350, 1190. NMR(CDCl₃)δ: 1.46 - 1.96(4H,m), 2.77 - 3.17(4H,m), 6,93(1H,d,J=16Hz), 7.15(1H,d,J=16Hz), 7.19 - 7.60-(5H,m).

45

Elemental analysis for C ₁₅ H ₁₆ N ₂ S C ₂ H ₂ O ₄ 0.5H ₂ O			
Calculated:	C, 57.45;	H, 5.39;	N, 7.88.
Found :	C, 57.46;	H, 5.13;	N, 7.91.

50

Example 29

55

2-Heptadecyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting stearoyl chloride, 3-amino-ϵ-caprolactam and phosphorus

pentasulfide in the method described in Example 23. Yield 26.1 %.

m.p. 75 - 76° (recrystallized from methanol).

IR(KBr)cm⁻¹: 3230, 2930, 2850, 1465, 1265.

NMR(CDCl₃)8: 0.88(3H,t,J=5Hz), 1.26(30H,br.s), 1.47 - 1.90(4H,m), 2.67 - 2.90(4H,m), 2.98 - 3.10(2H,m).

Elemental an	alysis for C2	4H44N2S	
Calculated:	C, 73.41;	H, 11.29;	N, 7.13.
Found:	C, 73.46;	H, 11.00;	N, 7.31.

Example 30

10

20

2-(2-Naphthyl)-5,6,7,8-tetrahydro-4H-thiazolo [5,4-b]azepine

The title compound was obtained by reacting naphthoyl chloride, 3-amino-∈-caprolactam and phosphorus pentasulfide in the method described in Example 23.
Yield 42.9 %.

m.p. 171 - 172°.

25 IR(KBr)cm⁻¹: 3442, 3240, 2920, 1529, 1508, 1371. NMR(CDCl₃)δ: 1.56 - 2.00(4H,m), 2.92 - 3.18(4H,m), 7.35 - 8.18(7H,m).

Elemental an	alysis for C1:	7H16N2S	
Calculated:	C, 72.82;	H, 5.75;	N, 9.99.
Found:	C, 72.78;	H, 5.87;	N, 9.79.

35

30

Example 31

2-(2-Thienyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-thenoyl chloride, 3-amino- ϵ -caprolactam and phosphorus pentasulfide in the method described in Example 23. Yield 59 %.

m.p. 123 - 124°.

45 IR(KBr)cm⁻¹: 3240, 2916, 1554, 1519, 1415, 1370. NMR(CDCl₃)δ: 1.47 - 1.95(4H,m), 2.83 - 2.95(2H,m), 3.00 - 3.11(2H,m), 3.65(1H,br.s), 6.90 - 7.00(1H,m), 7.19 - 7.23(2H,m).

50

Elemental an	alysis for C1	H12N2S2	
Calculated:	C, 55.90;	H, 5.12;	N, 11.85.
Found :	C, 55.80;	H, 5.13;	N, 11.83.

55

Example 32

4-(4-Methyl-1-piperadinyi)acetyl-2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

Chloroacetyl chloride (2.2 g) was added dropwise to a mixture of 2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine (3.0 g), triethylamine (3.6 ml) and methylenechloride (100 ml) under ice-cooling and stirring. After stirring for 30 mins, at room temperature, the mixture was distilled under reduced pressure to remove the solvent, and the residue was extracted with chloroform. The extract was washed with a saturated sodium hydrogen carbonate solution, water, dried over anhydrous sodium sulfate and the solvent product (1.9 g) and triethylamine (2.6 ml) in 20 ml of THF was added N-methylpiperazine (1.4 ml), and the ethyl ether. The extract was washed with water, dried and concentrated under reduced pressure. The residue was purified by a column chromatography on silica gel, converted into a salt of hydrochloric acid and then recrystallized from a mixture of isopropanol and ethyl ether to give the title compound (1.66 g, 56

75 m.p. 195 - 197°.

IR(KBr)cm⁻¹: 3340, 2560, 1660, 1460, 1370.

NMR(CDCl₃) δ : 1.50 - 1.25(4H,m), 2.26(3H,s), 2.33 -2.76(8H,m), 2.83 - 3.12(2H,m), 3.21(2H,s), 3.62 - 3.86-(2H,m), 7.30 - 7.54(3H,m), 7.80 - 8.00(2H,m).

20

Elemental an C ₂₀ H ₂₆ N ₄ OS),	
Calculated:	C, 50.10;	H, 6.73;	N, 11.69.
Found:	C, 49.83;	H, 6.71;	N, 11.67.

25

30 Example 33

4-Morpholinoacetyl-2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

The title compound was obtained by reacting 2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, chloroacetyl chloride and morpholine in the method described in Example 32.

m.p. 208 - 211° (recrystallized from a mixture of isopropanol and ethyl ether). IR(KBr)cm⁻¹: 2490, 1680, 1460, 1450, 1365, 1120.

NMR(CDCl₃)δ: 1.53 - 2.20(4H,m), 2.40 -2.70(4H,m), 2.83 - 3.12(2H,m), 3.20(2H,s), 3.53 -3.94(6H,m), 7.30 - 7.53(3H,m), 7.80 -7.98(2H,m).

Elemental an C ₁₉ H ₂₃ N ₃ O ₂		20	
Calculated:	C, 56.64;	H, 6.25;	N, 10.43.
Found :	C, 56.40;	H, 6.32;	N, 10.49.

50

45

Example 34

4-[3-(4-Methyl-1-piperazinyl)propionyl]-2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5;4-b]azepine fumarate

The title compound was obtained by reacting 2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, 3-chloro-propionyl chloride, N-methylpiperazine and fumaric acid in the method described in Example 32.

Yield 35 %.

m.p. 201 - 202 (recrystalliezed from isopropanol). IR(KBr)cm⁻¹: 2930, 1660, 1540, 1450, 1380, 1170.

 $NMR(CDCI_3)\delta; \ 1.54 - 2.20(4H,m), \ 2.23(3H,s), \ 2.41(8H,m), \ 2.59 - 2.76(4H,m), \ 2.88 - 3.13(2H,m), \ 3.60 - 3.94-1.00(2H,m), \ 2.88 - 3.13(2H,m), \ 3.60 - 3.94-1.00(2H,m), \ 3.60 - 3.94-1.00(2$ (2H,m), 7.33 - 7.55(3H,m), 7.80 - 7.96(2H,m).

Elemental analysis for C21H28N4OS C4H4O4 Calculated: C, 59.98; H, 6.44; N. 11.19. Found: C, 59.82: H, 6.58; N. 11.16.

10

20

15 Example 35

4-(3-Morpholinopropionyl)-2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

The title compound was obtained by reacting 2-phenyl- 5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, 3chloro-propionyl chloride, morpholine and hydrogen chloride in the method described in Example 32.

m.p. 184 - 186° (recrystallized from isopropanol).

IR(KBr)cm⁻¹: 3450, 2920, 2370, 1640, 1455, 1430.

 $NMR(CDCl_3)\delta: \ 1.52 - 2.19(4H,m), \ 2.29 - 2.51(4H,m), \ 2.60 - 2.73(4H,m), \ 2.86 - 3.10(2H,m), \ 3.50 - 3.88(6H,m), \ 2.86 - 3.10(2H,m), \ 3.50 - 3.88(6H,m), \ 3.50 - 3.88($ 7.32 - 7.53(3H,m), 7.81 - 7.97(2H,m).

30

Elemental an C ₂₀ H ₂₅ N ₃ O ₂	alysis for S•HCI•0.5H ₂	20	
Calculated:	C, 57.61;	H, 6.53;	N, 10.08.
Found:	C, 57.77;	H, 6.49;	N, 9.98.

35

Example 36

4-[3-(3,4-Dimethoxyphenethyl)aminopropionyl]-2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, chloropropionyl chloride, β -(3,4-dimethoxyphenyl)ethylamine and fumaric acid in the method described in

Yield 42 %.

m.p. 143 - 144 °C (recrystallized from ethyl ether).

IR(KBr)cm⁻¹: 1710, 1660, 1342, 1320, 1405, 1255.

50 NMR(CDCI₃)δ: 1.50 - 2.13(5H,m), 2.46 - 3.20(10H,m), 3.55 - 4.00(2H,m), 4.81(3H,s), 4.83(3H,s), 6.75-(3H,br.s), 7.33 - 7.98(3H,m), 7.80 - 7.98(2H,m).

Elemental analysis for C ₂₆ H ₃₁ N ₃ O ₃ S * C ₄ H ₄ O ₄ * 0.5H ₂ O						
Calculated:	C, 61.00;	H. 6.14;	N, 7.11.			
Found :	C, 61.17;	H, 5.94;	N, 6.84.			

Example 37

4-(4-Methyl-1-piperazinyl)acetyl-2-styryl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

The title compound was obtained by reacting 2-styryl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine. chloroacetyl chloride, N-methylpiperazine and hydrogen chloride in the method described in Example 32.

m.p. 182 - 184 (recrystallized from a mixture of methanol and ethyl ether). IR(KBr)cm⁻¹: 3400, 1670, 1610, 1440, 1410.

 $NMR(d_6-DMSO)\delta: 1.36 - 2.13(4H,m), \ 2.72 - 3.02(5H,m), \ 3.27(2H,s), \ 3.36 - 4.00(10H,m), \ 7.27 - 7.75(7H,m).$

Elemental analysis for C22H28N4OS • 3HCI • 1.3H2O						
Calculated:	C, 49.92;	H, 6.40;	N, 10.58.			
Found:	C, 49.97;	H, 6.57;	N, 10.59.			

20

25

30

15

5

Example 38

4-[(3,4-Dimethoxyphenethyl)aminoacetyl]-2-styryl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

The title compound was obtained by reacting 2-styryl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, chloroacetyl chloride, β -(3,4-dimethoxyphenyl)ethylamine and hydrogen chloride in the method described in Yield 29 %.

m.p. 170 - 172°.

IR(KBr)cm⁻¹: 1660, 1600, 1520, 1410, 1255, 1235. $NMR(CDCl_3)\delta; \ 1.49 - 2.11(5H,m), \ 2.60 - 3.06(6H,m), \ 3.12(2H,s), \ 3.56 - 3.80(2H,m), \ 3.82(3H,s), \ 3.84(3H,s), \ 3.84($ 6.74(3H,br.s), 7.26 - 7.41(7H,m).

40

Elemental analysis for C ₂₇ H ₃₁ N ₃ O ₃ S*3HCl*0.4H ₂ O						
	C, 58.14;	H, 6.11;	N. 7.53:			

45

Example 39

50

2-(2-Fluorophenyl)-4-[3-(N-(4-fluorophenyl)piperazino)propionyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-(2-fluorophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, 3-chloropropionyl chloride, N-(4-fluorophenyl)piperazine and hydrogen chloride in the method Yield 51 %.

m.p. 131 - 132*,

IR(KBr)cm $^{-1}$: 3350, 1645, 1509, 1443, 1410, 1229. NMR(d₆-DMSO) δ : 1.50 - 2.10(4H,m), 2.89 - 3.10(2H,m), 3.30 - 4.00(14H,m), 6.95 - 7.63(7H,m), 8.05 - 8.30-(1H,m).

Elemental analysis for C ₂₆ H ₂₈ N ₄ OSF ₂ *3HCl*0.9H ₂ O					
Calculated:			N, 9.21,		
Found :	C, 51.39; Cl, 17.14	H, 5.44;	N, 9.16;	S, 5.27;	

Example 40

5

10

20

2-phenyl-4-stearoyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

Stearoyl chloride (4.65 ml) was added dropwise to a mixture of 2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo-[5,4-b]azepine (2.65 g), triethylamine (2.26 ml) and THF (30 ml) under ice-cooling and stirring. After reduced pressure to remove the solvent. The residue was extracted with chloroform, and the extract was chromatography on silica gel to give the title compound (4.31 g, 76 %).

IR(KBr)cm⁻¹: 2900, 2850, 1670, 1640, 1450, 1410. NMR(CDCl₃) δ : 0.87(3H,t,J=6Hz), 1.24(30H, br.s), 1.52 - 2.10(4H,s), 2.41(2H,t,J=5Hz), 2.97(2H,t,J=5Hz), 3.61 - 3.92(2H,m), 7.32 - 7.53(3H,m), 7.81 - 8.03(2H,m).

Elemental analysis for C ₃₁ H ₄₈ N ₂ OS				
Calculated:	C, 74.95;	H, 9.74;	N, 5.64	
Found:	C, 74.64;	H, 9.67;	N, 5.77	

35

30

© Example 41

4-Methanesulfonyl-2-(4-pyridyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

Carbonyldiimidazole (15.8 g) was added gradually to a suspension of isonicotinic acid (10 g) in dimethylformamide (300 ml). The mixture was stirred for 30 mins. at room temperature, and then there was added 10.4 g of 3-amino-€-caprolactam. The mixture was stirred for 3 hrs. at room temperature and the solvent was distilled off under reduced pressure. To the residue were added 200 ml of pyridine and 12.4 g of phosphorus pentasulfide, and the whole was refluxed for 1.5 hrs. After cooling, the mixture was distilled under reduced pressure to remove the solvent, and the residue was extracted with chloroform. The extract was washed with an aqueous sodium hydrogen carbonate and water, dried and the solvent removed by distillation under reduced pressure to give 14.3 g of a powder. To the powder (2.5 g) was added a solution (30 ml) of triethylamine (2.28 ml) in THF, and then added dropwise methanesulfonyl chloride (1.08 ml) under ice-cooling and stirring. The mixture was stirred for 1 hr. at room temperature, distilled to remove the solvent and extracted with chloroform. The extract was washed, dried and distilled under reduced pressure to remove the solvent. The residue was purified by a column chlomatography on silica gel and recrystal-lized from a mixture of methylenechloride and isopropyl ether to give the title compound (105 g, 24 %).

IR(KBr)cm⁻¹: 1595, 1530, 1430, 1370, 1340, 1150.

NMR(CDCl₃)5: 1.56 - 2.16(4H,m), 3.00 - 3.20(2H,m), 3.04(3H,s), 3.79(2H,t,J=5Hz), 7.66 -7.80(2H,m), 8.61 -

5

Elemental an	alysis for C1:	3H15N3O2S	2 -
Calculated:	C, 50.46;	H, 4.89;	N, 13.58.
Found:	C, 50.33;	H, 4.91;	N, 13.61.

