

BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift

(51) Int. Cl.5: B 27 N 3/26 B 27 N 3/06

DEUTSCHES

PATENTAMT

(21) Aktenzeichen: P 42 21 070.4 Anmeldetag: 16. 6.92 Offenlegungstag: 23. 12. 93

(71) Anmelder:

Schmid, Hubertus, O-7050 Leipzig, DE

(61) Zusatz zu: P 41 31 172.8

(72) Erfinder: gleich Anmelder

Der Inhalt dieser Schrift weicht von den am Anmeldetag eingereichten Unterlagen ab

- (5) Terec-Combi-Kunststoffabfall-Holz-Halbholz-Recycling zur Herstellung von Recycling-Combi-Produkten aus der Terec-Werkstoff-Sicherung und -Anwendung in der Terec-Recycling-Technologie
- (57) Zur Sicherung der Combi-Verfahrens-Technologie, die vorzugsweise Kunststoffabfälle und holzig faserige Substanzen so in Mischung übernimmt und stellt, daß diese im schlüssigen Terec-CR-Wertstoff-Sicherungs-Abfall-Verwertungs- sowie -Produkt-Herstellungs-System in Mehrschicht-Lagen, Kunststoff- und holzige Abfälle vorzugsweise zur Verpressung in beliebig festgefügte Platten oder Formen aus solchen Mischungen und Gemengen bringt.

Beschreibung

Die Realisierung der Combi-Kunststoff-Holz-Halbholz-Recycling-Technologie zur vorzugsweisen Serien-Herstellung von Combi-Recycling-Platten und -Formteilen, wird aus vorgenannten Comb-Abfällen aller Art, vorzugsweise in gemischten bis sortengleichen Kunststoff-Holz-Gemengen und -Schichtungen nach neusten Erkenntnissen zur Rezeptierung von Combi-Abfall nach der TEREC-CR-Technologie angewender.

In Mischungen für die Thermo-Vorbehandlungen im ZYKLO-THEXAR-Thermo-Verfahren, beginnt der Partikel-Bindeprozeß für das PERSS-Verfahren der TE-REC-Technologie. Dazu werden die Produkt-Eigenschaften rezeptiert zur Herstellung von hochwertigen 15 TEREC-COMBI-Recycling-Produkten, vorzugsweise für den Baubedarf mit besonderen Ansprüchen an die Qualität und die Produkt-Erfordernisse präzise elektronisch vorgegeben.

Daraus resultieren aus dem TEREC-Platten-, -Türen- 20 und -Formteile-Herstellungs-Programm, Produkt-Eigenschaften, die es so vorteilhaft, weltweit noch nicht gibt

Zusätzlich erfolgt eine deutliche Minderung der Abfall-Deponierung und Umweltschutz-Wirkungen durch 25 vorzugsweise Waldressourcen-Einsparungen zum besseren Schutz der Welt-Ökologie.

Stand der Technik

Kunststoffabfall, Resthölzer, Holzabfall aus der Waldwirtschaft sowie der Holzindustrie und allfällige Halbhölzer, möglichst in Doppelnutzung, entwickeln sich, vorzugsweise aus Abfall zur bedeutenden Produktions-Stoffbasis der Zukunft, die sie derzeit, mangels 35 geführt. geeigneter Verwertungs-Technologien, noch nicht ergeben.

Da es diese Combi-Technologien noch nicht gibt und die derzeitigen getrennten Verwertungs-Verfahren keine Ergänzungs-Kombinationen der Eigenschafts-Opti- 40 mierung oben genannter Abfallgruppen zulassen, wird unsere Umwelt weiter zunehmend durch hemmungslosen Ressourcen-Verbrauch geschädigt.

Daher sollten jene, denen die Problematik der Schadensdynamik der Weltökologie hinreichend bekannt ist, 45 engagierter handeln, um unseren Nachkommen ein sinnvolles Überleben zu ermöglichen!

In großem Umfang fallen gemischte Kunststoffabfälle aus Haushalten und solcher des Handels, PUR-Hart-Schrott-Fahrzeugen und -Geräten, Kabelabfällen mit Anteilen von PVC-w und PE-vernetzt, Kautschuk, Mehrschicht-Verbundfolien, PVC-Hartabfälle aus Bauanwendungen sowie Kunstfaser- und textile Abfälle, fast allen Industriezweigen in großen Mengen, rein oder gemischt an.

Sie sollen mit Dünn- sowie Abfallhölzern und Halbholz kombiniert in unserer neuen Combi-Recycling-Technologie so granuliert und zerspant, zu Gemengen 60 verarbeitet, bzw. geschichtet werden, daß daraus seste Platten, Formteile und beliebig dichte Dämmstoffe entstehen.

