

Markov Partitions for Axiom A Diffeomorphisms

Author(s): Rufus Bowen

Source: American Journal of Mathematics, Vol. 92, No. 3 (Jul., 1970), pp. 725-747

Published by: The Johns Hopkins University Press Stable URL: https://www.jstor.org/stable/2373370

Accessed: 18-12-2019 17:50 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and extend access to $American\ Journal\ of\ Mathematics$

MARKOV PARTITIONS FOR AXIOM A DIFFEOMORPHISMS.

By Rufus Bowen.

1. Introduction. In this paper we shall study the homeomorphism $f = f^* \mid \Omega_s$ where f^* is a diffeomorphism satisfying S. Smale's Axiom A and Ω_s is a basic set for f^* given by his Spectral Decomposition Theorem (see [25]). Our approach is symbolic dynamics. We find a covering $\mathcal{E} = \{E_1, \dots, E_n\}$ of Ω_s by closed sets and, for each $x \in \Omega_s$, consider certain symbolic sequences $(E_{i_k})_{k=-\infty}^{+\infty}$ such that $f^k(x) \in E_{i_k}$ for all k. One then attempts to study the dynamics of f by using that of these symbolic sequences. This approach is an old one, originally used to study geodesics on surfaces of negative curvature; see [5], [12], [13], [16], [17] and [18] (warning: the formalism above is not quite the right one for continuous time examples, e.g. geodesic flows).

The key to success is to find a good covering \mathcal{L} . The right notion seems to be that of *Markov partition*. This is defined in Section 3. Most of the work of this paper is in proving:

Theorem. f has Markov partitions.

With a Markov partition the space of all symbolic sequences used can be taken to be a subshift of finite type (Section 4) and one obtains

THEOREM. f is the quotient of a subshift of finite type. One then studies f by studying the structure of this quotient; this is what we mean by symbolic dynamics.

In [2] Adler and Weiss constructed Markov partitions for hyperbolic automorphisms of the 2-torus and used the associated symbolic dynamics to study the measure theory of these examples. Ya. Sinai then defined and constructed Markov partitions for Anosov maps in [22] and [23]. We use Sinai's methods, with some modification because Ω_s is not generally connected.

There are a considerable number of other papers as well that suggested symbolic dynamics for Axiom A diffeomorphisms. Smale studied in [24] certain examples where $f = f^* \mid \Omega_s$ is a full shift. In [25] he showed how

Revise received July 17, 1970.

to obtain other subshifts of finite type for Ω_s as well, and in [6] we saw that in fact every zero-dimensional Ω_s is a subshift of finite type. The papers of R. F. Williams [26], [27] and J. Guckenheimer [11] study various one-dimensional Ω_s and produce Markov partitions for them. M. Hirsch [14] showed that any expanding map (the present paper applies to these examples by easy modification) is a quotient of a full one-sided shift. Finally, H. Keynes and Robertson [28] showed that any expansive homeomorphism is the quotient of some subshift (not necessarily of finite type).

In Section 5 we study the entropy theory of f. For any f-invariant Borel measure ν defined on Ω_s there is an entropy $h_{\nu}(f)$ (see [20] for the definition); there is also a topological entropy h(f) (see [1]). It is a general fact that $h_{\nu}(f) \leq h(f)$ (see [9]). We prove

THEOREM. There is a unique normalized f-invariant Borel measure μ_f on Ω_s with $h_{\mu_f}(f) = h(f)$; (f, μ_f) is an ergodic Markov chain.

This is derived from W. Parry's theorem [19] that this fact is true for subshifts of finite type. B. Gurevic used Sinai's results to prove this theorem for transitive Anosov maps. K. Berg [4] has shown that, for an ergodic automorphism of a torus, Haar measure is the only invariant measure which maximizes entropy.

THEOREM. If f is a hyperbolic automorphism of a nilmanifold N, then μ_f equals Haar measure μ_N on N. If f_1 and f_2 are two such maps, then (f_1, μ_{N_1}) and (f_2, μ_{N_2}) are measure theoretically isomorphic iff they have the same entropy.

For the 2-torus this theorem was proved by Adler and Weiss [2]. The first part was proved for any torus by Sinai [22]. The second part is merely an application of the theorem of Friedman and Ornstein [29] that entropy is complete for mixing Markov chains.

2. Canonical coordinates and rectangles. For $x \in \Omega_s$ and $\delta > 0$ we define the closed stable and unstable sets of size δ as follows.

$$W_{\delta^s}(x) = \{ y \in \Omega_s \colon d(f^n(x), f^n(y)) \leq \delta \text{ for all } n \geq 0 \}$$

$$W_{\delta^u}(x) = \{ y \in \Omega_s \colon d(f^{-n}(x), f^{-n}(y)) \leq \delta \text{ for all } n \geq 0 \}.$$

The metric d we use on Ω_s is an "adapted" one as in Hirsch and Pugh [15]. We recall some properties of f proved in [15] and Smale [25].

Fact 1. There are positive numbers $\lambda < 1$, ϵ and γ for which the following statements are true. For $n \ge 0$,

$$d(f^n(y), f^n(z)) \leq \lambda^n d(y, z) \text{ if } y, z \in W_{\gamma^s}(x)$$

and

$$d(f^{-n}(y), f^{-n}(z)) \leq \lambda^n d(y, z)$$
 if $y, z \in W_{\gamma^u}(x)$.

If $d(x,y) \leq \epsilon$, then $W_{\gamma^s}(x) \cap W_{\gamma^u}(y)$ consists of a single point, which we denote by [x,y]. The map

$$[\cdot,\cdot]:\{(x,y)\in\Omega_s\times\Omega_s\colon d(x,y)\leq\epsilon\}\to\Omega_s$$

is continuous.

Problem. Does every topologically transitive homeomorphism satisfying the above occur as $f^* \mid \Omega_s$ with f^* an Axiom A diffeomorphism?

 $B_{\delta}(x)$ will denote the closed δ -ball in Ω_s centered at x. For $X \subset \Omega_s$, we write $W_{\delta}^u(X) = \bigcup_{x \in X} W_{\delta}^u(x)$.

Lemma 2. (a) $W_{\delta_1}{}^u W_{\delta_2}{}^u(x) \subset W_{\delta_1+\delta_2}{}^u(x)$.

- (b) If $y \in W_{\gamma^u}(x)$, then $W_{\gamma^u}(x) \cap B_{\rho}(y) \subset W_{\rho^u}(y)$.
- (c) If $\delta_1 \leq \delta_2 \leq \gamma$, then $W_{\delta_1}^u(x) = W_{\delta_2}^u(x) \cap B_{\delta_1}(x)$.
- (d) Let $\delta_1 < \delta_2 \leq \gamma$. Then $U \subset W_{\delta_1}{}^u(x)$ is open as a subset of $W_{\delta_2}{}^u(x)$ iff for every $y \in U$ there is a $\rho > 0$ with $W_{\rho}{}^u(y) \subset U$.
- (e) If $Y \subset W_{\delta^u}(X)$ with $\delta \leq \gamma$, then $f^{-1}Y \subset W_{\lambda\delta^u}(f^{-1}X)$.

Proof. (a) Use the triangle inequality.

(b). If
$$z \in W_{\gamma^u}(x) \cap B_{\rho}(y)$$
, then, for $n \geq 0$,
$$d(f^{-n}(z), f^{-n}(y)) \leq \lambda^n d(z, y) \leq \rho$$

and $z \in W_{\rho^u}(y)$.

- (c). Clearly $W_{\delta_1}{}^u(x) \subset W_{\delta_2}{}^u(x) \cap B_{\delta_1}(x)$. The reverse inclusion follows from (b) with y = x and $\rho = \delta_1$.
- (d). U is open in $W_{\delta_2}{}^u(x)$ iff, for each $y \in U$, $U \supset B_{\rho}(y) \cap W_{\delta_2}{}^u(x)$ for sufficiently small $\rho > 0$. Now (a) shows that $W_{\delta_1}{}^u(x) \supset W_{\delta_2-\delta_1}{}^u(y)$. For $\rho < \delta_2 \delta_1$, (c) shows

$$W_{\rho^{u}}(y) = W_{\delta_{2}-\delta_{1}^{u}}(y) \cap B_{\rho}(y) \subset W_{\delta_{2}^{u}}(x) \cap B_{\rho}(y);$$

by (b), $W_{\rho^u}(y) \supset W_{\delta_2^u}(x) \cap B_{\rho}(y)$; thus $W_{\rho^u}(y) = D_{\delta_2^u}(x) \cap B_{\rho}(y)$ and we have the openness condition we want.

(e). If
$$y \in W_{\delta^u}(x)$$
, then fact 1 shows that, for $n \ge 0$,
$$d(f^{-n}f^{-1}(x), f^{-n}f^{-1}(y)) \le \lambda^{n+1}d(x, y) \le \lambda \delta.$$

Thus $f^{-1}(y) \in W_{\lambda \delta}^{u}(f^{-1}(x))$.

Lemma 3. γ is an expansive constant for f, i.e. if $x \neq y$, then $d(f^n(x), f^n(y)) > \gamma$ for some $n \in \mathbb{Z}$.

Proof. Otherwise $\{x,y\} \subset W_{\gamma^s}(x) \cap W_{\gamma^u}(x)$.

