1. RCC (Reset Clock Controller)

한국산업기술대학교 메카트로닉스공학과 마이크로컴퓨터구조 담당교수: 남윤석 목차

- 1.1 RCC 개요
- 1.2 RCC 구조
- 1.3 RCC 관련 레지스터

1.1 RCC 개요

- STM32의 리셋과 clock을 담당하는 모듈
- Clock 의 종류
- •시스템 clock
 - -시스템 clock Source: HSI, HSE, PLL

- •2차 clock
 - -2차 clock Source: LSI, LSE

(용어 정리)

- ✓ HSI(High Speed Internal Oscillator Clock)
- √HSE(High Speed External Oscillator Clock)
- ✓ PLL(Phase Lock Loop)
- ✓ LSI(Low Speed Internal Oscillator Clock)
- ✓ LSE(Low Speed External Oscillator Clock)

Chapter 1. RCC

1-2. RCC 구조

System Clock 설정 절차

하여 prescaler값 선정.

(용어 정리)

- ✓ AHB(Advanced High-performance Bus)
- ✓ APB(Advanced Peripheral Bus)

- ●시스템 클럭(SYSCLK: 최대 186MHz) 발생 소스
 - ① 16MHz♀ HSI RC(HSI realtime clock)
 - ② PLL(PLLCLK)
 - ③ 4-26MHz♀ HSE OSC(HSE oscillator)

●시스템 클럭(SYSCLK) 용도

- : AHB 프리스케일러를 거쳐 AHB 버스, APB 버스, 타이머, AD 변환기 등 MCU 내부의 여러 장 치의 구동용 클럭으로 사용
- ✔SYSCLK을 이용하지 않은 주변장치
- : USB OTG HS clock(60MHz), I2S clock, Ethernet MAC clocks (TX, RX and RMII)

●리얼타임 클럭(RTCCLK) 발생 소스

: 4-26MHz의 HSE OSC, 32.768KHz의 LSE OSC, 32KHz의 LSI RC

●HSE/LSE OSC의 외부 입력 방법

(a) 외부 발진자

(b) 외부 클럭

MCU의 Peripheral들을 사용하기 위해서는 가장 먼저 그 Peripheral의 Clock을 Enable! Peripheral

Boundary address

STM32F4xx register addresses

Register map

Boundary address

Bus

Peripheral

Register map

Bus

0xA000 0000 - 0xA000 0FFF	FSMC control register	AHB3	Section 32.6.9: FSMC register map on page 1373	0x4001 3000 - 0x4001 33FF	SPI1		Section 27.5.10: SPI register map on page 845
0x5006 0800 - 0x5006 0BFF	RNG		Section 21.4.4: RNG register map on page 598	0x4001 2C00 - 0x4001 2FFF	SDIO		Section 28.9.16: SDIO register map on page 901
0x5006 0400 - 0x5006 07FF	HASH		Section 22.4.9: HASH register map on page 622	0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3		Section 11.13.18: ADC register map on page 307
0x5006 0000 - 0x5006 03FF	CRYP	AHB2	Section 20.6.13: CRYP register map on page 591	0x4001 1400 - 0x4001 17FF	USART6	APB2	0.00.00.00.00.00.00
0x5005 0000 - 0x5005 03FF	DCMI		Section 13.8.12: DCMI register map on page 351	0x4001 1000 - 0x4001 13FF	USART1		Section 26.6.8: USART register map on page 793
0x5000 0000 - 0x5003 FFFF	USB OTG FS		Section 30.16.6: OTG_FS register map on page 1106	0x4001 0400 - 0x4001 07FF	TIM8		Section 14.4.21: TIM1&TIM8 register map on
<u> </u>	<u> </u>	 	Section 31.12.6: OTG_HS register map on	0x4001 0000 - 0x4001 03FF	TIM1		page 420
0x4004 0000 - 0x4007 FFFF	USB OTG HS		page 1248	0x4000 7C00 - 0x4000 7FFF	UART8	ADDA	O
0x4002 9000 - 0x4002 93FF		1		0x4000 7800 - 0x4000 7BFF	UART7	APB1	Section 26.6.8: USART register map on page 793
0x4002 8C00 - 0x4002 8FFF			0.0000000000000000000000000000000000000	0x4000 7400 - 0x4000 77FF	DAC		Section 12.5.15: DAC register map on page 329
0x4002 8800 - 0x4002 8BFF	ETHERNET MAC		Section 29.8.5: Ethernet register maps on page 1017	0x4000 7000 - 0x4000 73FF	PWR		Section 5.5: PWR register map on page 109
0x4002 8400 - 0x4002 87FF			page 1011	0x4000 6800 - 0x4000 6BFF	CAN2		Continue OA O.C. burCAN anniaba annia annia 705
0x4002 8000 - 0x4002 83FF				0x4000 6400 - 0x4000 67FF	CAN1		Section 24.9.5: bxCAN register map on page 705
0x4002 6400 - 0x4002 67FF	DMA2		Section 9.5.11: DMA register map on page 245	0x4000 5C00 - 0x4000 5FFF	12C3		
0x4002 6000 - 0x4002 63FF	DMA1		Section 8.5.11. DWA register map on page 245	0x4000 5800 - 0x4000 5BFF	12C2		Section 25.6.11: I2C register map on page 741
0x4002 4000 - 0x4002 4FFF	BKPSRAM			0x4000 5400 - 0x4000 57FF	I2C1		
0x4002 3C00 - 0x4002 3FFF	Flash interface register		Section 3.8: Flash interface registers	0x4000 5000 - 0x4000 53FF	UART5		
0x4002 3800 - 0x4002 3BFF	RCC		Section 6.3.32: RCC register map on page 181	0x4000 4C00 - 0x4000 4FFF	UART4		Section 26.6.8: USART register map on page 793
0x4002 3000 - 0x4002 33FF	CRC	AHB1	Section 4.4.4: CRC register map on page 88	0x4000 4800 - 0x4000 4BFF	USART3		Section 20.0.0. COMMI Tegister thap on page 785
0x4002 3000 - 0x4002 33FF	GPIOI		Section 4.4.4. One register map on page of	0x4000 4400 - 0x4000 47FF	USART2		
0x4002 1C00 - 0x4002 1FFF	GPIOH	-		0x4000 4000 - 0x4000 43FF	I2S3ext		
0x4002 1800 - 0x4002 1BFF	GPIOG			0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3		Section 27.5.10: SPI register map on page 845
0x4002 1400 - 0x4002 17FF	GPIOF			0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2	APB1	Section 27.5.10. SET register map on page 645
0x4002 1000 - 0x4002 13FF	GPIOE		Section 7.4.11: GPIO register map on page 203	0x4000 3400 - 0x4000 37FF	I2S2ext	2.	
0x4002 0C00 - 0x4002 0FFF	GPIOD			0x4000 3000 - 0x4000 33FF	IWDG		Section 18.4.5: IWDG register map on page 540
0x4002 0800 - 0x4002 0BFF	GPIOC			0x4000 2C00 - 0x4000 2FFF	WWDG		Section 19.6.4: WWDG register map on page 547
0x4002 0400 - 0x4002 07FF	GPIOB			0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers		Section 23.6.21: RTC register map on page 662
0x4002 0000 - 0x4002 03FF	GPIOA	1		0x4000 2000 - 0x4000 23FF	TIM14		Section 16.6.11: TIM10/11/13/14 register map on
0x4001 5400 - 0x4001 57FF	SPI6		0.4.07540.004	0x4000 1C00 - 0x4000 1FFF	TIM13		page 524
0x4001 5000 - 0x4001 53FF	SPI5	APB2	Section 27.5.10: SPI register map on page 845	0x4000 1800 - 0x4000 1BFF	TIM12		Section 16.5.14: TIM9/12 register map on
0x4001 4800 - 0x4001 4BFF	TIM11		Section 16.6.11: TIM10/11/13/14 register map on				page 514
0x4001 4400 - 0x4001 47FF	TIM10	1	page 524	0x4000 1400 - 0x4000 17FF	TIM7		Section 17.4.9: TIM6&TIM7 register map on
0x4001 4000 - 0x4001 43FF	TIM9	APB2	Section 16.5.14: TIM9/12 register map on	0x4000 1000 - 0x4000 13FF	TIM6		page 535
			page 514	0x4000 0C00 - 0x4000 0FFF			
0x4001 3C00 - 0x4001 3FFF	EXTI		Section 10.3.7: EXTI register map on page 262	0x4000 0800 - 0x4000 0BFF	TIM4		Section 15.4.21; TIMx register map on page 480
0x4001 3800 - 0x4001 3BFF	SYSCFG		Section 7.2.8: SYSCFG register maps on page 157	0x4000 0400 - 0x4000 07FF	TIM3		,, ., ., ., ., ., ., ., ., ., ., .,
0x4001 3400 - 0x4001 37FF	SPI4	APB2	Section 27.5.10: SPI register map on page 845	0x4000 0000 - 0x4000 03FF	TIM2		

