TD 4-Lundi 28 septembre 2020

ex 2.1:

On suppose que $A \subset B(x)$ Montrons que $B^{C} \subset A^{C}$. Sit $x \in B^{C}$. Alors $x \notin B$. For l'abrunde, ni $x \notin A^{C}$, alors $x \in A$. For (x), $x \in B^{C}$: contradiction. Denc $x \in A^{C}$. On a montré $x \in B^{C} \Rightarrow x \in A^{C}$, point $B^{C} \subset A^{C}$.

ex 2:2- Pour montrer les équivalences de l'exercice ril suffit de montrer
les implications
$(A \subset B) \Rightarrow (A \cup B = B) \tag{1}$
$(A \cup B = B) \Rightarrow (A \cap B = A) (2)$
$(A \cap B = A) \Rightarrow (A \setminus B = \phi) (3)$
$(A \setminus B = \phi) \Rightarrow A \subset B$ (4)
en vertu du foit que pour trois énoncés P,Q,R, (P=>Q et Q=>R) => (P=>R).
On peut les représentes plus visuellement pour la forme
(A) $A \subset B$ (A)
$(4) \qquad A \subset B \qquad (4)$
· · · · · · · · · · · · · · · · · · ·
$A \setminus B = \emptyset$ $A \cup B = B$ $A \cup B = A$ $A \cup B = B$ $A \cup B = B$
(1) Supposons A < B. Montrons que AUB=B. On procède par double inclusion
Montrons que AUBCB
Sit ré AUB. On distingue deux cas:
'Sit XEB
'snon, x & B, Lunc & EA Comme ACB, & EB
Panstous les cas, x & B. Anc Au B c B.
L'autre inclusion BCAUB est evidente
Duc AUB = B.
(2) Supprions que AUB=B. On montre que A 11 B=A. par double
inclusion.
L'inclusion ANBCA est évidente
Montrons que ACARB.
Sitre A. Alm REAUB. Or AUB=B Line REB.

Ansi, $\chi \in Aet REB : \chi \in AnB.$ Ansi, $A \in AnB.$ Finalement, AnB = A.

(3) Supposons que An B = A. Or montre que An B = ϕ .

Ruismnement Supposons qu'il existe x E A B: x EA et x E B. Or,

A = An B done x E B. On obtient une contradiction, donc

A · B = ϕ

(4) Supposons que AB= & Montrons que ACB.
Soit XEA Pas l'alrude, ni x & B, alors XEAB= p:
alrude. Donc XEB et donc ACB.

On a démontré houres les implications donc que tous les énoncés de la question 1 sont équivalents à ACB-Si on avoirt demontré séparement houtes les équivalences, on aurait en 8 implications à démontrer au lieu de 4.

Dessin:

2.
$$(A \cap B)^c = A^c \cup B^c$$
.
Eneffet, $(A \cap B)^c = X \cdot (A \cap B)$

$$= \{x \in X \mid x \notin A \cap B\}$$

$$= \{x \in Y \mid mon(x \in A \cap B)\}$$

$$= \{x \in Y \mid mon(x \in A \text{ et } x \in B)\}$$

$$= \{x \in Y \mid x \notin A \text{ ou } x \notin B\}$$

$$= \{x \in Y \mid x \notin A\} \cup \{x \in X \mid x \notin B\}$$

$$= A^c \cup B^c$$

Alors x EA et x E BUC. On dishique deux cas. 1er cas: sireEB, alors reEAnB. l'ène cas: si x & B, alors x E C donc x E A 1 C. Pans bous les cas, RE (AB) U (AC) D'où l'inclusion An(BUC) C(AnB)O(AnC) Thatrons que (AnB) U(AnC) C An(BUC). Soit re (A nB) U(AnC). In dishique deux cas. Mas. SixEAnB, alors xEA et x E BUC donce 2° An (BUC) 2° cas: Six & AnB, alors x & AnC. Damce cas, a E An (BUC). Rnc finalements (Ano) U(AnC) C An(BUC)

ex 2.4: ϕ n'a qu'un reul nous-ensemble, à rouvir ϕ . Done $\varphi(\phi) = \mathcal{E} \varphi \phi$.

• $\xi \phi$ a deux sous-ensembles : ϕ et $\xi \phi \mathcal{J}$ donc $\mathcal{P}(\mathcal{P}(\phi)) = \xi \phi$, $\xi \phi \mathcal{J}$.

· {\phi, \xi\phi\phi} a quatre sous-ensembles:

· deux sous-ensembles à 1 élement, \xi\phi\phi \tilde{\xi} \xi\phi\xi\left\}

' deux sous ensembles à 1 élement, ξφ et ξ ξρξ }
' un sous-ensemble à 2 élement, ξ φ, ξ φ ξ }.

Drue 9(9(9(b))) = ξ φ, ξφ, ξ ξ φ ξ ζ , ξ φ, ξ φ ξ ζ ζ .

```
ex 2.5: On veul montree que (\xi \{a\}, \{a,b\}\} = \{\xi \{a'\}\}, \{a',b'\}\}) => (a = a' \text{ et } b = b')
                 Supposons donc (x). On dishingere leux cas
             Sia=b, alms {{\instar}} = {{\instar}} = {{\instar}} = {{\instar}} = {{\instar}}.
                 (x) inflique donc que ¿¿a'3, ¿a', b'3 de la un ensemble à l'élément, donc que ¿a'y = ¿a', b'3. Cela est vrai si et seulement sa a'= b'.

Avec a'= b', (x) se recrit ¿¿a 3y = ¿¿a'3y, ce qui implique a=a'.
                  En fin de compte, a=b=a'=b' donc en particulier, (a=a')et (b=b').
2°me cas: a + br.
                   Alors & Eaz, Ea, b} & poseède deux ellements. Par suite, a'+b'
mon, & Ea'z, Ea', b'z y aurait un seul élément et on ne
pourrait avoir (A)
                     E E a y, Ea, b y possède un seul é l'ément qui est un ensemble à un seul élément, à savoir é a y. De même four E E a'y, E a', b'y y, il s'agit de E a'y. Donc E a f = E a'y, donc a = a'.
               En regardant les éléments de ¿¿ay, ¿a, byy et de ¿¿a'y, ¿a', b'y) qui ont des encembles à 2 éléments, on trave ¿a, by = ¿a', b'y.

Dorc (a = a' et b=b') ou (a=b' et b=a') · La leuxième possitité est exclue car si a=b' et b=a', alors comme a=a', on avait a = b' ce que l'on a exclu. Donc a = a' et b=b'.
```