

BUNDESREPUBLIK DEUTSCHLAND

ws
JC907 U.S. PRO
09/663315
09/15/00

Bescheinigung

Die Philips Corporate Intellectual Property GmbH in Aachen/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Drahtloses Netzwerk mit mehreren Zugriffswahrscheinlichkeiten für den Zugriff auf einen RACH-Kanal"

am 30. Oktober 1999 beim Deutschen Patent- und Markenamt eingereicht.

Der Sitz der Anmelderin wurde berichtet in:
Hamburg/Deutschland.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole H 04 G, H 04 L und H 04 B der Internationalen Patentklassifikation erhalten.

München, den 2. März 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Jerofsky

Aktenzeichen: 199 52 076.3

PHD 99-155

ZUSAMMENFASSUNG

Drahtloses Netzwerk mit mehreren Zugriffswahrscheinlichkeiten für den Zugriff auf einen RACH-Kanal

Die Erfindung bezieht sich auf ein drahtloses Netzwerk mit mindestens einer Basisstation und mehreren zugeordneten Terminals zum Austausch von Nutz- und Steuerdaten, die jeweils zur Aussendung einer von einer ersten Zugriffswahrscheinlichkeit abhängigen Reservierungs-Meldung zur Zuweisung von Übertragungskapazität für wenigstens ein Datenpaket an die zugeordnete Basisstation vorgesehen sind. Das weitere Aussenden einer von der Basisstation wenigstens einmal empfangenen Reservierungs-Meldung ist von 5 wenigstens einer weiteren Zugriffswahrscheinlichkeit abhängig. Die Basisstation ist zur Aussendung der weiteren Zugriffswahrscheinlichkeit nur nach einer Ablehnung der 10 Sendung eines kompletten Datenpakets vorgesehen ist.

Fig. 1

15

FIG. I

PHD 99-155

BESCHREIBUNG

Drahtloses Netzwerk mit mehreren Zugriffswahrscheinlichkeiten für den Zugriff auf einen RACH-Kanal

- Die Erfindung bezieht sich auf ein drahtloses Netzwerk mit mindestens einer Basisstation und mehreren zugeordneten Terminals zum Austausch von Nutz- und Steuerdaten, die jeweils zur Aussendung einer von einer ersten Zugriffswahrscheinlichkeit abhängigen Reservierungs-Meldung zur Zuweisung von Übertragungskapazität für wenigstens ein Datenpaket an die zugeordnete Basisstation vorgesehen sind.
- 5 In dem Dokument „TSG-RAN Working Group 2 (Radio layer 2 and Radio layer 3), Sophia-Antipolis, France, 16th to 20th August 1999, TS 25.321, V3.0.0 (1999-06), 3rd Generation Partnership Project (3GPP); Technical Specification Group (TSG) RAN; Working Group 2 (WG2); MAC protocol specification“ wird ein MAC-Protokoll (MAC = Medium Access Protocol) für ein Funknetzwerk vorgeschlagen. Das Funknetzwerk besteht aus mehreren Funkzellen mit jeweils einer Basisstation und darin befindlichen Terminals oder Mobilstationen. Nach der Registrierung und Synchronisierung eines Terminals, sendet ein Terminal beispielsweise zur Anforderung eines Nutzkanals ein Meldungspaket (Random-Access burst) über einen kollisionsbehafteten Kanal, der als RACH-Kanal bezeichner wird (RACH = Random Access Channel). Das Meldungspaket besteht aus einem Präambelteil (Preamble part) und einem Datenteil (Data part). Bevor ein Meldungspaket von einem Terminal zur Basisstation gesendet werden kann, wird nur durch Aussendung einer Präambel getestet, ob z.B. die Sendeleistung des Terminals ausreichend ist. Hierbei muss vor der Sendung von einem Terminal geprüft werden, ob ein von dem Terminal gebildeter Zufallswert kleiner als ein von der Basisstation dem Terminal gesendeter Zugriffswahrscheinlichkeitswert (persistency probability) ist. Falls der Zufallswert kleiner als der Zugriffswahrscheinlichkeitswert ist, darf die Präambel gesendet werden. Wenn das eine Präambel sendende Terminal innerhalb einer bestimmten Zeit keine Meldung von der Basisstation empfangen hat, wird nach einer bestimmten Zeit ein erneuter Sendevorschuss mit höherer Sendeleistung gestartet. Die Sendeleistung wird bei 10 15 20 25 30 Bedarf bis zu einem vorgegebenen Maximalwert gesteigert. Im anderen Fall erhält das

