Apprentissage automatique / Statistique

Régression logistique

PHILIPPE BESSE

INSA de Toulouse Institut de Mathématiques

Objectif

- Expliquer Z qualitative à 2 modalités $\{0,1\}$ ou Y nombre de "succès" de Z par $\{X^1,\ldots,X^p\}$ qualitatives et quantitatives
- Prédicteur linéaire Xß inadapté
- Cas particulier du MLG : modèle binomial
- Méthode sans doute la plus utilisée (médical, marketing)
- Modèle explicable
- Passe à l'échelle volume

Définition de la cote ou odd

- Y une variable qualitative à m modalités
- L'odd de la ℓ-ième modalité relativement à la kème est le rapport

$$\Omega_{\ell k} = rac{\pi_\ell}{\pi_k} \quad ext{avec} \quad \pi_\ell = P[T = \mathcal{T}_\ell] \quad ext{estim\'e par } \widehat{\Omega}_{\ell k} = rac{n_\ell}{n_k}$$

Si $m=2, \quad \Omega_{10}=\frac{\pi}{(1-\pi)}$ exprime une cote ou chance de gain

• Si π (succès)=0,8 alors π (échec)=0,2 et *Odd* (succès)=4 : Chance de succès de 4 contre un

Définition du rapport de cotes ou odds ratio

• Table de contingence 2×2 croisant T^1 et T^2

$$\left[\begin{array}{cc}\pi_{11} & \pi_{12}\\\pi_{21} & \pi_{22}\end{array}\right]\quad\text{avec}\quad\pi_{ij}=P[\{T^1=\mathcal{T}_i\}\text{ et }\{T^2=\mathcal{T}_j\}]$$

$$\Omega_1=\frac{\pi_{11}}{\pi_{12}}\quad\Omega_2=\frac{\pi_{21}}{\pi_{22}}$$

- *Odds ratio* ou rapport de cotes : $\Theta = \frac{\Omega_1}{\Omega_2} = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}}$
- $\Theta = 1 \operatorname{ssi} X^1$ et X^2 sont indépendantes
- ⊖ > 1 si les sujets de la ligne 1 ont plus de chances de prendre la première colonne que les sujets de la ligne 2 et inférieur à 1 sinon

Exemple d'odds ratio

Concours avec 7 garçons reçus sur 10 et

4 filles sur 10

Odd des garçons : 0.7/0.3=2.33

Odd des filles : 0.4/0.6=0.67

odds ratio: 2.33/0.67=3.65

Odds ratio dans une table de contingence $J \times K$

$$\Theta_{abcd} = \frac{\Omega_a}{\Omega_b} = \frac{\pi_{ac}\pi_{bd}}{\pi_{ad}\pi_{bc}}$$

estimé par l'odds ratio empirique :

$$\widehat{\Theta}_{abcd} = \frac{n_{ac}n_{bd}}{n_{ad}n_{bc}}$$

Notations

- Z variable qualitative à 2 modalités : 1 ou 0...
- $X\beta$ prend ses valeurs dans \mathbb{R}
- Modéliser $\pi = P[Z = 1]$ ou plutôt
- $\bullet \quad g(\pi_i) = \mathbf{x}_i'\beta \quad \text{avec} \quad g:[0,1] \longmapsto \mathbb{R}$
- g est appelée fonction lien
 - *probit* : *g* fonction inverse de la fonction de répartition d'une loi normale (pas explicite).
 - log-log : $g(\pi) = ln[-ln(1-\pi)]$ (dissymétrique)
 - $logit : g(\pi) = logit(\pi) = \ln \frac{\pi}{1-\pi}; \quad g^{-1}(x) = \frac{e^x}{1+e^x}$
- La régression logistique est une modélisation linéaire du log odd
- Les coefficients expriment des odds ratio

