Exploritory Analysis II

Exploring Lightcurve and pixel data through the Lightkurve API

This exploritory analysis will look at:

- Downloading Target Pixel Images
- Apply Appereture Masks
- Converting to Lightcurves
- Removing instrument noise
- Folding Lightcurves
- Identifying and visualising Exoplant Lightcurves

```
In [1]:
    #imports
    import pandas as pd
    import numpy as np
    import lightkurve as lk
    from lightkurve import search_targetpixelfile
    import matplotlib.pyplot as plt

In [2]:
    # import the candidates file
    file = ('../data/candidates/kepler_candidates.csv')
    kep_df = pd.read_csv(file, low_memory = False)
    kep_df.head()
```

[2]:		kepid	kepoi_name	kepler_name	koi_disposition	koi_pdisposition	koi_score	koi_fpflag_nt
	0	10797460	K00752.01	Kepler-227 b	CONFIRMED	CANDIDATE	1.000	0
	1	10797460	K00752.02	Kepler-227 c	CONFIRMED	CANDIDATE	0.969	0
	2	10811496	K00753.01	NaN	CANDIDATE	CANDIDATE	0.000	0
	3	10848459	K00754.01	NaN	FALSE POSITIVE	FALSE POSITIVE	0.000	0
	4	10854555	K00755.01	Kepler-664 b	CONFIRMED	CANDIDATE	1.000	0

5 rows × 50 columns

011+

This file contains all the kepler confirmed exoplanets and possible candidates to be used for classification

Using the Kepler ID to download Target Pixel Files

By using the kepid column to search the API the target pixel file can be downloaded other feature information that will be useful in this file are:

kepid: int

arget identification number, as listed in the Kepler Input Catalog (KIC). The KIC was derived from a ground-based imaging survey of the Kepler field conducted prior to launch.

koi score: float

A value between 0 and 1 that indicates the confidence in the KOI disposition. For CANDIDATEs, a higher value indicates more confidence in its disposition, while for FALSE POSITIVEs, a higher value indicates less confidence in that disposition.

koi_disposition : Char

The category of this KOI from the Exoplanet Archive. Current values are CANDIDATE, FALSE POSITIVE, NOT DISPOSITIONED or CONFIRMED. All KOIs marked as CONFIRMED are also

listed in the Exoplanet Archive Confirmed Planet table

koi_period : double

The interval between consecutive planetary transits (days)

Using a combination of the above, to gather and label the data for the machine learning models. First using the **kepid** and the **koi_disposition** to investigate the target pixel files of confirmed exoplanets.

Investigate a known exoplanet

kepid_6922244 kepler name Kepler-8b is a known exoplanet in the dataset with a KOI score of 0.998 and a transit period of 3.522498 days

Downloading and Visulizing the Target Pixel File

```
In [3]: # check the dataset for the above entry
    exo_df = kep_df.copy()
    exo_df = exo_df[exo_df['kepid']==6922244]
    exo_df = exo_df.reindex(columns=['kepid', 'koi_disposition', 'koi_score', 'exo_df
```

Out [3]: kepid koi_disposition koi_score koi_period 12 6922244 CONFIRMED 0.998 3.522498

```
search_result = lk.search_targetpixelfile('KIC 6922244', author='Kepler')
search_result
```

Out [4]: SearchResult containing 49 data products.

#	mission	year	author	exptime	target_name	distance
				s		arcsec
0	Kepler Quarter 00	2009	Kepler	1800	kplr006922244	0.0
1	Kepler Quarter 01	2009	Kepler	1800	kplr006922244	0.0
2	Kepler Quarter 02	2009	Kepler	60	kplr006922244	0.0

