1 ConsIndShockModel.py

Defines consumption-saving models whose agents have CRRA utility over a unitary consumption good, geometric discounting, and who face idiosyncratic shocks to income.

1.1 Perfect Foresight

Consider an agent with CRRA utility over consumption, who discounts future utility at a constant rate per period and has no bequest motive. His problem can be written as:

$$\begin{split} V_t(M_t) &= \max_{C_t} \mathbf{u}(C_t) + \beta \mathbf{\mathcal{D}}_{t+1} \mathbb{E}[V_{t+1}(M_{t+1})], \\ A_t &= M_t - C_t, \\ M_{t+1} &= \mathsf{R}A_t + Y_{t+1}, \\ Y_{t+1} &= \Gamma_{t+1} Y_t, \\ \mathbf{u}(C) &= \frac{C^{1-\rho}}{1-\rho}. \end{split}$$

The model can be normalized by current income (which is also permanent income in this model) by defining lower case variables as their upper case version divided by Y_t :

$$v_{t}(m_{t}) = \max_{c_{t}} u(c_{t}) + \beta \mathcal{D}_{t+1} \mathbb{E}[v_{t+1}(m_{t+1})],$$

$$a_{t} = m_{t} - c_{t},$$

$$m_{t+1} = (R/\Gamma_{t+1})a_{t} + 1,$$

$$u(c) = \frac{c^{1-\rho}}{1-\rho}.$$

An individual agent's model is thus characterized by values of ρ , β , and R along with sequences $\{\Gamma_t\}_{t=1}^T$ and $\{\not D_t\}_{t=1}^T$, with $T=\infty$ possible.

The one period problem for this model is solved by the function solveConsPerfForesight, which creates an instance of the class ConsPerfForesightSolver. The class PerfForesightConsumerType extends AgentType to represent agents in this model. The concordance between model variables and their code equivalents is as follows.

Var	Description	Code
$\overline{\rho}$	Coefficient of relative risk aversion	CRRA
β	Intertemporal discount factor	DiscFac
R	Risk free interest factor	Rfree
Ø	Survival probability	LivPrb
Γ	Permanent income growth factor	${\tt PermGroFac}$
(none)	Number of agents of this type	Nagents

These are the only six parameters that an instance of PerfForesightConsumerType

must have in order to create an instance and its solve method.¹ Note that LivPrb and PermGroFac are assumed to be time-varying, so they should be input as a list. Each element of the solution attribute will be an instance of ConsumerSolution with the following attributes:

Var	Description	Code
$c(\cdot)$	Noramlized consumption function	cFunc
$\mathrm{v}(\cdot)$	Normalized value function	vFunc
$\mathbf{v}'(\cdot)$	Normalized marginal value function	vPfunc
\underline{m}	Mininum normalized market resources	${\tt mNrmMin}$
h	Normalized human wealth	hNrm
$\overline{\kappa}$	Maximum marginal propensity to consume	MPCmax
$\underline{\kappa}$	Minimum marginal propensity to consume	MPCmin

In the perfect foresight model, the consumption function is linear, so the maximum and minimum MPC are equal. Each of the functions takes normalized market resources m as an argument, and they only defined on the domain $m \ge \underline{m} = -h$.

1.2 Permanent and Transitory Idiosyncratic Shocks

Consider an agent with CRRA utility over consumption, who discounts future utility at a constant rate per period and has no bequest motive. He foresees that he will experience shocks to his income that are fully transitory or fully permanent. Using the normalization above, his problem can be written as:

$$v_{t}(m_{t}) = \max_{c_{t}} u(c_{t}) + \beta \mathcal{D}_{t+1} \mathbb{E}[v_{t+1}(m_{t+1})],$$

$$a_{t} = m_{t} - c_{t},$$

$$a_{t} \geq \underline{a},$$

$$m_{t+1} = R/(\Gamma_{t+1}\psi_{t+1})a_{t} + \theta_{t+1},$$

$$\theta_{t} \sim F_{\theta t}, \qquad \psi_{t} \sim F_{\psi t}, \quad \mathbb{E}[F_{\psi t}] = 1,$$

$$u(c) = \frac{c^{1-\rho}}{1-\rho}.$$

That is, this agent is identical to the perfect foresight agent except that his income is subject to permanent (ψ) and transitory (θ) shocks to income, and he might have an artificial borrowing constraint a.