1-3. RCC 관련 레지스터(빨간박스:주요 Reg.)

L-J.				I		1				1	•	<u>\</u>		_						_					4				10	- 5	J• /		
	RCC	re	gis	ste	r n	nap	a	nd	re	set	t V	alu	es	fo	r S	TN	/I3	2F	40	5x)	k/0	7x:	X	_	_	_	_	_	_	_	_	_	$\overline{}$
Addr. offset	Register name	31	30	53	58	27	56	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	9	S.	4	3	8	-	0
0x00	RCC_CR	F	Rese	erve	d	PLL I2SRDY	PLL 12SON	PLL RDY	PLL ON	R	lese	erve	d	CSSON	HSEBYP	HSERDY	HSEON	HSICAL 7	HSICAL 6	HSICAL 5	HSICAL 4	HSICAL 3	HSICAL 2	HSICAL 1	HSICAL 0	HSITRIM4	HSITRIM3	HSITRIM 2	HSITRIM 1	HSITRIM 0	Reserved	HSIRDY	HSION
0x04	RCC_PLLCF GR	F	Rese	erve	d	PLLQ3	PLLQ2	PLLQ 1	PLLQ0	Reserved	PLLSRC	F	lese	erve	d	PLLP 1	PLP 0	Reserved	PLLN 8	PLLN 7	PLLN 6	PLLN 5	PLLN 4	PLLN 3	PLLN 2	PLLN 1	PLLN 0	PILM 5	PILM 4	PILM 3	PLLM 2	PLLM 1	PITM 0
0x08	RCC_CFGR	MCO2 1	MCO20	MCO2PRE2	MCO2PRE1	MCO2PRE0	MCO1PRE2	MCO1PRE1	MC01PRE0	12SSRC	MCO11	MCO10	RTCPRE 4	RTCPRE3	RTCPRE 2	FTCPRE 1	RTCPRE 0	PPRE22	PPRE21	PPRE20	PPRE12	PPRE11	PPRE10	Roconord	Developed to	HPRE3	HPRE2	HPRE 1	HPRE 0	SWS 1	SWS 0	SW 1	O MS
0x0C	RCC_CIR			F	Rese	erve	d			cssc	Reserved	PLLIZSRDYC	PLLRDYC	HSERDYC	HSIRDYC	LSERDYC	LSIRDYC	Doorgood	000	PLLI2SRDYIE	PLLRDYIE	HSERDYIE	HSIRDYIE	LSERDYIE	LSIRDYIE	CSSF	Reserved	PLL12SRDYF	PLLRDYF	HSERDYF	HSIRDYF	LSERDYF	LSIRDYF
0x10	RCC_AHB1R STR	Peserved		OTGHSRST		Reserved		ETHMACRST	Bosonad		DMA2RST	DMA1RST			F	lese	erve	d			CRCRST		Reserved		GPIOIRST	GPIOHEST	GPIOGRST	GPIOFRST	GPIOERST	GPIODRST	GPIOCRST	GPIOBRST	GPIOARST
0x14	RCC_AHB2R STR											F	lese	rve	d						<u> </u>	'			<u> </u>	OTGFSRST	RNGRST	HSAHRST	CRYPRST		Reserved	<u>'</u>	DCMIRST
0x18	RCC_AHB3R STR															Re	sen	ved															FSMCRST
0x1C	Reserved															F	lese	erve	d														_
0x20	RCC_APB1R STR	Peserved		DACRST	PWRRST	Peserved	CANZRST	CAN1RST	Peserved	12C3RST	12C2RST	12C1RST	UARTSRST	UART4RST	UART3RST	UARTZRST	Reserved	SPBRST	SPERST	Doogoog	000000000000000000000000000000000000000	WWDGRST	Bosonod	Deseived	TIM14RST	TIMI3RST	TIM12RST	TIM7RST	TIM6RST	TIM5RST	TIM4RST	TIM3RST	TIM2RST
0x24	RCC_APB2R STR						Re	sen	ved						TIMITEST	TIM10RST	TIM9RST	Reserved	SYSCEGRST	Reserved	SPITEST	SDIORST	Bosonwood	Dead ved	ADCRST	Doorgood	Dev lesser	USARTERST	USARTIRST	Possessed	Devleser	TIMBRST	TIM1RST
0x28	Reserved																	erve	d		_	_	_		_					_		_	_
0x2C	Reserved				-	_	_	-	_				z			F	lese	erve	d			_									_		Н
0x30	RCC_AHB1E NR	Reserved	OTGHSULPIEN	OTGHSEN	ETHMACPTPEN	ETHMACRXEN	ETHMACTXEN	ETHMACEN	Docooping		DMA2EN	DMA1EN	CCMDATARAMEN	Reserved	BKPSRAMEN			Reserved			CRCEN		Reserved		GPIOIEN	GPIOHEN	GPIOGEN	GPIOFEN	GPIOEEN	GPIODEN	GPIOCEN	GPIOBEN	GPIOAEN
0x34	RCC_AHB2E NR											F	lese	rve	d											OTGFSEN	RNGEN	HASHEN	CRYPEN		Reserved		DCMIEN
0x38	RCC_AHB3E NR															Re	sen	ved															FSMCEN
0x3C	Reserved															F	lese	erve	d														

