Finite \Longrightarrow (Injective \iff Surjective)

Abstract

This writeup establishes two facts:

- 1. If $f: S \to S$ where $|S| < \infty$, then f injects iff f surjects.
- 2. If T: V \rightarrow V where dim V < ∞ , then T injects iff T surjects.

These are basically the same thing; we hope to make this clear by juxtaposing the arguments.

Finite Sets: Injective \implies Surjective

Let S be a nonempty finite set with N elements and let $f: S \to S$.

Claim: If f *is injective, then* f *is surjective.*

Proof. Suppose f is injective. Let $s \in S$, and consider the elements

$$s, f(s), f^{2}(s), \ldots, f^{N}(s)$$

in S. Since S only has N elements, we have

$$f^{m}(s) = f^{M}(s)$$

for some $0 \le m \le M$ (without loss of generality). But then by injectivity of f, we have

$$s = f(f^{M-m-1}(s)),$$

which shows that f is surjective.

Finite Sets: Surjective \implies Injective

Let S be a nonempty finite set with N elements and let $f: S \to S$.

Claim: If f *is surjective, then* f *is injective.*

Proof. Suppose f is surjective. Pick $a, b \in S$ and suppose

$$f(a) = f(b) =: c.$$

Then $S \setminus \{c\}$ has N-1 elements, hence $f^{-1}(S \setminus \{c\}) = S \setminus f^{-1}(\{c\})$ has at least N-1 elements, hence $f^{-1}(\{c\})$ has at most one element, hence a = b, which shows that f is injective.

Finite Sets with Zero Elements

If $S = \emptyset$, then the only map from S to S is the null map, which consists of zero ordered pairs and is vacuously bijective.

Finite Dimensional Vector Spaces: Injective \implies Surjective

Let V be a nontrivial vector space of dimension N, and let T : $V \rightarrow V$.

Claim: If f *is injective, then* f *is surjective.*

Proof. Suppose T is injective, i.e. suppose ker $T = \{0\}$. Let $v \in V$.

Consider the vectors:

$$v$$
, Tv , T^2v , ..., T^Nv .

Since V has dimension N, this is a linearly dependent set, i.e. there exists $\lambda=(\lambda_0,\dots,\lambda_N)\neq 0$ such that

$$\lambda_0 \nu + \lambda_1 T \nu + \cdots + \lambda_N T^N \nu = 0.$$

Suppose $\lambda_0 \neq 0$. Then we may divide by λ_0 and use linearity of T to obtain:

$$v = T \left(-\frac{1}{\lambda_0} (\lambda_1 v + \dots + \lambda^N T^{N-1} v) \right).$$

If $\lambda_0=0$, then $\lambda_1 T \nu + \dots + \lambda_N T^N \nu = 0$, and by linearity of T, we get $T(\lambda_1 \nu + \dots + \lambda_N T^{N-1} \nu) = 0$, i.e.

$$\lambda_1 \nu + \cdots + \lambda_N T^{N-1} \nu \in \text{ker T.}$$

But since T is injective, this implies

$$\lambda_1 \nu + \cdots + \lambda_N T^{N-1} \nu = 0$$

and so we're back where we started. Since $\lambda \neq 0$, we eventually encounter a nonzero λ_i , which we may divide by, and then use linearity of T as before. This proves T is surjective.

Finite Dimensional Vector Spaces: Surjective ⇒ Injective

Let V be a nontrivial vector space of dimension N, and let T : $V \rightarrow V$.

Claim: If f *is surjective, then* f *is injective.*

Proof. Suppose T is surjective, i.e. suppose T(V) = V. Let $v \in \ker T$. Then $Span(v) \subset \ker T$, so there exists a unique surjective linear map

$$\widetilde{T}: V/Span(v) \rightarrow V,$$

which implies $\dim(V/\operatorname{Span}(v)) \geq N$. But we also have

$$dim(V/Span(v)) = N - dim(Span(v)) \le N,$$

so V/Span(ν) has dimension N. This implies Span(ν) = {0}, hence ν = 0. This proves T is injective.

Vector Spaces of Dimension Zero

If $V = \{0\}$, the only map from V to V is the zero map, which sends 0 to 0 and is trivially bijective.