2a. Lista de Exercícios SMA 0354 - Cálculo II - Curso Coordenado - 2021.2

Curvas Parametrizadas: reta tangente, reta normal, limite, comprimento de arco.

Exercício 1 Faça o esboço do traço de cada curva parametrizada abaixo indicando a sua orientação:

- (a) $t \mapsto (\text{sen}2t, \cos 2t), t \in [0, 2\pi].$
- (b) $t \mapsto (5\cos t, 2\sin t), t \in [0, 2\pi].$
- (c) $t \mapsto (t, t^3), t \in [-3, 3].$
- (d) $t \mapsto (\cos t, \sin t, t), t \in [0, 2\pi].$
- (e) $t \mapsto (\cos t, \, \sin t, \cos t), \, t \in [0, 4\pi].$
- (f) Compare a orientação da curva do item (a) com a orientação da curva $t \mapsto (\cos 2t, \sin 2t), t \in [0, 2\pi].$
- (g) Compare a velocidade da curva (ou partícula sobre a curva) do item (a) com a velocidade da curva $t \mapsto (\operatorname{sent}, \cos t), t \in [0, 2\pi].$

Exercício 2 Para cada item abaixo, encontre pelo menos duas funções a valores vetoriais r(t) = (x(t), y(t)) e $s(t) = (\alpha(t), \beta(t))$ distintas satisfazendo a equação dada. (Conclui-se, assim, que uma parametrização de uma curva não é única.)

- (a) $y = x^2 5$
- (b) $y = \sqrt{x}$
- (c) $x^2 + y^2/4 = 1$

Exercício 3 Verifique se existe $\lim_{t\to t_0} F(t)$ para:

(a)
$$F(t) = \left(\frac{\sqrt{t}-1}{t-1}, t^2, \frac{t-1}{t}\right), t_0 = 1.$$

(b)
$$F(t) = \left(\frac{\operatorname{tg } 3t}{t}, \frac{e^{2t} - 1}{t}, t^3\right), t_0 = 0.$$

Exercício 4 Verifique se a curva parametrizada r(t) é regular no ponto $r(t_0)$. Se for, determine a equação da reta tangente a tal curva no ponto $r(t_0)$. Verifique também se a curva têm reta normal no ponto $r(t_0)$ e determine a sua equação. Faça um esboço:

- (a) $r(t) = (\cos 2t, \sin 2t), t_0 = 0.$
- (b) $r(t) = (1 \sin t, 1 \cos t), t_0 = \pi.$
- (c) Quais são os vetores tangentes e vetores normais das curvas dos itens (a) e (b) nos pontos respectivos?

Exercício 5 Considere a curva parametrizada $r(t) = (t^2, 2t^2 + 1, t^3)$, $t \in \mathbb{R}$. Verifique se tal curva admite reta tangente paralela ao vetor v = (1, 2, 3). Se sim, em qual(quais) ponto(s) da curva isso ocorre?

Funções de Várias Variáveis

Exercício 6 Descreva o domínio e a imagem de f, e desenhe os domínios:

Exercicle 6 Descreva b dominio e a imagem de
$$f$$
, e desenhe os dominios.
$$(a) f(x,y) = 2x - y^2 \qquad (b) f(x,y) = \sqrt{4 - x^2 + y^2} \qquad (c) f(x,y) = \frac{\sqrt{x + y} - 1}{x + y - 1}$$

(d)
$$f(x, y, z) = \frac{x - z}{x^2 + y^2}$$
 (e) $f(x, y, z) = \ln(x + y + z + 1)$.

Exercício 7 Para as funções f cujas leis são dadas abaixo, verifique se são limitadas em seu domínio de definição. Caso f não seja limitada, encontre infinitos pontos (x_n, y_n) em seu domínio de forma que $f(x_n, y_n) \ge M$ (ou $f(x_n, y_n) \le -M$) para qualquer M > 0.

$$que \ f(x_n, y_n) \ge M \ (ou \ f(x_n, y_n) \le -M) \ para \ qualquer \ M > 0.$$

$$(a) \ f(x, y) = \sin\frac{1}{xy} \qquad (b) \ f(x, y) = x/\sqrt{x^2 + y^2} \qquad (c) \ f(x, y) = \ln(x + y)$$

$$(d) \ f(x, y, z) = \frac{xy - z^2}{x^2 + y^2 + z^2} \qquad (e) \ f(x, y, z) = \cos\left(\frac{xyz^9}{\sqrt{x - y}}\right) \qquad (f) \ f(x, y, z) = \frac{xy}{x^2 + y^2 + z^4}$$