1-3. RCC 관련 레지스터

			_		<u>—</u>	_	╧	_	_		<u> </u>		<u> </u>						_	_	_					_		_		_	_	_	
	RCC	re	gi	ste	r n	naı	ра	nd	re	se	t v	alı	ıe	s fo	or	ST	M3	2F	40	5x:	x/0	7x	X	_	_								
Addr. offset	•	31	30	29	28	27	26	25	24	23	22	21	20	19	_		16	15	14	13	12	7	10	6	æ	7	9	2	4	က	2	-	0
0x40	RCC_APB1E NR	Reserved	חפפת	DACEN	PWREN	Reserved	CANZEN	CAN1EN	Reserved	12C3EN	12C2EN	12C1EN	UARTSEN	UART4EN	USART3EN	USARTZEN	Reserved	SPI3EN	SPIZEN	Domacood	Heserved	WWDGEN	Beserved		TIM14EN	TIM13EN	TIM12EN	TIM7EN		TIMSEN	TIM4EN	TIMBEN	TIM2EN
0x44	RCC_APB2E NR						Re	eser	ved						TIM11EN	Ţ.	TIM9EN	Reserved	SYSCFGEN	Reserved	SPI1EN	SDIOEN	ADC3EN	ADC2EN	ADC1EN	Doyngood	neselved	USART6EN	USART1EN	Becomed	200000	TIMSEN	TIM1EN
0x48	Reserved																	erve															
0x4C	Reserved	4		_	13	-	_	-									Res	erve	d		_					_							
0x50	RCC_AHB1L PENR	Reserved	OTGHSULPILPEN	OTGHSLPEN	ETHMACPTPLPEN	ETHMACRXLPEN	ETHMACTXLPEN	ETHMACLPEN	Reserved	Heselved	DMA2LPEN	DMA1LPEN		Reserved	BKPSRAMLPEN	SRAM2LPEN	SRAM1LPEN	FLITFLPEN	portocoo	Reserved	CRCLPEN		Reserved		GPIOILPEN	GPIOHLPEN	GPIOGLPEN	GPIOFLPEN	GPIOELPEN	GPIODLPEN	GPIOCLPEN	GPIOBLPEN	GPIOALPEN
0x54	RCC_AHB2L PENR											F	Res	serve	ed											OTGFSLPEN	RNGLPEN	HASHLPEN	CRYPLPEN		Reserved		FSMCLPEN DCMILPEN
0x58	RCC_AHB3L PENR																eser																FSMCLPEN
0x5C	Reserved			_	_	-	_								1,		Res	erve	d														
0x60	RCC_APB1L PENR	Reserved	1000	DACLPEN	PWRLPEN	Reserved	CANZLPEN	CAN1LPEN	Reserved	12C3LPEN	ISC2LPEN	12C1LPEN	UARTSLPEN	UART 4LPEN	USART3LPEN	USART2LPEN	Reserved	SPI3LPEN	SPI2LPEN	poradoca	Reserved	WWDGLPEN	Beserved		TIM14LPEN	TIM13LPEN	TIM12LPEN	TIM7LPEN		TIM5LPEN	TIM4LPEN	TIM3LPEN	TIM2LPEN
0x64	RCC_APB2L PENR						Re	eser	ved						TIM11LPEN		TIM9LPEN	Reserved	SYSCFGLPEN	Reserved	SPI1LPEN	SDIOLPEN	ADC3LPEN	ADC2LPEN	ADC1LPEN	Bosoniod	חפאפו אפר	USART6LPEN	USART1LPEN	Bosonyad	0000	TIM8LPEN	TIM1LPEN
0x68	Reserved																	erve															
0x6C	Reserved	4	H														Res	erve	d					_		_							
0x70	RCC_BDCR		III.					Re	esen	ved							BDRST	RTCEN		Re	eserv	/ed		RTCSEL 1	RTCSEL 0		Re	eserv	ved		LSEBYP	LSERDY	LSEON
0x74	RCC_CSR	LPWRRSTF	WWDGRSTF	WDGRSTF	SFTRSTF	PORRSTF	PADRSTF	BORRSTF	RMVF										F	Rese	erve	d										LSIRDY	NOIST
0x78	Reserved																	erve															
0x7C	Reserved		-			_											Res	erve	d		,												
0x80	RCC_SSCGR	_	SPREADSEL	Beserved	Незеглес							INC	CS	TEP					-							MC	ODP	ER					
0x84	RCC_PLLI2S CFGR	Reserved	PL	LI2S	SRx						Re	esen	ved							_		PL	LI2S	SNx					F	Rese	erve	d	

