Feature Engineering and Supervised Learning

Yu Qiu

Table 1: Transaction data

	user_id	signup_time	purchase_time	purchase_value	device_id	source	browser	sex	age	ip_address	class
0	22058	2015-02-24 22:55:49	2015-04-18 02:47:11	34	QVPSPJUOCKZAR	SEO	Chrome	М	39	7.327584e+08	0
1	333320	2015-06-07 20:39:50	2015-06-08 01:38:54	16	EOGFQPIZPYXFZ	Ads	Chrome	F	53	3.503114e+08	0
2	150084	2015-04-28 21:13:25	2015-05-04 13:54:50	44	ATGTXKYKUDUQN	SEO	Safari	М	41	3.840542e+09	0
3	221365	2015-07-21 07:09:52	2015-09-09 18:40:53	39	NAUITBZFJKHWW	Ads	Safari	М	45	4.155831e+08	0
4	159135	2015-05-21 06:03:03	2015-07-09 08:05:14	42	ALEYXFXINSXLZ	Ads	Chrome	М	18	2.809315e+09	0

Table 2: IP address look-up table

	lower_bound_ip_address	upper_bound_ip_address	country
0	16777216.0	16777471	Australia
1	16777472.0	16777727	China
2	16777728.0	16778239	China
3	16778240.0	16779263	Australia
4	16779264.0	16781311	China

Three main problems of the features in this dataset that we need to handle:

- How use the time related raw data in the model
- How to do encoding of the categorical features
- How to handle the imbalanced label data

Operations on time related raw data

- Combine the sign up time and first transaction time to get the interval between sign up and first transaction
- Convert the time of sign up to the days of a year and the seconds of a day
- Convert the time of transaction to the days of a year and the seconds of a day

Encoding of categorical features:

- For the categorical features which only have several unique variables, we can
 do the one-hot encoding to convert it to numerical variables
- For the categorical features which have many different variables, such as the devices_shared, we can count the frequency and then encode them by frequency

Methods to handle imbalanced data

- SMOTE (Synthetic Minority Over-sampling Technique)
- Import weight to balance the dataset during training phase

Supervised Learning

I only pick two models, logistic regression and random forest, at this phase of our project.

During the training phase, I apply five-fold cross validation to choose the hyperparameters for these two models according to different metrics, such as f1 score and recall.

The final result shows that the performance of random forest is way better than logistic regression.

Supervised Learning

I also use the feature importance generated by

random forest to make some predictions and

recommendations. This table shows the feature

importance.

purchase days of year purchase seconds of day

interval_after_signup

signup seconds of day n dev shared

signup_days_of_year

purchase value

n country shared

n ip shared browser

browser_FireFox

source Ads

source Direct

browser Safari

browser Opera

browser IE

sex	0.007894			
Chrome	0.006778			
rce SEO	0.006321			

age

0.006778
0.006321
0.005802

importance 0.417489

0.125334

0.081799

0.078478

0.072574

0.054064

0.043650 0.039094

0.024125

0.017022

0.003601 0.000819

Conclusion and Recommendation

I look into the relation between some features and the class.

Firstly, I check the relation of the n_dev_shared and the class. It is obvious that the ratio of fraud is higher as more accounts shared one device.

class	0	1
n_dev_shared		
0.0	104966	461
0.2	4403	371
0.4	152	172
0.6	37	87
0.8	13	32
1.0	1	5

Conclusion and Recommendation

Secondly, I looked into the relation between interval after sign up and the class.

What surprised me is that more than half of frauds happened only in one second after the account is signed up. I think this means that more than half of frauds are caused by bot.

interval_after_signup

ciass	
0	5194911.0
1	1.0

Conclusion and Recommendation

Finally, I apply my model to get the probability of a transaction is a fraud and then convert this probability to a score. Based on the scores, I gave these recommendations:

- green: 1 3 pass
- grey: 4 7 need manual investigation
- red: 8 9 decline