简介

这是我个人用于复习的笔记,一本习题补注。由于我个人的复习特点,我把许多对我个人而言没什么复习价值的习题作了省略。为什么我没有用中文?因为我将来要学习的绝大多数数学课本都是全英的,国内目前的专业翻译速度慢、不全面,况且对于专业学习者来说,直接使用英文不会造成任何困扰,并且我不愿意花费额外的时间去翻译,所以我用英文。但我讨厌英文单词的冗长性,这会让我复习起来很不爽,所以我对许多常用词汇适当地作了简写。这份笔记的内容范围和标识说明,我已经在README中写得很清楚,不再赘述。这份笔记尚处于缓慢的编撰进度中。

Goto									
1	2	3	4	5	6	7	8	9	10
A	A	A	/	A	A	A	A	A	A
В	В	В	/	\mathbf{B}^{I}	В	В	В	В	В
/	/	/	/	\mathbf{B}^{II}	/	/	/	/	/
C	C	C	/	C	C	C	C	/	/
/	/	D	/	/	D	D	D	/	/
/	/	E	/	E*	/	/	/	/	/
_/	/	F	/	/	/	F*	/	/	/

Abbreviation Table

def	definition
vec	vector
vecsp	vector space
subsp	subspace
add	addition/additive
multi	multiplication/multiplicative/multiple
assoc	associative/associativity
distr	distributive properties/property
inv	inverse
existns	existence
uniqnes	uniqueness
linely inde	linearly independent/independence
linely dep	linearly dependent/dependence
dim	dimension(al)
inje	injective
surj	surjective
col	column
with resp	with respect
iso	isomorphism/isomorphic
correspd	correspond(ing)
poly	polynomial
eigval	eigenvalue
eigvec	eigenvector
mini poly	minimal polynomial
char poly	characteristic polynomial

1.B

1 Prove that $\forall v \in V, -(-v) = v$.

SOLUTION:

$$-(-v) + (-v) = 0$$
$$v + (-v) = 0$$
 \Rightarrow By the uniques of add inv, we are done.

Or.
$$-(-v) = (-1)((-1)v) = ((-1)(-1))v = 1 \cdot v = v$$
.

2 Suppose $a \in \mathbb{F}$, $v \in V$, and av = 0. Prove that a = 0 or v = 0.

SOLUTION:

Suppose
$$a \neq 0$$
, $\exists a^{-1} \in \mathbb{F}$, $a^{-1}a = 1$, hence $v = 1 \cdot v = (a^{-1}a)v = a^{-1}(av) = a^{-1} \cdot 0 = 0$.

3 Suppose $v, w \in V$. Explain why $\exists ! x \in V, v + 3x = w$.

SOLUTION:

[Existns] Let
$$x = \frac{1}{3}(w - v)$$
.

[Existns] Let
$$x = \frac{1}{3}(w - v)$$
.
[Uniques] Suppose $v + 3x_1 = w$,(I) $v + 3x_2 = w$ (II). Then (I) $-$ (II) $: 3(x_1 - x_2) = 0 \Rightarrow x_1 = x_2$.

Or.
$$v + 3x = w \Leftrightarrow 3x = w - v \Leftrightarrow x = \frac{1}{3}(w - v)$$
.

5 *Show that in the def of a vecsp, the add inv condition can be replaced by* [1.29].

Hint: Suppose V satisfies all conds in the def, except we've replaced the add inv cond with [1.29]. Prove that the add inv is true.

SOLUTION:

Using [1.31].
$$0v = 0$$
 for all $v \in V \iff (1 + (-1))v = 1 \cdot v + (-1)v = v + (-v) = 0$.

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in R.

Define an add and scalar multi on $\mathbb{R} \cup \{\infty, -\infty\}$ *as you could guess.*

The operations of real numbers is as usual. While for $t \in \mathbb{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} -\infty & \text{if } t > 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t < 0, \end{cases}$$

(I)
$$t + \infty = \infty + t = \infty + \infty = \infty$$
,

(II)
$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty$$
,

(III)
$$\infty + (-\infty) = (-\infty) + \infty = 0.$$

With these operations of add and scalar multi, is $R \cup \{\infty, -\infty\}$ a vecsp over R? Explain.

SOLUTION:

Not a vecpsp, since the add and scalar mult is not assoc and distr.

By Assoc:
$$(a + \infty) + (-\infty) \neq a + (\infty + (-\infty))$$
.

Or. By Distr:
$$\infty = (2 + (-1))\infty \neq 2\infty + (-\infty) = \infty + (-\infty) = 0$$
.

• Tips: About the Field \mathbf{F} : Many choices. Example: $\mathbf{F} = \mathbf{Z}_m = \{K_0, K_1, \dots, K_{m-1}\}, \forall m-1 \in \mathbb{C}$ N^+ .

1															
	l • C	7	8	9	11	12	13	15	16	17	18	21	22	23	2

7 Give a nontrivial $U \subseteq \mathbb{R}^2$,

U is closed under taking add invs and under add, but is not a subsp of \mathbb{R}^2 .

SOLUTION: $(0 \in U; v \in U \Rightarrow -v \in U.)$ Let $U = \{0,1\}^2, \mathbb{Z}^2, \mathbb{Q}^2.$

8 Give a nontrivial $U \subseteq \mathbb{R}^2$, U is closed under scalar multi, but is not a subsp of \mathbb{R}^2 .

SOLUTION: Let $U = \{(x,y) \in \mathbb{R}^2 : x = 0 \lor y = 0\}$.

9 A function $f: \mathbb{R} \to \mathbb{R}$ is called periodic if $\exists p \in \mathbb{N}^+$, f(x) = f(x+p) for all $x \in \mathbb{R}$. Is the set of periodic functions $\mathbb{R} \to \mathbb{R}$ a subsp of $\mathbb{R}^\mathbb{R}$? Explain.

SOLUTION: Denote the set by S.

Suppose $h(x) = \cos x + \sin \sqrt{2}x \in S$, since $\cos x$, $\sin \sqrt{2}x \in S$.

Assume $\exists p \in \mathbb{N}^+$ such that h(x) = h(x+p), $\forall x \in \mathbb{R}$. Let $x = 0 \Rightarrow h(0) = h(\pm p) = 1$.

Thus $1 = \cos p + \sin \sqrt{2}p = \cos p - \sin \sqrt{2}p$

 $\Rightarrow \sin \sqrt{2}p = 0, \cos p = 1 \Rightarrow p = 2k\pi, k \in \mathbb{Z}, \text{ while } p = \frac{m\pi}{\sqrt{2}}, m \in \mathbb{Z}.$

Hence $2k = \frac{m}{\sqrt{2}} \Rightarrow \sqrt{2} = \frac{m}{2k} \in \mathbb{Q}$. Contradiction!

OR. Because [I] : $\cos x + \sin \sqrt{2}x = \cos (x + p) + \sin (\sqrt{2}x + \sqrt{2}p)$. By differentiating twice, [II] : $\cos x + 2\sin \sqrt{2}x = \cos (x + p) + 2\sin (\sqrt{2}x + \sqrt{2}p)$.

$$[II] - [I] : \sin \sqrt{2}x = \sin \left(\sqrt{2}x + \sqrt{2}p\right)$$

$$2[I] - [II] : \cos x = \cos \left(x + p\right)$$

$$\Rightarrow \text{Let } x = 0, \ p = \frac{m\pi}{\sqrt{2}} = 2k\pi. \text{ Contradicts.}$$

• Suppose U, W, V_1, V_2, V_3 are subsps of V.

$$15 U + U \ni u + w \in U.$$

$$16 U+W\ni u+w=w+u\in W+U.$$

17
$$(V_1 + V_2) + V_3 \ni (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3) \in V_1 + (V_2 + V_3).$$

18 Does the add on the subsps of V have an add identity? Which subsps have add invs?

Solution: Suppose Ω is the additive identity.

- (a) For any subsp U of V. $\Omega \subseteq U + \Omega = U \Rightarrow \Omega \subseteq U$. Let $U = \{0\}$, then $\Omega = \{0\}$.
- (b) Now suppose *W* is an add inv of $U \Rightarrow U + W = \Omega$.

Note that $U + W \supseteq U, W \Rightarrow \Omega \supseteq U, W$. Thus $U = W = \Omega = \{0\}$.

11 Prove that the intersection of every collection of subsps of V is a subsp of V.

SOLUTION: Suppose $\{U_{\alpha}\}_{{\alpha}\in\Gamma}$ is a collection of subsps of V; here Γ is an arbitrary index set.

We show that $\bigcap_{\alpha \in \Gamma} U_{\alpha}$, which equals the set of vecs that are in U_{α} for each $\alpha \in \Gamma$, is a subsp of V.

- (-) $0 \in \bigcap_{\alpha \in \Gamma} U_{\alpha}$. Nonempty.
- $(\underline{}) u, v \in \bigcap_{\alpha \in \Gamma} U_{\alpha} \Rightarrow u + v \in U_{\alpha}, \ \forall \alpha \in \Gamma \Rightarrow u + v \in \bigcap_{\alpha \in \Gamma} U_{\alpha}.$ Closed under add.
- $(\equiv) \ u \in \bigcap_{\alpha \in \Gamma} U_{\alpha}, \lambda \in F \Rightarrow \lambda u \in U_{\alpha}, \ \forall \alpha \in \Gamma \Rightarrow \lambda u \in \bigcap_{\alpha \in \Gamma} U_{\alpha}.$ Closed under scalar multi.

Thus $\bigcap_{\alpha \in \Gamma} U_{\alpha}$ is nonempty subset of V that is closed under add and scalar multi.

12 Suppose U, W are subsps of V. Prove that $U \cup W$ is a subsp of $V \iff U \subseteq W$ or $W \subseteq U$. Solution:

- (a) Suppose $U \subseteq W$. Then $U \cup W = W$ is a subsp of V.
- (b) Suppose $U \cup W$ is a subsp of V. Suppose $U \nsubseteq W$ and $U \not\supseteq W$ ($U \cup W \neq U$ and W). Then $\forall a \in U \land a \notin W, b \in W \land b \notin U, a + b \in U \cup W$.

If
$$a + b \in U \Rightarrow b = (a + b) + (-a) \in U$$
, contradicts!
If $a + b \in W \Rightarrow a = (a + b) + (-b) \in W$, contradicts! $\Rightarrow U \cup W = U$ or W . Contradicts!
Thus $U \subseteq W$ and $U \supseteq W$.

13 Prove that the union of three subsps of V is a subsp of V if and only if one of the subsps contains the other two. This exercise is not true if we replace F with a field containing only two elements.

SOLUTION:

Suppose U_1, U_2, U_3 are subsps of V. Denote $U_1 \cup U_2 \cup U_3$ by \mathcal{U} .

- (a) Suppose that one of the subsps contains the other two. Then $\mathcal{U} = U_1, U_2$ or U_3 is a subsp of V.
- (b) Suppose that $U_1 \cup U_2 \cup U_3$ is a subsp of V. Distinctively notice that $A \cup B \cup C = (A \cup B) \cup (B \cup C) = (A \cup C) \cup (B \cup C) = (A \cup B) \cup (A \cup C)$. Also note that, if $U \cup W = V$ is a vecsp, then in general U and W are not subsps of V. Hence this literal trick is invalid.
 - (I) If any U_j is contained in the union of the other two, say $U_1 \subseteq U_2 \cup U_3$, then $\mathcal{U} = U_2 \cup U_3$. By applying Problem (12) we conclude that one U_j contains the other two. Thus we are done.
 - (II) Assume that no U_j is contained in the union of the other two, and no U_i contains the union of the other two.

Say $U_1 \not\subseteq U_2 \cup U_3$ and $U_1 \not\supseteq U_2 \cup U_3$.

 $\exists u \in U_1 \land u \notin U_2 \cup U_3; \ v \in U_2 \cup U_3 \land v \notin U_1. \text{ Let } W = \{v + \lambda u : \lambda \in \mathbf{F}\} \subseteq \mathcal{U}.$

Note that $W \cap U_1 = \emptyset$, for if $v + \lambda u \in U_1$ then $v + \lambda u - \lambda u = v \in U_1$.

 $\not \subseteq W \subseteq U_1 \cup U_2 \cup U_3$. Thus $W \subseteq U_2 \cup U_3$.

 $\forall v + \lambda u \in W, \exists i \in \{2,3\}, v + \lambda u \in U_i.$

Because U_2 , U_3 are subsps and hence have at least one element (zero).

If $U_2 = U_3$, then $\mathcal{U} = U_1 \cup U_2$ and by Problem (12) we are done.

(Note that at least one of U_2 , U_3 is not $\{0\}$, for if not, $U_1 \supseteq U_2 \cup U_3$.)

Otherwise, \exists distinct $\lambda, \mu \in \mathbb{F}, v + \lambda u, v + \mu u \in U_i$ for some $i \in \{2,3\}$. (Δ)

Then $u \in U_i$ while $u \notin U_2 \cup U_3$. Contradicts.

EXAMPLE: Let $F = \mathbb{Z}_2$. TODO

Let T denote $\{(x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F}\}$. By def, $U + W \subseteq T$. And $T \ni (x, x, y, z) \Rightarrow (0, 0, y - x, y - x) + (x, x, x, -y + x + z) \in U + W$. Hence $T \subseteq U + W$. **21** Suppose $U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5\}$. Find a W such that $\mathbb{F}^5 = U \oplus W$. **SOLUTION**: Let $W = \{(0, 0, z, w, u) \in \mathbb{F}^5\}$. Then $U \cap W = \{0\}$. And $F^5 \ni (x, y, z, w, u) \Rightarrow (x, y, x + y, x - y, 2x) + (0, 0, z - x - y, w - x - y, u - 2x) \in U + W$. **23** Give an example of vecsps V_1, V_2, U such that $V_1 \oplus U = V_2 \oplus U$, but $V_1 \neq V_2$. **SOLUTION**: $V = \mathbb{F}^2$, $U = \{(x, x) \in \mathbb{F}^2\}$, $V_1 = \{(x, 0) \in \mathbb{F}^2\}$, $V_2 = \{(0, x) \in \mathbb{F}^2\}$. • Tips: Suppose $V_1 \subseteq V_2$ in Exercise (23). Prove or give a counterexample: $V_1 = V_2$. **SOLUTION:** Because the subset V_1 of vecsp V_2 is closed under add and scalar multi, V_1 is a subspace of V_2 . Suppose W is such that $V_2 = V_1 \oplus W$. Now $V_2 \oplus U = (V_1 \oplus W) \oplus U = (V_1 \oplus U) \oplus W = V_1 \oplus U$. If $W \neq \{0\}$, then $V_1 \oplus U \subsetneq (V_1 \oplus U) \oplus W$, contradicts. Hence $W = \{0\}$, $V_1 = V_2$. Suppose $V_1 \oplus U_1 = V_2 \oplus U_2$, $V_1 \subseteq V_2$, $U_2 \subseteq U_1$. Prove or give a counterexample: $V_1 = V_2$. **24** Let $V_E = \{ f \in \mathbb{R}^R : f \text{ is even} \}, V_O = \{ f \in \mathbb{R}^R : f \text{ is odd} \}. Show that <math>V_E \oplus V_O = \mathbb{R}^R$. **SOLUTION:** (a) $V_E \cap V_O = \{ f \in \mathbb{R}^R : f(x) = f(-x) = -f(-x) \} = \{ 0 \}.$ (b) $\left| \begin{array}{l} \operatorname{Let} f_e(x) = \frac{1}{2} \big(g(x) + g(-x) \big) \Longrightarrow f_e \in V_E \\ \operatorname{Let} f_o(x) = \frac{1}{2} \big(g(x) - g(-x) \big) \Longrightarrow f_o \in V_O \end{array} \right| \Rightarrow \forall g \in \mathbf{R}^{\mathbf{R}}, g(x) = f_e(x) + f_o(x).$ **ENDED** 2·A 1 2 6 10 11 14 16 17 | 4E: 3,14 **2** (a) [*P*] A list (v) of length 1 in V is linely inde $\iff v \neq 0$. |Q|(b) [P] A list (v, w) of length 2 in V is linely inde $\iff \forall \lambda, \mu \in \mathbf{F}, v \neq \lambda w, w \neq \mu v$. |Q|**SOLUTION:** (a) $Q \stackrel{1}{\Rightarrow} P : v \neq 0 \Rightarrow \text{if } av = 0 \text{ then } a = 0 \Rightarrow (v) \text{ linely inde.}$ $P \stackrel{?}{\Rightarrow} Q : (v)$ linely inde $\Rightarrow v \neq 0$, for if v = 0, then $av = 0 \Rightarrow a = 0$. OR. $\begin{vmatrix} \neg Q \stackrel{3}{\Rightarrow} \neg P : v = 0 \Rightarrow av = 0 \text{ while we can let } a \neq 0 \Rightarrow (v) \text{ is linely dep.} \\ \neg P \stackrel{4}{\Rightarrow} \neg Q : (v) \text{ linely dep} \Rightarrow av = 0 \text{ while } a \neq 0 \Rightarrow v = 0. \end{vmatrix}$ COMMENT: (1) with (3) and (2) with (4) will do as well. (b) $P \stackrel{1}{\Rightarrow} Q : (v, w)$ linely inde \Rightarrow if av + bw = 0, then $a = b = 0 \Rightarrow$ no scalar multi. $Q \stackrel{2}{\Rightarrow} P$: no scalar multi \Rightarrow if av + bw = 0, then $a = b = 0 \Rightarrow (v, w)$ linely inde. OR. $\begin{vmatrix} \neg P \stackrel{3}{\Rightarrow} \neg Q : (v, w) \text{ linely dep} \Rightarrow \text{if } av + bw = 0, \text{ then } a \text{ or } b \neq 0 \Rightarrow \text{ scalar multi} \\ \neg Q \stackrel{4}{\Rightarrow} \neg P : \text{ scalar multi} \Rightarrow \text{if } av + bw = 0, \text{ then } a \text{ or } b \neq 0 \Rightarrow \text{ linely dep}. \end{vmatrix}$ COMMENT: (1) with (3) and (2) with (4) will do as well.

• Example: Suppose $U = \{(x, x, y, y) \in \mathbb{F}^4\}, W = \{(x, x, x, y) \in \mathbb{F}^4\}.$

Prove that $U + W = \{(x, x, y, z) \in \mathbb{F}^4\}.$

1 Prove that $[P](v_1, v_2, v_3, v_4)$ spans $V \iff (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ also spans V[Q]. **SOLUTION:** Notice that $V = \operatorname{span}(v_1, \dots, v_n) \iff \forall v \in V, \exists a_1, \dots, a_n \in F, v = a_1v_1 + \dots + a_nv_n$. Assume that $\forall v \in V, \exists a_1, \dots, a_4, b_1, \dots, b_4 \in F$, (that is, if $\exists a_i$, then we are to find b_i , vice versa) $v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$ $= b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4$ $= b_1v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + (b_4 - b_3)v_4.$ Now we can let $b_i = \sum_{r=1}^{i} a_r$ if we are to prove Q with P already assumed; or let $a_i = b_i - b_{i-1}$ with $b_0 = 0$, if we are to prove P with Q already assumed. **6** Prove that [P] (v_1, v_2, v_3, v_4) is linely inde \iff [Q] $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ is linely inde. **SOLUTION:** $P \Rightarrow Q: a_1(v_1 - v_2) + a_2(v_2 - v_3) + a_3(v_3 - v_4) + a_4v_4 = 0$ $\Rightarrow a_1v_1 + (a_2 - a_1)v_2 + (a_3 - a_2)v_3 + (a_4 - a_3)v_4 = 0$ $\Rightarrow a_1 = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 0$ $Q \Rightarrow P : a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0$ $\Rightarrow a_1(v_1 - v_2) + (a_1 + a_2)(v_2 - v_3) + (a_1 + a_2 + a_3)(v_3 - v_4) + (a_1 + \dots + a_4)v_4 = 0$ $\Rightarrow a_1 = a_1 + a_2 = a_1 + a_2 + a_3 = a_1 + \dots + a_4 = 0.$ • Suppose (v_1, \ldots, v_m) is a list of vecs in V. For each k, let $w_k = v_1 + \cdots + v_k$. (a) Show that span $(v_1, ..., v_m) = \text{span}(w_1, ..., w_m)$. (b) Show that $[P](v_1, ..., v_m)$ is linely inde $\iff (w_1, ..., w_m)$ is linely inde [Q]. **SOLUTION:** (a) $let a_k = \sum_{j=1}^k b_j \iff a_1 v_1 + \dots + a_m v_m = b_1 w_1 + \dots + b_m w_m \implies let b_1 = a_1, \ b_k = a_k - \sum_{j=1}^{k-1} b_j = \sum_{j=1}^k \left(-1\right)^{k-j} a_j.$ (b) $P \Rightarrow Q: b_1 w_1 + \dots + b_m w_m = 0 = a_1 v_1 + \dots + a_m v_m$, where $0 = a_k = \sum_{i=1}^n b_i$. $Q \Rightarrow P: a_1v_1 + \dots + a_mv_m = 0 = b_1w_1 + \dots + b_mw_m = 0$, where $0 = b_1 = a_1$, $0 = b_k = \sum_{i=1}^{K} (-1)^{k-j}a_j$ Or. Because $W = \operatorname{span}(v_1, \dots, v_m) = \operatorname{span}(w_1, \dots, w_m)$. By [2.21](b), a list of length (m-1) spans W, then by [2.23], (w_1, \dots, w_m) linely dep $\Rightarrow (v_1, \dots, v_m)$ linely dep. Conversely it is true as well. **10** Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. Prove that if $(v_1 + w, ..., v_m + w)$ is linely depe, then $w \in \text{span}(v_1, ..., v_m)$. **SOLUTION:** Suppose $a_1(v_1 + w) + \cdots + a_m(v_m + w) = 0$, $\exists a_i \neq 0 \Rightarrow a_1v_1 + \cdots + a_mv_m = 0 = -(a_1 + \cdots + a_m)w$. Then $a_1 + \cdots + a_m \neq 0$, for if not, $a_1v_1 + \cdots + a_mv_m = 0$ while $a_i \neq 0$ for some i, contradicts. Or. By contrapositive, $w \notin \text{span}(v_1, ..., v_m)$, similarly. Or. $\exists j \in \{1, ..., m\}, v_j + w \in \text{span}(v_1 + w, ..., v_{j-1} + w)$. If j = 1 then $v_1 + w = 0$ and we are done. If $j \ge 2$, then $\exists a_i \in F$, $v_i + w = a_1(v_1 + w) + \dots + a_{i-1}(v_{i-1} + w) \iff v_i + \lambda w = a_1v_1 + \dots + a_{i-1}v_{i-1}$. Where $\lambda = 1 - (a_1 + \dots + a_{j-1})$. Note that $\lambda \neq 0$, for if not, $v_j + \lambda w = v_j \in \text{span}(v_1, \dots, v_{j-1})$, contradicts. Now $w = \lambda^{-1}(a_1v_1 + \dots + a_{j-1}v_{j-1} - v_j) \Rightarrow w \in \text{span}(v_1, \dots, v_m).$

11 Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. Show that $[P](v_1, ..., v_m, w)$ is linely inde $\iff w \notin \text{span}(v_1, ..., v_m)[Q]$. **14** Prove that [P] V is infinite-dim $\iff [Q]$ there is a sequence (v_1, v_2, \dots) in V such that (v_1, \dots, v_m) is linely inde for each $m \in \mathbb{N}^+$. **SOLUTION:** $P \Rightarrow Q$: Suppose *V* is infinite-dim, so that no list spans *V*. Step 1 Pick a $v_1 \neq 0$, (v_1) linely inde. Step m Pick a $v_m \notin \text{span}(v_1, ..., v_{m-1})$, by Problem (10)(b), $(v_1, ..., v_m)$ is linely inde. This process recursively defines the desired sequence $(v_1, v_2, ...)$. $\neg P \Rightarrow \neg Q$: Suppose V is finite-dim and $V = \text{span}(w_1, ..., w_m)$. Let $(v_1, v_2, ...)$ be a sequence in V, then $(v_1, v_2, ..., v_{m+1})$ must be linely dep. Or. $Q \Rightarrow P$: Suppose there is such a sequence. Choose an m. Suppose a linely inde list (v_1, \dots, v_m) spans V. (Similar to [2.16]) Then $\exists v_{m+1} \in V \setminus \text{span}(v_1, \dots, v_m)$. Hence no list spans *V* . Thus *V* is infinite-dim. **16** Prove that the vecsp of all continuous functions in $\mathbb{R}^{[0,1]}$ is infinite-dim. **SOLUTION:** Denote the vecsp by U. Choose an $m \in \mathbb{N}^+$. Suppose $a_0, \dots, a_m \in \mathbb{R}$ are such that $a_0 + a_1x + \dots + a_mx^m = 0$, $\forall x \in [0, 1]$. Then the poly has infinitely many roots and hence $a_0 = \cdots = a_m = 0$. Thus $(1, x, ..., x^m)$ is linely inde in $\mathbb{R}^{[0,1]}$. Similar to [2.16], U is infinite-dim. Or. Note that for $a_n = \frac{1}{n}$, $a_1 < a_2 < \dots < a_m$, $\forall m \in \mathbb{N}^+$. Suppose $f_n = \begin{cases} x - \frac{1}{n}, & x \in \left(\frac{1}{n}, 1\right) \\ 0, & x \in \left[0, -\frac{1}{n}\right] \end{cases}$ Then for any $m, f_1\left(\frac{1}{m}\right) = \dots = f_m\left(\frac{1}{m}\right)$, while $f_{m+1}\left(\frac{1}{m}\right) \neq 0$. Hence $f_{m+1} \notin \text{span}(f_1, \dots, f_m)$. Thus by Problem (14), U is infinite-dim. **17** Suppose $p_0, p_1, \dots, p_m \in \mathcal{P}_m(\mathbf{F})$ such that $p_k(2) = 0$ for each $k \in \{0, \dots, m\}$. *Prove that* $(p_0, p_1, ..., p_m)$ *is not linely inde in* $\mathcal{P}_m(\mathbf{F})$. **SOLUTION:** Suppose $(p_0, p_1, ..., p_m)$ is linely inde. Define $p \in \mathcal{P}_m(\mathbf{F})$ by $p(z) = z \ \forall z \in \mathbf{F}$. But $\forall a_i \in \mathbb{F}, z \neq a_0 p_0(z) + \dots + a_m p_m(z)$, for if not, let z = 2, contradicts. Thus $z \notin \text{span}(p_0, p_1, \dots, p_m)$. Then span $(p_0, p_1, ..., p_m) \subseteq \mathcal{P}_m(\mathbf{F})$ while the list $(p_0, p_1, ..., p_m)$ has length (m + 1). Hence (p_0, p_1, \dots, p_m) is linely depe in $\mathcal{P}_m(\mathbf{F})$. For if not, because $(1, z, ..., z^m)$ of length (m + 1) spans $\mathcal{P}_m(\mathbf{F})$, thus by [2.23] trivially, $(p_0, p_1, ..., p_m)$ spans $\mathcal{P}_m(\mathbf{F})$. Contradicts. OR. Note that $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(\underbrace{1, z, \dots, z^m}_{\text{of length }(m+1)}). (p_0, p_1, \dots, p_m, z)$ of length (m+2) is linely dep. (See the above) Now $z \notin \text{span}(p_0, p_1, \dots, p_m)$ and hence (p_0, p_1, \dots, p_m) is linely dep.

$2 \cdot B$ 1 7 8 | 4E: 5, 9

7 Prove or give a counterexample: If (v_1, v_2, v_3, v_4) is a basis of V and U is a subsp of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \notin U$, then (v_1, v_2) is a basis of U.

SOLUTION: A counterexample:

Let $V = \mathbb{R}^4$ and e_j be the j^{th} standard basis.

Let
$$v_1 = e_1, v_2 = e_2, v_3 = e_3 + e_4, v_4 = e_4$$
. Then (v_1, \dots, v_4) is a basis of \mathbb{R}^4 .

Let
$$U = \operatorname{span}(e_1, e_2, e_3) = \operatorname{span}(v_1, v_2, v_3 - v_4)$$
. Then $v_3 \notin U$ and (v_1, v_2) is not a basis of U .

• Note For " $\mathbf{C}_V U \cap \{0\}$ ":

" $C_V U \cap \{0\}$ " is supposed to be a subsp W such that $V = U \oplus W$.

But if we let
$$u \in U \setminus \{0\}$$
 and $w \in W \setminus \{0\}$, then $\begin{cases} w \in C_V U \cap \{0\} \\ u \pm w \in C_V U \cap \{0\} \end{cases} \Rightarrow u \in C_V U \cap \{0\}$. Contradicts.

To fix this, denote the set $\{W_1, W_2 \dots\}$ by $\mathcal{S}_V U$, where for each W_i , $V = U \oplus W_i$. See also in (1.C.23).

1 Find all vecsps that have exactly one basis.

SOLUTION: The trivial vecsp $\{0\}$ will do. Indeed, the only basis of $\{0\}$ is the empty list.

Now consider a field containing only the add identity 0 and the multi identity 1,

and we specify that 1 + 1 = 0. Hence the vecsp $\{0, 1\}$ will do, the list (1) will be the unique basis.

And more generally, consider $\mathbf{F} = \mathbf{Z}_m$, $\forall m - 1 \in \mathbf{N}^+$. For each $s, t \in \{1, ..., m\}$,

 $\mathbf{F} = \mathrm{span}(K_s) = \mathrm{span}(K_t)$. Hence we fail. Are there other vecsps? Suppose so.

(I) Consider F = R or C. Let $(v_1, ..., v_m)$ be a basis of $V \neq \{0\}$.

While there are infinitely many bases distinct from this one. Hence we fail.

(II) Consider other F. Note that a field contains at least 0 and 1

By some theories or facts given in the course of Elementary Abstract Algebra, we fail.

• Suppose $(v_1, ..., v_m)$ is a list of vecs in V. For $k \in \{1, ..., m\}$, let $w_k = v_1 + \cdots + v_k$. Show that $[P] B_V = (v_1, ..., v_m) \iff [Q] B_W = (w_1, ..., w_m)$.

SOLUTION: Notice that $B_U = (u_1, ..., u_n) \iff \forall u \in U, \exists ! a_i \in F, u = a_1u_1 + \cdots + a_nu_n$.

$$P \Rightarrow Q : \forall v \in V, \exists ! a_i \in F, \ v = a_1 v_1 + \dots + a_m v_m \Rightarrow v = b_1 w_1 + \dots + b_m v_m, \exists ! b_k = \sum_{j=1}^k (-1)^{k-j} a_j.$$

$$Q \Rightarrow P: \forall v \in V, \exists ! b_i \in \mathbf{F}, \ v = b_1 w_1 + \dots + b_m w_m \Rightarrow v = a_1 v_1 + \dots + a_m v_m, \exists ! a_k = \sum_{j=1}^k b_j.$$

• Suppose V is finite-dim and U, W are subsps of V such that V = U + W. Let $B_U = (u_1, ..., u_m)$, $B_W = (w_1, ..., w_n)$. Prove that $\exists B_V$ consisting of vecs in $U \cup W$.

SOLUTION:

$$V = \text{span}(u_1, ..., u_m) + \text{span}(w_1, ..., w_n) = \text{span}(u_1, ..., u_m, w_1, ..., w_n)$$
. By [2.31], we get the basis

8 Suppose U and W are subsps of V such that $V = U \oplus W$.

Let
$$B_U = (u_1, ..., u_m)$$
, $B_W = (w_1, ..., w_n)$. Prove that $B_V = (u_1, ..., u_m, w_1, ..., w_n)$.

SOLUTION:

$$\forall v \in V, \exists ! u \in U, w \in W, v = u + w = (a_1u_1 + \dots + a_mu_m) + (b_1w_1 + \dots + b_nw_n), \exists ! a_i, b_i \in \mathbf{F}$$

$$\Rightarrow (a_1u_1 + \dots + a_mu_m) = -(b_1w_1 + \dots + b_nw_n) \in U \cap W = \{0\} \Rightarrow a_1 = \dots = a_m = b_1 = \dots = b_n = 0 \square$$

• **Note For** *linely inde sequence and* [2.34]:

" $V = \text{span}(v_1, \dots, v_n, \dots)$ " is an invalid expression.

If we allow using "infinite list", then we must guarantee that $(v_1, ..., v_n, ...)$ is a spanning "list" such that for all $v \in V$, there exists a smallest positive integer n such that $v = a_1v_1 + \cdots + a_nv_n$, The key point is, how can we guarantee that such a "list" exists?

2·C 1 7 9 10 14,16 15 17 | 4E: 10, 14, 15, 16

1 (COROLLARY for [2.38,39])

Suppose U is a subsp of V such that $\dim V = \dim U$. Then V = U.

9 Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. Prove that $\dim \operatorname{span}(v_1 + w, ..., v_m + w) \ge m - 1$.

SOLUTION: Using the result of Problem (10) and (11) in 2.A.

Note that $v_i - v_1 = (v_i + w) - (v_1 + w) \in \operatorname{span}(v_1 + w, \dots, v_n + w)$, for each $i = 1, \dots, m$. (v_1, \dots, v_m) linely inde $\Rightarrow (v_1, v_2 - v_1, \dots, v_m - v_1)$ linely inde $\Rightarrow \underbrace{(v_2 - v_1, \dots, v_m - v_1)}_{\text{of length } (m-1)}$ linely inde.

 $\not \sqsubseteq \operatorname{span} \bigl(v_1, \dots, v_m\bigr) \Rightarrow \bigl(v_1 + w, \dots, v_m + w\bigr) \text{ is linely inde.}$

Hence $m \geqslant \dim \operatorname{span}(v_1 + w, \dots, v_m + w) \ge m - 1$.

10 Suppose m is a positive integer and $p_0, p_1, ..., p_m \in \mathcal{P}(\mathbf{F})$ are such that each p_k has degree k. Prove that $(p_0, p_1, ..., p_m)$ is a basis of $\mathcal{P}_m(\mathbf{F})$.

SOLUTION:

Using mathematical induction on *m*.

- (i) For p_0 , $\deg p_0 = 0 \Rightarrow \operatorname{span}(p_0) = \operatorname{span}(1)$.
- (ii) Suppose for $i \ge 1$, span $(p_0, p_1, \dots, p_i) = \text{span}(1, x, \dots, x^i)$.

Then span $(p_0, p_1, ..., p_i, p_{i+1}) \subseteq \text{span}(1, x, ..., x^i, x^{i+1}).$

 $\mathbb{Z}\deg p_{i+1}=i+1, \ p_{i+1}(x)=a_{i+1}x^{i+1}+r_{i+1}(x); \ a_{i+1}\neq 0, \ \deg r_{i+1}\leqslant i.$

$$\Rightarrow x^{i+1} = \frac{1}{a_{i+1}} \Big(p_{i+1}(x) - r_{i+1}(x) \Big) \in \text{span}(1, x, \dots, x^i, p_{i+1}) = \text{span}(p_0, p_1, \dots, p_i, p_{i+1}).$$

 $x_i x^{i+1} \in \text{span}(p_0, p_1, \dots, p_i, p_{i+1}) \Rightarrow \text{span}(1, x, \dots, x^i, x^{i+1}) \subseteq \text{span}(p_0, p_1, \dots, p_i, p_{i+1}).$

Thus
$$\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(1, x, \dots, x^m) = \operatorname{span}(p_0, p_1, \dots, p_m).$$

Or. 用比较系数法. Denote the coefficient of x^i in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_i(p)$.

Suppose $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R, \forall x \in \mathbf{F}.$

We use induction on m to show that $a_m = \cdots = a_0 = 0$.

(i) k = m, $\xi_m(L) = a_m \xi_m(p_m) = \xi_m(R) = 0 \ \ \ \ \deg p_m = m$, $\xi_m(p_m) \neq 0 \Rightarrow a_m = 0$. Now $L = a_{m-1} p_{m-1}(x) + \dots + a_0 p_0(x)$.

(ii)
$$1 \le k \le m$$
, $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \ \ \ \ \deg p_k = k$, $\xi_k(p_k) \ne 0 \Rightarrow a_k = 0$.
Now $L = a_{k-1} p_{k-1}(x) + \dots + a_0 p_0(x)$.

• (4E 2.C.10) Suppose m is a positive integer. For $0 \le k \le m$, let $p_k(x) = x^k (1-x)^{m-k}$. Show that $(p_0, ..., p_m)$ is a basis of $\mathcal{P}(\mathbf{F})$.

The basis in this exercise leads to what are called Bernstein polynomials. You can do a web search to learn how Bernstein polynomials are used to approximate continuous functions on [0,1].

SOLUTION: Using mathematical induction.

(i)
$$k = 0, 1, 2, p_m(x) = x^m, p_{m-1}(x) = x^{m-1} - x^m, p_{m-2}(x) = x^{m-2} + x^m - 2x^{m-1}$$
.

(ii)
$$k \ge 2$$
. Suppose for $p_{m-k}(x)$, $\exists ! a_i \in \mathbf{F}$, $x^{m-k} = p_{m-k}(x) + a_m x^m + \dots + a_{m-k+1} x^{m-k+1}$.

Then for
$$p_{m-k-1}(x)$$
, $\exists ! c_i \in \mathbf{F}$,

$$\begin{split} x^{m-k-1} &= p_{m-k-1}(x) + C_{k+1}^1(-1)^2 x^{m-k} + \dots + C_{k+1}^k(-1)^{k+1} x^{m-1} + (-1)^{k-2} x^m \\ \Rightarrow c_{m-i} &= C_{k+1}^{k+1-i} (-1)^{k-i}. \end{split}$$

Thus for each
$$x^i$$
, $\exists ! b_i \in \mathbf{F}, x^i = b_m p_m(x) + \dots + b_{m-i} p_{m-i}(x)$
 $\Rightarrow \operatorname{span}(x^m, \dots, x, 1) = \operatorname{span}(\underbrace{p_m, \dots, p_1, p_0}).$

OR. For any $m, k \in \mathbb{N}^+$ such that $k \leq m$. Define $p_{k,m}$ by $p_{k,m}(x) = x^k (1-x)^{m-k}$.

Define the statement S(m) by S(m): $\underbrace{(p_{0,m}, \dots, p_{m,m})}_{\dim \mathcal{P}_m(\mathbf{F}) = m+1}$ is linely inde (and therefore is a basis).

We use induction on to show that S(m) holds for all $m \in \mathbb{N}^+$.

(i)
$$m = 1$$
. Suppose $a_0(1 - x) + a_1 x = 0$, $\forall x \in \mathbf{F}$. Then $\begin{cases} x = 0 \Rightarrow a_0 = 0; \\ x = 1 \Rightarrow a_1. \end{cases}$

$$m = 2$$
. Suppose $a_0(1-x)^2 + a_1(1-x)x + a_2x^2$, $\forall x \in \mathbf{F}$. Then
$$\begin{cases} x = 0 \Rightarrow a_0 + a_1 = 0; \\ x = 1 \Rightarrow a_2 = 0; \\ x = 2 \Rightarrow a_0 + 2a_1 = 0. \end{cases}$$

(ii) $2 \le m$. Assume that S(m) holds.

Suppose
$$\sum_{k=0}^{m+2} a_k p_{k,m+2}(x) = \sum_{k=0}^{m+2} a_k x^k (1-x)^{m+2-k} = 0, \forall x \in \mathbf{F}.$$

While
$$x = 0 \Rightarrow a_0 = 0$$
; $x = 1 \Rightarrow a_{m+2} = 0$. Then $\sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k} = 0$;

And note that
$$\sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k}$$

$$= x(1-x) \sum_{k=1}^{m+1} a_k x^{k-1} (1-x)^{m+1-k}$$

= $x(1-x) \sum_{k=0}^{m} a_{k+1} x^k (1-x)^{m-k} = x(1-x) \sum_{k=0}^{m} a_{k+1} p_{k,m}(x).$

Hence
$$x(1-x) \sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = 0, \forall x \in \mathbb{F} \Rightarrow \sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = 0, \forall x \in \mathbb{F} \setminus \{0,1\}.$$

Because $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x)$ has infinitely many zeros. We have $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = 0$, $\forall x \in \mathbf{F}$.

By assumption, $a_1 = \cdots = a_m = 0$, while $a_0 = a_{m+2} = 0$,

and also
$$a_{m+1} = 0$$
 (because $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = a_{m+1} p_{m,m}(x) = a_{m+1} x^m = 0$, $\forall x \in \mathbb{F}$.)

Thus $(p_{0,m+2},...,p_{m+2,m+2})$ is linely inde and S(m+2) holds.

Since
$$\forall m \in \mathbb{N}^+, S(m) \Rightarrow S(m+2)$$
. We have $\begin{cases} \forall k \in \mathbb{N}, S(2k+1) \text{ holds} \\ \forall k \in \mathbb{N}^+, S(2k) \text{ holds} \end{cases} \Rightarrow S(m) \text{ holds.}$

- **7** (a) Let $U = \{ p \in \mathcal{P}_4(\mathbf{F}) : p(2) = p(5) = p(6) \}$. Find a basis of U.
 - (b) Extend the basis in (b) to a basis of $\mathcal{P}_4(\mathbf{F})$.
 - (c) Find a subsp W of $\mathcal{P}_4(\mathbf{F})$ such that $\mathcal{P}_4(\mathbf{F}) = U \oplus W$.

SOLUTION: Suppose $p(z) = az^4 + bz^3 + cz^2 + dz + e$ such that p(2) = p(5) = p(6).

You don't have to compute to know that the dimension of the set of solutions is 3.

(Because $\nexists p \in \mathcal{P}_2(\mathbf{F})$ with $1 \leq \deg p \leq 2, p(2) = p(5) = p(6)$.)

- (a) A basis: 1, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6).
- (b) Extend to a basis of $\mathcal{P}_4(\mathbf{F})$ as $1, z, z^2, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)$.
- (c) Let $W = \operatorname{span}(z, z^2) = \{az + bz^2 : a, b \in \mathbb{F}\}$, so that $\mathcal{P}_4(\mathbb{F}) = U \oplus W$.

• TIPS:

 $(1) \dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)).$

- (2) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 \dim(V_1 + V_3) \dim(V_2 + (V_1 \cap V_3)).$
- (3) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 \dim(V_1 + V_2) \dim(V_3 + (V_1 \cap V_2)).$
- For (1). Because $\dim (V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim (V_2 \cap V_3) \dim (V_1 + (V_2 \cap V_3))$. And $\dim (V_2 \cap V_3) = \dim V_2 + \dim V_3 - \dim (V_2 + V_3)$.
- ullet Suppose V is a 10-dim vecsp and V_1, V_2, V_3 are subsps of V with
 - (a) dim $V_1 = \dim V_2 = \dim V_3 = 7$. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$.
 - (b) dim V_1 + dim V_2 + dim V_3 > 2 dim V. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$.

SOLUTION:

- (a) By TIPS, $\dim(V_1 \cap V_2 \cap V_3) \ge \dim V_1 + \dim V_2 + \dim V_3 2\dim V > 0$.
- (b) By Tips, $\dim(V_1 \cap V_2 \cap V_3) > 2 \dim V \dim(V_2 + V_3) \dim(V_1 + (V_2 \cap V_3)) \ge 0.$

• (4E 2.C.16)

Suppose V is finite-dim and U is a subsp of V with $U \neq V$. Let $n = \dim V$, $m = \dim U$. Prove that $\exists (n-m)$ subsps U_1, \ldots, U_{n-m} , each of dim (n-1), such that $\bigcap_{i=1}^{n-m} U_i = U$.

SOLUTION:

Let $(v_1, ..., v_m)$ be a basis of U, extend to a basis of V as $(v_1, ..., v_m, u_1, ..., v_{n-m})$.

Define $U_i = \operatorname{span}(v_1, \dots, v_m, u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_{n-m})$ for each i. Then $U \subseteq U_i$ for each i.

And because $\forall v \in \bigcap_{i=1}^{n-m} U_i, v = v_0 + b_1 u_1 + \dots + b_{n-m} u_{n-m} \in U_i \Rightarrow b_i = 0$ for each $i \Rightarrow v \in U$.

Hence
$$\bigcap_{i=1}^{n-m} U_i \subseteq U$$
.

EXAMPLE: Suppose dim V = 6, dim U = 3.

$$(\underbrace{\frac{\text{Basis of V}}{v_1, v_2, v_3, v_4, v_5, v_6}}), \text{ define } \begin{vmatrix} U_1 = \text{span}(v_1, v_2, v_3) \oplus \text{span}(v_5, v_6) \\ U_2 = \text{span}(v_1, v_2, v_3) \oplus \text{span}(v_4, v_6) \\ U_3 = \text{span}(v_1, v_2, v_3) \oplus \text{span}(v_4, v_5) \end{vmatrix} \Rightarrow \dim U_i = 6 - 1, \ i = \underbrace{1, 2, 3}_{6 - 3 = 3}.$$

14 Suppose that V_1, \dots, V_m are finite-dim subsps of V.

Prove that $V_1 + \cdots + V_m$ is finite-dim and $\dim(V_1 + \cdots + V_m) \leq \dim V_1 + \cdots + \dim V_m$.

SOLUTION:

Choose a basis \mathcal{E}_i of $V_i \Rightarrow V_1 + \dots + V_m = \operatorname{span}(\mathcal{E}_1 \cup \dots \cup \mathcal{E}_m)$; dim $V_i = \operatorname{card} \mathcal{E}_i$.

Then $\dim(V_1 + \cdots + V_m) = \dim \operatorname{span}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m)$.

 \mathbb{Z} dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m$.

Thus $\dim(V_1 + \dots + V_m) \leq \dim V_1 + \dots + \dim V_m$.

 $\text{Comment: } \dim(V_1 + \dots + V_m) = \dim V_1 + \dots + \dim V_m \Longleftrightarrow V_1 + \dots + V_m \text{ is a direct sum.}$

For each i, $(V_1 + \cdots + V_i) \cap V_{i+1} = \{0\} \iff V_1 + \cdots + V_m$ is a direct sum

$$\iff$$
 $(\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{k-1}) \cap \mathcal{E}_k = \emptyset$ for each $i \setminus \mathbb{X}$ dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m)$

 \iff dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card} \mathcal{E}_1 + \cdots + \operatorname{card} \mathcal{E}_m$

$$\iff \dim(V_1 + \dots + V_m) = \dim V_1 + \dots + \dim V_m.$$

17 Suppose V_1, V_2, V_3 are subsps of a finite-dim vecsp, then

$$\dim\bigl(V_1+V_2+V_3\bigr)=\dim V_1+\dim V_2+\dim V_3$$

$$-\dim(V_1 \cap V_2) - \dim(V_1 \cap V_3) - \dim(V_2 \cap V_3) + \dim(V_1 \cap V_2 \cap V_3).$$

Explain why you might think and prove the formula above or give a counterexample.

SOLUTION:

[Similar to] Given three sets *A*, *B* and *C*.

Because $|X + Y| = |X| + |Y| - |X \cap Y|$; $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$.

Now $|(A \cup B) \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C|$.

And $|(A \cup B) \cap C| = |(A \cap C) \cup (B \cap C)| = |A \cap C| + |B \cap C| - |A \cap B \cap C|$.

Hence $|(A \cup B) \cup C| = |A| + |B| + |C| + |A \cap B \cap C| - |A \cap B| - |A \cap C| - |B \cap C|$.

Because $(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3) = (V_1 + V_3) + V_2$.

$$\dim(V_1 + V_2 + V_3) = \dim(V_1 + V_2) + \dim(V_3) - \dim((V_1 + V_2) \cap V_3)$$
 (1)

$$=\dim\bigl(V_2+V_3\bigr)+\dim\bigl(V_1\bigr)-\dim\bigl(\bigl(V_2+V_3\bigr)\cap V_1\bigr)\quad (2)$$

$$=\dim\bigl(V_1+V_3\bigr)+\dim\bigl(V_2\bigr)-\dim\bigl(\bigl(V_1+V_3\bigr)\cap V_2\bigr)\quad (3)$$

Notice that in general, $(X + Y) \cap Z \neq X \cap Z + Y \cap Z$.

For example, $X = \{(x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\}, Y = \{(0,y) \in \mathbb{R}^2 : y \in \mathbb{R}\}, Z = \{(z,z) \in \mathbb{R}^2 : z \in \mathbb{R}\}.$

• Corollary: Suppose V_1 , V_2 and V_3 are finite-dim vecsps, then $\frac{(1)+(2)+(3)}{3}$:

 $\dim\bigl(V_1+V_2+V_3\bigr)=\dim V_1+\dim V_2+\dim V_3$

$$-\frac{\dim(V_1 \cap V_2) + \dim(V_1 \cap V_3) + \dim(V_2 \cap V_3)}{3} - \frac{\dim((V_1 + V_2) \cap V_3) + \dim((V_1 + V_3) \cap V_2) + \dim((V_2 + V_3) \cap V_1)}{3}.$$

The formula above may seem strange because the right side does not look like an integer.

