Op-Amp Circuits: Part 6

M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

Consider an amplifier with feedback.

Consider an amplifier with feedback.

$$X_{o} = A X'_{i} = A (X_{i} + X_{f}) = A (X_{i} + \beta X_{o}) = A X_{i} + A \beta X_{o}$$

Consider an amplifier with feedback.

$$X_o = A X_i' = A (X_i + X_f) = A (X_i + \beta X_o) = A X_i + A \beta X_o$$

$$\rightarrow A_f \equiv \frac{X_o}{X_i} = \frac{A}{1 - A\beta}.$$

Consider an amplifier with feedback.

$$X_o = AX_i' = A(X_i + X_f) = A(X_i + \beta X_o) = AX_i + A\beta X_o$$

$$\rightarrow A_f \equiv \frac{X_o}{X_i} = \frac{A}{1 - A\beta}.$$

Since A and β will generally vary with ω , we re-write A_f as

$$A_f(j\omega) = \frac{A(j\omega)}{1 - A(j\omega)\beta(j\omega)}.$$

Consider an amplifier with feedback.

$$X_o = AX'_i = A(X_i + X_f) = A(X_i + \beta X_o) = AX_i + A\beta X_o$$

$$\rightarrow A_f \equiv \frac{X_o}{X_i} = \frac{A}{1 - A\beta}.$$

Since A and β will generally vary with ω , we re-write A_f as

$$A_f(j\omega) = \frac{A(j\omega)}{1 - A(j\omega)\beta(j\omega)}.$$

As
$$A(j\omega) \beta(j\omega) \to 1$$
, $A_f(j\omega) \to \infty$, and we get a finite X_o ($= A_f X_i$) even if $X_i = 0$.

Consider an amplifier with feedback.

$$X_o = AX_i' = A(X_i + X_f) = A(X_i + \beta X_o) = AX_i + A\beta X_o$$

$$\rightarrow A_f \equiv \frac{X_o}{X_i} = \frac{A}{1 - A\beta}.$$

Since A and β will generally vary with ω , we re-write A_f as

$$A_f(j\omega) = \frac{A(j\omega)}{1 - A(j\omega)\beta(j\omega)}.$$

As
$$A(j\omega) \beta(j\omega) \to 1$$
, $A_f(j\omega) \to \infty$, and we get a finite X_o ($= A_f X_i$) even if $X_i = 0$.

In other words, we can remove X_i and still get a non-zero X_o . This is the basic principle behind sinusoidal oscillators.

* The condition, $A(j\omega) \beta(j\omega) = 1$, for a circuit to oscillate spontaneously (i.e., without any input), is known as the Barkhausen criterion.

- * The condition, $A(j\omega)\beta(j\omega) = 1$, for a circuit to oscillate spontaneously (i.e., without any input), is known as the Barkhausen criterion.
- * For the circuit to oscillate at $\omega=\omega_0$, the β network is designed such that the Barkhausen criterion is satisfied only for ω_0 , i.e., all components except ω_0 get attenuated to zero.

- * The condition, $A(j\omega)\beta(j\omega) = 1$, for a circuit to oscillate spontaneously (i.e., without any input), is known as the Barkhausen criterion.
- * For the circuit to oscillate at $\omega = \omega_0$, the β network is designed such that the Barkhausen criterion is satisfied only for ω_0 , i.e., all components except ω_0 get attenuated to zero.
- * The output X_o will therefore have a frequency ω_0 ($\omega_0/2\pi$ in Hz), but what about the amplitude?

* A gain limiting mechanism is required to limit the amplitude of the oscillations.

- * A gain limiting mechanism is required to limit the amplitude of the oscillations.
- * Amplifier clipping can provide a gain limiter mechanism. For example, in an op-amp, the output voltage is limited to $\pm V_{\rm sat}$, and this serves to limit the gain as the magnitude of the output voltage increases.

- * A gain limiting mechanism is required to limit the amplitude of the oscillations.
- * Amplifier clipping can provide a gain limiter mechanism. For example, in an op-amp, the output voltage is limited to $\pm V_{\rm sat}$, and this serves to limit the gain as the magnitude of the output voltage increases.
- * For a more controlled output with low distortion, diode-resistor networks are used for gain limiting.

