HW-03 Part TWO

Abraham J. Reines

October 2, 2023

$1 \quad 3.3.50$

1.1 Part a: Evaluating the Proposition

We are tasked with evaluating the veracity of the proposition:

"For every object x, there exists an object y such that if $x \neq y$, then x and y have different colors."

Given the objects are confined to the colors blue, grey, or black, and for each object, there are at least two objects of a different color, the proposition holds as **True**.

1.2 Part b: Logical Formalism

To formally represent the statement in question, we can employ predicate logic. The logical expression becomes:

$$\forall x \, (\exists y \, (x \neq y \to \sim (\mathsf{TheSameColor}(x,y))))$$

Here, TheSameColor(x, y) denotes "x has the same color as y".

1.3 Part c: Negation in Logical Notation

The objective is to negate the logical statement initially presented in Part b. Starting with the negation of the original logical expression, we have:

$$\sim (\forall x (\exists y (x \neq y \to \sim \text{TheSameColor}(x,y)))) \equiv \exists x (\sim (\exists y (x \neq y \to \sim \text{TheSameColor}(x,y)))) \quad ... (\mathbf{1})$$

$$\equiv \exists x (\forall y (\sim (x \neq y \rightarrow \sim \text{TheSameColor}(x, y)))) \quad ... (\mathbf{2})$$

$$\equiv \exists x (\forall y (x \neq y \land \sim (\sim \text{TheSameColor}(x, y)))) \quad ...(3)$$

$$\equiv \exists x (\forall y (\sim (x \neq y \land \mathsf{TheSameColor}(x, y)))) \qquad ...(\mathbf{4})$$

We see (1) & (2) are Negation statements. (3) $\sim (P \to Q) \equiv P \land \sim Q$. Finally, (4) is Negation Law twice. Therefore, the negation of the statement in logical form is $\exists x (\forall y (x \neq y \land \text{TheSameColor}(x, y)))$.

2 Logical Argument and Reordered Premises 3.4.32

The original argument presents the following premises:

- 1. When I work a logic example without grumbling, you may be sure it is one I understood.
- 2. The arguments in these examples are not arranged in regular order like the ones I am used to.
- 3. No easy example makes my headache.
- 4. I can't understand examples if the arguments are not arranged in regular order like the ones I am used to.
- 5. I never grumble at an example unless it gives me a headache.

The conclusion drawn is: "These examples are not easy."

2.1 Objective

The objective is to reorder the premises in the above argument to demonstrate the conclusion is valid.

2.2 Rewriting the Premises

We rewrite the premises in an if-then form:

- 1. If I can't understand any logic example, I grumble.
- 2. If an argument belongs to these examples, then the arguments are not arranged in regular order like the ones I am used to.
- 3. If I get a headache, then the example is not easy.
- 4. If the arguments are not arranged in regular order like the ones I am used to, then I can't understand.
- 5. If I grumble at any example, then it gives me a headache.

2.3 Reordered Premises

Upon reordering, the premises are as follows:

- 2. If an argument belongs to these examples, then the arguments are not arranged in regular order like the ones I am used to.
- 4. If the arguments are not arranged in regular order like the ones I am used to, then I can't understand.
- 1. If I can't understand any logic example, I grumble.
- 5. If I grumble at any example, then it gives me a headache.
- 3. If I get a headache, then the example is not easy.

2.4 Conclusion

By logically chaining premises 2 and 3, we arrive at the same conclusion: "These examples are not easy."

Therefore, the reordered premises validate the conclusion.