

Translationese indicators for human translation quality estimation (based on English-to-Russian translation of mass-media texts)

Maria Kunilovskaya

University of Wolverhampton

13 March, 2023

General description

'Shining-through' example

- How much time?
- Five hours.
- Such much?
- For whom how ...
- Finished injaz?
- Aaask!

Overarching aim: Explore the relations between translationese indicators and human translation quality.

Experimental setup: Human translation quality estimation task cast as text classification or regression problems, and feature analysis.

Research subcorpora

1. subsets from Russian Learner Translator corpus of various sizes by type of annotation

- comparable professional translations: 404 parallel docs, 384 K words (BBC Russian Service, InoSMi, RNC);
- 3. comparable non-translations: 497 docs, 523 K words (RNC)

Quality labels/scores

Operational definitions of quality

- ▶ Holistic judgments: agreed assessment of competition jury/exam board in real life; top and bottom grades converted to 'bad', 'good' labels, verified in an additional annotation experiment ($\alpha = 0.524$, accuracy 91%).
- Scores from *error annotation* used as part of feedback to students in a real-life practical translation course, which implemented accuracy-fluency distinction (top-level category agreement: 80.5% of errors in the same location, $\alpha = 0.535$).
- ▶ Direct assessment: perceived quality for sentences presented in the context on a 100-point scale (documents: $\alpha = 0.541$, sentences: $\alpha = 0.463$)
- + Known *status* of translations produced by defined subjects (students, professionals).

Numeric representations

Proposed feature sets:

1. linguistically-motivated 60 morphosyntactic and textual features (from UD annotation)

Alternative representations:

- surface-based TF-IDF
- ▶ 4 types of sentence embeddings and word embeddings
- + (for quality-related experiments) MTQE features (QuEst++)

Methodology

Learning algorithms

- default linear Support Vector Machine
- one-layer neural network for quality control

Feature analysis

- recursive feature elimination
- univariate analysis (single-feature classifiers and regressors)
- statistical analyses
- PCA-based visualisations

Results and findings

translationese classification

Translationese indicators

How good are the UD features to capture translationese?

representation	Acc	F1
UD (prof)	90.34	90.22
mdeberta3 (prof)	98.44	98.36
UD (stud)	89.41	88.96
mdeberta3 (stud)	96.67	96.63

Translation detection task

What are the prominent translationese indicators? (based on feature selection)

- longer and more complex sentences
- inflated frequencies of additive discourse markers, analytical passives, copula verbs, modal predicates, personal pronouns, finite verbs, determiners

Prominent trends and associated translation strategies (based on statistical testing)

- shining through
- (over-)normalisation

binary quality

Quality estimation tasks on quality labels (linear SVM)

professionals vs students

- dissimilar translationese patterns (UD F1=76.24)
- quality related distinctions (QuEst++ F1=83.00)
- ▶ topical differences overshadow translationese (tf-idf F1=89.59)

bad vs good

rep	Accuracy	F1
UD	61.39	61.00 F1=68.9 on selected features
quest61	47.22	46.96
ruRoberta	75.00	74.89
mdeberta3	78.33	78.14

-Results and findings

binary quality

UD features

mdeberta3 binary quality

- ➤ SL/TL independent translationese features are important!
- ▶ Bad: longer sentences, complex sentence structure, lower TTR, analytical passives, more nouns as subjects, more modal predicates, more verbal (overuse of copula, deverbal nouns and participles)

mdeberta3: prof experience

Scores from error annotation (553 documents)

	accuracy		fluency		tq	
	r	RMSE	r	RMSE	r	RMSE
UD	0.43	0.95	0.43	1.18	0.45	1.72
quest61	0.37	0.98	0.42	1.16	0.36	1.73
tfidf	0.48	0.92	0.49	1.14	0.47	1.69
ruRoberta	0.51	0.91	0.53	1.08	0.54	1.57
mdeberta3	0.58	0.87	0.58	1.05	0.62	1.5

Regression results for unweighted error-based quality scores

Observations from feature analysis:

- no difference between accuracy and fluency (!)
- the very weak correlations between features and scores
- confusing observations for individual features

Results and findings

continuous scores

continuous scores

Scores from Direct Assessment (140 documents)

	da_	mean
rep	r	RMSE
UD quest61	0.23	7.27 7.44
ruRoberta mdeberta3	0.22	7.35 7.22

Results:

- none of the representations was more successful than the other in learning DA scores,
- ▶ in fair experimental setting, *mdeberta3* vectors performed better on some error-based scores than on DA scores,
- UD feature analysis is hardly reliable

Observations from sentence-level experiments

	Error-base	DA	
	accuracy fluency		da_mean
UD	0.17	0.23	0.29
quest70	0.14	0.25	0.33
ruRoberta	0.29	0.31	0.39
mdeberta3	0.27	0.33	0.39

Spearman's r on 3,224 sentence pairs (SVR)

- translationese-aware features were relatively competitive only for fluency scores (difference between accuracy and fluency!),
- an accidental finding: error-based quality scores reflected the properties of texts better than they fit the properties of sentences,
- interpretation of features does not make sense

Contributions

- 1. a theoretically-motivated feature set for translationese diagnostics in English-to-Russian mass-media translation;
- evidence that lower-ranking translations exhibited more translationese than higher-ranking translations (UD features were competitive against other representations);
- description of dissimilar translationese patterns in professional varieties;
- 4. evidence of dissimilarities between three quality assessment methods in terms of sensitivity to translationese and in terms of capturing document-level properties;
- datasets for document- and sentence-level HTQE experiments in English-to-Russian language pair with three types of quality judgments

Theoretically disputable assumptions and limitations

- 1. translation quality does not boil down to fluency;
- 2. the approach is biased towards shining-through indicators with no distinction between negative and positive transfer;
- the approach is heavily-dependent on register-comparability of translations and non-translations;
- limited extent and reach of the study (findings apply to the given translation direction and register, given proposed features);
- 5. limited application of translationese approaches to sentence-level quality estimation

Thank you!

Translationese indicators

Maria Kunilovskaya

for human translation quality estimation