Considere os vectores u₁, u₂, u₃ e u₄, pertencentes ao espaço vectorial real E. Sabendo que:

- $E = \langle u_1, u_2, u_3 \rangle$
- os vectores u₁ e u₂ são linearmente independentes;
- $u_3 = 2u_1$
- $u_4 = u_1 + u_2$

Diga se as seguintes afirmações são verdadeiras ou falsas:

- (a) os vectores u₁, u₂ e u₃ são linearmente independentes;
- (b) (u_2, u_4) é uma base de E;
- (c) o vector u₃ é linearmente independente;
- (d) a dimensão do espaço vectorial E é igual a 3;
- (e) $E = \langle u_2, u_3, u_4 \rangle$
- Determine a característica de cada uma das seguintes matrizes:

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 2 \\ 6 & 3 & 2 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 1 & 1 & 1 & 2 & 0 & -1 \\ 1 & 0 & 2 & -1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & -1 \end{bmatrix}$$

Discuta em função dos parâmetros reais α e β a característica da seguinte matriz:

$$\mathbf{A} = \begin{bmatrix} \beta & -\alpha & 0 \\ 0 & 0 & \alpha \\ 0 & \beta & 0 \end{bmatrix}$$

- Utilizando matrizes, determine os valores do parâmetro real λ para os quais o sistema de vectores $((1,2,3,\lambda),(0,1,1,\lambda),(2,1,2,0),(\lambda,1,0,1))$ forma uma base de \Re^4 .
- Determine, utilizando o conceito de característica de uma matriz, a dimensão dos subespaços vectoriais:

 - a) $< (1, 2, -1), (3, 1, 2), (1, -3, 4) > de \Re^3$ b) $< (3, -1, 4), (2, 1, 3), (1, 0, 2) > de \Re^3$
 - c) < (0, 1, 1, 2), (-2, 1, 0, 1), (3, 1, 5, 2), (1, 0, 3, -1)> de \Re^4
 - d) $< (-1, 2, -1, 0), (0, 3, 1, 2), (1, 1, -2, 2), (2, 1, 0, -1) > \text{de } \Re^4$
- Averigúe quais das seguintes sequências de vectores são bases dos respectivos espaços vectoriais reais.
 - a) de \Re^2 :
 - i) ((1,1), (3,0));
 - ii) ((1,1), (0,2), (2,3));
 - iii) ((1,1, (0,8));
 - iv) ((1,-2), (-2,4)).

- b) de $\Re_3[x]$
 - i) $(1, x, x^2, x^3)$
 - ii) $(1, 1+x, 1+x+x^2, 1+x+x^2+x^3, x^3)$
 - iii) $(2, x, x^2+x^3, x+x^2+x^3)$
 - iv) $(1, 1+x, x^2+x^3)$.

7 Considere os seguintes vectores do espaço vectorial real \Re^3 :

$$v_1 = (\alpha, 6, -1), v_2 = (1, \alpha, -1) e v_3 = (2, \alpha, -3).$$

- a) Determine os valores do parâmetro real α para os quais a sequência (v_1 , v_2 , v_3) é uma base de \Re^3
- b) Para um dos valores de determinados na alínea anterior, calcule as coordenadas do v=(-1,1,2) em relação à base (v_1,v_2,v_3).
- **8** Considere o seguinte subconjunto do espaço vectorial real \Re^4 :

$$V = \{(x, y, z, w) \in \Re^4 : x = y - 3z \land z = 2w\}$$

- a) Mostre que V é um subespaço vectorial de \Re^4 .
- b) Determine uma base e a dimensão de V.
- **9** Sejam F = { $(x, y, z) \in \Re^3$: z=0} um subconjunto de \Re^3 e $u_1 = (0, 2, 0)$, $u_2 = (1, 0, 0)$ e $u_3 = (-1, 6, 0)$ três vectores de \Re^3 .
 - a) Mostre que F é um subespaço vectorial de \Re^3 .
 - b) Verifique que $\langle u_1, u_2, u_3 \rangle = F$.
 - c) A sequência (u₁, u₂, u₃) é uma base de F?
 - d) Indique a dimensão de F.
- 10 Considere os subespaços vectoriais

$$U = \{ (x, y, z) \in \Re^3 : x + y + z = 0 \} e V = < (1, a, 1), (1, 1, a) > 0$$

- de \Re^3 , em que a é uma constante real. Determine:
- a) Os valores de a para os quais $(a, 1, 1) \in V$;
- b) Os valores de a para os quais ((1, a, 1), (1, 1, a), (2, 1, 4)) seja uma base de \mathfrak{R}^3 ;