0.1 Equivalencia Homotópica

El propósito de esta sección es introducir una propiedad más débil que homeomorfismo pero que el grupo fundamental siga siendo un invariante.

Definición 1. Una función continua $f: X \to Y$ es una equivalencia homotópica si existe una función continua $g: Y \to X$ tal que $g \circ f \simeq \operatorname{Id}_X y$ $f \circ g \simeq \operatorname{Id}_Y$. En este caso se denota como $X \simeq Y$.

Claramente es una condición más débil que homeomorfismo, es decir

$$X \approx Y \implies X \simeq Y$$

porque un homeomorfismo $f: X \to Y$ cumple $f^{-1} \circ f = \operatorname{Id}_X y \ f \circ f^{-1} = \operatorname{Id}_Y$ donde igualdad de funciones claramente implica que son homotópicos.

Una clase importante de espacios son los que son homotópicos a un punto:

Definición 2. Un espacio X es contraible si $X \simeq \{x_0\}$.

Una definición alternativa es:

Ejercicio 1. Un espacio X es contraible si y sólo si $\mathrm{Id}_X \simeq e_x$ donde $e_x : X \to X$ es la función constante, para alguna $x \in X$.

 $Proof. \Longrightarrow$) Supongamos que X es contraible, es decir que $X \simeq \{p\}$. Podemos suponer sin pérdida de generalidad que $p \in X$ porque para todo elemento $x_0 \in X$ tenemos que $\{x_0\} \approx \{p\}$ y así $X \simeq \{p\} \simeq \{x_0\}$.

Por definición esto quiere decir que existen un funciones continuas $f: X \to \{x_0\}$ y $g: \{x_0\} \to X$ tales que $g \circ f \simeq_H \operatorname{Id}_X y f \circ g \simeq_G \operatorname{Id}_{\{x_0\}}$. En particular,

$$H(x,0) = (g \circ f)(x) = g(x_0)$$
 y $H(x,1) = \mathrm{Id}_X(x)$.

Como H es continua por hipótesis, esto quiere decir que H es una homotopía entre Id_X y la función constante $x\mapsto g(x_0)$.

 \iff Supongamos que existe una homotopía $H: X \times I \to X$ tal que $H(x,0) = \operatorname{Id}_X(x) = x$ y $H(x,1) = e_{x_0} = x_0$. Si denotamos $f = \operatorname{Id}_X|_{\{x_0\}} : \{x_0\} \to X$ entonces $e_{x_0} \circ f = \operatorname{Id}_{\{x_0\}}$ porque $(e_{x_0} \circ f)(x_0) = e_{x_0}(x_0) = x_0$, en particular $e_{x_0} \circ f \simeq \operatorname{Id}_{\{x_0\}}$. Por otro lado lado $f \circ e_{x_0} = e_{x_0}$ porque $(f \circ e_{x_0})(x) = f(x_0) = x_0$ y por hipótesis $e_{x_0} \simeq \operatorname{Id}_X$. Por lo tanto $f \circ e_{x_0} \simeq \operatorname{Id}_X$. Ambas homotopías implican que $X \simeq \{x_0\}$ y así X es contraible.

Una propiedad importante de las equivalencias homotópicas es que si $X \simeq Y$ entonces los grupoos fundamentales son isomorfos. Para esto necesitamos una propiedad de funciones homotópicas:

Proposición 1. Sean $f, g: (X, x_0) \to (Y, y_0)$ funciones basadas. Entonces $f \simeq g \Longrightarrow f_\# = g_\#$.

Proof. Para cualquier elemento $[\alpha] \in \pi_n(X, x_0)$ tenemos que $f_{\#}[\alpha] = [f \circ \alpha]$ y $g_{\#}[\alpha] = [g \circ \alpha]$. Por la proposición ?? tenemos que $f \simeq g$ implica que $f \circ \alpha \simeq g \circ \alpha$, es decir

$$f_{\#}[\alpha] = [f \circ \alpha] = [g \circ \alpha] = g_{\#}[\alpha] \quad \forall [\alpha] \in \pi_n(X, x_0).$$

Por lo tanto $f_{\#} = g_{\#}$.

