EXAM 2

You will also need to be able to draw and label (axes and intercepts) of diagnostic Lineweaver-Burk plots for inhibitors

- 1. Some non-serine proteases contain the following catalytic moiety
 - a. Asp
 - b. Cys
 - c. Arg
 - d. a and b
 - e. all of the above
- 3. The enzyme that catalyzes the following reaction belongs to which enzyme class?

$$O_2CCH=CHCO_2^{-} + H_2O \rightarrow O_2CCH(OH)CH_2CO_2^{-}$$

- a. oxidoreductase
- b. transferase
- c. hydrolase
- d. isomerase
- e. lyase
- 5. The β - α - β super-secondary structure is often used to form
 - a. coiled coils
 - b. β-hairpins
 - c. β-barrels
 - d. a & c
 - e. b & c
- 6. The chaperones hsp60 and hsp70
 - a. degrade incorrectly folded proteins
 - b. serve as templates for protein folding
 - c. use the energy from ATP cleavage to catalyze protein folding
 - d. only help proteins fold correctly after heat shock
- 7. Predicting secondary structure from primary structure based only on the probabilities with which amino acids are found in the various secondary structures of known proteins is
 - a. accurate most of the time
 - b. no better than 50% accurate
 - c. almost never accurate
 - d. is the best that can be done at present
- 8. The ψ angle refers to the amount of rotation about which bond(s) in the peptide backbone?
 - a. N-C_α
 - b. C_{α} - $C_{carbonyl}$
 - c. C_{carbonyl}-N
 - d. a & b
 - e. a & c
- 9. Parallel beta sheets are found most frequently in the interior of proteins because:
 - a. the hydrogen bonds between strands in parallel sheets aren't straight

- b. the side chains of the residues which form parallel sheet have less steric hindrance
- c. not all of the peptide carbonyls in parallel sheets can participate in H-bonding
- d. all of the above
- 10. Proline is unique among the amino acids because
 - a. it is the only amino acid whose alpha carbon is not chiral
 - b. it exists naturally in two diastereomeric forms
 - c. its φ angle is fixed
 - d. its alpha amino group is a tertiary amine
- 11. Which of the following factors will influence the native conformation of a protein?
 - a. pH of the solution
 - b. concentration of salt in solution
 - c. sequence of the protein
 - d. all of the above
 - e. a and c
- 12. How many more amino acid residues are present in a 5 nm long α -helix than in a β -strand of the same length
 - a. 12
 - b. 15
 - c. 20
 - d. 25
- 13. Urea and guanidinium chloride denature proteins
 - a. irreversibly by reacting with asn residues
 - b. reversibly by competing for water of hydration
 - c. by disrupting the structure of water and forming hydrogen bonds with the polypeptide
 - d. by extensive van der Waal's interactions with the protein
 - e. none of the above
- 14. Consider the oligopeptide, AEFGLKMEP, which is on the surface of a protein. What secondary structure would you predict for this peptide?
 - a. α helix
 - b. β conformation
 - c. γ helix
 - d. collagen helix
- 15. Which of the following is not characteristic of collagen?
 - a, a 4.4-fold left-handed helix is the basic structural conformation
 - b. about 33% of the amino acid residues are glycine
 - c. its secondary structure is a polyproline type
 - d. many prolines are modified to hydroxyproline
- 17. Which of the designations listed below does not correspond to a major class of enzymes as outlined by the International Union of Biochemistry?
 - a. hydrolases
 - b. transferases
 - c. carboxylases
 - d. isomerases

18. Phosphofructokinase, which catalyzes the reaction below, is classified as a fructose-6-PO₄ + ATP \rightarrow fructose-1,6-bisPO₄ + ADP a. ligase b. transferase c. isomerase d. hydrolase e. carboxylase 20. A competitive inhibitor ($K_I = 1 \times 10^{-5} \text{ M}$) binds to an enzyme that has a true $K_m = 1 \times 10^{-6}$ M for its substrate and a V_{max} of 1×10^{-4} moles/min. Calculate the apparent K_m value in the presence of 1×10^{-3} M inhibitor. a. $1 \times 10^{-7} \text{ M}$ b. 1 x 10⁻⁶ M c. $1 \times 10^{-5} \text{ M}$ d. 1 x 10⁻⁴ M e. 1 x 10⁻³ M 21. What is the maximum velocity that could be observed in the presence of the competitive inhibitor in the previous problem? a. 1 x 10⁻⁷ mol/min b. 1 x 10⁻⁶ mol/min c. 1 x 10⁻⁵ mol/min d. 1 x 10⁻⁴ mol/min e. 1 x 10⁻³ mol/min 22. Assume the inhibitor in the question above is a classic noncompetitive inhibitor. What is the apparent K_m value in the presence of 1 x 10^{-3} M inhibitor? a. 1 x 10⁻⁷ M b. 1 x 10⁻⁶ M c. $1 \times 10^{-5} \text{ M}$ d. $1 \times 10^{-4} \text{ M}$ e. 1 x 10⁻³ M 23. 12. If $V_{max} = 140 \mu mol/min$ and $v_0 = 70 \mu mol/min$ at 70 μM substrate for an enzyme that obeys Michaelis-Menten kinetics, what is its K_m ? a. 50 µM b. 70 μM c. 140 μ M d. 175 μM 24. For another enzyme that obeys Michaelis-Menten kinetics, what is the V_{max} value in

24. For another enzyme that obeys Michaelis-Menten kinetics, what is the V_{max} value in μ moles/min if $v = 70 \mu$ moles/min when [S] = 0. 5 K_m?

