

1 Moore'sches Gesetz

- alle 18-24 Monate verdoppelt sich die Anzahl der Transistoren auf gleicher Fläche
- Exponentielles Wachstum der Transistorzahl, exponentieller Rückgange des Preises pro Tran-
- Herstellungskosten (Fixkosten, Variable Kosten, Technologiefaktor), Entwicklerproduktivität, Verlustleistungsdichte

2 Einheiten

Potenz	Vorsatz	Potenz	Vorsatz	Hz	s^{-1}
$ \begin{array}{r} 10^{12} \\ 10^9 \\ 10^6 \\ 10^3 \\ 10^2 \\ 10^1 \end{array} $	T G M k	$ \begin{array}{r} 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-12} \end{array} $	d c m μ n	N J W C V F	$kgms^{-2}$ $Nm = VAs$ $VA = Js^{-1}$ As JC^{-1} CV^{-1}
10	da	10^{-15}	p f	Ω H	VA^{-1} VsA^{-1}

 $Bit \xrightarrow{\cdot 8} Bute \xrightarrow{\cdot 1024} kBute \xrightarrow{\cdot 1024} MBute$

3 Boolsche Algebra

3.1 Boolesche Operatoren (Wahrheitstabelle WT)

		A — out	Aout	A Dout	A Do—out	Aout	A Do—out
		n	n → → → ×	n	n D-v	B Y	n
		A — & — Y	A — ≥1 — Y	A ==1 =1 =Y	A — & D—Y	A — ≥1 D—Y	A =1 D-Y
×	у	AND	OR	XOR	NAND	NOR	EQV
		$x \cdot y$	x + y	$x \oplus y$	$\overline{x \cdot y}$	$\overline{x+y}$	$\overline{x \oplus y}$
0	0	0	0	0	1	1	1
0	1	0	1	1	1	0	0
1	0	0	1	1	1	0	0
1	1	1	1	0	0	0	1
Konfiguration: $f = c_1 + c_2 + c_3 \Rightarrow cov(f) = \{c_1, c_2, c_3\}$							

3.2 Gesetze der booleschen Algebra

	Boolesche Algebra	Mengenalgebra
	$(0,1;\cdot,+,\overline{x})$	$(P(G); \cap, \cup, \overline{A}; G, \emptyset)$
Kommutativ	$x \cdot y = y \cdot x$	$A \cap B = B \cap A$
	x + y = y + x	$A \cup B = B \cup A$
Assoziativ	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	$(A \cap B) \cap C = A \cap (B \cap C)$
	x + (y+z) = (x+y) + z	$(A \cup B) \cup C = A \cap (B \cup C)$
Distributiv	$x \cdot (y+z) = x \cdot y + x \cdot z$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$x + (y \cdot z) = (x + y) \cdot (x + z)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Äquivalenz	$x \cdot x = x$	$A \cap A = A$
	x + x = x	$A \cup A = A$
Absorbtion	$x \cdot (x + y) = x$	$A \cap (A \cup B) = A$
	$x + (x \cdot y) = x$	$A \cup (A \cap B) = A$
Konstanz	$x \cdot 1 = x$	$A \cap G = A$
	x + 0 = x	$A \cup \emptyset = A$
	$x \cdot 0 = 0$	$A \cap \emptyset = \emptyset$
	x + 1 = 1	$A \cup G = G$
Komplement	$x \cdot \overline{x} = 0$	$A \cap \overline{A} = \emptyset$
	$x + \overline{x} = 1$	$A \cup \overline{A} = G$
	$\overline{\overline{x}} = x$	$\overline{\overline{A}} = A$
De Morgan	$\overline{x \cdot y} = \overline{x} + \overline{y}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
	$\overline{x+y} = \overline{x} \cdot \overline{y}$	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
Resolution	$x \cdot a + \overline{x} \cdot b$	$(A \cap Y) \cup (\overline{A} \cap Z)$
(allgemein)	$=x\cdot a+\overline{x}\cdot b+a\cdot b$	$= (A \cap Y) \cup (\overline{A} \cap Z) \cup (Y \cap Z)$
	$(x+a)\cdot(\overline{x}+b)$	$(A \cup Y) \cap (\overline{A} \cup Z)$
	$=(x+a)\cdot(\overline{x}+b)\cdot(a+b)$	$= (A \cup Y) \cap (\overline{A} \cup Z) \cap (Y \cup Z)$
Resolution	$x \cdot a + \overline{x} \cdot a = a$	$(A \cap Y) \cup (\overline{A} \cap Y) = Y$
(speziell)	$(x+a)\cdot(\overline{x}+a)=a$	$(A \cup Y) \cap (\overline{A} \cup Y) = Y$
	•	•

