Lab 5. 순차 회로 - 계수기

Digital System Design (CSED273)

20220100 박기현

1. 개요

이번 실험은 순차 회로(sequential circuit)의 대표적인 예시 중 하나인 계수기(counter)의 특성을 알아보고 다양한 계수기를 구현해본다.

2. 이론적 배경

- 1) D 플립플롭(D Flip-Flop)
- D 플립플롭은 Delay 플립플롭으로, 클럭 신호에 맞춰 입력값 D가 Q에 반영되는 회로이다.

그림 1 D 플립플롭

D	Q	Q ⁺
0	0	0
0	1	0
1	0	1
1	1	1

표 1 D 플립플롭의 Excitation table

2) 계수기(counter)

계수기는 순차 회로의 일종으로, 클럭에 따라 순차적으로 지정된 패턴의 숫자를 저장하고 출력하는 회로이다. 사용 목적에 따라 출력 패턴을 다르게 하여 다양한 종류의 계수기를 만들 수 있다. 크게 비동기 계수기와 동기 계수기로 나뉜다. 비동기 계수기에는 ripple counter 가 있으며, 동기 계수기에는 binary counter, BCD counter, Ring counter, Johnson counter 등이 있다.

3) 동기 계수기(Synchronous counter)

동기 계수기는 조합 회로를 통해 클럭 신호를 카운터의 모든 플립플롭에 동시에 인가하는 계수기이다. 비동기 계수기에 비해 회로가 복잡하지만 클럭이 지연되지 않기 때문에 작동 속도는 더 빠르다.

4) 십진 계수기(Decade counter)

십진 계수기는 십진수를 순차적으로 세는 회로이다. 그림 2 와 같이 0 부터 9 까지 반복하여 헤아린다.

그림 2 십진 계수기의 상태 전이도

5) 상태 전이도 및 전이표(state diagram & state transition table)

상태 전이도와 전이표는 순차 회로의 상태 변화를 그림 혹은 표로 나타낸 것이다. 예를 들어 3 비트 이진 계수기는 아래 그림 3 과 같이 나타낼 수 있다.

AV	Present State			Next State		
000	C	В	A	C+	B+	A*
000 (111)	0	0	0	0	0	1
*	0	0	1	0	1	0
<u>001</u> <u>110</u>	0	1	0	0	1	1
	0	1	1	1	0	0
010) (101)	1	0	0	1	0	1
	1	0	1	1	1	0
011 (100)	1	1	0	1	1	1
	1	1	1	0	0	0

그림 3 3 비트 이진 계수기의 상태 전이도와 전이표

3. 실험 준비

- 1) JK 플립플롭을 이용한 Synchronous decade BCD counter
- ㄱ. 계수기의 상태 전이도를 그린다.

L. 상태 전이표를 작성하고 각 상태 전환에 필요한 JK 플립플롭의 입력을 구한다.

	Presen	t state			Next	state									
Α	В	C	D	Α	В	С	D	JA	KA	JB	KB	JC	KC	JD	KD
0	0	0	0	0	0	0	1	0	Χ	0	Χ	0	Χ	1	Χ
0	0	0	1	0	0	1	0	0	X	0	X	1	X	X	1
0	0	1	0	0	0	1	1	0	Χ	0	X	X	0	1	Χ
0	0	1	1	0	1	0	0	0	Χ	1	X	X	1	X	1
0	1	0	0	0	1	0	1	0	Χ	X	0	0	Χ	1	Χ
0	1	0	1	0	1	1	0	0	Χ	X	0	1	Χ	Х	1
0	1	1	0	0	1	1	1	0	Χ	X	0	X	0	1	Χ
0	1	1	1	1	0	0	0	1	Χ	X	1	X	1	Х	1
1	0	0	0	1	0	0	1	X	0	0	X	0	X	1	X
1	0	0	1	0	0	0	0	Х	1	0	Χ	0	Χ	Х	1
1	0	1	0	X	X	X	X	Х	Χ	Х	X	Х	Χ	Х	Χ
1	0	1	1	X	X	X	X	X	Χ	X	X	X	Χ	Х	Χ
1	1	0	0	X	X	X	X	X	X	X	X	X	X	X	X
1	1	0	1	X	X	Χ	X	X	X	X	X	X	X	X	X
1	1	1	0	X	X	Χ	X	X	X	X	X	X	X	X	X
1	1	1	1	X	Χ	Χ	Χ	Х	Χ	Х	Χ	Х	Χ	Х	X

□. JK 플립플롭의 입력을 단순화하여 나타낸다.

