Machine Learning – July 22, 2021

Information:

- 1. Answers must be explicitly marked with the question they refer to (e.g., 2.1 for question 1 of exercise 2). Cumulative answers which refer to more questions at once will be considered as answering one question only (and will be evaluated as such).
- 2. (in person) Use two different sets of sheets, one for questions 1-3 and one for questions 4-6. Write your name, lastname and matricola on all papers you submit.

Time limit: 2 hours 15 minutes.

EXERCISE 1

Consider the notion of overfitting:

- 1. Provide a formal and general definition, without referring to any particular model.
- 2. Show two examples of overfitting in two distinct models.
- 3. For one of the models above, explain how the problem can be mitigated.

EXERCISE 2

Consider the following dataset, containing the samples of a function f:

x_1	f
0.6	2
1.2	4
1.5	5

- 1. Based on the available data, select a reasonable model for learning f, explicitly indicating its parameters.
- 2. Show an optimal and a non-optimal solution, explicitly indicating, for each of them, the corresponding value of the loss function.

EXERCISE 3

- 1. Give a short explanation of the kernel trick/kernel substitution. What is the necessary condition for applying the kernel trick?
- 2. Provide an example of its application. In detail:
 - draw a suitable dataset for binary classification in 2D;
 - discuss which kernel you would use for this dataset;
 - show graphically a possible solution of such a kernel-based model.

EXERCISE 4

- 1. Describe the convolution stage of a Convolutional Neural Network (CNN), illustrating all the elements involved and highlighting the trainable parameters.
- 2. Discuss the properties of sparse connectivity and parameter sharing for CNN.

EXERCISE 5

- 1. Describe the K-means algorithm in a formal way (i.e., with precise mathematical formulas and equations), including: input and output of the algorithm, its main steps, and the termination condition.
- 2. Describe common drawbacks of this algorithm (i.e., situations in which solutions are not optimal)
- 3. Draw a 2-D data set and the corresponding (qualitative) K-means solution highlighting some of the drawbacks illustrated in the previous point.

EXERCISE 6

- 1. Explain the goal of dimensionality reduction. Give an example of dimensionality reduction using a problem of your choice.
- 2. Explain the difference between Principal Component Analysis and Autoencoders in dimensionality reduction.