Topological phases and topological field theories

Arun Debray

April 1, 2020

Overview

- ► The math in this talk comes from the study of topological phases of matter in condensed-matter physics
- ► I'll first briefly discuss topological phases of matter and what we know about modeling them mathematically
- Lots that we don't know about modeling topological phases mathematically, but we can extract and solve some questions

Topological phases of matter

- Condensed-matter physicists discovered certain materials that didn't fit into the previously understood classification of phases of matter
 - e.g., take some alloy, cool it to a certain temperature, maybe apply a magnetic field...

Topological phases of matter

- Condensed-matter physicists discovered certain materials that didn't fit into the previously understood classification of phases of matter
 - e.g., take some alloy, cool it to a certain temperature, maybe apply a magnetic field...
- ► These materials behave in unusual ways
 - Example: particle-like excitations that are neither bosons nor fermions

Topological phases of matter

- Condensed-matter physicists discovered certain materials that didn't fit into the previously understood classification of phases of matter
 - e.g., take some alloy, cool it to a certain temperature, maybe apply a magnetic field...
- ► These materials behave in unusual ways
 - Example: particle-like excitations that are neither bosons nor fermions
- So condensed-matter theorists set out to classify these phases

- As usual in condensed-matter physics, use lattice Hamiltonian systems
- ► Triangulate the ambient manifold *M*
- ▶ Use the combinatorial data of the triangulation to write down a Hilbert space \mathcal{H} and Hamiltonian $H: \mathcal{H} \to \mathcal{H}$
- ► These must be "local," built out of things which only depend on information within a specified radius

As in QM, \mathcal{H} is the space of states; an eigenvector with eigenvalue E is a state of the system with energy E.

- As in QM, \mathcal{H} is the space of states; an eigenvector with eigenvalue E is a state of the system with energy E.
- Lowest-energy states, called *ground states*, are vacuum states, with no particles

- As in QM, \mathcal{H} is the space of states; an eigenvector with eigenvalue E is a state of the system with energy E.
- Lowest-energy states, called *ground states*, are vacuum states, with no particles
- ► The next lowest-energy states correspond to particles localized to specific regions of *M*
 - "Next-lowest energy state" requires a gapped Hamiltonian!

- As in QM, \mathcal{H} is the space of states; an eigenvector with eigenvalue E is a state of the system with energy E.
- Lowest-energy states, called *ground states*, are vacuum states, with no particles
- ► The next lowest-energy states correspond to particles localized to specific regions of *M*
 - "Next-lowest energy state" requires a gapped Hamiltonian!
- ▶ Two such systems expected to describe same physics ("in the same phase") if one can be deformed into another without closing the gap.

Difficulties with a straightforward approach

Sounds straightforward, right? Take a space of all Hamiltonians, remove the gapless ones, take π_0 , and voilà!

Difficulties with a straightforward approach

- Sounds straightforward, right? Take a space of all Hamiltonians, remove the gapless ones, take π_0 , and voilà!
- We're nowhere near making this a reality
 - Usual obstructions to making QFT mathematical
 - Also a few new surprises from condensed matter (e.g. fractons)

▶ We have to find another way to study topological phases

- We have to find another way to study topological phases
- ► **Key ansatz**: there should be a way to extract a topological field theory (TFT) in the mathematical sense, as due to Atiyah-Segal, from a lattice Hamiltonian system

- We have to find another way to study topological phases
- ► Key ansatz: there should be a way to extract a topological field theory (TFT) in the mathematical sense, as due to Atiyah-Segal, from a lattice Hamiltonian system
 - Should induce an equivalence between topological phases and suitable equivalence classes of TFTs
 - ▶ Borne out of physics ideas, but not yet a mathematical theorem or even precise conjecture
 - TFT is called the low-energy limit of the lattice system

