Домашнее задание 1 "Дискретная математика" для специальности ОПД (2 курс).

Задание 1. Доказать или опровергнуть утверждение

1.
$$(A\Delta B) \setminus (A \cup \overline{C}) = (B \cap C) \setminus A;$$

2.
$$(A \cup C) \setminus (\overline{A}\Delta B) = (A \setminus B) \cup ((B \cap C) \setminus A)$$
;

3.
$$(A\Delta \overline{B}) \cup (C \setminus A) = (A \cap B) \cup \overline{A \cup (B \setminus C)};$$

4.
$$(\overline{B} \setminus A) \Delta (A \cup C) = \overline{(B\Delta C) \setminus A};$$

5.
$$(\overline{A} \setminus \overline{C}) \cup (A\Delta B) = (A \setminus B) \cup ((B \cup C) \setminus A);$$

6.
$$(A\Delta \overline{B}) \setminus (A \cap C) = ((A \cap B) \setminus C) \cup (\overline{B} \setminus A);$$

7.
$$(\overline{A} \cup \overline{C}) \setminus (A\Delta B) = ((A \cap B) \setminus C) \cup \overline{A \cup B};$$

8.
$$(\overline{A}\Delta B) \cap (B \setminus \overline{C}) = \overline{\overline{A} \cup \overline{B} \cup \overline{C}};$$

9.
$$(A \setminus B) \Delta (A \cap \overline{C}) = A \cap (B\Delta C)$$
;

10.
$$(\overline{A} \setminus \overline{B}) \cup (A\Delta \overline{C}) = (A \cap C) \cup \overline{C \cup (A \setminus B)};$$

11.
$$(A\Delta B) \setminus (\overline{A} \cap \overline{C}) = (A \setminus B) \cup ((B \cap C) \setminus A);$$

12.
$$(A \cap \overline{C}) \setminus (A\Delta B) = (A \cap B) \setminus C;$$

13.
$$(A\Delta B) \setminus (\overline{B} \setminus C) = A \setminus (B \cup C);$$

14.
$$(\overline{B} \setminus A) \Delta (\overline{A} \cap C) = \overline{A \cup (B\Delta C)};$$

15.
$$A\Delta (B \setminus (A\Delta C)) = (A \setminus B) \cup (B \setminus C);$$

16.
$$(\overline{A}\Delta B) \setminus (\overline{B} \cup \overline{C}) = A \cap B \cap C;$$

17.
$$(A \setminus \overline{C}) \cap (A\Delta B) = (A \cap C) \setminus B;$$

18.
$$(A\Delta \overline{B}) \cup (B \setminus C) = \overline{A \cup B} \cup (B \setminus (C \setminus A));$$

19.
$$(A \setminus B) \Delta (\overline{A} \cup \overline{C}) = \overline{A \setminus (B\Delta C)};$$

20.
$$C\Delta(B \setminus (A\Delta C)) = (C \setminus B) \cup (B \setminus A)$$
.

Задание 2. Построить рефлексивное, симметричное и транзитивное замыкание для отношения, заданного матрицей.

$$1) \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad 6) \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad 11) \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad 16) \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$2) \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \qquad 7) \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \qquad 12) \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad 17) \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$3) \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \qquad 8) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \qquad 18) \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$4) \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad 10) \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad 19) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$5) \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad 10) \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \qquad 15) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Задание 3. Определить, сколько решений в неотрицательных целых числах имеет уравнение $x_1 + x_2 + x_3 = k$, если переменные x_1, x_2, x_3 удовлетворяют заданным неравенствам:

1.
$$x_1 + x_2 + x_3 = 17, x_1 > 3, x_2 < 7, x_3 \le 4$$

2.
$$x_1 + x_2 + x_3 = 20, x_1 \le 5, x_2 > 6, x_3 < 5$$

3.
$$x_1 + x_2 + x_3 = 16, x_1 < 4, x_2 \le 5, x_3 > 4$$

4.
$$x_1 + x_2 + x_3 = 17, x_1 > 3, x_2 < 7, x_3 \le 4$$

5.
$$x_1 + x_2 + x_3 = 18, x_1 \le 6, x_2 > 4, x_3 < 5$$

6.
$$x_1 + x_2 + x_3 = 19, x_1 < 7, x_2 \le 5, x_3 > 4$$

7.
$$x_1 + x_2 + x_3 = 19, x_1 > 5, x_2 < 6, x_3 \le 6$$

8.
$$x_1 + x_2 + x_3 = 20, x_1 \le 6, x_2 < 5, x_3 > 6$$

9.
$$x_1 + x_2 + x_3 = 18, x_1 < 7, x_2 > 4, x_3 \le 4$$

10.
$$x_1 + x_2 + x_3 = 19, x_1 > 6, x_2 \le 5, x_3 < 7$$

11.
$$x_1 + x_2 + x_3 = 21, x_1 \le 5, x_2 > 7, x_3 < 5$$

12.
$$x_1 + x_2 + x_3 = 21, x_1 < 4, x_2 \le 8, x_3 > 3$$

13.
$$x_1 + x_2 + x_3 = 20, x_1 > 2, x_2 \le 6, x_3 < 8$$

14.
$$x_1 + x_2 + x_3 = 18, x_1 < 8, x_2 > 3, x_3 \le 3$$

15.
$$x_1 + x_2 + x_3 = 19, x_1 \le 6, x_2 < 6, x_3 > 4$$

16.
$$x_1 + x_2 + x_3 = 22, x_1 > 5, x_2 < 7, x_3 \le 6$$

17.
$$x_1 + x_2 + x_3 = 21, x_1 \le 4, x_2 > 7, x_3 < 4$$

18.
$$x_1 + x_2 + x_3 = 20, x_1 > 3, x_2 \le 6, x_3 < 7$$

19.
$$x_1 + x_2 + x_3 = 19, x_1 > 4, x_2 < 6, x_3 \le 5$$

20.
$$x_1 + x_2 + x_3 = 23, x_1 < 7, x_2 \le 5, x_3 > 4$$

Задание 4. Построить таблицу истинности для высказывания

- 1. $((a \to b) \oplus c) \leftrightarrow \overline{b};$
- 2. $((a \oplus b) \to \overline{c}) \leftrightarrow \overline{b};$
- 3. $((b \leftrightarrow \overline{a}) \lor \overline{c}) \oplus c;$
- 4. $\overline{(a \leftrightarrow b) c} \oplus \overline{a}$;
- 5. $\overline{a \to (b \oplus c)} \leftrightarrow \overline{a}$;
- 6. $\overline{a \leftrightarrow (b \to c)} \oplus \overline{b}$;
- 7. $(a \leftrightarrow b) \oplus \overline{b \rightarrow c}$;
- 8. $\overline{(a \oplus c) \to (b \leftrightarrow \overline{a})}$;
- 9. $(a \leftrightarrow c) \oplus (b \to \overline{a})$;
- 10. $\overline{a \to (c \oplus (b \leftrightarrow \overline{a}))}$;
- 11. $(ab \oplus c) \rightarrow (b \leftrightarrow \overline{a});$
- 12. $(a \to a\bar{b}c) \to (ab \oplus \bar{b}\bar{c})$;
- 13. $(a \oplus b \oplus \overline{c}) \leftrightarrow (\overline{a} \to b)$;
- 14. $(a \leftrightarrow bc) \oplus (b \rightarrow \overline{ac})$;
- 15. $(a \oplus c) \leftrightarrow (bc \rightarrow a\bar{c})$;
- 16. $\overline{a \to (b \oplus c)} \leftrightarrow b\overline{c}$;
- 17. $\overline{a \oplus (b \to c)} \leftrightarrow \overline{b};$
- 18. $(a\overline{c} \oplus bc) \leftrightarrow (a \rightarrow b)$;
- 19. $a \leftrightarrow (\overline{bc \oplus a} \rightarrow b)$;
- 20. $b \oplus (\overline{ac} \rightarrow (b \leftrightarrow \overline{a}))$.

