Algoritmos e Estrutura de Dados Noções de análise de complexidade Parte: Introdução

Professor Alexandre Magno de Sousa Departamento de Computação e Sistemas

Sumário

- Introdução
- Exemplos de análise de algoritmos
- Crescimento assintótico das funções
- Classes de complexidade
- Classes de algoritmos e medidas de tempo
- Funções típicas e estimativas O-grande
- Referências bibliográficas

- O projeto de algoritmos é fortemente influenciado pelo estudo de seus **comportamentos**.
- Depois que decisões de projetos são feitas o algoritmo deve ser implementado.
- Vários algoritmos podem ser utilizados e deve-se estudar aspectos de **tempo de execução e espaço**.
- Muitos destes algoritmos são encontrados em áreas como: pesquisa operacional, otimização, teoria dos grafos, estatística, probabilidade, entre outras.

Existem dois problemas bem distintos:

Análise de um algoritmos em particular:

Qual é o custo de usar um dado algoritmo para resolver um problema específico?

Análise de uma classe de algoritmos:

Qual é o algoritmo de menor custo para resolver um problema particular?

- Determinando o custo, tem-se a medida de dificuldade para resolver um dado problema.
- Se o custo de um dado algoritmo é o menor, pode-se concluir que o algoritmo é **ótimo**.
- Podem existir vários algoritmos para resolver o mesmo problema e é necessário escolher o melhor.
- Se a mesma **medida de custo** é aplicada, é possível **compará-los** e escolher o mais adequado.

- O custo de execução de um algoritmo pode ser medido de várias maneiras.
- Uma delas é a medição do tempo de execução real de um algoritmo em um computador.

Objeções:

- (i) resultados dependem do compilador.
- (ii) resultados dependem do *hardware*.
- (iii) resultados dependem do tamanho da memória.

- Para medir o custo de execução é comum definir uma função de custo ou função de complexidade f.
- *f*(*n*) é a medida de tempo necessário para executar um algoritmo para um problema de tamanho *n*.
- Se f(n) é a medida da quantidade da memória necessária para executar um algoritmo, então é chamada de função de complexidade de espaço.

Análise de algoritmos: exemplo

• Considere um algoritmo para encontrar o maior elemento de um vetor de inteiros.

1 2 3 4 5 6	6 7 8 9 10
-------------	--------------------

Análise de algoritmos: exemplo seja f(n) o custo do o número de comparações

```
void max( int v[ ], int n, int *max ){
  *max = v[0], i;
 for( i = 1; i < n; i++ )
    if( *max < v[i] )
       *max = v[i];
```

Análise de algoritmos: exemplo seja f(n) o custo do o número de comparações

```
void max( int v[ ], int n, int *max ){
  *max = v[0], i;
  for( i = 1; i < n; i++ )
     if( *max < v[i] )
        *max = v[i];
                      f(n) = \sum_{n=1}^{\infty} 1 = (n-1) \times 1 = n-1
```

Análise de algoritmos: exemplo

```
void max( int v[ ], int n, int *max ){
  *max = v[0], i;
                               f(n)=n-1, n>0
 for( i = 1; i < n; i++)
    if( *max < v[i] )
        *max = v[i];
                      f(n) = \sum_{n=1}^{n} 1 = (n-1) \times 1 = n-1
```

- Melhor caso: menor tempo de execução.
- Pior caso: maior tempo de execução.
- Caso médio ou caso esperado: média dos tempos de execução de todas as entradas de tamanho n.
 - Uma distribuição de probabilidades sobre o conjunto de entradas de tamanho n é suposta e custo é obtido com base nessa distribuição.

Análise: pesquisa sequencial seja f(n) o custo do o número de comparações

• Pesquisa sequencial: examina registros na ordem em que eles aparecem no arquivo.

