概述

TM1640 是一种LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU数 字接口、数据锁存器、LED 高压驱动等电路。本产品性能优良,质量可靠。主要应用 干电子秤及小家电产品的显示屏驱动。采用SOP28的封装形式。

特性说明

- · 采用功率CMOS 工艺
- 显示模式(8 段×16 位),支持共阴数码管输出
- 辉度调节电路(占空比 8 级可调)
- 两线串行接口(CLK, DIN)
- 振荡方式:内置RC 振荡 (450KHz±5%)
- 内置上电复位电路
- 内置自动消隐电路
- 封装形式: SOP28

三、管脚定义:

	TI	M1640
1	GRID12	GRID11 28
2	GRID13	GRID10 27
3	GRID14	GRID9 26
4	GRID15	GRID8 25
5	GRID16	GRID7 24
6	vss	GRID6 23
7	DIN	GRID5 22
8	SCLK	GRID4 21
9	SEG1	GRID3 20
10	SEG2	GRID2 19
11	SEG3	GRID1 18
12	SEG4	VDD 17
13	SEG5	SEG8 16
14	SEG6	SEG7 15

www.titanmec.com Page 1 of 16 Rev.: 03

符号	管脚名称	管脚号	说明
DIN	数据输入	7	串行数据输入,输入数据在 SOLK的低电平变化, 在 SOLK的高电平被传输。
SCLK	时钟输入	8	在上升沿输入数据
SG1~SG8	输出(段)	9-16	段输出,P管开漏输出
@ID1~@ID11 @ID12~@ID16	输出(位)	18-28 1-5	位输出,N管开漏输出
VDD	逻辑电源	17	5V± 10%
VSS	逻辑地	6	接系统地

五、 电气参数:

极限参数 (Ta = 25 , Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ~ +7.0	V
逻辑输入电压	VI1	-0.5 ~ VDD + 0.5	V
LED SEG 驱动输出电流	101	-200	mA
LED GRID 驱动输出电流	102	+20	mA
功率损耗	PD	400	n₩
工作温度	Topt	-40 ~ +85	
储存温度	Tstg	-65 ~ +150	

www.titanmec.com Page 2 of 16 Rev.: 03

参数	符号	最小	典型	最大	单位	测试 条件
逻辑电源电压	VDD		5		V	ı
高电平输入电压	VIH	0.7 VDD	-	VDD	V	-
低电平输入电压	VIL	0	-	0.3 VDD	V	-

电气特性 (Ta = -40~ +85 , VDD = 4.5 ~ 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	loh1	-20	-25	-40	mA	GRID1-GRID16, Vo = vdd-2V
	loh2	-20	-30	-50	mA	GRID1~GRID16, Vo = vdd-3V
低电平输出电流	IOL1	80	140	-	mA	SEG1~SEG8 Vo=0.3V
低电平输出电流	Idout	4	J -	-	mA	VO = 0.4V, dout
高电平输出电流容 许量	Itolsg	<u>)</u>	-	5	%	VO = VDD - 3V, CRID1~ CRID16
输入电流	Ш	-	-	± 1	μΑ	VI = VDD / VSS
高电平输入电压	VIH	0.7 VDD	-		V	CLK, DIN
低电平输入电压	VIL	-	ı	0.3 VDD	V	CLK, DIN
滞后电压	VH	-	0.35	-	V	CLK, DIN
动态电流损耗	IDDdyn	-	-	5	mA	无负载,显示关

www.titanmec.com Page 3 of 16 Rev.: 03

参数	符号	最小	典型	最大	单位	测试条件
振荡频率	fosc	-	450	-	KHz	
	tPLZ	ı	1	300	ns	CLK DIO
传输延迟时间	tPZL	1	-	100	ns	CL = 15pF, RL = 10K
1.41 叶色	TTZH 1	1	1	2	μs	CL = CRID1~
上升时间	TTZH 2	-	-	0.5	μs	300p F SEG1~ SEG8
下降时间	TTHZ	-	-	120	μs	CL = 300pF, Segn, Gridn
最大时钟频率	Fmax	1	A-	-	MHz	占空比 50%
输入电容	CI		-	15	pF	-

| 时序特性 (Ta = -40 ~ +85 , VDD = 4.5 ~ 5.5 V)

