Capítulo 2

La ecuación de Schrödinger I

2.1 Mecánica clásica no relativista en una dimensión

Clásicamente, se han usado las ecuaciones de Newton para describir la dinámica. En la mecánica cuántica, usaremos una función llamada 'onda de materia' denotada $\Psi(x,t)$, donde nos interesa estudiar la evolución temporal de esta onda. Esta ecuación es un postulado, no se deriva de otras. Schrödinger propuso esta ecuación y la utilizamos porque funciona, los resultados experimentales se corresponden con el artefacto matemático que Schrödinger propuso. Podemos sin embargo tratar de motivar la idea que siguió para definir la ecuación de una forma concreta.

Definición 2.1.1: Ecuación de Schrödinger

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + U\cdot\Psi \eqno(2.1)$$

Supongamos una onda de materia del tipo onda plana: $\Psi(x,t) = \Psi_0 \cdot e^{i(kx-\omega t)}$. Vamos a reescribir el número de onda y la frecuencia como múltiplos de \hbar^{-1}

$$\left.\begin{array}{l}
k = \frac{2\pi}{\lambda} \\
\lambda = \frac{h}{p}
\end{array}\right\} \to k = \frac{2\pi p}{h} = \frac{p}{\hbar} \qquad \qquad \omega = 2\pi \nu \\
E = h\nu$$

$$\omega = 2\pi \nu \\
E = h\nu$$

$$\omega = \frac{2\pi}{h}E = \frac{E}{\hbar}$$
(2.2)

Así, podemos reescribir la ecuación de onda plana como:

$$\Psi(x,t) = \Psi_0 \cdot e^{\frac{i}{\hbar}(px - Et)} \tag{2.3}$$

La energía cinética de una partícula libre en función del momento lineal es $E = \frac{p^2}{2m}$ Si derivamos esta ecuación en función del tiempo y la posición obnetemos:

$$\frac{\partial \Psi}{\partial t} = \frac{-i}{\hbar} E \cdot \Psi \to E = -\frac{\hbar}{i} \frac{1}{\Psi} \frac{\partial \Psi}{\partial t}$$

$$\frac{\partial \Psi}{\partial x} = \frac{i}{\hbar} p \Psi$$

$$\frac{\partial^2 \Psi}{\partial x^2} = -\frac{p^2}{\hbar^2} \Psi \to p^2 = -\frac{\hbar^2}{\Psi} \frac{\partial^2 \Psi}{\partial x^2}$$

$$i\hbar \frac{1}{\Psi} \frac{\partial \Psi}{\partial t} = -\frac{-h^2}{2m} \frac{1}{\Psi} \frac{\partial^2 \Psi}{\partial x^2} \Longrightarrow \boxed{i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2}}$$
(2.4)

Podemos reescribir esta ecuación en términos del hamiltoniano ya que la primera parte de la ecuación describe la energía total, el primer término de la segunda parte la energía cinética, y el último la potencial. El hamiltoniano en mecánica clásica es $H(x,t) = \frac{p^2}{2m} + U$.

Definición 2.1.2: Operadores

Operador momento

$$\hat{p} = -i\hbar \frac{\partial}{\partial x} \tag{2.5}$$

Operador posición

$$\hat{x} = x \tag{2.6}$$

Operador hamiltoniano

Para el caso del hamiltoniano, vemos como la única diferencia entre el hamiltoniano clásico y el operador hamiltoniano son los operadores.

$$\hat{H}(x,t) = \frac{\hat{p}^2}{2m} + U(\hat{x}) \implies \hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U(x)$$
 (2.7)

Operador energía

$$\hat{E} = i\hbar \frac{\partial}{\partial t} \tag{2.8}$$

Si le aplicamos el operador hamiltoniano y energía a la función de onda:

$$\hat{H}\Psi = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U\Psi$$

$$\hat{E}\Psi = i\hbar \frac{\partial \Psi}{\partial t}$$

$$\hat{E}\Psi = \hat{H}\Psi$$
(2.9)

Comentario:

Comprobar que una función real no cumple la ecuación de Schrödinger, por ejemplo $\Psi(x,t) = \Psi_0 \cos(kx - \omega t)$ (y tampoco una imaginaria pura).