Hay un detalle de esta prueba que no probamos. La proposición ?? es para espacios no basados, pero esto se puede resolver fácilmente:

Ejercicio 2. Sean $f, \tilde{f}: (X, x_0) \to (Y, y_0)$ y $g, \tilde{g}: (Y, y_0) \to (Z, z_0)$ funciones basadas tales que $f \simeq \tilde{f}$ y $g \simeq \tilde{g}$ donde las homotopías son basadas. Entonces $g \circ f \simeq \tilde{g} \circ \tilde{f}$ donde las homotopías son de funciones basadas.

Proof. Supongamos que $F: X \times I \to Y$ y $G: Y \times I \to Z$ son las homotopías $f \simeq \tilde{f}$ y $g \simeq \tilde{g}$ respectivamente. Definimos una función $H: X \times I \to Z$ mediante la siguiente composición:

$$X \times I \xrightarrow{(F, \mathrm{Id})} Y \times I \xrightarrow{G} Z \quad \text{con} \quad (x, t) \mapsto (F(x, t), t) \mapsto G(F(x, t), t).$$

H es continua porque es composición de funciones continuas. Ahora, para $t \in I$ fija tenemos que $H_t = G_t(F_t(x))$ que es continua porque F_t y G_t lo son. Por último tenemos que $H_0 = G_0 \circ F_0 = g \circ f$ y $H_1 = G_1 \circ F_1 = \tilde{g} \circ \tilde{f}$ por hipótesis.

Solamente nos falta verificar que H es una homotopía basada. Nada más hay que calcular

$$H_t(x_0) = G_t(F_t(x_0)) = G_t(y_0) = z_0 \quad \forall t \in I$$

ya que F y G son homotopías basadas por hipótesis. Por lo tanto $g\circ f\simeq \tilde{g}\circ \tilde{f}$ donde la homotopía H es basada.

De la proposición anterior podemos demostrar fácilmente la invariancia homotópica del grupo fundamental:

Corolario 1. $(X, x_0) \simeq (Y, y_0) \Longrightarrow \pi_n(X, x_0) \cong \pi_n(Y, y_0)$.

Proof. Si $(X, x_0) \simeq (Y, y_0)$ entonces existen funciones continuas $f: (X, x_0) \to (Y, y_0)$ y $g: (Y, y_0) \to (X, x_0)$ tales que $g \circ f \simeq \operatorname{Id}_X$ y $f \circ g \simeq \operatorname{Id}_Y$. Por la proposición anterior tenemos que:

$$(\mathrm{Id}_X)_\# = (f \circ g)_\# = f_\# \circ g_\# \quad \text{y} \quad (\mathrm{Id}_Y)_\# = (g \circ f)_\# = g_\# \circ f_\#.$$

Por lo tanto $f_{\#}: \pi_n(X, x_0) \to \pi_n(Y, y_0)$ (y $g_{\#}$) es un isomorfismo.

En particular, como $\pi_n(\{p\}, p) = 0$ porque la única función de \mathbb{S}^n a $\{p\}$ es la función constante, tenemos:

Corolario 2. Si X es contraible entonces $\pi_n(X, x_0) = 0$ para toda $x_0 \in X$.

Otro caso en que se anula el grupo fundamental se obtiene del corolario ?? del teorema ??:

Corolario 3. Si $X \subseteq \mathbb{R}^m$ es convexo, entonces X es contraible $y \pi_n(X, x_0) = 0$ para toda $x_0 \in X$.

Proof. Por el corolario ?? las dos funciones $\mathrm{Id}_X:X\to X$ y la función constante $e_{x_0}:X\to X$ son homotópicas. Por el ejercicio 1 se tiene que X es contraible. Por el corolario anterior concluimos que $\pi_n(X,x_0)=0$.