3.3 Boolesche Funktionen

$$f: \{0,1\}^n \to \{0,1\}$$
 $f(\underline{x}) = f(x_1, x_2, \dots, x_n)$

Einsmenge F von f: $F = \{\underline{x} \in \{0,1\}^n | f(\underline{x}) = 1\}$ Nullmenge \overline{F} von f: $\overline{F} = \{\underline{x} \in \{0,1\}^n | f(\underline{x}) = 0\}$

Kofaktor bezüglich

- $x_i: f_{x_i} = f|_{x_i=1} = f(x_1, \dots, 1, \dots, x_n)$
- $\overline{x}_i : f_{\overline{x}_i} = f|_{x_i=0} = f(x_1, \dots, 0, \dots, x_n)$

Substitutionsregel

- $x_i \cdot f(\underline{x}) = x_i \cdot f_{x_i}$
- $\overline{x}_i \cdot f(\underline{x}) = \overline{x}_i \cdot f_{\overline{x}_i}$
- $x_i + f(\underline{x}) = x_i + f_{\overline{x}_i}$
- $\overline{x}_i + f(\underline{x}) = \overline{x}_i + f_{x_i}$

Boolsche Expansion

- $f(\underline{x}) = x_i \cdot f_{x_i} + \overline{x}_i \cdot f_{\overline{x}_i}$
- $f(\underline{x}) = (x_i + f_{\overline{x}_i}) \cdot (\overline{x}_i + f_{x_i})$
- $\overline{f(\underline{x})} = \overline{x}_i \cdot \overline{f_{\overline{x}_i}} + x_i \cdot \overline{f_{x_i}}$
- $\overline{f(\underline{x})} = (\overline{x}_i + \overline{f_{x_i}}) \cdot (x_i + \overline{f_{\overline{x}_i}})$

Eigenschaften von $f(\mathbf{x})$

- tautologisch $\Leftrightarrow f(\mathbf{x}) = 1 \quad \forall \mathbf{x} \in \{0, 1\}^n$
- kontradiktorisch $\Leftrightarrow f(\underline{x}) = 0 \quad \forall \underline{x} \in \{0, 1\}^n$
- unabhängig von $x_i \Leftrightarrow f_{x_i} = f_{\overline{x}_i}$
- abhängig von $x_i \Leftrightarrow f_{x_i} \neq f_{\overline{x}_i}$

3.4 Multiplexer

 $f = x \cdot a + \overline{x} \cdot b$ $f = \overline{x}_1 \overline{x}_2 a + \overline{x}_1 x_2 b + x_1 \overline{x}_2 c + x_1 x_2 d$

(2 Eingänge a, b und 1 Steuereingang x) (Eingänge: a, b, c, d Steuerung: x_1, x_2)

3.5 Wichtige Begriffe

	Wichtige Begriffe:	Definition	Bemerkung
_	Signalvariable	x	$\hat{x} \in \{0, 1\}$
	Literal	$l_i=x_i$ oder $\overline{x_i}$	$i \in I_0 = \{1,, n\}$
	Literallänge	#Teilterme + $\sum_{i=1}^{\text{\#Teilterme}}$ #Literale v. Teilterm	Summe aller Eingänge
	Minterme,0-Kuben	$MOC\ni m_j=\prod_{i\in I_0}l_i$	$ MOC = 2^n$
-	d-Kuben	$MC i c_j = \prod\limits_{i\in I_j\subseteq I_0} l_i$	$ MC = 3^n$
_	Distanz	$\delta(c_i, c_j) = \{l \mid l \in c_i \land \overline{l} \in c_j\} $	$\delta_{ij} = \delta(c_i, c_j)$
	Implikanten	$MI = \{c \in MC \mid c \subseteq f\}$	
-	Primimplikanten	$MPI = \{ p \in MI \mid p \not\subset c \ \forall c \in MI \}$	$MPI \subseteq MI \subseteq MC$

