Session 7 — Object Recognition

LABORATORY SESSIONS

OBJECTIVES

 Implementation of a tool to detect, describe and recognize objects.

OBJECTIVES

- Example: Coin detector
 - Detection of objects in a scene.
 - Computation of object features and discrimination of round shapes.
 - Classification of coins by size and color.
- Test of algorithm robustness:
 - Performance with low image resolution

1st Step: Object Detection

- Thresholding applied to gray level
- Binary morphology: close and open

1st Step: Object Detection

1st Step: Object Detection

2nd Step: Object Description

- Description of objects to identify coins
- Discrimination of round objects by its compactness (magenta), eccentricity (red) and diameter (white)

2nd Step: Object Description

$$Compactness = \frac{p^2}{4\pi A}$$

$$Eccentricity = \frac{Major Axis}{Minor Axis}$$

Round object

Eccentricity = 1

Compactness = 1

3rd Step: Discard non-round and smaller/larger objects

3rd Step: Discard non-round and smaller/larger objects

How to compute region features in Matlab:

4th Step: Classify coins (by size)

4th Step: Classify coins (by size)

4th Step: Classify coins (by size)

H = 34.75 cm

Conversión (ppp): Pixel → Distance (mm)

4th Step: Classify coins (by color) (Extra)

(Correction of eventual size errors)

4th Step: Classify coins (by color) (Extra)

Min 0.09

Max 0.15

(Correction of eventual size errors)

TONE (H CHANNEL)

4th Step: Classify coins (by color) (Extra)

GOLDEN H

Min 0.15

Max 0.19

(Correction of eventual size errors)

TONE (H CHANNEL)

4th Step: Classify coins (by color) (Extra)

1 & 2 EUROS: Two color zones

SATURATION (S CHANNEL)

TONE (H CHANNEL)

5th Step: Sum of coins' values

1.45 €

Solution for overlapped coins????

Alternative approach for 2nd and 3rd steps

Hough transform for circles

1. Compute the image showing objects' borders

2. Compute the Hough transform

[y0detect,x0detect,Accumulator]=houghcircle(image_bord,r0,umb_hough);

(Show peaks on possible circumference centers for a given radius)

Performance of Hough transform for overlapped coins

Suggested improvements:

- Pre-processing:
 - Low-pass filtering to improve segmentation.
 - Camera calibration to avoid measurement inaccuracy near scene edges.
- Segmentation:
 - Local thresholding to correct illumination .
 - Overlap removal by applying binary morphology (extra activity in Session 6) (alternative to circle Hough transform).

TASKS TO SUBMIT

- Once the session is finished, the work will be submitted to PoliformaT to be evaluated. It must include the following files:
 - Report (Word, PowerPoint or PDF) with detector performance (see Report Proposal document).
 - Code (*.m and *.fig files) of implemented GUI detector. The tool must include the basic features:
 - Detect objects and discard non-round ones.
 - Measure coins diameter and estimate their value.