第一章 质点运动学

一、描述运动的物理量

1. 位矢、位移和路程

- 位矢
 - \circ 定义: 由坐标原点到质点位置的矢量 r
 - 表达式: r = xi + yj
 - 。 大小: $r=|m{r}|=\sqrt{x^2+y^2}$
- 运动方程
 - \circ 矢量形式: r = r(t)
 - 。 分量形式:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

- 位移与路程
 - 。 位移: $\Delta m{r} = m{r}_B m{r}_A = \Delta x m{i} + \Delta y m{j}$
 - 。 大小: $|\Delta m{r}| = \sqrt{\Delta x^2 + \Delta y^2}$
 - 路程: Δs (轨迹的实际长度,标量)

2. 速度

• 平均速度

$$\overline{oldsymbol{v}} = rac{\Delta oldsymbol{r}}{\Delta t} = rac{\Delta x}{\Delta t} oldsymbol{i} + rac{\Delta y}{\Delta t} oldsymbol{j}$$

• 瞬时速度

$$oldsymbol{v} = rac{doldsymbol{r}}{dt} = rac{dx}{dt}oldsymbol{i} + rac{dy}{dt}oldsymbol{j} = v_xoldsymbol{i} + v_yoldsymbol{j}$$

- 。 大小: $|oldsymbol{v}| = \sqrt{v_x^2 + v_y^2}$
- 。 速率: $v=\frac{ds}{dt}$ (速度的大小)

3. 加速度

• 平均加速度

$$\overline{m{a}} = rac{\Delta m{v}}{\Delta t}$$

• 瞬时加速度

$$oldsymbol{a} = rac{doldsymbol{v}}{dt} = rac{d^2oldsymbol{r}}{dt^2} = a_xoldsymbol{i} + a_yoldsymbol{j}$$

。 大小:
$$|m{a}| = \sqrt{a_x^2 + a_y^2}$$

二、圆周运动

1. 线量与角量对应关系

物理量	线量表示	角量表示
位移	Δs	$\Delta heta$
速度	$v=rac{ds}{dt}$	$\omega=rac{d heta}{dt}$
加速度	$a_{ au}=rac{dv}{dt}$ (切向) $a_{n}=rac{v^{2}}{B}$ (法向)	$lpha = rac{d\omega}{dt}$

2. 匀变速圆周运动公式

• 线量关系

$$egin{cases} v = v_0 + a_ au t \ s = v_0 t + rac{1}{2} a_ au t^2 \ v^2 - v_0^2 = 2 a_ au s \end{cases}$$

• 角量关系

$$\left\{egin{aligned} \omega = \omega_0 + lpha t \ heta = \omega_0 t + rac{1}{2}lpha t^2 \ \omega^2 - \omega_0^2 = 2lpha heta \end{aligned}
ight.$$

第二章 动量与能量守恒

一、质点动量定理与守恒

1. 基本概念

• 动量: $\boldsymbol{p}=m\boldsymbol{v}$

• 冲量: $oldsymbol{I} = \int_{t_1}^{t_2} oldsymbol{F} \, dt$

2. 动量定理

$$oldsymbol{I} = \Delta oldsymbol{p} = m oldsymbol{v}_2 - m oldsymbol{v}_1$$

分量形式:

$$egin{cases} I_x = \int F_x \, dt = m(v_{2x} - v_{1x}) \ I_y = \int F_y \, dt = m(v_{2y} - v_{1y}) \end{cases}$$

3. 动量守恒定律

当系统所受合外力为零时:

$$\sum oldsymbol{F}_{ ext{ext}} = 0 \quad \Rightarrow \quad \sum m_i oldsymbol{v}_i =$$
常量

二、动能定理与机械能守恒

1. 基本概念

• 动能: $E_k = \frac{1}{2} m v^2$

• 功:
$$W = \int {m F} \cdot d{m r}$$

2. 动能定理

$$W_{
m net}=\Delta E_k=rac{1}{2}mv_2^2-rac{1}{2}mv_1^2$$

3. 机械能守恒条件

若仅有保守力做功:

$$W_{非保守力} = 0$$
 \Rightarrow $E = E_k + U = 常量$

第三章 刚体力学

一、刚体运动学

1. 运动分类

运动类型	描述	速度公式
平动	各点运动相同	$oldsymbol{v}_P = oldsymbol{v}_{ m cm}$
定轴转动	绕固定轴旋转	$oldsymbol{v} = oldsymbol{\omega} imes oldsymbol{r}$
平面运动	平动与转动的合成	$oldsymbol{v}_P = oldsymbol{v}_{ m cm} + oldsymbol{\omega} imes oldsymbol{r}_{P/ m cm}$