AB CD	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	Х	Х	x	Х
10	Х	Х	Х	Х

 $J_A = BCD$

CD AB	00	01	11	10
00	Х	X	X	Χ
01	Х	X	x	X
11	Х	X	X	Х
10	0	1	x/	Х

 $K_A = D$

CD AB	00	01	11	10
00	0	0	1	0
01	Х	Х	x	Х
11	Х	Х	X	Х
10	0	0	x	Х

 $J_B = CD$

CD AB	00	01	11	10
00	Χ	Х	X	Х
01	0	0	1	0
11	Х	Х	X	Х
10	Х	Х	x	Х

 $K_A = CD$

CD AB	00	01	11	10
00	0	1	X	X
01	0	1	x	Х
11	Х	Х	Х	Х
10	0	0	Х	Х

 $J_C = A'D$

CD AB	00	01	11	10
00	Х	X	1	0
01	Х	X	1	0
11	Х	X	X	Х
10	Х	X	x/	Х

 $K_C = D$

AB CD	00	01	11	10
00	1	X	X	1
01	1	Χ	Х	1
11	x	Х	Х	x
10	1	X	X	X

 $J_D = 1$

CD AB	00	01	11	10
00	X/	1	1	X
01	/ x	1	1	x
11	x	Х	Х	x
10	X	1	X	X

 $K_D = 1$

ㄹ. 전체 회로도를 그린다.

- 2) JK 플립플롭을 이용한 두 자릿수 Decade BCD counter (0~99)
- ㄱ. 계수기의 개략적인 상태 전이도를 그린다.

∟. 1)의 계수기를 활용하여 회로도를 그린다.

- 3) D 플립플롭을 이용한 3, 6, 9 계수기 (0→3→6→9→13→6→9→13→...)
- ㄱ. 계수기의 상태 전이도를 그린다.

L. 상태 전이표를 작성하고 각 상태 전환에 필요한 D 플립플롭의 입력을 구한다.

	Presen	t state			Next	state					
Α	В	С	D	Α	В	С	D	DA	DB	DC	DD
0	0	0	0	0	0	1	1	0	0	1	1
0	0	0	1	X	Χ	Χ	Χ	Х	X	X	Х
0	0	1	0	X	Χ	Χ	Χ	X	Х	X	Х
0	0	1	1	0	1	1	0	0	1	1	0
0	1	0	0	Х	Χ	Χ	Χ	Χ	Х	X	Х
0	1	0	1	Х	Χ	Χ	Χ	Χ	Х	Х	Х
0	1	1	0	1	0	0	1	1	0	0	1
0	1	1	1	X	Χ	Χ	Χ	Х	Х	X	Х
1	0	0	0	Х	Χ	Χ	Χ	Χ	Х	X	Х
1	0	0	1	1	1	0	1	1	1	0	1
1	0	1	0	X	Χ	Χ	Χ	Х	Х	X	Х
1	0	1	1	X	Χ	Χ	Χ	Х	Х	X	Х
1	1	0	0	X	Χ	Χ	Χ	Х	Х	X	Х
1	1	0	1	0	1	1	0	0	1	1	0
1	1	1	0	X	Χ	Χ	Χ	Х	Х	X	Х
1	1	1	1	X	Χ	X	Χ	Χ	X	Х	X

ㄷ. 플립플롭의 입력을 단순화하여 나타낸다.

