SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER

Tatjana Pavlenko

6 september 2018

Plan för dagens föreläsning

- Repetition av de viktiga begreppen diskret/kontinuerlig stokastisk variabel, sannolikhetsfunktion, täthetsfunktion och fördelningsfunktion.
- ► Funktioner av en stokastisk variabel (Kap. 3.10)
- ► Flerdimensionella stokastiska variabeler (Kap. 4.1-4.4)
- Oberoende stokastiska variabler (Kap. 4.5)
- Funktioner av flera stokastiska variabler (Kap. 4.6-4.7)

DISKRETA STOKASTISKA VARIABLER, REPETITION

- ▶ Def: En stokastisk variabel, $X(\omega)$ är diskret om den endast kan anta ändligt eller uppräkneligt oändligt antal värden $\{k_1, k_2, \dots\}$, (syfrar på heltal).
- ▶ Def: $p_X(k) = P(X = k)$, $k = k_1, k_2,...$ kallas för sannolikhetsfunktionen för en diskret s.v. X.
- Villkor:
 - ▶ $0 \le p_X(k) \le 1$ för alla k
- ▶ Med hjälp av $p_X(k)$ har vi:

$$P(a \le X \le b) = \sum_{k:a \le k \le b} p_X(k)$$

$$P(X \le a) = \sum_{k:k \le a} p_X(k)$$

$$P(X > a) = \sum_{k:k>a} p_X(k) = 1 - \sum_{k:k$$

KONTINUERLIGA STOKASTISKA VARIABLER (REP.)

▶ Def: En stokastisk variabel X är kontinuerlig om det finns icke-negativ funktion $f_X(\cdot)$ sådan att

$$P(X \in A) = \int_A f_X(x) dx,$$

för alla A. $f_X(x)$ kallas för täthetsfunktonen för s.v X.

- ▶ Jämför med diskreta fallen! Summeringen av sannolikhetsfunktionen ersats av integration.
- Villkor:
 - $f_X(x) \geq 0$,
 - $\int_{-\infty}^{\infty} f_X(x) dx = 1$, dvs hela area under täthetsfunktionen är 1.
- Skilj noga på symbolen X som betecknar en s.v. och x som används som argument i funktionen $f_X(x)$!

FÖRDELNINGSFUNKTION FÖR EN S.V. (REP.)

Def: Funktionen

$$F_X(x) = P(X \le x), \quad x \in \mathbb{R}^1$$

kallas för fördelningsfunktionen för den s.v. X.

- Villkor:
 - ▶ $0 \le F_X(x) \le 1$, (slh)
 - $ightharpoonup F_X(x)$ är icke-avtagande funktion,
 - $F_X(x) \to 0$ då $x \to -\infty$ och $F_X(x) \to 1$ då $x \to \infty$.
 - $F_X(x)$ är kontinuerlig till höger för varje x.

FÖRDELNINGSFUNKTION FÖR EN S.V. (FORTS.)

FIGUR: Fördelningsfunktion $F_x(k)$ uppritad för tre olika Poisson-fördelningar: $\lambda=1,\ \lambda=4$ respektive $\lambda=10$.

FÖRDELNINGSFUNKTION FÖR EN S.V. (FORTS.)

FIGUR: Fördelningsfunktion för $\mathit{N}(\mu,\sigma)$ uppritad för några olika värden på μ och σ .

FÖRDELNINGSFUNKTION FÖR EN S.V. (FORTS.)

▶ I det diskreta fallet finns det ett nära samband mellan fördelningsfunktionen och sannolikhetsfunktionen:

$$F_X(k) = \sum_{j:j \le k} p_X(j), \ p(k) = \begin{cases} F_X(0) & \text{om } k = 0 \\ F_X(k) - F_X(k - 1) & \text{f.\"o.} \end{cases}$$

▶ I det kontinuerliga fallet finns ett motsvarande samband mellan fördelningsfunktionen och täthetsfunktionen:

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$
, $f_X(x) = \frac{d}{dx} F_X(x)$,

i varje punkt x där $f_X(x)$ är kontinuerlig (se Sats 3.1).

▶ Tolkning: bilden på tavlan för båda fallen. Låt $A = (-\infty, x]$,

$$P(X \in A) = P(X \le x) = F_X(x).$$

Dagens föreläsning. Funktioner av en s.v.

