Proof sketches

1 Lecture 1

Lemma 1.1. $||\psi_{\vec{0}}^0\rangle - |\psi_{\vec{i}}^0\rangle|| = 0$

Proof.
$$|\psi_{\vec{0}}^0\rangle = |\psi_{\vec{i}}^0\rangle = U_0|0,0\rangle$$

Lemma 1.2. $\||\psi_{\vec{0}}^T\rangle - |\psi_{\vec{i}}^T\rangle\| \ge 1/3$ if the algorithm succeeds $wp \ge 2/3$ after T queries

Proof. Success conditions: $\|(\mathrm{Id}\otimes|0\rangle\langle0|)|\psi_{\vec{0}}^T\rangle\|^2 \geq 2/3$ and $\|(\mathrm{Id}\otimes|1\rangle\langle1|)|\psi_{\vec{i}}^T\rangle\|^2 \geq 2/3$

Lemma 1.3. $\||\psi_{\vec{0}}^{t+1}\rangle - |\psi_{\vec{i}}^{t+1}\rangle\| \le \||\psi_{\vec{0}}^t\rangle - |\psi_{\vec{i}}^t\rangle\| + \sqrt{q_i^t}$

Proof.

$$\begin{split} \||\psi_{\vec{0}}^{t+1}\rangle - |\psi_{\vec{i}}^{t+1}\rangle\| &= \|U_{t+1}|\psi_{\vec{0}}^t\rangle - U_{t+1}O_{\vec{i}}|\psi_{\vec{i}}^t\rangle\| & \text{by definition and } O_{\vec{0}} &= \operatorname{Id} \\ &= \||\psi_{\vec{0}}^t\rangle - O_{\vec{i}}|\psi_{\vec{i}}^t\rangle\| & \text{unitary preserves norm} \\ &= \|O_{\vec{i}}(|\psi_{\vec{0}}^t\rangle - |\psi_{\vec{i}}^t\rangle) + (\operatorname{Id} - O_{\vec{i}})|\psi_{\vec{0}}^t\rangle\| \\ &\leq \|O_{\vec{i}}(|\psi_{\vec{0}}^t\rangle - |\psi_{\vec{i}}^t\rangle)\| + \|(\operatorname{Id} - O_{\vec{i}})|\psi_{\vec{0}}^t\rangle\| & \text{by triangle inequality} \\ &= \||\psi_{\vec{0}}^t\rangle - |\psi_{\vec{i}}^t\rangle\| + \|(\operatorname{Id} - O_{\vec{i}})|\psi_{\vec{0}}^t\rangle\| \end{split}$$

We have $\operatorname{Id} - O_{\vec{i}} = |i\rangle\langle i| \otimes (\operatorname{Id} - X)$ where $X = |1\rangle\langle 0| + |0\rangle\langle 1|$. Hence, $\|(\operatorname{Id} - O_{\vec{i}})|\psi_{\vec{0}}^t\rangle\| = \|(|i\rangle\langle i| \otimes (\operatorname{Id} - X))|\psi_{\vec{0}}^t\rangle\|\| \leq 2\|(|i\rangle\langle i| \otimes \operatorname{Id})|\psi_{\vec{0}}^t\rangle\|\| = \sqrt{q_i^t}$, where we used that $\|\operatorname{Id} \otimes (\operatorname{Id} - X)\| \leq 2$. \square

Theorem 1.4. $Q(OR) \ge \sqrt{n}/3$

Proof.
$$n/3 \leq \sum_{i=1}^{n} \sum_{t=0}^{T} \sqrt{q_i^t} \leq \sqrt{nT \sum_{i=1}^{n} \sum_{t=0}^{T} q_i^t} = \sqrt{nT} \Rightarrow T \geq \sqrt{n}/3.$$