EVOLUTION OF THE FINAL FRONTIER: HOW DISPERSAL AND COMPETITION SHAPE GENETIC VARIATION IN CONTINUOUS SPACE

C. J. BATTEY, PETER RALPH, ANDREW KERN

Contents

1.	Abstract	1
2.	Introduction	1
3.	Methods	1
3.1.	A Forward-Time Model of Evolution in Continuous Space	1
3.2.	Summary Statistics	1
3.3.	Demographic Modeling	2
3.4.	Association Tests	2
3.5.	Machine Learning	2
4.	Results	2
4.1.	Summary Statistics	2
4.2.	Impacts on Demographic Inference and GWAS	2
4.3.	Estimating Model Parameters with Machine Learning	2
5.	Discussion	2
6.	Figures	2

1. Abstract

2. Introduction

3. Methods

3.1. A Forward-Time Model of Evolution in Continuous Space.

- 3.1.1. Mating and Dispersal.
- $3.1.2.\ Competition.$
- 3.1.3. Boundary Conditions (Refrain from the Torus?)
- 3.1.4. Tree Sequence Recording.

3.2. Summary Statistics.

Date: November 2018.

- 3.3. Demographic Modeling.
- 3.4. Association Tests.
- 3.5. Machine Learning.

4. Results

- 4.1. Summary Statistics.
- 4.2. Impacts on Demographic Inference and GWAS.
- 4.3. Estimating Model Parameters with Machine Learning.

5. Discussion

6. Figures

EVOLUTION OF THE FINAL FRONTIER: HOW DISPERSAL AND COMPETITION SHAPE GENETIC VARIATION IN

