.L310 AA11/12 (Teoria delle E	quazioni)			ESA	ME I	JI FI.	NE S	EME	STRI	<u> </u>	Roma, 21 Dicembre 201
OGNOME		NOM	fE						MA	TRICOI	\mathcal{L}_{A}
solvere il massimo numero di e											
azi predisposti. NON SI ACCE	TTANO RI	SPOS	TE S	SCRI'	TTE	SUA	LTRI	I FOC	GLI. S	Scrivere il	proprio nome anche nell'ultin
gina. 1 Esercizio = 5 punti. Te	empo previs	sto: 2	ore.	Nessu	ına d	oman	da dı	urante	e la p	rima ora	e durante gli ultimi 20 minuti
	FIRMA	1	2	3	4	5	6	7	8	TOT.]
1. Rispondere alle seguenti don	nanda forna	ndo u	no m	ingtifi	anzio	no di	1100.1	rico:			_
. Alspondere ane seguenti don	nande forne	nao u.	na gi	iustiii	cazio.	ne ai	una i	nga.			
,											
a. È vero che esistono infir	niti n tali ch	ne l'n-	agor	no reg	olare	è cos	truib	ile co	n riga	a e compa	sso?
			• • • •				• • • • •	• • • • •			
b Eirona aba il amuno a di	Calaia di u		lai a ai	:1:		T	[V]	\	1:	9	
b. E' vero che il gruppo di	Galois di u	n qua	ISIASI	ı ponı	iomic) in F	p[A]	e abe	enano	1	
	• • • • • • • • • •							• • • • •			
a È voro abo tutto la esta	ngiani di E	(Vp \	/p) c	1030 0 30	.030 00	mnli	a ; ?				
c. È vero che tutte le ester	nsiom ai r _p	$(\Lambda^{\scriptscriptstyle F}, 1$	(F) S	SOHO 1.	ion se	ешрис	31:				
	• • • • • • • • • •		• • • •			• • • • •		• • • • •			

d. È vero che alcuni polinomi irriducibili di grado 5 sono risolubili per radicali?

	Calcolare le radici di $X^3 + X + 1$ nel campo $(\mathbf{F}_2[\alpha], \alpha^3 = 1 + \alpha^2)$.
5.	Dimostrare che $\Psi_{p^2}(x)$ il p^2 -esimo polinomio ciclotomico $(p \ge 3 \text{ primo}))$ è $(x^{p^2}-1)/(x^p-1)$ e usare questa identità per verificare che il suo discriminante è pari a $\pm p^{p(2p-3)}$. Suggerimento: mostrare che se $\zeta_{p^k}=e^{2\pi i/p^k}$, allora $\Psi'_{p^2}(\zeta_{p^2})=p^2/(\zeta_{p^2}(\zeta_p-1))$. Quindi usare una formula nota.
5.	Dimostrare che $\Psi_{p^2}(x)$ il p^2 -esimo polinomio ciclotomico $(p \geq 3 \text{ primo}))$ è $(x^{p^2}-1)/(x^p-1)$ e usare questa identità per verificare che il suo discriminante è pari a $\pm p^{p(2p-3)}$. Suggerimento: mostrare che se $\zeta_{p^k}=e^{2\pi i/p^k}$, allora $\Psi'_{p^2}(\zeta_{p^2})=p^2/(\zeta_{p^2}(\zeta_p-1))$. Quindi usare una formula nota.
5.	Dimostrare che $\Psi_{p^2}(x)$ il p^2 -esimo polinomio ciclotomico $(p \ge 3 \text{ primo}))$ è $(x^{p^2}-1)/(x^p-1)$ e usare questa identità per verificare che il suo discriminante è pari a $\pm p^{p(2p-3)}$. Suggerimento: mostrare che se $\zeta_{p^k}=e^{2\pi i/p^k}$, allora $\Psi_{p^2}(\zeta_{p^2})=p^2/(\zeta_{p^2}(\zeta_p-1))$. Quindi usare una formula nota.
5.	Dimostrare che $\Psi_{p^2}(x)$ il p^2 –esimo polinomio ciclotomico $(p \ge 3 \text{ primo}))$ è $(x^{p^2}-1)/(x^p-1)$ e usare questa identità per verificare che il suo discriminante è pari a $\pm p^{p(2p-3)}$. Suggerimento: mostrare che se $\zeta_{p^k}=e^{2\pi i/p^k}$, allora $\Psi'_{p^2}(\zeta_{p^2})=p^2/(\zeta_{p^2}(\zeta_p-1))$. Quindi usare una formula nota.
5.	Dimostrare che $\Psi_{p^2}(x)$ il p^2 –esimo polinomio ciclotomico $(p\geq 3 \text{ primo}))$ è $(x^{p^2}-1)/(x^p-1)$ e usare questa identità per verificare che il suo discriminante è pari a $\pm p^{p(2p-3)}$. Suggerimento: mostrare che se $\zeta_{p^k}=e^{2\pi i/p^k}$, allora $\Psi'_{p^2}(\zeta_{p^2})=p^2/(\zeta_{p^2}(\zeta_p-1))$. Quindi usare una formula nota.
5.	Dimostrare che $\Psi_{p^2}(x)$ il p^2 -esimo polinomio ciclotomico $(p \geq 3 \text{ primo})$) è $(x^{p^2}-1)/(x^p-1)$ e usare questa identità per verificare che il suo discriminante è pari a $\pm p^{p(2p-3)}$. Suggerimento: mostrare che se $\zeta_{p^k}=e^{2\pi i/p^k}$, allora $\Psi'_{p^2}(\zeta_{p^2})=p^2/(\zeta_{p^2}(\zeta_p-1))$. Quindi usare una formula nota.
5.	Dimostrare che $\Psi_{p^2}(x)$ il p^2 -esimo polinomio ciclotomico $(p \geq 3 \text{ primo}))$ è $(x^{p^2}-1)/(x^p-1)$ e usare questa identità per verificare che il suo discriminante è pari a $\pm p^{p(2p-3)}$. Suggerimento: mostrare che se $\zeta_{p^k}=e^{2\pi i/p^k}$, allora $\Psi'_{p^2}(\zeta_{p^2})=p^2/(\zeta_{p^2}(\zeta_p-1))$. Quindi usare una formula nota.
5.	Dimostrare che $\Psi_{p^2}(x)$ il p^2 -esimo polinomio ciclotomico $(p\geq 3 \text{ primo}))$ è $(x^{p^2}-1)/(x^p-1)$ e usare questa identità per verificare che il suo discriminante è pari a $\pm p^{p(2p-3)}$. Suggerimento: mostrare che se $\zeta_{p^k}=e^{2\pi i/p^k}$, allora $\Psi'_{p^2}(\zeta_{p^2})=p^2/(\zeta_{p^2}(\zeta_p-1))$. Quindi usare una formula nota.
5.	Dimostrare che $\Psi_{p^2}(x)$ il p^2 –esimo polinomio ciclotomico $(p \geq 3 \text{ primo}))$ è $(x^{p^2}-1)/(x^p-1)$ e usare questa identità per verificare che il suo discriminante è pari a $\pm p^{p(2p-3)}$. Suggerimento: mostrare che se $\zeta_{p^k}=e^{2\pi i/p^k}$, allora $\Psi'_{p^2}(\zeta_{p^2})=p^2/(\zeta_{p^2}(\zeta_p-1))$. Quindi usare una formula nota.

