

Biologia

Professor: Gregório K. Rocha

Contato: gregkappaun@gmail.com

Biologia

2º ano - Bactérias Professor: Gregório K. Rocha

Bactérias: características gerais

Procariontes

Sem núcleo individualizado.

Sem organelas envolvidas por membranas.

Unicelulares

A Célula Procariótica

Parede Celular

- Presente em todos os procariotos, exceto os micoplasmas.
- Função:
 - Manter a forma da célula
 - Proteção: resistência contra a pressão osmótica interna e contra agentes externos.
- Permeável à água e aos nutrientes
- Composição:

<u>Eubactérias</u>: Peptideoglicanos/Mureína (carboidrato complexo com uma parte proteica).

Arqueobactérias: Sem peptideoglicanos! Pseudomureína

Parede Celular: Gram + ou Gram -

- Usada para classificar as bactérias em dois grupos, de acordo com o método de coloração proposto por *Hans Christian Joachim Gram* em 1884:
 - Gram Positivas
 - Gram Negativas

GRAM-POSITIVE

Membrana **Plasmática**

GRAM-POSITIVE

Parede Celular Espessa

Membrana Plasmática

GRAM-POSITIVE

Membrana Lipídica Externa

Parede Celular Fina

Membrana Plasmática

Parede Celular Espessa

Membrana Plasmática

Lipopolysaccharides

GRAM-POSITIVE

Membrana lipídica/proteica Externa

Parede Celular Fina

Membrana Plasmática

Lipopolysaccharides

As bactérias Gram-negativas possuem uma camada mais fina de peptidioglicanos, além de outra camada composta por lipídios e proteínas.

Protein

Parede Celular

Espessa

Membrana

Plasmática

As bactérias Gram-positivas possuem apenas uma camada de peptidioglicanos, que nesse caso é mais espessa.

Gram negativa

O método da Coloração de Gram é baseado na capacidade das paredes celulares de bactérias Gram-positivas de reterem o corante cristal violeta no citoplasma durante um tratamento com etanol-acetona enquanto que as paredes celulares de bactérias Gram-negativas não o fazem.

Ex: Gram-positivos

- ullet Staphylococcus aureus
- Lactobacillus spp.
- $\bullet Streptococcus\ pneumoniae$

Ex: Gram-negativos

- ullet Escherichia coli
- ullet $Helicobacter\ pylori$
- Treponema pallidum

Membrana Plasmática

- Bicamada Lipídica: composta por Fosfolipídios e Proteínas.
- Modelo do Mosaico Fluido
- Permeabilidade Seletiva

Cápsula ou Glicocálix

Composição: Polissacarídeos que são secretados pela própria célula.

Função: Defesa contra fagocitose, formação de biofilmes e virulência da bactéria.

Biofilmes: glicocálix está disperso e pouco aderido à bactéria.

Cápsula: glicocálix bem organizado e fortemente aderido à bactéria.

Biofilmes bacterianos: comunidades de bactérias envoltas por substâncias, principalmente açúcares, produzidas pelas próprias bactéria, que conferem a comunidade proteção contra diversos tipos de agressões que ela pode vir a sofrer como, por exemplo, a falta de nutrientes, o uso de um antibiótico ou algum agente químico utilizado para combater bactérias.

~80% de todas as infecções no mundo estão associadas a biofilmes! Especialmente, envolvendo biomateriais como próteses (ortopédicas, cardíacas, vasculares) e os cateteres (vasculares, urinários ou de sistema nervoso).

Ribossomos: síntese de proteínas a partir de um RNAm

Procarioto:

Subunidade menor: 30 S

Subunidade maior: 50 S

Completo: 70 S

A: Monótricas

B: Lofótricas

C: Anfítricas

D: Perítricas

Sem flagelo: Atríqueas

- Mobilidade celular
- Proteína flagelina

Fímbrias e Pili

Fímbrias: adesão celular e fixação nos biofilmes. Distribuídos por toda a célula.

