Devoir surveillé n°13

• La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 $\star\star$ E3A MP 2010

On étudie dans cet exercice des équations de la forme

$$(\mathcal{E}_{p,q}): \mathbf{M}^2 + p\mathbf{M} + q\mathbf{I}_n = 0$$

où l'inconnue M est une matrice carrée de taille n à coefficients $r\acute{e}els$ (M $\in \mathcal{M}_n(\mathbb{R})$), p et q sont deux paramètres réels et I_n désigne la matrice identité de taille n.

1. Pour une matrice $M \in \mathcal{M}_n(\mathbb{R})$, on note

$$E(M) = \{ PMP^{-1} \in GL_n(\mathbb{R}) \}$$

Démontrer que si M est solution de l'équation $(\mathcal{E}_{p,q})$, alors toute matrice de E(M) est également solution.

Dans la suite, les ensembles de solutions de l'équation $(\mathcal{E}_{p,q})$ pourront être écrits sous la forme d'une réunion d'ensembles E(A), $A \in \mathcal{M}_n(\mathbb{R})$.

2. On considère dans cette question l'équation $(\mathcal{E}_{-(a+b),ab})$:

$$M^2 - (a+b)M + abI_n = 0$$

avec a et b deux réels distincts.

- **a.** Démontrer que toute solution M de l'équation est diagonalisable (on énoncera complètement lé théorème utilisé).
- **b.** Déterminer les solutions de l'équation $\mathcal{E}_{-(a+b),ab}$.
- 3. On considère dans cette question l'équation $(\mathcal{E}_{0,0})$ (c'est-à-dire l'équation $M^2 = 0$).
 - **a.** On considère l'endomorphisme f de \mathbb{R}^n canoniquement associé à la matrice M. Démontrer que $\operatorname{Im} f \subset \operatorname{Ker} f$.
 - b. Enoncer précisément le théorème du rang.
 - **c.** Démontrer que rg $f \le \frac{n}{2}$.
 - **d.** On pose $p = \operatorname{rg} f$. Démontrer qu'il existe une base \mathcal{B} de \mathbb{R}^n dans laquelle la matrice de f est de la forme :

1

$$\left(\begin{array}{c|c} 0 & 0 \\ \hline I_n & 0 \end{array}\right)$$

e. En déduire les solutions de l'équation $(\mathcal{E}_{0,0})$.

4. On considère dans cette question l'équation (\mathcal{E}_{-2a,a^2}) :

$$M^2 - 2aM + a^2I_n = 0$$

avec a un réel.

- **a.** Démontrer que M est solution si et seulement si $N=M-aI_n$ vérifie $N^2=0$.
- **b.** En déduire les solutions de l'équation (\mathcal{E}_{-2a,a^2}) .
- **5.** Démontrer que si n est impair, l'équation $M^2 + I_n = 0$ n'admet pas de solution dans $\mathcal{M}_n(\mathbb{R})$.
- **6.** On considère l'équation $(\mathcal{E}_{0,1})$ (c'est-à-dire l'équation $M^2 + I_n = 0$). On suppose que n est pair et on note n = 2p.
 - **a.** Démontrer que toute solution M est diagonalisable sur \mathbb{C} .
 - **b.** Démontrer qu'il existe $P \in GL_n(\mathbb{R})$ telle que

$$P^{-1}MP = \begin{pmatrix} 0 & -I_p \\ \hline I_p & 0 \end{pmatrix}$$

 $\mathbf{c}. \ \, \text{En déduire les solutions de l'équation } (\mathcal{E}_{0,1}).$

Exercice 2 ★★ E3A MP 2019

On rappelle les formules de trigonométrie que l'on pourra utiliser sans les redémontrer

$$2\cos(p)\cos(q) = \cos(p+q) + \cos(p-q)$$

$$2\sin(p)\cos(q) = \sin(p+q) + \sin(p-q)$$

On rappelle que pour tout $z \in \mathbb{C}$, la série $\sum_{n \in \mathbb{N}} \frac{z^n}{n!}$ converge et a pour somme e^z .

Soit α un réel non nul fixé.

