全体の流れ

1つのデータを読む

- 比較する
- 分解する
- 比率で見る
- ○○あたりで見る
- データの定義
- データの前提条件

大量のデータを読む

- 平均值、中央值
- 分布
- ヒストグラム
- 標準偏差
- 傾向
- 関係性

データを正しく読む

- ・ グラフの注意点
- サンプルの注意点
- データの偏り
- 異常値、欠損値
- 確証バイアス
- フェルミ推定

データ分析の基本は、比較と分解

1つのデータを読む

1. 分析の基本は、比較と分解

- 販売数データを見て、
 - うまくいっているのか? (他の数値と比較)
 - その原因は? (商品ごとに分解)

2. 今回学ぶこと

「比較と分解」を繰り返しながら、数字の良し悪しや、その原因を理解していく

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

比較

1. ポイント

• 他の数字と比較することで、良いか悪いかを判断する

2. たとえば

- 3月の販売数は1,000個で好調でした
 - →本当に好調か、よくわからない
- ライバルB社の販売数は300個でした
 - → ライバルよりも好調なのが分かる(他との比較)

過去と比較

去年より販売数が10%増加した

他と比較

商品Aは、商品Bより販売数が伸びた

第三者データと比較

市場の成長よりも大きく成長した

常識・経験と比較

常識的に、その計画はおかしいのでは

過去と比較

去年より販売数が10%増加した

他と比較

商品Aは、商品Bより販売数が伸びた

第三者データと比較

市場の成長よりも大きく成長した

常識・経験と比較

常識的に、その計画はおかしいのでは

過去と比較する

1. 例

- なんと、今月の販売数は1,000個になりました
 - → すごいのか、よくわからない
- 今月の販売数は1,000個で、なんと先月より300個増えました
 - → かなり増えたことが分かる

今回のポイント

「いつ」と比べるか?

7月のビールの売上は、 6月よりも30%も増えました!

そりゃ7月になったら暑くなるから、 ビールの売上が増えるのは当然だろう・・・

漫画:南智恵

前年同月比

(前の年の、同じ月と比べる)

「いつ」と比べるか?

7月のビールの売上は、

6月よりも30%も増えました!

去年の7月より10%増えました!

同じ夏の時期なのに10%も増えたとは、 とても好調ですね!

漫画:南智恵

「いつ」と比べるか?

- 1. 同じ月で比べる
 - 「7月のビールの売上は、前年7月より増加」
- 2. 同じ曜日で比べる
 - 「今週土曜の百貨店の売上は、先週土曜より増加」
- 3. 同じ時間帯で比べる
 - 「本日22時台の動画の視聴時間は、前日の22時台より増加」

今回のポイント

季節要因

季節要因

1. 意味

• 季節によって売上が増減すること

2. 例

- 夏になるとビールやアイスの売上が増える
- 年末年始になると新幹線の利用が増える(帰省客)

3. データ分析のポイント

- 同じ季節で比較する
- 今年の夏 vs 昨年の夏

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

過去と比較

去年より販売数が10%増加した

他と比較

商品Aは、商品Bより販売数が伸びた

第三者データと比較

市場の成長よりも大きく成長した

常識・経験と比較

常識的に、その計画はおかしいのでは

7月のビールの売上は、 昨年7月よりも30%も増えました!

今年の夏は暑かったから、昨年より 増えているのは当然だ・・・ 他社のビールの売上はどうだったのか?

漫画:南智恵

1. 意味

• 他の商品と比較して、数値が良いか悪いかを大体判断する

2. 例

- 競合であるB社の売上を超えました!
 - → 販売はうまくいっているようだ
- 今年はビールよりワインを飲む人が増えました
 - → ビールが不調か、あるいは、ワインが好調
- 5年前と比べて、ビールより烏龍茶を飲む人が増えました
 - → アルコールよりノンアルコールの需要が高まっている?

比較対象

(何と比較するか)

比較対象

1. ポイント

- 似ているものと比較する
 - = 全然関係ないものと比較しても意味がない
- Apple to Apple
 - = リンゴとリンゴを比較しないと意味がない

比較対象 分析 (例)

ビール vs 他社ビール A社の商品がうまくいっているか

ビール vs ワイン ビールとワイン、どっちが人気あるか

ビール vs アルコールは人気あるか

分析の目的によって 比較対象は変わる

1. ポイント

- まずは分析の目的をしっかり決める
- 「何を分析したいのか」
- 「何を知りたいのか」
- 「何がうまくいっているかを知りたいのか」
 - →次に、比較対象を何にすべきか考える

