

LEGAL NOTICES AND DISCLAIMERS

- Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.
- No computer system can be absolutely secure.
- Software and workloads used in performance tests may have been optimized for performance only
 on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
 specific computer systems, components, software, operations and functions. Any change to any of
 those factors may cause the results to vary. You should consult other information and performance
 tests to assist you in fully evaluating your contemplated purchases, including the performance of
 that product when combined with other products. For more complete information visit
 http://www.intel.com/performance.
- Intel, the Intel logo, Xeon, and others are trademarks of Intel Corporation in the U.S. and/or other
 countries. *Other names and brands may be claimed as the property of others.
- © 2017 Intel Corporation.

VIRTUALIZATION OF NETWORK FOR SDN/NFV - MULTIPLE DEPLOYMENT MODELS

CONTAINERS IN NFV ECOSYSTEM

VM

Containers

VM Container(s) **Coexistence and Unified Orchestration** VM Containers

VNFs

VEPC

VNAT

VIMS

vRouter

vGGSN

vFirewall

vCPE

VRNC

vHLR

vSGSN

VMME

VIDS

NFVi- Network

NFV Orchestration

KUBERNETES INTRODUCTION

Open-source Platform for containerised applications

Automates Deployments

Manages application lifecycle and Scaling

Originated from Google and contributed to Cloud Native Computing Foundation (CNCF)

BUILDING BLOCKS OF KUBERNETES K8s MASTER NODE 2 Pod Spec API-SERVER SCHEDULER CONTROLLER MANAGER

KUBERNETES NETWORKING VIA CNI

Management

Container Orchestration Engines

Container Runtime

Containers Node -Environment

Container Network Interface

Container Network Interface Plugins

KUBERNETES NETWORKING VIA CNI

Open Source Projects

INDUSTRY CHALLENGES

SR-IOV CNI

MULTUS

Node Feature Discovery

CPU Manager for Kubernetes

MULTIPLE NETWORK INTERFACES

PROBLEM

Lack of multi-network support in k8s

No network traffic separation for management, control and data planes.

No ability to Implement different network SLAs

SOLUTION

Introducing MULTUS as a CNI plugin to support multi-homed pods in k8s

Working on Multiple Network proposal in Kubernetes Network SIG

REFERENCE

https://github.com/Intel-Corp/multus-cni Multus CNI referenced in the following:

Containers in NFV, March 2017 Peter Willis, BT
Enter Multus CNI, Feb. 2017 Doug Smith, RedHat
A Hacker's Guide to Kubernetes Networking, Feb 2017, Yaron Haviv, Iguazio

SRIOV CNI PLUGIN

PROBLEM

Lack of support for physical platform resource isolation

No guaranteed network IO performance No support for Data Plane Networking

SOLUTION

Allows SRIOV support in Kubernetes via a CNI plugin Intel contributor and maintainer of SR-IOV CNI plugin Supports two modes of operation:

SR-IOV: SR-IOV VFs are allocated to pod network namespace
DPDK: SR-IOV VFs are bounded to DPDK drivers in the userspace

REFERENCE

https://github.com/Intel-Corp/sriov-cni

Kubernetes Pod

Container

VNF Application

DPDK

Kernel

uio_pci_generic/igb_uio/vfio-pci

VF VF VF

SR-IOV Enabled Network Interface

MULTI HOMED POD WITH MULTUS AND DPDK-SRIOV CNI PLUGIN

MULTUS & DPDK CNI PLUGIN CONFIGURATION FILE DETAILS

Multus CNI with DPDK-SRIOV CNI

```
"name": "dpdk-demo-network",
"type": "multus",
"delegates": [
      "type": "sriov",
      "if0": "net2",
      "ifOname": "southO",
      "ipam": {
           "type": "host-local",
           "subnet": "10.56.217.0/24",
      "type": "sriov",
      "if0": "net3",
      "ifOname": "northO",
      "dpdk": {
         "kernel driver":"ixgbevf",
         "dpdk driver":"igb uio",
         "dpdk tool":".../dpdk/tools/dpdk-devbind.py"
      "type": "flannel",
      "masterplugin": true,
      "delegate": {
           "isDefaultGateway": true
```

In the server backend

*Source: https://docs.oracle.com/cd/E19076-01/sparc.t2k/819-7988-10/rack_install.html

PHYSICAL TOPOLOGY FROM MULTUS CNI CONF

NODE FEATURE DISCOVERY

FEATURE LABELS

NODE SELECTION

ADVANCED NETWORKING SCHEDULING

INTEL NFV EXPERIENCE KITS ADDRESSING NFV USES IN KUBERNETES

CALL TO ACTION

- Talk to us about your NFV use cases in K8s
- Join K8s Network SIG and collaborate with us on Multi-network proposal
- Join K8s Resource Management SIG for performance sensitive NFV use cases
- Contribute and provide feedback for Intel Multus & SR-IOV CNI plugin

AMAZING POWERED BY INTEL