• TIPS: Suppose $v_1, ..., v_n \in V$, dim span $(v_1, ..., v_n) = n$. Then $(v_1, ..., v_n)$ is a basis of span $(v_1, ..., v_n)$. Notice that $(v_1, ..., v_n)$ is a spanning list of span $(v_1, ..., v_n)$ of length $n = \dim \text{span}(v_1, ..., v_n)$. **15** Suppose V is finite-dim and dim $V = n \ge 1$. Prove that \exists one-dim subsps V_1, \dots, V_n of V such that $V = V_1 \oplus \dots \oplus V_n$. **SOLUTION:** Suppose $B_V = (v_1, ..., v_n)$. Define V_i by $V_i = \text{span}(v_i)$ for each $i \in \{1, ..., n\}$. Then $\forall v \in V, \exists ! a_i \in F, v = a_1v_1 + \dots + a_nv_n$ $\Rightarrow \exists ! u_i \in V_i, v = u_1 + \dots + u_n \Rightarrow V = V_1 \oplus \dots \oplus V_n.$ • COROLLARY: Suppose W is finite-dim, dim W = m and $w \in W \setminus \{0\}$. Prove that $\exists B_W = (w_1, \dots, w_m)$ such that $w = w_1 + \dots + w_m$. [Proof] By Problem (15), \exists one-dim subsps W_1, \dots, W_m of W such that $W = W_1 \oplus \dots \oplus W_m$. Note that dim $W_i = \dim \operatorname{span}(w_i) = 1 \Rightarrow \forall x_i \in W_i, \exists ! c_i \in F, x_i = c_i w_i$. Suppose $w = x_1 + \dots + x_m$, where each $x_i = c_i w_i \in W_i$. Then (x_1, \dots, x_m) is also a basis of W. OR. Note that $w \neq 0 \Rightarrow m \geqslant 1$. If m = 1 then let $w_1 = w$ and we are done. Suppose m > 1. Extend (w) to a basis (w, w_1, \dots, w_{m-1}) of W. Let $w_m = w - w_1 - \dots - w_{m-1}$. \mathbb{X} span $(w, w_1, \dots, w_{m-1}) = \text{span}(w_1, \dots, w_m)$. Hence (w_1, \dots, w_m) is also a basis of W. • New Theorem: Suppose V is finite-dim with dim V = n and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, ..., v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geqslant 1$. We will construct B_V via the following process. **Step 1.** $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. **Step k.** Suppose $(v_1, ..., v_{k-1})$ is linely inde in V, each of which belongs to $V \setminus U$. Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12), (because span $(v_1, \dots, v_{k-1}) \not\subseteq U$,) $U \subseteq \text{span}(v_1, \dots, v_{k-1}) \Rightarrow \text{span}(v_1, \dots, v_{k-1}) = V$. Hence because span $(v_1, ..., v_{k-1}) \neq V$, it must be case that span $(v_1, ..., v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \text{span}(v_1, \dots, v_{k-1})$. By (2.A.11), (v_1, \dots, v_k) is linely inde in V. If span $(v_1, \dots, v_k) = V$, then we stop. Because *V* is finite-dim, this process will stop after *n* steps. Or. If $U = \{0\}$ then we are done. Suppose dim $U \ge 1$. Let $(u_1, ..., u_m)$ be a basis of U, extend to a basis $(u_1, ..., u_n)$ of V. Then let $B_V = (u_1 - u_k, ..., u_m - u_k, u_{m+1}, ..., u_k, ..., u_n)$. **ENDED**

3.A 3 4 5 7 8 10 11 12 13 | 4E: 10, 11, 16

• Tips: $T: V \to W$ is linear $\iff \begin{vmatrix} (-) \ \forall v, u \in V, T(v+u) = Tv + Tu; \\ (-) \ \forall v, u \in V, \lambda \in F, T(\lambda v) = \lambda(Tv). \end{vmatrix} \iff T(v + \lambda u) = Tv + \lambda Tu.$ $T \in \mathcal{L}(V, W) \iff T \in \mathcal{L}(V, \text{range } T). \text{ And } \{T \in \mathcal{L}(V, W) : \text{range } T \subseteq U\} = \mathcal{L}(V, U).$

• Suppose $T \in \mathcal{L}(V, W)$. Prove that $Tv \neq 0 \Rightarrow v \neq 0$.

SOLUTION: Assume that v = 0. Then $Tv = T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$.

Or. $T(0) = T(0+0) = T(0) + T(0) \Rightarrow T(0) = 0$. Contradicts.

- (4E 1.B.7) Suppose $V \neq \emptyset$ and W is a vecsp. Let $W^V = \{f : V \rightarrow W\}$.
 - (a) Define a natural add and scalar multi on W^V .
 - (b) Prove that W^V is a vecsp with these definitions.

SOLUTION:

- (a) $W^V \ni f + g : x \to f(x) + g(y)$; where f(x) + g(y) is the vec add on W. $W^V \ni \lambda f : x \to \lambda f(x)$; where $\lambda f(x)$ is the scalar multi on W.
- (b) Commutativity: (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x). Associativity: ((f+g)+h)(x) = ((f)(x)+(g)(x)) + (h)(x)

$$= (f)(x) + ((g)(x) + (h)(x)) = (f + (g+h))(x).$$

Additive Identity: (f + 0)(x) = f(x) + 0(x) = f(x) + 0 = f(x).

Additive Inverse: (f + g)(x) = f(x) + g(x) = f(x) + (-f(x)) = 0 = 0(x).

Distributive Properties:

$$(a(f+g))(x) = a(f+g)(x) = a(f(x) + g(x))$$

= $af(x) + ag(x) = (af)(x) + (ag)(x) = (af + ag)(x).$

Similarly, ((a+b)f)(x) = (af + bf)(x).

So far, we have used the same properties in *W*.

Which means that *if* W^V *is a vecsp, then* W *must be a vecsp.*

Multiplication Identity: (1f)(x) = 1f(x) = f(x). (Notice that the smallest **F** is $\{0,1\}$.)

5 Because $\mathcal{L}(V, W) = \{T : V \to W \mid T \text{ is linear}\}\$ is a subsp of W^V , $\mathcal{L}(V, W)$ is a vecsp.

• Given the fact that $\mathcal{L}(V,W)$ is a vecsp. Prove or give a counterexample: V,W are vecsps. We can guarantee that $\{0\} \subseteq \mathcal{L}(V,W), \{0\} \subseteq V, \{0\} \subseteq W$.

And by [3.2], the additivity and homogeneity imply that V is closed under add and scalar multi.

(We cannot even guarantee that W^V is a vecsp.)

SOLUTION:

(I) If $W^V = \{0\}$. Then $\mathcal{L}(V, W) = \{0\}$.

And $W = \{0\}$, for if not, $\exists w \in W \setminus \{0\}$, define a map f by f(x) = w, $\forall x \in V$.

And *V* might not be a vecsp. Example:

- (II) If W^V is a nonzero vecsp. Then W is a vecsp.
 - (a) If $\mathcal{L}(V, W) = \{0\}$, then we cannot guarantee that V is a vecsp. Example:
 - (b) If not, then $\exists T \in \mathcal{L}(V, W), T \neq 0$. Which means $\exists v \in V, Tv \neq 0 \Rightarrow v \neq 0$.

Then both *W* and *V* have a nonzero element.

(i) If \exists inje $T \in \mathcal{L}(V, W)$, then $T(u + v) = (v + u) \Rightarrow u + v = v + u$. etc. Hence V is a vecsp.

(ii) If not, then we cannot guarantee that V is a vecsp.

Example:

(III) If W^V is not a vecsp, then W is not a vecsp.

Example:

TODO

3 Suppose $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$. Prove that $\exists A_{j,k} \in \mathbf{F}$ such that for any $(x_1, \dots, x_n) \in \mathbf{F}^n$ $\begin{pmatrix} A_{1,1}x_1 + \dots + A_{1,n}x_n \end{pmatrix}$

$$T(x_{1},...,x_{n}) = \begin{pmatrix} A_{1,1}x_{1} + \cdots + A_{1,n}x_{n}, \\ \vdots & \ddots & \vdots \\ A_{m,1}x_{1} + \cdots + A_{m,n}x_{n} \end{pmatrix}$$

SOLUTION:

Let $T(1,0,0,\ldots,0,0) = (A_{1,1},\ldots,A_{m,1})$, Note that $(1,0,\ldots,0,0),\cdots,(0,0,\ldots,0,1)$ is a basis of \mathbf{F}^n . $T(0,1,0,\ldots,0,0) = (A_{1,2},\ldots,A_{m,2}), \text{ Then by } [3.5], \text{ we are done.} \qquad \Box$ \vdots $T(0,0,0,\ldots,0,1) = (A_{1,n},\ldots,A_{m,n}).$

4 Suppose $T \in \mathcal{L}(V, W)$, and $v_1, ..., v_m \in V$ such that $(Tv_1, ..., Tv_m)$ is linely inde in W. Prove that $(v_1, ..., v_m)$ is linely inde.

SOLUTION: Suppose $a_1v_1 + \cdots + a_mv_m = 0$. Then $a_1Tv_1 + \cdots + a_mTv_m = 0$. Thus $a_1 = \cdots = a_m = 0$. \square

7 Show that every linear map from a one-dim vecsp to itself is a multi by some scalar. More precisely, prove that if dim V=1 and $T\in\mathcal{L}(V)$, then $\exists\,\lambda\in\mathbf{F}, Tv=\lambda v, \,\forall v\in V.$

SOLUTION:

Let u be a nonzero vec in $V \Rightarrow V = \operatorname{span}(u)$. Because $Tu \in V \Rightarrow Tu = \lambda u$ for some λ . Suppose $v \in V \Rightarrow v = au$, $\exists ! a \in F$. Then $Tv = T(au) = \lambda au = \lambda v$.

8 Give a function $\varphi: \mathbb{R}^2 \to \mathbb{R}$ such that $\forall a \in \mathbb{R}, v \in \mathbb{R}^2, \varphi(av) = a\varphi(v)$ but φ is not linear.

SOLUTION: Define
$$T(x,y) = \begin{cases} x+y, & \text{if } (x,y) \in \text{span}(3,1), \\ 0, & \text{otherwise.} \end{cases}$$
 OR. Define $T(x,y) = \sqrt[3]{(x^3+y^3)}$.

9 Give a function $\varphi: \mathbb{C} \to \mathbb{C}$ such that $\forall w, z \in \mathbb{C}$, $\varphi(w+z) = \varphi(w) + \varphi(z)$ but φ is not linear. (Here \mathbb{C} is thought of as a complex vecsp.)

SOLUTION:

Suppose $V_{\rm C}$ is the complexification of a vecsp V. Suppose $\varphi:V_{\rm C}\to V_{\rm C}$.

Define $\varphi(u + iv) = u = \text{Re}(u + iv)$ OR. Define $\varphi(u + iv) = v = \text{Im}(u + iv)$.

• Prove that if $q \in \mathcal{P}(\mathbf{R})$ and $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ is defined by $Tp = q \circ p$, then T is not linear.

SOLUTION:

Because in general, $q \circ (p_1 + \lambda p_2)(x) = q(p_1(x) + \lambda p_2(x)) \neq (q \circ p_1)(x) + \lambda (q \circ p_2)(x)$. **Example:** Let q be defined by $q(x) = x^2$, then $q \circ (1 + (-1)) = 0 \neq q(1) + q(-1) = 2$.

10 Suppose U is a subsp of V with $U \neq V$. Suppose $S \in \mathcal{L}(U, W)$ with $S \neq 0$ (which means that $\exists u \in U, Su \neq 0$).

 $Define \ T: V \to W \ by \ Tv = \left\{ \begin{array}{l} Sv, \ if \ v \in U, \\ 0, \ \ if \ v \in V \backslash U. \end{array} \right. \ Prove \ that \ T \ is \ not \ a \ linear \ map \ on \ V.$

SOLUTION:

Suppose *T* is a linear map. And $v \in V \setminus U$, $u \in U$ such that $Su \neq 0$.

Then $v + u \in V \setminus U$, (for if not, $v = (v + u) - u \in U$) while $T(v + u) = 0 = Tv + Tu = 0 + Su \Rightarrow Su = 0$.

Hence we get a contradiction.

11 Suppose U is a subsp of V and $S \in \mathcal{L}(U, W)$. Prove that $\exists T \in \mathcal{L}(V, W), Tu = Su, \forall u \in U. (Or. \exists T \in \mathcal{L}(V, W), T|_{U} = S.)$ In other words, every linear map on a subsp of V can be extended to a linear map on the entire V. **SOLUTION**: Suppose W is such that $V = U \oplus W$. Then $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $T \in \mathcal{L}(V, W)$ by $T(u_v + w_v) = Su_v$. Or. [Finite-dim Req] Define by $T\left(\sum_{i=1}^{m} a_i u_i\right) = \sum_{i=1}^{n} a_i S u_i$. Let $B_V = \left(\overline{u_1, \dots, u_n}, \dots, u_m\right)$. \square **12** Suppose nonzero V is finite-dim and W is infinite-dim. Prove that $\mathcal{L}(V,W)$ is infinite-dim. **SOLUTION:** Let $(v_1, ..., v_n)$ be a basis of V. Let $(w_1, ..., w_m)$ be linely inde in W for any $m \in \mathbb{N}^+$. Define $T_{x,y}: V \to W$ by $T_{x,y}(v_z) = \delta_{z,x} w_y$, $\forall x \in \{1, ..., n\}, y \in \{1, ..., m\}$, where $\delta_{z,x} = \begin{cases} 0, & z \neq x, \\ 1, & z = x. \end{cases}$ $\forall v = \sum_{i=1}^{n} a_i v_i, \ u = \sum_{i=1}^{n} b_i v_i, \ \lambda \in \mathbf{F}, T_{x,y}(v + \lambda u) = (a_x + \lambda b_x) v_y = T_{x,y}(v) + \lambda T_{x,y}(u).$ Linearity checked. Now suppose $a_1T_{x,1} + \cdots + a_mT_{x,m} = 0$. Then $(a_1T_{x,1} + \dots + a_mT_{x,m})(v_x) = 0 = a_1w_1 + \dots + a_mw_m \Rightarrow a_1 = \dots = a_m = 0$. \mathbb{Z} *m* arbitrary. Thus $(T_{x,1},...,T_{x,m})$ is a linely inde list in $\mathcal{L}(V,W)$ for any x and length m. Hence by (2.A.14). **13** Suppose $(v_1, ..., v_m)$ is linely depe in V and $W \neq \{0\}$. Prove that $\exists w_1, \dots, w_m \in W, \nexists T \in \mathcal{L}(V, W)$ such that $Tv_k = w_k, \forall k = 1, \dots, m$. **SOLUTION:** We prove by contradiction. By linear dependence lemma, $\exists j \in \{1, ..., m\}, v_i \in \text{span}(v_1, ..., v_{i-1}).$ Fix *j*. Let $w_j \neq 0$, while $w_1 = \dots = w_{j-1} = w_{j+1} = w_m = 0$. Define *T* by $Tv_k = w_k$ for all *k*. Suppose $a_1v_1 + \cdots + a_mv_m = 0$ (where $a_i \neq 0$). Then $T(a_1v_1 + \cdots + a_mv_m) = 0 = a_1w_1 + \cdots + a_mw_m = a_iw_i$ while $a_i \neq 0$ and $w_i \neq 0$. Contradicts. \square OR. We prove the contrapositive: Suppose $\forall w_1, \dots, w_m \in W, \exists T \in \mathcal{L}(V, W), Tv_k = w_k$ for each w_k . Now we show that $(v_1, ..., v_n)$ is linely inde. Suppose $\exists a_i \in F, a_1v_1 + \cdots + a_nv_n = 0$. Choose one $w \in W \setminus \{0\}$. By assumption, for $(\overline{a_1}w, ..., \overline{a_m}w)$, $\exists T \in \mathcal{L}(V, W)$, $Tv_k = \overline{a_k}w$ for each v_k . Now we have $0 = T\left(\sum_{k=1}^m a_k v_k\right) = \sum_{k=1}^m a_k T v_k = \sum_{k=1}^m a_k \overline{a_k} w = \left(\sum_{k=1}^m |a_k|^2\right) w$. Then $\sum_{k=1}^{m} |a_k|^2 = 0 \Rightarrow a_k = 0$ for each k. Hence (v_1, \dots, v_n) is linely inde. • (4E 3.A.16) Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}$, $ET \in \mathcal{E}$ **SOLUTION**: Let $(v_1, ..., v_n)$ be a basis of V. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$. Let $S \in \mathcal{E} \setminus \{0\}$. Suppose $Sv_i \neq 0$ and $Sv_i = a_1v_1 + \cdots + a_nv_n$, where $a_k \neq 0$. Define $R_{x,y} \in \mathcal{L}(V)$ by $R_{x,y}(v_x) = v_y$, $R_{x,y}(v_z) = 0$ ($z \neq x$). Or. $R_{x,y}v_z = \delta_{z,x}v_y$. Then $(R_{1,1} + \cdots + R_{n,n})v_i = v_i \Rightarrow \sum_{r=1}^n R_{r,r} = I$. Assume that each $R_{x,y} \in \mathcal{E}$. Hence $\forall T \in \mathcal{L}(V), I \circ T = T \circ I = T \in \mathcal{E} \Rightarrow \mathcal{E} = \mathcal{L}(V)$. Now we prove the assumption. Notice that $\forall x, y \in \mathbb{N}^+$, $(R_{k,y}S)(v_i) = a_k v_y \Rightarrow ((R_{k,y}S) \circ R_{x,i})(v_z) = \delta_{z,x}(a_k v_y)$. Thus $R_{k,y}SR_{x,i} = a_kR_{x,y}$. Now $S \in \mathcal{E} \Rightarrow R_{k,y}S \in \mathcal{E} \Rightarrow R_{x,y} \in \mathcal{E}$.

• (4E 3.B.32) Suppose V is finite-dim with $n = \dim V > 1$. Show that if $\varphi : \mathcal{L}(V) \to \mathbf{F}$ is linear and $\forall S, T \in \mathcal{L}(V), \varphi(ST) = \varphi(S) \cdot \varphi(T)$, then $\varphi = 0$.

SOLUTION:

Using notations in (4E 3.A.16). Using the result in NOTE FOR [3.60].

Suppose
$$\varphi \neq 0 \Rightarrow \exists i, j \in \{1, ..., n\}, \ \varphi(R_{i,j}) \neq 0$$
. Because $R_{i,j} = R_{x,j} \circ R_{i,x}, \ \forall x = 1, ..., n$
 $\Rightarrow \varphi(R_{i,j}) = \varphi(R_{x,j}) \cdot \varphi(R_{i,x}) \neq 0 \Rightarrow \varphi(R_{x,j}) \neq 0$ and $\varphi(R_{i,x}) \neq 0$.

Again, because
$$R_{i,x} = R_{y,x} \circ R_{i,y}$$
, $\forall y = 1, ..., n$. Thus $\varphi(R_{y,x}) \neq 0$, $\forall x, y = 1, ..., n$.

Let
$$k \neq i, j \neq l$$
 and then $\varphi(R_{i,j} \circ R_{l,k}) = \varphi(R_{l,k} \circ R_{i,j}) = \varphi(0) = 0 = \varphi(R_{l,k}) \cdot \varphi(R_{i,j})$

$$\Rightarrow \varphi(R_{l,k}) = 0 \text{ or } \varphi(R_{i,j}) = 0.$$
 Contradicts.

Or. Note that by (4E 3.A.16), $\exists S, T \in \mathcal{L}(V), ST - TS \neq 0$.

Then
$$\varphi(ST - TS) = \varphi(S)\varphi(T) - \varphi(T)\varphi(S) = 0 \Rightarrow ST - TS \in \text{null } \varphi \neq \{0\}.$$

Note that
$$\forall E \in \text{null } \varphi, T \in \mathcal{L}(V), \varphi(ET) = \varphi(TE) = 0 \Rightarrow ET, TE \in \text{null } \varphi$$
.

Hence null
$$\varphi$$
 is a nonzero two-sided ideal of $\mathcal{L}(V)$.

• Suppose V is finite-dim. $T \in \mathcal{L}(V)$ is such that $\forall S \in \mathcal{L}(V)$, ST = TS. Prove that $\exists \lambda \in \mathbf{F}, T = \lambda I$.

SOLUTION:

If $V = \{0\}$, then we are done. Now suppose $V \neq \{0\}$.

Assume that (v, Tv) is linely depe for every $v \in V$, then by (2.A.2.(b)), $Tv = \lambda_v v$ for some $\lambda_v \in F$. To prove that λ_v is independent of v, we discuss in two cases:

$$(-) \text{ If } (v,w) \text{ is linely inde, } \lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \\ \Rightarrow (\lambda_{v+w} - \lambda_v)v + (\lambda_{v+w} - \lambda_w)w = 0 \\ (=) \text{ Otherwise, suppose } w = cv, \lambda_w w = Tw = cTv = c\lambda_v v = \lambda_v w \Rightarrow (\lambda_w - \lambda_v)w \end{cases} \Rightarrow \lambda_w = \lambda_v.$$

Now we show the assumption. Assume that (v, Tv) is linely inde for some v. Let $B_V = (v, Tv, u_1, \dots, u_n)$.

Define
$$S \in \mathcal{L}(V)$$
 by $S(av + bTv + c_1u_1 + \dots + c_nu_n) = bv \Rightarrow S(Tv) = v = T(Sv) = 0$. Contradicts. \square

OR. Let $(v_1, ..., v_m)$ be a basis of V.

Define
$$\varphi \in \mathcal{L}(V, \mathbf{F})$$
 by $\varphi(v_1) = \cdots = \varphi(v_m) = 1$. Let $\lambda = \varphi(Tv_1) \in \mathbf{F}$.

For any $v \in V$, define $S_v \in \mathcal{L}(V)$ by $S_v u = \varphi(u)v$.

Then
$$Tv = T(\varphi(v_1)v) = T(S_vv_1) = S_v(Tv_1) = \varphi(Tv_1)v = \lambda v$$
.

Or. For each
$$k \in \{1, \dots, n\}$$
, define $S_k \in \mathcal{L}(V)$ by $S_k v_j = \left\{ \begin{array}{l} v_k, j = k, \\ 0, j \neq k. \end{array} \right.$ Or. $S_k v_j = \delta_{j,k} v_k$

Note that
$$S_k\left(\sum_{i=1}^n a_i v_i\right) = a_k v_k$$
. Then $S_k v = v \iff \exists ! a_k \in \mathbf{F}, v = a_k v_k$.

Hence
$$S_k(Tv_k) = T(S_kv_k) = Tv_k \Rightarrow Tv_k = a_kv_k$$
.

Define
$$A^{(j,k)} \in \mathcal{L}(V)$$
 by $A^{(j,k)}v_i = v_k, A^{(j,k)}v_k = v_i, A^{(j,k)}v_x = 0, x \neq j, k$.

Then
$$A^{(j,k)}Tv_j = TA^{(j,k)}v_j = Tv_k = a_k v_k$$
; $A^{(j,k)}Tv_j = A^{(j,k)}a_j v_j = a_j A^{(j,k)}v_j = a_j v_k$.

Hence
$$a_k = a_j$$
. Thus a_k is independent of v_k .

3 · B 3 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 4E: 24, 27, 31, 32, 33

• Suppose that V and W are real vecsps and $T \in \mathcal{L}(V, W)$. Define $T_C: V_C \to W_C$ by $T_C(u + iv) = Tu + iTv$ for all $u, v \in V$. Show that (a) T_C is linear, (b) T_C is inje $\iff T$ is inje, (c) T_C is surj $\iff T$ is surj.

SOLUTION:

- (a) $\forall u_1 + iv_1, u_2 + iv_2 \in V_C, \lambda \in \mathbb{F},$ $T((u_1 + iv_1) + \lambda(u_2 + iv_2)) = T((u_1 + \lambda u_2) + i(v_1 + \lambda v_2)) = T(u_1 + \lambda u_2) + iT(v_1 + \lambda v_2)$ $= Tu_1 + iTv_1 + \lambda Tu_2 + i\lambda Tv_2 = T(u_1 + iv_1) + \lambda T(u_2 + iv_2).$
- (b) Suppose $T_{\mathbf{C}}$ is inje. Let $T(u) = 0 \Rightarrow T_{\mathbf{C}}(u + \mathrm{i}0) = Tu = 0 \Rightarrow u = 0$. Suppose T is inje. Let $T_{\mathbf{C}}(u + \mathrm{i}v) = Tu + \mathrm{i}Tv = 0 \Rightarrow Tu = Tv = 0 \Rightarrow u + \mathrm{i}v = 0$.
- Suppose $T_{\mathbf{C}}$ is surj. $\forall w \in W, \exists u \in V, T(u+\mathrm{i}0) = Tu = w+\mathrm{i}0 = w \Rightarrow T$ is surj. Suppose T is surj. $\forall w, x \in W, \exists u, v \in V, Tu = w, Tv = x$ $\Rightarrow \forall w + \mathrm{i}x \in W_{\mathbf{C}}, \exists u + \mathrm{i}v \in V, T(u+\mathrm{i}v) = w+\mathrm{i}x \Rightarrow T_{\mathbf{C}}$ is surj.
- **3** Suppose (v_1, \ldots, v_m) in V. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $T(z_1, \ldots, z_m) = z_1v_1 + \cdots + z_mv_m$.
 - (a) The surj of T correspds to $(v_1, ..., v_m)$ spanning V.
 - (b) The inje of T correspds to $(v_1, ..., v_m)$ being linely inde.

Comment: Let $(e_1, ..., e_m)$ be the standard basis of \mathbf{F}^m . Then $Te_k = v_k$.

- (a) range $T = \text{span}(v_1, ..., v_m) = V$; (b) $(v_1, ..., v_m)$ is linely inde $\iff T$ is inje.
- 7 Suppose V is finite-dim with $2 \le \dim V$. And $\dim V \le \dim W = m$, if W is finite-dim. Show that $U = \{T \in \mathcal{L}(V, W) : \operatorname{null} T \neq \{0\}\}$ is not a subsp of $\mathcal{L}(V, W)$.

SOLUTION: The set of all inje $T \in \mathcal{L}(V, W)$ is a not subsp either.

Let (v_1, \dots, v_n) be a basis of V, (w_1, \dots, w_m) be linely inde in W. $(2 \le n \le m)$ Define $T_1 \in \mathcal{L}(V, W)$ as $T_1 : v_1 \mapsto 0$, $v_2 \mapsto w_2$, $v_i \mapsto w_i$.

Define $T_2 \in \mathcal{L}(V, W)$ as $T_2 : v_1 \mapsto w_1$, $v_2 \mapsto 0$, $v_i \mapsto w_i$, $i = 3, \dots, n$.

Comment: If dim V=0, then $V=\left\{0\right\}=\mathrm{span}(\).\ \forall\ T\in\mathcal{L}(V,W)$, T is inje. Hence $U=\emptyset$. If dim V=1, then $V=\mathrm{span}(v_0)$. Thus $U=\mathrm{span}(T_0)$, where $T_0v_0=0$.

- **8** Suppose W is finite-dim with dim $W \ge 2$. And $n = \dim V \ge \dim W$, if V is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{range } T \ne W \}$ is not a subsp of $\mathcal{L}(V, W)$.
- **SOLUTION**: The set of all surj $T \in \mathcal{L}(V, W)$ is not a subspace either.

Let (v_1,\ldots,v_n) be linely inde in V, (w_1,\ldots,w_m) be a basis of W. $(n\in\{m,m+1,\ldots\};2\leqslant m\leqslant n.)$ Define $T_1\in\mathcal{L}(V,W)$ as $T_1:v_1\mapsto 0$, $v_2\mapsto w_2$, $v_j\mapsto w_j$, $v_{m+i}\mapsto 0$. Define $T_2\in\mathcal{L}(V,W)$ as $T_2:v_1\mapsto w_1$, $v_2\mapsto 0$, $v_j\mapsto w_j$, $v_{m+i}\mapsto 0$.

(For each $j=2,\ldots,m;\ i=1,\ldots,n-m$, if V is finite, otherwise let $i\in\mathbb{N}^+$.) Thus $T_1+T_2\notin U$. \square

Comment: If dim W=0, then $W=\left\{0\right\}=\mathrm{span}(\).\ \forall\ T\in\mathcal{L}(V,W)$, T is surj. Hence $U=\emptyset$. If dim W=1, then $W=\mathrm{span}(v_0)$. Thus $U=\mathrm{span}(T_0)$, where $T_0v_0=0$.

11 Suppose $S_1, ..., S_n$ are linear and inje. $S_1 S_2 ... S_n$ makes sence. Prove that $S_1 S_2 ... S_n$ is inje.

Solution: $S_1S_2...S_n(v) = 0 \iff S_2S_3...S_n(v) = 0 \iff \cdots \iff S_n(v) = 0 \iff v = 0.$

9 Suppose $(v_1,, v_n)$ is linely inde. Prove that \forall inje T , $(Tv_1,, Tv_n)$ is linely inde. SOLUTION : $a_1Tv_1 + \cdots + a_nTv_n = 0 = T(\sum_{i=1}^n a_iv_i) \iff \sum_{i=1}^n a_iv_i = 0 \iff a_1 = \cdots = a_n = 0.$	
10 Suppose span $(v_1,, v_n) = V$. Show that span $(Tv_1,, Tv_n) = \operatorname{range} T$. Solution:	
(a) range $T = \{Tv : v \in V\} = \{Tv : v \in \operatorname{span}(v_1, \dots, v_n)\} \Rightarrow Tv_1, \dots, Tv_n \in \operatorname{range} T \Rightarrow \operatorname{By} [2.7].$ OR. $\operatorname{span}(Tv_1, \dots, Tv_n) \ni a_1 Tv_1 + \dots + a_n Tv_n = T(a_1 v_1 + \dots + a_n v_n) \in \operatorname{range} T.$ (b) $\forall w \in \operatorname{range} T, \exists v \in V, w = Tv. (\exists a_i \in F, v = a_1 v_1 + \dots + a_n v_n) \Rightarrow w = a_1 Tv_1 + \dots + a_n Tv_n.$	
16 Suppose $\exists T \in \mathcal{L}(V)$ such that $\operatorname{null} T$, range T are finite-dim. Prove that V is finite-different Solution: Let $B_{\operatorname{range} T} = (Tv_1, \dots, Tv_n)$, $B_{\operatorname{null} T} = (u_1, \dots, u_m)$. $\forall v \in V, T(v - a_1v_1 - \dots - a_nv_n) = 0$, letting $Tv = a_1Tv_1 + \dots + a_nTv_n$.	im.
$\Rightarrow v - a_1 v_1 - \dots - a_n v_n = b_1 u_1 + \dots + b_m u_m. \text{ Hence } V \subseteq \text{span}(v_1, \dots, v_n, u_1, \dots, u_m).$	
17 Suppose V , W are finite-dim. Prove that \exists inje $T \in \mathcal{L}(V,W) \iff \dim V \leqslant \dim W$. Solution:	
(a) Suppose \exists inje T . Then $\dim V = \dim \operatorname{range} T \leq \dim W$.	
(b) Suppose dim $V \leq \dim W$. Let $B_V = (v_1,, v_n)$, $B_W = (w_1,, w_m)$. Define $T \in \mathcal{L}(V, W)$ by $Tv_i = w_i$, $i = 1,, n$ ($= \dim V$).	
18 Suppose V , W are finite-dim. Prove that $\exists surj T \in \mathcal{L}(V, W) \iff \dim V \geqslant \dim W$. Solution:	
(a) Suppose \exists surj T . Then $\dim V = \dim W + \dim \operatorname{null} T \Rightarrow \dim W \leqslant \dim V$.	
(b) Suppose dim $V \ge \dim W$. Let $B_V = (v_1, \dots, v_n)$, $B_W = (w_1, \dots, w_m)$. Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_mv_m + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m$.	
19 Suppose V , W are finite-dim, U is a subsp of V . Prove that if $\underbrace{\dim U}_{m} \geqslant \underbrace{\dim V}_{m+n} - \underbrace{\dim W}_{p}$, then $\exists T \in \mathcal{L}(V,W)$, $\operatorname{null} T = U$. Solution:	
Let $B_U = (u_1, \dots, u_m), B_V = (u_1, \dots, u_m, v_1, \dots, v_n), B_W = (w_1, \dots, w_p).$ Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_nv_n + b_1u_1 + \dots + b_mu_m) = a_1w_1 + \dots + a_nw_n.$	
• (4E 3.B.21) Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, U is a subsp of W . Let $\mathcal{K}_U = \{v \in V : Tv \in U \}$ Prove that \mathcal{K}_U is a subsp of V and $\dim \mathcal{K}_U = \dim \operatorname{null} T + \dim (U \cap \operatorname{range} T)$.	<i>I</i> }.
SOLUTION:	
$\forall u, w \in \mathcal{K}_U, \lambda \in \mathbf{F}, T(u + \lambda w) = Tu + \lambda Tw \in U \Rightarrow \mathcal{K}_U$ is a subspof V . Define $S \in \mathcal{L}(\mathcal{K}_U, U)$ as $Rv = Tv$ for all $v \in \mathcal{K}_U$. Hence range $R = U \cap \text{range } T$. Suppose $\exists v, Tv = 0$. $\not \subset U \Rightarrow Rv = 0$. Thus null $T \subseteq \text{null } R$.	
• Tips: Suppose U is a subsp of V . Prove that $\forall T \in \mathcal{L}(V,W), U \cap \operatorname{null} T = \operatorname{null} T _{U}$.	
SOLUTION: Note that $U \cap \text{null } T \subseteq \text{null } T _U$. On the other hand, suppose $u \in \text{null } T _U$. Then $T _U(u)$ makes sense $\Rightarrow u \in U$. And $T _U(u) = Tu = 0 \Rightarrow u \in \text{null } T$.	

SOLUTION:

By [2.34] (note that V can be infinite-dim), \exists subsp U of V such that $V = U \oplus \text{null } T$. $\forall v \in V, \exists ! w \in \text{null } T, u \in U, v = w + u$. Then $Tv = T(w + u) = Tu \in \{Tu : u \in U\}$.

• NEW NOTATION:

Suppose $T \in \mathcal{L}(V, W)$ and $R = (Tv_1, ..., Tv_n)$ is linely inde in range T.

Where $n = \dim \operatorname{range} T$ if finite-dim, otherwise $n \in \mathbb{N}^+$.

By (3.A.4), $L = (v_1, \dots, v_n)$ is linely inde in V.

Denote \mathcal{K}_R by span L, if range T is finite-dim, otherwise, denote it by a vecsp in \mathcal{S}_V null T.

Note that if range *T* is finite-dim, then $\mathcal{K}_R = \operatorname{range} T$ for any basis *R* of range *T*.

• COMMENT:

If range T is infinite-dim, we cannot write $\mathcal{K}_R = \operatorname{range} T$. For if we do so, we must guarantee that $\forall Tv \in \operatorname{range} T, \exists ! n \in \mathbb{N}^+, Tv \in \operatorname{span}(Tv_1, \dots, Tv_n)$, where $(Tv_k)_{k=1}^{\infty}$ is linely inde.

So that range $T \subseteq \text{span}(Tv_1, \dots, Tv_n, \dots)$. This would be invalid, as we have shown before.

• New Theorem: $\mathcal{K}_R \in \mathcal{S}_V$ null T. Comment: $\text{null } T \in \mathcal{S}_V \mathcal{K}_R$. Suppose range T is finite-dim. Otherwise, we are done immediately.

(a)
$$T\left(\sum_{i=1}^{n} a_i v_i\right) = 0 \Rightarrow \sum_{i=1}^{n} a_i T v_i = 0 \Rightarrow a_1 = \dots = a_n = 0 \Rightarrow \mathcal{K}_R \cap \text{null } T = \{0\}.$$

(b)
$$\forall v \in V, Tv = \sum_{i=1}^{n} a_i Tv_i \Rightarrow Tv - \sum_{i=1}^{n} a_i Tv_i = T(v - \sum_{i=1}^{n} a_i v_i) = 0$$

$$\Rightarrow v - \sum_{i=1}^{n} a_i v_i \in \text{null } T \Rightarrow v = (v - \sum_{i=1}^{n} a_i v_i) + (\sum_{i=1}^{n} a_i v_i) \Rightarrow \mathcal{K}_R + \text{null } T = V.$$

• Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, $B_{\text{range }T} = (Tv_1, \dots, Tv_n)$, $B_V = (v_1, \dots, v_n, u_1, \dots, u_m)$. Prove or give a counterexample: (u_1, \dots, u_m) is a basis of null T.

SOLUTION: A counterexample:

Suppose dim V = 3, $Tv_1 = Tv_2 = Tv_3 = w_1$. Then span $(Tv_1, Tv_2, Tv_3) = \text{span}(w_1)$.

Extend (v_i) to (v_1, v_2, v_3) for each i. But none of (v_1, v_2) , (v_1, v_3) , (v_2, v_3) is a basis of null T.

Comment: (v_2-v_1,v_3-v_1) , (v_1-v_2,v_3-v_2) or (v_1-v_3,v_2-v_3) are all bases of null T. Always notice that $\mathcal{S}_V \mathrm{span}(v_1,\ldots,v_n) = \{U_1,\cdots,\mathrm{null}\,T,\cdots,U_n,\cdots\}$.

• Suppose V is finite-dim, X is a subsp of V, and Y is a finite-dim subsp of W. Prove that if dim X + dim Y = dim V, then $\exists T \in \mathcal{L}(V, W)$, null T = X, range T = Y.

SOLUTION:

Suppose dim X+dim Y = dim V. Let $B_X = (u_1, ..., u_n)$, $B_Y = (w_1, ..., w_m)$, $B_V = (u_1, ..., u_n, v_1, ..., v_m)$. Define $T \in \mathcal{L}(V, W)$ by $Tv_i = w_i$, $Tu_j = 0$. Notice that $\forall v \in V, \exists ! a_i, b_j \in \mathbf{F}, v = \sum_{i=1}^m a_i v_i + \sum_{i=1}^n b_i u_i$. $v \in \text{null } T \iff Tv = 0 \iff a_1 = \cdots = a_m = 0 \iff v \in X$.

$$Y \ni w = a_1 w_1 + \dots + a_m w_m = a_1 T v_1 + \dots + a_m T v_m \in \operatorname{range} T.$$

OR range $T = \operatorname{span}(Tv_1, \dots, Tv_m, Tu_1, \dots, Tu_n) = \operatorname{span}(Tv_1, \dots, Tv_m) = \operatorname{span}(w_1, \dots, w_m) = Y.$

(a) If $v \in \text{null } P \cap \text{range } P \Rightarrow Pv = 0 \text{ and } \exists u \in V, v = Pu. \text{ Then } v = Pu = P^2u = Pv = 0.$ (b) Note that $\forall v \in V, v = Pv + (v - Pv)$ and $P(v - Pv) = 0 \Rightarrow v - Pv \in \text{null } P$. OR. [Only in Finite-dim] Let $(P^2v_1, ..., P^2v_n)$ be a basis of range P^2 . Then $(Pv_1, ..., Pv_n)$ is linely inde. Let $\mathcal{K} = \operatorname{span}(Pv_1, \dots, Pv_n) \Rightarrow V = \mathcal{K} \oplus \operatorname{null} P^2$. While $\mathcal{K} = \operatorname{range} P = \operatorname{range} P^2$; $\operatorname{null} P = \operatorname{null} P^2$. \square **20** Suppose W is finite-dim. Prove that $T \in \mathcal{L}(V, W)$ is inje $\iff \exists S \in \mathcal{L}(W, V), ST = I_V$. **SOLUTION:** (a) Suppose $\exists S \in \mathcal{L}(W, V)$, ST = I. Then if $Tv = 0 \Rightarrow ST(v) = 0 = v$. Or. null $T \subseteq \text{null } ST = \{0\}$. (b) Suppose T is inje. Let $R = B_{\text{range }T} = (Tv_1, ..., Tv_n)$. Then $\mathcal{K}_R \oplus \text{null } T = V$. Let $U \oplus \text{range } T = W$. Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$ and Su = 0, where $i \in \{1, ..., n\}, u \in U$. Thus ST = I. OR. Define $S \in \mathcal{L}(\text{range } T, V)$ by $Sw = T^{-1}w$, where T^{-1} is the inv of $T \in \mathcal{L}(V, \text{range } T)$. Then extend it to $S \in \mathcal{L}(W, V)$ by (3.A.11). Now $\forall v \in V, STv = T^{-1}Tv = v$. **21** Suppose W is finite-dim. Prove that $T \in \mathcal{L}(V, W)$ is $surj \iff \exists S \in \mathcal{L}(W, V), TS = I_W$. **SOLUTION:** (a) Suppose $\exists S \in \mathcal{L}(W, V)$, TS = I. Then $\forall w \in W, TS(w) = w \in \text{range } T \Rightarrow \text{range } T = W$. (b) Suppose T is surj. Let $R = B_{\text{range }T} = B_W = (Tv_1, ..., Tv_n)$. Then $\mathcal{K}_R \oplus \text{null } T = V$. Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$. Then TS = I. Or. By Problem (12), \exists subsp U of V, $V = U \oplus \text{null } T$, range $T = \{Tu : u \in U\}$. Note that $T|_{U}: U \to W$ is an iso. Define $S = (T|_{U})^{-1}$, where $(T|_{U})^{-1}: W \to U$. Then $TS = T \circ (T|_{II})^{-1} = T|_{II} \circ (T|_{II})^{-1}$. **24** Suppose that W is finite-dim and $S, T \in \mathcal{L}(V, W)$. *Prove that* $\operatorname{null} S \subseteq \operatorname{null} T \iff \exists E \in \mathcal{L}(W) \text{ such that } T = ES.$ **SOLUTION:** Suppose $\exists E \in \mathcal{L}(W)$ such that T = ES. Then null $T = \text{null } ES \supseteq \text{null } S$. Suppose null $S \subseteq \text{null } T$. Let $R = B_{\text{range } S} = (Sv_1, \dots, Sv_n)$. Then $V = \mathcal{K}_R \oplus \text{null } S$. Define $E \in \mathcal{L}(W)$ by $E(Sv_i) = Tv_i$, Eu = 0; for each i = 1 ..., n and $u \in \text{null } S$. Hence $\forall v \in V$, $(\exists ! a_i \in \mathbb{F}, u \in \text{null } S)$, $Tv = a_1 T v_1 + \dots + a_n T v_n = E(a_1 S v_1 + \dots + a_n S v_n) \Rightarrow T = ES$. OR. Extend R to a basis $(Sv_1, ..., Sv_n, w_1, ..., w_m)$ of W. Define $E \in \mathcal{L}(W)$ by $E(Sv_k) = Tv_k$, $Ew_j = 0$. Because $\forall v \in V, \exists a_i \in F, Sv = a_1Sv_1 + \dots + a_nSv_n$. Now $v - (a_1v_1 + \dots + a_nv_n) \in \text{null } S \Rightarrow v - (a_1v_1 + \dots + a_nv_n) \in \text{null } T \Rightarrow T(v - (a_1v_1 + \dots + a_nv_n)) = 0.$ Thus $Tv = a_1v_1 + \dots + a_nv_n$. Hence $E(Sv) = a_1E(Sv_1) + \dots + a_nE(Sv_n) = a_1Tv_1 + \dots + a_nTv_n = Tv\square$ **25** Suppose that V is finite-dim and $S, T \in \mathcal{L}(V, W)$. *Prove that* range $S \subseteq \text{range } T \iff \exists E \in \mathcal{L}(V) \text{ such that } S = TE.$ **SOLUTION:** Suppose $\exists E \in \mathcal{L}(V)$ such that S = TE. Then range $S = \text{range } TE \subseteq \text{range } T$. Suppose range $S \subseteq \text{range } T$. Let (v_1, \dots, v_m) be a basis of V.

Note that for each i, $Sv_i \in \text{range } T$. Suppose $u_i \in V$ such that $Tu_i = Sv_i$.

Thus defining $E \in \mathcal{L}(V)$ by $Ev_i = u_i$ for each $i \Rightarrow S = TE$.

• OR (5.B.4) Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{range } P$.

SOLUTION:

Prove that dim null $ST \leq \dim \text{null } S + \dim \text{null } T$. **SOLUTION:** Define $R \in \mathcal{L}(\text{null } ST, V)$ by Ru = Tu for all $u \in \text{null } ST \subseteq U$. $S(Tu) = 0 = S(Ru) \Rightarrow \operatorname{range} R \subseteq \operatorname{null} S \Rightarrow \operatorname{dim} \operatorname{range} R \leqslant \operatorname{dim} \operatorname{null} S$ $Tu = 0 = Ru \Rightarrow \operatorname{null} R \supseteq \operatorname{null} T \Rightarrow \operatorname{dim} \operatorname{null} R = \operatorname{dim} \operatorname{null} T$ \Rightarrow By [3.22], we are done. OR. For any $u \in U$, note that $u \in \text{null } ST \iff S(Tu) = 0 \iff Tu \in \text{null } S$. Thus null $ST = \mathcal{K}_{\text{null } S \cap \text{range } T} = \{ u \in U : Tu \in \text{null } S \}$. By Problem (4E 3B.21), $\dim \operatorname{null} ST = \dim \operatorname{null} T + \dim (\operatorname{null} S \cap \operatorname{range} T) \leq \dim \operatorname{null} T + \dim \operatorname{null} S.$ **COROLLARY:** (1) If *T* is inje, then dim null $T = 0 \Rightarrow \dim \text{null } ST \leqslant \dim \text{null } S$. (2) If T is surj, then range $R = \text{null } S \Rightarrow \dim \text{null } ST = \dim \text{null } S + \dim \text{null } T$. (3) If S is inje, then range $R = \{0\} \Rightarrow \dim \text{null } ST = \dim \text{null } R = \dim \text{null } T$. **23** Suppose U and V are finite-dim vecsps and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. *Prove that* dim range $ST \leq \min \{ \dim \text{range } S, \dim \text{range } T \}$. **SOLUTION:** range $ST = \{Sv : v \in \text{range } T\} = \text{span}(Su_1, ..., Su_{\dim \text{range } T}), \text{ where } B_{\text{range } T} = (u_1, ..., u_{\dim \text{range } T}).$ $\dim \operatorname{range} ST \leq \dim \operatorname{range} T \setminus \dim \operatorname{range} ST \leq \dim \operatorname{range} S$. OR. Note that range $S|_{\text{range }T} = \text{range }ST$. Thus dim range $ST = \dim \operatorname{range} S|_{\operatorname{range} T} = \dim \operatorname{range} T - \dim \operatorname{null} S|_{\operatorname{range} T} \leqslant \operatorname{range} T$. **COROLLARY:** (1) If *S* is inje, then dim range $ST = \dim \operatorname{range} T$. (2) If T is surj, then dim range $ST = \dim \operatorname{range} S$. • (a) Suppose dim V = 5, S, $T \in \mathcal{L}(V)$ are such that ST = 0. Prove that dim range $TS \leq 2$. (b) Let dim V = n in (a). Prove that dim range $TS \leq \left\lceil \frac{n}{2} \right\rceil$. (c) Give an example of $S, T \in \mathcal{L}(\mathbf{F}^5)$ with ST = 0 and dim range TS = 2. **SOLUTION:** (a) By Problem (23), dim range $TS \leq \min \{ \overline{\dim \operatorname{range} S}, \overline{\dim \operatorname{range} T} \}$. We show that dim range $TS \leq 2$ by contradiction. Assume that dim range $TS \geq 3$. Then min $\{5 - \dim \operatorname{null} T, 5 - \dim \operatorname{null} S\} \ge 3 \Rightarrow \max \{\dim \operatorname{null} T, \dim \operatorname{null} S\} \le 2$. $\dim \operatorname{null} S = 5 - \dim \operatorname{range} S$ $\dim \operatorname{range} TS \leqslant \dim \operatorname{range} S$ $\Rightarrow \dim \operatorname{null} S \leqslant 5 - \dim \operatorname{range} TS.$ And $ST = 0 \Rightarrow \operatorname{range} T \subseteq \operatorname{null} S \Rightarrow \operatorname{dim} \operatorname{range} TS \leqslant \operatorname{dim} \operatorname{range} T \leqslant \operatorname{dim} \operatorname{null} S$. Thus dim range $TS \leq 5$ – dim range $TS \Rightarrow$ dim range $TS \leq \frac{5}{2}$. (c) Let $(v_1, ..., v_5)$ be a basis of \mathbb{F}^5 . Define $S, T \in \mathcal{L}(\mathbb{F}^5)$ by:

 $T: \quad v_1 \mapsto 0, \quad \ v_2 \mapsto 0, \quad \ v_i \mapsto v_i \ ;$

 $S: v_1 \mapsto v_4, v_2 \mapsto v_5, v_i \mapsto 0 ; i = 3,4,5.$

22 Suppose U and V are finite-dim vecsps and $S \in \mathcal{L}(V, W)$, $T \in \mathcal{L}(U, V)$.

(b) By Problem (23), dim range $TS \leq \min \left\{ \underbrace{\frac{n-\dim \operatorname{null} T}{\dim \operatorname{range} S}}, \underbrace{\frac{n-\dim \operatorname{null} S}{\dim \operatorname{range} T}} \right\}$. We prove by contradiction.

