Question 5

Anshika Raman Roll No: 210050014 Kushal Aggarwal Roll No: 210100087 Kavan Vavadiya Roll No: 210100166

August 23, 2024

Que 5. (c)

Quadratic Mutual Information

Figure 1: Nearest neighbour interpolation

(d)

- We select the angle θ that maximizes the NCC (Normalized Cross-Correlation). According to the plot, NCC peaks at $\theta = 45.0^{\circ}$, but this is evidently not the correct rotation angle. Although there is a local maximum at -29° , it is not the global maximum. This suggests that NCC may not be a reliable measure for all types of image alignment.
- We choose the angle θ that minimizes **JE** (joint energy). The plot indicates that the minimum of JE occurs at $\theta = -29^{\circ}$, which is close to the expected value. Given that the initial rotation was 28.5° (with counterclockwise as positive) and the step size for θ is 1°, we have determined the answer with a precision of up to 1 degree.
- We select the angle θ that maximizes **QMI** (Quadratic Mutual Information). According to the plot, the maximum of QMI occurs at $\theta = -29^{\circ}$, which is near the expected value. Given that the initial rotation was 28.5° (with counterclockwise as positive) and the step size for θ is 1°, we achieved a precision of up to 1 degree in our result
- (e) The optimal rotation according to JE, is -29° .

(f) When two random variables, I_1 and I_2 , are independent, their joint probability distribution $P_{I_1,I_2}(i_1,i_2)$ equals the product of their marginal distributions $P_{I_1}(i_1)$ and $P_{I_2}(i_2)$:

$$P_{I_1,I_2}(i_1,i_2) = P_{I_1}(i_1)P_{I_2}(i_2).$$

Thus, the greater the magnitude of the difference between $P_{I_1,I_2}(i_1,i_2)$ and $P_{I_1}(i_1)P_{I_2}(i_2)$, the stronger the dependence between the variables. Consequently, the images are more dependent (or correlated) when the QMI, given by

QMI =
$$\sum_{i_1} \sum_{i_2} (P_{I_1,I_2}(i_1,i_2) - P_{I_1}(i_1)P_{I_2}(i_2))^2$$
,

is larger. Therefore, image alignment is achieved when their QMI is maximized.