Misura del rapporto carica su massa di elettroni non relativistici

C.d.L. in Fisica, a.a. 2023-2024 Università degli Studi di Milano

Lucrezia Bioni, Leonardo Cerasi, Giulia Federica Bianca Coppi

1 Introduzione

L'elettrone è una particella carica e massiva: in questa esperienza ci si propone di misurare il suo rapporto carica-massa $\frac{e}{m}$ in condizioni non relativistiche.

Le misurazioni vengono effettuate in tre casi distinti: perpendicolarmente, parallelamente e antiparallelamente al campo magnetico terrestre.

1.1 Metodo

In un'ampolla contenente gas idrogeno a bassa pressione (circa $10^{-2} \, torr$), è posta una resistenza che, essendo percorsa da corrente elettrica alternata, scalda un catodo che produce elettroni per effetto termoelettrico. Questi, accelerati dalla differenza di potenziale ΔV presente tra il catodo e l'anodo, vengono fatti collimare in un unico fascio, la cui traiettoria viene deviata dalla forza di Lorentz - ortogonale al vettore velocità degli elettroni - generata dal campo magnetico B_z prodotto dalle bobine di Helmholz poste ai lati dell'ampolla: il cammino percorso dal fascio assume una forma circolare grazie alla regolazione dell'intensità di B_z .

Lungo il loro cammino, gli elettroni collidono contro le molecole di idrogeno, emettendo fotoni ad una lunghezza d'onda di circa 4500 Å. Il raggio della circonferenza visibile risulta fondamentale per la determinazione della grandezza interessata come mostrato dalla seguente equazione:

$$\frac{e}{m} = \frac{2\Delta V}{(B_z R)^2} \tag{1.1.1}$$

dove e ed m rappresentano rispettivamente la carica elettrica e la massa dell'elettrone, ΔV rappresenta la differenza di potenziale, B_z rappresenta il campo elettrico generato dalle bobine di Helmholz e R rappresenta il raggio della circonferenzza compiuta dagli elettroni.

In base alla differente influenza del campo magnetico terrestre, il campo magnetico effettivo a cui è sottoposto il fascio di elettroni varia: è dunque necessario andare a stimare il contributo di quest'ultimo in modo da poter fornire un risultato più accurato al valore finale della grandezza interessata.

2 Misure

2.0.1 Campo magnetico generato dalle bobine di Helmholtz

La determinazione delle grandezze utili a fornire un valore di e/m richiede la determinazione preliminare del raggio medio delle bobine di Helmholz: tale misurazione viene compiuta attraverso l'utilizzo di un calibro di risoluzione 0.02 mm. Le bobine di Helmholz hanno la caratteristica di essere poste ad una distanza equivalente al loro raggio medio, dunque si procede misurando la loro distanza per eccesso e per difetto - 5 misurazioni per entrambe le distanze - e come valore finale si fornisce la media delle due medie ottenute dai due set di dati. Come incertezza, invece, viene fornita la somma in quadratura delle devaizioni standard dei due set si dati:

$$R_b = (15.63 \pm 0.07) \,\mathrm{cm}$$
 (2.2)

Tutte le misure effettuate sono riportate nella Tab 1.

Si procede alla costruzione dei circuiti necessari per produrre il campo magnetico: in questa fase si attriuisce come errore a ΔV il valore di ——— e a I il valore di ———— . Tali misurazioni sono necessarie alla determinazione del campo magnetico $B_z(0)$ - ovvero il valore del campo magnetico nel centro dell'ampolla - che viene calcolato come segue:

$$B_z(0) = \mu_0 \frac{8}{5\sqrt{5}} \frac{NI}{R_b} \tag{2.3}$$

dove $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N/A}^2$ è la costante di permeabilità magentica del vuoto, N è i numero di spire che compongono le bobine di Helmholtz - pari a 130 in questo caso -, I è il valore dell'intensità di corrente e R_b è il valore del raggio medio delle bobine assegnato (equazione 2.2). Poichè il valore effettivo del campo magnetico B_z a cui sono sottoposti gli elettroni non è quello calcolato nel centro dell'ampolla, il valore ricavato deve essere corretto:

$$B_z(R) = \delta B_z(0) \tag{2.4}$$

dove $B_z(R)$ è il valore del campo magnetico alla distanza R - raggio della circonferenza percorsa dagli elettroni - dal centro dell'ampolla, δ è il termine correttivo fornito in Tab 6 e $B_z(0)$ è il valore del campo magnetico al centro dell'ampolla calcolato all'equazione 2.3.

