Formelsammlung Theoretische ET II

(Stand: 12. Juli 1991)

Inhaltsverzeichnis

1	Wio	chtige	Größen	2								
	1.1	Ableit	sungen der Besselfunktionen	2								
	1.2	2 Vektoroperationen										
		1.2.1	Rotation eines Vektorfeldes	3								
		1.2.2	Divergenz eines Vektorfeldes	3								
		1.2.3	Gradient eines Skalarfeldes	3								
		1.2.4	Kreuzprodukt	3								
	1.3	Koord	linatenumrechnungen	3								
		1.3.1	Zylinderkoordinaten	3								
		1.3.2	Kugelkoordinaten	3								
	1.4	Winke	elfunktionen	4								
2	Tra	nsform	nationen	5								
	2.1	Möbiu	s-Transformation	5								
		2.1.1	Kreis mit <i>nicht</i> homogenem Potentialverlauf	5								
		2.1.2	Kreisförmige Anordnung mit jeweils homogenem Potentialverlauf	6								
	2.2	Schwa	rz-Christoffel-Transformation	7								
	2.3	Trans	formation mit Hilfe analytischer Funktionen	8								
		2.3.1	Abbildung der speziellen Parabel nach Schwarz-Christoffel	8								
		2.3.2	Abbildung der speziellen Hyperbel nach Schwarz-Christoffel	8								
3	Fin	ite Ele	emente	9								
	3.1	Jakob	i–Determinante	9								
	3.2	Energ	ieintegral	9								
		3.2.1	Totales Differential	10								
		3.2.2	Partielle Integration mit zwei Veränderlichen (Produktintegration)	10								
	3.3	Ritz's	cher Ansatz für Energieminimierung	10								
		3.3.1	Eindimensionale Elemente — Einheitselement	11								
		3.3.2	Zweidimensionale Elemente	12								
	3.4	Lösun	gsverfahren	12								

4	Skir	kin-Effekt							
	4.1	Wicht	ige Formeln	18					
	4.2	Rechte	eckleiter — kartesische Koordinaten	19					
	4.3	Rundl	eiter — Zylinderkoordinaten	20					
5	Wel	len		21					
	5.1	Freie '	Wellenausbreitung im Raum	21					
		5.1.1	Seperation in kartesischen Koordinaten	21					
		5.1.2	Seperation in Zylinderkoordinaten	21					
		5.1.3	Seperation in Kugelkoordinaten	22					
		5.1.4	Ebene Wellen, periodisch	22					
		5.1.5	Reflektion ebener Wellen	22					
	5.2	Gefüh	rte Wellenausbreitung in Leitern	23					
		5.2.1	Rechteckhohlleiter	23					
		5.2.2	Kreiszylindrische Hohlleiter	23					
		5.2.3	TEM – Wellen auf Leitern	23					

1 Wichtige Größen

$ec{F}$	Feld allgemein
$ec{H}$	magnetische Feldstärke
$ec{E}$	Elektrische Feldstärke
$ec{P}$	Potential allgemein
$ec{V}$	Skalarpotential
$ec{A}$	Vektorpotential
$\vec{p} = \vec{E} \times \vec{H}$	Poyntingscher Vektor, Leistung im elektromagnetischen Feld
$\operatorname{div} \vec{p} = -p_v$	Verlustleistungsdichte

1.1 Ableitungen der Besselfunktionen

gewöhnliche Besselfunktionen 1. und 2. Art

$$\frac{d\mathcal{J}_n(x)}{dx} = -\mathcal{J}_{n+1}(x) + \frac{n}{x}\mathcal{J}_n(x) \quad \text{und} \quad \frac{d\mathcal{N}_n(x)}{dx} = -\mathcal{N}_{n+1}(x) - \frac{n}{x}\mathcal{N}_n(x)$$

modifizierte Besselfunktionen 1. und 2. Art

$$\frac{d\mathcal{I}_n(x)}{dx} = \mathcal{I}_{n+1}(x) + \frac{n}{x}\mathcal{I}_n(x) \quad \text{und} \quad \frac{d\mathcal{K}_n(x)}{dx} = -\mathcal{K}_{n+1}(x) - \frac{n}{x}\mathcal{K}_n(x)$$

1.2 Vektoroperationen

1.2.1 Rotation eines Vektorfeldes

$$\operatorname{rot} \vec{V} = \begin{vmatrix} \vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \vec{V}_{x} & \vec{V}_{y} & \vec{V}_{z} \end{vmatrix} = \begin{vmatrix} \vec{e}_{\rho} & \vec{e}_{\varphi} & \vec{e}_{z} \\ \frac{\partial}{\partial \rho} & \frac{1}{\rho} \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ \vec{V}_{\rho} & \vec{V}_{\varphi} & \vec{V}_{z} \end{vmatrix} = \frac{1}{r^{2} \sin \vartheta} \begin{vmatrix} \vec{e}_{r} & r\vec{e}_{\vartheta} & r \sin \vartheta \vec{e}_{\varphi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \vartheta} & \frac{\partial}{\partial \varphi} \\ \vec{V}_{r} & r\vec{V}_{\vartheta} & r \sin \vartheta \vec{V}_{\varphi} \end{vmatrix}$$

1.2.2 Divergenz eines Vektorfeldes

$$\operatorname{div} \vec{V} = \vec{\nabla} \vec{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

$$= \frac{1}{\rho} \frac{\partial \rho V_\rho}{\partial \rho} + \frac{1}{\rho} \frac{\partial V_\varphi}{\partial \varphi} + \frac{\partial V_z}{\partial z}$$

$$= \frac{1}{r^2} \frac{\partial r^2 V_r}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial V_\varphi}{\partial \varphi} + \frac{1}{r \sin \vartheta} \frac{\partial \sin \vartheta V_\vartheta}{\partial \vartheta}$$

1.2.3 Gradient eines Skalarfeldes

$$\operatorname{grad} \Phi = \left(\frac{\partial \Phi}{\partial x} \vec{e}_x + \frac{\partial \Phi}{\partial y} \vec{e}_y + \frac{\partial \Phi}{\partial z} \vec{e}_z\right)$$

$$= \left(\frac{\partial \Phi}{\partial \rho} \vec{e}_\rho + \frac{1}{\rho} \frac{\partial \Phi}{\partial \varphi} \vec{e}_\varphi + \frac{\partial \Phi}{\partial z} \vec{e}_z\right)$$

$$= \left(\frac{1}{r} \frac{\partial \Phi}{\partial \vartheta} \vec{e}_\vartheta + \frac{1}{r \sin \vartheta} \frac{\partial \Phi}{\partial \varphi} \vec{e}_\varphi + \frac{\partial \Phi}{\partial r} \vec{e}_r\right)$$

1.2.4 Kreuzprodukt

$$\vec{A} \times \vec{B} = \left| \begin{array}{ccc} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{array} \right|$$

1.3 Koordinatenumrechnungen

1.3.1 Zylinderkoordinaten

$$\begin{array}{lllll} x & = & \rho\cos\varphi & & \vec{e}_{\rho} & = & \vec{e}_{x}\cos\varphi + \vec{e}_{y}\sin\varphi & & \vec{e}_{x} & = & \vec{e}_{\rho}\cos\varphi - \vec{e}_{\varphi}\sin\varphi \\ y & = & \rho\sin\varphi & & \vec{e}_{\varphi} & = & -\vec{e}_{x}\sin\varphi + \vec{e}_{y}\cos\varphi & & \vec{e}_{y} & = & \vec{e}_{\rho}\sin\varphi + \vec{e}_{\varphi}\cos\varphi \\ z & = & z & & \vec{e}_{z} & = & \vec{e}_{z} & & \vec{e}_{z} & = & \vec{e}_{z} \end{array}$$

1.3.2 Kugelkoordinaten

$$x = r \sin \theta \cos \varphi \qquad \qquad \vec{e}_r = \vec{e}_x \sin \theta \cos \varphi + \vec{e}_y \sin \theta \sin \varphi + \vec{e}_z \cos \theta$$

$$y = r \sin \theta \sin \varphi \qquad \qquad \vec{e}_\theta = \vec{e}_x \cos \theta \cos \varphi + \vec{e}_y \cos \theta \sin \varphi + \vec{e}_z \sin \theta$$

$$z = r \cos \theta \qquad \qquad \vec{e}_\varphi = -\vec{e}_x \sin \varphi + \vec{e}_y \cos \varphi$$

1.4 Winkelfunktionen

$$\sin = \frac{Gegenkathete}{Hypotenuse}$$
 $\cos = \frac{Ankathete}{Hypotenuse}$

siehe kleine Formelsammlung Seite 14

2 Transformationen

2.1 Möbius-Transformation

Verknüpfung grundlegender analytischer Funktionen zu einer Abbildungsfunktion.

