# Lógica e Conjuntos

Anderson Feitoza Leitão Maia

MATEMÁTICA BÁSICA Ciência da Computação Universidade Federal do Ceará

01 de Junho de 2021

# Apresentação

Lógica Matemática

Teoria de Conjuntos

## Relação de Implicação.

## Definição

Dadas proposições p e q dizemos que p implica q quando na tabela de p e q não ocorrem VF em nenhuma linha, isto é, quando não temos p simultaneamente verdadeiro e q falsa. (Notação:  $p \Rightarrow q$ )

#### Relação de Implicação.

## Definição

Dadas proposições p e q dizemos que p implica q quando na tabela de p e q não ocorrem VF em nenhuma linha, isto é, quando não temos p simultaneamente verdadeiro e q falsa. (Notação:  $p \Rightarrow q$ )

#### Observações

- 1<sup>a</sup>) Notemos que p implica q quando o condicional  $p \rightarrow q$  é verdadeiro.
- 2ª) Todo teorema é uma implicação da forma

#### Relação de Implicação.

## Definição

Dadas proposições p e q dizemos que p implica q quando na tabela de p e q não ocorrem VF em nenhuma linha, isto é, quando não temos p simultaneamente verdadeiro e q falsa. (Notação:  $p \Rightarrow q$ )

#### Observações

- 1<sup>a</sup>) Notemos que p implica q quando o condicional  $p \rightarrow q$  é verdadeiro.
- 2ª) Todo teorema é uma implicação da forma

#### Exemplo

1°) 
$$2|4 \Rightarrow 2|4 \cdot 5$$

significa dizer que o condicional "se 2 é divisor de 4, então 2 é divisor de  $4 \cdot 5$ " é verdadeiro.

## Relação de Equivalência.

## Definição

Dadas proposições p e q dizemos que p é equivalente a q quando p e q tem tabelas verdades iguais, isto é, quando p e q tem o mesmo valor lógico. (Notação:  $p \Leftrightarrow q$ )

## Relação de Equivalência.

## Definição

Dadas proposições p e q dizemos que p é equivalente a q quando p e q tem tabelas verdades iguais, isto é, quando p e q tem o mesmo valor lógico. (Notação:  $p \Leftrightarrow q$ )

#### Observações

- 1. Notemos que p equivale a q quando o condicional  $p \leftrightarrow q$  é verdadeiro.
- 2ª) Todo teorema, cujo recíproco também é verdadeiro, é uma equivalência.

hipótese ⇔ tese

## Relação de Equivalência.

## Definição

Dadas proposições p e q dizemos que p é equivalente a q quando p e q tem tabelas verdades iguais, isto é, quando p e q tem o mesmo valor lógico. (Notação:  $p \Leftrightarrow q$ )

#### Observações

- 1<sup>a</sup>) Notemos que p equivale a q quando o condicional  $p \leftrightarrow q$  é verdadeiro.
- 2ª) Todo teorema, cujo recíproco também é verdadeiro, é uma equivalência.

$$(\mathsf{p}\to\mathsf{q})\Leftrightarrow (\sim\!\mathsf{q}\to\sim\!\mathsf{p})$$

## Relação de Equivalência.

## Definição

Dadas proposições p e q dizemos que p é equivalente a q quando p e q tem tabelas verdades iguais, isto é, quando p e q tem o mesmo valor lógico. (Notação:  $p \Leftrightarrow q$ )

#### Observações

- 1<sup>a</sup>) Notemos que p equivale a q quando o condicional  $p \leftrightarrow q$  é verdadeiro.
- 2ª) Todo teorema, cujo recíproco também é verdadeiro, é uma equivalência.

