

IN20 Informatique

Séance 8 Comment Internet fonctionne-t-il?

Rappels

- Comprendre le World Wide Web et son fonctionnement
 - Différence entre internet et le WWW
 - Concept du client/serveur et serveur web
 - Protocole HTTP et description de ressources avec un URL
- Initiation à plusieurs langages du web
 - HTML pour composesr des documents
 - CSS pour définir des feuilles de style
 - Javascript pour intégrer des aspects dynamiques

Objectifs

- Comprendre ce qu'est Internet et son fonctionnement
 - Communication inter-machines
 - Réseau local (LAN) et FAI
 - Réseau de réseaux (WAN) et routage
- Échange de messages sur Internet
 - Services et protocoles
 - Protocole HTTP et World Wide Web
 - Internet des objets et IPv6

Communiquer par Internet

- Les machines sont identifiées par une adresse sur Internet
 Utilisée pour échanger de l'information
- Un message est envoyé par un émetteur vers un destinataire Internet se charge d'envoyer le message vers la destination

Réseau local

Modem-routeur (1)

- Création d'un réseau local avec un modem-routeur
 Utilisée pour échanger de l'information
- Plusieurs appareils sont connectés au modem-routeur
 Ordinateur fixe et portable, smartphone, tablette, disque réseau...

Réseau local (LAN)

- Les machines d'un réseau local communiquent directement
 Échanges des messages via le modem-routeur
- Le modem-routeur fait l'interface avec Internet Il sait envoyer des messages au travers d'Internet
- Distinction entre une adresse locale et distante

Modem-routeur (2)

■ Modulateur-démodulateur pour convertir les signaux

Périphérique de communication via un réseau analogique (réseau téléphonique commuté, électrique, radio...)

Routeur pour assurer le routage des paquets
 Effectue le transfert des messages à travers Internet

Ethernet

- Protocole de réseau local (ISO/IEC 8802-3)

 Paires torsadées (1 Gbit/s) ou fibres optiques (10 Gbit/s)
- Plusieurs versions (vitesse, modulation, media)

```
10Base-T, 10Base-2, 10Base-5, 100Base-TX, 100Base-FX
1000Base-T, 1000Base-LH, 1000Base-LX
10GBase-T, 10GBase-LX4, 10GBase-CX4
40GBase-CR4, 100GBase-SR10, 100GBase-LR4
```

WiFi

■ Wireless Fidelity (WiFi, IEEE 802.11)

Réseaux locaux sans fil à haut débit dans un voisinage limité

Jusque 1 Gbit/s sur un rayon de plusieurs dizaine de mètres Ondes radios bande 2.4 GHz, couche liaison proche Ethernet

Année	Norme	Débit
1997	802.11	1–2 Mbit/s
1999/1999/2003	802.11a/b/g	jusque 54 Mbit/s
2009	802.11n	600 Mbit/s
2013	802.11ac	1 Gbit/s

Bluetooth

- Bluetooth (IEEE 802/15) conçu par Ericsson en 1994 Communication sans fil d'appareils numériques
- Bande de fréquence de 2.4 GHz comme WiFi
- Débit de 1 Mbit/s dans un rayon de quelques mètres

THE INTERNET

Réseaux interconnectés (WAN)

- Internet est un ensemble de réseaux interconnectés
 Une grande toile composées de nœuds reliés entre eux
- Plusieurs types de réseaux
 Privés, publics, universitaires, commerciaux, gouvernementaux...
- Possibilité de transférer de l'information au travers des réseaux
 Plusieurs chemins possibles pour relier deux nœuds

Connexion directe (1)

- Deux machines sont directement connectées entre elles
 Physique avec un câble (Ethernet) ou sans fil (WiFi, Bluetooth)
- Nécessite un seul câble entre les deux machines

Connexion directe (2)

■ On peut également connecter *N* machines deux à deux

Nécessitera
$$\frac{N(N-1)}{2}$$
 câbles (ou connexions sans fil)

Communication directe, mais connexions complexes et lourdes

Routeur

- Un routeur est un « petit » ordinateur spécialisé
 Relaie des messages d'une source vers une destination
- Chaque ordinateur n'est connecté qu'au routeur
 Ne nécessite plus que N câbles pour relier N machines

Réseau de réseaux (1)

Interconnexion de réseaux en reliant les routeurs
Un routeur n'étant finalement qu'un ordinateur

Réseau de réseaux (2)

■ Passage à l'échelle en répétant la structure

En connectant des routeurs ensemble avec un routeur central

Adresse

- Toute machine est identifiée par une adresse unique Identification de la machine à l'intérieur de son réseau
- Plusieurs types d'adresses selon le type de réseau
 Une machine peut avoir plusieurs adresses
- Adresse utilisée pour la communication entre machines

Adresse IP

- Adresse IP attribuée aux machines connectées
 Adresse reçue lors de la connexion, utilisée pour le routage
- Tout matériel connecté à un réseau et utilisant le protocole IP Routeur, ordinateur, modem ADSL, imprimante, Playstation®...