Terminal entweder eine Zuteilungs- oder Ablehnungsmeldung bzw. nach Ablauf einer vordefinierten Zeit (Time-out) weder eine Zuteilungs- noch eine Ablehnungsmeldung. Im zuletzt genannten Fall hat die Basisstation beispielsweise die gesendete Präambel nicht detektieren können. Bei einer Zuteilungsmeldung kann das Terminal den Datenteil des

- 5 Meldungspakets mit der eingestellten Sendeleistung abschicken. Die Basisstation sendet beispielsweise eine Ablehnungsmeldung aus, wenn für die Aussendung des Datenteils keine Kanalkapazität vorhanden ist. Bei einer Ablehnungsmeldung wird ebenfalls nach einer bestimmten Zeit ein erneuter Sendeversuch mit der ursprünglichen Anfangssendeleistung gestartet und diese dann sukzessive erhöht (power ramping). Bei einem neuen
- 10 Sendeversuch muss zuerst wieder ein Zufallswert mit dem Zugriffswahrscheinlichkeitswert verglichen werden. Dieser beschriebene Zugriffsvorgang gilt für alle Terminals. Damit wird nicht unterschieden zwischen Terminals, die erstmalig versuchen ein Meldungspaket abzusetzen, und solchen, die schon eine Ablehnungsmeldung von der Basisstation erhalten haben, sowie solchen, die weder Zuteilungs- noch Ablehnungsmeldung empfangen haben.
- 15 Dies kann im Netzwerk zu inkzeptablen Wartezeiten für die Sendung von Meldungspaketen führen.

Der Erfindung liegt die Aufgabe zugrunde, ein drahtloses Netzwerk zu schaffen, bei dem die Wartezeit für die Sendung von Meldungspaketen verringert ist.

- 20
- Die Aufgabe wird durch ein drahtloses Netzwerk der eingangs genannten Art dadurch gelöst,
- dass das weitere Aussenden einer von der Basisstation wenigstens einmal empfangenen Reservierungs-Meldung von wenigstens einer weiteren Zugriffswahrscheinlichkeit abhängig
- 25 ist und
- dass die Basisstation zur Aussendung der weiteren Zugriffswahrscheinlichkeit nur nach einer Ablehnung der Sendung eines kompletten Datenpakets vorgesehen ist.

- Unter dem erfindungsgemäßen drahtlosen Netzwerk ist ein Netzwerk mit mehreren
- 30 Funkzellen zu verstehen, in denen jeweils eine Basisstation und mehrere Terminals Steuer- und Nutzdaten drahtlos übertragen. Eine drahtlose Übertragung dient zur Übertragung von Informationen z.B. über Funk-, Ultraschall- oder Infrarotwege.

- Erfindungsgemäß werden unterschiedliche Zugriffswahrscheinlichkeiten verwendet, um den Zugriffstyp individuell anpassen zu können. Hierbei werden Reservierungs-Wünsche also unterschiedlich behandelt. Ein Datenpaket enthält eine Präambel und einen Datenteil
- 5 und sendet eine Präambel als ein Reservierungs-Wunsch eines Terminals aus. Eine Zuweisung von Übertragungskapazität bedeutet, dass ein Terminal einen Datenteil eines Meldungspakets über den RACH-Kanal übertragen kann. Ein Terminal ist nach Empfang einer Zuteilungsmeldung zur Aussendung des Datenteils des Datenpaketes vorgesehen.
- 10 Wenn ein Terminal nach Ablauf einer definierten Zeit nach Absenden eines Datenteils erstmals wieder eine Präambel absetzt, liegt ein Zugriffstyp erster Art vor. Ein Zugriffstyp zweiter Art bedeutet, dass ein Terminal nach Absenden einer Präambel eine Ablehnungsmeldung erhalten hat. Bei einem Zugriffstyp dritter Art sendet ein Terminal innerhalb der definierten Zeit nach Absenden eines Datenteils wieder eine Präambel.
- 15 Wenn ein Terminal nach Absenden einer Präambel und schrittweisen Erhöhung der Sendeleistung bis zur Maximalsendeleistung (power ramping) weder eine Zuteilungs- noch eine Ablehnungsmeldung erhalten hat, liegt ein Zugriffstyp vierter Art vor. Hierbei werden die Zugriffswahrscheinlichkeiten für die Zugriffstypen erster, dritter und vierter Art periodisch über den Broadcast- oder Verteilkanal an alle Terminals gesendet, während die
- 20 Zugriffswahrscheinlichkeit für den Zugriffstyp zweiter Art nur dann, wenn eine Ablehnungsmeldung verschickt wurde, über den Broadcast- oder Verteilkanal an alle Terminals gesendet wird. Im letzten Fall ist die Ablehnungsmeldung an die jeweils abgelehnte Präambel gebunden, so dass die Zugriffswahrscheinlichkeit für den Zugriffstyp zweiter Art nach Präambeln unterschiedlich bestimmt sein kann. Hiermit wird
- 25 insbesondere die Wartezeit gegenüber den bekannten drahtlosen Netzwerken erhöht.