1-3. RCC 관련 주요 레지스터

- •RCC CR: Clock Source를 선택하는 레지스터
- •RCC PLLCFGR : PLL을 Clock Source로 사용할 경우 곱하거나 나누어질 factor를 결정하는 레지 스터
- •RCC CFGR: AHB, APB1, APB2의 Prescaler를 설정하는 레지스터 (참고)위 3개의 레지스터를 이용하여 25MHz로 입력 되는 HSE를 PLL을 통하여 168MHz 클럭 생성함
- •<u>RCC_AHB1ENR</u> : GPIOA~GPIOI Clock을 Enable 하는 레지스터
- •<u>RCC APB1ENR</u> : TIM, USART Clock을 Enable 하는 레지스터
- •<u>RCC APB2ENR</u> : SYSCFG, ADC, USART, TIM를 Enable 하는 레지스터 (참고)
- APB2의 Clock 속도가 APB1보다 높기 때문에 -고속 Peripheral이 필요할 경우 APB2의 Peripheral 을 사용
- -저속인 경우 APB1의 Peripheral를 사용

RCC PLLCFGR

28

12

rw

MCO2 PRE[2:0]

rw

12

rw

27

PLLQ3

rw

11

rw

27

rw

11

PPRE1[2:0]

rw

APB1

rw

10

rw

26

PLLQ2

rw

10

PLLN

rw

29

13

rw

MCO2(Out)

rw

13

rw

RCC_CFGR

Reserved

31

15

Reserv ed

31

rw

15

rw

MCO₂

14

PPRE2[2:0]

APB2

30

14

rw

1-3. RCC 주요 주요 레지스터(1)

Q

24

PLLQ0

rw

8

rw

N

rw

8

25

PLLQ1

rw

9

rw

MCO1(Out)

25

MCO1 PRE[2:0]

rw

9

Reserved

R

21

5

PLLM5

rw

21

20

PLLM4

rw

20

rw

4

rw

Reserved

19

3

PLLM3

rw

19

rw

3

SWS₁

22

PLLSR

C

rw

rw

22

rw

rw

AHB

MCO₁

HPRE[3:0]

rw

23

Reserv

ed

7

rw

I2S

23

I2SSC

R

rw

7

rw

18 **HSE BYP**

rw

2

Res.

18

2

PLLM2

rw

M

RTC

18

RTCPRE[4:0]

rw

2

SWS0

SW

17 **HSE** HSE ON **RDY**

16

rw

0

HSION

rw

16

PLLP0

rw

PLLM₀

rw

16

rw

0

SW₀

rw

HSE

r

1

HSI RDY

r

P

PLLP1

rw

PLLM₁

rw

17

rw

1

SW₁

rw

1-3. RCC 주요 주요 레지스터(2)

RCC_AHB1ENR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reser- ved	OTGHS ULPIEN	OTGHS EN	ETHMA CPTPE N	ETHMA CRXEN		ETHMA CEN	Rese		DMA2EN	DMA1EN	CCMDAT/ RAMEN	A Res.	BKPSI AMEN		erved
	rw	rw	rw	rw	rw	rw			rw	rw			rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserve	d	CRCEN		Reserved	t	GPIOIE N	GPIOH EN	GPIOGE N	GPIOFE N	GPIOEEN	GPIOD EN	GPIO0 EN	GPIOB EN	GPIOA EN
			rw				rw	rw	rw	rw	rw	rw	rw	rw	rw
								G C		_					
	<u> </u>		\D1	FNI	<u> </u>			GF	OIS						
•R		_AF	PB1	EN	R			GF	OIG			USA	ART	:2~!	5
•R	CC	AF	PB1	EN	R	25	24	GF	22	21	20	US /	ART	:2~!	16
31	_	_		27 Reser	26 CAN2		Reser-	23 I2C3		_		19	18	-	16 Reser-
31	30	29 DAC	28 PWR	27	26 CAN2	CAN1	1	23 I2C3	22 I2C2	I2C1	UART5 L	19 JART4 U	18 SART3 l	17 JSART2	16
31	30	29 DAC EN	28 PWR EN	27 Reser	26 CAN2 EN	CAN1	Reser-	23 I2C3 EN	22 I2C2 EN	I2C1 EN	UART5 L EN	19 JART4 U	18 SART3 L EN	17 JSART2 EN	16 Reser-

RCC APB2ENR

Reserved

EΝ

rw

Reserved

ΕN

ΕN

Timer:2~7,12~14

EΝ

ΕN

ΕN

rw

ΕN

ΕN

EΝ

rw

 EN

ΕN

ΕN

USART:1,6 **ADC**

* 빨간색 박스는 실습에서 주로 사용될 Peripheral의 Clock 관련 비트영역임

1-4. Reset 직후 레지스터 초기(디폴트) 상태

- RCC→CR: 0x0000 XX83 (HSI ON, PLL, HSE OFF)
- RCC→CFGR: 0x0000 0000 (Clock output:
- SYSCLK & HSI, System clock: HSI, All prescaler: not divided)
- RCC→PLLCFGR: 0x2400 3010 (PLLQ:4, PPLP:2, PLLN: 192, PLLM:16, clock source:HSI)
- RCC→AHB1ENR: 0x0010 0000 (CCM Data RAM Enabled, others(GPIOs): Disabled)
- RCC→APB1ENR: 0x0000 0000 (All Disabled)
- RCC→APB2ENR : 0x0000 0000 (All Disabled)

(1) RCC clock control register (RCC_CR)

Address offset: 0x00

Reset value: 0x0000 XX83 where X is undefined.

Access: no wait state, word, half-word and byte access

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	erved		PLLI2S RDY	PLLI2S ON	PLLRDY	PLLON		Rese	erved		CSS ON	HSE BYP	HSE RDY	HSE ON
				1	ΓW	1	rw					rw	rw	1	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			HSIC	AL[7:0]					Н	SITRIM[4	:0]		Res.	HSI RDY	HSION
r	1	r	Г	1	r	1	1	rw	rw	rw	rw	rw	ndo.	1	rw

Bits 31:28 Reserved, must be kept at reset value.

