Бесконечно малые и бесконечно большие функции

Функция f(x) называется бесконечно малой в точке a (при $x \to a$), если $\lim_{x \to a} f(x) = 0$

иначе,

$$\forall \varepsilon > 0 \ \exists \delta > 0, 0 < |x - a| < \delta$$

 $\Rightarrow |f(x)| < \varepsilon$

Функция f(x) называется бесконечно большой в точке a (при $x \rightarrow a$), если

$$\forall A > 0 \ \exists \delta > 0, 0 < |x - a| < \delta \Longrightarrow |f(x)| > A$$
$$\lim_{x \to a} f(x) = \infty$$

Пример 3: Функция $f(x) = \frac{1}{x}$ является б. б.

в точке x = 0.

(Для доказательства достаточно $\forall A > 0$ взять $\delta = \frac{1}{4}$).

Аналогично определяется б. б. функция при $x \to +\infty$ $(-\infty)$, а также при $x \to a + 0$ (-0)

<u>Теорема</u> (о связи бесконечно малой и бесконечно большой функций)

Пусть f(x) определена в некоторой проколотой окрестности точки a, то

- 1) Если f(x) б. б. в точке а функция, то в некоторой проколотой окрестности точки а определена функция $g(x) = \frac{1}{f(x)}$ и она является б. м. в точке а.
- 2) Если f(x) б. м. в точке а функция, то в некоторой проколотой окрестности точки а определена функция $g(x) = \frac{1}{f(x)}$ и она является б. б. в точке а.

Основные свойства бесконечно малых функций

Теорема1. Сумма и разность двух бесконечно малых в точке а функций есть функция бесконечно малая в точке а.

Следствие. Алгебраическая сумма конечного числа б. м. в точке a функций есть функция бесконечно малая в точке a.

Теорема 2. Произведение бесконечно малой в точке а функции на ограниченную в окрестности точки а функцию есть функция бесконечно малая в точке а.

Следствие 1. Произведение конечного числа ограниченных функций, из которых хотя бы одна — б. м. в точке a, есть функция бесконечно малая в точке a.

Следствие 2. Частное от деления бесконечно малой в точке а функции на функцию, имеющую отличный от нуля предел в точке а есть функция бесконечно малая в точке a.

<u>Сравнение бесконечно малых и бесконечно</u> <u>больших функций</u>

Пусть f(x) и g(x) – б. м. в точке a. Функция f(x) называется бесконечно малой более высокого порядка (имеет более высокий порядок малости), чем g(x) при $x \to a$, если $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$

Обозначение f = o(g) при $x \to a (o - малое om g)$

Пример 1. $x^2 = o(x)$ при $x \to 0$.

Функции f(x) и g(x) называются бесконечно малыми одного порядка (имеют одинаковый порядок малости) при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = A \neq 0$$

Обозначение f = O(g) при $x \to a$ (O - большое от g) Пример 2. $2x^2 + x^3 = O(x^2)$ при $x \to 0$,

так как

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{2x^2 + x^3}{x^2} = 2$$

Если функции $f^k(x)$ и g(x) бесконечно малые одного порядка при $x \to a$, причем k > 0, то говорят, что б. м. g(x) имеет порядок малости k по сравнению c f(x).

Пример 3. Определить порядок б. м.

$$y = xe^x$$

по сравнению с x ($x \rightarrow a$).

Решение. Заметим, что

$$\lim_{x \to 0} \frac{xe^x}{x} = 1$$

Следовательно, *у* имеет порядок малости 1 по сравнению с *x*, т.е. $y \sim x$ при $x \to 0$.

Пример 3. Определить порядок б. м.

$$y = \sqrt{1 + x \sin x} - 1$$

по сравнению с x.

Решение. Заметим, что

$$\lim_{x \to 0} \frac{\sqrt{1 + x \sin x} - 1}{x^2} =$$

$$\lim_{x \to 0} \frac{(\sqrt{1 + x \sin x} - 1)(\sqrt{1 + x \sin x} + 1)}{x^2(\sqrt{1 + x \sin x} + 1)} =$$

$$= \lim_{x \to 0} \frac{1 + x \sin x - 1}{x^2 \left(\sqrt{1 + x \sin x} + 1\right)} =$$

$$\lim_{x \to 0} \frac{x^2}{x^2 \left(\sqrt{1 + x \sin x} + 1\right)} =$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{1 + x \sin x} + 1} = \frac{1}{2}$$

Это означает, что б. м. $y = O(x^2)$, следовательно, y имеет порядок малости k = 2 по сравнению с x.

