Задание 1

По определению первым коэффициентом вейвлета является выборочное среднее:

$$\psi_1 = \frac{1}{n} \sum_{i=1}^{n} x_i = 2.9375 \tag{1}$$

Далее вычисляются средние двух половин выборки и в качестве второго коэффициента вейвлета Хаара берется полуразность средних левой и правой половин:

$$\psi_2 = \frac{1}{2} \left(\overline{x}_{left} - \overline{x}_{right} \right) = \frac{1}{2} (4.375 - 1.5) = 1.4375 \tag{2}$$

Далее алгоритм продолжается рекурсивно для половин выборки. То есть для левой половины выборки вычисляется полуразность уже ее правой и левой половины, равная $\psi_3 = -7.375$. Аналогично поступаем для правой половины, получая 4-й коэффициент: $\psi_4 = 8.25$.

Вычисленные коэффициенты собраны в таблице 1, где сверху вниз в левом столбце вычисляются средние половин выборки, а в правом столбце приведены соответствующие коэффициенты вейвлета Хаара.

Таблица 1. Средние значения выборки и соответствующие коэффициенты вейвлета Хаара

Средние значения выборки	Коэф-ты Вейвлета
$\{-25, -11, -8, -3, 1, 0, 3, 8, 11, 13, 9, 6, 2, -2, -9, -18\}$	-7, -2.5, 0.5, -2.5, -1, -1.5, 2,5, 4.5
$\{-18, -5.5, -0.5, 5.5, 12, 7.5, 0, -13.5\}$	-6.25, -2.5, 2.25, 6.75
{-11.75, 3, 9.75, -6.75}	-7.375, 8.25
{4.375, 1.5}	1.4375
{2.9375}	2.9375

<u>Ответ:</u> 2.9375, 1.4375, -7.375, 8.25, -6.25, -2.5, 2.25, 6.75, -7, -2.5, 0.5, -2.5, -1, -1.5, 2.5, 4.5.

Задание 2

Таблица 2. Выборка

i	1	2	3	4	5	6	7	8	9
χ_i	1,7	0,4	0,6	2,2	0,6	2,8	2,2	2,2	2,4

1. Вычислим оптимальное количество интервалов по правилу Стерджесса: $n_bins = 1 + \lfloor log_2 n \rfloor = 1 + \lfloor log_2 9 \rfloor = 4$. Гистограмма показана на рисунке 1.

Рисунок 1 – гистограмма выборки

2. Модой выборки является элемент 2.2. Рассчитаем веса элементов выборки (пока не нормированные на 1) по формуле (значения приведены в таблице 3):

$$\widetilde{w}_i = \frac{1}{(x_i - m)^2} \tag{3}$$

Таблица 3. Невзвешенные коэффициенты.

i	1	2	3	4	5	6	7	8	9
χ_i	1,7	0,4	0,6	2,2	0,6	2,8	2,2	2,2	2,4
\widetilde{w}_i	4	0.31	0.39	-	0.39	2.78	-	-	25

Значения в таблице округлены до сотых для наглядности, но при дальнейших расчетах точность сохранена. Прочерки на месте элементов, равных моде, обозначают, что их веса (1/9) полагаются сразу нормированными. Условие нормировки в данном случае будет выглядеть следующим образом:

$$\frac{k}{n} + a \cdot \sum_{i \in I} \widetilde{w}_i = 1, I = \{i : x_i \neq m\}$$
 (4)

где a — нормировочный множитель, m — мода выборки, \widetilde{w}_i — ненормированный вес элемента x_i, k — количество элементов выборки, равных моде.

Рассчитаем нормировочный коэффициент из условия нормировки (2): a = 0.0202833566138063.

Теперь рассчитаем нормированные на 1 веса, умножив ненормированные на нормировочный коэффициент (в таблице 4 округлены до тысячных).

