

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Álgebra I Examen II

Los Del DGIIM, losdeldgiim.github.io

José Juan Urrutia Milán Arturo Olivares Martos

Granada, 2023-2024

Asignatura Álgebra I.

Curso Académico 2021-22.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor María Pilar Carrasco Carrasco.

Descripción Examen Ordinario.

Fecha 14 de enero de 2022.

Duración 3 horas.

Ejercicio 1. Verdadero o falso:

- Sea A un DE con $\phi: A \setminus \{0\} \to \mathbb{N}$ su función euclídea. Sean $a, b \in A$ elementos no nulos tales que $a \mid b \ y \ b \nmid a$. Entonces: $\phi(a) < \phi(b)$.
- El anillo $\mathbb{Z}_{120} \times \mathbb{Z}_{60}$ tiene 48 unidades.
- En $\mathbb{Z}[\sqrt{2}]$, los elementos $\sqrt{2}$ y $4 + 3\sqrt{2}$ son unidades.
- Sea A un anillo conmutativo, entonces U(A) = U(A[x]).
- Sea $\alpha = a + bi \in \mathbb{Z}[i]$ con $a, b \neq 0$. Entonces, α es irreducible si, y sólo si $a^2 + b^2$ es primo en \mathbb{Z} .

Ejercicio 2. Encuentre un polinomio $f(x) \in \mathbb{Z}_7[x]$ de grado 8 tal que: $f(x) \equiv x+2 \mod (3x^2+4x+3)$ y $f(x) \equiv 5x^2+2x+3 \mod (2x^2+3)$.

Ejercicio 3.

- Factoriza en $\mathbb{Z}[i]$ el elemento $\alpha = 31 + 12i$.
- Estudie si es o no irreducible en $\mathbb{Q}[x]$ el polinomio $f(x) = x^6 + x^5 + 2x^4 x^3 + 4x^2 + 3x + 1$.

Ejercicio 4. En el anillo $\mathbb{Z}_2[x]$, sea $f(x) = x^3 + 1$ e $I = f(x)\mathbb{Z}_2[x]$, el ideal principal generado por f(x). Describa el anillo cociente \mathbb{Z}_2/I , listando todos sus elementos y calculando el inverso de aquellos que lo tengan.

Ejercicio 1. Verdadero o falso:

■ Sea A un DE con $\phi: A \setminus \{0\} \to \mathbb{N}$ su función euclídea. Sean $a, b \in A$ elementos no nulos tales que $a \mid b \ y \ b \nmid a$. Entonces: $\phi(a) < \phi(b)$.

Verdadero:

Como $a \mid b \Rightarrow \exists k \in A \text{ tal que } b = ka \Rightarrow \phi(b) = \phi(ka) \geqslant \phi(a).$

Supongamos que $\phi(a) = \phi(b)$:

Dividimos a entre $b, \exists q, r \in A$ tales que:

$$a = bq + r$$
 \wedge
$$\begin{cases} r = 0 \\ \forall \\ \phi(r) < \phi(b) \end{cases}$$

Como $b \nmid a \Rightarrow r \neq 0 \Rightarrow \phi(r) < \phi(b) \Rightarrow \phi(r) < \phi(a)$

$$r = a - bq = a - kaq = a(1 - kq) \Rightarrow \phi(r) = \phi(a(1 - kq)) \geqslant \phi(a) = \phi(b)$$

Pero también tenemos que $\phi(r) < \phi(b)$. Contradicción, luego $\phi(a) \neq \phi(b)$.

En definitiva, $\phi(a) < \phi(b)$.

■ El anillo $\mathbb{Z}_{120} \times \mathbb{Z}_{60}$ tiene 48 unidades.

Falso:

$$|U(\mathbb{Z}_{120})| = \varphi(120) = \varphi(2^3 \cdot 3 \cdot 5) = 4 \cdot 1 \cdot 2 \cdot 4 = 32$$

$$|U(\mathbb{Z}_{60})| = \varphi(60) = \varphi(2^2 \cdot 3 \cdot 5) = 2 \cdot 1 \cdot 2 \cdot 4 = 16$$

Sea $(a,b) \in U(\mathbb{Z}_{120} \times \mathbb{Z}_{60}) \Rightarrow \exists (c,d) \in (\mathbb{Z}_{120} \times \mathbb{Z}_{60})$ tales que:

$$(a,b)(c,a) = 1 = (1,1) \Rightarrow (ac,ba) = (1,1) \Rightarrow$$

$$\Rightarrow \begin{cases} ac = 1 \text{ en } \mathbb{Z}_{120} \Rightarrow a,c \in U(\mathbb{Z}_{120}) \\ \land \\ bd = 1 \text{ en } \mathbb{Z}_{60} \Rightarrow b,d \in U(\mathbb{Z}_{60}) \end{cases} \Rightarrow$$

$$\Rightarrow U(\mathbb{Z}_{120} \times \mathbb{Z}_{60}) = \begin{cases} a \in U(\mathbb{Z}_{120}) \\ b \in U(\mathbb{Z}_{60}) \end{cases}$$

