# SEMESTER 6

MECHANICAL ENGINEERING

# INDUSTRIAL AND SYSTEMS ENGINEERING

| Course Code                     | PCMET601   | CIE Marks   | 40             |
|---------------------------------|------------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3: 0: 0: 0 | ESE Marks   | 60             |
| Credits                         | 3          | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | None       | Course Type | Theory         |

# **Course Objectives:**

- 1. To impart knowledge about various tools and techniques of Industrial Engineering.
- 2. To facilitate students to acquire knowledge about inventory management, lean manufacturing, agile manufacturing, enterprise resource planning and thus inculcate the skills needed to apply these principles in an organization.
- 3. To get acquainted with quality management practices

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact<br>Hours |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1             | Introduction: Scope and functions of Industrial Engineering - Types of production (batch, flow and unit), Roles of line supervisors and production managers.  Product Development and Design: Objectives - Quality and cost considerations - Human factors in design - Detailed design & prototyping - Functionality & manufacturability - Standardization, simplification and variety reduction - Concurrent engineering.  Plant layout and Material handling: Types of plant layout - Principles of material handling - Material handling equipment - Types, selection and application. | 9                |
| 2             | Production Planning and Control: Aggregate production planning, materials requirement planning - Inventory Management: EOQ models, discount models,                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                |

| 3 | P system, Q system, reorder level – Selective inventory control techniques - JIT - Supply chain and management.  Break down, preventive and predictive maintenance.  Lean Manufacturing (LM): Basic elements – Tools - Concept of wastes - stages of 5S and waste elimination - Need for LM.  Agile manufacturing: Definition, business need, conceptual frame work, characteristics and generic features - Approaches to enhance agility in manufacturing - Managing people in agile organization.  Enterprise resource planning (ERP): Concept of Enterprise, ERP Overview - Integrated information system - ERP implementation – Benefits, challenges, | 9 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | success and failure factors - Business Process Reengineering (BPR), Customer relationship management (CRM).  Quality Management: Quality, quality planning, quality control, quality assurance, quality management – TQM, ISO, Six Sigma and Quality circle (Brief description only).  Statistical Quality Control - Process capability - Causes of variation in quality-Control charts for $\overline{x}$ and R – Acceptance sampling.  Reliability Engineering - Causes of failures - Bath tub curve - System reliability - Life testing.                                                                                                               | 9 |

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

# **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Microproject | Internal Examination-1 (Written) | Internal Examination-<br>2<br>(Written) | Total |
|------------|-----------------------------|----------------------------------|-----------------------------------------|-------|
| 5          | 15                          | 10                               | 10                                      | 40    |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

|   | Part A                                                                     | Part B                                                                                                                                                                                                              | Total |
|---|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| • | 2 Questions from each module.  Total of 8 Questions, each carrying 3 marks | <ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions.</li> </ul> | 60    |
|   | (8x3 =24marks)                                                             | (4x9 = 36  marks)                                                                                                                                                                                                   |       |

# **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                | Bloom's<br>Knowledge<br>Level (KL) |
|-----|-------------------------------------------------------------------------------|------------------------------------|
| CO1 | Implement various tools and techniques in industrial engineering              | К3                                 |
| CO2 | Apply inventory control techniques for materials management                   | К3                                 |
| CO3 | Identify the framework of lean and agile manufacturing                        | K2                                 |
| CO4 | Identify core and extended modules of enterprise resource planning            | K2                                 |
| CO5 | To be conversant with important terms for quality management in organizations | K2                                 |
| CO6 | Implement different quality control techniques                                | К3                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2 | 2   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3 | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4 | 3   | 2   | 2   | -   | 2   | -   | -   | -   | -   | -    | -    | -    |
| CO5 | 3   | 2   | 2   | -   |     | -   | -   | _   | -   | -    | -    | -    |
| CO6 | 2   | 2   | 3   | -   | 2   | -   | -   | -   | -   | -    | -    |      |

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

|        | Text Books                                     |                      |                          |                      |  |  |
|--------|------------------------------------------------|----------------------|--------------------------|----------------------|--|--|
| Sl. No | Title of the Book                              | Name of the Author/s | Name of the<br>Publisher | Edition and Year     |  |  |
| 1      | Industrial Engineering & Production Management | M. T. Telsang        | S Chand                  | 3rd Edition,<br>2018 |  |  |
| 2      | Production and operations management           | R. Paneerselvam      | PHI                      | 3rd Edition,<br>2012 |  |  |
| 3      | Operations Management: Theory and Practice     | B. Mahadevan         | Pearson                  | 3rd Edition,<br>2018 |  |  |

|        | Reference Books                                                                    |                                                                              |                          |                          |  |  |
|--------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------|--------------------------|--|--|
| Sl. No | Title of the Book                                                                  | Name of the Author/s                                                         | Name of the<br>Publisher | Edition and Year         |  |  |
| 1      | Industrial Engineering and Management – A new perspective                          | Philips E. Hicks                                                             | McGraw Hill              | 2nd<br>Edition,<br>1994  |  |  |
| 2      | Statistical Quality Control                                                        | Montegomery                                                                  | Wiley Eastern            | 6th Edition,<br>2010     |  |  |
| 3      | Lean and Agile Manufacturing:<br>Theoretical, Practical and<br>Research Futurities | S. R. Devadasan, V. M.<br>Sivakumar, R. Murugesh<br>and P. R. Shalij         | PHI Learning             | 1st Edition,<br>2012     |  |  |
| 4      | Operations Management: Processes and Supply Chains                                 | L. J. Krajewski, M. K.<br>Malhotra, S. K.<br>Srivastava and L. P.<br>Ritzman | Pearson Education        | 12th<br>Edition,<br>2019 |  |  |

# **MACHINE DESIGN**

| Course Code                     | PCMET602                        | CIE Marks   | 40             |
|---------------------------------|---------------------------------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3-0-0-0                         | ESE Marks   | 60             |
| Credits                         | 3                               | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | PCMET302<br>Mechanics of Solids | Course Type | Theory         |

# **Course Objectives:**

- 1. To review concepts of statics and strength of materials.
- **2.** To introduce fundamental approaches to failure prevention of components.
- **3.** To provide knowledge in the design of common machine elements such as fasteners, springs, belts and pressure vessels.

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| 1             | Introduction to Design- Definition, steps in design process, preferred numbers, standards and codes in design. Materials and their properties- Elastic and plastic behaviour of metals, ductile and brittle behaviour, shear, bending and torsional stresses, Factor of safety, stress concentration, combined stresses, stress concentration factor.Notch sensitivity, Shock and impact loads, fatigue loading, endurance limit stress, factors affecting endurance limit, Design for fatigue loading; Combined steady and variable stress- Gerber, Goodman and Soderberg method | 10 |  |  |
| 2             | Design of riveted joints- Material for rivets, modes of failure, efficiency of joint, design of boiler and tank joints, structural joints  Design of welded joints- welding symbols, stresses in fillet and butt welds, Butt joint in tension, fillet weld in tension, fillet joint under torsion, fillet wed under                                                                                                                                                                                                                                                               | 9  |  |  |

|   | bending, eccentrically loaded welds.                                                                                                                                                                                                                                                                                                    |   |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3 | Springs- classification, spring materials, stresses and deflection of helical springs, axial loading, curvature effect, resilience, static and fatigue loading, surging, critical frequency, concentric springs, end construction.  Leaf springs- Flat springs, semi elliptical laminated leaf springs, design of leaf springs, nipping | 9 |
| 4 | Design of flat belt- materials for belts, slip of the belts, creep, centrifugal tension.  Design of V-belt drives, Advantages and limitations of V-belt drive  Cylinders and Pressure vessels, thin cylinders, thick cylinders, Open and closed vessels, Lame's, Clavarino's and Birnie's equations. Dilation.                          | 8 |

# Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

| Attendance | Assignment/<br>Microproject | Internal<br>Examination-1 | Internal<br>Examination- 2 | Total |
|------------|-----------------------------|---------------------------|----------------------------|-------|
|            | wheroproject                | (Written)                 | (Written)                  |       |
| 5          | 15                          | 10                        | 10                         | 40    |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                       | Part B                                            | Total |
|------------------------------|---------------------------------------------------|-------|
| 2 Questions from each        | • Each question carries 9 marks.                  |       |
| module.                      | Two questions will be given from each module, out |       |
| • Total of 8 Questions, each | of which 1 question should be answered.           |       |
| carrying 3 marks             | • Each question can have a maximum of 3 sub       | 60    |
|                              | divisions.                                        |       |
| (8x3 =24marks)               | (4x9 = 36  marks)                                 |       |

# **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                                       | Bloom's<br>Knowledge<br>Level (KL) |
|-----|------------------------------------------------------------------------------------------------------|------------------------------------|
| CO1 | Interpret component behavior subjected to static and fatigue loads and identify the failure criteria | К3                                 |
| CO2 | Analyze the load carrying capacity of riveted joints, and welded joints                              | K4                                 |
| CO3 | Analyze stress carrying capacity and deformation of helical and leaf springs                         | K4                                 |
| CO4 | Analyze the load carrying capacity of belts and pressure vessels                                     | K4                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 3   | 2   | -   | -   | -   | 2   | 2   | -   | -    | -    | 2    |
| CO2 | 3   | 3   | 3   | -   | -   | -   | 2   | 2   | -   | -    | -    | 2    |
| CO3 | 3   | 3   | 3   | -   | -   | -   | 2   | 2   | -   | -    | -    | 2    |
| CO4 | 3   | 3   | 3   | -   | -   | -   | 2   | 2   | -   | -    | -    | 2    |

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

|        | Text Books                                 |                                         |                                   |                                  |  |  |  |
|--------|--------------------------------------------|-----------------------------------------|-----------------------------------|----------------------------------|--|--|--|
| Sl. No | Title of the Book                          | Name of the Author/s                    | Name of the<br>Publisher          | Edition<br>and Year              |  |  |  |
| 1      | Machine Design – An<br>Integrated Approach | RobertL. Norton                         | Pearson Education                 | 5 <sup>th</sup> edition,<br>2018 |  |  |  |
| 2      | Design of Machine elements                 | V.B.Bhandari                            | Tata McGraw Hill                  | 5 <sup>th</sup> edition,<br>2020 |  |  |  |
| 3      | Design of Machine elements,                | Jalaludeen                              | Anuradha<br>Publications, Chennai | 2014                             |  |  |  |
| 4      | A Text book of Machine<br>Design           | Dr. P. C. Sharma,<br>Dr. D. K. Aggarwal | S.K. Kataria & Sons               | 2017                             |  |  |  |

| Data Books permitted for reference in the final examination: |                                |                        |                               |  |  |
|--------------------------------------------------------------|--------------------------------|------------------------|-------------------------------|--|--|
| Design Data Hand Book                                        | K. Mahadevan, CBS Publishers & |                        | 4 <sup>th</sup> edition, 2019 |  |  |
|                                                              | K.Balaveera Reddy              | Distributors           | 4 <sup></sup> edition, 2019   |  |  |
| PSG Design DataHand book                                     | PSG Tech                       | DPV Printers,          | 2022                          |  |  |
| 1 SO Design Data land book                                   | rso recii                      | Coimbatore             | 2022                          |  |  |
| Machine Design Data Handbook                                 | NarayanaIyengar B.R,           | Tata McGraw            | 1004                          |  |  |
|                                                              | Lingaiah K                     | Hill/Suma Publications | 1984                          |  |  |

|        | Reference Books                              |                                                              |                          |                                  |  |  |
|--------|----------------------------------------------|--------------------------------------------------------------|--------------------------|----------------------------------|--|--|
| Sl. No | Title of the Book                            | Name of the Author/s                                         | Name of the<br>Publisher | Edition and Year                 |  |  |
| 1      | Mechanical Engineering Design                | J. E. Shigley                                                | McGraw Hill              | 2003                             |  |  |
| 2      | Fundamentals of Machine<br>Component Design, | Juvinall R.C,<br>Marshek K.M.                                | John<br>Wiley            | 5 <sup>th</sup> edition,<br>2011 |  |  |
| 3      | Shigley's Mechanical<br>Engineering Design   | Richard G. Budynas,<br>J. Keith Nisbett                      | McGraw Hill              | 11 <sup>th</sup> edition, 2020   |  |  |
| 4      | Design of Machine Elements                   | M. F. Spotts,<br>T. E. Shoup                                 | Pearson Education        | 8 <sup>th</sup> edition,<br>2019 |  |  |
| 5      | MachineElements: Life and Design             | Boris M Klebanov,<br>David M. Barlam,<br>Frederic E. Nystrom | CRC Press                | 2019                             |  |  |

|               | Video Links (NPTEL, SWAYAM)                            |  |  |  |  |
|---------------|--------------------------------------------------------|--|--|--|--|
| Module<br>No. | Link ID                                                |  |  |  |  |
| 1             | https://archive.nptel.ac.in/courses/112/105/112105124/ |  |  |  |  |
| 2             | https://archive.nptel.ac.in/courses/112/105/112105124/ |  |  |  |  |
| 3             | https://archive.nptel.ac.in/courses/112/105/112105124/ |  |  |  |  |
| 4             | https://archive.nptel.ac.in/courses/112/105/112105124/ |  |  |  |  |

# **POWER PLANT ENGINEERING**

| Course Code                     | PEMET631 | CIE Marks   | 40             |
|---------------------------------|----------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3-0-0-0  | ESE Marks   | 60             |
| Credits                         | 3        | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | -        | Course Type | Theory         |

# **Course Objectives:**

- 1. To develop a comprehensive understanding of steam, gas, hydro and nuclear power plants and various energy storage systems.
- 2. To familiarise various terms related to power plant economics.

| Module No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                             | Contact<br>Hours |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1          | Analysis of Steam Cycle  Steam engineering-temperature entropy diagram- mollier diagram- Rankine cycle-steam power plant, internally irreversible and externally irreversible Rankine cycle-Mean temperature of heat addition-Effect of superheat and inlet pressure-Reheating of steam, Regeneration-Regenerative feed water heating-Feed water heaters- Efficiencies in a steam power plant-binary vapor cycle | 9                |
| 2          | Steam generator classifications Cochran boiler-Lancashire boiler-Cornish boiler-locomotive boiler-Babcock and Wilcox boiler Stirling boiler-high pressure boilers-boiler mountings and accessories Steam nozzles Flow through steam nozzles-throat pressure for maximum discharge-effect of friction-super saturated flow                                                                                        | 9                |

|   | Steam turbines                                                         |   |
|---|------------------------------------------------------------------------|---|
|   | Impulse and reaction turbines-velocity diagram-condition for           |   |
|   | maximum efficiency-compounding-reheat factor-blade height-             |   |
|   | governing of steam turbines-cogeneration and combined cycle power      |   |
|   | generation                                                             |   |
|   | Thermal power plants                                                   |   |
|   | General layout-site selection-fuel handling, storage and burning       |   |
|   | systems-dust and ash handling system-chimney draught                   |   |
|   | Nuclear power plants                                                   |   |
|   | Classification-components-safety measures-effects of nuclear           | 0 |
| 3 | radiation-nuclear waste disposal.                                      | 9 |
|   | Gas turbine power plants                                               |   |
|   | Classification-closed open and other systems                           |   |
|   | Hydro Electric Power Plants                                            |   |
|   | Classification- Typical Layout and associated components               |   |
|   | Energy Storage                                                         |   |
|   | Pumped hydro, Compressed air energy storage, flywheel energy           |   |
|   | storage, Electrochemical energy storage, magnetic energy storage,      |   |
|   | Thermal energy storage, Chemical energy storage                        |   |
|   | Economics of power generation                                          |   |
|   | Estimation of load-load curve-load factor-diversity factor-capacity    |   |
|   | factor-use factor-economics in plant selection-economics of            | 0 |
| 4 | generation and distribution of power-useful life-tariff for electrical | 9 |
|   | energy.                                                                |   |
|   | Environmental pollution and its control                                |   |
|   | Pollutants from power plants-control of pollutants-control of          |   |
|   | particulate matter -Control of SO2- control of wastewater from         |   |
|   | steam power plants-pollution from nuclear power plants-noise           |   |
|   | pollution and noise control                                            |   |
|   |                                                                        |   |

# Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

# **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Microproject | Internal<br>Examination-1<br>(Written) | Internal Examination- 2 (Written) | Total |
|------------|-----------------------------|----------------------------------------|-----------------------------------|-------|
| 5          | 15                          | 10                                     | 10                                | 40    |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

|   | Part A                        | Part B                                                 | Total |
|---|-------------------------------|--------------------------------------------------------|-------|
| • | 2 Questions from each module. | • Each question carries 9 marks.                       |       |
| • | Total of 8 Questions, each    | • Two questions will be given from each module, out of |       |
|   | carrying 3 marks              | which 1 question should be answered.                   | 60    |
|   |                               | • Each question can have a maximum of 3 sub divisions. |       |
|   | (8x3 =24marks)                | (4x9 = 36  marks)                                      |       |

