

ECG® SEMICONDUCTORS

MASTER REPLACEMENT GUIDE

Supplement No. 1 To 212Q

- Industrial
- Commercial
- Entertainment
- Equipment Maintenance and Repair

Philips ECG

PHILIPS

Introduction

Supplement No. 1 to ECG Semiconductor Master Replacement Guide 212Q provides technical information on 72 new devices, plus over 8,100 additional crosses and changes.

For proper use of this supplement, reference should be made to the Replacement Procedures section in ECG Semiconductor Master Replacement Guide 212Q.

The technical data given in this publication are intended to show safe areas of ECG device operation and level of performance. They are not to be considered limits for new equipment design. We cannot guarantee that the listed items provide an exact replacement in all applications.

Philips ECG PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT APPLICATIONS.

The information contained herein is believed to be accurate. However, no responsibility is assumed by Philips ECG for its use nor for any infringements of patents or other rights of third parties which may result from its use. Reproduction, without express permission of editorial or pictorial content in any manner is prohibited.

© Copyright December 1992
by
Philips ECG

Contents

	Page
Transistors	
Bi-Polar	1
Power MOSFETs	1
Outlines	1
MOSFET Diagrams	1
General Purpose Rectifier	2
PIN Diode	2
Schottky Barrier Rectifier	2
Discrete LED Indicator	2
Integrated Circuits (Linear and Digital)	
IC and Module Circuits	3
IC and Module Outlines	8
Cross Reference	12
Notes	12
Additions/Changes	12
Deletions	Inside Rear Cover
Special Notes	Inside Rear Cover

Product Index

ECG No.	Page No.	Fig. No.	Description
555A	2	Z11A	D-PIN, VHF Band Switch
569	2	Z6A	R-Si, Soft Recovery, Fast Switch, 600V, 3A, 200ns
890	3	L98	IC-Voltage to Frequency Converter
891M	3	L97	IC-Dual Op-Amp, Internally Compensated
891SM	3	L159	IC-Dual Op-Amp, Internally Compensated
999	3	L16	IC-Adjustable Precision Shunt Regulator
1910	3	L17	IC-Pos VR, 9V, 1A
2033	3	L111	IC-4 Unit Darlington Array/Driver (Low Input Active)
2347	1	T6	T-NPN, Si, High Current, Fast Switch, $t_f = .3\mu s$
2348	1	T48-1	T-NPN, Si, High Voltage, High Current, Switch, $t_f = .3\mu s$
2353	1	T48-3	T-NPN, Si, Horizontal Output with Damper Diode, HV, Sw
2354	1	T48-1	T-NPN, Si, Horizontal Output, HV, Sw
2389	1	T41	MOSFET, N-Ch, Enhancement, Hi Speed Sw
2391	1	T41	MOSFET, N-Ch, Enhancement, Hi Speed Sw
2393	1	T48	MOSFET, N-Ch, Enhancement, Hi Speed Sw
2394	1	T48	MOSFET, N-Ch, Enhancement, Hi Speed Sw
3014A	2	P4A	LED Panel Indicator, Green
6083	2	Z41A	R-Schottky Barrier, 45V, 10A
7021	3	L72B	Mod-Switching Regulator
7022	3	L67C	Mod-VCR Positive DC, VR
7023	3	L67C	Mod-VCR Positive DC, VR
7024	3	L60A	Mod-VCR Positive DC, VR
7025	3	L65A	Mod-Switching Regulator
7026	3	L60A	Mod-VCR Positive DC, VR
7027	4	L70C	Mod-VCR Positive DC, VR
7028	4	L67C	Mod-VCR Positive DC, VR
7029	4	L162	Mod-Dual AF PO, 100W, $R_L = 8\Omega$, $V_{cc} = \pm 51V$
7030	4	L69A	Mod-AF PO, 50W, $R_L = 8\Omega$, $V_{cc} = \pm 35V$
7031	4	L70B	Mod-AF PO, 100W, $R_L = 8\Omega$, $V_{cc} = \pm 51V$
7032	4	L75D	Mod-AF PO, 120W, $R_L = 8\Omega$, $V_{cc} = \pm 55V$
7033	4	L70D	Mod-Switching Regulator
7034	4	L67C	Mod-VCR Positive DC, VR
7035	4	L60A	Mod-VCR Positive DC, VR
7036	4	L60B	Mod-VCR Positive DC, VR
7037	4	L60A	Mod-VCR Positive DC, VR
7038	4	L69A	Mod-VCR Positive DC, VR
7039	5	L92B	IC-TV Vertical Deflection Output

ECG No.	Page No.	Fig. No.	Description
7040	5	L92	IC-AF PO, 20W, $V_{cc} = \pm 25V$, $R_L = 8\Omega$
7041	5	L57C	IC-Dual AF PO, 22 W, $V_{cc} = 13.2V$, $R_L = 4\Omega$
7042	5	L40	IC-Bidirectional Motor Driver
7043	5	L39	IC-Bidirectional Motor Driver
7044	5	L41	IC-Switching Regulator Control Circuit
7045	5	L43A	IC-Horizontal Processor
7046	5	L79A	IC-Power Regulator
7047	5	L124	IC-TV Small Signal Sub-System
7048	5	L118A	IC-TV Chroma Processor/Demodulator
7049	5	L122	IC-TV/Video Sync Generator (CMOS)
7050	5	L112	IC-PLL Stereo Decoder
7051	6	L97	IC-AF PO, 1W, $V_{cc} = 6V$, $R_L = 8\Omega$
7052	6	L79	IC-AF PO, 3W, $V_{cc} = 11V$, $R_L = 16\Omega$
7053	6	L93	IC-Dual AF PO, 6.5W, 20W (BTL), $V_{cc} = 14.4V$, $R_L = 4\Omega$
7054	6	L126C	IC-Single Chip TV Signal Processor
7055	6	L146	IC-Dual AF PO, 1.2W, $V_{cc} = 9V$, $R_L = 8\Omega$
7056	6	L80B	IC-Vertical Deflection Output
7057	6	L43C	IC-TV SIF/AFT/RF AGC
7058	6	L126B	IC-Single Chip TV Signal Processor
7059	6	L93C	IC-Dual BTL AF PO, 14W, $V_{cc} = 13.2V$, $R_L = 8\Omega$
7060	7	L126C	IC-Single Chip TV Signal Processor
7061	7	L92	IC-Dual AF PO, 5.8W, $V_{cc} = 12V$, $R_L = 3\Omega$
7062	7	L118A	IC-Vert Defl Circuit/Sync/H-V Osc/X-Ray Protect
7063	7	L121A	IC-Vert Defl Circuit/Sync/H-V Osc/X-Ray Protect
7064	7	L76C	IC-VCR Loading/Bi-Directional Motor Driver
7065	7	L124D	IC-Vid/Chroma/Horiz-Vert Drvr/Osc/Sync/X-Ray Protect
7066	7	L43B	IC-Dual Audio/Video Electronic Sw
7067	7	L36	IC-VIF/Amp/IF Det/AGC
7068	7	L92A	IC-Dual AF PO, 13W, $V_{cc} = 28V$, $R_L = 8\Omega$
7069	7	L35	IC-PLL Hi Speed Divider with ECL Output (1/128, 1/136)
7070	7	L92A	IC-Dual AF PO, 6W, $V_{cc} = 20V$, $R_L = 8\Omega$
7071	7	L93A	IC-Bi-Directional Motor Driver, $I_0 = 2A$
7072	8	L115	IC-Dual Tandem Electronic Attenuator
7073	8	L79A	IC-Power Regulator
7074	8	L65A	Mod-VCR Positive DC, VR

Bi-Polar Transistors (Maximum Ratings at $T_C = 25^\circ\text{C}$)

ECG Type	Description and Application	Collector To Base	Collector To Emitter	Base to Emitter	Max. Collector Current I_C Amps	Max. Device Diss. P_D Watts	Freq. in MHz f_T	Package	
		Volts BV_{CBO}	Volts BV_{CEO}	Volts BV_{EBO}				Case	Fig. No.
ECG2347	NPN-Si, Hi Current, Sw, $t_f = .3 \mu\text{sec}$ Typ	120	80	6	4	1	50	40 min	TO-39 T6
ECG2348	NPN-Si, HV, Hi Current, $t_f = .3 \mu\text{sec}$ Typ	900	800	7	10	150	15	8 min	TO-3PJ T48-1
ECG2353	NPN-Si, Horiz Sw w/Damper Diode, $t_f = .3 \mu\text{sec}$ Max	1500	800	6	10	70	---	8 min	TO-3PM T48-3
ECG2354	NPN-Si, Horiz Out, HV, Sw, $t_f = .2 \mu\text{sec}$ Max	1500	800	6	10	150	---	8 min	TO-3PJ T48-1

Power MOSFET Transistors (Observe MOS Handling) ▲

ECG Type	Description and Application	Transconductance g_{fs} mhos	Drain to Source Breakdown Voltage BV_{DSS}	Gate to Source Breakdown Voltage BV_{GS}	Continuous Drain Current I_D Amps	Gate to Source Cutoff Voltage $V_{GS}(\text{off})$	Drain to Source Resistance $r_{DS(on)}$ Ohms	Input Cap C_{iss} pf	Package	
									Case	Fig. No.
▲ ECG2389	MOSFET, N-Ch, Enhancement Hi Speed Switch	8 Min	60 Min	± 30 Max*	35	4 Max	.045 Max	2000 Max	125 Max	TO-220 T41
						td(off) = 160 ns, td(on) = 40 ns, $t_f = 130$ ns, tr = 90 ns				
▲ ECG2391	MOSFET, N-Ch, Enhancement Hi Speed Switch	2.1 Min	400 Min	± 30 Max*	4	4 Max	1.8 Max	500 Max	75 Max	TO-220 T41
						td(off) = 65 ns, td(on) = 20 ns, $t_f = 40$ ns, tr = 60 ns				
▲ ECG2393	MOSFET, N-Ch, Enhancement Hi Speed Switch	5 Min	500 Min	± 20 Max*	9	4 Max	.7 Max	1900 Max	150 Max	TO-3P (TO-218) T48
						td(off) = 170 ns, td(on) = 40 ns, $t_f = 40$ ns, tr = 60 ns				
▲ ECG2394	MOSFET, N-Ch, Enhancement Hi Speed Switch	9 Min	500 Min	± 20 Max*	14	4 Max	.4 Max	3000 Max	180 Max	TO-3P (TO-218) T48
						td(off) = 150 ns, td(on) = 35 ns, $t_f = 70$ ns tr = 50 ns				

General Purpose Rectifier

ECG Type	Description		Peak Reverse Voltage PRV Max V	Average Rectified Forward Current IO Max	Forward Current Repetitive Peak IFRM Max	Reverse Recovery Time trr	Forward Voltage Drop Max VF	AFC	Fast Sw	Gen Purp	Fast Recovery	Fig. No.
ECG569	Fast Sw, Soft Recovery	Si	600	3 A	100 A	200 ns	1.1 V		•	•	•	Z6A

Schottky Barrier Rectifier

ECG Type	Peak Reverse Voltage PRV (V)	Average Rectified Forward Current Io (A)	Surge IFM (A)	TC @ Rated Io Max °C	Forward Voltage Drop @ Rated Io VF (V)	Fig. No.
ECG6083	45	10	150	+ 120	.60	Z41A

PIN Diode

ECG Type	Description and Application	Max. Power (mW)	V (BR) R Min. (Volts)	IR Max. (nA)	CT Max. (pf)	LS Typ. (nH)	RA Max. (Ohms)	Fig. No.
ECG555A	Si PIN Diode, Gen Purp & VHF Switch	250	35	100	1.2	---	0.7	Z11A

Discrete LED Indicators

ECG No.	Description/Application	Viewed Color	Forward Voltage VF (V)	Reverse Voltage VR (V)	Max DC Forward Current IF (mA)	Maximum Power Diss. PD (mW)	Typical Viewing Angle Degrees	Typical Luminous Intensity MCD	Qty Per Pkg	Fig. No.
ECG3014A	Panel Circuit Indicators, Low Drive Power, High Intensity Visible Emission	Green	2.8	4.0	25	70	30	10	2	P4A

Fig. Z6A

Fig. Z11A

Fig. Z41A

Fig. P4A

IC and Module Circuits

<p>ECG890 8-Pin DIP See Fig. L98 Voltage to Frequency Converter</p> <table border="1"> <tr><td>CURRENT SOURCE OUTPUT</td><td>1</td></tr> <tr><td>SCALE FACTOR</td><td>2</td></tr> <tr><td>LOGIC OUTPUT</td><td>3</td></tr> <tr><td>GROUND</td><td>4</td></tr> <tr><td>VCC</td><td>8</td></tr> <tr><td>INPUT VOLTAGE</td><td>7</td></tr> <tr><td>THRESHOLD</td><td>6</td></tr> <tr><td>ONE SHOT RC</td><td>5</td></tr> </table> <p>ECG890</p>	CURRENT SOURCE OUTPUT	1	SCALE FACTOR	2	LOGIC OUTPUT	3	GROUND	4	VCC	8	INPUT VOLTAGE	7	THRESHOLD	6	ONE SHOT RC	5	<p>ECG891M 8-Pin DIP See Fig. L97 Dual Op Amp, Internally Compensated, Vcc = +15V, Vee = -15V</p> <table border="1"> <tr><td>OUTPUT 1</td><td>1</td></tr> <tr><td>INPUT 1-</td><td>2</td></tr> <tr><td>INPUT 1+</td><td>3</td></tr> <tr><td>VEE</td><td>4</td></tr> <tr><td>VCC</td><td>8</td></tr> <tr><td>OUTPUT 2</td><td>7</td></tr> <tr><td>INPUT 2-</td><td>6</td></tr> <tr><td>INPUT 2+</td><td>5</td></tr> </table> <p>ECG891M</p>	OUTPUT 1	1	INPUT 1-	2	INPUT 1+	3	VEE	4	VCC	8	OUTPUT 2	7	INPUT 2-	6	INPUT 2+	5	<p>ECG891SM 8-Pin SOIC See Fig. L159 Dual Op Amp, Internally Compensated, Vcc = +15V, Vee = -15V</p> <table border="1"> <tr><td>OUTPUT 1</td><td>1</td></tr> <tr><td>INPUT 1-</td><td>2</td></tr> <tr><td>INPUT 1+</td><td>3</td></tr> <tr><td>VEE</td><td>4</td></tr> <tr><td>VCC</td><td>8</td></tr> <tr><td>OUTPUT 2</td><td>7</td></tr> <tr><td>INPUT 2-</td><td>6</td></tr> <tr><td>INPUT 2+</td><td>5</td></tr> </table> <p>ECG891SM</p>	OUTPUT 1	1	INPUT 1-	2	INPUT 1+	3	VEE	4	VCC	8	OUTPUT 2	7	INPUT 2-	6	INPUT 2+	5
CURRENT SOURCE OUTPUT	1																																																	
SCALE FACTOR	2																																																	
LOGIC OUTPUT	3																																																	
GROUND	4																																																	
VCC	8																																																	
INPUT VOLTAGE	7																																																	
THRESHOLD	6																																																	
ONE SHOT RC	5																																																	
OUTPUT 1	1																																																	
INPUT 1-	2																																																	
INPUT 1+	3																																																	
VEE	4																																																	
VCC	8																																																	
OUTPUT 2	7																																																	
INPUT 2-	6																																																	
INPUT 2+	5																																																	
OUTPUT 1	1																																																	
INPUT 1-	2																																																	
INPUT 1+	3																																																	
VEE	4																																																	
VCC	8																																																	
OUTPUT 2	7																																																	
INPUT 2-	6																																																	
INPUT 2+	5																																																	
<p>ECG999 TO-92 See Fig. L16 Adjustable Precision Shunt Regulator, VREF=2.5V, ADJ=VREF to 36V</p> <table border="1"> <tr><td>REF</td><td>1</td></tr> <tr><td>ANODE</td><td>2</td></tr> <tr><td>CATHODE</td><td>3</td></tr> </table>	REF	1	ANODE	2	CATHODE	3	<p>ECG1910 TO-220 See Fig. L17 Pos VR, 9V @ 1A</p> <table border="1"> <tr><td>INPUT</td><td>1</td></tr> <tr><td>OUTPUT</td><td>2</td></tr> <tr><td>GROUND (TAB)</td><td>3</td></tr> </table>	INPUT	1	OUTPUT	2	GROUND (TAB)	3	<p>ECG2033 16-Pin DIP See Fig. L111 4 Unit Darlington Array/Driver (Low Input Active), Io Max*=1.5A, Vcc=5V</p> <table border="1"> <tr><td>VCC</td><td>1</td></tr> <tr><td>O1</td><td>2</td></tr> <tr><td>I1</td><td>3</td></tr> <tr><td>GND</td><td>4</td></tr> <tr><td>O2</td><td>5</td></tr> <tr><td>I2</td><td>6</td></tr> <tr><td>GND</td><td>7</td></tr> <tr><td>O3</td><td>8</td></tr> <tr><td>I3</td><td>9</td></tr> <tr><td>GND</td><td>10</td></tr> <tr><td>O4</td><td>11</td></tr> <tr><td>I4</td><td>12</td></tr> <tr><td>COM</td><td>13</td></tr> <tr><td>COM</td><td>14</td></tr> <tr><td>COM</td><td>15</td></tr> <tr><td>COM</td><td>16</td></tr> </table>	VCC	1	O1	2	I1	3	GND	4	O2	5	I2	6	GND	7	O3	8	I3	9	GND	10	O4	11	I4	12	COM	13	COM	14	COM	15	COM	16				
REF	1																																																	
ANODE	2																																																	
CATHODE	3																																																	
INPUT	1																																																	
OUTPUT	2																																																	
GROUND (TAB)	3																																																	
VCC	1																																																	
O1	2																																																	
I1	3																																																	
GND	4																																																	
O2	5																																																	
I2	6																																																	
GND	7																																																	
O3	8																																																	
I3	9																																																	
GND	10																																																	
O4	11																																																	
I4	12																																																	
COM	13																																																	
COM	14																																																	
COM	15																																																	
COM	16																																																	
<p>ECG7021 16-Pin SIP See Fig. L72B Switching Regulator</p>	<p>ECG7022 12-Pin SIP-M See Fig. L67C VCR Positive DC VR: 12V @ 1.5A, 12V @ 1.5A, 5.3V @ 1A</p> <table border="1"> <tr><td>V03 (5.3V)</td><td>1</td></tr> <tr><td>CUTOFF</td><td>2</td></tr> <tr><td>VIN 2</td><td>3</td></tr> <tr><td>V02 (12V)</td><td>4</td></tr> <tr><td>IB 2</td><td>5</td></tr> <tr><td>VIN 1</td><td>6</td></tr> <tr><td>V01 (12V)</td><td>7</td></tr> <tr><td>IB 1</td><td>8</td></tr> <tr><td>VIN 1</td><td>9</td></tr> <tr><td>GND</td><td>10</td></tr> <tr><td>N/C</td><td>11</td></tr> <tr><td>N/C</td><td>12</td></tr> </table> <p>ECG7022</p>	V03 (5.3V)	1	CUTOFF	2	VIN 2	3	V02 (12V)	4	IB 2	5	VIN 1	6	V01 (12V)	7	IB 1	8	VIN 1	9	GND	10	N/C	11	N/C	12	<p>ECG7023 12-Pin SIP-M See Fig. L67C VCR Positive DC VR: 12V @ 1A, 12V @ 1A, 5.3V @ 1A</p> <table border="1"> <tr><td>V03 (5.3V)</td><td>1</td></tr> <tr><td>N/C</td><td>2</td></tr> <tr><td>N/C</td><td>3</td></tr> <tr><td>N/C</td><td>4</td></tr> <tr><td>VIN 2</td><td>5</td></tr> <tr><td>VIN 1</td><td>6</td></tr> <tr><td>VIN 1</td><td>7</td></tr> <tr><td>V02 (12V)</td><td>8</td></tr> <tr><td>V01 (12V)</td><td>9</td></tr> <tr><td>V01/V02 CUTOFF</td><td>10</td></tr> <tr><td>GND</td><td>11</td></tr> <tr><td>VB</td><td>12</td></tr> </table> <p>ECG7023</p>	V03 (5.3V)	1	N/C	2	N/C	3	N/C	4	VIN 2	5	VIN 1	6	VIN 1	7	V02 (12V)	8	V01 (12V)	9	V01/V02 CUTOFF	10	GND	11	VB	12
V03 (5.3V)	1																																																	
CUTOFF	2																																																	
VIN 2	3																																																	
V02 (12V)	4																																																	
IB 2	5																																																	
VIN 1	6																																																	
V01 (12V)	7																																																	
IB 1	8																																																	
VIN 1	9																																																	
GND	10																																																	
N/C	11																																																	
N/C	12																																																	
V03 (5.3V)	1																																																	
N/C	2																																																	
N/C	3																																																	
N/C	4																																																	
VIN 2	5																																																	
VIN 1	6																																																	
VIN 1	7																																																	
V02 (12V)	8																																																	
V01 (12V)	9																																																	
V01/V02 CUTOFF	10																																																	
GND	11																																																	
VB	12																																																	
<p>ECG7024 8-Pin SIP-M See Fig. L60A VCR Positive DC VR: 9.8V @ 1A, 11.7V @ 2A</p> <table border="1"> <tr><td>GND</td><td>1</td></tr> <tr><td>V01 (9.8V)</td><td>2</td></tr> <tr><td>IB 1</td><td>3</td></tr> <tr><td>V02 (11.7V)</td><td>4</td></tr> <tr><td>V02 (11.7V)</td><td>5</td></tr> <tr><td>IB 2</td><td>6</td></tr> <tr><td>VIN</td><td>7</td></tr> <tr><td>GND</td><td>8</td></tr> </table> <p>ECG7024</p>	GND	1	V01 (9.8V)	2	IB 1	3	V02 (11.7V)	4	V02 (11.7V)	5	IB 2	6	VIN	7	GND	8	<p>ECG7025 10-Pin SIP-M See Fig. L65A Switching Regulator</p>	<p>ECG7026 8-Pin SIP-M See Fig. L60A VCR Positive DC VR: 6V @ .5A, 12V @ 1A</p> <table border="1"> <tr><td>GND</td><td>1</td></tr> <tr><td>V01 (6V)</td><td>2</td></tr> <tr><td>N/C</td><td>3</td></tr> <tr><td>VIN 1</td><td>4</td></tr> <tr><td>V02 (12V)</td><td>5</td></tr> <tr><td>VB</td><td>6</td></tr> <tr><td>VIN 2</td><td>7</td></tr> <tr><td>GND</td><td>8</td></tr> </table> <p>ECG7026</p>	GND	1	V01 (6V)	2	N/C	3	VIN 1	4	V02 (12V)	5	VB	6	VIN 2	7	GND	8																
GND	1																																																	
V01 (9.8V)	2																																																	
IB 1	3																																																	
V02 (11.7V)	4																																																	
V02 (11.7V)	5																																																	
IB 2	6																																																	
VIN	7																																																	
GND	8																																																	
GND	1																																																	
V01 (6V)	2																																																	
N/C	3																																																	
VIN 1	4																																																	
V02 (12V)	5																																																	
VB	6																																																	
VIN 2	7																																																	
GND	8																																																	

