

Sistema de control autónomo para robot en FPGAs
libres

Juan Ordóñez Cerezo¹

¹Universidad de Granada

Index

- Contexto
- Robot Balancín
 - Diseño del sistema
 - Implementación del sistema
 - Experimentos y sistema final
- 3 Cuadricóptero con visión artificial
 - Implementación de la percepción
 - Diseño del control
- 4 Conclusiones y trabajo futuro

Contexto

Planificación y Metodología de trabajo

Planificación y Metodología de trabajo

(b) Appear

Infraestructura

FPGAs Libres y IceZum Alhambra

Introducción sobre FPGAs libres y presentación de IceZum con sus carasterísticas breves

IceStudio

¿Qué es IceStudio y para que nace? Ejemplos de su uso

Objetivos

Objetivos principales de este trabajo

Outline

- Contexto
- Robot Balancín
 - Diseño del sistema
 - Implementación del sistema
 - Experimentos y sistema final
- 3 Cuadricóptero con visión artificial
 - Implementación de la percepción
 - Diseño del control
- 4 Conclusiones y trabajo futuro

Diseño del sistema

Figure

Outline

- Contexto
- Robot Balancín
 - Diseño del sistema
 - Implementación del sistema
 - Experimentos y sistema final
- 3 Cuadricóptero con visión artificial
 - Implementación de la percepción
 - Diseño del control
- 4 Conclusiones y trabajo futuro

• ¿Cuál es la mejor opción para facilitar la estabilización?

- ¿Cuál es la mejor opción para facilitar la estabilización?
- Caracterización matemática del modelo físico

- ¿Cuál es la mejor opción para facilitar la estabilización?
- Caracterización matemática del modelo físico
- Centro de masas en el centro del eje vertical

- ¿Cuál es la mejor opción para facilitar la estabilización?
- Caracterización matemática del modelo físico
- Centro de masas en el centro del eje vertical

SE HACE USO DE SOLIDWORKS PARA EL DISEÑO DE LAS PIEZAS Y EL CÁLCULO DEL CENTRO DE MASAS

 Para corregir el ángulo es necesario el conocimiento de este en cada instante.

- Para corregir el ángulo es necesario el conocimiento de este en cada instante.
- Unidad de medida incercial (IMU)

- Para corregir el ángulo es necesario el conocimiento de este en cada instante.
- Unidad de medida incercial (IMU)

MPU6050

- Para corregir el ángulo es necesario el conocimiento de este en cada instante.
- Unidad de medida incercial (IMU)

MPU6050

• 6DOF

- 6DOF
- Acelerómetro y giroscopio

- 6DOF
- Acelerómetro y giroscopio
- Comunicación I2C

- 6DOF
- Acelerómetro y giroscopio
- Comunicación I2C
- Uso de DMP solo para Arduino

- 6DOF
- Acelerómetro y giroscopio
- Comunicación I2C
- Uso de DMP solo para Arduino

MEJOR OPCIÓN CON ARDUINO

Ángulo obtenido por Arduino-Nano

- Ángulo obtenido por Arduino-Nano
- FPGA necesita conocer el ángulo

- Ángulo obtenido por Arduino-Nano
- FPGA necesita conocer el ángulo

Coexistencia microcontrador-FPGA

- Ángulo obtenido por Arduino-Nano
- FPGA necesita conocer el ángulo

Coexistencia microcontrador-FPGA

Paralelizar los procesos que pueden ser paralelizados

- Ángulo obtenido por Arduino-Nano
- FPGA necesita conocer el ángulo

Coexistencia microcontrador-FPGA

Paralelizar los procesos que pueden ser paralelizados

Desde el punto de vista del microcontrolador

Desde el punto de vista de la FPGA

Aspecto en IceStudio de la comunicación

Control PID

- Necesidad de minimizar el ángulo, en este caso a 0°
- Surgen muchas opciones, lógica fuzzy, algoritmos genéticos, PID
- PID por su fácil implementación y paralelismo

PID por su fácil implementación y paralelismo

Control P

Control D

Control PD

• Traducción de la salida del PD, velocidad y sentido de motores DC

• Traducción de la salida del PD, velocidad y sentido de motores DC

MC33926

• Traducción de la salida del PD, velocidad y sentido de motores DC

MC33926

- Como entradas:
 - Señal PWM

• Traducción de la salida del PD, velocidad y sentido de motores DC

MC33926

- Como entradas:
 - Señal PWM
 - Sentido de giro

• Traducción de la salida del PD, velocidad y sentido de motores DC

MC33926

- Como entradas:
 - Señal PWM
 - Sentido de giro
- Como salidas:
 - Movimiento de los motores

Módulo PWM

Diseño e implementación PCB

Hay demasiados cables sueltos y hacemos una PCB, porque 4 capas, porque jumpers, porque posibilidad para 4 motores.

Outline

- Contexto
- Robot Balancín
 - Diseño del sistema
 - Implementación del sistema
 - Experimentos y sistema final
- 3 Cuadricóptero con visión artificial
 - Implementación de la percepción
 - Diseño del control
- 4 Conclusiones y trabajo futuro

Impresión, montaje y ensamblado

Fotos del ensamblado y vídeo final del sistema. Debería meter aquí el módulo VGA que hice para aprender y el control de brushless?

Diseño del sistema

Dejar claro que como ha sobrado tiempo, se hace esto para que no piensen que no hemos llegado. Diagrama de bloques general y separación entre percepción y control.

Outline

- Contexto
- Robot Balancín
 - Diseño del sistema
 - Implementación del sistema
 - Experimentos y sistema final
- 3 Cuadricóptero con visión artificial
 - Implementación de la percepción
 - Diseño del control
- 4 Conclusiones y trabajo futuro

OV7670 y protocolo I2C

Porque se ha usado esa cámara, y se dice que se ha implementado un protocolo i2c necesario para los registros, me tire dos meses con ello y tiene que salir :). Se muestra diagrama de bloques del i2c

Reconocimiento del volumen y posición

Las formulas básicas de como hemos hecho esa percepción y la ventaja de hacer eso con una FPGA, no se necesita memoria externa.

Outline

- Contexto
- Robot Balancín
 - Diseño del sistema
 - Implementación del sistema
 - Experimentos y sistema final
- Cuadricóptero con visión artificial
 - Implementación de la percepción
 - Diseño del control
- 4 Conclusiones y trabajo futuro

Se deja claro que esto falta por implementar pero todo el diseño esta propuesto y debería funcionar. Se explica rápido.

Conclusiones

Conclusiones de este trabajo

Trabajo futuro

Posible trabajo futuro