Besser als die Entsorgung, ist die Wiederverwertung im Recycling. Dadurch werden die Vorteile von Kunst- 65 stoff vorzugsweise mit holz- und faserigen Rohstoffen noch verbessert, die Anwendungs-Vielfalt von Kunststoff- und Holzabfall unter Einbeziehung von Halbhölzern beträchtlich, zu optimierten Werkstoffen vergrö-Bert und damit auch die Rohstoffbasis erheblich erweitert

Dabei werden auch die Bindemittel-Probleme mit 5 schädigenden Substanzen eliminiert, da vorzugsweise auf die Selbstbindewirkung von Kunststoff-Kombinationen und oder Zellulosevorkommen durch das TE-REC-ZYKLO-THEXAR-VERFAHREN in die einander zu verbindenden Materialstrukturen entsprechend 10 technologisch eingewirkt wird.

Dabei ist die Mischungs-Variierbarkeit aller vorgesehenen Komponenten bzw. Fraktionen zueinander, den Anforderungen an das Produkt entsprechend rezeptiert beliebig, von 1% bis 99% gestaltbar.

So wird beispielsweise die TEREC-CR-Spanplatte, mit durch Kunststoff verstärkten Deckschichten, wie auch die TEREC-CR-Kunststoff-COMBI-Platte mit Span- und oder Faser-Verstärkern zur Festigkeits-Optimierung in zur Herstellung gelangen.

Die Umwelt- und Gesundheits-Schutzwirkungen sind dabei bedeutend! Dies gilt besonders im Hinblick auf die, bei der Kunststoff-Ursprungsherstellung anfallenden FCKW's, die Eindämmung des weltweiten Waldslächen-Verbrauches, die damit dringend erforderliche Abbremsung der Eigendynamik der Welt-Klimazerstörung und die Ausschaltung von Giftsubstanzen vorzugsweise in den Bindemitteln. Außerdem verhilft dieses immer wiederkehrende Recycling zunehmend zur Erdöl-Ressourcen- und Waldholz-Einsparung und schützt damit 30 die Ökologie.

Vorzugsweise PU-Abfälle werden heute über chemische Verfahren, z. B. durch Hydrolysen, auf ihre ursprünglichen Ausgangsstoffe Polyethen und Amine bzw. Isocyanate und andere Einzelsubstanzen zurück-

Andere Verfahren werden in Demonstrationsanlagen für die Pyrolyse von Kunststoffabfällen in Wirbelschichtungen angewender. Hierbei werden die Kunststoffabfälle in ihre chemischen Bauteile zerlegt.

Die dabei in geschlossenem Reaktor mit indirekter Beheizung auf ca. 600-1000 Grad Cerwärmten Kunststoffe werden zersetzt. Die daraus entstehenden teuren Produkte in Form von Gasen und Olen werden einer Wiederverwertung zugeführt.

Andere unvorteilhafte Verfahren beabsichtigen sogar die systematische Verbrennung der Kunststoffe als Heizmaterial.

Alle diese o. g. Verfahren, belasten in unzumutbarem Maße die Umwelt weit mehr, als die volle stoffliche Integralschaumteile, Duroplast-Abfälle aus 50 Abfall-Verwertung des zu schützenden Verfahrens. Die aus den belastenden Verfahren resultierenden Vorprodukte, wie Öle oder Aromate, sind um Vielfaches teurer als die Produkte aus der vollstofflichen Verwertung als Fertig-Erzeugnisse und bedingen erheblich höheren vorzugsweise für die Müllvorkommen und Deponien, in 55 Energieaufwand. Dies wird marktwirtschaftlich zum Ausschluß der chemischen und thermischen Recycling-Verfahren führen, wenn diese nicht neue Entwicklungen nehmen oder unsinnig befördert werden.

> Dagegen vergammeln Abfälle der Waldwirtschaft in zunehmendem Umfang. Der weltweite Waldraubbau zwingt durch die Veränderung des Klimas der Welt, zum Anbau von schnell wachsenden, minderwertigen Dünnhölzern mit zweiselhastem Wert für Ökologie und die Okonomie.

Zusätzlich werden für den Erhalt der Waldressourcen der Welt, als Holzersatz-Rohstoffe sinnvoller nutzbare, alljährig nachwachsende Halbholzpotentiale, nur teiloder fehlgenutzt bzw. verrotten außerhalb des biologi-

4

schen Kreislaufes, der aus ökonomischen Gründen nicht erreichbar ist.

