CMD23 ecalj

Takao kotani, tottori-u

- PMT method PMT=LMTO+LAPW
- QSGW method a self-consistent GW
- ecalj package.
 read input and output.

crystal structure

→ Band, DOS, PDOS plot

ecalj course menu

Monday 15:40~17:40,17:50~19:20

- LECTURE1: PMT method
 How to solve one-body problem? →PMT= LAPW+LMTO
- LECTURE2: Quasiparticle self-consistent GW method theory and results until now.
 Some kinds of numerical techniques.
- Get Started!
 Install ecalj, and go through "ecalj tutorial".
 Observe how it works.

Tuesday: 9:00~17:20, Wednesday 9:00~11:00 (or to 12:10).

- ctrl file and output.
- Numerical technique and GWinput.
- Read output (console output, data).
- Check points (How to get reliable results?)

The PMT method: a new linearized method

$$\mathbf{PMT} = \mathbf{APW} + \mathbf{MTO}$$

Muffin-tin

Takao Kotani (tottori-u)

Key point:

- 1. Iteration cycle.
- eigenfunctions are represented by APW(augmented plane wave) and MTO(muffin-tin orbital)

Independent particle picture and total energy

These can be obtained by the density functional theory (DFT) in LDA.

This iteration cycle until converged = total energy minimization

How to represent density and so on in computer? How to solve it numerically?

Lists of the Full-potential methods

- •KKR
- Pseudopotential method
- •PAW

(why do we call them "linearized" method?

→ from the view of "exact "APW method)

Finite basis set

Basis set (finite number of basis)

→ We assume eigenfunctions are given as:

$$\psi_p(\mathbf{r}) = \sum_j \alpha_p^j F_j(\mathbf{r}) \quad \left\{ F_j \right\} : j = 1, 2, ...N$$

Hamiltonian
$$H_{ij} = \langle F_i | \frac{-\Delta}{2m} + V | F_j \rangle$$
,

Overlap matrix $O_{ij} = \langle F_i | F_j \rangle$

$$(H_{ij} - \varepsilon O_{ij})\alpha^{j} = 0$$

Finite dimension problem(as the same as LCAO/Gaussian)

iteration cycle

How to choose the good basis?

- APW (augmented plane wave)
- MTO (muffin-tin orbital)

are the names of the basis functions. Both of them are made by "augmentation".

My conclusion:

To overcome shortcomings in APW basis and MTO basis, we should use both of <u>APW and MTO together</u>. →this means the PMT method

But wait… What is the APW and MTO?→ next page.

Envelope function = PlaneWave(PW)

3-components

PW + Atomic-like part — Counter part:

PW within MT

Oth 1st 2nd

- Good for Na(3s), high energy bands.
- •Not so good for Cu(3d), O(2p)
- Systematic

Linearized APW

FIG. 1. Relative total energy of fcc Cu plotted against plane-wave cutoff energy.

D.Singh et al PRB49,17424

MTO

Atom-centered Hankel function, e.g,

3-components

- •Good for localized orbitals such as Cu(3d), O(2p)
- Not so good for extended states, surface.
- Not systematic

PMT = APW + MTO

T.K and M.van Schilfgaarde arXiv:0808.1604 Phys. Rev. B 81, 125117 (2010)

Recent work (now revising)... *T.K and Hiori Kino*PMT works well even for diatomic molecules(H2 through Kr2)
Simple setting of MTOs with APWs (Energy cutoff 3~4Ry).

Basis function

MT center at **R**. Radis *R*.

-a basis
$$F_{j}(\mathbf{r})$$
 consists of
$$F_{0j}(\mathbf{r}), \qquad F_{1j}(\mathbf{r}), \qquad F_{2j}(\mathbf{r})$$
 Envelope function Atomic-like parts for $|\mathbf{r}| < R$ Counter part for $|\mathbf{r}| < R$ Augmentation parts Cutoff: $l \le l_{\max} \sim 4$, Radial-part expansion

$$F_{j}(\mathbf{r}) = F_{0j}(\mathbf{r}) + F_{1j}(\mathbf{r} - \mathbf{R}) - F_{2j}(\mathbf{r} - \mathbf{R})$$

Electron density n(r) and potential V(r) are expanded in a similar manner.

Local orbitals(Io): basis functions which are Non-zero only wihtin MTs.

e.g, see http://www.wien2k.at/lapw/index.html

This is also used together.

