Predicting the energy output of wind turbine based on weather condition

TEAM ID: PNT2022TMID51318

TEAM MEMBERS:

ABIN RAJ

ASOLIN SAM

SIVA KANNAN

AKILAN

Table of Contents

Introduction	4
Project Overview	4
Purpose	
Literature	
Existing Problem_	
References	
Problem Statement Definition	6
Ideation and Proposed Solution	
Empathy Map	
Ideation and Brainstorming	8
Proposed Solution	9
Problem Solution Fit	10
Requirements Analysis	11
Functional Requirements	
Non-Functional Requirements	
Project Design	
Data Flow Diagrams	
Solution & Technical Architecture	13
User Stories	14
Project Planning & Scheduling	16
Sprint Planning & Estimation	
Sprint Delivery Schedule	
Reports from JIRA	16
Coding & Solutioning	19
Feature 1	
Feature 2	
Testing	22
Test Cases	
Results	
Performance Metrics	
Advantages and Disadvantages	
Advantages	
Disadvantages	24
Conclusion	
Appendix	05
Source Code	
App.py:	25
Intro.html:	00

Predict.html:	29
GitHub & Project Demo Link	35
3	

Introduction

Project Overview

Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Therefore, we examine the impact of different weather conditions on the energy output of wind farms. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. A prediction system is developed with a method of combining statistical models and physical models. In this system, the inlet condition of the wind farm is forecasted by the auto regressive model.

Purpose

The prediction of wind power plays an indispensable role in maintaining the stability of the entire power grid. Due to its renewable resources and environmental friendliness, wind speed/power has gained increasing interest worldwide. The wind industry is rapidly expanding into a large-scale industry as a result of the fast-rising amount of installed wind generating capacity worldwide. When it comes to scheduling power systems and other practical aspects of wind energy conversion, such as the dynamic management of wind turbines, reliable short-term wind speed forecasts are essential. A precise forecast is required to solve issues with variable energy production brought on by changing weather patterns. The wind speed has a big impact on how much power is produced by the wind. Despite being quite nonlinear, wind speed exhibits a consistent pattern over a specific amount of time. Thus, wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output.

Literature Survey

Existing Problem

The prediction of wind power plays an indispensable role in maintaining the stability of the entire power grid. Due to its renewable resources and environmental friendliness, wind speed/power has gained increasing interest worldwide. The wind industry is rapidly expanding into a large-scale industry as a result of the fast-rising amount of installed wind generating capacity worldwide. When it comes to scheduling power systems and other practical aspects of wind energy conversion, such as the dynamic management of wind turbines, reliable short-term wind speed forecasts are essential. A precise forecast is required to solve issues with variable energy production brought on by changing weather patterns. The wind speed has a big impact on how much power is produced by the wind. Despite being quite nonlinear, wind speed exhibits a consistent pattern over a specific amount of time. Thus, wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output.

References

Anisha, P.R., Kishor Kumar Reddy, C., & Yasmeen, N. (2021). Predicting the Energy Output of Wind Turbine Based on Weather Condition. In Smart Computing Techniques and Applications (pp. 683-691). Springer, Singapore.

Riahy, G. H., & Abedi, M. (2008). Short term wind speed forecasting for wind turbine applications using linear prediction method. Renewable energy, 33(1), 35-41.

Lin, Z., & Liu, X. (2020). Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy, 201, 117693.

Bilal, B., Ndongo, M., Adjallah, K. H., Sava, A., Kébé, C. M., Ndiaye, P. A., & Sambou, V. (2018, February). Wind turbine power output prediction model design based on artificial neural networks and climatic spatiotemporal data. In 2018 IEEE International Conference on Industrial Technology (ICIT) (pp. 1085-1092). IEEE.

Ge, S., Zuo, M. J., & Tian, Z. (2020, August). Wind Turbine Power Output Estimation with Probabilistic Power Curves. In 2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM) (pp. 1-6). IEEE.