10

Example 42

15

4-(5-Methyl-4-isooxazolyl)carbonyl-2-methyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

A mixture of 3-acetylamino-e-caprolactam (2.55 g), phosphorus pentasulfide (6.08 g) and pyridine (40 ml) was stirred for 20 hrs. at 80°C on oil-bath. After cooling, to the reaction mixture was added chloroform, and the while was washed with a sodium hydrogen carbonate solution and water, dried and removed the solvent by distillation under reduced pressure to give an oil (2.59 g). The oil was dissolved in 40 ml of pyridine, and to the whole was added dropwise (5-methyl-4-isooxazolyl)carbonyl chloride (4 g) under icecooling. After completing addition, the mixture was stirred at room temperature overnight, and distilled under reduced pressure to remove the solvent. The residue was purified by a column chromatography on silica gel, and then recrystallized from hexane to give the title compound (0.9 g, 19 %). m.p. 117.0 - 118.5°.

IR(Nujol)cm⁻¹: 1650, 1605, 1560, 1450, 1400, 1240, 1180. NMR(CDCl₃)5: 1.5 - 2.2(4H,m), 2.9 - 3.2(2H,m), 3.7 - 4.0(2H,m), 2.60(6H,s), 7.60(1H,s).

30

Elemental analysis for C ₁₃ H ₁₅ N ₃ O ₂ S				
Calculated:	C, 56.30;	H, 5.45;	N, 15.15.	
Found:	C, 56.33;	H, 5.33;	N, 14.94.	

35

Example 43

4-(4-Fluorobenzoyl)-2-methyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-acetylamino-e-caprolactam, phosphorus pentasulfide and 4-chlorobenzoyl chloride in the method described in Example 42. Yield 37 %.

m.p. 93.5 - 95.0 °C (recrystallized from hexane).

IR(Nujol)cm⁻¹: 1640, 1600, 1440, 1405, 1315, 1295, 1225, 1180, 845, 760.

NMR(CDCl₃)δ: 1.6 - 2.2(4H,m), 2.48(3H,s), 2.90 -3.17(2H,m), 3.77 - 4.00(2H,m), 6.83 -7.53(4H,m).

Elemental analysis for C₁₅H₁₅N₂OSF Calculated: C, 62.05; H, 5.21; N, 9.65. Found: C, 62.24; H, 5.28; N, 9.60.

Example 44

4-(α-Thenoyi)-2-methyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-acetyl amino- ϵ -caprolactam, phosphorus pentasulfide and α -thenoyl chloride in the method described in Example 42. Yield 45 %.

m.p. 108.0 - 110.0° (recrystallized from hexane).

o IR(Nujol)cm⁻¹: 1630, 1440, 1420, 1302, 1290, 1180, 735.

NMR(CDCl₃)&: 1.6 - 2.3(4H,m), 2.57(3H,s), 2.88 -3.15(2H,m), 3.73 - 4.03(2H,m), 6.85 -7.50(3H,m).

Elemental analysis for C ₁₃ H ₁₄ N ₂ OS ₂				
Calculated:	C, 56.09;	H, 5.07;		
Found :	C, 56.12;	H, 5.04;		

20

15

Example 45

4-Nicotinoyl-2-methyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-acetylamino-ε-caprolactam, phosphorus pentasulfide and nicotinoyl chloride in the method described in Example 42. Yield 34 %.

m.p. 107.0 - 109.0 °C (recrystallized from hexane).
IR(Nujol)cm⁻¹: 1650, 1585, 1550, 1465, 1420, 1310, 1290, 1180, 740.
NMR(CDCl₃)δ: 1.8 - 2.3(4H,m), 2.45(3H,s), 2.92 -3.20(2H,m), 3.77 - 4.03(2H,m), 7.13 -8.6(4H,m).

Elemental analysis for C₁₄H₁₅N₃OS

Calculated: C, 61.52; H, 5.53; N, 15.37.
Found: C, 61.84; H, 5.55; N, 15.20.

35

40

Example 46

45 2-(3-Methoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By using the method of Example 1, the title compound was obtained by reacting 3-(3-methoxycin-namoyl)amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride.

50 Yield 30.3 %.

m.p. $177 - 178^{\circ}$ (recrystallized from a mixture of chloroform and ethanol). IR(KBr)cm⁻¹: 3366, 3216, 2930, 1604, 1525, 1489, 1269. NMR(d₆-DMSO)&: 1.63 - 1.74(4H,m), 2.80 - 2.86(2H,m), 3.01 - 3.07(2H,m), 3.80(3H,s), 6.94-(1H,dd,J=3Hz,7Hz), 7.18 - 7.20(2H,m), 7.32(1H,d,J=8Hz), 7.38(2H,s).

Elemental analysis for C ₁₆ H ₁₉ N ₂ OSCI				
Calculated:	C, 59.52;	H, 5.93;	N, 8.68.	
Found:	C, 59.19;	H, 5.85;	N, 8.69.	

Example 47

5

10

2-(3,5-Dimethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(3,5-dimethoxycinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1.

m.p. 104 - 105 °C (recrystallized from ethyl ether).

IR(KBr)cm⁻¹: 1594, 1546, 1431, 1419, 1355, 1207, 1156.

NMR(CDCl₃) δ : 1.62 - 1.90(4H,m), 2.90(2H,t,J=6Hz), 3.12(2H,t,J=5Hz), 3.81(6H,s), 3.93(1H,br), 6.40-(1H,t,J=2Hz), 6.62(2H,d,J=2Hz), 6.92(1H,d,J=16Hz), 7.10(1H,d,J=16Hz).

Elemental an	alysis for C ₁	7H20N2O2S	
Calculated:	C, 64.53;	H, 6.37;	
Found :	C, 64.59;	H, 6.52;	

30

35

25

Example 48

2-(2,3-Dimethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(2,3-dimethoxycinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1.

m.p. 125 - 126° (recrystalliezd from cyclohexane).

IR(KBr)cm⁻¹: 3214, 1527, 1476, 1447, 1422, 1270, 1072.

NMR(CDCl₃) δ : 1.50 - 1.89(4H,m), 2.90(2H,t,J=6Hz), 3.12(2H,t,J-5Hz), 3.85(3H,s), 3.88(3H,s), 6.84-(2H,dd,J=2Hz,8Hz), 7.05(1H,t,J=8Hz), 7.15(1H,d,J=16Hz), 7.16(1H,dd,J=2Hz,8Hz), 7.31(1H,d,J=16Hz).

Elemental analysis for C ₁₇ H ₂₀ N ₂ O ₂ S					
Calculated:	C, 64.53;	H, 6.37;	N, 8.85.		
Found:	C, 64.44;	H, 6.30;	N, 8.91.		

50

Example 49

2-(2,5-Dimethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(2,5-dimethoxycinnamoyl)amino-∈-caprolactam and phosphorus pentasulfide in the method described in Example 1.

Yield 32.3 %.

m.p. 155 - 156° (recrystallized from cyclohexane). IR(KBr)cm⁻¹: 1527, 1498, 1436, 1362, 1226, 1213.

NMR(CDCl₃) δ : 1.50 - 1.78(4H,m), 2.74(2H,t,J=6Hz), 2.92 - 3.02(2H,m), 3.75(3H,s), 3.80(3H,s), 6.83-(1H,dd,J=3Hz,9Hz), 6.96(1H,d,J=9Hz), 7.18 - 7.21(3H,m).

Elemental analysis for C₁₇H₂₀N₂O₂S Calculated: C. 64.53: H, 6.37: N, 8.85. Found: C, 64.39; H, 6.31: N, 8.71.

10

20

Example 50

2-(3,4-Dimethoxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By using the method of Example 1, the title compound was obtained by reacting 3-(3,4-dimethoxybenzoyl)amino-ε-caprolactam and phosphorus pentasulfide, purifiying and then neutralizing with hydrogen chloride.

Yield 45.5 %.

m.p. 186 - 187* (recrystallized from a mixture of methanol and ethyl ether).

IR(KBr)cm⁻¹: 1609, 1535, 1509, 1342, 1268, 1152.

 $NMR(d_6-DMSO)\delta: \ 1.56 \ - \ 1.82(4H,m), \ \ 2.88 \ - \ \ 2.94(2H,m), \ \ 3.02 \ - \ \ 3.08(2H,m), \ \ 3.82(3H,s), \ \ 3.85(3H,s), \ \ 7.05-1.08(2H,m)$ (1H,d,J=9Hz), 7.35(1H,dd,J=2Hz,9Hz), 7.58(1H,d,J=2Hz).

30

Elemental analysis for C ₁₅ H ₁₉ N ₂ O ₂ Cl • 0.5H ₂ O				
Calculated:	C, 53.64;	H, 6.00;	N, 8.34	
Found :	C, 53.39;	H, 5.86;	N, 8.05	

35

Example 51

2-(4-Methoxy-3-methylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(4-methoxy-3-methylcinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1. Yield 33.6 %.

m.p. 139 - 140° (recrystallized from cyclohexane). IR(KBr)cm⁻¹: 2922, 1542, 1506, 1365, 1255, 1129.

 $NMR(CDCl_3)\delta: \ \ 1.59 \ \ - \ \ 1.88(4H,m), \ \ \ 2.22(3H,s), \ \ \ 2.89(2H,t,J=6Hz), \ \ \ 3.11(2H,t,J=5Hz), \ \ \ 3.84(3H,s), \ \ 6.80-1.88(4H,m)$

(1H,d,J=9Hz), 6.96(2H,s), 7.26 - 7.30(2H,m).

50

Elemental analysis for C ₁₇ H ₂₀ N ₂ OS					
Calculated:	C, 67.97;		N, 9.32.		
Found :	C, 68.19;		N, 9.39.		

Example 52

2-[4-Methoxy-3-(2-methylthioethoxy)styryl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-[4-methoxy-3-(2-methylthioethoxy)cinnamoyl]amino-ecaprolactam and phosphorus pentasulfide in the method described in Example 1.

m.p. 117 - 118* (recrystallized from cyclohexane).

10 IR(KBr)cm⁻¹: 1553 , 1514, 1442, 1358, 1263, 1141.

 $NMR(CDCl_3)\delta: \ 1.48 - 1.97(4H,m), \ 2.20(3H,s), \ 2.81 - 2.95(2H,m), \ 2.90(2H,t,J=7Hz), \ 3.04 - 3.17(2H,m), \ 3.85-1.00(2H,t,J=7Hz), \ 3.04 - 3.17(2H,m), \ 3.04$ (3H,s), 4.20(2H,t,J=7Hz), 6.81(1H,d,J=9Hz), 6.92(2H,s), 6.97-7.06(2H,m).

15

5

Elemental analysis for C ₁₉ H ₂₄ N ₂ O ₂ S ₂					
Calculated:	C, 60.61;	H, 6.42;	N, 7.44.		
Found:	C, 60.62;	H, 6.47;	N, 7.40.		

20

25

Example 53

2-(3,4,5-Trimethoxystryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By using the method of Example 1, the title compound was obtained by reacting 3-(3,4,5-trimethoxycinnamoyl)amino-e-caprolactam and phosphorus pentasulfide, purifying and then neutralizing with hydrogen

Yield 22.8 %.

m.p. 204 - 205° (recrystallized from a mixture of methanol and ethyl ether). IR(KBr)cm⁻¹: 2910, 1572, 1500, 1432, 1410, 1238, 1120.

 $NMR(d_6-DMSO)\delta: \ 1.55 \ - \ 1.80(4H,m), \ 2.77 \ - \ 2.85(2H,m), \ 3.02 \ - \ 3.09(2H,m), \ 3.69(3H,s), \ 3.82(6H,s), \ 6.95-1.80(4H,m), \ 3.82(6H,s), \$

Elemental analysis for C ₁₈ H ₂₃ N ₂ O ₃ SCI					
Calculated:	C, 56.46;	H, 6.05;	N, 7.32		
Found:	C, 56.14;	H, 6.01;	N, 7.28		

Example 54

2-(3-Ethoxycarbonyloxy-4-methoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(3-ethoxycarbonyloxy-4-methoxycinnamoyl)amino-e-50 caprolactam and phosphorus pentasulfide in the method described in Example 1. Yiled 65.4 %.

m.p. 132 - 133° (recrystallized from isopropyl ether).

IR(KBr)cm⁻¹: 1761, 1514, 1439, 1368, 1276, 1137, 1059.

NMR(CDCl₃) δ : 1.38(3H,t,J=7Hz), 1.50 - 1.95(4H,m), 2.80 - 2.92(2H,m), 3.02 - 3.13(2H,m), 3.86(3H,s), 4.30-(2H,q,J=7Hz), 6.80 -7.00(1H,m), 6.94 (2H,s), 7.25 - 7.37 (2H,m).

Elemenal analysis for C ₁₉ H ₂₂ N ₂ O ₄ S				
Calculated:	C, 60,94;	H, 5.92;	N, 7.48.	
Found:	C, 60.86;	H, 5.83;	N, 7.52.	

Example 55

2-(2,4-Dimethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By using the method of Example 1, the title compound was obtained by reacting 3-(2,4-dimethoxycin-namoyl)amino-ε-caprolactam and phosphorus pentasulfide, purifying and then neutralizing with hydrogen chloride.

Yield 8.5 %.

m.p. 165 - 167° (recrystallized from a mixture of methanol and ethyl ether).

IR(KBr)cm⁻¹: 1603, 1542, 1505, 1433, 1289, 1265, 1209, 1158.

NMR(CDCl₃) δ : 1.58 - 1.89(4H,m), 2.86 - 2.91(2H,m), 3.08 - 3.13(2H,m), 3.83(3H,s), 3.86(3H,s), 6.47-(1H,dd,J=2Hz,8Hz), 6.52(1H,d,J=2Hz), 7.09(1H,d,J=16Hz), 7.25(1H,d,J=16Hz), 7.42(1H,d,J=8Hz).

Elemental analysis for C ₁₇ H ₂₁ N ₂ O ₂ SCl 1.5H ₂ O				
Calculated:	C, 53.75;	H, 6.37;	N, 7.37	
Found :	C, 54.02;	H, 6.10;	N, 7.44	

30

25

Example 56

35

45

50

2-(4-Ethoxycarbonyloxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(4-ethoxycarbonyloxybenzoyl)amino- ϵ -caprolactam and phosphorus pentasulfide in the method of Example 1. Yield 21.3 %.

m.p. 93 - 94° (recrystallized from a mixture of ethyl ether and hexane).

IR(KBr)cm⁻¹: 1753, 1508, 1370, 1302, 1258, 1207.

NMR(CDCl₃) δ : 1.36(3H,t,J=7Hz), 1.50 - 1.95(4H,m), 2.85 - 2.97(2H,m), 3.02 - 3.12(2H,m), 3.85(1H,br), 4.30-(2H,q,J=7Hz), 7.16(2H,d,J=9Hz), 7.75(2H,d,J=9Hz).

