Równania diofantyczne i arytmetyka modularna

dr inż. Bartłomiej Pawlik

1 maja 2024

Liniowe równania diofantyczne

Definicja

Równaniem diofantycznym nazywamy dowolne równanie typu

$$f(x_1, x_2, \dots, x_n) = 0,$$

w którym szukane rozwiązanie składa się z liczb całkowitych.

Definicja

Niech $a_1,a_2,\ldots,a_n\in\mathbb{Z}/\{0\}$ i niech $b\in\mathbb{Z}$. Równanie diofantyczne postaci

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$

o niewiadomych x_1, x_2, \ldots, x_n nazywamy **liniowym równaniem diofantycznym**, a liczby a_1, a_2, \ldots, a_n nazywamy współczynnikami.

Twierdzenie

- **Q** Równanie diofantyczne ax+by=c o niewiadomych x i y ma rozwiązanie, wtedy i tylko wtedy, gdy $\mathsf{NWD}(a,b)|c$.
- ② Jeżeli para x_0, y_0 jest rozwiązaniem równania diofantycznego ax + by = c, to wszystkie rozwiązania tego równania dane są wzorami

$$x = x_0 + \frac{b}{\mathsf{NWD}(a, b)} \cdot t, \qquad y = y_0 - \frac{a}{\mathsf{NWD}(a, b)} \cdot t,$$

 $\mathsf{gdzie}\ t \in \mathbb{Z}$.

Arytmetyka modularna

Definicja

Niech $m \in \mathbb{N}/\{1\}$ i $a, b \in \mathbb{Z}$.

- a przystaje do b modulo m, gdy a i b mają taką samą resztę z dzielenia przez m, co zapisujemy $a \equiv_m b$ lub $a = b \mod m$.
- W przeciwnym przypadku mówimy, że a nie przystaje do b modulo m, co zapisujemy $a \not\equiv_m b$ lub $a \not= b \mod m$.
- Liczbę m nazywamy **modułem**.

Przykład

$$15 \equiv_{12} 3, \ 15 \not\equiv_{12} 7$$

$$15 \equiv_4 3, \ 15 \equiv_4 7$$

Stwierdzenie

 $a \equiv_m b$ wtedy i tylko wtedy, gdy m|(a-b).

Stwierdzenie

Relacja przystawania modulo m w pierścieniu liczb całkowitych jest **kongruencją**, to znaczy jest relacją równoważności (zwrotna, symetryczna, przechodnia) oraz dla dowolnych liczb całkowitych a,b,c,d takich, że $a\equiv_m b$ i $c\equiv_m d$ zachodzi

- $\bullet (a+c) \equiv_m (b+d)$
- $ac \equiv_m bd$

Z definicji przystawania modulo m oraz z twierdzenia o dzieleniu z resztą wynika, że każda liczba całkowita przystaje modulo m dokładnie do jednej liczby ze zbioru reszt z dzielenia przez m, czyli zbioru $\{0,1,\ldots,m-1\}$. Każda z tych reszt określa klasę abstrakcji relacji przystawania.

Przykład

Klasy abstrakcji przystawania modulo 3:

$$[0]_3 = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$$

$$[1]_3 = \{\dots, -8, -5, -2, 1, 4, 7, 10, \dots\}$$

$$[2]_3 = \{\dots, -7, -4, -1, 2, 5, 8, 11, \dots\}$$

Na zbiorze \mathbb{Z}_m klas abstrakcji relacji przystawania modulo m definiujemy działania

ullet dodawanie modulo m:

$$[a]_m +_m [b]_m = [a+b]_m$$

ullet mnożenie modulo m:

$$[a]_m \cdot_m [b]_m = [a \cdot b]_m$$

Przykład

$$5 +_6 2 = 1$$
, $4 \cdot_8 6 = 0$.

Twierdzenie

Zbiór \mathbb{Z}_m klas abstrakcji relacji przystawania modulo m z działaniami dodawania modulo m i mnożenia modulo m jest pierścieniem przemiennym z jedynką, który nazywamy **pierścieniem reszt modulo** m.