Ziel der Erfindung ist:

die gezielte Verwertung vorgenannter recyclingfähiger Abfallstoffe für die Schaffung neuer Produkte, wie die wasserfesten, einbruchsicheren bis feuerhemmenden TEREC-RECYCLING-TÜREN aus dem Kunststoffund COMBI-Abfall-Recycling, möglichst in zunehmender Serien-Herstellung, zur Fakten-Erfassung in der Entlastung des steigenden Deponiebedarfes mit den daraus gegebenen Kosten- und Umwelt-Konsequenzen einer Wertstoffe sichernden Grundstoff-Versorgung, Vor- und Zwischendeponierung statt hin zur Enddeponie, zur Einbringung in das Recycling für die vorzugsweise Herstellung von Platten und Türen aus dem TE-REC-Kunststoffabfall- und COMBI-RECYCLING zu bewirken.

Dringlichkeit:

Kunststoffe werden heute in großem Umfang produziert. Beispielsweise pro Automobil, kommen heute 20 schon mehr als 140 kg Kunststoff zur Verarbeitung. Dieser Anteil wächst ständig.

Nur 1/8 des insgesamt 1 bis 2 Mio.t Jahres-Kunststoff-Abfallvolumens wird in der BRD einer Wiederverwertung zugeführt. Hierbei handelt es sich vorzugsweise 25 um Thermoplaste. Die Vielzahl der weiteren Kunststoffe wird bisher nur entsorgt oder in Massendeponien abgelegt. Zur Schonung des knapper werdenden Deponievolumens und zur Ressourcenschonung, sollte die Wiederverwendung eine vordringliche Aufgabe sein. 30

Wenn es gelingt, den größten Teil der Kunststoffe einer Wiederverwendung zuzuführen, werden nicht nur wertvolle Ressourcen, sondern auch unsere Umwelt geschont.

Wegen der langen Entwicklungszeit betriebsreifer 35 Verfahren und der ständig steigenden Verwendung von Kunststoffen, müssen sofort Maßnahmen ergriffen werden, die auch die bisherige Umwelt-Orientierung in der Spanplatten-Herstellung ändert.

Die Dringlichkeit wird auch darin bestätigt, daß die inzwischen für die Menschheit überlebenswichtigen Restwaldslächen der Erde weiter geschlagen und zu 90% naß, meist über weite Strecken transportiert werden. Ca. die Hälfte des Transport-Holz-Gewichtes ist als Feuchtigkeit herstellungstechnisch nicht verwertbar, 45 transport-ökonomisch unsaßbarer Unsinn und ökologisch ein Frevel, der die Recycling-Produkte auch in diesem Thema fördert.

Das Waldholz wird wie Karotten zerrieben, wofür man der natürlichen Umgebung den Baum, als Wasserspeicher mit seiner selbstregelnden Verdunstung und als Sauerstoff-Spender, entzogen hat. Im Spanplattenwerk wird diese Speichernässe mit hohem, unnützem Heizenergie-Aufwand und mit umweltbelastenden Verbrennungsabgasen, bis auf 3% Restfeuchte aus dem Holz 55 herausgetrocknet.

Dagegen erhalten wir trockene Kunststoffe und Halbhölzer sowie Abfallholz, als fast trockene Werkstoffe für unsere industrielle Fertigung. So kann mit unserer Kunststoff- und Combi-Recycling-Technologie 60 zur Herstellung von besseren Baustoffen für die weltweite Anwendung, ein höherwertiger Ersatzbaustoff für weit offene Märkte geschaffen werden.

Für die Verwendung der anfangs genannten Kunststoff-Abfälle und deren mechanisch/physikalischen Zerlegbarkeit sowie mit den abgestimmten Mischkomponenten der variablen Beimengung von Halbholz- und Holz-Abfällen, wird das Combi-Recycling eine neue zu-

kunstsweisende Produktpalette schaffen, die sich vorzugsweise in Bauplatten aller Kategorien, Verkleidungen und Türen mit Zargen-Bausatz in anwendungsbedingten Verdichtungs-Zuständen, von sost bis hochsest, hart und in beliebigen Zwischenstusen, leicht bearbeitbar (nageln, verschrauben etc.) sowie in endloser Formgebung und Oberslächen-Gestaltung zu weitaus höherer Qualität als derzeit Stand der Technik, erreichen läßt.

Patentansprüche

Schutzansprüche für die Herstellung großvolumiger Recycling-Formteile und -Platten im TEREC-Kunststoffabfall- und COMBI-Recycling aus Kunststoffabfällen aller Art und bedarfsweise holzigen Rohstoffen entsprechend der Notwendigkeit des Multi-Recyclinges.

