Converging on the Area of the Mandelbrot set

Daniel Bittner and Winston Cheong

Rowan University

November 20, 2013

Outline

- Introduction
- 2 Background
 - Mandelbrot Set
 - Laurent series method
- Programmatic approach
 - Calculation specs
 - Language Choice
 - Optimizations
- 4 Future Goals
 - Mathematical

Student Research (Summer 2013)

- Daniel Bittner CS Major.
- Winston Cheong Math and CS Major.
- Done in collaboration with Dr. Hieu Nguyen

Outline

- Introduction
- 2 Background
 - Mandelbrot Set
 - Laurent series method
- Programmatic approach
 - Calculation specs
 - Language Choice
 - Optimizations
- 4 Future Goals
 - Mathematical

Definition (Mandelbrot set)

The set of values $c \in \mathbb{C}$ where the sequence $\{z_n\}$, defined by

$$z_{n+1} = z_n^2 + c$$
, $z_0 = 0$,

remains bounded.

Definition (Bounded)

A sequence $\{z_n\}$ is bounded if there exists some real number L such that

$$|z_n| \leqslant L$$

for all n.

Pictoral Representation

Figure: Pixels are colored according to how rapidly the sequence diverges

What is the exact area of the Mandelbrot set?

What is the exact area of the Mandelbrot set?

Approaches • Pixel counting - 1.5065918849(28) (Thorsten Förstemann 2012)

What is the exact area of the Mandelbrot set?

Approaches

- Pixel counting 1.5065918849(28)(Thorsten Förstemann 2012)
- Laurent series 1.72 using 500K terms (Ewing, Schober)

What is the exact area of the Mandelbrot set?

- **Approaches** Pixel counting 1.5065918849(28) (Thorsten Förstemann 2012)
 - Laurent series 1.72 using 500K terms (Ewing, Schober)

Our goal Improve the estimates of the upper bound of the area using the Laurent series method by calculating 1 million b terms.

What is the exact area of the Mandelbrot set?

- **Approaches** Pixel counting 1.5065918849(28) (Thorsten Förstemann 2012)
 - Laurent series 1.72 using 500K terms (Ewing, Schober)

Our goal Improve the estimates of the upper bound of the area using the Laurent series method by calculating 1 million b terms.

What is the exact area of the Mandelbrot set?

- Approaches Pixel counting 1.5065918849(28) (Thorsten Förstemann 2012)
 - Laurent series 1.72 using 500K terms (Ewing, Schober)

Our goal Improve the estimates of the upper bound of the area using the Laurent series method by calculating 1 million b terms.

• 1.(697) using 1.7M terms (B-C-N) Result

How it works

Theorem ([Ewing-Schober, 1992])

Area is given by

$$A_{r} = \pi \left[1 - \sum_{m=1}^{\infty} m |b_{m}|^{2} \right]$$

with $b_m = \beta_{0,m+1}$, where $\beta_{n,m}$ is defined as

$$\begin{cases} \beta_{n,0} = 1 \\ \beta_{n,m} = 0 \end{cases} & (1 < m < 2^{n+1} - 1, n \geqslant 1) \\ \beta_{n,m} = \frac{1}{2} \left[\beta_{n+1,m} - \sum_{k=2^{n+1}-1}^{m-2^{n+1}+1} \beta_{n,k} \beta_{n,m-k} - \beta_{0,m-2^{n+1}+1} \right] \\ & \textit{when } (m \geqslant 2^{n+1} - 1, n \geqslant 0) \end{cases}$$

Laurent series method

$\beta_{n,m}$ Values

							6				
0	1	$-\frac{1}{2}$	<u>1</u> 8	$-\frac{1}{4}$	15 128	0	$-\frac{47}{1024}$	$-\frac{1}{16}$	987 32768	0	$-\frac{3673}{262144}$ 0 $\frac{1}{8}$ 0
1	1	0	0	$-\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{16}$	0	$-\frac{47}{256}$	$\frac{1}{16}$	<u>15</u> 2048	0
2	1	0	0	0	0	0	0	$-\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{16}$	1 8
3	1	0	0	0	0	0	0	0	0	0	0