Таблица 4. Взвешенные коэффициенты

i	1	2	3	4	5	6	7	8	9
χ_i	1,7	0,4	0,6	2,2	0,6	2,8	2,2	2,2	2,4
w_i	0.081	0.006	0.008	0.111	0.008	0.056	0.111	0.111	0.507

Теперь рассчитаем взвешенное среднее (надо по-хорошему еще на сумму весов делить, но она у нас равна 1, поэтому опускаю это):

$$\overline{x}_w = \sum_{i=1}^n w_i \cdot x_i = 2.25803293697839 \tag{5}$$

3. Рассчитаем выборочную дисперсию по формуле:

$$\widehat{D} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \tag{6}$$

где \overline{x} – выборочная оценка математического ожидания (то есть среднее арифметическое). Стоит заметить, что данная оценка дисперсии является смещенной (для несмещенной оценки требуется делить не на n, а на n-1). Несложными вычислениями путем подстановки чисел получаем, что $\widehat{D}=0.728395061728395$.

Выборочное среднеквадратичное отклонение является корнем из выборочной дисперсии, т.е. $\widehat{\sigma} = \sqrt{\widehat{D}} \approx 0.85346$.

<u>Ответ:</u> 1) См. рисунок 1; 2) $\overline{x}_w = 2.25803293697839$; 3) $\widehat{D} = 0.728395061728395$, $\widehat{\sigma} \approx 0.85346$.

Задание 3

Минимальный уровень поддержки: 30%. Учитывая, что всего транзакций 10, то это обозначает, что часто встречающимися будут являться такие подмножества, которые присутствуют в 3 и более транзакциях.

Таблица 5. Количество транзакций, включающих 1-наборы $\{I_i\}$

Подмн-во	I1	I2	I3	I4	I5	I6	I7	I8	I 9	I10	I11	I12	I13	I14	I15	I16
Кол-во	4	2	4	1	3	2	1	4	3	4	4	2	2	1	4	3
транзакций																

Получается, что множество $C_1 = L_1 = \{\{I_1\}, \{I_3\}, \{I_5\}, \{I_8\}, \{I_9\}, \{I_{10}\}, \{I_{11}\}, \{I_{15}\}, \{I_{16}\}\}.$ Далее вычисляем мн-во кандидатов 2-наборов: $C_2 = L_1 \triangleright \triangleleft L_1$.

Таблица 6. Количество транзакций, включающих 2-наборы $\{I_i, I_k\}, j < k$

Подмн-во	{I1,I3}	{I1,I5}	{I1,I8}	{I1,I9}	{I1,I10}	{I1,I11}	{I1,I15}	{I1,I16}	{I3,I5}
Кол-во транзакций	0	0	0	0	2	2	3	2	3

Подмн-во	{I3,I8}	{13,19}	{I3,I10}	{I3,I11}	{I3,I15}	{I3,I16}	{I5,I8}	{I5,I9}	{I5,I10}
Кол-во	4	3	0	0	0	1	3	2	0
транзакций									

Подмн-во	{I5,I11}	{I5,I15}	{I5,I16}	{18,19}	{I8,I10}	{I8,I11}	{I8,I15}	{I8,I16}
Кол-во	0	0	1	3	0	0	0	1
транзакций								

Подмн-во	{I9,I10}	{I9,I11}	{19,115}	{I9,I16}	{I10,I11}	{I10,I15}	{I10,I16}	{I11,I15}
Кол-во	0	0	0	1	4	3	0	3
транзакций								

Подмн-во	{I11,I16}	{I15,I16}
Кол-во	0	1
транзакций		

Множество выбранных по мин. уровню поддержки получается таким: $L_2=\{\{I_1,I_{15}\},\{I_3,I_8\},\{I_3,I_9\},\{I_5,I_8\},\{I_8,I_9\},\{I_{10},I_{11}\},\{I_{10},I_{15}\},\{I_{11},I_{15}\}\}.$

Рассчитаем мн-во кандидатов на частые 3-наборы $C_3 = L_2
ightharpoons L_2$.

Таблица 7. Количество транзакций, включающих 3-наборы $\{l_j, I_k, I_l\}, j < k < l$

Подмножество	{13,18,19}	{I10,I11,I15}
Кол-во	3	3
транзакций		

Множество часто встречающихся 3-наборов: $L_3 = \{\{I_3, I_8, I_9\}, \{I_{10}, I_{11}, I_{15}\}\}.$

Произвести слияние L_3 с собой не получится, так как $\{I_3, I_8\} \neq \{I_{10}, I_{11}\}$.

