Selected Answers

CHAPTER 1

```
(b) x_n = 10 \cdot 2^n.
```

2. (b)
$$x_n = 1 + 2 \cdot (4)^n$$
; (c) $x_n = (-1)^n + 4$; (e) $x_n = 5 + (-2)^n$.

2. (b)
$$x_n = 1 + 2 \cdot (4)^n$$
; (c) $x_n = (-1)^n + 4$; (e) $x_n = 5 + (-1)^n = (-1)^$

6. (a)
$$A(5)^n + B(2)^n$$
; (b) $A(\frac{1}{2})^n + B(-\frac{1}{2})^n$; (e) $A(\frac{1}{3})^n + B(-1)^n$.

7. (b)
$$c_1\begin{bmatrix} 4\\1 \end{bmatrix} (\frac{1}{2})^n + c_2\begin{bmatrix} 4\\-3 \end{bmatrix} (-\frac{1}{2})^n$$
;

(d)
$$c_1\begin{bmatrix} 1 \\ -2 \end{bmatrix} (-1)^n + c_2\begin{bmatrix} 1 \\ 1 \end{bmatrix} (2)^n$$
;

(f)
$$c_1 \begin{bmatrix} 4 \\ 1 \end{bmatrix} (\frac{1}{2})^n + c_2 \begin{bmatrix} 6 \\ 1 \end{bmatrix} (\frac{1}{4})^n$$
.

8. (a)
$$(\sqrt{2})^n e^{i\pi n/4}$$
; (c) $(10)^n e^{i\pi n/2}$; (e) $\left(\frac{1}{\sqrt{2}}\right)^n e^{i5\pi n/4}$.

9. (a)
$$c_1 \cos\left(\frac{n\pi}{2}\right) + c_2 \sin\left(\frac{n\pi}{2}\right)$$
; (c) $\sqrt{2}^n \left[c_1 \cos\left(\frac{3\pi n}{4}\right) + c_2 \sin\left(\frac{3\pi n}{4}\right)\right]$.

- 10. (b) f > 1/r(1-m).
- 11. (b) K = d/(a + b + c).

13. (a) 2,1,3,4,7,11,18,29,47,76,123.
14. (b)
$$R_n^0 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right].$$

18. (a)
$$C_{n+1} = C_n - \beta V_n + m$$
, $V_{n+1} = \alpha C_n$.

(c) $4\alpha\beta < 1 \Rightarrow$ amount of CO₂ lost per breath is less than $\frac{1}{4}$ (amount of CO₂ that induces a unit volume of breathing).

$$4\alpha\beta > 1$$
: $\lambda = \frac{1}{2}\{1 \pm \gamma i\}$, $\gamma = (4\alpha\beta - 1)^{1/2}$. $|\lambda| \ge 1$ when $\gamma \ge \sqrt{3} \Rightarrow \alpha\beta > 1$. Frequency $\phi = \frac{\pi}{3}$.

20. (c)

CHAPTER 2

1. (a) Linear,
$$x_n = \left(\frac{1-\alpha}{1-\beta}\right)^n$$
, $\beta \neq 1$.

(c) Nonlinear, $\bar{x} = 0$.

(e) Nonlinear, $\bar{x} = (K - k_2)/k_1$ $k_1 \neq 0$.

(a) Stable for |r| < 1. 2. (b) Unstable. (c) Stable. (d) Unstable.

4. (a)

8. (b)
$$\overline{N}_1 = 0$$
 or $\overline{N}_2 = (\lambda^{1/b} - 1)/a$.
 \overline{N}_1 stable iff $\lambda < 1$; \overline{N}_2 stable iff $0 < b(1 - \lambda^{-1/b}) < 2$.

$$\overline{N}_1$$
 stable iff $\lambda < 1$; \overline{N}_2 stable iff $0 < b(1 - \lambda^{-1/b}) < 2$.

11. Steady states: $(0, 0)$ and $\left(\frac{Fk(F^{1/k} - 1)}{a(F - 1)}, \frac{k}{a}(F^{1/k} - 1)\right)$.

 $f'(x) = kb/(b + x)^2$, f'(0) = k/b > 1. 14.

16. (b) $C_{t+1} = fC_tS_t$; $S_{t+1} = S_t - fC_tS_t + B$.

17. (b) $C_{n+1} = C_n - \beta C_n V_n + m$, $V_{n+1} = \alpha C_n.$

(c) Need $(m\alpha\beta) < 1$ for stability.

(d) yes, for $|x-3| \le 2\sqrt{2}$ where $x = (m\alpha\beta)^{1/2}$.

(h) $\overline{C} = \frac{1}{2} \{ \gamma \pm \sqrt{\gamma^2 + 4k\gamma} \}$ where $\gamma = m/\beta \alpha$, $\overline{V} = \alpha \overline{C}/(K + \overline{C})$.

- (c) \overline{N} stable for $|1 b(\lambda^{-1/b} 1)| < 1$.
- (b) 1-stable, 2-stable, 3-stable, 4-unstable, 5-stable

7. (a)
$$n_{t+1} = \lambda n_t e^{-p_t}$$
, $p_{t+1} = n_t (1 - e^{-p_t})$ for $\overline{N} = \frac{1}{(ac)}$, $\overline{P} = \frac{1}{a}$.

- (b) $a_{11} = (1 r\overline{N}/K), a_{12} = -\overline{N}a, a_{21} = \overline{P}/\overline{N}, a_{22} = a(\overline{N} \overline{P}).$
- (b) $N_{t+1} = \lambda N_t \exp[-(aP_t)^{1-m}], P_{t+1} = N_t(1 \exp[-(aP_t)^{1-m}]).$ (c) $\overline{P} = (\ln \lambda/a)^s, \overline{N} = \lambda \overline{P}/(\lambda 1).$
- (a) Steady states $\bar{h} = (\ln f)/a$, $\bar{q} = \bar{h}/(\delta \frac{1}{r})$.
 - (b) $k = \ln f$, $b = r \left[\delta \frac{1}{r} \right]$.
 - (d) For $F(Q, H) = Qe^{k(1-H)}$, $G(Q, H) = bH\left(1 + \frac{1}{b} \frac{H}{O}\right)$. $F_O(\overline{Q}, \overline{H}) = 1, F_H(\overline{Q}, \overline{H}) = -k, R_s(\overline{Q}, \overline{H}) = -b$ (where R = G/H, x = H/O).
- $u_{n+1} = u_n^2 + \frac{1}{4}v_n^2, \quad v_{n+1} = \frac{1}{2}v_n^2, \quad w_{n+1} = \frac{1}{4}v_n^2 + w_n^2.$ 19.

CHAPTER 4

- (a) r = intrinsic growth rate. B = carrying capacity.
 - (d) For $t \to \infty$, $e^{-rt} \to 0$ so $N(t) \to N_0 B/N_0 = B$. For N_0 small, $N(t) \approx N_0 B/B e^{-rt} = N_0 e^{rt}$.
- (b) (mass nutrient)/(number of bacteria).
- $\alpha_1 = \frac{v}{F} K_{\text{max}} = \text{ratio of [emptying time of chamber] to [(1/ln 2) times bacterial]}$ doubling time].
 - $\alpha_2 = c_0/K_n$ = ratio of [stock nutrient concentration] to [concentration which produces a half-maximal bacterial growth rate].

10. (a)
$$\frac{dN}{dt} = \left(\frac{C}{a+C}\right)N - bN, \frac{dC}{dt} = -a\left(\frac{C}{a+C}\right) - bC + 1.$$

for $a = K_n V K_{\text{max}} / F C_0, \quad b = F / K_{\text{max}} V.$

- Increase C_0 , V, decrease F. (No local maximum). 11.
- (a) $y'' = -\cot(x)$: linear, order 2, not homogeneous, constant coefficients. 15.
 - (d) (2y + 2)y' y = 0; nonlinear, order 1, homogeneous, nonconstant coefficients.
 - (i) $\frac{dy}{dt} + y = \frac{1}{t}$ ($t \neq 0$); linear, order 1, nonhomogeneous, constant coefficients.
- (d) Steady states (0, 0), (1, 1); $J(0, 0) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $J(1, 1) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
- (b) $y(t) = .001e^{10t}$, (d) $y(t) = \frac{5}{2}(e^{3t} + e^{-3t})$, (e) $y(t) = \frac{1}{5}(3 + 2e^{5t})$.

22. (a)
$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^t$$
,

(c)
$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = c_1 \begin{bmatrix} 7 \\ -2 \end{bmatrix} e^{-4t} + c_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{5t}$$

(f)
$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 2 - \sqrt{7} \end{bmatrix} e^{-(2+\sqrt{7})t} + c_2 \begin{bmatrix} 1 \\ 2 + \sqrt{7} \end{bmatrix} e^{(-2+\sqrt{7})t}$$

29. (b)
$$\overline{x}_1 = \frac{B}{F} / \left[\frac{C}{F - E} - \frac{A}{F} \right]$$
, $\overline{x}_3 = \frac{C\overline{x}_1}{F - E}$, $\overline{x}_2 = A\overline{x}_1 - B$.
where $A = (u + k_{12})/k_{21}$, $B = D/k_{21}$, $C = k_{12}/(k_{21} + s + k_{23})$, $E = k_{32}/(k_{21} + s + k_{23})$, $F = k_{32}/k_{23}$.

1. (b)

(e)

2. (b)

4. (b) (1)
$$(x, y) = (t, t(t-1)), \left(\frac{dx}{dt}, \frac{dy}{dt}\right) = (1, 2t-1).$$

(4)
$$(x, y) = (\cos t, \sin t), \left(\frac{dx}{dt}, \frac{dy}{dt}\right) = (-\sin t, \cos t).$$

(6)
$$(x, y) = (t, 4t^2), \left(\frac{dx}{dt}, \frac{dy}{dt}\right) = (1, 8t).$$

5. (a)

(e)

561

6. (a)
$$J(1, 1) = \begin{bmatrix} -2 & 2 \\ 1 & 0 \end{bmatrix}$$
, saddle; $J(1, -1) = \begin{bmatrix} -2 & -2 \\ 1 & 0 \end{bmatrix}$ stable spiral.
(d) $J(0, 1) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ stable node; $J(-1, 0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ saddle point.
7. (a) neutral center, (b) saddle, (c) unstable node,

(d)
$$J(0, 1) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 stable node; $J(-1, 0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ saddle point

- (a) neutral center, (b) saddle,
- (c) unstable node,

(d) saddle,

(g)

- (e) stable spiral,
- (f) unstable spiral.

(d) saddle, (e) stable space 12. (a)
$$A = \frac{\alpha_1}{\alpha_2}(\alpha_1 - 1)^2 - \frac{(\alpha_1 - 1)}{\alpha_1}$$
.

