آمار و احتمال مهندسی

نیمسال دوم ۱۴۰۳ – ۱۴۰۲

تمرین سری سوم زمان تحویل: ۳۰ فروردین

- مهلت ارسال یاسخ تا ساعت ۲۳:۵۹ روز مشخص شده است.
- همکاری و همفکری شما در انجام تمرین مانعی ندارد اما پاسخ ارسالی هر کس حتما باید توسط خود او نوشته شده باشد.
- در صورت هم فکری و یا استفاده از هر منابع خارج درسی، نام هم فکران و آدرس منابع مورد استفاده برای حل سوال مورد نظر را ذکر کنید.
 - لطفا تصویری واضح از پاسخ سوالات نظری بارگذاری کنید. در غیر این صورت پاسخ شما تصحیح نخواهد شد.

مسئلهی ۱. مجذور شرطی

فرض کنید X یک متغیر تصادفی باشد و $Y = X^{\mathsf{T}}$ بر حسب آن تعریف شود. درستی عبارت زیر را ثابت کنید:

$$f_Y(y|X\geqslant {}^{\bullet})=\frac{u(y)}{{\bf 1}-F_X({}^{\bullet})}.\frac{f_X(\sqrt{y})}{{\bf Y}\sqrt{y}},$$

که در آن u به صورت زیر تعریف می گردد:

$$u(y) = \begin{cases} 1, & y \geqslant \bullet \\ \bullet, & \text{congression} \end{cases}$$
 در غیر این صورت

حل.

ابتدا $P(Y\leqslant y|X\geqslant \bullet)$ را محاسبه میکنیم

$$P(Y\leqslant y|X\geqslant {}^{\bullet})=\frac{P(Y\leqslant y,X\geqslant {}^{\bullet})}{P(X\geqslant {}^{\bullet})}=\frac{P(Y\leqslant y,X\geqslant {}^{\bullet})}{1-P(X<{}^{\bullet})}=\frac{P(Y\leqslant y,X\geqslant {}^{\bullet})}{1-F_X({}^{\bullet})}$$
حال از آنجایی که شرط $Y=X$ را داریم آنگاه

$$\frac{P(Y \leqslant y, X \geqslant {}^{\bullet})}{{}^{\backprime} - F_X({}^{\bullet})} = \frac{P(X^{\backprime} \leqslant y, X \geqslant {}^{\bullet})}{{}^{\backprime} - F_X({}^{\bullet})} = \frac{P(X \leqslant \sqrt{y}, X \geqslant {}^{\bullet})}{{}^{\backprime} - F_X({}^{\bullet})}$$

$$=\frac{P(X\leqslant \sqrt{y})-P(X\leqslant \sqrt{y},X\leqslant {}^{\bullet})}{{\rm V}-F_X({}^{\bullet})}=\frac{P(X\leqslant \sqrt{y})-P(X\leqslant {}^{\bullet})}{{\rm V}-F_X({}^{\bullet})}$$

حال از دو طرف معادله نسبت به y مشتق میگیریم.

$$\frac{dP(Y\leqslant y|X\geqslant \bullet)}{dy}=f_Y(y|X\geqslant \bullet)=\frac{d}{dy}\left(\frac{P(X\leqslant \sqrt{y})-F_X(\bullet)}{\mathsf{V}-F_X(\bullet)}\right)$$

از آنجایی که $({f \cdot})$ تابع y نیست میتوان آن را از مشتق بیرون آورد.

$$\frac{1}{1 - F_X(\bullet)} \frac{dP(X \leqslant \sqrt{y} - F_X(\bullet))}{dy} = \frac{1}{1 - F_X(\bullet)} \frac{dP(X \leqslant \sqrt{y})}{d\sqrt{y}} \frac{d\sqrt{y}}{dy}$$

توجه کنید از آنجایی که توزیع بالا به ازای y های مثبت تعریف میشود باید عبارت بالا را بصورت زیر نوشت

$$\frac{u(y)}{1 - F_X(\bullet)} \cdot \frac{f_X(\sqrt{y})}{Y\sqrt{y}} = f_Y(y|X \geqslant \bullet)$$

 \triangleright

مسئلهي ۲. بيمه

یک شرکت بیمه، خانهها را در سه شهر A، B و C تحت پوشش خود قرار می دهد. می دانیم خسارات رخ داده در این شهرها مستقل هستند و توابع مولد گشتاور برای میزان خسارت در هر یک از شهرها به صورت زیر است:

$$M_A(t) = (\mathbf{1} - \mathbf{Y}t)^{-\mathbf{Y}}$$

$$M_B(t) = (\mathbf{1} - \mathbf{Y}t)^{-\mathbf{Y}/\mathbf{\Delta}}$$

$$M_C(t) = (\mathbf{1} - \mathbf{Y}t)^{-\mathbf{Y}/\mathbf{\Delta}}$$

اگر X مجموع خسارت در هر سه شهر باشد، $\mathbb{E}(X^{\mathsf{r}})$ را بدست آورید.

