Modelaje epidemiológico de COVID 19 Especificación de los modelos

Instrucción: Cada grupo de modelaje deberá llenar el cuadro 1 y los grupos que usen modelos "multicaja", deberán además llenar el cuadro 2. Usar una columna por grupo.

Cuadro 1. Especificaciones de todos los modelos

Especificaciones	Modelo del grupo CIMAT-IM UNAM	
Tipo de modelo	Modelo dinámico multicaja con inferencia bayesiana (Nombre del modelo: C³) Antonio Capella Marcos Capistrán Andrés Christen	
Describa de manera sucinta los tres supuestos más importantes del modelo, que cumplen alguna o las dos condiciones siguientes: - a los que son más sensibles los resultados - sobre los que tiene mayor incertidumbre	Tiempos de residencia en las cajas, en particular para los asintomáticos y la dinámica hospitalaria.	
Estimaciones nacionales o por estado	Nacional, estatal y metropolitana	
Su modelo puede hacer estimaciones para cuáles grupos poblacionales específicos De acuerdo a las presentaciones del 10 de abril, ¿cuáles parámetros son los más distintivos de su modelo?	No (desarrollo casi terminado por grupos de edad) Tasas de contacto entre susceptibles e infectados asintomáticos y sintomáticos, número inicial de latentes e infectados asintomáticos y sintomáticos, fracción de infectados sintomáticos que requieren hospitalización y	
Datos (inputs) ya usados y fuente	cuidados intensivos Número diario de: - infectados (positivos) - decesos Fuente: archivos PDF diarios de los comunicados de la SS	
Desenlaces (outputs) que genera	Predicción diaria de: -Infectados sintomáticos -Infectados asintomáticos -Demanda de camas de hospital	

Datos que necesita. ¿Cuáles son los cinco parámetros que harían sus estimaciones más robustas?	-Demanda de unidades de cuidado intensivo -Defunciones - RO - Número de remplazo - Evaluación de cambio de política (Todas las estimaciones tienen asociada una estimación de la incertidumbre) Reportes de infectados y decesos separados por municipios en formato estandarizado de fácil acceso. El tiempo de residencia de: - la clase asintomática la dinámica hospitalaria. Distribución por grupo de edad de las transiciones entre las cajas del modelo	
Preguntas de política pública Por favor responda a las siguientes preguntas considerando dos escenarios a nivel país: 1) Epidemia sin contención, mitigación ni supresión; 2) Epidemia con las medidas actuales implementadas por el gobierno federal. 1) ¿En qué fecha estima su modelo que se dará el	Las respuestas a estas preguntas deberían evaluarse por zona metropolitana ya que los picos ocurrirán en fechas diferentes. Presentamos las estimaciones a nivel nacional con y sin intervención en las figuras	
pico? 2) ¿Cuántas personas infectadas, hospitalizadas y fallecimientos que habrá en el día pico? 3) ¿Cuántas personas infectadas, hospitalizadas y fallecimientos habrá al final de la epidemia? 4) ¿Cómo es el granulado de su modelo (día/semana/mes)?	anexas (figuras 1 y 2). 1) Ver figura 3 y nota ¹ 2) Ver figuras 3 3) Ver figuras 1, 2 y 3 4) Día La respuesta depende del parámetro de tiempo de	

¹ La respuesta depende del parámetro de tiempo de residencia de los asintomáticos (gamma_1) (ver figura 3)

5)	¿Cuánto estima su modelo que durará la epidemia?	residencia de los asintomáticos (gamma_1) y no está bien definida. 5) Para tener casi cero infecciosos se puede estimar entre: Mediados de junio a principios de agosto Sugerencia: definir la fecha en función de la capacidad hospitalaria.
		Presentamos además algunos ejemplos de estimaciones para algunas zonas metropolitanas en la situación actual en las figuras anexas 4 a 15

Para los grupos que tienen modelos "multicaja", favor de llenar también este cuadro:

Cuadro 2. Especificaciones de los modelos "multicaja"