$$(\mathsf{p}\to\mathsf{q})\Leftrightarrow (\sim\!\mathsf{q}\to\sim\!\mathsf{p})$$

|   | p | q | $p \rightarrow q$ | ~q | ~p      | $\sim q \rightarrow \sim p$ |
|---|---|---|-------------------|----|---------|-----------------------------|
| 1 | V | ٧ | V                 | F  | F       | V                           |
|   | V | F | F                 | V  | ma Fare | in english it of            |
|   | F | V | V                 | F  | V       | V                           |
|   | F | F | V                 | V  | V       | v )                         |

- 7. Verifique, por meio das tabelas-verdades, a validade das equivalências abaixo.
  - a) da conjunção

b) da disjunção

 $p \vee f \Leftrightarrow p$ 

c) da conjunção relativamente à disjunção

$$p \lor (p \land q) \Leftrightarrow p$$

d) da negação

$$\begin{array}{l}
\sim (\sim p) \Leftrightarrow p \\
\sim (p \land q) \Leftrightarrow \sim p \lor \sim q \\
\sim (p \lor q) \Leftrightarrow \sim p \land \sim q
\end{array}$$

em que p, q, r são proposições quaisquer, v é uma tautologia e f uma proposição logicamente falsa.

## Senteças Abertas e Quantificadores

## Definição

Orações que contem variaveis são chamadas funções proporcionais ou sentenças abertas. Tais orações não são proposições pois seu valor lógico (V ou F) é discutível, dependem do valor dado as variaveis.

#### Senteças Abertas e Quantificadores

#### Definição

Orações que contem variaveis são chamadas funções proporcionais ou sentenças abertas. Tais orações não são proposições pois seu valor lógico (V ou F) é discutível, dependem do valor dado as variaveis.

#### Exemplos.

a) 
$$x + 1 = 7$$

b) 
$$x > 2$$

c) 
$$x^3 = 2x^2$$

## Senteças Abertas e Quantificadores

## Definição

Orações que contem variaveis são chamadas funções proporcionais ou sentenças abertas. Tais orações não são proposições pois seu valor lógico (V ou F) é discutível, dependem do valor dado as variaveis.

## Exemplos.

- a) x + 1 = 7
- b) x > 2
- c)  $x^3 = 2x^2$

## Tranformar Sentenças Abertas em Quantificadores

- (1) atribuir valor as variaveis.
- (2) utilizar quantificadores.

#### O Quantificador Universal

O quantificador universal, usado para transformar sentenças abertas em proposições, é indicado pelo simbolo  $\forall$ , que se lê: "qualquer que seja", " para todo", "para cada".

#### O Quantificador Universal

O quantificador universal, usado para transformar sentenças abertas em proposições, é indicado pelo simbolo  $\forall$ , que se lê: "qualquer que seja", " para todo", "para cada".

#### Exemplos.

```
1°) (\forall x)(x + 1 = 7), que se lê:

"qualquer que seja o número x, temos x + 1 = 7". (Falsa)

2°) (\forall x)(x^3 = 2x^2), que se lê:

"para todo número x, x^3 = 2x^2". (Falsa)

3°) (\forall a) ((a + 1)<sup>2</sup> = a^2 + 2a + 1), que se lê:

"qualquer que seja o número a, temos (a + 1)<sup>2</sup> = a^2 + 2a + 1". (Verdadeira)
```

## O Quantificador Universal

O quantificador universal, usado para transformar sentenças abertas em proposições, é indicado pelo simbolo  $\forall$ , que se lê: "qualquer que seja", " para todo", "para cada".

#### Exemplos.

```
1°) (\forall x)(x + 1 = 7), que se lê:

"qualquer que seja o número x, temos x + 1 = 7". (Falsa)

2°) (\forall x)(x^3 = 2x^2), que se lê:

"para todo número x, x^3 = 2x^2". (Falsa)

3°) (\forall a) ((a + 1)<sup>2</sup> = a^2 + 2a + 1), que se lê:

"qualquer que seja o número a, temos (a + 1)<sup>2</sup> = a^2 + 2a + 1". (Verdadeira)
```

#### O Quantificador Existencial

O quantificador existencial é indicado pelo simbolo ∃, que se lê: "existe", "existe pelo menos um", "existe um".