Bit 27 PLLI2SRDY: PLLI2S clock ready flag

Set by hardware to indicate that the PLLI2S is locked.

0: PLLI2S unlocked

1: PLLI2S locked

Bit 26 PLLI2SON: PLLI2S enable

Set and cleared by software to enable PLLI2S.

Cleared by hardware when entering Stop or Standby mode.

0: PLLI2S OFF

1: PLLI2S ON

Bit 25 PLLRDY: Main PLL (PLL) clock ready flag

Set by hardware to indicate that PLL is locked.

0: PLL unlocked

1: PLL locked

Bit 24 PLLON: Main PLL (PLL) enable

Set and cleared by software to enable PLL.

Cleared by hardware when entering Stop or Standby mode. This bit cannot be reset if PLL clock is used as the system clock.

0: PLL OFF

1: PLL ON

Bits 23:20 Reserved, must be kept at reset value.

Bit 19 CSSON: Clock security system enable

Set and cleared by software to enable the clock security system. When CSSON is set, the clock detector is enabled by hardware when the HSE oscillator is ready, and disabled by hardware if an oscillator failure is detected.

0: Clock security system OFF (Clock detector OFF)

1: Clock security system ON (Clock detector ON if HSE oscillator is stable, OFF if not)

Bit 18 HSEBYP: HSE clock bypass

Set and cleared by software to bypass the oscillator with an external clock. The external clock must be enabled with the HSEON bit, to be used by the device.

The HSEBYP bit can be written only if the HSE oscillator is disabled.

0: HSE oscillator not bypassed

1: HSE oscillator bypassed with an external clock

Bit 17 HSERDY: HSE clock ready flag

Set by hardware to indicate that the HSE oscillator is stable. After the HSEON bit is cleared, HSERDY goes low after 6 HSE oscillator clock cycles.

0: HSE oscillator not ready

1: HSE oscillator ready

Bit 16 HSEON: HSE clock enable

Set and cleared by software.

Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock.

0: HSE oscillator OFF

1: HSE oscillator ON

Bits 15:8 HSICAL[7:0]: Internal high-speed clock calibration

These bits are initialized automatically at startup.

Bits 7:3 HSITRIM[4:0]: Internal high-speed clock trimming

These bits provide an additional user-programmable trimming value that is added to the HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature that influence the frequency of the internal HSI RC.

Bit 2 Reserved, must be kept at reset value

Bit 1 HSIRDY: Internal high-speed clock ready flag

Set by hardware to indicate that the HSI oscillator is stable. After the HSION bit is cleared, HSIRDY goes low after 6 HSI clock cycles.

0: HSI oscillator not ready

1: HSI oscillator ready

Bit 0 HSION: Internal high-speed clock enable

Set and cleared by software.

Set by hardware to force the HSI oscillator ON when leaving the Stop or Standby mode or in case of a failure of the HSE oscillator used directly or indirectly as the system clock. This bit cannot be cleared if the HSI is used directly or indirectly as the system clock.

0: HSI oscillator OFF

1: HSI oscillator ON

(2) RCC PLL configuration register (RCC_PLLCFGR)

Address offset: 0x04

Reset value: 0x2400 3010

Access: no wait state, word, half-word and byte access.

This register is used to configure the PLL clock outputs according to the formulas:

- f_(VCO clock) = f_(PLL clock input) × (PLIN / PLLM)
- f_(PLL general clock output) = f_(VCO clock) / PLLP
- f_(USB OTG FS. SDIO. RNG clock output) = f_(VCO clock) / PLLQ

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	rved		PLLQ3	PLLQ2	PLLQ1	PLLQ0	Reserv	PLLSR C		Rese		PLLP1	PLLP0	
				rw	rw	ΓW	rw	eu	rw				rw	ΓW	
15	14	13	12	11	10	9	8	7	6	5	4	2	1	0	
Reserv					PLLN					PLLM5	PLLM4	PLLM2	PLLM1	PLLM0	
ed	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	ΓW	rw	ΓW	ΓW

Bit 31:28 Reserved, must be kept at reset value.

Bits 27:24 PLLQ: Main PLL (PLL) division factor for USB OTG FS, SDIO and random number generator clocks

Set and cleared by software to control the frequency of USB OTG FS clock, the random number generator clock and the SDIO clock. These bits should be written only if PLL is disabled.

Caution: The USB OTG FS requires a 48 MHz clock to work correctly. The SDIO and the random number generator need a frequency lower than or equal to 48 MHz to work

USB OTG FS clock frequency = VCO frequency / PLLQ with 2 ≤ PLLQ ≤ 15

0000: PLLQ = 0, wrong configuration

0001: PLLQ = 1, wrong configuration

0010: PLLQ = 2

0011: PLLQ = 3

0011: PLLQ =

0100: PLLQ = 4

1111: PLLQ = 15

Bit 23 Reserved, must be kept at reset value.

Bit 22 PLLSRC: Main PLL(PLL) and audio PLL (PLLI2S) entry clock source

Set and cleared by software to select PLL and PLLI2S clock source. This bit can be written only when PLL and PLLI2S are disabled.

0: HSI clock selected as PLL and PLLI2S clock entry

1: HSE oscillator clock selected as PLL and PLLI2S clock entry

Bits 21:18 Reserved, must be kept at reset value.

Bits 17:16 PLLP: Main PLL (PLL) division factor for main system clock

Set and cleared by software to control the frequency of the general PLL output clock. These bits can be written only if PLL is disabled.

Caution: The software has to set these bits correctly not to exceed 168 MHz on this domain.

PLL output clock frequency = VCO frequency / PLLP with PLLP = 2, 4, 6, or 8

00: PLLP = 2

01: PLLP = 4

10: PLLP = 6

11: PLLP = 8

Bits 14:6 PLLN: Main PLL (PLL) multiplication factor for VCO

Set and cleared by software to control the multiplication factor of the VCO. These bits can be written only when PLL is disabled. Only half-word and word accesses are allowed to write these bits.

Caution: The software has to set these bits correctly to ensure that the VCO output

frequency is between 192 and 432 MHz.

VCO output frequency = VCO input frequency \times PLLN with 192 \le PLLN \le 432 000000000: PLLN = 0, wrong configuration

000000001: PLLN = 1, wrong configuration

...

