Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M3102	К работе допущен
Студент_	Paleel Amie'm Brahmuyooli	УРабота выполнена <u></u>
Преподав	ватель <u> Гум Л.В</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе № *3/2*

Oneum	MU AMIKULA.
-------	-------------

- 1. Цель работы:
 - Исследование движения заряженных капель в электрическом и гравитационном полях.
 - Определение величины элементарного заряда.
- 2. Задачи, решаемые во время выполнения работы:
 - Измерение скоростей движения капель масла при различных напряжениях и направлениях электрического поля.
 - Определение радиуса и заряда капель.
- 3. Объект исследования.
 - Капли масла в электрическом поле.
- 4. Метод экспериментального исследования.
 - Изучение виртуальной лабораторной установки, проведение измерений.
- 5. Рабочие формулы и исходные данные.

$$r = C_r \sqrt{v_1 - v_2},$$
 $C_r = \frac{3}{2} \sqrt{\frac{\eta}{(\rho_o - \rho) g}}.$ $q = C_q \frac{(v_1 + v_2) \sqrt{v_1 - v_2}}{U},$

$$C_q = \frac{9}{2}\pi d\sqrt{\frac{\eta^3}{(\rho_o - \rho) g}}. \qquad \sigma_e = \sqrt{\frac{1}{N(N-1)}\sum_{i=1}^N (e_i - \langle e \rangle)^2} \qquad \langle e \rangle = \frac{1}{N}\sum_{i=1}^N e_i$$

- Ускорение свободного падения: g = 9,81 м/c2
- Плотность масла: оо = 875,3 кг/м3

- Плотность воздуха: ϱ = 1,29 кг/м3
- Вязкость воздуха: $\eta = 1.81 \cdot 10^{\circ}(-5) \text{ H·c/м2}$
- Расстояние между обкладками конденсатора: d = 6 мм
- Расстояние горизонтальными штрихами: $\Delta y = 5,33 \cdot 10^{\circ}(-5)$ м.

6. Измерительные приборы:

Nº n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Хронометр		0,005 C

7. Схема установки:

8. Результаты прямых измерений и их обработки:

	U, B	t1, m	t2, m
1	100	8,5	20,75
2	110	7,68	13,3
3	120	6,5	9,21
4	130	7,9	11,65
5	140	6,68	8,03
6	150	7,22	19,38
7	160	5,97	8,23
8	170	6,01	21,23
9	180	8,83	81,62
10	190	4,78	6,3
11	200	5,32	12,22
12	210	2,22	2,23
13	220	5,17	17,96
14	230	5,6	17,13
15	240	4,68	8,35
16	250	4,13	6,27
17	260	4,07	6,15
18	270	4,55	13,68
19	280	4,82	8,02
20	290	4,28	6,27
21	300	6,6	42,93
22	310	4,64	9,92
23	320	9,37	21,47

9. Расчет результатов косвенных измерений.

4 400/5)	104/ 5)	404/7)		_	-
v1, 10^(-5) m	v2, 10^(-5) m	r, 10^(-7)m	q	n	e
2,508235294	1,02746988	2,652045514	9,597496663	6	1,599582777
2,776041667	1,603007519	2,360441108	9,61792221	6	1,602987035
3,28	2,314875136	2,141063728	10,21738361	6	1,702897269
2,698734177	1,830042918	2,031283626	7,242843704	4	1,810710926
3,191616766	2,655043587	1,596438977	6,823907086	4	1,705976771
2,952908587	1,100103199	2,966557322	8,204276808	5	1,640855362
3,57118928	2,590522479	2,158234241	8,507088032	5	1,701417606
3,547420965	1,004239284	3,475573965	9,524636365	6	1,587439394
2,414496036	0,2612104876	3,198075077	4,865814855	3	1,621938285
4,460251046	3,384126984	2,260835756	9,55377215	6	1,592295358
4,007518797	1,744680851	3,278419833	9,650936911	6	1,608489485
9,603603604	9,560538117	0,4522749387	4,224482887	3	1,408160962
4,123791103	1,187082405	3,734807968	9,22810455	6	1,538017425
3,807142857	1,244600117	3,488778528	7,843100203	5	1,568620041
4,55555556	2,553293413	3,083885962	9,349476804	6	1,558246134
5,162227603	3,400318979	2,892874096	10,14129518	6	1,690215863
5,238329238	3,466666667	2,900870537	9,940872943	6	1,656812157
4,685714286	1,558479532	3,854056561	9,122873385	6	1,520478897
4,423236515	2,658354115	2,895314385	7,494962546	5	1,498992509
4,981308411	3,400318979	2,740326594	8,106504542	5	1,621300908
3,23030303	0,4966224086	3,603393818	4,581863337	3	1,527287779
4,594827586	2,149193548	3,408266745	7,589125916	5	1,517825183
2,275346852	0,9930135072	2,467961098	2,579997104	1	2,579997104

10. Расчет погрешностей для прямых и косвенных измерений.

- среднее значение элементарного заряда и его среднеквадратичное отклонение

<e></e>	1,646110662
бе	0,01998312394

n	mid
1	2,579997104
3	4,557387026
4	7,033375395
5	7,957509674
6	9,631342797

12. Окончательные результаты

- Интервал радиуса капель: r ∈ [0.45, 3.85], 10[^](-7)m
- Интервал значений зарядов: q ∈ [2.58; 10.22], 10^(-19) KI
- Сравнение оценочного значения элементарного заряда с табличным:

1 - e / <e>, %</e>
2,67%

13. Вывод

- В процессе выполнения лабораторной работы были получены скорости движения капель масла при различном напряжении и направлении электрического поля. Также получена оценка элементарного заряда, результат которой превышает табличное значение на 2.67%. Это обусловлено округлениями при расчетах промежуточных значений и чередою погрешностей при снятии показаний. Погрешность при снятии показаний получилось минимизировать увеличением количества измерений для каждой отдельной капли и делением конечного значения на количество таких измерений, что давало более точные результаты.