Avendo prodotto le condizioni necessarie alla formazione della traiettoria circolare degli elettroni, si ancorano le guide esterne all'ampolla ad un valore fissato - che sarà poi dato come valore del diametro della circonferenza - per minimizzare gli eventuali errori di parallasse. Si fornisce come valore per il diametro il seguente, dove l'errore è dato dall'incertezza strementale del calibro elettronico utilizzato:

$$d = (9.814 \pm 0.001) \,\mathrm{cm} \tag{2.5}$$

Da questo valore si ricava il raggio della traiettoria degli elettroni.

2.0.2 Campo magnetico terrestre

Nelle condizioni in cui la strumentazione viene posta parallelea e antiparallela al campo magnetico terrestre, questo influisce su quello che è l'effettivo campo magnetico a cui sono sottoposti gli elettroni lungo la loro orbita: risulta necessario dare un valore a questa grandezza in modo da poter correggere le errate stime del rapporto e/m. In mezzo ad una coppia di bobine di geometria nota è posto un ago magnetico: questo viene fatto deflettere di angoli noti facendo variare l'intensità di corrente che alimenta le bobine (generatrici del campo magnetico). Seguendo i valori riportati nelle Tabb 8 ?? viene dato come valore per il campo magnetico terrestre il seguente:

$$B_t = (2.5946210^{-7} \pm ?) \,\text{T} \tag{2.6}$$

3 Analisi dati

3.1 Stima degli errori

4 Appendice

$R_b per difetto [cm]$	$R_b per eccesso [{ m cm}]$
13.45	17.77
13.51	17.80
13.48	17.69
13.76	17.74
13.43	17.70

Tab. 1: Misure del raggio medio delle bobine di Helmholz per difetto e per eccesso.

$\boxed{ media per difetto [textcm] }$	$\sigma_d if[textcm]$	$\boxed{ media per eccesso [textcm] }$	$\sigma_e cc[textcm]$
13.52	0.14	17.74	0.05

Tab. 2: Medie per difetto e per eccesso con relative deviazioni standard

п	I	T				Г
$\Delta V [V]$	d [m]	R[m]	I[A]	Termine correttivo	B(0) [A/m]	B(R) [A/m]
334,4	0,09542	0,04771	1,667	0,99567	0,00124662	0,001241223
275,0	0,09542	0,04771	1,545	0,99567	0,001155386	0,001150383
297, 8	0,09814	0,04907	1,497	0,995265	0,001119491	0,00111419
321, 5	0,09814	0,04907	1,597	0,995265	0,001194273	0,001188618
300,6	0,09542	0,04771	1,518	0,99567	0,001135195	0,001130279
258, 3	0,09814	0,04907	1,393	0,995265	0,001041717	0,001036785
298	0,09814	0,04907	1,545	0,995265	0,001155386	0,001149915
330, 5	0,09814	0,04907	1,628	0,995265	0,001217455	0,001211691
386,6	0,09814	0,04907	1,739	0,995265	0,001300464	0,001294306
353, 6	0,09814	0,04907	1,689	0,995265	0,001263073	0,001257092
310,8	0,093	0,0465	1,639	0,995265	0,001225681	0,001219878
340, 4	0,1101	0,05505	1,503	0,995265	0,001123978	0,001118656
365, 7	0,08635	0,043175	1,859	0,995265	0,001390202	0,00138362
334, 5	0,09814	0,0465	1,692	0,995265	0,001265316	0,001259325
302, 2	0,09814	0,04907	1,575	0,99486	0,001177821	0,001171767
326, 5	0,09814	0,04907	1,637	0,995265	0,001224186	0,001218389
344	0,09814	0,04907	1,721	0,995265	0,001287003	0,001280909
358, 4	0,09814	0,04907	1,779	0,995265	0,001330377	0,001324077
342, 7	0,09814	0,04907	1,676	0,995265	0,001253351	0,001247416
314	0,09814	0,04907	1,617	0,995265	0,001209229	0,001203504

Tab. 3: Campo magnetico terrestre ortogonale al campo magnetico generato dalle bobine di Helmholz. Si riportano i valori della differenza di potenziale ΔV , del diametro d della circonferenza percorsa dagli elettroni e del conseguente raggio R, dell'intensità di corrente I e del termine correttivo utilizzato per correggere il campo magnetico B(0) - colonna 5 - all'effettivo valore B(R) - colonna 6 -.

