2007/08

1º Semestre de 2007/2008

Bernardo Cunha, José Luís Azevedo, Arnaldo Oliveira

Universidade de Aveiro

Slide 18 - 1

Arquitectura de Computadores I

2007/08

Aula 18

Desenho da unidade de controlo da ALU

A unidade de controlo principal

Exemplos de funcionamento do datapath c/ unidade de controlo

Suporte da instrução "Jump"

Universidade de Aveiro

2007/08

Desenho da unidade de controlo da ALU

A diversidade de acções suportada pela ALU e o facto de a mesma ter de ser controlada por entidades diversas justifica a existência de uma unidade de controlo específica para este elemento operativo.

As instruções básicas que fazem uso da ALU são:

- Load e store para calcular o endereço da memória externa
- Branch if equal para calcular a condição de salto condicional
- Aritméticas e lógicas para efectuar a operação seleccionada pelo campo funct da instrução

Uma vez que a selecção da operação efectuada pelas instruções aritméticas e lógicas provém da própria instrução, faz sentido que exista um outro nível de controlo que determine a operação da ALU em função do tipo de instrução.

Universidade de Aveiro

2007/08

Desenho da unidade de controlo da ALU

A relação entre o tipo de instruções, o campo "funct", a operação efectuada pela ALU e os sinais de controlo da mesma podem assim ser resumidos pela seguinte tabela:

OpCode	funct	Operation	ALU Action	ALUOp	ALU Control
100011 ("lw")	XXXXXX	load word	add	00	010
101011 ("sw")	XXXXXX	store word	add	00	010
000100 ("beq")	XXXXXX	branch equal	subtract	01	110
000000 (R-Type)	100000	add	add	10	010
000000 (R-Type)	100010	subtract	subtract	10	110
000000 (R-Type)	100100	AND	and	10	000
000000 (R-Type)	100101	OR	or	10	001
000000 (R-Type)	101010	set-on-less-than	set-on-less-than	10	111

Universidade de Aveiro

2007/08

Desenho da unidade de controlo da ALU

A unidade de controlo pode assim ser sintetizada a partir de uma tabela de verdade que identifique o valor dos três sinais de controlo em função dos 6 bits do campo "funct" e dos dois bits do ALUOp

F5	F4	F3	F2	F1	F0	ALUOp1	ALUOp2	ALU Control	
X	X	X	X	X	X	0	0	010	
X	X	X	X	X	X	0	1	110	
Х	Х	0	0	0	0	1	Х	010	
Х	X	0	0	1	0	1	X	110	
Х	Х	0	1	0	0	1	X	000	
X	X	0	1	0	1	1	X	0 0 1	
Х	Х	1	0	1	0	1	X	111	

ALUControl0 = ALUOp1 . (F3 + F0)

ALUControl1 = ALUOp1 + F2

ALUControl2 = ALUOp2 + ALUOp1 . F1

Universidade de Aveiro

Slide 18 - 7

Arquitectura de Computadores I

2007/08

Desenho da unidade de controlo principal

A síntese da unidade de controlo principal do nosso CPU simplificado apoia-se na observação de um conjunto de factos que decorrem da forma como são codificadas as instruções do MIPS:

- O campo op (Operation code) está situado nos bits 31-26 de todas as instruções
- Os dois registos que devem ser lidos (nas instruções em que tal se aplica), surgem sempre nos bits 25-21(rs) e 20-16(rt).
- Nas instruções load/store, o registo base de endereçamento está sempre nos bits 25-21(rs)
- As constantes e/ou offsets (nos casos em que se refere a um endereço) surgem sempre nos bits 15-0 da instrução
- O registo destino (quando se aplique) pode aparecer em dois campos: nos bits 20-16 (load), ou nos bits 15-11(aritméticas e lógicas

Universidade de Aveiro

2007/08

Desenho da unidade de controlo principal

- Alguns dos elementos de estado presentes no datapath são acedidos sincronamente em todos os ciclos de relógio. É o caso do PC e da memória de instruções. Nestes casos não há necessidade de explicitar um sinal de controlo
- Outros, porém, podem ser lidos ou escritos casuisticamente, dependendo da instrução que estiver a ser executada, embora sempre de forma síncrona. Para estes últimos é necessário explicitar os respectivos sinais de controlo.
- No datapath, por outro lado, existem dispositivos combinatórios que fazem o agulhamento da informação (multiplexers). Para estes é igualmente necessário definir os respectivos sinais de controlo.