011000000: PLLN = 192

110110000: PLLN = 432

110110001: PLLN = 433, wrong configuration

111111111: PLLN = 511, wrong configuration

Bits 5:0 PLLM: Division factor for the main PLL (PLL) and audio PLL (PLLI2S) input clock

Set and cleared by software to divide the PLL and PLLI2S input clock before the VCO. These bits can be written only when the PLL and PLLI2S are disabled.

Caution: The software has to set these bits correctly to ensure that the VCO input frequency ranges from 1 to 2 MHz. It is recommended to select a frequency of 2 MHz to limit

VCO input frequency = PLL input clock frequency / PLLM with 2 ≤ PLLM ≤ 63

000000: PLLM = 0, wrong configuration

000001: PLLM = 1, wrong configuration

000010: PLLM = 2

000011: PLLM = 3 000100: PLLM = 4

... 111110: PLLM = 62

111111: PLLM = 63

(3-1) RCC clock configuration register (RCC_CFGR)

Address offset: 0x08

Reset value: 0x0000 0000

Access: 0 ≤ wait state ≤ 2, word, half-word and byte access

1 or 2 wait states inserted only if the access occurs during a clock source switch.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
M	002	MC	:02 PRE[[2:0]	M	O1 PRE	2:0]	I2SSC R	MC	01		R	TCPRE[4	:0]	
rw		rw	rw	rw	rw	rw	rw	rw	rw		ſW	ľW	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F	PPRE2[2:	0]	F	PRE1[2:	0]	Doc	erved		HPR	E[3:0]		SWS1	SWS0	SW1	SW0
rw	rw	rw	rw	rw	rw	Hook	nvou	rw rw			rw	1	1	rw	ΓW

Bits 31:30 MCO2[1:0]: Microcontroller clock output 2

Set and cleared by software. Clock source selection may generate glitches on MCO2. It is highly recommended to configure these bits only after reset before enabling the external oscillators and the PLLs.

00: System clock (SYSCLK) selected

01: PLLI2S clock selected

10: HSE oscillator clock selected

11: PLL clock selected

Bits 27:29 MCO2PRE: MCO2 prescaler

Set and cleared by software to configure the prescaler of the MCO2. Modification of this prescaler may generate glitches on MCO2. It is highly recommended to change this prescaler only after reset before enabling the external oscillators and the PLLs.

0xx: no division

100: division by 2

101: division by 3

110: division by 4

111: division by 5

Bits 24:26 MCO1PRE: MCO1 prescaler

Set and cleared by software to configure the prescaler of the MCO1. Modification of this prescaler may generate glitches on MCO1. It is highly recommended to change this prescaler only after reset before enabling the external oscillators and the PLL.

0xx: no division

100: division by 2

101: division by 3

110: division by 4

111: division by 5

Bit 23 I2SSRC: I2S clock selection

Set and cleared by software. This bit allows to select the I2S clock source between the PLLI2S clock and the external clock. It is highly recommended to change this bit only after reset and before enabling the I2S module.

0: PLLI2S clock used as I2S clock source

1: External clock mapped on the I2S CKIN pin used as I2S clock source

(3-2) RCC clock configuration register (RCC_CFGR)

Bits 22:21 MCO1: Microcontroller clock output 1

Set and cleared by software. Clock source selection may generate glitches on MCO1. It is highly recommended to configure these bits only after reset before enabling the external oscillators and PLL.

00: HSI clock selected
01: LSE oscillator selected
10: HSE oscillator clock selected
11: PLL clock selected

Bits 20:16 RTCPRE: HSE division factor for RTC clock

Set and cleared by software to divide the HSE clock input clock to generate a 1 MHz clock for RTC.

Caution: The software has to set these bits correctly to ensure that the clock supplied to the RTC is 1 MHz. These bits must be configured if needed before selecting the RTC clock source.

00000: no clock 00001: no clock 00010: HSE/2 00011: HSE/3 00100: HSE/4 ...

11111: HSE/31

Bits 15:13 PPRE2: APB high-speed prescaler (APB2)

Set and cleared by software to control APB high-speed clock division factor.

Caution: The software has to set these bits correctly not to exceed 84 MHz on this domain.

The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after PPRE2 write.

0xx: AHB clock not divided 100: AHB clock divided by 2 101: AHB clock divided by 4 110: AHB clock divided by 8 111: AHB clock divided by 16

Bits 12:10 PPRE1: APB Low speed prescaler (APB1)

Set and cleared by software to control APB low-speed clock division factor.

Caution: The software has to set these bits correctly not to exceed 42 MHz on this domain.

The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after PPRE1 write.

0xx: AHB clock not divided 100: AHB clock divided by 2 101: AHB clock divided by 4 110: AHB clock divided by 8 111: AHB clock divided by 16

Bits 9:8 Reserved, must be kept at reset value.

Bits 7:4 HPRE: AHB prescaler

Set and cleared by software to control AHB clock division factor.

Caution: The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after

Caution: The AHB clock frequency must be at least 25 MHz when the Ethernet is used.

1000: system clock divided by 2 1001: system clock divided by 4 1010: system clock divided by 8 1011: system clock divided by 16 1100: system clock divided by 64 1101: system clock divided by 128 1110: system clock divided by 256 1111: system clock divided by 512

0xxx: system clock not divided

Bits 3:2 SWS: System clock switch status

Set and cleared by hardware to indicate which clock source is used as the system clock.

00: HSI oscillator used as the system clock 01: HSE oscillator used as the system clock 10: PLL used as the system clock 11: not applicable

Bits 1:0 SW: System clock switch

Set and cleared by software to select the system clock source.

Set by hardware to force the HSI selection when leaving the Stop or Standby mode or in case of failure of the HSE oscillator used directly or indirectly as the system clock.

