SEQUENCE LISTING

	Prouty, Stephen Zhang, Lin Stenn, Kurt	
<120>	Stearyl-CoA Desaturase Promoter	
<130>	J&J2065	
	10/016,725	
<141>	2001-10-30	
<160>	(22)	
<170>	PatentIn version 3.1	
<210>	1	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	oligonucleotide	
<400>	1	
ggttca	ccac tgtttcctga ga	22
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	oligonucleotide	
\225/	origonacicociae	
<400>	2	
gatgee	gggc agaggcccag cg	22
5 5		
<210>	3	
<211>	23	
<212>		
<213>	artificial sequence	
<220>		
<223>	oligonyalootido	
~ 443>	oligonucleotide	
<400>	3	
	ggca ggacgaggtg gca	23
55		
<210>	4	
<211>	22	
<212>		
<213>		

<220> <223>	oligonucleotide	
<400> ccgcgg	4 tgcg tggaggtccc cg	22
<210> <211>		
<212>		
<220>		
	primer	
<400> gccagt	5 caac teetegeact	20
<210>		
<211>		
<212> <213>	artificial sequence	
<220>	primer	
	6	
	ctgc agcaagtggg c	21
<210>	7	
<211>		
<212> <213>	DNA artificial sequence	
<220>	oligonucleotide	
<400>	7	
	cggc gggtggaaga g	21
<210>	8	
<211>		
<212> <213>		
<220>		
<223>		
<400> ctcttc	8 cacc cgccgctggg c	21
<210>	9	

Cont

<211>	21	
<212>	DNA '	
c2135	artificial sequence	
\Z13/	difficult bequence	
<220>		
<223>	oligonucleotide	
400		
<400>	9	
aacagag	gggg agggggagcg a	21
210	10	
<210>		
<211>		
<212>	DNA	
	artificial sequence	
10107	dioilioidi bequese	
<220>		
<223>	oligonucleotide	
<400>	10	
		0.7
tegete	cccc tcccctctgt t	21
<210>	11	
<211>		
<212>	DNA	
<213>	artificial sequence	
000		
<220>		
<223>	oligonucleotide	
<400>	11	
		21
gegeega	agcc aatggcaacg g	21
<210>	12	
<211>		
<212>	DNA	
<213>	artificial sequence	
	•	
<220>		
<223>	oligonucleotide	
<400>	12	
		21
eegttg	ccat tggctcggcg c	21
<210>	13	
	35	
<212>		
<213>	artificial sequence	
	-	
-220-		
<220>		
<223>	oligonucleotide	
<400>	13	
	aaac agaggaaagg gggagcgagg agctg	35
~~ygay	~~~~ ~_~	J J

.

al Cont. <210> artificial sequence <213> <220> oligonucleotide <223> <400> 35 agcagattgc gccgagaaaa tggcaacggc aggac <210> 15 4150 <211> DNA <213> Homo sapiens <400> 15 aggaattcat ccatttaaat catacaattt aatggctttt agtatattca caggttgtgc 60 120 atccatcaca atccatttta gaacagtttt attactccaa aaataaaccc tgcattcctt agccatcace ecceaacate etecateete ettecaagee etgggeaace accaatetae 180 tttctgtctc tataaatttg ccaattctgg acatttcata taaatggaag caaacaacat 240 gtgagacttt gtgactggct gctttcactt agcattctat ttttaaggct cattatgtta 300 cagtacttag cagtacttca ttcttttta ttctcaaatg gtattccact gtgtgggtat 360 cccatatcat attattagag acaggttctc actctgtcac ccaggctgga gtgcagtggc 420 480 acaatcatag ctcactgtaa cctcaaactc ctgggctcaa gtgatcctac tacctcagcc tccagagtag ctaggactac aggcacacac agccatacct ggctaatttt tttttttaat 540 tttcatttta tgtattcatt ttctttcttt tttgttgttg ttgttttgag atagggtctc 600 660 actttgttac ccaggctgga gggcagtggc atggtgacag ctgagcagcc ttgacttcct gggctcaagt gatcctcctg cctcagcctc ccaagtagct gggactacaa acacgtgtca 720 780 ccatgcctgg ctgatatttt ttttcttgaa acagggtatc actctgttgc ccaggctgga 840 gcctcagcat cctgagtagc tgggactaca ggcttgtgcc accaggccca gctaagtttt 900 aaaaaatgat ttttggtata gaggaggtct tgctatgttg ctcaggctgt atttttattg 960 1020 ttgagacaag gtctcactat gttgccatga tccccccacc tccacttccc aaagtgctca tettatetgt teattagtea gttgaeagae atttaggttg ttteeaettt ttgaeeatta 1080 tgaataatac tccagtgaat attcatgtat acatttgtgt gggcatatgt tttcatttct 1140

