Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2018 OE00002 Neural Networks & Fuzzy Systems

Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

	•	should be written in full inste	ad of only a, b, c or d.	weis 0		
Q .1	i.	What is an activation value?		1		
		(a) Weighted sum of inputs	(b) Threshold value			
		(c) Main input to neuron	(d) None of these			
	ii.	Widrow & Hoff learning law	v is special case of?	1		
		(a) Hebb's learning law	(b) Perceptron learning law			
		(c) Delta learning law	(d) None of these			
	iii.	How can learning process b	be stopped in backpropagation rule?	1		
		(a) There is convergence involved				
		(b) No heuristic criteria exis	t			
		(c) On basis of average grad	ient value			
		(d) None of these				
	iv.	Who invented perceptron neural networks?				
		(a) McCullocch-pitts	(b) Widrow			
		(c) Minsky & papert	(d) Rosenblatt			
	v.	What kind of dynamics lead	s to learning laws?	1		
		(a) Synaptic (b) Neural	(c) Activation (d) Both (a) and (b)			
	vi.	What is asynchronous updat	e in Hopfield model?	1		
		(a) All units are updated simultaneously				
		(b) A unit is selected at rand	om and its new state is computed			
		(c) A predefined unit is select	cted and its new state is computed			
		(d) None of these				
	vii.	Fuzzy logic is a form of		1		
		(a) Two-valued logic	(b) Crisp set logic			
		(c) Many-valued logic	(d) Binary set logic			
			P.	.T.O.		

	viii.	The truth values of traditional set theory is and that	1
		of fuzzy set is	
		(a) Either 0 or 1, between 0 & 1	
		(b) Between 0 & 1, either 0 or 1	
		(c) Between 0 & 1, between 0 & 1	
		(d) Either 0 or 1, either 0 or 1	
	ix.	Fuzzification is a process of	1
		(a) Making a fuzzy quantity crisp	
		(b) Making a crisp quantity fuzzy	
		(c) Converting a fuzzy quantity into a membership function	
		(d) Converting a membership function into a fuzzy quantity	
	х.	Which one of the following is not a feature of a membership	1
		function:	
		(a) Core (b) Support (c) Boundaries (d) Normal	
Q.2	i.	Briefly describe Delta learning rule.	2
	ii.	Elucidate various neural network architectures.	3
	iii.	Explain activation function, its utility, features and types in the	5
		model of neural networks.	
OR	iv.	Explain the McCulloh-Pitt's model in details.	5
Q.3	i.	Differentiate Perceptron model & McCulloh-Pitt's model.	2
	ii.	Explain Back Propagation Algorithm in details.	8
OR	iii.	Explain Perception convergence theorem and algorithm. Also	8
		explain LMS learning algorithm.	
			_
Q.4	i.	How do the learning algorithms differ in case of Recurrent Neural	3
		networks as compared to Feed-forward neural networks?	_
	11.	Explain topology and learning algorithm of Hopfield network.	7
O.D.		How is it useful in pattern recognition?	_
OR	iii.	Write a short note on applications of recurrent neural networks in	7
		the fields of communication and robotics.	
0.5	i	Differentiate Fuzzy sets and Crien sets by giving suitable real life	1
Q.5	i.	Differentiate Fuzzy sets and Crisp sets by giving suitable real life	4
		examples.	

ii.	Explain	Union,	Intersection,	Complement	&	Containment	6
	operators for Fuzzy relations. How do they differ as compared to						
	Crisp relations?						

- OR iii. Write down different ways to develop the membership values that characterize a relation. Explain Cosine Amplitude and Max-Min methods in details.
- Q.6 Attempt any two:
 - Draw block diagram of first-generation (non-adaptive) simple fuzzy controllers. Also write down the steps in designing a simple fuzzy control system.
 - ii. Discuss features and properties of membership functions.
 - iii. Explain the terms Fuzzification and Defuzzification by giving 5 suitable examples.

