Algorithms & Data Structures: Lab 04

week of 22nd October 2018

1 Setup

1.1 Saving your work from last week

As with previous weeks, you will use git to download a bundle of lab code. You might have made modifications in your downloaded copy; if you have not already done so, you need to save those modifications. First examine the changes present in your downloaded copy by issuing the following commands from the labs directory:

```
git status
git diff
and if you are satisfied with the changes, store them in the git version control system by doing
git commit -a
and writing a suitable commit message
```

1.2 Downloading this week's distribution

Once you have successfully saved your changes from last week, you can get my updates by doing

```
git pull
```

which *should* automatically merge in new content. After the git pull command, you should have a new directory containing this week's material (named 04/) alongside the existing directories.

2 Linked Lists

2.1 Basic implementation

Implement a SLList linked-list class, whose basic methods are: first(), rest(), setFirst(), and setRest(). The class must be able to store *at least* the default integer range in your programming language; the "rest" must be a reference or pointer to another SLList, including the special SLList object NIL.

You should also provide a two-argument constructor, which initializes the instance with the first argument as the first, and the second argument as the rest, of the resulting SLList.

I have provided skeleton code under 04/ to help you structure your work, and tests for this functionality which can be run using make test as usual.

2.2 Derived methods

Extend your implementation of linked lists to support three additional methods, which you should be able to implement in terms of the existing ones or directly:

nth() return the nth item stored in the list, counting from 0 (so nth(0) should return the first item)

 ${\tt nthRest()}$ return the n^{th} rest of the list, counting from 0 (so ${\tt nthRest(0)}$ should return the given list itself)

length() return the length of the list.

I have provided tests for nth() and nthRest(); you are responsible for testing your own implementation of length(). How can you assure yourself that your implementation is correct? How can you convince the person working next to you?

2.3 More derived methods

You might wish to work through the interactive exercise related to recursively-expressed algorithms on linked lists, available from the module VLE page.

2.4 Submission

There will be a submission related to this lab in two weeks (deadline 16:00 9th November 2018); you will be asked to submit work based on your implementation of the SLList class. Make sure you save your work, and that you understand what is going on.