SEQUEL file: ee101_diode_circuit_14.sqproj

SEQUEL file: ee101_diode_circuit_14.sqproj

* Up to about 100 kHz, an op-amp based amplifier and a β network of resistors and capacitors can be used.

- * Up to about 100 kHz, an op-amp based amplifier and a β network of resistors and capacitors can be used.
- * At higher frequencies, an op-amp based amplifier is not suitable because of frequency response and slew rate limitations of op-amps.

- * Up to about 100 kHz, an op-amp based amplifier and a eta network of resistors and capacitors can be used.
- * At higher frequencies, an op-amp based amplifier is not suitable because of frequency response and slew rate limitations of op-amps.
- * For high frequencies, transistor amplifiers are used, and LC tuned circuits or piezoelectric crystals are used in the β network.

Assuming $R_{\rm in} \to \infty$ for the amplifier, we get

$$A(s)\,\beta(s) = A\,\frac{Z_2}{Z_1+Z_2} = A\,\frac{R\parallel(1/sC)}{R+(1/sC)+R\parallel(1/sC)} = A\,\frac{sRC}{(sRC)^2+3sRC+1}.$$

Assuming $R_{\rm in} \to \infty$ for the amplifier, we get

$$A(s) \beta(s) = A \frac{Z_2}{Z_1 + Z_2} = A \frac{R \parallel (1/sC)}{R + (1/sC) + R \parallel (1/sC)} = A \frac{sRC}{(sRC)^2 + 3sRC + 1}.$$

For $A\beta = 1$ (and with A equal to a real positive number),

$$\frac{j\omega RC}{-\omega^2(RC)^2+3j\omega RC+1}$$
 must be real and equal to $1/A$

Assuming $R_{\rm in} \to \infty$ for the amplifier, we get

$$A(s) \beta(s) = A \frac{Z_2}{Z_1 + Z_2} = A \frac{R \parallel (1/sC)}{R + (1/sC) + R \parallel (1/sC)} = A \frac{sRC}{(sRC)^2 + 3sRC + 1}.$$

For $A\beta=1$ (and with A equal to a real positive number),

$$\frac{j\omega RC}{-\omega^2(RC)^2+3j\omega RC+1}$$
 must be real and equal to $1/A$

$$\rightarrow \boxed{\omega = \frac{1}{RC}, A = 3}$$

$$H(j\omega) = \frac{V_2(j\omega)}{V_1(j\omega)} = \frac{j\omega RC}{-\omega^2(RC)^2 + 3j\omega RC + 1}$$

$$H(j\omega) = rac{V_2(j\omega)}{V_1(j\omega)} = rac{j\omega RC}{-\omega^2(RC)^2 + 3j\omega RC + 1}.$$

Note that the condition $\angle H=0$ is satisfied only at one frequency, $\omega_0=1/RC$, i.e., $f_0=1\,\mathrm{kHz}$. At this frequency, |H|=0.33, i.e., $\beta(j\omega)=1/3$.

$$H(j\omega) = rac{V_2(j\omega)}{V_1(j\omega)} = rac{j\omega RC}{-\omega^2(RC)^2 + 3j\omega RC + 1}.$$

Note that the condition $\angle H=0$ is satisfied only at one frequency, $\omega_0=1/RC$, i.e., $f_0=1\,\mathrm{kHz}$.

At this frequency, |H|=0.33, i.e., $\beta(j\omega)=1/3$.

For $A\beta=1 o A=$ 3, as derived analytically.

$$H(j\omega) = rac{V_2(j\omega)}{V_1(j\omega)} = rac{j\omega RC}{-\omega^2(RC)^2 + 3j\omega RC + 1}.$$

Note that the condition $\angle H=0$ is satisfied only at one frequency, $\omega_0=1/RC$, i.e., $f_0=1\,\mathrm{kHz}$.

At this frequency, |H|=0.33, i.e., $\beta(j\omega)=1/3$.

For $A\beta = 1 \rightarrow A = 3$, as derived analytically.

