Nonparametric Statistics

Ch.6 Cumulative distribution function

Motivation

❖ Definition of Cumulative distribution function (CDF) :

$$F(x) = P(X \le x) \ \forall x \in R$$

❖ The CDF plays a central role in statistical inferences. It contains all information about the random variable *X*. We can express some well-known quantities as functions of the CDF.

$$E(X) = \int x \, dF(x)$$

$$Var(X) = \int \left(x - E(X)\right)^2 dF(x).$$

$$p^{th} \text{ quante} \qquad = F^{-1}(p) \text{ when } F \text{ is strictly} \qquad \text{increasing}$$

Therefore, estimating the CDF is a first step towards solving more important problems.

Properties of CDF

$$\lim_{x \to -\infty} F(x) = 0 , \lim_{x \to +\infty} F(x) = 1$$

If f(x) is a probability density function of X,

$$F(x) = \int_{-\infty}^{x} f(x) dx$$
 : continuous asse
 $F(x) = \sum_{k \le x} f(k)$: discrete asse

- \clubsuit If F is continuous, then the random variable X is a continuous random variable.
- \bullet F is non-decreasing and right-continuous.

PDF & CDF

Empirical distribution function (EDF)

- The EDF is an estimator of the CDF.
- Definition of the EDF: Let $X_1, ..., X_n$ be a random sample of size n from the distribution F.

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$$

- \clubsuit This satisfies $\lim_{x\to-\infty}\widehat{F}_n(x)=0$, $\lim_{x\to+\infty}\widehat{F}_n(x)=1$.
- \hat{F}_n is the CDF that puts mass 1/n at each data point X_i . Note that \hat{F}_n is a right-continuous step function having jumps on X_i 's.

Empirical distribution function (EDF)

Properties of EDF

• (Consistency) Note that, for each fixed *x*,

$$E(\widehat{F}_n(x)) = F(x)$$
 & $Var(\widehat{F}_n(x)) = \frac{F(x)(1 - F(x))}{n}$.

By Chebyshev's inequality,

$$P(|\hat{F}_n(x) - F(x)| \ge k) \le \frac{F(x)(1 - F(x))}{nk^2} \to 0 \text{ for every } k > 0,$$

which implies that $\hat{F}_n(x) \to F(x)$ in probability.

Properties of EDF

(Uniform convergence : Glivenko-Cantelli theorem)

$$P\left(\sup_{x} |\widehat{F}_{n}(x) - F(x)| \to 0\right) = 1.$$

This is a much stronger result than the previous one.

(Dvoretzky-Kiefer-Wolfowitz (DKW) inequality)

$$P\left(\sup_{x} |\hat{F}_n(x) - F(x)| > k\right) \le 2\exp(-2nk^2)$$
 for any $k > 0$.

This can be used to construct a confidence band for the CDF.

Ex1] A random sample of size 8 yields the number of times people swam in the past month. Calculate the EDF.

At first, we make the data ordered.

Then,

$$\widehat{F}_n(x) = 0, \qquad x < 0$$

$$\widehat{F}_n(x) = \frac{1}{8}, \qquad 0 \le x < 1$$

$$\widehat{F}_n(x) = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}, 1 \le x < 2$$

$$\hat{F}_n(x) = \frac{1}{8} + \frac{1}{8} + \frac{2}{8} = \frac{1}{2}, \qquad 2 \le x < 4$$

$$\widehat{F}_{n}(x) = \frac{1}{8} + \frac{1}{8} + \frac{2}{8} + \frac{1}{8} = \frac{5}{8}, \qquad 4 \le x < 6$$

$$\widehat{F}_{n}(x) = \frac{1}{8} + \frac{1}{8} + \frac{2}{8} + \frac{1}{8} + \frac{2}{8} = \frac{7}{8}, \qquad 6 \le x < 7$$

$$\widehat{F}_{n}(x) = \frac{1}{8} + \frac{1}{8} + \frac{2}{8} + \frac{1}{8} + \frac{2}{8} + \frac{1}{8} = 1, \qquad 7 \le x$$

$$\widehat{F}_{n}(x)$$
1
Ch.6 Cumulative distribution function

Confidence sets

• Note that, $n\hat{F}_n(x) \sim B(n, F(x))$ for fixed x. Therefore, a pointwise confidence interval for F(x) is given by

$$\widehat{F}_n(x) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{F}_n(x)\left(1-\widehat{F}_n(x)\right)}{n}}$$

However, we are mainly interested in estimating the whole function F.
 Therefore, we need to consider a functional version of confidence interval.
 We call it "confidence band".

Confidence sets

• From DKW inequality, if we set $k = \sqrt{\frac{1}{2n} \log \frac{2}{\alpha}}$,

$$P\left(\sup_{x} |\hat{F}_{n}(x) - F(x)| \le k\right) \ge 1 - \alpha.$$

Therefore, for

$$L(x) = \max\{\widehat{F}_n(x) - k, 0\}$$

$$U(x) = \min\{\widehat{F}_n(x) + k, 1\},\$$

$$P(L(x) \le F(x) \le U(x) \ \forall x) \ge 1 - \alpha.$$

Pointwise confidence interval

Confidence band

Confidence band vs Confidence interval

Real data example

• Nerve data (Cox and Lewis (1966)): 799 waiting times between successive pulses along a nerve fiber.

