Dynamic Path Following Robot using Vision Based Controls

By: Amar Bhatt & Rasika Kangutkar

Goals

Create a low-cost Automatic Guided Vehicle (AVG)

System must be wireless

Implement a user interface to control robot path

Implement vision based control algorithm

System Overview

Procedure

1. Detect ArUco Markers

2. Drawing a Path

3. Accuracy Thresholds

$$d = \sqrt{(x_c - x_g)^2 + (y_c - y_g)^2}$$

$$a = V_o \cdot V_g$$

$$\theta = atan2(V_{g_x}*V_{n_y} - V_{g_y}*V_{n_x}, V_{g_x}*V_{n_x} + V_{g_y}*V_{n_y})$$

4. Following the Path

Dynamic Path Following Robot using Vision Based Control

By: Amar Bhatt & Rasika Kangutkar

Results

Results (continued...)

ERROR ANALYSIS

a^*	d^*	STD	Mean	Max	Min	Estimated
			Error	Error	Error	Error
0.95	20	0.68	4.82	5.56	1.30	6.19
0.99	20	0.68	4.76	5.55	2.83	6.11
0.99	15	0.76	3.13	4.01	1.00	4.65

Error in cm, d^* in px a^* = orientation threshold, d^* = distance threshold

Conclusion & Future Work

Threshold cannot be too small

Timing Threshold is important to not overflow serial buffer

Decreasing distance threshold causes an increase in orientation threshold

Obstacle avoidance

Multiple camera tracking

Multiple agents