Resolution and accuracy in Congreve & Lamsdell matrices

 $Martin\ R.\ Smith\ martin.smith@durham.ac.uk\\ 2019-12-19$

Contents

0.1	Summary												 									1
0.2	Trees $1–10$									 			 									3
0.3	Trees $11–20$.									 			 									9
0.4	Trees $21–30$.									 			 									15
0.5	Trees 31 – 40 .									 			 									21
0.6	Trees $41–50$.									 			 									27
0.7	Trees $51–60$.									 			 									33
0.8	Trees $61-70$.									 			 									39
0.9	Trees $71–80$.									 			 									45
0.10	Trees $81–90$.												 									51
-	Trees $91-100$																					
Refe	rences												 									62

This page depicts the analytical results of all 100 matrices generated by Congreve & Lamsdell [1] using a ternary plotting approach [2], with quartets and partitions used as distance metrics.

0.1 Summary

0.2 Trees 1–10

0.3 Trees 11-20

0.4 Trees 21-30

0.5 Trees 31-40

0.6 Trees 41-50

0.7 Trees 51-60

0.8 Trees 61-70

0.9 Trees 71–80

0.10 Trees 81–90

0.11 Trees 91–100

References

- 1. Congreve CR, Lamsdell JC. 2016 Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Palaeontology **59**, 447–465. (doi:10.1111/pala.12236)
- 2. Smith MR. 2019 Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. $Biology\ Letters\ {f 15},\ 20180632.$ (doi:10.1098/rsbl.2018.0632)