Лабораторная работа №6.

Арифметические операции в NASM.

Селиванов Вячеслав Алексеевич

Содержание

1 Цель работы										
2 Задание										
3 Теоретическое введение										
4	Выполнение лабораторной работы 4.1 Символьные и численные данные в NASM 4.2 Выполнение арифметических операций в NASM 4.2.1 Ответы на вопросы 4.3 Задания для самостоятельной работы	8 8 14 19 20								
5	Выводы	24								
Список литературы										

Список иллюстраций

4.1	Создание каталога		 		•	•		•	•	•	•		•		8
4.2	Создание файла														8
4.3	Копирование файла														9
4.4	Редактирование файла														9
4.5	Запуск программы														10
4.6	Редактирование программы.														10
4.7	Запуск исполняемого файла.														11
4.8	Создание нового файла		 				 								11
4.9	Редактирование программы.														12
4.10	Запуск программы														12
	Редактирование программы.														13
4.12	Запуск программы		 		•		 								13
	Редактирование программы.														14
	Запуск программы														14
	Создание файла														14
4.16	Редактирование программы.		 		•		 								15
4.17	Запуск программы		 		•										15
	Редактирование программы.														16
4.19	Запуск программы		 		•										17
	Создание файла														17
4.21	Редактирование программы.		 	 •	•					•					18
4.22	Запуск программы		 		•										18
4.23	Создание файла		 												20
4.24	Редактирование программы.		 					•				•			21
	Запуск программы														23

Список таблиц

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

2 Задание

Символьные и численные данные в NASM Выполнение арифметических операций в NASM Задания для самостоятельной работы

3 Теоретическое введение

Большинство инструкций на языке ассемблера требуют обработки операндов. Адрес опе- ранда предоставляет место, где хранятся данные, подлежащие обработке. Это могут быть данные хранящиеся в регистре или в ячейке памяти. Далее рассмотрены все существующие способы задания адреса хранения операндов – способы адресации. Существует три основных способа адресации: • Регистровая адресация – операнды хранятся в регистрах и в команде используются имена этих регистров, например: mov ах,bх. • Непосредственная адресация – значение операнда задается непосредственно в ко-манде, Например: mov ах,2. • Адресация памяти – операнд задает адрес в памяти. В команде указывается символи- ческое обозначение ячейки памяти, над содержимым которой требуется выполнить операцию.

4 Выполнение лабораторной работы

4.1 Символьные и численные данные в NASM

С помощью команды mkdir создаю новую директорию,в которой буду создавать файлы с программами во время всей лабораторной работы № (рис. 4.1). Перехожу в созданный каталог

```
[vaselivanov@fedora ~]$ mkdir ~/work/arch-pc/lab06
[vaselivanov@fedora ~]$ cd ~/work/arch-pc/lab06
[vaselivanov@fedora lab06]$
```

Рис. 4.1: Создание каталога

Создаю файл lab6-1.asm,используя команду"touch" (рис. 4.2).

```
[vaselivanov@fedora lab06]$ touch lab6-1.asm
[vaselivanov@fedora lab06]$ ls
lab6-1.asm
```

Рис. 4.2: Создание файла

Копирую в созданный каталог файл in_out.asm,потому что он будет использоваться и в других программах (рис. 4.3).

Рис. 4.3: Копирование файла

Открываю файл lab6-1.asm в nano и вставляю в него программу ввода значения регистра eax (рис. 4.4).

```
GNU nano 7.2 /home/vaselivanov/work/arch-pc/lab06/lab6-1.asm
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 4.4: Редактирование файла

```
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
```

```
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Создаю объектный файл и после его компановки запускаю программу (рис. 4.5). Программа выводит символ "j",потому что программа вывела символ,которые соответствует в системе ASCII сумме двоичных символов 4 и 6.

```
[vaselivanov@fedora lab06]$ nasm -f elf lab6-1.asm
[vaselivanov@fedora lab06]$ ld -m elf_i386 -o lab6-1 lab6-1.o
[vaselivanov@fedora lab06]$ ./lab6-1
j
```

Рис. 4.5: Запуск программы

Теперь изменяю в тексте программы символы '6' и '4' на цифры 6 и 4 (рис. 4.6).

```
GNU nano 7.2 /home/vaselivanov/work/arch-pc/lab06/lab6-1.asm
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 4.6: Редактирование программы

```
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
```

```
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Создаю новый исполняемый файл и запускаю программу (рис. 4.7). Теперь у меня выводится символ с кодом 10,это символ перевода строки, он не отображается при выводе на экран.

```
[vaselivanov@fedora lab06]$ nasm -f elf lab6-1.asm
[vaselivanov@fedora lab06]$ ld -m elf_i386 -o lab6-1 lab6-1.o
[vaselivanov@fedora lab06]$ ./lab6-1

[vaselivanov@fedora lab06]$
```

Рис. 4.7: Запуск исполняемого файла

Создаю новый файл под названием lab6-2.asm и проверяю его наличие, используя ls (рис. 4.8).

