Baby Kyber - teoria

Małgorzata Zajęcka

3 stycznia 2024

Oznaczenia

Definicja

Dla liczby naturalnej m m-tym wielomianem cyklotomicznym nazywamy nierozkładalny (nad $\mathbb{Z}[X]$) wielomian o współczynnikach całkowitych, który dzieli x^m-1 , ale nie dzieli x^k-1 dla k < m.

Innymi słowy m-ty wielomian cyklotomiczny to wielomian, którego pierwiastki to m-te pierwiastki z jedynki.

Niech $f\in\mathbb{Z}[X]$ będzie m-tym wielomianem cyklotomicznym postaci $f(X)=X^d+1$, gdzie d jest potęgą dwójki $(d=2^k)$, niech q będzie liczbą pierwszą (różną od 2). Definiujemy pierścień R jako pierścień reszt $\mathbb{Z}[X]/f(X)$ oraz pierścień $R_q=R/qR$ Przez χ oznaczymy rozkład prawdopodobieństwa nad R.

M-LWE

Definicja (Problem Search M-LWE)

Mając dane $\pmb{a}_1,...,\pmb{a}_m\in R_q^n$ (wyznaczone losowo z rozkładem jednostajnym) oraz $\pmb{b}=(b_1,...,b_m)\in R_q$ znaleźć $s\in R_q^n$ taki, że

$$b_i = \langle \mathbf{s}, \mathbf{a_i} \rangle + e_i \mod qR, \ i = 1, ..., m$$

gdzie "błędy" e_i są wyznaczone z rozkładu χ .

M-LWE

Definicja (Problem Decision M-LWE)

Mając dane $\pmb{a}_1,...,\pmb{a}_m\in\mathbb{R}_q^n$ oraz $\pmb{b}=(b_1,...,b_m)\in R_q$ rozstrzygnąć, czy

$$b_i = \langle \boldsymbol{s}, \boldsymbol{a_i} \rangle + e_i \mod qR, \ i = 1, ..., m$$

dla pewnego $s \in R_q^n$, czy też ${\pmb b}$ jest wyznaczony losowo z rozkładem normalnym i w żaden sposób nie zależny od ${\pmb a}$.

CRYSTALS-Kyber

CRYSTALS-Kyber oparty jest na problemie M-LWE z następującymi parametrami:

1.
$$q = 3329 = 13 \cdot 2^8 + 1$$

2.
$$n = 256$$

3.
$$R = \mathbb{Z}[X]/(X^n + 1)$$
,

4.
$$R_q = R/qR = \mathbb{Z}_q[X]/(X^n + 1),$$

Generowanie kluczy

- ▶ Macierz $A \in R_q^{k \times k}$ dana jest losowo z rozkładu jednostajnego
- Współczynniki sekretu $\mathbf{s} \in R_q^k$ wybierane są z wycentrowanego rozkładu dwumianowego B_{η_1}
- Mspółczynniki wektora błędu $oldsymbol{e} \in R_q^k$ są wybierane również z B_{η_1}
- Klucz publiczny: $\mathbf{t} = A\mathbf{s} + \mathbf{e}$
- Klucz prywatny: s

Szyfrowanie

- ightharpoonup Chcemy zaszyfrować wielomian m o współczynnikach z $\{0,1\}$
- ightharpoonup Próbkujemy $extbf{\emph{r}} \in R_q^k$ z B_{η_1}
- lacktriangle Próbkujemy $oldsymbol{e}_1 \in R_q^k$ z B_{η_2}
- ▶ Próbkujemy $e_2 \in R$ z B_{η_2}
- ightharpoonup Obliczamy $m{u} = A^T \pmb{r} + \pmb{e}_1$
- Obliczamy $v = \mathbf{t}^T \mathbf{r} + e_2 + \lceil (q/2)m \rfloor$
- $ightharpoonup c = (\mathbf{u}, \mathbf{v})$

Deszyfrowanie

ightharpoonup Obliczamy $m_n = v - \mathbf{s}^T \mathbf{u}$

Otrzymany wynik jest "zaszumiony", ponieważ obliczenia w rzeczywistości nie dają oryginalnej wiadomości m. Jednak dzięki zastosowanemu przeskalowaniu współczynniki m_n są albo bliskie $\lfloor q/2 \rceil$, (a zatem pierwotny współczynnik m wynosił 1) albo są bliskie zera, co oznacza, że oryginalny współczynnik w m wynosił 0.