$$(g) \ f(x, y) = \frac{x^8}{x^8 + y^8} \qquad (h) \ f(x, y) = \frac{x^4y^4}{x^8 + y^8} \qquad (i) \ f(x, y) = \frac{x^5y^3}{x^8 + y^8}$$

$$(j) \ f(x, y) = \frac{x^2}{x^2 + y^4} \qquad (k) \ f(x, y) = \frac{y^4}{x^2 + y^4} \qquad (l) \ f(x, y) = \frac{x^4}{x^2 + y^4}$$

$$(m) \ f(x, y) = \frac{x^3}{\sqrt{(x^2 + y^2)^3}} \qquad (n) \ f(x, y) = \frac{x^2}{\sqrt{(x^2 + y^2)^3}}$$

$$(a) \ A \ func a \ do \ item \ (e) \ e \ limitada \ em \ alaum \ subcaptum to \ do \ seu \ dominio? \ Exemplifique$$

- (o) A função do item (c) é limitada em algum subconjunto do seu domínio? Exemplifique.
- (p) De quais fatos você lembra, do Cálculo 1 (de funções de uma variável real), para os quais é importante o conceito de função limitada? Por quê? (Dica: pense em limite, integrais.)

Curvas de níveis e gráficos

Exercício 8 Esboce os gráficos das funções abaixo. Reconheça todos os gráficos, exceto um, como superfícies dadas por (ou contidas em) quádricas, identificando-as:

(a)
$$f(x,y) = x^2 + y^2 + 3$$
 (b) $f(x,y) = (x-1)^2 + (y-2)^2 + 3$ (c) $f(x,y) = 3$ (d) $f(x,y) = -x - 3y + 3$ (e) $f(x,y) = \sqrt{x^2 + y^2}$ (f) $f(x,y) = \sqrt{x^2 + y^2} + 1$ (g) $f(x,y) = x + 2$ (h) $f(x,y) = e^x + 2$

Exercício 9 Em cada item, esboce no mesmo plano coordenado as curvas de nível f(x,y) = c para $c \in \{-1, 0, 4\}$:

$$\begin{array}{l} (a) \ f(x,y) = xy \\ (d) \ f(x,y) = \sqrt{x^2 + y^2/2} \end{array} \quad (b) \ f(x,y) = \ln(xy) \\ (c) \ f(x,y) = 4 - (x-1)^2 - (y+3)^2 \\ (f) \ f(x,y) = e^x/(2y). \end{array}$$

(g) Baseado nas respectivas curvas (de nível) encontradas, desenhe possíveis esboços dos gráficos das funções dos itens anteriores.

Exercício 10 Descreva a superfície de nível
$$f(x, y, z) = c$$
 para $c \in \{-1, 0, 4\}$: (a) $f(x, y, z) = e^x/(2y)$ (b) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$

Exercício 11 Ache a equação do conjunto de nível de f que passe pelo ponto P dado:

(a)
$$f(x,y) = y \arctan x$$
, $P = (1,4)$ (b) $f(x,y,z) = z^2y + x$, $P = (1,4,-2)$ (c) $f(x,y) = \int_x^y \frac{dt}{1+t^2}$, $P = (-\sqrt{2},\sqrt{2})$

Exercício 12 (a) Encontre alguma função (especificando seu domínio, contradomínio e sua lei), que tenha a reta de equação y = 3x - 4 como uma curva de nível.

(b) O mesmo para a curva dada pela equação $y = 3/x^2$.

Exercício 13 Se T(x,y) dá a temperatura num ponto (x,y) sobre uma placa delgada de metal no plano-x, y, então as curvas de nível de T são chamadas de curvas isotérmicas (todos os pontos sobre cada uma dessas curvas possuem a mesma temperatura). Suponha que uma placa ocupe o primeiro quadrante e T(x,y) = xy.

- (a) Esboce as curvas isotérmicas de temperaturas T=1, T=2 e T=3.
- (b) Uma formiga, inicialmente no ponto (1,4), se move sobre a placa de modo que a temperatura ao longo de sua trajetória permanece constante. Qual é essa trajetória, e qual é a temperatura correspondente?

Exercício 14 Os pontos de uma chapa plana de metal estão marcados no plano-x, y de modo que a temperatura T no ponto (x,y) é inversamente proporcional à distância do ponto a origem.

- (a) Qual \acute{e} a lei T(x,y) que descreve a temperatura da chapa acima?
- (b) Descreva as isotérmicas, isto é, as curvas de nível da função temperatura.
- (c) Se a temperatura no ponto P=(4,3) é de $40^{\circ}C$, ache a equação da isotérmica para uma temperatura de $20^{\circ}C$.

Exercício 15 Duas curvas de nível podem se interceptar? Justifique sua resposta.

