Now, let us consider the nonhomogeneous problem ay'' + by' + cy = f(x)

We will Start with a solution technique called the method of undetermined coefficients

In this method, we look for a Solution Yp of the DE that looks "Similar" to f(x) (with arbitrary constant coefficients) while also taking into account its derivatives.

For example, if f(x) is a polynomial of degree n, wid look for y_p of the form $y_p = A_n x^n + A_{n-1} x^{n-1} + \dots + A_r x + A_0$

where An, ..., Ao are arbitrary Constants. If f(x) is a polynomial of degree n multiplied by exx, we'd look for your the form /p = (Anx" + An-1x"-1-+4,x+Ao)exx It f(x) is a polynomial of degree 1 multiplied by exxcos(Bx) and/or exxsln(Bx), we'd look for yo of the form $\forall \rho = (A_n \mathbf{X}^n + \dots + A_o) e^{\alpha \mathbf{x}} \cos(\beta \mathbf{x}) + (B_n \mathbf{x}^n + \dots + B_o) e^{\alpha \mathbf{x}} \sin(\beta \mathbf{x})$ We then plug Yp, Yp', and Yp" into the DE and solve for the coefficients $y'' + 2y' - 8y = -16x^2$ Let $y_p = A_z x^2 + A_i x + A_o$ Then Yp' = ZAzX + A, $Y_p'' = 2A_z$

Plug these into DE to get

$$2A_2 + 2(2A_2x + A_1) - 8(A_2x^2 + A_1x + A_0) = -16x^2$$
 $-8A_2x^2 + (4A_2 - 8A_1)x + (2A_2 + 2A_1 - 8A_0)$
 $= -16x^2$

Compare the x^2 terms: $-8A_2 = -16$

Compare the x terms: $4A_2 - 8A_1 = 0$

Compare the constant terms: $2A_2 + 2A_1 - 8A_0 = 0$

Then $A_2 = 2$, $A_1 = 1$, $A_0 = \frac{3}{4}$

Thus $y = 2x^2 + x + \frac{3}{4}$
 $y = 2x^2 + x + \frac{3}{4}$

Then
$$y_p' = 3Ae^{3x}$$
 and $y_p'' = 9Ae^{3x}$

Plug these into the DE to get

 $9Ae^{3x} + 6Ae^{3x} - 8Ae^{3x} = 14e^{3x}$
 $7Ae^{3x} = 14e^{3x}$ so $A = 2$

Thus $y_p = 2e^{3x}$

2) $y_p = (Ax + B)e^x$
 $y_p'' = (Ax + B)e^x + Ae^x$
 $y_p'' = (Ax + B)e^x + 2Ae^x$

Plug these into the DE to get

 $Axe^x + Be^x + 2Ae^x + 2Axe^x + 2Be^x + 2Ae^x$
 $-8Axe^x - 8Be^x = -25xe^x$
 $-5Axe^x + (-5B + 4A)e^x = -25xe^x$

Compare the
$$xe^{x}$$
 terms: $-5A = -25$
Compare the e^{x} terms: $-5B+4A = 0$
So $A = 5$ and $B = 4$
Thus $(4) = (5x + 4)e^{x}$
3) $4 = A \sin(2x) + B \cos(2x)$
 $4 = 2A \cos(2x) - 2B \sin(2x)$
 $4 = -4A \sin(2x) - 4B \cos(2x)$
Plug these into the DE to get $-4A \sin(2x) - 4B \cos(2x) + 4A \cos(2x) - 4B \sin(2x)$
 $-8A \sin(2x) - 8B \cos(2x) = -40 \sin(2x)$
 $= (-12A - 4B) \sin(2x) + (4A - 12B) \cos(2x) = -40 \sin(2x)$
Compare $\sin(2x)$ terms: $-12A - 4B = -40$

Compare
$$cos(2x)$$
 terms: $4A - 12B = 0$
 $A=3B$ so $-40B=-40$
 $Compare$ $Cos(2x)$ terms: $4A - 12B = 0$
 $Cos(2x)$ terms: $4A - 12B$
 $Cos(2x)$ t

Since r=2 is a solution to the auxiliary equation $r^2 + 2r - 8 = 0$ for the DE, e^{2x} is a solution to the homogeneous DE y'' + 2y' - 8y = 0 Let's +ry $y_p = Axe^{2x}$ instead.

