CLAIMS

1	1-32. (canceled)
1	33. (currently amended) A network device for a communication network, the network device
2	comprising:
3	(a) a database table adapted to store one or more sets of one or more parameters, each set
4	corresponding to a different identifier for a corresponding network device of the communication
5	network; and
6	(b) a receiver adapted to:
7	(1) receive a first data packet from a first transmitter, the first data packet comprising a
8	training sequence preamble, a header, and a payload;
9	(2) receive a first auxiliary coding corresponding to only the first data packet, wherein:
10	the first auxiliary coding identifies a first identifier;
11	the first auxiliary coding is different from the training sequence preamble; and
12	the first identifier is different from the training sequence preamble;
13	(3) recover the first identifier from the first auxiliary coding;
14	(4) retrieve a first set of one or more parameters from the database table based on the first
15	identifier; and
16	(5) process at least a portion of the first data packet based on the first set of one or more
17	parameters;
18	(6) receive a second data packet from a second transmitter, the second data packet
19	comprising a training sequence, a header, and a payload;
20	(7) receive a second auxiliary coding corresponding to only the second data packet,
21	wherein:
22	the second auxiliary coding identifies a second identifier;
23	the second auxiliary coding is different from the second data packet's training
24	sequence;
25	the second identifier is different from the second data packet's training sequence;
26	(8) recover a second set of one or more parameters from the database table based on the
27	second identifier; and

28	(9) process at least a portion of the second data packet based on the second set of one or
29	more parameters.
1	34. (previously presented) The network device of claim 33, wherein the communication network
2	is a HomePNA network.
1	35. (currently amended) The network device of claim 33, wherein
2	the first auxiliary coding is inserted within the training preamble and the first data packet's
3	training sequence form the first and second portion, respectively, of the first data packet.
1	36. (currently amended) The network device of claim 33, wherein:
2	the first auxiliary coding is encoded using frequency shift keying (FSK) modulation by
3	frequency division;
4	the first auxiliary coding is encoded at a frequency different from a frequency for the first
5	data packet;
6	receipt of the first auxiliary coding overlaps in time with receipt of the training preamble
7	sequence of the first data packet.
1	37. (previously presented) The network device of claim 33, wherein the first auxiliary coding is
2	received before the first data packet is received.
1	38. (currently amended) The network device of claim 33, further comprising a second transmitter
2	adapted to:
3	(1) generate a second first transmitted auxiliary coding for transmittal with a second first
4	<u>transmitted</u> data packet, wherein:
5	the second first transmitted data packet comprises a second first transmitted training
6	preamble sequence, a second first transmitted header, and a second first transmitted payload;
7	the second first transmitted auxiliary coding is different from the second first transmitted
8	training preamble sequence;
9	the second first transmitted auxiliary coding identifies a second first transmitted

identifier;

10

- the second first transmitted identifier is different from the second first transmitted
 training preamble sequence;
 the second first transmitted identifier identifies the second transmitter; and
- the second <u>first transmitted</u> auxiliary coding is different from the second <u>first transmitted</u>
 training sequence <u>data packet</u>;
- (2) transmit the second <u>first transmitted auxiliary coding</u> and the second <u>first transmitted data</u>
 packet to a second network device.
- 1 39. (currently amended) The network device of claim 38, wherein:
- 2 the second transmitter comprises a first RF front end; and
- 3 the second transmitter is adapted to transmit both the second <u>first transmitted</u> auxiliary
- 4 coding and the second first transmitted data packet using the first RF front end.
- 1 40. (currently amended) The network device of claim 38, wherein:
- 2 the second transmitter comprises a first RF front end and a second RF front end;
- 3 the second transmitter is adapted to transmit the second first transmitted auxiliary coding
- 4 using the first RF front end; and
- 5 the second transmitter is adapted to transmit the second first transmitted data packet using the
- 6 second RF front end.
- 1 41. (previously presented) The network device of claim 33, wherein the first auxiliary coding
- 2 comprises five or fewer symbols.
- 42. (previously presented) The network device of claim 33, wherein the first auxiliary coding
- 2 comprises five or fewer bits.

