

Politechnika Wrocławska

Planowanie zapotrzebowania mocy obiektów budowlanych

Mirosław Kobusiński 30.11.2018

Obliczenia mocy zapotrzebowanej

Obliczenia mocy zapotrzebowanej

- moc zapotrzebowana
- moc szczytowa,
- moc obliczeniowa

obliczeniowa moc szczytowa

Moc zapotrzebowana

Moc zapotrzebowana -

- najwyższa wartość mocy pobieranej w warunkach obciążenia długotrwałego
- przyjęta zwykle do celów projektowania instalacji

Moc zapotrzebowana

Moc zapotrzebowana -

 Wartość mocy zapotrzebowanej otrzymuje się przy przyjęciu określonych wartości współczynników jednoczesności załączania poszczególnych odbiorów energii elektrycznej.

Moc zapotrzebowania zakładu przemysłowego

 przewidywane obciążenie szczytowe, występujące w ciągu roku, po osiągnięciu przewidywanej wydajności procesów produkcyjnych.

Moc szczytowa

Moc szczytowa -

- największe średnie obciążenie
 zmierzone lub obliczone w określonym przedziale
 czasu (np. w ciągu dnia, tygodnia, miesiąca, roku).
 Najczęściej okres ten obejmuje jeden rok.
- Wartość mocy szczytowej decyduje o nastawach zabezpieczeń.

Moc obliczeniowa

Moc obliczeniowa -

- moc, której wartość z pewnym arbitralnie ustalonym prawdopodobieństwem (zwykle na poziomie 0,95) w badanym okresie czasu nie będzie przekroczona
- Wartość mocy obliczeniowej stanowi podstawę doboru urządzeń elektroenergetycznych pod kątem nagrzewania prądem roboczym.

Moc obliczeniowa

Moc obliczeniowa -

 Na etapie projektowania zwykle moc obliczeniową przyjmuje się jako równą mocy szczytowej oraz zakłada się określoną stałą wartość współczynnika mocy.

Parametry obliczeniowe zapotrzebowania mocy

- obliczeniowa moc szczytowa
- obliczeniowy prąd szczytowy
- obliczeniowy współczynnik mocy
- obliczeniowa moc szczytowa pozorna

Obliczeniowy prąd szczytowy

$$I_{os} = \frac{P_{os}}{\sqrt{3} U \cdot \cos \phi_{os}}$$

Obliczeniowe moce szczytowe

$$Q_{os} = P_{os} \cdot tg \; \phi_{os}$$

$$S_{os} = \sqrt{P_{os}^2 + Q_{os}^2}$$

Planowanie mocy zapotrzebowanej budynków mieszkalnych

Wyznaczanie mocy szczytowej w budynkach mieszkalnych

N SEP-E-002:2003

Instalacje elektryczne w obiektach budowlanych. Instalacje elektryczne w obiektach mieszkalnych.

Podstawy planowania

Moc zapotrzebowana mieszkania (domu jednorodzinnego)

Moc zapotrzebowana (P_d) dla pojedynczego mieszkania lub domku jednorodzinnego o podstawowym standardzie wyposażenia (wartości minimalne):

- 12,5 kW dla pojedynczego mieszkania i domków jednorodzinnych posiadających zaopatrzenie w ciepłą wodę z zewnętrznej centralnej sieci grzewczej.
- 30 kW dla pojedynczego mieszkania i domków jednorodzinnych nie posiadających zaopatrzenia w ciepłą wodę z zewnętrznej centralnej sieci.
- 7 kW w przypadku instalacji modernizowanych.

Moc zapotrzebowana mieszkania

 Jeżeli w budynku nie będzie instalacji siłowej (nie będą instalowane kuchenki elektryczne) wówczas moc zapotrzebowana jednego powinna być wyznaczona z zależności (wytyczne COBR Elektromontaż):

$$P_{M1} = P_{\text{max}} + M \cdot P_1$$

gdzie:

P_{max} – moc największego odbiornika w mieszkaniu (najczęściej pralka 2,5 kW), w [kW] ,

M − liczba osób w mieszkaniu,

 P_1 – moc zapotrzebowana na jedną osobę (przyjmowana jako 1 kW)

 Generalnie jest to wariant oszczędnościowy, nie perspektywiczny i stosunkowo mało wiarygodny przez powiązanie z planowaną ilością mieszkańców.

Mocy zapotrzebowana mieszkania (domu jednorodzinnego)

- Zasady powyższe nie obejmują elektrycznego ogrzewania pomieszczeń.
- W przypadku stosowania elektrycznego ogrzewania pomieszczeń należy moc zapotrzebowaną z tego wynikającą dodatkowo uwzględnić.

Moc zapotrzebowana domu jednorodzinnego

Moc zapotrzebowana dla budynku jednorodzinnego jest równa mocy 30 kW, za wyjątkiem sytuacji, gdy:

- właściciel lub inwestor budynku określił inne założenia dotyczące mocy zapotrzebowanej,
- budynek jednorodzinny jest wyposażony w dwie lub większą liczbę kuchni użytkowanych niezależnie od siebie lub w dwie i więcej łazienek wyposażonych w natryski lub wanny kąpielowe z elektrycznym podgrzewaniem wody.
- W przypadku, gdy istnieją mieszkania przeznaczone do wynajmu zaleca się, aby w takiej sytuacji traktować budynek jednorodzinny jako wielorodzinny z liczbą mieszkań ustaloną odpowiednio do liczby kuchni i łazienek.
- Ustalenia te powinny być dokonywane w uzgodnieniu z właścicielem lub inwestorem budynku.

Moc zapotrzebowana instalacji modernizowanych

- Przyjęcie wartości mocy zapotrzebowanej 7 kV·A na mieszkanie dopuszczone jest w przypadku instalacji modernizowanych, w budynkach wyposażonych w instalację gazową i przy założeniu wariantu zubożonego wyposażenia.
- Przypadki takie mogą dotyczyć jedynie sytuacji, w których w przewidywanym okresie użytkowania instalacji, nie planuje się instalowania kuchni elektrycznych lub elektrycznych przepływowych podgrzewaczy wody.

Moc zapotrzebowana wlz i budynków mieszkalnych

Moc zapotrzebowana (obliczeniowa moc szczytowa)
dla wewnętrznych linii zasilających lub dla budynków
powinna być ustalana w oparciu o liczbę mieszkań
zasilanych z danej wewnętrznej linii zasilającej lub
danego budynku i współczynnika jednoczesności
obciążenia.

Wyznaczanie mocy szczytowej wlz

Wartości obliczeniowych mocy szczytowych i prądy znamionowe wkładek bezpiecznikowych I_{NF} wewnętrznych linii zasilających budynków o liczbie mieszkań n bez ogrzewania elektrycznego:

krzywa A – dla mieszkań nie posiadających zaopatrzenia w ciepłą wodę z zewnętrznej, centralnej sieci grzewczej, krzywa B – dla mieszkań posiadających zaopatrzenie w ciepłą wodę z zewnętrznej, centralnej sieci grzewczej, krzywa C – wariant opcjonalny dla instalacji modernizowanych

*) – zalecany minimalny prąd znamionowy wkładki bezpiecznikowej zabezpieczenia przedlicznikowego i wewnętrznej linii zasilającej, ze względu na selektywność działania zabezpieczeń nadprądowych.