W pierścieniu \mathbb{Z}_6 obliczyć 2+4, 1-3, -3, 5^{-1} oraz 2^{-1} .

$$2+4=0$$
 (ponieważ $6\equiv_6 0$) $1-3=4$ (ponieważ $-2\equiv_6 4$) $-3=3$ (ponieważ $-3\equiv_6 3$) $5^{-1}=5$ (ponieważ $5\cdot 5=25\equiv_6 1$)

 2^{-1} nie istnieje, gdyż każdy z iloczynów $2\cdot 0,\, 2\cdot 1,\, 2\cdot 2,\, 2\cdot 3,\, 2\cdot 4$ i $2\cdot 5$ nie przystaje do 1 modulo 6.

Stwierdzenie

Element $a \in \mathbb{Z}_m$ jest odwracalny wtedy i tylko wtedy, gdy $a \perp m$.

W szczególności, pierścień reszt modulo m jest ciałem wtedy i tylko wtedy, gdy m jest liczba pierwsza.

Definicja

Równanie w pierścieniu reszt modulo m nazywamy **równaniem modularnym**.

Zauważmy, że <u>każde</u> równanie modularne można traktować jako równanie diofantyczne. Wynika to z faktu, że $a \equiv_m b$ wtedy i tylko wtedy, gdy istnieje liczba całkowita k taka, że a+mk=b.

Twierdzenie

- Równanie ax=b ma rozwiązanie w \mathbb{Z}_m wtedy i tylko wtedy, gdy $\mathsf{NWD}(a,m)|b$.
- Jeżeli x_0 jest rozwiązaniem równania ax=b w \mathbb{Z}_m , to liczba różnych rozwiązań tego równania w \mathbb{Z}_m wynosi $\mathsf{NWD}(a,m)$ oraz każde rozwiązanie ma postać

$$x_t = x_0 +_m t \cdot \frac{m}{\mathsf{NWD}(a, m)}$$

dla $t \in \{0, 1, \dots, \mathsf{NWD}(a, m) - 1\}.$

Twierdzenie

Niech $a, b, c, d \in \mathbb{Z}$ i $m, k \in \mathbb{N}/\{1\}$.

- $a \equiv_m b$ wtedy i tylko wtedy, gdy $ak \equiv_{mk} bk$.
- Jeżeli $a \equiv_m b$, to $ac \equiv_m bc$.
- Jeżeli $ac \equiv_m bc$ oraz $c \perp m$, to $a \equiv_m b$.
- Jeżeli $a \equiv_{mk} b$, to $a \equiv_{m} b$ oraz $a \equiv_{k} b$.
- Jeżeli $a \equiv_m b$ oraz $a \equiv_k b$ oraz $m \perp k$, to $a \equiv_{mk} b$.

Obliczyć 7^{-1} w \mathbb{Z}_{15} .

Szukamy rozwiązania równania 7x=1 w \mathbb{Z}_{15} . Zauważmy, że rozwiązanie istnieje, ponieważ $7 \perp 15$.

Mnożąc obustronnie równanie $7x \equiv_{15} 1$ przez 2 otrzymujemy

$$14x \equiv_{15} 2,$$

a z faktu $14 \equiv_{15} -1$ otrzymujemy

$$-1 \cdot x \equiv_{15} 2,$$

więc

$$x \equiv_{15} -2 \equiv_{15} 13.$$

Ostatecznie $7^{-1} = 13$ w \mathbb{Z}_{15} .

Sprawdzenie wyniku: $7 \cdot 13 = 91 = 6 \cdot 15 + 1$.

Rozwiązać równanie 10x + 9 = 17 w \mathbb{Z}_{24} .

Po obustronnym odjęciu liczby 9 otrzymujemy $10x \equiv_{24} 8$.

