A NEW METHOD TO SOLVE AND REFINE ALGEBRAIC INEQUALITIES

Mihály Bencze and Marius Drăgan

In this paper[1], we present a new method to solve and refine algebraic symmetric and homogeneous inequalities in three variables. Using this method we solve and refine some inequalities from Mathematical Reflections journal.

1. Introduction.

Let x, y, z positive numbers. We denote

$$s = x + y + z, \ p = xyz, \ \alpha = (x + y + z)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \ge 9, \ t = \frac{(x + y + z)^3}{xyz} \ge 27$$

We obtain the following formulas:

1).
$$\sum xy = \frac{\alpha p}{s}$$

2)
$$\sum x^2 - \frac{s^3 - 2p\alpha}{s^3 - 2p\alpha}$$

1).
$$\sum xy = \frac{1}{s}$$

2). $\sum x^2 = \frac{s^3 - 2p\alpha}{s}$
3). $\sum x^3 = s^3 - 3\alpha p + 3p$

4).
$$\sum x^4 = \frac{\left(s^3 - 2\alpha p\right)^2}{s^2} - \frac{2\alpha^2 p^2}{s^2} + 4sp$$

4).
$$\sum x^4 = \frac{(s^3 - 2\alpha p)^2}{s^2} - \frac{2\alpha^2 p^2}{s^2} + 4sp$$
5).
$$\sum (x - y)^4 = \frac{1}{s^2} \left(2s^6 - 12\alpha ps^3 + 18\alpha^2 p^2\right)$$
6).
$$\sum \frac{x}{2x + y + z} = \frac{s^3 + 2p\alpha + 3p}{2s^3 + \alpha p + p}$$
7).
$$\sum \frac{x}{y + z} = \frac{s^3 - 2\alpha p + 3p}{(\alpha - 1)p}$$

6).
$$\sum_{n=0}^{\infty} \frac{x}{2x+y+z} = \frac{s^3+2p\alpha+3p}{2s^3+\alpha p+p}$$

7).
$$\sum \frac{x}{y+z} = \frac{s^3 - 2\alpha p + 3p}{(\alpha - 1)p}$$

8).
$$\prod (x^2 - xy + y^2) = -8p^2 - 3s^3p + \alpha^2p^2 + 10\alpha p^2 - \frac{3\alpha^3p^3}{3}$$

9).
$$\sum xy(x+y) = (\alpha - 3)p$$

10).
$$\sum \frac{1}{(x+y)^2} = \frac{(s^3 + p\alpha)^2 - 4s^3p(\alpha - 1)}{(\alpha - 1)^2p^2s^2}$$

11).
$$\prod (2x^2 - xy + 2y^2) = -27p^2 - 20ps^3 + 8\alpha^2p^2 + 54\alpha p^2 - \frac{20\alpha^3p^3}{s^3}$$

Proof.

1). It follows from
$$\sum x \cdot \sum \frac{1}{x} = \alpha$$

2).
$$\sum x^2 = (\sum x)^2 - 2\sum xy = \frac{s^3 - 2\alpha p}{s}$$

2).
$$\sum x^2 = (\sum x)^2 - 2\sum xy = \frac{s^3 - 2\alpha p}{s}$$

3). $\sum x^3 = \sum x \sum x^2 - \sum xy \sum x + 3xyz = s^3 - 3\alpha p + 3p$

4).
$$\sum x^4 = (\sum x^2)^2 - 2\left[(\sum xy)^2 - 2xyz\sum x\right] = \frac{(s^3 - 2\alpha p)^2}{s^2} - \frac{2\alpha^2 p^2}{s^2} + 4sp$$

5).
$$\sum (x-y)^4 = 2(\sum x)^4 - 12\sum xy(\sum x)^2 + 18(xy)^2 = \frac{1}{s^2}(2s^6 - 12\alpha s^3 + 18\alpha^2 p^2)$$

6).
$$\sum \frac{x}{2x+y+z} = \frac{\sum x(s+x)(s+z)}{\prod(s+x)} = \frac{\sum x(s^2+s(s-x)+yz)}{2s^3+s\sum yz+xyz} = \frac{s^3+2\alpha p+3p}{2s^3+\alpha p+p}$$
7).
$$\sum \frac{x}{y+z} = \frac{\sum x\sum x^2+3xyz}{\prod(y+z)} = \frac{s^3-2\alpha p+3p}{(\alpha-1)p}$$
8).
$$\prod (x^2-xy+y^2) = -8(xyz)^2 - 3xyz(\sum x)^3 + (\sum xy)^2(\sum x)^2 + \frac{s^3-2\alpha p+3p}{(\alpha-1)p}$$

7).
$$\sum \frac{x}{y+z} = \frac{\sum x \sum x^2 + 3xyz}{\prod (y+z)} = \frac{s^3 - 2\alpha p + 3p}{(\alpha - 1)p}$$

8).
$$\prod (x^2 - xy + y^2) = -8(xyz)^2 - 3xyz(\sum x)^3 + (\sum xy)^2(\sum x)^2 +$$

$$+10xyz\sum xy\sum x-3\left(\sum xy\right)^{3}=-8p^{2}-3s^{3}p+\alpha^{2}p^{2}+10\alpha p^{2}-\frac{3\alpha^{3}p^{3}}{s^{3}}$$

9).
$$\sum xy(x+y) = \sum xys - 3xyz = p\alpha - 3p$$

10).
$$\sum \frac{1}{(x+y)^2} = \left[\frac{\sum (y+z)(z+x)}{\prod (x+y)}\right]^2 - 2\frac{\sum (x+y)}{\prod (x+y)} = \frac{\left(3\sum xy + \sum x^2\right)^2 - 4\sum x\prod (x+y)}{\prod (x+y)^2} = \frac{\left(s^3 + p\alpha\right)^2 - 4(\alpha - 1)s^3p}{(\alpha - 1)^2p^2s^2}$$

¹ 2010 Mathematics Subject Classification, 26D15. Key words and phrases. Inequality.

In the following we denote $t_{1,2} = \frac{\alpha^2 + 18\alpha - 27 \pm \sqrt{(\alpha - 1)(\alpha - 9)^3}}{8}$ $(t_1 \le t_2)$, $t_3 = 4\alpha - 9$, $t_4 = \frac{\alpha^3}{4\alpha - 9}$, $t = \frac{s^3}{p}$. Then it is true the theorem:

Theorem. Let $t = \frac{s^3}{p}$. Then:

$$t_3 \le t_1 \le t \le t_2 \le t_4$$

Proof. From Shur inequality we have

$$s^3 + 9p \ge 4\sum x\sum xy$$
 or $s^3 + 9p \ge 4\alpha p$ or $\frac{s^3}{p} \ge 4\alpha - 9$ from which $t \le t_3$

Also from Shur inequality we have $\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)^3 + \frac{9}{xyz} \ge 4\sum \frac{1}{yz}$ from which it follows that $t \le t_4$.