CD AB	00	01	11	10
00	0	Х	0	Х
01	Х	Х	X	1
11	Х	0	X	X/
10	X	1	X	X

 $D_A = AB' + BC$

CD AB	00	01	11	10
00	0	X	1	Х
01	Х	X	x	0
11	Х	1	X	Х
10	Х	1	X/	Х

 $D_B = D$

AB CD	00	01	11	10
00	1	X	1	X
01	Х	X	Х	0
11	X	1	X	X
10	Х	0	Х	Х

 $D_C = A'B' + AB$

CD AB	00	01	11	10
00	1	X	0	X
01	x \	Х	Χ	1
11	X	0	Х	X
10	X	1	Х	X

 $D_D = D' + B'C'$

ㄹ. 전체 회로도를 그린다.

4. 결과

- 1) JK 플립플롭을 이용한 Synchronous decade BCD counter
- ㄱ. 제공된 negative edge triggered JK 플립플롭을 사용해 Synchronous decade BCD counter 를 완성한다.
- ∟. Schematic 기능으로 회로를 확인한다.

ㄷ. 테스트벤치를 완성하고 시뮬레이션을 실행하여 정상 작동을 확인한다.

- 2) JK 플립플롭을 이용한 두 자릿수 Decade BCD counter
- ㄱ. 1)에서 구현한 Synchronous decade BCD counter 를 활용하여 두 자릿수 Decade counter 를 완성한다.
- ㄴ. 기능으로 회로를 확인한다.

다. 테스트벤치를 완성하고 시뮬레이션을 실행하여 정상 작동을 확인한다.

3) D 플립플롭을 이용한 3, 6, 9 계수기

- ㄱ. 제공된 Negative edge triggered JK 플립플롭을 사용해 Negative edge triggered D 플립플롭을 완성한다.
- L. 완성한 D 플립플롭을 활용하여 3, 6, 9 계수기를 완성한다.
- □. Schematic 기능으로 회로를 확인한다.

ㄹ. 테스트벤치를 완성하고 시뮬레이션을 실행하여 정상 작동을 확인한다.

1) 2) 3) 시뮬레이션 결과

5. 논의

1) 느낀 점

이번 실험을 통해 순차 회로 중 카운터에 대해 이해할 수 있었다. Asynchronous counter 와 Synchronous counter 의 장단점을 알 수 있었고, 회로의 관점에서 어떤 차이를 가지고 있는지 이해할 수 있었다. 특히 플립플롭을 이용해 구현함으로써 JK 플립플롭과 D 플립플롭에 대한 이해도 역시 향상시킬 수 있었던 실험이었다.

2) 어려웠던 점 및 해결 방법

이번 실험에서는 특히 테스트벤치를 확인하는 과정이 어려웠다고 생각한다.

Synchronous 한 상황에서 어떻게 하면 원하는 값과 비교하여 Pass 시킬 수 있을지 코드를 고안하는 과정에 있어서 많이 헤맸던 것 같다.

이제껏 주어졌던 테스트벤치 코드는 내가 구현하는 것이 아니라, 이미 구현되어 있던 코드를 이용하여 확인하는 과정에만 그쳤기 때문에 테스트벤치 구현에 있어서 큰 어려움을 겪지 못했었는데, 이번 실험에서 테스트벤치 구현을 위해 지난 실험의 테스트벤치 코드를 분석해봄으로써 그제서야 왜 이런 테스트벤치 코드를 구성하였는지 이해할 수 있었고, 그 과정을 통해 그나마 어려웠던 점들을 하나씩 해결할 수 있었던 것 같다.

특히 두 번째 실험의 테스트벤치를 구현할 때 많이 헤맸었는데, 그 이유는 두 번째 회로는 decade BCD counter 가 두 개 연결되어 있는 구조로, 두 번째 counter 의 clock 신호는 첫 번째 counter 의 count[3]과 count[1]이 모두 1 이 될 때, 활성화된다. 따라서 바로 값을 비교하는 것이

아니라, 두 번째 counter를 먼저 활성화시켜줘야 하는 과정이 있어야 한다는 것을 깨닫는 데까지 꽤 많은 시간이 들었던 것 같다.