Designing Mechanisms with Bounded-Rational Agents

Nicolas Pastrian

University of Pittsburgh

December 8, 2021

Motivation

- Relaxing the assumption that agents always perfectly optimize in mechanism design settings
- Motived by evidence that people deviate from equilibrium even for dominant strategy mechanisms
- While repetition improves equilibrium prediction power, low frequency interactions, as well changing conditions (and mechanisms) could limit such improvements in practice
- Goal is to study how mechanism design could incorporate this reasoning in the implementation of reforms to incentive systems

3 papers

- Screening with Behavioral Types
- Surplus Extraction with Behavioral Types
- Screening Agents Who Sample

Some common features across models

- Bounded-rationality behavior present in agents choices
- Mechanisms are interpreted as menus
- Such menus are not fully observable by all agents
- Agents only evaluate alternatives they observed
- What is observable is "exogenous" and fixed

Screening with Behavioral Types

Idea

- Start with the simplest model: monopolistic screening problem
- Some agents report truthfully regardless of the mechanism being used
- "IPV" setting
- Focus on direct mechanisms (for most of the paper)

Model

- Seller provides a product of quality $q \ge 0$ at cost $c(q) = q^2/2$
- Continuum of buyers
 - Fraction α has high valuation θ_H , fraction 1α has low valuation $\theta_L > 0$
 - Fraction γ is completely strategic (S), fraction 1γ is behavioral (B)
- Valuation and behavioral status are independent
- We assume behavioral types always report their information truthfully, regardless of the mechanism implemented
- All buyers have quasilinear preferences

$$\theta \cdot q - t$$

with $t \in \mathbb{R}$ transfer/price paid to the seller

Model

• We restrict to direct mechanism

$$\Gamma = (q_i^j, t_i^j)_{i \in \{L,H\}, j \in \{S,B\}}$$

- q_i^j is quality received by reported type (θ_i, j)
- t_i^j is the price paid by reported type (θ_i, j)
- We will refer to a quality-price pair as a contract
- Seller's goal is to maximize her expected profits designing Γ among IC and IR mechanisms
- A mechanism is IC if strategic buyers have no incentives to deviate to the contract of other type of buyers (given their valuation)
- A mechanism is IR if buyers get non-negative utility given their valuation, behavioral status, and personalized contract

Incentive compatibility and individual rationality

More formally:

• A mechanism is incentive compatible (IC) if it satisfies

$$\theta_i q_i^S - t_i^S \ge \theta_i q_{i'}^j - t_{i'}^j,$$

for $i, i' \in \{L, H\}$ and $j \in \{S, B\}$.

- ► Only strategic types could evaluate all contracts
- A mechanism is individually rational (IR) if

$$\theta_i q_i^j - t_i^j \geq 0$$

for $i \in \{L, H\}$ and $j \in \{S, B\}$

 Here individual rationality implies all buyers could always opt out from the mechanism after they have looked at their realized allocation

Benchmarks

Benchmark # 1: full information mechanism

$$q_i^j = \theta_i$$
 $t_i^j = \theta_i q_i^j = \theta_i^2$

 Benchmark # 2: optimal mechanism without behavioral buyers

$$q_{L} = \max \left\{ \theta_{L} - \frac{\alpha}{1 - \alpha} (\theta_{H} - \theta_{L}), 0 \right\}$$

$$q_{H} = \theta_{H}$$

$$t_{L} = \theta_{L} q_{L}$$

$$t_{H} = \theta_{H} q_{H} - (\theta_{H} - \theta_{L}) q_{L}$$

Optimal mechanism

Proposition

The optimal mechanism is given by

$$\begin{aligned} q_L^j &= \max \left\{ \theta_L - \frac{\gamma \alpha}{1 - \alpha} \left(\theta_H - \theta_L \right), 0 \right\} \\ q_H^j &= \theta_H \\ t_i^j &= \theta_i q_i^j \\ t_H^S &= \theta_H q_H^S - (\theta_H - \theta_L) q_L^B \end{aligned}$$

