SJSU SAN JOSÉ STATE UNIVERSITY

Lesson 5 – Public Key Crypto 1

Yan Chen CS166 Fall 2024

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

Appendix

Encryption modes: ways to encrypt multiple blocks

These modes are for all block ciphers in general

	ЕСВ	СВС	CTR
Full Name	Electronic Codebook	Cipher Block Chaining	Counter
Each Block	Independently	Dependently	Independently
Analogy	Codebook without additive	Codebook with additive	Stream cipher
Encryption	$C_n = E(P_n, K)$	$C_0 = E(IV \oplus P_0, K)$ $C_n = E(C_{n-1} \oplus P_n, K)$	$C_n = P_n \oplus E(IV + n, K)$
Decryption	$P_n = D(C_n, K)$	$P_0 = IV \oplus D(C_0, K)$ $P_n = C_{n-1} \oplus D(C_n, K)$	$P_n = C_n \oplus E(IV + n, K)$
Notes	Same P → Same C	Auto-recover from errors when decrypting	E(IV + n, K) is used as a keystream

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- Encryption only provides confidentiality (hide info)
- Use Message Authentication Code (MAC) for integrity
 - The calculation is the same as CBC encryption
 - But only save the last cipher block, and call it "MAC"
 - Alice send Bob the IV, the P's and the MAC
 - Bob do the same computation to verify
 - Any change in P will result in a wrong MAC (error propagates), so using MAC can detect unauthorized writing of information
- Confidentiality and integrity with same work as one encryption is a research topic

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- Symmetric key: use same key to encrypt and decrypt
 - Encryption algorithm needs to be invertible
 - ➤ Usually, \oplus does the magic: $C = P \oplus K$ then $P = C \oplus K$
- Symmetric key crypto mainly used for confidentiality
 - Transmitting data over insecure channel
 - Secure storage on insecure media
- MAC used for integrity
- Other usages to be covered
 - Anything you can do with a hash function (~Lesson 8)
 - Authentication protocols (~Lesson 19 or 20)

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- Distributing the keys for symmetric ciphers is a problem
 - Alice and Bob needs to exchange the key secretly first...
- Public key crypto eliminate the key distributing problem
 - Suppose Alice wants to send a secret message to Bob
 - > Alice encrypt the message using Bob's public key
 - everyone can do this since everyone knows Bob's public key
 - Bob decrypt the message using his private key
 - only Bob can do this since only he knows his private key
 - That is, everyone can send Bob a secret message that only Bob can read, without exchanging a key!

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- Public key crypto for encryption (this Lesson)
 - > {M}_{Alice} = ciphertext after encrypting M by Alice's public key
 - Everyone can do the encryption (i.e., compute {M}_{Alice})
 - Only Alice can decrypt {M}_{Alice} to get M using her private key
- Public key crypto for key exchange (Lesson 6)
- Public key crypto for signature (Lesson 7)
 - ➤ [M]_{Bob} = "signature" after encrypting M by Bob's private key
 - Only Bob can compute [M]_{Bob}
 - > Everyone can decrypt [M]_{Bob} to get M with Bob's public key
 - \rightarrow If $\{[M]_{Bob}\}_{Bob} = M$, Bob's signature is verified

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- The magic is based on "trap door, one way function"
 - Easy to compute in one directionY = f(x) is easy (using x to get Y is easy)
 - Hard to compute in other direction
 x = f⁻¹(Y) is hard (using Y to get x is hard)
 - Like a trap door: easy to get in, hard to get out!
 - Example: given p & q, calculate N = p * q is easy, but given N, hard to find p and q such that N = p * q!
- In general, public-key ciphers are more mathematical than symmetric key ciphers (also harder to design!)

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- Prime: an integer (> 1) only is divided by 1 and itself.
 - > Examples: 2, 3, 5, 7, 11, 13, 17, 19, 23, ...
 - > A non-prime number is called composite
- Suppose x and y are integers, if z = x / y is an integer,
 then y (and z) is called a divisor (factor) of x.
 - > Example: divisors for 24 are 1, 2, 3, 4, 6, 8, 12, and 24
- Greatest Common Divisor (GCD) of x and y: the largest integer d such as d is a divisor of both x and y
 - \triangleright Example: gcd(24, 32) = gcd(32, 24) = 8
 - \rightarrow If y is a divisor of x, gcd(x, y) = y (e.g., gcd(12, 3) = 3)

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- Two integers x and y are relatively prime if gcd(x, y) = 1.
 - > That is, x and y doesn't have other common divisors
 - > x and y does NOT have to be primes
 - Example: 9 and 16 are relatively prime since gcd(9, 16) = 1, but both 9 and 16 are not primes
- Totient function $\phi(n)$: the number of numbers less than n that are relatively prime to n
 - \triangleright Example: $\varphi(9) = 6$ since 9 is relatively prime to 1,2,4,5,7,8
 - $\triangleright \quad \varphi(p) = p 1 \text{ if p is prime}$
 - $\triangleright \quad \phi(pq) = \phi(p) * \phi(q) = (p-1)(q-1) \text{ if p and q prime}$

