[2016년 1학기 확률및통계]

Mean Shift Theory and Applications

Reference

D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE T. PAMI, vol. 24, no. 5, pp. 603-619, May 2002.

이상화

2016년 4월 21일

What is Mean Shift?

A tool for:

Finding modes in a set of data samples, manifesting an underlying probability density function (PDF) in R^N

PDF in feature space

- Color space
- Scale space
- Actually any feature space you can conceive

• ...

DF Representation

Data

Non-parametric
Density **GRADIENT** Estimation
(Mean Shift)

PDF Analysis

Non-Parametric Density Estimation

Assumption: The data points are sampled from an underlying PDF

Assumed Underlying PDF

Real Data Samples

Non-Parametric Density Estimation

Non-Parametric Density Estimation

Assumed Underlying PDF

Real Data Samples

Parametric Density Estimation

Assumption: The data points are sampled from an underlying PDF

Assumed Underlying PDF

Real Data Samples

Parzen Windows - General Framework

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$$

A function of some finite number of data points $X_1...X_n$

Kernel Properties:

Normalized

- Exponential weight decay
- ???

$$\int_{R^d} K(\mathbf{x}) d\mathbf{x} = 1$$

$$\int_{R^d} \mathbf{x} K(\mathbf{x}) d\mathbf{x} = 0$$

$$\lim_{\|\mathbf{x}\| \to \infty} \|\mathbf{x}\| K(\mathbf{x}) = 0$$

$$\int_{\mathbb{R}^d} \mathbf{x} \mathbf{x}^T K(\mathbf{x}) d\mathbf{x} = c\mathbf{I}$$

Data

Parzen Windows - Function Forms

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$$

 $P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$ A function of some finite number of data points $X_1 ... X_n$

Data

In practice one uses the forms:

$$K(\mathbf{x}) = c \prod_{i=1}^{d} k(x_i)$$
 or $K(\mathbf{x}) = ck(\|\mathbf{x}\|)$

Same function on each dimension

Function of vector length only

Various Kernels

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_{i})$$
 A function of some finite number of data points $X_{1}...X_{n}$

Examples:

• Epanechnikov Kernel
$$K_E(\mathbf{x}) = \begin{cases} c(1 - \|\mathbf{x}\|^2) & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Uniform Kernel

$$K_U(\mathbf{x}) = \begin{cases} c & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Normal Kernel

$$K_N(\mathbf{x}) = c \cdot \exp\left(-\frac{1}{2} \|\mathbf{x}\|^2\right)$$

$$\nabla P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \nabla K(\mathbf{x} - \mathbf{x}_{i})$$

Give up estimating the PDF! Estimate **ONLY** the gradient

Using the Kernel form:

$$K(\mathbf{x} - \mathbf{x}_i) = ck \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

We get:

Size of window

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_{i} = \frac{c}{n} \left[\sum_{i=1}^{n} g_{i} \right] \cdot \left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g_{i}}{\sum_{i=1}^{n} g_{i}} - \mathbf{x} \right]$$

Kenneu Deg Silve Estimasioift Gradient

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_i = \frac{c}{n} \left[\sum_{i=1}^{n} g_i \right] \cdot \left[\frac{\sum_{i=1}^{n} \mathbf{x}_i g_i}{\sum_{i=1}^{n} g_i} - \mathbf{x} \right]$$

Computing The Mean Shift

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_{i} - \frac{c}{n} \left[\sum_{i=1}^{n} g_{i} \right] \cdot \left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g_{i}}{\sum_{i=1}^{n} g_{i}} - \mathbf{x} \right]$$

Yet another Kernel density estimation!

Simple Mean Shift procedure:

• Compute mean shift vector

$$\mathbf{m}(\mathbf{x}) = \left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left(\frac{\|\mathbf{x} - \mathbf{x}_{i}\|^{2}}{h}\right)}{\sum_{i=1}^{n} g\left(\frac{\|\mathbf{x} - \mathbf{x}_{i}\|^{2}}{h}\right)} - \mathbf{x} \right]$$

•Translate the Kernel window by m(x)

Mean Shift Mode Detection

<u>Updated Mean Shift Procedure:</u>

- Find all modes using the Simple Mean Shift Procedure
- Prune modes by perturbing them (find saddle points and plateaus)
- Prune nearby take highest mode in the window

Mean Shift Properties

- Automatic convergence speed the mean shift vector size depends on the gradient itself.
- Near maxima, the steps are small and refined
- Convergence is guaranteed for infinitesimal steps only → infinitely convergent, (therefore set a lower bound)
- For Uniform Kernel (), convergence is achieved in a finite number of steps
- Normal Kernel () exhibits a smooth trajectory, but is slower than Uniform Kernel ().

