

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет

имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.01 Информатика и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА **09.04.01/05** Современные интеллектуальные программно-аппаратные комплексы.

ОТЧЕТ

по лабораторной работе № 3

Дисциплина: Системный анализ в управлении

Студент	ИУ6-41М		И.С. Марчук
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Д.А. Миков
		(Подпись, дата)	(И.О. Фамилия)

Тема: реконструкция математической модели системы по неполным данным.

Цель работы: исследование алгоритма реконструкции математической модели сложной системы по временному ряду.

Задание: выполнить реконструкцию математической модели системы по временному ряду.

- 1. Сформировать BP $a_i(i\Delta t) = a_i, i = 1, ..., N$, где $N = 400 \div 500$;
- 2. Восстановить вектор переменных состояния, задав n = 3;
- 3. Построить ММС;
- 4. Исследовать поведение системы и ее модели в системе MATLAB;
- 5. Построить графики изменения сигналов и фазовые портреты.

Исходные данные: в качестве регистрируемого сигнала $\alpha(t)$ взять любую гладкую математическую функцию. В результате зависимоть вида y = f(x) можно представить в виде набора точек – временного ряда.

Ход работы:

В качестве гладкой математической функции, описывающей систему по временному ряду, согласно варианту задания, была выбрана следующая функция:

Марчук:
$$y = 7sin(x) + 1,5$$

Сформируем временной ряд с функцией $y(x)=7\sin(x)+1.5$

Рисунок 1 – формирование исходного временного ряда у(х).

Восстановление вектора переменного состояния (n = 3)

Рисунок 2 — Восстановление вектора переменного состояния (красным — f(x), синим — f'(x), зеленым — f'(x)).

Рисунок 3 — Восстановление вектора переменного состояния в MathLab Построение ММС

first 10:		
3.4178	3.4288	3.4390
3.4288	3.4390	3.4485
3.4390	3.4485	3.4571
3.4485	3.4571	3.4650
3.4571	3.4650	3.4721
3.4650	3.4721	3.4783
3.4721	3.4783	3.4838
3.4783	3.4838	3.4885
3.4838	3.4885	3.4924
3.4885	3.4924	3.4955

Рисунок 3 – матрица временных срезов.

Исследование поведение системы и ее модели в системе MATLAB через ODE45.

Рисунок 4 – поведение функции сигнала.

Рисунок 5 – фазовый портрет.

Листнинг кода генерации временного ряда:

```
% Параметры временного ряда
N = 500; % Количество точек
x = linspace(-5, 5, N); % Временная шкала
% Исходный сигнал (гладкая функция)
y = 2*sin(x) + 1.5;
% Построение графика временного ряда
figure;
plot(x, y, 'b', 'LineWidth', 2);
grid on;
xlabel('Time');
ylabel('Signal y(x)');
title('base function');
```

Листнинг кода восстановления вектора переменного состояния:

```
% Параметры временного ряда
N = 500; % Количество точек
x = linspace(-5, 5, N); % Временная шкала
% Исходный сигнал
y = 2*sin(x) + 1.5;
% Численное вычисление производных (метод конечных разностей)
dx = x(2) - x(1);
у1 = у; % Исходный сигнал
y2 = diff(y) / dx; % Первая производная
y3 = diff(y2) / dx; % Вторая производная
% Коррекция длины осей для отображения
x2 = x(1:end-1); % Укоротили на 1 точку
x3 = x(1:end-2); % Укоротили на 2 точки
% Построение графиков
figure;
subplot(3,1,1);
plot(x, y1, 'b', 'LineWidth', 2);
title('base');
grid on;
subplot(3,1,2);
plot(x2, y2, 'r', 'LineWidth', 2);
title('Pervaya proizvodnaya');
grid on;
subplot(3,1,3);
plot(x3, y3, 'g', 'LineWidth', 2);
title('Vtoraya proizvodnaya');
grid on;
```

Листнинг кода генерации матрицы временных срезов:

```
% Параметры временного ряда
N = 500; % Количество точек
x = linspace(-5, 5, N); % Временная шкала
% Исходный сигнал (гладкая функция)
y = 2*sin(x) + 1.5;
% Построение графика временного ряда
figure;
plot(x, y, 'b', 'LineWidth', 2);
grid on;
xlabel('Time');
ylabel('Signal y(x)');
title('base function');
% Формирование матрицы временных срезов
y1 = y(1:end-2);
y2 = y(2:end-1);
y3 = y(3:end);
MTC = [y1', y2', y3'];
% Вывод первых 10 строк МТС
disp('first 10:');
disp(MTC(1:10, :));
```

Листнинг кода поведения функции сигнала и фазового портрета:

```
function main
  % Интервал времени моделирования
  tspan = [0 \ 10];
  % Начальные условия [y(0), dy/dt(0)]
  y0 = [1; 0];
  % Установка параметров точности ОDE-солвера
  options = odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
  % Решение системы ОДУ методом Рунге-Кутта (ODE45)
  [t, Y] = ode45(@marchuk_model, tspan, y0, options);
  % Построение графика решения ОДУ
  figure;
  plot(t, Y(:,1), 'b', 'LineWidth', 2);
  grid on;
  xlabel('time t');
  ylabel('finc y(t)');
  title('ODU');
  % Построение фазового портрета
  figure;
  plot(Y(:,1), Y(:,2), 'r', 'LineWidth', 2);
  grid on;
  xlabel('y(t)');
  ylabel('dy/dt');
  title('PHASE PORTRET');
  % Вложенная функция
  function dydt = marchuk_model(~, y)
    dydt = zeros(2,1);
    dydt(1) = y(2);
    dydt(2) = -2*y(2) - 5*y(1);
  end
end
```

Вывод

Графики исходного сигнала и модели схожи при малых периодах и расходятся с течением времени. Сходство фазовых портретов подтверждает высокую точность построенной модели. Результат реконструкции зависит от формы исходного сигнала (в данном случае удачно выбрана функция) и выбора параметров реконструкции: размерности вектора состояния (разбиение вектора на 500 дает достаточную точность) и степени полинома. Чем больше n и v, тем точнее результат.