

INVESTIGACIÓN DE OPERACIONES EN INGENIERÍA II

Modelo de REDES ALGORITMO DE LA RUTA MÁS CORTA

Ingeniería de Sistemas
Ing. Néstor Muñoz

Logro de sesión

 Al culminar la sesión, el estudiante aplica el algoritmo de la ruta más corta.

2

PROBLEMA DE LA RUTA MÁS CORTA

En el problema de la ruta más corta se determina ésta, entre una fuente y un destino, por ejemplo en una red de transporte

ALGORITMOS DE RUTA MÁS CORTA

Los algoritmos para resolver redes tanto cíclicas (es decir, que contienen bucles o lazos) como acíclicas:

- 1. El algoritmo de Dijkstra.
- 2. El algoritmo de Floyd.

ALGORITMOS DE RUTA MÁS CORTA Algoritmo de Dijkstra.

El algoritmo de Dijkstra tiene por objeto determinar las rutas más cortas entre el nodo fuente y todos los demás nodos de la red.

El algoritmo de Floyd es general, porque permite determinar la ruta más corta entre dos nodos *cualquiera* en la red.

Algoritmo de Dijkstra. Sea ui la distancia más corta del nodo fuente 1 hasta el nodo i, y se define dij (>=0) como la longitud del arco (i, j). Entonces el algoritmo define la etiqueta de un nodo inmediato posterior j como

$$[u_j, i] = [u_i + d_{ij}, i], d_{ij} \ge 0$$

La etiqueta del nodo de inicio es [0, —], que indica que el nodo no tiene predecesor.

Las etiquetas de nodos en el algoritmo de Dijkstra son de dos clases: *temporales* y *permanentes*.

Una etiqueta temporal se modifica si se puede encontrar una ruta más corta a un nodo.

Cuando se ve que no se pueden encontrar rutas mejores, cambia el estado de la etiqueta temporal a permanente.

PASOS:

Paso 0. Etiquetar el nodo fuente (nodo 1) con la etiqueta *permanente* [0,-]. Igualar i=1. **Paso i.**

a) Calcular las etiquetas temporales [ui + dij, i] para cada nodo j al que pueda llegarse desde el nodo i, siempre y cuando <math>j no tenga etiqueta permanente. Si el nodo j ya está etiquetado con [uj, k] por otro nodo k, y si ui + dij < uj, sustituir [uj, k] por [uj + dij, i].

b) Si todos los nodos tienen etiquetas permanentes, detenerse. En caso contrario, seleccionar la etiqueta [ur, s] que tenga la distancia más corta (ur) entre todas las etiquetas temporales (los empates se rompen en forma arbitraria). Hacer que i = r y repetir el paso i.

Determinar las rutas más cortas entre la ciudad 1 y cada una de las cuatro ciudades restantes.

Iteración 0. Asignar la etiqueta permanente [0,] al nodo 1.

Iteración 1. Se puede llegar a los nodos 2 y 3 desde el nodo 1 (último que se etiquetó en

forma permanente). Así, la lista de los nodos etiquetados (temporales y permanentes)

es la siguiente:

Nodo	Etiqueta	Estado
1	[0,—]	Permanente
2	[0 + 100, 1] = [100, 1]	Temporal
3	[0 + 30, 1] = [30, 1]	Temporal
	. , , , , ,	

Para las dos etiquetas temporales [100, 1] y [30, 1], el nodo 3 produce la menor distancia (u3=30). Entonces, se cambia el estado del nodo 3 a permanente.

Iteración 2. Del nodo 3 se puede ir a los nodos 4 y 5, y la lista de nodos etiquetados es

Nodo	Etiqueta	Estado
1	[0,]	Permanente
2	[100, 1]	Temporal
3	[30, 1]	Permanente
4	[30 + 10, 3] = [40, 3]	Temporal
5	[30 + 60, 3] = [90, 3]	Temporal

El estado de la etiqueta temporal [40, 3] en el nodo 4 se cambia a permanente (u4 = 40).

Iteración 3. Del nodo 4 se puede ir a los nodos 2 y 5. Entonces la lista actualizada de los nodos etiquetados es

Nodo	Etiqueta	Estado
1	[0,—]	Permanente
2	[40 + 15, 4] = [55, 4]	Temporal
3	[30, 1]	Permanente
4	[40, 3]	Permanente
5	[90, 3] o [40 + 50, 4] - [90, 4]	Temporal

La etiqueta temporal del nodo 2, [100, 1], en la iteración 2 se cambia a [55, 4] en la iteración 3, para indicar que se ha encontrado una ruta más corta que pasa por el nodo 4. También, en la iteración 3, el nodo 5 tiene dos etiquetas alternativas con la misma distancia *u*5 90. La lista para la iteración 3 indica que la etiqueta para el nodo 2 ya es permanente

Iteración 4. Del nodo 2 sólo se puede ir al nodo 3. Sin embargo, el nodo 3 tiene una etiqueta permanente y ya no se puede volver a etiquetar. La nueva lista de etiquetas queda igual que en la iteración 3, salvo que la etiqueta en el nodo 2 ya es permanente. Esto deja al nodo 5 como la única etiqueta temporal. Como el nodo 5 no conduce a otros nodos, su estado se vuelve permanente y el proceso termina.

Solución:

Los cálculos del algoritmo se pueden hacer con más facilidad en la red, la ruta más corta entre el nodo 1 y cualquier otro nodo de la red se determina comenzando en el nodo destino o final, y retrocediendo por los nodos con la información que dan las etiquetas permanentes. Por ejemplo, la secuencia siguiente determina la ruta más corta del nodo 1 al nodo 2:

$$(2) \rightarrow [55, 4] \rightarrow (4) \rightarrow [40, 3] \rightarrow (3) \rightarrow [30, 1] \rightarrow (1)$$

Por lo anterior, la ruta buscada es $1 \rightarrow 3 \rightarrow 4 \rightarrow 2$, con una longitud total de 55 millas.

Practicamos:

■ La red en la figura proporciona las distancias en millas entre los pares de ciudades 1,2,...,8. Encuentre la ruta más corta entre las siguientes ciudades:

(a) 1 y 8

(b) 1 y 6

(c) 4y8

(d) 2 y 6