DNF (SOP) eine Summe von Produkttermen KNF (POS) ein Produkt von Summentermen KDNF (CSOP) Summe aller Minterme — KKNF (CPOS) Menge aller Maxterme VolISOP (nur 1) Menge aller Primimplikanten ____ DMF (min. 1) Minimale Summe v. Primimplikanten

Terme sind ODER-verknüpft Terme sind UND-verknüpft WT: 1-Zeilen sind Minterme WT: 0-Zeilen negiert sind Maxterme Bestimmung siehe Quine Methode oder Schichtenalgorithmus durch Überdeckungstabelle

FPGA: Field Programmable Gate Array ___LUT: Look Up Table

4 Beschreibungsformen

4.1 Disjunktive Normalform/Sum of products (DNF/SOP)

Eins-Zeilen als Implikanten (UND) schreiben und alle Implikanten mit ODER verknüpfen: $Z = \overline{A} \cdot \overline{B} + \overline{C} \cdot D$

4.2 Konjunktive Normalform/Product of sums (KNF/POS)

Null-Zeilen negiert als Implikat (ODER) schreiben und alle Implikaten UND verknüpfen: $Z = (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{D}) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$

4.3 Umwandlung in jeweils andere Form

- 1. Doppeltes Negieren der Funktion: $Z = \overline{\overline{\overline{A} \cdot \overline{B} + \overline{C} \cdot D}}$
- 2. Umformung "untere" Negation (DeMorgan) : $Z = \overline{\overline{A \cdot B} \cdot \overline{C} \cdot D} = \overline{(A+B) \cdot (C+\overline{D})}$ 3. Ausmultiplizieren: $Z = \overline{(A+B) \cdot (C+\overline{D})} = \overline{A \cdot C + A \cdot \overline{D} + B \cdot C + B \cdot \overline{D}}$
- 4. Umformung "obere" Negation (DeMorgan) :

 $Z = \overline{AC} \cdot \overline{AD} \cdot \overline{BC} \cdot \overline{BD} = (\overline{A} + \overline{C}) \cdot (\overline{A} + D) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$

Analog von KNF (POS) nach DNF (SOP).

5 Logikminimierung

5.1 Nomenklatur

- ullet m_i Minterm: UND-Term in dem alle Variablen vorkommen (aus KDNF)
- Mi Maxterm: ODER-Term in dem alle Variablen vorkommen (aus KKNF)
- ullet c_i Implikant: UND-Term in dem freie Variablen vorkommen können
- C.: Implikat: ODER-Term in dem freie Variablen vorkommen können
- p_i Primimplikant: UND-Term mit maximal freien Variablen
- P_i Primimplikat: ODER-Term mit maximal freien Variablen

5.2 Karnaugh-Diagramm

Vorteile: sehr anschaulich

Nachteile: Gray-Kodierung notwendig, nur wenige Inputvariablen

Zyklische Gray-Codierung: 2dim:00, 01, 11, 10 3dim:000, 001, 011, 010, 110, 111, 101, 100

z^{xy}	00	01	11	10	
0	1	0	0	0	Gleiche Zellen zusammenfassen: z.B. $\overline{xy} + y \cdot z$
1	X	1	1	0	

Don't Care Werte ausnutzen!

