0: Previous Knowledge

CPCFI

UNAM's School of Engineering

2021

Based on: Halim S., Halim F. Competitive Programming 3. Handbook for ACM ICPC and IOI Contestants. 2013

Table of Contents

1. Algorithm Analysis

2. RAM Model and Big O Notation

Algorithm Analysis

Given the maximum input bound, can the currently developed algorithm, with its time/space complexity, pass the time/memory limit given for that particular problem?

Algorithm Analysis

Computers can run 10^8 operations per second 1 . We can use this information to know if our algorithm will run in time. Examples:

- ▶ Input size: $n = 10^5$. Algorithm complexity: $O(n^2)$. Time: $O(n^2) = (10^5)^2 = 10^{10}$. The algorithm will need hundreds of seconds to finish
- ▶ If the algorithm complexity is: $O(n \log_2 n)$, then time would be: $10^5 \log_2 10^5 \approx 1.7 \times 10^6$ which will pass the time limit

The algorithm complexity will decide if its worth it to implement a certain algorithm or not.

Start coding an algorithm only when you know it is correct and fast enough.

 $^{^{1}10^{8} = 100,000,000 = 100}M$

Time Complexities for n input

\overline{n}	Worst AC Algorithm	Comment
$\leq [1011]$	$O(n!), O(n^6)$	e.g. Enumerating permutations (Section 3.2)
$\leq [1518]$	$O(2^n \times n^2)$	e.g. DP TSP (Section 3.5.2)
$\leq [1822]$	$O(2^n \times n)$	e.g. DP with bitmask technique (Section 8.3.1)
≤ 100	$O(n^4)$	e.g. DP with 3 dimensions + $O(n)$ loop, ${}_{n}C_{k=4}$
≤ 400	$O(n^3)$	e.g. Floyd Warshall's (Section 4.5)
$\leq 2K$	$O(n^2 \log_2 n)$	e.g. 2-nested loops + a tree-related DS (Section 2.3)
$\leq 10K$	$O(n^2)$	e.g. Bubble/Selection/Insertion Sort (Section 2.2)
$\leq 1M$	$O(n\log_2 n)$	e.g. Merge Sort, building Segment Tree (Section 2.3)
$\leq 100M$	$O(n), O(\log_2 n), O(1)$	Most contest problem has $n \leq 1M$ (I/O bottleneck)

Figure: Time complexities for a given n.

Table of Contents

1. Algorithm Analysis

2. RAM Model and Big O Notation

Algorithm Analysis

- ► Algorithms can be analyzed in a machine independent way.
- ▶ We need techniques to compare the efficiency of algorithms before implementing them.
 - RAM Model.
 - Asymptotic Analysis Big O notation.
- Algorithms can be analyzed from two perspectives:
 - ► **Time**: measured in units of time and represents the amount of time needed for an algorithm to complete.
 - ▶ **Memory**: measured in units of memory and represents the amount of memory used by the algorithm.
- ► **Time** and **Memory** have an indirect relationship. Usually if we want less time we need more memory and viceversa.

AA - The RAM Model

In the RAM model we measure run time by counting the number of steps an algorithm takes on a given problem instance.

- Skiena [1]

AA - The RAM Model

- Machine independent algorithms depend on a hypothetical computer called Random Access Machine.
- **Each** single operation (+, -, *, =, if) takes one time step.
- Loops and subroutines are a composition of multiple single operations. The time step of a loop depends on the number of iterations the loop makes.
- ► Each memory access takes exactly one time step.

AA - The RAM Model

Figure: Best, Worst and Avergae case - See: [1]

AA - Big O notation

- Provides a better intuition than the RAM Model since it:
 - Require too much detail to specify precisely its behavior.
 - Many times the steps count depends on the programmer.
- ▶ Big O notation solves this issues by providing upper and lower bounds of time-complexity functions.
- Big O notation ignores multiplicative constants
 - f(n) = 2n is considered the same as g(n) = n.

AA - Big O notation

Figure: Upper and lower bounds valid for $n > n_0$.

AA - Big O notation

▶ a):
$$f(n) = O(g(n))$$

$$f(n) \leq c \cdot g(n)$$

b):
$$f(n) = \Omega(g(n))$$

$$f(n) \ge c \cdot g(n)$$

$$\triangleright c): f(n) = \Theta(g(n))$$

$$c_2 \cdot g(n) \le f(n) \le c_1 \cdot g(n)$$

We want to identify g(n) from f(n):

f(n)	Possible $g(n)$	Test with c	Result
$3n^2 - 100n + 6$	n ²	$f(n) < 3n^2$	$f(n) = O(n^2)$

We want to identify g(n) from f(n):

f(n)	Possible $g(n)$	Test with <i>c</i>	Result
$3n^2 - 100n + 6$	n ²	f(n) < 3g(n)	$f(n) = O(n^2)$
$3n^2 - 100n + 6$	n ³	f(n) < 1g(n)	$f(n) = O(n^3)$
$3n^2-100n+6$	n	f(n) > g(n)	$f(n) \neq O(n)$

Table: Tests for O.