Limite de funções de várias variáveis

Exercício 17 Verifique se os resultados abaixo são verdadeiros, justificando sua resposta. (a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2-2xy+y^2}{x-y} = 0$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{x^4-y^2}{x^2+y} = 0$ (c) $\lim_{(x,y)\to(0,1)} \frac{\sqrt{x+y}-1}{x+y-1} = 2$

(d) Após resolver o item (a) responda: qual a diferença entre as funções $f(x,y) = \frac{x^2 - 2xy + y^2}{x}$ $e\ g(x,y)=x-y$? Em que outros pontos $(x_0,y_0)\in\mathbb{R}^2$, o limite $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$ poderia ter "problema"? Resolva também o limite nestes casos. Faça esboços para os gráficos de f e g e explique geometricamente estes limites "problemáticos" de f.

Exercício 18 Verificar se os limites abaixo existem. Justifique sua resposta.

$$(a) \lim_{(x,y)\to(0,0)} \frac{y}{\sqrt{x^2+y^2}} \qquad (b) \lim_{(x,y)\to(0,0)} \frac{xy}{|xy|} \qquad (c) \lim_{(x,y,z)\to(0,0,0)} \frac{x+5y}{x-y^2+z}$$

$$(d) \lim_{(x,y)\to(1,1)} \frac{y-1}{\sqrt{x^2-2x+y^2-2y+2}} \qquad (e) \lim_{(x,y)\to(2,0)} \frac{x^2-4x+4}{\sqrt{x^2+y^2}} \qquad (f) \lim_{(x,y)\to(0,2)} \frac{y-2}{\sqrt{x^2+(y-2)^4}}$$

- (q) Qual a diferença na resolução de (a) e (f) e dos respectivos caminhos utilizados? Por quais pontos tais caminhos precisam passar?
- (h) Esboce o gráfico da função f(x,y) = xy/|xy| e o utilize para para conferir o resultado do limite
- (i) Se você resolveu (b) sem caminhos, resolva-o agora usando caminhos. Dica: use o item (h) para ajudar na escolha dos caminhos.

Exercício 19 Veja se é possível utilizar o Teorema do Confronto (ou Sanduíche) para o cálculo dos limites abaixo (O exercício anterior será útil). Para os casos em que não é possível utilizar o teorema, verifique se o limite não existe.

- (m) no item (a) explore três diferentes tentativas de resolver o limite usando o fato de ter alguma função limitada vezes outra função que tende para zero. Verifique (prove) que as possíveis funções escolhidas são realmente limitadas.
- (n) Nos itens anteriores, quantos resultados diferentes você encontrou para limites do tipo " $\frac{0}{2}$ "? (Note o motivo de receber o nome de indeterminação.)

Continuidade de funções de várias variáveis

Exercício 20 Descreva os pontos onde f é contínua. Faça também o esboço do domínio D(f):

$$(a) f(x, y) = \ln(x + y - 1)$$
 $(b) f(x, y) = \sqrt{x}e^{xy}$ $(c) f(x, y) = \sin \sqrt{1 - x^2 + y^2}$

$$(a) f(x,y) = \ln(x+y-1) \qquad (b) f(x,y) = \sqrt{x}e^{xy} \qquad (c) f(x,y) = \sin\sqrt{1-x^2+y^2}$$

$$(d) f(x,y,z) = \frac{1}{x^2+y^2+z^2} \qquad (e) f(x,y,z) = \frac{1}{x+y+z} \qquad (f) f(x,y,z) = \tan(xyz)$$

Exercício 21 Verifique se cada uma das leis abaixo define uma função contínua em todo o \mathbb{R}^2 :

$$(a) \ f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & se \ (x,y) \neq (0,0) \\ 0, & se \ (x,y) = (0,0) \end{cases}$$

$$(b) \ f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & se \ (x,y) \neq (0,0) \\ 0, & se \ (x,y) = (0,0) \end{cases}$$

$$(a) \ f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

$$(b) \ f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

$$(c) \ f(x,y) = \begin{cases} \frac{x^3y}{x^4 + y^4}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

$$(d) \ f(x,y) = \begin{cases} \frac{x^2y \sin(xy)}{\sqrt{(x^2 + y^2)^3}}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

$$(e) \ f(x,y) = \begin{cases} \frac{\sin\left(\sqrt{x^2 + y^2}\right)}{\sqrt{x^2 + y^2}}, & se \ (x,y) \neq (0,0) \\ 1, & se \ (x,y) = (0,0) \end{cases}$$

$$(f) \ f(x,y) = \begin{cases} \frac{\sin\left(\sqrt{x^2 + y^2}\right)}{x^2 + y^2}, & se \ (x,y) \neq (0,0) \\ 1, & se \ (x,y) \neq (0,0) \end{cases}$$