حل. در نظر بگیرید که I و K و K میزان خسارت در هریک از شهرها میباشد. حال طبق تعریف صورت سوال داریم X = J + K + L میزان خسارت در هریک از شهرها از یکدیگر مستقل است پس I و I و I از کدیگر مستقل هستند. درنتیجه تابع مولد گشتاور برای I که مجموع آنها است برابر است با حاصل ضرب توابع مولد گشتاور آنها. به عبارتی داریم:

$$M_X(t) = M_K(t) M_J(t) M_L(t) = (\mathsf{N} - \mathsf{Y} t)^{-\mathsf{Y} - \mathsf{Y}/\Delta - \mathsf{Y}/\Delta} = (\mathsf{N} - \mathsf{Y} t)^{-\mathsf{N}^*}.$$

حالا از این تابع مولد گشتاور مشتقات اول تا سوم را محاسبه می کنیم:

$$M'_X(t) = (-\Upsilon)(-\Upsilon)(\Upsilon)(\Upsilon)^{-\Upsilon},$$

$$M_X''(t) = (-\Upsilon)^\Upsilon(-\Upsilon)(-\Upsilon)(-\Upsilon)(\Upsilon)(\Upsilon)^{-\Upsilon},$$

$$M_X^{\prime\prime\prime}(t) = (-\mathsf{Y})^\mathsf{Y}(-\mathsf{I}\bullet)(-\mathsf{I}\mathsf{I})(-\mathsf{I}\mathsf{Y})(\mathsf{I}-\mathsf{Y}t)^{-\mathsf{I}\mathsf{Y}}.$$

حال خواسته سوال یا همان $E(X^{\mathsf{T}})$ برابر است با:

$$E(X^{\mathbf{T}}) = M_X'''(\cdot) = (-\mathbf{T})^{\mathbf{T}}(-\mathbf{I}\cdot)(-\mathbf{I}\mathbf{I})(-\mathbf{I}\mathbf{T}) = \mathbf{I}\cdot, \Delta \mathcal{F}\cdot.$$

 \triangleright

مسئلهی ۳. درمان

فرض کنید دو نوع درمان برای سنگ کلیه وجود دارد: درمان A و درمان B. همچنین در نظر بگیرید که جدول زیر، احتمال موفقیت این دو نوع درمان را نشان می دهد.

درمان B	درمان A	
٠.٨٧	٠.٩٣	سنگهای کوچک
٠.۶٨	۰.۷۳	سنگهای بزرگ

فرض کنید در کلیه هر بیمار، فقط سنگهای کوچک یا سنگهای بزرگ موجود است (هیچ بیماری هر دو نوع سنگ را در کلیه خود ندارد) و میدانیم احتمال اینکه سنگها کوچک یا بزرگ باشند، به ترتیب برابر ۰.۶ و ۰.۴ است.

پزشکان، بیمارانی را که کلیه آنها شامل سنگهای کوچک باشد، در $7\cdot 7$ مواقع با روش A درمان میکنند. آنها همچنین بیمارانی را که کلیه آنها شامل سنگهای بزرگ باشد، در $\wedge \wedge \wedge$ مواقع با روش A درمان میکنند. اگر برای درمان یک بیمار از روش A استفاده نشود، حتما روش B تجویز خواهد شد.

الف) اگر برای یک بیمار روش A تجویز شده باشد، احتمال موفقیت درمان چقدر است؟

ب) اگر برای یک بیمار روش B تجویز شده باشد، احتمال موفقیت درمان چقدر است؟ ψ) به نظر شما کدام درمان بهتر است؟

حل. برای حل این مسأله، می توانیم از قانون احتمال کل و احتمال شرطی استفاده کنیم.

ىگذارىد:

S را رویداد موفقیت درمان در نظر بگیریم.

A را رویداد تجویز درمان A در نظر بگیریم.