Lemma 4. For any $\zeta > 0$ there is a positive integer $D(\zeta)$ such that $d(x,y) < \zeta$ whenever $d(f^n(x), f^n(y)) \leq \gamma$ for all $|n| \leq D(\zeta)$.

Proof. This is a property of expansive constants [10].

Lemma 5. For every $0 < \delta \leq \gamma$, there is an $\epsilon(\delta) > 0$ such that $[x,y] \in W_{\delta^{s}}(x) \cap W_{\delta^{u}}(y)$ whenever $d(x,y) \leq \epsilon(\delta)$.

Proof. Clearly [x,x] = x. Since $[\cdot,\cdot]$ is uniformly continuous, there is an $\epsilon(\delta) > 0$ such that $d([x,y],x) < \delta$ and $d([x,y],y) < \delta$ when $d(x,y) \le \epsilon(\delta)$. By Lemma 2(c)

$$\lceil x, y \rceil \in W_{\gamma}^{u}(y) \cap B_{\delta}(y) = W_{\delta}^{u}(y).$$

The W^s analogue of 2(c) gives $[x, y] \in W_{\delta^s}(x)$.

Definition. Choose a descending sequence of positive numbers $\alpha_0 > \alpha_1 > \alpha_2 > \cdots$ with $\alpha_0 = \gamma$ and $\alpha_{n+1} < \frac{1}{3} \min(\frac{1}{3}\alpha_n, \epsilon(\frac{1}{3}\alpha_n))$ so small that $d(f(x), f(y)) < \alpha_n$ and $d(f^{-1}(x), f^{-1}(y)) < \alpha_n$ whenever $d(x, y) \leq \alpha_{n+1}$.

LEMMA 6. (a). If diam $X \leq 3\alpha_{n+1}$, then diam $[X, X] \leq \alpha_n$.

(b) If diam $\{w,x,y,z\} \leq 3\alpha_2$, then

$$[x,z] = [x,[y,z]] = [[x,y],z] = [[x,w],[y,z]].$$

Proof. (a). Suppose $w, x, y, z \in X$. Then $[w, x] \in W_{\alpha_{n/3}}^s(w) \subset B_{\alpha_{n/3}}(w)$ since $d(w, x) \leq \epsilon(\alpha_n/3)$. Similarly $[y, z] \in B_{\alpha_{n/3}}(y)$. As $d(w, y) \leq \alpha_n/3$, $d([w, x], [y, z]) \leq \alpha_n$.

(b). Now $[y,z] \in W_{\alpha_1}{}^u(z)$. Since $d(x,[y,z]) = d([x,x],[y,z]) \leq \alpha_1$, $[x,[y,z]] \in W_{\gamma/3}{}^s(x) \cap W_{\gamma/3}{}^u([y,z])$. Because

$$W_{\gamma/3}{}^u([y,z]) \subset W_{\gamma/3}{}^uW_{\alpha_1}{}^u(z) \subset W_{\gamma}{}^u(z),$$

we have $[x, [y, z]] \in W_{\gamma}^{s}(x) \cap W_{\gamma}^{u}(z) = [x, z]$.

The other parts are similar.

We now recall a result of Smale on the existence of "canonical coordinates." Manfred Denker has shown us how to prove this directly from fact 1; this is relevant to the problem mentioned earlier.

LEMMA 7 (Smale [25]). If $U \subset W_{\alpha_2}{}^u(x)$ is open in $W_{\gamma}{}^u(x)$ and $V \subset W_{\alpha_2}{}^s(x)$ is open in $W_{\gamma}{}^s(x)$, then [U, V] is open in Ω_s and

$$[\cdot,\cdot]:U\times V\to [U,V]$$

is a homeomorphism.

Lemma 8. Suppose $d(x,y) \leq \alpha_3$ and $U \subset W_{\alpha_2}{}^u(x)$ is open in $W_{\gamma}{}^u(x)$. Then [U,y] is open in $W_{\gamma}{}^u(y)$ and $[\cdot,y]:U \to [U,y]$ is a homeomorphism. The corresponding statement for W^{s} 's is likewise true.

Proof. By 6(a), $z = [x, y] \in W_{1/3\alpha_2}(y)$. Let $V \subset W_{\alpha_2}(x)$ be an open neighborhood of z in $W_{\gamma}(x)$. Using Lemma 7 then,

$$W = [U, V] \cap W_{\gamma^u}(y)$$
 is open in $W_{\gamma^u}(y)$.

Since $[U, y] \subset W_{\gamma^u}(y)$, $W \supset [U, y]$. Furthermore, if $w = [u, v] \in W$, then $[w, y] = W_{\gamma^s}(w) \cap W_{\gamma^u}(y) = w$ because $w \in W_{\gamma^u}(y)$. Hence, by Lemma 6(b),

$$w = \lceil w, y \rceil = \lceil \lceil u, v \rceil, y \rceil = \lceil u, y \rceil \in \lceil U, y \rceil.$$

Thus W = [U, y].

Using 6(b) one checks that the continuous map $[\cdot,x]:[U,y]\to U$ is the inverse of $[\cdot,y]:U\to [U,y]$.

Definition. A nonempty set $A \subset \Omega_s$ is a rectangle if diam $A \leq \alpha_s$, $A = \overline{\text{int } A}$ and $[x, y] \in A$ whenever $x, y \in A$. For each $x \in A$ we define

$$W^s(x,A) = W_{\gamma^s}(x) \cap A \subset W_{\alpha_3}{}^s(x)$$

and

$$W^u(x,A) = W_{\gamma^u}(x) \cap A \subset W_{\alpha_3}{}^u(x).$$

Let

$$\begin{array}{ll} \partial^s A := \{x \in A : x \not\in \operatorname{int} W^u(x,A) \ \operatorname{in} \ W_{\gamma}^u(x)\} \\ \partial^u A := \{x \in A : x \not\in \operatorname{int} W^s(x,A) \ \operatorname{in} \ W_{\gamma}^s(x)\}. \end{array}$$

Remark. $A = \overline{\operatorname{int} A}$ implies that $\operatorname{int} \partial A = \emptyset$ (∂A denotes the boundary of A).

Lemma 9. $\partial A = \partial^s A \cup \partial^u A$. If $x \in A$, then $W^u(x, A)$ has dense interior in $W_{\gamma^u}(x)$ and $W^s(x, A)$ has dense interior in $W_{\gamma^s}(x)$.

Proof. If $x \in \text{int } A$, then $W^u(x,A) = A \cap W_{\gamma^u}(x)$ is a neighborhood of x in $W_{\gamma^u}(x)$ since W_{γ^u} has the subspace topology. Thus $x \notin \partial^s A$; simi-

larly $x \notin \partial^u A$. If $x \notin \partial^s A \cup \partial^u A$, let $U \subset W^u(x,A)$ be an open neighborhood of x in $W_{\gamma^u}(x)$ and $V \subset W^s(x,A)$ be an open neighborhood of x in $W_{\gamma^s}(x)$. As A is a rectangle, $[U,V] \subset A$; by Lemma 7, [U,V] is open. Hence $x = [x,x] \in \operatorname{int} A$. Thus $\partial A = A \setminus \operatorname{int} A = \partial^s A \cup \partial^u A$.

Now $[W^u(x,A),W^s(x,A)] \subset A$ since A is a rectangle. If $z \in A$, then

$$[x,z] \in W_{\gamma^s}(x) \cap A = W^s(x,A)$$

and

$$[z,x] \in W_{\gamma^u}(x) \cap A \Longrightarrow W^u(x,A).$$

By 6(b), z = [[z, x], [x, z]]; so $A = [W^u(x, A), W^s(x, A)]$. Let U be an open neighborhood of $W^u(x, A)$ in $W_{\alpha_2}{}^u(x)$ and let V be an open neighborhood of $W^s(x, A)$ in $W_{\alpha_2}{}^s(x)$. Since $\overline{\operatorname{int} A} = A$, Lemma 7 shows that $W^u(x; A) \times W^s(x, A)$ has dense interior as a subset of $U \times V$. From this it follows that $W^u(x, A)$ has dense interior in U and $W^s(x, A)$ has dense interior in V.

LEMMA 10. Suppose $C \subset W_{\alpha_4}{}^u(x)$ with $C = \overline{\operatorname{int} C}$ in $W_{\gamma}{}^u(x)$ and $D \subset W_{\alpha_4}{}^s(x)$ with $D = \overline{\operatorname{int} D}$ in $W_{\gamma}{}^s(x)$. Then A = [C, D] is a rectangle with $\partial^s A = [\partial C, D]$ and $\partial^u A = [C, \partial D]$. For $x \in A$, $W^u(x, A) = [C, x]$ and $W^s(x, A) = [x, D]$.

Proof. Since $[\cdot, \cdot]$ is continuous, $[C, D] = \overline{[\operatorname{int} C, \operatorname{int} D]}$; hence $A = \overline{\operatorname{int} A}$ as $[\operatorname{int} C, \operatorname{int} D] \subset \operatorname{int} A$ by 7. Suppose $x = [c_1, d_1], y = [c_2, d_2]$ with $c_i \in C$, $d_i \in D$. Then

$$[x, y] = [[c_1, d_1], [c_2, d_2]] = [c_1, d_2] \in A$$

by 6(b). diam $A \leq \alpha_3$ by 6(a) since diam $C \cup D \leq 2\alpha_4$. Thus A is a rectangle. The boundary statements follow from 8.

