Восстановление снимков фМРТ по просматриваемому видеоряду

Никита Сергеевич Киселев

Московский физико-технический институт (национальный исследовательский университет)

Курс: Автоматизация научных исследований (Моя первая научная статья)/Группа 003, весна 2023 Эксперт: А.В. Грабовой

Цель исследования

Проблема

Восстановление зависимости между показаниями датчиков фМРТ и восприятием внешнего мира человеком.

Цель

Проверка линейной зависимости между последовательностью снимков фМРТ и видеорядом, просматриваемым человеком.

Решение

- Восстановление снимка фМРТ по
 - одному изображению;
 - одному изображению и предыдущему снимку.
- Исследование свойств построенных методов и проверка гипотез.

Постановка задачи

Пусть задана частота кадров $u \in \mathbb{R}$ и продолжительность $t \in \mathbb{R}$ видеоряда. Задан видеоряд

$$\mathbf{P} = [\mathbf{p}_1, \dots, \mathbf{p}_{\nu \cdot t}], \quad \mathbf{p}_i \in \mathbb{R}^{W_{\mathbf{P}} \times H_{\mathbf{P}} \times C_{\mathbf{P}}}.$$

Обозначим частоту снимков фМРТ $\mu \in \mathbb{R}$. Задана последовательность снимков

$$\mathbf{S} = [\mathbf{s}_1, \dots, \mathbf{s}_{\mu \cdot t}], \quad \mathbf{s}_i \in \mathbb{R}^{W_{\mathbf{S}} \times H_{\mathbf{S}} \times D_{\mathbf{S}}}.$$

Необходимо построить отображение

$$g(\mathbf{p}_1,\ldots,\mathbf{p}_{k_i-\nu\cdot\Delta t};\mathbf{s}_1,\ldots,\mathbf{s}_{i-1})=\mathbf{s}_i,$$
 $i=1,\ldots,\mu t, \qquad k_i=rac{i\cdot\nu}{\mu}.$

Базовая модель

Каждый снимок зависит только от одного изображения.

$$g(\mathbf{p}_{k_i-\nu\cdot\Delta t})=\mathbf{s}_i,\ i=1,\ldots,\mu t.$$

Число снимков в выборке $N=N_{\mathsf{S}}-\mu\Delta t$.

Модель и функция потерь

$$egin{aligned} f_{ijk}(\mathbf{x},\mathbf{w}_{ijk}) &= \langle \mathbf{x},\mathbf{w}_{ijk}
angle \ \mathcal{L}_{ijk}(\mathbf{w}_{ijk},\Delta t) &= \sum_{\ell=1}^{N_{\mathbf{S}}-\mu\Delta t} \left(f_{ijk}(\mathbf{x}_{\ell},\mathbf{w}_{ijk}) - v_{ijk}^{\ell}
ight)^2 \end{aligned}$$

- $oldsymbol{\mathbf{x}}_\ell = [x_1^\ell, \dots, x_d^\ell]^\mathsf{T} \in \mathbb{R}^d$ признаки изображения;
- ullet $\mathbf{w}_{ijk} = [w_1^{ijk}, \dots, w_d^{ijk}]^\mathsf{T} \in \mathbb{R}^d$ вектор параметров;
- $\mathbf{s}_{\ell} = [\mathbf{v}_{iik}^{\ell}] \in \mathbb{R}^{W_{\mathsf{S}} \times H_{\mathsf{S}} \times D_{\mathsf{S}}}$ снимок фМРТ.

Решение в базовой модели

$$\hat{\mathbf{w}}_{ijk} = \operatorname*{arg\;min}_{\mathbf{w}_{ijk}} \mathcal{L}_{ijk}(\mathbf{w}_{ijk}, \Delta t).$$

Метод наименьших квадратов

$$\hat{\mathbf{w}}_{ijk} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{v}_{ijk} = \mathbf{X}^+\mathbf{v}_{ijk},$$

- ullet $\mathbf{X} = [\mathbf{x}_1^\mathsf{T}, \dots, \mathbf{x}_N^\mathsf{T}]^\mathsf{T} = [x_i^i] \in \mathbb{R}^{N imes d}$ матрица плана;
- ullet $oldsymbol{\mathsf{v}}_{ijk} = [v_{ijk}^1, \dots, v_{ijk}^N]^\mathsf{T} \in \mathbb{R}^N$ воксель в разных снимках.

Основная модель

Каждый снимок зависит только от одного изображения и предыдущего снимка.

$$g(\mathbf{p}_{k_i-\nu\Delta t};\mathbf{s}_{i-1})=\mathbf{s}_i,\ i=1,\ldots,\mu t.$$

Число снимков в выборке $N=N_{\mathsf{S}}-\mu\Delta t-1.$

Модель и функция потерь

$$f_{ijk}(\mathbf{x}, \mathbf{w}_{ijk}) = \langle \mathbf{x}, \mathbf{w}_{ijk} \rangle$$

$$\mathcal{L}_{ijk}(\mathbf{w}_{ijk}, \Delta t) = \sum_{\ell=1}^{N_{\mathsf{S}} - \mu \Delta t - 1} \left(f_{ijk}(\mathbf{x}_{\ell}, \mathbf{w}_{ijk}) - (v_{ijk}^{\ell+1} - v_{ijk}^{\ell}) \right)^2 + \alpha \|\mathbf{w}_{ijk}\|_2^2$$

- $oldsymbol{\mathbf{x}}_\ell = [x_1^\ell, \dots, x_d^\ell]^\mathsf{T} \in \mathbb{R}^d$ признаки изображения;
- ullet $oldsymbol{w}_{ijk} = [w_1^{ijk}, \dots, w_d^{ijk}]^\mathsf{T} \in \mathbb{R}^d$ вектор параметров;
- $\mathbf{s}_{\ell} = [\mathbf{v}_{iik}^{\ell}] \in \mathbb{R}^{W_{\mathbf{S}} \times H_{\mathbf{S}} \times D_{\mathbf{S}}}$ снимок фМРТ.

