第4章 数值表示及转换

何宾 2018.03

负数表示方法

- 一个N位的系统总共可以表示 2^N 个数,因此一个有用的编码就是使用一半可用的编码($2^N/2$)表示正数,另一半表示负数。
- 可以将一个比特位设计成一个符号位,用于区分正数和负数。在这种表示方法中,最高有效位(Most Significant Bit, MSB)可以作为符号位。如果:
 - 口 符号位为1, 所表示的数为负数。
 - 口 符号位为0,所表示的数为正数。
- 在所有可能的负数编码方案中,经常使用两种:
 - □ 符号幅度
 - 口 二进制补码

- 就是用MSB表示符号位,剩下的 位表示幅度,如右图所示。在一 个8位的符号幅度系统中:
 - □ 十进制数16表示为(00010000)₂
 - □ 而十进制数-16表示为(10010000)

符号幅度表示法

负数表示方法 --符号幅度表示法

符号幅度表示法最不利的方面表现在:

- 如果0到2^N的计数范围从最小到最大,则最大的正数将出现在 所表示范围的一半的地方,然后,跟随最大的负数。
- 最小的负数出现在所表示范围的末尾,更大的计数将回卷到0。 这是由于不能表示 $2^N + 1$ 。
- 因此,在计数范围内, 2^N 后面跟着0,这样最小的负数就立即 调整到最小的正数。

负数表示方法 --补码表示法

补码表示法

■ 由于上面的原因,引入了 二进制补码的概念,如右 图所示。

二进制补码表示法

负数表示方法 --补码表示法

- 在二进制补码编码中,MSB仍是符号位,1表示负数,0表示正数。
- 在二进制补码中,0由一个包含所有0的比特模式所定义。其余的 2^N-1个数表示非零的正数和负数。
 - □ 由于2^N -1是奇数, (2^N -1)/2个编码表示负数, [(2^N -1)/2]-1个编码表示正数。
 - □ 换句话说,可以表示的负数比正数要多一个。
 - □ 最大负数的幅度要比最大正数的幅度个数要多一个。

负数表示方法 --补码表示法

- 二进制补码编码的不利的地方是,不容易理解负数。
- 对于一个N位字长的二进制补码来说,其可以表示的有符号数(包括正数、负数和0)的范围是:

 $-2^{N-1}\sim 2^{N-1}-1$

- ■原码转补码
 - □将该负数所对应的正数按位全部取反。
 - □ 将取反后的结果加1。

【例】将+17转换-17的二进制补码

- 对应的正整数17的二进制原码为 (00010001) 2
- 按位取反后得到二进制反码 (11101110) 2
- 结果加1,得到二进制补码 (11101111) ₂

【例】将-35转换为+35的二进制补码

- 对应的负整数-35的二进制补码为 (11011101) 2
- 按位取反后得到二进制反码 (00100010) 2
- 结果加1,得到+35的二进制补码 (00100011) ₂

【例】将-127转换为+127的二进制补码

- 对应的负整数-127的二进制补码为(1000001) 2
- 按位取反后得到二进制反码 (01111110) 2
- 结果加1,得到+127的二进制补码为 (01111111) 2

■比较法

□ 得到需要转换负数的最小权值,该权值为负数,以-2ⁱ表示,使得 其满足:

- 2ⁱ <需要转换的负数;

- □ 取比该权值绝对值2ⁱ小的权值,以2ⁱ⁻¹, 2ⁱ⁻², ..., 2⁰的幂次方表示;
- □ 需要转换的负数+2ⁱ ,得到了正数,以后的权值2ⁱ⁻¹ ,2ⁱ⁻² ,…, 2⁰ 与这个正数进行比较。

【例】使用比较法得到负整数-97所对应的二进制补码 对于负的十进制整数-97来说,假设使用8位二进制数进行表示, 则其所对应的二进制补码为10011111B。

转换的数	-97	31	31	31	15	7	3	1
权值	-2 ⁷ (-128)	2 ⁶ (64)	2 ⁵ (32)	2 ⁴ (16)	2 ³ (8)	2 ² (4)	2 ¹ (2)	2 ⁰ (1)
二进制数	1	0	0	1	1	1	1	1
余数	31	31	31	15	7	3	1	0

比较法

- 得到需要转换负小数的最小权值,该权值为负数,以-20表示
- 取比该权值绝对值2ⁱ小的权值,以2⁻¹, 2⁻², ..., 2^{-N}的幂次方表示。
- 需要转换的负数+1,得到了正数,以后的权值2⁻¹,2⁻²,...,2^{-N}与这个正小数数进行比较。

【例】使用比较法得到负小数-0.03125所对应的二进制补码。 通过比较法,得到十进制负小数-0.03125所对应的二进制小数为 1.11111。

转换的数	-0.03125	0.96875	0.46875	0.21875	0.09375	0.03125
权值	-2 ⁰ (-1)	2 ⁻¹ (0.5)	2 ⁻² (0.25)	2 ⁻³ (0.125)	2 ⁻⁴ (0.0625)	2 ⁻⁵ (0.03125)
二进制数	1	1	1	1	1	1
余数	0.96875	0.46875	0.21875	0.09375	0.03125	0