Pili sexual: maior que uma fímbria, mas menor que o flagelo. Responsável pelo processo de troca de material genético entre bactérias chamado de Conjugação!

Nucleoide

Região formada pelo Cromossomo bacteriano + Proteínas que protegem o DNA.

Cromossomo bacteriano:

- Único e Circular
- DNA dupla-fita
- Pequeno
- Ancorado à membrana plasmática
- Sem proteínas Histonas (presentes apenas em eucariontes e ε compactar dentro do núcleo)
- Praticamente sem íntrons

Comparativo

	Procarioto	Eucarioto
Genoma	Pequeno	Grande (muitos genes)
DNA não-codificante (íntrons)	Quase ausente (apenas éxons)	Presente em grande quantidade (íntrons e éxons)
Cromossomo	Circular	Linear
Proteína Histona	Ausente	Presente
Plasmídeos auxiliares	Presente	Ausente

Plasmídeos

- São **fragmentos de DNA** independentes do DNA cromossômico (presente na nucleoide).
- Possuem fita-dupla, são circulares e pequenos.
- Não são, em geral, cruciais para a sobrevivência das bactérias em condições normais.

Plasmídeos: Qual a sua importância?

- Carregam genes associados à:
 - Resistência à antibióticos
 - Produção de toxinas
 - Tolerância para metais pesados
- Podem ser transferidos de uma bactéria para outra! Processo chamado **Transformação.**
- Usados em manipulação genética / biotecnologia /
 DNA-recombinante.

Ex: Produção da insulina humana usando bactérias.

Uso de plasmídeos para produção de insulina humana usando a *Tecnologia do DNA-recombinante*.

- 1. Cocos
- 2. Bacilos
- 3. Outros
 - a. Vibriões (formato de vírgula)
 - b. Espiraladas (Ex: espirilos, espiroquetas)

- 1. Diplo... "dois"
- 2. Esprepto... "em fila"
- 3. Estafilo... "cacho de uva"

- 1. Diplo... "dois"
- 2. Esprepto... "em fila"
- 3. Estafilo... "cacho de uva"

MORFOLOGIA BACTERIANA

(a)

(b)

(c)

Reprodução de Bactérias

Divisão binária ou bipartição (assexuada)

Log da concentração de células

Reprodução de Bactérias

Divisão binária ou bipartição (assexuada)

Crescimento Bacteriano: Fases

Tempo

Reprodução de Bactérias

Divisão binária (assexuada)

- Velocidade?
- Diversidade?

Reprodução de Bactérias

Divisão binária (assexuada)

- Velocidade: Alta!

- Diversidade: Baixa!

Quais mecanismos geram diversidade genética em bactérias?

Mecanismos de Geração de Diversidade

1. Mutação:

- a. É a única fonte de variação presente no processo de Divisão Binária.
- b. São variações na sequência de um gene no momento da replicação do DNA.
- c. Fruto do erro da enzima DNA polimerase que tem a função de duplicar o DNA.
- d. A grande parte das mutações geradas são desvantajosas, porém existe uma pequena parte que gera mudanças vantajosas ou que podem se tornar vantajosas com uma futura mudança no meio.

2. Recombinação / Transferência Gênica

Recombinação / Transferência Gênica em Bactérias

São formas de aumentar a diversidade de genes entre bactérias!

Três mecanismos principais:

- 1. Conjugação
- 2. Transformação
- 3. Transdução

Vive ou morre?

Transformação

A bactéria obtém os **genes do ambiente** deixados por outras bactérias e os incorpora no seu DNA.

A proteína RecA é responsável por integrar o novo fragmento de DNA ao genoma bacteriano.

Experimento de Griffith!

Conjugação

A bactéria obtém os genes de outra bactéria através da transferência de plasmídeos pelo Pili Sexual.

Transdução

A bactéria obtém os genes de outra bactéria através de um vírus Bacteriófago!

Quando o Bacteriófago é montado ao infectar uma bactéria, ele pode acabar encapsulando pedaços do DNA dessa bactéria. Ao infectar uma nova bactéria, ele transfere esses genes.

