1

ASSIGNMENT-2

AI22BTECH11022 Ruvva Suraj Kumar

MISCELLINIOUS EXERCISE 16: Q9

Question : If 4-digit numbers greater than 5,000 are randomly formed from the digits 0,1,3,5 and 7, what is the probability of forming a number divisible by 5 when,

- (i) the digits are repeated?
- (ii) the repetition of digits is not allowed?

Solution:

Let i represents digits of the four digit numbers where $i \in \{1, 2, 3, 4\}$

 X_i =represets occurrence of 0,1,3,5 and 7 in the *i*th digit where $i \in \{1, 2, 3, 4\}$

There are three possible cases:

- a) first digit = 5last digit = 0
- b) first digit = 7last digit = 0
- c) first digit = 7last digit = 5
- d) repetition not allowed \Rightarrow second and third digits = two digits from the three left

EVENT	DESCRIPTION
X_1	occurence of 0,1,3,5 and 7 in the units place
X_2	occurence of 0,1,3,5,and 7 in the tens place
X_3	occurence of 0,1,3,5, and 7 in the hundreds place
X_4	occurence of 0,1,3,5 and 7 in the thousands place

TABLE II

$$\Rightarrow \Pr(X_i \neq X_j) = \frac{6+6+6}{2\times4\times3\times2}$$

$$= \frac{18}{48}$$

$$= \frac{3}{8}.$$
(5)

$$=\frac{3}{8}.\tag{7}$$

(i) For $i \neq j$ where $i, j \in \{1, 2, 3, 4\}$

$$\Pr\left(X_i = X_j\right) \tag{1}$$

- a) Greater than $5{,}000 \Rightarrow$ first digit = 5 or 7.
- b) Divisible by $5 \Rightarrow \text{last digit} = 0 \text{ or } 5$.
- c) repetition allowed \Rightarrow second and third digits = 0 or 1 or 3 or 5 or 7.

$$\Rightarrow \Pr\left(X_i = X_j\right) = \frac{(2 \times 5 \times 5 \times 2 - 1)}{(2 \times 5 \times 5 \times 5 \times 5 - 1)} \quad (2)$$
$$= \frac{99}{249}. \quad (3)$$

(ii) For $i \neq j$ for all $i, j \in \{1, 2, 3, 4\}$

$$\Pr\left(X_i \neq X_j\right) \tag{4}$$