Получается, что часто встречающиеся наборы ограничиваются следующим множеством: $L=\bigcup_k L_k=\{\{I_1\},\{I_3\},\{I_5\},\{I_8\},\{I_9\},\{I_{10}\},\{I_{11}\},\{I_{15}\},\{I_1,I_{15}\},\{I_3,I_8\},\{I_3,I_9\},\{I_5,I_8\},\{I_8,I_9\},\{I_{10},I_{11}\},\{I_{10},I_{15}\},\{I_{11},I_{15}\},\{I_3,I_8,I_9\},\{I_{10},I_{11},I_{15}\}\}$

Задание 4

Для каждого n-набора (n > 1, так как в 1-наборе невозможно выделить антецедент и консеквент) выделим все возможные антецеденты и консеквенты и посмотрим, превосходит ли уровень уверенности минимальный (35%). Если да, то правило принимается.

Стоит отметить, что превосходство уровня уверенности правила $A \Rightarrow B$ (где $A, B \subset C, B = C \setminus A$ для некоторого часто встречающегося набора C) над минимальным можно проверить по следующей формуле:

$$conf_{min} \le conf(A \Rightarrow B) = \frac{support(C)}{support(A)}$$
 (7)

В таблице 8 представлены возможные правила и уровень уверенности для них, рассчитанные по формуле (7).

Таблица 8. Уровень уверенности для ассоциативных правил

$A \Rightarrow B$	$I_1 \Rightarrow I_{15}$	$I_1 \Rightarrow I_{15}$ $I_{15} \Rightarrow I_1$		I_3	$\Rightarrow I_8$	$I_8 \Rightarrow$	I_3	I ₃ =	<i>> I</i> ₉	$I_9 \Rightarrow I_3$		
$conf(A \Rightarrow B)$	0.75	0.	0.75		1	1	0.		75	1		
$A \Rightarrow B$	$I_5 \Rightarrow I_8$	I ₈ =	<i>⇒ I</i> ₅	I_8	$\Rightarrow I_9$	$I_9 \Rightarrow$	I ₈ I ₁₀ =		<i>I</i> ₁₁	$I_{11} \Rightarrow I_{10}$		
$conf(A \Rightarrow B)$	1	0.	75	().75	1		1	1	1		
$A \Rightarrow B$	$I_{10} \Rightarrow I_1$	5	I	15 ⇒ .	I ₁₀	I_{11}	$\Rightarrow I_1$	5	$I_{15} \Rightarrow I_{11}$			
$conf(A \Rightarrow B)$	0.75	'5				0.75				0.75		
$A \Rightarrow B$	$I_3 \Rightarrow \{I_8, I_9\}$. {	$I_8, I_9\} =$	$I_8 \Rightarrow I_3 \qquad I_8 \Rightarrow \{I_8 \Rightarrow \{I_8 \Rightarrow I_8 \Rightarrow I_8 \}$		$\{I_3,I_9\}$	$\{I_3,$	$\{I_9\} \Rightarrow I_9$	I_8	$I_9 \Rightarrow \{I_3, I_8\}$		
$conf(A \Rightarrow B)$	0.75		1		0.	75 1				1		
$A \Rightarrow B$	$\{I_3, I_8\} \Rightarrow I_9$	I_{10}	$\Rightarrow \{I_{11}$	I_{15}	$\{I_{11}, I_{15}\}$	$I_{10} \Rightarrow I_{10} \mid I_{11}$		$I_{11} \Rightarrow \{I_{10}, I_{15}\}$		$[I_{10}, I_{15}] \Rightarrow I_{11}$		
$conf(A \Rightarrow B)$	0.75	0.75			1	1		0.75		1		
$A \Rightarrow B$					$\{I_{10}, I_{11}$	$\Rightarrow I_1$	5					
$conf(A \Rightarrow B)$	0.75							0.	75			

Задание 5

В таблице 9 представлены уровни поддержки для каждого 1-набора.

