第二十四讲 内积空间的定义与基本性质

- 一、内积空间的定义
- 二、内积空间中向量的长度
- 三、内积空间中向量的夹角
- 四、n维内积空间中内积的矩阵表示
- 五、内积子空间

问题的引入:

- 1、线性空间中,向量之间的基本运算为线性运算, 其具体模型为几何空间 R^2 、 R^3 , 但几何空间的度量 性质(如长度、夹角)等在一般线性空间中没有涉及.
- 2、在解析几何中,向量的长度,夹角等度量性质都可以通过内积反映出来:

长度:
$$|\alpha| = \sqrt{\alpha \cdot \alpha}$$

夹角
$$<\alpha,\beta>$$
: $\cos <\alpha,\beta>=\frac{\alpha \cdot \beta}{|\alpha||\beta|}$

3、几何空间中向量的内积具有比较明显的代数性质.

一、内积空间的定义

1. 定义

设V是实数域R上的线性空间,对V中任意两个向量

 α 、 β , 定义一个二元实函数, 记作 (α,β) , 若 (α,β)

满足性质: $\forall \alpha, \beta, \gamma \in V$, $\forall k \in R$

$$1^{\circ} (\alpha, \beta) = (\beta, \alpha)$$
 (对称性)

$$2^{\circ} (k\alpha, \beta) = k(\alpha, \beta)$$
 (数乘)

$$3^{\circ}$$
 $(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$ (可加性)

$$4^{\circ}(\alpha,\alpha) \ge 0$$
, 当且仅当 $\alpha = 0$ 时 $(\alpha,\alpha) = 0$. (正定性)

则称 (α,β) 为 α 和 β 的内积,并称这种定义了内积的实数域 R上的线性空间V为内积空间.

注: 内积空间 V是特殊的线性空间

- ① V为实数域 R上的线性空间;
- ② V除向量的线性运算外,还有"内积"运算;
- $(\alpha,\beta)\in R.$

例1. 在 R^n 中,对于向量

$$\alpha = (a_1, a_2, \dots, a_n), \quad \beta = (b_1, b_2, \dots, b_n)$$

1) 定义
$$(\alpha, \beta) = a_1b_1 + a_2b_2 + \dots + a_nb_n$$
 (1)

易证 (α,β) 满足定义中的性质 $1^{\circ}\sim 4^{\circ}$.

这样 R^n 对于内积 (α, β) 就成为一个内积空间.

(当n=3时,1)即为几何空间 \mathbb{R}^3 中内积在直角

坐标系下的表达式. (α,β) 即 $\alpha\cdot\beta$.)

2) 定义

$$(\alpha, \beta)' = a_1b_1 + 2a_2b_2 + \dots + ka_kb_k + \dots + na_nb_n$$

易证 (α,β) ′满足定义中的性质 1^{∞} 4° .

从而 R^n 对于内积 (α,β) 也构成一个内积空间.

注意: 由于对 $\forall \alpha \cdot \beta \in V$, 未必有 $(\alpha,\beta) = (\alpha,\beta)'$

所以1),2)是两种不同的内积.

从而 R^n 对于这两种内积就构成了不同的内积空间.

例2. C(a,b) 为闭区间 [a,b] 上的所有实连续函数

所成线性空间,对于函数 f(x),g(x),定义

$$(f,g) = \int_a^b f(x)g(x) dx \tag{2}$$

则 C(a,b) 对于 (2) 作成一个内积空间.

$$\forall f(x), g(x), h(x) \in C(a,b), \forall k \in R$$

1°.
$$(f,g) = \int_a^b f(x)g(x) dx = \int_a^b g(x)f(x) dx = (g,f)$$

2°.
$$(kf,g) = \int_a^b kf(x)g(x) dx = k \int_a^b f(x)g(x) dx$$

= $k(f,g)$

3°.
$$(f+g,h) = \int_a^b (f(x)+g(x))h(x) dx$$

= $\int_a^b f(x)h(x) dx + \int_a^b g(x)h(x) dx$
= $(f,h)+(g,h)$

4°.
$$(f,f) = \int_a^b f^2(x) dx$$

$$f^2(x) \ge 0, \qquad \therefore (f,f) \ge 0.$$

且若
$$f(x) \neq 0$$
, 则 $f^{2}(x) > 0$, 从而 $(f,f) > 0$.

故
$$(f,f)=0\Leftrightarrow f(x)=0$$
.

因此,(f,g) 为内积, C(a,b) 为内积空间.

2. 内积的简单性质

V为欧氏空间, $\forall \alpha, \beta, \gamma \in V, \forall k \in R$

1)
$$(\alpha, k\beta) = k(\alpha, \beta), (k\alpha, k\beta) = k^2(\alpha, \beta)$$

2)
$$(\alpha, \beta + \gamma) = (\alpha, \beta) + (\alpha, \gamma)$$

推广:
$$(\alpha, \sum_{i=1}^{s} \beta_i) = \sum_{i=1}^{s} (\alpha, \beta_i)$$

3)
$$(0,\beta) = 0$$

二、内积空间中向量的长度

1. 引入长度概念的可能性

- 1) 在 R^3 向量 α 的长度(模) $|\alpha| = \sqrt{\alpha \cdot \alpha}$.
- 2) 欧氏空间V中, $\forall \alpha \in V$, $(\alpha,\alpha) \geq 0$ 使得 $\sqrt{\alpha \cdot \alpha}$ 有意义.

