Неравенство концентрации для метода экспоненциального взвешивания

Дмитрий Островский МФТИ ГУ

56-я научная конференция МФТИ

31 марта 2014 г.

Задача: оценить вектор $\mu \in \ell_2$, компоненты которого наблюдаются на фоне белого шума:

$$Y_k = \mu_k + \sigma \xi_k, \ k \in \mathbb{N},$$

где случайные величины $\xi_k \sim \mathcal{N}(0,1)$ независимы. Дисперсия шума σ^2 для простоты полагается известной.

Агрегирование оценок

Качество оценок $\hat{\mu} = \hat{\mu}(Y)$ можно измерять с помощью квадратичного риска

$$R(\mu, \hat{\mu}) = \mathbf{E}_{\mu} \|\hat{\mu} - \mu\|_2^2$$

Допустим, нам изначально задано семейство проекционных оценок вида:

$$\hat{\mu}_k^m(Y) = h_k^m Y_k,$$

где множество $h_k^m = \mathbf{1}\{k \le m\}$

Риски оценок $\hat{\mu}^m$ вычисляются очень просто:

Агрегирование оценок

$$R(\hat{\mu}^m, \mu) = \sigma^2 m + \sum_{k=m+1}^{\infty} \mu_k^2$$

Минимальный из этих рисков

$$r^{\mathcal{M}}(\mu) = \min_{m \in \mathbb{N}} R(\hat{\mu}^m, \mu)$$

называется риском оракула. Он достигается на оракульной «оценке», зависящей от неизвестного вектора μ и потому недоступной статистику.

Мы хотели бы скомбинировать из оценок $\hat{\mu}^m$ итоговую оценку $\overline{\mu}$ с риском, близким к риску оракула.

Достаточно естественный метод, позволяющий построить 'хорошую' оценку на основе $\hat{\mu}^m$ – их агрегирование в выпуклую комбинацию

$$\bar{\mu}^{\mathbf{w}}(Y) = \sum_{\mathbf{m} \in \mathbb{N}} w^{\mathbf{m}} \hat{\mu}^{\mathbf{m}}(Y),$$

где вектор весов **w** принадлежит симплексу $\Lambda = \{ w^m \geq 0, \sum_m w^m = 1 \}.$

Вопрос: как правильно выбрать зависящие от наблюдений веса w^m ?

[Nemirovski], [Catoni]:

Пусть у нас есть дополнительная выборка

$$Y'_k = \mu_k + \sigma \xi'_k, \quad k \in \mathbb{N}$$

с новой реализацией шума.

Можно было бы подобрать веса $w^m(Y')$, проминимизировав эмпирический риск $\bar{\mathcal{R}} = \|Y' - \bar{\mu}^{\mathsf{w}}(Y)\|^2$.

$$\|Y' - \bar{\mu}^{\mathbf{w}}(Y)\|^2 \to \min_{\mathbf{w} \in \Lambda}$$

• хотелось бы учесть нашу априорную информацию об m;

Агрегирование оценок

• она может быть задана в виде фиксированного вектора априорных весов $\pi \in \Lambda$.

$$\|Y' - \bar{\mu}^{\mathbf{w}}(Y)\|^2 \to \min_{\mathbf{w} \in \Lambda}$$

Пенализация

$$\|Y' - \bar{\mu}^{\mathbf{w}}(Y)\|^2 + 2\beta\sigma^2\mathcal{K}(\mathbf{w}, \pi) \to \min_{\mathbf{w} \in \Lambda}$$

• штрафуем **w** за уклонение от априорных весов π ;

Агрегирование оценок

- если π равномерное, то $\mathcal{K}(\mathbf{w}, \pi)$ превращается в $-H(\mathbf{w})$;
- параметр $\beta > 0$ отвечает за относительную важность априорной информации.

Пенализация

$$\|Y' - \bar{\mu}^{\mathbf{w}}(Y)\|^2 + 2\beta\sigma^2\mathcal{K}(\mathbf{w}, \pi) \to \min_{\mathbf{w} \in \Lambda}$$

- ullet штрафуем $oldsymbol{w}$ за уклонение от априорных весов π ;
- если π равномерное, то $\mathcal{K}(\mathbf{w},\pi)$ превращается в $-H(\mathbf{w})$;
- параметр $eta \geq 0$ отвечает за относительную важность априорной информации.

Оценим сверху эмпирический риск (w $\in \Lambda$ и выпуклость $\|\cdot\|^2$)

$$\|Y' - \sum_{m} w^{m} \hat{\mu}^{m}(Y)\|^{2} \le \sum_{m} w^{m} \|Y' - \hat{\mu}^{m}(Y)\|^{2}$$

$$\|Y' - \bar{\mu}^{\mathbf{w}}(Y)\|^2 \to \min_{\mathbf{w} \in \Lambda}$$

Пенализация

$$\|Y' - \bar{\mu}^{\mathbf{w}}(Y)\|^2 + 2\beta\sigma^2\mathcal{K}(\mathbf{w}, \pi) \to \min_{\mathbf{w} \in \Lambda}$$

- штрафуем **w** за уклонение от априорных весов π ;
- ullet если π равномерное, то $\mathcal{K}(\mathbf{w},\pi)$ превращается в $-H(\mathbf{w})$;
- параметр $eta \geq 0$ отвечает за относительную важность априорной информации.