#### Exemplos.

```
1°) (\exists x)(x + 1 = 7), que se lê:

"existe um número x tal que x + 1 = 7". (Verdadeira)

2°) (\exists x)(x^3 = 2x^2), que se lê:

"existe um número x tal que x^3 = 2x^2". (Verdadeira)

3°) (\exists a)(a^2 + 1 \le 0), que se lê:

"existe um número a tal que a^2 + 1 é não positivo". (Falsa)
```

## Exemplos.

```
1°) (\exists x)(x + I = 7), que se lê: 

"existe um número x tal que x + I = 7". (Verdadeira)

2°) (\exists x)(x^3 = 2x^2), que se lê: 

"existe um número x tal que x^3 = 2x^2". (Verdadeira)

3°) (\exists a)(a^2 + I \le 0), que se lê: 

"existe um número a tal que a^2 + I é não positivo". (Falsa)
```

**Obs.** Outro quantificador:  $\exists$ | que se lê: existe um úniico", " existe um e um só", " existe só um".

```
1°) (∃|x) (x + 1 = 7), que se lê: "existe um só número x tal que x + 1 = 7". (Verdadeira)
2°) (∃|x) (x³ = 2x²), que se lê: "existe um só número x tal que x³ = 2x²". (Falsa)
```

## Negação de Conjunção

Tendo em vista que  $(\sim)(p \land q) \Leftrightarrow \sim p \lor \sim q$ , podemos estabelecer que a negação de  $p \land q$  é a proposição  $\sim p \lor \sim q$ .

## Negação de Conjunção

Tendo em vista que  $(\sim)(p \land q) \Leftrightarrow \sim p \lor \sim q$ , podemos estabelecer que a negação de  $p \land q$  é a proposição  $\sim p \lor \sim q$ .

#### Exemplo.

1°) p: 
$$a \neq 0$$
  
q:  $b \neq 0$   
p \( \cdot q: a \neq 0 \) e \( b \neq 0 \)  
\( \cdot (p \lambda q): a = 0 \) ou \( b = 0 \)

## Negação de Conjunção

Tendo em vista que  $(\sim)(p \land q) \Leftrightarrow \sim p \lor \sim q$ , podemos estabelecer que a negação de  $p \land q$  é a proposição  $\sim p \lor \sim q$ .

## Exemplo.

1?) p: 
$$a \neq 0$$
  
q:  $b \neq 0$   
p \( \cdot q: a \neq 0 \) e  $b \neq 0$   
 $\cdot (p \lambda q): a = 0 \) ou  $b = 0$$ 

#### Negação de Disjunção

Tendo em vista que  $(\sim)(p \lor q) \Leftrightarrow \sim p \land \sim q$ , podemos estabelecer que a negação de  $p \land q$  é a proposição  $\sim p \lor \sim q$ .

## Exemplo.

```
1°) p: o triângulo ABC é isósceles
q: o triângulo ABC é equilátero
p v q: o triângulo ABC é isósceles ou equilátero
∼(p v q): o triângulo ABC não é isósceles e não é equilátero
```

## Exemplo.

```
1º) p: o triângulo ABC é isósceles
q: o triângulo ABC é equilátero
p v q: o triângulo ABC é isósceles ou equilátero
○(p v q): o triângulo ABC não é isósceles e não é equilátero
```

## Negação de um condicional simples

Tendo em vista que  $(\sim)(p \to q) \Leftrightarrow p \land \sim q$ , podemos estabelecer que a negação de  $p \to q$  é a proposição  $p \land \sim q$ .

## Exemplo.

```
1?) p: o triângulo ABC é isósceles
q: o triângulo ABC é equilátero
p v q: o triângulo ABC é isósceles ou equilátero
○(p v q): o triângulo ABC não é isósceles e não é equilátero
```

## Negação de um condicional simples

Tendo em vista que  $(\sim)(p \to q) \Leftrightarrow p \land \sim q$ , podemos estabelecer que a negação de  $p \to q$  é a proposição  $p \land \sim q$ .