Pour tout entier naturel n, on définit la fonction u_n de $\mathbb R$ vers $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ u_n(x) = \frac{\alpha^n \cos(nx)}{n!}$$

- 1. Déterminer l'ensemble de définition \mathcal{D} de la fonction $C: x \mapsto \sum_{n=0}^{+\infty} u_n(x)$.
- **2.** Etudier la convergence uniforme de la série de fonctions $\sum u_n \operatorname{sur} \mathcal{D}$.
- **3.** Donner pour tout $x \in \mathcal{D}$ une expression de C(x) à l'aide des fonctions usuelles.
- **4.** Pour tout entier naturel *n*, on note

$$J_n = \int_{-\pi}^{\pi} \sin(nx)C(x) dx$$

$$I_n = \int_{-\pi}^{\pi} \cos(nx)C(x) dx$$

- **a.** Calculer J_n puis I_n .
- **b.** Déterminer $\lim_{n\to+\infty} J_n$ et $\lim_{n\to+\infty} I_n$.
- 5. On pose enfin, lorsque cela existe $S(x) = \sum_{n=0}^{+\infty} \frac{\alpha^n \cos^2(nx)}{n!}$.

Déterminer l'ensemble de définition de la fonction S et donner une expression de S(x) à l'aide des fonctions usuelles.

Exercice 3 ★★

E3A MP Maths1 2015

1. Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin x}{x} dx$ converge. On admet alors que

$$\int_0^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}$$

- 2. Dans la suite de l'énoncé, α désigne un réel strictement positif et x un réel.
 - **a.** Montrer que l'application $t\mapsto \frac{1-\cos(\alpha t)}{t^2}e^{-itx}$ est prolongeable par continuité en 0.
 - **b.** Montrer que l'application $t\mapsto \frac{1-\cos(\alpha t)}{t^2}e^{-itx}$ ainsi prolongée est intégrable sur $\mathbb R$.
- 3. On pose

$$I = \int_{-\infty}^{+\infty} \frac{1 - \cos(\alpha t)}{t^2} e^{-itx} dt$$

- a. Montrer que I est réelle.
- **b.** Soient A > 0 et B > 0. On admet l'existence de l'intégrale $\int_{A}^{+\infty} \frac{\cos(Bx)}{x^2} dx$. Montrer que

$$\int_{A}^{+\infty} \frac{\cos(Bx)}{x^2} dx = \frac{\cos(AB)}{A} - B \int_{AB}^{+\infty} \frac{\sin t}{t} dt$$

- c. En déduire le calcul de l'intégrale $\int_0^{+\infty} \frac{1 \cos(Bx)}{x^2}$ pour B > 0 puis pour B quelconque.
- d. En déduire la valeur de I.

Exercice 4 ★★ D'après E3A 2011

On identifiera les polynômes et leurs fonctions polynomiales associées. Soit $P \in \mathbb{C}[X]$ non nul vérifiant la relation

$$(\star)$$
: $P(X^2 - 1) = P(X - 1)P(X + 1)$

- **1.** Soit $\alpha \in \mathbb{C}$. On définit une suite $(a_n) \in \mathbb{C}^{\mathbb{N}}$ par $a_0 = \alpha$ et $a_{n+1} = a_n^2 + 2a_n$ pour tout $n \in \mathbb{N}$.
 - **a.** Montrer que si α est racine de P, a_n est racine de P pour tout $n \in \mathbb{N}$.
 - **b.** On suppose $\alpha \in \mathbb{R}_+^*$. (a_n) est alors une suite de réels. Montrer que (a_n) est strictement monotone.
 - c. En déduire que P n'admet aucune racine strictement positive.
- 2. a. Montrer que -1 n'est pas racine de P.
 - **b.** Pour tout $n \in \mathbb{N}$, exprimer $a_n + 1$ en fonction de α et n.
 - c. Pour $n \in \mathbb{N}$, on pose $r_n = |a_n + 1|$. A quelle condition nécessaire et suffisante portant sur α la suite (r_n) est-elle strictement monotone?
 - **d.** En déduire que si α est racine de P, alors $|\alpha + 1| = 1$.
 - e. Montrer que si α est racine de P, alors $|\alpha 1| = 1$.
- 3. Montrer que si P est non constant, alors P admet 0 pour unique racine.
- **4.** Déterminer tous les polynômes $P \in \mathbb{C}[X]$ vérifiant la relation (\star) .