Long Permutation

Consider an inifite array, a, of positive numbers, a_1, a_2, \ldots , where each $a_i = i$. You can apply a permutation, p, of size n (i.e., n different numbers $1 \le p_1, \ldots, p_n \le n$) to the n-element subset of your array from a_1 through a_n in the following way:

$$(a_1,\ldots,a_n) o (a_{p_1},\ldots,a_{p_n}).$$

To get infinite array b, you must apply permutation p to the first n elements (a_1 to a_n), then to elements a_2 through a_{n+1} , then to elements a_3 through a_{n+2} , and so on, infinitely many times.

Given the values of n, m, and p, find and print the value of b_m . See the *Explanation* section below for more detail.

Note: This challenge uses **1**-based array indexing.

Input Format

The first line contains 2 space-separated integers, n and m, respectively.

The second line contains n space-separated integers describing the respective values of p_1, p_2, \ldots, p_n .

Constraints

- $1 < n < 10^5$
- $1 < m < 10^{18}$
- $1 \leq p_1, p_2, \ldots, p_n \leq n$, and each p_i is unique.

Output Format

Print a single integer denoting the value of b_m .

Sample Input 0

2 10 2 1

Sample Output 0

11

Sample Input 1

3 1 2 3 1

Sample Output 1

2

Sample Input 2

Sample Output 2

10

Explanation

```
Sample Case 0 has the following sequence of array transformations:
```

```
1 2 3 4 5 6 7 8 9 10 11 12...
2 1 3 4 5 6 7 8 9 10 11 12...
2 3 1 4 5 6 7 8 9 10 11 12...
2 3 4 1 5 6 7 8 9 10 11 12...
2 3 4 5 6 7 8 9 10 11 12...
2 3 4 5 6 7 8 9 10 11 12...
2 3 4 5 6 7 1 8 9 10 11 12...
2 3 4 5 6 7 8 1 9 10 11 12...
2 3 4 5 6 7 8 9 1 10 11 12...
2 3 4 5 6 7 8 9 10 1 11 12...
2 3 4 5 6 7 8 9 10 1 11 12...
2 3 4 5 6 7 8 9 10 1 11 12...
```

As you can see, each $b_i=a_i+1=i+1$. Thus, we know that $b_m=m+1=10+1=11$.

Sample Case 1 and Sample Case 2 have the following sequence of array transformations:

```
1 2 3 4 5 6 7 8 9 10 11 12 13 ...
2 3 1 4 5 6 7 8 9 10 11 12 13 ...
2 1 4 3 5 6 7 8 9 10 11 12 13 ...
2 1 3 5 4 6 7 8 9 10 11 12 13 ...
2 1 3 4 6 5 7 8 9 10 11 12 13 ...
2 1 3 4 5 7 6 8 9 10 11 12 13 ...
2 1 3 4 5 6 7 9 8 10 11 12 13 ...
2 1 3 4 5 6 7 9 8 10 11 12 13 ...
2 1 3 4 5 6 7 8 10 9 11 12 13 ...
2 1 3 4 5 6 7 8 9 10 12 13 ...
2 1 3 4 5 6 7 8 9 10 12 11 13 ...
```

As you can see, $b_1=2$ and $b_{10}=10$.