1 Addition Law

1.1 Definitions and Notation

Definition 1: Let K be a field with $\operatorname{char}(K) \neq 2$ and \overline{K} its algebraic closure. Define the hyperelliptic curve of genus two $H_{0,C}(K)$ as the set of solutions in K^2 to the equation $y^2 = C(x)$ where $C(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$ is a polynomial over K. Write $H_0(K)$ whenever there is no ambiguity. Similarly, the set of solutions in the closure would be denoted $H_0(\overline{K})$. Define H(K) as $H_0(K) \cup \{\infty\}$.

Note that we could obtain a more reduced form of C(x), eliminating a by shifting x to (x-a/5). However, since this would rob us of the possibility of $\operatorname{char}(K) = 5$ without simplifying our coming calculations in any significant manner, we refrain from using this trick.

For the purpose of clarity, let points on the hyperelliptic curve — in the sense of solutions to $y^2 = C(x)$ — be designated by the calligraphic letter $\Omega = (x, y) \in H_0(\overline{K})$. The point opposite to Ω will be written $\overline{\Omega} = (x, -y)$ and by symmetry of the curve in y also belongs to $H_0(\overline{K})$. In the case where $\Omega = \infty$, define $\overline{\Omega} := \infty$. We allow ourselves to write $\pm \Omega$ whenever we mean in fact 'either Ω or $\overline{\Omega}$ '.

We want to consider the set of all pairs (Q_1, Q_2) and tame it with an equivalence relation with the goal of obtaining an additive group:

Define **J** to be the set ∂/\sim where $\partial:=\{(\Omega_1,\Omega_2)\mid \Omega_i\in H(\overline{K})\}$. **J** is called the 'Jacobian' and the equivalence relation fullfills

$$\begin{split} (\mathcal{Q}_1,\mathcal{Q}_2) &\sim (\mathcal{Q}_2,\mathcal{Q}_1) \\ \mathrm{and} \quad (\mathcal{Q},\overline{\mathcal{Q}}) &\sim (\infty,\infty). \end{split}$$

Write $\{Q_1, Q_2\}$ from now on and let bold letters denote points on the curve in the sense of classes of unordered pairs $\mathbf{P} = \{Q_1, Q_2\} \in \mathbf{J}$. The point $\{\overline{Q}_1, \overline{Q}_2\}$ will be called $\overline{\mathbf{P}}$ for now but can already tentatively be thought of as $-\mathbf{P}$. Call $\{\infty, \infty\}$ the zero of our set. We will also permit ourselves the notation $\{Q, \overline{Q}\} = 0$ and we refrain from explicitly stating that \mathbf{P} is in fact an equivalence class.

A point $Q = (x_0, y_0)$ is called singular if it fulfills both $y_0 = 0$ and $C'(x_0) = 0$. A curve is called singular if and only if it has a singular point. We consider only non-singular hyperelliptics from here on.

1.2Addition Law

Let $\mathbf{P}_1 = \{\Omega_1, \Omega_2\}, \ \mathbf{P}_2 = \{\Omega_3, \Omega_4\}$ with $\Omega_i = (x_i, y_i) \in H(\overline{K})$. To define $\mathbf{P}_3 = \mathbf{P}_1 + \mathbf{P}_2$ we distinguish between one general case and a number of special cases and first derive the results of the former before enumerating the latter ones.

CASE 1, FOUR DISTINCT COMPONENT-POINTS: The overarching idea is to obtain a fifth and sixth x-coordinate and the corresponding y-coordinates by passing a polynomial of degree three through the four points Q_i . Ideally this should give us two additional intersections with the curve which we use as the components of our point $P_1 + P_2$.

