STATG004: APPLIED BAYESIAN METHODS

2 hours

Answer ALL questions. Section A carries 40% of the total marks and Section B carries 60%. The relative weights attached to each question are as follows: A1 (10), A2 (10), A3 (20), B1 (20), B2 (20) and B3 (20). The numbers in square brackets indicate the relative weight attached to each part question.

You may use the following notation and results:

The **Beta distribution**, Beta(α, β), has probability density function

$$p(y \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1} , \quad 0 < y < 1 ,$$

where $\Gamma(.)$ is the Gamma function.

The **Binomial distribution**, Binomial (n, θ) , has probability mass function

$$p(y \mid \theta) = \begin{pmatrix} n \\ y \end{pmatrix} \theta^y (1 - \theta)^{n-y}, \quad y = 0, 1, \dots, n.$$

The **Gamma** distribution, Gamma(α, β), has probability density function

$$p(y \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y} , \quad y > 0 .$$

The **Normal** distribution, Normal (θ, τ^{-1}) , has probability density function

$$p(y \mid \theta, \tau) = \sqrt{\frac{\tau}{2\pi}} \exp \left[-\frac{\tau}{2} (y - \theta)^2 \right], -\infty < y < \infty.$$

The **Poisson distribution**, Poisson(λ), has probability mass function

$$p(y \mid \lambda) = \frac{\lambda^y}{y!} e^{-\lambda}, \quad y = 0, 1, 2, \dots$$

SECTION A

A1 A lie detector test has probability of η of being correct regardless of the truth; that is, η of tests provide positive results when people lie, and η of tests provide negative results when people are honest.

Suppose we believe 90% of people taking the test are actually honest.

- (a) A person tests negative on the test. What is the probability, in terms of η , that he actually lies? [5]
- (b) A statistician argues that one should use a uniform prior for the log odds $\log \frac{\eta}{1-\eta}$. Derive the resulting prior for η . [5]
- **A2** (a) Suppose that, for the parameter θ of Binomial (n, θ) , the posterior distribution is $p(\theta|\mathbf{y})$. Suggest how to use this posterior distribution to test the hypothesis that $H_0: \theta < \theta_0$ vs. $H_1: \theta \geq \theta_0$, when the losses for type I and II errors are different, and the loss for a correct decision is zero. [5]
 - (b) Prove that a Beta $(0, \frac{1}{4})$ prior for the parameter θ of the Binomial (n, θ) distribution is an improper prior. [5]
- **A3** Suppose that a random variable $Y|\theta \sim \text{Gamma}(\alpha, 2\theta)$, where α is a known constant while θ is an unknown parameter.
 - (a) Show that the distribution of $Y|\theta$ is a one-parameter exponential family distribution. [4]
 - (b) Using the results from part (a), derive a conjugate prior for θ . [4]
 - (c) Suppose with data \mathbf{y} observed for Y, we have obtained the posterior distribution $p(\theta|\mathbf{y})$ as a Gamma (α_1, β_1) distribution. Now we wish to predict the value (denoted by \tilde{y}) for a new observation of Y. Derive the predictive distribution $p(\tilde{y}|\mathbf{y})$.
 - (d) Derive the Jeffreys prior for θ . [6]

SECTION B

- **B1** (a) If $\theta_1, \theta_2, \ldots$ are exchangeable, write down the general representation theorem which implies a hierarchical model for them. [5]
 - (b) Prove that two random variables Y_1 and Y_2 are exchangeable if they are independent and identically distributed. Justify each step of your proof. [5]
 - (c) Suppose we have collected n independent observations Y_i from a Normal (μ, τ^{-1}) distribution with unknown mean μ and unknown precision τ ; that is,

$$Y_i \mid \mu, \tau \sim \text{Normal}(\mu, \tau^{-1})$$
, for $i = 1, \dots, n$.

Two independent priors are assumed for μ and τ :

$$\begin{array}{lll} \mu & \sim & \mathrm{Normal}(0,10) \ , \\ \tau & \sim & \mathrm{Gamma}(0.1,0.1) \ . \end{array}$$

Let \mathbf{y} denote the values (y_1, \ldots, y_n) of the observations. Derive two full-conditional distributions $p(\mu|\tau, \mathbf{y})$ and $p(\tau|\mu, \mathbf{y})$, and write down one of them as a Normal distribution and the other as a Gamma distribution with corresponding distribution parameters. [10]

B2 Suppose we have the following generalised linear mixed model for data Y_1 and Y_2 :

$$Y_i \mid \theta_i \sim \text{Poisson}(2\theta_i) , i = 1, 2 ,$$

 $\log \theta_i = \beta_0 + \beta_1 X_i + \lambda_i ,$
 $\lambda_i \mid \tau \sim \text{Normal}(0, \tau^{-1}) ,$
 $\beta_0 \sim \text{Normal}(1, 10) ,$
 $\beta_1 \sim \text{Normal}(1, 10) ,$
 $\tau \sim \text{Gamma}(0.1, 0.1) ,$

where X_i are observed covariates.

- (a) Draw the directed acyclic graph (DAG) for this model, using dashed arrows for deterministic dependency and solid arrows for stochastic dependency. [3]
- (b) By moralising the graph, determine whether the conditional-independence statement $(Y_1 \perp \!\!\!\perp Y_2 \mid \beta_0, \beta_1)$ is true. [6]
- (c) Derive the full-conditional distribution for τ . [5]
- (d) Describe how you could use a 'batching' method to estimate the Monte Carlo standard error (MCSE) of the posterior mean of θ_2 , using a sample $(\theta_2^{(M+1)}, \dots, \theta_2^{(N)})$ from the posterior distribution of θ_2 obtained by a Gibbs sampler, for some appropriately chosen M, N > 0.
- **B3** Suppose there is a probabilistic model represented by a DAG with random variables X_1, \ldots, X_K .
 - (a) Write down the factorisation theorem for these random variables. [5]
 - (b) Factorise the full-conditional distribution of X_k (up to a constant of proportionality), by using the elements of the Markov blanket of X_k . [5]
 - (c) Show how your expression in part (b) can be derived, justifying carefully each step in your derivation. [10]