Nom de domaine (DN)

- Un nom de domaine est un alias d'une adresse IP
 Plus facile à lire et retenir pour un être humain
- Résolution d'un nom de domaine pour trouver l'adresse IP

 Interrogation d'un serveur de nom de domaine (DNS)

Serveur DNS

Outil ping

■ Tester l'accessibilité d'une machine à travers Internet

Permet également de mesurer le temps de réponse

```
    combefis — ping — 65×18

MacBook-Pro-de-Sebastien-3:~ combefis$ ping www.facebook.com
PING star-mini.c10r.facebook.com (31.13.92.36): 56 data bytes
64 bytes from 31.13.92.36: icmp_seq=0 ttl=87 time=41.546 ms
64 bytes from 31.13.92.36: icmp_seq=1 ttl=87 time=48.744 ms
64 bytes from 31.13.92.36: icmp_seq=2 ttl=87 time=44.870 ms
64 bytes from 31.13.92.36: icmp_seq=3 ttl=87 time=42.625 ms
64 bytes from 31.13.92.36: icmp_seq=4 ttl=87 time=40.186 ms
64 bytes from 31.13.92.36: icmp_seq=5 ttl=87 time=45.270 ms
64 bytes from 31.13.92.36: icmp_seq=6 ttl=87 time=49.680 ms
64 bytes from 31.13.92.36: icmp_seq=7 ttl=87 time=58.289 ms
64 bytes from 31.13.92.36: icmp_seq=8 ttl=87 time=47.049 ms
```

Adresse MAC

- Identification physique d'une machine avec une adresse MAC Stocké dans une carte réseau et unique au monde
- Utilisée par le protocole Ethernet pour transmettre des trames
 Transmission de messages dans la couche physique

Routage (1)

- Transfert pas à pas d'un message vers une destination
 Le message est passé de machine en machine à travers Internet
- Chaque routeur possède une table de routage
 Détermine sur quel lien envoyer un message reçu

Routage (1)

- Transfert pas à pas d'un message vers une destination
 Le message est passé de machine en machine à travers Internet
- Chaque routeur possède une table de routage
 Détermine sur quel lien envoyer un message reçu

Routage (1)

- Transfert pas à pas d'un message vers une destination
 Le message est passé de machine en machine à travers Internet
- Chaque routeur possède une table de routage
 Détermine sur quel lien envoyer un message reçu

Routage (2)

- Internet est très résistant aux défaillances physiques
 Plusieurs routes existantes pour relier deux machines
- Tables de routage mise à jour dynamiquement Protocoles OSPF, BGP...
- Modem-routeur dirige les messages sur le LAN ou vers le WAN Pas besoin d'accès à Internet pour communiquer localement

Outil traceroute

■ Tracer la route suivie par des paquets de données

Envoi de paquets avec une durée de vie limitée et incrémentée

Fournisseur d'accès à Internet

Fournisseur d'accès à Internet (ISP)

- Création de réseaux en connectant des machines entre elles
 Pas possible de relier directement tous les réseaux entre eux
- Utilisation de réseaux déjà existants du client
 Réseau téléphonique, d'électricité, de télévision...

Réseau des ISPs

- Les ISPs gèrent des routeurs spéciaux connectés entre eux

 Traversée du réseau des réseaux des ISPs, vers le réseau d'arrivée
- ISPs aussi connectés à des gros fournisseurs de services
 Google, Facebook, Netflix...

Adresse IP dynamique

- Chaque fournisseur d'accès à Internet possède des adresses IP L'ensemble d'adresses possédé est limité
- Attribution dynamique d'une adresse IP
 Obtenue lors de la connexion à l'ISP
- Regroupement de plusieurs adresses IPs par zones privées
 Plusieurs machines dans le monde avec la même adresse IP

Protocole de communication

- Spécification de règles pour un type de communication donné
 Permet la communication sur une même couche d'abstraction
- Protocole basé en mode texte ou en mode binaire
 Selon le niveau d'abstraction de la communication
- Définition des phases et du format des messages
 Initialisation, fermeture, négociation de paramètres...