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

過去と比較

去年より販売数が10%増加した

他と比較

商品Aは、商品Bより販売数が伸びた

第三者データと比較

市場の成長よりも大きく成長した

常識・経験と比較

常識的に、その計画はおかしいのでは

第三者のデータと比べる

ビールの販売数が去年から10%増加したけど、他社の販売数が分からないので、 比較ができない・・・

では、何か参考になるデータがないか、 インターネットで探してみよう

漫画:南智恵

第三者のデータと比べる

1. ポイント

- 第三者=外部のデータ
- 過去データ、他データだけではなく、外の情報を探す

2. 例

- 政府や企業が発表しているデータ
- 「毎年どれくらいビールが消費されているか」
 - 社会全体のトレンドが分かる(マクロ情報)
- 日本でビールの消費は年間10%増加。A社のビールは20%増加
 - → A社のビール販売は、他社よりは好調といえる

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

過去と比較

去年より販売数が10%増加した

他と比較

商品Aは、商品Bより販売数が伸びた

第三者データと比較

市場の成長よりも大きく成長した

常識・経験と比較

常識的に、その計画はおかしいのでは

常識・経験と比較

新商品のビールの、販売数の目標ですが、 1日3,000万本いけると思います!

いや一、さすがにそれは無理だろう・・・

漫画:南智恵

常識・経験と比較

1. ポイント

• 自分の持っている知識と比べる

2. 例

- 新商品のビールの販売数、1日3,000万本
- ・ 日本の人口(約1.2億人)→人口の1/4が毎日飲むか?
 - 人口には、子供もいるし、お酒飲まない人もいる
 - ライバルのビールもたくさんある
 - → 常識的に考えて、なかなかむずかしいのでは?

常識・経験と比較

- 3. 常識・経験データを持つことのメリット
 - データを調べなくても、数字の良い悪いが分かる
 - 第三者のデータを調べる手間がない
 - 「あれ、この数字おかしいよね?」違和感にすぐ気づく
 - → 分析スピードが上がる

常識・経験と比較

- 4. 常識・経験データを持つには
 - 毎日さまざまなデータに触れる(ニュース記事など)
 - 分析の仕事を続けると身に付く

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

分解する

1. ポイント

• 数字は、より細かく見ることで、その原因を見つけられる

2. たとえば

- 当社の売上は1,000万円で前年比 +30% でした
 - → 何が好調の要因か、よくわからない
- 売上の内訳を見ると、ワインの売上が前年比 +80% だった
 - → ワインの売上アップのおかげ、ということがわかる

商品別に分解

ビール、ワイン、烏龍茶

顧客別に分解

20代、30代、40代、50代

期間で分解

月別、週別、日別に分解

プロセスで分解

購入までのステップを分解

商品別に分解

ビール、ワイン、烏龍茶

顧客別に分解

20代、30代、40代、50代

期間で分解

月別、週別、日別に分解

プロセスで分解

購入までのステップを分解

販売数は増えているが(過去と比較)その要因が分からない

うちの飲料の販売数が伸びているのは うれしいけど、なぜ伸びているのか 分からない・・・

では、商品ごとの販売数を見てみよう

漫画:南智恵

商品別で見ると、烏龍茶が伸びているのが要因(折れ線グラフ)

販売数全体に占める烏龍茶の割合も大きい(積み上げ縦棒グラフ)

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

商品別に分解

ビール、ワイン、烏龍茶

顧客別に分解

20代、30代、40代、50代

期間で分解

月別、週別、日別

プロセスで分解

購入までのステップを分解

ビールの宣伝をすることになったけど、 どの年齢をターゲットにすればいいか 分からない・・

では、購入者データを年齢別に分解して 見てみよう

漫画:南智恵

20代以下、30代が**全体の70%**を占めている(円グラフ)

どこに顧客が集中しているか少し分かりにくい(円グラフ)

30代以下と、60代以上の2つに大きく顧客が分かれている

30代以下と、60代以上の2つに顧客が集中している

1. 例

- 20代~30代と、60代以上に顧客が分かれている
 - → それぞれの世代にあった宣伝をすると効果がありそうだ
 - → いや、顧客になっていない40代~50代のほうが これから顧客になってくれるのではないか?

