Field kinematics

Basic conventions							
Minkowski metric tensor	Totally antisymmetric tensor	Four-momentum	Four-momentum norm	Massive rest-frame			
$\eta_{\mu u}$	$\epsilon \eta_{\mu \nu ho \sigma}$	k^{μ}	$k^2 == k_\mu k^\mu$	$n^{\mu} = \frac{k^{\mu}}{k}$			

Fundamental fields

Fundamental field	Symmetries	Decomposition in SO(3) irreps	Source
$\Gamma_{lphaeta\chi}$	Symmetry[3, $\Gamma^{\bullet 1 \bullet 2 \bullet 3}$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[{}, GenSet[]]]	$ -\frac{1}{2} \eta_{\alpha\chi} \Gamma_{1^-\beta}^{\#1} + \frac{1}{2} \eta_{\alpha\beta} \Gamma_{1^-\chi}^{\#1} + \frac{4}{3} \Gamma_{2^-\beta\chi\alpha}^{\#1} + \frac{1}{2} \Gamma_{2^-\alpha\beta\chi}^{\#2} + \frac{1}{2} \Gamma_{2^-\alpha\chi\beta}^{\#2} + \Gamma_{3^-\alpha\beta\chi}^{\#1} + \frac{1}{3} \eta_{\beta\chi} \Gamma_{1^-\alpha}^{\#6} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{1^-\alpha}^{\#6} + \frac{1}{15} \eta_{\beta\chi} \Gamma_{1^-\alpha}^{\#4} + \frac{1}{15} \eta_{\alpha\chi} \Gamma_{1^-\alpha}^{\#4} \eta_{\alpha} \Gamma_{1^-\alpha}^{\#4} + \frac{1}{15} \eta_{\alpha\chi} \Gamma_{1^-\alpha}^{\#4} \Gamma_{1^-\alpha}^{\#4} \eta_{\alpha} \Gamma_{1^-\alpha}^{\#4} \Gamma_{1$	$\Delta_{lphaeta\chi}$

