西安电子科技大学

			试				题			
题号	_	1 1	111	四	五	六	七	八	九	总分
分数										
1. 考试时间: 120 分钟; 2. 本试卷共九大题, 满分 100 分.										
班级		_学号_	姓名			任课教师				
一、单项选择题(每小题 4 分,共 20 分)										
1. 设函数 $u = \left(\frac{y}{z}\right)^{\frac{1}{x}}$,则 $du _{(1,1,1)} = ($).										

- (A) dx dy; (B) dy dz; (C) dy dx dz; (D) **0**.
- 2. 已知 $(axy^3 y^2 \cos x)dx + (1+by \sin x + 3x^2y^2)dy$ 为某一函数 u(x, y) 的全微分,则 ab 为 ().
 - (A) 4; (B) 2; (C) -2; (D) -4.
 - 3. 设 L 为取正向的圆周 $x^2 + y^2 = 64$,则曲线积分

$$\iint_{L} \frac{(2xy+2y)dx+(x^{2}-4y)dy}{x^{2}+y^{2}} = () .$$

- (A) -2π ; (B) 0; (C) 2π ; (D) 4π .
- 4. 若将函数 $f(x) = x^2 (0 \le x \le \pi)$ 展开成正弦级数,则此级数在 $x = -\pi$ 处收敛于().
 - (A) π^2 ; (B) $-\pi^2$; (C) 0; (D) 2π .
 - 5. 设常数 k > 0,级数 $\sum_{n=1}^{\infty} (-1)^n \frac{k+n}{n^2}$ 的敛散性为 () .
 - (A)条件收敛; (B)绝对收敛; (C)发散; (D)敛散性随 k而定.

二、填空题 (每小题 4 分, 共 20 分)

- 1. 空间曲线 $x = \cos t$, $y = \sin t$, z = 4t 在 $t = \pi / 4$ 处的法平面方程为_____.
- 2. $\int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy = \underline{\hspace{1cm}}$

3. 设椭球体
$$\Omega$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$, 则三重积分 $\iint_{\Omega} z^2 dx dy dz = _____.$

4. 设
$$L$$
 为圆周 $x^2 + y^2 = a^2$,则 $(x^2 + y^2) ds = ____$.

5. 设 $y_1 = x$, $y_2 = x + e^x$, $y_3 = x + e^{-x}$ 是某二阶非齐次线性微分方程的三个特解,则该微分方程的通解为

三、(10分)设z = z(x, y)是由方程f(y - x, yz) = 0所确定的隐函数,其

中 f 对各变量有连续的二阶偏导数,求 $\frac{\partial^2 z}{\partial x^2}$.

侧的通量.

四、(8分) 求球面 $x^2 + y^2 + z^2 = R^2$ 含在圆柱面 $x^2 + y^2 = Rx$ (R > 0) 内部的那部分的面积.

五、(10 分) 在变力 $F = (e^x \sin y - x - y)i + (e^x \cos y - ax)j$ (a > 0) 的作

用下,质点由点 A(2a,0) 沿曲线 $y=\sqrt{2ax-x^2}$ 运动到点 O(0,0) ,求变力 \mathbf{F} 所作的功.

六、(8 分) 求向量 $A = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}}$ 穿过上半球面 $z = \sqrt{R^2 - x^2 - y^2}$ 上

七、(10 分) 求幂级数 $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ 的收敛半径,收敛域及和函数.

八、(7分) 设曲线积分 $\int_{L} [f'(x) + 2f(x) + e^{x}] y dx + f'(x) dy$ 与路径无关,

f(0) = 0, f'(0) = 1. 计算曲线积分 $\int_{(0,0)}^{(1,1)} [f'(x) + 2f(x) + e^x] y dx + f'(x) dy$ 的值.

九、(7 分) 证明: 若正项级数 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 都收敛,则 $\sum_{n=1}^{\infty} (a_n + b_n)^2$ 也收敛。若去掉前提中的 "正项"二字,则结论不成立,请举出反例。