二、转动惯量与转动定律

1. 力矩的定义

• 力矩 (M) 是描述力对物体产生转动效果的物理量, 定义为:

$$oldsymbol{M} = oldsymbol{r} imes oldsymbol{F}$$

其中:

- \circ r 是从转轴到力的作用点的位矢 (单位: m)
- **F** 是作用力 (单位: N)
- M 是力矩 (单位: N⋅m)

力矩的方向由右手定则确定:四指从r转向F,拇指方向即为力矩方向

2. 转动惯量计算方法

• 基本定义

。 离散质点系: $J = \sum_{i=1}^n m_i r_i^2$

 \circ 连续刚体: $J=\int r^2\,dm$

• 计算技巧

。 分解法:复杂刚体分解为简单几何形状之和, $J_{\mathbb{R}}=J_1+J_2+\cdots+J_n$

。 平行轴定理: $J=J_{\rm cm}+Md^2$

 \circ 垂直轴定理(薄板): $J_z=J_x+J_y$

刚体形状	转动惯量公式	转动轴描述
细棒	$J=rac{ml^2}{12}$	转动轴通过中心与棒垂直
圆柱体	$J=rac{mR^2}{2}$	转动轴沿几何轴
薄圆环	$J=mR^2$	转动轴沿几何轴
球体	$J=rac{2mR^2}{5}$	转动轴沿球的任一直径
圆筒 (空心圆柱)	$J=rac{m}{2}(R_1^2+R_2^2)$	转动轴沿几何轴
细棒	$J=rac{ml^2}{3}$	转动轴通过棒的一端

3. 转动定律

• $\sum M = J\alpha$

三、角动量守恒

1. 角动量定义

•
$$\boldsymbol{L} = J\boldsymbol{\omega} = \boldsymbol{r} \times \boldsymbol{p}$$

2. 角动量守恒的条件

• 当合外力矩为零时:

$$\sum oldsymbol{M}_{ ext{ext}} = 0 \quad \Rightarrow \quad oldsymbol{L} = 常量$$

四、角能量

1. 角动能定义

• 角动能 (E_k) 是刚体绕固定轴转动时所具有的动能, 定义为:

$$E_k=rac{1}{2}J\omega^2$$

其中:

- \circ J 是刚体的转动惯量 (单位: kg·m²)
- \circ ω 是刚体的角速度 (单位: rad/s)
- \circ E_k 的单位是焦耳(J) 角动能是刚体转动状态的一种能量表现形式,类似于平动动能 $E_k=rac{1}{2}mv^2$

2. 角动能定理

• 角动能定理描述了外力对刚体所做的功与刚体角动能变化的关系:

$$W=\Delta E_k=rac{1}{2}J\omega_2^2-rac{1}{2}J\omega_1^2$$

其中:

- 。 W 是外力对刚体所做的功
- \circ ω_1 和 ω_2 分别是刚体的初角速度和末角速度

3. 角动能与转动定律的关系

• 结合转动定律 $\sum M = J\alpha$ 和角动能定理,可以得到:

$$W=\int Md heta=\Delta E_k$$

其中:

- 。 W 是外力矩对刚体所做的功
- M 是力矩
- ο θ 是刚体的角位移
- \circ ΔE_k 是角动能的变化量

4. 角能量守恒

• 当系统不受外力矩作用时($\sum oldsymbol{M}_{ ext{ext}}=0$),系统的总角能量守恒:

$$E_k = rac{1}{2}J\omega^2 =$$
 常量

此时,系统的角动能不会因内部作用而改变

五、守恒定律的选择

第四章、狭义相对论

一、基本假设

1. 相对性原理

- 所有惯性参考系中,物理定律具有相同形式
 - 。 不存在"绝对静止"的参考系
 - 物理规律与惯性系的运动状态无关

2. 光速不变原理

- 真空中的光速 定在所有惯性系中相同
 - 。 与光源和观察者的运动状态无关
 - \circ $cpprox 3 imes 10^8 \mathrm{m/s}$