Assume that dim range $TS \geqslant \left| \frac{n}{2} \right| + 1$.

29 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F})$. Suppose $u \in V \setminus \text{null } \varphi$. Prove that $V = \text{null } \varphi \oplus \{au : a \in \mathbf{F}\}$. Solution: If $\varphi = 0$ then we are done. Suppose $\varphi \neq 0$.

(a) $\forall v = cu \in \text{null } \varphi \cap \{au : a \in \mathbf{F}\}, \varphi(v) = 0 = c\varphi(u) \Rightarrow c = 0. \text{ Hence null } \varphi \cap \{au : a \in \mathbf{F}\} = \{0\}.$

(b)
$$\forall v \in V, v = \left(v - \frac{\varphi(v)}{\varphi(u)}u\right) + \frac{\varphi(v)}{\varphi(u)}u.$$

$$\begin{vmatrix} v - \frac{\varphi(v)}{\varphi(u)}u \in \text{null } \varphi \\ \frac{\varphi(v)}{\varphi(u)}u \in \{au : a \in \mathbf{F}\} \end{vmatrix} \Rightarrow V = \text{null } \varphi \oplus \{au : a \in \mathbf{F}\}.$$

COMMENT: $\varphi \neq 0 \Rightarrow \varphi(v_i) = a_i \neq 0$ for each v_i , for some linely inde list (v_1, \dots, v_k) .

Fix one v_k . Then $\forall j \in \{1, \dots, k-1, k+1, \dots, n\}$, span $\{a_j v_k - a_k v_j\} \subseteq \text{null } \varphi$.

Hence every vecsp in S_V null φ is one-dim.

30 Suppose $\varphi_1, \varphi_2 \in \mathcal{L}(V, \mathbf{F})$ and $\text{null } \varphi_1 = \text{null } \varphi_2 = \text{null } \varphi$. Prove that $\exists c \in \mathbf{F}, \varphi_1 = c\varphi_2$ Solution:

If null $\varphi = V$, then $\varphi_1 = \varphi_2 = 0$, we are done. Suppose $u \in V \setminus \text{null } \varphi \Rightarrow \varphi_1(u), \varphi_2(u) \neq 0$.

By Problem (29), $V = \text{null } \varphi \oplus \text{span}(u)$. Hence for any $v \in V$, $v = w + a_v u$, $\exists ! w \in \text{null } \varphi$, $a_v \in F$.

$$\varphi_1(v) = a_v \varphi_1(u), \quad \varphi_2(v) = a_v \varphi_2(u) \Rightarrow a_v = \frac{\varphi_1(v)}{\varphi_1(u)} = \frac{\varphi_2(v)}{\varphi_2(u)} \Rightarrow \frac{\varphi_1(u)}{\varphi_2(u)} = \frac{\varphi_1(v)}{\varphi_2(v)} = c \in \mathbf{F}.$$

31 Prove that $\exists T_1, T_2 \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^2)$, $\text{null } T_1 = \text{null } T_2 \text{ and } T_1 \neq cT_2, \forall c \in \mathbb{F}$.

SOLUTION:

Let $(v_1, ..., v_5)$ be a basis of \mathbb{R}^5 , (w_1, w_2) be a basis of \mathbb{R}^2 . Define $T, S \in \mathcal{L}(V, W)$ by

$$Tv_1 = w_1$$
, $Tv_2 = w_2$, $Tv_3 = Tv_4 = Tv_5 = 0$
 $Sv_1 = w_1$, $Sv_2 = 2w_2$, $Sv_3 = Sv_4 = Sv_5 = 0$ \Rightarrow null $T = \text{null } S$.

Suppose $T = \lambda S$. Then $w_1 = Tv_1 = \lambda Sv_1 = \lambda w_1 \Rightarrow \lambda = 1$.

While
$$w_2 = Tv_2 = \lambda Sv_2 = 2\lambda w_2 \Rightarrow \lambda = \frac{1}{2}$$
. Contradicts.

• Tips: Suppose $T \in \mathcal{L}(V, W)$ and U is a subsp such that $V = U \oplus \text{null } T$.

Now $\forall v \in V, \exists ! u_v \in U, w_v \in \operatorname{null} T, v = u_v + w_v.$

Then $T = T \circ i$, where $i : V \to U$ is defined by $i(v) = u_v$.

Because
$$\forall v \in V, T(v) = T(u_v + w_v) = T(u_v) = T(i(v)) = (T \circ i)(v)$$
.

TODO: More Exercises and Notes.

ENDED

• Note For [3.47]: LHS =
$$(AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,r})_{1,r} (C_{\cdot,k})_{r,1} = (A_{j,r} C_{\cdot,k})_{1,1} = A_{j,r} C_{\cdot,k} = RHS.$$

• Note For [3.48]:

- [4E 3.51] Suppose $C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,p}$.
 - (a) For $k=1,\ldots,p$, $(CR)_{\cdot,k}=CR_{\cdot,k}=C_{\cdot,k}=\sum_{r=1}^{c}C_{\cdot,r}R_{r,k}=R_{1,k}C_{\cdot,1}+\cdots+R_{c,k}C_{\cdot,c}$ Which means that each cols CR is a linear combination of the cols of C.
 - (b) For $j=1,\ldots,m$, $(CR)_{j,\cdot}=C_{j,\cdot}R=C_{j,\cdot}R_{\cdot,\cdot}=\sum_{r=1}^{c}C_{j,r}R_{r,\cdot}=C_{j,1}R_{1,\cdot}+\cdots+C_{j,c}R_{c,\cdot}$ Which means that each rows CR is a linear combination of the rows of R.
- Column-Row Factorization (CR Factorization) Suppose $A \in \mathbf{F}^{m,n}$, $A \neq 0$.
 - (a) Let $S_c = \operatorname{span}(A_{\cdot,1}, \dots, A_{\cdot,n}) \subseteq \mathbf{F}^{m,1}$, dim $S_c = c$, the col rank. Prove that $\exists C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,n}$, A = CR.
 - (b) Let $S_r = \operatorname{span}(A_{1,r}, \dots, A_{m,r}) \subseteq \mathbf{F}^{1,n}$, dim $S_r = r$, the row rank. Prove that $\exists C \in \mathbf{F}^{m,r}$, $R \in \mathbf{F}^{r,n}$, A = CR.

SOLUTION: Notice that $A \neq 0 \Rightarrow c, r \geqslant 1$.

- (a) Let $(C_{\cdot,1},\ldots,C_{\cdot,c})$ be a basis of S_c , forming $C \in \mathbf{F}^{m,c}$. Then $\forall k \in \{1,\ldots,n\}$, $A_{\cdot,k} = R_{1,k}C_{\cdot,1} + \cdots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k'} \exists ! R_{1,k},\ldots,R_{c,k} \in \mathbf{F}$, forming $R \in \mathbf{F}^{c,n}$. Thus A = CR.
- (b) Let $(R_{1,\cdot},\ldots,R_{r,\cdot})$ be a basis of S_r , forming $R\in \mathbf{F}^{r,n}$. Then $\forall j\in\{1,\ldots,m\}$, $A_{j,\cdot}=C_{j,1}R_{1,\cdot}+\cdots+C_{j,r}R_{r,\cdot}=(CR)_{j,\cdot},\exists\,!\,C_{j,1},\ldots,C_{j,r}\in\mathbf{F}$, forming $C\in\mathbf{F}^{m,r}$. Thus A=CR. \square

EXAMPLE:

$$A = \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \\ 46 & 33 & 20 & 7 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ 0 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix}$$

(I) $\begin{pmatrix} 46 & 33 & 20 & 7 \end{pmatrix} = 2 \begin{pmatrix} 10 & 7 & 4 & 1 \end{pmatrix} + \begin{pmatrix} 26 & 19 & 12 & 5 \end{pmatrix}$. $\begin{pmatrix} 46 & 33 & 20 & 7 \end{pmatrix}$ can be uniquely written as a linear combination of $(A_{1,\cdot}, A_{2,\cdot})$. Hence dim $S_r = 2$. $(A_{1,\cdot}, A_{2,\cdot})$ is a basis.

(II)
$$\begin{pmatrix} 10 \\ 26 \\ 46 \end{pmatrix} = 2 \begin{pmatrix} 7 \\ 19 \\ 33 \end{pmatrix} - \begin{pmatrix} 4 \\ 12 \\ 20 \end{pmatrix}; \quad \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} = 2 \begin{pmatrix} 4 \\ 12 \\ 20 \end{pmatrix} - \begin{pmatrix} 7 \\ 19 \\ 33 \end{pmatrix}.$$
 Hence dim $S_c = 2$. $(A_{.,2}, A_{.,3})$ is a basis.

• COLUMN RANK EQUALS ROW RANK (Using the notation and result above)

For each
$$A_{j,\cdot} \in S_r$$
, $A_{j,\cdot} = (CR)_{j,\cdot} = C_{j,1}R = C_{j,1}R_{1,\cdot} + \dots + C_{j,c}R_{c,\cdot}$
For each $A_{\cdot,k} \in S_c$, $A_{\cdot,k} = (CR)_{\cdot,k} = R_{1,k}C_{\cdot,1} + \dots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k}$.
 $\Rightarrow \text{span}(A_{1,\cdot}, \dots, A_{n,\cdot}) = S_r = \text{span}(R_{1,\cdot}, \dots, R_{c,\cdot}) \Rightarrow \dim S_r = r \leqslant c = \dim S_c$.
 $\Rightarrow \text{span}(A_{\cdot,1}, \dots, A_{\cdot,m}) = S_r = \text{span}(C_{\cdot,1}, \dots, C_{\cdot,r}) \Rightarrow \dim S_c = c \leqslant r = \dim S_r$.
Or. Apply the result to $A^t \in \mathbf{F}^{n,m} \Rightarrow \dim S_r^t = \dim S_c = c \leqslant r = \dim S_r = \dim S_c$.

- [4E 3.C.17, OR 3.F.32] Suppose $T \in \mathcal{L}(V)$ and $(u_1, ..., u_n)$, $(v_1, ..., v_n)$ are bases of V. Prove that the following are equi. Here $A = \mathcal{M}(T)$ means $\mathcal{M}(T, (u_1, ..., u_n), (v_1, ..., v_n))$.
 - (a) *T* is inje.
 - (b) The cols of $\mathcal{M}(T)$ are linely inde in $\mathbf{F}^{n,1}$.
 - (c) The cols of $\mathcal{M}(T)$ span $\mathbf{F}^{n,1}$.
 - (d) The rows of $\mathcal{M}(T)$ span $\mathbf{F}^{1,n}$.
 - (e) The rows of $\mathcal{M}(T)$ are linely inde in $\mathbf{F}^{1,n}$.

SOLUTION: Using TIPS in 2.*C*.

T is inje \iff dim $V = \dim \operatorname{range} T + \dim \operatorname{null} T = \dim \operatorname{range} T$

Now we show (Δ) properly, that is T is inje \iff The cols of $\mathcal{M}(T)$ are linely inde.

$$(a) \Rightarrow (b):$$
Suppose $b_1 A_{\cdot,1} + \dots + b_n A_{\cdot,n} = \begin{pmatrix} b_1 A_{1,1} + \dots + b_n A_{1,n} \\ \vdots \\ b_1 A_{n,1} + \dots + b_n A_{n,n} \end{pmatrix} = 0.$ Let $u = b_1 u_1 + \dots + b_n u_n$.

Then
$$Tu = b_1 T u_1 + \dots + b_n T u_n$$

$$= b_1 (A_{1,1} v_1 + \dots + A_{n,1} v_n) + \dots + b_n (A_{1,n} v_1 + \dots + A_{n,n} v_n)$$

$$= (b_1 A_{1,1} + \dots + b_n A_{1,n}) v_1 + \dots + (b_1 A_{n,1} + \dots + b_n A_{n,n}) v_n$$

$$= 0 v_1 + \dots + 0 v_n = 0$$

$$\Rightarrow b_1 = \dots = b_n = 0.$$

Thus by (2.39), (b) holds.

 $(b) \Rightarrow (a)$:

Suppose $u = b_1 u_1 + \dots + b_n u_n \in \text{null } T$.

Then
$$Tu = 0 = (b_1 A_{1,1} + \dots + b_n A_{1,n}) v_1 + \dots + (b_1 A_{n,1} + \dots + b_n A_{n,n}) v_n$$
.

Thus
$$b_1 A_{1,1} + \dots + b_n A_{1,n} = \dots = b_1 A_{n,1} + \dots + b_n A_{n,n} = 0.$$

Which is equi to
$$\begin{pmatrix} b_1A_{1,1}+\cdots+b_nA_{1,n}\\ \vdots\\ b_1A_{n,1}+\cdots+b_nA_{n,n} \end{pmatrix}=b_1A_{\cdot,1}+\cdots+b_nA_{\cdot,n}=0 \Rightarrow b_1=\cdots=b_n=0.$$

Thus by (2.39), (a) holds.

• [4E 3.C.16, OR 3.E.11] Suppose A is an m-by-n matrix with $A \neq 0$. Prove that rank $A = 1 \iff \exists (c_1, ..., c_m) \in \mathbf{F}^m, (d_1, ..., d_n) \in \mathbf{F}^n$ such that $A_{j,k} = c_j \cdot d_k$ for every j = 1, ..., m and k = 1, ..., n.

SOLUTION:

Using the notation in CR Factorization.

(a) Suppose
$$A = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \begin{pmatrix} d_1 & \cdots & d_n \end{pmatrix} = \begin{pmatrix} c_1 d_1 & \cdots & c_1 d_n \\ \vdots & \ddots & \vdots \\ c_m d_1 & \cdots & c_m d_n \end{pmatrix}.$$
 $(\exists c_j, d_k \in \mathbf{F}, \forall j, k)$

Then $S_c = \left\{ \begin{pmatrix} c_1 d_1 \\ \vdots \\ c_m d_1 \end{pmatrix}, \begin{pmatrix} c_1 d_2 \\ \vdots \\ c_m d_2 \end{pmatrix}, \dots, \begin{pmatrix} c_1 d_n \\ \vdots \\ c_m d_n \end{pmatrix} \right\} = \operatorname{span} \left\{ \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \right\}.$

Or. $S_r = \operatorname{span} \left\{ \begin{pmatrix} c_1 d_1 & \cdots & c_1 d_n \\ \vdots \\ c_2 d_1 & \cdots & c_2 d_n \end{pmatrix}, \begin{pmatrix} c_2 d_1 & \cdots & c_2 d_n \\ \vdots \\ c_m d_1 & \cdots & c_m d_n \end{pmatrix} \right\} = \operatorname{span} \left\{ \begin{pmatrix} d_1 & \dots & d_n \end{pmatrix} \right\}.$ Hence $\operatorname{rank} A = 1$.

OR. Using also the result in [4E 3.51(a)].

Every col of *A* is a scalar multi of *C*. Then rank $A \le 1 \ \mathbb{Z}$ rank $A \ge 1$ ($A \ne 0$).

(b) By CR Factorization,
$$\exists C = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \in \mathbf{F}^{m,1}, R = \begin{pmatrix} d_1 & \cdots & d_n \end{pmatrix} \in \mathbf{F}^{1,n}$$
 such that $A = CR$.

OR. Not using CR Factorization. Suppose rank $A = \dim S_c = \dim S_r = 1$.

Let
$$c_j = \frac{A_{j,1}}{A_{1,1}} = \frac{A_{j,2}}{A_{1,2}} = \dots = \frac{A_{j,n}}{A_{1,n}}, \qquad d'_k = \frac{A_{1,k}}{A_{1,1}} = \frac{A_{2,k}}{A_{2,1}} = \dots = \frac{A_{m,k}}{A_{m,1}}. \quad (\forall j, k)$$

$$\Rightarrow A_{j,k} = d'_k A_{j,1} = c_j A_{1,k} = c_j d'_k A_{1,1} = c_j d_k. \text{ Letting } d_k = d'_k A_{1,1}.$$

1 Suppose $T \in \mathcal{L}(V, W)$. Show that with resp to each choice of bases of V and W, the matrix of T has at least dim range T nonzero entries.

SOLUTION:

Let
$$B_{\text{null }T} = (v_1, ..., v_p), B_V = (v_1, ..., v_n)$$
. Let $B_W = (w_1, ..., w_m)$. Denote $\mathcal{M}(T, B_V, B_W)$ by A .

Because at most p of the v_k 's can belong to null $T \iff$ at least n - p = q of the v_k 's do not.

For $v_k \notin \text{null } T$, $Tv_k = A_{1,k}w_1 + \cdots + A_{m,k}w_m \neq 0$. Thus col k has at least one nonzero entry.

Since there are n - p = q choices of such k, A has at least $q = \dim \operatorname{range} T$ nonzero entries.

OR. We prove by contradiction.

Suppose *A* has at most (dim range T - 1) nonzero entries.

Then by Pigeon Hole Principle, at least one of $A_{.,p+1},...,A_{.,n}$ equals 0.

Thus there are at most ($\dim \operatorname{range} T - 1$) nonzero vecs in Tv_{p+1}, \dots, Tv_n .

While range $T = \operatorname{span}(Tv_{p+1}, \dots, Tv_n) \Rightarrow \operatorname{dim}\operatorname{range} T = \operatorname{dim}\operatorname{span}(Tv_{p+1}, \dots, Tv_n)$. Contradicts. \square

3 Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. Prove that $\exists B_V, B_W$ such that [letting $A = \mathcal{M}(T, B_V, B_W)$] $A_{k,k} = 1, A_{i,j} = 0$, where $1 \le k \le \dim \operatorname{range} T, i \ne j$. **SOLUTION:** Let $R = (Tv_1, ..., Tv_n)$ be a basis of range T, extend to $B_W = (Tv_1, ..., Tv_n, w_1, ..., w_p)$. Let $\mathcal{K}_R = \operatorname{span}(v_1, \dots, v_n)$. Let (u_1, \dots, u_m) be a basis of null T. Then $B_V = (v_1, \dots, v_n, u_1, \dots, u_m)$. \square **4** Suppose $B_V = (v_1, ..., v_m)$ and W is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that $\exists B_W = (w_1, \dots, w_n), \ \mathcal{M}(T, B_V, B_W)_{1,1}^t = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & \cdots & 0 \end{pmatrix}.$ **SOLUTION**: If $Tv_1 = 0$, then we are done. If not then extend (Tv_1) . **5** Suppose $B_W = (w_1, ..., w_n)$ and V is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that $\exists B_V = (v_1, \dots, v_m), \ \mathcal{M}(T, B_V, B_W)_1 = \begin{pmatrix} 0 & \cdots & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}.$ **SOLUTION:** Let $(u_1, ..., u_n)$ be a basis of V. Denote $\mathcal{M}(T, (u_1, ..., u_n), B_W)$ by A. If $A_{1,\cdot} = 0$, then let $B_V = (u_1, \dots, u_n)$, we are done. Otherwise, $(A_{1,1} \cdots A_{1,m}) \neq 0$, choose one $A_{1,k} \neq 0$. $\text{Let } v_1 = \frac{u_k}{A_{1,k}}; \quad v_j = u_{j-1} - A_{1,j-1} v_1 \quad \text{for } j = 2, \dots, k; \\ v_i = u_i - A_{1,i} v_1 \qquad \text{for } i = k+1, \dots, n.$ Now because each $u_k \in \text{span}(v_1, \dots, v_n) \Rightarrow V = \text{span}(v_1, \dots, v_n), B_V = (v_1, \dots, v_n).$ And $Tv_1 = T(\frac{u_k}{A_{1,k}}) = \frac{1}{A_{1,k}}(A_{1,k}w_1 + \dots + A_{n,k}w_n) = 1w_1 + \dots + \frac{A_{n,k}}{A_{1,k}}w_n.$ $\forall j \in \{2, \dots, k, k+2, \dots, n+1\}, \ Tv_j = T(u_{j-1} - A_{1,j-1}v_1) = Tu_{j-1} - T(\frac{A_{1,j-1}u_k}{A_{1,k}})$ $i \in \{k+1,...,n\}$ $=A_{1,j-1}w_1+\cdots+A_{n,j-1}w_n-A_{1,j-1}(1w_1+\cdots+\frac{A_{n,k}}{A_{1,k}}w_n)=0w_1+\cdots+(A_{n,j-1}-\frac{A_{1,j-1}A_{n,k}}{A_{1,k}})w_n._{\square}$ **6** Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. *Prove that* dim range $T = 1 \iff \exists B_V, B_W$, all entries of $A = \mathcal{M}(T, B_V, B_W)$ equal 1. **SOLUTION:** (a) Suppose $B_V = (v_1, ..., v_n)$, $B_W = (w_1, ..., w_m)$ are the bases such that all entries of A equal 1. Then $Tv_i = w_1 + \dots + w_m$ for all $i = 1, \dots, n$. Because w_1, \dots, w_n is linely inde, $w_1 + \dots + w_n \neq 0$. (b) Suppose dim range T = 1. Then dim null $T = \dim V - 1$. Let $(u_2, ..., u_n)$ be a basis of null T. Extend it to a basis of V as $(u_1, u_2, ..., u_n)$. Let $w_1 = Tv_1 - w_2 - \cdots - w_m$. Extend to a basis of W and we have B_W . Let $v_1 = u_1, v_i = u_1 + u_i$. Extend to a basis of V and we have B_V . OR. Suppose range T has a basis (w). By (2.C.15 [COROLLARY]), $\exists B_W = (w_1, \dots, w_m)$ such that $w = w_1 + \dots + w_m$. By (2.C [New Theorem]), \exists a basis $(u_1, ..., u_n)$ of V such that each $u_k \notin \text{null } T$. $\forall k \in \{1, \dots, n\}, Tu_k \in \operatorname{range} T = \operatorname{span}(w) \Rightarrow Tu_k = \lambda_k w, \exists \lambda_k \in \mathbf{F} \setminus \{0\}.$ Let $v_k = \lambda_k^{-1} u_k \neq 0 \Rightarrow B_V = (v_1, \dots, v_n)$. Hence for each $v_k, Tv_k = w = w_1 + \dots + w_m$.

15 Suppose $A \in \mathbb{F}^{n,n}$, $j,k \in \{1,\ldots,n\}$. Show that $(A^3)_{i,k} = \sum_{n=1}^n \sum_{r=1}^n A_{j,r} A_{p,r} A_{r,k}$. **SOLUTION:** $(AAA)_{i,k} = (AA)_{i,k} = \sum_{p=1}^{n} (A_{j,p}A_{p,r})A_{\cdot,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p}A_{p,r}A_{r,k}$. Or. $(AAA)_{i,k} = \sum_{r=1}^{n} (AA)_{i,r} A_{r,k} = \sum_{r=1}^{n} (\sum_{p=1}^{n} A_{j,p} A_{p,r}) A_{r,k}$ $=\sum_{r=1}^{n} \left[A_{i,1}(A_{1,r}A_{r,k}) + \dots + A_{i,n}(A_{n,r}A_{r,k}) \right]$ $= A_{j,1} \sum_{r=1}^{n} A_{1,r} A_{r,k} + \dots + A_{j,n} \sum_{r=1}^{n} A_{n,r} A_{r,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p} A_{p,r} A_{r,k}.$ • Prove that the commutativity does not hold in $\mathbf{F}^{m,n}$. **SOLUTION:** Suppose dim V = n, dim W = m and the commutativity holds in $\mathbf{F}^{n,m}$. $\forall T \in \mathcal{L}(V, W), S \in \mathcal{L}(W, V), \mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = \mathcal{M}(ST).$ Hence ST = TS. Which in general is not true. (See 3.D) • [10.A.3, OR 4E 3.D.19] Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that $\forall B_V \neq B_V'$, $\mathcal{M}(T, B_V) = \mathcal{M}(T, B_V') \iff T = \lambda \mathcal{M}(I), \exists \lambda \in \mathbf{F}$. **SOLUTION:** [Compare with the first solution of (3.D.16) in 3.A] Suppose $T = \lambda I$ for some $\lambda \in \mathbf{F}$. Then $T = \lambda \mathcal{M}(I)$. Suppose $\forall B_V \neq B_V'$, $\mathcal{M}(T, B_V) = \mathcal{M}(T, B_V')$. If T = 0, then we are done. Suppose $T \neq 0$, and $v \in V \setminus \{0\}$. Assume that (v, Tv) is linely inde. Extend (v, Tv) to $B_V = (v, Tv, u_3, ..., u_n)$. Let $B = \mathcal{M}()(T, B_V)$. $\Rightarrow Tv = B_{1,1}v + B_{2,1}(Tv) + B_{3,1}u_3 + \dots + B_{n,1}u_n \Rightarrow B_{2,1} = 1, B_{i,1} = 0, \forall i \neq 2.$ By assumption, $A = \mathcal{M}(T, B'_V) = B, \forall B'_V = (v, w_2, ..., w_n)$. Then $A_{2,1} = 1, A_{i,1} = 0, \forall i \neq 2$. \Rightarrow $Tv = w_2$, which is not true if we let $w_2 = u_3$, $w_3 = Tv$, $w_j = u_j$, $\forall j \in \{4, ..., n\}$. Contradicts. Hence (v, Tv) is linely depe $\Rightarrow \forall v \in V, \exists \lambda_v \in F, Tv = \lambda_v v$. Now we show that λ_v is independent of v, that is, to show that for all $v \neq w \in V \setminus 0$, $\lambda_v = \lambda_w$. $\begin{array}{l} (v,w) \text{ is linely inde} \Rightarrow T(v+w) = \lambda_{v+w}(v+w) = \lambda_v v + \lambda_w w = Tv + Tw \\ (v,w) \text{ is linely depe, } w = cv \Rightarrow Tw = \lambda_w w = \lambda_w cv = c\lambda_v v = T(cv) \end{array} \right\} \Rightarrow T = \lambda I, \exists \, \lambda \in \mathbf{F}.$ Or. Conversely, denote $\mathcal{M}(T, B_V)$ by A, where $B_V = (u_1, \dots, u_m)$ is arbitrary. Fix one $B_V = (v_1, \dots, v_m)$ and then $(v_1, \dots, \frac{1}{2}v_k, \dots, v_m)$ is also a basis for any given $k \in \{1, \dots, m\}$. Fix one *k*. Now we have $T(\frac{1}{2}v_k) = A_{1,k}v_1 + \dots + A_{k,k}(\frac{1}{2}v_k) + \dots + A_{m,k}v_m$ $\Rightarrow Tv_k = 2A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + 2A_{m,k}v_m = A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + A_{m,k}v_m.$ Then $A_{i,k} = 2A_{i,k} \Rightarrow A_{i,k} = 0$ for all $j \neq k$. Thus $Tv_k = A_{k,k}v_k$, $\forall k \in \{1, ..., m\}$. Now we show that $A_{k,k} = A_{j,j}$ for all $j \neq k$. Choose j,k such that $j \neq k$. Consider the basis $B'_V = (v'_1, \dots, v'_i, \dots, v'_k, \dots, v'_m)$, where $v'_{i} = v_{k}$, $v_{k}' = v_{i}$ and $v'_{i} = v_{i}$ for all $i \in \{1, ..., m\} \setminus \{j, k\}$. Remember that $\mathcal{M}(T, B'_V) = \mathcal{M}(T, B_V) = A$. Hence $T(v'_k) = A_{1,k}v'_1 + \dots + A_{k,k}v'_k + \dots + A_{m,k}v'_m = A_{k,k}v'_k = A_{k,k}v_j$, while $T(v'_k) = T(v_j) = A_{i,j}v_j$. Thus $A_{k,k} = A_{j,j}$.

• Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

 (Tv_1, \ldots, Tv_n) is a basis of V for some basis (v_1, \ldots, v_n) of $V \Leftrightarrow T$ is surj (Tv_1, \ldots, Tv_n) is a basis of V for every basis (v_1, \ldots, v_n) of $V \Leftrightarrow T$ is inje $T \Leftrightarrow T$ is inv.

• Suppose $T \in \mathcal{L}(V)$ and $V = \operatorname{span}(Tv_1, \dots, Tv_m)$. Prove that $V = \operatorname{span}(v_1, \dots, v_m)$.

SOLUTION:

Because $V = \operatorname{span}(Tv_1, \dots, Tv_m) \Rightarrow T$ is surj, X V is finite-dim $\Rightarrow T$ is inv $\Rightarrow T^{-1}$ is inv. $\forall v \in V, \exists a_i \in F, v = a_1Tv_1 + \dots + a_mTv_m \Rightarrow T^{-1}v = a_1v_1 + \dots + a_mv_m \Rightarrow \operatorname{range} T^{-1} \subseteq \operatorname{span}(v_1, \dots, v_m).$

OR. Reduce $(Tv_1, ..., Tv_m)$ to a basis of V as $(Tv_{\alpha_1}, ..., Tv_{\alpha_k})$, where $k = \dim V$ and $\alpha_i \in \{1, ..., k\}$. Then $(v_{\alpha_1}, ..., v_{\alpha_k})$ is linely inde of length k, hence is a basis of V, contained in the list $(v_1, ..., v_m)$. \square

- Or (10.A.1) Suppose $T \in \mathcal{L}(V)$, $B_V = (v_1, \dots, v_n)$. Prove that $\mathcal{M}(T, B_V)$ is inv $\iff T$ is inv. Solution: Notice that $\mathcal{M} \in \mathcal{L}(\mathcal{L}(V), \mathbf{F}^{n,n})$ is an iso.
 - (a) $T^{-1}T = TT^{-1} = I \Rightarrow \mathcal{M}(T^{-1})\mathcal{M}(T) = \mathcal{M}(T)\mathcal{M}(T^{-1}) = I \Rightarrow \mathcal{M}(T^{-1}) = \mathcal{M}(T)^{-1}$.
 - (b) $\mathcal{M}(T)\mathcal{M}(T)^{-1} = \mathcal{M}(T)^{-1}\mathcal{M}(T) = I$. $\exists ! S \in \mathcal{L}(V)$ such that $\mathcal{M}(T)^{-1} = \mathcal{M}(S)$
 - $\Rightarrow \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = I = \mathcal{M}(TS) = \mathcal{M}(ST)$
 - $\Rightarrow \mathcal{M}^{-1}\mathcal{M}(TS) = \mathcal{M}^{-1}\mathcal{M}(ST) = I = TS = ST \Rightarrow S = T^{-1}.$
- Suppose $T \in \mathcal{L}(V, W)$ is inv. Show that T^{-1} is inv and $(T^{-1})^{-1} = T$.

Solution: $TT^{-1} = (T^{-1})^{-1}T^{-1} = I \in \mathcal{L}(V)$ $T^{-1}T = T^{-1}(T^{-1})^{-1} = I \in \mathcal{L}(W)$ $T^{-1}T = T^{-1}(T^{-1})^{-1} = I \in \mathcal{L}(W)$ $T^{-1}T = T^{-1}(T^{-1})^{-1} = I \in \mathcal{L}(W)$

1 Suppose $T \in \mathcal{L}(U,V)$, $S \in \mathcal{L}(V,W)$ are inv. Prove that ST is inv and $(ST)^{-1} = T^{-1}S^{-1}$.

SOLUTION: $(ST)(T^{-1}S^{-1}) = STT^{-1}S^{-1} = I \in \mathcal{L}(W)$ $(T^{-1}S^{-1})(ST) = T^{-1}S^{-1}ST = I \in \mathcal{L}(V)$ $\Rightarrow (ST)^{-1} = T^{-1}S^{-1}$, by the uniques of inv.

2 Suppose V is finite-dim and dim V > 1.

Prove that the set of non-inv operators on V *is not a subsp of* $\mathcal{L}(V)$.

 $The \ set \ of \ inv \ operators \ is \ not \ either, \ although \ multi \ identity/inv, \ and \ commutativity \ for \ vec \ multi \ holds.$

SOLUTION:

Denote the set by U. Suppose dim V=n>1. Let (v_1,\ldots,v_n) be a basis of V. Define $S,T\in\mathcal{L}(V)$ by $S(a_1v_1+\cdots+a_nv_n)=a_1v_1,T(a_1v_1+\cdots+a_nv_n)=a_2v_1+\cdots+a_nv_n$. Hence S+T=I is inv. \square Comment: If dim V=1, then $U=\{0\}$ is a subsp of $\mathcal{L}(V)$.

3 Suppose V is finite-dim, U is a subsp of V, and $S \in \mathcal{L}(U, V)$.

Prove that \exists inv $T \in \mathcal{L}(V)$, Tu = Su, $\forall u \in U \iff S$ is inje. [Compare this with (3.A.11).]

SOLUTION:

- (a) Tu = Su for every $u \in U \Rightarrow u = T^{-1}Su \Rightarrow S$ is inje. Or. $\operatorname{null} S = \operatorname{null} T \cap U = \{0\} \cap U = \{0\}$.
- (b) Suppose $(u_1, ..., u_m)$ be a basis of U and S is inje $\Rightarrow (Su_1, ..., Su_m)$ is linely inde in V. Extend these to bases of V as $(u_1, ..., u_m, v_1, ..., v_n)$ and $(Su_1, ..., Su_m, w_1, ..., w_n)$.

Define $T \in \mathcal{L}(V)$ by $T(u_i) = Su_i$; $Tv_j = w_j$, for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$.

4 Suppose that W is finite-dim and $S, T \in \mathcal{L}(V, W)$. *Prove that* null $S = \text{null } T(=U) \iff S = ET$, $\exists inv E \in \mathcal{L}(W)$. **SOLUTION:** Define $E \in \mathcal{L}(W)$ by $E(Tv_i) = Sv_i$, $E(w_i) = x_i$, for each $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$. Where: Let $B_{\text{range }T} = \mathcal{L}(Tv_1, \dots, Tv_m)$, extend to $B_W = (Tv_1, \dots, Tv_m, w_1, \dots, w_n)$. Let $\mathcal{K} = \operatorname{span}(v_1, \dots, v_m)$. \mathbb{X} null $S = \operatorname{null} T \Longrightarrow V = \mathcal{K} \oplus \operatorname{null} S \Leftrightarrow \mathcal{K} \in \mathcal{S}_V \operatorname{null} S$. ∴E is inv \Rightarrow span $(Sv_1, ..., Sv_m) = \text{range } S \times \text{dim range } T = \text{dim range } S = m.$ and S = ET. Hence $B_{\text{range }S} = (Sv_1, \dots, Sv_m)$. Thus we let $B'_W = (Sv_1, \dots, Sv_m, x_1, \dots, x_n)$. Conversely, $S = ET \Rightarrow \text{null } S = \text{null } ET$. Then $v \in \operatorname{null} ET \iff ET(v) = 0 \iff Tv = 0 \iff v \in \operatorname{null} T$. Hence $\operatorname{null} ET = \operatorname{null} T = \operatorname{null} S$. **5** Suppose that V is finite-dim and $S, T \in \mathcal{L}(V, W)$. *Prove that* range $S = \text{range } T(=R) \iff S = TE, \exists inv E \in \mathcal{L}(V).$ **SOLUTION:** Define $E \in \mathcal{L}(V)$ as $E: v_i \mapsto r_i$; $u_j \mapsto s_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Where: Let $B_R = \mathcal{L}(Tv_1, ..., Tv_m)$; $B_R' = (Sr_1, ..., Sr_m)$ such that $\forall i, Tv_i = Sr_i$. \therefore *E* is inv and S = TE. Let $B_{\text{null }T} = (u_1, \dots, u_n); B_{\text{null }S} = (s_1, \dots, s_n).$ Thus $B_V = (v_1, ..., v_m, u_1, ..., u_n); B'_V = (r_1, ..., r_m, s_1, ..., s_n).$ Conversely, $S = TE \Rightarrow \text{range } S = \text{range } TE$. Then $w \in \text{range } S \iff \exists v \in V, Sv = TE(v) = T(E(v)) = w \in \text{range } T$. Hence range S = range T. \square **6** Suppose V and W are finite-dim and $S, T \in \mathcal{L}(V, W)$. *Prove that* $S = E_2 T E_1$, $\exists inv E_1 \in \mathcal{L}(V)$, $E_2 \in \mathcal{L}(W) \iff \dim \text{null } S = \dim \text{null } T = n$. **SOLUTION:** Define $E_1: v_i \mapsto r_i$; $u_j \mapsto s_j$; for each $i \in \{1, \dots, m\}, j \in \{1, \dots, n\}$. Define $E_2: Tv_i \mapsto Sr_i$; $x_j \mapsto y_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Where: Let $B_{\text{range }T} = \mathcal{L}(Tv_1, \dots, Tv_m)$; $B_{\text{range }S} = (Sr_1, \dots, Sr_m)$. Extend to $B_W = (Tv_1, ..., Tv_m, x_1, ..., x_p); B'_W = (Sr_1, ..., Sr_m, y_1, ..., y_p).$ $\therefore E_1, E_2$ are inv Let $B_{\text{null }T} = (u_1, ..., u_n); B_{\text{null }S} = (s_1, ..., s_n).$ Let $B_{\text{null }T} = (u_1, ..., u_n); B_{\text{null }S} = (s_1, ..., s_n).$ Thus $B_V = (v_1, ..., v_m, u_1, ..., u_n); B'_V = (r_1, ..., r_m, s_1, ..., s_n).$ Conversely, $S = E_2 T E_1 \Rightarrow \dim \text{null } S = \dim \text{null } E_2 T E_1$. $v \in \operatorname{null} E_2 T E_1 \iff E_2 T E_1(v) = 0 \iff T E_1(v) = 0$. Hence $\operatorname{null} E_2 T E_1 = \operatorname{null} T E_1 = \operatorname{null} S$. $X \rightarrow By (3.B.22.COROLLARY)$, E is inv \Rightarrow dim null $TE_1 = \dim \text{null } T = \dim \text{null } S$. **8** Suppose V is finite-dim and $T:V\to W$ is a **surj** linear map of V onto W. *Prove that there is a subsp* U *of* V *such that* $T|_{U}$ *is an iso of* U *onto* W. **SOLUTION:** Let $B_{\text{range }T} = B_W = (w_1, \dots, w_m) \Rightarrow \forall w_i, \exists ! v_i \in V, Tv_i = w_i. \text{ Let } B_{\mathcal{K}} = (v_1, \dots, v_m).$ Then dim $\mathcal{K} = \dim W$. Thus $T|_{\mathcal{K}}$ is an iso of \mathcal{K} onto W. OR. By Problem (12) in (3.B), there is a subsp U of V such that $U \cap \text{null } T = \{0\} = \text{null } T|_U$, range $T = \{Tu : u \in U\} = \text{range } T|_U$.