Introduction

Necessary Terms

A calculation up to 1,000,000 terms must contain

Zeros 2,048,536 zeros

β Values 17,951,464 values

 $\beta_{0,m}$ Value calls 1,000,001,000,000 calls

Calculation Example

Introduction

Laurent series method

Visualizing the β series

$$\boxed{\beta_{n,m}} \ \frac{1}{2} (\boxed{\beta_{n+1,m}} - \boxed{\sum_{k=2^{n+1}-1}^{m-2^{n+1}+1} \beta_{n,k} \beta_{n,m-k}} - \boxed{\beta_{0,m-2^{n+1}+1}})$$

Laurent series method

Visualizing the β series

$$\boxed{\beta_{n,m}} = \frac{1}{2} (\ \underline{\beta_{n+1,m}} - \boxed{\sum_{k=2^{n+1}-1}^{m-2^{n+1}+1} \beta_{n,k} \beta_{n,m-k}} - \underline{\beta_{0,m-2^{n+1}+1}} \)$$

Laurent series method

Iterative Method

N/M									_
0	1	$\beta_{0,1}$	β 0,2	β,3	β _{0,4}	β0,5	β _{0,6}	β0,7	β _{0,8} β _{1,8}
1	1	0	0	β _{1,3}	$\beta_{1,4}$	$\beta_{1,5}$	$\beta_{1,6}$	β1,7	β _{1,8}
2	1	0	0	0	0	0	0	$\beta_{2,7}$	β _{2,8}
3	1	0	0	0	0	0	0	0	0

Introduction

Known results

Theorem ([Ewing-Schober, 1992])

- ① If $m=(2k+1)2^{\nu}$, with $k,\nu\in\mathbb{Z}$, $k\geqslant 0,2^{\nu}\geqslant k+3$, then $b_m=0$.
- ② If $m = (2^{\nu+1} 3)2^{\nu}$ and $\nu \geqslant 1$, then $b_n = -\frac{1}{m} {2^{\nu-3/2} \choose 2^{\nu}-1}$.

Theorem (Ahmed-N)

Let n and m be integers such that $n \ge 0$ and $2^{n+1} - 1 \le m \le 2^{n+2} - 3$. Then for every $p \in \mathbb{N}$, we have

$$\beta_{n,m} = \beta_{n+p,m+2^{n+1}(2^p-1)} = -\frac{1}{2}\beta_{0,m-2^{n+1}+1}$$

New results I

Theorem

Let n be a non-negative integer. Then

$$\beta_{\mathfrak{n},2^{\mathfrak{n}+2}-2} = -\tfrac{1}{2}(\beta_{0,2^{\mathfrak{n}+1}-1} + \tfrac{1}{4})$$

New results II

Proof.

Recall that $\beta_{n,m} = -\frac{1}{2}\beta_{0,m-2^{n+1}+1}$ for $n \ge 0$ and $2^{n+1}-1 \le m \le 2^{n+2}-3$. We have

$$\begin{split} \beta_{n,2^{n+2}-2} &= \frac{1}{2} \left[\beta_{n+1,2^{n+2}-2} - \sum_{k=2^{n+1}-1}^{2^{n+1}-1} \beta_{n,k} \beta_{n,2^{n+2}-2-k} - \beta_{0,2^{n+1}-1} \right] \\ &= \frac{1}{2} \left[0 - \beta_{n,2^{n+1}-1}^2 - \beta_{0,2^{n+1}-1} \right] \\ &= \frac{1}{2} \left[-\frac{1}{4} \beta_{0,0}^2 - \beta_{0,2^{n+1}-1} \right] \\ &= -\frac{1}{2} \left[\beta_{0,2^{n+1}-1} + \frac{1}{4} \right] \quad \Box \end{split}$$

Programmatic approach

New results III

Theorem

Let n be a non-negative integer. Then $\beta_{n,2^{n+2}} = \frac{1}{16}$

Introduction

New results IV

Proof.