二、洛伦兹变换

1. 坐标变换公式

• 正变换 $(S \rightarrow S')$

$$egin{cases} x' = \gamma(x-vt) \ y' = y \ z' = z \ t' = \gamma\left(t-rac{vx}{c^2}
ight) \end{cases}$$

• 逆变换 $(S' \rightarrow S)$

$$egin{cases} x = \gamma(x'+vt) \ y = y' \ z = z' \ t = \gamma(t'+rac{vx'}{c^2}) \end{cases}$$

• 洛伦兹因子

$$\gamma=rac{1}{\sqrt{1-rac{v^2}{c^2}}}=rac{1}{\sqrt{1-eta^2}}\quad (\gamma\geq 1)$$

2. 矩阵形式

• 正变换矩阵

$$egin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = egin{pmatrix} \gamma & -\gamma eta & 0 & 0 \\ -\gamma eta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} egin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$

• 逆变换矩阵

$$egin{pmatrix} ct \ x \ y \ z \end{pmatrix} = egin{pmatrix} \gamma & \gammaeta & 0 & 0 \ \gammaeta & \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} egin{pmatrix} ct' \ x' \ y' \ z' \end{pmatrix}$$

3. 广义洛伦兹变换

$$egin{aligned} ct' &= \gamma \left(ct - rac{oldsymbol{eta} \cdot oldsymbol{r}}{c}
ight) \ oldsymbol{r}' &= oldsymbol{r} + oldsymbol{eta} \left(rac{\gamma - 1}{eta^2} (oldsymbol{eta} \cdot oldsymbol{r}) - \gamma ct
ight) \end{aligned} egin{aligned} oldsymbol{eta} &= rac{oldsymbol{v}}{c} \end{aligned}$$

4. 速度变换

$$u_x'=rac{u_x-v}{1-rac{u_xv}{c^2}},\quad u_y'=rac{u_y}{\gamma\left(1-rac{u_xv}{c^2}
ight)},\quad u_z=rac{u_z}{\gamma\left(1-rac{u_xv}{c^2}
ight)}$$

三、相对论效应

1. 时间膨胀 (钟慢效应)

• $\Delta t = \gamma \Delta t_0$

△t₀: 固有时 (本征时间)

△t: 运动观测时间

2. 长度收缩

• $L = \frac{L_0}{\gamma}$

 \circ L_0 : 固有长度 (静止长度)

∘ L: 运动观测长度

3. 同时性的相对性

• 不同惯性系对"同时事件"的判断可能不同

• 时序关系取决于 $\frac{v\Delta x}{c^2}$

四、相对论动力学

1. 质速关系

$$ullet m=\gamma m_0=rac{m_0}{\sqrt{1-rac{v^2}{c^2}}}$$

*m*₀: 静质量 *m*: 动质量

2. 动量-能量关系

物理量	公式
动量	$oldsymbol{p} = \gamma m_0 oldsymbol{v}$
总能	$E=\gamma m_0c^2$
静能	$E_0=m_0c^2$
动能	$E_k=(\gamma-1)m_0c^2$
总能关系	$E^2 = p^2 c^2 + m_0^2 c^4$

3. 四维形式

• 四维位移

$$X^{\mu}=(ct,x,y,z)$$

• 四维动量

$$P^{\mu}=\left(rac{E}{c},p_{x},p_{y},p_{z}
ight)$$

第五章 热力学

一、平衡态与物态方程

1. 平衡态定义

- 系统各部分 压强相等、温度相同,物态参量 (p,V,T) 确定,与外界无能量/物质交换
- 近似平衡态: 状态变化微小可忽略时视为平衡态

2. 理想气体的物态方程

• 微观形式

$$pV = NkT$$

• N: 分子数; $k = 1.38 \times 10^{-23} \, \text{J·K}^{-1}$ (玻耳兹曼常量)