#	mission	year	author	exptime	target_name	distance		
3	Kepler Quarter 02	2009	Kepler	60	kplr006922244	0.0		
4	Kepler Quarter 02	2009	Kepler	60	kplr006922244	0.0		
5	Kepler Quarter 02	2009	Kepler	1800	kplr006922244	0.0		
6	Kepler Quarter 03	2009	Kepler	60	kplr006922244	0.0		
7	Kepler Quarter 03	2009	Kepler	60	kplr006922244	0.0		
8	Kepler Quarter 03	2009	Kepler	60	kplr006922244	0.0		
9	Kepler Quarter 03	2009	Kepler	1800	kplr006922244	0.0		
39	Kepler Quarter 12	2012	Kepler	60	kplr006922244	0.0		
40	Kepler Quarter 12	2012	Kepler	1800	kplr006922244	0.0		
41	Kepler Quarter 13	2012	Kepler	60	kplr006922244	0.0		
42	Kepler Quarter 13	2012	Kepler	60	kplr006922244	0.0		
43	Kepler Quarter 13	2012	Kepler	60	kplr006922244	0.0		
44	Kepler Quarter 13	2012	Kepler	1800	kplr006922244	0.0		
45	Kepler Quarter 14	2012	Kepler	1800	kplr006922244	0.0		
46	Kepler Quarter 15	2013	Kepler	1800	kplr006922244	0.0		
47	Kepler Quarter 16	2013	Kepler	1800	kplr006922244	0.0		
48	Kepler Quarter 17	2013	Kepler	1800	kplr006922244	0.0		
There are 49 results for when this star was individually imaged								

```
# get the most recent quarter of when the starr was imaged from the mission
most recent = len(search result.mission)
details = search_result.mission[most_recent-1]
details
```

Out[5]: 'Kepler Quarter 17'

```
# get the quarter to use for search properties
qtr = details[-2:]
qtr = int(qtr)
```

Out[6]: 17

```
# search for the collection of target pixel files for this quarter
tpf = search_targetpixelfile('KIC 6922244', author="Kepler", quarter=qtr, ca
```

Out[7]: KeplerTargetPixelFile Object (ID: 6922244)

```
# plot the first of the images
tpf.plot(frame=0)
plt.savefig('./graphs/target_pixel_6922244.jpg', bbox_inches="tight", dpi=3
plt.show()
```

Target ID: 6922244, Cadence: 70976

Pixel images contain the flux data needed to identify the exoplanet as well as create the dataset needed for the machine learning models

```
In [9]:
# print the flux values for this image
tpf.flux[0]
```

Out[9]: [[7.255898, 4.8024983, 308.1806, 615.95422, 437.19757, 126.24071], [29.922783, 48.18 [16.620655, 146.23305, 10224.45, 12988.257, 4188.5552, 296.48846], [23.350971, 486. [65.593941, 717.82678, 756.27301, 1123.9242, 521.66217, 70.44799]] $\frac{e^-}{s}$

An apereture mask can be applied to the image to visualise the pixel sources of the Flux readings

```
# plot an apereture mask overlayed on the image
tpf.plot(aperture_mask=tpf.pipeline_mask);
plt.savefig('./graphs/target_pixel_ap_mask_6922244.jpg', bbox_inches="tight
plt.show()
```

Target ID: 6922244, Cadence: 70976

With the LightKurve package it is possible to interact with the pixel files

```
In [11]:  # run interataaction
    tpf.interact()
```

Converting the Target Pixel File to useable Lightcurve

```
In [12]:
# convert the collection of targte pixel files to a lightcurve
lc = tpf.to_lightcurve(aperture_mask='all')
lc
```

Out [12]: KeplerLightCurve length=1286 LABEL="KIC 6922244" QUARTER=17 CAMPAIGN=None

time	flux	flux_err	centroid_col	centroid_row	
	electron / s	electron / s	pix	ріх	
object	float32	float32	float64	float64	
1559.2266409377262	45592.14453125	10.228622436523438	676.8112972450118	192.07152290905165	
1559.2470752079025	45620.26171875	10.229371070861816	676.8119858259928	192.07197517008095	
1559.267509578196	45591.25390625	10.22878646850586	676.810995831429	192.07181150973543	
1559.2879440486286	45591.44921875	10.22887897491455	676.8105453842174	192.07154026954547	
1559.3083783191832	45591.8125	10.22874927520752	676.8112823546404	192.0720303438852	
1559.328812689855	45609.59765625	10.229267120361328	676.8105852046192	192.07231446325775	
1559.3492471606369	45596.43359375	10.228636741638184	676.8114198720602	192.07225536266174	
1559.3696814315408	45591.1796875	10.22861385345459	676.8110931580934	192.07222875247868	
1559.390115902621	45598.77734375	10.22860050201416	676.8109345072082	192.0730532169704	