Suppose S, T are inv. Then $(ST)(T^{-1}S^{-1}) = (T^{-1}S^{-1})(ST) = I$. Hence ST is inv. Suppose ST is inv. Let $R = (ST)^{-1} \Rightarrow R(ST) = (ST)R = I$. $Tv = 0 \Rightarrow v = R(ST)v = RS(Tv) = 0$ $\forall v \in V, v = (ST)Rv = S(TRv) \in range S$ $\Rightarrow T$ is inje, S is surj. While V is finite-dim. OR Because by Problem (23) in 3.B, dim $V = \dim range ST \leqslant \min \{range T, range S\}$. 10 Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$. Prove that $ST = I \iff TS = I$. SOLUTION: Suppose $ST = I$. $Tv = 0 \Rightarrow v = STv = 0$ $v \in V \Rightarrow v = S(Tv) \in range S$ $\Rightarrow T$ is inje, S is surj. While V is finite-dim. OR By Problem (9), V is finite-dim and $ST = I$ is inv $\Rightarrow S, T$ are inv. $S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S$ is inv. OR $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $Z \le S \Rightarrow TS = S^{-1}S = I$. Reversing the roles of S and T , we conclude that $TS = I \Rightarrow ST = I$. 11 Suppose V is finite-dim, $S, T, U \in \mathcal{L}(V)$ and $STU = I$. Show that T is inv and $T^{-1} = US$. SOLUTION: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. (ST) $U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I$. $\Rightarrow U^{-1} = ST$, $T^{-1} = US$, $S^{-1} = TU$. EXAMPLE: $V = R^{\infty}$, $S(a_1, a_2, \dots) = (a_2, \dots)$; $T(a_1, \dots) = (0, a_1, \dots)$; $U = I \Rightarrow STU = I$ but T is not inv. 13 Suppose V is finite-dim, $R, S, T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. SOLUTION: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} = V = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T$ is inje. $V \in V, v = (RST)Xv \in range R \Rightarrow R$ is surj. $V \in V, v \in (RST)Xv \in range R \Rightarrow R$ is surj. 15 Prove that every linear map from $F^{n,1}$ to $F^{m,1}$, is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(F^{n,1}, F^{m,1})$, then $\exists A \in F^{m,n}, Tx = Ax, \forall x \in F^{n,1}$. SOLUTION: Let $A = (RST)^{-1} = (RS)^{-1} = T^{-1}S^{-1} = T^{-1}S^{-1}$. $A = (RST)^{-1} = (RS)^{-1} = T^{-1}S^{-1} = T^{-1}S^{-1}$. $A = (RST)^{-1} = (RS)^{-1} = T^{-1}S^{-1} = T^{-1}S^{-1} = T^{-1}S^{-1}$. OR $A = (RST)^{-1} $	SOLUTION:	
$ Tv = 0 \Rightarrow v = R(ST)v = RS(Tv) = 0 \\ \forall v \in V, v = (ST)Rv = S(TRv) \in \operatorname{range} S $ \rightarrow T is inje, S is surj. While V is finite-dim. \rightarrow \forall v \in V, v = (ST)Rv = S(TRv) \in \text{range} S \rightarrow T is inje, S is surj. While V is finite-dim. \rightarrow \forall R \rightarrow V is finite-dim and S, T \in \mathcal{L}(V). Prove that ST = I \in TS = I. \rightarrow S \rightarrow T is inje, S is surj. While V is finite-dim. \rightarrow S \rightarrow V is finite-dim and ST = I is inv \Rightarrow S, T are inv. \rightarrow S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S is inv. \rightarrow R. S = I \Rightarrow ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S is inv. \rightarrow R. S = I \Rightarrow ST = I \Rightarrow S^T = I \Rightarrow S^T = I \Rightarrow S^T = T^{-1} \Rightarrow S^T = T \rightarrow S^T = T^{-1} \Rightarrow S	Suppose <i>S</i> , <i>T</i> are inv. Then $(ST)(T^{-1}S^{-1}) = (T^{-1}S^{-1})(ST) = I$. Hence <i>ST</i> is inv.	
OR. Because by Problem (23) in 3.B, $\dim V = \dim \operatorname{range} ST \leqslant \min \left\{ \operatorname{range} T, \operatorname{range} S \right\}.$ \square 10 Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$. Prove that $ST = I \iff TS = I$. Solution: Suppose $ST = I$. $Tv = 0 \Rightarrow v = STv = 0$ $v \in V \Rightarrow v = S(Tv) \in \operatorname{range} S$ $\Rightarrow T$ is inje, S is surj. While V is finite-dim. Or. By Problem (9), V is finite-dim and $ST = I$ is inv $\Rightarrow S, T$ are inv. $S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S$ is inv. Or. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $X = S \Rightarrow TS = S^{-1}S = I$. Reversing the roles of S and T , we conclude that $TS = I \Rightarrow ST = I$. 11 Suppose V is finite-dim, $S, T, U \in \mathcal{L}(V)$ and $STU = I$. Show that T is inv and $T^{-1} = US$. Solution: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. $(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I$. $\Rightarrow U^{-1} = ST$, $T^{-1} = US$, $S^{-1} = TU$. \square EXAMPLE: $V = \mathbb{R}^\infty$, $S(a_1, a_2, \dots) = (a_2, \dots)$; $T(a_1, \dots) = (0, a_1, \dots)$; $U = I \Rightarrow STU = I$ but T is not inv. 13 Suppose V is finite-dim, $R, S, T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \mid Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T$ is inje. $Yv \in V, v = (RST)Xv \in Tv = Tv = IS = IS = IV = IV = IV = IV = IV = IV$	Suppose ST is inv. Let $R = (ST)^{-1} \Rightarrow R(ST) = (ST)R = I$.	
10 Suppose V is finite-dim and S, T ∈ $\mathcal{L}(V)$. Prove that $ST = I \Leftrightarrow TS = I$. Solution: Suppose $ST = I$. $Tv = 0 \Rightarrow v = STv = 0$ $v \in V \Rightarrow v = S(Tv) \in \text{range } S$ $\Rightarrow T$ is inje, S is surj. While V is finite-dim. OR. By Problem (9), V is finite-dim and $ST = I$ is $\text{inv} \Rightarrow S$, T are inv. $S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S$ is inv. OR. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $X = S \Rightarrow TS = S^{-1}S = I$. Reversing the roles of S and T, we conclude that $TS = I \Rightarrow ST = I$. Reversing the roles of S and T, we conclude that $TS = I \Rightarrow ST = I$. 11 Suppose V is finite-dim, S, T, U ∈ $\mathcal{L}(V)$ and $STU = I$. Show that T is inv and $T^{-1} = US$. Solution: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. $(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I$. $\Rightarrow U^{-1} = ST$, $T^{-1} = US$, $S^{-1} = TU$. EXAMPLE: $V = \mathbb{R}^{\infty}$, $S(a_1, a_2, \dots) = (a_2, \dots)$; $T(a_1, \dots) = (0, a_1, \dots)$; $U = I \Rightarrow STU = I$ but T is not inv. 13 Suppose V is finite-dim, R, S, T ∈ $\mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.}$ OR. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. 15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}$, $Tx = Ax$, $\forall x \in \mathbf{F}^{n,1}$. Solutions: Let $B = (E_1, \dots, E_n)$, $B = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}$, $\mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. □ OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x$, $\mathcal{M}(y, B_2) = y$.	$Tv = 0 \Rightarrow v = R(ST)v = RS(Tv) = 0$ $\forall v \in V, v = (ST)Rv = S(TRv) \in \text{range } S$ $\Rightarrow T \text{ is inje, } S \text{ is surj. While } V \text{ is finite-dim.}$	
Solution: $ \begin{aligned} & \text{Suppose } ST = I. & Tv = 0 \Rightarrow v = STv = 0 \\ & v \in V \Rightarrow v = S(Tv) \in \text{range } S \end{aligned} \end{aligned} \Rightarrow T \text{ is inje, } S \text{ is surj. While } V \text{ is finite-dim.} $ Or. By Problem (9), V is finite-dim and $ST = I$ is inv $\Rightarrow S$, T are inv. $ S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S \text{ is inv.} $ Or. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $\mathbb{Z} S = S \Rightarrow TS = S^{-1}S = I$. Reversing the roles of S and T , we conclude that $TS = I \Rightarrow ST = I$. $ \begin{aligned} & \text{Il Suppose } V \text{ is finite-dim, } S, T, U \in \mathcal{L}(V) \text{ and } STU = I. \text{ Show that } T \text{ is inv and } T^{-1} = US. \end{aligned} $ Solutions: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. $ (ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I. \\ & \Rightarrow U^{-1} = ST, \qquad T^{-1} = US, \qquad S^{-1} = TU. \qquad \square \\ & \text{Example: } V = \mathbb{R}^{\infty}, S(a_1, a_2, \dots) = (a_2, \dots); \ T(a_1, \dots) = (0, a_1, \dots); \ U = I \Rightarrow STU = I \text{ but } T \text{ is not inv.} \end{aligned} $ $ \begin{aligned} & \text{In Suppose } V \text{ is finite-dim, } R, S, T \in \mathcal{L}(V) \text{ are such that } RST \text{ is surj. Prove that } S \text{ is inje.} \\ & \text{Solution: By Problem } (1) \text{ and } (9), \text{ Notice that } V \text{ is finite-dim. Then } RST \text{ is inv.} \end{aligned} $ $ \begin{aligned} & \text{Let } X = (RST)^{-1} & T^{0} = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ & \forall v \in V, v = (RST)Xv \in \text{ range } R \Rightarrow R \text{ is surj.} \end{aligned} \end{aligned} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.} $ $ \end{aligned} $ $ \begin{aligned} & \text{Or. } (RST)^{-1} = ((RST)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}. \end{aligned} $ $ \end{aligned} $ $ \end{aligned} $ $ \begin{aligned} & \text{Or. } (RST)^{-1} = (RST)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}. \end{aligned} $ $ \end{aligned} $	Or. Because by Problem (23) in 3.B, dim $V = \dim \operatorname{range} ST \leq \min \{\operatorname{range} T, \operatorname{range} S\}$.	
Solution: $ \begin{aligned} & \text{Suppose } ST = I. & Tv = 0 \Rightarrow v = STv = 0 \\ & v \in V \Rightarrow v = S(Tv) \in \text{range } S \end{aligned} \end{aligned} \Rightarrow T \text{ is inje, } S \text{ is surj. While } V \text{ is finite-dim.} $ Or. By Problem (9), V is finite-dim and $ST = I$ is inv $\Rightarrow S$, T are inv. $ S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S \text{ is inv.} $ Or. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $\mathbb{Z} S = S \Rightarrow TS = S^{-1}S = I$. Reversing the roles of S and T , we conclude that $TS = I \Rightarrow ST = I$. $ \begin{aligned} & \text{Il Suppose } V \text{ is finite-dim, } S, T, U \in \mathcal{L}(V) \text{ and } STU = I. \text{ Show that } T \text{ is inv and } T^{-1} = US. \end{aligned} $ Solutions: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. $ (ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I. \\ & \Rightarrow U^{-1} = ST, \qquad T^{-1} = US, \qquad S^{-1} = TU. \qquad \square \\ & \text{Example: } V = \mathbb{R}^{\infty}, S(a_1, a_2, \dots) = (a_2, \dots); \ T(a_1, \dots) = (0, a_1, \dots); \ U = I \Rightarrow STU = I \text{ but } T \text{ is not inv.} \end{aligned} $ $ \begin{aligned} & \text{In Suppose } V \text{ is finite-dim, } R, S, T \in \mathcal{L}(V) \text{ are such that } RST \text{ is surj. Prove that } S \text{ is inje.} \\ & \text{Solution: By Problem } (1) \text{ and } (9), \text{ Notice that } V \text{ is finite-dim. Then } RST \text{ is inv.} \end{aligned} $ $ \begin{aligned} & \text{Let } X = (RST)^{-1} & T^{0} = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ & \forall v \in V, v = (RST)Xv \in \text{ range } R \Rightarrow R \text{ is surj.} \end{aligned} \end{aligned} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.} $ $ \end{aligned} $ $ \begin{aligned} & \text{Or. } (RST)^{-1} = ((RST)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}. \end{aligned} $ $ \end{aligned} $ $ \end{aligned} $ $ \begin{aligned} & \text{Or. } (RST)^{-1} = (RST)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}. \end{aligned} $ $ \end{aligned} $		
Suppose $ST = I$. $Tv = 0 \Rightarrow v = STv = 0$ $v \in V \Rightarrow v = S(Tv) \in \text{range } S$ $\Rightarrow T$ is inje, S is surj. While V is finite-dim. OR. By Problem (9), V is finite-dim and $ST = I$ is inv $\Rightarrow S$, T are inv. $S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S$ is inv. OR. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $\mathbb{Z} S = S \Rightarrow TS = S^{-1}S = I$. Reversing the roles of S and T , we conclude that $TS = I \Rightarrow ST = I$. 11 Suppose V is finite-dim, S , T , $U \in \mathcal{L}(V)$ and $STU = I$. Show that T is inv and $T^{-1} = US$. Solution: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. $(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I$. $\Rightarrow U^{-1} = ST$, $T^{-1} = US$, $S^{-1} = TU$. \Box EXAMPLE: $V = \mathbb{R}^{\infty}$, $S(a_1, a_2, \dots) = (a_2, \dots)$; $T(a_1, \dots) = (0, a_1, \dots)$; $U = I \Rightarrow STU = I$ but T is not inv. 13 Suppose V is finite-dim, R , S , $T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} = T^{-1} =$	10 Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$. Prove that $ST = I \iff TS = I$.	
OR. By Problem (9), V is finite-dim and $ST = I$ is inv $\Rightarrow S, T$ are inv. $S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S \text{ is inv.}$ OR. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $X = S \Rightarrow TS = S^{-1}S = I$. Reversing the roles of S and T , we conclude that $TS = I \Rightarrow ST = I$. 11 Suppose V is finite-dim, $S, T, U \in \mathcal{L}(V)$ and $STU = I$. Show that T is inv and $T^{-1} = US$. Solution: Using Problem (9) and (10). This result can fall without the hypothesis that V is finite-dim. $(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I.$ $\Rightarrow U^{-1} = ST, \qquad T^{-1} = US, \qquad S^{-1} = TU. \qquad \square$ EXAMPLE: $V = \mathbb{R}^{\infty}, S(a_1, a_2, \dots) = (a_2, \dots); T(a_1, \dots) = (0, a_1, \dots); U = I \Rightarrow STU = I$ but T is not inv. 13 Suppose V is finite-dim, $R, S, T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.}$ OR. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. 15 Prove that every linear map from $F^{n,1}$ to $F^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(F^{n,1}, F^{m,1})$, then $\exists A \in F^{m,n}, Tx = Ax, \forall x \in F^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m)$ be the standard bases of $F^{n,1}, F^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in F$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \square OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.		
$S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S \text{ is inv.}$ $OR. ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T. \ X S = S \Rightarrow TS = S^{-1}S = I.$ Reversing the roles of S and T , we conclude that $TS = I \Rightarrow ST = I$.	Suppose $ST = I$. $\begin{cases} Tv = 0 \Rightarrow v = STv = 0 \\ v \in V \Rightarrow v = S(Tv) \in \text{range } S \end{cases} \Rightarrow T \text{ is inje, } S \text{ is surj. While } V \text{ is finite-dim.}$	
OR. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $\forall S = S \Rightarrow TS = S^{-1}S = I$. Reversing the roles of S and T , we conclude that $TS = I \Rightarrow ST = I$.	OR. By Problem (9), V is finite-dim and $ST = I$ is inv $\Rightarrow S$, T are inv.	
OR. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $\forall S = S \Rightarrow TS = S^{-1}S = I$. Reversing the roles of S and T , we conclude that $TS = I \Rightarrow ST = I$.	$S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S$ is inv.	
11 Suppose V is finite-dim, $S, T, U \in \mathcal{L}(V)$ and $STU = I$. Show that T is inv and $T^{-1} = US$. Solution: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. $(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I$. $\Rightarrow U^{-1} = ST, \qquad T^{-1} = US, \qquad S^{-1} = TU.$ \Box EXAMPLE: $V = \mathbb{R}^{\infty}, S(a_1, a_2, \dots) = (a_2, \dots); \ T(a_1, \dots) = (0, a_1, \dots); \ U = I \Rightarrow STU = I \text{ but } T \text{ is not inv.}$ 13 Suppose V is finite-dim, $R, S, T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.}$ Or. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. 15 Prove that every linear map from $F^{n,1}$ to $F^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(F^{n,1}, F^{m,1})$, then $\exists A \in F^{m,n}, Tx = Ax, \forall x \in F^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m)$ be the standard bases of $F^{n,1}, F^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in F$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \Box Or. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.	OR. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $\not \subset S = S \Rightarrow TS = S^{-1}S = I$.	
11 Suppose V is finite-dim, $S, T, U \in \mathcal{L}(V)$ and $STU = I$. Show that T is inv and $T^{-1} = US$. Solution: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. $(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I$. $\Rightarrow U^{-1} = ST, \qquad T^{-1} = US, \qquad S^{-1} = TU.$ \Box EXAMPLE: $V = \mathbb{R}^{\infty}, S(a_1, a_2, \dots) = (a_2, \dots); \ T(a_1, \dots) = (0, a_1, \dots); \ U = I \Rightarrow STU = I \text{ but } T \text{ is not inv.}$ 13 Suppose V is finite-dim, $R, S, T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.}$ Or. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. 15 Prove that every linear map from $F^{n,1}$ to $F^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(F^{n,1}, F^{m,1})$, then $\exists A \in F^{m,n}, Tx = Ax, \forall x \in F^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m)$ be the standard bases of $F^{n,1}, F^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in F$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \Box Or. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.	Reversing the roles of <i>S</i> and <i>T</i> , we conclude that $TS = I \Rightarrow ST = I$.	
Solution: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. $(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I.$ $\Rightarrow U^{-1} = ST, \qquad T^{-1} = US, \qquad S^{-1} = TU.$ \Box EXAMPLE: $V = \mathbb{R}^{\infty}$, $S(a_1, a_2, \dots) = (a_2, \dots)$; $T(a_1, \dots) = (0, a_1, \dots)$; $U = I \Rightarrow STU = I$ but T is not inv. 13 Suppose V is finite-dim, R , S , $T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.}$ OR. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. 15 Prove that every linear map from $F^{n,1}$ to $F^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(F^{n,1}, F^{m,1})$, then $\exists A \in F^{m,n}, Tx = Ax, \ \forall x \in F^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n)$, $B_2 = (R_1, \dots, R_m)$ be the standard bases of $F^{n,1}$, $F^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in F$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \Box OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.		
$(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I.$ $\Rightarrow U^{-1} = ST, \qquad T^{-1} = US, \qquad S^{-1} = TU.$ $EXAMPLE: V = \mathbb{R}^{\infty}, S(a_1, a_2, \dots) = (a_2, \dots); T(a_1, \dots) = (0, a_1, \dots); U = I \Rightarrow STU = I \text{ but } T \text{ is not inv.}$ $13 \text{ Suppose } V \text{ is finite-dim, } R, S, T \in \mathcal{L}(V) \text{ are such that } RST \text{ is surj. Prove that } S \text{ is inje.}$ $SOLUTION: \text{ By Problem } (1) \text{ and } (9), \text{ Notice that } V \text{ is finite-dim. Then } RST \text{ is inv.}$ $Let X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.}$ $OR. (RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}.$ $DR. (RST)^{-1} = (IST)^{-1} = IST^{-1} = IST^{-1$	11 Suppose V is finite-dim, $S, T, U \in \mathcal{L}(V)$ and $STU = I$. Show that T is inv and $T^{-1} = U$	IS.
$\Rightarrow U^{-1} = ST, \qquad T^{-1} = US, \qquad S^{-1} = TU. \qquad \qquad \square$ Example: $V = \mathbb{R}^{\infty}$, $S(a_1, a_2, \dots) = (a_2, \dots)$; $T(a_1, \dots) = (0, a_1, \dots)$; $U = I \Rightarrow STU = I$ but T is not inv. 13 Suppose V is finite-dim, R , S , $T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.} $ Or. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. 15 Prove that every linear map from $F^{n,1}$ to $F^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(F^{n,1}, F^{m,1})$, then $\exists A \in F^{m,n}, Tx = Ax, \forall x \in F^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n)$, $B_2 = (R_1, \dots, R_m)$ be the standard bases of $F^{n,1}$, $F^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in F$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \square Or. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.	SOLUTION: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim.	
EXAMPLE: $V = \mathbb{R}^{\infty}$, $S(a_1, a_2, \dots) = (a_2, \dots)$; $T(a_1, \dots) = (0, a_1, \dots)$; $U = I \Rightarrow STU = I$ but T is not inv. 13 Suppose V is finite-dim, R , S , $T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.} $ OR. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. 15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}$, $Tx = Ax$, $\forall x \in \mathbf{F}^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n)$, $B_2 = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}$, $\mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m$, $\exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \square OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x$, $\mathcal{M}(y, B_2) = y$.	(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I.	
13 Suppose V is finite-dim, R , S , $T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje. Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.} $ OR. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. 15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax, \forall x \in \mathbf{F}^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}, \mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \Box OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.	$\Rightarrow U^{-1} = ST, \qquad T^{-1} = US, \qquad S^{-1} = TU.$	
Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.} $ OR. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}.$ 15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax, \forall x \in \mathbf{F}^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}, \mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.	EXAMPLE: $V = \mathbb{R}^{\infty}, S(a_1, a_2,) = (a_2,); T(a_1,) = (0, a_1,); U = I \Rightarrow STU = I \text{ but } T \text{ is not inverse.}$	V.
Solution: By Problem (1) and (9), Notice that V is finite-dim. Then RST is inv. Let $X = (RST)^{-1} \begin{vmatrix} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{vmatrix} \Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.} $ OR. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}.$ 15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax, \forall x \in \mathbf{F}^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}, \mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.	12 Compact V is finite dim D C T = C(V) are such that DCT is such Decree that C is inic	
Let $X = (RST)^{-1} \mid Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T$ is inje. $\forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R$ is surj. $\Rightarrow S = R^{-1}(RST)T^{-1}$ is inv. \Box OR. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. \Box 15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax, \forall x \in \mathbf{F}^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}, \mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \Box OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.		
OR. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. \Box 15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax$, $\forall x \in \mathbf{F}^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}, \mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \Box OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.		
OR. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. \Box 15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax$, $\forall x \in \mathbf{F}^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}, \mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \Box OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x, \mathcal{M}(y, B_2) = y$.	Let $X = (RST)^{-1} \mid Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T$ is inje. $\Rightarrow S = R^{-1}(RST)T^{-1}$ is inv.	
15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1},\mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax$, $\forall x \in \mathbf{F}^{n,1}$. SOLUTION: Let $B_1 = (E_1, \dots, E_n)$, $B_2 = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}, \mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \square OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x$, $\mathcal{M}(y, B_2) = y$.		Ш
In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax$, $\forall x \in \mathbf{F}^{n,1}$. Solution: Let $B_1 = (E_1, \dots, E_n)$, $B_2 = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}, \mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m, \exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \square OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x$, $\mathcal{M}(y, B_2) = y$.	Or. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$.	
Let $B_1 = (E_1, \dots, E_n)$, $B_2 = (R_1, \dots, R_m)$ be the standard bases of $\mathbf{F}^{n,1}$, $\mathbf{F}^{m,1}$. $\forall k = 1, \dots, n$, suppose $T(E_k) = A_{1,k}R_1 + \dots + A_{m,k}R_m$, $\exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$. \Box OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x$, $\mathcal{M}(y, B_2) = y$.	In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax, \forall x \in \mathbf{F}^{n,n}$	¹ .
OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x$, $\mathcal{M}(y, B_2) = y$.		
OR. Let $A = \mathcal{M}(T, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x$, $\mathcal{M}(y, B_2) = y$.	Let $B_1 = (E_1,, E_n)$, $B_2 = (R_1,, R_m)$ be the standard bases of $\mathbf{F}^{n,r}$, $\mathbf{F}^{m,r}$. $\forall k = 1,, n$, suppose $T(E_k) = A_{1,k}R_1 + \cdots + A_{m,k}R_m$, $\exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \end{pmatrix}$.	
Therefore $I x = \mathcal{M}(I x, B_2) = \mathcal{M}(I, B_1, B_2) \mathcal{M}(x, B_1) = Ax$, by [3.65].		
	Therefore $I[x] = Ji(I[x,D_2]) - Ji(I[x,D_1,D_2])Ji(x,D_1) = Iix, by [5.03].$	<u></u>

9 Suppose V is finite-dim and $S,T \in \mathcal{L}(V)$. Prove that ST is inv $\iff S$ and T are inv.

Define $T, S \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{n,1})$ by Tx = Ax, Sx = Bx for all $x \in \mathbf{F}^{n,1}$. Then $\mathcal{M}(T) = A, \mathcal{M}(S) = B$. Thus $AB = I \Leftrightarrow A(Bx) = x \Leftrightarrow T(Sx) = x \Leftrightarrow TS = I \Leftrightarrow ST = I \Leftrightarrow \mathcal{M}(S)\mathcal{M}(T) = BA = I$.

• OR (10.A.2) Suppose $A, B \in \mathbf{F}^{n,n}$. Prove that $AB = I \iff BA = I$.

SOLUTION: Using Problem (10) and (15).

• Note For [3.60]: Suppose $B_V = (v_1, ..., v_n), B_W = (w_1, ..., w_m).$

Define $E_{i,j} \in \mathcal{L}(V,W)$ by $E_{i,j}(v_x) = \delta_{i,x}w_j$; See (3.A.12). Corollary: $E_{l,k}E_{i,j} = \delta_{j,l}E_{i,k}$.

Denote
$$\mathcal{M}(E_{i,j})$$
 by $\mathcal{E}^{(j,i)}$. And $\left(\mathcal{E}^{(j,i)}\right)_{l,k} = \begin{cases} 0, & i \neq k \lor j \neq l \\ 1, & i = k \land j = l \end{cases}$

Because $\mathcal{L}(V, W)$ and $\mathbf{F}^{m,n}$ are iso. And $T = \mathcal{M}^{-1}\mathcal{M}(T)$; $E_{i,j} = \mathcal{M}^{-1}\mathcal{E}^{(j,i)}$

Hence
$$\forall T \in \mathcal{L}(V, W), \exists ! A_{i,j} \in \mathbf{F} \left(\forall i \in \{1, \dots, m\}, j \in \{1, \dots, n\} \right), \mathcal{M}(T) = A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}.$$

$$\text{Thus}\, A = \begin{pmatrix} A_{1,1} \mathcal{E}^{(1,1)} + & \cdots & + A_{1,n} \mathcal{E}^{(1,n)} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} \mathcal{E}^{(m,1)} + & \cdots & + A_{m,n} \mathcal{E}^{(m,n)} \end{pmatrix} \Longleftrightarrow \begin{pmatrix} A_{1,1} E_{1,1} + & \cdots & + A_{1,n} E_{n,1} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} E_{1,m} + & \cdots & + A_{m,n} E_{n,m} \end{pmatrix} = T.$$

$$\therefore \mathcal{L}(V, W) = \operatorname{span}\left(\underbrace{\begin{bmatrix} E_{1,1}, & \cdots & E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{1,m}, & \cdots & E_{n,m} \end{bmatrix}}_{B}; \quad \mathbf{F}^{m,n} = \operatorname{span}\left(\underbrace{\begin{bmatrix} \mathcal{E}^{(1,1)}, & \cdots & \mathcal{E}^{(1,n)}, \\ \vdots & \ddots & \vdots \\ \mathcal{E}^{(m,1)}, & \cdots & \mathcal{E}^{(m,n)} \end{bmatrix}}_{B_{\mathcal{M}}}.$$

Hence by [2.42] and [3.61], we conclude that B is a basis of $\mathcal{L}(V, W)$ and that $B_{\mathcal{M}}$ is a basis of $\mathbf{F}^{m,n}$.

• Suppose V, W are finite-dim, U is a subsp of V.

Let $\mathcal{E} = \{ T \in \mathcal{L}(V, W) : U \subseteq \text{null } T \} = \{ T \in \mathcal{L}(V, W) : T|_U = 0 \}.$

- (a) Show that \mathcal{E} is a subsp of $\mathcal{L}(V, W)$.
- (b) Find a formula for dim \mathcal{E} in terms of dim V, dim W and dim U.

Hint: Define $\Phi : \mathcal{L}(V, W) \to \mathcal{L}(U, W)$ by $\Phi(T) = T|_{U}$. What is null Φ ? What is range Φ ?

SOLUTION:

- (a) $\forall S, T \in \mathcal{E}, \lambda \in \mathbb{F}, \forall u \in U, Su = \lambda Tu = (S + \lambda T)u = 0 \Rightarrow (S + \lambda T) \in \mathcal{E}.$
- (b) Define Φ as in the hint.

Because $T \in \text{null } \Phi \Longleftrightarrow \Phi(T) = 0 \Longleftrightarrow \forall u \in U, Tu = 0 \Longleftrightarrow T \in \mathcal{E}$.

Hence null $\Phi = \mathcal{E}$.

Because $S \in \mathcal{L}(U, W) \Rightarrow \exists T \in \mathcal{L}(V, W), \Phi(T) = S$, by $(3.A.11) \Rightarrow S \in \text{range } T$.

Hence range $\Phi = \mathcal{L}(U, W)$.

Thus dim null $\Phi = \dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim \operatorname{range} \Phi = (\dim V - \dim U) \dim W$.

OR. Extend (u_1, \ldots, u_m) a basis of U to $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ a basis of V. Let $p = \dim W$.

$$(\text{ See Note For } [3.60]) \\ \forall \, T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \text{span} \left\{ \begin{matrix} E_{1,1}, & \cdots & E_{m,1}, \\ \vdots & \ddots & \vdots \\ E_{1,p}, & \cdots & E_{m,p} \end{matrix} \right\} \cap \mathcal{E} = \{0\}.$$

$$\forall T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \operatorname{span} \left\{ \begin{array}{c} E_{1,1}, & \cdots, E_{m,1}, \\ \vdots & \ddots & \vdots \\ E_{1,p}, & \cdots, E_{m,p} \end{array} \right\} \cap \mathcal{E} = \{0\}.$$

$$\forall W = \operatorname{span} \left\{ \begin{array}{c} E_{m+1,1}, & \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{m+1,p}, & \cdots, E_{n,p} \end{array} \right\} \subseteq \mathcal{E}. \text{ Where } \mathcal{L}(V, W) = R \oplus W \Rightarrow \mathcal{L}(V, W) = R + \mathcal{E}.$$

Then dim $\mathcal{E} = \dim \mathcal{L}(V, W) - \dim R - \dim(R \cap \mathcal{E}) = (\dim V - \dim U) \dim W$.

- Suppose V is finite-dim and $S \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(T) = ST$.
 - (a) Show that dim null $A = (\dim V)(\dim \operatorname{null} S)$.
 - (b) *Show that* dim range $A = (\dim V)(\dim \operatorname{range} S)$.

SOLUTION:

- (a) $\forall T \in \mathcal{L}(V)$, $ST = 0 \iff \text{range } T \subseteq \text{null } S$. Thus null $\mathcal{A} = \{ T \in \mathcal{L}(V) : \text{range } T \subseteq \text{null } S \} = \mathcal{L}(V, \text{null } S).$
- (b) $\forall R \in \mathcal{L}(V)$, range $R \subseteq \text{range } S \iff \exists T \in \mathcal{L}(V), R = ST$, by (3.B 25). Thus range $\mathcal{A} = \{R \in \mathcal{L}(V) : \text{range } R \subseteq \text{range } S\} = \mathcal{L}(V, \text{range } S).$

OR. Using Note For [3.60].

Let
$$B_{\text{range }S} = \left(\underbrace{w_1, \ldots, w_m}_{Sv_i = w_i}\right), B_{\mathcal{K}} = \left(v_1, \ldots, v_m\right); \left(w_1, \ldots, w_n\right), \left(v_1, \ldots, v_n\right) \text{ are bases of } V.$$

Define
$$E_{i,j} \in \mathcal{L}(V)$$
 by $E_{i,j}(v_x) = \delta_{i,x}w_i$.

Thus $S = E_{1,1} + \dots + E_{m,m}$; $\mathcal{M}(S, (v_1, \dots, v_n), (w_1, \dots, w_n)) = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}$.

Define $R_{i,j} \in \mathcal{L}(V)$ by $R_{i,j}(w_x) = \delta_{i,x}v_i$.

Let $E_{i,k}R_{i,j} = Q_{i,k}$, $R_{i,k}E_{i,j} = G_{i,k}$.

Because
$$\forall T \in \mathcal{L}(V), \ \exists \ ! \ A_{i,j} \in \mathbf{F}, \ T = \begin{pmatrix} A_{1,1}R_{1,1} + & \cdots & +A_{1,m}R_{m,1} + & \cdots & +A_{1,n}R_{n,1} \\ + & \cdots & + & \cdots & + \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ + & \cdots & + & \cdots & +A_{m,m}R_{m,m} + & \cdots & +A_{m,n}R_{n,m} \\ + & \cdots & + & \cdots & +A_{m,n}R_{n,m} \end{pmatrix}.$$

$$\Rightarrow \mathcal{A}(T) = ST = \bigg(\sum_{r=1}^m E_{r,r}\bigg)\bigg(\sum_{i=1}^n \sum_{j=1}^n A_{i,j}R_{j,i}\bigg)$$

$$=\sum_{i=1}^{m}\sum_{j=1}^{n}A_{i,j}Q_{j,i}=\begin{pmatrix}A_{1,1}Q_{1,1}+&\cdots&+A_{1,m}Q_{m,1}+&\cdots&+A_{1,n}Q_{n,1}\\+&\cdots&&+&\cdots&+\\\vdots&\ddots&\vdots&\ddots&\vdots\\+&\cdots&&+&\cdots&+\\A_{m,1}Q_{1,m}+&\cdots&+A_{m,m}Q_{m,m}+&\cdots&+A_{m,n}Q_{n,m}\end{pmatrix}.$$

Thus null
$$\mathcal{A} = \operatorname{span}\begin{pmatrix} R_{1,m+1}, & \cdots & R_{n,m+1}, \\ \vdots & \ddots & \vdots \\ R_{1,n}', & \cdots & R_{n,n}' \end{pmatrix}$$
, range $\mathcal{A} = \operatorname{span}\begin{pmatrix} Q_{1,1}, & \cdots & Q_{n,1}, \\ \vdots & \ddots & \vdots \\ Q_{1,m}', & \cdots & Q_{n,m}' \end{pmatrix}$.

Hence (a) dim null
$$A = n \times (n - m)$$
; (b) dim range $A = n \times m$.

- Comment: Define $\mathcal{B} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{B}(T) = TS$. Similarly to Problem (\circ) ,
 - (a) $\forall T \in \mathcal{L}(V), TS = 0 \iff \text{range } S \subseteq \text{null } T.$ Thus null $\mathcal{B} = \{ T \in \mathcal{L}(V) : \text{range } S \subseteq \text{null } T \} = \{ T \in \mathcal{L}(V) : T|_{\text{range } S} = 0 \}.$
 - (b) $\forall R \in \mathcal{L}(V)$, $\text{null } S \subseteq \text{null } R \iff \exists T \in \mathcal{L}(V)$, R = TS, by (3.B.24). Thus range $\mathcal{B} = \{R \in \mathcal{L}(V) : \text{null } S \subseteq \text{null } R\} = \{R \in \mathcal{L}(V) : R|_{\text{null } S} = 0\}.$

Hence dim null $\mathcal{B} = (\dim V - \dim \operatorname{range} S)(\dim V)$; $\dim \operatorname{range} \mathcal{B} = (\dim V - \dim \operatorname{null} S)(\dim V).$

OR. Using Note For [3.60] and the notation in Problem (
$$\circ$$
).
$$\mathcal{B}(T) = TS = (\sum_{i=1}^n \sum_{j=1}^n A_{i,j} R_{j,i}) (\sum_{r=1}^m E_{r,r})$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,1} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} G_{1,m} + & \cdots & + A_{m,m} G_{m,m} \end{pmatrix}.$$
Thus null $\mathcal{B} = \operatorname{span}\begin{pmatrix} R_{m+1,1}, & \cdots & R_{n,1} \\ \vdots & \ddots & \vdots \\ R_{m+1,n}, & \cdots & R_{n,n} \end{pmatrix}$,
$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,m} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,m} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,n} \\ + & \cdots & + \\ A_{m,1} G_{1,m} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,n} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{1,m} G_{m,n} \\ + & \cdots & + \\ A_{m,1} G_{1,m} + & \cdots & + A_{m,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{m,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{n,1} G_{1,n} + & \cdots & + A_{n,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{m,m} G_{m,m} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} G_{1,n} + & \cdots & + A_{m,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,1} + & \cdots & + A_{m,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} G_{1,n} + & \cdots & + A_{m,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,n} + & \cdots & + A_{m,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} G_{1,m} + & \cdots & + A_{m,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,n} + & \cdots & + A_{m,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} G_{1,n} + & \cdots & + A_{m,m} G_{m,n} \end{pmatrix}.$$

$$= \sum_{i=1}^n \sum_{j=1}^m A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1} G_{1,n} + & \cdots & A_{m,m} G_{m,n} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ \vdots &$$

17 Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}$, $ET \in \mathcal{E}$

SOLUTION: Using Note For [3.60]. Let $(v_1, ..., v_n)$ be a basis of V. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$.

Then $\forall E_{i,j} \in \mathcal{E}$, ($\forall x,y=1,\ldots,n$), by assumption, $E_{j,x}E_{i,j}=E_{i,x} \in \mathcal{E}$, $E_{i,j}E_{y,i}=E_{y,j} \in \mathcal{E}$. $\text{Again, } E_{y,x\prime\prime}, E_{y\prime,x} \in \mathcal{E} \text{ for all } x\prime,y\prime,x,y=1,\ldots,n. \text{ Thus } \mathcal{E} = \mathcal{L}(V).$

• OR (10.A.4) Suppose that $(\beta_1, ..., \beta_n)$ and $(\alpha_1, ..., \alpha_n)$ are bases of V. Let $T \in \mathcal{L}(V)$ be such that $T\alpha_k = \beta_k$, $\forall k$. Prove that $\mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha)$ For ease of notation, let $\mathcal{M}(T, \alpha \to \beta) = \mathcal{M}(T, (\alpha_1, \dots, \alpha_n), (\beta_1, \dots, \beta_n)), \ \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(T, (\alpha_1, \dots, \alpha_n)).$

SOLUTION:

Denote $\mathcal{M}(T, \alpha \to \alpha)$ by A and $\mathcal{M}(I, \beta \to \alpha)$ by B.

$$\forall k \in \{1, \dots, n\}, Iu_k = u_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n = Tv_k = A_{1,k}\alpha_1 + \dots + A_{n,k}\alpha_n \Rightarrow A = B.$$

Or. Note that
$$\mathcal{M}(T, \alpha \to \beta) = I$$
. Hence $\mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha) \underbrace{\mathcal{M}(T, \alpha \to \beta)}_{=\mathcal{M}(I, \beta \to \beta)} = \mathcal{M}(I, \beta \to \alpha)$.

Or. Note that $\mathcal{M}(T, \beta \to \beta)\mathcal{M}(I, \alpha \to \beta) = \mathcal{M}(T, \alpha \to \beta) = I$.

$$\mathcal{M}(T,\alpha \to \alpha) = \mathcal{M}(I,\alpha \to \beta)^{-1} \left(\underbrace{\mathcal{M}(T,\beta \to \beta)\mathcal{M}(I,\alpha \to \beta)}_{=\mathcal{M}(T,\alpha \to \beta)} \right) = \mathcal{M}(I,\beta \to \alpha).$$

COMMENT: Denote $\mathcal{M}(T, \beta \to \beta)$ by A'.

$$u_k = Iu_k = B_{1,k}\alpha_1 + \cdots + B_{n,k}\alpha_n, \ \forall \ k \in \left\{1, \ldots, n\right\}.$$

 $\nabla Tu_k = T(B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n) = B_{1,k}\beta_1 + \dots + B_{n,k}\beta_n = A'_{1,k}\beta_1 + \dots + A'_{n,k}\beta_n \Rightarrow A' = B.$

Or. $\mathcal{M}(T, \beta \to \beta) = \mathcal{M}(T, \alpha \to \beta)\mathcal{M}(I, \beta \to \alpha) = B$.

16 Suppose V is finite-dim and $S \in \mathcal{L}(V)$ such that $\forall T \in \mathcal{L}(V)$, ST = TS. *Prove that* $\exists \lambda \in \mathbf{F}$, $S = \lambda I$. **SOLUTION**: Using the notation and result in (•). Suppose ST = TS for every $T \in \mathcal{L}(V)$. If S = 0, we are done. Now suppose $S \neq 0$. Let $S = E_{1,1} + \cdots + E_{m,m} \Rightarrow \mathcal{M}(S, B_{\mathcal{K}}) = \mathcal{M}(I, B_{\text{range } S}, B_{\mathcal{K}}).$ Then $\forall k \in \{m+1,\ldots,n\}, 0 \neq SR_{k,1} = R_{k,1}S$. Hence $n = \dim V = \dim \operatorname{range} S = m$. Notice that $R_{i,j}S = SR_{i,j} \iff Q_{i,j} = G_{i,j}$. Thus $Q_{i,j}(w_i) = w_j = a_{i,i}v_j = G_{i,j}(a_{1,i}v_1 + \cdots + a_{n,i}v_n)$. Where $a_{i,j} = \mathcal{M}(I, (w_1, \dots, w_n), (v_1, \dots, v_n))_{i,j} \iff w_i = Iw_i = a_{1,i}v_1 + \dots + a_{n,i}v_n;$ And For each *j*, for all *i*. Thus $a_{i,i} = a_{k,k} = \lambda$, $\forall k \neq i$. Hence $w_i = \lambda v_i \Rightarrow \mathcal{M}(S) = \mathcal{M}(\lambda I, (v_1, ..., v_n)) \Rightarrow S = \mathcal{M}^{-1}(\mathcal{M}(\lambda I))\lambda I$. **18** *Show that V and* $\mathcal{L}(\mathbf{F}, V)$ *are iso vecsps.* **SOLUTION:** Define $\Psi \in \mathcal{L}(V, \mathcal{L}(F, V))$ by $\Psi(v) = \Psi_v$; where $\Psi_v \in \mathcal{L}(F, V)$ and $\Psi_v(\lambda) = \lambda v$. (a) $\Psi(v) = \Psi_v = 0 \Rightarrow \forall \lambda \in \mathbb{F}, \Psi_v(\lambda) = \lambda v = 0 \Rightarrow v = 0$. Hence Ψ is inje. (b) $\forall T \in \mathcal{L}(\mathbf{F}, V)$, let $v = T(1) \Rightarrow T(\lambda) = \lambda v = \Psi_v(\lambda)$, $\forall \lambda \in \mathbf{F} \Rightarrow T = \Psi(T(1))$. Hence Ψ is surj. \square Or. Define $\Phi \in \mathcal{L}(\mathcal{L}(\mathbf{F}, V), V)$ by $\Phi(T) = T(1)$. (a) Suppose $\Phi(T) = 0 = T(1) = \lambda T(1) = T(\lambda), \forall \lambda \in \mathbb{F} \Rightarrow T = 0$. Thus Φ is inje. (b) For any $v \in V$, define $T \in \mathcal{L}(\mathbf{F}, V)$ by $T(\lambda) = \lambda v$. Then $\Phi(T) = T(1) = v$. Thus Φ is surj. Comment: $\Phi = \Psi^{-1}$. • Suppose $q \in \mathcal{P}(R)$. Prove that $\exists p \in \mathcal{P}(R)$, $q(x) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$. **SOLUTION:** Note that $\deg [(x^2 + x)p''(x) + 2xp'(x) + p(3)] = \deg p$. Define $T_n: \mathcal{P}_n(\mathbf{R}) \to \mathcal{P}_n(\mathbf{R})$ by $T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$. Then $T_n \in \mathcal{L}(\mathcal{P}_n(\mathbf{R}))$. And note that $T_n(p) = 0 \Rightarrow \deg(T_n p) = -\infty = \deg p \Rightarrow p = 0$. Thus T_n is inv. $\forall q \in \mathcal{P}(\mathbf{R})$, if q = 0, let m = 0; if $q \neq 0$, let $m = \deg q$, we have $q \in \mathcal{P}_m(\mathbf{R})$. Hence $\exists p \in \mathcal{P}_m(\mathbf{R}), q(x) = T_m(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$ for all $x \in \mathbf{R}$. **19** Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ is inje. deg $Tp \leq \deg p$ for every nonzero $p \in \mathcal{P}(\mathbf{R})$. (a) Prove that T is surj; (b) Prove that for every nonzero p, $\deg Tp = \deg p$. **SOLUTION:** (a) T is inje $\iff \forall n \in \mathbb{N}^+, T|_{\mathcal{P}_n(\mathbb{R})} : \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ is inje and therefore is inv $\iff T$ is surj. (b) Using mathematical induction. (i) $\deg p = 0 \Rightarrow p = C \Rightarrow \deg Tp = \deg p = 0$; $\deg p = -\infty \Rightarrow p = 0 \Rightarrow \deg Tp = \deg p = -\infty.$ (ii) Assume that $\forall s \in \mathcal{P}_n(\mathbf{R})$, $\deg s = \deg Ts$. Suppose $\exists r \in \mathcal{P}_{n+1}(\mathbf{R}), \deg Tr \leq n < \deg r = n+1.$ Then by (a), $\exists s \in \mathcal{P}_n(\mathbf{R}), T(s) = (Tr).$ $\[\] T$ is inje $\Rightarrow s = r$. While $\deg s = \deg Ts = \deg Tr < \deg r$. Contradicts. Thus $\forall p \in \mathcal{P}_{n+1}(\mathbf{R})$, $\deg Tp = \deg p$.

1 A function $T: V \to W$ is linear \iff T is a subspace of $V \times W$.

2 Suppose $V_1 \times \cdots \times V_m$ is finite-dim. Prove that each V_i is finite-dim.

SOLUTION:

For any
$$k \in \{1, ..., m\}$$
, define $p_k : V_1 \times \cdots \times V_m \to V_k$ by $p_k(v_1, ..., v_m) = v_k$.

Then p_k is a surj linear map. By [3.22], range $p_k = V_k$ is finite-dim.

Or. Denote $V_1 \times \cdots \times V_m$ by U. Denote $\{0\} \times \cdots \{0\} \times V_i \times \{0\} \cdots \times \{0\}$ by U_i .

Let $(v_1, ..., v_M)$ be a basis of U. Note that $\forall u_i \in V_i, \in U_i \subseteq U$, for each i.

Define
$$R_i \in \mathcal{L}(V_i, U)$$
 by $R_i(u_i) = (0, \dots, 0, u_i, 0, \dots, 0)$
Define $S_i \in \mathcal{L}(U, V_i)$ by $S_i(u_1, \dots, u_i, \dots, u_m) = u_i$ $\} \Rightarrow S_i|_{U_i} = R_i^{-1}|_{U_i}.$

Thus U_i and V_i are iso. X X Y is a subsp of a finite-dim vecsp Y.

3 Give an example of a vecsp V and its two subsps U_1 , U_2 such that $U_1 \times U_2$ and $U_1 + U_2$ are iso but $U_1 + U_2$ is not a direct sum.

SOLUTION: V must be infinite-dim. For if not, both U_1 and U_2 are finite-dim subsps. By [3.76, 3.78].

NOTE that at least one of U_1 , U_2 must be infinite-dim. And at least one must be infinite-dim??? TODO

For if not, $U_1 \times U_2$ is finite-dim and $\dim(U_1 \times U_2) = \dim(U_1 + U_2) = \dim U_1 + \dim U_2$.

Let
$$V = \mathbb{F}^{\infty} = U_1$$
, $U_2 = \{(x, 0, \dots) \in \mathbb{F}^{\infty} : x \in \mathbb{F}\}$.

Define
$$T \in \mathcal{L}(U_1 \times U_2, U_1 + U_2)$$
 by $T((x_1, x_2, \dots), (x, 0, \dots)) = (x, x_1, x_2, \dots)$
Define $S \in \mathcal{L}(U_1 + U_2, U_1 \times U_2)$ by $S(x, x_1, x_2, \dots) = ((x_1, x_2, \dots), (x, 0, \dots))$ $\Rightarrow S = T^{-1}$.

4 Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are iso.

SOLUTION: Using the notation in Problem (2).

Note that
$$T(u_1, ..., u_m) = T(u_1, 0, ..., 0) + ... + T(0, ..., u_m)$$
.

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (TR_1, \dots, TR_m)$.

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (TR_1, \dots, TR_m)$.
Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1S_1 + \dots + T_mS_m$. $\} \Rightarrow \psi = \varphi^{-1}$.

5 Prove that $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ and $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ are iso.

SOLUTION: Using the notation in Problem (2).

Note that $Tv = (w_1, ..., w_m)$. Define $T_i \in \mathcal{L}(V, W_i)$ by $T_i(v) = w_i$.

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (S_1 T, \dots, S_m T)$.

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (S_1 T, \dots, S_m T)$.
Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1 S_1 + \dots + T_m S_m$. $\} \Rightarrow \psi = \varphi^{-1}$.

6 For $m \in \mathbb{N}^+$, define V^m by $\underbrace{V \times \cdots \times V}_{m \text{ times}}$. Prove that V^m and $\mathcal{L}(\mathbf{F}^m, V)$ are iso.

SOLUTION:

Define $T:(v_1,\ldots,v_m)\to \varphi$, where $\varphi:(a_1,\ldots,a_m)\mapsto v$ is defined by $\varphi(a_1,\ldots,a_m)=a_1v_1+\cdots+a_mv_m$.

- (a) Suppose $T(v_1, ..., v_m) = 0$. Then $\forall (a_1, ..., a_n) \in \mathbb{F}^m, \varphi(a_1, ..., a_m) = a_1 v_1 + ... + a_m v_m = 0$ \Rightarrow $(v_1, \dots, v_m) = 0 \Rightarrow T$ is inje.
- (b) Suppose $\psi \in \mathcal{L}(\mathbf{F}^m, V)$. Let (e_1, \dots, e_m) be the standard basis of \mathbf{F}^m . Then $\forall (b_1, \dots, b_n) \in \mathbf{F}^m$, $\left[T(\psi(e_1), \dots, \psi(e_m)) \right] (b_1, \dots, b_m) = b_1 \psi(e_1) + \dots + b_m \psi(e_m) = \psi(b_1 e_1 + \dots + b_m e_m) = \psi(b_1, \dots, b_m).$

Thus $T(\psi(e_1), \dots, \psi(e_m)) = \psi$. Hence T is surj.

- **14** Suppose $U = \{(x_1, x_2, \dots) \in \mathbb{F}^{\infty} : x_k \neq 0 \text{ for only finitely many } k\}.$
 - (a) Show that U is a subsp of \mathbf{F}^{∞} . [Do it in your mind]
 - (b) Prove that \mathbf{F}^{∞}/U is infinite-dim.

SOLUTION: For ease of notation, denote the p^{th} term of $u = (x_1, \dots, x_p, \dots) \in \mathbb{F}^{\infty}$ by u[p].

$$\text{For each } r \in \mathbb{N}^+, \text{let } e_r\big[p\big] = \left\{ \begin{array}{l} 1, (p-1) \equiv 0 \, \big(\text{mod } r \big) \\ 0, \text{otherwise} \end{array} \right| \quad \text{simply } e_r = \big(1, \underbrace{0, \ \cdots, \ 0}_{(p-1) \, \, times}, 1, \underbrace{0, \ \cdots, \ 0}_{(p-1) \, \, times}, 1, \cdots \big).$$

Choose one $m \in \mathbb{N}^+$. Let $a_1(e_1 + U) + \cdots + a_m(e_m + U) = 0 + U \Rightarrow \exists u \in U, a_1e_1 + \cdots + a_me_m = u$.

Suppose $u = (x_1, \dots, x_L, 0, \dots)$, where L is the largest such that $u[L] \neq 0$.

Let $s \in \mathbb{N}^+$ be such that $h = s \cdot m! + 1 > L$ and $e_1[h] = \cdots = e_m[h] = 1$.

Note that by definition, $e_r[s \cot m! + 1 + p] = e_r[p + 1] = 1 \iff p \equiv 0 \pmod{r} \iff r \mid p$.

Now for any
$$p \in \{1, ..., m\}$$
, $u[h+p] = \left(\sum_{r=1}^{m} a_r e_r\right)[p+1] = \sum_{k=1}^{\tau(p)} a_{p_k} = 0$ (Δ)

where $1 = p_1 \leqslant \cdots \leqslant p_{\tau(p)} = p$ are all the distinct factors of p.

Let $q = p_{\tau(p)-1}$. Notice that $\tau(q) = \tau(p) - 1$ and $q_k = p_k, \forall k \in \{1, ..., \tau(q)\}$.

Again by (
$$\Delta$$
), $\left(\sum_{r=1}^{m} a_r e_r\right) [h+q] = \sum_{k=1}^{\tau(p)-1} a_{p_k} = 0$. Thus $a_{p_{\tau(p)}} = a_p = 0$ for any $p \in \{1, \dots, m\}$.

Hence $\forall m \in \mathbb{N}^+$, (e_1, \dots, e_m) is linely inde in \mathbb{F}^{∞} , so is $(e_1 + U, \dots, e_m + U)$ in \mathbb{F}^{∞}/U . By (2.A.14). \square

Or. For each
$$r \in \mathbb{N}^+$$
, let $e_r[p] = \begin{cases} 1, \text{ if } 2^r | p \\ 0, \text{ otherwise} \end{cases}$.

Similarly, let $m \in \mathbb{N}^+$ and $a_1(e_1 + U) + \cdots + a_m(e_m + U) = 0 \Rightarrow a_1e_1 + \cdots + a_me_m = u \in U$.

Suppose *L* is the largest such that $u[L] \neq 0$. And *l* is such that $2^{ml} > L$.

Then
$$\forall k \in \{1, ..., m\}, u[2^{ml} + 2^k] = \left(\sum_{r=1}^m a_r e_r\right)[2^k] = a_1 + \dots + a_k = 0.$$

Thus
$$a_1 = \cdots = a_m = 0$$
 and (e_1, \dots, e_m) is linely inde. Similarly.

7 Suppose $v, x \in V$ and U and W are subsps of V. Prove that $v + U = x + W \Rightarrow U = W$.

SOLUTION:

- (a) $\forall u_1 \in U, \exists w_1 \in W, v + u_1 = x + w_1, \text{ let } u_1 = 0, \text{ now } v = x + w_1' \Rightarrow v x \in W.$
- (b) $\forall w_2 \in W, \exists u_2 \in U, v + u_2 = x + w_2, \text{ let } w_2 = 0, \text{ now } x = v + u_2' \Rightarrow x v \in U.$

Thus
$$\pm (v - x) \in U \cap W \Rightarrow \begin{cases} u_1 = (x - v) + w_1 \in W \Rightarrow U \subseteq W \\ w_2 = (v - x) + u_2 \in U \Rightarrow W \subseteq U \end{cases} \Rightarrow U = W.$$

• Let $U = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 5z = 0\}$. Suppose $A \subseteq \mathbb{R}^3$.

Then *A* is a translate of $U \iff \exists c \in \mathbb{R}, A = \{(x,y,z) \in \mathbb{R}^3 : 2x + 3y + 5z = c\}.$

• Suppose $T \in \mathcal{L}(V, W)$ and $c \in W$. Prove that $U = \{x \in V : Tx = c\}$ is either \emptyset or is a translate of null T.

SOLUTION:

If $c \in W$ but $c \notin \text{range } T$, then $U = \emptyset$, we are done. Now suppose $c \in \text{range } T$ and $x \in U$.

 $\forall x + y \in x + \text{null } T \ (\forall y \in \text{null } T), x + y \in U. \text{ Hence } x + \text{null } T \subseteq U.$

$$\forall u \in U, u - x \in \text{null } T \Rightarrow u = x + (u - x)x + \text{null } T. \text{ Hence } U \subseteq x + \text{null } T.$$

COROLLARY: The set of solutions to a system of linear equations such as [3.28] is either \emptyset or a translate.

8 Suppose A is a nonempty subset of V.

Prove that A is a translate of some subsp of $V \iff \lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A, \lambda \in F$.

SOLUTION:

Suppose A = a + U. Then $\forall a + u_1, a + u_2 \in A, \lambda \in \mathbb{F}$,

$$\lambda(a + u_1) + (1 - \lambda)(a + u_2) = a + (\lambda(u_1 - u_2) + u_2) \in A.$$

Suppose $\lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A$, $\lambda \in F$. Suppose $a \in A$ and let $A' = \{x - a : x \in A\}$.

Then $0 \in A'$ and $\forall x - a, y - a \in A'$, $(\forall x, y \in A)$, $\lambda \in \mathbb{F}$,

(I)
$$\lambda(x-a) = [\lambda x + (1-\lambda)a] - a \in A'$$
.

(II)
$$\lambda(x-a) + (1-\lambda)(y-a) = \frac{1}{2}(x-a) + \frac{1}{2}(y-a) = \frac{1}{2}x + (1-\frac{1}{2})y - a \in A'$$
.

Or. By (I),
$$2 \times \left[\frac{1}{2}(x-a) + \frac{1}{2}(y-a)\right] = (x-a) + (y-a) \in A'$$
.

Thus A' is a subsp of V. Hence $a + A' = \{(x - a) + a : x \in A\} = A$ is a translate.

OR. Suppose $x - a, y - a \in A', \lambda \in F$.

Note that $x, a \in A \Rightarrow \lambda x + (1 - \lambda)a = 2x - a \in A$. Similarly $2y - a \in A$.

(I)
$$\left(x - \frac{1}{2}a\right) + \left(y - \frac{1}{2}a\right) = x + y - a \in A \Rightarrow x + y - 2a = \left(x - a\right) + \left(y - a\right) \in A'$$
.

(II)
$$\lambda(x-a) = (\lambda x + (1-\lambda)a) - a \in A'$$
.

Thus -x + A is a subsp of V. Hence A = x + (-x + A) is a translate of the subsp (-x + A).

9 Suppose $A_1 = v + U_1$ and $A_2 = w + U_2$ for some $v, w \in V$ and some subsps U_1, U_2 of V. Prove that the intersection $A_1 \cap A_2$ is either a translate of some subsp of V or is \emptyset .

SOLUTION:

Suppose $v + u_1, w + u_2 \in A_1 \cap A_2 \neq \emptyset$. By Problem (8),

$$\forall \lambda \in \mathbf{F}, \lambda(v + u_1) + (1 - \lambda)(w + u_2) \in A_1 \cap A_2$$
. Thus $A_1 \cap A_2$ is a translate of some subsp of V . \square

Or. Let $A_1 = v + U_1, A_2 = w + U_2$. Suppose $x \in (v + U_1) \cap (w + U_2) \neq \emptyset$.

Then $\exists u_1 \in U_1, x = v + u_1 \Rightarrow x - v \in U_1, \ \exists u_2 \in U_2, x = w + u_2 \Rightarrow x - w \in U_2.$

Note that by [3.85], $A_1 = v + U_1 = x + U_1$, $A_2 = w + U_2 = x + U_2$. We show that $A_1 \cap A_2 = x + (U_1 \cap U_2)$.

