난방 수단의 열효율 비교

김루시아 김미희 진유현 최서령 조용익

- 최근 급격히 낮아진 기온으로 인하여 전열기구의 효율에 대한 관심이 증가하였다.
- 전기히터, 보일러, 라디에이터의 구조와 열 전달 방법을 이해한 뒤 열 효율을 연구한다.

어떤 기구의 효율이 가장 높은지 비교해본다.

라디에이터

- 내부의 냉매를 가열하고 넓은 표면적의 패널을 통해 열을 방출시킨 뒤 다시 가열해 내보내는 과정을 반복
- 냉매의 상태변화는 없으므로 비열만이 고려 요소이고, 비열이 높고 가격이 낮은 물을 이용
- 내부에서 물을 옮기는 데에 드는 에너지량은 물을 가열하는 데에 드는 에너지량보다 훨씬 적다
- 이외의 고려사항들은 일반 라디에이터에서 통상적으로 쓰이는 값을 사용

라디에이터

```
• P = P_{50} [(t_i - t_r) / ln((t_i - t_a) / (t_r - t_a))] 1 /
                          49.32 In (1)
 P = the \ emitted \ heat \ (W. \ J/s)
 P_{50} = nominal heat emission from radiator (W)- from
 the manufacturer
 t_a = surrounding air temperature (°C)
 t_i = water temperature inn (°C)
 t_r = water temperature out (°C)
 n = constant describing the type of radiator (1.3 -
 1.6 for convectors)
 generally, P_{50}=1000W, water temperature inn t_i =
P80 C1, ONDI 41/1 (and page at C1) e-old ot; 6) $00 to, (h/80.30) for (0°C)) / ((60°C)
 -standard panepraaiatois.
 = 1579 W
```

라디에이터

```
pV=mRT
m=pV/RT=(1013X10^2)(20^3)/(296)(273)=10028.71kg
Q=cmT=(0.31)(10028.71)(20-0)(4200J/kcal)=261147608.4J
```

이정도 열을 공급하기 위해 라디에이터(*1579W*)는 Q/P=(261147608.4J)/(1579J/s)(3600hr/s)=45.94hr 즉, 45.94hr 만큼 가동되어야 한다.

원적외선 Heater

교류 200V/ 60Hz

소비전력 880W

반지름 7cm

원적외선 HeatGonvection

Newton's Law Of Cooling

Free convection of gas h; range 2~25 -> 15 로 가정

$$\frac{dQ}{dt} = hA\Delta T$$

$$\frac{dQ}{dt} = 15(Wm^{-2}K^{-1}) * 0.07^{2} * \pi(m^{-2}) * (800 - 20K)$$

$$\frac{dQ}{dt} = 15 * 0.07^2 * \pi * 780 \approx 180.02W$$

원적외선 HeateRadiation

- 세라믹소재 -> Blackbody
 - * Stefan-Boltzman

$$\frac{dq_{max}}{dt} = \sigma T_s^4$$

$$\frac{dq_{max}}{dt} = 5.67 * 10^{-8} (Wm^{-2}K^{-4})1073^{4} (K^{4}) \approx 75159Wm^{-2}$$

$$\frac{dQ}{dt} = \frac{dq_{max}}{dt}A = 75159Wm^{-2} * 0.07^{2} * \pi(m^{-2})W \approx 1156.40W$$

원적외선 Heaternergy?

* 1초에 1336.42J 공급!

$$m = \frac{PV}{RT} = \frac{1013 * 10^2 * 20^3}{296 * 273} \approx 10028.71 \text{kg}$$

$$Q = cm\Delta T = (0.31)(4200)(20)(10028.71) \approx 261147608.4J$$

$$\frac{261147608.4}{1336.42} = 195408.34s \approx 54 \text{hous}$$

보일러

보일러

- 도시가스를 사용하는 일반 보일러
- 열효율= (유효열량/공급열량) =1-(손실열량/공급열량)
- -손실열량: 배기가스 손실열량 (나머지 손실은 없다고 가정)
- -공급열량: **총발열량**+ 연료의 엔탈피+공기의엔탈 피
- 발열량: 연료의 단위량(기체 1Sm³, 고체, 액체 1kg)이 완전 연소할 때 발생하는 열량(kcal)
- 총발열량은 연료의 연소과정에서 발생하는 수증기의 잠열까지를 포함한 발열량이므로 계산에서 제외

표 1 온도에 따른 연소생성물의 엔탈피

(기준온도=20ਊ,연소가스 온도= T)

(단위: Kcal/Nm³)