Also it's well known that if x, y, z are the positive roots of equation $x^3 - \sigma_1 x^2 + \sigma_2 x - \sigma_3 = 0$ Then

$$(x-y)^2(y-z)^2(z-x)^2 \ge 0 \iff 18\sigma_1\sigma_2\sigma_3 - 4\sigma_1^3\sigma_3 + \sigma_1^2\sigma_2^2 - 4\sigma_2^3 - 27\sigma_3^2 \ge 0$$

If we replace $\sigma_1 = \sum x$, $\sigma_2 = \sum xy$, $\sigma_3 = xyz$ we obtain that:

$$18\alpha - 4t + \alpha^2 - \frac{4\alpha^3}{t} - 27 \ge 0$$
 or $t_1 \le t \le t_2$

It is easy to prove that $t_3 \leq t_1$ and $t_2 \leq t_4$, $\forall \alpha \geq 9$

Also t_1, t_2 is the best bound depend only of α for which $t_1 \leq t \leq t_2$

2. Main Result

1. Let a, b, c positive numbers. Then

$$\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} \ge \frac{4(a^2+b^2+c^2)}{ab+bc+ca} + 2$$

An Zhenping, Mathematical Reflections 2/2020

Solution. We have $f(t) = \sum \frac{a+b}{c} - \frac{4\sum a^2}{\sum ab} = \alpha + 5 - \frac{4t}{\alpha} \ge f\left(\frac{\alpha^3}{4\alpha - 9}\right) = 2 + \frac{3(\alpha - 9)}{4\alpha - 9} \ge 2$ We obtain the following refinement: Let a, b, c positive numbers. Then

$$\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} \ge \frac{4\left(a^2 + b^2 + c^2\right)}{ab + bc + ca} + 2 + \frac{3\left(\alpha - 9\right)}{4\alpha - 9} \ge 2 \quad \text{Where} \quad \alpha = (a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$

2. Let a, b, c positive numbers. Then

$$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+4\left(\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\right)\geq\frac{9}{2}$$

Titu Zvonaru, S478, Mathematical Reflections

Solution. We have

$$f(t) = \sum \frac{a}{b+c} + 4\sum \frac{a}{2a+b+c} = \frac{t-2\alpha+3}{\alpha-1} + \frac{4t+8\alpha+12}{2t+\alpha+1},$$

 $\forall t \in [t_3, t_4]$ with positive root

$$t_0 = \frac{1}{2} \left(2\sqrt{(\alpha - 1)(3\alpha + 5)} - \alpha - 1 \right) \le t_3 = 4\alpha - 9$$

This inequality it's true if $\alpha > 3, 11...$ according WOLPHRAM ALPHA (WA) So for $\alpha \geq 9$. So f is increasing on $[t_3, t_4]$ or

$$f(t) \ge f(4\alpha - 9) = \frac{9}{2} + \frac{(\alpha - 9)(3\alpha - 11)}{2(\alpha - 1)(9\alpha - 17)}$$

We obtain the refinement.

Let a, b, c positive numbers. Then

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} + 4\left(\frac{a}{2a+b+c} + \frac{b}{2b+c+a} + \frac{c}{2c+a+b}\right) \ge \frac{9}{2} + \frac{(\alpha-9)(3\alpha-11)}{2(\alpha-1)(9\alpha-17)}$$

where $\alpha = (a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$

3. Let a, b, c positive numbers such that $a^2 + b^2 + c^2 = 3$. Prove that

$$a+b+c+\frac{3}{ab+bc+ca} \ge 4$$

An Zhenping, Mathematical Reflections 6/2021

Solution. Inequality from statement may be written as

$$(a+b+c)(ab+bc+ca) + 3 \ge 4(ab+bc+ca)$$

or after deconditionated

$$\sum a \sum ab \ge \left(4 \sum ab - \sum a^2\right) \sqrt{\frac{\sum a^2}{3}}$$

If $4\sum ab - \sum a^2 \le 0$ it's obviously true If $4\sum ab - \sum a^2 > 0$ or

$$4\frac{\alpha p}{s} - \frac{s^3 - 2p\alpha}{s} > 0 \Rightarrow 6\alpha - t > 0$$

we obtain $t < 6\alpha$.

In this case we square (1) and obtain

$$3\left(\sum a\sum ab\right)^{2} \ge \left(4ab - \sum a^{2}\right)^{2} \sum a^{2} \quad \text{or}$$

$$3\alpha^{2}p^{2} \ge \frac{\left(6\alpha p - s^{3}\right)^{2}}{s^{3}} \left(s^{3} - 2p\alpha\right) \quad \text{or}$$

$$3\alpha^{2}t \ge \left(6\alpha - t\right)^{2} \left(t - 2\alpha\right) \quad \text{or} \quad \left(8\alpha - t\right) \left(t - 3\alpha\right)^{2} \ge 0$$

which is true since $t < 6\alpha$ so $8\alpha - t > 2\alpha > 0$

4. Let a, b, c positive real numbers. Then

$$(a-b)^4 + (b-c)^4 + (c-a)^2 \le 6(a^4 + b^4 + c^4 - abc(a+b+c))$$

Nicusor Zlota, S473, Mathematical Reflections

Solution. If $\alpha = 9$ it's obviously. Let $\alpha > 9$ we have:

$$f(t) = \frac{\sum (a-b)^4}{\sum a^4 - abc \sum a} = \frac{2s^6 - 12\alpha ps^3 + 18\alpha^2 p^2}{(s^3 - 2\alpha p)^2 - 2\alpha^2 p^2 + 4s^3 p - s^3 p} = \frac{2t^2 - 12\alpha t + 18\alpha^2}{(t - 2\alpha)^2 - 2\alpha^2 + 3t^2}$$
with
$$f'(t) = \frac{2(t - 3\alpha)\left(3t + 2\alpha t - 8\alpha^2 + 9\alpha\right)}{(2\alpha^2 - 4\alpha t + t^2 + 3t)^2}$$

Since $t \geq t_3$ we have

$$(3+2\alpha)t - 8\alpha^2 + 9\alpha \ge (4\alpha - 9)(3+2\alpha) - 8\alpha^2 + 9\alpha = 3(\alpha - 9) \ge 0$$

So f is increasing on $[t_3, t_4]$ or $f(t) \leq f(\alpha_4) = \frac{2(\alpha - 9)(\alpha - 3)^2}{\alpha^3 - 7\alpha^2 + 17\alpha - 18}$

