Assignment - Classification with GridSearchCV Algorithm

Problem Statement or Requirement

A requirement from the Hospital, Management asked us to create a predictive model which will predict the chronic kidney disease (CKD) based on the several parameters. The Client has provided the dataset of the same.

- 1.) Identify your problem statement
 - Step-1: Domain Selection Machine Learning
 - Step-2: Learning Method Supervised
 - Step-3: Type Classification Categorical values as output
 - Step-4: convert Categorical values into numerical by nominal data method
 - Step-5: Try SVM, Decision Tree, Random Forest, Logistic Regression, K-Means, Navie's Bayes
 - Step-6: Derive the highest scoring value through confusion matrix
 - Step-7: Save the best model and finalize
- 2.) Tell basic info about the dataset (Total number of rows, columns)

Total number of Rows: 399

Total number of Columns: 25

- 12 categorical columns to be converted into numerical values using nominal data method
- 3.) Mention the pre-processing method if you're doing any (like converting string to number –nominal data)

Yes. There are 12 categorical columns to be converted into numerical values using nominal data method.

- 4.) Develop a good model with good evaluation metrics. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
 - 1. Support Vector Machine: f1-score-True = 0.99, accuracy = 0.99
 - 2. Decision Tree: f1-score-True = 0.97, accuracy = 0.97
 - 3. Random Forest: f1-score-True = 0.99, accuracy = 0.98
 - 4. Logistic Regression: f1-score-True = 0.99, accuracy = 0.99
 - 5. K Means: f1-score-True = 0.95, accuracy = 0.94

6. Navie's Bayes:

- 1. Gaussian NB: f1-score-True = 0.98, accuracy = 0.98
- 2. Multinomial NB: f1-score-True = 0.83, accuracy = 0.82
- 3. Bernoulli NB: f1-score-True = 0.95, accuracy = 0.94
- 4. Complement NB: f1-score-True = 0.83, accuracy = 0.82
- 5.) All the research values (confusion_matrix of the models) should be documented. (You can make tabulation or screenshot of the results.)
 - 1. Support Vector Machine: f1-score-True = 0.99, accuracy = 0.99

```
array([[51, 0],
       [ 1, 81]], dtype=int64)
print("The report:\n",cls_reports)
The report:
              precision
                            recall f1-score
      False
                   0.98
                            1.00
                                       0.99
                                                   51
        True
                  1.00
                             0.99
                                       0.99
                                                   82
                                       0.99
                                                  133
   accuracy
                   0.99
                             0.99
                                       0.99
  macro avg
                                                  133
weighted avg
                   0.99
                             0.99
                                       0.99
                                                  133
```

2. Decision Tree: f1-score-True = 0.97, accuracy = 0.97

```
array([[51, 0],
        [4, 78]], dtype=int64)
print("The report:\n",cls_reports)
The report:
                precision
                              recall f1-score
                                                   support
       False
                     0.93
                               1.00
                                          9.96
                                                        51
        True
                    1.00
                               0.95
                                          0.97
                                                       82
                                          0.97
                                                      133
    accuracy
                     0.96
                                0.98
                                          0.97
                                                       133
   macro avg
weighted avg
                     0.97
                                0.97
                                          0.97
                                                      133
```

3. Random Forest: f1-score-True = 0.99, accuracy = 0.98

```
array([[50, 1],
       [ 1, 81]], dtype=int64)
print("The report:\n",cls_reports)
The report:
                precision
                              recall f1-score
                                                   support
                     0.98
                               0.98
                                          0.98
                                                        51
       False
                                          0.99
    accuracy
                                          0.98
                                                      133
                     0.98
                                0.98
   macro avg
                                          0.98
                                                       133
weighted avg
                    0.98
                               0.98
                                          0.98
                                                      133
```

4. Logistic Regression: f1-score-True = 0.99, accuracy = 0.99

```
[ 1, 81]], dtype=int64)
print("The report:\n",cls_reports)
The report:
                            recall f1-score
               precision
                                               support
       False
                   0.98
                             1.00
                                       0.99
                                                   51
                   1.00
                             0.99
                                       0.99
                                                   82
        True
                                       0.99
                                                  133
    accuracy
   macro avg
                   0.99
                             0.99
                                       0.99
                                                   133
weighted avg
                   0.99
                             0.99
                                       0.99
                                                  133
```

array([[51, 0],

5. K Means: f1-score-True = 0.95, accuracy = 0.94

```
array([[51, 0],
        [ 8, 74]], dtype=int64)
```

print("The re	port:\n",cls_	reports)		
The report:				
	precision	recall	f1-score	support
False	0.86	1.00	0.93	51
True	1.00	0.90	0.95	82
accuracy			0.94	133
macro avg	0.93	0.95	0.94	133
weighted avg	0.95	0.94	0.94	133

6. Navie's Bayes:

1. Gaussian NB: f1-score-True = 0.98, accuracy = 0.98

[[51 0] [3 79]]				
	precision	recall	f1-score	support
False	0.94	1.00	0.97	51
True	1.00	0.96	0.98	82
accuracy			0.98	133
macro avg	0.97	0.98	0.98	133
weighted avg	0.98	0.98	0.98	133

2. Multinomial NB: f1-score-True = 0.83, accuracy = 0.82

[[50 1] [23 59]]				
	precision	recall	f1-score	support
False	0.68	0.98	0.81	51
True	0.98	0.72	0.83	82
accuracy			0.82	133
macro avg	0.83	0.85	0.82	133
weighted avg	0.87	0.82	0.82	133

3. Bernoulli NB: f1-score-True = 0.95, accuracy = 0.94

[[51 0] [8 74]]	• precision	recall	f1-score	support
False	0.86	1.00	0.93	51
True	1.00	0.90	0.95	82
accuracy			0.94	133
accar acy				
macro avg	0.93	0.95	0.94	133
weighted avg	0.95	0.94	0.94	133

4. Complement NB: f1-score-True = 0.83, accuracy = 0.82

[[50 1] [23 59]]				
	precision	recall	f1-score	support
False	0.68	0.98	0.81	51
True	0.98	0.72	0.83	82
accuracy			0.82	133
macro avg	0.83	0.85	0.82	133
weighted avg	0.87	0.82	0.82	133

6.) Mention your final model, justify why u have chosen the same.

Both Support Vector Machine and Logistic Regression Confusion Matrix Values of f1-score-True = 0.99, accuracy = 0.99 [Highest Score] provides the highest score compared to all model's evaluation. So, Support Vector Machine and Logistic Regression classification models can be finalized and deployed.