# Applied Statistical Analysis I

Statistical inference review

Elena Karagianni, PhD Candidate karagiae@tcd.ie



Department of Political Science, Trinity College Dublin

## Today's class

- · Lecture Recap
- Exercises

• **Unit of analysis**: The observation described by a set of data. For example, voters, parties, bills, elections, voting decisions etc.

- **Unit of analysis**: The observation described by a set of data. For example, voters, parties, bills, elections, voting decisions etc.
- Variable: A characteristic or attribute of the unit of analysis that can vary across observations.
  - "a characteristic that can vary in value among subjects in a sample or population" (Agresti and Finlay 2009, 11)

- **Unit of analysis**: The observation described by a set of data. For example, voters, parties, bills, elections, voting decisions etc.
- Variable: A characteristic or attribute of the unit of analysis that can vary across observations.
  - "a characteristic that can vary in value among subjects in a sample or population" (Agresti and Finlay 2009, 11)
- **Dependent variable (DV)**: Also called the *outcome* or *response variable*; Denoted as Y; the phenomenon we aim to explain.

- **Unit of analysis**: The observation described by a set of data. For example, voters, parties, bills, elections, voting decisions etc.
- Variable: A characteristic or attribute of the unit of analysis that can vary across observations.
  - "a characteristic that can vary in value among subjects in a sample or population" (Agresti and Finlay 2009, 11)
- **Dependent variable (DV)**: Also called the *outcome* or *response variable*; Denoted as Y; the phenomenon we aim to explain.
- Independent variable (IV): Also called the *input, predictor,* or *covariate*; Denoted as X; used to explain variation in the DV.

- **Unit of analysis**: The observation described by a set of data. For example, voters, parties, bills, elections, voting decisions etc.
- Variable: A characteristic or attribute of the unit of analysis that can vary across observations.
  - "a characteristic that can vary in value among subjects in a sample or population" (Agresti and Finlay 2009, 11)
- **Dependent variable (DV)**: Also called the *outcome* or *response variable*; Denoted as Y; the phenomenon we aim to explain.
- Independent variable (IV): Also called the *input*, *predictor*, or *covariate*; Denoted as X; used to explain variation in the DV.
- What is variation? (Example: Age  $\rightarrow$  Income)
- · Necessary terms for **regression analysis**.

#### Measurement

**Refers to the way variables are quantified**. (e.g., economic wealth measured as GDP).

#### Measurement



#### Measurement



Figure 1: Kellstedt and Whitten 2018, Chap. 5

## Population and Sample

· What is the relationship between population and sample?

#### Population and Sample

- **Population**: the total set of subjects of interest in a study
- · Sample: the subset of the population on which the study collects data
- · Parameter: numerical summary of the population
- · Statistic: a numerical summary of the sample data



#### Descriptive and Inferential statistics

- Descriptive statistics: "summarize the information in a collection of data"

  Agresti and Finlay 2009, 4.
- Inferential statistics: "provide predictions about a population, based on data from a sample of that population" Agresti and Finlay 2009, 4.

**Descriptive Statistics** 

## Measures of Central Tendency and Variability

- · Central tendency: mean, median, mode
- · Variability: variance, standard deviation, range, IQR
- Visualization: boxplots

#### Descriptive Statistics: Central Tendency



- Mode: Most frequently occurring value of X.
   Some distributions can have more than one mode.
- Median: Value of X that falls in the middle position when the observations are ordered from smallest to largest.
  - Median = 50th percentile = 2nd quartile
- Mean: Most common measure of central tendency.

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

## Descriptive Statistics: Comparing Measures of Central Tendency

- In a perfectly symmetric distribution, e.g., normal distribution: mode = median = mean
- · Not true when the distribution is non-symmetric:
  - right-skewed distribution (positive skew): median < mean</li>
  - left-skewed distribution (negative skew): median > mean
- · Mean is sensitive to outliers, while the median is more robust.

# Descriptive Statistics: Comparing Measures of Central Tendency



#### Descriptive Statistics: Variability

· Sample Variance: Average of the square deviations from the mean:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Why do we average by dividing by n-1? The sum of the deviations is always zero. Thus, the last deviation can be found once we know the other n-1. So we are not averaging n unrelated numbers. Only n-1 squared deviations vary freely, these are called *degrees of freedom* of the variance.

• (Sample) Standard Deviation: Square-root of (sample) variance:

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

## Descriptive Statistics: Variability

· Range: Difference between largest and smallest measurement:

$$Range = X_{max} - X_{min}$$

• Interquartile Range (IQR): Difference between upper and lower quartiles (range of the middle 50% of the distribution):

$$IQR = X_{Q3} - X_{Q1} (1)$$



Probability

### Probability: Basic terminology

- What is a probability?
- · What is a distribution?
- · What is a probability distribution?