Then
$$y'_{1} = 2Axe^{2x} + Ae^{2x}$$
 $y''_{1} = 4Axe^{2x} + 4Ae^{2x}$

Plug these into the DE to get

 $4Axe^{2x} + 4Ae^{2x} + 4Axe^{2x} + 2Ae^{2x}$
 $-8Axe^{2x} = e^{2x}$
 $6Ae^{2x} = e^{2x}$
 $506A = 1$

ie $A = \frac{1}{6}$

Thus $y_{1} = \frac{1}{6}xe^{2x}$

Will this always work?

 $5x - y'' + y = 5in(x)$
 $5x - y'' + y = 5in(x)$

-ASIN(X) - BCOS(X) + ASIN(X) + BCOS(X) = SIN(X)

$$O = SIN(X)$$

Let's +rg $V_p = X(ASIN(X) + BCOS(X))$

$$V_p' = X(ACOS(X) - BSIN(X)) + ASIN(X) + BCOS(X)$$

$$V_p'' = X(-ASIN(X) - BCOS(X)) + 2(ACOS(X) - BSIN(X))$$
Plug there into DE to get
$$X(-ASIN(X) - BCOS(X)) + 2ACOS(X) - 2BSIN(X) + X(ASIN(X) + BCOS(X))$$

$$= SIN(X)$$

$$= SIN(X)$$

$$2ACOS(X) - 2BSIN(X) = SIN(X)$$

$$Compare Cos(X) term: 2A = O$$

$$Compare SIN(X) + Erm: -2B = 1$$

$$SO A = O \text{ and } B = -\frac{1}{2}$$
Thus $(Y_p = Q) - \frac{1}{2} \times COS(X)$

Exi
$$y'' - 4y' + 4y = e^{2x}$$

Start with $y_p = Ae^{2x}$
 $y_i'^2 = 2Ae^{2x}$ and $y_i''^2 = 4Ae^{2x}$
Plug Into DE to get
 $4Ae^{2x} - 8Ae^{2x} + 4Ae^{2x} = e^{2x}$
 $O = e^{2x}$
Let's try $y_i = Axe^{2x}$
 $y_i'^2 = 2Axe^{2x} + Ae^{2x}$
 $y_i''^2 = 4Axe^{2x} + 4Ae^{2x}$
Plug Into DE to get
 $4Axe^{2x} + 4Ae^{2x} - 8Axe^{2x} - 4Ae^{2x} + 4Axe^{2x}$
 $O = e^{2x}$

Note Auxiliary equation for this DE is $(r-2)^2 = 0$ both e^{2x} and xe^{2x} solve the homogeneous Dt Letir try 1/2 = Ax2e2x $//= 2Ax^2e^{2x} + 2Axe^{2x}$ $y'' = 44x^2e^{2x} + 8Axe^{2x} + 2Ae^{2x}$ Plus into the DE to get 4Ax2e2x + 8Axe2x + 2Ae2x - 8Ax2e2x - 8Axex $+ 44x^2e^{2x} = e^{2x}$ $2Ae^{2x} = e^{2x}$ so $A = \frac{1}{2}$ Thus 1/2= 1/2 x2e2x Consider the DE ay" + by' + cy = f(x)

