School of Geography and Earth Sciences McMaster University

Applied Spatial Statistics

Area Data III & IV

This session:

Area Data III & IV

- Exploration of First Order Effects
- Exploration of Second Order Effects
 - Spatial correlation
 - Local spatial association
- Example

Exploration: Spatial Moving Averages

 Variations on the mean value of a variable

 Weighted average of the values in neighboring areas

Exploration: Spatial Moving Averages

$$\hat{\mu}_{i} = \frac{\sum_{j=1}^{n} w_{ij} y_{j}}{\sum_{j=1}^{n} w_{ij}} = \sum_{j=1}^{n} w_{ij}^{st} y_{j}$$

Exploration: Spatial Moving Averages

Fig. 7.3 Spatial moving average of gross industrial output in China

Exploration: Kernel Estimation

 Convert areas to points (i.e. use centroids)

Exploration: Kernel Estimation

$$\hat{\mu}(\mathbf{s}) = \sum_{i=1}^{n} w_i(\mathbf{s}) y_i$$

$$w_i(\mathbf{s}) = \frac{k\left(\frac{(\mathbf{s} - \mathbf{s}_i)}{\tau}\right)}{\sum_{i=1}^{n} k\left(\frac{(\mathbf{s} - \mathbf{s}_i)}{\tau}\right)}$$

Exploration: Kernel Estimation

$$\hat{\mu}(\mathbf{s}) = \frac{\sum_{i=1}^{n} k \left(\frac{(\mathbf{s} - \mathbf{s}_i)}{\tau}\right) y_i}{\sum_{i=1}^{n} k \left(\frac{(\mathbf{s} - \mathbf{s}_i)}{\tau}\right)}$$

Second Order Effects

Spatial dependency/association/correlation

Spatial dependency

 Do attributes in "neighboring" zones show spatial dependency? i.e. Do they co-vary?

Moran's I

$$I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y_i - \overline{y})(y_j - \overline{y})}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}}$$

o Moran's I

$$z_i = y_i - \overline{y}$$

$$I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} z_{i} z_{j}} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} z_{i} z_{j}}{\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}^{2}}$$

Proximity Matrix

	\mathcal{A}_1	\mathcal{A}_2	\mathcal{A}_3	\mathcal{A}_4	\mathcal{A}_5	\mathcal{A}_6
\mathcal{A}_1	0	1	0	0	0	1
\mathcal{A}_2	1	0	1	0	0	0
\mathcal{A}_3	0	1	0	1	0	0
\mathcal{A}_4	0	0	1	0	1	0
\mathcal{A}_5	0	0	0	1	0	1
\mathcal{A}_6	1	0	0	0	1	0

I=0.9091 Z(I)=1.4097

 $\bar{Y} = 3.5$

I=-2.000 Z(I)=-3.7417 $\overline{Y} = 3$

I=0.9091 Z(I)=1.4097

 $\bar{Y} = 5.5$

I=-2.000 Z(I)=-3.7417

 $\bar{Y} = 4.5$

Geary's C (compare to variogram)

$$c = \frac{(n-1)}{2\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y_i - y_j)^2}{\sum_{i=1}^{n} \sum_{j=1}^{n} (y_i - \overline{y})^2}$$

Moran's I

- Expected value (mean)
 - Under the assumption of no autocorrelation!

$$E[I] = -\frac{1}{n-1}$$

Moran's I

Variance

$$V[I] = -\frac{n^2 S_1 - n S_2 + 3(\sum \sum w_{ij})^2}{(\sum \sum w_{ij})^2 (n^2 - 1)}$$

$$S_1 = \sum \sum (w_{ij} + w_{ji})^2$$

$$S_2 = \sum \left(\sum w_{ij} + \sum w_{ji}\right)^2$$

Moran's I

- Testing for significance
 - Asymptotically normally distributed

$$Z[I] = \frac{I - E[I]}{\sqrt{V[I]}}$$

Higher Order Neighbors

 Moran's I using higher order neighbors

$$I^{(k)} = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}^{(k)} (y_i - \overline{y})(y_j - \overline{y})} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}^{(k)}}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$$

Correlogram

 A graph showing the value of Moran's I at different distances

Correlogram: Land Prices in a Japanese City

Example: Spatial-Temporal Spread of AIDS in Florida (1982-1990)

Global Statistics

- Global patterns
- 1 statistic for all the study area
- What is happening at specific locations?