$$(f) \ f(x,y) = \begin{cases} \frac{(x-1)^2 \sin^2(y)}{x^2 + 2y^2 - 2x + 1}, & se \ (x,y) \neq (1,0) \\ 0, & se \ (x,y) = (1,0) \end{cases}$$

$$(g) \ Nos \ items \ anteriores \ se \ a \ funcion for \ descontinual$$

$$(f) \ f(x,y) = \begin{cases} \frac{\operatorname{sen}(\sqrt{x^2 + y^2})}{x^2 + y^2}, & se \ (x,y) \neq (0,0) \\ 1, & se \ (x,y) = (0,0) \end{cases}$$

$$(f) \ f(x,y) = \begin{cases} \frac{(x-1)^2 \operatorname{sen}^2(y)}{x^2 + 2y^2 - 2x + 1}, & se \ (x,y) \neq (1,0) \\ 0, & se \ (x,y) = (1,0) \end{cases}$$

(g) Nos itens anteriores, se a função for descontínua em (x_0, y_0) , existe alguma forma de mudar a altura de tal função somente em (x_0, y_0) redefinindo-a para conseguir uma nova função contínua? Em quais itens e como? De forma geral, o que está acontecendo de diferente no esboço dos gráficos das funções alteradas, comparando com os das respectivas funções dos itens anteriores?

Derivadas parciais e direcionais, derivação implícita e regra da cadeia

Exercício 22 Calcule as derivadas parciais de primeira ordem de:

(a)
$$f(x,y) = \frac{2x^4 - xy + 1}{xy}$$
 (b) $f(x,y) = \arctan x/y$ (c) $f(x,y) = \sec (x^2 - y^3)$

$$(a) \ f(x,y) = \frac{2x^4 - xy + 1}{xy} \quad (b) \ f(x,y) = \arctan x/y \qquad (c) \ f(x,y) = \sec(x^2 - y^3)$$

$$(d) \ f(x,y) = \int_x^y g(t)dt \qquad (e) \ f(x,y,z) = \sqrt{x^2 + y^3 - z^4} \quad (f) \ f(x,y,z,u,v) = xyzu^2v^4$$

Exercício 23 Calcule $\frac{\partial f}{\partial y}(1,2)$ para $f(x,y) = x^{x^{x^y}} + \operatorname{sen}(\pi x)[x^2 + \operatorname{sen}(x+y) + e^x \cos^2 y].$ Dica: Deve ser de fácil resolução.

Exercício 24 *Seja* $f(x,y) = 2x + 3y^2$.

- (a) Encontre o coeficiente angular da reta tangente à curva que está na intersecção do gráfico de f com o plano x = 2, no ponto (2, 1, f(2, 1)).
- (b) Idem para a curva que está na intersecção do gráfico com o plano y = -1, no ponto (2, -1, f(2, -1)).
- (c) Determine o plano tangente ao gráfico de f no ponto (2, -1, f(2, -1)).

Exercício 25 Encontre o vetor gradiente de cada uma das funções:

(a)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
 (b) $f(x, y, z) = x \arctan(y + z)$ (c) $f(x, y) = e^{x^2 - y^2}$.

Exercício 26 Considere a função f cuja lei \acute{e} dada por $f(x,y,z)=\sqrt{x^2+y^2+z^2}$.

- (a) Encontre a aproximação linear de f(x, y, z) para (x, y, z) no ponto (0, 3, 4).
- (b) Obtenha o valor aproximado de $\sqrt{(0,01)^2+(3,02)^2+(3.97)^2}$. Faça a análise sem o uso da calculadora e depois use-a para comparar seu resultado.

Exercício 27 Seja $f: \mathbb{R} \to \mathbb{R}$ função diferenciável em toda reta. Seja u(x,y) = f(x-cy) onde c é constante dada. Calcule as derivadas parciais de primeira ordem de u e então mostre que u satisfaz a equação de transporte $u_y + cu_x = 0$.

Exercício 28 Seja z(t) = f(x(t), y(t)) onde f é diferenciável no plano e x(t), y(t) são deriváveis num $intervalo \]a,b[.$

- (a) $D\hat{e}$ a expressão de z'(t) usando o vetor gradiente de f.
- (b) Derive z(t) para os casos:
- (i) $z = \tan(x^2 + y)$ onde $x = 2t, y = t^2$.
- (ii) z = x/y onde $x = e^{-t}$ e $y = \ln t$.