Caso	Custo	
Melhor caso	f(n) = 1	
Pior caso	f(n) = n	
Caso médio	f(n) = (n + 1)/2	

```
void maxMin1( int v[ ], int n, int *max, int *min ){
  *max = v[0]; *min = v[0];
  int i:
  for( i = 1; i < n; i++ ){
      if( v[i] > *max )
        *max = v[i];
      if( v[i] < *min )
        *min = v[i];
```

```
void maxMin1( int v[ ], int n, int *max, int *min ){
  *max = v[0]; *min = v[0];
  int i:
  for( i = 1; i < n; i++ ){
      if( v[i] > *max )
        *max = v[i];
      if( v[i] < *min )
        *min = v[i];
                             f(n) = \sum_{n=1}^{\infty} 2 = (n-1) \times 2 = 2n-2
```

```
void maxMin1( int v[ ], int n, int *max, int *min ){
  *max = v[0]; *min = v[0];
  int i:
  for( i = 1; i < n; i++ ){
     if( v[i] > *max )
                                 f(n)=2(n-1),n>0
       *max = v[i];
      if( v[i] < *min )
       *min = v[i];
                           f(n) = \sum_{n=1}^{\infty} 2 = (n-1) \times 2 = 2n-2
```

```
void maxMin2( int v[ ], int n, int *max, int *min ){
  *max = v[0]; *min = v[0];
  int i;
  for( i = 1; i < n; i++){
                                   Caso
                                                    Custo
      if( v[i] > *max )
                                                    f(n) = n - 1
                                   Melhor caso
        *max = v[i];
                                                    f(n) = 2(n - 1)
                                   Pior caso
      else if( v[i] < *min )
                                                    f(n) = 3n/2-3/2
                                   Caso médio
        *min = v[i];
```

seja f(n) o custo do o número de comparações

Para maxMin2, segue os seguintes cálculos:

• Melhor caso: vetor em ordem crescente.

$$f(n) = \sum_{1}^{n-1} 1 = (n-1) \times 1 = n-1$$

• Pior caso: vetor em ordem decrescente.

$$f(n) = \sum_{1}^{n-1} 2 = (n-1) \times 2 = 2n-2$$

• Caso médio: $f(n)=(n-1)-\frac{(n-1)}{2}=\frac{3n}{2}-\frac{3}{2}$

```
void maxMin3( int v[ ], int n, int *max, int *min ){
   int i = 2, fimDoLaco;
   if((n \% 2) > 0){v[n] = v[n - 1]; fimDoLaco = n; }
   else fimDoLaco = n - 1:
   if(v[0] > v[1]){ *max = v[0]; *min = v[1]; }
   else { *max = v[1]: *min = v[0] }
   while( i < fimDoLaco){
        if(v[i] > v[i + 1]){
           if(v[i] > *max) *max = v[i]:
           if(v[i + 1] < min) *min = v[i + 1];
        } else{
           if( v[i] < *min ) *min = v[i];
           if(v[i + 1] > *max)*max = v[i + 1];
                                 f(n) = \left(\sum_{i=2}^{n-2} 3\right) + 1 = \left(\sum_{i=1}^{n-2} 3\right) + 1 = \frac{3n-6}{2} + 1 = \frac{3n}{2} - 2
        i = i + 2
```

```
void maxMin3( int v[ ], int n, int *max, int *min ){
   int i = 2, fimDoLaco;
   if( (n \% 2) > 0){ v[n] = v[n - 1]; fimDoLaco = n; }
  else fimDoLaco = n - 1;
  (if( v[0] > v[1]) * max = v[0]; * min = v[1]; }
                                                                           1 comparação
   else \{ *max = v[1]; *min = v[0] \}
   while( i < fimDoLaco){</pre>
                                                                          1 comparação
       if( v[i] > v[i + 1])
                                                                       2 comparações
           if(v[i] > *max) *max = v[i];
           if(v[i + 1] < min) min = v[i + 1];
                                                                      ou
2 comparações
        } else{
           if( v[i] < *min ) *min = v[i];
           if(v[i + 1] > *max)*max = v[i + 1];
                             f(n) = \left(\sum_{i=2}^{n-2} 3\right) + 1 \Rightarrow \left(\sum_{i=1}^{n-2} 3\right) + 1 = \frac{3n-6}{2} + 1 = \frac{3n}{2} - 2
        i = i + 2
```

Análise de algoritmos: comparação do custo de *f*(*n*) dos algoritmos

Algoritmos	Melhor caso	Pior caso	Caso médio
maxMin1	2(n - 1)	2(n - 1)	2(n - 1)
maxMin2	n – 1	2(n - 1)	3n/2 - 3/2
maxMin3	3n/2 - 2	3n/2 - 2	3n/2 - 2