Chen, N., Qian, Z., Nabney, I. T., & Meng, X. (2013). Wind power forecasts using Gaussian processes and numerical weather prediction. IEEE Transactions on Power Systems, 29(2), 656-665.

Neshat, M., Nezhad, M. M., Abbasnejad, E., Mirjalili, S., Groppi, D., Heydari, A., ... & Wagner, M. (2021). Wind turbine power output prediction using a new hybrid neuro-evolutionary method. Energy, 229, 120617.

Problem Statement Definition

Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Therefore, we examine the impact of different weather conditions on the energy output of wind farms. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. A prediction system is developed with a method of combining statistical models and physical models. In this system, the inlet condition of the wind farm is forecasted by the auto regressive model.

- 1. User interacts with the UI (User Interface) to enter Data.
- 2. The entered data is analyzed by the model which is integrated.
- 3. Once model analyses the input the prediction is showcased on the UI

Ideation and Proposed Solution

Empathy Map

Ideation and Brainstorming

Avantika

direction and wind speed in different outdoor temperatures

Analyze model performance on different sites

Check frequency of wind speed and determine it's energy

Number of windmills in a wind farm contribute to energy output

Shruthi

Check for height of windmill and energy output

Diameter of role

Climatic condition of the wind farm is used primarily to calculate output energy

output is forecasted accurately hence energy providers

the rotor of a wind turbine plays a major

overproduction

Sweta

collect the historical Rotor RPM wind collect the historical data through the Supervisory Control and Data Acquisition system of wind farms and then fitting direction is taken consideration for determination curves

correlation - winds in different places so we can use LSTM-CNN joint

fuzzy model approach provides an interpretable model structure

Subhiksha

Map weather data to energy derive analysis

user can upload their own real time dataset (csv or xlsx format) for forecasting.

conditions of the wind farm area are used in the analysis of energy prediction

timestamp, air timestamp, air temperature, pressure, wind direction, wind speed and Power generated by the system are taken as user inputs

Feasibility

Regardless of their importance, which tasks are more feasible than others? (Cost, time, effort, complexity, etc.)

Proposed Solution

Parameter	Descripfion
Problem Statement (Problem to be solved)	The manufacturer needs to find a way to analyse the weather condifions of a region so they can choose regions that produce high quality and quanfifies of wind energy. Overproduction and cost of production needs to be reduced. Wind energy should be ufilised in a way to provide a steady supply of electricity.
Idea / Solufion descripfion	We examine the impact of different weather conditions on the energy output of wind farms. By accurately forecasting the wind-power, we reduce the need for additional balancing energy and reserve power to integrate wind power. A prediction system is developed with a method of combining stafisfical models and physical models. In this model, the inlet condition of the wind farm is forecasted by the auto regressive model.
Novelty / Uniqueness	Currently, wind energy is not a primary source of electricity. Implementing our solution makes it possible to maximise energy output. This solution would make renewable energy sources more widely used. The user can upload their own data in real-fime for forecasting.
Social Impact / Customer Safisfaction	Local employment, beter health, consumer choice, improvement of life standard, social bonds creafion, income development, demographic impacts, and community development can be achieved by the proper usage of renewable energy system. Renewable energy improves human well-being and overall welfare well beyond GDP. Switching to clean sources of energy, thus helps address not only climate change but also air pollufion and health.
Business Model (Revenue Model)	Wind farm owners need a prediction model to predict the wind energy so they can provide a steady energy source. A subscription model would be efficient here, as the model will improve with fime as it is used for forecasting using more and more data.
Scalability of the Solution	This solution can be applied on a larger scale, to windfarms across the world.