Exercício 29 (a) Se h(u,v) = f(x(u,v),y(u,v)), onde f(x,y),x(u,v) e y(u,v) são diferenciáveis em todo plano, obtenha as expressões gerais para $\frac{\partial \dot{h}}{\partial u}$ e $\frac{\partial h}{\partial v}$. Aplique para cada caso abaixo:

(b)
$$f(x,y) = 1 + x^2 - y^2$$
 onde $x(u,v) = u - v$ e $y(u,v) = u + v$

(c)
$$f(x,y) = 1 - 4x^2 + 9y^2$$
 onde $x(u,v) = 2u\cos v \ e \ y(u,v) = 3u\sin v$

Exercício 30 Seja
$$f(x,y) = \begin{cases} \frac{x^3y}{x^6 + y^2} & se\ (x,y) \neq (0,0) \\ 0 & se\ (x,y) = (0,0). \end{cases}$$

- (a) Seja $v = (\alpha, \beta)$ vetor unitário. Calcule $\frac{\partial f}{\partial v}(x, y)$ para $(x, y) \neq (0, 0)$.
- (b) Calcule $\frac{\partial f}{\partial v}(0,0)$. (Por que aqui não se deve usar, somente na origem, a regra que derivada de constante é zero?)

Exercício 31 Em cada item, calcule a derivada direcional de f na direção de v e no ponto P:

(a)
$$f(x,y) = xy - x + y$$
, $v = (1,1)$ $P = (1,1)$

(b)
$$f(x,y) = \ln(x^2 + y^4 + 4), \ v = (1/\sqrt{5}, 2\sqrt{5}), \ P = (1,0)$$

(a)
$$f(x,y) = xy$$
 $x + y$, $v = (1,1)$ $f(x,y) = \ln(x^2 + y^4 + 4)$, $v = (1/\sqrt{5}, 2\sqrt{5})$, $P = (1,0)$
(c) $f(x,y,z) = \frac{x - e^y}{x^2 + y^4 + 1}$, $v = (2,2,0)$, $P = (1,1,1)$.

Exercício 32 Encontre a direção em que f decresce mais rapidamente, a partir de P nos três casos do exercício anterior.

Exercício 33 Mostre que se as funções $\phi, \psi : \mathbb{R} \to \mathbb{R}$ são funções com derivadas de segunda ordem contínuas em \mathbb{R} , então a função $u: \mathbb{R}^2 \to \mathbb{R}$, dada por

$$u(t,x) = \phi(x-ct) + \psi(x+ct), para(t,x) \in \mathbb{R}^2,$$

satisfaz a equação da onda unidimensional, isto é, a equação diferencial

$$u_{tt}(t,x) = c^2 u_{xx}(t,x), para(t,x) \in \mathbb{R}^2,$$

onde c > 0 é uma constante fixada.

Exercício 34 Calcule as derivadas parciais de segunda ordem das funções do Exercício 22.

Exercício 34.1 Considere uma função $f: \mathbb{R}^2 \to \mathbb{R}$.

- (a) Qual o limite que verifica se f é contínua em (x_0, y_0) ?
- (b) Quais os limites que calculam $f_x(x_0, y_0)$ e $f_y(x_0, y_0)$?
- (c) Quais os limites que calculam $f_{xy}(x_0, y_0)$ e $f_{yx}(x_0, y_0)$?
- (d) Algumas vezes não dá para calcular derivadas usando apenas regras de derivação. Exemplifique. Dica: Pense no exercício 34.2.

Exercício 34.2 Dada a função

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & se \ (x,y) \neq (0,0) \\ 0, & se \ (x,y) = (0,0), \end{cases}$$

- (a) Encontre f_x e f_y for ada origem (0,0);
- (b) Mostre que $f_x(0,0)$ e $f_y(0,0)$ existem e dão zero. (Por que não dá para concluir derivando apenas f(0,0) = 0?;
- (c) Em quais pontos f é contínua? Em quais pontos f_x e f_y são contínuas?
- (d) Mostre que $f_{xy}(0,0) = 1 \neq -1 = f_{yx}(0,0)$. Dica: use limite das derivadas segundas;
- (e) Por que não vale o Teorema de Schwarz (ou seja, Teorema de derivadas mistas iguais) no item (c)? O que pode ter acontecido?

Exercício 34.3 Considere as equações abaixo e derive implicitamente para resolver.

- (a) $F(x,y) = x^3 2y^2 + xy = 0$, encontre $\frac{dy}{dx}$ (ou seja, y') e calcule em (1,1). Encontre $\frac{dx}{dy}$ (ou seja, x').
- (b) $F(x,y) = xe^y + \operatorname{sen}(xy) + y = \ln(2)$, encontre $\frac{dy}{dx}$ e calcule em $(0,\ln(2))$. (c) $F(x,y,z) = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} 1 = 0$, encontre $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$, e calcule no ponto (2,3,6). Faz sentido calcular estas derivadas em (1, 2, 1)?
- (d) $F(x,y,z) = xe^y + ye^z + 2ln(x) 2 = 3ln(2)$, encontre $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial u}$, e calcule no ponto (1, ln(2), ln(3)).

