QF Group Theory CC2022 By Zaiku Group

Lecture 18

Delivered by Bambordé Baldé

Friday, 11/11/2022

Learning Journey Timeline

quantumformalism.com

Some Warm up

Theorem 1.0

Let $GL(\mathbb{R}^n)$ be the group of all invertible linear maps $L: \mathbb{R}^n \longrightarrow \mathbb{R}^n$, where \mathbb{R}^n is equipped with the ordinary vector space structure over \mathbb{R} . Then $GL(\mathbb{R}^n) \simeq GL(n,\mathbb{R})$.

Proof: Homework challenge! As a hint, you can use the canonical basis of \mathbb{R}^n to construct the proof!

- The isomorphism above is not canonical i.e. it depends on your choice of basis!
- $GL(n,\mathbb{R})$ is a (noncompact) Lie group of dimension n^2 .

Proposition 1.0

The set $GL^+(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) \mid det(A) > 0\}$ is a subgroup of $GL(n,\mathbb{R})$.

Proof: Homework challenge!

Challenge 1

Is $GL^+(n,\mathbb{R})$ a normal subgroup of $GL(n,\mathbb{R})$?

Challenge 2

Is the set $GL^-(n,\mathbb{R})=\{A\in GL(n,\mathbb{R})\mid det(A)<0\}$ also a subgroup of $GL(n,\mathbb{R})$? If yes, is it a normal subgroup of $GL(n,\mathbb{R})$?

The Real Special Linear Group

Proposition 1.1

The set $SL(n,\mathbb{R})=\{A\in GL(n,\mathbb{R})\mid det(A)=1\}$ is a subgroup of $GL(n,\mathbb{R})$.

Proof: Homework challenge!

- $SL(n, \mathbb{R})$ is known in the literature as the special linear group.
- Geometrically, it is the group of volume and orientation preserving linear maps on \mathbb{R}^n .
- On a side note, $SL(n,\mathbb{R})$ is a Lie group of dimension n^2-1 (noncompact for n>1).

Proposition 1.2

Let \mathbb{R}^* be the multiplicative group of the nonzero real numbers. Then the determinant map $det: GL(n,\mathbb{R}) \longrightarrow \mathbb{R}^*$ taking $A \in GL(n,\mathbb{R})$ to $det(A) \in \mathbb{R}^*$ is a group homomorphism and $Ker(det) = SL(n,\mathbb{R})$.

Proof: Homework challenge!

Proposition 1.3 (Corollary of 1.2)

 $SL(n,\mathbb{R})$ is a normal subgroup of $GL(n,\mathbb{R})$.

Proof: Homework challenge (trivial if you recall the isomorphism theorems)!

Challenge 3

Is it true that $GL(n,\mathbb{R})/SL(n,\mathbb{R})\simeq \mathbb{R}^*$.

The Real Orthogonal Group

Proposition 1.3

The set $O(n,\mathbb{R})=\{A\in GL(n,\mathbb{R})\mid A^TA=I_n\}$ is a subgroup of $GL(n,\mathbb{R})$.

Proof: Homework challenge!

- $O(n, \mathbb{R})$ is known in the literature as the orthogonal group i.e. it is the group of all orthogonal $n \times n$ real matrices.
- We'll use the abbreviation O(n) to denote $O(n, \mathbb{R})$. It's what most textbooks do.
- Geometrically, O(n) is the group of 'linear isometries' on \mathbb{R}^n i.e. the linear maps that preserve distances between points in \mathbb{R}^n and so preserve the length of vectors in \mathbb{R}^n .
- Recall that not all isometries are linear and O(n) cannot include all the possible isometries!
- Another nice fact geometric about O(n) is that it's the symmetry group for the n-1 sphere. So O(3) is then the symmetry group of the ordinary sphere and O(2) the symmetry group of the circle.
- On a side note, O(n) is a (compact) Lie group of dimension $\frac{n(n-1)}{2}$.

The Real Special Orthogonal Group

Proposition 1.4

The set $SO(n) = \{A \in O(n) \mid det(A) = 1\}$ is a subgroup of O(n).

Proof: Homework challenge!

- SO(n) is known in the literature as the real special orthogonal group.
- Geometrically, SO(n) is the group of rotations on \mathbb{R}^n . As a side note, it is also a (compact) Lie group of dimension $\frac{n(n-1)}{2}$.

Proposition 1.5

Let \mathbb{R}^* be the multiplicative group of the nonzero real numbers. Then the determinant map $det: O(n) \longrightarrow \mathbb{R}^*$ taking $A \in O(n)$ to $det(A) \in \mathbb{R}^*$ is a group homomorphism and Ker(det) = SO(n)!

Proof: Homework challenge!

Proposition 1.6 (Corollary of 1.5)

SO(n) is a normal subgroup of O(n).

SO(n) Challenge (A)

Isomorphism question 1

Which of the following is true (if any):

- $O(n)/SO(n) \simeq \mathbb{R}^*$.
- ② $O(n)/SO(n) \simeq \{-1,1\}$, where $\{-1,1\}$ is a group under the ordinary multiplication.
- **3** $O(n)/SO(n) \simeq \mathbb{Z}_2$, where \mathbb{Z}_2 is the group under mod 2 addition.

Abelian question

Is it true that SO(2) is abelian? What about SO(3) or even better SO(n) for n > 2?

Hint: Recall that the elements of SO(2) are of the following form:

$$R_{ heta} = egin{pmatrix} cos heta & -sin heta \ sin heta & cos heta \end{pmatrix}$$
 where $heta \in [0, 2\pi)$.

SO(n) Challenge (B)

Isomorphism question 2

Consider the multiplicative group (circle group) $\mathbb{S}^1 = \{z \in \mathbb{C} \mid |z| = 1\}$. Is it true that $\mathbb{S}^1 \simeq SO(2)$?

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Linkedin: linkedin.com/showcase/quantum-formalism

Twitter: twitter.com/ZaikuGroup

quantumformalism.com