

MICCAI 2025 SSL3D / FOMO60k Challenge

Puru Vaish (Mei) The Latent Campus

UNIVERSITY OF TWENTE.

The Brain Stem of TheLatentCampus

 $(Mei)^1$

Puru Vaish Felix Meister²

Tobias Heimann²

Christoph Brune¹

Jelmer Wolterink¹

- Department of Applied Mathematics, Technical Medical Centre, University of Twente
- Digital Technology and Innovation, Siemens Healthineers, Erlangen, Germany

State of Self-Supervised Learning

He, Kaiming, et al. "Masked Autoencoders Are Scalable Vision Learners." arXiv, 11 Nov. 2021, doi:10.48550/arXiv.2111.06377. Huang, Zhicheng, et al. "Contrastive Masked Autoencoders are Stronger Vision Learners." arXiv, 27 July 2022, doi:10.1109/TPAMI.2023.3336525.

State of Self-Supervised Learning

There is an Issue

 Loosely correlated regions are enforced to be "similar"

Poor representation learning and generalisation

Need for alignment of features.

Consistent View

Given the original image get two volumes with an overlapping region.

Keep track of where the overlap is.

Alignment

Extract the features and using the saved bounding boxes to align the features.

Consistent View + Alignment = CVA

He, Kaiming, et al. "Masked Autoencoders Are Scalable Vision Learners." arXiv, 11 Nov. 2021, doi:10.48550/arXiv.2111.06377. Chen, Xinlei and Kaiming He. "Exploring Simple Siamese Representation Learning." arXiv, 20 Nov. 2020, doi:10.48550/arXiv.2011.10566.

OpenMind Dataset

Dataset Overview

- Large publicly available head & neck MRI dataset TI-map (via OpenNeuro)
- Aggregates 800+ datasets, released under **CCO/PDDL** licenses
- Standardized and cleaned: 114,570 3D volumes from **34,191 patients**
- Covers 23 modalities MRI sequences (T1w, FLAIR, T2w, MD, FA, and more)
- Publicly hosted on Hugging Face

Two Stage Training

Stage	Architecture	Details	Duration Single L40		
Pretraining	ResEnc-L	1000 epochs	~7 days		
MAEHuber Loss	Primus-M	1000 epociis	~9 days		
Post-pretraining	ResEnc-L	250 epochs	~1.5 days		
- Respective losses	Primus-M	150 epochs	~2 days		

• Pros: 37 GPU days vs 112 GPU days over 14 ablations.

Cons: Bias towards MAE representations.

Wald, Tassilo, et al. "An OpenMind for 3D medical vision self-supervised learning." arXiv, 22 Dec. 2024, doi:10.48550/arXiv.2412.17041.

SIEMENS:
Healthineers

Technical Details

Cosine Similarity Loss

$$\mathcal{L}_{\cos}(\mathbf{u}_{1}^{\Omega_{1}}, \mathbf{h}_{2}^{\Omega_{2}, t}) = 2 - 2 \frac{\mathbf{u}_{1}^{\Omega_{1}} \cdot \mathbf{h}_{2}^{\Omega_{2}, t}}{\|\mathbf{u}_{1}^{\Omega_{1}}\|_{2} \|\mathbf{h}_{2}^{\Omega_{2}, t}\|_{2}}.$$

Symmetrisation

$$\mathcal{L}_{\cos}^{\text{sym}} = \frac{1}{2} \mathcal{L}_{\cos}(\mathbf{u}_1^{\Omega_1}, \mathbf{h}_2^{\Omega_2, t}) + \frac{1}{2} \mathcal{L}_{\cos}(\mathbf{u}_2^{\Omega_2}, \mathbf{h}_1^{\Omega_1, t}).$$

Contrastive Signal

$$\mathcal{L}_{\text{NT-Xent}}(\mathbf{u}_1, \mathbf{h}_2^t) = -\log \frac{\exp\left(\text{sim}(\mathbf{u}_1, \mathbf{h}_2^t)/\tau\right)}{\sum\limits_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp\left(\text{sim}(\mathbf{u}_1, \mathbf{h}_k^t)/\tau\right)}.$$

- onemmiso preprocessed, Batch Size 4, Patch Size 160³, no exclusion criteria
- Finetuning at the FOMO60k talk.

Caron, Mathilde, et al. "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments." arXiv, 17 June 2020, doi:10.48550/arXiv.2006.09882. Huang, Zhicheng, et al. "Contrastive Masked Autoencoders are Stronger Vision Learners." arXiv, 27 July 2022, doi:10.1109/TPAMI.2023.3336525. He, Kaiming, et al. "Masked Autoencoders Are Scalable Vision Learners." arXiv, 11 Nov. 2021, doi:10.48550/arXiv.2111.06377. Chen, Xinlei and Kaiming He. "Exploring Simple Siamese Representation Learning." arXiv, 20 Nov. 2020, doi:10.48550/arXiv.2011.10566.

Consistent View + Alignment = CVA

He, Kaiming, et al. "Masked Autoencoders Are Scalable Vision Learners." arXiv, 11 Nov. 2021, doi:10.48550/arXiv.2111.06377. Chen, Xinlei and Kaiming He. "Exploring Simple Siamese Representation Learning." arXiv, 20 Nov. 2020, doi:10.48550/arXiv.2011.10566.