Protocole IP

- Protocole de communication non orienté connexion
 Deux machines peuvent s'échanger des paquets IP
- Paquet IP acheminé d'une source vers une destination
 Les paquets peuvent suivre des chemins différents
- La seule garantie est la non corruption de l'entête du paquet
 - mais possible corruption des données,
 - ordre d'arrivée des paquets différents de celui d'envoi,
 - perte ou destruction de paquets,
 - et duplication de paquets

Protocole DHCP

- Protocole de configuration automatique d'une machine Notamment pour affecter une adresse IP à la machine
- Le serveur DHCP envoie des offres au client

 Contient adresse IP de la passerelle par défaut, du serveur DNS...
- Les adresses IP sont attribuées pour une durée limitée (bail)
 Demande de renouvellement au terme du bail

Client/Serveur

- Communication entre un client et un serveur
 - 1 Le client se connecte au serveur
 - 2 Le serveur accepte la connexion
 - 3 Le client et le serveur communiquent
 - 1 Le client envoie une requête au serveur
 - 2 Le serveur analyse la requête et répond au client
- La connexion peut être fermée par le client ou le serveur

Protocole TCP

- Protocole de communication orienté connexion
 Deux machines peuvent s'échanger des paquets TCP
- Transmission fiable des paquets entre deux machines
 Établissement préalable d'une connexion entre les deux machines
- Identification d'une application avec un numéro de port Nombre entier codé sur 16 bits (de 1 à 65535)

Protocole HTTP

- Protocole applicatif de transfert hypertexte
 Communication client/serveur utilisé pour le World Wide Web
- Protocole en mode texte, basé sur le protocole TCP Basé sur le protocole TCP avec le port 80 pour le serveur
- Plusieurs versions du protocole (HTTP/1.1 plus répandu)
 Version HTTP/2 approuvée en février 2015, publiée en mai 2015

Protocole HTTPS

- Version sécurisée du protocole HTTP
 Combinaison de HTTP avec du chiffrement SSL ou TLS
- Également basée sur TCP, et utilise le port 443
- Vérification de l'identité du site web
 Certificat d'authentification émis par une autorité tierce

Serveur Web

- Serveur web propose des ressources à un client

 Sur base du protocole HTTP ou HTTPS
- Connexion fermée par le serveur après envoi de sa réponse Par défaut dans HTTP/1.1, mais persistance dans HTTP/2
- Interrogation d'un serveur web avec un client web Chrome, Firefox, Opera, Internet Explorer, Lynx...

World Wide Web vs Internet

- Internet est une infrastructure technique
 Permet d'interconnecter des machines sous forme de réseaux
- Le World Wide Web est un service construit sur Internet

 Serveurs et clients web qui s'échangent des messages intelligibles

Protocole SMTP

- Protocole de transmission de messages électroniques (e-mails)
 Transferts entre des relais pour acheminer les messages
- Protocole en mode texte, basé sur le protocole TCP

 Basé sur le port 25 pour le serveur (ou 465 en sécurisé)
- Plusieurs versions dont la dernière définie en 2008 Extended SMTP décrit dans RFC 5321 est la plus répandue

Serveur d'e-mails

- Message Transfert Agent (MTA) est un relais d'e-mail
 Transfert d'e-mails entre ordinateurs en mode client/serveur
- L'accès aux e-mails se fait à l'aide d'un client de messagerie Apple Mail, Mozilla Thunderbird, Microsoft Outlook...

Internet des objets (IoT) (1)

- Réseau d'objets physiques capables de s'échanger des données
 Équipés d'électronique, senseurs, logiciel et connectivité réseau
- Interaction monde physique/systèmes informatisés
 Monitoring, sondage, contrôle à distance
- Échange de données entre le monde réel et Internet (Web 3.0)

 E-health, domotique, quantified self (podomètre...)

Internet des objets (IoT) (2)

- Des machines ont été équipées pour pouvoir être connectées Support du protocole IP, puces RFID...
- Différentes communications possibles
 - Les objets sont connectés à des serveurs « classiques »
 - Les objets communiquent entre eux
- Quelques exemples
 - Une smartwatch communique avec un smartphone
 - Fonctions disponibles sur une voiture lorsque la clé est proche
 - I ...

