Life-Insurance Sale Capstone

Sarath Kumar V

Table of Contents

	3
2. Need for this Study/Project	3
3. Why is this (agent bonus) important for the business/company?	3
4. Data Report/Dictionary	4
5. Performing Exploratory Data Analysis (EDA)	4
6. Checking for Unique Categorical Values	7
7. Univariate/Bivariate Analysis	8
8. Categorical Variable's Univariate Analysis	13
9. Bivariate Analysis (Pairplot/Heatmap)	18
10. Model Building and Interpretation	20
11. Split X and y into training and test set in 75:25 ratio	20
12. Building a Multiple Linear Regression Model	22
13. VIF Calculation	24
14. Stats-model Implementation	25
15. Model Tuning	30
16. Feature Importance 17. Recommendations	31 34
Table of Figures	
Figure 1 – Univariate Analysis – Numerical Columns Figure 2 - Univariate Analysis – Categorical Columns	8 13
Figure 3 - Categorical variable w.r.t Target Variable (Bivariate)	15
Figure 4 - Bivariate Analysis- Numerical Data Pairplot	18
Figure 5 - Bivariate Analysis- Numerical Data Correlation Heatmap	19
Figure 6 – Linear Regression Scatterplot	28
Figure 7 - Principal Components vs Variance Ratio	29
Figure 8 - PCA Heatmap	30
•	

		belongs to a leading life insurance company.							
	en	The company wants to predict the bonus for its agents so that it may design appropriate engagement activity for their high performing agents and upskill programs for low performing agents.							
Need	d fo	or this Study/Project							
		th this problem we want to better understand how the insurance company agents e performing, it's not to underpay or overpay, as the payment is regulated by IRDA.							
	With the predictions it's better for the company to understand where they need to focus more as for agents selling less policies the company needs some booster training performs. As the policies are as good as the agents portray it to be to the potential customer.								
	While the agents performing good i.e. selling more policies there needs to be a way to reward them, to make their contribution known so that they perform the same and even better in future.								
<u>Why</u>	<u> is</u>	this (agent bonus) important for the business/company?							
		A company is as good as their employers.							
		For a Life Insurance Company, their agents are the best way to make the companies policies, aims, and perks known to the customer. Once the customer is intrigued by the policy delivery by the agent, it is easier to convince the customer hence improving the sales and thereby motivating the agent as well.							
		With this, the market share of the company will gain more ground dominating the potential opponents.							
		Moreover, the agents can be classified into categories giving the company better insight where the need to put more effort.							
		The customer feedback can help the company develop improved and updated policies/products. Meeting customer needs.							

ment: Life Insurance Data

 \square Hereby, the easiest way to retain their agents.

 $\hfill\square$ Overall, multiplying and adding to company's profit.

Data Report/Dictionary

The following data is provided by Great Learning cover the Life Insurance Sales $\mathbf m$ the data dictionary consists of:

Variable	Description
CustID	Unique customer ID
AgentBonus	Bonus amount given to each agents in last month.
Age	Age of customer
CustTenure	Tenure of customer in organization.
Channel	Channel through which acquisition of customer is done.
Occupation	Occupation of customer
EducationField	Field of education of customer
Gender	Gender of customer
ExistingProdType	Existing product type of customer
Designation	Designation of customer in their organization
NumberOfPolicy	Total number of existing policy of a customer
MaritialStatus	Marital status of customer
MonthlyIncome	Gross monthly income of customer
Complaint	Indicator of complaint registered in last one month by customer
ExistingPolicyTenure	Max tenure in all existing policies of customer
SumAssured	Max of sum assured in all existing policies of customer
Zone	Customer belongs to which zone in India. Like East, West, North and South
PaymentMethod	Frequency of payment selected by customer like Monthly, quarterly, half yearly and yearly
LastMonthCalls	Total calls attempted by company to a customer for cross sell
CustCareScore	Customer satisfaction score given by customer in previous service call

Performing Exploratory Data Analysis (EDA).

Head of the Data

	AgentBonus	Age	CustTenure	Channel	Occupation	EducationField	Gender	ExistingProdType	Designation	NumberOfPolicy	MaritalStatus	MonthlyIncome
0	4409	22.0	4.0	Agent	Salaried	Graduate	Female	3	Manager	2.0	Single	20993.0
1	2214	11.0	2.0	Third Party Partner	Salaried	Graduate	Male	4	Manager	4.0	Divorced	20130.0
2	4273	26.0	4.0	Agent	Free Lancer	Post Graduate	Male	4	Exe	3.0	Unmarried	17090.0
3	1791	11.0	NaN	Third Party Partner	Salaried	Graduate	Fe male	3	Executive	3.0	Divorced	17909.0
4	2955	6.0	NaN	Agent	Small Business	UG	Male	3	Executive	4.0	Divorced	18468.0

- $\hfill\square$ I've removed CustID as it is irrelevant to agent bonus.
- $\hfill \Box$ Head gives us the idea of what the basic dataset looks like.
- \square Complete list of all variables is not presented.

hape of the

1-4--4

Descriptive Statistics of the Columns

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
AgentBonus	4520	NaN	NaN	NaN	4077.84	1403.32	1605	3027.75	3911.5	4867.25	9608
Age	4251	NaN	NaN	NaN	14.4947	9.03763	2	7	13	20	58
CustTenure	4294	NaN	NaN	NaN	14.469	8.96367	2	7	13	20	57
Channel	4520	3	Agent	3194	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Occupation	4520	5	Salaried	2192	NaN	NaN	NaN	NaN	NaN	NaN	NaN
EducationField	4520	7	Graduate	1870	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Gender	4520	3	Male	2688	NaN	NaN	NaN	NaN	NaN	NaN	NaN
ExistingProdType	4520	NaN	NaN	NaN	3.68894	1.01577	1	3	4	4	6
Designation	4520	6	Manager	1620	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NumberOfPolicy	4475	NaN	NaN	NaN	3.56536	1.45593	1	2	4	5	6
MaritalStatus	4520	4	Married	2268	NaN	NaN	NaN	NaN	NaN	NaN	NaN
MonthlyIncome	4284	NaN	NaN	NaN	22890.3	4885.6	16009	19683.5	21606	24725	38456
Complaint	4520	NaN	NaN	NaN	0.287168	0.452491	0	0	0	1	1
ExistingPolicyTenure	4336	NaN	NaN	NaN	4.13007	3.34639	1	2	3	6	25
SumAssured	4366	NaN	NaN	NaN	620000	246235	168536	439443	578976	758236	1.8385e+06
Zone	4520	4	West	2566	NaN	NaN	NaN	NaN	NaN	NaN	NaN
PaymentMethod	4520	4	Half Yearly	2656	NaN	NaN	NaN	NaN	NaN	NaN	NaN
LastMonthCalls	4520	NaN	NaN	NaN	4.62699	3.62013	0	2	3	8	18
CustCare Score	4468	NaN	NaN	NaN	3.06759	1.38297	1	2	3	4	5

