TJAIME: Triangle Geometry I

Kristina Hu'12

October 3, 2011

1 Area

It is hard to imagine a world of geometry without triangles. One of the most important things we'll deduce from triangles is area. Here are some common ways to find a triangle. If K is the area of triangle ABC with side lengths a, b, and c,

- $K = \frac{1}{2}ah_a$, where h_a is the height to side a. You should already know this one...
- $K = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$, the semiperimeter. This is *Heron's Formula*.
- $K = \frac{1}{2}ab\sin(\angle C)$.

Two other special area formulas result from use of the *inradius* and *circumradius*.

- K = rs, where r is the inradius and s is the semiperimeter.
- $K = \frac{abc}{4R}$, where R is the circumradius.

Notes/Diagram:

Challenge: Can you prove why K = rs is true?

2 Special Points

Oftentimes, geometry problems with triangles will involve special points in a triangle. These are:

- **Centroid:** The intersection of the *medians* of the triangle. The distance from the centroid to a vertex is always twice its distance to the opposite side.
- **Incenter:** The intersection of the triangle's three *angle bisectors*; this point is the center of the triangle's incircle.

- Circumcenter: The intersection of the *perpendicular bisectors* of each side; the center of the circumcircle is located here.
- Orthocenter: The intersection of the triangle's altitudes.

Notes/Diagrams:

Challenge: Can you prove why the intersection of a triangle's angle bisectors results in the incenter? Why does the intersection of a triangle's perpendicular bisectors result in the circumcenter?

3 Useful Theorems

• Angle Bisector Theorem: Given $\triangle ABC$ and angle bisector AD, where D is on side BC, then $\frac{c}{m} = \frac{b}{n}$.

• Stewart's Theorem: Given triangle $\triangle ABC$ with sides of length a, b, c opposite vertices A, B, C, respectively, if cevian AD is drawn so that BD = m, DC = n and AD = d, we have that bmb + cnc = man + dad. "A man and his dad put a bomb in the sink."

4 Example Problem

2002 AMC 12 Problem # 23:

In triangle ABC, side AC and the perpendicular bisector of BC meet in point D, and BD bisects

 $\angle ABC$. If AD = 9 and DC = 7, what is the area of triangle ABD?

Solution:

The first step in any geometry problem is to DRAW A DIAGRAM:

To find the area of $\triangle ABD$, we'd be best off finding the three side lengths and applying Heron's Formula. We already know that AD=9. Let point E be the intersection of perpendicular bisector DK with side BC. By SAS, we have $\triangle BDE\cong\triangle CDE$, giving BD=7. We last seek the length of AB. By the Angle Bisector Theorem, $\frac{AB}{9}=\frac{BC}{7}$. By substituting into Stewart's Theorem, $7AB^2+9BC^2=49*16+63*16$. We solve to get AB=12. The semiperimeter of $\triangle ABD$ equals $\frac{9+7+12}{2}=7$, so its area can now be found using Heron's Formula, and equals $\sqrt{14(14-9)(14-7)(14-12)}=\boxed{14\sqrt{5}}$. Note: The above problem could have been solved in a variety of ways. Here we only showed one way to solve it.

5 Problems

- 1. Triangle $\triangle ABC$ has $AB = 2 \cdot AC$. Let D and E be on \overline{AB} and \overline{BC} , respectively, such that $\angle BAE = \angle ACD$. Let F be the intersection of segments AE and CD, and suppose that $\triangle CFE$ is equilateral. What is $\angle ACB$?
- 2. In $\triangle ABC$, $\cos(2A-B) + \sin(A+B) = 2$ and AB = 4. What is BC?
- 3. Triangle ABC has side-lengths AB = 12, BC = 24, and AC = 18. The line through the incenter of $\triangle ABC$ parallel to \overline{BC} intersects \overline{AB} at M and \overline{AC} at N. What is the perimeter of $\triangle AMN$?
- 4. Triangle ABC has $\angle BAC = 60^{\circ}$, $\angle CBA \le 90^{\circ}$, BC = 1, and $AC \ge AB$. Let H, I, and O be the orthocenter, incenter, and circumcenter of $\angle ABC$, respectively. Assume that the area of the pentagon BCOIH is the maximum possible. What is $\angle CBA$?
- 5. Triangle ABC has AC = 450 and BC = 300. Points K and L are located \overline{AC} and \overline{AB} respectively so that AK = CK, and CL is the angle bisector of angle C. Let P be the point of intersection of \overline{BK} and \overline{CL} , and let M be the point on line BK for which K is the midpoint of \overline{PM} . If AM = 180, line LP.
- 6. Triangle ABC has right angle at B, and contains a point P for which PA = 10, PB = 6, and $\angle APB = \angle BPC = \angle CPA$. Find PC.

Problem Sources: AHSME, AMC12, AIME Lecture material adapted from ARML 2002 Triangle Geometry Lecture