Функции f(x) и g(x) называются эквивалентными бесконечно малыми при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Обозначение $f \sim g$ при $x \rightarrow a$

Пример 4.
$$x^2 + x^3 \sim x^2$$
 при $x \to 0$.

Замечание. Равенства с символом о — малое, как правило, верны только в одну сторону, слева направо. Например, $x^2 = o(x)$, но $x \neq o(x^2)$ при $x \to 0$.

Пусть f(x) и g(x) – б. б. в точке a.

Функция f(x) имеет более высокий порядок роста, чем g(x) при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \infty$$

<u>Пример 5.</u> Функция $f(x) = \frac{1}{x^2}$ имеет более

высокий порядок роста, чем функция $g(x) = \frac{1}{x}$ при

 $x \to 0$, так как

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{x} = \infty$$

Функции f(x) и g(x) имеют одинаковый порядок роста при $x \to a$, если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = A \neq 0$$

Пример 6. Функции $f(x) = \frac{1}{x+1}$ и $g(x) = \frac{1}{x}$ имеют одинаковый порядок роста при $x \to 0$.

Если функции $f^k(x)$ и g(x) бесконечно большие одного порядка при $x \to a$, причем k > 0, то говорят, что б. б. g(x) имеет порядок роста k по сравнению c f(x).

Основные эквивалентные соотношения $(x \to 0)$

1.	$\sin x \sim x$	6.	$\ln(1+x)\sim x$
2.	$\arcsin x \sim x$	7.	$\log_a x \sim \frac{x}{\ln a}$
3.	$tgx \sim x$	8.	$a^x - 1 \sim x \ln a$
4.	$arctgx \sim x$	9.	$e^x - 1 \sim x$
5.	$1-\cos x \sim \frac{x^2}{2}$	10.	$(1+x)^m-1\sim mx$

■ Докажем, например, 7):

$$\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \lim_{x \to 0} \log_a (1+x)^{\frac{1}{x}} = \log_a e = \frac{1}{\ln a}$$

Отсюда при $x \to 0$ получим

$$\log_a(1+x) \sim \frac{x}{\ln a}$$

Как частный случай получим 6):

$$ln(1+x)\sim x$$

Докажем 8):

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \begin{vmatrix} a^x - 1 = y \\ y \to 0 \\ \pi p \mu \ x \to 0 \end{vmatrix} = \lim_{y \to 0} \frac{y}{\log_a(1 + y)} = \ln a$$

Следовательно,

$$a^x - 1 \sim x \ln a$$
 при $x \to 0$

Как частный случай получим 9):

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \ln e = 1$$

Следовательно,

$$e^x - 1 \sim x$$
 при $x \to 0$

Теорема 1. Предел отношения двух бесконечно малых функций не изменится, если каждую или одну из них заменить эквивалентной ей бесконечно малой.

Теорема 2. Разность двух эквивалентных бесконечно малых функций есть бесконечно малая более высокого порядка, чем каждая из них.

Теорема 3. Сумма конечного числа бесконечно малых функций разных порядков эквивалентна слагаемому низшего порядка.

Докажем **Теорему 1**.

Пусть $f(x) \sim f_1(x)$, $g(x) \sim g_1(x)$ при $x \to a$. Тогда

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \left(\frac{f(x)}{g(x)} \cdot \frac{f_1(x)}{f_1(x)} \cdot \frac{g_1(x)}{g_1(x)} \right) =$$

$$= \lim_{x \to a} \frac{f(x)}{f_1(x)} \cdot \lim_{x \to a} \frac{g_1(x)}{g(x)} \cdot \lim_{x \to a} \frac{f_1(x)}{g_1(x)}$$
$$= 1 \cdot 1 \cdot \lim_{x \to a} \frac{f_1(x)}{g_1(x)}$$

