

Variable Properties: Task 1

The emissivity of a body is dependend on wavelength. The diagram shows the emissivity for a certain body, which is given by $\epsilon_{\rm S}$ for wavelength shorter and $\epsilon_{\rm L}$ for wavelength longer than $\lambda_{\rm S}$.

1
$$\bar{\epsilon} = \epsilon_{\rm S} F_{0 \to \lambda_{\rm S}} + \epsilon_{\rm L} (1 - F_{0 \to \lambda_{\rm S}})$$

The averaged emissivity is obtained from $\bar{\epsilon} = \frac{\int_0^\infty \dot{q}_{\lambda c}'' d\lambda}{\int_0^\infty \dot{q}_{\lambda b}'' d\lambda}$. Since ϵ is constant in certain intervals, the integral can be expressed by the Function $F_{0\to\lambda}$, which gives the fraction of black body radiation up to wavelength λ .