E_g < 3.4 eV,

Serial No	Band Gap (Eg)	Transmittance %	Resistivity(Ωcm)	Reference
01	3.15	80	2.8×10^{3}	[1]
02	3.24	82	1.3×10^3	
03	3.27	81	1.2×10^2	
04	3.356	87	3.53×10 ⁻³	[2]
05	3.347	84	3.51×10 ⁻³	
06	3.319	82	4.38×10 ⁻³	
07	3.249	93.5	9.0×10 ⁻³	[3]
08	3.265	88	6.8×10 ⁻³	
09	3.275	86	8.4×10 ⁻³	
10	3.282	87	9.3×10 ⁻³	
11	3.290	88	9.8×10 ⁻³	
12	3.37	82	24.30×10 ⁻³	[4]
13	3.31	81	1.50×10 ⁻³	
14	3.34	80	0.80×10^{-3}	
15	3.254	82	7.256×10^{-4}	[5]
16	3.265	86	1.097×10^{-4}	
17	3.281	90	3.155×10^{-5}	
18	3.273	88	9.635×10^{-4}	

Eg > 3.4 eV,

Serial No	Band Gap (Eg)	Transmittance %	Resistivity(Ωcm)	Reference
01	3.62	75	7.8×10 ⁻⁴	[1]
02	3.454	89	2.74×10 ⁻³	[2]
03	3.80	91.80	1.89×10 ⁻³	[6]
04	3.65	93.26	1.03×10 ⁻³	
05	3.61	91.56	5.44×10 ⁻³	
06	3.55	89.55	2.29×10 ⁻³	
07	3.49	93	3.50×10 ⁻³	[4]
08	3.63	92	3.00×10 ⁻³	
09	3.45	91	2.00×10 ⁻³	
10	3.58	89.69	1.9±0.1×10 ⁻³	[7]
11	3.42	88.87	$3.9 \pm 0.003 \times 10^{-3}$	
12	3.49	89.46	$3.8 \pm 0.002 \times 10^{-3}$	
13	3.51	89.46	$3.3 \pm 0.001 \times 10^{-3}$	
14	3.52	89.61	2.2 ±0.001×10 ⁻³	
15	3.55	89.99	$2.4\pm0.001\times10^{-3}$	
16	3.62	92.4	2.49×10 ⁻³	[8]
17	3.63	90.6	2.31×10 ⁻³	
18	3.52	93.7	0.61×10^{-3}	

References:

[1] L. Gong, J. Lu, and Z. Ye, "Transparent and conductive Ga-doped ZnO films grown by RF

- magnetron sputtering on polycarbonate substrates," *Sol. Energy Mater. Sol. Cells*, vol. 94, no. 6, pp. 937–941, 2010, doi: 10.1016/j.solmat.2010.02.026.
- Y. Wang, W. Tang, and L. Zhang, "Crystalline Size Effects on Texture Coef fi cient, Electrical and Optical Properties of Sputter-deposited Ga-doped ZnO Thin Films," *J. Mater. Sci. Technol.*, vol. 31, no. 2, pp. 175–181, 2015, doi: 10.1016/j.jmst.2014.11.009.
- [3] T. Prasada Rao and M. C. Santhosh Kumar, "Physical properties of Ga-doped ZnO thin films by spray pyrolysis," *J. Alloys Compd.*, vol. 506, no. 2, pp. 788–793, 2010, doi: 10.1016/j.jallcom.2010.07.071.
- [4] H. Mahdhi, S. Alaya, J. L. Gauffier, K. Djessas, and Z. Ben Ayadi, "Influence of thickness on the structural, optical and electrical properties of Ga-doped ZnO thin films deposited by sputtering magnetron," *J. Alloys Compd.*, vol. 695, pp. 697–703, 2017, doi: 10.1016/j.jallcom.2016.11.117.
- [5] F. J. Serrao and S. M. Dharmaprakash, "Sol ageing effect on the structural, optical and electrical properties of Ga-doped ZnO thin films," *Mater. Technol.*, vol. 31, no. 8, pp. 443–447, 2016, doi: 10.1080/10667857.2015.1105576.
- [6] A. S. Pugalenthi, R. Balasundaraprabhu, V. Gunasekaran, N. Muthukumarasamy, S. Prasanna, and S. Jayakumar, "Effect of thickness on the structural, optical and electrical properties of RF magnetron sputtered GZO thin films," *Mater. Sci. Semicond. Process.*, vol. 29, pp. 176–182, 2015, doi: 10.1016/j.mssp.2014.02.014.
 - [7] M. T. Ferdaous *et al.*, "Interplay between variable direct current sputtering deposition process parameters and properties of ZnO:Ga thin films," *Thin Solid Films*, vol. 660, pp. 538–545, 2018, doi: 10.1016/j.tsf.2018.06.005.
- [8] G. Mo, Z. Tang, H. He, J. Liu, Y. Fu, and X. Shen, "Effects of laser pulse energy on the structural, optical and electrical properties of pulsed laser deposited Ga-doped ZnO thin films," *J. Mater. Sci. Mater. Electron.*, vol. 30, no. 13, pp. 12804–12811, 2019, doi: 10.1007/s10854-019-01646-w.