Recall that
$$\beta_{n,m}=-\frac{1}{2}\beta_{0,m-2^{n+1}+1}$$
 for $n\geqslant 0$ and $2^{n+1}-1\leqslant m\leqslant 2^{n+2}-3.$ We have

$$\begin{split} \beta_{n,2^{n+2}} &= \frac{1}{2} \left[\beta_{n+1,2^{n+2}} - \sum_{k=2^{n+1}-1}^{2^{n+1}+1} \beta_{n,k} \beta_{n,2^{n+2}-k} - \beta_{0,2^{n+1}+1} \right] \\ &= \frac{1}{2} \left[-\frac{1}{2} \beta_{0,1} - 2 \beta_{n,2^{n+1}-1} \beta_{n,2^{n+1}+1} - \beta_{n,2^{n+1}}^2 - b_{0,2^{n+1}} \right] \\ &= \frac{1}{2} \left[-\frac{1}{2} \beta_{0,1} - \frac{1}{2} \beta_{0,0} \beta_{0,2} - \frac{1}{4} \beta_{0,1}^2 - 0 \right] \\ &= \frac{1}{2} \left[-\frac{1}{2} (-1/2) - \frac{1}{2} (1) (1/8) - \frac{1}{4} (-1/2)^2 \right] \\ &= 1/16 \quad \Box \end{split}$$

Programmatic approach

Introduction

New results V

$\mathsf{Theorem}$

Let $n \geqslant 2$ be an integer. Then $\beta_{n,2^{n+2}+2} = -\frac{1}{2}\beta_{0,2^{n+1}+3}$. Let $n \geqslant 2$ be an integer. Then $\beta_{n,2^{n+2}+4} = -\frac{1}{2}\beta_{0,2^{n+1}+5}$. Let $n \geqslant 3$ be an integer. Then $\beta_{n,2^{n+2}+6} = -\frac{1}{2}\beta_{0,2^{n+1}+7}$.

Programmatic approach

Outline

- Introduction
- 2 Background
 - Mandelbrot Set
 - Laurent series method
- Programmatic approach
 - Calculation specs
 - Language Choice
 - Optimizations
- 4 Future Goals
 - Mathematical

Processing Power

- cc1.rowan.edu, Rowan cluster, 8 quad-core processers, 32
 GB of ram
- 2 GB 800 MHz DDR2 SDRAM, 2.13 Ghz Intel Core 2 Duo, Mac OS X 10.6.8
- 32 GB 1066 MHz DDR3 RAM, 3.2 Ghz quad-core Intel Xeon, Mac OS X 10.7.5

Procedure

- Calculated β values are stored into a file
 - Stored as double-precision floating point decimal
- Terms calculated in batches of 10,000 or 100,000
 - Batches begin by reading stored values to rebuild the data structure and resume calculation.

Language comparison

Language	Execution	Typing	Scripting	Compiling	
C++	Compiled	Static	Procedural, Functional, Obj Oriented	Machine Code	
Java Python	Compiled Interpretative	Static Dynamic	Obj Oriented Procedural, Functional	Bytecode Non-compiled	

Table: Language comparison

Language Timings Table

Terms b _m	Terms b _m Python(sec) Java(se		sec) C++(sec) Teri		Python(sec)	Java(sec)	C++(sec)
100	0.01	0.04	0.02	1100	15.47	6.41	5.78
200	0.05	0.11	0.11	1200	21.95	8.66	7.45
300	0.16	0.33	0.27	1300	30.10	11.86	9.43
400	0.39	0.47	0.51	1400	40.23	15.35	11.54
500	0.81	0.74	0.85	1500	52.49	19.67	13.88
600	1.55	1.01	1.30	1600	67.49	25.15	16.55
700	2.70	1.61	1.88	1700	85.27	31.68	19.61
800	4.43	2.23	2.59	1800	106.36	39.10	23.29
900	6.96	3.17	3.46	1900	131.02	47.62	27.58
1000	10.55	4.70	4.50	2000	159.725	58.17	32.49

Memoization

Each $\beta_{n,m}$ calculation requires $m-2^{n+1}+2$ other β terms.

