Grammatical Evolution (GE)

Dr. Suyanto, S.T., M.Sc.

HP/WA: 0812 845 12345

Intelligence Computing Multimedia (ICM)
Informatics faculty – Telkom University

Intro

- GE merupakan pengembangan dari *Genetic Programming* (GP).
- Perbedaan sangat signifikan di antara keduanya terletak pada representasi individunya.
- GE menggunakan representasi individu yang bisa digunakan untuk meng-"evolusi" program yang bebas bahasa. Sedangkan GP menggunakan representasi individu yang khusus untuk bahasa pemrograman LISP (List Programming).

Backus Naur Form (BNF)

- Adalah notasi untuk mengekspresikan grammar suatu bahasa dalam bentuk production rules.
- Tata bahasa (*grammar*) pada BNF terdiri dari:
 - terminal-terminal yang merupakan item-item yang dapat muncul dalam bahasa tersebut, yaitu: +, -, dan sebagainya;
 - non-terminal yang dapat dikembangkan (diperluas) ke dalam satu atau lebih terminal dan non-terminal.

Backus Naur Form (BNF)

- Grammar \rightarrow tuple $\{N, T, P, S\}$
- N adalah himpunan non-terminal;
- *T* adalah himpunan terminal;
- P adalah himpunan production rules yang memetakan elemen-elemen dalam N menjadi T;
- *S* adalah simbol mulai (*start symbol*) yang berupa satu simbol non-terminal (anggota *N*).

```
N = \{ expr, op, pre op \}
T = \{ \text{Sin, Cos, Tan, Log, +, -, /, *, X, ()} \}
\mathbf{S} = \langle \text{expr} \rangle
P dapat direpresentasikan sebagai:
(1) <expr> ::= <expr> <op> <expr>
                                        (A)
            | (<expr> <op> <expr>)
                                        (B)
            | op> (<expr>) (C)
            | <var>
                                         (D)
(2) < op > ::= - (A)
          | + (B)
          | / (C)
          | * (D)
(3)  op> ::= Sin
                       (A)
              | Cos (B)
               | Tan (C)
               | Loq (D)
```

(4) <var> ::= X

Contoh Grammar BNF

Contoh Grammar BNF

 Untuk melengkapi definisi BNF untuk fungsi dalam bahasa C, kita perlu memasukkan aturan-aturan berikut ini ke dalam definisi BNF sebelumnya:

```
<func> ::= <header>
  <header> ::= float symb(float X) { <body>}
  <body> ::= <declarations> <code> <return>
  <declarations ::= float a;
  <code> ::= a = <expr>;
  <return> ::= return(a);
```

Contoh Grammar BNF

Tetapi, fungsi di atas hanya terbatas untuk *code* yang hanya bisa membangkitkan satu baris tunggal. Kita bisa membangkitkan fungsi dengan panjang bervariasi dengan memodifikasi aturan *code* sehingga menjadi:

```
<code> ::= <line>; | <line>; <code>
<line> ::= <var> = <expr>
```

Sistem GE untuk bahasa C

Representasi individu

Contoh individu GE (8 gen integer)

individu -> program

Untuk menerjemahkan individu menjadi suatu program, setiap individu harus memiliki bentuk sebagai berikut:

```
float symb(float x)
{
a = <expr>;
return(a);
}
```

$\{40, 83, 4, 62, 237, 107, 247, 179\} \rightarrow X - \cos(X)$

Gen	Mod	Aturan terpilih	Ekspresi
		-	<expr></expr>
40	0	1A	<expr> <op> <expr></expr></op></expr>
83	3	1D	<var> <op> <expr></expr></op></var>
-	-	-	X <op> <expr></expr></op>
4	0	2A	X - <expr></expr>
62	2	1C	<pre>X - <pre_op> (<expr>)</expr></pre_op></pre>
237	1	3B	X - Cos (<expr>)</expr>
107	3	1D	X - Cos (<var>)</var>
_	-	-	X - Cos(X)

```
N = \{ expr, op, pre op \}
T = \{ \text{Sin, Cos, Tan, Log, +, -, /, *, X, ()} \}
\mathbf{S} = \langle \text{expr} \rangle
P dapat direpresentasikan sebagai:
(1) <expr> ::= <expr> <op> <expr>
                                        (A)
            | (<expr> <op> <expr>)
                                        (B)
            | op> (<expr>) (C)
            | <var>
                                         (D)
(2) < op > ::= - (A)
          | + (B)
          | / (C)
          | * (D)
(3)  op> ::= Sin
                       (A)
              | Cos (B)
               | Tan (C)
               | Loq (D)
```

(4) <var> ::= X

Contoh Grammar BNF

Operator evolusi

- Karena menggunakan representasi biner, maka GE menggunakan semua operator evolusi yang sama seperti yang ada pada GA: seleksi orangtua, rekombinasi, mutasi, dan seleksi survivor.
- Tetapi GE menggunakan dua operator tambahan, yaitu Duplicate dan Prune

Duplicate

 Pada suatu kasus tertentu, mungkin saja dihasilkan suatu kromosom yang tidak valid yang jika ditranslasi akan menghasilkan suatu program yang tidak lengkap.