2.2 Interpretación de la función de onda

La llamada interpretación de Copenhague fue aquella postulada por Max Born, quien propuso que el significado físico no lo portaba la función de onda, si no su cuadrado: $|\Psi(x,t)|^2 \cdot dx$. Y esto no es más que una probabilidad, la probabilidad de que la partícula se en cuentre entre x, y x + dx. Intrínsicamente no podemos conocer con certeza la posición, a diferencia de en la mecánica estadística, en la que la probabilidad viene de la imposibilidad de medida de todo el sistema.

Definición 2.2.1: Densidad de probabilidad

$$\mathcal{P}(x,t) = |\Psi(x,t)|^2 \tag{2.10}$$

Comentario: 🛊

Unidades de la función de onda: $[\Psi] = \frac{1}{[\sqrt{L}]}$

Para conocer la probabilidad de que una partícula se encuentre entre dos puntos x = a y x = b, no hay más que integrar:

$$\mathcal{P}_{[a,b]} = \int_{a}^{b} |\Psi(x,t)|^{2} dx \tag{2.11}$$

Vemos como para que esto tenga sentido y la función de onda represente a una partícula, la integral sobre todo el rango de definición debe ser 1, es decir, que la función de onda debe estar normalizada:

$$\int_{\infty}^{\infty} |\Psi(x,t)|^2 dx = 1 \tag{2.12}$$

Si hacemos un a medida y encontramos que la partícula se encuentra en x = A, Einstein nos diría que la partícula se encontraba ya ahí anteriormente, y Bohr diría que la partícula se encontraba en una superposición de todas las posiciones posibles, y al realizar la medida definimos su posición. Lo que llamamos el colapso de la función de onda.

Después de la primera medida la función de onda pasa a ser similar a una delta de Dirac centrada en el punto x = A.

Teorema 2.2.1 Propiedades de la función de onda $\Psi(x,t)$ para que esta represente una partícula

- Debe ser compleja
- Debe estar normalizada $\int_{\infty}^{\infty} |\Psi(x,t)|^2 dx = 1$ (para que una función sea normalizable, los límites en el infinito deben ser 0). $\lim_{(x\to\infty,t)} \Psi(x,t) = 0$ $\lim_{(x\to-\infty,t)} \Psi(x,t) = 0$
- Debe ser una función continua y unievaluada.
- Si Ψ_1 y Ψ_2 son soluciones de la *Ecuación de Schrödinger*, una combinación lineal de ellas tamibén es solución. (Principio de superposición) $\Phi(x,t) = \alpha \Phi_1 + \beta \Phi_2$. Si conozco la condición inicial de la función de onda, conocemos la evolución temporal, es decir, es una ecuación determinística. $\Psi(x,t=0) \implies |\Psi(x,t)|^2$

2.3 Ecuación de continuidad

Vamos a ver que se cumple una ecuación de continuidad análoga a la de la conservación de carga en *Electromagnetismo*, o la que se ve en *Mecánica de fluidos*.

Definición 2.3.1: Ecuación de continuidad

Una vez hemos definido la densidad de probabilidad 2.11, vamos a estudiar cómo varía esta función en el tiempo, es decir, su derivada temporal.

$$\begin{array}{l} {\rm Conociendo~que:} & i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + U\Psi \\ -i\hbar\frac{\partial\Psi^*}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi^*}{\partial x^2} + U\Psi^* \end{array} \right\}$$