Séries e somatórios

$$\sum_{j=i}^{n} c = (n-i+1) \times c$$

$$\sum_{j=i}^{n} 2^{n} = 2^{n+1} - 1$$

$$\sum_{j=i}^{n} j = \frac{(n-i+1)(n+i)}{2}$$

$$\sum_{j=0}^{n} \frac{1}{2^{j}} = 2 - \frac{1}{2^{n}}$$

$$\sum_{j=0}^{n} \left(\frac{1}{a}\right)^{j} = \frac{1}{1 - (1/a)}$$

$$\sum_{j=0}^{n} a^{j} = \frac{a^{n+1} - 1}{a - 1} (a \neq 1)$$

$$\sum_{j=0}^{n} \left(\frac{1}{a}\right)^{j} = \frac{1 - (1/a)^{n}}{1 - (1/a)}$$

$$\sum_{j=0}^{n} j^{2} = \frac{n(n+1)(2n+1)}{6}$$

Notações Auxiliares

Notações Padrão: exponenciais

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{-1} = \frac{1}{a}$$

$$(a^{m})^{n} = a^{mn}$$

$$(a^{n})^{m} = a^{nm}$$

$$a^{m} = a^{m+n}$$

Notações padrão: logaritmos

$$\lg n = \log_2 n$$
 logaritmo binário $\ln n = \log_e n$ logaritmo natural $\lg^k n = (\lg n)^k$ exponenciação $\lg\lg n = \lg(\lg n)$ composição

Notações padrão: logaritmos

$$a=b^{\log_b a}$$
,
 $\log_c(ab) = \log_c a + \log_c b$,
 $\log_b a^n = n\log_b a$,
 $\log_b a = \frac{\log_c a}{\log_c b}$,

Notações padrão: logaritmos

$$\log_{b}(1/a) = -\log_{b}a,$$

$$\log_{b}a = \frac{1}{\log_{a}b},$$

$$a^{\log_{b}c} = c^{\log_{b}a},$$

$$\sqrt[b]{n^{a}} = b^{a/b \times \log_{b}n} = n^{a/b \times \log_{b}b} = n^{a/b \times 1} = n^{a/b}$$

Exercícios Dirigidos

```
for( i = 0; i < n; i++){
  for( j = 1, soma = a[0]; j <= i; j++)
     soma += a[j];
  printf("Soma de 0 até %d é %d", i, soma);
}</pre>
```

```
for( i = 4; i < n; i++ ){
    for( j = i - 3, soma = a[ i - 4 ]; j <= i; j++ )
        soma += a[ j ];
    printf("Soma de %d até %d é %d", (i-4), i, soma);
}</pre>
```

```
for( i = 0, comprimento = 1; i < n - 1; i++ ){
    for( i1=i2=k=i; k < n - 1 && a[k] < a[k+1]; k++,i2++);
      if( comprimento < i2 - i1 + 1)
        comprimento = i2 - i1 +1;
}</pre>
```

Análise de algoritmos: seja f(n) o custo do n.º de atribuições

```
int buscaBinaria( int arr[], int arrTamanho, int chave){
  int baixo = 0, meio, alto = arrTamanho - 1;
  while( baixo <= alto ){</pre>
      meio = (baixo + alto)/2;
      if( chave < arr[ meio ] )</pre>
         alto = meio - 1;
      else if( arr[ meio ] < chave )</pre>
         baixo = meio + 1;
      else return meio; //retorna o índice da chave encontrada
  return -1; // caso não encontrado, retorna -1 indicando falha
```

Análise Assintótica de Funções

Notação O-Grande

 O tempo exato de execução de um algoritmo é uma expressão complexa, assim ele é apenas estimado

 A análise assintótica é uma estimativa utilizada para entender o tempo de execução quando executado sobre entradas grandes

Notação O-Grande

- Seja a função $f(n) = 6n^3 + 2n^2 + 20n + 45$
- O termo de mais alta ordem é: 6n³
- Desconsiderando o coeficiente 6, dizemos que f é assintoticamente, no máximo, n³
- A notação assintótica ou O-grande para descrever esse relacionamento é:

$$f(n) = O(n^3)$$

DEFINIÇÃO

```
Sejam f e g funções, f,g: N \rightarrow R+
Digamos que f(n) = O(g(n)) se existem inteiros
positivos c e n_0 tais que para todo inteiro n \ge n_0:
f(n) \le c * g(n)
```

Comportamento assintótico

- Quando f(n) = O(g(n)) dizemos que g(n):
 - é um limitante superior para f(n)

ou

- é limitante superior assintótico para f(n)
- Isso enfatiza que estamos suprimindo fatores constantes.