- ☐ The table includes the complete description for all variable with categorical variables included.
- ☐ The description includes, variable count, unique values, top frequently occurring categories like Agent-3194, mean, standard deviation, minimum, 25%, 50%(median), 75%, and maximum values present in the respective variables.
- ☐ Hence the 'NaN' here is observed for Categorical Variables as a string object cannot have numeric values.
- ☐ This we will change by encoding the data in future if needed.
- ☐ We can also observe the missing values as the count is not constant for all the variables.
- ☐ The unique is only present for categorical variables which hold a specific category
- ☐ Example: Gender has male and female hence it should hold unique value of 2 but later we observed some subcategories needs to be renamed.

Info of the

#	Col	umn	Non-Null Count	Dtype
0	Age	ntBonus	4520 non-null	int64
1	Age		4251 non-null	
2		tTenure nnel	4294 non-null 4520 non-null	
4		upation	4520 non-null	
5		cationField	4520 non-null	-
6 7	Gen		4520 non-null 4520 non-null	object int64
8		stingProdType ignation	4520 non-null	
9		berOfPolicy	4475 non-null	-
		italStatus	4520 non-null	object
		thlyIncome plaint	4284 non-null 4520 non-null	float64 int64
13		stingPolicyTenure		float64
14		Assured	4366 non-null	
15 16		e mentMethod	4520 non-null 4520 non-null	object object
17		tMonthCalls	4520 non-null	int64
		tCareScore	4468 non-null	float64
		float64(7), int64(sage: 671.1+ KB	4), object(8)	
	•	J		
		We have 7 param	neters having 'fl	oat' data type.
		We have 4 param	neters having 'ir	nteger' data type.
		We have 8 param	neters having 'o	bject' data type.
		Age is shown as f won't make any		ve will later observe is its needed to change it to int or not, it r observations.
		We can clearly ol	bserve some mis	ssing values.
		Further count of	missing values	is provided below.
		CustID	0	
		AgentBonus	0	
		Age	269	
		CustTenure	226	
		Channel	0	
		Occupation EducationField	0	
		Gender	0	
		ExistingProdType	0	
		Designation	0	
		NumberOfPolicy	45	
		J		

 \square SumAssured 154 \square Zone 0

0

0

236

184

MaritalStatus

Complaint

MonthlyIncome

ExistingPolicyTenure

PaymentMethod	0					
LastMonthCalls	0					
CustCareScore	52					
Number of duplicate rows = 0						
The Missing values can affect the prediction's hence need to be treated, hence the missing values are imputed with the median values in the respective column.						

Checking for Unique Categorical Values.

CHANNEL has 3 Unique Values.
Online 468
Third Party Partner 858
Agent 3194
Name: Channel, dtype: int64

OCCUPATION has 5 Unique Values.

Name: Occupation, dtype: int64

EDUCATIONFIELD has 7 Unique Values.

Name: EducationField, dtype: int64 GENDER has 3 Unique Values. Fe male 325 Female 1507 Male 2688 Name: Gender, dtype: int64

DESIGNATION has 6 Unique Values.

Name: Designation, dtype: int64

MARITALSTATUS has 4 Unique Values.

Unmarried 194
Divorced 804
Single 1254
Married 2268
Name: MaritalStatus, dtype: int64

ZONE has 4 Unique Values.

 South
 6

 East
 64

 North
 1884

 West
 2566

Name: Zone, dtype: int64 PAYMENTMETHOD

has 4 Unique Values.

- \square Here it can be observed that subcategories highlighted with a diffe error in naming convention hence have to be renamed.
- Example: 'Laarge' and 'Large' Business can be put in the same category, the same for JG' and 'Under Graduate', 'Graduate' and 'Post Graduate', 'Fe male' and 'Female', and 'Exe' and 'Executive'.

Univariate/Bivariate Analysis

AgentBonus

	Agentiso
Free Lancer	2
Laarge Business	153
Large Business	255
Small Business	1918
Salaried	2192
MBA	74
UG	230
Post Graduate	252
Engineer	408
Diploma	496
Under Graduate	1190
Graduate	1870
Exe	127
VP	226
AVP	336
Senior Manager	676
Executive	1535
Manager	1620
Quarterly	76
Monthly	35
·	4
Yearly	143
	4
Half Yearly	26
	E/

56

Figure 1(a) Distplot/Histplot - AgentBonus

- The distribution of "AgentBonus" seems to be positively/right skewed.
- The data ranges from 1605 to 9600.
- The box plot holds many outliers.

Age:

Figure 1(b) Distplot/Histplot - Age

- The distribution of "Age" seems to be positively/right skewed.
- The data ranges from 2 to 58.
- The box plot holds many outliers.

CustTenu

Figure 1(c) Distplot/Histplot - CustTenure

- The distribution of "CustTenure" seems to be positively/right skewed.
- The data ranges from 2 to 57.
- The box plot holds many outliers.

ExistingProdType:

Figure 1(d) Distplot/Histplot - ExistingProdType

- The distribution of "ExistingProdType" seems to be slightly left skewed.
- The data ranges from 1 to 6.
- The box plot holds outliers.

NumberOfPolicy

Figure 1(e) Distplot/Histplot - Number of Policy

The distribution of "NumberOfPolicy" seems to be slightly left skewed. The data ranges from 1 to 6.

The how nlot has no outliers

MonthlyIncome

Figure 1(f) Distplot/Histplot - MonthlyIncome

- The distribution of "MonthlyIncome" seems to be positively/right skewed.
- The data ranges from 16000 to 38500.
- The box plot holds many outliers.