Ausführungsbeispiele der Erfahrung werden nachstehend anhand der Fig. näher erläutert.
Es zeigen:

- 30 Fig. 1 ein drahtloses Netzwerk mit mehreren Basisstationen und Terminals und
Fig. 2 bis 5 Flussablaufdiagramme zur Erläuterung der Zuweisung eines RACH-Kanals für die Übertragung eines Datenpaketes von einem Terminal.

- In Fig. 1 ist ein drahtloses Netzwerk, z.B. Funknetzwerk, mit mehreren Basisstationen 1 bis 3 und mehreren Terminals 4 bis 14 dargestellt. Einer Basisstation 1 bis 3 sind bestimmte Terminals 4 bis 14 zugeordnet. In dem in Fig. 1 dargestellten Beispiel sind der
- 5 Basisstation 1 die Terminals 4 bis 7, der Basisstation 2 die Terminals 8 bis 10 und der Basisstation 3 die Terminals 11 bis 14 zugewiesen. Ein Steuerdatenaustausch findet zumindest zwischen der Basisstation und den Terminals statt. Ein Nutzdatenaustausch kann sowohl zwischen der Basisstation und den Terminals als auch direkt zwischen den Terminals durchgeführt werden. In beiden Fällen wird von der Basisstation die
 - 10 Verbindung zur Übertragung von Nutzdaten aufgebaut. Die Terminals 4 bis 14 sind in der Regel Mobilstationen, die von einer fest installierten Basisstation 1 bis 3 gesteuert werden. Eine Basisstation 1 bis 3 kann gegebenenfalls aber auch beweglich bzw. mobil sein.

- In dem drahtlosen Netzwerk werden beispielsweise Funksignale nach dem FDMA-,
- 15 TDMA- oder CDMA-Verfahren (FDMA = frequency division multiplex access, TDMA = time division multiplex access, CDMA = code division multiplex access) oder nach einer Kombination der Verfahren übertragen.

- Beim CDMA-Verfahren, das ein spezielles Code-Spreiz-Verfahren (code spreading) ist,
- 20 wird eine von einem Anwender stammende Binärinformation (Datensignal) mit jeweils einer unterschiedlichen Codesequenz moduliert. Eine solche Codesequenz besteht aus einem pseudo-zufälligen Rechtecksignal (pseudo noise code), dessen Rate, auch Chiprate genannt, in der Regel wesentlich höher als die der Binärinformation ist. Die Dauer eines Rechteckimpulses des pseudo-zufälligen Rechtecksignals wird als Chipintervall T_c
 - 25 bezeichnet. $1/T_c$ ist die Chiprate. Die Multiplikation bzw. Modulation des Datensignals mit dem pseudo-zufälligen Rechtecksignal hat eine Spreizung des Spektrums um den Spreizungsfaktor $N_c = T/T_c$ zur Folge, wobei T die Dauer eines Rechteckimpulses des Datensignals ist.
 - 30 Nutzdaten und Steuerdaten zwischen wenigstens einem Terminal und einer Basisstation werden über von der Basisstation vorgegebene Kanäle übertragen. Ein Kanal ist durch einen Frequenzbereich, einen Zeitbereich und z.B. beim CDMA-Verfahren durch einen

PHD 99-155

- 5 -

Spreizungscode bestimmt. Die Funkverbindung von der Basisstation zu den Terminals wird als Downlink und von den Terminals zur Basisstation als Uplink bezeichnet. Somit werden über Downlink-Kanäle Daten von der Basisstation zu den Terminals und über Uplink-Kanäle Daten von Terminals zur Basisstation gesendet. Beispielsweise kann ein

5 Downlink-Steuerkanal vorgesehen sein, der benutzt wird, um von der Basisstation Steuerdaten vor einem Verbindungsaufbau an alle Terminals zu verteilen. Ein solcher Kanal wird als Downlink-Verteil-Steuerkanal (broadcast control channel) bezeichnet. Zur Übertragung von Steuerdaten vor einem Verbindungsaufbau von einem Terminal zur Basisstation kann beispielsweise ein von der Basisstation zugewiesener Uplink-Steuerkanal

10 verwendet werden, auf den aber auch andere Terminals zugreifen können. Ein Uplink-Kanal, der von mehreren oder allen Terminals benutzt werden kann, wird als gemeinsamer Uplink-Kanal (common uplink channel) bezeichnet. Nach einem Verbindungsaufbau z.B. zwischen einem Terminal und der Basisstation werden Nutzdaten über einen Downlink- und ein Uplink-Nutzkanal übertragen. Kanäle, die nur zwischen einem Sender und einem

15 Empfänger aufgebaut werden, werden als dedizierte Kanäle bezeichnet. In der Regel ist ein Nutzkanal ein dedizierter Kanal, der von einem dedizierten Steuerkanal zur Übertragung von verbindungsspezifischen Steuerdaten begleitet werden kann.