The ECG products shown above are intended for replacement use only. Detailed specifications are not available.

* Io Max = Current Per Transistor.

IC and Module Circuits (cont'd)

ECG7027

15-Pin SIP See Fig. L70C

VCR Positive DC VR: 12V @ 1A, 12V @ 1A, 5.1V @ .5A

ECG7028

12-Pin SIP-M See Fig. L67C

VCR Positive DC VR: 12.8V @ 1A, 12.1V @ 1A, 5.2V @ 1A

ECG7029

22-Pin SIP See Fig. L162

Dual AF PO, 100W, R_L = 8Ω, V_{cc} = ±51V

ECG7030

15-Pin SIP-M See Fig. L69A

AF PO, 50W, R_L = 8Ω, V_{cc} = ±35V

ECG7031

15-Pin SIP-M See Fig. L70B

AF PO, 100W, R_L = 8Ω, V_{cc} = ±51V

ECG7033

15-Pin SIP See Fig. L70D

Switching Regulator

ECG7034

12-Pin SIP-M See Fig. L67C

VCR Positive DC VR: 12V @ 1A, 12V @ 1A, 5.1V @ 1A

ECG7035

8-Pin SIP-M See Fig. L60A

VCR Positive DC VR: 12.3V @ 1A, 6V @ 1A, 5.25V @ .6A

ECG7036

8-Pin SIP-M See Fig. L60B

VCR Positive DC VR: 15V @ 1A, 5.8V @ 1A, 5.1V @ 1A

ECG7037

8-Pin SIP-M See Fig. L60A

VCR Positive DC VR: 9.5V @ 1A, 5.5V @ 1A

ECG7038

15-Pin SIP-M See Fig. L69A

VCR Positive DC VR: 13V @ 1A, 12.2V @ 1A, 6V @ 1A, 5.1V @ 1A, 5.1V @ 1A

The ECG products shown above are intended for replacement use only. Detailed specifications are not available.

IC and Module Circuits (cont'd)

ECG7039 13-Pin SIP-HS See Fig. L92B
TV Vertical Deflection Output, Vcc1=12V,
Vcc8=24V

ECG7040 12-Pin SIP-HS See Fig. L92
AF PO, 20W, Vcc = \pm 25V, RL = 8 Ω

ECG7041 17-Pin SIP See Fig. L57C
Dual AF PO, 22W, Vcc = 13.2V, RL = 4 Ω

ECG7042 9-Pin SIP See Fig. L40
Bi-directional Motor Driver, Io = .7A,
Vcc = 9V

ECG7043 9-Pin SIP See Fig. L39
Bi-directional Motor Driver, Io = 1A,
Vcc = 12V

ECG7044 9-Pin SIP See Fig. L41
Switching Regulator Control Circuit,
Vcc = 12V

ECG7045 12-Pin SIP See Fig. L43A
Horizontal Processor, Vcc = 11V

ECG7046 9-Pin SIP-HS See Fig. L79A
Power Regulator

ECG7047 28-Pin DIP See Fig. L124
TV Small Signal Sub-System, Vcc = 12V Typ

ECG7048 20-Pin DIP See Fig. L118A
TV Chroma Processor/Demodulator,
Vcc = 12V Typ

ECG7049 24-Pin DIP See Fig. L122
TV Video Sync Generator (CMOS),
VDD = +4 to +15V

ECG7050 16-Pin DIP See Fig. L112
PLL Stereo Decoder, Vcc = 8.5V Typ

The ECG products shown above are intended for replacement use only. Detailed specifications are not available.

IC and Module Circuits (cont'd)

ECG7051 8-Pin DIP See Fig. L97
AF PO, 1W, V_{cc}=6V, R_L=8Ω

ECG7052 9-Pin SIP-HS See Fig. L79
AF PO, 3W, V_{cc}=11V Typ, R_L=16Ω

ECG7053 11-Pin Formed SIP See Fig. L93
Dual AF PO, 6.5W, 20W (BTL), V_{cc}=14.4V, R_L=4Ω

ECG7054 52-Pin DIP See Fig. L126C
Single Chip TV Signal Processor, V_{cc}=9V Typ

ECG7055 14-Pin DIP-ET See Fig. L146
Dual AF PO, 1.2W, V_{cc}=9V, R_L=8Ω

ECG7056 9-Pin SIP-HS See Fig. L80B
Vertical Deflection Output, V_{cc}=24V Typ

ECG7057 12-Pin SIP See Fig. L43C
TV SIF/AFT/RF AGC, V_{cc}=9V Typ

ECG7058 64-Pin DIP See Fig. L126B
Single Chip TV Signal Processor, V_{cc}=9V Typ

ECG7059 16-Pin SIP-HS See Fig. L93C
Dual BTL AF PO, 14W, V_{cc}=13.2V, R_L=8Ω

The ECG products shown above are intended for replacement use only. Detailed specifications are not available.

IC and Module Circuits (cont'd)

ECG7060

52-Pin DIP See Fig. L126C

Single Chip TV Signal Processor,
Vcc1 = 9V Typ

ECG7063

22-Pin DIP See Fig. L121A

Vertical Deflection Circuit/Sync/H-V Osc/
X-Ray Protect, Vcc = 12V Typ

ECG7066

12-Pin SIP See Fig. L43B

Dual Audio/Video Electronic Switch,
Vcc = 12V Typ

ECG7069

8-Pin SIP See Fig. L35

PLL Hi-Speed Divider w/ECL Output
(1/128, 1/136),
Vcc = 5V Typ

ECG7061

12-Pin SIP-HS See Fig. L92A

Dual AF PO, 5.8W, Vcc = 12V, RL = 3Ω

ECG7062

20-Pin DIP See Fig. L118A

Vertical Deflection Circuit/Sync/H-V Osc/
X-Ray Protect, Vcc = 12V Typ

ECG7064

7-Pin SIP-HS See Fig. L76C

VCR Loading/Bi-directional Motor Driver,
Io = 1A, Vcc = 18V Typ

ECG7065

36-Pin DIP See Fig. L124D

Video/Chroma/Horiz-Vert Drvr/Osc/Sync/
X-Ray Protect, Vcc = 9V Typ

ECG7067

9-Pin SIP See Fig. L36

VIF/Amp/IF Det/AGC, Vcc = 9V Typ

ECG7068

12-Pin SIP-HS See Fig. L92A

Dual AF PO with Mute, 13W, Vcc = 28V,
RL = 8Ω

ECG7070

12-Pin SIP-HS See Fig. L92A

Dual AF PO, 6W, Vcc = 20V, RL = 8Ω

ECG7071

15-Pin SIP-HS See Fig. L93A

Bi-directional Motor Driver, Io = 2A,
Vcc1 = 5V, Vcc2 = 42V

The ECG products shown above are intended for replacement use only. Detailed specifications are not available.

IC and Module Circuits (cont'd)

ECG7072	18-Pin DIP See Fig. L115 Dual Tandem Electronic Attenuator, Vcc = 13.2V Typ	ECG7073	9-Pin SIP-HS See Fig. L79A Power Regulator	ECG7074	10-Pin SIP-M See Fig. L65A VCR Positive DC VR: 12.3V @ 1A, 12.2V @ 1A, 5.3V @ 1A
 ECG7072		 ECG7073		 ECG7074	

The ECG products shown above are intended for replacement use only. Detailed specifications are not available.

IC and Module Outlines

IC and Module Outlines (cont'd)

<p>Fig. L43C ECG 7057</p>	<p>Fig. L57C ECG 7041</p>	<p>Fig. L60A ECG 7024 7035 7026 7037</p>
<p>Fig. L60B ECG 7036</p>	<p>Fig. L65A ECG 7025 7074</p>	<p>Fig. L67C ECG 7022 7028 7023 7034</p>
<p>Fig. L69A ECG 7030 7038</p>	<p>Fig. L70B ECG 7031</p>	<p>Fig. L70C ECG 7027</p>
<p>Fig. L70D ECG 7033</p>	<p>Fig. L72B ECG 7021</p>	<p>Fig. L75D ECG 7032</p>

IC and Module Outlines (cont'd)

Fig. L76C

ECG

7064

7-Pin SIP-HS

Fig. L79

ECG

7052

9-Pin SIP-HS

Fig. L79A

ECG

7046

7073

9-Pin SIP-HS

Fig. L80B

ECG

7056

9-Pin SIP-HS

Fig. L92

ECG

7040

7061

12-Pin SIP-HS

Fig. L92A

ECG

7068 7070

12-Pin SIP-HS

Fig. L92B

ECG

7039

13-Pin SIP-HS

Fig. L93

ECG

7053

11-Pin SIP-HS

Fig. L93A

ECG

7071

15-Pin SIP-HS

Fig. L93C

ECG

7059

16-Pin SIP-HS

Fig. L97

ECG

891M 7051

8-Pin DIP

Fig. L98

ECG

890

8-Pin DIP

IC and Module Outlines (cont'd)

<p>Fig. L111 ECG 2033</p>	<p>Fig. L112 ECG 7050</p>	<p>Fig. L115 ECG 7072</p>
<p>Fig. L118A ECG 7048 7062</p>	<p>Fig. L121A ECG 7063</p>	<p>Fig. L122 ECG 7049</p>
<p>Fig. L124 ECG 7047</p>	<p>Fig. L124D ECG 7065</p>	<p>Fig. L126B ECG 7058</p>
<p>Fig. L126C ECG 7054 7060</p>	<p>Fig. L126C ECG 7054 7060</p>	<p>Fig. L126C ECG 7054 7060</p>

IC and Module Outlines (cont'd)

