Prediction of Wine Quality

1.

For task 4, we try to predict of red wine qualities. The data set that we used.

2.

For that step, we'll describe the data set in our task in terms of the dimension, variable type and etc. Firstly;

```
winequality.red <- read.csv("winequality-red.csv")
After that;
str(winequality.red)</pre>
```

```
'data.frame':
               1599 obs. of 12 variables:
$ fixed.acidity
                            7.4 7.8 7.8 11.2 7.4 7.4 7.9 7.3 7.8 7.5 ...
                      : num
$ volatile.acidity
                      : num 0.7 0.88 0.76 0.28 0.7 0.66 0.6 0.65 0.58 0.5 ...
                      : num 0 0 0.04 0.56 0 0 0.06 0 0.02 0.36 ...
$ citric.acid
$ residual.sugar
                      : num 1.9 2.6 2.3 1.9 1.9 1.8 1.6 1.2 2 6.1 ...
                      : num 0.076 0.098 0.092 0.075 0.076 0.075 0.069 0.065 0.073 0.071 ..
$ chlorides
$ free.sulfur.dioxide : num 11 25 15 17 11 13 15 15 9 17 ...
$ total.sulfur.dioxide: num 34 67 54 60 34 40 59 21 18 102 ...
$ density
                      : num 0.998 0.997 0.997 0.998 0.998 ...
                      : num 3.51 3.2 3.26 3.16 3.51 3.51 3.3 3.39 3.36 3.35 ...
$ pH
                      : num 0.56 0.68 0.65 0.58 0.56 0.56 0.46 0.47 0.57 0.8 ...
$ sulphates
```

\$ alcohol : num 9.4 9.8 9.8 9.8 9.4 9.4 9.4 10 9.5 10.5 ...

\$ quality : int 555655775 ...

The data set has 1599 obs. and 12 variables. quality is our *target*. That means our data set have 11 column. In addition to this, all of our *features* seems like they are all numeric.

sulphates alcohol

We are going to use sample() function to split the data set as test and train set.

```
set.seed(123)
  index <- sample(1 : nrow(winequality.red), round(nrow(winequality.red) * 0.80))</pre>
  train <- winequality.red[index, ]</pre>
  test <- winequality.red[-index, ]</pre>
Then; we can use the glm() function to train a logistic regression model.
  lr_model <- glm(quality ~ ., data = train)</pre>
  summary(lr_model)
Call:
glm(formula = quality ~ ., data = train)
Deviance Residuals:
                      Median
                                    3Q
                                             Max
-2.65018 -0.38387 -0.04515
                               0.45703
                                         2.01377
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      1.492e+01 2.405e+01
                                             0.620
                                                     0.5351
fixed.acidity
                      1.245e-02 2.998e-02
                                             0.415
                                                     0.6780
volatile.acidity
                     -1.022e+00 1.398e-01 -7.306 4.87e-13 ***
citric.acid
                     -1.298e-01 1.687e-01 -0.769
                                                     0.4419
residual.sugar
                    6.223e-03 1.749e-02 0.356
                                                     0.7220
chlorides
                     -2.059e+00 4.711e-01 -4.370 1.34e-05 ***
free.sulfur.dioxide 4.125e-03 2.501e-03 1.649 0.0994.
total.sulfur.dioxide -3.556e-03 8.348e-04 -4.260 2.20e-05 ***
density
                     -1.026e+01 2.455e+01 -0.418
                                                     0.6760
                    -5.780e-01 2.193e-01 -2.636
                                                     0.0085 **
Нq
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.4401224)

8.652e-01 1.329e-01 6.509 1.09e-10 ***

2.907e-01 3.040e-02 9.564 < 2e-16 ***

Null deviance: 864.63 on 1278 degrees of freedom Residual deviance: 557.64 on 1267 degrees of freedom

AIC: 2593.9

Number of Fisher Scoring iterations: 2

After all of this, the last part of this step is prediction.

```
predicted_quality <- predict(lr_model, test)
head(predicted_quality)</pre>
```

3 7 15 22 23 27 5.226765 5.116426 5.096636 5.368662 5.743560 5.542505

4.

In that part, We will use the **Root Mean Square Error** (RMSE) metric to measure the performance of the regression model.

```
error <- test$quality - predicted_quality
rmse.model <- sqrt(mean(error^2))
rmse.model</pre>
```

[1] 0.5859451

The performance of the model seems really acceptable because that value is low.

5.

Last but not least, we'll check if there is an *overfitting problem*.

```
rmse.test <- sqrt(mean((lr_model$residuals)^2))
rmse.model - rmse.test</pre>
```

[1] -0.07435255

Because of the difference which is negative, it can be means that we have the overfitting problem of the model.

6.

We will create **new observations** for last step of task 4.

```
fixed.acidity \leftarrow as.numeric(c(7.1, 8.1, 7.5))
  volatile.acidity \leftarrow as.numeric(c(0.5, 0.67, 0.89))
  citric.acid \leftarrow as.numeric(c(0.4, 0.6, 0.58))
  residual.sugar \leftarrow as.numeric(c(2.1, 2.9, 1.99))
  chlorides <- as.numeric(c(0.01, 0.03, 0.055))
  free.sulfur.dioxide <- as.numeric(c(18, 17, 26))</pre>
  total.sulfur.dioxide <- as.numeric(c(37, 41, 51))</pre>
  density \leftarrow as.numeric(c(0.950, 0.917, 0.940))
  pH <- as.numeric(c(3.72, 3.81, 3.1))
  sulphates <- as.numeric(c(0.91, 0.89, 0.85))
  alcohol <- as.numeric(c(9.91, 9.87, 9.83))
  new.observations <- data.frame(fixed.acidity, volatile.acidity, citric.acid , residual.sug
  new.observations
 fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
1
            7.1
                             0.50
                                          0.40
                                                          2.10
                                                                    0.010
2
            8.1
                             0.67
                                          0.60
                                                          2.90
                                                                    0.030
            7.5
3
                             0.89
                                          0.58
                                                          1.99
                                                                    0.055
 free.sulfur.dioxide total.sulfur.dioxide density pH sulphates alcohol
                    18
                                          37
                                                0.950 3.72
                                                                 0.91
                                                                         9.91
                                                0.917 3.81
2
                    17
                                          41
                                                                 0.89
                                                                         9.87
3
                    26
                                                0.940 3.10
                                                                 0.85
                                                                         9.83
                                          51
```

Now, we can prediction with new ones.

```
predicted_quality_new <- predict(lr_model, new.observations)
predicted_quality_new</pre>
```

1 2 3 6.150804 6.166856 6.009734