Complaint

Figure 1(g) Distplot/Histplot - Complaint

- The distribution of "Complaint" seems to be positively/right skewed.
- The data ranges from 0 to 1.
- The box plot holds no outliers.

ExistingPolicyTenu

 $Figure \ 1(h) \ Distplot/Histplot - Existing Policy Tenure$

- The distribution of "ExistingPolicyTenure" seems to be positively/right skewed.
- The data ranges from 1 to 25.
- The box plot holds many outliers.

SumAssured

Figure 1(i) Distplot/Histplot - SumAssured

- The distribution of "SumAssured" seems to be positively/right skewed.
- The data ranges from 1.68 * 10⁵ to 1.83 * 10⁵.
- The box plot holds many outliers.

LastMonthCalls

 $Figure \ 1(j) \ Distplot/Histplot - LastMonthCalls$

bution of "LastMonthCalls" seems to be positively/right skewed. anges from 0 to 18. lot holds outliers.

CustCareScore

 $Figure\ 1(k)\ Distplot/Histplot-CustCareScore$

- The distribution of "CustCareScore" seems to be slightly left skewed.
- The data ranges from 1 to 5.
- The box plot holds no outliers

Skewness

AgentBonus	0.822348
Age	0.998425
CustTenure	0.981002
ExistingProdType	-0.401100
NumberOfPolicy	-0.108161
MonthlyIncome	1.434315
Complaint	0.941129
ExistingPolicyTenure	e 1.601730
SumAssured	1.002018
LastMonthCalls	0.810417
CustCareScore	-0.138120

- ☐ We can observe skewness in the data with ExistingProdType, NumberofPoilicy and CustCareScore being negatively skewed.
- ☐ Rest all other parameters holds positive skewness the max being for ExistingPolicyTenure.

Categorical Variable's Univariate

Education

Post Graduate	0.47
Under Graduate	0.31
Diploma	0.11
Engineer	0.09
MBA	0.02

Most Customers approached are Post Graduates having 47%

Channel

Agent	0.71
Third Party Partner	0.19
Online	0.10

Acquisition of a customer is mostly done Via an Agent having 71% weightage.

Occupation

Salaried	0.48
Small Business	0.42
Large Business	0.09
Free Lancer	0.00

Most customers have Salaried Occupations Around 48%. Here freelancers have a minute weightage.

Figure 2(c) Count Plot - Occupation

 $Figure\ 2(d)\ Count\ Plot\ -\ Gender$

Designation

Executive	0.37
Manager	0.36
Senior Manager	0.15
AVP	0.07
VP	0.05

Most customers are either a Executive or Managers having Weightage of 37% and 36% Respectively.

Marital Status

0.50
0.28
0.18
0.04

Around 50% of the customers Are married.

Figure 2(e) Count Plot - Designation

Figure 2(f) Count Plot -Marital Status

Zone

West	0.57
North	0.42
East	0.01
South	0.00

Figure 2(g) Count Plot - Zone

Around 59% of Customers went For halfyearly payment plan

 $Figure\ 2(h)\ Count\ Plot\ -\ Payment Method$

Categorical Variables Bivariate Analysis w.r.t Agent Bonus

☐ Agent Bonus has a lot of outlier values for every channel with almost similar mean values for all 3 channels.

Figure 3(a) Boxplot – Channel w.r.t AgentBonus

Figure 3(b) Boxplot – Occuapation w.r.t AgentBonus

lar mean value for all

NO outliers present for Free Lancer Could be because we have only 2 data points for Free Lancer.

☐ Agent Bonus has a lot of outlier values for both Genders with almost similar mean values for b oth Male and Female.

Figure 3(c) Boxplot – Genderl w.r.t AgentBonus

Figure 3(d) Boxplot – Desgnationl w.r.t AgentBonus

No outliers present.

VP Designation has the highest mean As compared to other Designations. Agent Bonus has a lot of outlier values for all MaritalStatus except Unmarried customers.
With almost similar mean values for all 3 customers except unmarried.

Figure 3(e) Boxplot – MaritalStatus w.r.t AgentBonus

Figure 3(f) Boxplot – Zone w.r.t AgentBonus

Outliers present only for North and West Zones. Both having almost Similar means.

No outliers present in East and South Zones possibly due to less Customer traffic from those Zones.

- Outliers present for allPayment methods chosen by the customer.
- $\ \square$ Quarterly paying customers having the lowe st mean.

Figure 4 – Pairwise Distribution Plot

The correlation coefficient shown in the table below shows the degree of correlation b represented in X axis and Y axis. It varies between -1 (maximum negative correlation) correlation).

Figure 5 - Correlation Heatmap

- \square Here the lighter colors depict high correlation and darker colors depict low correlation.
- \square We can observe that there is almost no multicollinearity in the data.
- ☐ Multicollinearity refers to more variables affect our dependant variables, here from the graph above only SumAssured makes the cut as a variable affecting the AgentBonus
- ☐ Complaint and CustCareScore have almost no correlation with any other parameter, hence dropping these columns will not make a difference as they hold no weightage in predictions for our dependant variable, i.e AgentBonus where these columns ultimately are ignored in the prediction , hence are removed..
- ☐ AgentBonus and SumAssured have high correlation with each other of 0.84.

Business insights from EDA

- 1. Outlier Removal is performed but it does not seem as the correct approach as some variables like SumAssured are allowed to have some outliers however our model will be affected if outliers are not removed as we will use Linear Regression for our optimal model, where outliers will produce a biase d result with Linear Regression and to prevent that from happening we'll go with the outliers remove d.
- 2. We can add new variables like Premium which will become another variable having direct correlation with AgentBonus and will make it easier to observe the high performing and the low performing agents as the ones who bring in more premium and good for the firm and performing well and those incurring low premium needs to be focused more on.

- 3. However, adding new variables are not as simple as it sounds as here we to have a value which will add to the predictions and if we are not careful entroduced will add more variance to our predictions and can be biased too, we the model have at the model have a sit is not more more add unless your have authors and them.
- 4. With this we've completed the EDA in the coming exercises we'll build the model as this is a Classifica tion problem, Regression Techniques for model building will be our go-to approach.
- 5. The data from the EDA can be said to be highly unbalanced eg: Zone, South has less weightage similar for Occupation- Freelancer, more data is needed or upscale the data, similar can be the case with EducationField_MBA where we need to have enough data to not make bias decisions which can be done by upscaling the data which will add another problem where the data would be repeatable and not accurate enough to give accurate predictions.