2. ポイント

顧客別に分解することで、誰から評価されているか、さらに顧客を増やすための改善策を考えることができる

今回のポイント

顧客別の種類

顧客別の種類

1. 顧客別といっても色々

- 年齢、性別、家族構成、住んでいる場所 〉※デモグラという
- 学歴、職業、収入
- 商品をリピートで買っている顧客か、新規の顧客か

2. ポイント

- なんでも細かく分解すればいいわけではない
- 「おそらく20~30代の販売が伸びているのでは?」
 - →年齢別に分解する
 - → 仮説・推測することも大事

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

商品別に分解

ビール、ワイン、烏龍茶

顧客別に分解

20代、30代、40代、50代

期間で分解

月別、週別、日別に分解

プロセスで分解

購入までのステップを分解

1. 例

- 3月の販売数は2,164
- いつ販売数がよかったのか分からない
 - →分解して見る

3月の販売数

合計

合計

2,164

2. 週で分解

- 3月を第1週~4週で分解
- 特に大きな特徴は見られず (どの週も同じくらい)
 - →では曜日別に見てみる

3月の販売数	
	合計
第1週	544
第2週	538
第3週	539
第4週	543
合計	2,164

3. 曜日で分解

• 土日の販売数が多いことが分かる

3月の販売数								
	月	火	水	木	金	土	日	合計
第1週	51	51	55	58	56	130	143	544
第2週	58	51	57	56	55	133	128	538
第3週	58	57	58	53	55	128	130	539
第4週	54	58	50	55	59	141	126	543
合計	221	217	220	222	225	532	527	2,164

1. ポイント

- 期間で分解することで分かる
 - いつ売上が多かったのか
 - 月や週で傾向はあるのか(週末が多い、など)
 - 異常値(この日たまたま売上が多かった)

1. 例

- 週で分解したところ、第4週の販売数が伸びていた
 - 月末に販売数が増える傾向がある?
 - それともたまたま?
- →曜日で分解して見る

3月の販売数	
	合計
第1週	544
第2週	538
第3週	539
第4週	818
合計	2,439

2. 週ごとに分解

• 第4週の水曜に、たまたま販売数が増えた日があった

3月の販売数								
	月	火	水	木	金	土	日	合計
第1週	51	51	55	58	56	130	143	544
第2週	58	51	57	56	55	133	128	538
第3週	58	57	58	53	55	128	130	539
第4週	54	58	325	55	59	141	126	818
合計	221	217	495	222	225	532	527	2,439

1. ポイント

- 数字を分解すると「たまたま販売数が多かった」日もある
- これを誤解してしまって、

「第4週は販売数が多いから、来月もそうなるだろう」

と期待してしまうのは危険!

今回のポイント

分解しすぎると、数字が分からなくなる

期間をまとめる

期間をまとめる

月別の販売数 → 増えているか?

期間をまとめる

増えたり減ったりしていて、よく分からない

よく見ると、6月、9月、12月、3月が多い

1. よくある季節要因

- 日本企業の年度は4月から始まって、3月まで
- 四半期(3ヶ月ごと)に業績を発表する
 - 第1四半期(4-6月)、第2四半期(7-9月)・・・
- 四半期の最後の月に、営業がんばって販売数が増える傾向

2. ポイント

月ごとに見るとバラつきがあって傾向が見えないので、 四半期ごとにまとめて見る

四半期(3ヶ月)ごとにまとめて見ると、

グラフがシンプルになって、

四半期で見ると、販売数は堅調に伸びていることが分かる

細かく月ごとに見れば良いというわけではない

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

数字を分解する

商品別に分解

ビール、ワイン、烏龍茶

顧客別に分解

20代、30代、40代、50代

期間で分解

月別、週別、日別に分解

プロセスで分解

購入までのステップを分解

私たちのビールが競合より売れない・・・ 商品が悪いのか売り方が悪いのか、 原因が分からない・・・

なるほど、では顧客がビールを買うまでの プロセスで分解して見てみよう

漫画:南智恵

1. 意味

• 顧客が、どういうプロセスで購入に至ったかを調べて どのプロセスに問題があったか原因を突き止める

2. ビールの購入までのプロセス (例)

- (1) テレビCMを見て知って、(2) 興味を持って、
 - (3) ネットで検索して、(4) 実際に店に行って、(5)買う
- アンケートなどで、それぞれの人数を調べてみる

300人にアンケート「A社のビールを知ってますか?買いましたか?」

プロセス分解をつかって、 A社のビールが売れていない理由を探す

どのプロセスが問題?

店には行ったけど買わなかった人が多い(値段が高かった?)

どのプロセスが問題?

そもそもA社のビールが知られていない

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

分解して、比較する

1. 分析の基本

• 分解して、比較する

2. これまでの分析まとめ

- プロセスで分解して、競合と比較する
- 曜日で分解して、他の週と比較する
- 四半期で分解して、過去の四半期と比較する

分解して、比較する

1. 分析の基本

• 分解して、比較する

2. これまでの分析まとめ

- プロセスで分解して、競合と比較する
- 曜日で分解して、他の週と比較する
- 四半期で分解して、過去の四半期と比較する

店には行ったけど買わなかった人が多い(値段が高かった?)