#### **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                                                | Bloom's<br>Knowledge<br>Level (KL) |
|-----|---------------------------------------------------------------------------------------------------------------|------------------------------------|
| CO1 | Explain the layout, components and working of steam, gas, hydro, and nuclear power plants.                    | K2                                 |
| CO2 | Calculate the performance parameters of simple and modified Rankine cycles.                                   | К3                                 |
| CO3 | Calculate the performance parameters of steam turbines and steam nozzles.                                     | К3                                 |
| CO4 | Explain the working of various energy storage systems                                                         | K2                                 |
| CO5 | Discuss the economics of power generation and pollution from power plants and their effect on the environment | K2                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 2   | 2   | -   | -   | _   | -   | _   | _   | -    | -    | 2    |
| CO2 | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO3 | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO4 | 3   | 2   | 2   | -   | -   | =   |     | -   | -   | -    | -    | 2    |
| CO5 | 3   | 2   | 2   | -   | -   | =   | 3   | _   | -   | -    | -    | 2    |

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

|        | Text Books              |                      |                          |                     |  |  |  |
|--------|-------------------------|----------------------|--------------------------|---------------------|--|--|--|
| Sl. No | Title of the Book       | Name of the Author/s | Name of the<br>Publisher | Edition<br>and Year |  |  |  |
| 1      | Power Plant Technology  | M. M. El Wakil       | McGraw Hill<br>Education | 1, 2017             |  |  |  |
| 2      | Power Plant Engineering | P. K. Nag            | McGraw Hill<br>Education | 4, 2017             |  |  |  |

|        | Reference Books         |                               |                          |                     |  |  |  |  |
|--------|-------------------------|-------------------------------|--------------------------|---------------------|--|--|--|--|
| Sl. No | Title of the Book       | Name of the Author/s          | Name of the<br>Publisher | Edition<br>and Year |  |  |  |  |
| 1      | Power Plant Engineering | G. R. Nagpal, S. C.<br>Sharma | KHANNA Publishers        | 16, 2012            |  |  |  |  |
| 2      | Power Plant Engineering | Manoj Kumar Gupta             | PHI Learning Pvt. Ltd    | 1, 2012             |  |  |  |  |

|               | Video Links (NPTEL, SWAYAM)                            |  |  |  |  |  |
|---------------|--------------------------------------------------------|--|--|--|--|--|
| Module<br>No. | Link ID                                                |  |  |  |  |  |
| 1             | https://archive.nptel.ac.in/courses/112/107/112107291/ |  |  |  |  |  |
| 2             | https://archive.nptel.ac.in/courses/112/107/112107291/ |  |  |  |  |  |
| 3             | https://archive.nptel.ac.in/courses/112/107/112107291/ |  |  |  |  |  |
| 4             | https://archive.nptel.ac.in/courses/112/107/112107291/ |  |  |  |  |  |

# **COMPRESSIBLE FLUID FLOW**

| Course Code                     | PEMET632 | CIE<br>Marks   | 40             |
|---------------------------------|----------|----------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0  | ESE<br>Marks   | 60             |
| Credits                         | 3        | Exam<br>Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | PCMET303 | Course<br>Type | Theory         |

# **Course Objectives:**

- **1.** To provide a foundation in compressible fluid mechanics, focusing on steady, one-dimensional flow problems.
- 2. To familiarise property variations across normal and oblique shock waves

| Module No. | Syllabus Description                                                       | Contact<br>Hours |
|------------|----------------------------------------------------------------------------|------------------|
|            | Fundamentals of compressible flow: Various regimes of flow, Reynolds       |                  |
|            | transport theorem-Governing equations for compressible flows. Mach         |                  |
|            | number, Mach waves, Mach cone and Mach angle, Sonic boom. Concept          |                  |
|            | of stagnation state, stagnation properties. Adiabatic energy equation,     |                  |
| 1          | various regions of flow, adiabatic ellipse                                 |                  |
|            | One Dimensional isentropic flow: adiabatic and isentropic flow of a        | 10               |
|            | perfect gas, isentropic flow in ducts of varying cross-sections, nozzles,  |                  |
|            | mass flow rate, critical properties, chocking, impulse function, operation |                  |
|            | of nozzle under varying pressure ratios-Use of gas tables.                 |                  |
|            | Flow in constant area duct with friction: Assumptions, Governing           |                  |
|            | equations, Fanno curve on h-s and P-v diagram, Fanno flow relations        |                  |
| 2          | for a perfect gas, variation of Mach number with duct length, choking      |                  |
|            | due to friction, Use of gas tables for Fanno flow. Isothermal flow         | 8                |
|            | (elementary idea only)                                                     |                  |

| 3 | Flow through constant area duct with heat transfer (Rayleigh Flow): Assumptions, Governing equations, Rayleigh line on h-s and P-v diagram, Rayleigh relation for perfect gas, maximum possible heat addition, location of maximum enthalpy and entropy points, thermal chocking, Use of gas tables for Rayleigh flow.                                                                                                                                                                                                                                                                  | 9 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | Irreversible discontinuity in supersonic flow: Development of shock wave, types of shock waves, governing equations, strength of shock waves, normal Shock on T-S diagram, Prandtl-Mayer relation, Rankine-Huguenot relation, Mach number downstream of normal shock, variation of flow parameters across the normal shock, normal shock in Fanno and Rayleigh flows, Use of gas tables for normal shocks. Oblique shock waves - supersonic flow over compression and expansion corners (elementary idea only).  Wind tunnel types, measurement of velocity, pressure, and temperature. | 9 |

# Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

# **Continuous Internal Evaluation Marks (CIE):**

| Atto | endance | Assignment/<br>Microproject | Internal Examination-<br>1<br>(Written) | Internal Examination- 2<br>(Written) | Total |
|------|---------|-----------------------------|-----------------------------------------|--------------------------------------|-------|
|      | 5       | 15                          | 10                                      | 10                                   | 40    |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                       | Part B                                            | Total |
|------------------------------|---------------------------------------------------|-------|
| • 2 Questions from each      | Each question carries 9 marks.                    |       |
| module.                      | Two questions will be given from each module, out |       |
| • Total of 8 Questions, each | of which 1 question should be answered.           |       |
| carrying 3 marks             | Each question can have a maximum of 3 sub         | 60    |
|                              | divisions.                                        |       |
| (8x3 =24marks)               | (4x9 = 36  marks)                                 |       |

# **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                    | Bloom's<br>Knowledge<br>Level (KL) |
|-----|-----------------------------------------------------------------------------------|------------------------------------|
| CO1 | Understand the basic concepts of compressible fluid mechanics and                 | К3                                 |
| CO2 | Analyze problems in one dimensional isentropic compressible flow.                 | K4                                 |
| CO3 | Analyze problems of flow in constant area duct with friction.                     | K4                                 |
| CO4 | Analyze problems of flow in constant area duct with heat transfer.                | K4                                 |
| CO5 | Determine the variation in flow properties across normal and oblique shock waves. | K4                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO2 | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO3 | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO4 | 3   | 2   | 2   | 2   | -   | -   | -   | -   | -   | -    | -    |      |
| CO5 | 3   | 3   | -   | 2   | -   | -   | -   | -   | -   | -    | -    | 2    |

|        | Text Books                                                        |                  |                                   |                              |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------|------------------|-----------------------------------|------------------------------|--|--|--|--|--|--|
| Sl. No | Title of the Book Name of the Author/s Publisher                  |                  | Name of the<br>Publisher          | Edition and Year             |  |  |  |  |  |  |
| 1      | The Dynamics and Thermodynamics of Compressible Fluid Flow. Vol I | Shapiro A.H      | John Wiley & Sons                 | 1977                         |  |  |  |  |  |  |
| 2      | Fundamental of Compressible flow                                  | S. M. Yahya      | New age international Publication | 7 <sup>th</sup> edition,2023 |  |  |  |  |  |  |
| 3      | Gas Dynamics                                                      | E. Rathakrishnan | PHI Learning<br>Pvt. Ltd.         | 7 <sup>th</sup> edition,2021 |  |  |  |  |  |  |

| Reference Books |                                                        |                                        |                           |                              |  |  |  |  |  |
|-----------------|--------------------------------------------------------|----------------------------------------|---------------------------|------------------------------|--|--|--|--|--|
| Sl. No          | Title of the Book                                      | Title of the Book Name of the Author/s |                           | Edition and<br>Year          |  |  |  |  |  |
| 1               | Modern Compressible Flow: With Historical Perspective. | John D. Anderson                       | McGraw-Hill, Inc          | 4 <sup>th</sup> edition,2021 |  |  |  |  |  |
| 2               | Fundamentals of compressible fluid dynamics            | P. Balachandran                        | PHI Learning<br>Pvt. Ltd. | 2006                         |  |  |  |  |  |
| 3               | Elements of Gas Dynamics                               | Liepmann and Roshako                   | Dover Publications Inc.   | 2002                         |  |  |  |  |  |

|               | Video Links (NPTEL, SWAYAM)  |  |  |  |  |  |  |
|---------------|------------------------------|--|--|--|--|--|--|
| Module<br>No. | Link ID                      |  |  |  |  |  |  |
|               | https://youtu.be/BYqZPwQPU_4 |  |  |  |  |  |  |
| 1             | https://youtu.be/TYqxQS6ZPC4 |  |  |  |  |  |  |
|               | https://youtu.be/C2JIBOmEZ4k |  |  |  |  |  |  |
| 2             | https://youtu.be/7EKaOXZrEq4 |  |  |  |  |  |  |
| 3             | https://youtu.be/3npd-kOS2FQ |  |  |  |  |  |  |
|               | https://youtu.be/Jrdm7Pwssto |  |  |  |  |  |  |
| 4             | https://youtu.be/Llc1_XWPyIQ |  |  |  |  |  |  |

# **INDUSTRIAL TRIBOLOGY**

| Course Code                     | РЕМЕТ633                      | CIE Marks   | 40             |
|---------------------------------|-------------------------------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0                       | ESE Marks   | 60             |
| Credits                         | 3                             | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | Fluid Mechanics and Machinery | Course Type | Theory         |

# **Course Objectives:**

- 1. To provide a comprehensive understanding of the fundamental concepts of tribology.
- **2.** To prepare students to integrate tribological knowledge into the design and analysis of engineering systems.
- 3. To equip students with the analytical skills necessary to assess and solve tribological problems

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                          |   |  |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|
| 1             | Introduction to Tribology: Definition and Scope, Historical development and significance in engineering.  Contact Mechanics: Types of contact: point, line, and surface contacts, Hertzian contact theory, Deformation of solid bodies under load  Friction: Laws of friction, Types of friction: static, kinetic, and rolling friction Factors affecting friction. Theories of friction: adhesion, deformation, and plowing. | 9 |  |  |  |  |  |
| 2             | Wear: Types of wear: adhesive, abrasive, corrosive, and surface fatigue wear.  Surface Topography: Statistical Parameters (Ra,Rz,RMS) Techniques of Surface Examination: Optical Microscopy, Electron Microscopy, Atomic Force Microscopy, Profilometry. Wear measurement techniques: Pin-on-                                                                                                                                 | 9 |  |  |  |  |  |

|   | disk Tester and the Four Ball Tester.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3 | Principles of Lubrication: Hydrodynamic lubrication, Boundary lubrication, Elasto-hydrodynamic lubrication (EHL)  Lubrication Regimes: Thick film and thin film lubrication, Mixed lubrication, Stribeck curve and its significance  Lubricant Properties and Classification: Physical and chemical properties of lubricants, Types of lubricants: oils, greases, and solid lubricants, Additives and their functions Criteria for selecting lubricants                                                                                                                                                                      | 9 |
| 4 | Surface Treatments and Coatings: Heat treatments, surface hardening, and nitriding, Coatings: PVD, CVD, thermal spray coatings, and electroplating Tribology in Industries: Tribological challenges in engines, transmissions, and braking systems, Role of tribology in machining, forming, and finishing processes, Tribological issues in tool wear and lubrication in manufacturing Recent Advances and Future Trends: Emerging materials and technologies in tribology, Smart lubricants and self-lubricating materials, Sustainable tribology practices, Micro and Nano Tribology (Applications in MEMS/NEMS devices). | 9 |

# Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

| Attendance | Assignment/<br>Microproject | Internal<br>Examination-1<br>(Written) | Internal Examination- 2 (Written) | Total |  |
|------------|-----------------------------|----------------------------------------|-----------------------------------|-------|--|
| 5          | 15                          | 10                                     | 10                                | 40    |  |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                                                                                                                         | Part B                                                                                                                                                                                                                                        | Total |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <ul> <li>2 Questions from each module.</li> <li>Total of 8 Questions, each carrying 3 marks</li> <li>(8x3 =24marks)</li> </ul> | <ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions.</li> <li>(4x9 = 36 marks)</li> </ul> | 60    |

# **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                 |    |  |  |  |  |
|-----|--------------------------------------------------------------------------------|----|--|--|--|--|
| CO1 | Explain fundamental principles of Tribology                                    | K2 |  |  |  |  |
| CO2 | Understand Surface characterisation techniques for tribological investigations | K2 |  |  |  |  |
| CO3 | Explain Wear Measurement Techniques:                                           | K2 |  |  |  |  |
| CO4 | Select and Evaluate Lubricants and Surface Treatments:                         | K2 |  |  |  |  |
| CO5 | Apply tribological knowledge in industrial applications                        | К3 |  |  |  |  |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 2   | -   | -   | -   | 2   | -   | -   | -   | -    | -    | 2    |
| CO2 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO3 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO4 | 3   | 2   | -   | -   | -   | 2   | 2   | -   | -   | -    | -    | 2    |
| CO5 | 3   | 2   | 1   | -   | -   | 2   | 2   | -   | -   | -    | ı    | 2    |

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

|        | Text Books                                            |                                         |                                |                  |  |  |  |  |  |
|--------|-------------------------------------------------------|-----------------------------------------|--------------------------------|------------------|--|--|--|--|--|
| Sl. No | Title of the Book Name of the Author/s                |                                         | Name of the<br>Publisher       | Edition and Year |  |  |  |  |  |
| 1      | Engineering Tribology                                 | G. W. Stachowiak and<br>A. W. Batchelor | Butterworth-<br>Heinemann,     | Second,<br>2000. |  |  |  |  |  |
| 2      | Introduction to Tribology                             | BharathBhushan                          | Wiley-Blackwell                | First ,<br>2013  |  |  |  |  |  |
| 3      | Engineering Tribology                                 | John Williams                           | Cambridge<br>University Press, | First,2005       |  |  |  |  |  |
| 4      | Tribology: Friction and Wear of Engineering Materials | I. M. Hutchings                         | Butterworth-<br>Heinemann      | Second,20<br>17  |  |  |  |  |  |

|        |                                                                    | Reference Books                                                |                          |                     |  |
|--------|--------------------------------------------------------------------|----------------------------------------------------------------|--------------------------|---------------------|--|
| Sl. No | Title of the Book                                                  | Name of the Author/s                                           | Name of the<br>Publisher | Edition<br>and Year |  |
| 1      | Surface Engineering for<br>Corrosion and Wear Resistance           | J.R. Davis                                                     | ASM International        | First,2001          |  |
| 2      | Lubrication and Lubricant<br>Selection: A Practical Guide          | A. R. Lansdown                                                 | ASME                     | Third,200           |  |
| 3      | Tribology for Scientists and Engineers                             | Pradeep L. Menezes,<br>Siddhartha Ghosh, and<br>BijoyBhushan   | Springer                 | First,2013          |  |
| 4      | Advanced Tribology:<br>Proceedings of CIST2008 &<br>ITS-IFToMM2008 | JianbinLuo,<br>YonggangMeng,<br>Tianmin Shao, and<br>Qian Zhao | Springer                 | 2010                |  |

|               | Video Links (NPTEL, SWAYAM)                            |  |  |  |  |
|---------------|--------------------------------------------------------|--|--|--|--|
| Module<br>No. | Link ID                                                |  |  |  |  |
| 1             | https://archive.nptel.ac.in/courses/112/102/112102014/ |  |  |  |  |
| 2             | https://archive.nptel.ac.in/courses/112/102/112102014/ |  |  |  |  |
| 3             | https://archive.nptel.ac.in/courses/112/102/112102014/ |  |  |  |  |
| 4             | https://nptel.ac.in/courses/113108083                  |  |  |  |  |

# FINITE ELEMENT METHODS

| Course Code                     | РЕМЕТ634                           | CIE Marks   | 40             |
|---------------------------------|------------------------------------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0                            | ESE Marks   | 60             |
| Credits                         | 3                                  | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | PCMET302<br>Mechanics of<br>Solids | Course Type | Theory         |

# **Course Objectives:**

- 1. To study the basic procedure of FEM and stiffness formulation of simple element using direct method.
- 2. To study the formulations of shape functions, strain displacement matrix and stress matrix.
- **3.** To study the energy method and Galerkin weight residual formulations.

