Project: Predictive Analytics Capstone

Complete each section. When you are ready, save your file as a PDF document and submit it here: https://coco.udacity.com/nanodegrees/nd008/locale/en-us/versions/1.0.0/parts/7271/project

Task 1: Determine Store Formats for Existing Stores

- 1. What is the optimal number of store formats? How did you arrive at that number?
 - Have calculated the total sales and calculated the Percentage sales of each category as "[Sum_Dry_Grocery]/[Total_Sales]*100"
 - Below is the AR index and Number of cluster representation, Cluster 3 have high median value and equal spread between first quartile and third quartile range, So Cluster number 3 has been chosen

K-Means Cluster Assessment Report							
Summary Statistics							
Adjusted Rand Indices:							
	2	3	4	5	6		
Minimum	-0.009603	0.049806	0.141931	0.116126	0.168334		
1st Quartile	0.099849	0.24398	0.290669	0.28925	0.331267		
Median	0.411974	0.313552	0.397509	0.376582	0.397359		
Mean	0.397078	0.366329	0.395003	0.398799	0.397648		
3rd Quartile	0.684312	0.422888	0.487787	0.482849	0.466522		
Maximum	1	0.85296	0.808194	0.73384	0.694723		
Calinski-Harabasz Indices:							
	2	3	4	5	(
Minimum	8.793333	9.51835	10.1893	10.76523	9.907697		
1st Quartile	17.287672	15.06886	13.67248	12.47522	11.988572		
Median	19.893033	16.34166	14.514	13.44709	12.565250		
Mean	18.435698	16.09378	14.40569	13.39308	12.730988		
3rd Quartile	20.893269	17.54566	15.33504	14.1877	13.645308		
Maximum	21.992647	19.11366	16.8206	16.72381	15.42490		

2. How many stores fall into each store format?

Record	Report	Report					
1	Sumn	Summary Report of the K-Means Clustering Solution Store_Cluster					
2	Solution Summary	Solution Summary					
3	Call: stepFlexclust(scale(model.matrix(~-1 + Per_Grocery + Per_Dairy + Per_Frozen + Per_Meat + Per_Produce + Per_Floral + Per_Deli + Per_Bakery + Per_GenMer, the.data)), k = 3, nrep = 10, FUN = kcca, family = kccaFamily("kmeans"))						
1	Cluster Information	n:					
5	Cluster	Size	Ave Distance	Max Distance	Separation		
	1	23	2.320539	3.55145	1.874243		
	2	29	2.540086	4.475132	2.118708		
	3	33	2.115045	4.9262	1.702843		
ì	Convergence after 12 iterations. Sum of within cluster distances: 196.83135.						

Cluster 1 has 23 stores, cluster 2 has 29 stores, Cluster 3 has 33 stores

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

Each of the cluster differ from each other in the percentage of Grocery Sales

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

Below is the model comparison Report, All the three models have same accuracy value but Boosted Model has higher F1 value than other two models, hence this model was chosen

Model Comparison Report						
Fit and error measures						
Model	Accuracy	F1	Accuracy_1	Accuracy_2	Accuracy	
Decision_Tree	0.8235	0.8426	0.7500	1.0000	0.7	
Forest_Model Boosted_Model	0.8235 0.8235	0.8426 0.8889	0.7500 1.0000	1.0000 1.0000	0.1 0.6	
Model: model names in the current comparison.						
Accuracy: overall accuracy, number of correct predicti	one of all alacces divis	led by total cample number				
Accuracy, overall accuracy, number of correct predicts Accuracy_[class name]: accuracy of Class [class name]			As an adjusted to be Class falses named dis-			
*	-	imper of cases that are correct	ly predicted to be class [class name] div	ided by the total number of	cases that actually	
belong to Class [class name], this measure is also know						
AUC: area under the ROC curve, only available for two						
F1: F1 score, 2 * precision * recall / (precision + recall).	The precision measure	is the percentage of actual m	embers of a class that were predicted to	be in that class divided by th	ne total number of c	
predicted to be in that class. In situations where there a	are three or more class	ses, average precision and aver	age recall values across classes are used	to calculate the F1 score.		
Confusion matrix of Boosted_Model						
		Actual 1	Actua	1 2	Actua	
Predicted 1		4	7,5525	0		
Predicted 2		0		4		
Predicted_3		0		0		
Confusion matrix of Decision_Tree						
		Actual_1	Actua	I_2	Actua	
Predicted_1		Actual_1 3	Actua	I_2 0	Actua	
Predicted_1 Predicted_2		_	Actua	-	Actua	
_		3	Actua	0	Actua	
_		3	Actua	0	Actua	
Predicted_2		3	Actua	0	Actua	
Predicted_2		3 0		0 4		
Predicted_2 Infusion matrix of Decision_Tree		3 0	Actua Actual			
Predicted_2 nfusion matrix of Decision_Tree Predicted_1		3 0 Actual_1 3		2 0		
predicted_2 infusion matrix of Decision_Tree Predicted_1 Predicted_2		Actual_1 3 0		_2 _0 _4	Actua Actua	
Predicted_2 nfusion matrix of Decision_Tree Predicted_1 Predicted_2 Predicted_3		3 0 Actual_1 3		2 0		
Predicted_2 Infusion matrix of Decision_Tree Predicted_1 Predicted_2		Actual_1 3 0		_2 _0 _4	Actua	
Predicted_2 Predicted_1 Predicted_2 Predicted_2 Predicted_3		Actual_1 3 0		_2 _0 _4 _0		

