

ASSIGNMENT-04

STATISTICAL INFERENCE IN BIOENGINEERING

P TEJA VENKATA RAMANA KUMAR

BM23MTECH11006

Q1:-

```
import pandas as pd
df=pd.read_excel('Assignment4 data.xlsx',sheet_name='Cats')
df
   Sex Bwt
              Hwt
0
     F
        2.0
              7.0
1
     F
        2.0
              7.4
2
     F
        2.0
              9.5
3
     F
        2.1
              7.2
4
     F 2.1
             7.3
139
    M 3.7
             11.0
140
     M 3.8
             14.8
141
     M 3.8
             16.8
     M 3.9
142
             14.4
     M 3.9 20.5
143
[144 rows x 3 columns]
# Summary statistics for numerical columns
df.describe()
             Bwt
                         Hwt
count 144.000000
                  144.000000
mean
        2.723611
                   10.630556
                   2.434636
std
        0.485307
        2.000000
                    6.300000
min
25%
        2.300000
                   8.950000
50%
        2.700000
                   10.100000
        3.025000
                   12.125000
75%
                  20.500000
        3.900000
max
```

```
# Data understanding
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 144 entries, 0 to 143
Data columns (total 3 columns):
     Column Non-Null Count Dtype
#
     Sex 144 non-null object
Bwt 144 non-null float64
Hwt 144 non-null float64
 0
 1
2
dtypes: float64(2), object(1)
memory usage: 3.5+ KB
# No Null values
# 1 is descrite 2 is continous
import matplotlib.pyplot as plt
import seaborn as sns
# Bar plot for Sex (categorical variable)
plt.figure()
sns.countplot(x='Sex', data=df)
plt.title('Count of Cats by Sex')
plt.xlabel('Sex')
plt.ylabel('Count')
plt.tight_layout()
plt.show()
```



```
# Histogram for Body Weight (Bwt)
plt.figure()
sns.histplot(df['Bwt'], bins=10, kde=True)
plt.title('Histogram of Body Weight (Bwt)')
plt.xlabel('Body Weight (Bwt)')
plt.ylabel('Count')
plt.tight_layout()

plt.show()
```

Histogram of Body Weight (Bwt)


```
# Histogram for Heart Weight (Hwt)
plt.figure()
sns.histplot(df['Hwt'], bins=10, kde=True)
plt.title('Histogram of Heart Weight (Hwt)')
plt.xlabel('Heart Weight (Hwt)')
plt.ylabel('Count')
plt.tight_layout()
plt.show()
```



```
# Boxplot for Body Weight (Bwt) by Sex
plt.figure()
sns.boxplot(x='Sex', y='Bwt', data=df)
plt.title('Boxplot of Body Weight (Bwt) by Sex')
plt.xlabel('Sex')
plt.ylabel('Body Weight (Bwt)')
plt.tight_layout()

plt.show()
```

Boxplot of Body Weight (Bwt) by Sex


```
# Boxplot for Heart Weight (Hwt) by Sex
plt.figure()
sns.boxplot(x='Sex', y='Hwt', data=df)
plt.title('Boxplot of Heart Weight (Hwt) by Sex')
plt.xlabel('Sex')
plt.ylabel('Heart Weight (Hwt)')
plt.tight_layout()

plt.show()
```



```
# Plot 4: Violin plot of Heart Weight (Hwt) by Sex
plt.figure(figsize=(8, 6))
sns.violinplot(data=df, x='Sex', y='Hwt', inner='quart')
plt.title('Violin Plot of Heart Weight (Hwt) by Sex')
plt.xlabel('Sex')
plt.ylabel('Heart Weight (kg)')
plt.show()
```



```
# Scatter plot of Body Weight (Bwt) vs. Heart Weight (Hwt) colored by
Sex
sns.scatterplot(x=df['Bwt'], y=df['Hwt'], hue=df['Sex'])
plt.title('Scatter Plot of Body Weight vs. Heart Weight by Sex')
plt.show()
```

