

Exploring Architectures and Prompts for Sequential Generative News Recommendation with mT5

RecSys Challenge 2024
Sponsored by

JP|Politikens Hus Ekstra Bladet

Universiteit van Amsterdam

Wouter Bant, Colin Bot, Maarten Drinhuyzen
Supervised by: Yougang Lyu

1. Introduction

LLM for News Recommendation Systems

$$L = (1 - \lambda) L_{NLL} + \lambda L_{BPR}$$

$$L_{NLL} = -\sum_{t} \log(P_{\theta}(y_t \mid y_{< t}, X))$$

$$L_{BPR} = -\sum_{(u,pos,neg)} \log(\sigma(r_{u,pos} - r_{u,neg}))$$

Contributions:

- Replicate PGNR with new code and different data
- Modify PGNR for efficiency and controllability
- Participate in the RecSys challenge

2. Challenges and proposed solutions

- The provided code doesn't run
 - Write easily extendible code from scratch
- Articles for RecSys challenge are in Danish
 - Use mT5 instead of T5 (350M parameters)
- The proposed architecture (CG) has many redundant parameters, the last layer maps with 128M parameters to 250K logits of which only 2 are used.
 - CGc: maps to 1 number: the score for the article
 - QA: predicts a correct span in a given prompt ("ja / nej")
 - QA+: similar to QA but scores all articles simultaneously

3. Further extensions

- Investigate encoding more information into the prompt
- Investigate the effect of the rank loss introduced by PGNR
- Investigate the accuracy, efficiency, and controllability of the various models and prompts

4. Methodology

Pipeline CG, CGc, and QA

Pipeline QA+

Prompt variations

Prompt templates a, b, c, d (English version of Danish prompts):

"A user has recently read these articles: $< article_1 >$, $< article_2 >$, \cdots , $< article_T >$. Will they read $< article_{pos} >$?"

Prompt template e (English version of Danish prompt):

"A user has recently read these articles: $< article_1 >, < article_2 >, \cdots, < article_T >$. Which of the following articles will they read < in view $article_1 >, <$ in view $article_2 >, \cdots, <$ in view $article_N >$?"

5. Baselines

CG without fine-tuning:

	Model	Prompt	MRR	HR@1	HR@5	NDCG	AUC
						0.4667	
g:	CG					0.4773	
		c	0.3154	0.1182	0.5911	0.4702	0.5644
		d	0.3111	0.1144	0.5839	0.4669	0.5590
	Mode	1	MRR	HR@1	HR@5	NDCG	ALIC

Random ranking, heuristic methods, and contest winner:

Model	MRR	HR@1	HR@5	NDCG	AUC
Random	0.3150	0.1185	0.2566	0.4697	0.5604
Most frequent category	0.3429	0.1443	0.6205	0.4922	0.5969
Closest publish time	0.3896	0.1691	0.7242	0.5322	0.6917
Contest winner	0.7268	NA	NA	0.7940	0.8767

6. Results

Accuracy-based metrics

			Training set			Validation set							
			λ =0.0			λ =0.4			λ =0.0			λ =0.4	
Model	Prompt	MRR	HR@1	AUC	MRR	HR@1	AUC	MRR	HR@1	AUC	MRR	HR@1	AUC
	a	0.4814	0.2738	0.7428	0.4837	0.2770	0.7448	0.3494	0.1490	0.6101	0.3529	0.1516	0.6167
CG	b	0.4786	0.2712	0.7412	0.4777	0.2697	0.7402	0.3629	0.1618	0.6236	0.3622	0.1626	0.6209
CG	c	0.4798	0.2721	0.7422	0.4807	0.2735	0.7427	0.3547	0.1525	0.6178	0.3537	0.1523	0.6162
	d	0.4814	0.2729	0.7428	0.4787	0.2708	0.7408	<u>0.3840</u>	<u>0.1764</u>	<u>0.6568</u>	<u>0.3786</u>	<u>0.1688</u>	I
	a	0.4830	0.2767	0.7438	0.4824	0.2752	0.7433	0.3483	0.1485	0.6104	0.3476	0.1482	0.6551 0.6074 0.6218
CGc	b	0.4791	0.2713	0.7413	0.4803	0.2729	0.7420	0.3633	0.1647	0.6188	0.3609	0.1606	0.6218
CGC	c	0.4817	<u>0.2745</u>	0.7433	0.4839	0.2776	<u>0.7442</u>	0.3561	0.1520	0.6222	0.3579	0.1568	0.6203
	d	0.4816	0.2729	<u>0.7439</u>	0.4825	0.2750	0.7438	0.3864	0.1817	0.6576	0.3834	0.1753	0.6579
	a	0.4742	0.2660	0.7373	0.4616	0.2529	0.7261	0.3482	0.1449	0.6132	0.3420	0.1378	0.6096
OA	b	0.3224	0.1224	0.5655	0.4747	0.2659	0.7384	0.3153	0.1184	0.5631	0.3612	0.1622	0.6210
QA	c	0.3246	0.1244	0.5688	0.3188	0.1209	0.5586	0.3149	0.1204	0.5598	0.3142	0.1187	0.5619
	d	0.4787	0.2708	0.7408	0.4782	0.2712	0.7404	0.3747	0.1659	0.6503	0.3753	0.1681	0.6520
QA+	e	0.5470	0.3380	0.7940	0.4797	0.2680	0.7436	0.3414	0.1388	0.6054	0.3390	0.1362	0.6028

Beyond-accuracy metrics

Model behaviour

	input	logit 'ja'	logit 'nej'	avg other logit
Output logits	positive example negative example	4.492 ± 0.518 4.358 ± 0.384	5.448 ± 0.49 5.593 ± 0.39	
decoder input			laye	
decoder input decoder input	encoder input	ty to the transfer to	0	Cross Attention
	encoder input	fit r. y. r. y.	layer 3	

7. Conclusion

- Poor generalizability to unseen titles/subtitles, however, more information in the prompt can improve this
- CGc is the most accurate and efficient model
- The difference in publishing time makes the best prompt
- Rank loss can help convergence but improvement is minimal
- Different prompts can significantly impact diversity of ranking