Zur Einbindung eines Terminals zu einer Basisstation ist ein kollisionsbehafteter Kanal

20 zuständig, der im folgenden als signalisierter RACH-Kanal (RACH = Random Access Channel) bezeichnet wird. Über einen solchen signalisierten RACH-Kanal können auch Datenpakete übertragen werden.

Damit Nutzdaten zwischen der Basisstation und einem Terminal ausgetauscht werden

25 können, ist es erforderlich, dass das Terminal mit der Basisstation synchronisiert wird. Beispielsweise ist aus dem GSM-System (GSM = Global System for Mobile communication) bekannt, in welchem eine Kombination aus FDMA- und TDMA-Verfahren benutzt wird, dass nach der Bestimmung eines geeigneten Frequenzbereichs anhand vorgegebener Parameter die zeitliche Position eines Rahmens bestimmt wird

30 (Rahmensynchronisation), mit dessen Hilfe die zeitliche Abfolge zur Übertragung von Daten erfolgt. Ein solcher Rahmen ist immer für die Datensynchronisation von Terminals und Basisstation bei TDMA-, FDMA- und CDMA-Verfahren notwendig. Ein solcher

Rahmen kann verschiedene Unter- oder Subrahmen enthalten oder mit mehreren anderen aufeinanderfolgenden Rahmen einen Superraum bilden. Aus Vereinfachungsgründen wird im folgenden von einem Rahmen ausgegangen, der als Referenzrahmen bezeichnet wird. Dieser Referenzrahmen kann beispielsweise der Rahmen mit einer Dauer von 10 ms im UMTS-System (UMTS = Universal Mobile Telecommunication System) sein.

- Um eine Rahmensynchronisation durchführen zu können, müssen alle Terminals auf die Basisstation mit Hilfe von Impulsen, die von der Basisstation ausgesendet werden, synchronisiert werden. Falls kein Code-Spreiz-Verfahren (z.B. CDMA-Verfahren)
- 10 angewendet wird (z.B. wird ein TDMA-Verfahren verwendet), entspricht die Impulsdauer genau dem für die Sendung eines Bits benötigten Zeitintervall. Bei Anwendung eines Code-Spreiz-Verfahrens entspricht die Impulsdauer einem Chipintervall. Ein Bitintervall entspricht dabei mehreren Chipintervallen. Zur Rahmensynchronisation ist die Sendung einer speziellen Impulssequenz durch die Basisstation erforderlich. Der Startzeitpunkt der
- 15 Impulssequenz entspricht dem Startzeitpunkt eines Rahmens.

- Wenn ein Terminal nach der Synchronisierung, ein Meldungspaket (random-access burst), das aus einem Präambelteil (preamble part) und einem Datenteil (data part) besteht, über einen kollisionsbehafteten Kanal, der als RACH-Kanal bezeichnet wird, (RACH = Random Access Channel) absetzen möchte, werden im Terminal verschiedene Schritte durchlaufen, die ein Flussablaufdiagramm in Fig. 2 angibt. Block 15 in der Fig. 2 zeigt den Start (S) des Flussablaufdiagramms an. Der Empfang verschiedener Steuerparameter im Terminal ($BS \rightarrow P_s, P_{th}, M_{max}$) von der zugeordneten Basisstation ist in Block 16 dargestellt. Beispielsweise sendet die Basisstation die Zugriffswahrscheinlichkeitswerte P_s , P_{th} und einen Maximalwert M_{max} , der die maximale Anzahl von aufeinanderfolgenden Zugriffsversuchen auf den RACH-Kanal vorgibt. Zuerst wird eine Zählvariable M zu Null gesetzt (Block 17). Diese Zählvariable M bezeichnet die Anzahl der schon gestarteten aufeinanderfolgenden Sendeversuche des Terminals.
- 30 Der nächste Schritt im Flussablaufdiagramm führt zu einer Schleife. Den Schleifenanfang kennzeichnet ein Block 18, in dem die Zählvariable M inkrementiert wird. Dann wird in Block 19 überprüft, ob die Zählvariable M kleiner oder gleich dem Maximalwert M_{max}

PHD 99-855

- 7 -

ist. Wenn dies nicht der Fall ist ergibt sich ein erstes Schleifenende (Block 20). Block 20 gibt einen Fehler E an. Im anderen Fall (Block 21) wird geprüft, um welchen Zugriffstyp ZT es sich handelt. Ein Zugriffstyp ZT_I erster Art liegt vor, wenn das Terminal zum ersten Mal versucht eine Präambel abzusetzen.