Fig. L146

ECG

7055

14-Pin DIP-ET

Fig. L159

ECG

891SM

8-Pin SOIC

Fig. L162

ECG

7029

22-Pin SIP

Cross Reference – Additions/Changes

09-302166 through 2SD2251

To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement
09-302166	2347	2N2657	2347	2SA564ATAQRS	.290A	2SC213	2347	2SC3312R	.2361	2SC4123	.2353◆	2SD79D	.2347/427
029-PE	2347	2N2658	2347	2SA564TAOP	.290A	2SC214	2347	2SC3370	.2353	2SC4124	.2353◆	2SD4252B55(MCP)	.281MCP
082-1(NAP-IC)	.815	2N2849	2347	2SA719TAQR	.290A	2SC215	2347	2SC3449	.2348	2SC4125	.2353◆	2SD558	.2351
082-2(NAP-IC)	.815	2N2849-1	2347	2SA909	.68	2SC223	2347	2SC3449L	.2348	2SC4131	.2305#	2SD601AOPRW	.2408
082-3(NAP-IC)	.815	2N2850	2347	2SA933SRN	.290A	2SC224	2347	2SC3449M	.2348	2SC4138	.2311#	2SD638POR	.18
082-4(NAP-IC)	.815	2N2850-1	2347	2SA940-R-E(LB-SAN-5)	.398	2SC225	2347	2SC3450	.2348	2SC4139	.2311#	2SD797	.387◆
0847TR0402	15020	2N2851	2347	2SA1216	.59	2SC234	2347	2SC3450L	.2348	2SC4199	.2354#	2SD797-O	.387◆
0847TR2501	15019	2N2851-1	2347	2SA1262(Audio)	.242	2SC235	2347	2SC3450M	.2348	2SC4199A	.2354#	2SD797-Y	.387◆
01T08200000	.7068	2N2852	2347	2SA1310	.2362	2SC235-O	2347	2SC3458	.2348	2SC4232	.2348◆	2SD811	.2310◆
1-806-672-11	.7055	2N2852-1	2347	2SA1310R	.2362	2SC235Y	2347	2SC3458K	.2348	2SC4235	.2348◆	2SD862PM	.184
1A0003	2347	2N2853	2347	2SA1333	.93	2SC291	2347	2SC3458L	.2348	2SC4236	.2348◆	2SD1142	.389
1A02100-01A	.2343	2N2853-1	2347	2SA1386	.2306A	2SC292	2347	2SC3458M	.2348	2SC4237	.2348◆	2SD1143	.238
3G4B1	.5304	2N2854	2347◆	2SA1464A	.292A	2SC293	2347	2SC3459	.2348	2SC4238	.2309#	2SD1143	.2302◆
JJ4B1	.5305	2N2854-1	2347◆	2SA1492	.2329	2SC310	2347◆	2SC3459K	.2348	2SC4237	.2308#	2SD1174	.2302◆
IN469	.6011A	2N2855	2347	2SA1643	.376#	2SC310B	2347◆	2SC3459L	.2348	2SC4298	.2308#	2SD1175	.2302◆
IN469A	.5011A	2N2855-1	2347	2SA1667	.398#	2SC310C	2347◆	2SC3459M	.2348	2SC4299	.2309#	2SD1208	.2335◆
1N3506	.5005A	2N2856	2347	2SA1670	.391#	2SC310D	2347◆	2SC3460	.2348	2SC4300	.2309#	2SD1260	.253◆
1N3507	.5006A	2N2856-1	2347	2SA1671	.37#	2SC310E	2347◆	2SC3460K	.2348	2SC4301	.2309◆	2SD1260A	.253◆
1N3508	.5007A	2N2890	2347	2SA1672	.37#	2SC310F	2347◆	2SC3460L	.2348	2SC4302	.2309#	2SD1260AR	.253◆
1N3509	.5008A	2N2891	2347	2SA1693	.391#	2SC310G	2347◆	2SC3460M	.2348	2SC4303	.2324	2SD1260R	.253◆
1N4086	.5587	2N2896	2347◆	2SA1694	.37	2SC310H	2347◆	2SC3461	.2348	2SC4303A	.2324	2SD1261	.253◆
1N4933	.569◆	2N2983	2347	2SA1725	.55#	2SC310I	2347◆	2SC3461K	.2348	2SC4309	.2348◆	2SD1261A	.253◆
1N4933GP	.569◆	2N2983	2347	2SA1726	.55	2SC310J	2347◆	2SC3461L	.2348	2SC4312	.2348	2SD1261AR	.253◆
1N4934	.569◆	2N3055A	.284	2SB641-QR	.2347	2SC310K	2347◆	2SC3461M	.2348	2SC4313	.2348	2SD1261R	.253◆
1N4934GP	.569◆	2N3262	2347	2SB641QRS	.17	2SC697AE	.2347/427	2SC3552	.2348	2SC4327	.377#	2SD1450	.2361
1N4935	.569◆	2N3418	2347	2SB641R	.17	2SC697AF	.2347/427	2SC3552K	.2348	2SC4345	.51◆	2SD1456	.2302
1N4935GP	.569◆	2N3419	2347	2SB641RS	.17	2SC697AH	.2347/427	2SC3552L	.2348	2SC4355	.377◆	2SD1484K	.2410
1N4936	.569◆	2N3420	2347	2SB641S	.17	2SC697AI	.2347/427	2SC3552M	.2348	2SC4381	.375#	2SD1548	.2354
1N4936GP	.569◆	2N3421	2347	2SB709AQCRV	.2409	2SC697AJ	.2347/427	2SC3567	.2348	2SC4385	.36#	2SD1649-CTV-YB	.2331
1N4937	.569◆	2N3439S	.396	2SB8852K	.2405	2SC697B	.2347/427	2SC3688	.2348	2SC4386	.36#	2SD1706(Audio)	.2305#
1N4937GP	.569◆	2N3506	2347	2SB8897	.271◆	2SC697D	.2347/427	2SC3723	.2337	2SC4387	.2328	2SD1706H(Audio)	.2305#
1N5059	.5056	2N3507	2347	2SB8937	.254◆	2SC697F	.2347/427	2SC3729	.2324	2SC4388	.2328	2SD1710	.2302
1N5059GP	.5056	2N3831	2347◆	2SB8937A	.254◆	2SC3737	.2348	2SC4221	.2337◆	2SD1781K	.2406		
1N5060	.5056	2N4000	2347	2SB8937AR	.254◆	2SC3738	.2348#	2SC4334	.2311#	2SD1782K	.2410		
1N5061	.5056	2N4001	2347◆	2SB8937R	.254◆	2SC3739	.2348	2SC4442	.2337	2SD1791	.270#		
1N5061GP	.5056	2N4260	.395	2SB8938	.254◆	2SC3740	.2348	2SC4445	.2309#	2SD1793	.270#		
1N5062	.5056	2N4300	2347	2SB938A	.254◆	2SC3741	.2348	2SC4466	.390#	2SD1795	.2316#		
1N5062GP	.5056	2N4877	2347	2SB938AR	.254◆	2SC3742	.2348	2SC4467	.36	2SD1849	.2353◆		
1S2222	.555A	2N4895	2347	2SB938R	.254◆	2SC3743	.2348	2SC4468	.56#	2SD1880	.2353		
1S2692	.555A	2N4896	2347	2SB1050	.12◆	2SC3747	.2348	2SC4495	.56◆	2SD1881	.2353		
1S2692A	.555A	2N4897	2347	2SB1050P	.12◆	2SC3748	.2348	2SC4495	.2348	2SD1887	.2354#		
1SR77-400	.569◆	2N4924	2347◆	2SB1050Q	.12◆	2SC3749	.2348	2SC4511	.54#	2SD2033A	.375◆		
1SR77-600	.569◆	2N5148	2347	2SB1050R	.12◆	2SC3750	.2348	2SC4512	.54	2SD1959	.2354#		
1SS103	.555A	2N5152	2347	2SB1154(Audio)	.2306#	2SC3751	.2348	2SC4513	.2339	2SD2014	.2326		
1SS136	.519◆	2N5154	2347	2SB1155(Audio)	.2306#	2SC3752	.2348	2SC4517A	.2339	2SD2015	.2326		
1SS137	.519◆	2N5189	2347	2SB1187	.378◆	2SC3753	.2348	2SC4518	.2337	2SD2024	.261		
1SS138	.519◆	2N5320	2347	2SB1198K	.2411	2SC2023	.2313	2SC4531	.2353	2SD2025	.261#		
IT76	.5601#	2N5321	2347	2SB1257	.262#	2SC1685TAQRS	.85	2SC3799	.2348	2SC4541	.54#	2SD2032	.261◆
IT77	.5601#	2N5334	2347	2SB1259	.264#	2SC1740SRK	.85	2SC3800	.2348	2SC4542	.2337	2SD2033	.261◆
IT86	.5601#	2N5336	2347	2SB1351	.264#	2SC1740SRO	.85	2SC3801	.123AP◆	2SC4517	.2339	2SD2035	.152◆
IT88	.5601#	2N5337	2347	2SB1351	.398◆	2SC1860	.2347◆	2SC3811O	.123AP◆	2SC4517A	.2339	2SD2036	.152◆
IT710	.5601#	2N5338	2347	2SB1353A	.398◆	2SC1860K	.2347◆	2SC3811R	.123AP◆	2SC4518	.2337	2SD2037	.377◆
IT715	.5601#	2N5339	2347	2SB1355	.378◆	2SC1860-L	.2347◆	2SC3822	.2337	2SC4531	.2353	2SD2038	.152◆
IT810	.5601#	2N5488	2347◆	2SB1356	.378◆	2SC1860-M	.2347◆	2SC3830	.2337	2SC4542	.2354#	2SD2039	.261
IT815	.5601#	2N5488-1	2347◆	2SB1357	.378◆	2SC2023	.2313	2SC3831	.2311#	2SC4544	.2367◆	2SD2041	.2332◆
IX1712CE	.7010	2N5729	2347	2SB1358	.378◆	2SC2073-R-E(LB-SAN-5)	.375	2SC3851A	.291#	2SC4546	.2337	2SD2042	.2336◆
2B1155R(Audio)	.2306#	2N5784	2347	2SB1359	.262#	2SC2073A	.375#	2SC3853	.390#	2SC4557	.2338	2SD2043	.2343
2N2033	.2347	2N5785	2347	2SB1360	.55◆	2SC2073B	.375◆	2SC3856	.2328	2SC4575	.2334◆	2SD2044	.2343
2N2034	.2347	2N5786	2347	2SB1361	.55◆	2SC2073C	.375◆	2SC3875S	.2408	2SC4622	.2312	2SD2044	.56◆
2N2337	.2347	2N6156	.5618	2SB1496	.378◆	2SC2238AY	.374◆	2SC3874	.2313◆	2SC4622	.2312	2SD2045	.2343#
2N2405	.2347	2N6254	.284	2SB1512	.262◆	2SC2238Y	.375◆	2SC3875S	.2408	2SC4622	.2312	2SD2046	.2343#
2N2405L	.2347	2N6560	.2319	2SB1514	.262◆	2SC3305	.2325	2SC3892A	.2353	2SC4662	.2337	2SD2047	.2343#
2N2405S	.2347	2SA564AHS	.234	2SC106	.2347	2SC3307	.2348◆	2SC3893A	.2353	2SC4884	.157◆	2SD2048	.54◆

General Cross Reference Section Notes:

- (1) Numbers in () indicates the number of replacement devices required to replace original type.
- (2) / numbers indicate more than one ECG type required for this application.
- (3) (CP) – Complementary Pair.
- (4) When a specific device part number is not listed in the directory, refer to the technical data for the ECG device of that type to find an equivalent replacement.
- (5) When basing of original part differs from ECG replacement, basing for original part is shown in parentheses () after the part number. For example, the 2SA509A(ECB) is replaced by ECG159 which has "EBC" basing.

Additions/Changes

2SD2252 through 1820-2200

To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement
2SD2252	2354#	46-133389-3	3092	407-054-4808	5022A	1816-0916	74S288	1820-0989	74179	1820-1412	.4556B	1820-1661	.4089B
2SD2306	261◆	46-133692-3	3092◆	407-070-8408	5018A	1816-0917	74S387	1820-0990	75189	1820-1413	.4511B	1820-1662	.4094B
2SD2307	261◆	46-133697-3	3043	407-088-6502	587	1816-0918	74S570	1820-0998	745153	1820-1414	.74LS12	1820-1663	.4095B
2SK311	2391◆	47-712829-3	891M	407-124-5209	580	1816-0929	74S474	1820-1018	75453B	1820-1415	.74LS13	1820-1664	.4096B
2SK349	2394	46-861161-3	3099	407-124-5506	587	1816-0931	74S573	1820-1049	74367	1820-1416	.74LS14	1820-1665	.4097B
2SK350	2394	46-861265-3	558	407-124-5605	587	1816-1032	74S288	1820-1066	.7411	1820-1417	.74LS26	1820-1668	.74LS74A
2SK399	2394#	46-861317-3	5030A	407-124-5803	580	1816-1054	74S454	1820-1079	.4501	1820-1418	.74LS4	1820-1672	.4077B
2SK400	2393◆	46-861336-3	5020A	407-124-6404	552	1816-1137	74S287	1820-1081	.5880	1820-1419	.74LS85	1820-1674	.74C30
2SK405	2393◆	46-861627-3	2331	409-020-4409	1774	1816-1142	74S474	1820-1113	.8553	1820-1420	.74LS92	1820-1683	.4541B
2SK412	2394	46-861634-3	552	409-042-9000	.74LS156	1816-1153	74S288	1820-1114	.4516B	1820-1422	.74LS12	1820-1688	.74LS247
2SK413	2394	46-861649-3	2361	409-047-5700	1872	1816-1160	74S478	1820-1121	.74125	1820-1423	.74LS123	1820-1729	.74LS259
2SK414	2393◆	46-861717-3	577	409-047-8602	1778	1816-1162	74S478	1820-1122	.4518B	1820-1424	.74LS629	1820-1732	.74LS138
2SK527	2389#	46-861718-3	580	409-135-5407	7069	1816-1163	74S474	1820-1129	.9334	1820-1425	.74LS132	1820-1733	.74LS175
2SK532	2389#	46-861720-3	5006A	409-146-7001	1863	1816-1174	74S188	1820-1137	.9809	1820-1426	.74LS145	1820-1735	.74C42
2SK549	2388	46-861864-3	586	409-173-2802	7039	1816-1382	74S571	1820-1143	.8552	1820-1427	.74LS155	1820-1745	.4001B
2SK551	2388	46-861868-3	5018A	416-1(RCA)	.377	1816-1436	74S288	1820-1144	.74LS02	1820-1428	.74LS15	1820-1746	.4049
2SK556	2394	46-862557-3	5047A	445-1(MAG)	123A	1816-1467	74S573	1820-1150	.4520B	1820-1429	.74LS160A	1820-1747	.4011B
2SK557	2394	46-862559-3	5424	554-2(NAP)	.399	1816-1488	74S288	1820-1175	.4522B	1820-1430	.74LS161A	1820-1753	.74C74
2SK559	2394◆	46-86261-3	145A	554-3(NAP)	.399	1816-1492	74S571	1820-1176	.4015B	1820-1431	.74LS162A	1820-1784	.74LS91
2SK560	2394◆	46-862612-3	501A	559-1(NAP)	2393	1816-1556	74S478	1820-1189	.4510B	1820-1432	.74LS163A	1820-1787	.7427
2SK573	2394	46-862613-3	5010A	559-2(NAP)	2393#	1816-1562	74S472	1820-1191	.74515	1820-1433	.74LS164	1820-1793	.8308
2SK600	2389	46-862615-3	5011A	559-3(NAP)	2393#	1816-1574	74S454	1820-1192	.74173	1820-1436	.74LS170	1820-1795	.861
2SK641	2394	46-862616-3	5010A	559-6(NAP)	2393	1816-1578	74S288	1820-1193	.74LS197	1820-1437	.74LS221	1820-1806	.74C65
2SK642	2394	46-862633-3	5332	1816-0165	.2107	1820-1194	.74LS193	1820-1439	.74LS257	1820-1813	.4027B		
2SK643	2394	46-862633-3	5016A	577-1(NAP)	2394	1818-0198	.2102	1820-1195	.74LS175	1820-1440	.74LS258	1820-1815	.4517B
2SK644	2394	46-862639-3	5016A	577-2(NAP)	2394#	1818-0204	.2104	1820-1196	.74LS174	1820-1441	.74LS283	1820-1821	.74LS113
2SK673	2389◆	46-862642-3	5021A	582-2(NAP)	.231	1818-0240	.2116	1820-1197	.74LS00	1820-1442	.74LS290	1820-1827	.74C154
2SK674	2389	46-862651-3	5014A	583-2(NAP)	.231	1818-0498	.2116	1820-1198	.74LS03	1820-1443	.74LS293	1820-1828	.6889
2SK682	2394	46-862652-3	5015A	592-1(NAP)	.2353	1818-0794	.2116	1820-1199	.74LS04	1820-1444	.74LS298	1820-1845	.5629◆
2SK683	2394	46-862653-3	5007A	592-2(NAP)	.2353	1818-0850	.2122	1820-1200	.74LS05	1820-1446	.74LS395A	1820-1851	.74LS148
2SK723	2393	46-862796-3	5035A	605-1(NAP-Rect)	.6240	1818-1396	.2117	1820-1202	.74LS108	1820-1447	.74LS670	1820-1858	.74LS377
2SK724	2394	46-862857-3	5031A	605-2(NAP-Rect)	.6244	1818-1476	.2117	1820-1203	.74LS111	1820-1459	.74170	1820-1864	.8212
2SK725	2394	46-862858-3	2324#	606-1(NAP-Bridge)	.5315	1818-1559	.2124	1820-1204	.74LS112	1820-1463	.74390	1820-1874	.8556
2SK735	2394	48-40531T01	.555A	606-2(NAP-Bridge)	.5315	1818-1581	.2128	1820-1205	.74LS117	1820-1464	.74393	1820-1881	.4097B
2SK755	2388◆	48X90233A17	.555A	501P(S)	.55701	1818-1611	.2128	1820-1207	.74LS127	1820-1466	.74490	1820-1884	.6887
2SK761	2394◆	501PS	.55751	614-1(NAP)	.67	1818-1633	.2128	1820-1209	.74LS30	1820-1466	.74C174	1820-1885	.74LS173
2SK762	2391	501PSF	.55751	615-2(NAP)	.157#	1818-1648	.2128	1820-1209	.74LS32	1820-1468	.8542	1820-1889	.74LS26
2SK764	2393	502P2S	.55751	616-1(NAP)	.186A	1818-1721	.2128	1820-1209	.74LS38	1820-1469	.74LS107	1820-1891	.74LS00
2SK765	2393	502P3S	.55751	617-1(NAP)	.187A	1818-1747	.2128	1820-1210	.74LS51	1820-1470	.74LS157	1820-1892	.74LS367
2SK767	2385#	50P3SF	.5577#	618-1(NAP)	.2393	1818-1755	.2128	1820-1211	.74LS11	1820-1459	.74170	1820-1864	.8212
2SK768	2393	50P4S	.5572	618-2(NAP)	.2393#	1818-1756	.2128	1820-1212	.74LS112	1820-1463	.74390	1820-1874	.8556
2SK769	2393	50P4SF	.5577	618-3(NAP)	.2393	1818-1758	.2128	1820-1213	.74LS113	1820-1477	.6885	1820-1889	.4510B
2SK770	2387#	50P5S	.5572	618-4(NAP)	.2393#	1818-1888	.2128	1820-1214	.74LS114	1820-1478	.74LS368	1820-1900	.8368
2SK783	2394	50P5SF	.5577	619-1(NAP)	.157#	1818-1966	.2128	1820-1215	.74LS115	1820-1479	.4071B	1820-1905	.74LS260
2SK788	2394	50P6S	.5572	621-1(NAP)	.2394#	1818-1982	.2128	1820-1216	.74LS116	1820-1483	.4018B	1820-1907	.4077B
2SK789	2394◆	50P6SF	.5577	621-2(NAP)	.2394#	1818-1999	.2128	1820-1217	.74LS117	1820-1485	.74C221	1820-1907	.74LS16
2SK790	2394	50P7S	.5569#	621-3(NAP)	.2394#	1818-3005	.2128	1820-1230	.74LS118	1820-1486	.4013B	1820-1930	.4078B
2SK806	2387#	50P8S	.5574#	621-4(NAP)	.2394#	1818-3006	.2128	1820-1231	.74LS119	1820-1488	.4081B	1820-1909	.4024B
2SK819	2394	50P8SF	.5579	624-1(NAP)	.2410	1818-3023	.2128	1820-1238	.74LS253	1820-1490	.74LS90	1820-1910	.4073B
2SK825	2394	50P10S	.5574#	624-2(NAP)	.2411	1818-3059	.2128	1820-1240	.74LS113	1820-1497	.74LS367	1820-1912	.4042B
2SK829	2394◆	50P12S	.5574#	629-1(NAP-IC)	.7067	1818-3163	.2128	1820-1241	.74LS114	1820-1498	.74LS368	1820-1914	.74LS174
2SK859	2393	50P5C	.5577#	629-2(NAP-IC)	.7067	1818-3163	.2128	1820-1242	.74LS115	1820-1499	.4020B	1820-1917	.74LS240
2SK867	2394◆	60-1-CA3030...	.908	624-1(RCA)	.866	1818-3308	.2128	1820-1243	.74LS116	1820-1501	.4042B	1820-1931	.4057B
2SK867A	2394◆	66F-159-2	.523	624-2(NAP-IC)	.1765	1818-3308	.2128	1820-1245	.74LS117	1820-1502	.4027B	1820-1932	.4041B
2SK869	2394	66F-159-2	.523	624-3(NAP-IC)	.999	1818-3483	.2128	1820-1246	.74LS118	1820-1504	.4014B	1820-1933	.4058B
2SK873	2394	74LS64N	.74LS364	686-1(NAP-IC)	.7066	1818-4099	.2128	1820-1250	.74LS119	1820-1501	.4042B	1820-1931	.4068B
2SK874	2394	74LS64N	.74LS364	687-1(NAP-IC)	.7039	1818-0081	.991	1820-1251	.74LS120	1820-1502	.4015B	1820-1932	.4538B
2SK875	2394	74LS64N	.74LS364	687-2(NAP-IC)	.916	1818-0158	.924	1820-1254	.74LS121	1820-1503	.4016B	1820-1936	.4093B
2SK876	2394	74LS64N	.74LS364	687-3(NAP-IC)	.7022	1818-0158	.909	1820-1255	.74LS122	1820-1504	.4049	1820-1935	.4008B
2SK896	2387#	74LS241	.74LS364	693-1(RAM)	.7022	1818-0203	.916	1820-1256	.74LS123	1820-1505	.4024B	1820-1936	.4028B
2SK931	2394◆	86-126-3	.125	780-4(RCA)	.5351A	1818-0214	.942	1820-1257	.74LS124	1820-1506	.4042B	1820-1937	.4052B
3H81-000500-001	7068	151-0169-01	.396	867-1(NAP-IC)	.1798	1818-0308	.9945	1820-1262	.74LS125	1820-1507	.4056B	1820-1938	.4052B
3H81-000500-004	376	151-0228-04	.397	867-2(NAP-IC)	.375	1818-0346	.9933	1820-1264	.74LS126	1820-1508	.4555B	1820-2013	.4051B
10KQ30	6083	162-2(MAG-Diode)	.398	867-3(NAP-IC)	.403B	1818-0347	.9961	1820-1265	.74LS127	1820-1509	.4555B	1820-2014	.4069B
10KQ40	6083	205-1(MAG-Diode)	.395A	867-4(NAP-IC)	.403B	1818-0348	.9962	1820-1266	.74LS128	1820-1510	.4051B	1820-2015	.4070B
10TC030	6083	205-2(MAG-Diode)	.395A	867-5(NAP-IC)	.7015</								