Kyber bez zębów - Baby Kyber

Przyjmijmy uproszczony model z parametrami:

- \triangleright k=2,
- $p = 17 ext{ oraz } n = 4, ext{ zatem } R = \mathbb{Z}[X]/(X^4 + 1), R_q = \mathbb{Z}_{17}[X]/(X^4 + 1).$

Generowanie klucza:

macierz $A \in R_q^{k \times k}$ generujemy losowo, tzn. wybieramy cztery wielomiany o losowych współczynnikach z \mathbb{Z}_{17} , przykładowo

$$A = \begin{bmatrix} 6x^3 + 16x^2 + 16x + 11 & 9x^3 + 4x^2 + 6x + 3 \\ 5x^3 + 3x^2 + 10x + 1 & 6x^3 + x^2 + 9x + 15 \end{bmatrix}$$

wybieramy dwa (bo k=2) losowe wielomiany z R_q o współczynnikach ze zbioru $\{-1,0,1\}$, np.

$$s = (-x^3 - x^2 + x, -x^3 - x)$$

- wybieramy losowo wektor błędu e składający się z dwóch wielomianów z R_q o współczynnikach ze zbioru $\{-1,0,1\}$ (jak w przypadku sekretu s), np. $\mathbf{e}=(x^2,x^2-x)$
- by obliczamy klucz publiczny t = As + e, gdzie wszystkie działania są wykonywane w arytmetyce modulo 17 (na współczynnikach) i modulo $x^4 + 1$ (na wielomianach).

$$t = (16x^3 + 15x^2 + 7, 10x^3 + 12x^2 + 11x + 6)$$

Szyfrowanie

Powiedzmy, że chcemy zaszyfrować ciąg binarny 1011. Tworzymy odpowiadający mu wielomian

$$m = 1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x + 1 = x^3 + x + 1$$

- wybieramy losowo wektor błędu r z R_q o współczynnikach ze zbioru $\{-1,0,1\}$, np. $\mathbf{r}=(-x^3+x^2,x^3+x^2-1)$
- **p** podobnie wybieramy losowo wektor błędu e_1 , np. $e_1 = (x^2 + x, x^2)$
- potrzebujemy jeszcze losowy wielomian e_2 stopnia co najwyżej 3 dla uproszczenia również jego współczynniki wybieramy losowo z $\{-1,0,1\}$, przykładowo $e_2=-x^3-x^2$

▶ obliczamy $u = A^T r + e_1$, gdzie znowu wszystkie działania są mod 17 i mod $x^4 + 1$.

$$u = (11x^3 + 11x^2 + 10x + 3, 4x^3 + 4x^2 + 13x + 11)$$

• obliczamy $v = t^T r + e_2 + \lfloor \frac{q}{2} \rceil m$

$$v = 8x^3 + 6x^2 + 9x + 16$$

ightharpoonup otrzymujemy szyfrogram c = (u, v)

$$c = ((11x^3 + 11x^2 + 10x + 3, 4x^3 + 4x^2 + 13x + 11), 8x^3 + 6x^2 + 9x + 16)$$

Deszyfrowanie

ightharpoonup obliczamy $m_n = v - s^T u$

$$m_n = 8x^3 + 14x^2 + 8x + 6$$

Następnie zaokrąglamy otrzymane współczynniki do 0, jeżeli są bliżej 0 lub 17 niż 9 albo do 1, jeżeli są bliżej 9 niż 0 lub 17. Otrzymujemy $m_n = x^3 + 0 \cdot x^2 + x + 1$, a zatem zaszyfrowany wielomian to $m = x^3 + x + 1$ i odczytujemy odpowiadający mu ciąg binarny 1011.