

A1-1
English

Mass Measurement (10 points)

Write down the numbers 0 to 9 in the following table:

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

Part A: Hooke's law and electromagnetic forces (2.4 points)

A.1 (0.4 pt)

A.2 (0.6 pt)

N	z /mm	I /A		
0	12.8	0		
1	12.2	0.103		
2	11.6	0.213		
3	11.1	0.323		
4	10.7	0.423		
5	10.2	0.524		

A1-2
English

A.3 (0.7 pt)

The slope and uncertainty are read from the lines plotted on the graph.

The slope and uncertainty are read
$$a = \frac{\Delta z}{\Delta N} = \frac{10.15 - 12.70}{5} = -0.51$$

$$a_{+} = \frac{10.20 - 12.60}{5} = -0.48$$

$$a_{-} = \frac{10.10 - 12.80}{5} = -0.54$$

$$\Delta a = \frac{-0.48 - (-0.54)}{2} = 0.03$$

$$a = -0.51 \pm 0.03 \text{ mm}$$

A1-3

A.4 (0.7 pt)

The slope and uncertainty are read from the lines plotted on the graph.

$$b = \frac{I}{N} = \frac{0.53}{5} = 0.106$$

$$b_{+} = \frac{0.55}{5} = 0.110$$

$$b_{-} = \frac{0.505}{5} = 0.101$$

$$\Delta b = \frac{0.110 - 0.101}{2} = 0.005$$

$$b = 0.106 \pm 0.005 \text{ A}$$

Part B: Induced electromotive force (3.0 points)

B.1 (0.2 pt)

 $V = 2\pi f ABL$

B.2 (0.5 pt)

 $f_{\rm B}=~15.85~{\rm Hz}$

A/mm	V' /V		
0.5	0.024		
1.0	0.048		
1.5	0.071		
2.0	0.099		
2.5	0.124		
3.0	0.146		

A1-5

B.3 (0.7 pt)

The slope and uncertainty are read from the lines plotted on the graph.

$$c = \frac{V'}{N} = \frac{0.147}{5} = 0.049$$

$$c_{+} = \frac{0.150}{5} = 0.050$$

$$c_{-} = \frac{0.144}{5} = 0.048$$

$$\Delta c = \frac{0.050 - 0.048}{2} = 0.001$$

$$c = 0.049 \pm 0.001 \text{ V/mm}$$

A1-6

B.4 (0.4 pt)

$$BL = \frac{V}{2\pi A f_{\rm B}} = \frac{\sqrt{2}V'}{2\pi A f_{\rm B}} = \frac{\sqrt{2}c}{2\pi f_{\rm B}} = \frac{\sqrt{2}\times0.049}{2\pi\times15.85} = 0.000696~{\rm Vs/mm} = 0.696~{\rm Vs/mm}$$

$$\Delta(BL) = BL \cdot \frac{\Delta c}{c} = 0.696 \times \frac{0.001}{0.049} = 0.014 \text{ Vs/m}$$

$$BL = 0.696 \pm 0.014 \, \text{Vs/m}$$

B.5 (1.2 pt)

$$m = \frac{mg}{BL} \cdot \frac{BL}{g} = \frac{I}{N} \cdot \frac{V}{2\pi A f_{\rm B}} \cdot \frac{1}{g} = b \frac{\sqrt{2}c}{2\pi g f_{\rm B}} = 0.106 \times \frac{\sqrt{2} \times 0.049}{2\pi \times 9.80 \times 15.85} = 0.0075 \ \mathrm{kg} = 7.5 \ \mathrm{g}$$

The principle of the Kibble balance (watt balance)

Mechanical power: $Fv = Nmg \cdot 2\pi A f_{\rm R}$

Electrical power: VI

$$Fv = VI$$

$$\Delta m = m \cdot \sqrt{(\frac{\Delta b}{b})^2 + (\frac{\Delta c}{c})^2} = 0.4~\mathrm{g}$$

$$m = 7.5 \pm 0.4 \,\mathrm{g}$$

$$k = -\frac{mg}{a} = -\frac{7.5 \times 9.80}{-0.51} = 144 \text{ N/m}$$

$$\Delta k = k \cdot \sqrt{(\frac{\Delta a}{a})^2 + (\frac{\Delta m}{m})^2} = 11 \; \text{N/m}$$

$$k=~144\pm11~\mathrm{N/m}$$

Part C: Mass dependence of resonant frequency (2.3 points)

C.1 (0.2 pt)

$$f = \frac{1}{2\pi} \sqrt{\frac{k'}{M + Nm}}$$

C.2 (0.5 pt)

