Section2: Sklearn

SCIKIT LEARN

Data Cleaning

Data cleaning is the process of fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within a dataset. When combining multiple data sources, there are many opportunities for data to be duplicated or mislabeled.

1	Α	В	С	D	Е	F	G	Н	I	J
	V1	V2	V3	V4	V5	V6	V7	V8	V9	Class
	87	92	89	32	97	59	91	32	5	'2'
	61	4	0	77	56	47	99	84	86	'2'
	91	28	20	42	18	0	105	39	62	'2'
	71	39	87	18	88	75	40	16	98	'2'
	68	98	82	101	59	48	98	1	88	'2'
	72		44	41		39	85	41	90	'2'
	51	76	17	5		20	66	96	72	'2'
	48	81	70	62	30	32	71	4	74	'2'
)	81	103	80	14	5	85	8	15	29	'2'
	77	104	84	11	94	67	4	13	6	'2'
	75	61	92	39	41	81	94	37	100	'2'
	85	5			84	86	104	26	8	'2'
ŀ	80	102	19	65	82	76	6		102	'2'
,		50	83	12	99	78	103	14	94	'2'
,	84	6	57	38	4	63	92	36	104	'2'
,	73	72	73	36	1	79	100	35	96	'2'
	44	101	5	8	33	45	80	97	71	'2'
	0	95		73	49		87	3	82	'2'
)	59	3	90	33	92	46	64	33	93	'2'
	53	100	96	20	90	56	69	22	92	'2'

Data cleaning: strategies

- 1. mean
- 2. median
- 3. most_frequent
- 4. constant

Imputation strategy: mean

```
from sklearn.impute import SimpleImputer data = \begin{bmatrix} 1_L 2_L 0 \end{bmatrix}, \begin{bmatrix} 3_L 0_L 1 \end{bmatrix}, \begin{bmatrix} 5_L 0_L 0 \end{bmatrix}, \begin{bmatrix} 0_L 4_L 6 \end{bmatrix}, \begin{bmatrix} 5_L 0_L 0 \end{bmatrix}, \begin{bmatrix} 4_L 5_L 5 \end{bmatrix}
```

•If "mean", then replace missing values using the mean along each column. Can only be used with numeric data.

```
imp = SimpleImputer(missing_values=0, strategy='mean')
new_data = imp.fit(data).transform(data)
print(new_data)
```

Imputation strategy: median

```
from sklearn.impute import SimpleImputer

data = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix}, \\ \begin{bmatrix} 6 & 0 & 0 \\ 0 & 4 & 6 \end{bmatrix}, \\ \begin{bmatrix} 5 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \begin{bmatrix} 5 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \begin{bmatrix} 4 & 5 & 5 \\ 1 & 0 & 0 \end{bmatrix}, \\ \begin{bmatrix} 4 & 5 & 5 \\ 1 & 0 & 0 \end{bmatrix}, \\ \begin{bmatrix} 4 & 5 & 5 \\ 1 & 0 & 0 \end{bmatrix}
```

•If "median", then replace missing values using the median along each column. Can only with numeric data.

```
imp = SimpleImputer(missing_values=0, strategy='median')
new_data = imp.fit(data).transform(data)
print(new_data)
```

Imputation strategy: most_frequent

from sklearn.impute import SimpleImputer

print(new_data)

```
data = [[1,2,0],
         [5,0,1],
         [6,0,0],
                                              •If "most_frequent", then replace missing using the most
         [0,2,6],
                                              frequent value along each column. Can be used with
         [5,0,0],
                                              strings or numeric data. If there is more than one such
         [5,5,6]]
                                              value, only the smallest is returned.
imp = SimpleImputer(missing_values=0, strategy='most_frequent')
new_data = imp.fit(data).transform(data)
```

Imputation strategy: constant

```
from sklearn.impute import SimpleImputer
data = [[1,2,0],
          [5,0,1],
           [6,0,0],
           [0,2,6],
           [5,0,0],
                                      If "constant", then replace missing values with fill_value.
           [5,5,6]]
                                      Can be used with strings or numeric data, default for
                                      numeric data is fill_value=0
 imp = SimpleImputer(missing_values=0, strategy='constant')
 new_data = imp.fit(data).transform(data)
 print(new_data)
```

