# SISTEMI NON LINEARI - STUDIO DELLA STABILITA' INTERNA

#### **STABILITA'**

- Nei sistemi non lineari la stabilità è intrinsecamente stabile solo localmente
  - Configurazione più complessa del sistema (stabilità diverse a seconda della zona)



Per sistemi lineari: proprietà di stabilità hanno carattere globale

- non dipendono dalla traiettoria considerata (stabilità del sistema)
- non dipendono dall'ampiezza della perturbazione

Per sistemi non lineari: proprietà di stabilità hanno carattere locale

- dipendono dalla traiettoria considerata (stabilità della traiettoria)
- dipendono dall'ampiezza della perturbazione
- La stabilità è legata alla singola traiettoria e dipende da quanto perturbiamo (se perturbiamo tanto giungiamo a una situazione di stabilità diversa del sistema)

# **PUNTI DI EQUILIBRIO**

Abbiamo detto che la stabilità dipende dalle traiettorie.

Ci concentriamo solo sulle \*traiettorie costanti\*, ovvero i punti di equilibrio

• Lo studio e l'individuazione di essi corrisponde a trovare le condizioni di quiete

Matematicamente è una coppia stato ingresso per cui:

Partendo da quello stato e applicando costantemente quell'ingresso allora lo stato non cambia

$$oxed{ ext{Coppia di partenza: } (x_e,u_e) \Rightarrow egin{aligned} x(0) = x_e \ u(t) = u_e \end{aligned}} \implies x(t) = x_e \quad , orall t \geq 0$$

I punti di equilibrio sono quelli rappresentati in verde, rosso e blu nella figura precedente (sono lì fermi, non si muovono, supponendo che siano effettivamente fermi in partenza)

Sono i punti in cui la derivata vale zero

$$\dot{x}(t) = rac{d}{dt}x(t) = 0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$x(t)=x_e$$
 ,  $u(t)=u_e$ 

$$\Rightarrow \dot{x}(t) = 0$$

**Fatto 2.16** I punti di equilibrio sono tutte e sole le coppie  $(x_e, u_e)$  tali che

$$f(x_e, u_e) = 0$$

Dimostrazione:

- Lo stato non cambia (soluzione costante)  $\Leftrightarrow$   $\dot{x}(t)=0$
- Notiamo che

$$\dot{x}(t) = f(x(t), u(t))|_{x(t)=x_e, u(t)=u_e} = f(x_e, u_e)$$

Di conseguenza

$$\dot{x}(t) = 0 \Leftrightarrow |\widehat{f(x_e, u_e)} = 0$$

- Per sistemi autonomi:  $x_e$  equilibrio  $\Leftrightarrow$   $f(x_e) = 0$
- trovare i punti di equilibrio quindi corrisponde a trovare tutte le coppie  $(x_e,u_e)$  tali per cui la  $f(x_e,u_e)=0$

## **USCITA DI EQUILIBRIO**

È una funzione associata a ciascun punto di equilibrio, in particolare:

$$y_e = h(x_e, u_e)$$

## **ESEMPI**

# ESERCIZIO

- Sistema non autonomo
- Ci interessano solo le soluzioni reali in R

#### PENDOLO (braccio robotico)



• unico grado di libertà: angolo  $\theta$ 

## Riscriviamo l'equazione differenziali in termini di equazione di stato

• Poi cerco i punti di equilibrio una volta trovata la funzione di transizione di stato f(x)

M(
$$\ddot{\theta}$$
 = - Mg sin( $\theta$ ) - cl $\dot{\theta}$ 
 $\theta = \ddot{y}$ 

M( $\ddot{y}$  = - Mg sin( $y$ ) - cl $\dot{y}$ 
 $\ddot{y}$  = -  $\frac{\partial}{\partial}$  sin( $y$ ) -  $\frac{\partial}{\partial}$   $\ddot{y}$ 

sortineno le equorioni di steto  $x = [\ddot{y}] = [\ddot{x}]$ 
 $\dot{x}_1 = \ddot{y} = x_2$ 
 $\dot{x}_2 = \ddot{y} = -\frac{\partial}{\partial}$  sin( $y$ ) -  $\frac{\partial}{\partial}$   $\ddot{y} = [\ddot{x}]$ 
 $x_1 = x_2$ 
 $x_2 = -\frac{\partial}{\partial}$  sin( $x_1$ ) -  $\frac{\partial}{\partial}$   $x_2$ 
 $x_3 = -\frac{\partial}{\partial}$  sin( $x_4$ ) -  $\frac{\partial}{\partial}$  sin( $x_4$ )