00: HSI oscillator selected as system clock 01: HSE oscillator selected as system clock 10: PLL selected as system clock 11: not allowed

(4) RCC AHB1 peripheral clock enable register (RCC AHB1ENR) Address offset: 0x30

Reset value: 0x0010 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reser- ved	OTGHS ULPIEN	OTGHS EN	ETHMA CPTPE N	ETHMA CRXEN	ETHMA CTXEN	ETHMA CEN	Rese		DMA2EN	DMA1EN	CCMDATA RAMEN	Res.	BKPSR AMEN	Rese	erved
	ΓW	ſW	rw	ΓW	ΓW	ΓW			rw	ΓW			ΓW		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserve		CRCEN		Reserved	1	GPIOIE N	GPIOH EN	GPIOGE N	GPIOFE N	GPIOEEN	GPIOD EN	GPIOC EN	GPIOB EN	GPIOA EN
			rw				ΓW	ΓW	rw	rw	rw	rw	ΓW	rw	ΓW

Bits 31 Reserved, must be kept at reset value.

Bit 30 OTGHSULPIEN: USB OTG HSULPI clock enable

Set and cleared by software.

0: USB OTG HS ULPI clock disabled

1: USB OTG HS ULPI clock enabled

Bit 29 OTGHSEN: USB OTG HS clock enable

Set and cleared by software.

0: USB OTG HS clock disabled 1: USB OTG HS clock enabled

Bit 28 ETHMACPTPEN: Ethernet PTP clock enable

Set and cleared by software.

0: Ethernet PTP clock disabled

1: Ethernet PTP clock enabled

Bit 27 ETHMACRXEN: Ethernet Reception clock enable

Set and cleared by software.

0: Ethernet Reception clock disabled

1: Ethernet Reception clock enabled

Bit 26 ETHMACTXEN: Ethernet Transmission clock enable

Set and cleared by software.

0: Ethernet Transmission clock disabled

1: Ethernet Transmission clock enabled

Bit 25 ETHMACEN: Ethernet MAC clock enable

Set and cleared by software.

0: Ethernet MAC clock disabled

1: Ethernet MAC clock enabled

Bits 24:23 Reserved, must be kept at reset value.

Bit 22 DMA2EN: DMA2 clock enable

Set and cleared by software.

0: DMA2 clock disabled

1: DMA2 clock enabled

Bit 21 DMA1EN: DMA1 clock enable

Set and cleared by software.

0: DMA1 clock disabled

1: DMA1 clock enabled

Bit 20 CCMDATARAMEN: CCM data RAM clock enable

Set and cleared by software.

0: CCM data RAM clock disabled

1: CCM data RAM clock enabled

Bits 19 Reserved, must be kept at reset value.

Bit 18 BKPSRAMEN: Backup SRAM interface clock enable

Set and cleared by software.

0: Backup SRAM interface clock disabled

1: Backup SRAM interface clock enabled

Bits 17:13 Reserved, must be kept at reset value.

Bit 12 CRCEN: CRC clock enable

Set and cleared by software.

0: CRC clock disabled

1: CRC clock enabled

Bits 11:9 Reserved, must be kept at reset value.

Bit 8 GPIOIEN: 10 port I clock enable

Set and cleared by software.

0: IO port I clock disabled 1: IO port I clock enabled

Bit 7 GPIOHEN: IO port H clock enable

Set and cleared by software.

0: IO port H clock disabled

1: IO port H clock enabled

Bit 6 GPIOGEN: IO port G clock enable

Set and cleared by software.

0: IO port G clock disabled

o: 10 port G clock disabled

1: IO port G clock enabled

Bit 5 GPIOFEN: IO port F clock enable

Set and cleared by software.

0: IO port F clock disabled

1: IO port F clock enabled

Bit 4 GPIOEEN: IO port E clock enable

Set and cleared by software.

0: IO port E clock disabled 1: IO port E clock enabled

Bit 3 GPIODEN: IO port D clock enable

Set and cleared by software.

0: IO port D clock disabled 1: IO port D clock enabled Bit 2 GPIOCEN: IO port C clock enable

Set and cleared by software.

0: IO port C clock disabled

1: IO port C clock enabled

Bit 1 GPIOBEN: IO port B clock enable

Set and cleared by software.

0: IO port B clock disabled

1: IO port B clock enabled

Bit 0 GPIOAEN: IO port A clock enable

Set and cleared by software.

0: IO port A clock disabled

o. 10 port A clock disabled

1: IO port A clock enabled

(5) RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) Address offset: 0x34

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	served				OTGFS EN	RNG EN	HASH EN	CRYP EN		Reserved	1	DCMI EN
								rw	rw	rw	rw				rw

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 OTGFSEN: USB OTG FS clock enable

Set and cleared by software.

0: USB OTG FS clock disabled

1: USB OTG FS clock enabled

Bit 6 RNGEN: Random number generator clock enable

Set and cleared by software.

0: Random number generator clock disabled

1: Random number generator clock enabled

Bit 5 HASHEN: Hash modules clock enable

Set and cleared by software.

0: Hash modules clock disabled

1: Hash modules clock enabled

Bit 4 CRYPEN: Cryptographic modules clock enable

Set and cleared by software.

0: cryptographic module clock disabled

1: cryptographic module clock enabled

Bit 3:1 Reserved, must be kept at reset value.

Bit 0 DCMIEN: Camera interface enable

Set and cleared by software.

0: Camera interface clock disabled

1: Camera interface clock enabled

(6) RCC AHB3 peripheral clock enable register (RCC_AHB3ENR) Address offset: 0x38

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Res	erved							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ								Reserved								FSMCEN
								neselveu								ΓW

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 FSMCEN: Flexible static memory controller module clock enable

Set and cleared by software.

0: FSMC module clock disabled

1: FSMC module clock enabled

(7) RCC APB1 peripheral clock enable register (RCC_APB1ENR) Address offset: 0x40

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved	DAC EN	PWR EN	Reser- ved	CAN2 EN	CAN1 EN	Reser- ved	I2C3 EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART3 EN	USART2 EN	Reser- ved
		rw	rw	100	rw	ΓW		ΓW	ΓW	ΓW	ΓW	rw	rw	rw	100
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPI3 EN	SPI2 EN	Rese	erved	WWDG EN	Rese	erved	TIM14 EN	TIM13 EN	TIM12 EN	TIM7 EN	TIM6 EN	TIM5 EN	TIM4 EN	TIM3 EN	TIM2 EN
ΓW	rw			rw			rw	ΓW	ΓW	rw	rw	rw	rw	rw	rw

Bit 29 DACEN: DAC interface clock enable

Set and cleared by software.

