M 361K Homework 4

Ishan Shah

November 14, 2022

6.3

13. Try to use L'Hospital's Rule to find the limit of $\frac{\tan x}{\sec x}$ as $x \to (\pi/2)^-$. Then evaluate directly by changing to sines and cosines.

Proof.

$$\lim_{x \to (\pi/2)^{-}} \frac{\tan x}{\sec x} = \lim_{x \to (\pi/2)^{-}} \frac{\sec^2 x}{\sec x \tan x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{\sec x}{\tan x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{\sec x \tan x}{\sec^2 x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{\sec x \tan x}{\sec^2 x}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{\tan x}{\sec x}$$

After iteratively using L'Hospital's Rule, we find a cycle which means that we cannot use L'Hospital's Rule to find the limit. Instead, we can us sines and cosines.

$$\lim_{x \to (\pi/2)^{-}} \frac{\tan x}{\sec x} = \lim_{x \to (\pi/2)^{-}} \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x}}$$
$$= \lim_{x \to (\pi/2)^{-}} \sin x$$
$$= 1$$

Thus, $\lim_{x\to(\pi/2)^{-}} \frac{\tan x}{\sec x} = 1$.

14. Show that if c > 0, then $\lim_{x \to c} \frac{x^c - c^x}{x^x - c^c} = \frac{1 - \ln c}{1 + \ln c}$.

Proof.

$$\lim_{x \to c} \frac{x^c - c^x}{x^x - c^c} = \lim_{x \to c} \frac{cx^{c-1} - c^x \ln c}{x^x (\ln x + 1) - 0}$$
$$= \frac{cc^{c-1} - c^c \ln c}{c^c (\ln c + 1)}$$

$$= \frac{c^c(1 - \ln c)}{c^c(1 + \ln c)}$$
$$= \frac{1 - \ln c}{1 + \ln c}$$

Thus, $\lim_{x\to c} \frac{x^c - c^x}{x^x - c^c} = \frac{1 - \ln c}{1 + \ln c}$.

6.4

11. If $x \in [0,1]$ and $n \in \mathbb{N}$, show that

$$\left| \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} \right) \right| < \frac{x^{n+1}}{n+1}.$$

Use this to approximate ln 1.5 with an error less than 0.01. Less than 0.001.

Proof. We can start by finding the first few terms of the Taylor series of $\ln(1+x)$. We need the derivatives of $\ln(1+x)$ up to n.

$$f(x) = \ln(1+x) \implies f(0) = 0$$

$$f'(x) = \frac{1}{1+x} \implies f'(0) = 1$$

$$f''(x) = -\frac{1}{(1+x)^2} \implies f''(0) = -1$$

$$\vdots$$

$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} \implies f^{(n)}(0) = (-1)^{n-1} (n-1)!$$

Now, we can find the Taylor series of ln(1+x).

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(n-1)!}{n!} x^n$$
$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \cdots$$

Then, we have

$$\left| \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} \right) \right| = \left| x^{n+1} \frac{f^{n+1}(\varepsilon)}{(n+1)!} \right|$$

$$= \left| (-1)^n x^{n+1} \frac{n!}{(n+1)!(1+\varepsilon)^{n+1}} \right|$$

$$= \left| \frac{x^{n+1}}{(n+1)(1+\varepsilon)^{n+1}} \right|$$

$$< \frac{x^{n+1}}{n+1}$$

Now, we can use this to approximate $\ln 1.5$. We can let x = 0.5 and bound our error with

$$\frac{x^{n+1}}{n+1}$$

• Error < 0.01: n = 4

$$\frac{0.5^5}{5} = 0.006 < 0.01$$

$$\ln 1.5 = 0.5 - \frac{0.5^2}{2} + \frac{0.5^3}{3} - \frac{0.5^4}{4} \approx 0.401$$

• Error < 0.001: n = 7

$$\frac{0.5^8}{8} = 0.0005 < 0.001$$

$$\ln 1.5 = 0.5 - \frac{0.5^2}{2} + \frac{0.5^3}{3} - \frac{0.5^4}{4} + \frac{0.5^5}{5} - \frac{0.5^6}{6} + \frac{0.5^7}{7} \approx 0.405$$

13. Calculate e correct to 7 decimal places.

Proof. We can use the Taylor series of e^x to approximate e.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$= 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \frac{x^{7}}{7!} + \cdots$$

We only need the first 11 terms of the Taylor series to get e correct to 7 decimal places.