Пример.

$$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0{\sim}a_nx^n$$
 при $x\to\infty$, $a_n\neq 0$

Действительно,

$$\lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0}{a_n x^n} = \lim_{x \to \infty} 1 + \frac{a_{n-1}}{a_n} \frac{1}{x} + \frac{a_{n-2}}{a_n} \frac{1}{x^2} + \dots + \frac{a_1}{a_n} \frac{1}{x^{n-1}} + \frac{a_0}{a_n} \frac{1}{x^n} = 1$$

Пример 7.

$$\lim_{x \to 0} \frac{\sin 3x}{\sin 7x} = \lim_{x \to 0} \frac{3x}{7x} = \frac{3}{7}$$

Пример 8.

$$\lim_{x \to \infty} \frac{x^3 + 2x^2 + x + 4}{4x^3 + 3x^2 + 2x - 1} = \lim_{x \to \infty} \frac{x^3}{4x^3} = \frac{1}{4}$$

Непрерывность функции

Непрерывность функции в точке

Определение1. Функция f(x) называется непрерывной в точке a, если

$$\lim_{x \to a} f(x) = f(a)$$

- 1) Функция f(x) определена в точке а и в некоторой окрестности точки a;
- 2) Функция f(x) имеет предел при $x \to a$;
- 3) Предел функции в точке а равен значению функции в точке а.

Утверждение. При нахождении предела непрерывной функции f(x) можно перейти к пределу под знаком функции.

Действительно,

$$\lim_{x \to a} f(x) = f(a) = f\left(\lim_{x \to a} x\right)$$

Односторонняя непрерывность

Пусть функция f(x) определена в правой полуокрестности точки a, т.е. при

$$a \le x \le a + \delta$$

Функция f(x) называется непрерывной справа в точке a, если

$$\lim_{x \to a+0} f(x) = f(a)$$

Аналогично определяется *непрерывность слева* в точке а:

$$\lim_{x \to a-0} f(x) = f(a)$$

Пример 9. Рассмотрим функцию f(x) = [x] (целая часть x).

Для любого $n \in \mathbb{Z}$ имеем:

$$f(n) = n$$

$$\lim_{x \to n+0} f(x) = n$$

$$\lim_{x \to n-0} f(x) = n-1$$

Поэтому функция f(x) = [x] непрерывна в точках x = n только справа, а в остальных точках и справа и слева.

Теорема. Если функция f(x) непрерывна в точке а слева и справа, то она непрерывна в точке a.

Пусть функция y = f(x) определена в некотором интервале (a; b).

Возьмем произвольную точку $x_0 \in (a; b)$. Для любого $x \in (a; b)$ разность $x - x_0 = \Delta x - n p u p a u p e u p$

$$x = x_0 + \Delta x$$

Разность соответствующих значений функции

$$\Delta y = f(x) - f(x_0) -$$
приращение функции $f(x)$ в точке x_0

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

Запишем равенство $\lim_{x \to x_0} f(x) = f(x_0)$ в новых обозначениях.

$$\Delta x = x - x_0 \to 0$$
 при $x \to x_0$

$$\lim_{x \to x_0} f(x) - f(x_0) = \lim_{x \to x_0} (f(x) - f(x_0)) =$$

$$= \lim_{x \to x_0} \Delta y = 0 = \lim_{\Delta x \to 0} \Delta y = 0$$

Определение 2. Функция f(x) называется непрерывной в точке a, если она определена в точке a и ее окрестности и бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции:

$$\lim_{\Delta x \to 0} \Delta y = 0$$

Непрерывность функции в интервале и на отрезке

Функция f(x) называется непрерывной в интервале (a;b), если она непрерывна в каждой точке этого интервала.

Функция f(x) называется непрерывной на отрезке [a;b], если она непрерывна в интервале (a;b), в точке a непрерывна справа, а в точке b непрерывна слева.

Точки разрыва функции

Предельная точка области определения функции, в которой функция не является непрерывной называется *точкой разрыва функции*.

Классификация точек разрыва функции

Устранимый разрыв. Точка a называется *точкой устранимого разрыва функции* f(x), если существует

$$\lim_{x \to a} f(x) = b$$

но в точке x = a функция f(x) либо не определена, либо $f(a) \neq b$.