- We have to find another way to study topological phases
- ► **Key ansatz**: there should be a way to extract a topological field theory (TFT) in the mathematical sense, as due to Atiyah-Segal, from a lattice Hamiltonian system
 - Should induce an equivalence between topological phases and suitable equivalence classes of TFTs
 - Borne out of physics ideas, but not yet a mathematical theorem or even precise conjecture
 - ► TFT is called the *low-energy limit* of the lattice system
- Concretely, state space of TFT on N^{n-1} should be the space of ground states of lattice model on N

- We have to find another way to study topological phases
- ► **Key ansatz**: there should be a way to extract a topological field theory (TFT) in the mathematical sense, as due to Atiyah-Segal, from a lattice Hamiltonian system
 - Should induce an equivalence between topological phases and suitable equivalence classes of TFTs
 - Borne out of physics ideas, but not yet a mathematical theorem or even precise conjecture
 - ► TFT is called the *low-energy limit* of the lattice system
- Concretely, state space of TFT on N^{n-1} should be the space of ground states of lattice model on N
- Though no general approach yet, we can study examples!

The toric code is the *Drosophila melanogaster* of this field. Let *M* be a closed *d*-manifold with a triangulation.

- ► Fields: the (discrete) groupoid $\operatorname{Bun}_{\mathbb{Z}/2}(M^1, M^0)$: pairs of a principal $\mathbb{Z}/2$ -bundle P on the 1-skeleton of M with a trivialization ξ on the restriction to the 0-skeleton
- ▶ State space is $\mathcal{H} := \mathbb{C}[\operatorname{Bun}_{\mathbb{Z}/2}(M^1, M^0)]$. We'll denote states by φ

► Given a vertex ν , let ψ_{ν} be the involution on Bun_{ℤ/2}(M^1, M^0) switching the trivialization of at ν . Define the operator $A_{\nu} : \mathcal{H} \to \mathcal{H}$ by $A_{\nu}(\varphi) := \varphi \circ \psi_{\nu}$.

- ▶ Given a vertex ν , let ψ_{ν} be the involution on Bun_{ℤ/2}(M^1, M^0) switching the trivialization of at ν . Define the operator $A_{\nu} : \mathcal{H} \to \mathcal{H}$ by $A_{\nu}(\varphi) := \varphi \circ \psi_{\nu}$.
- ▶ Given a face f and a principal bundle $P \to M^1$, let $\operatorname{Hol}_p(f)$ denote the holonomy of P around f. Define the operator $B_f \colon \mathscr{H} \to \mathscr{H}$ with $B_f(\varphi)(P, \xi) \coloneqq (-1)^{\operatorname{Hol}_p(f)} \varphi(P, \xi)$.

- ▶ Given a vertex ν , let ψ_{ν} be the involution on Bun_{ℤ/2}(M^1, M^0) switching the trivialization of at ν . Define the operator $A_{\nu} : \mathcal{H} \to \mathcal{H}$ by $A_{\nu}(\varphi) := \varphi \circ \psi_{\nu}$.
- ▶ Given a face f and a principal bundle $P \to M^1$, let $\operatorname{Hol}_P(f)$ denote the holonomy of P around f. Define the operator $B_f \colon \mathscr{H} \to \mathscr{H}$ with $B_f(\varphi)(P, \xi) \coloneqq (-1)^{\operatorname{Hol}_P(f)} \varphi(P, \xi)$.
- ► The Hamiltonian is

$$H := \sum_{\nu} \frac{1}{2} (1 - A_{\nu}) + \sum_{f} \frac{1}{2} (1 - B_{f}).$$

- Our ansatz says to get at the toric code using its low-energy TFT
- We can see what such a TFT would have to look like by studying the spaces of ground states of the toric code on various manifolds

- The toric code Hamiltonian is very nice: the H_{ν} and H_f terms are commuting projectors
- ► This means the space of ground states is the intersection of their kernels