Système de systèmes

- Plusieurs systèmes technologiques nécessaires à l'IoT, dont
 - **1 Identification** unique d'un objet Code-barres, puce RFID...
 - 2 Capteurs qui recueillent de l'information dans l'environnement Luxmètre, capteur de proximité, accéléromètre, gyroscope...
 - **3 Connexion** de systèmes entre eux *Câble, Bluetooth, NFC, WiFi, Zigbee...*
- Plusieurs systèmes communiquent et interagissent entre eux

RFID

- Radio-Frequency Identification (RFID)
 Méthode de mémorisation et récupération de données à distance
- Puces RFID contiennent un identifiant et des données
 Composée d'une puce électronique et d'une petite antenne
- Communication avec la puce à partir d'un lecteur
 Transfert d'énergie électromagnétique

NFC

- Near Field Communication (NFC)
 Ensemble de protocoles de communication sans fil proche (10 cm)
- Standardisation des cartes de proximité utilisant la RFID

 Combinaison de l'interface d'une carte à puce et un lecteur
- Débit de 106.212 ou 424 kbit/s et fréquence de 13.56 MHz
 Utilisable uniquement sur de très courtes distances

Big data

- Explosion du volume de données générées sur le réseau
 Accroissement exponentiel de cette quantité de données
- Plusieurs nouvelles nécessités apparaissent
 - Capacités de stockage et partage
 - Algorithmes de recherche et de traitement
 - Visualisation
- Plusieurs nouvelles sources qui génèrent ces données loT, expériences scientifiques (LHC), réseaux sociaux...

Cloud computing

- Exploitation de la puissance de calcul ou de stockage distante

 Utilisation de serveurs distants puissants à travers Internet
- Location par tranche d'utilisation (puissance, temps CPU...)
 Grande souplesse et possibilité de gérer soi-même son serveur
- Fourni des services sophistiqués à exploiter à volonté
 Puissance mise à disposition par un fournisseur via Internet

IPv6

- Accroissement du nombre d'appareils connectés
 Multiplication des appareils et expansion de l'IoT
- Épuisement du stock des adresses IPv4

 Développement des adresse IPv6 (128 bits au lieu de 32 bits)

Crédits (1)

- https://www.flickr.com/photos/mattjnewman/2520106295
- https://openclipart.org/detail/180746/tango-computer-green
- https://openclipart.org/detail/75181/speeding-envelope
- https://openclipart.org/detail/167055/wireless-router
- https://openclipart.org/detail/191831/wifi-icon
- https://openclipart.org/detail/191400/tablet
- https://openclipart.org/detail/19480/modern-touch-phone-mobile
- https://openclipart.org/detail/34933/architetto-unita-disco-rigido
- https://openclipart.org/detail/159709/laptop
- https://www.proximus.be/dam/cdn/sites/iportal/images/products/decoders/modem-b-box3/modem-b-box3.png
- http://www.broadbandbuyer.co.uk/images/products/linksys/wrt1900ac-10.png
- https://fr.wikipedia.org/wiki/Fichier:Ethernet_RJ45_connector_p1160054.jpg
- http://en.wikipedia.org/wiki/Wi-Fi#mediaviewer/File:Wi-Fi_Logo.svg
- $\blacksquare \ http://en.wikipedia.org/wiki/Bluetooth\#mediaviewer/File:BluetoothLogo.svg$
- https://www.flickr.com/photos/teflon/3190769121
- https://openclipart.org/detail/171414/router
- https://www.flickr.com/photos/dskley/14711793077
- https://openclipart.org/detail/36565/tango-network-server
- https://www.flickr.com/photos/teflon/686327558
- https://upload.wikimedia.org/wikipedia/commons/e/e5/HTTPS_icon.png
- https://en.wikipedia.org/wiki/File:ASF-logo.svg
- https://en.wikipedia.org/wiki/File:Nginx_logo.svg

Crédits (2)

- https://en.wikipedia.org/wiki/File:Zope_logo.png
- https://en.wikipedia.org/wiki/File:Postfix-logo.png
- https://en.wikipedia.org/wiki/File:Microsoft_Exchange_logo.png
- https://en.wikipedia.org/wiki/File:OpenSMTPD.png
- https://www.flickr.com/photos/publicworksgroup/14701341495