#### 60016 OPERATIONS RESEARCH

**Cutting Plane Algorithms** 

23 November 2020

#### **Problem**

#### How to solve ILPs?

- Can we reuse or extend LP algorithms?
  - Yes: cutting plane algorithm
- Can we define ILP-specific algorithms?
  - Yes: branch-and-bound algorithm

#### Other algorithms exist

- branch-and-cut
- genetic algorithms
- simulated annealing

### Key Idea: Continuous Relaxation

LP relaxation: LP program obtained by replacing all integer variables  $x_i \in \mathbb{N}_0$  in a ILP with continuous variables  $x_i \in \mathbb{R}$ .

▶ LP relaxation has better or same optimal value as ILP!

#### Outline of solution procedure:

- Solve a LP relaxation.
  - Contains all originally feasible solutions, plus others.
- If optimal solution is integer, we are done.
- ▶ Otherwise, *tighten* the LP relaxation and repeat.

Tightening: restrict feasible set of the LP relaxation without excluding the optimum solution of the ILP.

### Cutting Plane Algorithm

- Step 0. Write the ILP in standard form.
- Step 1. Solve the LP relaxation.
- Step 2. If the resulting optimal solution  $x^*$  is integer, stop  $\Rightarrow$  optimal solution found.
- Step 3. Generate a cut, a constraint satisfied by all feasible integer solutions, but not by previous solution  $x^*$  with non-integer components.
- Step 4. Add cut to the LP relaxation and go back to Step 1. The algorithm terminates after finite number of iterations. The resulting  $x^*$  is integer and optimal.



Consider the following problem:

max 
$$y = 5x_1 + 8x_2$$

subject to

$$x_1 + x_2 \le 6$$
  
 $5x_1 + 9x_2 \le 45$   
 $x_1, x_2 \ge 0$   
 $x_1, x_2 \in \mathbb{N}_0$ .

Step 0. Rewrite in standard form.

Step 1. Solve the LP relaxation.



Sanity Check. For maximisation, how is the optimal value of the LP relaxation  $y_{\text{LP}}^*$  related to the optimal value of the ILP  $y_{\text{ILP}}^*$ ?

Step 2. If the resulting optimal solution  $x^*$  is integer, stop.



Resulting solution is  $x^* = (2.25, 3.75)$  and hence *not* integer.

Step 3. Generate a cut, in this example  $2x_1 + 3x_2 \le 15$ .



Step 4. Add cut to the LP relaxation and go back to Step 1.



New optimal solution is  $x^* = (3,3)$ .

Step 2. If the resulting optimal solution  $x^*$  is integer, stop.



 $x^* = (3,3)$  is integer  $\Rightarrow$  optimal solution found.

Remark. The cut only removed non-integer solutions. Cuts never cut off feasible solutions of the original ILP!



### Importance of cutting planes

Bixby & Rothberg (Ann Oper Res, 2007)

| Disabled cut           | Year | Degradation |
|------------------------|------|-------------|
| Gomory mixed-integer   | 1960 | 2.52X       |
| Mixed-integer rounding | 2001 | 1.83X       |
| Knapsack cover         | 1983 | 1.40X       |
| Flow cover             | 1985 | 1.22X       |
| Implied bound          | 1991 | 1.19X       |
| Flow path              | 1985 | 1.04X       |
| Clique                 | 1983 | 1.02X       |
| GUB cover              | 1998 | 1.02X       |
|                        |      |             |

Mean performance degradation from turning off various cutting planes in CPLEX 8.0

C343 studies Gomory mixed-integer and knapsack cover cuts.

- Previous example illustrated a Gomory cut.
- Assume  $x_1, \ldots, x_n \ge 0$  and integer.
- ▶ Let  $|c| = \max\{a \in \mathbb{Z} : a \le c\}$  be the floor function
  - |-2.7| = -3
  - |3.2| = |3| = 3
- ▶ Thus, any real number c can be written as  $c = \lfloor c \rfloor + (c \lfloor c \rfloor)$

**Setup**: we computed  $x^*$  non-integer, and we know it to live on the boundary of the polytope.

We show how to construct a Gomory Cut for

$$a_1x_1+\ldots+a_nx_n=b,$$

where  $a_j, b \in \mathbb{R}$  (not necessarily integer).

