

Structural Causal Model: Sprinkler Example

• Structural equations for this model:

$$\begin{cases} C := f_C(\varepsilon_C) \\ R := f_R(C, \varepsilon_R) \\ S := f_S(C, \varepsilon_S) \\ W := f_W(R, S, \varepsilon_W) \\ G := f_G(W, \varepsilon_G) \end{cases}$$

- Unmodeled variables ε_x represent error terms
 - E.g., ε_W is another source of wetness besides Sprinkler and Rain (e.g., MorningDew)
- Assume unmodeled variables are exogenous, independent, with a certain distribution (prior)
- Express joint distribution of five variables as a product of conditional distributions using causal DAG topology:

$$Pr(C, R, S, W, G) = Pr(C) Pr(R|C) Pr(S|C) Pr(W|R, S) Pr(G|W)$$

- Variables
- Intervention
- Type of Variables in Causal AI

Observed Vs. Unobserved Variables

Observed variables

- Aka "measurable" or "visible"
- Variables directly measured or collected in a dataset
- E.g.,
 - Education
 - Income
 - Blood pressure
 - Product price

Unobserved variables

- Aka "latent" or "hidden"
- Exist but not measured or included in data
- E.g.,
 - Natural talent
 - Motivation
 - Company culture
- Ignoring unobserved variables distorts causal relationships
 - Observed: IceCreamSales and DrowningRates
 - Unobserved: Temperature
 - Misleading conclusion: IceCream causes Drowning

Endogenous Vs. Exogenous Variables

Endogenous variables

- Values determined within the model
 - Dependent on other variables in the system
- Represent system's internal behavior and outcomes
- E.g.,
 - Motivation
 - Income

Exogenous variables

- Originate outside the system being modeled
 - Not caused by other variables in the model
- · Represent background conditions or external shocks
- E.g.,
 - Natural talent
 - Economic policy
 - Weather
 - News

Endo / Exogenous, Observed / Unobserved Vars

In Structural Causal Models

$$X_i = f_i(Parents(X_i), \varepsilon_i)$$

where:

- X_i: endogenous
- ε_i : exogenous noise

Typically

- Endogenous variables: focus for prediction and intervention
- Exogenous variables: capture randomness or unknown external factors

Variable Type	Observability	Example
Endogenous	Observed	Income
Exogenous	Observed	Education
Endogenous	Unobserved	Motivation
Exogenous	Unobserved	Natural Talent

- Variables
- Intervention
- Type of Variables in Causal AI

Estimating Causal Effects

- Goal: Determine the causal effect of a treatment variable (aka intervention) T on an outcome Y
- Example:
 - T = "takes drug"
 - Y = "recovers"
 - C = "overall health"
- Healthier people may take medicine and recover faster ⇒ correlation without causation
- In observational data
 - Confounding variable C affects both treatment T and outcome Y
 - C creates spurious correlation between T and Y
- Problem
 - ullet There is a "backdoor path" Treatment \leftarrow Confounder ightarrow Outcome

Frontdoor and Backdoor Paths: Intuition

- A backdoor path is any path from T to Y starting with an arrow into T
 - E.g., T ← C → Y
 - Interpretation:
 - C is a common cause of T and Y, confounding their relationship
 - Controlling (conditioning) for C blocks the backdoor path, identifying the causal effect of T on Y

- A frontdoor path goes directly or indirectly from T to Y through mediators, following causal flow
 - E.g., T → Y
 - Interpretation:
 - Direct causal path of interest
 - No mediators, so front-door path is direct causal effect of T on Y

Randomized Controlled Trials (RCTs)

- Randomized Controlled Trial is an experimental study to assess causal effect of an intervention or treatment
 - Determine whether an intervention causes an effect, not just associated with it
 - Eliminate selection bias and confounding variables through randomization
- Key Components
 - Randomization: ensures groups are statistically equivalent at baseline
 - Control Group: receives a placebo or standard treatment
 - Blinding: participants and/or researchers do not know the assignment to avoid bias
 - Outcome Measurement: pre-defined metrics assess the intervention's effect
- Example: testing a new drug
 - Treatment group receives the new drug
 - Control group receives a placebo
 - Compare recovery rates after a fixed period
- Pros
 - Provides clear causal inference due to randomization
- Cons
 - Expensive and time-consuming
- (RSI)