1. Combi-Recycling, durch verschiedene Grundlagen-Untersuchungen (Labor-Versuche) nachgewiesenermaßen gekennzeichnet, daß es unter gegebenen Voraussetzungen möglich ist, aus vorzugsweise nachstehenden, in großem Umfang anfallenden, gemischten Kunststoffabfällen aus Haushalten und solchen des Handels, PUR-Hart- und Integralschaum-Teilen und Duroplast-Abfällen Schrott-Fahrzeugen und -Geräten, Kabelabfällen mit Anteilen von PVC-w und PE-vernetzt, Kautschuk, Mehrschichtverbundfolien, PVC-Hart-Abfällen aus Bauanwendungen sowie Kunstfaser- und textilen Abfällen, in Mehrkomponenten-Mischungen in Kunststoffen, vorzugsweise mit Holzabfällen sowie Halbholz-Substanz-Beimengungen vollwertige Platten, Dämmstoffe, und Formteile, wie die TEREC-Kunststoffabfall-Recycling-Türen zu erstellen.

2. Combi-Recycling nach Anspruch 1, dadurch gekennzeichnet, daß in der vorzugsweisen Erstellung
einer Pilotanlage, die Herstellung von Platten,
Dämmstoffen und in großem Umfang Türen aller
Formate und Oberflächen aus vorzugsweise Kunststoffabfall je nach Spezifikation und Zweck, glatt
bzw. in Formgebung einschließlich der Türzargen
im Preßverfahren und aus unter 1. genannten Material-Kombinationen in einer azyklisch und einer
zyklisch arbeitenden Combi-Recycling-Produktion
ermöglicht wird und neben hochwertigen Produkten auch entsprechend kostengünstige Verfahren
dokumentiert werden, die wirtschlich großtechnische Produktionen rechtfertigen.

3. Combi-Recycling nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Erkenntnisse aus den Laborversuchen zur Erstellung optimierter Betriebsmittel für die Pilotanlage führen, die aus der Sicherung der genannten Kunststoffabfälle nach definierter Zerkleinerung und Mischung mit holzigen Substanzen nach vorgegebener Anwendungs-Anforderung in Granulat- bzw. Span-Größe, -Form und -Gestalt einer Bindemittel-Versorgung zugeführt wird. In Ablösung von Formaldehyd, hat vorzugsweise Wasserglas mit guter Verbindungs-Wirkung, zu den neuen, deutlich verbesserten Produkten geführt.

4. Combi-Recycling nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die aus der Vordeponierung gelieferten Abfall-Materialien in zugeordneter Bunkerung für Kunststoffe, Holz-Abfälle und Halbholz-Chargen vorzugsweise getrennt gelagert

6

und über Silo-Austrags-Systeme vorzugsweise elektronisch definiert ausgetragen, dosiert und gewogen werden, wobei ein neuartiges Thermo/Pneumatik-Folien-Granulierer-System Dünn- wie Stark-Folienteile im Heißluftstrom zur besseren Preßkuchen-Schichtung im ZYCLO-THEXAR-Verfahren in die zu verbindenden Partikelströme, sowohl vor dem Verbinder-Auftrag wie auch vor der Kuchen-Schichtung im Streugut erwärmt einwirkt, krumpft = Vorschmelzung.

5. Combi-Recycling nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die mit Bindemitteln versorgten Granulate sowie Späne vorzugsweise für die Kuchenmischung mit Verbinder-Aktivatoren wie vorzugsweise Wasserglas mit Grundstoff-Analysezusätzen entsprechend der Produkt-Rezeptur unter Vermeidung von umweltschädigenden Substanzen, vorzugsweise zur Förderung der Selbstbinde-Wirkung der Produktions-Grundstoffe versehen werden.

6. Combi-Recycling nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die mit Bindemitteln versorgten Granulate sowie Späne vorzugsweise der Kuchen-Mischung sowie deren Schichtung automatisch für die Produkt-Form-, -Dichte und -Stärke 25 geregelt zugeführt wird. Die hierbei, vorzugsweise elektronisch gesteuerte Vorsortierung, ermöglicht die exakte Beeinflussung der vorzugebenden physikalisch/technischen und mechanischen Eigenschaften der Produkte, für die notwendige Gemenge-Bestimmungen und den nachfolgenden Heiz-Preßvorgang.