24	120	61	11	16	203	101	83
----	-----	----	----	----	-----	-----	----

 Kromosom di atas jika ditranslasi akan menjadi program yang tidak lengkap, yaitu:

$$(X + X)$$
 - $\langle var \rangle \langle expr \rangle$

Duplicate

Kromosom 16 gen (hasil *duplicate*) di atas jika ditranslasi akan menghasilkan program yang lengkap, yaitu:

$$(X+X)-X*X$$

Duplicate

- Berapa banyak duplikasi gen yang sebaiknya dilakukan?
- Jawaban yang paling sederhana adalah sesuaikan saja dengan kebutuhan. JANGAN BERLEBIHAN !!!
- Kalau kebutuhan sudah terpenuhi, maka gen-gen yang tidak terpakai bisa dihapus (kromosomnya dipangkas sehingga lebih pendek).
- Pada kasus di atas, duplikasi dilakukan dua kali sehingga panjang kromosom mejadi 16 gen.
- Tetapi pada saat ditranslasi, ternyata hanya 10 gen yang digunakan dalam proses translasi. Gen yang tidak terpakai, 6 gen, bisa dihapus (*prune*).
- Mengapa harus dihapus? Supaya tidak mengganggu proses rekombinasi.

Prune

- Jika titik pindah silang yang dibangkitkan berada pada posisi gen-gen yang tidak digunakan, maka operator rekombinasi menjadi sia-sia.
- Mengapa? Karena kedua anak yang dihasilkan jika ditranslasi akan menghasilkan program yang sama dengan kedua orangtuanya.

Prune

- Bagaimana mengatasi masalah ini?
- Satu-satunya cara yang bisa digunakan adalah memangkas (menghapus) gen-gen yang tidak digunakan tersebut.
- Operator ini disebut *prune* (pemangkasan).
- Bagaimana caranya? Operator Prune dilakukan dengan probabilitas tertentu terhadap kromosom-kromosom yang tidak menggunakan semua gen-nya dalam proses translasi.
- Setiap gen yang tidak digunakan dalam proses translasi akan dihapus. Operator prune membuat rekombinasi menjadi lebih cepat dan lebih baik.

Performansi GE

GE telah berhasil digunakan untuk menyelesaikan tiga masalah penting, yaitu:

- Symbolic Regression;
- Trigonometric Identities;
- Symbolic Integration.

GE untuk Symbolic Regression

- Pada [RYA98a], dinyatakan bahwa untuk masalah *Symbolic Regression*, GE dengan seleksi *steady state* bisa menemukan fungsi target $X + X^2 + X^3 + X^4$ secara cepat.
- Dari seratus kali running, prosentase GE dalam menemukan solusi pada generasi ≤ 50 bisa mencapai 95%. Bahkan GE pernah menemukan solusi pada generasi ke-10.

GE untuk Symbolic Regression

GE untuk Trigonometric Identities

- Untuk masalah *Trigonometric Identities*, GE diuji untuk menemukan fungsi yang merupakan *trigonometric identity* dari Cos 2x. Fungsi yang dicari tersebut adalah 1 2Sin²x.
- Agar pencarian tidak selalu menemukan fungsi Cos 2x, maka Cos dikeluarkan dari production rules P.
- Dari ekperimen yang dilakukan oleh Conor Ryan and Michael O'Neill, GE dengan seleksi steady state bisa menemukan fungsi yang dicari, 1 – 2Sin²x, secara cepat.
- Dari seratus kali running, prosentase GE dalam menemukan solusi pada generasi ≤ 50 bisa mencapai 87%.
- Bahkan GE pernah menemukan solusi pada generasi ke-5.
 Berikut hasil eksperimen selengkapnya yang dilakukan oleh Conor Ryan and Michael O'Neill [RYA98a].

