Deep Learning par la Pratique

Reccurent Neural Networks et Autoencodeurs

GIRAUD François-Marie

16 octobre 2019

Deep Learning par la Pratique

Cours 3: Recurrent Neural Networks et Autoencodeurs

Rappels

Machine Learning

Les Données Séquentielles

Données ancrées dans le temps

Séquences de données à dimension fixe

Soit
$$X = (x_i)_{1 < i < k}$$
 un ensemble de k exemples : où : $x_i = (x_i^1, ..., x_i^{n_i})$ avec x_i une séquence de n_i frames

Pour des séries d'entiers par exemple :

$$x_1 = (1, 3, 5, 2, 8)$$

 $x_2 = (7, 3)$
 $x_3 = (4, 0, 9, 1)$
 $x_4 = (...)$

Pour des séries de vecteurs :

$$x_1 = ([2,5], [9,8], [3,6])$$

 $x_2 = ([1,1], [3,4], [5,4], [3,2], [8,1])$
 $x_3 = (...)$

<u>Texte</u>

- 1 : lorem ipsum dolor sit amet, consectetur adipiscing elit, ...
- 2 : Great minds discuss ideas; average minds discuss events; small minds discuss people.
- 3 : Hier, mon voisin a mangé une pomme et sa femme une poire.
- 4:...

A.D.N

1: ATGCGATCTATCGCTAGCCGCGCTATACGCA

3 : ...

Son

Video

- Météo (time, Lat., Long., T°, P, X_{vent} , Y_{vent} , Q_{pluie})
- Santé (time, T°, Pouls, ...)
- Economie (time, dollar, euro, livre, yen, BTC, riz ...)
- Comportements Clients (time, action-event, ...)
- ..

Machine Learning

Les Modèles Récursifs

Des tâches variées :

- Prédiction d'une classe
- Prédiction de la suite d'une séquence
- Génération de séquence
- Découverte de Patterns

```
Prédiction d'une classe : input : x_i = (1, 6, 8, 4) output : "good" or "bad"
```

- Son (chant d'oiseau, personne, genre musical, ...)
- Vidéos (film, documentaire, stand up , ...)
- ...

Certain modèles permettent de clusteriser (non-supervisée)

Prédiction de la suite d'une séquence :

input : $x_i = (1, 2, 3, 4, 5)$ output : 6

- Données Économiques
- Comportement Clients
- Météo
- Modèle de Langage
- ...

Génération:

input :
$$x_1 = (1,3,5), x_2 = (7,9,11)$$
 output : $(5,7,9)$

- Génération de partitions
- Texte vers Voix
- Voix vers Texte
- ...

Découverte de Patterns :

- Découverte de gènes
- Compression de signal
- Décrire et comprendre des phénomènes
- ...

Machine Learning

Feed-Forward Neural Network

$$h_t = \sigma_h(U * x_t + V * h_{t-1} + b_h)$$

$$o_t = \sigma_o(W * h_t + b_o)$$

- x_t: vecteur d'entrée
- h_t: vecteur de la couche cachée
- ullet o_t : vecteur de sortie
- U, V, W, b_h et b_o : matrices et vecteurs (paramètres)
- σ_h et σ_o : fonctions d'activation (ReLu)

Prédiction de la suite d'une séquence (ex : modèle de langage)

Peut être utilisé pour générer de nouvelles séquences

Prédiction d'une classe

Génération d'une séquence (seq2seq)

Le problème du gradient qui disparaît (vanishing gradient)

Machine Learning

Long-Short Term Memory

Long-Short Term Memory

•
$$F_t = \sigma(W_F * x_t + U_F * h_{t-1} + b_F)$$
 (forget gate)

•
$$I_t = \sigma(W_I * X_t + U_I * h_{t-1} + b_I)$$
 (input gate)

•
$$O_t = \sigma(W_O * x_t + U_O * h_{t-1} + b_O)$$
 (output gate)

•
$$c_t = F_t \circ c_{t-1} + I_t \circ \tanh(W_c * X_t + U_c * h_{t-1} + b_c)$$

•
$$h_t = O_t \circ \tanh(c_t)$$

$$\bullet \quad o_t = f(W_o * h_t + b_o)$$

1

Long-Short Term Memory

vanishing gradient "résolu" (ou presque)

Machine Learning

D'autres variantes...

Gated Recurrent Unit

$$Z_t = \sigma(W_Z * x_t + U_Z * h_{t-1} + b_Z)$$
 (update gate \approx input et forget gates) $R_t = \sigma(W_R * x_t + U_R * h_{t-1} + b_R)$ (reset gate \approx output gate) $h_t = Z_t \circ h_{t-1} + (1 - Z_t) \circ \tanh(W_h * x_t + U_h(R_t \circ h_{t-1}) + b_h)$ Moins de paramètres que LSTM, aussi efficace dans beaucoup de tâches

1

RNN bi-directionnels

Permet de "gérer" des séquences plus longues

Dans des réseaux récurrents profonds, on peut ajouter des récurrences entre les différentes couches...

Problématiques liées au machine learning

Données à dimension variable : Traitement du langage

Traitement du langage : données

Classification:

- thème/genre (gutenberg.org : 57k livres)
- auteur (gutenberg.org : 57k livres)
- sentiment (Kaggle movie review : 222k commentaires rotten tomatoes)
- reconnaissance d'entités nommées (Kaggle Annotated Corpus for NER : 1.3M tags)
- ...

Traitement du langage : données

Compréhension:

- Question/réponses (SQUAD : 150k questions)
- Traduction (europarl : 450k phrases alignées)
- ..

Traitement du langage : word embeddings

```
mot = indice dans un dictionnaire (dimension > 30000)
mot = vecteur "sémantique" (dimension < 1000)
```

- word2vec
- CBOW/Skip-Gram
- Thought vector (pour des phrases ou même des documents entiers)
- ..

Traitement du langage : word embeddings

Traitement du langage : word embeddings

Démo dans l'espace word2vec Visualisation de l'espace word2vec

Traitement du langage : Modèle à attention

Transcription et synthèse de la parole

Identification du locuteur

Chatbot

```
Welcome to
                                   IIII ZZZZZZZ
                    EEEEEE LLLLLL IIII ZZZZZZZ AA
 Eliza is a mock Rogerian psychotherapist.
 The original program was described by Joseph Weizenbaum in 1966.
 This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you ?
      Men are all alike.
ELIZA: What is the connection, do you suppose ?
YOU: They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?
      Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here ?
      He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
YOU: It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy ?
```

Chatbot

Moteur de recherche

Extraction de données

Démo reconnaissance d'entitées nomées

Analyse de sentiments

Démo analyse de sentiments

Résumé

Input: Article 1st sentence	Model-written headline
metro-goldwyn-mayer reported a third-quarter net loss of dlrs 16 million due mainly to the effect of accounting rules adopted this year	mgm reports 16 million net loss on higher revenue
starting from july 1, the island province of hainan in southern china will implement strict market access control on all incoming livestock and animal products to prevent the possible spread of epidemic diseases	hainan to curb spread of diseases
australian wine exports hit a record 52.1 million liters worth 260 million dollars (143 million us) in september, the government statistics office reported on monday	australian wine exports hit record high in september

Traduction

Démo traduction de DeepL

Deep Learning par la Pratique

Travaux Pratiques: RNN

Travaux Pratiques

RNN

Deep Learning par la Pratique

Autoencodeurs

Autoencodeurs

Deep Learning par la Pratique

Travaux Pratiques : Autoencodeurs

Travaux Pratiques

Autoencodeurs