matlog

Ramazan Rakhmatullin

10 June 2020

1 (Классическое) Исчисление высказываний

Предметный язык - формальный язык

Метаязык - неформальный язык исследователя

Пропозициональная переменная - буква А, А', А₁₂₃₄

Высказывание, которое истинно при любой оценке переменных называется общезначимым или тавтологией.

Высказывание

- истинно при какой-нибудь оценке выполнимо
- не истинно при какой-нибудь оценке опровержимо
- не истинно ни при какой оценке невыполнимо

Формула разрешима, если для нее можно построить вывод. Доказательство — конечная последовательность высказываний $\delta_1, \delta_2 \dots, \delta_n$, где каждое δ_i является либо аксиомой, либо правилом Modus Ponens.

1.1 Теорема о дедукции

 $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \rightarrow \beta$

Теория называется **корректной**, если любое доказуемое утверждение общезначимо.

Теория называется **полной**, если любое общезначимое утверждение доказуемо.

1.2 Теорема о корректности и полноте исчисления высказываний

Исчисление высказываний корректно и полно.

2 Интуиционистская логика, Решетки

ВНК интерпретацией логических связок называется следующее

- $\alpha \& \beta$ построено, если построено α и β
- $\alpha \lor \beta$ построено, если построено α или β , причем известно, что именно
- $\alpha \to \beta$ построено, если есть способ перестроения α в β
- \bullet \perp конструкция, не имеющая построения
- $\neg \alpha$ построено, если построено $\alpha \to \bot$

Отличием интуиционистской логики от классической логики является замена последней аксиомы $\neg\neg \alpha \to \alpha$ на $\alpha \to \neg \alpha \to \beta$

Другой теорией доказательств для ИИВ являются деревья вывода.

Доказательство утверждения состоит из построения дерева вывода при помощи следующих правил:

- 1. Аксиома: () \Rightarrow ($\Gamma, \varphi \vdash \varphi$)
- 2. Импликация:
 - Введение: $(\Gamma, \varphi \vdash \psi) \Rightarrow (\Gamma \vdash \varphi \rightarrow \psi)$
 - Удаление: $(\Gamma \vdash \varphi \rightarrow \psi; \Gamma \vdash \varphi) \Rightarrow (\Gamma \vdash \psi)$
- 3. Конъюкция:
 - Введение: $(\Gamma \vdash \varphi; \Gamma \vdash \psi) \Rightarrow (\Gamma \vdash \varphi \& \psi)$
 - Удаление: $(\Gamma \vdash \varphi \& \psi) \Rightarrow (\Gamma \vdash \varphi)$ и $(\Gamma \vdash \varphi \& \psi) \Rightarrow (\Gamma \vdash \psi)$
- 4. Дизъюнкция:
 - Введение: $(\Gamma \vdash \varphi) \Rightarrow (\Gamma \vdash \varphi \lor \psi)$ и $(\Gamma \vdash \psi) \Rightarrow (\Gamma \vdash \varphi \lor \psi)$
 - Удаление: $(\Gamma, \varphi \vdash \gamma; \Gamma, \psi \vdash \gamma; \Gamma \vdash \varphi \lor \psi) \Rightarrow (\Gamma \vdash \gamma)$
- 5. Удаление лжи: $(\Gamma \vdash \bot) \Rightarrow (\Gamma \vdash \varphi)$

Далее мы рассматриваем ЧУМы с операцией 🗆

Верхней гранью a и b называется наименьшее(любой другой строго больше) c, что $a \sqsubseteq c$ и $b \sqsubseteq c$. Обозначается как a+b или $a \sqcup b$

Нижней гранью a и b называется наибольшее(любой другой строго меньше) c, что $c \sqsubseteq a$ и $c \sqsubseteq b$. Обозначается как $a \cdot b$ или $a \sqcap b$

Решетка — ЧУМ, в котором для любых a и b определены a+b и $a\cdot b$

Дистрибутивная решетка — решетка, в которой для любых a,b,c верно $(a+b)\cdot c=a\cdot c+b\cdot c$

Можно доказать, что в дистрибутивной решетке выполнено $a \cdot b + c = (a+c) \cdot (b+c)$ для любых a,b,c

Псевдодополнением a и b называется наибольшее t такое, что $t \cdot a \sqsubseteq b$. Обозначается как $a \to b$

2.1 Теорема о дистрибутивности импликативной решетки

Импликативная решетка всегда дистрибутивна.