 $N_{\text{basis}} = 1081 + 36 \times 2$, $1973 + 36 \times 2$, $3025 + 36 \times 2$

Comparison with Gaussian

		$r_{\rm e}$ (Å)	$D_e(\mathrm{Kcal/mol})$	$\omega_e \; (\mathrm{cm}^{-1})$
$H_2, 2S_z = 0$	PMT	0.749	104.678	4317.959
	PMT(NR)	0.750	104.764	4311.202
	GTO	0.752	104.552	4311.816
$O_2, 2S_z = 2$	PMT	1.218	143.741	1564.787
	PMT(NR)	1.218	144.984	1568.867
	GTO	1.220	139.815	1554.249
	VASP	ļ	143.3	
$Cr_2,2S_z=0$	PMT	1.591	32.833	813.296
	PMT(NR)	1.589	30.191	818.483
	GTO	1.595	26.192	808.148
$\text{Fe}_2, 2S_z = 6$	PMT	1.977	57.596	397.673
	PMT(NR)	1.991	58.770	386.597
	GTO	2.012	56.902	397.228
$Cu_2, 2S_z = 0$	PMT	2.218	51.169	269.326
$\mathcal{O}_{02}, 2\mathcal{O}_{z}=0$	PMT(NR)	$\frac{2.210}{2.251}$	48.503	254.321
	GTO	2.251	48.645	

NR: non relativistic GTO: 6-311+G(d,p)

Quasiparticle self-consistent GW Takao kotani (tottori university)

- Mean field theory.
 What the eigenvalue means?
- GW, and QSGW method
 Minimum and previous results.

Mean field theory gives independent-particle picture

- Hartree-Fock theory
- Density functional theory

Eigenvalues and Eigenfuncitons $\{\varepsilon_i, \psi_i(\mathbf{r})\}$ are determined by minimization of $\mathbf{E}[\{\psi_i(\mathbf{r})\}, n_i]$ The minimization determines

$$n_i = 1 \text{ for } \varepsilon_i < \varepsilon_{\text{FERMI}} \text{ (occupied states)}$$

 $n_i = 0 \text{ for } \varepsilon_i > \varepsilon_{\text{FERMI}} \text{ (unoccupied states)}$

Janak(Koopman's) theorem

$$\frac{\partial E}{\partial n_i} = \varepsilon_i$$

Ionization energy of an atom

A.J.Cohen, P. Mori-Sanchez, W.Yang, Science321,792(2008)

PRL **100**, 146401 (2008)

PHYSICAL RE

$$\varepsilon_i = \frac{\partial E}{\partial n_i} \approx \frac{\Delta E}{\Delta n_i}$$
 (but a little different)

How about solid (infinite system)?→

$$\varepsilon_i = \frac{\partial E}{\partial n_i} = \frac{\Delta E}{\Delta n_i}$$
 is satisfied.

If
$$\varepsilon_i = \frac{\partial E}{\partial n_i} = \frac{\Delta E}{\Delta n_i}$$
 (linear line),

we have better excitation energies $\varepsilon_i - \varepsilon_j$

How accurate they are?

band gap
$$(\varepsilon_{\text{CBM}} - \varepsilon_{\text{VBM}})$$

LDA gives too small HF(not shown) gives too large

GW method and QSGW method

GW is based on the "RPA total energy"

We start from $H_{LDA} \rightarrow \{\varepsilon_i, \psi_i(\mathbf{r})\}$

$$E = E_{0k} + E_{0ext} + E_{H} + E_{X} + E_{C}$$

$$= \sum_{i}^{\text{OCC.}} \left\langle \varphi_{i} \left| \frac{-\Delta}{2m} \right| \varphi_{i} \right\rangle + \sum_{i}^{\text{OCC.}} \left\langle \varphi_{i} \left| V_{\text{ext}}(\mathbf{r}) \right| \varphi_{i} \right\rangle + E_{\text{H}} + E_{\text{X}} + E_{\text{C}}$$

$$E_{i} = \frac{\partial E}{\partial n_{i}} = \left\langle \varphi_{i}(\mathbf{r}) \middle| \frac{-\Delta}{2m} + V_{\text{ext}} + V_{\text{H}} + \Sigma(\varepsilon_{i}) \middle| \varphi_{i}(\mathbf{r}) \right\rangle$$

$$= \varepsilon_{i} + \left\langle \varphi_{i}(\mathbf{r}) \middle| \left(\Sigma(\varepsilon_{i}) - V_{\text{XC}}^{\text{LDA}} \right) \middle| \varphi_{i}(\mathbf{r}) \right\rangle$$