Modèle

- X^1, \ldots, X^q : explicatives qualitatives ou quantitatives
- I: nombre des combinaisons x_i^1, \dots, x_i^q des facteurs X^j
- n_i : nombre d'essais avec x_i^1,\ldots,x_i^q fixé $(n=\sum_{i=1}^I n_i)$
- y_i nombre de (Z = 1) observés lors des n_i essais,
- Si $\pi_i = P[Z=1]$ constante pour x_i^1, \dots, x_i^q fixé Alors
- Y_i sachant n_i suit une loi binomiale $\mathcal{B}(n_i, \pi_i)$ d'espérance $E(y_i) = n_i \pi_i$ et de densité : $P(Y = y_i) = \binom{n_i}{y_i} \pi_i^{y_i} (1 \pi_i)^{(n_i y_i)}$.
- Hypothèse : $[logit(\pi_i); i = 1, ..., n]' \in vect\{X^1, ..., X^q\}$

$$\textit{logit}(\pi_i) = \mathbf{x}_i' \boldsymbol{\beta} \quad \text{ou} \quad \pi_i = \frac{e^{\mathbf{x}_i' \boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i' \boldsymbol{\beta}}} \quad i = 1, \dots, I$$

Estimation

- Estimation b de β par maximisation de la log-vraisemblance
- Méthodes numériques itératives (Newton Raphson, Scores de Fisher)
- Prévisions des probabilités π_i : $\widehat{\pi}_i = \frac{e^{\mathbf{x}_i'\mathbf{b}}}{1+e^{\mathbf{x}_i'\mathbf{b}}}$
- et des effectifs $\widehat{y}_i = n_i \widehat{p}_i$

Remarques

- X construite comme pour l'analyse de covariance
- Attention au choix implicite de paramétrisation par le logiciel (0, 1) ou (-1, 1)
- Cas précédent : données *groupées*. Si les observations \mathbf{x}_i sont toutes distinctes : $n_i = 1; i = 1, ..., I$. Les comportements asymptotiques et tests ne sont plus valides
- En plus des b_j ou *log odds ratio*, estimation possible des *odds-ratio* ou rapports de cote : Y a e^b fois plus de chance d'apparaître quand X=1

Généralisation

- Cas de Y ordinale
- Y qualitative ordinale : niveau de gravité, de satisfaction...
- Problème si plusieurs modèles en concurrence pour chaque fonction logit
- Utilisable si p le nombre de variables explicatives est petit
- Autre choix de Python (Scikit-learn): une classe contre les autres

Régression polytomique

- Une variable explicative *X* dichotomique de *Y* à
- k modalités ordonnées.
- $\pi_j(X) = P(Y = j|X)$ avec $\sum_{j=1}^k \pi_j(X) = 1$
- Il faut estimer k-1 prédicteurs linéaires :

$$g_i(X) = \alpha_i + \beta_i X$$
 pour $j = 1, \dots, k-1$

- Trois types d'échelle des rapports de cotes :
 - comparaison des catégories adjacentes deux à deux
 - comparaison des catégories adjacentes supérieures cumulées
 - comparaison des catégories adjacentes cumulées

Logits cumulatifs

$$\log \frac{\pi_{j+1} + \dots + \pi_k}{\pi_1 + \dots + \pi_i} \quad \text{pour } j = 1, \dots, k - 1$$

- Hypothèse souvent implicite :
- β_j ; $j = 1, \dots, k-1$ homogènes
- Même coefficient b : rapport de cotes proportionnels
- ou même fonction logit translatée
- proc logistic de SAS propose un test d'homogénéité des β_i
- Interprétation Pour tout seuil choisi de Y, la cote des risques d'avoir une gravité supérieure à ce seuil est e^b fois plus grande chez les exposés (X = 1) que chez les non exposés (X = 0)

Choix de modèle

- Algorithme par élimination ou mixte (stepwise) avec
- Minimisation du critère AIC d'Akaïke (R)
- Versions Lasso (Python) et PLS de la régression logistique
- Extensions : effets aléatoires, mesures répétées

Exemple simple

Influence du débit et du volume d'air inspiré sur la dilatation des vaisseaux sanguins superficiels des membres inférieurs

