Math 207: Introduction to Statistics

Chapter 11: The RMS Error for Regression

Dr. Ralph Wojtowicz

- RMS Error
 - Residual Errors
 - RMS
- 2 Examples
 - Computing RMS
 - Using the RMS Formula
- Wertical Strips
 - Vertical Strips
 - Moving Normal Curves
 - The Normal Curve

The Regression Line

- Most points of a scatter plot dont' fall exactly on the regression line.
- The error for a specific point is: $y_{predicted} y_{actual}$.
- It's the distance between the y-value on the line and the y-value of the data point.

The RMS Error for a Line

 Given a scatter plot, the R.M.S. errror of a line is the root-mean-squared size of the errors:

$$\mathsf{RMS} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\mathsf{residual} \; \mathsf{error}_i)^2}$$

- It is a measure of the total error of the line that we are using to fit the data.
- The regression line is the line that minimizes this error.
- The regression line is the best fit line.
- For the regression line, the RMS is:

$$RMS_{reg} = SD_v \sqrt{1 - r^2}$$

where r is the correlation and SD_v is the standard deviation of the y-values.

- Notice that:
 - For a fixed value of r, RMS increases with SD_v .
 - If r = 1 or r = -1, the RMS is zero (since the points fall exactly on a line).
 - If r = 0, then RMS = SD_v .
- We have to use the blue equation to get RMS if we don't use the regression line.

Example: Regression Line has Minimum RMS

• For the given (x, y) data, find the RMS error for the line y = x + 1.

X	y	predicted y	error	$error^2$	
0	1	1	0	0	RMS = $\sqrt{2/3}$ = 0.816
1	3	2	1	1	$V(1) = \sqrt{2/3} = 0.010$
2	2	3	_1	1	

Vertical Strips

Example: Regression Line has Minimum RMS

• For the given (x, y) data, find the RMS error for the line y = x + 1.

X	У	predicted y	error	error ²	
0	1	1	0	0	RMS = $\sqrt{2/3}$ = 0.816
1	3	2	1	1	$KIVIS = \sqrt{2/3} = 0.010$
2	2	3	-1	1	

• Find the RMS error for the line $y = \frac{3}{2}x + 1$

X	y	predicted y	error	$error^2$	
0	1	1	0	0	RMS = $\sqrt{17/12} = 1.19$
1	3	5/2	1/2	1/4	$RIVIS = \sqrt{11/12} = 1.19$
2	2	Δ	_2	4	

Example: Regression Line has Minimum RMS

• For the given (x, y) data, find the RMS error for the line y = x + 1.

X	У	predicted y	error	error ²	
0	1	1	0	0	RMS = $\sqrt{2/3}$ = 0.816
1	3	2	1	1	$\sqrt{2/3} - \sqrt{2/3} - 0.010$
2	2	3	-1	1	

• Find the RMS error for the line $y = \frac{3}{2}x + 1$

X	У	predicted <i>y</i>	error	error ²	
0	1	1	0	0	RMS = $\sqrt{17/12}$ = 1.19
1	3	5/2	1/2	1/4	$RMS \equiv \sqrt{11/12} \equiv 1.19$
2	2	4	_2	4	

• Find the RMS error for the regression line $y = \frac{1}{2}x + \frac{3}{2}$

X	У	predicted y	error	error ²	
0	1	3/2	-1/2	1/4	RMS = $\sqrt{1/2}$ = 0.707
1	3	2	1	1	$\sqrt{1/2} = \sqrt{1/2} = 0.707$
2	2	5/2	-1/2	1/4	

Use the given information and the equation

$$RMS_{reg} = SD_y \sqrt{1 - r^2}$$

Use the given information and the equation

$$RMS_{reg} = SD_y \sqrt{1 - r^2}$$

• SD_y = 8 and
$$r = \sqrt{3}/2$$

RMS = $8\sqrt{1 - \left(\sqrt{3}/2\right)^2} = 8\sqrt{1 - 3/4} = 8\sqrt{1/4} = 8\left(1/2\right) = 4$

Use the given information and the equation

$$RMS_{reg} = SD_y \sqrt{1 - r^2}$$

• SD_y = 8 and
$$r = \sqrt{3}/2$$

RMS = $8\sqrt{1 - \left(\sqrt{3}/2\right)^2} = 8\sqrt{1 - 3/4} = 8\sqrt{1/4} = 8\left(1/2\right) = 4$

•
$$SD_y = 1$$
 and $r = \sqrt{3}/2$
 $RMS = \sqrt{1 - \left(\sqrt{3}/2\right)^2} = \sqrt{1 - 3/4} = \sqrt{1/4} = (1/2)$

Use the given information and the equation

$$\mathsf{RMS}_{\mathsf{reg}} = \mathsf{SD}_y \, \sqrt{1 - r^2}$$

• SD_y = 8 and
$$r = \sqrt{3}/2$$

RMS = $8\sqrt{1 - \left(\sqrt{3}/2\right)^2} = 8\sqrt{1 - 3/4} = 8\sqrt{1/4} = 8\left(1/2\right) = 4$

•
$$SD_y = 1$$
 and $r = \sqrt{3}/2$
 $RMS = \sqrt{1 - \left(\sqrt{3}/2\right)^2} = \sqrt{1 - 3/4} = \sqrt{1/4} = (1/2)$

•
$$SD_y = 8$$
 and $r = 0.1$
 $RMS = 2\sqrt{1 - (0.1)^2} = 8\sqrt{1 - 0.01} = 8\sqrt{0.99} = 7.96$

