

Prof. Luiz I Ferreira

Aula 3

Sumário

- Sistemas de Numeração
- Bases Numéricas
- Conversão entre bases
- Introdução à Matemática Binária
- Exemplos

Eng04075 – Eletrônica Digital I

Prof. Luiz F Ferreira

Módulo-2

Sumário

- Matemática Binária
 - Sistemas de Numeração
 - Bases Numéricas
 - Conversão entre bases
 - · Ponto fracionário fixo

Prof. Luiz I Ferreira

Sistemas de Numeração Posicional

Exs:

- Decimal indo-arábico -> 10 símbolos
 -> 0 1 2 3 4 5 6 7 8 9
- Vigesimal Maia -> 20 símbolos (incluindo o zero)

Prof. Luiz I Ferreira

Sistemas de Numeração Posicional

Exs:

- Binário -> 2 símbolos
 - **-> 0 1**
- Hexadecimal -> 16 símbolos
 - -> 0 1 2 3 4 5 6 7 8 9 A B C D E F (A->10 B->11 C->12 D->13 E->14 F->15)
- Octal -> 8 símbolos
 - **-> 0 1 2 3 4 5 6 7**

Sistemas de Numeração - Numeração Posicional -

UFRGS Eng. Elétrica Eng04075

Prof. Luiz F Ferreira

P.EX: Odômetro mecânico

www.frontiernet.net/~prof_tcarr/BaseCounter/applet.html#APPLEThttp://www.frontiernet.net/~prof_tcarr/BaseCounter/applet.html#APPLET

Prof. Luiz F Ferreira

P.EX

3948 de 4 dígitos pode ser expresso como:

$$4^a$$
 Posição \implies 3 x $10^3 = 3x1000 \implies$ Milhar

Soma p/ Pesos
$$\implies$$
 3000 + 900 + 40 + 8 = 3948

Bases Numéricas Base 10

Prof. Luiz F Ferreira

P.EX
3948 de 4 dígitos pode ser expresso como:

Bases Numéricas Base 10

Prof. Luiz F Ferreira

P.EX
3948 de 4 dígitos pode ser expresso como:

Prof. Luiz F Ferreira

BASE "B"

"B" símbolos para representar quantidades de zero até (B-1)

P.EX

(5386)₁₀ ou 5386 (n=4 base 10)

 $(13 \ 9 \ 6)_{20}$ (n=3 base 20)

 $(10110)_2$ (n=5 base 2)

 $(C67E)_{16}$ (n=4 base 16)

 $(275)_8$ (n=3 base 8)

Prof. Luiz F Ferreira

BASE "2" - Binário

"2" símbolos para representar quantidades de zero até 1 (0 1)

Bit = Binary Digit Byte = 8 Bits

P.EX

 $(10110)_2$ (n=5 base 2)

Prof. Luiz F Ferreira

BASE "16" - Hexadecimal

"16" símbolos para representar quantidades de zero até 15 (0 1 2 3 4 5 6 7 8 9 A->10 B->11 C->12 D->13 E->14 F->15)

Prof. Luiz F Ferreira

BASE "8" - Octal

"8" símbolos para representar quantidades de zero até 7 (0 1 2 3 4 5 6 7)

Soma p/ Pesos (Polinômio) Base B Base 10

Prof. Luiz F Ferreira

Número de 'n' dígitos

Soma p/ Pesos (Polinômio) \Longrightarrow $D_{n-1} \times B^{n-1} + ... + D_1 \times B^1 + D_0 \times B^0$ (na base 10)

Base 2 Base 10

Prof. Luiz F Ferreira

P.EX

$$10110_2$$
 (n=5 base 2) = $1x2^4 + 0x2^3 + 1x2^2 + 1x2^1 + 0x2^0 = $22_{10}$$

Dígitos Peso = Base elevada ao nº da posição menos 1

Digitos Peso = Base el
$$5^a$$
 Posição \longrightarrow 1 \times 2^4 = 1x16 = 16 \times 4a Posição \longrightarrow 0 \times 23 = 0x8 = 0 \times 3a Posição \longrightarrow 1 \times 22 = 1x4 = 4 \times 2a Posição \longrightarrow 1 \times 21 = 1x2 = 2 \times 1a Posição \longrightarrow 0 \times 20 = 0x1 = 0

$$\implies 16 + 0 + 4 + 2 + 0 = 22_{10}$$

Base 16 Base 10

P.EX $C67E_{16} \text{ (n=4 base 16)} = 12x16^3 + 6x16^2 + 7x16^1 + 14x16^0 = 50814_{10}$