5.3 Quine Methode

Vorteile: automatisierbar (DEA/FSM), beliebig viele Inputvariablen

Nachteile: viele paarweise Vergleiche, Erweiterung auf KKNF oder KDNF notwendig, viele Minund Maxterme

geg.: DNF/KNF oder Wertetabelle von f(x)

ges.: alle Primimplikanten/-kate p_i (VollSOP/VollPOS)

Spezielles Resoltuionsgesetz: $x \cdot a + \overline{x} \cdot a = a$

Absorptionsgesetz: $a + a \cdot b = a$

- 1. kanonische Form (KKNF/KDNF) bestimmen (z.B. $f(x,y,z)=xy=xyz+xy\overline{z}$)
- Alle Min-/Maxterme in Tabelle eintragen (Index von m ist (binär)Wert des Min-/Maxterms), sortieren nach der Anzahl der positiven Literale (=Klasse)
- 3. 1-Kubus: Min-/Maxterme die sich um eine Negation unterscheiden, zu einem Term verschmelzen (Resolutionsgesetz), dabei notieren aus welchen 0-Kuben er besteht und alle verwendeten 0-Kuben abhaken
- 4. Der 1-Kubus muss zusammenhängend sein! (d.h. alle 1-Kubus Min-/Maxterme müssen zusammenhängen)
- 5. Wenn möglich 2-Kubus bilden.
- 6. Wenn keine Kubenbildung mehr möglich ightarrow Nicht abgehakte Kuben sind Primimplikanten

Beispiel (Quine Methode):

ishiei (A	ispiei (Quine Metriode).							
	0-Kubus	A	1-Kubus	R	A	2-Kubus	A	
m_1	$\overline{x}_1\overline{x}_2x_3$	√	\overline{x}_2x_3	$m_1 \& m_5$	p_1			
m_4	$x_1\overline{x}_2\overline{x}_3$	√	$x_1\overline{x}_2$	$m_4 \& m_5$	√	x_1	p_2	
m_5	$x_1\overline{x}_2x_3$	√	$x_1\overline{x}_3$	$m_4 \& m_6$	√			
m_6	$x_1x_2\overline{x}_3$	🗸	$x_{1}x_{3}$	$m_5 \& m_7$	√			
m_7	$x_1x_2x_3$		$x_{1}x_{2}$	$m_6 \& m_7$				

 $\Rightarrow f(x_1, x_2, x_3) = p_1 + p_2 = \overline{x}_2 x_3 + x_1$

5.4 Resolventenmethode

Vorteile: Keine KDNF Notwendig, skaliert für viele Inputvariablen Ziel: alle Primimplikanten

Wende folgende Gesetze an:

Absorptionsgesetz: a + ab = a

allgemeines Resolutionsgesetz: $x\cdot a + \overline{x}\cdot b = x\cdot a + \overline{x}\cdot b + ab$

Anwendung mit Schichtenalgorithmus

- 1. schreibe die Funktion f in die 0. Schicht
- 2. bilde **alle möglichen** Resolventen aus der 0. Schicht und schreibe sie in die nächste Schicht als ODER Verknüpfungen (Resolventen zu f "hinzufügen")
- überprüfe ob Resolventen aus der 1. Schicht Kuben aus Schicht 0 überdecken(Absorbtion) und streiche diese Kuben aus Schicht 0
- 4. Schicht i besteht aus den möglichen Resolventen von Schicht 0 bis (i-1). Abgestrichene Kuben aus vorherigen Schichten brauchen **nicht** mehr beachtet werden.
- Sobald in der i-ten Schicht +1 steht oder keine weiteren Resolventen gebildet werden k\u00f6nnen, ist man fertig. ⇒ alle nicht ausgestrichenen Terme bilden die VollSOP

$f(x_1,\ldots,x_n)$	Schicht
$x\cdot w + \overline{x}\cdot w + x\cdot y\cdot w\cdot \overline{z} + \overline{x}\cdot y\cdot w\cdot \overline{z} + \overline{y}\cdot w\cdot \overline{z}$	0
$+w+y\cdot w\cdot \overline{z}$	1
$+w\cdot \overline{z}$	2
+w	3

5.5 Überlagerung (Bestimmung der Minimalform)

Geg: CSOP/KDNF $(\sum m_i)$ und VollSOP $(\sum p_i)$ Ges: DMF (Minimalform)

