MA-105 Tutorial-4

Daksh Maahor

August 2025

- 1. Find the volume of the solid obtained by revolving $g(x) = \frac{\tan^2 x}{x}$, g(0) = 0, for $0 \le x \le \frac{\pi}{4}$.
- 2. Prove that given $m, n \in \mathbb{N}, m \neq n$:

$$\int_{-1}^{1} D^{m}(x^{2} - 1)^{m} D^{n}(x^{2} - 1)^{n} dx = 0$$

- 3. Let $f: \mathbb{I} \to \mathbb{R}$ be a convex function, where \mathbb{I} is an open interval. Can f have a local maximum? Can it have a local minimum? Can it have two distinct local minima?
- 4. Let $f:[0,\infty)\to\mathbb{R}$. We say $\lim_{x\to\infty}f(x)=l$ if given E>0, $\exists x_0\in\mathbb{R}$ such that $f(x)\in(l-E,l+E)\ \forall\ x>x_0$.

Show that $\lim_{x\to\infty} e^{-x^2} = 0$, $\lim_{x\to\infty} \frac{1}{1+x^2} = 0$

and $\lim_{x\to\infty} \tan^{-1} x = \frac{\pi}{2}$. Also calculate the value of $\int_0^\infty \frac{dx}{1+x^2}$