1. Demostra que si c és un nombre enter imparell, aleshores l'equació $n^2 + n - c = 0$ no té solucions enteres. Digues quin mètode de demostració utilitzes.

Ho demostrarem per reducció a l'absurd. Sigui c un enter senar i suposem, per arribar a contradicció, que l'equació $n^2 + n - c = 0$ té alguna solució entera. Per tant, suposem que existeix un $n_0 \in \mathbb{Z}$ tal que $n_0^2 + n_0 - c = 0$. Aïllant c obtenim $c = n_0^2 + n_0 = n_0(n_0 + 1)$. Ara raonarem per casos, ja que $n_0 \in \mathbb{Z}$ pot ser parell o senar.

Recordem primerament que la suma d'un senar i un parell és senar i que la suma de dos senars es parell. També que el producte de senar per parell és parell.

Si n_0 és senar, aleshores $n_0 + 1$ és parell, i per tant el producte de n_0 i $n_0 + 1$ és parell. És a dir, $c = n_0(n_0 + 1)$ és parell. Però això està en contradicció amb el fet que c és imparell per hipòtesi.

De manera anàloga, si n_0 es parell aleshores $n_0 + 1$ és senar, i de nou el producte $n_0(n_0 + 1) = c$ és parell. Obtenim la mateixa contradicció amb el fet de que c és imparell per hipòtesi.

Com que en tots dos casos obtenim una contradicció la nostra suposició és falsa, és a dir, l'equació $n^2 + n - c = 0$ no té solucions enteres.

2. Siguin *A*, *B* conjunts. Demostra o refuta la següent igualtat.

$$[A \times (A \setminus B)] \cup [(A \setminus B) \times B] = (A \times A) \setminus [(A \cap B) \times (A \cap B)].$$

Refutem amb un contraexemple.

Sigui $A = \{1\}$ i $B = \{2\}$.

Com que $1 \in A$ i $1 \notin B$,aleshores $1 \in A \setminus B$. Com que $1 \in A \setminus B$ i $2 \in B$, tenim que $(1,2) \in (A \setminus B) \times B$ i per tant $(1,2) \in [A \times (A \setminus B)] \cup [(A \setminus B) \times B]$.

D'altra banda com que $2 \notin A$, $(1,2) \notin A \times A$ i per tant $(1,2) \notin (A \times A) \setminus [(A \cap B) \times (A \cap B)]$. Com que hem trobat un element (en aquest cas (1,2)) que pertany a $[A \times (A \setminus B)] \cup [(A \setminus B) \times B]$ i no pertany a $(A \times A) \setminus [(A \cap B) \times (A \cap B)]$ aleshores

$$[A \times (A \setminus B)] \cup [(A \setminus B) \times B] \neq (A \times A) \setminus [(A \cap B) \times (A \cap B)].$$

3. | Definim en el conjunt $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ la relació següent:

$$(m,n) \sim (p,q) \iff m-p = 3k \text{ per algun } k \in \mathbb{Z} \text{ i } nq > 0$$

(a) Demostra que \sim és relació d'equivalència.

Una relació és d'equivalència quan és reflexiva, simètrica i transitiva.

Reflexiva: Hem de veure que per tot $(m,n) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, $(m,n) \sim (m,n)$. Sigui $(m,n) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. Com que $m-m=0=3\cdot 0$ i $0\in \mathbb{Z}$, tenim que existeix $k\in \mathbb{Z}$ tal que $m-m=3\cdot k$. I clarament $n\cdot n=n^2>0$, ja que $n\neq 0$.

Simètrica: Suposem que tenim $(m,n) \sim (p,q)$. Hem de veure que $(p,q) \sim (m,n)$. Per definició de $(m,n) \sim (p,q)$, existeix $k \in \mathbb{Z}$ tal que m-p=3k i nq>0. Per tant, tenim que p-m=-(m-p)=-3k=3(-k) i qn=nq>0. En conseqüència, $(p,q)\sim (m,n)$.

Transitiva: Suposem que tenim $(m,n) \sim (p,q)$ i $(p,q) \sim (r,s)$. Hem de demostrar que $(m.n) \sim (r,s)$. Com que $(m,n) \sim (p,q)$, existeix $k_1 \in \mathbb{Z}$ tal que $m-p=3k_1$ i nq>0. I com que $(p,q) \sim (r,s)$, existeix $k_2 \in \mathbb{Z}$ tal que $p-r=3k_2$ i qs>0. En conseqüència, $m-r=(m-p)+(p-r)=3k_1+3k_2=3(k_1+k_2)$, i per tant existeix $k\in \mathbb{Z}$ tal que m-r=3k. Ara hem de provar que ns>0. Ho fem per casos. Si q>0, com que nq>0 i qs>0, dedüim que n>0 i s>0, i per tant s>0. I si s>0, com que s>0, dedüim que s>0 i s>0, i per tant s>0. En conseqüència, s>00.

(b) Troba les classes d'equivalència dels parells (1,3), (1,5) i (-2,3).

Per definició de classe d'equivalència, per tot $(p,q) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, $\overline{(p,q)} = \{(m,n) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : (m,n) \sim (p,q)\}$. Per tant,

$$\overline{(1,3)} = \{(m,n) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : (m,n) \sim (1,3)\}
= \{(m,n) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : \text{ existeix } k \in \mathbb{Z} \text{ tal que } m-1 = 3k \text{ i } 3n > 0\}
= \{(m,n) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : \text{ existeix } k \in \mathbb{Z} \text{ tal que } m = 3k+1 \text{ i } n > 0\}.$$

D'altra banda, tenim que $(1,5) \sim (-2,3) \sim (1,3)$, i per tant $\overline{(1,5)} = \overline{(-2,3)} = \overline{(1,3)}$. En conseqüència,

$$\overline{(1,5)} = \overline{(-2,3)} = \{(m,n) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : \text{ existeix } k \in \mathbb{Z} \text{ tal que } m = 3k+1 \text{ i } n > 0\}.$$

(c) Dóna una bona descripció del conjunt quocient i digues quants elements té.

Observem que tot enter m es de la forma 3k o de la forma 3k+1 o de la forma 3k+2 per algun enter k. Llavors, per tot $(m,n) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ tenim els següents casos:

- Si m = 3k per algun enter k i n > 0, aleshores $\overline{(m,n)} = \overline{(0,1)}$.
- Si m = 3k per algun enter k i n < 0, aleshores $\overline{(m, n)} = \overline{(0, -1)}$.
- Si m = 3k + 1 per algun enter k i n > 0, aleshores $\overline{(m,n)} = \overline{(1,1)}$.
- Si m = 3k + 1 per algun enter k i n < 0, aleshores $\overline{(m,n)} = \overline{(1,-1)}$.
- Si m = 3k + 2 per algun enter k i n > 0, aleshores $\overline{(m,n)} = \overline{(2,1)}$.
- Si m = 3k + 2 per algun enter k i n < 0, aleshores $\overline{(m,n)} = \overline{(2,-1)}$.

Per tant, el conjunt quocient associat a la relació \sim és el conjunt

$$[\mathbb{Z}\times(\mathbb{Z}\setminus\{0\})]\ \Big/\sim = \{\overline{(0,1)},\overline{(0,-1)},\overline{(1,1)},\overline{(1,-1)},\overline{(2,1)},\overline{(2,-1)}\}.$$

Així doncs, el conjunt quocient té sis classes.