STEP 1: Let the Q_i and \mathbf{P}_i be defined as above with $x_i \neq x_j$ whenever $i \neq j$. In addition to that, let us restrict ourselves to $Q_i \in H_0(K)$. It is known that the Vandermonde-Matrix

$$V := \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix}$$

has determinant $\prod_{i < j} (x_i - x_j)$ which is conveniently non-zero if and only if the x_i are pairwise distinct. Let $p(x) := p_3 x^3 + p_2 x^2 + p_1 x + p_0 \in K[x]$ be the polynomial in unknown coefficients that we are looking for. With $\mathbf{y} = (y_i)_{i=1}^4$ and $\mathbf{p} = (p_i)_{i=0}^3$ the problem of determining p(x) can be rewritten as

$$V \cdot \mathbf{p} = \mathbf{v}$$

which by invertibility of V has of course a unique solution.

STEP 2A: Knowing the coefficients p_i of p(x) we first assume that $p_3 \neq 0$, so can proceed to look for the two additional solutions of the sextic equation

$$C(x) - (p(x))^2 = 0. \tag{*}$$

Observe that this vanishes at x_1, x_2, x_3 and x_4 , so write the lefthand side as $-p_3^2(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)(x-x_6)$ for x_5 and x_6 in some extension of the field K. Comparing the coefficients of both expressions at x^5 and x^4 yields

$$\sum_{i=1}^{6} x_i = \widetilde{T}_5 \tag{5}$$

$$\sum_{i=1}^{6} x_i = \widetilde{T}_5$$
and
$$\sum_{\substack{i,j=1\\i < j}}^{6} x_i x_j = \widetilde{T}_4$$

$$\tag{4}$$

where $\widetilde{T}_5 = \frac{1-2p_2p_3}{p_3^2}$ and $\widetilde{T}_4 = \frac{p_2^2+2p_1p_3-a}{p_3^2}$ The second expression gives

$$x_6 \sum_{i=1}^{5} x_i + \sum_{\substack{i,j=1\\i < j}}^{5} x_i x_j = \widetilde{T}_4.$$

Doing this twice and replacing x_6 with the information from (5) gives

$$\left(\widetilde{T}_5 - \sum_{i=1}^4 x_i - x_5\right) \left(\sum_{i=1}^4 x_i + x_5\right) + x_5 \sum_{i=1}^4 x_i + \sum_{\substack{i,j=1\\i < j}}^4 x_i x_j - \widetilde{T}_4 = 0.$$

Replacing \widetilde{T}_5 and \widetilde{T}_4 with the terms

$$T_5 := \widetilde{T}_5 - \sum_{i=1}^4 x_i$$
 and
$$T_4 := \widetilde{T}_4 - \sum_{\substack{i,j=1\\i < j}}^4 x_i x_j$$

one obtains the tidy quadratic equation

$$x^{2} - x \cdot T_{5} + \left(T_{4} - T_{5} \sum_{i=1}^{4} x_{i}\right) = 0 \tag{\dagger}$$

of which x_5 is one solution and — by symmetry of the above steps — x_6 the other one. Compute $y_i = p(x_i)$, i = 5, 6 to obtain $Q_5 = \{x_5, -y_5\}$ and $Q_6 = \{x_6, -y_6\}$, at which point it becomes clear that the worst-case scenario for our field extension to accommodate the new coordinates is to be quadratic. Finally we define $\mathbf{P}_1 + \mathbf{P}_2$ to be equal to $\mathbf{P}_3 := \{Q_5, Q_6\}$.

STEP 2B: If p_3 were zero, the equation (\star) would be quintic instead. We may therefore write the lefthand side as $(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)$, again for x_5 somewhere in \overline{K} . Comparing the coefficients at x^4 gives

$$x_5 = p_2^2 - a - \sum_{i=1}^4 x_i \tag{\dagger\dagger}$$

and we may rejoice in the implication of x_5 staying in K.

Compute $y_5 = p(x_5)$ and define $\mathbf{P}_1 + \mathbf{P}_2$ to be the point $\mathbf{P}_3 := \{(x_5, y_5), \infty\}$. Since this works just as well if $p_2 = 0$, we are done with the general case.

Figure 1: The general case for the addition law

Before we continue with the special cases, we want to give some consequences to the above approach.

