Решение задачи оптимальной остановки в рамках реализации алгоритма LongStaffShwartz

Мотивация

- Научиться принимать решения о времени исполнения американских опционов. Чтобы решить задачу ценообразования
- Пример: делать правильное хеджирование.

Как принимать решение

В день экспирации оптимальной стратегией будет исполнить опцион, если он находится в деньгах.

В любые дни ранее, оптимальная стратегия заключается в сравнении сегодняшней стоимости опциона с ожидаемыми стоимостями опциона если мы не будем исполнять опцион и если сегодня лучший вариант исполнения, то мы исполним опцион.

Таким образом, требуется определить, стоит ли исполнять опцион сразу (если он находится в деньгах) или лучше продолжить держать его (в надежде на увеличение стоимости актива и, соответственно, стоимости опциона).

Для этого сравнивают текущее значение опциона с ожидаемой будущей стоимостью, которая будет получена при продолжении его действия.

Пример принятия решений (in sample)

Stock price paths

Path	t = 0	t = 1	t=2	t = 3
1	1.00	1.09	1.08	1.34
2	1.00	1.16	1.26	1.54
3	1.00	1.22	1.07	1.03
4	1.00	.93	.97	.92
5	1.00	1.11	1.56	1.52
6	1.00	.76	.77	.90
7	1.00	.92	.84	1.01
8	1.00	.88	1.22	1.34

Stock price paths						
Path	t = 0	t = 1	t = 2	t = 3		
1	1.00	1.09	1.08	1.34		
2	1.00	1.16	1.26	1.54		
3	1.00	1.22	1.07	1.03		
4	1.00	.93	.97	.92		
5	1.00	1.11	1.56	1.52		
6	1.00	.76	77	.90		
7	1.00	.92	.84	1.01		
8	1.00	.88	1.22	1.34		

Cash-flow matrix at time 3

Cash-now maura at time 5					
t = 1	t = 2	t = 3			
		.00			
		.00			
	_	.07			
		.18			
		.00			
		.20			
	_	.09			
		.00			

Path	Y	X
1	.00 × .94176	1.08
2	_	_
3	$.07 \times .94176$	1.07
4	$.18 \times .94176$.97
5		
6	$.20 \times .94176$.77
7	$.09 \times .94176$.84
8		

Path	Exercise	Continuation		
1	.02	.0369		
2				
3	.03	.0461		
4	.13	.1176		
5				
6	.33	.1520		
7	.26	.1565		
8				

Пример принятия решений (in sample)

Optimal	early	exercise	decision	at	time	2
Optilia		CITCLCIOC	CCC LOLOII			_

	Exercise	Continuation
1	.02	.0369
2		
3	.03	.0461
4	.13	.1176
5		
6	.33	.1520
7	.26	.1565
8		

Cash-flow matrix at time 2

Path	t = 1	t = 2	t = 3
1		.00	.00
2		.00	.00
3		.00	.07
4		.13	.00
5		.00	.00
6		.33	.00
7		.26	.00
8		.00	.00

Option cash flow matrix

Path	t = 1	t = 2	t = 3	Path	t =
1	.00	.00	.00	1	
2	.00	.00	.00	2	(
3	.00	.00	.07	3	(
4	.17	.00	.00	4	
5	.00	.00	.00	5	
6	.34	.00	.00	6	
7	.18	.00	.00	7	
8	.22	.00	.00	8	

Повторим так еще 2 раза
И получим матрицу денежных потоков

Американский $\frac{((.17+.34+.18+.22)\cdot 0.94+.00\cdot 0.94^2+.07\cdot 0.94^3)}{8}=\0.114

$$OP = rac{1}{N} \sum_{t=1}^T \sum_{i=1}^N p_i \cdot (1-r)^t$$

$$\frac{(.07 + .18 + .2 + .09) \cdot 0.94^3}{8} = \$0.0564$$

Самоконтроль (out of sample)

- Чтобы проверить точность оценки опциона надо применить полученные регрессии на новых сгенерированный Монте-Карло путях (out of sample)
- 1. Обучив на in-sample мы получаем модель регрессии
- 2. На So получаем значение актива
- 3. Строим N траекторий
- 4. Регрессируем их еще дальше и принимаем решение останавливаться нам завтра или нет
- 5. Наступает следующий день убираем те траектории на которых остановились
- 6. Повторяем с шага 4 столько раз сколько было регрессий
- 7. Получив матрицу денежных потоков считаем цену европейского и американского опционов

Результаты

- В ходе реализации статьи были получены результаты аналогичные результатам статьи используя те же пути которые были в примере. И на собственных синтетических примерах.
- Был реализован алгоритм самопроверки правильности оценки опциона(out of sample).
- Было проверено, что функция цен опциона убывает и выпукла к низу.

Результаты

```
Количество траекторий = 1000
Длина траектории = 4
Страйк цена = 1.1
Реальная начальная цена = 1
Безрисковая процентная ставка = 5.8239
Волатильность = 1.2129
Тип опциона = "put"
```

Цена американского опциона: 0.08206828218233461 Цена европейского опциона: 0.06151452978267553

Out of sample цены опционов

Цена американского опциона: 0.08471599369649761 Цена европейского опциона: 0.0609986885736957

Выводы

- В этой статье представлен простой новый метод аппроксимации стоимости опционов в американском стиле путем моделирования. Этот подход интуитивно понятен, точен, прост в применении и эффективен в вычислительном отношении.
- Дальнейшее развитие: Новые регрессии, другие виды опционов,