Exercício 34.4

- (a) No Exercício 34.3 (a), a equação F(x,y) = 0 define implicitamente uma função diferenciável y=q(x), em quais pontos (x_0,y_0) ? (Dica: Pelo Teorema da função implícita, basta olhar o denominador de y', pois é ele não pode se anular.)
- (b) No Exercício 34.3 (a), a equação F(x,y)=0 define implicitamente uma função diferenciável x = h(y), em quais pontos (x_0, y_0) ? (Dica: Pelo Teorema da função implícita, basta olhar o denominador de x', pois é ele não pode se anular.)
- (c) Para a equação do Exercício 34.3 (a), existe algum ponto (x_0, y_0) onde F(x, y) = 0 não define implicitamente nem uma função diferenciável y = q(x) e nem uma função diferenciável x = h(y)?
- (d) No Exercício 34.3 (c), a equação F(x,y,z)=0 define implicitamente uma função diferenciável z = f(x, y), em quais pontos (x_0, y_0, z_0) ? O que precisaria acontecer para esta mesma equação definir y = g(x, z) ou x = h(y, z)? (Dica: Teorema da função implícita, ou seja, novamente pense nos denominadores das derivadas parciais nos respectivos casos.)

Exercício 35 Mostre que $U(x,y)=e^{-x}\cos y+e^{-x}\sin y$ satisfaz a chamada equação de Laplace $\frac{\partial^2 U}{\partial x^2}(x,y) + \frac{\partial^2 U}{\partial y^2}(x,y) = 0.$

Exercício 36 Mostre que $u(x,t) = e^{-25t}$ sen 5x é solução da equação do calor $u_t = u_{xx}$.

Exercício 37 Para cada $(x,y) \neq (0,0)$ calcule $\frac{\partial^3 f}{\partial x \partial y^2}(x,y)$, $\frac{\partial^3 f}{\partial y^2 \partial x}(x,y)$ e $\frac{\partial^3 f}{\partial x^2 \partial y}(x,y)$ onde $f(x,y) = \frac{x^2}{x^2 + y^2}$.

Exercício 38 (a) Calcule as derivadas parciais de segunda ordem de $f(x,y) = \ln(x^2 + y^2)$. (b) Verifique que f satisfaz a equação de Laplace

$$\Delta f = 0$$
,

 $sendo \ \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}. \ (Uma \ função \ que \ satisfaz \ a \ equação \ de \ Laplace \ \'e \ chamada \ harmônica.)$

Exercício 39 Se u(x,y) e v(x,y) são funções de classe C^2 e satisfazem as equações de Cauchy-Riemann

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad e \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x},$$

mostre que u e v são funções harmônicas (Exerc. 38).

Exercício 40 Seja u(x,t) = f(x-at) + g(x+at), onde a é uma constante real e f e g são funções quaisquer de uma variável real e deriváveis até segunda ordem. Mostre que u(x,t) satisfaz a equação da onda

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}.$$

Exercício 41 Suponha que u(x,t) satisfaça

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}. (1)$$

(a) Verifique que v(r,s) = u(x,t), onde x = r + s e t = r - s, satisfaz a equação

$$\frac{\partial^2 v}{\partial s \partial r} = 0.$$

(b) Determine funções u(x,t) que satisfaçam (1).

Exercício 42 Seja $v(r,\theta) = u(x,y)$, onde $x = r\cos\theta$ e $y = r\sin\theta$. Verifique que

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2}.$$

Diferenciabilidade de funções de várias variáveis

Exercício 43 Determine o conjunto dos pontos onde a função dada é diferenciável (justifique):

- (a) $f(x,y) = 1 + x \ln(xy 5)$,
- (b) $f(x,y) = \sqrt{xy}$,
- $(c) f(x,y) = x^2 e^y,$
- (d) $f(x,y) = \frac{1+y}{1+x}$,
- (e) $f(x,y) = 4\arctan(xy)$,
- $(f) f(x,y) = y + \sin(x/y).$
- (g) Relembre os resultados da aula de diferenciabilidade e continuidade: O que tem a ver diferenciabilidade com plano tangente? Qual o limite usado para verificar diferenciabilidade num ponto? Garantir a existência das derivadas parciais é suficiente para garantir diferenciabilidade? Diferenciabilidade implica continuidade? Continuidade implica diferenciabilidade? Que resultado relaciona continuidade das derivadas parciais com diferenciabilidade?
- (h) Onde f(x,y) = |x| é contínua? Onde f é diferenciável? Qual o seu gráfico? Investigue um pouco mais esta função, conforme alguns tópicos levantados no item (g).