Luego:

$$|U(\mathbb{Z}_{120} \times \mathbb{Z}_{60})| = |U(\mathbb{Z}_{120})||U(\mathbb{Z}_{60})| = \varphi(120)\varphi(60) = 32 \cdot 16 = 2^5 \cdot 2^4 = 2^9 = 512$$

■ En $\mathbb{Z}[\sqrt{2}]$, los elementos $\sqrt{2}$ y $4 + 3\sqrt{2}$ son unidades.

Falso:

Sean $\alpha = \sqrt{2}$ y $\beta = 4 + 3\sqrt{2}$:

$$N(\sqrt{2}) = -2 \neq \pm 1 \Rightarrow \alpha \notin U(\mathbb{Z}[\sqrt{2}])$$
$$N(4 + 3\sqrt{2}) = 16 - 2 \cdot 9 = -2 \neq \pm 1 \Rightarrow \beta \notin U(\mathbb{Z}[\sqrt{2}])$$

• Sea A un anillo conmutativo, entonces U(A) = U(A[x]).

Falso:

Sea $A = \mathbb{Z}_4$ un anillo conmutativo: Por ser $A \subseteq A[x]$, es claro que $U(A) \subseteq U(A[x])$.

Sea $f = 2x + 1 \in \mathbb{Z}_4[x]$:

$$f^2 = (2x+1)^2 = (4x^2 + 4x + 1) = 1$$

Luego $f^{-1} = f \Rightarrow f \in U(A[x])$. Pero $f \notin A \Rightarrow f \notin U(A)$. Por tanto, $U(\mathbb{Z}_4[x]) \nsubseteq U(\mathbb{Z}_4) \Rightarrow U(\mathbb{Z}_4[x]) \neq U(\mathbb{Z}_4)$.

■ Sea $\alpha = a + bi \in \mathbb{Z}[i]$ con $a, b \neq 0$. Entonces, α es irreducible si, y sólo si $a^2 + b^2$ es primo en \mathbb{Z} .

Verdadero:

 \Rightarrow) Supongamos que α es irreducible:

Como $\mathbb{Z}[i]$ es un DFU, primo equivale a irreducible, luego:

 $N(\alpha) \in \{\pm p, \pm p^2\} \text{ con } p \in \mathbb{Z} \text{ primo.}$

Por ser $N(\alpha) = a^2 + b^2 > 0 \Rightarrow N(\alpha) \in \{p, p^2\}$, con p primo en \mathbb{Z} .

Supongamos que $N(\alpha) = p^2$ con $p \in \mathbb{Z}$ primo:

$$N(\alpha) = p^2 \Rightarrow \alpha \sim p \Rightarrow \exists u \in U(\mathbb{Z}[i]) \mid p = \alpha u$$

$$U(\mathbb{Z}[i]) = \{1, -1, i, -i\} \Rightarrow p \in \{\alpha, -\alpha, i\alpha, -i\alpha\}$$

Sin embargo, como $\alpha = a + bi$ con $a, b \neq 0 \Rightarrow p \notin \mathbb{Z}$, contradicción. Luego $N(\alpha) = p$ con $p \in \mathbb{Z}$ primo.

 \Leftarrow) Supongamos que $N(\alpha) = p \in \mathbb{Z}$ primo: Supongamos que α es reducible $\Rightarrow \exists \gamma, \beta \notin U(\mathbb{Z}[i]) \mid \alpha = \beta \gamma$.

$$p = N(\alpha) = N(\beta)N(\gamma) \Rightarrow \left\{ \begin{array}{c} N(\beta) \mid p \\ \wedge \\ N(\gamma) \mid p \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} N(\beta) = \pm 1 \\ \vee \\ N(\gamma) = \pm 1 \end{array} \right\} \Rightarrow$$

$$\Rightarrow \left\{ \begin{array}{l} \beta \in U(\mathbb{Z}[i]) \\ \vee \\ \gamma \in U(\mathbb{Z}[i]) \end{array} \right. \quad \underline{\text{Contradicción}}$$

Luego α es irreducible.

