411
$$y = \frac{e^{-x} - e^x}{e^{2x} - e^{-2x}}$$

PARITA /DISP.

$$f(-x) = \frac{e^x - e^{-x}}{-3x} =$$

$$f(-x) = \frac{e^{x} - e^{-x}}{e^{-2x} - e^{2x}} = \frac{-(e^{-x} - e^{x})}{-(e^{2x} - e^{-2x})} = \frac{e^{-x} - e^{x}}{e^{2x} - e^{-2x}} = f(x)$$

PARI

STUDIO DI FUNZ.

$$280 y = \frac{x^2 - 4}{9x^2 - x^3}$$

$$[x < -2 \lor 2 < x < 9]$$

1) DOM(U) 0
$$3x^2 - x^3 \neq 0$$
 $x^2(3-x) \neq 0$ $x \neq 9$

2) INT. ASSI

188E x
$$y=0$$
 => $x^2-4=0$ $y=\frac{x^2-4}{3x^2-x^3}$

$$\Rightarrow$$
 $\times^2 - 4 = 0$ \times

$$x=\pm 2 \quad A(-2,0) \quad B(2,0)$$

ASSE y => nessure ferché x=0 son é sel dominis

Sin
$$\times$$
 = ferialia de fariado (minimo) 2π , infolhi

 $\forall x \in \mathbb{R}$ Sin $(x + 2\pi) = \sin x$

Sin (ax) qual a il rus feriado (minimo)?

Davo calabre T in modo che

Scin $(a(x + T)) = \sin (ax + a T) = \sin ax$

Scin $(a(x + T)) = \sin (ax + a T) = \sin ax$

Nel notivo caso

 $f(x) = \sin \frac{2}{3}x$
 $T = \frac{2\pi}{3} = 3\pi$

Travar il feriado

 $f(x) = \sin x + \cos \frac{x}{2}$

[4 π]

Periodo $f(x) = \sin x + \cos x$

Il feriado $f(x) = \sin x + \cos x$

Il feriado $f(x) = \sin x + \cos x$

Il feriado $f(x) = \sin x + \cos x$

Il feriado $f(x) = \sin x + \cos x$

Il feriado $f(x) = \sin x + \cos x$

Il feriado $f(x) = \sin x + \sin x$

Il feriado $f(x) = \sin x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x) = \cos x + \sin x$

Il feriado $f(x$

