1. Find a value for n that will give vector \vec{a} a magnitude of 7:

$$\vec{a} = \begin{pmatrix} -3\\2\\n \end{pmatrix}$$

2. Find values for b_x , b_y , and b_z that will make \vec{b} perpendicular to \vec{a} regardless of the value of m in \vec{a} :

$$\vec{a} = \begin{pmatrix} -2\\1\\m \end{pmatrix} \qquad \qquad \vec{b} = \begin{pmatrix} b_x\\b_y\\b_z \end{pmatrix}$$

3. Let
$$\vec{a} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
:

(a) Find the unit vector for \vec{a} :

(b) Consider some vector $\vec{b} = k\vec{a}$ for some positive value of k (that is, \vec{b} is parallel to \vec{a}). What is the unit vector of \vec{b} :

(c) Consider some vector \vec{b} which is perpendicular to \vec{a} . Find a possible value for the unit vector of \vec{b} :

4. Consider the path formed by the 4 vectors in the diagram below:

(a) Write an equation for \vec{c} in terms of \vec{a} , \vec{b} , and \vec{d} :

(b) Given the following values for \vec{a} , \vec{b} , and \vec{d} , calculate the value of \vec{c} :

$$\vec{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ $\vec{d} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$

(c) For the above values vector values, calculate the angle θ between the \vec{a} and \vec{d} :

5. In the diagram below, \vec{a} and \vec{b} are both unit vectors with a 45° angle between them. Find the value of the dot product $\vec{a} \cdot \vec{b}$:

- 6. Mark each of the following statements as either True or False:
 - (a) For a given vector \vec{a} , there are infinitely many vectors \vec{b} such that \vec{b} is parallel to \vec{a} . True or False?
 - (b) For a given vector \vec{a} , there are infinitely many unit vectors \vec{b} such that \vec{b} is parallel to \vec{a} . True or False?
 - (c) If \vec{a} and \vec{b} are perpendicular, then the unit vectors for \vec{a} and \vec{b} are also perpendicular. True or False?
 - (d) If \vec{a} and \vec{b} are parallel and $\vec{a} \cdot \vec{b} = |\vec{a}|^2$ (the magnitude of \vec{a} squared), then \vec{a} must \vec{b} must have the same magnitude. True or False?
 - (e) If the angle between \vec{a} and \vec{b} is 30°, then the angle between $2\vec{a}$ and $2\vec{b}$ must be 60°. True or False?

7. Challenge Problem (extra credit):

Consider the following three vectors:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 1 \\ c_y \\ c_z \end{pmatrix}$$

Find the values for c_y and c_z that make \vec{c} perpendicular to both \vec{a} and \vec{b} at the same time: (hint: start by setting up the dot-product equations)