CMPE 110 Homework #1

John Allard November 20th, 2014 ID: 1437547

1. Question #1 - Power

- (a) Question #1A: '...However, we discussed that nowadays power density and heat has become an issue preventing scaling of frequency. Discuss why power and temperature are becoming an issue'. **Answer:**
- (b) Question #1B: Given the rough formulations governing power and frequency for each voltage region, discuss which region (consider Near and Super-threshold only) is more energy efficient. **Answer:**

To start, we will make the following assumptions.

Near-threshold voltage = $V_{nth} = k$, Super-threshold voltage = $V_{sth} = 2k : k \in \mathbb{R}^+$

Power
$$\propto V^3,$$
 Delay $\propto \frac{1}{V}$, Energy \propto Power \times Delay

Energy Efficiency \propto Energy \times Delay = Power \times Delay²

The energy efficiency can then be calculated for both the near and super threshold voltage levels, as shown below.

Near-Threshold	Super-Threshold
$P_{nth} = V_{nth}^{3} = k^{3}$ $D_{nth} = \frac{1}{V_{nth}} = \frac{1}{k}$ $E_{nth} = P_{nth} * D_{nth} = \frac{k^{3}}{k} = k^{2}$ $EE_{nth} = E_{nth} * D_{nth} = \frac{k^{2}}{k} = k$	$P_{sth} = V_{sth}^{3} = (2k)^{3} = 8k$ $D_{sth} = \frac{1}{2k}$ $E_{sth} = P_{sth} * D_{sth} = \frac{8k^{3}}{2k} = 4k^{2}$ $EE_{sth} = E_{sth} * D_{sth} = \frac{4k^{2}}{2k} = 2k$

Thus voltage levels that are near the threshold are more energy efficient.

2. Question #2 Computing ISA's

(a) Question #2A x86 CISC ISA

Fill out the first row of the above table (from the handout), but assume 32-bit data values.

Table 1: Question #2 Answers

Architecture	Bytes in Program	Bytes Fetched	Bytes Loaded	Bytes Stored
x86	13			
MIPS				
Stack ISA				

Answer: 13 bytes in program

(b)

- 3. Provide the output for each of the following code statements.
- 4. For each of the following items, identify whether the caller function or the callee function performs the actions.

- 5. TODO
- 6. Write a C program that computes the pig-latin translation of an english word.