The one period problem for this model is solved by the function solveConsIndShock, which creates an instance of the class ConsIndShockSolver. The class IndShockConsumerType

¹The attribute Nagents is not needed to solve this type, but is instead used during simulation. However, this attribute is used by the constructor method for this class (to set the attributes a_init and p_init), so it must be passed when a new instance is created.

extends PerfForesightConsumerType to represent agents in this model. To construct an instance of this class, several additional parameters must be passed to the constructor. Note that most of these parameters are *indirect* inputs to the consumer's model: they are used to construct direct inputs to the one period problem. The concordance between the model and code is as follows:

Var	Description	Code
(none)	Minimum of "assets above minimum" grid	aXtraMin
(none)	Maximum of "assets above minimum" grid	$\mathtt{aXtraMax}$
(none)	Number of points in "assets above minimum" grid	aXtraCount
(none)	Additional values for the "assets above minimum" grid	aXtraExtra
(none)	Degree of exponential nesting for assets grid	exp_nest
$N_{ heta}$	Number of discrete values in transitory shock distribution	${\tt TranShkCount}$
N_{ψ}	Number of discrete values in permanent shock distribution	PermShkCount
$\sigma_{ heta}$	Standard deviation of log transitory shocks	${\tt TranShkStd}$
σ_{ψ}	Standard deviation of log permanent shocks	PermShkStd
Ω	Unemployment probability in working period	${\tt UnempPrb}$
\mho_{ret}	"Unemployment" probability in retirement period	${\tt UnempPrbRet}$
$\underline{\theta}$	Transitory income when unemployed in working period	${\tt IncUnemp}$
$\underline{ heta}_{ret}$	Transitory income when "unemployed" in retired period	${\tt IncUnempRet}$
au	Marginal income tax rate	tax_rate
T_{ret}	Period of retirement; number of working periods	T_{retire}
\underline{a}	Artificial borrowing constraint	${\tt BoroCnstArt}$
(none)	Indicator for whether cFunc should use cubic splines	CubicBool
(none)	Indicator for whether vFunc should be computed	vFuncBool
T	Total number of (non-terminal) periods in sequence	T_total
(none)	Number of agents of this type	Nagents

The first five attributes in the table above are used to construct the "assets above minimum" grid aXtraGrid, an input for solveConsIndShock.² The next ten attributes specify an assumed form for the income distribution $(F_{\psi t}, F_{\theta t})$. Both permanent and transitory shocks are lognormally distributed, and with a point mass in the transitory distribution representing unemployment. Further, the sequence of periods is broken into two parts, "working" and "retired" to allow for a different income process in retirement.³ The attributes PermShkStd and TranShkStd are thus lists of the (log) standard deviation of shocks period-by-period.

Like the assets grid, the specification of the income process can be changed with little

²In the current configuration, the grid is multi-exponentially spaced given minimum, maximum, number of gridpoints, and degree of exponential nesting (with additional values to force into the grid with aXtraExtra). It is simple to replace this grid with another by changing the function makeAssetsGrid.

³Permanent and transitory shocks are turned off during retirement, other than the possibility of "unemployment", representing (say) a temporary failure of the retirement benefit system.

difficulty. No matter what form is used, the relevant direct input to solveConsIndShock is IncomeDstn, a finite discrete approximation to the true income process. This attribute is specified as a list with three elements: an array of probabilities (that sum to 1), an array of permanent income shocks, and an array of transitory income shocks.

The artificial borrowing constraint imposes a restriction on assets at the end of the period; it can be set to None to turn off the constraint (i.e. only the "natural" borrowing constraint will be used). The attributes CubicBool and vFuncBool should be set to True or False, as their name implies. The solver can construct a linear or cubic spline interpolation of the consumption function; cubic interpolation is slower but more accurate at any number of gridpoints. The value function is not strictly necessary to compute during solution and carries a computational burden, so it can be turned off with vFuncBool=False. The number of agents of this type Nagents is irrelevant during solution and is only used during simulation (when ex-post heterogeneity emerges within the ex-ante homogeneous type).

