

8-LINE TO 3-LINE PRIORITY ENCODER

The MC54/74F148 provides three bits of binary coded output representing the position of the highest order active input, along with an output indicating the presence of any active input. It is easily expanded via input and output enables to provide priority encoding over many bits.

- · Encodes Eight Data Lines in Priority
- Provides 3-Bit Binary Priority Code
- Input Enable Capability
- Signals When Data Present on Any Input
- Cascadable for Priority Encoding of n Bits

CONNECTION DIAGRAM DIP (TOP VIEW)

LOGIC DIAGRAM

NOTE:

This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

MC54/74F148

8-LINE TO 3-LINE PRIORITY ENCODER FAST™ SHOTTKY TTL

MC54/74F148

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54, 74	4.5	5.0	5.5	V
TA	Operating Ambient Temperature Range	54	-55	25	125	°C
		74	0	25	70	
ІОН	Output Current — High	54, 74			-1.0	mA
loL	Output Current — Low	54, 74			20	mA

FUNCTIONAL DESCRIPTION

The F148 8-input priority encoder accepts data from eight active LOW inputs ($\bar{l}_0 - \bar{l}_7$) and provides a binary representation on the three active LOW outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line 7 having the highest priority. A HIGH on the Enable Input ($\bar{E}1$) will force all outputs to the inactive (HIGH) state and allow new data to settle without producing

erroneous information at the outputs. A Group Signal output ($\overline{\text{GS}}$) and Enable Output ($\overline{\text{EO}}$) are provided along with the three priority data outputs ($\overline{\text{A}}_2$, $\overline{\text{A}}_1$, $\overline{\text{A}}_0$). $\overline{\text{GS}}$ is active LOW when any input is LOW; this indicates when any input is active. $\overline{\text{EO}}$ is active LOW when all inputs are HIGH. Using the Enable Output along with the Enable Input allows cascading for priority encoding on any number of input signals. Both $\overline{\text{EO}}$ and $\overline{\text{GS}}$ are in the inactive HIGH state when the Enable Input is HIGH.

FUNCTION TABLE

Inputs						Outputs							
E1	Ī ₀	Ī ₁	Ī ₂	Īз	Ī ₄	Ī5	Ī ₆	Ī ₇	GS	Ā ₀	Ā 1	Ā ₂	ΕO
Н	Х	Х	Χ	Х	Х	Х	Χ	Х	Н	Н	Н	Н	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
L	Х	Χ	Χ	Χ	Χ	Χ	Χ	L	L	L	L	L	Н
L	Х	Χ	Χ	Χ	Χ	Χ	L	Н	L	Н	L	L	Н
L	Х	Χ	Χ	Χ	Χ	L	Н	Н	L	L	Н	L	Н
L	Х	Х	Х	Х	L	Н	Н	Н	L	Н	Н	L	Н
L	Х	Χ	Χ	L	Н	Н	Н	Н	L	L	L	Н	Н
L	Х	Χ	L	Н	Н	Н	Н	Н	L	Н	L	Н	Н
L	Х	L	Н	Н	Н	Н	Н	Н	L	L	Н	Н	Н
L	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н

H = HIGH Voltage Level; L = LOW Voltage Level; X = Don't Care

Figure 1. Application: 16-Input Priority Encoder

MC54/74F148

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits					
Symbol	Parameter			Тур	Max	Unit	Test Conditions		
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage			
V _{IL}	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage		
VIK	Input Clamp Diode Voltage				-1.2	V	I _{IN} = -18 mA	V _{CC} = MIN	
Vон	Output HIGH Voltage	54, 74	2.5	3.4		V	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 4.50 V	
		74	2.7	3.4		V	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 4.75 V	
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 20 mA	V _{CC} = MIN		
lіН	Input HIGH Current				20	μΑ	$V_{CC} = MAX$, $V_{IN} = 2.7 V$		
					100	μΑ	$V_{CC} = MAX$, $V_{IN} = 7.0 \text{ V}$		
	Ī ₀ , E 1			-0.6	mA	$V_{CC} = MAX$, $V_{IN} = 0.5 V$			
^I IL	Ī ₁ –Ī ₇			-1.2	mA				
los	Output Short Circuit Current (Not	-60		-150	mA	V _{CC} = MAX, V _{OUT} = 0 V			
Icc	Power Supply Current			23	35	mA	V _{CC} = MAX, V _{IN} = 4.5 V		

NOTES

- $1. \ For conditions \ shown \ as \ MIN \ or \ MAX, \ use \ the \ appropriate \ value \ specified \ under \ guaranteed \ operating \ ranges.$
- 2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS

		54/74F			54	₽F	74			
		T _A = +25°C			I	to +125°C	T _A = 0°C to 70°C			
		V _{CC} = +5.0 V C _L = 50 pF				0 V ± 10% 50 pF	$V_{CC} = 5.0 V \pm 10\%$ $C_L = 50 pF$			
Symbol	Parameter	Min	 		Min Max		Min Max		Unit	
^t PLH	Propagation Delay	3.5	7.0	9.0	3.5	11	3.5	10		
^t PHL	\overline{I}_n to \overline{A}_n	4.0	8.0	10.5	4.0	13	4.0	12	ns	
^t PLH	Propagation Delay	2.5	5.0	6.5	2.5	8.5	2.5	7.5		
^t PHL	Ī _n to EO	2.0	5.5	7.5	2.0	9.5	2.0	8.5	ns	
^t PLH	Propagation Delay	3.0	7.0	9.0	3.0	11	3.0	10		
tPHL	Ī _n to GS	2.0	6.0	8.0	2.0	10	2.0	9.0	ns	
tPLH	Propagation Delay	3.5	6.5	8.5	3.5	10.5	3.5	9.5		
tPHL	Ē1 to Ā _n	3.0	6.0	8.0	3.0	10	3.0	9.0	ns	
tPLH	Propagation Delay	2.5	5.0	7.0	2.5	9.0	2.5	8.0		
tPHL	E1 to GS	3.0	6.0	7.5	3.0	10	3.0	8.5	ns	
tPLH	Propagation Delay	3.0	5.5	7.0	3.0	9.0	3.0	8.0	ns	
^t PHL	E1 to EO	4.5	8.0	10.5	4.5	13	4.5	12	115	