$$e = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \frac{1}{5040} + \frac{1}{40320} + \frac{1}{362880} + \frac{1}{3628800}$$
$$= 2.7182818$$

7.1

- **2.** If $f(x) := x^2$ for $x \in [0, 4]$, calculate the following Riemann sums, where $\dot{\mathcal{P}}_i$ has the same partition points as in Exercise 1, and the tags are selected as indicated. $\mathcal{P}_2 := (0, 2, 3, 4)$.
 - \dot{P}_2 with the tags at the left endpoints of the subintervals.

$$S(f, \dot{\mathcal{P}}) = \sum_{i=1}^{n} f(t_i) (x_i - x_{i-1})$$

$$= f(0) (x_1 - x_0) + f(2) (x_2 - x_1) + f(3) (x_3 - x_2)$$

$$= 0^2 (2 - 0) + 2^2 (3 - 2) + 3^2 (4 - 3)$$

$$= 0 \cdot 2 + 4 \cdot 1 + 9 \cdot 1 = 13$$

• \dot{P}_2 with the tags at the right endpoints of the subintervals.

$$S(f, \dot{P}) = \sum_{i=1}^{n} f(t_i) (x_i - x_{i-1})$$

$$= f(2) (x_1 - x_0) + f(3) (x_2 - x_1) + f(4) (x_3 - x_2)$$

$$= 2^2 (2 - 0) + 3^2 (3 - 2) + 4^2 (4 - 3)$$

$$= 4 \cdot 2 + 9 \cdot 1 + 16 \cdot 1 = 33$$

6b. Let h(x) := 2 if $0 \le x < 1$, h(1) := 3 and h(x) := 1 if $1 < x \le 2$. Show that $h \in \mathcal{R}[0,2]$ and evaluate its integral.

Proof. If we define the integral as the area under the curve, we can estimate that the integral of h is L=3. Now, let $\mathcal{P}_n=\{[0,2/n],[2/n,4/n],\ldots,[2/(n-1),n/2]\}$. Then, the Riemann integral is given by

$$S(f, \mathcal{P}_n) = \sum_{i=1}^n f(x_i) \Delta x_i$$

$$= \sum_{i=1}^{n/2} 2 \cdot 2/n + \sum_{i=n/2+1}^n 1 \cdot 2/n$$

$$= 2 \cdot 2/n \cdot n/2 + 1 \cdot 2/n \cdot n/2$$

$$= 2 + 1$$

$$= 3$$

Then, for any $\varepsilon > 0$, $|S(f, \mathcal{P}_n) - L| = |3 - 3| = 0 < \varepsilon$. Thus, h is Riemann integrable on [0, 2] and the integral of h is 3.

8. If $f \in \mathcal{R}[a,b]$ and $|f(x)| \leq M$ for all $x \in [a,b]$, show that $\left| \int_a^b f \right| \leq M(b-a)$.

Proof. We have that $-M \leq f(x) \leq M$ for all $x \in [a,b]$. Therefore, we can write

$$-M(b-a) = \int_{a}^{b} -M \le \int_{a}^{b} f \le \int_{a}^{b} M = M(b-a)$$

Thus, $\left| \int_a^b f \right| \le M(b-a)$.

10. Let g(x) := 0 if $x \in [0,1]$ is rational and g(x) := 1/x if $x \in [0,1]$ is irrational. Explain why $g \notin \mathcal{R}[0,1]$. However, show that there exists a sequence $(\dot{\mathcal{P}}_n)$ of tagged partitions of [a,b] such that $||\dot{\mathcal{P}}_n|| \to 0$ and $\lim_n S(g;\dot{\mathcal{P}}_n)$ exists.

Proof. Because g(x) is not bounded on $[0,1], g \notin \mathcal{R}[0,1]$. Now, let

$$\dot{\mathcal{P}}_n = \{([\frac{i-1}{n}, \frac{i}{n}], \frac{i}{n})\}_{i=1}^n \forall n \in \mathbb{N}$$

Then, $||\dot{\mathcal{P}}_n|| = \frac{1}{n}$ so $\lim_{n\to\infty} ||\dot{\mathcal{P}}_n|| = \infty$. Now, $S(g,\dot{\mathcal{P}}_n) = \sum_{i=1}^n \left(\frac{i}{n}\right) \left(\frac{i}{n} - \frac{i-1}{n}\right) = 0$ since g(x) = 0 for all rational $x \in [0,1]$. Thus, $\lim_n S(g,\dot{\mathcal{P}}_n) = 0$.