To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement
1820-2206	.74LS640	1820-3545	.809C6	1826-0348	.990	1826-1292	.922M	1822-209-10248	.4013B	4835-130-47001	.5021A	4835-209-87168	.858M		
1820-2210	.74C00	1820-3546	.74HC299	1826-0353	.951	1826-1299	.960	4822-209-10263	.4052B	4835-130-47025	.379#	4835-209-87177	.950		
1820-2211	.74C04	1820-3564	.74HC174	1826-0354	.924	1826-1315	.825	4822-209-30165	.950	4835-130-47035	.2336	4835-209-87179	.4053B		
1820-2212	.74C10	1820-3587	.40194B	1826-0355	.955M	1826-1326	.7016	4822-209-30171	.960	4835-130-47068	.2393	4835-209-87181	.74HC00		
1820-2213	.74C32	1820-3609	.4048B	1826-0357	.937	1826-1328	.778A	4822-209-30175	.1819	4835-130-47083	.489	4835-209-87248	.3105		
1820-2215	.74C373	1820-3629	.74HC7240	1826-0373	.955M	1826-1343	.999M	4822-209-30185	.960#	4835-130-47092	.2393#	4835-209-87252	.977		
1820-2216	.74C374	1820-3630	.74HC7240	1826-0391	.941	1826-1352	.1720	4822-209-60826	.961#	4835-130-47097	.2331	4835-209-87259	.960#		
1820-2220	.4076B	1820-3664	.74HC700	1826-0393	.956	1826-1383	.1913	4822-209-60853	.7047	4835-130-47112	.2407	4835-209-87261	.834		
1820-2222	.4094B	1820-3673	.74HC123	1826-0396	.968	1826-1387	.964	4822-209-60955	.1567	4835-130-47116	.2407	4835-209-87262	.928M		
1820-2223	.4032B	1820-3674	.74HC125	1826-0399	.829	1826-1398	.857M	4822-209-60956	.7051	4835-130-47124	.2394	4835-209-87263	.834		
1820-2224	.4038B	1820-3692	.74HC4053	1826-0410	.859	1826-1439	.955MC	4822-209-62059	.1854M	4835-130-47127	.2418	4835-209-87264	.615A		
1820-2225	.4041	1820-3694	.74LS174	1826-0411	.4536B	1826-1448	.1722	4822-209-62369	.1862	4835-130-47128	.2418	4835-209-87266	.1766		
1820-2226	.4045B	1820-3696	.74LS364	1826-0412	.943M	1826-1471	.879	4822-209-62941	.964#	4835-130-47129	.2408	4835-209-87271	.1716		
1820-2228	.4044B	1820-3719	.4051B	1826-0418	.967	1826-1499	.1908	4822-209-71463	.4555B	4835-130-47137	.85	4835-209-87274	.960#		
1820-2229	.4512B	1820-3785	.74HC163	1826-0419	.876	1826-1506	.834	4822-209-71489	.1657	4835-130-47139	.2337	4835-209-87275	.958#		
1820-2230	.4047B	1820-3789	.74HC574	1826-0428	.1720	1826-1507	.1722	4822-209-71776	.7050	4835-130-47142	.2408	4835-209-87277	.4052B		
1820-2231	.4031B	1820-3790	.74HC573	1826-0431	.2055	1826-1551	.919D	4822-209-71901	.977	4835-130-47145	.2407	4835-209-87283	.966#		
1820-2232	.4034B	1820-3837	.74LS164	1826-0433	.937M	1826-1569	.1720	4822-209-72368	.7061	4835-130-47147	.2409	4835-209-87338	.969		
1820-2233	.4099B	1820-3839	.74S00	1826-0434	.964	1826-1572	.9435M	4822-209-72491	.1634	4835-130-47173	.159	4835-209-87406	.1789		
1820-2237	.74LS132	1820-3840	.74S02	1826-0435	.966	1826-1577	.1761	4822-209-72804	.815	4835-130-47225	.2337	4835-209-87544	.977		
1820-2244	.74LS379	1820-3847	.74HC1138	1826-0436	.972	1826-1594	.922M	4822-209-73037	.1866	4835-130-47226	.253	4835-209-87552	.1906		
1820-2257	.80C97	1820-3848	.74HC1374	1826-0445	.961	1826-1600	.987	4822-209-73712	.7050	4835-130-47227	.2337	4835-209-87612	.1674		
1820-2258	.40174B	1820-3849	.74HC1373	1826-0449	.965	1826-1602	.995M	4822-209-73954	.967A	4835-130-47232	.119	4835-209-87668	.977		
1820-2264	.4040B	1820-3866	.4052B	1826-0456	.953	1826-1611	.1720	4822-209-80401	.778A	4835-130-47235	.85	4835-209-87675	.891M		
1820-2265	.4009B	1820-3940	.74HC174	1826-0464	.968	1826-1622	.8595M	4822-209-80591	.956	4835-130-47238	.12♦	4835-209-87692	.74LS221		
1820-2288	.74LS645	1820-3952	.74LS161A	1826-0483	.954	1826-1627	.8585M	4822-209-80778	.955M	4835-130-47247	.290A	4835-209-87721	.74HC164		
1820-2291	.2087	1820-3955	.74S04	1826-0484	.953	1826-1636	.8575M	4822-209-80808	.968	4835-130-47251	.21	4835-209-87744	.7043		
1820-2275	.74C90	1820-3954	.74LS123	1826-0486	.4052B	1826-1643	.999M	4822-209-80891	.960	4835-130-47252	.153#	4835-209-87748	.7042		
1820-2304	.40172B	1820-3956	.74LS32	1826-0491	.937M	1826-1651	.927D	4822-209-81726	.966	4835-130-47253	.85	4835-209-87763	.987		
1820-2309	.74C923	1820-4208	.74HC377	1826-0502	.4053B	1826-1675	.995M	4822-209-82056	.963	4835-130-47256	.20	4835-209-87793	.1902		
1820-2330	.4066B	1820-4253	.75189	1826-0515	.924	1826-1681	.8585M	4822-209-83041	.5021T1	4835-130-47265	.13	4835-209-87803	.1729		
1820-2331	.8285B	1820-4257	.74LS253	1826-0519	.857M	1826-1693	.928SM	4835-130-37005	.5069A	4835-130-47266	.56#	4835-209-87826	.7044		
1820-2351	.74LS122	1820-4260	.75191	1826-0521	.858M	1826-1702	.1681	4835-130-37007	.50111	4835-130-47269	.2419	4835-209-87827	.966		
1820-2369	.5746B	1820-4268	.74LS629	1826-0523	.911	1826-1707	.850M	4835-130-37015	.50112	4835-130-47270	.290A	4835-209-87835	.1653		
1820-2382	.4569B	1820-4269	.74LS245	1826-0524	.987	1826-1787	.978MS	4835-130-37019	.5068A	4835-130-47272	.253	4835-209-87873	.7054		
1820-2384	.4569B	1820-4270	.74LS399	1826-0527	.957	1826-1793	.918M	4835-130-37020	.5019T1	4835-130-47273	.261#	4835-209-87884	.891M		
1820-2444	.4562B	1820-4271	.74HC377	1826-0528	.4066B	1826-1793	.918M	4835-130-37021	.5019T1	4835-130-47275	.2357	4835-209-87891	.1855		
1820-2460	.74LS169A	1820-6828	.1690	1826-0546	.927	1826-2035	.2057	4835-130-37005	.5018A	4835-130-47276	.294	4835-252-27003	.15020		
1820-2462	.4513B	1820-7679	.74LS163A	1826-0555	.977	1826-2043	.1942	4835-130-37138	.5077A	4835-130-47424	.290A	4835-252-27005	.15021		
1820-2464	.74LS76A	1826-0007	.941	1826-0557	.948	1826-2129	.961	4835-130-37141	.50104A	4835-130-47427	.293	4835-130-87016	.3017		
1820-2473	.2085	1826-0013	.941	1826-0559	.924	1826-2161	.864	4835-130-37143	.50101V	4835-130-47428	.2357	5082-2811	.584		
1820-2487	.4056B	1826-0021	.924	1826-0565	.1729	2057A-100-69(MCP)	.290A MCP	4835-130-37144	.5018A	4835-130-47429	.85	5101L-1	.65101		
1820-2536	.74LS152	1826-0026	.922	1826-0584	.988	1826-2179	.3052V	4835-130-37170	.1934X	4835-130-47433	.382	5322-130-24081	.5466#		
1820-2537	.74C244	1826-0035	.938	1826-0592	.928	1826-2183	.3283-0160-000	4835-130-37171	.1895	4835-130-47435	.85	5322-130-30684	.116		
1820-2538	.74C240	1826-0041	.914	1826-0599	.4568B	1826-2182	.177	4822-130-30842	.4066B	4835-130-47436	.85	5322-130-31504	.5005A		
1820-2540	.74C925	1826-0043	.937	1826-0611	.928M	1826-2193	.2057	4835-130-37149	.5018A	4835-130-47439	.2358	5322-130-31971	.580		
1820-2566	.74C240	1826-0045	.1171	1826-0617	.968	1826-2203	.3007	4835-130-37151	.5015Z	4835-130-47441	.2361	5322-130-32184	.588		
1820-2571	.4569B	1826-0046	.1171	1826-0620	.971	1826-2219	.961	4835-130-37153	.501A4	4835-130-47442	.290A	5322-130-33635	.5072A		
1820-2576	.4011B	1826-0065	.922M	1826-0626	.930	1826-2223	.864	4835-130-37154	.135A	4835-130-47461	.2357	5322-130-33885	.580		
1820-2579	.74LS27	1826-0068	.976	1826-0631	.970	1826-2267	.864	4835-130-37160	.5016T1	4835-130-47462	.85	5322-130-34363	.5002A		
1820-2580	.74LS502	1826-0078	.908	1826-0637	.1720	1826-2277	.3052V	4835-130-37171	.1934X	4835-130-47471	.2359#	5322-130-34374	.373		
1820-2588	.4060B	1826-0120	.992	1826-0678	.928	1826-2287	.500A	4835-130-37172	.5010A	4835-130-47472	.2362	5322-130-41982	.2408		
1820-2600	.955M	1826-0121	.962	1826-0682	.823	1826-2292	.5002A	4835-130-37256	.5016A	4835-130-47536	.398#	5322-130-60608	.159		
1820-2611	.74LS321	1826-0130	.963	1826-0689	.928M	1826-2297	.5002B	4835-130-37257	.5010A	4835-130-47537	.375#	5322-130-60268	.185		
1820-2615	.74LS243	1826-0159	.964	1826-0689	.969	1826-2302	.5001A	4835-130-37258	.5015A	4835-130-47481	.2415	5322-130-60898	.85		
1820-2616	.74LS386	1826-0161	.974	1826-06842	.995	1826-2302	.5016A	4835-130-37259	.5020A	4835-130-47486	.2414	5322-130-61575	.2344		
1820-2619	.74LS259	1826-0165	.944	1826-06854	.2054	1826-2302	.5029A	4835-130-37262	.519#	4835-130-47455	.55#	5322-130-80686	.580		
1820-2803	.4001B	1826-0169	.1919	1826-0863	.990	1826-2302	.2347	4835-130-37263	.5011A	4835-130-47575	.290A	5322-130-81917	.585		
1820-2804	.4025B	1826-0172	.919	1826-0876	.2063	1826-2302	.2347	4835-130-40277	.123AP	4835-130-47576	.2360	5322-209-10422	.4538B		
1820-2805	.4017B	1826-0174	.834	1826-0882	.858M	1826-2302	.5002A								

Additions/Changes

32167-208-520 through 482213040912

To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement
32167-208-520	.587	250222	5010T1	612761	.185Z	482213020014	.546S	482213030787	.125	48221301059	.125	482213040357	.123AP
32167-208-550	.552	293733-001	.210Z	612761-0001	.185Z	482213020016	.546S	482213030789	.606	48221301062	.116	482213040358	.161
32167-301-630	.552	307566	.517◆	612761-1	.185Z	482213020031	.546S	482213030790	.116	48221301063	.177	482213040359	.154
32167-401-630	.5004A	439233(Chrysler)	.707Z	612817	.705A	482213020033	.5404	482213030799	.128	48221301064	.177	482213040361	.199
32167-401-870	.5004A	530205	.555A	612817-0001	.705A	482213020039	.6408	482213030802	.5021T1	48221301066	.534Z	482213040362	.229
32169-201-230	.580	530205-1	.555A	612817-1	.705A	482213020041	.6408	482213030803	.116	48221301069	.5018A	482213040367	.159
32169-201-240	.580	530205-2	.555A	612845	.4256	482213020041	.5404	482213030805	.5010T1	48221301071	.519	482213040368	.199
32199-901-200	.189S	530205-5	.555A	612845-0001	.4256	482213020042	.5465	482213030806	.5038A	482213031072	.519	482213040369	.159
35682-104-620	.189S	530299-2	.116	612845-1	.4256	482213020043(GAK)	.5405	482213030813	.110MP	482213031073	.116	482213040376	.229
35684-114-010	.376	530313-1	.553	612867	.1799	482213020047	.5404	482213030821	.552	482213031074	.116	482213040382	.103A + 102(AP)
35684-116-010	.54	530313-2	.553	612867-0001	.1799	482213020048	.5405	482213030822	.116	482213031075	.109	482213040384	.160
35684-117-710	.706B	530362-2	.309Z	612867-1	.1799	482213020051	.312	482213030823	.580	482213031077	.110MP	482213040385	.160
40348	.324	530605-0001	.6240	612874	.74HCT163	482213020435	.5465	482213030828	.116	482213031078	.611	482213040389	.99
70001AB	.139E	530605-0002	.6244	612874-0001	.74HCT163	482213030006	.109	482213030829	.580◆	482213031079	.580◆	482213040391	.158
70011AB(FORD)	.7053	530605-1	.6240	612874-1	.74HCT163	482213030009	.519	482213030831	.519	482213031085	.305T	482213040403	.102A
87401(NAP-IC)	.74HCT163	530605-2	.6244	612876	.7039	482213030069	.581	482213030834	.5003A	482213031087	.552	482213040406	.103A + 102(AP)
93304-2	.993Z	530606	.531S	612876-1	.7039	482213030071	.519	482213030835	.519	482213031088	.116	482213040426	.158
121661(MCP)	.129MCP	530606-0001	.531S	612922	.858SM	482213030072	.519	482213030839	.552	482213031089	.5023A	482213040429	.159
147455	.555A	530606-0002	.531S	612922-0001	.858SM	482213030082	.5011T1	482213030841	.519	482213031096	.5021A	482213040437	.160
148999	.377	530606-1	.531S	612922-1	.858SM	482213030083	.177	482213030842	.519	482213031097	.5031A	482213040441	.160
149251	.5351A	530606-2	.531S	700010FABCBC	.1396	482213030084	.109	482213030842	.177	482213031108	.304	482213040445	.85◆
155892	.3024	610162-0007	.398	923395	.555A	482213030085	.109	482213030843	.600	482213031109	.307	482213040449	.130
156372	.133AP	610162-0008	.375	1415780	.5351A	482213030088	.109	482213030845	.610	482213031111	.5012A	482213040453	.154
162038	.891M	530605-2	.6244	1415780-4	.5351A	482213030123	.5010T1	482213030846	.109	482213031114	.116	482213040454	.161
164253	.2360	610445	.123A	1415780-6	.5351A	482213030124	.125	482213030847	.519	482213031116	.601	482213040456	.158
164589	.580	610445-0001	.123A	1417416-1	.377	482213030131	.5010T1	482213030848	.519	482213031118	.553	482213040457	.154
164752	.891M	610445-1	.123A	1465345-2	.1174	482213030132	.5013T1	482213030849	.5812	482213031124	.156	482213040459	.229
171033-4(MCP)	.153MCP	610485-	.265	1987596	.466◆	482213030134	.5011T1	482213030852	.519	482213031168	.552	482213040461	.229
171418-2	.152	610485-1	.265	2003255	.1910	482213030135	.5013T1	482213030853	.3020	482213031173	.525	482213040474	.103A
175910	.2360	610552-0001	.31	2917803	.1778◆	482213030139	.109	482213030857	.177	482213031201	.552	482213040476	.159
177471	.128P	610554-0002	.399	4230880	.1803	482213030142	.5011T1	482213030859	.5013T1	482213031253	.5000A	482213040492	.161
177619	.7022	610554-0003	.399	4230880	.1803	482213030142	.5011T1	482213030874	.519	482213031116	.601	482213040508	.106
179603	.85	610554-2	.399	4233315	.1851	482213030143	.5013T1	482213030862	.5018A	482213031274	.3007	482213040514	.85◆
179864	.891M◆	610554-3	.399	4391879(Chrysler)	.7050	482213030145	.5021T1	482213030865	.551	482213031393	.552	482213040515	.199
179865	.4021B	610559	.2393	4393273	.1802	482213030145	.109	482213030868	.552	482213031607	.587	482213040517	.184
180872	.116	610559-0001	.2393	5190507A14	.7044	482213030163	.5013T1	482213030869	.110MP	482213031878	.116	482213040522	.159
180873	.5319◆	610559-0002	.2393#	7502601(MCP)	.290AMCP	482213030169	.125	482213030871	.519	482213031933	.125	482213040523	.158
181696	.891M	610559-0003	.2393#	62889032	.587	482213030189	.519	482213030872	.116	482213031981	.5007A	482213040524	.130
181829	.7032	610559-0005	.2393	63509167	.15009	482213030191	.109	482213030873	.581	482213032213	.588	482213040525	.159
183107	.3099◆	610559-0006	.2393	64015451	.3098	482213030192	.125	482213030874	.581	482213032472	.3010	482213040527	.159
184150	.928SM	610559-1	.2393	64016180	.2337	482213030193	.5011T1	482213030875	.558	482213031274	.3007	482213040531	.616
184854	.519	610559-2	.2393#	530909700	.5067A	482213030195	.125	482213030876	.552	482213032699	.5022A	482213040536	.165
185878	.555A	610559-3	.2393#	530909710	.5018T1	482213030197	.116	482213030877	.580	482213032778	.519	482213040537	.184
189315	.2354	610559-5	.2393	530915082	.1676	482213030203	.110MP	482213030878	.5135A◆	482213033861	.519	482213040541	.159
190951	.891M	610559-6	.2393	7171418002	.1676	482213030219	.109	482213030881	.613	4822130340426	.616	482213040615	.290A◆
191300	.152#	610559-7	.2394	5302050001	.555A	482213030221	.110MP	482213030882	.116	482213031948	.607	482213040617	.130MP
192135	.7037	610559-8	.2394#	5302050002	.555A	482213030223	.109	482213030883	.530D	482213031949	.606	482213040635	.160
192272	.928S	610559-9	.2394#	5302050005	.555A	482213030225	.109	482213030885	.3020	482213031445	.5038A	482213040645	.373
192902	.943M	610557-1	.2394	5302990002	.116	482213030226	.519	482213030887	.610	482213031467	.5013T1	482213040648	.131MP
193057	.2343	610557-2	.2394#	5302991002	.116	482213030227	.519	482213030888	.116	482213031473	.5011T1	482213040651	.229
194566	.7036	610582	.2331	5303013000	.553	482213030228	.125	482213030889	.5016A	482213031474	.5009A	482213040652	.154
195769	.891M	610582-0002	.2331	5303109002	.553	482213030229	.109	482213030891	.519	4822130314915	.5022A	482213040664	.373
196211	.5077A	610582-2	.2331	5303291100	.580	482213030230	.109	482213030893	.519	4822130314917	.5021T1	482213040665	.374
196211	.5077A	610583-2	.2331	5303291100	.5019T1	482213030239	.177	482213030895	.581	482213034233	.5010T1	482213040679	.229
197374	.5071A	610597-0001	.2353	5303620002	.5019T1	482213030247	.5013T1	482213030898	.125	48221303145	.5024A	482213040748	.137(CP)
197591	.5424	610597-0002	.2353	5306500002	.5019T1	482213030256	.552	482213030898	.5010T1	482213034297	.5019T1	482213040758	.123AP
197782	.891M	610597-0003	.2353	5306500002	.6244	482213030258	.125	482213030890	.5011T1	482213034177	.5011T1	482213040762	.323
197879	.2337	610597-1	.2353	5306500001	.5315	482213030259	.125	482213030892	.5018A	482213034178	.5018A	482213040764	.127
198538	.15023	610597-2	.2353	5306600002	.5315	482213030261	.167	482213030911	.5128◆	482213034499	.5029A	482213040767	.159
198590	.580	610597-3	.2353	5309109060	.5013A	482213030264	.135A	482213030912	.3022	482213034522	.580◆	482213040792	.123AP
198591	.5010T1	610614-0001	.67	6104170001	.2313◆	482213030265	.519	482213030913	.611	482213034651	.302	482213040793	.229
198592	.5019T1	610614-0001	.67	6104450001	.265	482213030267	.519	482213030918	.3010	482213040794	.137(CP)	482213040804	.102A
200884	.7023	610618-0001	.2393										

