LGBM + Light Gradient Boosting Machine * Microsoft (2017) * Regression l'Classification

General:

Asready (Ensemble hearning)

Mathematical Already discussed (Same as GB)

features	Adaboort	GB 1	XGBOON	Cathoont	LGBM.
Boosting	Sequential	Sequential	Sequential parallelization	Sequential	Sequential (sheed optimiza
Frondling	Misclanified instances	(30).0	Residuals (regularization)	Residuals (ordered boosting)	Residerals (GOSS, EFB)
Memory	Low	Moderac	Better as combarred to Adabout & GB	Efficient with categorical data	JU
Wh	Simblem	Medium		Mary	Large dataset Ligh-D data

(1) Speed Obtimization > level-wise / flow DT are made I leaf-wise (LGBM) Jal Budget Monger - Bookstore scenario fictional Non-fictional Goal -> Target night customers. Data Genul

> herrel-wise Customers all groups -> equal importance 0 ver 30 Under 30 Usllers Sklutting is fictiona Non picho Nonal fictional -> flyers for shop One more all over city distribute

Customers 7 leaf wise Importance to important features Under 30 Non fictional fictional Onl moreple flyers Neighbourhood

2) GOSS: (Gradient based One Side Sampling) (now everor will)

large => Sample hard to bredict (difficult is gradient)

(important) Small + model can easily predict

> Keep only large gradient samples (because they are important for model) * Save time & resources? * Speed 1 Benifik * Efficiency 1 Maintain accuracy (Weight awigning powerful)

Total -> 10000 , Small grad -> 8000 Large gradient -3 2000 Tit wes all Sombles for afion Iteration 1 -> 10000 Cofford Iteration 2 -> 10000 4059 smallad Speed T 2000 1000 Computations Dueralles 3000

3) EFB (Exclusive feature Bundling) =) Identify all mutually exclusive features (features where one thing)
can be true at a time Houre -> Want to Bike Car 09. "Bika" (Sporula) Scooty

fy (Mutually exclusive) features き 打 Dhy unbun dle? => So that it clarenot Single beature affect our . Training Save memory (efficient) Speed 1 auge & sparse data Unbundle Seperately treat

When to Use + Large / complex sparre data # High dimensional data * Can handle categorical features (one-hot encoding) + High speed Good accuracy * Support parallelization

When Not to Use # Small dataset (overfitting) * Imbalanced dataset