The solve method of IndShockConsumerType will populate the solution attribute with a list containing instances of ConsumerSolution. Each of these instances has all the elements listed above in the perfect foresight section plus the attribute vPPfunc (representing v''(m)) if CubicBool=True.⁴ The problem is solved using the method of endogenous gridpoints, which is explained for this model in section 5.8 of this set of lecture notes.

1.3 Different Interest Rate on Borrowing vs Saving

Consider an agent identical to the "idiosyncratic shocks" model above, except that his interest factor differs depending on whether he borrows or saves on net. His problem is the same as the one above, with a simple addition:

$$\mathsf{R} = \begin{cases} \mathsf{R}_{boro} & \text{if } a_t < 0 \\ \mathsf{R}_{save} & \text{if } a_t > 0 \end{cases}, \qquad \mathsf{R}_{boro} \ge \mathsf{R}_{save}.$$

The one period problem for this model is solved by solveConsKinkedR, which creates an instance of ConsKinkedRsolver. The class KinkedRconsumerType extends IndShockConsumerType to represent agents in this model. The attributes required to specify an instance of KinkedRconsumerType are the same as IndShockConsumerType except that Rfree should not be included, instead replaced by values of Rboro and Rsave. The "kinked R" solver is not yet compatible with cubic spline interpolation for cFunc; if the solve method is run with CubicBool=True, it will throw an exception.⁵

The solve method of KinkedRconsumerType populates the solution attribute with a list of ConsumerSolution instances, in the same format as the idiosyncratic shocks model. The problem is solved using the method of endogenous gridpoints with two copies of $a_t = 0$ in the grid of end-of-period states—one for R_{boro} and the other for R_{save} . This generates the

⁴vFunc will be a placeholder function of the class NullFunc if vFuncBool=False.

⁵This is an item that is ripe for development by an outside contributor.

"kinked" portion of the resulting consumption function, where the consumer is unwilling to borrow and insufficiently motivated to save, so he consumes at $c_t = m_t$.

2 ConsPrefShockModel.py

Defines consumption-saving models whose agents have CRRA utility over a unitary consumption good, geometric discounting, who face idiosyncratic shocks to income and to their utility or preferences.

2.1 Multiplicative Shocks to Utility

Consider an agent with a very similar problem to that of the "idiosyncratic shocks" model in the preceding section, except that he receives an iid multiplicative shock to his utility at the beginning of each period, before making the consumption decision. This model can be written in Bellman form as:

$$v_{t}(m_{t}, \eta_{t}) = \max_{c_{t}} \eta \cdot u(c_{t}) + \beta \mathcal{D}_{t+1} \mathbb{E}[v_{t+1}(m_{t+1}, \eta_{t+1})],$$

$$a_{t} = m_{t} - c_{t},$$

$$a_{t} \geq \underline{a},$$

$$m_{t+1} = R/(\Gamma_{t+1}\psi_{t+1})a_{t} + \theta_{t+1},$$

$$\theta_{t} \sim F_{\theta t}, \qquad \psi_{t} \sim F_{\psi t}, \quad \mathbb{E}[F_{\psi t}] = 1,$$

$$u(c) = \frac{c^{1-\rho}}{1-\rho}, \qquad \eta_{t} \sim F_{\eta t}.$$

The one period problem for this model is solved by the function solveConsPrefShock, which creates an instance of ConsPrefShockSolver. The class PrefShockConsumerType is used to represent agents in this model. The attributes required to construct an instance of this class are the same as for IndShockConsumerType above, but with three additions:

Var	Description	Code
N_{η}	Number of discrete points in "body" of preference shock distribution	PrefShkCount
N_{η}^{tail}	Number of discrete points in "tails" of preference shock distribution	<pre>PrefShk_tail_N</pre>
σ_{η}	Log standard deviation of multiplicative utility shocks	PrefShkStd

These attributes are indirect inputs to the problem, used during instantiation to construct the PrefShkDstn, an input to solveConsPrefShock. The tails of the preference shock distribution matter a great deal for the accuracy of the solution and are underrepresented by the default equiprobable discrete approximation (unless a very large number of points are used). To fix this issue, the attribute PrefShk_tail_N specifies the number

of points in each "augmented tail" section of the preference shock discrete approximation. ⁶ The standard deviation of preference shocks might vary by period, so PrefShkStd should be input as a list. The "preference shock" solver is not yet compatible with cubic spline interpolation for the consumption function and will throw an exception if CubicBool=True.

