Contrôle 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

Exercice 1 (8 points)

Trois charges ponctuelles -q, +q et -q (avec q > 0) placées respectivement aux points A, B et C d'un **triangle équilatéral** de côté a. AB = BC = CA = a.

- 1- Représenter sur le schéma ci-dessus les vecteurs champs électriques $\vec{E}_A(O)$, $\vec{E}_B(O)$ et $\vec{E}_C(O)$ créés par les trois particules chargées au centre O du triangle.
- 2- Exprimer les normes de chacun des vecteurs $\vec{E}_A(O)$, $\vec{E}_B(O)$, $\vec{E}_C(O)$, ainsi que celle du vecteur champ total : E(O), en fonction de k, q, a.

EPITA / 5 ₃ Novembre 201
3- On place une charge négative (-q) au point O, en déduire la direction, le sens et la norme de la forcé électrique qu'elle subit.
4-a) Calculer les potentiels V(A), V(B) et V(O), en fonction de k, q et a. (En tenant compte de charge –q au point O).

b) En déduire l'énergie potentielle électrique de la charge (-q) placée au point O.

Exercice 2 (6 points)

On montre qu'un élément de longueur d ℓ de charge dQ crée un champ électrique élémentaire au point M, d'expression $dE_x(M) = \frac{k \cdot \lambda}{x} \cos(\alpha) d\alpha$, où OM = x : distance entre le point M et le fil.

1-a) Utiliser l'expression ci-dessus pour exprimer les normes des vecteurs champs électriques créés par chacun des fils AB, BC, CD et DA au centre O du carré de côté 2a, sachant que les fils AB, BC sont chargés avec une densité λ constante et **positive** alors que les fils CD et DA sont chargés avec une densité constante **négative** $-\lambda$.

b) Représenter les vecteurs $\vec{E}_{AB}(O)$, $\vec{E}_{BC}(O)$, $\vec{E}_{CD}(O)$ et $\vec{E}_{DA}(O)$.	
2- a) En déduire l'expression de la norme du champ total $\tilde{E}(O)$.	
b) Représenter ce vecteur.	

Exercice 3 Les parties I et II sont indépendantes (6 points)

I- On considère le potentiel électrique d'expression $V(x, y, z) = 2x^2y - \frac{zy^3}{x}$.

1- Exprimer les composantes E_x , E_y et E_z du vecteur champ électrique, créé par cette distribution.

2- En déduire la norme du champ électrique \vec{E} au point P (1, 1,1).

II- Un dipôle électrique (-Q,+Q) crée en un point M quelconque du plan (xoy), un potentiel électrostatique, d'expression : $V(r,\theta) = k.Q.a.\frac{\cos(\theta)}{r^2}$; Où k, Q, a sont des constantes positives.

On donne le gradient en coordonnées polaires : $grad\left(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}\right)$

		