5

- Wenn ein Zugriffstyp ZT_I erster Art vorliegt (Block 22), dann werden die von der zugeordneten Basisstation über einen Broadcast- oder Verteil-Kanal periodisch gesendeten Parameter P_I und Mmax aktualisiert (U: P_I, Mmax; U = Update). Eine Aktualisierung bedeutet, dass die zuletzt von der zugeordneten Basisstation empfangenen Parameter P_I und Mmax dann gültig sind. Anschließend (Block 23) entnimmt das Terminal einen Zufallswert RN ($RN \in [0, 1]$) aus einem nicht näher dargestellten Zufallsgenerator.

- In dem vorliegenden Fall (Zugriffstyp ZT_I erster Art) wird als nächstes im Block 24 der Zufallswert RN (Fig. 3: Block 25) mit dem Zugriffswahrscheinlichkeitswert P_I verglichen
 15 (In diesem Fall gehört das Terminal dem Zugriffstyp ZT_I erster Art an.). Ist der Zufallswert RN größer als der Zugriffswahrscheinlichkeitswert P_I, kann das Terminal die Präambel nicht senden und startet nach einer Wartezeit TI(1) (Fig. 3: Block 26) wieder mit dem in Block 22 angegebenen Schritt. Im anderen Fall (Fig. 3: Block 27) darf das Terminal die Präambel absetzen ($T \rightarrow PRE$). Das Terminal überprüft anschließend (Fig.
 20 3: Block 28), ob innerhalb einer bestimmten Zeit eine Ablehnungsmeldung oder eine Zuteilungsmeldung von der zugeordneten Basisstation empfangen worden ist (RES?). Ist keine Meldung empfangen worden (No ACK), wird nach einer Wartezeit TI(2) (Fig. 3: Block 29) wieder mit dem in Block 18 (Fig. 2) angegebenen Schritt fortgesetzt (Schleifenanfang). Wird eine Ablehnungsmeldung empfangen (NACK), wird nach einer Wartezeit
 25 TI(3) (Fig. 3: Block 30) ebenfalls mit dem Schleifenanfang fortgesetzt. Bei einer Zuteilungsmeldung (ACK) wird, wie in Block 31 (Fig. 2) dargestellt, der Datenteil des Meldungspakets gesendet (TX). Damit endet (EN) der erste Zweig der Schleife (Block 32).

- Wenn in Block 21 festgestellt wird, dass ein Zugriffstyp ZT_{II} zweiter Art vorliegt, werden
 30 als nächstes (Block 33) die von der zugeordneten Basisstation über einen Broadcast- oder Verteil-Kanal empfangenen Parameter P_{II} und Mmax als Reaktion auf die vorher empfangene Ablehnungsmeldung (NACK) entnommen (R: P_{II}, Mmax; R = Read). Der