Serial No.: 10/046,749

- 1 43. (previously presented) The network device of claim 33, wherein the first identifier is a station
- 2 identifier that uniquely identifies the first transmitter within the communication network.

- 1 44. (previously presented) The network device of claim 43, wherein:
- 2 the first data packet header includes a source address for the first transmitter; and
- 3 the first identifier is not the same as the source address for the first transmitter.
- 1 45. (previously presented) The network device of claim 33, wherein the first set of one or more
- 2 parameters comprises at least one of a receiving-equalizer start value, a timing-recovery start
- 3 value, an automatic-gain-controller start value, and an echo-canceller start value.
- 1 46. (previously presented) The network device of claim 33, wherein the first set of one or more
- 2 parameters is based on moving averages, from past data packets received from the first
- 3 transmitter, of one or more of a receiving-equalizer value, a timing-recovery value, an automatic-
- 4 gain-controller value, and an echo-canceller value.
- 1 47. (previously presented) The network device of claim 33, wherein:
- 2 the first auxiliary coding is received as a first set of pulses received substantially immediately
- 3 before the first data packet; and
- 4 the first identifier is encoded in the first set of pulses by varying timing intervals between
- 5 adjacent pulses in the first set of pulses.
- 1 48. (previously presented) The network device of claim 33, wherein the database table is further
- 2 adapted to store each different identifier corresponding to each set of one or more parameters.
- 49. (currently amended) A method implemented by a network device for a communication
- 2 network, wherein the network device comprises a database table and a receiver, the method
- 3 comprising:
- 4 (1) storing a first set of one or more parameters in the database table, the first set
- 5 corresponding a first identifier for a corresponding network device of the communication
- 6 network:
- 7 (2) receiving a first data packet comprising a training <u>sequence preamble</u>, a header and a
- 8 payload from a first transmitter;

9	(3) receiving a first auxiliary coding corresponding to only the first data packet, wherein:
10	the first auxiliary coding identifies the first identifier;
11	the first auxiliary coding is different from the training sequence preamble; and
12	the first identifier is different from the training sequence preamble;
13	(4) recovering the first identifier from the first auxiliary coding;
14	(5) retrieving the first set of one or more parameters from the database table based on the first
15	identifier; and
16	(6) processing at least a portion of the first data packet based on the first set of one or more
17	parameters;
18	(7) receiving a second data packet from a second transmitter, the second data packet
19	comprising a training sequence, a header, and a payload;
20	(8) receiving a second auxiliary coding corresponding to only the second data packet,
21	wherein:
22	the second auxiliary coding identifies a second identifier;
23	the second auxiliary coding is different from the second data packet's training
24	sequence;
25	the second identifier is different from the second data packet's training sequence;
26	(9) recovering a second set of one or more parameters from the database table based on
27	the second identifier; and
28	(10) processing at least a portion of the second data packet based on the second set of one
29	or more parameters.

1 51. (currently amended) The method of claim 49, wherein the first auxiliary coding is inserted

50. (previously presented) The method of claim 49, wherein the communication network is a

- 2 within the training preamble and the first data packet's training sequence form the first and
- 3 second portion, respectively, of the first data packet.

1

2

HomePNA network.

- 1 52. (currently amended) The method of claim 49, wherein:
- $2 \hspace{1cm} \hbox{the first auxiliary coding is encoded using frequency shift keying (FSK) modulation by} \\$
- 3 frequency division;
- 4 the first auxiliary coding is encoded at a frequency different from a frequency for the first
- 5 data packet;
- 6 receipt of the first auxiliary coding overlaps in time with receipt of the training sequence
- 7 preamble of the first data packet.
- 1-53. (previously presented) The method of claim 49, wherein the first auxiliary coding is received
- 2 before the first data packet is received.
- 1 54. (currently amended) The method of claim 49, where the network device further comprises a
- $2 \quad \ \ second \ transmitter, \ the \ method \ further \ comprising;$
- 3 (1) generating a second <u>first transmitted</u> auxiliary coding for transmittal with a second <u>first</u>
- 4 <u>transmitted</u> data packet, wherein:
- 5 the second first transmitted data packet comprises a second first transmitted training
- 6 <u>sequence preamble</u>, a <u>second first transmitted</u> header, and a <u>second first transmitted</u> payload;
- the second first transmitted auxiliary coding is different from the second first transmitted training sequence preamble:
- 9 the second first transmitted auxiliary coding identifies a second first transmitted

