

# **PUB TEMPERATURE MONITORING**

Davide Rendina 830730 Andrei Gabriel Taraboi 829904







### **Obiettivi**



- Realizzare un sistema che permetta la gestione dei dispositivi di temperatura all'interno di un Bar.
- Eseguire un controllo sull'apertura e chiusura delle finestre dell'ambiente.
- Connettere i nodi della rete con MQTT.
- Realizzare una smart network che permetta l'autoconfigurazione dei dispositivi che si collegano.
- Utilizzare le Weather API per monitorare le previsioni meteo.
- · Creare un'interfaccia web dinamica
- · Costruire un sistema che offra grande dinamicità

### Struttura del sistema





## **MQTT**





## **Fase di discovery**









## Controllo dispositivo acceso





#### 1. Notifica

Ricezione di una notifica se viene aperta/chiusa una nuova finestra oppure un device cambia stato.



### 2. Controllo

Controlla che non ci siano finestre aperte e device accesi nello stesso momento.



#### 3. Comunicazione

Se il controllo ha esito positivo, comunica l'alert al sistema.

## Controllo previsioni meteo





#### 1. Chiamata API

Effettua una chiamata ogni 30 minuti alle API di openweather.com per chiedere le previsioni meteo.



### 2. Controllo

Controlla che non piova nelle successive due ore e che non ci sia alcuna finestra aperta.



### 3. Comunicazione

Se il controllo ha esito positivo, comunica l'alert al sistema.

## Risparmio energia





### **Sensing station**

- Deep sleep ogni 10 minuti
- Log sulla rete ogni 30 minuti
- Utilizzo EEPROM



#### **Tilt sensor**

Deep sleep con risveglio tramite il sensore di tilt \*



### **Heating/cooling**

Nessuna strategia di risparmio necessaria



#### **Alert Device**

Deep sleep ad intervalli regolari di 5 minuti \*



## Consumo di corrente (teorico)







### No sleep

Senza utilizzare strategie deep sleep, ogni dispositivo alimentato a batteria (8000mAh) rimarrebbe attivo per 47 ore continue.

### Deep sleep

Utilizzando strategie deep sleep, sensing station e alert device rimarrebbero attivi per 99 giorni circa mentre il tilt sensor per 3 anni circa.



### **Interazione: Web APP**





## **Interazione: Telegram**



































### **Conclusioni**

#### **Devices**

Utilizzo di un NodeMCU per ogni device, in modo da togliere la simulazione degli stessi.



### Risparmio energetico

Adottare tecniche di deep sleep anche per i due dispositivi per cui non è stato possibile farlo (alert device e tilt sensor).







## Grazie dell'attenzione

Davide Rendina 830730 Andrei Gabriel Taraboi 829904