IMPULS OR USES GAP OF 0.25

Stores 1 $\frac{2}{3}$ $2-\sqrt{2}$ $4-2\sqrt{3}$ $\frac{1}{2}$ Allow one GREBR MI

(0.5858) (0.5359)

O.25

UI II + $\frac{11}{3}$ + $2\left(\frac{2}{3} + \frac{11}{2} - \sqrt{2}\right)^{1} + \frac{11}{4} - 2\sqrt{3}$ IN MI

MI

0.635 . 1 (C.a.o)

2 $162 = 32 \times r^4$ MI $r^4 = \frac{81}{64}$ o. \in MI $r = \frac{3}{2}$ AI SHOWS 72 AS FINAL ANSWER AI

3. $\left(\frac{dy}{dx}\right) 3x - 12x$ MI $3x^2 - 12x < 0$ MI

Shows $0 \neq 4$ Both AI $0 \neq 0$ Similar Matipu MI $0 \leq 2x \leq 4$ (Allows) AI John

4. a)
$$70^2 = 37^2 + 37^2 - 2 \times 37 \times 37 \cos \theta$$
 M)
 $2738 \cos \theta = -262$ or $\cos \theta = -\frac{1081}{1369} \approx -0.7896$. A1
Shows 2.481° 45 Fingle Auswer A1 Jdfp

ALTMNATIVE SIN
$$\phi = \frac{35}{37}$$
 MI
 $\phi = 1.24049$ AI
 $0 = 2 \times 1.24049 = 2.481^{\circ}$ AI

5.
$$64$$
 + 192 ka + 240 k²a² + 160 k³a³ + -1 eeoo 192 k = 240 k² MI

k = $\frac{1}{5}$ AI

(a = 64) ALLHADY THYTTO

b = 153.6 AI

C = 81.92 41

6. a) SUBSTITUTES
$$x=-2$$
 AND GETS ZGNO CONPINANCY MI AI
SIGNS $(x+2)(-x^2+4)$ MI
STATIS $B(2_10)$ DAP ON SIDWING $(2-x)$ OR $(2-x)$

b)
$$\frac{dy}{dz} = 4 - 4z - 3x^2$$
 MI
Sowy $\frac{dy}{dz} = 0$ MI
 $(2+2)(32-2)$ AI
 $C(\frac{2}{3})(\frac{256}{27})$ BIBI

 $9 + 42 - 23^2 - 3^3 dx$ M2 ONE MARK FOR $9 + 42 - 23^2 - 3^3 dx$ ONE MARK FOR UNITS

 $82+2x^2-\frac{2}{3}x^3-\frac{1}{4}x^4$ Al $(16+8-\frac{16}{3}-4)-(-16+8+\frac{16}{3}-4)$ or $\frac{44}{3}-(-\frac{20}{3})$ M1 $\frac{64}{3}$ c.a.o Al

7. a) Shows
$$\sqrt{(7-7)^2+(0-2)^2} = \sqrt{104}$$
 M
 $(2-7)^2+(y-2)^2=(11/04)^1$ 43

$$(y-2)^2 = 55$$
 or $(xpands)''$

8.
$$\log_3 t^3$$

$$\log_3 \frac{8}{t^3}$$

$$\frac{8}{27}$$

$$\frac{8}{43} = \frac{27}{27}$$

$$\frac{8}{41}$$

$$\frac{1}{4} = \frac{8}{27}$$

$$\frac{1}{41}$$

$$\frac{1}{4} = \frac{2}{27}$$

$$\frac{1}{41}$$

9. a) SUB
$$z=4$$
 F.G. $4x4^{3}-4x^{2}-\frac{1}{2}x4+2$

or $64-64$ $z+2$ M

Sibrus O a wnowner Al

b) $(z-4)(z^{2}+bz+c)$ MI
 $(z-4)(z^{2}-\frac{1}{2})$ Al

c) Sibrus

$$\frac{(\omega_{1}\theta_{-4})(\omega_{2}\theta_{-5})}{(\omega_{1}\theta_{-4})(\omega_{2}\theta_{-5})} \qquad M1$$

$$\frac{(\omega_{1}\theta_{-4})(\omega_{2}\theta_{-5})}{(\omega_{2}\theta_{-5})} \qquad \Omega_{1} + \frac{\sqrt{2}}{2} \quad 0.E \quad A1$$

$$\frac{(\Delta_{1}\theta_{-5})(225)(315)}{(\Delta_{1}\theta_{-5})(225)(315)} \qquad \Delta_{1} + \frac{\sqrt{2}}{2} \quad 0.E \quad A1$$