

CO-CLUSTERING DE SÉRIES TEMPORELLES POUR LA VALIDATION DE SYSTÈMES D'AIDE À LA CONDUITE PAR SIMULATION MASSIVE

SOCIÉTÉ FRANCOPHONE DE CLASSIFICATION

- Directeur de thèse : Mustapha Lebbah
- Codirecteur de thèse : Hanane Azzag
- Superviseur Renault : Loïc Giraldi

GROUPE RENAULT

25/09/2020

RENAULT CONFIDENTIAL C

AGENDA

	CONTEXT
U	ADAS Validation

FUNCTIONAL LATENT BLOCK MODEL
Time Series Co-clustering

FUNCTIONAL CONDITIONAL LATENT BLOCK MODEL Multi-view extension

RENAULT CONFIDENTIAL C 2 GROUPE RENAULT

CONTEXT

ETIENNE GOFFINET

RENAULT CONFIDENTIAL C

CONTEXT

ADAS - HUGE INCREASE OF THE NUMBER OF SYSTEMS

ADAS – SIMULATION SYSTEM

CONTEXT

OBJECTIVES

Multivariate Time series

Simulation 1

Simulation 2

. . .

Picture: Slimen, Y. B., Allio, S., & Jacques, J. (2018). Model-based co-clustering for functional data. *Neurocomputing*, 291, 97-108.

RENAULT CONFIDENTIAL C

CONTEXT

OBJECTIVES

Picture: Slimen, Y. B., Allio, S., & Jacques, J. (2018). Model-based co-clustering for functional data. *Neurocomputing*, 291, 97-108.

RENAULT CONFIDENTIAL C

OBJECTIVES

RENAULT CONFIDENTIAL C

CONTRIBUTION OF THE PROOF OF T

FUNCTIONAL LATENT BLOCK MODEL

BIBLIOGRAPHY

Mixture Model selection with ICL

Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. *IEEE transactions on pattern analysis and machine intelligence*, 22(7), 719-725.

- Latent Block Model
 Govaert, G. and M. Nadif (2013). Co-Clustering. Wiley-ISTE
- Functional Latent Block Model (FLBM) based on functional PCA (FPCA) representation Slimen, Y. B., Allio, S., & Jacques, J. (2018). Model-based co-clustering for functional data. *Neurocomputing*, 291, 97-108.
- FLBM based on FPCA representation and subspace clustering Bouveyron, C., Bozzi, L., Jacques, J., & Jollois, F. X. (2017). The functional latent block model for the co-clustering of electricity consumption curves.
- Multivariate FLBM based on piecewise regression representation Chamroukhi, F., & Biernacki, C. (2017, July). Model-Based Co-Clustering of Multivariate Functional Data.
- ICL criterion for Latent Block Model Lomet, A., Govaert, G., & Grandvalet, Y. (2018). Model selection for Gaussian latent block clustering with the integrated classification likelihood. *Advances in Data Analysis and Classification*, *12*(3), 489-508.
- Multivariate FLBM based on piecewise regression representation Schmutz, A., Jacques, J., Bouveyron, C., Chèze, L., & Martin, P. (2019, June). Co-clustering de courbes fonctionnelles multivariées.

Functional Variables

Observations / Simulations

ILLUSTRATION

(speed, acceleration, radius, pitch, system activation, ..)

X

RENAULT CONFIDENTIAL C

Functional Variables

GROUPE RENAULT

RENAULT CONFIDENTIAL C

GROUPE RENAULT

Column Cluster Membership

FUNCTIONAL LATENT BLOCK MODEL

ILLUSTRATION

ETIENNE GOFFINET 25/09/2020 RENAULT CONFIDENTIAL C 18 GROUPE RENAULT

ETIENNE GOFFINET

RENAULT CONFIDENTIAL C

IONAL LATENT BLOCK MODEL

COMPLETED LIKELIHOOD

RENAULT CONFIDENTIAL C

GROUPE RENAULT

INFERENCE WITH SEM-GIBBS

For loop:

- (E step) Gibbs Sampling
- \rightarrow estimate p(z,w) by alternating the estimation of p(z | w) and p(w | z).
- (M step) Block parameters estimation, given (\hat{z}, \hat{w}) End For

