State of Charge (SOC) Estimation For LiFePO4 (LFP) Battery ZTE ZXDC48100C1

Methodology: Cross Industry Standard Process for Data Mining (CRISP – DM)

Business Understanding

Research Objective

- Building a ZXDC48 lithium-ion battery State of Charge (SOC) estimation model for Battery Management System (BMS).
- Create a BMS to monitor battery operational conditions.
- Deploy the SOC model prediction to the BMS using Edge Device.
- Sending operational data to the Database Management System (DBMS).

Object Research

Battery Specification

Battery Type	Lithium Iron Phospate (LiFePO4)
Model	ZXDC48 100C1
Manufacture	ZTE
Capacity	100 Ah
Voltage	48 V
Weight	≤ 50

Operational Performance Parameters

Discharging voltage	42 V to 53.2 V
Discharging current	0 A to 50 A
Charging voltage	52 V to 54 V
Charging current	0 A to 50 A

Operational Environment Parameters

Recommanded operating temperature	15 °C to 35 °C
Charging temperature	0 °C to 60 °C
Discharging temperature	-20 °C to 65 °C
Storage temperature	-40 °C to 60 °C
Relative humidity	5% to 95%
Altitude	4000 m
Air pressure	70 kPa to 100 kPa

Testing Device

Programmable Power Supply (for charging)

Specification

Manufacture	BK Precision
Model	9104 Series
Power	320 W
Operating Voltage	0 – 84 V
Rated Current	0 – 10 A

Electronic Load Controller (for discharging)

Image represents Models 8610, 8612, 8614, 8616

Specification

Manufacture	BK Precision
Model	8600 Series (8614)
Power	1500 W
Operating Voltage	0 – 120 V
Rated Current	0 – 240 A

Data Collection Methodology

In this study, we conducted a Battery Cycle Test method consisting of charging and discharging test scenarios.

Charging

Constant Voltage (CV): a method where the voltage remains constant throughout the charging process. In this method, once the battery reaches a predetermined voltage level, the charging current decreases gradually until it reaches zero, allowing the battery to be fully charged while preventing overcharging.

Scenario	Charging
Constant Voltage (CV)	54 V
Testing Temperature	+- 25 °C
Current	5 A
Initial Voltage	+- 44 V
Maximum Voltage	54 V

Discharging

Constant Current (CC): method where a load is supplied with a steady current throughout the discharging process. In this method, the current flowing through the load remains constant, regardless of changes in voltage or load resistance.

Scenario	Discharging
Constant Current (CC)	5 A, 8 A, 10 A
Testing Temperature	+- 25 °C
Initial Voltage	+- 52 V
Cut-off Voltage (Minimum Voltage)	42 V (44 V for safety based on internal BMS battery device)

Exploratory Data Analysis

Element	Charging Data	Discharging Data
Number of features	2	7
Features	Voltage, Current	Time, Voltage, Current, Power, Capacity, Energy Density, Power Density
Number of cycles	3 cycle	7 cycle
Cycle scenarios	3 cycles CV 54 V	3 cycles C/20 (CC 5 A), 3 cycles C/10 (CC 10 A), 1 cycles C/12.5 (CC 8 A)
Length of data rows	54003	372812
Size of data	1.6+ MB	25.6 MB
Format data	CSV	CSV
Null values	None	None
NaN values	None	None

Exploratory Data Analysis: Missing Values Detection

We use this code to check **Missing Values** with Python

```
# Import Python Library
import pandas as pd
# Use Function
null_check = pd.isnull().sum()
nan_check = pd.isna().sum()
# Execute the Function
print("Null Check")
print(null_check)
print()
print("Nan Check")
print(nan_check)
```