We have
$$\frac{2(\alpha - 9)(\alpha - 3)^2}{\alpha^3 - 7\alpha^2 + 17\alpha - 8} < 2$$

so we obtain the following improvements: Let a,b,c positive real numbers. Then

$$(a-b)^{4} + (b-c)^{4} + (c-a)^{4} \le \frac{2(\alpha-9)(\alpha-3)^{2}}{\alpha^{3} - 7\alpha^{2} + 17\alpha - 18} (a^{4} + b^{4} + c^{4} - abc(a+b+c)) \le$$

$$\le 2(a^{4} + b^{4} + c^{4} - abc(a+b+c))$$

5. Let a, b, c positive numbers such that a + b + c = 3. Then

$$(a^2 - ab + b^2)(b^2 - bc + c^2)(c^2 - ca + a^2) + 11abc \le 12$$

An Zhenping, O476, Mathematical Reflections

Solution. We have after deconditionate

$$\prod (a^2 - ab + b^2) + 11abc \left(\frac{\sum a}{3}\right)^3 - 12 \left(\frac{\sum a}{3}\right)^6 (8) =$$

$$= -8p^2 - 3ps^3 + p^2\alpha^2 + 10\alpha p^2 - \frac{3\alpha^3}{s^3}p^3 + 11\frac{ps^3}{3} - \frac{12s^6}{27^2} =$$

$$= p^2 \left(-8 - 3t + \alpha^2 + 10\alpha - \frac{3\alpha^3}{t} + \frac{11t}{27} - \frac{12t^2}{27^2}\right) = p^2 f(t)$$

$$f(t) = \alpha^2 + 10\alpha - 8 - \frac{70t}{27} - 3\frac{\alpha^3}{t} - \frac{4}{243}t^2, \ \forall t \in [t_3, t_4]$$
with
$$f'(t) = -\frac{70}{27} + \frac{3\alpha^3}{t^2} - \frac{8}{243}t^2 = \frac{-t^2(8t^2 + 630) + 729\alpha^3}{243t^2}$$
But
$$-t^2(8t^2 + 630) + 729\alpha^3 < -t_3^2(8t_3^2 + 630) + 729\alpha^3 < 0$$
since
$$-t_3^2(8t_3^2 + 630) + 729\alpha^3 < 0$$

if $\alpha > 3,91661$ we obtain since $\alpha \ge 9 > 3,9166$ that f is decreasing on $[t_3,t_4]$ or

$$f(t) \le f(t_3) = -\frac{(\alpha - 9)(13\alpha^2 + 936\alpha - 3402)}{243(4\alpha - 9)}, \ \forall \alpha \ge 9$$

We obtain the following refinement: Let a, b, c positive numbers such that a + b + c = 3. Then

$$(a^{2} - ab + b^{2}) (b^{2} - bc + c^{2}) (c^{2} - ca + a^{2}) + 11abc - 12 \le$$

$$\le \frac{-a^{2}b^{2}c^{2}(\alpha - 9) (13\alpha^{2} + 936\alpha - 3402)}{243(4\alpha - 9)} \le 0 \quad \text{where} \quad \alpha = \frac{3}{a} + \frac{3}{b} + \frac{3}{c}$$

6. Let a, b, c the sides, lengths of the sides of a triangle and F it's area. Then

$$a^{2} + b^{2} + c^{2} \le 4F\sqrt{\frac{6r}{R}} + 3\left[(a-b)^{2} + (b-c)^{2} + (c-a)^{2}\right]$$

Marius Stănean, Mathematical Reflections 6/2020

Solution. From Ravi's substitution we have: $\frac{r}{R} = \frac{4}{\alpha - 1}$ and

$$\sum (a-b)^2 = 2\sum x^2 - 2\sum xy = \frac{2s^2 - 4\alpha p}{s} - \frac{2p\alpha}{s} = \frac{2s^3 - 4\alpha p}{s}$$

Inequality may be written as

$$\frac{2s^3 - 2\alpha p}{s} \le 4\sqrt{ps}\sqrt{\frac{24}{\alpha - 1}} + \frac{3\left(2s^3 - 6\alpha p\right)}{s} \quad (F = \sqrt{xyz\left(x + y + z\right)} = \sqrt{ps}) \quad \text{or}$$

$$\frac{p}{s} \left[2t - 2\alpha - 8\sqrt{t}\sqrt{\frac{6}{\alpha - 1}} - 3\left(2t - 6\alpha\right)\right] \le 0$$

We consider the function $f:[t_3,t_4]\to R$ $f(t)=4t+8\sqrt{t}\sqrt{\frac{6}{\alpha-1}}-16\alpha$ which is increasing on $[t_3,t_4]$ so $f(t)\geq f(t_3)=8\sqrt{\frac{6(4\alpha-9)}{\alpha-1}}-36\geq 0, \ \forall \alpha\geq 9$ We obtain the refinement

$$a^{2} + b^{2} + c^{2} \le 4F\sqrt{\frac{6r}{R}} + 3\left[(a-b)^{2} + (b-c)^{2} + (c-a)^{2}\right] - 8r\sqrt{\frac{24\alpha - 54}{\alpha - 1}} + 36r$$
with $\alpha = (a+b+c)\left(\frac{1}{b+c-a} + \frac{1}{c+a-b} + \frac{1}{a+b-c}\right)$

$$\left(\text{We have } \frac{p}{s} = \frac{xyz}{x+y+z} = \frac{\prod(s-a)}{s} = \frac{F^{2}}{s^{2}} = r^{2}\right)$$

7. Let a, b, c positive real numbers. Then

$$\frac{a^{3} + b^{3} + c^{3}}{abc} + \frac{8abc}{(a+b)(b+c)(c+a)} \ge 4$$

Alessandro Ventullo, S435, Mathematical Reflections 1/2018

Solution. We have $\frac{\sum a^3}{abc} + \frac{8abc}{\prod(a+b)} = t - 3\alpha + 3 + \frac{8}{\alpha-1} \ge 4 + \frac{(\alpha-2)(\alpha-9)}{\alpha-1} \ge 4$ Refinement: Let a,b,c positive numbers, then

$$\frac{a^{3} + b^{3} + c^{3}}{abc} + \frac{8abc}{(a+b)(b+c)(c+a)} \ge 4 + \frac{(\alpha-2)(\alpha-9)}{\alpha-1}$$

where $\alpha = (a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$

8. Let a, b, c positive numbers. Prove that

$$\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} \ge \frac{4(a^2+b^2+c^2)}{ab+bc+ca} + 2$$

Solution. We have $f(t) = \sum \frac{a+b}{c} - \frac{4\sum a^2}{\sum ab} = \alpha + 5 - \frac{4t}{\alpha}, \ \forall t \in [t_3, t_4]$ which is decreasing, so

$$f(t) \ge f(t_4) = f\left(\frac{\alpha^3}{4\alpha - 9}\right) = 2 + \frac{3(\alpha - 9)}{4\alpha - 9}$$

So we obtain the improvement: Let a, b, c positive numbers. Prove that

$$\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} \ge \frac{4(a^2+b^2+c^2)}{ab+bc+ca} + 2 + \frac{3(\alpha-9)}{4\alpha-9}$$

9. Let a, b, c positive real numbers. Then

$$\frac{a}{\sqrt{b+c}} + \frac{b}{\sqrt{c+a}} + \frac{c}{\sqrt{a+b}} \ge \sqrt{\frac{3(a+b+c)}{2}}$$