T (T)	CO ₂	H ₂ O	SO ₂	N ₂	○2
40	6,0	5,3	6,43	4,66	4,7
60	14,17	12,56	15,14	10,87	11,00
80	22,52	19,79	24,01	17,01	17,34
100	31,03	27,07	33,04	23,34	23,72
120	37,71	34,39	42,22	29,58	30,14
140	48,54	41,74	51,53	35,84	36,95
160	57,52	49,13	60,98	42,11	43,08
180	66,65	56,57	70,57	48,39	49,61
200	75,92	64,04	80,28	54,69	56,18
220	85,32	71,55	90,11	61,00	62,78
240	94,85	79,09	100,06	67,33	69,43
260	104,51	86,68	110,12	73,67	76,12
280	114,28	94,30	120,29	80,04	82,84
300	124,17	101,97	130,57	86,42	89,60
320	134, 18	109,68	140,94	92,82	96,41
340	114,29	117,43	151,41	99,24	103,25
360	154,51	125,22	161,97	105,69	110,13
380	164,83	133,06	172,62	112,16	117,05
400	175,25	140,95	183,35	118,66	124,00
420	185,76	148,88	194, 16	125, 18	131,00
440	196,36	156,86	205,05	131,74	138,03
460	207,05	164,89	216,01	138,32	145, 10
480	217,83	172,98	227,04	144,93	152,21
500	228,68	181,11	238,14	151,57	159,35

비교 : 위의 수치는 CHEMKIN-II Database(Sandia Lab, USA, 1995)를 이용하여 20억 기준으로 온도에 따른 각 성분의 엔탈피를 산출한 것이다.

구 분수		생성량(Nm³/Nm³_fuel)₽	엔탈피(Kcal/Nm³)₽	소실열(Kcal/Nm³_fuel)₽	
	CO2₽	1.149₽	76.0₽	87.32₽	
	H2O₽	2.149¢	64.0₽	137.54₽	
배기가스↵	N2₽	12.99₽	54.0₽	701.44₊	
re ^r	O2₽	1 .229₽	56.0₽	68.85₽	
	SO2₽	04	80.0₽	O++	
합계ℯ		17.52₽	ą.	995.15₽	

- 열효율 = 1-(995.15 + 471 X 2.149) ÷ 10,580 = 0.810
- 방의 온도를 0도에서 20도로 데우기 위해서는 2.61*10^8J의 에너지가 필요한데, 보일러의 열효율이약 81% 이므로,
- 필요한 열량은 2.61*10^8J/0.81= 총 32240445481481J = 76800 kcal 이다.
- 가정용*보일러*(25-30평용)의 *시간당 발생*하는 *열량*은 19,200 kcal 이므로
- 도시가스 보일러로 20m3의 방을 0도 에서 20도로 올 리는데 걸리는 시간은
- 76762.965 kcal/19,200 kcal h⁻¹ = 3,99 h 로 **약 4시간** 이다.

- 에어컨 속 공기는 0.4m³, 323.15K로 가정
- 방에서 외부로 전도되어 나가는 열은 무시
- 열역학 제 1법칙에 의해 Q_H+W=Q_C
 - (Q_H: 온풍기 속 공기가 내는 열
 - Q_c: 방 공기가 받는 열
 - W : 외부에서 가해지는 전기에너지)

- 에어컨 속 공기가 덥혀지는데 걸리는 시간
- $= c_{\vee} * \rho * V * \Delta T / (dW / dt)$
- = $722 \text{ J/(kg*K)} * 1.249 \text{ kg/m}^3 * 0.4\text{m}^3 * 50\text{K}$ / 1500 J/s
- = 18035.56 J / 1500 J/s
- = 12.024s

 에어컨 공기가 덥혀지는 데로 불어나오고 있다고 생 각하면

```
dQ_{H} / dt = c_{v} * \rho * V * T / t
= 722 J/(kg*K) * 1.205 kg/m<sup>3</sup> * 0.4m<sup>3</sup>
* 323.15K / 12.024s
= 9352.7522 J/s
```

• 열역학 제 1법칙에서 양변을 dt로 나누면

$$dQ_H/dt + dW/dt = dQ_c/dt$$

 $dQ_c/dt = 9352.7522 J/s + 1500 J/s$
= 10852.7522 J/s

- 방이 덥혀지는데 필요한 에너지 $\mathfrak{S}(Q_{\mathbb{C}})$
 - $= c \lor * \rho * \lor * \Delta T$
 - $= 722 \text{ J/kg*K} * 1.249 \text{ kg/m}^3 * 20\text{m}^3 * 20\text{K}$
 - = 360711.2 J

필요한 시간

- $= Q_C / (dQ_c/dt)$
- = 360711.2 J / 10852.7522 J /s
- =33.23s

7

- 온풍기로 방을 가열하는데 드는 시간이 지나치게 적게 나타남.
- 전도를 통해 열을 방안의 공기에 직접 공급하는 방식이 아닌 공기를 데워 공기가 다시 대류하는 방식에 대한 고려를 하지 않아 큰 오차가 발생

결론

- 주어진 전기에너지 대비 발열량은 큰 차이가 없음
- 다만 총 발열량의 차이가 크기 때문에 적절한 용 도로 사용하는 것이 필요
- 대류를 고려할 경우 에어컨은 소모에너지가 직접 적으로 발열 외에 쓰이는 부분이 많아 효율이 상 대적으로 낮을 것으로 예상됨

참고자료

: http://www.woorisoop.org/green/greencamp031.asp 2012.12.11)
http://www.kemco.or.kr

에너지 관리공단 사이트의 '연소기 열효율검토 열손실 방법(1) 2012.12.11 http://www.engineringgtoolbox.com