Задание 5. Для булевой функции $f\left(x_1,x_2,x_3\right)$ составить совершенную дизъюнктивную нормальную форму и минимизировать её, используя единичный куб, карты Карно и алгоритм Квайна-Маккласки.

,			-				-			-	′ 1		-		1				
1.	$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	1 0 1	6.	$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$egin{array}{c} x_2 \\ 0 \\ 0 \end{array}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	1 0	11.	$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	1 0	16.	$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	1 0 1
	0 0 1	1 1 0	0 1 0	0 1 0		0 0 1	1 1 0	0 1 0	0 0 1		0 0 1	1 1 0	0 1 0	0 1 1		0 0 1	1 1 0	0 1 0	0 0 0
	1 1 1	0 1 1	1 0 1	1 0 0		1 1 1	0 1 1	1 0 1	0 1 0		1 1 1	0 1 1	1 0 1	0 1 1		1 1 1	0 1 1	1 0 1	0 1 1
2.	$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	<i>f</i> 0 1		$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	1 0		$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	1 1		$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	1 1
	0 0 1	1 1 0	0 1 0	0 1 1	7.	0 0 1	1 1 0	0 1 0	1 0 0	12.	0 0 1	1 1 0	0 1 0	1 0 0	17.	0 0 1	1 1 0	0 1 0	0 1 0
	1 1 1	0 1 1	1 0 1	1 1 0		1 1 1	0 1 1	1 0 1	1 1 1		1 1 1	0 1 1	1 0 1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$		1 1 1	0 1 1	1 0 1	0 0 1
3.	$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	x_3 0	f 0	8.	$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	x_2	x_3 0	<i>f</i>	13.	$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	x_3 0	f 0	18.	$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \end{bmatrix}$	f 0
	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 1	1 0 1	1 1 0		0 0 0	0 1 1	1 0 1	1 0 0		0 0 0	0 1 1	1 0 1	1 0 1		$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 1	1 0 1	1 1 0
	1 1 1	0 0 1	0 1 0	1 0 1		1 1 1	0 0 1	0 1 0	1 0 1		1 1 1	0 0 1	0 1 0	0 1 0		1 1 1	0 0 1	0 1 0	1 1 0
4.	x_1	x_2	x_3	f		x_1	x_2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>f</i>		x_1	x_2	x_3	1 f		x_1	x_2	1 x ₃	1 <i>f</i>
	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	0 0 1	0 1 0	1 1 0	9.	0 0 0	0 0 1	0 1 0	0 0 1	14.	0 0 0	0 0 1	0 1 0	0 0	19.	0 0 0	0 0 1	0 1 0	1 1 0
	0 1 1	1 0 0	1 0 1	0 0 1		0 1 1	1 0 0	1 0 1	1 0 1		0 1 1	1 0 0	1 0 1	1 1 0		0 1 1	1 0 0	1 0 1	0 0 1
	1 1	1 1	0	1 0		1 1	1 1	0	0		1 1	1 1	0 1	0		1 1	1 1	0 1	0 0
5.	$\begin{array}{ c c } \hline x_1 \\ \hline 0 \\ 0 \\ \end{array}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} f \\ 0 \\ 0 \end{bmatrix}$	10.	$\begin{array}{c c} x_1 \\ \hline 0 \\ 0 \\ \end{array}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	1 1	15.	$\begin{array}{ c c } \hline x_1 \\ \hline 0 \\ 0 \\ \end{array}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	1 0	20.	$\begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} x_3 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} f \\ 0 \\ 0 \end{bmatrix}$
	0 0 1	1 1 0	0 1 0	1 0 0		0 0 1	1 1 0	0 1 0	0 1 1		0 0 1	1 1 0	0 1 0	0 1 1		0 0 1	1 1 0	0 1 0	0 0 0
	1 1 1	0 1 1	1 0 1	0 1 1		1 1 1	0 1 1	1 0 1	1 1 1		1 1 1	0 1 1	1 0 1	0 0 0		1 1 1	0 1 1	1 0 1	0 1 1