Addressing Scale Uncertainty in Gene and Microbe Set Enrichment Analysis

Kyle McGovern

The Pennsylvania State University kvm6065@psu.edu

> GLBIO 2024 May 2, 2024

Consider as an example an 16S rRNA-seq experiment measuring *D* taxa in the colons of *N* patients:

$$\underbrace{W_{dn}}_{\text{N}} = \underbrace{W_{dn}^{\parallel}}_{\text{N}} \times \underbrace{W_{n}^{\perp}}_{\text{N}}$$
Absolute Abundance Taxa d, Patient n (Unmeasured)} = \underbrace{Composition}_{\text{Taxa d, Patient n}} \times \underbrace{W_{n}^{\perp}}_{\text{N}}
$$\underbrace{Composition}_{\text{Taxa d, Patient n}} \times \underbrace{W_{n}^{\perp}}_{\text{N}}$$

$$\underbrace{Composition}_{\text{Taxa d, Patient n}} \times \underbrace{W_{n}^{\perp}}_{\text{N}} \times \underbrace{W_{n}^{\perp}}_{\text{N}}$$

Consider as an example an 16S rRNA-seq experiment measuring D taxa in the colons of N patients:

Further consider as an example estimation of the LFC (Log Fold Change) of taxa *d* in patients with and without Ulcerative Colitis:

$$\underbrace{\theta_d}_{\text{LFC in Absolute Abundance}} = \underbrace{\theta_d^{\parallel}}_{\text{LFC in Composition}} + \underbrace{\theta^{\perp}}_{\text{LFC in Scale}}$$

Methods like ALDEx2, DESeq2, Limma, etc. estimate LFCs using sequence count data *Y*:

$$f(Y) = \hat{\theta}_d$$

$$= \underbrace{\hat{\theta}_d^{\parallel}}_{\text{Estimated LFC in the measured composition}} + \underbrace{\hat{\theta}^{\perp}}_{\text{Estimated LFC in the unmeasured scale}}$$

Methods like ALDEx2, DESeq2, Limma, etc. estimate LFCs using sequence count data *Y*:

$$f(Y) = \hat{\theta}_d$$

$$= \underbrace{\hat{\theta}_d^{\parallel}}_{\text{d}} + \underbrace{\hat{\theta}^{\perp}}_{\text{Estimated LFC in the measured composition}}^{\text{Estimated LFC in the unmeasured scale}}$$

Estimates $\hat{\theta}^{\perp}$ come from normalization, for example:

• Total Sum Scaling (TSS): $\hat{ heta}^\perp = 0$

Methods like ALDEx2, DESeq2, Limma, etc. estimate LFCs using sequence count data *Y*:

$$f(Y) = \hat{\theta}_d$$

$$= \underbrace{\hat{\theta}_d^{\parallel}}_{\text{d}} + \underbrace{\hat{\theta}^{\perp}}_{\text{Estimated LFC in the measured composition}}^{\text{Estimated LFC in the unmeasured scale}}$$

Estimates $\hat{\theta}^{\perp}$ come from normalization, for example:

- Total Sum Scaling (TSS): $\hat{ heta}^{\perp}=0$
- Centered Log Ratio (CLR): $\hat{ heta}^{\perp} = -\mathsf{mean}(\hat{ heta}^{\parallel})$

Differential Set Analysis (DSA)

Rather than estimating **LFCs** of **single** genes/taxa

ASK1

What if we are interested in a **set** of genes in a pathway?

Differential Set Analysis (DSA) is used to estimate enrichment or depletion of a gene/taxa set

Key Points of this Talk

1 Errors in scale assumptions (i.e., estimates $\hat{\theta}^{\perp}$, \hat{W}^{\perp}) inflate false positive rates in DSA

Key Points of this Talk

- 1 Errors in scale assumptions (i.e., estimates $\hat{\theta}^{\perp}$, \hat{W}^{\perp}) inflate false positive rates in DSA
- 2 Errors in DSA estimates are a non-linear function of scale errors

Key Points of this Talk

- 1 Errors in scale assumptions (i.e., estimates $\hat{\theta}^{\perp}$, \hat{W}^{\perp}) inflate false positive rates in DSA
- 2 Errors in DSA estimates are a non-linear function of scale errors
- 3 We have developed three solutions to these errors:
 - 1 LFC Sensitivity Analysis
 - 2 LFC Sensitivity Testing
 - 3 Compositional Weighting Methods

Three Methods for DSA

In this presentation 3 common DSA methods will be considered

- Gene Set Enrichment Analysis (GSEA) with Gene Label permutations
- ② Gene Set Enrichment Analysis (GSEA) with Sample Label permutations
- 3 CAMERA