比較対象がなければ、買った人が少ないか分からない

比較対象と同じくらいなら、A社の販売は問題ないかもしれない

分解して、比較する

1. 分析の基本

• 分解して、比較する

2. これまでの分析まとめ

- プロセスで分解して、競合と比較する
- 曜日で分解して、他の週と比較する
- 四半期で分解して、過去の四半期と比較する

曜日で分解

- 1. 水曜日と、土日の販売数が多い
 - →他の週と比較しないと、異常値か、普通か分からない

曜日で分解

- 1. 他の週の水曜は多くない → 第4週の水曜は異常値
- 2. 他の週の土日は多い → 第4週の土日は普通

3月の販売数								
	月	火	水	木	金	土	日	合計
第1週	51	51	55	58	56	130	143	544
第2週	58	51	57	56	55	133	128	538
第3週	58	57	58	53	55	128	130	539
第4週	54	58	325	55	59	141	126	818
合計	221	217	495	222	225	532	527	2,439

分解して、比較する

1. 分析の基本

• 分解して、比較する

2. これまでの分析まとめ

- プロセスで分解して、競合と比較する
- 曜日で分解して、他の週と比較する
- ・ 四半期で分解して、過去の四半期と比較する

四半期で分解する

過去と比較することで、成長していることが分かる

四半期で分解する

過去のデータがなければ、分析できない

分解して、比較する

1. 分析の基本

• 分解して、比較する

2. これまでの分析まとめ

- プロセスで分解して、競合と比較する
- 曜日で分解して、他の週と比較する
- 四半期で分解して、過去の四半期と比較する

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

まずい、新商品についてクレームが10件もきてしまった・・・これは大問題だ

まあ慌てずに、クレーム10件は、 果たして本当に多い件数なのか考えよう

漫画:南智恵

1. 今回の分析

• ある数字を見て、多いか少ないかを判断したい

2. 例

- もちろんクレームはゼロが理想的だが、現実的にむずかしい
 - → 少なく抑えることが大事
- クレームが10件は多いか少ないか、を比率で考える

1. クレーム件数は、たしかに新商品Aは10件と多い

	新商品A	商品B	商品C
購入した人数		?	
クレーム件数	10件	3件	5件
比率 (%)		?	

2. しかし、購入した人数も多いので、比率で見ると0.1% = 1,000人に1人がクレーム(他の商品より低い)

	新商品A	商品B	商品C
購入した人数	10,000人	200人	500人
クレーム件数	10件	3件	5件
比率 (%)	0.1%	1.5%	1.0%

1. 今回の分析

• ある数字を見て、多いか少ないかを判断したい

2. ポイント

- 実数(10件)だけで見ると、判断できないことも多い
- ・ 購入した人数の全体像(母数)との比率で判断

今回のポイント

比率で見るときの注意点

新商品の販売は好調です!

店で手に取った人のうち、

50%が購入しました!

50%という比率だけ見てもなあ・・・

漫画:南智恵

1. 新商品Aの買った比率は、たしかに高い

	新商品A	商品B	商品C
手に取った人数		7	
実際に買った人数			
比率 (%)	50%	20%	15%

- 2. しかし、問題は「そもそも新商品Aを手に取る人が少ない」
- 3. 実際に売上に貢献しているのは商品BとC

	新商品A	商品B	商品C
手に取った人数	2人	100人	400人
実際に買った人数	1人	20人	60人
比率 (%)	50%	20%	15%

今回のポイント

比率で見るときの注意点

= 実数と比率の両方を見るべき

実数と比率、両方を見るべき

	新商品A	商品B	商品C
手に取った人数	2人	100人	400人
実際に買った人数	1人	20人	60人
比率 (%)	50%	20%	15%

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

今回のポイント

○○あたり、で見る

販売を効率化するために、 店舗の数を減らしたら、 売上が下がってしまった・・

漫画:南智恵

1. たしかに売上は下がった

	一昨年	昨年	今年
売上	80万円	120万円	100万円
店舗の数		7	
1店あたり売上		:	

販売を効率化するために、 店舗の数を減らしたら、

売上が下がってしまった・・・

店舗あたり売上はどうだろう?