(a)
$$y \in A_1 \cap A_2 \Rightarrow \exists u_1 \in U_1, u_2 \in U_2, y = x + u_1 = x + u_2 \Rightarrow u_1 = u_2 \in U_1 \cap U_2 \Rightarrow y \in x + (U_1 \cap U_2).$$

(b)
$$y = x + u \in x + (U_1 \cap U_2) = (x + U_1) \cap (x + U_2) \Rightarrow y \in A_1 \cap A_2.$$

10 Prove that the intersection of any collection of translates of subsps of V is either a translate of some subsp or \emptyset .

SOLUTION:

Suppose $\{A_{\alpha}\}_{{\alpha}\in\Gamma}$ is a collection of translates of subsps of V, where Γ is an arbitrary index set.

Suppose $x, y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \neq \emptyset$, then by Problem (8), $\forall \lambda \in \mathbf{F}, \lambda x + (1 - \lambda)y \in A_{\alpha}$ for every $\alpha \in \Gamma$.

Thus $\bigcap_{\alpha \in \Gamma} A_{\alpha}$ is a translate of some subsp of V.

Or. Let $A_{\alpha} = w_{\alpha} + V_{\alpha}$ for each $\alpha \in \Gamma$. Suppose $x \in \bigcap_{\alpha \in \Gamma} (w_{\alpha} + V_{\alpha}) \neq \emptyset$.

Then for each A_{α} , $\exists v_{\alpha} \in V_{\alpha}$, $x = w_{\alpha} + v_{\alpha} \Rightarrow x - w_{\alpha} \in V_{\alpha} \Rightarrow A_{\alpha} = w_{\alpha} + V_{\alpha} = x + V_{\alpha}$.

(a)
$$y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \Rightarrow \forall \alpha \in \Gamma, \exists v_{\alpha}, y = x + v_{\alpha} \Rightarrow \forall \alpha, \beta \in \Gamma, v_{\alpha} = v_{\beta} \Rightarrow y \in x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$$
.

(b)
$$y = x + v \in x + \bigcap_{\alpha \in \Gamma} V_{\alpha} = \bigcap_{\alpha \in \Gamma} (x + V_{\alpha}) \Rightarrow y \in \bigcap_{\alpha \in \Gamma} A_{\alpha}$$
. Hence $\bigcap_{\alpha \in \Gamma} A_{\alpha} = x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$.

- **11** Suppose $A = \{\lambda_1 v_1 + \dots + \lambda_m v_m : \sum_{i=1}^m \lambda_i = 1\}$, where each $v_i \in V, \lambda_i \in F$.
 - (a) Prove that A is a translate of some subsp of V
 - (b) Prove that if B is a translate of some subsp of V and $\{v_1, ..., v_m\} \subseteq B$, then $A \subseteq B$.
 - (c) Prove that A is a translate of some subsp of V of dim less than m.

SOLUTION:

(a) By Problem (8),
$$\forall u, w \in A, \lambda \in \mathbf{F}, \exists a_i, b_i \mathbf{F},$$

$$\lambda u + (1 - \lambda)w = \left(\lambda \sum_{i=1}^m a_i + (1 - \lambda) \sum_{i=1}^m b_i\right) v_i \in A.$$

(b) Suppose
$$B = v + U$$
, where $v \in V$ and U is a subsp of V . Suppose $\exists ! u_k \in U, v_k = v + u_k \in B$.
Then for all $v = \sum_{i=1}^m \lambda_i v_i \in A$, $v = \sum_{i=1}^m \lambda_i (v + u_i) = v + \sum_{i=1}^m \lambda_i u_i \in v + U = B$.

Or. Let $v = \lambda_1 v_1 + \dots + \lambda_m v_m \in A$. To show that $v \in B$, use induction on m by k.

(i)
$$k=1, v=\lambda_1v_1\Rightarrow \lambda_1=1$$
. $\not \subset v_1\in B$. Hence $v\in B$.
$$k=2, v=\lambda_1v_1+\lambda_2v_2\Rightarrow \lambda_2=1-\lambda_1. \not \subset v_1, v_2\in B. \text{ By Problem (8)}, v\in B.$$

(ii)
$$2 \le k \le m$$
, we assume that $v = \lambda_1 v_1 + \dots + \lambda_k v_k \in A \subseteq B$. $(\forall \lambda_i \text{ such that } \sum_{i=1}^k \lambda_i = 1)$

For $u = \mu_1 v_1 + \dots + \mu_k v_k + \mu_{k+1} v_{k+1} \in A$. $\forall i = 1, \dots, k, \exists \mu_i \neq 1$, fix one such i by ι .

Then
$$\sum_{i=1}^{k+1} \mu_i - \mu_i = 1 - \mu_i \Rightarrow \left(\sum_{i=1}^{k+1} \frac{\mu_i}{1 - \mu_i}\right) - \frac{\mu_i}{1 - \mu_i} = 1.$$

Let
$$w = \underbrace{\frac{\mu_1}{1 - \mu_i} v_1 + \dots + \frac{\mu_{i-1}}{1 - \mu_i} v_{i-1} + \frac{\mu_{i+1}}{1 - \mu_i} v_{i+1} + \dots + \frac{\mu_{k+1}}{1 - \mu_i} v_{k+1}}_{k \ terms}.$$

Let
$$\lambda_i = \frac{\mu_i}{1 - \mu_i}$$
 for $i = 1, \dots, i - 1$; $\lambda_j = \frac{\mu_{j+1}}{1 - \mu_i}$ for $j = i, \dots, k$. Then,

$$\sum_{i=1}^{k} \lambda_i = 1 \Rightarrow w \in B$$

$$v_i \in B \Rightarrow u' = \lambda w + (1 - \lambda)v_i \in B$$
 \rightarrow Let \lambda = 1 - \mu_i. Thus $u' = u \in B \Rightarrow A \subseteq B$.

(c) If m = 1, then let $A = v_1 + \{0\}$ and we are done.

Choose one $k \in \{1, ..., m\}$. Given $\lambda_i \in \mathbb{F}$, where $i \in \{1, ..., k-1, k+1, ..., m\}$.

Let
$$\lambda_k = 1 - \lambda_1 - \dots - \lambda_{k-1} - \lambda_{k+1} - \dots - \lambda_m$$

Then
$$\lambda_1 v_1 + \dots + \lambda_k v_k + \dots + \lambda_m v_m = v_k + \sum_{i=1}^m \lambda_i (v_i - v_k)$$
.

Thus
$$A = v_k + \text{span}(v_1 - v_k, \dots, v_{k-1} - v_k, v_{k+1} - v_k, \dots, v_m - v_k)$$
.

18 Suppose $T \in \mathcal{L}(V, W)$ and U is a subsp of V. Let π denote the quotient map. Prove that $\exists S \in \mathcal{L}(V/U, W), T = S \circ \pi \iff U \subseteq \text{null } T$.

SOLUTION:

(a) Suppose $U \subseteq \text{null } T$. Define $S \in \mathcal{L}(V/U, W)$ by S(v + U) = Tv. Then $S \circ \pi = T$. Now we show that this map is *well-defined*.

$$v_1 + U = v_2 + U \Longleftrightarrow (v_1 - v_2) \in U \Longleftrightarrow S((v_1 - v_2) + U) = T(v_1 - v_2) = 0 \Longleftrightarrow Tv_1 = Tv_2.$$

(b) Suppose
$$\exists S, T = S \circ \pi$$
. Then $\forall u \in U, Tu = S \circ \pi(u) = S(0 + U) = 0 \Rightarrow U \subseteq \text{null } T$.

- **20** Define $\Gamma : \mathcal{L}(V/U, W) \to \mathcal{L}(V, W)$ by $\Gamma(S) = S \circ \pi$. Prove that:
 - (a) Γ *is linear:* By [3.9] distr and [3.6].

(b)
$$\Gamma$$
 is inje: $\Gamma(S) = 0 = S \circ \pi \iff \forall v \in V, S(\pi(v)) = 0 \iff \forall v + U \in V/U, S(v + U) = 0 \iff S = 0$.

(c) range
$$\Gamma = \{T \in \mathcal{L}(V, W) : U \subseteq \text{null } T\}$$
: By Problem (18).

_	Note For	[3 79 3 83]	
•	MOLELOK	3.7 %, 3.63	•

Suppose *U* is a subsp of *V*. If $U = \{0\}$, then $v + U = v + \{0\} = \{v\}$, $V/U = V/\{0\} = \{\{v\} : v \in V\}$.

• Note For [3.88, 3.90, 3.91]: Suppose $W \in \mathcal{S}_V U$. Then V/U and W are iso.

For any $W \in \mathcal{S}_V U$, because $V = U \oplus W$, $\forall v \in V, \exists ! u_v \in U, w_v \in W$ such that $v = u_v + w_v$.

Define $T \in \mathcal{L}(V, W)$ by $T(v) = w_v$. Hence null T = U, range T = W.

Then $\tilde{T} \in \mathcal{L}(V/\text{null }T,W)$ is defined by $\tilde{T}(v+U) = Tv = w_v$.

Now $\pi \circ \widetilde{T} = I_{V/U}$, $\widetilde{T} \circ \pi = I_W = T|_W$ Hence \widetilde{T} is an iso.

12 Suppose U is a subsp of V such that V/U is finite-dim. Prove that is V is iso to $U \times (V/U)$.

SOLUTION:

Let $(v_1 + U, ..., v_n + U)$ be a basis of V/U.

Note that $\forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^n a_i(v_i + U) = \left(\sum_{i=1}^n a_i v_i\right) + U$

$$\Rightarrow (v - a_1 v_1 - \dots - a_n v_n) \in U \Rightarrow \exists ! u \in U, v = \sum_{i=1}^n a_i v_i + u.$$

Thus define $\varphi \in \mathcal{L}(V, U \times (V/U))$ by $\varphi(v) = (u, v + U)$,

and
$$\psi \in \mathcal{L}(U \times (V/U), V)$$
 by $\psi(u, v + U) = v + u$, where $\exists ! a_i \in F, v = \sum_{i=1}^n a_i v_i + U$.

OR. [V/U, U and V can be infinite-dim]

Let W be such that $V = U \oplus W$. Thus $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$.

Define $\tilde{T} \in \mathcal{L}(V/U, W)$ by $\tilde{T}(v + U) = v = w_v \in W$. Notice that $v + U = w_v + U$.

Define $S \in \mathcal{L}(U \times (V/U), V)$ by $S(u, v + U) = u + \tilde{T}(v + U)$.

Inje: $S(u, v + U) = u + \tilde{T}(v + U) = 0 \Rightarrow \pi(S(u, v + U)) = v + U = 0 \Rightarrow u = -\tilde{T}(v + U) = 0.$

Surj: $\forall v \in V, \exists ! u \in U, w \in W, v = u + w \Rightarrow S(u, w + U) = u + \tilde{T}(w + U) = v$.

Or. Define
$$R \in \mathcal{L}(V, U \times (V/U))$$
 by $R(v) = (u_v, (w_v + U))$. Now $R \circ S = I_{U \times (V/U)}$, $S \circ R = I_V$. \square

• (4E 3.E.14) Suppose $V = U \oplus W$, $(w_1, ..., w_m)$ is a basis of W. Prove that $(w_1 + U, ..., w_m + U)$ is a basis of V/U.

SOLUTION:

Note that
$$\forall v \in V, \exists ! u \in U, w \in W, v = u + w. \ \ \exists ! c_i \in F, w = \sum_{i=1}^m c_i w_i \Rightarrow v = \sum_{i=1}^m c_i w_i + u.$$

Hence $\forall v + U \in V/U, \exists ! c_i \in F, v + U = \sum_{i=1}^m c_i w_i + U = c_1(w_1 + U) + \dots + c_m(w_m + U).$

13 Suppose $(v_1 + U, ..., v_m + U)$ is a basis of V/U and $(u_1, ..., u_n)$ is a basis of U. Prove that $(v_1, ..., v_m, u_1, ..., u_n)$ is a basis of V.

SOLUTION: Notice that $(v_1, ..., v_m)$ is linely inde.

By Problem (12), U and V/U are finite-dim $\Rightarrow U \times (V/U)$ is finite-dim, so is V.

 $\dim V = \dim (U \times (V/U)) = \dim U + \dim V/U = m + n.$

$$\mathbb{X}$$
 Each $v_i \notin U \Rightarrow (v_1, \dots, v_m, u_1, \dots, u_n)$ is linely inde.

Or. Note that $\forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^m a_i v_i + U \Rightarrow \exists ! b_i \in F, v - \sum_{i=1}^m a_i v_i = \sum_{i=1}^m b_i u_i \in U$ $\Rightarrow \forall v \in V, \exists ! a_i, b_j \in F, v = \sum_{i=1}^m a_i v_i + \sum_{j=1}^m b_j u_j.$

Or. Note that
$$\sum_{i=1}^{m} a_i v_i \in U \iff \left(\sum_{i=1}^{m} a_i v_i\right) + U = 0 + U \iff a_1 = \dots = a_m = 0.$$

Hence span $(v_1, ..., v_m) \cap U = \{0\} \Rightarrow \text{span}(v_1, ..., v_m) \oplus U = V$. By (2.B.8), we are done.

15 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F}) \setminus \{0\}$. Prove that dim $V/(\text{null } \varphi) = 1$. **SOLUTION:** By (3.B.29), $\exists u \in V, V = \text{null } \varphi \oplus \{au : a \in F\}$. By (4E 3.E.14), $(u + \text{null } \varphi)$ is a basis of $V/\text{null } \varphi$. Or. By [3.91] (d), dim range $\varphi = 1 = \dim V / (\text{null } \varphi)$. **16** Suppose dim V/U = 1. Prove that $\exists \varphi \in \mathcal{L}(V, \mathbf{F})$ such that null $\varphi = U$. **SOLUTION:** Suppose V_0 is a subsp of V such that $V = U \oplus V_0$. Then V_0 and V/U are iso. dim $V_0 = 1$. Define $\varphi \in \mathcal{L}(V, \mathbf{F})$ by $\varphi(v_0) = 1$, $\varphi(u) = 0$, where $v_0 \in V_0$, $u \in U$. Or. Let (w + U) be a basis of V/U. Then $\forall v \in V, \exists ! a \in F, v + U = aw + U$. Define $\varphi: V \to \mathbf{F}$ by $\varphi(v) = a$. Assume that φ is linear. Then $u \in U \iff u + U = 0w + U \iff \varphi(u) = 0 \iff u \in \text{null } \varphi$. Thus $U = \text{null } \varphi$. Now we prove the assumption. $\forall x, y \in V, \lambda \in \mathbf{F}, \exists ! a, b \in \mathbf{F}, x + U = aw + U, \lambda y + U = \lambda bw + U \Rightarrow (x + \lambda y) + U = (a + \lambda b)w + U.$ Then $\varphi(x + \lambda y) = a + \lambda b = \varphi(x) + \lambda \varphi(y)$. **17** Suppose V/U is finite-dim. W is a subsp of V. (a) Show that if V = U + W, then dim $W \ge \dim V/U$. (b) Find a W such that dim $W = \dim V/U$ and $V = U \oplus W$. **SOLUTION**: Let $(w_1, ..., w_n)$ be a basis of W(a) $\forall v \in V, \exists u \in U, w \in W$ such that $v = u + w \Rightarrow v + U = w + U$ And $\exists ! a_i \in F, v + U = (a_1 w_1 + \dots + a_n w_n) + U$. Then $V/U \subseteq \text{span}(w_1 + U, \dots, w_n + U)$. Hence dim $V/U = \dim \operatorname{span}(w_1 + U, \dots, w_n + U) \leq \dim W$. (b) Let $W \in \mathcal{S}_V U$. In other words, reduce $(w_1 + U, ..., w_n + U)$ to a basis $(w_1 + U, ..., w_m + U)$ of V/U and let $W = \text{span}(w_1, ..., w_m)$. Or. Let $(v_1 + U, ..., v_m + U)$ be a basis of V/U and define $\tilde{T} \in \mathcal{L}(V/U, V)$ by $\tilde{T}(v_k + U) = v_k$. Note that $\pi \circ \tilde{T} = I$. By (3.B.20), \tilde{T} is inje. And (v_1, \dots, v_m) is linely inde. Let $W = \operatorname{range} \tilde{T} = \operatorname{span}(v_1, \dots, v_m)$. Then $\tilde{T} \in \mathcal{L}(V/U, W)$ is an iso. Thus dim $W = \dim V/U$. And $\forall v \in V, \exists ! a_i \in F, v + U = a_1v_1 + \dots + a_mv_m + U$ $\Rightarrow v - (a_1v_1 + \dots + a_mv_m) \in U \Rightarrow \exists ! w \in W, u \in U, v = w + u.$ **E**NDED

3.F4 5 6 7 8 9 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 33 34 35 36 37 | 4E: 5, 6, 8, 17, 23, 24, 25

20, 21 Suppose U and W are subsets of V. Prove that $U \subseteq W \iff W^0 \subseteq U^0$.

SOLUTION:

- (a) Suppose $U \subseteq W$. Then $\forall \varphi \in W^0, u \in U \subseteq W, \varphi(w) = 0 \Rightarrow \varphi \in U^0$. Thus $W^0 \subseteq U^0$.
- (b) Suppose $W^0 \subseteq U^0$. Then $\varphi \in W^0 \Rightarrow \varphi \in U^0$. Hence $\text{null } \varphi \supseteq W \Rightarrow \text{null } \varphi \supseteq U$. Thus $W \supseteq U$.

OR. For a subsp U of V, let $A_U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\} = U$, by Problem (25). Suppose $W^0 \subseteq U^0$. Then $\forall \varphi \in W^0, v \in A_U, \varphi(v) = 0 \Rightarrow v \in A_W$. Thus $A_U \subseteq A_W$.

Corollary: $W^0 = U^0 \iff U = W$.

22 Suppose U and W are subsps of V . Prove that $(U + W)^0 = U^0 \cap W^0$. SOLUTION: (a) $U \subseteq U + W \\ W \subseteq U + W$ $\Rightarrow (U + W)^0 \subseteq U^0 \\ (U + W)^0 \subseteq W^0$ $\Rightarrow (U + W)^0 \subseteq U^0 \cap W^0$.	
OR. Suppose $\varphi \in (U+W)^0$. Then $\forall u \in U, w \in W, \varphi(u) = \varphi(w) = 0 \Rightarrow \varphi \in U^0 \cap W^0$. (b) Suppose $\varphi \in U^0 \cap W^0 \subseteq V'$. Then $\forall u \in U, w \in W, \varphi(u+w) = 0 \Rightarrow \varphi \in (U+W)^0$.	
23 Suppose U and W are subsets of V . Prove that $(U \cap W)^0 = U^0 + W^0$. Solution:	
(a) $ \begin{array}{c} U \cap W \subseteq U \\ U \cap W \subseteq W \end{array} \right\} \Rightarrow \begin{array}{c} (U \cap W)^0 \supseteq U^0 \\ (U \cap W)^0 \supseteq W^0 \end{array} \right\} \Rightarrow (U \cap W)^0 \supseteq U^0 + W^0 \ \big[\supseteq U^0 \cap W^0 = (U + W)^0. \ \big] $	
Or. Suppose $\varphi = \psi + \beta \in U^0 + W^0$. Then $\forall v \in U \cap W$, $\varphi(v) = (\psi + \beta)(v) = 0 \Rightarrow \varphi \in (U \cap W)$	$^{\prime})^{0}.$
(b) [Only in Finite-dim; Requires that U, W are subsps] Using Problem (22). $\dim(U^0 + W^0) = \dim U^0 + \dim W^0 - \dim(U^0 \cap W^0)$	
$= 2 \dim V - \dim U - \dim W - (\dim V - \dim(U + W)) = \dim V - \dim(U \cap V)$	٧).
Or. Suppose $\varphi \in (U \cap W)^0$. Let X, Y be such that $V = U \oplus X = W \oplus Y$.	
Define $\psi \in U^0$, $\beta \in W^0$ by $\psi(u + x) = \frac{1}{2}\varphi(x)$, $\beta(w + y) = \frac{1}{2}\varphi(y)$. $\forall v = u + x = w + y \in V$, $\varphi(v) = \varphi(x) = \varphi(y)$. Now $\varphi(v) = \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(y) = \psi(v) + \beta(v)$.	
Hence $\varphi \in U^0 + W^0$. Now $(U \cap W)^0 \subseteq U^0 + W^0$.	
• COROLLARY:	
(a) Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsets of V . Then $\Big(\bigcap_{\alpha_i \in \Gamma} V_{\alpha_i}\Big)^0 = \sum_{\alpha_i \in \Gamma} \Big(V_{\alpha_i}^0\Big)^0$	$_{i}$).
(b) Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsps of V . Then $\Big(\sum_{\alpha_i \in \Gamma} V_{\alpha_i}\Big)^0 = \bigcap_{\alpha_i \in \Gamma} \Big(V_{\alpha_i}^0\Big)^0$).
(c) Suppose $V=U\oplus W.$ Then $V'=U^0\oplus W^0.$ And $U'_V=W^0,\ W'_V=U^0.$	
Where $U_V' = \{ \varphi \in V' : \varphi = \varphi \circ \iota \}$. And $\iota \in \mathcal{L}(V, U)$ is defined by $\iota(u_v + w_v) = u_v$.	
• (4E 3.F.23) Suppose $\varphi_1, \ldots, \varphi_m \in V'$. Prove that the following sets are the same. (a) $\operatorname{span}(\varphi_1, \ldots, \varphi_m)$	
(b) $((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m))^0 \stackrel{(c)}{=} \{ \varphi \in V' : (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) \subseteq \operatorname{null} \varphi \}$	1
, , , , , , , , , , , , , , , , , , , ,	}
SOLUTION: By Problem (17), (c) holds. Problem (26) [Many require Guite diveloped the Copper tracking Problem (22)]	
By Problem (26) [May require finite-dim] and the COROLLARY in Problem (23), $ ((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m))^0 = (\operatorname{null} \varphi_1)^0 + \cdots + (\operatorname{null} \varphi_m)^0 \\ \operatorname{span}(\varphi_i) = \{v \in V : \forall \psi \in \operatorname{span}(\varphi_i), \psi(v) = 0\}^0 = (\operatorname{null} \varphi_i)^0 \} \Rightarrow (a) = (b). $	
Or. Note that by Corollary in Problem (4E 6), for each φ_i , we have $\forall c \in \mathbb{F} \setminus \{0\}, \psi = c\varphi_i \in \operatorname{span}(\varphi_i) \iff \operatorname{null} \psi = \operatorname{null} \varphi_i \iff \psi \in (\operatorname{null} \psi)^0 = (\operatorname{null} \varphi_i)^0$. And $0 \in \operatorname{span}(\varphi_i), 0 \in (\operatorname{null} \varphi_i)^0$. Hence $\operatorname{span}(\varphi_i) = (\operatorname{null} \varphi_i)^0$. Similarly.	
Or. [Only in Finite-dim] Suppose $\varphi \in V'$. Note that $\dim(\operatorname{null} \varphi)^0 = \dim\operatorname{range} \varphi = \dim\operatorname{span}(\varphi)$. And because $\forall c \in F, v \in \operatorname{null} \varphi, c\varphi(v) = 0 \Rightarrow \operatorname{span}(\varphi) \subseteq (\operatorname{null} \varphi)^0$. Similarly.	

COROLLARY: 30 Suppose V is finite-dim and $\varphi_1, \ldots, \varphi_m$ is a linely inde list in V'. Then $\dim \big((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) \big) = (\dim V) - m$.

31 Suppose V is finite-dim and $B_V = (\varphi_1, ..., \varphi_n)$. Show that the correspond $B_V = (\varphi_1, ..., \varphi_n)$. **SOLUTION:** Using (3.B.29). Let $\varphi_i(u_i) = 1$ and then $V = \text{null } \varphi_i \oplus \text{span}(u_i)$ for each φ_i . Suppose $a_1u_1 + \cdots + a_nu_n = 0$. Then $0 = \varphi_i(a_1u_1 + \cdots + a_nu_n) = a_i$ for each i. Thus $B_V = (\varphi_1, \dots, \varphi_n)$. And $\varphi_i(u_x) = \delta_{i,x}$. Or. For each $k \in \{1, ..., n\}$, define $\Gamma_k = \{1, ..., k-1, k+1, ..., n\}$ and $U_k = \bigcap_{j \in \Gamma_k} \operatorname{null} \varphi_j$. By Problem (30) OR (4E 2.C.16), dim $U_k = 1$. Thus $\exists u_k \in V, U_k = \operatorname{span}(u_k) \neq 0$. \mathbb{X} By Problem (30), (null φ_1) $\cap \cdots \cap$ (null φ_n) = $\{0\} = U \cap \text{null } \varphi_k$. Then if $\varphi_k(u_k) = 0 \Rightarrow u_k \in \text{null } \varphi_k \text{ while } u_k \in U \Rightarrow u_k \in \{0\}, \text{ contradicts.}$ Thus $\varphi_k(u_k) \neq 0$. Let $v_k = (\varphi_k(u_k))^{-1}u_k \Rightarrow \varphi_k(v_k) = 1$. Now for $j \neq k$, $u_k \in \text{null } \varphi_j \Rightarrow \varphi_j(v_k) = 0$. Similarly, suppose $a_1v_1 + \cdots + a_nv_n = 0 \Rightarrow a_1 = \cdots = a_n = 0$. $B_V = (v_1, \dots, v_n)$. And $\varphi_i(v_k) = \delta_{i,k}$. \square **25** Suppose U is a subsp of V. Explain why $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}$. **SOLUTION**: Note that $U = \{v \in V : v \in U\}$ is a subsp of V; And $v \in U \iff \varphi(v) = 0, \forall \varphi \in U^0$. COROLLARY: $U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}^0$. COMMENT: $\{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\} = ((\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m) \cap \cdots), \text{ where } \varphi_k \in U^0,$ always remains a subsp, whether the subset U is a subsp or not. **26** Suppose Ω is a subsp of V'. Prove that $\Omega = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. **SOLUTION:** Suppose $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}$, which is the set of vecs that each $\varphi \in \Omega$ sends to zero in common. Then $U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. $\chi U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}^0$. Immediately by the Corollary in Problem (20,21), we may conclude that $\Omega = U^0$. Or. [Requires Ω finite-dim] Let $(\varphi_1, \dots, \varphi_m)$ be a basis of Ω . Then by def, $U \subseteq (\text{null } \varphi_1) \cap \dots \cap (\text{null } \varphi_m)$. $\forall \varphi \in \Omega, \exists ! a_i \in F, \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m \Rightarrow \forall v \in (\text{null } \varphi_1) \cap \dots \cap (\text{null } \varphi_m), \varphi(v) = 0 \Rightarrow v \in U.$ Hence $(\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) = U$. $\mathbb{Z} \operatorname{span}(\varphi_1, \dots, \varphi_m) = \Omega$. By Problem (23), we are done. **Corollary:** For every subsp Ω of V', \exists ! subsp U of V such that $\Omega = U^0$. **COMMENT**: [Only in Finite-dim] Using Problem (31) and the COROLLARY(c) in Problem (22, 23). Let $B_{\Omega} = (\varphi_1, ..., \varphi_m), B_{V'} = (\varphi_1, ..., \varphi_m, ..., \varphi_n), B_{V} = (v_1, ..., v_m, ..., v_n).$ $V' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \oplus \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \stackrel{\text{(I)}}{=\!\!\!=} \operatorname{span}(v_{m+1}, \dots, v_n)^0 \oplus \operatorname{span}(v_1, \dots, v_m)^0.$ $\Omega = \operatorname{span}(\varphi_1, \dots, \varphi_m) \stackrel{\text{(II)}}{=} \operatorname{span}(v_{m+1}, \dots, v_n)^0 = U^0; \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \stackrel{\text{(III)}}{=} \operatorname{span}(v_1, \dots, v_m)^0.$ \iff $U = \operatorname{span}(v_{m+1}, \dots, v_n) = (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m)$. [Another proof of [3.106] Or. Problem (24)] (I) Using the COROLLARY(c), immediately. $\text{(II) Notice that each null } \varphi_k = \operatorname{span} \left(v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_n \right) = U_k; \ \dim U_k = \dim V - 1.$ By (4E 2.C.16), $U = (\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m) = \bigcap_{k=1}^m U_k = \text{span}(v_{m+1}, \dots, v_n).$ Hence span $(v_{m+1}, \dots, v_n)^0 = U^0 = \Omega = \text{span}(\varphi_1, \dots, \varphi_m)$. (III) NOTICE that $V' = \Omega \oplus \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) = U^0 \oplus \operatorname{span}(v_1, \dots, v_m)^0$. And that span($\varphi_{m+1}, \dots, \varphi_n$) \subseteq span(v_1, \dots, v_m)⁰. By the TIPS in (1.C), $\operatorname{span}(\varphi_{m+1},\ldots,\varphi_n)=\operatorname{span}(v_1,\ldots,v_m).$ OR. Similar to (II), let $\Omega = \text{span}(\varphi_{m+1}, \dots, \varphi_n)$, immediately.

29 Prove that range $T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m)$. **SOLUTION**: Using [3.107], [3.109], Problem (23) and the COROLLARY in Problem (20, 21). $(28) (range T)^0 = \operatorname{null} T' = \operatorname{span}(\psi_1, \dots, \psi_m) = ((\operatorname{null} \psi_1) \cap \dots \cap (\operatorname{null} \psi_m))^0.$ (29) $(\operatorname{null} T)^0 = \operatorname{range} T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) = ((\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m))^0.$ **COROLLARY:** Using the COMMENT in Problem (26). $\operatorname{null} T = \operatorname{span}(v_1, \dots, v_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_{m+1}) \cap \dots \cap (\operatorname{null} \varphi_n) \iff \operatorname{range} T' = \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n).$ -Where $B_V = (v_1, \dots, v_m, \dots, v_n) \iff B_{V'} = (\varphi_1, \dots, \varphi_m, \dots, \varphi_n).$ range $T = \operatorname{span}(w_1, \dots, w_m) \iff \operatorname{range} T = (\operatorname{null} \psi_{m+1}) \cap \dots \cap (\operatorname{null} \psi_n) \iff \operatorname{null} T' = \operatorname{span}(\psi_{m+1}, \dots, \psi_n).$ -Where $B_W = (w_1, \dots, w_m, \dots, w_n) \iff B_W = (\psi_1, \dots, \psi_m, \dots, \psi_n)$. **9** Let $B_V = (v_1, \dots, v_n)$, $B_V = (\varphi_1, \dots, \varphi_n)$. Then $\forall \psi \in V'$, $\psi = \psi(v_1)\varphi_1 + \dots + \psi(v_n)\varphi_n$. **SOLUTION:** $\psi(v) = \psi\left(\sum_{i=1}^{n} a_{i} v_{i}\right) = \sum_{i=1}^{n} a_{i} \psi(v_{i}) = \sum_{i=1}^{n} \psi(v_{i}) \varphi_{i}(v) = \left[\psi(v_{1}) \varphi_{1} + \dots + \psi(v_{n}) \varphi_{n}\right](v).$ $\text{Or. } \left[\psi(v_1) \varphi_1 + \dots + \psi(v_n) \varphi_n \right] \left(\sum_{i=1}^n a_i v_i \right) = \psi(v_1) \varphi_1 \left(\sum_{i=1}^n a_i v_i \right) + \dots + \psi(v_n) \varphi_n \left(\sum_{i=1}^n a_i v_i \right). \quad \Box$ **13** Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ by T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z). Let (φ_1, φ_2) , (ψ_1, ψ_2, ψ_3) denote the dual basis of the standard basis of \mathbb{R}^2 and \mathbb{R}^3 . (a) Describe the linear functionals $T'(\varphi_1), T'(\varphi_2) \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$ For any $(x, y, z) \in \mathbb{R}^3$, $(T'(\varphi_1))(x, y, z) = 4x + 5y + 6z$, $(T'(\varphi_2))(x, y, z) = 7x + 8y + 9z$. (b) Write $T'(\varphi_1)$ and $T'(\varphi_2)$ as linear combinations of ψ_1, ψ_2, ψ_3 . $T'(\varphi_1) = 4\psi_1 + 5\psi_2 + 6\psi_3$, $T'(\varphi_2) = 7\psi_1 + 8\psi_2 + 9\psi_3$. (c) What is null T'? What is range T'? TODO $T(x,y,z) = 0 \Longleftrightarrow \begin{cases} 4x + 5y + 6z = 0 \\ 7x + 8y + 9z = 0 \end{cases} \Longleftrightarrow \begin{cases} x + y + z = 0 \\ y = 2z = 0 \end{cases} \Longleftrightarrow (x,y,z) \in \operatorname{span}(e_1 - 2e_2 + e_3).$ Where (e_1, e_2, e_3) is standard basis of \mathbb{R}^3 . Let $(e_1 - 2e_2 + e_3, e_2, e_3)$ be a basis, with the correspd dual basis $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$. Thus span $(e_1 - 2e_2 + e_3) = \text{null } T \Rightarrow \text{span}(e_1 - 2e_2 + e_3)^0 = \text{span}(\varepsilon_2, \varepsilon_3) = \text{range } T'$. Note that $\varepsilon_k = \varepsilon_k(e_1)\psi_1 + \varepsilon_k(e_2)\psi_2 + \varepsilon_k(e_3)\psi_3$. Then $\varepsilon_1 =$ **14** Define $T: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by $(Tp)(x) = x^2p(x) + p''(x)$ for each $x \in \mathbf{R}$. (a) Suppose $\varphi \in \mathcal{P}(\mathbf{R})'$ is defined by $\varphi(p) = p'(4)$. Describe $T'(\varphi) \in \mathcal{P}(\mathbf{R})'$.

 $(T'(\varphi))(p) = \lceil x^2 p(x) + p''(x) \rceil'(4) = \lceil 2xp(x) + x^2 p'(x) + p'''(x) \rceil(4) = 8p(4) + 16p'(4) + p'''(4).$

(b) Suppose $\varphi \in \mathcal{P}(\mathbf{R})'$ is defined by $\varphi(p) = \int_0^1 p(x) dx$. Evaluate $(T'(\varphi))(x^3)$.

 $(T'(\varphi))(x^3) = \int_0^1 (x^5 + 6x) dx = \int_0^1 \left(\frac{1}{6}x^6 + 3x^2\right)' dx = \frac{19}{6}.$

28 Prove that $\operatorname{null} T' = \operatorname{span}(\psi_1, \dots, \psi_m) \iff \operatorname{range} T = (\operatorname{null} \psi_1) \cap \dots \cap (\operatorname{null} \psi_m).$

• Suppose $T \in \mathcal{L}(V, W)$, $\varphi_k \in V'$, $\psi_k \in W'$.

24 Suppose V is finite-dim and U is a subsp of V . Prove, using the pattern of $[3.104]$, that $\dim U + \dim U^0 = \dim V$.
SOLUTION: By Problem (31) and the Comment in Problem (26), $B_U = (v_1,, v_m) \iff B_{U^0} = (\varphi_{m+1},, \varphi_n)$.
37 Suppose U is a subsp of V and π is the quotient map. Thus $\pi' \in \mathcal{L}((V/U)', V')$. (a) Show that π' is inje: Because π is surj. Use [3.108]. (b) Show that range $\pi' = U^0$: By [3.109](b), range $\pi' = (\text{null } \pi)^0 = U^0$. (c) Conclude that π' is an iso from $(V/U)'$ onto U^0 : Immediately.
SOLUTION: OR Using (3.E.18), also see (3.E.20). (a) $\pi'(\varphi) = 0 \iff \forall v \in V \ (\forall v + U \in V \), \varphi(\pi(v)) = \varphi(v + U) = 0 \iff \varphi = 0.$ (b) $\psi \in \text{range } \pi' \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi \iff \text{null } \psi \supseteq U \iff \psi \in U^0$. Hence range $\pi' = U^0$. \square
• Suppose U is a subsp of V . Prove that $(V/U)'$ and U^0 are iso. [Another proof of [3.106]]
Solution: Define $\xi: U^0 \to (V/U)'$ by $\xi(\varphi) = \widetilde{\varphi}$, where $\widetilde{\varphi} \in (V/U)'$ is defined by $\widetilde{\varphi}(v+U) = \varphi(v)$. We show that ξ is inje and surj. Inje: $\xi(\varphi) = 0 = \widetilde{\varphi} \Rightarrow \forall v \in V \ (\forall v + U \in V/U \), \ \widetilde{\varphi}(v+U) = \varphi(v) = 0 \Rightarrow \varphi = 0$. Surj: $\Phi \in (V/U)' \Rightarrow \forall u \in U, \ \Phi(u+U) = \Phi(0+U) = 0 \Rightarrow U \subseteq \text{null} \ (\Phi \circ \pi) \Rightarrow \xi(\Phi \circ \pi) = \Phi$.
Or. Define $\nu: (V/U)' \to U^0$ by $\nu(\Phi) = \Phi \circ \pi$. Now $\nu \circ \xi = I_{U^0}$, $\xi \circ \nu = I_{(V/U)'} \Rightarrow \xi = \nu^{-1}$.
4 Suppose U is a subsp of V and $U \neq V$. Prove that $\exists \varphi \in V' \setminus \{0\}$, $\varphi(u) = 0$ for all $u \in U$.
SOLUTION: $\Leftrightarrow U_V^0 \neq \{0\}.$ Let X be such that $V = U \oplus X$. Then $X \neq \{0\}$. Suppose $s \in X$ and $x \neq 0$. Let Y be such that $X = \operatorname{span}(s) \oplus Y$. Now $V = U \oplus (\operatorname{span}(s) \oplus Y)$. Define $\varphi \in V'$ by $\varphi(u + \lambda s + y) = \lambda$. Hence $\varphi \neq 0$ and $\varphi(u) = 0$ for all $u \in U$.
OR. [Requires that V is finite-dim] By [3.106], dim $U^0 = \dim V - \dim U > 0$. Then $U^0 \neq \{0\}$. OR. Let $B_V = (\underbrace{u_1, \dots, u_m}_{B_U}, v_1, \dots, v_n)$ with $n \geqslant 1$. Let $B_V = (\psi_1, \dots, \psi_m, \varphi_1, \dots, \varphi_n)$. Let $\varphi = \varphi_i$.
Or. Define $\varphi \in V'$ by $\varphi(u_1) = \cdots = \varphi(u_m) = 0$ and $\varphi(v_1) = \cdots = \varphi(v_n) = 1$.
COMMENT: [Another proof of [3.108]]: T is surj \iff T' is inje. (a) Suppose T' is inje. Note that $T'(\psi) = 0 \Rightarrow \psi = 0$. Then $\nexists \psi \in W' \setminus \{0\}, (T'(\psi))(v) = \psi(Tv) = 0$ for all $w \in \operatorname{range} T \ (\forall v \in V)$. Thus if we assume that $\operatorname{range} T \neq W$ then contradicts. Hence $\operatorname{range} T = W$. (b) Suppose T is surj. Then $(\operatorname{range} T)^0 = W_W^0 = \{0\} = \operatorname{null} T'$.
• Suppose V is a vecsp and U is a subsp of V . 17 $U^0 = \{ \varphi \in V' : U \subseteq null \varphi \}$. Noticing $\varphi \in V'$, $U \subseteq null \varphi \iff \forall u \in U, \varphi(u) = 0$.
18 $U^0 = V' \iff \forall \varphi \in V', U \subseteq \operatorname{null} \varphi \iff U = \{0\}.$ [Which means $\{0\}_V^0 = V'.$] Or. $U^0 = V' \iff \dim U^0 = \dim V' = \dim V \iff \dim U = 0 \iff U = \{0\}.$

19 $U_V^0 = \{0\} = V_V^0 \iff U = V$. By the inverse and contrapositive of Problem (4). Or. By [3.106].

• Suppose $V = U \oplus W$. Define $\iota : V \to U$ by $\iota(u+w) = u$. Thus $\iota' \in \mathcal{L}(U',V')$. (a) Show that $\operatorname{null} \iota' = U_U^0 = \{0\}$: $\operatorname{null} \iota' = (\operatorname{range} \iota)_U^0 = U_U^0 = \{0\}$. (b) Prove that $\operatorname{range} \iota' = W_V^0$: $\operatorname{range} \iota' = (\operatorname{null} \iota)_V^0 = W_V^0$. (c) Prove that $\widetilde{\iota}'$ is an iso from $U'/\{0\}$ onto W^0 : By (a), (b) and [3.91](d). Solution: (a) $\iota'(\psi) = \psi \circ \iota = 0 \iff U \subseteq \operatorname{null} \psi$. (b) Note that $W = \operatorname{null} (\iota) \subseteq \operatorname{null} (\psi \circ \iota)$. Then $\psi \circ \iota \in W^0 \Rightarrow \operatorname{range} \iota' \in W^0$. Suppose $\varphi \in W^0$. Because $\operatorname{null} \iota = W \subseteq \operatorname{null} \varphi$. By Tips in (3.B), $\varphi = \varphi \circ \iota = \iota'(\varphi)$.	
36 Suppose U is a subsp of V . Define $i:U \to V$ by $i(u) = u$. Thus $i' \in \mathcal{L}(V', U')$. (a) Show that $\operatorname{null} i' = U^0$: $\operatorname{null} i' = (\operatorname{range} i)^0 = U^0 \Leftarrow \operatorname{range} i = U$. (b) Prove that $\operatorname{range} i' = U'$: $\operatorname{range} i' = (\operatorname{null} i)^0_U = \{0\}^0_U = U'$. (c) Prove that $\widetilde{i'}$ is an iso from V'/U^0 onto U' : By (a), (b) and [3.91](d). Solution:	
(a) $\forall \varphi \in V', i'(\varphi) = \varphi \circ i = \varphi _{U}$. Thus $i'(\varphi) = 0 \iff \forall u \in U, \varphi(u) = 0 \iff \varphi \in U^{0}$. (b) Suppose $\psi \in U'$. By (3.A.11), $\exists \varphi \in V', \varphi _{U} = \psi$. Then $i'(\varphi) = \psi$.	
• Suppose $T \in \mathcal{L}(V,W)$. Prove that range $T' = (\operatorname{null} T)^0$. [Another proof of [3.109 Solution: Suppose $\Phi \in (\operatorname{null} T)^0$. Because by $(3.B.12)$, $T _U : U \to \operatorname{range} T$ is an iso; $V = U \oplus \operatorname{null} T$. And $\forall v \in V, \exists ! u_v \in U, w_v \in \operatorname{null} T, v = u_v + w_v$. Define $\iota \in \mathcal{L}(V,U)$ by $\iota(v) = u_v$. Let $\psi = \Phi \circ (T _{\operatorname{range} T}^{-1})$. Then $T'(\psi) = \psi \circ T = \Phi \circ (T^{-1} _{\operatorname{range} T} \circ T _V)$. Where $T^{-1} _{\operatorname{range} T} : \operatorname{range} T \to U$; $T: V \to \operatorname{range} T$. Note that $T^{-1} _{\operatorname{range} T} \circ T _V = \iota$. By Tips in $(3.B)$, $\Phi = \Phi \circ \iota$. Thus $T'(\psi) = \psi \circ T = \Phi \circ \iota = \Phi$. • Suppose $T \in \mathcal{L}(V,W)$. Using [3.108], [3.110]. Now T is $inv \iff$ $\begin{vmatrix} \operatorname{null} T = \{0\} \iff (\operatorname{null} T)^0 = V' = \operatorname{range} T' \\ \operatorname{range} T = W \iff (\operatorname{range} T)^0 = \{0\} = \operatorname{null} T' \end{vmatrix} \iff T'$ is inv .	[](b)]
15 Suppose $T \in \mathcal{L}(V, W)$. Prove that $T' = 0 \Longleftrightarrow T = 0$. Solution: Suppose $T = 0$. Then $\forall \varphi \in W', T'(\varphi) = \varphi \circ T = 0$. Hence $T' = 0$. Suppose $T' = 0$. Then null $T' = W' = (\operatorname{range} T)^0$, by $[3.107](a)$. $[W \ can \ be \ infinite \ dim]$ By Problem (25), range $T = \{w \in W : \varphi(w) = 0, \forall \varphi \in (\operatorname{range} T)^0\} = \{w \in W : \varphi(w) = 0, \forall \varphi \in W'\}$. Now we prove that if $\forall \varphi \in W', \varphi(w) = 0$, then $w = 0$. So that range $T = \{0\}$ and we are done. Assume that $w \neq 0$. Then let U be such that $W = U \oplus \operatorname{span}(w)$. Define $\psi \in W'$ by $\psi(u + \lambda w) = \lambda$. So that $\psi(w) = 1 \neq 0$. Or. $[Only \ if \ W \ is \ finite \ dim]$ By $[3.106]$, $\dim \operatorname{range} T = \dim W - \dim(\operatorname{range} T)^0 = 0$.	
12 Notice that I_V , $: V' \to V'$. Now $\forall \varphi \in V'$, $I_{V'}(\varphi) = \varphi = \varphi \circ I_V = I_{V'}(\varphi)$. Thus $I_{V'} = I_{V'}(\varphi)$.	I_V' .

```
16 Suppose V, W are finite-dim. Define \Gamma by \Gamma(T) = T' for any T \in \mathcal{L}(V, W).
     Prove that \Gamma is an iso of \mathcal{L}(V, W) onto \mathcal{L}(W', V').
SOLUTION: By [3.101], \Gamma is linear.
    Suppose \Gamma(T) = T' = 0. By Problem (15), T = 0. Thus \Gamma is inje.
    Because V, W are finite-dim. dim \mathcal{L}(V, W) = \dim \mathcal{L}(W', V'). Now \Gamma inje \Rightarrow inv.
                                                                                                                                                                      COMMENT: Let X = \{T \in \mathcal{L}(V, W) : \text{range } T \text{ is finite-dim} \}.
                  Let Y = \{ \mathcal{T} \in \mathcal{L}(W', V') : \text{range } \mathcal{T} \text{ is finite-dim} \}.
                  Then \Gamma|_X is an iso of X onto Y, even if V and W are infinite-dim.
    The inje of \Gamma|_X is equiv to the inje of \Gamma, as shown before.
    Now we show that \Gamma|_X is surj without the cond that V or W is finite-dim.
   Suppose \mathcal{T} \in Y. Let B_{\text{range }\mathcal{T}} = (\varphi_1, \dots, \varphi_m), with the correspond (v_1, \dots, v_m).
   Let \varphi_k = \mathcal{T}(\psi_k). Let \mathcal{K} be such that W' = \mathcal{K} \oplus \text{null } \mathcal{T}.
   Let B_{\mathcal{K}} = (\psi_1, \dots, \psi_m), with the correspd (w_1, \dots, w_m).
   Define T \in \mathcal{L}(V, W) by Tv_k = w_k, Tu = 0; k \in \{1, ..., m\}, u \in U.
    \forall \psi \in \text{null } \mathcal{T}, [T'(\psi)](v) = \psi(Tv) = \psi(a_1w_1 + \dots + a_nw_n) = 0 = [\mathcal{T}(\psi)](v).
    \forall k \in \{1, \dots, m\}, \lceil T'(\psi_k) \rceil(v) = \psi_k(Tv) = \psi_k(a_1w_1 + \dots + a_mw_m) = a_k = \varphi_k(v) = \lceil \mathcal{T}(\psi) \rceil(v).
                                                                                                                                                                      COMMENT: This is another proof of [3.109(a)]: dim range T = \dim \operatorname{range} T'.
• (4E 3.F.6) Suppose \varphi, \beta \in V'. Prove that \operatorname{null} \varphi \subseteq \operatorname{null} \beta \iff \beta = c\varphi, \exists c \in \mathbf{F}.
  COROLLARY: null \varphi = null \beta \iff \beta = c\varphi, \exists c \in \mathbb{F} \setminus \{0\}.
SOLUTION:
    Using (3.B.29, 30).
    (a) Suppose null \varphi \subseteq \text{null } \beta. Suppose u \notin \text{null } \beta, then u \notin \text{null } \varphi.
          Now V = \text{null } \beta \oplus \text{span}(u) = \text{null } \varphi \oplus \text{span}(u).
         Then by TIPS in (1.C), null \beta = null \varphi. Hence let c = \frac{\beta(u)}{\omega(u)}.
          OR. We discuss in two cases. If null \varphi = \text{null } \beta, then we are done.
          Otherwise, \operatorname{null} \beta \neq \operatorname{null} \varphi. Suppose u' \in \operatorname{null} \beta \setminus \operatorname{null} \varphi, then V = \operatorname{null} \varphi \oplus \operatorname{span}(u').
          \forall v \in V, v = w + au = w' + bu', \exists ! w, w' \in \text{null } \varphi, a, b \in \mathbf{F}.
          Thus \beta(v) = a\beta(u), \varphi(v) = b\varphi(u'). Let c = \frac{a\beta(u)}{b\varphi(u')}. We are done.
          Notice that by (b) below, we have null \beta \subseteq \text{null } \varphi, thus contradicts the assumption.
    (b) Suppose \beta = c\varphi for some c \in \mathbf{F}.
          If c = 0, then null \beta = V \supseteq \text{null } \varphi, we are done.
                               \forall v \in \operatorname{null} \varphi, \varphi(v) = 0 = \beta(v) \Rightarrow \operatorname{null} \varphi \subseteq \operatorname{null} \beta.\forall v \in \operatorname{null} \beta, \beta(v) = 0 = \varphi(v) \Rightarrow \operatorname{null} \beta \subseteq \operatorname{null} \varphi.
          Otherwise,
          \Rightarrow null \varphi \subseteq null \beta.
                                                                                                                                                                      Or. By (3.B.24), null \varphi \subseteq \text{null } \beta \iff \exists E \in \mathcal{L}(\mathbf{F}), \beta = E \circ \varphi. (if E is inv, then null \varphi = \text{null } \beta)
   Now we show that [P] \exists E \in \mathcal{L}(F), \beta = E \circ \varphi \iff \exists c \in F, \beta = c\varphi. [Q].
   [P] \Rightarrow [Q]: Let c = E(1). Then \forall v \in V, \beta(v) = E(\varphi(v)) = \varphi(v)E(1) = c\varphi(v). (E(1) \neq 0)
    [Q] \Rightarrow [P]: Define E \in \mathcal{L}(\mathbf{F}) by E(x) = cx. Then \forall v \in V, \beta(v) = c\varphi(v) = E(\varphi(v)). (c \neq 0)
```

SOLUTION: $[P] \Rightarrow [Q]$: Notice that φ is inje and by (3.B.9). Or. Suppose $\theta \in \text{span}(\varphi(v_1), \dots, \varphi(v_m))$. Let $\theta = 0 = a_1 \varphi(v_1) + \dots + a_m \varphi(v_m)$. Then $\vartheta(1) = 0 = a_1 v_1 + \dots + a_m v_m \Rightarrow a_1 = \dots = a_m = 0.$ $[Q] \Rightarrow [P]$: Suppose $v \in \text{span}(v_1, \dots, v_m)$. Let $v = 0 = a_1v_1 + \dots + a_mv_m$. Then $\varphi(v) = 0 = a_1 \varphi(v_1) + \dots + a_m \varphi(v_m) \Rightarrow a_1 = \dots = a_m = 0.$ **33** Suppose $A \in \mathbb{F}^{m,n}$. Define $T: A \to A^t$. Prove that T is an iso of $\mathbb{F}^{m,n}$ onto $\mathbb{F}^{n,m}$ **SOLUTION**: By [3.111], *T* is linear. Note that $(A^t)^t = A$. Inje: If T(A) = 0 for some $A \in \mathbb{F}^{n,m}$, then $A = (T(A))^t = 0$. Surj: For any $B \in \mathbf{F}^{n,m}$, let $A = B^t$ so that T(A) = B. **32** Let $B_{\alpha} = (\alpha_1, ..., \alpha_m), B_{\alpha}' = (\varphi_1, ..., \varphi_m), B_{\beta} = (v_1, ..., v_m), B_{\beta}' = (\psi_1, ..., \psi_m).$ Prove that $\forall T \in \mathcal{L}(V)$, T is inv \iff the rows of $A = \mathcal{M}(T, B_{\alpha}, B_{\beta})$ form a basis of $\mathbf{F}^{1,n}$. **SOLUTION**: Note that T is invertible \iff T' is inv. And $A^t = \mathcal{M}(T', B_{\beta}', B_{\alpha}')$. (a) Suppose T is inv, so is T'. Because $\left(T'(\varphi_1), \dots, T'(\varphi_m)\right)$ is linely inde. NOTICE that $T'(\varphi_i) = A_{1,i}^t \psi_1 + \dots + A_{m,i}^t \psi_m$. By the (Δ) part in (4E 3.C.17), the cols of A^t , namely the rows of A, are linely inde. (b) Suppose the rows of A are linely inde, so are the cols of A^t . NOTICE that A^t has dim V' cols. Then $B_{\text{range }T'}=B_{V'}=\left(T'(\varphi_1),\ldots,T'(\varphi_m)\right)$. Thus T' is surj. Hence T' is inv, so is T. **5** Prove that $(V_1 \times \cdots \times V_m)'$ and $V'_1 \times \cdots \times V'_m$ are iso. Using notations in (3.E.2). Define $\varphi: (V_1 \times \cdots \times V_m)' \to V'_1 \times \cdots \times V'_m$ by $\varphi(T) = (T \circ R_1, ..., T \circ R_m) = (R'_1(T), ..., R'_m(T)).$ Define $\psi: V'_1 \times \cdots \times V'_m \to (V_1 \times \cdots \times V_m)'$ by $\psi(T_1, \dots, T_m) = T_1 S_1 + \dots + T_m S_m = S'_1(T_1) + \dots + S'_m(T_m)$. • (4E 3.F.8) Suppose $B_V = (v_1, ..., v_n), B_{V_i} = (\varphi_1, ..., \varphi_n).$ $\begin{array}{l} \textit{Define } \Gamma: V \rightarrow \mathbf{F}^n \; \textit{by } \Gamma(v) = (\varphi_1(v), \ldots, \varphi_n(v)). \\ \textit{Define } \Lambda: \mathbf{F}^n \rightarrow V \; \textit{by } \Lambda(a_1, \ldots, a_n) = a_1 v_1 + \cdots + a_n v_n. \end{array} \right\} \Rightarrow \Lambda = \Gamma^{-1}.$ • (4E 3.F.5) Suppose $T \in \mathcal{L}(V, W)$. $B_{\operatorname{range} T} = (w_1, \dots, w_m)$. Hence $\forall v \in V$, $Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m$, $\exists ! \varphi_1(v), \dots, \varphi_m(v)$, thus defining $\varphi_i: V \to \mathbf{F}$ for each $i \in \{1, ..., m\}$. Show that each $\varphi_i \in V'$. **SOLUTION:** $\forall u, v \in V, \lambda \in \mathbf{F}, T(u + \lambda v) = \sum_{i=1}^{m} \varphi_i(u + \lambda v) w_i$ $= Tu + \lambda Tv = \left(\sum_{i=1}^{m} \varphi_i(u) w_i\right) + \lambda \left(\sum_{i=1}^{m} \varphi_i(v) w_i\right) = \sum_{i=1}^{m} \left(\varphi_i(u) + \lambda \varphi_i(v)\right) w_i. \quad \Box$ OR. For each w_i , $\exists v_i \in V$, $Tv_i = w_i$, then $(v_1, ..., v_m)$ is linely inde. Now we have $Tv = a_1 Tv_1 + \dots + a_m Tv_m$, $\forall v \in V$, $\exists ! a_i \in F$. Let $B_{(\text{range } T)} = (\psi_1, \dots, \psi_m)$. Then $(T'(\psi_i))(v) = \psi_i \circ T(v) = a_i$. Where $T: V \to \text{range } T$; $T': (\text{range } T)' \to V'$. Thus for each $i \in \{1, ..., m\}$, $\varphi_i = \psi_i \circ T = T'(\psi_i) \in V'$.

