数据结构与算法

Data Structures and Algorithms

第六部分排序

数据结构

、线性表

- (一) 线性表的基本概念
- (二) 线性表的实现
- (三) 线性表的应用
- 二、栈、队列和数组
- (一) 栈和队列的基本概念
- (二) 栈和队列的顺序存储结构
- (三) 栈和队列的链式存储结构
- (四)多维数组的存储
- (五) 特殊矩阵的压缩存储
- (六) 栈、队列和数组的应用

三、树与二叉树

- (一) 树的基本概念
- (二) 二叉树
- (三) 树、森林
- (四) 树与二叉树的应用

四、图

- (一) 图的基本概念
- (二) 图的存储及基本操作
- (三) 图的遍历
- (四) 图的基本应用

数据结构

五、查找

- (一) 查找的基本概念
- (二)顺序查找法
- (三)分块查找法
- (四) 折半查找法
- (五)B树及其基本操作, B+树的基本概念
- (六)散列(Hash)表
- (七) 字符串模式匹配
- (八) 查找算法分析及应用

六、排序

- (一)排序的基本概念
- (二)插入排序
- (三) 起泡排序
- (四)简单选择排序
- (五) 希尔排序
- (六) 快速排序
- (七) 堆排序
- (八) 二路归并排序
- (九) 基数排序
- (十) 外部排序

算法

回顾:内部分类

- (一)排序的基本概念
- (二)插入排序算法 直接插入排序;折半插入排序;希尔排序(Shell sort)
- (三)交换类排序算法: 冒泡排序; 快速排序
- (四)选择类排序算法: 简单选择排序; 堆排序
- (五) 归并类排序算法: 2路归并排序
- (六)基数排序 (七)外部排序 (八)各种排序算法的比较
- (九)排序算法的应用

主要内容

- 7.1 磁盘文件的归并排序
- 7.2 磁带文件的归并排序

归并方法: 首先将文件中的数据输入到内存,采用内部分类方法进行分类(归并段),然后将有序段写回外存,对多归并段进行多遍归并,最后形成一个有序序列。

7.1 磁盘文件的归并分类

磁盘信息的存取

磁盘: 是一个扁平的圆盘,盘面上有许多称为磁道的圆圈,信息就记载在磁道上。它是一种直接存取的存储设备(DASD)。

磁盘的工作原理:盘片装在一个主轴上,并绕主轴高速旋转,当磁道 在读/写头下通过时,便可进行信息的读/写。读/写信息的功能由磁盘驱 动器执行。

固定头盘:固定头盘的每一磁道上都有独立的磁头,这些磁头固定不动,专负责读/写某一磁道上的信息。

活动头盘:活动头盘的磁头是可以移动的。一个盘面上只有一个磁头,磁头装在一个动臂上,可以从该面上的一道移动到另一道。

磁盘结构:由磁盘驱动器、读、写磁头、活动臂、盘片(磁道、扇区)、旋转主轴构成。速度快、容量大、直接存取设备。

M 个归并段的归并过程

log_km遍比较次数:

讨论问题:

- (1) 多路归并——减少归并遍数
- (2) 并行操作的缓冲区处理 ——使输入、输出和CPU处理尽可能重叠
- (3) 初始归并段的生成(内排实现)

提高外排序效率的途径:

- ① 扩大初始归并段长度,从而减少初始归并段个数m
- ② 进行多路(k路)归并减少合并趟数s,以减少I/O次数

$$s = \lceil log_k m \rceil$$

(1) 多路归并——减少归并遍数

m个初始段进行 2 路归并,需要 $\log_2 m$ 遍归并; m 个初始段,采用k路归并,需要 $\log_k m$ 遍归并。

显然,k越大,归并遍数越少,可提高归并的效率。

在 k 路归并时,从 k 个关键字中选择最小记录时,要比较 K-1 次。若记录总数为 n , 每遍要比较的次数为:

 $n*(k-1)[log_2m/log_2k]$

可以看出,随着k增大,(k-1)/log₂k 也增大,当归并路数多时,CPU 处理的时间也随之增多。为此要选择好的分类方法,以减少分类中比较次数。

选择树 (Selection tree) 或 败者树 (tree of loser)

分析:

第一次建立选择树的比较所花时间为:

$$O(k-1) = O(k)$$

而后每次重新建造选择树所需时间为:

$$O(log_2k)$$

n 个记录处理时间为初始建立选择树的时间加上 n-1 次重新选择树的时间:

$$O((n-1) \cdot log_2k) + O(k) = O(n \cdot log_2k)$$

这就是k路归并一遍所需的CPU处理时间。
归并遍数为 log_km ,总时间为:

 $O(n \cdot log_2 k \cdot log_k m) = O(n \cdot log_2 m)$

(k路归并CPU时间与k无关)

最佳归并树

将哈夫曼树进行拓展,不仅对2叉树,同样可形成3叉、4叉、...、k叉树,亦称为哈夫曼树,同样可求得带权路径长度最小。

对长度不等的m个初始归并段,构造哈夫曼树作为归并树,可使在进行外部归并时所需要对外存进行的读写次数达到最小。

最佳归并树中,并不只是只有度为k和0的结点,会有缺额。 当初始归并段的数目不足时,需附加长度为0的虚段,按照哈 夫曼树的构造原则,权为0的叶子结点应离树根最远。

问题:

- 起因:由于初始归并段通常不等长,进行归并时,长度不同的初始归并段归并的顺序不同,读写外存的总次数也不同。
- 目的:减少读写外存的次数。

【例7-5】9个初始归并段,记录数分别为9、30、12、18、3、17、2、6、24。如果进行 3-路归并,请讨论在各种情况下的对外存的读写次数。

读写磁盘次数= $\sum w_i \cdot l_i$ =(9+30+12+18+3+17+2+6+24)*2=242

按照hafuman树的思想,记录少的段最先合并。不够时增加虚段。

总共读写外存 446 个记录

读写磁盘次数= $\sum w_j \cdot l_j = (2+3+6)*3+(9+12+17+18+24)*2+30*1=223$

【例7-6】8个初始归并段,记录数分别为2、3、6、9、12、17、18、24。如果进行 3-路归并,请讨论在各种情况下的对外存的读写次数。

从外存读5个记录

写入外存5个记录 从外存读67个记录

写入外存67个记录 从外存读91个记录

写入外存91个记录

读写磁盘次数= $\sum w_j \cdot l_j = (2+3)*3 + (6+9+12+17+18)*2 + 24*1 = 163$

(2) 并行操作的缓冲区处理

对k个归并段进行 k 路归并至少需要k个输入和1个输出缓冲区,要使输入、输出和归并同时进行,k+1个缓冲区是不够的,需要2k个输入缓冲区实现并行操作。

(3) 初始归并段的生成 置换-选择法

(a) 初始归并段的长度≥缓冲区的长度

新输入记录. key小于当前记录. key,等待下一个归并段

- (b) 任何内部分类算法都可作为生成初始归并段的算法
- (c) 例如:缓冲区的长度为4,输入序列为:

15 19 04 83 12 27 11 25 16 34 26 07 10 90 06 ...

步	1	2	3	4	5	6	7	8	9	10	11	12	13	•••
缓	15	15	15	(11)	(11)	(11)	(11)	(11)	(11)	11	11	(06)	•••	•••
冲区	19	19	19	19	25	(16)	(16)	(16)	(16)	16	16	16	•••	•••
内	04	12	27	27	27	27	34	(26)	(26)	26	26	26	•••	•••
内容	83	83	83	83	83	83	83	83	(07)	10	90	90	•••	•••
輸出结果	04	12	15	19	25	27	34	83	07	10	11	16	•••	
*	\mathbf{R}_{1}							\mathbf{R}_{2}						

采用置换一选择法生成初始归并段的长度平均是缓冲区长度的两倍。

磁盘文件的归并分类小结:

- (1) 多路归并一减少归并遍数(败者树、最佳归并树)
- (2) 并行操作的缓冲区处理一使输入、输出和CPU处理 尽可能重叠 (引入缓冲区)
 - (3) 初始归并段的生成 (置换-选择法)

7.2 磁带文件的归并分类

(外部)存储设备——纸带、磁鼓、磁带、磁盘等

•磁带信息的表示:

- ↑ 一种磁化方向、代表1
- → 另一种磁化方向,代表0

与磁盘不同,磁带是顺序存储设备,读取信息块的时间与信息块的位置有关。研究磁带分类,需要了解信息块的分布。

k路平衡归并分类

磁带机数量: 2k

I	输入:	T ₁ ,	T ₂ ,	, T _k	输出	†
↓	输出:	T_{k+1}	T_{k+1}	$_{2},,T_{2}$	ok 输入	

磁带机	T_1	T ₂	• • •	T_k
ı	\mathbf{R}_1	R_2	•••	$\mathbf{R}_{\mathbf{k}}$
归 并 段	\mathbf{R}_{k+1}	R_{k+2}	•••	$\mathbf{R}_{2\mathbf{k}}$
リープ ・	•••	•••	•••	•••
	\mathbf{R}_{mk+1}	•••	•••	•••

$T_1:R_1(1000),R_3(1000),R_5(1000) \\ T_2:R_2(1000),R_4(1000),R_6(1000) \\ T_3:\emptyset \\ T_4:\emptyset$	
$T_1: \emptyset$ $T_2: \emptyset$ $T_3: R_1(2000), R_3(2000)$ $T_4: R_2(2000)$	
$T_1: R_1(4000)$ $T_2: R_2(2000)$ $T_3: \emptyset$ $T_4: \emptyset$	T ₁ : Ø T ₂ : Ø T ₃ : R ₁ (6000) T ₄ : Ø

以k=2为例,用三台磁带机T1,T2,T3,假设初始归并段长度为L。初始归并段的段数为34。过程如表1所示。

将上例递归过程从最后一步逆推,如表2所示。

每一步归并段总数排列成序列为:

1, 2, 3, 5, 8, 13, 21, 34,... 刚好组成Fibonacci数列, Fk=Fk-1+Fk-2

K路多阶段归并,可从2路归并扩充,对应k阶Fibonacci数列。

$$\begin{cases} F_n^{(k)} = 0 \\ F_n^{(k)} = 1 \\ F_n^{(k)} = F_{n-1}^{(k)} + F_{n-2}^{(k)} + \dots + F_{n-k}^{(k)} \end{cases}$$

i遍后	t_1	t_2	t ₃
开始	13(1L)	21(L)	空
1	空	8(1L)	13(2L)
2	8(3L)	空	5(2L)
3	3(3L)	5(5L)	空
4	空	2(5L)	3(8L)
5	2(13L)	空	1(8L)
6	1(13L)	1(21L)	空
7	空	空	1(34L)

结论:

*K+1*台磁带机k路多阶段归并,在*n−j*步归并段的分布规则=〉

第 扩 归并断总数:

$$F_{G(j+k-1)}^{(k)} = t_1^j + t_2^j + \cdots + t_k^j$$

其中 t_i^j 表示:

第步中逻辑磁带机上第i台磁带机。 $t_k^j = F_{j-1}^{(k)} + F_j^{(k)} + \cdots + F_{j+k-2}^{(k)}$

$$t_1^{j} = F_{j+k-21}^{(k)}$$

$$t_2^{j} = F_{j+k-3}^{(k)} + F_{j+k-2}^{(k)}$$

$$t_i^{j} = F_{j+k-i-1}^{(k)} + \dots + F_{j+k-2}^{(k)}$$

$$t_{k-1}^{j} = F_j^{(k)} + F_{j+1}^{(k)} + \dots + F_{j+k-2}^{(k)}$$

$$t_{k-1}^{j} = F_j^{(k)} + F_{j+1}^{(k)} + \dots + F_{j+k-2}^{(k)}$$

步	$\mathbf{t_1}$	$\mathbf{t_2}$	t ₃	总段数
n	0	0	1	1
n-1	1	1	0	2
n-2	2	0	1	3
n-3	0	2	3	5
n-4	3	5	0	8
n-5	8	0	5	13
n-6	0	8	13	21
n-7	13	21	0	34

【例7-7】设有磁盘文件中记录的关键字分别为: 10,20,15,25,12,13,21,30,8,16,10

用置换-选择排序法产生初始归并段,问可产生几个初始归并段?每个初始归并段包含哪些记录(设工作区能容 纳4个记录)。

解:内存缓冲区可容纳4个记录,采用4路归并的置换-选择排序方法生成初始归并段,如表所示。

步	1	2	3	4	5	6	7	8	9	10	11
缓	10	12	13	21	21	21	(16)	(16)	16	16	
冲	20	20	20	20	20	(8)	(8)	(8)			
区	15	15	15	15	30	30	30	30			
内容	25	25	25	25	25	25	25	(10)	10		
输	10	12	13	15	20	21	25	30	8	10	16
出结果	生成的第一个初始归并段								第二	个初始	