Predikce struktury RNA

Obsah

- RNA
- Struktura RNA
 - Struktura tRNA
- Reprezentace sekundární struktury RNA
- Predikce sekundární struktury RNA
 - Nusinův algoritmus
 - Zuckerův algoritmus
 - Analýza kovariance sekvencí

RNA

- Složení: dusíkatá báze (A, U, C, G), ribóza, fosfát
- Polynukleotidový řetězec
- Makromolekuly RNA jsou lineární, většinou jednovláknové, mnohem menší než molekuly DNA
- Molekuly RNA jsou více flexibilní různá struktura
- 3 hlavní typy RNA:
 - ribozomální rRNA (80 85%)
 - mediátorová mRNA (1 4%)
 - transferová tRNA (15%)

- Sekvence nukleotidů ovlivňuje sekundární i terciální strukturu a funkci RNA
- Small nuclear RNA, Small Nucleolar RNA, MicroRNA, Short Interfering DNA

tRNA

- Přenáší jednotlivé aminokyseliny
- Nezbytná při proteosyntéze
- 20 aminokyselin ~ nejméně 20 různých tRNA
- O tom, která aminokyselina se váže na tRNA rozhoduje antikodon

RNA

- Desítky až několik tisíc nukleotidů
- mRNA žádná specifická struktura (regulační funkce)
- * tRNA, rRNA struktura ovlivňuje funkci
- Sekundární struktura:
 - vzory, podle kterých se části vláken ohýbají a tvoří lokální dvouvláknové struktury
 - může být reprezentována 2D diagramem
 - různé motivy
- Vlákna spojeny pomocí vodíkových vazeb
- Párování bází:
 - A-U, G-C
 - G-U
- tRNA tvar čtyřlístku

a. DUPLEXES

c. HAIRPINS

d. BULGES

BULGE

SINGLE-BASE BULGE

e. INTERNAL LOOPS

f. JUNCTIONS

MISMATCH

SYMMETRIC INTERNAL LOOP INTERNAL LOOP

ASYMMETRIC

THREE STEM

FOUR STEM

Struktura tRNA

- 70 − 90 nukleotidů
- acceptor stem
- D-loop
- T-loop
- Anticodom loop
- Variable loop (arm)
- Člověk cca 600 tRNA genů

Amino acid

RNA

- ✓ 3D struktura vyšší struktury:
 - Pseudoknot
 - Kissing hairpins
 - Hairpin-bulge contacts

Kissing hairpins

RNA

- Sekundární strukturu lze reprezentovat ve 2D:
 - Stem-loop diagram
 - Dot plot
 - Nussinův diagram

Predikce sekundární struktury RNA

- Cíl: předpovědět, které nukleotidy budou spolu vytvářet vodíkové vazby, kde budou jaké smyčky a jaká větvení (vytvořit 2D diagram)
- NP-úplný problém
- Různé přístupy:
 - Maximalizace počtu nukleotidových párů
 - Využití volné energie
 - Analýza kovariance sekvencí
 - Hlednání homologních sekvencí

Nusinnův algoritmus

- Hledá strukturu s maximálním počtem spárovaných bází
- Princip dynamického programování
- Předpoklad: již známe sekundární strukturu pro část sekvence
- Hledáme, jak k této struktuře přidat další dvě báze (z každé strany jednu) – 4 možnosti

Nusinnův algoritmus

- 1. Konstrukce a inicializace matice
 - Záhlaví řádků a sloupců cílová sekvence
 - Hlavní diagonála + diagonála pod ní => hodnota 0
- 2. Vyplnění matice (pravé horní poloviny)
 - pomocí rekurzivního algoritmu
 - Výběr maximální hodnoty
- 3. Zpětný průchod maticí
 - sekundární struktura RNA
 - Využití informace z vyplňování matice

Konstrukce a inicializace -

				→]					
	Α	Α	Α	G	С	C	С	U	U
Α	0								
Α	0	0							
Α	X	0	0						
G	X	X	0	0					
С	X	X	X	0	0				
С	X	X	X	X	0	0			
C	X	X	X	X	X	0	0		
U	X	X	X	X	X	X	0	0	
U	X	X	X	X	X	X	X	0	0

Vyplnění matice

Od buňky (1,2) po diagonále

$$G(i, j) = Max \begin{cases} G(i+1, j) \\ G(i, j-1) \\ G(i+1, j-1) + d(i, j) \\ Max[G(i,k) + G(k+1, j)] \forall k = i+1...j-1 \end{cases}$$

d(i,j) hodnota 0 nebo 1, podle toho, zda báze na pozicích i a j se mohou párovat

Vyplnění matice

	Α	Α	Α	G	С	С	С	U	U
Α	0	0							
Α	0	0	0						
Α	X	0	0	0					
G	X	X	0	0	1,				
С	X	X	X	0	0				
С	X	X	X	X	0	0			
С	X	X	X	X	X	0	0		
U	X	X	X	X	X	X	0	0	
U	X	X	X	X	X	X	X	0	0

Vyplnění matice

	Α	Α	Α	G	С	С	С	U	U
Α	0	0	0	0	1	1	1	2	3
Α	0	0	0	0	1	1	1	2	3
Α	X	0	0	0	1	1	1	2	2
G	X	X	0	0	1	1	1	1	1
C	X	X	X	0	0	0	0	0	0
C	X	X	X	X	0	0	0	0	0
С	X	X	X	X	X	0	0	0	0
U	X	X	X	X	X	X	0	0	0
U	X	X	X	X	X	X	X	0	0

Zpětný průchod maticí

	Α	Α	Α	G	С	С	С	U	U
Α	0	0	0	0	1	1	1	2	3
Α	0	0	0	0	1	1	1	2	<u>3</u>
Α	X	0	0	0	1	1	1	<u>2</u>	2
G	X	X	0	0	1	1	1	1	1
C	X	X	X	0	0	0	0	0	0
C	X	X	X	X	0	0	0	0	0
C	X	X	X	X	X	0	0	0	0
U	X	X	X	X	X	X	0	0	0
U	X	X	X	X	X	X	X	0	0

Zpětný průchod maticí

	Α	С	U	G	Α	G	U	С	С	Α	Α	G	G
Α	0	0	1	1	1	2	3	3	3	3	3	4	5
С		0	0	1	1	2	2	2	2	3	3	4	4
U			0	0	1	1	1	2	2	3	3	3	3
G				0	0	0	1	2	2	2	2	3	3
Α					0	0	1	1	1	1	1	2	3
G						0	0	1	1	1	1	2	2
U							0	0	0	1	1	1	2
С								0	0	0	0	1	2
С									0	0	0	1	1
А										0	0	0	0
Α											0	0	0
G												0	0
G													0

Nusinnův algoritmus

- Nedostatky:
 - Smyčky s nulovým počtem residuí
 - Fyzikálně nemožné
 - Minimální počet bází ve smyčce: 3
 - Stejná váha jednotlivých bázových párů
 - Ve skutečnosti různé bázové páry různá stabilita
 - Neuvažuje se vliv sousedních bázových párů

Zuckerův algoritmus

- Odstraňuje nedostatky Nussinova algoritmu
 - Modifikace 2. a 3. kroku Nussinova algoritmu
- Využití jednoduchých energetických pravidel
 - Gibbsova volná energie pro všechny bázové páry
 - různým bázovým párům přidělena různá váha
 - Destabilizační vliv smyček
- MFOLD

Analýza kovariance sekvencí

- Analýza záměn nukleotidů, které neovlivní schéma párování bází (neovlivní sekundární ani terciární strukturu a tedy ani funkci)
- Tzn. jestliže zjistíme, že při záměně jednoho nukleotidu, dochází zároveň k záměně dalšího nukleotidu na jiném místě sekvence, je pravděpodobné, že tyto nukleotidy spolu budou interagovat
- Barevné značení pozic zarovnání dvou sekvencí
 - hledání regionů stejně označených pozic (pozice beze změny, transition, transversion)
 - vyžaduje vytvoření a inspekci mnoha zarovnání
- Využití vzájemné informace mezi sloupci vícenásobného zarovnání sekvencí (teorie informace)
 - mezi každou dvojicí sloupců
 - 0 žádná vazba mezi sloupci
 - 1 první sloupec perfektně určuje nukleotid v druhém sloupci

AUGUAGCGGA

GAGCAGGGGA

CSFG

- Stochastic Context Free Grammars
- Pomohou určit, do které rodiny RNA nová sekvence patří (identifikují možné struktury)
- Pomocí trénovací množiny se určí pravděpodobnosti jednotlivých pravidel
- $S oup aSu \mid uSa \mid cSg \mid gSc \mid aS \mid cS \mid uS \mid gS \mid Sa \mid Sc \mid Sg \mid Su \mid SS \mid \varepsilon$ S oup SS oup aSuS oup acSguS oup acuSaguS oup acugSaguS oup acugaguS oup acugagucSg oup acugaguccSgg oup acugaguccSagg oup acugaguccaSagg oup acugaguccaagg