Ejercicio 2. Encuentre un polinomio $f(x) \in \mathbb{Z}_7[x]$ de grado 8 tal que: $f(x) \equiv x+2 \mod (3x^2+4x+3)$ y $f(x) \equiv 5x^2+2x+3 \mod (2x^2+3)$.

$$\begin{cases} f \equiv x + 2 \mod (3x^2 + 4x + 3) \\ f \equiv 5x^2 + 2x + 3 \mod (2x^2 + 3) \end{cases}$$

De la primera congruencia:

$$f = x + 2 + g \cdot (3x^2 + 4x + 3) \text{ con } g \in \mathbb{Z}_7[x]$$

De la segunda:

$$f = x + 2 + g \cdot (3x^2 + 4x + 3) \equiv 5x^2 + 2x + 3 \mod (2x^2 + 3) \Rightarrow$$

 $\Rightarrow g \cdot (3x^2 + 4x + 3) \equiv 5x^2 + x + 1 \mod (2x^2 + 3)$

Calculamos $mcd(3x^2 + 4x + 3, 2x^2 + 3)$:

$$\begin{array}{c|ccccc}
2x^2 & +3 & 4x + 2 \\
-16x^2 & -8x & 4x + 5 \\
\hline
& 6x & +3 \\
& -20x & -10 \\
\hline
& 0
\end{array}$$

Luego $mcd(3x^2 + 4x + 3, 2x^2 + 3) = 4x + 2$

 $4x+2\mid 5x^2+x+1 \Rightarrow \text{ el sistema tiene solución}$

$$g \cdot (3x^2 + 4x + 3) \equiv 5x^2 + x + 1 \mod (2x^2 + 3) \Rightarrow$$
$$\Rightarrow g \cdot (6x + 5) \equiv 3x + 4 \mod (4x + 5)$$

Calculamos mcd(6x + 5, 4x + 5):

$$\begin{array}{c|cccc}
6x & +5 & 4x + 5 \\
-20x & -25 & 5
\end{array}$$

$$\begin{array}{cccc} r_i & u_i & v_i \\ 6x + 5 & 1 & 0 \\ 4x + 5 & 0 & 1 \\ 1 & 1 & -5 \end{array}$$

$$mcd(6x + 5, 4x + 5) = 1 = (6x + 5) + (-5)(4x + 5)$$

$$5(4x+5) = (6x+5)-1 \Rightarrow 6x+5 \equiv 1 \mod (4x+5) \Rightarrow (3x+4)(6x+5) \equiv 3x+4 \mod (4x+5)$$

Luego $g_0 = 3x + 4$ es una solución particular del sistema.

$$\begin{array}{c|cccc}
3x & +4 & 4x+5 \\
-24x & -30 & 6
\end{array}$$

 $g_0'=2$ es la solución óptima del sistema.

Luego las soluciones son:

$$g = 2 + (4x + 5)h \mid h \in \mathbb{Z}_7[x]$$

Buscamos ahora un polinomio f de grado 8 que sea solución del sistema.

Como $f = x + 2 + g \cdot (3x^2 + 4x + 3)$, sea $h \in \mathbb{Z}_7[x]$:

$$x+2+[2+(4x+5)h](3x^2+4x+3) = x+2+6x^2+x+6+(4x+5)(3x^2+4x+3)h =$$

$$= 6x^2+2x+1+(4x+5)(3x^2+4x+3)h$$

Como $grd(f) = 8 \Rightarrow grd[(4x+5)(3x^2+4x+3)h] = 8$

$$\operatorname{grd}(4x+5) + \operatorname{grd}(3x^2 + 4x + 3) + \operatorname{grd}(h) = 8 \Rightarrow$$

$$\Rightarrow 1 + 2 + \operatorname{grd}(h) = 8 \Rightarrow \operatorname{grd}(h) = 5$$

 $h_0 = x^5$ es una solución particular:

$$f_0 = 6x^2 + 2x + 1 + (4x + 5)(3x^2 + 4x + 3)x^5 = 6x^2 + 2x + 1 + (4x^6 + 5x^5)(3x^2 + 4x + 3) =$$

$$= 5x^8 + 3x^7 + 4x^6 + x^5 + 6x^2 + 2x + 1 \text{ es una solución particular.}$$

En general, sirve cualquier:

$$f = 6x^2 + 2x + 1 + (4x + 5)(3x^2 + 4x + 3)h \mid h \in \mathbb{Z}_7[x] \land \operatorname{grd}(h) = 5$$

Ejercicio 3.

• Factoriza en $\mathbb{Z}[i]$ el elemento $\alpha = 31 + 12i$.

$$N(\alpha) = 31^2 + 12^2 = 1105 = 5 \cdot 13 \cdot 17$$

Busco irreducibles en $\mathbb{Z}[i]$ cuya norma sea 5. Sea $\beta = a + bi$:

$$N(\beta) = 5 = a^2 + b^2 \Rightarrow \left\{ \begin{array}{ll} a = \pm 2 & \wedge & b = \pm 1 \\ \vee & & \\ a = \pm 1 & \wedge & b = \pm 2 \end{array} \right\} \Rightarrow \left\{ \begin{array}{ll} 2+i & \text{y asociados} \\ 1+2i & \text{y asociados} \end{array} \right.$$

Como sus normas son 5, primo, son irreducibles.