a Cons

gttgggttta tatctaggag tggaattgct ggatcccggg taatattttg acaggcagag 1200 ttcaggggaa gaaaaacttg ggaaaatgaa gcatgtttag aaatcagcaa gagtgcaggg 1260 1320 gtttttcgga gttttatttt atattctgtt gacaaatgtg cagtttgatg aagatacaag 1380 ttatactaag tgagaagtga gaattaaggc tggaataggg cgttcagagt aaaatcatga agcactttga ataccaaaat taaggagctt ggctgtaaac aaaataataa aaaatcacaa 1440 ttttttttt ttttttgaga aagagtcttg ctctttcacc ctggctggag ggcagtggtg 1500 tgatctcagc tcactgcaac tttcgcctcc cgggttcaag caattctcct gcttcagcct 1560 cccaagtagc tgggactaca ggcacttccc accatgccca gctgattttt gtatttttag 1620 tagagatggg atttcacttt gttggccaag ctggtctcaa actttttgct gtcataattg 1680 ttgtaactat tgttcctttt gctgaggtag ggcccccaga ccaaaaaaaa taaatcttag 1740 aatccaaatc agtgtgttgg tttgaccact gtcacttgag aaccacagtg tgaccagggc 1800 1860 ctcaggagta gaggtgatct ctgctcgaaa gagaaataga atgaaaatat tctccgggcc 1920 aggegtggtg geteatgeet gtaateecag caetttggga ggeeaaggea tgtggateae ctgaggtcag gagttcaaaa ccagcctggc caacatggtg aaaccccgtc tctactaaaa 1980 atacaaaaaa ttagctaagt gtggtggcgc atgcctgtaa tcccagctac ttgggagggt 2040 2100 gaggcaggag aatttettga accegggagg cagaggttge agtgaagega gatcacacca 2160 ctgcactcca gcctggggga gagagcgaga cttcctctca aaaaaacaaa aaacaaaaga 2220 attaagcaaa ttagacattg cagagagaac ctgaaggggg tcagaccacg tacagatttc 2280 tgtgccacat gccaagtact tctgaggcat gactggatga gctgtccaca tctgaaatca 2340 tccagtcttg ttcagaactt tcacaccgga cagggagcca ggactggaat gcagtctcct 2400 ggtcactggc cagagagttg gccttgaccc tgagaccagt ggccaacaaa ggagctgctt agtctacctc ccaggaaatc ccaggtgctt gtcttcctgg gaagtgaatc attggcgcag 2460 2520 cactccgtat tttctcctct tcccagggga aggatcctag ggcagtattt gggaaagaca tgggcatgga aggacaccgg gtgaatgcat agcctgcctg gttctgagct ctcatggtaa 2580 ggctcctaca gacacggaaa agatgggggc acagggacag atcagtaggg tcagagcatc 2640 2700 tcagggaccg agggcaatat ggtcctgagc agggattaag agcttgggct ctcatatggt 2760 gtttctgggc tcaactgcca gctccgtcac ttactggttg ctgtgaccat gggcaagtta ttccatctct ccatatctct ttcctcactt ttaaaatgga ataatggggt acccacctcc 2820

