«Оптимизация нечетких нейронных продукционных моделей с помощью кластерного анализа»

Натёкин Алексей Геннадьевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент Пономарева А.Ю. Рецензент: к.ф.-м.н. Шпилёв П.В.

> Санкт-Петербург 2011г.

Цели работы

Цели работы:

- Исследование методов автоматической инициализации всех компонент нечетких нейронных продукционных моделей;
- Рассмотрение нечетких продукционных правил с многомерными функциями принадлежности;
- Разработка обобщения нечетких нейронных продукционных моделей для случая многомерных функций принадлежности;
- Сравнение эффективности предложенных моделей с другими методами машинного обучения на практических задачах.
- Реализация предложенных моделей на языке R.

Постановка задачи

Постановка задачи:

- \bullet $(x,y)_k$ обучающая выборка, $k=\overline{1,N}$;
- ullet x_k k-ый вектор входных переменных, $x_k \in \mathbb{R}^m$;
- ullet y_k k-ое значение выходной переменной, $y_k \in Y$.

Требуется построить функцию f:

$$f: \mathbb{R}^m o Y$$
, $y_k = f(x_k) \; orall \; k = \overline{1,N}$.

В зависимости от типа выходной переменной, решаются задачи:

- ullet $Y=\mathbb{R}$ решается задача регрессии;
- ullet $Y=\{y_1,\cdots,y_p\}$ решается задача классификации.

Нечеткие продукционные модели

Нечеткая продукционная модель - набор согласованных правил вида:

ЕСЛИ x есть A, **ТО** y есть B

- A предпосылка правила (антецедент);
- В заключение правила (консеквент).

Для построения нечеткой продукционной модели определим:

- базу нечетких продукционных правил;
- способ (схему) нечеткого вывода заключений и вид правил;
- процедуры агрегирования, активизации и дефаззификации.

Задание базы нечетких продукционных правил

Инициализация базы нечетких продукционных правил с помощью разбиения пространств входных переменных:

а) Разбиение пространств входных переменных на решетку гиперкубов.

$$\Pi_{ij}$$
: ЕСЛИ x_1 есть A_{1i} И x_2 есть A_{2j} ТО ... , $i=\overline{1,3}$, $j=\overline{1,3}$.

b) Разбиение каждого из пространств входных переменных с помощью группировки одномерных функций принадлежности.

$$\Pi_i$$
: ЕСЛИ x_1 есть A_{1i} И x_2 есть A_{2i} ТО ... , $i=\overline{1,4}$.

с) Разбиение с помощью многомерных функций принадлежности.

$$\Pi_i$$
: ЕСЛИ x есть A_i ТО ... , $x = [x_1, x_2]^\mathsf{T}$, $i = \overline{1,2}$.

Схема нечеткого вывода и вид нечетких правил

Модель Такаги-Сугэно:

Нечеткие продукционные правила имеют вид:

$$\Pi_i:$$
 ЕСЛИ x_1 есть A_{i1} И ... И x_m есть A_{im} ТО $\hat{y}_i=c_{i0}+\sum\limits_{j=1}^mc_{ij}x_j, i=\overline{1,G}, j=\overline{1,m},$ где

- ullet A_{ij} нечеткие множества, определенные на X_j с функциями принадлежности $\mu_{A_{ij}}(x_j)\in [0,1],\ i=\overline{1,G},\ j=\overline{1,m};$
- $m{\Phi}_{A_{ij}}(x_j) = e^{-rac{(x_j-a_{ij})^2}{2b_{ij}^2}}$ функция принадлежности j-ой входной переменной i-го правила $i=\overline{1,G},j=\overline{1,m};$

Агрегирование: произведение функций принадлежности.

Активизация: вычисление
$$\hat{y_i} = c_{i0} + \sum\limits_{j=1}^m c_{ij} x_j, i = \overline{1,G}, j = \overline{1,m}.$$

Дефаззификация: среднее взвешенное значение.

$$\hat{y} = \frac{\sum\limits_{i=1}^{G} \left((c_{i0} + \sum\limits_{j=1}^{m} c_{ij} x_j) \prod\limits_{j=1}^{m} \mu_{A_{ij}}(x_j) \right)}{\sum\limits_{i=1}^{G} \prod\limits_{j=1}^{m} \mu_{A_{ij}}(x_j)}.$$

Схема нечеткого вывода и вид нечетких правил

Модель Такаги-Сугэно с многомерными функциями принадлежности:

$$\prod_{j=1}^m \mu_{A_{ij}}(x_j) = \prod_{j=1}^m e^{-\frac{(x_j-a_{ij})^2}{2b_{ij}^2}} = e^{-\frac{(x_j-a_{ij})^2}{2b_{ij}^2}} = e^{-\frac{1}{2}(x-a_i)^\mathsf{T}\sum_i^{-1}(x-a_i)} = \mu_{\hat{A}_i}(x),$$
 где

- $x = [x_1, ..., x_m]^\mathsf{T}$ вектор входных переменных;
- $\mu_{\hat{A}_i}(x)$ многомерная функция принадлежности i-го правила, $i=\overline{1,G},\ \mu_{\hat{A}_i}(x)\in[0,1];$
- $a_i = [a_{i1}, ..., a_{im}]^\mathsf{T}$ вектор средних значений многомерной функции принадлежности i-го правила, $i=\overline{1,G}$;
- ullet Σ_i ковариационная матрица многомерной функции принадлежности i-го правила, $i=\overline{1,G}$.

 \Rightarrow Далее будут рассматриваются произвольные ковариационные матрицы, т.е. без ограничения на некоррелированность входных переменных.

Схема нечеткого вывода и вид нечетких правил

Модель Такаги-Сугэно с многомерными функциями принадлежности: Функциональная зависимость нечеткой продукционной модели:

$$\hat{y} = \frac{\sum_{i=1}^{G} \left((c_{i0} + \sum_{j=1}^{m} c_{ij} x_j) \mu_{\hat{A}_i}(x) \right)}{\sum_{i=1}^{G} \mu_{\hat{A}_i}(x)}.$$

Будет рассматриваться модель с нормировкой на объемы:

$$\hat{y} = \frac{\sum_{i=1}^{G} \left((c_{i0} + \sum_{j=1}^{m} c_{ij} x_j) \frac{\mu_{\hat{A}_i}(x)}{\hat{V}_i} \right)}{\sum_{i=1}^{G} \frac{\mu_{\hat{A}_i}(x)}{\hat{V}_i}},$$

$$V_i = (2\pi)^{\frac{m}{2}} |\Sigma_i|^{\frac{1}{2}}, i = \overline{1, G}.$$

 \Rightarrow Для задания базы нечетких правил, требуется найти разбиение входных данных на многомерные нормальные распределения.

ЕМ алгоритм

Пусть данные порождаются смесью вероятностных распределений:

$$p(x) = \sum_{j=1}^{G} \phi_j f_j(x| heta_j),$$
 где

- $x = [x_1, ..., x_m]^\mathsf{T}, x \in \mathbb{R}^m$ вектор входных переменных;
- $f_j(x|\theta_j)$ функция плотности распределения j-ой компоненты смеси распределений, $f_j(x|\theta_j)\sim \mathcal{N}(a_j,\Sigma_j)$;
- ullet $heta_j$ параметры плотности j-ой компоненты смеси, $heta_j = \{a_j, \Sigma_j\};$
- ullet ϕ_j нормализующий вес j-ой компоненты смеси, $\sum\limits_{j=1}^G \phi_j = 1.$

EM алгоритм: вводятся скрытые параметры $w_{kj},\ j=\overline{1,G},\ k=\overline{1,N}.$

- ullet На E-шаге по текущим значениям параметров $heta_j, \phi_j$ вычисляются ожидаемые значения скрытых параметров $w_{kj}.$
- На М-шаге по функции правдоподобия всех данных максимизируются параметры θ_j, ϕ_j .

$$\theta^{t+1} = \arg\max_{\theta} L(\theta^t, \phi^t, w^t | x)$$

$$L(\theta_j, \phi_j, w_{kj} | x) = \prod_{j=1}^{N} \log(p(x_j)).$$

Байесовский информационный критерий

Модель с оптимальным числом кластеров выбирается с помощью Байесовского информационного критерия:

$$BIC_k = 2\log(L(x,\hat{ heta_k})) - n_{par}\log(N), k \in G_{init},$$
 где

- $log(L(x, \hat{\theta_k})$ логарифм максимума функции правдоподобия для k-ой модели;
- ullet N число точек, по которым оценивается модель;
- ullet n_{par} число независимых параметров k-ой оцениваемой модели;
- ullet G_{init} предполагаемое число кластеров.

Ищется баланс между приростом правдоподобия и штрафом на добавление параметров для модели.

Выбирается модель, для которой достигается максимум информационного критерия:

$$\begin{aligned} p(x, \theta)_{result} &= p(x, \theta_{k_{result}}, \phi_{k_{result}}), \\ k_{result} &= \arg\max_{k \in G_{init}} BIC_k. \end{aligned}$$

Нечеткие нейронные продукционные модели

Проведем разложение ковариационных матриц многомерных функций принадлежности по собственным векторам(EVD):

$$\Sigma_i = U_i \Lambda_i U_i^\mathsf{T} = \sum_{j=1}^m \lambda_{ij} u_{ij} u_{ij}^\mathsf{T}, \ U_i = \begin{pmatrix} \mathbf{u}_{i1}^\mathsf{T} & \cdots & \mathbf{u}_{im}^\mathsf{T} \\ \mathbf{u}_{i1}^\mathsf{T} & \mathbf{u}_{im}^\mathsf{T} \end{pmatrix}$$

Можно представить ковариационную матрицу Σ_i іго правила, $i=\overline{1,G}$, в виде двух групп параметров:

- матрицы поворота U_i , составленной из собственных векторов u_{ij} ковариационной матрицы $\Sigma_i, j = \overline{1,m};$
- вектора, состоящего из собственных чисел λ_{ij} ковариационной матрицы $\Sigma_i, \ j = \overline{1,m}.$

 \Rightarrow Вместо параметров ковариационной матрицы Σ_i будем хранить в нейронной сети разложение на собственные вектора u_{ij} и собственные числа $\lambda_{ij},\ j=\overline{1,m}.$

Структура нейронной сети

Слой 1: содержит матрицы поворота U_i , полученные из EVD-разложения Σ_i , $i = \overline{1, G}$. Входной вектор $x = [x_1, ..., x_m]^{\mathsf{T}}$ переводится в новые координаты:

$$\check{x} = U_i x$$
.

Слой 2: содержит повернутые значения входных переменных для каждого из правил.

Слой 3: состоит из элементов, вычисляющих : функции принадлежности $\mu_{\hat{A}_z}(\check{x})$ для данных после поворота в первом слое. В этом слое хранятся параметры a_i и λ_{ij} функций принадлежности.

Спой 1

Спой 2

Спой 3

Структура нейронной сети

Слой 4: состоит из элементов, вычисляющих значения многомерных функций принадлежности нечетких продукционных правил:

$$\frac{\mu_{\hat{A}_i}(x)}{V_i}, \ i = \overline{1, G}.$$

Слой 5: элементы данного слоя вычисляют значения консеквентов каждого из правил:

$$\hat{y}_i = \left(c_{i0} + \sum_{j=1}^m c_{ij} x_j\right), i = \overline{1, G}.$$

Слой 6: состоит из двух элементов-сумматоров.

Слой 7: состоит из одного нормализующего элемента.

Спой 4

Спой 5

Спой 6

Спой 7

Гибридный алгоритм обучения нейронной сети

Требуется модифицировать параметры $\theta = \{a, U, \Lambda, c\}$ нечеткой продукционной модели, чтобы минимизировать ошибку:

$$E = \sum\limits_{k=1}^{N} rac{1}{2} E^k,$$
 $E^k = (\hat{y}_k - y_k)^2,$ где

 \hat{y}_k - значение, полученное нечеткой продукционной моделью.

Гибридный алгоритм обучения:

- ullet С помощью МНК оптимизируем параметры $c_{ij},\ i=\overline{1,G},\ j=\overline{0,m}.$
- ullet С помощью градиентного спуска, оптимизируем параметры $\lambda_{ij},\ a_{ij},\ i=\overline{1,G},\ j=\overline{1,m}$:

$$a_{ij}^k(t+1):=a_{ij}^k(t)-\etarac{\partial E^k(t)}{\partial a_{ij}^k},$$
 $\lambda_{ij}^k(t+1):=\lambda_{ij}^k(t)-\etarac{\partial E^k(t)}{\partial \lambda_{ij}^k},k=\overline{1,N},$ где

t - номер итерации оптимизационного процесса;

 η - константа, регулирующая скорость градиентного спуска.

Алгоритм разрастания нейронной сети

Геометрический смысл: расщепляются те компоненты нечеткой продукционной модели, на которых ошибка максимальна.

$$E_p = \sum\limits_{k=1}^N rac{1}{2} E^k \delta_{qp},$$
где

- δ_{qp} символ Кронекера, $p = \overline{1, G}$;
- ullet $q=rg\max_{q\in\overline{1,G}}\mu_{\hat{A}_q}(x_k)$ правило с максимальной принадлежностью.

Расщепляется компонента с максимальной ошибкой $\hat{q} = rg \max_{p \in \overline{1,G}} E_p.$

Выберем $\mu_{\hat{A}_{\hat{\sigma}}}$ и те точки x_k , $k=\overline{1,N}$, для которых выполняется:

$$q = \arg\max_{q \in \overline{1,G}} \mu_{\hat{A}_q}(x_k).$$

Найденные точки компонуются в пары $(x,y)_q$ и для них проводится ${\sf EM}$ -кластеризация на 2 кластера.

Критерии остановки алгоритмов обучения

Критерии остановки алгоритма гибридного обучения нейронной сети:

ullet $E = \sum\limits_{k=1}^{N} rac{1}{2} E^k < E_{max}$, где

 E_{max} - целевая точность, которая вводится исследователем.

• Выполнено правило остановки итерационного процесса:

$$|E^k(t)$$
 - $E^k(t-1)| \leq arepsilon$, где

arepsilon - чувствительность к приращению целевой функции.

• Выполнено максимально допустимое число итераций алгоритма обучения: $t>t_{max}.$

Критерии остановки алгоритма разрастания нейронной сети:

- ullet Число компонент $G\geqslant G_{max}$, где G_{max} максимальное число правил в нейронной сети.
- Прирост точности при увеличении числа компонент недостаточен:

$$|\check{E}(g)$$
 - $\check{E}(g-1)| \leq arepsilon, g = \overline{G_{+1}, G_{max}}$, где

arepsilon - минимальное допустимое увеличение точности. $\check{E}(g)$ - значение целевой функции ошибки нейронной сети с g компонентами, после алгоритма гибридной оптимизации.

Регрессия

Рассмотрим функцию, полученную из силуэтов шляп с разных фотографий.

$$y = f(\mathbf{x} \mid \theta) : \mathbb{R} \to \mathbb{R},$$

$$\theta = \{\theta_i\}_i = \{a_i, U_i, \Lambda_i, c_i\}_i, i = \overline{1, G}.$$

$$\hat{y} = \sum_{i=1}^{G} \frac{\mu_{A_i}}{\sum\limits_{i=1}^{G} \mu_{A_i}} \hat{y}_i = \sum_{i=1}^{G} f_i(x, a_i, U_i, \Lambda_i, c_i) = \sum_{i=1}^{G} f_i(x, \hat{\theta}_i),$$

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \, \frac{1}{N} \sum_{k=1}^{N} (y_k - \hat{y}_k)^2.$$

Сравнение эффективности методов машинного обучения

Метод	Число параметров	Ошибка E
Дерево регрессии	25 листьев	19.20510
Нейронная сеть	48 нейронов	4.011456
Машина опорных векторов	90 опорных векторов	3.067771
Предложенная модель, $G=21$	21 правило	1.499400
Предложенная модель, $G=24$	24 правила	1.105191

Результаты применения к задаче регрессии

Задача классификации

Рассмотрим качественное усложение данных двух спиралей:

$$\begin{split} \hat{y} &= Class_{result}, \ result = \arg\max_{i \in 1..G} \mu_{\hat{A}_i}(x, \hat{\theta_i}), \\ \hat{\theta} &= \arg\min_{\theta} \frac{1}{N} \sum_{k=1}^N \|y_k - \hat{y}_k\|, \\ \|y_k - \hat{y}_k\| &= \begin{cases} 0 & \hat{y}_k = y_k \\ 1 & \text{мначе} \end{cases}. \end{split}$$

Результаты применения к задаче классификации

Сравнение эффективности методов машинного обучения

Метод	Число параметров	Ошибка,%
Дерево классификации	54 листа	23.3755
Нейронная сеть	34 нейрона	14.4841
Машина опорных векторов	538 опорных векторов	10.8466
Предложенная модель, G = 37	37 правил	9.3254
Предложенная модель, $G = 41$	41 правило	7.5396

Задача проката стали

27-мерные данные проката стали

Ткп	T_{CM}	С	Mn	 Скорость клети 12	Наличие дефекта
837	653	0.065	0.41	 683	0
833	656	0.065	0.41	 720	0
:	•	•		 į.	:
843	662	0.068	0.38	 680	1

- 26 количественных входных переменных задают производственные параметры проката стали;
- 1 бинарная переменная метка, показывающая, имеются ли на данном листе стали дефекты.

Сравнение эффективности методов машинного обучения

Метод	Число параметров	Ошибка,%
Дерево классификации	152 листа	11.717
Нейронная сеть	38 нейронов	3.8523
Машина опорных векторов	1118 опорных векторов	4.4943
Предложенная модель, $G=9$	9 правил	2.5682

Заключение

- Исследован эффективный способ инициализации нечетких нейронных продукционных моделей с помощью ЕМ-алгоритма и Байесовского информационного критерия.
- Построено нейросетевое представление нечетких продукционных моделей с многомерными функциями принадлежности.
- Предложены алгоритмы гибридного обучения нечетких продукционных моделей с многомерными функциями принадлежности.
- Получены успешные результаты применения предложенных моделей как для задачи регрессии, так и для задачи классификации.
- Реализована система функций на языке R.