Таблица 9. Уровни поддержки 1-наборов

Подмн-во	I 1	I2	I3	I4	15	I6	I7	I8	I9	I10	I11	I12	I13	I14	I15	I16
Кол-во	3	3	2	2	1	2	1	3	5	3	5	4	3	4	4	6
транзакций																

Теперь отсортируем их в порядке убывания поддержки: $\{I_{16}:6\}, \{I_{9}:5\}, \{I_{11}:5\}, \{I_{12}:4\}, \{I_{14}:4\}, \{I_{15}:4\}, \{I_{1}:3\}, \{I_{2}:3\}, \{I_{8}:3\}, \{I_{10}:3\}, \{I_{13}:3\}, \{I_{3}:2\}, \{I_{4}:2\}, \{I_{6}:2\}$

Отсортируем элементы транзакций в порядке убывания поддержки (таблица 10) после чего построим FP-дерево (рис. 2), при этом выкидываем те элементы, которые не удовлетворяют минимальному уровню поддержки.

Таблица 10. Отсортированные транзакции

Номер транзакции	Отсортированные элементы
1	I16, I9, I11, I15, I4
2	I16, I1, I2
3	116, 19, 114, 11, 12, 110, 113, 13
4	I11, I12, I15, I6
5	I16, I9, I14, I10, I13, I4
6	I12, I15, I8
7	I9, I11, I8
8	I11, I12, I14, I15, I3, I6
9	I16, I1, I10, I13
10	I16, I9, I11, I12, I14, I2, I8

Рисунок 2 – FP-дерево

Теперь будем рассматривать элементы и строить условные FP-деревья для определения часто встречающихся подмножеств (табл. 11). Условное FP-дерево строится как и обычное выше,

но с условной базой шаблонов в качестве базы транзакций. Рассмотрим построение для I_4 (для простоты изложения): условной базой транзакций для этого эл-та является набор: $\{I_{16},I_9,I_{14},I_{10},I_{13}:1\},\{I_{16},I_9,I_{11},I_{15}:1\}$. Эл-ты $I_{14},I_{10},I_{11},I_{13}$ и I_{15} не проходят по мин. уровню поддержки. Условное FP-дерево показано на рисунке 3.

Рисунок 3 — условное FP-дерево для элемента I_4

Соответственно, выбирая по 1 и 2 эл-та из префикса и конкатенируя с I_4 , получаем часто встречающиеся подмножества: $\{I_{16},I_4\},\{I_9,I_4\},\{I_{16},I_9,I_4\}$. По остальным вершинам данные систематизированы в таблице 11.

Таблица 11. Условные FP-деревья и часто встречающиеся подмножества

1- набор	Условная база шаблонов	Условное FP-дерево	Часто встречающиеся подмножества
I_6	$\{I_{11}, I_{12}, I_{14}, I_{15}, I_3: 1\}$ $\{I_{11}, I_{12}, I_{15}: 1\}$	$\langle I_{11}: 2, I_{12}: 2, I_{15}: 2 \rangle$	$\{I_{11}, I_6\}, \{I_{12}, I_6\}, \{I_{15}, I_6\}$ $\{I_{11}, I_{12}, I_6\}, \{I_{11}, I_{15}, I_6\}$
I_4	$ \{I_{16}, I_9, I_{14}, I_{10}, I_{13}: 1\} $ $ \{I_{16}, I_9, I_{11}, I_{15}: 1\} $	$\langle I_{16}:2,I_9:2\rangle$	$\{I_{16}, I_4\}, \{I_9, I_4\}, \{I_{16}, I_9, I_4\}$
I_3	$\{I_{16}, I_9, I_{14}, I_1, I_2, I_{10}, I_{13}: 1\}$ $\{I_{11}, I_{12}, I_{14}, I_{15}: 1\}$	⟨ <i>I</i> ₁₄ : 2⟩	$\{I_{14}, I_3\}$
<i>I</i> ₁₃	$ \{I_{16}, I_{9}, I_{14}, I_{1}, I_{2}, I_{10}: 1\} $ $ \{I_{16}, I_{9}, I_{14}, I_{10}: 1\} $ $ \{I_{16}, I_{1}, I_{10}: 1\} $	$\langle I_{16}: 3, I_9: 2, I_{14}: 2, I_1: 1, I_{10}: 1 \rangle$ $\langle I_{16}: 3, I_9: 2, I_{14}: 2, I_{10}: 1 \rangle$ $\langle I_{16}: 3, I_1: 1, I_{10}: 1 \rangle$	$\{I_1,I_{13}\},\{I_{14},I_{13}\},\{I_9,I_{13}\}$ $\{I_{10},I_{13}\},\{I_{16},I_{13}\}$ $\{I_9,I_{14},I_{13}\},\{I_{16},I_9,I_{13}\}$ $\{I_9,I_{10},I_{13}\},\{I_{16},I_{10},I_{13}\}$ $\{I_{16},I_{14},I_{13}\},\{I_{14},I_{10},I_{13}\}$ $\{I_{16},I_1,I_{13}\},\{I_1,I_{10},I_{13}\}$ $\{I_{16},I_1,I_{10},I_{13}\},\{I_{16},I_{14},I_{10},I_{13}\}$ $\{I_{16},I_9,I_{10},I_{13}\},\{I_{16},I_{10},I_{14},I_{13}\}$ $\{I_{16},I_9,I_{14},I_{13}\}$
I_{10}	$ \{I_{16}, I_{9}, I_{14}, I_{1}, I_{2}: 1\} $ $ \{I_{16}, I_{9}, I_{14}: 1\}, \{I_{16}, I_{1}: 1\} $	$\langle I_{16}: 3, I_9: 2, I_{14}: 2, I_1: 1 \rangle$ $\langle I_{16}: 3, I_1: 1 \rangle$	$ \{I_1, I_{10}\}, \{I_{14}, I_{10}\}, \{I_9, I_{10}\} $ $ \{I_{16}, I_{10}\}, \{I_{16}, I_1, I_{10}\} $ $ \{I_{16}, I_{14}, I_{10}\}, \{I_9, I_{14}, I_{10}\} $ $ \{I_{16}, I_9, I_{10}\}, \{I_{16}, I_9, I_{14}, I_{10}\} $