Заметим, что обратное верно только в случае конечных решеток.

Нулем будем называть наименьший элемент решетки.

Единицей будем называть наибольший элемент решетки.

Заметим, что в импликативной решетке всегда существует 1, достаточно взять $a \to a$ для любого a.

Псевдобулева алгебра (алгебра Гейтинга) — импликативная решетка с 0.

Булева алгебра — алгебра Гейтинга, в которой для любого a выполнено $a+(a \to 0)=1.$ $(a \to 0)$ также обозначают как $\sim a$

Построим модель оценки ИИВ в алгебре Гейтинга:

• & = ·

- $\vee = +$
- $\bullet \rightarrow = \rightarrow$
- ¬ = ~
- $\bullet \perp = 0$
- Истинным значением будем называть 1

Будем называть высказывание общезначимым $\models \alpha$, если для любой алгебры Гейтинга для любой функции оценки высказывания f выполнено $\|\alpha\|=1$.

2.2 Теорема о корректности и полноте ИИВ в алгебре Гейтинга

- 1. Любая алгебра Гейтинга корректная модель ИИВ
- 2. Если $\models \alpha$, то $\vdash \alpha$

Алгебра Линденбаума — множество классов эквивалентности всевозможных формул в ИИВ с отношением $\alpha \sqsubseteq \beta \iff \alpha \vdash \beta$

Можно доказать, что алгебра Линденбаума является алгеброй Гейтинга. Применив этот факт, можно доказать полноту ИИВ.

Алгебра A называется **Геделевой**, если для любых $a,b\in A$ выполнено $a+b=1\to (a=1$ или b=1)

 $\Gamma(\mathbf{A})$ — алгебра Гейтинга A, в которую добавили еще одну $1_{\Gamma(A)}$, а старую 1_A заменили на ω . Формально, $\Gamma(A)$ это A, в которой удалили 1_A и добавили ω и $1_{\Gamma(A)}$ такие, что для любого $a \in A$ выполнено:

- $a \sqsubseteq \omega$
- $a \sqsubseteq 1_{\Gamma(A)}$
- $\omega \sqsubset 1_{\Gamma(A)}$

Можно заметить, что $\Gamma(A)$ является алгеброй Гейтинга и Геделевой алгеброй.

3 Модель Крипке

Модель Крипке задается множеством миров W, отношением \preceq и \mid \vdash такими, что

• (\preceq) $\subseteq W \times W$ — отношение частичного порядка на W

• (\Vdash) $\subseteq W \times P$ — отношение вынужденности, причем если $W_x \preceq W_y$ и $W_x \Vdash P$, то $W_y \Vdash P$

В модели Крипке высказывания оцениваются следующим образом:

- $W_k \Vdash \alpha \& \beta$ (вынуждено в W_k), если α и β вынуждено в W_k
- $W_k \Vdash \alpha \lor \beta$, если α или β вынуждено в W_k
- $W_k \Vdash \alpha \to \beta$, если в любом $W_l : W_k \preceq W_l$ из вынужденности α следует вынужденность β
- $W_k \Vdash \neg \alpha$, если в любом $W_l : W_k \preceq W_l \alpha$ не вынуждено в W_l
- $W_k \not\Vdash \bot$ (не вынуждено ни в каком мире)

Формула φ вынуждена в модели W ($W \Vdash \varphi$) если она вынуждена в любом мире из W.

Формула φ общезначима ($\models \varphi$), если она вынуждена во всех моделях.

3.1 Теорема о корректности моделей Крипке

Если $\vdash \varphi$ в ИИВ(интуиционистское исчисление высказываний), то $\models \varphi$ в моделях Крипке.

Давайте сведем модель Крипке к алгебре Гейтинга. Для этого элементами алгебры сделаем все открытые подмножества элементов модели Крипке, а именно если элемент x входит в открытое множество, то любой элемент $y: x \leq y$ тоже входит в это множество. На этом построим алгебру Гейтинга на множествах с $\sqsubseteq = \subseteq$.