1?) p: 
$$2 \in \mathbb{Z}$$
  
q:  $2 \in \mathbb{Q}$   
p \rightarrow q:  $2 \in \mathbb{Z} \rightarrow 2 \in \mathbb{Q}$   
 $0 \cdot (p \rightarrow q)$ :  $2 \in \mathbb{Z}$  e  $2 \notin \mathbb{Q}$ 

#### Negação do Quantificador Universal

Uma sentença quantificada com o quantificador universal, do tipo  $(\forall)(P(x))$ , é negada assim: substitui-se o quantificador pelo existencial e nega-se p(x), obtendo:  $(\exists)(\sim p(x))$ .

## Negação do Quantificador Universal

Uma sentença quantificada com o quantificador universal, do tipo  $(\forall)(P(x))$ , é negada assim: substitui-se o quantificador pelo existencial e nega-se p(x), obtendo:  $(\exists)(\sim p(x))$ .

#### Exemplo.

- 1°) sentença:  $(\forall x) (x + 3 = 5)$  negação:  $(\exists x) (x + 3 \neq 5)$
- 2°) sentença:  $(\forall x) (x(x + 1) = x^2 + x)$ negação:  $(\exists x) (x(x + 1) \neq x^2 + x)$
- 3°) sentença:  $(\forall x) (\sqrt{x^2 + 1} = x + 1)$ negação:  $(\exists x) (\sqrt{x^2 + 1} \neq x + 1)$
- sentença: Todo losango é um quadrado. negação: Existe um losango que não é quadrado.

## Negação do Quantificador Existencial

Uma sentença quantificada com o quantificador existencial, do tipo  $(\exists)(P(x))$ , é negada assim: substitui-se o quantificador pelo universal e nega-se p(x), obtendo:  $(\forall)(\sim p(x))$ .

## Negação do Quantificador Existencial

Uma sentença quantificada com o quantificador existencial, do tipo  $(\exists)(P(x))$ , é negada assim: substitui-se o quantificador pelo universal e nega-se p(x), obtendo:  $(\forall)(\sim p(x))$ .

#### Exemplo.

1°) sentença: 
$$(\exists x) (x = x)$$
  
negação:  $(\forall x) (x \neq x)$ 

2°) sentença: (∃a) 
$$\left(a + \frac{1}{2} \ge \frac{1}{3}\right)$$
  
negação: (∀ a)  $\left(a + \frac{1}{2} < \frac{1}{3}\right)$ 

3°) sentença: 
$$(\exists \ a) \left(\frac{1}{a} \in |R|\right)$$
 negação:  $(\forall \ a) \left(\frac{1}{a} \notin |R|\right)$ 

#### Conjunto - Elemento - Pertinência

Na teoria dos conjuntos três noções são aceitas sem definição.

- (a) Conjunto.
- (b) Elemento.
- (c) Pertinência entre elemento e conjunto.

## Conjunto - Elemento - Pertinência

Na teoria dos conjuntos tres noções são aceitas sem definição.

- (a) Conjunto.
- (b) Elemento.
- (c) Pertinência entre elemento e conjunto.

**Obs.** A noção matemática de conjunto é praticamente a mesma que se usa na linguagem comum: eo mesmo que agrupamento, classe, coleção, sistema.

## Conjunto - Elemento - Pertinência

Na teoria dos conjuntos três noções são aceitas sem definição.

- (a) Conjunto.
- (b) Elemento.
- (c) Pertinência entre elemento e conjunto.

**Obs.** A noção matemática de conjunto é praticamente a mesma que se usa na linguagem comum: e o mesmo que agrupamento, classe, coleção, sistema.

