data

- 1. Obtained from the National Climatic Data Center (NCDC)
- 2. 82 weather stations
- 3. 2007 through 2012
- 4. daily mean temperature
- 5. held out 10 stations
- 6. held out 2012

Thought cosine function would be useful

$$Y = \beta_0 + \beta_1 x_1 + e$$

Thought cosine function would be useful

$$Y = \beta_0 + \beta_1 x_1 + e$$

- 1. Seems clear the latitude is an important factor (X_2)
- 2. Seems that distance to the Great Lakes is important (X_3)
- 3. seasonal component (X_1)

$$Y_{s} = \beta_{0} + (\beta_{1} + \beta_{4}X_{s,3})X_{1} + \beta_{2}X_{s,2} + \beta_{3}X_{s,3} + W_{s}$$

$$Y_{s} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{s,2} + \beta_{3}X_{s,3} + \beta_{4}X_{s,3}X_{1} + W_{s}$$

$$Y_{s} = \beta X_{s} + W_{s}$$

$$W_{s,t} = \phi_{1}W_{s,t-1} + \phi_{2}W_{s,t-2} + \phi_{3}W_{s,t-3} + e_{s,t}$$

To get initial $\hat{\beta}_{ols}$, we are just going to stack up our Y_s 's and X_s 's

$$Y = \beta X + W$$

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{72} \end{bmatrix} Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_{72} \end{bmatrix} W = \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_{72} \end{bmatrix}$$

$$\hat{\beta}_{ols} = (X'X)^{-1}X'Y$$

$$W = Y - \hat{\beta}_{ols}X$$

Find $\phi_{s,1}, \phi_{s,2}, \phi_{s,3}$ by fitting ar(3) models to each W_s .

Like in the preliminary models, $\phi_{s,1}, \phi_{s,2}, \phi_{s,3}$ were very similar across s

Took mean of $\phi_{s,1}, \phi_{s,2}$, and $\phi_{s,3}$ to obtain ϕ_1, ϕ_2, ϕ_3

Now that we have ϕ_1, ϕ_2, ϕ_3 ,

$$\hat{eta}_{gls}=(X'\Gamma^{-1}X)^{-1}X'\Gamma^{-1}Y$$
 $Cov(\hat{eta}_{gls})=(X'\Gamma^{-1}X)^{-1}$

Prediction Equation

$$\hat{y}_{s,t} = \hat{\beta}_{gls} X_{s,t} + \phi_1 W_{s,t-1} + \phi_2 W_{s,t-2} + \phi_2 W_{s,t-3}$$

Fitted Model

$$Y_{s,t} = 4.244 + 13.17X_1 + 5.184e^{-6}X_{s,2} + 0.015X_{s,3} +$$

$$.0055X_{s,3}X_1 + 0.84W_{s,t-1} - 0.22W_{s,t-2} + 0.11W_{s,t-3} + e_{s,t}$$

Coef	lower CI(95%)	Upper CI(95%)
Intercept	3.901	4.585
Season	13.06	13.27
Latitude	$4.670e^{-6}$	$5.699e^{-6}$
distance to lake	.012	.0162
interaction	.0032	.0079

residual pacf and acf

Forecast

Forecast

