05-01-Practicando con funciones DAX

Los datos para trabajar están en el archivo de Power BI "05-01-Practicando con funciones Dax.pbix"

Tablas del modelo de datos:

Tabla clientes

ID Cliente	Nombre	Cliente Apellido	→ País →	Ciudad	Latitud L	ongitud 🔻
181215	Jose	Rodriguez	Chile	Santiago	-33,486829	-70,650888
161217	Ana	Garcia	Colombia	Bogotá	4,683894	74,079931
171219	Angel	Martín	Perú	Lima	-12,048157	-77,058537
191221	Ana	Garcia	Ecuador	Quito	-0,286387	78,542229
141223	Elena	Martín	Uruguay	Montevideo	-34,89167	-56,125146
111225	Andres	Moreno	Argentina	Buenos Aire	s -34,574376	-58,426387
161229	Ruben	Lopez	Colombia	Bogotá	4,665357	74,058246
181241	Julio	Herranz	Chile	Concepción	-33,401107	70,578392
111249	Jose	Hidalgo	Argentina	Buenos Aire	s -34,590081	-58,424213
171251	Pedro	Martín	Perú	Lima	-12,061354	-77,037754
181253	Asier	Gil	Chile	Santiago	-33,435111	-70,660649

Tabla productos

ID Producto	Nombre	Precio	Precio
ID Froducto	→ Producto →	Costo 🔻	Venta ▼
IP2	Iphone 2	1000	1500
IP3	Iphone 3	1200	1500
IP4	Iphone 4	1400	1750
IP5	Iphone 5	1600	1900
IP6	lphone 6	1800	2250
GSI	Galaxy SI	850	1000
GS2	Galaxy S2	925	2000
GS3	Galaxy S3	1000	1250
GS4	Galaxy S4	1075	1800
GS5	Galaxy S5	1150	1437,5
GS6	Galaxy S6	1225	2500
MG	Motorola G	780	1000
MX	Motorola X	548	685

Tabla Ventas

ID Cliente	ID Producto	Código Pedido 🔻 Fecha	✓ Unida	des 🕌 Ingre	eso 🔻	Contado
111225	IP2	159037	sábado, 08 de enero de 2005	58	58000	SI
111225	IP3	159038	sábado, 08 de enero de 2005	64	76800	SI
111225	IP4	159039	domingo, 09 de enero de 2005	72	100800	SI
111225	IP5	159040	domingo, 09 de enero de 2005	70	112000	SI
111225	IP6	159041	domingo, 09 de enero de 2005	36	64800	SI
111225	GSI	159042	domingo, 09 de enero de 2005	58	49300	SI
111225	G\$2	159043	domingo, 09 de enero de 2005	72	66600	SI
111225	G\$3	159044	domingo, 09 de enero de 2005	54	54000	SI
111225	G\$4	159045	domingo, 09 de enero de 2005	64	68800	SI
111225	G\$5	159046	sábado, 08 de enero de 2005	56	64400	SI
111225	G\$6	159047	sábado, 08 de enero de 2005	56	68600	SI
111225	MG	159048	sábado, 08 de enero de 2005	54	42120	SI
111225	MX	159049	sábado, 08 de enero de 2005	50	27400	SI
111225	SXU	159050	sábado, 08 de enero de 2005	52	51948	SI

Tabla calendario

Fec	Mes Número 🔻 Mes Nombre 🔻	Año 🔻 Trimestre 🔻	DS Número 🔻 DS Nombre 🔻 🛭	Día Mes 🔻
08/01/2005	1 enero	2005 T 1	6 sábado	8
09/01/2005	1 enero	2005 T 1	7 domingo	9
10/01/2005	1 enero	2005 T 1	1 lunes	10
11/01/2005	1 enero	2005 T 1	2 martes	11
12/01/2005	1 enero	2005 T 1	3 miércoles	12
13/01/2005	1 enero	2005 T 1	4 jueves	13
14/01/2005	1 enero	2005 T 1	5 viernes	14
15/01/2005	1 enero	2005 T 1	6 sábado	15
16/01/2005	1 enero	2005 T 1	7 domingo	16

Tabla de Medidas

Total Ingreso = SUM(Ventas[Ingreso])
Total Unidades = SUM(Ventas[Unidades])

RELACIONES

Crear en la página 1 el siguiente informe.

Se desea comprobar la diferencia entre la "suma ingreso" y el resultado de multiplicar las unidades vendidas por el P.V., los euros de diferencia serían los gastos de distribución, promoción y ventas.

Para esto se van a crear columnas calculadas

Columna 1: P.V. = RELATED(Productos[Precio Venta])
Columna 2: Ingreso Bruto = Ventas[Unidades]*Ventas[P.V.]

Columna 1 y 2: Ingreso Bruto2 = Ventas[Unidades]*RELATED(Productos[Precio Venta])

Columna 3: Gastos promociones y ventas = Ventas[Ingreso Bruto]-Ventas[Ingreso]

En la página 2 hay que hacer el mismo informe, pero utilizando medidas. Hacer una copia de la página 1 y modificar las visualizaciones.

