

Relations fonctionnelles

$$\implies \exp(x) = e^x$$

$$\Rightarrow e^x \times e^y = e^{x+y}.$$

$$\implies \frac{\exp(x)}{\exp(y)} = \exp(x - y).$$

$$\Leftrightarrow (e^x)^n = e^{nx}$$
.

$$\Rightarrow a^x = e^{x \times \ln(a)} \text{ pour } a > 0.$$

$$\Rightarrow x^a = e^{a \times \ln(x)} \text{ pour } x > 0.$$

Signe de l'exponentielle

 $e^x > 0$ pour n'importe quelle valeur de x, même si x est négatif.

Lien avec le logarithme

$$\implies$$
 $\ln(\exp(x)) = x \overline{\text{pour } x \in \mathbb{R}}.$

$$\implies \exp(\ln(x)) = x \text{ pour } x > 0.$$

Valeur particulière

Limites

$$ightharpoonup$$
 Pour n un entier plus grand que 1, $\lim_{x \to -\infty} e^x = 0$.

$$\implies$$
 Pour n un entier plus grand que 1, $\lim_{x \to +\infty} e^x = +\infty$.

Pour *n* un entier plus grand que 1,
$$\lim_{x \to +\infty} \frac{x^n}{e^x} = 0$$
.

$$\implies$$
 Pour n un entier plus grand que 1, $\lim_{x\to-\infty}\frac{x^n}{e^x}=\pm\infty$.

$$\implies$$
 Pour n un entier plus grand que 1, $\lim_{x \to -\infty} x^n e^x = 0$.

$$riangleq$$
 Pour n un entier plus grand que 1, $\lim_{x \to +\infty} x^n e^x = +\infty$.

Dérivées

$$\implies (e^x)' = e^x$$

$$(e^{u(x)})' = u'(x)e^{u(x)}.$$

$$\implies (x^a)' = ax^{a-1}.$$

$$\implies (a^x)' = \ln(a)a^x.$$

Exponentielles TSTI2D

Equations et inéquations

Pour résoudre ce type d'inéquation, $a^x \ge y$, on utilise le logarithme de chaque côté.