Real-Time Breach Alerts using Machine Learning

Problem It Solves and Its Relevance

Modern computer networks are constantly exposed to cyber threats such as unauthorized access, data breaches, and DoS attacks. Manually monitoring such threats is time-consuming and often ineffective. This project uses machine learning to build a Real-Time Breach Alert System that can automatically detect malicious activity and notify users immediately.

The system is built using the UNSW-NB15 dataset, which includes detailed records of network activity labeled as either normal or malicious. By training a machine learning model to recognize the patterns of these records, the solution helps users detect potential security breaches in real-time.

Dataset Overview

Dataset: UNSW-NB15

Source: Australian Centre for Cyber Security

Records: ~2.5 million Features per record: 100+

Types of traffic: Normal + 9 attack categories (e.g., DoS, Shellcode, Worms)

Key features used:

dur: Duration of connection

• sbytes, dbytes: Byte size in each direction

• rate, sload, dload: Data rates and loads

• sttl, dttl: Time-to-live values

• tcprtt, synack, ackdat: TCP-specific handshake metrics

• proto, service, state: Protocol and connection status

Target variable:

• label: Binary (0 = Normal, 1 = Attack)

Model Selection and Performance

Initial Attempt – Isolation Forest (Unsupervised)

We first tried using an Isolation Forest, which is good for anomaly detection. However, performance was poor:

Accuracy: 38%

Recall (Attack): 7%

The model missed most attacks because it could not learn from labeled data.

Final Model – Random Forest (Supervised)

We switched to a Random Forest classifier, a supervised method, and balanced the dataset using SMOTE. This resulted in a major improvement:

Performance Metrics:

Accuracy: 94%

Precision (Attack): 96%

• Recall (Attack): 92%

• F1-Score (Attack): 94%

Confusion Matrix: Predicted Normal Attack Actual Normal 31848 1129 Actual Attack 2571 30322

The model now reliably identifies attacks and minimizes false positives.

Integration with the Prototype

The machine learning model is integrated into a user-focused security application. Here's how it works:

- 1. Input: The app continuously monitors user network activity (e.g., packets, logins).
- 2. ML Processing: Each connection is passed through the trained Random Forest model.
- 3. Detection:
 - If normal \rightarrow no action.
 - \circ If anomalous \rightarrow trigger breach alert.
- 4. Alert System: Real-time notifications (e.g., push or dashboard alert) are sent to the user.

This system ensures proactive security and helps users act quickly before real damage occurs.

How the Model Uses the Selected Features

During Training:

The Random Forest model is an ensemble of decision trees. Each tree learns simple rules using feature thresholds to classify traffic as normal or attack.

Example rule learned:

```
if proto == 'tcp' AND sbytes > 5000 AND rate > 0.8:
    → Predict: Attack
else:
    → Predict: Normal
```

- Trees vote, and the majority decision is used.
- It learns interactions like: proto = udp + sload high = suspicious.

Real-Time Prediction Flow

- 1. Feature Extraction:
 - o Collect dur, proto, sbytes, rate, etc. from a new connection.
- 2. Preprocessing:
 - o Encode categorical values, scale numeric values.
- 3. Prediction:
 - o Pass values through the trained model.
 - Model votes based on its learned patterns.
- 4. Decision:
 - Predicts 1 (attack) or 0 (normal).
 - o Triggers alert if it's an attack.

Real Example Patterns Learned:

Situation	Feature Behavior	Model Decision
Data exfiltration	sbytes and sload very high	Attack
Port scanning	dur very low, rate high, sttl low	Attack
Normal web traffic	proto = TCP, balanced flow,	
	low rate	
Flood attack		

Situation Feature Behavior Model Decision

Data exfiltration sbytes and sload very high 🕍 Attack

Port scanning dur very low, rate high, sttl low 🕍 Attack

Situation Feature Behavior Model Decision

Flood attack rate very high, dbytes = 0, state = CON 🕍 Attack

- Why Random Forest Works Well
 - Learns from labeled data
 - Handles categorical and numeric features
 - Captures non-linear relationships
 - Resistant to noise and overfitting
- Summary
 - We solved a real-world problem: detecting breaches in real-time.
 - We tested Isolation Forest first performance was poor.
 - Then we used Random Forest with SMOTE performance was excellent.
 - The model is now integrated into a working prototype to protect users in real-time.

This project shows how machine learning can enhance cybersecurity by providing intelligent and timely threat detection.