Problem Solution Fit

Requirements Analysis

Functional Requirements

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)	
FR-1	User Registration	Registration through Gmail	
FR-2	User Confirmation	Confirmation via Email	
FR-3	User login into website	Login using credentials	
FR-4	Home page of the website	Description of the Predictor app	
FR-5	Redirection to prediction page	Clicking on a button from home page takes user to next page	
FR-6	Enter required parameters	Inputs like city name, area and more	
FR-7	Validating all required fields	System checks whether all the required fields are filled and the linked API has the weather condition of the city mentioned	
FR-8	Displays weather conditions of of the entered city	Climatic conditions of the entered city will be displayed to the user from the API on the webpage	
FR-9	Displays prediction results	Users can view the energy output of the entered weather conditions	
FR-10	Download prediction results	Download as jpg/png, download as pdf	
FR-11	Logout from the site	User can log out from the site	

Non-Functional Requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The system satisfies the user goals and the application is easy to use
NFR-2	Security	Login credentials will be protected from attacks and of single use only. If it doesn't match the existing one, it shows an error message. Number of attempts to login to the site is limited
NFR-3	Reliability	The system will provide consistency in output without producing an error. Prediction Model is well trained
NFR-4	Performance	Prediction Model will be well trained and accurate with a accuracy above 70 percent to predict correct results
NFR-5	Availability	Users can access the site from anywhere, anytime. The resources to the website like the API to get weather conditions will be available at all time
NFR-6	Scalability	With sufficient internet access, the system can be used as a web application to handle multiple users.

Project Design

Data Flow Diagrams

LEVEL 0:

LEVEL 1:

LEVEL 2:

Solution & Technical Architecture

User Stories

User	Functional	User	User Story / Task	Acceptance	Priori	Relea
Туре	Requirement (Epic)	Story Number		criteria	ty	se
Customer	Home Page	USN-1	As a user, I will be directed to home page of the web app	I can have a overview of the predictor application	Low	Sprint- 1
Administrat or	Data Collection	USN-2	As an administrator, I have to collect dataset	dataset is available	High	Sprint- 1
	Data Preprocessing	USN-3	As an administrator, I have to preprocess data and remove null fields	Cleaned dataset it ready for model building	Medi um	Sprint- 1
	Model Building	USN-4	As an administrator, I have to build regression model to predict wind energy output	Model is able to predict output	High	Sprint- 2
	Training Model	USN-5	As an administrator, after model is built, it has to be trained to improve accuracy	Model is able to predict correct output at all times	High	Sprint- 2
	API Integration	USN-6	As an administrator, API integration must be done to automatically input weather condition from the city entered by user	Weather condition is given as output when city is entered	High	Sprint- 2
	Interface creation	USN-7	As an administrator, UI interface must be created for the application	Home page and P:redict page is created	Medi um	Sprint - 3
	Flask App	USN-8	As an administrator, Flask app has be made to link various UI pages and ensure	Various frontend pages and linked	High	Sprint- 3

	İ	1		1		1
			smooth functioning of the application			
	API and Model	USN-9	As an administrator,	The trained	High	Sprint-
	Integration		API and deployed Regression model has to integrated with flask app to make correct predictions	model and API is linked to flask app		4
Customer	Home (Application)	USN-10	As a user ,I am allowed to select the city and can get the weather of the city.	I can select the city ,If the city is correct I can further enter the details.	Medi um	Sprint- 4
		USN-11	As a user I am allowed to view the weather of the selected city.	If correct city is selected ,then the weather of the particular city will be displayed	Low	Sprint- 4
		USN-12	As a User ,I can click on calculate button	If the model is well trained, the energy output will be displayed on the web page	High	Sprint- 4

Project Planning & Scheduling

Sprint Planning & Estimation

Sprint Delivery Schedule

Sprint	Total Story Points	Durati on	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	3	6 Days	24 Oct 2022	29 Oct 2022	3	29 Oct 2022
Sprint-2	3	6 Days	31 Oct 2022	05 Nov 2022	3	05 Nov 2022
Sprint-3	2	6 Days	07 Nov 2022	12 Nov 2022	2	12 Nov 2022
Sprint-4	4	6 Days	14 Nov 2022	19 Nov 2022	4	19 Nov 2022

Reports from JIRA

Coding & Solutioning

Home Page:

Prediction page:

Feature 1

If the user selects a city, using an API, weather conditions are found and used to predict wind energy of that area.

