Prova sem consulta. Duração: 2h.

2ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [3,6] Considere a curva, C, de interseção das superfícies $z = 8 x^2 y^2$ e $z = x^2 + y^2$.
 - a) Obtenha uma parametrização para a curva C.
 - **b**) Calcule o integral de linha $\int_C x \, dx y \, dy + xyz \, dz$.
- **2.** [4,4] Considere o campo vetorial:

$$\vec{f}(x,y) = (\alpha x^{\alpha-1} y^{\beta-\alpha+1} \cos(x^{\beta} y), x^{\alpha} \cos(x^{\beta} y)), \ \alpha, \beta \in \mathbb{R}.$$

- a) Considerando os valores $\alpha = 1$ e $\beta = 0$, calcule, usando o teorema de Green, o integral de linha $\int_C \vec{f} \cdot d\vec{r}$, sendo C a curva, percorrida no sentido retrógrado, ao longo do triângulo com vértices nos pontos (0,0), $\left(\frac{\pi}{2},0\right)$ e $\left(0,\frac{\pi}{2}\right)$.
- **b**) Mostre que, se $\alpha = \beta$, \vec{f} é um campo gradiente e determine o seu potencial, φ , isto é, $\vec{f} = \nabla \varphi$, em função do parâmetro α .
- c) Admitindo que $\alpha = \beta$, calcule o integral de linha $\int_L \vec{f} \cdot d\vec{r}$, em que L é uma curva cujo ponto inicial é P = (0,1) e o ponto final é $Q = \left(1, \frac{3\pi}{2}\right)$.
- **3.** [3,0] Considere a superfície, S, definida por:

$$z = 1 + 2y^2$$
, $0 \le x \le 4$, $-\sqrt{2} \le y \le 1$.

Faça um esboço da superfície e calcule o integral $\iint_S y \ dS$.

Prova sem consulta. Duração: 2h.

2ª Prova de Avaliação

GRUPO II

4. [3,0] Considere o campo vetorial:

$$\vec{g}(x, y, z) = (x+1, y-1, 2z-1)$$
.

Determine o fluxo do campo vetorial \vec{g} no sentido de dentro para fora da superfície, S, definida por $z = 2x^2 + 2y^2$, $z \le 4$.

- 5. [4,0] Seja o integral triplo em coordenadas cilíndricas $\int_0^{2\pi} \int_0^1 \int_0^{1+r^2} (2r) dz dr d\theta$.
 - a) Calcule o seu valor.
 - b) Esboce o domínio de integração.
 - c) Reescreva-o em coordenadas cartesianas.
- **6.** [2,0] Sejam f(x, y, z) e g(x, y, z) campos escalares com derivadas contínuas até à segunda ordem. Usando as definições do gradiente e do rotacional, mostre que:

$$\nabla \times (f \nabla g) = rot(f \nabla g) = (\nabla f) \times (\nabla g)$$