- All buyers with low valuation receive quality below the efficient level and pay the same price
- All buyers with high valuation receive the efficient quality level but they pay differentiated prices
- Everyone but strategic buyers with high valuation get zero rents

Intuition of the result

- Seller would like to extract the rents of everyone but he can't
- Extracting from behavioral buyers is easier
- However, providing the efficient quality level to behavioral buyers with low valuation face same problem faced with strategic ones
- That is, strategic buyers with high valuation would prefer such contract due to complementarity
- So, she needs to pool low valuation buyers

Pricing interpretation

The proposed mechanism could be interpreted in a pricing setting as follows (assuming no exclusion)

- Two versions (qualities) of the same product are offered
- Premium version is provided at the efficient high quality level, with two differentiated prices
 - ► Full normal price paid "simple" (behavioral) buyers
 - ▶ Discounted price paid by "sophisticated" (strategic) buyers
- Cheap version provided at an inefficient low quality, single price offered

Exclusion and comparative statics

Proposition

Fix θ_L, θ_H and α . There exists $\bar{\gamma}$ such that for $\gamma < \bar{\gamma}$ there is no exclusion

- With behavioral players, exclusion is observed less often
- Moreover, if there are enough of them we always get no exclusion

Proposition

Both welfare and seller's profits are increasing in the fraction of behavioral buyers (decreasing in γ).

- Rents from behavioral buyers could be extracted easily which increase profits
- It also increase welfare by increasing the quality provided to low valuation buyers

Extensions

- Ex-ante participation constraints
- Information acquisition
- Constrained message space

Related literature

- Severinov and Deneckere (2006) studies screening with honest buyers in a continuous setting, characterize the optimal password mechanism with exhibits no exclusion
- Saran (2011) studies bilateral trade with honest players and shows honest bidders allows for cross subsidies that could improve efficiency
- Ostrizek and Shishkin (2019) studies screening where seller designs both mechanisms and frames
- "Behavioral" mechanism design: Eliaz (2002), De Clippel et al (2018)
- Robust mechanism design: Bergemann and Morris (2005), Carroll (2019)

Concluding remarks

- We present a model of screening where some buyers always report truthfully
- We have shown that in the optimal mechanism only two quality levels are offered but three prices are used in order to increase revenue from behavioral buyers
- First step on a more general setup

Future ideas

- Extend behavioral assumptions on uninformed / behavioral agents
- Extend environment beyond screening and profit maximization
- Dynamic model
 - ► Incentives to create initial mechanism in a certain way
 - ► Incentives to update mechanism at a certain pace
 - Conditions for learning
- Beyond binary valuations

Surplus Extraction with Behavioral Types

Motivation

- In a mechanism design setting where information is independent: private information leads agents to retain informational rents
- Myerson (1981) and others have shown that if instead information is correlated then extracting all the rents is possible
- This is usually called full extraction
- Cremer and McLean (1988) identify the key "independence" condition under which full extraction is possible

Informal description of behavioral types

- In this paper, we include behavioral types in this standard setting
- We focus on a particular class of behavioral types
- That is, types who doesn't react optimally to incentives and always reveal their private information
- This is a simple but very strong assumption: allows for perfect identification of each behavioral type
 - Best setting for the designer
 - Good starting point

Overview

- We consider a reduced form approach (McAfee and Reny (1992), Lopomo, Rigotti and Shannon (2020))
 - ► Single agent
 - ► Informational rents generated from unmodeled stage
 - Exogenous states
 - Correlation represented through beliefs over states
 - ► No allocation in the current stage, only transfers ("contract")
- Finite environment (types, states)
- We characterize the key conditions to guarantee full extraction with behavioral types