SEQUEL file: ee101_osc_1.sqproj

$$* \ \omega_0 = \frac{1}{\textit{RC}} = \frac{1}{(158\,\textrm{k})\times(1\,\textrm{nF})} \rightarrow \textit{f}_0 = 1\,\textrm{kHz}.$$

$$*~~\omega_0 = rac{1}{ extit{RC}} = rac{1}{ ext(158\, ext{k}) imes ext(1\, ext{nF})} o extit{f}_0 = 1\, ext{kHz}.$$

* Since the amplifier gain is required to be A=3, we must have $1+\frac{R_2}{R_1}=3\to R_2=2\,R_1$.

*
$$\omega_0 = \frac{1}{RC} = \frac{1}{(158 \, \text{k}) \times (1 \, \text{nF})} \to f_0 = 1 \, \text{kHz}.$$

- * Since the amplifier gain is required to be A=3, we must have $1+\frac{R_2}{R_3}=3\to R_2=2\,R_1$.
- * For gain limiting, diodes have been used. With one of the two diodes conducting, $R_2 \to R_2 \parallel R_3$, and the gain reduces.

$$* \ \omega_0 = \frac{1}{\textit{RC}} = \frac{1}{(158\,\textrm{k})\times(1\,\textrm{nF})} \rightarrow \textit{f}_0 = 1\,\textrm{kHz}.$$

- * Since the amplifier gain is required to be A=3, we must have $1+\frac{R_2}{R_2}=3\to R_2=2\,R_1$.
- * For gain limiting, diodes have been used. With one of the two diodes conducting, $R_2 \to R_2 \parallel R_3$, and the gain reduces.
- * Note that there was no need to consider loading of the β network by the amplifier because of the large input resistance of the op-amp. That is why β could be computed independently.

SEQUEL file: ee101_osc_4.sqproj

SEQUEL file: ee101_osc_4.sqproj

Let
$$R_1 = R_2 = R = 10 \text{ k}$$
, $G = 1/R$, and $C_1 = C_2 = C_3 = C = 16 \text{ nF}$.

SEQUEL file: ee101_osc_4.sqproj

Let
$$R_1 = R_2 = R = 10 \, \text{k}$$
, $G = 1/R$, and $C_1 = C_2 = C_3 = C = 16 \, \text{n} F$.

$$sC(V_A - V) + GV_A + sC(V_A - V_B) = 0$$
 (1)

$$sC(V_B - V_A) + GV_B + sCV_B = 0$$
 (2)

SEQUEL file: ee101_osc_4.sqproj

Let
$$R_1 = R_2 = R = 10 \text{ k}$$
, $G = 1/R$, and $C_1 = C_2 = C_3 = C = 16 \text{ nF}$.

$$sC(V_A - V) + GV_A + sC(V_A - V_B) = 0$$
(1)

$$sC(V_B - V_A) + GV_B + sCV_B = 0 (2)$$

Solving (1) and (2), we get
$$I=rac{1}{R}rac{(sRC)^3}{3\,(sRC)^2+4\,sRC+1}\,V$$
 .

SEQUEL file: ee101_osc_4.sqproj

Let
$$R_1 = R_2 = R = 10 \text{ k}$$
, $G = 1/R$, and $C_1 = C_2 = C_3 = C = 16 \text{ nF}$.

$$sC(V_A - V) + GV_A + sC(V_A - V_B) = 0$$
 (1)

$$sC(V_B - V_A) + GV_B + sCV_B = 0 (2$$

Solving (1) and (2), we get
$$I = \frac{1}{R} \frac{(sRC)^3}{3(sRC)^2 + 4sRC + 1} V$$
.

SEQUEL file: ee101_osc_4.sqproj

Let
$$R_1 = R_2 = R = 10 \text{ k}$$
, $G = 1/R$, and $C_1 = C_2 = C_3 = C = 16 \text{ nF}$.

$$sC(V_A - V) + GV_A + sC(V_A - V_B) = 0$$
 (1)

$$sC(V_B - V_A) + GV_B + sCV_B = 0 (2)$$

Solving (1) and (2), we get
$$I = \frac{1}{R} \frac{(sRC)^3}{3(sRC)^2 + 4 \, sRC + 1} \, V$$
 .