The solve method of PrefShockConsumerType populates the solution attribute with a list of ConsumerSolution instaces. These single-period-solution objects have the same attributes as the "idiosyncratic shocks" models above, but the attribute cFunc is defined over the space of (m_t, η_t) rather than just m_t . The value function vFunc and marginal value vPfunc, however, are defined only over m_t , as they represent expected (marginal) value just before the preference shock η_t is realized:

$$\overline{\mathbf{v}}_t(m_t) = \int_0^\infty \mathbf{v}(m_t, \eta) dF_{\eta t}(\eta),$$

$$\overline{\mathbf{v}}_t'(m_t) = \int_0^\infty \mathbf{v}'(m_t, \eta) dF_{\eta t}(\eta).$$

2.2 Utility Shocks and Different Interest Rates

Consider an agent with idiosyncratic shocks to permanent and transitory income and multiplicative shocks to utility and faces a different interest rate on borrowing vs saving. This agent's model is identical to that of the "preference shock" consumer in section 2.1, with the addition of the interest rate rule from the "kinked R" consumer in section 1.3.

The one period problem of this combination model is solved by the function solveConsKinkyPref, which creates an instance of ConsKinkyPrefSolver. The class KinkyPrefConsumerType represents agents in this model. As you will see in ConsPrefShockModel.py, there is very little new code required to program this model: the solver and consumer classes each inherit from both KinkedR and PrefShock and only need a trivial constructor function to rectify the differences between the two. This is a good demonstration of the benefit of HARK's object-oriented approach to solution methods: it is sometimes trivial to combine two models to make a new one.

The attributes required to properly construct an instance of KinkyPrefConsumerType are the same as for PrefShockConsumerType except that (like the "kinked R" parent model) Rfree should not be replaced with Rboro and Rsave. Like both of its parents, KinkyPref is not yet compatible with cubic spline interpolation of the consumption function.

⁶See documentation for HARKutilities.approxLognormal for more details.

⁷Particularly in the case of vPfunc, this is the object of interest for solving the preceding period.

3 ConsMarkovModel.py

Defines consumption-saving models with a discrete state that evolves according to an exogenous Markov process.

3.1 Markov States and Idiosyncratic Shocks

Consider an agent with CRRA utility over consumption who geometrically discounts future utility flows and expects to experience transitory and permanent shocks to his income. Moreover, in any given period he finds himself in exactly one of several discrete states; this state evolves from period to period according to a Markov process. The individual's income distribution, permanent income growth rate, and interest factor might vary across states. This agent's problem can be written in Bellman form as:

$$\begin{array}{rcl} \mathrm{v}_{t}(m_{t},s_{t}) & = & \max_{c_{t}} \mathrm{u}(c_{t}) + \beta \not \!\!\! D_{t+1} \mathbb{E}[\mathrm{v}_{t+1}(m_{t+1},s_{t+1})], \\ a_{t} & = & m_{t} - c_{t}, \\ a_{t} & \geq & \underline{a}, \\ m_{t+1} & = & \frac{\mathsf{R}(s_{t+1})}{\Gamma_{t+1}(s_{t+1})\psi_{t+1}} \cdot a_{t} + \theta_{t+1}, \\ \theta_{t} \sim F_{\theta t}(s_{t}), & \psi_{t} \sim F_{\psi t}(s_{t}), & \mathbb{E}[F_{\psi t}(s_{t})] = 1, \\ \mathrm{Prob}[s_{t+1} = j | s_{t} = i] & = & \Delta_{ij}, \\ \mathrm{u}(c) & = & \frac{c^{1-\rho}}{1-\rho}. \end{array}$$

The Markov matrix is Δ , giving transition probabilities from current state i to future state j. This model is the same as the "idiosyncratic shocks" model of section 2.1 but for the presence of the Markov state s_t , so that the interest factor R, income distribution $(F_{\psi t}, F_{\theta t})$, and permanent income growth factor Γ_{t+1} are all functions of the Markov state, having a value for each state.