To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement										
482213040918	.184	482213041091	.332MCP	482213041273	.552	482213090347	.3098	483513037143	.5019T1	483513037561	.552	483513047202	.51	483513047204	.2310
482213040919	.184	482213041092	.184	482213041275	.125	482217700319	.3007	483513037144	.5018A	483513037563	.598	483513047204	.2310		
482213040921	.185	482213041093	.185MCP	482213041276	.281MCP	482220910223	.4077B	483513037145	.519	483513037566	.5020A	483513047205	.128P		
482213040923	.102A	482213041094	.298	482213041279	.2310	482220910248	.4013B	483513037146	.519	483513037567	.125	483513047206	.51		
482213040924	.159	482213041095	.123AP	482213041281	.271	482220910263	.4052B	483513037148	.532	483513037569	.5029A	483513047207	.32		
482213040925	.123AP	482213041096	.199	482213041282	.270	482220911157	.1853	483513037149	.582	483513037571	.5404	483513047208	.2302		
482213040926	.159	482213041097	.374	482213041286	.199	482220911157	.950	483513037151	.552	483513037573	.558	483513047211	.54#		
482213040927	.159	482213041098	.159	482213041287	.199	482220930165	.950	483513037151	.552	483513037573	.558	483513047211	.54#		
482213040928	.199	482213041099	.108	482213041288	.377	482220930171	.960	483513037153	.116	483513037574	.125	483513047213	.123AP		
482213040929	.229	482213041101	.123AP	482213041289	.378	482220930185	.960#	483513037154	.506	483513047001	.5021A	483513047214	.159		
482213040932	.289A	482213041103	.159	482213041291	.90	482220960826	.961#	483513037155	.552	483513047025	.379#	483513047215	.2318♦		
482213040934	.290A	482213041106	.288	482213041293	.87	482220960853	.7047	483513037156	.552	483513047035	.2336	483513047216	.2318#		
482213040935	.199	482213041107	.2310	482213041294	.293	482220960955	.1567	483513037157	.5020A	483513047048	.159	483513047219	.2302		
482213040936	.123AP	482213041109	.374	482213041296	.374	482220960956	.7051	483513037158	.5022A	483513047049	.159	483513047223	.379#		
482213040937	.123AP	482213041113	.229	482213041297	.398	482220962059	.1854M	483513037159	.5030A	483513047051	.123AP	483513047225	.2337		
482213040938	.123AP	482213041114	.152	482213041298	.290A	482220962369	.1862	483513037161	.50303A	483513047052	.123AP	483513047226	.253		
482213040939	.199	482213041119	.125	482213041301	.88	482220962370	.964#	483513037163	.580	483513047054	.159	483513047227	.2337		
482213040941	.159	482213041124	.159	482213041303	.42	482220970295	.2057	483513037164	.5316	483513047055	.123AP	483513047233	.19		
482213040942	.159MCP	482213041125	.20	482213041304	.97	482220970705	.1854M	483513037165	.139A	483513047058	.48	483513047234	.159		
482213040943	.332MCP	482213041126	.106	482213041304	.90	482220971463	.4555B	483513037169	.5025A	483513047059	.399	483513047235	.85		
482213040945	.229	482213041127	.199	482213041305	.375	482220971489	.1657	483513037172	.519	483513047061	.2302	483513047235(10-126)	.374		
482213040947	.229	482213041129	.184	482213041307	.229	482220971776	.7050	483513037173	.177	483513047064	.199	483513047236	.159		
482213040948	.123AP	482213041131	.123AP	482213041308	.229	482220971901	.977	483513037174	.177	483513047065	.2406	483513047238	.12♦		
482213040951	.161	482213041132	.159	482213041309	.383	482220972076	.1854M	483513037175	.116	483513047066	.2407	483513047243	.2358		
482213040952	.159	482213041133	.123AP	482213041317	.290A	482220972336	.1862	483513037179	.580	483513047067	.2333	483513047244	.2357		
482213040953	.123AP	482213041135	.294	482213041318	.290A	482220972386	.761#	483513037182	.125	483513047068	.2393	483513047247	.290A		
482213040954	.229	482213041136	.374	482213041322	.85	482220972544	.1634	483513037184	.19	483513047069	.199	483513047248	.21		
482213040956	.190	482213041138	.280	482213041323	.85	482220972545	.2057	483513037185	.525	483513047071	.123AP	483513047252	.153#		
482213040958	.159	482213041139	.382	482213041324	.85	482220972587	.1854D	483513037187	.5152A	483513047073	.399	483513047256	.20		
482213040959	.123AP	482213041141	.373	482213041505	.290A	482220972804	.815	483513037188	.587	483513047076	.85	483513047259	.2355♦		
482213040961	.123AP	482213041142	.312	482213041512	.85	482220973037	.1866	483513037192	.5011T1	483513047081	.294	483513047261	.16		
482213040962	.159	482213041144	.153MCP	482213041594	.123AP	482220973356	.7011	483513037193	.5021T1	483513047083	.489	483513047263	.2418		
482213040963	.159	482213041145	.185	482213041646	.288	482220973712	.7050	483513037195	.580	483513047084	.2332	483513047265	.13		
482213040964	.123AP	482213041146	.159	482213041681	.159	482220973954	.967#	483513037196	.581	483513047086	.2406	483513047266	.56#		
482213040965	.123AP	482213041148	.199	482213041782	.238	482220980383	.1566	483513037197	.5806	483513047088	.2407	483513047269	.2419		
482213040966	.159	482213041149	.281	482213041803	.399	482220980402	.778A	483513037202	.588	483513047089	.2401	483513047270	.200A		
482213040968	.287	482213041151	.284	482213042094	.184	482220980444	.1566	483513037203	.5019T1	483513047089	.291	483513047272	.290A		
482213040969	.154	482213041152	.457	482213042077	.2361	482220980571	.926	483513037212	.519	483513047091	.31	483513047275	.85		
482213040971	.165	482213041153	.254	482213042231	.159	482220980587	.987	483513037216	.5006A	483513047092	.2393#	483513047278	.261#		
482213040972	.185	482213041154	.284	482213042278	.290A	482220980591	.956	483513037217	.5007A	483513047095	.2406	483513047287	.2361		
482213040973	.159	482213041155	.285	482213042371	.25	482220980775	.955M	483513037218	.5008A	483513047096	.2401	483513047291	.2419		
482213040976	.454	482213041156	.123A	482213042489	.552	482220980782	.74L7S74A	483513037226	.5013T1	483513047097	.2331	483513047321	.123AP		
482213040979	.159	482213041161	.123A	482213042675	.2406	482220980808	.968	483513037227	.5014A	483513047099	.399	483513047322	.283		
482213040981	.123AP	482213041162	.85	482213042683	.2357	482220980914	.1566	483513037203	.5019T1	483513047102	.159	483513047324	.196		
482213040982	.154	482213041163	.123AP	482213044037	.154	482220980925	.1187	483513037228	.5021T1	483513047103	.159	483513047325	.197		
482213040983	.153	482213041164	.229	482213044104	.159	482220980933	.1439	483513037231	.5025A	483513047104	.159	483513047326	.49		
482213040984	.389	482213041168	.222	482213044108	.154	482220980934	.1580	483513037232	.5025A	483513047105	.171	483513047327	.395		
482213040985	.94	482213041169	.152	482213044121	.123AP	482220980934	.1231A	483513037233	.5086A	483513047106	.395	483513047328	.54		
482213040986	.331	482213041171	.293	482213044154	.229	482220981762	.966	483513037235	.519	483513047107	.331	483513047329	.55		
482213040987	.332	482213041172	.156	482213044156	.159	482220981929	.7002	483513037239	.552	483513047108	.216	483513047331	.389		
482213040988	.298	482213041173	.159	482213050084	.229	482220982056	.1563	483513037245	.5019T1	483513047111	.2318	483513047336	.54#		
482213041011	.159	482213041174	.290A	4822130500893	.159	482220982313	.5010A	483513037247	.5029A	483513047112	.2407	483513047344	.941M		
482213041017	.229	482213041175	.159	482213050221	.116	482220982343	.50101A	483513037248	.525	483513047113	.16	483513047351	.91		
482213041018	.184	482213041176	.159	482213050222	.159	482220982344	.50102A	483513037249	.525	483513047114	.16	483513047352	.373		
482213041019	.303C	482213041177	.159	482213050223	.159	482220982345	.50103A	483513037250	.519A	483513047115	.382	483513047353	.382		
482213041021	.248	482213041178	.232	482213050224	.264	482220982346	.50103B	483513037252	.519B	483513047116	.2407	483513047344	.2315		
482213041021	.248	482213041179	.199	482213050225	.232	482220982347	.50103C	48351303							

Additions/Changes

483513047677 through 933198140112

To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement										
4835130476777	.152#	483520987076	.1566	532213030286	.5013T1	532213040716	.159	9330005050112	.125	933059509112	.519	93135250112	.154
483513047678	.378#	483520987077	.966	532213030295	.581	532213040732	.123AP	93300560112	.125	933061220112	.5006A	9313160112	.613
483513047705	.395	483520987079	.928M	532213030302	.5021T1	532213040758	.123AP	93300590112	.166	933061640112	.160	931316180112	.389
483513047706	.2353	483520987081	.778#	53221303031	.519	532213040759	.123AP	93300600112	.168	933061650112	.160	931317740112	.613
483513047708	.4047	483520987082	.1219	532213030323	.519	532213040782	.154	93300610112	.125	933061940112	.125	931317770112	.613
483513047719	.3994#	483520987085	.1798	532213030324	.5011T1	532213040822	.159	93300630112	.5010T1	933063020112	.229	9313139270112	.519
483513047722	.2361	483520987086	.7067	532213030326	.5006A	532213040823	.373	93300900112	.131MP	933063290112	.130MP	931313930112	.154
483513047723	.2361	483520987089	.7066	53221303046	.5021T1	532213040824	.374	9330091070112	.102A	933063390112	.229	9313139520112	.519
483513047744	.399	483520987091	.1858	53221303049	.168	532213040835	.123AP	933001270112	.158	933063400112	.229	9313139530112	.519
483513047746	.2414	483520987094	.1845	53221303065	.5010T1	532213040838	.123AP	9330130112	.123AP	933063440112	.229	9313139540112	.519
483513047749	.2353	483520987097	.4001B	53221303066	.519	532213040855	.123AP	93301340112	.123AP	933063470112	.519	9313139550112	.177
483513047751	.2406	483520987105	.4066B	53221303091	.109	532213041899	.123AP	933002310112	.160	93306350112	.160	931314200112	.185
483513047757	.2894	483520987111	.15009	532213030402	.5019T1	532213041981	.2408	93300231112	.160	9330636720112	.159	931314203112	.184
483513047759	.399	483520987112	.928SM	532213030414	.166	532213041982	.2408	933002420112	.126A	933065720112	.616	9313141890112	.283
483513047761	.2330	483520987113	.928M	53221303051	.168	532213041983	.2409	933002470112	.160	933067630112	.123AP	9313142190112	.580
483513047762	.2302#	483520987121	.3098	532213030571	.519	532213042012	.2409	933002520112	.126A	933067640112	.123AP	9313142490112	.5465
483513047764	.184	483520987122	.3105#	532213030574	.125	532213042363	.263	933002550112	.160	933067650112	.123AP	9313143490112	.130
483513047765	.2904	483520987125	.964	532213030576	.5012T1	532213042701	.263	933002580112	.160	933067660112	.229	9313144890112	.323
483513047769	.2393	483520987131	.7031	532213030578	.5010T1	532213044025	.123AP	933002690112	.160	933067670112	.229	9313149180112	.159
483513047771	.2331	483520987136	.1777	532213030581	.5013T1	532213044037	.154	933002730112	.160	933068830112	.199	9313149190112	.199
483513047785	.2904	483520987137	.1834	532213030592	.519	532213044049	.130	933002880112	.154	933069830112	.199	9313149200112	.123AP
483513050703	.5458	483520987149	.3098	532213030593	.109	532213044041	.123AP	933002900112	.108	933069890112	.123AP	931314910112	.123AP
483513050731	.5011T1	483520987151	.1628	532213030613	.519	532213044102	.159	933002911112	.229	933069950112	.123AP	9313149220112	.159MCP
483513080716	.3017	483520987168	.858M	532213030621	.519	532213044103	.123AP	9330029112112	.229	933069970112	.123AP	9313149230112	.123AP + 159(CP)
483513080729	.3099	483520987177	.950	532213030659	.116	532213044104	.159	933002930112	.161	933069980112	.199	9313150920112	.123AP
483513080706	.5404	483520987179	.4053B	532213030664	.613	532213044108	.154	9330030112	.103A + 102(AP)	933069990112	.123AP	9313150930112	.123AP
483513080712	.3098	483520987181	.74HC00	532213030668	.558	532213044112	.159	933003112	.103A + 102(AP)	933070520112	.109	9313150940112	.123AP
483513080713	.1805	483520987182	.3105	532213030684	.116	532213044113	.123AP	933003211	.166	933073460112	.159	9313150950112	.123AP
483513080716	.1742	483520987252	.977	532213030702	.519	532213044117	.229	93300330112	.166	933073470112	.159	9313150960112	.123AP
483513080717	.1834	483520987259	.960#	532213030715	.109	532213044119	.159	93300400110	.109	933076010112	.159	9313150970112	.123AP
483513080719	.3098	483520987261	.834	532213030746	.613	532213044121	.123AP	93300410112	.109	933076020112	.159	9313150980112	.199
483513080726	.2904	483520987262	.928M	532213030759	.5011T1	532213044124	.154	933004020112	.519	933076030112	.159	9313151000112	.123AP
483513080732	.1676	483520987263	.834	532213030765	.5006A	532213044128	.580	93300450112	.109	933076450112	.125	9313151020112	.199
483513080735	.1630	483520987264	.615A	532213030766	.5013T1	532213044133	.123AP	93300461012	.109	933076750112	.159	9313151030112	.159
483513080740	.1789	483520987268	.1766	532213030767	.5010T1	532213044134	.159	933004611012	.109	933076760112	.159	9313151040112	.159
4835130807505	.3041	483520987271	.1716	532213030769	.613	532213044135	.123AP	933004820112	.519	933080260112	.130MP	9313151050112	.159
4835130807605	.3092	483520987274	.960#	532213030774	.5019T1	532213044141	.123AP	933006830112	.184	933080390112	.5465	9313151060112	.159
4835130807616	.534	483520987275	.958#	532213031504	.5005A	532213044142	.159	933007700012	.610	933081330112	.85◆	9313151090112	.229
48351308077017	.535	483520987277	.4052B	532213031971	.580	532213044143	.123AP	933006640112	.177	933081980112	.519	9313151120112	.229
48351308077018	.557	483520987283	.966#	532213031974	.588	532213044148	.123AP	933006650112	.177	933082220112	.130	9313151130112	.245
4835130907402	.3092	483520987284	.739	53221303385	.5038A	532213044152	.123AP	933007840112	.168	933083760112	.130MP	93131510730112	.130MP
483513090743	.5064A	483520987285	.742	532213034026	.616	532213044153	.159	933008780112	.519	933083990112	.159	93131510730112	.130MP
483514887073	.549	483520987285	.815	532213034028	.5010T1	532213044154	.229	933008810112	.5010T1	933084480112	.116	93131510730112	.284MP
483514887074	.556	483520987287	.778A	532213034048	.5003A	532213044155	.199	933008820112	.5011T1	933084540112	.199	9313151090112	.5125A◆
483520917011	.74HC11	483520987287	.7426	532213034049	.606	532213044156	.159	933008821112	.5011T1	933084990112	.519	931315109250112	.5135A◆
483520917028	.4538B	483520987291	.7405	532213034069	.5021T1	532213044159	.123AP	933008830112	.610	93308800112	.85◆	9313151090112	.288
483520917029	.973D	483520987292	.7445	532213034121	.116	532213044164	.246	933008880112	.5011T1	9330885010112	.159	931315109870112	.185
483520917032	.859	483520987298	.1380	532213034212	.5038A	532213044165	.226	933008880112	.5013T1	933088860112	.166	931316000112	.5074A
483520917033	.1445	483520987303	.1729	532213034395	.109	532213044257	.123AP	933008940112	.5012T1	9330908410112	.159	9313160350112	.185
483520917036	.778A	483520987324	.7011	532213034402	.552	532213044258	.159	933009011012	.5012T1	933091160112	.373	931316036112	.184
483520917096	.2800	483520987692	.74LS221	532213034403	.3024	532213044263	.123AP	9330092011012	.5012T1	933091160112	.374	9313160370112	.185
483520917097	.4016B	483520987721	.74HC16A	532213034405	.5011T1	532213044272	.123AP	93300921011012	.5012T1	933091180112	.374 + 373(CP)	9313160380112	.177
483520917109	.1632	483520987824	.966	532213034417	.5011T1	532213044273	.123AP	93300921012012	.5012T1	933091180112	.374 + 373(CP)	9313160390112	.177
483520917111	.1567	483520987834	.1765	532213034419	.109	532213044274	.123AP	93300921021012	.5012T1	933091180112	.374 + 373(CP)	9313160400112	.177
483520917112	.1741	483520987835	.1852	532213034423	.5010T1	532213044275	.123AP	93300921022012	.5012T1	933091180112	.374 + 373(CP)	9313160410112	.177
483520917113	.1846	483520987837	.1704	5322130344233	.5010T1	532213044276	.123AP	93300921023012	.5012T1	933091180112	.374 + 373(CP)	9313160420112	.177
483520917114	.1862	483520987837	.1704	532213034424	.5010T1	532213044277	.123AP	93300921024012	.5012T1	933091180112	.374 + 373(CP)	9313160430112	.177
483520917115	.1416	483520987838	.1852	532213034425	.5010T1	532213044278	.123AP	93300921025012	.5012T1	933091180112	.374 + 373(CP)	9313160440112	.177
483520917116													