Model

- Finite set of agent's types T
- Finite set of states Ω
- Each type t associated with
 - ▶ Informational rents $v_t \in \mathbb{R}_+$
 - These rents comes from an unmodeled stage (e.g., second price auction)
 - ▶ Beliefs $p_t \in \Delta(\Omega)$
 - ullet Correlation between types and states if $p_t
 eq p_{t'}$
- A contract $c:\Omega\to\mathbb{R}$ is a mapping from states into transfers, with $c(\omega)$ the transfer required in state ω
- A contract menu $\mathbf{c} = \{c_t : t \in T\}$ is a collection of contracts, one for each type
- The agent has quasilinear preferences

$$v_t - \langle p_t, c_{t'}
angle$$

where
$$\langle p_t, c_{t'}
angle = \sum_{\omega \in \Omega} p_t(\omega) c_{t'}(\omega)$$

Introducing behavioral types

- We allow some types in T to be behavioral
- As before, we assume behavioral types always reveal their type regardless of the contracts offered.
- That is, they not need to satisfy any incentive compatibility constraint.
- Let $B \subseteq T$ be the set of behavioral types.
- Similarly, let $S = T \setminus B$ be the set of *strategic* types.

The designer's problem

- We are interested on whether the principal/designer is able to extract all the informational rents from the agent using a contract menu c.
- ullet Formally, a contract menu achieves full extraction if for all $t \in \mathcal{T}$

$$\langle p_t, c_t \rangle = v_t$$

• A contract menu is incentive compatible if each strategic type chooses his cost minimizing contract, i.e., for all $s \in S$

$$c_s \in \arg\min_{t \in T} \langle p_s, c_t \rangle$$

We say full extraction with behavioral types is feasible if there
exists an incentive compatible contract menu c which achieves
full extraction

CM condition

Definition

A set of beliefs P satisfies the CM condition if for any $p \in P$, $p \notin co(P \setminus \{p\})$

- Without behavioral types, Crémer and McLean (1988) have identified the key condition for full extraction
- Being that the sets of beliefs for all types, P^T, must satisfy the CM
- We provided the characterization if behavioral types are also present

Main result

Theorem

Full extraction with behavioral types is feasible if

- P^S satisfies the CM condition, and
- **2** For all types $b \in B$, $p_b \notin co(P^S)$
- ullet This imposes no restrictions on the structure of v_t
- CM over strategic types still necessary
- Condition over behavioral types slightly relaxed

From the main theorem

- Without loss to consider |B|=1 since contract for b is independent from contract for $b'\neq b$
- Moreover, contract offered to b is independent of the contracts offered to any other type $t \in T : t \neq b$

What if conditions in the Theorem fail?

Corollary

Consider a particular behavioral type $b \in B$. Let c_{-b} be an incentive compatible contract menu for types $t \neq b$. If $p_b \notin co(P^S)$ then there exists a contract c_b such that the contract menu (c_b, c_{-b}) is incentive compatible and $\langle p_b, c_b \rangle = v_b$.

 In short, Condition 2 allows for full extraction from behavioral types even if not possible for strategic types (i.e., Condition 1 fails)

What if conditions in the Theorem fail?

Proposition

Suppose P^S satisfies the CM condition. Let $\hat{B} = \{b \in B : p_b \in co(P^S)\}$. Then, full extraction with behavioral types is feasible if for each $b \in \hat{B}$

$$v_b \geq \sum_{s \in S} \lambda^b(s) v_s,$$

where
$$\lambda^b \in \Delta(S)$$
: $p_b = \sum_{s \in S} \lambda^b(s) p_s$.

• If Condition 2 fails, full extraction still feasible if informational rents of behavioral types are "big enough"

Related literature

- Myerson (1981): shows an example where correlation lead to full extraction in a simple finite environment
- Cremer and McLean (1988): auction environment
- McAfee and Reny (1992): reduced form setting, full extraction with finite types; virtual full extraction with continuous types
- Lopomo, Rigotti, and Shannon (2020): revisit full and virtual full extraction with finite and continuous types
- Krahmer (2020): mech design + info design
- Fu et al (2021): unknown correlated distribution but samples still allow for full extraction

Concluding Remarks

- We characterize full surplus extraction in the presence of behavioral types
 - ► We identify a relaxation of the standard convex independence condition that guarantees full extraction
 - ► Full extraction is easier in this environment but still doesn't comes for free as some conditions are required
- Future steps
 - ► Alternative behavioral assumptions on behavioral types
 - ► Beyond reduced form approach
 - Necessary conditions for full extraction