MODEL SELECTION - CRITERION

 $Integrated\ Completed\ Likelihood\ (ICL) =$

$$\log p(X, W, Z) - \frac{c}{2} \log(np) - \frac{K-1}{2} \log n - \frac{L-1}{2} \log p$$

$$\approx \int_{\Theta_{K,L}} L(x, z; \theta) p(\theta | K, L) d\theta$$

With C the number of free parameters of the Gaussian distribution

LIMITS OF THE LATENT BLOCK MODEL

Confidential C

RENAULT CONFIDENTIAL C

ETIENNE GOFFINET

LBM LIMITS – APPROPRIATE LATENT DATASET STRUCTURE

25/09/2020

LBM LIMITS – APPROPRIATE LATENT DATASET STRUCTURE

25/09/2020

ETIENNE GOFFINET

LBM LIMITS – APPROPRIATE LATENT DATASET STRUCTURE

RENAULT CONFIDENTIAL C

LBM LIMITS - INADAPTED DATASET STRUCTURE

GROUPE RENAULT

ETIENNE GOFFINET

LBM LIMITS - INADAPTED DATASET STRUCTURE

GROUPE RENAULT

RENAULT CONFIDENTIAL C

LBM LIMITS - INADAPTED DATASET STRUCTURE

ETIENNE GOFFINET 25/09/2020 RENAULT CONFIDENTIAL C 29 GROUPE RENAULT

MODEL EXTENSION: CONDITIONAL LATENT BLOCK MODEL

RENAULT CONFIDENTIAL C

ETIENNE GOFFINET

LBM

Row Cluster Membership

$$Z = (z_i)_{1..n}$$

Cluster 1

 $W = (w_i)_{1..p}$

Cluster L

Column Cluster

Membership

31

CONDITIONAL LBM

Conditional Row Cluster Membership

1,1	1,2	1,3
1,1	1,2	1,3
1,1	2,2	1,3
1,1	2,2	2,3
2,1	2,2	2,3
2,1	3,2	2,3
3,1	3,2	2,3
3,1	3,2	3,3

$$Z = \left(z_{i,l}\right)_{\{1..n\} \times \{1,..L\}}$$

Column Cluster Membership

 $W = (w_i)_{1..p}$

1 1 L L L

RENAULT CONFIDENTIAL C

Cluster L

32

GROUPE RENAULT

Cluster 1

CONDITIONAL LBM

Each **column** cluster produces a specific row clustering

→ Create multi-views clustering. The expert choose among the most relevant one w.r.t variable cluster of interest.

Conditional Row Cluster Membership

1,1	1,2	1,3
1,1	1,2	1,3
1,1	2,2	1,3
1,1	2,2	2,3
2,1	2,2	2,3
2,1	3,2	2,3
3,1	3,2	2,3
3,1	3,2	3,3

$$Z = \left(z_{i,l}\right)_{\{1..n\} \times \{1,..L\}}$$

Column Cluster Membership

 $W = (w_i)_{1..p}$

CONDITIONAL LBM – MODEL SELECTION

For given L_{max} and K_{max} , the number of possible models is:

$$\sum_{l=1}^{L_{max}} {K_{max} + l - 1 \choose l},$$

the number of combination with repetition and without order

CONDITIONAL LBM – MODEL SELECTION

For given L_{max} and K_{max} , the number of possible models is:

$$\sum_{l=1}^{L_{max}} {K_{max} + l - 1 \choose l},$$

the number of combination with repetition and without order

- \rightarrow With $L_{max} = K_{max} = 10$, 184755 combinations (vs 100 in the LBM case)
- → Impossible to perfom a Grid Search

CONDITIONAL LBM – MODEL SELECTION

For given L_{max} and K_{max} , the number of possible models is:

$$\sum_{l=1}^{L_{max}} {K_{max} + l - 1 \choose l},$$

the number of combination with repetition and without order

- \rightarrow With $L_{max} = K_{max} = 10$, 184755 combinations (vs 100 in the LBM case)
- → Impossible to perfom a Grid Search
- → Strategies in development..

RENAULT CONFIDENTIAL C

ETIENNE GOFFINET

The car "of interest" moves in a straight line and then drifts to one side of the road.

The LKA system puts the vehicle back to the lane center.

20 signals

→ Position signals

ETIENNE GOFFINET

- Position in lane (continuous duplicated)
- Index of current lane (discrete)
- Marking line type on Ego's right (discrete)
- Marking line type on Ego's left (discrete)

RENAULT CONFIDENTIAL C

Lateral position in Lane: block (1, 1)

Lateral position in Lane: block (2, 1)

Lateral position in Lane: block (3, 1)

- → Bag of uninformative/ irrelevant signals
- Constant values (vehicle length, width, distance between wheels, road bend radius)
- Linearly increasing (distance to origin)

GROUPE RENAULT

→ Leverage signals

ETIENNE GOFFINET

- Control logic activation
- Changes in Ego's heading

RENAULT CONFIDENTIAL C

THANK YOU

APPENDIX

GROUPE RENAULT

MODEL SELECTION

How to choose K and L?

→ For small values of K and L:

Model Selection Criterion + Grid Search

NUMBER OF POSSIBLE MODELS

$$L_{max} = K_{max} = 3$$

Number of combination with replacement & without order

$$\sum_{L=1}^{L_{max}} {K_{max} + L - 1 \choose L}$$

$$= {3 \choose 1} + {4 \choose 2} + {5 \choose 3}$$

$$= 3 + 6 + 10 = 19$$

10

1,1,1

1,1,2

1,1,3

1,2,2

1,2,3

1,3,3

2,2,2

2,2,3

2,3,3

3,3,3