

SEMANA 1 – FUNÇÕES INORGÂNICAS

EXERCÍCIOS COM GABARITO – VAMOS EXERCITAR?

Caro Estudante,

Logo abaixo estão disponibilizados vários exercícios para vocês testar seus conhecimentos. Procure respondê-los integralmente e somente depois acesse o gabarito no final da página de cada questão.

Se houver dúvida, poste no Fórum de Dúvidas desta semana, ok!

Bons estudos!

- 1. (Ufpa 2013) A acidez é um conceito fundamental em química. Segundo a teoria de Arrhenius, um ácido é uma substância que em solução aquosa libera íons H^+ . Entretanto, substâncias ácidas diferentes, como o ácido clorídrico (HC ℓ) e o ácido acético (CH₃COOH), possuem graus de acidez diferentes. Uma solução 0,1 mol L^{-1} de HC ℓ possui uma concentração de H^+ cerca de 75 vezes maior que uma solução 0,1 mol L^{-1} de CH₃COOH. Essa diferença se deve ao(à)
- a) maior constante de equilíbrio de ionização do CH₃COOH.
- b) menor eletronegatividade do cloro em relação ao oxigênio.
- c) maior capacidade do íon acetato em repelir íons H⁺.
- d) formação de ponte de hidrogênio na solução de HCl.
- e) menor grau de ionização do CH₃COOH em solução aquosa.

Resposta da questão 1:

[E]

Para duas soluções ácidas de mesma concentração, a concentração de íons H⁺ livres depende diretamente da capacidade do ácido em ionizar, ou seja, da sua força. Essa força é expressa em termos de porcentagem de moléculas do ácido que, quando dissolvidas em água, conseguem ionizar.

Essa porcentagem chama-se grau de ionização.

Ácido é um doador de próton, e a base é um receptor de próton: teoria de Bronsted-Lowry.

- 2. (Uern 2012) " $\underline{\acute{A}cido}$: é toda a espécie química capaz de doar um próton (íon H^+) a uma outra substância. \underline{Base} : é definida como uma substância capaz de aceitar um próton (íon H^+) de um ácido. De uma maneira mais simples, ácido é um doador de próton e a base é um receptor de próton". Esta teoria foi desenvolvida por
- a) Lewis.
- b) Sabatier.
- c) Arrenhenius.
- d) Bronsted-Lowry.

3. (Ufrn 2011) Os aminoácidos, cujas propriedades determinam muitas de suas funções nos organismos vivos, são substâncias que dão origem às proteínas, compostos essenciais para a vida.

O composto representado abaixo corresponde a um aminoácido, comercialmente conhecido como "alanina"

CH₃CH(NH₂)CO₂H

De acordo com a estrutura desse composto e com os conceitos de ácido e de base de Bronsted e Lowry, a alanina pode apresentar

- a) comportamento anfótero, pois é capaz de doar e de receber íons H⁺.
- b) somente comportamento ácido.
- c) somente comportamento básico.
- d) comportamento neutro, pois não é capaz de doar e de receber íons H⁺.

Resposta da questão 3:

[A]

A alanina tem comportamento anfótero, pois é capaz de doar e de receber íons H⁺:

$$H_3C$$
— CH — C + H^+ — H_3C — CH — C OH H_3 OH H_3 OH H_3

4. (Ita 2015) Considere a reação química representada pela equação $NH_3 + BF_3 \rightarrow H_3NBF_3$. Pode-se afirmar que o BF_3 age

- a) como ácido de Bronsted.
- b) como ácido de Lewis.
- c) como base de Bronsted.
- d) como base de Lewis.
- e) tanto como ácido como base.

Resposta da questão 4:

[B]

Teremos:

Base de Lewis: fornece o par de elétrons. Ácido de Lewis: recebe o par de elétrons.

$$NH_3 + BF_3 \rightarrow H_3NBF_3$$
.

- 5. (Ufv 1996) Cloreto de potássio, fosfato de cálcio, nitrato de sódio e sulfato de amônio são utilizados como fertilizantes na agricultura. As fórmulas correspondentes a estes sais são, respectivamente:
- a) PCl3 CaPO4 NaNO3 (NH4)2SO4
- b) $KC\ell Ca_3(PO_4)_2 NaNO_2 (NH_4)_2SO_4$
- c) KC ℓ Ca₂(PO₄)₃ NaNO₂ (NH₄)₂(SO₄)₃
- d) $PC\ell_3$ $Ca_3(PO_4)_2$ $NaNO_3$ $(NH_4)_2SO_4$
- e) $KC\ell$ $Ca_3(PO_4)_2$ $NaNO_3$ $(NH_4)_2SO_4$

Resposta da questão 5:

[E]

6. (G1 - cftmg 2020) Em um frasco contendo água, foi colocado, cuidadosamente, uma pequena porção de sódio (Na) metálico. Durante a reação, observou-se a liberação de um gás inflamável e a formação de uma substância que coloriu uma solução de fenolftaleína.

Sobre o experimento, é INCORRETO afirmar que

- a) o gás liberado foi o O2.
- b) a substância produzida é iônica.
- c) a solução final pode ser neutralizada com um ácido.
- d) a solução adquiriu coloração rósea após adição de fenolftaleína.