2. What format do each of the 10 new stores fall into? Please fill in the table below.

Store Number	Segment
S0086	3
S0087	2
S0088	1

Predicted_2 Predicted_3

S0089	2
S0090	2
S0091	1
S0092	2
S0093	1
S0094	2
S0095	2

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

Series has been made stationary by taking one seasonal difference and one difference (D=1, d=1)

Below is the representation from the TS Plot

Season and Error type shows multiplicative behavior

Trend shows unequal variation, so I have kept Trend to none

Based on the above after lag 2 it drops to 0 . (q=2) There are no seasonal lags which are observed (so Q=0)

ETS(M,N,M) -

The Forecast Plot shows the historic data in black and the expected value in blue. The orange in the plot shows the 90% confidence interval, and the yellow shows the 95% confidence interval.

Summary of Time Series Exponential Smoothing Model ETS1

Method: ETS(M,N,M)

In-sample error measures:

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
-12901.2479844	1020596.9042405	807324.9676799	-0.2121517	3.5437307	0.4506721	0.1507788

Information criteria:

AIC AICc BIC 1283.1197 1303.1197 1308.4529

Smoothing parameters:

Parameter Value alpha 0.539196 gamma 0.000128

ARIMA(0,1,2)(0,1,0)

Summary of ARIMA Model Arima_1

Method: ARIMA(0,1,2)(0,1,0)[12]

Call:

 $Arima(Sum_Produce, order = c(0, 1, 2), seasonal = list(order = c(0, 1, 0), period = 12))$

Coefficients:

ma1 ma2 Value -0.415471 -0.054116 Std Err 0.219958 0.234438

sigma^2 estimated as 3268620653560.66: log likelihood = -426.38872

Information Criteria:

AIC AICc BIC 858.7774 859.8209 862.665

In-sample error measures:

ME RMSE MAE MPE MAPE MASE ACF1 170664.054315 1429296.2983494 951432.2560696 0.6151859 4.2022854 0.531117 -0.0260961

Validation Dataset Comparison between the two models

Comparison of Time Series Models

Actual and Forecast Values:

Actual	ETS1
26338477.15	26907095.61191
23130626.6	22916903.07434
	20342618.32222
20359980.58	19883092.31778
21936906.81	20479210.4317
20462899.3	21211420.14022

Accuracy Measures:

Model	ME	RMSE	MAE	MPE	MAPE	MASE
ETS1	210494.4	760267.3	649540.8	1.0288	2.9678	0.3822

Comparison of Time Series Models

Actual and Forecast Values:

Actual	Arima_1
26338477.15	25515002.53492
	22982398.33693
20774415.93	19509673.05693
20359980.58	20599981.42693
21936906.81	20547162.64693
	20342794.22693

Accuracy Measures:

 Model
 ME
 RMSE
 MAE
 MPE
 MAPE
 MASE

 Arima_1
 584382.4
 846863.9
 664382.6
 2.5998
 2.9927
 0.3909

Based on the above two models , ETS model had lover ME , RMSE , MAE , MAPE values compared to ARIMA model(Even with Validation data set) . Hence ETS model is chosen $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

Calculation1	Existing Stores	New Stores
1/1/2016	21,539,936.01	2,623,244.85
2/1/2016	20,413,770.60	2,500,680.44
3/1/2016	24,325,953.10	2,928,872.43
4/1/2016	22,993,466.35	2,793,733.42
5/1/2016	26,691,951.42	3,169,445.97
6/1/2016	26,989,964.01	3,305,415.33
7/1/2016	26,948,630.76	3,310,590.31
8/1/2016	24,091,579.35	2,843,645.42
9/1/2016	20,523,492.41	2,545,868.36
10/1/2016	20,011,748.67	2,505,475.79
11/1/2016	21,177,435.49	2,582,053.09
12/1/2016	20,855,799.11	2,611,623.71

Sheet 1

Before you submit

Please check your answers against the requirements of the project dictated by the rubric. Reviewers will use this rubric to grade your project.