(b)
$$\beta = -(A+1), \ \gamma = A, \ \lambda_{12} = \frac{1}{2} \{ -(A+1) \pm \sqrt{((A+1)^2 - 4A)} \} = -A, \ -1.$$

$$\frac{N - \alpha_1(\alpha_2 - \overline{C}_1)}{C - \overline{C}_1} = -\alpha_1 \Rightarrow N - \alpha_1\alpha_2 = -\alpha_1C.$$

15. (c)

(e)

- (b) $K = K_2 K_4 I_0^3$, $\alpha = K_3 K_4 I_0$. 20.
 - (c) steady state: $\overline{q} = \overline{I}$, $\overline{I}^2(\overline{I} 1) = \frac{1}{K}$, $(\Rightarrow \overline{I} > 1)$. $J = \begin{bmatrix} -KI(I 1) & -Kq(2I 1) \\ \alpha & -\alpha \end{bmatrix}.$ $Tr(J) < 0 \quad Det(J) > 0 \text{ for } \overline{I} > 1 \therefore \text{ stable.}$ (a) $\epsilon = 1/\Delta t$.
- 21.
 - (b) $\frac{dC}{dt} = -\beta V + m, \frac{dV}{dt} = \alpha C \epsilon V.$

steady state: $\overline{V} = m/\beta$, $\overline{C} = \frac{\epsilon m}{\alpha \beta}$ (stable). (c) steady state: $\overline{V} = \frac{m}{\beta C}$, $\overline{C} = \left(\frac{\epsilon m}{\alpha \beta}\right)^{1/2}$ (stable).

Decaying oscillations if $\left[\epsilon + \frac{\delta}{\epsilon}\right]^2 < 8\delta$ for $\delta^2 = (\epsilon m \beta \alpha)$.

(e) m = 2, $2\alpha\beta < 1$. 22.

2. (a)
$$a_1 = -rKM$$
, $a_2 = r(K + M)$, $a_3 = -r$.
(c) $\frac{1}{N^{1/KM}} \frac{|N - M|^C}{|K - N|^B} = Pe^n$, $P = \text{constant}$.

- 3. (b) Beverton-Holt solution: $N^{\alpha}e^{N} = P e^{n}$, P = constant. (steady state N = O is unstable).
- 4. (a) not stabilizing. (d) not stabilizing.
- **6.** (d) N = K is a stable steady state.

9. (b)
$$\frac{dx}{dt} = (a - \phi)x - bxy$$
, $\frac{dy}{dt} = -(c + \phi)y + dxy$; steady states: $(0, 0)$ and $\left(\frac{c + \phi}{d}, \frac{a - \phi}{d}\right)$.

- **14.** Oscillations when $ac < (2dK)^2 \left(1 \frac{c}{dK}\right)$.
- 17. (a) $(K_1 + \alpha N_2)$ is the carrying capacity of species 1. Thus the presence of species 2 contributes positively to the carrying capacity of species 1.
 - (b) steady states: (0, 0) (unstable node), $(K_1, 0)$, $(0, K_2)$ (saddle points). $\left(\frac{K_1 + \alpha K_2}{1 \alpha \beta}, \frac{K_2 + \beta K_1}{1 \alpha \beta}\right)$ (stable node).
 - (c) (Last steady state exists only if $\alpha\beta$ < 1).

18.
$$H_1 = (a_1), H_2 = \begin{bmatrix} a_1 & 1 \\ a_3 & a_2 \end{bmatrix}, H_3 = \begin{bmatrix} a_1 & 1 & 0 \\ a_3 & a_2 & a_1 \\ 0 & 0 & a_3 \end{bmatrix}$$

 $det H_1 = a_1, det H_2 = a_1 a_2 - a_3, det H_3 = a_3 (\overline{det} H_2).$

23. (1) (a)
$$\begin{bmatrix} 0 & - & 0 & 0 \\ + & 0 & 0 & 0 \\ 0 & + & 0 & - \\ 0 & 0 & - & - \end{bmatrix}$$
 (e)
$$\begin{bmatrix} 0 & + & 0 & 0 & 0 \\ - & 0 & 0 & 0 & 0 \\ 0 & + & 0 & 0 & 0 \\ 0 & 0 & + & 0 & + \\ 0 & 0 & 0 & - & 0 \end{bmatrix}$$
;

- (2) (a) $\{1, 2\}$. (e) $\{1, 2\}, \{4, 5\}$.
- (3) (a) not qualitatively stable; (e) not qualitatively stable.
- **24.** (b)

predation community:

 $\{1, 4, 2, 3\}.$

Not qualitatively stable.

- For $\lambda > 0$, the only equilibrium of S, I equations is (S, I) = (0, 0). But $J(0, 0) = \begin{bmatrix} -\lambda & 0 \\ 0 & -\gamma \end{bmatrix} \Rightarrow (0, 0)$ stable.
- Steady states: (K, 0) (saddle point), $(\overline{x}_2, b\overline{x}_2)$ where $\overline{x}_2 = r / (ab + \frac{r}{\kappa})$ (stable).

2. (a)
$$x_1 = \frac{k_1 rc}{(k_1 + k_2) + k_1 c}$$
.
4. $K \ln c + c = -\lambda t + \text{constant}$.

4.
$$K \ln c + c = -\lambda t + \text{constant}$$

6.
$$x_1(t) = (1 - e^{-(K+1)t})/(K+1), x_1(t) \uparrow \frac{1}{(K+1)}$$
 for $t \to \infty$.
7. (a) $K = r$, $a = (k_{-1}/k_1)$, $b = (k_{-1} + k_2)/k_1$.

7. (a)
$$K = r$$
, $a = (k_{-1}/k_1)$, $b = (k_{-1} + k_2)/k_1$

fast

12.
$$\frac{da}{dt} = -K_1 ab + K_{-1} x, \frac{db}{dt} = -K_1 ab + K_{-1} x.$$

$$\frac{dx}{dt} = -K_{-1} x + K_1 ab. \text{ At equilibrium } \frac{da}{dt} = \frac{db}{dt} = \frac{dx}{dt} = 0 \Rightarrow x = \frac{K_1}{K_{-1}} (ab).$$
16. (b)
$$J = \begin{bmatrix} ds_1 & -b \\ -ds_2 & d \end{bmatrix}.$$

16. (b)
$$J = \begin{bmatrix} ds_1 & -b \\ -ds_2 & d \end{bmatrix}$$

(c)
$$Tr J = bs_1 + d < 0$$
, $det J = bd(s_1 - s_2) > 0$

(c)
$$Tr J = bs_1 + d < 0$$
, $det J = bd(s_1 - s_2) > 0$.
19. (b) $J = \begin{bmatrix} -(k + \delta^2) & \frac{-2\delta^2}{k + \delta^2} \\ (k + \delta^2) & \frac{\delta^2 - k}{\delta^2 + k} \end{bmatrix}$; sign pattern $\begin{bmatrix} - & - \\ + & + \end{bmatrix}$ if $k < \delta^2$.

20. (a) Let
$$k_1 = k_2 = k_3 = k_4 = 1$$
.

(b)
$$\overline{x} = A$$
, $\overline{y} = B/A$

(a) Let
$$k_1 = k_2 = k_3 = k_4 = 1$$
.
(b) $\overline{x} = A$, $\overline{y} = B/A$.
(c) $J = \begin{bmatrix} B - 1 & A^2 \\ -B & -A^2 \end{bmatrix}$.

21. (a) Steady state:
$$(\rho + \gamma, (\rho + \gamma)^2/\gamma)$$
.

23. (b)
$$k_{11} = -F_x$$
, $k_{21} = \alpha F_x$, $k_{12} = -F_y$, $k_{22} = \alpha (F_y - G_y)$.

2. (b)
$$\left[\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right] = b > 0.$$

- 4. (a-c) No limit cycle possible.
 - (d) Cannot rule out limit cycle.
- **6.** (b)

Flow can escape to (or emanate from) arbitrarily large y values. Poincaré-Bendixson theory inconclusive.

- 7. (b) No limit cycle.
 - (c) limit cycle exists.
- 10. (a) Functions have no maxima or minima, only an inflection point.
- 13. (b) Figure b. (c) Cannot solve cubic equation.
- 17. (c) Condition guarantees f = 0 nullcline intersects x-axis to the right of the intersection of g = 0 with x-axis.
- 18. (a) $J = \begin{bmatrix} xf_x + f & xf_y \\ yg_x & yg_y + g \end{bmatrix}$. But f = g = 0 at the nontrivial steady state.
- 21. (a)

(a)
$$\alpha(y-1) > 1$$
.

(b), (c)
$$0 < \alpha(y - 1) < 1$$
.

(b)
$$g(x, y) = \beta(Kx - y)$$

(c, d)

- (h) periodic solution about an unstable steady state $(\gamma, K\gamma)$ will exist. (a) Let $r^2 = x^2 + y^2$. $\frac{dr^2}{dt} = 2x\frac{2x}{dt} + 2y\frac{dy}{dt} = 2xy 2xy = 0$ so r^2 = Constant is a solution (neutrally stable).
- (b) $\frac{dr^2}{dt} = 2r^2[1 r^2]. \frac{d\theta}{dt} = 1.$

(a) Level curves are circles. Surface is a paraboloid

(b) Level curves are circles. Surface is a Gaussian, with maximum at (0, 0).

2.
$$\frac{\partial f}{\partial x} \qquad \frac{\partial^2 f}{\partial x \partial y} \qquad \nabla f$$
3. critical points

(a)
$$2x \qquad 0 \qquad (2x, 2y) \qquad \text{minimum at } (0, 0).$$
(c)
$$-xe^{-R^2/2} \qquad yxe^{-R^2/2} \qquad (-x, -y)e^{-R^2/2} \qquad \text{maximum at } (0, 0), R^2 = x^2 + y^2.$$
(e)
$$y \qquad 1 \qquad (y, x) \qquad (0, 0) \text{ is a saddle point.}$$

4. (c)

(d)

5. (b)
$$\nabla \times F = (-2, -2, -2), \nabla \cdot F = 0.$$

(b)
$$\nabla \times F = (-2, -2, -2), \nabla \cdot F = 0.$$

(c) $\nabla \times F = (-2y, 1, -3), \nabla \cdot F = 2x + 2y + 2z.$

6. (a)
$$\phi = \frac{1}{2}(x^2 + y^2) + C$$
.

(e)
$$\phi = e^{xy} + C$$
.

8. (b)
$$\frac{\partial c}{\partial t} = -\alpha c - \frac{a}{2A(x, t)} \left[\left[2 - \sin(x - vt) \right] + c \left[2 + v \sin(x - vt) \right] \right).$$

12. (a) Hint: Let
$$A = r\Delta\theta\Delta h$$
 (where $\Delta\theta$, Δh are constant).

(b) Let
$$A = R^2(\Delta\theta\Delta\phi)$$
.

14. (b) sphere:
$$\gamma = 36\pi$$
, cylinder: $\gamma = 8\pi \frac{h}{r}$.

16. (a)
$$C(0.4R) \approx 3 \times 10^{-3} \times (C_0/s) = .663 \mu g/ml$$
 (see Figure 9.7b)

16. (a)
$$C(0.4R) \approx 3 \times 10^{-3} \times (C_0/s) = .663 \mu \text{ g/ml}$$
 (see Figure 9.7b).
17. (b) $\frac{\partial c}{\partial t} = \mathfrak{D} \frac{\partial^2 c}{\partial x^2} - \frac{c}{\tau}$, $c(x, 0) = \begin{cases} c_0 & x < a \\ 0 & x \ge a \end{cases}$, $\frac{\partial c}{\partial x} = 0$ for $x = L$ where L is length of tube. $c(0, t) = c_0$.

$$c(0, t) = c_0.$$
19. (a) $c(r)\ln\left(\frac{L}{a}\right) = c_0\ln\left(\frac{r}{a}\right).$

22. (b) (i)
$$s_0 = 2s \Rightarrow \tau_0 = \frac{1}{4}\tau$$
.