The function solveConsMarkov solves the one period problem of this model, creating an instance of ConsMarkovSolver. The class MarkovConsumerType is used to represent agents in this model, extending IndShockConsumerType. The attributes required to specify an instance of this class are the same as for IndShockConsumerType but for one addition:

The attribute MrkvArray is a numpy.array of size (N_s, N_s) corresponding to the number of discrete states. The attributes Rfree, PermGroFac, and IncomeDstn should be specified

⁸As is, MrkvArray is an element of time_inv, so the same transition probabilities are used for each period. However, it can be moved to time_vary and specified as a list of arrays instead.

as lists⁹ with N_s elements for each period. Note that MarkovConsumerType currently has no method to automatically construct a valid IncomeDstn; as seen in the examples in ConsMarkovModel.py, the IncomeDstn is manually constructed in each case.¹⁰ All other attributes are specified the same as in the "idiosyncratic shocks" model.

When the solve method of a MarkovConsumerType is invoked, the solution attribute is populated with a list of ConsumerSolution objects, which each have the same attributes as the "idiosyncratic shocks" model. However, each attribute is now a list (or array) whose elements are state-conditional values of that object. For example, in a model with four discrete states, each the cFunc attribute of each element of solution is a length-4 list whose elements are state-conditional consumption functions (e.g. cFunc[2] is the consumption function when $s_t = 2$). The "Markov model" is compatible with cubic spline interpolation for the consumption functions, so CubicBool=True will not generate an exception. The problem is solved using the method of endogenous gridpoints, which is moderately more complicated than in the basic "idiosyncratic shocks" model.

4 ConsAggShockModel.py

Defines consumption-saving models with idiosyncratic and aggregate shocks to income.

4.1 Idiosyncratic and Aggregate Shocks to Income

Consider an agent with CRRA preferences over consumption who discounts future utility flows and expects to experience permanent and transitory shocks to his income. He also believes that the market to which he supplies (a fixed amount of) labor will experience aggregate permanent and transitory shocks to the effective productivity of labor. The wage rate in the market is the marginal product of labor in the aggregate production function, and the interest factor is one plus the (net) marginal product of capital; assume that the ratio of aggregate capital-to-labor is a sufficient statistic for these marginal products. Further, the agent believes that the capital-to-labor ratio evolves as a function of its current value. This model can be written in Bellman form as:

$$\begin{aligned} \mathbf{v}_{t}(m_{t}, k_{t}) &= & \max_{c_{t}} \mathbf{u}(c_{t}) + \beta \mathcal{D}_{t+1} \mathbb{E}[\mathbf{v}_{t+1}(m_{t+1}, k_{t+1})], \\ a_{t} &= & m_{t} - c_{t}, \\ a_{t} &\geq & 0, \\ m_{t+1} &= & \frac{\mathsf{R}_{t+1}}{\Gamma_{t+1} \psi_{t+1} \psi_{t+1}} \cdot a_{t} + W_{t+1} \theta_{t+1}, \\ \mathsf{R}_{t+1} &= \mathbf{R}(k_{t+1}/\Theta_{t+1}), & W_{t+1} &= \mathbf{W}(k_{t+1}/\Theta_{t+1}), \end{aligned}$$

⁹PermGroFac and Rfree can be arrays or lists.

