Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Направление программная инженерия Образовательная программа системное и прикладное программное обеспечение

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 6 курса «Основы профессиональной деятельности» по теме: «Обмен данными с ВУ по прерыванию» Вариант № 9601

Выполнил студент:

Шубин Егор Вячеславович

группа: Р3109

Преподаватель:

Лектор: Клименков С. В.,

Практик: Ткешелашвили Н. М.

Содержание

ни	Ю
1.	Задание варианта № 9601
2.	Выполнение задания
	1. Код программы на ассемблере:
	2. Область определения:
	3. Назначение программы:
	4. Проверка программы:
3.	Вывод

Лабораторная работа № 6 Обмен данными с ВУ по прерыванию

1. Задание варианта № 9601

- 1. Основная программа должна увеличивать на 3 содержимое X (ячейки памяти с адресом 044_{16}) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ- 1 осуществлять вывод результата вычисления функции F(X) = 5X + 4 на данное ВУ, а по нажатию кнопки готовности ВУ-3 выполнить операцию побитового 'И' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

2. Выполнение задания

2. 1. Код программы на ассемблере:

```
ORG 0x0
  V0: WORD $default, 0x180
  V1: WORD $INT1, 0x180
  V2: WORD $default, 0x180
  V3: WORD $INT3, 0x180
  V4: WORD $default, 0x180
  V5: WORD $default, 0x180
  V6: WORD $default, 0x180
  V7: WORD $default, 0x180
  ORG 0x00F
11
  default: IRET
12
13
  ORG 0x044
  X: WORD 0x0000
  MIN: WORD 0xFFE6
  MAX: WORD 0x0018
  ORG 0x070
  START:
      DI
      CLA
      OUT 0x001
      OUT 0x005
      OUT 0x00B
      OUT 0x00E
      OUT 0x012
27
      OUT 0x016
28
      OUT 0x01E
      LD #0x9
      OUT 0x3
31
      LD \#0xB
      OUT 0x7
34
  MAIN:
      EI
      CLA
      LD X
      ADD #0x3
      CALL $CHECK
      STX
42
     JUMP MAIN
43
44
  CHECK:
45
      CMP MIN
46
      BLT RETURN_MIN
47
      CMP MAX
      BGE RETURN MIN
      JUMP RETURN
      RETURN_MIN: LD $MIN
      RETURN: RET
53
55 INT1:
```

```
DI
56
57
        \mathrm{LD}\ X
        NOP
58
        ASL
59
        ASL
60
        ADD X
61
        ADD #0x4
OUT 0x2
62
63
        NOP
64
        IRET
65
66
   INT3:
67
        DI
68
        IN 0x6
69
        NOP
70
        AND X
71
        \operatorname{ST}\,X
72
        NOP
73
        IRET
74
```

2. 2. Область определения:

$$-128_{10} \le 5x + 4 \le 127_{10}$$

$$-132_{10} \le 5x \le 123_{10}$$

$$-26_{10} \le x \le 24_{10}$$

$$FFE6_{16} \le x \le 0018_{16}$$

2. 3. Назначение программы:

Программа увеличивает значение аккумулятора на 3 каждую итерацию, при готовности ВУ-1 осуществляет вывод результата функции 5X+4 на ВУ. При готовности ВУ-3 выполняет операцию побитового 'И' содержимого регистра данных ВУ-3 и X, результат записывается в X. Также программа проверяет число на соответствие одз, и если число выходит за рамки, то заменяется на минимальное значение.

2. 4. Проверка программы:

Проверка основной программы:

- 1. Скомпилировать код программы в БЭВМ
- 2. Запустить программу в режиме останов
- 3. Загрузить значение 0x0016 (0x0016 + 0x3 = 0x0019 Больше ОДЗ)
- 4. Если на AC FFE6, программа работает корректно.

AC	Ожидание	AC
0x0015	0x0018	0x0018
0x0016	0xFFE6	0xFFE6
0x0017	0xFFE6	0xFFE6

Проверка обработки прерываний:

- 1. Скомпилировать код программы в БЭВМ
- 2. NOP \rightarrow HLT
- 3. Запустить БЭВМ в режиме Работа
- 4. Нажать кнопку готов на ВУ-1
- 5. После НLТ записать значение X из памяти
- 6. Вычислить результат по формуле 5X + 4

- 7. Нажать "Продолжение"
- 8. Сравнить то, что получилось с DR на ВУ-1 Если значения совпадают, программа работает успешно
- 9. Нажать "Продолжение"
- 10. Нажать кнопку готов на ВУ-3
- 11. После HLT записать значение X из памяти
- 12. Установить значение в DR By-3
- 13. Выполнить операцию побитового 'И' между X и DR
- 14. Нажать "Продолжение"
- 15. Сравнить то, что получилось с результатом Х
- 16. Если значения совпадают, программа работает успешно

Проверка обработки прерываний ВУ-1:

AC (07)	Ожидание 5*Х+4	DR
0x0015	0x6D	0x6D
0x0016	0x72	0x72
0x0019	0x81	0x81

Проверка обработки прерываний ВУ-3:

AC (07)	DR KBУ-3	Ожидание ВУ-3 AND X	Результат АС (07)
0x15	0x0	0x 0	0x0
0x0016	0x16	0x16	0x16
0x0019	0xF0	0x10	0x10

3. Вывод

Во время выполнения данной работы я научился работать с прерываниями на ВУ-1 и ВУ-3. Научился инициализировать векторы прерывания.