#### Exemplos.

- 1) conjunto das vogais
- 2) conjunto dos algarismos romanos
- 3) conjunto dos números ímpares positivos
- 4) conjunto dos planetas do sistema solar



#### Elemento

Cada membro ou objeto que entra na formarção do conjunto é chamado elemento.

#### Elemento

Cada membro ou objeto que entra na formarção do conjunto é chamado elemento.

## Exemplo.

- 1) a, e, i, o, u
- 2) I, V, X, L, C, D, M
- 3) 1, 3, 5, 7, 9, 11, ...
- 4) Mercúrio, Vênus, Terra, Marte, ...

#### Elemento

Cada membro ou objeto que entra na formarção do conjunto é chamado elemento.

#### Exemplo.

- 1) a, e, i, o, u
- 2) I, V, X, L, C, D, M
- 3) 1, 3, 5, 7, 9, 11, ...
- 4) Mercúrio, Vênus, Terra, Marte, ...

#### Pertinência

Sejam A um conjunto e x um elemento. Se x pertence ao conjunto A, escrevemos:

$$x \in A$$
.

Para indicar que x não é elemento do conjunto A, escrevemos  $x \notin A$ .

### Diagrama de Venn

Quando usamos um círculo para representar um conjunto, estaremos usando o assim chamado diagrama de Euler-Venn.

#### Diagrama de Venn

Quando usamos um círculo para representar um conjunto, estaremos usando o assim chamado diagrama de Euler-Venn.



#### Diagrama de Venn

Quando usamos um círculo para representar um conjunto, estaremos usando o assim chamado diagrama de Euler-Venn.

#### Exemplo.



Na representação acima temos:

$$a \in A$$
,  $b \in A$  e  $d \notin A$ .



#### Descrição pela citação dos elementos

Quando um conjunto é dado pela enumeração de seus elementos, devemos indicá-lo escrevendo seus elementos entre chaves.

## Descrição pela citação dos elementos

Quando um conjunto é dado pela enumeração de seus elementos, devemos indicá-lo escrevendo seus elementos entre chaves.

- 1°) conjunto das vogais [a, e, i, o, u]
- 2°) conjunto dos algarismos romanos [I, V, X, L, C, D, M]
- 3º) conjunto dos nomes de meses de 31 dias [janeiro, março, maio, julho, agosto, outubro, dezembro]

#### Descrição pela citação dos elementos

Quando um conjunto é dado pela enumeração de seus elementos, devemos indicá-lo escrevendo seus elementos entre chaves.

### Exemplo.

- 1°) conjunto das vogais [a, e, i, o, u]
- 2°) conjunto dos algarismos romanos  $\{I, V, X, L, C, D, M\}$
- 3º) conjunto dos nomes de meses de 31 dias [janeiro, março, maio, julho, agosto, outubro, dezembro]

**Obs.**Quando o conjunto é infinito ou quando o conjunto é finito com grande número de elementos:

1°) conjunto dos números ímpares positivos

$$\{1, 3, 5, 7, 9, 11, 13, \ldots\}$$

2°) conjunto dos divisores positivos de 100

$$\{1, 2, 5, 10, ..., 100\}$$

### Descrição por uma propriedade

Quando queremos descrever um conjunto A por meio de uma propriedade característica P de seus elementos x, escrevemos:

$$A = \{x | x \text{ tem a propriedade } P\}$$

e lemos: "A é o conjunto dos elementos x tal que x tem a propriedade P".

### Descrição por uma propriedade

Quando queremos descrever um conjunto A por meio de uma propriedade característica P de seus elementos x, escrevemos:

$$A = \{x | x \text{ tem a propriedade } P\}$$

e lemos: "A é o conjunto dos elementos x tal que x tem a propriedade P".