Imputation strategy: constant

```
import numpy as np
from sklearn.impute import SimpleImputer
data=[[1,2,np.nan],
      [3, np.nan, 1],
      [5, np.nan, np.nan],
      [np.nan, 1, 6],
      [5,0,0],
      [4,5,5]]
imp=SimpleImputer(missing_values=np.nan, strategy='constant')
newdata=imp.fit(data).transform(data)
print(newdata)
```

Imputation strategy: constant

```
from sklearn.impute import SimpleImputer
data=[[1,2,0],
      [3,0,1],
      [5,0,0],
      [0,1,6],
      [5,0,0],
      [4,5,5]
imp=SimpleImputer(missing_values=0,strategy='constant',fill_value=8)
newdata=imp.fit(data).transform(data)
print(newdata)
```

Data Cleaning: load_breast_cancer

```
# Import Libraries
from sklearn.datasets import load_breast_cancer
 from sklearn.impute import SimpleImputer
import numpy as np
 BreastData = load_breast_cancer()
 #X Data
 X = BreastData.data
 #y Data
 y = BreastData.target
Imp = SimpleImputer(missing_values = np.nan, strategy = 'mean')
 X = Imp.fit(X).transform(X)
 #X Data
 peint('X Data is \n', X[:10])
```

4	Α	В	C	D	E	E	G	Н	1	J K	L	М
1	code_module	code_presentation	id_student	gender	region	highest_education	imd_band	age_band	num_of_p	studied_credits disability	y final_result	
2	AAA	2013J	11391	M	East Anglian Region	HE Qualification	90-100%	55<=	0	240 N	Pass	
3	AAA	2013J	28400	F	Scotland	HE Qualification	20-30%	35-55	0	60 N	Pass	
1	AAA	2013J	30268	F	North Western Region	A Level or Equivalent	30-40%	35-55	0	60 Y	Withdrawn	
5	AAA	2013J	31604	F	South East Region	A Level or Equivalent	50-60%	35-55	0	60 N	Pass	
5	AAA	2013J	32885	F	West Midlands Region	Lower Than A Level	50-60%	0-35	0	60 N	Pass	
7	AAA	2013J	38053	M	Wales	A Level or Equivalent	80-90%	35-55	0	60 N	Pass	
3	AAA	2013J	45462	M	Scotland	HE Qualification	30-40%	0-35	0	60 N	Pass	
)	AAA	2013J	45642	F	North Western Region	A Level or Equivalent	90-100%	0-35	0	120 N	Pass	
0	AAA	2013J	52130	F	East Anglian Region	A Level or Equivalent	70-80%	0-35	0	90 N	Pass	
1	AAA	2013J	53025	M	North Region	Post Graduate Qualification	?	55<=	0	60 N	Pass	
2	AAA	2013J	57506	M	South Region	Lower Than A Level	70-80%	35-55	0	60 N	Pass	
3	AAA	2013J	58873	F	East Anglian Region	A Level or Equivalent	20-30%	0-35	0	60 N	Pass 🗘	
4	AAA	2013J	59185	M	East Anglian Region	Lower Than A Level	60-70%	35-55	0	60 N	Pass	
5	AAA	2013J	62155	F	North Western Region	HE Qualification	50-60%	0-35	0	60 N	Pass	
5	AAA	2013J	63400	M	Scotland	Lower Than A Level	40-50%	35-55	0	60 N	Pass	
7	AAA	2013J	65002	F	East Anglian Region	A Level or Equivalent	70-80%	0-35	0	60 N	Withdrawn	
3	AAA	2013J	70464	F	West Midlands Region	A Level or Equivalent	60-70%	35-55	0	60 N	Pass	
9	AAA	2013J	71361	M	Ireland	HE Qualification	?	35-55	0	60 N	Pass	
0	AAA	2013J	74372	M	East Anglian Region	A Level or Equivalent	20-Oct	35-55	0	150 N	Fail	
1	AAA	2013J	75091	M	South West Region	A Level or Equivalent	30-40%	35-55	0	60 N	Pass	