Exercício 44 Dada a função

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & se \ (x,y) \neq (0,0) \\ 0, & se \ (x,y) = (0,0) \end{cases}$$

Mostre que:

- (a) $f_x(0,0)$ e $f_y(0,0)$ existem (Por que aqui não se deve usar, somente na origem, a regra que derivada de constante é zero?),
- (b) f_x e f_y não são contínuas em (0,0),
- (c) f não \acute{e} diferenciável em (0,0).
- (d) Como escrever o limite da segunda derivada $f_{xx}(0,0)$?

Exercício 45 Dada a função

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right), & se \ (x,y) \neq (0,0) \\ 0, & se \ (x,y) = (0,0) \end{cases}$$

Mostre que:

- (a) $f_x(0,0)$ e $f_y(0,0)$ existem (Por que aqui não se deve usar, somente na origem, a regra que derivada de constante é zero?)
- (b) f_x e f_y não são contínuas em (0,0)
- (c) f é diferenciável em (0,0).

Exercício 46 Verifique se a função $f(x,y) = \sqrt[3]{x}\cos(y)$ é diferenciável em (0,0). (Dica: Encontre, por definição, $\frac{\partial f}{\partial x}(0,0)$.)

Reta (ou plano) tangente e reta normal

Exercício 47 Determine as retas normal e tangente à curva $x^2 + xy + y^2 - 3y = 1$ no ponto (1,2).

Exercício 48 Verifique se existem pontos sobre a curva $x^2 - y^2 = 1$ nos quais a reta tangente seja paralela à reta dada por y = 2x. Caso existam, determine-os.

Exercício 49 (a) Encontre o plano tangente à superfície $x + y^2 + z = 4$ no ponto $P_0 = (1, 1, 2)$. (b) Determine o plano tangente à superfície $x^3 + y^3 + z^3 = 10$ no ponto $P_0 = (1, 1, 2)$.

Exercício 50 Verifique se existe(m) ponto(s) na esfera $S: x^2 + y^2 + z^2 = 1$ tal que o plano tangente a S neste(s) ponto(s) seja paralelo ao plano 3x - y + z = 7. Caso exista(m), determine-o(s).

Aproximação linear

Exercício 51 Abaixo é dada a função e sua respectiva aproximação linear, digamos $L_P(x,y)$, em algum ponto P. Use a informação dada em cada caso para determinar as coordenadas do ponto P.

(a)
$$f(x,y) = x^2 + y^2$$
, $L_P(x,y) = 2y - 2x - 2$;

(b)
$$f(x,y) = x^2y$$
, $L_P(x,y) = 4y - 4x + 8$;

(c)
$$f(x, y, z) = xy + z^2$$
, $L_P(x, y, z) = y + 2z - 1$;

(d)
$$f(x, y, z) = xyz$$
, $L_P(x, y, z) = x - y - z - 2$.

Máximo e Mínimos para funções de várias variáveis

Exercício 52 (a) Se a distribuição de temperatura numa chapa metálica é dada pela função $T(x,y) = x^3 - 2xy^2$ e se uma formiga está sobre a chapa no ponto (x,y) = (1,1) e deseja se aquecer pois está sentindo muito frio. Em que direção deverá tomar sua caminhada para que isso ocorra de modo mais eficiente?

(b) Se a formiga estivesse confortável, termicamente falando, que direção ela tomaria para continuar com esta mesma sensação.

Exercício 53 Estude com relação a máximos e mínimos locais as funções cujas leis são dadas por:

1.
$$f(x,y) = x^2 + 3xy + 4y^2 - 6x + 2y$$

2.
$$f(x,y) = x^3 + 2xy + y^2 - 5x$$

3.
$$f(x,y) = x^5 + y^5 - 5x - 5y$$

4.
$$f(x, y, z) = x^2 + y^4 + y^2 + z^3 - 2xz$$

Exercício 54 Determine o ponto do plano x + 2y - z = 4 mais próximo da origem.

Exercício 55 Encontre o ponto de máximo e o ponto de mínimo que f(x,y) = senx + seny + sen(x+y) assume no quadrado $[0, \pi/2] \times [0, \pi/2]$. Dê os valores de máximo e mínimo de f neste quadrado.