We might have to convert some categorical variables by encoding them into numeric values for out model Building. Stay Tuned to find more.

Model Building and Interpretation

- ☐ Regression uses numerical variables,
- But we have a lot of categorical variables we wish to use in our models further,
- ☐ And since most of the categorical variables have categories more than 2, therefore applying one-hot encoding.
- ☐ One-Hot encoding takes every level of the category and turns it into a variable with two level (yes/no).

The data looks like this after one-hot encoding.

SumAssured	LastMonthCalls	 Designation_VP	Marital Status_Married	MaritalStatus_Single	MaritalStatus_Unmarried	Zone_North	Zone_South	Zone_West
806761.0	5.0	 0	0	1	0	1	0	0
294502.0	7.0	 0	0	0	0	1	0	0
578976.5	0.0	 0	0	0	1	1	0	0
268635.0	0.0	 0	0	0	0	0	0	1
366405.0	2.0	 0	0	0	0	0	0	1

- $\hfill \square$ Building our Linear Regression Model with the unprocessed data above.
- ☐ Keep in mind, this data holds no outliers as they were removed in EDA PN1

Split X and y into training and test set in 75:25 ratio

The	coefficient	for	Age is	21.64543636236496
The	coefficient	for	CustTenure is	22.620905021409023
The	coefficient	for	ExistingProdType is	46.508784274329514
The	coefficient	for	NumberOfPolicy is	6.254332127798309
The	coefficient	for	MonthlyIncome is	0.03188513622751349
The	coefficient	for	Complaint is	33.0503807570841
The	coefficient	for	ExistingPolicyTenure is	40.22901549596465
The	coefficient	for	SumAssured is	0.003548018281339438
The	coefficient	for	LastMonthCalls is	-2.308709717687992
The	coefficient	for	CustCareScore is	7.559056565466554
The	coefficient	for	Channel_Online is	22.691900907509453
The	coefficient	for	Channel_Third Party Partner is	3.4952779925482345
The	coefficient	for	Occupation_Large Business is	-616.8600099371561
The	coefficient	for	Occupation_Salaried is	-474.9729637586688
The	coefficient	for	Occupation_Small Business is	-581.6372411869505
The	coefficient	for	EducationField_Engineer is	26.675848148157876
The	coefficient	for	EducationField_MBA is	-177.27368717977166

```
The coefficient for EducationField Post Graduate is
                                                          -92.609497
The coefficient for EducationField Under Graduate is
                                                          2.33122527
The coefficient for Gender Male is
                                                          25.1872564
The coefficient for Designation Executive is
                                                          -493.36122
The coefficient for Designation Manager is
                                                          -481.4192660/022/3
The coefficient for Designation_Senior Manager is
                                                          -277.42121914512296
The coefficient for Designation_VP is
                                                          -2.956791388368395
The coefficient for MaritalStatus Married is
                                                          -48.20378324641499
The coefficient for MaritalStatus Single is
                                                          29.658243912402032
The coefficient for MaritalStatus Unmarried is
                                                          -188.87907531620797
The coefficient for Zone North is
                                                          62.35415312785426
The coefficient for Zone South is
                                                          193.51057687776427
The coefficient for Zone West is
                                                          49.998087081147155
The coefficient for PaymentMethod Monthly is
                                                          141.95193527244763
The coefficient for PaymentMethod Quarterly is
                                                          112.02879394979776
The coefficient for PaymentMethod Yearly is
                                                          -79.92080455281895
The intercept for our model is 1092.3485100144962
```

R-Squared RMSE

Training	0.8068152802160813	600.5900784990952
Testing	0.7825646087670782	621.5274260080358

Checking the same using statsmodel, to get more insights on p-value, r-squared and adjusted r-squared value.

Before we move to statsmodel,

☐ We need to rename some columns created after encoding as they have some spaces which will not be accepted my statsmodel.

COLUMN NAMES

RENAMED COLUMNS (SPACES REMOVED)

Building a Multiple Linear Regression Model, with 'AgentBonus' as the independent \

Intercept Age	1092.348510 21.645436
CustTenure	22.620905
ExistingProdType	46.508784
NumberOfPolicy	6.254332
MonthlyIncome	0.031885
Complaint	33.050381
ExistingPolicyTenure	40.229015
SumAssured	0.003548
LastMonthCalls	-2.308710
CustCareScore	7.559057
Channel_Online	22.691901
Channel_Third_Party_Partner	3.495278
Occupation_Large_Business	-616.860010
Occupation_Salaried	-474.972964
Occupation_Small_Business	-581.637241
EducationField_Engineer	26.675848
EducationField_MBA	-177.273687
EducationField_Post_Graduate	-92.609498
EducationField_Under_Graduate	2.331225
Gender_Male	25.187256
Designation_Executive	-493.361225
Designation_Manager	-481.419266
Designation_Senior_Manager	-277.421219
Designation_VP	-2.956791
MaritalStatus_Married	-48.203783
MaritalStatus_Single	29.658244
MaritalStatus_Unmarried	-188.879075
Zone_North	62.354153
Zone_South	193.510577
Zone_West	49.998087
PaymentMethod Monthly	141.951935
PaymentMethod_Quarterly	112.028794
PaymentMethod_Yearly	-79.920805
dtype: $float6\overline{4}$	

☐ Here the variables with a high value are less significant and do not affect or add to the predictions of dependant variable here AgentBonus.

☐ The variables with low value mean they are highly significant to the predictions hence don't require a high value to balance the weightage it adds to the dependant variable.

☐ And as the value becomes closer to zero the more significant the variable becomes like here SumAssured which we know for a fact is highly significant and is also proved by our EDA.

More information about variable significance will be provided in the end with the final equation.