SEQUEL file: ee101_osc_4.sqproj

$$(R_1 = R_2 = R = 10 \text{ k, and } C_1 = C_2 = C_3 = C = 16 \text{ n}F.)$$

$$\beta(j\omega) = \frac{I(j\omega)}{V(j\omega)} = \frac{1}{R} \frac{(j\omega RC)^3}{3(j\omega RC)^2 + 4j\omega RC + 1}.$$

SEQUEL file: ee101_osc_4.sqproj

$$(R_1 = R_2 = R = 10 \text{ k, and } C_1 = C_2 = C_3 = C = 16 \text{ nF.})$$

$$\beta(j\omega) = \frac{I(j\omega)}{V(j\omega)} = \frac{1}{R} \frac{(j\omega RC)^3}{3(j\omega RC)^2 + 4j\omega RC + 1}.$$

For $\beta(j\omega)$ to be a real number, the denominator must be purely imaginary.

$$ho -3(\omega RC)^2+1=0$$
, i.e., $3(\omega RC)^2=1
ho \omega \equiv \omega_0=rac{1}{\sqrt{3}}rac{1}{RC}
ho f_0=574\,\mathrm{Hz}$.

SEQUEL file: ee101_osc_4.sqproj

$$(R_1 = R_2 = R = 10 \text{ k}, \text{ and } C_1 = C_2 = C_3 = C = 16 \text{ n}F.)$$

$$\beta(j\omega) = \frac{I(j\omega)}{V(j\omega)} = \frac{1}{R} \frac{(j\omega RC)^3}{3(j\omega RC)^2 + 4j\omega RC + 1}.$$

For $\beta(j\omega)$ to be a real number, the denominator must be purely imaginary.

$$ightarrow -3(\omega RC)^2+1=0$$
, i.e., $3(\omega RC)^2=1
ightarrow \omega \equiv \omega_0=rac{1}{\sqrt{3}}rac{1}{RC}
ightarrow f_0=574\,{
m Hz}\,.$

Note that, at
$$\omega = \omega_0$$
, $\beta(j\omega_0) = \frac{1}{R} \frac{(j/\sqrt{3})^3}{4j/\sqrt{3}} = -\frac{1}{12R} = -8.33 \times 10^{-6}$.

The amplifier gain is
$$A(j\omega) \equiv \frac{V(j\omega)}{I(j\omega)} = \frac{0 - R_f I(j\omega)}{I(j\omega)} = -R_f$$
.

The amplifier gain is
$$A(j\omega) \equiv \frac{V(j\omega)}{I(j\omega)} = \frac{0 - R_f I(j\omega)}{I(j\omega)} = -R_f$$
.

$$ightarrow A(j\omega)eta(j\omega) = -R_f\,rac{1}{R}\,rac{(j\omega RC)^3}{3(j\omega RC)^2+4\,j\omega RC+1}.$$

The amplifier gain is
$$A(j\omega) \equiv \frac{V(j\omega)}{I(j\omega)} = \frac{0 - R_f I(j\omega)}{I(j\omega)} = -R_f$$
.

$$\rightarrow A(j\omega)\beta(j\omega) = -R_f \frac{1}{R} \frac{(j\omega RC)^3}{3(j\omega RC)^2 + 4j\omega RC + 1}.$$

As seen before, at
$$o \omega = \omega_0 = rac{1}{\sqrt{3}} rac{1}{RC}$$
, we have $rac{I(j\omega)}{V(j\omega)} = -rac{1}{12\,R}$.

The amplifier gain is
$$A(j\omega) \equiv \frac{V(j\omega)}{I(j\omega)} = \frac{0 - R_f I(j\omega)}{I(j\omega)} = -R_f$$
.

$$\rightarrow A(j\omega)\beta(j\omega) = -R_f \frac{1}{R} \frac{(j\omega RC)^3}{3(j\omega RC)^2 + 4j\omega RC + 1}.$$

As seen before, at
$$o \omega = \omega_0 = rac{1}{\sqrt{3}} rac{1}{RC}$$
, we have $rac{I(j\omega)}{V(j\omega)} = -rac{1}{12\,R}$.

