# International Rectifier

# ST083S SERIES

#### **INVERTER GRADE THYRISTORS**

**Stud Version** 

#### **Features**

- Center amplifying gate
- High surge current capability
- Low thermal impedance
- High speed performance

85A

## **Typical Applications**

- Inverters
- Choppers
- Induction heating
- All types of force-commutated converters

#### Major Ratings and Characteristics

| Parameters                        |                  | ST083S      | Units             |
|-----------------------------------|------------------|-------------|-------------------|
| I <sub>T(AV)</sub>                |                  | 85          | А                 |
|                                   | @ T <sub>C</sub> | 85          | °C                |
| I <sub>T(RMS)</sub>               |                  | 135         | А                 |
| I <sub>TSM</sub>                  | @ 50Hz           | 2450        | А                 |
|                                   | @ 60Hz           | 2560        | А                 |
| l <sup>2</sup> t                  | @ 50Hz           | 30          | KA <sup>2</sup> s |
|                                   | @ 60Hz           | 27          | KA <sup>2</sup> s |
| V <sub>DRM</sub> /V <sub>RR</sub> | М                | 400 to 1200 | V                 |
| t <sub>q</sub> range (see table)  |                  | 10 to 20    | μs                |
| T <sub>J</sub>                    |                  | - 40 to 125 | °C                |



## **ELECTRICAL SPECIFICATIONS**

## Voltage Ratings

| Type number | Voltage V <sub>DRM</sub> /V <sub>RRM</sub> , maximum repetitive peak voltage |      | V <sub>RSM</sub> , maximum<br>non-repetitive peak voltage | $I_{DRM}/I_{RRM}$ max.<br>@ $T_1 = T_1$ max. |
|-------------|------------------------------------------------------------------------------|------|-----------------------------------------------------------|----------------------------------------------|
|             |                                                                              | V    | V                                                         | mA                                           |
|             | 04                                                                           | 400  | 500                                                       |                                              |
| CTOOCC      | 08                                                                           | 800  | 900                                                       | 20                                           |
| ST083S      | 10                                                                           | 1000 | 1100                                                      | 30                                           |
|             | 12                                                                           | 1200 | 1300                                                      |                                              |

## **Current Carrying Capability**

| - carrows carrying carpainny     |                  |                 |                  |                 |                 |                   |       |
|----------------------------------|------------------|-----------------|------------------|-----------------|-----------------|-------------------|-------|
| Frequency                        | 180°el           | I <sub>TM</sub> | 180°e            | I <sub>TM</sub> | 100µ            | S I <sub>TM</sub> | Units |
| 50Hz                             | 210              | 120             | 330              | 270             | 2540            | 1930              |       |
| 400Hz                            | 200              | 120             | 350              | 210             | 1190            | 810               |       |
| 1000Hz                           | 150              | 80              | 320              | 190             | 630             | 400               | Α     |
| 2500Hz                           | 70               | 25              | 220              | 85              | 250             | 100               |       |
| Recovery voltage Vr              | 50               | 50              | 50               | 50              | 50              | 50                | .,    |
| Voltage before turn-on Vd        | V <sub>DRM</sub> |                 | V <sub>DRM</sub> |                 | V <sub>DF</sub> | RM                | V     |
| Rise of on-state current di/dt   | 50               | 50              | -                | -               | -               | -                 | A/μs  |
| Case temperature                 | 60               | 85              | 60               | 85              | 60              | 85                | °C    |
| Equivalent values for RC circuit | 22Ω/0            | .15µF           | 22Ω/0            | .15µF           | 22Ω/0           | .15µF             |       |

#### On-state Conduction

|                     | Parameter                            | ST083S | Units             | Conditions                      |                       |                          |
|---------------------|--------------------------------------|--------|-------------------|---------------------------------|-----------------------|--------------------------|
| I <sub>T(AV)</sub>  | Max. average on-state current        | 85     | Α                 | 180° conduction, half sine wave |                       |                          |
| ` ′                 | @ Case temperature                   | 85     | °C                |                                 |                       |                          |
| I <sub>T(RMS)</sub> | Max. RMS on-state current            | 135    |                   | DC @ 77°0                       | case tempera          | ture                     |
| I <sub>TSM</sub>    | Max. peak, one half cycle,           | 2450   |                   | t = 10ms                        | No voltage            |                          |
|                     | non-repetitive surge current         | 2560   | Α                 | t = 8.3ms                       | reapplied             |                          |
|                     |                                      | 2060   |                   | t = 10ms                        | 100% V <sub>RRM</sub> |                          |
|                     |                                      | 2160   |                   | t = 8.3ms                       | reapplied             | Sinusoidal half wave,    |
| I²t                 | Maximum I2t for fusing               | 30     |                   | t = 10ms                        | No voltage            | Initial $T_J = T_J \max$ |
|                     |                                      | 27     | 1642-             | t = 8.3ms                       | reapplied             |                          |
|                     |                                      | 21     | KA <sup>2</sup> s | t = 10ms                        | 100% V <sub>RRM</sub> |                          |
|                     |                                      | 19     |                   | t = 8.3ms                       | reapplied             |                          |
| I²√t                | Maximum I <sup>2</sup> √t for fusing | 300    | KA²√s             | t = 0.1 to 1                    | 0ms, no voltage       | e reapplied              |

