Методы редукции дисперсии, не предполагающие вычисление полного градиента: повышение эффективности за счёт техники случайного перемешивания батчей

Алексей Витальевич Ребриков Научный руководитель: к.ф.-м.н. А. Н. Безносиков

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 03.03.01 Прикладные математика и физика

2025

Редукция дисперсии и полный градиент

Проблема: Ставится задача оптимизации конечной суммы функций.

Цель: Предложить модификацию известного алгоритма редукции дисперсии, исключив необходимость подсчета полного градиента.

Решение: Предлагается модификацию алгоритма SARAH с использованием техники случайного перемешивания батчей.

Постановка задачи

Рассматривается задача минимизации конечной суммы:

$$\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x),$$

где $f_i:\mathbb{R}^d\to\mathbb{R},\ n\gg 1$. Методы снижения дисперсии (VR) типа SARAH требуют вычисления полного градиента $\nabla f(x)$. Это дорого при большом n.

Предположения

Рассматриваются следующие условия на функции f_i :

- ▶ *L*-гладкость: $\|\nabla f_i(x) \nabla f_i(y)\| \le L\|x y\|$ для любых $x, y \in \mathbb{R}^d$.
- ▶ μ -сильная выпуклость: $f_i(y) \ge f_i(x) + \langle \nabla f_i(x), y x \rangle + \frac{\mu}{2} ||y x||^2$.
- ▶ Невыпуклость функции f: $f^* := \inf_{x \in \mathbb{R}^d} f(x) > -\infty$.

Алгоритм: No Full Grad SARAH

Обновление градиента:

$$v_{s}^{t} = \frac{1}{n} (\nabla f_{\pi_{s}^{t}}(x_{s}^{t}) - \nabla f_{\pi_{s}^{t}}(x_{s}^{t-1})) + v_{s}^{t-1}$$

Аппроксимация полного градиента:

$$\widetilde{v}_s^{t+1} = \frac{t-1}{t}\widetilde{v}_s^t + \frac{1}{t}\nabla f_{\pi_s^t}(x_s^t), \quad v_{s+1} = \widetilde{v}_s^{n+1}$$

Эвристика: при каждой эпохе осуществляется случайная перестановка индексов (random reshuffling, RR), что улучшает сходимость.

Алгоритм: No Full Grad SARAH (псевдокод)

```
1: Вход: x_0^0 \in \mathbb{R}^d, \tilde{v}_0^0 = 0^d, v_0 = 0^d
  2: Параметр: шаг \gamma > 0
  3: for эпохи s = 0, 1, 2, ... do
            случайная перестановка \pi_{s}^{1},...,\pi_{s}^{n}
  4:
  5: v_{\rm s}^0 = v_{\rm s}
 6: x_s^1 = x_s^0 - \gamma v_s^0
 7: for t = 1, ..., n do
                  \widetilde{v}_{s}^{t+1} = \frac{t-1}{t} \widetilde{v}_{s}^{t} + \frac{1}{t} \nabla f_{\pi_{s}^{t}}(x_{s}^{t})
 8:
                  v_{s}^{t} = \frac{1}{n} (\nabla f_{\pi_{s}^{t}}(x_{s}^{t}) - \nabla f_{\pi_{s}^{t}}(x_{s}^{t-1})) + v_{s}^{t-1}
 9:
                  x_s^{t+1} = x_s^t - \gamma v_s^t
10:
       end for
11:
           x_{s+1}^0 = x_s^{n+1}, \ \widetilde{v}_{s+1}^1 = 0^d, \ v_{s+1} = \widetilde{v}_s^{n+1}
12:
13: end for
```

Теоретические результаты

Все f_i — L-гладкие, n — размер выборки, γ — шаг метода.

Невыпуклый случай:

$$\gamma \leq \frac{1}{20L(n+1)} \quad \varepsilon^2 = \frac{1}{S} \sum_{s=1}^{S} \|\nabla f(x_s^0)\|^2 \quad \Longrightarrow \quad \mathcal{O}\left(\frac{nL}{\varepsilon^2}\right)$$

Сильно выпуклый случай:

$$\gamma \leq rac{1}{20L(n+1)} \quad arepsilon = f(x_{\mathsf{S}+1}^0) - f(x^*) \quad \Longrightarrow \quad \mathcal{O}igg(rac{nL}{\mu}\lograc{1}{arepsilon}igg)$$

