

Department of Artificial Intelligence and Data Science

QUESTION BANK FOR IV Sem (Term: May-August 2023)

Machine learning Laboratory (AIL45)

I.A. Marks: 50 Exam Hours: 03 Credits: 0:0:1 Exam Marks: 50

Sl.No	Questions			
1.	Write a program to implement linear regression considering the dataset with attributes hours Studied = $[2, 3, 4, 5, 6]$ and exam scores = $[70, 75, 75]$	Mapping CO1		
	85, 90, 95]. Predict the new values for exam scores given hours Studied as 7.			
2.	Write a program to implement Gradient Descent algorithm using the dataset California housing price prediction and perform the following	CO1		
	operations			
	1. import dataset			
	2. display first 5 rows			
	3. check the number of samples of each class in Species			
	4. check whether the data set contains the null values			
	6. visualize the data in the form of graphs			
	7. Obtain covariance and correlation values			
	8. train and test model			
	9. Apply regression model			
	10. predict the accuracy and plot graph	CO1		
3.	Write a program to implement logistic regression considering iris dataset	CO1		
	and perform the following operations			
	1. import dataset			
	2. display first 5 rows			
	3. check the number of samples of each class in Species4. check whether the data set contains the null values			
	6. visualize the data in the form of graphs			
	5. Obtain covariance and correlation values			
	6. train and test model			
	7. Apply regression model			
	8. predict the accuracy and plot graph			
4.	Write a program to implement MNIST handwritten digit classification.	CO1		
5.	Write a program to implement the FIND-S algorithm for finding the most	CO2		
	specific hypothesis based on a given set of training data samples. Read the			
	training data from a enjoysport.CSV file.			
6.	Write a program to implement the Candidate-Elimination algorithm to	CO2		
	output a description of the set of all hypotheses consistent with the training			
	examples. Read the training data from a playtennis. CSV file.			
7.	Write a program to Demonstrate the working of the decision tree based	CO2		
	ID3 algorithm . Use an playtennis.csv data set for building the decision			
	tree and apply this knowledge to classify a new sample and plot the tree.			

8.	Write a program to implement Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.						
9.	Write a program to implement the naïve Bayesian classifier to classify the following English text. I love this sandwich, pos This is an amazing place, pos I feel very good about these cheese, This is my best work,pos What an awesome view, pos I do not like this restaurant, neg I am tired of this stuff,neg I can't deal with this,neg He is my sworn enemy, neg My boss is horrible,neg This is an awesome place, pos I do not like the taste of this juice, neg I love to dance,pos I am sick and tired of this place,neg What a great holiday, pos That is a bad locality to stay,neg We will have good fun tomorrow, pos I went to my enemy's house today,neg. Predict the following. 1. Total Instances of Dataset 2. Obtain Accuracy values 3. Obtain Recall values 4. Obtain Precision values						
10	## Write a program to implement the following using below dataset which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using k-means clustering with k=3 means (i.e., 3centroids) VAR1	CO3					
11	0.773 0.186 1						
12	Write a program to implement Naïve Bayes using Bayesian network model considering heart disease dataset. Use this model to predict the disease.	CO3					

13	Write a program to implement K-Nearest Neighbor algorithm using iris	CO3					
	dataset.						
	 import dataset display first 5 rows visualize the data in the form of graphs train and test the model 						
	7. Apply the KNN classifier						
	8. Classify the species by providing the test data						
14	· · · · · · · · · · · · · · · · · · ·	CO3					
	1. Read the Given data Sample to X and the curve (linear or non linear) to Y 2. Set the value for Smoothening parameter or Free parameter say τ						
	3. Set the bias /Point of interest set x0 which is a subset of X4. Determine the weight matrix using :						
	$w(x, x_o) = e^{-\frac{(x - x_o)^2}{2\tau^2}}$						
	5. Determine the value of model term parameter β using :						
	$\hat{\beta}(x_o) = (X^T W X)^{-1} X^T W y$						
	6. Prediction = $x0*\beta$:						

Marks Distribution:

Conduction and Result	Write-Up	Execution	Viva	Change of Program	Total
50M	8M	35M	7M	-10 Marks	50 Marks