Если положить f(a) = b разрыв будет устранен, т.е. функция станет непрерывной в точке a.

Пример 10. Рассмотрим функцию

$$f(x) = \frac{\sin x}{x}$$

 $f(x)=rac{\sin x}{x}$ $\lim_{x o 0}rac{\sin x}{x}=1$, однако в точке x=0 эта функция не определена.

Если положить

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{если } x \neq 0 \\ 1, & \text{если } x = 0 \end{cases}$$

то функция будет непрерывной в точке x = 0.

 Разрыв 1-го рода.
 Точка a называется точкой разрыва 1-го рода функции f(x), если существуют $\lim_{x \to a+0} f(x) = b \quad \text{и} \quad \lim_{x \to a-0} f(x) = c$

но они не равны.

Величину |b-c| называют *скачком функции* в точке разрыва 1-го рода.

Пример11. Рассмотрим функцию f(x) = [x] Точки $x = n, n \in \mathbb{Z}$ являются точками разрыва 1-го рода данной функции, так как:

$$\lim_{\substack{x \to n+0 \\ x \to n-0}} f(x) = n$$

Разрыв 2-го рода. Точка а называется точкой разрыва 2-го рода функции f(x), если в этой точке не существует по крайней мере один из односторонних пределов

$$\lim_{x \to a+0} f(x)$$
 и $\lim_{x \to a-0} f(x)$

Пример 12. Точка x = 0 является точкой разрыва 2-го рода функции $f(x) = \sin \frac{1}{x}$, так как оба односторонних предела

$$\lim_{x \to +0} \sin \frac{1}{x} \quad \text{и } \lim_{x \to -0} \sin \frac{1}{x}$$

не существуют.

Пример 13. Точка x = 1 является точкой разрыва 2-го рода функции

$$f(x) = 2^{1/x-1}$$

так как

$$\lim_{x \to 1-0} 2^{1/x-1} = 0$$

$$\lim_{x \to 1+0} 2^{1/x-1} = \infty$$

Свойства непрерывных функций

Теорема 1. Если функции f(x) и g(x) непрерывны в точке a, то функции $f(x) \pm g(x)$, $f(x) \cdot g(x)$, f(x)/g(x) (при условии $g(a) \neq 0$ также непрерывны в точке a.

Теорема 2. (о непрерывности сложной функции)

Пусть функция t = g(x) непрерывна в точке a, g(a) = b а функция y = f(t) непрерывна в точке b. Тогда сложная функция y = f(g(x)) непрерывна в точке a.

Теорема 3. (о непрерывности обратной функции) Пусть функция y = f(x) определена, строго монотонна и непрерывна на X = [a;b]. Тогда множеством ее значений является Y = [f(a);f(b)]; на [f(a);f(b)] существует обратная функция $x = f^{-1}(y)$; обратная функция также строго монотонна; обратная функция непрерывна на Y = [f(a);f(b)].

Теорема 4. Всякая элементарная функция непрерывна в каждой точке, в которой она определена.

Пример 14. Рассмотрим функцию

$$f(x) = \begin{cases} x^2 + 1, \text{при } x \le 0 \\ 2x + 1, \text{при } 0 < x < 2 \\ x - 2, \text{при } x \ge 2 \end{cases}$$

Функция имеет две точки возможного разрыва:

$$x_1 = 0$$
 и $x_2 = 2$.

Исследуем $x_1 = 0$:

$$f(0) = 1$$

$$\lim_{x \to 0-0} f(x) = \lim_{x \to 0-0} (x^2 + 1) = 1$$

$$\lim_{x \to 0+0} f(x) = \lim_{x \to 0+0} (2x+1) = 1$$

 $x_1 = 0$ — точка непрерывности данной функции.

Исследуем $x_2 = 2$:

$$f(2) = 0$$

$$\lim_{x \to 0-0} f(x) = \lim_{x \to 2-0} (2x+1) = 5$$

$$\lim_{x \to 0+0} f(x) = \lim_{x \to 2+0} (x-2) = 0$$

 $x_2 = 2$ — точка разрыва 1-го рода данной функции