Data untuk Hitung Fitness

No.	X	Cos 2x	Fungsi baru	Error
1	O	1,00000	0,99998	0,00002
2	0,5	0,99996	0,99995	0,00001
• • •				
100	1	0,93969	0,93971	0,00002

Fitness = 1 / (MAE + a)

MAE = Mean Absolute Error = Mean(|Error|) a = bilangan kecil, misal 0,000001

GE untuk Trigonometric Identities

GE untuk Symbolic Integration

- Untuk masalah *Symbolic Integration*, GE diuji untuk menemukan suatu fungsi yang merupakan integral dari kurva yang diberikan.
- Sistem diberi sekumpulan pasangan *input* dan *output* dan harus menemukan suatu fungsi yang bisa memetakan input ke output secara benar.
- Fungsi yang diuji adalah Cos(X) + 2X + 1.
- Dari ekperimen yang dilakukan oleh Conor Ryan and Michael O'Neill, GE dengan seleksi steady state bisa menemukan fungsi yang dicari, Sin(X) + X + X², secara cepat.
- Dari seratus kali running, prosentase GE dalam menemukan solusi pada generasi ≤ 50 bisa mencapai 87%. GE pernah menemukan solusi secara cepat pada generasi ke-10. Berikut hasil eksperimen selengkapnya yang dilakukan oleh Conor Ryan and Michael O'Neill [RYA98a].

GE untuk Symbolic Integration

Studi Kasus

- Prediksi Data Time series Jumlah Pelanggan PSTN di PT Telkom
- Tugas Akhir mhs IF-2005: Dwi Tuti Supantari
- PSTN vs. Wireless (GSM & CDMA)
- Investasi PSTN sangat besar → belum BEP
- Kalah bersaing dengan GSM & CDMA
- Prediksi data PSTN → kebijakan yang tepat

Pembangunan Model

• Skenario 1

- Data training : 24 bulan (2002 2003)
- Data validation : 24 bulan (2004 2005)
- Data *testing* : 24 bulan (2006 2007)

• Skenario 2

- Data training : 12 bulan (2002)
- Data validation : 12 bulan (2003)
- Data *testing* : 48 bulan (2004 2007)

Skenario 3

- Data *training* : 48 bulan (2002 2005)
- Data *validation* : 12 bulan (2006)
- Data *testing* : 12 bulan (2007)

Normalisasi

$$Xn_i = \left(\frac{(X_i - \min(X))}{(\max(X) - \min(X))} \times 0.8\right) + 0.1$$

- Xn_i = data aktual normalisasi ke-i
- X_i = data aktual dengan range data asli ke-i
- X = data aktual dengan range data asli

Denormalisasi

$$F_i = \left[\frac{((F'_i) - 0.1)}{0.8} \right] \times (\max(X) - \min(X)) + \min(X)$$

- F_i = nilai prediksi dengan range nilai asli
- F'_i = nilai prediksi dari hasil data yang dinormalisasi
- X = data aktual

BNF 1

 $| N = \{expr, op\}$

 $T = \{+, -, 0.1, ..., 0.9, x1, x2, x3, x4, x5, e1, e2, e3, e4, e5, (,)\}$

 $S = \langle expr \rangle$

P dapat direpresentasikan sebagai:

1) $\langle \exp r \rangle$:= $\langle \exp r \rangle \langle \exp r \rangle$ (A)

(<const>* < var>) (B)

2) < op > := + (A)

- (B)

3) <const> := 0.1 (A)

0.6 (F)

0.2 (B)

0.7 (G)

0.3 (C)

0.8 (H)

e1 = selisih antara data sebenarnya dengan data prediksi pada periode sebelumnya.

4) <var>

: x1

(A)

e1 (F)

x2 (B)

e2 (G)

x3 (C)

e3 (H)

x4 (D)

e4 (I)

x5 (E)

e5 (J)

BNF₂

```
N = \{expr, op, pre\_op\}
T = \{ \sin, \cos, \exp, +, -, *, /, ^, 0.1, ..., 0.9, 2, 3, x1, x2, x3, x4, x5, e1, e2, e3, e4, e5, (, ) \} 
S = \langle expr \rangle
P dapat direpresentasikan sebagai:
1)
                                                               2) <op>
    <expr>
                                                   (A)
                                                                                         (A)
                            <expr><op><expr>
                                                                                         (B)
                            (<expr><op><expr>)
                                                   (B)
                            op>(<expr>)
                                                   (C)
                                                                                        (C)
                                                   (D)
                            <var>
                                                   (E)
                            <const>
3)
                                          (A)
    <pre_op>
                            sin
                                          (B)
                            COS
                                          (C)
                            exp
4)
    <const>
                                          (A)
                                                       0.7
                                                              (G)
                            0.1
                            0.2
                                          (B)
                                                       8.0
                                                              (H)
                            ∩ 2
                                          (0)
                                                              / I \
    e1 = selisih antara data sebenarnya dengan
    data prediksi pada periode sebelumnya.
5)
                                          (A)
                                                              (F)
    <var>
                                                       e1
                            x1
                            x2
                                          (B)
                                                       e2
                                                              (G)
                            x3
                                          (C)
                                                       e3
                                                              (H)
                            x4
                                          (D)
                                                       e4
                                                              (I)
                            x5
                                          (E)
                                                       e5
                                                              (J)
```