## On-state Conduction

|                     | Parameter                                    | ST083S | Units | Conditions                                                                                    |
|---------------------|----------------------------------------------|--------|-------|-----------------------------------------------------------------------------------------------|
| V <sub>TM</sub>     | Max. peak on-state voltage                   | 2.15   |       | $I_{TM}$ = 300A, $T_J = T_J$ max, $t_p$ = 10ms sine wave pulse                                |
| V <sub>T(TO)1</sub> | Low level value of threshold voltage         | 1.46   | V     | $(16.7\% \times \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$     |
| V <sub>T(TO)2</sub> | High level value of threshold voltage        | 1.52   |       | $(I > \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$                                          |
| r <sub>t1</sub>     | Low level value of forward slope resistance  | 2.32   | mΩ    | $(16.7\% \times \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)}), T_{J} = T_{J} \text{ max.}$ |
| r <sub>t2</sub>     | High level value of forward slope resistance | 2.34   |       | $(I > \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$                                          |
| I <sub>H</sub>      | Maximum holding current                      | 600    | mA    | $T_J = 25^{\circ}C, I_T > 30A$                                                                |
| I <sub>L</sub>      | Typical latching current                     | 1000   | ''''  | $T_J = 25$ °C, $V_A = 12$ V, $Ra = 6\Omega$ , $I_G = 1$ A                                     |

# Switching

|                | Parameter                                             | ST0       | 83S       | Units | Conditions                                                                                                                                                                               |
|----------------|-------------------------------------------------------|-----------|-----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| di/dt          | Max. non-repetitive rate of rise of turned-on current | 10        | 00        | A/µs  | $T_J = T_J max$ , $V_{DRM} = rated V_{DRM}$<br>$I_{TM} = 2 x di/dt$                                                                                                                      |
| t <sub>d</sub> | Typical delay time                                    | 0.        | 80        |       | $T_{\rm J}$ = 25°C, $V_{\rm DM}$ = rated $V_{\rm DRM}$ , $I_{\rm TM}$ = 50A DC, $t_{\rm p}$ = 1μs Resistive load, Gate pulse: 10V, 5Ω source                                             |
| t <sub>q</sub> | Max. turn-off time                                    | Min<br>10 | Max<br>20 | μs    | $T_J = T_J \text{ max}, \ I_{TM} = 100\text{A}, \text{ commutating di/dt} = 10\text{A/}\mu\text{s}$ $V_R = 50\text{V}, \ t_p = 200\mu\text{s}, \ \text{dv/dt} = 200\text{V/}\mu\text{s}$ |

## Blocking

|                  | •                                                  |                                   |      |                                                                               |
|------------------|----------------------------------------------------|-----------------------------------|------|-------------------------------------------------------------------------------|
| Parameter        |                                                    | Parameter ST083S Units Conditions |      | Conditions                                                                    |
| dv/dt            | Maximum critical rate of rise of off-state voltage | 500                               | V/µs | $T_J = T_J$ max., linear to 80% $V_{DRM}$ , higher value available on request |
| I <sub>RRM</sub> | Max. peak reverse and off-state leakage current    | 30                                | mA   | $T_J = T_J \text{ max, rated } V_{DRM} / V_{RRM} \text{ applied}$             |

# Triggering

|                    | Parameter                                | ST083S | Units | Conditions                                                        |  |
|--------------------|------------------------------------------|--------|-------|-------------------------------------------------------------------|--|
| P <sub>GM</sub>    | Maximum peak gate power                  | 40     | w     | T <sub>1</sub> = T <sub>1</sub> max, f = 50Hz, d% = 50            |  |
| P <sub>G(AV)</sub> | Maximum average gate power               | 5      | 1 vv  | $I_{j} = I_{j} \text{ max}, I = 30 \text{ Hz}, \alpha / 6 = 30$   |  |
| I <sub>GM</sub>    | Max. peak positive gate current          | 5      | Α     | $T_J = T_J \text{ max, } t_p \le 5 \text{ms}$                     |  |
| +V <sub>GM</sub>   | Maximum peak positive gate voltage       | 20     | V     | T - T may t < 5mc                                                 |  |
| -V <sub>GM</sub>   | Maximum peak negative gate voltage       | 5      | v     | $T_J = T_J \text{ max, } t_p \le 5 \text{ms}$                     |  |
| I <sub>GT</sub>    | Max. DC gate current required to trigger | 200    | mA    | T - 25°C V - 12V Pa - 60                                          |  |
| V <sub>GT</sub>    | Max. DC gate voltage required to trigger | 3      | V     | $T_J = 25^{\circ}\text{C}, V_A = 12\text{V}, \text{Ra} = 6\Omega$ |  |
| I <sub>GD</sub>    | Max. DC gate current not to trigger      | 20     | mA    | T. T. may rested V. annied                                        |  |
| $V_{GD}$           | Max. DC gate voltage not to trigger      | 0.25   | V     | $T_J = T_J$ max, rated $V_{DRM}$ applied                          |  |

