Геометрическая модель человеческого бицепса

Студент: Пересторонин П. Г.,

ИУ7-53Б

Руководитель: Оленев А. А.

Цели и задачи

Цель работы - разработать программное обеспечение, которое предоставляет возможности загрузки параметров геометрической модели бицепса на узлах из конфигурационного файла, изменения этих параметров в интерактивном режиме, управления состоянием модели (сокращение и растяжение), а также положением (вращение, перемещение и масштабирование).

Чтобы достигнуть поставленной цели, требуется решить следующие задачи:

- формально описать структуру моделей мышцы и каркаса;
- рассчитать формулы деформации геометрической модели с сохранением объема;
- выбрать алгоритмы трехмёрной графики, визуализирующие модель;
- реализовать алгоритмы для визуализации описанных выше объектов;
- исследовать точность моделирования реального бицепса.

Геометрические методы визуализации мышц

Free Form Deformation

Параметрические и полигональные модели

Поверхности, заданные неявными функциями

$$\{P \in \mathbb{R}^3 | f(P) = c\}, \text{ where } f(P) = \sum_{i=1}^n f_i(P).$$

Физические методы визуализации мышц

Система масс-связей (MSS)

метод конечных элементов (FEM)

метод конечных объемов (FVM)

Методы, основанные на данных

Существующие решения

VIPER

X-Muscle System

Разработанная модель

Алгоритмы компьютерной графики

Алгоритмы удаления невидимых линий и поверхностей:

- Z-буффер
- Робертс
- Трассировка лучей

Алгоритмы затенения:

- Простой
- Гуро
- Фонг

Сравнение характеристик алгоритмов компьютерной графики

- скорость работы (С);
- работа с фигурами вращения (ФВ);
- работа с фигурами со свойствами диффузного отражения (ДО).

Алгоритм	С	ΦВ	ДО
Простой	1	3	1
Гуро	2	1	1
Фонга	3	1	3

Таблица 1.2: Сравнение алгоритмов закраски.

- скорость работы (С);
- масштабируемость с ростом количества моделей (ММ);
- масштабируемость с увеличением размера экрана (МЭ);
- работа с фигурами вращения (ФВ).

Алгоритм	С	MM	МЭ	ΦВ
Z -буфера	1	2	1	1
Трассировка лучей	3	1	3	2
Робертса	2	3	1	3

Таблица 1.1: Сравнение алгоритмов удаления невидимых линий и поверхностей.

Пример работы

Скорость работы: 60 FPS

Исследовательская часть. Данные

Необработанные

Сегментированные

Исследовательская часть. Процесс измерения

Реальный бицепс при выпрямленной руке

Реальный бицепс при угле сгиба руки 60⁻

Исследовательская часть. Измерения

Реальный бицепс

Номер узла	0°	30°	60°	90°
1	7.6	16.2	7.8	9.5
2	18.2	18.7	16.2	15.2
3	20.7	22.5	24.9	23.4
4	21.2	26.2	32.4	27.7
5	21.7	27.5	32.4	35.2
6	24.3	31.3	32.0	35.8
7	25.7	28.7	29.8	36.6
8	20.7	26.6	22.0	24.2
9	13.2	20.8	12.7	16.7

Разработанная модель

Номер узла	0°	30°	60°	90°
1	7.6	7.7	7.8	8.0
2	18.2	18.1	17.9	17.6
3	20.7	20.8	21.0	21.2
4	21.2	21.3	21.7	22.3
5	21.7	22.1	23.0	24.4
6	24.3	24.6	25.4	26.6
7	25.7	26.0	26.7	27.9
8	20.7	20.8	21.0	21.4
9	13.2	13.3	13.5	13.9

Исследовательская часть. Сравнение и выводы

Суммарные сокращения узлов реального бицепса и модели

Номер узла	РБ	модель
1	1.9	0.4
2	-3.0	-0.6
3	2.7	0.5
4	6.5	1.1
5	13.5	2.7
6	11.5	2.3
7	10.9	2.2
8	3.5	0.7
9	3.5	0.7

Выводы

- Модель способна сохранять пропорции приращения, заданные реальной мыщцой.
- Модель ведёт себя монотонно, то есть, например, при сокращении радиусы не перестают расти (или убывать, если коэффициент роста меньше 0), в то время как узел в реальном бицепсе при сокращении может как увеличиться, так и уменьшиться.
- Ввиду ограничения, связанного с постоянством объема, радиусы узлов модели получают прирост в 5-6 раз меньший, нежели узлы реальной мышцы.

Спасибо за внимание