MC558 - Projeto e Análise de Algoritmos II Lista de Exercícios 2

Os exercícios sem marcas são (ou deveriam ser) relativamente simples. Os exercícios marcados com (*) exigem alguma reflexão.... Os exercícios marcados com (**) são mais difíceis.

1. Mostre que os grafos da Figura 1 não são isomorfos.

Figura 1: Grafos não isomorfos.

2. Determine:

(a) o número de isomorfismos entre os grafos G e H da Figura 2, e

Figura 2: Grafos simples isomorfos.

3. Desenhe:

- (a) todos os grafos simples não isomorfos de ordem 4,
- (b) todos os grafos simples cúbicos não isomorfos de ordem no máximo 8.
- 4. Mostre que o n-hipercubo Q_n e o reticulado booleano BL_n são isomorfos (veja a Lista 1).
- 5. Um grafo simples G é auto-complementar se $G \cong \bar{G}$. Mostre que
 - (a) P_4 e C_5 são auto-complementares,
 - (b) todo grafo auto-complementar é conexo,

- (c) se G é auto-complementar, então G possui 4k ou 4k+1 vértices, para algum inteiro $k \geq 0$,
- (d) todo grafo auto-complementar com 4k + 1 vértices possui um vértice de grau 2k.
- 6. Seja G o subgrafo de Q_{2k+1} (o (2k+1)-cubo) induzido pelos vértices cuja quantidade de zeros e uns diferem de 1 (ou seja, contém k zeros e k+1 uns, ou contém k+1 zeros e k uns). Prove que G é regular e calcule o número de vértices, o número de arestas e a cintura de G. Observação: a cintura de G é o comprimento de um circuito mais curto em G. Para mostrar que a cintura de G é igual a ℓ , você precisa (i) exibir um ciclo de comprimento ℓ e (ii) mostrar que não existe ciclo de comprimento menor que ℓ .
- 7. Mostre que para todo grafo G e todo subconjunto S de V(G) vale que:

$$\sum_{v \in S} d(v) = 2|E(G[S])| + |\partial(S)|.$$

Você pode fazer por contagem. Se quiser ser mais preciso, use indução no tamanho de S.

- 8. Prove ou mostre um contra-exemplo para cada uma das afirmações abaixo:
 - (a) Todo caminho é uma trilha.
 - (b) Um grafo é conexo se e somente se algum de seus vértices é adjacente a todos os outros.
 - (c) Todo passeio fechado contém um ciclo.
 - (d) Todo subgrafo de um grafo bipartido é bipartido.
 - (e) Todo subgrafo de um grafo completo é completo.
 - (f) Todo subgrafo induzido de um grafo completo é completo.
 - (g) Todo subgrafo de um grafo conexo é conexo.
 - (h) Todo subgrafo induzido de um grafo conexo é conexo.
- 9. (a) Mostre que todo grafo k-regular com cintura quatro tem pelo menos 2k vértices. **Dica:** tome um vértice arbitrário u e olhe sua vizinhança. Com a informação da cintura, deduza algo sobre N(u). Repita o argumento para cada vértice em N(u).
 - (b) Para todo inteiro $k \geq 2$, determine todos os grafos k-regulares com cintura quatro que têm exatamente 2k vértices.
- 10. (a) Mostre que todo grafo k-regular com cintura cinco tem pelo menos $k^2 + 1$ vértices.
 - (b) Para k = 2, 3, determine todos os grafos k-regulares com cintura cinco que tem exatamente $k^2 + 1$ vértices.
- 11. Seja W um passeio fechado que não contém um ciclo. Mostre que alguma aresta aparece repetida **consecutivamente** em W (em direções opostas).
- 12. (*) Seja e uma aresta que aparece um número ímpar de vezes em um passeio fechado W. Mostre que W contém um ciclo do qual e faz parte.

- 13. (a) Mostre um contra-exemplo para a seguinte afirmação: se W é um passeio ímpar de u a v em um grafo G, então W contém um caminho ímpar de u a v.
 - (b) Prove a seguinte afirmação: se W é um passeio ímpar de u a v em um grafo G, então W contém um caminho ímpar de u a v ou contém um ciclo ímpar.
- 14. Prove que se um grafo simples G é desconexo então seu complemento \bar{G} é conexo. A recíproca é verdadeira?
- 15. (*) Mostre que se G é um grafo simples com n vértices e mais que $\binom{n-1}{2}$ arestas, então G é conexo. Mostre que isso é o melhor possível exibindo para cada $n \geq 2$ um grafo simples desconexo com n vértices e exatamente $\binom{n-1}{2}$ arestas.
- 16. (*) Mostre que se G é um grafo simples tal que $\delta(G) > (n-2)/2$, então G é conexo. Mostre que isto é o melhor possível exibindo para cada $n \ge 2$ par um grafo simples desconexo com $\delta(G) = (n-2)/2$.