2. 向量长度的定义

 $\forall \alpha, \in V$, $|\alpha| = \sqrt{(\alpha, \alpha)}$ 称为向量 α 的长度. 特别地,当 $|\alpha| = 1$ 时,称 α 为单位向量.

3. 向量长度的简单性质

1)
$$|\alpha| \ge 0$$
; $|\alpha| = 0 \Leftrightarrow \alpha = 0$

$$2) |k\alpha| = |k||\alpha|$$
 (3)

3) 非零向量
$$\alpha$$
的单位化: $\frac{1}{|\alpha|}\alpha$.

三、内积空间中向量的夹角

- 1. 引入夹角概念的可能性与困难
- 1) 在 R^3 中向量 α 与 β 的夹角

$$<\alpha,\beta> = arc\cos\frac{\alpha\cdot\beta}{|\alpha||\beta|}$$
 (4)

2) 在一般欧氏空间中推广(4)的形式,首先

应证明不等式:
$$\left| \frac{(\alpha, \beta)}{|\alpha||\beta|} \right| \leq 1$$

即,

2. 柯西一布涅柯夫斯基不等式

对欧氏空间V中任意两个向量 α 、 β ,有

$$\left| (\alpha, \beta) \right| \le \left| \alpha \right| \left| \beta \right| \tag{5}$$

当且仅当 α 、 β 线性相关时等号成立.

证: 当
$$\beta = 0$$
时, $(\alpha, 0) = 0$, $|\beta| = 0$

$$\therefore (\alpha,\beta) = |\alpha||\beta| = 0. 结论成立.$$

当
$$\beta \neq 0$$
时,作向量 $\gamma = \alpha + t\beta$, $t \in \mathbb{R}$

由内积的正定性,对 $\forall t \in R$,皆有

$$(\gamma, \gamma) = (\alpha + t\beta, \alpha + t\beta)$$

$$= (\alpha, \alpha) + 2(\alpha, \beta)t + (\beta, \beta)t^{2} \ge 0$$
(6)

取
$$t = -\frac{(\alpha, \beta)}{(\beta, \beta)}$$
 代入 (6) 式,得

$$(\alpha,\alpha)-2(\alpha,\beta)\frac{(\alpha,\beta)}{(\beta,\beta)}+(\beta,\beta)\frac{(\alpha,\beta)^2}{(\beta,\beta)^2}\geq 0$$

即
$$(\alpha, \beta)^2 \le (\alpha, \alpha)(\beta, \beta)$$

两边开方,即得 $|(\alpha,\beta)| \leq |\alpha||\beta|$.

当 α 、 β 线性相关时,不妨设 $\alpha = k\beta$

于是,
$$|(\alpha,\beta)| = |(k\beta,\beta)| = |k(\beta,\beta)| = |k||\beta|^2$$
.

$$|\alpha||\beta| = |k\beta||\beta| = |k||\beta|^2$$

$$\therefore |(\alpha,\beta)| = |\alpha||\beta|. \quad (5) 式等号成立.$$

反之, 若(5) 式等号成立, 由以上证明过程知

或者
$$\beta = 0$$
, 或者 $\alpha - \frac{(\alpha, \beta)}{(\beta, \beta)}\beta = 0$

也即 α 、 β 线性相关.

3. 柯西一布涅柯夫斯基不等式的应用

1)

柯西 不等式

$$\left|a_1b_1+a_2b_2+\cdots+a_nb_n\right|$$

$$\leq \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} \sqrt{b_1^2 + b_2^2 + \dots + b_n^2}$$

(7)

$$a_i, b_i \in R, \quad i = 1, 2, \dots, n.$$

$$\left| \int_a^b f(x)g(x)dx \right| \le \sqrt{\int_a^b f^2(x)dx} \sqrt{\int_a^b g^2(x)dx}$$

证: 在 C(a,b) 中, f(x) 与 g(x) 的内积定义为 $(f(x),g(x)) = \int_a^b f(x)g(x)dx$

由柯西一布涅柯夫斯基不等式有

$$|(f(x),g(x))| \leq |f(x)||g(x)|$$

从而得证.

3)

对欧氏空间中的任意两个向量 $\alpha \setminus \beta$,有

$$\left|\alpha + \beta\right| \le \left|\alpha\right| + \left|\beta\right| \tag{7}$$

i.
$$|\alpha + \beta|^2 = (\alpha + \beta, \alpha + \beta)$$

$$= (\alpha, \alpha) + 2(\alpha, \beta) + (\beta, \beta)$$

$$\leq |\alpha|^2 + 2|\alpha||\beta| + |\beta|^2 = (|\alpha| + |\beta|)^2$$

两边开方,即得(7)成立.

