Elemente der Kombinatorik

Def Sei $n \in \mathbb{N}_0$. Die Fakultät von n ist definiert durch:

 $n! := 1 \cdot 2 \cdot \cdot \cdot n \text{ für } n \in \mathbb{N}$

0! := 1

Def Seien $k, n \in \mathbb{N}_0$. Der *Binomialkoeffizient* n *über* k ist definiert durch:

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$
, falls $k \le n$ und $\binom{n}{k} := 0$, falls $k > n$.

Satz 1.5 Für $k, n \in \mathbb{N}_0$ mit $k \leq n$ gilt

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

Satz 1.6 Für $M_n = \{1, 2, ..., n\}$ mit $n \in \mathbb{N}$ und $0 \le k \le n$ gilt:

- 1) Es gibt n! Anordnungen der Elemente von M_n .
- 2) Es gibt $\frac{n!}{(n-k)!}$ Anordnungen von k beliebigen verschiedenen Elementen von M_n .
- 3) Es gibt $\binom{n}{k}$ k-elementige Teilmengen von M_n .

Satz 1.7 (Binomischer Lehrsatz)

Seien $x, y \in \mathbb{R}$ und $n \in \mathbb{N}$. Dann gilt:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Folgerung

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n.$$

Satz 1.8 (Geometrische Summenformel)

Für $x \neq 1$ und $n \in \mathbb{N}$ gilt:

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$