$$\frac{\partial \mathcal{P}(x,t)}{\partial t} = \frac{\partial}{\partial t} (\Psi^* \cdot \Psi) = \frac{\partial \Psi^*}{\partial t} \Psi + \frac{\partial \Psi}{\partial t} \Psi^* = \left(\frac{\hbar}{i2m} \frac{\partial^2 \Psi^*}{\partial x^2} - \frac{U}{i\hbar} \Psi^* \right) \Psi + \left(-\frac{\hbar}{i2m} \frac{\partial^2 \Psi}{\partial x^2} + \frac{U}{i\hbar} \Psi \right) \Psi^* = \left(-\frac{i\hbar}{2m} \frac{\partial^2 \Psi^*}{\partial x^2} \Psi + \frac{i\hbar}{2m} \frac{\partial^2 \Psi}{\partial x^2} \Psi^* \right) = \frac{i\hbar}{2m} \left(\frac{\partial^2}{\partial x^2} \Psi^* - \frac{\partial^2 \Psi^*}{\partial x^2} \Psi \right) = \frac{i\hbar}{2m} \frac{\partial}{\partial x} \left(\frac{\partial \Psi}{\partial x} \Psi^* - \frac{\partial \Psi^*}{\partial x} \Psi \right)$$

$$\left(\frac{\partial}{\partial x}\left(\frac{\partial \Psi}{\partial x}\Psi^* - \frac{\partial \Psi^*}{\partial x}\Psi\right) = \frac{\partial^2 \Psi}{\partial x^2}\Psi^* + \frac{\partial \Psi}{\partial x}\frac{\partial \Psi^*}{\partial x} - \frac{\partial^2 \Psi^*}{\partial x^2}\Psi - \frac{\partial \Psi^*}{\partial x}\frac{\partial \Psi}{\partial x}\right)$$

Definición 2.3.2: Corriente de probabilidad

Una ecuación de continuidad es una ecuación que nos dice que hay una conservación de algún tipo, en nuestro caso lo que se conserva es la probabilidad.

$$\mathcal{J}(x,t) = \frac{i\hbar}{2m} \left(\Psi \frac{\partial \Psi^*}{\partial x} - \Psi^* \frac{\partial \Psi}{\partial x} \right) \implies \boxed{\frac{\partial \mathcal{P}(x,t)}{\partial t} = -\frac{\partial \mathcal{J}(x,t)}{\partial x}}$$
(2.13)

Reescrito: $\frac{\partial \mathcal{P}(x,t)}{\partial t} + \frac{\partial \mathcal{J}(x,t)}{\partial x} = 0$

Una vez tenga la función de onda normalizada, lo estará de forma independiente del tiempo: Si integramos sobre todo el espacio:

$$\int_{-\infty}^{\infty} \frac{\partial \mathcal{P}(x,t)}{\partial t} dx + \int_{-\infty}^{\infty} \frac{\partial \mathcal{J}(x,t)}{\partial x} dx = 0$$

$$\frac{\partial}{\partial t} \int_{-\infty}^{\infty} \mathcal{P}(x,t) dx + \mathcal{J}(x=0,t) - \mathcal{J}(x=0,t) = 0$$

En conclusión, si $\Psi(x,t)$ es normalizable, lo estará para cualquier tiempo.

$$\frac{\partial}{\partial t} \int_{-\infty}^{\infty} \mathcal{P}(x, t) \, dx = 0 \tag{2.14}$$

2.4 Valores esperados y observables

Llamamos valor observable a cualquier magnitud susceptible de medida. Todo parámetro observable va a estar relacionado con un operador y viceversa. Nos gugstaría conocer, por ejemplo, cuál sería el valor esperado dela posición de la partícula, que denotaremos por $\langle x \rangle$.

Esta probabilidad en un caso discreto es $\langle x \rangle = \sum x_n \cdot P_n$. En el caso continuo: $\langle x \rangle = \int x \cdot f(x) \, dx$ donde f(x) es una función de probabilidad. Sabemos que en cuántica esto es el cuadrado de la función de onda:

$$\int_{-\infty}^{\infty} x |\Psi(x,t)|^2 dx = \int_{-\infty}^{\infty} \Psi^* \times \Psi dx$$
 (2.15)

Calcular un valor medio no implica volver a medir la misma posición sobre la misma partícula (puesto que colapsa y volvería a x_a), sino que tendríamos que preparar varias partículas con la misma función de probabilidad, hacerlas colapsar y tomar el valor esperado de la posición respecto a la medida que vayamos a tomar de cada una.

