1-5 数据与数据结构(I)

魏恒峰

hfwei@nju.edu.cn

2017年11月13日

Stackable Permutations

Stackable Permutations

$$| \mathtt{out} = (a_1, \cdots, a_n) \underbrace{\overset{S = \emptyset}{X = 0}} \mathtt{in} = (1, \cdots, n)$$

3 / 20

 Q_1 : Meaning of "read, print, push, pop"?

 Q_1 : Meaning of "read, print, push, pop"?

 Q_2 : Using only "read, print, push, pop"?

$$a == X$$

 Q_1 : Meaning of "read, print, push, pop"?

 Q_2 : Using only "read, print, push, pop"?

$$a == X$$
 $a > X (a < X)$

 Q_1 : Meaning of "read, print, push, pop"?

 Q_2 : Using only "read, print, push, pop"?

$$a == X$$
 $a > X (a < X)$ $top(S)$

- (a) **Show** that the following permutations *are* stackable:
 - (i) (3,2,1)
 - (ii) (3,4,2,1)
 - (iii) (3,5,7,6,8,4,9,2,10,1)

- (a) **Show** that the following permutations *are* stackable:
 - (i) (3,2,1)
 - (ii) (3,4,2,1)
 - (iii) (3,5,7,6,8,4,9,2,10,1)

- (a) **Show** that the following permutations *are* stackable:
 - (i) (3, 2, 1)
 - (ii) (3,4,2,1)
 - (iii) (3, 5, 7, 6, 8, 4, 9, 2, 10, 1)

To check whether a given permutation can be obtained by a stack.

read print push pop is-empty

X = 0 $S = \emptyset$ in != EOF

To check whether a given permutation can be obtained by a stack.

read print push pop is-empty

```
X = 0 S = \emptyset in != EOF
```

```
foreach 'a' in out:
  if (! is-empty(S)
     && 'a' == top(S))
    pop(S, X)
    print(X)
    continue
  else ··· // T.B.C
```

To check whether a given permutation can be obtained by a stack.

read print push pop is-empty

```
X = 0 S = \emptyset in != EOF
```

```
foreach 'a' in out:
   if (! is-empty(S)
       && 'a' == top(S))
   pop(S, X)
   print(X)
   continue
   else ··· // T.B.C
```

```
else // T.B.C
while (in != EOF)
  read(X)
  if (X == 'a')
    print(X)
    continue
  else
    push(X, S)
ERR
```

To check whether a given permutation can be obtained by a stack.

read print push pop is-empty

```
X = 0 S = \emptyset in != EOF
```

```
foreach 'a' in out:
  if (! is-empty(S)
     && 'a' == top(S))
  pop(S, X)
  print(X)
  continue
  else ··· // T.B.C
```

```
else // T.B.C
while (in != EOF)
  read(X)
  if (X == 'a')
    print(X)
    continue
  else
    push(X, S)
ERR // How???
```

- (b) **Prove** that the following permutations are *not* stackable:
 - (i) (3,1,2)
 - (ii) (4,5,3,7,2,1,6)

- (b) **Prove** that the following permutations are *not* stackable:
 - (i) (3,1,2)
 - (ii) (4,5,3,7,2,1,6)

- (b) **Prove** that the following permutations are *not* stackable:
 - (i) (3,1,2)
 - (ii) (4,5,3,7,2,1,6)

(3, 1, 2)

(4, 5, 3, 7, 2, 1, 6)

- (b) **Prove** that the following permutations are *not* stackable:
 - (i) (3,1,2)
 - (ii) (4,5,3,7,2,1,6)

$$\mathtt{out} = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

- (b) **Prove** that the following permutations are *not* stackable:
 - (i) (3,1,2)
 - (ii) (4,5,3,7,2,1,6)

(3, 1, 2)

(4, 5, 3, 7, 2, 1, 6)

$$\mathtt{out} = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

312-Pattern

Theorem (Stackable Permutations)

A permutation (a_1, \cdots, a_n) is stackable \iff it is not the case that

312-Pattern :
$$out = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

Theorem (Stackable Permutations)

A permutation (a_1, \dots, a_n) is stackable \iff it is not the case that

312-Pattern : out =
$$\cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_j < a_k < a_i$$

Proof.

