Lending club case study

Nikhil Khedkar

MLC33 - September 2021

General info

- Goal
 - Analyse loan data provided
 - Understand relationships between variables
 - Find factors which influence loan defaults
- Methodology
 - Data will first be cleaned
 - EDA will be used to analyse the data
 - No machine learning methods are used

Data info

Item	Description
filename	Loans.csv
File describing data	Data_Dictionary.xlsx
Number of rows	39717
Number of columns	111

- Data was imported into a Jupyter notebook
- All analysis was done with python

Cleaning

- The following columns were dropped:
 - 54 columns with 39717 'nans'
 - 9 columns with all values same
 - Columns with more than 50% missing values
 - Columns not useful for prediction of default were dropped

Missing values

- 'desc', 'emp_title', 'title'
 - had too many unique text values. Entire columns were dropped.
- 'revol_util', 'last_pymnt_d',
 'last_credit_pull_d'
 - combined missing values were less than 0.3%
 - hence rows with missing values were dropped
- 'pub_rec_bankruptcies': Imputed with mode 0
- 'emp_length': imputed with value "unknown"

Size of data after cleaning: (39598 rows, 37 columns)

Cleaning

- All date columns converted from object to datetime64
- Columns ending with % were converted to float64
- Leading and trailing spaces were removed
- Annual_inc made more readable by dividing by 1000

```
# Make annual inc more readable
dfl.annual inc = dfl.annual inc / 1000
dfl.annual inc.describe()
count 39598.000000
          69.035085
mean
std
          63.828578
          4.000000
min
25%
          40.632500
50%
          59.000000
75%
          82.500000
         6000.000000
max
Name: annual inc, dtype: float64
```

Univariate Analysis

loan_status is our target variable

```
Fully Paid 32915
Charged Off 5543
Current 1140
Name: loan status, dtype: int64
```


Univariate Analysis

- Initial plot of continuous variables was made
 - Columns with similar distribution were dropped
 'funded_amnt', 'funded_amnt_inv'
 - Columns with more than 95% same values and more than 15 unique values were dropped -'total_rec_late_fee', 'out_prncp_inv', 'out_prncp'
 - Total payment and total recovery cannot help in predicting default. Drop these features -'total_pymnt','total_pymnt_inv','total_rec_int', 'total_rec_prncp'

Continuous columns - impact on default

['open_acc', 'last_pymnt_amnt', 'revol_bal',
 'installment', 'int_rate', 'dti', 'total_acc',
 'revol_util', 'loan_amnt']

Observations

- int_rate and revol_util seem to be only two variables really impacting default.
- loan_amnt seems to have a slight impact. higher loans mean higher default.

- Columns with few distinct values were treated as categorical
- ['delinq_2yrs', 'inq_last_6mths', 'pub_rec',
- 'pub_rec_bankruptcies', 'annual_inc']
- Observations
- All variables treated as categorical seem to have direct impact on defaults.
- 'pub_rec_bankruptcies' have only 3 distinct values
- 'pub_rec_bin', 'delinq_2yrs', 'inq_last_6mths' were converted to fewer categories to make analysis easier

```
Percent defaults is used as the metric to analyze effect of categorical variables
```

PercentDefaults = ['Charged Off' / ('Charged Off' + 'Fully Paid')] * 100

- Other Categorical variables
- ['term',
- 'grade',
- 'emp_length',
- 'verification_status',
- 'home_ownership',
- 'purpose']
- zip_code is part of state so dropped
- sub_grade is part of grade so dropped

- Grade: Better the Loan grade lower is the default percentage.
- Term: Shorter loans have much smaller default rates.
- Purpose: Small business loans have the highest rate of defaults.

- Verification: Strangely, Verified loans have high default rates. This needs further investigation.
- **Emp_length:** If employment length is "unknown" the rate of default is high needs further investigation.
- Home ownership: "Other" has high defaults, but number of loans in this are very low

- Convert annual income into a categorical
 - Annual income is very skewed and hence difficult to analyse without dropping outliers.

• We convert it to a categorical with 6 levels using quantiles [0,

.05, .25, .5, .75, 0.95, 1.]

It is clearly seen that people with higher annual incomes have lower default rates.

Bivariate analysis

Observations

- pub_rec_bin and pub_rec_bankruptcies are highly correlated - can ignore one with lower number of nonzero values
- loan_amnt and installment are highly correlated - can ignore installment
- grades have high negative correlation with int_rate - Can ignore grade or int_rate

Derived Metric

- Loan Amount as percentage of annual income
- This shows slightly better distinction than just loan_amnt
- Customers who default have higher loans as percentage of income

2-factor effect on default rate

- 2 factor effect on defauts was plotted
- Annual income class was treated as x axis

Final list of features affecting defaults

Feature	Description	Dangerous level - Can lead to higher default rate
annual_inc_class	Annual income categorical - derived from annual_inc	Under 25th percentile
amnt_to_income	Loan amount as % of annual income	Above median
loan_amnt	Amount of loan taken	Above Median
int_rate	Interest rate	Above Median
pub_rec_bin	Public derogatory records - 0 or 1 - derived from pub_rec	Above 0
purpose	Why the loan was taken	Small_business, Other
addr_state	State	'NE', 'NV', 'SD', 'AK', 'FL', 'MO', 'OR'
delinq_2yrs_bin	delinquencies in last 2 years - derived from delinq_2yrs	Above 4
inq_last_6mths_bin	inquiries in last 2 years - derived from inq_last_6mths	Above 0
term	Loan term	60 months

High default combinations

Default rate in data is 14.4%

Combination for default rate higher than 14.4%	Default rate
annual_inc_class < 25th percentile int_rate > median small_business loan	41.66%
annual_inc_class < 25th percentile int_rate > median small_business loan term = 60 months	54.43%
annual_inc_class < 25th percentile amnt_to_income > median small_business loan term = 60 months	48.78%
annual_inc_class < 25th percentile revol_bal > median small_business loan	43.75%

Conclusion

- EDA was performed to understand loan defaults
- Univariate, bivariate and multi-level interactions were studied
- Factors affecting defaults were identified
- Factor combinations that lead to higher defaults were identified
- No machine learning methods were used
- further analysis with a method such as gradient boosting my be useful