To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement		
933198530112	153	9332869009112	3011	933452010112	2343	933589680212	2408	933778360689	.891M	APT4065BN	2394◆	BSX62D...	2347				
933198540112	153	933288300112	379	933452010127	2343	9335896802015	2408	933781490112	.7001	APT4080BN	2394◆	BSX63...	2347				
933198550112	153	933288610112	3020	933452020012	2343	933589690115	2408	933790240412(CBE)	.199	APT4550BN	2394◆	BSX63-10	2347				
933198560112	153 + 153 MCP	933289040002	2313	933452020112	2343	933589690212	2408	933804630112	.1803	APT4585BN	2394◆	BSX63B...	2347				
93319870112	153 + 152(CP)	933289040112	2313	933452020127	2343	933589710112	2409	933808710112	.1803	APT5050BN	2394◆	BSX63C...	2347				
933198770112	229	933289040127	2313	933452030112	2343	933589710156	2409	933813760112	.1803	APT5085BN	2394◆	BSX64-10	2347				
933198780112	229	9332896509112	2313	933452030127	2343	933589710212	2409	933825880112	.7018	B0320440...	.7064	BTA10-600B	.5645				
933201322682	891M	933296590127	2313	933460490112...	281MCP	933589710212	2409	933826380112	.2057	B0347230...	.834	BTA16-200B	.5671				
933202330112	165	933297990112	.552	933460500112...	.280 + .281(CP)	933589710215	2409	933826930112	.1786	B0376795...	.7068	BTB16-400B	.5671				
933202340112	165	933300410112	.116	933460620112	.593	933589720112	2409	933828460112	.1785	B641-QR(Trans)	.17	BTB16-600B	.5671				
933202360112	165	93330470112	.3010	933460620115	.593	933589720122	2409	933831560682	.964	B641-ORS(Trans)	.17	BTB16-700B	.5671				
933202380112	116	93330600112	.960	933460620212	.593	933589720215	2409	933833960102	.1786	B641-R(Trans)	.17	BTB16-800B	.5671				
933204240112	116	933318480112	.3025	933460620215	.593	933589730112	2409	933841R(Trans)	.17	BU426AF...	.2310#						
933206220112	159	933320320112	.519	933460620235	.593	933589730212	2409	93384047012...	.1804	B641-S(Trans)	.17	BU426F...	.2310#				
933207250112	152	933320330112	.3008	933462000112	.1566	933589730215	2409	933841940112	.1804	B709A(RW)(Trans)	.2409	BU508ADF...	.2318#				
933207260112	153	933320340112	.3010	933466830112...	.125	933589800112	2409	933846880112	.1786	B852K(Trans)	.2405	BU508DRF...	.2318#				
933208030112...	.615A	933321740112	.184	933470050112...	.580◆	933589800212	2409	933851440112	.1804	B897...	.271◆	BU508F...	.2300#				
933208520112	123AP	933321760112...	.185 + .184(CP)	933470100112	.7001	933589800215	2409	933851500112	.1803	B897(Trans)	.254◆	BU902F...	.2300#				
93320870112	153MCP	9333237340112	.3071	933473540112...	.395	933589800217	2409	933851600112	.1804	B897AR(Trans)	.254◆	BU903F...	.2300#				
9332086400112	.153MCP	933323740112...	.3007	933473640112...	.395	9335898003012	2409	933851700112	.1786	B897R(Trans)	.254◆	BU2509A...	.2354				
933208660112	.287	933324070112	.3010	933473640112...	.281MCP	933589700112	2392	933852280102	.2057	B898(Trans)	.254◆	BU2509AF...	.2354#				
933208680112	.552	9333246620112	.2341	933473530112...	.229	933589710112	2388	933857180102	.2057	B938AR(Trans)	.254◆	BU2508DF...	.2353				
933207520112	123AP	933326620116	.2341	933475360112...	.229	933589710212	2388	933857260112	.2057	B938AR(Trans)	.254◆	BU2520A...	.2354				
933207530112	123AP	933326620126	.2341	933478170112...	.3057	9335897900127	2388	933857900127	.2057	B938AR(Trans)	.254◆	BU2520AF...	.2354#				
933207540112...	.123AP	933326630112	.2341	93349470112...	.116	933599800112	.2384	933861740112	.1802	B938AR(Trans)	.254◆	BU2520DF...	.2353				
933207550112...	.123AP	933326630116	.2341	933494720112...	.116	933621460112	2311	93386310012	.1785	B93861300112	.1785	B1050...	.12◆	BU2521...	.2353		
933207570112...	.199	933326640112	.2341	933495551012...	.3074	933623210112	.1382	933863190112	.1786	B1050P(Trans)	.12◆	BUK427-500A	.2393#				
933208180112...	.552	933326640116	.2341	933500700112...	.580	93363015012	.185	933867000112	.1802	B1050R(Trans)	.12◆	BUK428-500B	.2393#				
93320800112...	.558	933326640126	.2341	933500140112...	.580	933640200112	.1850	933872770112	.1804	B1050S(Trans)	.12◆	BUK428-500A	.2393				
933208390112...	.519	933326650112	.2342	933500150112...	.580	933640200112	.1850	933872780102	.1785	B1154(Audio)	.2306#	BUK429-500B	.2393				
933208400112...	.519	933326650116	.2342	933500170112...	.580	933640200112	.1850	93387280102	.1785	B1154R(Audio)	.2306#	BUK437-400B	.2394◆				
933208410112...	.519	933326660112	.2342	933500180112...	.580	933640200112	.1850	933874690112	.1853	B1155(Audio)	.2306#	BUK437-400B	.2394◆				
933215280112...	.165	93326670112...	.2342	933502020112...	.592	933644250112	.2426	933874700112...	.1853	B1187(Trans)	.378◆	BUK457-500A	.2394				
933215290112...	.610	93326670126	.2342	933502020115...	.592	933644250115	.2426	933876150112	.1801	B1198K(Trans)	.2411	BUK457-500B	.2394				
933217360112...	.5465	933273590112	.2310	933502020212...	.592	933644260112	.2426	93388362012...	.1801	B1257(Trans)	.262◆	BUK458-500B	.2394◆				
93322000112...	.331	93328340112	.125	933502020215...	.592	933644260115	.2426	93388901012...	.1801	B1259(Trans)	.2344#	BUK445-60A	.2389#				
933220010112...	.332	93328340116	.125	933502030112...	.592	933644270112	.2426	933901220112...	.1801	B1351(Trans)	.2344#	BUK445-60B	.2389#				
933220010112...	.5812	93328340116	.968	933502030115...	.592	933644270115	.2426	933901220312...	.1802	B1353(Trans)	.398◆	BUK445-400A	.2391#				
933220340112...	.3010	93328340112...	.3010	933502030215...	.592	933644280112...	.2427	933902940112...	.1801	B1354(Trans)	.398◆	BUK445-400B	.2391#				
933220870112...	.5465	93328340125	.2403	933502030215...	.592	933644280115...	.2427	933902950112...	.1801	B1355(Trans)	.378◆	BUK454-400B	.2389				
933222150112...	.382 + 382(CP)	933286400112	.159	933502040112...	.592	933644290112...	.2427	933902960112...	.1850	B1356(Trans)	.378◆	BUK455-60A	.2389				
9332223740112...	.3074	933286400112...	.615A	933502040115...	.592	933644290115...	.2427	933902960112...	.1802	B1357(Trans)	.378◆	BUK455-60B	.2389				
9332232910112...	.5010112	933286801012	.3077	933502040212...	.592	933644300112...	.2427	933910450112...	.1802	B1358(Trans)	.378◆	BUK474-400A	.2391#				
933223246360112...	.165	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933911655012...	.1802	B1359(Trans)	.262◆	BUK474-400B	.2391#				
93322321970112...	.383 + 382(CP)	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1360(Trans)	.55#	BUK474-800A	.2387#				
933223250112...	.382 + 382(CP)	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1361(Trans)	.55#	BUK474-800B	.2387#				
9332232520112...	.263 + 264(CP)	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1362(Trans)	.55#	BUK475-600A	.2389				
9332232740112...	.3074	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1363(Trans)	.55#	BUK475-60B	.2389				
93322324360112...	.94	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1364(Trans)	.55#	BUK476-800A	.2387#				
93322324360112...	.160	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1365(Trans)	.55#	BUK476-800B	.2387#				
93322330320112...	.130	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1366(Trans)	.55#	BUK477-800A	.2389				
93322330320112...	.130	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1367(Trans)	.55#	BUK477-800B	.2389				
933223306112...	.263 + 264(CP)	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1368(Trans)	.55#	BUK478-800A	.2389				
933223306112...	.152	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1369(Trans)	.55#	BUK478-800B	.2389				
933223306112...	.109	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1370(Trans)	.55#	BUK479-800A	.2389				
933223306112...	.109	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1371(Trans)	.55#	BUK479-800B	.2389				
933223250112...	.116	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1372(Trans)	.55#	BUK480-800A	.2389				
933223250112...	.116	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1373(Trans)	.55#	BUK480-800B	.2389				
933223250112...	.116	93328680112...	.3079	933502040215...	.592	933644300115...	.2427	933920510112...	.1802	B1374(Trans)	.55#	BUK481-800A</td					

