CS 321: Assignment 2

Jared Wasinger

October 7, 2016

1. Answer:

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$F = \{q_5, q_6\}$$

Transition table

State	\mathbf{a}	b
q_0	$\{q_0,q_1\}$	$\{q_0,q_2\}$
$\{q_1\}$	$\{q_1,q_3\}$	$\{q_1\}$
$\{q_2\}$	$\{q_2\}$	$\{q_2,q_4\}$
$\{q_3\}$	$\{q_3,q_5\}$	$\{q_3\}$
$\{q_4\}$	$\{q_4\}$	$\{q_4,q_6\}$
$\{q_5\}$	$\{q_5\}$	$\{q_5\}$
$\{q_6\}$	$\{q_6\}$	$\{q_6\}$

2. Answer: $Q = \{\{1\}, \{1,2\}, \{1,2,3\}, \{1,2,3,4\}\}$ $F = \{q_5,q_6\}$

Transition table

State	a	b
{1}	$\{1, 2, 3, 4\}$	Ø
$\{1, 2\}$	$\{1, 2, 3, 4\}$	$\{1, 2\}$
$\{1, 2, 3\}$	$\{1, 2, 3, 4\}$	$\{1, 2\}$
$\{1, 2, 3, 4\}$	$\{1, 2, 3, 4\}$	$\{1, 2, 3\}$

3. Answer

- (a) define M_5 such that $L(M_5)$ accepts all strings in either $L(M_2)$ or $L(M_1)$ but not both: $L(M_5) = L(M_1) \cup L(M_2) \setminus L(M_1) \cap L(M_2)$
- (b) Let $M_3 = M_1 \cup M_2$: $Q_{M3} = \{AD, AE, AF, BD, BE, BF, CD, CE, CF\}$ $F_{M3} = \{AD, AE, AF, BD, BE, BF, CF\}$ Transition table

$$\begin{array}{c|cccc} State & a & b \\ \hline AD & AE & BD \\ AE & AF & BD \\ AF & AF & BD \\ BD & AE & CD \\ BE & AF & CD \\ BF & AF & CD \\ BD & AE & CD \\ BE & AF & CD \\ BF & AF & CD \\ BF & AF & CD \\ BF & AF & CD \\ CD & CD \\$$

(c) Let $M_4 = M_1 \cap M_2$: $Q_{M4} = \{AD, AE, AF, BD, BE, BF, CD, CE, CF\} F_{M4} = \{AF, BF\}$ Transition table

$$\begin{array}{c|cccc} State & a & b \\ \hline AD & AE & BD \\ AE & AF & BD \\ AF & AF & BD \\ BD & AE & CD \\ BE & AF & CD \\ BF & AF & CD \\ BD & AE & CD \\ BE & AF & CD \\ BF & AF & CD \\ BF & AF & CD \\ \hline BF & AF & CD \\ \hline \\ BF & AF & CD \\ \hline \\ BF & AF & CD \\ \hline$$

(d) $M_5=M_3\setminus M_2$ $Q_{M5}=\{AD,AE,AF,BD,BE,BF,CD,CE,CF\}$ $F_{M5}=F_{M3}\cap F_{M4}=\{AD,AE,BD,BE,CF\}$ Transition table

State	a	b
\overline{AD}	AE	BD
AE	AF	BD
AF	AF	BD
BD	AE	CD
BE	AF	CD
BF	AF	CD
BD	AE	CD
BE	AF	CD
BF	AF	CD

4. Answer:

(a) Let A be the set of all strings with '011' inserted only once: $\Sigma_A=\{0,1\}$ $Q_A=\{q_0,q_1,q_2,q_3,q_4,q_5,q_6\}$ $F_A=\{q_3,q_4,q_5\}$

A Transition Table:

State	0	1
q_0	q_1	q_0
q_1	q_0	q_2
q_2	q_0	q_3
q_3	q_4	q_3
q_4	q_3	q_5
q_5	q_3	q_6
q_6	q_6	q_6

(b) Let B be the set of all strings divisible by 3. $\Sigma_B = \{0, 1\}$ $Q_B = \{q_0, q_1, q_2\}$ $F_B = \{q_0\}$ B Transition Table: $\text{State } \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

$$Q_B = \{q_0, q_1, q_2\}$$

$$F_B = \{q_0\}$$

State	0	1
q_0	q_0	q_1
q_1	q_2	q_0
q_2	q_1	q_2

- (c) Then, the final answer $C = A \cap B$
- (d) Intersection is closed under the set of regular languages so C is reg-