Advance Computer Architecture and x86 ISA

University of Science and Technology of Hanoi

MS. LE Nhu Chu Hiep

Personal Introduction

Personal Introduction: Basic Information

Contact:

- Name: LE Nhu Chu Hiep
- Email: <<u>le-nhu-chu.hiep@usth.edu.vn</u>>

Education:

- Master for ICT at USTH (2023)
 - Speciality: Data Mining for IoT
- Bachelor for ICT at USTH (2020)

Personal Introduction: Teaching Career

Teaching:

- Lecturer of ICTLab USTH from 2024 (I'm young !!!)
- Major: Cyber Security
- Teaching courses:
 - Distributed System (ICT3)
 - Advance Computer Architecture and x86 ISA (CS2)

Personal Introduction: Research Career

Research:

- Interested Domain:
 - Operating System
 - Networking
 - And Distributed System
- Research Topics:
 - Ulake: Microservice based data lake framework retrieving, storing, and querying scientific data
 - Pswap: Migration framework to move stateful container from VM to Host and vice versa

Personal Introduction: Working at ICTLab USTH

ICT Department:

- Role: Researcher and Lecturer
- Website: https://ictlab.usth.edu.vn (OLD !!!)
- Location: 408, A21, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi

Personal Introduction: Working at ICTLab USTH (cont.)

- Machine Learning, Deep Learning and Data Mining
- Image and Speech Processing
- Modeling and Simulation
- Sensor Networks and Embedded Systems
- High Performance Computing
- Health Informatics and BioInformatics

Personal Introduction: Working at INP ENSEEIHT

- National Polytechnic Institute of Toulouse ¹
- Role: M2 Internship ~ 6 months
- Ranking: #943 in Best GLobal Universities ²
- Website: https://www.enseeiht.fr/fr/index.html
 (Not OLD, but FRENCH)
- Location: 2 Rue Charles Camichel, 31000
 Toulouse, France

- 1. C. (n.d.). Ingénieur N7, Créateur du monde de demain. Ametys V3. https://www.enseeiht.fr/fr/index.html
- 2. See where Institut National Polytechnique de Toulouse ranks among the world's Best Universities. (n.d.-a). https://www.usnews.com/education/best-global-universities/institut-national-polytechnique-de-toulouse-505784

Personal Introduction: Working at INP ENSEEIHT (cont.)

Personal Introduction: Working at INP ENSEEIHT (cont.)

- Top ranking universities (INP)
- Air France headquarter
- Old city with beautiful buildings
- Cheap cost of living
- Peaceful (Not like Paris !!!)
- Connect to USTH

Personal Introduction: Working at INP ENSEEIHT (cont.)

Course Introduction

Course Introduction

- 4 ETCS (40 hours)
 - 24h Lecturers 16h Practical
 - Lecturers: 8 classes, 3 hours / class
 - o Practicals: 4 classes, 4 hours / class
- Prerequisites:
 - Basic Programming
 - Computer Architecture
- Assessment:
 - Attendance: 10%
 - Assignment: 10%
 - Midterm: 30% (Project)
 - Final: 50% (Moodle Exam / Writing Exam)

Course Introduction: Objectives

- Understand basic concept of computer architecture (CA)
- Understand CA advance techniques to improve instruction execution
- Learn basic concept of x86 ISA
- Apply learned knowledge to improve instruction execution

Course Introduction: Textbooks

- John L. Hennessy & David A. Patterson, Computer architecture: a quantitative approach, 5th Edition, Morgan Kaufmann, 2011
- Andrew Tanenbaum & Todd Austin, Structured Computer Organization, 6th Edition, Pearson, 2012
- William Stallings, Computer organization and architecture, 10th Edition, 2015
- Barry Wilkinson & Michael Allen, Parallel programming, techniques and applications using networked workstations and parallel computers, Pearson, 2004

Computer Architecture

Computer

A digital system

- The finite state machine
- The combination and sequential logic
- The register and memory

Purpose

- Do whatever the software tell it to do
- Software is a series of instructions

Computer Architecture

 Conceptual structure and functional behavior of computer

Defines

- Hardware components and their organization
- Interaction among components to execute the program instructions

Includes

- Instruction set architecture (ISA)
- Memory organization
- Data paths and control mechanism
- IO systems

Computer History

Computer History: Early Computer

- 1940s 1950s: First general purpose computers
 using vacuum tubes and punched cards
- ENIAC: chiefly served the military like calculating artillery firing table
- **UNIVAC**: meant for scientific and business purpose
- Authors: Dr. Presper Eckert and Dr. John Mauchly
- Interface: IBM card reader and card punch

Computer History: Commercial Computer

- 1950s 1960s: Introduction of transistors, leading to smaller, faster, and more reliable computers
- 1960s 1970s: Emergence of integrated circuits
 (ICs) and microprocessors
- 1970s 1980s: Rise of personal computers (PCs)

Computer History: Commercial Computer (cont.)