LEMMA 11. (a). If $d(f^{j}(x), f^{j}(y)) \leq \alpha_{2}$ for all $0 \leq j \leq m$, then $f^{m}[x, y] = [f^{m}(x), f^{m}(y)]$.

(b). Let $g = f^m$, m > 0. Suppose $V \subset W_{\alpha_3}{}^u(z)$, $y \in W_{\alpha_3}{}^s(z)$ and $g(V) = \bigcup_k V_k$ where $V_k \subset W_{\alpha_3}{}^u(g(z_k))$ and $z_k \in W_{\alpha_3}{}^u(z)$. Then

$$g[V,y] = \bigcup_{k} [V_k, g([z_k,y])].$$

Proof. (a). Let $w_j = [f^j(x), f^j(y)]$. Then $w_j \in W_{\alpha_1}^u(f^j(x)) \cap W_{\alpha_1}^u(f^j(y))$. Clearly $f(w_j) \in W_{\gamma}^s(f^{j+1}(x))$. Since $d(w_j, f^j(y)) < \alpha_1$, $d(f(w_j), f^{j+1}(x)) < \gamma$;

hence $f(w_j)$ is in $W_{\gamma^u}(f^{j+1}(y))$. Thus

$$f(w_j) \in W_{\gamma^s}(f^{j+1}(x)) \cap W_{\gamma^u}(f^{j+1}(y)) = w_{j+1}.$$

Inductively, $f^j(w_0) = w_j$.

(b). Since
$$[V, y] = \bigcup_k [g^{-1}(V_k), y]$$
, it is enough to show that
$$g[g^{-1}(V_k), y] = [V_k, g[z_k, y])].$$

For $w \in V_k$, we show

$$g[g^{-1}(w), y] = [w, g([z_k, y])].$$

First,
$$[g^{-1}(w), y] = [g^{-1}(w), [z_k, y]]$$
 by $6(b)$. As $w \in W_{\alpha_3}^u(g(z_k))$,
$$d(f^j(g^{-1}(w)), f^j(z_k)) \leq \alpha_3 < \frac{1}{2}\alpha_2$$

for
$$0 \le j \le m$$
; since $d(z_k, y) \le 2\alpha_3 < \epsilon(\frac{1}{3}\alpha_2)$, $[z_k, y] \in W_{1/3\alpha_2}{}^s(z_k)$ and
$$d(f^j(z_k), f^j([z_k, y])) \le \frac{1}{3}\alpha_2$$

for $0 \le j \le m$. Thus $d(f^j(g^{-1}(w)), f^j([z_k, y])) < \alpha_2$ for $0 \le j \le m$; by 11(a),

$$[w, g([z_k, y])] = g[g^{-1}(w), [z_k, y]].$$

3. Constructing Markov partitions.

Definition. A finite cover $\mathscr{L} = \{A_1, \dots, A_r\}$ of Ω_s by rectangles is a rectangle partition provided that $A_i \cap A_j \subset \partial A_i \cap \partial A_j$ for $i \neq j$. \mathscr{L} is a Markov partition if, in addition,

$$fW^u(x,A_i) \supset W^u(f(x)|A_i)$$
 and $fW^s(x,A_i) \subset W^s(f(x),A_i)$

whenever $x \in \operatorname{int} A_i \cap f^{-1} \operatorname{int} A_j$.

We spend this section giving a proof of the following theorem.

Theorem 12. f has Markov partitions.

Let $\mathcal{A} = \{A_1^0, \dots, A_r^0\}$ be a family of rectangles whose interiors cover Ω_s . For this we use Lemma 10, taking $A_i^0 = [C_i^0, D_i^0]$ where $C_i^0 \subset W_{\alpha_7}^u(x_i)$ with $C_i^0 = \overline{\operatorname{int} C_i^0}$ in $W_{\gamma}^u(x_i)$, $D_i^0 \subset W_{\alpha_7}^u(x_i)$ with $D_i^0 = \overline{\operatorname{int} D_i^0}$ in $W_{\gamma}^s(x_i)$ and $x_i \in A_i^0$. The proof of Lemma 10 shows that diam $A_i^0 < \frac{1}{2}\alpha$ where $\alpha = \alpha_5$ throughout this section.

Lemma 13. There is an a > 0 and a map $F: \Omega_s \to \{1, \dots, r\}$ so that

 $x \in A_{F(x)}^{\circ}$, $W_a{}^s(z) \subset A_{F(x)}^{\circ}$ for all $z \in W^u(x, A_{F(x)}^{\circ})$, and $W_a{}^u(y) \subset A_{F(x)}^{\circ}$ for all $y \in W^s(x, A_{F(x)}^{\circ})$.

Proof. Let b > 0 be a Lebesgue number for a. Since $[\cdot, \cdot]$ is continuous, choose a so small that

$$d([x_1, y_1], [x_2, y_2]) < b$$

whenever $\max(d(x_1, x_2), d(y_1, y_2)) \leq a$. For $x \in \Omega_s$ choose F(x) so that $B_b(x) \subset A_{F(x)}^{\circ}$. Suppose $z \in W^u(x, A_{F(x)}^{\circ})$ and $w \in W_a^s(z)$. Then

$$d([x, w], x) = d([x, w], [x, z]) < b,$$

so $[x, w] \in A_{F(x)}^0$. As $A_{F(x)}^0$ is a rectangle, 6(b) gives

$$w = [z, [x, w]] \in A_{F(x)}^{0}.$$

Now choose m so large that

$$\sum_{j=1}^{\infty} \lambda^{mj} < \min(1, a/\gamma) = a/\gamma.$$

Set $g = f^m : \Omega_s \to \Omega_s$ and $\beta = \lambda^m$.

LEMMA 14. Let $1 \leq i \leq r$. We can find points $y_{i,1}, \dots, y_{i,s_i}$ in $W_{\alpha}^{u}(x_i)$ and integers $T_{i,j} \in \{1, \dots, r\}$ such that

- (a) $g(y_{i,j}) \in W^s(x_{T_{i,j}}, A_{T_{i,j}}^0) = D_{T_{i,j}}^0$
- (b) $g(C_{i^0}) \cap [C_{T_{i,j}}, g(y_{i,j})] \neq \emptyset$
- (c) $g(C_{i^0}) \subset \bigcup_{1 \leq j \leq s_i} [C_{T_{i,j}}, g(y_{i,j})]$

and

(d)
$$W_a^s(z) \subset A_{T_{i,j}}^{\circ}$$
 for all $z \in W^u(g(y_{i,j}), A_{T_{i,j}}^{\circ})$.

Proof. For each $z \in C_i^0$ let

$$Y_z = W^u(g(x), A_{F(g(z))}^{\circ}) = [C_{F(g(z))}^{\circ}, g(z)].$$

Then $\{g^{-1}Y_z: z \in C_i^0\}$ is a family of closed subsets of $W_{\frac{1}{2}\alpha}{}^uW_{\frac{1}{2}\alpha}{}^u(x_i) \subset W_{\alpha}{}^u(x_i)$ whose interiors cover $C_i{}^0$. Let $g^{-1}Y_{z_i}, \dots, g^{-1}Y_{z_{s_i}}$ cover $C_i{}^0$. Set

$$y_{i,j} = g^{-1}[x_{F(g(z_j))}, g(z_j)].$$

Then $[C_{T_{i,j}}{}^{\circ}, g(y_{i,j})] = Y_{z_j}$ where $T_{i,j} = F(g(z_j))$. Since diam $A_i{}^{\circ} < \frac{1}{2}\alpha$, Lemma 2(c) gives $z_j \in W_{\frac{1}{2}\alpha}{}^{u}(x_i), g(y_{i,j}) \in W_{\frac{1}{2}\alpha}{}^{u}(g(z_j))$; from 2(e) and 2(a) one obtains $y_{i,j} \in W_{\alpha}{}^{u}(x_i)$. Statements (a)-(d) are all clear from the choice of the $y_{i,j}$.

We now define $C_i^1 = \bigcup_{1 \le j \le s_i} g^{-1}[C_{T_{i,j}}^0, g(y_{i,j})]$ and recursively

$$C_{i}^{n} = \bigcup_{1 \leq j \leq s_{i}} g^{-1} [C_{T_{i,j}}^{n-1}, g(y_{i,j})].$$

One thing the next lemma shows is that this definition make sense, i.e. $C_{T_{i,j}}^{n-1} \subset B_{\epsilon}(g(y_{i,j}))$.

