Z lineární algebry víme, že lineární zobrazení je jednoznačně určeno obrazy bázových prvků. Bází prostoru S^n je například $\frac{n(n+1)}{2}$ symetrických matic, které mají právě na 2 místech (symetricky) hodnotu 1, pokud jsou tyto místa mimo diagonálu, nebo matice s jednou jedničkou na diagonále. Každou symetrickou matici dokážeme vyjádřit jako linární kombinaci těchto matic. Bází prostoru S^2 by například byly tyto matice:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Položme $k := \frac{n(n+1)}{2}$. Pro $i = 1, \ldots, k : B_i$ budou prvky báze popsané výše. Pro libovolné $X \in S^n$ tedy existují $i = 1, \ldots, k : a_i \in \mathbb{R} : X = \sum_{i=1}^k a_i B_i$. f je lineární, takže $f(X) = f(\sum_{i=1}^k a_i B_i) = \sum_{i=1}^k a_i f(B_i)$. Označme $i = 1, \ldots, k : b_i = f(B_i) \in \mathbb{R}$. Z toho, jak je zvolena báze, je zřejmé, že každý prvek a_i je roven nějakému prvku $X_{i,j} = X_{j,i}$. Víme, že platí $\forall C, X \in S^n : Tr(CX) = \sum_{i=1}^n \sum_{j=1}^n C_{i,j} X_{i,j}$. Protože C, X jsou symetrické tak sžítenec mimo diogenálu (i, j, k) C

Víme, že platí $\forall C, X \in S^n : Tr(CX) = \sum_{i=1}^n \sum_{j=1}^n C_{i,j} X_{i,j}$. Protože C, X jsou symetrické, tak sčítance mimo diagonálu $(i \neq j)$ $C_{i,j} X_{i,j}$ a $C_{j,i} X_{j,i}$ jsou identické. Důsledkem je, že tuto sumu dokážeme napsat jako sumu $k = n + \frac{n^2 - n}{2}$ prvků následovně:

$$Tr(CX) = \sum_{i=1}^{n} (C_{i,i}X_{i,i}) + 2\sum_{i=1}^{n} \sum_{j=1}^{i-1} C_{i,j}X_{i,j}$$

Hledáme tedy matici $C \in S^n$. Porovnáme sčítance v sumách $f(X) = \sum_{i=1}^k a_i b_i$ a Tr(CX) (mají obě k sčítanců). Uvažujme například první sčítanec $C_{1,1}X_{1,1}$ a hledáme jeho odpovídající sčítanec $a_i b_i$. Jak bylo řečeno výše, tak víme, že $\exists i: a_i = X_{1,1}$ (jde jen o to jak si a_i zaindexujeme). Musí platit $a_i b_i = X_{1,1} C_{1,1} \implies b_i = C_{1,1}$. Obdobně pro všechny diagonální prvky.

Stručně řečeno, na diagonále C jsou obrazy bázových prvků, které jsou diagonální matice. Pro zbylé prvky mimo diagonálu na indexech $i \neq j$ musí platit $\exists k: a_k b_k = 2C_{i,j}X_{i,j}$, kde $a_k = X_{i,j} = X_{j,i}$. Z toho plyne, že $C_{i,j} = C_{j,i} = \frac{1}{2}b_i$.

Výsledkem je, že na diagonále C jsou obrazy bázových prvků, které jsou diagonální matice, a pro zbylé prvky je to polovina obrazu příslušného bázového prvku, který není diagonální.

$$C = \begin{pmatrix} f(B_{i_1}) & \frac{1}{2}f(B_{i_2}) & \dots \\ \frac{1}{2}f(B_{i_2}) & f(B_{i_3}) & \dots \\ \vdots & \ddots & \ddots \end{pmatrix} \text{ pro příslušné } i_1, i_2, \dots \text{ (záleží na indexování bázových prvků)}$$

2

Definujme kužel $K := \{(x_1, x_2, x_3, x_4, x_5, x_6)^T \in \mathbb{R}^6 : \|(x_1, x_2)^T\| \le x_3, \|(x_4, x_5\| \le x_6\}$. Matice F a vektory g, c budou vypadat:

$$F = -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, g = -\begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, c = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

Stačí nyní jen nahlédnout, že to odpovídá danému problému. Uvažujme vektor proměnných $y = (y_1, y_2, y_3)$. Podmínka $Fy + g \leq_K 0$ odpovídá z definice tomu, že vektor

$$v = \begin{pmatrix} y_1 \\ 2y_2 + 2 \\ y_3 \\ 1 \\ y_2 \\ y_1 + 1 \end{pmatrix}$$

je prvkem K. Což nastane právě tehdy, když $||(y_1, 2y_2 + 2)^T|| \le y_3 \wedge ||(1, y_2)^T|| \le y_1 + 1$. Což kopíruje podmínky zadání $(y_1 = x_1, y_2 = x_2, y_3 = t)$. Minimalizujeme poslední složku vektoru y, tedy y_3 neboli t.

