PROTOTIPO DE CONTROL DE ROBOT

Ingeniería mecatrónica

Dinámica de robots

Análisis de Elementos Infinitos.

Definición

El análisis por elementos finitos (FEA, siglas en inglés de Finite Element Analysis) es una técnica de simulación por computador usada en ingeniería. Usa una técnica numérica llamada método de los elementos finitos (FEM).

Existen muchos paquetes de software, tanto libres como no libres. El desarrollo de elementos finitos en estructuras, suele basarse en análisis energéticos como el principio de los trabajos virtuales.

Aplicaciones

En estas aplicaciones, el objeto o sistema se representa por un modelo geométricamente similar que consta de múltiples regiones discretas simplificadas y conectadas. Ecuaciones de equilibrio, junto con consideraciones físicas aplicables, así como relaciones constitutivas, se aplican a cada elemento, y se construye un sistema de varias ecuaciones. El sistema de ecuaciones se resuelve para los valores desconocidos usando técnicas de álgebra lineal o esquemas no lineales, dependiendo del problema. Siendo un método aproximado, la precisión de los métodos FEA puede ser mejorada refinando la discretización en el modelo, usando más elementos y nodos.

Comúnmente se usa FEA en determinar los esfuerzos y desplazamientos en sistemas mecánicos. Es además usado de manera rutinaria en el análisis de muchos otros tipos de problemas, entre ellos Transferencia de calor, dinámica de fluidos, y electromagnetismo. Con FEA se pueden manejar sistemas complejos cuyas soluciones analíticas son difícilmente calculables.

Análisis por elementos finitos

En general, hay tres fases en cualquier tarea asistida por computador:

- Pre-procesamiento. Definir el modelo de elementos finitos y los factores ambientales que influyen en él.
- Solución del análisis. Solucionar el modelo de elementos finitos.

Post-procesamiento de resultados usando herramientas de visualización.

Pre-procesamiento

El primer paso en FEA, pre-procesamiento, es construir un modelo de elementos finitos de la estructura a ser analizada. En muchos paquetes de FEA se requiere de la entrada de una descripción topológica de las características geométricas de la estructura.3 Ésta puede ser 1D, 2D, o 3D. El objetivo principal del modelo es replicar de manera realista los parámetros importantes y características del modelo real.3 La manera más sencilla para conseguir similaridad en el análisis es utilizar planos pre existentes, modelos CAD, o datos importados de un ambiente FEA. Una vez se ha creado la geometría, se utiliza un procedimiento para definir y dividir el modelo en "pequeños" elementos. En general, un modelo de elementos finitos está definido por una malla, la cual está conformada por elementos y nodos. Los nodos representan puntos en los cuales se calcula el desplazamiento (análisis estructural). Los paquetes de FEA enumeran los nodos como una herramienta de identificación. Los elementos están determinados por conjuntos de nodos, y definen propiedades localizadas de masa y rigidez. Los elementos también están definidos por la numeración de la malla, la cual permite referenciar la correspondiente deflexión o esfuerzo (en análisis estructural) para una localización específica.3

Análisis (cómputo de la solución)

En la siguiente etapa en el proceso de análisis de elementos finitos se lleva a cabo una serie de procesos computacionales que involucran fuerzas aplicadas, y las propiedades de los elementos de donde producir un modelo de solución. Tal análisis estructural permite la determinación de efectos como lo son las deformaciones, estiramiento o estrés que son causados por fuerzas estructurales aplicadas como lo son la fuerza, la presión y la gravedad.

Post-procesamiento (visualización)

Estos resultados entonces pueden ser estudiados utilizando herramientas visuales dentro del ambiente de FEA para ver y para identificar completamente las implicaciones del análisis. Herramientas numéricas y gráficas permiten la

localización precisa de información como esfuerzos y deformaciones a ser identificadas.