Рис. 4.8: Создание нового файла

Ввожу в файл текст уже другой программы для вывода еах (рис. 4.9).

```
GNU nano 7.2 /home/vaselivanov/work/arch-pc/lab06/lab6-2.asm
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprint
call quit
```

Рис. 4.9: Редактирование программы

```
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprint
call quit
```

Создаю и запускаю исполняемый файл lab6-2 (рис. 4.10).Теперь программа выводит 106,потому что программа выводит именно число,не символ, хотя всё еще происходит сложение кодов символов "6" и "4".

```
[vaselivanov@fedora lab06]$ nasm -f elf lab6-2.asm
[vaselivanov@fedora lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[vaselivanov@fedora lab06]$ ./lab6-2
106
```

Рис. 4.10: Запуск программы

Заменяю в текста данной программы символы '4' и '6' на числа 6 и 4 (рис. 4.11).

```
GNU nano 7.2 /home/vaselivanov/work/arch-pc/lab06/lab6-2.asm
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintLF
call quit
```

Рис. 4.11: Редактирование программы

```
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintLF
call quit
```

Снова создаю исполняемый файл программы lab6-2 (рис. 4.12). Теперь программа складывает именно числа,поэтому выводом является сумма 4+6,которая равна 10.

```
[vaselivanov@fedora lab06]$ nasm -f elf lab6-2.asm
[vaselivanov@fedora lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[vaselivanov@fedora lab06]$ ./lab6-2
10
```

Рис. 4.12: Запуск программы

Заменяю в тексте программы функцию iprintLF на iprint (рис. 4.13).

Рис. 4.13: Редактирование программы

Создаю и запускаю исполняемый файл (рис. 4.14). После завершение программы меня не перебрасывает на следующую строку а оставляет на той же.

```
[vaselivanov@fedora lab06]$ nasm -f elf lab6-2.asm
[vaselivanov@fedora lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[vaselivanov@fedora lab06]$ ./lab6-2
10[vaselivanov@fedora lab06]$
```

Рис. 4.14: Запуск программы

4.2 Выполнение арифметических операций в NASM

Создаю файл, называю его lab6-3.asm, используя команду touch (рис. 4.15).

Рис. 4.15: Создание файла

Ввожу в созданный файл текст программы для вычисления значения выражения f(x)=(5*2+3)/3 (рис. 4.16).

```
GNU nano 7.2
%include 'in_out.asm' ; подключение внешнего файла
        .data
        'Результат: ',0
    DB 'Остаток от деления: ',0
    AL _start
 ---- Вычисление выражения
mov eax,5 ; EAX=5
mov ebx,2 ; I
mul ebx ; EAX=EAX*EB>
add eax,3 ; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,3 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 4.16: Редактирование программы

Запускаю созданный исполняемый файл (рис. 4.17).

```
[vaselivanov@fedora lab06]$ nasm -f elf lab6-3.asm
[vaselivanov@fedora lab06]$ ld -m elf_i386 -o lab6-3 lab6-3.o
[vaselivanov@fedora lab06]$ ./lab6-3
Результат: 4
Остаток от деления: 1
```

Рис. 4.17: Запуск программы

Изменяю программу так, чтобы она вычисляла другое выражение-f(x)=(4*6+2)/5 (рис. 4.18).

```
GNU nano 7.2 /home/vaselivanov/work/arch-pc/lab06/lab6-3.asm
%include 'in_out.asm'; подключение внешнего файла
SECTION .data
div: DB 'Результат: ',0
rem: DB 'Остаток от деления: ',0
SECTION .text
GLOBAL _start
_start:
; ---- Вычисление выражения
mov eax,4; EAX=4
mov ebx,6; EBX=6
mul ebx; EAX=EAX* EBX
add eax,2; EAX=EAX+2
xor edx,edx; oбнуляем EDX для корректной работы div
mov ebx,5; EBX=5
div ebx; EAX=EAX/3, EDX=остаток от деления
mov edi,eax; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div; вызов подпрограммы печати
call sprint; сообщения 'Результат: '
mov eax,edi; вызов подпрограммы печати значения
```

Рис. 4.18: Редактирование программы

```
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
div: DB 'Результат: ',0
rem: DB 'Остаток от деления: ',0
SECTION .text
GLOBAL _start
start:
; ---- Вычисление выражения
mov eax,4 ; EAX=4
mov ebx,6 ; EBX=6
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+2
xor edx,edx; обнуляем EDX для корректной работы div
mov ebx,5 : EBX=5
div ebx ; EAX=EAX/5, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
```

```
; ---- Вывод результата на экран

mov eax,div; вызов подпрограммы печати

call sprint; сообщения 'Результат: '

mov eax,edi; вызов подпрограммы печати значения

call iprintLF; из 'edi' в виде символов

mov eax,rem; вызов подпрограммы печати

call sprint; сообщения 'Остаток от деления: '

mov eax,edx; вызов подпрограммы печати значения

call iprintLF; из 'edx' (остаток) в виде символов

call quit; вызов подпрограммы завершени
```

Создаю исполняемый файл и запускаю программу (рис. 4.19). Программа посчитала выражение абсолютно верно.

```
[vaselivanov@fedora lab06]$ nasm -f elf lab6-3.asm
[vaselivanov@fedora lab06]$ ld -m elf_i386 -o lab6-3 lab6-3.o
[vaselivanov@fedora lab06]$ ./lab6-3
Результат: 5
Остаток от деления: 1
```

Рис. 4.19: Запуск программы

Создаю новый файл variant.asm (рис. 4.20).

```
[vaselivanov@fedora lab06]$ touch variant.asm
```

Рис. 4.20: Создание файла

Ввожу в файл текст программы, который вычисляет задания по номеру студенческого билета (рис. 4.21).

```
GNU nano 7.2
%include 'in_out.asm'
       .data
        'Введите No студенческого билета: ',0
   : DB 'Ваш вариант: ',0
        .bss
        80
       .text
  .OBAL _start
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax,rem
call sprint
mov eax,edx
call iprintLF
call quit
```

Рис. 4.21: Редактирование программы

Создаю исполняемый файл и запускаю программу (рис. 4.22). Ввожу номер своего студенческого. Программа вывела,что мой вариант№12.

```
[vaselivanov@fedora lab06]$ nasm -f elf variant.asm
[vaselivanov@fedora lab06]$ ld -m elf_i386 -o variant variant.o
[vaselivanov@fedora lab06]$ ./variant
Введите No студенческого билета:
1132236027
Ваш вариант: 8
```

Рис. 4.22: Запуск программы

4.2.1 Ответы на вопросы

1. За вывод сообщения "Ваш вариант" отвечают строчки кода

```
mov eax,rem
call sprint
```

- 2. Инструкция mov ec, x используется, чтобы положить адрес вводимой строки x в регистр ecx mov edx, 80 запись в регистр edx длины вводимой строки call sread вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры
- 3. За вывод на экран результатов вычислений отвечают строки:
- 4. call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует ascii-код символа в целое число и записывает результат в регистр eax
- 5. За вычисления варианта отвечают строки:

```
xot edx,edx ; обнуление eax для корректной работы div
mov ebx, 20 ; ebx = 20
div ebx; eax = eax/20, edx - остаток от деления
inc edx; edx = edx + 1
```

- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx
- 6. Инструкция inc edx увеличивает значение регистра edx на 1
- 7. За вывод на экран результатов вычислений отвечают строки:

```
mov eax,edx
call iprintLF
```

4.3 Задания для самостоятельной работы

Создаю файл lab6-4.asm,используя команду touch (рис. 4.23).

[vaselivanov@fedora lab06]\$ touch lab6-4.asm

Рис. 4.23: Создание файла

Открываю файл, ввожу в него для вычисления выражения, которое мне выпало $(N^{\circ}8)$ (11 + x) * 2 - 6 (рис. 4.24).

```
⊞
 GNU nano 7.2
%include 'in_out.asm'
  CTION .data
    DB 'Введите значение х: ',0
       'Результат: ',0
    ION .bss
       80
 LOBAL _start
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`
add eax,11
mov ebx,2
mul ebx
add eax,-6;
mov edi,eax
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 4.24: Редактирование программы

```
%include 'in_out.asm'

SECTION .data

msg: DB 'Введите значение х: ',0

rem: DB 'Результат: ',0

SECTION .bss

x: RESB 80
```

```
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax, x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`
add eax, 11
mov ebx,2
mul ebx
add eax, -6;
mov edi,eax
mov eax, rem ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
call quit ; вызов подпрограммы завершения
```

Создаю исполняемый файл и запускаю программу (рис. 4.25). Программа выдает правильный ответ.

```
[vaselivanov@fedora lab06]$ nasm -f elf lab6-4.asm
[vaselivanov@fedora lab06]$ ld -m elf_i386 -o lab6-4 lab6-4.o
[vaselivanov@fedora lab06]$ ./lab6-4
Введите значение х:
2
Результат: 20
[vaselivanov@fedora lab06]$ ./lab6-4
Введите значение х:
1
Результат: 18
```

Рис. 4.25: Запуск программы

5 Выводы

При выполнении данной лабораторной работы я освоил арифметические инструкции языка ассемблера NASM.

Список литературы

- 1. Лабораторная работа №6
- 2. Таблица ASCII