

Personal Healthcare Revolution

Electronic health records (CFH)

Personal genomics (DeCode, Navigenics, 23andMe)

X-prize: first \$10k human genome technology

NIH: \$1k by 2014

Microsoft Research Cambridge:

PhD Scholarships

Internships: 3 months

Postdoctoral Fellowships

Why Probabilities?

Image vector \mathbf{x} Class \mathcal{C}_k "cancer" or "normal"

Decisions

One-step solution

train a function to decide the class

Two-step solution

inference: infer posterior probabilities

$$p(\mathcal{C}_k|\mathbf{x})$$

decision: use probabilities to decide the class

Minimum Misclassification Rate

$$p(\mathbf{x}, \mathcal{C}_1) > p(\mathbf{x}, \mathcal{C}_2)$$

$$p(\mathcal{C}_1|\mathbf{x}) > p(\mathcal{C}_2|\mathbf{x})$$

$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1)$$
$$= \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x}.$$

Why Separate Inference and Decision?

- Minimizing risk (loss matrix may change over time)
- Reject option
- Unbalanced class priors
- Combining models

Loss Matrix

Decision

True class
$$\begin{array}{c} \text{cancer} & \text{normal} \\ \text{normal} & 1000 \\ 1 & 0 \end{array}$$

Minimum Expected Loss

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}$$

Regions \mathcal{R}_i are chosen, at each \mathbf{x} , to minimize

$$\sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

Reject Option

Unbalanced class priors

In screening application, cancer is very rare

Use "balanced" data sets to train models, then use Bayes' theorem to correct the posterior probabilities

Combining models

Image data and blood tests
Assume independent for each class:

$$p(\mathbf{x}_I, \mathbf{x}_B | \mathcal{C}_k) \propto p(\mathbf{x}_I | \mathcal{C}_k) p(\mathbf{x}_B | \mathcal{C}_k)$$

$$p(\mathcal{C}_{k}|\mathbf{x}_{I},\mathbf{x}_{B}) \overset{\mathcal{C}_{k}}{\propto} \underbrace{p(\mathbf{x}_{I},\mathbf{x}_{B}|\mathcal{C}_{k})p(\mathcal{C}_{k})}_{p(\mathbf{x}_{K}|\mathcal{C}_{k})p(\mathbf{x}_{B}|\mathcal{C}_{k})p(\mathcal{C}_{k})}$$

$$\mathbf{x}_{I} \overset{\mathcal{C}_{k}}{\propto} \underbrace{\frac{p(\mathcal{C}_{k}|\mathbf{x}_{K})p(\mathcal{C}_{k}|\mathbf{x}_{B})}{p(\mathcal{C}_{k})\mathbf{x}_{B}}}_{p(\mathcal{C}_{k})\mathbf{x}_{B}}$$

Binary Variables (1)

Coin flipping: heads=1, tails=0

$$p(x = 1|\mu) = \mu \qquad \mu \in [0, 1]$$

 $p(x = 0|\mu) = 1 - \mu$

Bernoulli Distribution

Bern
$$(x|\mu) = \mu^x (1-\mu)^{1-x}$$

Expectation and Variance

In general

$$\mathbb{E}[f] = \sum_{x} p(x)f(x) \qquad \mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x$$
$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)] \right)^{2} \right] = \mathbb{E}[f(x)^{2}] - \mathbb{E}[f(x)]^{2}$$

For Bernoulli

$$\operatorname{Bern}(x|\mu) = \mu^{x} (1-\mu)^{1-x}$$

$$\mathbb{E}[x] = \mu$$

$$\operatorname{var}[x] = \mu(1-\mu)$$

Likelihood function

Data set

$$\mathcal{D} = \{x_1, \dots, x_N\}, \ m \ \text{heads} \ (x = 1), \ N - m \ \text{tails} \ (x = 0)$$