FIGURE – Dilatation : Nuage des modalités de Y

Introduction
Odd et odds ratio
Régression logistique
Exemples

Intercept

Régression logistique élémentaire Cancer du sein Concentration d'ozone Marketing bancaire

Sorties SAS

Tho	TOCTOTIO	Procedure

	Intercept	and			
Criterion	Only	Covariates	Chi-Square for Covariates		
AIC	56.040	35.216			
SC	57.703	40.206			
-2 LOG L	54.040	29.216(1)	24.824 with	n 2 DF (p=0.00	01)
Score			16.635 with 2 DF (p=0.0002)		
	Parameter(2)	Standard Wald	(3) Pr >	Standardized	Odds
Variable DF	Estimate	Error Chi-Squar	e Chi-Square	Estimate	Ratio
INTERCPT 1	2.8782	1.3214 4.7443	0.0294		
L_DEBIT 1	-4.5649	1.8384 6.1653	0.0130	-2.085068	0.010
L_VOLUME 1	-5.1796	1.8653 7.710	0.0055	-1.535372	0.006

Régression logistique ordinale

Variables:

Etat du conducteur : Normal ou Alcoolisé

Sexe du conducteur

Port de la ceinture : Oui Non

Gravité des blessures : 0 : rien à 3 : fatales

Régression logistique élémentaire

Cancer du sein Concentration d'ozone Marketing bancaire

Sorties SAS

				Standard	Wald	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	Gr0	1	1.8699	0.0236	6264.9373	<.0001
Intercept	Gr1	1	2.8080	0.0269	10914.3437	<.0001
Intercept	Gr2	1	5.1222	0.0576	7917.0908	<.0001
sexe	Sfem	1	-0.3118	0.0121	664.3353	<.0001
alcool	A_bu	1	-0.5017	0.0190	697.0173	<.0001
ceinture	Cnon	1	-0.1110	0.0174	40.6681	<.0001

Test de score pour l'hypothèse des cotes proportionnelles $\mathrm{Khi} - 2$ DL Pr > $\mathrm{Khi} - 2$ 33.3161 6 < .0001

Modèle plus simple : GrN vs. GrO

ceinture Cnon vs Coui 1.244

Estimations des rapports de cotes
Effet Valeur estimée IC de Wald à 95 %
sexe Sfem vs Shom 1.873 1.786 1.964
alcool A bu vs Ajeu 2.707 2.512 2.918

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

1.162 1.332

Régression logistique élémentaire Cancer du sein Concentration d'ozone Marketing bancaire

Diagnostic de cancer

- Wisconsin Breast Cancer Database (mlbench de R)
- 9 variables ordinales ou nominales à 10 modalités
- 683 observations

Clump Thickness
Uniformity of Cell Size
Uniformity of Cell Shape
Marginal Adhesion
Single Epithelial Cell Size
Bare Nuclei
Bland Chromatin
Normal Nucleoli
Mitoses
"benign" et "malignant"

- Avec toutes les variables : ajustement exact (0%) mais erreur de 5.8%
- Modèle réduit : ajustement de 3,5% et erreur de 5,1%

Dépassement de seuil

- Prévision directe des dépassements ($150\mu g/m^3$ au lieu 180)
- Problèmes : ils sont peu nombreux
- Modèle optimal au sens d'Akaïke sans interaction

	Df	Deviance	Resid. Df	Resid. Dev	P(> Chi)
NULL			831	744.34	
03 <u>p</u> r	1	132.89	830	611.46	9.576e-31
vmodule	1	2.42	829	609.04	0.12
s_rmh2o	1	33.71	828	575.33	6.386e-09
station	4	16.59	824	558.74	2.324e-03
TEMPE	1	129.39	823	429.35	5.580e-30

• vmodule est-elle utile?

