Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim				
Cognome,	nome	ρ	matrico	la٠
Cognomic,	HOHIC	\mathbf{c}	maurico.	ıa.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) La funzione $h \colon \mathbb{Q} \to \mathbb{Q}$ definita da $h(q) = 4q^2 - 1$ è

2 punti

- □ biettiva.
- □ iniettiva ma non suriettiva.
- né iniettiva, né suriettiva.
- □ suriettiva ma non iniettiva.
- (b) Consideriamo il linguaggio L con due simboli di funzione unaria h, k. Quali delle 2 punti seguenti espressioni sono L-enunciati che formalizzano correttamente relativamente alla L-struttura $\langle C, h, k \rangle$ l'affermazione "la funzione h è l'inversa della funzione k"

 - $\Box \ h = k^{-1}$

 - $\square \ \forall x(h(x) \cdot k(x) = 1)$
- (c) Siano C, D, A lettere proposizionali e R una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

С	D	Α	R
\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}
\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{F}
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{V}
${f F}$	\mathbf{V}	${f F}$	\mathbf{V}
${f F}$	\mathbf{F}	\mathbf{V}	\mathbf{F}
${f F}$	${f F}$	${f F}$	\mathbf{V}

- \square R \models D.
- $\blacksquare \neg R \land D$ è una contraddizione.

R non è insoddisfacibile.	
\blacksquare R \land A \models D	
La relazione Q su $\mathbb{R} \setminus \{0\}$ definita da z Q w se e solo se $\exists x(z \cdot x = w)$	2 punti
■ è transitiva.	
\square non è una relazione d'equivalenza.	
■ è riflessiva.	
\square non è simmetrica.	
Siano φ, ψ delle <i>L</i> -formule.	2 punti
$\ \square \ \phi$ è soddisfacibile se e solo se $\neg \phi \rightarrow \psi$ è soddisfacibile.	
\blacksquare Se ϕ è una tautologia allora $\neg \phi \rightarrow \psi$ è soddisfacibile.	
\blacksquare Se ϕ è soddisfacibile allora $\neg\psi\to\phi$ è soddisfacibile.	
\square Se $\neg \phi$ è soddisfacibile allora $\neg \phi \rightarrow \psi$ è soddisfacibile.	
Quali dei seguenti insiemi sono infiniti e numerabili?	2 punti
$\square \{(z, w) \in \mathbb{R}^2 \mid z \in \mathbb{Z} \lor w \notin \mathbb{Q}\}$	
$\blacksquare \{(z, w) \in \mathbb{R}^2 \mid z \in \mathbb{Z} \land w \in \mathbb{Q}\}$	
$\Box \ \{z \in \mathbb{R} \mid z^2 - 3z + 4 = 0\}$	
$\blacksquare \ \{z \in \mathbb{R} \mid \sqrt{z} \in \mathbb{N}\}$	
Sia φ la formula $\forall z \forall w R(w,z) \vee \neg \exists w R(z,w)$, dove R è un simbolo di	2 punti
predicato binario.	
\square φ è un enunciato.	
\square La variabile w occorre libera e vincolata in φ .	
$\Box \ \phi$ è un enunciato e la variabile z occorre sia libera che vincolata in $\phi.$	
\blacksquare La variabile z occorre libera e vincolata in φ .	
	■ R ∧ A = D La relazione Q su $\mathbb{R} \setminus \{0\}$ definita da z Q w se e solo se $\exists x(z \cdot x = w)$ ■ è transitiva. □ non è una relazione d'equivalenza. ■ è riflessiva. □ non è simmetrica. Siano φ , ψ delle L -formule. □ φ è soddisfacibile se e solo se $\neg \varphi \to \psi$ è soddisfacibile. ■ Se φ è una tautologia allora $\neg \varphi \to \psi$ è soddisfacibile. ■ Se φ è soddisfacibile allora $\neg \psi \to \varphi$ è soddisfacibile. Quali dei seguenti insiemi sono infiniti e numerabili? □ $\{(z,w) \in \mathbb{R}^2 \mid z \in \mathbb{Z} \lor w \notin \mathbb{Q}\}$ ■ $\{(z,w) \in \mathbb{R}^2 \mid z \in \mathbb{Z} \lor w \in \mathbb{Q}\}$ ■ $\{z \in \mathbb{R} \mid \sqrt{z} \in \mathbb{N}\}$ Sia φ la formula $\forall z \forall w R(w,z) \lor \neg \exists w R(z,w)$, dove R è un simbolo di predicato binario. □ φ è un enunciato. □ La variabile w occorre libera e vincolata in φ .

