Aula 7 - Camada de Enlace: MPLS

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula...

- VLANs:
 - Solução para "separar" redes em nível 2, compartilhando mesma infraestrutura física.
 - Separação puramente lógica.
 - Define domínios de broadcast distintos.
 - Motivações: segurança, desempenho.
- Podem ser definidas com base em:
 - Portas específicas.
 - Tags informadas em cabeçalhos específicos.
- VLANs podem se estender por vários switches físicos diferentes.

• STP:

- Protocolo da camada de enlace.
- Constrói topologia lógica em árvore.
 - Evita problemas causados por loops.
- Permite estabelecimento (físico) de enlaces redundantes.
- Algoritmo distribuído:
 - Similar a roteamento em vetor de distância.
 - Switches anunciam periodicamente raiz, melhor distância conhecida.
 - Conhecimento atualizado, se informações mais corretas/caminhos melhores são recebidos.

MPLS

Duas Funções Chave da Camada de Rede [Revisão]

- **Encaminhamento:** mover pacotes da entrada para a saída de um roteador.
- Roteamento: determina rota usada por pacote da origem ao destino.
 - Algoritmos de roteamento.

- Analogia:
 - Roteamento: processo de planejar uma viagem da origem ao destino.
 - **Encaminhamento:** processo de realizar um trecho da viagem.

Sinergia entre Roteamento e Encaminhamento [Revisão]

algoritmo de roteamento determina rota fim-a-fim através da rede

tabela de roteamento determina encaminhamento local neste roteador

Redes de Datagramas: Tabela de Roteamento (I) [Revisão]

4 bilhões de endereços, então ao invés de listar destinatários individuais, listamos **faixas de endereços** (entradas da tabela são agregadas)

Redes de Datagramas: Tabela de Roteamento (II) [Revisão]

Faixa de Endereços de Destino	Enlace
11001000 00010111 00010000 00000000 até 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000	1
até 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 até 11001000 00010111 00011111 11111111	2
Caso contrário	3

• Pergunta: e se os endereços não são divididos de forma tão organizada?

Casamento por Prefixo mais Longo [Revisão]

Casamento por Prefixo mais longo

Ao procurar por uma entrada na tabela de roteamento para um destino, opte sempre pelo **prefixo mais longo** que casa com o endereço do destino.

Faixa de Endereços de Destino	Enlace
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** ******	2
Caso contrário	3

• Exemplos:

Destino: 11001000 00010111 00010110 10100001. Qual interface?

Destino: 11001000 00010111 00011000 10101010. Qual interface?

Busca em Tabela de Roteamento

- Pode ser implementada de várias formas.
- Por software:
 - Busca linear: O(n).
 - ullet Busca binária (assumindo ordenação das entradas): $O\left(log_2n\right)$
- Esta complexidade é "boa"?
- Lembre-se que:
 - Volume de pacotes encaminhados pode ser muito grande: pode chegar a vários milhões por segundo.
 - As tabelas de roteamento da Internet hoje não são tão compactas assim.

Multiprotocol Label Switching (MPLS)

- Objetivo inicial: encaminhamento IP rápido utilizando *label* de tamanho fixo (ao invés de endereço IP).
 - Busca rápida em tabela de roteamento utilizando identificador como índice (ao invés de casamento de prefixo mais longo).
 - Empresta ideias das Redes de Circuitos Virtuais (VC).
 - Mas datagrama IP ainda mantém seus endereços IP de origem/destino.

Roteadores MPLS

- Também conhecidos como label-switching router.
- Encaminham pacotes para interfaces de saída com base apenas no valor do label (não inspecionam endereço IP).
 - Tabela de roteamento MPLS é distinta da tabela de roteamento IP.
- Flexibilidade: decisões de encaminhamento do MPLS podem ser diferentes das do IP.
 - Utilizar endereços de destino e de origem para rotear fluxos para o mesmo destino de forma diferente (engenharia de tráfego).
 - Re-rotear fluxos rapidamente se enlace falha: caminhos de backup pré-computados (útil para VoIP).

Caminhos MPLS vs. Caminhos IP (I)

• Roteamento IP: caminho para o destinatário é determinado apenas pelo endereço IP de destino.