Prot. Luiz F Ferreira

Dígitos Peso = Base elevada ao nº da posição menos 1

4ª Posição
$$\implies$$
 12 x 16³ = 12x4096 = 49152
3ª Posição \implies 6 x 16² = 6x256 = 1536
2ª Posição \implies 7 x 16¹ = 7x16 = 112
1ª Posição \implies 14 x 16⁰ = 14x1 = 14

$$\implies$$
 49152 + 1536 + 112 + 14 = 50814₁₀

Prof. Luiz F Ferreira

P.EX
$$275_8 \text{ (n=3 base 8)} = 2x8^2 + 7x8^1 + 5x8^0 = 189_{10}$$

Dígitos Peso = Base elevada ao nº da posição menos 1 3^a Posição \Longrightarrow 2 \times 8^2 = 2x64 = 128 2^a Posição \Longrightarrow 7 \times 8^1 = 7x8 = 56 1^a Posição \Longrightarrow 5 \times 8^0 = 5x1 = 5

$$\implies$$
 128 + 56 + 5 = 189₁₀

Ferreira

D----

P.EX
$$(13 \ 9 \ 6)_{20} (n=3 \text{ base } 20) = 13x20^2 + 9x20 + 6 = 5386_{10}$$

Dígitos Peso = Base elevada ao nº da posição menos 1

$$3^a$$
 Posição $\implies 13 \times 20^2 = 13 \times 400 = 5200 \implies \text{Quatricentena}$
 2^a Posição $\implies 9 \times 20^1 = 9 \times 20 = 180 \implies \text{Vintena}$
 1^a Posição $\implies 6 \times 20^0 = 6 \times 1 = 6 \implies \text{Unidade}$
 $\implies 5200 + 180 + 6 = 5386_{10}$

Ferreira

Liige

Base 20 Base 10

P.EX $(13 \ 9 \ 6)_{20} (n=3 \text{ base } 20) = 5386_{10}$

Dígitos Maias (usadas na vertical)

<u>Divisões sucessivas pela Base</u>

Base 10 Base B
(Parte Inteira)

Prof. Luiz F Ferreira

Gera número de 'n' dígitos

$$(D_{n-1} ... D_1 D_0)_B \implies D_{n-1} \times B^{n-1} + ... + D_1 \times B^1 + D_0 \times B^0$$
 na base 10

1a Divisão
$$\implies (D_{n-1}D_{n-2}...D_2D_1D_0)_B/B = (D_{n-1} \times B^{n-2} + ... + D_1)$$
 e resto D_0

2ª Divisão
$$\implies (D_{n-1}D_{n-2}...D_2D_1)_B/B = (D_{n-1} \times B^{n-3} + ... + D_2)$$
 e resto D_1

. . .

$$(n-1)^a$$
 Div. \Longrightarrow $(D_nD_{n-1})_B/B$ = D_{n-1} e resto D_{n-2}

$$n^a$$
 Div. \Longrightarrow $(D_n)_B/B$ = 0 e resto D_{n-1}

Prof. Luiz F Ferreira

P.EX
$$10110_2$$
 (n=5 base 2) = $1x2^4 + 0x2^3 + 1x2^2 + 1x2^1 + 0x2^0 = 22_{10} Dígitos ou Bits 1^a Divisão $\implies 22/2 = 11$ e resto $0 \implies D_0$ 2^a Divisão $\implies 11/2 = 5$ e resto $1 \implies D_1$ 3^a Divisão $\implies 5/2 = 2$ e resto $1 \implies D_2$ 4^a Divisão $\implies 2/2 = 1$ e resto $0 \implies D_3$ 5^a Divisão $\implies 1/2 = 0$ e resto $1 \implies D_4$$

Base 10 ■ Base 16

P.EX $C67E_{16} \text{ (n=4 base 16)} = 12x16^3 + 6x16^2 + 7x16^1 + 14x16^0 = 50814_{10}$ (A->10 B->11 C->12 D->13 E->14 F->15) $1^a \text{ Divisão} \implies 50814/16 = 3175 \text{ e resto} \qquad 14 \text{ (E)} \implies D_0$ $2^a \text{ Divisão} \implies 3175/16 = 198 \text{ e resto} \qquad 7 \implies D_1$ $3^a \text{ Divisão} \implies 198/16 = 12 \text{ e resto} \qquad 6 \implies D_2$ $4^a \text{ Divisão} \implies 12/16 = 0 \text{ e resto} \qquad 12 \text{ (C)} \implies D_3$

