Problem set 3

Anamitro Biswas Email: anamitroappu@gmail.com/anamitrob@iitbhilai.ac.in

June 10, 2025

Note 1 Writing solutions like this in the exams might not fetch you full marks. Please clearly mention the name of any theorem or result you use; and also try to be very specific with ε - δ rigourously in each problem. Don't write one step without proper literal justification from the definition, unless prompted otherwise.

1. Show that
$$\sum_{n=1}^{\infty} \frac{1-n}{1+2n}$$
 and $\sum_{n=1}^{\infty} (-1)^n$ diverge. Do $\sum_{n=1}^{\infty} \frac{n+1}{n+2}$ and $\sum_{n=1}^{\infty} \log\left(1+\frac{1}{n}\right)$ converge?

Soln.
$$\left| \frac{1-n}{1+2n} \right| = \left| \frac{\frac{1}{n}-1}{\frac{1}{n}+2} \right| \rightarrow \left| -\frac{1}{2} \right| \neq 0$$
, so $\sum_{n=1}^{\infty} \frac{1-n}{1+2n}$ does not converge.

For even $n \in \mathbb{N}$, $\sum_{n=1}^{\infty} (-1)^n = 0$, and for odd n, $\sum_{n=1}^{\infty} (-1)^n = 1$. The sequence of partial sums $\left\{\sum_{i=1}^n (-1)^i\right\}_{n \in \mathbb{N}}$ oscillates hence does not converge.

The third one is similar to the first one.

$$\sum_{n=1}^{\infty} \log \left(1 + \frac{1}{n}\right) = \log \left(\prod_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)\right) = \log \left(\prod_{n=1}^{\infty} \left(\frac{n+1}{n}\right)\right).$$
 Consider the sequence of partial sums:
$$\left\{\log \left(\prod_{i=1}^{n} \left(\frac{i+1}{i}\right)\right)\right\}_{n \in \mathbb{N}} = \left\{\log \left(\frac{n+1}{1}\right)\right\}_{n \in \mathbb{N}} = \left\{\log (n+1)\right\}_{n \in \mathbb{N}}$$
 which is increasing. Thus the series is divergent. A series like this is called a *telescoping series*, because it just brings the initial and the distant end term close together, skipping the intermediate distance like a telescope does.

2(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!}$$
.

Soln. Let
$$a_n = \frac{(-1)^n}{(2n)!}$$
. Then $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{1}{(2n+1)(2n+2)} \right| \to 0$ as $n \to \infty$. Therefore, the series is convergent.

1

2(ii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}.$$

Soln. The series, being absolutely convergent, is also convergent.

2(iii)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{\sqrt{n}} + \frac{(-1)^{n-1}}{n} \right).$$

Soln.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{\sqrt{n}} + \frac{(-1)^{n-1}}{n} \right) = \sum_{n=1}^{\infty} \left((-1)^{n+1} \frac{1}{\sqrt{n}} + \frac{1}{n} \right).$$
 For n odd, the subseries dominates the series $\sum_{n=1}^{\infty} \frac{1}{n}$ which is divergent. For n odd, all the individual entries are positive. So, the series in all is divergent.

2(iv)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{2n-1} \right)$$
.

Soln.
$$\frac{n}{2n-1} - \frac{n+1}{2n+1} = \frac{1}{(2n+1)(2n-1)}$$
. So, $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{2n-1}\right) = \sum_{k=1}^{\infty} \frac{1}{(4k-1)(4k-3)}$, taking $n+1=2k$ and seeing two terms of the series at a time, then the next two terms etc. This shows that the series is divergent.