Global Statistics

Local Statistics

 Local Indicators of Spatial Association (LISA)

 \circ Getis and Ord $G_i(d)$ statistic

LISA

Decomposition of Moran's I

$$I_i = \frac{Z_i}{m_2} \sum_{i=1}^n w_{ij} Z_j$$

$$m_2 = \frac{\sum_{i=1}^n z_i^2}{n}$$

*Patterns of association

Moran's Scatterplot

Moran's Map: Population Density Dijon (France)

MAP 6. Moran significance map for population density 1999 (contiguity weight matrix)

Notes: D62, D66 and Lo4 are potential outliers detected by Bayesian heteroscedastic estimation

Moran's Map: Population Density Dijon (France)

Map 4. Moran significance map for employment density 1999 (contiguity weight matrix)

Getis and Ord $G_i(d)$ statistic

 Indication of the concentration or lack of concentration of a variable

$$G_i(d) = \frac{\sum_{j=1}^n w_{ij}(d)x_j}{\sum_{i=1}^n x_j}$$

Getis and Ord $G_i(d)$ statistic

Binary proximity matrix

$$w_{ij}(d) = \begin{cases} 1 & \text{if } d_{ij} < d \\ 0 & \text{otherwise} \end{cases}$$

Getis and Ord $G_i(d)$ statistic

Getis and Ord $G_i(d)$ statistic

Fig. 1 a) Subway and train stations in Sendai City; b) Land price profiles (unit: \10 000/m²)

Getis and Ord $G_i(d)$ statistic

Fig. 2 Local autocorrelation analysis: a) Without Bonferroni correction; b) With Bonferroni correction

- Exploratory Data Analysis
- Visualization and exploration of area data
 - First order properties
 - Second order properties

 Presidential election voter turnout (Kansas, 1980)

Kansas

Definitions: Irregular Lattice

Counties in Kansas State

- Presidential election voter turnout (Kansas, 1980)
 - Total number of votes cast per county in the 1980 presidential election for both candidates (VOTES)
 - Voting age population (POP)
 - Population in each county with 12th grade or higher education (EDU)
 - Number of owner occupied houses (HOUSE)
 - Aggregate income in the county (INCOME)

- Presidential election voter turnout (Kansas, 1980)
 - Potential issues
 - What are the factors that influence voter turnout?
 - o How can voter turnout be increased?
 - Certain population segments are more commonly identified with a given political party

Example: Voter turnout

Zoning system: 105 counties

Example: Voter turnout

- Zoning system: 105 counties
 - Proximity matrix defined in terms of first order contiguities

- Univariate analysis
 - Histogram
 - Maps
 - Moving averages
 - Autocorrelation

Histogram: Votes

Choropleth map: Votes (Std. Dev.)

Choropleth map: Votes (Eq. Areas)

o POP (Std. Dev.)

Votes

o EDU (Std. Dev.)

Exploratory SPATIAL Data Analysis

- Spatially moving averages (first order properties)
- Spatial autocorrelation (second order properties)

Exploratory Spatial Data Analysis

Votes (Moving Average)

Exploratory Spatial Data Analysis

- Spatial autocorrelation
 - Standardized Moran's I (normal distribution)
 - Null hypothesis: no autocorrelation
 - All tests are significant (p<0.05)

Variable	Z(I)
VOTE	3.47
POP	3.78
EDU	3.36
HOUSE	3.75
INCOME	3.14

Conclusion

- Voting patterns follow a spatial pattern
- The spatial pattern is very clear, and probably relates to urban concentrations
- Voting is probably correlated with population, education and other variables

Next...

- Area data V & VI
 - Non-spatial regression
 - Error autocorrelation and other guidelines for model evaluation
 - Spatial regression