B را رویداد تجویز درمان B در نظر بگیریم.

SS را رویداد داشتن سنگهای کوچک در نظر بگیریم.

SL را رویداد داشتن سنگهای بزرگ در نظر بگیریم.

(احتمال داشتن سنگهای کوچک) $P(SS) = \cdot /$? (احتمال داشتن سنگهای بزرگ) $P(SL) = \cdot / \Upsilon$ (احتمال تجویز درمان A به شرط داشتن سنگهای کوچک) $P(A|SS) = \cdot / \Upsilon$ (احتمال تجویز درمان A به شرط داشتن سنگهای بزرگ) $P(A|SL) = \cdot / \Lambda$

حالا، بياييد محاسبه كنيم:

الف) احتمال موفقیت درمان در صورت تجویز درمان: A:

$$\begin{split} P(S|A) &= P(S|A \cap SS) \times P(SS) + P(S|A \cap SL) \times P(SL) \\ &= (\bullet / \P \Upsilon \times \bullet / \Upsilon) \times \bullet / \Re + (\bullet / Y \Upsilon \times \bullet / \Lambda) \times \bullet / \Re \\ \\ &= \bullet / \P \Lambda \Re + \bullet / \Upsilon \Upsilon \Upsilon \Re \\ \\ &= \bullet / \P \Lambda \Re \end{split}$$

س) احتمال موفقیت درمان در صورت تجویز درمان: B:

$$\begin{split} P(S|B) &= P(S|B \cap SS) \times P(SS) + P(S|B \cap SL) \times P(SL) \\ &= (• / \land \lor \lor \land \land) \times • / ? + (• / ? \land \times • / ?) \times • / \$ \\ &= • / \$ \land \lor ? + • / \land \varUpsilon ? \\ &= • / \$ \land \varUpsilon ? \end{split}$$

ج) مقايسه احتمالها: - احتمال موفقيت با درمان A تقريباً برابر با ۴۱۹۶۰ است. - احتمال موفقيت با درمان B تقريباً برابر با ۵۵۳۶۰ است.

مقایسه این احتمالها نشان میدهد که درمان B احتمال موفقیت بیشتری دارد، بنابراین بهترین گزینه به نظر میرسد.

مسئلهی ۴. واریانس حرفهای

الف) واریانس Y به شرط X به صورت زیر تعریف می شود:

$$\operatorname{Var}(Y|X) = \mathbb{E}((Y - \mathbb{E}(Y|X))^{\mathsf{Y}}|X).$$

ثابت كنيد تعريف زير، معادل همان تعريف بالاست.

$$\operatorname{Var}(Y|X) = \mathbb{E}(Y^{\mathsf{Y}}|X) - (\mathbb{E}(Y|X))^{\mathsf{Y}}$$

 ψ) فرض کنید X و Y و X سه متغیر تصادفی روی یک فضای احتمال باشند. قانون واریانس کل بیان میکند:

$$\mathrm{Var}[X] = \mathrm{Var}[\mathbb{E}[X|Z]] + \mathbb{E}[\mathrm{Var}[X|Z]]$$

این قانون را اثبات کنید.

ب) ثابت كنيد اگر قانون واريانس كل را روى واريانس شرطى اعمال كنيم، خواهيم داشت:

$$\mathrm{Var}[X|Y] = \mathrm{Var}[\mathbb{E}[X|Z,Y]|Y] + \mathbb{E}[\mathrm{Var}[X|Z,Y]|Y]$$

حل.

الف) برای حل این سوال ابتدا طبق تعریف امید ریاضی را به انتگرال تبدیل میکنیم و انتگرال را به صورت حاصل جمع سه انتگرال در می آوریم. حاصل هر یک از انتگرال ها را به دست آورده و با هم جمع میکنیم.

$$\mathbb{E}((Y - \mathbb{E}(Y|X))^{\mathsf{Y}}|X) = \int_{-\infty}^{\infty} (y - \mathbb{E}(Y|X))^{\mathsf{Y}} P(y|X) dy =$$

$$\int_{-\infty}^{\infty} y^{\mathsf{Y}} P(y|X) dy + \int_{-\infty}^{\infty} \mathbb{E}^{\mathsf{Y}}(Y|X) P(y|X) dy - \mathsf{Y} \int_{-\infty}^{\infty} y \mathbb{E}(Y|X) P(y|X) dy = 0$$