Оценим сверху эмпирический риск (w $\in \Lambda$ и выпуклость $\|\cdot\|^2$)

$$\|Y' - \sum_{m} w^{m} \hat{\mu}^{m}(Y)\|^{2} \le \sum_{m} w^{m} \|Y' - \hat{\mu}^{m}(Y)\|^{2}$$

Мы приходим к оптимизационной задаче:

$$\sum_{m} w^{m} \|Y' - \hat{\mu}^{m}(Y)\|^{2} + 2\beta \sigma^{2} \mathcal{K}(\mathbf{w}, \pi) \to \min_{\mathbf{w} \in \Lambda}$$

$$\sum_{m} w^{m} \|Y' - \hat{\mu}^{m}(Y)\|^{2} + 2\beta \sigma^{2} \mathcal{K}(\mathbf{w}, \pi) \to \min_{\mathbf{w} \in \Lambda}$$

Простое упражнение: эта задача имеет явное решение

Агрегирование оценок

$$w^m \propto \pi^m \exp\left(-\frac{\|Y' - \hat{\mu}^m(Y)\|^2}{2\beta\sigma^2}\right)$$

 $\|Y' - \hat{\mu}^m(Y)\|^2$ можно заменить на $\|\hat{\mu}^m(Y)\|^2 - 2\langle Y', \hat{\mu}^m(Y) \rangle$, воспользовавшись тем, что Y' не зависит от m, и перенормировав.

$$\sum_{m} w^{m} \|Y' - \hat{\mu}^{m}(Y)\|^{2} + 2\beta \sigma^{2} \mathcal{K}(\mathbf{w}, \pi) \to \min_{\mathbf{w} \in \Lambda}$$

Простое упражнение: эта задача имеет явное решение

Агрегирование оценок

$$w^m \propto \pi^m \exp\left(-\frac{\|\hat{\mu}^m(Y)\|^2 - 2\langle Y', \hat{\mu}^m(Y)\rangle}{2\beta\sigma^2}\right)$$

Переход к одной выборке

- используя дополнительную выборку Y', мы теряем статистическую информацию;
- ullet проблема при переходе к одной выборке (Y' o Y) возникает в слагаемом $\langle Y, \hat{\mu}^m(Y) \rangle$.

Заметим, что

$$\langle Y', \hat{\mu}^m(Y) \rangle \approx \langle Y, \hat{\mu}^m(Y) \rangle - \sigma^2 m$$

с точностью до слагаемых с нулевым средним.

Мотивация

Итак, мы приходим к экспоненциальному взвешиванию:

$$\bar{\mu}^{\beta}(Y) = \sum_{h \in \mathcal{H}} w^{m}(Y)\hat{\mu}^{m}(Y), \quad w^{m}(Y) \propto \pi^{m} \exp\left[-\frac{r_{m}(Y)}{2\beta\sigma^{2}}\right],$$

где

$$r_m(Y) = \|\hat{\mu}^m(Y)\|^2 - 2\langle Y, \hat{\mu}^m(Y) \rangle + 2\sigma^2 m.$$

Легко проверить, что $r_m(Y)$ – несмещенная оценка риска $R(\hat{\mu}^m, \mu)$ (с точностью до постоянной, не зависящей от m).

Случай $\beta=0$ соответствует классическому выбору оценки с наименьшей несмещенной оценкой риска $r_m(Y)$ – критерию Акаике.

Теорема (Kneip, 1994)

Для оценки $ar{\mu}^{eta}$ при $eta=\mathbf{0}$ для всех $\mu\in\ell_2(1,\infty)$ справедливо неравенство

$$\mathbf{E}\|\bar{\mu}^{\mathbf{0}}(Y) - \mu\|_{2}^{2} \leq r^{\mathcal{M}}(\mu) + K\sigma^{2}\sqrt{\frac{r^{\mathcal{M}}(\mu)}{\sigma^{2}}},$$

где К – универсальная константа.

Теорема (Kneip, 1994)

Для оценки $\bar{\mu}^{eta}$ при eta=0 для всех $\mu\in\ell_2(1,\infty)$ справедливо неравенство

Мотивация

$$\mathbf{E}\|\bar{\mu}^{0}(Y)-\mu\|_{2}^{2} \leq r^{\mathcal{M}}(\mu)+K\sigma^{2}\sqrt{\frac{r^{\mathcal{M}}(\mu)}{\sigma^{2}}},$$

где К – универсальная константа.

