6. Table 1 shows the results of the above-described study. These results indicate that 1α -hydroxy Vitamin D_4 is essentially equivalent to 1α -hydroxy Vitamin D_3 and 1,25 dihydroxy Vitamin D_3 in its ability to stimulate an increase in serum calcium. This experimental comparison confirms the comparison with the literature reported in my declaration dated November 17, 1992 which had previously been filed in the parent case to the present, above-referenced application.

Table 1

1α-(OH) Vitamin D ₄		1α-(OH) Vitamin D,		1,25 (OH) ₂ Vitamin D ₃	
Dosage (mcg/kg/day	Serum Calcium Concentration (mg/100ml) ± Standard Deviation	Dosage (mcg/kg/day)	Serum Calcium Concentration (mg/100ml) ± Standard Deviation	Dosage (mcg/kg/day)	Serum Calcium Concentration (mg/100ml) ± Standard Deviation
0.042	7.2 ± 1.19	0.042	9.0 ± 1.31	0.042	8.0 ± 1.51
0.250	12.1 ± 1.04	0.250	12.0 ± 0.90	0.250	8.5 ± 1.21
1.500	12.1 ± 0.69	1.500	12.9 ± 0.97	1.500	12.0 ± 0.60