Relational Algebra Exercises

Pubs Database Schema

 $author(\underline{author_id}, first_name, last_name)$

 $author_pub(\underline{author_id},pub_id,author_position)$

 $book(\underline{book_id}, book_title, month, year, editor)$

 $pub(pub_id, title, book_id)$

- author_id in author_pub is a foreign key referencing author
- $\bullet \ pub_id$ in $author_pub$ is a foreign key referencing pub
- book_id in pub is a foreign key referencing book
- $\bullet \ editor$ in book is a foreign key referencing $author(author_id)$
- Primary keys are underlined

Pubs Database State

r(author)

author_id	first_name	last_name
1	John	McCarthy
2	Dennis	Ritchie
3	Ken	Thompson
4	Claude	Shannon
5	Alan	Turing
6	Alonzo	Church
7	Perry	White
8	Moshe	Vardi
9	Roy	Batty

$r(author_pub)$

author_id	pub_id	author_position
1	1	1
2	2	1
3	2	2
4	3	1
5	4	1
5	5	1
6	6	1

r(book)

. (00011)						
book_id book_title		month	year	editor		
1	CACM	April	1960	8		
2	CACM	July	1974	8		
3	BST	July	1948	2		
4	LMS	November	1936	7		
5	Mind	October	1950	NULL		
6	AMS	Month	1941	NULL		
7	AAAI	July	2012	9		
8	NIPS	July	2012	9		

r(pub)

(puo)		
pub_id	title	book_id
1	LISP	1
2	Unix	2
3	Info Theory	3
4	Turing Machines	4
5	Turing Test	5
6	Lambda Calculus	6

Figure 1: Relational Database Schema

1.	How many	tuples	will be	returned	by the	following	relational	algebra	query?

$$\pi_{book_title}(book)$$

Solution: 2

2. What question does the following expression answer?

$$|\pi_{author_id}(author) - \pi_{editor}(book)|$$

Solution: How many authors are not book editors.

3. Write a relational algebra expression that returns the names of all authors who are book editors.

Solution: $\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$

4. Write a relational algebra expression that returns the names of all authors who are **not** book editors.

Solution: $\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$

5. Write a relational algebra expression that returns the names of all authors who have at least one publication in the database.

Solution: $\pi_{first_name,last_name}(author*author_pub)$

6. How many tuples are returned by the following relational algebra expression?

 $author \bowtie_{author_id=editor} book$

Solution: 11

7. What question does the following relational algebra expression answer?

 $author * (author_pub * (\sigma_{month='July'}(book) * pub))$

Solution: Which authors authored a pub that was published in July?