PBN: Towards Practical Activity Recognition Using Smartphone-based Body Sensor Networks

CSCI 780 Sensors & Ubiquitous Computing

Gang Zhou

Computer Science
College of William and Mary

Based on slides from Matthew Keally

Introduction

- Body Sensor Networks
 - > Athletic Performance
 - > Health Care
 - Activity Recognition

On-Body Sensors

- +Sensing Accuracy
- +Flexibility

Phone

- +User Interface
- +Computational Power
- +Additional Sensors

ator

Introduction

Activity Recognition Challenges

Solutions

A practical approach

Portable and user friendly

TinyOS-based motes + Android phone

Computationally lightweight

Activity recognition approach appropriate for phones

Identify redundant sensors to reduce training costs

Accurate

Classify difficult activities with nearly 90% accuracy

Not Invasive

Retraining detection without ground truth

Related Work

- No mobile or on-body aggregator
 - (Ganti, MobiSys'06), (Lorincz, SenSys'09), (Zappi, EWSN'08)
- Use of backend servers
 - (Miluzzo, MobiSys'10), (Miluzzo, SenSys'08)
- Single sensor modality or separate classifier per modality
 - (Azizyan, MobiCom'09), (Kim, SenSys'10), (Lu, SenSys'10)
- Do not provide online training
 - (Wang, MobiSys'09), (Wachuri, UbiComp'10)

Outline

- Introduction
- Related Work
- Hardware and Software
- Experimental Setup
- PBN System Design
- Evaluation
- Conclusion & Discussion

Hardware: TinyOS + Android

- IRIS on-body motes, TelosB base station, G1 phone
- Enable USB host mode support in Android kernel
- Android device manager modifications
- TinyOS JNI compiled for Android

Software: Android Application

Sensor Configuration

Runtime Control and Feedback

Ground Truth Logging

Data Collection Setup

- 2 subjects, 2 weeks
- Android Phone
 - > 3-axis accelerometer, WiFi/GPS Localization
- 5 IRIS Sensor Motes
 - 2-axis accelerometer, light, temperature, acoustic, RSSI

Node ID	Location	
0	BS/Phone	
1	L. Wrist	
2	R. Wrist	
3	L. Ankle	
4	R. Ankle	
5	Head	

Data Collection Setup

- Classify typical daily activities, postures, and environment
- Previous work (Lester, et. al.) identifies some activities as hard to classify
- Classification Categories:

Environment	Indoors, Outdoors
Posture	Cycling, Lying Down, Sitting, Standing, Walking
Activity	Cleaning, Cycling, Driving, Eating, Meeting, Reading, Walking, Watching TV, Working

PBN Architecture

- Body Sensor Network Dynamics affects accuracy during runtime:
 - Changing physical location
 - User biomechanics
 - Variable sensor orientation
 - Background noise
- How to detect that retraining is needed without asking for ground truth?
 - Constantly nagging the user for ground truth is annoying
 - Perform with limited initial training data
 - Maintain high accuracy

- Measure the discriminative power of each sensor: K-L divergence
 - Quantify the difference between sensor reading distributions

Sensors

- Retraining detection with K-L divergence:
 - Compare training data to runtime data for each sensor

Training

Compute "one vs. rest" K-L divergence for each sensor and activity

Runtime

At each interval, sensors compare runtime data to training data for current classified activity

Runtime

- At each interval, sensors compare runtime data to training data for current classified activity
- > Each individual sensor determines retraining is needed when:

$$D_{KL}(R_{walking}, T_{walking}) > D_{KL}(T_{walking}, T_{other})$$

Runtime

- At each interval, sensors compare runtime data to training data for current classified activity
- Each individual sensor determines retraining is needed
- ➤ The ensemble retrains when a weighted majority of sensors demand retraining

- AdaBoost training can be computationally demanding
 - > Train a weak classifier for each sensor at each iteration
 - > 100 iterations to achieve maximum accuracy
- Can we give only the most helpful sensors to AdaBoost?
 - Identify both helpful and redundant sensors
 - Train fewer weak classifiers per AdaBoost iteration
 - Bonus: use even fewer sensors

Raw Data Correlation

Choosing sensors with **slight correlation** yields the highest accuracy

Goal: determine the sensors that AdaBoost chooses using correlation

- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors

Goal: determine the sensors that AdaBoost chooses using correlation

- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors

Goal: determine the sensors that AdaBoost chooses using correlation

- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors

Goal: determine the sensors that AdaBoost chooses using correlation

- Find the correlation of each pair of sensors selected by AdaBoost
- Use average correlation as a threshold for choosing sensors

Set threshold α based on average correlation: $\alpha = \mu_{corr} + \sigma_{corr}$

Choose sensors for input to AdaBoost based on the correlation threshold

 $correlation(1,ACC; 1,LIGHT) \leq \alpha$

Choose sensors for input to AdaBoost based on the correlation threshold

 $correlation(2,TEMP; 1,ACC) > \alpha$ acc(2,TEMP) > acc(1,ACC)

Choose sensors for input to AdaBoost based on the correlation threshold

 $correlation(1,ACC; 3,TEMP) \leq \alpha$

Choose sensors for input to AdaBoost based on the correlation threshold

Evaluation Setup

- 2 subjects over 2 weeks
- Classify typical daily activities, postures, and environment

Environment	Indoors, Outdoors
Posture	Cycling, Lying Down, Sitting, Standing, Walking
Activity	Cleaning, Cycling, Driving, Eating, Meeting, Reading, Walking, Watching TV, Working

Classification Performance

Classification Performance

Classification Performance

Retraining Performance

Sensor Selection Performance

Application Performance

Mode	CPU	Memory	Power
Idle (No PBN)	<1%	4.30MB	360.59mW
Sampling (WiFi)	19%	8.16MB	517.74mW
Sampling (GPS)	21%	8.47MB	711.74mW
Sampling (Wifi) + Train	100%	9.48MB	601.02mW
Sampling (WiFi) + Classify	21%	9.45MB	513.57mW

Conclusion & Discussion

- PBN: Towards practical BSN daily activity recognition
- PBN provides:
 - User-friendly hardware and software
 - Strong classification performance
 - Retraining detection to reduce invasiveness
 - Identification of redundant resources

Discussion

- Extensive usability study?
- Improving phone energy usage?
- Reducing the number of on-body sensor nodes?
- Turning on-body sensor nodes into wearable devices?
- Sharing resources among multiple BSN?
- Sharing resources with other sensors/devices in environment?