Lead Scoring Model - Logistic Regression

Project Overview

This project aims to build a **Logistic Regression-based Lead Scoring Model** to predict the likelihood of lead conversion. The model helps businesses identify and prioritize high-potential leads, improving marketing efficiency.

Data Overview

- Dataset Size: 9,240 records, 37 features
- Target Variable: Converted (1 = Converted, 0 = Not Converted)
- Feature Types:
 - o Categorical (e.g., Lead Source, Last Activity, Tags)
 - Numerical (e.g., Total Visits, Total Time Spent on Website)

Preprocessing & Feature Selection

- Handling Missing Data: Imputation/removal of missing values based on data distribution.
- Categorical Encoding: One-hot encoding for categorical variables.
- Feature Selection: Used Recursive Feature Elimination (RFE) to select the most relevant variables.

Model Building

Generalized Linear Model (GLM) - Logistic Regression

- Used Logit Link Function for binary classification.
- Evaluated features based on p-values and Variance Inflation Factor (VIF):
 - o Dropped features with high p-values (insignificant predictors).
 - Ensured VIF < 5 to prevent multicollinearity.

Final Model Features:

- Numerical: TotalVisits, Total Time Spent on Website, Page Views Per Visit
- · Categorical (dummy variables):
 - City Other Cities of Maharashtra
 - What is your current occupation_Working Professional

- o Last Activity Email Opened
- Tags_Other Tags, Tags_Ringing, Tags_Will revert after reading the email

Model Evaluation & Performance Metrics

Train Dataset

Metric	Value
Accuracy	96.65%
Sensitivity (Recall)	98.4%
Specificity	92.6%
Precision	96.85%
False Positive Rate (FPR)	7.4%
Negative Predictive Value (NPV)	96.15%

Confusion Matrix Analysis

True Positives (TP): 246
True Negatives (TN): 100
False Positives (FP): 8
False Negatives (FN): 4

Test Dataset

Metric	Value
Accuracy	94.97%
Sensitivity (Recall)	94.8%
Specificity	95.37%
Precision	97.93%
False Positive Rate (FPR)	4.6%
Negative Predictive Value (NPV)	88.79%

Confusion Matrix Analysis

True Positives (TP): 237
True Negatives (TN): 103
False Positives (FP): 5
False Negatives (FN): 13

Insights:

• High Sensitivity (Train: 98.4%, Test: 94.8%): The model captures converted leads accurately.

- Good Precision (Train: 96.85%, Test: 97.93%): Predicts lead conversion with minimal false positives.
- Low False Positive Rate (Train: 7.4%, Test: 4.6%): Ensures marketing efforts are not wasted on unlikely conversions.

Model Balance & Graphical Analysis

- ROC Curve & AUC Score: High AUC confirms strong model discrimination.
- Precision-Recall Curve: Validates the effectiveness of predictions.

Conclusion

- The Logistic Regression model provides a robust and balanced approach to lead scoring.
- High accuracy and low error rates make it suitable for real-world deployment.
- Businesses can prioritize high-quality leads, increasing efficiency in lead conversion strategies.