• In (3.D.18), $\varphi: V \to \mathcal{L}(\mathbf{F}, V)$ is an iso. Now we prove that

 $[P](v_1,\ldots,v_m)$ is linely inde $\iff (\varphi(v_1),\ldots,\varphi(v_m))$ is linely inde. [Q]

6 Define $\Gamma: V' \to \mathbf{F}^m$ by $\Gamma(\varphi) = (\varphi(v_1), \dots, \varphi(v_m))$, where $v_1, \dots, v_m \in V$. (a) Show that span $(v_1, ..., v_m) = V \iff \Gamma$ is inje. (b) Show that $(v_1, ..., v_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** (a) Notice that $\Gamma(\varphi) = 0 \iff \varphi(v_1) = \dots = \varphi(v_m) = 0 \iff \text{null } \varphi = \text{span}(v_1, \dots, v_m).$ If Γ is inje, then $\Gamma(\varphi) = 0 \iff V = \text{null } \varphi = \text{span}(v_1, \dots, v_m)$. If $V = \operatorname{span}(v_1, \dots, v_m)$, then $\Gamma(\varphi) = 0 \iff \operatorname{null} \varphi = \operatorname{span}(v_1, \dots, v_m)$, thus Γ is inje. (b) Suppose Γ is surj. Then let $\Gamma(\varphi_i) = e_i$ for each i, where $(e_1, ..., e_m)$ is the standard basis of \mathbf{F}^m . Then by (3.A.4), $(\varphi_1, \dots, \varphi_m)$ is linely inde. Now $a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow 0 = \varphi_i(a_1v_1 + \cdots + a_mv_m) = a_i$ for each i. Suppose $(v_1, ..., v_m)$ is linely inde. Let $U = \text{span}(\varphi_1, ..., \varphi_m)$, $B_{U'} = (\varphi_1, ..., \varphi_m)$. Thus $\forall (a_1, \dots, a_m) \in \mathbb{F}^m, \exists ! \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m$. Let W be such that $V = U \oplus W$. Now $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $\iota \in \mathcal{L}(V, U)$ by $\iota(v) = u_v$. So that $\Gamma(\varphi \circ i -) = (a_1, ..., a_m)$. OR. Let $(e_1, ..., e_m)$ be the standard basis of \mathbf{F}^m and let $(\psi_1, ..., \psi_m)$ be the corresponding basis. Define $\Psi: \mathbf{F}^m \to (\mathbf{F}^m)'$ by $\Psi(e_k) = \psi_k$. Then Ψ is an iso. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $Te_k = v_k$. Now $T(x_1, \dots, x_m) = T(x_1e_1 + \dots + x_me_m) = x_1v_1 + \dots + x_mv_m$. $\forall \varphi \in V', k \in \{1, \dots, m\}, \lceil T'(\varphi) \rceil(e_k) = \varphi(Te_k) = \varphi(v_k) = \lceil \varphi(v_1) \circ \psi_1 + \dots + \varphi(v_m) \circ \psi_m \rceil(e_k)$ Now $T'(\varphi) = \varphi(v_1) \circ \psi_1 + \dots + \varphi(v_m) \circ \psi_m = \Psi(\varphi(v_1), \dots, \varphi(v_m)) = \Psi(\Gamma(\varphi))$. Hence $T' = \Psi \circ \Gamma$. By (3.B.3), (a) range $T = \operatorname{span}(v_1, \dots, v_m) = V \iff T' = \Psi \circ \Gamma$ inje $\iff \Gamma$ inje. (b) $(v_1, ..., v_m)$ is linely inde $\iff T$ is inje $\iff T' = \Psi \circ \Gamma$ surj $\iff \Gamma$ surj. • (4E 3.F.25) Define $\Gamma: V \to \mathbf{F}^m$ by $\Gamma(v) = (\varphi_1(v), \dots, \varphi_m(v))$, where $\varphi_1, \dots, \varphi_m \in V'$. (c) Show that span($\varphi_1, ..., \varphi_m$) = $V' \iff \Gamma$ is inje. (d) Show that $(\varphi_1, ..., \varphi_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** (c) Notice that $\Gamma(v) = 0 \Longleftrightarrow \varphi_1(v) = \cdots = \varphi_m(v) = 0 \Longleftrightarrow v \in (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)$. By Problem (4E 23) and (18), $\operatorname{span}(\varphi_1, \dots, \varphi_m) = V' \iff (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m) = \{0\}.$ And $\operatorname{null} \Gamma = (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)$. Hence Γ inje $\iff \operatorname{null} \Gamma = \{0\} \iff \operatorname{span}(\varphi_1, \dots, \varphi_m) = V'$. (d) Suppose $(\varphi_1, ..., \varphi_m)$ is linely inde. Then by Problem (31), $(v_1, ..., v_m)$ is linely inde. Thus $\forall (a_1, \dots, a_m) \in \mathbb{F}, \exists ! v = \sum_{i=1}^m a_i v_i \in V \Rightarrow \varphi_i(v) = a_i, \Gamma(v) = (a_1, \dots, a_m)$. Hence Γ is surj. Suppose Γ is surj. Let (e_1, \dots, e_m) be the standard basis of \mathbf{F}^m . Suppose $v_i \in V$ such that $\Gamma(v_i) = (\varphi_1(v_i), ..., \varphi_m(v_i)) = e_i$, for each i. Then $(v_1, ..., v_m)$ is linely inde. And $\varphi_i(v_k) = \delta_{i,k}$. Now $a_1 \varphi_1 + \dots + a_m \varphi_m = 0 \Rightarrow 0(v_i) = a_i$ for each i. Hence $(\varphi_1, \dots, \varphi_m)$ is linely inde. Or. Let $\operatorname{span}(v_1,\ldots,v_m)=U$. Then $B_{U'}=(\varphi_1|_U,\ldots,\varphi_m|_U)$. Hence $(\varphi_1,\ldots,\varphi_m)$ is linely inde. \square OR. Similar to Problem (6), we get (e_1, \dots, e_m) , (ψ_1, \dots, ψ_m) and the iso Ψ . $\forall (x_1,\ldots,x_m) \in \mathbb{F}^m, \Gamma'\big(\Psi\big(x_1,\ldots,x_m\big)\big) = \Gamma'\big(\Psi\big(x_1e_1+\cdots+x_me_m\big)\big) = \big(x_1\psi_1+\cdots+x_m\psi_m\big) \circ \Gamma.$ $\forall v \in V, \left[\Gamma'\big(\Psi(x_1,\ldots,x_m)\big)\right](v) = \left[x_1\psi_1 + \cdots + x_m\psi_m\right]\big(\Gamma(v)\big) = \left[x_1\varphi_1 + \cdots + x_m\varphi_m\right](v).$ Now $\Gamma'(\Psi(x_1,\ldots,x_m)) = x_1\varphi_1 + \cdots + x_m\varphi_m$. Define $\Phi: \mathbb{F}^m \to (\mathbb{F}^m)'$ by $\Phi = \Psi \circ \Gamma$. $\Phi(x_1, \dots, x_m) = x_1 \varphi_1 + \dots + x_m \varphi_m$. Thus by (4E 3.B.3), (c) the inje of Φ correspds to $(\varphi_1, \dots, \varphi_m)$ spanning V'; $\nabla \Phi = \Psi \circ \Gamma$ inje $\iff \Gamma$ inje.

(d) the surj of Φ correspds to $(\varphi_1, ..., \varphi_m)$ being linely inde; $\nabla = \Psi \circ \Gamma$ surj $\iff \Gamma$ surj.

35 *Prove that* $(\mathcal{P}(\mathbf{F}))'$ *and* \mathbf{F}^{∞} *are iso.*

SOLUTION:

Define
$$\theta \in \mathcal{L}\left(\left(\mathcal{P}(\mathbf{F})\right)', \mathbf{F}^{\infty}\right)$$
 by $\theta(\varphi) = \left(\varphi(1), \varphi(z), \cdots, \varphi(z^{n}), \cdots\right)$.
Inje: $\theta(\varphi) = 0 \Rightarrow \forall z^{k}$ in the basis $(1, z, \dots, z^{n})$ of $\mathcal{P}_{n}(\mathbf{F})\left(\forall n\right), \varphi(z^{k}) = 0 \Rightarrow \varphi = 0$.
[Notice that $\forall p \in \mathcal{P}(\mathbf{R}), \exists ! a_{i} \in \mathbf{F}, m = \deg p, \ p = a_{0}z + a_{1}z + \cdots + a_{m}z^{m} \in \mathcal{P}_{m}(\mathbf{F})$.]

Surj: $\forall (a_{k})_{k=1}^{\infty} \in \mathbf{F}^{\infty}$, let ψ be such that $\forall k, \psi(z^{k}) = a_{k}$ and thus $\theta(\psi) = (a_{k})_{k=1}^{\infty}$.

7 Show that the dual basis of $(1, x, ..., x_m)$ of $\mathcal{P}_m(\mathbf{R})$ is $(\varphi_0, \varphi_1, ..., \varphi_m)$, where $\varphi_k = \frac{p^{(k)}(0)}{k!}$. Here $p^{(k)}$ denotes the k^{th} derivative of p, with the understanding that the 0^{th} derivative of p is p.

SOLUTION:

$$\forall j, k \in \mathbf{N}, \ (x^{j})^{\binom{k}{k}} = \begin{cases} j(j-1) \dots (j-k+1) \cdot x^{(j-k)}, & j \ge k. \\ j(j-1) \dots (j-j+1) = j! & j = k. \\ 0, & j \le k. \end{cases}$$
 Then $(x^{j})^{\binom{k}{k}}(0) = \begin{cases} 0, & j \ne k. \\ k!, & j = k. \\ \end{bmatrix}$

OR. Because $\forall j, k \in \{1, ..., m\}$ such that $j \neq k$, $\varphi_k(x^j) = \frac{(x^j)^{(k)}(0)}{k!} = \frac{0}{k!} = 0$; $\varphi_k(x^k) = \frac{(x^k)^{(k)}(0)}{k!} = 1$.

Thus $\frac{p^{(k)}(0)}{k!}$ act exactly the same as φ_k on the same basis $(1, ..., x^m)$, hence is just another def of $\varphi_k \square$

EXAMPLE: Suppose $m \in \mathbb{N}^+$. By [2.C.10], $B = (1, x - 5, ..., (x - 5)^m)$ is a basis of $\mathcal{P}_m(\mathbb{R})$.

Let
$$\varphi_k = \frac{p^{(k)}(5)}{k!}$$
 for each $k = 0, 1, ..., m$. Then $(\varphi_0, \varphi_1, ..., \varphi_m)$ is the dual basis of B .

- **34** The double dual space of V, denoted by V'', is defined to be the dual space of V'. In other words, $V'' = \mathcal{L}(V', \mathbf{F})$. Define $\Lambda : V \to V''$ by $(\Lambda v)(\varphi) = \varphi(v)$.
 - (a) Show that Λ is a linear map from V to V''.
 - (b) Show that if $T \in \mathcal{L}(V)$, then $T'' \circ \Lambda = \Lambda \circ T$, where T'' = (T')'.
 - (c) Show that if V is finite-dim, then Λ is an iso from V onto V''.

Suppose V is finite-dim. Then V and V' are iso, and finding an iso from V onto V' generally requires choosing a basis of V. In contrast, the iso Λ from V onto V'' does not require a choice of basis and thus is considered more natural.

SOLUTION:

(a)
$$\forall \varphi \in V', v, w \in V, a \in F, (\Lambda(v+aw))(\varphi) = \varphi(v+aw) = \varphi(v) + a\varphi(w) = (\Lambda v)(\varphi) + a(\Lambda w)(\varphi).$$

Thus $\Lambda(v+aw) = \Lambda v + a\Lambda w$. Hence Λ is linear.

(b)
$$(T''(\Lambda v))(\varphi) = ((\Lambda v) \circ T')(\varphi) = (\Lambda v)(T'(\varphi))$$

= $(T'(\varphi))(v) = (\varphi \circ T)(v) = \varphi(Tv) = (\Lambda(Tv))(\varphi).$

Hence $T''(\Lambda v) = (\Lambda(Tv)) \Rightarrow T'' \circ \Lambda = \Lambda \circ T$.

(c) Suppose $\Lambda v = 0$. Then $\forall \varphi \in V'$, $(\Lambda v)(\varphi) = \varphi(v) = 0 \Rightarrow v = 0$. Thus Λ is inje. \mathbb{Z} Because V is finite-dim. dim $V = \dim V' = \dim V''$. Hence Λ is an iso.

ENDED

• Note For [4.8]: division algorithm for polynomials

Suppose $p, s \in \mathcal{P}(\mathbf{F})$, with $s \neq 0$. Then $\exists ! q, r \in \mathcal{P}(\mathbf{F})$ such that p = sq + r and $\deg r < \deg s$. Another Proof: Suppose $\deg p \geqslant \deg s$. Then $(\underbrace{1, z, \ldots, z^{\deg s - 1}}_{\text{of length } \deg s}, \underbrace{s, zs, \cdots, z^{\deg p - \deg s}}_{\text{of length }})$ is a basis of $\mathcal{P}_{\deg p}(\mathbf{F})$.

$$\begin{split} & \text{Because } q \in \mathcal{P}(\mathbf{F}), \exists \,! \, a_i, b_j \in \mathbf{F}, \\ & q = a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1} + b_0 s + b_1 z s + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s} s \\ & = \underbrace{a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1}}_{} + s \underbrace{\left(b_0 + b_1 z + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s}\right)}_{}. \end{split}$$

With r, q as defined uniquely above, we are done.

• Note For [4.11]: each zero of a poly corresponds to a degree-one factor; Another Proof:

First suppose $p(\lambda) = 0$. Write $p(z) = a_0 + a_1 z + \dots + a_m z^m$, $\exists ! a_0, a_1, \dots, a_m \in \mathbb{F}$ for all $z \in \mathbb{F}$.

Then
$$p(z) = p(z) - p(\lambda) = a_1(z - \lambda) + \dots + a_m(z^m - \lambda^m)$$
 for all $z \in F$.

Hence $\forall k \in \{1, ..., m\}, z^k - \lambda^k = (z - \lambda)(z^{k-1}\lambda^0 + z^{k-2}\lambda^1 + ... + z^{k-(j+1)}\lambda^j + ... + z\lambda^{k-2} + z^0\lambda^{k-1}).$

Thus $p(z) = \sum_{j=1}^{m} a_j(z-\lambda) \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z-\lambda) \sum_{j=1}^{m} a_j \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z-\lambda) q(z).$

• Note For [4.13]: fundamental theorem of algebra, first version

Every nonconst poly with complex coefficients has a zero in C. Another Proof:

For any $w \in C$, $k \in \mathbb{N}^+$, by polar coordinates, $\exists r \ge 0, \theta \in \mathbb{R}$, $r(\cos \theta + i \sin \theta) = w$.

By De Moivre' theorem, $w^k = [r(\cos\theta + i\sin\theta)]^k = r^k(\cos k\theta + i\sin k\theta)$.

Hence $\left(r^{1/k}\left(\cos\frac{\theta}{k} + i\sin\frac{\theta}{k}\right)\right)^k = w$. Thus every complex number has a k^{th} root.

Suppose a nonconst $p \in \mathcal{P}(\mathbf{C})$ with highest-order nonzero term $c_m z_m$.

Then $|p(z)| \to \infty$ as $|z| \to \infty$ (because $\frac{|p(z)|}{|z_m|} \to |c_m|$ as $|z| \to \infty$).

Thus the continuous function $z \to |p(z)|$ has a global minimum at some point $\zeta \in \mathbb{C}$.

To show that $p(\zeta) = 0$, assume $p(\zeta) \neq 0$. Define $q \in \mathcal{P}(C)$ by $q(z) = \frac{p(z + \zeta)}{p(\zeta)}$.

The function $z \to |q(z)|$ has a global minimum value of 1 at z = 0.

Write $q(z) = 1 + a_k z^k + \dots + a_m z^m$, where $k \in \mathbb{N}^+$ is the smallest such that $a_k \neq 0$.

Let $\beta \in \mathbb{C}$ be such that $\beta^k = -\frac{1}{a_k}$.

There is a const c > 1 so that if $t \in (0,1)$, then $|q(t\beta)| \le |1 + a_k t^k \beta^k| + t^{k+1} c = 1 - t^k (1 - tc)$.

Now letting t=1/(2c), we get $|q(t\beta)|<1$. Contradicts. Hence $p(\zeta)=0$, as desired.

• Prove that if $w, z \in \mathbb{C}$, then $||w| - |z|| \leq |w - z|$.

SOLUTION: $|w-z|^2 = (w-z)(\overline{w}-\overline{z})$

$$= |w|^2 + |z|^2 - (w\overline{z} + \overline{w}z)$$

$$= |w|^2 + |z|^2 - (\overline{\overline{w}z} + \overline{w}z)$$

$$= |w|^2 + |z|^2 - 2Re(\overline{w}z)$$

$$\geq |w|^2 + |z|^2 - 2|\overline{w}z|$$

$$= |w|^2 + |z|^2 - 2|w||z| = ||w| - |z||^2.$$

Geometric interpretation: The length of each side of a triangle is greater than or equal to the difference of the lengths of the two other sides.

• Suppose V is on \mathbb{C} and $\varphi \in V'$. Define $\sigma: V \to \mathbb{R}$ by $\sigma(v) = \operatorname{Re} \varphi(v)$ for each $v \in V$. Show that $\varphi(v) = \sigma(v) - \mathrm{i}\sigma(\mathrm{i}v)$ for all $v \in V$. Solution: Notice that $\varphi(v) = \operatorname{Re} \varphi(v) + \mathrm{i} \operatorname{Im} \varphi(v) = \sigma(v) + \mathrm{i} \operatorname{Im} \varphi(v)$. $\mathbb{X} \operatorname{Re} \varphi(\mathrm{i} v) = \operatorname{Re}(\mathrm{i} \varphi(v)) = -\operatorname{Im} \varphi(v) = \sigma(\mathrm{i} v)$. Hence $\varphi(v) = \sigma(v) - \mathrm{i}\sigma(\mathrm{i}v)$.	
2 Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbf{F}) : \deg p = m\}$ a subsp of $\mathcal{P}(\mathbf{F})$?	
SOLUTION: $x^m, x^m + x^{m-1} \in U$ but $\deg \left[\left(x^m + x^{m-1} \right) - \left(x^m \right) \right] \neq m \Rightarrow \left(x^m + x^{m-1} \right) - \left(x^m \right) \notin U$. Hence U is not closed under add, and therefore is not a subsp.	
3 Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbf{F}) : 2 \deg p\}$ a subsp of $\mathcal{P}(\mathbf{F})$?	
SOLUTION: $x^2, x^2 + x \in U$ but $\deg \left[(x^2 + x) - (x^2) \right]$ is odd and hence $(x^2 + x) - (x^2) \notin U$. Thus U is not closed under add, and therefore is not a subsp.	
5 Suppose that $m \in \mathbb{N}, z_1, \dots, z_{m+1}$ are distinct elements of \mathbb{F} , and $w_1, \dots, w_{m+1} \in \mathbb{F}$. Prove that $\exists ! p \in \mathcal{P}_m(\mathbb{F})$ such that $p(z_k) = w_k$ for each $k = 1, \dots, m+1$.	
Solution: Define $T:\mathcal{P}_m(\mathbf{F})\to\mathbf{F}^{m+1}$ by $Tq=\left(q(z_1),\ldots,q(z_m),q(z_{m+1})\right)$. As can be easily checked, T is line. We need to show that T is surj, so that such p exists; and that T is inje, so that such p is unique. $Tq=0\Longleftrightarrow q(z_1)=\cdots=q(z_m)=q(z_{m+1})=0$ $\Longleftrightarrow q=0\in\mathcal{P}_m(\mathbf{F})$, for if not, q of deg m has at least $m+1$ distinct roots. Contradicts [4.12] dim range $T=\dim\mathcal{P}_m(\mathbf{F})-\dim\operatorname{null} T=m+1=\dim\mathbf{F}^{m+1}$. \mathbb{X} range $T\subseteq\mathbf{F}^{m+1}$. Hence T is surjective to the sum of the sum o	2].
6 Suppose $p \in \mathcal{P}_m(\mathbb{C})$ has degree m . Prove that p has m distinct zeros $\iff p$ and its derivative p' have no zeros in common.	
Solution: (a) Suppose p has m distinct zeros. By [4.14] and $\deg p = m$, let $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$, $\exists ! c$, λ .	
For each $j \in \{1,, m\}$, let $\frac{p(z)}{(z - \lambda_j)} = q_j \in \mathcal{P}_{m-1}(\mathbf{C})$, then $p(z) = (z - \lambda_j)q_j(z)$ and $q_j(\lambda_j) \neq 0$	0.
$p'(z) = (z - \lambda_j)q_j'(z) + q_j(z) \Rightarrow p'(\lambda_j) = q_j(\lambda_j) \neq 0$, as desired.	
(b) To prove the implication on the other direction, we prove the contrapositive: Suppose p has less than m distinct roots. We must show that p and its derivative p' have at least one zero in common. Let λ be a zero of p , then write $p(z) = (z - \lambda)^n q(z)$, $\exists ! n \in \mathbb{N}^+, q \in \mathcal{P}_{m-n}(\mathbb{C})$. $p'(z) = (z - \lambda)^n q'(z) + n(z - \lambda)^{n-1} q(z) \Rightarrow p'(\lambda) = 0$, λ is a common root of p' and p .	

7 Prove that every $p \in \mathcal{P}(R)$ of odd degree has a zero.

SOLUTION:

Using the notation and proof of [4.17]. $\deg p = 2M + m$ is odd $\Rightarrow m$ is odd. Hence λ_1 exists.

OR. Using calculus only.

Suppose $p \in \mathcal{P}_m(\mathbf{F})$, $\deg p = m$, m is odd.

Let $p(x) = a_0 + a_1 x + \dots + a_m x^m$. Then $a_m \neq 0$. Denote $|a_m|^{-1} a_m$ by δ

Write
$$p(x) = x^m \left(\frac{a_0}{x^m} + \frac{a_1}{x^{m-1}} + \dots + \frac{a_{m-1}}{x} + a_m \right).$$

Thus p(x) is continuous, and $\lim_{x \to -\infty} p(x) = -\delta \infty$; $\lim_{x \to \infty} p(x) = \delta \infty$.

Hence we conclude that *p* has at least one real zero.

8 For
$$p \in \mathcal{P}(\mathbf{R})$$
, define $Tp : \mathbf{R} \to \mathbf{R}$ by $(Tp)(x) = \begin{cases} \frac{p(x) - p(3)}{x - 3} & \text{if } x \neq 3, \\ p'(3) & \text{if } x = 3 \end{cases}$ for all $x \in \mathbf{R}$.

Show that $Tp \in \mathcal{P}(\mathbf{R})$ for all $p \in \mathcal{P}(\mathbf{R})$ and that $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ is a linear map.

SOLUTION:

For
$$x \neq 3$$
, $T(x^n) = \frac{x^n - 3^n}{x - 3} = \sum_{i=1}^n 3^{i-1} x^{n-i}$.

For
$$x = 3$$
, $T(x^n) = 3^{n-1} \cdot n$. Note that if $x = 3$, then $\sum_{i=1}^n 3^{i-1}x^{n-i} = \sum_{i=1}^n 3^{n-1} = 3^{n-1} \cdot n$.

Hence for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}$, $T(x^n) = \sum_{i=1}^n 3^{i-1} x^{n-i} \in \mathcal{P}(\mathbb{R})$.

Because *T* is linear, we conclude that $Tp \in \mathcal{P}(\mathbf{R})$ for all $p \in \mathcal{P}(\mathbf{R})$.

Now we show that *T* is linear:

$$\forall p, q \in \mathcal{P}(\mathbf{R}), \lambda \in \mathbf{R}, T(p + \lambda q)(x) = \begin{cases} \frac{(p + \lambda q)(x) - (p + \lambda q)(3)}{x - 3} & \text{if } x \neq 3, \\ (p + \lambda q)'(3) & \text{if } x = 3 \end{cases} \text{ for all } x \in \mathbf{R}.$$
Notice that
$$\begin{cases} (p + \lambda q)(x) - (p + \lambda q)(3) = (p(x) - p(3)) + (\lambda q(x) - \lambda q(3)). \\ (p + \lambda q)'(3) = p'(3) + \lambda q'(3). \end{cases}$$

Notice that
$$\begin{cases} (p + \lambda q)(x) - (p + \lambda q)(3) = (p(x) - p(3)) + (\lambda q(x) - \lambda q(3)). \\ (p + \lambda q)'(3) = p'(3) + \lambda q'(3). \end{cases}$$

Thus
$$T(p + \lambda q)(x) = (T(p) + \lambda T(q))(x)$$
 for all $x \in \mathbb{R}$.

9 Suppose $p \in \mathcal{P}(\mathbf{C})$. Define $q: \mathbf{C} \to \mathbf{C}$ by $q(z) = p(z)\overline{p(\overline{z})}$. Prove that $q \in \mathcal{P}(\mathbf{R})$.

SOLUTION:

$$p(z) = a_n z^n + \dots + a_1 z + a_0 \Rightarrow p(\overline{z}) = a_n \overline{z}^n + \dots + a_1 \overline{z} + a_0 \Rightarrow \overline{p(\overline{z})} = \overline{a_n} z^n + \dots + \overline{a_1} z + \overline{a_0}.$$

Note that
$$q(z) = p(z)\overline{p(\overline{z})} = \overline{p(\overline{z})}p(z) = p(\overline{z})\overline{p(\overline{z})} = \overline{q(\overline{z})}$$
.

Hence letting
$$q(z) = c_m x^m + \dots + c_1 x + c_0 \implies \overline{c_k} = c_k, c_k \in \mathbb{R}$$
 for each k .

10 Suppose $m \in \mathbb{N}$ and $p \in \mathcal{P}_m(\mathbb{C})$ such that $p(x_k) \in \mathbb{R}$ for each x_k , where $x_0, x_1, ..., x_m \in \mathbb{R}$ are distinct. Prove that $p \in \mathcal{P}(\mathbb{R})$.

SOLUTION:

Let $p(x_k) = y_k$ for each k. By Problem (5), $\exists ! q \in \mathcal{P}_m(\mathbf{R})$ such that $q(x_k) = y_k$. Hence p = q.

OR. Using the Lagrange Interpolating Polynomial.

Define
$$q(x) = \sum_{j=0}^{m} \frac{(x-x_0)(x-x_1)\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_m)}{(x_j-x_0)(x_j-x_1)\cdots(x_j-x_{j-1})(x_j-x_{j+1})\cdots(x_j-x_m)} p(x_j).$$

 \mathbb{X} For each j, x_i , $p(x_i) \in \mathbb{R} \Rightarrow q \in \mathcal{P}_m(\mathbb{R}) \subseteq \mathcal{P}_m(\mathbb{C})$.

Notice that $q(x_k) = 1 \cdot p(x_k) \Rightarrow (q - p)(x_k) = 0$ for each $k \in \{0, 1, ..., m\}$.

Then (q-p) has (m+1) distinct zeros, while $(q-p) \in \mathcal{P}_m(\mathbb{C})$. Hence by [4.12], $q-p=0 \Rightarrow p=\overline{q}$

11 Suppose $p \in \mathcal{P}(\mathbf{F})$ with $p \neq 0$. Let $U = \{pq : q \in \mathcal{P}(\mathbf{F})\}$.

(a) Show that dim $\mathcal{P}(\mathbf{F})/U = \deg p$.

(b) Find a basis of $\mathcal{P}(\mathbf{F})/U$.

SOLUTION:

U is a subsp of $\mathcal{P}(\mathbf{F})$ because $\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, pf + \lambda pg = p(f + \lambda g) \in U$. Note: Define $P :\to \mathcal{P}(\mathbf{F})$ by $(Pq)(x) = p(q(x)) = (p \circ q)(x)$ ($\neq p(x)q(x)$). P is not linear.

(a) By [4.8], $\forall f \in \mathcal{P}(\mathbf{F}), \exists ! q, r \in \mathcal{P}(\mathbf{F}), f = (p)q + (r); \deg r < \deg p$. Hence $\forall f \in \mathcal{P}(\mathbf{F}), \exists ! pq \in U, r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), f = (pq) + (r); r \notin U$. Thus $\mathcal{P}(\mathbf{F}) = U \oplus \mathcal{P}_{\deg p-1}(\mathbf{F})$. Therefore $\mathcal{P}(\mathbf{F})/U$ and $\mathcal{P}_{\deg p-1}(\mathbf{F})$ are iso.

Or. $\forall f \in \mathcal{P}(\mathbf{F}), \exists ! q, r \in \mathcal{P}(\mathbf{F}), f = (p)q + (r); \deg r < \deg p.$

Define $R : \mathcal{P}(\mathbf{F}) \to \mathcal{P}_{\deg p-1}(\mathbf{F})$ by (Rf)(z) = r(z) for each $z \in \mathbf{F}$.

 $\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, R(f + \lambda g)(z) = R(f) + \lambda R(g).$

BECAUSE: $\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}$,

Hence *R* is linear.

$$\exists ! \, q_1, r_1 \in \mathcal{P}(\mathbf{F}), f = (p) q_1 + (r_1), \ \deg r_1 < \deg p;$$

$$\exists ! \, q_2, r_2 \in \mathcal{P}(\mathbf{F}), g = (p) q_2 + (r_2), \ \deg r_2 < \deg p;$$

$$\exists ! \, q_3, r_3 \in \mathcal{P}(\mathbf{F}), \lambda g = (p) q_3 + (r_3) = (p) (\lambda q_2) + (\lambda r_2), \ \deg r_3 < \deg p \ \text{and} \ \deg \lambda r_2 < \deg p.$$

$$\Rightarrow q_3 = \lambda q_2, r_3 = \lambda r_2.$$

$$\exists ! \, q_0, r_0 \in \mathcal{P}(\mathbf{F}), (f + \lambda g) = (p) q_0 + (r_0)$$

$$= (p) (q_1 + \lambda q_2) + (r_1 + \lambda r_2), \ \deg r_0 < \deg p \ \text{and} \ \deg (r_1 + \lambda r_2) < \deg p.$$

 $R(f) = 0 \iff f = pq, \exists ! q \in \mathcal{P}(\mathbf{F}). \text{ Thus null } R = U.$

 $\forall r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), \det f = p+r, \text{ then } R(f) = r. \text{ Thus range } R = \mathcal{P}_{\deg p-1}(\mathbf{F}).$

Finally, by [3.91(d)], $\mathcal{P}(\mathbf{F})$ /null R, namely $\mathcal{P}(\mathbf{F})/U$, and range R, namely $\mathcal{P}_{\text{deg } n-1}(\mathbf{F})$, are iso.

 $\Rightarrow q_1 + \lambda q_2 = q_0; \quad r_1 + \lambda r_2 = r_0.$

(b)
$$(1 + U, x + U, ..., x^{\deg p - 1} + U)$$
 can be a basis of $\mathcal{P}(\mathbf{F})/U$.

- Suppose nonconst $p, q \in \mathcal{P}(\mathbf{C})$ have no zeros in common. Let $m = \deg p$, $n = \deg q$. Use (a)-(c) below to prove that $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C})$, $s \in \mathcal{P}_{m-1}(\mathbf{C})$ such that rp + sq = 1.
 - (a) Define $T: \mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C}) \to \mathcal{P}_{m+n-1}(\mathbf{C})$ by T(r,s) = rp + sq. Show that the linear map T is inje.
 - (b) Show that the linear map T in (a) is surj.
 - (c) Use (b) to conclude that $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C})$ such that rp + sq = 1.

SOLUTION:

(a) T is linear because $\forall r_1, r_2 \in \mathcal{P}_{n-1}(\mathbf{C}), s_1, s_2 \in \mathcal{P}_{m-1}(\mathbf{C}), \lambda \in \mathbf{F},$ $T((r_1, s_1) + \lambda(r_2, s_2)) = T(r_1 + \lambda r_2, s_1 + \lambda s_2) = (r_1 + \lambda r_2)p + (s_1 + \lambda s_2)q = T(r_1, s_1) + \lambda T(r_2, s_2).$

Suppose T(r,s) = rp + sq = 0. Notice that p,q have no zeros in common.

Then r = s = 0, for if not, write $\frac{q(z)}{r(z)} = \frac{p(z)}{s(z)}$, while for any zero λ of q, $\frac{q(\lambda)r(z)}{=}0 \neq \frac{p(\lambda)s(z)}{s(z)}$

(b) $\dim(\mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C})) = \dim \mathcal{P}_{n-1}(\mathbf{C}) + \dim \mathcal{P}_{m-1}(\mathbf{C}) = n + m = \dim \mathcal{P}_{m+n-1}(\mathbf{C}).$ $\not \subset T$ is inje. Hence $\dim \mathrm{range} T = \dim(\mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C})) - \dim \mathrm{null} T = \dim \mathcal{P}_{m+n-1}(\mathbf{C}).$ Thus $\mathrm{range} T = \mathcal{P}_{m+n-1}(\mathbf{C}) \Rightarrow T$ is surj, and therefore is an iso.

(c) Immediately.

```
[1]: 31; [2]: 1, 2, 3, 15, 21; [3]: 23, (2E Ch5.20), (4E.5.A.37), 4, 5; [4]: 6, (4E.5.A.17, 18) Or 16, (4E.5.A.15);
[5]: 7, 8, (4E.5.A.8), 22, 9, 10; [6]: 11, 12, 14, 30, 13, (4E.5.A.11); [7]: 17, (4E.5.A.16), 18; [8]: 19, 20, 24;
[9]: 24', 25, 26, 27, 28; [10]: (4E.5.A.39), 29; [11]: 32, (4E.5.A.35), (4E.5.A.38) Or 35, 36; [12] 32, 34.
• Note For [5.6]:
  More generally, suppose we do not know whether V is finite-dim. We show that (a) \iff (b).
  Suppose (a) \lambda is an eigval of T with an eigvec v. Then (T - \lambda I)v = 0.
  Hence we get (b), (T - \lambda I) is not inje. And then (d), (T - \lambda I) is not inv.
  But (d) \Rightarrow (b) fails (because S is not inv \iff S is not inje or S is not surj ).
31 Suppose V is finite-dim and v_1, \ldots, v_m \in V. Prove that (v_1, \ldots, v_m) is linely inde
    \iff \exists T \in \mathcal{L}(V), v_1, \dots, v_m \text{ are eigences of } T \text{ correspd to distinct eigenls.}
SOLUTION:
  Suppose (v_1, ..., v_m) is linely inde, extend it to a basis of V as (v_1, ..., v_m, ..., v_n).
  Define T \in \mathcal{L}(V) by Tv_k = kv_k for each k \in \{1, ..., m, ..., n\}. Conversely by [5.10].
                                                                                                                         1 Suppose T \in \mathcal{L}(V) and U is a subsp of V.
  (a) If U \subseteq \text{null } T, then U is invar under T. \forall u \in U \subseteq \text{null } T, Tu = 0 \in U.
                                                                                                                         (b) If range T \subseteq U, then U is invar under T. \forall u \in U, Tu \in \text{range } T \subseteq U.
                                                                                                                         • Suppose S, T \in \mathcal{L}(V) are such that ST = TS.
  (a) Prove that null (T - \lambda I) is invar under S for any \lambda \in \mathbf{F}.
  (b) Prove that range (T - \lambda I) is invar under S for any \lambda \in \mathbf{F}.
SOLUTION: Note that ST = TS \Rightarrow (T - \lambda I)S = S(T - \lambda I).
  (a) Suppose v \in \text{null}(T - \lambda I), then (T - \lambda I)(Sv) = S(T - \lambda I)v = S(0) = 0.
       Hence Sv \in \text{null } (T - \lambda I) and therefore null (T - \lambda I) is invar under S.
  (b) Suppose v \in \text{range}(T - \lambda I), therefore \exists u \in V, (T - \lambda I)u = v.
       Then Sv = S(T - \lambda I)u = (T - \lambda I)(Su) \in \text{range}(T - \lambda I).
      Hence Sv \in \text{range}(T - \lambda I) and therefore range (T - \lambda I) is invar under S.
                                                                                                                         • Suppose S, T \in \mathcal{L}(V) are such that ST = TS.
 2 Show that W = \text{null } T is invar under S. \forall u \in W, Tu = 0 \Rightarrow STu = 0 = TSu \Rightarrow Su \in W.
 3 Show that U = \operatorname{range} T is invar under S. \forall w \in U, \exists v \in V, Tv = w, TSv = STv = Sw \in U. \square
15 Suppose T \in \mathcal{L}(V). Suppose S \in \mathcal{L}(V) is inv.
    (a) Prove that T and S^{-1}TS have the same eigvals.
    (b) What is the relationship between the eigvecs of T and the eigvecs of S^{-1}TS?
SOLUTION:
  Suppose \lambda is an eigval of T with an eigvec v.
  Then S^{-1}TS(S^{-1}v) = S^{-1}Tv = S^{-1}(\lambda v) = \lambda S^{-1}v.
  Thus \lambda is also an eigval of S^{-1}TS with an eigvec S^{-1}v.
  Suppose \lambda is an eigval of S^{-1}TS with an eigvec v.
  Then S(S^{-1}TS)v = TSv = \lambda Sv.
  Thus \lambda is also an eigval of T with an eigvec Sv.
```

OR. Note that $S(S^{-1}TS)S^{-1} = T$. Hence every eigval of $S^{-1}TS$ is an eigval of $S(S^{-1}TS)S^{-1} = T$. And every eigvec v of $S^{-1}TS$ is $S^{-1}v$, every eigvec u of T is Su .	
21 Suppose $T \in \mathcal{L}(V)$ is inv. (a) Suppose $\lambda \in \mathbf{F}$ with $\lambda \neq 0$. Prove that λ is an eigval of $T \Longleftrightarrow \frac{1}{\lambda}$ is an eigval of T^{-1} . (b) Prove that T and T^{-1} have the same eigvecs.	
SOLUTION:	
(a) Suppose λ is an eigval of T with an eigvec v .	
Then $T^{-1}Tv = \lambda T^{-1}v = v \Rightarrow T^{-1}v = \frac{1}{\lambda}v$. Hence $\frac{1}{\lambda}$ is an eigval of T^{-1} .	
(b) Suppose $\frac{1}{\lambda}$ is an eigval of T^{-1} with an eigvec v .	
Then $TT^{-1}v = v = \frac{1}{\lambda}Tv \Rightarrow Tv = \lambda v$. Hence λ is an eigval of T .	
Or. Note that $(T^{-1})^{-1} = T$ and $1/(\frac{1}{\lambda}) = \lambda$.	
23 Suppose $S,T \in \mathcal{L}(V)$. Prove that ST and TS have the same eigensts.	
SOLUTION:	
Suppose λ is an eigval of ST with an eigvec v . Then $T(STv) = \lambda Tv = TS(Tv)$.	
If $Tv = 0$ (while $v \neq 0$), then T is not inje $\Rightarrow (TS - 0I)$ and $(ST - 0I)$ are not inje.	
Thus $\lambda = 0$ is an eigval of ST and TS with the same eigvec v .	
Otherwise, $Tv \neq 0$, then λ is an eigval of TS . Reversing the roles of T and S .	
• (2E Ch5.20) Suppose $T \in \mathcal{L}(V)$ has dim V distinct eigens and $S \in \mathcal{L}(V)$ has the same eigences (but might not with the same eigens). Prove that $ST = TS$. Solution:	
Let $n = \dim V$. For each $j \in \{1,, n\}$, let v_j be an eigence with eigenal λ_j of T and α_j of S .	
Then $(v_1,, v_n)$ is a basis of V . Because $(ST)v_j = \alpha_j \lambda_j v_j = (TS)v_j$ for each j . Hence $ST = TS$.	
• Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(S) = TS$ for each $S \in \mathcal{L}(V)$. Prove that the set of eigvals of T equals the set of eigvals of \mathcal{A} .	
SOLUTION:	
(a) Suppose v_1, \ldots, v_m are all linely inde eigvecs of T with correspd eigvals $\lambda_1, \ldots, \lambda_m$ respectively (possibly with repetitions). Extend to a basis of V as $(v_1, \ldots, v_m, \ldots, v_n)$. Then for each $k \in \{1, \ldots, m\}$, span $(v_k) \subseteq \operatorname{null}(T - \lambda_k I)$. Define $S_k \in \mathcal{L}(V)$ by $S_k(v_j) = v_k$ for each $j \in \{1, \ldots, n\}$, so that range $S_k = \operatorname{span}(v_k)$ for each $k \in \{1, \ldots, m\}$, then $\mathcal{A}(S_k) = TS_k = \lambda_k S_k$. Thus the eigvals of T are eigvals of A .	
(b) Suppose $\lambda_1, \dots, \lambda_m$ are all eigends of \mathcal{A} with eigences S_1, \dots, S_m respectively.	
Then for each $k \in \{1,, m\}$, $\exists v \in V, 0 \neq u = S_k(v) \in V \Rightarrow Tu = (TS_k)v = (\lambda_k S_k)v = \lambda_k u$.	
Thus the eigvals of \mathcal{A} are eigvals of T .	

Or.

(a) Suppose λ is an eigval of T with an eigvec v. Let $v_1=v$ and extend to a basis (v_1,\ldots,v_m) of V.