Notação O-Grande: exemplo

- Seja $f(n) = 5n^3 + 2n^2 + 22n + 6$
- Termo de mais alta ordem: 5n³
- Desconsiderando seu coeficiente, tem-se que: $f(n) = O(n^3)$

Notação O-Grande: exemplo

• Verificação da definição formal:

Tornando
$$c = 6 e n_0 = 10$$

Então,
$$5n^3 + 2n^2 + 22n + 6 \le 6n^3$$
 para todo n ≥ 10

• $f(n) = O(n^4)$ porque $n^4 > n^3$, portanto, ainda é um limitante superior assintótico sobre f.

• f(n) não é $O(n^2)$, porque independente dos valores que sejam atribuídos a c e n_0 , a definição permanece insatisfeita.

Como definir c e n_o para f(n) e O-grande

• Seja a função: $f(n) = 2n^2 + 3n + 1$ $f(n) = O(n^2)$, onde $g(n) = n^2$

• Então, o valor de n₀ e c é obtido resolvendo a desigualdade:

$$2n^{2} + 3n + 1 \le cn^{2}$$

$$\frac{2n^{2}}{n^{2}} + \frac{3n}{n^{2}} + \frac{1}{n^{2}} \le c$$

$$2 + \frac{3}{n} + \frac{1}{n^{2}} \le c$$

Desigualdade com duas incógnitas, diferentes pares de constantes n₀ e c para a mesma função podem ser encontradas!

- Para escolher os melhores valores de n₀ e c:
 - deve ser determinado para qual valor de n_0 um certo termo em f(n) se torna o maior e permanece dessa forma!
- Os dois únicos candidatos são 2n² e 3n:
 - 2n² > 3n, que é válida para n > 1.
 - Assim, $n_0 = 2$ e substituindo:

$$2 + \frac{3}{n} + \frac{1}{n^2} \le c$$

$$2 + \frac{3}{2} + \frac{1}{2^2} \le c$$

$$3.75 \le c$$

Tabela: pares de valores de c e n_0 calculados a partir de f(n) e O-grande.

С	6	3,75	3,11	2,81	2,64	2,53	2,45	• • •	2
n _o	1	2	3	4	5	6	7	•••	∞

- Qual o significado prático dos pares de c e n₀ listados acima?
 - Para um g(n) fixo, existe um *número infinito de pares* pode ser identificado.
 - A definição estabelece que quase sempre g(n) > f(n): para todos n não menores do que n₀!
 - O valor de c depende do n₀ escolhido!

Notação o-pequeno

- A notação **O-grande** diz que uma função é assintoticamente <u>não mais que</u> outra.
- Pode-se dizer que uma função é assintoticamente menor que outra, por meio da notação o-pequeno.
- A diferença entre as notações O-grande é opequeno é análoga àquela entre ≤ e <.

Notação o-pequeno

DEFINIÇÃO

```
Sejam f e g funções, f,g: N \rightarrow R^+
Digamos que f(n) = o(g(n)) se se existem inteiros
positivos c e n_0 tais que para todo inteiro n \ge n_0:
f(n) < c * g(n)
```

e na medida em que n se aproxima do infinito: $\lim_{n\to\infty} f(n)/g(n) = 0$

Notação o-pequeno

• Em outras palavras, f(n) = o(g(n)) significa que, para qualquer número real c > 0 e n_o , onde f(n) < c g(n) para todo $n \ge n_o$.