Möbius-Transformation ist eindeutig umkehrbar, bildet drei wählbare Punkte aus der z-Ebene in drei Punkte in der w-Ebene ab, von denen einer im Unendlichen liegen kann.

2.1.1 Kreis mit nicht homogenem Potentialverlauf

 \Rightarrow auf die obere Hälfte der w-Ebeneabbilden; Plattenkondensator Möbius-Transformation, für $\alpha\delta-\beta\gamma\neq0$

$$w = \frac{\alpha z + \beta}{\gamma z + \delta} = \frac{\beta}{\delta} \frac{\frac{\alpha}{\beta} z + 1}{\frac{\gamma}{\delta} z + 1} \Rightarrow \boxed{w = j \frac{a - z}{a + z}}$$

mit $\frac{\beta}{\delta} = j$ aus Kreismittelpunkt, $\frac{\alpha}{\beta} = -\frac{1}{a}$ und $\frac{\gamma}{\delta} = \frac{1}{a}$ aus Punkten am Kreis auf der x-Achse. Umkehrfunktion für die Rücktransformation

$$z = -\frac{\delta w - \beta}{\gamma w - \alpha} \Rightarrow \boxed{z = a \frac{j - w}{j + w}}$$

- 1. drei Punkte wählen, die zu transformieren sind, um eine Anordnung in der w-Ebene zu erhalten (siehe oben).
- 2. Tabelle für z_{λ} und w_{λ} in den drei Punkten aufstellen
- 3. Konstanten für Berandungspunkte bestimmen (Werte aus der Tabelle) (evtl. weitere Werte aufnehmen oder Zahl der Unbekannten reduzieren, siehe oben) \Rightarrow Abbildungsfunktion und Umkehrfunktion, damit markante Punkte für den Potentialverlauf in die w-Ebene transformieren
- 4. komplexes Potential

$$P_m(w_p) = -\frac{\mu_0}{\pi} \int_{-\infty}^{\infty} V_m(u_Q) \frac{du_Q}{w_p - u_Q}$$

5. konjugiert komplexe Feldstärke (mit $\frac{dz}{dw} = a \frac{-2j}{(j+w)^2}$)

$$E^*(z_p) = -\frac{dP_m(w_p)}{dw_p} \frac{1}{\frac{dz_p}{dw_p}} \qquad B^*(z) = j\frac{dP_m(w)}{dw} \frac{1}{\frac{dz}{dw}}$$

2.1.2 Kreisförmige Anordnung mit jeweils homogenem Potentialverlauf

 \Rightarrow Zylinderkondensator

Möbius-Transformation, für $\alpha\delta - \beta\gamma \neq 0$

$$w = \frac{\alpha z + \beta}{\gamma z + \delta} = \frac{\alpha}{\gamma} \frac{z + \frac{\beta}{\alpha}}{z + \frac{\delta}{\gamma}} \Rightarrow \boxed{w = r \frac{z + s}{z + t}}$$

Umkehrfunktion für die Rücktransformation

$$z = -\frac{\delta w - \beta}{\gamma w - \alpha}$$

- 1. drei Punkte wählen, die zu transformieren sind, um eine rotationssymetrische Anordnung zu erhalten (Zylinderkondensator)
- 2. Tabelle für z_λ und w_λ in den drei Punkten aufstellen
- 3. Konstanten für Berandungspunkte bestimmen (Werte aus der Tabelle) (evtl. weitere Werte aufnehmen oder Zahl der Unbekannten reduzieren)
 ⇒ Abbildungsfunktion und Umkehrfunktion, damit markante Punkte für den Potentialverlauf in die w-Ebene transformieren
- 4. komplexes Potential

$$P_m(w_p) = -\frac{\mu_0}{\pi} \int_{-\infty}^{\infty} V_m(u_Q) \frac{du_Q}{w_p - u_Q}$$

5. konjugiert komplexe Feldstärke

$$E^*(z_p) = -\frac{dP_m(w_p)}{dw_p} \frac{1}{\frac{dz_p}{dw_p}} \qquad B^*(z) = j\frac{dP_m(w)}{dw} \frac{1}{\frac{dz}{dw}}$$

2.2 Schwarz-Christoffel-Transformation

Bestimmen von Potential- und Feldlinienverläufen innerhalb einer polygonal begrenzten Fläche der z-Ebene (auch mit parallelen und offenen Kanten) durch Transformation in die obere Hälfte der w-Ebene.

- 1. Die Anordnung wird von einer Kurve in positiver Richtung durchlaufen, wobei die Knickpunkte des Polygons (P_{λ}) auf Punkte der u-Achse in der w-Ebene übertragen werden vorzugsweise $u_{\lambda} = -1, 0, 1$. Hierbei darf höchstens ein Punkt im Unendlichen enden. Die Punkte, die im Unendlichen enden $(P'_{\lambda} \text{ und } P''_{\lambda})$, werden verbunden. Symetrien bleiben bei der Transformation erhalten.
- 2. Tabelle für z_{λ} , α_{λ} , w_{λ} aufstellen ($\alpha_{\lambda} < 0$ für Rechtsknick, $\alpha_{\lambda} > 0$ für Linksknick, Summe immer gleich 2)
- 3. Schwarz-Christoffel-Integral (nach BRONSTEIN S. 87ff lösen)

$$z = C \int \prod_{\lambda=1}^{n-1} (w - w_{\lambda})^{-\alpha_{\lambda}} dw + C^*$$

(für $z_{\lambda} = 0 \rightarrow w_{\lambda} = 0$ folgt $C^* = 0$ integrieren von $0 \dots w$)

- 4. Konstanten bestimmen
 - (a) Pol der z-Ebene \to im Endlichen der w-Ebene, nur für alle $w_k \neq \infty$ (z.B. bei parallelen Kanten, Punkte gleichen Potentials, siehe Hilfsblätter)

$$C = \frac{j}{\pi} (z_k'' - z_k') \left[\prod_{\lambda=1/\lambda \neq k}^{n-1} (w_k - w_\lambda)^{-\alpha_\lambda} \right]^{-1}$$

(b) Pol der z-Ebene \rightarrow im Unendlichen der w-Ebene

$$C = -\frac{j}{\pi}(z_k'' - z_k')$$

- (c) C^* in den Korrelationspunkten (z.B. -1 oder 1) durch Einsetzen bestimmen
- 5. komplexes Potential (mit V(u') gesamtes Potential auf der u-Achse der w-Ebene)

$$P(w_p) = \frac{j}{\pi} \int_{-\infty}^{\infty} V(u') \frac{du'}{w_p - u'}$$

Potentialverteilung auf der reellen Achse (u) beachten, Integrale entsprechend aufspalten, bei Grenzen im ∞ en mit $\lim_{u\to\infty}$ arbeiten

6. konjugiert komplexe Feldstärke (mit $\frac{dz}{dw} = C \prod_{\lambda=1}^{n-1} (w - w_{\lambda})^{-\alpha_{\lambda}}$ dem Integranden des Schwarz-Christoffel-Integrals)

$$E^*(z_p) = -\frac{dP(w_p)}{dw_p} \frac{1}{\frac{dz_p}{dw_p}} \qquad B^*(z) = j\frac{dP(w)}{dw} \frac{1}{\frac{dz}{dw}}$$

2.3 Transformation mit Hilfe analytischer Funktionen

2.3.1 Abbildung der speziellen Parabel nach Schwarz-Christoffel

Zuerst in die Hilfsebene $\xi = r + j\varphi$, dann in die Transformationsebene w = u + jv abbilden. Korrelationstafel für $z = f(\xi)$

