DEVOIR À LA MAISON N°4: CORRIGÉ

Problème 1 – Etude d'une fonction périodique

- 1. a. Comme sin et arcsin sont impaires, φ l'est également. Puisque sin est 2π -périodique, φ est π -périodique.
 - $\begin{array}{l} \textbf{b.} \ \ Pour \ t \in \left[0,\frac{\pi}{4}\right], 2t \in \left[0,\frac{\pi}{2}\right] \ \text{et donc } f(t) = \arcsin(\sin(2t)) = 2t. \\ \ \ Pour \ t \in \left[\frac{\pi}{4},\frac{\pi}{2}\right], \pi 2t \in \left[0,\frac{\pi}{2}\right] \ \text{et donc } f(t) = \arcsin(\sin(2t)) = \arcsin(\sin(\pi-2t)) = \pi 2t. \end{array}$
 - c. On peut tracer la courbe sur $\left[0, \frac{\pi}{2}\right]$ grâce à la question précédente. On obtient ensuite la courbe sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ par symétrie par rapport à l'origine puisque φ est impaire. On complète ensuite par π -périodicité.

2. a. On a les équivalences suivantes :

$$|2x| \le 1 + x^2 \iff |2x| \le 1 + |x|^2 \iff |x|^2 - 2|x| + 1 \ge 0 \iff (|x| - 1)^2 \ge 0$$

La dernière inégalité étant vraie pour tout $x \in \mathbb{R}$, la première l'est également.

- **b.** Comme $1 + x^2 > 0$ pour tout $x \in \mathbb{R}$, l'inégalité de la question précédente peut s'écrire, $-1 \leqslant \frac{2x}{1+x^2} \leqslant 1$. Or arcsin est définie sur [-1,1] donc f est définie sur \mathbb{R} .
- **c.** f est définie sur \mathbb{R} qui est symétrique par rapport à l'origine et, en utilisant le fait que arcsin est impaire, on voit facilement que f l'est également.
- 3. a. Soit $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. On a classiquement $1 + \tan^2 t = \frac{1}{\cos^2 t}$ donc $\frac{2 \tan t}{1 + \tan^2 t} = 2 \sin t \cos t = \sin(2t)$. Ainsi $f(\tan t) = \arcsin(\sin(2t)) = \phi(t)$.
 - **b.** Pour tout $x \in \mathbb{R}$, $\tan(\arctan x) = x$ et donc $f(x) = f(\tan(\arctan x)) = \phi(\arctan x)$. Autrement dit, $f = \phi \circ \arctan$.
 - c. La fonction arctan est croissante sur $]-\infty,-1]$ à valeurs dans $]-\frac{\pi}{2},-\frac{\pi}{4}]$. Or ϕ est décroissante sur cet intervalle donc f est décroissante sur $]-\infty,-1]$.

La fonction arctan est croissante sur [-1,1] à valeurs dans $\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$. Or ϕ est croissante sur cet intervalle donc f est croissante sur [-1,1].

La fonction arctan est croissante sur $[1, +\infty[$ à valeurs dans $[\frac{\pi}{4}, \frac{\pi}{2}[$. Or ϕ est décroissante sur cet intervalle donc f est décroissante sur $[1, +\infty[$.

d. On a $\lim_{x\to\pm\infty}\frac{2x}{1+x^2}=0$ puis, par composition, $\lim_{x\to\pm\infty}f(x)=\arcsin 0=0$.

De plus, $f(1) = \arcsin 1 = \frac{\pi}{2}$ et $f(-1) = -\frac{\pi}{2}$ par imparité.

On obtient donc le tableau de variations suivant.

4. a. Pour tout $x \in \mathbb{R}$, $\frac{2x}{1+x^2} \in [-1, 1]$. De plus, en reprenant les équivalences de la question .2.a,

$$\left|\frac{2x}{1+x^2}\right| = 1 \iff (|x|-1)^2 = 0 \iff x = \pm 1$$

On en déduit que pour $x \in \mathbb{R} \setminus \{-1,1\}$, $\frac{2x}{1+x^2} \in]-1$, 1[. Par ailleurs, $x \mapsto \frac{2x}{1+x^2}$ est dérivable sur $\mathbb{R} \setminus \{-1,1\}$ et arcsin est dérivable sur] -1, 1[. Par composition, f est dérivable sur $\mathbb{R} \setminus \{-1,1\}$.

Remarque. On aurait aussi pu utiliser le fait que $f = \phi \circ \arctan$.

Pour $x \in]-1,1[$, $\arctan x \in]-\frac{\pi}{4},\frac{\pi}{4}[$. Or pour $t \in]-\frac{\pi}{4},\frac{\pi}{4}[$, $\phi(t) = \arcsin(\sin(2t)) = 2t$ donc pour $x \in]-1,1[$, $f(x) = 2\arctan x$. Ainsi pour $x \in]-1,1[$, $f'(x) = \frac{2}{1+x^2}$.

Pour $x \in]1, +\infty[$, $\arctan x \in]\frac{\pi}{4}, \frac{\pi}{2}[$. Or pour $t \in]\frac{\pi}{4}, \frac{\pi}{2}[$, $\phi(t) = \arcsin(\sin(2t)) = \pi - 2t$ donc pour $x \in]1, +\infty[$, $f(x) = \pi - 2\arctan x$. Ainsi pour $x \in]1, +\infty[$, $f'(x) = -\frac{2}{1+x^2}$.