• 宏观形式

$$pV = \nu RT$$

 \circ ν : 物质的量; $R = 8.314 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

• 分子数密度形式

$$p = nkT$$

• n = N/V: 分子数密度

3. 热力学第零定律

- 若两系统分别与第三系统热平衡,则它们彼此热平衡
- 温度是热平衡的判据

二、理想气体的压强公式

1. 理想气体的微观模型

从气体动理论观点看,理想气体微观模型为:

- 分子本身大小可忽略 (可视为质点)
- 除碰撞瞬间外,分子间相互作用力忽略 (碰撞间作匀速直线运动)
- 分子间及分子与器壁碰撞为完全弹性碰撞 (动能不损失)

2. 压强公式推导

设长方体容器尺寸为 $x \times y \times z$,内含N个分子,单个分子质量m

(1) 单个分子对器壁作用

• 分子与 A_1 面碰撞时,动量变化: $\Delta p_x = -2mv_x$

• 相邻两次碰撞时间间隔: $\Delta t = rac{2x}{v_x}$

• 单分子对 A_1 面平均作用力: $F_x=2mv_x\cdot rac{v_x}{2x}=rac{mv_x^2}{x}$

(2) 所有分子对器壁作用

• N个分子对A₁面总作用力:

$$F = \sum_{i=1}^N rac{m v_{ix}^2}{x} = rac{m}{x} \sum_{i=1}^N v_{ix}^2$$

(3) 压强表达式

$$p = rac{F}{yz} = rac{m}{xyz} \sum_{i=1}^N v_{ix}^2 = rac{Nm}{V} \cdot rac{\sum v_{ix}^2}{N}$$

其中分子数密度n=N/V, x方向速度平方平均值:

$$\overline{v_x^2} = rac{\displaystyle\sum_{i=1}^N v_{ix}^2}{N}$$

(4) 统计规律应用

• 气体平衡态具有各向同性:

$$\overline{v_x^2}=\overline{v_y^2}=\overline{v_z^2}=rac{1}{3}\overline{v^2}$$

• 分子平均平动动能:

$$\overline{arepsilon_k} = rac{1}{2} m \overline{v^2}$$

3. 理想气体压强公式

$$p=rac{1}{3}nm\overline{v^2}=rac{2}{3}n\overline{arepsilon_k}=rac{1}{3}
ho\overline{v^2}$$

其中:

• n: 分子数密度 (m⁻³)

• $\overline{\epsilon_k}$: 分子平均平动动能 (J)

• $\rho = nm$: 气体密度 (kg/m^3)

4. 此过程可得到的其他结论

$$\therefore p = rac{3}{2}n\left(rac{1}{2}m\overline{v^2}
ight) \qquad p = nkT$$
 $\therefore arepsilon_k = rac{1}{2}m\overline{v^2} = rac{3}{2}kT$

三、分子自由度与热容

1. 能量均分原理

 气体处于平衡态时,分子在任何一个方向的运动都不比其他方向占有优势,分子 在各个方向运动的概率是相等的

2. 不同分子自由度与热容

分子类型	自由度	组成(平动+转动 +振动)	$C_{V,m}$	$C_{p,m}$	$\gamma = rac{C_{p,m}}{C_{V,m}}$
单原子分子(如 He)	3	3 + 0 + 0	$\frac{3}{2}R$	$\frac{5}{2}R$	$rac{5}{3}pprox 1.67$
刚性双原子分子 (如 O₂)	5	3 + 2 + 0	$\frac{5}{2}R$	$\frac{7}{2}R$	$\frac{7}{5} = 1.40$
非刚性双原子分 子	7	3 + 2 + 2	$\frac{7}{2}R$	$\frac{9}{2}R$	$rac{9}{7}pprox 1.29$
刚性多原子分子 (如 CO₂)	6	3 + 3 + 0	3R	4R	$rac{4}{3}pprox 1.33$
非刚性多(n)原子 分子	3n	线性: 3+2+3n-5 非线性: 3+3+3n-6	$\frac{3n}{2}R$	$rac{3n+2}{2}R$	$\frac{3n+2}{3n}$

