Introduction to AMBA AXI

2014 - 2017

Ando Ki, Ph.D. (adki@future-ds.com)

Agenda

- Evolution of AMBA standards
- MBA buses
- **AXI** terminologies
- Marchitecture
- VALID/READY handshake mechanism
- Channel-based burst protocol of AXI
- Five independent channels
- MBA AXI read channels
- MBA AXI flow-control
- Read burst example
- Read burst overlapping example
- Write burst example

- Signals
- Global signals
- Write address signals
- Write data signals
- Write response signals
- Read address signals
- Read data signals
- Low power interface signals
- Low power accept and deny
- QoS signals

Copyright © 2013-2017 by Ando Ki

Intro AMBA AXI (2)

AMBA 4	AXI	AMBA 3 AXI		AMBA 2 AHB
an extension of A Burst length up to Quality-of-service Removal of lock t Removal of write	256 beats	registers slices one address for burst up to 16 beats multiple outstanding bursts out of order completion data interleaving		burst transfers pipelined operation split transactions single-cycle bus master handover single-clock edge operation multiple bus masters (up to 16) two uni-directional 32-bit data bus for read and write
AMBA 4	APB	AMBA 3 APB		AMBA 2 APB
 an extension of A transaction protection data-instruction Sparse data transaccess) 	e-nonsecure,	wait state supported	33 33 33	low power latched address and control simple interface suitable for many peripherals

VALID/READY handshake mechanism (1/2) Basic AXI handshaking → Master asserts and holds 'VALID' when data is available DATA AXI AXI slave Slave asserts 'READY' if able to accept -VALID master data READY 'DATA' and other signals transferrred -CLK when 'VALID' and 'READY' are 1. CLK DATA D D D D **VALID** READY Copyright © 2013-2017 by Ando Ki Intro AMBA AXI (7)

Signals

Group	Prefix	Remarks
Global	Α	ACLK, ARESETn
Write address channel	AW	AWID[], AWADDR[], AWLEN[], AWSIZE[], AWBURST[], AWLOCK[], AWCACHE[], AWPROT[], AWVALID, AWREADY
Write data channel	W	WID[], WDATA[], WSTRB[], WLAST, WVALID, WREADY
Write response channel	В	BID[], BRESP[], BVALID, BREADY
Read address channel	AR	ARID[], ARADDR[], AWLEN[], ARSIZE[], ARBURST[], ARLOCK[], ARCACHE[], ARPROT[], ARVALID, ARREADY
Read data channel	R	RID[], RDATA[], RSTRB[], RLAST, RVALID, RREADY
Low-power interface	С	CSYSREQ, CSYSACK, CACTIVE

Bus width and transaction ID width are implementation-specific. Normally, 32-bit data bus, 4-bit write data strobe, and 4-bit ID are used.

Copyright © 2013-2017 by Ando Ki

Intro AMBA AXI (27)

Global signals

Signal	Source	Description
ACLK	Clock source	Global clock signal. All signals are sampled on the rising edge of the global clock.
ARESETn	Reset source	Global reset signal. This signal is active LOW.

- Each AXI component uses a single clock signal: ACLK.
- All input signals are sampled on the rising edge of ACLK.
- All output signal changes must occur after the rising edge of ACLK.
- No combinational path between input and output is allowed.
- The reset signal, ARESETn, can be asserted asynchronously.
- The reset signal, ARESETn, must be deasserted after the rising edge of ACLK.
- During ARESETn is low
 - All valid signals must be low: ARVALID, AWVALID, WVALID, RVALID, BVALID.
- All valid can be driven high only a rising ACLK edge after ARESETn is high.