Окончание таблицы 11

1- набор	Условная база шаблонов	Условное FP-дерево	Часто встречающиеся подмножества
I_8	$\{I_{16}, I_9, I_{11}, I_{12}, I_{14}, I_2: 1\}$ $\{I_9, I_{11}: 1\}, \{I_{12}, I_{15}: 1\}$	$\langle I_9: 2, I_{11}: 2, I_{12}: 1 \rangle$ $\langle I_{12}: 1 \rangle$	$\{I_{12}, I_{8}\}, \{I_{11}, I_{8}\}, \{I_{9}, I_{8}\}$ $\{I_{9}, I_{11}, I_{8}\}$
I_2	$ \{I_{16}, I_{9}, I_{11}, I_{12}, I_{14}: 1\} $ $ \{I_{16}, I_{9}, I_{14}, I_{1}: 1\}, \{I_{16}, I_{1}: 1\} $	$\langle I_{16}: 3, I_9: 2, I_{14}: 2, I_1: 1 \rangle$ $\langle I_{16}: 3, I_1: 1 \rangle$	$ \{I_9, I_2\}, \{I_{14}, I_2\}, \{I_1, I_2\} $ $ \{I_{16}, I_2\}, \{I_{16}, I_{14}, I_2\} $ $ \{I_{16}, I_1, I_2\}, \{I_9, I_{14}, I_2\} $ $ \{I_{16}, I_9, I_2\}, \{I_{16}, I_9, I_{14}, I_2\} $
I_1	$\{I_{16}, I_9, I_{14}: 1\}, \{I_{16}: 2\}$	⟨ <i>I</i> ₁₆ : 3⟩	$\{I_{16}, I_1\}$
I_{15}	$\{I_{16}, I_{9}, I_{11}: 1\}, \{I_{11}, I_{12}, I_{14}: 1\}$ $\{I_{11}, I_{12}: 1\}, \{I_{12}: 1\}$	$\langle I_{11}:3,I_{12}:2\rangle$ $\langle I_{12}:1\rangle$	$\{I_{11}, I_{15}\}, \{I_{12}, I_{15}\}$ $\{I_{11}, I_{12}, I_{15}\}$
I ₁₄	$\{I_{16}, I_9, I_{11}, I_{12}: 1\}, \{I_{16}, I_9: 2\}$ $\{I_{11}, I_{12}: 1\}$	$\langle I_{16}; 3, I_9; 3, I_{11}; 1, I_{12}; 1 \rangle$ $\langle I_{11}; 1, I_{12}; 1 \rangle$	$\{I_{11}, I_{12}, I_{14}\}, \{I_{11}, I_{14}\},$ $\{I_{12}, I_{14}\}, \{I_{9}, I_{14}\}, \{I_{16}, I_{14}\}$ $\{I_{16}, I_{9}, I_{14}\}$
I_{12}	$\{I_{16}, I_9, I_{11}: 1\}, \{I_{11}: 2\}$	⟨ <i>I</i> ₁₁ : 3⟩	$\{I_{11}, I_{12}\}$
I_{11}	$\{I_{16}, I_9: 2\}, \{I_9: 1\}$	$\langle I_{16}: 2, I_9: 2 \rangle, \langle I_9: 1 \rangle$	$\{I_{16}, I_{11}\}, \{I_{9}, I_{11}\}$ $\{I_{16}, I_{9}, I_{11}\}$
I_9	{ <i>I</i> ₁₆ : 4}	⟨ <i>I</i> ₁₆ : 4⟩	$\{I_{16}, I_{9}\}$