OLS Regression Results

=======================================					===	
Dep. Variable: Ag	entBonus	R-squared:		0.	807	
Model:	OLS	Adj. R-squar	red:	0.	805	
Method: Least		F-statistic:			24.7	
	Dec 2021	Prob (F-stat	istic):	C	0.00	
	23:49:42	Log-Likeliho		-264		
No. Observations:	3390	AIC:	, ou.	5.307€		
Df Residuals:	3356	BIC:		5.327€		
Df Model:	33	DIC.		3.3276	.104	
Covariance Type: n	onrobust					
	coei		t	P> t	[0.025	0.975]
Intercept	1092.3485		2.338	0.019	176.198	2008.499
Age	21.645	1.420	15.245	0.000	18.862	24.429
CustTenure	22.6209	9 1.428	15.840	0.000	19.821	25.421
ExistingProdType	46.5088	3 23.229	2.002	0.045	0.964	92.054
NumberOfPolicy	6.2543	7.560	0.827	0.408	-8.569	21.078
MonthlyIncome	0.0319		5.954	0.000	0.021	0.042
Complaint	33.0504		1.426	0.154	-12.381	78.482
ExistingPolicyTenure	40.2290		9.894	0.000	32.257	48.201
SumAssured	0.003		60.294	0.000	0.003	0.004
LastMonthCalls	-2.308		-0.743	0.458	-8.405	3.787
CustCareScore	7.5592		0.989	0.323	-7.429	22.547
Channel_Online	22.6919		0.657	0.511	-45.054	90.438
Channel_Third_Party_Partner	3.4953		0.130	0.897	-49.389	56.380
Occupation_Large_Business	-616.8600		-1.360	0.174	-1505.902	272.182
Occupation_Salaried	-474.9730		-1.107	0.268	-1315.949	366.003
Occupation_Small_Business	-581.6372		-1.333	0.183	-1437.134	273.860
EducationField_Engineer	26.6758		0.172	0.863	-277.414	330.766
EducationField_MBA	-177.273		-1.430	0.153	-420.330	65.783
EducationField_Post_Graduate	-92.6095	5 87.381	-1.060	0.289	-263.934	78.715
EducationField_Under_Graduate			0.064	0.949	-69.631	74.293
Gender_Male	25.1873		1.180	0.238	-16.652	67.027
Designation_Executive	-493.3612		-8.258	0.000	-610.500	-376.222
Designation_Manager	-481.4193		-9.543	0.000	-580.330	-382.508
Designation_Senior_Manager	-277.4212	2 48.283	-5.746	0.000	-372.088	-182.755
Designation_VP	-2.9568	63.911	-0.046	0.963	-128.266	122.352
MaritalStatus Married	-48.2038	3 28.749	-1.677	0.094	-104.572	8.164
MaritalStatus Single	29.6582	2 31.785	0.933	0.351	-32.662	91.978
MaritalStatus Unmarried	-188.8791		-3.177	0.002	-305.462	-72.296
Zone North	62.3542		0.678	0.498	-118.011	242.720
Zone_South	193.510		0.678	0.498	-366.362	753.383
Zone West	49.9981		0.546	0.585	-129.439	229.435
PaymentMethod_Monthly	141.9519		2.517	0.012	31.363	252.541
	112.0288		1.317	0.188	-54.730	278.787
PaymentMethod_Quarterly						
PaymentMethod_Yearly	-79.9208 		-2.359 	0.018	-146.346 ====	-13.496
Omnibus:	126.575	Durbin-Watso			005	
Prob(Omnibus):	0.000	Jarque-Bera	(JB):	141.	177	
Skew:	0.474	Prob(JB):		2.21€		
Kurtosis:	3.315	Cond. No.		5.53e		

Here, R-squared (R^2) is a statistical measure that **represents the proportion of the variance for a dependent variable** that's explained by an independent variable or variables in a regression model. Hence a higher R-squared value means the data is capturing maximum variance hence the higher the value, the better the results.

RMSE - value - 600 . 5900784990948 R squared - value - 0.807 Adjusted R squared - value - 0.805

The variation in R-squared and Adjusted R-squared is not too significant and we have a high value for both, hence a good model.

Variance Inflation Factor(VIF) Value

Age VIF	=	1.33
CustTenure VIF	=	 02
ExistingProdType VIF	=	1.00
NumberOfPolicy VIF	=	- •
MonthlyIncome VIF	=	4.17
Complaint VIF	=	1.01
ExistingPolicyTenure VIF	=	1.11
SumAssured VIF	=	1.73
LastMonthCalls VIF	=	1.2
CustCareScore VIF	=	1.03
Channel Online VIF	=	1.05
Channel_Third_Party_Partner VIF	=	1.04
Occupation Large Business VIF	=	153.84
Occupation Salaried VIF	=	427.21
Occupation Small Business VIF	=	434.53
EducationField Engineer VIF	=	18.0
EducationField MBA VIF	=	2.0
EducationField Post Graduate VIF	=	17.68
EducationField Under Graduate VIF	=	2.73
Gender Male VIF	=	1.03
Designation Executive VIF	=	7.73
Designation Manager VIF	=	5.43
Designation Senior Manager VIF	=	2.73
Designation VP VIF	=	1.84
MaritalStatus Married VIF	=	1.92
MaritalStatus Single VIF	=	1.88
MaritalStatus Unmarried VIF	=	1.34
Zone North VIF	=	19.18
Zone South VIF	=	1.12
Zone West VIF	=	19.15
PaymentMethod Monthly VIF	=	2.13
PaymentMethod Quarterly VIF	=	1.11
PaymentMethod Yearly VIF	=	
_ -		

☐ Wherever VIF score > 5, multicollinearity is present

Multicollinearity is detected for Occupation_Large_Business, Occupation_Salaried, Occupation_Small_Business, EducationField_Engineer, EducationField_Post_Graduate, Designation Executive, Designation Manager(can be omitted), Zone North, Zone West.

We still find we have multi collinearity in the dataset, to drop these values to a further lower level we can drop columns after performing stats model.

- $\hfill\Box$ From stats model we can understand the features that do not contribute to the Model
- □ We can remove those features after that the Vif Values will be reduced. Ideal value of VIF is less than 5%.

Calculating VIF again after dropping variables having vif>5

Age VIF	=	1.32
CustTenure VIF	=	1.31
ExistingProdType VIF	=	3.53
NumberOfPolicy VIF	=	1.11
MonthlyIncome VIF	=	1.7
Complaint VIF		1.01
ExistingPolicyTenure VIF		1.11
SumAssured VIF	=	1.71
LastMonthCalls VIF	=	1.17
CustCareScore VIF	=	1.02
Channel_Online VIF	=	1.02
EducationField_Engineer VIF	=	1.11
EducationField_MBA VIF	=	1.03
EducationField_Post_Graduate VIF	=	1.13
Gender_Male VIF	=	1.02
Designation_Manager VIF	=	1.18
Designation_Senior_Manager VIF		1.25
MaritalStatus_Married VIF	=	1.92
MaritalStatus_Single VIF	=	1.87
MaritalStatus_Unmarried VIF	=	1.33
Zone_South VIF	=	1.01
Zone_West VIF		1.02
PaymentMethod_Monthly VIF	=	1.92
PaymentMethod_Quarterly VIF	=	1.09
PaymentMethod_Yearly VIF	=	2.06

Running statsmodel again after dropping the necessary variables above - LINEAR MODEL 2 (LM2)

Intercept Age CustTenure ExistingProdType NumberOfPolicy MonthlyIncome Complaint ExistingPolicyTenure SumAssured LastMonthCalls CustCareScore Channel_Online EducationField_Engineer EducationField_MBA EducationField_Post_Graduate	-235.677149 22.256764 23.459540 -32.270239 3.179880 0.062588 32.347109 40.038106 0.003593 1.657254 9.045225 29.871935 -20.287296 -97.213875 10.231469
Designation_Manager Designation Senior Manager	-124.840296 -24.565951
MaritalStatus_Married MaritalStatus_Single MaritalStatus_Unmarried Zone_South Zone_West PaymentMethod_Monthly PaymentMethod_Quarterly PaymentMethod_Yearly dtype: float64	-54.039328 16.120937 -205.556385 144.726473 -5.727819 13.015562 34.504220 4.557490

This time we are getting a negative intercept

OLS Regression Results

=======================================					====	
-	gentBonus	R-squared:			.803	
Model:	OLS	Adj. R-squar			.801	
	Squares	F-statistic			47.2	
•	Dec 2021	Prob (F-stat			0.00	
Time:	00:31:07	Log-Likelih	ood:		535.	
No. Observations:	3390	AIC:		5.312		
Df Residuals:	3364	BIC:		5.328	e+04	
Df Model:	25					
Covariance Type: r	nonrobust					
	coef		t	P> t	[0.025	0.975]
Intercept	-235.6771	93.849	-2.511	0.012	-419.684	-51.670
Age	22.2568		15.552	0.000	19.451	25.063
CustTenure	23.4595		16.323	0.000	20.642	26.277
ExistingProdType	-32.2702		-1.529	0.126	-73.638	9.097
NumberOfPolicy	3.1799		0.418	0.676	-11.723	18.083
MonthlyIncome	0.0626	0.003	18.138	0.000	0.056	0.069
Complaint	32.3471	23.352	1.385	0.166	-13.438	78.132
ExistingPolicyTenure	40.0381	4.095	9.777	0.000	32.009	48.067
SumAssured	0.0036	5.9e-05	60.886	0.000	0.003	0.004
LastMonthCalls	1.6573	3.097	0.535	0.593	-4.414	7.729
CustCareScore	9.0452	7.700	1.175	0.240	-6.051	24.142
Channel Online	29.8719	34.341	0.870	0.384	-37.460	97.204
EducationField Engineer	-20.2873	38.882	-0.522	0.602	-96.521	55.947
EducationField MBA	-97.2139	90.008	-1.080	0.280	-273.689	79.262
EducationField Post Graduate	10.2315	22.269	0.459	0.646	-33.430	53.893
Gender Male	15.9503		0.743	0.457	-26.119	58.020
Designation Manager	-124.8403	23.744	-5.258	0.000	-171.395	-78.286
Designation_Senior_Manager	-24.5660	32.955	-0.745	0.456	-89.180	40.048
MaritalStatus Married	-54.0393	28.999	-1.864	0.062	-110.896	2.818
MaritalStatus Single	16.1209		0.504	0.615	-46.645	78.887
MaritalStatus_Unmarried	-205.5564	59.836	-3.435	0.001	-322.876	-88.237
Zone_South	144.7265		0.529	0.597	-392.041	681.493
Zone_West	-5.7278		-0.269	0.788	-47.451	35.996
PaymentMethod_Monthly	13.0156		0.240	0.810	-93.137	119.168
PaymentMethod_Quarterly	34.5042		0.405	0.685	-132.416	201.425
PaymentMethod_Yearly	4.5575	32.348	0.141	0.888	-58.866 	67.981
Omnibus:	160.583	Durbin-Watso	 on:		.002	
Prob(Omnibus):	0.000	Jarque-Bera	(JB):	188	.423	
Skew:	0.522	Prob(JB):	• •	1.21	e-41	
**	2 101	a 1 17		1 70		

Warnings:

Kurtosis:

3.494 Cond. No.

As it can be observed above the P-value for multiple variables are greater than our alpha i.e 0.05, depicting multicollinearity present therefore we will drop the variables and perform the statsmodel again.

• To ideally bring down the values to lower levels we can drop one of the variable that is highly correlated.

1.72e+07

• Dropping variables would bring down the multi collinearity level down

	RMSE (LMZ)	RMSE (LMI)
Training	607.0547411435514	600.5900784990952
Testing	629.0548786960638	621.5274260080358

Since for model 2 our RMSE value has increased, it is not an optimal way to choose the new model. Not a significant change in R-squared either.

Removing variables until all the insignificant variables are removed.

