4.2.1 直线与圆的位置关系

杨习

shineyoung7@163.com

点到直线的距离公式:
$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

点到直线的距离公式: $d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$

圆的标准方程: $(x-a)^2 + (y-b)^2 = r^2(r>0)$

圆的一般方程: $x^2 + y^2 + Dx + Ey + F = 0$

点到直线的距离公式: $d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$

圆的标准方程: $(x-a)^2 + (y-b)^2 = r^2(r>0)$

圆的一般方程: $X^2 + y^2 + Dx + Ey + F = 0$ ($D^2 + E^2 - 4F > 0$)

点到直线的距离公式: $d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$

圆的标准方程: $(x-a)^2 + (y-b)^2 = r^2(r>0)$

圆的一般方程: $X^2 + y^2 + Dx + Ey + F = 0$ ($D^2 + E^2 - 4F > 0$)

圆心:

$$\left(\frac{D}{-2},\frac{E}{-2}\right)$$

点到直线的距离公式: $d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$

圆的标准方程: $(x-a)^2 + (y-b)^2 = r^2(r>0)$

圆的一般方程: $X^2 + y^2 + Dx + Ey + F = 0$ ($D^2 + E^2 - 4F > 0$)

圆心:

$$\left(\frac{D}{-2},\frac{E}{-2}\right)$$

半径:

$$r = \frac{\sqrt{D^2 + E^2 - 4F}}{2}$$

直线与圆的位置关系

圆心到直线的距离: d, 圆的半径: r

・相离

圆心到直线的距离: d, 圆的半径: r

- ・相离
- $\cdot d > r$

圆心到直线的距离: d, 圆的半径: r

- ・相离
- $\cdot d > r$
- ・没有交点

圆心到直线的距离: d, 圆的半径: r

・相切

圆心到直线的距离: d, 圆的半径: r

- ・相切
- $\cdot d = r$

圆心到直线的距离: d, 圆的半径: r

- ・相切
- $\cdot d = r$
- ・有一个交点

圆心到直线的距离: d, 圆的半径: r

・相交

圆心到直线的距离: d, 圆的半径: r

- ・相交
- $\cdot d < r$

圆心到直线的距离: d, 圆的半径: r

- ・相交
- $\cdot d < r$
- · 有两个交点

直线与圆的位置关系判定方法

圆
$$C: (x-a)^2 + (y-b)^2 = r^2(r>0)$$

直线 $l: Ax + By + C = 0$

1. 借助圆心到直线的距离 d 与半径 r 的大小关系进行判定:

 $\cdot d > r \Longleftrightarrow$ 相离

圆
$$C: (x-a)^2 + (y-b)^2 = r^2(r>0)$$

直线 $l: Ax + By + C = 0$

1. 借助圆心到直线的距离 d 与半径 r 的大小关系进行判定:

- \cdot d > r \iff 相离
- $\cdot d = r \iff 相切$

圆
$$C: (x-a)^2 + (y-b)^2 = r^2(r>0)$$

直线 $l: Ax + By + C = 0$

1. 借助圆心到直线的距离 d 与半径 r 的大小关系进行判定:

- \cdot d > r \iff 相离
- $\cdot d = r \iff 相切$
- \cdot d < r \Longleftrightarrow 相交

圆
$$C: (x-a)^2 + (y-b)^2 = r^2(r>0)$$

直线 $l: Ax + By + C = 0$

1. 借助圆心到直线的<mark>距离 d 与半径 r 的大小关系进行判定:</mark>

$$\cdot d > r \iff 相离$$

$$\cdot d = r \Longleftrightarrow$$
相切

$$\cdot$$
 d < r \Longleftrightarrow 相交

$$d = \frac{|A\mathbf{a} + B\mathbf{b} + C|}{\sqrt{A^2 + B^2}}$$

例 1. 判断直线 l 与圆 C 的位置关系:

直线 l: x+y-2=0

例 1. 判断直线 l 与圆 C 的位置关系:

直线 l: x + y - 2 = 0

解: 由题知, 圆心坐标为 (1,0), 圆的半径 r=5

例 1. 判断直线 l 与圆 C 的位置关系:

直线
$$l: x+y-2=0$$

解: 由题知,圆心坐标为 (1,0), 圆的半径 r=5 则圆心到直圆心到直线的距离

$$d = \frac{|1+0-2|}{\sqrt{1^2+1^2}}$$

例 1. 判断直线 l 与圆 C 的位置关系:

直线
$$l: x + y - 2 = 0$$

解: 由题知,圆心坐标为 (1,0), 圆的半径 r=5 则圆心到直圆心到直线的距离

$$d = \frac{|1 + 0 - 2|}{\sqrt{1^2 + 1^2}} < r$$

故直线与圆相交.