(ii)
$$a_0 = 2a \Rightarrow \tau_0 = \tau \ln\left(\frac{L}{2a}\right) / \ln\left(\frac{L}{a}\right) = \tau \left(1 - \frac{\ln 2}{\ln(L/a)}\right)$$

CHAPTER 10

1. (a) For
$$v = \text{prey (victim)}$$
, $e = \text{predator (exploiter)}$

$$\frac{\partial v}{\partial t} = \mathfrak{D}_v \frac{\partial^2 v}{\partial x^2} + F(v, e), \frac{\partial e}{\partial t} = \mathfrak{D}_e \frac{\partial^2 e}{\partial x^2} + G(v, e),$$
with F, G any predator-prey kinetic terms.

- 2. (b) Two species competition with random motion of each of the species.
- **6.** (b) $\mu \approx 0.2 \text{ cm}^2 h^{-1}$.
- 7. (b) Use $F = kv\eta$.
 - (c) The mean time between turns is $\tau = \lambda/v$.

8. (a)
$$\frac{\partial b}{\partial x} = 0$$
, $s = s_0$ at $x = L$,
 $\frac{\partial b}{\partial x} = 0$, $\frac{\partial s}{\partial x} = 0$ at $x = 0$.
(e) $\frac{\partial v}{\partial x} = \lambda \frac{\partial^2 v}{\partial x^2} + [KF(u) - \theta]v$.

(e)
$$\frac{\partial v}{\partial \tau} = \lambda \frac{\partial^2 v}{\partial \xi^2} + [KF(u) - \theta]v,$$

 $\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial \xi^2} - F(u)v.$

[with boundary conditions $\frac{\partial v}{\partial \xi} = 0$, u = 1 at $\xi = 1$, and $\frac{\partial v}{\partial \xi} = 0$, $\frac{\partial u}{\partial \xi} = 0$ at $\xi = 0$].

11. (c)
$$\rho = \frac{\mu_b}{\mu_c}$$
, $\delta = \frac{\chi K_i}{\mu_c}$, $\alpha = \frac{gK_i}{k_d c_0}$, $\sigma = \frac{h_1 K_i}{k_d c_0}$, $\kappa = K_b/K_i$.

- 12. (b) $-\gamma \rho$ = rate of branch mortality.
 - (e) dichotomous: $\sigma_{br} = \alpha n$;

lateral: $\sigma_{br} = \alpha \rho$.

(a) k₁ = rate of molecular binding to free sites,
 k₂ = rate of unbinding.
 D = effective diffusivity of free molecules.
 v = speed of buffer through column.

- (c) $\overline{u}_2 = k_1 B \overline{u} / (k_1 \overline{u}_1 + k_2), \overline{u}_1 > 0.$
- (d) Traveling Waves:

Require
$$U_1$$
, $U_2 \rightarrow 0$, $\frac{dU_1}{dz} \rightarrow 0$ for $z \rightarrow \infty$
waves satisfy $\frac{dU_1}{dz} = [(v-c)/D]U_1 - (c/D)U_2$,
$$\frac{dU_2}{dz} = -(k_1/c)(B-U_2)(U_1) + (k_2/c)U_2.$$

24. (a)
$$\frac{\partial n}{\partial t} = -\frac{\partial n}{\partial \alpha} - \mu n$$
.

(c)
$$\frac{\partial n}{\partial t} = -\partial \frac{(kn\alpha)}{\partial \alpha} - \mu n$$
, k a constant.

25. (e)
$$v = 1/\tau = .0694 \text{ hr}^{-1}$$
, $a = v \text{ ln } 2 = .048$, $\mu \approx 0.25 \text{ hr}^{-1}$, $dN/dt \approx -.2N$, $t_{10}^{-3} \approx 34.5 \text{ hr}$.

- 27. (b) Biomass of vegetation whose quality is within the range $(q, q+\Delta q)$ at time t.
 - (c) $\overline{Q} = Q/P$.

(d)
$$\frac{\partial p}{\partial t} = -\frac{\partial pf}{\partial q}$$
.

(e)
$$\frac{dh}{dt} = h \ r(\overline{Q}, h)$$

(g) Take
$$\frac{dQ}{dt} = \int q \frac{\partial p}{\partial t} dq = -\int q \frac{\partial fp}{\partial q} dq$$
.
Integrate *RHS* by parts.

- (b) Yes. (c) Yes. (d) inconclusive.
- (b) $\left| \frac{1}{f} \right|$ = time to build up a significant local c AMP concentration, $\left[\frac{1}{k+D(\pi/L)^2}\right] = \text{time to efface a } c \text{ AMP perturbation by chemical decay and diffusion.}$

7. (b)
$$J(1, 0) = \begin{bmatrix} pq^2 + \gamma - (1/K) & 0 \\ \alpha\sigma & -q^2 - \alpha \end{bmatrix}$$

- (a) No diffusive instability possible.
 - (b) No diffusive instability possible.
 - (f) Diffusive instability if $b_1b_2 > de$, $b_2 > e$ $D_2/D_1 > [(b_1/d)^{1/2} - (b_1/d - e/b_2)^{1/2}]^{-2}.$
- 19. (b) Increasing γ tends to stretch domain in the y direction.
 - (c) $E^2 = 32$, assumed fixed.

m	n	γ_
4	4	1
5	3	1.28
4	5	1.56
4	6	2.25
5	4	2.28

- 20. (a) $C'_i = \alpha_i e^{\sigma t} \sin(q_1 x) \sin(q_2 y)$.
 - (b) Same form of wavenumbers.
 - (c) $C'_i = \alpha_i e^{\sigma i} \cos(q_1 x) \sin(q_2 y)$, $q_1 = m\pi/L, q_2 = n\pi/\gamma L.$
- (e) $\alpha = D'_A/D'_S$, $\beta = D_A/D_S$, $\gamma = L^2 D'_S/L_1 L_2 D_S$, 21. $\rho = L_1 L_2 V_m K_m / D_S'.$
- (a) Nullclines: Q = f(P), P = g(Q). (b) $J = \begin{bmatrix} Pf'(P) & P \\ Q & -Qg'(Q) \end{bmatrix} = \begin{bmatrix} + & \\ + & \end{bmatrix}$ for P to the left of hump.
 - (d) Pf' Qg' < 0, f'g' < 1, and $(Pf' D_2 Qg' D_1) > 2\sqrt{D_1 D_2} (PQ(1 f'g'))^{1/2} > 0$.

Author Index

Benchetrit, G., 373

Ackerman, E. L., 148, 162, 163 Adam. G., 425 Alberch, P., 542, 555 Albisser, A. M., 163 Aldridge, J. 306, 310 Alexander the Great, 360 Alt. W., 443, 491 Anderson, R. M., 65, 67, 242, 243, 247, 252, 254, 264, 269, 270 Anton, H., 29, 38 Archibald, R. C., 36 Arimoto, S. 372 Aris, R., 493 Armstrong, R. A., 229, 268 Arnold, V. I., 165, 209, 371, 375, Aroesty, J., 147, 162, 217, 270, 464, 469, 492 Aronson, D. G., 491 Aschoff, J., 362 Awerbuch, T. E., 416, 417, 418, 422, 425

Baconnier, P., 373
Bailey, V. A., 79, 80, 81, 111
Balding, D., 445, 493
Banks, H. T., 310
Bard, J. B. L., 552, 554
Barr, R. O., 494
Batschelet, E., 160
Beckingham, L., 63
Beddington, J. R., 84, 86, 110, 265, 270
Bell, E. T., 36, 271, 383, 436
Bellomo, J., 149, 158, 163, 206, 209
Belousov, B. P., 352, 374

Berding, C., 525, 553 Berg, H. C., 425 Bergman, M., 441, 493 Berman, M., 163 Bernardelli, H., 28 Berridge, M. J., 352, 372 Bertsch, M., 444, 491 Biles, C., 116, 162, 212, 215, 257, 268 Bird, R. B., 493 Bischoff, K. B., 469, 488, 492 Blackshear, P. J., 145, 162 Blakeman, J., 436 Blum, J. J., 460, 461, 462, 486, 493 Boccia, G., 162, 270, 492 Bolie, V. W., 148, 158, 163, 206, 207, 209 Bonner, J. T., 447, 491, 499, 501, 507, 553, 554 Botz, C. K., 163 Boyce, W. E., 116, 162, 165, 209, 424, 431, 432 Boyer, P. D., 299, 309 Bradley, G. L., 14, 37 Brand, L., 37, 160 Brauer, F., 258, 268 Braun, M., 116, 162, 165, 209, 212, 217, 224, 257, 258, 268 Bray, W. C., 352, 374 Brown, F. A., 374 Brunetti, P., 163, 209 Buchwald, H., 162 Buff, Marjorie, 535

Buller, A. R. M., 447

Bunning, E., 362, 374

Burton, D. M., 38 Busenberg, S. N., 252, 269, 444, 491 Buss, L. W., 555 Calabrese, G., 163, 209 Campbell, J., 555 Cannon, J. R., 425 Capasso, V., 263, 269 Carslaw, H. S., 416, 418, 425, 426, 433 Cauley, D. A., 495 Chance, B., 352, 372, 374 Charlesworth, B., 38 Chet, I., 492 Childress, S., 555 Clarke, C. W., 270 Clarke, W. L., 163 Clemens, A. H., 163 Cohen, D., 17, 37, 543, 555 Coleman, C. S., 162, 223, 268, 352, 373 Compton, R., 63 Conley, W., 270 Conway, E. D., 553 Conway, G. R., 68 Cook, R. E., 555 Cooke, J. R., 373 Cooke, K. L., 252, 269 Cowan, J. D., 540, 555 Coxeter, H. S. M., 37 Craig, A. T., 80, 111 Crank, J., 416, 425, 435 Crawley, M. J., 99, 111 Crichton, M. 115, 152

Burnett, T., 110

Burnside, B., 542, 555

Crick, F. 271 Cronin, J., 360, 371 Crow, J. F., 99, 111 Cullen, M. R., 36 Czeisler, C. A., 374

Dahlquist, F. W., 480, 492 D'Ancona, U., 211, 258 Darwin, Charles R., 210 Davidovac, Z., 163 Daxl, R., 494 Dedrick, R. L., 492 Degn, H., 352, 374 Dekker, H., 267, 270 Delbruck, M., 425 De Mairan, Jean Jacques d'Ortous, 361 Demongeot, J., 373 Descartes, R., 436 Devreotes, P. N., 507, 553 Diekmann, O., 468, 495 DiPrima, R. C., 116, 162, 165, 209, 424, 431, 432 Distefano, J., 163 Dixon, M., 299, 309 Drew, D. A., 162

Ebel, W., 554 Eckert, R., 315, 372 Edelstein, L., 293, 309, 445, 484, 494 Edelstein-Keshet, L., 368, 373, 490, 495 Edmunds, L. N., 374 Ellner, S., 19, 37 Ermentrout, G. B., 540, 555 Esau, K., 289 Escher, C., 374 Euclid, 1 Euler, Léonard, 28 Ewart, T. G., 163

Ewens, W. J., 99, 111 Fairen, V., 335, 365, 372 Fechner, A. T. H., 352 Feinberg, M., 299, 309, 310 Fennel, R. E., 38 Fibonacci, 5, 32 Fife, P. C., 439, 453, 492, 528, 554 Fisher, E. S., 412, 425 Fisher, R. A., 436, 440, 452, 491 Fitzhugh, R., 313, 323, 325, 326, 337, 339, 372 Frauenthal, J. C., 67