Mircea Becheanu, Mathematical Reflections 2/2020

Solution. We denote $\sqrt{b+c}=x,\ \sqrt{c+a}=y,\ \sqrt{a+b}=z$ so

$$(x^2 + y^2 + z^2) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) - 2(x + y + z) \ge \sqrt{3(x^2 + y^2 + z^2)}$$
 or $ps\left[(t - 2\alpha)\alpha - 2t - \sqrt{3t(t - 2\alpha)}\right] \ge 0$

Let $f: [t_3,t_4] \to R$, $f(t) = (t-2\alpha)\alpha - 2t - \sqrt{3t(t-2\alpha)}$ with $f'(t) = \frac{\sqrt{3}(\alpha-t)}{\sqrt{t(t-2\alpha)}} + \alpha - 2$ with roots of f'(t) = 0, $t'_{1,2} = \alpha \left(1 \pm \frac{\alpha-2}{\sqrt{\alpha^2-4\alpha+1}}\right)$ ($t'_1 \le t'_2$) since $t'_2 < t_3$, $\forall \alpha > 5$, 044 we have not critic points. So f' have the same sign on $[t_3,t_4]$. But $f'(t_3) > 0$, $\forall \alpha > 5$, 044 so if $\alpha \ge 9$ so $f(t) \ge 0$, $\forall \alpha \in [t_3,t_4]$ or

$$f\left(t\right) \ge f\left(t_1\right) \ge f\left(t_3\right)$$

Since $f(t_3) > 0$, $\forall \alpha \geq 9$ it follows the statement we obtain the refinement

$$\frac{a}{\sqrt{b+c}} + \frac{b}{\sqrt{c+a}} + \frac{c}{\sqrt{a+b}} \ge \sqrt{\frac{3(a+b+c)}{2}} +$$

$$+ \left[2\alpha^2 - 17\alpha + 18 - \sqrt{3}\sqrt{8\alpha^2 - 54\alpha + 8}\right] \frac{\sqrt{\prod(a+b)}}{\left(\sum(a+b)\right)^2}$$
where $\alpha = \left(\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a}\right) \left(\frac{1}{\sqrt{b+c}} + \frac{1}{\sqrt{c+a}} + \frac{1}{\sqrt{a+b}}\right)$

Also let a, b, c positive numbers such that

$$\left(\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a}\right) \left(\frac{1}{\sqrt{a+b}} + \frac{1}{\sqrt{b+c}} + \frac{1}{\sqrt{c+a}}\right) = 10$$

Then

Then
$$\frac{a}{\sqrt{b+c}} + \frac{b}{\sqrt{c+a}} + \frac{c}{\sqrt{a+b}} \ge \sqrt{\frac{3(a+b+c)}{2}} + \left(\frac{200 - 75\sqrt{3}}{4}\right)\sqrt{\frac{\prod(a+b)}{\sum\sqrt{a+b}}}$$

Solution. We have $f\left(t_{1}\right)=\frac{200-75\sqrt{3}}{4}$ and since if $\alpha=10,\,f\left(t\right)\geq f\left(t_{1}\right)$ we obtain the statement.

10. Let x, y, z be nonnegative real numbers. Prove that

$$\frac{x^3 + y^3 + z^3 + 3xyz}{\sum\limits_{xydis} xy \left(x + y \right)} + \frac{5}{4} \ge \left(xy + yz + zx \right) \left[\frac{1}{\left(x + y \right)^2} + \frac{1}{\left(y + z \right)^2} + \frac{1}{\left(z + x \right)^2} \right]$$

Marius Stănean, Mathematical Reflections 4/2021

Solution. We have
$$\frac{\sum_{cyclic} x^3 + 3xyz}{\sum_{cyclic} xy(x+y)} - \sum xy \sum \frac{1}{(x+y)^2} + \frac{5}{4} \stackrel{(9)(10)}{=} \frac{s^3 - 3\alpha p + 6p}{p(\alpha - 3)} - \frac{p\alpha}{9} \cdot \frac{\left(s^3 + \alpha p\right)^2 - 4s^3 (\alpha - 1) p}{p^2 s^2 (\alpha - 1)^2} + \frac{5}{4} = \frac{t - 3\alpha + 6}{\alpha - 3} - \frac{\alpha \left[(t + \alpha)^2 - 4 (\alpha - 1) t \right]}{(\alpha - 1)^2 t} + \frac{5}{4} = f(t), \ t \in [t_1, t_2]$$
 with
$$f'(t) = \frac{(\alpha + 1) t^2 + \alpha^4 - 3\alpha^3}{(\alpha - 3) (\alpha - 1)^2 t^2} > 0, \ \forall \alpha \ge 9, \ t \in [t_1, t_2]$$

so

so
$$f(t) \ge f(t_1) = \frac{(\alpha - 9)\left(\alpha - 5 - \sqrt{(\alpha - 1)(\alpha - 9)}\right)}{4(\alpha - 1)(\alpha - 3)} \ge 0, \ \forall \alpha \ge 9$$

We obtain the refinement

$$\frac{\sum x^{3} + 3xyz}{\sum xy(x+y)} + \frac{5}{4} \ge \sum xy \sum \frac{1}{(x+y)^{2}} + \frac{(\alpha-9)(\alpha-5) - \sqrt{(\alpha-1)(\alpha-9)}}{4(\alpha-1)(\alpha-3)}$$

where $\alpha = \sum x \sum \frac{1}{x}$

11. Let x, y, z positive real numbers such that x + y + z = 1. Prove that:

$$\frac{1}{x^3 + y^3 + z^3} + \frac{24}{xy + yz + zx} \ge 81$$

Nyugen Viet Hung, Mathematical Reflections 1/2021

Solution. After deconditionate we obtain:

$$\frac{1}{\sum x^3} + \frac{24}{\sum yz \sum x} \ge \frac{81}{(\sum x)^3} \stackrel{3)}{\Rightarrow} \frac{1}{s^3 - 3p\alpha + 3p} + \frac{24}{p\alpha} \ge \frac{81}{s^3} \quad \text{or} \quad \frac{1}{p} f(t) \ge 0$$
where $f(t) = \frac{1}{t - 3\alpha + 3} + \frac{24}{\alpha} - \frac{81}{t} \ge 0, \ \forall t \in [t_3, t_4]$ with
$$f'(t) = \frac{(8t - 27\alpha + 27)(10t - 27\alpha + 27)}{t^2 (t - 3\alpha + 3)^2}, \ t \in [t_3, t_4]$$

sine
$$t \ge 4\alpha - 9 \Rightarrow 8t - 27\alpha + 27 \ge 32\alpha - 72 - 27\alpha + 27 - 5\alpha - 45 \ge 0 \ (\alpha \ge 9)$$