- The toric code Hamiltonian is very nice: the H_{ν} and H_f terms are commuting projectors
- This means the space of ground states is the intersection of their kernels
- \triangleright ker(H_v) is functions not depending on the trivialization at v
- ▶ $\ker(H_f)$ is the functions which vanish on principal $\mathbb{Z}/2$ -bundles $P \to M^1$ which don't extend across f

- ▶ Upshot: the space of ground states is the space of functions on $\pi_0 \operatorname{Bun}_{\mathbb{Z}/2}(M)$
- ▶ This suggests that the low-energy TFT is $\mathbb{Z}/2$ *finite gauge theory* (aka *untwisted* $\mathbb{Z}/2$ -*Dijkgraaf-Witten theory*), which assigns to a closed (n-1)-manifold M the space of functions on $\text{Bun}_{\mathbb{Z}/2}(M)$

- ▶ Upshot: the space of ground states is the space of functions on $\pi_0 \operatorname{Bun}_{\mathbb{Z}/2}(M)$
- ▶ This suggests that the low-energy TFT is $\mathbb{Z}/2$ *finite gauge theory* (aka *untwisted* $\mathbb{Z}/2$ -*Dijkgraaf-Witten theory*), which assigns to a closed (n-1)-manifold M the space of functions on $\text{Bun}_{\mathbb{Z}/2}(M)$
- ► What we can say mathematically: the state space of this TFT agrees with the space of ground states of the toric code
 - Can't see the values on (most) bordisms yet

The GDS model

- ► The *GDS model* is a closely related example
- ► The H_v term is modified by a sign
- This messes up the commutation relations, so the proof we just saw doesn't work

Main theorem

In this theorem, I will say what the low-energy TFT of the GDS model is (well, to the extent that can be done mathematically) using terms I haven't defined. I'll define those terms in the next part of the talk.

Main theorem

In this theorem, I will say what the low-energy TFT of the GDS model is (well, to the extent that can be done mathematically) using terms I haven't defined. I'll define those terms in the next part of the talk.

Theorem (D., 2018)

Let $Z \colon \operatorname{Bord}_n \to \operatorname{Vect}_{\mathbb{C}}$ be the $\mathbb{Z}/2$ -gauge-gravity theory with Lagrangian β equal to the degree n part of $w\alpha/(1+\alpha)$, where w is the total Stiefel-Whitney class and $\alpha \in H^1(B\mathbb{Z}/2;\mathbb{Z}/2)$ is the nontrivial element (thought of as a characteristic class of principal $\mathbb{Z}/2$ -bundles).

Then, Z "is" the low-energy TFT of the GDS model, in that on any closed (n-1)-manifold M, Z(M) is isomorphic to the space of ground states of the GDS model on M, and this isomorphism intertwines the natural MCG(M)-actions on each space.

Invertible field theories

- ► The cobordism hypothesis says: classifying all TFTs is hard!
- Focus on an easier, but still interesting, subclass

Definition (Freed-Moore)

A topological field theory $Z \colon \operatorname{Bord}_n \to \operatorname{Vect}$ is *invertible* if there is another TFT $Z' \colon \operatorname{Bord}_n \to \operatorname{Vect}$ such that $Z \otimes Z' \simeq \mathbf{1}$.

Isomorphism classes of invertible TFTs (IFTs) form an abelian group under tensor product.

Invertible topological phases

- ▶ Want to define invertible topological phases (aka *symmetry-protected topological* (SPT) phases) similarly: a phase is invertible if there is another phase such that when you tensor them together, you get the trivial phase
- "Tensor" is stacking, placing both phases on the same material, but with no interactions between them
 - Explicitly: tensor Hilbert spaces of states together; Hamiltonian is $H := H_1 \otimes 1 + 1 \otimes H_2$
- Makes sense from physics POV, but not yet a mathematical definition
- ► The ansatz specializes: taking the low-energy TFT should produce an equivalence between the classifications of SPT phases and of IFTs

