The Greedy Method and Text Compression

The Greedy Method Technique

- The greedy method is a general algorithm design paradigm, built on the following elements:
 - configurations: different choices, collections, or values to find
 - objective function: a score assigned to configurations, which we want to either maximize or minimize
- It works best when applied to problems with the greedy-choice property:
 - a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

Text Compression

- Given a string X, efficiently encode X into a smaller string Y
 - Saves memory and/or bandwidth
- A good approach: Huffman encoding
 - Compute frequency f(c) for each character c.
 - Encode high-frequency characters with short code words
 - No code word is a prefix for another code
 - Use an optimal encoding tree to determine the code words

Encoding Tree Example

- A code is a mapping of each character of an alphabet to a binary code-word
- A prefix code is a binary code such that no code-word is the prefix of another code-word
- An encoding tree represents a prefix code
 - Each external node stores a character
 - The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child)

00	010	011	10	11
а	b	С	d	е

Encoding Tree Optimization

- Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X
 - Frequent characters should have long code-words
 - Rare characters should have short code-words
- Example
 - \blacksquare X = abracadabra
 - T_1 encodes X into 29 bits
 - T₂ encodes X into 24 bits

Huffman's Algorithm

- Given a string X, Huffman's algorithm construct a prefix code the minimizes the size of the encoding of X
- It runs in time $O(n + d \log d)$, where n is the size of Xand d is the number
 of distinct characters
 of X
- A heap-based priority queue is used as an auxiliary structure

```
Algorithm HuffmanEncoding(X)
  Input string X of size n
  Output optimal encoding trie for X
  C \leftarrow distinctCharacters(X)
  computeFrequencies(C, X)
  Q \leftarrow new empty heap
  for all c \in C
     T \leftarrow new single-node tree storing c
     Q.insert(getFrequency(c), T)
  while Q.size() > 1
     f_1 \leftarrow Q.minKey()
     T_1 \leftarrow Q.removeMin()
     f_2 \leftarrow Q.minKey()
     T_2 \leftarrow Q.removeMin()
     T \leftarrow join(T_1, T_2)
     Q.insert(f_1 + f_2, T)
  return Q.removeMin()
```

Example

X = abracadabraFrequencies

a	b	С	d	r
5	2	1	1	2

Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

Character		a	b	d	e	f	h	i	k	n	0	r	S	t	u	v
Frequency	9	5	1	3	7	3	1	1	1	4	1	5	1	2	1	1

The Fractional Knapsack Problem (not in book)

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
 - In this case, we let x_i denote the amount we take of item i

• Objective: maximize
$$\sum_{i \in S} b_i(x_i/w_i)$$

• Constraint:
$$\sum_{i \in S} x_i \leq W$$

Example

b_i - a positive benefit

w_i - a positive weight

Goal: Choose items with maximum total benefit but with

weight at most W.

4 ml

\$12

8 ml

\$32

2 ml

\$40

20

10 ml

"knapsack"

Solution:

- 1 ml of 5
- 2 ml of 3
- 6 ml of 4
- 1 ml of 2

(\$ per ml)

Value:

Items:

Weight:

Benefit:

Greedy Method and Compression

1 ml

\$50

50

6 ml

\$30

5

10

© 2004 Goodrich, Tamassia

The Fractional Knapsack Algorithm

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)
 - Since $\sum_{i=s}^{s} b_i (x_i / w_i) = \sum_{i=s}^{s} (b_i / w_i) x_i$
 - Run time: O(n $\log^{i \in S}$ n). Why?
- Correctness: Suppose there is a better solution
 - there is an item i with higher value than a chosen item j, but x_i<w_i, x_j>0 and v_i<v_j
 - If we substitute some i with j, we get a better solution
 - How much of i: min{w_i-x_i, x_j}
 - Thus, there is no better solution than the greedy one

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit b_i and weight w_i ; max. weight W **Output:** amount x_i of each item i

to maximize benefit w/ weight at most W

for each item i in S

$$x_i \leftarrow 0$$
 $v_i \leftarrow b_i / w_i$ {value}
 $w \leftarrow 0$ {total weight}
while $w < W$
 $remove\ item\ i\ w/\ highest\ v_i$
 $x_i \leftarrow \min\{w_i\ ,\ W - w\}$
 $w \leftarrow w + \min\{w_i\ ,\ W - w\}$

Task Scheduling (not in book)

- Given: a set T of n tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where s_i < f_i)
- Goal: Perform all the tasks using a minimum number of "machines."

Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: O(n log n). Why?
- Correctness: Suppose there is a better schedule.
 - We can use k-1 machines
 - The algorithm uses k
 - Let i be first task scheduled on machine k
 - Machine i must conflict with k-1 other tasks
 - But that means there is no non-conflicting schedule using k-1 machines

Algorithm *taskSchedule*(*T*)

Input: set **T** of tasks w/ start time s_i

and finish time f_i

Output: non-conflicting schedule with minimum number of machines

 $m \leftarrow 0$ {no. of machines}

while T is not empty

remove task i w/ smallest s;

if there's a machine j for i then schedule i on machine j

else

 $m \leftarrow m + 1$

schedule i on machine m

Example

- Given: a set T of n tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where s_i < f_i)
 - [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)
- Goal: Perform all tasks on min. number of machines