Zauważmy, że $\mathsf{NWD}(10,24) = 2$, więc - po pierwsze - równanie jest rozwiązywalne (gdyż 2|8) oraz - po drugie - posiada dokładnie 2 rozwiązania w \mathbb{Z}_{24} . Mnożąc otrzymane równanie obustronnie przez 5 dostajemy

$$50x \equiv_{24} 40$$
,

więc (biorąc pod uwagę, że $50 \equiv_{24} 2$ i $40 \equiv_{24} 16$) mamy

$$2x \equiv_{24} 16.$$

Nietrudno zauważyć, że jednym z rozwiązań ostatniego równania jest $x_0=8$. Drugie równanie ma postać

$$x_1 = x_0 +_{24} 1 \cdot \frac{24}{\mathsf{NWD}(10, 24)} = 8 +_{24} 1 \cdot \frac{24}{2} = 20,$$

więc ostatecznie rozwiązaniami zadania są liczby 8 oraz 20.

Twierdzenie Eulera

Dla $a \in \mathbb{Z}$ i $m \in \mathbb{N}/\{1\}$ takich, że $a \perp m$ zachodzi

$$a^{\varphi(m)} \equiv_m 1.$$

Małe twierdzenie Fermata

Dla $a \in \mathbb{Z}$ i $p \in \mathbb{P}$ takich, że $a \perp p$ zachodzi

$$a^{p-1} \equiv_p 1.$$

Przykład

Wyznaczyć ostatnią cyfrę liczby 7^{2022} .

Zadanie jest równoważne z określeniem wartości liczby 7^{2022} modulo 10.

Zauważmy, że

$$7^2 = 49 \equiv_{10} 9 \equiv_{10} (-1).$$

7atem

$$7^{2022} \equiv_{10} (7^2)^{1011} \equiv_{10} (-1)^{1011} = -1 \equiv_{10} 9.$$

Ostatnia cyfra liczby 7^{2022} jest 9.

Algorytm szybkiego potęgowania modularnego

Algorytm służy do obliczania wartości a^n w \mathbb{Z}_m dla dużych wartości m i n. Polega on na iteracyjnym obliczaniu wartości (modulo m) funkcji rekurencyjnej

$$G(n) = \left\{ \begin{array}{cc} a & \text{dla } n = 1 \\ \left(G\left(\frac{n}{2}\right)\right)^2 & \text{dla } n = 2k \\ a \cdot \left(G\left(\frac{n-1}{2}\right)\right)^2 & \text{dla } n = 2k+1 \end{array} \right.$$

gdzie k jest liczbą całkowitą dodatnią.

- $\bullet w := a$
- ullet Obliczyć reprezentację binarną liczby n, czyli $n=(1n_sn_{s-1}\cdots n_1n_0)_2$
- ullet Dla wszystkich $k \in \{s, s-1, \dots, 1, 0\}$ wykonać w \mathbb{Z}_m
 - ightharpoonup jeżeli $n_k = 0$ to $w \leftarrow w^2$
 - ightharpoonup jeżeli $n_k = 1$, to $w \leftarrow a \cdot w^2$
- \bullet $a^n = w$

Przykład (pierwszy sposób)

Wyznaczyć przedostatnią cyfrę liczby 7^{2022} .

Aby rozwiązać zadanie wystarczy obliczyć wartość wyrażenia 7^{2022} modulo 100.

Wykładnik reprezentujemy w postaci binarnej: $2022 = 11111100110_2$.

Wypisujemy w tabeli cyfry reprezentacji binarnej od końca i wykonujemy działania:

1	w = 7
1	$w = 7 \cdot 7^2 = 343 \equiv_{100} 43$
1	$w = 7 \cdot 43^2 = 12943 \equiv_{100} 43$
1	$w = 7 \cdot 43^2 = 12943 \equiv_{100} 43$
1	$w = 7 \cdot 43^2 = 12943 \equiv_{100} 43$
1	$w = 7 \cdot 43^2 = 12943 \equiv_{100} 43$
0	$w = 43^2 = 1849 \equiv_{100} 49$
0	$w = 49^2 = 2401 \equiv_{100} 1$
1	$w = 7 \cdot 1^2 = 7$
1	$w = 7 \cdot 7^2 = 343 \equiv_{100} 43$
0	$w = 43^2 = 1849 \equiv_{100} 49$

Wartość liczby 7^{2022} modulo 100 to 49, więc przedostatnia cyfra liczby 7^{2022} to 4.