Wyznaczanie mocy szczytowej wlz

Wartości mocy zapotrzebowanej dla pojedynczego mieszkania lub budynku jednorodzinnego oraz wartości obliczeniowych mocy szczytowych wewnętrznych linii zasilających i budynków.

Moc zapotrzebowana (obliczeniowa moc szczytowa) wg N SEP-E-002

	Zapotrzebowanie mocy WLZ [kVA] dla mieszkań:					
	nie posiadających		posiadających zaopatrzenie		modernizowanych wg	
Liczba	zaopatr	zenia w ciepłą			wariantu zubożonego	
mieszkań		z zewnętrznej,	zewnętrznej, centralnej		(opcjonalnego)	
w	centralne	sieci grzewczej	sieci grzewczej			
budynku	wartość	współczynnik	wartość	współczynnik	wartość	współczynnik
	mocy	jednoczesności	mocy	jednoczesności	mocy	jednoczesności
1	30	1	12,5	1	7	1
2	44	0,733	22	0,880	13	0,929
3	55	0,611	28	0,747	17	0,810
4	64	0,533	33	0,660	20	0,714
5	72	0,480	37	0,592	23	0,657
6	80	0,444	41	0,547	25	0,595
7	86	0,409	44	0,503	28	0,571
8	91	0,379	47	0,470	30	0,536
9	97	0,359	49	0,436	32	0,508
10	101	0,337	51	0,408	34	0,486
12	110	0,306	55	0,367	38	0,452
14	116	0,276	59	0,337	41	0,418
16	123	0,256	62	0,310	44	0,393
18	128	0,237	66	0,293	47	0,373
20	133	0,222	69	0,276	50	0,357
25	144	0,192	74	0,237	55	0,314
30	153	0,170	80	0,213	61	0,290
35	160	0,152	84	0,192	65	0,265
40	165	0,138	87	0,174	70	0,250
45	170	0,126	91	0,162	74	0,235
50	175	0,117	94	0,150	77	0,220
60	183	0,102	99	0,132	82	0,195
70	189	0,090	102	0,117	86	0,176
80	195	0,081	104	0,104	90	0,161
90	200	0,074	106	0,094	93	0,148
100	205	0,068	108	0,086	96	0,137
		,		,		,

Wyznaczanie mocy szczytowej wlz

	Zaopatrzenie mocy WLZ [kW] dla mieszkań :					
Liczba mieszkań w budynku	ciepłą wodę	ch zaopatrzenia w z zewnętrznej ieci grzewczej	posiadających zaopatrzenia w ciepłą wodę z zewnętrznej centralnej sieci grzewczej			
	Wartość mocy	Współczynnik jednoczesności k _{j1}	Wartość mocy	Współczynnik jednoczesności k _{j1}		
1	30	1	12,5	1		
2	44	0,733	22	0,880		
3	55	0,611	28	0,747		
4	64	0,533	33	0,660		
5	72	0,480	37	0,592		
6	80	0,444	41	0,547		
7	86	0,409	44	0,503		
8	91	0,379	47	0,470		
9	97	0,359	49	0,436		
10	101	0,337	51	0,408		

Moc szczytowa wlz budynków bez ogrzewania elektrycznego

Obliczeniową moc szczytową (moc zapotrzebowaną) $P_{\text{\tiny WLZ}}$ wewnętrznej linii zasilającej dla (n) mieszkań należy według normy (N SEP-E-002) obliczyć z zależności:

$$P_{WLZ} = k_{j1} \cdot n \cdot P_{M1}$$

gdzie:

 k_{j1} – współczynnik jednoczesności określony wg tabeli dla n mieszkań P_{M1} – moc określona dla pojedynczego mieszkania, odpowiednio 12,5kW lub 30kW

Moc szczytowa budynków bez ogrzewania elektrycznego

Obliczeniowa moc szczytowa dla linii zasilającej cały budynek, z liczbą (*n*) mieszkań wyraża się zależnością :

$$P_Z = k_{j1} \cdot n \cdot P_{M1} + P_{OA} + P_{windy}$$

gdzie:

 P_{OA} – moc zapotrzebowana odbiorów administracyjnych w budynku, ustalona w uzgodnieniu z inwestorem (administratorem) budynku; przy braku danych zazwyczaj przyjmuje się P_{OA} = 0,5 kW

P_{windy} – (około 20kW) moc przeznaczona na zasilenie windy w budynku (budynki powyżej 4 kondygnacji), jeśli budynek posiada więcej niż jedną windę należy uwzględnić współczynnik jednoczesności dla wind.

Moc szczytowa budynków z ogrzewaniem elektrycznym

Obliczeniową moc zapotrzebowaną dla wlz zasilającej budynek z liczbą (*n*) mieszkań z ogrzewaniem elektrycznym należy obliczyć z zależności:

$$P_Z' = P_Z + k_j' \cdot \sum_{i=1}^n P_{Zi}$$

gdzie:

 P_z – moc zapotrzebowana wlz bez uwzględniania ogrzewania elektrycznego,

 k_{j}' – współczynnik jednoczesności obciążenia ogrzewania w (\mathbf{n}) mieszkaniach,

 \vec{P}_{zi} – moc zapotrzebowana na ogrzewanie przez i – te mieszkanie

Moc zapotrzebowana ogrzewania elektrycznego

Orientacyjny sposób wyznaczenia mocy zapotrzebowanej przez ogrzewanie elektryczne

Rodzaj pomieszczenia	Moc jednostkowa, [W/m²]		
Jadalnia, salon, pokój dzienny	100 – 140		
Pokój pracy, sypialnia	100 – 150		
Kuchnia	70 – 110		
Hol	50 – 70		
Łazienka	100 – 150		
Sauna	120 – 180		
Pralnia w piwnicy	30 – 50		
Garaż w przyziemiu	30 – 50		

Moc szczytowa budynków z ogrzewaniem elektrycznym

- 1 ogrzewanie akumulacyjne,
- 2 ogrzewanie bezpośrednie,
- 3 odbiorniki ogólnego przeznaczenia,
- 4 przepływowe ogrzewacze wody

Wartości współczynników jednoczesności k_j dla wybranych grup odbiorników w zależności od ilości (n) mieszkań (na podstawie przepisów niemieckich)

Moc szczytowa budynków z ogrzewaniem elektrycznym

Dokładne określenie mocy zapotrzebowanej do celów ogrzewania pomieszczeń wymaga szczegółowych obliczeń, które należy wykonać wspólnie z konstruktorem budowlanym lub projektantem instalacji sanitarnych.

Wyznaczanie mocy szczytowej budynku

Zadanie:

- Budynek o 3 kondygnacjach posiada 12 mieszkań oraz wejście z jednej klatki schodowej.
- Budynek posiada zaopatrzenie w ciepłą wodę z zewnętrznej centralnej sieci grzewczej oraz nie posiada ogrzewania elektrycznego.
- Należy wyznaczyć P_{WLZ} oraz P_{Budynku}

Wyznaczanie mocy szczytowej budynków

Obliczenia wariant I:

Budynek będzie posiadał 1 wewnętrzną linię zasilającą (wlz).

