آزمایش شماره ۸

نام اعضا:

عسل مسكين ۴٠١١٠۶۵۱۱

ثنا بابایان و نستان ۴۰۱۱۰۵۶۸۹

قسمت الف:

شرح آزمایش:

- اتصال ورودی افقی اسیلوسکوپ به منبع ولتاژ ۶ ولت
 - اتصال ورودی قایم اسیلوسکوپ به نوسان ساز
 - تنظیم نوسان ساز روی موج سینوسی
- قرار دادن اسیلوسکوپ کنترل (TIME/DIV) در وضعیت XY

200Hz	150Hz	100Hz	فركانس نوسان ساز
8/2 = 4	6/2 = 3	4/2 = 2	N_H/N_V
1/4 * 200 = 50	1/3 * 150 = 50	1/2 * 100 = 50	فركانس مجهول

قسمت ب:

شرح آزمایش:

- بستن مدار طبق دستور
- قرار دادن کنترل (TIME/DIV) روی حالت XY
- قرار دادن کنترل (VOLTS/DIV) روی عددی یکسان برای دو کانال
 - قرار دادن کلید سه حالته AC-GND-DC روی حالت GND
 - قرار دادن نقطه نورانی در وسط صفحه
- تنظیم زمین و سپس قرار دادن کلید سه حالته روی ACبرای هر دو کانال
 - تنظیم فرکانس بین ۵۰ تا ۲۰۰ هرتز

f(Hz)	30	60	90	120
Sin φ	0.39	0.63	0.74	0.79
Tan φ	0.42	0.81	1.10	1.29

نسمت پ:

شرح آزمایش:

• طبق قسمت ب عمل می کنیم

f(Hz)	50	100	150	200
Sin φ	0.86	0.78	0.54	0.44
Tan φ	-1.69	-1.25	-0.64	-0.49

قسمت ت:

شرح آزمایش:

• طبق قسمت ب و سپس فرکانس را تغییر می دهیم تا زمانی که تشدید رخ دهد تشدید زمانی رخ می دهد که بیضی به خط راست تبدیل شود.

f	50	60	68.9	80	90
Sin φ	0.60	0.35	0	0.38	0.52
Tan φ	0.75	0.37	0	0.41	0.6

f(Hz)	50	60	68.9	80	90
V _R (V)	3.6	4.2	4.4	4.1	3.7

Subject. 89404 1/19 209,41 1/19 2 19,940	
Date. (8- 89,41")x 0128+140-189,41")x0x"v+140,9-189,41")x0 =-01020	
1-9,44, 410,41,414,41	
1479-8014)x0+140- NA,44) X0181+(90- NA,44) x0181	1.
(-10,V") 1/2 10,1" V 1"- (10,1") 1"	
الم الله الله الله الله الله الله الله ا	
1	
XL <xc ja<="" point="" td=""><td></td></xc>	
tan \$\tan \tan \tan \tan \tan \text{Z} \text{XL-XC} \text{Z} \text{XL-XC} \text{Z} \text{Z} \text{Z} \text{Z} \text{Z} \text{Z} \text{Z} \text{Z} \qua	
XLXC exist of	
(49,17,0) +113x 17,0) +3,3x(MIO-1+7,7X(NVIE)+10,1X(NVIPL)	
1000,941	
~ 814 x 1=2	

پرسش ها:

١ :

می دانیم که آمپدانس سلف از رابطه UW به دست می آید,بنابراین جریان گذرنده از مدار به صورت (V/(R+LJW) است.حال توجه می کنیم که R+LJW یک عدد مختلط با آرگومان مساوی با تانژانت وارون (LW/R) است.پس زاویه فازور و ولتاژ از فازور جزیان به اندازه این زاویه بیشتر است و این یعنی ولتاژ نسبت به جریان تقدم فاز دارد. می دانیم آمپدانس سلف از رابطه J/CW به دست می آید,بنابراین جریان گذرنده از مدار به صورت (V/(R-J/(CW) است که -R J/(CW) یک عدد مختلط با آزگومان منفی تانژانت وارون (1/RCW) است.بنابراین زاویه فازور از فازور جریان به اندازه این زاویه کمتر است و این یعنی ولتاژ نسبت به جریان تاخیر دارد.

٣

•
Date. Austra (21/2) Ins Em July Ciss levels in (1) in winings
ست که مطرع که میلای با نشر به تو مای که توان (۱۵) دارد از ا
ا معن متف ند كر كد معنو بينت اما كرمل (XL - Xc) مي والأمعنورية و
XL XC = = XL = XC > LW = DC = > LZ = QW = YN \$
Switz rafile , fe inste