4. 内积空间中两非零向量的夹角

定义1:设V为内积空间, α 、 β 为V中任意两非零

向量, α 、 β 的**夹角**定义为

$$\langle \alpha, \beta \rangle = arc \cos \frac{(\alpha, \beta)}{|\alpha| |\beta|}$$

$$(0 \le \langle \alpha, \beta \rangle \le \pi)$$

定义2:设 α 、 β 为内积空间中两个向量,若内积

$$(\alpha,\beta)=0$$

则称 α 与 β 正交或互相垂直,记作 $\alpha \perp \beta$.

注:

① 零向量与任意向量正交.

②
$$\alpha \perp \beta \longleftrightarrow \langle \alpha, \beta \rangle = \frac{\pi}{2}$$
, $\text{ pros}\langle \alpha, \beta \rangle = 0$.

5. 勾股定理

设V为内积空间,
$$\forall \alpha, \beta \in V$$

$$|\alpha \perp \beta \iff |\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2$$

证:
$$\mathbf{Q} \quad |\alpha + \beta|^2 = (\alpha + \beta, \alpha + \beta)$$
$$= (\alpha, \alpha) + 2(\alpha, \beta) + (\beta, \beta)$$

$$\therefore |\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2 \longleftrightarrow (\alpha, \beta) = 0$$

$$\longleftrightarrow \alpha \perp \beta.$$

推广: 若内积空间V中向量 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 两两正交,

$$|\alpha_1 + \alpha_2 + \dots + \alpha_m|^2 = |\alpha_1|^2 + |\alpha_2|^2 + \dots + |\alpha_m|^2$$

22

例3、已知
$$\alpha = (2,1,3,2)$$
, $\beta = (1,2,-2,1)$

在通常的内积定义下,求 $|\alpha|$, (α,β) , $\langle \alpha,\beta \rangle$, $|\alpha-\beta|$.

解:
$$|\alpha| = \sqrt{(\alpha,\alpha)} = \sqrt{2^2 + 1^2 + 3^2 + 2^2} = \sqrt{18} = 3\sqrt{2}$$

$$(\alpha,\beta) = 2 \times 1 + 1 \times 2 + 3 \times (-2) + 2 \times 1 = 0$$
 \therefore $\langle \alpha,\beta \rangle = \frac{\pi}{2}$

$$\nabla \alpha - \beta = (1,-1,5,1)$$

$$|\alpha - \beta| = \sqrt{1^2 + (-1)^2 + 5^2 + 1^2} = \sqrt{28} = 2\sqrt{7}$$

通常称 $|\alpha - \beta|$ 为 $\alpha = \beta$ 的距离,记作 $d(\alpha, \beta)$.

四、n维内积空间中内积的矩阵表示

设V为内积空间, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为V的一组基,对V中任意两个向量

$$\alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n$$
$$\beta = y_1 \varepsilon_1 + y_2 \varepsilon_2 + \dots + y_n \varepsilon_n,$$

$$(\alpha, \beta) = \left(\sum_{i=1}^{n} x_i \varepsilon_i, \sum_{j=1}^{n} y_j \varepsilon_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} (\varepsilon_i, \varepsilon_j) x_i y_j \qquad (8)$$

$$\Leftrightarrow a_{ij} = (\varepsilon_i, \varepsilon_j), \quad i, j = 1, 2, \dots n$$

$$A = \left(a_{ij}\right)_{n \times n}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \tag{9}$$

$$\text{III} \quad (\alpha, \beta) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j = X'AY$$
 (10)

定义: 矩阵
$$A = \begin{pmatrix} (\varepsilon_1, \varepsilon_1) & (\varepsilon_1, \varepsilon_2) & \cdots & (\varepsilon_1, \varepsilon_n) \\ (\varepsilon_2, \varepsilon_1) & (\varepsilon_2, \varepsilon_2) & \cdots & (\varepsilon_2, \varepsilon_n) \\ \cdots & \cdots & \cdots & \cdots \\ (\varepsilon_n, \varepsilon_1) & (\varepsilon_n, \varepsilon_2) & \cdots & (\varepsilon_n, \varepsilon_n) \end{pmatrix}$$

称为基 $\varepsilon_1, \varepsilon_2, L, \varepsilon_n$ 的度量矩阵.

注:

- ① 度量矩阵A是实对称矩阵.
- ② 由内积的正定性,度量矩阵A还是正定矩阵. 事实上,对 $\forall \alpha \in V, \alpha \neq 0$,即 $X \neq 0$ 有 $(\alpha,\alpha) = X'AX > 0$
 - : A为正定矩阵.
- ③ 由(10)知,在基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 下,向量的内积由度量矩阵A完全确定.

五、内积空间的子空间

欧氏空间V的子空间在V中所定义的内积之下也是

一个欧氏空间,称之为V的欧氏子空间.