Thème: problème d'optimisation

L'exercice

La parabole d'équation $y = -0.5x^2 + 2$ a été représentée ci-contre.

Pour tout $x \in [0,2]$, on construit à partir du point M(x,0), les points P, Q et N, avec P et Q sur la parabole et MNQP rectangle.

Existe-t-il un rectangle d'aire maximale ? Si oui, est-il unique ?

Source: d'après MATHS Analyse 1ère S, collection TERRACHER

Les solutions de deux élèves de première S

Élève 1

$$y = MN = -0.5x^{2} + 2$$

 $A = 2x \times y$
 $A = 2x(-0.5x^{2} + 2)$
 $A = -x^{3} + 4x$

Élève 2

Je pense que le rectangle est un carré car on a fait un exercice disant que le rectangle qui a la plus grande aire est un carré.

n carre.

$$x = -0.5x^2 + 2$$

 $-0.5x^2 + 2 - x = 0$,

 \triangle = 5, il y a deux solutions dans \mathbb{R} : x_1 = 1,236 et x_2 = -3,236.

Mais $x \in [0;2]$ *donc* x = 1,236, f(x) = 1,236.

On vérifie avec la calculatrice : f(1,2) = 1,28 et f(1,3) = 1,155. On dirait que c'est faux.

Le travail à exposer devant le jury

- 1- Analysez les démarches des élèves en mettant en avant les compétences mathématiques acquises.
- 2- Exposez une correction de cet exercice, prenant en compte les productions des élèves, devant une classe de première.
- 3- Présentez deux ou trois *problèmes d'optimisation* dont l'un au moins se situe au niveau de la classe de seconde.