Find the scaling of x with & that makes two terms of equal order and others of lower order, in: $\varepsilon x^4 + \varepsilon x^3 - x^2 + 2x - 1 = 0$

Find the leading-order term in each of the four roots .:

If time, continue to higher corrections for these roots:

ATH 46 WORNSHEET

Asymptotic analysis, Dominant balancing.

Bonnett

A) Is $f(t, \epsilon) = \epsilon t$ ant faut $\int_{1/4}^{1/2} ut$ (0, $\frac{1}{1/2}$)? No since tast substituted on (0, $\frac{1}{1/2}$)?

uniformly convegent to zero on (0, 7/4)?

1012 2.

yes since for any $t \in (0, 1/2)$, tant is some number Cand f(t, z) = Cz - 10as $z \to 0$.

B) Find the scaling of x with & that makes two terms of equal order and others of lower order in

 $\epsilon x^4 + \epsilon x^3 - x^2 + 2x$ 1 = 0 guess $x = x^{-1}$? (z^{-3}) dominant z^{-2} z^{-2} z^{-1} $x = \varepsilon'/2!$ ε'' ε'' ε'' ε'' ε'' ε'' ε'' ε'' dominant, balancel

Emplical very to solve; find the line connecting

a points in the (power of x, power of x) plane with all

other points to the right (higher & power).

Find the leading-order to the right (higher & power).

Find the leading-order term in each of the four roots .:

regular root (drop 1st tour lens) - x2 + 2x0 - 1 = 0 so Xo = +1 (furice) Sub. X= 4 > E 4 + E 4 + 24n

1 = 0 $\Rightarrow y^4 + z^{1/2}y^3 - y^2 + 2z^{1/2}y - z = 0$ $y_0^4 - y_0^2 = 0$ white $y_0 = 0$ thing ± 1

If time, continue to higher corrections for these roots:

X= +1 + 4 Eh + 0(4) (finise), ± E" - 3 + 0(E')... X = ± = 1/2