

Straßenverkehr in Tirol (2)*

Aufgabennummer: B_277		
Technologieeinsatz:	möglich □	erforderlich 🗵

Das Verkehrsaufkommen wird seit vielen Jahren statistisch erfasst.

a) Die nachstehende Grafik zeigt die Entwicklung des KFZ-Verkehrs von 1985 bis 2012 in Tirol.

- Interpretieren Sie die Bedeutung der in der Grafik markierten Zahl 129,3 in diesem Sachzusammenhang.
- Erstellen Sie basierend auf den Daten der Grafik eine quadratische Regressionsfunktion. Wählen Sie dabei für das Jahr 1985 den Zeitpunkt t = 0.
- Ermitteln Sie mithilfe dieser Regressionsfunktion eine Prognose für den KFZ-Verkehr im Jahr 2013.
- b) Die Anzahl der durchschnittlichen täglichen KFZ-Fahrten auf der Brennerautobahn kann für den Zeitraum 2000 bis 2007 durch die lineare Regressionsfunktion *f* beschrieben werden:

$$f(t) = 617 \cdot t + 28017$$

t ... Zeit in Jahren mit t = 0 im Jahr 2000

f(t) ... Anzahl der durchschnittlichen täglichen KFZ-Fahrten zur Zeit t

- Interpretieren Sie die Bedeutung des Koeffizienten 617 in diesem Sachzusammenhang.

^{*} ehemalige Klausuraufgabe (adaptiert)

Straßenverkehr in Tirol (2)

- c) Auf einer österreichischen Transitroute wurden im Jahr 2003 insgesamt 1700000 Fahrten gezählt. Im Jahr 2011 waren es bereits 2006000 Fahrten.
 - Stellen Sie diejenige Funktionsgleichung auf, die die Entwicklung der Anzahl der Fahrten auf dieser Route mit einer Exponentialfunktion der Form $y(t) = a \cdot b^t$ beschreibt.
 - t ... Zeit in Jahren mit t = 0 im Jahr 2003 y(t) ... Zahl der jährlichen Fahrten zur Zeit t
 - Erklären Sie den Unterschied zwischen exponentiellem und linearem Wachstum.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Straßenverkehr in Tirol (2)

Möglicher Lösungsweg

a) 129,3 bedeutet, dass der Verkehr im Jahr 1990 gegenüber dem Jahr 1985 um 29,3 % zugenommen hat.

```
quadratische Regression: r(t) = -0.09 \cdot t^2 + 6.11 \cdot t + 99.93
2013 entspricht t = 28: r(28) = 197.50... \approx 197.5.
```

Die Regressionsfunktion prognostiziert ein KFZ-Verkehrsaufkommen von rund 197,5 % bezogen auf das KFZ-Verkehrsaufkommen im Jahr 1985.

b) 617 entspricht der jährlichen Zunahme der durchschnittlichen täglichen KFZ-Fahrten auf der Brennerautobahn.

c)
$$a = 1700000$$

 $b = \sqrt[8]{\frac{2006000}{1700000}} = 1,0209... \approx 1,021$
 $v(t) = 1700000 \cdot 1,021^t$

Bei einem linearen Modell ist die absolute Änderung pro Zeiteinheit konstant. Bei einem exponentiellen Modell ändert sich die Größe in jeweils gleichen Zeitschritten immer um denselben Faktor.

Lösungsschlüssel

- a) 1 × C: für die richtige Interpretation der markierten Zahl
 - 1 × A: für das richtige Erstellen der Regressionsfunktion
 - 1 × B: für das richtige Ermitteln der Prognose für das Jahr 2013
- b) 1 × C: für die richtige Interpretation des Koeffizienten)
- c) 1 × A: für das richtige Aufstellen der Funktionsgleichung
 - 1 × D: für die richtige Erklärung