- Antag att X är en s.v. med fördelningsfunktion $F_X(x)$ och täthetsfunktion $f_X(x)$.
- ▶ Definiera en ny s.v. Y = g(X) där $g(\cdot)$ är en reel funktion. Ex: $Y = X^2$, $Y = e^X$, $Y = \sqrt{X}$.
- ▶ Vilken fördelning har Y? Hur hittar man $F_Y(y)$ och $f_Y(y)$ med hjälp av $F_X(x)$ och $f_X(x)$?
- Låt $g(\cdot)$ vara en kontinuerlig, *stikt monoton* (strikt växande/avtagande) funktion. Då kan man definiera den inversa funktionen,

$$g^{-1}(y) = \{x : g(x) = y\}.$$

För detta fall blir det fördelningsfunktionen för Y lättare att uttrycka.

Exempel om linjär transform på tavlan.

ALLMÄNT: $g(\cdot)$ ÄR MONOTON FUNKTION AV EN S.V.

- ▶ Om $g(\cdot)$ är *växande* så gäller att $g(x) \le y$ om och endast om $x \le g^{-1}(y)$.
 - ► $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \le g^{-1}(y)) = F_X(g^{-1}(y)).$
 - $f_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y)) \frac{d}{dy} g^{-1}(y).$
- ▶ Om $g(\cdot)$ är avtagande så gäller i stället $g(x) \le y$ om och endast om $x \ge g^{-1}(y)$.
 - Man får därför i stället

$$F_Y(y) = P(X \ge g^{-1}(y)) = 1 - F_X(g^{-1}(y)).$$

•
$$f_Y(y) = \frac{d}{dy}(1 - F_X(g^{-1}(y))) = f_X(g^{-1}(y))(-\frac{d}{dy}g^{-1}(y)).$$

▶ Generellt (för $g(\cdot)$ växande och antagande) fås $f_Y(y)$ genom

$$f_Y(y) = \frac{d}{dy} F_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|.$$

TVÅDIMENSIONELL S.V.

- ▶ ldé: Flera s.v. definieras på samma utfallsrum.
- ▶ Def: En tvådimensionell stokastisk variabel är en tvådimensionell funktion $(X,Y)=(X(\omega),Y(\omega))$ definierad på ett utfallsrum Ω och som tar värden i R^2 .
- ▶ Tolkning: Den s.v (X,Y) associerar ett talpar till varje elementarutfall i Ω och är alltså en d funktion $\Omega \to R^2$.
- ► För att betrakta sannolikheter av typen $P((X, Y) \in A)$, dvs att talparen hamnar i en tvådimensionell region $A \in \Omega$ behöver vi
- ▶ Def: (Simultana) fördelningsfunktionen $F_{X,Y}(x,y)$ för (X,Y) definieras som

$$F_{X,Y}(x,y) = P(X \le x, Y \le y).$$

▶ I Def. ovan valde vi A som de talpar (u, v) som uppfyller $(u \le x, v \le y)$.

DISKRET TVÅDIMENSIONELL S.V.

▶ Def: En tvådimensionell s.v (X, Y) sägs vara diskret om både X och Y endast antar ett ändligt eller uppräkneligt oändligt antal värden. Vi förutsätter att dessa värden är icke-negativa heltal. (Simultan) sannolikhetsfunktion $p_{X,Y}(j,k)$ för en sådan s.v definieras av

$$p_{X,Y}(j,k) = P(X = j, Y = k), \quad j = 0, 1, 2 \dots, k = 0, 1, 2 \dots$$

- Villkor:
 - $0 \le p_{X,Y}(j,k) \le 1$
 - ho $\sum_{j=0}^{\infty}\sum_{k=0}^{\infty}p_{X,Y}(j,k)=1$, på analogt sätt med endimensionella s.v.
- ► Fördelningsfunktionen kan bestämmas ur sannolikhetsfunktionen genom summering:

$$F_{X,Y}(x,y) = \sum_{j \le x} \sum_{k < y} p_{X,Y}(j,k).$$

DISKRET TVÅDIMENSIONELL S.V.

FIGUR: Simultan sannolikhetsfunktion för en tvådimensionell s.v (X, Y).

KONTINUERLIG TVÅDIMENSIONELL S.V.

▶ Def: En tvådimensionell s.v (X, Y) sägs vara kontinuerlig om det finns en funktion $f_{X,Y}(x,y)$ så att för alla mängder A gäller

$$P((X,Y) \in A) = \iint_A f_{X,Y}(x,y) dxdy.$$

Funktionen $f_{X,Y}(x,y)$ kallas för (simultan) täthetsfunktion för s.v (X,Y).

- Villkor:
 - $f_{X,Y}(x,y) \ge 0$ för alla x,y
 - ► $\iint_{R^2} f_{X,Y}(x,y) dxdy = 1$ dvs är den totala volumen (sannolikhetsmassan) under yta (täthetsfunktion) lika med 1.
- ► Fördelningsfunktionen kan bestämmas ur täthetsfunktion genom relationen

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) du dv$$

KONTINUERLIG TVÅDIMENSIONELL S.V. (FORTS.)

