FATTI DI ALGEBRA

TEORIA DEI GRUPPI

Nel seguito G indica un qualsiasi gruppo, viene indicata con e l'unità del gruppo. La notazione usata è quella moltiplicativa. $H \leq G$ indica che H è sottogruppo di G (eventualmente coincidente). $H \lhd G$ indica che H è un sottogruppo normale di G.

- Due qualsiasi laterali destri di $H \leq G$ in G (Ha e Hb) sono in corrispondenza biunivoca attraverso la funzione $ah \mapsto bh$
- $\bullet\,$ Esiste inoltre una corrispondenza biunivoca tra l'insieme dei laterali destri e quello dei laterali sinistri di uno stesso sottogruppo H
- (**Teorema di Lagrange**) G finito e $H \leq G$, allora ord $H \mid$ ord G
- G finito, $a \in G$ allora ord $a \mid \text{ord } G \text{ e } a^{\text{ord } G} = e$
- (Ciclicità degli ordini primi) G finito con ordine primo (ord $G = p \in \mathbb{P}$), allora G è ciclico
- (Sottogruppo prodotto) $H, K \leq G$. Allora $HK \leq G \Leftrightarrow HK = KH$
- (Ordine del prodotto) $H, K \leq G$ con H e K sottogruppi finiti. Supponiamo che $HK \leq G$. Allora ord $(HK) = \frac{\text{ord }(H)\text{ord }(K)}{\text{ord }(H \cap K)}$
- (Gruppo quoziente) Se $N \lhd G$, allora anche G/N è un gruppo. Inoltre se G è finito, vale ord $(G/N) = \frac{\operatorname{ord}(G)}{\operatorname{ord}(N)}$
- (**Proiezione al quoziente**) $N \lhd G$. $\Phi: G \mapsto G/N$ definita da $\Phi(g) = Ng$ è un omomorfismo surgettivo.
- (Normalità del Ker) $\Phi: G \mapsto H$ omomorfismo surgettivo. $K = \operatorname{Ker} \Phi \implies K \triangleleft G$
- (Immagini inverse) $\Phi: G \mapsto H$ omomorfismo. Ker $\Phi = K \implies \Phi^{-1}\Phi(x) = Kx$
- (Primo teorema di Omomorfismo) $\Phi: G \mapsto H$ omomorfismo surgettivo con $K = \operatorname{Ker} \Phi$. Allora $G/K \cong H$.
- (Teorema di Cauchy) Sia $p \in \mathbb{P}$ t.c. $p \mid \text{ord } G$. Esiste allora $a \neq e$ t.c. $a^p = e$
- (**Teorema di Sylow**) Sia $p \in \mathbb{P}$ t.c. $p^{\alpha} \mid \text{ord } G, p^{\alpha+1} \nmid \text{ord } G$. Allora G ha un sottogruppo di ordine p^{α} . Inoltre se G è abeliano tale sottogruppo è unico.
- (Corrispondenza tra gruppi normali) Sia $\Phi: G \mapsto G'$ omomorfismo surgettivo. $K = \operatorname{Ker} \Phi$. Dato $H' \leq G'$ si definisca $H = \{x \in G \mid \Phi(x) \in H'\}$. Si ha che $H \leq G$ t.c. $K \subseteq H$. Inoltre se $H' \lhd G'$ allora $H \lhd G$. L'associare H' ad H stabilisce una corrispondenza biunivoca dell'insieme di tutti i sottogruppi di G' sull'insieme di tutti i sottogruppi di G che contengono K
- (Secondo teorema di Omomorfismo) $\Phi: G \mapsto G'$ omomorfismo surgettivo, $K = \text{Ker } \Phi$. Si prenda ora $N' \lhd G'$ e sia $N = \{x \in G \mid \Phi(x) \in N'\}$. Allora $G/N \cong G'/N'$ oppure, in modo equivalente, $G/N \cong (G/K)/(N/K)$.
- (Caratterizzazione degli automorfismi interni) Int $G\cong G/Z$ con Z=C(G) centro di G. Inoltre Int $G\lhd \operatorname{Aut} G$

Trucchi vari

- $\bullet\,$ Se non sai cosa fare, può essere utile considerare il gruppo ciclico generato da un elemento $\langle a \rangle$
- Il modo più utile di usare l'informazione MCD (a,b)=1 è tramite Bèzout: $\exists s,t$ t.c. as+bt=1, soprattutto se a e b sono ordini di gruppi.
- Se $N \triangleleft G$, $x^{i_G(N)} \in N$ (poiché i G(N) è l'ordine del gruppo quoziente G/N)

Caratteristiche di S_n

- S_n NON è abeliano per $n \ge 3$. Infatti (12) e (13) non commutano
- Il centro di S_n è banale per $n \geq 3$. Per questo motivo S_n NON è nilpotente per $n \geq 3$
- S_n per $n \neq 2, 6$ è un gruppo completo poiché non ha centro ed ogni automorfismo è interno

LAYOUT COMPLETO DI S_4

 S_4 è il gruppo delle permutazioni di quattro elementi. A_4 è il gruppo delle permutazioni pari. V_4 è il gruppo dei prodotti di 2-cicli disgiunti ($V_4 = \{(), (12)(34), (13)(24), (14)(23)\}$). D_8 è il gruppo diedrale di ordine otto.

 S_4 contiene le seguenti permutazioni:

- 1 identità: ()
- 6 2-cicli: (12), (13), (14), (23), (24), (34)
- 3 prodotti di 2-cicli: (12)(34), (13)(24), (14)(23)
- 8 3-cicli: (123), (124), (132), (134), (142), (143), (234), (243)
- 6 4-cicli: (1234), (1243), (1324), (1342), (1423), (1432)

Altre caratteristiche di S_4 :

- Abbiamo che S_4 è risolubile considerando la catena $(e) \subseteq V_4 \subseteq A_4 \subseteq S_4$
- $A_4 \triangleleft S_4$ (Poiché ha indice 2)
- $V_4 \triangleleft S_4$ (conti)
- $D_8 \le S_4$ (prendendo $D_8 = \{(), (1234), (13)(24), (1432), (12)(34), (14)(23), (13)(24)\}$)