N	f /Hz	$1/f^2/\mathrm{s}^2$	
0	15.96	0.003926	
1	13.03	0.005390	
2	11.33	0.007790	
3	10.13	0.009745	
4	9.06	0.01218	
5	8.45	0.01401	

A1-8
English

C.3 (1.0 pt)

The additional quantities $1/f^2$ are calculated in Table C.2. Then, $\frac{M}{k'}$ and $\frac{m}{k'}$ are obtained from the graph using the equation $\frac{1}{f^2}=(2\pi)^2(\frac{M}{k'}+\frac{m}{k'}N)$.

$$\frac{M}{k'} = \frac{0.0039}{(2\pi)^2} = 9.88 \times 10^{-5} \; \mathrm{s}^2$$

$$\frac{m}{k'} = \frac{(0.0140 - 0.0039)/5}{(2\pi)^2} = 5.12 \times 10^{-5} \; \mathrm{s}^2$$

A1-9

C.4 (0.6 pt)

$$\frac{M}{m} = \frac{M/k'}{m/k'} = \frac{9.88}{5.12} = 1.93$$

$$\frac{M}{m} = 1.93$$

$$M = \frac{M}{m} \cdot m = 1.93 \times 0.0075 = 0.0145 \text{ kg}$$

$$M=14.5~\mathrm{g}$$

$$k' = \frac{M}{M/k'} = \frac{0.0145}{9.88 \times 10^{-5}} = 147 \text{ N/m}$$

$$k' = 147 \text{ N/m}$$

A1-10 English

Part D: Resonance characteristics (2.3 points)

D.1 (0.4 pt)

 $V'_{\mathrm{AC}} = 0.157 \,\mathrm{V}$

 $F_{\rm AC} = BLI_{\rm AC} = BL \times 0.106 \times \sqrt{2} V_{\rm AC}' = 0.696 \times 0.106 \times \sqrt{2} \times 0.157 = 0.0164 \; \rm N$

 $F_{\mathrm{AC}} = 0.0164\;\mathrm{N}$

D.2 (0.9 pt)

f /Hz	A/mm	$(f-f_0)^2 / \mathrm{Hz}^2$	$1/A^2 / \mathrm{mm}^{-2}$	
15.88	3.0	0.0064	0.111	
15.79	3.0	0.0289	0.111	
15.73	2.8	0.0529	0.128	
15.61	2.1	0.1225	0.227	
15.49	1.9	0.2209	0.277	
15.34	1.2	0.3844	0.694	
15.20	1.1	0.5776	0.826	
16.02	2.7	0.0036	0.137	
16.14	2.1	0.0324	0.227	
16.24	2.0	0.0784	0.250	
16.41	1.6	0.2025	0.391	
16.60	1.1	0.4096	0.826	
16.81	1.0	0.7225	1.000	

A1-11

A1-12
English

D.3 (1.0 pt)

Reading from the graph D.2

$$f_0 = 15.83 \; \mathrm{Hz}$$

$$A(f_0) = 3.0 \text{ mm}$$

$$\Delta f = \frac{15.14 - 15.56}{2} = 0.29~\mathrm{Hz}$$

Calculaton using Eq.(4)

$$M = \frac{F_{\rm AC}}{8\pi^2 f_0 \Delta f A(f_0)} = \frac{0.0164}{8\pi^2 \times 15.83 \times 0.29 \times 0.003} = 0.0151 \; {\rm kg}$$

$$M = 15.1 \, \mathrm{g}$$

An alternative way to find M

 $(f-f_0)^2$ and $1/A^2$ are calculated in Table D.2 to use the linear relationship

$$\frac{1}{A^2} = (\frac{8\pi^2 M f_0}{F_{\rm AC}})^2 \cdot \left[(f - f_0)^2 + (\Delta f)^2 \right] \, . \label{eq:AC}$$

 $f_0=15.96~\mathrm{Hz}$ obtained in C.2 is used.

The slope is obtained from the graph of the additional quantities or the calculation

$$(\frac{8\pi^2 M f_0}{F_{\rm AC}})^2 = 1.31~{\rm mm^{-2}Hz^{-2}} = 1.31\times 10^6~{\rm m^{-2}Hz^{-2}}.$$

$$M=\sqrt{1.31\times 10^6}\times \frac{F_{\rm AC}}{8\pi^2f_0}=\sqrt{1.31\times 10^6}\times \frac{0.0164}{8\pi^2\times 15.96}=0.0149~{\rm kg}$$

$$M = 14.9 \, \mathrm{g}$$