	AP 1000	1000				
参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	-	-	ns	-
选通脉冲宽度	PWSTB	1	-	-	μs	-
数据建立时间	tSETUP	100	-	-	ns	-
数据保持时间	tHOLD	100	-	-	ns	-
等待时间	tVAIT	1	-	-	μs	ar ar

六、 接口说明

微处理器的数据通过两线总线接口和 TM1640 通信,在输入数据时当 CLK 是高电平时, DIN 上的信号必须保持不变;只有 CLK 上的时钟信号 为低电平时, DIN 上的信号才能改变。数据的输入总是低位在前,高位在后传输.数据输入的开始条件是 CLK 为高电平时, DIN 由高变低;结束条件是 CLK 为高时, DIN 由低电平变为高电平。

指令数据传输过程如下图:

图二 指令数据传输格式

写 SRAM 数据地址自动加 1 模式:

图三 自动地址写数据格式

Command1:设置数据
Command2:设置地址
Data1~N:传输显示数据
Command3:控制显示

写 SRAM 数据固定地址模式:

图四 固定地址写数据格式

Command1:设置数据 Command2:设置地址 Data1~N: 传输显示数据 Command3:控制显示

七、数据指令

指令用来设置显示模式和LED 驱动器的状态。

在指令START有效后由DIN输入的第一个字节作为一条指令。经过译 码,取最高B7、B6两位比特位以区别不同的指令。

B7	B6	指令					
0	1	数据命令设置					
1	0	显示控制命令设置					
1	1	地址命令设置					

表七 指令设置分类

如果在指令或数据传输时出现END有效,串行通讯被初始化,并且正 在传送的指令或数据无效(之前传送的指令或数据保持有效)。

7.1 数据命令设置:

В7	В6	B5	B4	В3	B2	B1	В0	说明
0	1				0			地址自动加1
0	1	_ ,,			1			固定地址
0	1	无关项 , 填 0		0		无关 填		普能模式
0	1			1				测试模式 (内部使用)

7.2 地址命令设置:

В7	В6	B5	B4	В3	B2	B1	В0	显示地址
1	1			0	0	0	0	00H
1	1			0	0	0	1	01H
1	1			0	0	1	0	02H
1	1			0	0	1	1	03H
1	1	1	P	0	1	0	0	04H
1	1			0	1	0	1	05H
1	1			0	1	1	0	06H
1	1	无关	项,	0	1	1	1	07H
1	1	填	0 إ	1	0	0	0	08H
1	1			1	0	0	1	09H
1	1			1	0	1	0	0AH
1	1			1	0	1	1	0BH
1	1			1	1	0	0	0CH
1	1			1	1	0	1	0DH
1	1			1	1	1	0	0EH
1	1			1	1	1	1	0FH

表八 显示地址命令设置

GRID11

GRID12

GRID13

GRID14

GRID15

GRID16

上电时,地址默认设为00H。

显示数据与芯片管脚以及显示地址之间的对应关系如下表所示:

	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1		
	В7	В6	B5	B4	В3	B2	B1	В0		
	GR1	ID1								
	显存地址 00H 显存地址 01H									
	显存地址 01H GRID2 显存地址 02H GRID3									
			显存地均	上03H				GRID4		
			显存地均	<u> </u>				GRID5		
			显存地均	<u> </u>				GR	ID6	
	显存地址 06H									
	显存地址 07H									
	显存地址 08H									
			显存地均	上 09H				GRI	D10	

表九 显示数据、地址、芯片管脚之间的对应关系

显存地址 0AH

显存地址 0BH

显存地址 0CH

显存地址 0DH

显存地址 0EH

显存地址 0FH

7.3 显示控制:

MSB							LSB		
В7	В6	B5	B4	В3	B2	B1	В0	功能	说明
1	0			1	0	0	0		设置脉冲宽度为 1/16
1	0		1		0	0	1		设置脉冲宽度为 2/16
1	0			1	0	1	0		设置脉冲宽度为 4/16
1	0	7		1	0	1	1	消光数量设置	设置脉冲宽度为 10/16
1	0	无关		1	1	0	0	(亮度设置)	设置脉冲宽度为 11/16
1	0	填	0	1	1	0	1		设置脉冲宽度为 12/16
1	0			1	1	1	0		设置脉冲宽度为 13/16
1	0			1	1	1	1		设置脉冲宽度为 14/16
1	0			0	X	X	X	显示开关设置	显示关
1	0			1	X	X	X	业小八大以且	显示开