Prof. Luiz F Ferreira

Base 10
$$\Longrightarrow$$
 Base 8
P.EX
 275_8 (n=3 base 8) = $2x8^2 + 7x8^1 + 5x8^0 = 189_{10}$
Dígitos
1a Divisão \Longrightarrow 189/8 = 23 e resto $5 \Longrightarrow$ D₀
2a Divisão \Longrightarrow 23/8 = 2 e resto $7 \Longrightarrow$ D₁
3a Divisão \Longrightarrow 2/8 = 0 e resto $2 \Longrightarrow$ D₂

Prof. Luiz I Ferreira

Base 10
$$\Longrightarrow$$
 Base 20
P.EX
 $(13\ 9\ 6)_{20}$ (n=3 base 20) = $13\times20^2 + 9\times20 + 6 = 5386_{10}$
Dígitos
1a Divisão \Longrightarrow 5386/20 = 269 e resto 6 \Longrightarrow D₀
2a Divisão \Longrightarrow 269/20 = 13 e resto 9 \Longrightarrow D₁
3a Divisão \Longrightarrow 13/20 = 0 e resto 13 \Longrightarrow D₂

Prof. Luiz

Multiplicação pela Base

número de 'n' díg. => número de n+1 díg.

$$(D_{n-1} ... D_1 D_0)_B \times B \Longrightarrow D_{n-1} \times B^n + ... + D_1 \times B^2 + D_0 \times B^1 + 0$$

$$(D_{n-1} ... D_1 D_0)_B \times B = (D_{n-1} ... D_1 D_0 0)_B$$

Prof. Luiz I Ferreira

Multiplicação pela Base

número de 'n' díg. => número de n+1 díg.

P.EX

$$5386 \times 10 = 53860$$

$$(13 9 6)_{20} \times 20 = (13 9 6 0)_{20}$$

$$(10110)_2 \times 2 = (101100)_2$$

$$(C67E)_{16} \times 16 = (C67E0)_{16}$$

$$(275)_8 \times 8 = (2750)_8$$

Prof. Luiz I Ferreira

Divisão pela Base

número de 'n' díg. => número de n-1 díg. + resto

$$(D_{n-1} ... D_1 D_0)_B / B \implies D_{n-1} \times B^{n-2} + ... + D_1 \times B^0$$
 e resta D_0

$$(D_{n-1} ... D_1 D_0)_B / B = (D_{n-1} ... D_1)_B \text{ e resto } (D_0)_B$$

Prof. Luiz F Ferreira

Divisão pela Base

número de 'n' díg. => número de n-1 díg. + resto

P.EX

$$5386/10 = 538 \text{ e resto } 6$$

$$(13 \ 9 \ 6)_{20} / \ 20 = (13 \ 9)_{20}$$
 e resto $(6)_{20}$

$$(10110)_2/2$$
 = $(1011)_2$ e resto $(0)_2$

$$(C67E)_{16}/16 = (C67)_{16} = resto (E)_{16}$$

$$(275)_8/8$$
 = $(27)_8$ e resto $(5)_8$

Ferreira

Divisão pela Base & Ponto Fixo

número de 'n' díg. => número de 'n' díg.

$$(D_{n-1} ... D_1 D_0)_B / B \implies D_{n-1} \times B^{n-2} + ... + D_1 \times B^0 + D_0 \times B^{-1}$$

$$(D_{n-1} ... D_1 D_0)_B / B = (D_{n-1} ... D_1 D_0)_B$$
Ponto Fixo

Prof. Luiz Ferreira

Divisão pela Base & Ponto Fixo

número de 'n' díg. => número de 'n' díg.

