Binaural Scene Classification with Time-Frequency Scattering and Deep Convolutional Networks

Vincent Lostanlen École normale supérieure 45 rue d'Ulm, 75005 Paris, France

Abstract—The abstract goes here.

I. INTRODUCTION

Classification of acoustic scenes is only made possible by integrating signal information over a long temporal context. Whereas a few seconds are often sufficient to recognize a speaker, a musical instrument, or a genre, it may require up to 30 seconds to disambiguate closely related acoustic scenes.

II. TIME-FREQUENCY SCATTERING

Let $\psi[t]$ an analytic band-pass filter of dimensionless frequency 1 and bandwidth 1/Q. A filter bank of wavelets is built by dilating ψ according to a geometric sequence of scales $2^{-k_1/Q}$, where the log-frequency index k_1 takes integer values. We denote by $\psi_{k_1}[t]$ the resulting wavelets. In all subsequent experiments, ψ is designed as a Gammatone wavelet of quality factor Q=4, so as to approximate the properties of the human cochlea. The wavelet transform of an audio signal x[t] is obtained by convolution with all wavelets: $y_1[t,k_1]=(x^*\psi_{k_1})[t]$. Applying pointwise complex modulus to y_1 yields the wavelet scalogram $x_1[t,k_1]=|y_1[t,k_1]|$, also called constant Q transform (CQT), indexed by time t and log-frequency k_1 .

Time-frequency scattering consists in convolving $x_2[t,k_1]$ with a family of two-dimensional wavelets $\Psi_{k_2}[t,k_1]$, where the index k_2 encapsulate two values, i.e. a temporal scale α and a log-frequential scale β . The temporal scale α takes 5 values between 23 ms and 370 ms according to a geometric sequence. The log-frequential scale β takes 5 values between $1/4^{\rm th}$ of an octave and 4 octaves, as well as its 5 "mirror" frequencies. In addition, the edge case $\beta=\infty$ corresponds to a log-frequential moving average along 4 octaves according to all 5 temporal scales α . Finally, the edge case $(\alpha,\beta)=(\infty,0)$ coresponds to a temporal moving average $\phi[t]$ along 370 ms without any transformation of the log-frequency axis. In sum, there are $5\times 5\times 2+5+1=56$ time-frequency scattering features for every time t and log-frequency k_1 .

This work is supported by the ERC InvariantClass grant 320959.

The time-frequency scattering coefficients are thus defined as

$$y_{2}[t, k_{1}, k_{2}] = (x_{1} * \Psi_{k_{2}})[t, k_{1}]$$

$$= \sum_{\tau, \kappa_{1}} x_{1}[t - \tau, k_{1} - \kappa_{1}] \Psi_{k_{2}}[\tau, \kappa_{1}]. \quad (1)$$

For some index k_2 involving a temporal scale α , applying pointwise complex modulus to $y_2[t, k_1, k_2]$ provides translation-invariant coefficients as long as the amount of translation does not exceed α .

$$x_2[t, k_1, k_2] = |y_2[t, k_1, k_2]| * \phi[t]$$
 (2)

III. DEEP CONVOLUTIONAL NETWORKS

Each layer in a convolutional network typically consists in the composition of three operations: two-dimensional convolutions, application of a pointwise nonlinearity, and local pooling.

$$y_{3}[t, k_{1}, k_{3}] = \sum_{k_{2}} b_{3}[k_{2}, k_{3}] + \mathbf{W}_{3}[t, k_{1}, k_{2}, k_{3}] * x_{2}[t, k_{1}, k_{2}].$$
(3)

We apply the rectified linear unit (ReLU) nonlinearity, with a rectifying slope of $\alpha = 0.3$ for negative inputs.

$$\mathbf{y_3^+}[t, k_1, k_3] = \begin{cases} \alpha \mathbf{y_3}[t, k_1, k_3] & \text{if } \mathbf{y_3}[t, k_1, k_3] < 0\\ \mathbf{y_3}[t, k_1, k_3] & \text{if } \mathbf{y_3}[t, k_1, k_3] \ge 0 \end{cases}$$
(4)

At the pooling step, we retain the maximal activation among neighboring units in the time-frequency domain (t, k_1) over non-overlapping rectangles of width Δt and height Δk_1 .

$$\boldsymbol{x_3}[t, k_1, k_3] = \max_{\substack{0 \le \tau < \Delta t \\ 0 \le \kappa_1 < \Delta k_1}} \left\{ \boldsymbol{y_3^+}[t - \tau, k_1 - \kappa_1, k_3] \right\}$$
 (5)

The hidden units in x_3 are in turn fed to a second layer of convolutions, ReLU, and pooling.

$$\boldsymbol{x}[t] = r \times \boldsymbol{x}^{\mathsf{L}}[t] + (1 - r) \times \boldsymbol{x}^{\mathsf{R}}[t],\tag{6}$$

where r is drawn uniformly at random in the interval [0, 1].

The conclusion goes here.