elicitation

Dr. David Banks Duke University

binomial distribution

you know n but not p

normal distribution

you know neither μ nor σ

personal probabilities

- incorporate everything theBayesian knows or believes
- must obey all laws of probability
- be consistent with all of Bayesian's knowledge

personal probability

uniform distribution

pdf = flat

beta family

the pdf of a beta distribution is specified by two parameters, α and β

$$f(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

where $0 \le p \le 1$, $\alpha > 0$, $\beta > 0$, and $\Gamma(n) = (n-1)\times(n-2)\times...\times 1$

beta family

Bayes' rule

prior => posterior

binomial data

beliefs about p

rational

coherent

summary

- Bayesians express uncertainty through probability distributions
- 2. one can self-elicit a probability distribution that reflects your personal probability
- 3. personal probability should change as **new**data are observed
- 4. the **beta family** of distributions can flexibly express many possible beliefs about p