Lemma 15. For $n \ge 1$ and $y \in W_{2\alpha}{}^s(x_i)$, $[C_i{}^n, y]$ has dense interior in $W_{\gamma}{}^u(y)$ and

$$[C_i^{n-1}, y] \subset [C_i^n, y] \subset W_{\beta^n \alpha^u}[C_i^{n-1}, y] \subset W_{(1+\cdots+\beta^n)\alpha^u}(y).$$

Proof. We check this first for n=1. $gC_{i}^{\circ} \subset gC_{i}^{1}$ is just 14(c). Hence

$$C_i^{0} \subset C_i^{1}$$
 and $[C_i^{0}, y] \subset [C_i^{1}, y]$. Since $[y_{i,j}, y] \in W_{\gamma^s}(y_{i,j})$,

$$g[y_{i,j}, y] \in W_{\beta \gamma}{}^s(y_{i,j}) \subset W_a{}^s(y_{i,j}) \subset W^s(x_{T_{i,j}}, A_{T_{i,j}}{}^0)$$

because of the choice of m, 14(d) and 14(a). By Lemma 11(b),

$$[C_i^1, y] = \bigcup_{1 \le j \le g_i} g^{-1}[C_{T_{i,j}}^0, g([y_{i,j}, y])].$$

By 14(b) there is a $g(z) \in gC_i^{\circ} \cap [C_{T_{i,j}}^{\circ}, g(y_{i,j})]$. Then

$$v = g([z, y]) = g([z, [y_{i,j}, y]]) = [g(z), g([y_{i,j}, y])]$$

$$\in g[C_i^{\circ}, y] \cap [C_{T_{i,j}}^{\circ}, g([y_{i,j}, y])].$$

Since diam $A_{T_{i,j}}{}^{0} < \alpha$, Lemma 2(c) shows

$$[C_{T_{i,j}}{}^{0}, g([y_{i,j}, y])] = [C_{T_{i,j}}{}^{0}, v] \subset W_{\alpha}{}^{u}(v) \subset W_{\alpha}{}^{u}(g[C_{i}{}^{0}, y]).$$

Varying j,

$$g[C_i^1, y] \subset W_{\alpha^u}(g([C_i^0, y]).$$

Lemma 2(e) gives $[C_i^1, y] \subset W_{\beta\alpha}^u[C_i^0, y]$. Since $[C_i^0, y] \subset W_{\alpha}^u(y)$, $W_{\beta\alpha}^u[C_i^0, y] \subset W^u_{(1+\beta)\alpha}(y)$ by 2(a).

We now consider $n \ge 2$ and assume the result for n-1. Since $g[y_{i,j},y] \in W_{\alpha}{}^s x_{T_{i,j}}$, we have

$$\begin{bmatrix} C_{T_{i,j}}^{n-2}, g([y_{i,j}, y]) \end{bmatrix} \subset [C_{T_{i,j}}^{n-1}, g([y_{i,j}, y])] \\
\subset W_{\beta^{n-1}\alpha}^{u}[C_{T_{i,j}}^{n-2}, g([y_{i,j}, y])] \subset W^{u}_{(1+\cdots+\beta^{n})\alpha}(y) \\
\subset W_{2\alpha}^{u}(y) \subset W_{\epsilon}^{u}(y).$$

14

Lemma 11(b) shows

$$g[C_{i}^{n}, y] = \bigcup_{1 \le j \le s_{i}} [C_{T_{i,j}}^{n-1}, g[y_{i,j}, y]]$$

$$g[C_{i}^{n-1}, y] = \bigcup_{1 \le j \le s_{i}} [C_{T_{i,j}}^{n-2}, g[y_{i,j}, y]].$$

Thus

$$g[C_i^{n-1}, y] \subset g[C_i^n, y] \subset W_{\beta^{n-1}\alpha}g[C_i^{n-1}, y].$$

Applying g^{-1} and using 2(e),

$$[C_i^{n-1}, y] \subset [C_i^n, y] \subset W_{\beta^n \alpha^u}[C_i^{n-1}, y].$$

Since $[C_i^{n-1}, y] \subset W_{(1+\cdots+\beta^{n+1})}\alpha^u(y)$, 2(a) gives

$$W_{\beta^n\alpha^u}[C_i^{n-1},y] \subset W_{(1+\cdots+\beta^n)\alpha^u}(y).$$

Now consider the property of having dense interior. It is true for the C_i ° because they were so chosen; for $[C_i$ °, y] it follows by Lemma 8. As dense interior is preserved by taking finite union and application of g^{-1} , inductively one sees that $[C_i$ °, y] has dense interior.

Define
$$C_i = \overline{\bigcup_{n \geq 0} C_i^n} \subset W_{2\alpha}^u(x_i)$$
. Notice that $C_i = \overline{\operatorname{int} C_i}$ in $W_{\gamma}^u(x_i)$.

Lemma 16. If $z \in [C_i, W_{2\alpha}{}^s(x_i)]$, then, for some $[C_j, D_j{}^o]$ containing g(z),

$$g[C_i,z] \supset [C_j,g(z)].$$

Proof. Let $y = [x_i, z] \in W_{2\alpha}^s(x_i)$; $[C_i, z] = [C_i, y]$.

$$g[C_{i}, y] = \overline{\bigcup_{n>0} g[C_{i}^{n}, y]} = \overline{\bigcup_{\substack{n>0 \ 1 \le j \le s_{i} \ 1 \le j \le s_{i} \ n>0}} [C_{T_{i,j}^{n-1}}, g[y_{i,j}, y]]}$$

$$= \bigcup_{\substack{1 \le j \le s_{i} \ n>0 \ 1 \le j \le s_{i} \ n>0}} [C_{T_{i,j}}, g[y_{i,j}, y]]$$

where Lemma 8 justifies the last step. Since $z \in [C_i, y]$, for some j,

$$g(z) \in [C_{T_{i,j}}, g[y_{i,j}, y]] \subset [C_{T_{i,j}}, D_j^{\circ}].$$

Then

$$g[C_{i}, z] = g[C_{i}, y] \supset [C_{T_{i}, j}, g[y_{i, j}, y]] = [C_{T_{i}, j}, g(z)].$$

Similarly, working with g^{-1} and the D_i^{o} 's we can find $D_i \subset W_{2\alpha}{}^s(x_i)$ with $D_i^{o} \subset D_i = \overline{\operatorname{int} D_i}$ and

Lemma 17. If $z \in [W_{2\alpha}^{u}(x_i), D_i]$, then, for some $[C_j^0, D_j]$ containing $g^{-1}(z)$,

$$g^{-1}[z, D_j] \supset [g^{-1}(z), D_j].$$

Set $A_i = [C_i, D_i]$, a rectangle by Lemma 10 since $2\alpha = 2\alpha_5 < \alpha_4$. Lemmas 16 and 17 combine to give:

Lemma 18. Let $z \in A_i$. Then, for some A_j containing g(z), $g[C_i, z] \supset [C_j, g(z)]$. For some A_k containing $g^{-1}(z)$, $g^{-1}[z, D_i] \supset [g^{-1}(z), D_k]$.

Lemma 19. Let U_1, \dots, U_m be closed with dense interior. Then so is \bar{V} where $V = \bigcap_{i=1}^k \operatorname{int} U_i \setminus \bigcup_{i=k+1}^m U_i$. Also $\operatorname{int} \bar{V} = V$.

Proof. Since V is open, $V \subset \operatorname{int} \bar{V}$. We need only to show that $\operatorname{int} \bar{V} \subset V$. Since $V \subset \operatorname{int} U_i$ for $1 \leq i \leq k$,

$$\operatorname{int} \bar{V} \subset \operatorname{int} \overline{\operatorname{int} U_i} = \operatorname{int} U_i$$
.

We have left to show that $x \in \operatorname{int} \bar{V}$ lies in no U_i with $k < i \leq m$. Suppose otherwise. Since $\operatorname{int} U_i \cap V = \emptyset$, we have $\operatorname{int} U_i \cap \bar{V} = \emptyset$. Hence $\operatorname{int} U_i \cap \operatorname{int} \bar{V} = \emptyset$; but this is impossible since $\operatorname{int} \bar{V}$ is an open set containing x and $x \in U_i = \overline{\operatorname{int} U_i}$.

For each A_i define $R_i = \{j : A_i \cap A_j \neq \emptyset\}$ and $V_i = \bigcup_{j \in R_i} A_j$. For $y \in \Omega_s$ let $R(y) = \bigcup_{A_i \ni y} R_i$. Notice that $j \in R(y)$ if and only if $y \in V_j$.

Now diam $A_j < \alpha_4$. Thus, if $j \in R_i$, then $A_j \subset B_{\alpha_4}(A_i) \subset B_{2\alpha_4}(x_i)$. For $y \in V_i$, $d(y, x_i) < 2\alpha_4$ and so

$$[x_i, y] \in W_{1/3\alpha_3}{}^s(x_i)$$
 and $[y, x_i] \in W_{1/3\alpha_3}{}^u(x_i)$.

