TRABAJO PRÁCTICO Nº 4

PARTE B:

- > DIFERENCIAL
- > REGLA DE LA CADENA
- > DERIVACIÓN IMPLÍCITA

EJERCICIO Nº 1:

- a) Dada la función $z = (y-2)^2 + xy$ Halle Δz y dz en el punto p = (-2,1) y compare resultados si sabemos que $\Delta x = \Delta y = 10^{-2}$
- b) Verifique, aplicando la definición, que la función $f(x,y) = x^2 + y^2 + 3x 4y$ es diferenciable en todo punto (x, y).
- c) Determine aplicando la condición suficiente de diferenciabilidad para que valores de (x; y) puede asegurar que son diferenciables las siguientes funciones:

1.
$$f(x, y) = e^{x+2y}\cos(y)$$

2.
$$f(x, y) = \sqrt{(x-1)^2 + (y-1)^2}$$

EJERCICIO N° 2:

Halle la $\frac{dz}{dt}$ usando la Regla de la Cadena:

a)
$$z = y.ln(x)$$
 con $x = sen(2t)$, $y = 2^t$

b)
$$z = ln\left(\frac{y}{x}\right)$$
 con $x = cos(t)$, $y = sen(t)$

EJERCICIO N° 3:

a)
$$z = \ln (3x + y)$$
 Siendo: $x = t^2 + 2s$ $y = e^t - s$

b)
$$z = e^{r} \cos(\theta)$$
 siendo: $r = s.t$ y $\theta = \sqrt{s^2 + t^2}$

c) Sea z = f(x,y) diferenciable y = x(s,t,w) e y = y(s,t,w). Halle la $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$ $y = \frac{\partial z}{\partial w}$ mediante la regla de la cadena. Realice el diagrama correspondiente :

$$z = x^{2} - 2xy$$
 con $x = 2t - s + w$ $y = t^{2} + 2s - w$

CICLO LECTIVO 2022

UNIVERSIDAD DE MENDOZA

EJERCICIO Nº 4:

Derivar implícitamente para obtener las derivadas parciales primeras de z.

a)
$$x^2 y - \cos(x \cdot y) + \sqrt{x - z} + y^2 = 5$$

b)
$$3^{xy}.sen^2(z.y) = 0$$

EJERCITACIÓN PARA EL ESTUDIANTE:

1. Calcular la diferencial de la función $z = z = (x^2 + 5y^3)^2$ en el punto (1;-1) para $\Delta x = 0,1$ y $\Delta y = 0,01$

2. Verifique, aplicando la definición, que la función $f(x, y) = x + 3y^2 - 2x + 1$ es diferenciable en todo punto (x, y).

3. Determine aplicando la condición suficiente de diferenciabilidad para que valores de (x; y) puede asegurar que son diferenciables las siguientes funciones:

a)
$$f(x, y) = \sqrt[3]{x^3 + y^2}$$

b)
$$f(x, y) = x^3y^2 - 2\sqrt{x + y}$$

4. Halle las derivadas que se indican, utilizando la regla de la cadena

a)
$$\frac{\partial z}{\partial r}$$
 y $\frac{\partial z}{\partial \theta}$ para $z = e^r \cos(\theta)$ Siendo: $r = s.t$ y $\theta = \sqrt{s^2 + t^2}$

b)
$$\frac{dz}{dt}$$
 para $z = \ln\left(\frac{y}{x}\right)$ con $x = \cos(t)$ e $y = \sin(t)$

c)
$$z = y.\ln(x)$$
 con $x = \sin(2t)$ e $y = 2^t$

5. Derivar implícitamente para obtener las derivadas parciales primeras de z.

a)
$$y - \cos(x \cdot y) + \sqrt{x - z} + y^2 = 5$$

b)
$$\ln(x^2 + y^2) - z = 0$$

c)
$$3x^2z - x^2y^2 + 3z^3 = 2$$

d)
$$x^2 e^z - e^{x+y} + 2yz = 0$$