FIGUR: Simultan täthetsfunktion för en kontinuerlig tvådimensionell s.v.

MARGINALIZERING

- Komponenterna i s.v. (X, Y) är var och en för sig endimensionella s.v. Man skiljer på den marginella fördelningen för en komponent och den simultana fördelning för den tvådimensionella s.v. Motsvarande terminologi används för sannolikhets- och täthetsfunktionen.
- ► Samband mellan simultanfördelningen för (X, Y) och marginalfördelningen för dess ena komponent:
- Def: Om (X, Y) är diskret ges den marginella sannolikhetsfunktionen för X av

$$p_X(j) = \sum_{k=0}^{\infty} p_{X,Y}(j,k)$$
 (man summerar i y led)

och på samma sätt $p_Y(k) = \sum_{j=0}^{\infty} p_{X,Y}(j,k)$, (man summerar ix led).

▶ Def: Om (X, Y) är kontinuerlig ges den marginella täthetsfunktionen för X av

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy,$$

och på samma sätt $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$.

OBEROENDE S.V.

- ▶ Betrakta en tvådimenionell s.v. (X, Y) Intuitivt: man kan anse att X och Y är oberoende om händelserna $\{X \in A\}$ och $\{Y \in B\}$ är oberoende för alla mängder A och B. Detta leder oss till följande
- ▶ Def: De s.v. X och Y kallas oberoende om

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

för alla mängder A och B.

▶ Sats: De s.v X och Y är oberoende om och endast om

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$
 för alla x och y ,

eller

$$p_{X,Y}(j,k) = p_X(j)p_Y(k)$$
 för alla j och k , för diskreta s.v.

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
 för alla x och y , för kontinuerliga s.v.

VANLIGA FLERDIMENSIONELLA FÖRDELNIGAR.

FIGUR: Bivariat normalfördelning. Simultan täthetsfunktion $f_{X,Y}(x,y)=f_X(x)f_Y(y)$ när s.v. $X\in N(0,0.5)$ och $Y\in N(0,0.2)$ är oberoende.

FÖRDELNING FÖR MAXIMUM OCH MINIMUM

▶ Sats: Låt X_1 och X_2 vara oberoende s.v. med fördelningsfunktioner $F_{X_1}(x)$ respektive $F_{X_2}(x)$. Definiera $U = \min(X_1, X_2)$ och $V = \max(X_1, X_2)$. Då gäller att

$$F_U(u) = 1 - (1 - F_{X_1}(u))(1 - F_{X_2}(u)),$$

 $F_V(v) = F_{X_1}(v)F_{X_2}(v).$

Sats kan vidare utvidgas för fler än två s.v.:

Om X_1, \ldots, X_n är oberoende och *lika fördelade med* fördelningsfunktion $F_X(x)$ så har $Y = \min_{i=1,\ldots,n}(X_1,\ldots,X_n)$ och $Z = \max_{i=1,\ldots,n}(X_1,\ldots,X_n)$ fördelningsfunktionerna

$$F_Y(y) = 1 - (1 - F_X(y))^n$$
 respektive $F_Z(z) = (F_X(z))^n$.

▶ Bevis och exempel på tavlan.

FÖRDELNING FÖR MAXIMUM OCH MINIMUM (FORTS.

Exempel: *Motor*. En motor upphör helt att fungera när samtliga 4 cylindrar gått sönder. Antag att cylindrarnas livslängder X_i , $i=1,\ldots,4$ (i år) är oberoende och likafördelade $Exp(\lambda)$ där $\lambda=1/7$, dvs $E(X_i)=7$. Låt en s.v. T vara tid tills motorn helt upphör att fungera, då är $T=\max(X_1,\ldots,X_4)$. Fördelningsfunktion för de enskilda cylindrarna är $F_{X_i}(x)=1-\mathrm{e}^{-x/7}$ (samma för alla i), vilket ger

$$F_T(t) = F_{X_i}^4(t) = \left(1 - e^{-t/7}\right)^4.$$

▶ Om vi i stället är intresserade av tiden S då motor funktion blir nedsatt pga någon cylinder inte fungerar så får vi $S = \min(X_1, \ldots, X_4)$ och fördelningsfunktionen för S blir

$$F_S(s) = 1 - (1 - F_{X_i}(s))^4 = 1 - (e^{-s/7})^4 = 1 - e^{-4s/7}.$$

▶ Minsta av n st. oberoende lika förd. s.v. med $Exp(\lambda)$ också är Exp-fördelad men $Exp(n\lambda)$!