Elemental an	alysis for C16	H ₁₈ N ₂ O ₃ S		
Calculated:	C, 60.36;	H, 5.70;	N, 8.80;	S, 10.07
Found :	C, 60.31;	H, 5.60;	N, 8.74;	S, 10.12

_ Example 57

2-(3-Bromo-4-methoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(3- bromo-4-methoxycinnamoyl)amino-e-caprolactam and phosphorus pentasulfide in the method of Example 1. Yield 25.0 %.

m.p. 158 - 159 (recrystallized from ethyl acetate).

IR(KBr)cm⁻¹: 1546, 1499, 1440, 1352, 1291, 1258. $NMR(CDCl_3)\delta: 1.61 - 1.87(4H,m), \ 2.89(2H,t,J=6Hz), \ 3.09 - 3.14(2H,m), \ 3.91(3H,s), \ 6.88(1H,d,J=9Hz), \ 6.93 - 3.14(2H,m), \ 6.93 - 3.14(2H,m$ 6.94(2H,m), 7.37(1H,dd,J=2Hz,9Hz), 7.66(1H,d,J=2Hz).

Elemeintal an	alysis for C10	H ₁₇ N₂OSB	r	
Calculated:	C, 52.61;	H, 4.69;	N, 7.67;	
Found:	C, 52.37;	H, 4.64;	N, 7.60;	

15

20

10

Example 58

2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By the method of Example 1, the title compound was obtained by reacting 3-(3,5-di-tert-butyl-4hydroxy-benzoyl)amino-e-caprolactam and pentasulfide, purifying and then neutralizing with hydrogen chlo-

25 Yield 11.8 %.

m.p. 194 - 196° (recrystallized from a mixture of ethanol and ethyl ether).

IR(KBr)cm⁻¹: 3486, 3220, 2924, 1608, 1394, 1307, 1226, 1119.

 $NMR(CDCl_3)\delta; \ 1.49(18H,s), \ 1.61 \ - \ 1.87(4H,m), \ 3.11 \ - 3.16(2H,m), \ 3.24 \ - \ 3.30(2H,m), \ 5.82 \ (1H,s), \ 7.83(2H,s).$

30

Elemental an	alysis for C2	1H31N2OSC	ł	
Calculated: Found:	C, 63.85; Cl, 8.98. C, 64.03; Cl, 8.86.	H, 7.91; H, 7.99;	N, 7.09; N, 6.90;	S, 8.12; S, 8.02;

40

45

35

Example 59

2-(2,4-Dimethoxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By the method of Example 1, the title compound was obtained by reacting 3-(2,4-dimethoxybenzoyl)amino-∈-caprolactam and phosphorus pentasulfide, purifying and then neutralizing with hydrogen chloride. Yield 56.2 %.

m.p. 214 - 215° (recrystallized from a mixture of ethanol and ethyl ether).

IR(KBr)cm⁻¹: 3198, 1610, 1572, 1527, 1321, 1300, 1212.

 $NMR(d_6-DMSO)\delta; \ 1.55 \ - \ 1.81(4H,m), \ 2.90 \ - \ 2.97(2H,m), \ 3.02 \ - \ 3.10(2H,m), \ 3.86(3H,s), \ 3.99(3H,s), \ 6.71 \ - \ 4.81(4H,m)$

Elemental an	alysis for C ₁₅	H19 N2 O2 SC))	
Calculated: Found :	C, 55.12; Cl, 10.85. C, 54.97; Cl, 10.80.	H, 5.86; H, 5.84;	N, 8.57; N, 8.64;	S, 9.81; S, 9.79;

10

5

Example 60

2-(3,4-Dimethylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(3,4-dimethylcinnamoyl)amino-e-caprolactam and phosphorus pentasuifide in the method of Example 1. Yield 50.4 %.

m.p. 165 - 166° (recrystallized from ethyl acetate). IR(KBr)cm⁻¹: 3258, 2944, 2920, 1544, 1431, 1355. NMR(CDCl₃)&: 1.52 - 1.96(4H,m), 2.26(6H,s), 2.80 -2.92(2H,m), 3.03 - 3.14(2H,m), 3.86(1H,br), 7.00(2H,s),

7.11 - 7.25(3H,m).

Elemental analysis for C₁₇H₂₀N₂S Calculated: C, 71.79; H, 7.09; N, 9.85: S, 11.27. Found: C, 71.92; H, 7.03: N. 9.83: S, 11.43.

30

25

Example 61

35

2-(2-Methoxy-3-methylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(2- methoxy-3-methylcinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method of Example 1. Yield 45.3 %.

m.p. 114 - 115° (recrystallized from ethyl ether). IR(KBr)cm⁻¹: 3216, 2920, 1528, 1436, 1368, 1353, 1005. $NMR(d_6-DMSO)\delta: \ 1.62 - 1.89(4H,m), \ 2.31(3H,s), \ 2.90(2H,t,J=6Hz), \ 3.12(2H,t,J=5Hz), \ 3.75(3H,s), \ 7.02-1.89(4H,m)$ (1H,t,J=8Hz), 7.12(1H,dd,J=2Hz,8Hz), 7.14(1H,d,J=16Hz), 7.28(1H,d,J=16Hz), 7.39(1H,dd,J=2Hz,8Hz).

> Elemental analysis for C₁₇H₂₀N₂OS Calculated: C, 67.97; H, 6.71; N, 9.32; S, 10.67. Found: C, 67.91; H, 6.69; N, 9.34; S, 10.85.

50

45

Example 62

2-(3-Methoxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(3-methoxybenzoyl)amino-e-caprolactam and phosphorus pentasulfide in the method described in Example 1. Yield 40.0 %.

m.p. 82 - 83° (recrystallized from cyclohexane).

IR(KBr)cm⁻¹: 3206, 1597, 1495, 1370, 1272, 785.

NMR(CDCl₃) δ : 1.61 - 1.90(4H,m), 2.95(2H,t,J=6Hz), 3.12(2H,t,J=5Hz), 3.86(3H,s), 6.84 -6.90(1H,m), 7.22 -

10

Elemental an				
Calculated: Found:	C, 64.59; C, 64.52;		N, 10.76; N, 10.49;	

15

20

Example 63

2-(α-Methylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(α-methylcinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method of Example 1.

Yield 16.6 %.

m.p. 122 - 123 (recrystallized from isopropyl ether). IR(KBr)cm⁻¹: 3226, 2922, 1552, 1512, 1432, 1362, 1355, 696. NMR(CDCl₃) δ : 1.61 - 1.89(4H,m), 2.32(3H,s), 2.92(2H,t,J=6Hz), 3.11(2H,t,J=5Hz), 3.91(1H,br.), 7.13 - 7.39-

30

Elemental an			·	
Calculated:	C, 71.07;	H, 6.71;	N, 10.36;	S, 11.86.
Found:	C, 71.01;	H, 6.55;	N, 10.28;	S, 11.63.

35

Example 64

40

2-(4-Trifluoromethylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(4-trifluoromethylbenzoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method of Example 1. Yield 50.4 %.

m.p. 158 - 159° (recrystallized from cyclohexane). IR(KBr)cm⁻¹: 1518, 1330, 1159, 1121, 1069, 837.

 $NMR(CDCI_3)\delta$: 1.65 - 1.91(4H,m), 2.94 - 2.99(2H,m), 3.14(2H,t,J=5Hz), 4.00(1H,br.s),7.61(2H,d,J=8Hz), 7.86(2H,d,J=8Hz).

Elemental analysis for C ₁₄ H ₁₃ N ₂ SF ₃						
Calculated:	C, 56.36;	H, 4.39;	N, 9.39;	S, 10.75;		
Found:	F, 19.10. C, 56.39;	H, 4.33;	N, 9.40;	S, 10.78;		
	F, 18.92.	[.,,		

Example 65

2-(3.4-Methylenedioxyphenyl)-5.6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By the method of Example 1, the title compound was obtained by reacting 3-(3,4-methylenedioxyben-zoyl)amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride.

m.p. 190 - 192 (recrystallized from a mixture of methanol and ethyl ether). IR(KBr)cm⁻¹: 3196, 1619, 1602, 1506, 1348, 1266.

NMR(CDCl₃) δ : 1.68 - 1.90(4H,m), 3.17 - 3.28(4H,m), 6.04(2H,s), 6.85(1H,d,J=8Hz), 7.56(1H,s), 7.65-5 (1H,d,J=8Hz).

Elemental analysis for C ₁₄ H ₁₅ N ₂ O ₂ SCI						
Calculated:	C, 54.10; Cl, 11.41.	H, 4.86;	N, 9.01;	S, 10.32;		
Found:	C, 53.72; Cl, 11.13.	H, 4.99;	N, 8.85;	S, 10.26;		

25

20

Example 66

2-(p-Tolyl)-5,6,7,8-tetrahydro-4H-thiazolo [5,4-b]azepine

The title compound was obtained by reacting 3-(p-toluoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1. Yield 43.4 %.

m.p. 128 - 129 (recrystallized from cyclohexane). IR(KBr)cm⁻¹: 3236, 3018, 2918, 1516, 1460, 1372, 816. NMR(CDCl₃) δ : 1.61 - 1.89(4H,m), 2.35(3H,s), 2.91 -2.97(2H,m), 3.11(2H,t,J=5Hz), 7.11 (2H,d,J=8Hz), 7.65-(2H,d,J=8Hz).

40

Elemental an	alysis for C1	H ₁₆ N ₂ S		
Calculated:	C, 68.81;	H, 6.60;	N, 11.46;	S, 13.12
Found:	C, 68.57;	H, 6.60;	N, 11.62;	S, 13.28

45

Example 67

50

2-[4-(tert-Butoxycarbonylaminomethyl)phenyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-[4-(tert-butoxycarbonylaminomethyl)benzoyl]amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1.

Yield 19.6 %.

m.p. 170 - 171 (recrystallized from ethyl acetate). IR(KBr)cm⁻¹: 3312, 1673, 1524, 1368, 1269, 1167.

NMR(CDCl₃) δ : 1.46(9H,s), 1.64 - 1.90(4H,m), 2.94(2H,t,J=6Hz), 3.11 (2H,t,J=5Hz), 4.31(2H,d,J=6Hz), 7.27-(2H,d,J=8Hz),

Elemental an	alysis for C1	H ₂₅ N ₃ O ₂ S		
Calculated:	, -,,	H, 7.01;	N, 11.69;	S, 8.92
found:		H, 7.07;	N, 11.78;	S, 8.86

10

5

Example 68

2-(2,3,4-Trimethoxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(2,3,4-trimethoxybenzoyl)amino-ε-caprolactam and phosphorus penta sulfide in the method described in Example 1. Yield 18.9 %.

m.p. 133 - 134° (recrystallized from ethanol). IR(KBr)cm⁻¹: 2934, 1553, 1498, 1437, 1290, 1092.

NMR(CDCl₃) δ : 1.60 - 1.90(4H,m), 2.95(2H,t,J=6Hz), 3.11(2H,t,J=5Hz), 3.89(6H,s), 3.96(3H,s), 6.74-(1H,d,J=9Hz), 7.89(1H,d,J=9Hz)

25

Elemental an	alysis for Cit	H ₂₀ N ₂ O ₃ S		
Calculated:	C, 59.98;	H, 6.29;	n, 8.74;	S, 10.01.
Found:	C, 59.94;	H, 6.36;	n, 8.63;	S, 9.95 .

30

Example 69

35

2-(3-Trifluoromethylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(3-trifluoromethylcinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1.

Yield 51.0 %.

m.p. 151 - 152 (recrystallized from cyclohexane). IR(KBr)cm⁻¹: 3260, 1546, 1517, 1334, 1160, 1124.

NMR(CDCl₃) δ : 1.63 - 1.89(4H,m), 2.88 - 2.94(2H,m), 3.13(2H,t,J=5Hz), 4.02(1H,br.s),7.01(1H,d,J=16Hz), 7.15(1H,d,J=16Hz), 7.43 - 7.68(4H,m).

Calc Four

alysis for Cit	H ₁₅ N ₂ SF ₃		
C, 59.25; F, 17.57. C, 59.20; F, 17.39.	H, 4.66; H, 4.63;	N, 8.64; N, 8.53;	S, 9.89; S, 9.67;
	C, 59.25; F, 17.57. C, 59.20;	F, 17.57. C, 59.20; H, 4.63;	C, 59.25; H, 4.66; N, 8.64; F, 17.57. C, 59.20; H, 4.63; N, 8.53;

55

Example 70

2-[2-(tert-Butoxycarbonylamino)ethyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(N-tert-butoxycarbonyl-β-alanyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1.

5 Yield 27.2 %.

m.p. 152 - 153 (recrystallized from ethyl acetate).

IR(KBr)cm⁻¹: 3340, 2924, 1688, 1547, 1282, 1262, 1161.

NMR(d_6 -DMSO) δ : 1.44(9H,s), 1.56 - 1.87(4H,m), 2.81 -2.87(2H,m), 2.94(2H,t,J=6Hz), 3.05(2H,t,J=5Hz), 3.41 -3.52(2H,m).

10

Elemental analysis for C ₁₄ H ₂₃ N ₃ O ₂ S				
Calculated: Found:	C, 56.54; C, 56.51;		N, 14.13; N, 14.17;	

15

Example 71

2-(4-Methoxycarbonylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(4-methoxycarbonylbenzoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1. Yield 56.6 %.

m.p. 168 - 170° (recrystallized from methanol).

IR(KBr)cm⁻¹: 1730, 1510, 1441, 1274, 1175, 1114.

NMR(CDCl₃) δ : 1.45 - 1.98(4H,m), 2.90 - 3.02(2H,m), 3.07 - 3.18(2H,m), 3.92(3H,s), 7.78(2H,d,J=9Hz), 8.01-(2H,d,J=9Hz).

Elemental an	alysis for C15	H ₁₆ N ₂ O ₂ S		
Calculated:	C, 62.48;	H, 5.59;	N, 9.71;	S, 11.12
Found :	C, 62.39;	H, 5.59;	N, 9.87;	S, 11.11

35

Example 72

2-(4-Ethoxycarbonylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

45

The title compound was obtained by reacting 3-(4-ethoxycarbonylcinnamoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1. Yield 8.7 %.

m.p. 149 - 150° (recrystallized from ethyl acetate).

50 IR(KBr)cm⁻¹: 1715, 1522, 1356, 1275, 1252, 1104.

NMR(CDCl₃) δ : 1.39(3H,t,J=7Hz), 1.60 - 1.86(4H,m), 2.88 - 2.94(2H,m), 3.11 - 3.15(2H,m), 4.38-(2H,q,J=7Hz), 7.01(1H,d,J=16Hz), 7.18(1H,d,J=16Hz), 7.50(2H,d,J=8Hz), 8.01(2H,d,J=8Hz).

