Functional Analysis HW5

Kim Juhyeong

December 14, 2020

Problem 21.

(Late submission) Since $\tau_{\mathbb{K}}$ in $D(\mathbb{K})$ is Frechet space topology (for all compact subset K), any Cauchy sequence has limit in $C_c^{\infty}(\mathbb{R})$. Assume $\{\psi_n\}$ is Cauchy sequence.

Let
$$\psi := \lim_{n \to \infty} \psi_n = \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k} \phi(x - k)$$
.
Then,

$$\|\psi_n - \psi\|_{\alpha} = \max\{|D^{\alpha}(\psi_n(x) - \psi(x))| : x \in \mathbb{R}\}$$

$$= \max\left\{\left|D^{\alpha}\left(\sum_{k=n+1}^{\infty} \frac{1}{k}\phi(x-k)\right)\right| : x \in \mathbb{R}\right\}$$

$$= \max\left\{\left|D^{\alpha}\left(\sum_{k=n+1}^{\infty} \frac{1}{k}\phi(x-k)\right)\right| : x \in \mathbb{R}\right\}$$

$$= \frac{1}{n+1}\max\{D^{\alpha}\phi(x) : x \in [0,1]\} \to 0$$

as $n \to \infty$.

Thus ψ is limit of ψ_n in $D(\mathbb{R})$ (Not enough).

However, ψ is not compactly supported.

Thus it is contradiction.

In conclusion, $\{\psi_n\}$ is not Cauchy sequence in $D(\mathbb{R})$.

(To solve this problem, you may use theorem 6.5 of Rudin.)

Problem 22.

Since

$$\lim_{\epsilon \to 0} \int_{|x| > \epsilon} \frac{\phi(x)}{x} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{\phi(x)}{x} dx + \lim_{\epsilon \to 0} \int_{-\infty}^{-\epsilon} \frac{\phi(x)}{x} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{\phi(x)}{x} dx - \lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{\phi(-x)}{x} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{\phi(x)}{x} dx = \lim_{\epsilon \to 0} \frac{\phi(x)}{x} dx = \lim$$

$$= \lim_{\epsilon \to 0} \int_{|x| > \epsilon}^{\infty} \frac{\phi(x) - \phi(-x)}{x} dx$$

And
$$\frac{\phi(x) - \phi(-x)}{x} \le 2 \sup |\phi'|$$
, $\lim_{\epsilon \to 0} \int_{|x| \ge \epsilon}^{\infty} \frac{\phi(x) - \phi(-x)}{x} dx$ exists.

Thus,
$$\left| pv \left(\frac{1}{x} \right) (\phi) \right| \le 2a \sup |\phi'| \text{ while } a = \sup |x| \text{ for } x \in \operatorname{supp} \phi.$$

Therefore, principal value integration is a distribution. (You can use theorem 6.8 of Rudin)

Let $A_{\epsilon} = \{x \in \mathbb{R} | |x| \ge \epsilon\}$ and $B_{\epsilon} = \{x \in \mathbb{R} | |x| = \epsilon\}$. Then,

$$\int_{A_{\epsilon}} (\log|x|)'(\phi) \, dx = \int_{A_{\epsilon}} \phi(x) (\log|x|)' \, dx - \int_{B_{\epsilon}} \phi'(x) \log|x| \, dx$$
$$= \int_{A_{\epsilon}} \frac{\phi(x)}{x} \, dx - \int_{B_{\epsilon}} \phi'(x) \log|x| \, dx$$

(how do you handle $\int_{B_{\epsilon}}\phi'(x)\log \lvert x\rvert dx$ and the region $\{\lvert x\rvert<\epsilon\}?)$

If we let $\epsilon \to 0$, $pv(\frac{1}{x})(\phi) = \lim_{\epsilon \to 0} \int_{|x| \ge \epsilon} \frac{\phi(x)}{x} dx$ is weak derivative of $\log |x|$.

Problem 23.

(Late submission) Since $\Delta G_2(x) = 0$ whenever |x| > 0, for a fixed $\phi \in D(\mathbb{R}^2)$, Let $I(r) = \int_{|x| > r} \Delta \phi(x) G(x) dx$.

Since $\phi(x)$ has compactly support, $\exists R > 0$ such that $\phi(x) = 0$ when |x| > R. Define $A_r = \{x | r \le |x| \le R\}$. Then,

$$I(r) = \int_{A_r} \Delta \phi(x) G(x) dx = -\int_{A_r} \nabla \phi \cdot \nabla G + \int_{|x|=r} G \nabla \phi \cdot \nu = -\int_{|x|=r} \phi \nabla G \cdot \nu + \int_{|x|=r} G \nabla \phi \cdot \nu$$

where ν is the outward unit normal vector to A_r .

(you also need to consider $\{|x| < r\}$)

On the circle |x| = r, $\Delta G \cdot \nu = \frac{1}{\pi r}$ and $-\int_{|x|=r} \phi \nabla G \cdot \nu = \int_{|x|=r} \frac{\phi(w)}{\pi r} dw$.

By mean value theorem, integral converges to $\phi(0)$ as $r \to 0$.

Also, since $\Delta \phi$ is bounded, there exists a constant C > 0 such that

$$\left| \int_{|x|=r} G\Delta\phi \cdot \nu \right| \le C \int_{|x|=r} |G| = C_r$$

Thus, integral converges to 0 as $r \to 0$.

Therefore, $I(r) \to \phi(0)$ as $r \to 0$.

8/10

Problem 24.

(Late submission) Let ϕ be any test function with compact support. $\chi'_{[0,1]}(\phi) = -\chi_{[0,1]}(\phi').$

Assume $\phi'(x) = 0$ when $x \ge R$ for 1 > R > 0.

Then,
$$= -\int_0^1 \phi' = -\int_0^R \phi' = \phi(0) - \phi(R) = \phi(0)$$

Thus, $\chi'_{[0,1]}(\phi) = \phi(0) = \delta(\phi)$.

Then,
$$\frac{\partial u}{\partial t} = -c\delta(x - ct)$$
 and $\frac{\partial u}{\partial x} = \delta(x - ct)$.

Also,
$$\frac{\partial^2 u}{\partial^2 t} = c^2 \delta'(x - ct)$$
 and $\frac{\partial^2 u}{\partial^2 x} = \delta'(x - ct)$.

Therefore, $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial t^2} = 0$ in distribution sense.

10/10

Problem 25.

Since set A has positive measure, $\int \chi_A d\mu = m(A) > 0$. Then,

$$\int (\chi_A * \chi_{-A})(x) dx = \int \int \chi_A(y) \chi_{-A}(x - y) \, dy dx$$

$$= \int \int \chi_A(y) \chi_A(y - x) \, dy dx$$

$$= \int \chi_A(y) \int \chi_A(y - x) \, dx dy$$

$$= m(A) \int \chi_A(y) dy$$

$$= m(A) \cdot m(A) > 0$$

Since $\chi_A * \chi_{-A}$ is continuous, $S := \{x \in [0,1] \mid (\chi_A * \chi_{-A})(x) > 0\} \neq \emptyset$ and $S \subset A - A$. Thus, A - A contains an open interval.

10/10