Sveprisutno računarstvo

Stamenković Teodora 1460 Profesor: Dragan Stojanović

Projekti

Projekat 1 - ThingsBoard

Projekat 2 i 3 - Smart Home aplikacija

Za sva 3 projekta su korišćeni Arduino Nano 33 BLE Sense Lite i Raspberry Pi 4

Arduino Nano 33 BLE Sense Lite

Senzori:

- APDS9960 senzor Proximity and Gesture Detection
- LPS22HB senzor Barometric Pressure Sensor
- LSM9DS1 senzor IMU for Motion Detection

Projekat 1

Projekat 1

- Obrada i analiza podataka na open source platformi
 ThingsBoard
- Izvor podataka: Arduino Nano 33 BLE Sense Lite
- IoT aplikacija se izvršava na Edge-u -> Raspberry Pi 4

ThingsBoard

Open-source platforma za razvoj IoT aplikacija

Funkcionalnosti koje podržava:

- Povezivanje uređaja
- Prikupljanje i vizuelizacija podataka sa uređaja
- Analiziranje podataka i složeno procesiranje događaja
- Aktiviranje alarma i notifikacija
- Kontrola uređaja korišćenjem RPC-a

Arhitektura Thingsboard sistema

Entiteti

- **Tenant** biznis entitet, individua ili organizacija koja poseduje *device* ili *asset*. Može da ima više administratora i milione potrošača, uređaja i asset-a.
- **Customer** biznis entitet, individua ili organizacija koja koristi *devices, assets*. Može da ima više korisnika i milione uređaja i asset-a.
- User upravljaju entitetima i komandnim tablama.
- Device IoT entitet koji proizvodi telemetriju i obrađuje RPC komande. Npr. senzori, aktuatori, prekidači.
- **Asset** apstraktni IoT entitet koji može biti povezan sa ostalim uređajima ili *asset*-ima. Npr. fabrika, polje, vozilo.
- Entity views koriste se kada se sa potrošačima deli samo određeni deo uređaja ili asset-a.
- Alarms događaji koji ukazuju na problem ili neuobičajenu situaciju
- Dashboard vizuelizacija IoT podataka
- Rule node Čvorovi za obradu poruka i događaja
- Rule chain definiše tok procesiranja

Rule engine

Procesiranje primljenih poruka korišćenjem logike i pravila definisanih od strane korisnika

Komponente:

- Poruka bilo koji događaj (podaci sa uređaja, REST API događaj, RPC zahtev...)
- Rule Node funkcija koja se izvršava i obrađuje poruku. Postoje različiti tipovi čvorova (filtriranje, transformisanje, slanje notifikacije)
- Rule Chain lanac povezanih čvorova

Pokretanje

ThingsBoard Cloud server (community edition)

- Baza: PostgreSQL
- Message service:
 Kafka

File:

ThingsBoard/docker-compose.yml

ThingsBoard Cloud UI: http://localhost:8080 Mary ThingsBoard **↑** Home ♠ Home **△** Alarms ■ Dashboards ♣ Entities **□** Devices Assets Dashboards Add Dashboard Entity Views () History - last 30 days Last viewed J Profiles dashboard 1 40 min ago Device profiles Firmware Asset profiles Thermostats 2 weeks ago 2023-09-14 15:00:00 Devices: 22 Customers Rule chains ♠ Edge management → Instances Rule chain templates * Advanced features OTA undates Usage Ouick links Documentation : Version control Dashboards Getting started Rule engine Devices # Widgets Library Resources library Notification center

ThingsBoard Edge

 Kreiranje edge instance na cloud-u

ThingsBoard Edge

Docker kontejneri:

- 1. postgres
- 2. mytbedge

CLOUD_ROUTING_KEY - edge key (generisan na cloud-u)

CLOUD_ROUTING_SECRET - edge secret (generisan na cloud-u)

