Project 1: Predicting Catalog Demand

Step 1: Business and Data Understanding

- 1. What decisions needs to be made?
 - 1.1. We have a business problem which involves prediction. Hence we have to undertake predictive analytics.
 - 1.2. We have a lot of data in this problem. Hence, it will require data-rich analytical techniques.
 - 1.3. The outcome we seek in this problem is of numeric nature. Hence numeric data analysis may be applied.
 - 1.4. The numeric data outcome is continuous is nature. Hence linear/stepwise regression model will be used to build the model.
 - 1.5. Once the appropriate equation is ready, it is used to predict sales for the individual people in the mailing list.
 - 1.6. These sales figures are used to generate expected profit and then whether the company should send the catalog or not is to be determined.
- 2. What data is needed to inform those decisions?
 - 2.1. Data on the Customer ID and #of years as customer of the list of customers receiving the mail catalog the previous year.
 - 2.2. Response data from the exercise the previous year.
 - 2.3. Data on the Customer ID and #of years as customer of the list of customers receiving the mail catalog this year.
 - 2.4. Purchase and sales data from the previous year customers.
 - 2.5. Expected profit from each catalog {determined as [Revenue i.e. (Price-margin)}-Costs)]

Step 2: Analysis, Modeling, and Validation

Steps used:

- 1) The file p1-customers.xlsx was chosen as the base data file to set up the linear regression model.
- 2) Only Customer segment and Avg items purchased were chosen as predictor variables. This was because of the following reasons:
 - a) Responded to last catalog not relevant as new customers sought
 - b) Rest are address determiners and have no impact on new purchases
- 3) Target variable was Average sales.
- 4) The Linear regression tool output was used to score the p1-mailinglist.xlsx. Score _yes representing probability of purchases was the X-axis and score values at Y-axis

Results of Regression analysis and scatterplot

Basic Summary

Call.

Im(formula = Avg.Sale.Amount ~ Customer.Segment + Avg.Num.Products.Purchased, data = the.data)

Residuals:

Min	1Q	Median	3Q	Max
-663.8	-67.3	-1.9	70.7	971.7

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	303.46	10.576	28.69	< 2.2e-16 ***
Customer.SegmentLoyalty Club Only	-149.36	8.973	-16.65	< 2.2e-16 ***
Customer.SegmentLoyalty Club and Credit Card	281.84	11.910	23.66	< 2.2e-16 ***
Customer.SegmentStore Mailing List	-245.42	9.768	-25.13	< 2.2e-16 ***
Avg.Num.Products.Purchased	66.98	1.515	44.21	< 2.2e-16 ***

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 137.48 on 2370 degrees of freedom Multiple R-squared: 0.8369, Adjusted R-Squared: 0.8366 F-statistic: 3040 on 4 and 2370 DF, p-value: < 2.2e-16

Type II ANOVA Analysis

Response: Avg.Sale.Amount

	Sum Sq	DF	F value	Pr(>F)
Customer.Segment	28715078.96	3	506.4	< 2.2e-16 ***
Avg.Num.Products.Purchased	36939582.5	1	1954.31	< 2.2e-16 ***
Residuals	44796869.07	2370		

Significance codes: 0 '***! 0 001 '**! 0 01 '*! 0 05 ' ' 0 1 ' ' 1

!rplot of Avg_Sale_Amount versus Avg_Num_Products_P

Linear Regression equation:

Y = 303.46 + (281.84 X Customer_SegmentLoyalty Club and Credit Card) + (-149.36 X Customer_SegmentLoyalty Club Card Only) + (-245.42 X Customer_SegmentStore Mailing List) + (66.98 * Avg_Num_Products_Purchased) + Credit Card * 0

The linear model developed is a good model because:

• Multiple R-squared: 0.8369 and adjusted R-squared: 0.8366 values are high and the predictor variables are highly significant as per p-values.

Step 3: Presentation/Visualization:

- 1) What is your recommendation? Should the company send the catalog to these 250 customers? Yes, if the profit is greater than \$10,000.
- 2) How did you come up with your recommendation? (Please explain your process so reviewers can give you feedback on your process)
 - a) The Score field gives the predicted sales amount for the 250 customers.
 - b) Then it is multiplied with score yes which is the probability of buying products.
 - c) This individual values are totaled.
 - d) This is multiplied with gross margin of 50% ie 0.5 on products sold via catalog
 - e) The total of (250* \$6.50) is then subtracted from it
 - f) \$6.50 is the cost of printing one catalog and 250 is the total number of people in it
 - g) The profit is greater than \$10000 and hence profitable to send catalog to the new customers
- 3) What is the expected profit from the new catalog (assuming the catalog is sent to these 250 customers)?

