Découvrir les dispositifs de transmission

Thomas Raynaud & Thomas Mirbey

Mar 11/01/2022	Mer 12/01/2022	Jeu 13/01/2022	
LK2	LK2	LK2	
•	•	0	
SAÉ-13 Découvrir un dispositif de transmission - Présentation BUT1 RT-Amphi 2 VANSTRACEELE CHRISTOPHE	SAÉ TD_LK	SAÉ TD_LK	
SAÉ TD_LK	SAÉ-13 Découvrir un dispositif de transmission - Vanstraceele LK1 LK2 RT-Salle 106 RT-Salle 107 RT-Salle 201 VANSTRACEELE CHRISTOPHE	SAÉ-13 Découvrir un dispositif de transmission - Vanstraceele LK 1 LK2 RT-Salle 106 RT-Salle 107 VANSTRACEELE CHRISTOPHE	
SAÉ.13 Découvrir un dispositif de transmission - Vanstraceele IEC J K! RT-Salle 100 RT-Salle 101 RT-Salle 201 VANSTRACEELE CHRISTOPHE	saé ID_LK	SAÉ TD_LK	
SAÉ-13 Découvrir un dispositif de transmission Leni SE SE S	SAÉ-13 Découvrir un dispositif de transmission - Vanstracede ET-Saile 106 RT-Saile 107 RT-Saile 201 VANSTRACELE CHRISTOPHE	saé TD_LK	
saé de_lk	sAÉ ID_LK	SAÉ-13 Découvrir un dispositif de transmission - Leni LK2 LK1 RT-Saile 106 RT-Saile 107 RT-Saile 201 LENI PIERRE-EMMANUEL	
SAÉ-13 Découvrir un dispositif de transmission - Leni LK2 LK1 RT-Salle 106 RT-Salle 107 RT-Salle 201 LENI PIERRE-EMMANUEL	SAÉ-13 Découvrir un dispositif de transmission - Leni LK2 LK1 RT-Salle 106 RT-Salle 107 RT-Salle 201 LENI PIERRE-EMMANUEL	° SAÉ TD_LK	

SOMMAIRE

1. Matériel mis à notre disposition
2. Création du réseau wifi
3. Choix et installation application de mesure
4. Mesure Puissance-Distance Gain
5. Mesure Diagramme de rayonnement
6. Mesure pertes obstacles
7. Cartographie d'un étage
8. Puissance fonction fréquence
0. Portán maximala

Matériel à notre disposition

- Routeur wifi Linksys avec 2 antennes directionnelles
- Antenne directionnelle (Yagi Bazooka)
- Câble Ethernet
- Ordinateurs

Création du réseau wi-fi

Voici les différentes étapes que nous avons suivi afin de mettre en place notre réseau wifi :

- Réinitialisation ;
- Connection;
- 3. Machine virtuelle;
- sudo ifconfig [nom de la carte réseau] [IP voulu].
- 5. Charger le firmware alternatif DD-WRT.
- 6. Configuration.

Problème rencontré:

Mauvaise machine virtuelle

WPA2 Personal

WPA2 Personal

WPA2 Personal ac

3 s ago

18 s ago

Choix et installation des applications de mesure

- Mesures avec notre téléphone : Wifi Heatmap.
- -> Bonne précision.
- Ordinateur : NetSpot.

Distances en mètres	Puissances reçues antenne omnidirectionnelle (dBm)	Puissances reçues antenne directionnelle (dBm)
0	-10	-14
2	-29	-22
4	-35	-27
6	-39	-33
8	-42	-34
10	-45	-35
12	-48	-42
14	-52	-42
16	-56	-42
18	-61	-44
20	-63	-47
25	-65	-55
30	-68	-49
40	-73	-62

Mesures:

Prise de mesures avec les deux types d'antennes

Calcul de λ :

•
$$\frac{c\acute{e}l\acute{e}rit\acute{e}}{fr\acute{e}quence} = \frac{3*10^8}{2,4*10^9} = 0,125 \text{ m}.$$

On peut créer un tableau représentant LOG10(distance/λ)

log10(distance/λ)	
/	
1,204119983	
1,505149978	
1,681241237	
1,806179974	
1,903089987	
1,982271233	
2,049218023	
2,10720997	
2,158362492	
2,204119983	
2,301029996	
2,380211242	
2,505149978	

Tracé graphique de l'équation de Friis:

 On utilise la colonne log10(distance/λ) du tableau comme abscisse pour notre graphique. L'ordonnée quant à elle correspond à la puissance reçue pour chaque type d'antenne (en dBm).