Use the given information and the equation

$$\mathsf{RMS}_{\mathsf{reg}} = \mathsf{SD}_y \, \sqrt{1 - r^2}$$

to compute the RMS error for the regression line

• SD_y = 8 and
$$r = \sqrt{3}/2$$

RMS = $8\sqrt{1 - \left(\sqrt{3}/2\right)^2} = 8\sqrt{1 - 3/4} = 8\sqrt{1/4} = 8\left(1/2\right) = 4$

•
$$SD_y = 1$$
 and $r = \sqrt{3}/2$
 $RMS = \sqrt{1 - \left(\sqrt{3}/2\right)^2} = \sqrt{1 - 3/4} = \sqrt{1/4} = (1/2)$

•
$$SD_y = 8$$
 and $r = 0.1$
 $RMS = 2\sqrt{1 - (0.1)^2} = 8\sqrt{1 - 0.01} = 8\sqrt{0.99} = 7.96$

RMS_{reg} increases with SD_v.

Use the given information and the equation

$$\mathsf{RMS}_{\mathsf{reg}} = \mathsf{SD}_y \, \sqrt{1 - r^2}$$

• SD_y = 8 and
$$r = \sqrt{3}/2$$

RMS = $8\sqrt{1 - \left(\sqrt{3}/2\right)^2} = 8\sqrt{1 - 3/4} = 8\sqrt{1/4} = 8\left(1/2\right) = 4$

•
$$SD_y = 1$$
 and $r = \sqrt{3}/2$
 $RMS = \sqrt{1 - \left(\sqrt{3}/2\right)^2} = \sqrt{1 - 3/4} = \sqrt{1/4} = (1/2)$

•
$$SD_y = 8$$
 and $r = 0.1$
 $RMS = 2\sqrt{1 - (0.1)^2} = 8\sqrt{1 - 0.01} = 8\sqrt{0.99} = 7.96$

- RMS_{reg} increases with SD_v.
- RMS_{reg} decreases as r approaches ± 1 .

Vertical Strips

- For each x, the y-value on the regression line is the average of the y-values in a vertical strip.
- y-values in a strip (approximately) have a normal distribution with mean = y value on the line and SD = the RMS for the regression line.
- About 68% of the points in a strip are within 1 RMS of the line. 95% are withing 2 RMSs, etc.

Math 207: Introduction to Statistics

Moving Normal Curves

For the men age 18–24 in HANES5, the relationship between height and weight can be summarized as follows:

average height \approx 70 inches, SD \approx 3 inches, average weight \approx 180 pounds, SD \approx 45 pounds, $r \approx$ 0.40

For the men age 18–24 in HANES5, the relationship between height and weight can be summarized as follows:

average height \approx 70 inches, SD \approx 3 inches, average weight \approx 180 pounds, SD \approx 45 pounds, $r \approx$ 0.40

• Find the equation for the regression line:

$$(y-180)=6(x-70)$$

For the men age 18–24 in HANES5, the relationship between height and weight can be summarized as follows:

average height \approx 70 inches, SD \approx 3 inches, average weight \approx 180 pounds, SD \approx 45 pounds, $r \approx 0.40$

• Find the equation for the regression line:

$$(y-180)=6(x-70)$$

Find the RMS for regression:

$$45\,\sqrt{1-(0.4)^2}\approx 41.2\;\text{pounds}$$

For the men age 18–24 in HANES5, the relationship between height and weight can be summarized as follows:

average height \approx 70 inches, SD \approx 3 inches, average weight \approx 180 pounds, SD \approx 45 pounds, $r \approx$ 0.40

• Find the equation for the regression line:

$$(y-180)=6(x-70)$$

• Find the RMS for regression:

$$45\,\sqrt{1-(0.4)^2}\approx 41.2\;\text{pounds}$$

• What was the average weight of the 6'2" subjects?

$$y = 180 + 6(74 - 70) = 180 + 24 = 204$$
 pounds

For the men age 18–24 in HANES5, the relationship between height and weight can be summarized as follows:

average height \approx 70 inches, SD \approx 3 inches, average weight \approx 180 pounds, SD \approx 45 pounds, $r \approx$ 0.40

• Find the equation for the regression line:

$$(y-180)=6(x-70)$$

Find the RMS for regression:

$$45\,\sqrt{1-(0.4)^2}\approx 41.2\;\text{pounds}$$

• What was the average weight of the 6'2" subjects?

$$y = 180 + 6(74 - 70) = 180 + 24 = 204$$
 pounds

• About 68% of the 6'2" subjects had weight in what range?

$$204 \pm 41.2$$
 pounds

For the men age 18–24 in HANES5, the relationship between height and weight can be summarized as follows:

average height \approx 70 inches, SD \approx 3 inches, average weight \approx 180 pounds, SD \approx 45 pounds, $r \approx$ 0.40

• Find the equation for the regression line:

$$(y-180)=6(x-70)$$

Find the RMS for regression:

$$45\,\sqrt{1-(0.4)^2}\approx 41.2\;\text{pounds}$$

• What was the average weight of the 6'2" subjects?

$$y = 180 + 6(74 - 70) = 180 + 24 = 204$$
 pounds

• About 68% of the 6'2" subjects had weight in what range?

$$204 \pm 41.2$$
 pounds

• About 95% of the 6'2" subjects had weight in what range?

$$204 \pm 2 \cdot 41.2 = 204 \pm 82.4$$
 pounds

