

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ENGENHARIA INFORMÁTICA – 1º ano /2º Semestre ANÁLISE MATEMÁTICA I

Teste A

17-jul-2013 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados.

1. Considere a região do plano, identificada na figura seguinte:

a. Justificando convenientemente a sua escolha, diga se algum dos seguintes conjuntos corresponde à região representada no gráfico. Em caso negativo, defina convenientemente o conjunto.

$$A_{1} = \{(x, y) \in \Re^{2} : x \ge -y^{2} - 1 \land x + 2 \ge e^{-y} \land y \le 1\}$$

$$A_{2} = \{(x, y) \in \Re^{2} : x \ge -(y - 1)^{2} \land x + 2 \ge -e^{-y} \land y \le 1\}$$

$$A_{3} = \{(x, y) \in \Re^{2} : x \ge -y^{2} - 1 \land x + 2 \ge -e^{-y} \land y \le 1\}$$

$$A_{4} = \{(x, y) \in \Re^{2} : x \ge -(y - 1)^{2} \land x + 2 \ge e^{-y} \land y \le 1\}$$

- b. Utilizando o cálculo integral, identifique, <u>sem calcular</u>, expressões simplificadas que lhe permitem determinar:
 - i. a medida da área da região.
 - a medida do volume do sólido que se obtém por rotação da região em torno do eixo das abcissas.
- 2. Considere a região do plano, definida pelo seguinte conjunto:

$$A = \{(x, y) \in \Re^2 : y \ge (x-1)^2 \land y \le x^2 - 1 \land y \le 1\}$$

a. Represente geometricamente a região A.

- b. Utilizando o cálculo integral, identifique, <u>sem calcular</u>, expressões simplificadas que lhe permitem determinar:
 - i. a medida do volume do sólido de revolução que se obtém por rotação da região *A* em torno do eixo das ordenadas.
 - ii. a medida do perímetro total da região A.
- 3. Considere a seguinte função $f(x) = \frac{1}{x(1 + \ln^2(x))}$.
 - a. Determine o domínio da função.
 - b. Justificando convenientemente as suas escolhas, determine a e b por forma que a expressão $\int_{-\infty}^{b} \frac{1}{x(1+\ln^2(x))} dx$ represente:
 - i. um integral definido. Calcule o seu valor.
 - ii. um integral impróprio de 2ª espécie. Determine a sua natureza.
 - c. <u>Sem representar graficamente a região</u>, que pode concluir da existência da medida da área da região $E = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le \frac{1}{x(1 + \ln^2(x))}, x \ge 1\}.$
- 4. Considere a seguinte equação diferencial cos(t)y' + sen(t)y = g(t)
 - a. Determine g(t) de modo que $y = sen(t) + \frac{C}{sec(t)}$ seja solução da equação dada.
 - b. Justifique que se trata de uma equação diferencial linear de 1ª ordem e determine a solução geral da equação diferencial, considerando $g(t) = cos^3(t)e^{sen(t)}$.
- 5. Resolva a seguinte equação diferencial $yy' \frac{1-y^2}{1+x^2} = 0$ sujeita à condição inicial y(0) = 0.
- 6. Considere a função real de variável real $f(x) = 1 + 2sen(\frac{3x + \pi}{2})$.
 - a. Determine o domínio e o contradomínio da função f.
 - b. Determine os zeros da função *f*.
 - c. Caracterize a função inversa de f indicando o domínio e o contradomínio.

Cotação

1a	1b	2a	2b	3a	3b	3c	4a	4b	5	6a	6b	6c
0,5	3	0,5	2,5	0,5	2,5	2,5	1	1,5	1,5	1,5	1	1,5