		ī	がらし チ A	# TU			٧٠
	四分位的	節囲について	理解します	0			
	今日やること 箱ひげ	図の作成方法	を習得しま	す。			
•		_					
pp.10	5	散らば	りの統計量				
		データの	の中心を		ے	きえる	
	データの中心	散らばりの	統計量	度数	效分布		
	平均値 ⇒			⇒ 左右	5対称		
	中央値 ⇒			⇒ 左右	対称でなる	くてもよい	
	復習 【中央値】			7			
	🍃 中央値は、統計	データを		の順に	位べたとき	の真ん中の位置	の値
	🍃 相対度数は						
	🍃 中央値を境にす	ると、統計を	ニータは				
	大きさの等	しい2つのグ	ループに分に	けることた	ができる		
	🍃 2つのグループ	それぞれの		を求める	ることがで	きる	
	四分位範囲						
	相対度数が0.50)	を	ع	:表す	
	値の低いグルー						
	値の高いグルー						
	これらの値によ	り、統計デー	-タは4つの	グループ(こ分けるこ	とができる	
	これらの値(25	5%点、50%;	点、75%点)	を		と呼ぶ	
	25%点	\Rightarrow					
	50%点	\Rightarrow		=#	P央値		
	75%点	\Rightarrow			1		
	75%点と25	5%点の差					

pp.107 四分位範囲の求め方

① 中央値(50%点)を求める

※↓のデータの場合、中央値は								←50%	点!	
i	1	2	3	4	5	6	7	8	9	10
Х	18	20	21	22	23	24	26	28	30	31

② 中央値より小さいグループを取り出し、その中央値を求める

※↓のデータの場合、中央値はi 1 2 3 4 5x 18 20 21 22 23

③ 中央値より大きいグループを取り出し、その中央値を求める

←75%点!	※↓のデータの場合、中央値は 								
•	10	9	8	7	6	i			
	31	30	28	26	24	Х			

④ 75%点-25%点から、四分位範囲を求める

i		3						~
X	>	21	22	23	24	26	28	~

pp.108 問題9-1

以下の単身勤労者世帯(30歳未満の女性)の年収に関する統計データから四分位範囲を求めよ。

番号	年収	
1	123	中央値= 50%点=
2	187	
3	188	25%点=
4	253	75%点=
5	261	
6	263	四分位範囲 = 75%点 – 25点
7	267	= - =
8	298	
9	346	
10	350	
11	360	
12	413	
13	487	

Memo Memo	
	į
	į
	İ
	ļ
	ļ

pp.108(Box plot)統計データの散らばりをグラフに表現したもの
箱ひげ図は3つのと統計データに基づいて作成
の存在が確認できる

pp.109 箱ひげ図の作成方法

0

① 四分位値と四分位範囲を計算する

※今回は前頁の値を使用	25%点	(第一四分位值)
	50%点	(第二四分位値)
	75%点	(第三四分位値)
	四分位範囲	

② 箱を描く …統計データの約50%が存在する範囲

※今回の場合は外れ値なし

pp.109 練習問題

以下のデータを用いて箱ひげ図を作成せよ

単身世帯(20代)移動電話通信料

ID	円	ID	円	第一四分位值
1	0	32	10200	第二四分位值
2	0	33	10500	第三四分位值
3	1800	34	11000	四分位範囲
4	2500	35	11700	
5	2800	36	12400	第一四分位值 – (四分位範囲×1.5)
6	3000	37	13100	
7	3300	38	15800	範囲内で最も小さい観測値
8	3700	39	16600	
9	4100	40	18500	第三四分位値 + (四分位範囲×1.5)
10	4600	41	21800	
11	4700			範囲内で最も大きい観測値
12	4700			
13	4800			外れ値(範囲内に入らない観測値)
14	5200			
15	5300			
16	5400		Ţ	箱ひげ図】
17	5900			
18	6100			(万円)
19	6100			2.2
20	6700			2.0
21	6800			1.8
22	7000			1.6
23	7600			1.4
24	7800			1.2
25	7900			1.0
26	8000			0.8
27	8200			0.6
28	8600			0.4
29	9400			0.2
30	9800			0.0
31	9800			5 / 1

pp.112 問題9-2

単身勤労世帯(30歳未満)の年収に関する箱ひげ図を作成せよ

		男性	女性
	第一四分位值	275	253
口分位值 四分位值	第二四分位值	370	267
	第三四分位値	423.5	350
	四分位範囲	148.5	97.0
範囲	第一四分位值-1.5×四分位範囲		
#GE4	第三四分位值 + 1.5×四分位範囲		
ひげの範囲	範囲廃での最小の観測値		
0 77 0万年6四	範囲内での最大の観測値		
外れ値	範囲外の観測値		

※データはpp.107図9-1(男性)、pp.108図9-2(女性)を参照

🔈 上の箱ひげ図から読み取れることを記述せよ

練習問題 以下のデータから箱ひげ図を作成せよ

ID	1	2	3	4	5	6	7	8	9	10	11	12
Х	1.1	1.5	3.9	6.8	9.9	12.5	16.0	22.8	25.5	25.8	29.8	30.5

	第一四分位值	
 四分位値	第二四分位值	
四分位他	第三四分位值	
	四分位範囲	
範囲	第一四分位值-1.5×四分位範囲	
∓ 624	第三四分位值 + 1.5×四分位範囲	
ひげの範囲	範囲廃での最小の観測値	
O 17 07#6EE	範囲内での最大の観測値	
外れ値	範囲外の観測値	

 箱ひげ図】	
	<u>-</u>

練習問題 以下のデータから箱ひげ図を作成せよ

ID	1	2	3	4	5	6	7	8	9	10	11	12
Y	29	44	56	62	66	68	71	72	75	77	85	88

	第一四分位值	
 四分位値	第二四分位值	
四万位他	第三四分位值	
	四分位範囲	
範囲	第一四分位值-1.5×四分位範囲	
羊6 24	第三四分位值 + 1.5×四分位範囲	
ひげの範囲	範囲廃での最小の観測値	
O 17 07#6EE	範囲内での最大の観測値	
外れ値	範囲外の観測値	

	【箱ひげ図】	
ļ		
į	<u> </u>	

練習問題 以下のデータから箱ひげ図を作成せよ

ID	1	2	3	4	5	6	7	8	9	10	11	12
Z	145	150	151	153	155	155	158	159	161	163	166	172

	第一四分位值	
 四分位値	第二四分位值	
四万位他	第三四分位值	
	四分位範囲	
範囲	第一四分位值-1.5×四分位範囲	
羊6 24	第三四分位值 + 1.5×四分位範囲	
ひげの範囲	範囲廃での最小の観測値	
O 17 07#6EE	範囲内での最大の観測値	
外れ値	範囲外の観測値	

	【箱ひげ図】
į	
į	i

	今日の講	義のまとめ		
散らばりの統計量				
中心が平均値:	標準偏差			
中心が中央値:	四分位範囲			
標準偏差をグラフに用い	いるとき			
度数分布が左右対称の前提				
度数分布が左右対称で	はないとき			
箱ひげ図				

🧝 Memo