Przykład (drugi sposób)

Wyznaczyć przedostatnią cyfrę liczby 7^{2022} .

Zauważmy, że można uprościć obliczeniowo poprzednie rozwiązanie redukując wykładnik przy pomocy twierdzenia Eulera.

$$\varphi(100) = \varphi(2^2 \cdot 5^2) = 100 \cdot \frac{1}{2} \cdot \frac{4}{5} = 40 \text{ oraz } 2022 = 40 \cdot 50 + 22.$$

Zatem

$$7^{2022} = 7^{40 \cdot 50 + 22} = (7^{40})^{50} \cdot 7^{22} = 100 \ 1^{50} \cdot 7^{22} = 7^{22}.$$

Kontynuujemy zgodnie z algorytmem szybkiego potęgowania modularnego. $22=10110_2$, więc rozpisujemy tabelę

Ponownie okazało się, że przedostatnią cyfrą liczby 7^{2022} jest cyfra 4.

1 maia 2024

Chińskie twierdzenie o resztach

Niech $m_1,m_2,\ldots,m_n\in\mathbb{N}/\{1\}$ będą parami względnie pierwsze oraz niech $r_1,r_2,\ldots,r_n\in\mathbb{Z}$. Wtedy układ równań

$$\begin{cases} x \equiv_{m_1} r_1 \\ x \equiv_{m_2} r_2 \\ \vdots \\ x \equiv_{m_n} r_n \end{cases}$$

ma dokładnie jedno rozwiązanie modulo $M=m_1\cdot m_2\cdot\ldots\cdot m_n$ postaci

$$x = N_1 M_1 + N_2 M_2 + \ldots + N_n M_n,$$

gdzie $M_i=\frac{M}{m_i}$ oraz N_i jest rozwiązaniem równania $M_iN_i\equiv_{m_i}r_i$ dla $i=1,2,\ldots,n$.

Oczywiście rozwiązania rozpatrywanego układu równań w zbiorze liczb całkowitych mają postać $x=N_1M_1+N_2M_2+\ldots+N_nM_n+Mt$, gdzie t jest dowolną liczbą całkowitą.

Wyznaczyć najmniejszą liczbę naturalną spełniającą układ kongruencji $\left\{\begin{array}{l}x\equiv_61\\x\equiv_{11}6\end{array}\right.$

 ${\sf Zauważmy}$, że mamy $m_1=6$, $m_2=11$, $r_1=1$ i $r_2=6$.

Chińskie twierdzenie o resztach orzeka, że najmniejsze naturalne rozwiązanie układu jest liczbą mniejszą od 66.

 $M_1=11$ i $M_2=6$. Otrzymujemy równania

$$11 \cdot N_1 \equiv_6 1 \text{ oraz } 6 \cdot N_2 \equiv_{11} 6.$$

Rozwiązaniami powyższych równań są $N_1=5$ oraz $N_2=1$. Zatem

$$x = 5 \cdot 11 + 1 \cdot 6 = 61.$$

Wyznaczyć najmniejszą liczbę naturalną spełniającą układ kongruencji

$$\begin{cases} x \equiv_2 1 \\ x \equiv_3 1 \\ x \equiv_5 3 \end{cases}$$

 ${\sf Z}$ danych zadania otrzymujemy $m_1=2,\,m_2=3,\,m_3=5,\,r_1=r_2=1$ oraz $r_3=3.$

Mamy $M_1=3\cdot 5=15$, $M_2=2\cdot 5=10$ oraz $M_3=2\cdot 3=6$. Otrzymujemy równania

$$15 \cdot N_1 \equiv_2 1$$
, $10 \cdot N_2 \equiv_3 1$, $6 \cdot N_3 \equiv_5 3$.

Rozwiązaniami powyższych równań są $N_1=1$, $N_2=1$ oraz $N_3=3$. Zatem

$$x = 1 \cdot 15 + 1 \cdot 10 + 3 \cdot 6 = 43 \equiv_{30} 13.$$

Ostatecznie najmniejszą liczbą naturalną spełniającą dany układ kongruencji jest 13.