Divido α entre 2+i:

$$\frac{31+12i}{2+i} = \frac{(31+12i)(2-i)}{5} = \frac{62-31i+24i+12}{5} = \frac{74-7i}{5} \notin \mathbb{Z}[i]$$

Luego $2 + i \nmid \alpha$.

Divido α entre 1 + 2i:

$$\frac{31+12i}{1+2i} = \frac{(31+12i)(1-2i)}{5} = \frac{31+12i-62i+24}{5} = \frac{55-50i}{5} = 11-10i$$

Luego $\alpha = (1+2i)\beta \text{ con } \beta = 11-10i.$

Factorizo ahora β :

$$N(\beta) = 11^2 + 10^2 = 13 \cdot 17$$

Busco irreducibles en $\mathbb{Z}[i]$ cuya norma sea 13. Sea $\gamma = a + bi$:

$$N(\gamma) = a^2 + b^2 = 13 \Rightarrow \left\{ \begin{array}{ccc} a = \pm 2 & \wedge & b = \pm 3 \\ \vee & & \\ a = \pm 3 & \wedge & b = \pm 2 \end{array} \right\} \Rightarrow \left\{ \begin{array}{ccc} 2 + 3i & \text{y asociados} \\ 3 + 2i & \text{y asociados} \end{array} \right.$$

Como sus normas son 13, primo, son irreducibles.

Divido β entre 3 + 2i:

$$\frac{11 - 10i}{3 + 2i} = \frac{(11 - 10i)(3 - 2i)}{13} = \frac{33 - 30i - 22i - 20}{13} = 1 - 4i \Rightarrow$$

$$\Rightarrow \alpha = (1+2i)(3+2i)\gamma \text{ con } \gamma = 1-4i \in \mathbb{Z}[i]$$

Como $N(\gamma) = 1^2 + 4^2 = 17$, con 17 primo, γ es irreducible.

$$\alpha = (1+2i)(3+2i)(1-4i)$$

Como las normas de los tres factores son distintas, no son asociados.

■ Estudie si es o no irreducible en $\mathbb{Q}[x]$ el polinomio $f(x) = x^6 + x^5 + 2x^4 - x^3 + 4x^2 + 3x + 1$.

Error de enunciado, el ejercicio no puede resolverse (reducir módulo 2 o 3 no aporta ninguna información).

Ejercicio 4. En el anillo $\mathbb{Z}_2[x]$, sea $f(x) = x^3 + 1$ e $I = f(x)\mathbb{Z}_2[x]$, el ideal principal generado por f(x). Describa el anillo cociente \mathbb{Z}_2/I , listando todos sus elementos y calculando el inverso de aquellos que lo tengan.

Como grd(f) = 3:

$$\mathbb{Z}_2/I = \{g + I \mid grd(g) < 3 \land g \in \mathbb{Z}_2[x]\} =$$

 ${0+I, 1+I, x+I, (x+1)+I, x^2+I, (x^2+1)+I, (x^2+x)+I, (x^2+x+1)+I}$

Calculamos el inverso de los elementos que lo tengan:

- (0+I) no tiene inverso.
- $(1+I)^{-1} = (1+I).$
- $(x+I)^{-1} = (x^2+I)$:

$$mcd(x, f) = mcd(x, x^3 + 1) = 1 \Rightarrow \exists (x + I)^{-1}$$

$$\begin{array}{c|c} x^3 & +1 \ \underline{x} \\ -x^3 & x^2 \end{array}$$

$$1 = (x^3 + 1) + x(-x^2) = (x^3 + 1) + x(x^2)$$
 en $\mathbb{Z}_2[i]$

• (x+1) + I no tiene inverso:

$$mcd(x+1, x^3+1) = x+1 \nsim 1 \Rightarrow \nexists [(x+1)+I]^{-1}$$

- $(x^2 + I)^{-1} = (x + I).$
- $(x^2 + 1) + I$ no tiene inverso:

$$mcd(x^2 + 1, x^3 + 1) = x + 1 \nsim 1 \Rightarrow \nexists [(x^2 + 1) + I]^{-1}$$

• $(x^2 + x) + I$ no tiene inverso:

$$mcd(x^2 + x, x^3 + 1) = x + 1 \nsim 1 \Rightarrow \nexists [(x^2 + x) + I]^{-1}$$

• $(x^2 + x + 1) + I$ no tiene inverso:

$$mcd(x^2 + x + 1, x^3 + 1) = x^2 + x + 1 \approx 1 \Rightarrow \nexists [(x^2 + x + 1) + I]^{-1}$$