4

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the Application of:

WILSON TAM ET AL.

CASE NO.: CL1253 US DIV

DIVISIONAL OF

APPLICATION NO.: 09/399,261

GROUP ART UNIT: 1711

FILED:

EXAMINER: D. TRUONG

FOR: POLYMERIC PHOSPHITE COMPOSITION AND HYDROCYANATION OF UNSATURATED ORGANIC COMPUNDS AND THE ISOMERIZATION OF UNSATURATED NITRILES

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Washington, DC 20231

Sir:

Before examination of the above-referenced application, please amend the application as follows:

IN THE SPECIFICATION:

Please add the following paragraph before the first paragraph on page 1: This application is a divisional of application number 09/399,261, which was filed on September 20, 1999.

IN THE CLAIMS:

(CLEAN VERSION)

14. (Once amended) A composition according to Claim 13 wherein said polyhydric alcohol is selected from the group consisting of $(OH)_{\rm m}$

 $(R^4)Ar^1-Ar^1(R^4)(OH)_m$ and $(OH)_m(R^4)Ar^1-A^1-Ar^1(R^4)(OH)_m$;

 Ar^1 and A^1 are the same as recited in Claim 13; and

each R^4 is independently selected from the group consisting of C_1 to C_{12} alkyl or cycloalkyl group, acetal, ketal, $-OR^3$, $-CO_2R^3$, C_6 to C_{20} aryl group, $-SiR^3$, $-CO_2R^3$, $-CO_2R^3$