Convex Optimization - HW3

IGOR LUCINDO CARDOSO

October 20, 2025

Disclaimer

This work was assisted by ChatGPT in the following ways: improvement of text content, clarification of mathematical definitions, and rapid generation of graphs and tables.

Problem 1

1.1 — Determine the lifted cone C_U :

$$C_U = \{ \lambda(x, 1) \in \mathbb{R}^3 \mid x \in U, \ \lambda > 0 \}.$$

By substituting the definition of $U = \{x \in \mathbb{R}^2_{>0} \mid \langle 1, x \rangle = 1\}$, we get

$$C_U = \{ \lambda(x, 1) \in \mathbb{R}^3 \mid \langle 1, x \rangle = 1, \ x \in \mathbb{R}^2_{>0}, \ \lambda > 0 \}.$$

We can equivalently write

$$C_U = \{(x, \lambda) \in \mathbb{R}^3 \mid \langle 1, x \rangle = \lambda, \ x \in \mathbb{R}^2_{>0}, \ \lambda > 0 \}.$$

Thus,

$$C_U = \{(x, \langle 1, x \rangle) \in \mathbb{R}^3 \mid \langle 1, x \rangle > 0, \ x \in \mathbb{R}^2_{\geq 0} \}.$$

1.2 — Compute the projection $\operatorname{Proj}_{\mathbb{R}^2}(\mathcal{C}_U)$:

$$\operatorname{Proj}_{\mathbb{R}^2}(\mathcal{C}_U) = \{x \in \mathbb{R}^2 \mid \exists \lambda > 0 \text{ such that } (x, \lambda) \in \mathcal{C}_U \}.$$

Substituting the definition of C_U , we obtain

$$\operatorname{Proj}_{\mathbb{R}^2}(\mathcal{C}_U) = \{ x \in \mathbb{R}^2 \mid x \in \mathbb{R}^2_{>0}, \ \langle 1, x \rangle > 0 \}.$$

This simplifies to

$$\operatorname{Proj}_{\mathbb{R}^2}(\mathcal{C}_U) = \mathbb{R}^2_{>0} \setminus \{0\}.$$

The projection $\operatorname{Proj}_{\mathbb{R}^2}(\mathcal{C}_U)$ corresponds to the nonnegative orthant excluding the origin, while U is the subset of points satisfying the equality $\langle 1, x \rangle = 1$. Therefore, U lies entirely within $\operatorname{Proj}_{\mathbb{R}^2}(\mathcal{C}_U)$:

$$U \subseteq \operatorname{Proj}_{\mathbb{R}^2}(\mathcal{C}_U).$$

1.3 — The visualization of the sets U and $\operatorname{Proj}_{\mathbb{R}^2}(\mathcal{C}_U)$ is shown in the figure below:

Figure 1: Visualization of the sets U and $\operatorname{Proj}_{\mathbb{R}^2}(\mathcal{C}_U)$ in \mathbb{R}^2 .

Problem 2

We begin with the following claim, which characterizes the extreme rays of the homogenized cone associated with a polyhedron.

Claim 1. Given a polyhedron $P \subseteq \mathbb{R}^n$, the set of extreme rays of its homogenization \mathcal{C}_P is

$$eray(C_P) = \{ \lambda(x, 1) \mid x \in ext(P), \ \lambda > 0 \} \cup \{ (d, 0) \mid d \in eray(P) \}.$$

Proof. We prove both inclusions.

 (\subseteq)

Let $(x,t) \in \text{eray}(\mathcal{C}_P)$. We show that (x,t) must belong to one of the two sets described in the claim. Case 1: t > 0.

Then $(x/t, 1) \in \mathcal{C}_P$, which implies $x/t \in P$. Suppose, for contradiction, that x/t is not an extreme point of P. Then there exist distinct $x_1, x_2 \in P$ such that

$$\frac{x_1 + x_2}{2} = \frac{x}{t}.$$

Consequently,

$$\frac{1}{2}(x_1,1) + \frac{1}{2}(x_2,1) = \left(\frac{x}{t},1\right).$$

Multiplying both sides by t > 0, we obtain

$$\frac{t}{2}(x_1, 1) + \frac{t}{2}(x_2, 1) = (x, t).$$

This expresses (x,t) as a nontrivial conic combination of two distinct elements of \mathcal{C}_P , contradicting the extremality of (x,t). Hence $x/t \in \text{ext}(P)$, and (x,t) lies on the ray $\{\lambda(x/t,1) \mid \lambda > 0\}$.

Case 2: t = 0.

Then $(x,0) \in \mathcal{C}_P$ implies $x \in \operatorname{rec}(P)$. Suppose, for contradiction, that x is not an extreme ray of P. Then there exist distinct $d_1, d_2 \in \operatorname{rec}(P)$ such that

$$x = d_1 + d_2$$
.

Consequently,

inclusion (\subseteq) holds.

$$(x,0) = (d_1,0) + (d_2,0),$$

which again expresses (x,0) as a nontrivial conic combination of other elements of \mathcal{C}_P , contradicting extremality. Therefore, $x \in \operatorname{eray}(P)$ and (x,0) lies on the ray $\{\lambda(d,0) \mid \lambda > 0\}$ for some $d \in \operatorname{eray}(P)$. In both cases, (x,t) belongs to one of the two families of rays described in the claim, and thus the

(⊇)

We now prove that every ray of the two families described in the claim is indeed an extreme ray of C_P . Case 1: $x \in ext(P)$.

We show that the ray $\{\lambda(x,1) \mid \lambda > 0\}$ is extreme in \mathcal{C}_P . Suppose, for contradiction, that (x,1) is not an extreme ray of \mathcal{C}_P . Then there exist distinct $(x_1,t_1),(x_2,t_2) \in \mathcal{C}_P$ such that

$$(x,1) = (x_1,t_1) + (x_2,t_2).$$

Since the last coordinate of (x, 1) is positive, we have $t_1, t_2 > 0$ and $t_1 + t_2 = 1$. Dividing both sides by $t_1 + t_2 = 1$, we obtain

$$x = t_1 \frac{x_1}{t_1} + t_2 \frac{x_2}{t_2}.$$

Because $(x_i, t_i) \in \mathcal{C}_P$ implies $\frac{x_i}{t_i} \in P$, this expresses x as a nontrivial convex combination of two distinct points in P, contradicting the fact that x is an extreme point. Therefore, (x, 1) must generate an extreme ray of \mathcal{C}_P .

Case 2: $d \in eray(P)$.

We show that the ray generated by (d,0) is extreme in \mathcal{C}_P . Suppose, for contradiction, that (d,0) is not extreme. Then there exist distinct $(x_1,t_1),(x_2,t_2) \in \mathcal{C}_P$ such that

$$(d,0) = (x_1, t_1) + (x_2, t_2).$$

Since the last coordinate of (d,0) is zero, we must have $t_1 = t_2 = 0$. Hence, $(x_i, t_i) = (d_i, 0)$ for some $d_i \in rec(P)$. This gives

$$d = d_1 + d_2$$

which expresses d as a nontrivial conic combination of distinct recession directions of P, contradicting the fact that d is an extreme ray of P. Therefore, (d,0) must be an extreme ray of C_P .

In both cases, the corresponding elements generate extreme rays of \mathcal{C}_P , and thus the inclusion (\supseteq) holds.

We can now prove that every polyhedron P admits a unique decomposition of the form

$$P = \operatorname{conv}(\operatorname{ext}(P)) + \operatorname{cone}(\operatorname{eray}(P)).$$

Proof. Let \mathcal{C}_P denote the cone associated with P. By definition,

$$x \in P \iff (x,1) \in \mathcal{C}_P$$
.

Let $\exp(P) = \{x_i\}_{i \in [n]}$ and $\exp(P) = \{d_j\}_{j \in [m]}$. Since every element of a convex cone is a conic combination of its extreme rays, and by Claim 1, each element of \mathcal{C}_P can be written as

$$(x,1) = \sum_{i \in [n]} \alpha_i(x_i, 1) + \sum_{j \in [m]} \beta_j(d_j, 0), \qquad \alpha_i, \beta_j \ge 0.$$

Because the last coordinate of (x, 1) equals 1, we must have

$$\sum_{i \in [n]} \alpha_i = 1.$$

Hence,

$$x = \sum_{i \in [n]} \alpha_i x_i + \sum_{j \in [m]} \beta_j d_j, \qquad \alpha_i, \beta_j \geq 0, \ \sum_{i \in [n]} \alpha_i = 1.$$

The first term represents a convex combination of the extreme points of P, that is, conv(ext(P)), while the second term represents a conic combination of the extreme rays of P, that is, cone(eray(P)). Therefore,

$$P = \operatorname{conv}(\operatorname{ext}(P)) + \operatorname{cone}(\operatorname{eray}(P)).$$

Uniqueness follows from the fact that the representation of a convex cone by its extreme rays is unique. \Box

Problem 3

3.3 — When running the simplex implementation on randomly generated instances (A, b, c) with $b, c \geq 0$, the resulting problems are typically *infeasible or unbounded*. This occurs because, under the constraint $Ax \geq b$ with $A, b \geq 0$, the feasible region tends to be either empty or unbounded in the positive orthant. In particular, if A has nonnegative entries, increasing x indefinitely preserves feasibility (since Ax only grows larger), leading to an unbounded objective value for maximization.

Instance	Implementation (objval)	Gurobi (objval)
1	$+\infty$	$+\infty$
2	$+\infty$	$+\infty$
3	$+\infty$	$+\infty$
4	$+\infty$	$+\infty$
5	$+\infty$	$+\infty$

However, when we generate instances with entries $a_{ij} \leq 0$ and $b \leq 0$, the problems become feasible and bounded. In this case, increasing x decreases the left-hand side of $Ax \geq b$, thus creating a closed and bounded feasible region.