Comparaison de modèles

- Avec et sans "vmodule", avec et sans interaction
- A partir du quantitatif ou non, MOCAGE

```
Matrices de confusion de l'échantillon test pour différents modèles :
  FALSE 163 19
                          FALSE 162
                                                FALSE 163
                                                                     FALSE 160
         5 21
  TRUE
                          TRUE
                                                                    TRUE
logistique sans vmodule
                          avec vmodule
                                              avec interactions
                                                                     quantitatif
Erreur : 11,5%
                              11,5%
                                                                         10,1%
                                                    10,6%
MOCAGE: 13,6%
```

- Biais systématique
- Besoin de préciser ces estimations d'erreurs

Régression logistique élémentaire Cancer du sein Concentration d'ozone Marketing bancaire

Gestion de la Relation Client

- Données en provenance d'I-BP
- 1425 clients
- 32 variables "comptables"
- Objectif : score d'appétance de la carte visa premier.
 - Nettoyage des données
 - 2 Transformations
 - Omparaison des modélisations

Données bancaires : liste des variables

ldentif.	Libellé	ldentif.	Libellé
matric	Matricule (identifiant client)	qcred	Moyenne des mouvements créditeurs en Kf
sexec	Sexe (qualitatif)	dmvtp	Age du dernier mouvement (en jours)
ager	Age en années	boppn	Nombre d'opérations à M-1
famil	Situation familiale	facan	Montant facturé dans l'année en francs
	(Fmar : marié, Fcel : célib., Fdiv :divorcé,	lgagt	Engagement long terme
	Fuli :union libre, Fsep : séparés, Fveu :veuf)	vienb	Nombre de produits contrats vie
relat	Ancienneté de relation en mois	viemt	Montant des produits contrats vie en francs
prcsp	Catégorie socio-professionnelle (code num)	uemnb	Nombre de produits épargne monétaire
opgnb	Nombre d'opérations par guichet dans le mois	xlgnb	Nombre de produits d'épargne logement
moyrv	Moyenne des mouvements nets créditeurs	xlgmt	Montant des produits d'épargne logement en francs
	des 3 mois en Kf	ylvnb	Nombre de comptes sur livret
tavep	Total des avoirs épargne monétaire en francs	ylvmt	Montant des comptes sur livret en francs
endet	Taux d'endettement	rocnb	Nombre de paiements par carte bancaire à M-1
gaget	Total des engagements en francs	jntca	Nombre total de cartes
gagec	Total des engagements court terme en francs	nptag	Nombre de cartes point argent
gagem	Total des engagements moyen terme en francs	itavc	Total des avoirs sur tous les comptes
kvunb	Nombre de comptes à vue	havef	Total des avoirs épargne financière en francs
qsmoy	Moyenne des soldes moyens sur 3 mois	dnbjd	Nombre de jours à débit à M
		carvp	Possession de la carte VISA Premier

GRC: modélisation

Sélection par méthode descendante de la procédure logistic sur échantillon d'apprentissage

Type 3 Analysis of Effects Wald Effect Chi-Square DF Pr > ChiSq SEXEO 22 7707 < 0001 PCSPO 41.4504 < .0001 kvunba 10.7444 0.0010 6.0831 0.0478 uemnba 5.0194 0.0251 nptagg facang 8.1289 0.0044 18.4219 < .0001 relatq opgnbg 15.8660 0.0004 65.7911 <.0001 movrva 134.7367 dmvtpq < .0001 itavcq 9.5263 0.0085

GRC: prévision

Matrices de confusion, estimée sur échantillons d'apprentissage et test

CARVPr Frequency Percent	predy Fred	yuency	Total	CARVPr Percent	predy	7	Total
rercent		1	IOLAI	rercent		±1	IOLAI
0	535 61.57	38 4.37	573 65.94	0	131	8 4.00	139 69.50
1	51 5.87	245 28.19	296 34.06	1	15 7.50	46 23.00	61 30.50
Total 67.43	586 32.57	283 100.00	869	Total	146 73.00	54 27.00	200 100.00

Données bancaires : estimation sur l'échantillon test de la courbe ROC associée à la régression logistique.