- [x|x é Estado da região Sul do Brasil] é uma maneira de indicar o conjunto:
  - [Paraná, Santa Catarina, Rio Grande do Sul]
- 2°) [x|x é divisor inteiro de 3] é uma maneira de indicar o conjunto: [1, -1, 3, -3]
- 3°) [ $x \mid x$  é inteiro e  $0 \le x \le 500$ ] pode também ser indicado por: [0, 1, 2, 3, ..., 500]

### Conjunto Unitário

Chama-se conjunto unitário aquele que possui um único elemento.

#### Conjunto Unitário

Chama-se conjunto unitário aquele que possui um único elemento.

- 1°) conjunto dos divisores de 1, inteiros e positivos: [1]
- 2°) conjunto das soluções da equação 3x + 1 = 10: [3]

#### Conjunto Unitário

Chama-se conjunto unitário aquele que possui um único elemento.

#### Exemplo.

- 1°) conjunto dos divisores de 1, inteiros e positivos: [1]
- 2°) conjunto das soluções da equação 3x + 1 = 10: [3]

### Conjunto Vazio

Chama-se conjunto vazio aquele que não possui elemento algum. O simbolo usual para o conjunto vazio é  $\emptyset$ .

## Conjunto Unitário

Chama-se conjunto unitário aquele que possui um único elemento.

#### Exemplo.

- 1º) conjunto dos divisores de *I*, inteiros e positivos: [1]
- 2°) conjunto das soluções da equação 3x + 1 = 10: (3)

## Conjunto Vazio

Chama-se conjunto vazio aquele que não possui elemento algum. O simbolo usual para o conjunto vazio é  $\emptyset$ .

1°) 
$$\{x \mid x \neq x\} = \emptyset$$

2°) 
$$\{x \mid x \in \text{impar e multiplo de } 2\} = \emptyset$$

3°) 
$$\{x \mid x > 0 \ e \ x < 0\} = \emptyset$$

### Conjunto Universo

Chama-se conjunto universo (ou apenas universo de uma teoria) o conjunto de todos os elementos que são considerados no estudo de uma teoria. Notação: U.

#### Conjunto Universo

Chama-se conjunto universo (ou apenas universo de uma teoria) o conjunto de todos os elementos que são considerados no estudo de uma teoria. Notação: *U*.

- (1) As soluções reais de uma equação, nosso conjunto universo é  $\mathbb{R}$  (conjunto dos números reais).
- (2) Na geometria o universo pode ser o conjunto de todos os pontos do plano ou do espaço.

### Conjunto Universo

Chama-se conjunto universo (ou apenas universo de uma teoria) o conjunto de todos os elementos que são considerados no estudo de uma teoria. Notação: *U*.

### Exemplos.

- (1) As soluções reais de uma equação, nosso conjunto universo é  $\mathbb R$  (conjunto dos números reais).
- (2) Na geometria o universo pode ser o conjunto de todos os pontos do plano ou do espaço.

#### Conjuntos Iguais

Dois conjuntos A e B são iguais quando todo elemento de A pertence a B e, reciprocamente, todo elemento de B pertence a A.

### Conjunto Universo

Chama-se conjunto universo (ou apenas universo de uma teoria) o conjunto de todos os elementos que são considerados no estudo de uma teoria. Notação: *U* 

### Exemplos.

- (1) As soluções reais de uma equação, nosso conjunto universo é  $\mathbb R$  (conjunto dos números reais).
- (2) Na geometria o universo pode ser o conjunto de todos os pontos do plano ou do espaço.

### Conjuntos Iguais

Dois conjuntos A e B são iguais quando todo elemento de A pertence a B e, reciprocamente, todo elemento de B pertence a A.

$$A = B \iff (\forall x) (x \in A \iff x \in B)$$



```
1°) \{a, b, c, d\} = \{d, c, b, a\}
```

2°) 
$$\{1, 3, 5, 7, 9, ...\} = \{x \mid x \text{ \'e inteiro, positivo e 'mpar'}\}$$

3?) 
$$\{x \mid 2x + 1 = 5\} = \{2\}$$

# Thank you

Thank you for your attention!