$$\int_{-\infty}^{\infty} y^{\mathsf{Y}} P(y|X) dy + \mathbb{E}^{\mathsf{Y}}(Y|X) \int_{-\infty}^{\infty} P(y|X) dy - \mathsf{Y} \mathbb{E}(Y|X) \int_{-\infty}^{\infty} y P(y|X) dy =$$

$$\mathbb{E}(\boldsymbol{Y}^{\mathsf{T}}|\boldsymbol{X}) + \mathbb{E}^{\mathsf{T}}(\boldsymbol{Y}|\boldsymbol{X}) - \mathsf{T}\mathbb{E}^{\mathsf{T}}(\boldsymbol{Y}|\boldsymbol{X}) = \mathbb{E}(\boldsymbol{Y}^{\mathsf{T}}|\boldsymbol{X}) - (\mathbb{E}(\boldsymbol{Y}|\boldsymbol{X}))^{\mathsf{T}}$$

در نتیجه ثابت شد که دو تعریف ارائه شده معادل هستند. ب) میدانیم

$$\operatorname{Var}(X) = \mathbb{E}(X^{\mathsf{Y}}) - \mathbb{E}^{\mathsf{Y}}(X)$$

که آن را میتوان به شکل زیر نوشت:

$$\mathbb{E}(X^{\mathsf{Y}}) = \operatorname{Var}(X) + \mathbb{E}^{\mathsf{Y}}(X)$$

طبق قانون امید ریاضی کل داریم:

$$\mathbb{E}(X^{\mathsf{Y}}) = \mathbb{E}[\operatorname{Var}(X|Z) + \mathbb{E}^{\mathsf{Y}}(X|Z)]$$

حال از دو طرف $\mathbb{E}^{\mathsf{Y}}(X)$ را کم میکنیم:

$$\mathbb{E}(\boldsymbol{X}^{\mathsf{Y}}) - \mathbb{E}^{\mathsf{Y}}(\boldsymbol{X}) = \mathbb{E}[\operatorname{Var}(\boldsymbol{X}|\boldsymbol{Z}) + \mathbb{E}^{\mathsf{Y}}(\boldsymbol{X}|\boldsymbol{Z})] - \mathbb{E}^{\mathsf{Y}}(\boldsymbol{X})$$

طبق قانون امید ریاضی کل:

$$\mathbb{E}(X^{\mathsf{Y}}) - \mathbb{E}^{\mathsf{Y}}(X) = \mathbb{E}[\operatorname{Var}(X|Z) + \mathbb{E}^{\mathsf{Y}}(X|Z)] - \mathbb{E}^{\mathsf{Y}}(\mathbb{E}(X|Z))$$

حال طبق خاصیت خطی بودن امید ریاضی:

$$\mathbb{E}(\boldsymbol{X}^{\mathsf{Y}}) - \mathbb{E}^{\mathsf{Y}}(\boldsymbol{X}) = \mathbb{E}[\operatorname{Var}(\boldsymbol{X}|\boldsymbol{Z})] + (\mathbb{E}[\mathbb{E}^{\mathsf{Y}}(\boldsymbol{X}|\boldsymbol{Z})] - \mathbb{E}^{\mathsf{Y}}(\mathbb{E}(\boldsymbol{X}|\boldsymbol{Z}))$$

طبق تعریف واریانس:

$${
m Var}(X)=\mathbb{E}[{
m Var}(X|Z)]+{
m Var}[\mathbb{E}(X|Z)]$$
 در نتیجه قانون واریانس کل اثبات شد.
پ) مشابه قسمت قبل عمل میکنیم:

$$\operatorname{Var}(X|Y) = \mathbb{E}(X^{\mathsf{Y}}|Y) - \mathbb{E}^{\mathsf{Y}}(X|Y)$$

که آن را مبتوان به شکل زیر نوشت:

$$\mathbb{E}(X^{\mathsf{Y}}|Y) = \operatorname{Var}(X|Y) + \mathbb{E}^{\mathsf{Y}}(X|Y)$$

طبق قانون امید ریاضی کل داریم:

$$\mathbb{E}(X^{\mathsf{Y}}|Y) = \mathbb{E}[\operatorname{Var}(X|Z,Y) + \mathbb{E}^{\mathsf{Y}}(X|Z,Y)|Y]$$