Also
$$10t - 27\alpha + 27 \ge 40\alpha - 90 - 27\alpha + 27 = 13\alpha - 63 \ge 54 > 0$$

so $f'(t) \ge 0$ or f is increasing so

$$f(t) \ge f(4\alpha - 9) = \frac{(\alpha - 9)(19\alpha - 144)}{(\alpha - 6)\alpha(4\alpha - 9)} \ge 0$$

So inequality from statement accept the following refinement: Let x,y,z>0, x+y+z=1, $\alpha=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ then

$$\frac{1}{x^3 + y^3 + z^3} + \frac{24}{xy + yz + zx} \ge 81 + \frac{(\alpha - 9)(19\alpha - 14)}{xyz(\alpha - 6)\alpha(4\alpha - 9)} \ge 81$$

12. Let x, y, z be nonnegative numbers. Prove that

$$x^{3} + y^{3} + z^{3} \ge \sqrt{\frac{1}{3} \prod_{cyclic} (2x^{2} - xy + 2y^{2})} \ge \sum xy(x + y) - 3xyz$$

Marius Stănean, Mathematical Reflections 4/2020

Solution. The left side of inequality from statement may be written as according (3) and (11)

$$3\left(s^3 - 3\alpha p + 3p\right)^2 \ge -27p^2 - 20ps^3 + 8p^2\alpha^2 + 54p^2\alpha - 20\frac{p^3\alpha^3}{s^3}$$

or $p^2 f(t) \ge 0$, $\forall t \in [t_3, t_4]$ where

$$f(t) = 3(t - 3\alpha + 3)^2 + 27 + 20t - 8\alpha^2 - 54\alpha + \frac{20\alpha^3}{t} \ge 0, \ \forall t \in [t_3, t_4]$$

with

with
$$f'(t) = -\frac{20\alpha^3}{t^2} - 18\alpha + 6t + 38 \ge \frac{-20\alpha^3}{t^2} + 6(4\alpha - 9) - 18\alpha + 38 =$$

$$= 6\alpha - 16 - \frac{20\alpha^3}{t^2} \ge 6\alpha - 16 - \frac{20\alpha^3}{(4\alpha - 9)^2} \ge 0, \ \forall \alpha > 5,8808$$

(we use $t \ge t_3 = 4\alpha - 9$).

It follows that f is increasing, so

$$f(t) \ge f(t_3) = (\alpha - 9)^2 \left(\alpha - \frac{9}{4}\right) \ge 0$$

so we obtain the refiement. $\forall x, y, z \geq 0$ it's true.

$$x^{3} + y^{3} + z^{3} \ge \sqrt{\frac{1}{3} \prod_{cyclic} (2x^{2} - xy + 2y^{2}) + \frac{1}{3} (\alpha - 9)^{2} \left(\alpha - \frac{9}{4}\right) x^{2} y^{2} z^{2}}$$

where $\alpha = (x + y + z) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right)$

The right side of inequality from statement it's equivalent with

$$\prod_{cyclic} (2x^2 - xy + 2y^2) \ge 3 \left[\sum xy (x+y) - 3xyz \right]^2$$

or from (11)

$$-27p^{2} - 20ps^{3} + 8\alpha^{2}p^{2} + 54\alpha p^{2} - \frac{20\alpha^{3}p^{3}}{s^{3}} \ge 3p^{2}(\alpha - 6)^{2} \quad \text{or} \quad p^{2}g(t) \ge 0$$
$$-27 - 20t + 8\alpha^{2} + 54\alpha - \frac{20\alpha^{3}}{t} - 3(\alpha - 6)^{2} \ge 0, \ t \in [t_{1}, t_{2}]$$

or in an equivalent form

$$4t^2 - (\alpha^2 + 18\alpha - 27)t + 4\alpha^3 \le 0, \ t \in [t_1, t_2]$$

which is true, since the roots of

$$4t^2 - (\alpha^2 + 18\alpha - 27)t + 4\alpha^3 = 0$$
 are t_1 and t_2

If we consider the function $g:[t_1,t_2]\to R$

$$g(t) = -27 - 20t + 8\alpha^{2} + 54\alpha - \frac{20\alpha^{3}}{t} - 3(\alpha - 6)^{2}$$

with $g'(t) = \frac{20(\alpha^3 - t^2)}{t^2}$ with root $t' = \alpha^{\frac{3}{2}} \in [t_1, t_2]$ we observe that t' is a maximum point for f. It follows that $g(t) \leq g(t') = (\sqrt{\alpha} - 3)(\sqrt{\alpha} + 1)$. We obtain that for each positive numbers x, y, z holds the inequality

$$\frac{1}{3} \prod_{cyclic} \left(2x^2 - xy + 2y^2\right) \le \left(\sum_{xyxlix} xy\left(x+y\right) - 3xyz\right)^2 + \frac{x^2y^2z^2}{3} \left(\sqrt{\alpha} - 3\right) \left(\sqrt{\alpha} + 1\right)$$

where $\alpha = (x + y + z) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$

13. Prove that the following inequality holds for all positive real numbers.

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{9(a+b+c)}{ab+bc+ca} \ge 8\left(\frac{a}{a^2+bc} + \frac{b}{b^2+ca} + \frac{c}{c^2+ab}\right)$$

Nyugen Viet Hung, Mathematical Reflections 1/2019

Solution.

We have
$$\sum \frac{a}{a^2 + bc} = \frac{\sum a \left(b^2 + ca\right) \left(c^2 + ab\right)}{\prod (a^2 + bc)} =$$

$$= \frac{-abc \left(a + b + c\right)^2 + \left(ab + bc + ca\right)^2 \left(a + b + c\right) - 2abc \left(ab + bc + ca\right)}{8a^2b^2c^2 + abc \left(\sum a\right)^3 - 6abc \sum ab \sum a + \left(\sum ab\right)^3} =$$

$$= \frac{-ps^2 + \frac{p^2\alpha^2}{s^2} \cdot s - 2p\frac{p\alpha}{s}}{8p^2 + ps^3 - 6p\frac{p\alpha}{s}s + \frac{p^3\alpha^3}{s^3}} = \frac{\left(-ps^3 + p^2\alpha^2 - 2p^2\alpha\right)s^2}{8p^2s^3 + ps^6 - 6\alpha p^2s^3 + p^3\alpha^3}$$

The inequality from statement may be written as:

$$\frac{\alpha}{s} + \frac{9s^2}{p\alpha} \ge \frac{8s^2 \left(-ps^3 + p^2\alpha^2 - 2p^2\alpha\right)}{8p^2s^3 + ps^6 - 6p^2\alpha s^3 + p^3\alpha^3} \quad \text{or}$$

$$\alpha + \frac{9t}{\alpha} - \frac{8t \left(-t + \alpha^2 - 2\alpha\right)}{8t + t^2 - 6\alpha t + \alpha^3} \ge 0 \quad \text{or}$$

$$f(t) = 9t^3 + (72 - 46\alpha + \alpha^2)t^2 + (24\alpha^2 - 5\alpha^3)t + \alpha^5 \ge 0, \forall t \in [t_3, t_4]$$

We have

$$f'(t) = 27t^2 + \left(2\alpha^2 + 144 - 92\alpha\right)t - 5\alpha^3 + 24\alpha^2, \forall t \in [t_3, t_4]$$
 with
$$t'_{1,2} = \frac{1}{27}\left(-\alpha^2 + 46\alpha - 72 \pm \sqrt{\alpha^4 + 43\alpha^3 + 1612\alpha^2 - 6624\alpha + 5184}\right), \left(t'_1 \le t'_2\right)$$

Since $t_2' < 4\alpha - 9$, $\forall \alpha > 3,666$ so if $\alpha \ge 9$ it follows that $f'(t) \ge 0$, $\forall t \in [t_3, t_4]$ so f is increasing on $[t_3, t_4]$ or $f(t) \ge f(t_3)$. But $f(t_3) \ge 0$, $\forall \alpha \ge 9$ (WA) from which it follows the statement.