¹⁰Writing a method to supersede IndShockConsumerType.updateIncomeProcess for the "Markov model" would be a welcome contribution.

$$k_{t+1} = \mathbf{k}(k_t),$$

$$\theta_t \sim F_{\theta t}, \qquad \psi_t \sim F_{\psi t}, \quad \mathbb{E}[F_{\psi t}] = 1,$$

$$\Theta_t \sim F_{\Theta}, \qquad \Psi_t \sim F_{\Psi}, \quad \mathbb{E}[F_{\Psi}] = \mathbb{E}[F_{\Theta}] = 1,$$

$$\mathbf{u}(c) = \frac{c^{1-\rho}}{1-\rho}.$$

The objects $\mathbf{R}(\cdot)$ and $\mathbf{W}(\cdot)$, are functions of the (effective) capital-to-labor ratio that yield the (net) interest factor and wage rate respectively. As noted above, these are determined by the aggregate production function and the degree of capital depreciation. The $\mathbf{k}(\cdot)$ function represents the agent's beliefs about the evolution of the capital-to-labor ratio k_t . As with idiosyncratic shocks, there is an aggregate shock process (F_{Θ}, F_{Ψ}) .

The one period problem of this model is solved by the function solveConsAggShock, the default value of solveOnePeriod for AggShockConsumerType. The attributes required to specify an instance of this class are listed in the concordance below.

Var	Description	Code
$\overline{\rho}$	Coefficient of relative risk aversion	CRRA
β	Intertemporal discount factor	DiscFac
Ø	Survival probability	LivPrb
Γ	Permanent income growth factor	PermGroFac
(none)	Minimum of "assets above minimum" grid	aXtraMin
(none)	Maximum of "assets above minimum" grid	aXtraMax
(none)	Number of points in "assets above minimum" grid	aXtraCount
(none)	Additional values for the "assets above minimum" grid	aXtraExtra
(none)	Degree of exponential nesting for assets grid	exp_nest
$\{\hat{k}\}$	Array of scaling factors for capital ratio (around SS)	kGridBase
$N_{ heta}$	Number of discrete values in transitory shock distribution	TranShkCount
N_{ψ}	Number of discrete values in permanent shock distribution	PermShkCount
$\sigma_{ heta}$	Standard deviation of log transitory shocks	TranShkStd
σ_{ψ}	Standard deviation of log permanent shocks	PermShkStd
Ω	Unemployment probability in working period	UnempPrb
\mho_{ret}	"Unemployment" probability in retirement period	${\tt UnempPrbRet}$
$\underline{\theta}$	Transitory income when unemployed in working period	${\tt IncUnemp}$
$\underline{ heta}_{ret}$	Transitory income when "unemployed" in retired period	${\tt IncUnempRet}$
au	Marginal income tax rate	tax_rate
T_{ret}	Period of retirement; number of working periods	T_retire
T	Total number of (non-terminal) periods in sequence	T_total
(none)	Number of agents of this type	Nagents

This list is very similar to the one for IndShockConsumerType, but several attributes have been removed: Rfree is endogenous here, while CubicBool, vFuncBool, and BoroCnstArt

are not yet supported in the "aggregate shocks" model. The only new attribute is kGridBase, an array of scaling factors for the (perfect foresight equivalent) steady state capital ratio; it is used to construct kGrid, a direct input for solveConsAggShock.

A new AggShockConsumerType with these attributes is not yet ready to solve its micro model, as it lacks several features. After creating a valid CobbDouglasEconomy instance (see section 4.2), the agent type must get "macro" level objects from this by invoking its getEconomyData method with the CobbDouglasEconomy as the input. This gives the agent type its interest, wage, and next-capital-ratio functions as the attributes Rfunc, Wfunc, and kNextFunc, its capital ratio grid kGrid, and reformats the IncomeDstn attribute as a discrete joint distribution across all four types of shocks.¹¹

After obtaining "macro"-level inputs to its model, an AggShockConsumerType's solve method will populate the solution attribute with a list of ConsumerSolution instances. Unlike the models with only idiosyncratic shocks, the one-period-solution objects have only two attributes, cFunc and vPfunc; both of these functions are defined over the space of (m_t, k_t) . The model is solved using the method of endogenous gridpoints, following Kiichi Tokuoka's Mathematica code for the "cstwMPC" project.