Teopeма (Leung & Barron, 2006)

При $\beta \geq 2$ и $\pi^m = 1$ для всех $\mu \in \ell_2(1, \infty)$ выполнено

$$\mathbf{E} \|ar{\mu}^{eta}(Y) - \mu\|_2^2 \leq r^{\mathcal{M}}(\mu) + 2eta\sigma^2 \log(\#\ o$$
ценок),

Теорема (Кпеір, 1994)

Для оценки $\bar{\mu}^{eta}$ при $eta=\mathbf{0}$ для всех $\mu\in\ell_2(1,\infty)$ справедливо неравенство

$$\mathbf{E}\|\bar{\mu}^{0}(Y) - \mu\|_{2}^{2} \leq r^{\mathcal{M}}(\mu) + K\sigma^{2}\sqrt{\frac{r^{\mathcal{M}}(\mu)}{\sigma^{2}}},$$

где К – универсальная константа.

Teopeмa (Leung & Barron, 2006)

При $eta \geq 2$ и $\pi^m = 1$ для всех $\mu \in \ell_2(1,\infty)$ выполнено

$$\mathbf{E}\|ar{\mu}^{eta}(Y) - \mu\|_2^2 \le r^{\mathcal{M}}(\mu) + 2eta\sigma^2\log(\#\ o$$
ценок),

Теорема (Голубев, 2012)

При тех же условиях

$$\mathbf{E} \|\bar{\mu}^{\beta}(Y) - \mu\|_2^2 \leq r^{\mathcal{M}}(\mu) + 2\beta\sigma^2 \log \left\{ \frac{r^{\mathcal{M}}(\mu)}{\sigma^2} \left[1 + \Psi_{\beta} \left(\frac{r^{\mathcal{M}}(\mu)}{\sigma^2} \right) \right] \right\},$$

где $\Psi_{\beta}(r),\ r\geq 1$, – ограниченная функция, $\Psi_{\beta}(r) \to 0$ при $r\to \infty$.

На первый взгляд кажется, что экспоненциальное взвешивание лучше критерия Акаике, но в действительности это не совсем так.

Теорема Кнайпа на самом деле концентрационная:

$$\mathbf{P}\Big\{\|\bar{\mu}^{0}(Y) - \mu\|_{2} \ge \sqrt{r^{\mathcal{M}}(\mu)} + x\Big\} \le \exp\Big\{-C_{1}[x - C_{2}]_{+}^{2}\Big\},\,$$

Мотивация

где $C_{1,2}$ – универсальные константы.

• Во второй теореме концентрация ошибки $\|\bar{\mu}^{\beta}(Y) - \mu\|_2^2$ вблизи риска оракула не отслеживается.

К тому же, непонятно, что происходит вблизи «абсолютного нуля», т. е. при $\beta \in (0,2)$.

Введем избыточный риск

$$\Delta^{\beta}(\mu) \stackrel{\mathrm{def}}{=} \boldsymbol{\mathsf{E}} \Big[\|\bar{\mu}^{\beta}(Y) - \mu\|_2^2 - r^{\mathcal{M}}(\mu) \Big]_+,$$

Мотивация

который, в отличие от величины

$$\mathbf{E} \|\bar{\mu}^{\beta}(Y) - \mu\|_{2}^{2} - r^{\mathcal{M}}(\mu),$$

уже контролирует отклонение потерь $\|\bar{\mu}^{\beta}(Y) - \mu\|_2^2$ агрегированной оценки от риска оракула.

Теорема

При $\beta > 0$, априорных весах $\pi^m = 1$ и при всех $\mu \in \ell_2(1,\infty)$ выполнено неравенство:

$$\Delta^{\beta}(\mu) \le K\sigma^{2} \left[r^{\mathcal{M}}(\mu) + 2\beta\sigma^{2}L(\mu) \right]^{1/2} + 2\beta\sigma^{2}L(\mu),$$

$$L(\mu) = \log \left\{ \frac{r^{\mathcal{M}}(\mu)}{\sigma^{2}} \left[1 + \Psi_{\beta} \left(\frac{r^{\mathcal{M}}(\mu)}{\sigma^{2}} \right) \right] \right\},$$

где K > 0 — универсальная постоянная, $\Psi_{\beta}(r), \ r > 1, \ -$ ограниченная функция, $\Psi_{\beta}(r) \to 0$ при $r \to \infty$.

Мотивация

- NEMIROVSKI, A. (2000). Topics in non-parametric statistics. Lecture Notes in Math. 1738 Springer-Verlag, Berlin.
- CATONI, O. (2004). Statistical learning theory and stochastic optimization. Lectures Notes in Math. 1851 Springer-Verlag, Berlin.
- LEUNG, G. AND BARRON, A. (2006). Information theory and mixing least-squares regressions. IEEE Transactions on Information Theory **52** 3396–3410.
- 🗐 Голубев, Г.К. (2012). Экспоненциальное взвешивание и оракульные неравенства для проекционных оценок. Проблемы передачи информации 48 269-280.