Software Engineering

System Engineering

- A system is a set of inter-related components, with an identifiable boundary, working together for some purpose
- Properties of a system:
 - a system may include software, mechanical, electrical and electronics components
 - System components are dependent on each other for functioning properly
 - All system exhibit predictable behavior

Types:

- Open: interacts freely with its environment (Ex: Weather forecasting system)
- Closed: it is cut-off from its environment (Ex: Embedded system inside washing machine)

Characteristics of system:

- Consists of components and sub-components
- Inter-related components
- Boundary
- Purpose
- Environment (external/internal entities that interacts with the system)
- Input
- Output
- Constraints (limitations of system)

Components of Computer-based systems

- Software
- Hardware
- People
- Database
- Documentation
- Procedures

Emergent System:

- A system where all sub-systems work together to form a complete system and failure of any component may give rise to unusable system
- Types of emergent property:
 - Functional properties (appears when all parts of a system work together to achieve some objective)
 - Non-functional properties (reliability, performance and safety)

Examples of Emergent properties:

- Volume of system (actual space occupied by the system)
- Reliability of system (depends on reliability of system components, but unexpected interactions can cause new types of failures)
- Security of system
- Reparability of system
- Usability of system (hardware, software, system operators and the environment where it is used)

Influences on reliability

- Hardware
- Software
- Operator

System and its environment

- System are not independent and exists in its environment
- Environment affects the functioning of the system

System hierarchies

System Engineering

- Activity of specifying, designing, implementing, validating, deploying and maintaining systems.
- Problems of system engineering is similar to that of software engineering.
- Software has become a crucial part of most of the systems and the delay in software causes the delay in system

Problems in system engineering

- Requires great deals of coordination across multiple disciplines
- System must be designed to last many years in a changing environment
- Time estimation and missed schedules
- Maintenance problems
- Unmanaged systems and improper integration of sub-systems

System Engineering Process

Fig: Phases of the system engineering process

Requirements

- Abstract functional requirements
- System properties (non-functional requirements)
- Characteristics that the system must exhibit (detailed functionalities)

System Design Process

- Partition requirements
- Identify sub-systems
- Assign requirements to sub-systems
- Specify sub-system functionality
- Define subsystem interface

• Sub system development

- Parallel projects developing the hardware, software and communications
- May have lack of communication across implementing teams

System Integration

- Direct (switching off old system and turning on new system)
- Parallel (running both old and new systems parallel until the management decides to turn off old system)
- Single location installation (installing new system at one site, experimenting with it until the management decides to install new system throughout the organization)
- Phased installation (installing parts of the system until all the parts of old system is replaced by new system)

System Evolution

- Evolving system with new requirements
- Legacy system must be maintained

Problems:

- Environmental assumption may be incorrect
- Human resistance to new system
- Physical installation problems
- Operator training has to be identified

- System Decommissioning
 - Taking system out of service after its lifetime
 - May require data to be restructured and converted to be used in other systems

System Modeling

 Creating an architectural model that presents an abstract view of the sub-systems making up that system

e.g. Intruder alarm system

Information System

 integrated set of components for collecting, storing, and processing data and for providing information, knowledge

Classes of information System

- Transaction Processing System
- Management Information System
- Decision Support System
- Expert System

System Analyst

- Someone who does the analysis of a complete system
- Responsibilities:
 - Efficient capture of data from its business source
 - Flow of useful and timely information back to the business and its people

To Be Continued...