Конспекты по матанализу

Владимир Милосердов, Владимир Шабанов, Шумилов Пётр $4 \ {\rm oktrs6ps} \ 2015 \ {\rm r}.$

Оглавление

1	Пре	едел последовательности	5
	1.1	Определение	5
	1.2	Теорема об единственности предела	5
	1.3	Т. об огр. сход. посл	6
	1.4	Т. о пред. перех. в нерав.	6
	1.5	Т. о п/посл. сход. послед	7
	1.6	Т. о влож. отрезках	7
	1.7	Т. Больцано	7
	1.8	Критерий Коши	8
		1.8.1 Фундаментальная последовательность	8
2	Пре	едел функции	11
	2.1	Определение по Гейне	11
	2.2	Определение по Коши	11
	2.3	Теорема о двух миллиционерах	11
	2.4	Док-во равенства определений	12
		2.4.1 От Гейне к Коши	12
		2.4.2 От Коши к Гейне	12
	2.5	Т об един предела функции	12

ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ

Глава 1

Предел последовательности

1.1 Определение

Пусть имеется последовательность a_n . Тогда если начиная с некоторго элемента под индексом N каждый следующий элемент a_n , где n > N будет входить в ε -окрестность некоторой точки A, то говорят, что последовательность имеет предел и он равен A. $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N(n \in \mathbb{N}), \ a_n \in U_{\varepsilon}(A)$

Пример Возьмём
$$\lim_{n \to +\infty} \frac{(-1)^n}{n} = 0$$
Тут $A = 0$, $a_n = \frac{(-1)^n}{n}$

Tym
$$A = 0, \ a_n = \frac{(-1)^n}{n}$$

Подставим значения в определение:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N(n \in \mathbb{N}), \ \frac{(-1)^n}{n} \in \mathring{U}_{\varepsilon}(0)$$

 $\frac{(-1)^n}{n} \in \mathring{U_{\varepsilon}}(0) \equiv |\frac{(-1)^n}{n} - 0| < \varepsilon, \ m.к. \ nocnedobameльность \ a_n, \ npuнaдлежащая \varepsilon-окрестности в точке <math>A = 0$ тоже самое, когда расстояние между рассматриваемыми членами a_n u A = 0 меньше ε .

Упростим: $|\frac{(-1)^n}{n} - 0| < \varepsilon \Rightarrow |\frac{(-1)^n}{n}| < \varepsilon \Rightarrow \frac{1}{n} < \varepsilon \Rightarrow n > \frac{1}{\varepsilon}$.

1) Возьмём $\varepsilon = \frac{1}{2} \Rightarrow n > 2$. Подставим в формулу наименьшее удовлетворяющее условию n > 2 число: $|\frac{-1^3}{3} - 0| = \frac{1}{3}$. Получается, что $\frac{1}{3} < \frac{1}{2}$ и $\forall n > 2$: $|\frac{(-1)^n}{n} - 0| < \varepsilon \Rightarrow$ все условия из определения соблюдены

Определение Последовательность – **сходящеяся**, если она имеет предел.

Определение Последовательность – расходящеяся, если у нее нет предела

Определение Последовательность называется ограниченной, если все её члены по модулю не превосходят некоторого числа.

1.2Теорема об единственности предела

Теорема Если последовательность имеет предел, то он единственный.

$$\begin{cases} \lim_{n \to +\infty} a_n = A_1 \\ \lim_{n \to +\infty} a_n = A_2 \end{cases} \implies A_1 = A_2$$

Пойдём от противного. Возьмем какие-либо непересекающиеся окрестности $U_{\varepsilon}(A_1)$ и $V_{\varepsilon}(A_2)$ точек A_1 и A_2 соответственно, $U_{\varepsilon} \cap V_{\varepsilon} = \emptyset$.

Согласно определению предела вне окрестности $U_{\varepsilon}(A_1)$, в частности в окрестности $V_{\varepsilon}(A_2)$, содержится лишь **конечное** число членов $\{x_n\}$. Однако точка A_2 также является ее пределом, и потому в ее окрестности $V_{\varepsilon}(A_2)$ должны находиться все члены последовательности $\{x_n\}$, начиная с некоторого номера, а следовательно, **бесконечно** много ее членов. Получилось противоречие, значит $A_1 = A_2$, что и требовалось доказать.

1.3 Теорема об ограниченности сходящейся последовательности

Теорема Если последовательность сходится, то она является ограниченной.

Пусть есть сходящаяся последовательность $a_n \Rightarrow \exists \lim_{n \to +\infty} a_n = a$.