Notação o-pequeno: exemplos

- 1. $\sqrt{n} = o(n)$
- 2. $n = o(n \log \log n)$
- 3. $n \log \log n = o(n \log n)$
- 4. $n \log n = o(n^2)$
- 5. $n^2 = o(n^3)$
- 6. *f*(*n*) nunca é *o*(*f*(*n*))

Notação Ω-grande

DEFINIÇÃO

Sejam $f \in g$ funções, $f,g: N \rightarrow R^+$

Digamos que $f(n) = \Omega(g(n))$ se existem inteiros positivos c e n0 tais que para todo inteiro n \geq n0:

$$0 \le c * g(n) \le f(n)$$

Comportamento assintótico

Notação ω-pequeno

DEFINIÇÃO

Sejam f e g funções, $f,g: N \rightarrow R^+$

Digamos que $f(n) = \omega(g(n))$ se existem inteiros positivos $c \in n_0$ tais que para todo inteiro $n \ge n_0$:

$$0 \le c * g(n) < f(n)$$

e na medida em que n se aproxima do infinito: $\lim_{n\to\infty} f(n)/g(n) = \infty$

DEFINIÇÃO

Sejam f e g funções, $f,g: N \rightarrow R^+$

Digamos que $f(n) = \Theta(g(n))$ se existem inteiros positivos c_1 , c_2 e n_0 tais que para todo inteiro $n \ge n_0$:

$$0 \le c_1 * g(n) \le f(n) \le c_2 * g(n)$$

Comportamento assintótico

Analogia: comparação das funções f e g com número reais a e b

$$f(n) = O(g(n))$$
 $a \le b$
 $f(n) = o(g(n))$ $a < b$
 $f(n) = \Omega(g(n))$ $a \ge b$
 $f(n) = \omega(g(n))$ $a > b$
 $f(n) = \Theta(g(n))$ $a = b$

Operações com a notação O-grande

$$f(n) = O(f(n))$$

 $c \times O(f(n)) = O(f(n)), c = constante$
 $O(f(n)) + O(f(n)) = O(f(n))$
 $O(O(f(n))) = O(f(n))$
 $O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$
 $O(f(n)) O(g(n)) = O(f(n)g(n))$
 $f(n)O(g(n)) = O(f(n)g(n))$

Comportamento assintótico

Técnicas de análise de algoritmos

Comando	Custo
Atribuição, leitura, escrita, condição	O(1)
Sequência de comandos	Determinado pelo maior tempo na sequência
Decisão	Tempo da sequência dentro do comando mais a condição

Técnicas de análise de algoritmos

Comando	Custo
Laços de repetição	Soma do tempo da sequencia dentro do laço mais a condição de parada Multiplicado pelo número de iterações
Procedimentos não recursivos	Deve ser computado separadamente de acordo com as avaliações anteriores

Técnicas de análise de algoritmos

Comando	Custo
Laços de repetição	Soma do tempo da sequencia dentro do laço mais a condição de parada Multiplicado pelo número de iterações
Procedimentos não recursivos	Deve ser computado separadamente de acordo com as avaliações anteriores

Classes de Problemas

Classe	Nome	Situação
f(n) = O(1)	Constante	As instruções do algoritmo são executadas um n.º fixo de vezes.
$f(n) = O(\log n)$	Logarítmica	Algoritmos que resolvem um problema transformando-os em tempos menores.
f(n) = O(n)	Linear	Em geral, um pequeno trabalho é realizado sobre cada elemento da entrada.
f(n) = O(n log n)	n log n	Um problema é transformado em problemas menores, depois, cada um é resolvido independentemente e, depois, juntam-se as soluções.
$f(n) = O(n^2)$	Quadrática	Os itens de dados são processados aos pares, em geral, um laço dentro do outro.
$f(n) = O(n^3)$	Cúbica	Úteis para resolver problemas pequenos.
$f(n) = O(2^n)$	Exponencial	Uso de força bruta aplicado a um problema.
f(n) = O(n!)	Fatorial	Uso de força bruta aplicado a um problema.

Ordenação de um vetor: Mergesort

Divida sublistas em 2 até alcançar pares de valores

Ordene os pares de valores se necessário

Junte e ordene as sublistas e repita o processo até juntar a lista completa

Problema do Caixeiro Viajante

 Visitar n cidades iniciando e terminando em uma mesma cidade, e cada cidade deve ser visitada apenas uma vez.