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{h\}$ con h simbolo di funzione binario. Sia ψ la L-formula

$$\exists w \, (h(w, w) = z).$$

1. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \psi[y/2, x/1].$$

2. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \psi[y/2, x/2].$$

3. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \forall z \psi[y/2, x/2].$$

4. Stabilire se

$$\langle \mathbb{N}, + \rangle \models \exists z \psi[y/2, x/1].$$

5. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \psi[y/1, x/3].$$

6. Stabilire se

$$\langle \mathbb{R}, \cdot \rangle \models \psi[y/\sqrt{2}, x/-2].$$

- 7. È vero che $\langle \mathbb{R}, \cdot \rangle \models \forall z \psi[y/1, x/3]$?
- 8. Sia $\mathcal{C} = \langle \mathbb{R}^+, \cdot \rangle$, dove $\mathbb{R}^+ = \{ r \in \mathbb{R} \mid r > 0 \}$. È vero che $\mathcal{C} \models \forall z \, \psi[y/1, x/3]$?

Giustificare le proprie risposte.

Soluzione:

- 1. L'interpretazione di ψ in $\langle \mathbb{N}, + \rangle$: "Esiste un numero naturale w tale che z = w + w (ovvero z = 2w)". Dunque la risposta al primo punto è no poiché 1 è un numero naturale dispari.
- 2. Per quanto visto sopra la risposta al secondo punto si poiché 2 è un numero naturale pari.
- 3. Per quanto visto sopra si ha che

$$\langle \mathbb{N}, + \rangle \not\models \forall z \psi [y/2, x/2]$$

come testimoniato dai numeri dispari (se assegnati a z per ψ nella struttura $(\mathbb{N}, +)$).

4. Per quanto visto sopra si ha che

$$\langle \mathbb{N}, + \rangle \models \exists z \psi [y/2, x/2]$$

come testimoniato da qualunque numero pari (se assegnato a z per ψ nella struttura $(\mathbb{N}, +)$).

5. Posto $\mathcal{B} = \langle \mathbb{R}, \cdot \rangle$, l'interpretazione di ψ in \mathcal{B} è: "Esiste un numero reale w tale che $z = w \cdot w$ (ovvero $z = w^2$)". Quindi la risposta al punto quattro è positiva in quanto 3 è il quadrato del numero reale $\sqrt{3}$.

- 6. Per quanto scritto sopra la risposta al punto cinque è negativa in quanto -2 è un numero reale negativo e quindi non può essere il quadrato di alcun numero reale.
- 7. Per quanto visto al punto cinque, si ha che $\mathcal{B} \not\models \forall z \psi$: per esempio -3 è un assegnamento alla variabile z che testimonia questa asserzione (se assegnato a z per ψ nella struttura \mathcal{B}).
- 8. Per quanto visto ai punti precedenti si ha che $\mathcal{C} \models \forall z \psi$: infatti, tutti i numeri reali strettamente positivi sono il quadrato di un numero reale strettamente positivo.

Esercizio 3 9 punti

Sia $\langle C, < \rangle$ un ordine lineare stretto e siano D, A sottoinsiemi di C. Formalizzare relativamente alla struttura $\langle C, <, D, A \rangle$ mediante il linguaggio $L = \{<, D, A\}$ con un simbolo di relazione binaria e due simboli di predicato unari le seguenti affermazioni:

- 1. Tra due elementi di D c'è un elemento di A.
- 2. Dati due elementi di D, c'è necessariamente un elemento di A che è maggiore di entrambi.
- 3. Qualche elemento di D è minore di qualche elemento di A.
- 4. Il più grande elemento di D coincide con il più piccolo elemento di A.

Soluzione: 1. Tra due elementi di *D* c'è un elemento di *A*:

$$\forall x \forall y \, (x < y \land D(x) \land D(y) \rightarrow \exists z (A(z) \land x < z \land z < y))).$$

2. Dati due elementi di D, c'è necessariamente un elemento di A che è maggiore di entrambi:

$$\forall x \forall y (D(x) \land D(y) \rightarrow \exists z (A(z) \land x < z \land y < z))$$

3. Qualche elemento di D è minore di qualche elemento di A:

$$\exists x \exists y (D(x) \land A(y) \land x < y)$$

4. Il più grande elemento di D coincide con il più piccolo elemento di A:

$$\exists x (D(x) \land \forall y (D(y) \to y < x \lor x = y) \land A(x) \land \forall y (A(y) \to x < y \lor x = y))$$