Puissance émise théorique :

• Dans le Firmware = 71 mW $Pe(dBm) = 10 \log_{10} \left(\frac{Pe(mW)}{1mW} \right) = 18,51 dBm$

Puissance émise réelle :

$$Pe(dBm) = Pr(dBm) + 22 + 20 * log10 (distance/\lambda) - Ge(dBi) - Gr(dBi)$$

- Données :
- Ge (antenne omnidirectionnelle) = 0 dBi
- Ge (antenne directionnelle) = 17 dBi
- Gr = 1 dBi
- $\lambda = 0.125 \text{ m}$

Puissances émises antenne omnidirectionnelle en dBm	Puissances émises antenne directionnelle en dBm
/	/
16,08239965	6,082399653
16,10299957	7,102999566
15,62482475	4,624824748
15,12359948	6,12359948
14,06179974	7,06179974
12,64542466	1,645424661
9,984360453	2,984360453
7,144199393	4,144199393
3,167249842	3,167249842
2,082399653	1,082399653
2,020599913	-4,979400087
0,604224834	2,604224834
-1,897000434	-7,897000434

Gain de l'antenne directionnelle (pratique) :

- La formule : $G(dB) = 10 \log 10(Pr/Pe)$
- Les puissances en watt! →

$$P(W) = 10^{-3} * 10^{(\frac{P(dBm)}{10})}$$

Pe antenne directionnelle en Watt	Pr antenne directionnelle en Watt
/	3,98107E-05
0,004057327	6,30957E-06
0,005132157	1,99526E-06
0,002900564	5,01187E-07
0,004096	3,98107E-07
0,005083701	3,16228E-07
0,001460638	6,30957E-08
0,00198809	6,30957E-08
0,002596689	6,30957E-08
0,0020736	3,98107E-08
0,001283039	1,99526E-08
0,000317731	3,16228E-09
0,001821472	1,25893E-08
0,000162293	6,30957E-10

Permet le calcul du gain, Gain en moyenne = 15,9 dBi

Puissance reçue en théorie :

Nous avons calculés toutes les données pour utiliser la formule :

$$(P_R)_{dBm} = (P_E)_{dBm} - 22 - 20 \cdot \log_{10}(rac{distance}{\lambda}) + (G_E)_{dBi} + (G_R)_{dBi}$$

Puissance reçue en théorie antenne omnidirectionnelle
en dBm
/
-26,57239965
-32,59299957
-36,11482475
-38,61359948
-40,55179974
-42,13542466
-43,47436045
-44,63419939
-45,65724984
-46,57239965
-48,51059991
-50,09422483
-52,59299957

Puissance reçue en théorie antenne directionnelle		
/		
-9,572399653		
-15,59299957		
-19,11482475		
-21,61359948		
-23,55179974		
-25,13542466		
-26,47436045		
-27,63419939		
-28,65724984		
-29,57239965		
-31,51059991		
-33,09422483		
-35,59299957		

Comparaison des puissance reçues théorique et pratique :

Diagrammes de rayonnement

Comparaison des puissance reçues théorique et pratique :

- Distance d'un mètre
- Mesure de la puissance reçue, puis rotation de 20°

Degrés	Puissance reçue omnidirectionnelle en dBm	Puissance reçue directionnelle en dBm
0	-27	-15
20	-28	-20
40	-26	-23
60	-26	-33
80	-25	-35
100	-26	-33
120	-27	-28
140	-26	-24
160	-28	-25
180	-24	-26
200	-25	-26
220	-23	-35
240	-26	-32
260	-25	-34
280	-28	-26
300	-23	-25
320	-25	-26
340	-29	-16