حال از دو طرف $\mathbb{E}^{\mathsf{Y}}(X|Y)$ را کم میکنیم:

$$\mathbb{E}(\boldsymbol{X}^{\mathsf{T}}|\boldsymbol{Y}) - \mathbb{E}^{\mathsf{T}}(\boldsymbol{X}|\boldsymbol{Y}) = \mathbb{E}[\operatorname{Var}(\boldsymbol{X}|\boldsymbol{Z},\boldsymbol{Y}) + \mathbb{E}^{\mathsf{T}}(\boldsymbol{X}|\boldsymbol{Z},\boldsymbol{Y})|\boldsymbol{Y}] - \mathbb{E}^{\mathsf{T}}(\boldsymbol{X}|\boldsymbol{Y})$$

طبق قانون اميد رياضي كل:

$$\mathbb{E}(X^{\mathsf{Y}}|Y) - \mathbb{E}^{\mathsf{Y}}(X|Y) = \mathbb{E}[\operatorname{Var}(X|Z,Y) + \mathbb{E}^{\mathsf{Y}}(X|Z,Y)|Y] - \mathbb{E}^{\mathsf{Y}}(\mathbb{E}(X|Z,Y)|Y)$$

حال طبق خاصیت خطی بودن امید ریاضی:

$$\mathbb{E}(\boldsymbol{X}^{\mathsf{Y}}|\boldsymbol{Y}) - \mathbb{E}^{\mathsf{Y}}(\boldsymbol{X}|\boldsymbol{Y}) = \mathbb{E}[\operatorname{Var}(\boldsymbol{X}|\boldsymbol{Z},\boldsymbol{Y})|\boldsymbol{Y}] + (\mathbb{E}[\mathbb{E}^{\mathsf{Y}}(\boldsymbol{X}|\boldsymbol{Z},\boldsymbol{Y})|\boldsymbol{Y}] - \mathbb{E}^{\mathsf{Y}}(\mathbb{E}(\boldsymbol{X}|\boldsymbol{Z},\boldsymbol{Y})|\boldsymbol{Y})$$

طبق تعریف واریانس:

$$\operatorname{Var}(X|Y) = \mathbb{E}[\operatorname{Var}(X|Z,Y)|Y] + \operatorname{Var}[\mathbb{E}(X|Z,Y)|Y]$$

در نتیجه قانون واریانس کل برای حالت شرطی نیز ثابت شد.

مسئلهی ۵. کشیدگی

برای متغیر تصادفی X ، (X) (X) را به شکل زیر تعریف میکنیم.

$$\operatorname{Kurt}(X) = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^{\mathsf{f}}\right] = \frac{\mathbb{E}[(X-\mu)^{\mathsf{f}}]}{(\mathbb{E}[(X-\mu)^{\mathsf{f}}])^{\mathsf{f}}}$$

.Kurt(X)= ۳ :خواهیم داشت ، $X\sim \mathcal{N}(\,ullet\,,\sigma^{\,ullet}\,)$ نشان دهید در صورتی که $M_X(t)=e^{t\mu+rac{1}{\gamma}\sigma^{\,ullet}\,t}$ راهنمایی :

حل.

$$\mathbb{E}[X^k] = \frac{d^k}{dt^k} |M_X(t)|_{t=\bullet}$$

$$\mu = \bullet \Longrightarrow M_X(t) = e^{\frac{1}{\tau}\sigma^{\Upsilon}t^{\Upsilon}}$$

$$\frac{d}{dt}M_X(t) = \sigma^{\Upsilon}te^{\frac{1}{\tau}\sigma^{\Upsilon}t^{\Upsilon}}$$

$$\frac{d^{\mathsf{Y}}}{dt^{\mathsf{Y}}} M_X(t) = \sigma^{\mathsf{Y}} t^{\mathsf{Y}} e^{\frac{1}{\mathsf{Y}} \sigma^{\mathsf{Y}} t^{\mathsf{Y}}} + \sigma^{\mathsf{Y}} e^{\frac{1}{\mathsf{Y}} \sigma^{\mathsf{Y}} t^{\mathsf{Y}}} = \boldsymbol{A}(t)$$

