

6

Zero-Knowledge Proof Notation

We can prove knowledge of linear equations in the exponent.

To **prove knowledge** of a secret x and a relation to a public y, we write:

```
PK {(x):

y = g^x \pmod{p}

}

CSC3631 Cryptography – Anonymous
```


Q

10

Roadmap

- Privacy-preserving Authentication
- Commitment Schemes
- Anonymous Credentials

Goal for today:

How do Anonymous Credentials work on a high level?

CSC3631 Cryptography – Anonymous Credentials

1:

11

How well do Authentication and Privacy Interact?

CSC3631 Cryptography - Anonymous

14

14

15

18

Roadmap

- Privacy-preserving Authentication
- Commitment Schemes
- Anonymous Credentials

Goal for today:

How do Anonymous Credentials work on a high level?

CSC3631 Cryptography - Anonymous Credentials

18

How to play Scissor-Stone-Paper by e-mail?

CSC3631 Cryptography – Anonymous Credentials

r – Anonymous

19

Commitment Schemes

Committing to a value while keeping it hidden.

 $(C, r) \leftarrow Commit(x)$:

Input: Secret *x*

Output: Commitment *C*

and randomness r

Accept or **Reject** \leftarrow **Verify**(C, r, x)

Input: Secret *x*, *r*, commitment *C*

Output: Accept only if the secret is

indeed the one committed to

CSC3631 Cryptography – Anonymous Credentials

21

How to play Scissor-Stone-Paper by mail?

20

Properties (Informal)

Binding:

The committer cannot change the committed value after the commitment.

Hiding:

22

The committed value is hidden from the verifier.

CSC3631 Cryptography – Anonymous Credentials

22

Key Generation

How to create a strong setting for prime-order groups?

 $GenGroup(1^n)$

Input: key length *n*

Create a cyclic group G, sub-group of $(\mathbf{Z}_p)^*$ with generator g with prime-order q.

Choose random y in \mathbf{Z}_q

Compute **second generator** $h = g^y \pmod{p}$

Output: (G, q, g, h, p)

CSC3631 Cryptography – Digital Signatures

23

23

Integer Commitment

 $(N, R, S) \leftarrow GenSRSAGroup(1^n)$

Commit(x):

Choose random r in $\{0,1\}^{l}$

Compute $C = R^x S^r \pmod{N}$

Verify(*C*, *r*, *x*):

Check $C \stackrel{?}{=} R^x S^r \pmod{N}$ is fulfilled

CSC3631 Cryptography – Anonymous

25

Pedersen Commitment

 $(G, g, h, q, p) \leftarrow GenGroup(1^n)$

Commit(*x*):

Choose random r in \mathbf{Z}_{q}

Compute $C = q^x h^r \pmod{p}$

Verify(*C*, *r*, *x*):

Check $C \stackrel{?}{=} g^x h^r \pmod{p}$ is fulfilled

CSC3631 Cryptography – Anonymou Credentials

2

24

Security Properties

The Pedersen and the Integer Commitment schemes are computationally binding and information-theoretically hiding.

CSC3631 Cryptography – Anonymous Credentials

Summary

Commitment schemes allow to commit to a message while hiding it.

Key properties:

Binding

Hiding*

*) Only one of the two can be information-theoretically strong.

and

CSC3631 Cryptography – Anonymous Credentials

27

27

Foundations Anonymous Credentials

Hardness: Strong RSA (informal)

Given a public random element **Z**, it is hard to compute a pair **(A**, **e)** such that

 $Z = A^e \pmod{N}$

Camenisch-Lysyanskaya Signature:

 $Z = R^x S^v A^e \pmod{N}$

Signature: (A, e, v)

CSC3631 Cryptography – Anonymous Credentials

29

Roadmap

- Privacy-preserving Authentication
- Commitment Schemes
- Anonymous Credentials

Goal for today:

• How do Anonymous Credentials work on a high level?

CSC3631 Cryptography – Anonymous Credentials

28

28

Quadratic Residues

 An integer a is called a quadratic residue modulo N if

gcd(a, N) = 1 and $a = b^2 \pmod{N}$ for some integer b.

- In this case, we say b is a square root of a modulo N.
- We call the group of quadratic residues modulo N: \mathbf{QR}_N .

SC3631 Cryptography – Anonymous Credentials

Camenisch-Lysyanskaya Key Generation

GenSRSAGroup (1^n) and **GenCL** (1^n)

Input: key length *n*

Create special RSA modulus N=pq; p, q safe primes p=2p'+1, q=2p'+1; p' and q' also prime. Create generator S (of Quadratic Residues \mathbf{QR}_N) With group order (p-1)(q-1)/4

Create group setup: Choose at random Z, R (in \mathbf{QR}_N)

Output: pk=(N, S, Z, R), sk=(p, q)

CSC3631 Cryptography – Digital Signature:

. .

31

Security of Camenisch-Lysyanskaya

The Camnisch-Lysyanskaya (CL) signature scheme is **existentially unforgeable** for blocks of messages under the Strong RSA assumption.

CSC3631 Cryptography – Anonymou Credentials

33

Signing a hidden message

32

Re-Blinding

- Choose random r
- **Compute** A' := AS^{-r} (mod N)
- Compute corresponding v' := v + er
- (A', e, v') is a valid signature as well.
- If r is chosen uniformly random, then A' is distributed randomly over $(\mathbf{Z}_N)^*$ (Blinding by exponentiation)

CSC3631 Cryptography – Anonymous Credentials

Proving knowledge of a signed secret

Summary

Modern authentication systems and EID cards will use zero-knowledge proofs of knowledge.

Prove knowledge of attributes

Fulfilling policy statements,

While keeping the attributes themselves confidential.

CSC3631 Cryptography – Anonymou Credentials