ARQUITETURA DE COMPUTADORES

Conjunto de Instruções 01

O computador NEANDER

- O computador NEANDER tem as seguintes características:
- ☐ Largura de dados e endereços de 8 bits
- □ Dados representados em complemento de dois
- □ 1 (registrador) acumulador de 8 bits (AC)
- □ 1 (registrador) apontador de programa de 8 bits (PC)
- ☐ 1 registrador de estado com 2 códigos de condição: negativo (N) e zero (Z)

Conjunto de instruções do NEANDER Ver PDF Neander.pdf

Formato de instrução e Modo de endereçamento

Ver PDF Neander.pdf

Programa exemplo

- □ Realizar a soma de 3 posições consecutivas da memória e armazenar o resultado numa quarta posição.
- □ Realizar a multiplicação de dois números positivos de 8 bits.

quadro / simulador

Resumo

- ☐ Conjunto de instruções de um processador simples
- ☐ Codificação em linguagem de máquina
- Conceitos:
 - Modo de endereçamento
 - Formato e código de instrução
 - Código de condição
 - Área de programa / área de dados

Questões adicionais... Qual o espaço de endereçamento do NEANDER?

O que você faria se não tivesse medo?

Spencer Johnson

Literatura Weber - cap 4 Patterson & Hennessy - cap 2 Stallings - cap 9


```
Negação - Caso especial 1

□ 0 = 00000000

□ Bitwise not 11111111

□ Add 1 to LSB +1

□ Result 1 00000000

□ Overflow is ignored, so:
□ - 0 = 0 √
```

Negação – Caso especial 2	
	•
□ -128 =	10000000
☐ bitwise not	01111111
☐ Add 1 to LSE	3 +1
☐ Result	1000000
☐ So:	
□ -(-128) = -1	28 X
■ Monitor MSB	(sign bit)
☐ It should cha	ange during negation
-	

Range of Numbers

- 8 bit 2s compliment
 - \blacksquare +127 = 011111111 = 2⁷ -1
 - $-128 = 10000000 = -2^7$
- ☐ 16 bit 2s compliment
 - \blacksquare +32767 = 0111111111 11111111 = 2^{15} 1
 - -32768 = 100000000 00000000 = -2¹⁵

Conversion de tamanho (extensão de sinal)

- □ Positive number pack with leading zeros
 - **■** +18 = 00010010
 - **+**18 = 00000000 00010010
- Negative numbers pack with leading ones
 - -18 = 10010010
 - **-**18 = 11111111 10010010
- ☐ i.e. pack with MSB (sign bit)