Storing and calling previously computed β values from a data structure reduces calculation time

	Terms $\mathfrak{b}_{\mathfrak{m}}$	pure recursion(sec)	Terms $\mathfrak{b}_{\mathfrak{m}}$	stored values(sec)
Ī	10	2.56	1000	6.17
	11	9.20	1100	7.03
	12	43.26	1200	9.60
	13	164.38	1300	11.95
	14	594.49	1400	13.63

Half Convolution

Definition (Half Convolution)

$$\begin{split} \sum_{k=2^{n+1}-1}^{m-2^{n+1}+1} \beta_{n,k} \beta_{n,m-k} \\ &= \begin{cases} 2(\sum_{k=2^{n+1}-1}^{m/2-1} \beta_{n,k} \beta_{n,m-k}) + (\beta_{n,m/2})^2 & \text{if } m \text{ even} \\ (m-1)/2 & 2(\sum_{k=2^{n+1}-1}^{m-1} \beta_{n,k} \beta_{n,m-k}) & \text{if } m \text{ odd} \end{cases} \end{split}$$

Half Convolution

Example

$$\begin{split} \beta_{1,10} \text{ convolution} &= \beta_{1,3}\beta_{1,7} + \beta_{1,4}\beta_{1,6} + \beta_{1,5}\beta_{1,5} \\ &+ \beta_{1,6}\beta_{1,4} + \beta_{1,7}\beta_{1,3} \\ \beta_{1,10} \text{ half convolution} &= 2(\beta_{1,3}\beta_{1,7} + \beta_{1,4}\beta_{1,6}) + \beta_{1,5}\beta_{1,5} \end{split}$$

The half convolution will calculate at most m/2 + 1 terms of the convolution for a non-zero convolution

Convolution Timings

Terms b _m	Convolution(sec)	Half Convolution(sec)
1000	1.31	0.70
2000	6.46	3.73
3000	17.94	12.15
4000	36.18	25.54
5000	61.35	44.14
6000	94.28	67.05
7000	135.56	96.31
8000	186.10	131.42
9000	246.01	170.17
10000	315.54	214.26

Precision

Theorem (Ewing-Schober)

 $2^{2m+3-2^{(n+2)}}\beta_{n,m} \text{ is an integer for } n\geqslant 0 \text{ and } m\geqslant 1 \\ 2^{2m+1}b_m \text{ is an integer for } m\geqslant 0$

If we set $B_{\mathfrak{n},\mathfrak{m}}=2^{2\mathfrak{m}+3-2^{(\mathfrak{n}+2)}}\beta_{\mathfrak{n},\mathfrak{m}}$, then

Definition (Ewing-Schober)

$$\begin{split} B_{n-1,m} &= 2^{2^{n+1}-1} B_{n,m} \\ &- 2^{2^{n+1}-4} \sum_{k=2^n-1}^{m-2^n+1} B_{n-1,k} B_{n-1,m-k} \\ &- 2 B_{0,m-2^n+1} \end{split}$$

Doubles and Unlimited Precision Integers

Definition $(\beta \text{ and } B)$

 $\beta_{0.50} = 0.002286919608197$

 $B_{0.50} = 890433596703485058699231232$

Integers quickly reach 100's of digits long

- 10,000 integers 5 MB file size
- 10.000 doubles 2.9 MB file size

Precision Timings

Terms b _m	Integers(sec)	Doubles(sec)
1000	4.68	3.61
2000	33.52	16.25
3000	133.78	39.19
4000	365.65	73.68
5000	777.67	119.37
6000	1438.78	177.65
7000	2441.06	248.63
8000	3880.82	330.53
9000	5854.09	423.86
10000	8479.87	529.62