EDF & confidence band

Ex1:revisited] What is a $100 * (1 - \alpha)\%$ pointwise confidence interval for F(1.5)?

$$\widehat{F}_{n}(1.5) \pm z_{0.025} \sqrt{\frac{\widehat{F}_{n}(1.5) \left(1 - \widehat{F}_{n}(1.8)\right)}{8}} = 0.25 \pm 1.96 \times \sqrt{0.25 * \frac{0.75}{8}}$$

$$= (-0.0501, 0.5501)$$

$$\widehat{F}_{n}(x)$$

$$= Ch.6 \text{ Cumulative distribution function}$$

17

Ex1:revisited] What is a $100 * (1 - \alpha)\%$ confidence band for F?

$$k = \sqrt{\frac{1}{2n} \log \frac{2}{\alpha}} = \sqrt{\frac{1}{16} \log \frac{2}{0.05}} = 0.4802$$

Estimation based on the EDF

• (Sample mean & variance)

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \int x \, d\hat{F}_n(x) \quad \& \quad \frac{n-1}{n} \cdot S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \int (x - \bar{X})^2 \, d\hat{F}_n(x)$$

(Sample quantile)

$$p^{th}$$
 sam pk quank $= \hat{F}_n^{-1}(p) = X_{([np])}$

where $F^{-1}(p) = \inf\{x : F(x) \ge p\}$ and [np] is the smallest integer equal to or larger than np.

- Sometimes, we want to test if data comes from a specific distribution. Gof tests are designed for this purpose.
- Essentially, Gof test statistics try to figure out how far the EDF based on data is from a specified distribution. There are many different ways to measure the distance between the EDF and the specified distribution.
- Hypotheses (two sided)

$$H_0$$
: $F(x) = F_0(x)$ vs H_1 : $F(x) \neq F_0(x)$ $\forall x$

One-sided test is also possible. If $F(x) > F_0(x)$, it means that F is stochastically larger than F_0 .

(Kolmogorov-Smirnov statistic)

$$D_n = \sup_{x} |\widehat{F}_n(x) - F_0(x)|$$

(Cramer-von Mises statistic)

$$T_n = n \int \left(\hat{F}_n(x) - F_0(x)\right)^2 dF_0(x)$$

(Anderson-Darling statistic)

$$A_n = n \int \frac{(\hat{F}_n(x) - F_0(x))^2}{(F_0(x)(1 - F_0(x)))} dF_0(x)$$

• (Pearson chi-square statistic)

For this test, we need to first make binning of data. Let $(-\infty, x_1], (x_1, x_2], ..., (x_{k-2}, x_{k-1}], (x_{k-1}, \infty)$ be a partition of the Real line and $O_1, ..., O_k$ be the numbers of data belonging to each bin. Then, the test statistic is defined by

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

where $E_i = F(x_i) - F(x_{i-1})$. This follows $\chi^2(k-1)$ under the null hypothesis.

- The aforementioned test statistics are for general distributions. However, those are particularly useful to test for normality.
- There are another test statistics designed only for normality. (ex] Shapiro–Wilk test statistic, Jarque–Bera test and so on.
- Two sample goodness of fit tests also exist. For example,

$$D_{m,n} = \sup_{x} |\hat{F}_{1,m}(x) - \hat{F}_{2,n}(x)|$$

where $\hat{F}_{1,m}(x)$ and $\hat{F}_{2,n}(x)$ are the EDFs based on each sample.

Ex1:revisited] Calculate the Kolmogorov-Smirnov statistic when we want to test if the number of times is uniformly distributed on [0,8].

The CDF of
$$U[0,8]$$
 is $F_0(x) = \frac{1}{8}x I(0 \le x \le 8) + I(x > 8)$.

We want to test

$$H_0$$
: $F(x) = F_0(x)$ vs H_1 : $F(x) \neq F_0(x)$ $\forall x$

where F is the true CDF.

From the figure, we can see that the observed test statistic is 0.25

Ex1:revisited] Perform the Pearson's chi-square test to see if the number of times is uniformly distributed on [0,8] at the significance level 0.05.

(1) Binning

We divide [0,8] into 4 intervals. [0,2), [2,4), [4,6), [6,8]

(2) Frequency table

_	Bin	[0,2)	[2,4)	[4,6)	[6,8]
	0	2	2	1	3
	$\boldsymbol{\mathit{E}}$	2	2	2	2

(3) Observed test statistic

$$\frac{(2-2)^2}{2} + \frac{(2-2)^2}{2} + \frac{(1-2)^2}{2} + \frac{(3-2)^2}{2} = 1$$

(4) Critical region

$$\chi^2_{0.05}(4-1) = 7.81$$

We do not reject the null hypothesis. No clear evidence that the true CDF is not U[0,8].