Elemental analysis for C ₁₈ H ₂₀ N ₂ O ₂ S				
Calculated: Found:	C, 65.83; C, 65.87;	H, 6.14; H, 6.10;		

Example 73

5

20

30

40

45

2-[1-(tert-Butoxycarbonylamino)ethyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting N-tert-butoxycarbonylalanine, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18.

m.p. 180 - 182° (recrystallized from ethyl acetate). IR(KBr)cm⁻¹: 3244, 1694, 1513, 1368, 1248, 1171.

NMR(CDCl₃) δ : 1.45(9H,s), 1.52(3H,d,J=7Hz), 1.56 -1.86(4H,m), 2.84(2H,t,J=6Hz), 3.05(2H,m), 4.78 - 4.90-15 (1H,m).

Elemental analysis for C ₁₄ H ₂₃ N ₃ O ₂ S				
Calculated: Found:	C, 56.54; C, 56.70;			S, 10.78 S, 10.78

Example 74

2-(4-Pyridyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting isonicotinic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18. Yield 42.0 %.

m.p. 169 - 170° (recrystallized from cyclohexane). IR(KBr)cm⁻¹: 1597, 1528, 1498, 1439, 1372, 1360.

NMR(CDCl₃) δ : 1.60 - 1.98(4H,m), 2.90 - 3.00(2H,m), 3.06 - 3.18(2H,m), 4.11(1H,br.s), 7.60(2H,d,J=6Hz), 8.56(2H,d,J=6Hz).

Elemenatal analysis for C ₁₂ H ₁₃ N ₃ S				
Calculated:	C, 62.31;	H, 5.66;	N, 18.17;	S, 13.86
Found:	C, 62.45;	H, 5.64;	N, 18.07;	S, 13.82

Example 75

50 2-(3-Hydroxy-4-methoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

2-(3-Ethoxycarbonyloxy-4-methoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo [5,4-b]azepine (13.2 g) was added to a solution of 1N ammonia in methanol (600 ml), and and the whole was stirred for 3 hrs. at room temperature. The solvent was distilled off under reduced pressure and the residue was purified by a column chromatography on silica gel to give 2-(3-hydroxy-4-methoxystyryl)-5,6,7, 8-tetrahydro-4H-thiazolo[5,4-b]-azepine (yield 8.74 g, 81.9 %). The product (1.50 g) was converted into its hydrochloride which was recrystallized from a mixture of methanol and ethyl ether to give the title compound (0.49 g, 29.0 %). m.p.

IR(KBr)cm⁻¹: 3216, 2530, 1601, 1504, 1279, 947. NMR(d₆-DMSO) δ : 1.56 - 1.79(4H,m), 2.76 - 2.87(2H,m), 3.02 - 3.10(2H,m), 3.81(3H,s), 6.94 - 7.12(4H,m), 7.31(1H,d,J=16Hz).

Elemental analysis for C₁₆ H₁₉ N₂ O₂ SCI

Calculated: C, 56.71; H, 5.65; N, 8.27; S, 9.46.
Found: C, 56.72; H, 5.63; N, 8.30; S, 9.60.

10

5

Example 76

15

2-(4-Hydroxyphenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

The title compound was obtained by treating 2-(4-ethoxycarbonyloxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine in the method described in Example 75.

Yield 32.5 %.

m.p. 215 - 216 (recrystallized from a mixture of ethanol and ethyl ether).

IR(KBr)cm⁻¹: 3378, 2926, 1607, 1560, 1519, 1279, 1238.

NMR(d_6 -DMSO) δ : 1.56 - 1.82(4H,m), 2.83 - 2.93(2H,m), 3.00 - 3.11(2H,m), 6.89(2H,d,J=8Hz), 7.73-(2H,d,J=8Hz).

Elemental analysis for C ₁₃ H ₁₅ N ₂ OSCI				
Calculated:	C, 55.21; Cl, 12.54.	H, 5.35;	N, 9.91;	S, 11.34;
Found :	C, 55.19; Cl, 12.50.	H, 5.41;	N, 9.74;	S, 11.10;

35

30

25

Example 77

40 2-(2-Aminoethyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

A solution (3 ml) of 4.75N hydrochloric acid in methanol was added to a solution (10 ml) of 2-[2-(tert-butoxycarbonylamino)ethyl]-5,6,7,8-tetrahydro-4H-thiazolo-[5,4-b]azepine (1.00 g) in methanol, and the whole was stirred for 5 hrs. at room temperature. The solvent was distilled off under reduced pressure. The residue was washed with ethyl ether, and recrystallized from a mixture of methanol and ethyl ether to give the title compound (0.64 g, 70.5 %).

m.p. 206 - 208°.

IR(KBr)cm⁻¹: 3254, 2938, 2844, 2796, 1616, 1531, 1500.

 $NMR(d_6-DMSO)\delta$: 1.52 - 1.85(4H,m), 2.79 - 2.84(2H,m), 2.99 - 3.05(2H,m), 3.19 - 3.28(4H,m).

50

Elemental an	alysis for C ₉ 1	H ₁₇ N ₃ SCl ₂		
Calculated:	C, 40.00;	H, 6.34;	N, 15.55;	S, 11.87
Found:	C, 39.89;	H, 6.29;	N, 15.24;	S, 11.87

Example 78

2-(4-Aminomethylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

The title compound was obtained by treating 2-[4-(tert-butoxycarbonylaminomethyl)phenyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine in the method of Example 77.
Yield 65.4 %.

m.p. 263 - 265 (recrystallized from methanol).

0 IR(KBr)cm⁻¹: 3224, 2930, 1606, 1531, 1467, 1372, 1125.

NMR(d_6 -DMSO) δ : 1.56 - 1.86(4H,m), 2.87 - 2.93(2H,m), 3.02 - 3.08(2H,m), 4.01 - 4.07(2H,m), 7.57-(2H,d,J=8Hz), 7.85(2H,d,J=8Hz).

Elemental analysis for C ₁₄ H ₁₉ N ₃ SCl ₂				
Calculated:	C, 50.60; Cl, 21.34	H, 5.76;	N. 12.65;	S, 9.65;
Found:	C, 50,77; Cl, 21.26	Н, 5.73;	N, 12.63;	S, 9.56;

20

25

75

5

Example 79

2-(4-Methoxy-3-pentyloxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

Amyl bromide (0.49 ml) and potassium carbonate (0.46 g) were added to a solution (20 ml) of 2-(3-hydroxy-4-methoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine (1.00 g) in dimethylformamide, and the whole was stirred for 1 hr. at 100°. After cooling, the reaction mixture was washed with water, dried and concentrated under reduced pressure. The residue was purified by a column chromatography on silica gel, and recrystallized from isopropyl ether to give the title compound (0.19 g, 15.4 %). m.p. 124 - 125°. IR(KBr)cm⁻¹: 3240, 2930, 1515, 1451, 1263, 1236, 1022.

NMR(CDCl₃) δ : 0.94(3H,t,J=7Hz), 1.36 - 1.93(10H,m), 2.89(2H,t,J=5Hz), 3.12(2H,t), 3.88(3H,s), 4.03-(2H,q,J=7Hz), 6.84(1H,d,J=8Hz), 6.96 - 7.04(4H,m).

Elemental an	alysis for C2	H ₂₈ N ₂ O ₂ S	
Calculated:	C, 67.71;	H, 7.58;	N, 7.52
Found:	C, 67.49;	H, 7.43;	N, 7.39

45

40

Example 80

4-Methyl-2-phenyl-5,6,7,8-tetahydro-4H-thiazolo[5,4-b]azepine hydrochloride

Methyl iodide (0.45 ml) and potassium carbonate (0.75 g) were added to a solution of 2-phenyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine (0.83 g) in dimethylformamide (30 ml), and the whole was stirred for 4.5 hrs. at 90°. After cooling, the reaction mixture was filtered, and the filtrate was dissolved in ethyl ether.

The solution was washed with water, dried and concentrated under reduced pressure. The residue was purified by a column chromatography on silica gel, neutralized with hydrogen chloride and recrystallized from a mixture of ethanol and ethyl ether to give the title compound (0.53 g, 52.4 %). m.p. 139 - 140°. IR(KBr)cm⁻¹: 3218, 2928, 2564, 1591, 1524, 1425, 1319, 767.

 $NMR(d_{\delta}-DMSO)\delta: 1.43 - 2.00(4H,m), 2.76 - 3.16(7H,m), 7.30 - 7.52(3H,m), 7.70 - 7.93(2H,m).$

Elemental an	alysis for C1	H ₁₇ N ₂ SCI		
Calculated:	C, 59.88;	H, 6.10;	N, 9.98;	S, 11.43
Found:	C, 59.70;	H, 6.00;	N, 9.86;	S, 11.51

10

5

Example 81

4-Allyl-2-(4-methoxy-3-methylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By using the method of Example 80, the title compound was obtained by reacting 2-(4-methoxy-3-methyl styryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, allyl bromide and potassium carbonate, purifying and neutralizing with hydrogen chloride.

Yield 56.4 %.

m.p. 162 - 163° (recrystallized from a mixture of ethanol and ethyl ether). IR(KBr)cm⁻¹: 2934, 2346, 1589, 1501, 1439, 1254, 1132. NMR(d₀-DMSO)δ: 1.54 - 1.68(2H,m), 1.73 - 1.88(2H,m), 2.17(3H,s), 2.81 - 2.90(2H,m), 3.09 - 3.18(2H,m), 3.74 - 3.89(5H,m), 5.26 - 5.40(2H,m), 5.83 - 6.02(1H,m), 6.97(1H,d,J=9Hz), 7.14(1H,d,J=16Hz), 7.30-(1H,d,J=16Hz), 7.41 - 7.45(2H,m).

25

Elemental an	alysis for C2	H ₂₅ N ₂ OSC	1	
Calculated:	C, 63.73; Cl, 9.41	H, 6.68;	N, 7.43;	S, 8.51;
Found:	C, 63.79; Cl, 9.49	H, 6.60;	N, 7.41;	S, 8.51;

35

30

Example 82

40 2-(2,6-Difluorophenyl)-4-methyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By using the method of Example 80, the title compound was obtained by reacting 2-(2,6-difluorophenyl)- 5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, methyl iodide, purifying and neutralizing with hydrogen chloride.

45 Yield 44.3 %.

m.p. $132 - 133^{\circ}$ (recryistallized from a mixture of methanol and ethyl ether). IR(KBr)cm⁻¹: 2396, 1622, 1585, 1530, 1470, 1011, 806. NMR(CDCl₃) δ : 1.70 - 1.82(2H,m), 1.91 - 2.04(2H,m), 3.09(3H,s), 3.20(2H,t,J=5Hz), 3.37(2H,t,J=6Hz), 7.12-(2H,t,J=8Hz), 7.45 - 7.60(1H,m).

υc

Elemental an	alysis for C1	H ₁₅ N ₂ SF ₂ Cl		
Calculated:	C, 53.08; F, 11.99; C, 53.16; F, 12.10;	H, 4.77; Cl, 11.19 H, 4.71; Cl, 11.15	N, 8.84; N, 8.86;	S, 10.12; S, 10.26;

Example 83

2-(2,6-Difluorophenyl)-4-ethyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-(2,6-diffuorophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, ethyl bromide and potassium carbonate in the method described in Example 80.

m.p. 51 - 52 (recrystallized from mixture of methanol and water).

IR(KBr)cm⁻¹: 1524, 1498, 1461, 1432, 1371, 992, 796. NMR(CDCl₃) δ : 1.25(3H,t,J=8Hz), 1.50 - 1.98(4H,m), 2.92 - 3.09(4H,m), 3.24(2H,q,J=8Hz), 6.95 - 7.40-(3H,m).

75

Elemental analysis for C ₁₅ H ₁₆ N ₂ SF ₂				
Calculated:	C, 61.20; F, 12.91	H, 5.48;	N, 9.52;	S, 10.89;
Found:	C, 61.04; F, 13.06	H, 5.40;	N, 9.58;	S, 10.63;

20

Example 84

4-Allyl-2-(2,6-Difluorophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-(2,6-difluorophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, allyl bromide and potassium carbonate in the method described in Example 80.

m.p. 68° (recrystallized from petroleum ether).

IR(KBr)cm⁻¹: 1531, 1467, 1412, 1352, 1243, 1008.

NMR(CDCl₂)δ: 1.62 - 1.90(4H,m), 2.99 - 3.09(4H,m), 3.78 - 3.82(2H,m), 5.25(1H,dd,J=2Hz, 10Hz), 5.32- (1H,dd,J=2Hz, 10Hz), 5.84 - 6.04(1H,m), 6.93 - 7.02(2H,m), 7.19 - 7.28 (1H,m).

40	

Elemental an	alysis for C1	H ₁₆ N ₂ SF ₂		
Calculated:	C, 62.72; F, 12.40	H, 5.26;	N; 9.14;	S, 10.47;
Found :	C, 62.87; F, 12.30	H, 5.24;	N; 9.14;	S, 10.48;

45

Example 85

50

4-(Ethoxycarbonylmethyl)-2-(4-methoxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By the method of Example 80, the title compound was obtained by reacting 2-(4-methoxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride, ethyl bromacetate and potassium carbonate,

Yield 20.1 %

m.p. 110 - 111 (recrystallized from a mixture of methanol and ethyl ether). IR(KBr)cm⁻¹: 1733, 1596, 1531, 1271, 1260, 1188.

NMR(d_6 -DMSO) δ : 1.34(3H,t,J=7Hz), 1.69-1.96(4H,m), 3.25-3.30(2H,m), 3.35-3.40(2H,m), 3.87(3H,s), 4.01-(2H,s), 4.30(2H,q,J=7Hz), 7.02(2H,d,J=9Hz), 8.22(2H,d,J=9Hz).

Elemental an	alysis for C11	H ₂₃ N ₂ O ₃ S	CI	
Calculated:	C, 56.46; Cl, 9.26.	H, 6.05;	N, 7.32;	S, 8.37;
Found :	C, 56.61; Cl, 9.19.	H, 5.83;	N, 7.38;	S, 8.40;

Example 86

10

4-Acetyl-2-(3,5,-di-tert-butyl-4-hydroxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-(3,5-di-t-butyl-4-hydroxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine, triethylamine and acetic anhydride in the method described in Example 40. Yield 56.0%.

m.p. 198- 199°.

IR(KBr)cm⁻¹: 3542, 2954, 2924, 1666, 1406, 1385, 1107.

NMR(CDCl₃)δ: 1.48(18H,s), 1.58-2.02(4H,m), 2.13(3H,s), 2.93(2H,t), 3.68(2H,t), 5.45(1H,s), 7.68(2H,s).

