Week 2 ENT

7. 亚二烷酸 光亚

2. Data가 binomial distribution일때, Likelihood를 Exponential Families 형태로 변환해 보기. 또한 왜 Beta distribution이 Conjugacy인지 생각해 보기.

1) 地站高门

Let
$$X \sim Bin(n, \theta)$$
 for $n: Kloth$, $o \leq \theta \leq 1$

$$\int (x_j n, \theta) = \binom{n}{x} \theta^{x} (1-\theta)^{n}$$

$$= \exp\left(x \log \frac{\theta}{1-\theta}\right) (1-\theta)^{n}$$

$$= \exp\left(x \int \frac{\theta}{1-\theta} (1-\theta)^{n}\right)$$

$$= \exp\left(x \int \frac{\theta}{1-\theta} (1-\theta)^{n}\right)$$

exponential family form:
$$f(y|\phi) = h(y) c(\phi) \exp(\phi k(y)) \ge 1 = \frac{1}{1-10} \exp(\phi) \frac{1}{1-10} = \frac{1}{1-10} = \frac{1}{1-10} \exp(\phi) \frac{1}{1-10} = \frac{1}{1-10$$

21 Beta dist. or Or conjugacy?

Let
$$\theta \sim \beta \epsilon t_{\alpha}(\alpha, \beta)$$
 for $\alpha > 0$, $\beta > 0$, $0 \le \theta \le 1$

$$P(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\alpha)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$