Lemma: The the general case imposes $\overline{\mathbf{P}} + \mathbf{P} = 0$ for all $\mathbf{P} \in \mathbf{J}$, so we might want to use the notation $\overline{\mathbf{P}} = -\mathbf{P}$.

Proof. (i) Observe that if $\mathbf{P}_1 + \mathbf{P}_2 = \mathbf{P}_3 \in H_0(\overline{K})$ as in case 1, by symmetry the polynomial -p(x) passes through the opposite points, meaning that

$$\{(x_5, -y_5), (x_6, -y_6)\} + \{(x_3, -y_3), (x_4, -y_4)\} = \{(x_1, y_1), (x_2, y_2)\}$$

or simply put, $\mathbf{P}_3 + \overline{\mathbf{P}}_2 = \mathbf{P}_1$. Since the choice of \mathbf{P}_1 and \mathbf{P}_2 was free, the statement must hold for any point $\mathbf{P} \in H_0(\overline{K})$. A similar argument can be made for the points in $H(\overline{K})$.

Remark 1:

- (i) The Lemma implies that if $\mathbf{P} + \mathbf{P} = 0$ then $\overline{\mathbf{P}}$ equals \mathbf{P} , so the only candidates for points of order two are of the form $\{Q, \overline{Q}\}$ and those that can be written as $\{(x_1, 0), (x_2, 0)\}$ with $x_1 \neq x_2$, the latter being called 'special points'. As defined per our equivalence relation, the special points are therefore the only non-trivial points of order two.
- (ii) Not only are we forced to accept the equivalence of $\{Q_1, Q_2\}$ and $\{Q_2, Q_1\}$ but if we want to construct the special cases as valid limit-cases of step 1 and 2, we must accept interchangeability between the

point-components, meaning $\{Q_1, Q_2\} + \{Q_3, Q_4\}$ has to give the same result as $\{Q_1, Q_3\} + \{Q_2, Q_4\}$ and $\{Q_1, Q_4\} + \{Q_2, Q_3\}$. 1 hints at the necessity of this property.

(iii) As a bonus, this is already gives us commutativity on **J** for free.

We use property (ii) to make the coming case-distinctions more concise. Since we don't care which points in \mathbf{J} the different Ω_i belong to, we are allowed to impose conditions on the latter without any further specifications.

Let us first list all possible combinations that can be taken by the x_i and y_i provided they reside in \overline{K} :

- A. All x_i are pairwise distinct.
- B. Exactly two of the x_i are alike, for instance $x_1 = x_2$ and

a.
$$y_1 = y_2 \neq 0$$
.

b.
$$y_1 = -y_2$$
.

- C. Three x-coordinates overlap, e.g. $x_1 = x_2 = x_3$ and
 - a. All three y-coordinates are the same: $y_1 = y_2 = y_3 \neq 0$.
 - b. Only two y-coordinates are alike: $y_1 = y_2$ so $y_3 = -y_1$.
- D. All four x_i are the same and
 - a. All four y_i equal as well but non-zero.
 - b. The y_i overlap two by two, e.g. $y_1 = y_2$ and $y_3 = y_4 = -y_1$.
 - c. Three of the y_i are alike, one isn't.
- E. The x_i overlap two-by-two: $x_1 = x_2$ and $x_3 = x_4$ but $x_1 \neq x_3$ and
 - a. $y_1 = y_2$ plus $y_3 = y_4$ but neither y_1 nor y_3 is zero.

b.
$$y_1 = -y_2, y_3 = y_4.$$

c.
$$y_1 = -y_2$$
 and $y_3 = -y_4$.