RCTs Solve the Problem of Confounders

- In observational data
 - Confounding variable C affects both treatment T and outcome Y
 - C creates spurious correlation between T and Y

In experimental settings

- Randomization (R) breaks link between C and T
- Random assignment prevents influence on both treatment and outcome
- T is independent of C: $T \perp C$
- Only open path between T and Y is causal path $T \rightarrow Y$

Causal Graphs and Interventions

- Observing correlations between variables does not reveal causality
 - Pr(Y|T) confounds direct and indirect influences
- Randomized Controlled Trials provide the gold standard for causal inference
 - Randomization breaks all back-door (confounding) paths
 - RCTs are expensive, slow, or ethically impossible
- Alternative solution
 - Can we estimate the causal effect from observational data alone?
 - Under what conditions and using which variables?
- Idea: Identify and condition on the right confounders to:
 - Block spurious associations between T and Y
 - Recover the true causal effect Pr(Y|do(T))

Intervention in Structural Equations

Purpose of Structural Equations

- Capture causal mechanisms among variables
- Predict impact of external interventions
- Effect of Intervention $do(X_i = x_i)$
 - Original equation:

$$X_j = f_j(Parents(X_j), \varepsilon_j)$$

Modified by intervention:

$$X_j = x_j$$
 (fixed value)

- "Mutilate" causal network by removing incoming edges to X_j
- · Recompute joint distribution of all variables using modified structure
- Intuition
 - do-operator enforces variable's value externally, breaking causal dependencies
 - Enables reasoning about "what would happen if...?" scenarios

Adjustment Formula in Causal Networks

- Goal
 - Estimate causal effect of intervention $do(X_i = x_{ik})$ on another variable X_i
- The Adjustment Formula
 - Derived from the post-intervention joint distribution:

$$\Pr(X_i = x_i | do(X_j = x_j^*)) = \sum_{Parents(X_j)} \Pr(x_i | x_j^*, Parents(X_j)) \Pr(Parents(X_j))$$

- The mechanism for X_j is removed: it is treated as a fixed cause, not a random variable
- Interpretation
 - Computes a weighted average of effects of X_i and its parents on X_i
 - Weights come from prior probabilities of the parents' values
- Back-Door Criterion
 - A set Z is a valid adjustment set if it blocks all back-door paths from X_j to X_i
 - Ensures $X_i \perp \mathsf{Parents}(X_i)|X_i, Z$
- Why It Matters
 - Enables causal inference from observational data
- SCIENCE Estimate treatment and policy effects without randomized trials ACADEMY

Backdoor Criterion: Definition

- A set of variables Z satisfies the backdoor criterion for variables X
 (cause) and Y (effect) in a causal graph if:
 - 1. No element of Z is a descendant of X
 - Ensures Z does not "block" part of the causal effect of X on Y
 - Descendants of X may carry information about the causal effect and should not be controlled for
 - 2. Z blocks every path between X and Y containing an arrow into X
 - These paths are backdoor paths, representing potential confounding influences
 - Blocking them ensures any remaining association between X and Y is causal, not spurious

Backdoor Criterion: Intuition

Intuition:

- The goal is to isolate the causal effect of *X* on *Y* by eliminating *confounding bias*
- Controlling for an appropriate set Z makes the relationship between X and Y as if X were randomly assigned

Application:

