Microeconomics. Problem set 2. Due date: tutorials till Dec, 21st.

Problem 1 (1.5p) There are two consumer at the market Jim with preferences U(x, y) = xy and Donna with $U(x, y) = x^2y$. Jim's income is $I_J = 100$ and Donna's $I_D = 150$.

- find optimal baskets for both if $p_y = 1$ and $p_x = p$,
- plot both demand functions,
- compute and plot the aggregate demand.

Problem 2 (2.5p) Suppose that a consumer's utility function is U(x,y) = xy + 10y. The marginal utilities $MU_x = y$, $MU_y = x + 10$. The prices are positive: $p_x, p_y > 0$ and income is I.

- ullet Assume first we are at the interior optimum. Find a functional form for a demand curve for x.
- Suppose now that I = 100. Since $x \ge 0$ what is the maximum value of p_x for which this consumer would ever purchase any x.
- Suppose $p_x = 20$, $p_y = 20$. On a graph illustrating the optimal consumption bundle of x, y show that since p_x exceeds the one you calculated in the previous point, this corresponds to a corner optimal solution.
- Compare the $MRS_{x,y}$ with the ratio $\frac{p_x}{p_y}$ at the optimum in the previous point. Does this verify that the consumer would reduce utility if she purchased a positive amount of x?
- Assuming income remains at 100 draw the demand curve for x. Does its location depend on p_y ?[0.5p]

Problem 3 (1.5p) Jack makes his consumption and saving decision two months at a time. His income this month is \$1000 and he knows that he will get a raise next month making his income \$1050. The current interest rate (at which he is free to borrow or lend) is %5. Denoting this month's consumption by x and next month's by y for each of the following utility functions state whether Jack would choose to borrow, lend or neither in the first month.

- $U(x,y) = xy^2$, $MU_x = y^2$, $MU_y = 2xy$. [1p]
- $U(x,y) = x^2y$, $MU_x = 2xy$, $MU_y = x^2$. [1p]
- U(x,y) = xy, $MU_x = y$, $MU_y = x$. [1p]

Hint: in each case, start by assuming that Jack would simply spend his income in each month without borrowing and lending. Would doing so be optimal?

Problem 4 (1.5p) Justin has a utility function U(x,y) = xy with marginal utilities $MU_x = y$, $MU_y = x$. The price $p_x = 2$ and his income 40. When he maximizes utility subject to his budget constraint he purchases 5 units of y. What must be the price p_y and the amount x consumed.

Problem 5 (1.5p) Widgets are produced using two inputs, labor L and capital K. Table presents how many widgets can be produced using those inputs

$\downarrow K \to L$	0	1	2	3	4
0	0	2	4	6	8 10
1	2	4	6	8	10
2	4	6	8	10	12
3	6	8	10	12	14
4	8	10	12	14	10 12 14 16

- use the data to plot sets of inputs pairs that produce the same number of widgets. Then sketch the isoquants.
- Find the marginal product of K and L for each pair of inputs.
- Does the production exhibits IRS, DRS or CRS?

Problem 6 (1p) Two points A, B are on the isoquant drawn with labor on the horizontal axis. The capital-labor ratio at B is twice that of A, and the elasticity of substitution as we move from A to B is 2. What is the ratio of the $MRTS_{L,K}$ at A versus B.

Problem 7 (1.5p) What can you say about returns to scale of the Leontief production function: $F(k, l) = \min\{ak, bl\}$, where a, b are positive constants?

Problem 8 (1p) Suppose that production of airframes is characterized by f(K, L) = KL. The marginal products are $MP_K = L$ and $MP_L = K$. Suppose that the price of labor is 10 and capital 1. Find the cost-minimazing combination of capital and labor for producing 121000 airframes.