Free, C. A., 110

Freedman, H. I., 229, 270, 352, 373 Fuller, C. A., 374

Gander, R., 163 Gard, T. C., 229 Gardner, M., 37

Gage, S. H., 494

Gatewood, L. C., 148, 162, 163 Gause, G. F., 120, 153, 162, 215, 224, 230, 266, 268

Ghosh, A., 352, 374

Gierer, A., 305, 528, 531, 548, 553

Gies, F. C., 33

Glass, L., 28, 37, 60, 66, 67 Gofman, J. W., 492

Goldbeter, A., 335, 365, 372, 373, 507, 554

Golubitsky, M., 371

Gompertz, Benjamin, 28 Goodwin, B. C., 370, 372

Gradwell, G. R., 74, 102, 104, 110, 111

Graunt, John, 28

Gray, B. F., 441, 456, 457, 459, 493 Greenwell, R., 62, 68, 270

Griffith, J. S., 207, 209, 308, 309 Grodsky, G. M., 149, 159, 163

Grossman, S. I., 37

Guckenheimer, J., 67, 344, 371

Gurney, W. S. C., 270

Gurtin, M. E., 443, 468, 491, 494 Gutierrez, A. P., 494

Gyllenberg, M., 494

Hadar, Y., 494

Hagander, P., 149, 163 Haggard, H. W., 250

Haken, H., 553

Haldane, J. B. S., 408, 425

Hale, J. K., 209, 333, 371, 380

Hallam, T. G., 229

Halley, Edmund, 28 Hara, T., 494

Harbich, T., 553

Hardt, S., 409, 410, 425

Harris, A. K., 555

Harrison, L. G., 553

Hassell, M. P., 63, 68, 74, 76, 77, 82, 83, 102, 103, 104, 110, 111

Hastings, A., 17, 37 Hastings, J. W., 374

Heijmans, H. J. A. M., 468, 495 Henderson West, B., 125, 162

Henis, Y., 491

Hestbeck, J. B., 270

Hethcote, H. W., 243, 247, 252, 254, 269

Hilhorst, D., 491

Himmelstein, K. J., 492

Hodgkin, A. L., 313, 316, 317, 322, 372

Hofbauer, J., 229, 270

Hofstadter, D., 67

Hogg, R. V., 89, 111

Holling, C. S., 209, 223, 268

Holmes, P., 344, 371

Holt, S. J., 270

Hoppensteadt, F. C., 37, 453, 468, 492

Huntley, H. E., 37

Hutchinson, G. E., 214, 270

Huxley, A. F., 313, 316, 317, 322, 372

Hyver, C., 374

Ikeda, N., 61, 67 Impagliazzo, J., 38

Ivlev, V. S., 223, 268

Jackson, J. B. C., 543, 555 Jackson, J. L., 492, 510, 514, 516,

535, 536, 553

Jaeger, J. C., 416, 418, 425, 426, 433

Jager, W., 538, 554

Jean, R. V., 37 Jeffries, C., 236, 239, 241, 269

Johnson, L. W., 14, 37

Jones, D. D., 209

Jones, D. S., 334, 373, 425, 429, 490, 493

Jury, E. I., 58, 68

Kadas, Z. M., 299, 310 Kareiva, P. M., 439, 491

Katz, 317, 322

Kauffman, S. A., 525, 526, 527, 553

Keener, J. P., 61, 67

Keller, E. F., 442, 492, 497, 500,

503, 507, 554

Keller, K. H., 493

Kemmner, W., 537, 538, 554

Kendall, M. G., 425, 440, 493

Kennedy, C. R., 443, 482, 492, 545, 547, 555

Kepler, J., 1, 5

Kermack, W. O., 210, 243, 245, 246, 270

Keyfitz, N., 28, 38

Kharkar, A. N., 494

Kierstead, H., 441, 491

Kimura, M., 100, 111

Kingsland, S. E., 79, 111, 270

Kipnis, D. M., 163

Offord, R., 309

Kirwin, N. A., 441, 456, 457, 459, 493 Kloeden, P. E., 67 Kolmogorov, A., 222, 223, 268, 350, 351, 373, 440, 456, 491 Krebs, C. J., 267, 270 Kronauer, R. E., 374 Kuffler, S. W., 316, 318, 319, 372 LaBarbera, M., 408, 425 Lacalli, T. C., 553 Lamberson, R., 212, 215, 268 Landahl, H. D., 149, 159, 163 Laplace, P. S., 271, 497 Lauder, I., 554 Lauffenburger, D. A., 412, 425, 426, 441, 443, 480, 482, 490, 492, 493, 545, 547, 555 Laws, R. M., 270 Lawton, J. H., 110, 111 Lecar, H., 336, 337, 366, 372 Lee, K. Y., 494 Lefever, R., 304, 310 Lefschetz, S., 362, 371 Lehninger, A. L., 309 Leibel, B. S., 163 Leonardo of Pisa, 5 Leslie, P. H., 29, 38 Levin, S. A., 17, 37, 269, 491, 539, 548, 554 Levin, Simon, 229 Levine, S. H., 64, 68 Levins, R., 232, 236, 239, 262, 269, 270 Lewis, E. G., 28 Lewis, E. R., 58, 68 Lewis, J., 283, 284, 285, 287, 309 Leyton, L., 407 Li, C. C., 99, 111 Li, T. Y., 51, 67 Liesegang, J., 352 Lightfoot, E. N., 493 Lin, C. C., 310 Lincoln, T., 162, 270, 492 Linnaeus, 361 Lotka, A. J., 28, 210, 224, 268, 303, 352, 374 Lovely, P. S., 480, 492 Lucas, E., 32 Ludwig, D., 208, 209, 439, 491 Luenberger, D. G., 229, 270 MacCamy, R. C., 443, 468, 491, 494 MacWilliams, 507 McCracken, M., 341, 344, 345, 373 McElwain, D. L. S., 445, 493

McGehee, R., 229, 268 McKendrick, A. G., 210, 243, 245, 246, 270, 468, 492 Mackey, M. C., 28, 37, 60, 66, 67 Mahaffy, J. M., 310 Malthus, T. R., 117, 152, 162, 210, 212, 268 Marotta, F. R., 65, 68 Marsden, J. E., 341, 344, 345, 373 Martiel, J. L., 335, 372 Martin, A. R., 316, 318, 319, 372 Matthews, C., 163 May, R. M., 28, 34, 37, 39, 40, 44, 46, 51, 53, 57, 62, 63, 65, 67, 68, 75, 110, 111, 212, 223, 229, 233, 236, 238, 240, 243, 247, 252, 254, 255, 261, 264, 265, 268, 269, 270, 368, 373 Maynard Smith, J., 63, 68, 100, 111 Mazotti, D., 163, 209 Mees, A. I., 67 Meinhardt, H., 305, 528, 529, 530, 531, 548, 553 Merkle, T. C., 493 Metz, J. A. J., 468, 495 Miech, R. P., 310 Milne, Joshua, 28 Milton, J., 67 Mimura, M., 536, 537, 552, 553 Minorsky, N., 371 Mollison, D., 440, 491 Molnar, G. D., 162, 163 Moore-Ede, M. C., 362, 374 Morris, C., 336, 337, 366, 372 Murray, J. D., 310, 334, 360, 365, 372, 373, 410, 425, 439, 453, 456, 492, 496, 525, 532, 534, 536, 537, 538, 542, 550, 552, 553, 554, 555 Myers, J. H., 267, 270 Nagumo, J., 313, 337, 372 Newman, J. R., 28, 38, 250 Newton, C. M., 147, 162, 217, 270, 464, 469, 492 Newton, Isaac, 383 Nicholls, J. G., 316, 318, 319, 372 Nichols, J. D., 267, 270 Nicholson, A. J., 77, 79, 80, 81, 111 Nicolis, G., 352, 356, 374, 516, 555 Nijhout, H. F., 555 Nisbet, R. M., 270 Odell, G. M., 165, 209, 341, 344, 352, 363, 372, 461, 485, 492, 493, 499, 507, 542, 554, 555

Odum, E. P., 218, 268

Okubo, A., 384, 405, 425, 439, 440, 443, 491, 492, 536, 553 Oster, G. F., 39, 110, 494, 542, 555 Othmer, H. G., 306, 310, 554 Pacioli, Fra Luca, I Palmer, J. D., 374 Pate, E. F., 554 Pearl, R., 210, 215, 268 Pearson, K., 436 Peletier, L. A., 491 Pennycuik, C., 63 Percus, J. K., 555 Perelson, A., 67 Petie, Haris, 72 Petrovsky, I., 491 Pfeffer, Wilhelm, 361 Pham Dinh, T., 373 Pielou, E. C., 223, 224, 233, 240, 258, 268 Pilato, S. F., 374 Piscounov, N., 491 Pittendrigh, C. S., 362 Plateau, F., 497 Portnow, J., 352, 356, 374 Price, F. N., 309 Prigogine, I., 304, 310, 516, 555 Prosl, F., 162 Prosser, J. I., 27, 38 Pye, K., 352, 372, 374 Quirk, J., 236, 238, 240, 269 Rand, R. H., 344, 373 Randall, D., 315, 372 Rapp, P. E., 301, 310, 341, 352, 372 Reed, L. J., 210, 215, 268 Reed, M. C., 460, 462, 493 Reid, Clement, 479 Reinberg, A., 362, 374 Reiner, J. M., 299, 309 Rescigno, A., 373 Rhoades, D., 99, 111 Richardson, I. W., 373 Riess, R. D., 14, 37 Rinzel, J., 490, 494 Roberts, F. S., 241, 269 Rogers, T. D., 67 Rohde, T. D., 162 Rorres, C., 29, 38 Rosen, R., 294, 300, 309 Rosenzweig, M. L., 223, 268 Rosevear, J. W., 162, 163 Ross, S. L., 209, 372

Rothe, F., 528, 534, 554

Roughgarden, J., 99, 111, 229, 269 Rubinow, S. I., 116, 151, 161, 162, 163, 281, 300, 309, 461, 468, 486, 493, 494, 501, 507, 554 Ruppert, R., 236, 238, 240, 269

Sachsenmaier, W., 307, 310 Saleem, M., 494 Samson, R., 425 Santiago, J. V., 163 Sarti, E., 163, 209 Sato, T., 67 Savageau, M. A., 294, 300, 309 Schaeffer, D. G., 371 Schaller, H. C., 537, 555 Schipper, H., 163 Schleiden, 271 Schnakenberg, J., 356, 357, 358, 374 Schoener, T. W., 223, 269 Schwann, 271 Segel, L. A., 19, 38, 100, 111, 116, 121, 162, 310, 335, 365, 373, 396, 409, 425, 441, 442, 479, 491, 492, 494, 496, 497, 500, 503, 507, 510, 514, 516, 520, 535, 536, 539, 545, 548, 553, 554

Segre, G., 148, 163 Sel'kov, E. E., 357, 374 Serio, G., 263, 269 Shapiro, N., 162, 270, 492 Sherbert, D. R., 37 Shewmon, P. G., 425, 435 Shymko, R. M., 553 Sinko, J. W., 494 Sinskey, A. J., 425 Skellam, J. G., 436, 437, 439, 478, 479, 491 Slack, J. M. W., 284, 309 Sleeman, B. D., 334, 373, 425, 428, 429, 490, 493 Slobodkin, L. B., 215, 268, 441, 491 Smith, D., 28, 38

