实分析期末复习

统计 91 董晟渤 2021 年 6 月

目录

1	知识回顾		3	
	1.1	集合		3
	1.2	测度		3
		1.2.1	σ-域	3
		1.2.2	测度	4
		1.2.3	外测度	5
	1.3	可测函	i数	6
		1.3.1	可测函数的定义与性质	6
		1.3.2	简单函数逼近可测函数	7
		1.3.3	连续函数逼近可测函数	7
		1.3.4	可测函数的收敛	7
	1.4	积分		8
		1.4.1	积分的定义与性质	8
		1.4.2	积分的收敛	9
	1.5	微分		10
		1.5.1	有界变差函数	10
		1.5.2	几个重要结论	11
		1.5.3	绝对连续函数	11
	1.6	概率论	基础	12
		1.6.1	概率空间	12
		1.6.2	随机变量	13
		1.6.3	期望, 矩与特征函数	14
		1.6.4	随机变量的收敛	16
2	作业	解答		17
3	习题	课		25
4	2018	4 年真語	<u>顷</u>	29
5	2017	7 年真語	顷	33

1 知识回顾

1.1 集合

定义 1 (极限). 设 $\{A_n\}$ 为集合列, 记

$$\lim_{n \to +\infty} \sup A_n = \bigcap_{n \ge 1} \bigcup_{i \ge n} A_i, \quad \lim_{n \to +\infty} \inf A_n = \bigcup_{n \ge 1} \bigcap_{i \ge n} A_i,$$

分别为 $\{A_n\}$ 的上极限和下极限. 若 $\limsup_{n \to +\infty} A_n = \liminf_{n \to +\infty} A_n$, 则 $\{A_n\}$ 的极限存在, 并记

$$\lim_{n \to +\infty} A_n = \limsup_{n \to +\infty} A_n = \liminf_{n \to +\infty} A_n.$$

若
$$\{A_n\}$$
 单调递增, 则 $\lim_{n\to+\infty}A_n=\bigcup_{n=1}^{+\infty}A_n;$ 若 $\{A_n\}$ 单调递减, 则 $\lim_{n\to+\infty}A_n=\bigcap_{n=1}^{+\infty}A_n.$

定义 2 (势). \bar{A} 表示集合 A 的势. 设 $A, B \neq \emptyset$, 若存在单射 $f: A \rightarrow B$, 则记

$$\bar{A} \preceq \bar{B}$$
 , $\bar{A} \succeq \bar{A}$.

若 $\bar{A} \preceq \bar{B}$, $\bar{A} \succeq \bar{B}$, 则记 $\bar{A} = \bar{B}$, 否则记 $\bar{A} \neq \bar{B}$. 若 $\bar{A} \preceq \bar{B}$, 且 $\bar{A} \neq \bar{B}$, 则记 $\bar{A} \prec \bar{B}$.

定理 3 (Cantor-Bernstein-Schröeder 定理). 若 $\bar{A} = \bar{B}$, 则存在双射 $f: A \to B$.

定义 4 (有限, 可数与不可数). 若存在 $n \in \mathbb{N}$, 使得 $\bar{A} = \{1, 2, \overline{\dots}, n\}$, 则 A 为有限集, 否则 A 为无限集. 若 A 为无限集, 且 $\bar{A} = \overline{\mathbb{N}}$, 则 A 为可数集. 否则 A 为不可数集.

通常记集合 N 的元素个数为 $+\infty$, 以下记 $\mathbb{R} = [-\infty, +\infty]$.

1.2 测度

1.2.1 σ -域

设 X 为全集, $2^X = \{A : A \subset X\}$, $\mathscr{A} \in 2^X$.

定义 5 (σ-域). 设 $\varnothing \neq \mathscr{A} \subset 2^X$, 若 \mathscr{A} 满足:

$$(1) ~ 若 ~ E \in \mathscr{A}, ~ 则 ~ E^C \in \mathscr{A}; \\ +\infty$$

$$(2)$$
 若 $E_1, E_2, \dots \in \mathscr{A}$, 则 $\bigcup_{n=1}^{+\infty} E_n \in \mathscr{A}$, 则 \mathscr{A} 为 σ -域.

4 1 知识回顾

命题 6 (σ -域的性质). 设 \mathscr{A} 为 σ -域.

- $(1) \varnothing \in \mathscr{A}, X \in \mathscr{A};$
- (2) (有限交与有限并) 若 $E_1, E_2, \cdots, E_n \in \mathcal{A}$, 则

$$\bigcup_{k=1}^{n} E_k \in \mathscr{A}, \quad \bigcap_{k=1}^{n} E_k \in \mathscr{A};$$

(3) (可数交与可数并) 若 $E_1, E_2, \dots \in \mathcal{A}$, 则

$$\bigcup_{n=1}^{+\infty} E_n \in \mathscr{A}, \quad \bigcap_{n=1}^{+\infty} E_n \in \mathscr{A}.$$

定义 7 (生成 σ -域与 Borel 集). 设 $\mathscr{C} \subset 2^X$, 则

$$\sigma(\mathscr{C}) = \bigcap_{\mathscr{C} \subset \mathscr{A}} \mathscr{A}, \quad \mathscr{A} \ \, 为 \, \, \sigma$$
-域

为 \mathscr{C} 的生成 σ -域. 记 $\mathscr{O} = \{\Omega \subset \mathbb{R}^n, \Omega$ 为开集 $\}$, 则 $\mathscr{B}_{\mathbb{R}^n} = \sigma(\mathscr{O})$ 中的元素称为 \mathbb{R}^n 中的 Borel 集.

1.2.2 测度

定义 8 (测度). 设 \mathscr{A} 为 σ -域, 映射 $\mu: \mathscr{A} \to [0, +\infty]$, 满足:

- (1) $\mu(\varnothing) = 0$;
- (2) 若 $A_1, A_2, \dots \in \mathcal{A}$ 互不相交,则

$$\mu\left(\sum_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} \mu(A_n),$$

则 μ 为 X 上的**测度**, $A \in \mathcal{A}$ 为 μ -可测集, $\mu(A)$ 为 A 的测度. $\{X, \mathcal{A}, \mu\}$ 为**测度空间**.

命题 9 (测度的性质). 设 $\{X, \mathcal{A}, \mu\}$ 为测度空间.

(1) (有限可加性) 若 $A_1, A_2, \cdots, A_n \in \mathcal{A}$ 互不相交, 则

$$\mu\left(\sum_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} \mu(A_k);$$

- (2) (单调性) 设 $A, B \in \mathcal{A}, A \subset B, 则 \mu(A) \leq \mu(B);$
- (3) (可减性) 设 $A, B \in \mathcal{A}, A \subset B, \mu(A) < +\infty, 则 \mu(B A) = \mu(B) \mu(A);$
- (4) (次可加性) 设 $A_1, A_2, \dots \in \mathcal{A}$, 则

$$\mu\left(\sum_{n=1}^{+\infty} A_n\right) \le \sum_{n=1}^{+\infty} \mu(A_n);$$

1.2 测度 5

(5) (极限) 设 $A_1, A_2, \dots \in \mathcal{A}$, $\{A_n\}$ 单调递增, 则

$$\mu\left(\lim_{n\to+\infty}A_n\right)=\lim_{n\to+\infty}\mu(A_n);$$

设 $\{A_n\}$ 单调递减, $\mu(A_1) < +\infty$, 则

$$\mu\left(\lim_{n\to+\infty}A_n\right)=\lim_{n\to+\infty}\mu(A_n).$$

定义 10 (零测集与完备). 设 $E \in \mathcal{A}$, $\mu(E) = 0$, 则 E 为 μ -零测集. 设 $\{X, \mathcal{A}, \mu\}$ 为测度空间, 如果 X 中的 μ -零测集的子集都是 μ -零测集, 则 $\{X, \mathcal{A}, \mu\}$ 为完备的测度空间.

1.2.3 外测度

定义 11 (外测度). 映射 $\mu^*: 2^X \to [0, +\infty]$, 满足:

- (1) $\mu^*(\emptyset) = 0$;
- (2) 若 $A_1, A_2, \dots \in 2^X$, 则

$$\mu^* \left(\sum_{n=1}^{+\infty} A_n \right) \le \sum_{n=1}^{+\infty} \mu^* (A_n),$$

则 μ^* 为 X 上的外测度.

定理 12 (Caratheodory 定理). 设 μ^* 是 X 上的外测度, 则

$$\mathscr{A} = \{ E \in 2^X : \mu^*(T) = \mu^*(T \cap E) + \mu^*(T \cap E^C), \forall T \in 2^X \}$$

为 σ -域, $\mu^*|_{\mathscr{A}}$ 为测度, \mathscr{A} 中的元素称为 μ^* -可测集.

定义 13 (Lebesgue 测度). 设

$$Q = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n) \in \mathbb{R}^n,$$

称 Q 为 \mathbb{R}^n 中的开方体, 定义

$$m(\mathcal{Q}) = \prod_{k=1}^{n} (b_k - a_k);$$

再设 $A \subset \mathbb{R}^n$, 定义

$$m^*(A) = \inf \sum_{k=1}^{+\infty} m(\mathcal{Q}_k)$$
, 其中 \mathcal{Q} 为开方体且 $A \subset \bigcup_{k=1}^{+\infty} \mathcal{Q}_k$,

则 m^* 为 \mathbb{R}^n 上的外测度. m^* -可测集为 **Lebesgue** 可测集, 并记它们所构成的集合为 $\mathcal{L}, m^*|_{\mathscr{L}}$ 为 **Lebesgue** 测度, 记为 m, $\{\mathbb{R}^n, \mathcal{L}, m\}$ 为测度空间.

6 1 知识回顾

定义 14 (Lebesgue-Stieltjes 测度). 设 $F: \mathbb{R} \to \mathbb{R}$ 是右连续的单调递增函数, 定义

$$m_F((a,b)) = F(b) - F(a),$$

再设 $A \subset \mathbb{R}$, 定义

$$m_F^*(A) = \inf \sum_{k=1}^{+\infty} m((a_k, b_k)), \quad \sharp \, \, \forall A \subset \bigcup_{k=1}^{+\infty} (a_k, b_k),$$

则 m_F^* 为 \mathbb{R} 上的外测度. m_F^* -可测集为 Lebesgue-Stieltjes 可测集, 并记它们所构成的集合为 \mathcal{L}_F , $m^*|_{\mathcal{L}_F}$ 为 Lebesgue-Stieltjes 测度, 记为 m_F , $\{\mathbb{R}, \mathcal{L}_F, m_F\}$ 为测度空间. 特别地, 取 F(x) = x, 则 m_F 为 \mathbb{R} 上的 Lebesgue 测度.

命题 15 (Lebesgue 测度的性质). 设 $\{\mathbb{R}^n, \mathcal{L}, m\}$ 为测度空间.

- (1) Borel 集都是 Lebesque 可测集;
- (2) { \mathbb{R}^n , \mathcal{L} , m} 为完备的测度空间;
- (3) (平移不变性) 设 $A \in \mathcal{L}$, $b \in \mathbb{R}^n$, 则 A + b 可测, 且 $m^*(A + b) = m^*(A)$;
- (4) (正则性) 设 $A \in \mathcal{L}$, 则

$$m(A) = \inf\{m(\Omega) : \Omega \supset A$$
且 Ω 为开集}
$$= \sup\{m(K) : K \subset A$$
且 K 为紧集}.

1.3 可测函数

1.3.1 可测函数的定义与性质

设 $\{X, \mathcal{A}, \mu\}$ 为测度空间.

定义 16. 可测函数 设 $A \in \mathcal{A}$, $f : A \to \mathbb{R}$, 如果对任意的 $\lambda \in \mathbb{R}$, $\{f > \lambda\} \in \mathcal{A}$, 则 f 为 μ -可测函数. 若 $X = \mathbb{R}^n$, $\mathcal{A} = \mathcal{L}$, μ 是 Lebesgue 测度, 则 f 为 Lebesuge 可测函数.

命题 17. 可测函数的性质 设 f, g, f_1, f_2, \cdots 是 μ -可测函数.

- (1) 设 $B \in \mathcal{B}_{\mathbb{R}}$, 则 $\{f \in B\} \in \mathcal{A}$;
- (2) $\alpha f + \beta g, fg, f/g(g \neq 0), |f|$ 是 μ-可测函数;
- (3) $\inf f_n$, $\sup f_n$, $\lim_{n \to +\infty} \inf f_n$, $\lim_{n \to +\infty} \sup f_n$ 是 μ -可测函数.

命题 18 (特征函数). 设 $A \subset X$, 则

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \in X - A \end{cases}$$

1.3 可测函数 7

是 μ -可测函数当且仅当 $A \in \mathcal{A}$.

定义 19 (简单函数). 设 $A \in \mathcal{A}$, $\varphi : A \to \mathbb{R}$, 如果 Rgf 是有限集, 则 φ 为简单函数.

1.3.2 简单函数逼近可测函数

定理 20. 设 $A \in \mathcal{A}$, $f: A \to [0, +\infty]$ 是 μ -可测函数, 则存在简单函数 $\varphi_n: A \to [0, +\infty]$, $n = 1, 2, \cdots$, 使得

- (1) $0 \le \varphi_n \le \varphi_{n+1}$;
- (2) φ_n 逐点收敛于 f.

定理 21. 设 $A \in \mathcal{A}$, $f: A \to [0, +\infty]$ 是有界的 μ -可测函数, 则存在简单函数 $\varphi_n: A \to [0, +\infty]$, $n = 1, 2, \cdots$, 使得

- (1) $0 \le \varphi_n \le \varphi_{n+1}$;
- (2) φ_n 一致收敛于 f.

定理 22. 设 $A\in \mathscr{A}, f:A\to \mathbb{R}$ 是有界的 μ -可测函数, 则存在简单函数 $\varphi_n:A\to \mathbb{R}, n=1,2,\cdots$, 使得

- (1) $|\varphi_n| \leq |f|$;
- (2) φ_n 一致收敛于 f.

1.3.3 连续函数逼近可测函数

定理 23 (Tietze 延拓定理). 设 $K \subset \mathbb{R}^n$ 是紧集, $f: K \to \mathbb{R}$ 连续, 则存在连续函数 $\tilde{f}: \mathbb{R}^n \to \mathbb{R}$, 使得 $\tilde{f}\Big|_{\mathcal{K}} = f$.

定理 24. 设 $A \in \mathcal{L}$, $f: A \to \mathbb{R}$ 是几乎处处有限的 Lebesgue 可测函数,则对任意的 $\varepsilon > 0$, 都存在 $E \subset A$, $m(E) \leq \varepsilon$, 使得 $f|_{A-E}$ 连续.

定理 25 (Лузин 定理). 设 $A \in \mathcal{L}$, $m(A) < +\infty$, $f: A \to \mathbb{R}$ 是几乎处处有限的 Lebesgue 可测函数, 则对任意的 $\varepsilon > 0$, 存在连续函数 $g: A \to \mathbb{R}$, 使得 $m(\{g \neq f\}) \leq \varepsilon$.

1.3.4 可测函数的收敛

为了让 $\{f_n\}$ 收敛于 f, 在收敛的定义中, 设 f 几乎处处有限. 否则, 若 $|f| = +\infty$, $f_n \to f$ 的话, 就不能称 $\{f_n\}$ 收敛. 这种情况, 通常说 $\{f_n\}$ 以 f 为极限, 但是不收敛.

8 1 知识回顾

定理 26 (Егóров 定理). 设 $A \in \mathcal{A}$, $\mu(A) < +\infty$, $f_n, f : A \to \mathbb{R}$ 是 μ -可测函数, $n = 1, 2, \cdots$, 且 f 几乎处处有限. 若 f_n 逐点收敛于 f, 则对任意的 $\varepsilon > 0$, 都存在 $E \subset A$, $\mu(E) \leq \varepsilon$, 使得 $f_n|_{A-E}$ 一致收敛于 $f|_{A-E}$.

定义 27 (几乎处处收敛). 设 $A \in \mathcal{A}$, $f_n, f: A \to \mathbb{R}$ 是 μ -可测函数, $n = 1, 2, \cdots$, 如果 存在 $E \subset A$, $\mu(E) = 0$, 使得 $f_n|_{A-E}$ 逐点收敛于 $f|_{A-E}$, 则 f_n 几乎处处收敛于 f, 记为 $f_n \to f$, μ — a.e..

命题 28. $f_n \to f, \mu - \text{a.e.}$ 当且仅当对任意的 $\varepsilon > 0$, 有

$$\mu\left(\bigcap_{m=1}^{+\infty}\bigcup_{n=m}^{+\infty}\{|f_n-f|\geq\varepsilon\}\right)=0.$$

定义 29 (依测度收敛). 设 $A \in \mathcal{A}$, $f_n, f: A \to \mathbb{R}$ 是 μ -可测函数, $n = 1, 2, \cdots$, 若对任意的 $\varepsilon > 0$, 有

$$\lim_{n \to +\infty} \mu(\{|f_n - f| \ge \varepsilon\}) = 0,$$

则 f_n 依测度 μ 收敛于 f, 记为 $f_n \stackrel{\mu}{\rightarrow} f$.

定理 30 (Riesz 定理). 设 $A \in \mathcal{A}$, $f_n, f: A \to \mathbb{R}$ 是 μ -可测函数, $n = 1, 2, \dots, f_n \xrightarrow{\mu} f$, 则存在子列 $\{f_{n_k}\}$, 使 $f_{n_k} \to f$, μ – a.e..

1.4 积分

1.4.1 积分的定义与性质

设 $\{X, \varnothing, \mu\}$ 为测度空间.

定义 31 (积分). 设 $A \in \mathcal{A}$, $\varphi: A \to [0, +\infty)$ 是简单函数, $Rg\varphi = \{\alpha_1, \alpha_2, \cdots, \alpha_n\}$, 则

$$\int_{A} \varphi d\mu = \sum_{k=1}^{n} \alpha_{i} \mu(\{f = \alpha_{i}\})$$

为 φ 的积分; 设 $f: A \to [0, +\infty]$ 是 μ -可测函数, 则

$$\int_A f d\mu = \sup \int_A \varphi d\mu, \quad 其中 \ 0 \le \varphi \le f \ 为简单函数$$

为 f 的积分; 最后, 设 $f:A\to\mathbb{R}$ 是 μ -可测函数, 记 $f=f^+-f^-$,若 $\int_A f^+\mathrm{d}\mu<+\infty$ 或 $\int_A f^-\mathrm{d}\mu<+\infty$,则称 $\int_A f\mathrm{d}\mu$ **有定义**,

$$\int_A f d\mu = \int_A f^+ d\mu - \int_A f^- d\mu$$

1.4 积分 9

为 f 的积分. 特别地, 若 $X = \mathbb{R}^n$, $\mathscr{A} = \mathscr{L}$, $\mu = m$, 则此时积分为 **Lebesgue** 积分, 若 $X = \mathbb{R}$, $\mathscr{A} = \mathscr{L}_F$, $\mu = m_F$, 则此时积分为 **Lebesgue-Stieltjes** 积分, 并可简记为

$$\int_A f \mathrm{d}F(x).$$

若 $\int_A f^+ \mathrm{d}\mu < +\infty$, $\int_A f^- \mathrm{d}\mu < +\infty$, 则 $f\mu$ -可积, 记所有的 μ -可积函数所构成的函数集合为 $L^1(A)$.

命题 32 (积分的性质). 设 $A \in \mathcal{A}, f, g : A \to \mathbb{R}$ 是 μ -可测函数.

(1) 设
$$f = 0, \mu - \text{a.e.}$$
, 则 $\int_A f d\mu$ 有定义, 且 $\int_A f d\mu = 0$;

(2) (单调性) 设
$$f, g \ge 0$$
 或 $f, g \in L^1(A)$, $f \le g$, 则 $\int_A f d\mu \le \int_A g d\mu$;

 $(3) (区域可加性) 设 A = B + C, B, C \in \mathscr{A}, 如果 <math>f \geq 0$,则 $\int_A^{JA} f d\mu = \int_B f d\mu + \int_C f d\mu$; (4) (区域可加性) 设 $A = B + C, B, C \in \mathscr{A}$,如果 $f \in L^1(A)$,则 $f \in L^1(B) \cap L^1(C)$,且 $\int_A f d\mu = \int_B f d\mu + \int_C f d\mu$.

1.4.2 积分的收敛

定理 33 (Levi 单调收敛定理). 设 $A \in \mathcal{A}$, $f_n, f: A \to [0, +\infty]$ 是 μ -可测函数, $n = 1, 2, \dots, f_n \to f, n \to +\infty$, 若 $\{f_n\}$ 单调递增, 则

$$\int_A f_k d\mu \to \int_A f d\mu, \quad k \to +\infty.$$

定义 34 (绝对可积). 设 $A\in\mathscr{A},\,f:A\to[-\infty,+\infty]$ 是 μ -可测函数, 若

$$\int_{\Lambda} |f| \mathrm{d}\mu < +\infty,$$

则 f 绝对可积.

可以证明 $f \in L^1(A)$ 当且仅当 f 绝对可积, 从而

$$L^{1}(A) = \left\{ f : A \to \mathbb{R} : \int_{A} |f| d\mu < +\infty \right\}.$$

命题 35 (绝对连续性). 设 $A \in \mathcal{A}$, $f \in L^1(A)$, 则对任意的 $\varepsilon > 0$, 都存在 $\delta > 0$, 对任意 的 $E \subset A$, $E \in \mathcal{A}$, $\mu(E) < \delta$, 都有

$$\int_{E} |f| \mathrm{d}\mu < \varepsilon.$$

10 10 1 知识回顾

定理 36 (Fatou 引理). 设 $A \in \mathcal{A}$, $f_n: A \to [0, +\infty]$ 是 μ -可测函数, $n=1,2,\cdots$, 则

$$\int_{A} \liminf_{n \to +\infty} f_n d\mu \le \liminf_{n \to +\infty} \int_{A} f_n d\mu.$$

定理 37 (Lebesgue 控制收敛定理). 设 $A \in \mathcal{A}$, $f_n, f \in L^1(A)$, $n = 1, 2, \dots, f_n \to f, n \to +\infty$, 若存在 $g: A \to [0, +\infty]$, $g \in L^1(A)$, 使得 $|f_n| \leq g, n = 1, 2, \dots$, 则

$$\int_{A} |f_n - f| d\mu \to 0, n \to +\infty, \quad 进而 \quad \int_{A} f_n d\mu \to \int_{A} f d\mu.$$

定理 38 (Fubini 定理). 设 $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ 是 Lebesgue 可测函数, $f = f(\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{x} \in \mathbb{R}^n$, $\boldsymbol{y} \in \mathbb{R}^m$, 若 $f \geq 0$ 或 $f \in L^1(\mathbb{R}^m \times \mathbb{R}^n)$, 则

$$\int_{\mathbb{R}^n \times \mathbb{R}^m} f(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y} = \int_{\mathbb{R}^n} \left\{ \int_{\mathbb{R}^m} f(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} \right\} d\boldsymbol{x}$$
$$= \int_{\mathbb{R}^m} \left\{ \int_{\mathbb{R}^n} f(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} \right\} d\boldsymbol{y}.$$

一个重要的结论是: 对于非负函数 f(x),

$$\int_a^b f(x) \mathrm{d}x = \int_0^{+\infty} m(\{f > y\}) \mathrm{d}y.$$

1.5 微分

1.5.1 有界变差函数

定义 39 (变差与全变差). 设 $f:[a,b] \to \mathbb{R}$, $p:a=a_0 < a_1 < \cdots < a_n = b$ 为 [a,b] 的一个分割, 记

$$V(f;p) = \sum_{i=1}^{n} |f(a_i) - f(a_{i-1})|,$$

其为 f 对于分划 p 的变差; 记

$$V(f) = \sup_{p} V(f; p),$$

其为 f 的全变差. 若 $V(f) < +\infty$, 则 f 为有界变差函数, 其所构成的集合记为

$$BV([a, b]) = \{ f : [a, b] \to \mathbb{R} : V(f) < +\infty \}.$$

设 $f \in C^1([a,b])$, 则 $f \in BV([a,b])$, 且 $V(f) = \int_a^b |f'(x)| dx$; 设 f 单调递增, 则 $f \in BV([a,b])$, 且 V(f) = f(b) - f(a); 设 f 是 Lipschitz 函数, 则 $f \in BV([a,b])$.

1.5 微分 11

命题 40 (有界变差函数的性质). 设 $f,g \in BV([a,b])$.

- (1) $V(f) \ge |f(b) f(a)|$;
- (2) f 有界;
- (3) $\alpha f + \beta g \in BV([a, b]).$

定理 41 (Jordan 分解). 设 $f \in BV([a,b])$, 则存在单调增函数 $g,h:[a,b] \to \mathbb{R}$, 使

$$f = q - h$$
.

1.5.2 几个重要结论

命题 42. 设 $f:[a,b]\to\mathbb{R}$ 单调递增, 则 f 连续, m-a.e.

定理 43 (Lebesgue 微分定理). 设 $f:[a,b]\to\mathbb{R}$ 单调递增, 则 f 可导, m-a.e., 且

$$\int_{a}^{b} f'(x) \mathrm{d}x \le f(b) - f(a).$$

命题 44. 设 $f \in BV([a,b])$, 则 f 可导, m - a.e., 且 $f' \in L^1([a,b])$.

命题 45. 设 $f, g \in C([a, b])$, 若 f = g, m - a.e., 则 f = g.

定理 46 (微积分基本定理). 设 $f \in L^1([a,b])$, 则 $F(x) = \int_a^x f(t) dt$ 可导, 且

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = f(x), \quad m - \text{a.e.}.$$

特别地, 设 $f \in C([a,b])$, 则上式对任意的 $x \in [a,b]$ 成立.

1.5.3 绝对连续函数

定义 47 (绝对连续函数). 设 $f:[a,b] \to \mathbb{R}$, 对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 如果对任意的 $(a_i,b_i) \subset [a,b], i=1,2,\cdots,m$ 互不相交, 并且

$$\sum_{i=1}^{m} |b_i - a_i| < \delta,$$

都有

$$\sum_{i=1}^{m} |f(b_i) - f(a_i)| < \varepsilon,$$

则 f 为绝对连续函数, 其所构成的集合记为

$$AC([a,b]) = \{f : [a,b] \rightarrow \mathbb{R} : f$$
绝对连续 $\}.$

12 12 1 知识回顾

设 f 是 Lipschitz 函数, 则 $f \in AC([a,b])$; 设 $f \in L^1([a,b])$, 记 $F(x) = \int_a^x f(t) dt, x \in [a,b]$, 则 $F \in AC([a,b])$.

命题 48 (绝对连续函数的性质). 设 $f,g \in AC([a,b])$.

- (1) f 一致连续;
- (2) $\alpha f + \beta g, fg \in AC([a, b]);$
- (3) $f \in BV([a, b])$.

由 $f \in BV([a,b])$ 知 f 可导, m – a.e., 且 $f' \in L^1([a,b])$.

定理 49 (Leibniz 公式). 设 $f \in AC([a,b])$, 则

$$\int_{a}^{b} f'(t)dt = f(b) - f(a).$$

定理 50. 设 $f:[a,b] \to \mathbb{R}$, 则 $f \in AC([a,b])$ 当且仅当, 存在 $g \in L^1([a,b])$, 使得

$$f(x) = \int_{a}^{x} g(t)dt + c, \quad x \in [a, b].$$

1.6 概率论基础

1.6.1 概率空间

通常, 用 Ω 表示样本空间, $\omega \in \Omega$ 为样本点. 样本空间的子集 $A \subset \Omega$ 称为事件, 事件所构成的集合可以用 $\mathscr F$ 表示.

定义 51 (概率). 设 Ω 是样本空间, \mathscr{F} 是 Ω 上的 σ -域, \mathbb{P} 是 $\{\Omega,\mathscr{F}\}$ 上的测度, 且满足 $\mathbb{P}\{\Omega\}=1$, 则 \mathbb{P} 为概率, $\{\Omega,\mathscr{F},\mathbb{P}\}$ 为概率空间.

概率其实就是测度, 只是外加了 $\mathbb{P}\{\Omega\}=1$ 这个条件. 在有限的测度下, 许多问题都变得非常简单. 另外, 设 $A\in \mathcal{F}$, 则 $\mathbb{P}\{A\}$ 也被称为事件 A 发生的概率. 以下设 $\{\Omega,\mathcal{F},\mathbb{P}\}$ 是概率空间.

如果 Ω 是有限集, λ 是计数测度的话, 定义 $\mathbb{P}\{A\} = \frac{\lambda(A)}{\lambda(\Omega)}$, 这样的概率空间即为**古典概型**; 而如果 Ω 是 \mathbb{R}^n 中的 Lebesgue 可测集, m 是 Lebesgue 测度的话, 定义 $\mathbb{P}\{A\} = \frac{m(A)}{m(\Omega)}$, 这样的概率空间即为**几何概型**.

定义 52 (分布函数). 设 $F: \mathbb{R} \to \mathbb{R}$ 是右连续的单调递增函数, 则 F 为准分布函数; 如 果 $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$, 则 F 为分布函数.

每一个准分布函数 F, 都决定着 \mathbb{R} 上的一个 Lebesgue-Stieltjes 测度 m_F .

1.6 概率论基础 13

1.6.2 随机变量

定义 53 (随机变量). 设 $X:\Omega\to\mathbb{R}$ 是可测函数, 则 X 为随机变量.

定义 54 (特征函数). 设 $A \in \mathcal{F}$, 令

$$\chi_A(\omega) = \begin{cases} 1, & \omega \in A, \\ 0, & \omega \in \Omega \setminus A, \end{cases}$$

则 χ_A 是随机变量, 为事件 A 的特征函数.

定义 55 (分布函数). 设 X 是概率空间 $\{\Omega, \mathscr{F}, \mathbb{P}\}$ 上的随机变量, 令

$$F_X(x) = \mathbb{P}\{X \le x\}, \quad x \in \mathbb{R},$$

则 $F_X(x)$ 为 X 的分布函数.

可以验证上面所定义的分布函数是右连续的单调递增函数,且 $\lim_{x\to-\infty} F(x)=0$, $\lim_{x\to+\infty} F(x)=1$. 事实上,满足这三条性质的函数一定也是某个随机变量的分布函数.

定义 56 (离散型分布). 设 X 是概率空间 $\{\Omega, \mathscr{F}, \mathbb{P}\}$ 上的随机变量, 若

$$RgX = \{a_1, a_2, \cdots\}$$

包含至多可数个实数,则其为离散型随机变量,对应的分布函数

$$F_X(x) = \sum_{a_n < x} \mathbb{P}\{X = a_n\}$$

为离散型分布.

定义 57 (连续型分布). 设 X 是概率空间 $\{\Omega, \mathcal{F}, \mathbb{P}\}$ 上的随机变量, $F_X(x)$ 为 X 的分布函数, 若存在非负函数 $p(x) \in L^1(\mathbb{R})$, 使得

$$F_X(x) = \int_{-\infty}^x p(t) dt, \quad x \in \mathbb{R},$$

则 X 为连续型随机变量, $F_X(x)$ 为连续型分布, p(x) 为 X 的概率密度.

若 X 既不是离散型随机变量, 也不是连续型随机变量, 则 X 为**奇异型随机变量**.

1.6.3 期望, 矩与特征函数

定义 58 (期望). 设 $X \in L^1(\Omega)$, 则

$$\mathbb{E}X = \int_{\Omega} X \mathrm{d}\mathbb{P}$$

为 X 的期望.

定理 59 (概率空间的积分). 设 $F_X(x)$ 为 X 的分布函数, $g: \mathbb{R} \to \mathbb{R}$ 是可测函数, 则

$$\mathbb{E}g(X) = \int_{\mathbb{R}} g dF_X(x),$$

并且只要等式一端有意义, 另一端就有意义. 特别地, 取 g(x) = x, 则有

$$\mathbb{E}X = \int_{\mathbb{R}} x \mathrm{d}F_X(x).$$

若 X 是离散型随机变量, 设 $\mathrm{Rg}X=\{a_1,a_2,\cdots\},p_n=\mathbb{P}\{X=a_n\},n=1,2,\cdots,$ 则

$$\mathbb{E}X = \sum_{n=1}^{+\infty} a_n p_n;$$

若 X 是连续型随机变量, 设密度函数为 p(x), 则

$$\mathbb{E}X = \int_{\mathbb{R}} x p(x) \mathrm{d}x.$$

定义 60 (矩). 设 $X \in L^r(\Omega)$, 则 $\mathbb{E}X^r$ 为 X 的r 阶矩, $\mathbb{E}(X - \mathbb{E}X)^r$ 为 X 的r 阶中心矩. 特别地, 当 r = 2 时, 2 阶中心距即为 X 的方差, 记作 $\mathrm{Var}X$.

设 $F_X(x)$ 为 X 的分布函数,则容易得到计算公式

$$\mathbb{E}X^r = \int_{\mathbb{R}} x^r dF_X(x), \quad \mathbb{E}(X - \mathbb{E}X)^r = \int_{\mathbb{R}} (x - \mathbb{E}X)^r dF_X(x).$$

定理 61 (C_r 不等式). 设 r > 0, 定义

$$C_r = \begin{cases} 2^{r-1}, & r \ge 1, \\ 1, & 0 < r < 1, \end{cases}$$

随机变量 $X_1, X_2 \in L^r(\Omega)$, 则有

$$\mathbb{E}|X_1 + X_2|^r \le C_r(\mathbb{E}|X_1|^r + \mathbb{E}|X_2|^r).$$

1.6 概率论基础 15

定理 **62** (Chebyshev 不等式). 设 X 是随机变量, $g:[0,+\infty) \to [0,\infty)$ 单调递增, 若 $g(|X|) \in L_1$, 则对任意的 a > 0, g(a) > 0, 都有

$$\mathbb{P}\{|X| \ge a\} \le \frac{\mathbb{E}g(|X|)}{g(a)}.$$

若 $X \in L_r$, 取 $g(x) = x^r$ 得

$$\mathbb{P}\{|X| \ge x\} \le \frac{\mathbb{E}|X|^r}{x^r}, \quad \forall x > 0;$$

取 r=2 得

$$\mathbb{P}\{|X - \mathbb{E}X| \ge x\} \le \frac{\mathrm{Var}X}{r^2}.$$

定义 63 (特征函数). 设 X 是概率空间 $\{\Omega, \mathscr{F}, \mathbb{P}\}$ 上的随机变量, 则

$$f(t) = \mathbb{E}e^{itX}$$

为 X 的特征函数.

命题 64 (特征函数的性质). 设 f(t) 是随机变量 X 的特征函数.

- (1) f(0) = 1;
- (2) $f(t) \le 1, \forall t \in \mathbb{R}$;
- (3) f(t) 在 \mathbb{R} 上一致连续.

命题 65 (特征函数的 Taylor 展开式). 设 f(t) 是随机变量 X 的特征函数, $X \in L_n$, 则

$$f(t) = 1 + \sum_{k=1}^{n} \frac{(it)^k}{k!} \mathbb{E}X^k + o(t^n), \quad t \to 0.$$

命题 66 (特征函数的反演公式). 设 f(t) 是分布函数 F 的特征函数, 则

$$\bar{F}(b) - \bar{F}(a) = \frac{1}{2\pi} \lim_{T \to +\infty} \int_{-T}^{T} \frac{e^{-itb} - e^{-ita}}{-it} f(t) dt,$$

其中
$$\bar{F}(x) = \frac{F(x) + F(x-0)}{2}$$
.

设 X 是连续型随机变量, 密度函数为 p(x), 特征函数为 f(t), 则

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} f(t) dt,$$

其中积分的计算可以应用复分析中的留数定理.

16 1 知识回顾

1.6.4 随机变量的收敛

借助实分析中的收敛模式, 还可以讨论随机变量的收敛. 设 $\{\Omega, \mathscr{F}, \mathbb{P}\}$ 是概率空间, $\{X_n\}$ 是随机变量序列, X 是随机变量.

定义 67 (几乎必然收敛). 设 $X_n \to X$, a.e., 则 X_n 几乎必然收敛于 X, 记作 $X_n \to X$, a.s..

若
$$X_n \to X$$
, a.s., 则有 $\mathbb{P}\left\{\lim_{n \to +\infty} X_n = X\right\} = 1$.

定义 68 (依概率收敛). 设 $X_n \stackrel{\mathbb{P}}{\to} X$, 则 X_n 依概率收敛于 X, 记作 $X_n \stackrel{p}{\to} X$.

若
$$X_n \stackrel{p}{\to} X$$
, 则对任意的 $\varepsilon > 0$, 有 $\lim_{n \to +\infty} \mathbb{P}\{|X_n - X| < \varepsilon\} = 1$.

定义 69 (平均收敛). 设 $X_n, X \in L^r(\Omega)$, 其中 r > 0, 若

$$\lim_{n \to +\infty} \mathbb{E}|X_n - X|^r = 0,$$

则 X_n 依 r 阶平均收敛于 X, 记为 $X_n \xrightarrow{L_r} X$.

定义 70 (依分布收敛). 设 X_n, X 对应的分布函数为 $F_n, F, n = 1, 2, \dots, 若$

$$F_n(x) \to F(x)$$
, 对任意的 $F(x)$ 的连续点 x ,

则 $\{F_n\}$ 弱收敛到 F, 记为 $F_n \xrightarrow{w} F$; $\{X_n\}$ 依分布收敛于 X, 记为 $X_n \xrightarrow{d} X$.

定理 71 (连续性定理). 设 X_n, X 对应的特征函数为 $f_n, f(t), n=1,2,\cdots$, 则 $X_n \xrightarrow{d} X$ 当且仅当

$$\lim_{n \to +\infty} f_n(t) = f(t), \quad \forall t \in \mathbb{R}.$$

研究随机变量的收敛时, Levi 单调收敛定理和 Lebesgue 控制收敛定理同样适用.

命题 72 (蕴含关系). (1) 若 $X_n \to X$, a.s., 则 $X_n \stackrel{p}{\to} X$;

- $(2) \stackrel{\mathcal{Z}}{\Rightarrow} X_n \stackrel{L_r}{\longrightarrow}, \ \mathbb{N} \ X_n \stackrel{p}{\rightarrow} X;$
- (3) 若 $X_n \xrightarrow{p} X$, 则 $X_n \xrightarrow{d} X$;
- (4) 设 c 为常数, 则 $X_n \stackrel{p}{\rightarrow} c$ 当且仅当 $X_n \stackrel{d}{\rightarrow} c$.

定理 73 (Слýцкий 引理). 若 $X_n \stackrel{d}{\to} X, Y_n \stackrel{p}{\to} 0, W_n \stackrel{p}{\to} 1$, 则

$$W_n X_n + Y_n \xrightarrow{p} X.$$

随机变量的收敛可以用于研究大数律与中心极限定理.在此由于篇幅有限,同时这部分内容不是实分析的重点,便不再提及.

2 作业解答

设 $\{X, \mathcal{A}, \mu\}$ 为测度空间.

题目 1. 求极限:

(1)
$$A_n = (0, n);$$
 (2) $A_n = (n, +\infty);$ (3) $A_n = \left[0, \frac{1}{n}\right);$

(4)
$$A_n = \left[0, \frac{1}{n}\right];$$
 (5) $A_n = \left(0, \frac{1}{n}\right].$

解答. (1) 此时 $\{A_n\}$ 单调递增, 因此

$$\lim_{n \to +\infty} A_n = \bigcup_{n=1}^{+\infty} A_n = (0, +\infty).$$

特别注意, 对任意的 x > 0, 都存在 $n \in \mathbb{N}$, 使得 $x \in (0, n)$.

(2) 此时 $\{A_n\}$ 单调递减, 因此

$$\lim_{n \to +\infty} A_n = \bigcap_{n=1}^{+\infty} A_n = \varnothing.$$

特别注意, 对任意的 x > 0, 都存在 $n \in \mathbb{N}$, 使得 $x \notin [n, +\infty)$.

(3) 此时 $\{A_n\}$ 单调递减, 因此

$$\lim_{n \to +\infty} A_n = \bigcap_{n=1}^{+\infty} A_n = \{0\}.$$

(4) 此时 $\{A_n\}$ 单调递减, 因此

$$\lim_{n \to +\infty} A_n = \bigcap_{n=1}^{+\infty} A_n = \{0\}.$$

(5) 此时 $\{A_n\}$ 单调递减, 因此

$$\lim_{n \to +\infty} A_n = \bigcap_{n=1}^{+\infty} A_n = \varnothing.$$

特别注意, 对任意的 $n \in \mathbb{N}$, 都有 $0 \notin \left[0, \frac{1}{n}\right]$, 对任意的 x > 0, 都存在 $n \in \mathbb{N}$, 使得 $x \notin \left[0, \frac{1}{n}\right]$, 因此最后的结果是 \varnothing .

2 作业解答

题目 2. 设 $f: \mathbb{R} \to \mathbb{R}$, 则 f 在 \mathbb{R} 上连续的充要条件是, 对任意的 $\lambda \in \mathbb{R}$, f 的上水平 集 $\{f > \lambda\}$ 和下水平集 $\{f < \lambda\}$ 都为开集.

解答. $f \in \mathbb{R}$ 上连续当且仅当对任意的开集 $\Omega \subset \mathbb{R}$, $\{f \in \Omega\}$ 都为开集.

充分性:由 $(\lambda, +\infty), (-\infty, \lambda)$ 是开集知 $\{f > \lambda\}, \{f < \lambda\}$ 也是开集;

必要性: 对任意的 $(a,b) \subset \mathbb{R}$, $\{a < f < b\} = \{f > a\} \cap \{f < b\}$ 为开集. 注意到任意的

开集 $\Omega \subset \mathbb{R}$ 都可以写成可数个不相交的闭区间 $(a_n, b_n), n = 1, 2, \cdots$ 的并, 也即

$$\Omega = \bigcup_{n=1}^{+\infty} (a_n, b_n),$$

因此

$$\{f \in \Omega\} = \bigcup_{n=1}^{+\infty} \{a_n < f < b_n\}$$

为开集, 从而 f 在 \mathbb{R} 上连续.

题目 3. 设 $A, B \in \mathcal{A}$, 证明: 如果 $\mu(A\Delta B) = 0$, 则 $\mu(A) = \mu(B)$.

解答. 注意到 $A\Delta B = (A \cap B^C) + (B \cap A^C)$, 因此

$$0 = \mu(A\Delta B) = \mu(A \cap B^C) + \mu(B \cap A^C),$$

从而 $\mu(A \cap B^C) = \mu(B \cap A^C) = 0$. 计算得

$$\mu(A) = \mu(A \cap B) + \mu(A \cap B^C) = \mu(A \cap B),$$

同理 $\mu(B) = \mu(A \cap B)$, 因此 $\mu(A) = \mu(B)$.

题目 4. 设 $f: \mathbb{R} \to \mathbb{R}$ 连续, $G = \{(x, f(x)) : x \in \mathbb{R}\}$, 计算 m(G).

解答. 首先, 根据 G 是闭集知 G 是 Lebesgue 可测集. 记 $G_{[a,b]} = \{(x, f(x)) : a \le x \le b\}$, 容易证明 m(G[a,b]) = 0. 注意到

$$G = \bigcup_{n=1}^{+\infty} G_{[-n,n]},$$

因此

$$m(G) \le \sum_{n=1}^{+\infty} m(G_{[-n,n]}) = 0.$$

题目 5. 记 $S^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$, 计算 $m(S^2)$.

解答. 首先, 根据 S 是闭集知 S 是 Lebesgue 可测集. 对任意的 $n \in \mathbb{N}$, $m\left(S^2 + \left(0,0,\frac{1}{2^n}\right)\right) = m(S^2)$. 注意到

$$\bigcup_{n=1}^{+\infty} \left(S^2 + \left(0, 0, \frac{1}{2^n} \right) \right) \subset [-1, 1] \times [-1, 1] \times [-1, 2],$$

因此

$$\sum_{n=1}^{+\infty} m(S^2) \le \mu \left(\bigcup_{n=1}^{+\infty} \left(S^2 + \left(0, 0, \frac{1}{2^n} \right) \right) \right) \le 12,$$

若 $m(S^2) > 0$, 则 $+\infty \le 12$, 矛盾, 因此 $m(S^2) = 0$.

题目 6. 设 $A \in \mathcal{A}$, $f : A \to \mathbb{R}$, $f(x) \equiv c \in \mathbb{R}$, 证明: $f \neq \mu$ -可测函数.

解答. 若 $\lambda < c$, 则 $\{f > \lambda\} = A \in \mathscr{A}$; 若 $\lambda \ge c$, 则 $\{f > \lambda\} = \varnothing \in \mathscr{A}$. 因此对任意的 $\lambda \in \mathbb{R}$, $\{f > \lambda\} \in \mathscr{A}$, 从而 $f \not\in \mu$ -可测函数.

题目 7. 设 $A \in \mathcal{A}, f: A \to \mathbb{R}$ 为 μ -可测函数, 定义 $\tilde{f}: X \to \mathbb{R},$

$$\tilde{f}(x) = \begin{cases} f(x), & x \in A, \\ 0, & x \in X - A, \end{cases}$$

称 \tilde{f} 为 f 的零延拓. 证明: \tilde{f} 是 μ -可测函数.

解答. 注意到 $\tilde{f} = f\chi_A$, 其中 $f = f\chi_A$ 是 μ -可测函数, 从而 \tilde{f} 是 μ -可测函数.

题目 8. 设 $A \in \mathcal{A}, f : A \to \mathbb{R}, \operatorname{Rg} f = \{\alpha_1, \dots, \alpha_n\},$ 记 $E_k = \{f = \alpha_k\}, k = 1, 2, \dots, n,$ 证明: 如果 $E_k \in \mathcal{A}, k = 1, 2, \dots, n,$ 则 $f \neq \mu$ -可测函数.

20 作业解答

解答. 注意到 $f = \sum_{k=1}^{n} \alpha_k \chi_{E_k}$, 其中根据 $E_k \in \mathscr{A}$, 知 χ_{E_k} 是 μ -可测函数, $k = 1, 2, \dots, n$, 从而 f 是 μ -可测函数.

题目 9. 设 $A \in \mathcal{L}$, $f: A \to \mathbb{R}$ 是 Lebesgue 可测函数, $m(A) < +\infty$, 证明: 存在连续函数 $g_n: A \to \mathbb{R}$, $n = 1, 2, \dots$, 使得 $g_n \to f$, m - a.e..

解答. 由 Lusin 定理, 对任意的 $n \in \mathbb{N}$, 存在连续函数 f_n , 使得 $m(\{f_n \neq f\}) \leq \frac{1}{n}$. 设 $\delta > 0$, 注意到 $\{|f_n - f| > \delta\} \subset \{f_n \neq f\}$, 因此

$$m(\{|f_n - f| > \delta\}) \le m(\{f_n \ne f\}) \le \frac{1}{n} \to 0,$$

因此 $f_n \xrightarrow{m} f$, 由 Riesz 定理, 存在子列 $\{f_{n_k}\}$, 使 $f_{n_k} \to f, m-\text{a.e.}$.

题目 9 的注记. 该结论说明了 Lebesuge 可测函数可以用连续函数逼近.

题目 10. 设 $f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x, \int_{\mathbb{R}} f dm$ 是否有定义? 如果有定义, 计算 $\int_{\mathbb{R}} f dm$.

解答. 注意到
$$\int_{\mathbb{R}} f^+ dm = \int_{\mathbb{R}} f^- dm = +\infty$$
, 因此 $\int_{\mathbb{R}} f dm$ 无定义.

题目 11. 设 $f:\left[\frac{1}{2},+\infty\right),$ $f(x)=\ln x,$ $\int_{\left[\frac{1}{2},+\infty\right)}f\mathrm{d}m$ 是否有定义? 如果有定义, 计算 $\int_{\left[\frac{1}{2},+\infty\right)}f\mathrm{d}m.$

解答. 注意到
$$\int_{\mathbb{R}} f^+ dm = +\infty$$
, $\int_{\mathbb{R}} f^- dm < +\infty$, 因此 $\int_{\mathbb{R}} f dm = +\infty$.

题目 12. 设 $A \in \mathcal{A}, f : A \to [0, +\infty]$ 是 μ-可测函数, 证明:

$$\int_{A} f d\mu \ge \lambda \mu(\{f \ge \lambda\}),$$

其中 $0 < \lambda < +\infty$.

解答. 计算得

$$\int_{A} f d\mu = \int_{f \le \lambda} f d\mu + \int_{f > \lambda} f d\mu$$
$$> 0 + \lambda \cdot \mu(\{f > \lambda\})$$
$$= \lambda \cdot \mu(\{f > \lambda\}).$$

题目 13. 设 $A \in \mathcal{A}, f : A \to [0, +\infty]$ 是 μ -可测函数, 定义

$$f_n(x) = \begin{cases} f(x), & f(x) \le n, x \in A, \\ n, & f(x) > n, x \in A, \end{cases}$$

证明: (1) $f_n: A \to [0, +\infty)$ 是 μ -可测函数;

(2)
$$\int_A f_n d\mu \to \int_A f d\mu, n \to +\infty.$$

解答. (1) 首先由 $|f_n| \le n$ 得 $f_n : A \to [0, +\infty)$, 其次注意到

$$f_n = f(x)\chi_{\{f \le n\}} + n\chi_{\{f > n\}},$$

其中由 f 是 μ -可测函数, 知 $\{f \leq n\}, \{f > n\} \in \mathcal{A}$, 因此 $\chi_{\{f \leq n\}}, \chi_{\{f > n\}}$ 是 μ -可测函数, 从而 f_n 是 μ -可测函数.

(2)
$$f_n \leq f_{n+1}, n = 1, 2, \dots,$$
 且 $f_n \to f$. 由 Levi 单调收敛定理得 $\int_A f_n d\mu \to \int_A f d\mu$.

题目 14. 设 $A \in \mathcal{A}, f, g: A \to \mathbb{R}$ 是 μ -可测函数, $f, g \geq 0$ 或 $f, g \in L^1(A)$, 证明: 如果 $f = g, \mu - a.e.$, 则 $\int_A f \mathrm{d}\mu = \int_A g \mathrm{d}\mu$.

解答. 由 $f = g, \mu - a.e.$ 知存在 $E \subset A, \mu(E) = 0$, 使得 f(x) = g(x) 对任意的 $x \in A - E$ 成立. 根据积分的区域可加性得

$$\int_{A} f d\mu = \int_{A-E} f d\mu + \int_{E} f d\mu$$

$$= \int_{A-E} f d\mu$$

$$= \int_{A-E} g d\mu$$

$$= \int_{A} g d\mu,$$

22 作业解答

因此
$$\int_A f d\mu = \int_A g d\mu$$
.

题目 15. 设 $A \in \mathcal{A}, f, g \in L^1(A), p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$, 证明

$$\int_{A} |fg| \mathrm{d}\mu \le \left(\int_{A} |f|^{p} \mathrm{d}\mu \right)^{\frac{1}{p}} \left(\int_{A} |g|^{q} \mathrm{d}\mu \right)^{\frac{1}{q}}$$

解答. 由 Young 不等式, 设 p, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, 则有

$$\frac{\int_{A} |fg| d\mu}{\left(\int_{A} |f|^{p} d\mu\right)^{\frac{1}{p}} \left(\int_{A} |g|^{q} d\mu\right)^{\frac{1}{q}}} \leq \frac{\int_{A} |f|^{p} d\mu}{p \cdot \left(\int_{A} |f|^{p} d\mu\right)} + \frac{\int_{A} |g|^{q} d\mu}{q \cdot \left(\int_{A} |g|^{q} d\mu\right)}$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1$$

题目 15 的注记. 这个不等式也被叫做 Hölder 不等式.

题目 16. 设 $A \in \mathcal{A}, f \in L^1(A),$ 定义

$$f_n(x) = \begin{cases} f(x), & |f(x)| \le n, \\ n, & f(x) > n, \\ -n, & f(x) < -n, \end{cases}$$

证明 $f_n \in L^1(A)$ 且 $\int_A f_n d\mu \to \int_A f d\mu$.

解答. 首先由

$$\int_{A} |f_n| \mathrm{d}\mu \le \int_{A} |f| \mathrm{d}\mu < +\infty$$

知 $f_n \in L^1(A)$, 其次取 $g = |f| \in L^1(A)$, 则 $|f_n| \leq g, n = 1, 2, \cdots$, 由 Lebesgue 控制收敛 定理得 $\int_A f_n d\mu \to \int_A f d\mu$.

题目 17. 设 $f_n, f \in L^1(A), f_n \to f$, 如果

(1)
$$\mu(A) < +\infty$$
; (2) $|f_n| \le M, n = 1, 2, \dots, M$ 为正常数, 则 $\int_A f_n d\mu \to \int_A f d\mu$.

解答. 取 g = M, 由 $\mu(A) < +\infty$ 知

$$\int_{A} g \mathrm{d}\mu = M\mu(A) < +\infty,$$

因此 $g \in L^1(A)$, 由 Lebesgue 控制收敛定理得 $\int_A f_n d\mu \to \int_A f d\mu$. **题目 17 的注记.** 事实上, 这个结论叫作 *Lebesgue* 有界收敛定理.

题目 18. 设 $f:[a,b] \to \mathbb{R}$ 连续, f > 0, 记

$$G = \{(x, y) : a < x < b, 0 < y < f(x)\},\$$

计算积分 $\int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} \chi_G(x, y) dx \right\} dy$.

解答. 计算得

$$\int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} \chi_G(x, y) dx \right\} dy = \int_{\mathbb{R}} m(\{0 \le f(x) \le y\}) dy$$
$$= \int_{0}^{+\infty} m(\{f > y\}) dy.$$

题目 18 的注记. 一个重要的推论是

$$\int_{[a,b]} f \mathrm{d}x = \int_0^{+\infty} m(\{f > y\}) \mathrm{d}y.$$

题目 19. 设 $f:[a,b]\to\mathbb{R}$ 是 Lipschitz 连续函数, 证明: 存在 $E\subset[a,b],\ m(E)=0,$ 存在 L>0, 使得 $|f'(x)|\leq L$ 对任意的 $x\in[a,b]-E$ 成立.

解答. 由 f 是 Lipschitz 函数知 $f \in AC([a,b])$, 从而存在 $E \subset [a,b]$, m(E) = 0, 对任意 的 $x \in [a,b] - E$, f'(x) 有定义. 设对任意的 $x,y \in [a,b]$, 都有 $|f(x) - f(y)| \le L|x-y|$, 整理得

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le L$$

当 $x \in [a, b] - E$ 时, 令 $y \to x$, 则有 $|f'(x)| \le L$.

题目 20. 设 $f \in L^1([a,b] \times [c,d])$, 定义

$$\varphi_y(x) = \int_a^x f(t, y) dt, \quad x \in [a, b],$$

其中 $y \in [c,d]$, 证明:存在 $E \subset [c,d]$, m(E) = 0, 使得 $\varphi_y \in AC([a,b])$ 对任意的 $y \in [c,d] - E$ 成立.

解答. 由 $f \in L^1([a,b] \times [c,d])$ 知

$$\int_{c}^{d} \left\{ \int_{a}^{b} f(x, y) dx \right\} dy < +\infty,$$

从而 $\int_a^b f(x,y) dx$ 对 y 有限, m – a.e.. 选取 $E \subset [c,d]$, m(E) = 0, 使得

$$\int_{a}^{b} f(x,y) dx < +\infty, \quad \forall y \in [c,d] - E,$$

则由积分的绝对连续性知, $\varphi_y \in AC([a,b])$ 对任意的 $y \in [c,d] - E$ 成立.

3 习题课

设 $\{X, \mathcal{A}, \mu\}$ 为测度空间, m 为 Lebesgue 测度, $B_r = \{x \in \mathbb{R}^n : |x| < r\}$.

题目 1. 设 $f \in L^1(X)$, $f \ge 0$, 定义 $\lambda : \mathcal{A} \to [-\infty, +\infty]$,

$$\lambda(A) = \int_A f d\mu, \quad A \in \mathscr{A},$$

证明: $\lambda \in X$ 上的测度.

解答. 首先, 根据 $f \ge 0$ 得 λ 非负; 其次, 根据 $\mu(\emptyset) = 0$ 得 $\lambda(\emptyset) = 0$; 接下来, 设 $A_1, A_2, \dots \in \mathscr{A}$ 互不相交, 则

$$\lambda \left(\sum_{n=1}^{+\infty} A_n \right) = \int_{\sum_{n=1}^{+\infty} A_n} f d\mu$$

$$= \int_X f \chi_{\sum_{n=1}^{+\infty} A_n} d\mu$$

$$= \int_X f \lim_{n \to +\infty} \chi_{\sum_{k=1}^n A_k} d\mu$$

$$= \lim_{n \to +\infty} \sum_{k=1}^n \int_X f \chi_{A_k} d\mu$$

$$= \sum_{n=1}^{+\infty} \int_{A_k} f d\mu$$

$$= \sum_{n=1}^{+\infty} \lambda(A_n),$$

其中积分与极限的交换应用了 Levi 单调收敛定理, 从而 λ 是 X 上的测度.

题目 1 的注记. 其一, 不能直接通过积分的区域可加性得到可数可加性. 这是因为区域可加性是对于两个积分区域而言, 可以推广到对于有限个积分区域而言, 但不能推广到对于可数个积分区域而言; 其二, 若去掉 $f \ge 0$ 的条件, 则 λ 不具有非负性, 但是同样具有 $\lambda(\emptyset) = 0$ 和可数可加性的性质, 这样的测度被称为符号测度.

题目 2. 设 $\lambda: 2^{\mathbb{N}} \to [0, +\infty]$ 为计数测度.

- (1) 求 λ ($\{p \in \mathbb{N}, p$ 为素数 $\}$);
- (2) 设 $f: \mathbb{N} \to \mathbb{R}$, 则 $f \in \lambda$ -可测函数;

26 3 习题课

(3) 设
$$f(1) = 1$$
, $f(2) = 2$, $f(k) = 0 (k > 2)$, 计算 $\int_{\mathbb{N}} f d\lambda$; (4) 设 $f(k) = \frac{1}{k}$, 计算 $\int_{\mathbb{N}} f d\lambda$.

解答. (1) 素数有无穷多个, 从而 $\lambda(\{p \in \mathbb{N}, p \} \}) = +\infty$;

- (2) 对任意的 $\lambda \in \mathbb{R}$, $\{f > \lambda\} \in 2^{\mathbb{N}}$ 可测, 从而 f 是 λ -可测函数;
- (3) ƒ 是简单函数, 从而

$$\int_{\mathbb{N}} f d\lambda = 1 \times \lambda(\{1\}) + 2 \times \lambda(\{2\})$$

$$= 1 + 2$$

$$= 3;$$

(4) 此时

$$\begin{split} \int_{\mathbb{N}} f \mathrm{d}\lambda &= \int_{\mathbb{N}} f \lim_{n \to +\infty} \chi_{\{1,2,\cdots,n\}} \mathrm{d}\lambda \\ &= \lim_{n \to +\infty} \int_{\mathbb{N}} f \chi_{\{1,2,\cdots,n\}} \mathrm{d}\lambda \\ &= \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k} \\ &= \sum_{n=1}^{+\infty} \frac{1}{n} \\ &= +\infty, \end{split}$$

其中积分与极限的交换应用了 Levi 单调收敛定理.

题目 2 的注记. 本题的 (4) 说明了级数实质上是利用计数测度的积分, 从而级数与积分的交换次序可以使用 *Fubini* 定理.

题目 3. 设 $a \in X$, 定义 Dirac 测度 $\delta_a : 2^X \to [0, +\infty]$,

$$\delta_a = \begin{cases} 0, & a \notin E, \\ 1, & a \in E. \end{cases}$$

计算
$$\int_X f d\delta_a$$
.

解答. 计算得

$$\int_{X} f d\delta_{a} = \int_{\{a\}} f d\delta_{a} + \int_{X - \{a\}} f d\delta_{a}$$
$$= f(a) + 0$$
$$= f(a),$$

其中 $\delta_a(X - \{a\}) = 0$.

题目 4. 设 $f: \mathbb{R} \to (0, +\infty)$ 是 m-可测函数, $m(\{f > \lambda\}) = e^{-\lambda}(\lambda > 0)$, 计算 $\int_{\mathbb{R}} f dm$.

解答. 计算得

$$\int_{\mathbb{R}} f dm = \int_{0}^{+\infty} m(\{f > y\}) dy$$
$$= \int_{0}^{+\infty} e^{-y} dy$$
$$= 1$$

另外, 若将 f 视为随机变量, 则其分布函数

$$F(x) = \begin{cases} 1 - e^{-x}, & x \ge 0, \\ 0, & x \le 0. \end{cases}$$

从而 $f \sim \text{Exp}(1)$, 计算得

$$\int_{\mathbb{R}} f \mathrm{d}m = \mathbb{E}f = 1.$$

题目 4 的注记. 事实上, 上面计算期望的过程应用了 Lebesgue-Stieltjes 积分.

题目 5. 设
$$B_1 = \{(x,y), x^2 + y^2 < 1\}$$
, 计算 $\int_{B_1} \ln \sqrt{x^2 + y^2} dm$.

解答. 根据 Levi 单调收敛定理得

$$\int_{B_1} \ln \sqrt{x^2 + y^2} dm = \int_{\mathbb{R}^2} \ln \sqrt{x^2 + y^2} \lim_{k \to +\infty} \chi_{B_1 - B_{1/k}} dm$$

$$= \lim_{k \to +\infty} \int_{\mathbb{R}^2} \ln \sqrt{x^2 + y^2} \chi_{B_1 - B_{1/k}} dm$$

$$= \lim_{k \to +\infty} \int_{B_1 - B_{1/k}} \ln \sqrt{x^2 + y^2} dm.$$

28 3 习题课

作极坐标换元

$$\begin{cases} x = r\cos\theta, \\ y = r\sin\theta, \end{cases}$$

其中 $\frac{1}{k} \le r \le 1, \ 0 \le \theta \le 2\pi, \ 则$

$$\int_{B_1 - B_{1/k}} \ln \sqrt{x^2 + y^2} dm = \int_0^{2\pi} d\theta \int_{\frac{1}{k}}^1 r \ln r dr$$
$$= 2\pi \cdot \left(\frac{\ln k}{2k^2} + \frac{1}{4k^2} - \frac{1}{4}\right).$$

从而

$$\int_{B_1} \ln \sqrt{x^2 + y^2} dm = \lim_{k \to +\infty} \int_{B_1 - B_{1/k}} \ln \sqrt{x^2 + y^2} dm$$

$$= \lim_{k \to +\infty} 2\pi \cdot \left(\frac{\ln k}{2k^2} + \frac{1}{4k^2} - \frac{1}{4} \right)$$

$$= -\frac{\pi}{2}.$$

4 2018 年真题

设 $\{X, \mathcal{A}, \mu\}$ 为测度空间, m 为 Lebesgue 测度, $B_r = \{x \in \mathbb{R}^n : |x| < r\}$.

题目 1. (填空题) (1) $\mathbb{Q} \subset \mathbb{R}$ 为有理数集, 计算 $m(\mathbb{Q})$;

- (2) 设 $\alpha > 1$, 计算 $\int_{[0,+\infty)} \frac{1}{x^{\alpha}} dm$;
- (3) $\mbox{if } f(x) = \sin \frac{1}{2}x, \mbox{ if } F(f; [0, \pi]).$

解答. (1) $m(\mathbb{Q}) = 0$;

(2) 计算得

$$\int_{[0,+\infty)} \frac{1}{x^{\alpha}} dm = \int_{[0,1)} \frac{1}{x^{\alpha}} dm + \int_{[1,+\infty)} \frac{1}{x^{\alpha}} dm$$
$$\geq \int_{[0,1)} \frac{1}{x} dm + \int_{[1,+\infty)} \frac{1}{x^{\alpha}} dm$$
$$= +\infty,$$

因此 $\int_{[0,+\infty)} \frac{1}{x^{\alpha}} dm = +\infty;$ (3) f(x) 在 $[0,\pi]$ 单调, 因此 $V(f;[0,\pi]) = f(\pi) - f(0) = 1.$

题目 2. (判断题) (1) 区间 (0,1) 的势严格小于 [0,1] 的势;

- (2) 如果 $A, B \in \mathcal{A}, \mu(A\Delta B) = 0, 则 \mu(A) = \mu(B);$
- (3) 如果 $f:[0,1] \to [0,1]$ 是 m-可测函数, 则 $f \in L^1([0,1])$.

解答. (1) 错误, 一方面, 由 $(0,1) \subset [0,1]$ 知 (0,1) 的势小于等于 [0,1] 的势, 另外一方面, 由 (0,1) 的势等于 (-1,2) 的势知 (0,1) 的势大于等于 [0,1] 的势, 因此 (0,1) 的势等于 [0,1] 的势.

(2) 正确, 注意到 $A\Delta B = (A \cap B^C) + (B \cap A^C)$, 因此

$$0 = \mu(A\Delta B) = \mu(A \cap B^C) + \mu(B \cap A^C),$$

从而 $\mu(A \cap B^C) = \mu(B \cap A^C) = 0$. 计算得

$$\mu(A) = \mu(A \cap B) + \mu(A \cap B^C) = \mu(A \cap B),$$

30 4 2018 年真题

同理 $\mu(B) = \mu(A \cap B)$, 因此 $\mu(A) = \mu(B)$.

(3) 此时

$$\int_{[0,1]} |f| \mathrm{d}m \le \int_{[0,1]} 1 \mathrm{d}m = 1 < +\infty,$$

因此 $f \in L^1([0,1])$.

题目 3. 设 $f:[a,b] \to (-\infty,0)$ 连续, 记

$$G = \{(x, y) : a < x < b, f(x) < y < 0\},\$$

证明: $m(G) = -\int_{[a,b]} f dm$.

解答. 记 g = -f, 则

$$m(G) = \int_{[a,b]} g dm = \int_{[a,b]} (-f) dm = -\int_{[a,b]} f dm.$$

题目 4. 设 $f \in L^p([a,b]), 1 , 证明:$

(1) $f \in L^1([a,b]);$

(2)
$$m(\{|f| > \alpha\}) \le \frac{\int_{[a,b]} |f|^p dm}{\alpha^p}, \quad \forall \alpha > 0.$$

解答. (1) 计算得

$$\begin{split} \int_{[a,b]} |f| \mathrm{d} m &= \int_{\{|f| \le 1\}} |f| \mathrm{d} m + \int_{\{|f| > 1\}} |f| \mathrm{d} m \\ &\le m(\{|f| \le 1\}) + \int_{\{|f| > 1\}} |f|^p \mathrm{d} m \\ &\le (b-a) + \int_{[a,b]} |f|^p \mathrm{d} m \\ &< +\infty, \end{split}$$

因此 $f \in L^1([a,b])$.

(2) 计算得

$$\int_{[a,b]} |f|^p dm = \int_{\{|f| \le \alpha\}} |f|^p dm + \int_{\{|f| > \alpha\}} |f|^p dm$$

$$\ge 0 + \int_{\{|f| > \alpha\}} \alpha^p dm$$

$$= \alpha^p m(\{|f| > \alpha\}).$$

题目 5. 设 $f \in L^1(X)$, 证明: 存在函数列 $f_k \in L^1(X)$, f_k 有界, $k = 1, 2, \dots$, 使得

- $(1) \int_X |f_k f| \mathrm{d}\mu \to 0;$
- (2) f_k 依测度 μ 收敛于 f.

解答. (1) 令

$$f_n = \begin{cases} f, & |f| \le n, \\ 0, & |f| > n, \end{cases}$$

则 $|f_n| \le |f| = g$, 其中 $g \in L^1(X)$, 由 Lebesgue 控制收敛定理得

$$\int_X |f_k - f| \mathrm{d}\mu \to 0.$$

(2) 同样令

$$f_n = \begin{cases} f, & |f| \le n, \\ 0, & |f| > n, \end{cases}$$

对任意的 $\varepsilon > 0$, 由 f 有限, m – a.e. 知

$$\mu(|f_n - f| \ge \varepsilon) = \mu(\{f_n \ne f\}) = \mu(\{|f| > n\}) \to 0,$$

因此 f_n 依测度 μ 收敛于 f.

题目 6. 设 $f:[a,b] \to \mathbb{R}$ 是 Lipschitz 连续函数, 证明:

- (1) f 可微, m a.e.;
- (2) f' 有界, m a.e..

解答. (1) 由 f 是 Lipschitz 函数知 f 是绝对连续函数, 因此 f 可微, m – a.e..

(2) 设对任意的 $x, y \in [a, b], |f(x) - f(y)| \le L|x - y|,$ 则有

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le L.$$

若 f'(x) 存在, 令 $y \to x$, 则有 $|f'(x)| \le L$, 从而 f' 有界, m-a.e..

32 4 2018 年真题

题目 7. 记

$$S = \{ \boldsymbol{x} \in \mathbb{R}^n : |\boldsymbol{x}| = 1 \},$$

证明: m(S) = 0.

解答. 首先, 根据 S 是闭集知 S 是 Lebesgue 可测集. 计算得

$$m(S) = \lim_{k \to +\infty} m \left(B_{1+\frac{1}{k}} - B_1 \right)$$
$$= m(B_1) \cdot \lim_{k \to +\infty} \left(\left(1 + \frac{1}{k} \right)^n - 1 \right)$$
$$= 0.$$

2017 年真题 5

设 $\{X, \mathscr{A}, \mu\}$ 为测度空间, m 为 Lebesgue 测度, $B_r = \{x \in \mathbb{R}^n : |x| < r\}$.

题目 1. (判断题) (1) 设 $A_k, A \in \mathcal{A}, k = 1, 2, \dots$, 如果 A_k 单调, $A_k \to A$, 则 $\mu(A_k) \to A$ $\mu(A)$;

- (2) 设 $A \subset \mathbb{R}^n$ 为 m-可测集, 如果 m(A) = 0, $B \subset A$, 则 B 为 m-可测集;
- (3) 设 $f: \mathbb{R}^n \to [-\infty, +\infty]$ 为 m-可测函数, 则 $\{|f| = +\infty\}$ 为 m-可测集;
- (4) 设 $f:[a,b]\to\mathbb{R}$ 为 m-可测函数, 则存在连续函数 $g:[a,b]\to\mathbb{R}$, 使得 g 与 fm-几乎 处处相等:
- (5) 设 $f_k, f: X \to \mathbb{R}$ 为 μ -可测函数, $k = 1, 2, \cdots$ 如果 f_k 依测度收敛到 f, 则 $f_k \to f$, μ – a.e.;
- (6) 设 $f, g: X \to \mathbb{R}$ 为 μ -可测函数, $f = g, \mu$ a.e., $f \in L^1(X)$, 则 $g \in L^1(X)$;
- (7) 设 $f \in L^1(\mathbb{R})$, $t \in \mathbb{R}$, 则 $\int_{\mathbb{R}} f(x+t) dm = \int_{\mathbb{R}} f(x) dm$; (8) 设 $f_k, f : [a, b] \to \mathbb{R}$ 为 m-可测函数, $k = 1, 2, \dots, f_k \to f$. 如果存在常数 M > 0, 使 得 $|f_k| \le M, k = 1, 2, \dots,$ 则 $\int_a^b |f_k - f| dm \to 0;$
- (9) 设 $f \in L^1([a,b])$, 记 $g(x) = \int_a^x f dm, x \in [a,b]$, 则 $g \in BV([a,b])$;
- (10) 设 $f \in AC([a,b])$, 如果 f'm-几乎处处等于零,则 f(b) = f(a).

(1) 错误, 设 $\{A_n\}$ 单调递减, 则还要求 $\mu(A_1) < +\infty$, 否则令 $A_n = \mathbb{R} - [-n, n]$, 则 $A_n \to A = \emptyset$, $\mu(A_n) = +\infty$, 但是 $\mu(A) = 0$.

- (2) 正确, Lebesgue 测度具有完备性;
- (3) 正确, 由 f 可测知 $\{|f| > n\} \in \mathcal{L}$, 因此

$$\{|f|=+\infty\}=\bigcap_{n=1}^{+\infty}\{|f|>n\}\in\mathcal{L}.$$

(4) 错误, 记 $A = [0,1) \cap \mathbb{Q} + [1,2] \cap (\mathbb{R} - \mathbb{Q}), B = [0,1) \cap (\mathbb{R} - \mathbb{Q}) + [1,2] \cap \mathbb{Q}, 则$ [0,1] = A + B, m(A) = m(B) = 1, 定义

$$f(x) = \begin{cases} 1, & x \in A, \\ 0, & x \in B, \end{cases}$$

则 $f \in [0,2]$ 上的 m-可测函数. 假设存在连续函数 g, 使得 g = f, m - a.e.,

(i) 若 $g(1) \notin \{0,1\}$, 则存在 $\delta > 0$, 对任意的 $x \in B_{\delta}(1)$, $g(x) \notin \{0,1\}$, 从而 $g(x) \neq f(x)$,

其中 $m(B_{\delta}(1)) \neq 0$, 此与 g = f, m - a.e. 矛盾;

(ii) 若 g(1)=0, 则存在 $\delta>0$, 对任意的 $x\in(1-\delta,1)$, $g(x)\neq 1$, 从而当 $x\in(1-\delta,1)\cap(\mathbb{R}-\mathbb{Q})$ 时, $g(x)\neq f(x)$, 其中 $m((1-\delta,1)\cap(\mathbb{R}-\mathbb{Q}))\neq 0$, 此与 g=f,m-a.e. 矛盾;

(iii) 若 g(1) = 1, 同 (ii) 可推矛盾.

从而不存在连续函数 g, 使得 g = f, m - a.e.

(5) 错误, 设 $2^m \le n < 2^{m+1}$, 记 $k = n - 2^m$, 令

$$f_n = \begin{cases} 1, & x \in \left[\frac{k}{2^m}, \frac{k+1}{2^m}\right), \\ 0, & x \in [0, 1] - \left[\frac{k}{2^m}, \frac{k+1}{2^m}\right), \end{cases}$$

记 f = 0, 则对任意的 $\varepsilon > 0$,

$$m(\{|f_n - f| > \varepsilon\}) = m(\{f_n = 1\}) = \frac{1}{2^m} \to 0,$$

因此 f_n 依测度收敛到 f,但是对任意的 $x \in [0,1] - \mathbb{Q}$,对任意的 $m \in \mathbb{N}$,都存在 $k \in \mathbb{N}$,使得 $x \in \left[\frac{k}{2^m}, \frac{k+1}{2^m}\right)$,从而可以选出子列 $\{f_{n_k}\}$,使 $f_{n_k}(x) = 1 \neq 0$. 故 f_n 不几乎处处收敛于 f. 甚至可以说, f_n 几乎处处不收敛于 f.

(6) 正确, 由 $f = g, \mu$ - a.e. 知

$$\int_X g \mathrm{d}\mu = \int_X f \mathrm{d}\mu < +\infty,$$

因此 $g \in L^1(X)$.

(7) 正确, 令 y = x + t, 则

$$\int_{\mathbb{R}} f(x+t) dm = \int_{\mathbb{R}} f(y) dm = \int_{\mathbb{R}} f(x) dm.$$

- (8) 正确, 根据 Lebesgue 控制收敛定理, 取 g=M 即可. 事实上, 这个结论叫作 Lebesgue 有界收敛定理.
- (9) 正确, 此时 $g(x) \in AC([a,b]) \subset BV([a,b])$.
- (10) 正确, 根据 Leibniz 公式得

$$f(b) - f(a) = \int_{[a,b]} f' dm = 0,$$

因此 f(a) = f(b).

题目 2. 设 $f \in L^1(X)$, 定义 $\lambda : \mathscr{A} \to \mathbb{R}$, $\lambda(E) = \int_E f d\mu$, $\forall E \in \mathscr{A}$.

(1) 证明: 存在测度 $\lambda^+, \lambda^-: \mathcal{A} \to [0, +\infty)$, 使得

$$\lambda(E) = \lambda^{+}(E) - \lambda^{-}(E), \quad \forall E \in \mathscr{A};$$

(2) 证明: $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得: 如果 $E \in \mathcal{A}$ 满足 $\mu(E) < \delta$, 则 $|\lambda(E)| < \varepsilon$.

解答. (1) 记 $f = f^+ - f^-$, 令

$$\lambda^+(E) = \int_E f^+ d\mu, \quad \lambda^-(E) = \int_E f^- d\mu,$$

其中 $f \in L^1(X)$, 则 $\lambda^+, \lambda^- < +\infty$ 且为测度, $\lambda = \lambda^+ - \lambda^-$.

(2) 由积分的绝对连续性, 对任意的 $\varepsilon > 0$, 都存在 $\delta > 0$, 对任意的 $E \in \mathcal{A}$, $\mu(E) < \delta$, 都有

$$|\lambda(E)| = \left| \int_E f d\mu \right| \le \int_E |f| d\mu < \varepsilon.$$

题目 3. 设 $f: \mathbb{R}^n \to \mathbb{R}$ 为 m-可测函数, 证明:

- (1) 如果 $f \in L^1(\mathbb{R}^n)$, 则 $\lim_{k \to +\infty} m(\{|f| > k\}) = 0$;
- (2) 如果 $f \in L^1(\mathbb{R}^n)$, 则 $\lim_{k \to +\infty} \int_{\{|f| > k\}} |f| dm = 0$;
- (3) 如果 $f \ge 0$, 则 $\lim_{k \to +\infty} \int_{B_k} f dm = \int_{\mathbb{R}^n} f dm$.

解答. (1) 此时 $\int_{\mathbb{R}^n} |f| \mathrm{d}m < +\infty$, 计算得

$$\int_{\mathbb{R}^n} |f| dm = \int_{|f| \le k} |f| dm + \int_{|f| > k} |f| dm$$

$$> 0 + k \cdot m(\{|f| > k\})$$

$$= k \cdot m(\{|f| > k\}).$$

所以

$$m(\{|f| > k\}) \le \frac{\int_{\mathbb{R}^n} |f| \mathrm{d}m}{k} \to 0.$$

5 2017年真题

(2) 根据积分的区域可加性, 只需证明

$$\lim_{k \to +\infty} \int_{\{|f| \le k\}} |f| dm = \int_{\mathbb{R}^n} |f| dm.$$

由 Levi 单调收敛定理得

$$\lim_{k \to +\infty} \int_{\{|f| \le k\}} |f| dm = \int_{\mathbb{R}^n} |f| \chi_{\{|f| \le k\}} dm$$
$$\to \int_{\mathbb{R}^n} |f| dm.$$

或是根据 $\lim_{k\to +\infty} m(\{|f|>k\})=0$, 直接应用积分的绝对连续性即可.

(3) 由 Levi 单调收敛定理得

$$\int_{B_k} f dm = \int_{\mathbb{R}^n} f \chi_{B_k} dm$$
$$\to \int_{\mathbb{R}^n} f dm.$$

题目 4. 设 $f: \mathbb{R}^2 \to \mathbb{R}$ 为 m-可测函数, 满足

$$|f(x)| \le C(1+|\boldsymbol{x}|^2)^{-\alpha}, \quad \forall \boldsymbol{x} \in \mathbb{R}^n,$$

其中 C > 0, $\alpha > 1$ 为常数, 证明:

(1) $f \in L^1(B_1)$; (2) $f \in L^1(\mathbb{R}^2 - B_1)$; (3) $f \in L^1(\mathbb{R}^2)$.

解答. (1) 当 $|x| \le 1$ 时,有 $|f(x)| \le C$,因此 $f \in L^1(B_1)$.

(2) 当 $|x| \ge 1$ 时,有

$$\int_{\mathbb{R}^2 - B_1} |f| \mathrm{d}m \le C \int_{\mathbb{R}^2 - B_1} \frac{1}{|\boldsymbol{x}|^{2\alpha}} < +\infty,$$

其中 $\alpha > 1$, 因此 $f \in L^1(\mathbb{R}^2 - B_1)$.

(3) 由积分的区域可加性知

$$\int_{\mathbb{R}^2} f \mathrm{d} m = \int_{B_1} f \mathrm{d} m + \int_{\mathbb{R}^2 - B_1} f \mathrm{d} m < +\infty,$$

因此 $f \in L^1(\mathbb{R}^2)$.

题目 5. 设 $f: \mathbb{R} \to [0, +\infty)$ 连续, 证明:

$$\int_{\mathbb{R}} f dm = \int_0^{+\infty} m(\{f > t\}) dt.$$

解答. 记 $G = \{(x, y) : x \in \mathbb{R}, 0 \le y \le f(x)\},$ 考虑

$$m(G) = \int_{\mathbb{R}^2} \chi_G \mathrm{d}x \mathrm{d}y.$$

根据 Fubini 定理, 一方面有

$$\int_{\mathbb{R}^2} \chi_G dx dy = \int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} \chi_G dy \right\} dx$$
$$= \int_{\mathbb{R}} \left\{ \int_0^{f(x)} dy \right\} dx$$
$$= \int_{\mathbb{R}} f(x) dx,$$

另外一方面有

$$\int_{\mathbb{R}^2} \chi_G dx dy = \int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} \chi_G dx \right\} dy$$
$$= \int_{\mathbb{R}} m(\{0 < f(x) < y\}) dy$$
$$= \int_0^{+\infty} m(\{f > t\}) dt,$$

因此
$$\int_{\mathbb{R}} f dm = \int_{0}^{+\infty} m(\{f > t\}) dt.$$

题目 6. 设 $f:[a,b]\to\mathbb{R}$ 是 Lipschitz 连续函数, 即存在常数 M>0, 使得

$$|f(x) - f(y)| \le M|x - y|, \quad \forall x, y \in [a, b].$$

证明: (1) $f \in AC([a,b])$; (2) f' 有界, m - a.e.; (3) $V(f) \le \int_a^b |f'| dm$.

解答. (1) 对任意的 $\varepsilon > 0$, 任取互不相交的 $(a_k, b_k) \subset [a, b] (1 \le k \le m)$, 令

$$\sum_{k=1}^{m} |b_k - a_k| < \frac{\varepsilon}{L},$$

5 2017年真题

由 f 是 Lipschitz 函数知

$$\sum_{k=1}^{m} |f(b_k) - f(a_k)| \le \sum_{k=1}^{m} L|b_k - a_k| < \varepsilon,$$

因此 $f \in AC([a,b])$.

(2) 由 f 是 Lipschitz 函数知

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le L.$$

若 f'(x) 存在, 令 $y \to x$, 则有 $|f'(x)| \le L$, 从而 f' 有界, m-a.e..

(3) 设 $p = a = a_0 < a_1 < \dots < a_n = b$, 由 Newton-Leibniz 公式得

$$V(f;p) = \sum_{i=1}^{n} |f(a_i) - f(a_{i-1})|$$

$$= \sum_{i=1}^{n} \left| \int_{a_i}^{a_{i+1}} f' dm \right|$$

$$\leq \sum_{i=1}^{n} \int_{a_i}^{a_{i+1}} |f'| dm$$

$$= \int_{a}^{b} |f'| dm,$$

因此

$$V(f) = \sup_{p} V(f; p) \le \int_{a}^{b} |f'| \mathrm{d}m.$$

彩蛋: 2021 年模拟题

本份题目不留详细的解答, 独立思考和尝试比详细的解答更重要. 同样设 $\{X, \mathscr{A}, \mu\}$ 为测度空间, m 为 Lebesgue 测度.

题目 1. (判断题) (1) $\lim_{n \to +\infty} \left(-n, \frac{1}{n} \right) = (-\infty, 0];$

- (2) ℚ 是可数集, 但是 2^ℚ 是不可数集;
- (3) 设 $A \subset X$, 则 $\sigma({A}) = {\emptyset, A, A^C, X};$
- (4) 设 $A \in \mathcal{A}$, $\mu(A) = 0$, 则对任意的 $B \subset A$, $\mu(B) = 0$;
- (5) 设 $f, g: \mathbb{R} \to \mathbb{R}$, 且 f = g, m a.e., 若 g 连续, 则 f 连续;
- (6) 设 $A \in \mathcal{A}$, $f_n : A \to \mathbb{R}$ 是 μ -可测函数, $f = \lim_{n \to +\infty} f_n$, 则 f 也是 μ -可测函数;
- (7) 设 $A \in \mathcal{A}$, $f_n, f : A \to \mathbb{R}$ 是 μ -可测函数, $f_n \stackrel{\mu}{\to} f$, 则存在子列 $\{f_{n_k}\}$, 使得 $f_{n_k} \to f$, μ a.e.;
- (8) 设 $A \in \mathcal{A}$, $f_n, f \in L^1(A)$, 且 $\lim_{n \to +\infty} f_n = f$, 若存在 M > 0, 使得 $|f_n| \leq M$, 则 $\lim_{n \to +\infty} \int_A f_n d\mu = \int_A f d\mu$;
- (9) 设 $f \in L^1([a,b]), F(x) = \int_a^x f(t)dt, 则 F(x) \in AC([a,b]);$
- $(10) C([a,b]) \subset AC([a,b]) \subset \overset{3a}{BV}([a,b]).$

解答. (1) 对; (2) 对; (3) 对; (4) 错; (5) 错; (6) 对; (7) 对; (8) 错; (9) 对; (10) 错.

题目 2. 设 $A \subset \mathbb{R}$ 是 Lebesgue 可测集, 0 < a < m(A), 则存在 Lebesgue 可测集 $B \subset A$, 使得 m(B) = a.

解答. 构造函数 $f(x) = m(A \cap (-\infty, x])$.

题目 3. 设 $A \in \mathcal{A}, f : A \to [0, +\infty]$ 是 μ -可测函数, 且 $f \in L^1(A)$, 定义

$$f_n = \begin{cases} f, & f \le n, \\ 0, & f > n, \end{cases}$$

证明: (1) f_n 是 μ -可测函数; (2) $f_n \stackrel{\mu}{\rightarrow} f$;

(3)
$$\lim_{n \to +\infty} \int_A f_n d\mu = \int_A f_n d\mu.$$

解答. 略.

题目 4. 设 $f:[a,b]\to\mathbb{R}$ 是 Lipschitz 连续函数, 也即对任意的 $x,y\in[a,b]$, 都有

$$|f(x) - f(y)| < L|x - y|.$$

证明: (1) $f \in L^1([a,b])$; (2) $f \in BV([a,b])$, 且 $V(f) \le L(b-a)$;

(3) f 可微, m – a.e., 且 f' 有界, m – a.e..

解答. 略.

题目 5. 设 $A \in \mathcal{A}$, $f_n : A \to \mathbb{R}$ 是 μ -可测函数, 证明: (1) 若存在 $g \in L^1(A)$, 使得 $f_n \geq g, n = 1, 2, \cdots$, 则 $\lim_{n \to +\infty} \inf f_n \in L^1(A)$, 且

$$\int_{A} (\liminf_{n \to +\infty} f_n) d\mu \le \liminf_{n \to +\infty} \int_{A} f_n d\mu;$$

(2) 若存在 $g \in L^1(A)$, 使得 $f_n \leq g, n = 1, 2, \dots$, 则 $\limsup_{n \to +\infty} \in L^1(A)$, 且

$$\int_{A} (\limsup_{n \to +\infty} f_n) d\mu \ge \limsup_{n \to +\infty} \int_{A} f_n d\mu.$$

解答. 略.

题目 6. 设 $A \in \mathcal{A}$, $f_n, f : A \to \mathbb{R}$ 是 μ -可测函数, 证明:

- (1) 若 $f_n \stackrel{\mu}{\to} f$, 且 $f_n \stackrel{\mu}{\to} g$, 则 $f = g, \mu \text{a.e.}$;
- (2) 设 $\mu(A) < +\infty$, 则 $f_n \to f, \mu$ a.e. 当且仅当 $\sup_{k \ge n} |f_k f| \xrightarrow{\mu} 0$.

解答. (1) 略; (2) 表
$$\left\{\sup_{k\geq n}|f_k-f|>\varepsilon\right\}=\bigcup_{k=n}^{+\infty}\{|f_k-f|>\varepsilon\}.$$

题目 7. 设 C 是 Cantor 集, 证明: (1) m(C) = 0; (2) C 与 \mathbb{R} 等势; (3) $\chi_C \notin BV([0,1])$.

解答. (1) 略; (2) 设 $x \in C$, 表 $x = \sum_{n=1}^{+\infty} \frac{a_n}{3^n}$, 其中 $a_n \in \{0, 2\}$;

(3) 存在分划 $0 = x_0 < x_1 < \dots < x_n = 1$, 使 $x_{2n} \in C, x_{2n+1} \notin C$.