Define $S \in \mathcal{L}(V)$ by $Sv_1 = v_1$, $Sv_k = 0$ for $k \ge 2$. Then $(T - \lambda I)Sv_1 = 0 = (T - \lambda I)Sv_k = 0$. Hence $(T - \lambda I)S = 0 \Rightarrow TS = \lambda S$ while $S \neq 0$. Thus λ is also an eigval of \mathcal{A} . (b) Suppose λ is an eigval of \mathcal{A} with an eigvec S. Then $(T - \lambda I)S = 0$ while $S \neq 0$. Hence $(T - \lambda I)$ is not inje. Thus λ is also an eigval of T. **COMMENT:** Define $\mathcal{B} \in \mathcal{L}BigPar\mathcal{L}(V)$ by $\mathcal{B}(S) = ST$, $\forall S \in \mathcal{L}(V)$. Then the eigenst of \mathcal{B} are not the eigenst of T.**4** Suppose $T \in \mathcal{L}(V)$ and V_1, \dots, V_m are invar subsps of V under T. Prove that $V_1 + \cdots + V_m$ is invar under T. **SOLUTION:** For each i = 1, ..., m, $\forall v_i \in V_i, Tv_i \in V_i$ Hence $\forall v=v_1+\cdots+v_m\in V_1+\cdots+V_m, Tv=Tv_1+\cdots+Tv_m\in V_1+\cdots+V_m.$ **6** Prove or give a counterexample: If V is finite-dim and U is a subsp of V that is invar under every operator on V, then $U = \{0\}$ or U = V. **SOLUTION:** Notice that V might be $\{0\}$. In this case we are done. Suppose dim $V \ge 1$. We prove by contrapositive: Suppose $U \neq \{0\}$ and $U \neq V$. Prove that $\exists T \in \mathcal{L}(V)$ such that U is not invar under T. Let *W* be such that $V = U \oplus W$. Let $(u_1, ..., u_m)$ be a basis of U and $(w_1, ..., w_n)$ be a basis of W. Hence $(u_1, \dots, u_m, w_1, \dots, w_n)$ is a basis of V. Define $T \in \mathcal{L}(V)$ by $T(a_1u_1 + \dots + a_mu_m + b_1w_1 + \dots + b_nw_n) = b_1w_1 + \dots + b_nw_n$. • Suppose F = R, $T \in \mathcal{L}(V)$. (a) [Or. (9.11)] $\lambda \in \mathbb{R}$. Prove that λ is an eigral of $T \iff \lambda$ is an eigral of $T_{\mathbb{C}}$. (b) [OR. Problem (16)] $\lambda \in \mathbb{C}$. Prove that λ is an eigral of $T_{\mathbb{C}} \iff \overline{\lambda}$ is an eigral of $T_{\mathbb{C}}$. **SOLUTION:** (a) Suppose $v \in V$ is an eigvec correspd to the eigval λ . Then $Tv = \lambda v \Rightarrow T_{\mathbf{C}}(v + i0) = Tv + iT0 = \lambda v$. Thus λ is an eigval of T. Suppose $v + iu \in V_C$ is an eigvec correspd to the eigval λ . Then $T_{\rm C}(v+{\rm i}u)=\lambda v+{\rm i}\lambda u\Rightarrow Tv=\lambda v, Tu=\lambda u$. (Note that v or u might be zero). Thus λ is an eigval of $T_{\rm C}$. (b) Suppose λ is an eigval of $T_{\mathbb{C}}$ with an eigvec v + iu. Let $(v_1, ..., v_n)$ be a basis of V. Write $v = \sum_{i=1}^n a_i v_i$, $u = \sum_{i=1}^n b_i v_i$, where $a_i, b_i \in \mathbb{R}$. Then $T_{\mathbf{C}}(v+\mathrm{i}u)=Tv+\mathrm{i}Tu=\lambda v+\mathrm{i}\lambda u=\lambda\sum_{i=1}^n\left(a_i+\mathrm{i}b_i\right)v_i$. Conjugating two sides, we have: $\overline{T_{\mathbf{C}}(v+\mathrm{i}u)} = \overline{Tv+\mathrm{i}Tu} = \overline{Tv}-\mathrm{i}\overline{Tu} = Tv-\mathrm{i}Tu = T_{\mathbf{C}}(\overline{v+\mathrm{i}u}) = \overline{\lambda \sum_{i=1}^{n} (a_i+\mathrm{i}b_i)v_i} = \overline{\lambda \sum_{i=1}^{n} (a_i-\mathrm{i}v_i)v_i} = \overline{\lambda \sum_{i=$ $ib_i)v_i$. Hence $\overline{\lambda}$ is an eigval of $T_{\mathbb{C}}$. To prove the other direction, notice that $(\overline{\lambda}) = \lambda$. • Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\lambda \in F$. Show that λ is an eigend of $T \iff \lambda$ is an eigend of the dual operator $T' \in \mathcal{L}(V')$.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec v .	
Then $(T - \lambda I_V)$ is not inv. \mathbb{X} V is finite-dim. Thus by [3.108, 110], [3.101] and Problem (12) in (3.F), $(T - \lambda I_V)' = T' - \lambda I_V$, is not inv. Hence λ is an eigval of T' .	
(b) Suppose λ is an eigval T' with an eigvec ψ . Then $T'(\psi) = \psi \circ T = \lambda \psi$. $\forall \psi \neq 0 \Rightarrow \exists v \in V$ such that $\psi(v) \neq 0$. Note that $\psi(Tv) = \lambda \psi(v)$.	
Thus $\lambda = \frac{\psi(Tv)}{\psi(v)} \Rightarrow Tv = \frac{\psi(Tv)}{\psi(v)}v = \lambda v$. Hence λ is an eigval of T .	
7 Suppose $T \in \mathcal{L}(\mathbb{R}^2)$ is defined by $T(x,y) = (-3y,x)$. Find the eigenst of T .	
SOLUTION: Suppose $\lambda \in \mathbb{R}$ and $(x,y) \in \mathbb{R}^2 \setminus \{0\}$ such that $T(x,y) = (-3y,x) = \lambda(x,y)$. Then $-3y = \lambda x$ $x = \lambda y$.	and
Thus $-3y = \lambda^2 y \Rightarrow \lambda^2 = -3$, ignoring the possibility of $y = 0$ (because if $y = 0$, then $x = 0$). Hence the set of solution for this equation is \emptyset , and therefore T has no eigvals in \mathbb{R} .	
8 Define $T \in \mathcal{L}(\mathbf{F}^2)$ by $T(w,z) = (z,w)$. Find all eigens and eigens of T . Solution:	
Suppose $\lambda \in \mathbb{F}$ and $(w,z) \in \mathbb{F}^2$ such that $T(w,z) = (z,w) = \lambda(w,z)$. Then $z = \lambda w$ and $w = \lambda z$. Thus $z = \lambda^2 z \Rightarrow \lambda^2 = 1$, ignoring the possibility of $z = 0$ ($z = 0 \Rightarrow w = 0$). Hence $\lambda_1 = -1$ and $\lambda_2 = 1$ are all eigvals of T . For $\lambda_1 = -1, z = -w, w = -z$; For $\lambda_2 = 1, z = w$.	
Thus the set of all eigvecs is $\{(z,-z),(z,z):z\in \mathbf{F}\ \land\ z\neq 0\}.$	
• Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that if λ is an eigval of P , then $\lambda = 0$ or $\lambda = 1$.	
SOLUTION: (See also at (3.B), just below Problem (25), where (5.B.4) was answered.) Suppose λ is an eigval with an eigvec v . Then $P(Pv) = Pv \Rightarrow \lambda^2 v = \lambda v$. Thus $\lambda = 1$ or 0.	
22 Suppose $T \in \mathcal{L}(V)$ and \exists nonzero vecs u, w in V such that $Tu = 3w$ and $Tw = 3u$. Prove that 3 or -3 is an eigral of T .	
SOLUTION: COMMENT: $Tu = 3w, Tw = 3u \Rightarrow T(Tu) = 9u \Rightarrow T^2$ has an eigval 9.	_
$Tu = 3w, Tw = 3u \Rightarrow T(u+w) = 3(u+w), T(u-w) = 3(w-u) = -3(u-w).$	
9 Define $T \in \mathcal{L}(\mathbf{F}^3)$ by $T(z_1, z_2, z_3) = (2z_2, 0, 5z_3)$. Find all eigvals and eigvecs of T .	
SOLUTION:	
Suppose λ is an eigval of T with an eigvec $(z_1, z_2, z_3) \in \mathbf{F}^3$. Then $T(z_1, z_2, z_3) = (2z_2, 0, 5z_3) = \lambda(z_1, z_2, z_3)$. Thus $2z_2 = \lambda z_1$, $0 = \lambda z_2$, $5z_3 = \lambda z_3$. We discuss in two cases:	
For $\lambda = 0$, $z_2 = z_3 = 0$ and z_1 can be arbitrary ($z_1 \neq 0$).	
For $\lambda \neq 0$, $z_2 = 0 = z_1$, and z_3 can be arbitrary ($z_3 \neq 0$), then $\lambda = 5$. The set of all eigvecs is $\{(0,0,z),(z,0,0):z\in \mathbf{F} \land z\neq 0\}$.	
10 Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, x_2, x_3,, x_n) = (x_1, 2x_2, 3x_3,, nx_n)$ (a) Find all eigens and eigens of T .	

(b) Find all invar subsps of V under T. **SOLUTION:** (a) Suppose $v = (x_1, x_2, x_3, ..., x_n)$ is an eigvec of T with an eigval λ . Then $Tv = \lambda v = (x_1, 2x_2, 3x_3, ..., nx_n) = (\lambda x_1, \lambda x_2, \lambda x_3, ..., \lambda x_n)$. Hence $1, \dots, n$ are eigvals of T. And $\{(0,\ldots,0,x_{\lambda},0,\ldots,0)\in \mathbb{F}^n:\lambda=1,\ldots,n,\ x_{\lambda}\in \mathbb{F}\land x_{\lambda}\neq 0\}$ is the set of all eigences of T. (b) Let $V_{\lambda} = \{(0, \dots, 0, x_{\lambda}, 0, \dots, 0) \in \mathbb{F}^n : x_{\lambda} \in \mathbb{F} \land x_{\lambda} \neq 0\}$. Then V_1, \dots, V_n are invar under T. Hence by Problem (4), every sum of V_1, \dots, V_n is a invar subsp of V under T. **11** Define $T: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by Tp = p'. Find all eigenstand eigenstands of T. **SOLUTION:** Note that in general, $\deg p' < \deg p$ ($\deg 0 = -\infty$). Suppose λ is an eigval of T with an eigvec p. Suppose $\lambda \neq 0$. Then $\deg \lambda p > \deg p'$ while $\lambda p \neq p'$. Contradicts. Thus $\lambda = 0$. Therefore $\deg \lambda p = -\infty = \deg p \Rightarrow p$ is a nonzero const poly. Hence the set of all eigvecs is $\{C : C \in \mathbb{R} \land C \neq 0\} = \mathcal{P}_0(\mathbb{R}) \setminus \{0\}$. **12** Define $T \in \mathcal{L}(\mathcal{P}_4(\mathbf{R}))$ by (Tp)(x) = xp'(x) for all $x \in \mathbf{R}$. Find all eigvals and eigvecs of T. **SOLUTION:** Suppose λ is an eigval of T with an eigvec p, then $(Tp)(x) = xp'(x) = \lambda p(x)$. Let $p = a_0 + a_1 x + \dots + a_n x^n$. Then $xp'(x) = a_1x + 2a_2x^2 + \dots + na_nx^n = \lambda a_0 + \lambda a_1x + \lambda a_2x^2 + \dots + \lambda a_nx^n$. Similar to Problem (10), 0, 1, ..., n are eigvals of T. The set of all eigvecs of T is $\{cx^{\lambda} : \lambda = 0, 1, ..., n, c \in \mathbb{F} \land c \neq 0\}$. **30** Suppose $T \in \mathcal{L}(\mathbf{R}^3)$ and $-4, 5, \sqrt{7}$ are eigvals of T. Prove that $\exists x \in \mathbb{R}^3$ such that $Tx - 9x = (-4, 5, \sqrt{7})$. **SOLUTION:** Because 9 is not an eigval. Hence (T - 9I) is surj. **14** Suppose $V = U \oplus W$, where U and W are nonzero subsps of V. Define $P \in \mathcal{L}(V)$ by P(u + w) = u for each $u \in U$ and each $w \in W$. Find all eigvals and eigvecs of P. **SOLUTION:** Suppose λ is an eigval of P with an eigvec (u + w). Then $P(u+w) = u = \lambda u + \lambda w \Rightarrow (\lambda - 1)u + \lambda w = 0$. By [1.44] and $V = U \oplus W$, $(\lambda - 1)u = \lambda w = 0$.

13 Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$. Prove that $\exists \alpha \in \mathbf{F}, |\alpha - \lambda| < \frac{1}{1000}$ and $(T - \alpha I)$ is inv.

Thus if $\lambda = 1$, then w = 0; if $\lambda = 0$, then u = 0.

SOLUTION:

Let $\alpha_k \in \mathbb{F}$ be such that $|\alpha_k - \lambda| = \frac{1}{1000 + k}$ for each $k = 1, ..., \dim V + 1$.

Hence the eigvals of *P* are 0 and 1, the set of all eigvecs in *P* is $U \cup W$.

Note that each $T \in \mathcal{L}(V)$ has at most dim V distinct eigenls.

SOLUTION:

If *T* has no eigvals, then $(T - \alpha I)$ is inje for all $\alpha \in \mathbf{F}$ and we are done.

Let $\delta > 0$ be such that, for each eigval $\lambda_k, \lambda_k \notin (\lambda - \delta, \lambda) \cup (\lambda, \lambda + \delta)$.

So that for all $\alpha \in \mathbf{F}$ such that $0 < |\alpha - \lambda| < \delta$, $(T - \alpha I)$ is not inje.

17 Give an example of an operator on \mathbb{R}^4 that has no (real) eigvals.

SOLUTION: Where (e_1, e_2, e_3, e_4) is the standard basis of \mathbb{R}^4 .

$$\text{Define } T \in \mathcal{L} \big(\mathbf{R}^4 \big) \text{ by } \mathcal{M} \big(T, \big(e_1, e_2, e_3, e_4 \big) \big) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 3 & 8 & 11 & 5 \\ 3 & -8 & -11 & 5 \end{pmatrix}.$$

Suppose λ is an eigval of T with an eigvec (x, y, z, w).

Then
$$T(x, y, z, w) = \lambda(x, y, z, w) \Rightarrow \begin{cases} (1 - \lambda)x + y + z + w = 0\\ -x + (1 - \lambda)y - z - w = 0\\ 3x + 8y + (11 - \lambda)z + 5w = 0\\ 3x - 8y - 11z + (5 - \lambda)w = 0 \end{cases}$$

This linear equation has no solutions.

(You can type it on https://zh.numberempire.com/equationsolver.php to check.)

Or. Define
$$T \in \mathcal{L}(\mathbb{R}^4)$$
 by $T(x_1, x_2, x_3, x_4) = (-x_2, x_1, -x_4, x_3)$.

Suppose λ is an eigval of T with an eigvec (x, y, z, w).

Then
$$T(x, y, z, w) = (\lambda x, \lambda y, \lambda z, \lambda w) = (-y, x, -w, z) \Rightarrow \begin{cases} -y = \lambda x \\ x = \lambda y \\ -w = \lambda z \end{cases} \Rightarrow \begin{cases} -xy = \lambda^2 xy \\ -zw = \lambda^2 zw \end{cases}$$

If $xy \neq 0$ or $zw \neq 0$, then $\lambda^2 = -1$, we fail.

Otherwise, $xy = 0 \Rightarrow x = y = 0$, for if $x \neq 0$, then $\lambda = 0 \Rightarrow x = 0$, contradicts.

Similarly, y = z = w = 0. Then we fail. Thus T has no eigvals.

• Suppose $(v_1, ..., v_n)$ is a basis of V and $T \in \mathcal{L}(V)$, $\mathcal{M}(T, (v_1, ..., v_n)) = A$. Prove that if λ is an eigval of T, then $|\lambda| \le n \max\{|A_{j,k}| : 1 \le j, k \le n\}$.

SOLUTION:

First we show that $|\lambda| = n \max \{ |A_{j,k}| : 1 \le j, k \le n \}$ for some cases.

Consider
$$A = \begin{pmatrix} k & \cdots & k \\ \vdots & \ddots & \vdots \\ k & \cdots & k \end{pmatrix}$$
. Then nk is an eigval of T with an eigvec $v_1 + \cdots + v_n$.

Now we show that if $|\lambda| \neq n \max\{|A_{j,k}| : 1 \leq j, k \leq n\}$, then $|\lambda| < n \max\{|A_{j,k}| : 1 \leq j, k \leq n\}$.

18 Show that the forward shift operator $T \in \mathcal{L}(\mathbf{F}^{\infty})$ defined by $T(z_1, z_2, ...) = (0, z_1, z_2, ...)$ has no eigenls.

SOLUTION:

Suppose λ is an eigval of T with an eigvec $(z_1, z_2, ...)$.

Then
$$T(z_1, z_2, \dots) = (\lambda z_1, \lambda z_2, \dots) = (0, z_1, z_2, \dots).$$

Thus $\lambda z_1 = 0, \lambda z_2 = z_1, ..., \lambda z_k = z_{k-1}, ...$

Let $\lambda = 0$, then $\lambda z_2 = z_1 = 0 = \lambda z_k = z_{k-1}$, therefore $(z_1, z_2, \dots) = 0$ is not an eigvec.

Suppose $\lambda \neq 0$. Then $\lambda z_1 = 0 \Rightarrow z_1 = 0 \Rightarrow z_2 = 0 = z_k$ for all $k \in \mathbb{N}^+$.

And then $(z_1, z_2, ...) = 0$ is not an eigvec. Hence T has no eigvals.

19 Suppose $n \in \mathbb{N}^+$. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(x_1, \dots, x_n) = (x_1 + \dots + x_n, \dots, x_1 + \dots + x_n).$$

In other words, the entries of $\mathcal{M}(T)$ with resp to the standard basis are all 1's. Find all eigenstands and eigenstands of T.

SOLUTION:

Suppose λ is an eigval of T with an eigvec (x_1, \dots, x_n) .

Then
$$T(x_1, ..., x_n) = (\lambda x_1, ..., \lambda x_n) = (x_1 + ... + x_n, ..., x_1 + ... + x_n).$$

Thus $\lambda x_1 = \dots = \lambda x_n = x_1 + \dots + x_n$.

For
$$\lambda = 0$$
, $x_1 + \dots + x_n = 0$.

For $\lambda \neq 0$, $x_1 = \dots = x_n$ and then $\lambda x_k = nx_k$ for each k.

Hence 0, n are eigvecs of T.

And the set of all eigences of T is $\{(x_1, \dots, x_n) \in \mathbb{F}^n : x_1 + \dots + x_n = 0 \lor x_1 = \dots = x_n\}$.

20 Define the backward shift operator $S \in \mathcal{L}(\mathbf{F}^{\infty})$ by $S(z_1, z_2, z_3, \dots) = (z_2, z_3, \dots)$.

- (a) Show that every element of F is an eigeal of S.
- (b) Find all eigvecs of S.

SOLUTION:

Suppose λ is an eigval of S with an eigvec $(z_1, z_2, ...)$.

Then
$$S(z_1, z_2, z_3 \dots) = (\lambda z_1, \lambda z_2, \dots) = (z_2, z_3, \dots).$$

Thus
$$\lambda z_1 = z_2, \lambda z_2 = z_3, ..., \lambda z_k = z_{k+1}, ...$$
.

For
$$\lambda = 0$$
, $\lambda z_1 = z_2 = 0 = \lambda z_2 = z_3 = \dots = z_k$ for all k .

While z_1 can be arbitrary, so that $(z_1, 0, ...)$ is an eigeec with $z_1 \neq 0$.

For
$$\lambda \neq 0$$
, $\lambda^k z_1 = \lambda^{k-1} z_2 = \dots = \lambda z_k = z_{k+1}$ for all k .

Then
$$(z_1, \lambda z_1, \lambda^2 z_1, \dots, \lambda^k z_1, \dots)$$
 is an eigeec with $z_1 \neq 0$.

Hence (a) each element of $\lambda \in \mathbf{F}$ is an eigval of T.

And (b) the set of all eigvecs of T is $\{(z_1, \lambda z_1, \lambda^2 z_1, \dots, \lambda^k z_1, \dots) \in \mathbf{F}^{\infty} : \lambda \in \mathbf{F}, z_1 \neq 0\}$

24 Suppose $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^n)$ by Tx = Ax, where elements of \mathbf{F}^n are thought of as n-by-1 col vecs.

- (a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.
- (b) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Then
$$Tx = Ax = \begin{pmatrix} \sum_{c=1}^{n} A_{1,c} x_c \\ \vdots \\ \sum_{c=1}^{n} A_{n,c} x_c \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. While $\sum_{c=1}^{n} A_{R,c} = 1$ for each $C = 1, \dots, n$.

Thus if we let $x_1 = \cdots = x_n$, then $\lambda = 1$, and hence is an eigval of T.

(b) Suppose λ is an eigval of T with an eigvec $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Then
$$Tx = Ax = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r} x_r \\ \vdots \\ \sum_{r=1}^{n} A_{n,r} x_r \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. While $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C = 1, \dots, n$.

Thus
$$\sum_{r=1}^{n} (Ax)_{r,r} = \sum_{r=1}^{n} (Ax)_{r,1}$$

$$= \sum_{c=1}^{n} (A_{1,c} + \dots + A_{n,c}) x_c = \sum_{c=1}^{n} x_c = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Hence $\lambda = 1$, for all x such that $\sum_{c=1}^{n} x_{c,1} \neq 0$.

OR. Prove that (T - I) is not inv, so that we can conclude $\lambda = 1$ is an eigval.

Because
$$(T - I)x = (A - \mathcal{M}(I))x = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r}x_r - x_1 \\ \vdots \\ \sum_{r=1}^{n} A_{n,r}x_r - x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Then $y_1 + \dots + y_n = \sum_{r=1}^n \sum_{c=1}^n (A_{r,c} x_c - x_r) = \sum_{c=1}^n x_c \sum_{r=1}^n A_{r,c} - \sum_{r=1}^n x_r = 0.$

Thus range
$$(T-I) \subseteq \left\{ \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{F}^n : y_1 + \dots + y_n = 0 \right\}$$
. Hence $(T-I)$ is not surj.

- Suppose $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^n)$ by Tx = xA, where elements of \mathbf{F}^n are thought of as 1-by-n row vecs.
 - (a) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.
 - (b) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec $x = (x_1 \quad \cdots \quad x_n)$.

Then
$$Tx = xA = \left(\sum_{r=1}^{n} x_r A_{r,1} \cdots \sum_{r=1}^{n} x_r A_{r,n}\right) = \lambda \left(x_1 \cdots x_n\right)$$
. While $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C = 1, \dots, n$. Thus if we let $x_1 = \dots = x_n$, then $\lambda = 1$, hence is an eigval of T .

(b) Suppose λ is an eigval of T with an eigvec $x = (x_1 \quad \cdots \quad x_n)$.

Then
$$Tx = xA = \left(\sum_{c=1}^{n} x_c A_{c,1} \quad \cdots \quad \sum_{c=1}^{n} x_c A_{c,n}\right) = \lambda \left(x_1 \quad \cdots \quad x_n\right)$$
. While $\sum_{c=1}^{n} A_{R,c} = 1$ for each $R = 1, \dots, n$.

Thus
$$\sum_{c=1}^{n} (xA)_{.,c} = \sum_{c=1}^{n} (xA)_{1,c} = \sum_{c=1}^{n} (A_{c,1} + \dots + A_{c,n}) x_c = \sum_{c=1}^{n} x_c = \lambda (x_1 + \dots + x_n).$$

Hence
$$\lambda = 1$$
, for all x such that $\sum_{r=1}^{n} x_{1,r} \neq 0$.

Or. Prove that (T - I) is not inv, so that we can conclude $\lambda = 1$ is an eigval.

Because
$$(T-I)x = x(A-\mathcal{M}(I)) = \left(\sum_{c=1}^{n} x_c A_{c,1} - x_1 \cdots \sum_{c=1}^{n} x_c A_{c,n} - x_n\right) = (y_1 \cdots y_n).$$

Then
$$y_1 + \dots + y_n = \sum_{c=1}^n \sum_{r=1}^n (x_r A_{r,c} - x_c) = \sum_{r=1}^n x_r \sum_{c=1}^n A_{r,c} - \sum_{c=1}^n x_c = 0.$$

25 Suppose $T \in \mathcal{L}(V)$ and u, w are eigences of T such that u + w is also an eigence of T. Prove that u and w are eigvecs of T correspd to the same eigval.

SOLUTION:

Suppose $\lambda_1, \lambda_2, \lambda_0$ are eigvals of *T* correspd to u, w, u + w respectively.

Then
$$T(u+w) = \lambda_0(u+w) = Tu + Tw = \lambda_1 u + \lambda_2 w \Rightarrow (\lambda_0 - \lambda_1)u = (\lambda_2 - \lambda_0)w$$
.

Notice that u, w, u + w are nonzero.

If (u, w) is linely depe, then let w = cu, therefore

$$\lambda_2 c u = T w = c T u = \lambda_1 c u \qquad \Rightarrow \lambda_2 = \lambda_1.$$

$$\lambda_0 (u + w) = T (u + w) = \lambda_1 u + \lambda_1 c u = \lambda_1 (u + w) \Rightarrow \lambda_0 = \lambda_1.$$

Otherwise,
$$\lambda_0 - \lambda_1 = \lambda_2 - \lambda_0 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_0$$
.

26 Suppose $T \in \mathcal{L}(V)$ is such that every nonzero vec in V is an eigvec of T. *Prove that T is a scalar multi of the identity operator.*

SOLUTION:

Because $\forall v \in V, \exists ! \lambda_v \in F, Tv = \lambda_v v$. For any two distinct nonzero vecs $v, w \in V$,

$$T(v+w) = \lambda_{v+w}(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \Rightarrow (\lambda_{v+w} - \lambda_v)v = (\lambda_w - \lambda_{v+w})w.$$

If (v, w) is linely inde, then let w = cv, therefore

$$\begin{split} \lambda_v c v &= c T v = T w = \lambda_w w \\ \lambda_{v+w} \big(v + w \big) &= T \big(v + w \big) = T v + T w = \lambda_v \big(v + c v \big) \Rightarrow \lambda_{v+w} = \lambda_v. \end{split}$$

Otherwise,
$$\lambda_v = \lambda_{v+w} = \lambda_w$$
.

27, 28 Suppose V is finite-dim and $k \in \{1, ..., \dim V - 1\}$.

Suppose $T \in \mathcal{L}(V)$ is such that every subsp of V of dim k is invar under T.

Prove that T is a scalar multi of the identity operator.

SOLUTION: We prove the contrapositive:

Suppose T is not a scalar multi of I. Prove that \exists an invar subsp U of V under T such that dim U = k.

By Problem (26), $\exists v \in V$ and $v \neq 0$ such that v is not an eigeec of T.

Thus (v, Tv) is linely inde. Extend to a basis of V as $(v, Tv, u_1, ..., u_n)$.

Let $U = \operatorname{span}(v, u_1, \dots, u_{k-1}) \Rightarrow U$ is not an invar subsp of V under T.

OR. Suppose $0 \neq v = v_1 \in V$ and extend to a basis of V as $(v_1, ..., v_n)$.

Suppose $Tv_1 = c_1v_1 + \cdots + c_nv_n$, $\exists ! c_i \in \mathbf{F}$.

Consider a k - dim subsp $U = \text{span}(v_1, v_{\alpha_1}, \dots, v_{\alpha_{k-1}})$,

where $\alpha_i \in \{2, ..., n\}$ for each j, and $\alpha_1, ..., \alpha_{k-1}$ are distinct.

Because every subsp such *U* is invar.

Thus
$$Tv_1 = c_1v_1 + \dots + c_nv_n \in U \Rightarrow c_2 = \dots = c_n = 0$$
,

length
$$(n-2)$$

for if not, for each $c_i \neq 0$, choose U_i such that $\alpha_i \in \{2, ..., i-1, i+1, ..., n\}$ for each j,

hence for $Tv_1 = c_1v_1 + \dots + c_{i-1}v_{i-1} + c_{i+1}v_{i+1} + \dots + c_nv_n \in U_i$, we conclude that $c_i = 0$.

$$\Rightarrow Tv_1 = c_1v_1$$
, $\not \subset v_1 = v \in V$ is arbitrary $\Rightarrow T = \lambda I$ for some λ .

• Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that

T has an eigval $\iff \exists$ an invar subsp *U* of *V* under *T* such that dim $U = \dim V - 1$.

SOLUTION:

```
(a) Suppose \lambda is an eigval of T with an eigvec v.
        ( If dim V = 1, then U = \{0\} and we are done. )
        Extend v_1 = v to a basis of V as (v_1, v_2 \dots, v_n).
        Step 1. If \exists w_1 \in \text{span}(v_2, ..., v_n) such that 0 \neq Tw_1 \in \text{span}(v_1),
                 then extend w_1 = \alpha_{1,1} to a basis of span(v_2, \dots, v_n) as (\alpha_{1,1}, \dots, \alpha_{1,n-1}).
                 Otherwise, we stop at step 1.
        Step k. If \exists w_k \in \text{span}(\alpha_{k-1,2}, ..., \alpha_{k-1,n-k+1}) such that 0 \neq Tw_k \in \text{span}(v_1, w_1, ..., w_{k-1}),
                 then extend w_k = \alpha_{k,1} to a basis of span(\alpha_{k-1,2}, \dots, \alpha_{k-1,n-k+1}) as (\alpha_{k,1}, \dots, \alpha_{k,n-k}).
                 Otherwise, we stop at step k.
        Finally, we stop at step m, thus we get (v_1, w_1, \dots, w_{m-1}) and (\alpha_{m-1,2}, \dots, \alpha_{m-1,n-m+1}),
        \operatorname{range} T|_{\operatorname{span}\left(w_{1},\ldots,w_{m-1}\right)} = \operatorname{span}\left(v_{1},w_{1},\ldots,w_{m-2}\right) \Rightarrow \operatorname{dim} \operatorname{null} T|_{\operatorname{span}\left(w_{1},\ldots,w_{m-1}\right)} = 0,
        \underline{\operatorname{span}(v_1,w_1,\ldots,w_{m-1})} and \underline{\operatorname{span}(\alpha_{m-1,2},\ldots,\alpha_{m-1,n-m+1})} are invar under T.
        Let U = \operatorname{span}(\alpha_{m-1,2}, \dots, \alpha_{m-1,n-m+1}) \oplus \operatorname{span}(v_1, w_1, \dots, w_{m-2}) and we are done.
        COMMENT: Both span(v_2, ..., v_n) and span(\alpha_{m-1,2}, ..., \alpha_{m-1,n-m+1}) \oplus \text{span}(w_1, ..., w_{m-1}) are in
\mathcal{S}_Vspan(v_1).
   (b) Suppose U is an invar subpsace of V under T with dim U = m = \dim V - 1.
         ( If m = 0, then dim V = 1 and we are done. )
        Let (u_1, ..., u_m) be a basis of U, extend to a basis of V as (u_0, u_1, ..., u_m).
        We discuss in cases:
        For Tu_0 \in U, then range T = U so that T is not surj \iff null T \neq \{0\} \iff 0 is an eigval of T.
        For Tu_0 \notin U, then Tu_0 = a_0u_0 + a_1u_1 + \cdots + a_mu_m.
         (1) If Tu_0 \in \text{span}(u_0), then we are done.
         (2) Otherwise, if range T|_U = U, then Tu_0 = a_0u_0 and we are done;
                           otherwise, T|_U: U \to U is not surj (\Rightarrow not inje), suppose range T|_U \neq \{0\}
                            (Suppose range T|_{U} = \{0\}. If dim U = 0 then we are done.
                                                         Otherwise \exists u \in U \setminus \{0\}, Tu = 0 and we are done.)
                           then \exists u \in U \setminus \{0\}, Tu = 0, we are done.
                                                                                                                                          29 Suppose T \in \mathcal{L}(V) and range T is finite-dim.
     Prove that T has at most 1 + \dim \operatorname{range} T distinct eigvals.
SOLUTION:
   Let \lambda_1, \dots, \lambda_m be the distinct eigenstance of T and let v_1, \dots, v_m be the corresponding eigenstance.
   (Because range T is finite-dim. Let (v_1, ..., v_n) be a list of all the linely inde eigvecs of T,
     so that the correspd eigvals are finite. )
   For every \lambda_k \neq 0, T(\frac{1}{\lambda_k}v_k) = v_k. And if T = T - 0I is not inje, then \exists ! \lambda_A = 0 and Tv_A = \lambda_A v_A = 0.
   Thus for \lambda_k \neq 0, \forall k, \mathcal{L}(Tv_1, ..., Tv_m) is a linely inde list of length m in range T.
   And for \lambda_A = 0, there is a linely inde list of length at most (m-1) in range T.
   Hence, by [2.23], m \leq \dim \operatorname{range} T + 1.
```

32 Suppose that $\lambda_1, ..., \lambda_n$ are distinct real numbers. Prove that $(e^{\lambda_1}x, ..., e^{\lambda_n}x)$ is linely inde in \mathbb{R}^R .

HINT: Let $V = \text{span}(e^{\lambda_1}x, \dots, e^{\lambda_n}x)$, and define an operator $D \in \mathcal{L}(V)$ by Df = f'. Find eigvals and eigvecs of D.

SOLUTION:

Define V and $D \in \mathcal{L}(V)$ as in HINT. Then because for each k, $D(e^{\lambda_k x}) = \lambda_k e^{\lambda_k x}$.

Thus $\lambda_1, \dots, \lambda_n$ are distinct eigvals of D. By [5.10], $(e^{\lambda_1}x, \dots, e^{\lambda_n}x)$ is linely inde in $\mathbb{R}^{\mathbb{R}}$.

• Suppose $\lambda_1, ..., \lambda_n$ are distinct positive numbers. Prove that $(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$ is linely inde in \mathbb{R}^R .

SOLUTION:

Let $V = \text{span}(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$. Define $D \in \mathcal{L}(V)$ by Df = f'.

Then because $D(\cos(\lambda_k x)) = -\lambda_k \sin(\lambda_k x)$. $\mathbb{Z} D(\sin(\lambda_k x)) = \lambda_k \cos(\lambda_k x)$.

Thus $D^2(\cos(\lambda_k x)) = -\lambda_k^2 \cos(\lambda_k x)$.

Notice that $\lambda_1, \dots, \lambda_n$ are distinct $\Rightarrow -\lambda_1^2, \dots, -\lambda_n^2$ are distinct.

Hence $-\lambda_1^2, \dots, -\lambda_n^2$ are distinct eigens of D^2

with the correspd eigvecs $\cos(\lambda_1 x), \dots, \cos(\lambda_n x)$ respectively.

And then $(\cos(\lambda_1 x), ..., \cos(\lambda_n x))$ is linely inde in $\mathbb{R}^{\mathbb{R}}$.

• Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is a subsp of V invar under T. The quotient operator $T/U \in \mathcal{L}(V/U)$ is defined by

$$(T/U)(v+U) = Tv + U$$
 for each $v \in V$.

- (a) Show that the definition of T/U makes sense (which requires using the condition that U is invar under T) and show that T/U is an operator on V/U.
- (b) (OR Problem 35) Show that each eigral of T/U is an eigral of T.

SOLUTION:

(a) Suppose v + U = w + U ($\iff v - w \in U$).

Then because *U* is invar under *T*, $T(v - w) \in U \iff Tv + U = Tw + U$.

Hence the definition of T/U makes sense.

Now we show that T/U is linear.

$$\forall v + U, w + U \in V/U, \lambda \in \mathbf{F}, (T/U)((v + U) + \lambda(w + U))$$

$$= T(v + \lambda w) + U = (Tv + U) + \lambda(Tw + U)$$

$$= (T/U)(v + U) + \lambda(T/U)(w).$$

(b) Suppose λ is an eigval of T/U with an eigvec v+U.

Then $(T/U)(v+U) = \lambda(v+U) = Tv + U = \lambda v + U \Rightarrow (T-\lambda I)v \in U$.

If $(T - \lambda I)v = 0 \Rightarrow Tv = \lambda v$, then we are done.

Otherwise, then $(T|_U - \lambda I) : U \to U$ is inv,

hence
$$\exists ! w \in U, (T|_U - \lambda I)(w) = (T - \lambda I)v \Rightarrow T(v - w) = \lambda(v - w).$$

Note that $v - w \neq 0$ (for if not, $v \in U \Rightarrow v + U = 0 + U$ is not an eigvec).

36 *Prove or give a counterexample:*

The result of (b) in Exercise 35 is still true if V is infinite-dim.

SOLUTION: A counterexample:

Consider $V = \text{span}(1, e^x, e^{2x}, ...)$ in $\mathbb{R}^{\mathbb{R}}$, and a subsp $U = \text{span}(e^x, e^{2x}, ...)$ of V.

```
Define T \in \mathcal{L}(V) by Tf = e^x f. Then range T = U is invar under T.
   Consider (T/U)(1+U) = e^x + U = 0
   \Rightarrow 0 is an eigval of T/U but is not an eigval of T.
   (null T = \{0\}, for if not, \exists f \in V \setminus \{0\}, (Tf)(x) = e^x f(x) = 0, \forall x \in \mathbb{R} \Rightarrow f = 0, contradicts.)
                                                                                                                                                     33 Suppose T \in \mathcal{L}(V). Prove that T/(\text{range } T) = 0.
SOLUTION:
   \forall v + \text{range } T \in V/\text{range } T, v + \text{range } T \in \text{null } (T/(\text{range } T))
   \Rightarrow null (T/(\text{range }T)) = V/\text{range }T \Rightarrow T/(\text{range }T) is a zero map.
                                                                                                                                                     34 Suppose T \in \mathcal{L}(V). Prove that T/(\text{null } T) is inje \iff (\text{null } T) \cap (\text{range } T) = \{0\}.
SOLUTION:
   (a) Suppose T/(\text{null }T) is inje.
         Then (T/(\text{null }T))(u + \text{null }T) = Tu + \text{null }T = 0
         \iff Tu \in \text{null } T \not \subset Tu \in \text{range } T \iff u + \text{null } T = 0 \iff u \in \text{null } T \iff Tu = 0.
         Thus (\text{null } T) \cap (\text{range } T) = \{0\}.
   (b) Suppose (\text{null } T) \cap (\text{range } T) = \{0\}.
         Then (T/(\operatorname{null} T))(u + \operatorname{null} T) = Tu + \operatorname{null} T = 0
         \Leftrightarrow Tu \in \text{null } T \not \subset Tu \in \text{range } T \Leftrightarrow Tu = 0 \Leftrightarrow u \in \text{null } T \Leftrightarrow u + \text{null } T = 0.
```

ENDED

5.B: I [See 5.B: II below.]

Thus T/(null T) is inje.

COMMENT: 下面,为了照顾原书 5.B 节两版过大的差距,特别将此节补注分成 I 和 II 两部分。 又考虑到第 4 版中 5.B 节的 [本征值与极小多项式]与「奇维度实向量空间的本征值」 (相当一部分是从原第 3 版 8.C 节挪过来的)是对原第 3 版「多项式作用于算子」与 「本征值的存在性」(也即第 3 版 5.B 前半部分)的极大扩充,这一扩充也大大改变了 原第 3 版后半部分的「上三角矩阵」这一小节,故而将第 4 版 5.B 节放在第 3 版前面。

I 部分除了覆盖第 4 版 5.B 节全部和第 3 版 5.B 节前半部分与之相关的所有习题,还会覆盖第 4 版 5.A 节末。

II 部分除了覆盖第 3 版 5.B 节后半部分「上三角矩阵」这一小节,还会覆盖第 4 版 5.C 节;并且,下面 5.C 还会覆盖第 4 版 5.D 节。

```
「注:[8.40] OR (4E 5.22) — mini poly; [8.44,8.45] OR (4E 5.25,5.26) — how to find the mini poly; [8.49] OR (4E 5.27) — eigvals are the zeros of the mini poly; [8.46] OR (4E 5.29) — q(T) = 0 \Leftrightarrow q is a poly multi of the mini poly.]
```

[1]: (4E.5.A.33), 13; [2]: (4E.5.B.25, 26, 27, 28, 22); [3]: 6, (4E.5.B.10, 23, 21), 19; [4]: (4E 5.B.13, 14); [5]: (4E.5.B.20, 24), 10; [6]: 1, 2, 7, 3, (4E.5.A.32); [7]: 8, (4E 5.B.12, 3, 8); [8]: (4E.5.B.11), 5, (4E.5.B.7); [9]: 11, 12, (4E.5.B.17, 18); [10]: 18 OR (4E.5.B.15), (4E.5.B.9), (4E.5.B.16); [11]: (2E Ch5.24), (4E.5.B.29).

- Suppose $T \in \mathcal{L}(V)$ and m is a positive integer.
 - (a) Prove that T is inje \iff T^m is inje.

b) Prove that T is surj \iff T^m is surj.	
SOLUTION:	
(a) Suppose T^m is inje. Then $Tv = 0 \Rightarrow T^{m-1}Tv = T^mv = 0 \Rightarrow v = 0$.	
Suppose T is inje. Then $T^mv = T^{m-1}v = \cdots = T^2v = Tv = v = 0$.	
(b) Suppose T^m is surj. $\forall u \in V, \exists v \in V, T^m v = u = Tw$, let $w = T^{m-1}v$.	
Suppose T is surj. Then $\forall u \in V, \exists v_1, \dots, v_m \in V, T(v_1) = T^2v_2 = \dots = T^mv_m = u$.	
• Note For [5.17]:	
Suppose $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(F)$. Prove that $\operatorname{null} p(T)$ and $\operatorname{range} p(T)$ are invar under	Τ.
SOLUTION: Using the commutativity in [5.10].	
(a) Suppose $u \in \text{null } p(T)$. Then $p(T)u = 0$.	
Thus $p(T)(Tu) = (p(T)T)u(Tp(T))u = T(p(T)u) = 0$. Hence $Tu \in \text{null } p(T)$.	
(b) Suppose $u \in \text{range } p(T)$. Then $\exists v \in V$ such that $u = p(T)v$.	
Thus $Tu = T(p(T)v) = p(T)(Tv) \in \text{range } p(T)$.	
• Note For [5.21]: Every operator on a finite-dim nonzero complex vecsp has an eigval.	
Suppose V is a finite-dim complex vecsp of dim $n > 0$ and $T \in \mathcal{L}(V)$.	
Choose a nonzero $v \in V$. $(v, Tv, T^2v,, T^nv)$ of length $n + 1$ is linely depe.	
Suppose $a_0I + a_1T + \dots + a_nT^n = 0$. Then $\exists a_j \neq 0$.	
Thus \exists nonconst p of smallest degree ($\deg p > 0$) such that $p(T)v = 0$.	
Because $\exists \lambda \in \mathbb{C}$ such that $p(\lambda) = 0 \Rightarrow \exists q \in \mathcal{P}(\mathbb{C}), p(z) = (z - \lambda)q(z), \forall z \in \mathbb{C}$.	
Thus $0 = p(T)v = (T - \lambda I)(q(T)v)$. By the minimality of deg p and deg $q < \deg p$, $q(T)v \neq 0$.	
Then $(T - \lambda I)$ is not inje. Thus λ is an eigval of T with eigvec $q(T)v$.	
• Example: an operator on a complex vecsp with no eigvals	
Define $T \in \mathcal{L}(\mathcal{P}(C))$ by $(Tp)(z) = zp(z)$.	
Suppose $p \in \mathcal{P}(\mathbf{C})$ is a nonzero poly. Then $\deg Tp = \deg p + 1$, and thus $Tp \neq \lambda p$, $\forall \lambda \in \mathbf{C}$.	
Hence T has no eigvals.	
13 Suppose V is a complex vecsp and $T \in \mathcal{L}(V)$ has no eigensts.	
Prove that every subsp of V invar under T is either $\{0\}$ or infinite-dim.	
SOLUTION: Suppose U is a finite-dim nonzero invar subsp on C . Then by $[5.21]$, $T _U$ has an eigval	1. 🗆
• TIPS: For $T_1, \dots, T_m \in \mathcal{L}(V)$:	
(a) Suppose T_1, \dots, T_m are all inje. Then $(T_1 \circ \dots \circ T_m)$ is inje.	
(b) Suppose $(T_1 \circ \cdots \circ T_m)$ is not inje. Then at least one of T_1, \dots, T_m is not inje.	
(c) At least one of T_1, \dots, T_m is not inje $\Rightarrow (T_1 \circ \dots \circ T_m)$ is not inje.	
EXAMPLE: On infinite-dim only. Let $V = \mathbf{F}^{\infty}$.	
Let <i>S</i> be the backward shift (surj but not inje) Let <i>T</i> be the forward shift (inje but not surj) \Rightarrow Then $ST = I$.	
Let I be the Torward shift (Tige but not surj.).	<u> </u>
16 Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}(\mathcal{P}_{\dim V}(\mathbf{C}), V)$ by $S(p) = p(T)v$. Prove [5.21].	
SOLUTION:	
Because dim $\mathcal{P}_{\dim V}(\mathbf{C}) = \dim V + 1$. Then S is not inje. Hence $\exists 0 \neq p \in \mathcal{P}_{\dim V}(\mathbf{C}), p(T)v = 0$.	
Using [4.14], write $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$. Apply T to both sides: $p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m)$	

Thus at least one of $(T - \lambda_i I)$ is not inje (because p(T) is not inje).

17 Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}(\mathcal{P}_{(\dim V)^2}(\mathbf{C}), \mathcal{L}(V))$ by S(p) = p(T). Prove [5.21]. Solution:

Because dim $\mathcal{P}_{\left(\dim V\right)^2}(\mathbf{C}) = \left(\dim V\right)^2 + 1$. Then S is not inje. Hence $\exists 0 \neq p \in \mathcal{P}_{\left(\dim V\right)^2}(\mathbf{C}), p(T) = 0$.

Using [4.14], write $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$. Applying T, we have $0 = p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$.

Thus
$$(T - \lambda_1 I) \cdots (T - \lambda_m I) = 0 \Rightarrow \exists j, (T - \lambda_j)$$
 is not inje.

COMMENT: \exists monic $q \in \text{null } S \neq \{0\}$ of smallest degree, S(q) = q(T) = 0, then q is the *mini poly*.

• Note For [8.40]: def for mini poly

Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

Suppose $M_T^0 = \{p_j\}_{j \in \Gamma}$ is the set of all monic poly that give 0 whenever T is applied.

Prove that $\exists ! p_k \in M_T^0$, $\deg p_k = \min\{\deg p_j\}_{j \in \Gamma} \leqslant \dim V$.

SOLUTION: OR. Another Proof:

 $[Existns\ Part]$ We use induction on dim V.

- (i) If dim V = 0, then $I = 0 \in \mathcal{L}(V)$ and let p = 1, we are done.
- (ii) Suppose dim $V \ge 1$.

Assume that dim V > 0 and that the desired result is true for all operators on all vecsps of smaller dim.

Let $u \in V$, $u \neq 0$. The list $(u, Tu, ..., T^{\dim V}u)$ of length $(1 + \dim V)$ is linely depe.

Then $\exists ! T^m$ of smallest degree such that $T^m u \in \text{span}(u, Tu, ..., T^{m-1}u)$.

Thus $\exists c_i \in \mathbf{F}, c_0 u + c_1 T u + \dots + c_{m-1} T^{m-1} u + T^m u = 0.$

Define q by $q(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m$.

Then $0 = T^k(q(T)u) = q(T)(T^ku), \forall k \in \{1, ..., m-1\} \subseteq \mathbb{N}.$

Because $(u, Tu, ..., T^{m-1}u)$ is linely inde.

Thus dim null $q(T) \ge m \Rightarrow \dim \operatorname{range} q(T) = \dim V - \dim \operatorname{null} q(T) \le \dim V - m$.

Let $W = \operatorname{range} q(T)$.

By assumption, $\exists s \in M_T^0$ of smallest degree (and deg $s \leq \dim W$,) so that $s(T|_W) = 0$.

Hence $\forall v \in V$, ((sq)(T))(v) = s(T)(q(T)v) = 0.

Thus $sq \in M_T^0$ and $\deg sq \leq \dim V$.

[Uniques Part]

Suppose $p, q \in M_T^0$ are of the smallest degree. Then (p-q)(T) = 0. $\mathbb{Z} \deg (p-q) = m < \min \{ \deg p_j \}_{j \in \Gamma}$. Hence p-q=0, for if not, $\exists ! c \in \mathbb{F}, c(p-q) \in M_T^0$. Contradicts.

- (4E 5.31, 4E 5.B.25 and 26) mini poly of restriction operator and mini poly of quotient operator Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is an invar subsp of V under T. Let p be the mini poly of T.
 - (a) Prove that p is a poly multi of the mini poly of $T|_{U}$.
 - (b) Prove that p is a poly multi of the mini poly of T/U.
 - (c) Prove that (mini poly of $T|_U$) × (mini poly of T/U) is a poly multi of p.
 - (d) Prove that the set of eigvals of T equals the union of the set of eigvals of $T|_U$ and the set of eigvals of T/U.