Copyright © 2013-2017 by Ando Ki

Intro AMBA AXI (28)

Signal	Source	Description	Signal	Source	Description		
RID[3:0]	Slave	Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is generated by the slave and must match the ARID value of the read transaction to which it is responding.	RID	Slave	Read ID tag. This signal is the identification tag for the read data group of signals generated by the slave. See $Transaction$ ID on page A5-79.		
RDATA[31:0]	Slave	Read data. The read data bus can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide.	RDATA	Slave	Read data.		
RRESP[1:0]	Slave	Read response. This signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.	RRESP	Slave	Read response. This signal indicates the status of the read transfer. See Read and write response structure on page A3-57.		
RLAST	Slave	Read last. This signal indicates the last transfer in a read burst.	RLAST	Slave	Read last. This signal indicates the last transfer in a read burst. See Read data channel page A3-41.		
RVALID	Slave	Read valid. This signal indicates that the required read data is available and the read transfer can complete: 1 = read data available 0 = read data not available.	RUSER	Slave	User signal. Optional User-defined signal in the read data channel. Supported only in AXI4. See User-defined signaling on page A8-104.		
RREADY Master	Read ready. This signal indicates that the master can accept the read data and response	RVALID	Slave	Read valid. This signal indicates that the channel is signaling the required read data. S. Channel handshake signals on page A3-40.			
		information: 1= master ready 0 = master not ready.	RREADY	Master	Read ready. This signal indicates that the master can accept the read data and responding the control of the read data and responding the read data.		

Low power accept and deny

The peripheral can accept or deny the request for a low-power state from the system clock controller. The level of the **CACTIVE** signal when the peripheral acknowledges the request by de-asserting **CSYSACK** indicates the acceptance or denial of the request.

Copyright © 2013-2017 by Ando Ki

Intro AMBA AXI (37)

QoS signals (AXI4)

- **SET AXI4** interface functionality is extended to support two 4-bit QoS identifiers:
 - AWQOS[3:0] 4-bit QoS identifier sent on the write address channel for each write tr ansaction
 - ARQOS[3:0] 4-bit QoS identifier sent on the read address channel for each read tra
 nsaction.
- The exact use of the QoS identifier is not specified by the protocol. The preferre d use of the AWQOS and ARQOS identifiers is as a <u>priority indicator</u> for the as sociated write or read transaction. A higher value will indicate a higher priority tr ansaction.
 - A default value of 4'b0000 indicates that the interface is not actively participating in t he QoS scheme.

Copyright © 2013-2017 by Ando Ki

Intro AMBA AXI (38)

AMBA AXI4-Lite

- AXI-Lite not required signals
 - → EXOKAY or RRESP/BRESP
 - → AxLEN: burst length 1 → stuck to 0
 - → AxSIZE: no partial → width of the data bus
 - → AxBURST: burst length 1 → stuck to 1
 - → AxLOCK: all normal access → stuck to 0
 - → AxCACHE: non-modifiable, nonbufferable → stuck to 0
 - → xLAST: burst length 1 → stuck to 1

Required signals

Global	Write address channel	Write data channel	Write response channel	Read address channel	Read data channel
ACLK	AWVALID	WVALID	BVALID	ARVALID	RVALID
ARESETn	AWREADY	WREADY	BREADY	ARREADY	RREADY
-	AWADDR	WDATA	BRESP	ARADDR	RDATA
-	AWPROT	WSTRB	-	ARPROT	RRESP

Interoperability

Master	Slave	Interoperability
AXI	AXI	Fully operational.
AXI	AXI4-Lite	AXI ID reflection is required. Conversion might be required.
AXI4-Lite	AXI	Fully operational.
AXI4-Lite	AXI4-Lite	Fully operational.

Copyright © 2013-2017 by Ando Ki

Intro AMBA AXI (41)

References

- MBA® AXI Protocol v1.0 Specification, IHI 0022B, ARM Limited, 2004.
- MBA® AXI Protocol Version: 2.0 Specification, IHI 0022C (ID030510), ARM Limited, 2010.
- MBA® AXI and ACE Protocol Specification, IHI 0022D (ID102711), ARM Limited, 2011. (AXI3, AXI3, and AXI4-Lite, ACE and ACE-Lite)
- AMBA® 4 AXI4-Stream Protocol Version: 1.0 Specification, IHI 0051A (ID030510), ARM Limited, 2010.

Copyright © 2013-2017 by Ando Ki

Intro AMBA AXI (42)