The GSEA Algorithm Step-by-Step

 $oldsymbol{0}$ Pick a set of genes S (e.g., the apoptosis signaling pathway):

$$S = \{ASK1, CHOP, TRAF2\}$$

The GSEA Algorithm Step-by-Step

 $oldsymbol{1}$ Pick a set of genes S (e.g., the apoptosis signaling pathway):

$$S = \{ASK1, CHOP, TRAF2\}$$

2 Estimate LFCs $\hat{\theta} = f(Y)$ (i.e., with DESeq2, ALDEx2, limma)

The GSEA Algorithm Step-by-Step

 $oldsymbol{0}$ Pick a set of genes S (e.g., the apoptosis signaling pathway):

$$S = \{ASK1, CHOP, TRAF2\}$$

- 2 Estimate LFCs $\hat{\theta} = f(Y)$ (i.e., with DESeq2, ALDEx2, limma)
- 3 Order the LFCs from largest to smallest

The GSEA Algorithm Step-by-Step

- 3 Calculate a running sum weighted by the LFC
- Calculate an enrichment score (max distance from 0 of weighted running sum)

The GSEA Algorithm Step-by-Step

5 Calculate a null distribution of Enrichment Scores (ESs)

$$S = \{ ASK1, CHOP, TRAF2 \} \implies ES$$

 $S_1^* = \{ ASK1, CHOP, B2M \} \implies ES_1^*$
 $S_2^* = \{ BRCA1, EGFR, XRCC4 \} \implies ES_2^*$

The GSEA Algorithm Step-by-Step

6 Calculate a null distribution of Enrichment Scores (ESs)

$$S = \{ ASK1, CHOP, TRAF2 \} \implies ES$$

 $S_1^* = \{ ASK1, CHOP, B2M \} \implies ES_1^*$
 $S_2^* = \{ BRCA1, EGFR, XRCC4 \} \implies ES_2^*$

6 Use null distribution to calculate a p-value

DSA Target Estimand

The goal of DSA is to estimate a **target estimand** ϕ_S :

$$\phi_{\mathcal{S}} = \begin{cases} 1 & \text{Gene Set } \mathcal{S} \text{ is significantly enriched} \\ -1 & \text{Gene Set } \mathcal{S} \text{ is significantly depleted} \\ 0 & \text{Gene Set } \mathcal{S} \text{ is not significantly changing.} \end{cases}$$

In GSEA the target estimand is a function of the **true** LFCs:

$$\phi_{\mathcal{S}} = g(\theta)$$

In GSEA the target estimand is a function of the **true** LFCs:

$$\phi_{\mathcal{S}} = g(\theta)$$

But we don't know the true LFCs, we only have **estimates**:

$$egin{aligned} \hat{\phi}_{\mathcal{S}} &= g(\hat{ heta}) \ &= g(\hat{ heta}^{\parallel} + \underbrace{\hat{ heta}^{\perp}}_{ ext{Estimated LFC in Scale}}). \end{aligned}$$

In GSEA the target estimand is a function of the **true** LFCs:

$$\phi_{\mathcal{S}} = g(\theta)$$

But we don't know the true LFCs, we only have **estimates**:

$$egin{aligned} \hat{\phi}_{\mathcal{S}} &= g(\hat{ heta}) \ &= g(\hat{ heta}^{\parallel} + \underbrace{\hat{ heta}^{\perp}}_{ ext{Estimated LFC in Scale}}) \ & ext{(Normalization Assumption)} \end{aligned}$$

Our DSA estimate $\hat{\phi}_S$ depends on our scale estimate $\hat{\theta}^{\perp}$!

In GSEA the target estimand is a function of the **true** LFCs:

$$\phi_{\mathcal{S}} = g(\theta)$$

But we don't know the true LFCs, we only have **estimates**:

$$egin{aligned} \hat{\phi}_{\mathcal{S}} &= g(\hat{ heta}) \ &= g(\hat{ heta}^{\parallel} + \underbrace{\hat{ heta}^{\perp}}_{ ext{Estimated LFC in Scale}}) \ & ext{(Normalization Assumption)} \end{aligned}$$

Our DSA estimate $\hat{\phi}_{\mathcal{S}}$ depends on our scale estimate $\hat{\theta}^{\perp}$!

A sensitivity analysis of how error in $\hat{ heta}^{\perp}$ affects $\phi_{\mathcal{S}}$

Error ϵ^{\perp} in our estimate of the unmeasured scale θ^{\perp} :

$$\underbrace{\theta^{\perp}}_{\text{True LFC in Scale}} = \underbrace{\hat{\theta}^{\perp}}_{\text{Estimate}} + \underbrace{\epsilon^{\perp}}_{\text{Estimation Error}}$$

Error ϵ^{\perp} in our estimate of the unmeasured scale θ^{\perp} :

$$\underbrace{\theta^{\perp}}_{\text{True LFC in Scale}} = \underbrace{\hat{\theta}^{\perp}}_{\text{Estimate}} + \underbrace{\epsilon^{\perp}}_{\text{Estimation Error}}$$

How does the **true** ϕ_S change with error ϵ^{\perp} ?

$$egin{aligned} \phi_{\mathcal{S}} &= \mathcal{G}(\hat{ heta}^{\parallel} + \hat{ heta}^{\perp} + \epsilon^{\perp}) \ &= \mathcal{G}(\hat{ heta} + \epsilon^{\perp}) \end{aligned}$$