0: DAC interface clock disabled 1: DAC interface clock enable

Bit 28 PWREN: Power interface clock enable Bit 15 SPI3EN: SPI3 clock enable

Set and cleared by software.

0: Power interface clock disabled

1: Power interface clock enable

Bit 27 Reserved, must be kept at reset value. Bit 14 SPI2EN: SPI2 clock enable

Bit 26 CAN2EN: CAN 2 clock enable

Set and cleared by software.

0: CAN 2 clock disabled

1: CAN 2 clock enabled

Bit 25 CAN1EN: CAN 1 clock enable

Set and cleared by software.

0: CAN 1 clock disabled

1: CAN 1 clock enabled

Bit 23 I2C3EN: I2C3 clock enable Set and cleared by software.

0: I2C3 clock disabled

1: I2C3 clock enabled

Bit 22 I2C2EN: I2C2 clock enable

Set and cleared by software.

0: I2C2 clock disabled

1: I2C2 clock enabled

Bit 21 I2C1EN: I2C1 clock enable

Set and cleared by software.

0: I2C1 clock disabled

1: I2C1 clock enabled

Bit 20 UART5EN: UART5 clock enable

Set and cleared by software.

0: UART5 clock disabled

1: UART5 clock enabled

Bit 19 UART4EN: UART4 clock enable

Set and cleared by software.

0: UART4 clock disabled

1: UART4 clock enabled

Bit 18 USART3EN: USART3 clock enable

Set and cleared by software.

0: USART3 clock disabled 1: USART3 clock enabled

Bits 31:30 Reserved, must be kept at reset value. Bit 17 USART2EN: USART2 clock enable

Set and cleared by software.

0: USART2 clock disabled

1: USART2 clock enabled

Bit 16 Reserved, must be kept at reset value.

Set and cleared by software.

0: SPI3 clock disabled

1: SPI3 clock enabled

Set and cleared by software.

0: SPI2 clock disabled

1: SPI2 clock enabled

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGEN: Window watchdog clock enable

Set and cleared by software.

0: Window watchdog clock disabled

1: Window watchdog clock enabled

Bit 24 Reserved, must be kept at reset value. Bit 10:9 Reserved, must be kept at reset value.

Bit 8 TIM14EN: TIM14 clock enable

Set and cleared by software.

0: TIM14 clock disabled

1: TIM14 clock enabled

Bit 7 TIM13EN: TIM13 clock enable

Set and cleared by software.

0: TIM13 clock disabled

1: TIM13 clock enabled

Bit 6 TIM12EN: TIM12 clock enable

Set and cleared by software.

0: TIM12 clock disabled

1: TIM12 clock enabled

Bit 5 TIM7EN: TIM7 clock enable

Set and cleared by software.

0: TIM7 clock disabled

1: TIM7 clock enabled

Bit 4 TIM6EN: TIM6 clock enable Set and cleared by software.

0: TIM6 clock disabled

1: TIM6 clock enabled

Bit 3 TIM5EN: TIM5 clock enable

Set and cleared by software.

0: TIM5 clock disabled 1: TIM5 clock enabled Bit 1 TIM3EN: TIM3 clock enable Set and cleared by software.

Bit 2 TIM4EN: TIM4 clock enable

Set and cleared by software.

0: TIM4 clock disabled

1: TIM4 clock enabled

0: TIM3 clock disabled

1: TIM3 clock enabled

Bit 0 TIM2EN: TIM2 clock enable

Set and cleared by software.

0: TIM2 clock disabled

1: TIM2 clock enabled

(8) RCC APB2 peripheral clock enable register (RCC APB2ENR) Address offset: 0x44

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved							TIM11 EN	TIM10 EN	TIM9 EN
													ΓW	ΓW	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reser- ved	SYSCF G EN	Reser- ved	SPI1 EN	SDIO EN	ADC3 EN	ADC2 EN	ADC1 EN	Rese	erved	USART6 EN	USART1 EN	Rese	erved	TIM8 EN	TIM1 EN
*00	rw		ΓW	rw	ΓW	rw	ΓW			rw	rw			rw	rw

Bits 31:19 Reserved, must be kept at reset value.

Bit 18 TIM11EN: TIM11 clock enable

Set and cleared by software.

0: TIM11 clock disabled

1: TIM11 clock enabled

Bit 17 TIM10EN: TIM10 clock enable

Set and cleared by software.

0: TIM10 clock disabled

1: TIM10 clock enabled

Bit 16 TIM9EN: TIM9 clock enable

Set and cleared by software.

0: TIM9 clock disabled

1: TIM9 clock enabled

Bit 15 Reserved, must be kept at reset value.

Bit 14 SYSCFGEN: System configuration controller clock enable

Set and cleared by software.

System configuration controller clock disabled

1: System configuration controller clock enabled

Bit 13 Reserved, must be kept at reset value.

Bit 12 SPI1EN: SPI1 clock enable

Set and cleared by software.

0: SPI1 clock disabled

1: SPI1 clock enabled

Bit 11 SDIOEN: SDIO clock enable

Set and cleared by software.

0: SDIO module clock disabled

1: SDIO module clock enabled

Bit 10 ADC3EN: ADC3 clock enable

Set and cleared by software.

0: ADC3 clock disabled

1: ADC3 clock disabled

Bit 9 ADC2EN: ADC2 clock enable

Set and cleared by software.

0: ADC2 clock disabled

1: ADC2 clock disabled

Bit 8 ADC1EN: ADC1 clock enable

Set and cleared by software.

0: ADC1 clock disabled

1: ADC1 clock disabled

Bits 7:6 Reserved, must be kept at reset value.

Bit 5 USART6EN: USART6 clock enable

Set and cleared by software.

0: USART6 clock disabled

USART6 clock enabled

Bit 4 USART1EN: USART1 clock enable

Set and cleared by software.

0: USART1 clock disabled

1: USART1 clock enabled

Bits 3:2 Reserved, must be kept at reset value.

Bit 1 TIM8EN: TIM8 clock enable

Set and cleared by software.

0: TIM8 clock disabled

1: TIM8 clock enabled

Bit 0 TIM1EN: TIM1 clock enable

Set and cleared by software.

0: TIM1 clock disabled

1: TIM1 clock enabled