Решение в основной модели

$$\hat{\mathbf{w}}_{ijk} = \operatorname*{arg\,min}_{\mathbf{w}_{ijk}} \mathcal{L}_{ijk}(\mathbf{w}_{ijk}, \Delta t).$$

Метод наименьших квадратов

$$\hat{\mathbf{w}}_{ijk} = (\mathbf{X}^\mathsf{T} \mathbf{X} + \alpha \mathbf{I})^{-1} \mathbf{X}^\mathsf{T} \mathbf{\Delta} \mathbf{v}_{ijk}.$$

- $oldsymbol{\mathsf{X}} = [\mathbf{x}_2^\mathsf{T}, \dots, \mathbf{x}_N^\mathsf{T}]^\mathsf{T} = [x_i^i] \in \mathbb{R}^{(N-1) \times d}$ матрица плана;
- I единичная матрица;
- $\Delta \mathbf{v}_{ijk} = [v_{ijk}^2 v_{ijk}^1, \dots, v_{ijk}^N v_{ijk}^{N-1}]^\mathsf{T} \in \mathbb{R}^{N-1}$ разности вокселей двух последовательных снимков.

Вычислительный эксперимент

Цель

- Проверка работоспособности предложенных методов.
 - ullet Исследование зависимости качества восстановления от гиперпараметра $\Delta t.$
- Проверка гипотез:
 - линейная зависимость между данными;
 - взаимосвязь снимков в последовательности;
 - инвариантность весов модели относительно человека.

Данные

Реальное фМРТ-обследование 1 30 испытуемых разного пола и возраста. Каждый из них просматривал короткий аудиовизуальный фильм. Продолжительность фильма t=390 с, частота кадров $\nu=25$. Частота снимков $\mu=1.64$.

¹Ссылка на датасет

Базовый метод — зависимость от гиперпараметра

Зависимость метрики MSE от гиперпараметра Δt для фиксированного испытуемого. Использовалось предварительное 8-кратное сжатие снимка.

Наблюдается минимум MSE при $\Delta t = 4$ с.

Базовый метод — восстановленный снимок

Срезы истинного и восстановленного снимков из тестовой выборки. Использовалось предварительное 4-кратное сжатие снимка. Из восстановленного снимка отброшены нефизичные значения. Далее применен фильтр Гаусса.

В рассматриваемом методе не учитывается взаимосвязь соседних снимков и вокселей. Наблюдаются большие выбросы в восстановленных значениях. Однако видны границы активных областей.

Основной метод — зависимость от гиперпараметра

Зависимость метрики MSE от гиперпараметра Δt . Использовалось предварительное 8-кратное сжатие снимка. Производилось усреднение по испытуемым. Обозначены границы среднеквадратичного отклонения.

Наблюдается минимум MSE при $\Delta t=10$ с.

Основной метод — восстановленный снимок

Срезы истинного и восстановленного снимков из тестовой выборки. Можно наблюдать разность между ними.

Качество восстановления значительно улучшилось по сравнению с базовым методом.

Основной метод — зависимость от lpha

Зависимость метрики MSE от коэффициента регуляризации α . Рассматривались коэффициенты сжатия 1, 2, 4 и 8. Производилось усреднение по испытуемым. Обозначены границы среднеквадратичного отклонения.

Оптимальное значение коэффициента lpha pprox 100.

Основной метод — распределение весов

График распределения значений компонент вектора весов модели. Производилось усреднение по всем вокселям фиксированного снимка.

Аппроксимация распределения схожа с плотностью нормального распределения.

Основной метод — инвариантность весов

Проведена проверка гипотезы инвариантности весов модели относительно человека: можно ли восстановление снимка фМРТ одного испытуемого, используя матрицу весов другого. Использовалась метрика MSE на тестовой выборке.

Матрица весов	Истинная	Подмешанная
MSE	$1.02 \cdot 10^{-4}$	$1.05 \cdot 10^{-4}$

Основной метод — случайный шум

Рассмотрено качество работы метода на случайном шуме. В качестве матрицы ${\bf X}$ взята матрица случайных чисел из [0,1). Ниже приведены срезы последнего снимка, восстановленного последовательно по всем предсказанным изменениям, и значения метрики MSE.

Выборка	Истинная	Случайный шум
MSE	$2 \cdot 10^{-3}$	10^{-1}

Заключение

- Построены базовый и основной методы восстановления снимков фМРТ по видеоряду, просматриваемому человеком.
- Оба метода показывают справедливость гипотезы о линейной зависимости между данными.
- Качество работы основного метода значительно лучше.
- Это подтверждает гипотезу о взаимосвязи снимков в последовательности.
- Проверена гипотеза инвариантности весов модели относительно человека.