Scatter Plot of Body Weight vs. Heart Weight by Sex


```
"""Null Hypothesis (H0): There is no significant difference in mean
body weight (Bwt)
                      between male and female cats.
  Alternative Hypothesis (H1): There is a significant difference in
mean body weight (Bwt)
                      between male and female cats.
    Statistical Test: Two-sample t-test for independent samples
    0.00
from scipy.stats import ttest ind
male bwt = df[df['Sex'] == 'M']['Bwt']
female bwt = df[df['Sex'] == 'F']['Bwt']
# Perform a two-sample t-test to compare means
t stat bwt, p value bwt = ttest ind(male bwt, female bwt)
print("t-Test for Body Weight (Bwt):")
print("t-Statistic:", t stat bwt)
print("p-Value:", p_value_bwt)
```

```
t-Test for Body Weight (Bwt):
t-Statistic: 7.330666826537409
p-Value: 1.590445378625505e-11
"""Null Hypothesis (H0): There is no significant difference in mean
heart weight (Hwt)
                      between male and female cats.
  Alternative Hypothesis (H1): There is a significant difference in
mean heart weight (Hwt)
                      between male and female cats.
    Statistical Test: Two-sample t-test for independent samples
    0.000
{"type": "string"}
male hwt = df[df['Sex'] == 'M']['Hwt']
female hwt = df[df['Sex'] == 'F']['Hwt']
# Perform a two-sample t-test to compare means
t stat hwt, p value hwt = ttest ind(male hwt, female hwt)
print("\nt-Test for Heart Weight (Hwt):")
print("t-Statistic:", t stat hwt)
print("p-Value:", p value hwt)
t-Test for Heart Weight (Hwt):
t-Statistic: 5.353924104107808
p-Value: 3.379785752600854e-07
# conclusion
if p_value hwt < 0.05:
    print(f" Null hypotheses rejected.\n.There is a significant
difference in mean heart weight (Hwt) between male and female
cats ." )
else:
    print(f"Null hypotheses can not be rejected.\n.There is no
significant difference in mean heart weight (Hwt) between male and
female cats." )
  p value bwt <0.05:
    print(f" Null hypotheses rejected.\n.There is a significant
difference in mean body weight (Bwt) between male and female cats ." )
else:
    print(f"Null hypotheses can not be rejected.\n.There is no
```

```
significant difference in mean body weight (Bwt) between male and
female cats." )
Null hypotheses rejected.
.There is a significant difference in mean heart weight (Hwt) between
male and female cats .
Null hypotheses rejected.
.There is a significant difference in mean body weight (Bwt) between
male and female cats .
```

The statistical test indicates a dependency between the body weight and heart weight of the cat on gender. Therefore, it can be inferred that there is a positive ignment4 data.x1sx1 chart correlation between body weights and heart weight.

Q2:-

data=pd.read_excel('Assignment4 data.xlsx',sheet name='Labo') data

```
Unnamed: 0 Lab Spc Bat
                           Conc
                           0.29
             1 L1 S1 B1
             2 L1 S1 B1
                           0.33
1
2
            3 L1 S1 B2
                           0.33
3
             4 L1 S1 B2
                           0.32
             5 L1 S1 B3
4
                           0.34
                           . . .
                   . .
                           1.50
              L6 S7
                       В1
247
           248
248
           249 L6 S7 B2
                          1.30
              L6 S7 B2
                          1.40
249
           250
250
           251
               L6 S7
                       В3
                          1.50
251
           252
               L6 S7
                       В3
                          1.80
```

[252 rows x 5 columns]

data.set index('Unnamed: 0',inplace=True) data

		Lab	Spc	Bat	Conc
Unnamed:	0				
1		L1	S1	В1	0.29
2		L1	S1	B1	0.33
3		L1	S1	B2	0.33
4		L1	S1	B2	0.32
5		L1	S1	В3	0.34
			• •	- :	
248		L6	S 7	B1	1.50

```
249
           L6 S7 B2
                       1.30
           L6 S7
250
                   B2
                       1.40
251
           L6 S7
                   B3
                       1.50
252
           L6 S7 B3
                       1.80
[252 rows x 4 columns]
# Summary statistics for numerical columns
data.describe()
             Conc
count 252.000000
        1.921508
mean
std
        2.473207
        0.110000
min
25%
        0.467500
50%
        1.060000
75%
        1.700000
max
        9.900000
data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 252 entries, 1 to 252
Data columns (total 4 columns):
    Column Non-Null Count Dtype
#
 0
            252 non-null
    Lab
                            object
1
            252 non-null
    Spc
                            object
2
    Bat
            252 non-null
                            object
    Conc
3
            252 non-null
                            float64
dtypes: float64(1), object(3)
memory usage: 9.8+ KB
# Bar plot for Lab
plt.figure(figsize=(10, 5))
sns.countplot(x='Lab', data=data)
plt.title('Distribution of Samples by Laboratory (Lab)')
plt.xlabel('Laboratory')
plt.ylabel('Count')
plt.show()
# Bar plot for Spc (Specimen)
plt.figure(figsize=(10, 5))
sns.countplot(x='Spc', data=data)
plt.title('Distribution of Samples by Specimen (Spc)')
plt.xlabel('Specimen')
plt.ylabel('Count')
plt.show()
# Bar plot for Bat (Batch)
```

```
plt.figure(figsize=(10, 5))
sns.countplot(x='Bat', data=data)
plt.title('Distribution of Samples by Batch (Bat)')
plt.xlabel('Batch')
plt.ylabel('Count')
plt.show()
```