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                 | Contact<br>Hours |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1             | Introduction FEM, Mathematical Modelling of field problems in Engineering, Governing Equations – Discrete and continuous models, discretization-convergence behavior. General procedure of Finite Element analysis, Types of elements, Formulation of stiffness matrix- one dimensional spring, bar element assembly and solution procedure.                         | 9                |
| 2             | Types of coordinate system in FEM, coordinate transformation Plane truss stiffness formulation and its assembly. Shape functions, Derivation of shape functions using polynomial of One-Dimensional bar, 2-Dimensional CST and 1- Dimensional beam element. Convergence requirement of shape functions, Pascal triangle. Shape functions using Langrange polynomial. | 10               |
| 3             | Derivation of strain -displacement relation- B matrix- bar, CST and beam element. Potential energy and equilibrium, principle of minimum potential                                                                                                                                                                                                                   |                  |

|   | energy, Variational formulation in FEM.Element stiffness-bar, beam and     | 9  |
|---|----------------------------------------------------------------------------|----|
|   | CST element, consistent loads.                                             |    |
|   |                                                                            |    |
|   | Strong and Weak form, Galerkin's weighted residual FEM formulation;        |    |
|   | One dimensional axially loaded bar, heat flow in a bar, natural coordinate |    |
| 4 | system, Iso parametric elements, Quadrilateral elements- Serendipity       | 10 |
|   | elements Isoparametric formulations, Jacobian matrix, stiffness matrices,  |    |
|   | Numerical integration: Gaussian quadrature.                                |    |

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

# **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Microproject | Internal Examination-1 (Written) | Internal Examination- 2 (Written) | Total |
|------------|-----------------------------|----------------------------------|-----------------------------------|-------|
| 5          | 15                          | 10                               | 10                                | 40    |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

|   | Part A                     |   | Part B                                            | Total |
|---|----------------------------|---|---------------------------------------------------|-------|
| • | 2 Questions from each      | • | Each question carries 9 marks.                    |       |
|   | module.                    | • | Two questions will be given from each module, out |       |
| • | Total of 8 Questions, each |   | of which 1 question should be answered.           |       |
|   | carrying 3 marks           | • | Each question can have a maximum of 3 sub         | 60    |
|   |                            |   | divisions.                                        |       |
|   | (8x3 =24marks)             |   | (4x9 = 36  marks)                                 |       |

# **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                                  | Bloom's<br>Knowledge<br>Level (KL) |
|-----|-------------------------------------------------------------------------------------------------|------------------------------------|
| CO1 | To understand the governing equations of various physical phenomena and basic procedure of FEM. | К2                                 |
| CO2 | To apply the coordinate transformation and formulation of shape functions of various element.   | К3                                 |
| CO3 | Formulate shape functions and element strain displacement matrix of various element             | K4                                 |
| CO4 | Evaluate element stress using energy method and study Galekin weight residual formulations      | K5                                 |
| CO5 | Study the concept of iso parametric elements and analyze iso parametric formulations            | K4                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 3   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2 | 3   | 3   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3 | 3   | 3   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4 | 3   | 3   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5 | 3   | 3   | 1   | -   | -   | -   | _   | -   | -   | _    | -    | -    |

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

|        |                                                  | Text Books                               |                           |                           |
|--------|--------------------------------------------------|------------------------------------------|---------------------------|---------------------------|
| Sl. No | Title of the Book                                | Name of the Author/s                     | Name of the<br>Publisher  | Edition and Year          |
| 1      | An introduction to Finite<br>Element Method      | J N Reddy                                | McGrawHill<br>Education   | Third<br>Edition,<br>2009 |
| 2      | Concept and application of Finite Element method | Robert D Cook                            | Wiley                     | Third<br>Edition,<br>2008 |
| 3      | Finite Element Analysis,                         | S SBhavikatti,                           | New Age Publisher         | Third edition,200         |
| 4      | A First Course in Finite<br>Elements             | Jacob Fish Rensselaer<br>,Ted Belytschko | John Wiley & Sons,<br>Ltd | Second<br>edition,200     |

|        | Reference Books                        |                      |                                             |                       |
|--------|----------------------------------------|----------------------|---------------------------------------------|-----------------------|
| Sl. No | Title of the Book                      | Name of the Author/s | Name of the<br>Publisher                    | Edition and Year      |
| 1      | Applied Finite Element Analysis        | Larry J Segerlind    | Johny Wiley and sons                        | Second<br>Edition,201 |
| 2      | Applied Finite element Analysis        | G Ramamurthi         | I K International Publishing House Pvt. Ltd | Second<br>Edition     |
| 3      | Fundamentals of Finite Element Methods | David V Hutton       | McGrawHillEducation                         | Third<br>Edition,200  |

| Video Links (NPTEL, SWAYAM) |                                       |  |
|-----------------------------|---------------------------------------|--|
| Module<br>No.               | Link ID                               |  |
| 1                           | https://nptel.ac.in/courses/112106135 |  |
| 2                           | https://nptel.ac.in/courses/112106135 |  |
| 3                           | https://nptel.ac.in/courses/112106135 |  |
| 4                           | https://nptel.ac.in/courses/112106135 |  |

# NON – DESTRUCTIVE TESTING

| Course Code                     | РЕМЕТ636 | CIE Marks   | 40             |
|---------------------------------|----------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0  | ESE Marks   | 60             |
| Credits                         | 3        | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | None     | Course Type | Theory         |

# **Course Objectives:**

1. To comprehend the fundamental ideas, methodologies, tools, applications and constraints of NDT approach.

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| 1             | Visual Inspection: Fundamentals of visual testing, tools, applications and limitations. Vision, lighting, material attributes, environmental factors. Visual perception, direct and indirect methods, mirrors, magnifiers, boroscopes, fibroscopes, closed circuit television, light sources special lighting, a systems, computer enhanced system.  Liquid penetrant Testing: properties required for a good penetrants and developers - Types of penetrants and developers. LPI technique/ test procedure interpretation and evaluation of penetrant test indications, false indication and safety precaution required in LPI. | 9 |  |  |
| 2             | Magnetic Particle Testing: Methods of magnetization, magnetization techniques such as head shot technique, cold shot technique, central conductor testing, and magnetization using yokes. Direct and indirect method of magnetization, continuous testing of MPI, residual technique of                                                                                                                                                                                                                                                                                                                                          | 9 |  |  |

|   | MPI, system sensitivity, checking devices in MPI.                               |    |
|---|---------------------------------------------------------------------------------|----|
|   |                                                                                 |    |
|   | Eddy Current Testing: physics aspects of ECT. Field factor and lift of          |    |
|   | effect, edge effect, end effect, impedance plane                                |    |
|   | diagram in brief, depth of penetration of ECT, relation between frequency       |    |
|   | and depth of penetration in ECT. Equipment and accessories, Various             |    |
|   | application of ECT such as conductivity measurement, hardness                   |    |
|   | measurement, defect detection coating thickness measurement.                    |    |
|   | Ultrasonic Testing: UT testing methods, contact testing and immersion           |    |
|   | testing, normal beam and straight beam testing, angle beam testing, dual        |    |
|   | crystal probe, ultrasonic testing techniques, resonance testing, through        |    |
|   | transmission technique, pulse echo testing technique, instruments used UT,      |    |
|   | accessories such as transducers, types, frequencies, and sizes commonly         |    |
|   | used. Reference blocks with artificially created defects, calibration of        |    |
|   | equipments.                                                                     |    |
| 3 |                                                                                 | 11 |
|   | Radiography Testing (RT): Electromagnetic radiation sources. Inspection         |    |
|   | techniques like SWSI, DWSI, DWDI, panoramic exposure, real-time                 |    |
|   | radiography, films used in industrial radiography, types of film, speed of      |    |
|   | films, qualities of film screens used in radiography, quality of a good         |    |
|   | radiograph, film processing, interpretation, evaluation of test results, safety |    |
|   | aspects required in radiography.                                                |    |
|   | Advanced NDI Techniques: Principle and Procedure of Digital Signal and          |    |
| 4 | image Processing & Digital Image correlation, Acoustic emission Inspection,     | 7  |
|   | Thermography, Computed Tomography                                               |    |
|   |                                                                                 |    |

# Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

#### **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment | Internal<br>Examination-1<br>(Written) | Internal<br>Examination- 2<br>(Written) | Total |
|------------|------------|----------------------------------------|-----------------------------------------|-------|
| 5          | 15         | 10                                     | 10                                      | 40    |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                       | Part B                                            | Total |
|------------------------------|---------------------------------------------------|-------|
| 2 Questions from each        | Each question carries 9 marks.                    |       |
| module.                      | Two questions will be given from each module, out |       |
| • Total of 8 Questions, each | of which 1 question should be answered.           |       |
| carrying 3 marks             | • Each question can have a maximum of 3 sub       |       |
|                              | divisions.                                        |       |
| (8x3 =24marks)               | (4x9 = 36  marks)                                 |       |

# Course Outcomes (COs)

At the end of the course students should be able to:

|     | Course Outcome                                                                                                                         | Bloom's<br>Knowledge<br>Level (KL) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| CO1 | Have a basic knowledge of NDT Techniques which enables to carry out various inspections in accordance with the established procedures. | K2                                 |
| CO2 | Familiarize with basic principles of electromagnetic NDT methods                                                                       | K2                                 |
| CO3 | Apply the principles of signal processing of ultrasonic signals and image processing of radiographic images.                           | К3                                 |
| CO4 | Have a better knowledge in the field of advanced techniques in NDT                                                                     | K2                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2 | 3   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3 | 3   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4 | 3   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |

|        |                                    | Text Books           |                                |                     |
|--------|------------------------------------|----------------------|--------------------------------|---------------------|
| Sl. No | Title of the Book                  | Name of the Author/s | Name of the Publisher          | Edition and<br>Year |
| 1      | Practical Non- destructive testing | Baldev Raj           | Alpha Science<br>International | 2008                |
| 2      | Non - destructive testing          | Hull V and V John    | McMillan                       | 2012                |
| 3      | Non Destructive testing Techniques | Ravi Prakash         | New Academic<br>Science        | 2009                |

|        | Reference Books                                                                          |                                                  |                         |                     |  |  |  |
|--------|------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|---------------------|--|--|--|
| Sl. No | Title of the Book                                                                        | Name of the Author/s                             | Name of the Publisher   | Edition and<br>Year |  |  |  |
| 1      | Recent developments in the field of non-destructive testing, safety and material science | Elena Lysenko, Alexander Rogachev, Oldrich Stary | Springer                | 2022                |  |  |  |
| 2      | New Technologies in electromagnetic non-destructive Testing                              | Songling Huang & Shen<br>Wang                    | Springer                | 2016                |  |  |  |
| 3      | Recent Advances in Non - Destructive Inspection                                          | Carosena Meola                                   | Nova Science publishers | 2010                |  |  |  |

|               | Video Links (NPTEL, SWAYAM)                            |  |  |  |  |
|---------------|--------------------------------------------------------|--|--|--|--|
| Module<br>No. | Link ID                                                |  |  |  |  |
| I to IV       | https://archive.nptel.ac.in/courses/113/106/113106070/ |  |  |  |  |

**SEMESTER S6** 

# INDUSTRIAL SAFETY ENGINEERING

| Course Code                     | РЕМЕТ637 | CIE Marks   | 40             |
|---------------------------------|----------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3-0-0-0  | ESE Marks   | 60             |
| Credits                         | 3        | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | None     | Course Type | Theory         |

# **Course Objectives:**

To provide on concept of safety in industry, principle of accident prevention, major hazards and consequences.

| Module<br>No. | Syllabus Description                                                       |   |  |  |
|---------------|----------------------------------------------------------------------------|---|--|--|
|               | Introduction to Industrial Safety: Concept of Safety, Goals of safety      |   |  |  |
|               | engineering, Need for safety engineering, definitions of Accident, injury, |   |  |  |
|               | unsafe actions &Conditions. Accident causing mechanisms, Heinrich's        |   |  |  |
| 1             | Law of accident prevention.                                                |   |  |  |
|               | Responsibility of Safety - Society, Govt., Management, Union &             | 9 |  |  |
|               | employees. Duties of safety officer. Safety Committee - Functions &        |   |  |  |
|               | Scope, Safety Awareness and Training, Safety audit and mock drill.         |   |  |  |
|               | Hazard and hazard identification: Hazard and risk, Types of Chemical       |   |  |  |
|               | hazards and its control. Fire safety. Factors contributing towards fire,   |   |  |  |
|               | Classification of Fire and Fire extinguishers.                             |   |  |  |
| 2             | Explosion-Toxic gas release - precautions. Consequence assessment and      |   |  |  |
|               | mitigation measures. – Effect model-vulnerability model                    | 9 |  |  |
|               | Electrical Hazards - controls- Safe limits of amperages, Voltages Safe     |   |  |  |
|               | distance from lines. Means of cutting of power overload and short circuit  |   |  |  |

|          | protection.                                                             |   |
|----------|-------------------------------------------------------------------------|---|
|          | Hazard identification and risk assessment: Inventory analysis, Hazard   |   |
|          | rating of process plants- The Dow Fire and Explosion Hazard Index,      |   |
|          | Hazard analysis -Preliminary hazard analysis, HAZOP, FMEA.              |   |
|          | Occupational Health and Safety: Safety and Health training, Stress and  |   |
|          | Safety. Ergonomics - Introduction, Advantages. Ergonomics Hazards -     |   |
|          | Musculoskeletal Disorders and Cumulative Trauma Disorders. Human        |   |
| 3        | factors contributing to accidents.                                      | 9 |
|          | Personal protection in the work environment, Types of PPEs, Respiratory |   |
|          | and non-respiratory equipment. Standards related to PPEs. Hearing       |   |
|          | Conservation Program in Production industries.                          |   |
|          | Safety issues in Machines: Machinery safeguard, Principle of machine    |   |
|          | guarding -types of guards and devices. Safety in machining, welding and |   |
|          | cutting.                                                                |   |
| 4        | Material Handling-Classification-safety consideration- manual and       |   |
| <b>T</b> | mechanical handling-Maintenance of common elements-wire rope, chains    | 9 |
|          | slings, hooks, clamps.                                                  |   |
|          | Monitoring Safety Performance: Frequency rate, severity rate, incidence |   |
|          | rate Housekeeping, Work permits system. Entry into confined spaces.     |   |

# **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Microproject | Internal<br>Examination-1<br>(Written) | Internal Examination- 2 (Written) | Total |
|------------|-----------------------------|----------------------------------------|-----------------------------------|-------|
| 5          | 15                          | 10                                     | 10                                | 40    |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                       | Part B                                            | Total |
|------------------------------|---------------------------------------------------|-------|
| • 2 Questions from each      | • Each question carries 9 marks.                  |       |
| module.                      | Two questions will be given from each module, out |       |
| • Total of 8 Questions, each | of which 1 question should be answered.           |       |
| carrying 3 marks             | Each question can have a maximum of 3 sub         | 60    |
|                              | divisions.                                        |       |
| (8x3 =24marks)               | (4x9 = 36  marks)                                 |       |

# **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                          | Bloom's<br>Knowledge<br>Level (KL) |
|-----|-------------------------------------------------------------------------|------------------------------------|
| CO1 | Describe the theories of accident causation and preventive measures of  | K2                                 |
|     | industrial accidents.                                                   |                                    |
| CO2 | Describe the different types of hazards and apply hazard identification | К3                                 |
|     | tools.                                                                  |                                    |
| CO3 | Understand the occupational health hazards and human factors            | K2                                 |
|     | contributing to industrial accidents.                                   |                                    |
| CO4 | Explain about personal protective equipment, its selection, safety      | K2                                 |
|     | performance &indicators.                                                |                                    |
| CO5 | Describe various hazards associated with different machines and         | K2                                 |
|     | mechanical material handling.                                           |                                    |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|     |     |     |     |     |     |     |     |     |     |      |      |      |
| CO1 | 2   | 2   | -   | -   | -   | 2   | 2   | 2   | -   | -    | -    | -    |
| CO2 | 2   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3 | 2   | 2   | -   | -   | -   | 2   | 2   | 2   | -   | -    | -    | -    |
| CO4 | 2   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO5 | 2   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | ı    | ı    |

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

|        | Text Books                                                             |                      |                                |                     |  |  |  |  |  |
|--------|------------------------------------------------------------------------|----------------------|--------------------------------|---------------------|--|--|--|--|--|
| Sl. No | Title of the Book                                                      | Name of the Author/s | Name of the<br>Publisher       | Edition<br>and Year |  |  |  |  |  |
| 1      | Industrial Safety, Health and<br>Environment management<br>systems     | R.K Jain             | Khanna Publications            | 2000                |  |  |  |  |  |
| 2      | Safety Management                                                      | Grimaldi and Simonds | AITBS Publishers,<br>New Delhi | 2001                |  |  |  |  |  |
| 3      | Occupational Safety and Health<br>Management                           | Thomas J. Anton      | McGraw Hill                    | 1989                |  |  |  |  |  |
| 4      | Safety management System and Documentation training Programme handbook | Paul S V             | CBS Publication                | 2000                |  |  |  |  |  |

|                                               | Reference Books               |                      |                                                                                                    |                            |  |  |  |  |  |
|-----------------------------------------------|-------------------------------|----------------------|----------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|
| Sl. No                                        | Title of the Book             | Name of the Author/s | Name of the<br>Publisher                                                                           | Edition<br>and Year        |  |  |  |  |  |
| 1                                             | Safety management in Industry | Krishnan, N.V.       | Jaico Publishing<br>House, New Delhi                                                               | 1997                       |  |  |  |  |  |
| 2                                             | Industrial safety             | Ronald P. Blake.     | Prentice Hall, New<br>Delhi                                                                        | 1973                       |  |  |  |  |  |
| 3                                             | Safety management system      | Alan Waring          | Chapman & Hall,<br>England                                                                         | 1996                       |  |  |  |  |  |
| 4 Guidelines for Hazard Evaluation Procedures |                               | AIChE/CCPS           | Centre for Chemical<br>Process Safety,<br>American Institute of<br>Chemical Engineers,<br>New York | Second<br>edition,<br>1992 |  |  |  |  |  |

|               | Video Links (NPTEL, SWAYAM)           |  |  |  |  |  |
|---------------|---------------------------------------|--|--|--|--|--|
| Module<br>No. | Link ID                               |  |  |  |  |  |
| 1             | https://nptel.ac.in/courses/110105094 |  |  |  |  |  |
| 2             | https://nptel.ac.in/courses/110105094 |  |  |  |  |  |
| 3             | https://nptel.ac.in/courses/110105094 |  |  |  |  |  |
| 4             | https://nptel.ac.in/courses/110105094 |  |  |  |  |  |

## **SEMESTER S6**

# MARKETING MANAGEMENT

| Course Code                     | РЕМЕТ638 | CIE Marks          | 40             |
|---------------------------------|----------|--------------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0  | ESE Marks          | 60             |
| Credits                         | 3        | Exam Hours         | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | -        | <b>Course Type</b> | Theory         |

# **Course Objectives:**

- 1. To evaluate the Marketing concepts and ideas.
- **2.** To analyse the consumer behaviour in the market.
- **3.** To interpret the ideas in pricing of products.
- **4.** To identify modern day advertisement and marketing methods.