After selecting a city:

Feature 2

Alternatively, the user can enter the power and speed to calculate the predicted amount of wind energy.

Testing

Test Cases

Test Case 1:

Results

Performance Metrics

```
from sklearn.metrics import mean_absolute_error,mean_squared_error
mae=mean_absolute_error(y_true=val_y,y_pred=power_preds)
mse=mean_squared_error(y_true=val_y,y_pred=power_preds)
rmse=mean_squared_error(y_true=val_y,y_pred=power_preds,squared=False)

print("MAE:",mae)
print("MSE:",mse)
print("RSE:",rmse)
print("R2 Score:",r2_score(val_y, power_preds))
print("Accuracy:",forest_model.score(val_X,val_y))

MAE: 164.58015525861344
MSE: 154806.327828882
RMSE: 393.4543529164241
R2 Score: 0.9113496428907649
Accuracy: 0.9113496428907649
```

Advantages and Disadvantages

Advantage	Disadvantages	
s		
Cost effective in the long run	High initial cost	
Sustainable	Inconsistent wind speed	
Clean energy source	Causes noise pollution	
Environment friendly	Requires large plots of empty land	
Most efficient fuel for electricity	Dependent on weather conditions	

Conclusion

Using this application, we can analyse the weather conditions of a particular area and predict the energy output, to identify suitable areas to place windmill farms. When it comes to scheduling power systems and other practical aspects of wind energy conversion, such as the dynamic management of wind turbines, reliable short-term wind speed forecasts are essential. A precise forecast is required to solve issues with variable energy production brought on by changing weather patterns.

Future Scope

This solution can be extended to consider other factors to better predict the energy output. The application can be extended to incorporate features allowing windfarm owners to plan and prepare according to the predictions based on their given data.