#### ST083S Series

Bulletin I25185 rev. C 03/03

#### Thermal and Mechanical Specifications

|                   | normal and modifications of companions    |                  |          |                                            |  |  |  |
|-------------------|-------------------------------------------|------------------|----------|--------------------------------------------|--|--|--|
|                   | Parameter                                 | ST083S           | Units    | Conditions                                 |  |  |  |
| T <sub>J</sub>    | Max. junction operating temperature range | -40 to 125       | °C       |                                            |  |  |  |
| T <sub>stg</sub>  | Max. storage temperature range            | -40 to 150       |          |                                            |  |  |  |
| R <sub>thJC</sub> | Max. thermal resistance, junction to case | 0.195            | IZ/AA/   | DC operation                               |  |  |  |
| R <sub>thCS</sub> | Max. thermal resistance, case to heatsink | 0.08             | K/W      | Mounting surface, smooth, flat and greased |  |  |  |
| Т                 | Mounting torque, ±10%                     | 15.5             | Nm       | Non-link signatural through                |  |  |  |
|                   |                                           | (137)            | (lbf-in) | Non lubricated threads                     |  |  |  |
|                   |                                           | 14               | Nm       | Lubricated threads                         |  |  |  |
|                   |                                           | (120)            | (lbf-in) | Editional timedad                          |  |  |  |
| wt                | Approximate weight                        | 130              | g        |                                            |  |  |  |
|                   | Case style                                | TO-209AC (TO-94) |          | See Outline Table                          |  |  |  |

# $\Delta R_{thJC}$ Conduction

(The following table shows the increment of thermal resistence  $R_{th/C}$  when devices operate at different conduction angles than DC)

| Conduction angle | Sinusoidal conduction | Rectangular conduction | Units | Conditions               |
|------------------|-----------------------|------------------------|-------|--------------------------|
| 180°             | 0.034                 | 0.025                  |       |                          |
| 120°             | 0.041                 | 0.042                  |       |                          |
| 90°              | 0.052                 | 0.056                  | K/W   | $T_J = T_J \text{ max.}$ |
| 60°              | 0.076                 | 0.079                  |       |                          |
| 30°              | 0.126                 | 0.127                  |       |                          |

#### Ordering Information Table



- 1 Thyristor
- 2 Essential part number
- 3 3 = Fast turn off
- 4 S = Compression bonding Stud
- 5 Voltage code: Code x 100 = V<sub>RRM</sub> (See Voltage Ratings Table)
- 6 P = Stud Base 1/2"-20UNF-2A threads
- 7 Reapplied dv/dt code (for t<sub>q</sub> Test Condition)
- 8 t<sub>q</sub> code
- 9 0 = Eyelet terminals (Gate and Aux. Cathode Leads)
  - 1 = Fast-on terminals (Gate and Aux. Cathode Leads)

| dv/dt - t <sub>q</sub> combinations available |         |    |  |  |  |
|-----------------------------------------------|---------|----|--|--|--|
|                                               | 200     |    |  |  |  |
| t <sub>q</sub> (μs)<br>up to 800V             | 10      | FN |  |  |  |
| up to 800V                                    | 20      | FK |  |  |  |
| t <sub>q</sub> (μs)<br>only for<br>1000/1200\ | 20<br>/ | FK |  |  |  |

#### Outline Table







Fig. 2 - Current Ratings Characteristics



Fig. 3 - On-state Power Loss Characteristics



Fig. 4 - On-state Power Loss Characteristics



Fig. 5 - Maximum Non-repetitive Surge Current



Fig. 6 - Maximum Non-repetitive Surge Current



Fig. 7 - On-state Voltage Drop Characteristics



Fig. 9 - Reverse Recovered Charge Characteristics



Fig. 8 - Thermal Impedance  $\mathbf{Z}_{\text{thJC}}$  Characteristic



Fig. 10 - Reverse Recovery Current Characteristics



Fig. 11 - Frequency Characteristics

#### ST083S Series

Bulletin I25185 rev. C 03/03



Fig. 12 - Frequency Characteristics



Fig. 13 - Frequency Characteristics



Fig. 14 - Maximum On-state Energy Power Loss Characteristics



Fig. 15 - Gate Characteristics

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 03/03