Sample Questions for Midterm Exam

- 1. Are the following statements true or false? Explain why if your answer is false.
 - (1) Consider the vector space model and TF-IDF as its weighting scheme. The inverse of Euclidian distance is appropriate for the measure of the similarity between a query and a document.
 - (2) Enlarging skip intervals (or skip spans) can always reduce the number of postings to be accessed if our goal is to locate a specific posting in a posting list with skip pointers.
 - (3) Stemming always improves retrieval performance.
 - (4) According to Zipf's law, the frequency of occurrence of the fifth most common term is 0.2.
- 2. Suppose we have a query with a total of 10 relevant documents in the whole collection. Given the query, an IR system returns 20 documents in the order of ranking and produces the interpolated recall-precision curve.

- (1) What is the precision after the system has retrieved 3 relevant documents? Show the calculation.
- (2) Suppose the following is the ranking list of the retrieved 20 documents. The number stands for its ranking. Mark a

relevant document with a '+' in the corresponding box. Leave irrelevant documents unmarked.

- (3) Calculate MAP (Mean Average Precision) for the system. Show the calculation.
- (4) F-measure is defined as the weighted harmonic mean of precision and recall; the Dice coefficient of two sets X and Y is defined as

Dice(X,Y) =
$$\frac{2|X \cap Y|}{|X| + |Y|}$$
 Dice(X,Y) = $\frac{2|X \cap Y|}{|X| + |Y|}$

where | A | is the size of set A. Please prove that the F1-measure is equal to the Dice coefficient of the retrieved and relevant document sets.

- 3. Language modeling (LM) has been widely used in IR.
 - (a) Please describe what "smoothing" is and explain why LM often needs smoothing in IR.

Consider the following four documents.

Document 1 (d_1): search search search where the engine is

Document 2 (d_2) : Google engine like search search

Document 3 (d_3) : search engine

Document 4 (*d*₄**):** Google Yahoo search engine

In the following, q is a query, d is a document, w_i is a word, and C is the corpus $\{d_1, d_2, d_3, d_4\}$.

(b) Consider the uni-gram query likelihood LM without smoothing:.

$$p(q \mid d) = \prod_{w_i \in q} p(w_i \mid d)$$

Suppose query q is search engine. Calculate $p(search\ engine\ |\ d_1)$ and $p(search\ engine\ |\ d_4)$, respectively. Which document $(d_1\ or\ d_4)$ is more relevant? Show your calculations.

(c) Consider the following uni-gram query likelihood LM with the corpus smoothing:

$$p(q\mid d) = \prod_{w_i \in q} \left[\lambda \, p(w_i\mid d) + (1-\lambda) \, p(w_i\mid C) \right]$$

where λ is a weight varied from 0 to 1. Given that q is *search engine* and λ is set to be 0.5, calculate $p(search\ engine\ |\ d_1)$ and $p(search\ engine\ |\ d_4)$, respectively. Which document $(d_1\ or\ d_4)$ is more relevant? Show your calculations.

(d) Compare the results obtained from (b) and (c). How does the collection frequency of a common word in the smoothing version affect the probabilities?