Likelihood function

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu)$$

$$= \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

$$= \mu^m (1-\mu)^{N-m}$$

Prior Distribution

Simplification if prior has same functional form as likelihood function

$$p(\mu) \propto \mu^{a-1} (1-\mu)^{b-1}$$

Called conjugate prior

Beta
$$(\mu|a,b)$$
 = $\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}$
 $\mathbb{E}[\mu]$ = $\frac{a}{a+b}$
 $\operatorname{var}[\mu]$ = $\frac{ab}{(a+b)^2(a+b+1)}$

Beta Distribution

Posterior Distribution

$$p(\mu|a_0, b_0, \mathcal{D}) \propto p(\mathcal{D}|\mu)p(\mu|a_0, b_0)$$

$$\propto \left(\prod_{n=1}^N \mu^{x_n} (1-\mu)^{1-x_n}\right) \operatorname{Beta}(\mu|a_0, b_0)$$

$$\propto \mu^{m+a_0-1} (1-\mu)^{(N-m)+b_0-1}$$

$$p(\mu|a_0, b_0, \mathcal{D}) = \text{Beta}(\mu|a_N, b_N)$$

$$a_N = a_0 + m$$
 $b_N = b_0 + (N - m)$

Posterior Distribution

Properties of the Posterior

As the size N of the data set increases

$$a_N \rightarrow m$$
 $b_N \rightarrow N-m$

$$\mathbb{E}[\mu] = \frac{a_N}{a_N + b_N} \rightarrow \frac{m}{N}$$

$$\operatorname{var}[\mu] = \frac{a_N b_N}{(a_N + b_N)^2 (a_N + b_N + 1)} \rightarrow 0$$

Predictive Distribution

What is the probability that the next coin flip will be heads?

$$p(x = 1|a_0, b_0, \mathcal{D}) = \int_0^1 p(x = 1|\mu) p(\mu|a_0, b_0, \mathcal{D}) d\mu$$
$$= \int_0^1 \mu p(\mu|a_0, b_0, \mathcal{D}) d\mu$$
$$= \mathbb{E}[\mu|a_0, b_0, \mathcal{D}]$$
$$= \frac{a_N}{a_N + b_N}$$

The Exponential Family

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp \{\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\}$$

where η is the *natural parameter*

$$g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\} d\mathbf{x} = 1$$

We can interpret $g(\eta)$ as the normalization coefficient

Likelihood Function

Give a data set, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$

$$p(\mathbf{X}|\boldsymbol{\eta}) = \left(\prod_{n=1}^{N} h(\mathbf{x}_n)\right) g(\boldsymbol{\eta})^N \exp\left\{\boldsymbol{\eta}^T \sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n)\right\}$$

Depends on data through sufficient statistics

$$\sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n)$$

Expected Sufficient Statistics

$$g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\} d\mathbf{x} = 1$$

$$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\} d\mathbf{x} + g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\} \mathbf{u}(\mathbf{x}) d\mathbf{x} = 0$$

$$1/g(\boldsymbol{\eta})$$

$$\mathbb{E}[\mathbf{u}(\mathbf{x})]$$

$$-\nabla \ln g(\boldsymbol{\eta}) = \mathbb{E}[\mathbf{u}(\mathbf{x})]$$

Conjugate priors

For the exponential family

$$p(\boldsymbol{\eta}|\boldsymbol{\chi},\nu) = f(\boldsymbol{\chi},\nu)g(\boldsymbol{\eta})^{\nu} \exp\left\{\nu\boldsymbol{\eta}^{\mathrm{T}}\boldsymbol{\chi}\right\}$$

Combining with the likelihood function, we get

$$p(\boldsymbol{\eta}|\mathbf{X}, \boldsymbol{\chi}, \nu) \propto g(\boldsymbol{\eta})^{\nu+N} \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \left(\sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n) + \nu \boldsymbol{\chi} \right) \right\}$$

