Table of Contents

- 1. Principle of single-molecule imaging
 - 1. AIM
- 2. The bleaching in PALM is time-consuming, especially in spinning disk
 - 1. Comparison between confocal and widefield
 - 2. Theory explanation
 - 1. Parameter
 - 2. Plugin parameters
- 3. STORM is less time consuming
 - 1. The photoswitching mechanism
 - 2. How to calculate blinking rate?
 - 1. Parameters
 - 2. Plugin parameters
 - 3. How to determine the labeling density

Principle of single-molecule imaging

To capture single molecule signal, two conditions must be achieved. (ref)

- 1. High enough contrast
- 2. Only one ON-state molecule in the diffraction-limited region

AIM: High SBR and sparse

PALM:

High SBR & Sparse: bleaching

STORM:

High SBR & Sparse: OFF state dominant

The bleaching in PALM is time-consuming, especially in spinning disk.

For PALM, typical bleaching time takes about 0.5-1s, and frame number is about 10^4 to 10^5 frames. (ref) (2-10 hrs in total)

Comparison between widefield bleaching and confocal bleaching

Data ref

Condition:

- Widefield: 40x dry objective (Nikon Plan Fluorite, NA = 0.85), metal halide illumination source
- 2. Confocal: 40x oil immersion objective (Olympus UPlan Apo, NA = 1.00), 543-nm laser
- 3. Laser intensity = ~475 mW/cm^2 power (Widefield), 100 μW (Confocal)

Widefield

Confocal

In most cases, the calculated $t_{1/2}$ for confocal bleaching is more than an order of magnitude greater than that for widefield illumination. (ref)

Theory explanation

ref

Parameters (bleaching)

P: power

A: scanning area

N: number of beamlet

 ω_1, ω_2 : the radial, the distances from the center of the volume element in the radial and axial direction, respectively, at which the laser intensity has dropped by a factor of e^2 , assuming a Gaussian beam profile.

Photobleaching often takes place from the triplet state after intersystem crossing in the excited fluorophore. (Let's ignore k_2 for a while, i.e., $k_2 << 1$)

According to this model, triplet state population (in equilibrium) is important!

Plugin the parameters (bleaching)

 $P=20mW, A=300\mu m*300\mu m, N=100, \omega_1=0.2\mu m, \omega_2=0.5\mu m, V_0=rac{4}{3}\pi\omega_1^2\omega_2=8.38*10^{-20}m^3$

Spinning disk

Consider the limiting case 1: the disk is not spinning.

- 1. At the excitation points: $P=20mW\Rightarrow T_{ea,spot}pprox 0.63$
- 2. Outside the excitation points: $P=0 \Rightarrow T_{eq,o}=0$

3.
$$T_{eq}=T_{eq,spot}*rac{N\pi\omega_1^2}{A}+T_{eq,o}*rac{A-N\pi\omega_1^2}{A}=0.63*rac{100*\pi*(0.2\mu m)^2}{300\mu m*300\mu m}=1.39*10^{-4}$$

Consider the limiting case 2: the disk spins very fast \Rightarrow can be considered as a uniform widefield light source.

1.
$$P_{eff}=P*rac{N\pi\omega_1^2}{A}=2.8\mu W\Rightarrow T_{eq}pprox 0.0037$$

Between two limiting cases, $T_{eq} pprox 1.39*10^{-4}$ ~ $3.7*10^{-3}$

$$r_{bleach,spin} = k_4 * 1.39 * 10^{-4} - k_4 * 3.7 * 10^{-3}$$

Widefield

Widefield bleaching rate is the same as the second case of spinning disk. $\Rightarrow r_{bleach,wide} = k_4 * 3.7 * 10^{-3}$

 \Rightarrow (Spinnig disk) confocal bleaching time is more than an order of magnitude greater than that for widefield illumination. **Agreed with observation!**

Why we need that many frames?

Nyquist condition. Can be calculated...

STORM is less time consuming.

Unlike PALM that has fixed (ON-state) bleaching time, the ON/OFF states dynamics in STORM can be adjusted by external means (chemical condition, excitation power). \Rightarrow less time consuming.

The photoswitching mechanism (Theory)

打561 Kaede會不會回到488的態? 也沒關係,還是在dark state

A three-state model. Using this model can explain why there is fast blinking.

