Homework 1 Report - PM2.5 Prediction

學號: B05902109 系級: 資工三 姓名: 柯上優

1. (1%)

請分別使用至少4種不同數值的learning rate進行training(其他參數需一致),對其作圖,並且討論其收斂過程差異。

以上只使用特徵pm2.5進行訓練,無進行任何資料整理。使用AdaGradient。可以發現,Learn rate 越大,收斂速度越快,紅線最快抵達區域極值所以RMSE不再變動,綠色下降速度其次,橘線在後。反觀Learn rate最小的藍線學習太慢,一直收斂不了。

2. (1%)

請分別使用每筆data9小時內所有feature的一次項(含bias項)以及每筆data9小時內PM2.5的一次項(含bias項)進行training,比較並討論這兩種模型的root mean-square error(根據kaggle上的public/private score)。

Features	Training	testing public	testing private
All	22.6044837272	9.02901	8.70808
pm2.5	5.5338208085	8.96531	8.70587

以上只將資料接起來,無進行特殊篩選,剔除無法以數學計算的RAINFALL值後,其他參數都一起 丟入AdaGradient。觀察發現,「pm2.5」的Training Loss偏低,private testing loss卻比較高,可 見pm2.5嚴重overfit。再來,「所有特徵」的Training Loss非常高,而「pm2.5」的Training Loss 極低,兩者的private testing loss卻極為接近,可以發現,直接訓練的狀況下,「所有特徵」並沒 有因此讓模型更加強大,或許需要資料的整理與篩選。此外,Training Loss遠大於testing表示, training data一定有很大的noise,若不進行資料清理,在優秀的模型也是枉然。

3. (1%)

請分別使用至少四種不同數值的regulization parameter λ進行training(其他參數需一至),討論及討論其RMSE(traning, testing)(testing根據kaggle上的public/private score)以及參數weight的L2 norm。

λ	Training	testing public	testing private
1e0	5.533821	8.96531	8.70587
1e3	5.541666	8.94814	8.72264
1e6	8.376644	9.65600	10.09798
1e9	32.849194	36.57342	36.01847

和前一題一樣無進行資料處理,純粹資料接上後進行訓練。觀察發現,隨著入的加大,理論上是為了限制住模型的複雜度,但是這個模型本身並不複雜(以特徵的一次項進行線性組合),限制住w的長度並沒有增加模型的強度,反而造成模型的能力下降。或許在更複雜的模型時,此方法能夠用來防止overfit,但在此狀況下,並沒有特殊成效。

4. (1%)

(4-a)

$$E_D(\mathbf{w}) = \sum_{n=1}^N r_n (t_n - \mathbf{w^T} \mathbf{x}_n)^2 = (R^{1/2} (T - XW))^2$$

where d is the dimension of x_i . R is a $N{\bf x}N$ diagonal matrix,

T is a $N \ge 1$ matrix, X is a $N \ge d$ matrix, and W is a $d \ge 1$ matrix.

$$rac{\mathrm{d}}{\mathrm{d}w}E_D(\mathbf{w}) = 2X^TRXW - 2X^TRT = O_{d\mathrm{x}1}$$

所求W為

$$W = (X^T R X)^{-1} X^T R T$$

(4-b)

方便套入上式,將題目的矩陣改為

$$T = \begin{bmatrix} 0 \\ 10 \\ 5 \end{bmatrix} X = \begin{bmatrix} 2 & 3 \\ 5 & 1 \\ 5 & 6 \end{bmatrix} R = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

由python計算得到

$$W = \left[egin{array}{c} 2.28275254 \ -1.13586237 \end{array}
ight]$$

5. (1%)

將雜訊加進 x,linear model變成

$$y((x_n+\epsilon_i),\mathbf{w})=w_0+\sum_{i=1}^D w_i(x_i+\epsilon_i)=\sum_{i=0}^D w_i(x_i+\epsilon_i)$$

where $x_0=1$. 而 $\epsilon_0=0$. 新的 sum-of-squares error function:

$$egin{aligned} E_{\epsilon}(\mathbf{w}) \ &= rac{1}{2} \sum_{n=1}^{N} ig(y((x_n + \epsilon_i), \mathbf{w}) - t_n)ig)^2 \ &= rac{1}{2} \sum_{n=1}^{N} ig(y(x_n, \mathbf{w}) + \sum_{d=1}^{D} w_d \epsilon_{nd} - t_n)ig)^2 \ &= rac{1}{2} \sum_{n=1}^{N} ig((y(x_n, \mathbf{w}) - t_n) + \sum_{d=1}^{D} w_d \epsilon_{nd}ig)^2 \ &= rac{1}{2} \sum_{n=1}^{N} ig((y(x_n, \mathbf{w}) - t_n) + \sum_{d=1}^{D} w_d \epsilon_{nd}ig) + (\sum_{d=1}^{D} w_d \epsilon_{nd})^2ig)^2 \end{aligned}$$

現在,我們取期望值,又根據期望值的線性特性

$$\mathbb{E}[E_\epsilon(\mathbf{w})] = rac{1}{2}\sum_{n=1}^N \left((y(x_n,\mathbf{w}) - t_n)^2 + 2(y(x_n,\mathbf{w}) - t_n)(\sum_{d=1}^D w_d \mathbb{E}[\epsilon_{nd}]) + \mathbb{E}[(\sum_{d=1}^D w_d \epsilon_{nd})^2]
ight)^2$$

分別討論三項。第一項已經變成了沒有雜訊的error function。第二項由於 $E[\epsilon_i]=0$ 所以消去。至於第三項

$$egin{aligned} \mathbb{E}[(\sum_{d=1}^D w_d \epsilon_{nd})^2] \ &= \mathbb{E}[\sum_{i=1}^D \sum_{j=1}^D w_i w_j \epsilon_i \epsilon_j] \ &= \sum_{i=1}^D \sum_{j=1}^D w_i w_j \mathbb{E}[\epsilon_i \epsilon_j] \ &= \sum_{d=1}^D w_d w_d \sigma^2 = w^2 \sigma^2 \end{aligned}$$

代入原式

$$egin{aligned} \mathbb{E}[E_{\epsilon}(\mathbf{w})] \ &= \mathbb{E}[E(\mathbf{w})] + rac{N}{2} w^2 \sigma^2 \end{aligned}$$

即為所求,在有雜訊分布的E等同於沒有雜訊的E配上一個weight-decay regularization term,其中 ${
m bias}({
m parameter}\;w_0)$ 並不在regularization term。

6. (1%)

Collaborator: b05902074 魏佑珊

首先我們先證明

$$det(exp(A)) = exp(Tr(A))$$

where A is a matrix.

proof>

$$det(exp(A)) = \prod_{i=1}^N exp(\lambda_i) = exp(\sum_{i=1}^N \lambda_i) = exp(Tr(A))$$

現在我們設一個新的方陣 B = lnA。我們有其特性:

$$det(A) = det(exp(lnA)) = det(exp(B)) = exp(Tr(B)) = exp(Tr(lnA))$$

接著兩邊取 ln

$$ln(det(A)) = ln(exp(Tr(lnA))) = Tr(lnA)$$

最後我們微分他,並使用微分的連鎖率

$$rac{\mathrm{d}}{\mathrm{d}lpha}ln(det(\mathbf{A})) = rac{\mathrm{d}}{\mathrm{d}lpha}Tr(lnA) = Tr(A^{-1}rac{\mathrm{d}}{\mathrm{d}lpha}A)$$