Smith, F. E., 258, 268

Smith, J. M., 111 Smolensky, M. H., 362, 374 Smoller, J., 528, 534, 554 Soudack, A. C., 258, 268 Southwood, R., 111 Southwood, T. R. E., 68 Spiegel, M. R., 37, 162 Stech, H. W., 269 Steck, T. L., 507, 553 Steiner, A., 160 Stewart, W. E., 493 Stoeckly, B., 554 Storti, D. W., 373 Streifer, W., 494 Strogatz, S., 362, 374 Strong, B. R., 111 Stuart, R. N., 492, 493 Sulsky, D., 542, 555 Sulzman, F. M., 374 Swan, G. W., 147, 148, 162, 163 Swindale, N. V., 540, 555

Takahashi, F., 223, 269

Thompson, D. W., 497

Takahashi, Y., 494

Thorell, J., 163

Takahashi, M., 437, 463, 493

Thompson, R. W., 468, 494

Thompson, D'Arcy, 37, 509, 555

Thornley, J. H. M., 295, 309
Tolkien, J. R. R., 311
Trabert, K., 553
Tranberg, K. G., 163
Travis, C. C., 444, 491
Trinci, A. P. J., 27, 38
Trucco, E., 468, 493
Turco, G. L., 163
Turner, J. E., 37
Turing, A. M. (Alan), 436, 496, 497, 509, 516, 528
Tyson, J., 307, 310, 352, 374, 554

Upadhyaya, S. K., 373 Usher, M. B., 63 Van der Driessche, P., 269 Van der Mark, J., 373 Vandermeer, J., 38 Van der Pol, B., 333, 373 Vander Vaart, H. R., 212, 269 Van Holde, K. E., 407 Van Sickle, J., 494 Varley, G. C., 74, 102, 104, 110, 111 Velarde, M. G., 335, 365, 372 Vercellone, G., 163 Verhulst, P. F., 210, 212, 268 Vincenzi, A., 163, 209 Vogel, S., 408, 425 Volkenshtein, M. V., 300, 309 Volterra, V., 210, 224, 258, 269 Von Foerster, J., 468, 493

Waltman, P., 229
Wang, Y., 494
Ward, R. R., 374
Watson, J., 271
Webb, E. C., 299, 309
Webb, G. F., 468, 494
Weinberger, H. F., 491
Weitzman, E. D., 374
Wever, R. A., 362
Whitaker, R. H., 229, 269
Whitham, T. G., 38
Widder, D. V., 425
Winfree, A. T., 352, 362, 372, 374
Wolfram, S., 542, 543, 555
Wolpert, L., 284, 309

Zaranka, William, 72 Zaharko, D. S., 492 Zhabotinsky, A. M., 352, 374 Zigmond, S. H., 443, 492 Zinberg, D. S., 310 Zingg, W., 163

Yorke, J. A., 51, 67

Yudkin, M., 309

Yoshizawa, S., 67, 372

Young, D. A., 541, 555

Subject Index

Acorns, dispersal of, 479
Acrasin, 500
Action potential, 314, 316-317, 339
Activation
chemical, 355-356
range of, 517-518, 522
Activator-inhibitor
mechanism (Meinhardt), 305, 528
system, 295-299, 303, 516-518
Active pumps, 314
transport, 316
Adenosine diphosphate (ADP), 304
Adenosine triphosphate (ATP), 304,
335
Adenylate cyclase, 335, 365, 500
Adhesiveness, 542
ADP (adenosine diphosphate), 304
Adult-onset diabetes, 147
Advantageous allele, spread of, 452
Aedes aegypti (mosquito), 103
Affinities, of cells, 540
Agar, 456, 457
Age
classes, discrete, 28, 35
distribution of cells, 463-468
distribution of a population, 437,
468
specific fecundity, 468
structure, discrete, 28
Aggregate
slime mold, 500
shape of, 507
Aggregation, 498-507, 544
of cellular slime molds, condition
for, 505, 506-507
domains, 507
,

```
as instability, 506ff
  onset of, 503, 506, 542
Algae
  filamentous, 26
  and nutrients, 262
All-or-none behavior, 291
Allee effect, 215-217, 535
Allele, 99ff
  advantageous, 452
  frequencies, 99
Allosteric
  effects, 299
  modification, 356
  regulation, 304
Alpha- (\alpha-) limit set, 191, 379
Alveolus (alveoli), 412
Amoeba (cellular slime molds), 499-
    502
Amoeboid motility, 502
Analog computer, 324
Anastomosis, 447, 484-485, 544
  tip-branch, 484
  tip-tip, 484
Angle in standard position, 23
Animal coat patterns, 532-534, 550
Annual plants, 8-11, 16-19, 33
Antenna receptors of moths, 410
Apical growth, branching networks,
    445-447, 484-485, 544
Apnea, infant, 60
Arrhythmia, 61
Arthropods, 72
Asymptotic
  behavior, 191
  stability, 241
ATP (adenosine triphosphate, 304, 335
```

```
Attack rate, 223, 368
Attraction, (motion due to), 384, 403,
    442
  basins of, 293
Attractive force, 403
Autocatalytic reaction, 356
Autonomous, 166
Average age of first infection, 256
Axiom of Parenthood, 214
Axis of polarity, 287
Axon, nerve, 314-317, 402, 461
  current in, 402
  hillock, 314, 315
  repetitive firing of, 341
Axonal
  membrane, 317-319
  membrane, electric circuit analog
    318, 320
  transport, 437, 461-463
```

```
Bacteria, 242
dispersal of, 441–442, 480–482
growth of, 116, 152
Bacterial
chemotaxis, 442, 482
culture, 116, 121
density, 116
density, log, 116
growth (chemostat), 121–123
motility, 480
motion, 480–482
Balance equations, 384, 393–397
for charge, 402
in 1D, 395
in 3D, 399
```

Baldwin-McElwain equations, 445,	Breathing	wave fronts, 485
485	biot, 60	Chemoreceptors, 27
Barnacle giant muscle fiber, 336	volume, 27	CO ₂ , 62, 66, 207
Basins of attraction, 293	Bristlelike patterns, 529	Chemostat, 115, 121–125, 128–129,
Belousov-Zhabotinsky	Brusselator, 304, 357	143–145, 153, 193–197, 202,
reaction, 352, 546	Bud scar, 488	489
Bendixson's negative criterion, 329—	bud sear, 400	dimensions, 122
330, 360, 362, 363, 368	Ca ²⁺ channels, 366	model, dimensionless, 127ff
proof of, 380	Cambium, 287	parameters, 122
Beta-gamma $(\beta - \gamma)$ parameter plane,	cAMP, 335, 500-502, 545, 548 (See	phase plane, 193–197, 202
190		• •
Beverton-Holt model, 257	also cyclic AMP)	variants of, 154
	secretion, 507	washout, 198
Bifurcation	Cancer chemotherapy, 145–147, 463,	Chemotactic
critical, 518, 525	469	coefficient, 442, 502
diagrams, 51, 53, 342, 343	Capacitance, 320	motion of macrophages, 424
Hopf theorem, 313, 341–346, 359,	Capillary	motion of microorganisms, 441–443
363	density, 445	Chemotaxis, 387, 413, 477, 482, 502
parameter, 341, 363	growth, 445–447, 485	bacterial, 442–443
subcritical, 342–344	-tip chemotaxis, 447	capillary tip, 447
supercritical, 342–344	Carbon dioxide (See CO ₂)	cellular slime molds, 502ff
value, 43, 53, 341	Carcinogen, 416	of phagocytes, 545
Bills of Mortality, 28, 250	Carriers, of disease, 253, 263	PMNs, 443
Bimolecular	Carrying capacity, 62, 76, 119, 215	Chemotherapy
reactions, 280	Cell	of cancer, 145-147
switch, 294-295	age distribution frequency, 465	continuous, 157
Bioassay	conservation equation, 467	cycle specific, 463, 464
diffusion, 416-418, 422	cycle, 463–465	of leukemia, 469, 488
homogeneous, 418	division, 6	Cheyne-Stokes breathing, 60
mutation-inducing substances, 385	membrane receptors, 273	Chicken pox, 255
Biochemical	theory, 271	Childhood diseases (See also specific
control, 287	Cells, 271	diseases), 252
switch, 294-295, 303	motility of, 457	Chromosomes, 99
system analysis, 300	yeast, 456-459	Ciliary beating, 441
Biological	Cellular	Circadian rhythm, 311, 360-362
control (of pests), 72	aggregation, 541	Circuit, electric, 319-321
rhythms, 360-362	automata, 540	Circular domain, patterns on, 525
Biomass, 89	development, 283	Circulatory systems, 410
Biot breathing, 60	maturation, 466	Clocks, biological, 362
Birth defects, Rubella, 256	oscillators, 362	Clonal
Blood	parameters, 488	growth, 543
CO ₂ , 27–28, 34, 66, 207	polarity, 287	organisms, 534, 543
vessel growth, 445-447	slime molds, 497, 498-502, 507	Closed
Blowfly (Lucilia cuprina), 76, 77	Center manifold theorem, 344	chains, 240
Blum-Reed model, 462, 487	Chaos, 51, 54, 60, 67, 76–77	curve trajectory, 312
Bolus injection, 151	Chaotic	-loop trajectory, 192
Bombay plague, 245, 247	behavior, 76–77	periodic orbit, 327
Boundary	population dynamics, 77, 86	periodic trajectories, 359
conditions, 411, 414, 415, 426–427	Character displacement, 229	systems, 352
conditions, homogeneous, 430	Characteristic equation, 12, 15, 133,	CO ₂
value problems, 432	157, 512	
Bracon hebetor (parasitoid wasp), 103	polynomial, 232	chemoreceptor, 62, 66, 207
Branching, 26–27, 437, 445–447,		levels in blood, 27–28, 34, 66, 287
· · · · · · · · · · · · · · · · · · ·	Chemical	Convolution 80 254
483–485, 543–544	oscillations, 313, 352–359	Coevolution, 89, 254
dichotomous, 26, 484	patterns, 509	Coexistence, 228
lateral, 26, 484	signal, 283	Collective motion, 437ff

