Exploratory data analysis

Dominik Klepl

11/26/2019

pacman::p_load(ggplot2, ggthemes, tidyr, gridExtra, extrafont, patchwork)

Load the dataset

```
data = read.csv("data/x_y.csv", header = F)
```

Rename the column names to x and y

```
colnames(data) = c("x", "y")
```

Add time variable to preserve the time-series structure

Relationship between x and y

We start with inspecting the input/output variables by plotting them. First on the same axis simply as two time-series signals.

Now we also plot the signals against each other.

point seems to be an **outlier**.

It might be a good idea to to remove the outlier now for plotting so that we have a more detailed (zoomed-in) look at the rest of the datapoints.

The x^2

component is even clearer in the zoomed-in view.

Plot p1 and x_y_plot together in one *beautiful* plot.

From the scatterplot of the x and y variables we can assume that the a x^2 might be a good parameter for the model.

Correlation test

We can formally test whether there is correlation between x and y. Although we can already tell from the scatterplot that there must be some correlation. We can use **pearson's correlation coefficient**, testing hypothesis that true correlation differs from 0.

```
##
## Pearson's product-moment correlation
##
## data: data$x and data$y
## t = 3.5408, df = 248, p-value = 0.0004763
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.09796534 0.33433385
## sample estimates:
## cor
## 0.2193661
```

There is small positive correlation between the two variables. Null hypothesis was rejected.

Distributions

Now we inspect the distribution of both \boldsymbol{x} and \boldsymbol{y}

X seems to be approximately **normal** slightly skewed with heavy left tail. Y seems to be **exponentially distributed**. A hypothesis that y is **log-normal** might be worth testing.

QQ-plots

Combine histograms and qqplots into one beautiful plot

Further tests of normality

We can use Shapiro-Wilk test which tests the hypothesis whether variable is normally distributed. (Hoping for p-value < .05)

```
## Testing signal x

##

## Shapiro-Wilk normality test

##

## data: data$x

## W = 0.99297, p-value = 0.2854

## Testing signal y

##

## Shapiro-Wilk normality test

##

## data: data$y

## data: data$y

## W = 0.32323, p-value < 2.2e-16</pre>
```

```
Just for fun - Is y log-normal?
## Warning in log(data$y): NaNs produced
```

This might be normal-ish


```
## How normal is log(y)?
##
## Shapiro-Wilk normality test
##
## data: log_norm$y
## W = 0.98585, p-value = 0.02352
## Wow, apparently more than anything else in this dataset
```

Boxplots and violin plots

Let's continue with other tests about properties of the signals. First use boxplot and violin plots.

Fit linear model

Try to fit a linear model with just one parameter: $y \sim \text{\&}1^*x$

```
## MSE of the fitted model is: 886.242
```

Residual analysis

```
## Residual analysis:

## Min 25% Median 75% Max

## -2.494014 -1.002830 2.178198 9.676968 361.995873
```

Plot residuals and qqplot

Plot model's predictions + 95% confidence intervals

A bit of "cheating"

Just for fun, ggplot has function for fitting a simple linear model (including confidence intervals). There's also function for fitting a local polynomial surface/line which basically

tries to find the best polynomial model (yes exactly what is our task in the coursework).

Fei's true model has most likely a x2 term ;-)