Due to the property that $\{Q_i, Q_j\} \sim 0$ whenever $x_i = x_j$ and $y_i = -y_j$, every case marked with \star comes down to the addition with 0. Reordering thus leads us to the following condensed list of cases for the addition law:

- 0. The addition with zero, i.e. $\mathbf{P} + \{\infty, \infty\}$ or in short $\mathbf{P} + 0$.
- 1. The general case where all four x-coordinates are pairwise distinct.
- 2. The simple tangential case where $Q_1 = Q_2$ and the remaining x_3 , x_4 are both distinct from each other as well as from x_1 .
- 3. The double tangential case where $Q_1 = Q_2$ and $Q_3 = Q_4$ but $Q_1 \neq \pm Q_3$.
- 4. Case where $Q_1 = Q_2 = Q_3$ but $Q_4 \neq \pm Q_1$.
- 5. The quadruple case where all Q_i are identical.

Remark 2:

(i) For the above list to be complete, we have to allow for $Q_i = \infty$ for some i. Note that one is sufficient, since if two or more Q_i were to be ∞ , we would be back at the zero case.

So it is important to observe that this is already secretly included in the general case and the relevant cases 2 and 4 through the following argument:

Suppose $Q_4 = \infty$, so the coordinate x_4 does not exist. The polynomial p(x) we pass through the 3 remaining points is therefore necessarily at most quadratic instead of cubic so the corresponding matrix to invert is the upper left 3x3 sub-matrix of V, V' or V'''. We are then immediately sent to $(\dagger\dagger)$ of the second step.

(ii) In both lists, the cases do not overlap.

CASE 0, ADDITION WITH ZERO: As one might have anticipated, if $\mathbf{P}_2 = 0$ we define $\mathbf{P}_1 + \mathbf{P}_2 = \mathbf{P}_1$ for every $\mathbf{P}_1 \in \mathbf{J}$.

CASE 2, TANGENTIAL: Let $Q_1 = Q_2$, $y_1 \neq 0$ but x_1 , x_3 and x_4 are pairwise distinct. We cannot use the Vandermonde Matrix in this case because it won't possess maximal rank, consequently being non-invertible. We can however obtain an additional equation by demanding that our polynomial p(x) be tangential to the curve at Q_1 . This gives

$$2y\frac{dy}{dx} = 5x^4 + 4ax^3 + 3bx^2 + 2cx + d$$
and
$$\frac{dy}{dx} = 3p_3x^2 + 2p_2x + p_1$$

meaning that the system to solve for \mathbf{p} is now $V' \cdot \mathbf{p} = \mathbf{y}'$ with

$$V' := \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix}$$

and \mathbf{y}' defined as \mathbf{y} with y_2 replaced by $y_2' := \frac{C'(x_1)}{2y_1}$ which is well defined since $2y_1 \neq 0$.

One can see that V' is invertible by substracting x_1 times the previous

column from every column and using Laplace:

$$\det(V') = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & x_1 & x_1^2 \\ 1 & (x_3 - x_1) & x_3(x_3 - x_1) & x_3^2(x_3 - x_1) \\ 1 & (x_4 - x_1) & x_4(x_4 - x_1) & x_4^2(x_4 - x_1) \end{vmatrix}$$
$$= (x_3 - x_1)(x_4 - x_1) \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{vmatrix}.$$

Fitting perfectly well with our constraints, this expression is non-zero exactly in the case where x_1, x_3 and x_4 are pairwise distinct.

Once p(x) is determined, step two will be entirely identical to the general case and we can again solve $(\dagger\dagger)$ or (\dagger) for x_5 or x_5 and x_6 .

CASE 3, DOUBLE TANGENTIAL: Let $Q_1 = Q_2$ and $Q_3 = Q_4$ but $x_1 \neq x_3$ and $Q_i \neq \pm Q_i$ meaning that neither y_1 nor y_3 will be zero. Like before, we lack equations for our linear system, requiring the use of a second tangential constraint. Replace the fourth row of V' and \mathbf{y}' exactly like we did for the second one: $y_4'' := \frac{C'(x_3)}{2y_3}$ and

$$V'' = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 0 & 1 & 2x_3 & 3x_3^2 \end{pmatrix}.$$