Additions/Changes

BYT52G through MJW16018

To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement
BYT52G	569◆	C3460K(Trans)	2348	D78C(Trans)	2347	F5KQ40	6083#	GZS4.7	5009A	K310(FET)	2391	KTC2120-Y(TR)	289A
BYT52J	569◆	C3460L(Trans)	2348	D78D(Trans)	2347	10KQ30	6083#	GZS5.1	5010A	K311(FET)	2391◆	KTC2712S	2408
BYT85/600	598	C3460M(Trans)	2348	D79(Trans)	2347/427	F10KQ40	6083#	GZS5.1Y	5010T1	K346(FET)	2390	KTC3203...	382
BYT86/600	598	C3461(Trans)	2348	D79A	2347/427	F113A	552	GZS5.6	5011A	K349(FET)	2394	KTC3879...	2408
BYV12...	569◆	C3461K(Trans)	2348	D79B	2347/427	F113B	552	GZS5.6Y	5011T1	K350(FET)	2394	KTD880A	152
BYV13...	569◆	C3461L(Trans)	2348	D79C	2347/427	F113D	552	GZS6.2...	5013T1	K399(FET)	2394◆	KTD2012...	377
BYV14...	569◆	C3461M(Trans)	2348	D79D	2347/427	F113E	552	GZS6.2Y	5013T1	K400(FET)	2393◆	L298...	7071
BYV95...	569◆	C3481(Trans)	2302◆	D558(Trans)	2351	F113F	552	GZS6.2Z	5013T1	K405(FET)	2393◆	M298K...	7071
BYV95A	569◆	C3552(Trans)	2348	D601AQRW(Trans)	2408	F114B	552	GZS10	5019T1	K412(FET)	2394	L298KV	7071
BYV95B	569◆	C3552K(Trans)	2348	D638PQR(Trans)	18	F114D	552	GZS10Z	5019T1	K413(FET)	2393◆	L298N...	7071
BYV95C	569◆	C3552L(Trans)	2348	D797	387◆	F114F	552	GZS12	5021T1	K414(FET)	2393◆	L298V...	7071
BYW29E-100	597	C3552M(Trans)	2348	D797-O	387◆	FD400	587	GZS12Z	5021T1	K527(FET)	2389#	L7809	1910
BYW29E-150	597	C3637(Trans)	2354	D797-Y	387◆	FDH444	587	GZS13	5022A	K532(FET)	2389#	L7905CV	961
BYW29E-200	597	C3688(Trans)	2354	D811	2310◆	FESF16AT	599#	H614-9	517◆	K549(FET)	2390	L7908CV	965
BYW52...	580	C3723(Trans)	2337	D882PM(Trans)	184	FESF16BT	599#	H614-9	517◆	K400(FET)	2393◆	L7912CV	967
BYW53...	580	C3729(Trans)	2324	D1138(Trans)	375	FESF16CT	599#	H614-9	517◆	K551(FET)	2388	L7915CV	969
BYW55...	506	C3737(Trans)	2348	D1142(Trans)	389	FESF16DT	599#	H614-9	517◆	K556(FET)	2394	L7918CV	959
BYW56...	506	C3738(Trans)	2348#	D1143(Trans)	238	F023800	527A	H614-9	517◆	K559(FET)	2394◆	L7924CV	971
BYW82...	580	C3796(Trans)	2348	D1173(Trans)	2302◆	FF023900	527A	HA1397	7040	K560(FET)	2394◆	LA4182...	1667
BYW83...	580	C3796A(Trans)	2348	D1174(Trans)	2302◆	FR302G	588	HA17324	.987	K573(FET)	2394◆	LA4183...	1667
BYW84...	580	C3797(Trans)	2348	D1175(Trans)	2302◆	FSP307566	517◆	HA17324F	987SM	K600(FET)	2389	LA4461N...	1391
BYW85...	577	C3797A(Trans)	2348	D1208(Trans)	2335◆	GLB005	.5318◆	HA17324F	987SM	K641(FET)	2394	LA7222...	7066
BYW86...	577	C3798(Trans)	2348	D1260(Trans)	253◆	GLB01...	.5318◆	HA17324P	.987	K642(FET)	2394	LA7510...	7067
BYW95...	569◆	C3798A(Trans)	2348	D1260A(Trans)	253◆	GLB02...	.5318◆	HEF4094BP	.4094B	K643(FET)	2394	LA7670...	7054
BYW95A	569◆	C3799(Trans)	2348	D1260AR(Trans)	253◆	GLB04...	.5319◆	HEF4521BP	.4521B	K644(FET)	2394	LA7835-TV...	1855
BYW95B	569◆	C3799A(Trans)	2348	D1260R(Trans)	253◆	GLB06...	.5319◆	HEP590...	.8168	K673(FET)	2389◆	LA7838...	7039
BYW95C	569◆	C3811(Trans)	123AP◆	D1261(Trans)	253◆	GLB08...	.5320◆	HEP6091...	.8168	K674(FET)	2389	LA7851...	7062
BYX82...	580	C3811O(Trans)	123AP◆	D1261A(Trans)	253◆	GLB10...	.5320◆	HEP-C6091G	.8168	K682(FET)	2394	LA7852...	7063
BYX83...	580	C3811R(Trans)	123AP◆	D1261AR(Trans)	253◆	GLBPC12-005	.5322◆	HEP-S3002	.2347	K683(FET)	2394	LM340KC-5(T03)	309K
BYX84...	580	C3822(Trans)	2337	D1261R(Trans)	253◆	GLBPC12-01...	.5322◆	HEP-S3010	.2347	K723(FET)	2393	LM340KC-12(T03)	1914
BYX85...	506	C3830(Trans)	2337	D1450(Trans)	2361	GLBPC12-02...	.5322◆	HEP-S3011	.2347	K724(FET)	2394	LM340KC-15(T03)	1916
BYX86...	506	C3831(Trans)	2311#	D1456	2302	GLBPC12-04...	.5324◆	HEP4510...	.3092	K725(FET)	2394	LM358S...	928S
BZX79A5V1...	5010T1	C3851A(Trans)	.291#	D1484K(Trans)	2410	GPB01-02...	.5326◆	HVPB10-14	.548	K735(FET)	2394	LM393S...	1718
BZX79A5V6...	5011T1	C3852(Trans)	.390#	D1484P(Trans)	2354	GPB01-02...	.5326◆	HVPB12-08	.517◆	K736(FET)	2394◆	LM413ACZ...	999
BZX79A6V2...	5011T1	C3856(Trans)	.293#	D1706(Audio)	2305#	GPB01-10...	.5326◆	HVPB12-12	.517◆	K781(FET)	2394#	LM7093...	909
C93-02...	6246#	C3882A(Trans)	2348◆	D1710(Trans)	2002	GPB01-10...	.5326◆	HVPB12-12	.517◆	K782(FET)	2391	M683D...	891SM
C122E...	546◆	C4096(Trans)	2348#	D1781K(Trans)	2406	GPB01-15...	.5322◆	HVPB12-14	.517◆	K764(FET)	2394	LM833M...	891SM
C122M...	546◆	C4111(Trans)	2348#	D1782K(Trans)	2410	GPB01-15...	.5322◆	HVPB15-08	.542	K764A(FET)	2393◆	LM833N...	891M
C156A(SCR)	5368◆	C4122(Trans)	231◆	D1791(Trans)	270#	GPB01-15...	.5326◆	HVPB15-10	.542	K765(FET)	2393◆	LM1877-9...	990
C156B(SCR)	5368◆	C4123(Trans)	235◆	D1791(Trans)	270#	GPB01-15...	.5326◆	HVPB15-12	.542	K767(FET)	2385#	LM1877N-9...	990
C156C(SCR)	5368◆	C4124(Trans)	235◆	D1793(Trans)	270#	GPB01-15...	.5327◆	HVPB15-14	.542	K768(FET)	2393◆	LM2907N-8...	995M
C156D(SCR)	5368◆	C4125(Trans)	235◆	D1795(Trans)	2316#	GPB01-15...	.5328◆	HVPB15-14	.542	K769(FET)	2393◆	LM32356-15...	4256
C156E(SCR)	5368◆	C4131(Trans)	2305#	D1798(Trans)	2348◆	GPB01-25...	.5322◆	HVPB15-16	.542	K770(FET)	2387#	LM31GPHL...	3024
C156M(SCR)	5368◆	C4138(Trans)	2311#	D1880(Trans)	2353	GPB01-25...	.5322◆	HVPB15-16	.542	K781(FET)	2394	LM683D...	891SM
C213(Trans)	2347	C4139(Trans)	2311#	D1881(Trans)	2353	GPB01-25...	.5322◆	HVR5A...	.544	K783(FET)	2394	LM683D...	891SM
C214(Trans)	2347	C4140(Trans)	2311#	D1887(Trans)	2354#	GPB01-25...	.5322◆	HVR5S...	.544	K788(FET)	2394	LM683D...	891SM
C215(Trans)	2347	C4141(Trans)	2345#	D1903(Trans)	2354#	GPB01-25...	.5322◆	HVR5-AS...	.544	K789(FET)	2394◆	LM683D...	891SM
C223(Trans)	2347	C4142(Trans)	231◆	D1905(Trans)	2354#	GPB01-25...	.5326◆	HVR-5AS...	.544	K790(FET)	2394◆	LM683D...	891SM
C224(Trans)	2347	C4232(Trans)	2348◆	D2014(Trans)	2326	GPB01-25...	.5327◆	HCP7.235...	.5006A	K806(FET)	2387#	LM6910HR...	3074
C225(Trans)	2347	C4235(Trans)	2348◆	D2015(Trans)	2326	GPB01-25...	.5328◆	HZ22-01T2	.5030A	K819(FET)	2394	LT6640HR...	3075
C234(Trans)	2347	C4236(Trans)	2348◆	D2024(Trans)	261	GPB01-25...	.5340◆	I03D47530N	.1827	K829(FET)	2394◆	MA4100...	5019T1
C235(Trans)	2347	C4237(Trans)	2348◆	D2025(Trans)	261#	GPB01-35...	.5340◆	I035D7220	.7066	K859(FET)	2394	MA413ACZ...	5313
C235S-O(Trans)	2347	C4246(Trans)	2308#	D2032(Trans)	261◆	GPB01-35...	.5340◆	I05DE8601B	.7065	K859(FET)	2394	MA4160H...	5037A◆
C235Y(Trans)	2347	C4247(Trans)	2308#	D2033(Trans)	375◆	GPB01-35...	.5342◆	I05DE86540	.7058	K867(FET)	2394◆	MA4100M...	5019T1◆
C291(Trans)	2347	C4247P(Trans)	2308#	D2041(Trans)	2323◆	GPB01-35...	.5342◆	I05DE86540	.7058	K867A(FET)	2394◆	MA4120MTA...	5021T1◆
C292(Trans)	2347	C4248(Trans)	2309#	D2042(Trans)	2336◆	GPB01-35...	.5342◆	I05DE86540	.7058	K867A(PG)	2394◆	MA4121...	5618
C293(Trans)	2347	C4249(Trans)	2309#	D2043(Trans)	2343◆	GPB01-35...	.5344◆	ICL741C-LN-TY	.941	K869(FET)	2394◆	MA4120...	5019T1
C3010(Trans)	2347#	C4301(Trans)	.2309#	D2044(Trans)	2377◆	GPB0101...	.5314	IR3741N	.941SM	K8020PG...	3048◆	MBAS16...	.593
C458(Trans)	2348	C4302(Trans)	.2309#	D2048(Trans)	152◆	GPB0102...	.5315	IR37493	.943M	K875(FET)	2394	MBR735...	6083
C669(Trans)	2347	C4303(Trans)	.2324	D2251(Trans)	2353	GPB0104...	.5314	IR376342	.987	K876(FET)	2394	MBR745...	6083
C669A(Trans)	2347	C4303A(Trans)	.2324	D2252(Trans)	2354#	GPB0106...	.5315	IR3791458	.778A	K876(FET)	2387#	MBR745...	6083
C697(Trans)	2347#	C4297(Trans)	.2308#	D2253(Trans)	2308#	GPB0107...	.5315	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697A(Trans)	2347#	C4309(Trans)	.2348◆	D2306(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697A(J)...	2347#	C4309P(Trans)	.2348◆	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697A(J)...	2347#	C4309Y(Trans)	.2348◆	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697A(J)...	2347#	C4309Y(Trans)	.2348◆	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697E(Trans)	2347#	C4309Y(Trans)	.2348◆	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697F(Trans)	2347#	C4309Y(Trans)	.2348◆	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697H(Trans)	2347#	C4324(Trans)	.2337◆	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697I(Trans)	2347#	C4334(Trans)	.2337◆	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697J(Trans)	2347#	C4344(Trans)	.2309#	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697K(Trans)	2347#	C4344(Trans)	.2309#	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697L(Trans)	2347#	C4344(Trans)	.2309#	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697M(Trans)	2347#	C4344(Trans)	.2309#	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387#	MBR745...	6083
C697N(Trans)	2347#	C4344(Trans)	.2309#	D2307(Trans)	261◆	GPB0108...	.5312◆	IR3791458N	.778SM	K876(FET)	2387		

To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement
MK4027J-4.....	.2104	NJM78M18FA.....	.958#	RG4LFM1.....	.576	SDT5005.....	.2347	SK74C373.....	.74C373	SK10055.....	.1924	SK10208.....	.4989
MK4027N-4.....	.2104	NJM78M24FA.....	.972#	RGP30GJ.....	.580	SDT5006.....	.2347	SK74C374.....	.74C374	SK10058.....	.1941	SK10209.....	.6102
MKP9V120.....	.6419	NJM79L05A.....	.1917	RGP5080.....	.558	SDT5007.....	.2347	SK74C3901.....	.74C3901	SK10061.....	.778SM	SK11010.....	.6103
M774C02N.....	.74C02	NJM79L12A.....	.1903	RGP5100.....	.558	SDT5008.....	.2347	SK74C3902.....	.74C3902	SK10070.....	.928SM	SK10211.....	.5104
M774C08N.....	.74C08	NJM79L15A.....	.1905	RH-1X1077CEZZ.....	.7058	SDT5009.....	.2347	SK74C3903.....	.74C3903	SK10073.....	.928SM	SK10212.....	.6105
M774C10N.....	.74C10	NJM79L18A.....	.1907	RH-1X1078CEZZ.....	.7065	SDT5010.....	.2347	SK74C3904.....	.74C3904	SK10075.....	.943SM	SK10213.....	.6110
M774C20N.....	.74C20	NJM79L24A.....	.1909	RH-1X1079CEZZ.....	.7054	SDT5011.....	.2347	SK74C3922.....	.74C3922	SK10076.....	.944	SK10214.....	.6112
M774C37N.....	.74C73	NJM79M05A.....	.961	RH-1X1712CEZZ.....	.7010	SDT5012.....	.2347	SK74C3923.....	.74C3923	SK10080.....	.1709	SK10215.....	.6113
M774C74N.....	.74C74	NJM79M05FA.....	.961#	RH-DX0214CEZZ.....	.588	SDT5013.....	.2347	SK74C3925.....	.74C3925	SK10081.....	.1569	SK10216.....	.6115
M774C76N.....	.74C76	NJM79M06A.....	.963	RH-DX0255CEZZ.....	.558	SDT5014.....	.2347	SK74LS01.....	.74LS01	SK10082.....	.1845	SK10217.....	.6116
M774C85N.....	.74C85	NJM79M06FA.....	.963#	RH-DX0259CEZZ.....	.5330#	SDT5501.....	.2347	SK74LS13.....	.74LS13	SK10083.....	.1846	SK10219.....	.6162
M774C90N.....	.74C90	NJM79M08A.....	.965	RH-DX0302CEZZ.....	.558	SDT5503.....	.2347	SK74LS28.....	.74LS28	SK10084.....	.1847	SK10220.....	.6163
M774C154N.....	.74C154	NJM79M08FA.....	.965#	RH-DZ0009YBEO.....	.544	SDT5504.....	.2347	SK74LS40.....	.74LS40	SK10085.....	.1855	SK10221.....	.1600
M774C157N.....	.74C157	NJM79M12A.....	.967	RH-EX0002AEZZ.....	.5021T	SDT5506.....	.2347	SK74LS47.....	.74LS47	SK10086.....	.1886	SK10223.....	.1602
M774C161N.....	.74C161	NJM79M12FA.....	.967#	RH-EX0022TAZZ.....	.1424	SDT5507.....	.2347	SK74LS48.....	.74LS48	SK10087.....	.1934X	SK10226.....	.1609
M774C164N.....	.74C164	NJM79M15A.....	.969	RH-EX0024GEZZ.....	.5013A	SDT5508.....	.2347	SK74LS55.....	.74LS55	SK10088.....	.2331	SK10230.....	.1621
M774C174N.....	.74C174	NJM79M15FA.....	.969#	RH-EX0042TAZZ.....	.5009A	SDT5509.....	.2347	SK74LS145.....	.74LS145	SK10089.....	.2341	SK10232.....	.1625
M774C175N.....	.74C175	NJM79M18A.....	.959	RH-EX0043TAZZ.....	.5011A	SDT5511.....	.2347	SK74LS148.....	.74LS148	SK10090.....	.2342	SK10233.....	.1631
M774C192N.....	.74C192	NJM79M18FA.....	.959#	RH-EX0045TAZZ.....	.1424	SDT5512.....	.2347	SK74LS247.....	.74LS247	SK10091.....	.2343	SK10234.....	.1634
M774C193N.....	.74C193	NJM79M24A.....	.971	RH-EX0047GEZZ.....	.5009A	SDT5513.....	.2347	SK74LS348.....	.74LS348	SK10092.....	.2344	SK10239.....	.1641
M774C221N.....	.74C221	NJM79M24FA.....	.971#	RH-EX0049TAZZ.....	.5011T	SDT5514.....	.2347	SK74LS352.....	.74LS352	SK10093.....	.2361	SK10241.....	.1670
M774C295N.....	.74C295	NJM431L.....	.999	RH-EX0092CEZZ.....	.5006A	SDT7401.....	.2347	SK74LS353.....	.74LS353	SK10094.....	.2362	SK10242.....	.1672
M80B097N.....	.80C97	NJM1458.....	.778A	RH-EX0094CEZZ.....	.5021A	SDT7402.....	.2347	SK74LS378.....	.74LS378	SK10095.....	.2402	SK10243.....	.5320
M80B098N.....	.80C98	NJM2068D.....	.891M#	RH-EX0102CEZZ.....	.5011A	SDT7403.....	.2347	SK74LS398.....	.74LS398	SK10096.....	.2403	SK10244.....	.1679
MW2102AN-4L.....	.2102	NJM2068M.....	.891SM#	RH-EX0116CEZZ.....	.5010A	SDT7411.....	.2347	SK74LS399.....	.74LS399	SK10097.....	.2406	SK10246.....	.1681
MM3005.....	.2347#	NJM3524D.....	.1720	RH-EX0130GEZZ.....	.5009A	SDT7412.....	.2347	SK74LS641.....	.74LS641	SK10098.....	.2407	SK10247.....	.1686
MM3006.....	.2347#	NJM4151.....	.890	RH-EX0145CEZZ.....	.5015A	SDT7413.....	.2347	SK74LS642.....	.74LS642	SK10099.....	.2408	SK10252.....	.1652
MM3007.....	.2347#	NJM4560D.....	.891M	RH-EX0154CEZZ.....	.5015A	SDT7414.....	.2347	SK74LS645.....	.74LS645	SK10100.....	.2409	SK10253.....	.6118
MMBTA05L.....	.2410	NJM4560M.....	.891SM	RH-EX0156CEZZ.....	.5022A	SDT7415.....	.2347	SK3242.....	.8168	SK10101.....	.2410	SK10254.....	.5329
MMBTA06L.....	.2410	NJM4562D.....	.891M	RH-EX0163GEZZ.....	.5021T	SDT7416.....	.2347	SK3512.....	.2347	SK10102.....	.2411	SK10255.....	.5417
MMBTA06LT1.....	.2410	NJM4562M.....	.891SM	RH-EX0223CEZZ.....	.5014A	SDT7417.....	.2347	SK4501UB.....	.4501	SK10103.....	.2401	SK10256.....	.5418
MMBTA20L.....	.2406	NJM7805A.....	.960	RH-EX0255CEZZ.....	.5025A	SDT7418.....	.2347	SK4506UB.....	.4506B	SK10104.....	.2405	SK10257.....	.5470
MMBTA55L.....	.2411	NJM7805FA.....	.960#	RH-EX0296CEZZ.....	.5011T	SDT7419.....	.2347	SK4513B.....	.4513B	SK10105.....	.2405	SK10258.....	.5419
MMBTA56L.....	.2411	NJM7806A.....	.962	RH-EX0397CEZZ.....	.5009A	SDT9001.....	.2347	SK4521B.....	.4521B	SK10106.....	.2412	SK10259.....	.5471
MMBTA56LT1.....	.2411	NJM7806FA.....	.962#	RH-EX0398CEZZ.....	.5013A	SDT9002.....	.2347	SK4522B.....	.4522B	SK10107.....	.2413	SK10260.....	.5472
MMBTA70L.....	.2407	NJM7808A.....	.964	RH-EX0413GEZZ.....	.5022A	SDT9003.....	.2347	SK4526B.....	.4526B	SK10108.....	.2416	SK10261.....	.5474
MOCB020.....	.3045	NJM7808FA.....	.964#	RH-EX0586CEZZ.....	.139A#	SDT9004.....	.2347	SK4531B.....	.4531B	SK10109.....	.2417	SK10262.....	.5476
MP5306.....	.46	NJM7812A.....	.966	RH-EX0592CEZZ.....	.142A	SDT9005.....	.2347	SK4539B.....	.4539B	SK10110.....	.2418	SK10265.....	.56010
MP5206.....	.46	NJM7812FA.....	.966#	RH-FX0018CEZZ.....	.3098	SDT9006.....	.2347	SK4547B.....	.4547B	SK10112.....	.2426	SK10266.....	.56015
MPG60D.....	.587	NJM7815A.....	.968	RH-IX1077CEZZ.....	.7058	SDT9007.....	.2347	SK4551B.....	.4551B	SK10113.....	.2427	SK10267.....	.56016
MPN3401.....	.555A	NJM7815FA.....	.968#	RH-IX1078CEZZ.....	.7055	SDT9008.....	.2347	SK4553B.....	.4553B	SK10114.....	.2430	SK10268.....	.56018
MPN3401.....	.555A	NJM7818A.....	.958	RH-IX1075CEZZ.....	.7054	SDT9009.....	.2347	SK4556B.....	.4556B	SK10115.....	.2431	SK10269.....	.56019
MP5305.....	.46	NJM7818FA.....	.958#	RH-IX112CEZZ.....	.7010	SDT9010.....	.2347	SK4562B.....	.4562B	SK10116.....	.2431	SK10271.....	.5319
MP5305.....	.46	NJM7824A.....	.958#	RH-IX112CEZZ.....	.7010	SDT9011.....	.2347	SK4568B.....	.4568B	SK10117.....	.2317	SK10271.....	.159MCP
MP5309.....	.46	NJM7824FA.....	.958#	RH-IX112CEZZ.....	.7010	SDT9012.....	.2347	SK4569B.....	.4569B	SK10118.....	.2320	SK10274.....	.1542
MP5934B.....	.1230P	NJM7905A.....	.961	RH-IX112CEZZ.....	.569	SDT85501.....	.2347	SK4583B.....	.4583B	SK10119.....	.2321	SK10276.....	.2026
MP5934C.....	.123AP	NJM7905FA.....	.961#	RH-IX112CEZZ.....	.569	SDT85502.....	.2347	SK4597B.....	.4597B	SK10120.....	.2345	SK10286.....	.2049
MP59634D.....	.123AP	NJM7906A.....	.963	RH-IX112CEZZ.....	.569	SDT85503.....	.2347	SK4598B.....	.4598B	SK10121.....	.2346	SK10279.....	.2050
MS1002.....	.6083	NJM7906FA.....	.963#	RM-2AVTA.....	.125	SDT85506.....	.2347	SK6293.....	.93MCP	SK10122.....	.2349	SK10280.....	.2051
MS1003.....	.6083	NJM7908A.....	.965	RS3F5.....	.552	SDT85507.....	.2347	SK6265.....	.5618	SK10123.....	.2350	SK10281.....	.2052
MS1004.....	.6083	NJM7908FA.....	.965#	RU-2M(VTA).....	.552	SDT85508.....	.2347	SK7439.....	.7439	SK10124.....	.2351	SK10282.....	.2055
MS1045.....	.6083	NJM7912A.....	.967	RU2N.....	.552	SCF2305.....	.1928	SK9005.....	.555A	SK10125.....	.2358	SK10283.....	.2060
MTG8N50E.....	.2393#	NJM7912FA.....	.967#	RU4B.....	.577	SFR101.....	.569#	SK9006.....	.548	SFR102.....	.569#	SK10126.....	.2390
MTG9N50E.....	.2394#	NJM7915A.....	.969	SFR102.....	.577	SFR103.....	.569#	SK9011.....	.549	SFR103.....	.569#	SK10127.....	.2391
MTG14N50E.....	.2394#	NJM7915FA.....	.969#	SSS3M.....	.6083	SFR104.....	.569#	SK9770.....	.569	SFR104.....	.569#	SK10129.....	.2392
MTH7N45.....	.2393	NJM7918FA.....	.959#	S180D.....	.580	SFR105.....	.569	SK9870.....	.569	SFR106.....	.569#	SK10130.....	.2386
MTH8N35.....	.2393	NJM7924A.....	.971	S181D.....	.580	SFR151.....	.569	SK9871.....	.569	SFR152.....	.569#	SK10131.....	.2388
MTH8N40.....	.2393	NJM7924FA.....	.971#	S182D.....	.580	SFR152.....	.569	SK9876.....	.569	SFR153.....	.569#	SK10132.....	.2374
MTH8N45.....	.2393	NSD3020C.....	.6090#	S183D.....	.580	SFR153.....	.569	SK9880.....	.569	SFR154.....	.569#	SK10133.....	.2375
MTH8N45FP.....	.2393#	NSD3030C.....	.6090#	S483T(CEB).....	.23	SFR302.....	.569	SK9886.....	.569B	SFR303.....	.569	SK10134.....	.2376
MTP10N05.....	.2390	NSD0204C.....	.6090#	S3010(HEP).....	.2347	SFR303.....	.569	SK9943.....	.594	SFR304.....	.595	SK10135.....	.2377
MTP10N06.....	.2390	NSD0205-6.....	.6090#	S3011(HEP).....	.2347	SFR304.....	.569	SK9944.....	.595	SFR305.....	.595#	SK10136.....	.2378
MTP15N05.....	.2389#	NSD1020C.....	.6083	SBL2020.....	.6083	SFR305.....	.569	SK9945.....	.596	SFR305.....	.596#	SK10137.....	.2385
MTP15N06.....	.2389#	NSD1020C.....	.6083	SBL2030PT.....	.2011	SG2011.....	.2011	SK9954.....	.1859	SFR147.....	.1844	SK10304.....	.2387
MTP25N05.....	.2389	NST545.....	.6083	SG20120PT.....	.2012	SK9947.....	.1678	SK10140.....	.1871	SK10297.....	.2147		
MTP25N06.....	.2389	P5D(SMD).....	.593	SG20120PT.....	.2012	SK9948.....	.1685	SK10148.....	.1848	SK10298.....	.2164		
MTP30N05E(FET).....	.2389	P30N05E(FET).....	.2389	SG20120PT.....	.2013	SK9948.....	.1685	SK10149.....	.1849	SK10299.....	.2174		
MTP30N06E(FET).....	.2389#	P30N06E(FET).....	.2389#	SG20120PT.....	.2014	SK9949.....	.1689	SK10150.....	.1850	SK10310.....	.284MP		
MTP45N05E.....	.2389#	PA3005.....	.1399	SG2015.....	.2015	SK9950.....	.1705	SK10151.....	.1852	SK10311.....	.289AMP		
MTP8W850E.....	.2393#	PBYR735.....	.6083	SG2015.....	.2016	SK9951.....	.1710	SK10152.....	.1853	SK10312.....	.290AMP		
MTW10N40E.....	.2394#	PBYR735F.....	.6083#	SG2020N.....	.2017	SK9952.....	.1711	SK10153.....	.1853	SK10313.....	.292MCP		
MWT14N50E.....	.2394#	PBYR740.....	.6083	SG2030N.....	.2018	SK9953							