By 6(b), $y = [[y, x_i], [x_i, y]] \in [W_{1/3\alpha_3}^u(x_i), W_{1/3\alpha_3}^s(x_i)]$. Find W_i so that $\overline{W_{1/3\alpha_3}^u(x_i)} \subset W_i \subset W_{2/3\alpha_3}^u(x_i)$ and W_i is open in $W_{\gamma^u}(x_i)$. Let $C_i^* = W_i \setminus C_i$. Then, using Lemma 19, $C_i^* = \overline{\operatorname{int} C_i^*}$ in $W_{\gamma^u}(x_i)$, int $C_i^* \cap \operatorname{int} C_i = \emptyset$ and $C_i \cup C_i \supset W_{1/3\alpha_3}^u(x_i)$. Similarly, find $D_i^* \subset W_{2/3\alpha_3}^s(x_i)$ so that $D_i^* = \overline{\operatorname{int} D_i^*}$ in $W_{\gamma^s}(x_i)$, int $D_i^* \cap \operatorname{int} D_i = \emptyset$ and $D_i \cup D_i^* \supset W_{1/3\alpha_3}^s(x_i)$. Using Lemmas 10 and 7, we see that $\mathcal{D}_i = \{[C_i, D_i], [C_i^*, D_i^*], [C_i, D_i^*], [C_i^*, D_i]\}$ is a family of rectangles which intersect each other only in their boundaries.

$$V_i \subset [C_i \cup C_i^*, D_i \cup D_i^*] = \bigcup \mathfrak{D}_i.$$

Let $Z = \Omega_s \setminus \bigcup_{\substack{K \in \mathfrak{D}_i \\ 1 \leq i \leq m}} \partial K$. Since rectangles have nowhere dense boundaries, Z is

a dense open set. For $z \in Z \cap U_i$ let $K_i(z)$ be the unique member of \mathcal{D}_i containing z; $z \in \operatorname{int} K_i(z)$. For $z \in Z$ let $B(z) = \bigcap_{i \in R(y)} \operatorname{int} K_i(z)$.

LEMMA 20. (a). If $z \in Z$, then B(z) is a rectangle.

(b). If
$$y, z \in \mathbb{Z}$$
 and $B(y) \cap B(z) \neq \emptyset$, then $B(y) = B(z)$.

Proof. (a). As $z \in B(z)$, $B(z) \neq \emptyset$. By Lemma 19, $B(z) = \operatorname{int} \overline{B(z)}$. We must show that $[x,y] \in \overline{B(z)}$ whenever $x,y \in \overline{B(z)}$. As $[\cdot,\cdot]$ is continuous, it is enough to check this for $x,y \in B(z)$. Then, for each $i \in R(z)$, $x,y \in \operatorname{int} K_i(z)$. As $K_i(z)$ is a rectangle, it follows that $[x,y] \in \operatorname{int} K_i(z)$ (using Lemmas 7, 8 and 9). Hence $[x,y] \in B(z)$.

(b). Since B(z) and B(y) are open and Z is dense, if $B(y) \cap B(z) \neq \emptyset$ then there is a $w \in B(y) \cap B(z) \cap Z$. If $z \in A_i$, then $i \in R(z)$ and $K_i(z) = A_i$; hence $B(z) \subset K_i(z) \subset A_i$ and $w \in A_i$. Pick $A_{i_0} \ni z$. If $w \in A_i$, then

$$w \in A_i \cap B(z) \subset A_i \cap A_{i_0}$$
;

so $i \in R_{i_0} \subset R(z)$. If we had $z \notin A_i$, then $A_i \cap \operatorname{int} K_i(z) = \emptyset$;

$$w \in A_i \cap B(z) \subset A_i \cap \operatorname{int} K_i(z) = \emptyset$$
,

a contradiction. We have shown that w and z belong to the same A_i 's; it follows that R(w) = R(z). For $i \in R(z)$, $w \in B(z) \subset K_i(z)$ and so $K_i(w) = K_i(z)$. From this one obtains B(w) = B(z). Similarly, B(w) = B(y).

LEMMA 21. $\mathcal{B} = \{\overline{B(z)} : z \in Z\}$ is a rectangle partition.

Proof. Since B(z) is determined by R(z) and the $K_i(z)$, there can be only finitely many different B(z). Since Z is covered by \mathcal{B} and Z is dense in Ω_s , \mathcal{B} covers Ω_s . $\overline{B(z)}$ is a rectangle by 20(a). Finally, if

$$B(y) \cap B(z) = \operatorname{int} \overline{B(y)} \cap \operatorname{int} \overline{B(z)} \neq \emptyset$$

then B(y) = B(z) by 20(b); hence $\overline{B(y)} \cap \overline{B(z)} \subset \partial \overline{B(y)} \cap \partial \overline{B(z)}$ if $\overline{B(y)} \neq \overline{B(z)}$.

Lemma 22. Suppose $z, g(z) \in \mathbb{Z}$. Then

$$gW^u(z,\overline{B(z)})\supset W^u(g(z),\overline{B(g(z))})$$

and

$$gW^s(z, \overline{B(z)}) \subset W^s(g(z), \overline{B(g(z))}).$$

Proof. Suppose $u \in W_{\gamma}^{s}(v)$. Then, by 2(e).

$$gW_{\gamma^s}(v) \subset W_{\beta\gamma^s}(g(v)) \subset W_{a^s}(g(v))$$

and by 13 there is an

$$A_{F(g(v))} \supset A_{F(g(v))}^{\circ} \supset \{g(u), g(v)\}.$$

Hence, if $g(u) \in A_j$, then $j \in R_{F(g(v))} \subset R(g(v))$.

We now proceed to prove the first statement; the second statement can be proved similarly. Consider $i \in R(z)$ such that $K_i(z) = [C_i, D_i]$ or $[C_i, D_i^*]$, i. e. $z \in [C_i, z]$. Let $y = [z, x_i] \in [[C_i, z], x_i] = C_i$. By Lemma 18 pick j so that $g(y) \in A_j$ and

$$g(C_i) = g[C_i, y] \supset [C_j, g(y)].$$

By the first paragraph of this proof, since $y \in W_{\gamma^s}(z)$, $j \in R(g(z))$. Since

$$g(z) = [g(y), g(z)] \in [[C_j, g(y)], g(z)] = [C_j, g(z)],$$

we must have $W^u(g(z), K_j(z)) = [C_j, g(z)]$. Now $d(z, x_i) < 2\alpha_4$ because $z \in V_i$ (as was shown earlier, where V_i was defined). Hence $z \in W_{\alpha_3}(y)$ and 11(b) gives

$$gW^{u}(z, K_{i}(z)) = g[C_{i}, z] \supset g[g^{-1}[C_{j}, g(y)], z]$$

= $[C_{i}, g(y)], g(z)] = [C_{i}, g(z)] = W^{u}(g(z), K_{i}(g(z))).$

Taking interiors and intersecting:

$$g(\bigcap_{\substack{i \in R(z)\\z \in [C_i,z]}} \operatorname{int} W^u(z,K_i(z)) \supset \bigcap_{\substack{j \in R(g(z))}} \operatorname{int} W^u(g(z),K_j(g(z)))$$
$$\supset \operatorname{int} W^u(g(z),\overline{B(z)}).$$

Suppose we did not in fact have

$$gW^u(z, \overline{B(z)}) \supset W^u(g(z), \overline{B(g(z))}).$$

Then, for some $g(w) \in \operatorname{int} W^u(g(z), \overline{B(g(z))})$ and some $i \in R(z)$ with $z \notin [C_i, z]$ we have $w \notin \operatorname{int} W^u(z, K_i(z))$. Let A_{i_0} z. By the preceding paragraph, $w \in W^u(A_{i_0}, z)$. As $z \notin [C_i, z]$, $W^u(z, K_i(z)) = [C_i^*, z]$. Since $w \in W^u(A_{i_0}, z) \setminus [C_i^*, z] \subset [C_i, z]$,

$$v = [w, x_i] \in [[C_i, z], x_i] = [C_i, x_i] = C_i \subset A_i.$$

By Lemma 18, $gC_i = g[C_i, v] \supset [C_j, g(v)]$ for some $A_j \ni g(v)$. Since $v \in W_{\gamma^s}(w)$, the first paragraph of this proof shows $j \in R(g(w))$. Since

 $g(w) \in B(g(z))$ the proof of 21(b) shows R(g(w)) = R(g(z)); hence $j \in R(g(z))$. Lemma 11(b) gives us $g[C_i, w] \supset [C_j, g(w)]$. Since $z \notin [C_i, z] = [C_i, w]$,

$$g(z) \notin [C_j, g(w)] = [C_j, g(z)].$$

Hence $K_j(g(z))$ is $[C_j^*, D_j]$ or $[C_j^*, D_j^*]$; in either case, $g(w) \in [C_j, g(w)]$ cannot lie in $K_j(z)$ —a contradiction.

For
$$z_0, \dots, z_{m-1} \in Z$$
 set $E(z_0, \dots, z_{m-1}) = \bigcap_{k=0}^{m-1} f^{-k}B(z_k)$. Let
$$\mathscr{L} = \{\overline{E(z_0, \dots, z_{m-1})} : E(z_0, \dots, z_{m-1}) \neq \emptyset\}.$$

LEMMA 23. & is a rectangle partition.

Proof. As there are only finitely many possibilities for $B(z_0), \dots, B(z_{m-1}),$ \mathscr{E} is finite. Because $\bigcup_{z \in Z} B(z)$ is open and dense, one sees that

$$\bigcup E(z_0, \cdots, z_{m-1})$$

is also open and dense; hence \mathcal{L} covers Ω_s . Since two B(z)'s are disjoint or equal, one sees that two $E(z_0, \dots, z_{m-1})$'s are also disjoint or equal. By Lemma 19, int $\overline{E(z_0, \dots, z_{m-1})} = E(z_0, \dots, z_{m-1})$; so members of \mathcal{L} have dense interior. Now, either

$$\overline{E(z_0, \dots, z_{m-1})} \cap \overline{E(z'_0, \dots, z'_{m-1})}
\subset \partial \overline{E(z_0, \dots, z_{m-1})} \cap \partial \overline{E(z'_0, \dots, z'_{m-1})}$$

or

$$E(z_0,\dots,z_{m-1})\cap E(z'_0,\dots,z'_{m-1})$$

$$= \operatorname{int} \overline{E(z_0,\dots,z_{m-1})} \cap \operatorname{int} \overline{E(z'_0,\dots,z'_{m-1})} \neq \emptyset;$$

in this second case $E(z_0, \dots, z_{m-1}) = E(z'_0, \dots, z'_{m-1})$.

