4440.2. Выразить rot a(x, y, z) а) в цилиндрических координатах; б) в сферических координатах.

4441. Найти поток вектора т:

а) через боковую поверхность конуса $x^2 + y^2 \le z^2$ (0 $\le z \le h$);

б) через основание этого конуса.

4442. Найти поток вектора a = iyz + jxz + kxy: а) через боковую поверхность цилиндра $x^2 + y^2 \le a^2$ ($0 \le z \le h$); б) через полную поверхность этого цилиндра.

4443. Найти поток радиуса-вектора г через поверх-

HOCTH $z = 1 - \sqrt{x^2 + y^2}$ $(0 \le z \le 1)$.

4444. Найти поток вектора $a=x^2i+y^2j+z^2k$ через положительный октант сферы $x^2+y^2+z^2=1, x>0, y>0, z>0$.

4445. Найти поток вектора a = yi + zj + xk через полную поверхность пирамиды, ограниченной плоскостями x = 0, y = 0, z = 0, x + y + z = a (a > 0).

Проверить результат, применяя формулу Остроградского.

4445.1. Найти поток вектора $a = x^3 i + y^3 j + z^3 k$ через сферу $x^2 + y^2 + z^2 = x$.

4446. Доказать, что поток вектора a через поверхность S, заданную уравнением r=r (u, v) $((u, v) \in \Omega)$, равен

$$\iint_{S} a_{n} dS = \iint_{\Omega} \left(\boldsymbol{a} \frac{\partial r}{\partial u} \frac{\partial r}{\partial v} \right) du dv,$$

где $a_n = an$ и n - eдиничный вектор нормали к поверхности S.

4447. Найти поток вектора $a = mr/r^3$ (m— постоянная) через замкнутую поверхность S, окружающую начало координат.

4448. Найти поток вектора
$$a(r) = \sum_{i=1}^{n} \operatorname{grad}\left(-\frac{e_i}{4\pi r_i}\right)$$
,

где e_i — постоянные и r_i — расстояния точек M_i (источники) от переменной точки M (r), через замкнутую поверхность S, окружающую точки M_i ($i=1,2,\ldots,n$).

4449. Доказать, что
$$\iint_{S} \frac{\partial u}{\partial n} dS = \iiint_{V} \nabla^{2}u \, dx \, dy \, dz$$
,

где поверхность S ограничивает тело V.

4450. Количество тепла, протекающее в поле температуры и за единицу времени через элемент поверхности