Diagrammes de rayonnement

Diagrammes de rayonnement en watt :

Meilleur rendu, mise des valeurs en watt :

$$P(W) = 10^{-3} * 10^{\left(\frac{P(dBm)}{10}\right)}$$

Pertes due aux obstacles courants

Obstacle	Puissances reçues par l'antenne omnidirectionnelle en dBm	Puissances reçues par l'antenne directionnelle en dBm
Aucun obstacle	-10	-14
Porte	-37	-25
Cloison	-41	-26
Mur extérieur du bâtiment	-69	-60
Double vitrage	-25	-18

Obstacle	Perte en dBm avec l'antenne omnidirectionnelle	Perte en dBm avec l'antenne directionnelle
Aucun obstacle	0	0
Porte	-27	-11
Cloison	10	14
Mur extérieur du bâtiment	-59	-46
Double vitrage	-15	-4

Cartographie wifi

Cartographie de la borne avec les antennes omnidirectionnelles :

Théorie:

Antennes omnidirectionnelle

Antennes directionnelle

Cartographie wifi

Cartographie de la borne avec l'antenne monodirectionnelle :

Antennes omnidirectionnelle

Pratique:

Antennes directionnelle

Puissance en fonction de la fréquence

Comparaison entre les deux courbes :

Portée maximale pratique

Distance maximale pour l'antenne omnidirectionnelle

Distance maximale pour l'antenne directionnelle

Portée maximale théorique

$$d = \frac{\lambda}{4\pi} \sqrt{\frac{Pe*Ge*Gr}{Pr}}$$

$d = \frac{\lambda}{4\pi} \sqrt{\frac{Pe*Ge*Gr}{Pr}}$ = $d = \frac{0,125}{4\pi} * \sqrt{\frac{71*10^{-3}*Ge*Gr}{Pr}}$

Distance maximale pour l'antenne omnidirectionnelle

Prmin = -90dBm

La conversion dBm → watt :

$$P(W) = 10^{-3} * 10^{\left(\frac{P(dBm)}{10}\right)} = 10^{-3} * 10^{\left(-\frac{90}{10}\right)} = 1 * 10^{-12} \text{ W}$$

$$distance\ th\'{e}orique = \frac{0,125}{4\pi}*\sqrt{\frac{71*10^{-3}*1}{1*10^{-12}}} = 2650\ m\`{e}tres.$$

Distance maximale pour l'antenne directionnelle

Prmin = -87dBm

La conversion dBm → watt :

$$P(W) = 10^{-3} * 10^{\left(\frac{P(dBm)}{10}\right)} = 10^{-3} * 10^{\left(\frac{-87}{10}\right)} = 2 * 10^{-12} \text{ W}$$

$$d = \frac{0,125}{4\pi} * \sqrt{\frac{71*10^{-3}*17*1}{2*10^{-12}}} = 7727,5 \text{ mètres}.$$

Nettement supérieur à la pratique

Conclusion:

- Manipulation de routeurs et antennes
- Situations réelles

- Nos problèmes principaux
- Projet rapide dans sa totalité mais reprise de mesures vers la fin

Compétence ciblée

• RT2: Connecter les entreprises et les usagers

Apprentissages critiques couverts

- AC0211 | Mesurer et analyser les signaux
- AC0213 | Déployer des supports de transmission
- AC0215 | Communiquer avec un client ou un collaborateur

AUTO-EVALUATION

Etape	Date et heure du début	Date et heure de la fin
Création du réseau wi-fi	11/01 – 9h00	11/01 – 10h00
Choix et installation appli de mesure	11/01 – 9h00	11/01 – 9h15
Mesure Puissance-Distance/Gain	11/01 – 9h15	11/01 – 10h30
Mesure Diagramme de rayonnement	11/01 – 10h30	11/01 – 12h00
Mesure pertes obstacles	12/01 – 11h30	12/01 – 12h00
Cartographie d'un étage	11/01 – 13h30	11/01 – 15h00
Puissance fonction fréquence	11/01 – 15h00	11/01 – 16h30
Portée maximale	12/01 – 8h00	12/01 – 9h40