λ	1	2	3	4	
z_{λ}	1	$\infty + j0$	-1	$-\infty + j0$	z'_{λ}
		$-\infty + j0$		$\infty + j0$	$z_{\lambda}^{\prime\prime}$
α_{λ}	-1	2	-1	2	$\sum \alpha_{\lambda} = 2$
ξ_{λ}	1	∞	-1	0	

Korrelationstafel für $w = g(\xi)$

λ	1	2	3	4	
w_{λ}		$\infty + j0$	jv_a	$-\infty + jv_a$	z'_{λ}
		$-\infty + jv_a$		$-\infty + j0$	z_λ''
α_{λ}	0	1	0	1	$\sum \alpha_{\lambda} = 2$
ξ_{λ}		∞	-1	0	

Abbildungsfunktion mit Schwarz-Christoffel-Integral bestimmen $z = f(\xi)$:

$$z = \int (\xi - 1)^1 (\xi + 1)^1 (\xi - 0)^{-2} d\xi + C^* \Rightarrow z = C \left[\xi + \frac{1}{\xi} \right] + C^*$$

Einsetzen eines Punktes ergibt die Konstanten: $C^* = 0$ und $C = \frac{1}{2}$

Abbildungsfunktion
$$w = g(\xi)$$
: $w = C \int (\xi - 0)^{-1} d\xi + C^* \Rightarrow w = C \ln \xi + C^*$

Einsetzen eines Punktes ergibt die Konstanten: $C^* = 0$ und bei parallelen Kanten auf Pol im Unendlichen mit $v_a = \pi$ folgt: C = 1.

Insgesamt ergibt sich die Abbildungsfunktion $z(w) = \frac{1}{2}(e^w + e^{-w}) = \cosh w$ und die Umkehrfunktion $w = \operatorname{arcosh} z$

2.3.2 Abbildung der speziellen Hyperbel nach Schwarz-Christoffel

Korrelationstafel für $z = f(\xi)$

Abbildungsfunktion bestimmen (mit $C^* = 0$): $z = C \int (\xi - 0)^{-\frac{1}{2}} d\xi$ und $w = C2\sqrt{\xi}$ Einsetzen eines Punktes ergibt die Konstante: $C = \frac{1}{2}$. Keine weitere Abbildung nötig: $\xi \to w$.

3 Finite Elemente

Ermittlung von Feld- und Potentiallinienverläufen beliebig berandeter Gebiete mit Näherungsverfahren, auf zwei Arten von Differentialgleichungen anwendbar:

Elliptische Dgl. (Anwendung: Laplace- bzw. Poisson-Gleichung)

$$\frac{\partial}{\partial x} \left(a_1 \frac{\partial f}{\partial x} \right) + \frac{\partial}{\partial y} \left(a_2 \frac{\partial f}{\partial y} \right) + \frac{\partial}{\partial z} \left(a_3 \frac{\partial f}{\partial z} \right) + a_4 f + a_5 = 0$$

Parabolische Dgl. (Anwendung: Diffusions- bzw. Skingleichung)

$$\frac{\partial}{\partial x} \left(a_1 \frac{\partial f}{\partial x} \right) + \frac{\partial}{\partial y} \left(a_2 \frac{\partial f}{\partial y} \right) + \frac{\partial}{\partial z} \left(a_3 \frac{\partial f}{\partial z} \right) + a_4 f + a_5 = a_0 \frac{\partial f}{\partial t}$$

Für die Variablen a_i gilt dabei:

parabolische Dgl. — $a_1, a_2, a_3, a_4, a_5, a_0$ =konst.

elliptische Dgl. — $a_1, a_2, a_3, a_4, a_5 = \text{konst.}, a_0 = 0$

Eulersche Dgl. — $a_1(x, y), a_2(x, y), a_3(x, y), a_4(x, y), a_5(x, y), a_0 = 0$

Helmholtz Dgl. — $a_1=a_2=1,\,a_4=$ konst., $a_5=a_0=0$

Poisson Dgl. $-a_1 = a_2 = 1, a_4 = a_0 = 0, a_5(x, y)$

Laplace Dgl. $-a_1 = a_2 = 1, a_4 = a_5 = a_0 = 0$

Anstatt die partielle Dgl. direkt numerisch zu lösen ($Finite\ Differenzen$), ist es bei der $Finite\ Elemente\ Methode\ vorteilhaft, das Randwertproblem in ein Variationsproblem zu überführen. Dies besteht in der Ermittlung der Zielfunktion <math>f$ aus einer vorher minimierter Energie W, die ein Funktional von f darstellt.

3.1 Jakobi–Determinante

Bedingung für eine eindeutige, umkehrbare Abbildung ist die Existenz der Determinante im gesamten Integrationsbereich.

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \end{vmatrix}$$

3.2 Energieintegral

$$W(f) = \iiint_{v} \frac{1}{2} \left[a_{1} \left(\frac{\partial f}{\partial x} \right)^{2} + a_{2} \left(\frac{\partial f}{\partial y} \right)^{2} + a_{3} \left(\frac{\partial f}{\partial z} \right)^{2} - a_{4} f^{2} \right]$$
$$-a_{5} f + a_{0} \frac{\partial f}{\partial t} f \, dv + \oiint_{A} \left[\frac{k_{1}}{2} f^{2} - f_{c} f \right] dA$$

$$f_c = K_1 f + K_2 \frac{\partial f}{\partial n}$$

in allgemeiner Form für dreidimensionale Anordnungen. Je nach Anordnung (zwei- oder eindimensional), oder Problemstellung (Skin- bzw. Laplace-Dgl.) geht das Volumenintegral in ein Flächenintegral bzw. ein einfaches Integral über, hierbei sind die entsprechenden Koeffizienten a_i Null zu setzen. Aus dem zweiten Integral wird ein Linienintegral oder die Grenzen werden so in den Integranden eingesetzt; durch diese Variation geht mit Hilfe des Euler'schen Theorems das Energieintegral in das Energiefunktional über. (δ – Totales Differential)

$$W(V) \rightarrow min \Rightarrow \delta W(V) = 0$$

3.2.1 Totales Differential

$$\delta W(f) = \iiint_{v} a_{1} \left(\frac{\partial f}{\partial x}\right) \delta\left(\frac{\partial f}{\partial x}\right) + a_{2} \left(\frac{\partial f}{\partial y}\right) \delta\left(\frac{\partial f}{\partial y}\right) + a_{3} \left(\frac{\partial f}{\partial z}\right) \delta\left(\frac{\partial f}{\partial z}\right)$$
$$-a_{4} f \delta f - a_{5} \delta f + a_{0} \frac{\partial f}{\partial t} \delta f dv + \oiint_{A} K_{1} f \delta f - f_{c} \delta f dA \equiv 0$$

Anmerkung:

$$\partial V/\partial x = \partial V/\partial y = 0 \Rightarrow \text{Dirichlet-Problem}$$

 $k_1 = 0 \Rightarrow \text{Neumann-Problem}$

3.2.2 Partielle Integration mit zwei Veränderlichen (Produktintegration)

$$\iint_{A} v(x,y) \frac{\partial}{\partial x} [v(x,y)] dA = \oint_{C} v(x,y) u(x,y) n_{x} ds - \iint_{A} \frac{\partial}{\partial x} (v(x,y) u(x,y)) dA$$

$$\delta \frac{\partial f}{\partial x} = \delta f \frac{\partial}{\partial x}$$

$$\text{mit:} \quad \delta f = u(x,y) \quad \text{und} \quad v(x,y) = \frac{\partial f}{\partial x}$$

Einsetzen in das Totale Differential des Energiefunktionals liefert eine neue Gleichung, die null werden muß ($\delta W(f) = 0$). Beachte: gleichartige Integranden zusammenfassen und null setzen.

