Esteganografía en zonas ruidosas de la imagen

Daniel Lerch Hostalot

Davíd Megías Jiménez

XIII Reunión Española sobre Criptología y Seguridad de la Información (RECSI 2014) Alicante, 4 de septiembre de 2014

- Introducción al estegoanálisis moderno
- Método propuesto
- Resultados experimentales
- Conclusiones

- Introducción al estegoanálisis moderno
- Método propuesto
- Resultados experimentales
- Conclusiones

Introducción al estegoanálisis moderno

- Estegoanálisis mediante análisis del histograma (primer orden).
 - → Permite detectar anomalías en las que solo interviene un píxel y su vecino.

Histograma que representa la frecuencia de cada píxel

- Estegoanálisis mediante *machine learning*.
 - → Entrenamiento de un **clasificador** para que diferencie entre *cover* y *stego*.

• (Ejemplo) Sustitución LSB: El mensaje se oculta sobrescribiendo el bit menos significativo con el contenido del mensaje.

Anomalía: incrementa valores pares, disminuye valores impares.

Introducción: debilidades del análisis del histograma.

- Los métodos de estegoanálisis basados en el análisis del histograma no permiten detectar anomalías estadísticas complejas.
- (Ejemplo) LSB *matching*: El mensaje se oculta modificando el bit menos significativo sumando o restando 1 aleatoriamente.

Introducción: estegoanálisis mediante ML

■ El estegoanálisis mediante *machine learning* consiste en el entrenamiento de un **clasificador** para que distinga entre **imágenes** *cover* e **imágenes** *stego*.

■ La extracción de características consisten en obtener datos de la imagen que sean alterados significativamente al ocultar información.

2559 características

Umbral *T* para reducir el número de dimensiones

Introducción: debilidades estegoanálisis ML

- Las **texturas (TX)** contienen mucho ruido y son muy difíciles de modelar (**HUGO** o **WAM**).
- The curse of dimensionality (CD): A medida que crecen las dimensiones los datos se dispersan. En estegoanálisis, implica que no hay datos suficientes para proporcionar resultados significativos (método propuesto).
- Problemas de tiempo de procesamiento (TP) asociados a la gran cantidad de datos que se generan al trabajar con muchas dimensiones (método propuesto).

Algo	T	Dim/Caract.	Patterns
SPAM	3	686	1458
PPD	4	256	4096
SPAM	7	6750	155
PPD	7	2401	436
SPAM	10	18522	56
PPD	10	10000	104

Impacto de *T* en la media de muestras por patrón, para imágenes de 1024 x 1024.

Esteganografía en zonas ruidosas de la imagen 🖸 UOC

- Introducción al estegoanálisis moderno
- Método propuesto
- Resultados experimentales
- Conclusiones

Método propuesto: inserción de datos

Uso de un umbral T similar al de los métodos de estegoanálisis.

Imagen Lena

Zonas T>4

Zonas *T*>9

■ El método de inserción no puede alterar *T*.

Inserción

- Método de inserción por pares, conservando $|a-b| \ge T$.
- Solo modificamos a.

$$a' = \begin{cases} a, & \text{si } a \mod 2 = m, \\ a+1, & \text{si } a > b \\ a-1, & \text{si } a < b. \end{cases}$$

Análisis del histograma

- Introducción de una anomalía estadística:
 - → La diferencia entre a y b siempre crece.
 - \rightarrow La parejas con diferencia **T-1** no generan parejas **T**.

Histogramas de diferencias

Corrección de la anomalía

- La anomalía la causan los pares |a-b|=T.
- Un valor dinámico de *T* repartiría el efecto de la anomalía entre todos los pares (usaremos un PRNG).

Histogramas de diferencias

Esteganografía en zonas ruidosas de la imagen 🖸 UOC

- Introducción al estegoanálisis moderno
- Método propuesto
- Resultados experimentales
- Conclusiones

Resultados experimentales (I)

- Uso de dos bases de datos diferentes: NRCS y BOSS.
- Uso de dos métodos de estegoanálisis: PPD (T=4) y SPAM (T=3)

Resultados experimentales (II)

ullet Comportamiento ante la modificación del umbral T en los métodos de estegoanálisis (BOSS).

Resultados experimentales (III)

- Para la misma capacidad con la que el método presentado no es detectado, LSB *Matching* se detecta con los siguientes ratios.
- Capacidad media: BOSS 0,09 bpp, NRCS 0,13 bpp.

Base de datos	Método de detección	Porcentaje de aciertos
BOSS	SPAM	85.00 %
BOSS	PPD	81.60 %
NRCS	SPAM	58.00 %
NRCS	PPD	64.00 %

Conclusiones

- Introducción al estegoanálisis moderno
- Método propuesto
- Resultados experimentales
- Conclusiones

- Se ha presentado un método de complejidad computacional reducida (comparada con HUGO o WAM: otros métodos que aprovechan las debilidades del estegoanálsis).
- Se ha presentado un nuevo método que **explota una debilidad** en los sistemas actuales de estegoanálisis: la **necesidad de un umbral** *T*.
- Se ha mostrado su resistencia a métodos de estegoanálisis modernos (basados en machine learning).

Trabajo futuro:

 Estudio de modelos similares con estructuras complejas (uso de más píxeles vecinos).

Esteganografía en zonas ruidosas de la imagen.

Gracias por su atención

