README

CodeAppendix

Code for paper "EGAT: Edge-Featured Graph Attention Network"

DOI:https://doi.org/10.1007/978-3-030-86362-3_21

Dependencies

in requirements.txt

- python 3.7
- pytorch 1.5.0
- pytorch-lightning 0.7.3
- torch-geometric 1.4.3
- numpy 1.18.1
- scipy 1.5.1
- wandb 0.9.4 (please run wandb off to disable the sync to wandb server)
- torch_scatter 2.1.1
- torch sparse 0.6.17

File Structure

- data: Directory for dataset. (This file needs to be created by yourself and placed in the EGAT-refine-main directory, parallel to files such as model and trainer.)
- model:
 - node.py: The node module of EGAT.
 - edge.py: The edge module of EGAT.
 - mgcn.py: The edge and node modules of MGCN, including the EGAT_MGCN (AttentionVertexModule)
 - nnconv.py: The node module of NNConv, including the EGAT_NNConv (AttentionNNConv)
 - net.py: The network structure of EGAT, for both AMLSim (AMLSimNet) and citation networks (Cora, Citeseer and PubMed) (CitationNet). The structure of CitationNet is hard coded.

- container_abcs.py: This file contains Python's built-in abstract base classes for collections.
- trainer: The training process (see: pytorch-lightning) of AMLSim and citation networks.
- transforms: The transformers of dataset.
- dataset.py: Some of the preprocessing of AMLSim and all the preprocessing of citation networks.
- main.py: The entry file.
- config.yml: Hyperparameter config file.

Usage

Dataset Prepare

Please copy all datasets to the data directory. (available at this url)

Hyperparameters

You can control the hyperparameter in config.yml. where the meaning of each hyperparameter is commented.

- net: amlsim # amlsim, citation; Indicate which network structure to use
- lr: 0.005 # learning rate
- leaky_slope: 0.2 # the leakage coefficient for the Leaky ReLU activation function
- dropout: 0.3 # the dropout ratio, used to reduce overfitting
- vertex_feature_ratio: 0.5 # the aggregation method for node features. (greater than 0.5, uses more concatenation of node features; less than 0.5, uses more averaging of node features)
- vertex_type: mgcn # egat, egat_merge, egat_split, mgcn, mgcn_att, nnconv, nnconv_att; The type of node modules (only work for amlsim)
- edge_type: mlp # mlp, egat, mgcn; The type of edge modules (only work for amlsim)
- edge_order: after # before, after, parallel; The order inside EGAT layer (only work for amlsim)
- dataset: AMLSim-10K-merge-hard-batch # AMLSim-10K-merge-hard-batch, cora, citeseer, pubmed; The dataset to use
- l2norm: 0.0005 # l2 normalization
- vertex feature: 128 # dimension of node features
- edge_feature: 128 # dimension of edge features
- layers: 6 # layer number (only work for amlsim)
- predict_hidden: true # whether to use a hidden layer for prediction (only work for amlsim)

- batchnorm_order: post # pre, post, none; The position of batchnorm
- update_method: residual # residual, gru, none; The updating method of node and edge features (only work for amlsim)
- layer_aggregation_method: concat # last, concat; The merge layer (only work for amlsim)
- heads: 8 # heads of EGAT in the multi-head attention mechanism
- symmetric: true # whether to use symmetric strategy (whether the attention scores for edges between two nodes are the same)
- seed: 1170 # random seed for dataset (only work for citation networks)

Train

Run python main.py to train the model. The results are reported in the terminal.

Attention

- If using CPU-only for training, you need to remove the suffix ".cuda" from some code.
- If you encounter an error: *ImportError: cannot import the name 'container_abcs' from 'torch._six'*, the solution is to click on the error link, navigate to a corresponding Python file in the torch library, and modify the import statement.
 - 1 from torch._six import string_classes,container_abcs # original import
 statement
 - 2 import collections.abc as int_classes,container_abcs # modified import statement