14. Let a, b, c be the side lengths of triangle with inradius r and circumradius R. Prove that

$$\frac{R}{r} + 1 + \sqrt{5} \ge \left(3 + \sqrt{5}\right) \frac{a^2 + b^2 + c^2}{ab + bc + ca}$$

Marius Stănean, Mathematical Reflections 4/2021,

Solution. We have using Ravi substitution that

$$\frac{a^2 + b^2 + c^2}{ab + bc + ca} = \frac{\sum (y+z)^2}{\sum (x+y)(x+z)} = \frac{2\sum x^2 + 2\sum yz}{\sum x^2 + 3\sum yz} =$$
$$= \frac{2s^3 - 2\alpha p}{s^3 + \alpha p} = \frac{2t - 2\alpha}{t + \alpha} \text{ and } \frac{R}{r} = \frac{\alpha - 1}{4}$$

Inequality from statement may be written as

$$\frac{\alpha - 1}{4} + 1 + \sqrt{5} \ge \left(3 + \sqrt{5}\right) \frac{(2t - 2\alpha)}{t + \alpha}$$

Let $f:[t_1,t_2]\to R$

$$f(t) = \frac{\left(3 + \sqrt{5}\right)\left(2t - 2\alpha\right)}{t + \alpha} - \frac{\alpha + 3}{4} - \sqrt{5}$$

which is increasing on $[t_1, t_2]$ so $f(t) \leq f(t_2)$.

We will prove that $f(t_2) \leq 0$, which is true according W.A. if $\alpha \geq 9$ with equality if $\alpha = 9$ or $\alpha = \frac{25+12\sqrt{5}}{5} \simeq 10,36$.

If $\alpha = 9$ we obtain x = y = z or a = b = c.

If
$$\alpha = \frac{25 + 12\sqrt{5}}{5}$$
 we obtain $y = z = \frac{x}{\sqrt{5}}$ so $a = \frac{2}{\sqrt{5}}$, $b = \left(1 + \frac{1}{\sqrt{5}}\right)k$, $c = \left(1 + \frac{1}{\sqrt{5}}\right)k$, $k > 0$

15. Let x, y, z positive numbers such that

$$(x+y+z)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = \alpha \ge 9$$

Find the minimum and maximum of

$$(x^3 + y^3 + z^2) \left(\frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3}\right)$$

Marius Drăgan

Solution. We have

$$x^{3} \sum \frac{1}{x^{3}} = \frac{\sum x^{3} \sum y^{3} z^{3}}{(xyz)^{3}} = \frac{1}{p^{3}} \left(9p^{3} + 3p^{2}s^{3} - 18p^{2} \frac{p\alpha}{s}s - 3p \frac{p\alpha}{s}s^{4} + \frac{p^{3}\alpha^{3}}{s^{3}}s^{3} + 9p \frac{p^{2}\alpha^{2}}{s^{2}}s^{2} - 3\frac{p^{4}\alpha^{4}}{s^{4}}s + \frac{p^{3}\alpha^{3}}{s^{3}} \right) = 9 + \frac{3s^{3}}{p} - 18\alpha - \frac{3\alpha s^{3}}{p} + \alpha^{3} + 9\alpha^{2} - 3\alpha^{4} \frac{p}{s^{3}} + \frac{3\alpha^{3}p}{s^{3}} =$$

$$= 9 + 3t - 18\alpha - 3\alpha t + \alpha^{3} + 9\alpha^{2} - \frac{3\alpha^{4}}{t} + \frac{3\alpha^{3}}{t} =$$

$$= \alpha^{3} + 9\alpha^{2} - 18\alpha + 9 + (3 - 3\alpha)t + \frac{3\alpha^{3} - 3\alpha^{4}}{t} = f(t), \ t \in [t_{1}, t_{2}]$$

According WA, $t_1 \le \alpha^{\frac{3}{2}} \le t_2$, $\forall \alpha \ge 9$. So $\min_{t \in [t_1, t_2]} f(t) = \min \{ f(t_1), f(t_2) \}$, $\max_{t \in [t_1, t_2]} f(t) = f(\alpha^{\frac{3}{2}})$. We have:

$$f(t_1) = \frac{1}{4} \left(\alpha^3 - 15\alpha^2 + 63\alpha - 45 \right), f(t_2) = \frac{1}{4} \left(\alpha^3 - 15\alpha^2 + 63\alpha - 45 \right), f\left(\alpha^{\frac{3}{2}} \right) = \left(\sqrt{\alpha^3} - 3\alpha + 3 \right)^2$$

$$\min\left\{ \left(x^3 + y^3 + z^3\right) \left(\frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3}\right) / x, y, z > 0, \ (x + y + z) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = \alpha \ge 9 \right\} = \frac{1}{4} \left(\alpha^3 - 15\alpha^2 + 63\alpha - 45\right) \quad \text{and}$$

$$\max\left\{\left(x^3 + y^3 + z^3\right)\left(\frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3}\right)/x, y, z > 0, \ (x + y + z)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = \alpha \geq 9\right\} = \left(\alpha^{\frac{3}{2}} - 3\alpha + 3\right)^2$$

16. Let a, b, c positive numbers. Prove that

$$\frac{b+c}{a^2} + \frac{c+a}{b^2} + \frac{a+b}{c^2} - \frac{9}{a+b+c} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

Adrian Andreescu, Mathematical Reflections 2/2020

Solution. We have in an equivalent form

$$s\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) - \sum \frac{1}{a} - \frac{9}{s} - \sum \frac{1}{a} \ge 0 \quad \text{or}$$

$$s\left[\left(\sum \frac{1}{a}\right)^2 - 2\sum \frac{1}{ab}\right] - 2\sum \frac{1}{a} - \frac{9}{s} \ge 0 \quad \text{or}$$

$$s\left(\frac{\alpha^2}{s^2} - \frac{2s}{p}\right) - \frac{2\alpha}{s} - \frac{9}{s} \ge 0 \quad \text{or} \quad \frac{\alpha^2 - 2\alpha - 9}{s} - \frac{2s^2}{p} \ge 0 \quad \text{where}$$

$$f(t) = \alpha^2 - 2\alpha - 9 - 2t \ge 0, \ \forall t \in [t_3, t_4] \quad \text{or} \quad \frac{1}{s} f(t) \ge 0, \ \forall t \in [t_3, t_4]$$

