Network and Distributed Systems

Roadmap

- CPU management
- Memory management
- Disk management
- Network and Distributed System
- Virtual machine
- Protection & Security

Today

- Distributed systems overview
- Basic network concepts
- TCP/IP protocol
- Sending/Receiving a packet in Linux

Distributed Systems

A collection of connected computers

Why Distributed Computing?

- Resource sharing
 - Sharing and printing files at remote sites
 - Processing information in a distributed database
 - Using remote specialized hardware devices
- Performance
 - More computers → more performance
- Reliability
 - Detect and recover from site failure, function transfer, reintegrate failed site

Network

mouse

memory

disks

disk

controller

CPU

Terminologies

- Network
 - Physical medium of data transfer among multiple computers (e.g., Ethernet, CDMA,...)
- Packet
 - A unit of transfer in the network
- Protocol
 - A contract on how to transfer and receive data among the computers in the network

Communication Protocol

Layered architecture

OSI Layers

- 1. Physical electrical details of the physical transmission of a bit stream
- 2. Data-link reliable data delivery on the physical medium
- 3. Network addressing, routing, and delivery of packets
- 4. Transport reliable delivery over the network
- 5. Session session management among applications
- 6. Presentation data representation, encryption
- 7. Application application specific

Pros and Cons

- Pros: separation of concerns
- Cons: overhead, duplication

TCP/IP Protocol Layers

OSI TCP/IP application HTTP, DNS, SMTP, FTP, presentation session transport TCP-UDP network ΙP data link Ethernet 这个算两层 physical

A Packet

Image source: http://en.wikipedia.org/wiki/Internet_protocol_suite

An Ethernet Frame

bytes		
7	preamble—start of packet	each byte pattern 10101010
1	start of frame delimiter	pattern 10101011
2 or 6	destination address	Ethernet address or broadcast
2 or 6	source address	Ethernet address
2	length of data section	length in bytes
0–1500	data	message data
0–46	pad (optional)	message must be > 63 bytes long
4	frame checksum	for error detection

Internet Protocol (IP)

- Addressing
 - 32 bit (4 bytes) address: e.g., 129.237.123.1
- Routing
 - Forwarding packets through routers to reach their destination

Domain Name System (DNS)

- Domain name
 - Human readable internet address:
 e.g., www.ku.edu
- How to map domain names to IP addresses?
 - www.ku.edu \rightarrow 129.237.11.182
 - <u>www.google.com</u> → may vary depending on your location, server load, etc.
- Domain Name System
 - A distributed database of domain name, IP addr.

Sending a Packet

Receiving a Packet

从下往上