Screening Agents Who Sample

Warning

- Very preliminary, incomplete and unfinished
- All comments and suggestions will be extremely appreciated

Motivation

- As consumers, we received many offers for buying a lot of different products
- However, limited attention or even choice overload, could lead buyers to not evaluate all alternatives presented to them
- Moreover, conjecturing what is offered as opposed to evaluating what is offered could be quite unrealistic
- Here I study a model in which buyers don't evaluate all the available alternatives presented by a seller
- Instead buyers sample some of the alternatives and evaluate their characteristics
- This captures a model of search and discovery that could not be controlled neither by the seller nor the buyer completely

Related literature

- Hart and Nisan (2019): study complexity as the number of entries in the menu representation of a mechanism; simple mechanisms work fine if types are independent, not so well if there is correlation
- Dhangwatnotai et al (2015): building upon Bulow and Klemperer (1996) result, they show that using a random bid as reserve guarantees 1/2 of the revenue for "all" distributions
- Fu et al (2021): unknown correlated distribution but access to samples → full extraction is feasible (with bounded sample size).
- More than one sample: not necessarily better and proofs are challenging (Babaioff et al (2018), Daskalakis and Zampetakis (2020))

Related literature

- Search: Diamond (1971), Stahl (1989), Ellison and Ellison (2009), Ellison and Wolitzky (2012)
- No competition and no obfuscation: monopolist face buyers with a noisy search technology and have no way to affect it
- No price dispersion: in the solution a single quality-price pair is offered

Model

- Single seller, continuum of buyers
- Everyone is risk neutral
- Seller produce good of quality q at cost $q^2/2$
- Buyer utility is quasilinear

$$\theta \cdot q - t$$

with θ his valuation and t the price he pays to the seller

• Valuations takes two values: $\theta_H > \theta_L > 0$

Model

- We will refer to a quality-price pair as a contract
- A mechanism or menu in this setting is then a collection of contracts
- Buyers will not observe the complete mechanism, instead they will sample contracts from the menu of available contracts (uniformly) at random
- Sampling in this context will refer to the procedure used by buyers to observe contracts

Model

- We will focus on the single sample case: buyers draw a single contract from the menu
- After drawing a contract, buyers decide whether they accept or reject the offer
- Rejection lead to zero payoff for both the buyer and the seller
- Note that agents here are bounded-rational and cannot conjecture what will be on the menu to decide how much to search

Useful reference points

Given the assumptions,

- Full information, no sampling, "efficient" contract for type θ offers quality θ and charges θ^2
- The optimal mechanism if buyers observe all contracts has at most two entries either,
 - ▶ it provides

$$(\theta_H, \theta_H^2 - (\theta_H - \theta_L)q_L)$$
 and $(q_L, \theta_L q_L)$

with
$$q_L = \theta_L - \alpha(\theta_H - \theta_L)$$
,

ightharpoonup or offers (θ_H, θ_H^2) only

Main result (so far)

Proposition

Consider the single sample problem with binary valuations. In the optimal mechanism, the seller always prefer to offer a single contract (q^*, t^*) . Moreover, such contract is either accepted only by the high valuation buyers which obtain zero expected utility, or it is accepted by all buyers and only the high valuation buyers obtain a positive payoff. In the first case, efficient quality is provided but only to high valuation buyers, while in the second case only the low valuation buyers receive the efficient quality.

Main result (so far)

- Even though she could offer two differentiated contracts, as in the setting without sampling, the seller will never choose to do so
- That is, the seller prefers to reduce variety as a response to the noise in buyer's choices

- The argument behind the proof is straightforward
- First, we show that only full information contracts will be used by the seller
- Consider a contract (q,t) such that $t \neq \theta q$ for neither $\theta = \theta_L$ nor $\theta = \theta_H$
- We will show that it is optimal for the seller to replace such contract for other contract of the form (θ, θ^2) , i.e., a full information contract