- prima componente stato  $x_e$ : angolo
- seconda componente stato  $x_e$ : velocità

$$f(x) = \begin{bmatrix} x_2 \\ -\frac{\partial}{\partial} \sin(x_1) - \frac{\partial}{\partial} x_2 \end{bmatrix}$$

$$xe : f(xe) = 0$$

$$xe = \begin{bmatrix} xe_1 \\ xe_2 \end{bmatrix}$$

$$\frac{\partial}{\partial} \sin(x_{e_1}) - \frac{\partial}{\partial} x_{e_2} = 0$$

$$xe_3 = 0$$

$$\frac{\partial}{\partial} \sin(x_{e_1}) - \frac{\partial}{\partial} x_{e_2} = 0$$

$$xe_4 = 0$$

$$\frac{\partial}{\partial} \sin(x_{e_1}) - \frac{\partial}{\partial} x_{e_2} = 0$$

$$xe_4 = 0$$

- Infiniti punti di equilibrio (angolo pari a  $k\pi$  e velocità angolare nulla)
  - ullet Per k pari i punti di equilibrio sono quelli in cui il pendolo  $\dot{
    m e}$  in verticale in basso
    - Equilibrio stabile. Se applico piccole sollecitazioni il pendolo torna nella medesima posizione
  - Per k dispari i punti di equilibrio sono quelli in cui il pendolo è in verticale in alto

 Equilibrio instabile (con il controllo lo potremo rendere stabile). Per ora però con piccole sollecitazioni il pendolo perde l'equilibrio

# **MAPPA TRANSIZIONE GLOBALE**

Supponendo che sia possibile trovare la soluzione di un sistema non lineare, allora questa è identificata dalla *mappa di transizione di stato*:

$$x(t) = \Phi(t, x_0, u)$$

Ovvero a partire da una condizione iniziale  $x_0$  e un segnale d'ingresso u possiamo determinare lo stato del sistema per ogni istante t

Se abbiamo un punto di equilibrio  $(x_e, u_e)$  allora la mappa si riduce a

$$\Phi(t, x_e, u_e) = x_e$$

- ovvero se applichiamo un determinato stato e un ingresso rimaniamo nella posizione di equilibrio Proviamo ora a perturbare
- osservo cioè la traiettoria a partire da un punto "leggermente" spostato rispetto a  $x_{e}$ , ovvero  $x_e+ ilde{x}_0$ 
  - Studiamo la stabilità interna dei punti di equilibrio considerando una perturbazione della condizione iniziale
  - Consideriamo come **traiettoria nominale** quella costante corrispondente al punto di equilibrio  $(x_e,u_e)$

$$x(t) = \Phi(t, x_e, u_e) = x_e$$

 $\bullet$  Consideriamo una condizionale iniziale perturbata  $x(0)=x_e+\tilde{x}_0$  e la corrispondente **traiettoria perturbata** 

$$x(t) = \Phi(t, x_e + \tilde{x}_0, u_e)$$

#### **EFFETTO PERTURBAZIONE**

Al solito, si fa la differenza tra la situazione perturbata e quella nominale:

• effetto della perturbazione = traiettoria perturbata - traiettoria nominale

$$\Phi(t, x_e + \tilde{x}_0, u_e) - \Phi(t, x_e, u_e) = \Phi(t, x_e + \tilde{x}_0, u_e) - x_e$$

Nota: La quantità

$$\|\Phi(t, x_e + \tilde{x}_0, u_e) - x_e\|$$

misura la distanza tra la traiettoria perturbata e lo stato di equilibrio  $x_e$ 

#### STABILITA' ALLA LYAPUNOV

Perturbazioni sufficientemente piccole della condizione iniziale danno luogo a perturbazioni arbitrariamente piccole della traiettoria

"Più piccola è la perturbazione più piccolo è l'effetto"

• Se perturbiamo poco la condizione iniziale rispetto alla condizione di equilibrio, allora anche la traiettoria corrispondente si allontana poco dalla condizione di equilibrio stessa

Matematicamente:

Abbiamo stabilità se (partendo da un punto x(0) di equilibrio):

- Fissato un  $\delta$  esterno al punto di equilibrio tale per cui la condizione iniziale perturbata si trova in questo intorno, allora anche la relativa traiettoria si trova a distanza inferiore a  $\varepsilon$
- Dal punto di equilibrio riesco sempre a trovare un intorno  $\delta$  che mi garantisce questo tipo di stabilità



#### Quindi:

- $\delta$  è la perturbazione massima che agiamo sulla condizione iniziale
- $\varepsilon$  è la traiettoria massima che "possiamo permetterci" una volta fissato  $\delta$ Ovvero la differenza tra la traiettoria perturbata e quella nominale deve essere inferiore a un certo  $\varepsilon$  fissato

**Definizione:** L'equilibrio  $(x_e,u_e)$  si dice **stabile alla Lyapunov** se comunque si fissa un  $\epsilon>0$  esiste un  $\delta>0$  tale che

$$\|\tilde{x}_0\| \leq \delta$$
  $\Longrightarrow$   $\|\Phi(t, x_e + \tilde{x}_0, u_e) - x_e\| \leq \epsilon \quad \forall t \geq 0$