

Eksamen MA217

Onsdag 9. Januar 2002

Løsningsforslag

 ${\bf Norges~teknisk-naturvitenskapelige~universitet}$

Institutt for matematiske fag

- $\boxed{1}$ a) Et mulig regulært uttrykk er $aa^*b^* \cup bb^*a^*$.
 - b) Grafen til N_0 kan f. eks være som på figuren under.

2 a) Grafen til M_0 er som i figuren under.

- **b)** Et mulig regulært uttrykk er $(a \cup b)b^*ab^*a$.
- a) Det er bare en derivasjon som gir et ord med bare en terminal nemlig $S \to A \to B \to x$.

c) Gramatikken blir

Tilsammen 22 regler

 $\mathbf{d})$ Den dynamiske algoritmen gir følgende resultat.

S, A					A_1	x
					٨	
S, A, B	B_1		B_1)		,
	S	S_1	x			
		V		,		
	x		ı			
('					

Siden S er med i den øverste boksen til venstre, så er ordet med i språket.

4 a) Her en mulig gramatikk. $\Sigma = \{a\}, V = \{S, R, L, H, [,]\}$ og produksjoner

b) Maskinen på figuren under

avgjør språket ww^R .

c) Vi setter g(m,n)=f(n,m). Da er $f=g\circ(\mathrm{id}_{2,2},\mathrm{id}_{2,1})$ og $g=f\circ(\mathrm{id}_{2,2},\mathrm{id}_{2,1})$, så f er primitivt rekursiv hvis og bare hvis g er primitivt rekursiv. Dersom vi setter $h=\sigma\circ\mathrm{id}_{3,3}$, har vi

$$g(m,0) = id_{1,1}$$

 $g(m, n + 1) = h(m, n, g(m, n))$

Dette viser at g er primitivt rekursiv.

Induksjon m.h.p. n viser at $F(n,m) = \psi(\sigma^n(m))$, følgelig er $F = \psi \circ f$. Dette viser at F er primitivt rekursiv.