

Universidad

Nacional Autónoma de México

FACULTAD DE CIENCIAS

PROBLEMAS RESUELTOS

Automatas

Integrantes:

Yonathan Berith Jaramillo Ramírez. 419004640

Profesor: Lourdes del Carmen González Huesca Ayudantes: María Fernanda Mendoza Castillo

29 Octubre, 2021

Examen 1

1. A partir del siguiente autómata M_1 , mostrado como tabla de transiciones:

		1/			
Tabla de transiciones					
	Q	0	1	2	
i	$ q_0 $	q_0	q_1	q_2	
	$ q_1 $	q_3	q_1	q_2	
f	$ q_2 $	q_3	q_3	q_2	
	$\parallel q_3$	q_3	q_3	q_3	

a) Describe el lenguaje L_1 que corresponde a $\mathcal{L}(M_1)$ y da la definición completa de la tupla que define al autómata.

Solution: $L_1 = \{ w \in \Sigma^* | w = 0^a 1^a 2^b \}$ donde $a \in \mathbb{N}$ y $b \in \mathbb{Z}^+ \}$ $Q = \{q_0, q_1, q_2, q_3\}$ $\Sigma = \{0, 1, 2\}$ $q_0 \in Q$ Es el estado inicial $F \subseteq Q$ $F = q_2$ Funciíones de transición: $\delta(q_0,0) = q_0$ $\delta(q_0, 1) = q_1$ $\delta(q_0, 2) = q_2$ $\delta(q_1,0) = q_3$ $\delta(q_1, 1) = q_1$ $\delta(q_1, 2) = q_2$ $\delta(q_2, 0) = q_3$ $\delta(q_2, 1) = q_3$ $\delta(q_2, 2) = q_2$ $\delta(q_3,0) = q_3$ $\delta(q_3, 1) = q_3$ $\delta(q_3, 2) = q_3$

b) Describe de forma informal la expresión regular que es equivalente al lenguaje de la máquina.

Solution: (0*1*2+)

c) Evalúa $\delta^*(q_0, 11122012)$

Solution: Evaluación: $\delta(q_0,1)=q_1$ $\delta(q_1,1)=q_1$ $\delta(q_1,1)=q_1$ $\delta(q_1,2)=q_2$ $\delta(q_2,2)=q_2$ $\delta(q_2,0)=q_3$ $\delta(q_3,1)=q_3$ $\delta(q_3,2)=q_3$ La cadena es aceptada

- 2. Tomando el lenguaje $L_2 = \{1^n0^m | \text{ n} + \text{m} \text{ es un numero par } \}$ Sobre el alfabeto $\Sigma = \{0,1\}$
 - a) Escribe la expresión regular que genera al lenguaje, indica el método usado.

Solution: $((11)^*(00)^*)$

b) Diseña un AFD (gráfica) que reconoce este lenguaje, indica el método usado.

Metodo usado: Me enfoque en las dos condiciones mas importantes que ví, la primera que el numero de unos y ceros sean pares lo cual lo cubrí con los estados q0 y q2 para los unos y con q5 y q6 para los ceros. Para asegurarme que despues de un 0 no se puedan agregar unos utilice los estados q1, q4 y q3 donde q3 es un estado de error para que de ahi ya no pase nada.

- 3. Sea $L_3=\{w=a_0a_1...a_k|a_{k-3}=0,k\geq 3\}$ sobre el alfabeto $\Sigma=\{0,1\}$:
 - a) Diseña un AFN (sin transiciones épsilon) que acepta el lenguaje.

b) Transforma el AFN anterior a un AFD e incluye la gráfica.