- When Z satisfies the backdoor criterion, we can estimate causal effects from observational data (without experiments)
- The causal effect can be computed using:

$$\Pr(Y|do(X)) = \sum_{z} \Pr(Y|X,Z=z)P(Z=z)$$

Intervention: Sprinkler Example

- "Intervene" by turning the sprinkler on
 - In do-calculus do(Sprinkler = T)
 - Sprinkler variable s is independent of cloudy day c
- Structural equations after intervention:

$$\begin{cases} C := f_C(\varepsilon_C) \\ R := f_R(C, \varepsilon_R) \\ S := True \\ W := f_W(R, S, \varepsilon_W) \\ G := f_G(W, \varepsilon_G) \end{cases}$$

• Pr(S|C) = 1 and Pr(W|R, S) = Pr(W|R, S = T) and the joint probability becomes:

$$Pr(C, R, W, G|do(S = True)) = Pr(C)Pr(R|C)Pr(W|R, S = True)Pr(G|W)$$

Only descendants of manipulated variable Sprinkler are affected

Intervention vs. Observation in Causal Models

- Intervention conceptually breaks normal causal dependencies
 - Intervening on Sprinkler removes causal link from Weather to Sprinkler
 - After intervention, causal graph excludes arrow Weather o Sprinkler
 - Weather and Sprinkler become independent under intervention
- Observation vs. Intervention
 - Observation: seeing *Sprinkler* = *T*
 - Expressed as $Pr(\cdot|Sprinkler = T)$
 - Reflects passive observation sprinkler on provides information about weather
 - Since Weather influences Sprinkler, observing Sprinkler = T makes it less likely Weather is cloudy
 - **Intervention**: forcing *Sprinkler* = *T*
 - Expressed as $Pr(\cdot|do(Sprinkler = T))$
 - Active manipulation set sprinkler on regardless of weather
 - Causal link from Weather to Sprinkler is cut, weather distribution remains unchanged
- Key intuition
 - ullet Observation o correlation (information flows along causal links)
 - Intervention → causation (links into manipulated variable are removed)
 - Thus, $Pr(Weather|Sprinkler = T) \neq Pr(Weather|do(Sprinkler = T))$

Controlling for a Variable in Causal Analysis

Definition

 To control a variable means to hold it constant (statistically or experimentally) to isolate the causal effect of another variable

Example

- Does exercise (X) cause weight loss (Y)?
- Confounder: Diet (Z) affects both exercise and weight
- By controlling for diet (e.g., comparing people with similar diets), you can estimate the effect of exercise more accurately

• In regression analysis

- Include Z as an additional independent variable
- E.g., in $Y = \beta_0 + \beta_1 X + \beta_2 Z + \varepsilon$
 - β_1 measures the effect of X controlling for Z
 - Coefficient β₁ = change in Y with a one-unit change in X₁, holding X₂
 constant
 - Isolates X_1 's unique contribution
 - Compares individuals with the same X_2 but different X_1

In experiments

• Keep Z constant or randomize it

- Variables
- Intervention
- Type of Variables in Causal Al

Mediator Variable

- A mediator variable M is an intermediate variable that transmits the causal effect from X (treatment) to Y (outcome)
 - Lies on the causal path between X and Y
 - Captures the mechanism or process through which X influences Y

Mediator Variable: Example

- Research question: does a training program increase employee productivity?
- The causal effect may be indirect, operating through a mediator
 - The training program might not immediately boost productivity
 - Instead, it could enhance job satisfaction, which in turn raises productivity
- Causal interpretation
 - X: Training Program (cause)
 - M: Job Satisfaction (mediator)
 - Y: Employee Productivity (effect)
 - Path: $X \to M \to Y$
- Direct vs. Indirect effects
 - Indirect effect X affects Y through M
 - Direct effect X affects Y not through M
 - Controlling for M separates these two effects, clarifying how training impacts outcomes

Moderator Variable

- A moderator variable changes the strength or direction of the relationship between an independent variable (X) and a dependent variable (Y)
 - Moderator is not part of the causal chain but conditions the relationship

Moderator Variable: Example

- Research question: study relationship between stress X and job performance Y
- Social support M as a moderator
 - High social support weakens stress's negative effect on performance
 - Low social support strengthens stress's negative effect on performance