Error ϵ^{\perp} in our estimate of the unmeasured scale θ^{\perp} :

$$\underbrace{\theta^{\perp}}_{\text{True LFC in Scale}} = \underbrace{\hat{\theta}^{\perp}}_{\text{Estimate}} + \underbrace{\epsilon^{\perp}}_{\text{Estimation Error}}$$

How does the **true** ϕ_S change with error ϵ^{\perp} ?

$$egin{aligned} \phi_{\mathcal{S}} &= g(\hat{ heta}^{\parallel} + \hat{ heta}^{\perp} + \epsilon^{\perp}) \ &= g(\hat{ heta} + \epsilon^{\perp}) \end{aligned}$$

LFC Sensitivity Analysis Algorithm:

1 Get estimated LFCs $\hat{\theta}$ (e.g., from ALDEx2, limma, DESeq2, etc.)

Error ϵ^{\perp} in our estimate of the unmeasured scale θ^{\perp} :

$$\underbrace{\theta^{\perp}}_{\text{True LFC in Scale}} = \underbrace{\hat{\theta}^{\perp}}_{\text{Estimate}} + \underbrace{\epsilon^{\perp}}_{\text{Estimation Error}}$$

How does the **true** ϕ_S change with error ϵ^{\perp} ?

$$egin{aligned} \phi_{\mathcal{S}} &= g(\hat{ heta}^{\parallel} + \hat{ heta}^{\perp} + \epsilon^{\perp}) \ &= g(\hat{ heta} + \epsilon^{\perp}) \end{aligned}$$

LFC Sensitivity Analysis Algorithm:

- **1** Get estimated LFCs $\hat{\theta}$ (e.g., from ALDEx2, limma, DESeq2, etc.)
- **2** Run GSEA with $\epsilon^{\perp}=$ 0 (i.e., $\hat{\phi}_{\mathcal{S}}=g(\hat{ heta})$)

Error ϵ^{\perp} in our estimate of the unmeasured scale θ^{\perp} :

$$\underbrace{\theta^{\perp}}_{\text{True LFC in Scale}} = \underbrace{\hat{\theta}^{\perp}}_{\text{Estimate}} + \underbrace{\epsilon^{\perp}}_{\text{Estimation Error}}$$

How does the **true** ϕ_S change with error ϵ^{\perp} ?

$$egin{aligned} \phi_{\mathcal{S}} &= g(\hat{ heta}^{\parallel} + \hat{ heta}^{\perp} + \epsilon^{\perp}) \ &= g(\hat{ heta} + \epsilon^{\perp}) \end{aligned}$$

LFC Sensitivity Analysis Algorithm:

- **1** Get estimated LFCs $\hat{\theta}$ (e.g., from ALDEx2, limma, DESeq2, etc.)
- **2** Run GSEA with $\epsilon^{\perp}=$ 0 (i.e., $\hat{\phi}_{\mathcal{S}}=g(\hat{ heta})$)
- 3 Rerun GSEA with $\epsilon^{\perp} \neq 0$ and compare to $\epsilon^{\perp} = 0$ (i.e., $\phi_{\mathcal{S}} = g(\hat{\theta} + \epsilon^{\perp})$

Interpreting Error ϵ^{\perp} and LFC Sensitivity Analysis Results

Consider error $\epsilon^{\perp} = \pm 0.5$:

1 This error corresponds to the true $heta^\perp$ being $e^{0.5}=$ 1.65 times lower/higher than $\hat{ heta}^\perp$

Interpreting Error ϵ^{\perp} and LFC Sensitivity Analysis Results

Consider error $\epsilon^{\perp} = \pm 0.5$:

- 1 This error corresponds to the true $heta^\perp$ being $e^{0.5}=$ 1.65 times lower/higher than $\hat{ heta}^\perp$
- Example results if a Gene set S is sensitive to error:

$\epsilon^{\perp} = -0.5$	$\epsilon^{\perp} = 0$	$\epsilon^{\perp}=0.5$
$\phi_{\mathcal{S}} = 0$	$\phi_{\mathcal{S}} = 1$	$\phi_{\mathcal{S}} = 0$

Interpreting Error ϵ^{\perp} and LFC Sensitivity Analysis Results

Consider error $\epsilon^{\perp} = \pm 0.5$:

- 1 This error corresponds to the true $heta^\perp$ being $e^{0.5}=$ 1.65 times lower/higher than $\hat{ heta}^\perp$
- 2 Example results if a Gene set *S* is sensitive to error:

$$\begin{array}{|c|c|c|c|c|c|}\hline \epsilon^{\perp} = -0.5 & \epsilon^{\perp} = 0 & \epsilon^{\perp} = 0.5\\ \hline \phi_{\mathcal{S}} = 0 & \phi_{\mathcal{S}} = 1 & \phi_{\mathcal{S}} = 0\\ \hline \end{array}$$

3 Example results if a Gene set *S* is not sensitive to error:

$\epsilon^{\perp} = -0.5$	$\epsilon^{\perp} = 0$	$\epsilon^{\perp}=0.5$
$\phi_{\mathcal{S}}=$ 1	$\phi_{\mathcal{S}} = 1$	$\phi_{\mathcal{S}} = 1$