If f(x) is a degree n polynomial multiplied by erx (r a constant), then i) If I is not a solution the auxiliary equation $ar^2 + br + c = 0$, let Yp= (Anx"+ An-, x"++ -+ A,x+Ao)e"x (i) If r is a single (ie not repeated) solution to the auxiliary equation let Yp= (Anxn+-+ Aix+ Ao)xerx = (Anxⁿ⁺¹+-+ A₁x²+ A₀x)e^{rx} iii) If rir a refeated solution to the auxilian equation, let /= (Anx"+-+ A1x+ A0)x2erx = (Anxn+2+ --+ A,x3+ Aox2)erx If f(x) is a degree n polynomial multiplied by exx sin (bx) and/or exx cor(bx), then i) If $x \neq \beta i$ are not so solutions to the

auxiliar, equation, let Yy = (Anx"+-+ Aix+ Ao) ex sin (Bx) + (B, xn+-+ B, x+B) ex cos(px) at pi are solution to the auxilian eq. let /p = (An xn+1+-+ A, x2+ Aox) ex srn (px) + (Bnxnt1+-+ B,x2+ Box)ex cos(Px) 1) $y'' - 3y' + 2y = e^{8x}$ 2) $y'' - 3y' + 2y = Xe^{x}$ 3) $y'' - 2y' + y = e^{3x} + \cos(2x)$ 1) Start with 1/2= Ae8x Suree 8 is not a root of qualities equation we keep 1/2 Ae8x Then yo'= 8Ae8x and yo'= 64Ae8x

Plug into DE to get

$$64Ae^{8x} - 24Ae^{8x} + 2Ae^{8x} = e^{8x}$$
 $42Ae^{8x} = e^{8x}$
 $A = 42$

Thu, $Y_p = 42e^{9x}$

Share 1 is a single root of auxiliary equive modify $Y_p = (Ax^2 + Bx)e^x$
 $Y_p'' = (Ax^2 + Bx)e^x + (2Ax + B)e^x$
 $Y_p''' = (Ax^2 + Bx)e^x + 2(2Ax + B)e^x + 2Ae^x$

Plug into DE to get

 $Ax^2e^x + Bxe^x + 4Axe^x + 2Be^x + 2Ae^x - 3Ax^2e^x$
 $-3Bxe^x - 6Axe^x - 3Be^x + 2Ax^2e^x + 2Bxe^x = xe^x$

$$4Ae^{3x} + (-3B-4C)\cos(2x) + (4B-3C)\sin(2x)$$

$$= e^{3x} + \cos(2x).$$
(ompare e^{3x} terms: $4A = 1$
11 $\cos(2x)$ terms: $-3B-4C = 1$
12 $\sin(2x)$ terms: $4B-3C = 0$

$$A = \frac{1}{4}, \quad B = -\frac{3}{25}, \quad C = -\frac{4}{25}$$
Thus, $\sqrt{p} = \frac{1}{4}e^{3x} - \frac{3}{25}\cos(2x) - \frac{4}{25}\sin(2x)$

This last example illustrates the superposition principle, which states if Yp. is a solution to ay" + by' + cy = f(x) and Ypz is a solution to ay" + by' + cy = g(x) then Yp, + Ypz is a solution to ay" + by' + cy = f(x) + g(x)

We can thur apply MoUC simultaneously for both f and 9. Ex: 0000 y"- y'= x + e4x Start with 1/p = Ax + B + Ce4x $= (Ax + B)e^{0x} + (e^{4x})$ is a root of the auxilian eq, we modify $y_p = (Ax^2 + Bx)e^{0x} + Ce^{4x}$ $= Ax^2 + Bx + Ce^{4x}$ Yp'= 2Ax+ B+ 4(e4x 16"= 2A + 16Ce4x Plug Into DE to get $2A + 16Ce^{4x} - 2Ax - B - 4Ce^{4x} = x + e^{4x}$ $-2Ax + (2A-B) + 12Ce^{48} = x + e^{48}$

Compare x terms!
$$-2A = 1$$

11 constant terms: $2A - B = 0$

11 e^{4x} terms: $12C = 1$

So $A = -\frac{1}{2}$, $B = -1$, $C = \frac{1}{12}$

Thu $(y_p = -\frac{1}{2}x^2 - x + \frac{1}{12}e^{4x})$

The superposition principle also tells us how to find the general solution to ay"t by t cy = f(x). If we write this as ay'' + by' + Cy = O + f(x), then if y_h Is the solution to ay" + by't Cy=0 and Yp Is a solution to ay" + by' + cy= f(x), then Y= Yn+ Yp is a solution to ay"+ by'+ cy = f(x) as well.