例 1. 判断直线 l 与圆 C 的位置关系:

直线
$$l: x + y - 2 = 0$$

解: 由题知,圆心坐标为 (1,0), 圆的半径 r=5则圆心到直圆心到直线的距离

$$d = \frac{|1+0-2|}{\sqrt{1^2+1^2}} < r$$

故直线与圆相交.

练习 1: 圆
$$C: x^2 + y^2 - 2x - 24 = 0$$
 直线 $l: 4x - 3y + 21 = 0$

例 1. 判断直线 l 与圆 C 的位置关系:

直线 l: x+y-2=0

解: 由题知,圆心坐标为 (1,0), 圆的半径 r=5 则圆心到直圆心到直线的距离

$$d = \frac{|1+0-2|}{\sqrt{1^2+1^2}} < r$$

故直线与圆相交.

练习 1: 圆
$$C: x^2 + y^2 - 2x - 24 = 0$$
 直线 $l: 4x - 3y + 21 = 0$ $d = 5 = r$

代数法判定

2. 借助直线与圆的公共点的个数进行判定:

$$\begin{cases} (x-a)^2 + (y-b)^2 = r^2 \\ Ax + By + C = 0 \end{cases} \implies$$
关于 $x(y)$ **的一元二次方程**

则其解的个数对应于线圆交点个数

 \cdot Δ < 0 \Longleftrightarrow 没有交点 \Longleftrightarrow 相离

代数法判定

2. 借助直线与圆的公共点的个数进行判定:

$$\begin{cases} (x-a)^2 + (y-b)^2 = r^2 \\ Ax + By + C = 0 \end{cases} \implies$$
关于 $x(y)$ **的一元二次方程**

则其解的个数对应于线圆交点个数

- \cdot $\Delta < 0 \Longleftrightarrow$ 没有交点 \Longleftrightarrow 相离
- \cdot $\Delta = 0 \Longleftrightarrow$ 一个交点 \Longleftrightarrow 相切

代数法判定

2. 借助直线与圆的公共点的个数进行判定:

$$\begin{cases} (x-a)^2 + (y-b)^2 = r^2 \\ Ax + By + C = 0 \end{cases} \implies$$
关于 $x(y)$ **的一元二次方程**

则其解的个数对应于线圆交点个数

- \cdot $\Delta < 0 \Longleftrightarrow$ 没有交点 \Longleftrightarrow 相离
- \cdot $\Delta = 0 \Longleftrightarrow$ 一个交点 \Longleftrightarrow 相切
- $\cdot \Delta > 0 \Longleftrightarrow$ 两个交点 \Longleftrightarrow 相交

例 2: 判断直线 l 与圆 C 的位置关系:

圆 $C: X^2 + y^2 = 4$

直线 l: y = 2x + 1

例 2: 判断直线 l 与圆 C 的位置关系:

直线 *l*: *y* = 2*x* + 1

解: 由题知, 联立方程组:

$$\begin{cases} x^2 + y^2 = 4 \\ y = 2x + 1 \end{cases}$$

例 2: 判断直线 l 与圆 C 的位置关系:

直线 l: y = 2x + 1

解: 由题知, 联立方程组:

$$\begin{cases} x^2 + y^2 = 4 \\ y = 2x + 1 \end{cases}$$

解得
$$5x^2 + 4x - 3 = 0$$

例 2: 判断直线 / 与圆 C 的位置关系:

直线 l: y = 2x + 1

解: 由题知, 联立方程组:

$$\begin{cases} x^2 + y^2 = 4 \\ y = 2x + 1 \end{cases}$$

解得
$$5x^2 + 4x - 3 = 0$$

则其 $\Delta = 76 > 0$

例 2: 判断直线 l 与圆 C 的位置关系:

圆 $C: x^2 + y^2 = 4$ 直线 l: y = 2x + 1

解: 由题知, 联立方程组:

$$\begin{cases} x^2 + y^2 = 4 \\ y = 2x + 1 \end{cases}$$

解得 $5x^2 + 4x - 3 = 0$ 则其 $\Delta = 76 > 0$ 故直线与圆相交.

