LGI v1.3.6

LGI, MIT, https://github.com/eisenwinter/fh-hgb-stuff Jan Caspar, Aktualisiert 9. Februar 2017

Aussagen formalisieren

nicht A A und B A oder B	$ \begin{array}{c c} \neg A \\ \hline A \land B \\ \hline A \lor B \end{array} $
wenn A dann B B ist notwendig für A Aus A folgt B A ist hinreichend für B	$A \Longrightarrow B$
Genau dann A, wenn B Dann und nur dann A, wenn B A ist gleichwertig mit B A ist äquivalent zu B A ist notwendig und hinreichend für B	$A \Leftrightarrow B$
Für alle x ist A(x) Jedes x erfüllt A(x) Es ist A(x) für alle x	$\forall A(x)$
Für alle x aus M ist A(x) Jedes x der Menge M erfüllt A(x) Es ist A(x) für alle x in M	$\bigvee_{x\in M}A(x)$
Es gibt ein x mit A(x) Es existiert ein x, so dass A(x) gilt Für mindestens ein x gilt A(x)	$\exists A(x)$
Es gibt ein x aus M mit A(x) Für mindestens ein x in M gilt A(x)	$\exists_{x \in M} A(x)$

Aussagen formalisieren Beispiele

Es gibt genau ein x mit der Eigenschaft A

$$\bigvee_{x,y} A_{x \to y} \wedge A_x \implies x = y$$

Es gibt höchstens ein x mit der Eigenschaft A

$$\exists A \\ x \\ x,y \\ A_x \land A_{x \to y} \implies x = y$$

$$x = y$$

Es gibt genau zwei Dinge mit der Eigenschaft A

$$\exists\exists x \neq y \land A(x) \land A(y) \land \neg \exists z \neq x \land z \neq y \land A(z)$$

Alle Vögel haben Flügel aber nicht alle fliegen

$$(\bigvee_{Vogel(x)} hatFl\"{u}gel(x)) \wedge (\neg \bigvee_{Vogel(x)} fliegt(x))$$

Superlativ (3 ist die kleinste mit Eigenschaft)

$$Eig(x) \land \forall Eig(x) \implies x \ge 3$$

Standarform Allquantor

$$\forall \dots \text{ wird } \forall c \in A \cup B \implies \dots$$
 $c \in A \cup B \qquad c$

Standarform Existenzquantor

$$\exists \dots$$
 wird $\exists a \in s \land \dots$

All- / Existenzquantor Negation

Aus $\neg(\exists \dots)$ wird $\forall \neg \dots$ und aus $\neg(\forall \dots)$ wird $\exists \neg \dots$

Beisniel

$$\exists x < 10 \text{ wird zu } \neg (\exists x < 10) \text{ auflösen } \forall \neg (x < 10) \text{ und } \neg (x < 10) \Leftrightarrow x \ge 10$$

All- / Existenzquantor Beweisen

∃ konkreten fixen Wert wählen

∀ beliebig, fix wählen

Problemspezifikation: Muster

Gegben Werte (a,b,x,y) (Eingabe)

wobei a irgendwas ist, b > o, $x \in \mathbb{Z}$ (Eingabebedingung)

Gesucht k (Ausgabe)

so-dass Bedingung (Ausgabebedingung)

Beispiel Problemspezifikation: Runden

Gegben x (Eingabe)

wobei $x \in \mathbb{R}$ (Eingabebedingung)

Gesucht y (Ausgabe)

 $0,5 \rightarrow aufrunden$

so-dass
$$|x-z| \le \frac{1}{2} \land (|x-y| = \frac{1}{2} \implies x > y)$$

Beispiel Problemspezifikation: Wurzel reeler Zahl (Ohne $\sqrt{\ }$

Gegben z (Eingabe)

wobei $z \in \mathbb{R}, z \ge 0$ (Eingabebedingung)

Gesucht w (Ausgabe)

w²

so-dass $w \in \mathbb{R} \land w * w = z$ (Ausgabebedingung)

Beispiel Problemspezifikation: Folgen

zwei aufeinanderfolgenden Positionen einer gegebenen endlichen Folgen s ein neues Objekt n einfügen.