3.2 Теорема о полноте ИИВ

Если $\models \varphi$ в моделях Крипке, то $\vdash \varphi$ в ИИВ. Эту теорему мы доказывать не будем.

Модель исчисления называется табличной если:

- 1. Задано множество истинностных значений V
- 2. Для каждой связки задана функция оценки: $f_\star: V \times V \to V$ и $f_\lnot: V \to V$
- 3. Среди V выделены некоторые истинные значения T. Мы считаем, что $\models \alpha$, если $[\![\alpha]\!] \in T$ при любых оценках пропозициональных переменных.

4. Модель корректна.

Классическая оценка для исчисления высказываний — табличная модель.

Рассмотрим модели Крипке в данной терминологии:

- 1. Объединим все модели Крипке в один граф. Тогда V состоит из всех подмножеств этого графа. Оценкой переменной P будет множество всех миров, в которых она вынуждена.
- 2. Оценка связки $\alpha \star \beta$: все миры, в которых $\Vdash \alpha \star \beta$
- 3. Истинное значение множество всех миров.

3.3 Теорема о нетабличности ИИВ

Не существует полной конечной табличной модели для ИИВ.

Гомоморфизм из алгебры A в B — отображение $\varphi: A \to B$, удовлетворяющее следующим условиям:

- $\varphi(a \star b) = \varphi(a) \star \varphi(b)$
- $\varphi(0_A) = 0_B$

Можно доказать, что $\varphi(1_A) = 1_B$

3.4 Теорема о дизъюнктивности ИИВ

Если $\vdash \alpha \lor \beta$, то $\vdash \alpha$ или $\vdash \beta$.

Заметим, что например в классической логике есть контрпример $\vdash A \lor \neg A$

3.5 Теорема о связи ИИВ и КИВ

Если $\vdash_{\mathbf{u}} \alpha$, то $\vdash_{\mathbf{k}} \alpha$

3.6 Теорема Гливенко

Если $\vdash_{\kappa} \alpha$, то $\vdash_{\mathsf{u}} \neg \neg \alpha$

3.7 Теорема о противоречиях

Если в КИВ нашлось противоречие, то оно найдется в ИИВ.

Противоречием в данном случае будем называть $\vdash \alpha$ и $\vdash \neg \alpha$

4 Исчисление Предикатов

В исчислении предикатов добавляются дополнительные выражения и множества для теории моделей, а именно:

- 1. D предметное множество
- 2. V множество истинностных значений (обычно {True, False})
- 3. предикаты: $P = (D^n \to V)$
- 4. функциональные символы: $F = (D^n \to D)$
- 5. свободные переменные: $A: x_i \to (D)$
- 6. кванторы:

$$\forall x.\varphi = \begin{cases} \text{True,} & \llbracket \varphi \rrbracket^{x:=a} \text{ для всех а из D} \\ \text{False,} & \text{Иначе} \end{cases}$$

$$\exists x.\varphi = \begin{cases} \text{True,} & \llbracket \varphi \rrbracket^{x:=a} \text{ для какого-то а из D} \\ \text{False,} & \text{Иначe} \end{cases}$$

- 7. Формулы и выражения будем обозначать как φ
- 8. Термы будем обозначать как $\theta ::= f_i(\theta_1, \dots, \theta_n) | x_i$, где x_i предметная переменная.

Формула α общезначима, если $[\![\alpha]\!]= \mathbb N$ при любой оценке. Обозначается как $\models \alpha.$

В формуле $\forall x. \varphi$ все вхождения x в φ называются **связанными**.

Вхождение называется свободным, если оно не связанно.

В формуле $\varphi[x:=\psi]$ ψ свободно для подстановки вместо x в φ , если никакое свободное вхождение переменных в ψ не станет связанным.

Теория доказательств — теория доказательств для КИВ, с добавлением 11 и 12 схем аксиом, а также двумя правилами вывода:

11.
$$(\forall x.\varphi) \to \varphi[x := \theta]$$

12.
$$\varphi[x := \theta] \to \exists x. \varphi$$

1.
$$(\psi \to \varphi) \Rightarrow (\psi \to \forall x.\varphi)$$

2.
$$(\varphi \to \psi) \Rightarrow ((\exists x.\varphi) \to \psi)$$

Аксиомы можно применять при условии, что θ свободна для подстановки вместо x в φ . Правила вывода можно применять при условии, что x не входит свободно в ψ .