Moc jednego mieszkania zgodnie z normą wynosi :

$$P_{M1} = 12,5kW$$

Obliczeniowa moc szczytowa wewnętrznej linii zasilającej wyniesie:

$$P_{WLZ} = k_{i1} \ n \ P_{M1} = 0.367 \cdot 12 \cdot 12.5 \ kW = 55.05 \ kW$$

obliczeniowa moc szczytowa dla linii zasilającej cały budynek wyniesie:

$$P_{budynku} = k_{j1} m P_{M1} + P_{OA} = 0.367 \cdot 12 \cdot 12.5 kW + 0.5 kW = 55.55 kW$$

Wyznaczanie mocy szczytowej budynków

Obliczenia wariant II:

Budynek będzie posiadał 2 wewnętrzne linie zasilające, każda po 6 mieszkań.

Moc jednego mieszkania zgodnie z normą wynosi :

$$P_{M1} = 12,5kW$$

 Obliczeniowa moc szczytowa każdej z wewnętrznych linii zasilających wyniesie:

$$P_{WLZ1,2} = k_{i1} n P_{M1} = 0.547 \cdot 6.12.5 kW = 41,025 kW$$

Obliczeniowa moc szczytowa dla linii zasilającej cały budynek wyniesie:

$$P_{budynku} = k_{j1} m P_{M1} + P_{OA} = 0.367 \cdot 12 \cdot 12.5 kW + 0.5 kW = 55.55 kW$$

Moc szczytowa grupy budynków

 Obliczeniowa moc szczytowa dla grupy (n) budynków powinna być wyznaczona z empirycznego wzoru:

$$P_Z = 0.95 \cdot k_j \cdot \sum_{i=1}^{n} P_{Zi}$$

gdzie:

 P_z – moc czynna zapotrzebowana przez obwód zasilania przyłączy

 W budynkach mieszkalnych należy przyjmować współczynnik mocy cosφ≈ 1

INSTALACJE ELEKTRYCZNE-

Planowanie mocy zapotrzebowanej budynków użyteczności publicznej

Moc szczytowa budynku użyteczności publicznej

Wariant I:

 Obliczeniowa moc szczytowa budynku użyteczności publicznej może być wyznaczona ze wzoru:

$$P_{ZBP} = \sum_{i=1}^{n} k_{ji} \cdot (P_i \cdot a_i)$$

gdzie:

 k_{ii} – współczynnik jednoczesności i – tej grupy odbiorników,

 P_i – moc zainstalowana i – tej grupy odbiorników,

 a_i – współczynnik wykorzystania mocy znamionowej urządzenia danej grupy odbiorników (dotyczy głównie odbiorów silnikowych)

Moc szczytowa budynku użyteczności publicznej

Przykładowe współczynniki jednoczesności $k_{\rm j}$ charakterystycznych grup odbiorników w budynkach biurowych i szpitalach

Rodzaj odbiorów	Budynki biurowe	Szpitale
Oświetlenie	0,85 ÷ 0,95	0,7 ÷ 0,9
Obwody gniazd wtyczkowych	0,1 ÷ 0,15	0,1 ÷ 0,2
Klimatyzacja / wentylacja	1	0,9 ÷ 1
Windy / schody ruchome	0,7 ÷ 1	0,5 ÷ 1
Obwody zasil. komputerów	0,8 ÷ 1	0,7 ÷ 0,9
Sale operacyjne, układy podtrzymania ż ycia	-	1

Wariant II:

 Obliczeniowa moc szczytowa budynku użyteczności publicznej może być wyznaczona ze wzoru:

$$P_{ZBP} = k_z \sum_{i=1}^n P_i$$

gdzie:

 k_z – współczynnik zapotrzebowania mocy dla budynku, $\sum P_i$ – suma mocy znamionowych wszystkich zainstalowanych odbiorników w budynku

Współczynniki zapotrzebowania mocy dla obiektów niemieszkalnych

Obiekt (pomieszczenie)	Współczynnik k _z
Szkoły, przedszkola	0,6 - 0,9
Hotele, pensjonaty	0.4 - 0.7
Lecznice, szpitale	0.7 - 0.8
Supermarkety, centra handlowe	0,7 - 0,9
Duże biura	0.4 - 0.8
Małe biura	0,5 - 0,7
Stolarnie	0,2 - 0,6
Rzeźnie	0.5 - 0.8
Piekarnie	0,4 - 0,8
Pralnie	0.5 - 0.9
Place budowy	0,2 - 0,4
Tunele (oświetlenie)	1,0

W przypadku braku danych szczegółowych można przyjmować szacunkowe moce jednostkowe:

- Budynki biurowe
- 40 VA/m² oświetlenie,
- 30 VA/m² odbiorniki siłowe, lecz bez urządzeń klimatyzacyjnych,
- 60 VA/m² odbiorniki siłowe z uwzględnieniem urządzeń klimatyzacyjnych
- Domy i obiekty handlowe
- 150 VA/m² powierzchni użytkowej

- Hotele
- 60 VA/m² lub
- 3 kVA/1- pokój hotelowy,
- Szpitale
- 2 kVA/1- łóżko szpitalne
- 10 kVA/1- łóżko na bloku operacyjnym
- Dane te mogą służyć tylko do szacunkowej oceny mocy zapotrzebowanej na początkowym etapie projektowania (koncepcja projektowa).

 Moc szczytowa bierna budynku użyteczności publicznej powinna być ustalona na podstawie danych katalogowych producentów urządzeń planowanych do zainstalowania w budynku wg zależności:

$$Q_i = tg\varphi_i \cdot P_i$$

$$Q_{ZBP} = k_z \cdot \sum_{i=1}^n Q_i$$

gdzie:

 $tg\phi_i$ – zastępczy współczynnik mocy i – tego odbiornika,

 Q_i – moc bierna i – tego odbiornika,

 Q_i – moc czynna i – tego odbiornika,

 k_z – współczynnik zapotrzebowania dla budynku

 Na podstawie obliczonej wartości mocy zapotrzebowanej czynnej i biernej należy wyznaczyć zastępczy współczynnik mocy tgφ, który jest powszechnie stosowany przez spółki dystrybucyjne:

$$tg\varphi = \frac{Q_{ZBP}}{P_{ZBP}}$$

 Jeżeli obliczony współczynnik tgφ jest większy od wartości dopuszczalnej tgφ_{dop,} określonej w umowie przyłączeniowej, (jeżeli nie został określony, to jego wartość wynosi 0,4) lub posiada wartość mniejszą od zera, należy wprowadzić układy kompensacji mocy biernej.

INSTALACJE ELEKTRYCZNE-

Planowanie mocy zapotrzebowanej budynków przemysłowych

Czynniki wpływające na zapotrzebowanie energii

- rodzaj i technologia produkcji oraz jej zmiany,
- rodzaj i jakość produkowanych wyrobów,
- rodzaj parku maszynowego i stopień jego dostosowania do technologii,
- rzeczywiste obciążenia i programy pracy poszczególnych odbiorników i grup odbiorników,
- kwalifikacje obsługi i dyscyplina pracy,
- organizacja produkcji,
- warunki geograficzne.