Возьмём $\varepsilon = 1 \Rightarrow \exists N : \forall n > N, |a_n - a| < 1$

Избавимся от модуля:

$$-1 < a_n - a < 1$$

 $a - 1 < a_n < a + 1$

Исходя из верхнего неравентсва, если взять max из $|a_n|, |a-1|$ и |a+1|, причём $n \leq N$

$$A = max(|a_n|, n \le N; |a - 1|; |a + 1|)$$

то получится, что $|a_n| \leq A$, $\forall n \in \mathbb{N}$, что и требовалось доказать.

1.4 Теорема о предельном переходе в неравенстве

Теорема Пусть заданы две последовательности $a_n u \ b_n$. Если $\lim_{n \to +\infty} a_n = a$, $\lim_{n \to +\infty} b_n = b$, и начиная с некоторого номера $a_n \le b_n$, то выполняется неравенство $a \le b$.

$$\begin{cases} \lim_{n \to +\infty} a_n = a \\ \lim_{n \to +\infty} b_n = b \\ \forall n > N, a_n \le b_n \end{cases} \implies a \le b$$

Докажем от противного. Пусть $a>b,\, \varepsilon=\frac{a-b}{2}.$ Скажем, что

$$\exists N_a : \forall n > N_a, |a_n - a| < \varepsilon$$

$$\exists N_b : \forall n > N_b, |b_n - b| < \varepsilon$$

Возьмём максимальный номер $N = max(N_a, N_b)$ и тогда получится, что $\forall n > N$ верно:

$$a - \varepsilon < a_n < a + \varepsilon$$

$$b - \varepsilon < b_n < b + \varepsilon$$

Мы знаем, что a > b, тогда из верхних неравенств вытекает, что $b_n < a_n$, а это противоречие, что и требовалось доказать.

1.5 Теорема о подпоследовательности сходящейся последовательности

Теорема Если последовательность стремится κ A, то любая её подпоследовательность тоже стремится κ A.

$$\lim_{x \to +\infty} a_n = A \Rightarrow \forall a_{n_k} \lim_{k \to +\infty} a_{n_k} = A$$

По определению предела найдётся такой номер, что все члены с бо́льшими номерами принадлежат ε -окрестности. $\forall \varepsilon > 0 \ \exists N: \ \forall n > N \ |a_n - A| < \varepsilon$

Тогда
$$\forall k > N: \ \forall n_k > N, \ |a_{n_k} - A| < \varepsilon.$$

Значит a_{n_k} стремится к A по определению предела для последовательности, что и требовалось доказать.

1.6 Теорема Коши-Кантора о вложенных отрезках

Теорема Для всякой системы бесконечного числа вложенных отрезков существует хотя бы одна точка, принадлежащая всем отрезкам системы.

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = c$$

Если длины отрезков стремятся к нулю, то такая точка **единственна**.

Обозначим за $\{a_n\}$ множество левых концов отрезков, а за $\{b_m\}$ – множество правых концов. Заметим, что $\forall n, m: a_n \leq b_m$. Из аксиомы непрерывности заключаем существование точки c, лежащей между любыми двумя левым и правым концами:

$$\forall n, m \; \exists \; c: \quad a_n \leq c \leq b_m$$

В частности (когда n=m): $a_n \le c \le b_n$

Последнее выражение означает существование точки между концами самого маленького отрезка. Эта точка – объединение всей системы, что и требовалось доказать.

Докажем единственность этой точки при стремлении длин отрезков к нулю.

Пусть это не так и существуют точки $c_0, c_1, c_0 \neq c_1$. Тогда из рассуждений предыдущего доказательства следует:

- (1) $\forall n: c_0, c_1 \in [a_n, b_n]$ и $|c_1 c_0| \leq b_n a_n$. Т.к. длины отрезков стремятся к нулю:
- (2) $\forall \varepsilon > 0$: $\exists N : \forall n > N : b_n a_n < \varepsilon$ (по определению предела).

Но если взять $\varepsilon = \frac{1}{2}|c_1 - c_0|$, то из (1) и (2) получим противоречие: $|c_1 - c_0| < \frac{1}{2}|c_1 - c_0|$. Таким образом точка c единственна в случае стремления длин отрезков к нулю, что и требовалось доказать.