• menor percurso:

$$C_1$$
, C_3 , C_4 , C_2 , C_1

• E se fossem 50 cidades? São 50! possibilidades, que é aproximadamente 10⁶⁴

Classes de algoritmos e medidas de tempo									
Cl	asse	N. ^c	N.º de Complexidade de Operações e Tempos de Execução (1 instr/μseg)						
		10		10 ²	10 ³				
Constante	O(1)	1	1 µseg	1	1 µseg	1	1 µseg		

6,64

 10^{2}

664

10⁴

10⁶

10³⁰

7 µseg

100 µseg

664 µseg

10 mseg

3,17 * 10¹⁷ anos

1 seg

9,97

10³

9970

10⁶

10⁹

10³⁰¹

10 µseg

1 mseg

10 mseg

16,7 min

 ∞

1 seg

Classe	N.º de Complexi	dade de Operações e Tempos de Execu (1 instr/μseg)

3 µseg

10 µseg

33 µseg

100 µseg

1 mseg

10 mseg

Logarítimo

Linear

n log n

Cúbico

Quadrático

Exponencial

O(log n)

O(n log n)

O(n)

 $O(n^2)$

 $O(n^3)$

 $O(2^n)$

3,32

10

33,2

 10^{2}

10³

1024

Classes de algoritmos e medidas de tempo							
Classe	N.º de Complexidade de Operações e Tempos Execução (1 instr/μseg)						
n	10 ⁴	10 ⁵	106				

de

31,709 anos

 ∞

			Execução (1 instr/μseg)								
	n		104		10 ⁵		106				
Constante	O(1)	1	1 µseg	1	1 µseg	1	1 µseg				
1	0//	40.0	40	1//	7	40.00	20				

Constante	O(1)	1	1 µseg	1	1 µseg	1	1 µseg
Logarítimo	O(log n)	13,3	13 µseg	16,6	7 µseg	19,93	20 µseg
Linear	O(n)	104	10 mseg	10 ⁵	0,1 seg	106	1 seg
n log n	O(n log n)	133*10³	133 mseg	166*10 ⁴	1,6 seg	199,3*10 ⁵	20 seg

11,6 dias

 ∞

Cúbico

Exponencial

 $O(n^3)$

O(2ⁿ)

10¹²

10³⁰¹⁰

n		1	10 ⁴ 10 ⁵		106		
Constante	O(1)	1	1 µseg	1	1 µseg	1	1 µseg
Logarítimo	O(log n)	13,3	13 µseg	16,6	7 µseg	19,93	20 µseg
Linear	O(n)	104	10 mseg	105	0,1 seg	106	1 seg
n log n	O(n log n)	133*10³	133 mseg	166*10 ⁴	1,6 seg	199,3*10 ⁵	20 seg
Quadrático	O(n²)	108	1,7 min	1010	16,7 min	1012	11,6 dias

10¹⁵

10³⁰¹⁰³

31,7 anos

 ∞

1018

10³⁰¹⁰³⁰

Funções Típicas e estimativas O-grande

Funções Típicas e estimativas O-grande

Referências bibliográficas

Observação: o conteúdo dos slides foram extraídos e montados a partir das referências bibliográficas.

• SIPSER, Michael. **Introdução a teoria da computação**. São Paulo: Editora Thomson, 2007.

Capítulo 7: introdução à complexidade de tempo -pág. 261 - 268.

• ZIVIANI, Nívio. **Projeto de algoritmos**: com implementação em Java e C++. 2a. ed. São Paulo: Pioneira, 2006.

Capítulo 1: medida de tempo de execução, comportamento assintótico, classes assintóticas, técnicas de análise de algoritmos.

CORMEN, Thomas H. et al. Algoritmos: Teoria e Prática. Rio de Janeiro:
 Campus, 2002.

Capítulo 3 e 4: crescimento de funções (pág. 32) e recorrências (pág. 50)

• DROZDEK, Adam. **Estrutura de Dados e Algoritmos em C++**. São Paulo: Cengage, 2002.

Capítulo 2: exemplos de análise de algoritmos - páginas 54 - 57.

 ROSEN, Kenneth H. Matemática discreta e suas aplicações. 6a. ed. Porto Alegre: McGraw-Hill, 2009.

Capítulo 3: revisão sobre somatórios - páginas 149 - 158.