But $f(t) \ge f(t_4)$, $\forall \alpha \ge 9$

$$f(t_4) = \alpha^2 - 2\alpha - 9 - \frac{2\alpha^3}{4\alpha - 9} = \frac{(\alpha - 9)(2\alpha^2 + \alpha - 9)}{4\alpha - 9} \ge 0, \ \forall \alpha \ge 9$$

We obtain the following refinement

$$\sum \frac{b+c}{a^2} - \frac{9}{\sum a} \ge \sum \frac{1}{a} + \frac{1}{\sum a} \cdot \frac{(\alpha-9)\left(2\alpha^2 + \alpha - 9\right)}{4\alpha - 9} \ge \sum \frac{1}{a}$$

where $\alpha = \sum a \sum \frac{1}{a}$

17. Prove that for every positive real numbers holds

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge \frac{27\left(a^3+b^3+c^3\right)}{\left(a+b+c\right)^3} + \frac{21}{4}$$

Nyugen Viet Hung, Mathematical Reflections 1/2020

Solution. We have
$$f(t) = \sum a \sum \frac{1}{a} - \frac{27 \sum a^3}{(\sum a)^3} = \alpha - \frac{27(s^3 - 3p\alpha + 3p)}{s^3} = \alpha - 27 + \frac{81\alpha - 81}{t}, \ \forall t \in [t_1, t_2]$$

Since f is decreasing on $[t_1, t_2]$. We have:

$$f(t) \ge f(t_2) = \alpha - 27 + \frac{8(81\alpha - 81)}{\alpha^2 + 16\alpha - 27 + \sqrt{(\alpha - 1)(\alpha - 9)^3}} = g(\alpha)$$

So $f(t) \ge \inf_{\alpha > 0} g(\alpha) \stackrel{WA}{=} \frac{21}{4}$ at $\alpha = \frac{27}{2}$. The equality come true if

$$\left\{ (a+b+c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) = \frac{27}{2}, \frac{9\sum a^3}{\left(\sum a\right)^3} = \frac{11}{4}, \ a,b,c > 0 \right\}$$

Solution are of form $(k, k, 4k), k \neq 0$.

We obtain the following refinement: Prove that for every positive real numbers holds

$$(a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \ge \frac{27\left(a^3 + b^3 + c^3\right)}{\left(a+b+c\right)^3} + \alpha - \frac{87}{4} + \frac{8\left(81\alpha - 81\right)}{\alpha^2 + 18\alpha - 27 + \sqrt{(\alpha-1)\left(\alpha - 9\right)^3}} \ge \frac{27\left(a^3 + b^3 + c^3\right)}{\left(a+b+c\right)^3} + \frac{21}{4}$$

where $\alpha = (a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$

18. Let x, y, z positive numbers such that

$$(x+y+z)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = \alpha \ge 9$$

Find the minimum and the maximum of $\left(x^4 + y^4 + z^4\right) \left(\frac{1}{x^4} + \frac{1}{y^4} + \frac{1}{z^4}\right)$ Solution. We have: $\sum x^4 \cdot \sum \frac{1}{x^4} = \frac{1}{(xyz)^4} \sum x^4 \sum y^4 z^4 =$

$$= \frac{1}{p^4} \left(8p^3s^3 + 16p^3\frac{p\alpha}{s}s + 2p^2s^6 - 4p^2\frac{p\alpha}{s}s^4 - 28p^2\frac{p^2\alpha^2}{s^2}s^2 + 8p^2\frac{p^3\alpha^3}{s^3} - 4p^2\frac{p^2\alpha^2s^5}{s^2} + \frac{p^4\alpha^4}{s^4}s^4 + 16p\frac{p^3\alpha^3}{s^3}s^3 - \frac{4p^5\alpha^5}{s^5}s^2 - 4p\frac{p^4\alpha^4}{s^4}s + \frac{2p^6\alpha^6}{s^6} \right) =$$

$$= 8t + 16\alpha + 2t^2 - 4\alpha t - 28\alpha^3 + \frac{8\alpha^3}{t} - 4\alpha^2t + \alpha^4 + 16\alpha^3 -$$

$$-\frac{4\alpha^5}{t} - \frac{4\alpha^4}{t} + \frac{2\alpha^6}{t^2} = f\left(t\right), \ \forall t \in [t_1, t_2]$$
We have
$$f'\left(t\right) = \frac{4\left(t^2 - \alpha^3\right)\left[t^2 - \left(\alpha^2 + \alpha - 2\right)t + \alpha^3\right]}{t^3}$$

with roots $t_6 = \alpha^{\frac{2}{3}}$, $t_{4,5} = \frac{\alpha^2 + \alpha - 2 \pm \sqrt{\alpha^4 - 2\alpha^3 - 3\alpha^2 - 4\alpha + 4}}{2}$ $(t_4 \le t_5)$ According WA we have $t_4 \le t_1$, $t_2 \le t_5$, $t_1 \le t_6$, $t_6 \le t_2$, $\forall \alpha \ge 9$. So $t_4 \le t_6 \le t_2 \le t_5$, $\forall \alpha \ge 9$ so if $t \in [t_1, t_6]$ f is increasing and if $t \in [t_6, t_2]$ f is decreasing so

$$\min_{t \in [t_1, t_2]} f(t) = \min \left\{ f(t_1), f(t_2) \right\}, \ \max_{t \in [t_1, t_2]} f(t) = f(t_6)$$

We use WA. So

$$f(t_1) = \alpha^4 + 16\alpha^3 - \frac{1}{2}\left(\alpha^2 + 18\alpha - 27 - \sqrt{(\alpha - 1)(\alpha - 9)^3}\right)\alpha^2 - \alpha^4$$

$$-27\alpha^{2} - \frac{1}{2}\left(\alpha^{2} + 18\alpha - \sqrt{(\alpha - 1)(\alpha - 9)^{3}} - 27\right)\alpha + \frac{\left(\alpha^{2} + 18\alpha - 27 - \sqrt{(\alpha - 1)(\alpha - 9)^{3}}\right)^{2}}{32} =$$

$$=\frac{32\alpha^{5}+32\alpha^{4}-64\alpha^{3}}{\alpha^{2}+18\alpha-27-\sqrt{\left(\alpha-1\right)\left(\alpha-9\right)^{3}}}+34\alpha-\sqrt{\left(\alpha-1\right)\left(\alpha-9\right)^{3}}-27+\frac{128\alpha^{6}}{\left(\alpha^{2}+18\alpha-27-\sqrt{\left(\alpha-1\right)\left(\alpha-9\right)^{3}}\right)^{2}}=$$