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| 1             | INTRODUCTION: Definition of Marketing- Evolution-Marketing concept- Marketing mix- 4 Ps Frame work-Marketing orientation and philosophies.: Types of Markets-Different Market segmentation- Non segmented markets- Benefits- Limitations  MARKETING RESEARCH & ENVIRONMENT. Stages in Marketing research- Types of Research Methods- Exploratory- Descriptive- Experimental -Survey Methods  Marketing Environment- Micro& Macro environment -Factors affecting- Economic-Technological- political -Competitive Environment-Green Marketing concept. | 9 |  |  |  |
| 2             | CONSUMER BEHAVIOUR:- Consumer Psychology- Choice criteria-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |  |  |  |

|   | order management cycle – Buying situation- Personal and social influence .    | 9  |
|---|-------------------------------------------------------------------------------|----|
|   | PRODUCT DECISION: Concept of a Product - Types of Products-                   |    |
|   | Business, Consumer , Service productCommodity- Technology and                 |    |
|   | Customised product .New product development- Product idea-Product Life        |    |
|   | Cycle. Brand- Brand attributes- Building a brand name -strategies of          |    |
|   | corporate Branding.                                                           |    |
|   | PRICING STRATEGIES: setting the price of a product-pricing policies           |    |
|   | and constraints-factors influencing pricing decision-Methods of pricing- cost |    |
|   | oriented -competitor oriented- marketing oriented pricing -tactics of price   |    |
|   | adjustment. price wars- price sensitivity                                     |    |
| 3 | CHANNEL DECISION- Nature of Marketing Channels Types of                       | 10 |
|   | Channel flows -Consumer- Industrial-Service channels. Functions of            | 10 |
|   | Distribution Channel - Structure and Design of Marketing Channels -           |    |
|   | Channel co-operation, conflict and competition - Channel Intermediaries-      |    |
|   | Franchising Retailers and wholesalers-Theory of retailing.                    |    |
|   | ADVERTISEMENTS: Advertisements- Identifying audience - Types of               |    |
|   | Advertisements-Impact of advertisements. Role of Media in advertisements-     |    |
|   | Advertisement restrictions & legal actions.                                   |    |
| 4 | DIRECT & INTERNET MARKETING: Direct marketing Techniques-                     | O  |
|   | Direct mail-Tele marketing- catalogues- direct response. Internet Marketing-  | 8  |
|   | Types of Networks- e business practices in post covid era. B2B-B2C-C2C-       |    |
|   | C2B exchanges.                                                                |    |

# **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Microproject | Internal<br>Examination-1<br>(Written) | Internal Examination- 2 (Written) | Total |
|------------|-----------------------------|----------------------------------------|-----------------------------------|-------|
| 5          | 15                          | 10                                     | 10                                | 40    |

## **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

|   | Part A                     | Part B                                            | Total |
|---|----------------------------|---------------------------------------------------|-------|
| • | 2 Questions from each      | • Each question carries 9 marks.                  |       |
|   | module.                    | Two questions will be given from each module, out |       |
| • | Total of 8 Questions, each | of which 1 question should be answered.           |       |
|   | carrying 3 marks           | Each question can have a maximum of 3 sub         | 60    |
|   |                            | divisions.                                        |       |
|   | (8x3 =24marks)             | (4x9 = 36  marks)                                 |       |

## **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                       | Bloom's<br>Knowledge<br>Level (KL) |
|-----|------------------------------------------------------|------------------------------------|
| CO1 | To familiarise with the basic terms of marketing.    | K1                                 |
| CO2 | Evaluate the marketing concepts and ideas            | K2                                 |
| CO3 | Identify the consumer concepts in buying             | K1                                 |
| CO4 | Understand the method of channelling the product     | K1                                 |
| CO5 | Analysis of various pricing strategies in the market | К3                                 |
| CO6 | Analyse the modern day advertising methods           | К3                                 |
| CO7 | Understand the digital marketing methods             | K1                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 1   | -   | -   | -   | -   | 1   | 1   | -   | -   | -    | -    | 1    |
| CO2 | 2   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO3 | 2   | -   | -   | -   | -   | 1   | 1   | -   | -   | -    | -    | 1    |
| CO4 | 1   | 1   | 1   | 1   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO5 | 2   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO6 | 2   | -   | -   | -   | -   | -   | 1   | -   | -   | -    | -    | 1    |
| CO7 | 2   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

| Text Books |                                  |                                               |                           |                                      |  |
|------------|----------------------------------|-----------------------------------------------|---------------------------|--------------------------------------|--|
| Sl. No     | Title of the Book                | Name of the Author/s                          | Name of the<br>Publisher  | Edition<br>and Year                  |  |
| 1          | Marketing Management             | Phillip Kotler, Kevin<br>Lane Keller          | Pearson Publication       | 15th<br>Edition<br>(2018)            |  |
| 2          | Marketing Management             | Arun Kumar, N<br>Meenakshi                    | Vikas Publishing<br>house | 2nd<br>Edition<br>(2013)             |  |
| 3          | Research for Marketing decisions | Paul E Green, Donald S<br>Tull, Gerald Albaum | PHI learning              | 5th<br>Edition<br>(2010)             |  |
| 4          | Managing Marketing               | Noel Capon, Sidharth<br>Shekhar Singh         | Wiley Publications        | 1 <sup>ST</sup><br>Edition<br>(2014) |  |

|        | Reference Books                                    |                                     |                          |                        |  |  |  |  |
|--------|----------------------------------------------------|-------------------------------------|--------------------------|------------------------|--|--|--|--|
| Sl. No | Title of the Book                                  | Name of the Author/s                | Name of the<br>Publisher | Edition<br>and Year    |  |  |  |  |
| 1      | Marketing Analytics                                | Wayne L Winston                     | Wiley publication        | 2nd<br>Edition<br>2018 |  |  |  |  |
| 2      | Strategic Market Management-<br>Global perspective | David A Aaker, Damien<br>McLoughlin | Wiley Publications       | 3rd Edition<br>2016    |  |  |  |  |

|               | Video Links (NPTEL, SWAYAM)                            |  |  |  |  |  |
|---------------|--------------------------------------------------------|--|--|--|--|--|
| Module<br>No. | Link ID                                                |  |  |  |  |  |
| 1             | https://archive.nptel.ac.in/courses/110/104/110104068/ |  |  |  |  |  |
| 2             | https://archive.nptel.ac.in/courses/110/104/110104068/ |  |  |  |  |  |
| 3             | https://archive.nptel.ac.in/courses/110/104/110104068/ |  |  |  |  |  |
| 4             | https://archive.nptel.ac.in/courses/110/104/110104068/ |  |  |  |  |  |

# **SEMESTER S6**

# **ADVANCED MATERIALS**

| Course Code                     | PEMET635 | CIE Marks   | 40             |
|---------------------------------|----------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0  | ESE Marks   | 60             |
| Credits                         | 5/3      | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | PCMET205 | Course Type | Theory         |

# **Course Objectives:**

- 1. Develop the understanding of materials
- 2. Apply materials science and engineering solutions to enhance existing technology

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                      | Contact<br>Hours |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|               | Introduction to advanced materials, Advanced materials and alloys, Super alloy:  Metallurgy and strengthening mechanisms, Types of super alloy and                                                                                                                                                                                                                                                                        |                  |
| 1             | application.  Bulk metallic glasses: Mechanism of formation, properties, and application.  High Entropy Alloys (HEA): Thermodynamics, applications, Core effects of HEA, Phase selection in HEA.  Self-healing materials: different self-healing processes. Materials for self-healing process.                                                                                                                           | 9                |
| 2             | Shape-Memory Materials: Shape memory effect and phase transformation effect, Superelasticity or Pseudoelasticity, Shape Memory Polymer (SMP), Thermo-Stimulated SMP, Electric-Stimulated SMP, Light-Stimulated SMP, Shape Memory Ceramic, Shape Memory Hybrids.  Piezoelectric Materials: Direct and inverse Piezoelectric Effect, Materials used for piezoresistivity (Ceramics, Polymer and Composites), Single Crystal | 9                |

|   | Piezoelectric.                                                              |   |
|---|-----------------------------------------------------------------------------|---|
|   | Smart Fluids: Electro-Rheological Fluids, Magneto -Rheological Fluid, Ferro |   |
|   | Fluids, Photo-Rheological fluids, Materials used for ER, MR and PR fluids.  |   |
|   | Nanomaterials: Size effect, synthesis and properties of Nanomaterials.      |   |
|   | Application of Nanomaterials. Carbon based nanomaterials- Graphene, CNT,    |   |
|   | Carbon dots, Fullerene. Pyrolyzed nanocarbon materials, properties and      |   |
|   | applications                                                                |   |
| 3 | Emerging 2D materials (Hexagonal boron nitride (h-BN), metal chalcogenides, | 9 |
|   | metal oxides, metal halides, metal carbides/nitrides (MXenes), and organic  |   |
|   | semiconductors (OSCs)), properties and applications.                        |   |
|   | Emerging photovoltaic materials                                             |   |
|   | Ultralight materials: Aerogels, metallic and ceramic foams Biomaterials:    |   |
|   | Biocompatibility, Classification of biomaterials and applications. Surface  |   |
| 4 | modification of biomaterials-biocompatible coating, surface treatment,      |   |
|   | Advanced plastic materials, High temperature and conducting plastics,       | 9 |
|   | Biodegradable and Biorenewable Polymers/Plastics, Applications              |   |

# **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Microproject | Internal<br>Examination-1<br>(Written) | Internal<br>Examination- 2<br>(Written) | Total |
|------------|-----------------------------|----------------------------------------|-----------------------------------------|-------|
| 5          | 15                          | 10                                     | 10                                      | 40    |

## **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                       | Part B                                            | Total |
|------------------------------|---------------------------------------------------|-------|
| 2 Questions from each        | Each question carries 9 marks.                    |       |
| module.                      | Two questions will be given from each module, out |       |
| • Total of 8 Questions, each | of which 1 question should be answered.           |       |
| carrying 3 marks             | • Each question can have a maximum of 3 sub       |       |
|                              | divisions.                                        |       |
| (8x3 =24marks)               | (4x9 = 36  marks)                                 |       |

## **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                              | Bloom's<br>Knowledge<br>Level (KL) |
|-----|-------------------------------------------------------------|------------------------------------|
| CO1 | Get introduction to different types of advanced materials   | K4                                 |
| CO2 | Understand properties of alloys and self healing materials  | K4                                 |
| CO3 | Understand and identify the applications of smart materials | K4                                 |
| CO4 | Learn the application and scope of nano-materials           | K4                                 |
| CO5 | Identify the importance of biomaterials                     | K4                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

### **CO-PO Mapping Table:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2 | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3 | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4 | 3   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5 | 3   | 3   | 2   | -   | -   | -   | 2   | -   | -   | -    | -    | -    |

|        | Text Books                                                     |                      |                          |                     |  |  |  |  |  |  |
|--------|----------------------------------------------------------------|----------------------|--------------------------|---------------------|--|--|--|--|--|--|
| Sl. No | Title of the Book                                              | Name of the Author/s | Name of the<br>Publisher | Edition<br>and Year |  |  |  |  |  |  |
| 1      | Advanced Materials An Introduction to Modern Materials Science | Ajit Behera          | Springer                 | 2021                |  |  |  |  |  |  |

|        | Reference Books                       |                                                               |                          |                  |  |  |  |  |  |
|--------|---------------------------------------|---------------------------------------------------------------|--------------------------|------------------|--|--|--|--|--|
| Sl. No | Title of the Book                     | Name of the Author/s                                          | Name of the<br>Publisher | Edition and Year |  |  |  |  |  |
| 1      | Biomaterials Principles and Practices | Donald R. Peterson,<br>Joseph D. Bronzino,<br>Joyce Y. Wong   | Taylor & Francis         | 2012             |  |  |  |  |  |
| 2      | Carbon Nanomaterials                  | Volker Presser, Yury<br>Gogotsi                               | CRC Press                | 2006             |  |  |  |  |  |
| 3      | Advanced Materials                    | Ivan A. Parinov, Shun-<br>Hsyung Chang, Vitaly<br>Yu. Topolov | De Gruyter               | 2020             |  |  |  |  |  |

|               | Video Links (NPTEL, SWAYAM)                          |  |  |  |  |  |  |
|---------------|------------------------------------------------------|--|--|--|--|--|--|
| Module<br>No. | Link ID                                              |  |  |  |  |  |  |
| 1             | https://onlinecourses.nptel.ac.in/noc19_mm13/preview |  |  |  |  |  |  |
| 2             | https://onlinecourses.nptel.ac.in/noc19_mm13/preview |  |  |  |  |  |  |
| 3             | https://onlinecourses.nptel.ac.in/noc19_mm13/preview |  |  |  |  |  |  |
| 4             | https://nptel.ac.in/courses/113104009                |  |  |  |  |  |  |

## **SEMESTER S6**

# THERMAL ENGINEERING

| Course Code                        | PBMET604                                  | CIE Marks   | 60             |
|------------------------------------|-------------------------------------------|-------------|----------------|
| Teaching Hours/Week<br>(L: T:P: R) | 3:0:0:1                                   | ESE Marks   | 40             |
| Credits                            | 4                                         | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)             | PCMET403<br>Engineering<br>Thermodynamics | Course Type | Theory         |

# **Course Objectives:**

- 1. To become proficient with steam turbines and steam power systems.
- 2. To comprehend and evaluate the performance of internal combustion engines and examine their combustion processes

| Module<br>No. | Syllabus Description                                                      | Contact<br>Hours |
|---------------|---------------------------------------------------------------------------|------------------|
|               | Steam Power Cycle: Simple Rankine cycle, Improvements in Rankine          |                  |
|               | cycles-Reheat and Regenerative cycles - Numerical problems.               |                  |
|               | Steam Boilers: Types of boilers, Fire tube boiler - Cochran boiler, Water |                  |
| 1             | tube boiler - Babcock and Wilcox, Boiler Mountings and Accessories.       |                  |
|               | Steam nozzles: -Types of nozzles, Velocity, Effect of friction, nozzle    | 9                |
|               | efficiency and its effects - Simple numerical problems, Super saturated   |                  |
|               | flow.                                                                     |                  |
|               | Steam turbines: Classification, compounding of turbines-pressure          |                  |
|               | velocity variation. Velocity diagrams, work done, efficiency, Condition   |                  |
|               | for maximum efficiency (Derivation not required). Graphical Method for    |                  |
| 2             | solving velocity triangle problems on impulse and reaction turbines.      |                  |
|               | Multistage turbines -Condition line, stage efficiency, reheat factor and  | 9                |
|               | degree of reaction. Governing of turbines - Centrifugal governing and     |                  |
|               | Nozzle governing.                                                         |                  |

|   | Fundamentals of IC Engines: Air standard cycles, their analysis, and      |   |
|---|---------------------------------------------------------------------------|---|
|   | applications - Otto cycle, Diesel cycle, Dual cycle, Atkinson cycle (No   |   |
|   | numerical problems and derivations)                                       |   |
|   | Reciprocating type SI and CI engines: Ideal and Actual cycle for IC       |   |
|   | engines- Deviation from ideal cycle and associated factors. Super         |   |
| 3 | charging, and turbo charging.                                             | 9 |
|   | Engine Testing and Performance of SI and CI engines: Torque,              |   |
|   | Engine power- BHP, IHP, Efficiencies of IC engines, Specific fuel         |   |
|   | consumption, Mean effective pressure. Morse test, Heat balance test and   |   |
|   | Retardation test – Simple Numerical problems.                             |   |
|   | Combustion in IC Engines: Fuels for IC engines, Ignition limits, air-fuel |   |
|   | ratio, equivalence ratio.                                                 |   |
|   | S.I. engines: Stages of combustion in S.I. Engines, Ignition lag, Auto    |   |
|   | ignition and Detonation, Effects of engine variables on detonation and    |   |
|   | Octane rating of fuels.                                                   |   |
| 4 | C.I. Engines: Stages of combustion in C.I engines, Delay period,          | 9 |
|   | variables affecting delay period; knocking, Cetane rating of fuels.       |   |
|   | Major pollutants from S.I. and C.I. Engines, Measurement of exhaust       |   |
|   | emissions, Emission Control techniques - Catalytic convertors,            |   |
|   | Particulate traps Thermal reactor, Exhaust Gas Recirculation              |   |