time		flux	flux_err	centroid_col	centroid_row
	1590.81826498	45464.90234375	10.200891494750977	676.7967535477575	192.10641386773565
	1590.8386995243636	45470.796875	10.20124626159668	676.7965635448386	192.1065058851837
	1590.8591338688348	45460.77734375	10.200848579406738	676.7969871858706	192.10592627354504
	1590.8795683131975	45471.359375	10.202775955200195	676.7970662125382	192.10609285870547
	1590.900002857561	45473.8984375	10.200918197631836	676.7969214609819	192.10586317009077
	1590.9204372017994	45485.6953125	10.201351165771484	676.7972761320502	192.10626165848558
	1590.9408717461629	45468.94921875	10.200958251953125	676.796997873776	192.10637932781802
	1590.9613061904092	45495.74609375	10.201493263244629	676.7964642664083	192.1059193466083
	1590.9817405346475	45485.9609375	10.201516151428223	676.7977503580191	192.10672300229498

In [13]:

```
# visualisng the light curve
lc.plot()
plt.savefig('./graphs/lc_unclean_6922244.jpg', bbox_inches="tight", dpi=300
plt.show()
```



```
In [14]:
```

```
# removing the nans and flattening the lightcurve and replot
lc = lc.remove_nans().flatten(window_length=401)
lc.plot()
plt.savefig('./graphs/lc_nan_removed_6922244.jpg', bbox_inches="tight", dpi
plt.show()
```


There are visual dips in the lightcurve every 3 days approx.

The period time from the candidates file can be used to select the time period to fold the lightcurve to better represent this dip.

```
# using the koi period to set the folding anchor
fold period = float(exo df['koi period'])
folded lc = lc.fold(period=fold period)
folded lc.plot()
plt.savefig('./graphs/lc folded 6922244.jpg', bbox inches="tight", dpi=300)
plt.show()
  1.006
                                                               KIC 6922244
  1.004
  1.002
                                               1.000
  0.998
  0.996
  0.994
  0.992
  0.990
              -1.5
                      -1.0
                               -0.5
                                        0.0
                                                 0.5
                                                         1.0
                                                                  1.5
                                    Phase [JD]
```

The folded and flattened light curve can be normalised further to show a smoother line

```
In [16]: # normalise the folded lightcurve
    normalised_lc = folded_lc.bin(time_bin_size=0.01)
    normalised_lc.plot();
    plt.savefig('./graphs/lc_normalised_6922244.jpg', bbox_inches="tight", dpi= plt.show()
```


Converting the Normalised lightcurve to pandas dataframe for export

the normalised light curve can be converted to a pandas dataframe and then can be transposed where the flux is a column of its own to be used in the classification dataset

```
In [17]:
# convert to df
df = normalised_lc.to_pandas()
df
```

Out[17]:		flux	flux_err	time_bin_start	time_bin_size	centroid_col	centroid_row	cad
	time							
	-1.755269	0.999830	0.000130	-2 days +05:45:12.738832635	864.0	676.802260	192.088872	
	-1.745269	1.000434	0.000130	-2 days +05:59:36.738832635	864.0	676.800804	192.093229	
	-1.735269	0.999868	0.000130	-2 days +06:14:00.738832635	864.0	676.802927	192.088854	
	-1.725269	0.999774	0.000112	-2 days +06:28:24.738832635	864.0	676.801443	192.093874	
	-1.715269	1.000051	0.000130	-2 days +06:42:48.738832635	864.0	676.802476	192.088987	
	•••							
	1.714731	1.000086	0.000129	1 days 17:02:00.738832634	864.0	676.798175	192.099280	
	1.724731	0.999817	0.000130	1 days 17:16:24.738832634	864.0	676.802645	192.088611	
	1.734731	0.999939	0.000112	1 days 17:30:48.738832634	864.0	676.800795	192.093972	
	1.744731	0.999883	0.000129	1 days 17:45:12.738832634	864.0	676.802249	192.088768	

time

```
In [18]: # insert an incrimented column and convert to string
    df.insert(0, 'Flux_', range(1, 1+len(df)))
    df['Flux_'] = df['Flux_'].astype(str)
    # add increment to combined column
    df['Flux'] = 'Flux ' + df['Flux_']
    df
```

