Ferienkurs Analysis 1

WS 2012/13 1. Übungsblatt

(Bertram Klein) Montag, 11. März 2013

Aufgabe 1

Gegeben seien zwei Mengen A, B. Zeigen Sie: $A \subseteq B \Leftrightarrow A \cup B = B$.

Aufgabe 2

Beweisen Sie die folgenden Aussagen:

- a) Wenn $n \in \mathbb{N}$ gerade ist, dann ist auch n^2 gerade.
- b) $n \in \mathbb{N}$ ist gerade, wenn n^2 gerade ist.
- c) Für alle $n \in \mathbb{N}$ gibt es n aufeinander folgende Zahlen, die keine Primzahlen sind. (*Hinweis*: Überlegen Sie sich, durch welche Zahl n! + k für $k \in \mathbb{N}$ teilbar ist!)
- d) Es gibt keine größte Primzahl.

Aufgabe 3

a) Zeigen Sie, dass für $n, k \in \mathbb{N}$ gilt:

$$\left(\begin{array}{c} n+1\\ k \end{array}\right) = \left(\begin{array}{c} n\\ k \end{array}\right) + \left(\begin{array}{c} n\\ k-1 \end{array}\right)$$

b) Beweisen Sie mittels vollständiger Induktion, dass für $n \in \mathbb{N}$ gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Aufgabe 4

a) Zeigen Sie mittels vollständiger Induktion, dass für $a,b\in\mathbb{R}, a\neq b$ und $n\in\mathbb{N}$ die verallgemeinerte geometrische Summenformel gilt:

$$\sum_{k=0}^{n} a^k b^{n-k} = \frac{a^{n+1} - b^{n+1}}{a - b}.$$

1

b) Zeigen Sie jetzt, dass für jedes $n \in \mathbb{N}$ die Zahl $7^n - 1$ durch 6 teilbar ist.

Aufgabe 5

Zeigen Sie, dass gilt

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1} \quad \forall n \in \mathbb{N}.$$

Aufgabe 6

Es seien X, Y, Z Mengen und $f: X \to Y$ und $g: Y \to Z$ zwei Abbildungen. Zeigen Sie, welche der folgenden Implikationen zutreffend sind und welche nicht.

- a) $g \circ f$ ist injektiv $\Rightarrow f$ ist injektiv.
- b) $g \circ f$ ist surjektiv $\Rightarrow g$ ist surjektiv.
- c) g ist injektiv $\Rightarrow g \circ f$ ist injektiv.

Aufgabe 7

Gegeben seien die Abbildungen $f:A\to B,\ g:X\to Y,\ \alpha:A\to X$ und $\beta:B\to Y.$ Es gelte $g\circ\alpha=\beta\circ f.$ Weiterhin seien α,β bijektiv.

Zeigen Sie: g ist genau dann injektiv, wenn f injektiv ist.

Hinweis: Benutzen Sie folgenden Satz (ohne Beweis): Seien $\varphi: K \to L$ und $\psi: L \to M$ zwei Abbildungen, dann gilt:

- a) Sind beide Abbildungen injektiv, so ist auch $\psi \circ \varphi$ injektiv.
- b) Sind beide Abbildungen surjektiv, so ist auch $\psi \circ \varphi$ surjektiv.

Aufgabe 8

Nennen Sie ein Beispiel für einen geordneten Körper mit abzählbar vielen Elementen. Ist der Körper, den Sie als Beispiel gewählt haben, vollständig?

Aufgabe 9 (Zusatzaufgabe)

Zeigen Sie: Die Menge $K_3 = \{0, 1, 2\}$ mit der Modulo-3-Addition $\oplus_3 : k_1 \times k_2 \to (k_1 + k_2)$ mod 3 und der Modulo-3-Multiplikation $\odot_3 : k_1 \times k_2 \to (k_1 \cdot k_2)$ mod 3 bildet einen Körper. Ist es ein geordneter Körper?

2