Haoyue Chang
Batch code< LISUM22>
Submission date: July 3rd, 2023
Submitted to Deployment on Flask for Data
Glacier Internship

```
In [23]: import pandas as pd
        import numpy as np
        import seaborn as sns
import matplotlib as mpl
        import matplotlib.pyplot as plt
         # For randomized data splitting
        from sklearn.model_selection import train_test_split
         # To build linear regression_model
        import statsmodels.api as sm
        # To check model performance
        from sklearn.metrics import mean_absolute_error, mean_squared_error
        import pickle
In [24]: df = pd.read_csv('/Users/haoyuechang/Desktop/auto-mpg.csv')
        #cData = pd.read_csv("auto-mpg.csv")
: df = pd.read_csv('/Users/haoyuechang/Desktop/auto-mpg.csv')
  #cData = pd.read csv("auto-mpg.csv")
: #Data processing
  df.info()
  #398 entries, 9 columns
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 398 entries, 0 to 397
  Data columns (total 9 columns):
   # Column
                      Non-Null Count Dtype
   0 mpg
                     398 non-null
                                         float64
   1
       cylinders
                      398 non-null
                                         int64
       displacement 398 non-null
   2
                                         float64
      horsepower 398 non-null
                                        object
   3
      weight
                       398 non-null
                                        int64
      acceleration 398 non-null model year 398 non-null
   5
                                         float64
                                         int64
                       398 non-null
                                        int64
      origin
   8 car name
                      398 non-null
                                         object
  dtypes: float64(3), int64(4), object(2)
  memory usage: 28.1+ KB
: #drop car name since it is not useful to analyze
  df1 = df.drop(["car name"], axis=1)
```

```
: hpIsDigit = pd.DataFrame(
         df1.horsepower.str.isdigit()
) # if the string is made of digits store True else False

# print the entries where isdigit = False
df1[hpIsDigit["horsepower"] == False]
```

		mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin
Ī	32	25.0	4	98.0	?	2046	19.0	71	1
	126	21.0	6	200.0	?	2875	17.0	74	1
	330	40.9	4	85.0	?	1835	17.3	80	2
	336	23.6	4	140.0	?	2905	14.3	80	1
	354	34.5	4	100.0	?	2320	15.8	81	2
	374	23.0	4	151.0	?	3035	20.5	82	1

```
dfl= dfl.replace("?", np.nan)
dfl[hpIsDigit["horsepower"] == False]
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin
32	25.0	4	98.0	NaN	2046	19.0	71	1
126	21.0	6	200.0	NaN	2875	17.0	74	1
330	40.9	4	85.0	NaN	1835	17.3	80	2
336	23.6	4	140.0	NaN	2905	14.3	80	1
354	34.5	4	100.0	NaN	2320	15.8	81	2
374	23.0	4	151.0	NaN	3035	20.5	82	1

:

```
]: df1.median()
                     23.0
]: mpg
   cylinders
                      4.0
                    148.5
   displacement
                     93.5
   horsepower
   weight
                   2803.5
   acceleration
                     15.5
                     76.0
   model year
   origin
                      1.0
   dtype: float64
]: # Let's replace the missing values with median values of the columns.
   # Note that we do not need to specify the column names below.
   # Every column's missing value is replaced with that column's median respectively
   medianFiller = lambda x: x.fillna(x.median())
   df1 = df1.apply(medianFiller, axis=0)
]: # let's convert the horsepower column from object type to float type
   df1["horsepower"] = df1["horsepower"].astype(float)
Out[32]: <seaborn.axisgrid.PairGrid at 0x7fb13015ca00>
         gg 30 -
          10
                                                                                    .......
          150
```


Out[33]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin_2	origin_3
0	18.0	8	307.0	130.0	3504	12.0	70	0	0
1	15.0	8	350.0	165.0	3693	11.5	70	0	0
2	18.0	8	318.0	150.0	3436	11.0	70	0	0
3	16.0	8	304.0	150.0	3433	12.0	70	0	0
4	17.0	8	302.0	140.0	3449	10.5	70	0	0

```
In [34]: #SPLIT DATA
# independent variables
X = df2.drop(["mpg"], axis=1)
# dependent variable
y = df2[["mpg"]]
```