Out[18]:		Flux_	flux	flux_err	time_bin_start	time_bin_size	centroid_col	centroid_ro
	time							
	-1.755269	1	0.999830	0.000130	-2 days +05:45:12.738832635	864.0	676.802260	192.08887
	-1.745269	2	1.000434	0.000130	-2 days +05:59:36.738832635	864.0	676.800804	192.09322
	-1.735269	3	0.999868	0.000130	-2 days +06:14:00.738832635	864.0	676.802927	192.08885
	-1.725269	4	0.999774	0.000112	-2 days +06:28:24.738832635	864.0	676.801443	192.09387
	-1.715269	5	1.000051	0.000130	-2 days +06:42:48.738832635	864.0	676.802476	192.08898
			•••					
	1.714731	348	1.000086	0.000129	1 days 17:02:00.738832634	864.0	676.798175	192.09928
	1.724731	349	0.999817	0.000130	1 days 17:16:24.738832634	864.0	676.802645	192.08861
	1.734731	350	0.999939	0.000112	1 days 17:30:48.738832634	864.0	676.800795	192.09397
	1.744731	351	0.999883	0.000129	1 days 17:45:12.738832634	864.0	676.802249	192.08876
	1.754731	352	1.000038	0.000112	1 days 17:59:36.738832634	864.0	676.800537	192.09436

352 rows × 10 columns

```
In [19]:
# strip out only the flux reading
df = df.reindex(columns=['Flux', 'flux'])
df
```

Out[19]: Flux flux

time		
-1.755269	Flux 1	0.999830
-1.745269	Flux 2	1.000434
-1.735269	Flux 3	0.999868

```
Flux
                                flux
               time
          -1.725269
                      Flux 4 0.999774
           -1.715269
                      Flux 5 1.000051
           1.714731 Flux 348 1.000086
           1.724731 Flux 349 0.999817
           1.734731 Flux 350 0.999939
           1.744731 Flux 351 0.999883
           # transpose the column to a row and reset the index
           df = df.set index('Flux').T
           df.reset index(inplace=True)
Out[20]: Flux index
                                                  Flux 4
                     Flux 1
                                Flux 2
                                         Flux 3
                                                          Flux 5
                                                                            Flux 7
                                                                                     Flux 8
                                                                                              Flux
                                                                   Flux 6
                 flux 0.99983 1.000434 0.999868 0.999774 1.000051 1.000045 0.999787 0.999778 0.9999
          1 rows × 353 columns
           # rename the column for the Kepler ID
           df.rename(columns={'index':'ID'}, inplace=True)
           df['ID'] = lc.meta['LABEL']
           df
Out[21]: Flux
                                                                                                Fl
                    ID
                         Flux 1
                                  Flux 2
                                           Flux 3
                                                    Flux 4
                                                            Flux 5
                                                                      Flux 6
                                                                              Flux 7
                                                                                       Flux 8
                        0.99983 1.000434 0.999868 0.999774 1.000051 1.000045 0.999787 0.999778 0.99
               6922244
          1 rows × 353 columns
           df.index.rename('Index', inplace=True)
            Flux
                      ID
                          Flux 1
                                   Flux 2
                                            Flux 3
                                                     Flux 4
                                                              Flux 5
                                                                       Flux 6
                                                                                Flux 7
                                                                                        Flux 8
          Index
                         0.99983 1.000434 0.999868 0.999774 1.000051 1.000045 0.999787 0.999778 0.9
                 6922244
          1 rows × 353 columns
           # add the disposition for labeling
           disposition = exo_df['koi_disposition'].values[0]
           df.insert(1, 'disposition', disposition )
           df
```

Out[23]:	Flux	ID	disposition	Flux 1	Flux 2	Flux 3	Flux 4	Flux 5	Flux 6	Flux /	
	Index										
	0	KIC 6922244	CONFIRMED	0.99983	1.000434	0.999868	0.999774	1.000051	1.000045	0.999787	

1 rows × 354 columns

Dataset creation

This process can be done programatically (without) the visualisations to create the dataset for applying the classification models

In []: