Day69_SpaCy_Text_Summarization_Project

August 21, 2025

1 Extractive Text Summarization with spaCy Project:

- Goal: Build an extractive summarizer (selects the most important sentences from the original text).
- Why: Compress long documents into concise overviews for faster reading and downstream analysis.
- **Method:** Rank sentences by content importance using token statistics (term frequency), then pick the top-K.

2 Environment & Model

3 Imports & Pipeline Configuration

- spaCy provides a processing pipeline that turns raw text \rightarrow Doc with tokens, sentences, and linguistic annotations.
- We add a sentencizer (rule-based sentence boundary detector) so sentence segmentation works even if we disable heavier components (faster).
- We'll use stopword and punctuation filtering to remove low-information tokens from scoring.

```
[2]: import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from string import punctuation
from heapq import nlargest
```

```
[3]: # Load lightweight English model

nlp = spacy.load("en_core_web_sm")

# Ensure we have a cheap, reliable sentence splitter

# (If the parser is active, it's already good; sentencizer is fast &_____

deterministic.)
```

```
if "sentencizer" not in nlp.pipe_names:
    nlp.add_pipe("sentencizer")
```

4 Input Text

- Any raw string can be processed. Later you'll replace this with file ingestion (TXT/PDF/DOCX).
- We keep original casing/punctuation for the final summary readability, but we lowercase for scoring to avoid case bias.

```
[4]: text = """
     There are broadly two types of extractive summarization tasks depending on what_{\sqcup}
      ⇔the summarization program focuses on.
     The first is generic summarization, which focuses on obtaining a generic \sqcup
      summary or abstract of the collection (whether documents, or sets of images, II
      ⇔or videos, news stories etc.).
     The second is query relevant summarization, sometimes called query-based
      ⇒summarization, which summarizes objects specific to a query.
     Summarization systems are able to create both query relevant text summaries and \Box
      ageneric machine-generated summaries depending on what the user needs.
     An example of a summarization problem is document summarization, which attempts,

→to automatically produce an abstract from a given document.

     Sometimes one might be interested in generating a summary from a single source_{\sqcup}
      \rightarrowdocument, while others can use multiple source documents (for example, a
      ⇔cluster of articles on the same topic).
     This problem is called multi-document summarization.
     A related application is summarizing news articles.
     Imagine a system which automatically pulls together news articles on a given ⊔
      →topic (from the web), and concisely represents the latest news as a summary.
     0.00
```

5 Tokenization & Linguistic Annotations

- $nlp(text) \rightarrow Doc:$ a container of Token objects with rich attributes (e.g., text, lemma_, is_stop).
- We'll score words using term frequency (TF). Optionally, we can score by lemma (group run/running/ran).

```
[5]: doc = nlp(text)

# Peek at tokens (debug)

tokens_preview = [t.text for t in doc[:20]]

tokens_preview
```

```
[5]: ['\n',
      'There',
      'are',
      'broadly',
      'two',
      'types',
      'of',
      'extractive',
      'summarization',
      'tasks',
      'depending',
      'on',
      'what',
      'the',
      'summarization',
      'program',
      'focuses',
      'on',
      ١.,
      '\n']
```

6 Vocabulary Pruning & Weighting

- Build a vocabulary of informative terms.
- Remove stopwords (common function words) and punctuation (non-lexical).
- Optionally include digits/symbols depending on domain (e.g., finance).

Why:

• Reduces noise. Keeps only content-bearing terms that better correlate with sentence salience.

Design choices:

- Use lemma to merge inflectional variants (recommended).
- Normalize TF by L ∞ norm (divide by max frequency) to keep scores in 0,1

```
[6]: stopwords = STOP_WORDS
   punct_set = set(punctuation)

use_lemma = True  # switch to False to use surface forms

word_freq = {}
   for token in doc:
        if token.is_space or token.is_punct:
            continue
        if token.is_stop:
            continue
```

```
if token.text in punct_set:
    continue

key = token.lemma_.lower() if use_lemma else token.text.lower()
if not key or key in stopwords:
    continue
word_freq[key] = word_freq.get(key, 0) + 1

# Normalize by max frequency (Lw normalization)
if word_freq:
    max_f = max(word_freq.values())
    for w in word_freq:
        word_freq[w] = word_freq[w] / max_f
```

```
[6]: {'broadly': 0.1111111111111111,
     'type': 0.111111111111111,
     'extractive': 0.111111111111111,
     'summarization': 1.0,
     'task': 0.1111111111111111,
     'depend': 0.222222222222,
     'program': 0.111111111111111,
     'focus': 0.2222222222222,
     'obtain': 0.1111111111111111,
     'summary': 0.55555555555556,
     'abstract': 0.2222222222222,
     'collection': 0.1111111111111111,
     'set': 0.1111111111111111,
     'image': 0.111111111111111,
     'video': 0.1111111111111111,
     'story': 0.1111111111111111,
     'etc': 0.1111111111111111,
     'second': 0.111111111111111,
     'relevant': 0.2222222222222,
     'base': 0.1111111111111111,
     'summarize': 0.2222222222222,
     'object': 0.1111111111111111,
     'specific': 0.111111111111111,
     'system': 0.222222222222,
     'able': 0.1111111111111111,
     'create': 0.1111111111111111,
     'text': 0.111111111111111,
```

```
'machine': 0.1111111111111111,
'generate': 0.2222222222222,
'user': 0.1111111111111111,
'need': 0.1111111111111111,
'example': 0.222222222222,
'problem': 0.222222222222,
'attempt': 0.1111111111111111,
'automatically': 0.2222222222222,
'produce': 0.1111111111111111,
'interested': 0.111111111111111,
'single': 0.1111111111111111,
'source': 0.2222222222222,
'use': 0.1111111111111111,
'multiple': 0.1111111111111111,
'cluster': 0.1111111111111111,
'topic': 0.222222222222,
'multi': 0.1111111111111111,
'related': 0.1111111111111111,
'application': 0.1111111111111111,
'imagine': 0.111111111111111,
'pull': 0.1111111111111111,
'web': 0.111111111111111,
'concisely': 0.1111111111111111,
'represent': 0.111111111111111,
'late': 0.1111111111111111111
```

Note: L ∞ normalization is simple and stable. Alternatives: L1 (sum to 1), TF-IDF (requires document collection; better when many docs).

7 Sentence Segmentation

- Build a list of candidate sentences to rank.
- Sentences come from Doc.sents (via sentencizer or parser).
- We'll preserve original order later for readability.

```
[7]: sentences = list(doc.sents) len(sentences), sentences[:3]
```

[7]: (9,

There are broadly two types of extractive summarization tasks depending on what the summarization program focuses on.,

The first is generic summarization, which focuses on obtaining a generic summary or abstract of the collection (whether documents, or sets of images, or videos, news stories etc.).,

The second is query relevant summarization, sometimes called query-based summarization, which summarizes objects specific to a query.])

8 Sentence Scoring

- Score each sentence by summing the normalized token weights of its content words.
- To reduce length bias (long sentences get larger sums), we can length-normalize by sentence token count.

Why:

• Simple additive content model approximates importance: sentences containing many highvalue terms score higher.

```
[8]: length_normalize = True
     sent_scores = {}
     for sent in sentences:
         score = 0.0
         length = 0
         for token in sent:
             if token.is_space or token.is_punct:
                 continue
             key = (token.lemma_.lower() if use_lemma else token.text.lower())
             if key in word_freq:
                 score += word_freq[key]
             length += 1
         if length == 0:
             continue
         if length_normalize:
             score = score / length # mean weight per token
         sent_scores[sent] = score
     sent_scores
```

[8]: {

There are broadly two types of extractive summarization tasks depending on what the summarization program focuses on.: 0.17647058823529413,

The first is generic summarization, which focuses on obtaining a generic summary or abstract of the collection (whether documents, or sets of images, or videos, news stories etc.):: 0.16269841269841265,

The second is query relevant summarization, sometimes called query-based summarization, which summarizes objects specific to a query.: 0.23456790123456792,

An example of a summarization problem is document summarization, which attempts to automatically produce an abstract from a given document.: 0.2222222222222222,

Sometimes one might be interested in generating a summary from a single source document, while others can use multiple source documents (for example, a cluster of articles on the same topic):: 0.12544802867383514,

This problem is called multi-document summarization.: 0.2857142857142857, A related application is summarizing news articles.: 0.1746031746031746, Imagine a system which automatically pulls together news articles on a given topic (from the web), and concisely represents the latest news as a summary.: 0.124444444444443}

Alternatives:

- Positional prior: Boost early sentences (useful for news).
- Title overlap: Boost terms appearing in the document title.
- Redundancy control / Diversity: Penalize sentences that repeat selected content (see MMR below).

9 Selection (Top-K or Ratio)

- Choose K sentences (or ratio of total) with highest scores using heapq.nlargest.
- Then restore original document order for readability.

Why:

• Ranking \rightarrow selection is the heart of extractive summarization.

[9]: 'The second is query relevant summarization, sometimes called query-based summarization, which summarizes objects specific to a query. An example of a summarization problem is document summarization, which attempts to automatically produce an abstract from a given document. This problem is called multi-document summarization.'

10 (Optional) Redundancy Reduction with MMR (Maximal Marginal Relevance)

- Pure top-K may select near-duplicate sentences.
- MMR trades off relevance (sentence score) with novelty (dissimilarity to already chosen sentences).
- We approximate similarity with token overlap (Jaccard) for simplicity.

```
[10]: def jaccard(a_tokens, b_tokens):
          a, b = set(a_tokens), set(b_tokens)
          if not a or not b:
              return 0.0
          return len(a & b) / len(a | b)
      def select_with_mmr(sentences, scores, K, lambda_=0.7):
          # lambda_: 1.0 favors relevance only; 0.0 favors novelty only
          selected = []
          remaining = set(sentences)
          while remaining and len(selected) < K:</pre>
              if not selected:
                  # pick the most relevant first
                  best = max(remaining, key=lambda s: scores.get(s, 0))
                  selected.append(best)
                  remaining.remove(best)
                  continue
              def mmr score(s):
                  sim_to_sel = max(
                      jaccard([t.lemma_.lower() for t in s if t.is_alpha],
                               [t.lemma_.lower() for t in x if t.is_alpha])
                      for x in selected
                  ) if selected else 0.0
                  return lambda_ * scores.get(s, 0) - (1 - lambda_) * sim_to_sel
              best = max(remaining, key=mmr_score)
              selected.append(best)
              remaining.remove(best)
          return sorted(selected, key=lambda s: s.start)
```

```
mmr_sents = select_with_mmr(sentences, sent_scores, K, lambda_=0.75)
mmr_summary = " ".join([s.text.strip() for s in mmr_sents])
mmr_summary
```

[10]: 'The second is query relevant summarization, sometimes called query-based summarization, which summarizes objects specific to a query. An example of a summarization problem is document summarization, which attempts to automatically produce an abstract from a given document. This problem is called multi-document summarization.'

11 Packaging as a Reusable Function

- Encapsulate the pipeline for reuse (backend API / UI).
- Parameters expose trade-offs: ratio, lemma use, normalization, MMR, limits.

```
[11]: def summarize_text_spacy(
          text: str,
          nlp,
          ratio: float = 0.3,
          min_sentences: int = 3,
          max_sentences: int = 8,
          use_lemma: bool = True,
          length_normalize: bool = True,
          use_mmr: bool = False,
          mmr lambda: float = 0.75
      ) -> str:
          if not text or not text.strip():
              return ""
          doc = nlp(text)
          sentences = list(doc.sents)
          if not sentences:
              return text.strip()
          stopwords = STOP_WORDS
          punct_set = set(punctuation)
          word_freq = {}
          for token in doc:
              if token.is_space or token.is_punct:
                  continue
              if token.is_stop:
                  continue
              if token.text in punct_set:
                  continue
              key = token.lemma .lower() if use lemma else token.text.lower()
```

```
if not key or key in stopwords:
            continue
        word_freq[key] = word_freq.get(key, 0) + 1
    if not word_freq:
        # fallback: return lead sentences
        keep = max(min_sentences, int(len(sentences) * ratio))
        keep = min(keep, max_sentences, len(sentences))
        return " ".join([s.text.strip() for s in sentences[:keep]])
    max f = max(word freq.values())
    for w in word_freq:
        word_freq[w] = word_freq[w] / max_f # Lw normalization
    sent_scores = {}
    for sent in sentences:
        score = 0.0
        length = 0
        for token in sent:
            if token.is_space or token.is_punct:
                continue
            key = token.lemma_.lower() if use_lemma else token.text.lower()
            if key in word_freq:
                score += word freq[key]
            length += 1
        if length == 0:
            continue
        if length_normalize:
            score /= length
        sent_scores[sent] = score
    K = max(min_sentences, int(len(sentences) * ratio))
    K = min(K, max_sentences, len(sentences))
    if use_mmr:
        chosen = select_with_mmr(sentences, sent_scores, K, lambda_=mmr_lambda)
    else:
        top = nlargest(K, sent_scores, key=sent_scores.get)
        chosen = sorted(top, key=lambda s: s.start)
    return " ".join([s.text.strip() for s in chosen])
summary_text = summarize_text_spacy(text, nlp, ratio=0.3, use_mmr=True)
summary_text
```

[11]: 'The second is query relevant summarization, sometimes called query-based summarization, which summarizes objects specific to a query. An example of a summarization problem is document summarization, which attempts to automatically produce an abstract from a given document. This problem is called multi-document summarization.'

12 Complexity & Behavior

- Time:
 - Token pass (vocab build): O(N) tokens
 - Sentence scoring: O(N) tokens
 - Selection: O(S log K) with heap (S=sentences)
- Space: vocabulary O(V), sentence scores O(S)
- Determinism: deterministic given same text & parameters (no randomness).
- Biases: favors content-dense sentences; length normalization mitigates long-sentence bias; MMR mitigates redundancy.

13 Limitations & Upgrades

- Extractive only: doesn't paraphrase or compress internally (no "abstractive" fluency improvements).
- Vocabulary mismatch: rare words can be overweighted; consider TF-IDF over a corpus.
- Domain sensitivity: customize stopwords, keep numbers/symbols if domain requires (finance, science).
- Improvements:
 - TextRank (graph centrality)
 - Supervised extractive models
 - Abstractive LLMs for fluent summaries (cost/latency/safety trade-offs)
 - ROUGE for evaluation against reference summaries

14 Frontend Code (Streamlit App)

```
Save this as app.py:
import streamlit as st
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from string import punctuation
from heapq import nlargest
```

```
# -----
# Summarizer Function
def summarize_text_spacy(
   text: str,
   nlp,
   ratio: float = 0.3,
   min_sentences: int = 3,
   max_sentences: int = 8
) -> str:
   if not text or not text.strip():
       return ""
   doc = nlp(text)
   sentences = list(doc.sents)
   if not sentences:
       return text.strip()
   stopwords = STOP_WORDS
   punct_set = set(punctuation)
   word_freq = {}
   for token in doc:
       if token.is_space or token.is_punct:
           continue
       if token.is_stop:
           continue
       if token.text in punct_set:
           continue
       key = token.lemma_.lower()
       if not key or key in stopwords:
       word_freq[key] = word_freq.get(key, 0) + 1
   if not word freq:
       return " ".join([s.text.strip() for s in sentences[:min_sentences]])
   max_f = max(word_freq.values())
   for w in word_freq:
       word_freq[w] = word_freq[w] / max_f
   sent_scores = {}
   for sent in sentences:
       score = 0.0
       length = 0
       for token in sent:
           if token.is_space or token.is_punct:
               continue
```

```
key = token.lemma_.lower()
           if key in word_freq:
               score += word_freq[key]
           length += 1
       if length > 0:
           score /= length
           sent_scores[sent] = score
   K = max(min_sentences, int(len(sentences) * ratio))
   K = min(K, max_sentences, len(sentences))
   top = nlargest(K, sent_scores, key=sent_scores.get)
   chosen = sorted(top, key=lambda s: s.start)
   return " ".join([s.text.strip() for s in chosen])
# Streamlit Frontend
st.set_page_config(page_title="Text Summarizer", page_icon=" ", layout="wide")
st.title(" Extractive Text Summarizer")
st.write("Upload a file or paste text below to generate a summary.")
# Load spaCy model once
@st.cache_resource
def load_model():
   return spacy.load("en_core_web_sm")
nlp = load_model()
# Sidebar controls
st.sidebar.header(" Settings")
ratio = st.sidebar.slider("Summary Length (ratio of original)", 0.1, 0.9, 0.3, 0.05)
min_sents = st.sidebar.number_input("Minimum Sentences", 1, 10, 3)
max_sents = st.sidebar.number_input("Maximum Sentences", 1, 20, 8)
# Input section
input_method = st.radio("Choose Input Method:", ["Paste Text", "Upload File"])
input_text = ""
if input_method == "Paste Text":
    input_text = st.text_area("Enter your text here:", height=200)
elif input_method == "Upload File":
   uploaded_file = st.file_uploader("Upload a .txt, .pdf, or .docx file", type=["txt", "pdf",
   if uploaded_file:
       ext = uploaded_file.name.split(".")[-1].lower()
       if ext == "txt":
           input_text = uploaded_file.read().decode("utf-8")
```

```
elif ext == "pdf":
                                                   import pdfplumber
                                                   with pdfplumber.open(uploaded_file) as pdf:
                                                                   input_text = "\n".join(page.extract_text() or "" for page in pdf.pages)
                                  elif ext == "docx":
                                                   from docx import Document
                                                   doc = Document(uploaded_file)
                                                   input_text = "\n".join(p.text for p in doc.paragraphs)
# Run summarization
if st.button("Generate Summary"):
                 if input_text.strip():
                                  summary = summarize_text_spacy(input_text, nlp, ratio=ratio, min_sentences=min_sents, nlp, ratio=ratio, min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min_sentences=min
                                 st.subheader(" Original Text")
                                  st.write(input_text)
                                 st.subheader(" Generated Summary")
                                 st.success(summary)
                else:
                                  st.warning("Please provide text or upload a file first.")
```

15 How to Run

- 1. Save as app.py.
- 2. Install dependencies:

```
pip install streamlit spacy pdfplumber python-docx python -m spacy download en_core_web_sm \,
```

3. Run:

streamlit run app.py

4. Browser will open \rightarrow paste text or upload file \rightarrow see summary.

15.1 Overall App Look

This shows the complete UI of our summarizer app with background image and controls.

15.2 Upload Text File & Generate Summary

Here we uploaded a .txt file, extracted its content, and generated a summary.

15.3 Summary Length = 50%

When we set the summary ratio to 50%, the app extracted half of the original text into a concise summary.

15.4 Minimum Sentences = 2 Lines

When the minimum sentences parameter was set to 2, the app ensured at least two lines were returned as summary.