and

cagggtcaca	gagaggctta	cagaaaacga	ttcttgtgaa	ttggcttgca	gtaataattc	2880,
aatacctgcc	agctattctt	attccacatc	caagcccttt	cgcctgctgc	tgggtgaaaa	2940
cacatgtcag	tgtttcctga	cggtttccac	aaagaagatt	ccaaaattac	aacctgccag	3000
tctgaagaat	ctccaaaaca	tcccgcacgc	atcctggagg	cgcgggcttg	gggatgggac	3060
tgcccgcccg	ggtcctgaac	aggatgcgtg	cgcgcaggca	cacacacacc	agccagcctg	3120
tgtgtgcggc	cggagtccgg	tgcggtcccg	ggtgagcagc	gcgtggctgg	tgggcggggc	3180
agagccattg	ttcgcaggcg	taccgagccc	cccgcgctcg	cccgggaggg	aggcggggct	3240
tcccgcgtcc	ccaagctcca	gatcctgggg	tggctgccac	gtctccctgc	cacgcgcctg	3300
gggggacggg	aagacgggac	ggagatgtta	gtggtgggcg	cccccgagg	gttcaccact	3360
gtttcctgag	aaacttcccc	agtgcccacc	cacccgttct	ccgtgtgccc	gagggccggt	3420
cctgggctag	gctccgcgcc	ccagccccaa	accgggtccc	cagccccttc	cagagagaaa	3480
gctcccgacg	cgggatgccg	ggcagaggcc	cagcggcggg	tggaagagaa	gctgagaagg	3540
agaaacagag	gggagggga	gcgaggagct	ggcggcagag	ggaacagcag	attgcgccga	3600
gccaatggca	acggcaggac	gaggtggcac	caaattccct	tcggccaatg	acgagccgga	3660
gtttacagaa	gcctcattag	catttcccca	gaggcagggg	caggggcaga	ggccgggtgg	3720
tgtggtgtcg	gtgtcggcag	catccccggc	gccctgctgc	ggtcgccgcg	agcctcggcc	3780
tctgtctcct	cccctcccg	cccttacctc	cacgcgggac	cgcccgcgcc	agtcaactcc	3840
tcgcactttg	cccctgcttg	gcagcggata	aaagggggct	gaggaaatac	cggacacggt	3900
cacccgttgc	cagctctagc	ctttaaattc	ccggctcggg	gacctccacg	caccgcggct	3960
agcgccgaca	accagctagc	gtgcaaggcg	ccgcggctca	gcgcgtaccg	gcgggcttcg	4020
aaaccgcagt	cctccggcga	ccccgaactc	cgctccggag	cctcagcccc	ctggaaagtg	4080
atcccggcat	ccgagagcca	agatgccggc	ccacttgctg	caggacgatg	tgagtttccc	4140
agcctggccc						4150

ant Cont

<210> 16

<211> 16

<212> PRT

<213> Homo sapiens

<400> 16

Met Pro Ala His Leu Leu Gln Asp Asp Val Ser Phe Pro Ala Trp Pro 1 5 10 15

<210> 17 <211> 301 <212> DNA <213> mouse <400> 17 acctccacgc ctggcttcct tggctagcta tctctgcgct ctttaccctt tgctggcagc 60 120 cgataaaagg gggctgagga aatactgaac acggtcatcc catcgcctgc tctacccttt 180 aaaatcccag cccaggagat ctgtgcacag ccagaccggg ctgaacaccc atcccgagag tcaggagggc aggtttccaa gcgcagttcc gccactcgcc tacaccaacg ggctccggaa 240 ccgaagtcca cgctcgatct cagcactggg aaagtgaggc gagcaactga ctatcatcat 300 301 g <210> 18 <211> 300 <212> DNA <213> Homo sapiens <400> 18 acctccacge gggaccgcce gegecagtea actcctcgca ctttgcccct gettggcage 60 ggataaaagg gggctgagga aataccggac acggtcaccc gttgccagct ctagccttta 120 180 aatteeegge teggggaeet eeacgeaeeg eggetagege egacaaceag etagegtgea aggegeegeg geteagegeg taceggeggg ettegaaace geagteetee ggegaeeeeg 240 300 aactccgctc cggagcctca gcccctgga aagtgatccc ggcatccgag agccaagatg 19 <210> 250 DNA Homo sapiens <400> 19 accgggtccc cagccccttc cagagagaaa gctcccgacg cgggatgccg ggcagaggcc 60 120 cagcggcggg tggaagagaa gctgagaagg agaaacagag gggaggggga gcgaggagct 180 ggcggcagag ggaacagcag attgcgccga gccaatggca acggcaggac gaggtggcac caaattccct tcggccaatg acgagccgga gtttacagaa gcctcattag catttcccca 240 250 gaggcagggg <210> 20 <211> 78

ant Cont

<212> DNA

	<213>	Mouse						
	<400>	20	202200	tagagggaga	aaaaaaaa	gattgcgggt	agggaatgga	60
	gggagge	gag acgg	agaagc	cayayycaya	gggaacagca	gattgcgcct	agccaatgga	00
	aaaggca	gga caag	gtgg					78
	<210>	21						
		78						
		DNA						
	<213>	Mouse						
	<400>	21						
	gggagga	aaa aaaa	cggagc	tggaggcaga	gggaacagca	gattgtgcag	agccaatgag	60
	agcagca	gga cgag	gtgg					78
		22						
		77						
λ	<212>		_					
Ü,	<213>	Homo sap	iens					
mt	<400>	22						
101	gggaggg	gga gcga	ggagct	ggcggcagag	ggaacagcag	attgcgccga	gccaatggca	60
	acggcaggac gaggtgg					77		