Order Statistics

Cheng Peng

Contents

1	Introduction and Motivation	1
2	Distribution of Minimum Statistic $X_{(1)}$	1
3	Distribution of Minimum Statistic $X_{(m)}$	3
4	Combined Reliability System	5

1 Introduction and Motivation

This note discusses the method of transformation for finding the probability distributions of functions of random variables in both univariate and multivariate cases. **Section 7 of chapter 6** in the textbook covers these topics.

A Motivational Example: Consider a n-component reliability system in which the component lifetimes $\{X_1, X_2, \dots, X_n\}$ are exponential random variables with rate parameters $\lambda_1, \lambda_2, \dots, \lambda_n$, respectively. We can define the **order statistics** in the following

$$\begin{split} X_{(1)} &= \min\{X_1, X_2, \cdots, X_n\} \\ X_{(2)} &= \text{ the 2nd smallest of } X_1, X_2, \cdots, X_n \\ X_{(3)} &= \text{ the 3rd smallest of } X_1, X_2, \cdots, X_n \\ &\cdots \\ X_{(n)} &= \max\{X_1, X_2, \cdots, X_n\} \end{split}$$

The general objective is to find the distribution of $X_{(i)}$ for $i=1,2,\cdots,n$. Since order statistic $X_{(i)}$ is defined on the set of all existing random variables $\{X_1,X_2,\cdots,X_n\}$, So $X_{(i)}$ is a function of $\{X_1,X_2,\cdots,X_n\}$. In this note, we will discuss some special order statistics.

2 Distribution of Minimum Statistic $X_{(1)}$

In a reliability system, a series system needs all of its components to function for the system itself to be functional. Assuming the serial system has n independent components with corresponding lifetimes $\{X_1, X_2, \dots, X_n\}$. In this situation, the lifetime of a serial system is $X_{(1)} = \min\{X_1, X_2, \dots, X_n\}$. We next derive the distribution of $X_{(1)}$ so we can calculate the mean, variance, and other numeric measures of $X_{(1)}$.

For example, we add the lifetime of each component in the above serial system in the following

The lifetime of the system is

system lifetime =
$$\min\{7, 3, 5\} = 4$$
.

.

Next, we use an example to show how to characterize the distribution of the statistic $X_{(1)} = \min\{X_1, X_2, \cdots, X_n\}$ where the independent component $\{X_1, X_2, \cdots, X_n\} \to f_i(x)$.

Example 1 Consider an **independent** n-component series system in which the component lifetimes $\{X_1, X_2, \dots, X_n\}$ are exponential random variables with rate parameters rates λ_i for $i = 1, 2, \dots, \lambda_n$. Let Y denote the lifetime that the system fails. What is the distribution of Y?

Solution: Since the density function of *i*-th component's lifetime is given by

$$f_i(x) = \lambda_i e^{-\lambda_i x}, \quad \text{for} \quad x > 0.$$

Its CDF is given by

$$F_i(x) = 1 - e^{-\lambda_i x}.$$

Using the CDF method, we derive the distribution of $Y_{(1)}$ as follows.

$$f_{Y_{(1)}}(y) = P[Y_{(1)} \le y] = P[\min\{X_1, X_2, \cdots, X_n\} \le y] = 1 - P[\min\{X_1, X_2, \cdots, X_n\} > y]$$

Since the smallest lifetime is bigger than y, therefore, every X_i is greater than Y. Equivalently, event $\min\{X_1, X_2, \dots, X_n\} > y$ is identical to $\{X_1 > y \cap X_2 > y \cap \dots \cap X_n > y\}$. Using the assumption that the components' lifetimes are independent, we have

$$P[\min\{X_1, X_2, \cdots, X_n\} > y] = P[X_1 > y \cap X_2 > y \cap \cdots \cap X_n > y]$$

$$= P[X_1 > y] \times P[X_2 > y] \times \dots \times P[X_n > y] = (1 - P[X_1 \le y]) \times (1 - P[X_2 > y]) \times \dots \times (1 - P[X_n > y])$$

$$= \left(1 - \left[1 - e^{-\lambda_1 y}\right]\right) \times \left(1 - \left[1 - e^{-\lambda_2 y}\right]\right) \times \dots \times \left(1 - \left[1 - e^{-\lambda_n y}\right]\right) = e^{-\lambda_1 y} \times e^{-\lambda_2 y} \times \dots \times e^{-\lambda_n y} = e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_n)y}.$$

Hence, the CDF of $Y_{(1)}$ is given by

$$F_{Y_{(1)}}(y) = 1 - e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_n)y}$$
.

The corresponding PDF is given by

$$f_{Y_{(1)}}(y) = (\lambda_1 + \lambda_2 + \dots + \lambda_n)e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_n)y}$$
.

We can see that the minimum statistics is also an exponential distribution with rate $\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_n$.

Example 2: We now look at a numerical example. Consider a 3-component **series system**: where each component has an exponential lifetime with rates 0.2, 0.3, and 0.5, respectively. Find the probability that the system fails in one unit of time.

Solution: From the result of the above example, the time to failure of the series system is $Y_{(1)}$ that has distribution

$$F_{Y_{(1)}}(y) = 1 - e^{-(0.1 + 0.2 + 0.5)y} = 1 - e^{-y}.$$

The probability that the system fails in one unit of time is given by

$$P(Y_{(1)} < 1) = 1 - e^{-1} \approx 0.632.$$

3 Distribution of Minimum Statistic $X_{(m)}$

We also use a reliability system as an example. A parallel system is one that needs only one of its components to function in order for the system itself to be functional. Assuming the parallel system has n independent components with corresponding lifetimes $\{X_1, X_2, \cdots, X_n\}$. In this situation, the lifetime of a serial system is $X_{(n)} = \max\{X_1, X_2, \cdots, X_n\}$. We next derive the distribution of $X_{(n)}$ so we can calculate the mean, variance, and other numeric measures of $X_{(n)}$.