$\Delta V [V]$	$d\left[\mathrm{m}\right]$	R[m]	<i>I</i> [A]	$Termine\ correttivo$	B(0) [A/m]	B(R) [A/m]
327, 2	0,09814	0,04907	1,624	0,995265	0,001214464	0,001208714
299	0,09814	0,04907	1,504	0,995265	0,001124725	0,0011194
276, 1	0,09814	0,04907	1,478	0,995265	0,001105282	0,001100048
327	0,09814	0,04907	1,566	0,995265	0,00117109	0,001165545
304, 1	0,09814	0,04907	1,494	0,995265	0,001117247	0,001111957
337, 1	0,09814	0,04907	1,639	0,995265	0,001225681	0,001219878
309, 4	0,09814	0,04907	1,589	0,995265	0,00118829	0,001182664
341, 2	0,09814	0,04907	1,6	0,995265	0,001196516	0,001190851
307,6	0,09814	0,04907	1,574	0,995265	0,001177073	0,0011715
338,9	0,09814	0,04907	1,628	0,995265	0,001217455	0,001211691
320, 3	0,09814	0,04907	1,629	0,995265	0,001218203	0,001212435
322, 4	0,09814	0,04907	1,619	0,995265	0,001210725	0,001204992
347, 9	0,09814	0,04907	1,638	0,995265	0,001224934	0,001219134
319,8	0,09814	0,04907	1,595	0,995265	0,001192777	0,001187129
299, 3	0,09814	0,04907	1,544	0,995265	0,001154638	0,001149171
344	0,09814	0,04907	1,66	0,995265	0,001241386	0,001235508
299, 7	0,09814	0,04907	1,536	0,995265	0,001148656	0,001143217
326, 5	0,09814	0,04907	1,626	0,995265	0,00121596	0,001210202
301,8	0,09814	0,04907	1,574	0,995265	0,001177073	0,0011715
347	0,09814	0,04907	1,704	0,995265	0,00127429	0,001268256

Tab. 4: Campo magnetico terrestre parallelo al campo magnetico generato dalle bobine di Helmholz. Si riportano i valori della differenza di potenziale ΔV , del diametro d della circonferenza percorsa dagli elettroni e del conseguente raggio R, dell'intensità di corrente I e del termine correttivo utilizzato per correggere il campo magnetico B(0) - colonna 5 - all'effettivo valore B(R) - colonna 6 -.

A T 7 [T 7]	1 []	1 1 0	T [A]	<i>m</i> ·	D(0)[A /]	D(D)[A/]
$\Delta V [V]$	$d\left[\mathrm{m}\right]$	R[m]	<i>I</i> [A]	Termine correttivo	B(0) [A/m]	B(R) [A/m]
347, 3	0,09814	0,04907	1,605	0,995265	0,001200255	0,001194572
303, 4	0,09814	0,04907	1,439	0,995265	0,001076117	0,001071021
347, 2	0,09814	0,04907	1,569	0,995265	0,001173334	0,001167778
302,9	0,09814	0,04907	1,416	0,995265	0,001058917	0,001053903
348, 3	0,09814	0,04907	1,579	0,995265	0,001180812	0,001175221
302	0,09814	0,04907	1,486	0,995265	0,001111265	0,001106003
344, 4	0,09814	0,04907	1,566	0,995265	0,00117109	0,001165545
299, 1	0,09814	0,04907	1,447	0,995265	0,001082099	0,001076976
340,8	0,09814	0,04907	1,546	0,995265	0,001156134	0,00115066
337, 2	0,09814	0,04907	1,582	0,995265	0,001183056	0,001177454
301,9	0,09814	0,04907	1,497	0,995265	0,001119491	0,00111419
358, 7	0,09814	0,04907	1,635	0,995265	0,00122269	0,001216901
307, 8	0,09814	0,04907	1,464	0,995265	0,001094812	0,001089629
336	0,09814	0,04907	1,565	0,995265	0,001170343	0,001164801
304,8	0,09814	0,04907	1,498	0,995265	0,001120238	0,001114934
336, 4	0,09814	0,04907	1,553	0,995265	0,001161369	0,00115587
293, 3	0,09814	0,04907	1,425	0,995265	0,001065647	0,001060602
327,7	0,09814	0,04907	1,552	0,995265	0,001160621	0,001155125
301, 1	0,09814	0,04907	1,476	0,995265	0,001103786	0,00109856
333, 7	0,09814	0,04907	1,544	0,995265	0,001154638	0,001149171