4.1 Теорема о дедукции

Если $\Gamma \vdash \alpha \to \beta$, тогда $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве отсутствуют правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

 α следует из Γ , если

- 1. Если все $\llbracket \gamma_i \rrbracket = \mathrm{H}$, то $\llbracket \alpha \rrbracket = \mathrm{H}$
- 2. Ни одна из оценок свободных переменных в γ_i не замещается в оценке для \forall и \exists в α

Обозначение: $\Gamma \models \alpha$

4.2 Теорема о корректности

Если $\Gamma \vdash \alpha$ и в выводе α нет кванторов по свободным переменным из Γ , то $\Gamma \models \alpha$.

Формула называется **замкнутой**, если она не содержит свободных переменных.

 Γ — непротиворечивое множество формул, если $\Gamma \not\vdash \alpha \& \neg \alpha$ для некоторого α .

Заметим, что если выводимо противоречие для некоторого α , то оно выводимо для любого α .

Γ — полное непротиворечивое множество замкнутых (бескванторных) формул, если:

- 1. Г содержит только замкнутые (бескванторные) формулы
- 2. если α некоторая замкнутая (бескванторная) формула, то $\alpha \in \Gamma$ или $\neg \alpha \in \Gamma$

4.3 Теорема о пополнении непротиворечивого множества формул

Пусть Γ — непротиворечивое множество замкнутых (бескванторных) формул. Тогда, какова бы ни была замкнутая (бескванторная) формула φ , хотя бы $\Gamma \cup \varphi$ или $\Gamma \cup \neg \varphi$ непротиворечиво.

4.4 Теорема о дополнении непротиворечивого множества формул до полного

Пусть Γ — непротиворечивое множество замкнутых (бескванторных) формул. Тогда найдется полное непротиворечивое множество замкнутых (бес-

кванторных) формул Δ , что $\Gamma \subseteq \Delta$.

Моделью для множества формул F назовем такую модель M, что при всяком $\varphi \in F$ выполнено $[\![\varphi]\!]_M = M$. Обозначение: $M \models \varphi$

4.5 Теорема о существовании модели

Любое непротиворечивое множество замкнутых бескванторных формул имеет модель. Построим эту модель.

- 1. D множество всех замкнутых бескванторных формул, а также строка "ошибка".
- 2. Функции оценим как конкатенацию значений аргументов.
- 3. Предикаты оценим как истину, если конкатенация значений аргументов принадлежит множеству формул M.
- 4. Все предметные переменые оценим как "ошибка". Заметим, что в данном случае предметных переменных не существует в силу замкнутости и бескванторности.

4.6 Теорема о непротиворечивости множества формул

Если у множества формул M есть модель, то оно непротиворечиво.

4.7 Теорема Геделя о полноте исчисления предикатов

Любое непротиворечивое множество замкнутых формул имеет модель.

Формула φ имеет **поверхностные кванторы** (находится в **предва- ренной форме**), если соответствует грамматике

$$\varphi ::= \forall x. \varphi | \exists x. \varphi | \tau$$

где τ — формула без кванторов. Другими словами, φ выглядит как сначала все кванторы, а потом бескванторная формула.

4.8 Теорема о предваренной форме

Для любой замкнутой формулы ψ найдется такая формула φ с поверхностными кванторами, что $\vdash \psi \to \varphi$ и $\vdash \varphi \to \psi$. (Не доказано в степике)

4.9 Следствие теоремы Геделя о полноте

Исчисление предикатов для замкнутых формул полно.

5 Формальная арифметика

Множество $N\left(N,0,'\right)$ соответствует **аксиоматике Пеано**, если следующее выполнено:

- 1. ('): $N \to N$, причем если $a, b \in N$ и a' = b', то a = b
- 2. Константа $0 \in N$: нет $x \in N$, что x' = 0
- 3. Индукция. Каково бы ни было свойство (предикат) $P: N \to V$, если:
 - (a) выполнено P(0)
 - (b) при любом $x \in N$, из P(x) следует P(x')

то при любом $x \in N$ выполнено P(x)

Заметим, что с помощью данного определения можно доказать, что 0 единственен.

