DOP: 20.08.19 Dos: 27.08.19 NAME: SINGH RASHMI MRITUHJAY DIVISION: D2B ROLL NO: 54 daram

FOR EDUCATIONAL USE

(b) Cwirent in vouious branches du to Ez.

To July 4. Harrison and the

	AIM:
_	J. J. J. and J.
-11	To study and verify superposition theorem.
	Apparatus:
	Digital multimeter, EDKITS superpostion theorem kit,
	THEORY;
\rightarrow	Superposition theorem.
	Hany electrical circuits may contain more than one source of emt. In such cases, it more convenient to solve the circuit for the desired current produced by each source of emt acting separately and then combining the results. The theorem is applicable only to linear networks where current is linearly related to voltage as per Ohm's law
\rightarrow	Statement
	To a network of linear resistances containing more than one source of emf, the current which tows at any point is the sum of all the currents which would place at that emf point if each source of emf were considered separately and all other sources of emf were considered replaced for the time being by resistances equal to
undaram	
	FOR EDUCATIONAL USE

	: ENOUTABLES :
(V	to natural resistance i.e. internal resistance.
\Rightarrow	Explanation.
	To illustrate the theorem consider the circuit shown. Find out the current flowing through resistances R1, R2 and R3.
	Let the resultant currents flowing through the resistances R1, R2 and R3 be II, I2 and I3 respectively.
	with emf En acting along, replacing the other source of emf by its internal resistances as shown. This circuit
	can easily he solved for Ii, I'z and I'z. Similarly solve with emf Ez acting along replacing Ei by its internal resistance ruas shown. The circuit is solved.
)	for T_1'' , T_2'' , T_3'' . Now by applying superposition theorem to combine resultants in order to find total current in various branches. (unrent in resistor $R_1 = T_1' - T_1''$
	Consent in presistor $R_2 = T_2' - T_2''$ Consent in presistor $R_3 = T_3' - T_3''$.
\rightarrow	Advantages.
	The advantage of superposition theorem over voltage law is that circuit can be analysed with one power source at a time hence circuit is simplified. With Kirchoff Law, sum at
	junction point is to be found which makes the analysis harder.
undaram	FOR EDUCATIONAL USE

CALCULATIONS:

Case: 1 - When Vi is acting alone (VI = 5 V, V2 = 10v)

$$Req_{(1)} = (326 + 467) 11 (98.9)$$

$$= 87.93 \Omega$$

Req(2) =
$$87.93 + 467 + 214.5$$

while electronic with Req(2) and
$$\frac{51}{769.43}$$
 point were limited.

$$I_{31} = I_{7} \times \frac{793}{(793+98.9)}$$

Corners in president by I II - I'l -

$$I_{21} = I_{11} - I_{31}$$

$$= 6.49 - 5.77$$

$$I_{21} = 0.72 \text{ mA}.$$

`	
	(ALCULATIONS S
2.	Superposition theorem is applicable to both Dc and Ac voltage
	circuits.
3.	Voltage or current in entire circuit are added or subtracted arithmetically.
	to be taken separately so that only ohm's law equation
	are required in the circuit.
\rightarrow	Disadvantages.
	$\Delta z = (z - iz) = (z - iz)$
1.	It a huge number of sources are involved, use of
	superposition theorem becomes different as final analysis
	will be more tedious than nodal and mesh analysis.
2	It can only be applied to linear circuit.
3	& superposition theorem can't be applied for finding the
	power dissipated in the circuit.
	20 C C
)	Applications.
	Superposition theorem can be used in electronics when
	relation between V and I is linear when the current (I)
	or voltage (v) at some point can be found as the sum of
	current or voltage for each source taken individually.
	PROCEDURE:
	112 = 1-45 mA
	1. Adjust V=05V and measure the resistance in
	superposition kit in OFF condition.
ındara	FOR EDUCATIONAL USE

11

CALCULATIONS 3

$$T_{22} = 11.38 \text{ mA}$$

True =
$$1.38 - 9.93$$

True = 1.45 mA

Adjust versy and measure the resistance in

2. Switch on	the power		*	MOITAINS	Jrs)				
2. Switch on	the power					-			
		supply to	Switch on the power supply to the kit.						
						1			
30 dajust t	30 ddjust the VI = 5 V alone and short circuit V2 and measure the value of current through RIAR2 and RE								
measure									
4. Adjust	Adjust V2 = 10 V alone and short circuit V1 to measure								
the value	and R3	MEUSUU							
	the value of current I through R1, R2 and R3								
5. Adjust VI	Adjust VI = 5V and V2 = 10V and measure the value of current through Right and Rs.								
0+ currer	<u> </u>	K1, K2 0	ind R3	arraidt e	r	-			
OBSERVAT	1045 :		n - 11	= 11					
	511-1-112								
	R1 = 214.5-2 Am NO.2 =								
	$R_2 = 325 \Omega$ $R_3 = 98.9 \Omega$								
$R_3 = 93$ $R_4 = 46$			- 5 E . H =		7				
R5 = 46									
5		K.				1			
Observation	Observation table.								
(a.) Practical	2.) Practical Values.								
Sr.No.	V1(V)	V2(V)	II (mA)	I ₂ (mA)	I_3 (mA)	L			
	- ,					4			
10	5	0	5.8 (->)	0.87(-)	5 (1)	-			
2.	0	10	1.76(4)	10 ∘ 7 (←)	8.6 (1)	+			
3.	3. 5 10 4.2(→) 10 (←) 13.6(
Sundaram	FOR EDUCATIONAL USE								

CALCULATIONS:

Case 3: When both VI and V2 are acting (VI = 5V V2 = 10V

By theorem of superposition, amond the superposition

$$I_1 = I_{11} - I_{12} = 6.49 - 1.45$$

$$= 5.04 \text{ mA}$$

$$T_2 = T_{22} - T_{21}$$

$$= 11.38 - 0.72$$

$$= 10.66 \text{ mA}$$

$$I_3 = I_{31} + I_{32}$$

= 5.77 + 9.93
= 15.7 mA

Charrynthich tuble

COSERVATIONS :

`									
p·)	7,	Theoretica	al valu	es ,	V			3	
		5r. No.	V1(V)	V2(V)	I1 (mA)	I ₂ (mA)	Iz(mA)	10 A	
		2.	5 0 5	0 10	6·49(→) 1°45(←) 15·04(→)	0·72(→) 11·38(←) 10·66(←)	5.77 (1) 9.93 (1) 15.70 (1)		
	RESULT:								
1	0 (Observed and theoretical values of current almost the							
2	2. Practical value of current = 4.2 mA, 10 mA, 13.6 mA. Theoretical value of current = 5.04 mA, 10.66 mA, 15.7 mA.								
5	CONCLUSION:							_	
	1. We have studied and verified superposition theorem.								
	2. It is found that current through a point in a circuit through containing multiple sources is the sum of currents through that point when each source acts independently.								
Sundara)E	FOR EDUCATIONAL USE							