Computer Music Practice Examples

Introduction

instrument design, composition, performance, and presentation

by Joo Won Park www.joowonpark.net/cmpe

What is CMPE?

CMPE is a series of interactive lectures on a creative process of computer music

Each entry shows how a complete piece is created from scratch

Each entry has an analysis of codes, scores, and step-by-step procedures

Why

Computer music practice = composition + performance + instrument design

Details on the creative process are important

"Turn your Csound into Cmusic." - Boulanger, The Csound Book

Target Audience

Composers, performers, technologists, and researchers of electronic music

Those who seek examples on the musical application of theories and ideas of music technology

Students who learned to use a computer music tool and needs to survey creative application of the tool

Limits

It is not a SuperCollider tutorial

It is not for learning history or theory of electronic music

Examples are author's pieces specifically written for this project

Format - Tools

Google Slides: diagrams, step-by-step procedure, references

SuperCollider: download and run .scd files in the presentation to follow along

YouTube: Demos

Contact: joowon (at) joowonpark.net

Format - Diagrams

Instrument Design Process

Presentation/Performance Methods

Format - Diagrams

Instrument Design Process

Presentation/Performance Methods

Map

S(synthdef)

L(loop)

F(function)

Block Diagram Legend

UGen:

Unite Generator.

Processes audio or data

arrow:

Shows the direction of signal

The text in the line (input parameter:) shows the name of the input parameter of an input in the connected UGen

argument:

Controllerable arguments

Written in italics

Can be a list in [arg,arg,arg] format

constant number:

Discrete numeric value

signal splitter:

Used when one signal is connected to multiple

inputs

Arith:

Arithmetics.

Incoming signals are added(+), subtracted(-),

multiplied(x), or divided(/).

Out:

Audible audio output

S(synthdef): SynthDef. Includes OSCFunc

L(loop): loops including do{} and Routine

F(function): custom function.

Example

Let's listen to this sound

Download Intro.scd

Make S(iBleeper)

Step 1 Audio Example

Make S(iBleeper)

Step 1 Audio Example

```
//Step 1 - Make an Instrument
SynthDef("iBleeper",{
        arg aamp,aatk,arel,afreq,acf,apos;
        var env, sound, filter, panner, mix;
        env=Env.perc(aatk,arel);
        env=EnvGen.kr(env,doneAction:2);
        sound=Impulse.ar(afreq*env);
        filter= BPF.ar(sound,acf*env+20);
        panner= Pan2.ar(filter,apos);
        mix=panner*env*aamp;
        Out.ar(0,mix);
}).add;
//test it
Synth("iBleeper",[\aamp,1.5,\aatk,3,\arel,3,\afreq,80,\acf,3000,\apos,0]);
```

Make a Loop

Step 2 Audio Example

In a loop, the argument *counter* increase by 1 at each iteration. The counting starts at 0, so counter+1 outputs an increasing number series starting at 1.

Make a Loop

Step 2 Audio Example

Make a Function with rancomization elements

Step 3 Audio Example of three different parameter values

Make a Function with rancomization elements

Step 3 Audio Example of three different parameter values

```
//Step 3 Make a function with randomization
~beeprout={
        arg repeat, freq, cf;
        Routine({
                var atk;
                repeat.do{
                        arg counter:
                        atk=rrand(0.5,3);
                        Synth("iBleeper",
                                 [\aamp,rrand(0.4,0.7),\aatk,atk,\arel,atk*3,
                                 \afreq,freq,\acf,(counter+1)*cf,\apos,rrand(-1.0,1.0)]);
                        [0.1,0.15,0.2].choose.wait;
        }).play;
};
//~beeprout.value(repeat,freq,cf increments);
~beeprout.value(30,15,100);
~beeprout.value(30,100,100);
~beeprout.value(25,500,80);
```

Make a Function with rancomization elements

Step 4 Audio Example

Performance Instruction

```
//run the lines below. Improvise timing.
//Multiple runs are OK

//~beeprout.value(repeat,freq,cf increments);
~beeprout.value(30,15,100);
~beeprout.value(30,100,100);
~beeprout.value(25,500,80);
```

What's Next

RMHS: Ambient Sound Generator

SuperCollider Composition Examples

Contact joowon@joowonpark.net if you have questions or see errors.

