LSTAT 2040 - TP 3

Information de Fisher et borne de Rao-Cramer

Exercice 1

Soit X_1, \ldots, X_n un échantillon aléatoire iid issu d'une loi bernoulli de paramètre p. Montrer que la variance de l'estimateur \overline{X}_n de p atteint la borne de Rao-Cramer, et donc que \overline{X}_n est le meilleur estimateur non biaisé de p.

Exercice 2

Pour chacune des distributions suivantes dépendant d'un paramètre θ , soit X_1, \ldots, X_n un échantillon aléatoire iid. Existe-t-il un estimateur T efficace pour $g(\theta)$? Si oui, trouver T et si non, expliquer pourquoi ce n'est pas possible:

- (a) Bin (N, θ) où $0 < \theta < 1$, $q(\theta) = \theta$.
- (a) $EII(x, \theta) = \theta x^{\theta-1} I(0 < x < 1) \text{ où } \theta > 0, \ g(\theta) = \frac{1}{\theta}.$ (b) $f(x; \theta) = \frac{\log \theta}{\theta 1} \theta^x I(0 < x < 1) \text{ où } \theta > 1, \ g(\theta) = \frac{\theta}{\theta 1} \frac{1}{\log \theta}.$ (c) $f(x; \theta) = \frac{\log \theta}{\theta 1} \theta^x I(0 < x < 1) \text{ où } \theta > 1, \ g(\theta) = \frac{\theta}{\theta 1} \frac{1}{\log \theta}.$ (d) $Exp(\theta) \text{ où } \theta > 0, \ g(\theta) = \theta.$

Exercice 3

Soit X_1, \ldots, X_n un échantillon aléatoire iid issu de la fonction de densité suivante :

$$f(x;\theta) = \frac{3x^2}{\theta} \exp(-x^3/\theta) I(x > 0)$$

où $\theta > 0$. On propose l'estimateur $T_n = \frac{1}{n} \sum_{i=1}^n X_i^3$ pour le paramètre θ .

- (a) Montrer que $X_i^3 \sim \text{Exp}(1/\theta)$ et déduire que T_n est non biaisé.
- (b) L'estimateur T_n est-il efficace?

Exercice 4

Soit X_1, \ldots, X_n un échantillon aléatoire iid issu de la fonction de densité suivante :

$$f(x;\theta) = \frac{x+1}{\theta(\theta+1)} \exp(-x/\theta) I(x>0),$$

où $\theta > 0$.

- (a) Calculer $E[X_1]$ et $Var[X_1]$.
- (b) Trouver un estimateur sans biais de $\eta = \frac{(3+2\theta)(2+\theta)}{\theta+1}$. (c) Votre estimateur est-il efficace? Si ce n'est pas le cas, suggérer un autre estimateur qui soit efficace.

Exercice 5

Soit X_1, \ldots, X_n un échantillon aléatoire iid issu de la fonction de densité suivante :

$$f(x; \theta) = \frac{1}{\theta} x^{\frac{1}{\theta} - 1} I(0 < x < 1).$$

- (a) Montrer que $-\log X_1 \sim \operatorname{Exp}(1/\theta)$ et déduire que l'estimateur $T_n = -\frac{1}{n} \sum_{i=1}^n \log X_i$ est non biaisé pour
- (b) Calculer la densité de nT_n .

Indice : voir formulaire pour la distribution d'une somme de variables aléatoires iid distribuées selon une loi exponentielle.

- (c) Calculer la variance de T_n . L'estimateur T_n est-il efficace ?
- (d) Calculer l'information de Fisher de la statistique nT_n et comparer avec celle de T_n .

Exercice 6

Soit X_1, \ldots, X_n un échantillon aléatoire iid issu d'une loi normale $N(\theta, 1)$.

- (a) Montrer que $T_n=(\overline{X_n})^2-\frac{1}{n}$ est un estimateur non biaisé pour θ^2 . (b) L'estimateur T_n est-il efficace ? Indice: si $X\sim \mathrm{N}(\mu,\sigma^2)$, on a $\mathrm{E}[X^4]=\mu^4+6\mu^2\sigma^2+3\sigma^4$.