 \triangleright

$$\frac{d^{\mathbf{r}}}{dt^{\mathbf{r}}} M_{X}(t) = \sigma^{\mathbf{r}} t^{\mathbf{r}} e^{\frac{1}{\gamma} \sigma^{\mathbf{r}} t^{\mathbf{r}}} + \mathbf{Y} \sigma^{\mathbf{r}} t e^{\frac{1}{\gamma} \sigma^{\mathbf{r}} t^{\mathbf{r}}} + \sigma^{\mathbf{r}} t e^{\frac{1}{\gamma} \sigma^{\mathbf{r}} t^{\mathbf{r}}}$$

$$\Rightarrow \frac{d^{\mathbf{r}}}{dt^{\mathbf{r}}} M_{X}(t) = \sigma^{\mathbf{r}} t^{\mathbf{r}} e^{\frac{1}{\gamma} \sigma^{\mathbf{r}} t^{\mathbf{r}}} + \mathbf{Y} \sigma^{\mathbf{r}} t e^{\frac{1}{\gamma} \sigma^{\mathbf{r}} t^{\mathbf{r}}}$$

$$\frac{d^{\mathbf{r}}}{dt^{\mathbf{r}}} M_{X}(t) = \sigma^{\mathbf{r}} t^{\mathbf{r}} e^{\frac{1}{\gamma} \sigma^{\mathbf{r}} t^{\mathbf{r}}} + \mathbf{Y} \sigma^{\mathbf{r}} t^{\mathbf{r}} e^{\frac{1}{\gamma} \sigma^{\mathbf{r}} t^{\mathbf{r}}} + \mathbf{Y} \sigma^{\mathbf{r}} t e^{\frac{1}{\gamma} \sigma^{\mathbf{r}} t^{\mathbf{r}}} + \mathbf{Y} \sigma^{\mathbf{r}} t e^{\frac{1}{\gamma} \sigma^{\mathbf{r}} t^{\mathbf{r}}} + \mathbf{Y} \sigma^{\mathbf{r}} e^{\frac{1}{\gamma} \sigma^{\mathbf{r}} t^{\mathbf{r}}} = \mathbf{B}(\mathbf{t})$$

$$Kurt(X) = \frac{\mathbb{E}[(X - \mu)^{\mathbf{r}}]}{(\mathbb{E}[(X - \mu)^{\mathbf{r}}])^{\mathbf{r}}} = \frac{\mathbb{E}[X^{\mathbf{r}}]}{(\mathbb{E}[X^{\mathbf{r}}])^{\mathbf{r}}} = \frac{B(\mathbf{r})}{(A(\mathbf{r}))^{\mathbf{r}}}$$

$$Kurt(X) = \frac{\mathbf{Y} \sigma^{\mathbf{r}}}{(\sigma^{\mathbf{r}})^{\mathbf{r}}} = \mathbf{Y}$$

 \triangleright

مسئلهی ۶. برش چوب

یک تکه چوب به طول t>0 را در نظر بگیرید. نقطهای را در امتداد طول این تکه چوب در نظر می گیریم و از آن نقطه، چوب را به دو قسمت تقسیم میکنیم. فرض کنید این نقطه را بر اساس توزیع یکنواخت انتخاب میکنیم. اگر متغیر تصادفی نشاندهنده ی نسبت طول قسمت درازتر تکه چوب به طول قسمت کوتاهتر آن باشد، تابع چگالی Rاحتمال R را به دست آورید. را محاسبه کنید. را محاسبه کنید.

حل. فرض کنید که نقطه تصادفی انتخاب شده از سمت چپ چوب به فاصله X قرار دارد. در نتیجه نسبت بخش بلندتر چوب به بخش کوتاه تر آن برابر است با

$$R = \begin{cases} \frac{\ell - X}{X} & \text{if} \quad X < \frac{\ell}{\Upsilon}, \\ \frac{X}{\ell - X} & \text{if} \quad X \geqslant \frac{\ell}{\Upsilon}. \end{cases}$$

حال تابع توزیع تجمعی R برابر است با

$$F_R(r) = P(R \leqslant r) = P\left(\frac{\ell - X}{X} \leqslant r, X < \frac{\ell}{\mathbf{Y}}\right) + P\left(\frac{X}{\ell - X} \leqslant r, X \geqslant \frac{\ell}{\mathbf{Y}}\right).$$

یا به صورت ساده تر:

$$F_R(r) = P\left(\frac{\ell}{r+1} \leqslant X \leqslant \frac{\ell}{Y}\right) + P\left(\frac{\ell}{Y} \leqslant X \leqslant \frac{r\ell}{r+1}\right),$$

$$F_R(r) = P\left(\frac{\ell}{r+1} \leqslant X \leqslant \frac{r\ell}{r+1}\right).$$