(c) How many permutations of A_4 cannot be obtained by a stack?

$$(1,4,2,3), (2,4,1,3), (3,1,2,4), (3,1,4,2), (3,4,1,2)$$

 $(4,1,2,3), (4,1,3,2), (4,2,1,3), (4,2,3,1), (4,3,1,2)$

(c) How many permutations of A_4 cannot be obtained by a stack?

$$(1, 4, 2, 3), (2, 4, 1, 3), (3, 1, 2, 4), (3, 1, 4, 2), (3, 4, 1, 2)$$

 $(4, 1, 2, 3), (4, 1, 3, 2), (4, 2, 1, 3), (4, 2, 3, 1), (4, 3, 1, 2)$

(c) How many permutations of A_4 cannot be obtained by a stack?

$$(1, 4, 2, 3), (2, 4, 1, 3), (3, 1, 2, 4), (3, 1, 4, 2), (3, 4, 1, 2)$$

 $(4, 1, 2, 3), (4, 1, 3, 2), (4, 2, 1, 3), (4, 2, 3, 1), (4, 3, 1, 2)$

Q: What about A_n ?

Producing the same set of permutations.

Producing the same set of permutations.

Accepting the same set of admissible operation sequences.

By simulations.

By simulations.

Simulate S by S + X:

- Push
- ▶ Pop

By simulations.

Simulate
$$S$$
 by $S + X$:

- ► Push
- ▶ Pop

Simulate S + X by S:

By simulations.

Simulate S by S + X:

- Push
- ▶ Pop

Simulate
$$S+X$$
 by S :

By iterative transformations.

(1,2,3): Push Pop Push Pop Push Pop

(3,2,1): Push Push Push Pop Pop

DH 2.12: Stackable Permutations

How many permutations of $\{1 \cdots n\}$ are stackable on the model S?

DH 2.12: Stackable Permutations

How many permutations of $\{1 \cdots n\}$ are stackable on the model S?

Q: How many admissible operation sequences of "Push" and "Pop"?

An operation sequence of "Push" and "Pop" is admissible if and only if

An operation sequence of "Push" and "Pop" is admissible if and only if

(i)
$$\#$$
 of "Push" $= n$ $\#$ of "Pop" $= n$

An operation sequence of "Push" and "Pop" is admissible if and only if

- (i) # of "Push" = n # of "Pop" = n
- (ii) \forall prefix : (# of "Pop") \leq (# of "Push")

An operation sequence of "Push" and "Pop" is admissible if and only if

- (i) # of "Push" = n # of "Pop" = n
- (ii) \forall prefix : (# of "Pop") \leq (# of "Push")

of stackable perms =# of admissible operation sequences

An operation sequence of "Push" and "Pop" is admissible if and only if

- (i) # of "Push" = n # of "Pop" = n
- (ii) \forall prefix : (# of "Pop") \leq (# of "Push")

of stackable perms =# of admissible operation sequences

Different admissible operation sequences correspond to different permutations.

Different admissible operation sequences correspond to different permutations.

Proof.

The number of admissible operation sequences of "Push" and "Pop" is $\binom{2n}{n}-\binom{2n}{n-1}$.

The number of admissible operation sequences of "Push" and "Pop" is $\binom{2n}{n} - \binom{2n}{n-1}$.

Proof: The Reflection Method.

The number of admissible operation sequences of "Push" and "Pop" is $\binom{2n}{n}-\binom{2n}{n-1}$.

Proof: The Reflection Method.

The number of admissible operation sequences of "Push" and "Pop" is $\binom{2n}{n}-\binom{2n}{n-1}$.

Proof: The Reflection Method.

The number of admissible operation sequences of "Push" and "Pop" is $\binom{2n}{n} - \binom{2n}{n-1}$.

Proof: The Reflection Method.

The number of admissible operation sequences of "Push" and "Pop" is $\binom{2n}{n} - \binom{2n}{n-1}$.

Proof: The Reflection Method.

$$\mathtt{Push}: \rightarrow \qquad \mathtt{Pop}: \uparrow$$

$$\underbrace{\binom{2n}{n}}_{\text{all}} - \underbrace{\binom{2n}{n-1}}_{\text{inadmissible}}$$

Catalan Number

$$(3,2,1):((()))$$
 $(1,2,3):()()()$

For more about "Stackable Permutations" (Section 2.2.1):

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of
Computer
Programming
VOLUME 1
Fundamental Algorithms
Third Edition

DONALD E. KNUTH

Thank You!