Sistemas Digitales

Nad Garraz y comunidad (ojalá) Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

9.

10.

• Notas teóricas

4.

• Ejercicios de la guía:

1.	5.
2.	6.
3.	7.

8.

El repo en github para descargar las guías con los últimos updates.

https://github.com/nad-garraz/sistemasDigitales

La Guía 2 se actualizó por última vez: $\frac{24/08}{2024}$ @ $\frac{19:18}{2024}$

https://github.com/nad-garraz/sistemasDigitales/blob/main/2-guia/2-sol.pdf

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram \bigcirc .

https://t.me/joinchat/DS9ZukGbZgI0IaHgdBlavQ

Notas teóricas:

 \blacksquare En la siguiente table ${\tt A}, {\tt B}$ y ${\tt C}$ son booleanas que pueden tener cualquier valor 0 o 1:

Propieded	AND	<u> </u>	OR, +	-	
Propiedad	AND, ·		UK, +	7	
Identidad	$1 \cdot A = A$		O+A=A		
Nulo	0·A = 0	0 1 -0 0	1+A=1	1 -1 -1 -1	
Idempotencia	$A \cdot A = A$	1 - 0 - 0	A+A=A	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Inverso/complemento	$A \cdot \overline{A} = 0$	0 1 0 0 1 0 0	$A + \overline{A} = 1$	1 - 1 0 - 1	
Conmutatividad	$A \cdot B = B \cdot A$	1, 0 10 0, 1 00	A+B=B+A	1, 0 10 0, 1 00	
Distributividad	$A+(B\cdot C)=(A+B)\cdot (A+C)$		$A \cdot (B+C) = A \cdot B + A \cdot C$	= ;:D'-D-, ;:D'-D-,	
Asociatividad	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$; D-D-,	(A+B)+C=A+(B+C)	± D-7 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	
Absorción	$A \cdot (A+B) = A$	Å B	A+A·B=A	À D-D-A	
De Morgan	$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$			

Ejercicios de la guía:

Todas las compuertas mencionadas en esta práctica son de 1 o 2 entradas, a menos que se indique lo contrario. Usaremos símbolos detallados a continuación para representar las distintas funciones lógicas: $\mathtt{XOR} \to \oplus$, $\mathtt{NAND} \to |$, $\mathtt{NOR} \to \downarrow$.

Durante la presente práctica se recomienda fuertemente la utilización de un simulador para experimentar con los componentes y cicuitos propuestos y verificar las soluciones. Una recomendación es el Logisim (http://www.cburch.com/logisim/)

Circuitos Combinatorios

Ejercicio 1 Demostrar si las siguientes equivalencias de fórmulas booleanas son verdaderas o falsas:

- a) $x \cdot z = (x + \overline{y}) \cdot (\overline{x} + z)$.
- b) $x \oplus (y \cdot z) = (x \oplus y) \cdot (x \oplus z)$ donde se aplica la propiedad distributiva con respecto a \oplus .
- a) $(x+y)(x+\overline{y})(\overline{x}+z) = (xx+x\overline{y}+xy+y\overline{y})(\overline{x}+z) = (x+x(y+\overline{y})+0)(\overline{x}+z) = x(\overline{x}+z) = x\overline{x}+xz = xz$
- b) $x \oplus (yz) = (x \oplus y)(x \oplus z)$ donde se aplica la propiedad distributiva con respecto a \oplus .

х	у	z	yz	х ⊕ (уz)	х⊕у	x⊕z	(x⊕y)(x⊕z)
1	1	1	1	0	0	0	0
1	1	0	0	1	0	1	
1	0	1	0	1	1	0	
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0

Bueh, las líneas pintadas muestran los contraejeplos

Ejercicio 2 Una fórmula del álgebra de Boole es:

- p,q,r,\ldots una variable booleana que puede tener valor 1 o 0,
- 1, la constante *verdadero*,
- 0, la constante falso,
- Si p y q son fórmulas, entonces p + q (p OR q),pq (p AND q) y \bar{p} (la negación de p) son fórmulas.

¿Se pueden expresar todas las funciones totales $f:0,1\times 0,1\to 0,1$ usando fórmulas del álgebra de Boole? Justificar.

^aUna función total es aquella para la que todo elemento del dominio tiene imagen.

Ejercicio 3 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc 3$.

Ejercicio 5 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

Ejercicio 6 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$.

Ejercicio 7 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\to \emptyset$, o mejor aún si querés subirlo en $\LaTeX \to \emptyset$.

Ejercicio 8 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en LATEX $\to \bigcirc$.

Ejercicio 9 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc 5$.

Ejercicio 10 💩... hay que hacerlo! 🔞

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.