Asymmetric key crypto: Digital Signature

2019. 4. 2

Contents

- Introduction to crypto
- Symmetric-key cryptography
 - Stream ciphers
 - Block ciphers
 - Block cypher operation modes
- Public-key cryptography
 - RSA
 - Diffie Hellman, Elgamal
 - ECC
 - Digital signature
 - Public key Infrastructure

- Cryptographic hash function
 - Attack complexity
 - Hash Function algorithm
- Integrity and Authentication
 - Message authentication code
 - GCM
 - Digital signature
- Key establishment
 - server-based
 - Public-key based
 - Key agreement (Diffie-Hellman)

Uses of Public Key Crypto

Encryption

- Suppose we encrypt M with Bob's public key
- Bob's private key can decrypt to recover M

Digital Signature

- Sign by encrypting with your private key
- Anyone can verify signature by decrypting with sender's public key
- Key exchange

Digital Signature

- Alice sends a message with her signature which denotes her own unique identity, similar to handwriting.
- However, to prevent forgery of its signature, She should compute the signature that is related to the message being sent.
- In this way, She can ensure that she sends the very message herself.

Message m

$$s = sign_{K}(m)$$

$$(m, s) s' = verify_K(m)$$
If s=s', valid

Sign with symmetric key

- The symmetric cypto keys can identify the uniqueness of the sender.
- If the symmetric key is used for signature, it verifies:
 - Sender identity
 - Message integrity

Sign with private key

- The private key can also identify the uniqueness of the sender.
- If the private key is used for signature, it verifies
 - Sender identity
 - Message integrity
- Better yet, it also provides
 - Non-repudiation
 - Why can't the symmetric key but the private key do?

RSA Digital Signature

$$K^{+} = (n, e)$$

$$s = sign_{\kappa}(m)$$

= $(m)^{d} mod n$

$$m' = verify_{K} + (s)$$
 (m, s)
= $(s)^e \mod n$
If $(m=m')$ then valid

Elgamal Digital Signature

Message m

$$K^{+}=(B, g, p)$$

m, (<mark>r, s</mark>)

select p, $g \in \{2,3,...,p-2\}$ $K^- = d \in \{2,3,...,p-2\}$ $B = g^d \mod p$

Sign

select $K_E \in \{2,3,...,p-2\}$ s.t. $gcd(K_E, p-1)=1$ $r = g^{K_E} \mod p$ $s = (m-dr)K_F^{-1} \mod p-1$

Verify

 $v = B^r r^s \mod p$ If $v \equiv g^m \mod p$, then "valid"

Comparison with RSA DS

Digital Signature Algorithm(DSA)

- US federal government standard for digital signature(DSS)
- DSA is a modification of ElGamal digital signature scheme.
 It was proposed by NIST in August 1991 and adopted in December 1994.
- The ElGamal DS would lead to signatures with at least 1024bits which is too much for such applications as smart cards.
- In DSA a 160 bit message is signed using only 320-bit signature, but computation for verification is done modulo with 512-1024 bits, slower than RSA DS.

DSA key generation

- Generate a prime p with $2^{512} (multiple of 64 bits)$
- Find a prime divisor q of p-1 with 160 bits
- Find an integer g such as $g^q = 1 \mod p$
- Choose a random integer d with 0 < d < q-1
- Compute $B \equiv g^d \mod p$
- Public = (g, p, q, B)
- Private = (d)

DSA

Message m

$$K^{+}=(g, p, q, B)$$

Verify

H'=SHA(m), s'=s⁻¹ r'= (Bs'rgs'H' mod p) mod q If r' \equiv r, then "valid" _ m, (<mark>r, s</mark>)

Bob

select p, q, s.t., q|(p-1)Select g, s.t., $g^q = 1 \mod p$ $K^- = d \in \{2,3,...,q-2\}$ $B = g^d \mod p$

Sign

H= SHA(m) select K \in {2,3,...,q-1} r = (g^K mod p) mod q s = K⁻¹(H+dr) mod q

DSA example

Message x

$$K^+=(3, 6, 23, 11)$$

m, (2, 4)

Verify

H'=5, s'=4⁻¹ mod 11 = 3
$$r'= (3^{3X2}6^{3x5} \text{ mod } 23) \text{ mod } 11=2$$

If $r' \equiv r$, then "valid"

select p=23, g=6 \in {2,3,...,p-2} K⁻ = d=7 \in {2,3,...,p-2} B = 6⁷ mod 23=3 mod 23 Select q=11, s.t, 11|22

Signature

select $K=2\in\{2,3,...,q-1\}$ $r = 6^2 \mod 23 \mod 11$ $= 13 \mod 11 = 2 \mod 11$ H= SHA(m) = 5 $s = 2^{-1}(5+7x2) \mod 11 = 4$

Comparison with RSA DS

Computation of DSS

- Computationally demanding task of DSS is the exponential calculation g^K mod p.
- Because this is not involved in the message (m), it can be pre-calculated.
- Other demanding task is the determination of a multiplicative inverse K⁻¹, which is also pre-calculated on a number of value K.

EC DSA

- Bit length of 160-256 can provide the same level of security as 1024-3072 bits RSA.
- The signature is twice the used bit length. (320-512 bits)

EC DSA

E:
$$y^2 = x^3 + ax + b \mod p$$
, $G = (x_p, y_p)$, $n = |E|$
Bob

Message m

select $d \in \{2, 3, ..., n-1\}$
Compute $Q = bG = (x_B, y_B)$

Sign

select $k \in \{2,3,...,n-2\}$ P=kG=(x,y) $r = x \mod n$ $s = k^{-1} (m+dr) \mod n$

Verify

 $w = s^{-1} \mod n$ $u_1 = mw \text{ and } u_2 = rw$ $X = u_1G + u_2Q = (x_1, y_1)$ $v \equiv x_1 \mod n$ If v = r, then "valid"