Instance	Implementation (objval)	Gurobi (objval)
1	0.5988	0.5988
2	1.4479	1.4479
3	1.0953	1.0953
4	0.9362	0.9362
5	1.6408	1.6408

The objective values match across all feasible instances, confirming the correctness of the simplex implementation.

- **3.4** Possible limitations of the current implementation include:
 - **Degeneracy:** if multiple constraints are active at a basic feasible solution, the algorithm may experience cycling or stall without progress.
 - **Pivot selection:** the implementation uses a naive pivot rule based on the most negative reduced cost, which can lead to cycling. More robust methods, such as *Bland's rule*, ensure termination even in degenerate cases.
 - Numerical stability: repeated matrix inversions at each iteration may introduce rounding errors for ill-conditioned systems.

Problem 4

4.1 - We formulate the Generalized Assignment Problem as a binary integer program. The goal is to assign each job to exactly one agent while respecting the agents' capacity limits and minimizing the total assignment cost:

$$\min_{x_{ij}} \sum_{i \in [n]} \sum_{j \in [m]} c_{ij} x_{ij} \tag{1a}$$

s.t.
$$\sum_{j \in [m]} x_{ij} = 1 \qquad \forall i \in [n], \tag{1b}$$

$$\sum_{i \in [n]} a_{ij} x_{ij} \le b_j \qquad \forall j \in [m],$$

$$x_{ij} \in \{0, 1\} \qquad \forall i \in [n], j \in [m].$$

$$(1c)$$

Constraint (1b) ensures that each job is assigned to exactly one agent, while (1c) enforces each agent's resource limit b_i . The objective (1a) minimizes the total cost of assignments.

4.2 - We decompose the problem with respect to the capacity constraints (1c). For each agent $j \in [m]$, define its feasible assignment set:

$$A_j = \left\{ a_j = (a_{1j}, \dots, a_{nj}) \mid \sum_{i \in [n]} a_{ij} a_{ij} \le b_j, \ a_{ij} \in \{0, 1\} \right\}.$$

Let \bar{a}_j^p , $p \in Q_j$, denote the extreme points of $\operatorname{conv}(A_j)$. Each extreme point (or *pattern*) $\bar{a}_j^p = (\bar{a}_{1j}^p, \dots, \bar{a}_{nj}^p)$ satisfies

$$\sum_{i \in [n]} a_{ij} \bar{a}_{ij}^p \le b_j.$$

Then any feasible a_i can be expressed as a convex combination of these extreme points:

$$a_j = \sum_{p \in Q_j} \bar{a}_j^p \lambda_{jp}, \qquad \sum_{p \in Q_j} \lambda_{jp} = 1, \quad \lambda_{jp} \ge 0.$$

Substituting this representation into the original formulation yields the following equivalent problem:

$$\min \sum_{j \in [m]} \sum_{p \in Q_j} \left(\sum_{i \in [n]} c_{ij} \bar{a}_{ij}^p \right) \lambda_{jp}$$
 (2a)

s.t.
$$\sum_{j \in [m]} \sum_{p \in Q_j} \bar{a}_{ij}^p \lambda_{jp} = 1 \qquad \forall i \in [n],$$
 (2b)

$$\sum_{p \in Q_j} \lambda_{jp} = 1 \qquad \forall j \in [m],$$

$$\lambda_{jp} \ge 0 \qquad \forall j \in [m], p \in Q_j.$$
(2c)

Constraint (2b) ensures that each job is assigned exactly once across all agents and feasible patterns, while (2c) enforces that each agent selects one valid pattern \bar{a}_i^p that satisfies its capacity limit.

4.3 - Now suppose all agents are identical, that is,

$$c_{ij} = c_i,$$
 $a_{ij} = a_i,$ $b_j = b,$ $\forall i \in [n], j \in [m].$

In this case, each agent has the same feasible assignment set:

$$A = \left\{ a = (a_1, \dots, a_n) \mid \sum_{i \in [n]} a_i a_i \le b, \ a_i \in \{0, 1\} \right\}.$$

Let \bar{a}^p , $p \in Q$, denote the extreme points of conv(A), with components $\bar{a}_i^p \in \{0, 1\}$. Since all agents are identical, they all share the same pattern set Q.

Substituting this shared representation into the original problem gives:

$$\min \sum_{j \in [m]} \sum_{p \in Q} \left(\sum_{i \in [n]} c_i \bar{a}_i^p \right) \lambda_{jp}$$
(3a)

s.t.
$$\sum_{j \in [m]} \sum_{p \in Q} \bar{a}_i^p \lambda_{jp} = 1 \qquad \forall i \in [n]$$
 (3b)

$$\sum_{p \in Q} \lambda_{jp} = 1 \qquad \forall j \in [m]$$

$$\lambda_{jp} \ge 0 \qquad \forall j \in [m], p \in Q.$$
(3c)

Here, each pattern $p \in Q$ represents a feasible subset of jobs whose total resource requirement does not exceed b, i.e.,

$$\sum_{i \in [n]} a_i \bar{a}_i^p \le b.$$

Because all agents are identical, they share the same pool of patterns Q and differ only by their respective selection variables λ_{jp} .