Appendix

Source Code

App.py:

```
# -*- coding: utf-8 -*-
"""App.ipynb
Automatically generated by Colaboratory.
Original file is located at
  https://colab.research.google.com/drive/1D7ryKFXpDT-oT9zRWtVEy_nbSLixhP6r
import numpy as np
from flask import Flask, request, jsonify, render_template
import joblib
import requests
API_KEY = "vRfmC7scgZJ823AuNGkzKb8xo6vG1VW1-QXDcKLaTRX0"
token_response = requests.post('https:/iam.cloud.ibm.com/identity/token', data={"apikey": API_KEY,
"grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
mltoken = token_response.json()["access_token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer' +
mltoken) app = Flask( name )
model = joblib.load("power_prediction.sav")
@app.route('/')
def home():
  return render_template("intro.html")
@app.route('/predict')
def predict():
  return render_template("predict.html")
@app.route('/windapi', methods=['POST'])
def windapi():
  city = request.form.get('city')
```

```
apikey = "21fa8dd805075da43797f6dc3210093a"
  url = "http://api.openweathermap.org/data/2.5/weather?q=" + city + "&appid=" + apikey
  resp = requests.get(url)
  resp = resp.json()
  temp = str(resp["main"]["temp"]) +" °C"
  humid = str(resp["main"]["humidity"]) + " %"
  pressure = str(resp["main"]["pressure"]) + "
  mmHG" speed = str(resp["wind"]["speed"]) + " m/s"
  return render_template('predict.html', temp=temp, humid = humid, pressure=pressure, speed = speed)
@app.route('/v predict',methods = ['POST'])
def y_predict():
  payload scoring = {"input data": [{"field": [["Wind Speed", "Theoretical power "]], "values": [[90, 89]]}}
  response scoring = requests.post('https://us-south.ml.cloud.ibm.com/ml/v4/deployments/b3036f4f-b8d7-
430c-8584-71e65199dc08/predictions?version=2022-11-20', json=payload_scoring,
  headers={'Authorization': 'Bearer ' + mltoken})
  print("Scoring response")
  print(response scoring.json())
  probability = response_scoring.json()['predictions'][0]['values'][0][0]
  print(probability)
  x test = [[float(x) for x in request.form.values()]]
  prediction = model.predict(x_test)
  print(prediction)
  output = prediction[0]
  return render_template('predict.html',prediction_text = 'The energy predicted is {:.2f} KWh'.format(output))
if name == " main ":
  app.run(debug=False)
Intro.html:
<html>
       <head>
       <title>Predicting the energy output of wind turbine based on weather condition</title>
       <style>
               .header {
                      top:0px;
                      margin:0px;
                      left: 0px;
                      right: 0px;
                      position: fixed;
                                                       26
```

```
background: #6c493a;
                     color: white;
                     overflow: hidden;
                     padding-bottom: 30px;
                     font-size: 2.25vw;
                     width: 100%;
                     padding-left:0px;
                     text-align: center;
                     padding-top:20px;
              }
              .second{
                     top:80px;
                     bottom:0px;
                     margin:0px;
                     left: 0px;
                     right: 0px;
                     position: fixed;
                     padding: 0px;
                     width: 100%;
                     background-image:url(https:/images.unsplash.com/photo-1511546705877-
f449b6f6dcfd?ixlib=rb-
4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1074&q=80);
                     background-repeat:no-
                     repeat; background-size:
                     contain;
              .inside{
                     top:80px;
                     bottom:0px;
                     margin:0px;
                     left: 45%;
                     right: 0%;
                     position: fixed;
                     padding-left: 40px;
                     padding-top:8%;
                     padding-right:40px;
                     background-color:#F2D19A;
                     font-family:Georgia, serif;
                     color:black;
                     font-size:20px;
                     text-align:justify;
              .myButton{
                                                     27
```

```
border: none;
                       text-align:
                       center; cursor:
                       pointer;
                       text-transform: uppercase;
                       outline: none;
                       overflow: hidden:
                       color: #fff:
                       font-weight: 700;
                       font-size: 12px;
                       background-color: #6c493a;
                       padding: 10px 15px;
                       margin: 0 auto;
                       box-shadow: 0 5px 15px rgba(0.0.0.0.20);
       </style>
       </head>
       <body>
               <div class="header">Predicting The Energy Output Of Wind Turbine Based On Weather
Condition</div>
               <div class="second">
                      <div class="inside">Renewable energy, such as wind and solar energy, plays an
increasing role in the supply of energy worldwide. This trend will continue because global energy demand is
increasing, and the use of nuclear power and traditional sources of energy such as coal and oil is unsafe and
leads to a large amount of CO2 emission. Wind energy is a key player in the field of renewable energy. In
Europe, the capacity of wind energy production has doubled from 2009 to 2010. <br/> <br/> <br/> tr>-
However, levels of production of wind energy are hard to predict as they rely on potentially unstable weather
conditions present at the wind farm. In particular, wind speed is crucial for energy production based on wind,
and it may vary drastically over time. Energy suppliers are interested in accurate predictions, as they can avoid
overproduction by coordinating the collaborative production of traditional power plants and weather-dependent
energy sources. The energy can be predicted based on the power curve and the windspeed.
               <br><br><br><br>>
               <a href="{{url_for('predict')}}"><button type="button" class="myButton" >Want to predict the
energy</button></a>
               </div>
               </div>
       </body>
</html>
```