Especificación Modelo del grupo CIMA		
	UNAM	
Datos para iniciar el modelo		
1) Proporción o cantidad de individuos en cada una	Inferido a partir de los datos	
de las cajas al inicio de la epidemia	(distribución de probabilidad)	
2) el modelo es nacional / regional /estatal ?	nacional / regional /estatal	
3) Cuántos días de incubación. ¿el modelo incluye	5 días	
periodo de latencia?		
4) Si el modelo incluye las etapas de progresión de la	susceptible,	
enfermedad ¿cómo se definen dichas etapas y en	latente,	
qué secuencia?	infectado asintomático,	
	infectado sintomático,	
	infectado sintomático	
	hospitalizado,	
	infectado sintomático no	
	hospitalizado,	

	en UTI, decesos, recuperados (el modelo no es lineal ver diagrama anexo figura 16)	
5) En caso de que haya etapas: ¿las probabilidades o tasas asociadas a la transición de cada etapa?	f= 0.05 (probabilidad de ser sintomático) g= 0.05 (probabilidad de progresar a hospitalización dado ser sintomático) h=0.2 (probabilidad de ingresar a la UTI dado que se hospitalizado) i=0.5 probabilidad de descesos dado que se está en	
	UTI	
6) ¿Las probabilidad des cada etapa son diferentes por edades y/o sexo?, ¿considera comorbilidades?	No en este momento (se usarán las de Ferguson por edades)	
	No. Se requiere asistencia para integrarlo al modelo.	
7) Método de ajuste del modelo a los datos: qué variable estás usando del reporte y por qué esa	Casos confirmados y decesos. Estas son las únicas variables disponibles que representan la dinámica. Se hace inferencia bayesiana (con MCMC) con un modelo binomial negativo para los datos.	
8) Metodología: markov continuo, ecuaciones diferenciales ordinarias, ecuaciones diferenciales	Ecuaciones diferenciales ordinarias tiempo continuo y MCMC	
estocásticas, markov discreto 9) ¿El modelo permite que la enfermedad vuelva cuando no se tiene inmunidad de horda?	No. Se puede modificar de forma <i>adhoc</i> si se conoce la duración de la inmunidad	
10) ¿El modelo produce intervalos de predicción o confianza?	Sí. Intervalos de probabilidad	
Datos epidemiológicos		
1) Probabilidades de transición	(f,g,h,i) ver arriba	
2) Días de duración en cada etapa	Parámetros usados (ver Figura 17)	
3) Cantidad de etapas	Básicas = 12 Con subcajas de Erlang = 53	

4) Método de cálculo de la tasa de infección, ¿cómo	Usando la inferencia se	
se modelan las intervenciones?	estiman las tasas de contacto	
	antes y después de la	
	intervención.	
	Se toma en cuenta el retardo	
	debido a la latencia desde el	
	día de la intervención.	
5) ¿Qué intervenciones se estan modelando?	La del día 22 de marzo.	
Sy Eque intervenciones se estan modelando:	La dei dia 22 de mai2o.	
	Se pueden incluir otras.	
	se paeden meian otras.	
	Se pueden simular escenarios	
	para futuras intervenciones.	
Output	para rataras intervenciones:	
1) Tasa de ataque sin intervenciones	No se ha calculado, se está	
	implementando.	
2) R0 sin intervenciones	2.8 (inferido nacional , ver	
,	figura 18, enorme variabilidad	
	por regiones del país)	
3) Mortalidad total sin intervenciones	30,000 (baja incertidumbre)	
,	Suponiendo atención	
	hospitalaria completa.	
	Ver figura 2	
4) Tasa de ataque bajo las intervenciones	No se ha calculado, se está	
actualmente en vigor	implementando.	
5) R0 bajo intervenciones en vigor	2.1 (inferido nacional , ver	
	figura 18, enorme variabilidad	
	por regiones del país)	
6) Mortalidad bajo intervenciones en vigor	(22,000 a 27,000)	
	Suponiendo atención	
	hospitalaria completa.	
	Ver figura 2	

Anexo:

Figura 1: En esta figura se contabilizan los infectados hospitalizados por día y las defunciones totales. Los puntos rojos son el número de casos confirmados nuevos reportado diariamente.

Figura 2: Figura izquierda demanda hospitalaria diaria, figura derecha defunciones acumuladas. Los puntos rojos son el número defunciones acumuladas reportadas diariamente.

Figure 3. Escenarios del pico y duración de la intervención dependiendo del parámetro gamma_1 del modelo. En la gráfica se muestran las infecciones asintomáticas, la altura del pico y la duración de la epidemia depende fuertemente en el valor de gamma_1.

Figura 4. Escenario Zona Metropolitana del Valle de México infectados confirmados nuevos por día. Figura izquierda: estimación a corto plazo. Figura derecha: estimación a largo plazo.

Figura 5. Escenario Zona Metropolitana del Valle de México decesos acumulados. Figura izquierda: estimación a corto plazo decesos nuevos por día. Figura derecha: estimación a largo plazo decesos acumulados.

Figura 6. Escenario Zona Metropolitana del Valle de México demanda hospitalaria y unidades de terapia intensiva.

