THE INTERPLAY OF INSTABILITIES IN DRYING COLLOIDAL FILMS

Bin Yang
James S. Sharp
Mike I. Smith

Talk outline

- Introduction
- The role of compaction in Shear Banding
- Delamination induced spalling
- Conclusions

Planar drying of colloidal films

Strain release mechanisms in film formation

Crack formation

Film Delamination

Surface Wrinkling / Buckling

Shear Banding

Shear banding

- □ Bands form behind transition region
- ☐ Bands form for 50 & 100nm particles but not 200nm and greater.

0s

0.17s

Shear banding

- ☐ Band spacing depends on film yield stress
- ☐ Band widths and spacing vary with drying rate but obey a Lever rule

B. Yang, J.S. Sharp, M.I. Smith ACS Nano 9:4077 (2015)

Measuring film compaction

- ☐ Fluorescent tracer particles added to suspension
- ☐ Once particles become trapped at the transition region we track their x and y coordinates
- ☐ The small subsequent movements enable us to quantify film deformation

- □ Stress in the drying film produces compaction beyond transition region.
- □ Compaction is too small to measure for 200nm particles- no banding

$$dx = dx_{max}[1-exp(-D/\lambda_{fit})]$$

λ_{fit} closely matches the spacing between shear bands.

- o 50nm, H=60µm
- 50nm, H=27µm
- 100nm, H=25µm
- 200nm, H=38µm

→ Suggests compaction drives shear band formation and sets lengthscale

- ☐ Total movement of particles depends on film thickness.
- ☐ Consistent movement in the y direction also measurable
- ☐ Particles to the left of a chevron move left; particles to the right move right.
- ☐ y movement due to shear, x movement compaction + shear

Directly observing compaction and shear banding

"Shear banding in drying films of colloidal nanoparticles" B. Yang et al ACS Nano 9, 4077-4084 (2015)

Shear bands and crack hopping

- □ Crack tips hop to the location of a shear band ~ 90% of the time
- ☐ Inherent asymmetry develops

Delamination

Delamination

- ☐ Crack hopping initiates delamination of the adjacent film
- □ Asymmetry of crack hops → Asymmetry delamination

Delamination Pattern

- ☐ After film has delaminated, deposits are left behind:
 - ☐ Zig-zag pattern is a thin film deposited at the delamination front
 - ☐ Film also deposited where cracks propagate
- □ Always observe one pattern per cracked piece of film

Saffman Taylor Instability?

[Giorgiutti-Dauphiné et al Soft Matter 2015]

- □ Lengthscale not consistent ~ 400µm
- □ 1 pattern per crack regardless of spacing

$$\lambda \sim \xi \sqrt{\frac{\Upsilon}{\mu v}} \sim 4 \mu m$$

Interplay of cracks with Delamination

- ☐ Motion of DP is always directed towards trailing crack tip
- ☐ Asymmetry in crack hops controls course of DP

Crack opening – Shear forces

- ☐ Shape of cracks change due to delamination front
- ☐ Final shape matches deposit on surface
- ☐ Force along delamination front shears film relative to constraining substrate

Mode of crack propagation strongly work of adhesion

[Faou et al Phys Rev Letts 2012]

Increasing interfacial toughness leads to:

- pinning / resistance at apex delamination front
- crack kinking from interface
 (ie pattern deposited at interface)

See for example He, Hutchinson J. Appl. Mech. 56, 270 (1988)

Vellinga et al Thin Solid Films 2007

$$D \sim \left(\frac{E}{\sigma_0}\right)^{0.5} H$$

[Evans, Hutchinson Int. J. Solid Struct. 20, 455 (1984)]

Conclusions

- □ Particle tracking shows that compaction after the transition region provides the driving force for shear band formation.
- ☐ There is a complex interplay between different mechanical instabilities in a drying colloidal film
- □ Delamination pattern occurs due to a change in the mode of interfacial crack propagation

"Shear banding in drying films of colloidal nanoparticles" B. Yang et al ACS Nano 9, 4077-4084 (2015)

"The interplay of crack hopping, delamination and interface failure in drying nanoparticle films" B. Yang et al Sci. Reps. 6, 32296 (2016)

Acknowledgements

Dr Bin Yang

Dr James Sharp

Funding:

UNITED KINGDOM · CHINA · MALAYSIA