## Probability: Basic terminology

- An experiment is a repeatable procedure for making an observation.
- · An outcome is a possible results of such an experiment.
- The sample space  $(\Omega)$  of an experiment is the set of all possible outcomes.
- · An event is a subset of the sample space, i.e., any set of outcomes.
- The probability of an event is its long-run relative frequency.
  - If Pr(A) = 0.5, i.e., probability of event A is 0.5, then event A will occur approximately half of the time when the experiment is repeated infinitely often.
  - If the experiment is repeated many (finite) times, then the approximation as relative frequency (proportion) is expected to improve as the number of repetitions increases.

$$P(A) = \frac{\text{Number of elements in A}}{\text{Number of all elements}}$$

16

## Probability: Distribution



Figure 2: Example: Age of people in the room

It can take different shapes and, therefore, names: normal, binomial, t-distribution etc.

#### Probability: Probability Distribution

• Distributions of random variables are probability distributions if for all possible outcomes, it tells us the probabilities for these outcomes to occur.

#### Probability: Probability Distribution

- Distributions of random variables are probability distributions if for all
  possible outcomes, it tells us the probabilities for these outcomes to occur.
- Probability distributions are analogous to frequency distributions, except that they are based on probability theory rather than observations in sample data.

#### Probability: Probability Distribution

- Distributions of random variables are probability distributions if for all
  possible outcomes, it tells us the probabilities for these outcomes to occur.
- Probability distributions are analogous to frequency distributions, except that they are based on probability theory rather than observations in sample data.
- Definition by Agresti and Finlay (2009, 75): "lists the possible outcomes and their probabilities."

Recall the basic idea for empirical research:





- Sampling Distribution: "A sampling distribution of a statistic is the probability distribution that specifies probabilities for the possible values the statistic can take" (Agresti and Finlay, 2009, 87).
- For example: we have a population distribution with mean  $\mu$  and variance  $\sigma^2$  and we are interested in its mean.
- Repeatedly taking samples from that population and calculating the mean for each sample yields the sampling distribution of the mean.

#### Why is this important?

- The corresponding probability theory "helps us predict how close a statistic falls to the parameter it estimates" Agresti and Finlay 2009, 87  $\rightarrow$  how close is  $\bar{x}$  to  $\mu$ ?
- Usually only one sample/estimate  $\rightarrow$  Point estimate: "is a single number that is the best guess for the parameter value" Agresti and Finlay 2009, 107
- "If we repeatedly took samples, then in the long run, the mean of the sample means would equal the population mean  $\mu$ ".
- "The standard error describes how much  $\bar{x}$  varies from sample to sample"  $\to$  the SE is estimated based on the standard deviation:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

#### Central Limit Theorem

What is the Central Limit Theorem?

#### Central Limit Theorem

What is the Central Limit Theorem?  $\to$  The sampling distribution of the statistic approaches a normal distribution with mean  $\mu$  and variance  $\sigma^2/n$  as n increases.

- This hodls *regardless* of the shape of the original population distribution.
- Basis for application of statistics to many 'natural' phenomena (which are the sum of many unobserved random events).
- How? Take a sample, calculate its mean. Do the same thing again and again.
   The distribution of sample means will be normal even if the population distribution was not.
- If you repeatedly draw random samples from the same population, calculate the means and plot them, you get a histogram that approaches a bell-shaped curve.

#### Normal Distribution

- · Continuous distribution that describes data clustered around the mean.
- Uniquely determined by its mean/median/mode  $\mu$  and variance  $\sigma^2$ .
- Important for the Central Limit Theorem.



What are confidence intervals?

What are confidence intervals? "an interval of numbers around the point estimate that we believe contains the parameter value"  $\rightarrow$  point estimate  $\pm$  margin of error (Agresti and Finlay 2009, 110)

What are confidence intervals? "an interval of numbers around the point estimate that we believe contains the parameter value"  $\rightarrow$  point estimate  $\pm$  margin of error (Agresti and Finlay 2009, 110)

Let's explain this a bit more!

- Our estimate of a population parameter varies across repeated samples, thus generating a *sampling distribution*.
- Instead of a point estimate, we should better get an interval estimate a range within the true parameter lies with some level of certainty.
- We can construct confidence intervals using the standard error or the variance of our estimates.
- We call a CI a q% confidence interval if it is constructed that it contains the true parameter at least q% of the time if we repeat the experiment a large number of times.
- Check out this visualization: https://rpsychologist.com/d3/ci/
- Attention! This does not mean that there is a q% probability for the population parameter to lie inside the interval!