Propiedades físicas

Masa	43.148 kg	
Área	1493430 mm^2	
Volumen	10361900 mm^3	
Centro de gravedad	x=-148.569 mm y=52.5632 mm z=7.29269 mm	

Objetivo general y configuración:

Objetivo del diseño	Punto único
Tipo de estudio	Análisis estático
Fecha de la última modificación	07/04/2020, 01:26 p. m.
Detectar y eliminar modos de cuerpo rígido	No
Separar tensiones en superficies de contacto	No
Análisis de cargas de movimiento	No

Configuración de malla:

Tamaño medio de elemento (fracción del diámetro del modelo)	0.1
Tamaño mínimo de elemento (fracción del tamaño medio)	0.2
Factor de modificación	1.5
Ángulo máximo de giro	60 gr
Crear elementos de malla curva	No
Usar medida basada en pieza para la malla del ensamblaje	Sí

Material(es)

Nombre	Acero, galvanizado		
	Densidad de masa	7.85 g/cm^3	
General	Límite de elasticidad	207 MPa	
	Resistencia máxima a tracción	345 MPa	
	Módulo de Young	200 GPa	
Tensión	Coeficiente de Poisson	0.3 su	
	Módulo cortante	76.9231 GPa	
Nombre(s) de pieza	Pieza1.ipt		
Nombre	Aluminio		
	Densidad de masa	2.7 g/cm^3	
General	Límite de elasticidad	275 MPa	
	Resistencia máxima a tracción	310 MPa	
	Módulo de Young	68.9 GPa	
Tensión	Coeficiente de Poisson	0.33 su	
	Módulo cortante	25.9023 GPa	
Nombre(s) de pieza	PiezaMovil.ipt plato.ipt SoporteHerramienta.ipt Base.ipt		
Nombre	Acero		
General	Densidad de masa	7.85 g/cm^3	
	Límite de elasticidad	207 MPa	
	Resistencia máxima a tracción	345 MPa	
	Módulo de Young	210 GPa	
Tensión	Coeficiente de Poisson	0.3 su	
	Módulo cortante	80.7692 GPa	
Nombre(s) de pieza	PASILLAS.ipt husillo2.ipt		

Fuerza:1

Tipo de carga	Fuerza	
Magnitud	125.000 N	
Vector X	0.000 N	
Vector Y	-125.000 N	
Vector Z	-0.000 N	

Fuerza:2

Tipo de carga	Fuerza
Magnitud	125.000 N
Vector X	0.000 N
Vector Y	-125.000 N
Vector Z	0.002 N

Fuerza y pares de reacción en restricciones

Nombre de la restricción	Fuerza de	Fuerza de reacción		Pares de reacción	
Nombre de la restricción	Magnitud	Componente (X, Y, Z)	Magnitud	Componente (X, Y, Z)	
Restricción fija:1 250	250 N	0 N	19.8703 N m	19.5816 N m	
		250 N		0.252468 N m	
		0 N		-3.36579 N m	

Resumen de resultados

Nombre	Mínimo	Máximo
Volumen	10361900 mm^3	
Masa	43.148 kg	
Tensión de Von Mises	0 MPa	4.06831 MPa
Primera tensión principal	-0.633853 MPa	4.28798 MPa
Tercera tensión principal	-4.25972 MPa	0.665448 MPa
Desplazamiento	0 mm	0.0264169 mm
Coeficiente de seguridad	15 su	15 su
Tensión XX	-0.881196 MPa	0.865972 MPa
Tensión XY	-0.274213 MPa	0.261739 MPa
Tensión XZ	-0.484973 MPa	0.424253 MPa
Tensión YY	-1.08322 MPa	0.895951 MPa
Tensión YZ	-0.425305 MPa	0.744041 MPa
Tensión ZZ	-4.22122 MPa	4.24494 MPa
Desplazamiento X	-0.000430804 mm	0.000336652 mm
Desplazamiento Y	-0.0263896 mm	0.000104145 mm
Desplazamiento Z	-0.0013115 mm	0.00137562 mm
Deformación equivalente	0 su	0.000019458 su
Primera deformación principal		0.0000198772 su
Tercera deformación principal	-0.0000222383 su	0.0000000308734 su
Deformación XX	-0.0000051471 su	0.00000586678 su
Deformación XY	-0.00000514317 su	0.00000505244 su
Deformación XZ	-0.00000936159 su	0.0000081895 su
Deformación YY	-0.00000932193 su	0.00000734172 su
Deformación YZ	-0.0000026928 su	0.000012402 su
Deformación ZZ	-0.0000214649 su	0.0000196695 su
Presión de contacto	0 MPa	2.16467 MPa
Presión de contacto X	-0.805164 MPa	0.761586 MPa
Presión de contacto Y	-1.49483 MPa	1.08249 MPa
Presión de contacto Z	-1.33144 MPa	1.42444 MPa

Primera tensión principal

Desplazamiento