- Let $\hat{\theta}$ be the lowest type accepting contract (q, t), that is, the lowest θ such that $\theta \cdot q t \ge 0$
- Note that replacing (q,t) by $(\hat{\theta},\hat{\theta}^2)$ increases profits since it maximizes the value collected from type $\hat{\theta}$
- Hence, only contracts of the full information form are offered in an optimal menu

- It remains to show that the seller will always prefer to offer only one of the two contracts
- To show this, we consider an auxiliary problem in which the seller chooses the probability each contract is sampled

$$p \cdot \alpha \left(\theta_H^2 - \frac{\theta_H^2}{2}\right) + (1-p)\left(\theta_L^2 - \frac{\theta_L^2}{2}\right)$$

where p is the probability contract (θ_H, θ_H^2) is sampled

- Note that this problem is linear, hence the single contract solution follows directly by comparing the profits generated by each contract
- This also implies that the uniform sampling assumption is without loss

Quick comparative statics

- Note that (θ_H, θ_H^2) is offered for $\alpha > \left(\frac{\theta_L}{\theta_H}\right)^2$, and (θ_L, θ_L^2) is offered otherwise
- Hence, higher proportion of high valuation buyers favors the high contract
- Similarly, a higher θ_H translates to higher chances of having the high contract as the solution
- Note that $\theta_H < 2\theta_L$ guarantees offering two contracts to be optimal if there is no sampling
- However, even under this assumption the optimal menu with a single sample could take any of the two forms described above

What about welfare? Part 1: maximizing welfare

- Note that in terms of welfare, the price dimension is irrelevant since there is no incentive compatibility issues
- Hence, we only care about the quality provided in each contract
- We note first that the welfare maximizing mechanism also uses a single contract
- It either only serves the high type efficiently $(q = \theta_H)$ or provides the average quality to everyone $(q = \alpha\theta_H + (1 \alpha)\theta_L)$
- If we assume $\theta_H < 2\theta_L$ then the welfare maximizing contract always provide the average quality

What about welfare? Part 2: welfare under the profit maximizing mechanism

- First observation is that the welfare under the profit maximizing solution is always suboptimal (as long as $\theta_H < 2\theta_L$, weakly if not)
- Obviously, it also exhibits inefficiencies when compared with the full information-no sampling solution

Some results with two samples

- Determining the optimal mechanism with more than one sample is more difficult
- If we restrict the seller to use at most two different contracts then the solution could involve
 - using a single high contract,
 - using a single low contract, or
 - using two different contracts
- Moreover, these 3 types of menus could arise (as a function of the proportion of high valuations buyers α) even assuming $\theta_H < 2\theta_L$ (which ruled out exclusion without sampling)

Some results with two samples

- Next steps:
 - ► What if we allow the seller to add copies of the mechanisms into the pool (i.e., deciding the probability each contract is drawn)?*
 - ► Are two contracts enough?

Targeted menus

- In the previous model, each type has the same chances of observing each contract
- What if we allow the seller to target each type with different menus?
- In the extreme case, the problem becomes trivial
- If the seller could offer personalized menus, she would offer a menu with a differentiated single contract to each type and extract all their rents
- Next steps: what if targeting is imperfect (noisy)?

More than two valuations in the single sample case

- Extending the main result beyond binary valuations is straightforward
- Indeed, with *N* different valuations $\theta_1 < \theta_2 < ... < \theta_N$
 - Only full information form contracts are offered
 - ► Moreover, the optimal menu involves using a single contract
- It also extends to continuous valuations directly as long as we consider finite size menus

Concluding remarks

- I have characterized the optimal mechanism offered by seller when buyers sample once from the alternatives offered by her
- The main result being that this noisy technology involve reducing variety in favor of offering a single option
- Moreover, the optimal menu induces inefficiency by either excluding too much

Future directions

- Full characterization for more than one sample
- Targeted menus with noise
- Insightful suggestions from the audience?

Final final comments

- We have reviewed 3 models of mechanism design with bounded-rational agents
- They offer 3 different approaches to address the issue on designing mechanisms when perfect rationality fails
- Still only first steps into more complex environments

Thanks!