Probability concentration

Yuyuexi

September 23, 2020

Contents

1	Markov process	1
2	Poincaré inequality	1
3	Subgaussian concentration	2
4	Log-Sobolev inequality	2
5	Lipschitz concentration	2
6	Talagrand inequality	3

1 Markov process

Definition (Markov process and Markov semigroup) A (homogeneous) Markov process $(X_t)_{t\in\mathbb{R}_+}$ is a random process that satisfies the Markov property: for every bounded measurable function f and $s,t\in\mathbb{R}_+$, there is a bounded measurable function P_sf such that

$$\mathbf{E}\left[f\left(X_{t+s}\right)\mid\left\{X_{r}\right\}_{r\leq t}\right]=\left(P_{s}f\right)\left(X_{t}\right)$$

In particular, $\{P_t\}_{t\in\mathbb{R}_+}$ defines a semigroup of linear operators on $L^p(\mu)$, called Markov semigroup.

Definition (generator) The generator \mathcal{L} is defined as

$$\mathscr{L}f := \lim_{t \to 0} \frac{P_t f - f}{t}$$

2 Poincaré inequality

Theorem (Poincareé inequality) Let P_t be reversible ergodic Markov semigroup with stationary measure μ . The following are equivalent given $c \geq 0$:

- 1. $\operatorname{Var}_{\mu}[f] \leq c\mathcal{E}(f, f)$ for all f
- 2. $||P_t f \mu f||_{L^2(\mu)} \le e^{-t/c} ||f \mu f||_{L^2(\mu)}$ for all f, t
- 3. $\mathcal{E}(P_t f, P_t f) \leq e^{-2t/c} \mathcal{E}(f, f)$ for all f, t

3 Subgaussian concentration

Theorem (Chernoff bound) Define the log-moment generating function ψ of a random variable X as $\psi(\lambda) := \log \mathbf{E} \left[e^{\lambda(X - \mathbf{E}X)} \right]$. Then $\mathbf{P}[X - \mathbf{E}X \ge t] \le e^{-[\lambda t - \psi(\lambda)]}$ for all $t \ge 0$

Definition (subgaussian variable) A random variable is called σ^2 -subgaussian if its log-moment generating function satisfies $\psi(\lambda) \leq \lambda^2 \sigma^2/2$ for all $\lambda \in \mathbb{R}$ (and the constant σ^2 is called the variance proxy).

4 Log-Sobolev inequality

Theorem (log-Soblev inequality) Let P_t be a Markov semigroup with stationary measure μ . The following are equivalent:

- 1. $\operatorname{Ent}_{\mu}[f] \leq c\varepsilon(\log f, f)$ for all f
- 2. $\operatorname{Ent}_{\mu}[P_t f] \leq e^{-t/c} \operatorname{Ent}_{\mu}[f]$ for all f, t
- 3. $\mathcal{E}(\log P_t f, P_t f) \leq e^{-t/c} \mathcal{E}(\log f, f)$ for all f, t if $\operatorname{Ent}_{\mu}[P_t f] \to 0$ as $t \to \infty$.

5 Lipschitz concentration

Definition (Wasserstein distance) The Wasserstein distance between probability measures $\mu, \nu \in \mathcal{P}_1(\mathbb{X}) := \{ \rho : \int d(x, \cdot) \rho(dx) < \infty \}$ is defined as

$$W_1(\mu,\nu) := \sup_{f \in \text{Lip}(\mathbb{X})} \left| \int f d\mu - \int f d\nu \right| \le \inf_{\mathbf{M} \in \mathcal{C}(\mu,\nu)} \mathbf{E}_{\mathbf{M}}[d(X,Y)]$$

Definition (Relative entropy) The relative entropy between probability measures ν and μ on any measurable space is defined as

$$D(\nu \| \mu) := \begin{cases} \operatorname{Ent}_{\mu} \left[\frac{d\nu}{d\mu} \right] & \text{if } \nu \ll \mu \\ \infty & \text{otherwise} \end{cases}$$

Theorem (Bobkov-Götze) Let $\mu \in \mathcal{P}_1(\mathbb{X})$ be a probability measure on a metric space (\mathbb{X}, d) . Then the following are equivalent for $X \sim \mu$:

1. f(X) is σ^2 -subgaussian for every $f \in \text{Lip}(X)$

2.
$$W_1(\nu,\mu) \leq \sqrt{2\sigma^2 D(\nu\|\mu)}$$
 for all ν

Theorem (Marton) Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a convex function, and let $w_i : \mathbb{X}_i \times \mathbb{X}_i \to \mathbb{R}_+$ be positive weight function. Suppose that for i = 1, ..., n

$$\inf_{\mathbf{M} \in \mathcal{C}(\mu_i, \nu)} \varphi\left(\mathbf{E}_{\mathbf{M}}\left[w_i(X, Y)\right]\right) \le 2\sigma^2 D\left(\nu \| \mu_i\right) \quad \text{for all } \nu$$

Then we have

$$\inf_{\mathbf{M}\in\mathcal{C}(\mu_{1}\otimes\cdots\otimes\mu_{n},\nu)}\sum_{i=1}^{n}\varphi\left(\mathbf{E}_{\mathbf{M}}\left[w_{i}\left(X_{i},Y_{i}\right)\right]\right)\leq2\sigma^{2}D\left(\nu\|\mu_{1}\otimes\cdots\otimes\mu_{n}\right)\quad\text{ for all }\nu$$

6 Talagrand inequality

Theorem (T_1 -inequality) Suppose that the probability measures μ_i on (X_i, d_i) satisfy the transportation cost (T_1) inequality

$$W_1(\mu_i, \nu) \leq \sqrt{2\sigma^2 D(\nu||\mu_i)}$$
 for all ν

Then we have

$$W_1(\mu_1 \otimes \cdots \otimes \mu_n, \nu) \leq \sqrt{2\sigma^2 D(\nu \mid \mu_1 \otimes \cdots \otimes \mu_n)}$$
 for all ν

on
$$(\mathbb{X}_1 \times \cdots \times \mathbb{X}_n, d_c)$$
, where $d_c = \sum_i^n c_i d_i$ and $\sum_i^n c_i^2 = 1$

Definition (Quadratic Wasserstein metric) The quadratic Wasserstein metric for probability measures μ, ν on a metric space (\mathbb{X}, d) is

$$W_2(\mu, \nu) := \inf_{\mathbf{M} \in \mathcal{C}(\mu, \nu)} \sqrt{\mathbf{E}\left[d(X, Y)^2\right]}$$

Theorem (T_2 -inequality) Suppose that the probability measures μ_i on (X_i, d_i) satisfy the quadratic transportation cost (T_2) inequality

$$W_2(\mu_i, \nu) \le \sqrt{2\sigma^2 D(\nu||\mu_i)}$$
 for all ν

Then we have

$$W_2(\mu_1 \otimes \cdots \otimes \mu_n, \nu) \leq \sqrt{2\sigma^2 D(\nu \mid \mu_1 \otimes \cdots \otimes \mu_n)}$$
 for all ν

on
$$\left(\mathbb{X}_1 \times \cdots \times \mathbb{X}_n, \left[\sum_{i=1}^n d_i^2\right]^{1/2}\right)$$