Elementare Geometrie

Mitschrieb, gehört bei Prof. Leuzinger im WS17/18

Jens Ochsenmeier

Inhaltsverzeichnis

1	Wozu sind Metriken gut?				
	1.1 Einleitendes	5			
2 Grundbegriffe der allgemeinen Topologie					
	2.1 Toplogischer Räume	7			

Wozu sind Metriken gut?

1.1 Einleitendes

1.1.1 In Analysis I.

In Analysis I heißt eine Folge von reellen Zahlen $(a_n)_{n\in\mathbb{N}}$ konvergent, wenn

$$\exists \ a \in \mathbb{R} : \forall \epsilon > 0 \ \exists \ N = N(\epsilon) : |a_n - a| < \epsilon \quad (\forall n \ge N).$$

1.1.2 Analogie zu metrischen Räumen.

Sei (X, d) metrischer Raum.

Eine Folge $(x_n)_{n\in\mathbb{N}}$ aus X heißt konvergent, wenn

$$\exists \ x \in X \forall \epsilon > 0 \ \exists \ N = N(\epsilon) : d(x_n, x) \le \epsilon \quad (\forall n \ge N).$$

Also $x_n \in B_{\epsilon}(x) \ (\forall n \geq N)$.

1.1.3 Erinnerung — Stetigkeit.

 $f: \mathbb{R} \to \mathbb{R}$ heißt stetig in $t_0 \in \mathbb{R}$ falls $\forall s > 0$ ein $\delta = \delta(\epsilon) > 0$ existiert und $|f(t) - f(t_0)| < \epsilon$ falls $|t - t_0| < \delta$. f heißt stetig, wenn sie stetig ist $\forall t_0 \in \mathbb{R}$.

1.1.4 Verallgemeinerung.

Metrische Räume (X, d_X) , (Y, d_Y) . Eine Abbildung

$$f: X \to Y$$

heißt stetig in $x_0 \in X$, falls $\forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0$ sodass

$$d_Y(f(x), f(x_0)) < \epsilon \text{ falls } d_X(x, x_0) < \delta.$$

Also wenn $f(x) \in B_{\epsilon}^{Y}(f(x))$ falls $x \in B_{\delta}^{X}(x_{0})$. f heißt *stetig*, falls f stetig ist $\forall x \in X$.

1.1.5 Bemerkung.

Als Übungsaufgabe zu zeigen, der Beweis ist analog zum Beweis in der Analysis.

Diese Beobachtung führt historisch (um 1900) durch die Verallgemeinerung metrischer Räume zu topologischen Räume.

Grundbegriffe der allgemeinen Topologie

2.1 Toplogischer Räume

2.1.1 Definition — Topologischer Raum.

Ein topologischer Raum ist ein Paar (X, \mathcal{O}) bestehend aus einer Menge X und einem System bzw. einer Familie

$$\mathcal{O} \subseteq \mathcal{P}(X)$$
 (= Menge aller Teilmengen von X),

von Teilmengen von X, so dass gilt

- 1. $X, \emptyset \in \mathcal{O}$
- 2. Durchschnitte von *endlich* vielen und Vereinigungen von *beliebig* vielen Mengen aus \mathcal{O} sind wieder in \mathcal{O} .

Ein solches System \mathcal{O} heißt *Topologie* von X. Die Elemente von \mathcal{O} heißen *offene Teilmengen* von X.

 $A \subset X$ heißt *abgeschlossen*, falls das Komplement $X \setminus A$ offen ist.

2.1.2 Beispiel — Extrembeispiele.

- 1. Menge X, $\mathcal{O}_{trivial} := \{X, \emptyset\}$ ist die *triviale Topologie*.
- 2. Menge X, $\mathcal{O}_{diskret} := \mathcal{P}(X)$ ist die *diskrete Topologie*.

2.1.3 Beispiel — Standard-Topologie auf \mathbb{R} .

 $X = \mathbb{R}$,

 $\mathcal{O}_{s \text{ (standard)}} := \{ I \subset \mathbb{R} : I = \text{ Vereinigung von offenen Intervallen} \}$

ist Topologie auf \mathbb{R} .

2.1.4 Beispiel — Zariski-Topologie auf ${\mathbb R}.$

 $X = \mathbb{R}$,

$$\mathcal{O}_{Z(ariski)} := \{ O \subset \mathbb{R} : O = \mathbb{R} \setminus E \subset \mathbb{R} \text{ endlich} \} \cup \{\emptyset\}$$

Offenes Intervall:

 $(a,b) := \{t \in \mathbb{R} : a < t < b\},\$ a und b beliebig ist die Zariski-Topologie auf \mathbb{R} .

(Mit anderen Worten: Die abgeschlossenen Mengen sind genau die endlichen Mengen, \emptyset und \mathbb{R} .)

Diese Topologie spielt eine wichtige Rolle in der algebraischen Geometrie beim Betrachten von Nullstellen von Polynomen:

$$(a_1 \dots, a_n) \leftrightarrow p(X) = (X - a_1) \cdots (X - a_n)$$

$$\mathbb{R} \leftrightarrow \text{Nullpolynom}$$

$$\emptyset \leftrightarrow X^2 + 1$$

2.1.5 Definition — Metrischer → topologischer Raum.

Metrische Räume (z.B. (X, d)) sind topologische Räume: $U \subset X$ ist d-offen $\Leftrightarrow \forall p \in U \exists \epsilon = \epsilon(p) > 0$, sodass der offene Ball $B_{\epsilon}(p) = \{x \in X : d(x, p) < \epsilon\}$ um p mit Radius ϵ ganz in U liegt: $B_{\epsilon}(p) \subset U$.

Die d-offenen Mengen bilden eine Topologie — die von der Metrik d induzierte Topologie¹.

¹ Übungsaufgabe: Zeigen, dass es sich wirklich um eine Topologie handelt