

Diffusion Tensor Imaging: Concepts & Applications

Aaron Fisher May 7, 2013

What is Diffusion Tensor Imaging (DTI)?

- Uses bipolar magnetic field gradient pulses to measures molecular diffusion within a voxel.
- Only diffusion in the direction of the gradient are detectable, requiring us use gradients in several directions.
- In myelinated axonal fibers, diffusion has been shown to be faster along the direction of the fibers than in the direction perpendicular to them.
 - DTI images can be used to estimate orientation of fiber tracks, and fiber track integrity.

Who's the fairest modality of them all?

Two ways to plot DTI

Diffusion tensor – data acquisition

 Isotropic ("plain") diffusion: Diffusion can be fully described by a coefficient D. This can be determined, using the equation:

$$A = \exp(-bD)$$

where A represents spin echo signal attenuation, and b characterizes the gradient pulses used.

• **Anisotropic diffusion**: Diffusion is characterized now by mobility in the x, y and z, dimensions, along with their correlations. We represent all of these directions with the tensor **D**.

$$\underline{\mathbf{D}} = \begin{array}{cccc} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{array} \tag{2}$$

3D Tensor

Diffusion tensor – data acquisition

 Aquiring D in anisotropic case: b is also replaced by a 3 x 3 matrix b, and signal attenuation is now:

$$A = \exp\left(-\sum_{i=x,y,z} \sum_{j=x,y,z} \underline{\mathbf{b}}_{ij} \underline{\mathbf{D}}_{ij}\right) \tag{4}$$

or

$$A = \exp(-b_{xx}D_{xx} - b_{yy}D_{yy} - b_{zz}D_{zz} - 2b_{xy}D_{xy} - 2b_{xz}D_{xz} - 2b_{yz}D_{yz}).$$
 (5)

D can be estimated using a regression based on the above equation.

Nondiagonal Diffusion Tensors – 2D illustrations

Ellipse: $\{x : x'D^{-1}x = c\}$

$$D_0 := \begin{bmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix} \qquad D_1 := \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \qquad D_2 := \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$D_1 := \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix}$$

$$D_2 := \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Finding a reference frame

- Among other things, we want to know the primary directions of diffusivity, and the amount of diffusivity in each of these directions.
- A reference frame of orthogonal vectors [x',y',z'] is the basis in which D
 can be represented as a diagonal matrix.
 - These reference vectors x', y' and z' will also correspond to the primary directions of diffusivity.
- This can be solved with by taking the singular value decomposition (SVD)
 of D.

Singular value decomposition of the diffusion tensor (in 3D)

- Let $U\Lambda U'$ be the singular value decomposition (SVD) of D, where U is a 3x3 matrix, and Λ is a 3x3 diagonal matrix with diagonal elements denoted by λ_1 , λ_2 , and λ_3 .
- UΛU'= D
- The three columns of U form an orthonormal basis corresponding to the primary directions of diffusion.
- λ_1 , λ_2 , and λ_3 represent the diffusion in each of these directions.

Finding a reference frame – 2D Illustration

Ellipse:
$$\{x : x'D^{-1}x = c\}$$

$$D_1 := \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

$$SVD(D_1) =: U_1 \Lambda_1 U_1'$$
$$diag(\Lambda_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$D_2 := \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$SVD(D_2) =: U_2\Lambda_2 U_2'$$

$$diag(\Lambda_2) = \begin{bmatrix} 1 & 3 \end{bmatrix}$$

$$U_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

DTI Metrics

- Primary direction of diffusivity
 - Attainable from SVD(**D**)
- Mean diffusivity: characterizes the overall mean-squared displacement of molecules.
 - Independent of primary direction of diffusivity.
- Degree of anisotropy: the directedness of diffusion.
- All of these are measuring actual biological things. The unit's aren't just relative, they're meaningful.

