(b) independent of area of contact (c) depends on the microscopic area of constant magnitude (d) All of the above 18. A mass placed on an inclined plane is just in equilibrium. If ∝ is coefficient of friction of the surface, then maximum inclination of the plane with the horizontal is (a) $tan^{-1} \propto$ (b) $\tan^{-1} (\infty/2)$

17. The limiting value of static friction between two surfaces

(a) proportional to normal force between the surfaces in

in contact is

(c) $\sin^{-1} \propto$

(a) 8 m

(c) 10 m

19. A 30 kg block rests on a rough horizontal surface. A force of 200 N is applied on the block. The block acquires a speed of

(d) cos⁻¹ ∝

- 4 ms⁻¹, starting from rest in 2 s. What is the value of coefficient of friction? (d) 0.184 (c) 0.47**20.** A car having a mass of 1000 kg is moving at a speed of 30 ms⁻¹. Brakes are applied to bring the car to rest. If the
- frictional force between the tyres and the road surface is 5000 N, the car will come to rest in (a) 5 s (d) 6 s (c) 12 s 21. A 100 N force acts horizontally on a block of mass 10 kg placed on a horizontal rough table of coefficient of friction $\alpha = 0.5$. If g at the place is 10 ms⁻², the acceleration of the block is
- (b) 10 ms^{-2} (a) zero (d) 5.2 ms^{-2} (c) 5 ms^{-2} 22. A block of mass 2 kg is placed on the floor. The coefficient of static friction is 0.4. If a force of 2.8 N is applied on the block parallel to the floor, the force of friction between the block and floor is
- $(Take, g = 10 \text{ ms}^{-2})$ (a) 2.8 N (b) 8 N (c) 2 N (d) zero 23. A body is projected along a rough horizontal surface with a velocity 6 ms⁻¹. If the body comes to rest after travelling
- 9 m, then coefficient of sliding friction is (Take, $g = 10 \text{ ms}^{-2}$) (a) 0.5 (b) 0.4 (c) 0.6(d) 0.2 24. The coefficient of friction between the tyres and road is 0.4.

(d) 16 m

The minimum distance covered before attaining a speed of 8 ms⁻¹ starting from rest is nearly (Take, $q = 10 \text{ ms}^{-2}$) (b) 4 m

27. A block of mass *m* is placed on the top of another block of mass *M* as shown in the figure . The coefficient of friction between them is ∝.

move, so that m also moves along with it, is

25. A block is gently placed on a conveyor belt moving

horizontally with constant speed. After t = 4 s, the velocity

(b) 4 ms^{-1}

(d) 18 ms⁻¹

of the block becomes equal to the velocity of the belt. If the coefficient of friction between the block and the belt

is $\propto = 0.2$, then the velocity of the conveyor belt is

26. The breaking strength of the cable used to pull a body is

40 N. A body of mass 8 kg is resting on a table of coefficient

of friction $\propto = 0.2$. The maximum acceleration which can be produced by the cable connected to the body is (Take,

M

The maximum acceleration with which the block *M* may

(a) 8 ms^{-1}

(c) 6 ms^{-1}

 $q = 10 \text{ms}^{-2}$

(a) 6 ms^{-2}

(c) 8 ms^{-2}

(a) 8 N

(c) 2 N

- (a) ∞q (c) $\propto \frac{m}{M}g$
- 28. In the shown arrangement, mass of A = 1 kg and mass of B = 2 kg. Coefficient of friction between A and B = 0.2.
- - force exerted by A on B equals (a) 2 N (c) 4 N (d) 5 N
 - 29. A block of mass 4 kg is placed on a rough horizontal plane.

There is no friction between B and ground. The frictional

- A time dependent force $F = kt^2$ acts on the block, where
- $k = 2 \text{ Ns}^{-2}$ and coefficient of friction $\propto = 0.8$.
- Force of friction between block and the plane at t = 2 s is

(b) 4 N

(d) 32 N