Caminhos MPLS vs. Caminhos IP (II)

- Roteamento IP: caminho para o destinatário é determinado apenas pelo endereço IP de destino.
- Roteamento MPLS: caminho para o destino pode ser baseado em ambos os endereços de origem e destino.
 - Reestabelecimento rápido de rotas: rotas de *backup* pré-computadas em caso de falhas de enlaces.

Sinalização MPLS

- Modificar protocolos de estado de enlace como o OSPF e o IS-IS para carregar informação utilizada pelo roteamento MPLS.
 - e.g., largura de banda dos enlaces, quantidade de banda "reservada".
- Roteadores MPLS de borda (LERs) usam o protocolo de sinalização RSVP-TE para configurar o encaminhamento MPLS dos demais roteadores MPLS.

Tabelas de Roteamento MPLS

MPLS: Empilhamento de Labels (I)

- Roteadores MLPS podem "empilhar" labels.
 - Pacote MPLS (*i.e.*, incluindo cabeçalho MPLS) é encapsulado em outro cabeçalho MPLS.
 - Label original é mantido, novo label **externo** é adicionado.
 - Operação de push.

MPLS: Empilhamento de Labels (II)

- Encaminhamento realizado apenas com base no label mais externo.
- Em certo roteador, tabela pode instruir a realização de um pop, revelando label mais interno.

• Permite roteamento hierárquico.

MPLS: Classes de Tráfego

- O campo Exp, de 3 bits, atualmente é usado como um identificador de Classe de Serviço (CoS).
- Permite diferenciar, para um mesmo *label*, pacotes que devem ser tratados de forma distinta.
- Diferenciação de tráfego.
 - Mais detalhes no Capítulo 7.

MPLS: Camada 2.5

- MPLS não é um protocolo de camada 2.
 - Se preocupa com encaminhamento de pacotes por **múltiplos saltos**.
- Também não é exatamente um protocolo de camada 3.
 - Encapsula o IP.
- Sua localização exata na pilha de protocolos é discutível.
 - e.g., Kurose e Ross o apresentam no capítulo da camada de enlace.
 - e.g., Tanenbaum e Wetherall o apresentam no capítulo de camada de rede.
- Por isso, alguns autores classificam o MPLS como um protocolo de camada 2.5.

MPLS e Outros Protocolos

- MPLS foi idealizado para encapsular tráfego IP.
- Mas é genérico o suficiente para trabalhar com outros protocolos da camada de rede.
- Também pode ser usado com diversas tecnologias de camada de enlace.
 - Não necessariamente Ethernet.

MPLS: Usos

- Motivação original era acelerar encaminhamento de datagramas IP, simplificando buscas na tabela de roteamento.
 - Ainda relevante com tecnologias como TCAM?
- Hoje, muito empregado por sua flexibilidade.
 - Dissocia roteamento do encaminhamento.
 - Permite aplicação de critérios variados, diferenciação de tráfego.
 - Simplifica implantação de soluções de Engenharia de Tráfego.
 - Simplifica a utilização de múltiplas rotas entre origem e destino.
 - ...

Resumo da Aula...

- Protocolo de camada 2.5:
 - Entre camada de rede e camada de enlace.
- Motivação original: agilizar encaminhamento.
 - Tabela de encaminhamento indexável.
 - Consultas mais rápidas.
- Funcionamento:
 - Roteadores MPLS de borda adicionam label a cada pacote de acordo com destino, outros critérios.
 - Tabelas de encaminhamento em cada nó associam labels a portas de saída.
 - Protocolos de sinalização configuram labels nas tabelas de encaminhamento dos roteadores.
- Outros detalhes:
 - Labels podem ser empilhados: roteamento hierárquico.
 - Classes de tráfego podem ser definidas.
 - Proposto com IP em mente, mas pode ser utilizado com outras combinações de protocolos das camadas 2 e 3.

Leitura e Exercícios Sugeridos

- MPLS:
 - Páginas 361 a 363 do Kurose (Seção 5.8).
 - Exercícios de fixação 35 e 36 do Capítulo 5 do Kurose.

Próxima Aula...

- Iremos finalizar a discussão sobre a camada de enlace.
 - Algumas conclusões.
 - Alguns exemplos práticos.
- Iremos também fazer um apanhado geral do processo de transmissão de um pacote pela Internet.
 - Considerando todas as camadas.
 - Veremos onde a camada de enlace se encaixa.
 - Pequena revisão da matéria vista em Redes I.