Deriválttáblázat

f(x)	f'(x)	D_f
x^{α}	$\alpha x^{\alpha-1}$	$(0,+\infty)$
a^x	$a^x \ln a$	$(-\infty, +\infty)$
$\log_a x$	$\frac{1}{\ln a} \frac{1}{x}$	$(0,+\infty)$
$\sin x$	$\cos x$	$(-\infty, +\infty)$
$\cos x$	$-\sin x$	$(-\infty, +\infty)$
$\operatorname{tg} x$	$\frac{1}{\cos^2 x}$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$	$(0,\pi)$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	(-1,1)
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$	(-1,1)
arctg x	$\frac{1}{1+x^2}$	$(-\infty, +\infty)$
$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$	$(-\infty, +\infty)$
$\operatorname{sh} x$	$\operatorname{ch} x$	$(-\infty, +\infty)$
$\operatorname{ch} x$	$\operatorname{sh} x$	$(-\infty, +\infty)$
th x	$\frac{1}{\operatorname{ch}^2 x}$	$(-\infty, +\infty)$
$\operatorname{cth} x$	$-\frac{1}{\sinh^2 x}$	$(0,+\infty)$
$\operatorname{arsh} x$	$\frac{1}{\sqrt{1+x^2}}$	$(-\infty, +\infty)$
$\operatorname{arch} x$	$\frac{1}{\sqrt{x^2 - 1}}$	$(1, +\infty)$

 $\alpha \in \mathbb{R}$ tetszőleges, $a \in (0,+\infty) \setminus \{1\}$