4.2 Cobb-Douglas Economy

A model with "aggregate shocks" only makes sense if there is some market-level object that experiences these shocks. The CobbDouglasEconomy class extends Market to represent an economy with a Cobb-Douglas production function over aggregate capital and aggregate labor¹² and permanent and transitory shocks to labor productivity. The basic model for the Cobb-Douglas economy is:

$$\begin{split} Y &= K^{\alpha}L^{1-\alpha}, \qquad k \equiv K/L, \\ W &= \frac{\partial Y}{\partial L} &= (1-\alpha)K^{\alpha}L^{-\alpha} = (1-\alpha)k^{\alpha}, \\ \mathbf{r} &= \frac{\partial Y}{\partial K} &= \alpha K^{\alpha-1}L^{1-\alpha} = \alpha k^{\alpha-1}, \\ \mathbf{R} &= 1+\mathbf{r}-\delta \end{split}$$

A new instance of CobbDouglasEconomy must have attributes listed in the table below. The constructor for the class uses these attributes to calculate the perfect foresight steady state of the capital-to-labor ratio¹³, wage rate, and interest rate; the interest and wage

¹¹As of the beta release, this method is only compatible with one period infinite horizon micro models, but this can be fixed with minimal difficulty.

¹²As the microeconomic model in section 4.1 assumes a fixed per capita labor supply, aggregate labor for this class is assumed constant and disappears into the background. The HARK team welcomes contributions that extend both the micro and macro models to account for endogenous labor supply.

¹³If the economy were populated with perfect foresight agents with preferences given by β^{PF} and ρ^{PF} , the steady state level of capital is where $k_{t+1} = k_t$ (when aggregate shocks are turned off as well).

functions; a discretization of the aggregate shock process, and an initial guess of the next-capital-ratio function. Following Krusell and Smith (1998), we assume that the log of next period's capital ratio is a linear function of the log of this period's capital ratio.

Var	Description	Code
α	Capital's share of output	CapShare
δ	Capital depreciation rate	DeprFac
σ_Ψ	Standard deviation of log permanent aggregate shocks	PermShkAggStd
σ_Θ	Standard deviation of log transitory aggregate shocks	TranShkAggStd
N_Ψ	Number of discrete values in permanent agg shock distribution	PermShkAggCount
N_{Θ}	Number of discrete values in transitory agg shock distribution	TranShkAggCount
$ ho^{PF}$	Perfect foresight coefficient of relative risk aversion	CRRAPF
β^{PF}	Perfect foresight intertemporal discount factor	DiscFacPF

After a well-formed CobbDouglasEconomy has been created, its agents attribute can be populated with one or more instances of AggShockConsumerType (who have taken "macro" level information from the CobbDouglasEconomy). A history of aggregate shocks can be created by invoking the makeAggShkHist method. If each element of AggShockConsumerType has run its makeIncShkHist method to create a history of idiosyncratic income shocks (for many agents in each type), then the CobbDouglasEconomy can invoke its solve method. This will search for a general equilibrium of the model, defined as a "dynamic rule" for the capital ratio $\mathbf{k}(k_t)$ that is consistent: when agents believe this $\mathbf{k}(k_t)$ in their microeconomic problem, and the model is simulated for many periods, the resulting history of the capital ratio is consistent with that same dynamic rule.

In the Market framework, the millRule for CobbDouglasEconomy gathers each agent's end-of-period normalized assets a_t and permanent income p_t . It aggregates wealth across all consumers into total capital, which it transforms into the capital-to-labor ratio. It then uses the next aggregate shock values to calculate R_t and W_t , which are distributed back to the consumers along with the aggregate shocks and new capital ratio, so that they can simulated another period.

After generating a history of several thousand periods, the CobbDouglasEconomy can calculate a new dynamic rule for the capital ratio with its calcDynamics method. The dynamics calculator simply throws out the first 200 periods of the history and runs a one-period-lag autoregression on the log capital ratio. This generates a new function for kNextFunc, which is distributed to the consumer types in agents to re-solve their micro models. This process continues until successive kNextFuncs are sufficiently close to consider the process converged (as determined by the tolerance attribute).

$5~{ m Tractable Buffer Stock Model.py}$

Defines the "tractable buffer stock" model from Chris Carroll's lecture notes.