- a. 25 µmol/min
- b. 70 µmol/min
- c. 140 µmol/min
- d. 210 umol/min
- 25. Calculate the ratio [S]/ K_m when the velocity of an enzyme catalyzed (no inhibitor) reaction is 10% of V_{max} .
 - a. 1/6

- b. 1/3 c. 1/9
- d. 8/9
- 26. Given a turnover number of $1 \times 10^3 \text{ s}^{-1}$ and K_m of 2×10^{-3} M for an enzyme, how much less efficient would the enzyme be than the best known enzymes, i.e., perfected enzymes?
 - a. 10 times
 - b. 10^2 times
 - c. 10^5 times
 - d. 10^7 times
- 27. A ping pong bisubstrate reaction is
 - a. a single dislacement reaction
 - b. a double displacements reaction
 - c. not easily distinguished by its kinetics
 - d. a and b
 - e. b and c
- 28. Which of the following statements is true about Michaelis-Menten enzymes?
 - a. They never have more than one subunit
 - b. They always follow rapid equilibrium kinetics
 - c. They never have allosteric effectors
 - d. a and c
 - e. all of the above
- 29. The Briggs and Haldane steady state assumption rests on the premise that
 - a. the concentration of enzyme-substrate complex does not change
 - b. the product concentration is insignificant
 - c. the substrate concentration is large and does not change significantly
 - d. the free enzyme concentration is always in great excess to the concentration of the enzyme-substrate complex
- 30. Reversible inhibitors of enzyme-catalyzed reactions can be characterized by examining double reciprocal plots of reaction kinetics. In the case of mixed-type noncompetitive inhibition, the presence of the inhibitor yields a curve that
 - a. crosses the 1/v axis at the same intercept as in the absence of the inhibitor
 - b. crosses the 1/[S] axis at the same intercept as in the absence of the inhibitor
 - c. crosses the 1/[S] axis at a point different than that in the absence of the inhibitor
 - d. is parallel to the curve determined in the absence of the inhibitor
- 31. The K_m/K_i ratio for a transition state analog that is an effective reversible inhibitor will be
 - a. less than 1
 - b equal to 1.
 - c. greater than 1
 - d. a, b, or c depending upon whether the enzyme has rapid equilibrium kinetics
- 32. Lineweaver-Burk plots are
 - a. semi-log plots used to determine K_m values
 - b. used determine the number of substrate binding sites n distinguish between single and double displacement reaction mechanisms
 - c. used to distinguish ordered from random single displacement bisubstrate reactions
 - d. used to evaluate ΔG^{\dagger}

e. double reciprocal plots used to determine V_{max}

- 33. Four competitive inhibitors of an enzyme were found to exhibit the following K_I values. Which is the best inhibitor?
 - a. $K_I = 1 \times 10^{-2} M$
 - b. $K_I = 7 \times 10^{-11} \text{ M}$
 - a. $K_I = 5 \times 10^{-9} \text{ M}$
 - b. $K_I = 3 \times 10^{-5} M$
- 34. The cellular concentration of the substrate of an enzyme is very often found to be
 - a. much greater than its K_m value
 - b.much less than its K_m value
 - c. approximately equal to its K_m value
 - d. equal to k_{cat}/K_m
- 36. The organophosphorus nerve gases, such as sarin, and insectides, such as malathion,
 - a. irreversibly inactivate acetylcholine esterase by forming a stable covalent bond with serine
 - b. inhibit acetylcholine esterase by transferring a phosphate group to the protein
 - c. are strong competitive inhibitors of acetylcholine esterase
 - d. must first be hydrolyzed in order to be active
- 37. Anti-freeze is toxic because alcohol dehydrogenase participates in the conversion of ethylene glycol in the anti-freeze to oxalic acid, which precipitates in the kidneys. The same enzyme is responsible for the toxicity of methanol by converting methanol to
 - a. cyanide
 - b. formaldehyde
 - c. formic acid
 - d. dimethyl ketone
- 38. The catalytic rate constant k_{cat} is
 - a. the rate at which substrate binds to an enzyme
 - b. a measure of the affinity of an enzyme for substrate
 - c. a constant evaluated by a Scatchard plot
 - d. the forward rate constant for the rate limiting step of an enzyme
- 39. The unstable covalent intermediate in the chymotrypsin-catalyzed reaction contains a bond formed between
 - a. serine and the carbonyl carbon in the peptide backbone
 - b. serine and the nitrogen in the peptide backbone
 - c. histidine and the carbonyl carbon in the peptide backbone
 - d. histidine and the nitrogen in the peptide backbone