Wymagania względem metod obliczeniowych mocy szczytowej

- Prostota algorytmu obliczeń
- Uniwersalność metody w zakresie wyznaczania obciążeń dla różnych poziomów rozdziału energii (grupa odbiorników, oddział, zakład)
- Dostateczna dokładność uzyskiwanych wyników w zależności od ich przeznaczenia
- Łatwość wyznaczania adekwatnych wskaźników, na których opiera się metoda

Metody uproszczone:

- Nie uzależniają stosunku obliczeniowej mocy szczytowej do mocy zainstalowanej (mocy znamionowej) od liczby odbiorników.
- Mogą być stosowane jedynie wówczas, gdy obciążenie w ciągu rozpatrywanego okresu jest praktycznie stałe.
- Grupy odbiorników pracujących w sposób ciągły z niezmiennym obciążeniem lub bardzo liczne grupy odbiorników o dowolnych charakterystykach obciążenia, nie wykazujących wzajemnych korelacji (np. pompy, wentylatory o ruchu ciągłym).

Metody uproszczone:

- metoda mocy jednostkowej (średniówek powierzchniowych),
- metoda jednostkowego zużycia energii elektrycznej,

Metody uproszczone obliczania mocy zapotrzebowanej

Metoda mocy jednostkowej (średniówek powierzchniowych)

 Znajduje zastosowanie dla zakładów (oddziałów) o zamkniętym i ustalonym cyklu procesu technologicznego oraz jednorodnej i równomiernej produkcji

$$P_z = k_A \cdot A$$

gdzie:

 k_A - wskaźnik powierzchniowego zapotrzebowania na moc [W/m²],

A - powierzchnia [m²].

Metoda mocy jednostkowej - obciążenie powierzchniowe

Rodzaj wydziału lub obróbki	Obciążenie powierzchniowe
Przemysł maszynowy:	
 obróbka wiórowa 	60 – 250
 obróbka cieplna 	200 – 700
tłocznie	60 – 180
kuźnie	180 – 350
spawalnie	80 – 150
odlewnie	50 – 100
Przemysł elektroniczny	30 – 120
Wydziały obróbki drewna	40 – 60
Papiernie	100 – 150
Przemysł tekstylny	100 – 150
Huty szkła	40 – 80

Metoda jednostkowego zapotrzebowania na energię

Moc zapotrzebowana:

$$P_{S} = \frac{E_{r}}{T_{S}}$$

gdzie:

 E_r – roczne zużycie energii, T_S – roczny czas użytkowania mocy szczytowej.

$$E_r = E_j \cdot N_r$$

 E_j – jednostkowe zużycie energii, N_r – wielkość produkcji zakładu.

Roczne czasy użytkowania mocy szczytowej T_s w niektórych gałęziach przemysłu

Rodzaj zakładu	<i>T</i> _S [h]
Rodzaj zakładu Kopalnie węgla kamiennego Kopalnie rud metali kolorowych Huty żelaza Zakłady przemysłu metali kolorowych Zakłady budowy maszyn ciężkich Fabryki narzędzi i aparatów Warsztaty naprawcze samochodów Zakłady przemysłu chemicznego Cementownie Huty szkła Tartaki	7 _s [h] 4800 - 6700 5500 - 6500 5500 - 6800 5000 - 6000 3800 3500 - 4100 3400 - 4400 5800 - 6800 5600 - 6800 7100 4700
Fabryki mebli Zakłady przemysłu papierniczego Chłodnie Młyny Stacje pomp	4400 - 7100 5000 - 6500 4000 - 4500 4000 - 5000 7500

Wskaźniki zużycia energii elektrycznej na jednostkę produkcji

Rodzaj produktu	Jednostka produktu	Zużycie energii [kW·h]
 Przemysł materiałów budowlanych: Cement portlandzki Cegła czerwona Szkło okienne Wapno wypalane Beton 	tona 1000 szt. tona tona tona	130 15 – 100 50 – 96 8 – 10 5
Przemysł maszynowy: Silniki elektryczne Transformatory Samochody osobowe Wagony tramwajowe Traktory	kW kV·A szt. szt. szt.	12 – 18 2 – 5 700 – 1300 7000 5000 – 8000

Wskaźniki zużycia energii elektrycznej na jednostkę produkcji

Rodzaj produktu	Jednostka produktu	Zużycie energii [kW·h]
Przemysł chemiczny: Farby Kwas siarkowy Jedwab wiskozowy Włókna poliestrowe Wyroby gumowe	tona tona tona tona tona	150 - 225 160 - 190 7460 - 9500 1500 -2000 250 - 400
Przemysł tekstylny i lekki: Przędza bawełniana Tkanina bawełniana Materiały czesankowe Tkaniny techniczne Obuwie skórzane	tona tona tona 1000 m² 1000 par	80 1200 2500 750 450

Metody uniwersalne:

- Oparte są na podstawach teoretycznych z zakresu rachunku prawdopodobieństwa i statystyki matematycznej.
- Uzależniają stosunek mocy szczytowej do mocy zainstalowanej od liczby odbiorników i charakteru zróżnicowania ich mocy znamionowych.
- Metody służą do wyznaczania przewidywanych obciążeń
 powodowanych przez zbiory złożone z dowolnej liczby odbiorników,
 których charakterystyki obciążenia muszą być niezależne.

Metody uniwersalne:

- metoda wskaźnika zapotrzebowania mocy k_z ,
- metoda dwuczłonowa (Liwszyca),
- metoda zastępczej liczby odbiorników n_z ,
- metoda statystyczna.

Metoda wskaźnika zapotrzebowania mocy kz

- Wyznaczanie mocy szczytowych całych zakładów, poszczególnych oddziałów, stacji transformatorowych, czy poszczególnych rozdzielni zasilających grupy odbiorników o określonym przeznaczeniu i programie pracy.
- Metoda jest prosta w obliczeniach i ma zastosowanie przy ustalaniu koncepcji zasilania i założeń projektowych.
- Poprawne wyniki przy liczbie odbiorników równej co najmniej około 50, w przeciwnym razie nie powinno się jej w zasadzie stosować

Moc zapotrzebowana grupy odbiorników

$$P_{Zi} = k_{zi} \sum_{i=1}^{n} P_{ni}$$

 k_{zi} – wskaźnik zapotrzebowania mocy grupy (*n*) odbiorników,

 P_{ni} – moc znamionowa i – tego odbiornika w grupie

$$Q_{z_i} = P_{z_i} \cdot tg \, \varphi_{z_i}$$

 $tg\phi_{zi}$ – zastępczy współczynnik mocy grupy odbiorników przy obciążeniu szczytowym.

Metoda wskaźnika zapotrzebowania mocy k_z Wartości współczynników zapotrzebowania k_{zi} oraz $\cos \varphi_{\acute{s}r}$ niektórych grup odbiorników dla przemysłu metalowego.

