Protokol č.6

Vypracovala: Katarína Nalevanková

Odbor: 3BCHb2

Dátum: 16.11.2022

Téma č.23: Viskozimetria

Úlohy:

1. Stanovenie viskozity technického tetrametylamóniumchloridu v závislosti od teploty

Teoretický úvod:

Viskozita je schopnosť tekutej látky klásť odpor vzájomnému premiestňovaniu častíc. Keď sa zvýši teplota, tak sa zvýši aj počet častíc schopných prekonať energetickú bariéru tečenia a zmenší sa rozmer častíc. Viskozita klesá.

Poznáme rôzne spôsoby merania viskozity: Höpplerov viskozimeter, ktorý funguje na princípe merania rýchlosti, za ktorý prejde gulička kapilárou so skúmanou kvapalinou.

$$F = \tau = \eta A \frac{dv}{dx}$$

Ďalej poznáme Ubbelohdeovkapilárny viskozimeter, ktorý funguje na princípe merania času, za ktorý prejde skúmaná kvapalina kapilárou:

$$\eta = \frac{t\rho}{t_0\rho_0}\eta_0$$

Rotačný viskozimeter umožňuje merať dynamickú viskozitu priamo. Eliminuje chyby meraní veličín potrebných k výpočtu dynamickej viskozity inými metódami. Meranie je založené na otáčaní vretena, ktoré je ponorené do skúmanej kvapaliny. Vreteno sa otáča konštantnou rýchlosťou.

$$v = \frac{\eta}{\rho}$$

Tetrametylamóniumchlorid je hygroskopická bezfarebná tuhá látka, ktorá je rozpustná vo vode a polárnych rozpúšťadlách. Je to priemyselná chemikália, ktorá sa napr. využíva na výrobu aviváží. Je to široko používané chemické činidlo.

$$H_3C$$
 CH_3 CI^-

Pomôcky:

Rotačný viskozimeter, sada rotačných diskov, teplomer, Tetrametylamóniumchlorid, kadičky, termostat

Postup práce:

- 1. Skúmanú látku (technický tetrametylamóniumchlorid) zohrejeme na dvojplatničke, kým z tuhého stavu neprejde na kvapalný
- 2. Do kadičky ponoríme rotačný disk tak, aby bol ponorený v látke po značku a vložíme teplomer
- 3. Vykonávame meranie, ktoré je plne automatizované a jednotlivé hodnoty zaznamenávame po každom stupni do stuhnutia látky

Tabuľka č.1: Hodnoty viskozity za zmenu teploty t

t[°C]	Viskozita [mPa.s]
100,1	122
92	151,7
91	158,2
90	164,8
89	172,7
88	176,9
87	183,3
86	187,9
85	193,3
84	199,1
83	204,9
82	211,3
81	217,8
80	224,9
79	232,6
78	242
77	254,8
76	268,9
75	282,9
74	296,5
73	311,5
72	327,4
71	344
70	363,4
69	385,5
68	407,8
67	430
66	452,9
65	475,5

64	498,3
63	526,1
62	553,1
61	579,5
60	607,4
59	627,1
58	652,4
57	683,6
56	716,5
55	754,2
54	799,1
53	837,8
52	883,5
51	931,6
50,5	982,1
50,1	979,7
50	980,9
49,9	984,5
49,8	996,7
49,7	1003
49,4	1018
49,2	1026
49,1	1029
49	1034
48,9	1040
48,8	1045
48,7	1052
48,6	1058
48,5	1063
48,4	1068

48,3	1074
48,2	1078
48,1	1085
48	1091
47,9	1097
47,8	1101
47,7	1105
47,6	1114
47,4	1133
47,3	1141
47,2	1145
47,1	1149
47	1154
46,9	1159
46,8	1164
46,7	1169
46,6	1176
46,5	1182
46,4	1189
46,3	1195
46,2	1201
46,1	1208
46	1214
45,9	1221
45,8	1226
45,7	1232
45,6	1237
45,5	1243
45,4	1248
45,3	1257

45,2	1261
45,1	1268
45	1276
44,9	1282
44,8	1290
44,7	1298
44,6	1307
44,5	1315
44,4	1323
44,3	1332
44,2	1337
44,1	1345
44	1353
43,9	1363
43,8	1371
43,7	1379
43,6	1388
43,5	1399
43,4	1410
43,3	1421
43,2	1435
43,1	1452
43	1472

42,9	1495
42,8	1516
42,7	1542
42,6	1573
42,5	1604
42,4	1644
42,3	1682
42,2	1729
42,1	1772
42	1823
41,9	1872
41,8	1923
41,7	2066
41,6	2131
41,5	2252
41,4	2431
41,3	2647
41,2	2780
41,1	3015
41	3142
40,9	3485
40,8	3727
40,7	3968

Graf č.1: Závislosť viskozity technického tetrametylamóniumchloridu v závislosti od teploty

Záver:

Cieľom tohto praktického cvičenia bolo stanoviť viskozitu technického tetrametylamóniumchloridu v závislosti od teploty. Výsledky dokazujú, že klesajúcou teplotou viskozita rastie. V hodnotách okolo 50 °C došlo k miernemu nárastu teploty a jej opätovnému klesaniu, čo bolo spôsobené