Design of an Energy Management Algorithm for a Hybrid PV, Battery, EDL and Diesel System

Content

- 1. Initial Situation
- 2. Load Data
- 3. System Components
- 4. Algorithm
- 5. Results
- 6. Conclusion

Initial situation:

Situation

Context

 Corruption and lack of investments have prevented the national company, EDL, from continuously providing power to its inhabitants.

• In 2021, EDL has only been able to secure 2 to 4 hours of power a day

• Rise in Prices of Crude Oil made electric generators more expensive.

Design requirements

• Satisfy demand at all time

Must be affordable

Minimize losses

Sustainable

Literature Review

Energy Sources and Storage

Energy sources used in the models studied:

- PVPs
- Wind
- Diesel
- Lead-acid batteries
- Lithium Ion batteries
- Grid

Algorithms and Priorities

Role and priorities of the algorithms studied:

- Prioritize carbon footprint
- Prioritize Price
- Surplus:
 - Can sell to the grid
 - Can't sell to the grid

Load Data:

Data

Load Characteristics:

Load Characteristic	Energy (KWh)
Total	11,300
Average	1.3
Maximum	7.9
Minimum	0.2

Load Profiles

System components:

Photovoltaic Panels (PVPs)

Key considerations

- + Data: hourly insolation on horizontal plane (Wh/m^2)
- + Use of Anisotropic model to find energy available on tilted panels
- + Temperature data to calculate power losses (NOCT concept)
- + Area is 24m², efficiency of panels is 22% and PV inverter efficiency is 97%

Electricité du Liban (EDL)

Battery System Storage

Minimum dis/charge time	10 hours
Maximum power	2.4 kW
Maximum SOC	90%
Minimum SOC	30%
Dis/charging efficiency	90%
Battery inverter efficiency	94%

- + Storage capacity is 2000Ah, terminal voltage 12V (so 24 kWh)
- Maximum dis/charge energy per time step is 2.4 kWh (+efficiency)
- + Min and Max SOC extend battery life
- More advanced models account for self discharge and battery ageing (capacity loss)

Diesel Electricity Generator

- As a backup when no other energy source is available
- For our load, the maximum power needed is 9.480kW therefore 10kW generator is chosen for that purpose
- Advantages:
 - Size can be chosen according to the load
 - Quickly available when needed
- Disadvantages:
 - Diesel generators are expensive since the cost of operation is dependent on the prices of fuels,
 - Important source of pollution

The Algorithm:

Power Flow Diagram

Results:

Simulation - Summer Day

Simulation - Winter Day

Results - Total Load Demand

Conclusion:

In short, EMS are...

- Relevant when power systems have more than 1 resource
- Necessary with Hybrid
 Renewable energy systems
- Used for cost reduction and/or satisfying demand
- Different strategies for different systems

THANK YOU!