Diagrammes potentiel-pH (construction exclue)

Niveau:

CPGE

Prérequis:

tracé des diagrammes potentiel-pH thermodynamique de l'oxydoréduction domaines de prédominance et d'existence titrages

Couple $Fe(OH)_2(s)/Fe(s)$

$$Fe(OH)_2(s) + 2H^+ + 2e^- \rightleftharpoons Fe(s) + 2H_2O(l)$$

$$E = E^{\circ}(Fe(OH)_{2}(s), Fe(s)) - \mathbf{0}, \mathbf{06} \, pH$$

Frontière verticale

$$HIO_3(aq) + H_2O(l) = IO_3^-(aq) + H_3O^+(aq)$$

Frontière horizontale

Frontière oblique

$$I_2(aq) + 2e^- = 2I^-(aq)$$

Pas d'ions oxonium

Présence d'ions oxonium

Stabilité du diiode

Médiamutation

Superposition de diagrammes

Superposition de diagrammes

Méthode de Winkler : protocole

1^{ère} étape :

- On remplit un erlenmeyer avec 250 mL d'eau du robinet à ras bord et on le place dans un cristallisoir
- On ajoute 700 mg de soude et 2 g de chlorure de manganèse
- On bouche rapidement l'erlenmeyer en veillant à ne pas emprisonner d'air

Méthode de Winkler : protocole

1^{ère} étape (suite) :

- On agite pendant 30 min
- Un précipité brun apparait

Méthode de Winkler: protocole

2^{ème} étape :

• On débouche l'erlenmeyer et on ajoute de l'acide sulfurique concentré pour ne pas reprendre une réaction entre $Mn(OH)_2(s)$ et le dioxygène de l'air

Méthode de Winkler : protocole

3^{ème} étape :

- On ajoute 3g d'iodure de potassium
- La coloration brune disparait complètement

Méthode de Winkler: protocole

4^{ème} étape :

- On titre cette solution avec du thiosulfate de sodium
- Pour mieux repérer l'équivalence, on ajoute du thiodène juste avant

Incertitudes

$$\Delta V_{\acute{e}q} = \sqrt{(2*0.03)^2 + 0.05^2} = 0.08 \ mL$$
 Lecture burette Volume d'une goutte

$$\Delta c_{thio} = 10^{-4} \ mol. \, L^{-1}$$
 Dernier chiffre significatif
$$\Delta V_0 = 0.05 \ mL$$
 Pipette jaugée

$$\Delta c_{0_2} = c_{0_2} \sqrt{\left(rac{\Delta c_{thio}}{c_{thio}}
ight)^2 + \left(rac{\Delta V_{eq}}{V_{eq}}
ight)^2 + \left(rac{\Delta V_0}{V_0}
ight)^2}$$

Qualité de l'eau

	Eau d'excellente qualité	Eau potable	Eau industrielle	Eau médiocre
Usages	Tous usages	Eau potable, industrie alimentaire, abreuvage, des animaux, baignade, pisciculture	Irrigation	Naviguation, refroidissement
O ₂ dissous	> 7	5 à 7	3 à 5	< 3
$mg.L^{-1}$				