Análisis multivariante

Teresa Villagarcía

Análisis de datos

- Nos encontramos grandes masas de datos.
- Hay que estudiarlas con herramientas informáticas.
- > Por ejemplo:
 - Encuestas con muchas observaciones y muchas variables.
 - Extraer información es muy laborioso.

El análisis multivariante

- Sirve para analizar grandes masa de datos
- Utiliza herramientas informáticas
- Extrae la información contenida en los datos
- Tiene el objetivo adicional de reducir el número de variables.

Vamos a estudiar:

- > Análisis Factorial
- > Análisis Cluster
- Aplicación de todo lo visto a satisfacción de clientes:
 - Regresión
 - Factorial
 - Regresión
- Obtención de pesos

Análisis Factorial

Análisis factorial

- Tenemos muchas variables con información común. Es decir muy relacionadas
- Creemos que las relaciones existen porque las variables son consecuencia de la existencia de unos factores no observables directamente
- Se pretende llegar a un cálculo de esos factores. Así conseguiremos resumir la información y entender la relación entre las variables
- > En el futuro podremos reducir el número de variables en el cuestionario

Concepto de Factor

Pensamos que hay unos cuantos "Factores", pocos que son los determinantes de nuestras opiniones

Concepto de Factor

El factor es nuestra visión interna y muchas variables tendrán unos valores determinados si el factor es de una manera determinada.

Ejemplo:

Ser católico del Opus Dei implica que si te preguntan:

- ¿Estás a favor del aborto?
- ¿Estás a favor de que exista el divorcio?
- ¿Admites el matrimonio homosexual?

Vas a contestar que no.

Ejemplo:

Ser muy inteligente en matemáticas implica:

Tienes facilidad de cálculo

Comprendes problemas y lenguajes matemáticos Tienes buena lógica.

Inteligencia verbal alta

Inteligencia matemática normal

Notas muy buenas en: lectura, escritura, se expresa bien, entiende bien lo que se dice......

.....Y todo lo que tenga que ver con que tiene muy buena habilidad verbal

Notas normales en: Cálculo, Geometría, No es muy buena en relaciones numéricasY todo lo que tenga que ver con las habilidades matemáticas

Origen del AF

- El origen del AF proviene del intento de los psicólogos de entender los factores determinantes de la inteligencia humana.
- Las variables observadas X eran los resultados de los diferentes tests de inteligencia.
- Se pensaba que estos resultados dependían muy directamente de unos Factores desconocidos que hacían que una persona fuera más hábil en determinadas pruebas.
- Los factores resultaron ser lo que posteriormente se denominó Inteligencia Verbal, Matemática, Espacial etc.
- Así, los resultados que se obtenían en la pruebas de matemáticas estaban muy determinados por la Inteligencia Matemática.

Ejemplo: Medir la inteligencia de un grupo de alumnos de Administración de Empresas

- Variables observadas (X)
 - Nota de Estadística
 - Nota de Matemáticas
 - Nota de Derecho
 - Nota de Economía general
 - Nota de Econometría
 - Nota de contabilidad
 - Nota de Derecho privado
 - Nota de Contabilidad
 - Nota de Economía de la Empresa

- Se identifican tres Factores:
 - Capacidad matemática
 - Capacidad de memoria
 - Capacidad analítica

El Modelo.

$$X_1 = a_{11}F_1 + a_{12}F_2 + \cdots + a_{1k}F_k + U_1$$

 $X_2 = a_{21}F_1 + a_{22}F_2 + \cdots + a_{2k}F_k + U_2$
 \cdots
 $X_p = a_{p1}F_1 + a_{p2}F_2 + \cdots + a_{pk}F_k + U_p$

Es decir, el valor de las variables depende del nivel de los factores

La información de las variables depende:

$$X_{1} = \begin{bmatrix} a_{11}F_{1} & +a_{12}F_{2} & +\cdots + & a_{1k}F_{k} + U_{1} \\ X_{2} = & a_{21}F_{1} & +a_{22}F_{2} & +\cdots + & a_{2k}F_{k} + U_{1} \\ & & \cdots \\ X_{p} = & a_{p1}F_{1} & +a_{p2}F_{2} & +\cdots + & a_{pk}F_{k} + U_{p} \end{bmatrix}$$