Tab. 5: Campo magnetico terrestre antiparallelo al campo magnetico generato dalle bobine di Helmholz. Si riportano i valori della differenza di potenziale ΔV , del diametro d della circonferenza percorsa dagli elettroni e del conseguente raggio R, dell'intensità di corrente I e del termine correttivo utilizzato per correggere il campo magnetico B(0) - colonna 5 - all'effettivo valore B(R) - colonna 6 -.

	_
R [cm]	δ
0.0	1
0.2	0,99999
0.4	0,99999
0.6	0,99999
0.8	0,99999
1.0	0,99999
1.2	0,99998
1.4	0,99997
1.6	0,99995
1.8	0,99992
2.0	0,99987
2.2	0,99982
2.4	0,99974
2.6	0,99964
2.8	0,99952
3.0	0,99937
3.2	0,99918
3.4	0,99895
3.6	0,99868
3.8	0,99835
4.0	0,99796
4.2	0,99751
4.4	0,99698
4.6	0,99637
4.8	0,99567
5.0	0,99486
5.2	0,99395
5.4	0,99291
5.6	0,99173
5.8	0,99041
6.0	0,98893
6.2	0,98727
6.4	0,98542
6.6	0,98337
6.8	0,98109
7.0	0,97857
7.2	0,97578
7.4	0,97272
7.6	0,96936
7.8	0.96567
8.0	0,96164

Tab. 6: Termini correttivi

Angolo	$I\left[\mathrm{A}\right]$	$B_r [\mathrm{mG}]$	$B_z [mG]$	$B_t [\mathrm{mG}]$	$I_0\left[\mathrm{A} ight]$
65	0,037	2,5	0,001545	0,925266565	0.1
60	0,03145	6, 2	0,0015472	1,950180935	
55	0,02565	11	0,001548	2,821778026	
50	0,02179	16, 7	0,0015471	3,639212871	
45	0,01698	22, 8	0,0015438	3,871702137	
40	0,01369	28,6	0,0015379	3,91559091	
35	0,01312	33, 3	0,0015295	4,369246587	
30	0,00973	36, 2	0,001519	3,522515995	
25	0,00725	36, 7	0,0015072	2,660984335	
20	0,00539	34, 2	0,0014951	1,843601408	
15	0,00409	28,9	0,0014839	1,182236504	
10	0,00196	20,9	0,001475	0,409803957	
5	0,0006	11	0,0014691	0,066100751	

Tab. 7: Componenti del campo magnetico terrestre B_t , B_r e B_z ottenute mediante la misura della deflessione angolare dell'ago magnetico in senso orario. Si riportano inoltre i valori dell'intensità della corrente indotta nelle bobine I e del valore iniziale I_0

Angolo	$I\left[\mathrm{A}\right]$	$B_r [\mathrm{mG}]$	$B_z [\mathrm{mG}]$	$B_t [\mathrm{mG}]$	$I_0\left[\mathrm{A} ight]$
65	0,03685	2,5	0,001545	0,921515484	0.1
60	0,03136	6, 2	0,0015472	1,944600131	
55	0,0231	11	0,001548	2,541250386	
50	0,02082	16, 7	0,0015471	3,477210279	
45	0,01686	22,8	0,0015438	3,844340285	
40	0,01383	28, 6	0,0015379	3,955633476	
35	0,0121	33, 3	0,0015295	4,029564307	
30	0,0098	36, 2	0,001519	3,547857837	
25	0,00765	36, 7	0,0015072	2,807797263	
20	0,0057	34, 2	0,0014951	1,949634142	
15	0,0036	28, 9	0,0014839	1,040599368	
10	0,00152	20,9	0,001475	0,31780715	
5	0,00066	11	0,0014691	0,072710826	

Tab. 8: Componenti del campo magnetico terrestre B_t , B_r e B_z ottenute mediante la misura della deflessione angolare dell'ago magnetico in senso antiorario. Si riportano inoltre i valori dell'intensità della corrente indotta nelle bobine I e del valore iniziale I_0