ABSTRACT OF THE DISCLOSURE

5

10

15

20

A logarithmic transformer capable of a reduction in circuit scale. A logarithmic transformation upper bit string generating unit detects a highest order bit of logic "1" out of the bits b_{n-1} , \dots , b_0 of input data B as an active bit. Binary data for indicating the bit position S of the active bit is generated as a logarithmic transformation upper bit string D_{UP} $(d_{m-1}, ..., d_{m-p})$. Here, based on the number of bits n of the input data B, the number of bits p of the logarithmic transformation upper bit string D_{UP} $(d_{m-1}, ..., d_{m-p})$ is set for the relationship $n = 2^p$. A logarithmic transformation lower bit string generating unit determines a bit string of order lower than the bit position S, having a predetermined number q of bits, out of the bits b_{n-1} , ..., b_0 of the input data B. The resultant bit string makes a logarithmic transformation lower bit string D_{LOW} $(d_{m-p-1}, ..., d_0)$. Then, logarithmic transformation data D having a total number of p + q bits is generated with the logarithmic transformation upper bit string D_{UP} $(d_{m-1}, ..., d_{m-p})$ as the integral part of a logarithmic transformation value resulting from the logarithmic transformation of the input data B and the logarithmic transformation lower bit string D_{LOW} $(d_{m-p-1}, ..., d_0)$ as the fractional part of the logarithmic transformation value resulting from the logarithmic transformation of the input data B.