A diver works in the sea on a day when the atmospheric pressure is 101 kPa and the density of the seawater is 1028 kg/m<sup>3</sup>.



(a) The diver uses compressed air to breathe under water.

1700 litres of air from the atmosphere is compressed into a 12-litre gas cylinder.

The compressed air quickly cools to its original temperature.

Calculate the pressure of the air in the cylinder.

(3)

pressure = .....kPa

| (b) (i) State the equation linking pressure difference, depth, density and $g$ .                      | (1)       |
|-------------------------------------------------------------------------------------------------------|-----------|
| (ii) Calculate the increase in pressure when the diver descends from the surfa<br>to a depth of 11 m. | ce<br>(2) |
| increase in pressure =                                                                                | kPa       |
| (iii) Calculate the total pressure on the diver at a depth of 11 m.                                   |           |
| Assume that the atmospheric pressure remains at 101 kPa.                                              | (1)       |
| total pressure =                                                                                      | kPa       |
| (c) As the diver breathes out, bubbles of gas are released and rise to the surface.                   |           |
| The bubbles increase in volume as they rise.                                                          |           |
| Explain this increase in volume.                                                                      | (2)       |
|                                                                                                       |           |
|                                                                                                       |           |
| (Total for Question 4 = 9                                                                             | >l>       |