3. 热容公式

• 摩尔定容热容: $C_{V,m}=rac{i}{2}R$

• 摩尔定压热容: $C_{p,m}=C_{V,m}+R$

• 热容比: $\gamma=1+rac{2}{i}$

四、麦克斯韦速率分布

1. 速率分布函数

$$f(v) = \lim_{\Delta x o \infty} rac{\Delta N}{N \Delta v} = rac{1}{n} \lim_{n o \infty} rac{\Delta N}{\Delta v}$$
以 $rac{dN}{N} = f(v) dv$

麦克斯韦速率分布函数: $f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$

2. 三种速率

• 最概然速率: $v_p = \sqrt{rac{2kT}{m}}$

• 平均速率: $\overline{v} = \sqrt{\frac{8kT}{\pi m}}$

• 方均根速率: $v_{
m rms} = \sqrt{rac{3kT}{m}}$

3. p - V 图特性

等温线:双曲线 pV =常量

• 绝热线: pV^{γ} =常量 (比等温线陡峭)

五、玻尔兹曼能量分布律与等温气压公式

1. 玻尔兹曼能量分布律

$$dN = N \Big(rac{m}{2\pi kT}\Big)rac{3}{2}\,e^{-rac{arepsilon_k}{kT}}\,4\pi v^{2dv} \ n = n_0 e^{-rac{arepsilon_p}{kT}} = n_0 e^{-rac{mgz}{kT}}$$

2. 重力场中的等温气压公式

$$p=p_0\,e^{-rac{arepsilon_p}{kT}}=p_0\,e^{-rac{mgz}{kT}}
otag \ z=rac{kT}{mg} {
m ln}\,rac{p_0}{p}=rac{RT}{Mg} {
m ln}\,rac{p_0}{p}$$

六、分子的平均碰撞频率与平均自由程

1. 基本概念与定义

- 平均碰撞频率 \overline{Z} : 单位时间内分子与其他分子碰撞的平均次数
- 平均自由程 $\bar{\lambda}$: 分子连续两次碰撞间通过路程的平均值
- 核心关系:

$$\overline{\lambda} = rac{\overline{v}}{\overline{Z}}$$

其中 \bar{v} 为分子平均速率

- 物理意义:
 - 分子碰撞实现动量、动能交换,驱动气体从非平衡态向平衡态过渡
 - 碰撞使温度均匀化 (如容器内温度差异通过碰撞消除)

2. 平均碰撞频率推导

(1) 简化模型假设

- 选定分子α以平均速率√运动,其余分子静止
- 分子视为直径d的弹性小球 (碰撞完全弹性)
- 运动轨迹为折线,碰撞发生在球心距 < d时

(2) 碰撞圆柱体模型

- 以分子α轨迹为轴, d为半径作圆柱体
- 圆柱体体积: $V=\pi d^2 \overline{v}$
- 球心在圆柱体内的分子均与α碰撞

(3) 初始公式与修正

未修正公式(仅分子α运动):

$$\overline{Z} = \pi d^2 \overline{v} n$$

其中n为分子数密度, πd^2 称碰撞截面

• 实际修正 (考虑所有分子运动):

$$\overline{Z} = \sqrt{2}\pi d^2 \overline{v} n$$

- 。 修正因子√2源于分子速率的麦克斯韦分布
- 影响因素:
 - $\circ \overline{Z} \propto n$ (分子数密度)
 - 。 $\overline{Z} \propto \overline{v}$ (分子平均速率)
 - 。 $\overline{Z} \propto d^2$ (分子有效直径平方)

3. 平均自由程公式

(1) 基本表达式

$$\overline{\lambda} = rac{1}{\sqrt{2}\pi d^2 n}$$

(2) 压强与温度形式

• 由p = nkT得:

$$\overline{\lambda} = rac{kT}{\sqrt{2}\pi d^2p}$$

- 物理含义:
 - 。 温度T一定时: $p \uparrow \Rightarrow \overline{\lambda} \downarrow$ (气体密集则自由程短)
 - 。 压强p一定时: T ↑⇒ $\overline{\lambda}$ ↑ (温度升高使碰撞间距增大)
- 与速率无关性: $\overline{\lambda}$ 独立于 \overline{v} , 仅取决于d, n, T, p

4. 有效直径与数量级

(1) 模型近似性说明

- 分子非理想球体,碰撞非完全弹性
- d为有效直径:综合反映分子相互作用

(2) 典型数值

• 标准状态下:

