河北区 2016-2017 学年度第二学期期中七年级质量检测

数学试卷

(本试卷满分100分,考试时间70分钟) 一、选择题(本大题共8个小题,每小题3分,共24分) 4 的平方根是() C. -2 A. 2 B. ±2 D. 4 2、在平面直角坐标系中,点P(2,-3)所在的象限是(A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3、下列四个数中,是无理数的是() 4、如图,直线 a、b 被直线 c 所截,∠1 与∠2 的位置关系是(**A**. 同位角 B. 内错角 C. 同旁内角 D. 对顶角 5、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道 ABCD,使其拐角∠ ABC=150°, ∠BCD=30°, 则(C. AB // DC D. AB 与 CD 相交 A. AB // BC B. BC // CD 6、若一正方形的面积为 20 平方公分,周长为 x 公分,则 x 的值介于下列哪两个整数之间() A. 16, 17 B. 17, 18 C. 18, 19 D 19 20 7、如图,木工师傅在一块木板上画两条平行线,方法是,用角尺画木板边缘的两条垂线,这样画 的理由有下列 4 种说法,其中正确的是(①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④在 同一平面内,垂直于同一直线的两条直线平行 C. OSA B. ①②④ \mathbf{A} . ଏହିଏ D. എത M(p,q)第5题图 第7题图 第4题图 8、如图,平面中两条直线4,与 4,相交于点 O,对于平面上任意一点 M,若 p、q 分别是 M 到直线4, 和 I_{0} 距离,则称有序非负实数对(I_{0} 、 I_{0})是点 I_{0} 的"距离坐标"。根据上述定义,有以下几个结 ①"距离坐标"是(0,1)的点有1个;②"距离坐标"是(5,6)的点有4个;③"距离坐标" 是(a, a)(a 为非负实数)的点有4个。其中正确的有(A. 0 个 B. 1 个 C. 2 个 D. 3 个 二、填空题(本大题共 8 个小题,每小题 3 分,共 24 分) 9、-27的立方根是 10、点 P(3, -2) 到 y 轴的距离为______个单位长度

11、若实数 $x \cdot y$ 满足 $(2x + 3)^2 + |9 - 4y| = 0$,则xy的立方根是

- 12、如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是 PB,理由是
- 13、点 O 是直线 AB 上一点,OC LOD, ∠AOC: ∠BOD=5: 1,那么∠AOC 的度数是
- 14、如图,边长为8cm 的正方形 ABCD 先向上平移4cm,再向右平移2cm,得到正方形 $\overline{A'B'C'D'}$,此时阴影部分的面积为
- 15、在如图所示的数轴上,点 C 与点 B 关于点 A 对称(A 为 BC 的中点),C、A 两点对应的实数分别是√5 和 1,则点 B 对应的实数为

16、如图,已知 AB// CD, \angle EAF= $\frac{1}{4}$ \angle EAB, \angle ECF= $\frac{1}{4}$ \angle ECD,则 \angle AEC= $_$ _ \angle AFC

三、解答题(17 提 10 分,18、19、20、21 题各 8 分,22 题 10 分,共 52 分) 17、(本题满分 10 分,每小题 5 分)

(1) 计算:
$$\left| \sqrt{6} - \sqrt{2} \right| + \left| \sqrt{2} - 1 \right| - \left| 3 - \sqrt{6} \right|$$

(2) 计算:
$$-\sqrt[3]{-8} + \sqrt[3]{125} + \sqrt{(-2)^2}$$

18、(本小题满分8分)

已知2a+1的平方根是 ± 3 ,5a+2b-2的算数平方根是4,求3a-4b的平方根

如图,在方格纸中,每个小正方形的边长均为 1 个单位长度,有一个 \triangle ABC,它的三个顶点均与小正方形的顶点重合

- (1)将 \triangle ABC 向右平移 3 个单位长度,得到 \triangle DEF(A 与 D、B 与 E、C 与 F 对应)请在方格纸中画出 \triangle DEF;
- (2) 在(1)的条件下,连接 AE 和 CE,请求出 ACE的面积 S

20、(本小题满分8分)

如图, $AB\perp BD$, $CD\perp BD$, $\angle A=\angle FEC$,以下是小明同学证明 $EF/\!\!/ CD$ 的过程,请你在横线上补充完整并说明理由

证明∵AB⊥BD,CD⊥BD(已知)

- ∴ ∠ABD=∠CDB=90° (_____)
- ∴ ∠ABD + ∠CDB=180°
- ∴AB// (____) (_____)
- ∵∠A=∠FEC(已知)
- :AB// (____)(_____)
- ·· (____) // (____) (______

21、(本小题满分8分)

如图,已知 OA // BE,OB 平分 \angle AOE, \angle 4= \angle 5, \angle 2 与 \angle 3 互余,那么 DE 和 CD 有怎样的位置关系?为什么?

22、(本小题满分10分)

如图 1,在平面直角坐标系中,A(a,0),C(b,2),且满足 $(a+2)^2+\sqrt{b-2}=0$,过C作 CB \perp x 轴于 B

- (1) 求△ABC 的面积;
- (2) 若过 B 作 BD// AC 交 y 轴于 D,且 AE、DE 分别平分∠CAB、∠ODB,如图 2,求∠AED 的度数;
- (3)在 y 轴上是否存在点 P,使得 \triangle ABC 和 \triangle ACP 的面积相等?若存在,求出 P 点坐标;若不存在,请说明理由