- Parameter P_{II} wird anders als der Parameter P_I nicht periodisch versendet, um nicht unnötig Kapazität auf dem Broadcast- oder Verteil-Kanal zu verwenden. Auf das periodische Versenden kann verzichtet werden, weil der jeweilige Wert von P_{II} nur relevant wird, kurz nachdem eine Ablehnungsmeldung von der Basisstation verschickt wurde. Eine
- 5 Entnahme bedeutet, dass die von dem Terminal entnommenen Parameter P_{II} und M_{max} erstmals oder von da an gültig sind. Wie im vorherigen Fall entnimmt das Terminal anschließend (Block 23) einen Zufallswert RN ($RN \in [0, 1]$) aus dem nicht näher dargestellten Zufallsgenerator.
- 10 Im Block 34 wird der Zufallswert RN (Fig. 4: Block 35) mit dem Zugriffswahrscheinlichkeitswert P_{II} verglichen (In diesem Fall gehört das Terminal dem Zugriffstyp ZT_{II} zweiter Art an.). Ist der Zufallswert RN größer als der Zugriffswahrscheinlichkeitswert P_{II} , kann das Terminal die Präambel nicht senden und startet nach einer Wartezeit TII(1) (Fig. 4: Block 36) wieder mit dem in Block 33 angegebenen Schritt. Im anderen Fall
- 15 (Fig. 4: Block 37) darf das Terminal die Präambel absetzen ($T \rightarrow PRE$). Das Terminal überprüft anschließend (Fig. 4: Block 38), ob innerhalb einer bestimmten Zeit eine Ablehnungsmeldung oder eine Zuteilungsmeldung von der zugeordneten Basisstation empfangen worden ist (RES?). Ist keine Meldung empfangen worden (No ACK), wird nach einer Wartezeit TII(2) (Fig. 4: Block 39) wieder mit dem in Block 18 angegebenen
- 20 Schritt fortgesetzt (Schleifenanfang). Wird eine Ablehnungsmeldung empfangen (NACK), wird nach einer Wartezeit TII(3) (Fig. 4: Block 40) ebenfalls mit dem Schleifenanfang fortgesetzt. Bei einer Zuteilungsmeldung (ACK) wird, wie in Block 41 (Fig. 2) gezeigt ist, der Datenteil des Meldungspakets gesendet (TX). Damit endet (EN) der zweite Zweig der Schleife (Block 42).
- 25 Wenn in Block 21 festgestellt wird, dass ein Zugriffstyp ZT_{III} dritter Art vorliegt, werden die entsprechenden Schritte wie bei dem Zugriffstyp ZT_I erster Art durchlaufen (Blöcke 22 bis 32).
- 30 Wenn in Block 21 festgestellt wird, dass ein Zugriffstyp ZT_{IV} vierter Art vorliegt, werden als nächstes (Block 43) die von der zugeordneten Basisstation über einen Broadcast- oder Verteil-Kanal periodisch gesendeten Parameter P_{IV} und M_{max} aktualisiert (U: P_{IV} , M_{max} ;

U = Update). Wie vorher entnimmt das Terminal anschließend (Block 23) einen Zufallswert RN ($RN \in [0, 1]$) aus dem nicht näher dargestellten Zufallsgenerator.

- Im Block 44 wird der Zufallswert RN (Fig. 5: Block 45) mit dem Zugriffswahrscheinlichkeitswert P_{IV} verglichen (In diesem Fall gehört das Terminal dem Zugriffstyp ZT_{IV} vierter Art an.). Ist der Zufallswert RN größer als der Zugriffswahrscheinlichkeitswert P_{IV} , kann das Terminal die Präambel nicht senden und startet nach einer Wartezeit TIV(1) (Fig. 5: Block 46) wieder mit dem in Block 43 angegebenen Schritt. Im anderen Fall (Fig. 5: Block 47) darf das Terminal die Präambel absetzen ($T \rightarrow PRE$). Das Terminal überprüft anschließend (Fig. 5: Block 48), ob innerhalb einer bestimmten Zeit eine Ablehnungsmeldung oder eine Zuteilungsmeldung von der zugeordneten Basisstation empfangen worden ist (RES?). Ist keine Meldung empfangen worden (No ACK), wird nach einer Wartezeit TIV(2) (Fig. 5: Block 49) wieder mit dem in Block 18 angegebenen Schritt fortgesetzt (Schleifenanfang). Wird eine Ablehnungsmeldung empfangen (NACK), wird nach einer Wartezeit TIV(3) (Fig. 5: Block 50) ebenfalls mit dem Schleifenanfang fortgesetzt. Bei einer Zuteilungsmeldung (ACK) wird, wie in Block 51 (Fig. 2) gezeigt ist, der Datenteil des Meldungspakets gesendet (TX). Damit endet (EN) der dritte Zweig der Schleife (Block 52).
- Die Basisstation empfängt Präambeln innerhalb eines Zugriffs-Zeitraums, der ein Teil eines Referenzrahmens sein kann. Die Basisstation legt die Zugriffswahrscheinlichkeiten P_I bis P_{IV} fest, die beispielsweise von der Verkehrslast, Interferenzsituation, einer hohen Auslastung für die Signalverarbeitung bestimmter Schaltungsteile der Basisstation beim Empfang von dedizierten und RACH-Kanälen und von dem Pegel beim Präambelempfang ab.