SOLUTION:

(a) $n(T) = 0 \Rightarrow \forall u \in U, n(T)u = 0 \Rightarrow n(T|u) = 0 \Rightarrow \text{By } [8.46].$

(b) $p(T) = 0 \Rightarrow \forall v \in V, p(T)v = 0 \Rightarrow p(T/U)(v+U) = p(T)v + U = 0.$	
(c) Suppose r is the mini poly of $T _{U}$, s is the mini poly of T/U . Because $\forall v \in V$, $s(T/U)(v+U) = s(T)v + U = 0$. So that $\forall v \in V$ but $v \notin U$, $s(T)v \in U$. $\not \subseteq V$ but $v \notin U$, $s(T)u = 0$. Thus $\forall v \in V$ but $v \notin U$, $s(T)v = r(s(T)v) = 0$. And $\forall u \in U$, $s(T)u = r(s(T)u) = 0$ (because $s(T)u = s(T _{U})u \in U$).	
Hence $\forall v \in V$, $(rs)(T)v = 0 \Rightarrow (rs)(T) = 0$. (d) By [8.49], immediately.	
• (4E 5.B.27) Suppose $\mathbf{F} = \mathbf{R}$, V is finite-dim, and $T \in \mathcal{L}(V)$. Prove that the mini poly p of $T_{\mathbf{C}}$ equals the mini poly q of T .	
Solution: (a) $\forall u + i0 \in V_{\mathbb{C}}, p(T_{\mathbb{C}})(u) = p(T)u = 0 \Rightarrow \forall u \in V, p(T)u = 0 \Rightarrow p \text{ is a poly multi of } q.$ (b) $q(T) = 0 \Rightarrow \forall u + iv \in V_{\mathbb{C}}, q(T_{\mathbb{C}})(u + iv) = q(T)u + iq(T)v = 0 \Rightarrow q \text{ is a poly multi of } p.$	
• (4E 5.B.28) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that the mini poly p of $T' \in \mathcal{L}(V')$ equals the mini poly q of T .	
SOLUTION: (a) $\forall \varphi \in V', p(T')\varphi = \varphi \circ (p(T)) = 0 \Rightarrow \forall \varphi \in V', p(T) \in \text{null } \varphi \Rightarrow p(T) = 0, p \text{ is a poly multi}$ (b) $q(T) = 0 \Rightarrow \forall \varphi \in V', \varphi \circ (q(T)) = q(T')\varphi = 0 \Rightarrow q(T) = 0, q \text{ is a poly multi} \text{ of } p.$	i of q .
• (4E 5.32) Suppose $T \in \mathcal{L}(V)$ and p is the mini poly. Prove that T is not inje \iff the const term of p is 0 .	
SOLUTION:	
<i>T</i> is not inje \iff 0 is an eigval of $T \iff$ 0 is a zero of $p \iff$ the const term of p is 0.	
OR. Because $p(0) = (z - 0)(z - \lambda_1) \cdots (z - \lambda_m) = 0 \Rightarrow T(T - \lambda_1 I) \cdots (T - \lambda_m I) = 0$ $\not Z$ p is the mini poly $\Rightarrow q$ define by $q(z) = (z - \lambda_1) \cdots (z - \lambda_m)$ is such that $q(T) \neq 0$. Hence $0 = p(T) = Tq(T) \Rightarrow T$ is not inje.	
Conversely, suppose $(T - 0I)$ is not inje, then 0 is a zero of p , so that the const term is 0.	
• (4E 5.B.22) Suppose V is finite-dim, $T \in \mathcal{L}(V)$. Prove that T is inv $\iff I \in \operatorname{span}(T, T^2,, T^{\dim})$	$^{V}).$
SOLUTION: Denote the mini poly by p , where for all $z \in \mathbf{F}$, $p(z) = a_0 + a_1 z + \dots + z^m$.	,
Notice that <i>V</i> is finite-dim. <i>T</i> is inv \iff <i>T</i> is inje \iff $p(0) \neq 0$.	
Hence $p(T) = 0 = a_0I + a_1T + \dots + T^m$, where $a_0 \neq 0$ and $m \leq \dim V$.	
6 Suppose $T \in \mathcal{L}(V)$ and U is a subsp of V invar under T . Prove that U is invar under $p(T)$ for every poly $p \in \mathcal{P}(\mathbf{F})$.	
SOLUTION: $\forall u \in U, Tu \in U \Rightarrow \forall u \in U, Iu, Tu, T(Tu), \dots, T^m u \in U \Rightarrow \forall u \in U, (a_0I + a_1T + \dots + a_mT^m)u$	∈ U
• (4E 5.B.10, 5.B.23) Suppose V is finite-dim, $T \in \mathcal{L}(V)$ and p is the mini poly with degree $Suppose \ v \in V$.	e m.

- (a) Prove that $\operatorname{span}(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{j-1}v)$ for some $j \leq m$.
- (b) Prove that $\operatorname{span}(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{m-1}v, \dots, T^nv)$.

SOLUTION:

COMMENT: By Note For [8.40], j has an upper bound m-1, m has an upper bound dim V.

Write $p(z) = a_0 + a_1 z + \dots + z^m$ ($m \le \dim V$). If v = 0, then we are done. Suppose $v \ne 0$.

(a) Suppose $j \in \mathbb{N}^+$ is the smallest such that $T^j v \in \text{span}(v, Tv, ..., T^{j-1}v) = U_0$. Then $j \leq m$.

Write $T^j v = c_0 v + c_1 T v + \dots + c_{j-1} T^{j-1} v$. And because $T(T^k v) = T^{k+1} \in U_0$. U_0 is invarunder T. By Problem (6), $\forall k \in \mathbb{N}$, $T^{j+k} v = T^k(T^j v) \in U_0$.

Thus $U_0 = \operatorname{span}(v, Tv, \dots, T^{j-1}v, \dots, T^nv)$ for all $n \ge j-1$. Let n = m-1 and we are done.

(b) Let $U = \text{span}(v, Tv, ..., T^{m-1}v)$.

By (a), $U = U_0 = \text{span}(v, Tv, ..., T^{j-1}, ..., T^{m-1}, ..., T^n)$ for all $n \ge m-1$.

• (4E 5.B.21) Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

Prove that the mini poly p has degree at most $1 + \dim \operatorname{range} T$.

If dim range $T < \dim V - 1$, then this result gives a better upper bound for the degree of mini poly.

SOLUTION:

If *T* is inje, then range T = V and we are done. Now choose $0 \neq v \in \text{null } T$, then $Tv + 0 \cdot v = 0$.

1 is the smallest positive integer such that $T^1v \in \text{span}(v, ..., T^0v)$. Define q by $q(z) = z \Rightarrow q(T)v = 0$.

Let $W = \operatorname{range} q(T) = \operatorname{range} T$. $\exists \operatorname{monic} s \in \mathcal{P}(\mathbf{F})$ of smallest degree $(\operatorname{deg} s \leqslant \operatorname{dim} W)$, $s(T|_W) = 0$.

Hence sq is the mini poly (see Note For[8.40]) and deg (sq) = deg s + deg $q \le$ dim range T + 1. \Box

19 Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Let $\mathcal{E} = \{q(T) : q \in \mathcal{P}(\mathbf{F})\}$. Prove that dim \mathcal{E} equals the degree of the mini poly of T.

SOLUTION:

Because the list $(I, T, ..., T^{\left(\dim V\right)^2})$ of length $\dim \mathcal{L}(V) + 1$ is linely depe in $\dim \mathcal{L}(V)$.

Suppose $m \in \mathbb{N}^+$ is the smallest such that $T^m = a_0 I + \dots + a_{m-1} T^{m-1}$.

Then q defined by $q(z) = z^m - a_{m-1}z^{m-1} - \cdots - a_0$ is the mini poly (see [8.40]).

For any $k \in \mathbb{N}^+$, $T^{m+k} = T^k(T^m) \in \operatorname{span}(I, T, \dots, T^{m-1}) = U$.

Hence span $(I, T, \dots, T^{\left(\dim V\right)^2}) = \operatorname{span}(I, T, \dots, T^{\left(\dim V\right)^2 - 1}) = U.$

Note that by the minimality of m, $(I, T, ..., T^{m-1})$ is linely inde.

Thus dim $U = m = \dim \operatorname{span}(I, T, ..., T^{\left(\dim V\right)^2 - 1}) = \dim \operatorname{span}(I, T, ..., T^n)$ for all $m < n \in \mathbb{N}^+$.

Define $\varphi \in \mathcal{L}(\mathcal{P}_{m-1}(\mathbf{F}), \mathcal{E})$ by $\varphi(p) = p(T)$.

- (a) Suppose p(T) = 0. $\mathbb{Z} \deg p \leq m 1 \Rightarrow p = 0$. Then φ is inje.
- (b) $\forall S = a_0 I + a_1 T + \dots + a_{m-1} T^{m-1} \in \mathcal{E}$, define $p \in \mathcal{P}_{m-1}(\mathbf{F})$ by

 $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} \Rightarrow \varphi(p) = S$. Then φ is surj.

Hence \mathcal{E} and $\mathcal{P}_{m-1}(\mathbf{F})$ are iso. $\mathbb{X} \dim \mathcal{P}_{m-1}(\mathbf{F}) = m = \dim U$.

• (4E 5.B.13) Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbf{F})$ is defined by

$$q(z) = a_0 + a_1 z + \dots + a_n z^n$$
, where $a_n \neq 0$, for all $z \in \mathbf{F}$.

Denote the mini poly of T by p defined by

$$p(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m \text{ for all } z \in \mathbf{F}.$$

Prove that $\exists ! r \in \mathcal{P}(\mathbf{F})$ *such that* q(T) = r(T), $\deg r < \deg p$.

SOLUTION:

If $\deg q < \deg p$, then we are done.

If
$$\deg q = \deg p$$
, notice that $p(T) = 0 = c_0 I + c_1 T + \dots + c_{m-1} T^{m-1} + T^m$

$$\Rightarrow T^m = -c_0 I - c_1 T - \dots - c_{m-1} T^{m-1},$$
 define r by $r(z) = q(z) + \left[-a_m z^m + a_m \left(-c_0 - c_1 z - \dots - c_{m-1} z^{m-1} \right) \right]$
$$= \left(a_0 - a_m c_0 \right) + \left(a_1 - a_m c_1 \right) z + \dots + \left(a_{m-1} - a_m c_{m-1} \right) z^{m-1},$$
 hence $r(T) = 0$, $\deg r < m$ and we are done.

Now suppose $\deg q \geqslant \deg p$. We use induction on $\deg q$.

- (i) $\deg q = \deg p$, then the desired result is true, as shown above.
- (ii) $\deg q > \deg p$, assume that the desired result is true for $\deg q = n$.

Suppose
$$f \in \mathcal{P}(\mathbf{F})$$
 such that $f(z) = b_0 + b_1 z + \dots + b_n z^n + b_{n+1} z^{n+1}$.

Apply the assumption to g defined by $g(z) = b_0 + b_1 z + \dots + b_n z^n$,

getting s defined by
$$s(z) = d_0 + d_1 z + \dots + d_{m-1} z^{m-1}$$
.

Thus
$$g(T) = s(T) \Rightarrow f(T) = g(T) + b_{n+1}T^{n+1} = s(T) + b_{n+1}T^{n+1}$$
.

Apply the assumption to t defined by $t(z) = z^n$,

getting
$$\delta$$
 defined by $\delta(z) = c_0' + c_1'z + \dots + c_{m-1}'z^{m-1}$.

Thus
$$t(T) = T^n = c_0' + c_1'z + \dots + c_{m-1}'z^{m-1} = \delta(T)$$
.

Hence
$$\exists ! k_i \in \mathbb{F}, T^{n+1} = T(T^n) = k_0 + k_1 z + \dots + k_{m-1} z^{m-1}$$
.

And
$$f(T) = s(T) + b_{n+1}(k_0 + k_1T + \dots + k_{m-1}T^{m-1})$$

$$\Rightarrow f(T) = (d_0 + k_0) + (d_1 + k_1)z + \dots + (d_{m-1} + k_{m-1})z^{m-1} = h(T)$$
, thus defining h .

• (4E 5.B.14) Suppose V is finite-dim, $T \in \mathcal{L}(V)$ has mini poly p

defined by
$$p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} + z^m, a_0 \neq 0.$$

Find the mini poly of T^{-1} .

SOLUTION:

Notice that *V* is finite-dim. Then $p(0) = a_0 \neq 0 \Rightarrow 0$ is not a zero of $p \Rightarrow T - 0I = T$ is inv.

Then $p(T) = a_0 I + a_1 T + \dots + T^m = 0$. Apply T^{-m} to both sides,

$$a_0(T^{-1})^{m'} + a_1(T^{-1})^{m-1} + \dots + a_{m-1}T^{-1} + I = 0.$$

Define
$$q$$
 by $q(z) = z^m + \frac{a_1}{a_0} z^{m-1} + \dots + \frac{a_{m-1}}{a_0} z + \frac{1}{a_0}$ for all $z \in F$.

We now show that $(T^{-1})^k \notin \operatorname{span}(I, T^{-1}, \dots, (T^{-1})^{k-1})$

for every $k \in \{1, ..., m-1\}$ by contradiction, so that q is exactly the mini poly of T^{-1} .

Suppose $(T^{-1})^k \in \text{span}(I, T^{-1}, \dots, (T^{-1})^{k-1}).$

Then let $(T^{-1})^k = b_0 I + b_1 T^{-1} + \dots + b_{k-1} T^{k-1}$. Apply T^k to both sides,

getting
$$I = b_0 T^k + b_1 T^{k-1} + \dots + b_{k-1} T$$
, hence $T^k \in \text{span}(I, T, \dots, T^{k-1})$.

Thus f defined by $f(z) = z^k + \frac{b_1}{b_0}z^{k-1} + \dots + \frac{b_{k-1}}{b_0}z - \frac{1}{b_0}$ is a poly multi of p.

While $\deg f < \deg p$. Contradicts.

• Note For [8.49]:

Suppose V is a finite-dim complex vecsp and $T \in \mathcal{L}(V)$. By [4.14], the mini poly has the form $(z - \lambda_1) \cdots (z - \lambda_m)$,

where $\lambda_1, \dots, \lambda_m$ is a list of all eigens of T, **possibly with repetitions**.

• COMMENT:

A nonzero poly has at most as many distinct zeros as its degree (see [4.12]).

Thus by the upper bound for the deg of mini poly given in Note For [8.40], and by [8.49,] we can give an alternative proof of [5.13]

.

```
• NOTICE ( See also 4E 5.B.20,24 )
```

Suppose $\alpha_1, \dots, \alpha_n$ are all the distinct eigvals of T,

and therefore are all the distinct zeros of the mini poly.

Also, the mini poly of T is a poly multi of, but not equal to, $(z - \alpha_1) \cdots (z - \alpha_n)$.

If we define
$$q$$
 by $q(z) = (z - \alpha_1)^{\dim V - (n-1)} \cdots (z - \alpha_n)^{\dim V - (n-1)}$,

then q is a poly multi of the char poly (see [8.34] and [8.26])

(Because dim V > n and n - 1 > 0, $n \lceil \dim V - (n - 1) \rceil > \dim V$.)

The char poly has the form $(z - \alpha_1)^{\gamma_1} \cdots (z - \alpha_n)^{\gamma_n}$, where $\gamma_1 + \cdots + \gamma_n = \dim V$.

The mini poly has the form $(z - \alpha_1)^{\delta_1} \cdots (z - \alpha_n)^{\delta_n}$, where $0 \leq \delta_1 + \cdots + \delta_n \leq \dim V$.

10 Suppose $T \in \mathcal{L}(V)$, λ is an eigral of T with an eigrec v.

Prove that for any $p \in \mathcal{P}(\mathbf{F})$, $p(T)v = p(\lambda)v$.

SOLUTION:

Suppose
$$p$$
 is defined by $p(z) = a_0 + a_1 z + \dots + a_m z^m$ for all $z \in \mathbf{F}$. Because for any $n \in \mathbf{N}^+$, $T^n v = \lambda^n v$.

Thus
$$p(T)v = a_0v + a_1Tv + \dots + a_mT^mv = a_0v + a_1\lambda v + \dots + a_m\lambda^mv = p(\lambda)v$$
.

COMMENT: For any $p \in \mathcal{P}(\mathbf{F})$ such that $p(z) = (z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_m)^{\alpha_m}$, the result is true as well.

Now we prove that $(T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v = (\lambda - \lambda_1)^{\alpha_1} \cdots (\lambda - \lambda_m)^{\alpha_m} v$.

Define q_i by $q_i(z) = (z - \lambda_i)^{\alpha_i}$ for all $z \in \mathbf{F}$.

Because $(a + b)^n = a^n + C_n^1 a^{n-1} b + \dots + C_n^k a^{n-k} b^k + \dots + C_n^n b^n$.

Let a = z, $b = \lambda_i$, $n = \alpha_i$, so we can write $q_i(z)$ in the form $a_0 + a_1 z + \dots + a_m z^m$.

Hence $q_i(T)v = q_i(\lambda)v \Rightarrow (T - \lambda_i I)^{\alpha_i}v = (\lambda - \lambda_i)^{\alpha_i}v$.

Then for each $k \in \{2, ..., m\}, (T - \lambda_{k-1}I)^{\alpha_{k-1}} (T - \lambda_k I)^{\alpha_k} v$

$$= q_{k-1}(T)(q_k(T)v)$$

$$= q_{k-1}(T)(q_k(\lambda)v)$$

$$= q_{k-1}(\lambda)(q_k(\lambda)v)$$

$$= (\lambda - \lambda_{k-1})^{\alpha_{k-1}}(\lambda - \lambda_k)^{\alpha_k}v.$$

So that
$$(T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v$$

= $q_1(T) (q_2(T) (\dots (q_m(T)v) \dots))$

$$= q_1(\lambda)(q_2(\lambda)(\dots(q_m(\lambda)v)\dots))$$

$$= (\lambda - \lambda_1)^{\alpha_1} \cdots (\lambda - \lambda_m)^{\alpha_m} v.$$

1 Suppose $T \in \mathcal{L}(V)$ and $\exists n \in \mathbb{N}^+$ such that $T^n = 0$.

Prove that (I-T) is inv and $(I-T)^{-1} = I + T + \cdots + T^{n-1}$.

SOLUTION:

Note that
$$1 - x^n = (1 - x)(1 + x + \dots + x^{n-1}).$$

$$(I-T)(1+T+\cdots+T^{n-1}) = I-T^n = I (1+T+\cdots+T^{n-1})(I-T) = I-T^n = I) \Rightarrow (I-T)^{-1} = 1+T+\cdots+T^{n-1}.$$

2 Suppose $T \in \mathcal{L}(V)$ and (T-2I)(T-3I)(T-4I) = 0.

Suppose λ is an eigral of T. Prove that $\lambda = 2$ or $\lambda = 3$ or $\lambda = 4$.

Suppose v is an eigeec correspd to λ . Then for any $p \in \mathcal{P}(\mathbf{F})$, $p(T)v = p(\lambda)v$.

Hence $0 = (T - 2I)(T - 3I)(T - 4I)v = (\lambda - 2)(\lambda - 3)(\lambda - 4)v$ while $v \neq 0 \Rightarrow \lambda = 2$ or $\lambda = 3$ or $\lambda = 4$.

OR. Because (T-2I)(T-3I)(T-4I)=0 is not inje. By TIPS.

7 Suppose $T \in \mathcal{L}(V)$. Prove that 9 is an eigval of $T^2 \iff 3$ or -3 is an eigval of T.

Some Fig. (a) Suppose 9 is an eigval of T^2 . Then $(T^2 - 9I)v = (T - 3I)(T + 3I)v = 0$ for some v. By Tips.

Or. Suppose λ is an eigval with an eigvec v. Then $(T-3I)(T+3I)v = (\lambda-3)(\lambda+3)v = 0 \Rightarrow \lambda = \pm 3$.

(b) Suppose 3 or -3 is an eigval of T with an eigvec v. Then $Tv = \pm 3v \Rightarrow T^2v = T(Tv) = 9v$

3 Suppose $T \in \mathcal{L}(V)$, $T^2 = I$ and -1 is not an eigend of T. Prove that T = I.

SOLUTION:

$$T^2 - I = (T + I)(T - I)$$
 is not inje, \mathbb{Z} –1 is not an eigval of $T \Rightarrow \text{By Tips}$.

Or. Note that $v = \left[\frac{1}{2}(I-T)v\right] + \left[\frac{1}{2}(I+T)v\right]$ for all $v \in V$.

And $(I - T^2)v = (I - T)(I + T)v = 0$ for all $v \in V$,

$$(I+T)(\frac{1}{2}(I-T)v) = \frac{1}{2}(I-T^2)v = 0 \Rightarrow \frac{1}{2}(I-T)v \in \text{null}(I+T) \\ (I-T)(\frac{1}{2}(I+T)v) = \frac{1}{2}(I-T^2)v = 0 \Rightarrow \frac{1}{2}(I+T)v \in \text{null}(I-T)$$
 \rightarrow V = \text{null}(I+T) + \text{null}(I-T).

 \mathbb{Z} –1 is not an eigval of $T \Rightarrow (I + T)$ is inje \Rightarrow null $(I + T) = \{0\}$.

Hence $V = \text{null } (I - T) \Rightarrow \text{range } (I - T) = \{0\}$. Thus $I - T = 0 \in \mathcal{L}(V) \Rightarrow T = I$.

• (4E 5.A.32) Suppose $T \in \mathcal{L}(V)$ has no eigends and $T^4 = I$. Prove that $T^2 = -I$.

SOLUTION:

Because $T^4 - I = (T^2 - I)(T^2 + I) = 0$ is not inje $\Rightarrow (T^2 - I)$ or $(T^2 + I)$ is not inje.

 $\not \subset T$ has no eigvals $\Rightarrow (T^2 - I) = (T - I)(T + I)$ is inje.

Hence $T^2 + I = 0 \in \mathcal{L}(V)$, for if not,

$$\exists v \in V, (T^2 + I)v \neq 0$$
 while $(T^2 - I)((T^2 + I)v) = 0$ but $(T^2 - I)$ is inje. Contradicts.

Or. Note that $v = \left[\frac{1}{2}(I - T^2)v\right] + \left[\frac{1}{2}(I + T^2)v\right]$ for all $v \in V$.

And $(I - T^4)v = (I - T^2)(I + T^2)v = 0$ for all $v \in V$,

$$\begin{aligned}
(I+T^2)(\frac{1}{2}(I-T^2)v) &= 0 \Rightarrow \frac{1}{2}(I-T^2)v \in \text{null}(I+T^2) \\
(I-T^2)(\frac{1}{2}(I+T^2)v) &= 0 \Rightarrow \frac{1}{2}(I+T^2)v \in \text{null}(I-T^2)
\end{aligned} \} \Rightarrow V = \text{null}(I+T^2) + \text{null}(I-T^2).$$

 $\not \subset T$ has no eigvals $\Rightarrow (I - T^2)$ is inje \Rightarrow null $(I - T^2) = \{0\}$.

Hence $V = \text{null } (I + T^2) \Rightarrow \text{range } (I + T^2) = \{0\}$. Thus $I + T^2 = 0 \in \mathcal{L}(V) \Rightarrow T^2 = -I$.

8 [OR (4E 5.A.31)] Give an example of $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -I$.

SOLUTION:

$$T^4 + 1 = (T^2 + iI)(T^2 - iI) = (T + i^{1/2}I)(T - i^{1/2}I)(T - (-i)^{1/2}I)(T + (-i)^{1/2}I).$$

Note that
$$i^{1/2} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$
, $(-i)^{1/2} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$. Hence $T = \pm (\pm i)^{1/2}I$.

Define *T* by $T(x,y) = (\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y, \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y).$

$$\mathcal{M}(T) = \begin{pmatrix} \cos\left(-\pi/4\right) & \sin\left(-\pi/4\right) \\ -\sin\left(-\pi/4\right) & \cos\left(-\pi/4\right) \end{pmatrix} \Rightarrow \mathcal{M}(T)^4 = \mathcal{M}(T^4) = \begin{pmatrix} \cos\left(-\pi\right) & \sin\left(-\pi\right) \\ -\sin\left(-\pi\right) & \cos\left(-\pi\right) \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\mathcal{M}(I).$$

$$\left(\begin{array}{ccc} \operatorname{Using} \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right)^n = \begin{pmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{array}\right).$$

• (4E 5.B.12 See also at 5.A.9)

Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, x_2, x_3, ..., x_n) = (x_1, 2x_2, 3x_3, ..., nx_n)$. Find the mini poly.

SOLUTION:

 $T(x_1,...,0) = \text{By } (5.A.9) \text{ and } [8.49], 1, 2, ..., n \text{ are zeros of the mini poly of } T.$

(\mathbb{X} Each eigvals of T corresponds to exact one-dim subsp of \mathbb{F}^n .)

Define a poly q by $q(z) = (z-1)(z-2) \cdots (z-n)$, for all $z \in \mathbb{F}$. (Then q is the char poly of T.)

Because $q(T)e_j = [(T - I) \cdots (T - (j - 1)I)(T - (j + 1)I) \cdots (T - nI)](T - jI)e_j = 0$ for each j, where $(e_1, ..., e_n)$ is the standard basis. Thus $\forall v \in \mathbb{F}^n, q(T)v = 0$. Hence q is the mini poly of T.

• Suppose $n \in \mathbb{N}^+$. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by $T(x_1, \dots, x_n) = (x_1 + \dots + x_n, \dots, x_1 + \dots + x_n)$. [See also at (5.A.19)] Find the mini poly of T.

SOLUTION:

Because n and 0 are all eigvals of T, X For all e_k , $Te_k = e_1 + \cdots + e_n$; $T^2e_k = n(e_1 + \cdots + e_n)$. Hence $T^2e_k = n(Te_k) \Rightarrow T^2 = nT \Rightarrow T^2 - nT = T(T-n)$. Thus z(z-n) is the mini poly of T.

• (4E 5.B.8)

Suppose $T \in \mathcal{L}(\mathbb{R}^2)$ is the operator of counterclockwise rotation by θ , where $\theta \in \mathbb{R}^+$. *Find the mini poly of T.*

SOLUTION:

If $\theta = \pi + 2k\pi$, then T(w,z) = (-w,-z), $T^2 = I$ and the mini poly is z + 1.

If $\theta = 2k\pi$, then T = I and the mini poly is z - 1.

Now suppose (v, Tv) is linely inde. Then span $(v, Tv) = \mathbb{R}^2$.

Suppose the mini poly p is defined by $p(z) = z^2 + bz + c$ for all $z \in \mathbb{R}$.

$$T^{2} \overrightarrow{v} = \overrightarrow{OA} \qquad A$$

$$\overrightarrow{v} = \overrightarrow{OB} \qquad A$$

$$T \overrightarrow{v} = \overrightarrow{OC} \qquad C$$

$$L = |OD| \qquad \theta \qquad D$$

$$T^{2} \overrightarrow{v} = \overrightarrow{OA} \qquad \overrightarrow{A}$$

$$\overrightarrow{v} = \overrightarrow{OB}$$

$$T \overrightarrow{v} = \overrightarrow{OC}$$

$$L = |OD|$$

$$\theta$$

$$D$$

$$D$$

$$C$$

$$L = |\overrightarrow{v}| \cos \theta \Rightarrow \frac{|\overrightarrow{v}|}{2L} = \frac{1}{2\cos \theta}$$

Hence $p(T) = T^2 - 2\cos\theta T + I = 0$ and $z^2 - 2\cos\theta z + 1$ is the mini poly of T.

Or. By (4E 5.B.11), $\mathcal{M}(T, (e_1, e_2)) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.

Hence the mini poly is $z \pm 1$ or $z^2 - 2\cos\theta z + 1$

- (4E 5.B.11) Suppose V is a two-dim vecsp, $T \in \mathcal{L}(V)$, and the matrix of Twith resp to some basis of V is $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$.
 - (a) Show that $T^2 (a + d)T + (ad bc)I = 0$.
 - (b) Show that the mini poly of T equals

$$\begin{cases} z-a & if b=c=0 \ and \ a=d, \\ z^2-(a+d)z+(ad-bc) & otherwise. \end{cases}$$

(a) Suppose the basis is (v, w). Because $\begin{cases} Tv = av + bw \Rightarrow (T - aI)v = bw, \text{ then apply } (T - dI) \text{ to both sides} \\ Tw = cv + dw \Rightarrow (T - dI)w = cv, \text{ then apply } (T - aI) \text{ to both sides} \end{cases}$

Hence $(T - aI)(T - dI) = bcI \Rightarrow T^2 - (a + d)T + (ad - bc)I = 0$.

(b) If b = c = 0 and a = d. Then $\mathcal{M}(T) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = a\mathcal{M}(I)$. Thus T = aI. Hence the mini poly is z - a.

Otherwise, by (a), $z^2 - (a + d)z + (ad - bc)$ is a poly multi of the mini poly.

Now we prove that $T \notin \text{span}(I)$, so that then the mini poly of T has exactly degree 2.

(At least one of the assumption of (I),(II) below is true.)

- (I) Suppose a = d, then $Tv = av + bw \notin \text{span}(v)$, $Tw = cv + aw \notin \text{span}(w)$.
- (II) Suppose at most one of b, c is not 0. If b = 0, then $Tw \notin \text{span}(w)$; If c = 0, then $Tv \notin \text{span}(v)$

5 Suppose $S, T \in \mathcal{L}(V)$, S is inv, and $p \in \mathcal{P}(F)$. Prove that $p(TS) = S^{-1}p(ST)S$.

SOLUTION:

We prove $(TS)^m = S^{-1}(ST)^m S$ for each $m \in \mathbb{N}$ by induction.

- (i) $m = 0, 1. TS^0 = I = S^{-1}(ST)^0 S$; $TS = S^{-1}(ST)S$.

(ii)
$$m > 1$$
. Assume that $(TS)^m = S^{-1}(ST)^m S$.
Then $(TS)^{m+1} = (TS)^m (TS) = S^{-1}(ST)^m STS = S^{-1}(ST)^{m+1} S$.

Hence
$$\forall p \in \mathcal{P}(\mathbf{F}) p(TS) = a_0(TS)^0 + a_1(TS) + \dots + a_m(TS)^m$$

$$= a_0[S^{-1}(ST)^0S] + a_1[S^{-1}(ST)S] + \dots + a_m[S^{-1}(ST)^mS]$$

$$= S^{-1}[a_0(ST)^0 + a_1(ST) + \dots + a_m(ST)^m]S$$

$$= S^{-1}p(ST)S.$$

• (4E 5.B.7)

- (a) Give an example of $S, T \in \mathcal{L}(\mathbf{F}^2)$ such that the mini poly of ST does not equal the mini poly of TS.
- (b) Suppose V is finite-dim and $S,T \in \mathcal{L}(V)$. Prove that if S or T is inv, then the mini poly of ST equals the mini poly of TS.

SOLUTION:

(a) Define *S* by S(x,y) = (x,x). Define *T* by T(x,y) = (0,y). Then ST(x,y) = 0, TS(x,y) = (0,x) for all $(x,y) \in \mathbb{F}^2$. Thus $ST = 0 \neq TS$ and $(TS)^2 = 0$.

Hence the mini poly of *ST* does not equal to the mini poly of *TS*.

(b) Denote the mini poly of ST by p, and the mini poly TS by q. Suppose S is inv.

$$p(ST) = 0 = Sp(TS)S^{-1} \Rightarrow p(TS) = 0, p \text{ is a poly multi of } q.$$

$$q(TS) = 0 = S^{-1}q(ST)S \Rightarrow q(ST) = 0, q \text{ is a poly multi of } p.$$

$$\Rightarrow p = q.$$

Reversing the roles of *S* and *T*, we conclude that if *T* is inv, then p = q as well.

11 Suppose $\mathbf{F} = \mathbf{C}$, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(\mathbf{C})$, and $\alpha \in \mathbf{C}$. *Prove that* α *is an eigral of* $p(T) \iff \alpha = p(\lambda)$ *for some eigral* λ *of* T.

SOLUTION:

(a) Suppose α is an eigval of $p(T) \Leftrightarrow (p(T) - \alpha I)$ is not inje. Write $p(z) - \alpha = c(z - \lambda_1) \cdots (z - \lambda_m) \Rightarrow p(T) - \alpha I = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$. By Tips , $\exists (T - \lambda_i I)$ not inje. Thus $p(\lambda_i) - \alpha = 0$. (b) Suppose $\alpha = p(\lambda)$ and λ is an eigval of T with an eigvec v. Then $p(T)v = p(\lambda)v = \alpha v$. Or. Define q by $q(z) = p(z) - \alpha$. λ is a zero of q. Because $q(T)v = (p(T) - \alpha I)v = q(\lambda)v = (p(\lambda) - \alpha)v = 0$. Hence q(T) is not inje $\Rightarrow (p(T) - \alpha I)$ is not inje. 12 [OR (4E.5.B.6)] Give an example of an operator on R^2 that shows the result above does not hold if C is replaced with R. **SOLUTION:** Define $T \in \mathcal{L}(\mathbf{R}^2)$ by T(w,z) = (-z,w). By Problem (4E 5.B.11), $\mathcal{M}\left(T,\left((1,0),(0,1)\right)\right) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow$ the mini poly of T is $z^2 + 1$. Define p by $p(z) = z^2$. Then $p(T) = T^2 = -I$. Thus p(T) has eigval -1. While $\nexists \lambda \in \mathbf{R}$ such that $-1 = p(\lambda) = \lambda^2$. • (4E 5.B.17) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, $\lambda \in \mathbf{F}$, and p is the mini poly of T. Show that the mini poly of $(T - \lambda I)$ is the poly q defined by $q(z) = p(z + \lambda)$. **SOLUTION:** $q(T - \lambda I) = 0 \Rightarrow q$ is poly multi of the mini poly of $(T - \lambda I)$. Suppose the degree of the mini poly of $(T - \lambda I)$ is n, and the degree of the mini poly of T is m. By definition of mini poly, *n* is the smallest such that $(T - \lambda I)^n \in \text{span}(I, (T - \lambda I), ..., (T - \lambda I)^{n-1});$ m is the smallest such that $T^m \in \text{span}(I, T, ..., T^{m-1})$. $\not \subset T^k \in \operatorname{span}(I, T, \dots, T^{k-1}) \iff (T - \lambda)^k \in \operatorname{span}(I, (T - \lambda I), \dots, (T - \lambda I)^{k-1}).$ Thus n = m. χq is monic. By the uniques of mini poly. • (4E 5.B.18) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, $\lambda \in \mathbb{F} \setminus \{0\}$, and p is the mini poly of T. Show that the mini poly of λT is the poly q defined by $q(z) = \lambda^{\deg p} p(\frac{z}{\lambda})$. **SOLUTION:** $q(\lambda T) = \lambda^{\deg p} p(T) = 0 \Rightarrow q$ is a poly multi of the mini poly of λT . Suppose the degree of the mini poly of λT is n, and the degree of the mini poly of T is m. By definition of mini poly, *n* is the smallest such that $(\lambda T)^n \in \text{span}(\lambda I, \lambda T, ..., (\lambda T)^{n-1});$ m is the smallest such that $T^m \in \text{span}(I, T, ..., T^{m-1})$. $\mathbb{Z}(\lambda T)^k \in \operatorname{span}(\lambda I, \lambda T, \dots, (\lambda T)^{k-1}) \iff T^k \in \operatorname{span}(I, T, \dots, T^{k-1}).$ Thus n = m. \mathbb{Z} q is monic. By the uniques of mini poly. **18** [OR (4E 5.B.15)] Suppose V is a finite-dim complex vecsp with dim V > 0 and $T \in \mathcal{L}(V)$. *Define* $f : \mathbb{C} \to \mathbb{R}$ *by* $f(\lambda) = \dim \operatorname{range} (T - \lambda I)$. *Prove that f is not a continuous function.*

Let λ_0 be an eigval of T. Then $(T - \lambda_0 I)$ is not surj. Hence dim range $(T - \lambda_0 I) < \dim V$.

SOLUTION: Note that V is finite-dim.

Because *T* has finitely many eigvals. There exist a sequence of number $\{\lambda_n\}$ such that $\lim_{n\to\infty}\lambda_n=\lambda_0$. And λ_n is not an eigval of T for each $n \Rightarrow \dim \operatorname{range}(T - \lambda_n I) = \dim V \neq \dim \operatorname{range}(T - \lambda_0 I)$. Thus $f(\lambda_0) \neq \lim_{n \to \infty} f(\lambda_n)$.

• (4E 5.B.9) Suppose $T \in \mathcal{L}(V)$ is such that with resp to some basis of V, *all entries of the matrix of T are rational numbers.* Explain why all coefficients of the mini poly of T are rational numbers.

SOLUTION:

Let (v_1,\ldots,v_n) denote the basis such that $\mathcal{M}\big(T,\big(v_1,\ldots,v_n\big)\big)_{j,k}=A_{j,k}\in\mathbf{Q}$ for all $j,k=1,\ldots,n$. Denote $\mathcal{M}(v_i, (v_1, ..., v_n))$ by x_i for each v_i .

Suppose p is the mini poly of T and $p(z) = z^m + \cdots + c_1 z + c_0$. Now we show that each $c_j \in \mathbb{Q}$. Note that $\forall s \in \mathbb{N}^+, \mathcal{M}(T^s) = \mathcal{M}(T)^s = A^s \in \mathbb{Q}^{n,n}$ and $T^s v_k = A^s_{1,k} v_1 + \dots + A^s_{n,k} v_n$ for all $k \in \mathbb{Q}^n$ $\{1, ..., n\}.$

Thus
$$\begin{cases} \mathcal{M}(p(T)v_1) = (A^m + \dots + c_1A + c_0I)x_1 = \sum_{j=1}^n \left(A^m + \dots + c_1A + c_0I\right)_{j,1}x_j = 0; \\ \vdots \\ \mathcal{M}(p(T)v_n) = (A^m + \dots + c_1A + c_0I)x_n = \sum_{j=1}^n \left(A^m + \dots + c_1A + c_0I\right)_{j,n}x_j = 0; \\ \text{More clearly,} \begin{cases} \left(A^m + \dots + c_1A + c_0I\right)_{1,1} = \dots = \left(A^m + \dots + c_1A + c_0I\right)_{n,1} = 0; \\ \vdots \ddots \vdots \\ \left(A^m + \dots + c_1A + c_0I\right)_{1,n} = \dots = \left(A^m + \dots + c_1A + c_0I\right)_{n,n} = 0; \end{cases}$$
 Hence we get a system of n^2 linear equations in m unknowns c_0, c_1, \dots, c_{m-1} .

Hence we get a system of n^2 linear equations in m unknowns c_0, c_1, \dots, c_{m-1} .

We conclude that $c_0, c_1, \dots, c_{m-1} \in \mathbb{Q}$.

ullet [OR (4E 5.B.16), OR (8.C.18)] Suppose $a_0,\ldots,a_{n-1}\in {\bf F}.$ Let T be the operator on ${\bf F}^n$ such that

$$\mathcal{M}(T) = \begin{pmatrix} 0 & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & \ddots & & \vdots \\ & & \ddots & 0 & -a_{n-2} \\ 0 & & & 1 & -a_{n-1} \end{pmatrix}, \text{ with resp to the standard basis } (e_1, \dots, e_n).$$

Show that the mini poly of T is p defined by $p(z) = a_0 + a_1 z + \cdots + a_{n-1} z^{n-1} + z^n$.

 $\mathcal{M}(T)$ is called the **companion matrix** of the poly above. This exercise shows that every monic poly is the mini poly of some operator. Hence a formula or an algorithm that could produce exact eigenls for each operator on each \mathbf{F}^n could then produce exact zeros for each poly [by 8.36(b)]. Thus there is no such formula or algorithm. However, efficient numeric methods exist for obtaining very good approximations for the eigvals of an operator.

SOLUTION: Note that $(e_1, Te_1, ..., T^{n-1}e_1)$ is linely inde. $\mathbb X$ The deg of mini poly is at most n.

$$T^{n}e_{1} = \cdots = T^{n-k}e_{1+k} = \cdots = Te_{n} = -a_{0}e_{1} - a_{1}e_{2} - a_{2}e_{3} - \cdots - a_{n-1}e_{n}$$

$$= (-a_{0}I - a_{1}T - a_{2}T^{2} - \cdots - a_{n-1}T^{n-1})e_{1}. \text{ Thus } p(T)e_{1} = 0 = p(T)e_{j} \text{ for each } e_{j} = T^{j-1}e_{1}.$$

- EIGENVALUES ON ODD-DIMENSIONAL REAL VECTOR SPACES
- Even-Dimensional Null Space Suppose F = R, V is finite-dim, $T \in \mathcal{L}(V)$ and $b, c \in R$ with $b^2 < 4c$. *Prove that* dim null $(T^2 + bT + cI)$ *is an even number.*

SOLUTION:

Denote null $(T^2 + bT + cI)$ by R. Then $T|_R + bT|_R + cI_R = (T + bT + cI)|_R = 0 \in \mathcal{L}(R)$.

Suppose λ is an eigval of T_R with an eigvec $v \in R$. Then $0 = (T|_R^2 + bT|_R + cI_R)(v) = (\lambda^2 + \lambda b + c)v = ((\lambda + b)^2 + c - \frac{b^2}{4})v$. Because $c - \frac{b^2}{4} > 0$ and we have v = 0. Thus T_R has no eigvals. Let *U* be an invar subsp of *R* that has the largest, even dim among all invar subsps. Assume that $U \neq R$. Then $\exists w \in R$ but $w \notin U$. Let W be such that $(w, T|_R w)$ is a basis of W. Because $T|_R^2 w = -bT|_R w - cw \in W$. Hence W is an invar subsp of dim 2. Thus dim $(U + W) = \dim U + 2 - \dim(U \cap W)$, where $U \cap W = \{0\}$, for if not, because $w \notin U, T|_R w \in U$, $U \cap W$ is invar under $T|_R$ of one dim (impossible because $T|_R$ has no eigvecs). Hence U + W is even-dim invar subsp under $T|_{R}$, contradicting the maximality of dim U. Thus the assumption was incorrect. Hence $R = \text{null}(T^2 + bT + cI) = U$ has even dim. • OPERATORS ON ODD-DIMENSIONAL VECTOR SPACES HAVE EIGENVALUES (a) Suppose $\mathbf{F} = \mathbf{C}$. Then by [5.21], we are done. (b) Suppose F = R, V is finite-dim, and dim V = n is an odd number. Let $T \in \mathcal{L}(V)$ and the mini poly is p. Prove that T has an eigval. **SOLUTION:** (i) If n = 1, then we are done. (ii) Suppose $n \ge 3$. Assume that every operator, on odd-dim vecsps of dim less than n, has an eigval. If *p* is a poly multi of $(x - \lambda)$ for some $\lambda \in \mathbb{R}$, then by [8.49] λ is an eigval of *T* and we are done. Now suppose $b, c \in \mathbb{R}$ such that $b^2 < 4c$ and p is a poly multi of $x^2 + bx + c$ (see [4.17]). Then $\exists q \in \mathcal{P}(\mathbf{R})$ such that $p(x) = q(x)(x^2 + bx + c)$ for all $x \in \mathbf{R}$. Now $0 = p(T) = (q(T))(T^2 + bT + cI)$, which means that $q(T)|_{\text{range}(T^2 + bT + cI)}$ Because deg $q < \deg p$ and p is the mini poly of T, hence range $(T^2 + bT + cI) \neq V$. \mathbb{Z} dim V is odd and dim null $(T^2 + bT + cI)$ is even (by our previous result). Thus dim V – dim null $(T^2 + bT + cI)$ = dim range $(T^2 + bT + cI)$ is odd. By [5.18], range $(T^2 + bT + cI)$ is an invar subsp of V under T that has odd dim less than n. Our induction hypothesis now implies that $T|_{\text{range }(T^2+bT+cI)}$ has an eigval. By mathematical induction. • (2E Ch5.24) Suppose $\mathbf{F} = \mathbf{R}, T \in \mathcal{L}(V)$ has no eigents. *Prove that every invar subsp of V under T is even-dim.* **SOLUTION:** Suppose *U* is such a subsp. Then $T|_U \in \mathcal{L}(U)$. We prove by contradiction. If dim *U* is odd, then $T|_U$ has an eigval and so is *T*, so that \exists invar subsp of 1 dim, contradicts. • (4E 5.B.29) Show that every operator on a finite-dim vecsp of dim ≥ 2 has a 2-dim invar subsp. **SOLUTION:** Using induction on dim V. (i) dim V = 2, we are done.

(ii) dim V > 2. Assume that the desired result is true for vecsp of smaller dim. Suppose p is the mini poly of degree m and $p(z) = (z - \lambda_1) \cdots (z - \lambda_m)$.

If $T = \lambda I$ ($\Leftrightarrow m = 1 \lor m = -\infty$), then we are done. ($m \ne 0$ because dim $V \ne 0$.)

ENDED

5.B: II

• (4E 5.C.1) Prove or give a counterexample: If $T \in \mathcal{L}(V)$ and T^2 has an upper-trig matrix, then T has an upper-trig matrix.

SOLUTION:

- (4E 5.C.2) Suppose A and B are upper-trig matrices of the same size, with $\alpha_1, \ldots, \alpha_n$ on the diag of A and β_1, \ldots, β_n on the diag of B.
 - (a) Show that A + B is an upper-trig matrix with $\alpha_1 + \beta_1, ..., \alpha_n + \beta_n$ on the diag.
 - (b) Show that AB is an upper-trig matrix with $\alpha_1 \beta_1, ..., \alpha_n \beta_n$ on the diag.

SOLUTION:

• (4E 5.C.3)

Suppose $T \in \mathcal{L}(V)$ is inv and $B = (v_1, ..., v_n)$ is a basis of V such that $\mathcal{M}(T,B) = A$ is upper trig, with $\lambda_1, ..., \lambda_n$ on the diag. Show that the matrix of $\mathcal{M}(T^{-1},B) = A^{-1}$ is also upper trig, with $\frac{1}{\lambda_1}, ..., \frac{1}{\lambda_n}$ on the diag.

SOLUTION:

9

Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $v \in V$.

- (a) Prove that \exists ! monic poly p_v of smallest degree such that $p_v(T)v = 0$.
- (b) Prove that the mini poly of T is a poly multi of p_v .

SOFTETON:

14 [OR (4E 5.C.4)] *Give an operator* T *such that with resp to some basis,* $\mathcal{M}(T)_{k,k} = 0$ *for each* k*, while* T *is inv.*

SOLUTION:

15 [OR (4E 5.C.5)] Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} \neq 0$ for each k, while T is not inv.

SOLUTION:

20 (OR 4E 5.C.6)

Suppose $\mathbf{F} = \mathbf{C}$, V is finite-dim, and $T \in \mathcal{L}(V)$. Prove that if $k \in \{1, ..., \dim V\}$, then V has a k dim subsp invar under T.

SOLUTION:

- (4E 5.C.8) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\exists v \in V \setminus \{0\}$ such that $T^2v + 2Tv = -2v$.
 - (a) Prove that if F = R, then $\not\exists$ a basis of V with resp to which T has an upper-trig matrix.
 - (b) Prove that if F = C and A is an upper-trig matrix that equals the matrix of T

ENDED

5.C

XXXX

ENDED

5.E* (4E)

1 Give an example of two commuting operators $S,T \in \mathbf{F}^4$ such that there is an invar subsp of \mathbf{F}^4 under S but not under T and an invar subsp of \mathbf{F}^4 under T but not under S.

2 Suppose \mathcal{E} is a subset of $\mathcal{L}(V)$ and every element of \mathcal{E} is diagable. *Prove that* \exists *a basis of* V *with resp to which*

every element of \mathcal{E} has a diag matrix \iff every pair of elements of \mathcal{E} commutes.

This exercise extends [5.76], which considers the case in which \mathcal{E} contains only two elements.

For this exercise, \mathcal{E} may contain any number of elements, and \mathcal{E} may even be an infinite set.

SOLUTION:

- **3** Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Suppose $p \in \mathcal{P}(\mathbf{F})$.
 - (a) Prove that null p(S) is invar under T.
 - (b) Prove that range p(S) is invar under T.

See Note For [5.17] for the special case S = T.

SOLUTION:

4 *Prove or give a counterexample:*

A diag matrix A and an upper-trig matrix B of the same size commute.

SOLUTION:

5 *Prove that a pair of operators on a finite-dim vecsp commute* \iff *their dual operators commute.*

SOLUTION:

6 Suppose V is a finite-dim complex vecsp and $S, T \in \mathcal{L}(V)$ commute. *Prove that* $\exists \alpha, \lambda \in \mathbb{C}$ *such that* range $(S - \alpha I) + \text{range}(T - \lambda I) \neq V$.

SOLUTION:

7 Suppose V is a complex vecsp, $S \in \mathcal{L}(V)$ is diagable, and T commutes with S. Prove that \exists basis B of V such that S has a diag matrix with resp to Band T has an upper-trig matrix with resp to B.

8 Suppose m = 3 in Example [5.72] and D_x , D_y are the commuting partial differentiation operators on $\mathcal{P}_3(\mathbb{R}^2)$ from that example. Find a basis of $\mathcal{P}_3(\mathbb{R}^2)$ with resp to which D_x and D_y each have an upper-trig matrix.

SOLUTION:

- **9** *Suppose V is a finite-dim nonzero complex vecsp.*
 - Suppose that $\mathcal{E} \subseteq \mathcal{L}(V)$ is such that S and T commute for all $S, T \in \mathcal{E}$.
 - (a) Prove that $\exists v \in V$ is an eigvec for every element of \mathcal{E} .
 - (b) Prove that \exists a basis of V with resp to which every element of \mathcal{E} has an upper-trig matrix.

SOLUTION:

10 Give an example of two commuting operators S, T on a finite-dim real vecsp such that S + T has a eigval that does not equal an eigval of S plus an eigval of T

una 51	nus a eigoai	that ages not	i equai an	eigoui of S	times un eigoui of	1.
SOLUTION:						

ENDED