1 Surface Area

FIGURE 1

FIGURE 2

Divide into $m \times n$ square. Then $A(S) = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n \Delta T_{ij}$. Since $\Delta T_{ij} = |\mathbf{a} \times \mathbf{b}|$. Recall that $f_x(x_i, y_j)$ and $f_y(x_i, y_j)$ are the slopes of the tangent lines through P_{ij} .

$$\mathbf{a} = \Delta x \mathbf{i} + f_x(x_i, y_j) \Delta x \mathbf{k}$$

 $\mathbf{b} = \Delta y \mathbf{j} + f_y(x_i, y_j) \Delta y \mathbf{k}$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \Delta x & 0 & f_x(x_i, y_j) \Delta x \\ 0 & \Delta y & f_y(x_i, y_j) \Delta y \end{vmatrix}$$
$$= \left[-f_x(x_i, y_j) \mathbf{i} - f_y(x_i, y_j) \mathbf{j} + \mathbf{k} \right] \Delta A$$
$$\Delta T_{ij} = |\mathbf{a} \times \mathbf{b}| = \sqrt{\left[f_x(x_i, y_j) \right]^2 + \left[f_y(x_i, y_j) \right]^2 + 1} \Delta A$$

Hence we have

Definition: The Area of the Surface

If f_x, f_y are continuous.

$$A(S) = \iint\limits_{D} \sqrt{\left[f_{x}(x_{i}, y_{j})\right]^{2} + \left[f_{y}(x_{i}, y_{j})\right]^{2} + 1} dA$$
$$= \iint\limits_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA$$

• EXAMPLE. Area of $z = x^2 + y^2$ that lies under z = 9.

Converting to polar coordinates, we obtain

$$A = \int_0^{2\pi} \int_0^3 \sqrt{1 + 4r^2} r \, dr \, d\theta$$
$$= \int_0^{2\pi} d\theta \int_0^3 \frac{1}{8} \sqrt{1 + 4r^2} (8r) \, dr$$
$$= 2\pi \left(\frac{1}{8}\right) \frac{2}{3} (1 + 4r^2)^{3/2} \Big]_0^3 = \frac{\pi}{6} (37\sqrt{37} - 1)$$

FIGURE 5

2 Triple Integrals

 $\begin{array}{c} \Delta z \\ + \Delta y + \Delta x \end{array}$

FIGURE 1

Divide into subboxes.

Definition: Triple Integrals

Let $B_{ijk} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k]$, then

$$\iiint\limits_{B} \lim_{l,m,n\to\infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}*, y_{ijk}*, z_{ijk}*) \Delta V$$

Fubini's Theorem. $\iiint\limits_B f(x,y,z)\,dV = \int_a^b \int_r^s \int_c^d f(x,y,z)\,dy\,dz\,dx$

Just the same, wrap E inside a box, and we got $\iiint_B F(x, y, z) dV$.

FIGURE 2
A type 1 solid region

$E = \{(x, y, z) \mid (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}$ $\iiint_{D} f(x, y, z) dV = \iiint_{D} \left[\int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) dz \right] dA$

Definition: 3 Types of Triple Integrals

A type 1 solid region where the

FIGURE 4
A type 1 solid region with a type II projection

Type I. D is the projection on the xy-plane.

$$E = \{(x, y, z) \mid a \le x \le b, g_1(x) \le y \le g_2(x), u_1(x, y) \le z \le u_2(x, y)\}$$

$$\iint\limits_{E} f(x,y,z) \, dV = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \, dz \, dy \, dx$$

- **Type II.** D is the projection on the yz-plane.
- **Type III.** D is the projection on the xz-plane.

• EXAMPLE. $\iiint_E \sqrt{x^2 + z^2} \, dV$, where E bounded by $y = x^2 + z^2$ and y = 4.

FIGURE 9
Region of integration

FIGURE 10
Projection onto xy-plane

FIGURE 11 Projection onto *xz*-plane

Convert to polar coordinate in the xz-plane: $x = r\cos\theta, z = r\sin\theta$, which gives

$$\iiint_{E} \sqrt{x^{2} + z^{2}} \, dV = \iint_{D_{3}} (4 - x^{2} - z^{2}) \sqrt{x^{2} + z^{2}} \, dA$$

$$= \int_{0}^{2\pi} \int_{0}^{2} (4 - r^{2}) r \, r \, dr \, d\theta = \int_{0}^{2\pi} \, d\theta \int_{0}^{2} (4r^{2} - r^{4}) \, dr$$

$$= 2\pi \left[\frac{4r^{3}}{3} - \frac{r^{5}}{5} \right]_{0}^{2} = \frac{128\pi}{15}$$

3 Applications of Triple Integrals

First, begin with the special case where f(x, y, z) = 1 for all points in E. That would be the volume of the shape.

4 Triple Integrals in Cylindrical Coordinates

FIGURE 1

Recall the connection between polar and Cartesian coordinates:

$$x = r \cos \theta$$
 $y = r \sin \theta$
 $r^2 = x^2 + y^2$ $\tan \theta = \frac{y}{x}$

 $P(r, \theta, z)$

FIGURE 2
The cylindrical coordinates of a point

Cylindrical Coordinates

Represented by (r, θ, z) ,

- r, θ : polar coordinates of the **projection** of P onto the xy-plane.
- \blacksquare z: the directed distance from the xy-plane to P.

$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$
 $r^2 = x^2 + y^2$ $\tan \theta = \frac{y}{x}$ $z = z$

This is the surface of z = r.

V Evaluating Triple Integrals with Cylindrical Coordinates

Suppose $E = \{(x, y, z) \mid (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\},\$ and

$$D = \{(r, \theta) \mid \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta)\}$$

Definition : Triple Integrals with Cylindrical Coordinates

$$\iiint\limits_{E} f(x,y,z) dV = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r\cos\theta,r\sin\theta)}^{u_{2}(r\cos\theta,r\sin\theta)} f(r\cos\theta,r\sin\theta,z) r dz dr d\theta$$

5 Triple Integrals in Spherical Coordinates

Definition: **❖** Spherical Coordinates

FIGURE 1

The spherical coordinates of a point

The spherical coordinates (ρ, θ, ϕ) of a point P:

- $\rho = |OP| \ge 0$: the distance from O to P.
- θ : the same angle as in cylindrical coordinates.
- $0 \le \phi \le \pi$: the angle between the positive z and OP.

Useful when there is symmetry about a point.

We have $z = \rho \cos \phi$ and $r = \rho \sin \phi$.

$$x = \rho \sin \phi \cos \theta$$
 $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

The distance formula

$$\rho^2 = x^2 + y^2 + z^2$$

FIGURE 5

$\textbf{Definition}: \textcircled{\checkmark} \textbf{ Evaluating Triple Integrals with Spherical Coordinates}$

$$\iiint\limits_E f(x,y,z)\,dV$$

$$\iiint_{E} f(x, y, z) dV$$

$$= \int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\theta d\phi$$

The counterpart of a rectangular box is a $\mathbf{spherical}$ wedge

$$E = \{ (\rho, \theta, \phi) \mid a \le \rho \le b, \ \alpha \le \theta \le \beta, \ c \le \phi \le d \}$$

where $a \ge 0$, $\beta - \alpha \le 2\pi \ d - c \le \pi$. FIGURE 7