Adaptive Gradient Ascent

Real Modality Analysis

Tessellate the space with windows

Run the procedure in parallel

Real Modality Analysis

The blue data points were traversed by the windows towards the mode

Real Modality Analysis

An example

Window tracks signify the steepest ascent directions

Mean Shift Strengths & Weaknesses

Strengths:

- Application independent tool
- Suitable for real data analysis
- Does not assume any prior shape (e.g. elliptical) on data clusters
- Can handle arbitrary feature spaces
- Only ONE parameter to choose
- h (window size) has a physical meaning, unlike K-Means

Weaknesses:

- The window size (bandwidth selection) is not trivial
- Inappropriate window size can cause modes to be merged, or generate additional "shallow" modes → Use adaptive window size

Mean Shift Applications

Clustering

<u>Cluster</u>: All data points in the *attraction basin* of a mode

Attraction basin: the region for which all trajectories lead to the same mode

Clustering Real Example

Feature space:

L*u*v representation

'nitial window enters

N

pruning

Clustering Real Example

L*u*v space representation

Clustering

Real Example

Final clusters

Discontinuity Preserving Smoothing

Meaning: treat the image as data points in the spatial and gray level domain

Discontinuity Preserving Smoothing

The effect of window size in spatial and range spaces

Discontinuity Preserving Smoothing

Example

Color Segmentation (1)

Example

Color Segmentation (2)

Example

Non-Rigid Object Tracking

Block Matching is not proper to compare the similarity of non-rigid (deformable) objects.

- ⇒ Histogram matching
- ⇒ Mean shift processing

Mean Shift Tracking

Back Projection

- Assign probability to each pixel using the object histogram
- Mean shift process for the pixels coordinates with the probability weights.

Mean shift process

General Framework: Target Localization

PDF Representation

Target Model (centered at 0)

Target Candidate (centered at y)

$$\vec{q} = \{q_u\}_{u=1..m}$$
 $\sum_{u=1}^{m} q_u = 1$

Similarity
$$f(y) = f[\vec{q}, \vec{p}(y)]$$

$$\vec{p}(y) = \{p_u(y)\}_{u=1..m} \qquad \sum_{u=1}^{m} p_u = 1$$

Finding the PDF of the target model

 $\left\{X_{i}\right\}_{i=1..n}$ Target pixel locations

- k(x)
- A differentiable, isotropic, convex, monotonically decreasing kernel

 Peripheral pixels are affected by occlusion and background interference
- b(x) The color bin index (1..m) of pixel x

Probability of feature u in model

Probability of feature u in candidate

Similarity Function

Target model:
$$\vec{q} = (q_1, ..., q_m)$$

Target candidate:
$$\vec{p}(y) = (p_1(y), ..., p_m(y))$$

Similarity function:
$$f(y) = f[\vec{p}(y), \vec{q}] = ?$$

The Bhattacharyya Coefficient

$$\vec{q}' = \left(\sqrt{q_1}, \ldots, \sqrt{q_m}\right)$$

$$\vec{p}'(y) = \left(\sqrt{p_1(y)}, \dots, \sqrt{p_m(y)}\right)$$

$$f(y) = \cos \theta_y = \frac{p'(y)^T q'}{\|p'(y)\| \cdot \|q'\|} = \sum_{u=1}^m \sqrt{p_u(y)q_u}$$

Maximizing the Similarity Function

The mode of
$$\frac{C_h}{2} \sum_{i=1}^n w_i k \left(\left\| \frac{y - x_i}{h} \right\|^2 \right) = \text{sought maximum}$$

Choosing the Kernel

A special class of radially symmetric kernels:

$$K(x) = ck(||x||^2)$$

Epanechnikov kernel:

Uniform kernel:

$$g(x) = -k(x) = \begin{cases} 1 & \text{if } ||x|| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Extended Mean-Shift:

$$y_{1} = \frac{\sum_{i=1}^{n} x_{i} w_{i} g\left(\left\|\frac{y_{0} - x_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} w_{i} g\left(\left\|\frac{y_{0} - x_{i}}{h}\right\|^{2}\right)}$$

$$y_{1} = \frac{\sum_{i=1}^{n} x_{i} w_{i}}{\sum_{i=1}^{n} w_{i}}$$

Adaptive Scale

Problem:

The scale of the target changes in time

The scale (h) of the kernel must be adapted

Solution:

Run
localization 3
times with
different h

Choose h
that achieves
maximum
similarity

Tracking Result

PTZ control