Exercício 56 Em um laboratório foram obtidas, experimentalmente, as sequintes medidas:

$$t_1 = 0, \quad v_1 = 2;$$

 $t_2 = 1, \quad v_2 = 8;$
 $t_3 = 2, \quad v_3 = 11.$

Determine os coeficientes a e b da função v(t) = at + b de modo a minimizar a soma dos erros quadráticos, isto é, $e_1^2 + e_2^2 + e_3^3$, onde $e_i = v(t_i) - v_i$, i = 1, 2, 3.

Exercício 57 Sobre a elipse $x^2 + 2y^2 = 1$ determine todos os pontos onde f(x, y) = xy assume seus valores extremos.

Exercício 58 Encontre as dimensões da lata cilíndrica reta fechada de menor área superficial cujo volume é $16\pi \text{cm}^3$.

Exercício 59 Encontre as dimensões da caixa retangular fechada com máximo volume que pode ser inscrita na esfera unitária.

Exercício 60 Encontre os valores extremos de $f(x,y,z)=x^2yz+1$ na interseção do plano z=1com a esfera $x^2 + y^2 + z^2 = 10$.

Exercício 61 Uma placa metálica circular com um metro de raio está posicionada com seu centro na origem do plano xy e tem temperatura variável, incluindo os pontos de sua fronteira. A temperatura num ponto (x,y) da placa é mantida a $T(x,y) = 64(3x^2 - 2xy + 3y^2 + 2y + 5)^{\circ}C$, com x e y em metros. Encontre os valores de maior e de menor temperatura desta placa.

Exercício 62 Estude a função dada com relação a máximos e mínimos no conjunto dado.

- (a) f(x,y) = 3x y; $A = \{(x,y) \in \mathbb{R}^2 : x \ge 0; y \ge 0; y x \le 3; x + y \le 4; 3x + y \le 6\}$.
- (b) f(x,y) = 3x y; $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$.
- (c) $f(x,y) = x^2 + 3xy 3x$; $A = \{(x,y) \in \mathbb{R}^2 : x \ge 0; y \ge 0; x + y \le 1\}$.
- (d) f(x,y) = xy; $A = \{(x,y) \in \mathbb{R}^2 : x \ge 0; y \ge 0; 2x + y \le 5\}$.
- (e) $f(x,y) = x^2 2xy + 2y^2$; $A = \{(x,y) \in \mathbb{R}^2 : |x| + |y| < 1\}$.

Exercício 63 Determine os valores máximos e mínimos de $f(x,y) = x^3 + y^3 - 3xy$:

- (a) na região retangular $0.1 \le x \le 2$, $0.1 \le y \le 3$.
- (b) Descreva um contexto real e prático, que seja importante achar os máximos e mínimos para f no item (a)? No seu contexto o que significam x e y?

Exercício 64 Encontre os pontos de máximo e de mínimo de $f(x,y) = (x-1)^2 + (y-4)^2$ na região delimitada pelo triângulo determinado pelas retas y = 0, x = 0 e x + y = 1.

Exercício 65 Usando o método dos multiplicadores de Lagrange, determinar os extremos condicionados das funções:

- (a) z = xy quando x + y = 1
- (b) $u = x^2 + y^2 + z^2$ quando $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, (a > b > c > 0)(c) $z = x^2 + y^2$ quando 3x + 2y = 6
- (d) $u = xyz \ quando \ x + y + z = 5 \ e \ xy + yz + zx = 8$

Polinômio de Taylor

Exercício 66 Determine o polinômio de Taylor de ordem dois da função dada, em torno do ponto (x_0, y_0) dado.

- (a) $f(x,y) = e^x + 5y \ e(x_0,y_0) = (0,0).$
- (b) $f(x,y) = x^3 + y^3 x^2 + 4y$ $e(x_0, y_0) = (1,1)$.
- (c) $f(x,y) = \sin(3x+4y) \ e(x_0,y_0) = (0,0).$

Exercício 67 (a) Sejam $f(x,y) = e^x + 5y$ e $P_1(x,y)$ o polinômio de Taylor de ordem 1 de f em torno de (0,0). Avalie o erro que se comete na aproximação

$$e^x + 5y \cong P_1(x, y)$$

na região $A: |x| \leq 0,01, |y| \leq 0,01.$

(b) O que é feito pelas calculadoras e computadores para dar resultados numéricos com erros menores?

Exercício 68 (a) Sejam $f(x,y) = x^3 + y^3 - x^2 + 4y$ e $P_1(x,y)$ o polinômio de Taylor de ordem 1 de f em torno de (1,1). Avalie o erro que se comete na aproximação de f(x,y) por $P_1(x,y)$ na região $A: |x-1| \le 1, |y-1| \le 1$.

(b) Faça o mesmo do item (a) considerando o polinômio de Taylor de ordem 2. (Primeiro, encontre-o.)