5.5.1 Überdeckung:

$$\begin{array}{lll} C = & (m_0 \subseteq p_1) & \cdot (m_2 \subseteq p_1 + m_2 \subseteq p_2) & \stackrel{!}{=} 1 \\ C = & \tau_1 & \cdot (\tau_1 + \tau_2) & = \tau_1 + \tau_1 \tau_2 = \tau_1 \end{array}$$

5.5.2 Alternativ: Mit Überdeckungstabelle bestimmen

Bsp:

		Minterme			
Primterme	m_1	m_2		m_N	$L(p_i)$
<i>p</i> ₁	√				$L(p_1)$
p_2	√			\checkmark	$L(p_2)$
:					:
:					i i
P _K		\checkmark			$L(p_K)$

K: Anzahl der Primterme

N: Anzahl der Minterme

 $L(p_i)$: Kosten/Länge der Primimplikanten

Vorgehen:

- 1. Kernprimimplikanten auswählen
- 2. Spaltendominanzen prüfen und dominierende Spalten streichen
- 3. Zeilendominanzen prüfen und dominierte Zeilen streichen
- 4. zurück zu 2. falls keine vollständige Überdeckung

Analog auch für Bestimmung der konjunktiven Minimalform (KMF)

6 Halbleiter

	Isolator	Metall	undotiert	N-Typ	P-Typ
Ladungsträger	Keine	e ⁻	e^-/e^+	e^-	e^+
Leitfähigkeit	Keine	Sehr hoch	$\propto T$	Hoch	Mittel

7 MOS-FET's

Metal Oxide Semiconductor Field Effekt Transistor

7.1 Bauteilparameter

- große Kanalweite \Rightarrow große Drain-Störme \Rightarrow schnelle Schaltgeschwindigkeit (da $i_d \propto \beta \propto \frac{W}{L}$) Aber: große Fläche.
- nMos schaltet schneller als pMOS, da nMOS und pMOS unterschiedliche Majoritätsladungsträger haben. Die Beweglichkeit der Löcher ist im Allgemeinen geringer als die der Elektronen.

7.2 Drainstrom

nMos (p-dotiertes Substrat, n-dotierte Drain/Source), schlechter pull up (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \leq 0 & \text{(Sperrber.)} \\ \beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \leq U_{gs} - U_{th} \geq u_{ds} & \text{(linearer Ber.)} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} & \text{(S\"{attigungsber.)}} \end{cases}$$

pMos (n-dotiertes Substrat, p-dotierte Drain/Source), schlechter pull down (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \geq 0 & \text{(Sperrber.)} \\ -\beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \geq U_{gs} - U_{th} \leq u_{ds} \text{ (linearer Ber.)} \\ -\frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_{ds} \text{ (S\"{a}ttigungsber and States)} \end{cases}$$

7.3 pMos und nMos

$\overline{V_{GS}}$ S V_{DD}	Transistor	Source liegt immer am	V_{GS}, V_{DS}, I_D	Substrat
$G \longrightarrow V_{DS}$	pMos normally on	höheren Potential	< 0	$+(V_{DD})$
$\begin{array}{c c} \mathbf{D} & & \\ \mathbf{G} & & V_{DS} \\ \hline V_{GS} & \mathbf{S} & & GND \end{array}$	nMos normally off	niedrigeren Potential	> 0	-(GND)

8 CMOS - Logik

Vorteil: (Fast) nur bei Schaltvorgängen Verlustleistung - wenig statische Verluste Drei Grundgatter der CMOS-Technologie:

Falls GND und V_{DD} vertauscht würden, dann $NAND \to AND$ und $NOR \to OR$ Allerdings schlechte Pegelgenerierung.

8.1 Gatterdesign

Netzwerk	Pull-Down	Pull-U p
Transistoren	nMos	pMos
NAND	Serienschaltung	Parallelschaltung
NOR	Parallelschaltung	Serienschaltung

- 1. Möglichkeit: Direkt; ggf. Inverter vor die Eingänge und Ausgänge schalten
- 2. Möglichkeit: Mit boolescher Algebra die Funktion nur mit NAND und NOR darstellen.