Определим арифметические операции:

$$a+b = \begin{cases} a, & \text{если } b = 0\\ (a+c)', & \text{если } b = c' \end{cases}$$

$$a \cdot b = \begin{cases} 0, & \text{если } b = 0 \\ a \cdot c + a, & \text{если } b = c' \end{cases}$$

На основе данных определений можно, например, доказать, что сложение коммутативно, т.е. что a+b=b+a

Теорией первого порядка назовем исчисление предикатов с дополнительными ("нелогическими" или "математическими"):

- предикатными или функциональными символами
- аксиомами

Сущности, взятые из исходного исчисления предикатов назовем логическими.

Формальная арифметика — теория первого порядка, со следующими добавленными нелогическими

- 1. двуместными функциональными символами (+), (\cdot) , одноместным функциональным символом ('), нульместным функциональным символом 0
- 2. двуместным предикатным символом (=)
- 3. 8 нелогическими аксиомами(не схемами аксиом)

4. нелогической схемой аксиом индукции: $\psi[x:=0]\&(\forall x.\psi\to\psi[x:=x'])\to\psi$, с метапеременными x и ψ .

Также будем обозначать $x \leq y$ как $\exists a.x + a = y$

Отношение R называется **выразимым** в формальной арифметике, если существует формула $\alpha(x_1,\ldots x_n)$ с n свободными переменными, что для любых натуральных чисел $k_1,\ldots k_n$

- 1. если $(k_1, \ldots k_n) \in R$, то $\vdash \alpha(\overline{k_1}, \ldots \overline{k_n})$
- 2. если $(k_1, \ldots k_n) \notin R$, то $\vdash \neg \alpha(\overline{k_1}, \ldots \overline{k_n})$

Обозначим $\exists !y.\varphi(y)$ как $(\exists y.\varphi(y))\& \forall a. \forall b.\varphi(a)\& \varphi(b) \to a=b,$ где a,b не входят свободно в φ

Функция f от n аргументов называется **представимой** в формальной арифметике, если существует такая формула $\alpha(x_1, \dots x_{n+1})$ с n+1 свободными переменными, что для любых натуральных чисел $k_1, \dots k_{n+1}$

- 1. $f(k_1,\ldots k_n)=k_{n+1}$ тогда и только тогда, когда $\vdash \alpha(\overline{k_1},\ldots \overline{k_{n+1}})$
- $2. \vdash \exists! b. \alpha(\overline{k_1}, \dots \overline{k_n}, b)$

Можно доказать, что из единственности следует то, что $\neg(w=k_{n+1}) \vdash \neg\alpha(\overline{k_1},\dots w)$.

5.1 Теорема о соответствии рекурсивных и представимых функций

Функция является рекурсивной тогда и только тогда, когда она представима в формальной арифметике.

$$\beta$$
-функция Геделя — $\beta(b,c,i)=b \mod (1+(i+1)\cdot c)$

Заметим, что β -функция Геделя представима в Φ А:

$$\beta(b, c, i, d) := \exists q. (b = q \cdot (1 + c \cdot (i+1)) + d) \& (d < 1 + c \cdot (i+1))$$

5.2 Китайская теорема об остатках

Если u_0, \ldots, u_n — попарно взаимно-просты и $0 \le a_i < u_i$, то существует такое b, что $a_i = b \mod u_i$

5.3 Теорема о представимости массива с помощью β - функции Геделя

Если $a_0, \ldots, a_n \in N_0$, то найдутся такие $b, c \in N_0$, что $a_i = \beta(b, c, i)$

Возьмем $c = \max(a_0, \dots, a_n, n)!$ и $u_i = 1 + c \cdot (i+1)$. Можно доказать, что числа u_i попарно взаимно просты.

 β -функция Геделя нужна для доказательства представимости примитива R в ФА, а именно кодируются результаты рекурсии на каждом шаге в виде массива.

Пусть $\varphi = s_0 s_1 \dots s_{n-1}$ — формула. Тогда **Геделев номер** — $\lceil \varphi \rceil = 2^{\lceil s_0 \rceil} \cdot \dots p_{n-1}^{\lceil s_{n-1} \rceil}$. Аналогично можно задать Геделев номер доказательства как строку из формул.