漫画:南智恵

- 1. 不採算の店舗を閉店したため、売上が下がった
- 2. 店舗あたり売上は改善した

	一昨年	昨年	今年
売上	80万円	120万円	100万円
店舗の数	8店舗	10店舗	5店舗
1店あたり売上	10万円	12万円	20万円

○○あたり

1. ポイント

● ○○あたり、にすることで効率的かどうか分かる

2. 他にも

- オフィス賃料が上がったけど、社員が増えたので、 社員1人あたりオフィス賃料は下がった(良い)
- ・ 営業用の車を購入した(100万円)
 - = 3年使い続ければ、1ヶ月あたり約27,000円
 - = 営業できる件数が増えれば、27,000円の元は取れる

今回のポイント

○○あたり、は要注意

○○あたり、は要注意

新しいパソコンを買いましょう!

10万円ですけど、3年間使えば、

1日あたりたった約100円ですよ!

たしかに1日100円だけど、 気軽に10万円の買い物はできないぞ・・・

漫画:南智恵

○○あたり、は要注意

1. ポイント

● ○○あたり、にすると数字が小さく感じられることがある

2. 例

- サプリメント1年分=50,000円(高い!)
- ところが「1日あたりたった136円ですよ」($50,000 \div 365$) =ペットボトルのお茶1本分・・・まあそれくらいならいいか
- 1日あたりにすることによって安く感じてしまう
- 特に費用を考えるときは、1年分、3年分など長期で考える

今回のポイント

○○あたり、で見る

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

データ分析

1. これまで学んだこと

- 分解・比較・比率・○○あたり
- さまざまな切り口でデータを読むテクニック

2. これから学ぶことは、データを見るときの注意点

- データの定義を確認する
- データの出所を確認する
- データの前提を確認する

データ分析

- 1. これまで学んだこと
 - 分解・比較・比率・○○あたり
 - さまざまな切り口でデータを読むテクニック
- 2. これから学ぶことは、データを見るときの注意点
 - データの定義を確認する
 - データの出所を確認する
 - データの前提を確認する

データの定義を確認する

1. 例

- 「うちの会社、何人いるか調べてほしい」
 - → 社員数のこと?正社員?契約社員?アルバイトは?
 - →何を調べたいのか、「人」の定義を確認する必要あり
- 2. 目的によって、データの定義は変わる
 - 「今度オフィスを引っ越すので、人数を確認したい」
 - → アルバイト含めた全ての人数

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

データ分析

- 1. これまで学んだこと
 - 分解・比較・比率・○○あたり
 - さまざまな切り口でデータを読むテクニック
- 2. これから学ぶことは、データを見るときの注意点
 - データの定義を確認する
 - データの出所を確認する
 - データの前提を確認する

データの出所を確認する

1. 売上

- 営業チームが持っている売上データと、経理チームが持っている会計上の売上データが違う場合も
- 2. どの売上データを使うか
 - 毎日の売上が順調かを確認したい
 - → 営業チームが持っているデータ
 - 3月の「正しい」会計上の売上金額を見たい
 - → 経理チームが持っているデータ

1つのデータを読み解く

- 1. 比較する(1) 過去と比較
- 2. 比較する(2) 他と比較
- 3. 比較する(3) 第三者データと比較
- 4. 比較する(4) 常識・経験と比較
- 5. 分解する(1) 商品別に分解
- 6. 分解する(2) 顧客別に分解
- 7. 分解する(3) 期間で分解
- 8. 分解する(4) プロセスで分解

- 9. 分解して、比較する
- 10. 比率で見る
- **11.** ○○あたりで見る
- 12. データの定義
- 13. データの出所
- 14. データの前提条件
- 15. まとめ

データ分析

- 1. これまで学んだこと
 - 分解・比較・比率・○○あたり
 - さまざまな切り口でデータを読むテクニック
- 2. これから学ぶことは、データを見るときの注意点
 - データの定義を確認する
 - データの出所を確認する
 - データの前提を確認する

データの前提条件

アンケートを取ったところ、 「新商品ビールを飲んでみたい」という人 が70%もいました!すごいです!

うーん、本当か?

ちょっとアンケート結果を確認しよう・・・

漫画:南智恵

第1問「あなたはビールが好きですか?」 第2問「第1問でYesと答えた人にお聞きします。 新商品に興味ありますか?」

	第1問	第2問
全ての回答数	100人	30人
Yesと回答した人	30人	21人
Yesと回答した比率	30%	70%

ビール好きな30人のうち、21人(70%)が新商品に興味ある

アンケート全体から見れば、100人中21人(21%)

データの前提条件

1. ポイント

- 数字の背景をしっかり理解する
- 特に、偏ったデータになっていないか
- 「数字をよく見せるために」 わざと前提条件を隠したデータもあるので要注意

2. 例

- 実は、女性だけにアンケートを取っていた
- 実は、ターゲットである40代だけにアンケートを取っていた