CQUI/ENG. EE/AV01/QG/ PROF: EDVALDO AMARO-2016.2

A 1 1 1 1 1 (A)	DATA:
ATTING (A)	Ι)ΔΙΔ•

QUESTÃO 01

A energia de ligação do Césio metálico é 3,42 x 10 -19 J.

- (a). Calcule a frequência mínima de luz necessária para retirar elétrons do metal;
- (b). Calcule a energia cinética do elétron ejetado se for usada luz com frequência de 10¹⁵Hz para radiação do metal.

Resposta

Estratégia (a) A relação entre a energia de ligação de um elemento e a frequência da luz é dada pela Equação (7.4). A frequência mínima da luz necessária para arrancar um elétron é o ponto onde a energia cinética do elétron ejetado é igual a zero. (b) Sabendo a energia de ligação e a frequência da luz, podemos calcular a energia cinética do elétron ejetado.

Solução (a) Atribuindo EC = 0 na Equação (7.4), escrevemos

$$h\nu = EL$$

Assim,

$$\nu = \frac{\text{EL}}{h} = \frac{3,42 \times 10^{-19} \text{ J}}{6,63 \times 10^{-34} \text{ J} \cdot \text{s}}$$
$$= 5,16 \times 10^{14} \text{ s}^{-1}$$

(b) Rearranjando a Equação (7.4), obtém-se

EC =
$$h\nu$$
 - EL
= $(6,63 \times 10^{-34} \,\text{J} \cdot \text{s})(1,00 \times 10^{15} \,\text{s}^{-1}) - 3,42 \times 10^{-19} \,\text{J}$
= $3.21 \times 10^{-19} \,\text{J}$

QUESTÃO 02

Um aluno pesquisador do curso de Engenharia Elétrica do IFPB, através de uma experiência quântica, determinou que durante um salto eletrônico houve variação de energia na ordem de — 4,58 x 10⁻¹⁹J. Se inicialmente o elétron encontrava-se no nível 5, determine o nível final para essa variação e o comprimento de onda associado a essa partícula. De acordo com a imagem abaixo, que tipo de equipamento elétrico pode funcionar nessa frequência?

Estratégia São dados os estados inicial e final no processo de emissão. Podemos calcular a energia do fóton emitido usando a Equação (7.6). Então, das Equações (7.2) e (7.1), obtemos o comprimento de onda do fóton. O valor da constante de Rydberg é dado no texto.

Resolução Da Equação (7.6), escrevemos

$$\begin{split} \Delta E &= R_{\rm H} \bigg(\frac{1}{n_{\rm i}^2} - \frac{1}{n_{\rm f}^2} \bigg) \\ &= 2.18 \times 10^{-18} \, {\rm J} \bigg(\frac{1}{5^2} - \frac{1}{2^2} \bigg) \\ &= -4.58 \times 10^{-19} \, {\rm J} \end{split}$$

O sinal negativo indica que esta energia está associada a um processo de emissão. Para calcular o comprimento de onda, omitiremos o sinal negativo de ΔE , pois o comprimento de onda de um fóton deve ser positivo. Visto que $\Delta E = h\nu$ ou $\nu = \Delta E/h$, podemos calcular o comprimento de onda escrevendo

$$\lambda = \frac{c}{\nu}$$

$$= \frac{ch}{\Delta E}$$

$$= \frac{(3.00 \times 10^8 \text{ m/s})(6.63 \times 10^{-34} \text{ J} \cdot \text{s})}{4.58 \times 10^{-19} \text{ J}}$$

$$= 4.34 \times 10^{-7} \text{ m}$$

$$= 4.34 \times 10^{-7} \text{ m} \times \left(\frac{1 \text{ nm}}{1 \times 10^{-9} \text{ m}}\right) = 434 \text{ nm}$$

Verificação O comprimento de onda está na região visível da radiação eletromagnética (ver Figura 7.4). Isso está de acordo com o fato de que, como $n_f = 2$, esta transição dá lugar a uma linha espectral da série de Balmer (ver Figura 7.6)

QUESTÃO 03

Escreva os quatro conjuntos de números quânticos possíveis para um elétron em um orbital 3p

Resolução Para começar, sabemos que o número quântico principal $n \in 3$ e que o número quântico de momento angular ℓ deve ser 1 (porque estamos na presença de um orbital p).

Para $\ell=1$, há três valores de m_ℓ dados por -1, 0 e 1. Visto que o número quântico de spin eletrônico m_s pode ser $+\frac{1}{2}$ ou $-\frac{1}{2}$, concluímos que há seis maneiras possíveis para designar o elétron usando a notação (n, ℓ, m_ℓ, m_s) :

$$\begin{array}{lll} (3,1,-1,+\frac{1}{2}) & (3,1,-1,-\frac{1}{2}) \\ (3,1,0,+\frac{1}{2}) & (3,1,0,-\frac{1}{2}) \\ (3,1,1,+\frac{1}{2}) & (3,1,1,-\frac{1}{2}) \end{array}$$

QUESTÃO 04

Quantos elétrons podem ter os seguintes números quânticos em um átomo?

(a)
$$n = 2, 1 = 1$$
;

(b)
$$n = 4$$
, $l = 2$, $m_l = -2$;

(c)
$$n = 2$$
;

(d)
$$n = 3$$
, $l = 2$, $m_l = +1$.

Solução:

(a) n = 2, l = 1; no de életrons total = número de orbitais x no de elétrons permitido por orbital = $(2l + 1)2 = (2 \times 1 + 1)2 = 6$ elétrons;

(b) n = 4, l = 2, ml = -2; Observe que quando ml é especificado estamos tratando de um único orbital em particular, portanto, no de életrons total = no de elétrons permitido por orbital = 2 elétrons:

(c) n = 2; em uma camada o no de életrons total $= 2n^2 = 2 \times 2^2 = 8$ elétrons;

(d) n = 3, l = 2, ml = +1; Observe que quando ml é especificado estamos tratando de um único orbital em particular, portanto, no de életrons total = no de elétrons permitido por orbital = 2 elétrons.

QUESTÃO 05 (sobre densidade)

Um recipiente de vidro (picnômetro) tem por massa 20,2376 g quando vazio e 20,3102 g quando cheio de água a 4°C até a marca gravada. Este mesmo recipiente é, então, secado e enchido com uma solução a 4 °C até a mesma marca. O recipiente tem agora por massa 20,3300 g. Qual a densidade da solução? R: 1,004182g/Cm³

ÁBACO DE FÓRMULAS E CONSTANTES

 $R = constante de Rydb erg = .2,18 \times 10^{-18} J.$

$$u = \lambda \nu$$

$$E = h\nu$$

$$\lambda = \frac{h}{mv}$$

$$\lambda = \frac{h}{m_{\rm H}^2 - \frac{1}{n_{\rm f}^2}} \qquad \Delta E = R_{\rm H} \left(\frac{1}{n_{\rm i}^2} - \frac{1}{n_{\rm f}^2} \right)$$

$$E = h \frac{c}{\lambda}$$

 $E = h \frac{C}{\lambda}$ massa do elétron = 9,10938356 × 10⁻²² microgramas

$$h\nu = EC + EL$$

velocidade da luz $(3,00 \times 10^8 \text{ m/s})$

Diagrama de Pauling

OBS: Não é permitido dúvidas, empréstimos e os celulares devem permanecer desligados durante a AV...obg,

"Educação é o que resta depois de ter esquecido tudo que se aprendeu na escola." (Albert Einstein).