Multithreading and Parallelization

Definition (Single-Threaded)

- Each calculation is executed in order one-by-one
- This is how processing is normally handled

Time is lost waiting for independent calculations to complete

Definition (Multi-Threading)

- Multiple calculations are run simultaneously
- Requires multiple processor cores

Visualizing MultiThreading

N/M	 15	16	17	18	19
0	 β_{0,15}	$\beta_{0,16}$	$\beta_{0,17}$	β _{0,18}	$\beta_{0,19}$
1	 β _{1,15}	$\beta_{1,16}$	β _{1,17}	$\beta_{1,18}$ $\beta_{2,18}$	$\beta_{1,19}$
2	 $\beta_{2,15}$	$\beta_{2,16}$	$\beta_{2,17}$	$\beta_{2,18}$	$\beta_{2,19}$
3	 $\beta_{3,15}$	$\beta_{3,16}$	$\beta_{3,17}$	$\beta_{3,18}$	$\beta_{3,19}$
4	_	0	_	0	0

MultiThreaded Implementation

Thread Handles a single column $\beta_{n,m}$ to $\beta_{0,m}$ run in parallel with adjacent columns

Mutex Locks calculation of $\beta_{0,m}$ until $\beta_{0,m-1}$ has been calculated

Boost C++ Multi-threading library used to handle the thread generation

Results

Multi-Threading is faster once column calculation time savings exceeds absolute cost of thread creation

SingleThreaded and MultiThreading Comparision

- At small m, initial time and resource costs of thread creation have relatively high cost. Single threaded was faster.
- With large m, total time longer, lowering relative cost of thread creation. MultiThreading becomes preferred approach.
- At approximately 30,000 terms, a single threaded and multi threaded approach will calculate the next 1000 terms in the same amount of time

MultiThreading Timings

Terms	SingleThreaded	per 1000	MultiThreaded	per 1000	Terms	SingleThreaded	per 1000	MultiThreaded	per 1000
21000	79.57	79.57	86.67	86.67	61000	334.43	334.43	317.45	317.45
22000	166.41	86.84	183.82	97.15	62000	675.78	341.35	645.51	328.06
23000	258.72	92.31	287.14	103.32	63000	1024.23	348.45	975.33	329.82
24000	358.61	99.89	395.01	107.87	64000	1376.50	352.27	1307.46	332.13
25000	477.39	118.78	510.37	115.36	65000	1738.57	362.07	1644.9	337.44
26000	592.79	115.4	629.30	118.93	66000	2107.39	368.82	1990.25	345.35
27000	713.81	121.02	756.41	127.11	67000	2484.35	376.96	2340.24	349.99
28000	836.34	122.53	886.59	130.18	68000	2894.49	410.14	2693.84	353.60
29000	969.25	132.91	1022.9	136.31	69000	3355.43	460.94	3055.19	361.35
30000	1111.76	142.51	1164.45	141.55	70000	3823.92	468.49	3423.97	368.78

Outline

- Introduction
- 2 Background
 - Mandelbrot Set
 - Laurent series method
- Programmatic approach
 - Calculation specs
 - Language Choice
 - Optimizations
- Future Goals
 - Mathematical

Programmatic approach

β properties

Conjecture

Let $n \ge 0$ and $m \ge 2^{n+2} - 2$. Write m in the form $m = 2^n + 2^q k$ where q is a non-negative integer q and k is an odd positive integer. Set $\mathfrak{p}=\left\lceil\frac{2m+3-2^{n+2}}{2^{q+1}-1}\right\rceil$. Then $2^p\beta_{\mathfrak{n},\mathfrak{m}}$ is an integer.

We see a fractal nature in both the b and β values.

Future Goals

- Continue calculating additional terms of the series
- Implementation of MPI (Message Passing Interface) for multiple processors
 - Inter-processor communication between 4 processors on the CC cluster.

J. Ewing and G. Schober.

The area of the Mandelbrot set.

Numerische Mathematik, **61** (1992), 59 - 72.