3

Označíme si daných 14 předmětů čísly od 1 do 14 (1. je mapa a 14. je motorová pila). Proměnná u_i bude značit "efektivitu" i. předmětu v dz, w_i jeho váhu v kg a $b_i \in [0, 1]$ bude značit kolik daného přemětu si vybereme (1 odpovídá celému předmětu). Chceme maximalizovat $\sum_{i=1}^{14} b_i u_i = b^T u$ (celkovou efektivitu vybraných předmětů). Pokud problém vyjádříme jako LP problém tak to bude vypadat takto:

minimize
$$-b^T u$$

s. t. $b \leq 1$
 $-b \leq 0$
 $b^T w \leq 10$

První 2 podmínky zaručují, aby hodnoty b_i byly v intervalu [0,1]. Poslední podmínka zaručuje, aby součet vah vybraných předmětů nepřekročil 10 kg.

Optimální řešení nám dává efektivitu ≈ 25.88 . Ručně jsem nalezl řešení (spočítáním poměru "váha výkon" u každého předmětu a vybíráním od nejlepšího) 1x mapa, 1x baterie, 1x kytara, 1x katana a 1x Jarník. Toto řešení má efektivutu 23. Samozřejmě optimální řešení nerelaxed problému by vyžadovalo vyzkoušení všech kombinací.

4

a) Uvažujme 2 matice $A, B \in \mathbb{R}^{5\times 5}$. Vektor Ax bude reprezentovat vyprodukované suroviny v roce 2019 aktivitami, vektor Bx^+ bude reprezentovat spotřebované suroviny v roce 2020. Matice A a B budou vypadat následovně:

$$A = \begin{pmatrix} -1 & 0 & -3 & 0 & 5 \\ -1 & 0 & 0 & -1 & 2 \\ 0 & 0 & 10 & 0 & -2 \\ 3 & -1 & 0 & 1 & 0 \\ -1 & 1 & -3 & 1 & -3 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 3 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 3 \end{pmatrix}$$

Sloupce v matici A reprezentují aktivity a řádky reprezentují suroviny. Například první sloupec odpovídá první aktivitě: spotřebujeme 1 kancelářské potřeby, 1 kafe

a 1 štěstí a vyprodukujeme 3 slávy. Matice B je tvořena obdobně, akorát reprezentuje pouze počet spotřebovaných surovin, takže hodnoty co byly v matici A záporné (reprezentující spotřebování suroviny), tak jsou v B kladné a původní kladné hodnoty z A jsou v B nulové, jelikož to, co se vyprodukuje v roce 2020 nás nezajímá. Zadefinujeme si funkci $f_0(x, x^+) = \max_{i=1}^5 - \frac{x_i^+}{x_i}$. Nyní můžeme zformulovat GLFP:

minimize
$$f_0(x, x^+)$$

s. t. $Ax \leq Bx^+$
 $-x^+ \leq 0$
 $-x \leq 1$

Zřejmě platí max $\min f = \min \max - f$. Proto jsme použili místo g (ze zadání) funkci f_0 . První nerovnost zaručí to, že spotřebované suroviny v 2020 nepřesáhnou vyprodukované v 2019. Podmínka na nezápornost x^+ je zřejmá (nemůžeme konat zápornou aktivitu) a poslední podmínka nám zaručí dobrou definovanost funkce f_0 ($x_i > 0$) a zároveň je jedno, jestli tam je 1 nebo jiná kladná konstanta, jelikož nám záleží jen na poměrech mezi x_i .

b) Máme tedy α pevně dané. Chceme zjistit, jestli pro všechna $i=1,\ldots,5$ platí $\frac{x_i^+}{x_i} \geq \alpha$. Jestli ano, tak zřejmě $g(x,x^+) \geq \alpha$ z definice. Podmínku se zlomkem můžeme ale ekvivalentně napsat jako $i=1,\ldots,5: x_i^+ \geq \alpha x_i$. To dle našeho značení jde napsat vektorově jako $\alpha x \leq x^+$.

Můžeme nyní zformulovat lineární program Q (podobný GLFP), který bude mít optimální hodnotu 0, pokud existují dané vektory x, x^+ splňující $g(x, x^+) \ge \alpha$, a nebude mít žádné feasible solution pokud neexistují daná x, x^+ .

minimize 0
s. t.
$$Ax \leq Bx^+$$

 $-x^+ \leq 0$
 $-x \leq 1$
 $\alpha x \leq x^+$

c) email