Quadtree Collision Detection

Alden Page and Willem Yarbrough

Department of Computer Science Allegheny College

April 28, 2015

What?

▶ Given 2D particles p_0 to p_n , which are colliding?

What?

▶ Given 2D particles p_0 to p_n , which are colliding?

Why?

- Simulations
- Games

What?

▶ Given 2D particles p_0 to p_n , which are colliding?

Why?

- Simulations
- Games

How?

- ▶ colliding(p1, p2) primitive, O(1)
- Brute-force
- Quadtree

Brute-force

- ► Call colliding(p_i , p_j) for each p_i , p_j .
- ▶ Complexity??

Brute-force

- ▶ Call colliding(p_i , p_j) for each p_i , p_j .
- Complexity??

$O(n^2)$

Quadtree

- ▶ Call colliding(p_i , p_j) for nearby p_i , p_j .
- ► Subdivide space into quadrants!!
- Complexity??

Quadtree

- ▶ Call colliding(p_i , p_j) for nearby p_i , p_j .
- Subdivide space into quadrants!!
- Complexity??

$O(n \log n)$

Python Implementation

- ▶ World of particles (location, velocity)
- ▶ Brute-force and quadtree "detectors" for comparison
- Drawing with Pygame

Other Stuff

- ▶ What about 3D? Octree
- ► What about any D? K-D Tree
- What about polygons? BSP Trees

Demo!