Gegben s

wobei s eine endliche Folge

Gesucht a, eine endliche Folge mit Länge l(s)*2-1

so-dass $(\bigvee_{1 \le i \le I(a)-1} a_{2*i-1} = s_i) \land (\bigvee_{1 \le j \le I(a)} a_{2*i} = n)$

Definieren: Muster

Aussage $Name(p, a, r) :\Leftrightarrow \exists_{v \in \mathbb{N}} Aussage(p, a, r)$

Funktion Name(p, a, r) := p * a * r

Beispiel Definition: Primzahl

$$Prim(x) :\Leftrightarrow \overbrace{\left(\bigvee_{t \neq x} \neg (t | x)\right)}^{\text{Für alle Teiler } \neq 1 \text{ oder } x} \land x > 1$$

Beispiel Definition: istEnthalten von 2 Folgen a,b (Aussage)

$$istEnthalten(a, b) : \Leftrightarrow \forall \exists a_x = b_y$$

Gesetze der Logik

 $\neg \forall A(x)$

	a	b	$a \Longrightarrow b$	$a \Leftrightarrow b$	$\neg a \lor b$	
	0	0	1	1	1	
	0	1	1	0	1	
	1	0	0	0	0	
	1	1	1	1	1	
ĺ	$\neg (A \land B)$		(¬A)	∨ (¬B)	$\neg (A \lor B) \\ \neg (A \Leftrightarrow B)$	$(\neg A) \wedge (\neg B)$
	$\neg (A \Longrightarrow B)$		B) (A/	\ ¬B)	$\neg (A \Leftrightarrow B)$	$(A \wedge B) \circ (A \Leftrightarrow (\neg B))$

 $\exists \neg A(x)$

 $\neg \exists A(x)$

 $\forall \neg A(x)$

Syntaxanalyse Muster

Quantoraussage

Achtung Auch Mengenlehreoperationen wie "Vereinigt" (∪) sind Funktionen.

Mengenlehre

Schreibweisen

aufzählend	prädikativ	
{1, 2, 3, 4, 5}	$\{x 1 \le x \le 5\}$	

Mengelehre Operationen

Stets die leere Menge in betracht ziehen!

Teilmengenbeziehung

$$x \subseteq y :\Leftrightarrow \forall (z \in x \implies z \in y)$$

Die Teilmengenbeziehung ist partiell geordnet wenn

Reflexivität weil $A \subseteq A$

Antisymmetrie weil $A \subseteq B$ und $B \subseteq A$ heißt A = BTransitivität weil $A \subseteq B$ und $B \subseteq C$ heißt $A \subseteq C$

Potenzmenge

Die Potenzmenge ist die Menge aller Teilmengen. $Pot(A) := \{M \mid m \subseteq A\}.$

Leere Menge: $Pot(\emptyset) = {\emptyset} \rightarrow Pot(Pot(\emptyset)) = {\emptyset}, {\emptyset}$

Anzahl nach Potenzierung 2^n wobei n die Anzahl der Objekte (inkl. leere Menge) in der Ursprungsmenge sind.

Karthesisches Produkt

$$A \times B := \{(a,b) | a \in A \land b \in B\}$$
 z.B.
 $\{1,2\} \times \{4,5,6\} = \{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)\}$

Landau Notation

$$O(g):\Leftrightarrow \exists \exists \forall |f(n)| \le c * |g(n)|$$

Zum Beweisen wähle ein $c \ge 1$ damit $f(n) \le c$ erfüllt ist.

Relationen & Funktionen

R ist **Relation zwischem** *M* und $N : \Leftrightarrow R \subseteq M \times N$

R ist eine **Relation auf** $M : \Leftrightarrow R \subseteq M \times M$

f ist eine partielle Funktion von M nach N

$$: \Leftrightarrow (f \subseteq M \times N) \land (\bigvee_{x,y,y'} (x,y) \in f \land (x,y') \in f \implies y = y'),$$

"Eine partielle Funktion hat für jeden Wert einen einzigartigen Rückgabewert."

f ist eine **totale Funktion** von M nach $N:\Leftrightarrow:\Leftrightarrow (f\subseteq$

$$M \times N) \land (\bigvee_{x,y,y'} (x,y) \in f \land (x,y') \in f \implies y = y') \land (\bigvee_{x \in M} \exists (x,y) \in f)$$

"Eine totale Funktion hat für jeden Wert aus der Menge einen definierten und einzigartigen Rückgabewert."