CLOUD_RPC_HOST - adresa mašine na kojoj je pokrenut TB Cloud

```
version: '3.0'
services:
 mytbedge:
   restart: always
   image: "thingsboard/tb-edge:3.5.1.1EDGE"
   ports:
     - "18080:8080"
     - "11883:1883"
     - "15683-15688:5683-5688/udp"
   environment:
     SPRING DATASOURCE URL: jdbc:postgresql://postgres:5432/tb-edge
     CLOUD ROUTING KEY: ${EDGE KEY}
     CLOUD ROUTING SECRET: ${EDGE SECRET}
     CLOUD RPC HOST: ${CLOUD IP}
    volumes:
     - ~/.mytb-edge-data:/data
     - ~/.mytb-edge-logs:/var/log/tb-edge
 postgres:
   restart: always
   image: "postgres:12"
   ports:
     - "5432"
   environment:
     POSTGRES DB: tb-edge
     POSTGRES PASSWORD: postgres
     - ~/.mytb-edge-data/db:/var/lib/postgresql/data
```

Uređaji na TB Edge-u

Uređaji na edge-u su kreirani za odgovarajuće senzore na Arduinu

Slanje podataka sa senzora

- Sa Arduino Board-a se očitavaju podaci sa senzora koji se šalju na serijski port
- Python aplikacija Čita podatke sa serijskog porta i Šalje ih preko MQTT-a edge platformi
- Top-ic na koji se šalju podaci:

 Token koji se generiše prilikom kreiranja uređaja na TB platformi se koristi kao username prilikom slanja poruke

Rule Chain

Filter čvorovi

Čvor za uzimanje prethodnih vrednosti podataka iz baze

Čvor koji izvršava transformaciju podataka

Čvor koji izvršava matematičku funkciju

Prikaz alarma

Dashboard - vizuelizacija podataka

Dashboard - prikaz pritiska i brzine

Dashboard - proximity i RGBA vrednosti

Projekti 2 i 3

IoT Sistem za praćenje i kontrolu pametne kuće

IoT sistem za praćenje i kontrolu HVAC sistema, osvetljenja i sigurnosnog sistema unutar pametne kuće.

Izvor podataka: Arduino Nano 33 BLE Sense Lite

Raspberry Pi 4 se koristi za izvršavanje Docker mikroservisa.

Praćenje stanja sistema je dostupno preko Android mobilne aplikacije.

Arhitektura sistema

- Mqtt Mosquitto message broker
- InfluxDB baza za skladištenje očitanih podataka
- Grafana vizuelizacija podataka
- **Ekuiper** analiza i detekcija događaja
- Ekuiper Manager softver za upravljanje
 Ekuiper-om
- loT app

IoT app

- Python mikroservis
- Podaci se čitaju sa serijskog porta Arduino board-a
- Pročitani podaci se šalju na odgovarajući MQTT topic (paho mqtt client)
- Svi podaci se čuvaju u Influx bazi podataka (InfluxDB client)

eKuiper

Za svaki izvor podataka je kreiran stream na eKuiper-u.

Ukupno postoje 3 stream-a, za svaki senzor sa Arduina:

- lps_data
- imu_data
- apds_data

Na eKuiper-u su kreirana pravila za analizu primljenih podataka i detekciju događaja. Rezultati pravila se šalju na određeni MQTT topic.

Primer eKuiper pravila

- Detekcija niske temperature

Android aplikacija

- Za praćenje stanja sistema je implementirana Android aplikacija
- U okviru aplikacije je implementiran MQTT klijent, kako bi se čitali podaci sa topic-a
- Android uređaj se sa Arduino uređajem povezuje preko Bluetooth Low Energy
- Iz mobilne aplikacije se akcije Šalju komande za aktiviranje akcija na Arduinu

Android aplikacija

HVAC system control

BLE komunikacija

Android:

- BLE klijent za Čitanje i upisivanje karakteristika
- Upisivanjem vrednosti karakteristike se šalje komanda Arduino uređaju

Arduino:

- Konekcija sa perifernim uređajima
- Dodavanje servisa i karakteristika
- Čitanjem karakteristike se aktivira RGB dioda

BLE

Nakon izbora boje, na Arduinu svetli RGB dioda odgovarajućom bojom

TensorFlow Lite

- Tensorflow model za klasifikaciju slika
- Klasifikacija u 3 kategorije: pas, mačka i osoba.
- Inception v3 model
- Model je konvertovan u tflite model kako bi se izvršavao na Raspberry Pi uređaju
- run_detection.py skripta klasifikuje sliku i ukoliko je detektovana osoba, poruka se Šalje na MQTT topic

Pokretanje skripte:

python3 run_detection.py <image_file>

Obaveštenje o detekciji osobe u Android aplikaciji

Hvala na pažnji