IT of SPIM Data Storage and Compression

EMBO Course - August 27th

Jeff Oegema, Peter Steinbach, Oscar Gonzalez

Talk Outline

- Introduction and the IT Team
- SPIM Data Flow
- Capture, Compression, and the Data Volume Problem
- Transfer, Network and Storage Infrastructure
- Planning for SPIM

People Involved - IT Staff

Peter Steinbach (steinbac@mpi-cbg.de)
Scientific / HPC Software Development
Data Streaming Library
Compression and HPC Algorithm Development

Oscar Gonzalez (ogonzale@mpi-cbg.de)

HPC Administrator

Cluster Interaction and Queuing

High-Performance Storage / Lustre

Network Benchmarking and Performance Tuning

Ian Henry (henry@mpi-cbg.de)
Scientific Computing Leader
Scientific and Project Coordination
Collaboration Management

Matt Boes (<u>boes@mpi-cbg.de</u>)
Infrastructure Team Leader
Network Design and Development
Fileserver Design and Development

Jeff Oegema (joegema@mpi-cbg.de)
IT Coordinator
Overall Project Coordination
External Collaboration Management

SPIM Dataflow

SPIM Dataflow

Capture

Processing

Usage and Archiving

Zeiss Lightsheet Z.I

The Potential Deluge

Developmental SPIM - Camera Potential - 138 TB / Day 82 TB - Estimated CERN Data Production / Day Single Lightsheet ZI Capture - I day **13 TB** 50 GB - Confocal - I day

The Potential Deluge - Multiple Lightsheet Z. I

The Potential Deluge - Future Tech

 $800 \text{ MB} / \sec x 2 \text{ cameras} = 1.6 \text{ GB} / \sec x$

~138 TB / day

Almost a PB per week

SPIM Dataflow

Transfer Volumes and Times

Data Volume / Time	I Gbit	I0 Gbit
I50 MB / sec	1.5 sec	.15 sec
9 GB / minute	90 sec	9 sec
540 GB / hour	1.5 hours	9 minutes
~13 TB / day	1.5 days	3.6 hours

This assumes approximately theoretical maximum line speed - which never happens. Typically we see 60%.

First: Get the Data Off

	pro	con
network mounted drives (ex. SMB)	simple	OS dependent
secure network file transfer (scp/sftp/rsync)	secure	encryption may slow transfer
unencrypted file transfer (ex. ftp)	fast	insecure

Operating Systems & Networking

- Extensive Network
 Streaming Tests
- Win7, Windows Server
 2008 R2
- 10 Gbit/s fiber network
- same hardware
- No disk i/o involved

Networks are ...

a shared resource!

Network File Transfer

- is necessary

 (capture host becomes unusable / full)
- protocols are important to keep in mind
- network is a shared resource

http://erindriver.travellerspoint.com/148/

Second: Bottlenecks again

Spinning disk based storage

- Large Volume
- Comparatively cheap

SSD based storage

- Fast
- Small Volume
- Expensive

Second: Get it Small

Capture Host

- cropping

 (only keep what you need)
- fusion + deconvolution
 (n stacks become 1)
- compression
- •

Reduce data volume **before** any network or disk!

Compression: Demonstration

Please zip a SPIM dataset of your choice!

How long did it take?
How small is the compressed data?

Compression: Fast

Compression : Noise?

Compression: Denoised

Compression: Denoised

Original

Denoised

Compression: Sqeazy

- pipeline standard compression algorithms fast
- soon to be open-sourced
- currently:
 3x lossless compression
 10x lossy compression

initiated by:

Loic Royer

Martin Weigert

SPIM Dataflow

Lots of image data

CPU intensive

High memory footprint

High I/O

GPUs are promising

Lots of image data

CPU intensive

High memory footprint

High I/O

GPUs are promising

Cluster Architecture

Compute and Processing Architecture

Lustre Storage Architecture

Cluster Architecture

Head node

Job management Cluster monitoring

Worker nodes

40x:

- * 12 cores
- * 128 GB RAM
- * 1 TB HDD

4x:

- * 12 cores
- * 128 GB RAM
- * 1 TB HDD
- * GPU

MPI-CBG Cluster Storage

Resource Usage

- The cluster was made available on Feb 2013
- Total number of jobs done: 6,852,661
- Average throughput: 462 jobs/h
- CPU time consumed: 151y 46d 10h 59m 12s
- Average CPU time: 11m 35s

Lessons Learned

- Cluster design is very important think before you buy
- I/O is critical to move data in and out of the cluster
- I/O is VERY critical to access data from the cluster
- Storage requirements are huge, both inside and outside the cluster
- GPU resources might be useful but you need enough to make it practical

Workstations

If/when a cluster is not an option, check what your WS can do.

Example Data PC

- 12 cores
- 128 GB
- 4x 2TB (RAID 5)

Pros:

- Rather cheap
- Fine for small datasets
- Convenient for data visualisation

Cons:

- Limited computing resources
- Limited storage capacity and bandwidth

SPIM Dataflow

37

Archiving

Current Infrastructure

Future Plans

Taking it Home - External Drives 4TB transfer

Protocol

USB 3.0 (600 MB / sec)

1.85 hours

USB 2.0 (60 MB / sec)

18.5 hours

Drive Speed

WD Black (130.4 MB / sec)

8.52 hours

Hitachi Deskstar (102.95 / MB sec)

10.79 hours

Samsung SSD - I TB (550 MB /sec)

2.02 hours

The limitation is the <u>slower</u> of the two!

Bottlenecks at Each Stage

Bottlenecks can be addressed but the pipeline can't be made infinitely wide

Experiment Design and Data Management become extremely important!

Compression can help but the issue remains

IT Planning for SPIM (or "things to think about before I capture")

What is the practical output of your SPIM setup?

How long are you planning on capturing at a time?

What processing do you need to do on your data? How fast do you need to complete the processing?

What is the data you will consider primary data for publication?

How will you present your data to the world or turn it into movies or results more easily shared?

Discussion and Questions