Math 550

Homework 7

Trevor Klar

October 25, 2018

1. Let M be a k-dimensional manifold in $\mathbb{R}^N n$. Prove that if there exists a nowhere zero k-form on M, then M is orientable.

PROOF Since M is a manifold, then for every point $x \in M$ there exists a parameterization $\varphi_x : U_x \to V_x$ with $x \in V_x$. Thus the collection $\{\varphi_x\}_{x \in M}$ parametrizes all of M. Let

$$\begin{split} G &= & \{ \varphi_x \, | \, \varphi_x{}^*\omega(\varphi_x^{-1} \, (x)) \, (e_1, \ldots, e_k) > 0 \}, \\ B &= & \{ \varphi_x \, | \, \varphi_x{}^*\omega(\varphi_x^{-1} \, (x)) \, (e_1, \ldots, e_k) < 0 \}, \text{ and} \\ \tau_{12} : & \mathbb{R}^k \to \mathbb{R}^k \text{ defined by } \tau_{12}(x_1, x_2, x_3, \ldots, x_k) = (x_2, x_1, x_3, \ldots, x_k). \end{split}$$

Consider a point $p_g \in M$ such that for some $x_1, x_2 \in M$, we have $p_g \in V_{x_1} \cap V_{x_2}$ and $\varphi_{x_1}, \varphi_{x_2} \in G$. Then by a previous homework problem, φ_{x_1} and φ_{x_2} induce the same orientation on M_{p_g} for every $p_g \in V_{x_1} \cap V_{x_2}$. Thus all the parameterizations in G have compatible orientations. The same argument shows that the parameterizations in B are also compatible. Now, define

$$\psi_x = \begin{cases} \varphi_x & \text{if } \varphi_x \in G \\ \tau_{12} \circ \varphi_x & \text{if } \varphi_x \in B. \end{cases}$$

Thus, the parameterizations $\{\psi_x\}_{x\in M}$ are all compatible. To see this, observe that for any $\varphi_x\in B$,

$$\psi_{x}^{*}\omega(e_{1},\ldots,e_{k}) = (\tau_{12} \circ \varphi_{x})^{*}\omega(e_{1},e_{2},\ldots,e_{k})
= \varphi_{x}^{*}\tau_{12}^{*}\omega(e_{1},e_{2},\ldots,e_{k})
= \varphi_{x}^{*}\omega(e_{2},e_{1},\ldots,e_{k})
= -\varphi_{x}^{*}\omega(e_{1},e_{2},\ldots,e_{k})
> 0$$

Thus, we have produced a collection of parameterizations $\{\psi_x\}_{x\in M}$ covering M for which all ψ_{x_1},ψ_{x_2} induce the same orientation on M_x whenever $x \in V_{x_1} \cup V_{x_2}$, so M is orientable.

2. There is a general correspondence between k-forms and (n-k)-forms on \mathbb{R}^n , for all $1 \leq k \leq n$. Given $\omega \in \Omega^k(\mathbb{R}^n)$, we define $\star \omega \in \Omega^{n-k}(\mathbb{R}^n)$ using the rule

$$\star (dx_{i_1} \wedge \cdots \wedge dx_{i_k}) = \pm dx_{j_1} \wedge \cdots \wedge dx_{j_{n-k}},$$

and extending linearly, where $i_1 < \dots < i_k, j_1 < \dots < j_{n-k}, \text{ and } \{i_1, \dots, i_k, j_1, \dots, j_{n-k}\} = \{1, \dots, n\}.$ The sign is chosen so that $\omega \wedge \star \omega = dx_1 \wedge \cdots \wedge dx_n$.

Notation Another way to notate \star is: Let $\Gamma \subset \{1, \dots n\}$, and define \star by

$$\star \left(\bigwedge_{i \in \Gamma} dx_i \right) = \pm \bigwedge_{j \in \Gamma^0} dx_j$$

and extending linearly. The sign is chosen so that $\omega \wedge \star \omega = \bigwedge_{1}^{n} dx_{i}$.

Example In \mathbb{R}^5 , $\star (dx_1 \wedge dx_4) = dx_2 \wedge dx_3 \wedge dx_5$ and $\star (dx_1 \wedge dx_3) = -dx_2 \wedge dx_4 \wedge dx_5$. **Prove** that $\star \star \omega = (-1)^{k(n-k)}\omega$.

PROOF By definition of \star , we know that $\omega \wedge \star \omega = \bigwedge_{i=1}^{n} dx_i$ and $\star \omega \wedge \star \star \omega = \bigwedge_{i=1}^{n} dx_i$. So, by properties of wedge products, we can commute and write

$$(-1)^{k(n-k)} \star \star \omega \wedge \star \omega = \bigwedge_{1}^{n} dx_{i}$$
$$\omega \wedge \star \omega = \bigwedge_{1}^{n} dx_{i}$$

Now since $\star\star\omega$ and ω differ by at most a sign¹, then sign($\star\star\omega$) = $(-1)^{k(n-k)}$. Thus, $\star\star\omega$ = $(-1)^{k(n-k)}\omega$ as desired.

¹Since $\star \star \omega$ is a wedge indexed over $\Gamma^{\complement \complement} = \Gamma$, and all that remains is to determine the sign.