**Suggestion on Project Topics** 

# **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Project | Internal Ex-1 | Internal Ex-2 | Total |
|------------|---------|---------------|---------------|-------|
| 5          | 30      | 12.5          | 12.5          | 60    |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                  | Part B                                        | Total |
|-------------------------|-----------------------------------------------|-------|
| 2 Questions from each   | • 2 questions will be given from each module, |       |
| module.                 | out of which 1 question should be answered.   |       |
| • Total of 8 Questions, | Each question can have a maximum of 2 sub     |       |
| each carrying 2 marks   | divisions.                                    | 40    |
| (8x2 =16 marks)         | • Each question carries 6 marks.              |       |
|                         | (4x6 = 24  marks)                             |       |

### **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                              |    |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------|----|--|--|--|--|
| CO1 | Apply the basic thermodynamic principles and analyse the operation of steam power cycles    | K4 |  |  |  |  |
| CO2 | Analyse the performance of steam turbines and identify methods to improve their efficiency. | К3 |  |  |  |  |
| CO3 | Identify the performance parameters of IC engines and evaluate their performance.           | К3 |  |  |  |  |
| CO4 | Explain the combustion phenomenon and pollution in IC engines.                              | K2 |  |  |  |  |
| CO5 | Conduct case studies, carry out simulation/testing, and prototyping.                        | K6 |  |  |  |  |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2 | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3 | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    |
| CO4 | 2   | 2   | -   | -   | -   | -   | 2   | -   | -   | -    | 2    | 2    |
| CO5 | 3   | 3   | 2   | 2   | 2   | 2   | 2   | 2   | 3   | 3    | 2    | 2    |

|        | Text Books                             |                              |                                |                            |  |  |  |  |  |  |
|--------|----------------------------------------|------------------------------|--------------------------------|----------------------------|--|--|--|--|--|--|
| Sl. No | Title of the Book Name of the Author/s |                              | Name of the<br>Publisher       | Edition<br>and Year        |  |  |  |  |  |  |
| 1      | Thermal Engineering                    | Rudra Moorthy                | McGraw Hill<br>Education India | 2003                       |  |  |  |  |  |  |
| 2      | Thermal Engineering                    | R.K Rajput                   | Laxmi publications             | 2010                       |  |  |  |  |  |  |
| 3      | Fundamentals of IC engines             | V. Ganesan                   | Tata McGraw-Hill               | 2002                       |  |  |  |  |  |  |
| 4      | Fundamentals of IC engines             | H N Gupta                    | РНІ                            | Second<br>Edition,<br>2018 |  |  |  |  |  |  |
| 5      | Internal Combustion Engines            | V Sajith and Shijo<br>Thomas | Oxford University Press        | 2017                       |  |  |  |  |  |  |

|        | Reference Books         |                      |                                |                  |  |  |  |  |  |
|--------|-------------------------|----------------------|--------------------------------|------------------|--|--|--|--|--|
| Sl. No | Title of the Book       | Name of the Author/s | Name of the<br>Publisher       | Edition and Year |  |  |  |  |  |
| 1      | I.C engine fundamentals | J.B.Heywood          | McGraw-Hill                    | 2011             |  |  |  |  |  |
| 2      | Thermal Engineering     | Mahesh Rathore       | McGraw Hill<br>Education India | 2010             |  |  |  |  |  |

| Video Links (NPTEL, SWAYAM) |                                                        |  |  |  |  |
|-----------------------------|--------------------------------------------------------|--|--|--|--|
| Module<br>No.               | Link ID                                                |  |  |  |  |
| 1                           | https://nptelvideos.com/video.php?id=1181              |  |  |  |  |
| 2                           | https://nptelvideos.com/video.php?id=1181              |  |  |  |  |
| 3                           | https://archive.nptel.ac.in/courses/112/103/112103262/ |  |  |  |  |
| 4                           | https://archive.nptel.ac.in/courses/112/103/112103262/ |  |  |  |  |

# **PBL Course Elements**

| L: Lecture                                                | R: Project (1 Hr.), 2 Faculty Members |                                                 |                                                                                                   |  |
|-----------------------------------------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| (3 Hrs.)                                                  | Tutorial                              | Practical                                       | Presentation                                                                                      |  |
| Lecture delivery                                          | Project identification                | Simulation/<br>Laboratory<br>Work/<br>Workshops | Presentation (Progress and Final Presentations)                                                   |  |
| Group discussion                                          | Project Analysis                      | Data Collection                                 | Evaluation                                                                                        |  |
| Question answer<br>Sessions/<br>Brainstorming<br>Sessions | Analytical thinking and self-learning | Testing                                         | Project Milestone Reviews, Feedback, Project reformation (If required)                            |  |
| Guest Speakers<br>(Industry<br>Experts)                   | Case Study/ Field<br>Survey Report    | Prototyping                                     | Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video |  |

# Assessment and Evaluation for Project Activity

| Sl. No | Evaluation for                                             | Allotted<br>Marks |
|--------|------------------------------------------------------------|-------------------|
| 1      | Project Planning and Proposal                              | 5                 |
| 2      | Contribution in Progress Presentations and Question Answer | 4                 |
|        | Sessions                                                   |                   |
| 3      | Involvement in the project work and Team Work              | 3                 |
| 4      | Execution and Implementation                               | 10                |
| 5      | Final Presentations                                        | 5                 |
| 6      | Project Quality, Innovation and Creativity                 | 3                 |
|        | Total                                                      | 30                |

#### 1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

#### 2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

#### 3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

#### 4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

#### 5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

#### 6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

# **SEMESTER S6**

# INTRODUCTION TO BUSINESS ANALYTICS

| Course Code                     | OEMET611                         | CIE Marks   | 40                     |
|---------------------------------|----------------------------------|-------------|------------------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0                          | ESE Marks   | 60                     |
| Credits                         | 3                                | Exam Hours  | 2 Hrs. 30 Min.         |
| Prerequisites (if any)          | Basic Knowledge of<br>Statistics | Course Type | Theory – Open elective |

# **Course Objectives:**

- 1. Understand the Importance of Analytics in Decision making and Problem solving.
- **2.** Understand the basic concepts in different levels of Analytics and how it is used in data-driven decision making.

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| 1             | Introduction to Business Analytics: Why Analytics- Business Analytics:  The Science of Data Driven Decision Making - Components of Business  Analytics- Levels of Analytics - Descriptive Analytics, Predictive  Analytics and Prescriptive Analytics- Framework for Data Driven Decision  Making- Challenges in Data Driven Decision Making and Future.  Introduction to Big data Analytics - Characteristics- Sources of Big Data. | 9 |  |  |  |
| 2             | Data: Definition and its Importance- How Data Add Value to the Business- Data Analytics vs Data Analysis  Introduction to Descriptive Analytics: Data Types - Structured and Unstructured data - Types of Data Measurement Scales.  Measures of Central Tendency: Arithmetic Mean-Mean of Grouped Data - Weighted Mean - Median- Median of Grouped Data- Mode- Mode of Grouped Data- Percentiles.                                    | 9 |  |  |  |

|   | Measures of Dispersion: Range - Inter QuartileRange -Standard           |   |  |  |  |  |  |
|---|-------------------------------------------------------------------------|---|--|--|--|--|--|
|   | Deviation - Variance and Coefficient of Variation.                      |   |  |  |  |  |  |
|   | Measures of Shape- Skewness and Kurtosis.                               |   |  |  |  |  |  |
|   | Data Visualization: Histogram- Bar Chart-Pie Chart-Scatter Plot-Coxcomb |   |  |  |  |  |  |
|   | Chart-Box and Whisker Plot.                                             |   |  |  |  |  |  |
|   | Correlation Analysis: Pearson Correlation Coefficient-Spearman Rank     |   |  |  |  |  |  |
| 3 | Correlation.                                                            |   |  |  |  |  |  |
|   | Predictive Analytics: Simple Linear Regression-Simple Linear Regression |   |  |  |  |  |  |
|   | Model-Least Squares Method -Coefficient of Determination -Model         |   |  |  |  |  |  |
|   | Assumptions.                                                            |   |  |  |  |  |  |
|   | Prescriptive Analytics: Introduction                                    |   |  |  |  |  |  |
|   | Business Performance Management: Business Performance Management        |   |  |  |  |  |  |
| 4 | cycle-Performance management system-Key Performance Indicators.         |   |  |  |  |  |  |
|   | Analytics in Business support functions: Sales and Marketing - Human    | 9 |  |  |  |  |  |
|   | Resources-Financial Analytics-Production and Operations Analytics.      |   |  |  |  |  |  |

# **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Micro project | Internal<br>Examination-1<br>(Written) | Internal Examination- 2 (Written) | Total |
|------------|------------------------------|----------------------------------------|-----------------------------------|-------|
| 5          | 15                           | 10                                     | 10                                | 40    |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                                                                                                                          | Part B                                                                                                                                                                                                                                        | Total |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <ul> <li>2 Questions from each module.</li> <li>Total of 8 Questions, each carrying 3 marks</li> <li>(8x3 = 24marks)</li> </ul> | <ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions.</li> <li>(4x9 = 36 marks)</li> </ul> | 60    |

# **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                                                        | Bloom's<br>Knowledge<br>Level (KL) |
|-----|-----------------------------------------------------------------------------------------------------------------------|------------------------------------|
| CO1 | Understand the fundamentals of business analytics and how it is becoming competitive strategy for many organisations. | K2                                 |
| CO2 | Understand the Importance of analytics in decision making and problem solving.                                        | K2                                 |
| CO3 | Understand the application of descriptive analytics in decision making.                                               | K2                                 |
| CO4 | Learn data visualization and various types of visual charts.                                                          | K2                                 |
| CO5 | Apply simple linear regression model in predictive analytics problems.                                                | К3                                 |
| CO6 | Understand the basic concepts in prescriptive analytics.                                                              | K2                                 |
| C07 | Understand the essence of business performance management and analytics in business support functions.                | K2                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 2   | 1   | -   | 2   | -   | -   | -   | -   | 2   | -    | -    | -    |
| CO2 | 2   | 2   | 2   | 3   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO3 | 2   | 2   | 3   | 3   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO4 | 2   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5 | 3   | 2   | 3   | 3   | 3   | -   | -   | -   | -   | -    | -    | -    |
| CO6 | 2   | 2   | 2   | 1   | 2   | -   | -   | -   | -   | -    | -    | -    |
| CO7 | -   | -   | -   | -   | -   | 2   | -   | 2   | 2   | 3    | 2    | -    |

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

|        | Text Books                                                                    |                                    |                          |                      |  |  |  |  |
|--------|-------------------------------------------------------------------------------|------------------------------------|--------------------------|----------------------|--|--|--|--|
| Sl. No | Title of the Book                                                             | Name of the Author/s               | Name of the<br>Publisher | Edition<br>and Year  |  |  |  |  |
| 1      | Business Analytics-The Science of Data Driven Decision Making                 | U Dinesh Kumar                     | Wiley                    | First Edition:20     |  |  |  |  |
| 2      | Fundamentals of Business<br>Analytics                                         | R. N. Prasad & Seema<br>Acharya    | Wiley                    | Second<br>Edition:20 |  |  |  |  |
| 3      | Business Intelligence.  Analytics and Data Science: A  Managerial Perspective | R. Sharda, D. Delen &<br>E. Turban | Pearson                  | Fourth Edition:20    |  |  |  |  |

| Reference Books |                                                                                      |                                         |                          |                     |  |  |
|-----------------|--------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|---------------------|--|--|
| Sl. No          | Title of the Book                                                                    | Name of the Author/s                    | Name of the<br>Publisher | Edition<br>and Year |  |  |
| 1               | Data Analytics                                                                       | A. Maheshwari                           | McGraw Hill<br>Education | First Edition:20    |  |  |
| 2               | Business Analytics for<br>Managers: Taking Business<br>Intelligence Beyond Reporting | Gert H. N. Laursen &<br>Jesper Thorlund | Wiley                    | First Edition:20    |  |  |
| 3               | Business Analytics                                                                   | J. R. Evans                             | Pearson                  | Third<br>Edition:20 |  |  |

|                       | Video Links (NPTEL, SWAYAM)                                   |  |  |  |  |  |
|-----------------------|---------------------------------------------------------------|--|--|--|--|--|
| Module<br>No. Link ID |                                                               |  |  |  |  |  |
| 1                     | https://youtu.be/YZf5q-ICf8Y                                  |  |  |  |  |  |
| 2                     | https://youtu.be/1MiT06JFNo4 and https://youtu.be/6lQn1hdG43o |  |  |  |  |  |
| 3                     | https://youtu.be/eY55ocm-VgM and https://youtu.be/xXDoZLVjfbs |  |  |  |  |  |

SEMESTER S6
QUANTITATIVE TECHNIQUES FOR ENGINEERS

| Course Code                     | OEMET612   | CIE Marks   | 40                     |
|---------------------------------|------------|-------------|------------------------|
| Teaching Hours/Week (L: T:P: R) | 3: 0: 0: 0 | ESE Marks   | 60                     |
| Credits                         | 3          | Exam Hours  | 2 Hrs. 30 Min.         |
| Prerequisites (if any)          | None       | Course Type | Theory – Open elective |

## **Course Objectives:**

1. This course will equip the student with the expertise to mathematically model real life optimization problems and subsequently educate the student to solve these models with the help of the available methods. The mathematical concepts and models deal with solving engineering problems using minimum available resources.

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                              |   |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| 1             | Introduction to Quantitative Techniques: Basics of Operations Research – Applications - Linear Programming - Problem Formulation, Graphical method, Simplex method, Big-M Method.  Decision Making: Decision under certainty, risk and uncertainty: Decision trees, EMV method, EOL method, MaxiMin criterion, MiniMax criterion.                                 | 9 |  |  |  |  |
| 2             | Transportation Problem: Mathematical Formulation, Balanced and unbalanced problems, Initial Basic Feasible Solution, North West Corner method, Least Cost method, Vogel's Approximation Method, Optimality test by MODI method, Assignment problem, Hungarian method.  Sequencing Problem: Basic terminologies, Processing of n Jobs through 2, 3 and m machines. | 9 |  |  |  |  |

| 3 | Network analysis – Basic terms – Network construction, time analysis, Critical Path Method (CPM), Programme Evaluation and Review Technique (PERT).  Game Theory: Games with saddle points, Games without saddle points – 2 x 2 games, Graphical method for m x 2 and 2 x n games                  | 9 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | Queuing theory: Scope, terminology, classification Importance and applications, Performance Measures in Queuing Systems, Single-server exponential arrival and service times. Multi - server problems.  Simulation: Monte Carlo simulation – Queuing simulation model-Generation of random numbers | 9 |

# **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Micro project | Internal<br>Examination-1<br>(Written) | Internal<br>Examination- 2<br>(Written) | Total |
|------------|------------------------------|----------------------------------------|-----------------------------------------|-------|
| 5          | 15                           | 10                                     | 10                                      | 40    |

## **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                                                                                                 | Part B                                                                                                                                                                                                              | Total |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <ul> <li>2 Questions from each module.</li> <li>Total of 8 Questions, each carrying 3 marks</li> </ul> | <ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions.</li> </ul> | 60    |
| (8x3 =24marks)                                                                                         | (4x9 = 36  marks)                                                                                                                                                                                                   |       |

# **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                         | Bloom's<br>Knowledge<br>Level (KL) |
|-----|----------------------------------------------------------------------------------------|------------------------------------|
| CO1 | To formulate and solve linear programming and transportation problems                  | K4                                 |
| CO2 | To apply decision theory under various conditions of certainty, risk, and uncertainty. | К3                                 |
| CO3 | To sequence and schedule jobs and projects                                             | К3                                 |
| CO4 | To solve Game Theory problems                                                          | К3                                 |
| CO5 | To solve problems using classical queuing theory models                                | К3                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 2   | 2   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2 | 2   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3 | 2   | 2   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4 | 2   | 2   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5 | 2   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |

| Text Books |                     |                      |                          |                     |  |  |
|------------|---------------------|----------------------|--------------------------|---------------------|--|--|
| Sl. No     | Title of the Book   | Name of the Author/s | Name of the<br>Publisher | Edition and Year    |  |  |
| 1          | Operations Research | Paneerselvam R.      | РНІ                      | Third edition, 2023 |  |  |
| 2          | Operations Research | Taha                 | Pearson                  | Tenth edition, 2019 |  |  |

|        | Reference Books                        |                                      |                          |                     |  |  |  |  |
|--------|----------------------------------------|--------------------------------------|--------------------------|---------------------|--|--|--|--|
| Sl. No | Title of the Book                      | Name of the Author/s                 | Name of the<br>Publisher | Edition and Year    |  |  |  |  |
| 1      | Introduction to Operations<br>Research | F. S. Hillier and G. J.<br>Lieberman | McGraw Hill              | Tenth edition, 2017 |  |  |  |  |
| 2      | Discrete Event System<br>Simulation    | Banks, Carson, Nelson<br>and Nicol   | Pearson                  | Fifth edition, 2013 |  |  |  |  |

#### **SEMESTER S6**

## **AUTOMOTIVE TECHNOLOGY**

| Course Code                     | OEMET613               | CIE Marks      | 40                     |
|---------------------------------|------------------------|----------------|------------------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0                | ESE Marks      | 60                     |
| Credits                         | 3                      | Exam<br>Hours  | 2 Hrs. 30 Min.         |
| Prerequisites (if any)          | None/<br>(Course code) | Course<br>Type | Theory – Open elective |

## **Course Objectives:**

- 1. To understand the fundamental principles and technologies of automotive propulsion systems, including electric, hybrid, and internal combustion engines, along with their classifications and basic dynamics.
- 2. To understand automotive components and systems such as power plants, fuel supply, ignition, transmission, chassis, steering, braking, suspension and Electrical/Electronic architecture.