Additions/Changes

SK10428 through ZS106

To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement	To Be Replaced	ECG Replacement		
SK10428	5924	SK10505	1896	SR1002	6083	TAT267BP	7064	TG2SC3402	2355	UFN611	2391◆	VHITA7348P-1	1826		
SK10429	5925	SK10506	1897	SR1003	6083	TG267P	7064	TG2SD0313	152	UFN612	2391◆	VHTA6203SA-1	7057		
SK10430	5928	SK10507	1898	SR1004	6083	TAT291S	7043	TG840M	55*	UFN613	2391◆	VHTA63589P-1	7048		
SK10431	5929	SK10508	1899	SR1020	6083	TAT299P	1830	TIC253B(T0218)	56033	UFN721	2391◆	VHTDA7670P-1	11		
SK10432	5932	SK10509	1865	SR1030	6083	TAT780S	6083	TIC253(T0218)	56033	UFN722	2391◆	VHTDA8305A-1	7047		
SK10433	5933	SK10510	576	SR1035	6083	TAT780S	962#	TIC253E(T0218)	56033	UFN723	2391◆	VHIUPC1406HA1	1792		
SK10434	6220	SK10511	577	SR1040	6083	TAT780S	963#	TIC253M(T0218)	56033	UHV802	597	VHIUPC1513H1	1787		
SK10435	6230	SK10512	6241	SR1045	6083	TAT7810S	1932#	TIC263B(T0218)	56033	VHSS6785GLB2E	5424#				
SK10436	5702	SK10513	6247	SRA820	6083	TAT812S	966#	TIC263D(T0218)	56033	UHVP804	598	VHS6785GLBIE	5424#		
SK10437	5703	SK10514	879	SRA830	6083	TAT815S	968#	TIC263E(T0218)	56033	UHVP806	598	VTS2A968Y/-1	398		
SK10438	5704	SK10515	999M	SRA840	6083	TAT818S	958#	TIC263M(T0218)	56033	ULN2011A	2011	VS2SC383-WT-1	.85		
SK10439	3170	SK10516	999MS	SRM-8ZG	548	TAT824S	972#	TIP501	2347	ULN2012A	2012	VS2SC1827/1E	.291		
SK10440	3171	SK10518	3120	SRP100J	569	TAT820AH	7068	TIP502	2347	ULN2013A	2013	VS2SC2021-Q-1	16◆		
SK10441	3181	SK10519	2128	SRP100K	569	TAT8200H	7068	TIP541	2347◆	ULN2014A	2014	VS2SC2236Y/-1	.375		
SK10442	3182	SK10520	1890	SS8050	216	TAT8201AK	1832◆	ULN2015A	2015	VS2SC2610Y/-1	.399				
SK10443	6362	SK10522	1892	SK10522	216	TAT820AH	7041	TPL780	2333	UFN541	2389	VHSS6785GLB2E	.5424#		
SK10444	6363	SK40098B	40098B	STK3082II	1339◆	TAT820AL	7041◆	TIS98(CBE)	123AP	UPC259C	891M	VS2SC3886A/1E	.2324#		
SK10445	3169	SK40195B	40195B	STK4034II	7030	TAT821AH	7070	TIS99(CBE)	123AP	UPC259G	891SM	VS2SC454L2B2E	.376#		
SK10446	3180	SK72390	74390	STK4036II	7030	TAT821H	7070	TL431ACLP	.999	UPC1263C2	7055	VS2SD1554/1	.2331		
SK10447	9200	SK74142	74142	STK4044II	7031	TAT8601B	7065	TL431ACZ	.999	UPC1316C	7055	VS2SD2095/1E	.2331		
SK10448	9401	SK74143	74143	STK4046X	7032	TAT8601BN-FA-1	7065	TL431CLP	.999	UPC1488H	7056	VS2SD2125/1E	.2331		
SK10449	955MC	SK74144	74144	STK4231II	7029	TAT8601BNV	7065	TLC555CD	955SM	UPC2005V	.1396	VSDTA124E5/-1	.2358		
SK10450	955SM	SK74147	74147	STK4231II	7029	TAT8601CN	7065◆	UPC4556C	.891M◆	VSDTC144F/-1	.2359◆				
SK10451	995M	SK74158	74158	STK5331	7035◆	TAT8601CN(FA-1)	7065◆	UPC4556G	.891SM◆	VSK62	.6083	VSK62	.6083		
SK10452	.987SM	SK74173	74173	STK5333	7036	TAT8601CN(FA-1)	7065◆	TLG143	.3014A	UPC4559C	.778A	VS2SC3886A/1E	.2324#		
SK10453	.978SM	SK74182	74182	STK5342	7035	TAT8654	7058	TLP621-1-GB	.3098	UPC4560C	.891M	VSK64	.6083		
SK10454	.978C	SK74221	74221	STK5346	7024	TAT8654N	7058	TLP631	.3043◆	UPC4560G	.891SM	VSK1020	.6083		
SK10455	.975SM	SK74251	74251	STK5352	7026	TAT8680AN	7010	TM2SC1685	.85	UPC4570C	.891M	VSK1035	.6083		
SK10456	.6809E	SK74290	74290	STK5364	7037	TAT8703	7057	TM2SC1686	.85	UPC4570G	.891M	VSK1045	.6083		
SK10457	.610E	SK74293	74293	STK5461	7027	TAT8703S	7057	TM341M-L	.5638	UPC4572C	.891M◆	W005G	.5304		
SK10458	.6107	SK74365	74365	STK5464	7023	TCT1013170	2894	TM361M-L	.5609#	UPC4572G	.891SM◆	W01G	.5304		
SK10459	.5667A	SK74366	74366	STK5468	7028	TD62001P	2011	TM541M-L	.5638	UPT211	.2347	W02G	.5304		
SK10460	.5668A	SK74367	74367	STK5468S	7028	TD62002P	2012	TM561M-L	.5609#	UPT212	.2347	W04G	.5304		
SK10461	.5669A	SK74368	74368	STK5474	7074	TD62008P	2033	TM841M-L	.5638	UPT213	.2347	W06G	.5305		
SK10462	.468	SK75454B	75454B	STK5476	7022	TD62008P-1	2033	TM861M-L	.5609#	UPT214	.2347	W08G	.5306		
SK10463	.469	SKMV95A	1V095	STK5477	7034	TD62008P-	2033	TM1041M-L	.5645	UPT611	.2347	W10G	.5307		
SK10464	.487	SKT240/04	5591	STK5486	7038	TDA1074A	7072	TM1061M-L	.5645	UPT612	.2347	X1077CE	.7058		
SK10465	.489	SKT240/08	5592	STK6960	1748	TDA1074A	7072	TM1241M-L	.5600#	UPT613	.2347	X1078CE	.7065		
SK10466	.5620	SKT240/12	5592	STK6961	1748	TDA1074AN	7072	TM1261M-L	.5600#	UPT614	.2347	X1075CE	.7054		
SK10467	.5671	SL608(Diode)	.125	STK7348	7025	TDA2658	1804	TM1641M-L	.5616#	USD635	.6083	XGS7001	.2347		
SK10468	.5698	SLB530	6083	STK7358	7033	TDA3569	7048	TM1641S-L	.5671	USD640	.6083	XGS7002	.2347		
SK10469	.5699	SLB530	6083	STK7404	7021	TDA7052	7051	TM1661M-L	.5601#	USD645	.6083	XRA4151CP	.890		
SK10470	.5699	SM-1A-02FR	569◆	STK7406	7021	TDA7056	7052	TM1661S-L	.5671	USD735	.6083	XRA6418N	.7042		
SK10471	.7001	SM-1A-02FRA	569◆	STK7408	7021	TDA7056	7052	TN3T03001	.2355	USD740	.6083	YTF521	.2390		
SK10472	.7003	SM-1A-04FR	569◆	STK7563A	1737◆	TDA7056U	7052	NT7TC05001	.2416	USD745	.6083	YTF523	.2382		
SK10473	.7004	SM-1A-04FRA	569◆	STRD3015	1896◆	TDA7350	7053	TD6802P	.1394	UTZJ51	.5010A	YTF531	.2389◆		
SK10474	.7005	SM-1A-06FR	569◆	STRD3030	1777◆	TDA8305	7047	TP3TC03001	.2358	UTZJ51B	.50101T	YTF533	.2390		
SK10475	.7006	SM-1A-06FRA	569◆	STRD3035	1778◆	TDA8305A	7047	TP7TC05001	.2417	UTZJ51C	.5011A	YTF541	.2389		
SK10476	.7007	SM-1XH02	569◆	STRS6301	7073	TDA8305AY	7047	UTZJ51D	.5011T1	YTF543	.2389	YTF610	.2394		
SK10477	.7008	SM-1XH04	569◆	STRS6301A	7046	TDA8305AN	7047	UTZJ51E	.5011T1	YTF611	.2394	YTF612	.2394		
SK10478	.7009	SM-1XH06	569◆	STRS6301-LF933	7073	TDA8305AN	7047	TR02069	.19	YTF613	.2394	YTF614	.2394		
SK10479	.7010	SM-XM02	569◆	TIP501	.2347	TDA8305P	7047	TR602(BCE)	.157◆	YTF616	.2394	YTF617	.2394		
SK10480	.7011	SM-XM04	569◆	TIP502	.2347	TDA8305P	7047	TS62019P	.2061	YTF618	.2394	YTF619	.2394		
SK10481	.7012	SM-XM06	569◆	TEA561	.2347◆	TDA8305P	7050	TS62019P	.2061	YTF620	.2394	YTF622	.2391		
SK10482	.7013	SM-1.5-02FR	.569	TPL760	.2333	TEA561B	.2333	TT25A950	.290A	YTF623	.2391	YTF623	.2391		
SK10483	.7014	SM-1.5-04FR	.569◆	TPL760A	.2333	TEA561B	.2333	TVR-06G-623	.552	YTF624	.2391	YTF624	.2391		
SK10484	.7015	SM-3-02FR	569◆	TPL760A	.2333	TESTLGG	.102A	UTZJ10B	.5019T1	YTF6450	.2394	Z4BLTA	.5031A		
SK10485	.7016	SM-3-04FR	.569	TPL760A	.2348	TF321M	.5417◆	UTZJ11	.5020A	YTF6451	.2394	Z30BM	.5035A		
SK10486	.7017	SM-3-06FR	.569	TPL760A	.2348	TF321M-A	.5426	UTZJ12	.5021T1	YTF6452	.2394	Z131-20UL	.524V13		
SK10488	.7019	SN74LS47N	.74LS47	TPL760A	.2348	TF341M	.5418#	UTZJ12B	.5021T1	YTF6453	.2394	YTF6453	.2394		
SK10489	.7020	SN74LS48N	.74LS48	TPL760A	.2348	TF341M-A	.5426	UTZJ18	.5027A	Z5.1B	.5010A	Z131-20UL	.524V13		
SK10490	.7021	SN74LS13AN	.74LS13	TPL760A	.2348	TF361M	.5419#	UTZJ22	.5027A	YTF6454	.2394	Z9.1B	.5018A		
SK10491	.7022	SN74LS136N	.74LS136	TPL760A	.2348	TF361M-A	.5419#	UTZJ22	.5030A	YTF6455	.2394	Z9.1BL	.5018A		
SK10492	.7023	SN74LS155AN	.74LS155	TPL760A	.2348	TF521M	.5417#	UTZJ27	.5033A	YTF6456	.2394	Z11BLMTA	.5020A		
SK10493	.7024	SP888	.7053	T67A1037K0	.2409	TF541M	.5418#	UTZJ33	.5036A	YTF6457	.2394	Z24BLTA	.5031A		
SK10494	.7025	SR802	.6083	T67A028120	.2408	TF561M	.5419#	UTZJ36	.5037A	YTF6458	.2394	Z30BM	.5035A		
SK10497	.7026	SR803	.6083	T67A028127	.2408	TF821M	.5552#	UTZJ39	.5038A	YTF6459	.2394	Z131-20UL	.524V13		
SK10498	.7027	SR804	.6083	T67A028140	.2408	TF821S	.5440	UTZJ49PC	.1729	VHD11SS82//1A	.177	YTF6460	.2394	Z131-20UL	.524V13
SK10499	.7028	SR820	.6083	T67A028127	.2408	TF841M	.5554#	VHD175HC	.915	VHHA17182W-1	.966	Z131-70UL	.524V13		
SK10500	.7029	SR830	.6083	T67A02412K	.2408	TF861M	.5556#	VHM5404J	.580	VHIM5223P/-1	.778A	Z131-70UL	.524V13		
SK10501	.7029	SR835	.6083	T2806B	.5633	TFH341S	.5424#	UFN512	.2382	VHISTR56301-1	.7073	Z1306	.116		
SK10502	.7029	SR840	.6083	T2806D	.5635	TFH341S	.383	UFN543	.2389	VHIT056/1	.7052				
SK10504	.7029	SR845	.6083	T27267	.7064	TG2SC536KN	.85	UFN610	.2391◆	VHITA7347-1	.1873				

Deletions

| To Be Replaced | ECG Replacement |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |

<tbl_r cells="14

ECG® Products . . .

- Capacitors
- Chemicals
- Circuit Breakers
- Circuit Designers
- Connectors
- Cube Timers
- Flameproof Resistors
- Flyback Transformers
- Input/Output Modules
- Ni-Cd Batteries
- Proximity Switches
- Relays and Accessories
- Semiconductors
- Surge Suppressors
- Test Equipment
- TV Accessories
- VCR Parts
- Wiring Accessories

**Available from your local
Philips ECG Distributor**

Philips ECG
1025 Westminster Drive
PO Box 3277
Williamsport PA 17701

In Canada
ECG Canada Inc.
Electronic Components
1928 St. Regis Boulevard
Dorval, Quebec H9P 1H6

Printed in USA
ET-2628

Philips ECG

PHILIPS