Funktionsdefinition

$$f: M \to N, x \mapsto t \text{ bedeutet } f: \{(x,t)|x \in M\} \land \bigvee_{x \in M} f(x) \in N$$

Zum Beispiel

$$f: \mathbb{N}_5 \to \mathbb{N}, x \mapsto x^2$$
 entspricht f der Menge $\{(x, x^2) | x \in \mathbb{N}_5\} = \{(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)\}$

Bild, Urbild.Inverse

 $f: M \to N, A \subseteq M, B \subseteq N$

Bild $f(A) := \{f(x) | x \in A\}$ Bild von A unter F

Urbild $f^{-1}(B) := \{x \in M | f(x) \in B\}$ Urbild von B unter f. Sprich, f(x)

> $f^{-1}(\{4,5\}) = \{4,\ldots\}$, bei welchen Paramtern kommt dieses Ergebnis. Achtung! Nur die die tatsächlich getroffen werden.

Inverse Allgemein: $f^{-1}: f(M) \to M$. Falls f injektive $f^{-1}\{(y,x)|(x,y) \in f\}$, Tuppel umdrehen. Falls f bijektiv drehen sich Quell- und Zielraum um (Beispiel $f: M \to N \dots f^{-1}: N \to M$

Injektiv, Surjektiv, Bijektiv

injektiv nie gleicher Funktionswert für verschiedene Argumente, jedes $x \in N$ hat höchstens einen Verweis

$$\forall f(m) = f(n) \implies m = n$$

surjektiv nur wenn alle Werte aus Bereich für Argumente funktionieren; jedes $x \in \mathcal{N}$ hat minestens einen Verweis

$$\forall \exists f(m) = n$$

bijektiv ist surjektiv und injektiv, jedes $x \in N$ hat genau einen Verweis \rightarrow beide Menge sind gleich groß. Bijektiv wenn Surjektiv und Injektiv!

Hintereinander ausführen

$$g \circ f = g(f(x))$$

Achtung auf korrekte Zahlenräumen!

Eigenschaften von Relationen

Eigenschaft	für alle x,y,z ∈ M			
reflexiv	xRx			
Jeder Knoten besitzt eine Schleife				
irreflexiv	$\neg(xRx)$			
Kein Knoten besitzt eine Schleife				
symmetrisch	$xRy \Rightarrow yRx$			
Jeder Pfeil besitzt einen "Gegenpfeil"				
asymmetrisch	$xRy \Rightarrow \neg(yRx)$			
Kein Pfeil besitzt einen "Gegenpfeil", es gibt auch keine Schleifen				
antisymmetrisch	$xRy \land yRx \Rightarrow x = y$			
Kein Pfeil zwischen zwei verschiedenen Knoten besitzt einen "Gegenpfeil"				
transitiv	$xRy \land yRz \Rightarrow xRz$			
Jede "Pfeilkette" aus zwei Pfeilen besitzt einen "Überbrückungspfeil"				

Symterie

Beispiel $A := \{1, 2, 3\} R := \{(1, 2), (2, 1), (1, 1) R \subseteq A \times A \}$

Symetrisch weil $\forall (a, b) \in R \implies (b, a) \in R$, isolierte Knoten sind damit egal!

Transitiv

Beispiel $A := \{1, 2, 3\} R := \{(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)\} R \subseteq A \times A$

Transitiv weil $\forall (a, b) \in R \land (b, c) \in R \implies (a, c) \in R$

Verknüpfung von Relationen

 $R^2 = R \circ R$, $R^n := R \circ R^{n-1}$ für n > 3

 $(x, y) \in \mathbb{R}^n$ Es gibt einen Weg der Länge **n** von x nach y $(x, y) \in \mathbb{R}^+$ Es gibt einen Weg von x nach y (Länge ≥ 1)

Hüllen von Graphen

 R^{-1} Umkrehrelation (geschrieben: \leftarrow). Tuppel umdrehen

 $R \cup R^{-1}$ symetrische Hülle (\leftrightarrow)