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 1.72e+07. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

=======================================					=====	
Dep. Variable:	AgentBonus	R-squared:			0.806	
Model:	OLS	Adj. R-squa				
Method: Le	east Squares	F-statistic			1399.	
Date: Sat,	11 Dec 2021	Prob (F-sta	atistic):		0.00	
Time:	00:44:36	Log-Likeli	hood:	-	26511.	
No. Observations:	3390	AIC:		5.3	04e+04	
Df Residuals:	3379	BIC:		5.3	11e+04	
Df Model:	10					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
	643.6161				389.168	
Age	21.8786	1.416	15.451	0.000	19.102	24.655
CustTenure	22.7193	1.424	15.955	0.000	19.927	
MonthlyIncome	0.0372	0.004	8.473	0.000	0.029	0.046
ExistingPolicyTenure SumAssured	40.1752	4.037	9.951	0.000	32.259	48.091
SumAssured	0.0036	5.85e-05	60.654	0.000	0.003	0.004
Designation_Executive	-427.4484	52.722	-8.108	0.000	-530.818	-324.079
Designation_Manager					-525.367	
Designation_Senior_Manager MaritalStatus_Married	r -258.6449	43.277	-5.977	0.000	-343.496	-173.794
MaritalStatus_Married	-67.6078	21.235	-3.184	0.001	-109.243	-25.973
MaritalStatus_Unmarried	-226.2434	55.495	-4.077	0.000	-335.050	-117.437
Omnibus:	128.393	Durbin-Wat:	======== son:		1.999	
	0.000		a (JB):			
Skew:	0.475	Prob(JB):			79e-32	
Kurtosis:	3.341	Cond. No.		9.	23e+06	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.23e+06. This might indicate that there are strong multicollinearity or other numerical problems.

The overall P value is less than alpha, so rejecting H0 and accepting Ha that atleast 1 regression co-efficient is not 0. Here all regression co-efficients are not 0

We can see all variables are having p-value < 0.05 and the r-squared value hasn't changes much either

	RMSE (LM2)	RMSE (LM1)
Training	602.6246250878111	600.5900784990952
Testing	620.4861930401804	621.5274260080358

Since for model 2 our RMSE value has increased, it is not an optimal way to choose the new model.

 Modelling approach used here is Linear Regression, which is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting.

The variables are following a linear trend with a little homoscedasticity.

Model Outputs (Without Model Tuning):

Comparing Linear Regression Model with Other models like Random Forest, Artificial Neural Network and Decision Trees – With base parameter values are no hyperparameter tuning the parameters.

We are scaling the data for ANN. Without scaling it will give very poor results. Computations becomes easier

Scaling is done as some variables with greater weight will affect the predictions more, hence scaling is done to bring all variables in a common range e.g., 0 to 1. Due to which the predictions can be unbiased and not biased to one specific variable with higher weights. For e.g., age and sum assured.

SCALING

- Scaling can be useful to reduce or check the multi collinearity in the data, so if scaling is not applied, I find the VIF - variance inflation factor values very high.
 Which indicates presence of multi collinearity
- These values are calculated after building the model of linear regression. To understand the multi collinearity in the model
- The scaling had no impact in model score or coefficients of attributes nor the intercept.

	Train Mase	Test Mase	Training Score	Test score
Linear Regression	612.550689	585.514819	0.800806	0.801482
Decision Tree Regressor	0.000000	725.006753	1.000000	0.695626
Random Forest Regressor	189.614010	519.044211	0.980913	0.843997
ANN Regressor	225.889011	701.144120	0.972912	0.715332

Here Linear Regression is the best performing model with almost same Training and Testing Accuracies.

On the other hand, we can observe that the other three models namely, Decision Tree, Random Forest, and ANN are Overfitting the model, i.e. the model is performing better while training but poorly while testing.

To fix this we will use Hyperparameter Tuning, this will be done by performing grid search.

Checking if PCA can be applied here.

```
Cumulative Variance Explained [ 99.97511098
                                      99.99912638
                                                  99.99999976 99.99999986
9999995
 99.9999997
            99.9999999 100.
                       100.
                                  100.
                                             100.
100.
            100.
                       100.
                                  100.
                                             100.
100.
            100.
                       100.
                                  100.
                                             100.
100.
            100.
                       100.
                                  100.
                                             100.
100.
            100.
                       100.
                                  100.
                                             ]
```

Since cumulative variance is almost 99%, hence there is no need to perform PCA

Figure 7 - Principal Components vs Variance Ratio

Not much can be observed about the components from the heatmap, therefore dropping the need to perform PCA as almost all these variables hold a good deal of significance in the predictions.

MODEL TUNING

We will perform grid search for hyperparameter tuning and check if that makes a difference in our accuracies.

Grid Search on Decision Tree

```
Best parameters - { 'max depth': 10, 'min samples leaf': 3, 'min samples split': 40}
```

Grid Search on Random Forest

Using Grid Search for ANN

Model Outputs (With Model Tuning):

	Train RMSE	Test RMSE	Training Score	Test Score
Linear Regression	612.550689	585.514819	0.800806	0.801482
Decision Tree Regressor	495.463438	569.694730	0.869679	0.812065
Random Forest Regressor	527.410585	572.885614	0.852331	0.809954
ANN Regressor	28.117642	670.444991	0.999580	0.739715

After Hyperparameter tuning it can be observed the problem of overfitting is removed for most of the models however some overfitting can be observed in ANN.

Apart from this, we can observe Linear Regression is still the most stable having not much variation between training and testing sets.

If you're looking for more stable Model, definitely go for Linear Regression model, else Decision Tree and Random Forest can be chosen for higher accuracy and are good models as the there's only 5% fluctuations between training and testing model. Random forest is the better choice between the Regressors as random forest is the more advanced version of decision trees where we can further tweak the parameters according to the needs.

Feature Importance from the model can be observed here:

Tmn

	Imp
SumAssured	0.428155
CustTenure	0.155577
Age	0.144097
MonthlyIncome	0.113766
ExistingPolicyTenure	0.038903
Designation Executive	0.032743
Designation VP	0.027304
LastMonthCalls	0.010814
Designation Manager	0.010730
Designation_Senior Manager	0.007526
ExistingProdType	0.004708
NumberOfPolicy	0.004006
MaritalStatus_Unmarried	0.003666
CustCareScore	0.002908
Zone_North	0.001236
MaritalStatus_Single	0.001231
MaritalStatus_Married	0.001103
Gender_Male	0.001099
Channel_Third Party Partner	0.001056
Complaint	0.001049
Zone_West	0.001029
EducationField_Post Graduate	0.000941

Occupation Salaried	0.000940
EducationField_Under Graduate	0.000844
PaymentMethod_Yearly	0.000832
Occupation_Small Business	0.000793
Channel_Online	0.000773
PaymentMethod_Monthly	0.000698
EducationField_Engineer	0.000623
Occupation_Large Business	0.000546
PaymentMethod_Quarterly	0.000171
EducationField_MBA	0.000131
Zone South	0.000003

Sum Assured is the most important feature here, Zone_South being the least important.