Kombinasi Parameter

No Kombinasi Parameter	Ukuran Populasi	Generasi	Probabilitas crossover
1	100	1000	0.9
2	100	1000	0.7
3	50	2000	0.9
4	50	2000	0.7

Pengujian BNF 1

BNF	Skenario	No Kombinasi Parameter	Ukuran Populasi	Generasi	Probabilitas crossover
		1	100	1000	0.9
	1	2	100	1000	0.7
	ı	3	50	2000	0.9
		4	50	2000	0.7
1	2	1	100	1000	0.9
		2	100	1000	0.7
	_	3	3 50 2000	2000	0.9
		4	50	2000	0.7
		1	100	1000	0.9
	3	2	100	1000	0.7
	<u> </u>	3	50	2000	0.9
		4	50	2000	0.7

Pengujian BNF 2

BNF	Skenario	No Kombinasi Parameter	Ukuran Populasi	Generasi	Probabilitas crossover
		1	100	1000	0.9
	1	2	100	1000	0.7
	ı	3	50	2000	0.9
		4	50	1000 0.9 1000 0.7 2000 0.9 2000 0.7 1000 0.9 1000 0.7 2000 0.7 1000 0.9 2000 0.7 1000 0.9	0.7
		1	100	1000	0.9
2	2	2	2 100 1000	0.7	
2		3	50	2000	0.9
		4	50	2000	0.7
		1	100	1000	0.9
	3	2	100	1000	0.7
	3	3	50	2000	0.9
		4	50	2000	0.7

Rata-rata MAPE BestSoFar BNF I

—■ – Rata-rata MAPE BestSoFar BNF II

Pembangunan Model

• Skenario 1

- Data training : 24 bulan (2002 2003)
- Data *validation* : 24 bulan (2004 2005)
- Data *testing* : 24 bulan (2006 2007)

• Skenario 2

- Data training /: 12 bulan (2002)
- Data validation : 12 bulan (2003)
- Data *testing* : 48 bulan (2004 2007)

Skenario 3

- Data *training* : 48 bulan (2002 2005)
- Data *validation* : 12 bulan (2006)
- Data *testing* : 12 bulan (2007)

BNF	Skenario	Ukuran Populasi	Generasi	Pc	Rata-rata MAPE BestSoFar	Standar Deviasi MAPE BestSoFar	Minimum MAPE BestSoFar	Maksimum MAPE BestSoFar
		100	1000	0.9	0.2073175	0.026198929	0.16425	0.25167
	1	100	1000	0.7	0.469501	1.102284372	0.16011	5.1473
	1	50	2000	0.9	0.5020295	1.090989518	0.18624	5.1327
		50	2000	0.7	0.7214725	2.202654143	0.16278	10.0767
		100	1000	0.9	1.246051	2.035416117	0.20048	5.2621
I	2	100	1000	0.7	3.5001885	3.630704359	0.21622	9.7619
1	2	50	2000	0.9	3.2708075	3.68011751	0.22339	9.5804
		50	2000	0.7	4.7941555	4.616802348	0.2421	10.2182
		100	1000	0.9	0.209561	0.030683767	0.17222	0.28042
	3	100	1000	0.7	0.2056335	0.02752859	0.16704	0.26339
		50	2000	0.9	0.425015	0.58528908	0.17837	2.1343
		50	2000	0.7	0.419986	0.603236566	0.18534	2.2072
		100	1000	0.9	0.250019	0.0280224	0.20973	0.30066
	1	100	1000	0.7	0.233899	0.026397873	0.20378	0.27668
		50	2000	0.9	0.2449035	0.027101195	0.20475	0.3041
		50	2000	0.7	0.2391745	0.026761996	0.2083	0.2867
		100	1000	0.9	0.221610526	0.024266181	0.1777	0.26499
II	2	100	1000	0.7	0.237832	0.050575979	0.19711	0.39802
11		50	2000	0.9	0.242081	0.046831149	0.18799	0.34969
		50	2000	0.7	0.2664384	0.056889061	0.17859	0.39802
		100	1000	0.9	0.2241525	0.016556672	0.20947	0.28582
	3	100	1000	0.7	0.218733	0.014143083	0.19211	0.25895
		50	2000	0.9	0.224914	0.015015264	0.19877	0.27292
		50	2000	0.7	0.226015294	0.019985903	0.19316	0.25895