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

Appendix

- Euclidean algorithm is used to compute gcd(x, y)
 - Suppose x > y

```
gcd(x, y)
         if y = 0, return x
         else return gcd(y, x mod y)
```

Extended Euclidean algorithm: based on Bezout's

```
Theorem: gcd(x, y) = ax + by
```

- a and b are called Bezout's coefficients (also integers)
- Not only computes gcd(x, y), but also computes a and b!
- If x and y are relatively prime, then 1 = ax + by, which is used to compute the multiplicative inverses (next section)

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

Appendix

- Extended Euclidean algorithm (continued)
 - Suppose gcd(x, y) = g, that is, g = ax + by, then given x, y, the following algorithm calculates g, a and b

```
g_0 = x; g_1 = y;
a_0 = 1; a_1 = 0;
b_0 = 0; b_1 = 1;
while g_i > 0
             g_i = g_{i-2} \mod g_{i-1};
             q_i = floor(g_{i-2} / g_{i-1});
            a_i = a_{i-2} - q_i * a_{i-1};
             b_i = b_{i-2} - q_i * b_{i-1};
end loop when g_i = 0
g = g_{i-1};
a = a_{i-2};
b = b_{i-2};
```

Cite the source if you used online code for homework!

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

Appendix

- x mod n (modulo): remainder of x divided by n
 - ➤ Result "circled" from 0 to n -1 ("Clock" arithmetic)
 - \triangleright Examples: 14 mod 12 = 2; 20 mod 10 = 0; 33 mod 6 = 3, etc.
- Some useful formulas for modulo

Modular Arithmetic

- \triangleright [(a mod n) + (b mod n)] mod n = (a + b) mod n
- \triangleright [(a mod n)(b mod n)] mod n = ab mod n
- Congruence: $a \equiv b \pmod{n}$ means $a \mod n = b \mod n$
 - \triangleright n is the divisor of a b : a b = kn for an integer k
 - \triangleright Example 1 (modular addition): $(3 + 5) \equiv 2 \pmod{6}$
 - \triangleright Example 2 (modular multiplication): $(3 * 5) \equiv 3 \pmod{6}$

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

Appendix

Some useful properties and formulas of congruence

- ightharpoonup Reflexivity: $a \equiv a \pmod{n}$
- > Symmetry: $a \equiv b \pmod{n} \rightarrow b \equiv a \pmod{n}$
- ➤ Transitivity: $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ $\rightarrow a \equiv c \pmod{n}$
- \triangleright a + k \equiv b + k (mod n) iff a \equiv b (mod n) for any integer k
- \triangleright If a ≡ b (mod n) then ka ≡ kb (mod n) for any integer k
- If $ka \equiv kb \pmod{n}$ and k is coprime with n, then $a \equiv b \pmod{n}$
- \triangleright If ka ≡ kb (mod kn), then a ≡ b (mod n)
- If $a \equiv b \pmod{n}$ then $ak \equiv bk \pmod{n}$ for any integer $k \ge 0$
- For more, check <u>here</u>

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- -x mod N: additive inverse of x mod N
 - ightharpoonup -x mod N = y if x + y \equiv 0 (mod N)
 - > i.e., y is the number that must be added to x to get 0 mod N
 - \triangleright Example: -2 mod 6 = 4, since 2 + 4 \equiv 0 (mod 6)
 - $-3 \mod 6 = ? -2 \mod 7 = ? -33 \mod 10 = ?$
- x⁻¹ mod N: multiplicative inverse of x mod N
 - $ightharpoonup x^{-1} \mod N = y \text{ if } xy \equiv 1 \pmod N$
 - > i.e., the number that must be multiplied by x to get 1 mod N
 - ➤ Example: $5^{-1} \mod 6 = 5$, since $5 * 5 \equiv 1 \pmod 6$
 - \bigcirc 6-1 mod 5 = ? 11-1 mod 7 = ? 2-1 mod 6 = ?

... Previously Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- x⁻¹ mod N exists only when x and n are relatively prime
 - If x and n have common divisors, then there's no y such that $xy \equiv 1 \pmod{N}$
- x⁻¹ mod N can be calculated using Extended Euclidean
 - ightharpoonup Recall: gcd(x, n) = 1 = ax + bN if x and N are relatively prime
 - ightharpoonup That is, $ax + bN \equiv 1 \pmod{N}$ (1)
 - \triangleright Since bN mod N = 0, $ax + bN \equiv ax \pmod{N}$ (2)
 - \triangleright Given (1) & (2), we get $ax \equiv 1 \pmod{N}$
 - That is, $x^{-1} \mod N = a$, and a can be computed by Extended Euclidean algorithm if given x and N

