Introduction to Machine Learning

Khoren Petrosyan Machine Learning. Winter 2021

Companies:

BetConstruct LLC Develandoo

Teaching:

ISTC (2018-2019) YSU (2019-2021)

ACA (2021-now)

Course Outline

- Data Visualization
- Regression Algorithms
- Classification algorithms
- Feature transformations
- Model evaluation techniques
- Neural Networks

Lecture Outline

- What is Machine Learning?
- Machine Learning types
- Practical examples in different fields
- Useful tools

Data Science vs Machine Learning

DS -> using scientific approach to extract meaning and insights from data

ML -> a group of techniques that allow computers to learn from data

Machine Learning

ML -> applying algorithms and generating results?

- Data preprocessing can be as much as 80-90% of the work
 - Data Science
 - Data cleaning
 - Transformations

What is Machine Learning?

- Data is everywhere and in every field
- Huge amounts of data collected and stored
- Machine learning techniques in our everyday lives

What is Machine Learning?

Machine learning is a study of computer algorithms that improve automatically through experience.

Training Data

Size of house

Size of garden

Number of rooms

$$$ = 1.2 \times \bigcirc + 0.7 \times \bigcirc + 3.1 \times \bigcirc$$

$$\$ = A \times \bigotimes + B \times \emptyset + C \times \bigotimes$$

Model with unknown A, B and C to be defined

< Model

< Data

Available data to determine A, B and C (to fit the model)

Machine Learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Supervised Learning

A supervised model is trained on a labeled dataset of (feature, label) pairs.

Regression Model - numerical label

Problem: Predict weight (number) given height and age

Features:

Height, Age

Label:

Weight

Height:	1.50	1.70	2.10	1.55	1.62
_					

Age: 10 24 40 20 30

Weight: 40 58 80 45 ?

Training data

Test data

Predictive Analytics

Forecasting future opportunities and risks

Demand analysis

Billboard advertisement bid

Insurance companies use cases

Etc.

Operation Efficiency

Oven temperature vs shelf-life of cookies

Call center:

Call wait time vs number of complains

Testing intuition

Support for decisions and preventing mistakes

Example: shopping hours increase -> sales increase?

Example: changing some part of device -> more satisfied customers?

Classification Model - categorical label

Problem: Predict if the object is an apple or not (True/False) given color and shape.

Features:

Color, Shape

Label:

True/False

Color: red yellow green yellow Green

Shape: round round oval round

Apple: True False False ?

Training data

Test data

More examples

Detecting spam emails (spam vs ham classification)

Music identification (recommending what the person likes)

Supervised Learning

Regression Model

V

Numerical Label

Classification Model

Categorical Label

Unsupervised Learning

An unsupervised model is trained on a unlabeled dataset that contains only features but with NO labels

Clustering model - group similar instances together

Clustering model - customer segmentation given income and age

Dimension reduction model - express data with 2-3 dimensions

Dimension reduction model - express data with 2-3 dimensions

Anomaly detection - finding outliers

Anomaly detection - finding outliers

More examples

Detecting issues on celular stations

Detecting anomalous return rates

Anomalous behavior of network users

Neural Networks

Convolutional Neural Networks

More examples

Visual search

Recommender engines

Tumor identification

Reinforcement Learning

Train a machine learning model to generate a sequence of decisions

(Model)

AGENT

- State $s \in \mathcal{S}$
- Take action $\,a\in\mathcal{A}\,$

- New state $s' \in \mathcal{S}$

ENVIRONMENT

Mario game

Autonomous car navigation

Environment: street model

Set of actions:

Scoring: penalty/reward

https://www.youtube.com/watch?v=3ROVzjkkCIA

Thank you!