3.3 Ritz'scher Ansatz für Energieminimierung

Näherungslösung \tilde{f} statt f in das Energiefunktional einsetzen: $(W(\tilde{f}) \rightarrow min)$

$$\tilde{f}(x,y,z) = \sum_{i=1}^{n} c_i g_i(x,y,z)$$

Näherungslösung (modifizierter Ritz'scher Ansatz) für ein Element mit m Knotenpunkten:

$$\tilde{f}^e(x, y, z) = \sum_{i=1}^m f_i^e N_i^e(x, y, z) \implies \tilde{f}(x, y, z) = \sum_{j=1}^n f_j N_j$$

 $ilde{f}(x,y,z)$ — Näherungslösung: Ansatzfunktion $g_i(x,y,z)$ — linear unabhängige Basisfunktionen c_i — Koeffizienten $N_i^e(x,y,z)$ — Einheits-Formfunktion: Basisfunktion in den Knotenpunkten $-N_i^e(x_j^e,y_j^e,z_j^e) = 1 \text{ für } j=i, \text{ sonst } 0$ — Einheits-Knotenvariablen: Koeffizienten in den Knotenpunkten

Um die Extremalbedingung zu erhalten, ist die Matrizenschreibweise vorteilhaft:

$$W(c) = c^T A c + c^T a \rightarrow min$$
 (mit Lösungsvektor c)

$$c = [c_1, c_2, \dots, c_n]$$

$$c^T = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

$$a = \begin{bmatrix} \oint_C \tilde{I}_C(g_1) \, ds \\ \oint_C \tilde{I}_C(g_2) \, ds \\ \vdots \\ \oint_C \tilde{I}_C(g_n) \, ds \end{bmatrix}$$

$$A = \begin{bmatrix} \int_{A} \tilde{I}_{A}(g_{1}, g_{1}) dA & \dots & \int_{A} \tilde{I}_{A}(g_{1}, g_{n}) dA \\ \vdots & \ddots & \vdots \\ \int_{A} \tilde{I}_{A}(g_{n}, g_{1}) dA & \dots & \int_{A} \tilde{I}_{A}(g_{n}, g_{n}) dA \end{bmatrix}$$
(symetrische Matrix)

Die besondere Eigenschaft der Formfunktion N_j^e in den Einheitselementen erlaubt die einfache Addition aller Formfunktionen in jedem Knotenpunkt j zur globalen Formfunktion N_j . Das Energieintegral besitzt dann die Matrizenform:

$$W(f) = f^T S f + d^T f \rightarrow min$$
 (mit Gesamtlösungsvektor f)

$$f^{T} = \begin{bmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{n} \end{bmatrix} \qquad d = \begin{bmatrix} \oint_{C_{0}} \tilde{I}_{C_{0}}(N_{1}^{e}) ds \\ \oint_{C_{0}} \tilde{I}_{C_{0}}(N_{2}^{e}) ds \\ \vdots \\ \oint_{C_{0}} \tilde{I}_{C_{0}}(N_{n}^{e}) ds \end{bmatrix}$$

$$S = \begin{bmatrix} \int_{A_0} \tilde{I}_{A_0}(N_1^e, N_1^e) dA_0 & \dots & \int_{A_0} \tilde{I}_{A_0}(N_1^e, N_n^e) dA_0 \\ \vdots & \ddots & \vdots \\ \int_{A_0} \tilde{I}_{A_0}(N_n^e, N_1^e) dA_0 & \dots & \int_{A_0} \tilde{I}_{A_0}(N_n^e, N_n^e) dA_0 \end{bmatrix}$$
(symetrische Matrix)

Zum Erfüllen der Extremalbedingung sind die Koeffizienten, das heißt der Lösungsvektor, zu bestimmen.

$$Ac + a = 0$$

$$C = -A^{-1}a$$

$$Sf + d = 0$$

$$f = -S^{-1}d$$

3.3.1 Eindimensionale Elemente — Einheitselement

- Lineare Ansatzfunktion: $\tilde{f}^e(u) = c_1 + c_2 u$
- Quadratische Ansatzfunktion: $\tilde{f}^e(u) = c_1 + c_2 u + c_3 u^2$
- Kubische Ansatzfunktion: $\tilde{f}^e(u) = c_1 + c_2 u + c_3 u^2 + c_4 u^3$
- Transformation: $x = x_j + u(x_{j+1} x_j)$ daraus ergibt sich für das Energiefunktional (mit $a_2 = a_3 = a_0 = 0$):

$$W(f) = \int_{0}^{1} \left(\frac{1}{2} \left[a_1 \frac{\left(\frac{\partial f}{\partial u} \right)^2}{(\Delta x_j)^2} - a_4 f^2 \right] - a_5 f \right) \Delta x_j \, du + \left[\frac{1}{2} k_1 f^2(u) - f_C(u) f(u) \right]_{0}^{1}$$

3.3.2 Zweidimensionale Elemente

- Lineare/Bilineare Ansatzfunktion für
 - Einheitsdreieck: $\tilde{f}^e(u,v) = c_1 + c_2 u + c_3 v$
 - Einheitsquadrat: $\tilde{f}^e(u,v) = c_1 + c_2u + c_3v + c_4uv$
- Quadratische Ansatzfunktion für
 - Einheitsdreieck: $\tilde{f}^e(u,v) = c_1 + c_2 u + c_3 v + c_4 u^2 + c_5 u v + c_6 v^2$
 - Einheitsquadrat: $\tilde{f}^e(u,v) = c_1 + c_2u + c_3v + c_4u^2 + c_5uv + c_6v^2 + c_7u^2v + c_8uv^2$
- Transformationen:
 - Dreieck \rightarrow Einheitsdreieck:

$$x = x_j + u(x_{j+1} - x_j) + v(x_{j+2} - x_j)$$
 und
 $y = y_j + u(y_{j+1} - y_j) + v(y_{j+2} - y_j)$

- Parallelogramm \rightarrow Einheitsquadrat:

$$x = x_j + u(x_{j+1} - x_j) + v(x_{j+2} - x_j)$$
 und
 $y = y_j + u(y_{j+1} - y_j) + v(y_{j+2} - y_j)$

wie beim Dreieck, da durch drei Ecken eindeutig festgelegt

- Krummliniges Dreieck \rightarrow Einheitsdreieck:

$$x = c_1 + c_2 u + c_3 v + c_4 u^2 + c_5 u v + c_6 v^2$$
 und

$$y = d_1 + d_2 u + d_3 v + d_4 u^2 + d_5 u v + d_6 v^2$$

(höhergradige Ansatzfunktionen verwenden)

- Krummliniges Viereck \rightarrow Einheitsquadrat:

$$x = c_1 + c_2 u + c_3 v + c_4 u^2 + c_5 u v + c_6 v^2 + c_7 u^2 v + c_8 u v^2$$
 und

$$y = d_1 + d_2 u + d_3 v + d_4 u^2 + d_5 u v + d_6 v^2 + d_7 u^2 v + d_8 u v^2$$

3.4 Lösungsverfahren

Typ 1 — **Gegeben:** Energiefunktional W(f(x,y)), außerdem die Basisfunktionen $g_1(x,y)$ und $g_2(x,y)$

- 1. Differentialgleichung aus W(f) ermitteln: Integrand des ersten Integrals, daraus a_i und den Typ ermitteln
- 2. Ritz'scher Ansatz: gegebene g_i , c_n (\tilde{f}) einsetzen,
- 3. Kurvenintegral aus Randwertvorgaben bestimmen:
 - Teilintegrale über Teilgebiete, -strecken bilden, hierbei Potentialvorgaben berücksichtigen. Koeffizientenvergleich mit Ansatz

$$k_1 f + a_1 \frac{\partial f}{\partial x} n_x + a_2 \frac{\partial f}{\partial y} n_y = f_c$$

hieraus k_1 und f_c ermitteln (n_x in y-Richtung = 1, und n_y in y-Richtung = 0)

• Ansatzfunktion, Koeffizienten a_i und k_1 in Energiefunktional einsetzen, dann integrieren. c_n aus $\partial W_i/\partial c_i = 0$ bestimmen. Für homogenes Gleichungssystem Matrizenschreibweise: $A_1c + A_2\beta^2c = 0$

Typ 2 — **Gegeben:** Potentialvorgabe V_0 und V = 0 auf Zylinderkondensator und Basisfunktionen g_1 , g_2 und g_3 . Rechnen mit Laplace-Dgl. in Zylinderkoordinaten:

$$\Delta V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \varphi^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

Hierbei gilt: $\partial/\partial\varphi = 0$ und $\partial/\partial z = 0$

1. Energiefunktional aufstellen:

$$W(V) = \frac{1}{2} \int_{a}^{b} \rho \left(\frac{\partial V}{\partial \rho} \right)^{2} d\rho + \left(\frac{1}{2} k_{1} V^{2}(\rho) - V_{c}(\rho) V(\rho) \right)_{a}^{b} \longrightarrow min$$