 10 identifier:
- the second first transmitted identifier is different from the second first transmitted training sequence preamble:
- 13 the second first transmitted identifier identifies the second transmitter; and
- the second <u>first transmitted</u> auxiliary coding is different from the second <u>first transmitted</u>
- 15 <u>training sequence data packet;</u>
- (2) transmitting the second <u>first transmitted</u> auxiliary coding and the second <u>first transmitted</u>
 data packet to a second network device.
- 1 55. (currently amended) The method of claim 54, wherein:
- 2 the second transmitter comprises a first RF front end; and

- 3 the method comprises transmitting both the second first transmitted auxiliary coding and the
 4 second first transmitted data packet using the first RF front end.
- 1 56. (currently amended) The method of claim 54, wherein:
- 2 the second transmitter comprises a first RF front end and a second RF front end; and
- 3 the method comprises:
- 4 transmitting the second <u>first transmitted</u> auxiliary coding using the first RF front end; and
- 5 transmitting the second first transmitted data packet using the second RF front end.
- 1 57. (previously presented) The method of claim 49, wherein the first auxiliary coding comprises
- 2 five or fewer symbols.
- 1 58. (previously presented) The method of claim 49, wherein the first auxiliary coding comprises
- 2 five or fewer bits.
- 1 59. (previously presented) The method of claim 49, wherein the first identifier is a station
- 2 identifier that uniquely identifies the first transmitter within the communication network.
- 1 60. (previously presented) The method of claim 59, wherein:
- 2 the first data packet header includes a source address for the first transmitter; and
- 3 the first identifier is not the same as the source address for the first transmitter.
- 1 61. (previously presented) The method of claim 49, wherein the first set of one or more
- 2 parameters comprises at least one of a receiving-equalizer start value, a timing-recovery start
- 3 value, an automatic-gain-controller start value, and an echo-canceller start value.
- 1 62. (previously presented) The method of claim 49, wherein the first set of one or more
- 2 parameters is based on moving averages, from past data packets received from the first
- 3 transmitter, of one or more of a receiving-equalizer value, a timing-recovery value, an automatic-
- 4 gain-controller value, and an echo-canceller value.

- 1 63. (previously presented) The method of claim 49, wherein:
- 2 the first auxiliary coding is received as a first set of pulses received substantially immediately
- 3 before the first data packet; and
- 4 the first identifier is encoded in the first set of pulses by varying timing intervals between
- 5 adjacent pulses in the first set of pulses.
- 1 64. (previously presented) The method of claim 49, further comprising storing the first identifier
- 2 in the database table.
- 1 65. (previously presented) The network device of claim 33, wherein the first set of one or more
- 2 parameters is based on previously performed training results from a previous packet received
- 3 from the first transmitter.
- 1 66. (previously presented) The method of claim 49, wherein the first set of one or more
- 2 parameters is based on previously performed training results from a previous packet received
- 3 from the first transmitter.
- 1 67. (currently amended) The network device of claim 33, wherein:
- 2 the training sequence preamble is independent of the first auxiliary coding; and
- 3 the training sequence preamble is independent of the first identifier.
- 1 68. (canceled)
- 1 69. (new) The network device of claim 33, wherein:
- 2 the first data packet's training sequence is substantially identical to the second data packet's
- 3 training sequence; and

Serial No.: 10/046,749

4 the first auxiliary coding is not substantially identical to the second auxiliary coding.