AVL Trees 1

AVL Tree Structure

Objectives

- Describe types of balanced BSTs
- Describe AVL trees
- Show that AVL trees are O(log n) height
- Describe and implement rotations
- Implement AVL tree insertion
- Implement AVL tree removal

AVL material with thanks to Brad Bart

Binary Search Trees – Performance

- Insertion and removal from BSTs is O(height)
- What is the height of a BST?
 - If the tree is perfect or complete: O(logn)
 - Or balanced
 - If the tree is very unbalanced: O(n)

Types of Balanced Binary Trees

- Full trees with all leaves at the same level
- How many leaves in a tree of height *h*?
 - Level *i* has 2^{*i*} nodes
 - $n = 2^{h+1} 1$

35

23

10

28

58

46

62

Balanced Trees

- Self balancing trees
 - Create invariants to guarantee a minimum tree density
 - That results in a height of O(log n)
 - On insert, if the tree is imbalanced re-balance it
 - Either the structure or algorithms (or both) need to be more complex than BST insert and remove
- Splay trees
 - Operations on node x moves x to the root
 - Adjust the tree using rotations
 - Takes advantage of the locality principle

Balanced Trees

- Height balanced trees
 - AVI trees
 - For every node, the heights of the left and right subtrees differ by at most one
 - Uses rotations
- Depth balanced trees
 - Red-Black trees
 - The depths of any two leaves differ by a factor of two or less
 - Or the height of the longest path from the root to a leaf is at most twice the shortest path from the root to a leaf
 - Also uses rotations
- All leaves at the same level
 - B-trees branching factor is great than 2, i.e. not binary trees

AVL Trees

- Invented by Adelson-Velsky and Landis
- Height invariant
 - The heights of the left and right subtrees of each node differ by at most one
- According to this invariant are these trees balanced?

Minimum Tree Density

- Goal: $h = O(\log n)$
- We need: $h \le \log_a n$, i.e., $n \ge a^h$ for some a > 1
- Claim: a *perfect* binary tree has $n(h) \ge 2^{h+1}-1$ nodes
- Proof (by induction on h)

L and R subtrees of perfect trees are perfect

• Empty tree (h = -1) has o nodes

Inductive case

• Tree of height k has L and R subtrees of height k - 1 $n(k) \ge 2 * 2^k - 1$

1

Smallest AVL Trees

- What are the smallest five AVL trees by height
 - The trees with the fewest nodes for their height

Minimum AVL Tree Density

- Let n(h) represent the number of nodes in an AVL
 tree of height h
 - What is the minimum value of n(h)?
- $n(h) \ge n(h-1) + n(h-2) + 1, for all n ≥ 1$
 - n(0) = 1, n(-1) = 0
- This pattern should look familiar
 - It's the Fibonacci sequence (+1)
- Claim
 - $n(k) \ge F_{h+3} 1$

h	min <i>n</i> (h)	
-1	0	1 (F ₂)
0	1	2 (F ₃)
1	2	3 (F ₄)
2	4	5 (F ₅)
3	7	8 (F ₆)
4	12	13 (F ₇)

Minimum AVL Tree Density

- Claim: An AVL tree holds at least n(h) ≥ F_{h+3} 1
- Proof by induction on h

$$n(h) \ge n(h-1) + n(h-2) + 1$$

 $n(-1) = 0, n(0) = 1$

- Strategy: use the recursive definition
 - Base case?
 - Both h = -1 and h = 0 satisfy the claim

$$\phi$$
 (phi) is the Golden Ratio
 ϕ = (1+ $\sqrt{5}$) / 2
 ϕ = 1.6180339887

Inductive case? Consider an AVL tree of height k ≥ 1

•
$$n(k) \ge n(k-1) + n(k-2) + 1$$

• $\ge (F_{k+2}-1) + (F_{k+1}-1) + 1$
• $= (F_{k+2} + F_{k+1}) - 1$
• $= F_{k+3}-1$ Note that $F_{h+3} \approx \phi^{h+3}/\sqrt{5}$ and $n \ge F_{h+3}-1$

 F_n grows exponentially $F_n \approx \phi^n / \sqrt{5}$ $\Rightarrow n \ge \phi^{h+3} / \sqrt{5} - 1$ $\Rightarrow h \le c \times \log_{\phi} n$ $h = O(\log n)$

AVL Tree Nodes

 AVL trees are reference structures made up of nodes and pointer to nodes

Nodes contain data, three pointers to nodes, and the

node's height

Rotations

- An item must be inserted into an AVL tree into the position given by the BST insert algorithm
- The shape of a tree is determined by
 - The values of the items inserted into the tree
 - The order in which those values are inserted
- This suggests that there is more than one tree (shape)
 that can contain the same values
- A tree's shape can be altered by rotation while still preserving the bst property

Left Rotation

Left rotate (x)

Right Rotation

Right rotate (z)

Left rotation of 32 (referred to as x)

Create a pointer to x's right child

Left rotation of 32 (referred to as x)

Create a pointer to x's right child

Make temp's left child, x's right child

Detach temp's left child

Left rotation of 32 (referred to as x)

Create a pointer to x's right child

Make temp's left child, x's right child

Detach temp's left child

Make x the left child of temp

Make *temp* the child of x's parent

Left rotation of 32 (complete)

19

Right rotation of 47 (referred to as x)

Create a pointer to x's left child

20

Right rotation of 47

Make temp the new root

Left Rotation Code

Notation leftRotate(x) // x is the node to be rotated y = x.right.left is left child, .right is right child, .p is parent x.right = y.left // Set nodes' parent references // y's left child 47 if (y.left != null) y.left.p = x// y 32 y.p = x.p// Set child reference of x's parent if (x.p == null) //x was root13 40 root = velse if (x == x.p.left) //left child x.p.left = yelse x.p.right = y37 44 // Make x y's left child y.left = xx.p = y