Resposta da questão 6:

[A]

[A] Incorreto. O gás liberado foi o H₂. Ocorreu uma reação de deslocamento.

$$2\text{Na} \ + \ 2\text{H}_2\text{O} \rightarrow \underbrace{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }_{\text{Gás}} \ \ + \ 2\text{NaOH}$$

- [B] Correto. O hidróxido de sódio ([Na⁺][OH⁻]) produzido na reação é um composto iônico.
- [C] Correto. A solução final tem caráter básico devido à presença do hidróxido de sódio (NaOH), logo pode ser neutralizada por um ácido genérico HA.

$$NaOH + HA \xrightarrow{\quad Neutralizaç\~ao \quad} H_2O + NaA$$

[D] Correto. A solução adquiriu coloração rósea após adição de fenolftaleína devido à presença de uma base (NaOH).

7. (Enem 2018) O manejo adequado do solo possibilita a manutenção de sua fertilidade à medida que as trocas de nutrientes entre matéria orgânica, água, solo e o ar são mantidas para garantir a produção. Algumas espécies iônicas de alumínio são tóxicas, não só para a planta, mas para muitos organismos como as bactérias responsáveis pelas transformações no ciclo do nitrogênio. O alumínio danifica as membranas das células das raízes e restringe a expansão de suas paredes, com isso, a planta não cresce adequadamente. Para promover benefícios para a produção agrícola, é recomendada a remediação do solo utilizando calcário (CaCO₃).

BRADY, N. C.; WEIL, R. R. *Elementos da natureza e propriedades dos solos*. Porto alegre: Bookman, 2013 (adaptado).

Essa remediação promove no solo o(a)

- a) diminuição do pH, deixando-o fértil.
- b) solubilização do alumínio, ocorrendo sua lixiviação pela chuva.
- c) interação do íon cálcio com o íon alumínio, produzindo uma liga metálica.
- d) reação do carbonato de cálcio com os íons alumínio, formando alumínio metálico.
- e) aumento da sua alcalinidade, tornando os íons alumínio menos disponíveis.

Resposta da questão 7:

[E]

Fazendo-se a hidrólise do CaCO₃, vem:

$$CaCO_3 \longrightarrow Ca^{2+} + CO_3^{2-}$$

$$Ca^{2+}_{(aq)} + CO_3^{2-}_{(aq)} + H_2O_{(\ell)} \xrightarrow{Ca^{2+}_{(aq)}} Ca^{2+}_{(aq)} + \underbrace{OH^-_{(aq)}}_{Meio} + HCO_{3(aq)}^{-}_{(aq)}$$

O meio ficará básico, ou seja, ocorrerá aumento de alcalinidade.

$$A\ell^{3+}_{(aq)} + 3 OH^{-}_{(aq)} \longleftrightarrow A\ell(OH)_{3(s)}$$

O cátion alumínio $(A\ell^{3+})$ será retirado do solo na forma precipitada $(A\ell(OH)_{3(s)})$.

8. (Enem 1999) Suponha que um agricultor esteja interessado em fazer uma plantação de girassóis. Procurando informação, leu a seguinte reportagem:

SOLO ÁCIDO NÃO FAVORECE PLANTIO

Alguns cuidados devem ser tomados por quem decide iniciar o cultivo do girassol. A oleaginosa deve ser plantada em solos descompactados, com pH acima de 5,2 (que indica menor acidez da terra). Conforme as recomendações da Embrapa, o agricultor deve colocar, por hectare, 40 kg a 60 kg de nitrogênio, 40 kg a 80 kg de potássio e 40 kg a 80 kg de fósforo.

O pH do solo, na região do agricultor, é de 4,8. Dessa forma, o agricultor deverá fazer a "calagem".

(Folha de S. Paulo, 25/09/1996)

Suponha que o agricultor vá fazer calagem (aumento do pH do solo por adição de cal virgem - CaO). De maneira simplificada, a diminuição da acidez se dá pela interação da cal (CaO) com a água presente no solo, gerando hidróxido de cálcio (Ca(OH)₂), que reage com os ions H⁺ (dos ácidos), ocorrendo, então, a formação de água e deixando ions Ca²⁺ no solo.

Considere as seguintes equações:

I.
$$CaO + 2H_2O \rightarrow Ca (OH)_3$$

II.
$$CaO + H_2O \rightarrow Ca (OH)_2$$

III. Ca
$$(OH)_2 + 2H^+ \rightarrow Ca^{2+} + 2H_2O$$

IV. Ca
$$(OH)_2 + H^+ \rightarrow CaO + H_2O$$

O processo de calagem descrito pode ser representado pelas equações:

- a) I e II
- b) I e IV
- c) II e III
- d) II e IV
- e) III e IV

Resposta da questão 8:

[C]

Reação do óxido de cálcio com a água:

II. CaO +
$$H_2O \rightarrow Ca(OH)_2$$

Reação do hidróxido de cálcio com os íons H⁺:

III.
$$Ca(OH)_2 + 2H^+ \rightarrow Ca^{2+} + 2H_2O$$