$$=\alpha^{4} + 16\alpha^{3} - \frac{\alpha^{4}}{2} - 9\alpha^{3} + \frac{27}{2}\alpha^{2} - 27\alpha^{2} - \frac{\alpha^{3}}{2} - 9\alpha^{2} + \frac{27\alpha}{2} + \frac{\alpha^{4}}{16} + \frac{\alpha^{3}}{4} + \frac{135\alpha^{2}}{8} - \frac{243\alpha}{4} + \frac{729}{16} + \left(\frac{\alpha^{2}}{2} + \frac{\alpha}{2}\right)\sqrt{(\alpha - 1)(\alpha - 9)^{3}} + \left(-\frac{\alpha^{2}}{16} - \frac{9\alpha}{8} + \frac{27}{16}\right) \cdot \sqrt{(\alpha - 1)(\alpha - 9)^{3}} - \frac{7}{16}\alpha^{4} - \frac{37}{4}\alpha^{3} + \frac{179}{8}\alpha^{2} - \frac{117}{4}\alpha + \frac{297}{16} + \left(-\frac{7}{16}\alpha^{2} + \frac{10}{16}\alpha - \frac{11}{16}\right)\sqrt{(\alpha - 1)(\alpha - 9)^{3}} - \sqrt{(\alpha - 1)(\alpha - 9)^{3}} + \frac{134\alpha - 27}{8} - \frac{\alpha^{4}}{8} - \frac{5\alpha^{3}}{2} + \frac{67\alpha^{2}}{4} - \frac{85\alpha}{2} + \frac{297}{8}$$

In same way we obtain $f(t_2) = f(t_1)$, so

$$\min_{x,y,z>0} \left(x^4 + y^4 + z^4\right) \left(\frac{1}{x^4} + \frac{1}{y^4} + \frac{1}{z^4}\right) = \frac{\alpha^4}{8} - \frac{5\alpha^3}{2} + \frac{67\alpha^2}{4} - \frac{85\alpha}{2} + \frac{297}{8}$$

If $\alpha = 11$ we obtain:

$$\min_{x,y,z>0} (x^4 + y^4 + z^4) \left(\frac{1}{x^4} + \frac{1}{y^4} + \frac{1}{z^4}\right) = 99$$

which represent S520 from Mathematical Reflections 4/2020, author Marius Stănean. Also

$$\max (x^4 + y^4 + z^4) \left(\frac{1}{x^4} + \frac{1}{y^4} + \frac{1}{z^4}\right) = \alpha \left(\sqrt{\alpha} - 2\right)^2 \left(\alpha - 2\sqrt{\alpha} - 2\right)^2$$

19. Find the greatest constant k such the inequality

$$\frac{a^2+b^2+c^2}{ab+bc+ca}+\lambda \geq \frac{2}{3}\left(1+\lambda\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)$$

holds for all positive real numbers.

Solution.

$$\frac{s^3 - 2p\alpha}{p\alpha} + \lambda \ge \frac{2}{3} (1 + \lambda) \frac{s^3 - 2p\alpha + 3p}{p(\alpha - 1)}$$

$$\frac{t - 2\alpha}{\alpha} + \lambda \ge \left(\frac{2}{3} + \frac{2}{3}\lambda\right) \frac{t - 2\alpha + 3}{\alpha - 1}$$

$$\frac{t - 2\alpha}{\alpha} - \frac{2}{3} \cdot \frac{t - 2\alpha + 3}{\alpha - 1} \ge \lambda \left(\frac{2t - 4\alpha + 6}{3\alpha - 3} - 1\right) \quad \text{or}$$

$$\frac{(\alpha - 3)t - 2\alpha^2}{\alpha (2t - 7\alpha + 9)} \ge \lambda \quad \text{since}$$

$$2t - 7\alpha + 9 \ge 2(4\alpha - 9) - 7\alpha + 9 = \alpha - 9 \ge 0$$

Let $f: [t_1, t_2] \to R$, $f(t) = \frac{(\alpha - 3)t - 2\alpha^2}{\alpha(2t - 7\alpha + 9)}$ with $f'(t) = \frac{1}{\alpha} \cdot \frac{\left(-5\alpha^2 + 30\alpha - 27\right)}{\left(-7\alpha + t + 9\right)^2}$, $\forall t \in [t_1, t_2]$ since $-5\alpha^2 + 30\alpha - 27 < 0$ if $\alpha > \frac{15 + 3\sqrt{10}}{5} \simeq 4$, 89 so if $\alpha \geq 9$ it follows that f is decreasing on $[t_1, t_2]$ so $f(t) \geq f(t_2)$ so $\lambda \leq f(t_2)$, $\forall \alpha \geq 9$ so the greatest constant is

$$\lambda_0 = \inf_{\alpha \ge 9} f(t_2) = \inf_{\alpha \ge 9} \frac{(\alpha - 3) t_2 - 2\alpha^2}{\alpha (2t_2 - 7\alpha + 9)} = \frac{1}{2}$$

20. Prove that in any triangle ABC

$$\frac{(a+b)(b+c)(c+a)}{4abc} \le 1 + \frac{R}{2r}$$

Marius Stănean, Mathematical Reflections 6/2020

Solution Inequality may be written as

$$\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{4abc} \le 1 + \frac{abc}{8\prod\left(s-a\right)}$$

Using the Ravi subtitution a = y + z, b = z + x, c = x + y we obtain

$$\frac{\prod (x+y+2z)}{4\prod (y+z)} \le 1 + \frac{\prod (x+z)}{8xyz}$$
But
$$\prod (x+y+2z) = 2\left(\sum x\right)^3 + \sum xy \sum x + xyz$$
so
$$\frac{2s^3 + p\alpha + p}{4\left(p\alpha - p\right)} \le 1 + \frac{p\alpha - p}{8p} \text{ or}$$

$$\frac{2t + \alpha + 1}{4\alpha - 4} \le 1 + \frac{\alpha - 1}{8} \quad \text{or} \quad f\left(t\right) = \frac{2t + \alpha + 1}{4\alpha - 4} - 1 - \frac{\alpha - 1}{8} \le 0, \ \forall t \in [t_3, t_4]$$
But
$$f\left(t\right) \le f\left(t_4\right) = -\frac{\left(\alpha - 9\right)\left(7\alpha - 9\right)}{8\left(\alpha - 1\right)\left(4\alpha - 9\right)} \le 0, \ \forall \alpha \ge 9$$

REFERENCES

- [1] Drăgan, M., A method to solve and refine some Algebraic inequalities, Recreatii Matematice nr.1 $(2021), \, {\rm page} \,\, 14\text{-}18$
 - [2] Octogon Mathematical Magazine (1993-2022)
 - [3] Mathematical Reflections (2010-2022)

Email: benczemihaly@gmail.come Email: marius.dragan2005@yahoo.com