• In 1969, the creation of UNIX

- Operating System developed at AT&T Bell Labs
- o Invented by Dennis Ritchie and Ken Thompson
- Lower the cost and risk of bringing out a new architecture

In 1972, the creation of C programming language

- First general purpose programming language
- Invented by Dennis Ritchie
- Reduce the need for object-code compatibility

Computer History: RISC vs CISC

1980s-1990s: RISC and CISC

 RISC: Reduced Instruction Set Computing is a small, highly optimized set of instruction that are executed in a single clock cycle

 CISC: Complex Instruction Set Computing is a larger set of more complex instructions that can performance multiple operations

Performance: RISC is highly suitable to parallelize instructions

Computer History: Modern computer

 1990s - Present: Shift toward parallel computing and multicore processors to improve performance

 21st Century: Power-efficient design and specialized architectures for tasks like graphics processing and Al

Future Trends: Exploration of quantum computing for exponential processing

Computer Components

Computer Components: John von Neumann

- **CPU:** Central Processing Unit
 - Control Unit: coordinating and controlling the operation flow of computer
 - Arithmetic Logic Unit (ALU): performing a wide range of arithmetic, logical, and data manipulation operations
- Memory: primary storage for both instructions and data
- IO Unit: Input vs Output play essential roles in data exchange between the computer and the external world

Computer Components (cont.)

- CPU: General-Purpose Processors
 - Designed for wide range of computing tasks
 - Examples: Intel Core series, AMD Ryzen series

- FPGA: Field-Programmable Gate Arrays
 - Programmable logic devices that can be configured to perform specific tasks
 - Examples: Xilinx UltraScale series, Intel (formerly Altera) Stratix
 series

Computer Components (cont.)

- GPU: graphics Processing Units
 - Specialized for rendering graphics and accelerating parallel computations
 - Examples: NVIDIA GeForce, AMD
 Radeon

Computer Components: Memory

RAM: Random Access Memory

- Primary storage medium for data and instructions feeding to CPU during program execution
- High transfer rate, volatile memory, small, expensive
- Example: SRAM, DRAM, and DDR

ROM: Read-Only Memory

- Storing firmware and essential system instructions that is not frequently changed such as BIOS or embedded system firmware
- Fast access specifically, difficult to write, non-volatile memory
- Example: PROM, EPROM, and EEPROM

Secondary Storage

- Persisting data and program instruction in long time even after turning off power supply
- Slow transfer rate, non-volatile memory, large, cheaper
- Example: HDDs, SSDs, CD-ROM, and DVD

Computer Components: IO Devices

- Input Devices: Capture data and commands from user or other devices
 - **Examples:** Keyboards, mice, scanners, sensors, etc.

Logic

Output

Control

- Output Devices: Present information, results, or feedback to users or other devices
 - **Examples:** Monitors, printers, speakers, etc.

- Communication Devices: Communication between the computer and other devices or networks
 - **Examples:** Ethernet, Wi-fi, Bluetooth adapters, etc.

Binary number system & Digital logic

Binary number system

- Base-2 numeral system
- Represents using only 2 digitals: 0 and 1
- Each digit in a binary number is called a bit
- A bit have one of 2 possible values: 0 or 1

Binary Numbering System

Decimal number	Binary number code 8 4 2 1	Binary to decimal conversion
0	0 0 0 0	= 0 + 0 + 0 + 0 = 0
1	0 0 0 1	= 0 + 0 + 0 + 1 = 1
2	0 0 1 0	= 0 + 0 + 2 + 0 = 2
3	0 0 1 1	= 0 + 0 + 2 + 1 = 3
4	0 1 0 0	= 0 + 4 + 0 + 0 = 4
5	0 1 0 1	= 0 + 4 + 0 + 1 = 5
6	0 1 1 0	= 0 + 4 + 2 + 0 = 6
7	0 1 1 1	= 0 + 4 + 2 + 1 = 7
8	1 0 0 0	= 8 + 0 + 0 + 0 = 8

Binary numbers can be converted into decimal (base ten) numbers

Digital Logic

Boolean algebra:

- Mathematical system for expressing and manipulating logic expressions that take into account 2 values of false (0) and true (1)
- Defines logical operations on binary values: AND, OR, NOT, XOR, NAND, etc.

Logic Gates:

- Electronic circuits performing logical operations on input signals to produce output signals
- Building blocks of digital circuits, enabling more complex logic functions

Combinational Logic:

- Outputs depend only on the current inputs, with no memory or feedback
- Sequential Logic:
 - Outputs depend on both current inputs and the state of memory elements

Digital Logic (cont.)