- 2. Ritz'scher Ansatz (1-dimensional):
 - $\tilde{V} = c_1 g_1 + c_2 g_2 + c_3 g_3 = c_1 + c_2 \rho + c_3 \rho^2$
 - Transformation: $\rho = \rho_j + u(\rho_{j+1} \rho_j)$ $\rho_1 = a \to 0$ und $\rho_2 = \frac{a+b}{2} \to 0, 5$, sowie $\rho_3 = b \to 1$ und j = 1 $\Rightarrow \rho = a + u(b-a)$ Daraus folgt das transformierte Energiefunktional:

$$W(\tilde{V}) = \frac{1}{2} \int_{0}^{1} (a + u(b - a)) \frac{\left(\frac{\partial \tilde{V}}{\partial u}\right)^{2}}{\left(\Delta \rho\right)^{2}} \delta \rho \, du + \left(\frac{1}{2} k_{1} \tilde{V}^{2}(u) - V_{c}(u) \tilde{V}(u)\right)_{0}^{1}$$

• Anpassen der Ansatzfunktion: $\tilde{V}(u) = c_1 + c_2 u + c_3 u^2$ Einsetzen der gewählten Punkte $\tilde{V}(0) = c_1$, $\tilde{V}(0,5) = c_1 + \frac{1}{2}c_2 + \frac{1}{4}c_3$ und $\tilde{V}(1) = c_1 + c_2 + c_3$ liefert *B*-Matrix:

$$B = \left(\begin{array}{ccc} 1 & 0 & 0\\ 1 & 1/2 & 1/4\\ 1 & 1 & 1 \end{array}\right)$$

Lösungsvektor $c=B^{-1}\tilde{V}^e$ bestimmen, dann einsetzen in Ansatz:

$$\begin{array}{lcl} \tilde{V}(u) & = & \tilde{V}_1^e + (-e\tilde{V}_1^e + 4\tilde{V}_2^e - \tilde{V}_3^e)u + (2\tilde{V}_1^e - 4\tilde{V}_2^e + 2\tilde{V}_3^e)u^2 \\ & = & \tilde{V}_1^e \underbrace{(1 - 3u + 2u^2)}_{N_1^e(u)} + \tilde{V}_2^e \underbrace{(4u - 4u^2)}_{N_2^e(u)} + \tilde{V}_3^e \underbrace{-u + 2u^2)}_{N_3^e(u)} \end{array}$$

- Berechnung des Energiefunktionals über $S\tilde{f}^e+d=0$

Typ 3 — Gegeben: eindimensionales Problem: drei Potentiale auf der x-Achse.

- 1. Energiefunktional: W(V) mit $a_2=a_3=a_0=0$ \Rightarrow Linienintegral und Integrand mit Grenzen
- 2. Transformationstabelle (für eindimensional):

Knoten-	Koordinaten	Differenz	Transformations-	Element
nummer j	x_i	Δx_i	gleichung	j
:	:	$\Delta x_i = x_{j+1} - x_i$	$x = x_i + u\Delta x_i$:

3. Sind z.B. drei Elemente zu transformieren, ergeben sich auch drei transformierte Energiefunktionale.

$$W_{j}(V) = \int_{0}^{1} \left(\frac{1}{2} \left[a_{1} \frac{\left(\frac{\partial V}{\partial u} \right)^{2}}{(\Delta x_{j})^{2}} - a_{4} V^{2} \right] - a_{5} V \right) \Delta x_{j} du + \left[\frac{1}{2} k_{1} V^{2}(u) - V_{C}(u) V(u) \right]_{0}^{1}$$

Typ 4 — Gegeben: zweidimensionales Problem: Dreieck in allgemeiner Lage

- 1. Energiefunktional: W(V) mit Laplace-Gleichung $a_1 = a_2 = 1$ und $a_3 = a_4 = a_5 = a_0 = 0$ \Rightarrow Flächenintegral und Kurvenintegral
- 2. Transformationstabelle (für zweidimensional):

	Knoten-	Ko	ord.	Transforma-	Dif	fernt	ialqu	ot.	Jakobi-	Element
	nummer i	x_i	y_i	tionsgleichung	$\frac{du}{dx}$	$\frac{dv}{dx}$	$\frac{du}{dy}$	$\frac{dv}{dy}$	Determ.	j
Î	:	:	:	:	:	:	:	:	:	:

mit:
$$\frac{du}{dx} = \left(\frac{dx}{du}\right)^{-1} = \frac{1}{x_{j+1} - x_j}$$

 $x = x_j + u(x_{j+1} - x_j) + v(x_{j+2} - x_j); \ y = y_j + u(y_{j+1} - y_j) + v(y_{j+2} - y_j)$

3. Transformiertes Energiefunktional:

$$W_{i}(V(u,v)) = \iint_{D_{0}} \frac{1}{2} \left\{ \left[\frac{\partial V}{\partial u} \frac{du}{dx} + \frac{\partial V}{\partial v} \frac{dv}{dx} \right]^{2} + \left[\frac{\partial V}{\partial u} \frac{du}{dy} + \frac{\partial V}{\partial v} \frac{dv}{dy} \right]^{2} \right\} J dA_{0} + \oint_{C_{0}} \left[\frac{1}{2} k_{1} V^{2} - V_{c} v \right] ds_{0} \rightarrow min$$

4. Linearer Ansatz: $\tilde{V}(u,v) = V_1^e N_1^e(u,v) + V_2^e N_2^e(u,v) + V_3^e N_3^e(u,v)$ daraus folgt: $\frac{\partial V}{\partial u}$ und $\frac{\partial V}{\partial v}$, dann Einsetzen in Energiefunktional

Beachte: die V_i^e sind von u, v unabhängig und werden vor das Integral gezogen. Ergebnis des Integrals ist die Fläche des Einheitsdreiecks $(\frac{1}{2})$.

Typ 5 — Gegeben: eindimensionales Problem:

$$W_{j}(f) = \int_{0}^{1} \left(\frac{1}{2} \left[a_{1} \frac{\left(\frac{\partial f}{\partial u} \right)^{2}}{(\Delta x_{j})^{2}} - a_{4} f^{2} \right] - a_{5} f \right) \Delta x_{j} du + \left[\frac{1}{2} k_{1} f^{2}(u) - f_{C}(u) f(u) \right]_{0}^{1} \rightarrow min$$

Aufgabe: Lösung eindimensionaler Randwertprobleme mit Hilfe der Matrizenrechnung

$$W(f) = f^T S f + f^T d \rightarrow min \text{ oder } S f + d = 0$$

$$\int_{0}^{1} \left(\frac{1}{2} \left[a_{1} \frac{\left(\frac{\partial f}{\partial u} \right)^{2}}{(\Delta x_{j})^{2}} - a_{4} f^{2} \right] - a_{5} f \right) \Delta x_{j} du = f^{e^{T}} S_{j}^{e} f^{e} + f^{e^{T}} M_{j}^{e} f^{e} + f^{e^{T}} b_{j}^{e} \qquad \Rightarrow$$

$$f^{e^{T}} S_{j}^{e} f^{e} = \underbrace{\frac{a_{1}}{2\Delta x_{j}}}_{q_{j,1}} \int_{0}^{1} \left(\frac{\partial \tilde{f}}{\partial u} \right)^{2} du$$

$$f^{e^{T}} M_{j}^{e} f^{e} = \underbrace{-\frac{a_{4}}{2\Delta x_{j}}}_{q_{j,2}} \int_{0}^{1} \tilde{f}^{2} du$$

$$f^{e^{T}} b_{j}^{e} = \underbrace{-a_{5}\Delta x_{j}}_{q_{j,2}} \int_{0}^{1} \tilde{f} du$$