<u>Ответ:</u> тут по-хорошему надо выписать все подмножества, которые часто встречаются, но их чрезвычайно много получилось. 1-наборы см. табл. 9, остальные наборы см. табл. 11.

Задание 6

Данные представлены в таблице 12.

Таблица 12. Выборка

x	1	3	5	5	7	7	9	10	8	6
у	9	6	4	5	0	3	1	0	7	8

Построим диаграмму рассеяния точек данных (рис. 4).

Рисунок 4 – диаграмма рассеяния данных

Выберем в качестве начальных центров кластеров точки (1, 9), (10, 0) и (8, 7). В таблице 13 по шагам расписаны вычисления, связанные с распределением точек по кластерам и обновлением центроидов по алгоритму:

- 1. Для каждого элемента выборки выделить кластер по формуле $y_i = \underset{y \in Y}{arg \ min} \rho \left(x_i, m_y \right)$.
- 2. Вычисляются новые центроиды:

$$m_y^j = \frac{\sum_{i=1}^l [y_i = y] x_i^j}{\sum_{i=1}^l [y_i = y]}$$
(8)

Таблица 13. Итерации алгоритма k-means

Итерация	Центроиды	Кластеры	Обновленные центроиды
	(1, 9)	1: (1, 9), (3, 6)	(2, 7.5)
1	(10, 0)	2: (7, 0), (9, 1), (10, 0)	(8.67, 0.33)
	(8, 7)	3: (5, 4), (5, 5), (7, 3), (8, 7), (6, 8)	(6.2, 5.4)
	(2, 7.5)	1: (1, 9), (3, 6)	(2, 7.5)
2	(8.67, 0.33)	2: (7, 0), (9, 1), (10, 0)	(8.67, 0.33)
	(6.2, 5.4)	3: (5, 4), (5, 5), (7, 3), (8, 7), (6, 8)	(6.2, 5.4)

На второй итерации центроиды кластеров не поменялись, а значит алгоритм сошелся. Можно визуализировать полученные кластеры (рис. 5).

Рисунок 5 – кластеризованные данные

Ответ: кластер 1: (1, 9), (3, 6);

кластер 2: (7, 0), (9, 1), (10, 0);

кластер 3: (5, 4), (5, 5), (7, 3), (8, 7), (6, 8).

Задание 7

Выборка представлена в таблице 14.

Таблица 14. Выборка

х	-9	-6	-5	1	-7	-1	-6	4	6	7
у	6	4	6	1	-4	-5	-8	8	8	4

Построим диаграмму рассеяния (рис. 6).

Рисунок 6 – диаграмма рассеяния данных

Алгоритм итеративный, на каждой итерации t выделяются два ближайших кластера и объединяются в один. Расстояние между кластерами вычисляется методом Уорда. Итерации алгоритма показаны в таблице 15.

