$\underset{\S 11.1 \text{ (Sequences)}}{ONE-PAGE} \; REVIEW$

MATH 1910 Recitation

§11.2 (Summing an Infinite Series)

November 15, 2016

§11.3 (Convergence of Series with Positive Terms)

(1)	A sequence converges to a limit <i>L</i> if for every number $\varepsilon > 0$, there is <i>M</i> such that $\prod_{i=1}^{n} for all n > M$.
(2)	If f is continuous and $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} f(a_n) = $
(3)	A sequences is called: (a) (3) if there exists M such that $ a_n \le M$ for all n . (b) (4) if either $a_n < a_{n+1}$ or $a_n > a_{n+1}$ for all n .
(4)	If a sequence is both ⁽⁵⁾ and ⁽⁶⁾ , then it converges.
(5)	The divergence test: If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$
	A series that looks like $a_n=cr^n$ is called $otag \end{substant} (8)$ If $ r \geq 1$, then it $otag \end{substant} (9)$ If $ r <1$, then $otag \end{substant} (9)$ $otag \end{substant} (10)$
(7)	The integral test: Assume that $a_n = f(n)$ for $n \ge M$. If $\int_M^\infty f(x) dx$ converges, then $\sum_{n=0}^\infty a_n$ [11] If $\int_M^\infty f(x) dx$ diverges, then $\sum_{n=0}^\infty a_n$ [12]
(8)	The comparison test: If $a_n \le b_n$, and $\sum_{n=0}^{\infty} b_n$ converges, then
	$\sum_{n=0}^{\infty} b_n $ (14), then
(9)	Limit comparison test: Let $L = \lim_{n \to \infty} \frac{a_n}{b_n}$.
	(a) If $\sum a_n$ converges if and only if $\sum b_n$ converges.
	(b) If $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} b_n$ converges.
	(c) If $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_n$ converges.

PRACTICE PROBLEMS

MATH 1910 Recitation

§11.1 (Sequences)

§11.2 (Summing an Infinite Series)

November 15, 2016

§11.3 (Convergence of Series with Positive Terms)

(1) True or false?

(a)
$$\sum_{n=1}^{\infty} a_n = \sum_{k=1}^{\infty} a_k$$

(b)
$$\sum_{n=4}^{6} a_n = \sum_{i=1}^{4} a_{i+3}$$

(c)
$$\sum_{n=2}^{\infty} a_{n+3} = \sum_{n=5}^{\infty} a_n$$

(d) If
$$\lim_{n\to\infty} a_n = 0$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

(e) If
$$\lim_{n\to\infty} a_n = \infty$$
, then $\sum_{n=1}^{\infty} a_n$ diverges.

(f) If
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\lim_{n\to\infty} a_n = \infty$.

(2) Determine the limit of the sequence or show that the sequence diverges.

(a)
$$a_n = \frac{e^n}{2^n}$$

(b)
$$b_n = \frac{3n+1}{2n+4}$$

(c)
$$c_n = \frac{\sqrt{n}}{\sqrt{n}+4}$$

(3) Show that the sequence given by $a_n = \frac{3n^2}{n^2+2}$ is strictly increasing, and find an upper bound.

(4) Determine the limit of the series or show that the series diverges.

(a)
$$\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n$$

(e)
$$\sum_{n=2}^{\infty} \frac{n^2}{n^4 - 1}$$
 (Limit Comparison Test)

(b)
$$\sum_{n=0}^{\infty} e^n$$

(f)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + 2^n}$$
 (Comparison Test)

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
.

(g)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$
 (Integral Test)

(d)
$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$$