- ▶ If A, B are commutative monoids, f: $A \rightarrow B$ an *invertible* homomorphism (i.e. $Im(f) \subset B^{\times}$), we can extend f to $K_0(A)$, the abelian group obtained by formally inverting all elements of A
 - ► Recipe: $f(x^{-1}) := f(x)^{-1}$, which exists because $f(x) \in B^{\times}$

- ▶ If A, B are commutative monoids, f: $A \rightarrow B$ an *invertible* homomorphism (i.e. $Im(f) \subset B^{\times}$), we can extend f to $K_0(A)$, the abelian group obtained by formally inverting all elements of A
 - ► Recipe: $f(x^{-1}) := f(x)^{-1}$, which exists because $f(x) \in B^{\times}$
- ► Maps of abelian groups $K_0(A) \to B^{\times}$ are in natural bijection with invertible maps $A \to B$

This argument categorifies: replace commutative monoids with symmetric monoidal categories, and replace abelian groups with spectra

This argument categorifies: replace commutative monoids with symmetric monoidal categories, and replace abelian groups with spectra

Theorem (Freed-Hopkins, following Galatius-Madsen-Tillmann-Weiss, Schommer-Pries)

There's a natural isomorphism between the abelian group of n-dimensional invertible TFTs with G-structure valued in $\mathrm{SVect}_{\mathbb{C}}$ and $[\Sigma^n MTG_n, \Sigma^n I\mathbb{C}^{\times}].$

- ► MTG_n is a Madsen-Tillmann spectrum (pull back the negative of the tautological bundle along $BG_n \to BO_n$, take Thom spectrum)
- ► $I\mathbb{C}^{\times}$ is the Pontrjagin dual of the sphere, characterized by $[E, \Sigma^n I\mathbb{C}^{\times}] \cong \operatorname{Hom}_{\operatorname{Ab}}(\pi_n E, \mathbb{C}^{\times}].$

Classification of invertible TFTs

- ► MTG_n is a Madsen-Tillmann spectrum (pull back the negative of the tautological bundle along $BG_n \to BO_n$, take Thom spectrum)
- ► $I\mathbb{C}^{\times}$ is the Pontrjagin dual of the sphere, characterized by $[E, \Sigma^n I\mathbb{C}^{\times}] \cong \operatorname{Hom}_{\operatorname{Ab}}(\pi_n E, \mathbb{C}^{\times}].$
- ▶ Note: Freed-Hopkins also prove a version for extended TFTs

- \blacktriangleright $\pi_n(MTG_n)$ is a bordism group, but under a stricter equivalence relation than ordinary G-bordism
- ► Thus ordinary bordism invariants define these kinds of
- bordism invariants, giving IFTs Freed-Hopkins prove that for reflection-positive IFTs, you get
- precisely ordinary bordism invariants (Modulo a very believable conjecture)

Some examples

- Fix a finite group G and $\beta \in H^n(BG; \mathbb{R}/\mathbb{Z})$. This defines a \mathbb{C}^\times -valued bordism invariant of oriented manifolds with a principal G-bundle: use the classifying map $f: M \to BG$ to pull back β ; evaluate on the fundamental class, then exponentiate: $\exp(2\pi i \langle f^*\beta, [M] \rangle) \in \mathbb{C}^\times$. These give invertible TFTs called classical Dijkgraaf-Witten theories
 - First constructed by Freed-Quinn by other means
 - "Classical" here means that the cohomology class plays the role of a Lagrangian in a classical gauge theory

Some examples

- ► Slight variant: take $\beta \in H^n(BG; \mathbb{Z}/2)$, multiply it with Stiefel-Whitney classes of M, then evaluate and exponentiate as before, defining invertible TFTs called *classical* gauge-gravity theories
 - "gauge-gravity" indicates the Lagrangian has terms corresponding to the principal bundle ("gauge") and a characteristic class of the underlying manifold ("gravity")
- Other interesting IFTs from bordism invariants: Arf theory, Arf-Brown-Kervaire theory,...

Some upshots

- Compare this classification of IFTs to preexisting classifications of SPTs by other (physics) methods.
 - Freed-Hopkins, J. Campbell
 - The classifications match, a good sign for the ansatz

Some upshots

- Compare this classification of IFTs to preexisting classifications of SPTs by other (physics) methods.
 - Freed-Hopkins, J. Campbell
 - ► The classifications match, a good sign for the ansatz
- Use this classification to construct invertible TFTs
 - Then use those to construct more TFTs
 - Convenient way to define the TFT I used to get the spaces of ground states of the GDS model

Producing the quantum theory

- To obtain the gauge-gravity theory in the theorem statement, one "quantizes" the classical theory $Z_{\beta}^{c\ell}$
- ightharpoonup Specifically, a finite form of path integral quantization: sum over principal $\mathbb{Z}/2$ -bundles

Producing the quantum theory

- To obtain the gauge-gravity theory in the theorem statement, one "quantizes" the classical theory $Z_{\beta}^{c\ell}$
- ► Specifically, a finite form of path integral quantization: sum over principal Z/2-bundles
 - ► *M* closed, codimension 0, this is a weighted sum of $Z_{\beta}^{c\ell}(M, P)$ for $P \in \pi_0 \text{Bun}_{\mathbb{Z}/2}(M)$
 - N closed, codimension 1, this is the sections of a vector bundle over the groupoid $\operatorname{Bun}_{\mathbb{Z}/2}(N)$; the fiber at P is $Z_{\beta}^{c\ell}(N,P)$

Producing the quantum theory

- To obtain the gauge-gravity theory in the theorem statement, one "quantizes" the classical theory $Z_{\beta}^{c\ell}$
- ► Specifically, a finite form of path integral quantization: sum over principal Z/2-bundles
 - ► *M* closed, codimension 0, this is a weighted sum of $Z_{\beta}^{c\ell}(M, P)$ for $P \in \pi_0 \text{Bun}_{\mathbb{Z}/2}(M)$
 - N closed, codimension 1, this is the sections of a vector bundle over the groupoid $\operatorname{Bun}_{\mathbb{Z}/2}(N)$; the fiber at P is $Z_{\beta}^{c\ell}(N,P)$
- ▶ ℤ/2 is finite, so these are finite sums, hence can be (and are) defined as mathematical operations on TFTs

Main theorem, redux

Theorem (D., 2018)

Let $Z \colon \operatorname{Bord}_n \to \operatorname{Vect}_{\mathbb{C}}$ be the $\mathbb{Z}/2$ -gauge-gravity theory with Lagrangian β equal to the degree n part of $w\alpha/(1+\alpha)$, where w is the total Stiefel-Whitney class and $\alpha \in H^1(B\mathbb{Z}/2;\mathbb{Z}/2)$ is the nontrivial element (thought of as a characteristic class of principal $\mathbb{Z}/2$ -bundles).

Then, Z "is" the low-energy TFT of the GDS model, in that on any closed (n-1)-manifold M, Z(M) is isomorphic to the space of ground states of the GDS model on M, and this isomorphism intertwines the natural MCG(M)-actions on each space.

A few things we don't know

1. Extracting more of the TFT from the lattice model

A few things we don't know

- 1. Extracting more of the TFT from the lattice model
- 2. Comparing with conclusions of Fidkowski, Haah, Hastings, and Tantivasadakarn

A few things we don't know

- 1. Extracting more of the TFT from the lattice model
- 2. Comparing with conclusions of Fidkowski, Haah, Hastings, and Tantivasadakarn
- 3. Studying less-understood variants of topological phases
 - Fractons, higher-order SPTs
 - Crystalline phases: the symmetry group can act on space
 - Work in progress comparing a proposal by Freed-Hopkins to physicists' calculations by other methods