Prior corresponds to u pseudo-observations with statistic $oldsymbol{\chi}$

Bernoulli revisited

The Bernoulli distribution

$$p(x|\mu) = \operatorname{Bern}(x|\mu) = \mu^{x} (1 - \mu)^{1 - x}$$

$$= \exp \{x \ln \mu + (1 - x) \ln(1 - \mu)\}$$

$$= (1 - \mu) \exp \left\{ \ln \left(\frac{\mu}{1 - \mu}\right) x \right\}$$

Comparing with the general form we see that

$$\eta = \ln\left(rac{\mu}{1-\mu}
ight)$$
 and so $\mu = \sigma(\eta) = rac{1}{1+\exp(-\eta)}$ Logistic sigmoid

Bernoulli revisited

The Bernoulli distribution in canonical form

$$p(x|\eta) = h(x)g(\eta) \exp\{\eta^{\mathrm{T}}u(x)\}$$

where

$$u(x) = x$$
 $h(x) = 1$
 $g(\eta) = 1 - \sigma(\eta) = \sigma(-\eta)$

The Gaussian Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Likelihood Function

Bayesian Inference – unknown mean

Assume σ^2 is known

Data set

$$\mathbf{x} = \{x_1, \dots, x_N\}$$

Likelihood function for μ

$$p(\mathbf{x}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}.$$

Bayesian Inference – unknown mean

Conjugate prior is a Gaussian

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right)$$

which gives a Gaussian posterior

$$p(\mu|\mathbf{x}) \propto p(\mathbf{x}|\mu)p(\mu)$$

Bayesian Inference – unknown precision

Now assume μ is known

Likelihood function for precision $\lambda=1/\sigma^2$

$$p(\mathbf{x}|\lambda) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \lambda^{-1}) \propto \lambda^{N/2} \exp\left\{-\frac{\lambda}{2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}$$

Conjugate prior

Gamma distribution

$$Gam(\lambda|a,b) = \frac{1}{\Gamma(a)}b^a\lambda^{a-1}\exp(-b\lambda)$$

$$\mathbb{E}[\lambda] = \frac{a}{b} \qquad \text{var}[\lambda] = \frac{a}{b^2}$$

Unknown Mean and Precision

Likelihood function

$$p(\mathbf{x}|\mu,\lambda) = \prod_{n=1}^{N} \left(\frac{\lambda}{2\pi}\right)^{1/2} \exp\left\{-\frac{\lambda}{2}(x_n - \mu)^2\right\}$$

$$\propto \left[\lambda^{1/2} \exp\left(-\frac{\lambda\mu^2}{2}\right)\right]^N \exp\left\{\lambda\mu \sum_{n=1}^{N} x_n - \frac{\lambda}{2} \sum_{n=1}^{N} x_n^2\right\}.$$

Gaussian-gamma distribution

$$p(\mu, \lambda) = p(\mu | \lambda) p(\lambda) = \mathcal{N}(\mu | \mu_0, (\beta \lambda)^{-1}) \operatorname{Gam}(\lambda | a, b)$$

$$\propto \exp \left\{ -\frac{\beta \lambda}{2} (\mu - \mu_0)^2 \right\} \lambda^{a-1} \exp \left\{ -b\lambda \right\}$$

Gaussian-gamma Distribution

Linear Regression (1)

Noisy sinusoidal data

Linear Regression (2)

Linear combination of basis functions

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

Noise model

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$

Likelihood function

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} p(t_n|x_n, \mathbf{w}, \beta^{-1})$$

Linear Regression (3)

Polynomial basis functions

$$\phi_j(x) = x^j$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M-1} w_j x^j$$

Linear Regression (4)

Define a conjugate prior over w

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

Combining with likelihood function gives the posterior

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

where

$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

 $\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$

$$\Phi_{nj} = \phi_j(x_n)$$

Simple Example (1)