For the circuit to oscillate, we need
$$A\beta=1 o -R_f \left(-rac{1}{12\,R}
ight)=1$$
, i.e., $R_f=12\,R$

Note that the functioning of the β network as a stand-alone circuit (left figure) and as a feedback block (right figure) is the same, thanks to the virtual ground provided by the op-amp.

The amplifier gain is
$$A(j\omega) \equiv \frac{V(j\omega)}{I(j\omega)} = \frac{0 - R_f I(j\omega)}{I(j\omega)} = -R_f$$
.

$$ightarrow A(j\omega)eta(j\omega) = -R_f\,rac{1}{R}\,rac{(j\omega RC)^3}{3(j\omega RC)^2+4\,j\omega RC+1}.$$

As seen before, at
$$o \omega = \omega_0 = rac{1}{\sqrt{3}} rac{1}{RC}$$
, we have $rac{I(j\omega)}{V(j\omega)} = -rac{1}{12\,R}$.

For the circuit to oscillate, we need
$$A\beta=1 \rightarrow -R_f\left(-\frac{1}{12\,R}\right)=1$$
, i.e., $R_f=12\,R$

In addition, we employ a gain limiter circuit to complete the oscillator design.

Block diagram Amplifier gain limiter $\beta \times_o$ Frequency–sensitive network

Output voltage

Ref.: Sedra and Smith, "Microelectronic circuits"

SEQUEL file: ee101_osc_3.sqproj

$$\omega_0 = \frac{1}{\sqrt{3}} \, \frac{1}{\textit{RC}} \, \rightarrow \, \textit{f}_0 = 574 \, \text{Hz}, \; \; \textit{T} = 1.74 \, \text{ms} \, .$$

Amplitude control using gain limiting network

* As seen earlier, $A_V = -R_2/R_1 o |A_V|$ should be independent of the signal frequency.

- * As seen earlier, $A_V = -R_2/R_1 o |A_V|$ should be independent of the signal frequency.
- * However, a measurement with a real op-amp will show that $|A_V|$ starts reducing at higher frequencies.

- * As seen earlier, $A_V = -R_2/R_1 o |A_V|$ should be independent of the signal frequency.
- * However, a measurement with a real op-amp will show that $|A_V|$ starts reducing at higher frequencies.

- * As seen earlier, $A_V = -R_2/R_1 o |A_V|$ should be independent of the signal frequency.
- * However, a measurement with a real op-amp will show that $|A_V|$ starts reducing at higher frequencies.
- * If $|A_V|$ is increased, the gain "roll-off" starts at lower frequencies.

- * As seen earlier, $A_V = -R_2/R_1 \rightarrow |A_V|$ should be independent of the signal frequency.
- * However, a measurement with a real op-amp will show that $|A_V|$ starts reducing at higher frequencies.
- * If $|A_V|$ is increased, the gain "roll-off" starts at lower frequencies.
- * This behaviour has to do with the frequency response of the op-amp which we have not considered so far.

The gain of the 741 op-amp starts falling at rather low frequencies, with $\it f_c \simeq 10\,{\rm Hz!}$

The gain of the 741 op-amp starts falling at rather low frequencies, with $f_c \simeq 10\,\mathrm{Hz!}$

The 741 op-amp (and many others) are *designed* with this feature to ensure that, in typical amplifier applications, the overall circuit is stable (and not oscillatory).

The gain of the 741 op-amp starts falling at rather low frequencies, with $f_c \simeq 10\,\mathrm{Hz!}$

The 741 op-amp (and many others) are *designed* with this feature to ensure that, in typical amplifier applications, the overall circuit is stable (and not oscillatory).

In other words, the op-amp has been internally compensated for stability.

The gain of the 741 op-amp starts falling at rather low frequencies, with $\it f_c \simeq 10\,Hz!$

The 741 op-amp (and many others) are *designed* with this feature to ensure that, in typical amplifier applications, the overall circuit is stable (and not oscillatory).

In other words, the op-amp has been internally compensated for stability.