Thus, to find the general solution to ay'' + by' + cy = f(x),:

- 1) Find general solution In to homogeneous

 DE ay'' + by' + Cy = 0
- 2) Fond particular solution yp to ay" + by tcy = f(x)
- $y = y_h + y_p$

 $F_{X}: 1) y'' + 6y' + 8y = 3e^{x}$ $2) y'' - 7y' + 10y = e^{2x} + e^{5x}$

1) Auxilory eq 15 $r^2 + 6r + 8 = 0$ ie (r+4)(r+2)=050 r=-4, -2Thus $y_h = c_1e^{-4x} + c_2e^{-2x}$

Look for $y_p = Ae^x$. Then $y_p' = Ae^x = y_p''$ Plug Into DE to get $Ae^x + 6Ae^x + 8Ae^x = 3R^x$ ie $15Ae^x = 3e^x$

So
$$A = \frac{1}{5}$$
 and $\frac{1}{10} = \frac{1}{5}e^{x}$
Therefore, $(y = c_{1}e^{-4x} + c_{2}e^{-2x} + \frac{1}{5}e^{x})$

2) Auxillar eq 15 12-7r+10=0 1e (r-5)(r-2) = 0 so r = 5, 2Thus $y_h = c_1 e^{5x} + c_2 e^{2x}$ Start with Yr = Aer + Bezx Stree 5 and 2 are both roots, sof the auxilian ea, and multiply both by X 1e $y_r = Axe^{5x} + Bxe^{2x} = x(Ae^{5x} + Be^{2x})$ Then Y'= X(5Aesx + 2Bezx) + Aesx + Bezx Yp= x (25Ae5x + 4Be2x) + 2(5Ae5x + ZBe2x)

Ply these into Dt to get 25xAe^{5x} + 4bxe^{2x} + 10Ae^{5x} + 4be^{2x} - 35Ae^{5x} - 14bxe^{2x}

$$-7Ae^{5x} - 7be^{2x} + 10Axe^{5x} + 10bxe^{2x} = e^{5x} + e^{2x}$$

$$3Ae^{5x} - 3be^{2x} = e^{5x} + e^{2x}$$

$$(ompare e^{5x} terms: 3A = 1)$$

$$11 e^{2x} terms: -3\beta = 1$$

$$50 A = \frac{1}{3}, b = -\frac{1}{3}, || y_p = \frac{1}{3}xe^{5x} - \frac{1}{3}xe^{2x}$$
Hence, $y = C_1e^{5x} + C_2e^{2x} + \frac{1}{3}xe^{5x} - \frac{1}{3}xe^{2x}$

A Second feelingue for solving nonhomogeness, second-order DEs is variation of parameters. For this method, we will wrote our DEs as y'' + by' + cy = f(x)

Recall that to solve the DE y" + by + cy=0, we find two linearly independent solutions

1, 1/2 and let 1/n= Gy, + Cz7z

To solve the nonhomogeneous DE, we Instead look for tunction combination of Y, and yz ie yp = V, Y, + VzYz where V, and Vz are functions. Then $y_1' = V_1' y_1 + V_1 y_1' + V_2 y_2' + V_2' y_2$ = V, Y, ' + Vz/2' + (V, 'Y, + Vz Yz) 1/ = V, 4," + V, 4, + V242 + V242 + dx (V, 4, + 12 4z) Plus these into the DE to get V, Y," + V, Y, + V2 Y2" + V2 Y2" + Jx (V, Y, + V2 Y2) + bv, y, + bv2 yz + b(v, y, + vz / yz) + Cv, y, + Cv2 yz $V_{1}(Y_{1}" + bY_{1}' + CY_{1}) + V_{2}(Y_{2}" + bY_{2}' + CY_{2}) + (V_{1}'Y_{1}' + V_{2}'Y_{2}')$