Finally we check that $[x,y] \in \overline{E(z_0,\cdots,z_{m-1})}$ whenever

$$x, y \in \overline{E(z_0, \dots, z_{m-1})}$$
.

As $[\cdot, \cdot]$ is continuous, we may assume $x, y \in E(z_0, \cdot \cdot \cdot, z_{m-1})$. Then

$$f^k(x), f^k(y) \in B(z_k).$$

By 20(a) $B(z_k)$ is the interior of the rectangle $B(z_k)$, and so (using Lemmas 8 and 9) $[f^k(x), f^k(y)] \in B(z_k)$. By Lemma 11(a), $f^k[x, y] = [f^k(x), f^k(y)]$; so $[x, y] \in E(z_0, \dots, z_{m-1})$.

739

LEMMA 24. Suppose $E, F \in \mathcal{L}$, $z \in \text{int } E \cap f^{-1} \text{ int } F$ and $z, f(z), \dots, f^m(z) \in \mathbb{Z}$. Then $fW^u(z, E) \supset W^u(f(z), F)$ and $fW^s(z, E) \subset W^s(f(z), F)$.

MARKOV PARTITIONS.

Proof. Since $z \in \text{int } E \cap E(z, f(z), \dots, f^{m-1}(z))$ and the interiors of the elements of \mathscr{L} are disjoint,

$$E = \overline{E(z, f(z), \cdots, f^{m-1}(z))}.$$

Similarly,

$$F = \overline{E(f(z), f^2(z), \cdots, f^m(z))}.$$

Now int $W^u(z,E) = \bigcap_{k=0}^{m-1} f^{-k}$ int $W^u(f^k(z),B(f^k(z)))$ by Lemma 19; as well

$$int W^{u}(f(z), F) = \bigcap_{k=0}^{m-1} f^{-k} int W^{u}(f^{k+1}(z), B(f^{k+1}(z)))
= \bigcap_{k=1}^{m} f^{-k+1} int W^{u}(f^{k}(z), B(f^{k}(z))).$$

So

$$f \operatorname{int} W^{u}(z, E) = \bigcap_{k=0}^{m-1} f^{-k+1} \operatorname{int} W^{u}(f^{k}(z), B(f^{k}(z))).$$

We will have f int $W^u(z, E) \supset \operatorname{int} W^u(f(z), F)$ (and so be done) provided that

$$f$$
 int $W^{u}(z, B(z)) \supset f^{-m+1}$ int $W^{u}(f^{m}(z), B(f^{m}(z)))$.

Applying f^{m-1} , we need

$$f^m \operatorname{int} W^u(z, B(z)) \supset \operatorname{int} W^u(f^m(z), B(f^m(z)),$$

but this comes from Lemma 22 (remember $g = f^m$).

Since $z, f(z), \dots, f^m(z) \in Z$ is true for an open dense set of z, that $\mathscr C$ is a Markov partition (and hence Theorem 12) follows from 24 and the following:

LEMMA 25. Suppose A and B are rectangles and for some $x \in A \cap f^{-1}B$ we have $fW^u(x,A) \supset W^u(f(x),B)$ and $fW^s(x,A) \subset W^s(f(x),B)$. Then this is true for all $x \in A \cap f^{-1}B$.

Proof. Suppose it is true for $x_0 \in A \cap f^{-1}B$. Consider $x \in A \cap f^{-1}B$ and $f(v) \in W^u(f(x), B)$. Then

$$[f(v),f(x_0)] \in W^u(f(x_0),B) \subset fW^u(x_0,A).$$

By Lemma 11(a), $f[v, x_0] = [f(v), f(x_0)]$; so $[v, x_0] \in W^u(x_0, A)$. As $x \in A$ and A is a rectangle,

$$v = [v, x] = [v, x_0], x \in W_{\gamma^u}(x) \cap A = W^u(x, A).$$

Hence $fW^u(x,A) \supset W^u(f(x),B)$.

4. Symbolic representation. Let be any Markov partition for f. For $E, F \in \mathcal{E}$ define

$$t(E, F) = \begin{cases} 1 & \text{if } f(\text{int } E) \cap \text{int } F \neq \emptyset \\ 0 & \text{otherwise.} \end{cases}$$

Let $\Sigma = \Sigma(\mathcal{L})$ be the set of all doubly-infinite sequences $E = (E_i)_{i=-\infty}^{+\infty}$ of elements of \mathcal{L} such that

$$t(E_i, E_{i+1}) = 1$$
 for all $i \in Z$.

Giving $\mathcal E$ the discrete topology $\prod_{\mathcal Z} \mathcal E$ is a compact space; it has a metric defined by

$$d(\boldsymbol{E}, \boldsymbol{F}) = \sum_{i \in Z} 2^{-|i|} \omega(E_i, F_i)$$

where

$$\omega(E_i, F_i) = \begin{cases} 0 & \text{if } E_i = F_i \\ 1 & \text{if } E_i \neq F_i. \end{cases}$$

Now Σ is a closed subset of this compact metric space and one has the shift homeomorphism $\sigma: \Sigma \to \Sigma$ defined by $(\sigma(E))_i = E_{i+1}$. Soon (Proposition 30) we show that σ is topologically transitive; σ is then called a subshift of finite type (see [25, p. 787]). One can check that σ satisfies fact 1 given earlier; actually any subshift of finite type occurs as Ω for some "local" Axiom A diffeomorphism [6]. We restate Lemma 25:

Lemma 25(a). If $x \in E \cap f^{-1}F$ with $E, F \in \mathcal{E}$ and t(E, F) = 1, then $fW^s(x, E) \subset W^s(f(x), F)$ and $fW^u(x, E) \supset W^u(f(x), F)$.

Definition. Suppose A and B are rectangles. A is a u-subrectangle of B if $A \subset B$ and $W^u(x, B) \subset A$ whenever $x \in A$.

LEMMA 26. Let $E, F \in \mathcal{E}$ with t(E, F) = 1. If A is a u-subrectangle of E, then $f(A) \cap F$ is a u-subrectangle of F.

Proof. Choose $w \in \operatorname{int} E \cap f^{-1} \operatorname{int} F$. Let $D = W^s(w, E) \cap A$. Since A is a u-subrectangle of E,

$$A = \bigcup_{z \in D} W^u(z, E) = [W^u(w, E), D].$$

Since A is a rectangle, $D = \overline{\text{int } D}$ in $W_{\gamma}^{u}(w)$ and $D \neq \emptyset$. We claim

 $f(A) \cap F = [W^u(f(w), F), f(D)].$ Since $D \subset W^s(w, E)$ and $fW^s(w, E) \subset F$, $f(D) \subset F$. If $z \in D$, then by 25(a)

$$f(A) \supset fW^u(z, E) \supset W^u(f(z), F) = [W^u(f(w), F), f(z)].$$

Thus $f(A) \cap F \supset [W^u(f(w), F), f(D)]$. On the other hand, if $f(y) \in f(A) \cap F$, then $[w, y] \in D$ and

$$f(y) \in W_{\gamma}^{u}(f([w,y])) \cap F = W^{u}(f([w,y]),F) \subset [W^{u}(f(w),F),f(D)].$$

Since f maps $W_{\gamma^s}(w)$ homeomorphically into $W_{\gamma^s}(f(w))$, $f(D) \neq \emptyset$ has dense interior in $W_{\gamma^s}(f(w))$. Thus Lemma 10 shows that $f(A) \cap F$ is a rectangle. It is clearly a u-subrectangle of F.

Lemma 27. If $\mathbf{E} = (E_i)_{i=-\infty}^{+\infty} \in \Sigma$, then $\bigcap_{i \in \mathbb{Z}} f^{-i}E_i$ consists of a single point.

Proof. Let $A_n = \bigcap_{i=-n}^n f^{-i}E_i$ and $B_{n,k} = \bigcap_{i=-n}^{n+k} f^{k-i-n}E_i$ for $0 \le k \le 2n$. Since $B_{n,k+1} = f(B_{n,k}) \cap E_{k+1-n}$, one uses the preceding lemma to see inductively that $B_{n,k}$ is a u-subrectangle of E_{k-n} . In particular $f^n(A_n) = B_{n,2n}$ is nonempty. Hence A_n is nonempty. Since $A_0 \supset A_1 \supset \cdots$ is a decreasing sequence of compact sets, $\bigcap_{i \in Z} f^{-i}E_i = \bigcap_{n>0} A_n$ is nonempty.

Suppose x, y are both in this set. Then $f^i(x), f^i, y \in E_i$ and $d(f^i(x), f^i(y)) < \gamma$ for all $i \in Z$. By Lemma 3, x = y.

Definition. The map $\pi: \Sigma \to \Omega_s$ is given by

$$\pi(\mathbf{E}) = \bigcap_{i \in Z} f^{-i} E_i.$$

Theorem 28. π is a continuous surjective map and $f \circ \pi = \pi \circ \sigma$.

Proof. For $\zeta > 0$ let $D(\zeta)$ be as in Lemma 4. If **E** and **F** agree in places $-D(\zeta)$ to $+D(\zeta)$, then, for $|n| \leq D(\zeta)$,

$$f^n(\pi(\mathbf{E})), f^n(\pi(\mathbf{F})) \in E_n = F_n$$

and

$$d(f^n(\pi(\mathbf{E})), f^n(\pi(\mathbf{F}))) \leq \gamma;$$

so $d(\pi(E), \pi(F)) < \zeta$. This shows that π is continuous.

Since $Y = \bigcup \{ \text{int } E \colon E \in \mathcal{C} \}$ is an open dense set, $X = \bigcap_{i \in \mathbb{Z}} f^{-i}Y$ is dense in Ω_s . If $x \in X$, define $E_i(x) \in \operatorname{by} f^i(x) \in E_i(x)$. Then

$$f^i(x) \in \operatorname{int} E_i(x) \cap f^{-1} \operatorname{int} E_{i+1}(x),$$

and so $E(x) = (E_i(x)) \in \Sigma$. Since $x \in \bigcap f^{-i}E_i(x)$, $x = \pi(E(x))$. Thus the compact set $\pi(\Sigma)$ contains the dense set X; hence $\pi(\Sigma) = \Omega_s$.

Finally, $f \circ \pi = \pi \circ \sigma$ is clear from the definitions of π and σ .

LEMMA 29. If $x = \pi(E)$ and $f^{i}(x) \in \text{int } F$, then $E_{i} = F$.

Proof. $f^i(x) \in E_i \cap \operatorname{int} F$; but $E_i = F$ or $E_i \cap F \subset \partial F$.

Proposition 30. σ is topologically transitive. If $f: \Omega_s \to \Omega_s$ is topologically mixing, then so is σ .

Proof. Let $U, V \subset \Sigma$ be nonempty open sets. For some n and some strings (F_{-n}, \dots, F_n) and (G_{-n}, \dots, G_n) of elements of one has

$$U \supset U_1 = \{ E \in \Sigma : E_i = F_i \text{ for all } | i | \leq n \} \neq \emptyset$$

and

$$V \supset V_1 = \{ \mathbf{E} \in \Sigma : E_i = G_i \text{ for all } |i| \leq n \} \neq \emptyset.$$

Let $U_2 = \bigcap_{k=-n}^n f^{-k}$ int F_k and $V_2 = \bigcap_{k=-n}^n f^{-k}$ int G_k , open sets in Ω_s . Using Lemma 26 as we did in the proof of Lemma 27, one can see that $W = \bigcap_{k=-n}^n f^{-k} F_k$ is a rectangle; since $W = \overline{\operatorname{int} W}$ and $W \neq \emptyset$, $\emptyset \neq \operatorname{int} W \subset \bigcap_{k=-n}^n f^{-k} \operatorname{int} F_k = U_2$. Similarly, $V_2 \neq \emptyset$.

Using Lemma 29, $\pi^{-1}(U_2) \subset U_1$ and $\pi^{-1}(V_2) \subset V_1$. For any m then, $\sigma^m U \cap V \supset \sigma^m U_1 \cap V_1 \supset \sigma^m (\pi^{-1}U_2) \cap \pi^{-1}V_2 \supset \pi^{-1}(f^m U_2 \cap V_2)$.

Since f is topologically transitive (Smale's Spectral Decomposition Theorem [25]), $f^mU_2 \cap V_2 \neq \emptyset$ for some m. Then $\sigma^mU \cap V \neq \emptyset$ and σ is topologically transitive.

f topologically mixing means that $f^mU_2 \cap V_2 \neq \emptyset$ for all sufficiently large m; this implies $\sigma^mU \cap V \neq \emptyset$ for these m also.

Definition. $\partial^s \mathcal{L} = \bigcup \{ \partial^s E : E \in \mathcal{L} \}$ and $\partial^u \mathcal{L} = \bigcup \{ \partial^u E : E \in \mathcal{L} \}$.

Proposition 31. $f(\partial^s \mathscr{L}) \subset \partial^s \mathscr{L}$ and $f^{-1}(\partial^u \mathscr{L}) \subset \partial^u \mathscr{L}$.

Proof. Consider $x \in \partial^s F$, $F \in \mathcal{L}$. By Lemma 29

$$U_1 = \{ E \in \Sigma : E_0 = F \} \supset \pi^{-1}(\text{int } F).$$

Since $\pi(U_1)$ is compact and $\pi(U_1) \supset \inf F$, $\pi(U_1) \supset F$. Thus let $x = \pi(E)$

with $E_0 = F$. Since $E \in \Sigma$, $t(F, E_1) = 1$ and Lemma 25(a) gives $fW^u(x, F) \supset W^u(f(x), E_1)$. If we had $f(x) \notin \partial^s E_1$, then $W^u(f(x), E_1)$ would be a neighborhood of f(x) in $W_{\gamma^u}(f(x))$ and so $W^u(x, F) \supset f^{-1}W^u(f(x), E_1)$ would be a neighborhood of x in $W_{\gamma^u}(x)$, contradicting $x \in \partial^s F$. Hence $f(x) \in \partial^s E_1 \subset \partial^s \mathscr{E}$.

5. Entropy and measures. Let $N_n(f)$ be the number of fixed points of $f^n: \Omega_s \to \Omega_s$. The topological entropy (defined in [1]) of f is given by the formula

$$h(f) = \limsup_{n \to \infty} \frac{1}{n} \log N_n(f),$$

as was shown in [6] and [7]. Since $\sigma: \Sigma \to \Sigma$ satisfies the same hypotheses,

$$h(\sigma) = \limsup_{n \to \infty} \frac{1}{n} \log N_n(\sigma).$$

We recall Theorem 4.7 of [7]:

Lemma 32. Suppose $A \subset \Omega_s$ is closed, $f(A) \subset A$ and $A \neq \Omega_s$. Then $\limsup_{n \to \infty} \frac{1}{n} \log N_n(f \mid A) \leq h(f \mid A) < h(f)$.

Theorem 33. $h(f) = h(\sigma)$.

Proof. Since $f: \Omega_s \to \Omega_s$ is a quotient of $\sigma: \Sigma \to \Sigma$, $h(f) \leq h(\sigma)$ (see [1]). Let $Y = \bigcup \{ \text{int } E \colon E \in \mathcal{L} \}$ and $X = \bigcap_{i \in \mathbb{Z}} f^{-i}Y$. Then f(X) = X and π gives a bijection between $\pi^{-1}(X)$ and X; for π is surjective and Lemma 29 shows that $x \in X$ can have only one inverse image under π . Since $f \circ \pi = \pi \circ \sigma$, it follows that $N_n(f \mid X) = N_n(\sigma \mid \pi^{-1}(X))$. Let $A_s = \pi^{-1}(\partial^s \mathcal{L})$ and $A_u = \pi^{-1}(\partial^u \mathcal{L})$. Then $\sigma(A_s) \subset A_s$ and $\sigma^{-1}(A_u) \subset A_u$. Since $\partial \mathcal{L} = \partial^s \mathcal{L} \cup \partial^u \mathcal{L}$,

$$\Omega_s = X \cup \bigcup_{i \in Z} f^i(\partial^s \mathcal{L}) \cup \bigcup_{i \in Z} f^i(\partial^u \mathcal{L}).$$

From this one gets

$$\Sigma = \pi^{-1}(X) \cup \bigcup_{i \in Z} \sigma^{i}(A_{s}) \cup \bigcup_{i \in Z} \sigma^{i}(A_{u}).$$

Suppose that $p \in \bigcup_{i \in Z} \sigma^i(A_s)$ is periodic. Then $\sigma^n(p) \in A_s$ for some n, and for some m > 0

$$p = \sigma^{n+m}(p) \in \sigma^m(A_s) \subset A_s.$$

If $p \in \bigcup \sigma^i(A_u)$ is periodic, then $\sigma^n(p) \in A_u$ for some n, and for some m > 0 $p = \sigma^{n-m}(p) \in \sigma^{-m}(A_u) \subset A_u.$

Thus the periodic points of σ lie in $\pi^{-1}(X) \cup A_s \cup A_u$.

$$N_n(\sigma \mid \pi^{-1}(X)) \ge N_m(\sigma) - N_n(\sigma \mid A_s) - N_n(\sigma^{-1} \mid A_u)$$

Applying Lemma 32 to σ and σ^{-1} :

$$\limsup_{n \to \infty} \frac{1}{n} \log N_n(\sigma \mid A_s) < h(\sigma)$$

and

$$\limsup_{n \to \infty} \frac{1}{n} \log N_n(\sigma^{\text{--}1} \mid A_u) < h(\sigma^{\text{--}1}) = h(\sigma).$$

Since

$$\limsup_{n\to\infty}\frac{1}{n}\log N_n(\sigma) = h(\sigma),$$

we get

$$\limsup_{n\to\infty}\frac{1}{n}\log N_n(\sigma\mid\pi^{-1}(X))\geqq h(\sigma).$$

As
$$N_n(f) \ge N_n(f \mid X) = N_n(\sigma \mid \pi^{-1}(X)),$$

$$h(f) = \limsup_{n \to \infty} \frac{1}{n} \log N_n(f) \ge h\sigma$$
.

We now recall theorems of W. Parry and L. Goodwyn.

THEOREM (Parry). σ has a unique normalized invariant Borel measure μ_{σ} such that $h_{\mu_{\sigma}}(\sigma) = h(\sigma)$. (σ, μ_{σ}) is a finite ergodic Markov chain.

Proof. [19], because σ is a subshift of finite type.

Theorem (Goodwyn). Let $g: W \to W$ be a homeomorphism of a compact space and ρ a g-invariant normalized Borel measure on W. Then $h_{\rho}(g) \leq h(g)$.

We now generalize Parry's theorem. Let $\mu_f = \pi^*(\mu_\sigma)$, i.e. μ_f is the measure on Ω_s given by $\mu_f(S) = \mu_\sigma(\pi^{-1}(S))$ for Borel sets S.

THEOREM 34. μ_f is the unique normalized f-invariant Borel measure on Ω_s with entropy h(f). (f,μ_f) is measure theoretically isomorphic to the Markov chain (σ,μ_{σ}) . If $f:\Omega_s \to \Omega_s$ is C-dense, then (f,μ_f) is a K-automorphism.

Proof. Let X, A_s , A_u be as in the proof of Theorem 33. Assume ρ is f-invariant on Ω_s with $h_{\rho}(f) = h(f)$. Suppose $\rho(\partial^s \mathscr{L}) = a > 0$. As ρ is f-invariant and countably additive, setting $W = \bigcap_{n \geq 0} f^n(\partial^s \mathscr{L})$ we find that $\rho(W) = a$ and $\rho(\bigcup f^i(\partial \mathscr{L}) \setminus W) = 0$. Define μ_1 on W by

$$\mu_1(S) = \frac{1}{a} \rho(S)$$
 for $S \subset W$,

MARKOV PARTITIONS.

and μ_2 on Ω_s by

$$\mu_2(T) = \frac{1}{1-a} \rho(T \backslash W).$$

Then $\rho = a\mu_1 + (1-a)\mu_2$; μ_1 and μ_2 are f-invariant and have disjoint support. From the definition of entropy (see [20])

$$h_{\rho}(f) = ah_{\mu_1}(f) + (1-a)h_{\mu_2}(f).$$

By Goodwyn's theorem, $h_{\mu_1}(f) \leq h(f)$ and $h_{\mu_2}(f) \leq h(f \mid W) < h(f)$ (by Lemma 32). Hence $h_{\rho}(f) < h(f)$, a contradiction. Thus we must have $\rho(\partial^s \mathscr{L}) = 0$; likewise $\rho(\partial^u \mathscr{L}) = 0$.

This proof applied to σ , A_s and A_u instead shows that $\mu_{\sigma}(A_s) = \mu_{\sigma}(A_u)$ = 0. Hence $\mu_{\sigma}(\pi^{-1}(X)) = 1$. Since π is injective on $\pi^{-1}(X)$ it follows that (σ, μ_{σ}) and $(f, \mu_f) = (f, \pi^* \mu_{\sigma})$ are measure theoretically isomorphic. In particular

$$h_{\mu_f}(f) = h_{\mu_\sigma}(\sigma) = h(\sigma) = h(f).$$

If ρ is any invariant measure on Ω_s with $h_{\rho}(f) = h(f)$, we saw that $\rho(X) = 1$. Define ν on Σ by $\nu(\Sigma \backslash \pi^{-1}(X)) = 0$ and $\nu(S) = \rho(\pi(S))$ for $S \subset \pi^{-1}(X)$. The (σ, ν) and (f, ρ) are measure theoretically isomorphic; in particular

$$h_{\nu}(\sigma) = h_{\rho}(f) = h(f) = h(\sigma)$$

and Parry's theorem says that $\nu = \mu_{\sigma}$. One now sees that

$$\rho = \pi^* \nu = \pi^* \mu_\sigma = \mu_f.$$

If $f: \Omega_s \to \Omega_s$ is C-dense, then f is topologically mixing (see [7]). By Proposition 30, σ is also topologically mixing. This implies (see [19]) that (σ, μ_{σ}) is a mixing Markov chain, and hence a K-automorphism.

Remark. In [7] we showed that the periodic points of f were equidistributed with respect to an invariant measure and that this measure had entropy h(f). The above theorem shows that this measure in μ_f . In [7] we proved some ergodic properties and the K-automorphism statement was conjectured.

Corollary 35. If f is a hyperbolic automorphism of a nilmanifold N, then μ_f equals Haar measure μ_N on N.

Proof. This was proved in [7] (remember the remark above). Another

proof is given by seeing directly that $h(f) = h_{\mu_N}(f)$. This was done in [8]. The K-automorphism statement for this example is well-known [3].

COROLLARY 36. Let f_1 , f_2 be hyperbolic automorphisms of nilmanifolds N_1 , N_2 . Then (f_1, μ_{N_1}) is measure theoretically isomorphic to (f_2, μ_{N_1}) if and only if they have the same entropy.

Proof. Since N_i is connected, f_i is C-dense by the C-density decomposition theorem of [7]. Hence (f_i, μ_{N_i}) is a mixing Markov chain. Friedman and Ornstein [29] have shown that entropy is a complete invariant for these.

REFERENCES.

- [1] R. L. Adler, A. G. Konheim and M. H. McAndrew, "Topological entropy," Transactions of the American Mathematical Society, vol. 114 (1965), pp. 309-319.
- [2] R. L. Adler and B. Weiss, "Entropy, a complete metric invariant for automorphisms of the torus," Proceedings of the National Academy of Science, vol. 57 (1967), pp. 1573-1576.
- [3] D. V. Anosov and Ya. G. Sinai, "Some smooth ergodic theorems," Russian Mathematical Surveys, vol. 22 (1967), No. 5, pp. 103-167.
- [4] K. Berg, "Convolutions of measures, maximal entropy," to appear.
- [5] G. D. Birkhoff, Dynamical Systems, New York, 1927.
- [6] R. Bowen, "Topological entropy and Axiom A," Global Analysis: Proceedings of the 1968 AMS Summer Institute.
- [7] ——, "Periodic points and measures for Axiom A diffeomorphisms," Transactions of the American Mathematical Society, to appear.
- [8] ——, "Entrop for group endomorphisms and homogeneous spaces," Transactions of the American Mathematical Society, to appear.
- [9] L. W. Goodwyn, "Topological entropy bounds measure-theoretic entropy," to appear.
- [10] W. H. Gottschalk and G. A. Hedlund, "Topological Dynamics," American Mathematical Society Colloquium Publications, vol. 36, Providence.
- [11] J. Guckenheimer, "Endomorphisms of the Riemann sphere," Global Analysis.
- [12] J. Hadamard, "Les surfaces a courbures opposées e leur lignes géodesiques," J. Math. Pures Appl., vol. 4 (1898), pp. 27-73.
- [13] G. A. Hedlund and M. Morse, "Symbolic dynamics," American Journal of Mathematics, vol. 60 (1938), pp. 815-866.
- [14] M. W. Hirsch, "Expanding maps and transformation groups," Global Analysis.
- [15] M. W. Hirsch and C. C. Pugh, "Stable manifolds and hyperbolic sets," Global Analysis.
- [16] M. Morse, "Representation of geodesics," American Journal of Mathematics, vol. 43 (1921), pp. 33-51.

- [17] ——, "Recurrent geodesics on a surface of negative curvature," Transactions of the American Mathematical Society, vol. 22 (1921), pp. 84-110.
- [18] ——, "Symbolic Dynamics" (lecture notes), Institute for Advanced Study, Princeton.
- [19] W. Parry, "Intrinsic Markov chains," Transactions of the American Mathematical Society, vol. 112 (1964), pp. 55-66.
- [20] ----, Entropy and generators in ergodic theory, Benjamin, 1969.
- [21] ——, "Ergodic properties of affine transformations and flows on nilmanifolds,"

 American Journal of Mathematics, vol. 91 (1969), pp. 757-771.
- [22] Ya. G. Sinai, "Markov partitions and C-diffeomorphisms," Func. Anal. and its Appl., vol. 2 (1968), no. 1, pp. 64-89.
- [23] ----, "Construction of Markov partitions," Func. Anal. and its Appl.
- [24] S. Smale, "Diffeomorphisms with many periodic points," Differential and Combinatorial Topology, Princeton, 1965, pp. 63-80.
- [25] ——, "Differentiable dynamical systems," Bulletin of the American Mathematical Society, vol. 73 (1967), pp. 747-817.
- [26] R. F. Williams, "One-dimensional non-wandering sets," Topology, vol. 6 (1967), pp. 473-487.
- [27] ——, "Classification of one-dimensional attractors," Global Analysis.
- [28] H. Keynes and J. Robertson, "Generators for topological entropy and expansiveness," Math. Systems Theory, vol. 3 (1969), pp. 51-59.
- [29] N. A. Friedman and D. S. Ornstein, "On isomorphism of weak Bernoulli transformations," Advances in Mathematics, to appear.