SO(3) irreps

SO(3) irrep	Symmetries	Expansion in terms of the fundamental field	Source
$\Gamma_{0}^{#1}$	Symmetry[0, $\Gamma_{0^{+}}^{#1}$, {}, StrongGenSet[{}, GenSet[]]]	$-\frac{1}{2} \Gamma^{\alpha}_{\alpha}{}^{\beta} n_{\beta} + \frac{1}{2} \Gamma^{\alpha\beta}_{\alpha} n_{\beta}$	Δ ₀ ^{#1}
Γ ₀ ^{#2}	Symmetry[0, $\Gamma_{0^{+}}^{#2}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{lphaeta\chi}$ n_{lpha} n_{eta} n_{χ}	Δ ₀ ^{#2}
Γ#3 0 ⁺	Symmetry[0, $\Gamma_{0^{+}}^{#3}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\ \beta} \ n_{\alpha} + \Gamma^{\alpha\beta}_{\ \alpha} \ n_{\beta} + \Gamma^{\alpha\beta}_{\ \alpha} \ n_{\beta} - 3 \ \Gamma^{\alpha\beta\chi} \ n_{\alpha} \ n_{\beta} \ n_{\chi}$	Δ ₀ ^{#3}
Γ ₀ ^{#4}	Symmetry[0, $\Gamma_{0^{+}}^{\#4}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\ \beta} \ n_{\alpha} - \frac{1}{2} \ \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \ n_{\beta} - \frac{1}{2} \ \Gamma^{\alpha\beta}_{\ \alpha} \ n_{\beta}$	$\Delta_{0}^{#4}$
<u>Γ#1</u>	Symmetry[0, $\Gamma_{0}^{#_1}$, {}, StrongGenSet[{}, GenSet[]]]	$\epsilon \eta_{\alpha\beta\chi\delta} \Gamma^{\alpha\beta\chi} n^{\delta}$	Δ#1
1 ⁺ αβ	Symmetry[2, $\Gamma_{1}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{4} \Gamma_{\alpha\beta}^{} n_{\chi} - \frac{1}{4} \Gamma_{\alpha\beta}^{} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\alpha} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{\alpha} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\alpha} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\beta\alpha}^{\alpha} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha\alpha}^{\beta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha\alpha}^{\beta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha\alpha}^{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\alpha}^{\beta} n_{\alpha} n_{\chi} n_{\delta}$	$\Delta_{1^{+}lphaeta}^{\#1}$
Γ ^{#2} 	Symmetry[2, $\Gamma_{1}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{2} \Gamma^{X}_{\alpha\beta} n_{\chi} - \frac{1}{2} \Gamma^{X}_{\beta\alpha} n_{\chi} + \frac{1}{2} \Gamma^{X}_{\beta}^{\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{X\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{X\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma^{X\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{#2}{}_{\alpha\beta}$
1 + αβ	Symmetry[2, $\Gamma_{1}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$-\frac{1}{2} \Gamma_{\alpha\beta}^{ \chi} n_{\chi} - \frac{1}{2} \Gamma_{\alpha\beta}^{ \chi} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{ \chi} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{ \chi} n_{\chi} - \Gamma_{\beta}^{ \chi\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\beta}^{ \chi\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\beta}^{ \chi\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\alpha} n_{\chi} n_{\delta} + \Gamma_{\alpha}^{ \chi\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\beta}^{ \chi\delta} n_{\gamma} n_{\gamma} n_{\gamma}$	$\Delta_{1}^{#3}{}_{\alpha\beta}$
$\Gamma_1^{\#1}_{\alpha}$	Symmetry[1, $\Gamma_1^{\#1} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]	$\left \frac{1}{2} \Gamma^{\beta}_{\alpha\beta} + \frac{1}{2} \Gamma^{\beta}_{\beta\alpha} - \frac{1}{2} \Gamma^{\beta}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\beta\chi}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi} - \frac{1}{2} \Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi} \right $	$\Delta_{1}^{\#1}{}_{\alpha}$
$\Gamma_1^{\#2}$ α	Symmetry[1, $\Gamma_1^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]	$\left[\frac{1}{2} \Gamma_{\alpha}^{\beta} n_{\beta} n_{\chi} - \frac{1}{2} \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi}\right]$	$\Delta_{1}^{\#2}\alpha$
Γ ₁ - α	Symmetry[1, $\Gamma_1^{\#3} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]	$\Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - 3 \Gamma^{\beta\chi\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{#3}\alpha$
$\Gamma_{1}^{\#4}$	Symmetry[1, $\Gamma_{1}^{\#4} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]	$\Gamma_{\alpha\beta}^{\beta} + \Gamma_{\alpha\beta}^{\beta} + \Gamma_{\beta\alpha}^{\beta} - \Gamma_{\chi}^{\beta\chi} n_{\alpha} n_{\beta} - \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + 3 \Gamma_{\alpha}^{\beta\chi\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1-\alpha}^{\#4}$
Γ ₁ - _α	Symmetry[1, $\Gamma_1^{\#_5 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]	$\prod_{\alpha} \Gamma_{\alpha}^{\beta \chi} n_{\beta} n_{\chi}^{-\frac{1}{2}} \Gamma_{\alpha}^{\beta \chi} n_{\beta} n_{\chi}^{-\frac{1}{2}} \Gamma_{\alpha}^{\beta \chi} n_{\beta} n_{\chi}$	$\Delta_{1-\alpha}^{\#5}$
Γ ₁ -α	Symmetry[1, $\Gamma_1^{\#6} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[$\}$]	$\Gamma_{\alpha\beta}^{\beta} = \frac{1}{2} \Gamma_{\alpha\beta}^{\beta} = \frac{1}{2} \Gamma_{\beta\alpha}^{\beta} = \Gamma_{\chi}^{\beta\chi} n_{\alpha} n_{\beta} + \frac{1}{2} \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \frac{1}{2} \Gamma_{\alpha}^{\beta\chi} n_{\gamma} n_{\gamma} + \frac{1}{2} \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} + \frac{1}{2} \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} + \frac{1}{2} \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} $	$\Delta_{1}^{\#6}$