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- Fermat's little theorem: if p is a prime number, then $a^p \equiv a \; (mod \; p) \; \text{for any integer a}$
 - ➤ If a is not a divisor of a prime p, then $a^{p-1} \equiv 1 \pmod{p}$
- Euler's theorem: if a and n are relatively prime, then $a^{\phi(n)} \equiv 1 \; (\text{mod } n) \; \text{where} \; \phi(n) \; \text{is the totient function of n}$
 - Recall: $\varphi(n)$: the number of relatively primes (< n) to n
- Chinese remainder theorem: if n_i are pairwise coprime, and $0 \le a_i < n_i$ then $x \equiv a_i \pmod{n_i}$ for $0 \le i \le m$ has a unique solution for $x \mod N$ where N is the product of n_i

... Previously Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

Appendix

- RSA: public key crypto based on modulo & primes
 - Invented by Clifford Cocks (GCHQ) and Rivest, Shamir, and Adleman (MIT)
 - RSA is the gold standard in public key crypto
- To generate keys:

Key Generation

- Let p and q be two large prime numbers, and N = pq
- Choose e relatively prime to $(p-1)(q-1) = \phi(N)$
- Find $d = e^{-1} \mod \varphi(N)$ (i.e., $ed \equiv 1 \mod \varphi(N)$)
- Public key is (N, e)
- Private key is d (p and q are also secrets!)

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- Message (plaintext) M is treated as a number
 - \triangleright To encrypt M, compute $C \equiv M^e \mod N$
 - ightharpoonup To decrypt ciphertext C, compute M \equiv C^d mod N
- Let's (informally) prove it works, that is, $M \equiv M^{ed} \mod N$
 - Recall: $d = e^{-1} \mod \varphi(N)$ so $ed \equiv 1 \mod \varphi(N)$
 - \rightarrow That is, ed 1 = $k\varphi(N)$ for integer k (Congruence definition)
 - Then $M^{ed} \equiv M^{(ed-1)+1} \equiv M^*M^{(ed-1)} \equiv M^*M^{k\phi(N)} \pmod{N}$
 - > Since p and q are both primes, M should be relatively prime to $p * q = N, \text{ then by Euler's theorem } M^{\phi(N)} \equiv 1 \pmod{N}$
 - ightharpoonup Then $M^{ed} \equiv M^*M^{k\phi(N)} \equiv M^*(M^{\phi(N)})^k \equiv M^*1^k \equiv M \pmod{N}$, QED

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- The security of RSA is based on it's hard to factorize N
 - That is, find p & q that's used to get N
 - "Brute-force": try all p's from 2 to sqrt(N)
 - Once Trudy knows p & q, easy to get private key d using extended Euclidean algorithm (programming assignment 1!)
 - Factorizing N gets harder as N get bigger [O(sqrt(N))]
 - So, in real life, N is big (2048 bits at least)
- Choice of e also matters...just a little
 - Size of e doesn't matter as much as the size of N...
 - But choosing 3 as e may result in cube root attack

... Previously Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- 2 possible cube root attack if e = 3
 - ➤ Possibility 1: when Me = M³ < N, then M³ mod N = M³ = C</p>
 That is, attacker can compute cube root of C to get M
 - Possibility 2: send same message M to 3 users using e = 3 so $C_1 \equiv M^3 \mod N_1$, $C_2 \equiv M^3 \mod N_2$, and $C_3 \equiv M^3 \mod N_3$ Can get $C \equiv M^3 \mod N_1 N_2 N_3$ by Chinese remainder theorem Rest is the same as possibility 1
- Padding random bits on M can prevent the attack
 - \triangleright For possibility 1, make M³ > N
 - > For possibility 2, make M different

Lesson 5

Public Key Crypto 1

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

- Diffie-Hellman Key Exchange
- ECC

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

Appendix

Concepts

Exercises

- Public key crypto
 - Public key vs. private key, usages
 - One-way trapdoor function
- Math preliminaries
 - Divisors, GCD, relatively prime, totient function
 - Euclidean algorithm, extended Euclidean algorithm
 - Congruence, modular reverses (additive & multiplicative)
 - Fermat's little theorem, Euler's theorem, Chinese remainder theorem
- RSA
 - Private key: d (p & q also private)
 - Public key: N, e
 - Cube root attack

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

Appendix

Calculate the following

Concepts

- $\rightarrow \quad \phi(12)$
- \triangleright $\varphi(13)$
- $\rightarrow \quad \phi(15)$
- $ightharpoonup \phi(53)$

Calculate the following

- > -3 mod 8
- > -31 mod 5
- > -47 mod 3
- \rightarrow 7⁻¹ mod 6
- > 5⁻¹ mod 8
- > 3⁻¹ mod 6

Lesson 5

Public Key Crypto 1

... Previously

Introduction

Prelim: Prime

Prelim: Modulo

RSA

Next Lesson ...

Appendix

References

Stamp, Mark, "Information Security, Principles and Practice, 2nd ed.," Wiley,
 New Jersey, USA, 2011