Тезис Тьюринга-Черча — утверждение о том, что любая вычислимая функция вычислима с помощью рекурсивных функций.

5.4 Проверка доказательства на корректность

Следующая функция вычислима

$$proof(f,x_1,\ldots,x_n,y,p) = \begin{cases} 1, & \text{если} \vdash \varphi(\overline{x_1},\ldots\overline{x_n},\overline{y}), \text{ где } p - \Gamma \text{еделев номер вывода, a } f = \ulcorner \varphi \urcorner \\ 0, & \text{Иначе} \end{cases}$$

5.5 Проблема остановы

Невозможно написать программу p(s,a), которая вычисляет, остановится ли программа с исходным кодом s с аргументами a.

Определим функцию $\mathbf{W_1}$: $W_1(x,p)=1$, если $x=\lceil \xi \rceil$, где ξ — формула с единственной свободной переменной x_1 , а p — геделев номер доказательства самоприменения $\xi \colon \vdash \xi(\lceil \xi \rceil)$. Иначе, $W_1(x,p)=0$.

5.6 Теорема о существовании ω_1

Существует формула ω_1 со свободными переменными x_1, x_2 такая, что:

- 1. $\vdash \omega_1(\overline{\ulcorner \varphi \urcorner}, \overline{p})$, если p геделев номер доказательства самоприменения φ
- 2. $\vdash \neg \omega_1(\overline{\ulcorner \varphi \urcorner}, \overline{p})$ иначе

Напомним, что ΦA считается непротиворечивой, если нет формулы α такой, что $\vdash \alpha$ и $\vdash \neg \alpha$.

Формальная арифметика ω -непротиворечива, если для любой такой формулы $\varphi(x)$, что $\vdash \varphi(\overline{p})$ при всех $p \in N_0$, выполнено $\not\vdash \exists p. \neg \varphi(p)$.

5.7 Связь ω -непротиворечивости с непротиворечивостью

Если формальная арифметика ω -непротиворечива, то она непротиворечива.

Пусть $\sigma(x) := \forall p. \neg \omega_1(x,p)$: не существует доказательства для самоприменения x.

5.8 Первая теорема Геделя о неполноте арифметики

- 1. Если формальная арифметика непротиворечива, то $otag \sigma(\overline{\sigma})$
- 2. Если формальная ω -арифметика непротиворечива, то $\not\vdash \neg \sigma(\ulcorner \sigma \urcorner)$

5.9 Неполнота формальной арифметики

Если ФА непротиворечива, то $\models \sigma(\lceil \overline{\sigma} \rceil)$ в стандартной интерпретации: $D = N_0, a' = a+1$ и т.д.

Определим функцию $\mathbf{W_2}$: $W_2(x,p)=1$, если p — номер доказательства $\vdash \neg x(\lceil x \rceil)$.

Аналогично можно доказать, что существует формула ω_2 такая, что если $W_2(x,p)=1$, то $\vdash \omega_2(\overline{x},\overline{p})$ и $\vdash \neg \omega_2(\overline{x},\overline{p})$ иначе.

5.10 Теорема Геделя о неполноте в форме Россера

Пусть $\rho(x) := \forall p.\omega_1(x,p) \to \exists q.q < p\&\omega_2(x,q)$. Тогда если ФА непротиворечива, то $\not\vdash \rho(\ulcorner \rho \urcorner)$ и $\not\vdash \neg \rho(\ulcorner \rho \urcorner)$.

Пусть $\pi(x,p)$ — формула, что $\vdash \pi(x,p)$ когда proof(x,p)=1, и $\vdash \neg \pi(x,p)$ иначе.

Пусть
$$\pi_r(x) := \exists p.\pi(x,p)$$
 — формула "доказуемо".

Пусть
$$Consis := \neg \pi_r(\overline{\ \ 0' = 0 \ \ })$$

Рассмотрим Consis, заметим, что если ΦA непротиворечива, то не существует вывода 0'=0. Consis утверждает, что не существует такого вывода. Вторая теорема Геделя утверждает, что доказать это утверждение невозможно, то есть невозможно доказать, что невыводимо 0'=0.

5.11 Вторая теорема Геделя о неполноте

$$\vdash Consis \rightarrow \sigma(\overline{\ulcorner \sigma \urcorner})$$