The constraint can be written as

$$(\lfloor a_1 \rfloor + \underbrace{(a_1 - \lfloor a_1 \rfloor)}_{f_1})x_1 + \ldots + (\lfloor a_n \rfloor + \underbrace{(a_n - \lfloor a_n \rfloor)}_{f_n})x_n$$

$$= \lfloor b \rfloor + \underbrace{(b - \lfloor b \rfloor)}_{f_n},$$

Rearranging terms we get

$$f_1x_1 + \ldots + f_nx_n - f = \lfloor b \rfloor - \lfloor a_1 \rfloor x_1 - \ldots - \lfloor a_n \rfloor x_n.$$

Theorem. For all  $x \in \mathbb{N}_0^n$  satisfying  $a_1x_1 + \cdots + a_nx_n = b$ , it is

$$f_1x_1+\ldots+f_nx_n\geq f$$
.

Proof. Consider

$$f_1x_1 + \ldots + f_nx_n - f = \lfloor b \rfloor - \lfloor a_1 \rfloor x_1 - \ldots - \lfloor a_n \rfloor x_n.$$

- As  $x \in \mathbb{N}_0^n$ , right-hand side is integer.
- Thus left-hand side (LHS) must be an integer too.
- ► Since  $x \ge 0$ ,  $0 \le f_i < 1$ ,  $\forall i$

$$f_1x_1 + \cdots + f_nx_n - f \ge 0 + \cdots + 0 - f > -1$$

- ightharpoonup Since LHS can only take integer values, it can only be  $\geq 0$
- ► Therefore  $f_1x_1 + \ldots + f_nx_n f \ge 0$

Suppose Step 1 of our cutting plane algorithm gives a non-integer  $x^*$ . Then there is a row in the last Simplex tableau that has

$$x_i^* + \sum_{j \notin I} y_{ij} x_j^* = y_{i0}$$
 (Row)

with  $y_{i0} \notin \mathbb{N}_0$ . Note: the summation is on the non-basic variables. Gomory Cut. Setting  $f_j := y_{ij} - \lfloor y_{ij} \rfloor$ ,  $f := y_{i0} - \lfloor y_{i0} \rfloor$ :

$$\sum_{j\notin I} f_j x_j \ge f. \qquad (GC)$$

(GC) is violated by a non-integer  $x^*$  since  $x_j^* = 0$  if  $j \notin I$ , thus

$$\sum_{j \notin I} f_j x_j^* = 0 < f$$

Sanity Check. What if no row in the last tableau satisfies (Row)?

## Gomory Cut Example [1/12]

Consider the following problem:

$$\max y = 3x_1 + 4x_2$$

$$\frac{2}{5}x_1 + x_2 \le 3$$

$$\frac{2}{5}x_1 - \frac{2}{5}x_2 \le 1$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in \mathbb{N}_0.$$

## Gomory Cut Example [2/12]

Step 1. Convert maximisation objective into minimisation.

min 
$$z = -3x_1 - 4x_2$$

$$\frac{2}{5}x_1 + x_2 \le 3$$

$$\frac{2}{5}x_1 - \frac{2}{5}x_2 \le 1$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in \mathbb{N}_0.$$

## Gomory Cut Example [3/12]

Step 1. Scale the equations of the problem.

min 
$$z = -3x_1 - 4x_2$$

$$\frac{2}{5}x_1 + x_2 \le 3 \qquad (*5)$$

$$\frac{2}{5}x_1 - \frac{2}{5}x_2 \le 1 \qquad (*5)$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in \mathbb{N}_0.$$

## Gomory Cut Example [4/12]

Step 1. Scale the equations of the problem.

min 
$$z = -3x_1 - 4x_2$$

$$2x_1 + 5x_2 \le 15$$

$$2x_1 - 2x_2 \le 5$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in \mathbb{N}_0.$$

## Gomory Cut Example [5/12]

Step 1. Insert integer slack variables.

min 
$$z = -3x_1 - 4x_2$$

$$2x_1 + 5x_2 + x_3 = 15$$

$$2x_1 - 2x_2 + x_4 = 5$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$x_1, x_2, x_3, x_4 \in \mathbb{N}_0.$$

# Gomory Cut Example [6/12]

Step 1. Solve LP relaxation of problem.

| BV                    | <i>x</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> 3 | <i>X</i> 4 | RHS |
|-----------------------|-----------------------|-----------------------|------------|------------|-----|
| Z                     | 3                     | 4                     |            |            | 0   |
| <i>X</i> <sub>3</sub> | 2                     | 5                     | 1          |            | 15  |
| <i>X</i> 4            | 2                     | -2                    |            | 1          | 5   |

## Gomory Cut Example [7/12]

Step 1. Solve LP relaxation of problem.

| BV         | <i>x</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> 3 | <i>X</i> 4 | RHS |
|------------|-----------------------|-----------------------|------------|------------|-----|
| Z          | 3                     | 4                     |            |            | 0   |
| <i>X</i> 3 | 2                     | 5                     | 1          |            | 15  |
| <i>X</i> 4 | 2                     | -2                    |            | 1          | 5   |

The optimal solution has the tableau:

| BV                    | <i>x</i> <sub>1</sub> | $x_2$ | <i>X</i> <sub>3</sub> | <i>X</i> <sub>4</sub> | RHS             |
|-----------------------|-----------------------|-------|-----------------------|-----------------------|-----------------|
| Z                     |                       |       | -1                    | $-\frac{1}{2}$        | $-\frac{35}{2}$ |
| <i>x</i> <sub>2</sub> |                       | 1     | $\frac{1}{7}$         | $-\frac{1}{7}$        | <u>10</u><br>7  |
| $x_1$                 | 1                     |       | $\frac{1}{7}$         | $\frac{5}{14}$        | <u>55</u><br>14 |

Step 2. Solution is not integer, go to Step 3.

## Gomory Cut Example [8/12]

Step 3. Generate cut based, e.g., on  $x_1$  row.

$$x_1 + \frac{1}{7}x_3 + \frac{5}{14}x_4 = \frac{55}{14}$$

- $f_1 = 1 |1| = 0$  (basic, does not appear in GC)

- $f = \frac{55}{14} \lfloor \frac{55}{14} \rfloor = \frac{13}{14}$

Gomory Cut (GC1):

$$\frac{1}{7}x_3 + \frac{5}{14}x_4 \ge \frac{13}{14} \implies 2x_3 + 5x_4 \ge 13.$$

**Q:** how to write in original variables?

### Gomory Cut Example [9/12]

Step 4. Add cut to the LP relaxation and go back to Step 1.

Standardise (GC1) introducing excess  $x_5 \ge 0$ :

$$2x_3 + 5x_4 - x_5 = 13.$$

LP relaxation solution is  $x_3^* = x_4^* = 0 \Rightarrow$  (GC1) is infeasible!

We need to solve a problem similar to Simplex Phase 1 to find an initial BFS for Step 1, thus we add the artificial variable  $\xi_1$ :

$$2x_3 + 5x_4 - x_5 + \xi_1 = 13.$$

Sanity Check. The LP relaxation solution is now infeasible. Is this typical?

## Gomory Cut Example [10/12]

Step 1.

$$\zeta = \xi_1 = 13 - 2x_3 - 5x_4 + x_5$$

| BV                    | <i>x</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> 3    | <i>X</i> 4     | <i>X</i> 5 | $\xi_1$ | RHS             |
|-----------------------|-----------------------|-----------------------|---------------|----------------|------------|---------|-----------------|
| ζ                     |                       |                       | 2             | 5              | -1         |         | 13              |
| <i>x</i> <sub>2</sub> |                       | 1                     | $\frac{1}{7}$ | $-\frac{1}{7}$ |            |         | <u>10</u><br>7  |
| $x_1$                 | 1                     |                       | $\frac{1}{7}$ | $\frac{5}{14}$ |            |         | <u>55</u><br>14 |
| $\xi_1$               |                       |                       | 2             | 5              | -1         | 1       | 13              |

Pivot on  $(x_4, \xi_1)$  based on reduced costs of  $\zeta$ .