Distribution of Samples by Specimen (Spc)


```
# Histogram for Conc
plt.figure(figsize=(8, 5))
sns.histplot(data['Conc'], bins=20, kde=True)
plt.title('Histogram of Concentration (Conc)')
plt.xlabel('Concentration (g/kg)')
plt.ylabel('Frequency')

# Box plot for Conc
plt.figure(figsize=(8, 5))
sns.boxplot(x=data['Conc'])
plt.title('Box Plot of Concentration (Conc)')
plt.xlabel('Concentration (g/kg)')

plt.show()
```


Box Plot of Concentration (Conc)


```
# Box plot for Conc by Lab
for i in ['Lab','Spc','Bat']:
  plt.figure()
  sns.boxplot(x=i, y='Conc', data=data)
  plt.title(f'Box Plot of Concentration (Conc) by {i}')
  plt.xlabel(f'{i}')
  plt.ylabel('Concentration (g/kg)')
  plt.show()
```



```
0.00
Comparing Concentration (Conc) Across Laboratories (Lab):
Null Hypothesis (H0): There is no significant difference in mean
concentration (Conc)
                      across laboratories.
Alternative Hypothesis (H1): There is a significant difference in mean
concentration (Conc)
                      across laboratories.
Statistical Test: One-way Analysis of Variance (ANOVA)
0.00\,0
{"type":"string"}
from scipy.stats import f oneway
# Perform one-way ANOVA to test for differences in concentration by
laboratory
anova_result_lab = f_oneway(*[data[data['Lab'] == lab]['Conc'] for lab
in data['Lab'].unique()])
# Display the ANOVA result
```

```
print("ANOVA for Concentration by Laboratory:")
print("F-statistic:", anova result lab.statistic)
print("p-Value:", anova result lab.pvalue)
#conclusion
if anova_result_lab.pvalue <0.05:</pre>
    print(f"Null hypotheses rejected.\nThere is a significant
difference in mean concentration (Conc) across laboratories." )
else:
    print(f"Null hypotheses can not be rejected.\nThere is no
significant difference in mean concentration (Conc) across
laboratories" )
ANOVA for Concentration by Laboratory:
F-statistic: 0.6031212722776087
p-Value: 0.6975980669553611
Null hypotheses can not be rejected.
There is no significant difference in mean concentration (Conc) across
laboratories
```

There is no significant difference in mean concentration (Conc) across laboratories

```
"""Comparing Concentration (Conc) Across Specimens (Spc):
Null Hypothesis (H0): There is no significant difference in mean
                        concentration (Conc) across specimens.
Alternative Hypothesis (H1): There is a significant difference in mean
                        concentration (Conc) across specimens.
{"type": "string"}
# Perform one-way ANOVA to test for differences in concentration by
specimen
anova result spc = f oneway(*[data[data['Spc'] == spc]['Conc'] for spc
in data['Spc'].unique()])
# Display the ANOVA result
print("\nANOVA for Concentration by Specimen:")
print("F-statistic:", anova result spc.statistic)
print("p-Value:", anova result spc.pvalue)
# conclusion
if anova result spc.pvalue <0.05:
```

```
print(f"Null hypotheses rejected.\nThere is a significant
difference in mean concentration (Conc) across specimens." )
else:
    print(f"Null hypotheses can not be rejected.\There is no
    significant difference in mean concentration (Conc) across
    specimens" )

ANOVA for Concentration by Specimen:
F-statistic: 1218.3822990397357
p-Value: 2.782678823304331e-179
Null hypotheses rejected.
There is a significant difference in mean concentration (Conc) across
    specimens.
```

There is a significant difference in mean concentration (Conc) across specimens.

```
Comparing Concentration (Conc) Across Batches (Bat):
Null Hypothesis (H0): There is no significant difference in mean
                      concentration (Conc) across batches.
Alternative Hypothesis (H1): There is a significant difference in mean
                              concentration (Conc) across batches.
0.00
{"type": "string"}
# Perform one-way ANOVA to test for differences in concentration by
anova_result_batch = f_oneway(*[data[data['Bat'] == batch]['Conc'] for
batch in data['Bat'].unique()])
# Display the ANOVA result
print("\nANOVA for Concentration by Batch:")
print("F-statistic:", anova_result_batch.statistic)
print("p-Value:", anova_result_batch.pvalue)
# conclusion
if anova result batch.pvalue <0.05:
    print(f"Null hypotheses rejected.\nThere is a significant
difference in mean concentration (Conc) across batches." )
    print(f"Null hypotheses can not be rejected.\There is no
significant difference in mean concentration (Conc) across batches" )
```

ANOVA for Concentration by Batch: F-statistic: 0.03361378166030767

p-Value: 0.9669492712999681

Null hypotheses can not be rejected.\There is no significant

difference in mean concentration (Conc) across batches

There is no significant difference in mean concentration (Conc) across batches

what about intraction effects.?