- 1. linearer Ansatz: $\tilde{f}(u) = f_1^e N_1^e(u) + f_2^e N_2^e(u)$ mit z.B.: $N_1^e = 1 u$ und $N_2^e = u$ $\frac{\partial \tilde{f}}{\partial u}$, $\left(\frac{\partial \tilde{f}}{\partial u}\right)^2$, \tilde{f} und \tilde{f}^2 ermitteln und in die Integrale einsetzen.
- 2. Beispiel zur Ermittlung der Matrizen Integral liefert:

$$f^{e^{T}}S_{j}^{e}f^{e} = \underbrace{\frac{a_{1}}{2\Delta x_{j}}}_{q_{j,1}} \left[(f_{1}^{e})^{2} + 2f_{1}^{e}f_{2}^{e} + (f_{2}^{e})^{2} \right]$$

$$\Rightarrow S_{j,1}^{e} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \rightarrow S_{j}^{e} = q_{j,1}S_{j,1}^{e}$$

$$f^{e^{T}}M_{j}^{e}f^{e} = \underbrace{-\frac{a_{4}}{2}\Delta x_{j}}_{q_{j,2}} \left[\frac{1}{3} (f_{1}^{e})^{2} + \frac{1}{3} f_{1}^{e}f_{2}^{e} + \frac{1}{3} (f_{2}^{e})^{2} \right]$$

$$\Rightarrow M_{j,2}^{e} = \frac{1}{6} \begin{pmatrix} 2 & +1 \\ +1 & 2 \end{pmatrix} \rightarrow M_{j}^{e} = q_{j,2}M_{j,2}^{e}$$

$$f^{e^{T}}b_{j}^{e} = \underbrace{-a_{5}\Delta x_{j}}_{q_{j,3}} \left[\frac{1}{2} f_{1}^{e} + \frac{1}{2} f_{2}^{e} \right]$$

$$\Rightarrow b_{j,3}^{e} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow b_{j}^{e} = q_{j,3}b_{j,3}^{e}$$

Beachte folgende Regel: gemischte Glieder (f_1, f_2) auf zwei Werte aufteilen (Vorzeichen beachten) und mit ganzzahligen Faktoren in die Matrix schreiben, hierzu ggf. erweitern.

- 3. quadratischer Ansatz: $\tilde{f}(u) = f_1^e N_1^e(u) + f_2^e N_2^e(u) + f_3^e N_3^e(u)$ mit z.B.: $N_1^e = 1 3u + 2u^2$, $N_2^e = 4u 4u^2$ und $N_3^e = -u + 2u^2$ $\frac{\partial \tilde{f}}{\partial u}$, $\left(\frac{\partial \tilde{f}}{\partial u}\right)^2$, \tilde{f} und \tilde{f}^2 ermitteln und in die Integrale einsetzen. Weiter: analog linearer Ansatz, Matrizen dann 3×3
- Typ 6 Gegeben: zweidimensionales Randwertproblem, Lösungsverfahren: Zerlegen in Dreiecke, linearer Ansatz, Matrizenrechnung.
 - 1. $\tilde{f}(u,v)=f_1^eN_1^e(u,v)+f_2^eN_2^e(u,v)+f_3^eN_3^e(u,v)$ Formfunktionen für das Einheitsdreieck: $N_1^e=1-u-v,\ N_2^e=u$ und $N_3^e=v$
 - 2. allgemeines transformiertes Energiefunktional

$$W_{j}(f) = \iint_{D_{0}} \frac{1}{2} \left[a_{1} \left(\frac{\partial f}{\partial u} \frac{du}{dx} + \frac{\partial f}{\partial v} \frac{du}{dx} \right)^{2} + a_{2} \left(\frac{\partial f}{\partial u} \frac{du}{dy} + \frac{\partial f}{\partial v} \frac{du}{dy} \right)^{2} - a_{4} f^{2} \right]$$
$$-a_{5} f J du dv + \oint_{C} \left[\frac{1}{2} k_{1} f^{2} - f_{c} f \right] ds_{0} \rightarrow min$$

3. Integrale zur Bestimmung der Matrizen:

$$f^{e^{T}}q_{j,1}S_{j,1}^{e}f^{e} = \underbrace{\frac{J}{2}\left[a_{1}\left(\frac{du}{dx}\right)^{2} + a_{2}\left(\frac{du}{dy}\right)^{2}\right]}_{q_{j,1}} \iint_{D_{0}} \left(\frac{\partial f}{\partial u}\right)^{2} du dv$$

$$f^{e^{T}}q_{j,2}S_{j,2}^{e}f^{e} = \underbrace{J\left[a_{1}\frac{du}{dx}\frac{dv}{dx} + a_{2}\frac{du}{dy}\frac{dv}{dy}\right]}_{q_{j,2}} \iint_{D_{0}} \frac{\partial f}{\partial u}\frac{\partial f}{\partial v} du dv$$

$$f^{e^{T}}q_{j,3}S_{j,3}^{e}f^{e} = \underbrace{\frac{J}{2}\left[a_{1}\left(\frac{dv}{dx}\right)^{2} + a_{2}\left(\frac{dv}{dy}\right)^{2}\right]}_{q_{j,3}} \iint_{D_{0}} \left(\frac{\partial f}{\partial v}\right)^{2} du dv$$

$$f^{e^{T}}q_{j,4}M_{j,4}^{e}f^{e} = \underbrace{-\frac{J}{2}a_{4}}_{q_{j,4}} \iint_{D_{0}} f^{2} du dv$$

$$f^{e^{T}}q_{j,5}b_{j,5}^{e} = \underbrace{-Ja_{5}}_{q_{j,5}} \iint_{D_{0}} f du dv$$

Die Integranden ergeben sich aus dem Lösungsansatz \tilde{f} .

4. Tabellen:

5. Mit Hilfe der für das Einheitsdreieck bekannten Matrizen

$$S_{j,1}^e = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$S_{j,2}^e = \frac{1}{2} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$

$$S_{j,3}^e = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$M_{j,4}^e = \frac{1}{24} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

$$b_{j,5}^e = \frac{1}{6} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$V^e = \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}$$

wird für jedes Element j die Matrix S_i^e aufgestellt (j – Element, i – Knoten):

$$S_j^e = \sum_{i=1}^3 q_{j,i} S_{j,i}^e = q_{j,1} S_{j,1}^e + q_{j,2} S_{j,2}^e + q_{j,3} S_{j,3}^e$$

- 6. Gesamtmatrix (S): Dimension: $k \times k$ (k Anzahl der Knoten)
 - (a) Knoten der Gesamtanordnung numerieren
 - (b) Knoten der Einzelelemente numerieren (beginnen auf der x-Achse, weiter gegen Uhrzeigersinn)
 - (c) Hauptdiagonalenelemente: Summe der an den Dreiecken beteiligten Knotenpunkten (aus der Hauptdiagonalen der Elemente der S_i^e)
 - (d) übrige Elemente (symetrisch): nicht verbundene Hauptknoten = 0 verbundene Hauptknoten n und m bilden das Matrixelement $S_{n,m}$, Summe der Geraden der beteiligten Dreiecke (Indizes der Einzelelemente verwenden).
- 7. d-Matrix enthält die gegebene Potentialverteilung der Knoten (Strecken).

4 Skin-Effekt

Vereinbarungen über die Schreibweise:

\check{F}	Feld allgemein, entspricht \check{A},\check{H}
$ec{F}(ec{r},t)$	Vektor, orts- und zeitabhängig, nicht quellenfrei
$ec{F}^*(ec{r},t)$	Vektor, orts- und zeitabhängig, quellenfrei
$\check{F}(ec{r})$	ortsabhängige komplexe Amplitude ($\omega = const$)
$\check{F}^*(ec{r})$	ortsabhängige konjugiert komplexe Amplitude ($\omega=const$)
	$\check{F} = \underline{\check{F}}$ (Raumzeiger oder Vektor)
$\hat{\underline{F}}_x$	x-Komponente der ortsabhängigen komplexen Amplitude
$\overline{F}(\vec{r})$	vektorieller Mittelwert

4.1 Wichtige Formeln

$$\check{S} = -j\omega\kappa\check{A} = -\kappa\frac{\partial\check{A}}{\partial t} = \operatorname{rot}\check{H} \qquad \operatorname{mit} \quad \frac{\partial}{\partial t} = j\omega$$

$$\oint Hd\vec{s} = \hat{\underline{I}} \qquad \check{H} = \frac{1}{\mu}\operatorname{rot}\check{A} \qquad \operatorname{rot}\check{A} = \check{B}$$