 $+ \frac{d}{dx} \left(V_1' Y_1 + V_2' Y_2 \right) + b \left(V_1' Y_1 + V_2' Y_2 \right) = f(x)$ $V_1' Y_1' + V_2' Y_2' + \frac{d}{dx} \left(V_1' Y_1 + V_2' Y_2 \right) + b \left(V_1' Y_1 + V_2' Y_2 \right) = f(x)$

To solve the last equation, we can let

$$V_1'Y_1 + V_2'Y_2 = C$$
 $V_1'Y_1' + V_2'Y_2' = f(x)$

So $Y_2'(V_1'Y_1 + V_2'Y_2) - Y_2(V_1'Y_1' + V_2'Y_2') = -Y_2(f(x))$
 $V_1'Y_1Y_2' - V_1'Y_1'Y_2 = -Y_2f(x)$
 $V_1' = \frac{-Y_2f(x)}{Y_1Y_2' - Y_1'Y_2}$
 $V_1 = \int \frac{-Y_2f(x)}{Y_1Y_2' - Y_1'Y_2} dx$

Likewise $Y_1(V_1'Y_1' + V_2'Y_2') - Y_1'(V_1'Y_1 + V_2'Y_2) = Y_1f(x)$
 $V_2' = \frac{Y_1f(x)}{Y_1Y_2' - Y_1'Y_2}$
 $V_2 = \int \frac{Y_1f(x)}{Y_1Y_2' - Y_1'Y_2} dx$
 $V_2 = \int \frac{Y_1f(x)}{Y_1Y_2' - Y_1'Y_2} dx$

Note Y142'-Y1'42 & O because Y1142 are
Unearly independent (think Wronskian)

Thus, to solve Y"+ by'+ cy= f(x) using

Variation of parameters, !

1) Find general solution $y_n = C_1 y_1 + C_2 y_2$ of the homogeneous DE y'' + by' + cy = C

2) Find a particular solution to nonhomogeneous

DE by letting $Y_p = V_1 Y_1 + V_2 Y_2$ where $V_1 = \int \frac{-y_2 f(x)}{y_1 y_2' - y_1' y_2} dx$ and $V_2 = \int \frac{y_1 f(x)}{y_1 y_2' - y_1' y_2} dx$

3) Y= Yn+ Yp

Ex-1) Y"+Y=CSC(x)

2) $y'' - 4y' + 4y = 30\sqrt{x}e^{2x}$

1) Auxilian eq 1s
$$r^2+1=0$$
 so $r=\pm i$
Hence $y_n = C_1 (os(x) + C_2 sln(x))$
 $y_1 = (os(x)) = y_1' = -sin(x)$
 $y_2 = sin(x) = y_2' = cos(x)$
So $y_1y_2' - y_1'y_2 = cos^2(x) + sin^2(x) = 1$
 $v_1 = \int \frac{-y_2 f(x)}{1} dx = \int -sin(x) csc(x) dx$
 $= \int -1 dx = -x$
 $v_2 = \int \frac{y_1 f(x)}{1} dx = \int cos(x) csc(x) dx = \int \frac{cos(x)}{sin(x)} dx$
 $= |n| |sm(x)|$

2) Auxildary eq 11
$$r^2-4r+4=0$$
 so $r=2$
Then $Y_n = C_1e^{2x} + C_2 \times e^{2x}$

And
$$Y = Y_n + Y_p$$

= $C_1 e^{2x} + C_2 x e^{2x} - |2x^{5k} e^{2x} + 20x^{5k} e^{2x}$
= $C_1 e^{2x} + C_2 x e^{2x} + 8x^{5k} e^{2x}$