Elemental analysis for C23H32N2SO2					
Calculated: Found:	C, 68.96; C, 68.76;	H, 8.05; H, 7.99;			

30

35 Example 87

2-(3-Methoxy-4-methylthiomethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-methoxy-4-methylthiomethoxycinnamic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18. Yield 10.7%.

m.p. 117 - 119 .

IR(KBr)cm⁻¹: 1533, 1509, 1445, 1370, 1256.

45 NMR(CDCl₃)δ: 1.67(2H,m), 1.82(2H,m), 2.27(3H,s), 2.89(2H,t), 3.12(2H,t), 3.90(3H,s), 5.26(2H,s), 6.99(5H,m).

Elemental analysis for C ₁₈ H ₂₂ N ₂ S ₂ O ₂				
Calculated:	C, 59.64;	H, 6.12;	N, 7.73;	
Found :	C, 59.57;	H, 6.22;	N, 7.55;	

50

Example 88

2-(4-Hydroxy-3-methoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

2-(3-Methoxy-4-methylthiomethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine (1.88 g) obtained in Example 87, was dissolved in a mixture of dimethylformamide, acetonitrile and water, following by addition of mercuric chloride (2.11 g). The mixture was refluxed for 15 hrs. After completing the reaction, an aqueous sodium hydrogen carbonate was added to the mixture. The mixture was extracted with a mixture of chloroform and methanol, dried over anhydrous magnesium sulfate and distilled under reduced pressure to remove the solvent. The residue was subjected to a column chromatography on silica gel eluting a m.p. 175 - 178°.

IR(KBr)cm⁻¹: 3394, 1549, 1515, 1462, 1369, 1263, 1036.

10 NMR(CDCl₃)δ: 1.67(2H,m). 1.83(2H,m), 2.90(2H,t), 3.12(2H,t), 3.90(1H,s), 3.91(3H,s), 6.85-7.05(5H,m).

Elemental an	alysis for C1	H ₁₈ N ₂ SO ₂	•0.5H ₂ O	
Calculated: Found:	C, 61.71; C, 62.12;		N, 9.00; N, 8.91;	

Example 89

15

25

35

40

45

2-(2-Pyradinyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-pyradinecarboxylic acid, 3-amino-∈-caprolactam and phosphorus pentasulfide in the method described in Example 18.

Yield 34.9 %.

m.p. 196 - 198° (recrystallized from ethyl acetate).

30 IR(KBr)cm⁻¹: 3298, 1485, 1353, 1291, 1146, 753. NMR(CDCl₃)δ: 1.73(2H,m), 1.86(2H,m), 2.98(2H,t), 3.17-(2H,t), 4.29(1H,br.s), 8.43(2H,s), 9.26(1H,s).

Elemental an	alysis for C1	1H12N2S		
Calculated:	C, 56.87;	H, 5.21;	N, 24.12;	
Found:	C, 56.97;	H, 5.23;	N, 24.03;	

Example 90

2-(2-Indolyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting indole- 2-carboxylic acid, 3-amino-∈-caprolactam and phosphorus pentasulfide in the method described in Example 18. Yield 35.3%.

m.p. 198 - 200°.

IR(KBr)cm⁻¹: 3226, 1551, 1503, 1456, 1366, 1353, 1298, 1257, 1142. NMR(d_6 -DMSO) δ : 1.63(2H,m), 1.74(2H,m), 2.84(2H,t), 3.01(2H,t), 6.63(1H,s), 6.91-7.14(2H,m), 7.38-(1H,d,J=7.65Hz) 7.47(1H,d), 11.46(1H,br.s).

Elemental an	alysis for C15	H15 N3S		
Calculated:	C, 66.88;	1	N, 15.60;	S, 11.90
Found:	C, 66.91;		N, 15.40;	S, 11.92

Example 91

5

15

20

25

2-(4-Dimethylaminophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 4-dimethylaminobenzoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18.

Yield 11.5%.

m.p. 152 - 154° (recrystallized from ethyl acetate).

IR(KBr)cm⁻¹: 3252, 1609, 1557, 1524, 1483, 1467, 1444, 1358, 1269, 1170.

NMR(CDCl₃) δ : 1.68(2H,m), 1.81(2H,m), 2.92(2H,t), 3.08(2H,t), 2.98(6H,s), 6.68(2H,d,J=9.0Hz), 7.64(2H,d).

Elemental analysis for C ₁₅ H ₁₉ N ₃ S				
Calculated:	C, 65.90;	H, 7.00;	N, 15.37;	S, 11.73
Found:	C, 65.90;	H, 6.89;	N, 15.25;	S, 12.03

Example 92

2-(4-Methylthiostyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 4-methylthio-cinnamic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18.

Yield 57.5%.

m.p. 157 - 159°.

IR(KBr)cm⁻¹: 3260, 1621, 1545, 1430, 1353, 1091, 949.

NMR(CDCl₃) 5: 1.67(2H,m), 1.82(2H,m), 2.49(3H,s), 2.89(2H,t), 3.11(2H,t), 7.01(2H,q), 7.21(2H,d,J=8.5Hz), 7.38(2H,d).

Elemental an	alysis for C10	H ₁₈ N ₂ S ₂		
Calculated:	C, 63.54;	H, 6.00;	N, 9.26;	S, 21.20
Found:	C, 63.31;	H, 5.92;	N, 9.27;	S, 21.36

Example 93

45

50

2-[2-(2-Furyl)ethenyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting β -(2-furyl)-acrylic acid, 3-amino- ϵ -caprolactam and phosphorus pentasulfide in the method described in Example 18. Yield 14.0%.

m.p. 125 - 128°.

IR(KBr)cm⁻¹: 3260, 1547, 1422, 1351, 944, 736. NMR(CDCl₃)δ: 1.68(2H,m), 1.81(2H,m), 2.89(2H,t), 3.11(2H,t), 6.40(2H,m), 6.91(2H,q), 7.40(1H,d).

Elemental an	alysis for C1;	H14N2SO		
Calculated:	-,,	H, 5.73;	N, 11.37;	S, 13.02
Found:		H, 5.58;	N, 11.17;	S, 13.46

Example 94

2-[2-(4-Methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 4-methoxyphenylpropionic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18.

Yield 26.0%.

m.p. 80 - 83°.

IR(KBr)cm⁻¹: 1612, 1584, 1513, 1486, 1437, 1247, 1178, 1037.

NMR(CDCl₃)δ: 1.64(2H,m), 1.79(2H,m), 2.83 - 3.10(8H,m), 3.79(3H,s), 6.84(2H,d,J=8.6Hz), 7.14(2H,d).

Elemental analysis for C ₁₆ H ₂₀ N ₂ SO • 0.5H ₂ O					
Calculated:	C, 64.61;	H, 7.12;	N, 9.42;	S, 10.78	
Found :	C, 64.86;	H, 6.87;	N, 9.48;	S, 11.02	

30 Example 95

25

2-(4-Biphenylyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 4-phenylbenzoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18.

Yield 60.0 %.

m.p. 180 - 183°.

IR(KBr)cm⁻¹: 3232, 1520, 1490, 1445, 1371, 765, 692.

40 NMR(CDCl₃)δ: 1.71(2H,m), 1.84(2H,m), 2.97(2H,t), 3.13(2H,t), 7.30 - 7.50(3H,m), 7.61(4H,m), 7.84(2H,d).

Elemental an	alysis for C1	H ₁₈ N ₂ S		
Calculated:	C, 74.47;	H, 5.92;	N, 9.14;	S, 10.46
Found :	C, 74.04;	H, 5.78;	N, 8.86;	S, 10.66

Example 96

45

2-(4-Dimethylaminostyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 4-dimethylaminocinnamic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18.

m.p. 207 - 210° (recrystallized from ethyl acetate).

IR(KBr)cm⁻¹: 3274, 1604, 1548, 1525, 1443, 1365, 1165. NMR(CDCl₃) δ : 1.67(2H,m). 1.81(2H,m), 2.88(2H,t), 3.09(2H,t), 2.98(6H,s), 6.68(2H,d,J=8.91Hz), 6.93(2H,d), 7.36(2H,d).

Elemental an	alysis for C1:	H ₂₁ N ₃ S*0.	4H₂O	
Calculated:	-,,	H, 7.17;	N, 13.70;	S, 10.46.
Found :		H, 6.93;	N, 13.62;	S, 10.85.

10

5

Example 97

15

2-(3-Dimethylaminophenyi)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-dimethylaminobenzoic acid, 3-amino-∉-caprolactam and phosphorus pentasulfide in the method described in Example 18.

Yield 34.9%

m.p. 164 - 166* (recrystallized from ethyl acetate). IR(KBr)cm⁻¹: 3228, 1599, 1557, 1502, 1436, 1371, 1356, 1267.

NMR(CDCl₃)δ: 1.69(2H,m), 1.83(2H,m), 2.95(2H,t), 3.10(2H,t), 2.99(6H,s), 6.71(1H,d), 7.04-7.29(3H,m).

25

Elemental an	alysis for C1	5H19N3S		
Calculated:	C, 65.90;	H, 7.00;	N, 15.37;	S, 11.73.
Found:	C, 66.06;	H, 6.99;	N, 15.32;	S, 11.86.

30

Example 98

35

2-[3-(2-Methylthio)pyridyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By using the method of Example 18, the title compound was obtained by reacting 2-(methylthio)nicotinic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride.

Yield 61.3%

m.p. 142 - 145°

IR(KBr)cm⁻¹: 3424, 1601, 1519, 1466, 1434, 1371, 1248.

45 NMR(d_6 -DMSO) δ : 1.70(2H,m), 1.91(2H,m), 2.58(3H,s), 2.98(2H,t), 3.18(2H,t), 7.28(1H,dd), 8.16 (1H,d,J=7.73Hz), 8.55(1H,d,J=4.76Hz).

Elemental an	alysis for C1	3H17N3S2Cl2	
Calculated: Found:	C, 44.57; S, 18.31; C, 44.25; S, 17.96;	H, 4.89; Cl, 20.24. H, 5.03; Cl, 19.60	N, 11.99; N, 11.55;

55

50

Example 99

2-(4-Diethylaminostyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

the title compound was obtained by reacting 4-diethylaminocinnamic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18. Yield 23.0%.

m.p. 173 - 175 (recrystallized from ethanol).

IR(KBr)cm⁻¹: 3280, 1601, 1547, 1524, 1354, 1272, 1254, 1181, 1158, 962.

NMR(CDCl₃) δ : 1.17(6H,t), 1.65(2H,m), 1.81(2H,m), 2.87(2H,t), 3.09(2H,t), 3.37(4H,q), 6.64(2H,d,J=8.61Hz), 6.91(2H,d), 7.33(2H,d)

6.91(2H,d), 7.33(2H,d).

Elemental an	alysis for C1	H ₂₅ N ₃ S		
Calculated:	C, 69.68;	H, 7.69;	N, 12.83;	S, 9.79.
Found:	C, 69.75;	H, 7.76;	N, 12.69;	S, 9.72.

Example 100

15

2-(4-Methylaminophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 18, the title compound was obtained by reacting 4-methylaminobenzoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride. Yield 35.5 %.

m.p. 222 - 225°.

IR(KBr)cm⁻¹: 3198, 1600, 1527, 1499.

NMR(CDCl₂) δ : 1.64(2H,m), 1.75(2H,m), 2.78(3H,s), 2.95(2H,t), 3.06(2H,t), 6.78(2H,d,J=7.25Hz), 7.86(2H,d).

Elemental analysis for C ₁₄ H ₁₉ N ₃ SCl ₂ ·				
Calculated:	C, 50.60;	H, 5.76;	N, 12.65	
Found :	C, 50.80;	H, 5.78;	N, 12.54	

35

40 Example 101

2-(2-Methoxy-cis-styryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting cis-2-methoxycinnamic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18.

Yield 32.1 %.

m.p. 167 - 170° (recrystallized from ethyl acetate).

IR(KBr)cm⁻¹: 3278, 1616, 1596, 1539, 1492, 1464, 1431, 1366, 1246, 1105, 1024.

50 NMR(CDCl₃)5: 1.68(2H,m), 1.80(2H,m), 2.89(2H,t), 3.11(2H,t), 3.88(3H,s), 6.86 - 7.53(6H,m).

Elemental an	alysis for C	H ₁₈ N ₂ SO	
Calculated: Found:	C, 67.10; C, 66.91;	H, 6.33; H, 6.30;	

Example 102

2-(2-Amino-5-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-amino-5-methylbenzoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18. Yield 12.6%

m.p. 113 - 115 (recrystallized from ethyl acetate).

10 IR(KBr)cm⁻¹: 3404, 3350, 3296, 1623, 1558, 1506, 1466, 1365, 1258, 1161. $NMR(CDCI_3)\delta: \ 1.68(2H,m), \ 1.82(2H,m), \ 2.24(3H,s), \ 2.90(2H,t), \ 3.10(2H,t), \ 6.63(1H,d,J=8.1Hz), \ 6.89(1H,dd), \ 3.10(2H,t), \ 4.68(2H,m), \ 4.82(2H,m), \ 4.8$ 7.16(1H,d,J=1.49Hz).

15

Elemental analysis for C ₁₄ H ₁₇ N ₃ S				
Calculated:	C, 64.83;	H, 6.61;	N, 16.20;	S, 12.36.
Found :	C, 64.86;	H, 6.59;	N, 16.43;	S, 12.36.

20

Example 103

2-(3-Amino-4-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-amino-4-methylbenzoic acid, 3-amino-e-caprolactam and phosphorus pentasulfide in the method described in Example 18. Yield 32.8%

m.p. 135 - 137°

IR(KBr)cm⁻¹: 3436,3332, 3226, 1634, 1561, 1500, 1460, 1441, 1368, 1258. (2H,d).

35

Elemental analysis for C ₁₄ H ₁₇ N ₃ S				
Calculated:	C, 64.83;	H, 6.61;	N, 16.20;	S, 12.36.
Found :	C, 64.58;	H, 6.60;	N, 16.04;	S, 12.12.

Example 104

2-(2-Amino-4-chlorophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 2-amino-4-chlorobenzoic acid, 3-amino-ε-caprolactam and 50 phosphorus pentasulfide in the method described in Example 18. Yield 6.7%

m.p. 154 - 157°

IR(KBr)cm⁻¹: 3450, 3384, 1610, 1557, 1491, 1465, 1371, 1264, 1148, 1064.

NMR(CDCl₃)δ: 1.68(2H,m), 1.82(2H,m), 2.89(2H,t), 3.10(2H,t), 3.95(1H,br.s), 6.12(2H,br.s), 6.60(1H,dd), 6.69-

55 (1H,d,J = 1.91Hz), 7.26(1H,d,J = 8.43Hz).