Dataset Discharge

```
Null Check
Cycle
Time (s)
Voltage (V)
Current (A)
Power (W)
Capacity (Ah)
Energy Density (Wh/kg) - PvsWh
Power Density (W/kg) - PvsWh
dtype: int64
Nan Check
Cycle
Time (s)
Voltage (V)
Current (A)
Power (W)
Capacity (Ah)
Energy Density (Wh/kg) - PvsWh
Power Density (W/kg) - PvsWh
dtype: int64
```

Dataset Charge

```
Null Check
FileType:PSCS_Data_Log 0
Voltage (mV) 0
Current (mA) 0
dtype: int64

Nan Check
FileType:PSCS_Data_Log 0
Voltage (mV) 0
Current (mA) 0
dtype: int64
```

Exploratory Data Analysis: Descriptive Statistics

Dataset Discharge

	Time (s)	Voltage (V)	Current (A)	Power (W)	Capacity (Ah)	Energy Density (Wh/kg) - PvsWh	Power Density (W/kg) - PvsWh
count	372812	372812	372812	372812	372812	372812	372812
mean	29360.522269	48.352966	6.830148	329.763447	50.498084	2463.811779	329.763447
std	19511.419573	0.919486	2.252673	107.314736	29.155364	1412.818368	107.314736
min	1.00000	0.00000	0.00000	0.00000	0.00100	0.07075	0.00000
25%	13315	48.0164	4.99718	243.069	25.24875	1242.167500	243.069
50%	26630	48.5813	4.99823	246.556	50.49800	2471.175000	246.556
75%	42583	48.8845	9.99896	471.344	75.74700	3692.265000	471.344
max	72733	52.1700	10.0000	517.150	101.2920	4901.420000	517.150

We use this code to check **Descriptive Statistics** with Python

```
# Use describe() function to check descriptive statistics
statistics = data.describe()
```

Print the descriptive statistics
print(statistics)

Exploratory Data Analysis: Descriptive Statistics

Dataset Charge

Before converting

After converting

Since the **voltage** and **current** data types in dataset are objects, we need to convert the data dtype to integer by using this python code

```
# Convert column from object to integer
data['Voltage (mV)'] = data['Voltage (mV)'].astype(int)
data['Current (mA)'] = data['Current (mA)'].astype(int)
```

Exploratory Data Analysis: Descriptive Statistics

Dataset Charge

	Voltage (mV)	Current (mA)
count	54003.000000	54003.000000
mean	52844.684555	2036.161324
std	1472.110331	2458.568872
min	50740.000000	0.000000
25%	51020.000000	0.000000
50%	54020.000000	10.000000
75%	54020.000000	5030.000000
max	54050.000000	5030.000000

We use this code to check **Descriptive Statistics** with Python

```
# Use describe() function to check descriptive statistics
statistics = data.describe()

# Print the descriptive statistics
print(statistics)
```

Exploratory Data Analysis: Data Visualization

We use this code to visualize data with Python

```
# To separate the plots of each cycle
dfs = []
for i in range(1, 8):
    data = df[df['Cycle'] == i]
    dfs.append(data)
# To show the graph
plt.figure(figsize = (16,10))
# Skema warna untuk setiap siklus
colors = ['blue', 'blue', 'blue', 'orange', 'orange', 'green']
# Plotting the graph
for i, data in enumerate(dfs):
    plt.title('Voltage vs Time', fontsize = 20)
   x = data['Time (s)']
   y = data['Voltage (V)']
    plt.scatter(x, y, color=colors[i], label=f'Cycle {i+1}', s=12)
    plt.xticks(fontsize = 16)
    plt.yticks(fontsize = 16)
    plt.axhline(y=44, color='red', linestyle='--')
    plt.axhline(y=52, color='black', linestyle='--')
    plt.text(-4250, 44, '44', color='black', fontsize=16, ha='right', va='center')
    plt.text(-4250, 52, '52', color='black', fontsize=16, ha='right', va='center')
    plt.xlabel("Time (s)", fontsize = 18)
    plt.ylabel("Voltage (V)", fontsize = 18)
    plt.grid()
    plt.legend()
plt.show()
```


Exploratory Data Analysis: Data Visualization

The following is a graph plotting voltage against time on the discharging dataset.

