ΧΑΡΑΛΑΜΠΟΣ ΑΝΑΣΤΑΣΙΟΥ ΑΜ: 1093316

ΑΓΑΠΗ ΑΥΓΟΥΣΤΙΝΟΥ ΑΜ: 1093327

ΑΝΑΦΟΡΑ 3_{ΗΣ} ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ VLSI

ΘEMA 1

ΘΕΩΡΗΤΙΚΟ ΣΚΕΛΟΣ:

Euler method for Cout(1 κοινή διάχυση):

Euler method for Sum(2 διαφορετικές διαχύσεις):

ΥΛΟΠΟΙΗΣΗ ΣΤΟ MICROWIND:

ΣΧΟΛΙΑ: Η κυματομορφή του Cout είναι αποδεκτή, όχι όμως του Sum διότι έχω high-z έξοδο σε ορισμένα σημεία. Δεν καταφέραμε να εντοπίσουμε που βρισκόταν το λάθος στη σχεδίασή μας.

OEMA 2

Οι ζητούμενες μετρήσεις φαίνονται στον παρακάτω πίνακα:

	t _{fall}	t _{rise}	t _{prop}	d
Inverter(n=0)	3	3	3	1
n=1	6	6	6	2
n=3	14	13	13.5	4
n=6	24	22	23	7

Στο ιδανικό σενάριο, περιμέναμε να δούμε στο t_{prop} τις τιμές 3,6,12 και 21 για n=0,1,3,6 αντίστοιχα. Αν και οι μετρήσεις μας δεν ταυτίζονται απόλυτα με τις ιδανικές αυτές τιμές, είναι πολύ κοντά σε αυτές.