Elemental analysis for C ₁₃ H ₁₄ N ₃ SCl					
Calculated:	C, 55.81; Cl, 12.67	H, 5.04;	N, 15.02;	S, 11.46;	
Found:	C, 55.70; Cl, 12.65	H, 5.02;	N, 14.87;	S, 11.49;	

10

Example 105

2-(4-Thioacetaminophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 4-acetaminobenzoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18. Yield 10.3 %.

m.p. 239 - 242°.

IR(KBr)cm⁻¹: 3434, 1551, 1515, 1496, 1454, 1370.

NMR(d_6 -DMSO) δ : 1.59(2H,m), 1.72(2H,m), 2.62(3H,s), 2.80 (2H,br.s), 2.98(2H,br.s), 6.25(1H,br.s), 7.70-(2H,d,J=8.65Hz), 7.89(2H,d), 11.65(1H,br.s).

25

20

Elemental analysis for C ₁₅ H ₁₇ N ₃ S ₂					
Calculated:	C, 59.37;	H, 5.65;	N, 13.85;		
Found:	C, 58.92;	H, 5.66;	N, 13.55;		

30

Example 106

35

2-(3-Amino-4-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 18, the title compound was obtained by reacting 3-amino-4-methylbenzoic acid, 3-amino- ϵ -caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride. Yield 36.4 %.

m.p. 170 - 173°.

IR(KBr)cm⁻¹: 1604, 1561, 1528, 1453, 1371.

NMR(d_{δ} -DMSO) δ : 1.66(2H,m), 1.83(2H,m), 2.41(3H,s), 2.92(2H,t), 3.10(2H,t), 6.35(2H,br.s), 7.37-(1H,d,J=8.05Hz), 7.72(2H,m), 7.90(1H,s).

45

Elemental an	alysis for C1	4H19N3SCl2 *	0.5H₂O
Calculated:	C, 49.27; S, 9.40; C, 49.20; S, 9.53;	H, 5.91; Cl, 20.77. H, 5.57; Cl, 20.86.	N, 12.31; N, 12.36;

55

50

Example 107

By the method of Example 18, the title compound was obtained by reacting pyrrole-2-carboxylic acid, 3-amino- ϵ -caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride. Yield 18.6 %.

m.p. 110 - 113° (recrystallized from methanol).

IR(KBr)cm⁻¹: 3430, 1631, 1611, 1454, 1372, 1055.

NMR(CDCl₃)δ: 1.67(2H,m), 1.74(2H,m), 2.84(2H,t), 3.08(2H,t), 6.33(1H,dd), 7.10(1H,dd), 7.20(1H,br.s).

10

Elemental analysis for C ₁₁ H ₁₅ N ₃ SCl ₂					
Calculated:	C, 45.21;	H, 5.17;	N, 14.38;	S, 10.97.	
Found :	C, 45.46;	H, 5.13;	N, 14.47;	S, 10.94.	

15

Example 108

20

2-(3-Amino-4-methoxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 18, the title compound was obtained by reacting 3-amino-4-methoxybenzoic acid and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride.

Yield 13.0 %.

m.p. 194 - 197 (recrystallized from methanol).

IR(KBr)cm⁻¹: 3318, 1603, 1591, 1536, 1485, 1371, 1352, 1289, 1245, 1165, 1035.

NMR(d_{δ} -DMSO) δ : 1.63(2H,m), 1.81(2H,m), 2.90(2H,t), 3.08(2H,t), 3.94(3H,s), 6.05(2H,br.s), 7.27-(1H,d,J=8.67Hz), 7.81(1H,dd), 7.88(1H,d,J=2.12Hz).

30

Elemental an	alysis for C1.	H ₁₉ N ₃ SCl ₂ O		
Calculated: Found :	C, 48.28; S, 9.21; C, 47.80; Cl, 20.17	H, 5.50; CI, 20.36. H, 5.57;	N, 12.06; N, 11.82;	S, 9.23;

40

35

Example 109

45 2-(4-Amino-3-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 18, the title compound was obtained by reacting 4-amino-3-methylbenzoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide, purifying the reaction mixture and neutralizing with hydrogen chloride.

50 Yield 11.3 %.

m.p. 240 - 243 (recrystallized from methanol). IR(KBr)cm⁻¹: 3246, 2582, 1607, 1521, 1495, 1452, 1374, 1359, 818.

NMR(d₆-DMSO)δ: 1.63(2H,m), 1.76(2H,m), 2.29(3H,s), 2.92(2H,br.s), 3.06(2H,br.s), 6.20(2H,br.s), 7.18-

(1H,d,J=8.05Hz), 7.71(1H,dd,J=1.87Hz), 7.73(1H,br.s).

Elemental analysis for C ₁₄ H ₁₉ N ₃ SCl ₂				
Calculated:	C, 50.60; Cl, 21.34	H, 5.76;	N, 12.65;	S, 9.65;
Found:	C, 50.64; Cl, 21.12	H, 5.85;	N, 12.61;	S, 9.81;

10

15

Example 110

2-(2-Amino-6-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 18, the title compound was obtained by reacting 2-amino-6-methylbenzoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride. Yield 16.0 %

m.p. 189 - 192° (recrystallized from methanol).
IR(KBr)cm⁻¹: 3256, 2804, 1482, 1603, 1561, 1531, 1468, 1446, 1370, 1355, 1282, 1250.
NMR(d₅-DMSO)δ: 1.68(2H,br.s), 1.78(2H,br.s), 2.22(3H,s), 2.89(2H,t), 3.11(2H,t), 5.40(2H,br.s), 6.96(1H,d), 7.05(1H,d), 7.30(1H,t).

25

Elemental an	alysis for C1	H ₁₉ N ₃ SCl ₂	
Calculated: Found :	C, 50.60; S, 9.65; C, 50.42; S, 9.66;	H, 5.76; Cl, 21.34. H, 5.93; Cl, 21.22.	N, 12.65; N, 12.43;

30

Example 111

2-Methoxycarbonyl-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting methyloxalyl chloride, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 23.

Yield 19.9 %.

m.p. 166 - 168 (recrystallized from ethyl acetate). IR(KBr)cm⁻¹: 3412, 3314, 3264, 1716, 1441, 1381, 1241.

45 NMR(d₆-DMSO)δ: 1.69(2H,m), 1.84(2H,m), 2.98(2H,t), 3.17(2H,t), 3.93(3H,s), 4.46(1H,br.s).

Elemental analysis for C ₉ H ₁₂ N ₂ O ₂ S					
Calculated:	C, 50.92;	H, 5.70;	N, 13.20;	S, 15.11.	
Found :	C, 50.98;	H, 5.71;	N, 13.22;	S, 15.25.	

50

55 Example 112

2-(2-Amino-3-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 18, the title compound was obtained by reacting 2-amino-3-methylbenzoic acid, 3-amino- ϵ -caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride. Yield 38.2 %.

m.p. 208 - 211 (recrystallized from methanol).

5 IR(KBr)cm⁻¹: 3428, 1578, 1542, 1513, 1468, 1308, 1273. NMR(d₅-DMSO)δ: 1.66(2H,m), 1.81(2H,m), 2.35(3H,s), 2.90(2H,t), 3.08(2H,t), 6.29(2H,br.s), 7.07(1H,t), 7.22-(1H,d), 7.42(1H,d).

Elementai an	alysis for C1	H ₁₉ N ₃ SCl ₂	
Calculated:	C, 50.60; S, 9.65; C, 50.69; S, 9.64;	H, 5.76; Cl, 21.34. H, 5.73; Cl, 21.41.	N, 12.65; N, 12.58;

Example 113

10

15

2-(2-Amino-4,5-dimethoxyphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dehydrochloride

By the method of Example 18, the title compound was obtained by reacting 2-amino-4,5-dimethoxyben-zoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride.

Yield 3.9 %.

m.p. 194 - 197* (recrystallized from methanol).

IR(KBr)cm⁻¹: 3444, 1604, 1531, 1462, 1447, 1396, 1362, 1300, 1278, 1262, 1212, 1140, 1079. NMR(d₆-DMSO)δ: 1.63(2H,m), 1.82(2H,m), 2.92(2H,br.s), 3.07(2H,brs), 3.81(3H,s), 3.85(3H,s), 7.06(1H,s), 7.10(1H,s), 7.10(2H,br.s).

Elemental analysis for C ₁₅ H ₂₁ N ₃ SO ₂ Cl ₂					
Calculated: Found :	C, 47.62; S, 8.48; C, 47.54; S, 8.19;	H, 5.59; Cl, 18.74. H, 5.74; Cl, 18.54.	N, 11.11; N, 10.98;		

40

35

Example 114

45

2-(3-Amino-4-methylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 18, the title compound was obtained by reacting 3-amino-4-methylcinnamic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride. Yield 11.8 %.

m.p. 244 - 247 (recrystallized from methanol).

IR(KBr)cm⁻¹: 3446, 3248, 1604, 1518, 1502, 1445, 1372, 1356, 1309, 956, 883, 818.

NMR(d_{5} -DMSO-D₂O) δ : 1.69(4H,m), 2.37(3H,s), 2.82(2H,br.s), 3.08(2H,br.s), 7.32(2H,d), 7.39-55 (1H,d,J = 8.06Hz), 7.60(1H,d), 7.63(1H,s).

Elemental an	alysis for C1	H ₂₁ N ₃ SCl ₂	
Calculated: Found :	C, 53.63; S, 8.95; C, 53.47; S, 8.95;	H, 5.91; Cl, 19.79. H, 5.79; Cl, 19.54.	N, 11.73; N, 11.73;

10

Example 115

2-[2-(6-Methyl)pyridyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By the method of Example 18, the title compound was obtained by reacting 6-methylpicolinic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride. Yield 40.8 %.

m.p. 185 - 188° (recrystallized from methanol).
IR(KBr)cm⁻¹: 3444, 3212, 1582, 1567, 1533, 1456, 1370, 1350.
NMR(d₆-DMSO-D₂O)δ: 1.68(2H,m), 1.80(2H,m), 2.61(3H,s), 2.93(2H,t), 3.12(2H,t), 7.39(1H,d,J=7.36Hz), 7.87(1H,d,J=7.77Hz), 8.00(1H,t).

25

Elemental an	alysis for C1:	3H16N3SCI	
Calculated:	C, 55.41; S, 11.38; C, 55.30; S, 11.46;	H, 5.72; Cl, 12.58. H, 5.64; Cl, 12.18.	N, 14.91; N, 14.82;

30

35 Example 116

2-(3-Cyanophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(3-cyanobenzoyl)amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1.

Yield 41.5 %.

m.p. 174° (recrystallized from ethyl acetate).

IR(KBr)cm⁻¹: 2914, 2228, 1523, 1483, 1461, 1370, 802.

45 NMR(CDCl₃)δ: 1.67 - 1.91(4H,m), 2.92 - 2.98(2H,m), 3.14(2H,t,J=5Hz), 7.45(1H,t,J=7Hz), 7.55(1H,m), 7.96-(1H,m), 8.04 - 8.06(1H,m).

Elemental analysis for C ₁₄ H ₁₃ N ₃ S					
Calculated: Found :)			S, 12.56. S, 12.53.	

55

50

Example 117

2-(4-Cyanophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained by reacting 3-(4-cyanobenzolyamino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 1.

Yield 57.3 %.

m.p. 163 - 164* (recrystallized from ethyl acetate). IR(KBr)cm⁻¹: 2222, 1507, 1439, 1373, 1356, 834.

NMR(CDCl₃) δ : 1.60 - 1.91(4H,m), 2.96(2H,t,J=6Hz), 3.15(2H,t,J=5Hz), 4.10(1H,b.rs), 7.63(2H,d,J=8Hz), 7.84(2H,d,J=8Hz).

10

Elemental analysis for C ₁₄ H ₁₃ N ₃ S					
Calculated:	C, 65.85;	H, 5.13;	N, 16.46;	S, 12.56.	
Found :	C, 66.15;	H, 4.93;	N, 16.52;	S, 12.48.	

15

20

Example 118

2-[2-(4-Imidazolyl)ethenyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

The title compound was obtained by reacting imidazole-4-acrylic acid, 3-amino-e-caprolactam and phosphorus pentasulfide in the method described in Example 118.

Yield 12.2 %.

m.p 170 - 173° (recrystallized from methanol).

IR(KBr)cm⁻¹: 3326, 2746, 1597, 1513, 1450, 1375, 1348.

NMR(d_6 -DMSO- D_2 O) δ : 1.57 - 1.92(4H,m), 2.86(2H,m), 3.11(2H,m), 7.25(1H,d,J=16.7Hz), 7.49-(1H,d,J=16.7Hz), 7.88(1H,s), 9.17(1H,s).

35

Elemental analysis for C ₁₂ H ₁₆ N ₄ SCl ₂ • 0.5H ₂ O					
Calculated: Found :	C, 43.91; S, 9.77; C, 44.08; S, 9.66;	H, 5.22; Cl, 21.60. H, 5.54; Cl, 21.23.	N, 17.07; N, 17.24;		

40

Example 119

45

2-(4-Ethoxyformimidoylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

A solution (700 ml) of 2-(4-cyanophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine (8.00 g) in ethanol was saturated with hydrogen chloride, and allowed to stand overnight. It was concentrated under reduced pressure, and the residue was washed with ethyl ether and dried to give the title compound as a powder. Yield 10.9 g, 93 %.

m.p. 146 (decomp.).

IR(KBr)cm⁻¹: 1592, 1529, 1495, 1443, 1352, 1071.

NMR(d_{δ} -DMSO) δ : 1.40(3H,t,J=7Hz), 1.50 - 1.90(4H,m), 2.82 - 2.94(2H,m), 3.01 - 3.12(2H,m), 4.66-. (2H,q,J=7Hz), 7.92(2H,d,J=9Hz), 8.18(2H,d,J=9Hz).

Example 120

2-(4-Ethoxyformimidoylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

2-(4-Ethoxyformimidoylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride (1.5 g) was neutralized with an aqueous sodium hydrogen carbonate, and extracted with chloroform. The extract was washed with water, dried and distilled under reduced presure to remove the solvent. The residue was purified by a column chromatography on silica gel to give the title compound as a powder (yield 1.1 g, 87%).

m.p. 141 - 143°.

IR(KBr)cm⁻¹: 1625, 1513, 1411, 1370, 1328, 1090.

NMR(CDCl₃) δ : 1.41(3H,t,J=7Hz), 1.57 - 1.97(4H,m), 2.89 - 3.01(2H,m), 3.06 - 3.17(2H,m), 4.32-(2H,q,J=7Hz), 7.76(4H,s).