5

Marking Scheme OE00002 Neural Networks & Fuzzy Systems

Q .1	i.	What is an activation value?					
		(a) Weighted sum of inputs					
	ii.	Widrow & Hoff learning law is special case of?	1				
		(c) Delta learning law					
	iii.	How can learning process be stopped in back propagation rule?	1				
		(c) on basis of average gradient value					
	iv.	Who invented perceptron neural networks?	1				
		(d) Rosenblatt					
	v.	What kind of dynamics leads to learning laws?	1				
		(a) synaptic					
	vi.	What is asynchronous update in Hopfield model?	1				
		(b) a unit is selected at random and its new state is computed					
	vii.	Fuzzy logic is a form of	1				
		(c) Many-valued logic					
	viii.	The truth values of traditional set theory is and that	1				
		of fuzzy set is					
		(a) Either 0 or 1, between 0 & 1					
	ix.	Fuzzification is a process of	1				
		(d) Converting a membership function into a fuzzy quantity					
	х.	Which one of the following is not a feature of a membership	1				
		function:					
		(d) Normal					
Q.2	i.	Delta learning rule.	2				
	ii.	Neural network architectures.	3				
		Single Layer Feedforward Networks 1 mark					
		Multi Layer Feedforward Networks 1 mark					
		Recurrent Networks 1 mark					
	iii.	Definition of activation function 1 mark	5				
		Utility of activation function 1 mark					
		Features of activation function 1 mark					
		Types of activation function:					
		Threshold 1 mark					
		Sigmoid 1 mark					

OR	iv.	McCulloh-Pitt's model in details.		5
		Diagram	2 marks	
		Explanation of Diagram	3 marks	
Q.3	i.	Differentiate Perceptron model & McCulloh-P	itt's model.	2
		Perceptron model	1 mark	
		McCulloh-Pitt's model	1 mark	
	ii.	Explain Back Propagation Algorithm in details.		8
		Explanation of purpose and diagram	2 marks	
		Mathematical Derivation	4 marks	
		Summary	2 marks	
OR	iii.	Explain Perception convergence theorem and explain LMS learning algorithm.	algorithm. Also	8
		Theorem	2 marks	
		Algorithm	2 marks	
		LMS learning algorithm	4 marks	
Q.4	i.	How do the learning algorithms differ in ca	ase of Recurrent	3
		Neural networks as compared to Feed-forward	neural networks?	
	ii.	Explain topology and learning algorithm of H	opfield network.	7
		How is it useful in pattern recognition?	2 1	
		Topology	2 marks	
		Mathematical Derivation	4 marks	
0.5		Usefulness in pattern recognition	1 mark	_
OR	iii.	Write a short note on applications of recurrent	neural networks in	7
		the fields of communication and robotics.		
		Applications in communication	3 marks	
		Applications in robotics	4 marks	
Q.5	i.	Differentiate Fuzzy sets and Crisp sets by givin examples.	ng suitable real life	4
		Fuzzy sets	2 marks	
		Crisp sets	2 marks	

	ii.	Explain Union, Intersection, Complement & operators for Fuzzy relations. How do they differ a		6		
		Crisp relations?				
		Union operator 1 mark				
		Intersection operator	1 mark			
		Complement operator	1 mark			
		Containment operator	1 mark			
		Difference	2 marks			
OR	iii.	Write down different ways to develop the members		6		
OK	111.	characterize a relation. Explain Cosine Amplitude	-	U		
		methods in details.	and wax-win			
		Different ways	2 marks			
		Cosine Amplitude method	2 marks			
		Max-Min method	2 marks			
			- 111 0 1110			
Q.6		Attempt any two:				
	i.	Draw block diagram of first-generation (non-ada	aptive) simple	5		
		fuzzy controllers. Also write down the steps in desi				
		fuzzy control system.				
		Block Diagram	3 marks			
		Design steps	2 marks			
	ii.	Discuss features and properties of membership fund	ctions.	5		
		Features	2 marks			
		Properties	3 marks			
	iii.	Explain the terms Fuzzification and Defuzzificat	ion by giving	5		
		suitable examples.				
		Fuzzification	2.5 marks			
		Defuzzification	2.5 marks			
