1. Definición de base.

2. Demuestre: Si $B = \{ v_1, v_2, ..., v_n \}$ es una base de un EV V, entonces todo vector en V puede escribirse de una y sólo de una forma como CL de vectores de B.

3. Demuestre: Si $B = \{v_1, v_2, ..., v_n\}$ es una base de un EV V, entonces todo conjunto que contiene más de n vectores en V es LD.

4. Demuestre: Si un EV tiene una base con n vectores, entonces toda base de V tiene n vectores.

5. Defina: Dimension de un espacio vectorial.

6. Defina: Vector coordenadas.

7. **Defina:** Transformación lineal.

8. ¿Por qué se dice que una transformación lineal conserva operaciones?

- 9. Sean \mathbf{V} y \mathbf{W} EV, T: $\mathbf{V} \rightarrow \mathbf{W}$ una TL y u, $\mathbf{v} \in \mathbf{V}$. Entonces, valen lass iquientes propiedades:

 - 3. T(u v) = T(u) T(v)
 - $T(v) = c_1T(v_1) + c_2T(v_2) + ... + c_nT(v_n)$
 - **4.** Si $v = c_1v_1 + c_2v_2 + ... + c_nV_n$, entonces:
- **2.** T(-v) = -T(v)
- **1.** T(0) = 0

10. Defina: Núcleo de una transformación lineal.

11. Defina: Imagen de una transformación lineal.

12. Demuestre: El kernel de la transformación lineal $T: V \rightarrow W$ es un subespacio del dominio V.

13. Corolario: Sea T : $\mathbb{R}^n \to \mathbb{R}^m$ la transformación lineal definida por T(x) = Ax. Entonces el kernel de T es igual al espacio solución del SEL Ax = 0.

14. Demuestre: La imagen de una transformación lineal $T: V \rightarrow W$ es un subespacio de W.

15. Defina: Rango y nulidad de una transformación lineal.

16. Enuncie el teorema de la dimensión.

17. Defina: Cambio de base.

18. Si **P** es la matriz de transición de una base **B** a una base **B'**, entonces **P** es invertible y la matriz de transición de **B'** a **B** está dada por **P**⁻¹.

19. Defina: Semejanza de matrices.

- **20. Demuestre:** Sean A, B y C matrices cuadradas de orden n, entonces:
 - 1. A es semejante a A.
 - **2.** Si A es semejante a B, entonces B es semejante a A.
 - **3.** Si A es semejante a B y B es semejante a C, entonces A es semejante a C.