We want to identify g(n) from f(n):

f(n)	Possible $g(n)$	Test with c	Result
$3n^2 - 100n + 6$	n ²	f(n) > 2g(n)	$f(n) = \Omega(n^2)$

We want to identify g(n) from f(n):

f(n)	Possible $g(n)$	Test with c	Result
$3n^2 - 100n + 6$	n ²	f(n) > 2g(n)	$f(n) = \Omega(n^2)$
$3n^2 - 100n + 6$	n ³	f(n) < g(n)	$f(n) \neq \Omega(n^3)$
$3n^2 - 100n + 6$	n	f(n) > g(n)	$f(n) = \Omega(n)$

Table: Tests for Ω .

We want to identify g(n) from f(n):

f(n)	Possible $g(n)$	Test with <i>c</i>	Result
$3n^2 - 100n + 6$	n ²	Both $O \& \Omega$ apply	$f(n) = \Theta(n^2)$
$3n^2 - 100n + 6$	n ³	Θ does not apply	$f(n) \neq \Theta(n^3)$
$3n^2 - 100n + 6$	n	O does not apply	$f(n) \neq \Omega(n)$

Table: Tests for Θ

AA - Big O notation: Dominance Relations

- ▶ Big *O* notations groups functions into a set of classes such that all functions within a particular class are essentially equivalent.
 - f(n) = 230n is equivalent to g(n) = 1.5n.
 - ▶ Both f(n) and g(n) belong to $\Theta(n)$.
- ► A faster growing function dominates a slower growing one
 - ▶ We say that g(n) dominates f(n) when f(n) = O(g(n)).
 - $ightharpoonup g \gg f$.

AA - Big O notation: Function Classes I

Remember that we always need to measure the performance of our function when $n \to \infty$

- ► Constant functions, f(n) = 1: no dependence between f and n. Might measure the cost of adding two numbers, obtaining min, max, ...
- ▶ Logarithmic functions, $f(n) = \log n$: f grows slowly as n gets big but grows faster than the constant function.
- Linear functions, f(n) = n: might measure the cost of looking at each item in an n-element array.
- ▶ Superlinear functions, $f(n) = n \log n$: grow a little faster than linear and might measure the cost of sorting an n-element array.

AA - Big O notation: Function Classes II

- ▶ Quadratic functions, $f(n) = n^2$: measure the cost of looking at most or all pairs of items in an *n*-element universe (array, sets, lists, . . .).
- Cubic functions, $f(n) = n^3$.
- Exponential functions, $f(n) = c^n$: for a given constant c > 1. Might measure the cost when enumerating all subsets of n items.
- Factorial functions, f(n) = n!: measure the cost of generating all permutations or orderings of n items.

AA - Big O notation: Dominance relations

$$n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$$

AA - Running time of common function classes

n	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu s$	$0.01 \ \mu s$	$0.033 \ \mu s$	$0.1~\mu s$	$1 \mu s$	3.63 ms
20	$0.004~\mu s$	$0.02 \ \mu s$	$0.086~\mu s$	$0.4~\mu s$	1 ms	77.1 years
30	$0.005~\mu s$	$0.03 \ \mu s$	$0.147 \ \mu s$	$0.9~\mu s$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005~\mu s$	$0.04 \ \mu s$	$0.213 \ \mu s$	$1.6~\mu s$	18.3 min	
50	$0.006~\mu s$	$0.05 \ \mu s$	$0.282 \ \mu s$	$2.5~\mu s$	13 days	
100	$0.007~\mu s$	$0.1~\mu s$	$0.644~\mu s$	$10 \mu s$	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010 \ \mu s$	$1.00 \ \mu s$	$9.966 \ \mu s$	1 ms		
10,000	$0.013~\mu s$	$10 \mu s$	$130~\mu s$	100 ms		
100,000	$0.017 \ \mu s$	$0.10 \mathrm{\ ms}$	1.67 ms	10 sec		
1,000,000	$0.020~\mu s$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023~\mu s$	$0.01 \mathrm{sec}$	0.23 sec	1.16 days		
100,000,000	$0.027~\mu s$	0.10 sec	2.66 sec	115.7 days		
1,000,000,000	$0.030~\mu s$	1 sec	29.90 sec	31.7 years		

Figure: Running time of function classes in nano seconds.

References

- Halim S., Halim F., *Competitive Programming 3*, Handbook for ACM ICPC and IOI Contestants. 2013
- Stroustrup B. *The C++ Programming Language*. Fourth ed.
- Skiena S. The Algorithm Design Manual. Springer. 2020