A OR Q		A	4
ВО		0	1
В	0	0	1
D	1	1	1

A AND Q		A	4
BAN		0	1
В	0	0	0
D	1	0	1

A	Q	F	4
BX	OR Q	0	1
D	0	0	1
В	1	1	0

A B NO	R)Q	A	4
BINO	K)0—	0	1
В	0	1	0
D	1	0	0

A	ND)OQ	A	4
BNAN		0	1
D	0	1	1
В	1	1	0

Data Representation

Data Representation

- Computer understands only binary data
- Human works with different data types: text, number, image, etc.
- So, data representation: the process of encoding data in a format suitable for computer
- Binary representation: encode data using only 2 symbols 0 and 1

Data Representation: Primary Data

- Integer: converting directly to binary bases format (holded by 4 bytes in C)
- Floating: using a sign bit, mantissa, and exponent with wide range of values with varying precision (holded by 8 bytes in C)
- Character: applying ASCII to map characters to
 7-bit binary codes, providing a standard encoding for text characters (holded by 1 byte in C)

Hex		Char	3	Hex	Dec	Char	Hex	Dec	Char	Hex	Dec	Char
0x00	0	NULL		0x20	32	Space	0x40	64	9	0x60	96	1
0x01	1	SOH	Start of heading	0x21	33	1	0x41	65	A	0x61	97	a
0x02	2	STX	Start of text	0x22	34	16	0x42	66	В	0x62	98	b
0x03	3	ETX	End of text	0x23	35	#	0x43	67	C	0x63	99	C
0x04	4	EOT	End of transmission	0x24	36	\$	0x44	68	D	0x64	100	d
0x05	5	ENQ	Enquiry	0x25	37	8	0x45	69	E	0x65	101	0
0x06	6	ACK	Acknowledge	0x26	38	6	0x46	70	F	0x66	102	£
0x07	7	BELL	Bell	0x27	39		0x47	71	G	0x67	103	g
0x08	8	BS	Backspace	0x28	40	- (0x48	72	H	0x68	104	h
0x09	9	TAB	Horizontal tab	0x29	41)	0x49	73	I	0x69	105	i
A0x0	10	LF	New line	0x2A	42	*	0x4A	74	J	0x6A	106	j
0x0B	11	VT	Vertical tab	0x2B	43	+	0x4B	75	K	0x6B	107	k
0x0C	12	FF	Form Feed	0x2C	44		0x4C	76	L	0x6C	108	1
0x0D	13	CR	Carriage return	0x2D	45	-	0x4D	77	М	0x6D	109	m
0x0E	14	SO	Shift out	0x2E	46		0x4E	78	N	0x6E	110	n
0x0F	15	SI	Shift in	0x2F	47	1	0x4F	79	0	0x6F	111	0
0x10	16	DLE	Data link escape	0x30	48	0	0x50	80	P	0x70	112	P
0x11	17	DC1	Device control 1	0x31	49	1	0x51	81	0	0x71	113	q
0x12	18	DC2	Device control 2	0x32	50	2	0x52	82	R	0x72	114	r
0x13	19	DC3	Device control 3	0x33	51	3	0x53	83	S	0x73	115	8
0x14	20	DC4	Device control 4	0x34	52	4.	0x54	84	T	0x74	116	t
0x15	21	NAK	Negative ack	0x35	53	5	0x55	85	U	0x75	117	u
0x16	22	SYN	Synchronous idle	0x36	54	6	0x56	86	V	0x76	118	v
0x17	23	ETB	End transmission block	0x37	55	7	0x57	87	W	0x77	119	w
0x18	24	CAN	Cancel	0x38	56	8	0x58	88	X	0x78	120	×
0x19	25	EM	End of medium	0x39	57	9	0x59	89	Y	0x79	121	у
0x1A	26	SUB	Substitute	0x3A	58		0x5A	90	Z	0x7A	122	z
0x1B	27	FSC	Escape	0x3B	59	;	0x5B	91	1	0x7B	123	1
0x1C	28	FS	File separator	0x3C	60	<	0x5C	92	1	0x7C	124	
0x1D	29	GS	Group separator	0x3D	61	-	0x5D	93	1	0x7D	125	1
0x1E	30	RS	Record separator	0x3E	62	>	0x5E	94		0x7E	126	-
0x1F	31	US	Unit separator	0x3F	63	2	0x5F	95		0x7F	127	DEL

Data Representation: Complex Data

- Image: represented as grids of pixels, with each pixel encoded to represent color or grayscale using binary values
- Audio: a sequence of discrete samples using binary values encoded by pulse-code modulation (PCM)
- Video: Encodes moving images using binary data employing compression techniques (MPEG)

Data Representation: Stored format

File Formats:

- The structure and organization of data within files, facilitating interoperability and data exchange between different systems and applications
- Examples: text format (plain text, CSV, etc.), binary formats (JPEG, MP3, etc.)

Endianness:

- Order in which bytes are stored in memory
- **Little-Endian**: Least significant byte stored first
- o **Big-Endian**: Most significant byte stored first

Binary (Decimal: 149)	1	0	0	1	0	1	0	1
Bit weight for given bit position n (2 ⁿ)	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Bit position label	MSb							LSb

Thank you for you listening