Es werden unterschiedliche Zugriffswahrscheinlichkeiten verwendet, um Reservierungs-Wünsche zu behandeln. Wenn das Terminal nach Ablauf einer definierten Zeit nach Absenden eines Datenteils erstmals wieder eine Präambel absetzt liegt ein Zugriffstyp erster Art vor (erste Zugriffswahrscheinlichkeit). Wenn das Terminal nach Absenden einer Präambel eine Ablehnungsmeldung erhalten hat, bedeutet dies ein Zugriffstyp zweiter Art (zweite Zugriffswahrscheinlichkeit). Wenn das Terminal innerhalb der definierten Zeit

- 10 -

30.10.99 PHD 99:55

nach Absenden eines Datenteils wieder eine Präambel versendet, liegt ein Zugriffstyp dritter Art vor (dritte Zugriffswahrscheinlichkeit). Wenn das Terminal nach Absenden einer Präambel und schrittweisen Erhöhung der Sendeleistung bis zu einer Maximalseleistung (power ramping) weder eine Zuteilungs- oder Ablehnungsmeldung erhalten hat, liegt ein Zugriffstyp vierter Art vor (vierte Zugriffswahrscheinlichkeit). Wie schon erwähnt, werden die Zugriffswahrscheinlichkeiten für die Zugriffstypen erster, dritter und vierter Art periodisch über den Broadcast- oder Verteilkanal an alle Terminals gesendet, während die Zugriffswahrscheinlichkeit für den Zugriffstyp zweiter Art nur dann wenn eine Ablehnungsmeldung verschickt wurde über den Broadcast- oder Verteilkanal an alle Terminals gesendet wird.

Ist z.B. die Interferenz oder Verkehrslast zu hoch, sendet die Basisstation eine Ablehnungsmeldung (NACK) an mindestens ein Terminal. Über den schon erwähnten Broadcast- oder Verteilkanal wird außerdem eine Information über den Parameter P_{II} für die Terminals gesendet, die nach Aussenden ihrer Präambel die Ablehnungsmeldung (NACK) erhalten haben. Die Basisstation wählt in diesem Fall die Zugriffswahrscheinlichkeit P_{II} kleiner als die Zugriffswahrscheinlichkeit P_I . Hierbei können die Parameter P_{II} für jede mit einer Ablehnungsmeldung quittierte Präambel unterschiedliche Werte aufweisen.

Die von der Basisstation festgelegte Zugriffswahrscheinlichkeit P_{II} ist dagegen höher als die Zugriffswahrscheinlichkeit P_I , wenn eine hohen Auslastung für die Signalverarbeitung bestimmter Schaltungsteile der Basisstation beim Empfang von dedizierten und RACH-Kanälen vorliegt.

Ist der Pegel beim Präambelempfang gegenüber den übrigen Empfangspegeln unvertretbar hoch, dann setzt die Basisstation die Zugriffswahrscheinlichkeit P_{II} auf einen deutlich kleineren Wert als die Zugriffswahrscheinlichkeit P_I , weil der zu hohe Pegel schon zu einer merklichen Empfangsstörung in der Basisstation geführt hat. Ein unvertretbar hoher Präambelempfangspiegel kann vorliegen, wenn sich eine Terminal sehr nah an der Basisstation befindet.

PHD 99-155

- 11 -

Der Vorteil der Verwendung unterschiedlicher Zugriffswahrscheinlichkeiten zu jeweils einer Präambel liegt in der jeweils individuellen Anpassung an die jeweilige Situation für jedes Terminal und führt zu einer Reduktion der Zugriffszeit. Dadurch dass die Zugriffswahrscheinlichkeit P_{ii} nur nach Ausenden einer Ablehnungsmeldung (NACK) abgesetzt wird, ergibt sich eine geringere Signalisierungslast auf dem Broadcast- oder Verteilkanal. Hierbei wird aber nicht auf eine individuelle Behandlung der jeweiligen Ursachen für das Aussenden der Ablehnungsmeldung verzichtet.

10

PATENTANSPRÜCHE

1. Drahtloses Netzwerk mit mindestens einer Basisstation und mehreren zugeordneten Terminals zum Austausch von Nutz- und Steuerdaten, die jeweils zur Aussendung einer von einer ersten Zugriffswahrscheinlichkeit abhängigen Reservierungs-Meldung zur Zuweisung von Übertragungskapazität für wenigstens ein Datenpaket an die zugeordnete Basisstation vorgesehen sind,
dadurch gekennzeichnet,
dass das weitere Aussenden einer von der Basisstation wenigstens einmal empfangenen Reservierungs-Meldung von wenigstens einer weiteren Zugriffswahrscheinlichkeit abhängig ist und
- 10 dass die Basisstation zur Aussendung der weiteren Zugriffswahrscheinlichkeit nur nach einer Ablehnung der Sendung eines kompletten Datenpakets vorgesehen ist.
2. Drahtloses Netzwerk nach Anspruch 1,
dadurch gekennzeichnet,
- 15 dass das Datenpaket eine Präambel und ein Datenteil umfasst und
dass das Aussenden einer Präambel ein Reservierungs-Wunsch eines Terminals ist.
3. Drahtloses Netzwerk nach Anspruch 2,
dadurch gekennzeichnet,
- 20 dass die ein Terminal nach Empfang einer Zuteilungsmeldung zur Aussendung des Datenteils des Datenpakets vorgesehen ist.
4. Drahtloses Netzwerk nach Anspruch 1,
dadurch gekennzeichnet,
- 25 dass ein Terminal zur erstmaligen Aussendung einer Reservierungs-Meldung vorgesehen