Mean Diffusivity

- We want this quantity to be <u>invariant</u> to the orientation of the reference frame [x',y',z'], or U in our notation here.
- Mean Diffusivity := Trace(D)/3
 - Where Trace(\mathbf{D}) = D[x,x] + D[y,y] + D[z,z]
 - Note, this is equal to $(\lambda_1 + \lambda_2 + \lambda_3)/3$, but this doesn't matter.

Diffusion Anisotropy Indices

$$\bar{\lambda} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}$$

Relative Anisotropy (RA): standardized squared deviations. (Range: $0-\sqrt{2}$, $\sqrt{2}$ is anisotropic).

$$RA = \sqrt{\frac{(\lambda_1 - \bar{\lambda})^2 + (\lambda_2 - \bar{\lambda})^2 + (\lambda_3 - \bar{\lambda})^2}{3\bar{\lambda}}}$$

Fractional Anisotropy (FA): Magnitude of diffusion tensor explained by anisotropic diffusion. (Range: 0-1, 1 is anisotropic).

$$FA = \sqrt{\left(\frac{3}{2}\right) \frac{(\lambda_1 - \bar{\lambda})^2 + (\lambda_2 - \bar{\lambda})^2 + (\lambda_3 - \bar{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

Volume Ratio (VR): Ratio of volume of the ellipse to the volume of the sphere with radius mean(λ). (Range: 0-1, but 1 is isotropic).

$$VR = \frac{\lambda_1 \lambda_2 \lambda_3}{\bar{\lambda}^3}$$

Visualizing Fractional Anisotropy

$$FA = \sqrt{\left(\frac{3}{2}\right) \frac{(\lambda_1 - \bar{\lambda})^2 + (\lambda_2 - \bar{\lambda})^2 + (\lambda_3 - \bar{\lambda})^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

$$\sum_{i=1}^{n} (\lambda_i - \bar{\lambda})^2 + n\bar{\lambda}^2 = \sum_{i=1}^{n} \lambda_i^2$$

Complications – Apparent Diffusion Coefficient (ADC)

- Voxels contain both intracellular and extracellular compartments. Low (b values?) gradients used are more sensitive to to fast diffusion compartments, (possibly?) corresponding more to the extracellular diffusion.
- Changes in ADC should be interpreted in terms of diffusion changes in the extracellular space, and in terms of changes in the relative volume of extracellular v. intracellular space.
 - This volume ratio relevant to detection of brain ischemia and other problems.

Interpreting ADC

- Generally it's been shown that anisotropy is high in myelinated white matter, and even before fibers become myelinated.
- This was once explained by myelin sheaths restricting the flow of intracellular water.
- It's now thought that since studies with low b-values are more sensitive to extracellular diffusion, this anisotropy is actually mostly due to the structures that impede the flow of extracellular molecules.
 - In a compact bundle of parallel fibers, movement perpendicular to fibers is more impeded than parallel movement.

Applications

- In general, mean diffusivity characterizes overall water content and anisotropy indices reflect myelin fiber integrity.
- Brain Ischemia restriction in blood supply that corresponds with a drop in water diffusion, possibly due to shrinkage of the extracellular space.
 - DTI useful for detection, as the diffusion change precedes cell damage detectable on conventional MRI.

Applications – Diseases

- DTI shown useful in studying:
 - Brain maturation in children
 - multiple sclerosis
 - Leukoencephalopathy
 - Wallerian degeneration
 - Alzheimer's disease
 - Schizophrenia
 - Dyslexia
 - Brain Tumors
 - AIDS
 - Trauma
 - hypertensive hydrocephalus
 - Leukoaraiosis
 - Cerebral Auto- somal Dominant Arteriopathy with Subcortical Infarcts and Leucoenuphalopathy (CADASIL)
 - Migraine
 - Spinal cord studies
 - AIDS
 - Eclampsia

Thanks very much!

Paper:

Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. *Journal of magnetic resonance imaging*, 13(4), 534-546.

link