 $\frac{\ell}{r+1} \leqslant X \leqslant \frac{r\ell}{r+1}$ چون X به طور تصادفی و یکنواخت در طول چوب توزیع شده است، احتمال اینکه X در فاصله قرار بگیرد، طول این فاصله تقسیم بر کل طول چوب است، پس

$$F_R(r) = \frac{\frac{r\ell}{\ell} - \frac{\ell}{\ell}}{r+1} - \frac{1}{r+1} = \frac{r-1}{r+1}.$$

که اگر از آن مشتق بگیریم داریم

$$f_R(r) = \frac{d}{dr} F_R(r) = \frac{\Upsilon}{(r+\Upsilon)^{\Upsilon}}.$$

تمام موارد بالا برای ۱ p > 1 معتبر است، زیرا نسبت R، طول طرف بلندتر به کوتاهتر همیشه حداقل ۱ است.

$$f_R(r) = \begin{cases} rac{\Upsilon}{(r+1)^{\Upsilon}} & & ext{if} \quad r \geqslant 1, \\ \bullet & & ext{if} \quad r < 1. \end{cases}$$

 \triangleright

مسئلهی ۷. تابع متغیر تصادفی

فرض کنید X متغیر تصادفی پیوسته با تابع چگالی احتمال زیر باشد.

$$f_X(x) = \begin{cases} \frac{\Delta}{\Upsilon \Upsilon} x^{\mathfrak{f}} & \text{if } {\mathfrak{f}} < x \leqslant \Upsilon \\ {\mathfrak{f}} & \text{output} \end{cases}$$
 در غیر این صورت

 $Y = X^{\mathsf{T}}$ حال درنظر بگیرید که

الف) تابع توزیع تجمعی Y را بدست آورید.

ب) تابع چگالی احتمال Y را بدست آورید.

ج) $\mathbb{E}[Y]$ و $\mathrm{Var}[Y]$ را بدست آورید.

حل. الف) برای محاسبه تابع توزیع تجمعی Y که آن را با $F_Y(y)$ می دهیم، داریم

$$F_Y(y) = P(Y \leqslant y) = P(X^{\mathsf{Y}} \leqslant y).$$

از آنجایی که X مقداری بین \cdot تا γ میگیرد پس γ مقداری بین \cdot تا γ میگیرد:

$$F_Y(y) = \begin{cases} \bullet & \text{if} \quad y < \bullet, \\ P(\bullet \leqslant X \leqslant \sqrt{y}) & \text{if} \quad \bullet \leqslant y \leqslant \Psi, \\ \bullet & \text{if} \quad y > \Psi. \end{cases}$$

برای بدست آوردن مقدار \sqrt{y} از تابع چگالی احتمال X در بازه ۰ تا Y انتگرال میگیریم برای بدست

$$P(\, {}^{\bullet} \leqslant X \leqslant \sqrt{y}) = \int_{{}^{\bullet}}^{\sqrt{y}} \frac{\Delta}{{}^{\bullet}{}^{\bullet}{}^{\bullet}} x^{{}^{\bullet}} \, dx = \frac{1}{{}^{\bullet}{}^{\bullet}{}^{\bullet}} (\sqrt{y})^{\Delta} = \frac{y^{\frac{\Delta}{4}}}{{}^{\bullet}{}^{\bullet}{}^{\bullet}}.$$

پس در نهایت تابع توزیع تجمعی Y به شکل زیر بدست می آید.

$$F_Y(y) = \begin{cases} \bullet & \text{if} \quad y < \bullet, \\ \frac{y^{\frac{\delta}{\Upsilon}}}{\Upsilon \Upsilon} & \text{if} \quad \bullet \leqslant y \leqslant \Upsilon, \\ \vee & \text{if} \quad y > \Upsilon. \end{cases}$$

ب) حال برای بدست آوردن تابع چگالی احتمال Y که آن را با $f_Y(y)$ نشان میدهیم کافی است که از تابع توزیع تجمعی آن مشتق بگیریم

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} \left(\frac{y^{\frac{\Diamond}{\overline{\Upsilon}}}}{\Upsilon \Upsilon} \right) = \frac{\Delta}{\mathcal{F} \Upsilon} y^{\frac{\tau}{\overline{\Upsilon}}}.$$

این رابطه برای y در بازه ۰ تا ۴ برقرار است. پس درنهایت داریم

$$f_Y(y) = \begin{cases} \frac{\Delta}{\varphi \P} y^{\P} & \text{if} \quad \bullet \leqslant y \leqslant \P, \\ \bullet & \text{otherwise.} \end{cases}$$

