	EE601: Sto	itistical signa	l Analysis	
		Quiz #5		
	Dt: 19/10/	2024 Tim	e: 10:30 - 12	
7	1	- д	- x	
19.11 A ha	ausebold us	sos light bul	bs that have indepen	ndent
lifetime	s with eac	h having ex	ponential distributi	m
with ave	rage lite.	time of 5 a	lays. Bulbs are repla	aced
Instant	coneously us	on failure	•	
(a) Fina	d prob that	no more the	an 100 bulbs are u.	sed
ا روا	an year ?		5 marks	_
(b) Fine	d prob the	at exactly 1	o bulbs are used	
1 •)	a month?		5 Marks	
	,	*		
0.2 Let	x be a rar	som variab	le s.t. $E[x] < 0.$ Pro-	ve or
disprov	e: E[e ⁰ *]=	1 3 8 20.	5 Marks	
		xx	*	
Q.3 Cor	sider ran	om vaciable	3 x,,, xn with	h
			, , , , , ,	
joint de	ensity on g	fren by:		
	f (a,	en) = 1 if	$(x_1,\ldots,x_n)\in(0,1)^n$.	
(0) 5.				
). 3 Marks	
(b) Let	D donete	. the distance	e of (x,, xn) tro	m
	n. Find E		2 Marks	
20,00				

```
solutions
```

Density of exp r.v. with parameter 2>0 is re-lac 4.1

for 220 and 0 0.00.

Also, the corresponding expected value is 1/2.

Thus, fx (x) = = e x/5 for x20,

i.e. 9 = 1/5.

(a) P(No more than 100 lightbulb in an year)

As shown in assignment, sum of or iid exp(7)

T.V.'s is Gamma(n,)) random varable.

30, let Y = Z xx, tren Ya Gamma (100, 1/5)

Thus, P(Y>365) = J fy (y) dy.

(b) P(exactly 10 light bulbs in a month)

=
$$\int_{0}^{30} P(x_{10} > 30 - y(x_{-y}) + \frac{1}{4} (y) dy$$

= JP(x,0>30-y) 1~ (y) dy : Y 11 x,0 3(x, , , , ,) 4 X 4 $= \int_{0}^{30} \frac{-(30-3)}{8!} \left(\frac{1}{5}\right) \frac{38-3}{38-3} = \frac{30}{31}$ = (=) 9 e-6. 1 / y8 dy = (=) 9 e - 6 + y9 30 = e a! (½) 9 309 = e 6 69 Need to move it E[x] (0 and E[e x] = 1, then 020. Let g(x) = e0x Note that g(.) is a convex function & O E Re. Thus by Jeosen's inequality 1= E[e0x] = e0Ex .- e DEX & 1, we need DEX < 0 EX <0, 0 must be 20 for DEX to be 50 ~ ~ ~ ~ ~ $f(\alpha_1,\ldots,\alpha_n)=1$ if $(\alpha_1,\ldots,\alpha_n)\in(0,1)^n$. Note that (x,..., xn) are iid Unitom ((0,1)) vandon variables. (a) P(x,=mn (x,,-.,xng)=/n as x,..., xn are iid and thus each one has equal chance of being the smallest.

```
(b) D^2 = \chi_1^2 + \chi_2^2 + \dots + \chi_{2n}^2
     E[D<sup>2</sup>] = E[x<sup>2</sup>] + E[x<sup>2</sup>] + ··· + E[x<sup>2</sup>] - by lineaily
           = n E[xi2] - : the r.v.'s are iid.
   E(n^2) = \int x^2 dx = \frac{1}{3}
    =) \quad \mathbb{E} \left[ p^2 \right] = \frac{n}{3}.
Note: How do we argue (x1,..., m) me iid.
choose any k random variable from the given n
and their join distr. is
  f (250),..., 250e)) = 1 if (250), ..., 250e))
  obtained by integrating out other variables.
  Now, note that marginals (obtained by consider)
   K=1) is Uniform ((0,1)) for each r.v.
       f(200),..., 2000) Ef(2000)....f(2000)
    =) x1,..., xn are iid Uniform ((0,1)).
```