Comparison of New York and Toronto: Which city is best to attract 25-35 year old millennials?

A case study using clustering of neighbourhood attractions

Objectives:

- Business Problems:
- 1. Large technology corporations need a data driven method to choose new R&D HQs that will attract highly educated millennials
- Large technology corporations are having trouble attracting able-minded millennials with significant coding and technology experience. Millennials are demanding better work-life balance and to work in interesting cities.
- 3. The corporations cannot grow in Silicon Valley and Seattle areas any longer. High taxes, access to housing concerns, and overall decrease in quality of life since 2000, are driving knowledge workers to other regions.
- Hypothesis:
- 1. Analysis of Quality of Life of two metro-urban centers can provide these corporations with alternatives.
- 2. One factor in Quality of Life for millennials is how "liveable" a city is
- Analysis
- 1. Determine "liveable" factors between New York and Toronto by determining how neighbourhoods are grouped, and the amenities these neighbourhoods offer

Analytic Approach:

- Data Preparation:
- 1. Neighbourhood data from New York and Toronto
- Data Analysis:
- 1. Use K-means clustering to find how many neighbourhoods are in each urban center
- Comparison:
- 1. How are neighbourhoods structured, their distance from each other, and their typical amenities.

K-means clustering of New York

- K-means clusters into 5 clusters
- Add centroid and color

neighborhoods.head()									
	Borough	Neighborhood	Latitude	Longitude					
0	Bronx	Wakefield	40.894705	-73.847201					
1	Bronx	Co-op City	40.874294	-73.829939					
2	Bronx	Eastchester	40.887556	-73.827806					
3	Bronx	Fieldston	40.895437	-73.905643					
4	Bronx	Riverdale	40.890834	-73.912585					

neighborhoods.head()

	Borough	Neighborhood	Latitude	Longitude	cluster	cen_x	cen_y	color
0	Bronx	Wakefield	40.894705	-73.847201	4	40.843482	-73.876488	yellow
1	Bronx	Co-op City	40.874294	-73.829939	4	40.843482	-73.876488	yellow
2	Bronx	Eastchester	40.887556	-73.827806	4	40.843482	-73.876488	yellow
3	Bronx	Fieldston	40.895437	-73.905643	4	40.843482	-73.876488	yellow
4	Bronx	Riverdale	40.890834	-73.912585	4	40.843482	-73.876488	yellow

K-means clustering map

K-means clustering greater Toronto

- K-means clusters into 5 clusters
- Add centroid and color

┨ Toronto_data.head()

	PostalCode	Borough	Neighborhood	Latitude	Longitude
0	МЗА	North York	Parkwoods	43.753259	-79.329656
1	M4A	North York	Victoria Village	43.725882	-79.315572
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
3	M6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.464763
4	M7A	Queen's Park	Ontario Provincial Government	43.662301	-79.389494

PostalCo	de	Borough	Neighborhood	Latitude	Longitude	cluster	cen_x	cen_y	color	x_line	y_line
0 M	3A	North York	Parkwoods	43.753259	-79.329656	4	43.700213	-79.324393	yellow	43.753259	-79.329656
1 M	4A	North York	Victoria Village	43.725882	-79.315572	4	43.700213	-79.324393	yellow	43.725882	-79.315572
2 M	5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636	2	43.662429	-79.397089	red	43.654260	-79.360636
3 M	6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.464763	3	43.750577	-79.414192	orange	43.718518	-79.464763
4 M	7A	Queen's Park	Ontario Provincial Government	43.662301	-79.389494	2	43.662429	-79.397089	red	43.662301	-79.389494

K-means clustering Map of Greater Toronto area

Change in Strategy during Analysis

• New York City is significantly larger than Toronto, and would be an unfair head-to-head comparison. Therefore, the decision is made to concentrate only on Manhattan and compare to Toronto's downtown core

K-means clustering of Downtown

· Cluster neighborhoods, add centroid and color

manhattan_data.head()

• Manhattan:

	Borough	Neighborhood	Latitude	Longitude	cluster	cen_x	cen_y	color
0	Manhattan	Marble Hill	40.876551	-73.910660	4	40.843482	-73.876488	yellow
1	Manhattan	Chinatown	40.715618	-73.994279	2	40.734036	-73.966889	red
2	Manhattan	Washington Heights	40.851903	-73.936900	4	40.843482	-73.876488	yellow
3	Manhattan	Inwood	40.867684	-73.921210	4	40.843482	-73.876488	yellow
4	Manhattan	Hamilton Heights	40.823604	-73.949688	4	40.843482	-73.876488	yellow

• Toronto:

		Borough	Neighborhood	Latitude	Longitude	cluster	cen_x	cen_y	color	x_line	y_line
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636	1	43.654949	-79.390928	red	43.654260	-79.360636
4	M7A	Queen's Park	Ontario Provincial Government	43.662301	-79.389494	1	43.654949	-79.390928	orange	43.662301	-79.389494
5	M9A	Etobicoke	Islington Avenue	43.667856	-79.532242	2	43.681159	-79.556595	orange	43.667856	-79.532242
8	M4B	East York	Parkview Hill, Woodbine Gardens	43.706397	-79.309937	3	43.691040	-79.327472	blue	43.706397	-79.309937
9	M5B	Downtown Toronto	Garden District, Ryerson	43.657162	-79.378937	1	43.654949	-79.390928	blue	43.657162	-79.378937

K-means clustering Manhattan map

K-means clustering Toronto core

Merging of Maps: Greater areas

- Superimposing the two cities, it is evident that NYC and Toronto are not comparable directly because of the size of the cities.
- However, it is instructive to superimpose the cities to demonstrate how close the neighbourhood clusters are

Merging of Maps: Core Areas

- Superimposing the two downtown cores, it is evident that NYC has a more concentred group of interesting neighborhoods.
- Conclusion: NYC may provide a better Quality of Life than Toronto when determined by neighbourhood clustering

Conclusion:

- Solution to Business Problem:
- 1. For Large technology corporations to attract highly education Millennials, they must place their technology headquarters in interesting urban areas with a high Quality of Life.
- 2. The decision on which urban area to choose can be made by analysing aspects of Quality of Life that are important to Millennials.
- Demonstration of hypothesis:
- 1. The Analysis demonstrates that Quality of Life can be explained by k-means clustering of neighbourhoods, to show that interesting amenities are grouped which makes the city more liveable.
- Future Analysis:
- 1. Expand to different cities, including European metro-urban areas.
- 2. Use different metrics, such as access to medical care, biking routes, art and leisure.