Crupa odbiorników	Wartości		
Grupa odbiorników	k _{zi}	cos φ _{śr}	
Obrabiarki do metali przy produkcji seryjnej o zwykłych programach pracy: małe tokarki, strugarki, dłuciarki, frezarki, wiertarki, karuzelówki.	0,15-0,20	0,40 – 0,60	
Obrabiarki do metali o ciężkich programach pracy: prasy, automaty, rewolwerówki, zdzieraki, frezarki do kół zębatych, strugarki, karuzelówki.	0,25	0,65	
Obrabiarki do metali o bardzo ciężkich programach pracy: napędy młotów, maszyn kowalskich, przeciągarek, zgniataczy.	0,35 - 0,40	0,65	
Przenośne urządzenia elektryczne.	0,1	0,5	
Wentylatory urządzeń produkcyjnych i sanitarne.	0,65-0,70	0,8	
Pompy, sprężarki.	0,75	0,85	
Dźwigi, suwnice.	0,10-0,20	0,50	
Elewatory i przenośniki.	0,5-0,65	0,75	
Transformatory spawalnicze.	0,30	0,40	
Przetwornice spawalnicze.	0,30-0,35	0,40-0,60	
Piece indukcyjne małej częstotliwości.	0,80	0,35	
Piece indukcyjne dużej częstotliwości.	0,80	0,80	
Generatory lampowe pieców indukcyjnych dużej częstotliwości.	0,80	0,65	
Piece oporowe, suszarki, nagrzewnice.	0,80	0,95	
Źródła światła.	0,80	1,0	

Moc zapotrzebowana oddziału (rozdzielnicy oddziałowej)

$$P_{Zo} = \sum_{i=1}^{m} P_{Zi}$$

$$Q_{Zo} = \sum_{i=1}^{m} Q_{Zi}$$

 P_{Zi} – moc zapotrzebowana czynna i – tej grupy odbiorników, Q_{Zi} – moc zapotrzebowana bierna i – tej grupy odbiorników, m – ilość grup charakterystycznych odbiorników zasilanych z rozdzielnicy oddziałowej

Moc zapotrzebowana całego zakładu

$$P_{Zz} = k_{jc} \cdot \sum_{i=1}^{n} P_{Zoi}$$

$$Q_{Zz} = k_{jb} \cdot \sum_{i=1}^{n} Q_{Zoi}$$

 k_{jc} – współczynnik jednoczesności obciążenia mocy czynnej, k_{jb} – współczynnik jednoczesności obciążenia mocy biernej, P_{Zoi} – moc zapotrzebowana czynna i – tej stacji oddziałowej, Q_{Zoi} – moc zapotrzebowana bierna i – tej stacji oddziałowej, n – ilość stacji oddziałowych w zakładzie

Wartości współczynników jednoczesności mocy czynnej k_{ic} i biernej k_{ib} zakładu.

$$k_{jb} = 0.67 + 0.33 k_{jc}$$

Moc zapotrzebowana P_z [kW]	k _j	k _{jb}
<i>P</i> _z ≤ 500	1,0	0,9
$500 < P_z \le 1000$	0,9	0,97
$1000 < P_z \le 2500$	0,85	0,95
$2500 < P_z \le 7000$	0,8	0,93
$P_z > 7000$	0,7	0,9

Sposób przybliżony wyznaczania mocy zapotrzebowanej całego zakładu

$$P_{zz} = k_z \sum_{i=1}^n P_{ni}$$

$$Q_{zz} = P_{zz} \cdot tg\varphi_{av}$$

 k_z – wskaźnik zapotrzebowania dla branży przemysłowej, P_{ni} – moc znamionowa i – tego z (n) odbiorników, $tg\phi_{av}$ – zastępczy współczynnik mocy dla branży przemysłowej

Metoda wskaźnika zapotrzebowania mocy k_z

Ogólne wskaźniki zapotrzebowania k_z mocy szczytowej gałęzi przemysłu

Rodzaj przemysłu	k _z	cos φ _{av}
Kopalnia węgla kamiennego.	0,43	0,78
Huta szkła.	0,42-0,60	0,75
Huta żelaza	0,38	0,78
Produkcja maszyn ciężkich.	0,25	0,62
Produkcja obrabiarek.	0,20	0,68
Produkcja maszyn elektrycznych.	0,27	0,77
Produkcja kabli i przewodów.	0,44	0,67
Cementownia.	0,63	0,82
Synteza chemiczna (bez pieców karbidowych).	0,55	0,80
Produkcja kwasu siarkowego i nawozów	0,35	0,75
fosforowych.		
Przemysł gumowy.	0,39	0,70
Przemysł papierniczy.	0,49	0,63-0,74
Przemysł wełniany.	0,42	0,72
Przemysł bawełniany.	0,44	0,67
Przemysł lniarski.	0,53	0,70
Przemysł tytoniowy.	0,26	0,64
Przemysł młynarski.	0,63	0,75
Przemysł kamienia budowlanego.	0,73 - 0,82	0,61

Metoda dwuczłonowa (Liwszyca)

- Szczególnie przydatna do obliczania obciążenia stacji transformatorowych i linii zasilających grupy silników poszczególnych oddziałów w zakładach metalowych, dla których opracowano dostatecznie dokładne wartości współczynników.
- Moc zapotrzebowana podzielona na dwie składowe:
 - ciągłą, uwzględniającą moc średnią, pobieraną przez wszystkie odbiorniki,
 - **rozruchową** pobieraną przez odbiorniki o największej mocy znamionowej podczas rozruchu.

Moc zapotrzebowana grupy odbiorników

$$P_{Zi} = b \sum_{i=1}^{n} P_{ni} + c \sum_{i=1}^{m} P_{nmi}$$

b, c – współczynniki członu ciągłego i rozruchowego (tab.)

 P_{ni} – moce znamionowe urządzeń w grupie,

n – ilość urządzeń w grupie,

m − liczba silników o największych mocach znamionowych (tab.)

 P_{nmi} – moce znamionowe (m) urządzeń o najwyższej mocy w grupie,

Jeżeli n < m to należy przyjąć m = n

Wartości współczynników do wyznaczania obciążeń szczytowych

Podzaj odbiorników		Wartości współczynników		
Rodzaj odbiorników	b	m	с	cos p
Silniki elektryczne do napędu obrabiarek do metali:				
- w zakładach cieplnej obróbki metali przy produkcji wielkoseryjnej i taśmowej,	0,26	5	0,5	0,65
- w zakładach zimnej obróbki metali przy produkcji małoseryjnej i nieseryjnej,	0,14	5	0,4	0,50
- w zakładach zimnej obróbki metali przy produkcji wielkoseryjnej i taśmowej.	0,14	5	0,5	0,50
Silniki elektryczne do napędu wentylatorów, pomp, sprężarek o mocy do 100 kW	0,65	5	0,25	0,75
Przenośniki taśmowe.	0,4-0,6	5	0,2-0,4	0,75
Silniki elektryczne do napędu przenośników taśmowych:				
- niezblokowane,	0,4	4	0,4	0,75
- zblokowane.	0,6	5	0,2	0,75
Urządzenia dźwigowe (praca przerywana $\varepsilon = 25\%$):				
- w kotłowniach, zakładach remontowych, montażowych,	0,06	3	0,2	0,50
- w odlewniach,	0,09	3	0,3	0,50
- dla pieców martenowskich,	0,11	3	0,3	0,50
- w walcowniach.	0,18	3	0,3	0,50
Urządzenia grzejne:				
- piece oporowe z automatycznym napełnianiem,	0,70	2	0,3	0,95
- piece oporowe z nieautomatycznym napełnianiem,	0,50	1	0,5	0,95
- drobne odbiorniki w laboratoriach (suszarki oporowe, przyrządy grzejne).	0,70	-	-	1,0
Spawarki:				
- do spawania punktowego i liniowego,	0,35	-	-	0,60
- do spawania stykowego.	0,35	-	-	0,70
Transformatory spawalnicze:				
- do spawania automatycznego,	0,5	-	-	0,50
- do spawania ręcznego jednostanowiskowego,	0,5	-	-	0,40
- do spawania ręcznego wielostanowiskowego.	0,07-0,9	-	-	0,50
Przetwornice spawalnicze dwumaszynowe:				
- jednostanowiskowe,	0,35	-	-	0,60
- wielostanowiskowe.	0,07-0,9	-	-	0,75