Transdução

Recombinação / Transferência Gênica em Bactérias

Recombinação / Transferência Gênica em Bactérias

OBS: apesar de em muitos locais esse processo ser chamado de Reprodução Sexuada, ele não pode ser diretamente entendido como um processo de reprodução uma vez que o número de bactérias permanece igual ao fim do processo.

- 1. Autotróficas: produzem matéria orgânica a partir de CO2.
 - a. Fotossíntese: a energia vem da luz solar.
 - b. Quimiossíntese: a energia vem reações químicas inorgânicas.
- 2. **Heterotróficas:** obtêm átomos de carbono a partir de moléculas orgânicas obtidas do meio. Podem ser <u>parasitas</u> ou <u>saprófitas</u>.
 - a. Fermentação: não usam oxigênio (metabolismo anaeróbico).
 - i. Ex: Lactobacilos
 - b. Respiração Celular: usam oxigênio (metabolismo aeróbico).
 - i. Ex: Streptococcos pneumoniae- causam pneumonia

- 1. Autotróficas: produzem matéria orgânica a partir de CO2.
 - a. Fotossíntese: a energia vem da luz solar.

Cianobactérias:

$$6xH2O + 6xCO2 + Luz ----> C6H12O6 + 6xO2$$

- 1. Autotróficas: produzem matéria orgânica a partir de CO2.
 - a. Quimiossíntese: a energia vem reações químicas inorgânicas.

- 1. Autotróficas: produzem matéria orgânica a partir de CO2.
 - a. Quimiossíntese: a energia vem reações químicas inorgânicas.

Sulfobactérias: oxidam compostos à base de Enxofre.

Nitrobactérias: oxidam compostos à base de Nitrogênio.

Ferrobactérias: oxidam compostos à base de Ferro.

Quimiossíntese: a energia vem reações químicas inorgânicas.

Nitrobactérias: oxidam compostos à base de Nitrogênio.

Classificação dos Procariontes

Classificação antiga: todos os Procariontes agrupados no Reino Monera.

Reino Monera:

- Eubactérias
- Arqueobactérias

Classificação Atual

1990: Carl Woese

Estudos comparativos com RNA ribossomal

Identificou que o Reino Monera NÃO era um grupo monofilético, isto é, não refletia as relações evolutivas dos seus membros.

Observou que:

Arqueobactérias são mais próximas evolutivamente dos Eucariontes do que das Eubactérias com as quais estavam sendo agrupadas.

Classificação Atual

Carl Woese: proposta de um novo nível hierárquico: DOMÍNIOS

Criou-se três domínios:

- 1. Bacteria: agrupa as eubactérias do antigo Reino Monera.
- 2. Archaea: agrupa as arqueobactérias do antigo Reino Monera.
- 3. Eukarya: agrupa os eucariontes.

Classificação Atual

Antiga **Procariontes** Eucariontes Domínio Domínio Domínio Eukarya Bacteria Archaea Ancestral comum

Procariontes Eucariontes Domínio Domínio Domínio Bacteria Archaea Eukarya Ancestral comum

Atual

Arqueobactérias (Domínio Archaea)

São procariontes que vivem em condições extremas.

1. Arqueobactérias metanogênicas:

Possuem a capacidade de fabricar **gás metano**. Vivem geralmente em regiões profundas dos oceanos, em áreas de pântanos e também no sistema digestório dos animais ruminantes (atuam na digestão da celulose).

2. Arqueobactérias halófilas:

Habitam áreas aquáticas com elevada **concentração de sal.** Estão presentes no Mar Morto e também em salinas.

3. Arqueobactérias termoacidófilas:

Habitam águas com **temperaturas muito elevadas** (entre 70° e 150°C) e **pH ácido** como, por ex., fendas vulcânicas. São quimiossintetizantes, obtendo energia da oxidação do enxofre.

POR QUE O VÍRUS SÓ CONVERSA PESSOALMENTE COM A CIELULA?

POR QUE O VIRUS SÓ CONVERSA PESSOALMENTE COM A CÉLULA?

