

Capstone Project – Sprint 2

Benedict Medlam

Problem Statement

Using machine learning, how might we predict what property characteristics make for an attractive investment and beneficial home improvement, such that rental earning potential can be maximised?

Project Overview

How to invest?

How to Improve?

Identify key characteristics that influence property annual revenue:

- Number of bedrooms/bathrooms
- Pet friendly?
- Cancellation policy... stricter the better?

EDA

Feature Correlation

Preprocessing

Data Transformation

• Checkout Time

One-hot Encoding

- Property type
- Granular

Boolean Conversion

Checkout Time

Data Granularity

- Cancellation Policy
- Checkout Time

Initial Modelling

Linear Regression Model

Continuous Target Variable

Independent Variables

VS

→ Log Transformed

Standard Scaler

5-fold cross validation

Average R-squared value:

0.7

Lasso Model

Linear Regression Model

- L1 Penalty
- Feature Reduction

Decision Tree Model

Standard Scaled Independent Variables

Hyperparameters:

- Max depth
- Min samples split
- Min samples per leaf
- Max features

Grid Search Cross Validation

- 5 folds

Model 1:

- Entire train dataset Score: 0.94
- Cross validation Score: 0.75

OVERFITTING!

Model 2:

- Entire train dataset Score: 0.85
- Cross validation Score: 0.81

Next Steps

- Baseline Modelling
- More feature engineering and optimisation.
- Advanced Models
- Count vectorizing the numerous text categorical columns.
- Input these features into the various models.