- komplexe Transformation $i(t) = \hat{i}\cos\omega t \Rightarrow \underline{\hat{I}} = \hat{i}\left[\cos\omega t j\sin\omega t\right]$
- Skinkonstante: $\alpha^2 = j\omega\kappa\mu$
- \bullet bei Strombelag an einer Grenzfläche: $\vec{n}\times(\vec{H}_2-\vec{H}_1)=\vec{K}$
- \bullet eine hochpermeable Grenzfläche \Rightarrow einmal an der Fläche spiegeln ergibt Ersatzanordnung mit I=I'
- zwei parallele, hochpermeable Grenzflächen \Rightarrow an der Fläche spiegeln, ergibt unendlich ausgedehnte Anordnung (z.B. $\frac{\partial}{\partial y} = 0$)
- unendlich lange Ausdehnung in z.B. z-Richtung $\Rightarrow \frac{\partial}{\partial z} = 0$
- rotationssymetrisch $\Rightarrow \frac{\partial}{\partial \varphi} = 0$
- für $\frac{\partial}{\partial y} = \frac{\partial}{\partial z} = 0 \Rightarrow \text{rot } \check{A} = -\vec{e}_x \frac{\partial \hat{\underline{A}}_z}{\partial x}$
- für $\frac{\partial}{\partial \varphi} = \frac{\partial}{\partial z} = 0 \Rightarrow \operatorname{rot} \check{A} = -\vec{e}_{\varphi} \frac{\partial \hat{A}_{z}}{\partial \rho}$

4.2 Rechteckleiter — kartesische Koordinaten

- 1. immer die z-gerichtete Größe wählen, z.B. $\hat{\underline{I}}_z$ gegeben \Rightarrow Skingleichung mit $\hat{\underline{H}}$ aufstellen. Außer H_z ist gegeben, dann A aufstellen.
- 2. Richtung und Abhängigkeit ermitteln (z.B. für $\frac{\partial}{\partial y} = \frac{\partial}{\partial z} = 0$ und $\vec{I} = \vec{e}_z I$)

$$\check{B} = \operatorname{rot} \check{A} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ \frac{\partial}{\partial x} & 0 & 0 \\ 0 & 0 & \underline{\hat{A}}_z \end{vmatrix} = -\vec{e}_y \frac{\partial \underline{\hat{A}}_z}{\partial x} \quad \Rightarrow \quad \underline{\hat{H}}_y(x)$$

- 3. Skingleichung für Teilräume aufstellen (für verschiedene Stromrichtung verschiedene Teilräume), hierbei zusätzlich Indizierung verwenden:
 - Teilraum $\kappa \neq 0$:

$$\Delta \check{F} - \alpha^2 \check{F} = 0 \Rightarrow \frac{\partial^2 \hat{F}_y(x)}{\partial x^2} - \alpha^2 \hat{F}(x) = 0$$

mit $\frac{\partial}{\partial y}=\frac{\partial}{\partial z}=0$ und $\alpha^2=j\omega\kappa\mu$ (Skinkonstante)

Lösungsansatz: $\underline{\hat{F}}(x) = \underline{\hat{C}}_1 \cosh(\alpha x) + \underline{\hat{C}}_2 \sinh(\alpha x)$

• Teilraum $\kappa = 0$:

$$\Delta \check{F} = 0 \Rightarrow \frac{\partial^2 \hat{F}(x)}{\partial x^2} = 0$$

mit
$$\frac{\partial}{\partial y} = \frac{\partial}{\partial z} = 0$$
 und $\alpha^2 = 0$

Lösungsansatz: $\underline{\hat{F}}(x) = \underline{\hat{C}}_3 + \underline{\hat{C}}_4 x$

- 4. Lösung durch Bestimmen der Konstanten
 - \check{H} Feld kann im Unendlichen nicht ∞ werden \Rightarrow $\hat{C}_4 = 0$
 - $\bullet\,$ für die gesuchte Größe im Teilraum $\kappa \neq 0$
 - Teilräume und enthaltene Größen unsymetrisch \Rightarrow ungerade Funktion $(\sinh(x)) \ \Rightarrow \ \hat{\underline{C}}_1 = 0$
 - Teilräume und enthaltene Größen symetrisch \Rightarrow gerade Funktion $(\cosh(x))$ \Rightarrow $\hat{\underline{C}}_2=0$
 - Betrachtung von $\underline{\hat{F}}(x)$ an den Grenzflächen, wenn gilt:
 - $-\,$ kein Strombelag: Stetigkeit, da innen = außen
 - Strombelag: $\vec{n} \times (\vec{H}_2 \vec{H}_1) = \vec{K}$ (wobei \vec{n} Tangentenvektor der Fläche mit Belag)
- 5. Strom $\hat{\underline{I}}$ gegeben \Rightarrow Berechnung durch $\oint H d\vec{s} = \hat{\underline{I}}$ auf der Berandung des Teilgebietes $\int_a^b H dx + \int_c^d H dy + \int_e^f H dx + \int_g^h H dy = I$, wobei hier z.B. dy = 0
- 6. die bestimmten Konstanten in Lösungsansätze einsetzen.
- 7. Stromdichte $\check{S}=\operatorname{rot}\check{H}$ (nach Bestimmung von rot \check{H} muß noch abgeleitet werden)

4.3 Rundleiter — Zylinderkoordinaten

- 1. bei rotationssymetrischen Anordnungen die \vec{e}_z -gerichtete Größe ansetzen, z.B. $\hat{\underline{I}}_z$ gegeben \Rightarrow Skingleichung mit $\hat{\underline{H}}$ aufstellen. Außer H_z ist gegeben, dann A aufstellen.
- 2. Richtung und Abhängigkeit ermitteln (z.B. für $\frac{\partial}{\partial \varphi}=\frac{\partial}{\partial z}=0$ und $\vec{I}=\vec{e_z}I)$

$$\check{B} = \operatorname{rot} \check{A} = \begin{vmatrix} \vec{e}_{\rho} & \vec{e}_{\varphi} & \vec{e}_{z} \\ \frac{\partial}{\partial \rho} & 0 & 0 \\ 0 & 0 & \hat{A}_{z} \end{vmatrix} = -\vec{e}_{\varphi} \frac{\partial \hat{A}_{z}}{\partial \varphi} \quad \Rightarrow \quad \underline{\hat{H}}_{\varphi}(\rho)$$

- 3. Skingleichung für Teilräume aufstellen (für verschiedene Stromrichtung verschiedene Teilräume), hierbei zusätzlich Indizierung verwenden:
 - Teilraum $\kappa \neq 0$:

$$\Delta \check{F} - \alpha^2 \check{F} = 0 \Rightarrow \frac{\partial^2 \hat{F}(\rho)}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \hat{F}(\rho)}{\partial \rho} - \alpha^2 \hat{F}(\rho) = 0$$

mit
$$\frac{\partial}{\partial \varphi} = \frac{\partial}{\partial z} = 0$$
 und $\alpha^2 = j\omega\kappa\mu$

Lösungsansatz: $\underline{\hat{F}}(\rho) = \underline{\hat{C}}_1 \mathcal{I}_0(\alpha \rho) + \underline{\hat{C}}_2 \mathcal{K}_0(\alpha \rho)$ (modifizierte Besselfunktion)

• Teilraum $\kappa = 0$:

$$\Delta \check{F} = 0 \Rightarrow \frac{\partial^2 \hat{F}(\rho)}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \hat{F}(\rho)}{\partial \rho} = 0$$

mit
$$\frac{\partial}{\partial \varphi} = \frac{\partial}{\partial z} = 0$$
 und $\alpha^2 = 0$

Lösungsansatz:
$$\underline{\hat{F}}(\rho) = \underline{\hat{C}}_3 + \underline{\hat{C}}_4 \ln \left(\frac{\rho}{R}\right)$$

4. Lösung durch Betrachtung der modifizierten Besselfunktionen

$$\frac{d\mathcal{I}_n(x)}{dx} = \mathcal{I}_{n+1}(x) + \frac{n}{x}\mathcal{I}_n(x) \quad \text{und} \quad \frac{d\mathcal{K}_n(x)}{dx} = -\mathcal{K}_{n+1}(x) - \frac{n}{x}\mathcal{K}_n(x)$$

