UNIT 7

BUFFERS

Objectives

- □ Buffer
- □ Specifying Buffer Space
- □ Buffer usage

BUFFER

Figure 7-1.

I/O buffer are used by VSAM to read and write CI's from DASD to virtual storage.

Small Control intervals:

- □ Less buffer space required.
- □ May increase number of DASD I/O's

Large control intervals:

- □ Possibly fewer DASD I/O operations.
- □ Increased virtual storage requirement for buffers.

SPECIFYING BUFFER SPACE

AMS define

DEFINE CLUSTER

•

BUFFERSPACE(size)

ASSEMBLER ACB BUFSP=size

PROGRAM or

BUFND=number BUFNI=number

JOB CONTROL //BUF DD ...AMP=('BUFNI=6,BUFNI=4')

Or

'BUFSP=2348'

STRINGS

Figure 7-2.

□ A String is a logical entity that provides a placeholder for an access request Strings are allocated via the STRNO parameter

BUFFERSPACE AT OPEN

PROCESSING MODE	MINIMUM		ADDITIONAL
DIRECT	STRNO STRNO+1	index data	index
SEQUENTIAL	STRNO STRNO+1	index data	data
DIRECT, SEQUENTIAL	STRNO STRNO+1	index data	data
SKIP SEQUENTIAL	STRNO STRNO+1	index data	data

The minimum buffer space for a cluster is

- □ STRNO index buffers
- □ STRNO+1 data buffers

SAMPLE KSDS

Figure 7-3.

DIRECT PROCESSING BUFFER EXAMPLE

DIRECT GET OF RECORD	INDEX BUFFERS					DATA	DATA	
FROM CI n		3	4	5	6	BUFFER 1 BUFFER 2	DUFFER 2	
CI 7	IS 1	IS2	SS2				CI 7	
CI 18				SS3				CI 18
CI 26							CI 26	
CI 9								CI 19
CI 34							CI 34	
SAME CI								CI 34
CI 6							CI 6	
CI 20								CI 20
CI 5							CI 5	
CI 45								CI 45
CI 49							CI 49	
CI 46								CI 46
CI 67							CI 67	
CI 2								CI 2

Figure 7-4.

SEQUENTIAL PROCESSING BUFFER EXAMPLE

INDEX BUFFER	INDEX BUFFCI1	INDEX BUFFER 2
SS 1	CI 1	CI 2
	CI 3	CI 4

Figure 7-5.

BUFND=3,BUFNI=1,STRNO=1

- □ With sequential processing VSAM uses only sequence set records to retrieve the control interval in logical order
- □ For sequential processing, one index buffer is needed per string

BUFFER RECOMMENDATION

	DEFAULT	RECOMMENDATION
	DATA:	DATA:
	STRNO + 1	Default
DIR	INDEX:	INDEX:
	STRNO	Min no: index level – 1
		+ STRNO
		Max: Index set + STRNO
	DATA:	DATA;
SEQ	STRNO + 1	3+STRNO
	INDEX:	INDEX:
	STRNO	Default

Figure 7-6.

Buffer space is a trade-off between performance and virtual storage.

SHAREOPTION 4 AND BUFFERS

=BUFFERS REFRESHED EACH **READ**

Figure 7-6.

MINIMUM BUFFERS MAY IMPROVE PERFORMANCE

Unit 7 Exercises

Unit 7 Lab Exercises

Notes