Suma Ingreso = SUM(Ventas[Ingreso])

Suma Unidades = SUM(Ventas[Unidades])

P.V. = MAX(Productos[Precio Venta])

Suma Ingreso = SUM(Ventas[Ingreso])

Ingreso Bruto = SUMX(Ventas; Ventas [Unidades]*RELATED(Productos [Precio Venta]))

Gastos promociones y ventas = [Ingreso Bruto]-[Suma Ingreso]

También se desea agregar nueva información al informe. Necesitamos saber la facturación bruta en cada semestre y la diferencia en euros y porcentaje entre el primero y el segundo semestre.

1- Empezamos creando una nueva columna en la tabla de calendario:

Semestre = ROUNDUP(Calendario[Mes Número]/6;0) ó Semestre = IF(Calendario[Mes Número]<=6;1;2)

2- Necesitaremos crear las siguientes medidas:

Ingresos Brutos 1º Semestre = CALCULATE([Ingreso Bruto];Calendario[Semestre]=1)

Ingresos Brutos 2º Semestre = CALCULATE([Ingreso Bruto];Calendario[Semestre]=2)

Euros de Diferencia entre semestres = [Ingresos Brutos 1º Semestre]-[Ingresos Brutos 2º Semestre]

% diferencia entre semestres = DIVIDE([Ingresos Brutos 2º Semestre]-[Ingresos Brutos 1º Semestre];[Ingresos Brutos 1º Semestre])

3- Modificar la visualización de filtro por meses para que permita elegir mas de un mes y sin necesidad de apretar la tecla control y que aparezca la opción de "seleccionar todos"

Crear las siguientes medidas para el informe.

```
Para conseguir el número de pedidos por cliente podemos crear cualquiera de las siguientes medidas:
```

```
Num Pedidos = COUNTA(Ventas[Código Pedido]) ó
Num Pedidos2 = COUNTROWS(Ventas) ó
Num pedidos3 = COUNTA(Ventas[Fecha])
```

Num de días que se hicieron pedidos = DISTINCTCOUNT(Ventas[Fecha])

Promedio Num de pedidos en un día = DIVIDE([Num Pedidos];[Num de días que se hicieron pedidos])

En la tabla de calendario crear una jerarquía de Año, trimestre, mes texto, día semana

Se desea conocer lo que se ingresa al contado y en tarjeta de todos los productos "Iphone" y la diferencia entre ambos métodos de pago.

Para ello crear las siguientes medidas:

```
Suma Ingreso Iphone contado = CALCULATE(
               [Total Ingreso];
              Ventas[Contado]="si";LEFT(Productos[Nombre Producto];6)="Iphone"
Suma Ingreso Iphone contado2 = CALCULATE([Total Ingreso];
          FILTER(Ventas;
         Ventas[Contado]="Si"&& LEFT(RELATED(Productos[Nombre Producto]);6)="Iphone")
)
Suma Ingreso Iphone contado3 = CALCULATE([Total Ingreso];
           FILTER(
               Ventas;
               Ventas[Contado]="si" &&LEFT(Ventas[ID Producto];2)="Ip"
           )
)
Suma Ingreso Iphone contado3 = CALCULATE([Total Ingreso];
    FILTER(
      Ventas;
      Ventas[Contado]="si" &&LEFT(Ventas[ID Producto];2)="lp"
)
Suma Ingreso Iphone contado3-1 = CALCULATE([Total Ingreso];
           FILTER(
               Ventas;
               and(Ventas[Contado]="si" ;LEFT(RELATED(Productos[Nombre Producto]);6)="Iphone")
           )
)
Suma Ingreso Iphone contado3-2 = CALCULATE([Total Ingreso];
           FILTER(
               Ventas;
               and(Ventas[Contado]="si";CONTAINSSTRING(Ventas[ID Producto];"I"))
           )
)
```


Se desea sabe cual es la tasa de crecimiento de un año con respecto al año anterior

Suma ingreso año previo = CALCULATE([Suma Ingreso];DATEADD(Calendario[Fecha];-1;YEAR))
Suma ingreso año previo2 = CALCULATE([Suma Ingreso];SAMEPERIODLASTYEAR(Calendario[Fecha]))

Año	Suma ingreso año previo	Suma Ingreso	Tasa crecimiento
2005		36.256.260	
2006	36.256.260	58.094.902	60,23 %
2007	58.094.902	66.934.968	15,22 %
2008	66.934.968	67.466.680	0,79 %
2009	67.466.680	77.767.676	15,27 %
2010	77.767.676	89.077.154	14,54 %
2011	89.077.154	98.198.354	10,24 %
2012	98.198.354	107.834.516	9,81 %
2013	107.834.516	116.469.226	8,01 %
2014	116.469.226	264.830.576	127,38 %
2015	264.830.576	143.395.818	-45,85 %
Total	982.930.312	1.126.326.130	14,59 %

Suma Ingreso y Suma ingreso año previo

1.126.326.130

Suma Ingreso

982.930.312

Suma ingreso año previo

```
Suma ingresos acumulados en año = CALCULATE([Suma Ingreso];DATESYTD(Calendario[Fecha]))
Suma ingresos acumulados en año2 =TOTALYTD([Suma Ingreso];Calendario[Fecha])
Suma ingresos acumulados en mes = CALCULATE([Suma Ingreso];DATESMTD(Calendario[Fecha]))
Suma ingresos acumulados en mes2 = TOTALMTD([Suma Ingreso];Calendario[Fecha])
```


Posibles Funciones DAX a utilizar:

Average() devuelve el promedio de todos los números de una columna.