1.7 Теорема Больцано — Вейерштрасса

Теорема На любой ограниченной последовательности $x_n, n \in \mathbb{N}$ можно выделить сходящююся подпоследовательность $x_{n_k}, k \in \mathbb{N}$

Если последовательность x_n ограниченна, то всё её бесконечное множество членов принадлежит некоторому промежутку, обозначим его $-[a_0,b_0]$. Разделим этот промежуток

на два равных отрезка, тогда хотя бы один из них будет содержать бесконечное число членов последовательности x_n , обозначим этот отрезок, как $[a_1,b_1]$. Продолжая процесс получим последовательность вложенных отрезков.

$$[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset \dots$$

В которой каждый отрезок $[a_{k+1},b_{k+1}]$ является половиной отрезка $[a_k,b_k]$ и содержит бесконечное число членов последовательности x_n . Т.к. размер отрезка под номером k равен $S_k = \frac{|b_0 - a_0|}{2^k}$, то при $k \to +\infty$, $S_k \to 0$. А по лемме о вложенных отрезках, существует единственная точка ν , принадлежащая всем отрезкам. Тогда выберем подпоследовательность $x_{n_k} \in [a_k,b_k]$. Новая последовательность x_{n_k} будет сходится к точке ν потому, что и ν , и x_{n_k} принадлежат отрезку $[a_k,b_k]$, размеры которого стремятся к 0 при $k \to +\infty$. Т.е. $|x_{n_k} - \nu| \le |b_k - a_k| \to 0$. Таким образом, в ограниченной последовательности x_n мы выделили сходящююся подпоследовательность x_{n_k} .

1.8 Критерий Коши

1.8.1 Фундаментальная последовательность

Определение Последовательность a_k называется фундаментальной или сходящейся в себе, если $\forall \varepsilon > 0 \ \exists N : \ \forall n, k : |a_k - a_n| < \varepsilon$

Другими словами, если начиная с некоторго номера, расстояние между всеми членами последовательности меньше любого числа из \mathbb{R}_+ .

Критерий Коши

Определение Последовательность a_n сходится тогда и только тогда, когда она фундаментальна. Т.е. $\exists \lim_{n \to +\infty} a_n$

Докажем, что если последовательность a_n имеет предел, то она сходится в себе. Пусть $A = \lim_{n \to +\infty} a_n$, тогда из определения предела:

$$\forall \varepsilon > 0: \ \exists N: \ \forall n > N: \ |A - a_n| < \frac{\varepsilon}{2}$$

Определим такое m, что m>N, тогда $|A-a_m|<\frac{\varepsilon}{2}$

$$\begin{cases} |A - a_n| < \frac{\varepsilon}{2} \\ |A - a_m| < \frac{\varepsilon}{2} \end{cases} \implies |A - a_m| + |A - a_n| < \varepsilon$$

Применив неравенство треугольника, для последней части неравенства. Получим:

$$|a_m - a_n| \le |A - a_m| + |A - a_n| < \varepsilon$$

Или:

$$|a_m - a_n| < \varepsilon$$

Что равносильно определению сходящейся в себе последовательности.

Докажем, что если последовательность a_n сходится в себе, то она имеет предел. Для этого докажем две Леммы.

Φ ундаментальна \Rightarrow ограниченна

Если последовательность a_n сходится в себе, то это по определению означает, что:

$$\forall \varepsilon : \exists N_1 : \forall n, m > N_1 : |a_n - a_m| < \varepsilon$$

Зафиксируем такой номер m, тогда получается, что в ε окрестности точки a_m лежат все члены последовательности, начиная с номера N_1 , ведь для любого $n > N_1$ спроведливо $|a_n - a_m| < \varepsilon$. Последнее равенство эквивалентно определению ограниченной последовательности, или нет.

Предел ограниченной последовательности, равен пределу подпоследовательности

По теореме Больцано — Вейерштрасса если последовательность a_n ограниченна, то на ней можно выделить сходящююся подпоследовательность a_{n_k} . Обозначим предел последней $A=a_{n_k}$.

Глава 2

Предел функции

2.1 Определение по Гейне

Пределом функции f(x) в точке a называется точка A, если для любой сходящейся в точке a последовательности x_n множество соответсвующих значений $y_n = f(x_n)$, при $n \neq 0$ стремится к A.

$$\forall n \in \mathbb{N}, \lim_{n \to x_0} x_n = a$$
$$\lim_{n \to \infty} f(x_n) = A$$

2.2 Определение по Коши

Пределом функции f(x) в точке a называется точка A, если для любого $\varepsilon>0$ найдется $\delta>0$ такое, что для любого аргуманта x такого, что $0<|x-a|<\delta$ выполняется неравенство $|f(x)-A|<\varepsilon$

$$\lim_{x \to a} f(x) = A \iff \forall \varepsilon > 0: \ \exists \delta > 0: \ \forall x: \ 0 < |x - a| < \delta \implies |f(x) - A| < \varepsilon$$

2.3 Теорема о двух миллиционерах

Функция, "зажатая" между двумя функциями, имеющими одиннаковый предел имеет такой же предел.

$$\begin{cases} \varphi(x) \le f(x) \le \psi(x), \forall x \\ \lim_{x \to a} \varphi(x) = A \\ \lim_{x \to a} \psi(x) = A \end{cases} \implies \lim_{x \to a} f(x) = A$$

