Kombinované namáhání

K čemu je to dobré? Pruty jsou namáhány nejen jedním z dosud probraných namáhání tj. tah. Tlak, ohyb nebo vzpěr, ale často kombinací těchto namáhání. Výpočty probíhají v principu stejně, jako v případě jednoduchého namáhání prutů, jen je nutné vypočítat redukované napětí.

1) Určete bezpečnost vůči MSP a nebezpečné místo (na střednici i na průřezu). Dáno: $q=\frac{4N}{mm}$, F=50kN, a=300mm, d=25mm, $\alpha=1^\circ$, $M_1=100Nm$ materiál S300.

2) Určete přípustnou velikost ohřátí prutu tak, aby byla zajištěna bezpečnost vůči MSP $k_k=1$,6 a určete nebezpečné místo (na střednici i na průřezu). Dáno: F=500N, a=300mm, $M_1=500Nm$ materiál S300, d=40mm.

5) Určete bezpečnost vůči MSP a nebezpečné místo (na střednici i na průřezu). Dáno: $q=\frac{100N}{mm}$, a=800mm, b=30mm, b=40mm, $a=30^\circ$ materiál S250.

4) Určete maximální přípustnou velikost kroutícího momentu, jestliže má být dodržena bezpečnost vůči MSP $k_k=1$,8 vůči MSP. Koncentraci napětí u vetknutí neuvažujte. : $q=\frac{7N}{mm}$, a=600mm, M1=?, d=60mm, materiál 11 500.

5) Určete bezpečnost vůči MSP. Koncentraci napětí u vetknutí neuvažujte. : a=300mm, F=600N, M1=150Nm, d=40mm, materiál S300.

7) Navrhněte potřebný průměr nosníku tak, aby byla splněna bezpečnost vůči MSP

$$k_k=1,8$$
: $F_1=3500N$, $F_2=5200N$, $a=350mm$, $M1=180Nm$, $q=\frac{15N}{mm}$, $d=?$

8) Navrhněte potřebný průměr nosníku tak, aby byla splněna bezpečnost vůči MSP

$$k_k=1,8:$$
 , $q=\frac{15N}{mm}$, $R=800mm$, $d=?$

9) Určete bezpečnost vůči MSP , F1 = 2500N, F2 = 800N, α = 15°, R = 300mm, d = 35mm, materiál dural E = 70GPa, R_e = 280MPa

10) Určete potřebné průměry jednotlivých prutů tak, aby byla dodržena bezpečnost vůči MSP $k_k=1.8$ a MSVS $k_v=6$. $q=\frac{5N}{mm}$, F=20kN. Materiál litina E=110GPa, Re=+200MPa, Re=-450MPa.

Obr 1 lávka přes Svratku u koupaliště v Brně. Credit : https://commons.wikimedia.org/wiki/File:Brno_-
https://commons.wikimedia.org/wiki/File:Brno_-
https://commons.wikimedia.org/wiki/File:Brno_-
https://commons.wikimedia.org/wiki/File:Brno_-
https://commons.wikimedia.org/wiki/File:Brno_-
https://commons.wikimedia.org/wiki/File:Brno_-

Určete bezpečnost vůči MSP obloukového nosníku znázorněné lávky, pokud je uložen a) staticky určitě b) na dvou rotačních vazbách. Rozměry dutého obdélníkového průřezu b=600mm, h=900mm, t=30mm. Materiál ocel S450, Rozteč uložení 60m, výška oblouku v nejvyšším místě 8m. Zatížení 10N/mm.