P.EX

$$(13 \ 9 \ 6)_{20} / \ 20 = (13 \ 9.6)_{20}$$

$$(10110)_2/2 = (1011.0)_2$$

$$(C67E)_{16}/16 = (C67.E)_{16}$$

$$(275)_8/8 = (27.5)_8$$

Base B Base 10 (Parte Inteira e Fracionária)

Prof. Luiz F Ferreira

Número de 'n' dígitos + 'm' dígitos após o Ponto Fixo

Soma p/ Pesos - Polinômio

= 22 + 13/16 = 22.8125

$$D_{n-1} \times B^{n-1} + ... + D_1 \times B^1 + D_0 \times B^0 + D_{-1} \times B^{-1} + D_{-2} \times B^{-2} + ... + D_{-m} \times B^{-m} \quad \text{(na base 10)}$$

$$P.EX \text{ (n=5, m=4 base 2)}$$

$$(10110.1101)_2 = 1x2^4 + 0x2^3 + 1x2^2 + 1x2^1 + 0x2^0 + 1x2^{-1} + 1x2^{-2} + 0x2^{-3} + 1x2^{-4} = 22.8125$$

$$(10110.1101)_2 = 16 + 0 + 4 + 2 + 0 + 1/2 + 1/4 + 0/8 + 1/16 = 22.8125 \quad \text{OU}$$

$$(10110.1101)_2 = 1x2^4 + 0x2^3 + 1x2^2 + 1x2^1 + 0x2^0 + (1x2^3 + 1x2^2 + 0x2^1 + 1x2^0)/2^4 = 12.8125$$

Base B Base 10 (Parte Inteira e Fracionária)

Prof. Luiz F Ferreira

Número de 'n' dígitos + 'm' dígitos após o Ponto Fixo

Soma p/ Pesos - Polinômio

$$D_{n-1} \times B^{n-1} + ... + D_1 \times B^1 + D_0 \times B^0 + D_{-1} \times B^{-1} + D_{-2} \times B^{-2} + ... + D_{-m} \times B^{-m}$$
 (na base 10)

$$(26.64)_8 = 2x8^1 + 6x8^0 + 6x8^{-1} + 4x8^{-2} = 22.8125$$

$$(26.64)_8 = 16 + 6 + 6/8 + 4/64 = 22.8125$$
 OU

$$(26.64)_8 = 2x8^1 + 6x8^0 + (6x8^1 + 4x8^0)/8^2 = 22 + 52/64 = 22.8125$$

Multiplicações sucessivas pela Base

4^a Multi.

P.EX

Base 10 Base B
(Parte Fracionária)

Prof. Luiz F Ferreira

$$(0.D_{-1}D_{-2}D_{-3}D_{-4})_{B} \text{ (m=4 base B)} = 0 + D_{-1}xB^{-1} + D_{-2}xB^{-2} + D_{-3}xB^{-3} + D_{-4}xB^{-4} = (0.XX)_{10}$$

$$Digitos \text{ (parte inteira)}$$

$$1^{a} \text{ Multi.} \qquad \Rightarrow 0.XX^{*}B = D_{-1}.XX \qquad \Rightarrow D_{-1}$$

$$2^{a} \text{ Multi.} \qquad \Rightarrow 0.XX^{*}B = D_{-2}.XX \qquad \Rightarrow D_{-2}$$

$$3^{a} \text{ Multi.} \qquad \Rightarrow 0.XX^{*}B = D_{-3}.XX \qquad \Rightarrow D_{-3}$$

$$\Rightarrow D_{-3}$$

Obs: Multiplicar até que o resultado seja inteiro (ou aproximar).

0.XX*B

Base 10 Base 2 (Parte Fracionária)

Prof. Luiz F Ferreira

P.EX
$$(0.1101)_2$$
 (m=4 base 2) = 0 + 1x2⁻¹ + 1x2⁻² + 0x2⁻³ + 1x2⁻⁴ = $(0.8125)_{10}$ Bits (parte inteira)

1a Multi. \Rightarrow 0.8125*2 = 1.625 \Rightarrow 1 \Rightarrow D₋₁

2a Multi. \Rightarrow 0.625*2 = 1.25 \Rightarrow 1 \Rightarrow D₋₂

3a Multi. \Rightarrow 0.25*2 = 0.5 \Rightarrow 0 \Rightarrow D₋₃

4a Multi. \Rightarrow 0.5*2 = 1.0 \Rightarrow 1 \Rightarrow D₋₄

Obs: Multiplicar até que o resultado seja inteiro (ou aproximar). ou

c/ 4 dígitos depois do ponto =>
$$(0.8125)*2^4 = 13 = (1101)_2 =>$$

=> $(0.8125) = (1101)_2 / 2^4 = (0.1101)_2$

Base 10 Base 8 (Parte Fracionária)

Prof. Luiz F Ferreira

P.EX
$$(0.64)_8$$
 (m=2 base 8) = 0 + $6x8^{-1}$ + $4x8^{-2}$ = $(0.8125)_{10}$

1ª Multi. \implies 0.8125*8 = 6.50 \implies 6 \implies D₋₁
2ª Multi. \implies 0.50*8 = 4.00 \implies 4 \implies D₋₂

Obs: Multiplicar até que o resultado seja inteiro (ou aproximar).