7. Combi-Recycling nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß für die TEREC-RECY-CLING-Platten- und -Türen-Herstellung die doku- 35 mentiert programmierte Forderungen an diese TE-REC-Kunststoffabfall-Rezepturund COMBI-Mischprogramme aus den gewollten Produkt-Eigenschaften, vorzugsweise wie für die TEREC-RE-CYCLING-TÜREN mit den Sonder-Eigenschaften 40 bzw. -Varianten von Normal-Türen bis einbruchsicher wie nachstehend garantiert werden: extrem widerstandsfähig gegen Stöße, verzugs- sowie wasserfest und feuerhemmend, verwindungssteif, selbstverriegelnd durch eingepreßte Spezial- 45 Schloß-, -Verriegelungs- und Scharnier-Konstruktion in allen Norm- sowie Sonder-Größen und Fronten, von glatt, strukturiert, ornamentiert, lackiert oder beschichtet, im Bausatz mit den passenden Zargen aus dem TEREC-Kunststoffabfall- 50 RECYCLING für millionenfachen Bedarf und preiswerte Lieferung.

8. Combi-Recycling nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß mit den Rezeptur-Programmen zur Erreichung eines Qualitäts-Standards gegebene Schwankungen im Abfallmaterial programmiert ausgeglichen werden, um eine gleichmäßige Produktpalette in den Konstruktions-Stabilitäten aller Baukriterien Wasserfestigkeit, Feuerwiderstand und -Hemmung sowie deutlich bessere 60 Dämmeigenschaften der Kriterien Schall und Temperaturen zu garantieren.

9. Combi-Recycling nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß mit Granulat- und Späne-Größen von 0,1 bis 10 mm³, Heizplatten-Tempera- 65 turenen bis ca. 300 Grad C und mit Druckvarianten bis 300 kg/cm² optimale Dichtespektren und Produkt-Strukturen, vorzugsweise materialbedingt an-

gestrebt werden, wobei Temperatur, Druck und Zeit des Preßvorganges mit Automaticsteuerung die eingegebenen Vorgaben an die Produkt-Eigenschaften und Qualitäten dosierungsgemäß überwacht und geregelt werden. Ein besonderes Stabilitätsziel zur Optimierung ist, geringere Querschnitte bei besseren Festigkeits-Werten aller bisher dokumentierten und bekannten, vergleichbaren Produkte, oder bei gleichem Querschnitt extrem bessere Stabilität/Festigkeit.

10. Combi-Recycling nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß die wasserfesten und feuerhemmenden Produkte, wie Platten und Türen für Naß- und Außenbereiche, Bauelemente in vielfältiger Gestaltungs-Erscheinung vorzugsweise, besonders als Außenwand- und Dach-Elemente sowie für alle Naßzellen und Feuchtraum-Ausstattungen bedeutende und preiswerte Anwendung finden und darin ohne Verwerfung deutlich besseren Bestand haben.

Das TEREC-RECYCLING-Türen-Programm sieht alle bekannten Anwendungs-Bereiche vor und wird solche der bisher extremen Anforderungen wie wasserfest, feuchtbereich, Schiffbau etc. mit ausfüllen und dabei einen weit offenen Markt vorfinden. 11. Combi-Recycling nach Anspruch 1 bis 10, dadurch gekennzeichnet, daß dieses Combi-Recycling-Verfahren, bei besserer Produkt-Qualität ein bedeutendes Niveau an Umwelt-Relevanz bewirkt. Damit ist eine hohe Wirkung auf die Minderung der kommunalen und industriellen Deponierung, sowie auf die Verringerung des Verbrauches an Waldund Erdöl-Ressourcen gegeben, womit die hohe Umweltschutz-Wirkung, das Ziel der Verbesserung der Lebens-Qualität, das sich dieses Verfahren gesetzt hat, bei Kosten-Minderung erreicht wird.

12. Combi-Recycling nach Anspruch 1 bis 11, dadurch gekennzeichnet, daß dieses COMBI-Recycling-Verfahren mit der Vielfalt der in den Kunststoffabfall-Gemengen schlummernden Anwendungs-Möglichkeiten angereichert, durch die COMBI-Wirkung der Kunststoffabfall-Verarbeitung aus Kommunal-Müll weiter entwickelt und dokumentiert wird. Dies bezieht sich auf die Technologie der neuen TEREC-Abfall-Sortiersysteme in denen Mengen-Unterschiede gezielt erreicht werden können, damit diese unter thermischem und Druckeinfluß bedeutend unterschiedliche Eigenschafts-Kennungen der Kunststoffabfall-Recycling-Produkte erhalten, die von Soft-Preßlingen bis extrem hart sowie elastisch bis Starre-Zustand und alle Zwischen-Zustände gezielt so erreichen, wie die entsprechende Einsatz-Forderungen gestellt werden.