Moc zapotrzebowana oddziału

$$P_{Zo} = \sum_{i=1}^{n} (b_i \cdot P_{ni}) + \left(c \sum_{i=1}^{m} P_{nmi}\right)_{\text{max}}$$

$$Q_{Zo} = \sum_{i=1}^{n} \left(b_i \cdot P_{ni} \cdot tg \, \varphi_i \right) + tg \, \varphi_i \left(c \sum_{i=1}^{m} P_{nmi} \right)_{\text{max}}$$

n – liczba grup charakterystycznych odbiorników

Metoda zastępczej liczby odbiorników

- Obliczanie mocy średniej, mocy zapotrzebowanej oraz krótkotrwałych prądów rozruchowych na różnych poziomach zasilania
- Metoda wykorzystuje rachunek statystyki matematycznej.
- Grupę odbiorników o różnych mocach znamionowych i zbliżonych charakterystykach obciążenia zastępuje się grupą n_z odbiorników o jednakowej zastępczej mocy znamionowej P_{nz} i jednakowym programie pracy.
- Moc szczytowa zastępczej liczby odbiorników jest równa mocy szczytowej rozpatrywanej grupy odbiorników.

$$n_z \cdot P_{nz} = \sum_{i=1}^n P_{ni}$$

$$n_z = \frac{\sum_{i=1}^n P_{ni}}{\sum_{i=1}^n P_{ni}^2}$$

$$P_{nz} = \frac{\sum_{i=1}^n P_{ni}^2}{\sum_{i=1}^n P_{ni}}$$

 n_z – zastępcza liczba odbiorników, P_{ni} – moce znamionowe rzeczywistych odbiorników, P_{nz} – zastępcza moc odbiorników o równej mocy,

Obliczanie mocy średnich grup odbiorników

$$P_{avi} = k_{wi} \sum_{i=1}^{n} P_{ni}$$

$$Q_{avi} = P_{avi} \cdot tg\varphi_{avi}$$

 k_{wi} – współczynnik wykorzystania mocy grupy charakterystycznej odbiorników, P_{ni} – moc znamionowa i - tego odbiornika w grupie charakterystycznej, $tg\phi_{avi}$ – zastępczy współczynnik mocy dla grupy charakterystycznej

Wartości współczynników wykorzystania mocy zainstalowanej k_w oraz cos $_{\phi av}$ wybranych grup odbiorników dla przemysłu metalowego

Grupa odbiorników	Wartości	
Grupa odolomikow	$k_{_{\mathcal{W}}}$	$\cos \varphi_{av}$
Obrabiarki do metali przy produkcji seryjnej o zwykłych programach pracy: małe tokarki, strugarki, dłuciarki, frezarki, wiertarki, karuzelówki.	0,13-0,15	0,40 – 0,60
 Obrabiarki do metali o ciężkich programach pracy: prasy, automaty, rewolwerówki, zdzieraki, frezarki do kół zębatych, strugarki, karuzelówki. 	0,17	0,65
 Obrabiarki do metali o bardzo ciężkich programach pracy: napędy młotów, maszyn kowalskich, przeciągarek, zgniataczy. 	0,20-0,24	0,65
 Przenośne urządzenia elektryczne. 	0,06	0,5
 Wentylatory urządzeń produkcyjnych i sanitarne. 	0,60-0,65	0,8
Pompy, sprężarki.	0,70	0,85
Dźwigi, suwnice.	0,05-0,1	0,50
Elewatory i przenośniki.	0,40-0,55	0,75
Transformatory spawalnicze.	0,20	0,40
Przetwornice spawalnicze	0,20-0,30	0,40-0,60
Piece oporowe, suszarki, nagrzewnice.	0,75 - 0,80	0,35

Grupy charakterystycznych odbiorników	$k_{_{\scriptscriptstyle W}}$	cos φ _{av}
Przemysł hutniczy (hutnictwo żelaza i metali nieżelaznych)		
Pompy wody	0,70 - 0,90	0.80 - 0.90
Wentylatory	0,65 - 0,90	0,70-0,90
Kompresory	0,65	0,70
Dźwigi	0,20-0,30	0,60-0,70
Pice oporowe	0,60-0,80	1,00
Piece łukowe	0,65-0,70	0.87 - 0.90
Przemysł chemiczny		
Urządzenia do produkcji żywicy	0,65	0,80
Urządzenia do produkcji szkła organicznego	0,50-0,80	0,70 - 0,80
Produkcja taśm gumowych transportowych i pasów napędowych:		
- do silników wysokiego napięcia,	0,53	0,80
- do silników niskiego napięcia	0,30	0,70
Przemysł włókienniczy		
Fabryki włókien sztucznych:		
- przędzalnia	0,60	0,75
- skręcalnia	0,65	0,75
- przewijalnia	0,70	0,75
Produkcja jedwabiu:		
- przędzalnia i wykańczalnia	0,60-0,80	0,75-0,80
- przewijalnia	0,65-0,80	0,76-0,80
Przemysł budowlany		
Ładowarki betonu	0,15	0,60
Maszyny formierskie	0,15	0,60
Koparki z napędem elektrycznym	0,40-0,60	0,50-0,60
Spawarki	0,35	0,60
Transformatory spawalnicze	0,20	0,40
Przemysł papierniczy		
Przygotowanie drewna i zrębków	0,14	0,86
Produkcja tektury	0,41	0,86
Produkcja kartonu	0,29	0,86

Gdy liczba odbiorników w grupie $n \ge 5$ można wyznaczyć wartość n_z w sposób uproszczony:

względna liczba odbiorników

$$n_r = \frac{n_g}{n}$$

- n_g liczba odbiorników w grupie o mocy równej co najmniej połowie mocy największego odbiornika,
- *n* liczba odbiorników w grupie charakterystycznej.

moc względna grupy

$$P_r = \frac{\sum_{j=1}^{ng} P_{ng}}{\sum_{i=1}^{n} P_{ni}}$$

 $\sum P_{ng}$ – suma mocy znamionowych (n_g) odbiorników o mocy co najmniej ½ P_{max} , $\sum P_{ni}$ – suma mocy wszystkich odbiorników grupy.

względna zastępcza liczba odbiorników

$$n_{zw} = f(n_r, P_r) - \text{tab. 9 lub rys.10}$$

zastępcza liczba odbiorników n_z

$$n_Z = n_{ZW} \cdot n$$

Tab. 9. Wartości względnej zastępczej liczby odbiorników n_{zw} w zależności od względnej liczby odbiorników n_r i ich mocy względnej P_r