Colonies, microorganisms, 445, 456-459	Conservative systems, 311, 346, 352, 355	Degrees of freedom, 126 Del
Colorado potato beetle, 77	Constant concentration at boundary,	operator, 389, 399, 400
Combat term, 549	426	Delay equation, 60
Community, 211	Continued fraction, 32	Delayed germination, 19
complex, 236-240	Continuity of flow, 204	Demography, 28, 38, 468
matrix, 232	Continuous	Dendrites, 314, 315
structures, 261	chemotherapy, 157	Density
Compartmental	infusion, 145	log bacterial, 116
analysis, 149-151	ventilation-volume model, 207	sink/source, 394
subdivision, 527	Continuum assumption, 436	Density dependence, 74-78, 83, 104,
Competition, 224-231, 259-260, 290	Control of synthesis, 291	223
for common resources, 262	Convection, 384, 403, 445	Density-dependent
intensity of, 229	Conventional units, 126	attack rate, 368
k species, 260	Convergence, radius of, 68	dispersal, 443-444, 449, 481, 485
molecular, 290-293	Convergent series, 68	growth, 351, 368
Complementary	Cooling, Newton's law of, 406	intrinsic growth, 216
solution, 31	Cooperative reaction, 280-282	Depolarization, axonal membrane, 317
Complex	Cooperativity parameter, 66	Derepression, 307
community, 236-240	Coprinus, (fungus), 447	Derivative, 165
eigenvalues, Hopf bifurcation, 341	Criteria for oscillations	Destabilizing influence, 222
eigenvalues, linear difference equa-	biological systems, 359	Determinant, of 2×2 matrix, 15
tions, 15, 22-25	chemical systems, 354	Development, 496ff
eigenvalues, linear differential equa-	Critical	Developmental
tions, 133, 136, 140-141, 156	bifurcation, 518, 525	pathway, 291
numbers, powers of, 23	parameters, 40	process, 283, 302
plane, 22	points, 387, 393	transitions, 293
Computer simulation	Cross catalysis, 356	Diabetes mellitus, 145, 147
of annual plants, 18	Cross products, 500	adult-onset, 147
direction fields, 177	Cubic nullclines, 330–336	juvenile-onset, 147
of host parasitoid systems, 84, 104	Culture, bacterial, 121	Diagram, phase plane—chemostat, 202
of patterns, 528-529, 541-544	Curl (vector), 400, 401	Dichotomous branching, 26, 484
Concentration of particles, 394	Current, 320	Dictyostelium discoideum, 498-502,
Condition	in axon, 321–322, 402	547
for aggregation of cellular slime	Curve fitting problem, 266	Difference equations, 6ff
molds, 505	Curve in the plane, 172–175	constant coefficients, 19
for diffusive instability, 514	Cycle	first order, 40
for stability, difference equations,	graphs, 192, 327	first order linear, 8
43, 57	specific chemotherapy, 463, 464	graphical methods, 49–52
for stability, differential equations, 142	specificity of drug, 488 Cycles	linear, 7
Conductance, 320	of infection, 65	nonlinear, 39ff
Conductivity, axonal membrane, 316-		in physiology, 60
319	predator-prey, 218-221, 346-351 Cyclic AMP (See also cAMP), 335,	Differentiation, 283
Conformational changes, 282, 356	500–502, 545, 548	(See also Morphogenesis)
Conjugate pairs, (See also complex	signaling system, 365	Diffusion, 384, 403, 404ff bioassay, 416–419, 422
numbers), 22	Cytoplasmic streaming, 410	•
Conservation, 470	Cyzenis albicans (parasitoid fly), 77	coefficient, 404, 406, 407 as destabilizing influence, 512
equations, 384, 393-397, 467	Cyzenis uibicans (parasnoid ny), //	equations (See Diffusion equations)
equations in 1D, 395	Daphnia magna, 258	molecular, 441
laws, 463–467	Decaying population, 118	nutrient, 441
of mass, 124	Deceleration rate of growth, 257	operator, 414
of number, 124	Deficiency of networks, 300	population, 437
principles of, 384	Defoliation (herbivory), 90	rate, geometry, 308
of receptors, 281	Degree of maturity, 465	and reaction, 510
•	-	·

Diffusion, (continued)	density-dependent, 443, 457, 481,	difference equations, 13-16, 22-25
and reaction, finite domains, 520	485	of diffusion operator, 414
reaction in two dimensions, 548	due to overcrowding, 444	dominant, 20
reaction systems, 547	of oaks, 479	in Hopf bifurcation, 341-345
time, 407, 409	of population, 436, 437	ordinary differential equations, 132-
transit time, 410-412, 423, 424,	random, 439	136, 183–189
425	rate, 440, 441	pure imaginary, 220
Diffusion equation, 384, 404, 405,	seed, 17	repeated, 20, 29, 133, 136
434, 441	Dispersion, mean square, 437, 478	Eigenvectors, 16, 134-135, 139-141,
consequences, 406-410	Displacement, mean square, 517	183–184
mathematical properties, 413-416	Distribution, 383, 427	"fast," 184
one dimensional, 404, 405ff	of pellet size, 473	Electric
Diffusive instability, 498, 514, 516-	of plant quality, 489	circuit, 319-321
519	source, 53	potential, 314
conditions for, 514	spatial, 387, 473	Electrostatic field, 403
onset of, 515, 519	steady state, 437	Emptying time, 144
Digraph (directed graph), 237	Disturbance, random, 129	Encarsia formosa, (parasitoid), 83
Dihydrophenylalanine (DOPA), 550	Diurnal cycle, 311	Encounters, 81, 215, 219
Dilution effect, 151, 397	Div dot grad, 405	Endemic disease, 252, 263
Dimensional analysis, 115, 126-127,	Divergence, 399, 400, 401	Endogenous
153, 276	Divine proportion, 1	activators, 299
Dimensionless	DNA, 271	rhythms, 362
parameters, 153	synthesis, 463	End-product inhibition, 301
quantities, 127	Domain	Enriched ecosystem, 65
Dimensions, terms, 122	disk-shaped, 527	Enzymatic reaction, 274
Dimers, 291–292	geometry of, 525	Enzyme kinetics, 300
Deoxyribonucleic acid (See DNA)	size, 522, 525	Enzymes, 272, 274, 356
Diphtheria, 255	Dominant eigenvalue, 20	Epidemic
Diploid, 99	DOPA (dihydrophenylalanine), 550	cycles, 252
Dirac, delta function, 427	Dormancy of seeds, 17, 19	models, 244–253, 444
Directed graph (digraph), 237	Dot	Epidemics, 20, 252
Direction field, 166, 175–177	product, 400	effects of
Directional	Double-substrate reaction, 279	age structure, 252
derivative, 388	Doubling time, 118, 144	delay factor, 252
information, 384	Drosophila melanogaster, (fruitfly),	migration, 252
Discontinuous initial distribution,	362, 525, 526	spatial distribution, 252, 444
434	Dulac's criterion, 329-330, 360, 363,	vaccination, 254-256
life-cycle stage, 6	368	Equations
Discriminant, 15, 134	Dynamical disease, 34, 61	balance, 384, 393-397, 402
Disease (See also specific diseases)	•	Baldwin-McElwain, 445, 485
childhood, 252	E. coli, 115	characteristic, 12, 15, 133, 157,
dynamical, 34, 61	Ecology, patterns in, 535	232, 512
endemic, 252, 263	Ecosystems	conservation, 384, 393-399, 467
eradication, 254	enriched, 65	delay, 60
fatality, 263	patchiness, of, 89	difference, 6ff, 39, 44, 55, 60
infectious, 242–254	Efficiency	diffusion, 384, 404, 405, 406, 413,
intrinsic reproductive rate R _O , 247,	of parasitoids, 87	434, 441
254–255	of predation, 219	exact, 353-354, 369
macroparasitic, 242	Eggs, 78	Fisher's, 452–456, 460, 486
microparasitic, 242-254	Eigenfunctions	Fitzhugh-Nagumo, 337-341
thromboembolic, 145	of diffusion operator, 414, 430, 504	Gierer-Meinhardt, 305, 528-532
waves of, 65	Eigenvalues, 13, 132-136, 141, 183-	heat, 405, 432
Disk-shaped domains, 527	189, 414	higher order difference, 58-60
Dispersal	complex, 15, 22-25, 133, 136, 156,	higher-order, differential, 199
of bacteria, 441	341	Hodgkin-Huxley, 314, 322-327
or oacteria, 441	341	Hodgkin-Huxley, 314, 322-327

Valler Sanal 442 443 491 500	Fibonacci numbers, 5, 22, 36, 497	sing sories 421
Keller-Segel, 442, 443, 481, 500- 503	Fick's law, 384, 404–406	sine series, 431 theorem, 431, 504
Lienard, 332–333, 360, 365	Finite initial distribution, 433	Fraction of survivors, 74
logistic, 39, 44, 45, 55, 119, 152,	Filamentous algae, 26	Fractional mortality, 7
214, 257, 259, 266	Filaments, 447	Fruitfly (Drosophila), 362, 525
Lotka-Volterra, 218–222, 224–229,	First-order	Functions
259	difference equations, 40	of one variable, 68
Pearl-Verhulst, 45	linear difference equations, 6-8	of several variables, 385-387
Ricker, 62, 257	ordinary differential equations	of two variables, 70
Segel-Jackson, 549	(ODE), 165–171, 200	Fungi, 26, 445-447
Equiconcentration loci, 393	ODE, nonhomogeneous, 203	-
Equilibrium, 40	ODE, variation of parameters, 203	Gap functions, 518
point, 176	Fisheries, 257	Gastrulation, 542
Equipopulation contours, 438, 439,	Fisher's equation, 437, 452-456, 460,	Gene
478	486	activation signal, 283-287
Equitherms, 387	Fishing, 258, 265	frequencies, 99-102
Error function, 433, 434	in Adriatic Sea, 211	General solution, 20
Estimating parameters, 266	Fitzhugh-Nagumo equations, 337-341	Generalized function, 427
Eukaryotes, 99	Fitzhugh's	Genes, spread of, 439, 452-456
Euler's theorem, 23, 30	model, 337–341, 364	Genetic
Evidence for chemical morphogens,	reduced Hodgkin-Huxley system,	control, 292
537	324–326, 364	mutations, 416
Exact equation, 353–354, 369	voltage convention, 324	pool, 99
Excitability, 327	Fitness, 100, 101	Genetics, 99–102, 107–109
Excitable behavior, 313	Fixed concentration boundaries, 415	Hardy-Weinberg, 99, 452 Genotype, 99
membrane, 314	point, 41, 47	frequencies, 100ff
modes, 523–524	Flatness	Geometric reasoning, 295
systems, 311, 340–341	index, 409, 422	Geometry of domain, 525
Excitation, neural, 339–341	Flow	German measles (Rubella), 255, 256
Excitatory input, 317	of particles along a tube, 394	Germination, 9-10
Exploiters/victims, 259, 352, 536, 549	in the plane, 191	delayed, 19
(See also predator/prey, host/	-trapping region, 329, 331, 350	GGP (glucose-6-phosphate), 304
parasitoid)	Flows in two and three dimensions,	Gierer-Meinhardt
Exponential	397	equations, 305, 528-532
function, 132	Flower	model, 549
growth, 117, 212	clock, 361	Global behavior, 191-193
peeling, 161	initiation, 295	Glucose
Extended initial distribution, 428, 433	Fluctuations in species abundance,	yeast cell model, 456–459, 486
Extinction, 228	211, 218, 346 Flor 304 305 307 300 403	Glucose-insulin
Extreme and mean ratio, 1	Flux, 394–395, 397–399, 403– 404	models, 147–149, 158–160, 206 Glycolytic oscillator, 304, 357, 548
Family of solution curves, 166	attraction, 403	Golden
Faraday's law, 320	convection, 403, 420	mean, 3-5, 22
"Fast eigenvector," 184	diffusion, 404	rectangle, 3-5
Fastest-growing perturbation, 547	magnitude of, 397	Gompertz growth, 118, 157, 216-217,
FDP (fructose-1,6-diphosphate), 304	of particles, 394	258
Fecundity, 7	Food chain, 239, 263	Gradient, 387-393, 400, 420
Feedback, 354, 356, 358	Formation of patterns, 496, 509ff,	field, 390, 391, 420
interactions, 301	525	Graphs, directed, 237, 238
positive, 240, 295-299, 303-305,	Forms of organisms, 497	Graphical methods
516	Formulating a model, 122-125	difference equations, 49-52
Feedforward, 356	Fourier	differential equations, 165-171,
Feinberg network method, 300	cosine series, 504	175ff
FGP (fructose-6-phosphate), 304	series, 431	Great plague, 250