Example 121

15

2-(4-Amidinophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

A solution (150 ml) of 2-(4-ethoxyformimidoylphenyl)- 5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azpeine dihydrochloride (1.3 g) in ethanol was saturated with ammonia and allowed to stand overnight. The resultant precipitate was removed by filtration, and the filtrate was neutralized with hydrogen chloride to give the title compound (yield 0.5 g, 42 %).

m.p. 218 - 220° (recrystallized from a mixture of methanol and ethyl ether).

IR(KBr)cm⁻¹: 3188, 1671, 1596, 1502, 1369, 1450, 1438.

NMR(d₆-DMSO) δ : 1.56 - 1.83(4H,m), 2.81 - 2.90(2H,m), 3.01 - 3.11 (2H,m), 7.87(2H,d,J=9Hz), 7.93-(2H,d,J=9Hz).

Elemental analysis for C ₁₄ H ₁₅ N ₄ S*2HCl				
Calculated:	C, 48.70; S, 9.29;	H, 5.25; Cl, 20.53.	N, 16.23;	
Found:	C, 48.34; S, 9.05;	H, 5.31; Cl, 20.31.	N, 16.09;	

35

30

Example 122

40

2-(4-N,N-Dimethylamidinophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine trihydrochloride

A solution (1.6 ml) of 3.8M dimethylamine in toluene was added to a solution (70 ml) of 2-(4-ethoxyformimidoylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine (1.6 g) in ethanol, and the whole was stirred for a day at room temperature. The reaction mixture was concentrated, and the residue was washed with ethyl ether and then neutralized with hydrogen chloride to give the title compound (yield 1.4 g, 63 %). m.p. 193 - 196 (recrystallized from a mixture of methanol and ethyl ether).

IR(KBr)cm⁻¹: 3100, 2464, 2238, 1664, 1625, 1533, 1437.

NMR(d_6 -DMSO) δ : 1.49 - 1.96(4H,m), 2.88 - 2.97(2H,m), 3.01 - 3.26(8H,m), 7.69(2H,d,J=8Hz), 8.00 (2H,d,J=8Hz).

Elemental analysis for C ₁₆ H ₂₀ N ₄ S*3HCl					
Calculated:	C, 46.89; S, 7.82; C, 46.71; S, 8.02;	H, 5.66; Cl, 25.95. H, 5.77; Cl, 25.16.	N, 13.67; N, 13.36;		

10

5

Example 123

2-(4-N-Benzylamidinophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 122, the title compound was obtained by reacting 2-(4-ethoxyformimidoyl-phenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine and benzylamine, and neutralizing with hydrogen chloride to give the title compound (yield 38 %).

m.p. 249 - 251 (recrystallized from a mixture of methanol and ethyl ether). IR(KBr)cm⁻¹: 2998, 1667, 1599, 1520, 1497, 1369, 747.

NMR(ds-DMSO)s: 1.55 - 1.90/4H m) 2.81 - 2.92/2H m) 2.04 - 0.92/2H m)

NMR(d₆-DMSO) δ : 1.55 - 1.90(4H,m), 2.81 - 2.92(2H,m), 3.01 - 3.26(2H,m), 4.73(2H,d,J=6Hz), 7.38 - 7.46 (5H,m), 7.88(4H,m).

25

Elemental analysis for C ₂₁ H ₂₂ N ₄ S • 2HCl				
Calculated: Found :	C, 57.93; S, 7.36; C, 57.48; S, 7.48;	H, 5.56; Cl, 16.28. H, 5.55; Cl, 16.41.	N, 12.87; N, 12.76;	

30

35 Example 124

2-(4-N-Methylamidinophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 122, the title compound was obtained by reacting 2-(4-ethoxyformimidoyl-phenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine and a solution of methylamine in methanol, and then neutralized with hydrogen chloride.

Yield 17 %.

m.p. 184 - 186 (recrystallized from a mixture of methanol and ethyl ether).

45 IR(KBr)cm⁻¹: 3086, 1673, 1631, 1597, 1518, 1372, 1355, 1125.

NMR(d₆-DMSO)₅: 1.50 - 1.91(4H,m), 2.86 - 2.97(2H,m), 3.00 - 3.13(5H,m), 7.88(4H,s).

Elemental analysis for C ₁₅ H ₁₈ N ₄ S*2HCl*0.5H ₂ O					
Calculated :	C, 48.91; S, 8.71; C, 48.83; S, 8.96;	H, 5.75; CI, 19.25. H, 5.58; CI, 19.09.	N, 15.21; N, 15.29;		

55

50

Example 125

2-(3-Ethoxyformimidoylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine

The title compound was obtained from 2-(3-cyanophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine in the method described in Example 119 and Example 120.

Yield 83.1 %.

m.p. 141 - 143°.

IR(KBr)cm⁻¹: 3218, 2928, 1634, 1524, 1370, 1323, 1071.

NMR(CDCl₃) δ : 1.43(3H,t,J=7Hz), 1.51 - 1.97(4H,m), 2.86 - 3.19(4H,m), 3.97(1H,b.r), 4.34(2H,q,J=7Hz), 7.39(1H,t,J=8Hz), 7.68(1H,dt,J=1Hz,8Hz), 7.82(1H,dt,J=1Hz,8Hz), 8.10 -8.14(1H,m).

10

Example 126

2-(3-N,N-Dimethylamidinophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 122, the title compound was obtained by reacting 2-(3-ethoxyformimidoyl-phenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine and a solution of dimethylamine in toluene, and neutralizing the resultant product with hydrogen chloride.

20 Yield 70 %.

m.p. 203 - 205° (recrystallized from a mixture of methanol and ethyl ether).

IR(KBr)cm⁻¹: 3022, 1663, 1631, 1601, 1517, 1373.

NMR (d_6 -DMSO) δ : 1.56 - 1.85(4H,m), 2.83 - 2.91(2H,m), 2.96 - 3.08(2H,m), 2.99(3H,s), 3.25(3H,s), 7.52 - 7.69(2H,m), 7.95 - 7.99(2H,m).

25

Elemental analysis for C ₁₆ H ₂₀ N ₄ S*2HCl*0.5H ₂ O					
Calculated: Found:	C, 50.25; S, 8.39; C, 50.59; S, 8.46;	H, 6.06; CI, 18.54. H, 6.36; CI, 18.43.	N, 14.65; N, 14.60;		

35

30

Example 127

2-(3-N-Methylamidinophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b] azəpinə dihydrochloridə

By the method of Example 122, the title compound was obtained by reacting 2-(3-ethoxyformimidoyl-phenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine and a solution of methylamine in methanol, and neutralizing with hydrogen chloride.

Yield 54 %.

m.p. 205 - 207 (recrystallized from a mixture of methanol and ethyl ether).

IR(KBr)cm⁻¹: 3192, 3054, 1678, 1602, 1515, 1371.

NMR(d_6 -DMSO) δ : 1.58 - 1.85(4H,m), 2.84 - 2.95(2H,m), 3.00 - 3.10(5H,m), 7.64(1H,t,J=8Hz), 7.73 - 7.76-(1H,m), 8.03 - 8.11(2H,m).

50

Elemental analysis for C ₁₅ H ₁₈ N ₄ S*2HCl*0.5H ₂ O					
Calculated:	C, 48.91; S, 8.71;	H, 5.75; Ci, 19.25.	N, 15.21;		
Found:	C, 48.55; S, 8.65;	H, 5.66; Cl, 19.15.	N, 15.11;		

Example 128

2-(5-Benzimidazolyi)-5,8,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 1, the title compound was obtained by reacting 3-(5-benzimidazolecarbonyl)amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride.
Yield 14 %

m.p. 208 - 210° (recrystallized from a mixture of methanol and ethyl ether).

IR(KBr)cm⁻¹: 2928, 2726, 1605, 1514, 1375, 818.

NMR(d₆-DMSO) δ : 1.56 - 1.86(4H,m), 2.86 - 2.93(2H,m), 3.02 - 3.07(2H,m), 7.89(1H,d,J=9Hz), 7.97- (1H,dd,J=2Hz,9Hz), 8.18(1H,br.s), 9.66(1H,s).

Elemental analysis for C ₁₄ H ₁₄ N ₄ S*2HCl*H ₂ O					
Calculated:	C. 46.54; S. 8.88;	H, 4.74; Cl, 19.63.	N, 15.51;		
Found:	C, 46.72; S, 8.95;	H, 4.92; Cl, 19.93.	N, 15.20;		

25

30

20

Example 129

2-(3-Pyridyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 1, the title compound was obtained by reacting 3-nicotinoylamino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride. Yield 66.0 %.

m.p. 199 - 200° (recrystallized from methanol and ethyl ether). IR(KBr)cm⁻¹: 3202, 2730, 2478, 1552, 1499, 1370.

NMR(d_6 -DMSO) δ : 1.56 - 1.84(4H,m), 2.84 - 2.91(2H,m), 3.03 - 3.08(2H,m), 7.99(1H,dd,J = 5Hz,8Hz), 8.70-(1H,dt,J = 2Hz,8Hz), 8.76(1H,dd,J = 2Hz,5Hz), 9.09(1H,d,J = 2Hz).

40

Elemental analysis for C ₁₂ H ₁₃ N ₃ S*2HCl				
Calculated:	C, 47.37; S, 10.54; C, 47.43; S, 10.24;	H, 4.97; Cl, 23.31. H, 4.99; Cl, 22.91.	N, 13.81; N, 13.95;	

50

Example 130

2-(3-Aminomethyl-4-methylphenyl)-5,6,7,8-tetrahydro-4H- thiazolo [5,4-b]azepine dihydrochloride

By the method of Example 18, 3-cyano-4-methylbenzoic acid was reacted with 3-amino-ε-caprolactam and phosphorus pentasulfide to give 2-(3-cyano-4-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]-azepine (yield 74.7 %).

NMR(CDCl₃) δ : 1.71(2H,m), 1.84(2H,m), 2.55(3H,s), 2.94(2H,t), 3.13(2H,t), 7.31(1H,d,J=8.42Hz), 7.84-(1H,dd,J=1.93Hz), 7.98(1H,d,J=1.93Hz).

Then, a solution of 2-(3-cyano-4-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine (6.12 g) and cobalt chloride hexahydrate (10.8 g) in a mixture of methanol (30 ml) and tetrahydrofuran (20 ml) was ice-cooled, followed by adding a powder of sodium borohydride (8.6 g) gradually, and further stirred for 1 hr. at the same temperature. After acidifying with an aqueous 4N-hydrochloric acid, the reaction mixture was extracted with diethyl ether, the aqueous layer was alkalified with an aqueous ammonia and extracted with chloroform. The extract was dried over anhydrous magnesium sulfate and distilled under reduced pressure to remove the solvent. The residue was purified by a column chromatography on silica gel, and neutralized with hydrogen chloride to give the title compound (yield 22.7 %). m.p. 245 - 248° (recrystallized from methanol).

IR(KBr)cm⁻¹: 3232, 2932, 1608, 1530, 1499, 1447, 1372.

NMR(DMSO) δ : 1.66(2H,m), 1.82(2H,m), 2.40(3H,s), 2.92(2H,br.s), 3.09(2H,br.s), 4.08(2H,br.s), 5.59(2H,br.s), 7.34(1H,d,J=8.06Hz), 7.80(1H,d,J=8.06Hz), 7.89(1H,s), 8.56(1H,br.s).

Elemental analysis for C ₁₅ H ₂₁ N ₃ SCl ₂ *0.5H ₂ O					
Calculated: Found :	C, 50.70; S, 9.02; C, 50.33; S, 9.04;	H, 6.24; Cl, 19.95. H, 6.02; Cl, 19.62.	N, 11.83; N, 11.74;		

Example 131

15

20

25

2-(4-Cyano-3-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By the method of Example 18, the title compound was obtained by reacting 4-cyano-3-methylbenzoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride, Yield 57.4 %.

m.p. 184 - 186° (recrystallized from methanol).

IR(KBr)cm⁻¹: 3208, 2514, 2224, 1593, 1514, 1486, 1459, 1371.

NMR(d_6 -DMSO) δ : 1.63(2H,m), 1.75(2H,m), 2.51(3H,s), 3.05(2H,t), 5.82(1H,br.s), 7.68(1H,dd,J=1.44Hz, 8.16Hz), 7.76(1H,d,J=8Hz), 7.78(1H,s).

Elemental analysis for C ₁₅ H ₁₆ N ₃ SCI			
Calculated:	C, 58,91; S, 10.48;	H, 5,27, Cl, 11.59	N, 13.74;
Found:	C, 58.58; S, 10.20;	H, 5.22; Cl, 11.42	N, 13.59;

50 Example 132

2-(4-Aminomethyl-3-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

A solution of 2-(4-cyano-3-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine (20 g) and cobalt chloride hexahydrate (35.3 g) in a mixture of methanol (90 ml) and tetrahydrofuran (60 ml) was ice-cooled, followed by addition of a powder of sodium borohydride (33.1 g) gradually, and further stirred for 20 hrs. at room temperature. After acidifying with an aqueous 4N-hydrochloric acid, the reaction mixture was extracted

with diethyl ether. The aqueous layer was alkalified with an aqueous ammonia and extracted with chloroform. The extract was dried over anhydrous magnesium sulfate, and distilled under reduced pressure. The residue was purified by a column chromatography on silica gel, and neutralized with hydrogen chloride to give the title compound (yield 20.1 %).

m.p. 246 - 150° (recrystallized from methanol).
 IR(KBr)cm⁻¹: 3438, 3210, 2936, 1598, 1523, 1493, 1445, 1372.
 NMR(d₅-DMSO) : 1.63(2H,m), 1.80(2H,m), 2.41(3H,s), 2.92(2H,br.s), 3.08(2H,br.s), 4.03(2H,m), 5.60(2H,br.s), 7.51(1H,d,J = 8.36Hz), 7.72(2H,m), 8.56(1H,br.s).

10

15

Elemental an	alysis for C1	5H21N3SCl2	
Calculated: Found :	C, 52.02; S, 9.26; C, 51.93; S, 8.98;	H, 6.11; Cl, 20.47. H, 6.34; Cl, 20.25.	N, 12.13; N, 11.74;

Example 133

2-(2-Pyridyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 1, the title compound was obtained by reacting 3-picolinoylamino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride. Yield 57.4 %

m.p. 181 - 183° (recrystallized from a mixture of methanol and ethyl ether).

IR(KBr)cm⁻¹: 2508, 2356, 1624, 1532, 1464, 777.

NMR(d_6 -DMSO) δ : 1.60 - 1.89(4H,m), 2.94(2H,t,J=6Hz), 3.09 - 3.14(2H,m), 7.45 - 7.52 (1H,m), 8.03(1H, t, J=8Hz), 8.14(1H,d,J=8Hz), 8.56(1H,d,J=5Hz).