8.2 CMOS Verlustleistung

Dynamische Verlustleistung $P_{dyn} = P_{cap} + P_{short}$ $P_{cap} = \alpha_{01} f C_L V_{DD}^2$ Kapazitive Verluste

 $P_{short} = \alpha_{01} f \beta_n \tau (V_{DD} - 2V_{tn})^3$ Kurzschlussstrom

 $\alpha_{0
ightarrow 1} = rac{ ext{Schaltvorgänge(pos. Flanke)}}{\# ext{Betrachtete Takte}}$ Schalthäufigkeit

Schalthäufigkeit (periodisch) $\alpha = \frac{f_{
m Switch}}{f}$

Abhängig von den Signalflanken, mit Schaltfunktionen verknüpft

 $\approx V_{DD}1/\propto \text{Schaltzeit: } \frac{V_{DD2}}{V_{DD1}} = \frac{t_{D1}}{t_{D2}} \text{ (bei Schaltnetzen } t_{log} \text{)} \\ \text{Verzögerungszeit} \propto \frac{C_L tox L_p}{W_p \mu_p \varepsilon(V_{DD} - V_{th})}$

Steigend mit: Kapazitiver Last, Oxiddicke, Kanallänge, Schwellspannung

Sinkend mit: Kanalweite, Ladungsträger Beweglichkeit, Oxyd Dielektrizität, Versorgungsspannung

 $\textbf{Statische Verlustleistung} \ \ P_{stat} \text{: Sub-Schwellstr\"{o}me, Leckstr\"{o}me, Gate-Str\"{o}me Abh\"{a}ngigkeit:}$ $V_{DD} \uparrow: P_{stat} \uparrow V_{th} \uparrow: P_{stat} \downarrow \text{ (aber nicht proportional)}$

9 Volladdierer (VA)/Ripple-C(u)arry-Adder

Generate $g_n = a_n \cdot b_n$ Propagate $p_n = a_n \oplus b_n$

Summerbit $S_n = c_n \oplus p_n = a_n \oplus b_n \oplus c_n$

 $S_n = a_n \overline{b_n} \overline{c_n} + \overline{a_n} b_n \overline{c_n} + \overline{a_n} \overline{b_n} c_n +$ (Ungerade Anzahl von Eingängen 1) $a_n b_n c_n$

genau ein Eingang high alle Eingänge high

Carry-out $c_{n+1} = c_n \cdot p_n + g_n$ $c_{n+1} = a_n b_n \overline{c_n} + a_n \overline{b_n} c_n + \overline{a_n} b_n c_n +$ $a_n b_n c_n$ (Mindesten zwei Eingänge 1) zwei Eingänge 1 drei Eingänge 1

Laufzeiten

$$t_{sn} = \begin{cases} t_{cn} + t_{xor} & t_{cn} > t_{xor} \\ 2t_{xor} & sonst \end{cases}$$

$$t_{cn+1} = \begin{cases} t_{and} + t_{or} & a_n = b_n = 1 \\ t_{xor} + t_{and} + t_{or} & a_n = b_n = 0 \\ t_{cn} + t_{ond} + t_{or} & a_n \neq b_n \end{cases} (p_n = 0, g_n = 0)$$

10 Sequentielle Logik

Logik mit Gedächtnis (Speicher).

10.1 Begriffe/Bedingungen

t_{Setup}	Stabilitätszeit vor der aktiven Taktflanke
t_{hold}	Stabilitätszeit nach der aktiven Taktflanke
t_{c2q}	Eingang wird spätestens nach t_{c2q} am Ausgang verfügbar
Min. Taktperiode	$t_{clk} \ge t_{1,c2q} + t_{logic,max} + t_{2,setup}$
Max. Taktfrequenz	$f_{max} = \left\lfloor rac{1}{t_{clk}} ight floor$ (Nicht aufrunden)
Holdzeitbedingung	$t_{hold} \leq t_{c2q} + t_{logic,min} o Dummy$ Gatter einbauen
Durchsatz	$rac{1 {\sf Sample}}{t_{clk}, pipe} = f$ (Sample: Anzahl der Eingänge ins Register)
Latenz	t_{clk} $\hat{\cdot}$ $\hat{\#}$ Pipelinestufen (Anzahl von Logik $+$ Register-Blöcken)

10.2 Pipelining

Nur bei synchronen(taktgesteuerten) Schaltungen möglich!