Greenhouse whitefly, 82, 83	Homogeneous	Insects, life cycle, 7
Green's theorem, 377, 378, 380	bioassay, 418	Instability
Gierer-Meinhardt model, 528-532,	steady state, 502ff, 508	diffusive, 498, 512-515, 516
549	Homozygous, 99	Insulin
Growth-dispersal model, 437-439	Hopf bifurcation (theorem), 313, 341-	and glucose, 147-149, 158-160,
Growth	346, 354, 357, 359, 360, 363	206
function, 212	Host, 78, 83, 239	release, 149
of microorganisms, 116-120	-parasitoid system, 73, 78-79, 103	Integral mean value theorem, 396
rate of perturbations, 512	-parasitoid system, computer simula-	Integration, partial, 392
of yeast cells, 456-459	tion, 84–87	Intensity
	Hydra, 537, 538	of competition, 229
Habitat, common, 229	head regeneration, 538	of selection, 453
Half-life, 118, 152	morphogenetic substances in, 538	Intracellular resistivity, 402
Half-maximal response, (K _n), 125,	-	Intraspecific
279	Imaginal disks, 525, 526	competition, 215
Haliotidae, 4–5	Immunity, 253	Intrinsic
Hallucination patterns, 540	herd, 254	growth parameter, 119
Hardy-Weinberg	loss of, 244, 246	growth rate, 214
equilibrium, 102	temporary, 243, 247, 249, 264	Intrinsic reproductive rate R _O for dis-
genetics, 99, 452	Immunization, 254–256	ease, 247, 254–255
Head	Impermeable boundaries, 415	Invagination, 542
activator, 537	Implicit differentiation, 295, 297	Ionic
in hydra, 538	Index, 375–379	flow, 314
inhibitor, 537	of curve, 376, 377	pores, 318–319, 322
regeneration (hydra), 538	of singular point, 375, 378	pores, 510-517, 522
Heart beat, 60, 333	Induced defenses, in plants, 106, 489	Jacobian, 56, 130, 155, 182
Heat equation, 405, 432	Inducer, 292	Jeffries color test, 238, 241
Helices	-repressor complex, 307	Jordan curve theorem, 327
in mollusks, 5	Infant apnea, 60	Junctions, gap, 518
in plants, 5	Infection, 242ff	Jury test, 58–60
Hematopoiesis, 61	average age of first, 256	Juvenile-onset, diabetes, 147
Hemoglobin, 282	cycles of, 65	Javenne onder, diabetes, 117
Herbicides, resistance to, 19	discrete model, 65	K+ (See Potassium)
Herbivore	per capita force of, 256	k-species, competition, 260
phytoplankton system, 548	Infectious	Keller-Segel
plant interactions, 73, 89–99, 105–	class, 264	equations, 442, 443, 481, 500-503
107, 206, 368–369, 489–491	contact number, 249, 263	model, 509, 545
recruitment, 92	diseases, 242ff	Kinesins, 462
Herbivory, 89	Infective, 243	Kinetic terms, 510
Herd immunity, 254	class, 244, 249	Kinetics
Heteroclinic trajectory, 192–193, 454,	fraction, 249	enzyme, 300
459, 460	Infinite train of peaks, 460	glucose-insulin, 147–149
Heterogeneity, spatial, 383	Inflammation, 482	nutrient-receptor, 273–277
Heterozygous, 99	Infusion pump, 145–147	sigmoidal, 279–282
Higher order difference equations, 58–	Inhibition, 355, 356, 516, 517	Kirchhoff's law, 320
60	end product, 39	Kolmogorov
	range of, 518, 522, 525	•
Higher-order differential equations, 199 Hillock, axon, 314, 315		conditions, 351, 368, 369
Hodgkin-Huxley equations, 314, 322–	substrate, 306, 334, 532, 550	Kolmogorov's theorem, 351
327	Inhibitor, 296, 298 Inhomogeneous perturbations, 502–	Krill and whales, 265
reduced phase plane, 325	504, 510–511	Lactate dehydrogenase (LDH), 293
Hodgkin-Huxley model, 337, 364	Initial conditions, 13, 133, 155–156,	Laplacian, 405
Homeostasis, 40	165, 427–429	Large chemical systems, 299
Homoclinic	Injection, bolus, 151	Larvae, 78
trajectory, 192–193, 460	Inoculation, 116	Lateral branching, 26, 484, 485
aujocio1j, 172 173, 400	mocalution, 110	Lateral branching, 20, 404, 405

Lateral inhibition, 518, 539	first-order, 8	Manifolds, 377
discrete, 541	general solution, 20	Mass
local activation, 541	oscillations in, 25	balance, 124, 151
Law of mass action, 80, 219, 274	repeated roots, 20	Mass action
LDH (lactate dehydrogenase), 293	second-order, 12	law of, 80, 219, 274
Leaf arrangements, 528	systems, 12–13	Matched asymptotic analysis, 278
Lemmings, 267	Linear ordinary differential equations	Mating table, 100
Leptinotarsa decemlineata (potato bee-	(See also ODEs), 130-137, 184-	Matrix
tle), 103	190	community, 232
Leptoterna dolobrata (bug), 103	Linear stability theory, 518	determinant of 2×2 , 15
Leslie matrices, 29, 36, 38	Linearization, 129	discriminant of 2×2 , 15
Leukemia	Linearized systems	Leslie, 29, 36, 38
chemotherapy of, 469, 488	difference equations, 55-56	multiplication, 14, 134
chronic granulocyclic, 60	differential equations, 129–130, 182	qualitative, 239, 261
Leukocytes, polymorphonuclear, 443	Linearly independent, 156	trace of 2×2 , 15
Level curves, 385–386, 388–390	Lineweaver-Burk plot, 299	Matrices (Also see Matrix), rank of,
of potential function, 354	Linkage of networks, 300	300
Level surfaces, 386–387	Local	Maturation, 463
Liber abaci, 33	degradation, 394	speeds, 488
Lienard equation, 332–333, 360, 365	maxima, 387, 393	Maximal concentration, 393
Life-cycle stages, discrete, 6	minima, 387	Mean
Life cycle, insects, 7	saddle points, 387	and extreme ratio, 3
Life table data, 76, 77	Locomotion, slime mold slug, 507	free path, 480
Ligands, 277	Locus (gene), 99	Mean square
Limit cycles, 192–193, 222–223,	Log bacterial density, 116	dispersion, 437, 478
311ff, 332–333, 339, 343ff, 362,	Logarithmic spirals, 5	displacement, 517
377, 379	Logistic	Measles, 255
dynamics, biological factors neces-	growth, 119, 212–214, 216	Mechanical basis of morphogenesis,
sary for, 359	prey, 220	542
sary for, 359 in chemical systems, 352-359	prey, 220 Logistic equations	542 Mechanochemical
sary for, 359 in chemical systems, 352-359 in epidemic models, 252	prey, 220 Logistic equations difference, 39, 54-55, 152	542 Mechanochemical patterns, 542
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257–	542 Mechanochemical patterns, 542 theories, 539
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351	prey, 220 Logistic equations difference, 39, 54-55, 152 differential, 45, 119, 212-214, 257- 258, 266 Long-range inhibition, 541	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550
sary for, 359 in chemical systems, 352–359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370–371	prey, 220 Logistic equations difference, 39, 54-55, 152 differential, 45, 119, 212-214, 257- 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370-371 predator-prey models, 223, 346-351,	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370-371 predator-prey models, 223, 346-351, 367-368	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370-371 predator-prey models, 223, 346-351, 367-368 stability of, (Hopf), 341-346	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370-371 predator-prey models, 223, 346-351, 367-368 stability of, (Hopf), 341-346 Limitations of diffusion, 408	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370-371 predator-prey models, 223, 346-351, 367-368 stability of, (Hopf), 341-346 Limitations of diffusion, 408 Limited resources, 215	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370-371 predator-prey models, 223, 346-351, 367-368 stability of, (Hopf), 341-346 Limitations of diffusion, 408	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370-371 predator-prey models, 223, 346-351, 367-368 stability of, (Hopf), 341-346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370-371 predator-prey models, 223, 346-351, 367-368 stability of, (Hopf), 341-346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32 Lucilia cuprina (blowfly), 77	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337
sary for, 359 in chemical systems, 352–359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370–371 predator-prey models, 223, 346–351, 367–368 stability of, (Hopf), 341–346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear algebra (review), 13–16	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273 Messenger RNA, 207, 308 mho, 316
sary for, 359 in chemical systems, 352–359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370–371 predator-prey models, 223, 346–351, 367–368 stability of, (Hopf), 341–346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear algebra (review), 13–16 operator, 414	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32 Lucilia cuprina (blowfly), 77 Lynx-snowshoe hare, 218	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273 Messenger RNA, 207, 308 mho, 316 Michaelis-Menten
sary for, 359 in chemical systems, 352–359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370–371 predator-prey models, 223, 346–351, 367–368 stability of, (Hopf), 341–346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear algebra (review), 13–16 operator, 414 stability, 219, 498	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32 Lucilia cuprina (blowfly), 77	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273 Messenger RNA, 207, 308 mho, 316 Michaelis-Menten dimensionless equations, 301
sary for, 359 in chemical systems, 352–359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370–371 predator-prey models, 223, 346–351, 367–368 stability of, (Hopf), 341–346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear algebra (review), 13–16 operator, 414 stability, 219, 498 superposition, 13, 133, 156	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32 Lucilia cuprina (blowfly), 77 Lynx-snowshoe hare, 218 Macromolecules, 271	Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273 Messenger RNA, 207, 308 mho, 316 Michaelis-Menten dimensionless equations, 301 kinetics, 125, 153, 272–278, 301
sary for, 359 in chemical systems, 352-359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370-371 predator-prey models, 223, 346-351, 367-368 stability of, (Hopf), 341-346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear algebra (review), 13-16 operator, 414 stability, 219, 498 superposition, 13, 133, 156 system, difference equations, 12-13	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32 Lucilia cuprina (blowfly), 77 Lynx-snowshoe hare, 218 Macromolecules, 271 Macroparasitic disease, 242	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273 Messenger RNA, 207, 308 mho, 316 Michaelis-Menten dimensionless equations, 301
sary for, 359 in chemical systems, 352–359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370–371 predator-prey models, 223, 346–351, 367–368 stability of, (Hopf), 341–346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear algebra (review), 13–16 operator, 414 stability, 219, 498 superposition, 13, 133, 156 system, difference equations, 12–13 system, (ODEs), 133–135, 183,	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32 Lucilia cuprina (blowfly), 77 Lynx-snowshoe hare, 218 Macromolecules, 271 Macroparasitic disease, 242 Macrophages, 412	542 Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273 Messenger RNA, 207, 308 mho, 316 Michaelis-Menten dimensionless equations, 301 kinetics, 125, 153, 272–278, 301 phase plane analysis, 301
sary for, 359 in chemical systems, 352–359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370–371 predator-prey models, 223, 346–351, 367–368 stability of, (Hopf), 341–346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear algebra (review), 13–16 operator, 414 stability, 219, 498 superposition, 13, 133, 156 system, difference equations, 12–13 system, (ODEs), 133–135, 183, 184–190	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32 Lucilia cuprina (blowfly), 77 Lynx-snowshoe hare, 218 Macromolecules, 271 Macroparasitic disease, 242 Macrophages, 412 motion of, 413, 424	Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273 Messenger RNA, 207, 308 mho, 316 Michaelis-Menten dimensionless equations, 301 kinetics, 125, 153, 272–278, 301 phase plane analysis, 301 Microorganisms
sary for, 359 in chemical systems, 352–359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370–371 predator-prey models, 223, 346–351, 367–368 stability of, (Hopf), 341–346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear algebra (review), 13–16 operator, 414 stability, 219, 498 superposition, 13, 133, 156 system, difference equations, 12–13 system, (ODEs), 133–135, 183, 184–190 Linear difference equations, 3ff	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32 Lucilia cuprina (blowfly), 77 Lynx-snowshoe hare, 218 Macromolecules, 271 Macroparasitic disease, 242 Macrophages, 412 motion of, 413, 424 Magnitude of flux, 397	Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273 Messenger RNA, 207, 308 mho, 316 Michaelis-Menten dimensionless equations, 301 kinetics, 125, 153, 272–278, 301 phase plane analysis, 301 Microorganisms chemotactic motion of, 441–443
sary for, 359 in chemical systems, 352–359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370–371 predator-prey models, 223, 346–351, 367–368 stability of, (Hopf), 341–346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear algebra (review), 13–16 operator, 414 stability, 219, 498 superposition, 13, 133, 156 system, difference equations, 12–13 system, (ODEs), 133–135, 183, 184–190 Linear difference equations, 3ff constant coefficient, homogeneous, 19 constant coefficient,	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32 Lucilia cuprina (blowfly), 77 Lynx-snowshoe hare, 218 Macromolecules, 271 Macroparasitic disease, 242 Macrophages, 412 motion of, 413, 424 Magnitude of flux, 397 Malaria, 242	Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273 Messenger RNA, 207, 308 mho, 316 Michaelis-Menten dimensionless equations, 301 kinetics, 125, 153, 272–278, 301 phase plane analysis, 301 Microorganisms chemotactic motion of, 441–443 growth, 116–120
sary for, 359 in chemical systems, 352–359 in epidemic models, 252 in a host-parasitoid system, 86 mathematical criteria for, 360 oscillations, 223, 350, 351 Poincaré-Bendixson, 328 in polar coordinates, 370–371 predator-prey models, 223, 346–351, 367–368 stability of, (Hopf), 341–346 Limitations of diffusion, 408 Limited resources, 215 Line integral, 377, 378 Linear algebra (review), 13–16 operator, 414 stability, 219, 498 superposition, 13, 133, 156 system, difference equations, 12–13 system, (ODEs), 133–135, 183, 184–190 Linear difference equations, 3ff constant coefficient, homogeneous, 19	prey, 220 Logistic equations difference, 39, 54–55, 152 differential, 45, 119, 212–214, 257– 258, 266 Long-range inhibition, 541 Loss of immunity, 244 Lotka's chemical reaction, 353–354, 369 Lotka-Volterra cycles, 311 equations, 218–222, 224–229, 259, 548 model, structurally unstable, 346 Lucas numbers, 32 Lucilia cuprina (blowfly), 77 Lynx-snowshoe hare, 218 Macromolecules, 271 Macroparasitic disease, 242 Macrophages, 412 motion of, 413, 424 Magnitude of flux, 397 Malaria, 242 Malthus'	Mechanochemical patterns, 542 theories, 539 Melanin, 532 Melanoblasts, 550 Melanocytes, 550 Melanogenesis, 532–533, 552 Membrane axonal, 317–319, 322 bound receptor, 273 cell, 273 excitable, 314 potential, 314, 337 receptors, 273 Messenger RNA, 207, 308 mho, 316 Michaelis-Menten dimensionless equations, 301 kinetics, 125, 153, 272–278, 301 phase plane analysis, 301 Microorganisms chemotactic motion of, 441–443 growth, 116–120 spreading colonies, 445, 456–459