The gain of the 741 op-amp can be represented by,

$$A(s)=\frac{A_0}{1+s/\omega_c},$$

with $A_0 \approx 10^5$ (i.e., $100\,\mathrm{dB}$), $\omega_c \approx 2\pi \times 10\,\mathrm{rad/s}$.

$$A(j\omega)=rac{A_0}{1+j\omega/\omega_c}, \; \omega_cpprox 2\pi imes 10\, {
m rad/s}.$$
 For $\omega\gg\omega_c$, we have $A(j\omega)pprox rac{A_0}{j\omega/\omega_c}.$

For
$$\omega \gg \omega_c$$
, we have $A(j\omega) \approx \frac{A_0}{j\omega/\omega_c}$

$$A(j\omega)=rac{A_0}{1+j\omega/\omega_c},\,\,\omega_cpprox 2\pi imes 10\, ext{rad/s}.$$

For
$$\omega\gg\omega_c$$
, we have $A(j\omega)pprox rac{A_0}{j\omega/\omega_c}$.

$$|A(j\omega)|$$
 becomes 1 when $A_0=\omega/\omega_c$, i.e., $\omega=A_0\omega_c$.

$$A(j\omega)=rac{A_0}{1+j\omega/\omega_c}, \; \omega_cpprox 2\pi imes 10\, {
m rad/s}.$$

For
$$\omega \gg \omega_c$$
, we have $A(j\omega) \approx \frac{A_0}{j\omega/\omega_c}$.

$$|A(j\omega)|$$
 becomes 1 when $A_0 = \omega/\omega_c$, i.e., $\omega = A_0\omega_c$.

This frequency, $\omega_t = A_0 \omega_c$, is called the unity-gain frequency.

For the 741 op-amp, $f_t = A_0 f_c \approx 10^5 \times 10 = 10^6$ Hz.

$$A(j\omega)=rac{A_0}{1+j\omega/\omega_c}, \; \omega_cpprox 2\pi imes 10\, {
m rad/s}.$$

For
$$\omega\gg\omega_c$$
, we have $A(j\omega)pprox rac{A_0}{j\omega/\omega_c}$.

$$|A(j\omega)|$$
 becomes 1 when $A_0 = \omega/\omega_c$, i.e., $\omega = A_0\omega_c$.

This frequency, $\omega_t = A_0 \omega_c$, is called the unity-gain frequency.

For the 741 op-amp, $f_t = A_0 f_c \approx 10^5 \times 10 = 10^6$ Hz.

Let us see how the frequency response of the 741 op-amp affects the gain of an inverting amplifier.

Assuming R_i to be large and R_o to be small, we get

$$-V_i(s) = V_s(s) \frac{R_2}{R_1 + R_2} + V_o(s) \frac{R_1}{R_1 + R_2}.$$

Assuming R_i to be large and R_o to be small, we get

$$-V_i(s) = V_s(s) \frac{R_2}{R_1 + R_2} + V_o(s) \frac{R_1}{R_1 + R_2}.$$

Using
$$V_o(s)=A_V(s)\,V_i(s)$$
 and $A_V(s)=rac{A_0}{1+s/\omega_c}$, we get

$$\frac{V_o(s)}{V_s(s)} = -\frac{R_2}{R_1} \frac{1}{\left[1 + \left(\frac{R_1 + R_2}{R_1}\right) \frac{1}{A_0}\right] + \left(\frac{R_1 + R_2}{R_1 A_0}\right) \frac{s}{\omega_c}}$$

Assuming R_i to be large and R_o to be small, we get

$$-V_i(s) = V_s(s) \frac{R_2}{R_1 + R_2} + V_o(s) \frac{R_1}{R_1 + R_2}.$$

Using
$$V_o(s)=A_V(s)~V_i(s)$$
 and $A_V(s)=rac{A_0}{1+s/\omega_c}$, we get

$$\begin{split} \frac{V_o(s)}{V_s(s)} &= -\frac{R_2}{R_1} \, \frac{1}{\left[1 + \left(\frac{R_1 + R_2}{R_1}\right) \frac{1}{A_0}\right] + \left(\frac{R_1 + R_2}{R_1 A_0}\right) \frac{s}{\omega_c}} \\ &\approx -\frac{R_2}{R_1} \, \frac{1}{1 + s/\omega_c'}, \quad \text{with } \omega_c' = \frac{\omega_c A_0}{1 + R_2/R_1} = \frac{\omega_t}{1 + R_2/R_1}. \end{split}$$