Pre-Challenge Ablation Ladder

- 4 Segmentation Datasets
 - Ischemic Stroke Lesions
 - Yale Brain Metastasis
 - BraTS: Post-Glioblastoma
 - Medical Segmentation Decathlon: Brain Tumour Segmentation
- 1 Classification Dataset
 - ABIDE 2
- Rankings should be interpreted with care

Maier-Hein, Lena, et al. "Why rankings of biomedical image analysis competitions should be interpreted with care." Nat. Commun. doi:10.1038/s41467-018-07619-7.

Ablation Ladder - MAE

÷										Classification							
Track	Recon.	Consis.	Cont	Avg Rank	Seg Rank	Cls Rank	ISL		YBM		GLI		MSD		ABD II		
	recon.		001101	11/8 1101111	Seg Hami	CIS Italia	DSC	NSD	DSC	NSD	DSC	NSD	DSC	NSD	Bal Acc.	AUROC	AP
ResEnc-L	MAE	X	X	5.22	5.00	5.67	78.87	76.66	61.21	68.68	69.83	75.02	72.22	76.49	57.33	60.18	58.89
Primus-M	MAE	X	X	6.31	6.13	6.67	77.18	74.98	52.70	59.01	65.82	72.58	71.41	75.44	54.80	58.75	58.26

Ablation Ladder - Contrastive MAE

		Consis.		Avg Rank	Seg Rank					Classification							
Track	Recon.		Cont.			Cls Rank	Rank		YBM		GLI		MSD		ABD II		
	1000011						DSC	NSD	DSC	NSD	DSC	NSD	DSC	NSD	Bal Acc.	AUROC	AP
ResEnc-L	MAE	X	1	2.53	3.13	1.33	80.05	78.18	62.31	70.37	69.82	74.84	72.80	76.70	61.09	64.93	62.67
Primus-M	MAE	X	✓	2.50	3.25	1.00	77.18	75.36	54.87	61.74	65.82	72.65	71.78	75.85	58.55	62.42	61.60

Ablation Ladder - CVA w/ Contrastive Signal

-							Segmen	ntation				Cla	ssification				
Track	Recon.	Consis.	Cont.	Avg Rank	Seg Rank	Cls Rank	ISL		YBM		GLI		MSD		ABD II		
Huck		Comoro	Cont.	my mann			DSC	NSD	DSC	NSD	DSC	NSD	DSC	NSD	Bal Acc.	AUROC	AP
ResEnc-L	MAE	CVA	1	2.47	2.88	1.67	78.97	77.09	62.35	70.94	69.75	74.85	72.84	77.02	62.02	64.46	62.62
Primus-M	MAE	CVA	1	2.49	2.13	3.21	77.33	75.14	54.78	61.60	66.48	73.27	71.86	76.10	56.13	59.10	59.31

Quality of Representation

Cropped patch middle slice (z=64)

Cropped patch sagittal slice (x=64)

3 CVA

3 CVA

FOM060K - Finetuning

- Classification
 - Baseline Codebase provided by the Challenge
 - 128 patch size
 - 8 batch accumulation
- Brain Age Regression
 - Baseline Codebase provided by the Challenge
 - 128 patch size
 - 16 batch accumulation
- Segmentation
 - 50 epochs, 100 iterations of nnUNet training from pretrained checkpoint.
 - 5 fold cross validation.
 - Best model sent for final testing.

Flexible Framework makes the World Work

Even more ablations!

- Different types of consistency:
 - Effect of contrastive signal
 - Contrastive
 - Gram Matrix
- Ranking Interpretations

Code Publicly Available

 Extension of nnssl and compatible with nnunet_adaption

Pretrained Weights

Soon on Zenodo (watch on GitHub for updates)

Being Consistent Helps! Alignment Helps!

- These models are our babies:
 - We need to be consistent in our loss terms.
 - We need to align them to our domain.
 - We need to be patient and let them learn.

