

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

CIRCUITOS ACOPLADOS MAGNETICAMENTE

Relatório da Disciplina de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Agosto / 2019

Sumário

1	Objetivos	2
2	Introdução teórica	2
3	Preparação	2
	3.1 Materiais e ferramentas	2
	3.2 Montagem	3
4	Análise sobre segurança	3
5	Cálculos, análise dos resultados e questões	4
6	Simulação computacional	4
7	Conclusões	4

1 Objetivos

Verificar experimentalmente os conceitos teóricos sobre acoplamentos magnéticos, obtenção dos valores das auto-indutâncias e da indutância mútua, e comparar os resultados com os valores obtidos utilizando uma análise teórica.

2 Introdução teórica

Nos circuitos em que a condução de energia elétrica ocorre por meios físicos, diz-se que são circuitos condutivos. Entretanto, ainda é possível que dois circuitos com ou sem contato se afetem por meio do campo magnético gerado por um deles, esses são chamados circuitos magneticamente acoplados [1].

O *transformador* é baseado nesse princípio. Possui quatro terminais e consiste em dois indutores que são colocados com certa proximidade um do outro, logo comparttilham o mesmo fluxo magnético e, portanto, as bobinas indutoras estão acopladas magneticamente.

É vasta a aplicabilidade desse equipamento, por exemplo, em sistemas de comunicação eles são usados para casamento de impedâncias entre fontes e cargas ou linhas de transmissão. Em sistemas de potências, transformadores são usados para atenuar ou amplificar os sinais de tensão. De fato, transformadores são utilizados em eliminadores de pilha e recarregadores de baterias, que podem ser ligados diretamente em tomadas residenciais [2].

3 Preparação

3.1 Materiais e ferramentas

1 - Fonte

Alimentará todo o circuito.

2 - Conjunto de bobinas

Cada bobina possui uma resistência, sendo R_1 para a Bobina 1 e R_2 para a Bobina 2. Considere $R_1 \le R_2$.

3 - Conectores

Foram utilizadas pontas de provas para a verificação das grandezas nos multímetros. Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.

4 - Multímetro

Utilizado para medir as tensões elétricas entre os pontos das bobinas especificados no experimento.

5 - Miliamperímetro

A escala mais precisa permite melhor regulagem da corrente desejada.

6 - Varivolt

O equipamento permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.

3.2 Montagem

1) Resistências das bobinas

Para o conjunto de bobinas fornecido, foi medido a resistência da bobina 1 (600 esp.) e a resistência da bobina 2 (1200 esp.) e obteve-se:

$$R_1 = 2,6$$

e

$$R_2 = 7,4$$

2) Determinando a polaridade das bobinas

Efetue a montagem da Figura 1, aplicando uma corrente de 50 mA no miliamperímetro, anote a tensão V1 e marque a polaridade da bobina 1, indicando-a por um ponto ".", no terminal em que a fem1 (terminal ligado ao positivo da fonte CA) é positiva. Na bobina 2 marque a polaridade (o ponto) no terminal ligado ao voltímetro se a tensão V' for menor que a tensão V1, e marque o ponto no terminal debaixo se V' for maior que V1 (terminal em que a fem induzida é positiva). Anote o esquema e o ponto no caderno.

Figura 1: Marcação de polaridade

4 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho,

que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [3]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro dos equipamentos.

- 5 Cálculos, análise dos resultados e questões
- 6 Simulação computacional
- 7 Conclusões

Referências

- [1] P. H. Rezende, "Circuitos Magneticamente Acoplados", UFU, 2018. Disponível em: https://www.moodle.ufu.br/pluginfile.php/702496/mod_resource/content/3/Cap.%20I_Acoplamento.pdf. Acesso em: ago. 2019.
- [2] J. D. Irwin, "Análise de Circuitos Em Engenharia", Pearson, 4^a Ed., 2000.
- [3] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.