Таблица 15. Ближайшие кластеры на каждой итерации и расстояния между ними, рассчитанные по методу Уорда

i	Ближайшие кластеры	Расстояние
1	(4, 8) и (6, 8)	$R(W,S) = \frac{1 \cdot 1}{1 + 1} \rho^{2}(m_{W}, m_{S})$
		$= \frac{1}{2}((4-6)^2 + (8-8)^2) = 2$
2	(-6, 4), (-5, 6)	$R(W,S) = \frac{1 \cdot 1}{1 + 1} \rho^2(m_W, m_S)$
		$= \frac{1}{2}((-6+5)^2 + (4-6)^2) = 2.5$
3	(-7, -4), (-6, -8)	$R(W,S) = \frac{1 \cdot 1}{1 + 1} \rho^2(m_W, m_S)$
		$=\frac{1}{2}((-7+6)^2+(-4+6)^2)$
		= 8.5
4	(-9, 6), [(-6, 4), (-5, 6)]	$R(W,S) = \frac{1 \cdot 2}{1 + 2} \rho^2(m_W, m_S)$
		$=\frac{2}{3}((-9+5.5)^2+(6-5)^2)$
		= 8.8(3)

Окончание таблицы 15

i	Ближайшие кластеры	Расстояние
5	(7, 4), [(4, 8), (6, 8)]	$13.(3)^1$
6	(1, 1), (-1, -5)	20
7	[(-7, -4), (-6, -8)]	58.25
	[(1, 1), (-1, -5)]	
8	[(-9, 6), (-6, 4), (-5, 6)]	169.3452
	[(-7, -4), (-6, -8), (1, 1), (-1, -5)]	
9	[(7, 4), (4, 8), (6, 8)]	319.6381
	[(-9, 6), (-6, 4), (-5, 6), (-7, -4), (-6, -8), (1, 1), (-1, -5)]	

Рисунок 7 - дендрограмма

На дендрограмме явственно видно, что происходит резкий скачок расстояний объединяемых кластеров после объединения в 3 кластера, то есть оптимальное количество кластеров равно 3. Данные кластеры показаны разными цветами.

Стоит отметить, что если базироваться на критерии максимума разницы расстояний сливаемых на соседних итерациях кластеров, то выделятся 2 кластера. В то же время, можно построить т.н. «каменистую осыпь», на которой резкий подъем расстояний будет заметен после выделения 5 кластеров. Однако все методы оценки количества кластеров являются нестрогими и по большей части «субъективными», что позволяет каждый конкретный случай трактовать наиболее

 $^{^{1}}$ Здесь и далее в этом столбце вычисления абсолютно аналогичны и чисто механические.

подходящим образом. В данном случае визуально по дендрограмме, как сказано выше, можно выделить три кластера.

Ответ: дендрограмму см. на рис. 7.

Кластер 1: (7, 4), (4, 8), (6, 8)

Кластер 2: (-9, 6), (-6, 4), (-5, 6)

Кластер 3: (-7, -4), (-6, -8), (1, 1), (-1, -5)

Задание 8

Длина выборки равна 10, $\pi=0.25$, а значит в 10-окрестности точки должно лежать по меньшей мере 3 точки ($10\cdot 0.25=2.5$, вот больше или столько же точек должно быть), чтобы она не была (r, π)-аномалией.

В соответствии с алгоритмом вложенных циклов для каждой точки напрямую подсчитываются количества других точек из ее r-окрестности. В алгоритме предусмотрен выход из цикла при достижении $\pi \cdot n$ элементов, однако в таблице 16 приведено nonhoe количество точек из ее r-окрестности для консистентности.

Пример расчета для точки (-9, 6):

- (-6, 4): paccтoяние ~ 3.6 (count = 1)
- (-5, 6): расстояние 4 (count = 2)
- (1, 1): расстояние ~ 11.2
- (-7, -4): расстояние ~ 10.2
- (-1, -5): расстояние ~ 13.6
- (-6, -8): расстояние ~ 14.3
- (4, 8): расстояние ~ 13.2
- (6, 8): расстояние ~ 15.1
- (7, 4): расстояние ~ 16.1

Таким образом, (-9, 6) - (10, 0.25)-аномалия.

Теперь расчет для точки (-6, 4):

- (-9, 6) pacctoshue ~ 3.6 (count = 1)
- (-5, 6) pacctoshue ~ 2.2 (count = 2)
- (1, 1) pacctoshue ~ 7.6 (count = 3)

На этом этапе обработка точки закончена согласно алгоритму, так как count ≥ 2.5 .

Таблица 16. Количество точек в 10-окрестности элементов выборки

х	-9	-6	-5	1	-7	-1	-6	4	6	7
у	6	4	6	1	-4	-5	-8	8	8	4
\overline{n}	2	4	4	7	4	3	2	4	3	3

<u>Otbet:</u> (-9, 6), (-6, -8)