V'' is invertible by a similar transformation to that of the previous case:

$$\det(V'') = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & x_1 & x_1^2 \\ 1 & (x_3 - x_1) & x_3(x_3 - x_1) & x_3^2(x_3 - x_1) \\ 0 & 1 & 2x_3 - x_1 & 3x_3^2 - 2x_1x_3 \end{vmatrix}$$

$$= (x_3 - x_1) \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_3 & x_3^2 \\ 1 & (2x_3 - x_1) & (3x_3^2 - 2x_1x_3) \end{vmatrix}$$

$$= (x_3 - x_1) \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_3 & x_3^2 \\ -1 & -x_1 & x_3^2 - 2x_1x_3 \end{vmatrix}$$

$$= (x_3 - x_1) \begin{vmatrix} 1 & x_1 & x_1^2 \\ 0 & x_3 - x_1 & x_3^2 - 2x_1x_3 \end{vmatrix}$$

$$= (x_3 - x_1) \begin{vmatrix} 1 & x_1 & x_1^2 \\ 0 & x_3 - x_1 & x_3^2 - x_1^2 \\ 0 & 0 & -(x_3 - x_1)^2 \end{vmatrix}.$$

This is again different from zero precisely whenever $x_3 \neq x_1$, so as before solve $V'' \cdot \mathbf{p} = \mathbf{y}''$ for \mathbf{p} , then (†) or (††) depending on p_3 .

CASE 4, SECOND ORDER TANGENTIAL: Let $Q_1 = Q_2 = Q_3$ but $x_1 \neq x_4$ and $y_1 \neq 0$. We can thus see this as a third-order intersection and demand that the curve and the polynomial share a second-order derivative at Q_1 :

$$V''' = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 0 & 0 & 2 & 6x_1 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix}.$$

This is invertible in the given circumstance because

$$\det(V''') = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & x_1 & x_1^2 \\ 0 & 0 & 2 & 4x_1 \\ 1 & x_4 - x_1 & x_4(x_4 - x_1) & x_4^2(x_4 - x_1) \end{vmatrix}$$

$$= 2(x_4 - x_1) \begin{vmatrix} 1 & x_1 & x_1^2 \\ 0 & 1 & 2x_1 \\ 1 & x_4 & x_4^2 \end{vmatrix}$$

$$= 2(x_4 - x_1) \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & x_1 \\ 1 & x_4 - x_1 & x_4(x_4 - x_1) \end{vmatrix}$$

$$= 2(x_4 - x_1)^3 \neq 0 \text{ for } x_1 \neq x_4.$$

With this, define \mathbf{y}''' by taking \mathbf{y}' and replacing the third coordinate by $y_3''' := \frac{C''(x_1)}{2y_1} - (\frac{C'(x_1)}{2y_1})^2$. Again, apply the same procedure as in the second steps of case 1 to find \mathbf{P}_3 .

CASE 5, THIRD ORDER TANGENTIAL: Given the quadruple situation where $\Omega_i = \Omega$ for every i and knowing the point $\Omega := (x_0, y_0)$ with $y_0 \neq 0$, we solve

$$V'''' = \begin{pmatrix} 1 & x_0 & x_0^2 & x_0^3 \\ 0 & 1 & 2x_0 & 3x_0^2 \\ 0 & 0 & 2 & 6x_0 \\ 0 & 0 & 0 & 6 \end{pmatrix}$$

which is invertible in all fields but those of characteristic 2 and 3.

Here \mathbf{y}'''' is the same as \mathbf{y}''' except for the last coordinate which should read

$$y_4''' := \frac{1}{2y_0} \Big(C'''(x_0) - \frac{dy}{dx} \Big|_{\mathcal{O}} \Big(\Big(\frac{dy}{dx} \Big|_{\mathcal{O}} \Big)^2 - \frac{d^2y}{dx^2} \Big|_{\mathcal{O}} \Big) \Big).$$

The derivatives are known through the previous steps. Once more, we solve the linear system $V'''' \cdot \mathbf{p} = \mathbf{y}''''$ and subsequently (\dagger) or $(\dagger\dagger)$ and we're done.