Сравнение методов

Алгоритм	Нет полного градиента?	Память	Невыпуклый случай	Сильно выпуклый случай
SAGA	✓	$\mathcal{O}(nd)$	_	$\mathcal{O}\left(n\frac{L^2}{\mu^2}\log\frac{1}{\varepsilon}\right)$
IAG	1	$\mathcal{O}(nd)$	_	$\mathcal{O}\left(n^2 \frac{L^2}{\mu^2} \log \frac{1}{\varepsilon}\right)$
PIAG	✓	$\mathcal{O}(nd)$	_	$\mathcal{O}\left(n\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$
DIAG	1	$\mathcal{O}(nd)$	_	$\mathcal{O}\left(n\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$
Prox-DFinito	1	$\mathcal{O}(nd)$	_	$\mathcal{O}\left(n\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$
AVRG	✓	$\mathcal{O}(d)$	_	$\mathcal{O}\left(n\frac{L^2}{\mu^2}\log\frac{1}{\varepsilon}\right)$
SVRG	×	$\mathcal{O}(d)$	_	$\mathcal{O}\left(n^3 \frac{L^2}{\mu^2} \log \frac{1}{\varepsilon}\right)$
SVRG	×	$\mathcal{O}(d)$	$\mathcal{O}\left(\frac{nL}{\varepsilon^2}\right)$	$\mathcal{O}\left(n\frac{L^{3/2}}{\mu^{3/2}}\log\frac{1}{\varepsilon}\right)$
SARAH	1	$\mathcal{O}(d)$	_	$\mathcal{O}\left(n^2 \frac{L}{\mu} \log \frac{1}{\varepsilon}\right)$
NFG SARAH	✓	$\mathcal{O}(d)$	$\mathcal{O}\left(\frac{nL}{\varepsilon^2}\right)$	$\mathcal{O}\left(n\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$

Эксперимент: CIFAR-10 + ResNet18

Рассматривается задача многоклассовой классификации на датасете CIFAR-10,

- ▶ 60 000 изображений размером 32 × 32
- 10 классов (по 6 000 изображений на класс)

Используется классическая архитектура модели ResNet-18 Оптимизируется стандартная функция потерь кросс-энтропия:

$$\min_{w} \frac{1}{M} \sum_{i=1}^{M} \ell(f_w(x_i), y_i),$$

где w — параметры модели, $f_w(x_i)$ — предсказание модели на входе x_i , y_i — истинная метка, ℓ — кросс-энтропия.

Графики

Эксперимент: CIFAR-100 + ResNet18

Задача многоклассовой классификации на датасете CIFAR-100:

- ▶ 60 000 изображений 32 × 32
- ▶ 100 классов (по 600 изображений на класс)

Используется архитектура ResNet-18.

Функция потерь — кросс-энтропия:

$$\min_{w} \frac{1}{M} \sum_{i=1}^{M} \ell(f_w(x_i), y_i),$$

где w — параметры модели, $f_w(x_i)$ — выход модели, y_i — метка, ℓ — кросс-энтропия.

 $Metog\ No\ Full\ Grad\ SARAH$ сравнивается с классическим SARAH.

Графики: CIFAR-100

Эксперимент: Tiny ImageNet + Swin Transformer

Задача классификации изображений на Tiny ImageNet:

- ▶ 200 классов, изображения 64 × 64
- ▶ масштабирование до 224 × 224 для Swin

Используется модель Tiny Swin Transformer (swin_T_patch4_window7_224), инициализированная предобученными весами с ImageNet-1K. Размер батча: 256, градиентный клиппинг: 1.0. Метрики: точность и кросс-энтропия. Сравниваются методы: SGD, SARAH, RR NFG-SARAH, предложенный NO FULL GRAD SARAH.

Графики: Tiny ImageNet

Выносится на защиту

- ▶ Предложен новый вариант метода SARAH, не использующий вычисление полного градиента.
- Использование перемешивания и скользящего среднего позволило аппроксимировать полный градиент без дополнительной памяти.
- Методы обладают улучшенными
 - **Затратами памяти:** требуется $\mathcal{O}(d)$ вместо $\mathcal{O}(nd)$
 - Сходимостью: лучшие оценки по числу итераций
- ▶ Проведены эксперименты (CIFAR-10/CIFAR-100 + ResNet18 и Tiny ImageNet + Swin Transformer), подтверждающие теоретические преимущества.