Skenario	Kombinasi Parameter GE	Fungsi Prediksi yang Menghasilkan Nilai Minimum MAPE <i>BestSoFar</i> (Fungsi Prediksi Optimal)
1	UkPop = 100 Generasi = 1000 Pc = 0.9 BNF I	(0.6*x3)-(0.4*x5)-(0.4*x4)+(0.3*x1)+(0.9*x2)+(0.2*e1)
2	UkPop = 100 Generasi = 1000 Pc = 0.9 BNF II	cos(0.6)-sin(cos(0.6))+sin(x1)
3	UkPop = 100 Generasi = 1000 Pc = 0.7 BNF I	(0.2*x3)+(0.9*x1)+(0.5*x2)-(0.6*x4)

No	Data Aktual	Data Prediksi	Kesalahan	APE	Akumulasi APE
1	8662290	8670817	-8527	0.098438173	0.098438173
2	8648325	8653876	-5551	0.064185839	0.162624012
3	8643338	8649083	-5745	0.066467376	0.229091389
4	8643335	8645496	-2161	0.025001923	0.254093312
5	8637353	8634513	2840	0.032880444	0.286973756
6	8636355	8630875	5480	0.063452695	0.350426451
7	8628375	8626440	1935	0.022426007	0.372852458
8	8611418	8618597	-7179	0.083366061	0.456218519
9	8568525	8615896	-47371	0.552848944	1.009067464
10	8558550	8611211	-52661	0.615302826	1.624370289
11	8578500	8605900	-27400	0.319403159	1.943773448
12	8608425	8603382	5043	0.058582145	2.002355593

No	Data Aktual	Data Prediksi	Kesalahan	APE	Akumulasi APE
1	8662290	8664253	-1963	0.022661	0.022661444
2	8648325	8661578	-13258	0.153244	0.175904991
3	8643338	8659784	-16446	0.190274	0.366178703
4	8643335	8658582	-15247	0.176402	0.54258052
5	8637353	8657770	-20417	0.23638	0.778960809
6	8636355	8657222	-20867	0.241618	1.020578945
7	8628375	8656850	-28475	0.330016	1.350594736
8	8611418	8656596	-45178	0.524629	1.875223781
9	8568525	8656427	-87902	1.025871	2.901094628
10	8558550	8656314	-97764	1.142296	4.043390928
11	8578500	8656235	-77735	0.906161	4.949551679
12	8608425	8656184	-47759	0.554794	5.504345384

No	Data Aktual	Data Prediksi	Kesalahan	APE	Akumulasi APE
1	8662290	8663088	-798	0.009212345	0.009212345
2	8648325	8649043	-718	0.008302186	0.01751453
3	8643338	8639994	3344	0.038688757	0.056203287
4	8643335	8632169	11166	0.129186246	0.185389533
5	8637353	8620904	16449	0.190440289	0.375829821
6	8636355	8613469	22886	0.264996054	0.640825876
7	8628375	8605013	23362	0.270757819	0.911583695
8	8611418	8596125	15293	0.1775898	1.089173495
9	8568525	8589172	-20647	0.240963293	1.330136788
10	8558550	8581240	-22690	0.265115002	1.59525179
11	8578500	8573917	4583	0.053424258	1.648676049
12	8608425	8567303	41122	0.477694816	2.126370865

Kesimpulan

- GE menggunakan representasi individu yang bisa digunakan untuk meng-"evolusi" program yang bebas bahasa.
- Representasi individunya menggunakan BNF.
- Dua operator penting GE: Duplicate dan Prune.
- GE memiliki performansi yang sangat baik untuk masalah Symbolic Regression, Trigonometric Identities, dan Symbolic Integration.

Daftar Pustaka

- [SUY08] Suyanto, 2008, Evolutionary Computation: Komputasi Berbasis "Evolusi" dan "Genetika", penerbit Informatika Bandung.
- [RYA98a] Ryan Conor and O'Neill Michael, 1998, "Grammatical Evolution: A Steady State approach". In Proceedings of the Second International Workshop on Frontiers in Evolutionary Algorithms 1998, pages 419-423.