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| 1             | <b>Introduction</b> : History of automobiles: Electric, Hybrid and Internal Combustion Engines (ICE) vehicles – classification of automobile L, M and N category. Sub division according to body style (hatchback to station wagon). Basic vehicle dynamics: Rolling, Air and Grade resistance, Power and Torque for propulsion (basic equations). Different ICEs – SI & CI, Single and multicylinder with arrangements, Bi fuel & dual fuel, latest technologies in ICEs – Flex fuel vehicles, H <sub>2</sub> -ICE, Hybrid types – Mild & strong hybrids, series, parallel, and series parallel types. | 9 |  |  |  |  |

| 2 | Power plant: Components in an IC engine – head, block & sump, cylinder, piston, piston pin, crank, connecting rod, valve train and types, combustion process – A/F ratio, self-ignition temperature, Octane and cetane number.  Fuel, Air and ignition systems: Carburettors(simple), MPFI, CRDI & GDI systems with components (line diagram). Working of solenoid and piezo injectors. Naturally aspirated and forced induction systems (turbo and super charger). Spark ignition systems –components, ignition timing, Single coil                                                                                                                                                         | 9 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | ignition system & coil over plug ignitions system.  Lubrication, Cooling and exhaust system: Lubrication system – basic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| 3 | circuitry, oil grade and viscosity. Cooling system – basic circuit including thermostat valve. Exhaust system – 3-way catalytic converter, DPF and SCR basics. <b>Transmission &amp; Chassis:</b> Gear ratio, manual transmission: synchromesh, Automated and Automatic transmission basics, Friction and Fluid clutches basics. Different types chassis – tubular to integrated, duties of a chassis.                                                                                                                                                                                                                                                                                       | 9 |
| 4 | Steering, Braking and Suspension: Working of manual, electric and hydraulic steering system. Working of brake system – hydraulic, pneumatic and ABS. Suspension system – rigid & independent, coil & leaf, shock absorber basics. E & E architecture – ECUs, sensors and actuators other than ECM, distributed and zonal electrical architecture. Basics of communication protocols – CAN, LIN and ethernet. Electric vehicle components and energy flow, On-board diagnostic basics – DTC code, basics of ADAS – sensors, levels of automation, examples – LDWS to Lane change assist, Adaptive cruise control, Automatic emergency braking, Driver monitoring system, Autonomous Vehicles. | 9 |

# **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Micro project | Internal<br>Examination-1<br>(Written) | Internal<br>Examination- 2<br>(Written) | Total |
|------------|------------------------------|----------------------------------------|-----------------------------------------|-------|
| 5          | 15                           | 10                                     | 10                                      | 40    |

# **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                       | Part B                                            | Total |
|------------------------------|---------------------------------------------------|-------|
| 2 Questions from each        | Each question carries 9 marks.                    |       |
| module.                      | Two questions will be given from each module, out |       |
| • Total of 8 Questions, each | of which 1 question should be answered.           |       |
| carrying 3 marks             | • Each question can have a maximum of 3 sub       | 60    |
|                              | divisions.                                        |       |
| (8x3 =24marks)               | (4x9 = 36  marks)                                 |       |

# **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                                                                                                                               | Bloom's<br>Knowledge<br>Level (KL) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| CO1 | Understand the efficiency and performance of different automotive propulsion systems (electric, hybrid, internal combustion)                                                                 | K2                                 |
| CO2 | Apply knowledge of automotive components to diagnose and troubleshoot issues in propulsion, transmission, and chassis systems.                                                               | К3                                 |
| СОЗ | Describe the operation and integration of advanced automotive technologies such as fuel injection systems and electronic control units (ECUs) in vehicle design and performance enhancement. | К2                                 |
| CO4 | Understand basics of E & E architecture and principles behind vehicle handling and safety through analysis of steering, braking and suspension systems.                                      | К2                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

# **CO-PO Mapping Table:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3 | 3   | 2   | -   | -   | -   | -   | -   | -   | _   | -    | -    | -    |
| CO4 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |

|        | Text Books                                   |                                         |                                       |                                  |  |  |  |
|--------|----------------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------|--|--|--|
| Sl. No | Title of the Book                            | Title of the Book Name of the Author/s  |                                       | Edition and<br>Year              |  |  |  |
| 1      | Automobile Engineering, Vol.1 & Vol.2        | Kirpal Singh                            | Standard Publishers                   | 13 <sup>th</sup> edition,2020.   |  |  |  |
| 2      | A Textbook of Automobile<br>Engineering      | S K Gupta                               | S Chand                               | January<br>2020                  |  |  |  |
| 3      | Fundamentals of motor vehicle technology.    | Hillier and Peter Coobes                | New Age International Private Limited | 6th edition (1 January 2006)     |  |  |  |
| 4      | Vehicle and engine technology                | Heinz Heisler                           | Society of Automotive<br>Engineers    | 2nd edition (1 September 1998)   |  |  |  |
| 5      | Automobile mechanical and electrical systems | Tom Denton & <u>Hayley</u> <u>Pells</u> | Routledge Publishers                  | 3 <sup>rd</sup> edition,<br>2022 |  |  |  |
| 6      | Automobile Electrical and Electronic systems | Tom Denton                              | Routledge Publishers                  | 5 <sup>th</sup> edition,<br>2018 |  |  |  |

|        | Reference Books                           |                          |                           |                                  |  |  |  |  |
|--------|-------------------------------------------|--------------------------|---------------------------|----------------------------------|--|--|--|--|
| Sl. No | Title of the Book                         | Name of the Author/s     | Name of the<br>Publisher  | Edition and<br>Year              |  |  |  |  |
| 1      | Automotive Mechanics                      | Heitner J                | East-West Press           | 2 <sup>nd</sup> edition,<br>1999 |  |  |  |  |
| 2      | Automobile Engineering                    | Jain K.K. and Asthana R. | Tata McGraw Hill          | New Delhi,<br>2002               |  |  |  |  |
| 3      | Electric and Hybrid Vehicles              | Tom Denton               | Routledge Publishers      | 2nd edition,<br>2020             |  |  |  |  |
| 4      | Fundamentals of modern vehicle technology | V.A.W. Hillier           | Butterworth-<br>Heinemann | 2nd<br>edition,1998              |  |  |  |  |

|               | Video Links (NPTEL, SWAYAM)                            |  |  |  |  |  |  |
|---------------|--------------------------------------------------------|--|--|--|--|--|--|
| Module<br>No. | Link ID                                                |  |  |  |  |  |  |
| 1             | https://archive.nptel.ac.in/courses/107/106/107106088/ |  |  |  |  |  |  |
| 2             | https://archive.nptel.ac.in/courses/107/106/107106088/ |  |  |  |  |  |  |
| 3             | https://archive.nptel.ac.in/courses/107/106/107106088/ |  |  |  |  |  |  |
| 4             | https://archive.nptel.ac.in/courses/107/106/107106088/ |  |  |  |  |  |  |

**SEMESTER S6** 

# RENEWABLE ENERGY ENGINEERING

| Course Code                     | OEMET614 | CIE Marks   | 40                     |
|---------------------------------|----------|-------------|------------------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0  | ESE Marks   | 60                     |
| Credits                         | 3        | Exam Hours  | 2 Hrs. 30 Min.         |
| Prerequisites (if any)          | None     | Course Type | Theory – Open elective |

# **Course Objectives:**

1. The course is aimed at imparting basic knowledge on the different types of renewable energy resources and utilization of these energy effectively so as to minimize the consumption of non-renewable energy to a greater extend.

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contact<br>Hours |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1             | The Energy Scenario- Commercial energy sources -World's production and reserves- India' Production and reserves.  Solar Energy collectors: Solar thermal collectors -Flat plate collectors -Solar concentrators (parabolic trough, parabolic dish, Central Tower Collector) - Solar Air Heaters. Solar thermal electric power generation -Thermal Energy storage, sensible heat storage, latent heat storage, Thermo chemical storage, photovoltaic system for power generation, Solar pond -Solar Cells-Types of solar cells, principle of working and performance characteristics, Production process- Block diagram only Applications- Solar space heating and cooling of buildings, solar pumping, solar cooker, solar still, solar drier, solar refrigeration and air-conditioning, heliostat, solar furnace. | 11               |

| 2 | Wind Energy- classification of wind turbines and power performance curve, Energy in wind, calculation of energy content, Power coefficients, Betz limit theory, tip speed ratio, solidity of turbine' power control strategies, Basic principles of Wind Energy Conversion Systems (WECS), Classification of WECS, Parts of WECS                                                                                                 | 7  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3 | Ocean Energy – Devices for Wave Energy conversion, Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, Methods of OTEC power generation – Open Cycle (Claude cycle), Closed Cycle (Anderson cycle) and Hybrid cycle (block diagram description of OTEC); Geothermal energy: Introduction, hot dry rock resources, magma resources, vapour and liquid dominated systems, binary cycle, advantages and disadvantages | 10 |
| 4 | Bio Mass Energy- Biomass conversion technologies –Bio Gasification, Bio ethanol, Bio Diesel, Biogas production from waste biomass, factors affecting biogas generation Bio Gas -KVIC and Janata model.  Hydrogen Energy – various routes for production of Hydrogen energy.                                                                                                                                                      | 8  |

**Continuous Internal Evaluation Marks (CIE):** 

| A | Attendance | Assignment | Internal<br>Examination-1<br>(Written) | Internal<br>Examination- 2<br>(Written) | Total |
|---|------------|------------|----------------------------------------|-----------------------------------------|-------|
|   | 5          | 15         | 10                                     | 10                                      | 40    |

## **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                       | Part B                                            | Total |
|------------------------------|---------------------------------------------------|-------|
| 2 Questions from each        | Each question carries 9 marks.                    |       |
| module.                      | Two questions will be given from each module, out |       |
| • Total of 8 Questions, each | of which 1 question should be answered.           |       |
| carrying 3 marks             | Each question can have a maximum of 3 sub         | 60    |
|                              | divisions.                                        |       |
| (8x3 =24marks)               | (4x9 = 36  marks)                                 |       |

## **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                                | Bloom's<br>Knowledge<br>Level (KL) |
|-----|-----------------------------------------------------------------------------------------------|------------------------------------|
| CO1 | Explain solar energy collectors, storages, solar cell characteristics and applications        | K2                                 |
| CO2 | Explain the different types of wind power machines and control strategies of wind turbines    | K2                                 |
| CO3 | Explain the ocean energy and conversion devices and different<br>Geothermal sources           | K2                                 |
| CO4 | Explain biomass energy conversion devices. Calculate the Net Present value and payback period | K2                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO3 | 3   | 2   | -   | -   | -   | -   | -   | -   | _   | -    | -    | -    |
| CO4 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | ı    | -    |

|        | Text Books                                |                          |                          |                  |  |  |
|--------|-------------------------------------------|--------------------------|--------------------------|------------------|--|--|
| Sl. No | Title of the Book                         | Name of the Author/s     | Name of the<br>Publisher | Edition and Year |  |  |
| 1      | Solar Energy: Principles of               | S P Sukhatme,            | M C 11:11                | 2015             |  |  |
| I      | Thermal Collection and Storage            | J K Nayak                | Mc Graw Hill             | 2015             |  |  |
| 2      | Fundamentals of renewable                 | Tiwari G N,              | Alpha Science            | 2007             |  |  |
| 2      | energy sources                            | Ghosal M K               | International Ltd        | 2007             |  |  |
| 3      | Sustainable Energy Choosing among options | Jefferson W Tester et.al | PHI                      | 2006             |  |  |

|        | Reference Books                                      |                                                     |                                    |                  |  |  |  |
|--------|------------------------------------------------------|-----------------------------------------------------|------------------------------------|------------------|--|--|--|
| Sl. No | Title of the Book                                    | Name of the Author/s                                | Name of the<br>Publisher           | Edition and Year |  |  |  |
| 1      | Renewable energy resources and emerging technologies | D.P. Kothari                                        | Prentice Hall of India<br>Pvt. Ltd | 2011             |  |  |  |
| 2      | Fundamentals and Applications of Renewable Energy    | Mehmet KanoğluYunus<br>A. Çengel John M.<br>Cimbala | Mc Graw Hill                       | 2019             |  |  |  |

|               | Video Links (NPTEL, SWAYAM)           |  |  |  |  |  |
|---------------|---------------------------------------|--|--|--|--|--|
| Module<br>No. | Link II)                              |  |  |  |  |  |
| 1 to 4        | https://nptel.ac.in/courses/103103206 |  |  |  |  |  |

SEMESTER S6

QUALITY ENGINEERING AND MANAGEMENT

| Course Code                     | OEMET615 | CIE Marks   | 40                     |
|---------------------------------|----------|-------------|------------------------|
| Teaching Hours/Week (L: T:P: R) | 3-0-0-0  | ESE Marks   | 60                     |
| Credits                         | 3        | Exam Hours  | 2 Hrs. 30 Min.         |
| Prerequisites (if any)          | None     | Course Type | Theory – Open Elective |

## **Course Objectives:**

- 1. To impart knowledge on principles and practices of quality engineering and management.
- 2. To enable use of various tools and techniques for continuous quality improvement.
- 3. To provide ideas on implementation of quality standards

## **SYLLABUS**

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| 1             | Introduction to Quality Management - Definitions of quality, Dimensions of Quality, Concepts of Product and Service Quality, Evolution of Quality Management, quality control, quality assurance, quality planning, quality management, Total Quality Management (TQM)-the TQM axioms - Consequences of total quality- Barriers to TQM, Deming approach, Juran's quality trilogy, Crosby's fourteen steps for quality improvement, Quality circles. | 9 |  |  |
| 2             | Human dimensions of TQM – Top management commitment- Leadership for TQM- Change management- resources for quality activities - Training for quality –Employee involvement, motivation, empowerment- teamwork-self managing teams - Role of the quality director-Quality System: ISO 9000 family of standards. Quality auditing- typesand benefits.                                                                                                  | 9 |  |  |
| 3             | <b>Tools and Techniques in TQM</b> : Affinity diagram -brainstorming - cause and effect analysis - process flow chart – check sheets- Scatter diagram -                                                                                                                                                                                                                                                                                             | 9 |  |  |

|   | Pareto chart- Histogram.                                                              |   |
|---|---------------------------------------------------------------------------------------|---|
|   | Quality control and Inspection, Fundamentals of statistics, accuracy and              |   |
|   | precision, causes of variation in quality, Statistical Process Control, control       |   |
|   | charts, $\overline{x}$ and R chart problems, process capability, Acceptance sampling. |   |
|   | Strategic Quality Management: Integrating quality into strategic                      |   |
|   | management - obstacles to achieving successful strategic quality                      |   |
|   | management-Cost of Quality-Customer satisfaction.                                     |   |
| 4 | Quality Function Deployment (QFD), Failure Mode and Effect Analysis,                  |   |
| • | Analysis of Variance (ANOVA), Design and Analysis of Experiments                      | 9 |
|   | (DOE), Concepts of 5S, Kaizen, Six Sigma, Total Productive Maintenance.               |   |
|   | Reliability Engineering - types and causes of failures - Bath tub curve -             |   |
|   | System reliability - Life testing.                                                    |   |

# Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

## **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Micro project | Internal<br>Examination-1<br>(Written) | Internal<br>Examination- 2<br>(Written) | Total |
|------------|------------------------------|----------------------------------------|-----------------------------------------|-------|
| 5          | 15                           | 10                                     | 10                                      | 40    |

## **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                                                                                                 | Part B                                                                                                                                                                                                   | Total |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <ul> <li>2 Questions from each module.</li> <li>Total of 8 Questions, each carrying 3 marks</li> </ul> | <ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub</li> </ul> | 60    |
| (8x3 =24marks)                                                                                         | divisions. $(4x9 = 36 \text{ marks})$                                                                                                                                                                    |       |

## **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                     |    |  |  |
|-----|------------------------------------------------------------------------------------|----|--|--|
| CO1 | Develop knowledge of quality management and contributions of quality gurus.        | K2 |  |  |
| CO2 | Identify various human dimensions of TQM                                           | K2 |  |  |
| CO3 | Implement different tools and techniques in TQM                                    | К3 |  |  |
| CO4 | Implement different statistical quality control techniques                         | К3 |  |  |
| CO5 | Demonstrate knowledge of the underlying principles of strategic quality management | K2 |  |  |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | -   | -   | -   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO2 | 3   | -   | -   | -   | -   | 2   | -   | -   | 2   | -    | -    | -    |
| CO3 | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4 | 2   | 3   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5 | 2   | 3   | 2   | -   | -   | -   | -   | _   | -   | -    | -    | -    |

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

|        | Text Books                                      |                                                                                         |                            |                            |  |  |  |  |  |
|--------|-------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------|----------------------------|--|--|--|--|--|
| Sl. No | Title of the Book Name of the Author/           |                                                                                         | Name of the<br>Publisher   | Edition and Year           |  |  |  |  |  |
| 1      | Total Quality Management(TQM)                   | B esterfield D. H., BesterfieldC, Besterfield G. H., Besterfield M, U. Hemant, U.Rashmi | Pearson Education          | Fifth<br>Edition,<br>2018  |  |  |  |  |  |
| 2      | Total Quality Management                        | SubburajRamasamy                                                                        | Tata McGraw Hill Education | First Edition, 2017        |  |  |  |  |  |
| 3      | Introduction to Statistical Quality Control     | D. C. Montgomery                                                                        | John Wiley & Sons          | Third<br>Edition           |  |  |  |  |  |
| 4      | Fundamentals of Quality Control and Improvement | Mitra A.                                                                                | PHI                        | Second<br>Edition,<br>1998 |  |  |  |  |  |

|        | Reference Books                                                      |                             |                                                |                           |  |  |  |  |  |
|--------|----------------------------------------------------------------------|-----------------------------|------------------------------------------------|---------------------------|--|--|--|--|--|
| Sl. No | Title of the Book Name of the Author/s                               |                             | Name of the<br>Publisher                       | Edition<br>and Year       |  |  |  |  |  |
| 1      | Design and Analysis of Experiments                                   | D. C. Montgomery            | John Wiley & Sons                              | 6thEdition<br>,2004       |  |  |  |  |  |
| 2      | Quality Planning and Analysis - From Product Development through Use | Juran J M and Gryna, F<br>M | Tata McGraw Hill Publishing Limited, New Delhi | Third<br>Edition,<br>2004 |  |  |  |  |  |
| 3      | Quality is Free                                                      | Crosby P B                  | McGraw Hill                                    | New<br>York,<br>1979      |  |  |  |  |  |

|               | Video Links (NPTEL, SWAYAM)           |  |  |  |  |  |  |
|---------------|---------------------------------------|--|--|--|--|--|--|
| Module<br>No. | Link ID                               |  |  |  |  |  |  |
| 1             | https://nptel.ac.in/courses/110105088 |  |  |  |  |  |  |
| 2             | https://nptel.ac.in/courses/110101010 |  |  |  |  |  |  |
| 3             | https://nptel.ac.in/courses/110101010 |  |  |  |  |  |  |
| 4             | https://nptel.ac.in/courses/110101010 |  |  |  |  |  |  |

## **SEMESTER S6**

## **ADDITIVE MANUFACTURING**

| Course Code                     | OEMET616 | CIE Marks   | 40                     |
|---------------------------------|----------|-------------|------------------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0  | ESE Marks   | 60                     |
| Credits                         | 3        | Exam Hours  | 2 Hrs. 30 Min.         |
| Prerequisites (if any)          | -        | Course Type | Theory – Open elective |

## **Course Objectives:**

- 1. To demonstrate appropriate level of understanding on principles of additive manufacturing
- 2. To understand the different additive manufacturing technologies.
- **3.** To choose appropriate materials for additive manufacturing processes
- 4. To design prototypes by identifying suitable process with optimum process parameters

## **SYLLABUS**

| Module<br>No. | Syllabus Description                                                      | Contact<br>Hours |  |
|---------------|---------------------------------------------------------------------------|------------------|--|
|               | Introduction to Additive Manufacturing (AM) -Basic principle of AM-       |                  |  |
|               | Procedure of product development in AM process chain. Classification of   |                  |  |
|               | additive manufacturing processes, Basic concept, Digitization techniques, |                  |  |
| 1             | Benefits and challenges in AM.                                            |                  |  |
|               | Data processing for AM- CAD model preparation, Part orientation and       |                  |  |
|               | support generation, Slicing methods, Tool path generation, STL Formats.   |                  |  |
|               | Demonstration of slicing software packages.                               |                  |  |
|               | Common AM technologies: Principle, materials, process parameters,         |                  |  |
|               | advantages and applications of: Stereo Lithography (SLA), Digital Light   |                  |  |
| 2             | Processing (DLP), Continuous Liquid Interface Production (CLIP),          |                  |  |
|               | Laminated Object Manufacturing (LOM), Ultrasonic AM (UAM), 3D             | 10               |  |
|               | printing, Binder Jetting, Material Jetting, Fused Deposition Modelling    |                  |  |

|   | (FDM), Direct Ink Writing (DIW).                                                                                                                                                                                                                                             |    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3 | Common AM technologies: Principle, materials, process parameters, advantages and applications of: Selective Laser Sintering (SLS), Selection Laser Melting (SLM), Electron Beam Melting (EBM), Wire Arc Additive Manufacturing (WAAM), Laser Engineering Net Shaping (LENS). | 10 |
| 4 | Design for AM (DFAM)  AM unique capabilities, DFAM concepts and objectives, Design freedom and synthesis methods.  Applications for AM  Applications: Prototyping, Industrial tooling, Aerospace, Automobile, Medical etc.                                                   | 8  |

## Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

## **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment | Internal<br>Examination-1<br>(Written) | Internal<br>Examination- 2<br>(Written) | Total |  |
|------------|------------|----------------------------------------|-----------------------------------------|-------|--|
| 5          | 15         | 10                                     | 10                                      | 40    |  |

## **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                       | Part B                                            | Total |
|------------------------------|---------------------------------------------------|-------|
| 2 Questions from each        | Each question carries 9 marks.                    |       |
| module.                      | Two questions will be given from each module, out |       |
| • Total of 8 Questions, each | of which 1 question should be answered.           |       |
| carrying 3 marks             | Each question can have a maximum of 3 sub         | 60    |
|                              | divisions.                                        |       |
| (8x3 =24marks)               | (4x9 = 36  marks)                                 |       |

## **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                        |    |  |  |  |
|-----|-----------------------------------------------------------------------|----|--|--|--|
| CO1 | Understand the concept of AM from conventional manufacturing systems. | K2 |  |  |  |
| CO2 | Understand the data processing techniques in AM process               | K2 |  |  |  |
| CO3 | Understand the principles of AM processes.                            | K2 |  |  |  |
| CO4 | Understand the application of AM in industries                        | K2 |  |  |  |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO2 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO3 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO4 | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |

|        | Text Books                                                                                            |                                       |                             |                            |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|----------------------------|--|--|--|--|--|
| Sl. No | Title of the Book Name of the Author/s                                                                |                                       | Name of the<br>Publisher    | Edition<br>and Year        |  |  |  |  |  |
| 1      | Additive Manufacturing Technologies-3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. | Gibson l D. W. Rosen l and B. Stucker | Springer                    | Second<br>Edition,<br>2015 |  |  |  |  |  |
| 2      | Rapid prototyping: Principles and applications                                                        | Chua, C.K., Leong K.F. and Lim C.S.   | World Scientific Publishers | Third edition, 2010.       |  |  |  |  |  |

|           |                                                                                              | Reference Books                                          |                          |                                                      |
|-----------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|------------------------------------------------------|
| SI.<br>No | Title of the Book                                                                            | Name of the Author/s                                     | Name of the<br>Publisher | Edition and Year                                     |
| 1         | Rapid Manufacturing The Technologies and Applications of Rapid Prototyping and Rapid Tooling | D.T. Pham and S.S.<br>Dimov                              | Springer London Ltd      | Softcover reprint of the original 1st ed. 2001, 2011 |
| 2         | Additive Manufacturing: Principles, technologies and Application                             | C.P. Paul , A.N. Jinoop                                  | McGraw Hill              | First<br>Edition,<br>2021                            |
| 3         | Additive Manufacturing Technologies                                                          | S. Shiva , Anuj K.<br>Shukla                             | Wiley                    | First<br>Edition,<br>2024                            |
| 4         | Additive Manufacturing: Fundamentals and Advancements                                        | Manu Srivastava,<br>Sandeep Rathee, Sachin<br>Maheshwari | CRC Press                | First<br>Edition,<br>2019                            |

|               | Video Links (NPTEL, SWAYAM)                                                                                                              |  |  |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Module<br>No. | Link ID                                                                                                                                  |  |  |  |  |  |
| 1 - 4         | NOC: Fundamentals of Additive Manufacturing Technologies, IIT Guwahati by Prof. Sajan Kapil  Link: https://nptel.ac.in/courses/112103306 |  |  |  |  |  |

**SEMESTER S6** 

#### SOLAR ENERGY CONSERVATION SYSTEMS

| Course Code                     | OEMET617  | CIE Marks   | 40                     |
|---------------------------------|-----------|-------------|------------------------|
| Teaching Hours/Week (L: T:P: R) | 3:0:0:0   | ESE Marks   | 60                     |
| Credits                         | 3         | Exam Hours  | 2 Hrs. 30 Min.         |
| Prerequisites (if any)          | OEMET 617 | Course Type | Theory – Open elective |

#### **Course Objectives:**

- 1. To equip students with a thorough understanding of solar radiation, the sun-earth relationship, and the atmosphere's impact, and to provide detailed knowledge of different solar collectors, their thermal analysis, tracking mechanisms, and storage solutions.
- 2. To enable students to understand PV systems' principles and performance, including design and components of standalone and grid-connected systems, and to introduce methods of economic evaluation of solar energy technologies, such as cost analysis, payback period calculation, and financial feasibility in the context of energy policy.

#### **SYLLABUS**

| Module<br>No. | Syllabus Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1             | Introduction: Energy Scenario: India and world, Basic concepts related to solar radiation, the sun, spectral distribution, sun- earth relationship, extraterrestrial radiation, revolution of earth, seasons, position of sun in the sky, position of sun with respect to the centre of the earth. Role of atmosphere on solar radiation, air mass, terrestrial spectrum, prediction of solar radiation. Sign conventions, angle of incidence on a tilted plane, shading, sun-path diagram, overhangs, parallel rows of solar collectors. Diffuse and direct radiation. Solar energy measuring instruments. | 9 |

| 2 | Solar collectors: Flat plate collector, thermal analysis, heat removal factor. Overview of other thermal collectors. Concentrating collectors, theoretical limit, classifications of concentrators. Parabolic trough collector, thermal analysis, compound parabolic concentrators, Linear Fresnel Reflector, parabolic dish collector, central receiver tower. Tracking of solar concentrators. Solar ponds. Storage of heat in solar thermal power plants, storage media and heat transfer fluids. | 9 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3 | Non-thermal routes for solar energy conversion, Basics of photovoltaic effect, Fundamentals of PV: Principles and performance analysis, Photovoltaic materials, Modules, Array, Maximum Power Point Tracking (MPPT) etc.; standalone PV system: Components and design of standalone system, fundamentals of battery system; grid connected PV system: components and design of grid connected PV systems.                                                                                            | 9 |
| 4 | Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period – Relevance of financial and economic feasibility evaluation of energy technologies and systems, Energy-economy interaction, Energy Policy related acts and regulation. Economic Analysis for the Selection of Alternative Decisions and the future of the Power Plants.                                                                                                           | 9 |

Course Assessment Method (CIE: 40marks, ESE: 60 marks)

## **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Assignment/<br>Micro project | Internal<br>Examination-1<br>(Written) | Internal<br>Examination- 2<br>(Written) | Total |
|------------|------------------------------|----------------------------------------|-----------------------------------------|-------|
| 5          | 15                           | 10                                     | 10                                      | 40    |

## **End Semester Examination Marks (ESE)**

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

| Part A                                                                                                                         | Part B                                                                                                                                                                                                                                        | Total |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <ul> <li>2 Questions from each module.</li> <li>Total of 8 Questions, each carrying 3 marks</li> <li>(8x3 =24marks)</li> </ul> | <ul> <li>Each question carries 9 marks.</li> <li>Two questions will be given from each module, out of which 1 question should be answered.</li> <li>Each question can have a maximum of 3 sub divisions.</li> <li>(4x9 = 36 marks)</li> </ul> | 60    |

**Course Outcomes (COs)** 

At the end of the course students should be able to:

|     | Course Outcome                                                             | Bloom's<br>Knowledge<br>Level (KL) |
|-----|----------------------------------------------------------------------------|------------------------------------|
| GO1 | Understand the basic concepts of solar radiation, the sun-earth            | 172                                |
| CO1 | relationship, and the effects of the atmosphere on solar energy.           | K2                                 |
| 602 | Able to recall the various types of solar collectors and their theoretical | 174                                |
| CO2 | principles, including flat plate collectors and concentrating collectors.  | K1                                 |
|     | Apply thermal analysis techniques to different solar collectors and        |                                    |
| CO3 | implement design principles for both standalone and grid-connected         | К3                                 |
|     | PV systems.                                                                |                                    |
|     | Understand the methods for calculating plant economy, including life       |                                    |
| CO4 | cycle cost, payback period, and the relevance of economic feasibility      | К2                                 |
|     | evaluations for energy technologies.                                       |                                    |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO-PO Mapping Table:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 2   | -   | -   | -   | 3   | -   | -   | -   | -    | -    | -    |
| CO2 | 3   | 2   | -   | -   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO3 | 3   | 2   | -   | -   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO4 | 3   | 2   | -   | -   | -   | 2   | -   | -   | -   | -    | -    | -    |

|        |                                                                   | Text Books                                              |                                                     |                                 |
|--------|-------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|---------------------------------|
| Sl. No | Title of the Book                                                 | Name of the Author/s                                    | Name of the<br>Publisher                            | Edition and Year                |
| 1      | Solar Energy                                                      | S P Sukhatme                                            | McGraw Hill<br>Education (India)<br>Private Limited | Fourth edition (1 January 2017) |
| 2      | Principles of Solar Engineering                                   | D. Yogi Goswami, Frank<br>Kreith, and Jan F.<br>Kreider | CRC Press                                           | 3rd Edition<br>(2015)           |
| 3      | Handbook of Solar Energy:<br>Theory, Analysis and<br>Applications | G. N. Tiwari                                            | Publisher<br>Springer                               | 1st ed.<br>2016                 |
| 4      | Photovoltaic Systems<br>Engineering                               | Roger A. Messenger and<br>Jerry Ventre                  | CRC Press                                           | 4th Edition (2012)              |

|        |                                                                                                                                         | Reference Books                     |                           |                       |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|-----------------------|
| Sl. No | Title of the Book                                                                                                                       | Name of the Author/s                | Name of the<br>Publisher  | Edition<br>and Year   |
| 1      | Renewable Energy: Power for a Sustainable Future                                                                                        | Godfrey Boyle                       | Oxford University Press   | 3rd Edition<br>(2012) |
| 2      | Solar Photovoltaic Technology<br>and Systems: A Manual for<br>Technicians, Trainers and<br>Engineers                                    | Chetan Singh Solanki                | PHI Learning Pvt. Ltd.    | 1st Edition<br>(2013) |
| 3      | Handbook of Photovoltaic<br>Science and Engineering                                                                                     | Antonio Luque and<br>Steven Hegedus | John Wiley & Sons         | 2nd Edition<br>(2011) |
| 4      | Solar Electricity Handbook: A<br>Simple, Practical Guide to<br>Solar Energy - Designing and<br>Installing Solar Photovoltaic<br>Systems | Michael Boxwell                     | Greenstream<br>Publishing | 2020<br>Edition       |

|                       | Video Links (NPTEL, SWAYAM)                            |  |  |  |
|-----------------------|--------------------------------------------------------|--|--|--|
| Module<br>No. Link ID |                                                        |  |  |  |
| 1                     | https://archive.nptel.ac.in/courses/112/104/112104300/ |  |  |  |
| 2                     | https://archive.nptel.ac.in/courses/112/104/112104300/ |  |  |  |
| 3                     | https://archive.nptel.ac.in/courses/115/103/115103123/ |  |  |  |
| 4                     | https://archive.nptel.ac.in/courses/115/103/115103123/ |  |  |  |