## Gomory Cut Example [11/12]

Step 1. After removing both  $\zeta$  and  $\xi_1$ , add z back to the basic representation, and solve the new LP relaxation (Simplex Phase 2).

| BV                    | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>X</i> 3    | <i>X</i> 4 | <i>X</i> 5      | RHS             |
|-----------------------|-----------------------|-----------------------|---------------|------------|-----------------|-----------------|
| Z                     |                       |                       | -1            |            | $-\frac{1}{10}$ | $-\frac{81}{5}$ |
| <i>x</i> <sub>2</sub> |                       | 1                     | $\frac{1}{5}$ |            | $-\frac{1}{70}$ | <u>9</u><br>5   |
| $x_1$                 | 1                     |                       |               |            | $\frac{1}{14}$  | 3               |
| <i>X</i> <sub>4</sub> |                       |                       | $\frac{2}{5}$ | 1          | $-\frac{1}{5}$  | 13<br>5         |

Solution optimal; Simplex stops.

Step 2. Solution is not integer, go to Step 3.

# Gomory Cut Example [12/12]

Step 3. Generate cut based, e.g., on  $x_2$  row.

$$x_2 + \frac{1}{5}x_3 - \frac{1}{70}x_5 = \frac{9}{5}$$

- $f_2 = 0$  (basic, does not appear in GC)
- $f_5 = -\frac{1}{70} \lfloor -\frac{1}{70} \rfloor = -\frac{1}{70} + 1 = \frac{69}{70}$  (non-basic)
- $f = \frac{9}{5} \lfloor \frac{9}{5} \rfloor = \frac{9}{5} 1 = \frac{4}{5}$

Gomory Cut (GC2):

$$\frac{1}{5}x_3+\frac{69}{70}x_5\geq \frac{4}{5}.$$

### Outlook on Gomory Cuts



- Developed in 1950's and considered impractical for 40 years due to: Poor convergence properties, saturation, bad numerical behavior, etc.
- ► A very important paper published in the late 1990s changed the perception of Gomory cuts:
  - Balas, Ceria, Cornuéjols, Natraj. Gomory cuts revisited. Operations Research Letters, 1996.
- ► The strategies recommended in this paper contributed to a big jump in the capability of MILP solvers.

### Example: Knapsack Cover Cuts

These cuts are derived from logic about packing problems

$$3x_1 + 5x_2 + 4x_3 + 2x_4 + 7x_5 \le 8$$
  
 $x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$ 

 $5+4>8 \implies x_2$  and  $x_3$  cannot simultaneously be equal to 1

**Cover Cut.**  $x_2 + x_3 \le 1$ 

Sanity Check. What are other knapsack cover cuts?

### Recall from Last Lecture: The Knapsack Problem

- ▶ Consider n items of weight  $w_j$ ,  $j \in \{1, ..., n\}$  and a knapsack of weight capacity W.
- ltem j has value  $v_j$ , but not all items may fit the knapsack.
- ► How to maximise the total value of the knapsack?

$$\max_{x} \quad z = \sum_{j=1}^{n} v_{j} x_{j}$$
s.t. 
$$\sum_{j=1}^{n} w_{j} x_{j} \leq W$$

$$x_{j} \in \{0, 1\} \qquad \forall j \in \{1, \dots, n\}$$

#### Knapsack Cover Cuts

A set S of items in a knapsack problem is called a **cover** if:

$$\sum_{j\in S} w_j > W$$

If S is a cover, then the corresponding **knapsack cover cut** is:

$$\sum_{j\in S} x_j \le |S| - 1$$

Usually, we want a **minimal cover constraint**, that is, a cover constraint such that for all proper subsets T of S:

$$\sum_{j\in\mathcal{T}}w_j\leq W$$

**Sanity Check.** What are the minimal cover cuts from the previous example?

### Outlook on Cutting Planes (valid inequalities)

- ► Typical approach Find & exploit useful cutting planes
- ► Pure cutting plane approach Typically very difficult
  - ► Too many constraints
  - It's difficult to find some constraints
- Usually preferred Branch & bound
  - State-of-the-art approaches hybridise cutting planes and branch & bound