Simple EP

Swupnil Sahai

July 27, 2015

1. Uknown Mean

Formulation

We start by fitting one of the simplest possible models that isn't hierarchical in nature:

$$x_i \sim N(\phi, 1)$$

Generating 1000 data points with $\phi = 200$, we give EP and HMC the following prior:

$$\phi \sim N(0, 20)$$

Results

EP and HMC converge to similar posteriors of ϕ , but the variance for EP decreases after the first iteration.

Table 1: Posterior of ϕ									
Parameter	True	Prior	HMC	EP Iter 1	EP Iter 2	EP Iter 3	EP Iter 4		
$E(\phi)$	200	0	199.9464	199.9433	199.9411	199.9426	199.9436		
$SD(\phi)$	_	20	0.03175	0.03187	0.02531	0.02171	0.01965		

2. Uknown Means (+ Hierarchical Mean)

Formulation

We then try a slightly more interesting model with local unknown means drawn from a global uknown mean and known variance:

$$\theta_j \sim N(\phi, 10)$$

$$x_{ij} \sim N(\theta_j, 1)$$

Generating 50 θ_j 's from $\phi = 200$, and then sampling 1000 data points from each group j, we give EP and HMC the following prior:

$$\phi \sim N(0, 20)$$

Results

EP and HMC converge to slightly different posteriors of ϕ , with the location biased more and more as the number of sites is increased (i.e. as we spread the computation across more cores).

Table 2: Posterior of ϕ								
Parameter	True	Prior	HMC	EP $K=5$	EP K=10	EP K=25		
$E(\phi_1)$	200	0	200.93	191.09	188.15	177.06		
$SD(\phi_1)$	_	20	1.45	0.60	0.43	0.26		
Time	_	_	$201 \mathrm{\ s}$	$116 \mathrm{\ s}$	$95 \mathrm{\ s}$	$92 \mathrm{s}$		

HMC Note: HMC "converged" to strange values of ϕ (e.g. 20) when using only 100 iterations per chain. This was surprising given that the θ_j 's were all being recovered perfectly, but ϕ was not. This was additionally surprising given that there were a total of 50,000 data points.

EP Notes: Initially estimation was terrible and I realized that I was trying make the prior sigma within each site equal to 20, which caused the prior sigma overall to be equal to 20/K (because of the way the precision is summed in EP). I then forced the overal prior sigma to be 20, causing each site to have a sigma prior of 20*K. This produced much better results.

Re-run with Stronger Prior

EP performed substantially better when giving a prior of $\phi \sim N(200, 20)$.

Table 3: Posterior of ϕ								
Parameter	True	Prior	HMC	EP K=5	EP K=10	EP K=25		
$E(\phi_1)$	200	200	201.91	201.79	201.75	201.71		
$SD(\phi_1)$	_	20	1.42	0.604	0.427	0.26		
Time	_	_	$183 \mathrm{\ s}$	$72 \mathrm{\ s}$	$85 \mathrm{\ s}$	$127~\mathrm{s}$		

3. Uknown Means (+ Hierarchical Mean and Variance)

Formulation

We then try a model with local unknown means drawn from a global unknown mean and unknown variance:

$$\theta_j \sim N(\phi_1, e^{\phi_2})$$

$$x_{ij} \sim N(\theta_j, 1)$$

Generating 50 θ_j 's from $\phi = 200$ and $e^{\phi_2} = 5$, and then sampling 1000 data points from each group j, we give EP and HMC the following priors:

$$\left[\begin{array}{c} \phi_1 \\ \phi_2 \end{array}\right] \sim N \left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \left[\begin{array}{cc} 400 & 0 \\ 0 & 1 \end{array}\right]\right)$$

Results

EP performed surprisingly poorly when given a relatively non-informative prior.

Table 4: Posterior of ϕ

		14	DIC 4. 1 05	φ		
Parameter	True	Prior	HMC	EP K=5	EP K=10	EP K=25
$E(\phi_1)$	200	200	199.66	0.10	0.06	0.02
$SD(\phi_1)$	_	20	0.68	0.58	0.31	0.12
$E(\phi_2)$	1.61	0	1.57	5.20	4.97	4.38
$SD(\phi_2)$	_	1	0.10	0.09	0.07	0.04
$Cov(\phi_1,\phi_2)$	_	0	-0.0064	-0.00067	-0.00035	-0.00007
Time	_	_	$1137~\mathrm{s}$	$125 \mathrm{\ s}$	$88 \mathrm{\ s}$	75 s

Re-run with Stronger Prior

EP performed substantially better when given a prior of $\phi \sim N\left(\left[\begin{array}{cc} 200\\0\end{array}\right],\left[\begin{array}{cc} 400&0\\0&1\end{array}\right]\right)$.

Table 5: Posterior of ϕ

			DIC 0. 1 05	,		
Parameter	True	Prior	$_{\rm HMC}$	EP K=5	EP K=10	EP K=25
$E(\phi_1)$	200	200	200.66	200.02	199.99	200.00
(/ - /	200	200	200.00	200.02	133.33	200.00
$SD(\phi_1)$	_	20	0.67	0.42	0.25	0.11
$E(\phi_2)$	1.61	0	1.57	1.52	1.42	1.09
(' '	1.01	· ·		_		
$SD(\phi_2)$	_	1	0.10	0.10	0.09	0.06
$Cov(\phi_1, \phi_2)$	_	0	0.00034	-0.0036	-0.00015	-0.00026
Time	_	_	$937 \mathrm{\ s}$	$700 \mathrm{\ s}$	$292 \mathrm{\ s}$	$237.9~\mathrm{s}$