微电子器件实验 双极型晶体管的直流特性和交流特性测量 和分析

范云潜, 学号: 18373486, 搭档: 徐靖涵, 教师: 彭守仲

微电子学院 184111 班

日期: 2020年10月19日

1 实验目的

对双极型晶体管的直流特性和交流特性进行测量和分析,验证其放大特性。

2 实验所用设备及器件

实验用到的核心器件是双极型晶体管 9018, 其他设备包括面包板、杜邦线、电压源、手持万用表、台式万用表、电阻、电容等。

3 实验基本原理及步骤

三极管工作在放大区时,可以作为放大器使用。放大器作用的是小信号,因此需要寻找对应的静态工作点。

步骤如下:

- 1. 首先搭建直流工作电路,如图1。调节 E_B 使得 $I_B = 60\mu A$ 。
- 2. 调节 E_C 从 0.1V 到 20V 变化,记录 $I_C V_{CE}$ 的数据并画图。
- 3. 在 $E_C = 15V$ 的条件下,进行交流特性的测量。修改电路如 **图 2** 。
- 4. 使用任意波形发生器输出 1kHz 的信号,峰峰电压分别为 1V, 2.5V, 5V, 7.5V, 10V, 15V。
- 5. 分别测量 R_1 和 R_2 的电压波形, 计算电流放大系数 i_C/i_B 。
- 6. 任意波形发生器的电压设置为 10V , 改变输出频率,测量 R_2 的电压波形和有效值,计算电流的放大系数,并且寻找三分贝带宽 f_β , 计算特征频率。

4 实验数据记录

原始数据请见 这里。

对于直流特性的 $I_C - V_{CE}$ 图像,如图3。

在设定不同的输入幅度时,其有效值如表1。在15V输入时,出现了严重的失真,如84。

图 1: 直流工作电路

0.007 0.006 0.005 0.004 0.003 0.001 0 2 4 6 8 10 12 14 16

图 3: $I_C - V_{CE}$ 图像

进一步的,考察其放大特性,如 **图 5** 。找到下降到 $\sqrt{2}/2$ 的时候的带宽,经过大量的采样,分布在 1.4MHz 和 1.5MHz 之间,和通常值偏差较小。由于 R_1 的电压在不同频率下保持几乎恒定,因此增益几乎是 $V_{R2}/100/(V_{R1,c}/100k) = V_{R2} \cdot 1k/3.6$,如 **图 6** ,那么特征频率为

表 1: 不同输入电压对应的输出幅度和对应增益

AMP	R1	R2	gain
1	0.357	3.28E-02	91.8767507
2.5	0.897	8.03E-02	89.5206243
5	1.8	1.74E-01	96.66666667
7.5	2.7	2.47E-01	91.48148148
10	3.6	3.29E-01	91.38888889
15	5.45	4.50E-01	82.56880734

图 4: 放大失真

$1.4M \cdot 84.7 = 118.58MHz$.

图 5: V_{R2} 频率响应

图 6: Gain 频率响应

5 实验结果分析

5.1 直流特性

集电极电流随着 V_{CE} 的增长依次经过饱和区和放大器,这也解释了为什么在 0.1-1V 区间内,电流的迅速增长;在之后电流基本稳定,是基极电流的稳定倍数的增大,而由于基极调制效应的存在,放大区曲线存在一定的上翘。

5.2 交流特性

交流特性是通过并联的回路实现的,通过并联提供小信号的电流源与电流检测,实现放大效果的检测。

在同频率不同幅度的基极输出电流下,放大倍数基本稳定。而在摆幅过大时,由于基极电 流触底,产生失真,由于反向放大,因此显示为顶部失真。

5.3 频率特性

由于电容在高频的馈通效应,放大器的增益往往会随着频率上升而下降。这电容主要是两个 PN 结提供的。

6 总结与思考

6.1 总结

信号的放大电路是工作在静态工作点的,小信号需要依托在静态工作点上工作,为了提供 小信号的附加输入,可以通过并联电流源或者串联电压源的方式提供。

6.2 思考题

Q1: 频率特性测量时 E_C 应设置为多少伏?

为了使得信号波形工作在正常放大区, E_C 不能过小,如 0.5V; 为了使得同样的小信号输出电流下, i_B 不致过大,不能选择较大的 E_C 如 20V 。这就是为何选择 15V 。

Q2: 电阻 Rc 的直流分压如何随 E_C 变化?

在 E_C 较小,处于饱和区时,电流急剧上升,分压也随之上升; E_C 较大,进入放大区,则会因为基区调制,缓慢上升。

Q3: 当交流输入信号 V_B 过大时会出现什么

这对应着电流的摆幅也会过大,这样可能会造成电流的摆动使得管子不能工作在放大区而 截止,产生输入电流的触底,由于反向放大,会产生顶部失真。