Devuelve ERROR si hay texto en algún dato de la columna

Ignora celdas vacías

AverageA() Devuelve el promedio

Valores lógicos:

True = 1 False =0 Texto =0

Celdas con texto vacío ("") = 0

Count() Cuenta celdas Numéricas

CountA() Cuenta celdas NO VACIAS

DistinctCount() Cuenta el número de datos distintos en un campo

CONTAINSSTRING(Texto en el que realizar la búsqueda; Texto a buscar)

La función CONTAINSSTRING devuelve True si la cadena within_text incluida como primer argumento contiene la cadena de texto find text incluida como segundo argumento.

Devuelve una tabla que contiene sólo las filas filtradas.

table La tabla a filtrar. La tabla también puede ser una expresión que da como resultado una tabla.

filter Una expresión booleana que se evaluará para cada fila de la tabla.

AND () devuelve verdadero cuando todos los argumentos son verdad &&

OR() devuelve verdadero cuando un solo argumento es verdad

SUMX

Devuelve la suma de una expresión evaluada para cada fila de una tabla.

SUMX(, <expression>)

Tabla: Tabla que contiene las filas para las que se evaluará la expresión.

Expresión: Expresión que se debe evaluar para cada fila de la tabla.

RELATED

Devuelve un valor relacionado de otra tabla.

RELATED(<column>)

IF

Comprueba una condición y devuelve un valor cuando es "true"; en caso contrario, devuelve un segundo valor. IF(<logical_test>, <value_if_true>[, <value_if_false>])

Descripción de funciones de Inteligencia de fecha y tabla de calendario

Cuando hablamos de análisis de datos e inteligencia de negocios, inevitablemente hablamos de análisis o procesos en el tiempo.

El Lenguaje DAX no es ajeno a ello, por eso trae un paquete especial de funciones llamadas "Time Intelligence", encaminadas a moldear fechas y permitir informes que de otra manera serían muy difícil de lograr.

Time Intelligence son un grupo bastante especial de funciones dentro de la categoría de funciones de fecha y hora, porque se ajustan y operan para fechas que están cambiando constantemente, dependiendo del contexto en el reporte de tabla dinámica, por supuesto, la majestuosidad de time Intelligence es que nos permite manipular el contexto y el filtro de la consulta.

Para poder utilizar estas funciones es necesario crear una tabla de CALENDARIO.

Propiedades Tablas de Calendario Estándar:

- Debe contener una columna con las <u>fechas consecutivas</u>, donde cada fila representa un día especifico, generalmente llamamos a esta columna: *DateKey*, *Fecha* o *Fecha Día a Día*. La columna Fecha debe contener fechas consecutivas sin ningún tipo de salto, es decir, incluye sábados, domingos y festivos sin excepción, no importa si no son días laborales en la empresa.
- Las tablas de calendario son tablas de búsqueda y, <u>esta debe estar relacionada a la tabla matriz</u> (o tablas matrices si contamos con más de una).

La función **DATESADD** <u>retorna una tabla</u> que contiene una columna con fechas desfasadas hacia adelante o hacia atrás en el tiempo de acuerdo a las fechas en el contexto actual.

DATEADD(<Fecha>;<núm_desfase;<tipo>)

Argumento	Descripción
Fecha	Una columna que contenga las fechas.
Núm_Desfase	Un valor entero que indique que se debe desfasar hacia adelante o atrás.
Tipo	En términos de qué está el desfase: Años, Trimestre, Mes o Días.

DATESYTD, DATESMTD & DATESQTD → ACUMULADOS

Este trio de funciones <u>retorna una tabla</u> con las fechas desde el principio del año, mes o trimestre hasta el día de "hoy"" respectivamente (Según el título). Si tuviéramos que traducirlas, probablemente sería algo así:

DATESYTD: Fechas del año hasta hoy DATESMTD: Fechas del mes hasta hoy DATESQTD: Fechas del Trimestre hasta hoy

Síntaxis → DATESYTD(<Fecha>; <Fecha_Fin_Año>)

TOTALYTD, TOTLAMTD & TOTALQTD

TOTALYTD, TOTALMTD & TOTALQTD son una evolución de las tres funciones anteriores para resumir los datos que retornan de una vez, visto de una manera diferente, son un reemplazo para no utilizar CALCULATE en las tres funciones anteriores.

Síntaxis → TOTALYSTD(<expresión>;<fecha>;[<filtro>];[<fin_de_año>])