1

AI1103-Assignment 7

Name: Aayush Patel, Roll No.: CS20BTECH11001

Python codes:

https://github.com/Aayush-2492/Assignments/tree/main/Assignment7/code

Latex codes:

https://github.com/Aayush-2492/Assignments/tree/main/Assignment7

CSIR UGC NET EXAM (June 2013), Q.42

Consider a parallel system with two components. The lifetimes of the two components are independent and identically distributed random variables each following an exponential distribution with mean 1. The expected lifetime of the system is:

- A) 1
- B) $\frac{1}{2}$
- C) $\frac{3}{2}$
- D) 2

SOLUTION

Consider two random variables X and Y which represent the lifetime of the two components namely A and B.

$$X \sim Exp(\lambda_X)$$
 (0.0.1)

$$Y \sim Exp(\lambda_Y)$$
 (0.0.2)

Let $f_X(x)$ denote the probability distribution function for random variable X.

$$f_X(x) = \begin{cases} \lambda_X e^{-\lambda_X x} & x \ge 0\\ 0 & otherwise \end{cases}$$
 (0.0.3)

Let $f_Y(y)$ denote the probability distribution function for random variable Y.

$$f_Y(y) = \begin{cases} \lambda_Y e^{-\lambda_Y y} & y \ge 0\\ 0 & otherwise \end{cases}$$
 (0.0.4)

Fig. 4: P.D.F. of X

Let $F_X(x)$ denote the cumulative distribution function for random variable X.

$$F_X(x) = \begin{cases} 1 - e^{-\lambda_X x} & x \ge 0\\ 0 & otherwise \end{cases}$$
 (0.0.5)

Let $F_Y(y)$ denote the cumulative distribution function for random variable Y.

$$F_Y(y) = \begin{cases} 1 - e^{-\lambda_Y y} & y \ge 0\\ 0 & otherwise \end{cases}$$
 (0.0.6)

$$E(X) = \frac{1}{\lambda_X} \tag{0.0.7}$$

$$E(Y) = \frac{1}{\lambda_Y} \tag{0.0.8}$$

From 0.0.7 and 0.0.8,

$$\lambda_X = \lambda_Y = 1 \tag{0.0.9}$$

Let Z be a random variable such that Z = max(X, Y)

Fig. 4: Parallel system

$$P(Z \le z) = P(\max(X, Y) \le z)$$
 (0.0.10)

$$= P(X \le z, Y \le z)$$
 (0.0.11)

$$= P(X \le z)P(Y \le z)$$
 (0.0.12)

$$= (F_X(z) - F_X(0))(F_Y(z) - F_Y(0))$$
 (0.0.13)

$$= 1 - e^{-(\lambda_X)z} - e^{-(\lambda_Y)z} + e^{-(\lambda_X + \lambda_Y)z}$$
 (0.0.14)

 $P(Z \le z)$ denotes the probability that the system dies in the first z seconds.

$$Expectation = \int_0^\infty z \, d(P(Z \le z)) \qquad (0.0.15)$$

$$= \int_0^\infty z (\lambda_X e^{-(\lambda_X)z} + \lambda_Y e^{-(\lambda_Y)z}) \, dz \qquad (0.0.16)$$

$$= \frac{1}{\lambda_X} + \frac{1}{\lambda_Y} - \frac{1}{\lambda_X + \lambda_Y} \qquad (0.0.17)$$

From 0.0.9,

$$Expectation = \frac{3}{2}$$
 (0.0.18)

Therefore, option C correct.