SEMESTER S6
COMPUTER AIDED DESIGN AND ANALYSIS LAB

| Course Code                     | PCMEL607                                                         | CIE Marks   | 50             |
|---------------------------------|------------------------------------------------------------------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 0:0:3:0                                                          | ESE Marks   | 50             |
| Credits                         | 2                                                                | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | Computer Aided<br>Machine Drawing<br>(Course code -<br>PCMEL307) | Course Type | Lab            |

#### **Course Objectives:**

- 1. Teach students to design and simulate mechanical systems using CAD and FEA software. This includes creating mechanisms like the Whitworth quick return and four-bar linkage, and analyzing structural elements such as bars and trusses.
- 2. Enable students to perform dynamic simulations and analyze mechanical systems under various loads. This includes studying mechanism kinematics, fatigue, and heat transfer in steady-state and transient conditions.
- **3.** Introduce students to fluid dynamics principles and computational tools for analyzing fluid flow. This includes performing flow analysis on airfoils and improving designs by analyzing flow separations and recirculation zones.

| Perform a dynamic simulation of a four-bar mechanism.  Example Problem Description.  Perform a dynamic simulation of a four-bar mechanism using dynamic simulation. The dimensions of the mechanism are as follows: Crank = 100 mm, Coupler = 275 mm, Follower = 150 mm, and Fixed Link = 200 mm. Your objectives are to find the coupler curve at the center point of the coupler, 100 mm towards the crank, and 100 mm towards the follower. Additionally, determine the velocity and acceleration curves of the follower. | Expt.<br>No. | Experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| with respect to the fixed link, and specifically find the acceleration and velocity of the                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1            | Example Problem Description.  Perform a dynamic simulation of a four-bar mechanism using dynamic simulation. The dimensions of the mechanism are as follows: Crank = 100 mm, Coupler = 275 mm, Follower = 150 mm, and Fixed Link = 200 mm. Your objectives are to find the coupler curve at the center point of the coupler, 100 mm towards the crank, and 100 mm towards the follower. Additionally, determine the velocity and acceleration curves of the follower |

follower at crank angles of 30°, 60°, and 90°. Begin by modeling the four-bar mechanism, setting up the simulation with appropriate joints, and running the simulation over a complete cycle of the crank. Trace and document the specified coupler curves, plot the velocity and acceleration curves of the follower, and tabulate the velocity and acceleration values at the specified crank angles. Submit a comprehensive report including the 3D model, plots, and a brief discussion on the findings.



Design and Simulation of a Whitworth Quick Return Mechanism

2

Design and simulate a Whitworth quick return mechanism with a specified quick return ratio. Analyze and plot the Coriolis component of acceleration, as well as the position of the slider in the slotted lever, acceleration and position of the tool ram throughout the mechanism's cycle.

Perform a structural analysis of an axial bar with varying cross-sectional areas under axial load using FEA software to determine the stress distribution, strain distribution, and total deformation.

Example Problem Description:

3

An axial bar of length L=1m is subjected to an axial tensile load P=10kN. The bar has three different cross-sectional areas along its length: Section 1: From x=0 to 0.3m, the cross-sectional area is A1 =50mm<sup>2</sup>, Section 2: From x=0.3m to x=0.7m, the cross-sectional area is A2 =75mm<sup>2</sup>, Section 3: From x=0.7m to x=1.0m, the cross-sectional area is A3 =100mm<sup>2</sup>. The bar is fixed at the end with the smallest cross-sectional area (Section 1).

4

Perform a structural analysis of a truss using FEA software to determine the force in each member, identify if the members are in tension or compression, and calculate the

|   | support reactions.                                                                              |
|---|-------------------------------------------------------------------------------------------------|
|   | Example Problem Description:                                                                    |
|   |                                                                                                 |
|   | Analyze the given truss structure.                                                              |
|   | The cross-sectional area of each truss member is $0.01 \text{m}^2$ , the material of the truss  |
|   | members is steel with a Young's Modulus $E = 2.1 \times 10^5$ MPa.                              |
|   | 2.8 m Figure 1: Geometry of the truss.                                                          |
| 5 | Perform the structural analysis of a thin plate (plane stress case) subjected to in plane loads |
| 6 | Perform the modal analysis of a cantilever beam                                                 |
| 7 | Perform the harmonic analysis of a cantilever beam                                              |
|   | Perform an Eigen-buckling analysis using FEA software.                                          |
|   | Example Problem Description:                                                                    |
|   | Conduct an Eigenbuckling Analysis of a column with I-section using a FEM software to            |
| 8 | determine the shape numbers and load multipliers for the column. Compare the results            |
|   | obtained with Euler's critical buckling load formula. Additionally, provide the following       |
|   | results: the critical buckling load, the mode shapes, the corresponding displacements,          |
|   | and the stress distribution for each mode.                                                      |
|   | Perform a fatigue analysis using FEA software.                                                  |
| _ | Example Problem Description:                                                                    |
| 9 | Perform a fatigue analysis on a Formula SAE hub subjected to a torque of 300 N-m and            |
|   |                                                                                                 |
|   | a dead load of 700 N per wheel. Determine the number of cycles to fatigue failure for the       |

|    | hub under these specified loading conditions.                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------|
|    | Solve a steady-state heat conduction problem using FEA software to determine the                                             |
|    | temperature distribution within a solid material.                                                                            |
|    | Example Problem Description:                                                                                                 |
|    | Consider a rectangular solid plate with dimensions L = 200 mm (length), W =100                                               |
|    | mm(width), and                                                                                                               |
|    | t =10 mm (thickness). Material Properties given, Thermal conductivity, k 50 W/mK,                                            |
| 10 | Density,                                                                                                                     |
|    | $\rho = 7800 \text{ kg/m}$ 3, Specific heat capacity, $C = 500 \text{ J/kgK}$ .                                              |
|    | Boundary Conditions:                                                                                                         |
|    | Left edge ( $x=0$ mm): Maintained at a constant temperature $T_1=100$ C.                                                     |
|    | Right edge ( $x=200 \text{ mm}$ ): Maintained at a constant temperature $T_2 = 50 \text{ C}$ .                               |
|    | Top and bottom surfaces ( $y = O \text{ mm}$ and $y = 100 \text{ mm}$ ): Insulated (no heat flux).                           |
|    | Front and back surfaces ( $z = O \text{ mm}$ and $z = 1O \text{ mm}$ ): Insulated (no heat flux).                            |
|    | Perform a transient heat transfer analysis of a solid fin subjected to natural convection                                    |
|    | using FEA software to determine the temperature distribution and heat transfer over                                          |
|    | time.                                                                                                                        |
|    | Example Problem Description:                                                                                                 |
|    | Consider a rectangular solid fin made of aluminum with dimensions: length L 100 mm,                                          |
|    | width W 50 mm, and thickness t 5 mm. The fin is made of aluminum, having a thermal                                           |
|    | conductivity of                                                                                                              |
|    | $k = 237 \text{ W/mK}$ , density of $\rho = 2700 \text{ kg/m}^3$ , and a specific heat capacity of $C = 900 \text{ J/kgK}$ . |
| 11 | Initially, the fin is at a uniform temperature of $To = 25^{\circ}C$ . One end of the fin (x = 0 mm)                         |
|    | is subjected to a constant heat flux of $q = 2000 \text{ W}/\text{m}^2$ , while the surrounding air                          |
|    | temperature is $T_{sur} = 25$ $^{0}$ C with a convective heat transfer coefficient $h = 10 W/m^{2}$ K on                     |
|    | all other surfaces. Perform a transient thermal analysis for a duration of t= 3600 s (1                                      |
|    | hour) with appropriate time steps. The analysis aims to determine the temperature                                            |
|    | distribution and heat transfer in the fin at various time intervals, including contour plots                                 |
|    | showing the temperature distribution at different intervals and values of temperature at                                     |
|    | key points, the base (near O mm), the tip ( $x=100$ mm), and the midpoint ( $x=50$ mm).                                      |
|    | The results should include the total heat transfer rate from the fin to the surrounding air                                  |
|    | and heat flux distribution plots at the specified time intervals.                                                            |
| 12 |                                                                                                                              |
| 12 | Perform the 2D flow analysis of an airfoil                                                                                   |





Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

## **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment) | Internal<br>Examination | Total |
|------------|------------------------------------------------------------------------------------------------------------------|-------------------------|-------|
| 5          | 25                                                                                                               | 20                      | 50    |

#### **End Semester Examination Marks (ESE):**

| Procedure/ Preparatory work/Design/ Algorithm | Conduct of experiment/<br>Execution of work/<br>troubleshooting/<br>Programming | Result with valid inference/  Quality of Output | Viva<br>voce | Record | Total |
|-----------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|--------------|--------|-------|
| 10                                            | 15                                                                              | 10                                              | 10           | 5      | 50    |

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

## **Course Outcomes (COs)**

At the end of the course students should be able to:

|     | Course Outcome                                                                                                | Bloom's<br>Knowledge<br>Level (KL) |
|-----|---------------------------------------------------------------------------------------------------------------|------------------------------------|
| CO1 | Apply CAD and FEA tools to design and simulate mechanical systems                                             | К3                                 |
| CO2 | Perform dynamic simulations of mechanical systems and analyze their kinematic behavior                        | K4                                 |
| CO3 | Conduct thermal and stress analysis on mechanical components under different loading conditions.              | К5                                 |
| CO4 | Design optimized mechanical components and airflow systems using Computational Fluid Dynamics (CFD) software. | K6                                 |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

**CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)** 

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | 2   | 3   | 2   | 3   | 1   | 2   | 1   | 2   | 2    | 2    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | 1   | 1   | 1   | 3   | 2    | 2    | 2    |
| CO3 | 3   | 3   | 3   | 3   | 3   | 2   | 2   | 1   | 2   | 2    | 2    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | 2   | 3   | 1   | 3   | 2    | 2    | 3    |

<sup>1:</sup> Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

|        | Text Books                                                 |                                                                                           |                            |                     |  |  |
|--------|------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------|---------------------|--|--|
| Sl. No | Title of the Book                                          | Name of the Author/s                                                                      | Name of the<br>Publisher   | Edition<br>and Year |  |  |
| 1      | Engineering Design with SolidWorks 2019                    | David C. Planchard and<br>Marie P. Planchard                                              | SDC Publication            |                     |  |  |
| 2      | Creo Parametric 6.0 for<br>Engineers and Designers         | Prof. Sham Tickoo                                                                         | BPB Publications           |                     |  |  |
| 3      | Finite Element Analysis: Theory and Application with ANSYS | Saeed Moaveni                                                                             | Pearson                    |                     |  |  |
| 4      | Fundamentals of Heat and<br>Mass Transfer                  | Theodore L. Bergman,<br>Adrienne S. Lavine,<br>Frank P. Incropera, and<br>David P. DeWitt | John Wiley & Sons          |                     |  |  |
| 5      | Introduction to<br>Computational Fluid Dynamics            | Anil W Date                                                                               | Cambridge University Press |                     |  |  |
| 6      | Manuals of software such as CatiaV and UG NX               |                                                                                           | Respective OEM             |                     |  |  |

## **Continuous Assessment (25 Marks)**

#### 1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

#### 2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

#### 3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

#### 4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

## **Evaluation Pattern for End Semester Examination (50 Marks)**

#### 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

 Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.

- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

#### 2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

#### 3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

#### 4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

#### 5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

## **SEMESTER S6**

## THERMAL ENGINEERING LAB-2

| Course Code                     | PCMEL609                                  | CIE Marks   | 50             |
|---------------------------------|-------------------------------------------|-------------|----------------|
| Teaching Hours/Week (L: T:P: R) | 0:0:2:0                                   | ESE Marks   | 50             |
| Credits                         | 1                                         | Exam Hours  | 2 Hrs. 30 Min. |
| Prerequisites (if any)          | PCMET403<br>Engineering<br>Thermodynamics | Course Type | Lab            |

## **Course Objectives:**

- 1. To familiarize the various systems and subsystems of IC engines
- 2. To conduct the performance test on IC engines, compressors /blowers
- **3.** To conduct the performance test on air conditioning and refrigeration systems

| Expt. No. | Experiments                                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study     | <ul><li>a) Familiarisation of various systems and subsystems of petrol engine / MPFI engine</li><li>b) Familiarisation of various systems and subsystems of Diesel engine / Turbocharged engine</li></ul> |
| 1         | Performance test on petrol engines / MPFI engine                                                                                                                                                          |
| 2         | Performance test on Diesel engines / Turbocharged engine                                                                                                                                                  |
| 3         | Heat Balance test on petrol/Diesel engines                                                                                                                                                                |
| 4         | Determination volumetric efficiency and Air-fuel ratio of IC engines                                                                                                                                      |
| 5         | Cooling curve of IC engines                                                                                                                                                                               |
| 6         | Valve timing diagram of IC engines                                                                                                                                                                        |
| 7         | Economic speed test on IC engines                                                                                                                                                                         |
| 8         | Retardation test on IC engines                                                                                                                                                                            |
| 9         | Morse test on petrol engine                                                                                                                                                                               |
| 10        | Analysis of automobile exhaust gas and flue gas using exhaust gas analyser                                                                                                                                |
| 11        | Performance test on reciprocating compressor                                                                                                                                                              |

| 12 | Performance test on rotary compressor/blower                                         |
|----|--------------------------------------------------------------------------------------|
| 13 | Study and performance test on refrigeration (Refrigeration Test rig)                 |
| 14 | Study and performance test on air conditioning equipment (Air Conditioning test rig) |
|    | Note: 8 Experiments are mandatory                                                    |

# Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

## **Continuous Internal Evaluation Marks (CIE):**

| Attendance | Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment) | Internal<br>Examination | Total |
|------------|------------------------------------------------------------------------------------------------------------------|-------------------------|-------|
| 5          | 25                                                                                                               | 20                      | 50    |

## **End Semester Examination Marks (ESE):**

| Procedure/ Preparatory work/Design/ Algorithm | Conduct of experiment/ Execution of work/ troubleshooting/ Programming | Result with valid inference/  Quality of Output | Viva<br>voce | Record | Total |
|-----------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|--------------|--------|-------|
| 10                                            | 15                                                                     | 10                                              | 10           | 5      | 50    |

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

## **Course Outcomes (COs)**

At the end of the course students should be able to:

| Course Outcome |                                                                                         |    |  |  |  |
|----------------|-----------------------------------------------------------------------------------------|----|--|--|--|
| CO1            | Identify various systems and subsystems of Diesel and petrol engines                    | K1 |  |  |  |
| CO2            | Analyse the performance characteristics of internal combustion engines                  | K4 |  |  |  |
| CO3            | Investigate the emission characteristics of exhaust gases from IC Engines               | K4 |  |  |  |
| CO4            | Interpret the performance characteristics of air compressors / blowers                  | K4 |  |  |  |
| CO5            | Interpret the performance characteristics of air conditioning and refrigeration systems | K4 |  |  |  |

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

## **CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | 3   | _   | _   | 2.  | _   | _   | _   | _   | 3   | 3    | _    | _    |
|     |     |     |     |     |     |     |     |     |     |      |      |      |
| CO2 | 3   | -   | -   | 2   | -   | -   | -   | -   | 3   | 3    | -    | -    |
| CO3 | 3   | -   | -   | 2   | -   | -   | -   | -   | 3   | 3    | -    | -    |
| CO4 | 3   | -   | -   | 2   | -   | -   | -   | -   | 3   | 3    | -    | -    |
| CO5 | 3   | -   | -   | 2   | -   | -   | -   | -   | 3   | 3    | -    | -    |

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

|        | Reference Books                                           |                      |                          |                     |  |  |  |  |  |
|--------|-----------------------------------------------------------|----------------------|--------------------------|---------------------|--|--|--|--|--|
| Sl. No | Title of the Book                                         | Name of the Author/s | Name of the<br>Publisher | Edition<br>and Year |  |  |  |  |  |
| 1      | Fundamentals of IC engines,                               | V. Ganesan           | Tata McGraw-Hill         | 4, 2017             |  |  |  |  |  |
| 2      | I.C engine fundamentals,                                  | J.B.Heywood          | McGraw-Hill              | 2, 2018             |  |  |  |  |  |
| 3      | An Introduction to Combustion: Concepts and Applications, | Stephen R Turns      | McGraw-Hill              | 3,2011              |  |  |  |  |  |

## **Continuous Assessment (25 Marks)**

#### 1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

#### 2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

#### 3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

#### 4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

## **Evaluation Pattern for End Semester Examination (50 Marks)**

#### 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

 Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.

- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

#### 2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

#### 3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

#### 4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

#### 5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted