Integration

by 刘成锴

Notation $\mu(f) :=: \int_s f \mathrm{d}\mu, \; \mu(f;A)$

Let (S, Σ, μ) be a measure space.

The (Lebesgue) integral of f (elements of $m\Sigma$) with respect to μ . Here are the notations :

$$\mu(f) :=: \int_s f(s) \mu(\mathrm{d} s) :=: \int_s f \mathrm{d} \mu$$

The equivalences for $A \in \Sigma$:

$$\int_A f(s)\mu(\mathrm{d} s) :=: \int_A f \mathrm{d} \mu :=: \mu(f;A) := \mu(fI_A)$$

Summation is a special type of integration. If $(a_n:n\in \mathbf{N})$ is a sequence of real numbers, then with $S=\mathbf{N}, \Sigma=\mathcal{P}(\mathbf{N})$, and μ the measure on (S,Σ) with $\mu(\{k\})=1$ for every k in \mathbf{N} , then $s\mapsto a_s$ is μ -integrable if and only if $\sum |a_n|<\infty$, and then

$$\sum a_n = \int_s a_s \mu(\mathrm{d} s) = \int_s a \mathrm{d} \mu$$

Definition of $\mu(f), \ f \in (m\Sigma)^+$

For $f \in (m\Sigma)^+$ we define

$$\mu(f) := \sup\{\mu_0(h) : h \in SF^+, h \le f\} \le \infty$$

Clearly, for $f \in SF^+$, we have $\mu(f) = \mu_0(f)$.

LEMMA

If $f \in (m\Sigma)^+$ and $\mu(f) = 0$, then

$$\mu(\{f > 0\}) = 0$$

Monotone-Convergence Theorem (MON)

If (f_n) is a sequence of elements of $(m\Sigma)^+$ such that $f_n\uparrow f$, then

$$\mu(f_n) \uparrow \mu(f) \leq \infty$$

or, in other notation,

$$\int_S f_n(s)\mu(ds)\uparrow\int_S f(s)\mu(ds)$$

It is proved in A5.4.

The Fatou Lemmas for functions

FATOU

For a sequence (f_n) in $(m\Sigma)^+$,

$$\mu(\liminf f_n) \leq \liminf \mu(f_n)$$

Reverse Fatou Lemma

If (f_n) is a sequence in $(m\Sigma)^+$ such that for some g in $(m\Sigma)^+$, we have $f_n \leq g$, $\forall n$, and $\mu(g) < \infty$, then

$$\mu(\limsup f_n) \ge \limsup \mu(f_n)$$

Integrable function, $\mathcal{L}^1(S,\Sigma,\mu)$

For $f \in m\Sigma$, we say that f is μ -integrable, and we write

$$f\in \mathcal{L}^1(S,\Sigma,\mu)$$

if

$$\mu(|f|)=\mu(f^+)+\mu(f^-)<\infty$$

and then we define

$$\int f du := \mu(f) := \mu(f^+) - \mu(f^-)$$

Note that, for $f \in \mathcal{L}^1(S,\Sigma,\mu)$

$$|\mu(f)| \leq \mu(|f|)$$

This is the modulus of the integral is less that or equal to the integral of the modulus.

Linearity

For $\alpha, \beta \in \mathbf{R}$ and $f, g \in \mathcal{L}^1(S, \Sigma, \mu)$,

$$lpha f + eta g \in L^1(S,\Sigma,\mu)$$

and

$$\mu(\alpha f + \beta g) = \alpha \mu(f) + \beta \mu(g)$$

Dominated-Convergence Theorem (DOM)

Suppose that $f_n, f \in m\Sigma$, that $f_n() \to f(s)$ for every s in S and that the sequence (f_n) is **dominated** by an element g of $\mathcal{L}^1(S,\Sigma,\mu)^+$:

$$|f_n(s)| \leq g(s), \quad \forall s \in S, \forall n \in \mathbf{N},$$

where $\mu(g) < \infty$. Then

$$f_n \to f$$
 in $\mathcal{L}^1(S, \Sigma, \mu)$: that is, $\mu(|f_n - f|) \to 0$,

whence

$$\mu(f_n) o \mu(f).$$

Scheffé's Lemma (SCHEFFÉ)

Suppose that $f_n, f \in \mathcal{L}^1(S, \Sigma, \mu)^+$; in particular, f_n and f are non-negative. Suppose that $f_n \to f$ (a.e.). Then

$$\mu(|f_n-f|) o 0 \iff \mu(f_n) o \mu(f)$$

Standard machine

The standard machine is a much cruder alternative to the Monotone-Class Therorem.

The idea is that to prove that a 'linear' result is true for all functions h in a space such as $\mathcal{L}^1(S,\Sigma,\mu)$,

- first, we show the result is true for the case when *h* is an indicator function which it normally is by definition;
- then, we use linearity to obtain the result for h in SF^+ ;
- next, we use (MON) to obtain the result for $h \in (m\Sigma)^+$, integrability conditions on h usually being superfluous at this stage;
- finally, we show, nny writing $h = h^+ h^-$ and using linearity, that the claimed result is true.