Predict.html:

```
<html>
       <head>
              <meta charset="UTF-8" />
              <meta name="viewport" content="width=device-width, initial-scale=1.0" />
              <meta http-equiv="X-UA-Compatible" content="ie=edge" />
              k rel="stylesheet" href="https:/ use.fontawesome.com/releases/v5.7.2/css/all.css"
                     integrity="sha384-
fnmOCqbTIWIIj8LyTjo7mOUStjsKC4pOpQbqyi7RrhN7udi9RwhKkMHpvLbHG9Sr" crossorigin="anonymous" />
              <link href="https:/ fonts.googleapis.com/css?family=Dosis" rel="stylesheet" />
              k rel="stylesheet" href="static/css/main.css"/>
              k rel="stylesheet" href="static/css/media.css"/>
              k rel="stylesheet" href="static/css/items grid.css"/>
       <title>Predicting the energy output of wind turbine based on weather condition</title>
> #page {
 max-width:
 80%; margin:
 auto;
body {
       background-image: url(https:/images.unsplash.com/photo-1511546705877-f449b6f6dcfd?ixlib=rb-
4.0.3&ixid=MnwxMiA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=1074&q=80);
       width: 100%;
       height: 100%;
       background-repeat: no-repeat;
       background-attachment: fixed;
       background-size: cover;
       overflow: hidden;
}
table {
              width: 100%:
              border-collapse: collapse;
}
.card {
      margin-right: auto;
      margin-left: 15%;
      width: 300px;
```

```
box-shadow: 0 15px 25px rgba(129, 124, 124, 0.2);
  border-radius: 5px;
  backdrop-filter: blur(14px);
  background-color: rgba(255, 255, 255, 0.2);
  padding: 15px;
  text-align: center;
}
          .head {
                  top:0px;
                  margin:0px;
                  left: 0px;
                  right: 0px;
                  position: fixed;
                  background: #86521a;
                  color: white;
                  overflow: hidden;
                  padding-bottom: 30px;
                  font-size: 2.25vw;
                  width: 100%;
                  padding-left:0px;
                  text-align: center;
                  padding-top:20px;
          }
          .second{
                  top:80px;
                  bottom:0px;
                  margin:0px;
                  left: 0px;
                  right: 0px;
                  position: fixed;
                  padding: 0px;
                  width: 100%;
                  font-family:Georgia, serif;
                  color:black;
                  font-size:20px;
          }
          .inside{
                  top:80px;
                  bottom:0px;
                  margin:0px;
                  left: 51%;
```

```
right: 0%;
                      position: fixed;
                      padding-left: 40px;
                      padding-top:8%;
                      padding-right:40px;
                      font-family: Arial, Helvetica, sans-serif;
                      color:#f72727;
                      font-size:20px;
                      text-align:justify;
               }
               .myButton{
                       border: none;
                       text-align:
                       center; cursor:
                       pointer;
                       text-transform: uppercase;
                       outline: none;
                       overflow: hidden;
                       color: #fff;
                       font-weight: 700;
                       font-size: 12px;
                       background-color: #183a1d;
                       padding: 10px 15px;
                       margin: 0 auto;
                       box-shadow: 0 5px 15px
                       rgba(0,0,0,0.20); margin-left:17%;
               }
       input {
       width:50%;
       margin-bottom: 10px;
       background: #e1eedd;
       border: none:
       outline: none;
       padding: 10px;
       font-size: 13px;
       color: #6c493a:
       text-shadow:
       white; border:
       #6c493a; border-
       radius: 4px; box-
       shadow: white;
}
::placeholder {
```

```
color: black;
 opacity: 1;
}
.left{
               top:80px;
                      bottom:0px;
                      margin:0px;
                      left: 0%;
                      right: 45.5%;
                      position: fixed;
                      padding-left: 10%;
                      padding-top:5%;
                      padding-right:40px;
                      font-family:bold,Georgia, serif;
                      color:rgb(36, 37, 37);;
                      font-size:25px;
                      align:center;
}
       select {
       width:50%
       margin-bottom: 10px;
       background: white;
       border: none;
       outline: none;
       padding: 10px;
       font-size: 13px;
       color: #183a1d;
       text-shadow: white;
       border: #6c493a;
       border-radius: 40px;
       box-shadow: white;
}
