EJERCICIOS **RESUELTOS** EN EL LIBRO

6. Diodos

1. Analiza el circuito de la figura, es decir, calcula las tensiones y corrientes de todos los elementos, y compara los resultados utilizando las tres aproximaciones del diodo:

2. Para el circuito de la figura:

calcula la corriente máxima que circula por el diodo y representa gráficamente la tensión de salida para las tres aproximaciones del diodo. (Supón que la resistencia interna del diodo es de $0.2~\Omega$.)

3. Resuelve el circuito de la figura, utilizando la segunda aproximación del diodo.

4. Para el circuito de la figura, indica cuál es el mínimo valor de la tensión V_i para que el diodo conduzca (utiliza la segunda aproximación del diodo). Los valores de las resistencias R_1 y R_2 son conocidos.

5. En el sencillo circuito de la figura ¿se encenderá el diodo LED?

Tema 6. Ejercicios - 1 -

6. En el circuito de la figura, calcula cuál es el valor mínimo de la resistencia *R* para que el diodo Zener esté inversamente polarizado en la región Zener y el diodo rectificador esté directamente polarizado (utiliza la segunda aproximación para ambos diodos).

7. Resuelve el circuito de la figura, utilizando la segunda aproximación del diodo Zener.

8. En el circuito de la figura:

a) Calcula los circuitos equivalentes de Thévenin entre los puntos A y B, para los dos valores siguientes de la resistencia R y dibuja los esquemas de ambos circuitos equivalentes:

$$R = 2 \text{ k}\Omega$$
; $R = 500 \Omega$

b) Si entre los puntos *A* y *B* se conecta un diodo rectificador de silicio, como se indica en la figura siguiente, calcula la corriente que circula por el diodo y la tensión entre sus terminales, para los dos valores de la resistencia *R*. Utiliza la segunda aproximación del diodo.

$$A \bullet B$$

c) Repite el apartado anterior, si entre los puntos A y B se conecta un diodo Zener de tensión $V_z = 3$ V (como se indica en la figura siguiente).

9. Para el circuito de la figura calcula todas las corrientes de rama y las tensiones en bornes de todos los elementos.

- **10.** Para el circuito de la figura, suponiendo que todos los diodos son de silicio y utilizando la segunda aproximación:
 - a) descubre cómo están polarizados todos los diodos del circuito;
 - **b)** calcula las tensiones y corrientes de todos los elementos;
 - c) realiza el balance de potencias.

11. Para el circuito de la figura:

- a) Calcula cuál debe ser el valor mínimo de la tensión del punto *A* para que el diodo Zener *ZD* esté inversamente polarizado en la región Zener.
- **b)** En ese caso, ¿cómo estará polarizado el diodo *D*?
- c) Basándote en las respuestas a las dos preguntas anteriores, haz una hipótesis plausible acerca de la polarización de ambos diodos y calcula las corrientes y tensiones de todos los elementos de acuerdo con dicha hipótesis.
- **12.** Analiza el circuito de la figura, es decir, calcula las corrientes y tensiones de todos los elementos, teniendo en cuenta que los diodos son de silicio. ¿Cuánto valen las tensiones de los puntos *A* y *B*?