Depende de los factores COMUNALIDAD

Y de algo más, desconocido y específico de cada variable

Procedimiento:

- Seleccionar las variables que queremos reducir
- 2. Seleccionar el número de factores adecuado:
 - Método de los autovalores (No muy bueno)
 - Pro puro sentido común (Mucho mejor)
 Se utiliza el porcentaje de varianza explicado
- 3. Rotar los factores para obtener un resultado comprensible

Lo vamos a estudiar con un ejemplo

- La cata de pescados.
- Las variables de cata estaban muy relacionadas
- Había mucha colinealidad
- Tras muchos análisis llegamos a la conclusión de que hay variables que sobran

Cata de pescados

Multiple Regressi 	on Analysis			
Dependent variabl	e: ACEPTAGENE			
		Standard	Т	
Parameter 	Estimate	Error	Statistic	P-Value
CONSTANT	3,23662	0,493396	6,55987	0,0000
ACUOSIDAD	0,424113	0,0860697	4,92755	0,0000

Multiple Regress	ion Analysis			
Dependent variab	ole: ACEPTAGENE			
		Standard	Т	
Parameter	Estimate	Error	Statistic	P-Value
 CONSTANT	2,25431	0,338362	6,66241	0,0000
JUGOSIDAD	0,681838	0,0647102	10,5368	0,0000

Colinealidad

Multiple Regressi	ion Analysis			
Dependent variabl	le: ACEPTAGENE			
		Standard		
Parameter	Estimate	Error	Statistic	P-Value
CONSTANT	2,17245	0,414468	5,24154	0,0000
JUGOSIDAD	0,666774	0,0782931	8,51639	0,0000
ACUOSIDAD	0,0286251	0,0831194	0,344386	0,7311

Mas variables

Multiple Regressi	on Analysis			
Dependent variabl	e: ACEPTAGENE			
		Standard	Т	
Parameter	Estimate	Error	Statistic	P-Value
CONSTANT	2,33126	0,536478	4,34549	0,0000
ASPECTGENE	0,497581	0,07981	6,23458	0,0000

Colinealidad

Multiple Regressi	on Analysis			
Dependent variabl	e: ACEPTAGENE			
		Standard	T	
Parameter 	Estimate	Error	Statistic	P-Value
CONSTANT	1,82866	0,44068	4,14962	0,0001
COLOR	0,589448	0,0664088	8,87604	0,0000

Multiple Regress:	ion Analysis			
Dependent variab	le: ACEPTAGENE			
		Standard	Т	
Parameter	Estimate	Error	Statistic	P-Value
CONSTANT	1,94446	0,488237	3,98262	0,0001
COLOR	0,642279	0,1158	5,54643	0,0000
ASPECTGENE	-0,0697154	0,125018	-0,557644	0,5781

Ejemplo: Variables de cata de los pescados

Cada catador evalúa diversos aspectos de la cata: Aspecto General, Color, Olor, Acuosidad, Jugosidad, Dureza, Firmeza y Flavor.

Se introducen las variables al ordenador y se obtiene la TABLA DE AUTOVALORES y varianzas explicadas

Ejemplo: Variables de cata de los pescados

Se introducen al programa las variables y se analiza la TABLA DE AUTOVALORES con los porcentajes de varianza explicada

Factor Analysis				
Factor		Percent of	Cumulative	
Number	Eigenvalue	Variance	Percentage	
1	3,60352	45,044	45,044	
2	1,71301	21,413	66,457	
3	1,01183	12,648	79,105	
4	0,51970	6,496	85,601	
5	0,43689	5,461	91,062	
6	0,32336	4,042	95,104	
7	0,25211	3,151	98,256	
8	0,13955	1,744	100,000	

