10 CENTRALIZED CONTROL	
TO CINIBACIZED CONTROC	
· DECENTRALIZED CONTIDUESS HAVE NOT DECOURED INFLUENCE OF CONTROLLER GAINS ON THE JOINTS	
. WE WANT A CONTROVER THAT LINEARIZES AND DECOURES DYNAMICS	
· Nac Malai V (Dialegnest Jilei) (Industrise) WID Decorded Diagnals	
0.L. Dynamics: $\mathcal{T} = \mathcal{H}'(\Theta)\ddot{\Theta} + \mathcal{V}(\Theta,\dot{\Theta}) + \mathcal{G}(\Theta) + \mathcal{F}(\dot{\Theta})$	
N (() MM-LINEARITIES	
MACO, (a) Montheratures	
(a) (a) (a)	
CONSIDER A NEW CONTROL LAW:	
,	
② Y = Ĥ (④) v → N (♠, ┢́)	
WHERE U = Kp B + Kp B + Kp B dt + Wd	
<u> </u>	
is live set (1) = (2)	
$H(\Theta)\ddot{\Theta} \sim N(\Theta,\dot{\Theta}) = \hat{H}(\Theta) u + N(\Theta,\dot{\Theta})$	
IF WE HAVE A PERFECT MODEL $\hat{N} = N$ $\hat{H} = H$	
IN THE LIMITS IN NOTICE IN IN A ILL IN	
<u> </u>	
⇒ (H) = H · H W = W	
= U + Oa	
posiero 0	
H _d - \hat{\alpha} = - \hat{\alpha}	
$\widetilde{\widetilde{\Theta}}$ = - $\hat{\mathbf{u}}$ cua	VO 1400 SUMMER
	SED LOOP DYNAMICS
Augifann of Error = - Il	
· · · · · · · · · · · · · · · · · · ·	
	pecaneces:
	OUTPUT OF PD ON CHANNEL PROUSES $\widetilde{\theta}_1$
	output of PD on channel 2 pepules $\widetilde{ heta}_2$
	¬ 1
9, -û, -(KP, + Ko	, s + ½ /s) ð, (õ,
· : <u>. : </u>	= 5
$\left[\widetilde{\theta}_{n}\right]\left[-\widehat{u}_{n}\right]\left(\left(k\rho_{n}+k_{0}+k_{0}+k_{1}+k_{2}\right)\widetilde{\theta}_{n}\right]\left[\widetilde{\theta}_{n}\right]$	
L SHIP TO DE	
L FULLY TECOPIED	

 $\widetilde{m{G}}_{m{i}}$ ALERERATES $\widetilde{m{G}}_{m{i}}$, NOT OTHER JOINTS $\left(\widehat{m{G}}_{m{j}}
ight)$

$$\theta_{i} \longrightarrow 0$$

WE HAVE PERFECT TRACKING, REGARDLESS OF PD GAINS

- WELL NEVER HAVE A PERFECT MODEL OF EVERYTHING

DISTURBANCE RESECTION

$$\frac{g(s)}{d(s)} = \frac{1}{s^2 + k_{ai}s + k_{7i}}$$

M = POOT LOCUS PLOT

WHEREVER | WANT TO SET A 6000 DISTURBANCE PLJECTION

WE CAN USE THE SAME PD (OR PID) · WE CAN EVEN USE SAME PD ON DIFFERENT ROCOIS

SIMULATING FORWARD DYNAMICS

OPEN LOOP EBLY
$$V = H(\Theta)\ddot{\Theta} + N(\Theta,\dot{\Theta})$$

WE WANT TO SOLVE FOR

FORWARD DYNAMICS (SIMULATING THE POROT)

IF WE INSERT THIS INTO CONTROLLER BLOCK DIAGRAM, THEN INVERSE DYNAMICS CANCELS FORWARD DYNAMICS

$$0 \rightarrow 1 \rightarrow 0$$