。
$$\overline{Z}\sim 10^9\,\mathrm{s}^{-1}$$
 (每秒约十亿次碰撞)

$$\circ$$
 $\overline{\lambda}\sim 10^{-8}-10^{-7}\,\mathrm{m}$

• 碰撞频繁性: 高频碰撞导致平均自由程极短

七、热力学第一定律及应用

1. 热力学第一定律

$$\Delta U = Q - W$$

2. 四种典型过程

原理

$$\Delta E = \Delta U = \nu C \Delta T$$

过程	条件	功 W	热量 Q	内能变化 ΔU
等容	$\Delta V = 0$	0	$Q_V = u C_{V,m} \Delta T$	$\Delta U = Q_V$
等压	p =常量	$p\Delta V$	$Q_p = u C_{p,m} \Delta T$	$\Delta U = Q_p - W$
等温	T =常量 PV =常量	$ u RT \ln rac{V_2}{V_1}$	$Q_T=W$	$\Delta U=0$
绝热	$Q=0$ $PV^{\gamma}=$ 常量	$W=rac{p_1V_1-p_2V_2}{\gamma-1}$	0	$\Delta U = -W$

八、热机效率与制冷系数

1. 热机效率

• 热机效率公式:

$$\eta = rac{W}{Q_1} = rac{Q_1 - |Q_2|}{Q_1} = 1 - rac{|Q_2|}{Q_1}$$

- Q₁: 吸热量; Q₂: 放热量 (取绝对值)
- 卡诺热机 (两等温两绝热) 效率:

$$\eta_{+$$
诺 $}=1-rac{T_2}{T_1}$

 \circ T_1 : 高温热源温度 (K) ; T_2 : 低温热源温度 (K)

2. 制冷系数

• 制冷系数公式:

$$e = rac{Q_2}{|W|} = rac{Q_2}{|Q_1| - Q_2}$$

- Q₁: 吸热量(取绝对值); Q₂: 放热量
- 卡诺制冷机制冷系数

$$e_{+}$$
诺 $=rac{Q_{2}}{|Q_{1}|-Q_{2}}=rac{T_{2}}{T_{1}-T_{2}}$

∘ T₁: 高温热源温度 (K) ; T₂: 低温热源温度 (K)

九、热力学第二定律与卡诺定理

1. 热力学第二定律

- 开尔文表述: 无法从单一热源吸热全部转化为功而不产生其他影响
- 克劳修斯表述: 热量不能自发从低温传至高温

2. 卡诺定理

卡诺定理基本结论

在温度为 T_1 的高温热源和温度为 T_2 的低温热源之间工作的热机,必须满足:

- (1) 相同热源间的任意可逆机效率相同
- (2) 任何不可逆机效率均不大于可逆机效率

(1) 可逆机效率公式

以理想气体为工作物质的卡诺热机满足:

$$\eta = 1 - rac{|Q_2|}{Q_1} = 1 - rac{T_2}{T_1}$$

Q₁: 高温热源吸热量

• Q2: 低温热源放热量 (取绝对值)

T₁: 高温热源温度 (K)T₂: 低温热源温度 (K)

(2) 不可逆机效率关系

不可逆机效率 η' 满足:

$$\eta'\leqslant 1-rac{T_2}{T_1}$$

• =: 适用于可逆机

• <: 适用于不可逆机

十、熵与统计解释

1. 熵的定义

•
$$\Delta S = \int rac{dQ_{
m rev}}{T}$$

• 熵增加原理: 孤立系统中, $\Delta S \geq 0$ (不可逆过程熵增加)

2. 玻耳兹曼熵公式

• $S = k \ln W$

∘ W: 热力学概率 (微观状态数)

