Uncertainty quantification for black-box classifiers without distributional assumptions

Aaditya Ramdas

Dept. of Statistics and Data Science Machine Learning Dept. Carnegie Mellon University

Prediction vs "Predictive Inference"

Split Conformal Prediction for classification

Better residual for probabilistic classifiers

$$A: \mathcal{X} \to \Delta^{|\mathcal{Y}|}$$

$$\begin{split} R_i &:= \sum_{\ell \neq Y_i : [A(X_i)]_{\ell} > [A(X_i)]_{Y_i}} [A(X_i)]_{Y_i} \\ &= \text{total prob. of more likely, wrong labels} \end{split}$$

Let
$$\bar{R} = \{R_i\}_{i \in D_2}$$

$$C(X_{n+1}) := \{ \text{least number of labels whose total mass} \ge q_{1-\alpha}(\bar{R}) \}$$

= {first k labels in $sort(A(X_{n+1}))$ with cumulative prob. $\geq q_{1-\alpha}(\bar{R})$ }

(Can be "smoothed" out with randomization)

(Mixture of two Gaussians in two dimensions)

(Mixture of three Gaussians in two dimensions)

Part 2: Calibrated probabilities

Calibration in the binary setting

A function $f: \mathcal{X} \to [0,1]$ returns calibrated probabilities if

$$\mathbb{E}[Y_{n+1} | f(X_{n+1})] = f(X_{n+1})$$

Eg: Suppose we predict $f(X_{n+1}) \approx 0.3$ for 100 points, then ≈ 30 of those will have label one, and the rest label zero.

Fact: if f is calibrated, then $f(X) = \mathbb{E}[Y | g(X)]$ for some g.

Reality: exact calibration is impossible with a finite data of size n.

We say that $f_n: \mathcal{X} \to [0,1]$ is distribution-free (ϵ_n, α) -calibrated if

$$\forall P_{XY}, \ \Pr(|\mathbb{E}[Y_{n+1}|f_n(X_{n+1})] - f_n(X_{n+1})| > \epsilon_n) \le \alpha,$$

and asymptotically calibrated if $\epsilon_n \to 0$.

Theorem: Asymptotic distribution-free calibration is impossible if $\lim_{n\to\infty} \mathrm{Range}(f_n)$ is uncountable.

Split Binning

Improve to "uniform mass binning"

 \rightarrow smaller half of $A(X_i)$

 \rightarrow larger half of $A(X_i)$

$$A = \mathcal{A}(D_1) : \mathcal{X} \to [0,1]$$

(generalize to any number of bins)

$$\Pr\left(\left|\mathbb{E}[Y_{n+1}|f(X_{n+1}]-f(X_{n+1})\right| \le c\hat{\sigma}\sqrt{\frac{\ln(1/\alpha)}{n}}\right) \ge 1-\alpha.$$

Distribution-free binary classification: prediction sets, confidence intervals and calibration

Chirag Gupta*1, Aleksandr Podkopaev*1,2, Aaditya Ramdas^{1,2}

Theorem 3. Let $\alpha \in (0,0.5)$ be a fixed threshold. If a sequence of scoring functions $\{f_n\}_{n\in\mathbb{N}}$ is asymptotically calibrated at level α for every distribution P then

$$\limsup_{n\to\infty} |\mathcal{X}^{(f_n)}| \leqslant \aleph_0.$$

- 4.3 Distribution-free calibration in the online setting
- 4.4 Calibration under covariate shift

Sharpness?

One cannot guarantee sharpness without distributional assumptions.

Number of bins, properties of P_{XY} and quality of original classifier, all together determine sharpness, but not calibration.

Eg: consider the setting where P(Y = 1 | X) = 0.5, i.e. $Y \perp X$. No classifier can be sharp, and not all classifiers are calibrated.