Soit M la matrice :

$$M = \left(\begin{array}{rrr} 2 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right)$$

- 1. Résoudre le système $MX=\lambda X$ d'inconnue $X=\begin{pmatrix}x\\y\\z\end{pmatrix}$ où λ est un paramètre réel.
- 2. Calculer $(M Id)^2$. Donner son rang.
- 3. Soit $e_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, et $e_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$. Exprimer Me_1, Me_2 en fonction de e_1, e_2 .
- 4. Montrer qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que $Me_3 = \alpha e_2 + \beta e_3$.
- 5. Soit $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$

Montrer que P est inversible et calculer son inverse.

- 6. Soit $T = P^{-1}MP$. Calculer T.
- 7. Montrer par récurrence que pour tout $n \in \mathbb{N}^*$:

$$T^n = P^{-1}M^nP$$

8. Montrer qu'il existe une matrice diagonale D et une matrice N telles que

$$T = D + N$$
 et $ND = DN$

- 9. Montrer que $N^2 = 0$
- 10. Montrer que $T^n = D^n + nND^{n-1}$.
- 11. En déduire la valeur de M^n .