DECISION TREES

Another Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Use of Decision Tree

Predict

Divide and Conquer

- Decision tress are built using a heuristic call recursive partitioning, also known as divide and conquer
- Start with the root node, which is the entire dataset, choose a feature that is the most predictive of the target class
- Continue choosing the next best candidate until a stopping criteria is reached:
 - All (or nearly all) of the nodes have the same class
 - No remaining features to distinguish among examples
 - The tree has grown to a predefined size limit

Example: Movie Releases

C5.0 Algorithm

- Uses entropy for measuring purity
- Entropy indicates how mixed the class values are (0 completely homogenous, log_2c maximum amount of disorder with c classes)

$$Entropy(S) = \sum_{i=1}^{c} -p_i log_2(p_i)$$

- lacktriangle where p_i is the proportion of values falling into class i
- E.g. if partitioning a set results in 60% in one class, and 40% in another class, then entropy = $-0.6 * \log 2(0.6) 0.4 * \log 2(0.4) = 0.97$

Definition

Entropy

lack of order or predictability; gradual decline into disorder

Information Gain

- Select two features to split (e.g. refund, marital status)
- If a split results in a higher information gain due to feature X than feature Y, then use X

$$InfoGain(F) = Entropy(S_1) - Entropy(S_2)$$

where S_1 is the segment before the split, and the partitions resulting from the split S_2

Multiple Partitions

 \blacksquare Given *n* partitions resulting from a split *S*, the entropy of the split is:

$$Entropy(S) = \sum_{i=1}^{n} w_i Entropy(P_i)$$

• where w_i is the proportion of examples falling in that partition.

Example: Movie Releases

$$-\frac{10}{30}\log_2(\frac{10}{30}) - \frac{10}{30}\log_2(\frac{10}{30}) - \frac{10}{30}\log_2(\frac{10}{30})$$

$$-\frac{10}{30}\log_2(\frac{10}{30}) - \frac{10}{30}\log_2(\frac{10}{30}) - \frac{10}{30}\log_2(\frac{10}{30})$$

1.5849

$$\frac{12}{30} * \left[-\frac{1}{12} log_2 \left(\frac{1}{12} \right) - \frac{1}{12} log_2 \left(\frac{1}{12} \right) - \frac{10}{12} log_2 \left(\frac{10}{12} \right) \right]$$

+

$$\frac{18}{30} * \left[-\frac{9}{18} \log_2(\frac{9}{18}) - \frac{9}{18} \log_2(\frac{9}{18}) \right]$$

Alternative Split

What is the Entropy?

What is the Entropy?

$$\frac{14}{30} * \left[-\frac{1}{14} log_2 \left(\frac{1}{14} \right) - \frac{3}{14} log_2 \left(\frac{3}{14} \right) - \frac{10}{14} log_2 \left(\frac{10}{14} \right) \right]$$

H

$$\frac{16}{30} * \left[-\frac{7}{16} \log_2(\frac{7}{16}) - \frac{9}{16} \log_2(\frac{9}{16}) \right]$$

Split Option 1

0.5667

Split Option 2

Split Option 1

Split Option 2

C5.0 in R

- install.packages('C50')
- library(C50)
- model <- C5.0(*train*, *class*, *trials*)
 - train is the training data frame without the classification
 - class is a factor vector with the classification for each row in train
 - trials controls the number of decision trees to be created
- p <- predict(*model*, *test*, type="class")
 - model is the model created by the C5.0 function
 - test is the test data data frame with the same feature as the training data frame
 - R
 - returns a vector of predicted class

rpart

- install.packages('rpart')
- library(rpart)
- fit <- rpart(default ~ ., data=credit, method="class")</pre>
- plot(fit)
- \blacksquare text(fit, cex=0.7)
- Clear plot:
- dev.off()

Fancy Plot

- install.packages('rattle')
- install.packages('rpart.plot')
- install.packages('RColorBrewer')
- library(rattle)
- library(rpart.plot)
- library(RColorBrewer)
- fancyRpartPlot(fit)
- pdf("tree.pdf")
- fancyRpartPlot(fit)
- dev.off()

Predict

- Prediction <- predict(fit, credit_test, type = "class")</pre>
- submit <- data.frame(Amount = credit_test\$amount, Default = Prediction)</p>