Доказательство:

Прибавим к каждой части неравенства $\varphi(x) \leq f(x) \leq \psi$ по -A: $\varphi(x) - A \leq f(x) - A \leq \psi(x) - A$. Из предыдущего неравенства и рисунка

очевидно, что для любых допустимых взаимных расположений точек $A, \, \varphi(x), \, \psi(x), \, f(x)$ верно следующее неравенство:

(1)
$$|f(x) - A| \le \max(|\varphi(x) - A|, |\psi(x) - a|)$$

Т.к. $\lim_{x\to a} \varphi(x) = \lim_{x\to a} \psi(x) = A$, то $\forall \varepsilon > 0$ существует ε -окрестность U_a и

$$\varphi(x) \in U_{\varepsilon}(a)$$
 и $\psi(x) \in U_{\varepsilon}(a)$. T.e. $|\varphi(x) - A| < \varepsilon$ и $|\psi(x) - A| < \varepsilon$.

Тогда из (1) следует: $|f(x)-A|<\varepsilon$ из чего согласно определению предела по Коши следует, что $\lim_{x\to a}f(x)=A$, что и требовалось доказать.

2.4 Доказательство эквивалентности определений по Коши и по Гейне

2.4.1 От Гейне к Коши

Докажем от противного. Пусть $A = \lim_{x \to a} f(x)$ (по Гейне) и он не равен пределу по Коши. Т.е. (из определения по Коши):

$$\exists \varepsilon > 0: \ \forall \delta > 0: \ \exists x_\delta: \ 0 < |x_\delta - a| < \delta \ \text{if} \ |f(x_\delta) - A| \ge \varepsilon$$

Рассмотрим $\delta = \frac{1}{n}$, где $n \in \mathbb{N}$, обозначим последовательность значений в точке δ через x_n . Тогда имеем:

 $0<|x_n-a|<\frac{1}{n}$, где $0\to 0$ и $\frac{1}{n}\to 0$. Из строгости неравенства следует $x_n\neq a$, а по теореме о трёх миллиционерах имеем:

 $|x_n-a|\to 0 \Rightarrow x_n\to a$, поэтому из определения по Гейне $f(x_n)\to A$, но по построению (т.к. $|f(x_\delta)-A|\ge \varepsilon$) $f(x_n)\not\to A$

Получили противоречие, значит если функция имеет предел по Гейне, то его можно определить и по Коши.

2.4.2 От Коши к Гейне

Пусть $A = \lim_{x \to a} f(x)$ по Коши. Т.е.

$$\forall \varepsilon > 0: \ \exists \delta > 0: \ \forall x: \ 0 < |x - a| < \delta \ \Rightarrow \ |f(x) - A| < \varepsilon$$

Выберем произвольную последовательность x_n такую, что $\lim_{n\to +\infty} x_n = a$. Т.к. x_n стремится к a, то для любого $\delta>0$ найдется такой номер (обозначим его n_δ), начиная с которго $\forall n>n_\delta$ будет выполнятся неравенство $|f(x_n)-A|<\varepsilon$, что по Коши равносильно $\lim_{n\to +\infty} f(x_n)=A$

2.5 Теорема об единственности предела функции

Теорема
$$\begin{cases} \lim_{x \to a} f(x) = A_1 \\ \lim_{x \to a} f(x) = A_2 \end{cases} \implies A_1 = A_2$$

Докажем от противного. Пусть $\lim_{x\to a} f(x) = A_1$ и $\lim_{x\to a} f(x) = A_2$ Тогда из определения предела по Коши имеем $|f(x) - A_1| < \varepsilon$ и $|f(x) - A_2| < \varepsilon$. Пусть $\varepsilon = \frac{\varepsilon_1}{2}$. Имеем: $|f(x) - A_1| < \frac{\varepsilon_1}{2}$ и $|f(x) - A_2| < \frac{\varepsilon_1}{2}$. Рассмотрим выражение $|A_2 - A_1|$. Прибавим и отнимем f(x): $|A_2 - f(x) + f(x) - A_1|$. Из свойств модуля следует: $|A_2 - f(x) + f(x) - A_1| \le |f(x) - A_1| + |f(x) - A_2|$ Получаем: $|A_2 - f(x) + f(x) - A_1| \le |f(x) - A_1| + |f(x) - A_2| < \frac{\varepsilon_1}{2} + \frac{\varepsilon_1}{2}$, т.е. $|A_2 - A_1| < \varepsilon_1$. Возьмём $\varepsilon_1 = |A_2 - A_1|$ и получим $|A_2 - A_1| < \frac{|A_2 - A_1|}{2}$. Противоречие. Значит предел функции единственный.