$ n_r $	P_r																		
	1,0	0,95	0,90	0.85	0.80	0.75	0,70	0,65	0,60	0,55	0.50	0,45	0.40	0.35	0,30	0,25	0,20	0,15	0,10
0,005	0,005	0.005	0,006	0,007	0.007	0.009	0.010	0.011	0,013	0.016	0,019	0.024	0.030	0,039	0,051	0,073	0,11	0,18	0,34
0,01	0,009	0,011	0.012	0.013	0.015	0,017	0,019	0.023	0,026	0.031	0.037	0.047	0.059	0.076	0.10	0.14	0,20	0,32	0,52
0.02	0.02	0,02	0.02	0.03	0,03	0.03	0.04	0.04	0.05	0,06	0.07	0.09	0,11	0,14	0.19	0.26	0,36	0,51	0,71
0,03	0,03	0,03	0,04	0,04	0.04	0,05	0,06	0,07	0,08	0,09	0.11	0.13	0.16	0.21	0,27	0,36	0,48	0,64	0,81
0.04	0.04	0,04	0.05	0,05	0,06	0,07	0.08	0,09	0,10	0.12	0,15	0,18	0,22	0.27	0,34	. 0.44	0,57	0,72	0,86
0,05	0,05	0.05	0,06	0.07	0,07	0.08	0.10	0.11	0,13	0.15	0.18	0,22	0.26	0,33	0,41	0.51	0,64	0,79	0,90
0,06	0,06	0,06	0,07	0,08	0,09	0,10	0,12	0.13	0.15	0.18	0,21	0,26	0.31	0,38	0,47	0.58	0,70	0,83	0,92
0,08	0,08	0,08	0,09	0,11	0,12	0,13	0,15	0.17	0.20	0.24	0.28	0.33	0.40	0.48	0.57	0.68	0.79	0,89	0,94
0,10	0,09	0,10	0,12	0,13	0,15	0.17	0.19	0.22	0.25	0,29	0.34	0,40	0,47	0,56	0,66	0,76	0,85	0,92	0,95
0,15	0,14	0,16	0,17	0,20	0,23	0,25	0.28	0,32	0.37	0,42	0.48	0,56	0,67	0,72	0,80	0,88	0,93	0,95	_
0,20	0,19	0,21	0,23	0,26	0,29	0,33	0.37	0.42	0,47	0.54	0,64	0,69	0,76	0.83	0.89	0,93	0,95		_
0,25	0,24	0,26	0,29	0,32	0,36	0.41	0,45	0.51	0.57	0.64	0.71	0.78	0.85	0,90	0,93	0.95	-	-	-
0,30	0,29	0,32	0,35	0.39	0.43	0.48	0.53	0,60	0.66	0,73	0,80	0.86	0,90	0.94	0,95	_	-	-	_
0,35	0,33	0,37	0,41	0.45	0.50	0,56	0.62	0.68	0,74	0,81	0.86	0,91	0.94	0,95		-	-	-	
0,40	0,38	0,42	0,47	0.52	0.57	0.63	0,69	0.75	0.81	0.86	0,91	0,93	0.95	-	-	-	-	-	-
0,45	0,43	0,47	0,52	0.58	0.64	0,70	0.76	0.81	0.87	0.91	0.93	0,95		_	_	_	-	-	-
0,50	0,48	0,53	0.58	0,64	0,70	0.76	0.82	0,87	0,91	0.94	0.95	-	-	-	-		-	-	-
0,55	0,52	0,57	0.63	0,69	0.75	0,82	0.87	0.91	0.94	0.95	-	-	-	-		-	-	-	-
0,60	0,57	0,63	0,69	0,75	0.81	0,87	0,91	0,94	0.95	-	_	_	_	-,-	-		-	-	-
0,65	0,62	0,68	0.74	0,81	0.86	0.91	0,94	0.95	-	- 1	1 	-	-	_	_	-	-	-	_
0,70	0,66	0,73	0,80	0,86	0,90	0,94	0,95		-	: ;	-	-	-	-	-	-			-
0,75	0,71	0,78	0,85	0,90	0,93	0,95	-	-	-	-	-	-	-	-	_	-	-	-	-
0,80	0,76	0,83	0,89	0.94	0.95	-	-		-	-	-	-	-	-		-	-	-	-
0,85	0,80	0,88	0,93	0.95	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-
0,90	0,85	0,92	0,95	-	· -	-	_	*-	-	-	-	-	-	-	-	-	-	-	-
1,00	0,95	_	_		-	-	-	7.5	_	-	-	-		-	_	-		_	_

Rys. 1. Zależność względnej zastępczej liczby odbiorników n_{zw} od względnej liczby odbiorników nr dla różnych względnych mocy P_r odbiorników:

a)
$$Pr = 0.4 - 1.0$$
 oraz $nr \le 1$,

b)
$$Pr = 0.1 - 0.4$$
 oraz $nr < 0.3$

Moc zapotrzebowana grupy odbiorników

$$P_{zi} = k_s \cdot P_{avi} = k_s \cdot k_{wi} \sum_{i=1}^{n} P_{ni}$$

$$Q_{zi} = k_s \cdot Q_{avi}$$

 k_s – współczynnik szczytu wyznaczony z zależności:

$$k_s = 1 + \frac{1.5}{\sqrt{n_z}} \sqrt{\frac{1 - k_{wi}}{k_{wi}}}$$
 lub z tab. 10 lub rys.11

Politechnika Wrocławska

Tab.10. Współczynnik szczytu w metodzie zastępczej liczby

odbiorników w zależności od k

		Wartości współczynnika k_s w zależności od k_w												
	n,	0,1	0.15	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9			
	4	3,43	3,11	2,64	2,18	1,87	1,65	1,46	1,29	1,14	1,05			
	5	3.23	2.87	2,42	2,00	1,76	1,57	1,41	1,26	1,12	1,04			
	6	3.04	2,64	2,24	1.88	1,66	1,51	1,37	1,23	1,10	1,04			
		5		_,_										
	7	2,88	2,48	2,10	1,80	1.58	1,45	1,33	1,21	1,09	1,04			
	8	2,72	2,31	1,99	1,72	1,52	1,40	1,30	1,20	1,08	1,04			
	9	2,56	2.20	1,90	1.65	1,47	1,37	1,28	1,18	1,08	1,03			
		2,42	2,10	1,84	1,60	1,43	1,34	1,26	1,16	1,07	1.03			
	10	2,42	1,96	1,75	1,52	1,36	1,28	1,23	1,15	1,07	1,03			
	12	2,10	1.85	1,67	1,45	1,30	1,25	1,20	1,13	1,07	1,03			
	14	2,10	1.6.5	1.07	1,43	1,52	1,25	.,2.,		.,				
	16	1.99	1,77	1,61	1,41	1,28	1,23	1,18	1,12	1,07	1,03			
	18	1,91	1,70	1.55	1.37	1,26	1,21	1,16	1,11	1,06	1,03			
1	20	1,84	1,65	1.50	1,34	1,24	1,20	1,15	1,11	1,06	1,03			
	25	1,71	1,55	1,40	1,28	1,21	1.17	1,14	1,10	1,06	1,03			
k_w	30	1.62	1.46	1,34	1,24	1,19	1,16	1,13	1,10	1,05	1,03			
Λ_W	35	1.56	1,41	1,30	1.21	1,17	1,15	1,12	1,09	1,05	1,02			
				. 27		1.15	1,13	1.12	1,09	1,05	1,02			
	40	1.50	1,37	1.27	1.19	1,15	1,13	1,12	1,08	1,04	1,02			
	45	1.45	1.33	1,25	1,17	1,14	1,11	1.10	1,08	1,04	1,02			
	50	1,40	1.30	1,23	1.10	1,14	1,11	1.117	1,00,1	1,04	1.02			
	55	1,36	1.27	1.21	1.15	1,13	1,11	1.10	1,08	1.04	1.02			
	60	1.32	1,25	1.19	1,14	1,12	1,11	1.09	1.07	1,03	1,02			
	70	1,27	1.22	1,17	1,12	1,10	1,10	1,09	1,06	1,03	1,02			
	80	1.25	1,20	1,15	1,11	1,10	1,10	1,08	1,06	1.03	1.02			
	90	1,23	1,18	1.13	1,10	1,09	1,09	1.08	1.05	1,02	1,02			
	100	1.21	1,17	1,12	1,10	1,08	1,08	1.07	1,05	1,02	1,02			
	120	1.19	1,16	1,12	1,09	1,07	1,07	1,07	1,05	1.02	1.02			
	14()	1.17	1,15	1,11	1,08	1,06	1,06	1,06	1,05	1,02	1,02			
	160	1,16	1,13	1,10	1,08	1,05	1,05	1,05	1,04	1,02	1,02			
	180	1,16	1,12	1,10	1,08	1,05	1,05	1,05	1,04	1,01	1,01			
	200	1,15	1,12	1,09	1,07	1,05	1,05	1,05	1,04	1,01	1,01			
	220	1,14	1,12	1,08	1,07	1,05	1,05	1,05	1,04	1,01	1,01			
	240	1,14	1,11	1,08	1,07	1,05	1,05	1,05	1,03	1,01	1,01			
	260	1,13	1,11	1,08	1,06	1,05	1,05	1,05	1,03	1,01	1,01			
	280	1.13	1.10	1.08	1,06	1,05	1,05	1.05	1,03	1,01	1,01			
	300	1.12	1,10	1,07	1,06	1,04	1,04	1,04	1.03	1,01	1.01			
										-	-			