代数法判定——例题

例 2: 判断直线 l 与圆 C 的位置关系:

圆 $C: x^2 + y^2 = 4$ 直线 l: y = 2x + 1

解: 由题知, 联立方程组:

$$\begin{cases} x^2 + y^2 = 4 \\ y = 2x + 1 \end{cases}$$

解得 $5x^2 + 4x - 3 = 0$ 则其 $\Delta = 76 > 0$ 故直线与圆相交.

练习 2: 圆 C: x² + y² - 2x - 1 = 0 直线 l: x + y - 2 = 0

代数法判定——例题

例 2: 判断直线 l 与圆 C 的位置关系:

圆 $C: x^2 + y^2 = 4$ 直线 l: y = 2x + 1

解: 由题知, 联立方程组:

$$\begin{cases} x^2 + y^2 = 4 \\ y = 2x + 1 \end{cases}$$

解得 $5x^2 + 4x - 3 = 0$ 则其 $\Delta = 76 > 0$ 故直线与圆相交.

练习 2: 圆
$$C: x^2 + y^2 - 2x - 1 = 0$$
 直线 $l: x + y - 2 = 0$ $2x^2 - 6x + 3 = 0$ 相交

直线与圆的位置关系判定

·相离 \iff $d > r \iff \Delta < 0$

直线与圆的位置关系判定

- ・相离 \iff $d > r \iff \Delta < 0$
- · 相切 \iff $d = r \iff \Delta = 0$

直线与圆的位置关系判定

- ・相离 \iff $d > r \iff \Delta < 0$
- · 相切 \iff $d = r \iff \Delta = 0$
- · 相交 \iff $d < r \iff \Delta > 0$

例题研究

例 3: 若直线 ax + y = 1 与圆 $(x - 1)^2 + (y - 2)^2 = 1$ 有两个不同的交点,则 a 的取值范围是_____.

例题研究

例 3: 若直线 ax + y = 1 与圆 $(x - 1)^2 + (y - 2)^2 = 1$ 有两个不同的交点,则 a 的取值范围是 $(-\infty, 0)$.

练习 3: 直线 y = kx + 2 与圆 $x^2 + y^2 = 1$ 没有公共点,则 k 的取值范围是

例题研究

例 3: 若直线 ax + y = 1 与圆 $(x - 1)^2 + (y - 2)^2 = 1$ 有两个不同的交点,则 a 的取值范围是 $(-\infty, 0)$.

练习 3: 直线 y = kx + 2 与圆 $x^2 + y^2 = 1$ 没有公共点,则 k 的取值范围是 $(-\sqrt{3}, \sqrt{3})$.

弦长问题

例 4:求直线 $x - \sqrt{3}y + 2\sqrt{3} = 0$ 被圆 $x^2 + y^2 = 4$ 截得的弦 长.

弦长问题

例 4:求直线 $x - \sqrt{3}y + 2\sqrt{3} = 0$ 被圆 $x^2 + y^2 = 4$ 截得的弦 长.

例 5: 直线过点 (4,0), 且被圆 $x^2 + y^2 - 2x - 2y - 7 = 0$ 所 截得的弦长最长,求直线的方程为.

相离
$$\iff$$
 $d > r \iff \Delta < 0$

相离
$$\iff$$
 $d > r \iff \Delta < 0$
相切 \iff $d = r \iff \Delta = 0$

相离
$$\iff$$
 $d > r \iff \Delta < 0$
相切 \iff $d = r \iff \Delta = 0$
相交 \iff $d < r \iff \Delta > 0$

相离
$$\iff$$
 $d > r \iff \Delta < 0$
相切 \iff $d = r \iff \Delta = 0$
相交 \iff $d < r \iff \Delta > 0$

1. 直线与圆的位置关系判定:

相离
$$\iff$$
 $d > r \iff \Delta < 0$
相切 \iff $d = r \iff \Delta = 0$
相交 \iff $d < r \iff \Delta > 0$

圆心到直线的距离

$$d = \frac{|Aa + Bb + C|}{\sqrt{A^2 + B^2}}$$

1. 直线与圆的位置关系判定:

相离
$$\iff$$
 $d > r \iff \Delta < 0$
相切 \iff $d = r \iff \Delta = 0$
相交 \iff $d < r \iff \Delta > 0$

圆心到直线的距离

$$d = \frac{|Aa + Bb + C|}{\sqrt{A^2 + B^2}}$$

$$\begin{cases} (x-a)^2 + (y-b)^2 = r^2 \\ Ax + By + C = 0 \end{cases} \implies$$
关于 $x(y)$ **的一元二次方程**

判别式 △

课后作业

《课时作业(二十八)》