Mathematically, we can use three ODE to describe the above system.

$$rac{d}{dt} egin{pmatrix} S_0(t) \ S_1(t) \ T(t) \end{pmatrix} = egin{pmatrix} -k_{12} & k_{21} & k_{31} \ k_{12} & -(k_{23}+k_{21}) & 0 \ k_{23} & -k_{31} \end{pmatrix} egin{pmatrix} S_0(t) \ S_1(t) \ T(t) \end{pmatrix}$$

Solve for the eigenvalue equation

$$\lambda(\lambda^2 + (k_{23} + k_{21} + k_{12} + k_{31})\lambda + k_{12}k_{23} + k_{31}k_{23} + k_{31}k_{21}) = 0$$

for the middle matrix. We have three eigenvalues $\lambda_1=0,\lambda_2,\lambda_3$, and corresponding eigenvectors ${\bf x_1,x_2,x_3}$

Hence, the general solution of
$$X(t)=egin{pmatrix} S_0(t) \\ S_1(t) \\ T(t) \end{pmatrix}=c_1e^{\lambda_1t}\mathbf{x}_1+c_2e^{\lambda_2t}\mathbf{x}_2+c_3e^{\lambda_3t}\mathbf{x}_3$$

- ullet Since $\lambda_1=0$, the system will approach to a steady state when $t o\infty$.
- λ_2 is a very large term. Hard to be measured.

• λ_3 can be measured. Assuming $k_{12}+k_{21}>>k_{31}+k_{23}$, then $\lambda_3=-k_{31}-rac{k_{12}k_{23}}{k_{12}+k_{21}}$, $T_{eq}=rac{k_{23}k_{12}}{k_{12}(k_{23}+k_{31})+k_{31}(k_{21}+k_{23})}$

Combining the following effects to autocorrelation function:

- diffusion of molecule in and out the laser volume
- molecules entering and leaving triplet state
 We have our autocorrelation function

$$g(\tau) = 1 + \frac{1}{N} \left(\frac{1}{1 + 4D\tau/\omega_1^2} \right) \left(\frac{1}{1 + 4D\tau/\omega_2^2} \right)^{1/2} \times (1 - T_{eq} + T_{eq} e^{-\lambda_3} \tau)$$

A typical relation between λ_3 (the rate at which there is a population buildup in the triplet state) and intensity.

Relation between T_{eq} and intensity

Physical meaning of λ_3 and T_{eq}

 \Rightarrow **Blinking rate** is dependent on λ_3 and labelling density ρ .

How to calculate blinking rate?

Parameters:

 ρ : labeling density

N: number of beamlet

 ω_1,ω_2 : the radial, the distances from the center of the volume element in the radial and axial direction, respectively, at which the laser intensity has dropped by a factor of e^2 , assuming a Gaussian beam profile.

 $V_0=rac{4}{3}\pi\omega_1^2\omega_2$: volume of one excitation beamlet $NV_0
ho=rac{NV_0}{d^3}$: total number of molecules in the excitation volume.

P: power of total beamlets $\Rightarrow \frac{P}{N}$: power of individual beamlets

A: scanning area

 λ_3 : the rate at which there is a population buildup in the triplet state

 T_{eq} : relative triplet state population in equilibrium

Plugin the parameters

$$P=20mW, A=300\mu m*300\mu m, N=1000, \omega_1=0.2\mu m, \omega_2=0.5\mu m, V_0=rac{4}{3}\pi\omega_1^2\omega_2=8.38*10^{-20}m^3$$

Consider the limiting case 1: the disk is not spinning.

1. At the excitation points:P=20mW and split into 1000 beams $\Rightarrow T_{eq,spot}pprox 0.025, \lambda_{3,spot}=$ $0.5(1/\mu s)$

2. Outside the excitation points:
$$P=0 \Rightarrow T_{ea,o}=0, \lambda_{3,o}=0.5(1/\mu s)$$

2. Outside the excitation points:
$$P=0 \Rightarrow T_{eq,o}=0, \lambda_{3,o}=0.5(1/\mu s)$$

3. $T_{eq}=T_{eq,spot}*\frac{N\pi\omega_1^2}{A}+T_{eq,o}*\frac{A-N\pi\omega_1^2}{A}=0.025*\frac{1000*\pi*(0.2\mu m)^2}{300\mu m*300\mu m}=5.5*10^{-5}$

4.
$$\lambda_3=\lambda_{3,spot}*rac{N\pi\omega_1^2}{A}+\lambda_{3,o}*rac{A-N\pi\omega_1^2}{A}pprox 0.5$$

Consider the limiting case 2: the disk spins very fast \Rightarrow can be considered as a uniform widefield light source.