表十 显示模式控制指令

图七 数据显示周期

电路图中所接数码管为共阴数码管:

www.titanmec.com Page 9 of 16 Rev. : 03

尺寸 标注	最 小(mm)	最 大(mm)	尺寸 标注	最 小(mm)	最 大(mm)	
A	17.83	18.03	C4	1.04	STYP	
A1	0.400	64TYP	D1	0.70	0.90	
A2	1. 27	1. 27TYP		1.395TYP		
A3	0. 5:	1TYP	R1	0.508TYP		
В	9. 90	10.50	R2	0.508TYP		
B1	7.42	7.62	θ 1	7°	TYP	
B2	8. 9	TYP	θ 2	5°	TYP	
C1	2.24	2.44	θ 3	4° TYP		
C2	0.204	0.33	θ 4	10°	TYP	
C3	0. 10	0.25				

DETAIL "X"

www.titanmec.com Page 10 of 16 Rev.: 03

LED驱动控制专用电路

TM1640

1. Description

TM1640 is a LED(lighting diodes displayer) driver controller, MCU digit interface, data latch, LED high pressure driver build in a single chip with good performance, reliable quality. TM1640 is main apply for screen driver of electronic scale and small household. SOP28 is available.

2. Feature

Power CMOS technology

Display mode (8seg×16grid), support common cathode output

Grid adjustable circuit (duty ratio 8 level adjustable)

2line serial interface (CLK, DIN)

Oscillation mode: inner oscillation (450 KHz450KHz±5%)

Build-in power-on reset circuit

Package:SOP28

3, Pin Definition

	TM16	40		
1	GRID12	GRID11		28
2	GRID13	GRID10		27
3	GRID14	GRID9		26
4	GRID15	GRID8		25
5	GRID16	GRID7	\Box	24
6	VSS	GRID6		23
7	DIN	GRID5		22
8	SCLK	GRID4		21
9	SEG1	GRID3		20
10	SEG2	GRID2		19
11	SEG3	GRID1		18
12	SEG4	VDD		17
13	SEG5	SEG8	9,	16
14	SEG6	SEG7		15

4. Pin function definition

Symbol	Pin Name	Pin No	description
DIN	Data input	7	Serial data input, input data change under SCLK low level, and been transmit under SOLK high level
SCLK	Clock input	8	Input data at the rising edge

SG1~SG	8	output (segment)	9-16	Segment output, P-channel open-drain output
CRID1~CR CRID12~CR		Output(bit)	18-28 1-5	Bit output, N-channel open-drain output
VDD		Logic power	17	5V± 10%
VSS		Logic ground	6	Connect ground

5. electric parameter:

Limit parameter (Ta = 25, Vss = 0 V)

Parameter	Symbo I	Range	unit
Logic power voltage	VDD	-0.5 ~ +7.0	V
Logic input voltage	VI1	-0.5 ~ VDD + 0.5	V
LED SEG driver output current	101	-200	mA
LED GRID driver output current	102	+20	mA
Power consumption	PD	400	n₩
Work temperature	Topt	-40 ~ +85	
Stock temperature	Tstg	-65 ~ +150	

Normal work range ($Ta = -40^{\circ} + 85$, Vss = 0 V)

Parameter	Symbol	Min	Typical	Max	Unit	Text condition
Logic power voltage	VDD		5		V	-
High level input voltage	VIH	0.7 VDD	ı	VD	V	-

www.titanmec.com Page 12 of 16 Rev.: 03

Low level input voltage	/IL	0	-	0.3 VDD	V	-	
-------------------------	-----	---	---	------------	---	---	--

Electric feature ($Ta = -40^{\circ} + 85^{\circ}$, $VDD = 4.5^{\circ} - 5.5^{\circ}$ V, $Vss = 0^{\circ}$ V