 $R^0 \cup R$ reflexive Hülle $(\rightarrow^0 \cup \rightarrow)$

 R^+ transitive Hülle (\rightarrow^+)

 R^* reflexiv-transitive Hülle (\rightarrow^*)

Hüllen bilden

- 1. (a,b) in R, so ist (a,b) in R+
- 2. (a,b) und (b,c) in R, so ist (a,c) auch in $R^+(R \circ R)$

 $R^+ \cup \{(a, a) | a \in M\}$ (Selbstveweise/Schleifen)

Äguivalenzrelationen

Eine Relation $\sim \subseteq M \times M$ heißt Aquivalenzrelation auf M (alle $x, y, z \in M$) wenn reflexiv $x \sim x$

symetrisch $x \sim y \implies y \sim x$

transitiv $(x \sim y \land y \sim z) \implies x \sim z$

$$A \sim B :\Leftrightarrow \sum_{a \in A} a = \sum_{b \in B} b$$

$$A \sim B : \Leftrightarrow \sum_{a \in A} a = \sum_{b \in B} b$$

reflexiv $\sum_{a \in A} a = \sum_{a \in A} a$ Ja, z.B. {1}, 1=1

transitiv
$$(\sum_{a \in A} a = \sum_{b \in B} b) \land (\sum_{a \in A} b = \sum_{c \in C} c) \Longrightarrow \sum_{a \in A} a = \sum_{c \in C} c \text{ Ja, z.B. } \{1,1,1\}, \{1,2\}, \{0,3\}, 3 = 3 \land 3 = 3 \Longrightarrow 3 = 3$$

Äguivalenzklassen

$$[x]_{\sim} := \{ y \in M \mid y \sim x \}.$$

Es gilt $i \neq i$

 $M_i \cap M_i = \{\}$

Für jedes a und b aus Mijst aRb wahr

Für jedes a aus M_i und b aus M_i ist aRb falsch.

Partition einer Menge

P ist eine Parition auf M : $\Leftrightarrow \bigvee_{A \subseteq P} A \subseteq M \land A \neq \emptyset \land \bigvee_{A \in P} A \neq B \implies A \cap B = \emptyset$

Ordnungsrelationen

 $\leq \subseteq M \times M$ ist Ordnungsrelationen g.d.w. für alle $x, y, z \in M$ gilt

reflexiv $x \leq y$

antisymetrisch $(x \le y \land y \le x) \implies x = y$

transitiv $(x \le y \land y \le z) \implies x \le z$

Ordnungsrelationen werden auch partielle Ordnungen genannt. Gilt zusätzlich $(x \le y \lor y \le x)$ (**Linearität**) so heißt sie totale oder lineare Ordnung.

Hasse Diagramm

Zwischen x und y wird eine Linie gezeichnet, falls $x \leq y \land \neg \exists z \neq x \land z \neq y \land x \leq z \leq y$

Beispiel: Teilt-Relation $\{a, b \in \mathbb{N}_{12} | a * n = b\}$

Zu lesen zum Besipiel rechter Ast, 4 teilt 8, 2 teilt 4, daher teilt auch 2 die 8.

Induktionsbeweis

- 1. Induktionsanfang, $A_n[1]$ ausrechnen. n auf kleinsten Wert setzen (o oder 1)
- 2. Induktionsanahme. \overline{n} bliebig aber fix wählen. Nochmal hinschreiben!
- 3. Induktionsabschluss. (n+1). Entweder in linke ODER rechte Seite von Anahme mit n+1.Umformen, so dass die Anahme wieder auftaucht und mit anderem Teil der Anahme ersetzen.

Beispiel:

$$\sum_{i=1}^{n} i = \frac{n*(n+1)}{2}, \mathbb{N}$$

- 1. Anfang, $n = 1 \rightsquigarrow 1 = 1$ wahr
- 2. Anahme, $\sum_{i=1}^{n} i = \frac{n*(n+1)}{2}$
- 3. Induktionsabschluss $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$, jetzt $\sum_{i=1}^{n} i$ gleich mit Anahme oben, ersetzen mit rechter Seite von Anahme. $= \frac{n*(n+1)}{2} + (n+1) = \frac{(n+1)*(n+2)}{2}$