 The test results for each scenario are separated by color as shown in the following table.

Color	Cycle	Scenario
Blue	1, 2, 3	CC 10 A
Green	7	CC 8 A
Blue	4, 5, 6	CC 5 A

CC: Constant Current

- It can be seen in the graph that the test scenario is in the voltage range of 44 V to 52 V.
- There are outliers in the voltage range 0 to 20 V.

Exploratory Data Analysis: Data Visualization

The following is a graph plotting voltage against time on the charging dataset.

- The test results for each scenario are separated by color as shown in the following table.
- It can be seen in the graph that the test scenario is in the voltage range of 50 V to 54 V.
- There are outliers in the cycle 3 with voltage range 51.5 V to 52 V.

Exploratory Data Analysis: Outliers Identification with Boxplot

Seems like there are no **outliers** detected in boxplot dataset discharge, but we need to check Voltage (V) feature using quartile.

Exploratory Data Analysis: Outliers Identification with Boxplot

Using **MinMaxScaler()** we can calculate Inter Quartile, Lower Quartile, and Upper Quartile with Python, We get

Inter Quartile	0.8681000000000054
Median	48.5813
Upper	50.186650000000014
Lower	46.71424999999999

But in this case, we use **52 V** as Upper and **44 V** as Lower

Exploratory Data Analysis: Outliers Identification with Boxplot

There are no **outliers** detected in boxplot dataset charge

Exploratory Data Analysis: Correlation Analysis with Seaborn

Exploratory Data Analysis: Correlation Analysis with Seaborn

Data Preparation

Exploratory Data Analysis: Cleaning Outlier

To clean the outliers, we use this Python code:

$$df = df[\sim(df['Voltage (V)'] < 44)]$$

Data Preparation

Feature Engineering: Create SOC references as Dependent Data

To clean the outliers, we use this Python code:

$$ext{SOC(t)} = ext{SOC}(t_0) + rac{1}{C} \sum_{i=0}^n I_i \Delta t$$

	Voltage (V)	SOC (%)
count	372791.000000	372791.000000
mean	48.354667	49.502866
std	0.872381	29.153718
min	44.205300	-1.288000
25%	48.016400	24.255000
50%	48.581300	49.503000
75%	48.884000	74.751000
max	51.996300	99.999000

Data Preparation

Feature Selection: Correlation Analysis with Seaborn

0 – 0.25: Very weak correlation 0.25 – 0.5: Fair correlation 0.5 – 0.75: Strong correlation 0.75 – 0.99: Very strong correlation 1: Perfect positive correlation -1: Perfect negative correlation

0.75

0.50

0.25

- 0.00

- -0.25

-0.50

-0.75

In this case, we chose the features with strong correlation, specifically **Time**, **Voltage**, **Capacity**, and **Energy Density**.

