Cross Product

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 11.4 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Know how to compute the cross product of two vectors in \mathbb{R}^3 .
- Be able to use a cross product to find a vector perpendicular to two given vectors.
- Know how to use a cross product to find areas of parallelograms and triangles.
- Be able to use a cross product together with a dot product to compute volumes of parallelepipeds.

PRACTICE PROBLEMS:

1. For each of the following, compute $\overrightarrow{u} \times \overrightarrow{v}$ and verify that it is orthogonal to both \overrightarrow{u} and \overrightarrow{v} .

(a)
$$\overrightarrow{u} = \langle 3, -4, 1 \rangle; \overrightarrow{v} = \langle 2, -2, 3 \rangle$$

 $\boxed{\langle -10, -7, 2 \rangle}$

(c)
$$\mathbf{u} = 2\mathbf{i} + 3\mathbf{k}; \ \mathbf{v} = \mathbf{i} - \mathbf{j}$$

$$(3, 3, -2)$$

(a) Using appropriate properties of the cross product (**Not Determinants**), compute $(\mathbf{i} - \mathbf{j}) \times (\mathbf{j} - \mathbf{i}).$

0; Detailed Solution: Here

(b) Verify that your answer to part (a) is correct by using determinants.

0; Detailed Solution: Here

3. Compute two unit vectors which are normal to the plane which is determined by the points A(1,2,3), B(6,4,7), and C(1,5,2).

1

$$\overrightarrow{u_{1,2}} = \pm \frac{1}{\sqrt{446}} \langle -14, 5, 15 \rangle$$

4. Compute the area of the triangle with vertices A(1,2,3), B(6,4,7), and C(1,5,2).

$$\boxed{\frac{1}{2}\sqrt{446}}$$

5. Compute $\|\mathbf{u} \times \mathbf{v}\|$ if $\|\mathbf{u}\| = 2$, $\|\mathbf{v}\| = 5$, and the angle between \mathbf{u} and \mathbf{v} is 30° .

5

- 6. The following questions deal with finding the distance from a point to a line:
 - (a) Given three points A, B, and P in 3-space as shown in the picture below, explain how you could use the cross product to calculate the distance, d, between the point P and the line which contains A and B.

(Hint: Consider the vectors **AP** and **AB**)

Let θ be the angle between **AP** and **AB**. Then:

$$d = \|\mathbf{AP}\| \sin \theta$$
$$= \frac{\|\mathbf{AP}\| \|\mathbf{AB}\| \sin \theta}{\|\mathbf{AB}\|}$$
$$= \frac{\|\mathbf{AP} \times \mathbf{AB}\|}{\|\mathbf{AB}\|}$$

(b) Use your method from part (a) to compute the distance from the point P(5,3,0) to the line containing A(1,0,1) and B(2,3,1). Verify your answer with HW 11.3 #10(b).

$$d = \sqrt{\frac{91}{10}}$$

- 7. Consider the parallelepiped with adjacent edges $\overrightarrow{u}=\langle 1,2,3\rangle, \ \overrightarrow{v}=\langle 3,4,0\rangle,$ and $\overrightarrow{w}=\langle -1,3,-2\rangle.$
 - (a) Compute the volume of the parallelepiped.

43; Detailed Solution: Here

(b) Determine the area of the face determined by \overrightarrow{v} and \overrightarrow{w} .

 $\sqrt{269}$; Detailed Solution: Here

(c) Compute the angle between \overrightarrow{u} and the plane containing the face determined by \overrightarrow{v} and \overrightarrow{w} .

$$\frac{\pi}{2} - \cos^{-1}\left(\frac{43}{\sqrt{14}\sqrt{269}}\right)$$
; Detailed Solution: Here

- 8. Multiple Choice: Suppose \mathbf{u} and \mathbf{v} are non-zero vectors in \mathbb{R}^3 and that $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u} \times \mathbf{v}\|$, which of the following is the angle between \mathbf{u} and \mathbf{v} ?
 - (a) 0
 - (b) $\frac{\pi}{6}$
 - (c) $\frac{\pi}{4}$
 - (d) $\frac{\pi}{3}$
 - (e) $\frac{\pi}{2}$

c

- 9. **True or False:** Mark each of the following as either true or false. If the statement is false, explain why or provide a counterexample.
 - (a) The cross product of two vectors in \mathbb{R}^3 is <u>anti-commutative</u>; i.e., $\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$. True
 - (b) $\mathbf{i} \times \mathbf{k} = \mathbf{j}$. False; $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$
 - (c) For any vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^3 , $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{v} \times \mathbf{u}\|$. True
 - (d) If $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then either $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$.

 False; If \mathbf{u} is parallel to \mathbf{v} , then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.
 - (e) If $\mathbf{u} \cdot \mathbf{v} = 0$ and $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then either $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$. True