For ease of illustration, we assign a lifetime to each individual component in the following.

The lifetime of the system is

system lifetime =
$$\max\{7, 3, 5\} = 7$$
.

The following example demonstrates how to find the distribution of the system lifetime based on a given liftime distributions of the individual components in the parallel system.

Example 3 Consider an **independent** n-component **parallel** system in which the component lifetimes $\{X_1, X_2, \dots, X_n\}$ are exponential random variables with rate parameters rates λ_i for $i = 1, 2, \dots, \lambda_n$. Let Y denote the lifetime that the system fails. What is the distribution of Y?

Solution: Since the density function of *i*-th component's lifetime is given by

$$f_i(x) = \lambda_i e^{-\lambda_i x}, \quad \text{for} \quad x > 0.$$

Its CDF is given by

$$F_i(x) = 1 - e^{-\lambda_i x}$$
.

Using the CDF method, we derive the distribution of $Y_{(1)}$ as follows.

$$f_{Y_{(n)}}(y) = P[Y_{(n)} \le y] = P[\max\{X_1, X_2, \cdots, X_n\} \le y]$$

Since the largest lifetime is less than y, therefore, every X_i is less than Y. Equivalently, event $\max\{X_1, X_2, \dots, X_n\} \leq y$ is identical to $\{X_1 \leq y \cap X_2 \leq y \cap \dots \cap X_n \leq y\}$. Using the assumption that the components' lifetimes are independent, we have

$$P[\max\{X_1, X_2, \dots, X_n\} \le y] = P[X_1 \le y \cap X_2 \le y \cap \dots \cap X_n \le y]$$

$$= P[X_1 \le y] \times P[X_2 \le y] \times \dots \times P[X_n \le y] = [1 - e^{-\lambda_1 y}] \times [1 - e^{-\lambda_2 y}] \times \dots \times [1 - e^{-\lambda_n y}].$$

Therefore,

$$F_{Y_{(n)}}(y) = [1 - e^{-\lambda_1 y}] \times [1 - e^{-\lambda_2 y}] \times \dots \times [1 - e^{-\lambda_n y}].$$

Example 4: We now modify the system we discussed in **Example 2**. Consider a 3-component **parallel system**: where each component has an exponential lifetime with rates 0.2, 0.3, and 0.5, respectively. Find the probability that the system fails in one unit of time.

Solution: We use the CDF derived in the above example 3

$$F_{Y_{(3)}}(y) = [1 - e^{-0.2y}] \times [1 - e^{-0.3y}] \times [1 - e^{-0.5y}].$$

The probability that the system fails in one unit of time is given by

$$P(Y_{(1)} < 1) = [1 - e^{-0.2}] \times [1 - e^{-0.3}] \times [1 - e^{-0.5}] \approx 0.0185.$$

This means the probability the parallel system's lifetime is less than one unit of time is 1.85%, that much less 63.2% for a series system.

4 Combined Reliability System

We have discussed the simplest reliability systems: series and parallel systems. The actual reliability systems usually consist of combined series and parallel components. For example, the following figure depicts a system with both series and parallel components.

We can similarly assign lifetime to individual component in the above system and get

The lifetime of the hybrid system is given by

system lifetime =
$$\max\{\min\{3,5\},7\} = 7$$
.

We now use the derived CDF in Sections 1 and 2 to derive the lifetime distribution of the combined system shown in the above system.

Example 5: Consider the above combined system. Let $\{X_1, X_2, X_3\}$ be the random variables representing lifetimes of three **independent components** in the above system respectively. Assume also that all three systems follow the same exponential distributions with rates λ_1, λ_2 , and λ_3 , respectively. Find the probability distribution of lifetime.

Solution: First we know that the lifetime of the above combined three-component system $Y = \max\{\min\{X_1, X_2\}, X_3\}$ (think about why?). The CDF of Y is defined to be

$$\begin{split} F_Y(y) &= P[Y \leq y] = P[\max\{\min\{X_1, X_2\}, X_3\} \leq y] = P[\min\{X_1, X_2\} \leq y \cap X_3 \leq y] \\ &= P[\min\{X_1, X_2\} \leq y] \times P[X_3 \leq y] = (1 - P[\min\{X_1, X_2\} > y]) \times P[X_3 \leq y] \\ &= (1 - P[X_1 > y] \times P[X_2\} > y]) \times P[X_3 \leq y] \\ &= \left(1 - [1 - e^{-\lambda_1 y}] \times [1 - e^{-\lambda_2 y}]\right) \times \left(1 - \lambda_2 e^{-\lambda_3 y}\right) \\ &= \left(e^{-\lambda_1 y} + e^{-\lambda_2 y} - e^{-(\lambda_1 + \lambda_2) y}\right) \left(1 - e^{-\lambda_3 y}\right). \end{split}$$

Next, we modify examples 2 and 4 with numerical rates.

Example 6: Consider the above 3-component **combined system**: where each component has an exponential lifetime with rates $\lambda_1 = 0.2, \lambda_2 = 0.3$ and $\lambda_3 = 0.5$, respectively. Find the probability that the system fails in one unit of time.

Solution: Using the above derived CDF of the combined system, we

$$P[Y \le 1] = \left(e^{-0.2} + e^{-0.3} - e^{-(0.2 + 0.3)}\right) \left(1 - e^{-0.5}\right) \approx 0.375.$$

The probability that the combined system fails in one unit of time is about 37.5%, as expected, that is between 1.85% (for the parallel system) and 63.2% (for the series system).