Data Preparation Data Splitting

In this section, we separate data to data training and data testing. We chose 80% of the data for training and 20% for testing. We use Scikit-Learn library to split the data.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Training	set:						Test se	t:				
Т	Time (s)	Voltage (V)	Capacity (Ah)	Energy Density	(Wh/kg) - Pvs	Wh		Time (s)	Voltage (V)	Capacity (Ah)	Energy Density	(Wh/kg) - PvsWh
347827	20635	48.4003	45.836		2237.9	80	260814	6447	48.7358	17.907		874.41900
32554	32555	48.6865	45.188		2221.7	50	7362	7363	49.3422	10.219		505.92300
329877	2685	48.9142	5.964		293.6	23	217988	70	50.3196	0.194		9.83347
243880	25962	47.8938	72.109		3499.4	90	15816	15817	49.2731	21.953		1084.57000
42973	42974	48.6031	59.651		2925.3	10	71670	71671	45.5555	99.486		4830.96000
• • •	• • • •					• •						
259178	4811	48.6886	13.363		652.8		69746	69747	46.8967	96.815		4707.28000
365838	38646	47.3474	85.846		4162.7	60	234671	16753	48.2033	46.531		2268.03000
131932	59378	47.8741	82.423		4028.2		308493	17678	48.2007	49.101		2386.62000
146867	1589	49.4319	2.206		110.5		168822	23544	48.9631	32.685		1612.82000
121958	49404	48.4921	68.578		3360.5	50	251618	33700	46.8690	93.602		4517.12000
[298232 r 347827 32554 329877 243880 42973 259178 365838 131932 146867 121958 Name: SOC	54.164 54.812 94.036 27.891 40.349 86.637 14.154 17.577 97.794 31.422		dtype: float64				260814 7362 217988 15816 71670 69746 234671 308493 168822 251618	rows x 4 c 82.093 89.781 99.806 78.047 0.514 3.185 53.469 50.899 67.315 6.398 OC (%), Le		dtype: float64		

Modeling: Deep Learning

Hyperparameter Tuning

Hyperparameters are variables whose values are determined before the model training process and cannot be changed during training. They play a role in regulating the learning process and model structure, such as learning rate, number of epochs, number of layers, and number of neurons in each layer.

Hyperparameter	Content
Model	Long-Short Term Memory (LSTM)
Optimizer	Adam
Activation	ReLU
Batch Size	32
Input Layer	Count: 1 (4 features input)
Hidden Layer	Count: 2 Hidden Layer 1: 64 Neuron Hidden Layer 2: 32 Neuron
Output Layer	Count: 1
Epoch	30

Modeling: Deep Neural Network (DNN)

Training Performance

Training Time: 246.35202360153198 seconds Prediction Time: 1.9037957191467285 seconds

Modeling: Deep Neural Network (DNN)

Model Evaluation

R2 training data = 0.9999995091519014 RMSE training data = 0.02038855299080642 MAE training data = 0.01781698805385481 MAPE training data = 0.5093883714043871 %

Modeling: Deep Learning

Hyperparameter Tuning

Hyperparameters are variables whose values are determined before the model training process and cannot be changed during training. They play a role in regulating the learning process and model structure, such as learning rate, number of epochs, number of layers, and number of neurons in each layer.

Hyperparameter	Content
Model	Long-Short Term Memory (LSTM)
Optimizer	Adam
Activation	ReLU
Batch Size	128
Input Layer	Count: 1 (4 features input)
Hidden Layer	Count: 2 Hidden Layer 1: 64 Neuron Hidden Layer 2: 32 Neuron
Output Layer	Count: 1
Epoch	10

Modeling: Long-Short Term Memory (LSTM)

Training Performance

Training Time: 60.21635413169861 seconds

Prediction Time: 3.7524471282958984 seconds

Modeling: Long-Short Term Memory (LSTM)

Model Evaluation

R2 training data = 0.9999994309424449 RMSE training data = 0.021952851750538564 MAE training data = 0.015979483044945775 MAPE training data = 0.47290916751185985 %

Conclusion

- Both models, DNN and LSTM, exhibit exceptional performance with R2 values very close to 1, indicating their excellent ability to explain the variability in the training data. However, there are slight differences in their error metrics. The LSTM model demonstrates slightly lower Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) compared to the DNN model, suggesting it has a marginally better performance in minimizing average prediction errors and percentage errors.
- Although the Root Mean Square Error (RMSE) for LSTM is slightly higher than that for DNN, it still
 indicates very low prediction error overall. These differences are minimal, indicating that both
 models are highly effective, but the LSTM model might have a slight edge in handling more complex
 time-series data.
- Ultimately, the choice between DNN and LSTM may depend on the specific needs of the project. For handling more intricate time-series patterns, LSTM might be more appropriate. However, in this particular case, both models provide highly satisfactory results.

Github Link

https://github.com/wilywho/Portfolio