```
|: print(X_train.head())
        cylinders displacement horsepower weight acceleration model year
  350
                          105.0
                                       63.0
                                                2215
                                                              14.9
                4
                                                                             81
                           97.0
                                       54.0
                                                              23.5
  59
                                                2254
                                                                             72
                4
  120
                4
                          121.0
                                      112.0
                                                2868
                                                              15.5
                                                                             73
  12
                8
                          400.0
                                      150.0
                                                3761
                                                              9.5
                                                                             70
  349
                                       68.0
                                                                             81
                4
                           91.0
                                                1985
                                                              16.0
        origin_2 origin_3
  350
               0
                         0
  59
                         0
               1
  120
                         0
               1
  12
               0
                         0
   349
               0
                         1
: print(X_test.head())
        cylinders displacement horsepower weight acceleration model year \
  174
                          171.0
                                       97.0
                                                              14.5
                6
                                                2984
                                                                             75
                                       80.0
  359
                4
                          141.0
                                                3230
                                                              20.4
                                                                             81
  250
                8
                          318.0
                                      140.0
                                                3735
                                                              13.2
                                                                             78
  274
                5
                          131.0
                                      103.0
                                                2830
                                                              15.9
                                                                             78
                6
                          232.0
                                                              18.2
                                                                             79
  283
                                       90.0
                                                3265
        origin_2 origin_3
                         0
  174
               0
  359
                         0
               1
  250
               0
                         0
  274
                         0
               1
  283
               0
                         0
: olsmod = sm.OLS(y_train, X_train)
  olsres = olsmod.fit()
```

Covariance Type:

OLS Regression Results

Dep. Variable:	mpg	R-squared (uncentered):	0.980
Model:	OLS	Adj. R-squared (uncentered):	0.980
Method:	Least Squares	F-statistic:	1689.
Date:	Mon, 26 Jun 2023	Prob (F-statistic):	1.04e-225
Time:	16:45:30	Log-Likelihood:	-741.29
No. Observations:	278	AIC:	1499.
Df Residuals:	270	BIC:	1528.
Df Model:	8		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
cylinders	-0.6654	0.427	-1.558	0.120	-1.506	0.175
displacement	0.0284	0.010	2.747	0.006	0.008	0.049
horsepower	-0.0443	0.016	-2.845	0.005	-0.075	-0.014
weight	-0.0067	0.001	-7.945	0.000	-0.008	-0.005
acceleration	-0.1202	0.110	-1.090	0.277	-0.337	0.097
model year	0.6229	0.029	21.627	0.000	0.566	0.680
origin_2	2.3585	0.699	3.372	0.001	0.982	3.735
origin_3	2.1483	0.697	3.083	0.002	0.777	3.520
Omnibus:		27.282	Durbin-W	atson:		2.241
Prob(Omnibus):		0.000	Jarque-B	era (JB):		42.908
Skew:		0.609	Prob(JB)	:	4	.82e-10
Kurtosis:		4.490	Cond. No		1	.24e+04

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 1.24e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
# Saving model to disk
pickle.dump(olsres, open('model.pkl','wb'))

# Loading model to compare the results
model = pickle.load(open('model.pkl','rb'))
print(model.predict([[8,307.0,130.0,3504,12.0,70,0,0]]))

[16.27077424]

!pip3 install flask==2.2.2

Collecting flask==2.2.2

Using cached Flask-2.2.2-py3-none-any.whl (101 kB)
Requirement already satisfied: Werkzeug>=2.2.2 in /opt/anaconda3/lib/python3.9/site-packages (from flask==2.2.2) (2.
```

Collecting flask=2.2.2

Using cached Flask-2.2.2-py3-none-any.whl (101 kB)

Requirement already satisfied: Werkzeug>=2.2.2 in /opt/anaconda3/lib/python3.9/site-packages (from flask=2.2.2) (2.3.6)

Requirement already satisfied: Jinja2>=3.0 in /opt/anaconda3/lib/python3.9/site-packages (from flask=2.2.2) (3.1.2)

Requirement already satisfied: importlib-metadata>=3.6.0 in /opt/anaconda3/lib/python3.9/site-packages (from flask==2.2.2) (4.8.1)

Requirement already satisfied: itsdangerous>=2.0 in /opt/anaconda3/lib/python3.9/site-packages (from flask==2.2.2) (2.1.2)

Requirement already satisfied: click>=8.0 in /opt/anaconda3/lib/python3.9/site-packages (from flask=2.2.2) (8.1.3)

Requirement already satisfied: zipp>=0.5 in /opt/anaconda3/lib/python3.9/site-packages (from importlib-metadata>=3.6.0-flask=2.2.2) (3.6.0)

Requirement already satisfied: MarkupSafe>=2.0 in /opt/anaconda3/lib/python3.9/site-packages (from Jinja2>=3.0->flask=2.2.2) (2.1.2)

Installing collected packages: flask

Attempting uninstall: flask

Found existing installation: Flask 2.3.2

Found existing installation: Flask 2.3.
Uninstalling Flask-2.3.2:
Successfully uninstalled Flask-2.3.2
Successfully installed flask-2.2.2

Predict MVG

Cylinders	Displacement	Horsepower	weight	Acceleration	Model year	Origin_2	Origin_3	Predict