

Основы электротехники

Отчет по лабораторной работе №2 Исследование переходных процессов в электрических цепях

Группа Р3331 Вариант 84

Выполнил: Нодири Хисравхон Дата сдачи отчета: 05.02.2025г

Дата защиты:

Контрольный срок защиты: 09.10.2024г

Количество баллов:

Часть 1

Схема исследуемой цепи 1.1

Расчётные формулы и расчёты 1.1

$$\tau = R \cdot C = 50 \text{ Ом} \cdot 100 \cdot 10^{-6} \text{ } \Phi \cdot 10^{3} = 5 \text{ мc}$$

$$U_c(0 +) = E(0 -) = -15 V$$

$$I(0+) = \frac{E + U_c}{R} = \frac{15 V + 15 V}{50 \text{ Om}} = 600 \text{ mA}$$

$$I(\infty) = I(0 -) = 0$$

$$U_c(\infty) = E(0+) = 15 \, V$$

$$au = \frac{t_{0.5}}{\ln 2} = \frac{3.46}{0.69314718} = 4.99 \text{ MC}$$

График переходных процессов 1.1

Заполненные таблицы 4.2

R, [Ом]	С, [мкФ]	Тип данных	I(0+), [мА]	I(∞), [мА]	UC(0+), [B]	UC(∞), [B]	τ, [мкс]
50	100	эксп.	599.94	-1.484	-15	14.925	4991
		расч.	600	0	-15	15	5000

Схема исследуемой цепи 1.2

Расчётные формулы и расчёты 1.2

$$\tau = \frac{L}{(R + R_k)} = \frac{0.25}{50} = 0.005 \text{ c}$$

$$I(0+) = I(0-) = \frac{E(0-)}{R+R_k} = \frac{-15}{50} = -0.3 \text{ A}$$

$$U_l(0+) = E(0+) - I(0-) \cdot R = 15 - (-0.3) \cdot 50 = 30B$$

$$I(\infty) = \frac{E(0+)}{R+R_k} = \frac{15}{50} = 0.3 \text{ A}$$

$$U_l(\infty) = I(\infty) \cdot R_k = 0 B$$

$$au = \frac{t_{0.5}}{\ln 2} = \frac{3.46 \text{ мс}}{0.69314718} = 4.99 \text{ мс}$$

Графики переходных процессов 1.2

Заполненные таблицы 4.3

-	R, [Ом]	L, [мГн]	Rk, [O _M]	Тип данных	I(0+), [мА]	I(∞), [мА]	UL(0+), [B]	UL(∞), [B]	τ, [мкс]
	50	250	0	эксп.	-298.5	298.5	30	0.074	4991
				расч.	-300	300	30	0	5000

Выводы по первой части

В первой части работы были изучены переходные процессы в цепях с конденсатором и резистором (RC-цепи). Исследование показало, что экспериментальные и расчетные данные в значительной степени совпадают. Например, значения тока I(0+) и напряжения на конденсаторе UL(0+), в начальный момент времени, а также в установившемся состоянии ($I(\infty)$ и $UL(\infty)$), оказались близки к расчетным.

Часть 2

Схема исследуемой цепи 2.1

Расчётные формулы и расчёты

$$R = 4 \cdot \rho = 200$$

$$s_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2} = -100 \pm \sqrt{100^2 - 50^2} = -53.58; -746.41$$

$$t_p = \frac{3}{\delta - \sqrt{\delta^2 - \omega_0^2}} = 0.055 \text{ c} = 55 \text{ mc}$$

$$t_{0+} = 0 \text{ MC}$$

$$E_{\Sigma} = (|E(0-)| + |E(0+)|) \cdot sign E((0+)) = 30 B$$

$$i(t) = \frac{E_{\Sigma}}{L(s_1 - s_2)} (e^{s_1 t} - e^{s_2 t}) = \frac{30}{173.207} (e^0 - e^0) = 0 \text{ A}$$

$$U_R(t) = R \cdot i(t) = 0 B$$

$$U_L(t) = \frac{E_{\Sigma}}{(s_1 - s_2)} (s_1 e^{s_1 t} - s_2 e^{s_2 t}) = \frac{30}{-53.58 - (-746.41)} (-53.58 \cdot e^0 + 746.41 \cdot e^0) = 30 B$$

$$U_C(t) = E(0+) - \frac{E_{\Sigma}}{(s_1 - s_2)} (s_1 e^{s_2 t} - s_2 e^{s_1 t}) = 15 - 30 = -15 \text{ B}$$

График переходных процессов

Заполненные таблицы 4.4

Параметры элементов			Uc(0+)		Ul(0+)		I(0+)		tp	
цепи										
D. [O.]	T	C			D		D		D	
R [Om]	L	C	расч	эксп	Расч	Эксп	Расч	Эксп	Расч	Эксп
	[мГн]	[мкФ]	[B]	[B]	[B]	[B]	[A]	[A]	[мкс]	[мкс]
200	250	100	-15	-15	30	30	0	0	5500	5750

Схема исследуемой цепи 2.2

Расчётные формулы и расчёты

$$\delta = \frac{R}{2L} = 50$$

$$\omega_c = \sqrt{\frac{1}{LC} - \delta^2} = 194.64$$
 $R = \frac{\rho}{2} = 25 \ \mathrm{Om}$

$$R = \frac{\rho}{2} = 25 \text{ Om}$$

$$\delta * = \frac{ln\left(\frac{lm1}{lm2}\right)}{\frac{T}{2}} = \frac{ln\left(\frac{426.8}{189.6}\right)}{0.0158} = 51.35$$

$$\omega C *= \frac{2\pi}{T} = 198.83$$

Заполненная таблица 4.5

Параметры элементов			Č	5	ω_{c}		
цепи							
R [Om]	L [мГн]	С [мкФ]	Расч [c ⁻¹]	Эксп [с-1]	Расч [c ⁻¹]	Эксп [с-1]	
25	250	100	50	51.35	194.64	198.83	

Выводы по второй части

Во второй части исследовались переходные процессы в цепях с резистором, индуктивностью и конденсатором. Результаты показали хорошее согласие расчетных и экспериментальных значений характеристик переходного процесса, таких как начальные значения напряжений и токов, а также постоянные времени. Однако наблюдались отклонения в значениях, связанных с демпфированием (δ) и частотой (ω _с).