Rys.2. Zależność współczynnika szczytu k_s od zastępczej liczby odbiorników n_z przy różnych wartościach współczynnika wykorzystania k_w :

- a) dla $n_z \le 50$,
- b) dla n_z ≥ 50.

Moc zapotrzebowana oddziału lub zakładu

$$P_{Zz} = k_s \cdot \sum_{i=1}^n P_{avi}$$

 k_s – współczynnik szczytu dla zakładu wyznaczony z zależności:

$$k_{s} = 1 + \frac{1.5}{\sqrt{n_{z}}} \sqrt{\frac{1 - k_{wn}}{k_{wn}}}$$

$$k_{wn} = \frac{\sum_{i=1}^{n} k_{wi} \cdot P_{ni}}{\sum_{i=1}^{n} P_{ni}} = \frac{\sum_{i=1}^{m} P_{avi}}{\sum_{i=1}^{n} P_{ni}}$$

m – liczba grup odbiorników w oddziale lub zakładzie,

 k_{wi} – współczynnik wykorzystania mocy urządzeń w danej i - tej grupie,

 P_{Ni} – suma mocy znamionowych odbiorników w oddziale lub zakładzie.

$$Q_{ZZ} = P_{ZZ} \cdot tg\varphi_{\acute{s}r}$$

$$tg\varphi_{\acute{s}r} = \frac{\sum_{i=1}^{m} k_{wi} \cdot P_{ni} \cdot tg\varphi_{av}}{\sum_{i=1}^{n} P_{ni}} = \frac{\sum_{i=1}^{m} Q_{avi}}{\sum_{i=1}^{n} P_{ni}}$$

m – liczba grup odbiorników w oddziale lub zakładzie,

 k_{wi} – współczynnik wykorzystania mocy urządzeń w danej i - tej grupie,

 P_{Ni} – suma mocy znamionowych odbiorników w oddziale lub zakładzie.

Zapotrzebowanie mocy z uwzględnieniem strat transformacji

Straty mocy czynnej transformacji:

$$\Delta P_{tr} = \Delta P_{jn} + \Delta P_{on} \left(\frac{S_{sd}}{S_{nt}} \right)^{2}$$

 ΔP_{in} – znamionowe jałowe straty mocy transformatora [kW],

 ΔP_{on} – znamionowe straty mocy obciążenia transformatora [kW],

 S_{sd} – obciążenie szczytowe pozorne po stronie dolnego napięcia transformatora [kV·A],

 S_{nt} – moc znamionowa transformatora [kV·A],

Zapotrzebowanie mocy z uwzględnieniem strat transformacji

Straty mocy biernej transformacji:

$$\Delta Q_{tr} = \frac{i_o}{100} S_{nt} + \frac{\sqrt{e_z^2 + e_r^2}}{100} S_{nt} \left(\frac{S_{sd}}{S_{nt}} \right)^2$$

 ΔP_{in} – znamionowe straty mocy jałowe transformatora [kW],

 ΔP_{on} – znamionowe straty mocy obciążenia transformatora [kW],

 S_{sd} – obciążenie szczytowe pozorne po stronie dolnego napięcia transformatora [kV·A],

 S_{nt} – moc znamionowa transformatora [kV·A],

 i_o – prąd jałowy transformatora [%],

 e_z – pozorne napięcie zwarcia transformatora [%],

 e_r – czynne napięcie zwarcia transformatora [%].

Straty mocy dla trójfazowych linii kablowych SN

$$\Delta P_k = \frac{P_s^2 \cdot R_k}{\cos^2 \varphi_s \cdot U_{ps}^2} \cdot 10^{-3}$$

$$\Delta Q_k = \frac{P_s^2}{\cos^2 \varphi_s \cdot U_{ps}^2} X_k \cdot 10^{-3} + U_{ps}^2 \cdot 2\pi \cdot f \cdot C \cdot 10^{-3}$$

gdzie:

$$R_k = \frac{I}{\gamma \cdot S} \cdot 10^3 \qquad X_k = X_k' \cdot I$$

Straty mocy dla trójfazowych linii kablowych SN

```
gdzie:
```

```
P_s – moc czynna przesyłana linią [kW],
```

 U_{ns} – napięcie znamionowe linii [kV],

 R_k – rezystancja linii [Ω],

 X_k – reaktancja linii [Ω],

I – długość linii [km],

S – przekrój znamionowy linii [mm²],

 X_k ' – reaktancja jednostkowa linii [Ω /km],

f – częstotliwość znamionowa sieci [Hz],

C – pojemność robocza kabla [µF],

Obliczenia mocy w zakładach przemysłowych - przykład

Zakład Produkcji Maszyn Budowlanych.

Oddział W1 (TŁOCZNIA + OBRÓBKA SKRAWANIEM):

1. Grupa odbiorników do obróbki wiórowej do produkcji wielkoseryjnej (tokarki, frezarki, itd

- 6 silników po 5,0 kW,
- 10 silników po 10,0 kW,
- 4 silniki po 15,0 kW

Grupa obrabiarek do obróbki plastycznej (prasy, młoty, itd.) – zimna obróbka metali

- 16 silników po 20 kW
- 8 silników po 25 kW

3. Grupa podnośników

- 3 silniki po 10 kW
- 4 silniki po 25 kW

Oddział W2 (POMPOWNIA):

4. Grupa pomp

10 silników po 15 kW

5. Grupa spreżarek

10 silników po 20 kW

6. Grupa wentylatorów

8 silników po 10 kW

Oddział W3 (ODLEWNIA):

7. Grupa pieców oporowych z nieautomatycznym napełnianiem

5 pieców po 50 kW

Grupa podnośników

5 podnośników po 12 kW

Oddział W4 (SPAWALNIA):

Grupa transformatorów spawalniczych

· 6 sztuk po 10 kW

Wyznaczyć moce szczytowe oddziałów i całego zakładu.