35

25

Elemental an	alysis for C ₁₂	H ₁₃ N ₃ S*2H	HCI	-
Calculated:	C, 47.37;	H, 4.97;	N, 13.81;	S, 10.54.
Found:	C, 47.28;	H, 4.93;	N, 13.95;	S, 10.32.

40

Example 134

45 2-[4-(4-Methylpiperazinyl)phenyl]-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine trihydrochloride

By the method of Example 1, the title compound was obtained by reacting 3-[4-(4-methylpiperazinyl)-benzoyl]amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride.

50 Yield 17.5 %

m.p. 176 - 177* (recrystallized from a mixture of methanol and ethyl ether).

IR(KBr)cm⁻¹: 3410, 2698, 1601, 1537, 1398, 1251.

NMR(ds-DMSO)8: 1.57 - 1.94(4H m) 2.79(3H d. L=4Hz) 2.93 - 2.00(2H m) 2.03

NMR(d_6 -DMSO) δ : 1.57 - 1.94(4H,m), 2.79(3H,d,J = 4Hz), 2.93 - 2.99(2H,m), 3.03 - 4.11(10H,m), 7.11-(2H,d,J = 9Hz), 7.89(2H,d,J = 9Hz).

Elemental an	alysis for C18	H24N4S*3H	ICI*1.5H ₂ O	
Calculated:	C, 46.51;	H, 6.50; '	N, 12.05;	S, 6.90.
Found :	C, 46.76;	H, 6.48;	N, 12.25;	S, 6.72.

Example 135

5

10

2-(1-Methyl-1H-1,2,3-triazol-4-yl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By the method of Example 1, the title compound was obtained by reacting 3-(1-methyl-1H-1,2,3-triazolo-4-carbonyl)amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride.

Yield 45.5 %

m.p. 199 - 201 (recrystallized from methanol).

IR(KBr)cm⁻¹: 3216, 1610, 1567, 1521, 1495, 1353, 1232.

NMR(de-DMSO)&: 1.55 - 1.85(4H,m), 2.81 - 2.87(2H,m), 3.04 - 3.11(2H,m), 4.12(3H,s), 9.61(1H,s).

Elemental analysis for C ₁₀ H ₁₃ N ₅ S*HCl			
Calculated: Found :	C, 44.19; S, 11.80; C, 44.20; S, 11.56;	H, 5.19; Cl, 13.05. H, 5.12; Cl. 12.82.	N, 25.77; N, 25.61;
			1

30

25

Example 136

35

2-(Indol-3-yl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine hydrochloride

By the method of Example 1, the title compound was obtained by reacting 3-(indole-3-carbonyl)amino-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride. Yield 9.8 %

m.p. 227 - 229° (recrystallized from a mixture of methanol and ethyl ether). IR(KBr)cm⁻¹: 3134, 1609, 1495, 1435, 1346, 1241, 740.

NMR(d_6 -DMSO) δ : 1.60 - 1.80(4H,m), 2.91 - 2.97(2H,m), 3.00 - 3.10(2H,m), 7.27 - 7.32(2H,m), 7.56 - 7.61-(1H,m), 7.79- 7.84(1H,m), 8.67(1H,d,J=3Hz).

45

Elemental an	alysis for C1	5H15N3S°HCI	
Calculated: Found :	C, 58.90; S, 10.48; C, 58.79; S, 10.19;	H, 5.27; Cl, 11.59. H, 5.14; Cl, 11.32.	N, 13.74; N, 13.63;

50

Example 137

The title compound was obtained by reacting 4-chloro-3-nitrobenzoic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide in the method described in Example 18. Yield 30.7 %.

m.p. 116 - 118 (recrystallized from methanol). IR(KBr)cm $^{-1}$: 3372, 1562, 1528, 1484, 1440, 1369, 1352, 1339, 1296, 1260. NMR(CDCl₃) δ : 1.71(2H,m), 1.85(2H,m), 2.94(2H,t), 3.15(2H,t), 4.09(1H,br.s), 7.51(1H,d,J=8.47Hz), 7.86-(1H,dd,J=2.17Hz,8.47Hz), 8.23(1H,d,J=2.17Hz).

Elemental analysis for C₁₃H₁₂N₃SCIO • 0.5H₂O

Calculated: C, 48.98; H, 4.11; N, 13.18; CI, 11.12.

Found: C, 49.35; H, 3.84; N, 13.09; CI, 10.97.

20

15

5

10

Example 138

2-(1-Methyl-2-pyrrolyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]a:aihydrochloride

By the method of Example 18, the title compound was obtained by reacting 1-methyl-2-pyrrolecarbox-ylic acid, 3-amino-ε-caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride.

Yield 23.1 %.

m.p. 193 - 196 (recrystallized from methanol). IR(KBr)cm⁻¹: 3438, 3204, 1610, 1528, 1484, 1472, 1422, 1363, 1351, 1073. NMR(d₆-DMSO-D₂O)δ: 1.70(2H,m), 1.82(2H,m), 2.88(2H,t), 3.11(2H,t), 3.88(3H,s), 6.20(1H,m), 7.05(1H,m).

35

40

Elemental an	alysis for C12	2H16N3SCI	
Calculated:	C, 53.42; S, 11.89; C, 53.55; S, 12.00;	H, 5.98; Cl, 13.14. H, 6.06; Cl, 12.88.	N, 15.57; N, 15.72;

45

Example 139

2-(1,2-Dimethyl-5-benzimidazolyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]azepine dihydrochloride

By the method of Example 18, the title compound was obtained by reacting 1,2-dimethylbenzimidazole-5-carboxylic acid, 3-amino- ϵ -caprolactam and phosphorus pentasulfide, purifying and neutralizing with hydrogen chloride.

Yield 13.8 %.

m.p. 172 - 175° (recrystallized from methanol).
 IR(KBr)cm⁻¹: 3428, 1601, 1523, 1462, 1439, 1373, 1343, 1251.
 NMR(d₆-DMSO-CDCl₃)δ: 1.73(2H,m), 1.88(2H,m), 2.93(3H,s), 3.02(2H,m), 3.16(2H,m), 4.01(3H,s), 5.07-(1H,br.s), 7.98(2H,t,J=9.71Hz), 8.32(1H,s).

Elemental an	alysis for C11	H18N4S*2HC	71°2H ₂ O
Calculated:	C, 47.18; S, 7.87; C, 47.40; S, 8.12;	H, 5.94; Cl, 17.41. H, 5.75; Cl, 17.31.	N, 13.75; N, 13.79;

10

Claims

1. A compound of the formula (I):

15

20

25

35

wherein R¹ is a hydrogen atom, an aliphatic group which may be substituted, a carboxylic acid group which may be substituted or a sulfonic acid group which may be substituted; R² is a hydrogen atom, an aromatic group which may be substituted or an aliphatic group which may be substituted.

- 2. A compound of claim 1 in which R1 is a hydrogen atom.
- 3. A compound of claim 1 in which R2 is an aromatic group which may be substituted.
- 4. A compound of claim 1 in which R² is a group of the formula R⁴ X wherein R⁴ is an aromatic group which may be substituted and X is an unsaturated aliphatic group being capable of conjugating the thiazole ring in the thiazoloazepine ring and R⁴.
- 5. A compound of claim 1 in which the aromatic group in the aromatic group which may be substituted represented by R² is an aromatic carbocyclic group.
- 6. A compound of claim 4 in which the aromatic group which may be substituted represented by R4 is an aromatic carbocyclic group.
- 7. A compound of claim 4 in which the unsaturated aliphatic group being capable of conjugating the thiazole ring in the thiazoleazepine ring and R^4 is a C_{2-6} alkenyl group or a C_{2-6} alkynyl group.
- 8. A compound of claim 1 in which the aromatic group which may be substituted represented by R^2 is a phenyl group substituted by a hydroxy, a C_{1-6} alkoxy, a C_{1-6} alkyl, a halogen, nitro, amino, a mono- or di- $(C_{1-6}$ alkyl) amino and/or a C_{1-6} alkylthio group.
- 9. A compound of claim 4 in which the aromatic group which may be substituted represented by R^4 is a phenyl group substituted by a hydroxy, a C_{1-5} alkoxy, a C_{1-6} alkyl, a halogen, nitro, amino, a mono- or di-(C_{1-6} alkyl) amino and/or a C_{1-6} alkylthio group.
- 10. A compound of claim 1 in which the aromatic group which may be substituted represented by R² is a phenyl group substituted by one or two substituents selected from the group consisting of methoxy, methyl, amino, methylamino and dimethylamino groups.
- 11. A compound of claim 4 in which the aromatic group which may be substituted represented by R⁴ is a phenyl group substituted by one or two substituents selected from the group consisting of methoxy, methyl, amino, methylamino and dimethylamino groups.
- 12. A compound of claim 1 in which the aliphatic group in the aliphatic group which may be substituted represented by R^1 is a C_{1-6} alkyl or C_{2-6} alkenyl group.
 - 13. A compound of claim 1 in which the carboxylic acyl group which may be substituted represented by R¹ is a group of the formula R³CO- wherein R³ is a saturated or unsaturated aliphatic group which may be substituted or an aromatic group which may be substituted.
 - 14. A compound of claim 13 in which the saturated aliphatic group in the saturated aliphatic group which may be substituted represented by R^3 is a C_{1-6} alkyl group, and the unsaturated aliphatic group which may be substituted for R^3 is a C_{2-6} alkenyl group.
 - 15. A compound of claim 13 in which the aromatic cyclic group in the aromatic group which may be

substituted represented by R3 is an aromatic carbocyclic group or an aromatic heterocyclic group.

- 16. A compound of claim 1 in which the sulfonic acid group which may be substituted represented by R^1 is a C_{1-6} alkanesulfonyl group.
- 17. A compound of claim 1 which is 2-(2,3-dimethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]-azepine.
- 18. A compound of claim 1 which is 2-(4-methoxy-3-methylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]-azepine.
- 19. A compound of claim 1 which is 2-(3,4,5-trimethoxystyryl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]-azepine or its hydrochloride.
- 20. A compound of claim 1 which is 2-(2-methoxy-3-methylstyryl)-5,6,7,8-tetrahydro-4H-thiazolo [5,4-b]-azepine or its hydrochloride.
- 21. A compound of claim 1 which is 2-(4-dimethylaminophenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]-azepine.
- 22. A compound of claim 1 which is 2-(3(or 4)-amino-4(or 3)-methylphenyl)-5,6,7,8-tetrahydro-4H-thiazolo[5,4-b]-azepine or its hydrochloride.
 - 23. A process for the preparation of a compound of the formula:

,wherein R¹ is a hydrogen atom, an aliphatic group which may be substituted, a carboxylic acid group which may be substituted or a sulfonic acid group which may be substituted; R² is a hydrogen atom, an aromatic group which may be substituted or an aliphatic group which may be substituted, which comprises reacting a compound of the formula:

- ,wherein R¹ and R² have the same meanings as defined above, with a thiation agent and if desired subjecting the resultant to an exchange reaction of R¹.
- 24. An inhibitory agent for the formation of lipoperoxide which comprises a compound claimed in claim 1 in an effective inhibitory amount and a pharmaceutically acceptable carrier or diluent.
- 25. An inhibitory agent for lipoxygenase which comprises a compound claimed in claim 1 in an effective inhibitory amount and a pharmaceutically acceptable carrier or diluent.
 - 26. Use of a compound as claimed in any one of claims 1-22 for the manufacture of an inhibitory agent for lipoxygenase, lipoperoxide formation and 12-hydroxyheptadecatrienoic acid (HHT).
- 27. Use of a compound as claimed in any one of claims 1-22 for the manufacture of medicaments for treating or preventing circulatory diseases, inflammation or allergic diseases.

55

10

20

25

30

(Z)

EUROPEAN PATENT APPLICATION

- 21) Application number: 89113362.1
- 2 Date of filing: 20.07.89

(a) Int. Cl.5: **CO7D 513/04**, A61K 31/55, //(C07D513/04,277:00,223:00)

- Priority: 22.07.88 JP 184220/88 05.04.89 JP 86536/89
- Date of publication of application:24.01.90 Bulletin 90/04
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- Date of deferred publication of the search report:
 07.08.91 Bulletin 91/32
- 71 Applicant: TAKEDA CHEMICAL INDUSTRIES, LTD. 3-6, Doshomachi 2-chome Chuo-ku Osaka(JP)
- Inventor: Aono, Tetsuya 7-4, Takadai 3-chome Nagaokakyo Kyoto 617(JP) Inventor: Suno, Masahiro 2-17-403, 1 Ryugadai 1-chome Suma-ku Kobe Hyogo 654(JP) Inventor: Kito, Go 23-201, 8 Honmachi 5-chome Yao Osaka 581(JP)
- Representative: Lederer, Franz, Dr. et al Lederer, Keller & Riederer Patentanwälte Lucile-Grahn-Strasse 22 W-8000 München 80(DE)
- (54) Thiazolo[5,4-b]azepine compounds.
- New thiazolo [5,4-b]azepine compounds represented by

,wherein R¹ is a hydrogen atom, an aliphatic group which may be substituted, a carboxylic acyl group which may be substituted or a sulfonic acyl group which may be substituted; R² is a hydrogen atom, an aromatic group which may be substituted or an aliphatic group which may be substituted, which are capable of e.g., inhibiting lipoperoxide formation.

EUROPEAN SEARCH REPORT

EP 89 11 3362

	OCUMENTS CONSID	Indication, where appropriate,	Relevant	CLASSIFICATION OF THE
ategory		nt passages	to claim	APPLICATION (Int. CI.5)
Α	GB-A-1 321 509 (DR. KARL * Claim 1; page 2, lines 34-45	THOMAE)	1,26	C 07 D 513/04 A 61 K 31/55 //
A	EP-A-0 067 685 (AMERICA * Claims 5,7 *	N HOME PRODUCTS)	1,26	(C 07 D 513/04 C 07 D 277:00 C 07 D 223:00)
٠				٠.
				TECHNICAL FIELDS SEARCHED (Int. CI.5)
				C 07 D 513/00 A 61 K 31/00
	·			·
· -	The present search report has b	een drawn up for all claims		
	Place of search	Date of completion of searc	<u> </u>	Examiner
	The Hague	13 May 91		VOYIAZOGLOU D.
X: Y:	CATEGORY OF CITED DOCU particularly relevant if taken alone particularly relevant if combined with document of the same catagory	MENTS E:	earlier patent docu the filing date document cited in document cited for	ment, but published on, or after the application

- document of the same catagory

- accument of the same catagory
 A: technological background
 O: non-written disclosure
 P: intermediate document
 T: theory or principle underlying the invention

- &: member of the same patent family, corresponding document