MODEL SELECTION

- From the previous results, it is evident that Linear Regression is a better model.
- Why Linear Regression?
 - Post removal of variables causing multicollinearity, Linear Regression provided a good R-squared value and similarly a high adjusted R squared value. Hence a good percentage of variance can be successfully explained by our model.
 - A very important factor being the train and test set accuracy scores are ~80% and consistent.
 - Unlike other models where overfitting and inconsistency in the performance metrics can be observed. Linear Regression model does not show these inconsistencies in the observation.

(Here by overfitting we mean, the model is performing very good for training set and giving poor results for the testing set)

The LR model makes it easier to understand the model, multicollinearity in the data. Also, unlike other
model its computational time is quick therefore we can run it multiple times whereas ANN and Random
Forests needs capable machines as they are very time consuming models. Might have to wait for hours
and in our case they still don't perform better than LR.

Note: 100 % accuracy cannot be achieved in real life data as there is always some unexplainable factors and noise that's always present in our data.

MODEL EVALUATION

The Equation

```
(1092.35) * Intercept + (21.65) * Age + (22.62) * CustTenure + (46.51) * ExistingProdType + (6.25) * NumberOfPolicy + (0.03) * MonthlyIncome + (33.05) * Complaint + (40.23) * ExistingPolicyTenure + (0.0) * SumAssured + (-2.31) * LastMonthCalls + (7.56) * CustCareScore + (22.69) * Channel_Online + (3.5) * Channel_Third_Party_Partner + (-616.86) * Occupation_Large_Business + (-474.97) * Occupation_Salaried + (-581.64) * Occupation_Small_Business + (26.68) * EducationField_Engineer + (-177.27) * EducationField_MBA + (-92.61) * EducationField_Post_Graduate + (2.33) * EducationField_Under_Graduate + (25.19) * Gender_Male + (-493.36) * Designation_Executive + (-481.42) * Designation_Manager + (-277.42) * Designation_Senior_Manager + (-2.96) * Designation_VP + (-48.2) * MaritalStatus_Married + (29.66) * MaritalStatus_Single + (-188.88) * MaritalStatus_Unmarried + (62.35) * Zone_North + (193.51) * Zone_South + (50.0) * Zone_West + (141.95) * PaymentMethod_Monthly + (112.03) * PaymentMethod_Quarterly + (-79.92) * PaymentMethod_Yearly
```

• From the equation the variables with a low or no coefficient value depicts that the variable is very important to the independent variable's prediction. As the coefficients value increase it shows the variable has become comparatively less significant.

The variable significance can be explained using the * method, where * depicts highly significant, ** less significant, and *** least significant.

Variables	Significance
SumAssured, MonthlyIncome	*
LastMonthCalls, CustCareScore, Channel_Third_Party_Partner, EducationField_Under_Graduate, Designation_VP, NumberOfPolicy	**
Age, CustTenure, Channel_Online, EducationField_Engineer, Gender_Male, MaritalStatus_Single, Complaint, ExistingPolicyTenure, MaritalStatus_Married, Zone_West, Zone_North, PaymentMethod_Yearly, EducationField_Post_Graduate	***
Occupation_Large_Business, Occupation_Salaried, Occupation_Small_Business, EducationField_MBA, Designation_Executive, Designation_Manager, Designation_Senior_Manager, MaritalStatus_Unmarried, Zone_South, Paymentmethod_Monthly, PaymentMethod_Quaterly	***

- R-Squared Obtained from final Linear Regression Model: 0.806
- Adjusted R-Squared Obtained from final Linear Regression Model: 0.805
- Decision Trees, Random Forest, and ANN (Before Hyperparameter Tuning):
 - It can be observed that all the 3 models have overfitting problems where we have ideal accuracies of ~100% for our training set. However the models are performing poorly on our testing set having accuracies ~70% 84%. There is a major accuracy difference between the training and testing set which is not acceptable for predictions.
 - If the accuracy difference is greater than 6-10% it is advised to not accept the model as the predictions can be unreliable.
- Decision Trees, Random Forest, and ANN (After Hyperparameter Tuning):
 - After Hyperparameter Tuning Decision Trees and Random Forest models showed no overfitting errors.
 - The training accuracies were ~85% and testing accuracies were ~80%.
 - ANN still showed no improvement in results and was still overfitting.
- Although the Decision Trees and Random Forest were performing good, I went with Linear Regression as it gave
 more stable results and Variable importance could be calculated more easily from the Linear Regression
 Equation and stats-model performed to predict the results.

Insig	hts from Analysis.
	Company wants to predict the ideal bonus and what is the engagement for high and lo respectively.
	From the model, the high performing agent we will find variable significance, for eg, Sum Assured is highly significant here and highly correlated to our target variable.
	SumAssured is highly significant as the agent performing good is the one which is getting more profit for the company selling more or high value policies.
	If the Designation is VP the person buys more policy or high value policies.
	Therefore, for high and low performing agents, we will train them, suggesting them to purchase or get policies with high sum assured as it is very significant to our model.
	Another important feature is Customer tenure where the agents need to focus on the customers who've a tenure ranging between 8-20 this where the majority of the customer are.
	Focusing on customers with greater monthly incomes as greater the monthly income, greater is the possibility of the customer buying a higher valued policy.
	From the Linear Regression Equation we can find insights and remove all the least significant variables
R	ecommendations.
	For High Performing Agents we can create a healthy contest with a threshold.
	Where, if they achieve the desired sum assured, they are eligible for certain incentives like latest gadgets, exotic family vacation packages and some extra perks as well.
	For low performing agents, we can introduce certain feedback upskill programs to train them into closing higher sum assured policies, reaching certain people to ultimately becoming top/high performers.
	Apart from this, we need more data/predictors like Premium Amount, this will help us to solve the business problem even better as well have more variables to test upon thereby having more accurate results in real time problems like this.
	I also feel another predictor can be added as customers geographical location or Region and not just the zones as people living in rural areas are less likely to buy a policy whereas those living in a highly developed location are likely to be belonging to the upper class and should be targeted.
П	Similarly, another predictor can be AgentID can be introduced which will make it easier to observe the high and

low performing agent trend.