Data from straight line with Gaussian noise

$$t = a + bx + \epsilon$$

 $\epsilon \sim \mathcal{N}(\cdot|0,1)$

First order polynomial model

$$y(x, \mathbf{w}) = w_0 + w_1 x$$

Simple Example (2)

0 data points observed

Simple Example (3)

1 data point observed

Simple Example (4)

2 data points observed

Simple Example (5)

20 data points observed

Predictive Distribution (1)

Predict t for new values of x by integrating over \mathbf{w} :

$$p(\widehat{t}|\mathbf{t}, \alpha, \beta, \widehat{x}) = \int p(\widehat{t}|\mathbf{w}, \beta, \widehat{x}) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) d\mathbf{w}$$
$$= \mathcal{N}\left(\widehat{t}|\mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\widehat{x}), \sigma_N^2(\widehat{x})\right)$$

where

$$\sigma_N^2(\widehat{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\widehat{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\widehat{x})$$

Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions, 1 data point

Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions, 2 data points

Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions, 4 data points

Predictive Distribution (6)

Example: Sinusoidal data, 9 Gaussian basis functions, 25 data points

Bayesian Model Comparison (1)

Alternative models \mathcal{M}_i , $i=1, \ldots, L$ Predictive distribution is a mixture

$$p(t|\mathbf{x}, \mathcal{D}) = \sum_{i=1}^{L} p(t|\mathbf{x}, \mathcal{M}_i, \mathcal{D}) p(\mathcal{M}_i|\mathcal{D})$$

Model selection: keep only most probable model

Bayesian Model Comparison (2)

From Bayes' theorem

For equal priors, models ranked by marginal likelihood

Bayesian Model Comparison (4)

For a model with parameters w

$$p(\mathcal{D}|\mathcal{M}_i) = \int p(\mathcal{D}|\mathbf{w}, \mathcal{M}_i) p(\mathbf{w}|\mathcal{M}_i) d\mathbf{w}$$

Note that

$$p(\mathbf{w}|\mathcal{D}, \mathcal{M}_i) = \frac{p(\mathcal{D}|\mathbf{w}, \mathcal{M}_i)p(\mathbf{w}|\mathcal{M}_i)}{p(\mathcal{D}|\mathcal{M}_i)}$$

Bayesian Model Comparison (5)

Consider model with a single parameter \boldsymbol{w}

agle parameter
$$w$$

$$p(\mathcal{D}) = \int p(\mathcal{D}|w)p(w)\,\mathrm{d}w$$

$$\simeq p(\mathcal{D}|w_{\mathrm{MAP}})\frac{\Delta w_{\mathrm{posterior}}}{\Delta w_{\mathrm{prior}}}$$

$$w_{\mathrm{MAP}}$$

Bayesian Model Comparison (6)

Taking logarithms, we obtain

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|w_{\mathrm{MAP}}) + \ln \left(\frac{\Delta w_{\mathrm{posterior}}}{\Delta w_{\mathrm{prior}}}\right)$$
Negative

With M parameters, all assumed to have the same ratio $\Delta w_{
m posterior}/\Delta w_{
m prior}$, we get

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|\mathbf{w}_{\mathrm{MAP}}) + M \ln \left(\frac{\Delta w_{\mathrm{posterior}}}{\Delta w_{\mathrm{prior}}} \right)$$

Linear Regression revisited

Marginal likelihood

$$p(\mathbf{t}|\alpha,\beta) = \int p(\mathbf{t}|\mathbf{w},\beta)p(\mathbf{w}|\alpha) d\mathbf{w}$$

$$\ln p(\mathbf{t}|\alpha,\beta) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - E(\mathbf{m}_N) + \frac{1}{2} \ln |\mathbf{S}_N| - \frac{N}{2} \ln(2\pi)$$

$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

$$\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}$$

Linear Regression revisited

Noisy sinusoidal data

Linear Regression revisited

Polynomial of order M, $\alpha = 5 \times 10^{-3}$

Bayesian Model Comparison

Matching data and model complexity