Parameter	Symbol	Min	Typical	Max	Unit	Test condition
High level output	l oh1	-20	-25	-40	mA	GRID1~GRID16, Vo = vdd-2V
current	loh2	-20	-30	-50	mA	CRID1~CRID16, Vo = vdd-3V
Low level output current	IOL1	80	140	- (mA	SEG1~SEG8 Vo=0.3V
Low level output current	Idout	4	-		mA	VO = 0.4V, dout
High level output current capacitance	Itolsg	-	1	5	%	VO = VDD - 3V, GRID1~ GRID16
Input current	П		-	± 1	μА	VI = VDD / VSS
High level input current	VIH	0.7 VDD	(-)		V	CLK, DIN
Low level input voltage	VIL	1	J.	0.3 VDD	V	CLK, DIN
Delay voltage	VH	7	0.35	-	V	CLK, DIN
Active current consumption	IDDdyn	-	-	5	mA	No load, display turn-off

Switch Feature ($Ta = -40^{\circ} + 85$, $VDD = 4.5 \sim 5.5 V$)

Parameter	Symbol	Min	Typical	Max	Unit	Test condition
Oscillation frequency	fosc	-	450	-	KHz	
Time for	tPLZ	-	-	300	ns	alk dio

www.titanmec.com Page 13 of 16 Rev.: 03

	1110111						
transmit delay	tPZL	-	-	100	ns	CL = 15	pF, RL = 10K
Dialog time	TTZH 1	ı	ı	2	μs	CL =	ŒID1~ ŒID16
Rising time	ТТZН 2	-	-	0.5	μs	300p F	SEG1~ SEG8
Drop time	TTHZ	-	1	120	μs		00pF, Segn, Gridn
Max clock frequency	Fmax	1	-	1	MHz	Duty	ratio 50%
Input capacitance	CI	-	-	15	pF) -

Timing feature(Ta = -40 \sim +85 , VDD = 4.5 \sim 5.5 V)

				A-400 A			
Parameter	Symbo I	Min	Typical	Max	Unit	Test condition	
Clock pulse width	PWCLK	400	-	-	ns	-	
Gate pulse width	PWSTB		-	1	μs	-	
Data building time	tSETUP	100	-	-	ns	-	
Data stock time	tHOLD	100	-	-	ns	-	
Waiting time	tWAIT	1	-	-	μs	ar ar	

6. Interface description

Data of MPU communicate via 2line bus interface and TM1640, when input data under high level, the signal of DIN must keep same; when the clock signal of CLK is low level, the signal of DIN could change. Data input always low bit first, high level later. The start condition of data input is DIN from high to low during CLK is high level; the over condition is DIN from low level to high level during CLK is high.

Instruction data transmit as below chart:

www.titanmec.com Page 14 of 16 Rev.: 03

Data1~N: transmit display data

Command3: control display

7. Data instruction

Instruction to set display mode and LED driver status.

When valid instruction START, the first input data of DIN as a instruction. After

www.titanmec.com Page 15 of 16 Rev.: 03

translate decoding, get the highest B7,B6 bit to distinguish different instruction.

B7	B6	指令
0	1	Data instruction setting
1	0	Display control instruction setting
1	1	Address instruction setting

Chart7 instruction setting

If END valid during transmitting data or instruction, serial communication is initialized, and the transmitting data and instruction is invalid (the data and instruction transmitted before that still valid.)

7.1 Data instruction setting:

В7	В6	B5	B4	В3	B2	B1	ВО	description	
0	1	E	or		0	For		Address auto-add 1	
0	1	For irrelevant term , input 0			1	irrelevant term, input 0		Fixed address	
0	1			0	4			Normal mode	
0	1	inp	ut O	1		inp	ut 0	Test mode (inner use)	

7.2 Address instruction setting

			0	CARRIED .					
В7	В6	B5	B4	В3	B2	B1	В0	Display address	
1	1		-	0	0	0	0	00H	
1	1	X		0	0	0	1	01H	
1	1			0	0	1	0	02H	
1	1			0	0	1	1	03H	
1	1			0	1	0	0	04H	
1	1			0	1	0	1	05H	
1	1	7 1		0	1	1	0	06H	
1	1	All .	evant	0	1	1	1	07H	
1	1	terr	ut 0	1	0	0	0	08H	
1	1	mp	ut o	1	0	0	1	09H	
1	1			1	0	1	0	0AH	
1	1			1	0	1	1	0BH	
1	1			1	1	0	0	0CH	
1	1			1	1	0	1	0DH	
1	1			1	1	1	0	0EH	
1	1			1	1	1	1	0FH	

Chart8 display address instruction setting

When power on, address default is 00H.