Best/Worst/Always and Asymptotic Notation

- ▶ The number of comparisons that InsertionSort makes on inputs of size n is:
 - \triangleright n-1 in the best case
 - n(n-1)/2 in the worst case
 - $ightharpoonup \geq n-1$ and $\leq n(n-1)/2$ on every input

Best/Worst/Always and Asymptotic Notation

- ▶ The number of comparisons that InsertionSort makes on inputs of size n is:
 - \triangleright n-1 in the best case
 - n(n-1)/2 in the worst case
 - $\geq n-1$ and $\leq n(n-1)/2$ on every input
- The number of comparisons that InsertionSort makes on inputs of size n is:
 - \triangleright $\Theta(n)$ in the best case
 - \triangleright $\Theta(n^2)$ in the worst case
 - $\triangleright \Omega(n)$ and $O(n^2)$ on every input

Best/Worst/Always and Asymptotic Notation

- The number of comparisons that InsertionSort makes on inputs of size n is:
 - \triangleright n-1 in the best case
 - n(n-1)/2 in the worst case
 - $\geq n-1$ and $\leq n(n-1)/2$ on every input
- The number of comparisons that InsertionSort makes on inputs of size n is:
 - \triangleright $\Theta(n)$ in the best case
 - \triangleright $\Theta(n^2)$ in the worst case
 - $ightharpoonup \Omega(n)$ and $O(n^2)$ on every input
- ▶ Typically we just say: InsertionSort makes $O(n^2)$ comparisons (suggesting implicitly that there is no better bound for the worst case).