IT2201 / IT2601 / IT2564 / IT2621 / IT2521 / IT2323

Database Management Systems

Unit Objectives

- □ At the end of this topic, you should be able to
 - Understand why and when to normalize tables.
 - Understand why redundant data can cause update anormalies.
 - Define functional dependency and apply it in normalization.
 - Perform normalization to place tables in third normal form (3NF).

Normalization ELO

Introduction to Normalization

When to Normalize

- If not sure ER model is correct
 - Used to validate the design of the tables resulting from the ER modeling.
- If there has been no time to build an ER model and a set of tables is already available.
 - Used to validate the design of the existing tables.
- If the application is simple
 - Used as a bottom-up approach to design the database for the application.

3

Introduction to Normalization

- What to Normalize
 - The major subject of normalization is <u>tables</u>, not entities.
- Objective of Normalization
 - To remove redundant data from tables in order to increase the integrity of the database design and to maximize flexibility of data storage.

Update Anomalies

- Redundant data can cause problems called *update anomalies*, which are classified as
 - Insertion anomalies
 - Deletion anomalies

Unit 6: Normalization

- Modification anomalies
- Normalization and Update Anomalies
 - Normalization aims to remove redundant data, which helps to eliminate update anomalies.

Insertion anomalies

- Adding a new staff member forces user to create branch data.
 - è Eg Add a new staff member SG14
- Insertion of a new branch is not allowed if there is no staff member yet.
 - è Eg Add a new branch B008

Question: Can we set the staff information to NULL?

Staff Branch

staffNo	sName	position	salary	branchNo	bAddress
SL21	John White	Manager	30000	B005	22 Deer Rd, London
SG37	Ann Beech	Assistant	12000	B003	163 Main St, Glasgow
SG14	David Ford	Supervisor	18000	B003	163 Main St, Glasgow
SA9	Mary Howe	Assistant	9000	B007	16 Argyll St, Aberdeen
SG5	Susan Brand	Manager	24000	B003	163 Main St, Glasgow
SL41	Julie Lee	Assistant	9000	B005	22 Deer Rd, London

7

Deletion anomaly

- Deleting rows may cause a loss of data that would be needed for other future rows.
 - Eg Deletion of staff member SA9 will result in branch details of B007 being lost.

Staff Branch

staffNo	sName	position	salary	branchNo	bAddress
SL21 SG37	John White Ann Beech	Manager Assistant	30000 12000	B005 B003	22 Deer Rd, London 163 Main St, Glasgow
SG14	David Ford	Supervisor	18000	B003	163 Main St, Glasgow
SA9	Mary Howe	Assistant	9000	B007	16 Argyll St, Aberdeen
SG5 SL41	Susan Brand Julie Lee	Manager Assistant	24000 9000	B003 B005	163 Main St, Glasgow 22 Deer Rd, London

Modification Anomaly

Changing data in a row forces changes to other rows because of duplication

Staf		

staffNo	sName	position	salary	branchNo	bAddress	
SL21 SG37 SG14 SA9 SG5	John White Ann Beech David Ford Mary Howe Susan Brand	Manager Assistant Supervisor Assistant Manager	30000 12000 18000 9000 24000	B005 B003 B003 B007 B003	22 Deer Rd, London 163 Main St, Glasgow 163 Main St, Glasgow 16 Argyll St, Aberdeen 163 Main St, Glasgow	Need to update 3 tuples
SL41	Julie Lee	Assistant	9000	B005	22 Deer Rd, London	•

9

Normalization

- Normalization vs. Normalized Data
 - Normalization is the activity, the <u>process</u> that leads to a normalized data structure to achieve normalized data.
 - Normalized data is data that contains no redundancies.
- Normal Forms
 - Normalization consists of a series of rules that must be applied in steps to reach a "higher" level of normalization. These levels are called normal forms.

Normalization

- □ There are many normal forms:
 - 1NF -> 2NF -> 3NF -> BCNF -> 4NF -> 5NF
- In general, the IT industry considers normalization to the <u>3NF</u> an acceptable level to remove redundancy.
- Normal forms higher than the 3NF deal with more subtle anomalies.

11

Functional Dependency

- Functional dependency describes the relationship between columns in a table.
- Consider the following table:

		↓
Student_no	Student_name	Student_address
023344C	Kenny Ang	28 Woodland Rd
023817F	Kenny Ang	211 Jurong Rd
028893E	Jenny Huang	11 Ang Mo Kio Ave 5

- student_no → student_name, student_address
 - Given a student number, you can only find a value for student name and a value for student address.
 - Student_name and student_address are functionally dependent on student_number.
- student_name → student_no True/False

Types of Functional Dependency

- □ Full dependency (Full functional dependency)
 - Every non-key column is functionally dependent on all parts of the primary key.
 - Example, PartNo, SuppNo → Cost Part_Supplier

<u>PartNo</u>	<u>SuppNo</u>	Cost
P1	S1	200
P1	S2	220
P2	S1	300
P2	S2	350

13

Types of Functional Dependency

- Partial dependency
 - There is non-key column that depends on some part of the primary key.
 - Example, SuppNo → Sname, SAddr Part_Supplier

			V	V	
<u>PartNo</u>	Supp	<u>No</u>	SName	SAddr	Cost
P1	S1		Bright	Jurong	200
P1	S2		SuperGood	Senkang	220
P2	S1		Bright	Jurong	300
P2	S2		SuperGood	Senkang	350

Types of Functional Dependency

- Transitive dependency
 - There is non-key column that depends on another **non-key column**.
 - Example

Part

			v
<u>partNo</u>	partDesc	storeman	SContact
P1	Printer	Ken	98553344
P2	Speaker	Ken	98553344
P3	Ribbon	Alvin	97334400
P4	Cartridge	Alvin	97334400

15

Repeating Group

■ A repeating group is an attribute, or group of attributes, that occurs with multiple values for a single occurrence of another attribute(s).

Part_Inventory

Unit 6: Normalization

part No	pDesc	suppNo	sName	sAddr	cost
P1	Printer	S1 S2	Bright SuperGood	Jurong Senkang	200 220
P2	Speaker	S1 S2	Bright SuperGood	Jurong Senkang	300 350

Multiple occurrences of vendors for each single occurrence of part.

Repeating group =(suppNo, sName, sAddr, cost)

Exercise 1

- Is custName functionally dependent on State?
- Is custName functionally dependent on custNo?

Cust No	custName	company	address	city	state	Zip Code
101	Ludwig Pauli	All Sports Supplies	213 Erstwild Court	Sunnyvale	CA	94086
102	Carole Sadler	Sports Spot	785 Geary St	San Francisco	CA	94117
103	Philip Currie	Phil's Sports	654 Poplar	Palo Alto	NJ	94303
104	Anthony Higgins	Play Ball!	East Shopping Cntr.	Redwood City	CA	94026
105	Raymond Vector	Los Altos Sports	1899 La Loma Drive	Los Altos	NJ	94022

Normalization Rules

Normal Form Rule

Description

First Normal Form (1NF)

The table must express a set of unordered, two-dimensional tables. The table cannot contain repeating groups.

<u>PartNo</u>	<u>suppNo</u>	sName	sAddr	Cost
P1	V1	Bright	Jurong	200
P1	V2	SuperGood	Senkang	220

Normalization Process

Question:

How to remove repeating groups, partial dependencies and transitive dependencies?

Answer:

Remove them by creating a new table

Exercise 2

- □ Identify functional dependencies in the Orders table.
- What normal form is this table in?
- Normalize this table to third normal form (3NF). Identify the primary and foreign keys in your 3NF relations.

Order Num	orderDate	Part Num	Desc	Num Ordered	Quoted Price
21608	20/10/04	AT94	Iron	11	21.95
21610	20/10/04	DR93	Gas Range	1	495.00
21610	20/10/04	DW11	Washer	1	399.99
21613	21/10/04	KL62	Dryer	4	329.95
21614	21/10/04	KT03	Dishwasher	2	595
21617	23/10/04	BV06	Home gym	2	794.95
21617	23/10/04	CD52	Oven	4	150

23

Exercise 2 Answers

PD 1

Orders Num Ordered Quoted Part Order Price Num orderDate Desc Num 21.95 21608 20/10/04 AT94 Iron 11 20/10/04 21610 DR93 Gas Range 495.00 21610 20/10/04 DW11 Washer 1 399.99 21/10/04 329.95 21613 KL62 4 Dryer 21614 21/10/04 KT03 Dishwasher 2 595 21617 23/10/04 BV06 Home gym 2 794.95 23/10/04 CD52 21617 Oven 4 150

PD 2

□Identify functional dependencies in the Orders table.

Unit 6: Normalization Page 13

Summary

- Normalization is a technique for producing a set of tables with desirable properties that supports the requirements of a user or company.
- Tables that have redundant data may have problems called update anomalies, which are classified as insertion, deletion, or modification anomalies.
- Normalization aims to remove redundant data in order to eliminate update anomalies.
- Use normalization techniques to design simple database or to validate the design of tables.

27

Reference Materials

Unit 6: Normalization

- 1. Database Systems, Connolly, Ch 14
- 2. Modern Database Management, Hoffer, Ch 5