	Symmetry[2, $\Gamma_{2^+}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$-\frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{X \delta} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{X \delta} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{X \delta} n_{\delta} - \frac{1}{6} \Gamma_{\chi}^{X \delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{6} \Gamma_{\chi}^{X \delta} n_{\alpha} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\beta}^{X \delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha}^{X \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{X \delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{X \delta} n_{\gamma} n_{\gamma} n_{\gamma$	$\Delta_{2}^{\#1}{}_{lphaeta}$
2 + αβ	Symmetry[2, $\Gamma_{2^{+}}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$\frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ \ \chi} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ \chi} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \chi} n_{\chi} n_{\chi} n_{\chi} n_{\chi} n_{\chi} n_{\chi} n_{\chi} n_{\chi} n_{\chi} n_$	$\Delta^{\#2}_{2^+lphaeta}$
Γ#3 2 ⁺ αβ	Symmetry[2, $\Gamma_{2^{+}}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$ -\frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \frac{1}{3} \eta_{\alpha\beta} \Gamma_{\delta}^{\ X\delta} n_{\chi} + \frac{1}{3} \Gamma_{\delta}^{\ X\delta} n_{\alpha} n_{\beta} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\ X\delta} n_{\delta} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\ X\delta} n_{\delta} - \frac{1}{6} \Gamma_{\chi}^{\ X\delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{2} \Gamma_{\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\gamma} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\gamma} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\gamma} $	$\Delta_{2}^{#3}{}_{\alpha\beta}$
Γ ^{#1} ₂ αβχ	Symmetry[3, $\Gamma_2^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$ \begin{array}{c} -\frac{1}{8} \Gamma_{\alpha\beta\chi} + \frac{1}{8} \Gamma_{\alpha\chi\beta} + \frac{1}{8} \Gamma_{\beta\alpha\chi} - \frac{1}{8} \Gamma_{\beta\chi\alpha} + \frac{1}{4} \Gamma_{\chi\alpha\beta} - \frac{1}{4} \Gamma_{\chi\beta\alpha} - \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta}_{\alpha\delta} + \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\beta\delta} + \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta}_{\delta\alpha} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\beta} - \frac{3}{16} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\delta\beta} n_{\alpha} n_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\delta\beta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{4} \Gamma_{\chi\beta\alpha}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{4} \Gamma_{\chi\beta\alpha}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{4} \Gamma_{\chi\beta\alpha}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\delta} $	$\Delta_{2}^{\#1}{}_{lphaeta\chi}$
Γ ^{#2} αβχ	Symmetry[3, $\Gamma_2^{\#2} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{3} \Gamma_{\alpha\beta\chi} + \frac{1}{3} \Gamma_{\alpha\chi\beta} - \frac{1}{3} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{3} \Gamma_{\beta\alpha\chi} - \frac{1}{3} \Gamma_{\beta\chi\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} - \frac{1}{6} \Gamma_{\alpha\delta}^{\ \delta} \eta_{\alpha} \eta_{\chi} + \frac{1}{3} \Gamma_{\alpha\delta}^{\ \delta} \eta_{\alpha} \eta_{\chi} - \frac{1}{6} \Gamma_{\alpha\delta}^{\ \delta} \eta_{\alpha} \eta_{\chi} + \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} \eta_{\alpha} \eta_{\delta} - \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} \eta_{\alpha} \eta_{\delta} - \frac{1}{3} \Gamma_{\alpha\delta}^{\ \delta} \eta_{\alpha} \eta_{\delta}$	$\Delta_2^{\#2}{}_{\alpha\beta\chi}$
Γ ^{#1} ₃ - _{αβχ}	Symmetry[3, $\Gamma_3^{\#_1 \bullet 1 \bullet 2 \bullet 3}$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2, 3 \}$, GenSet[$\{ 1, 2, 3 \}$]]	$ \frac{1}{6} \Gamma_{\alpha\beta\chi} + \frac{1}{6} \Gamma_{\alpha\chi\beta} - \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\delta} + \frac{1}{6} \Gamma_{\beta\alpha\chi} + \frac{1}{6} \Gamma_{\beta\chi\alpha} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\delta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} + \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\alpha\delta}^{\delta} - \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\beta} + \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\gamma} + \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\gamma} + \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\gamma} - \frac{1}{6} \Gamma_{\alpha\lambda}^{\delta} \eta_{\alpha} \eta_{\alpha} - \frac{1}{6} \Gamma_{\alpha\lambda}^{\delta} \eta_{\alpha} \eta_{\alpha}$	$\Delta_{3}^{#1}{}_{\alpha\beta\chi}$