Esta definición es extedible a cualquier valor observable $Q: Q \to \langle Q \rangle = \int_{-\infty}^{\infty} Q \cdot |\Psi(x,t)|^2 dx$ Vamos a ver cómo cambiará el valor eseperado de un valor observable en el tiempo, su derivada temporal:

$$\frac{d\langle x\rangle}{dt} = \frac{d}{dt} \int_{-\infty}^{\infty} x |\Psi(x,t)|^2 dx = \int_{-\infty}^{\infty} x \frac{\partial}{\partial t} |\Psi(x,t)|^2 dx = \int_{-\infty}^{\infty} x \frac{\partial}{\partial t} (\Psi^* \cdot \Psi) dx = \frac{i\hbar}{2m} \int_{-\infty}^{\infty} x \frac{\partial}{\partial x} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) dx$$

Resolviendo por partes:

$$\int_{-\infty}^{\infty} x \frac{\partial}{\partial x} \left(\Psi^* \frac{\partial \Psi}{\partial x} \ dx \right) = - \int_{-\infty}^{\infty} \Psi^* \frac{\partial \Psi}{\partial x} \ dx + x \Psi^* \frac{\partial \Psi}{\partial x} \Big|_{-\infty}^{+\infty}$$

Idem con la segunda parte.

En conclusión:

$$\frac{d\langle x \rangle}{dt} = \frac{i\hbar}{2m} \int_{-\infty}^{\infty} \left(\frac{\partial \Psi^*}{\partial x} \Psi - \Psi^* \frac{\partial \Psi}{\partial x} \right) dx \implies \left[\frac{d\langle x \rangle}{dt} = -\frac{i\hbar}{m} \int_{-\infty}^{\infty} \Psi^* \frac{\partial \Psi}{\partial x} dx \right]
\Longrightarrow \langle p \rangle = m \frac{d\langle x \rangle}{dt} = -i\hbar \int_{-\infty}^{\infty} \Psi^* \frac{\partial \Psi}{\partial x} dx = \int_{-\infty}^{\infty} \Psi^* \left(-i\hbar \frac{\partial}{\partial x} \Psi dx \right)
\Longrightarrow \langle x \rangle = \int_{-\infty}^{\infty} \Psi^* \hat{x} \Psi dx = \int_{-\infty}^{\infty} \Psi^* x \Psi dx$$
(2.16)

donde $-i\hbar \frac{\partial}{\partial x} \Psi$ es el operador momento lineal \hat{p}

Generalizando el valor esperable:

$$\langle Q \rangle = \int_{-\infty}^{\infty} \Psi^* \hat{Q} \Psi \, dx \tag{2.17}$$

En este caso necesitamos los operadores en el espacio de posiciones, pero más adelante trabajaremos en el espacio de momentos y cambiará la expresión de los operadores que ya hemos definido. A nivel práctico, tendríamos que hacre lo siguiente para cualquier magnitud que podamos representar en función de $x \circ p$.

Ejemplo 2.4.1

En mecánica clásica: $T = \frac{1}{2m}p^2$

$$\langle T \rangle = \int_{-\infty}^{\infty} \Psi^* \frac{1}{2m} \hat{p}^2 \Psi \ dx = \int_{-\infty}^{\infty} \Psi^* \left(-\frac{\hbar^2}{2m} \cdot \frac{\partial^2}{\partial x^2} \right) \Psi \ dx$$

Definición 2.4.1: Incertidumbre

La otra variable que nos interesa conocer a nivel probabilístico es la desviación estándar, que sería equivalente a conocer la anchura de la Gaussiana. Nos da la dispersión de los posibles valores. Es decir, la incertidumbre.

$$\sigma = \sqrt{\langle \Delta x^2 \rangle} \tag{2.18}$$

La dispersión de una variable observable Q, de valor esperado $\langle Q \rangle$ la daremos de la siguiente forma:

$$\Delta Q^2 = (Q - \langle Q \rangle)^2 \qquad \Longrightarrow \qquad \sigma = \sqrt{\langle \Delta Q^2 \rangle} = \sqrt{\langle Q^2 \rangle - \langle Q \rangle^2} \tag{2.19}$$

Ya que: $\langle \Delta Q^2 \rangle = \langle (Q - \langle Q \rangle)^2 \rangle = \langle Q^2 + \langle Q \rangle^2 - 2Q \langle Q \rangle \rangle = \langle Q^2 \rangle - \langle Q \rangle^2$ (el valor esperado de la suma es la suma de valores esperados).