Elección del número de factores

Factor Analysis

Factor Number 1 2 3 4	Eigenvalue 3,60352 1,71301 1,01183 0,51970	Percent of Variance 45,044 21,413 12,648 6,496	Cumulative Percentage 45,044 66,457 79,105 85,601
5	0,43689	5,461	91,062
6	0,32336	4,042	95,104
7	0,25211	3,151	98,256
8	0,13955	1,744	100,000

- Si reducimos la 8 variables a un factor, el factor contendría el 45% de la información original de las variables
- > Con dos factores el 66.45%
- Con tres factores el 79,1%
- HAY QUE ELEGIR QUE
 CANTIDAD DE
 INFORMACION PERDIDA
 NOS PARECE ACEPTABLE

Tres Factores 79% Composición de los factores rotados

Factor Loading Matrix After Varimax Rotation

	Factor 1	Factor 2	Factor 3
ASPECTGENE	0,904446	0,0528491	0,0756087
COLOR	0,938067	0,156675	0,0903128
OLOR	0,547074	0,462024	0,408179
FLAVOR	0,664154	0,295072	0,424016
ACUOSIDAD	0,0502852	-0,126084	0,872586
FIRMEZA	0,237533	0,877522	0,0196523
JUGOSIDAD	0,224296	0,0407906	0,828086 >
DUREZA	0,0612992	0,917944	-0,10524

¿Nos aclara algo?

Primer Factor: Aspecto General, Color, Flavor

Segundo Factor: Olor, Firmeza y dureza

Tercer Factor: Olor Flavor Jugosidad y Acuosidad

Tres Factores 79% Composición de los factores rotados

Variable	Estimated Communality
ASPECTGENE	0,826533
COLOR	0,912673
OLOR	0,679367
FLAVOR	0,707958
ACUOSIDAD	0,779832
FIRMEZA	0,826854
JUGOSIDAD	0,737698
DUREZA	0,857455

Las variables quedan explicadas por los factores al porcentaje indicado

4 Factores: 85.6% Composición de los factores rotados

			201001000	
Factor Load	ding Matrix A	fter Varimax E	Rotation	
	Factor	Factor	Factor	Factor
	1	2	3	4
ASPECTGENE	0,939077	0,117426	0,161682	0,148063
COLOR	0,834063	0,128938	0,446158	0,0584748
OLOR	0,220667	0,281357	0,831219	0,202614
FLAVOR	0,383018	0,146853	0,760841	0,255328
ACUOSIDAD	0,044415	-0,103478	0,0889894	0,896268
FIRMEZA	0,204923	0,888258	0,188476	0,0298655
JUGOSIDAD	0,15469	0,0288791	0,262614	0,812616
DUREZA	0,0237076	0,91514	0,147937	-0,110069

- Primer Factor: Aspecto General y Color
- Segundo Factor: Firmeza y Dureza
- Tercer Factor: Olor y Flavor (sabor)
- Cuarto Factor: Acuosidad y Jugosidad

¿Nos aclara algo?

4 Factores: 85.6% Composición de los factores rotados

Variable	Estimated Communality
ASPECTGENE	0,943718
COLOR	0,914761
OLOR	0,859833
FLAVOR	0,812339
ACUOSIDAD	0,823896
FIRMEZA	0,867412
JUGOSIDAD	0,754074
DUREZA	0,872045

Las variables quedan explicadas por los factores al porcentaje indicado

5 Factores: 91% ¿Nos aclara algo? Composición de los factores rotados

	Factor 1	Factor 2	Factor 3	Factor	Factor 5
ASPECTGENE	0,940625	0,1173	0,171514	0,115822	0,0790595
COLOR	0,830945	0,124247	0,439729	-0,0476496	0,125671
OLOR	0,218786	0,27581	0,83222	0,0765675	0,193606
FLAVOR	0,385091	0,145823	0,77642	0,196724	0,129743
ACUOSIDAD	0,0608836	-0,0978239	0,156246	0,94124	0,260703
FIRMEZA	0,20207	0,884248	0,182311	-0,0462499	0,109695
JUGOSIDAD	0,144478	-0,00153784	0,230726	0,290799	0,912023
DUREZA	0,0242781	0,918696	0,153382	-0,0572071	-0,0929981

Primer factor: Aspecto general y Color

Segundo factor: Firmeza y Dureza

Tercer factor: Olor y Flavor

Cuarto factor: Acuosidad

Quinto factor: Jugosidad

> Empieza a separar las variables una por una

5 Factores: 91% Composición de los factores rotados

Variable	Estimated Communality
ASPECTGENE	0,947617
COLOR	0,917331
OLOR	0,859875
FLAVOR	0,827922
ACUOSIDAD	0,991587
FIRMEZA	0,870136
JUGOSIDAD	0,990462
DUREZA	0,880039

Las variables quedan explicadas por los factores al porcentaje indicado

¿Qué escogeríamos?

- 4 factores:
 - Aspecto externo
 - Textura al masticar
 - Boca
 - Jugosidad
- Cualquier variable que añadamos que tenga que ver con los 4 factores dará valores muy correlados con las anteriores.

- Primer Factor: Aspecto General y Color
- Segundo Factor: Firmeza y Dureza
- Tercer Factor: Olor y Flavor (sabor)
- Cuarto Factor: Acuosidad y Jugosidad

Ejemplo: Ingeniería Técnica Mecánica

- > Atributos parciales de calidad:
 - Organiza clases
 - Entusiasmo
 - Participación
 - Puntualidad
 - Despacho
 - Lecturas
 - Prácticas pizarra
 - Prácticas ordenador

Ingeniería Mecánica

	Factor	Analysis	
Factor		Percent of	Cumulative
Number	Eigenvalue	Variance	Percentage
1	4,49655	56,207	56,207
2	1,07716	13,464	69,671
3	0,803097	10,039	79,710
4	0,574503	7,181	86,891
5	0,360583	4,507	91,399
6	0,32942	4,118	95,516
7	0,221527	2,769	98,285
8	0,137165	1,715	100,000

¿Cuántos?

Ingeniería Mecánica: 3

	Factor	Factor	Factor
	1	2	3
Organiza_clases	0,667032	0,484441	0,267565
Entusiasmo_interes	0,744223	0,430872	0,325457
Prom_participacion	0,870207	0,303578	0,0488701
Lec_Bibliografia	0,683836	-0,187494	0,470227
Puntualidad	0,0932509	0,429551	0,775702
Dispon_consultas	0,351196	0,175744	0,803601
Clase_Practica	0,182963	0,863114	0,133808
Sati_claspractica	0,235795	0,815134	0,305184

Ingeniería Mecánica: 4

	Factor 1	Factor 2	Factor 3	Factor 4
Organiza_clases	0,783814	0,283534	0,344863	0,0992807
Entusiasmo_interes	0,820586	0,244298	0,371986	0,193353
Prom_participacion	0,838534	0,220115	0,0123268	0,321357
Lec_Bibliografia	0,271912	0,0510789	0,142547	0,915326
Puntualidad	0,224781	0,25582	0,866579	0,0288013
Dispon_consultas	0,227923	0,186183	0,696874	0,480459
Clase_Practica	0,225363	0,912535	0,135083	0,0548853
Sati_claspractica	0,294361	0,810235	0,321619	0,0841255

Ingeniería Mecánica: 5

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Organiza_clases	0,795297	0,284211	0,0355878	0,185547	0,315189
Entusiasmo_interes	0,822667	0,245044	0,188129	0,306913	0,209714
Prom_participacion	0,83277	0,220161	0,344009	0,0182654	0,0107154
Lec_Bibliografia	0,261538	0,0517605	0,917433	0,0890827	0,214467
Puntualidad	0,221013	0,257566	0,0925268	0,901482	0,238408
Dispon_consultas	0,254921	0,187904	0,285172	0,277122	0,833214
Clase_Practica	0,222721	0,912796	0,077355	0,155007	0,0158835
Sati_claspractica	0,304178	0,810922	0,0267479	0,18575	0,285308

¿Con qué nos quedamos?

> Factor 1:

.