Podstawowym warunkiem wdrożenia rozwiązań P2H jest zapewnienie im rentowności, co może okazać się wyzwaniem w przypadku wysokich cen energii elektrycznej. Przeprowadzona analiza wskazuje, że cena energii elektrycznej w 2023 r. była niższa od założonej ceny gazu zaledwie przez 510 godzin. Jest to wartość typowa dla układów mających zapewnić szczytowe zapotrzebowanie na ciepło, co w połączeniu ze stosunkowo niewielkimi kosztami kotłów elektrycznych oraz ich wysoką sprawnością może stanowić atrakcyjny element dekarbonizacji ciepłownictwa. Ze względu na stosunkowo krótki czas pracy przy założeniu działania gdy cena energii elektrycznej jest niższa od ceny paliwa nie zapewnia do dużej redukcji emisji CO₂. Czas ten może ulec wydłużeniu w związku ze wzrostem mocy zainstalowanych w OZE oraz ich nadpodażą, co powoduje polecania ograniczenia generacji energii w źródłach OZE przez PSE. W takich warunkach powszechna implementacja kotłów elektrycznych oraz innych rozwiązań P2H, może stanowić formę bilansowania nadwyżek energii z OZE. Wymaga to jednak włączenia ciepłownictwa do bilansowania systemu elektroenergetycznego, a więc wdrożenie mechanizmów rynkowych (usług systemowych) nagradzających elastyczne jednostki mogące bilansować KSE.

Implementacja technologii P2H może pociągać za sobą dodatkowe koszty w postaci konieczności zwiększenia mocy przyłączeniowej ciepłowni lub elektrociepłowni, co przy niskiej rentowności sektora ciepłowniczego w Polsce może stanowić dla nich wyzwanie. Jednocześnie, pozostawanie przy opieraniu produkcji ciepła o paliwa kopalne również jest obarczone wysokimi kosztami, związanymi m.in. zmienną i często wysoką ceną uprawnień do emisji CO₂. Stawia to przedsiębiorstwa ciepłownicze w trudnej sytuacji. Ostatecznie może się to przełożyć na pogorszenie konkurencyjności sektora ciepłowniczego w oraz wzrost ceny ciepła sieciowego. Aby temu zapobiec należy wprowadzić wsparcie procesu elektryfikacji w ciepłowniach i elektrociepłowniach w postaci np. wsparcie dotacyjne, ulgi podatkowe, pożyczki, konwersja darmowych uprawnień do emisji CO₂.

W tab. 1 zebrano najważniejsze wyniki analizy. Założono, że kogeneracja gazowa opiera się o technologię układu gazowo-parowego z podziałem sprawności na sezon grzewczy oraz sezon letni. Jako granicę pomiędzy sezonami przyjęto temperaturę otoczenia na poziomie 12°C. Wykorzystano godzinowe dane temperatury, rynkowej ceny energii elektrycznej, średnią kwartalną cenę gazu ziemnego oraz dobowe ceny uprawnień do emisji CO₂. Założono brak darmowych uprawnień do emisji. Pomięto sprzedaż świadectw pochodzenia energii. Założono zastosowanie pięciu kotłów elektrycznych o mocy 25 MW_t oraz sprawności 99%. Kotły pracują gdy cena energii elektrycznej jest niższa od ceny gazu ziemnego. Cenę ciepła wytworzone z kotłów założono na takim samym poziomie jak z kogeneracji. Przy przyjętych założeniach w kolumnie różnice widoczne jest zmniejszenie kosztów zakupu gazu (129 mln PLN) oraz uprawnień do emisji CO₂ (50 mln PLN). Jednocześnie spadek zysków z sprzedaży energii elektrycznej wyniósł 37 mln, a więc utracone zyski mogą być skompensowane przez oszczędności związane z zakupami gazu oraz uprawnień do emisji CO₂.

Wykres 7. Prezentuje hipotetyczną pracę kogeneracji gazowej w dzień zimowy, a Wykres 8. W dzień letni. Analiza pomija czas rozruchu układu gazowo-parowego i dla dnia letniego w godzinach 04:00-08:00 jego uruchomienie go mogłoby być nieopłacalne i wymaga korekty warunków obciążenia kotłów elektrycznych oraz

Szczegółowy tok postępowania został przedstawiony w skoroszycie Jupyter Notebook. Znajdują się tam dodatkowe wykresy oraz źródła dla przyjętych założeń.

https://github.com/Arkamus/Zadanie-rekrutacyjne/blob/main/Zadanie%20rekrutacyjne.ipynb

Tabela 1. Wybrane charakterystyki układu gazowo-parowego przed dekarbonizacją

Parametr	Jednostka	Bez dekarbonizacji	Dekarbonizacja	Różnica
Energia pierwotna	MWh/rok	29 826 395	29 152 495	673 899
Zużycie gazu	m³ _n /rok	2 929 741 404	2 863 546 590	66 194 814
Energia elektryczna	MWh/rok	16 002 478	15 576 878	425 600
Energia elektryczna – przychód	PLN/rok	8 182 798 591	8 145 159 097	37 639 494
Ciepło – przychód	PLN/rok	962 239 999	962 239 999	0
Koszt gazu	PLN/rok	6 603 396 114	6 473 991 860	129 404 253
Koszt uprawnień do emisji CO ₂	PLN/rok	2 281 865 628	2 231 857 858	50 007 769