input:focus { box-shadow: inset 0 -5px 45px rgba(100,100,100,0.4), 0 1px 1px rgba(255,255,255,0.2); }
                table, th, td {
 border: 1px solid rgb(86, 72,
 128); border-collapse: collapse;
```

```
color: #3f00ff;
}
@media screen and (max-width: 500px) {
 .left,
 .second,
 .third {
       width: 70%;
}
}
      </style>
      </head>
      <body>
             <header id="head">
             <div class="head">Predicting The Energy Output Of Wind Turbine Based On Weather
Condition</div>
             </header>
             <div class="second">
             <div class="left">
             <br>
             <br>
             <div style="margin-left:10%">
             <form action="{{ url_for('windapi')}}"method="post" >
                          <select name="city" required >
                                 <option value="" selected>Select City</option>
                                 <option value ="Agartala">Agartala
                                 <option value ="Aizawl">Aizawl</option>
                                 <option value ="Bangalore">Bangalore
                                 <option value ="Bhopal">Bhopal
                                 <option value ="Bhubaneswar">Bhubaneswar
                                 <option value ="Chandigarh">Chandigarh
                                 <option value ="Chennai">Chennai
                                 <option value ="Coimbatore">Coimbatore
```

```
<option value ="Daman">Daman
                             <option value ="Dehradun">Dehradun
                             <option value ="Delhi">Delhi</option>
                             <option value ="Dindigul">Dindigul</option>
                             <option value ="Erode">Erode</option>
                             <option value ="Gandhinagar">Gandhinagar
                             <option value ="Gangtok">Gangtok</option>
                             <option value ="Hyderabad">Hyderabad
                             <option value ="Imphal">Imphal
                             <option value ="Itanagar">Itanagar
                             <option value ="Jaipur">Jaipur
                             <option value ="Kavaratti">Kavaratti
                             <option value = "Kohima">Kohima
                             <option value = "Kolkata" > Kolkata < / option >
                             <option value ="Lucknow">Lucknow</option>
                             <option value ="Mumbai">Mumbai
                             <option value ="Panaji">Panaji
                             <option value ="Patna">Patna
                             <option value ="Pondicherry">Pondicherry</option>
                             <option value ="Port Blair">Port Blair
                             <option value ="Raipur"</pre>
                                                    >Raipur</option>
                             <option value ="Ranchi"</pre>
                                                    >Ranchi</option>
                             <option value ="Shillong">Shillong</option>
                             <option value ="Shimla">Shimla
                             <option value = "Silvassa">Silvassa
                             <option value="Srinagar">Srinagar</option>
                             <option value ="Thiruvananthapuram">Thiruvananthapuram
                             <option value ="Tirupati">Tirupati
                       </select><br><br>
                       <div style="margin-left:-15%"><button type="submit" class="myButton" >Check
the Weather Conditions</button></div>
                 </form>
                 </div>
                 <br>
                 <div class="card">
                 The Weather Conditions is
```

```
Temperature{temp}}
                          Humidity{{humid}}
                          Pressure{{pressure}}
                          Wind Speed{{speed}}
                          </div>
             </div>
                    <div class="inside">
                    <div style="font-size:23px;font-weight:bold;">Prediction of the Wind Energy</div>
                    <br>>cbr><br>>
                    <form action="{{ url_for('y_predict')}}"method="post">
                          <input type="text" name="theo" placeholder="Theoretical Power in KWh"
 required="required" />
                          <input type="text" name="wind" placeholder="Wind Speed in m/s"
 required="required" /><br><br>
                          <button type="submit" class="myButton" >Predict</button>
                    </form>
               <br>
               <br>
               {{ prediction_text }}
             </div>
             </div>
       </body>
 </html>
GITHUB:
  IBM-EPBL/IBM-Project-40630-1660632339: Predicting the energy output of wind turbine based on weather
condition (github.com)
PROJECT DEMO LINK:
 https://drive.google.com/file/d/1gulZROY0plcupTdmos5VWWzRBSykvb4d/view?usp=drivesdk
```