ج) برای محاسبه E[Y] داریم

$$E[Y] = \int_{\bullet}^{\P} y f_Y(y) \, dy = \int_{\bullet}^{\P} y \frac{\Delta}{\Re \Psi} y^{\frac{\nabla}{\Psi}} \, dy = \frac{\Delta}{\Re \Psi} \int_{\bullet}^{\P} y^{\frac{\Delta}{\Psi}} \, dy.$$

پس از حل انتگرال به رابطه

$$\int y^{\frac{\delta}{\Upsilon}} dy = \frac{\Upsilon}{\mathsf{V}} y^{\frac{\mathsf{V}}{\Upsilon}} + C,$$

میرسیم که با اعمال بازه انتگرال گیری به پاسخ نهایی زیر میرسیم

$$E[Y] = \frac{\Delta}{\mathbf{F}\mathbf{f}} \left(\frac{\mathbf{f}}{\mathbf{V}} y^{\frac{\vee}{\mathbf{f}}}\right) \bigg|^{\mathbf{f}} = \frac{\Delta}{\mathbf{F}\mathbf{f}} \cdot \frac{\mathbf{f}}{\mathbf{V}} \cdot \mathbf{f}^{\frac{\vee}{\mathbf{f}}} = \frac{\Delta}{\mathbf{F}\mathbf{f}} \cdot \frac{\mathbf{f}}{\mathbf{V}} \cdot \mathbf{I} \mathbf{I} \mathbf{A} = \frac{\mathbf{I} \mathbf{f} \mathbf{A} \cdot \mathbf{f}}{\mathbf{f} \mathbf{f} \mathbf{A}} \approx \mathbf{I} \mathbf{I} \mathbf{A} \mathbf{D} \mathbf{I}.$$

همچنین برای محاسبه $\operatorname{Var}(Y)$ از رابطه زیر استفاده میکنیم

$$Var(Y) = E[Y^{\dagger}] - (E[Y])^{\dagger}.$$

E[Y] را داریم پس فقط کافی است که حاصل $E[Y^{\mathsf{T}}]$ را نیز محاسبه کنیم. از آنجایی که $Y = X^{\mathsf{T}}$ که حاصل $Y = (X^{\mathsf{T}})^{\mathsf{T}} = X^{\mathsf{T}}$ پس داریم $Y^{\mathsf{T}} = (X^{\mathsf{T}})^{\mathsf{T}} = X^{\mathsf{T}}$

$$E[Y^{\mathsf{Y}}] = E[X^{\mathsf{Y}}] = \int_{\bullet}^{\mathsf{Y}} x^{\mathsf{Y}} f_X(x) dx.$$

$$E[X^{\mathsf{f}}] = \int_{\cdot}^{\mathsf{f}} x^{\mathsf{f}} \left(\frac{\Delta}{\mathsf{r} \mathsf{f}} x^{\mathsf{f}} \right) dx = \int_{\cdot}^{\mathsf{f}} \frac{\Delta}{\mathsf{r} \mathsf{f}} x^{\mathsf{f}} dx.$$

با حل انتگرال به جواب نهایی $E[Y^{\mathsf{T}}]$ می رسیم.

$$\int_{\bullet}^{\Upsilon} \frac{\Delta}{\Upsilon \Upsilon} x^{\Lambda} \, dx = \frac{\Delta}{\Upsilon \Upsilon} \frac{x^{\mathfrak{q}}}{\mathfrak{q}} \bigg|^{\Upsilon} = \frac{\Delta}{\Upsilon \Upsilon} \frac{\Upsilon^{\mathfrak{q}}}{\mathfrak{q}} = \frac{\Delta}{\Upsilon \Upsilon} \frac{\Delta \, \mathrm{TY}}{\mathfrak{q}} = \frac{\Upsilon \Delta \, \mathrm{F} \, \mathrm{*}}{\Upsilon \wedge \Lambda} \approx \Lambda / \Lambda \Lambda \, \mathrm{q} \, .$$

در نهایت برای محاسبه Var(Y) داریم

$$Var(Y) = E[Y^{Y}] - (E[Y])^{Y} = \Lambda/\Lambda\Lambda\Psi - Y/\Lambda\Delta Y^{Y} \approx \Lambda/\Lambda\Lambda\Psi - \Lambda/\Upsilon\Psi\Lambda = */YY1.$$

 \triangleright

مو فق باشید:)