- 5. Lösung durch Bestimmen der Konstanten
 - \check{H} Feld kann im Unendlichen nicht ∞ werden \Rightarrow $\hat{\underline{C}}_4=0$
 - Betrachtung von $\underline{\hat{F}}(\rho)$ an den Grenzflächen, wenn gilt:
 - kein Strombelag: Stetigkeit, da innen = außen
 - Strombelag: $\vec{n} \times (\vec{H}_2 \vec{H}_1) = \vec{K}$ (wobei \vec{n} Tangentenvektor der Fläche mit Belag meistens \vec{e}_ρ)
- 6. Strom $\hat{\underline{I}}$ gegeben $\Rightarrow \check{H}$ kann durch umschlossenen Strom bestimmt werden über $\oint H d\vec{s} = \hat{\underline{I}} \qquad \Rightarrow \\ \check{H} = \vec{e}_{\varphi} \frac{\hat{I}_0}{2\pi\rho}$ für I_0 in z-Richtung und $\kappa = 0$ (Außenraum) $\check{H} = \vec{e}_{\varphi} \frac{\hat{I}_0}{2\pi r^2} \rho$ für I_0 in z-Richtung und $\kappa \neq 0$ (Innenraum).
- 7. die bestimmten Konstanten in Lösungsansätze einsetzen.
- 8. Stromdichte $\check{S}=\operatorname{rot}\check{H}$ (nach Bestimmung von rot \check{H} muß noch abgeleitet werden)

5 Wellen

5.1 Freie Wellenausbreitung im Raum

$$\operatorname{rot}\operatorname{rot}\vec{F} + \mu\epsilon\frac{\partial^2\vec{F}}{\partial f^2} = 0$$

5.1.1 Seperation in kartesischen Koordinaten

$$\Delta \underline{\hat{F}}_i = \frac{\partial^2 \underline{\hat{F}}_i}{\partial x^2} + \frac{\partial^2 \underline{\hat{F}}_i}{\partial y^2} + \frac{\partial^2 \underline{\hat{F}}_i}{\partial z^2} = -\beta^2 \underline{\hat{F}}_i$$

mit i = x, y, z und $\beta^2 = \omega^2 \mu \epsilon$

Produktansatz von Bernoulli: $\underline{\hat{F}}_i(x,y,z) = X_i(X) \cdot Y_i(y) \cdot \underline{\hat{Z}}_i(z)$ führt zu den Differentialgleichungen:

$$\underbrace{\frac{1}{X_i}\frac{d^2X_i}{dx^2}}_{-p^2} + \underbrace{\frac{1}{Y_i}\frac{d^2Y_i}{dy^2}}_{-q^2} + \underbrace{\frac{1}{\hat{Z}_i}\left(\frac{d^2\hat{Z}_i}{dz^2} + \beta^2\hat{Z}_i\right)}_{p^2+q^2} = 0$$

Das führt auf drei gewöhnliche Differentialgleichungen:

$$\frac{d^2 X_i}{dx^2} + p^2 X_i = 0 \qquad \frac{d^2 Y_i}{dy^2} + q^2 Y_i = 0 \qquad \frac{d^2 \hat{Z}_i}{dz^2} + (\beta^2 - p^2 - q^2) \cdot \hat{Z}_i = 0$$

deren Lösungen lauten:

$$X_i(x) = C_p \cos px + D_p \sin px$$

$$Y_i(y) = E_q \cos qx + F_q \sin qx$$

$$\underline{\hat{Z}}_i(z) = Me^{-j\beta'z} + Ne^{j\beta'z}$$

Funktionen der in $\pm z$ -Richtung fortschreitenden Welle mit $\beta'^2 = \beta^2 - p^2 - q^2$

5.1.2 Seperation in Zylinderkoordinaten

$$\Delta \underline{\hat{F}} = \frac{d^2 \underline{\hat{F}}}{d\rho^2} + \frac{1}{\rho} \frac{d\underline{\hat{F}}}{d\rho} + \frac{1}{\rho^2} \frac{d\underline{\hat{F}}}{d\varphi^2} + \frac{d^2 \underline{\hat{F}}}{dz^2} = \beta^2 \underline{\hat{F}}$$

mit i = x, y, z

Produktansatz von Bernoulli: $\underline{\hat{F}}(\rho, \varphi, z) = R(\rho) \cdot \Phi(\varphi) \cdot \underline{\hat{Z}}_i(z)$ führt zu den Differentialgleichungen:

$$\underbrace{\frac{1}{R} \left(\frac{d^2 R}{d\rho^2} + \frac{1}{\rho} \frac{dR}{d\rho} \right)}_{-p^2 + \frac{m^2}{2}} + \underbrace{\frac{1}{\rho^2} \frac{1}{\Phi} \frac{d^2 \Phi}{d\varphi^2}}_{-\frac{m^2}{\rho^2}} + \underbrace{\frac{1}{\hat{Z}} \frac{d^2 \hat{Z}}{dz^2} + \beta^2}_{q^2} = 0$$

Das führt auf eine gewöhnliche Bessel-Differentialgleichung und zwei Differentialgleichungen für harmonische Schwingung mit $\beta'^2 = \beta^2 - p^2$:

$$\frac{d^2R}{d(pq)^2} + \frac{1}{pq}\frac{dR}{d(pq)} + \left(1 - \frac{m^2}{p^2q^2}R\right) = 0$$

$$\frac{d^2\Phi}{d\omega^2} + m^2\Phi = 0 \qquad \frac{d^2\underline{\hat{Z}}_i}{dz^2} + \beta'^2\underline{\hat{Z}} = 0$$

deren Lösungen lauten:

$$R(\rho) = C_m \mathcal{J}_m(pq) + D_m \mathcal{N}_m(pq)$$

$$\Phi(\varphi) = E_m \cos m\varphi + F_m \sin m\varphi$$

$$\underline{\hat{Z}}(z) = Me^{-j\beta'z} + Ne^{j\beta'z}$$

5.1.3 Seperation in Kugelkoordinaten

Wellen breiten sich in r-Richtung aus \Rightarrow Beschränkung auf rotationssymetrische Anordnungen: $\check{A} = \vec{e_r} \hat{\underline{A}}(r, \vartheta)$

$$\Delta \underline{\hat{A}} = \frac{\partial \underline{\hat{A}}}{\partial r^2} + \frac{\cot \vartheta}{r^2} \frac{\partial \underline{\hat{A}}}{\partial \vartheta} + \frac{1}{r^2} \frac{\partial^2 \underline{\hat{A}}}{\partial \vartheta^2} = -\beta^2 \underline{\hat{A}}$$

mit $\beta^2 = \omega^2 \mu z$ Produktansatz von Bernoulli: $\underline{\hat{A}}(r,\vartheta) = \underline{\hat{R}}(r) \cdot \Theta(\vartheta)$ führt nach Substitution zu der gewöhnlichen Bessel'schen Differentialgleichung (n+1/2)-Ordnung

$$\frac{d^2 \hat{R}}{d(\beta r)^2} + \frac{1}{\beta r} \frac{d\hat{R}}{d(\beta r)} + \left[1 - \left(\frac{n+1/2}{\beta r} \right)^2 \right] \hat{R}' = 0$$

und der Differentialgleichung für gewöhnliche orthogonale Kugelfunktionen:

$$\frac{d}{du}\left[(1-u)^2\frac{d\Theta}{du}\right] + n(n+1)\Theta = 0$$

deren Lösungen lauten:

$$\underline{\hat{R}}'(r) = C_n \mathcal{J}_{n+1/2}(\beta r) + D_n \mathcal{N}_{n+1/2}(\beta r)$$

5.1.4 Ebene Wellen, periodisch

$$\frac{d^2 \mathring{A}(z)}{dz^2} = -\beta^2 \check{a}(z)$$

$$\vec{A}(z,t) = \Re \left[\check{A}_1 e^{j(\omega t - \beta z)} + \check{A}_2 e^{j(\omega t + \beta z)} \right]$$

5.1.5 Reflektion ebener Wellen

Brechungsgesetz von Snellius: $\frac{n_1}{n_2} = \frac{\sin \theta_t}{\sin \theta_e}$ Grenzwinkel für Totalreflektion: $\theta_{e \ tot} = \arcsin \frac{n_2}{n_1}$

5.2 Geführte Wellenausbreitung in Leitern

5.2.1 Rechteckhohlleiter

- 1. TE Wellen
- 2. TM Wellen

5.2.2 Kreiszylindrische Hohlleiter

5.2.3 TEM – Wellen auf Leitern