Wave train decomposition

Dimitri Yatsenko

February 20, 2015

This writeup contains an improved algorithm to replace the 2007 version.

The gradient of the loss function with respect to the waveform coefficients is

Formulation

Let $x(t) \in \mathbb{R}^N$ with $t = 1, \dots, T$ denote a short (usually 0.5–10 s) epoch of a discretized N-channel EEG recording.

We aim to decompose x(t) into a sum of K trains of identical short N-channel waveforms $w_k(\tau) \in \mathbb{R}^N$ defined on the interval $-d \le \tau \le +d$:

$$x(t) = \sum_{k=1}^{K} \sum_{\tau=-d}^{+d} u_k(t-\tau)w_k(\tau) + \varepsilon(t)$$

$$\equiv \sum_{k=1}^{K} \sum_{t'=t-d}^{t+d} u_k(t')w_k(t'-t) + \varepsilon(t) \qquad (1)$$

$$\equiv \sum_{k=1}^{K} (u_k * w_k)(t) + \varepsilon(t)$$

where $u_k(t) \in \{0,1\}$ is the occurrence indicator function comprising 1s at time points when kth waveform occurs in the recording and 0s otherwise; the operator * denotes convolution.

$\frac{\partial \mathcal{L}}{\partial w_k(\tau)} = -2\sum_{t=1}^T \varepsilon(t) u_k(t - \tau)$ $\equiv -2(\varepsilon \star u_k)(\tau)$ (3)

where \star denotes correlation.

Similarly, the gradient with respect to the occurrence indicator function is

$$\frac{\partial \mathcal{L}}{\partial u_k(t)} = -2\sum_{t'=1}^T \varepsilon(t') w_k(t - t') + 2\lambda (1 - 2u_k(t))$$
$$= -2(\varepsilon * w_k)(t) + 2\lambda (1 - 2u_k(t))$$
(4)

These gradients provide the update rules for gradient descent:

$$\Delta w_k(\tau) = \gamma \cdot (\varepsilon \star u_k)(\tau) \tag{5}$$

$$\Delta u_k(t) = \gamma \left[(\varepsilon * w_k)(t) - \lambda (1 - 2u_k(t)) \right] \tag{6}$$

with bounded $u_k(t) \in [0,1]$. The update coefficients γ decreases with the convergence of the algorithm while the nonbinarity penalty coefficient λ increases.

Algorithm

The algorithm is initiated by assigning random uniformly distributed numbers from [0,1] to the occurrence function $u_k(t)$. Until the algorithm converges, the occurrence function is allowed to assume fractional values between 0 and 1. We define the loss function with a penalty term for the nonbinarity of $u_k(t)$:

$$\mathcal{L} = \sum_{t=1}^{T} \|\varepsilon(t)\|^2 + \lambda \sum_{t=1}^{T} \sum_{k=1}^{K} (u_k(t) - u_k^2(t))$$
 (2)