Random Integers Random Bits

Download PDF Version

Given an integer range [A,B],

- 1. What's the probability to get a 1-bit if we first randomly choose a number x in the range and then randomly choose a bit from x?
- 2. What's the expected number of bit 1s if we randomly choose a number x in the range?

Input Format

The first line of input is the number of test cases $m{T}$ Each test cases is a line contains 2 integers $m{A}$ and $m{B}$ separated by a space.

Output Format

For each test case output a line containing 2 float numbers separated by a space. The first one is the probability and the second one is the expected number. You should output the number accurate to 5 fractional digits.

Constraints

 $1 \le T \le 200$ $1 \le A \le B \le 10^{10}$

Sample Input

1 2 4

Sample Output

0.61111 1.33333

Explanation

(10) (11) (100)

- (1) So we got a one in $\frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{1} + \frac{1}{3} \times \frac{1}{3} = \frac{11}{18}$
- (2) The expected 1 we have is : $1 \times \frac{1}{3} + 2 \times \frac{1}{3} + 1 \times \frac{1}{3} = \frac{4}{3}$