第六章、静电场

一、电荷守恒定律

1. 电荷的量子化

• 元电荷: 电子电荷的绝对值 e被称为元电荷, 单位为库伦, 简称库, 符号为 C

$$e = 1.602 \times 10^{-19} \ C$$

2. 电荷守恒定律

不管系统中的电荷如何转移,系统中电荷的代数和保持不变,这就是电荷守恒定 律。

3. 库伦定律

- 库伦定义的表述:
 - 在真空中,两个静止的点电荷之间的相互作用力,其大小与它们电荷乘积成正比,与它们之间距离的二次方成反比;作用力的方向沿着两点电荷的连线,同号电荷相反,异号电荷相吸。
- 公式表述

$$m{F} = rac{1}{4\piarepsilon_0} \, rac{q_1q_2}{r^2} \, m{e_r}$$

其中 $arepsilon_0 = 8.85 imes 10^{-12} \, \, C^2 \cdot N^{-1} \cdot m^{-2} \ = 8.85 imes 10^{-12} \, \, F \cdot m^{-1}$

二、电场强度

1. 电场强度

定义: $\mathbf{E} = \frac{\mathbf{F}}{q_0}$,表明电场中某点处的电场强度**E**等于位于该点处单位试验电荷所受的电场力。

反之,则有 $\mathbf{F} = q\mathbf{E}$

2. 点电荷的电场强度

$$E = \frac{\mathbf{F}}{q_0} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \mathbf{e_r}$$
,其中Q为中心点电荷大小, q_0 为试验电荷大小

3. 电场强度叠加原理

• 遵循矢量加减原则

三、高斯定理

1. 电场强度通量

• 定义:我们把通过这个电场中某一个面的电场线数目,叫做通过这个面的电场强度通量,用符号 Φ_e 表示。

$$\Phi_e = ES\cos\theta$$

2. 高斯定理

$$\Phi_e = \oint_S oldsymbol{E} \cdot doldsymbol{S} = rac{q}{arepsilon_0}$$
 其中 q 为 S 面所围区域的电荷量

推导:

$$\begin{array}{l} :: \ E = \frac{1}{4\pi\varepsilon_0} \ \frac{q}{R^2}, d\varPhi_e = \textbf{\textit{E}} \cdot d\textbf{\textit{S}} = E \ dS \ \cos\theta = \frac{q}{4\pi\varepsilon_0} \ \frac{dS \ \cos\theta}{r^2} = \frac{q}{4\pi\varepsilon_0} \ \frac{dS'}{r^2} \\ \vdots \ d\varOmega = \frac{dS \cos\theta}{r^2}, \ \exists \mathbb{P} d\varPhi = \frac{q}{4\pi\varepsilon_0} \ d\varOmega \\ :: \ \varPhi_e = \oint_S d\varPhi_e = \oint_S \textbf{\textit{E}} \cdot d\textbf{\textit{S}} = \frac{q}{4\pi\epsilon_0} \oint_S d\varOmega \\ \vdots \ \varPhi_e = \oint_S \textbf{\textit{E}} \cdot d\textbf{\textit{S}} = \frac{q}{4\pi\epsilon_0} \\ :: \ \varPhi_e = \oint_S \textbf{\textit{E}} \cdot d\textbf{\textit{S}} = \frac{q}{\varepsilon_0} \\ :: \ \varPhi_e = \oint_S \textbf{\textit{E}} \cdot d\textbf{\textit{S}} = \frac{q}{\varepsilon_0} \end{array}$$

四、电势能

1. 静电场力所做的功

$$ullet \ \ W = q_0 \int oldsymbol{E} \ doldsymbol{l}$$

对于点电荷的直线运动
$$(A o B)$$
,则为 $W = rac{q \ q_0}{4\pi arepsilon_0} (rac{1}{r_A} - rac{1}{r_B})$

2. 静电场的环路定理

$$q_0 \oint_l m{E} \, dm{l} = 0$$

五、电势

1. 电势

$$V = rac{E_p}{q_0}$$
 其中 E_p 为电势能

2. 点电荷电场的电势

$$V = \int_{r}^{\infty} oldsymbol{E} \, doldsymbol{l} = rac{q}{4\piarepsilon_0} \, rac{1}{r}$$

六、电场强度与电势梯度

1. 等势面

• 电场中电势相等的点所构成的面,叫做等势面

2. 电场强度和电势梯度

电场中某一点的电场强度沿任一方向的分量,等于这一点的电势沿该方向的电势 变化率的负值。

即
$$E_n = -\frac{dV}{dl_n}$$
 (标量式) \leftrightarrow $\mathbf{E} = -\frac{dV}{dl_n} \mathbf{e}_n$ (矢量式)
矢量表达式为 $\mathbf{E} = -(\frac{\partial V}{\partial x}\mathbf{i} + \frac{\partial V}{\partial y}\mathbf{j} + \frac{\partial V}{\partial z}\mathbf{k})$
梯度表达为 $\mathbf{E} = -gradV = -\nabla V$