5.1 Tractable Buffer Stock

Consider a consumer with CRRA utility who faces only a single, very specific risk: that he will become permanently unemployed and receive no income until the end of time. Otherwise, he faces an infinite horizon problem with a steady stream of income that grows by a fixed factor each period, and earns a constant rate of return on assets retained betweed periods. His model when still employed can be written in Bellman form as:¹⁴

$$\mathbf{v}^{e}(m_{t}) = \max_{c_{t}} \mathbf{u}(c_{t}) + \beta \left((1 - \mathbf{\mho}) \mathbf{v}^{e}(m_{t+1}^{e}) + \mathbf{\mho} \mathbf{v}^{u}(m_{t+1}^{u}) \right)$$

$$a_{t} = m_{t} - c_{t}$$

$$m_{t+1}^{e} = (\mathbf{R}/\widehat{\Gamma}) a_{t} + 1, \qquad \widehat{\Gamma} = \Gamma/(1 - \mathbf{\mho})$$

$$m_{t+1}^{u} = (\mathbf{R}/\widehat{\Gamma}) a_{t}.$$

His model while unemployed is simply:

$$v^{u}(m_{t}) = \max_{c_{t}} u(c_{t}) + \beta v^{u}(m_{t+1}^{u})$$

$$a_{t} = m_{t} - c_{t}$$

$$m_{t+1}^{u} = (R/\widehat{\Gamma})a_{t}.$$

This model is solved by the class TractableConsumerType when its solve() method is invoked. An instance of this class is specified by the five parameters in the table below:

Var	Description	Code
$\overline{\rho}$	Coefficient of relative risk aversion	CRRA
β	Intertemporal discount factor	DiscFac
R	Interest factor on assets	Rfree
Γ	Permanent income growth factor	${\tt PermGroFac}$
Ω	Probability of becoming unemployed	UnempPrb

Unlike other models in HARK, tractable buffer stock is not solved by backward induction beginning from an initial guess of the solution. Because of the very specific form of risk faced by the agent, it is possible to calculate¹⁵ analytical values of the steady state (m_t, c_t) and to find several derivatives of the consumption function at this point (i.e. the MPC, MMPC, etc). Further, the Euler and transition equations can be inverted to yield (m_{t-1}, c_{t-1}) as a function of (m_t, c_t) conditional on being employed in both periods. Beginning from a

¹⁴For technical / teaching reasons, permanent income growth while employed is "risk compensated" so that human wealth does not vary with the unemployment probability.

¹⁵As long as the consumer is both "return impatient" and "growth impatient", else there is no steady state or no solution at all.

small perturbation along a Taylor approximation of the consumption function around the steady state, the solution method generates a sequence of "stable arm points" along the consumption function. After reaching specified bounds (and appending the lower bound at (0,0)), the (employed) consumption function is constructed as a cubic spline interpolation.

After running the solve method, the solution attribute of a TractableConsumerType will have a list with a single instance of TractableConsumerSolution. This object has the following attributes:

Var	Description	Code
$\overline{\{m_t\}}$	List of market resources values on the stable arm	mNrm_list
$\{c_t\}$	List of consumption values on the stable arm	cNrm_list
$\{\kappa_t\}$	List of MPCs at points on the stable arm	MPC_list
$c^e(m_t)$	Consumption function when employed	cFunc
$c^u(m_t)$	Consumption function when unemployed	cFunc_U
(none)	Number of stable arm points included	PointCount

5.2 Tractable Buffer Stock as Markov

The tractable buffer stock model can also be solved by the standard backward induction approach if it is framed in terms of the Markov model in section 3. There are two discrete state, employed and unemployed; transition probabilities from the former are $(1-\mho, \mho)$ and the latter is an absorbing state. The interest factor and permanent income growth rate are identical in the two states, and both have degenerate income distributions: $\psi_e = \theta_e = 1$, while $\psi_u = 1$ and $\theta_u = 0$ for sure. The model takes about 300 times longer to solve using the "Markov formulation" as the backshooting method, yielding a nearly identical solution.