Comme f est impaire, f' est paire et donc pour $x \in]-\infty, -1[$, $f'(x) = -\frac{2}{1+x^2}$.

b. On a f'(0) = 2 et f(0) = 0. Une équation de la tangente au point d'abscisse 0 est donc y = 2x. On a $f'(\sqrt{3}) = -\frac{1}{2}$ et $f(\sqrt{3}) = \frac{\pi}{3}$. Une équation de la tangente au point d'abscisse $\sqrt{3}$ est donc

$$y = -\frac{1}{2}(x - \sqrt{3}) + \frac{\pi}{3}$$

On a f' $\left(\frac{1}{\sqrt{3}}\right) = \frac{3}{2}$ et f $\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{3}$. Une équation de la tangente au point d'abscisse $\sqrt{3}$ est donc

$$y = \frac{3}{2} \left(x - \frac{1}{\sqrt{3}} \right) + \frac{\pi}{3}$$

 $\textbf{c.} \ \ \text{On a} \lim_{x \to 1-} f'(x) = \lim_{x \to 1} \frac{2}{1+x^2} = 1 \ \text{et} \lim_{x \to 1+} f'(x) = \lim_{x \to 1} -\frac{2}{1+x^2} = -1.$

d

5. a. Les variations de f montrent que $f(x) \le 0$ pour tout $x \le 0$. L'équation f(x) = h n'admet donc pas de solution sur \mathbb{R}_- .

De plus, f est continue et strictement croissante sur]0, 1[donc induit une bijection de]0, 1[sur]0, $\frac{\pi}{2}$ [. L'équation f(x) = h admet donc une unique solution sur]0, 1[. Par ailleurs, f est continue et strictement décroissante sur]1, $+\infty$ [donc induit une bijection de]1, $+\infty$ [sur]0, $\frac{\pi}{2}$ [. L'équation f(x) = h admet donc une unique solution sur]1, $+\infty$ [.

Comme $f(1) = \frac{\pi}{2} \neq h$, on peut donc conclure que l'équation f(x) = h admet exactement deux solutions (l'une appartenant à]0,1[et l'autre appartenant à $]1,+\infty[$). Ceci signifie que la droite d'équation y = h coupe la courbe représentative de f en exactement deux points.

b. Puisque $h \in \left]0, \frac{\pi}{2}\right[$,

$$f(x) = h \iff \frac{2x}{1+x^2} = \sin h$$

Cette dernière équation équivaut encore à

$$x^2 \sin h - 2x + \sin h = 0$$

Le discriminant réduit de cette équation du second degré est $1 - \sin^2 h = \cos^2 h$. Les solutions sont donc

$$\frac{1-\cos h}{\sin h}$$
 et $\frac{1+\cos h}{\sin h}$

Puisque h \in]0, $\frac{\pi}{2}$ [, $\frac{1-\cos h}{\sin h} < \frac{1+\cos h}{\sin h}$. On en déduit que

$$x_1 = \frac{1 - \cos h}{\sin h}$$
 et $x_2 = \frac{1 + \cos h}{\sin h}$

REMARQUE. On pouvait également raisonner de la manière suivante. Tout d'abord,

$$f(x_1) = \phi(\arctan x_1)$$
 et $f(x_2) = \phi(\arctan x_2)$

d'après la question .3.b. Or d'après la question .5.a, $x_1 \in]0,1[$ et $x_2 \in]1,+\infty[$ donc $\arctan x_1 \in]0,\frac{\pi}{4}[$ et $\arctan x_2 \in]\frac{\pi}{4},\frac{\pi}{2}[$. Mais en utilisant la question .1.b, on a alors

$$h = f(x_1) = 2 \arctan x_1$$
 et $h = f(x_2) = \pi - 2 \arctan x_2$

On en déduit que

$$x_1 = \tan \frac{h}{2}$$
 et $x_2 = \tan \left(\frac{\pi}{2} - \frac{h}{2}\right) = \cot \frac{h}{2}$

c. Le milieu I de $[M_1M_2]$ a pour abscisse $\frac{x_1+x_2}{2}=\frac{1}{\sin h}$ et pour ordonnée h. La courbe décrite par I lorsque h décrit $\left]0,\frac{\pi}{2}\right[$ a donc pour équation $x=\frac{1}{\sin y}$ ou encore $y=\arcsin\frac{1}{x}$ car $y\in\left]0,\frac{\pi}{2}\right[$. On a

$$0 < y < \frac{\pi}{2} \iff 0 < \sin y < 1 \iff \frac{1}{\sin y} > 1$$

Ainsi la courbe décrite par I est la courbe représentative de $g: x \mapsto \arcsin \frac{1}{x}$ sur $]1, +\infty[$. Comme la fonction inverse est strictement décroissante sur $]1, +\infty[$ à valeurs dans]0, 1[et que la fonction arcsin est strictement croissante sur]0, 1[, g est strictement décroissante sur $]1, +\infty[$. Enfin $\lim_{x\to 1} g(x) = \frac{\pi}{2}$ et $\lim_{x\to +\infty} g(x) = 0$. On en déduit la courbe suivante.

