Final exam (objective part) MA 101, 21.11.2015

- For all questions, 2 marks if fully correct, 0 otherwise.
- For the first five questions only the correct options are mentioned here. These questions appeared in shuffled order in the various sheets.

Answers

- 1. Let $x_n \to x \in \mathbb{R}$. Let $\epsilon > 0$. Which of the following are true?

 There exists a tail of (x_n) that has all of its terms in $B_{\epsilon}(x)$.
- 2. Let (x_n) be a sequence in \mathbb{R} . Which of the following are true?

T If (x_n) is bounded then every tail of (x_n) is bounded.

T If (x_n) is unbounded then every tail of (x_n) is unbounded.

T If (x_n) is unbounded, it cannot be Cauchy.

3. Let $A = \{1, 1/2, 1/3, 1/4, 1/5, ...\}$. Which of the following are true?

There exists a sequence such that every point of A is a limit point of the sequence (same as subsequential limit point).

There exists a sequence such that every point of A is a limit point of the sequence, and 0 is also a limit point.

4. Let h(x) be a polynomial such that h(1) = h(3) = -1 and h(2) = h(4) = +1. Which of the following are true?

 $T ext{ } h(x)$ is infinitely differentiable.

T $h^{(1)}(x)$ must have at least 2 zeroes.

There must exist some n for which $h^{(n)}(1.5) = 0$.

5. Which of the following are true?

There exists $g: \mathbb{R} \to \mathbb{R}$ such that g is differentiable everywhere but |g| is not differentiable at 0.

6. Suppose U, W and $U \cup W$ are subspaces of a vector space V. If $\dim(V) = 3$ and $\dim(W) = 4$. Then $\dim(U \cup W)$ is

4. No marks for anything else.

7. Let $S = \left\{\frac{\pi}{6}, a\right\}$ be a subset of $[0, 2\pi]$ such that the functions $\sin x, \cos x$ are linearly independent on S. Then all possible values of a are:

 $[0, 2\pi] \setminus \{\pi/6, 7\pi/6\}$. Only the full set gets 2 marks. Missing even one value gets zero.

8. Let $\mathcal{P}_2(R)$ denote the space of all polynomials of degree at most 2. Consider a map $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ given by $T(1) = 1 + x^2$, $T(x) = x + x^2$ and and $T(x^2 - 1) = x^2 + x$. Then compute a basis for Kernel(T) = $\{v \in \mathcal{P}_2(\mathbb{R}) \mid T(v) = 0\}$.

 $c(1+x-x^2)$ with $c\neq 0$. c=-1 is OK. Appropriate row or column vector also OK.

9. Let A, B be orthogonal matrices. Then write down all possible values of det(AB).

Correct is ± 1 . Writing +1 alone, or -1 alone, or -1,0,+1, all fail to get any marks.

10. Let
$$W \subset \mathbb{R}^3$$
 be a subspace given by $x - y + 2z = 0$, and let $v = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$ be a vector in \mathbb{R}^3 . The

 $Proj_W(v)$ is

$$\begin{bmatrix} 5/3 \\ 1/3 \\ -2/3 \end{bmatrix}.$$

Remark. All three components of the projected vector need to be correct. An extra '-' sign, a missing '-' sign, a missing denominator, a permutation of the components, all get zero. Calculating only the norm of the projected vector also gets zero.