NATIONAL INSTITUTE OF TECHNOLOGY CALICUT

DEPARTMENT OF MATHEMATICS

MA2003D Mathematics IV

Winter Semester 2018-19 Assignment 1 (Module 1)

- 1. In \mathbb{R}^2 over \mathbb{R} , define $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+|b_2|)$ and $\alpha(a,b)=(\alpha a,\alpha b)$. Is \mathbb{R}^2 a vectorspace with respect to these operations? Justify your answer.
- 2. In \mathbb{R}^2 over \mathbb{R} , define $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$ and $\alpha(a, b) = (\alpha b, \alpha a)$. Is \mathbb{R}^2 a vectorspace with respect to these operations? Justify your answer.
- 3. Prove /disprove that the following are examples of vector spaces under usual (natural) addition and scalar multiplication.
 - (a) \mathbb{R}^3 over \mathbb{R}
 - (b) \mathbb{C} over \mathbb{R}
 - (c) \mathbb{R} over \mathbb{C}
 - (d) \mathbb{R} over \mathbb{Q}
 - (e) $\mathcal{P} = \{\text{Polynomials with real coefficients}\}\ \text{over }\mathbb{R}.$
 - (f) $\mathcal{P}_n = \{ p \in \mathcal{P} : \text{ degree of } p \leq n \} \text{ over } \mathbb{R}.$
 - (g) \mathbb{R} over \mathbb{Q}
 - (h) $\mathcal{P}'_n = \{ p \in \mathcal{P} : \text{ degree of } p = n \} \text{ over } \mathbb{R}.$
- 4. Find non trivial subspaces for all vector spaces in the above exercises.
- 5. Let V be the vector space \mathbb{R}^3 over \mathbb{R} . Examine whether the following are subspaces or not.
 - (a) $W = \{(a, b, c) \in V : a \ge 0\}$
 - (b) $W=\{(a,b,c)\in V: a,b,c\in\mathbb{Z}\}$
 - (c) $W=\{(a,b,c)\in V: a\leq b\leq c\}$
 - (d) $W = \{(a, b, c) \in V : a b + 2c = 0\}$
 - (e) $W = \{(a, b, c) \in V : 7a 5b + 2c = 3\}$
 - (f) $W = \{(a,b,c) \in V : a^2 2b + 3c = 0\}$
 - (g) $W = \{(a,b,c) \in V : A[a\ b\ c\]^T = 0 \text{ for some 3 X 3 matrix } A\}$
- 6. Let V be the vector space of all 2×2 matrices with real entries . Determine whether W is a subspace of V or not, where
 - (a) W consists of all matrices with non zero determinant.
 - (b) W consists of all matrices whose determinant is zero.
 - (c) W consists of all matrices whose trace is zero.
 - (d) W consists of all matrices A such that $A^2 = A$.
 - (e) W consists of all diagonal matrices.
 - (f) W consists of all symmetric matrices.
 - (g) W consists of all skew-symmetric matrices.
 - (h) W is the set of all matrices of the form $A=\begin{pmatrix} a & c \\ c & b \end{pmatrix}$, where a,b,c are any 3 real numbers.

- 7. Let V be the vectorspace of all continuous and differentiable real valued function defined on \mathbb{R} . Verify whether the following subsets of V are subspaces or not. Justify your answers.
 - (a) W_1 is the set of functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that f(2) = 0 and f(0) = 2.
 - (b) W_2 is the set of functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that f(1) = 0 and f'(2) = 0.
 - (c) W_3 is the set of functions $f:\mathbb{R}\longrightarrow\mathbb{R}$ which are solutions of the differentiable equation $3\frac{df}{dx}+2f=0$.
- 8. Prove or disprove: (a) The set of all polynomials $p(x) \in \mathcal{P}_3$ such that p(-x) p(x) = 0 is a subspace of \mathcal{P}_3 .
 - (b) The set of all polynomials $p(x) \in \mathcal{P}_3$ such that p(-x) + p(x) = 0 is a subspace of \mathcal{P}_3 .
- 9. In the vector space \mathbb{R}^3 over \mathbb{R} , let u=(1,2,3),v=(3,1,5),w=(3,-4,7). Prove that the subspace S spanned by u and v and the subspace T spanned by u,v and w are the same.
- 10. Is the vector (3,-1,0,-1) an element in the subspace of \mathbb{R}^4 over \mathbb{R} spanned by the vectors (2,-1,3,2),(-1,1,1,-3) and (1,1,9,-5).
- 11. Prove that the polynomials $1, 2-x, 3+x^2, 4-x^3$ span the vector space \mathcal{P}_3 .
- 12. If x, y, z are linearly independent vectors in a vector space V then prove that x + y, y + z, z + x are also linearly independent.
- 13. Under what condition on a, the vectors (1+a,1-a) and (1-a,1+a) in \mathbb{R}^2 over \mathbb{R} are linearly independent?
- 14. Find a if the vectors (1,-1,3),(1,2,-3),(a,0,1) are linearly dependent.
- 15. In questions 5 and 6, find the dimension of W, if W is a subspace.
- 16. V_1 and V_2 are subspaces of \mathbb{R}^4 over \mathbb{R} given by $V_1 = \{(a,b,c,d); b-2c+d=0\}, V_2 = \{(a,b,c,d); a=d,b=2c\}$. Find a basis and dimension of V_1,V_2 and $V_1 \cap V_2$.
- 17. Let V be a vector space over the field of scalars \mathbb{F} . Then prove the following results:
 - (a) If W is a subset of V, such that W spans V, then for any set W' containing W, span (W') = V.
 - (b) If W is a linearly independent subset of V and W' is a subset of W, then W' is also linearly independent.
 - (c) If W is a linearly independent subset of V, then $W \cup \{x\}$ is linearly independent if and only if $x \notin \operatorname{span}(W)$
 - (d) If W is a subset of V such that W spans V, then there exist a subset W' of W such that W' is linearly independent and span (W') = V.
 - (e) If V is spanned by a set containing n elements, any subset of V containing more than n elements is linearly dependent.
 - (f) If dimension of V = n, then any linearly independent set containing n elements is a basis of V.
 - (g) If dimension of V = n, then any set W that spans V and contains n elements is a basis of V.
 - (h) If dimension of V is finite, and W is a linearly independent subset of V, then there exists a set W' such that $W \subset W'$ and W' is a basis of V.