O aspecto do nosso *datapath*, agora associado ao respectivo elemento de controlo será:

Universidade de Aveiro

2007/08

Desenho da unidade de controlo principal

Teremos assim de especificar um total de oito sinais de controlo, para além do ALUop que já antes definíramos. São eles:

Sinal	Efeito quando não activo	Efeito quando activo				
MemRead	Nenhum	O conteúdo da memória de dados no endereço indicad é apresentado à saída				
MemWrite	Nenhum	O conteúdo do registo de memória de dados cujo endereço é fornecido é substituido pelo valor apresentado à entrada				
ALUSrc	O segundo operando da ALU provém da segunda saída do <i>File Register</i>	O segundo operando da ALU provém dos 16 bits menos significativos da instr. após expansão do sinal				
RegDst	O endereço do registo destino provém do campo rt	O endereço do registo destino provém do campo rd				
RegWrite	Nenhum	O registo indicado no endereço de escrita é alterado pelo valor presente na entrada de dados				
MemtoReg	O valor apresentado para escrita no registo destino provém da ALU	O valor apresentado na entrada de dados dos registo internos provém da memória externa				
PCSrc	O PC é substituido pelo seu valor actual mais 4	O PC é substituido pelo resultado do somador que calcula o endereço target do <i>branch</i> condicional				
Branch	Nenhum	Indica que a intrução é um branch condicional				

Universidade de Aveiro

Slide 18 - 11

Arquitectura de Computadores I

2007/08

Desenho da unidade de controlo principal

A tabela de verdade respectiva em função do tipo de instrução, será:

Instrução	Opcode	RegDst	ALU Src	Memto Reg	Reg Write	Mem Read	Mem WRite	Branch	ALUOp1	ALUOp2
R - Format	000000	1	0	0	1	0	0	0	1	0
lw	010011	0	1	1	1	1	0	0	0	0
sw	011011	х	1	х	0	0	1	0	0	0
beq	000100	х	0	х	0	0	0	1	0	1

Note-se que, tal como já aconteceu com a unidade de controlo da ALU, também a unidade de controlo principal é meramente combinatória.

Universidade de Aveiro

2007/08

Análise do funcionamento do datapath. Exemplos.

Embora a execução de qualquer uma das instruções suportadas ocorra no intervalo de tempo correspondente a um único ciclo de relógio, poderemos, para simplificar a análise, admitir que a utilização dos vários elementos operativos é sequencial e decorre ao longo do seguinte conjunto de operações:

- Fetch de uma instrução e cálculo do endereço da próxima instrução.
- Leitura de dois registos do File Register.
- A ALU opera sobre dois valores (a fonte dos valores a operar depende do tipo de instrução que estiver a ser executada).
- O resultado da operação efectuada na ALU é escrita no File Register (R-Type) ou na memória (sw), ou é efectuada uma leitura da memória de dados (Iw).
- O valor lido da memória de dados é escrito no File Register.

Universidade de Aveiro

Slide 18 - 13

Arquitectura de Computadores I

2007/08

Exemplo 1

Funcionamento do datapath nas instruções do tipo R

Universidade de Aveiro

2007/08

Datapath com suporte para a instrução "jump"

- A instrução "jump" corresponde a um caso particular de codificação (instruções do tipo J). Nestas instruções existem apenas dois campos: o campo op (bits 31-26) e o campo de endereço (bits 25-0)
- Nas instruções de "jump", o endereço target obtém-se pela concatenação dos bits 31-28 do PC+4 com os bits do campo de endereço da instrução multiplicados por 4.
- Será necessário acrescentar ainda um bit de saída à unidade de controlo para seleccionar a fonte de informação disponibilizada à entrada do PC
- O datapath simplificado, com suporte para instruções do tipo "jump" ficará assim com a seguinte configuração:

Universidade de Aveiro