Dígitos (parte inteira)

Substituição Direta

Base 2 \iff Base 16 n = 4.m

número de 'n' Bits e número de 'm' Bits

Prof. Luiz I Ferreira

$$(B_{n-1} \dots B_1 B_0)_2 / 2^4 = (H_{m-1} \dots H_1 H_0)_{16} / 16 = (H_{m-1} \dots H_1)_{16} \text{ e resto } H_0$$

$$\Longrightarrow$$

$$(B_{n-1} \times 2^{n-1} + \dots + B_4 \times 2^4 + B_3 \times 2^3 + B_2 \times 2^2 + B_1 \times 2^1 + B_0 \times 2^0) / 2^4$$

$$= (B_{n-1} \times 2^{n-5} + \dots + B_4 \times 2^0) \text{ e resto } (B_3 \times 2^3 + B_2 \times 2^2 + B_1 \times 2^1 + B_0 \times 2^0)$$

$$\Longrightarrow$$

$$H_0 = (B_3 B_2 B_1 B_0)_2$$

$$H_1 = (B_7 B_6 B_5 B_4)_2$$

$$\dots$$

$$H_{m-1} = (B_{4m-1} B_{4m-2} B_{4m-3} B_{4m-4})_2$$

Substituição Direta Base 2 ← Base 8 n = 3.m

número de 'n' Bits e número de 'm' Bits

Ferreira

$$(B_{n-1} ... B_1 B_0)_2 / 2^3 = (O_{m-1} ... O_1 O_0)_8 / 8 = (O_{m-1} ... O_1)_8 \text{ e resto } O_0$$

$$\Longrightarrow$$

$$(B_{n-1} \times 2^{n-1} + ... + B_3 \times 2^3 + B_2 \times 2^2 + B_1 \times 2^1 + B_0 \times 2^0) / 2^3$$

$$= (B_{n-1} \times 2^{n-4} + ... + B_3 \times 2^0) \text{ e resto } (B_2 \times 2^2 + B_1 \times 2^1 + B_0 \times 2^0)$$

$$\Longrightarrow$$

$$O_0 = (B_2 B_1 B_0)_2$$

$$O_1 = (B_5 B_4 B_3)_2$$

$$...$$

$$O_m = (B_{3m-1} B_{3m-2} B_{3m-3})_2$$

Substituição Direta Base 2 ← Base 16 n = 4.m

número de 'n' Bits e número de 'm' Bits

Ferreira

Substituição Direta

Base 2 Base 8 e Base 16

número de 'n' Bits e número de 'm' Bits

Prof. Luiz F Ferreira

P.Ex

Substituição Direta

Base 2 Base 8 e Base 16

com ponto fixo fracionário

Prof. Luiz F Ferreira

P.Ex

Substituição Direta

Base 2 Base 8 e Base 16

com ponto fixo fracionário

Prof. Luiz F Ferreira

P.Ex

$$001_2 = 0 + 0 + 1 = 1$$

 $011_2 = 0 + 2 + 1 = 3$
 $110_2 = 4 + 2 + 0 = 6$
 $100_2 = 4 + 0 + 0 = 4$
 $0000_2 = 0 + 0 + 0 + 0 = 0$
 $1011_2 = 8 + 0 + 2 + 1 = 11$ (B)
 $1101_2 = 8 + 4 + 0 + 1 = 13$ (D)

SOMA de Números Binários

Números de 'n' Bits

Prof. Luiz F Ferreira

$$A = (A_{n-1} ... A_1 A_0)_2$$
 $B = (B_{n-1} ... B_1 B_0)_2$
 $S = A + B = (S_{n-1} ... S_1 S_0)_2$

SOMA de Números Binários

UFRGS Eng. Elétrica Eng04075

P.Ex: Números de 5 Bits

$$A = (1 \ 0 \ 0 \ 1 \ 1)_2 = 19_{10}$$

$$B = (0 \ 1 \ 0 \ 1 \ 1)_2 = 11_{10}$$

Prof. Luiz F Ferreira

$$S = A + B = (1 \ 1 \ 1 \ 1 \ 0)_2 = 30_{10}$$