▶ Feature selection is the process of reducing the number of input variables when developing a predictive model. It is desirable to reduce the number of input variables to both reduce the computational cost of modeling and, in some cases, to improve the performance of the model

```
import pandas as pd
dataset= pd.read_excel('australian.xls') #install xlrd
newdata=dataset.drop("A1",axis=1)
#main data
print(dataset[:10])
print(newdata[:10])
```

```
import pandas as pd
dataset=pd.read_excel('australian.xls')
newdataset=dataset.drop(["A1","A5"],axis=1) #drop two columns A1 and A5
# axis takes only 0 or 1
# axis=1:Drop columns, and axis=0: Drop rows
#newdataset=dataset.drop(1,axis=0) #drop row number 1
print(dataset[:10])
print(newdataset[:10])
```

Feature Selection strategies

- 1) feature_selection.SelectPercentile
- 2) feature_selection.GenericUnivariateSelect
- 3) feature_selection.SelectKBest
- 4) feature_selection.SelectFromModel

SelectPercentile: load_breast_cancer

```
from sklearn.datasets import load_breast_cancer
from sklearn.feature_selection import SelectPercentile
                                                         selects a percentile of the original features
from sklearn.feature_selection import chi2 , f_classif
BreastData = load_breast_cancer()
#X Data
X = BreastData.data
print('X Data is \n', X[:10])
print('X shape is '__, X.shape)
print('X Features are \n', BreastData.feature_names)
#y Data
Y = BreastData.target
print('y Data is \n', Y[:10])
print('y shape is '_, Y.shape)
print('y Columns are \n' , BreastData.target_names)
#Feature Selection by Percentile
FeatureSelection = SelectPercentile(score_func = chi2, percentile=20) # score_func can = f_classif
X = FeatureSelection.fit_transform(X, Y)
#showing X Dimension
print('X Shape is '_, X)
print('X Shape is ' , X.shape)
print('Selected Features are : '_, FeatureSelection.get_support())
```

SelectPercentile: load_digits

```
#Import Libraries
from sklearn.datasets import load_digits
from sklearn.feature_selection import SelectPercentile
from sklearn.feature_selection import chi2 , f_classif
DigitsData = load_digits()
#X Data
X = DigitsData.data
#y Data
y = DigitsData.target
print('X shape is ' , X.shape)
FeatureSelection = SelectPercentile(score_func = chi2, percentile=10) # score_func can = f_classif
X = FeatureSelection.fit_transform(X, y)
#showing X Dimension
print('X Shape is ' , X.shape)
print('Selected Features are : ' , FeatureSelection.get_support())
```

GenericUnivariateSelect: load_breast_cancer

```
from sklearn.datasets import load_breast_cancer
from sklearn.feature_selection import GenericUnivariateSelect, chi2
BreastData = load_breast_cancer()
X = BreastData.data
y = BreastData.target
print(X.shape)
transformer = GenericUnivariateSelect(score_func=chi2, mode='k_best', param=5)
X = transformer.fit_transform(X, y)
print(X.shape)
print(transformer.get_support())
print(X)
```

SelectKBest: load_breast_cancer

```
from sklearn.datasets import load_breast_cancer
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2_, f_classif
BreastData = load_breast_cancer()
X = BreastData.data
y = BreastData.target
print(X.shape)
FeatureSelection = SelectKBest(score_func= chi2 ,k=3) # score_func can = f_classif
X = FeatureSelection.fit_transform(X, y)
#showing X Dimension
print('X Shape is ' , X.shape)
print('Selected Features are : '_, FeatureSelection.get_support())
```

SelectFromModel: load_breast_cancer Linear Regression

```
from sklearn.datasets import load_breast_cancer
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LinearRegression
BreastData = load_breast_cancer()
X = BreastData.data
y = BreastData.target
thismodel = LinearRegression()
FeatureSelection = SelectFromModel(estimator = thismodel, max_features = None)
X = FeatureSelection.fit_transform(X, y)
print("showing X Dimension")
print('X Shape is '_, X.shape)
print('Selected Features are : '_, FeatureSelection.get_support())
```

SelectFromModel: load_breast_cancer Random Forest

```
from sklearn.datasets import load_breast_cancer
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier
BreastData = load_breast_cancer()
X = BreastData.data
y = BreastData.target
thismodel = RandomForestClassifier(n_estimators = 20)
FeatureSelection = SelectFromModel(estimator = thismodel, max_features = None)
X = FeatureSelection.fit_transform(X, y)
print("showing X Dimension")
print('X Shape is ' , X.shape)
print('Selected Features are : '__, FeatureSelection.get_support())
```