1.
$$P_{eff}=P*rac{N\pi\omega_1^2}{A}=28\mu W\Rightarrow T_{eq}pprox 0.035, \lambda_3pprox 0.5(1/\mu s)$$

Between two limiting cases, $T_{eq} pprox 5.5*10^{-5}$ \sim $0.035, \lambda_3 pprox 0.5(1/\mu s)$

Case 3: pixel dwell time
$$pprox 0.1 imes rac{1}{k_{23}} = 10^{-7} s = 0.1 \mu s$$

Case 4: pixel dwell time
$$pprox rac{1}{k_{23}} = 10^{-6} s = 1 \mu s$$

Case 5: pixel dwell time
$$pprox 10 imes rac{1}{k_{23}} = 10^{-5} s = 10 \mu s$$

Current state of the art spinning disk rotates 15,000 rpm.ref1

The Nipkow disk is located in a conjugate image plane and a partial rotation of the disk scans the specimen with approximately 1000 individual light beams that can traverse the entire image plane in less than a millisecond.

ref2

Suppose that there are 2048 by 2048 pixels.

Then each beam passes 2048*2048/1000=4194pxls in 1 ms. Hence, pixel dwell time \approx $0.23 \mu s$ And each beam has power $20 mW/1000 = 20 \mu W$

Hence the intensity is $rac{20 \mu W}{\pi \omega_1^2} pprox 11 kW/cm^2$ (Normally, widefield intenisty is about $2kW/cm^2$, an order smaller.)

Visually,

Hence the state-of-the-art spinning disk can be thought as Case 3.

Using the formula
$$X(t)=egin{pmatrix} S_0(t) \\ S_1(t) \\ T(t) \end{pmatrix}=c_1e^{\lambda_1t}\mathbf{x}_1+c_2e^{\lambda_2t}\mathbf{x}_2+c_3e^{\lambda_3t}\mathbf{x}_3$$

After calculation, T(t) is as follows and reaches pprox 0.0026 at $0.2 \mu s$ and then decrease to 0 in $5 \mu s$ (P = 20mW).

Hence, the triplet development is not sufficient during this short time period.

Final comparison: spinning disk vs widefield, condition:

 $I_{spinning} = 11 kW/cm^2$

 $I_{wide} = 1.1 kW/cm^2$

Spinning disk: $0.2 \mu s$ pulse followed by $> 100 \mu s$ rest per pixel

Widefield: continuous illumination

Conclusion: Triplet state population is way more larger in the case of widefield than in spinning disk.

How to determine the labeling density?

Let's assume the labeling density ho is $rac{(L/d)^3}{L^3}=rac{1}{d^3}$ d=1,5,10,20,50,100nm

Rh6G photophysical properties (Case study)

After several fitting procedures, we have

Table I. Obtained Values of the Rate Constants for Rh6G^a

Excitation cross section (10 ⁻¹⁶ cm ²) (at 514 nm excitation wavelength)	$1.3 \pm 0.4 (1.7)$
k ₂₁ (10 ⁶ s ⁻¹) (measured by pulsed laser and TCSPC)	$250 \pm 20 (200)$
$k_{23} (10^6 \text{ s}^{-1})$	$0.9 \pm 0.2 (0.4)$
k ₃₁ (10 ⁶ s ⁻¹)	0.5 ± 0.1 (0.3)

[&]quot;Referenced values within parentheses.

We can also obtain $k_{12} = \sigma_{exc} imes rac{P}{\pi \omega_1^2}$

 $rac{P}{\pi\omega_1^2}$ needs to be expressed as photons per square meter per second. $P=P_{origin}*2.58*10^{18}$

DsRed photophysical properties (Case study)

Kaede photophysical properties (Case study)

Intensity dependence of ACF (The most important application)

Here is the experimental results of ACF curve of red form Kaede when varying the excitation intensity (from 2.5 to $78\frac{kW}{cm^2}$).

After fitting with the model

$$G_{ ext{blink}}(au) = G(0)G_{ ext{diff}}(au)\prod_{ ext{i}} X_{ ext{i}}(au)$$

$$X_{i}(\tau) = (1 - F_{i})^{-1}(1 - F_{i} + F_{i}\exp(-\tau/\tau_{i})),$$

, where au_i is the rate, and F_i is the fraction, we have two blinking dynamics (i=2) with $au_1=6.5$ - 32 kHz(153 μs -30 μs), $F_1pprox 30\%$, and $au_2=1.3$ kHz - 10kHz(769 μs -100 μs), $F_2pprox 20\%$.

