

Michael Colaresi

Maps and Computational Social Science

- Computational Social Science has three facets
 - New data
 - Eg digital traces: often unstructured/multi-scale (eg text, images, etc)
 - New tools for collection and inference
 - Eg scraping, machine learning, Bayesian computation
 - New User-interfaces
 - Interactive graphics and documents

Maps and Computational Social Science

- Maps are a particularly important form of visualization for CSS
 - Data with context
 - Geography encodes domain knowledge about places
- Maps do not have to be geographic
 - Network maps
 - Maps of textual documents

Review

- Altair is a Python port for Vega-lite, a declarative syntax for building interactive graphics
- Chart a canvas we are going to plot on
- Mark the visual cues we are going to populate the chart with
 - eg bars, ticks, circles, points, etc)
- Encode —data is encoded to visual elements
 - data.batteryLife is encoded to x position
 - data.memory is encoded to y position

lanta da ata da ata da ata d

Review

- Altair is a Python port for Vega-lite, a declarative syntax for building interactive graphics
- Chart a canvas we are going to plot on
- Mark the visual cues we are going to populate the chart with
 - eg bars, ticks, circles, points, etc)
- Encode data is encoded to visual elements
 - data.batteryLife is encoded to x position
 - data.memory is encoded to y position

lanta dan tanlan tanlan tah

Review

- Altair is a Python port for Vega-lite, a declarative syntax for building interactive graphics
- Chart a canvas we are going to plot on
- Mark the visual cues we are going to populate the chart with
 - eg bars, ticks, circles, points, etc)
- Encode —data is encoded to visual elements
 - data.batteryLife is encoded to x position
 - data.memory is encoded to y position

lintindinitindinitindinitad

Review

- Altair is a Python port for Vega-lite, a declarative syntax for building interactive graphics
- Chart a canvas we are going to plot on
- Mark the visual cues we are going to populate the chart with
 - eg bars, ticks, circles, points, etc)
- Encode —data is encoded to visual elements
 - data.batteryLife is encoded to x position
 - data.memory is encoded to y position

alt.Chart(data=...)

alt.Chart(data=...)
 .mark_point()

O

```
alt.Chart(data=...)
.mark_point()
.encode(
alt.X("var1")
alt.Y
```


var1

```
alt.Chart(data=...)
    .mark_point()
    .encode(
    alt.X("var1")
    alt.Y("var2"))
```

Maps

- mark_geoshape
 - polygons

- points
- line

GeoJson

Lots of work done by data object

- Json is like yaml, stores objects
- GeoJSON is a format for geographic information (inefficient)
 - But common
- You will also see shapefiles
- These are map-like objects that hold meta-data and shapes to plot

TopoJson

Lots of work done by data object

- Json is like yaml, stores objects
- GeoJSON is a format for geographic information (inefficient)
- TopoJSON more efficient storage