A survey on deep learning techniques in image and video semantic segmentation (paper analysis)

Jessica Motta

SENAI CIMATEC

June 1, 2020

Concept Map

CNN- How it works?

Figure: Convolutional Neural Network [Sha19]

Common deep networks architecture

COMPARATIVE FOR COMMON DEEP NETWORK ARCHITECTURES								
Network	Year champion ILSVRC*	Number of Layers	Accuracy					
AlexNet	2012	3	84.6%					
VGG	2013	16	92.7%					
GoogleNet	2014	22	93.3%					
ResNet	2016	152	96.4%					

Table: Deep network architectures. [GGOEO+18]

*ILSVRC (ImageNet Large Scale Visual Recognition Challenge)

Methods to image analysis

(a) Image classification

(c) Semantic segmentation

(b) Object localization

(d) Instance segmentation

Figure: Methods to image analysis. [LMB⁺14]

Evaluation Metrics

Execution time

Memory footprint

Accuracy

IoU calculation

Figure: IoU calculation visualized. [Tiu19]

Accuracy

Figure: Accuracy evaluation. [Ros16]

Accuracy results

ACCURACY RESULTS (METHODS AND DATASETS) (%)											
Method / Dataset	PASCAL VOC-2012	Pascal- Person- Part	CamVid	CityScapes	Stanford Background	SiftFlow	SUN3D	ShapeNet Part	Youtube- Objects		
PSPNet	85,4										
DeepLab		64,94									
DAG-RNN			91,60								
rCNN					80,20						
LSTM-CF							58,50				
PointNet								83,70			
PointNet++								85,10			
DGCNN								85,10			
Clockwork Convent									68,50		
SegmPred				59,40							

Table: Accuracy results for the most relevant methods and dataset. [GGOEO+18]

Wich cases doesn't apply deep learning?

For **high perfomance**, deep networks require **extremely large** datasets.

It's **expensive** to get data, computer power and hiring researchers.

Deep networks **aren't easily interpreted** as classical Machine Learning algorithms.

Advantages to use Deep learning against to Classical methods

Better performance (accuracy results)

More data works to DP but not with CML

DP no need for feature engineering

It's adaptable to differents domains and applications

Advantages to use Classical methods against to Deep learning

Woks better with small dataset

Low computional and financial cost

The algorithms it's easier to understand and interpret

Conclusion

References I

- Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Pablo Martinez-Gonzalez, and Jose Garcia-Rodriguez, *A survey on deep learning techniques for image and video semantic segmentation*, Applied Soft Computing **70** (2018), 41–65.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick, *Microsoft coco: Common objects in context*, European conference on computer vision, Springer, 2014, pp. 740–755.
- Adrian Rosebrock, Intersection over union (iou) for object detection, 2016.
- Shashikant, Convolutional neural network: A step by step guide, 2019.
- Ekin Tiu, Metrics to evaluate your semantic segmentation model, 2019.