Figura 7. Escenario Zona Metropolitana del Valle de México recuperados.

Figura 8. Escenario Zona Puebla-Tlaxcala infectados confirmados nuevos por día. Figura izquierda: estimación a corto plazo. Figura derecha: estimación a largo plazo.

Figura 9. Escenario Zona Puebla-Tlaxcala. Figura izquierda: estimación a corto plazo decesos nuevos por día. Figura derecha: estimación a largo plazo decesos acumulados.

Figura 10. Escenario Zona Puebla-Tlaxcala demanda hospitalaria y unidades de terapia intensiva.

Figura 11. Escenario Zona Puebla-Tlaxcala recuperados.

Figura 12. Escenario Zona Tijuana infectados confirmados nuevos por día. Figura izquierda: estimación a corto plazo. Figura derecha: estimación a largo plazo.

Figura 13. Escenario Zona Tijuana decesos acumulados. Figura izquierda: estimación a corto plazo decesos nuevos por día. Figura derecha: estimación a largo plazo decesos acumulados.

Figura 14. Escenario Zona Tijuana demanda hospitalaria demanda hospitalaria y unidades de terapia intensiva.

Figura 15. Escenario Zona Tijuana recuperados.

Figura 16. Escenario Zona Mérida infectados confirmados nuevos por día. Figura izquierda: estimación a corto plazo. Figura derecha: estimación a largo plazo.

Figura 17. Escenario Zona Mérida decesos acumulados. Figura izquierda: estimación a corto plazo decesos nuevos por día. Figura derecha: estimación a largo plazo decesos acumulados.

Figura 18. Escenario Zona Mérida demanda hospitalaria demanda hospitalaria y unidades de terapia intensiva.

ZM de Mérida R

Figura 15. Escenario Zona Mérida recuperados.

Diagrama de flujo de la infección de covid-19 [1] [2] [3] [4]

Variable	Significado
S	Individuos susceptibles
λ	Fuerza de la infección
E	Individuos latentemente infectados
I^A	Individuos infectados asintomáticos
I^S	Individuos infectados sintomáticos
I^C	Individuos convalescientes fuera del hospital
H^1	Individuos que requieren hospitalización
H^2	Individuos hospitalizados convalescientes
U^1	Individuos hospitalizados que requieren unidad de cuidado intensivo
U^2	Individuos en unidad de cuidado intensivo en etapa crítica
D	Decesos
H^3	Individuos convalescientes de la etapa crítica
R	Individuos recuperados

Figura 16. Diagrama de cajas del modelo básico.

Diagrama de flujo de la infección de covid-19

Fuerza de infección

$$\lambda = \beta_A \frac{I^A}{N - D} + \beta_S \frac{I^S}{N - D}$$

Parámetros	Significado	Valor	Fuente
β_A	Tasa de contacto entre susceptible e infectado asintomático	$[0,20] \ \mathrm{d}\mathrm{ías^{-1}}$	Inferido
β_S	Tasa de contacto entre susceptible e infectado sintomático	$[0,20]~\mathrm{días^{-1}}$	Inferido
$1/\sigma_1$	Tiempo de incubación de la infección	5 días	[4]
$1/\sigma_2$	Tiempo entre aparición de síntomas y hospitalización	4 días	[5]
$1/\sigma_3$	Tiempo entre hospitalización e ingreso a la unidad de cuidado intensivo	2 días	[6]
$1/\sigma_4$	Tiempo entre ingreso a unidad de cuidado intensivo y etapa crítica	7 días	[7]
$1/\mu$	Tiempo que tarda en fallecer un paciente en etapa crítica	1 día	[8]
$1/\gamma_1$	Tiempo de recuperación del infectado asintomático	5 días	[9]
$1/\gamma_2$	Tiempo de recuperación del convalesciente fuera del hospital	5 días	[8]
$1/\gamma_3$	Tiempo de recuperación del convalesciente dentro del hospital	5 días	[8]
$1/\gamma_4$	Tiempo de recuperación del convalesciente de la etapa crítica	2.5 días	[7]
f	Fracción de infectados que son sintomáticos	5/100	[10]
g	Fracción de sintomáticos que requieren hospitalización	5/100	[10]
h	Fracción de hospitalizados que requieren unidad de cuidado intensivo	25/100	[10], [9]
i	Fracción de pacientes en unidad de cuidado intensivo que mueren	50/100	[6]

Figura 17. Valores de los tiempos de residencia en el modelo

Figura 18. Estimación de RO antes y después de la intervención.