ist, wenn die von der Basisstation vorgegebene erste Zugriffswahrscheinlichkeit größer als einer im jeweiligen Terminal gebildeter Zufallswert ist und

dass ein Terminal zur Aussendung einer von der Basisstation schon wenigstens einmal empfangenen Reservierungs-Meldung vorgesehen ist, wenn die von der Basisstation

- 5 vorgegebene weitere Zugriffswahrscheinlichkeit größer als einer im jeweiligen Terminal gebildeter Zufallswert ist.

5. Drahtloses Netzwerk nach Anspruch 4,

dadurch gekennzeichnet,

- 10 dass die Basisstation nur dann zur Aussendung einer zweiten Zugriffswahrscheinlichkeit vorgesehen ist, wenn zuvor eine Ablehnungsmeldung versandt worden ist.

6. Drahtloses Netzwerk nach Anspruch 4,

dadurch gekennzeichnet,

- 15 dass die Basisstation zur periodischen Aussendung der ersten, einer dritten und einer vierten Zugriffswahrscheinlichkeit vorgesehen ist und

dass ein Terminal zum Vergleich der ersten Zugriffswahrscheinlichkeit mit einem im jeweiligen Terminal gebildeten Zufallswert vorgesehen ist, wenn nach einem definierten Zeitraum das Terminal eine Reservierungs-Meldung wieder aussenden möchte,

- 20 dass ein Terminal zum Vergleich der dritten Zugriffswahrscheinlichkeit mit einem im jeweiligen Terminal gebildeten Zufallswert vorgesehen ist, wenn während des definierten Zeitraums das Terminal eine Reservierungs-Meldung wieder aussenden möchte, und

dass ein Terminal zum Vergleich der vierten Zugriffswahrscheinlichkeit mit einem im jeweiligen Terminal gebildeten Zufallswert vorgesehen ist, wenn ein Terminal nach einer

- 25 schrittweisen Erhöhung der Sendeleistung bis zu einem Maximalwert und wiederholtem Aussenden der Reservierungs-Meldung weder eine Zuteilungsmeldung noch eine Ablehnungsmeldung erhalten hat.

7. Basisstation in einem drahtlosen Netzwerk mit mehreren zugeordneten Terminals zum

- 30 Austausch von Nutz- und Steuerdaten und zur Aussendung einer von einer ersten

PHID 992155

- 14 -

- Zugriffswahrscheinlichkeit abhängigen Reservierungs-Meldung zur Zuweisung von Übertragungskapazität für wenigstens ein Datenpaket an die Basisstation,
dadurch gekennzeichnet,
- dass das weitere Aussenden einer von der Basisstation wenigstens einmal empfangenen
5 Reservierungs-Meldung von wenigstens einer weiteren Zugriffswahrscheinlichkeit abhängig ist und
- dass die Basisstation zur Aussendung der weiteren Zugriffswahrscheinlichkeit nur nach einer Ablehnung der Sendung eines kompletten Datenpakets vorgesehen ist.
- 10 8. Terminal in einem drahtlosen Netzwerk mit mindestens einer Basisstation und weiteren zugeordneten Terminals zum Austausch von Nutz- und Steuerdaten und zur Aussendung einer von einer ersten Zugriffswahrscheinlichkeit abhängigen Reservierungs-Meldung zur Zuweisung von Übertragungskapazität für wenigstens ein Datenpaket an die zugeordnete Basisstation,
- 15 dadurch gekennzeichnet,
- dass das weitere Aussenden einer von der Basisstation wenigstens einmal empfangenen Reservierungs-Meldung von wenigstens einer weiteren Zugriffswahrscheinlichkeit abhängig ist und
- dass das Terminal zum Empfang der weiteren Zugriffswahrscheinlichkeit nur nach einer
20 Ablehnung der Sendung eines kompletten Datenpaketes vorgesehen ist.

1/4

FIG. I

I-IV-PHD99-155

FIG. 2

2-IV-PHD99-155

3/4

FIG. 3

FIG. 4

3-IV-PHD99-155

4/4

FIG. 5

4-IV-PHD99-155