SEQUEL file: ee101_inv_amp_3.sqproj

SEQUEL file: ee101_inv_amp_3.sqproj

$$\frac{V_o(s)}{V_s(s)} = -\frac{R_2}{R_1} \; \frac{1}{1+s/\omega_c'} \;\; \omega_c' = \frac{\omega_t}{1+R_2/R_1}, \;\; (f_t = 1 \, \mathrm{MHz}).$$

R ₂	gain (dB)	$f_{c}'(kHz)$
5 k	14	167

SEQUEL file: ee101_inv_amp_3.sqproj

$$\frac{V_o(s)}{V_s(s)} = -\frac{R_2}{R_1} \; \frac{1}{1+s/\omega_c'} \;\; \omega_c' = \frac{\omega_t}{1+R_2/R_1}, \;\; (f_t = 1 \, \mathrm{MHz}).$$

R ₂	gain (dB)	f _c ' (kHz)
5 k	14	167

SEQUEL file: ee101_inv_amp_3.sqproj

$$\frac{V_o(s)}{V_s(s)} = -\frac{R_2}{R_1} \; \frac{1}{1+s/\omega_c'} \;\; \omega_c' = \frac{\omega_t}{1+R_2/R_1}, \;\; (f_t = 1 \, \mathrm{MHz}).$$

R ₂	gain (dB)	$f_{c}'(kHz)$
5 k	14	167
10 k	20	91

SEQUEL file: ee101_inv_amp_3.sqproj

$$\frac{V_o(s)}{V_s(s)} = -\frac{R_2}{R_1} \; \frac{1}{1+s/\omega_c'} \;\; \omega_c' = \frac{\omega_t}{1+R_2/R_1}, \;\; (f_t = 1 \, \mathrm{MHz}).$$

R ₂	gain (dB)	f _c ' (kHz)
5 k	14	167
10 k	20	91

SEQUEL file: ee101_inv_amp_3.sqproj

$$\frac{V_o(s)}{V_s(s)} = -\frac{R_2}{R_1} \; \frac{1}{1+s/\omega_c'} \;\; \omega_c' = \frac{\omega_t}{1+R_2/R_1}, \;\; (f_t = 1 \, \mathrm{MHz}).$$

R ₂	gain (dB)	f _c ' (kHz)
5 k	14	167
10 k	20	91
25 k	28	38

SEQUEL file: ee101_inv_amp_3.sqproj

$$\frac{V_o(s)}{V_s(s)} = -\frac{R_2}{R_1} \; \frac{1}{1+s/\omega_c'} \;\; \omega_c' = \frac{\omega_t}{1+R_2/R_1}, \;\; (f_t = 1 \, \mathrm{MHz}).$$

R ₂	gain (dB)	f _c ' (kHz)
5 k	14	167
10 k	20	91
25 k	28	38

SEQUEL file: ee101_inv_amp_3.sqproj

$$\frac{V_o(s)}{V_s(s)} = -\frac{R_2}{R_1} \; \frac{1}{1+s/\omega_c'} \;\; \omega_c' = \frac{\omega_t}{1+R_2/R_1}, \;\; (f_t = 1 \, \mathrm{MHz}).$$

R ₂	gain (dB)	$f_{c}'(kHz)$
5 k	14	167
10 k	20	91
25 k	28	38
50 k	34	19.6

SEQUEL file: ee101_inv_amp_3.sqproj

$$\frac{V_o(s)}{V_s(s)} = -\frac{R_2}{R_1} \; \frac{1}{1+s/\omega_c'} \;\; \omega_c' = \frac{\omega_t}{1+R_2/R_1}, \;\; (f_t = 1 \, \mathrm{MHz}).$$

R ₂	gain (dB)	$f_{c}'(kHz)$
5 k	14	167
10 k	20	91
25 k	28	38
50 k	34	19.6

SEQUEL file: ee101_inv_amp_3.sqproj

$$\frac{V_o(s)}{V_s(s)} = -\frac{R_2}{R_1} \; \frac{1}{1+s/\omega_c'} \;\; \omega_c' = \frac{\omega_t}{1+R_2/R_1}, \;\; (f_t = 1 \, \mathrm{MHz}).$$