Para sucesos independientes: $\langle Q \langle Q \rangle \rangle = \langle Q \rangle \cdot \langle Q \rangle$

Ejemplo 2.4.2 (Suponemos que la función de onda que representa a una partícula tiene la siguiente forma:

$$\Psi(x, t = 0) = \Psi_0 \cdot e^{-\frac{(x - x_0)^2}{4\sigma x^2}}$$

Vemos como esta función es equivalente a una gaussiana centrada en x_0 .

1. Normalizamos
$$\Psi$$
: $\int_{-\infty}^{\infty} |\Psi|^2 dx = 1$

$$\int_{-\infty}^{\infty} |\Psi_0|^2 e^{-\frac{2(x-x_0)^2}{4\sigma x^2}} dx = |\Psi|^2 \int_{-\infty}^{\infty} e^{-\frac{(x-x_0)^2}{2\sigma x}} dx = |\Psi_0|^2 \sqrt{2}\sigma x \int_{-\infty}^{\infty} e^{-y^2} dy = |\Psi_0|^2 \sqrt{2\pi}\sigma x = 1$$

$$\implies |\Psi_0|^2 = \frac{1}{\sqrt{2\pi} \cdot \sigma_x} \implies \Psi_0 = \frac{1}{(2\pi \cdot \sigma_x^2)^{1/4}}$$

2. Tenemos un problema porque este número es real y debe ser complejo. Para solucionar esto, le asignamos una cierta fase:

$$\Psi_0 = \frac{e^{i\varphi}}{(2\pi \cdot \sigma_x^2)^{1/4}} \longrightarrow \text{JUSTIFICACIÓN: } |\Phi_0|^2 = \Phi_0^2 \cdot \Phi_0 = \frac{e^{i\varphi} \cdot e^{-i\varphi}}{(2\pi \cdot \sigma_x^2)^{1/4}} = \frac{1}{\sqrt{2\pi}\sigma_x}$$

La probabilidad, que es lo que nos interesa por ser lo que tiene significado físico, se mantiene igual. Por tanto, dos funciones de onda que difieren en cierta fase representan el mismo objeto físico.

3. Nos queda la siguiente función de onda: $\Phi(x, t = 0) = \frac{e^{i\varphi}}{(2\pi \cdot \sigma_x^2)^{1/4}} \cdot e^{-\frac{(x - x_0^2)}{4\sigma_x^2}}$ Y calculamos ahora el valor esparado de de esparado de

Y calculamos ahora el valor esperado de
$$x$$
:
$$\langle x \rangle = \int_{-\infty}^{\infty} \Psi^* x \Psi \ dx = \int_{-\infty}^{\infty} \frac{e^{i\varphi}}{(2\pi \cdot \sigma_x^2)^{1/4}} \cdot e^{-\frac{(x-x_0)^2}{4\sigma_x^2}} \cdot x \cdot \frac{e^{i\varphi}}{(2\pi \cdot \sigma_x^2)^{1/4}} \cdot e^{-\frac{(x-x_0)^2}{4\sigma_x^2}} \ dx = \frac{1}{(2\pi\sigma_x^2)^{3/2}} \int_{\infty}^{\infty} x \cdot e^{-\frac{(x-x_0)^2}{4\sigma_x}} \ dx = \dots = x_0$$

Esto tiene sentido por ser una gaussiana centrada en ese valor. También es posible comprobar que $\langle \Delta x^2 \rangle = \sigma_x^2$.