Einführung in die Numerik Partieller Differentialgleichungen I (WS 16/17) Homework 9

(V. Aizinger, B. Reuter)

Deadline for submission:

23.12. **before** the lecture in the practical sections

Return of corrected assignments:

Exercise 20: 2+2=4P

- a) Compute the local stiffness matrix of a finite element discretization of the Poisson equation for the triangle with vertices $a_1 = (0,0)$, $a_2 = (3,-1)$, $a_3 = (2,1)$ and the triangle with vertices $a_1 = (0,0)$, $a_2 = (3,1)$, $a_3 = (2,1)$.
- b) Estimate the asymptotic behavior of $||B||_2 ||B^{-1}||_2$ for $h \to 0$ for both triangle shapes (you may use some software to perform the computations).

Exercise 21: 2+2+3=7P

Consider the fourth order boundary value problem:

Find $u \in C^4(\Omega) \cap C^1(\overline{\Omega})$ such that

$$\begin{cases} \Delta^2 u - \nabla \cdot (K(x)\nabla u) = f & \text{in } \Omega, \\ \partial_{\nu} u = u = 0 & \text{on } \partial\Omega. \end{cases}$$

- a) Choose V and derive a variational formulation: Find $u \in V$ such that $a(u, v) = b(v) \quad \forall v \in V$.
- b) Show that a is continuous with regard to the norm of V, i.e., $\exists M>0: |a(u,v)|\leq M\|u\|\|v\|, \, \forall u,v\in V.$
- c) Show that a is V-elliptic with regard to the norm of V, i.e., $\exists \alpha > 0 : a(u,u) \ge \alpha \|u\|^2$, $\forall u \in V$. Give some condition for K(x), if necessary.