This is one-shot GW

Historically,
$$E_i = \varepsilon_i + \left\langle \varphi_i(\mathbf{r}) \middle| \left(\Sigma(E_i) - V_{\mathrm{XC}}^{\mathrm{LDA}} \right) \middle| \varphi_i(\mathbf{r}) \right\rangle$$
, (but $E_i = \varepsilon_i + \left\langle \varphi_i(\mathbf{r}) \middle| \left(\Sigma(\varepsilon_i) - V_{\mathrm{XC}}^{\mathrm{LDA}} \right) \middle| \varphi_i(\mathbf{r}) \right\rangle$ is better)²³

How to determine better H_0 ?

$$E_{i} = \frac{\partial E}{\partial n_{i}} = \left\langle \varphi_{i}(\mathbf{r}) \middle| \frac{-\Delta}{2m} + V_{\text{ext}} + V_{\text{H}} + \Sigma(\varepsilon_{i}) \middle| \varphi_{i}(\mathbf{r}) \right\rangle$$

$$\frac{\delta E_{i}}{\delta \varphi_{i}} = 0 \qquad \rightarrow \left(\frac{-\Delta}{2m} + V_{\text{ext}} + V_{\text{H}} + \Sigma(\varepsilon_{i}) \right) |\varphi_{i}(\mathbf{r})\rangle = \varepsilon_{i} |\varphi_{i}(\mathbf{r})\rangle$$

 $\Sigma(\mathbf{r},\mathbf{r}',\omega) \rightarrow \omega$ -independent $V_{xc}(\mathbf{r},\mathbf{r}')$

$$H_0 = \frac{-\Delta}{2m} + V_{\text{ext}} + V_{\text{H}} + V_{\text{xc}}(\mathbf{r}, \mathbf{r}') \to \Sigma(\mathbf{r}, \mathbf{r}', \omega) \quad \underline{\hspace{1cm}}$$

An average procedure (not shown here)

Non-local potential term (as Fock exchange term) is important.

I. Localized electrons ← LDA+U type effect
 (Onsite non-locality. self-interaction included).
 It can break time-reversal symmetry → No orbital moment.

II. Extended electrons ← GW type effect for semiconductor.

Important to describe band gap. Off-site non-locality. (required to distinguish "bonding orbital" and "anti-bonding" orbitals.) → next page

Schematic explanation on off-site exchange

square of them are the same.

$$\langle \psi_{\text{bonding}} | V(r) | \psi_{\text{bonding}} \rangle = \langle \psi_{\text{anti-bonding}} | V(r) | \psi_{\text{anti-bonding}} \rangle.$$

→ Local potential can not distinguish LUMO and HOMO.

sp bonded systems

Ga d level well described

Black:QSGW

Red:LDA

3.87eV

0.71eV

Green: GLDAWLDA (Z=1,Offdiagonal included) 3.00eV

Blue: e-only self-consistency 3.64eV

Experiment(+correction) 3.60eV

Kotani et al PRB76,165106(2007)

SrTiO3 Valence DOS

fit of properly broadened theoretical DOS with experiment n-STO(001) VB excited with monochromatic AlK α x-rays (resolution = 0.46 eV)

S. A. Chambers et al, Surface Sci 554,81-89 (2004)

dsystems

"No Pushing down 3d-band" in GW.

Black:QSGW Red:LDA Blue: e-only

Black:t2g Red:eg

Red(bottom): expt

Black: Im eps with LFC Red: expt

Spin wave dispersion based on QSGW

J.Phys.C20 (2008) 295214, PRB83, 060404(R) (2011) for CaFe2As2 for spectrum of χ^{+-} .

It is Half metal in QSGW

TK and H,Kino *J. Phys.C* **21** 266002(2009)

InAs impact ionization rate

(=auger process

= high energy electron lose energy with e-h pair)

Present model: Sano and Yoshii JAP77 2020 (1995)

YH3(fcc structure 6x6x6)

CuGaSe2 (eight atoms in cell, 2x2x2. ~3hours per iteration by single core)

Band gap GGA:0.4eV, GW(1shot noZ) 1.37 eV, QSGW(1.79eV) Exper. 1.63, 1.67, 1.73eV

PdO(tetragonal, four atoms per cell 3x3x2 calculation, 1hour per iteration)

Band gap about 0.7 eV

summary

- Mean field theory and excitation energy LDA, Hartree-Fock and QSGW Janak theorem, finite vs.infinite system
- RPA total energy QSGW method
- Some Results
 Band gap, GaAs and Na, Cu
 NiO, Spin Wave, ZnO, LaMnO3,
 InAs (impact ionization), YH3, CuGaSe2,PdO
 - How QSGW works for atoms and molecules?
 See F.Bruneval J.Chem.Phys 136,194107(2012)