State of Self-Supervised Learning

State of Self-Supervised Learning

Quick Ablations

		Consis.			Seg Rank	Cls Rank				Segmen	ntation	Segmentation								
Track	Recon.		Cont.	Avg Rank			IS	ISL		YBM		GLI		SD	ABD II					
Hack	recon.		Cont.	ni 8 ream		CIS TOM	DSC	NSD	DSC	NSD	DSC	NSD	DSC	NSD	Bal Acc.	AUROC	AP			
	AE	X	X	6.08	6.63	5.00	77.34	75.57	60.92	69.44	68.38	73.41	72.66	76.64	57.30	60.61	60.03			
	MAE	X	X	5.22	5.00	5.67	78.87	76.66	61.21	68.68	69.83	75.02	72.22	76.49	57.33	60.18	58.89			
	MAE	CVA	X	3.83	4.25	3.00	77.98	76.23	62.10	70.97	69.15	74.45	72.84	77.15	60.14	63.69	62.00			
	MAE	C-CVA	X	5.14	4.38	6.67	78.58	76.81	62.27	70.41	69.55	74.71	72.72	76.89	56.43	59.64	59.06			
$\operatorname{ResEnc-L}$	MAE	X	1	2.53	3.13	1.33	80.05	78.18	62.31	70.37	69.82	74.84	72.80	76.70	61.09	64.93	62.67			
	MAE	CVA	/	2.47	2.88	1.67	78.97	77.09	62.35	70.94	69.75	74.85	72.84	77.02	62.02	64.46	62.62			
	MAE	C-CVA	1	2.72	1.75	4.67	79.65	77.90	62.43	70.30	69.94	75.18	72.86	77.24	57.17	62.48	61.60			
				Range			2.70	2.61	2.02	2.28	1.67	1.83	0.64	0.74	5.60	5.28	3.78			
	AE	X	X	5.03	6.38	2.33	76.05	73.35	51.92	58.43	63.35	69.93	71.44	75.90	56.09	61.79	60.51			
	MAE	X	X	6.31	6.13	6.67	77.18	74.98	52.70	59.01	65.82	72.58	71.41	75.44	54.80	58.75	58.26			
	MAE	CVA	×	4.64	4.63	4.67	77.18	75.00	53.58	59.95	65.96	72.73	71.56	75.54	55.83	59.17	58.38			
	MAE	C-CVA	×	2.97	2.63	3.67	77.40	75.01	53.42	59.36	67.21	73.99	71.82	76.14	55.84	59.25	58.84			
Primus-M	MAE	X	1	2.50	3.25	1.00	77.18	75.36	54.87	61.74	65.82	72.65	71.78	75.85	58.55	62.42	61.60			
	MAE	CVA	1	2.49	2.13	3.21	77.33	75.14	54.78	61.60	66.48	73.27	71.86	76.10	56.13	59.10	59.31			
	MAE	C-CVA	1	4.03	2.88	6.33	78.07	75.77	54.44	60.92	66.20	72.91	71.66	75.61	55.55	58.85	57.69			
				Range			2.01	2.42	2.95	3.31	3.86	4.07	0.45	0.69	3.75	3.67	3.90			

Ablations – Dynamic Range

				Avg Rank	Seg Rank	Cls Rank				Segme	ntation				Cla	ssification	
Track	Recon.	Consis.	Cont.				ISL		YBM		GLI		MSD		ABD II		
Hack	recon.		Cont.			OB Rain	DSC	NSD	DSC	NSD	DSC	NSD	DSC	NSD	Bal Acc.	AUROC	AP
	AE	X	X	6.08	6.63	5.00	77.34	75.57	60.92	69.44	68.38	73.41	72.66	76.64	57.30	60.61	60.03
	MAE	X	X	5.22	5.00	5.67	78.87	76.66	61.21	68.68	69.83	75.02	72.22	76.49	57.33	60.18	58.89
	MAE	CVA	X	3.83	4.25	3.00	77.98	76.23	62.10	70.97	69.15	74.45	72.84	77.15	60.14	63.69	62.00
	MAE	C-CVA	X	5.14	4.38	6.67	78.58	76.81	62.27	70.41	69.55	74.71	72.72	76.89	56.43	59.64	59.06
ResEnc-L	MAE	X	1	2.53	3.13	1.33	80.05	78.18	62.31	70.37	69.82	74.84	72.80	76.70	61.09	64.93	62.67
	MAE	CVA	1	2.47	2.88	1.67	78.97	77.09	62.35	70.94	69.75	74.85	72.84	77.02	62.02	64.46	62.62
	MAE	C-CVA	1	2.72	1.75	4.67	79.65	77.90	62.43	70.30	69.94	75.18	72.86	77.24	57.17	62.48	61.60
				Range			2.70	2.61	2.02	2.28	1.67	1.83	0.64	0.74	5.60	5.28	3.78
7 x	AE	X	X	5.03	6.38	2.33	76.05	73.35	51.92	58.43	63.35	69.93	71.44	75.90	56.09	61.79	60.51
	MAE	X	X	6.31	6.13	6.67	77.18	74.98	52.70	59.01	65.82	72.58	71.41	75.44	54.80	58.75	58.26
	MAE	CVA	X	4.64	4.63	4.67	77.18	75.00	53.58	59.95	65.96	72.73	71.56	75.54	55.83	59.17	58.38
	MAE	C-CVA	X	2.97	2.63	3.67	77.40	75.01	53.42	59.36	67.21	73.99	71.82	76.14	55.84	59.25	58.84
Primus-M	MAE	X	/	2.50	3.25	1.00	77.18	75.36	54.87	61.74	65.82	72.65	71.78	75.85	58.55	62.42	61.60
	MAE	CVA	1	2.49	2.13	3.21	77.33	75.14	54.78	61.60	66.48	73.27	71.86	76.10	56.13	59.10	59.31
	MAE	C- CVA	1	4.03	2.88	6.33	78.07	75.77	54.44	60.92	66.20	72.91	71.66	75.61	55.55	58.85	57.69
				Range			2.01	2.42	2.95	3.31	3.86	4.07	0.45	0.69	3.75	3.67	3.90