- Aufteilen langer kombinatorischer Pfade durch Einfügen zusätzlicher Registerstufen → Möglichst Halbierung des längsten Pfades
- Zeitverhalten beachten (evtl. Dummy-Gatter einfügen)
- Durchsatz erhöht sich entsprechend der Steigerung der Taktfrequenz
- Gesamtlatenz wird eher größer
- Taktfrequenz erhöht sich

10.3 Parallel Processing

$$\mathsf{Durchsatz} = \frac{\#\mathsf{Modul}}{t_{clk}.Modul} = f \qquad \qquad \mathsf{Latenz} = t_{clk}$$

- Paralleles, gleichzeitiges Verwenden mehrere identischer Schaltnetze
- Zusätzliche Kontrolllogik nötig (Multiplexer)
- Taktfrequenz und Latenz bleiben konstant
- Durchsatz steigt mit der Zahl der Verarbeitungseinheiten ABER: deutlich höherer Ressourcenverbrauch

11 Speicherelemente

Flüchtig Speicherinhalt gehen verloren, wenn Versorgungsspannung V_{DD} wegfällt - Bsp: *RAM Nicht Flüchtig Speicherinhalt bleibt auch ohne ${\cal V}_{DD}$ erhalten - Bsp: Flash

Asynchron Daten werden sofort geschrieben/gelesen.

Synchron Daten werden erst mit $clk_{0 o 1}$ geschrieben.

Dynamisch Ohne Refreshzyklen gehen auch bei angelegter V_{DD} Daten verloren - Bsp: DRAM Statisch Behält den Zustand bei solange V_{DD} anliegt (keine Refreshzyklen nötig) - Bsp: SRAM Bandbreite: Bitanzahl, die gleichzeitig gelesen/geschrieben werden kann. Latenz: Zeitverzögerung zwischen Anforderung und Ausgabe von Daten. Zykluszeit: Minimale Zeitdifferenz zweier Schreib/Lesezugriffe.

Speicherkapazität = Wortbreite
$$\cdot 2^{\text{Adressbreite}}$$

11.1 Speicherzelle/Register

Ring aus zwei Invertern.

11.2 Latch (Pegelgesteuert)

Set-Reset Latch:

Zwei gegenseitig rückgekoppelte NAND-Gatter. 0 an R/S schaltet.

Enable-Latch: \ddot{a} ndert Speicherzustand auf D nur wenn e=1

11.3 Flip-Flop (Flankengesteuert)

Besteht aus zwei enable-Latches Flip-Flop: Ändert Zustand bei steigender/(fallender) Taktflanke.

12 Automaten (FSM)

12.1 Deterministic finite state machine (DFA)

DFA 6-Tupel $\{I, O, S, R, f, g\}$

IEingabealphabet 0 Ausgabealphabet SMenge von Zuständen $R \subseteq S$ Menge der Anfangszustände $f: S \times I \rightarrow S$ Übergangsrelation Ausgaberelation

12.2 Moore und Mealy FSMs

Vorteile

 Kein kombinatorischer Pfad Eingängen zu Ausgängen

 $a: S \rightarrow O$

• Wichtig für Begrenzung der Logiktiefe in sequentiellen Schaltwerken, insb. bei Verkettung

Nachteile

Hohe Anzahl an Zuständen

- Vorteile
- Weniger Zustände

 $a: S \times I \rightarrow O$

- · Übersichtliche Beschreibung
- Allgemeinster Fall einer FSM

Nachteile

- Lange kombinatorische Pfade bei Verket-
- in der Praxis zu vermeiden

Beim Zeichnen jede Eingabemöglichkeit für jeden Zustand berücksichtigen und Startzustand mit leerem Pfeil kennzeichnen.