End to End Keyword Spotting Using A Character-Level Recognition and Beam-Search Re-Scoring

Ephrem Mekonnen

University of Trento

Supervisor:
Prof Flisa Ricci

Co-Supervisors:

Dr. Daniele Falavigna (FBK) Dr. Alessio Brutti (FBK)

December 21, 2021

Outline

- Introduction
- 2 Motivation
- Proposed Approach
 - CTC-Decoder:Beam Search Algorithm
 - Keyword Search
- Training Procedure
- Evaluation tasks
- 6 Results
- Conclusion and Future work

Introduction

Keyword Spotting is a task of detecting keywords of interest in an audio stream.

Few applications of Keyword spotting:

- Awaking voice assistants
- Voice Commands
- Phone call routing
- Detecting sensitive words to find crimes

Motivation

- End-to-End architecture has greatly simplified the pipeline for building and applying the KWS system.
- End-to-end KWS systems have shown to surpass the performance of traditional hybrid DNN-HMM solutions.
- It is challenging to minimize errors while operating efficiently in devices with limited resources such as micro-controllers.

This work:

 proposed a Connectionist Temporal Classification based RNN keyword spotting to tackle these issues.

Proposed Approach

Figure: Architecture of the proposed keyword spotting system

CTC-Decoder: Beam Search Decoder

- Detects the character-level output sequence and gives a probability to each detected character.
- Iteratively creates a stack of partial character hypotheses.
- At each time step, retain only K best scoring partial hypotheses of the previous time step, where K specifies the beam width.

Keyword Search Approaches

Approach 1

To pick the keyword w^* that minimises the edit distance between the best hypothesis in the beam, i.e. Π^1 , and the words in the lexicon \mathcal{L}

$$w^* = \underset{w \in \mathcal{L}}{\operatorname{argmin}} \left(edit(w, \Pi^1) \right) \tag{1}$$

where $edit(\cdot)$ is the edit distance between two character sequences.

Approach 2

The search is carried out over the whole set of possible keywords $w \in \mathcal{L}$ and for all K hypotheses in the beam (k = 1 : K)

$$w^* = \underset{w \in \mathcal{L}, k=1:K}{\operatorname{argmax}} \alpha \log(P[\Pi^k | \mathbf{x}]) + (1 - \alpha) \log(\hat{P}[w | \Pi^k, \mathbf{x}])$$
 (2)

where $\hat{P}[w \mid \Pi^k, \mathbf{x}]$ is the posterior probability of a keyword w given an hypothesis Π^k and the acoustic input x.

Ephrem Mekonnen (UNITN)

Training Procedure

- Train the model using 1000 hours of Librispeech.
- Train the model from scratch by varying the size of Google Speech Commands (GSC) (version 2) training material.
- Retrain the *Librispeech* trained model by varying the size of *GSC* (V2) training material.
- Evaluate all trained models on test set of GSC (V2).

Evaluation Tasks

- 12-commands recognition task (12-V2)
 - Recognition of 10 keywords ("Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", and "Go") plus "Unknown" and "Silence" using Google Speech Commands(GSC) (Version 2) data set.
- 35-commands recognition task (35-V2)
 - Recognition of all 35 words using GSC Version 2

Results

Table: KWS accuracy considering different amounts of *GSC* training material for two tasks. Models were either trained from scratch or fine-tuned from a model pre-trained on *LibriSpeech*.

α	Task	Model	Accuracy (%)					
			0% train	5% train	25% train	50% train	75% train	100% train
0.0		GSC only		66.60	77.86	81.82	92.73	93.53
α^{opt}	12-V2	GSC only		66.62	81.14	85.26	94.06	94.61
α^{opt}		pre-trained	91.77	98.27	98.90	98.86	98.87	98.95
		BC-ResNet8						98.70
0.0		GSC only		3.63	24.40	37.96	78.89	82.22
α^{opt}	35-V2	GSC only		3.66	32.19	46.69	81.51	85.47
α^{opt}		pre-trained	73.38	93.01	95.32	95.44	95.43	95.85
		AST						98.11

Comparison with STOA Models

Table: Results of our model as compared to STOA models

Model	Accuracy (%)			
Model	V2-12	V2-35		
AST	-	98.11		
BC-ResNet8	98.70	-		
Res15	98.56	97.00		
KWT-3	98.56 ± 0.07	97.69 ± 0.09		
KWT-2	98.43 ± 0.08	97.74 ± 0.03		
KWT-1	98.08 ± 0.10	96.95 ± 0.14		
Attention RNN	96.90	93.90		
CTC-RNN eq. 1	94.18	84.00		
CTC-RNN eq. 2	95.07	85.92		
CTC-RNN+libri eq. 1	98.62	95.06		
CTC-RNN+libri eq. 2	98.95	95.85		

CER Vs Accuracy of KWS

Figure: Accuracy of the KWS system as a function of the CER of the character recogniser.

Conclusion

- Proposes to use a beam search algorithm working on top of the neural network outputs.
- Proposes to use a large out-of-domain dataset to pretrain the CTC model and fine-tuned using less amount of in-domain training data.
- Proposes a new keyword scoring function.

Future Works

- Address more challenging kws task, like detecting the "most important" words of the talk in real time.
- To address such a task we need to improve the performance of the acoustic model in terms of CER, e.g. to use transformer network to improve efficiency.

Thank You