七、静电场中的导体

1. 静电平衡条件

- (1) 导体内部任何一点出的电场强度为零
- (2)导体表面处电场的方向都与导体表面垂直 (即 $U = \int_{AB} {m E} \cdot d{m l} = 0$)

2. 静电平衡时导体上的电荷分布

(1) 导体内

由于导体内有
$$m{E}=0$$
,则 $m{\varPhi}_e=\oint_S m{E}\cdot dm{S}=0=rac{q}{arepsilon_0}$

• 即静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。

(2) 导体表面

记电荷面密度为 σ ,则 $\Delta q = \sigma \Delta S$

$$\oint_{S} m{E} \cdot dm{S} = E\Delta S = rac{\sigma \Delta S}{arepsilon_{0}}$$
則 $E = rac{\sigma}{arepsilon_{0}}$

(3) 静电屏蔽

- 在静电场中,因导体的存在使某些特定的区域不受电场影响的现象称为静电屏蔽
- 空腔导体(无论接地与否)将使空腔内空间不受外电场的影响;而接地空腔导体 将使外部空间不受空腔内电场的影响。这就是空腔导体的静电屏蔽作用。

3. 静电场中的电介质

(1) 相对电容率

$$E=rac{E_0}{arepsilon_r}$$

式中 ε_r 叫做电介质的相对电容率。相对电导率 ε_r 与真空电导率 ε_0 的乘积 $\varepsilon=\varepsilon_0\varepsilon_r$ 叫做电容率。

(2) 电偶极子

• 电偶极矩: $\boldsymbol{p} = q\boldsymbol{r}_0$

• 力矩: $oldsymbol{M} = oldsymbol{p} imes oldsymbol{E}$

• 平衡时,有 $E_p = - \boldsymbol{p} \cdot \boldsymbol{E}$

(3) 电极化强度

$$m{P} = rac{\sum m{p}}{\Delta V}$$
 式中 $m{P}$ 叫做电极化强度,它的单位是 $C \cdot m^{-2}$

特殊地,对于量平行板的间电介质的电极化强度的大小,与电介质表面极化电荷面密度的大小相等。

$$oldsymbol{P} = rac{\sum oldsymbol{p}}{\Delta V} = rac{\sigma' \Delta S l}{\Delta S l} = \sigma'$$

(4) 极化电荷与自由电荷的关系

• 电场强度关系

$$E = E_0 + E'$$
 其中, E 为叠加电场, E_0 为外电场, E' 为极化电场

• 电极化强度关系

$$\mathbf{P} = (\varepsilon_r - 1)\varepsilon_0 \mathbf{E} = \chi_e \varepsilon_0 \mathbf{E}$$
 式中 $\chi_e = \varepsilon_r - 1$ 称为电介质的电极化率
在高频条件下,电介质的相对电容率 ε_r 和外电场的频率 f 是有关的。

4. 电位移(有电介质时的高斯定理)

5. 电容电容器

$$C=rac{Q}{V}$$

对于球形电容器(半径为 R) $C=4\pi arepsilon_0 R$
对于平行金属板电容器(两板间距离为 d ,面积为 S) $C=rac{Qd}{S}$ $=rac{arepsilon_0 arepsilon_r S}{d}$

• 电容器的并联

$$C = \sum C_i$$

• 电容器的串联

$$rac{1}{C} = \sum rac{1}{C_i}$$

6. 静电场的能量

(1) 电容器的电能

电容器的能量为
$$W_e=rac{Q^2}{2C}=rac{1}{2}QU=rac{1}{2}CU^2$$

(2) 静电场的能量

$$W_e = rac{C}{U^2} = rac{1}{2} rac{arepsilon S}{d} (Ed)^2 = rac{1}{2} arepsilon E^2 Sd$$

(3) 电场的能量密度

$$\omega_e = rac{1}{2}arepsilon E^2 = rac{1}{2}ED$$