538

Microtubules, 461	Morphogens, 496, 497, 509ff	Neural
Migration, 436	Mortality, 215	excitation, 313, 339–341
Mitosis, 307, 311, 463, 468, 469	fractional, 7	network, 539, 540
Mixed culture, 230	Mortality, Bills of, 28, 250	networks, visual hallucinations, 540
Model of tissue culture, 470-477	Mosquito (Aedes aegypti), 102	Neurological disorders, 145
Models	Moths, antenna receptors, 410	Neuron, (See axom), nerve, neural
Beverton-Holt, 257	Motion, 383, 436	Neurophysiology, 314ff
Blum-Reed, 487	of macrophage, 412-413	excitability in, 327
chemostat, 121-127, 128-129, 143-	of particles, 384, 393ff	oscillations in, 327
145, 153, 193–198	random, 404-406, 412-413, 442	Neutral
continuous ventilation-volume, 207	saltatory, 461	center, 186-187, 220-221, 312
density-dependent, 74-78, 118, 214-	source/sink, 395	stability, 220-221, 241
215	Motility, 441	Neutrally stable cycles, 311, 353-355
epidemic, 242ff	of yeast cells, 457	Newton's law of cooling, 406
Fitzhugh-Nagumo, 337-341	coefficient, 479	Nicholson-Bailey model, 73, 79-83,
Gierer-Meinhardt, 528-532, 549	Moving coordinate systems, 451	103
Hodgkin-Huxley, 322–327, 337, 364	Moving front, 455	Nodal lines on ellipse, 527
infection, 65	mRNA, protein interactions, 370	Node, (critical point), 186
Keller-Segel, 500-503, 509, 545	Multiple	No-flux boundary conditions, 415, 426
Lotka's chemical, 353–354, 369	steady states, 286	Nonhomogeneous difference equations,
Lotka-Volterra, 218–222, 224–229,	time scales, 277	31
259, 346, 548	Multiple-species communities, 231–	Nonlinear difference equations, 39ff
Malthus, 117, 214	235, 236ff	first order, 40ff
	Multivalent enzymes, 299	higher-order systems, 58–60
molecular competition, 290–293	· •	systems, 55–57
Nicholson-Bailey, 73, 79–83, 103	Mumps, 255 Muskrat population, spread of, 438–	Nonlinear effects, (in pattern forma-
PDE, 436ff, 498ff	439	tion), 520
predator-prey, 218–223, 259, 346–		Nonuniform steady state, 447–448
351, 368, 536, 552	Mutagen, 416	Normal vector, 398
random walk, 384, 405	bioassay, 416–418	Nullclines, 178–181, 194–198, 202,
Ricker, 62, 257	Mutagenicity, test for, 417	223, 225–227, 245, 249–250,
Rubinow-Blum, 461–462, 487	Mutation, 100	313, 330–338, 348
Segel-Goldbeter, 335, 365	genetic, 416	
SIR, 243, 244, 253, 263	threshold concentration for, 422	cubic, (S-shaped), 330–338, 360 Nutrient, 119, 121
SIRS, 244, 245, 247, 248, 253	Mutualism, 261	consumption, 119, 125
SIS, 244, 253	Mycelium, 472	
species competition, 224–231	- substrata complexes 292	depletion, 152 diffusion, 441
Takahashi's, 464–467, 487	n substrate complexes, 282	medium, 116, 457, 470
three-compartment, 160	n-vector, 134	-receptor complex, 273
tissue culture, 470–477	Na+ (See Sodium) Necrotic center, 258	-receptor complex, 273 -receptor kinetics, 272–278
two compartment, 149–151	Negative assortative mating, 108	transport, 273
Modulation	•	
by synapse, 539	Negative criteria	Nutrients
Molecular	Bendixson's, 329–330	algae and, 262
biology, 271ff	Dulac's, 329–330	distribution of, 392
competition model, 290–293	Negative semiorbit, 379	O-l 420 - 470
events, 271ff	Nerve	Oaks, dispersal of, 439, 479
receptors, 273	axon, 314–317, 402	ODEs, 12, 45, 130–141, 165ff, 200ff
species competition, 287ff	conduction, 314	constant coefficients, 131ff
Moments, of distribution, 475	signal, 314	first-order, 131, 165–171, 200
Monomer, 291, 292	Network, 447	homogeneous, 131ff
Morphogenesis, 496–498, 509ff, 528–	branching, 437, 445–447, 483–485,	linear, 131–137, 166, 183, 184–186
534	543–544	model, 115
mechanical basis of, 542	chemical, 299	nonlinear, 164ff
Morphogenetic substances in hydra,	linkage of, 300	second order, 131 systems 133–135 171–172 183

neural, 539, 540

systems, 133-135, 171-172, 183

Offspring, parent conflict in seeds, 19 Offspring table, 101 Ohm's law, 320, 402, 423 Omega (ω) limit set, 191, 379 Oncology (See Cancer chemotherapy, Leukemia) One-dimensional	Parent-offspring conflict, in seeds, 19 Parenthood, Axiom of, 214 Parkinson's disease, 145 Partial derivatives, 70-71, 387-389 Partial differential equations (PDEs), 383ff, 436ff Partial integration, 392	Phase-plane difference equations, 85–87 linear systems, 184–190 methods, (ODE's), 164ff Phosphodiesterase, 500, 545 Phyllotaxis, 5, 37, 497, 528 Physical dimensions, 126
balance equation, 395	Particle	Physiological cycles, 362
diffusion equation, 404, 405ff	creation, 394, 396	Phytoplankton, 536
phase portrait, 169, 286	degradation, 394, 396	-herbivore system, 548
transport equation, 403	flow of, 394ff	Plague
Onset	flux of, 394ff, 403ff	Bombay, 245, 246
of aggregation, 503, 506, 545	motion of, 384, 394, 467, 474	I
of diffusive instability, 515, 519	Particles in box, 399	great, 250
Open systems, 352, 359	Particular solution, 31	Planar flow, 420
Operator, 307		Plankton, 441, 536
Operon, 307	Patch-clamp experiment, 318 Patchy	Plant
Optical density, 116	•	cell, 287–289
Optimality of design, 301	distribution, 536 ecosystems, 89	defenses, 99, 106, 489
Orbit, (See also trajectory), 379		-herbivore interaction, 73, 89–99,
	environment, 229	105–107, 206, 368–369, 489–490
periodic, (See also limit cycle), 327ff, 346	Patterns, 384ff, 498ff	quality, 107, 368–369, 489–490
Order	animal coat, 532, 534–535, 550	Plant-herbivore models, self-regulation,
difference equation, 8, 9, 19	bristlelike, 529	95
differential equation, 131	chemical, 509	Plant-herbivore system, oscillations in,
Ordinary differential equations (See	in ecology, 535	352
ODEs)	effects of boundary conditions on, 550	Plants
Orientation, 287–288, 387, 390		annual, 8–11, 16–19, 33
Oscillations, 136–137, 186,187, 220,	effects of geometry on, 534, 549	Poincaré-Bendixson theory, 313, 327–
221, 267, 311	formation, 496, 509ff, 525 hallucination, 540	330, 354, 360, 379–380
chemical, 299, 304, 313, 352–359	mechanochemical, 542	Point release, 438
in linear difference equations, 25	on tails, 533, 535	into infinite region, 433
in neurophysiology, 327	on vertebrate skin, 541	Poisson distribution, 80–81
in plant-herbivore system, 352, 368–	PDE models, 436ff, 498ff	Polar coordinates, limit cycle in, 370–371
369	PDEs, 383ff, 436ff, 498ff	Polarity (model for), 287–293
population, 211ff, 346-350	Peaks, infinite train of, 460	Poliomyelitis, 255
population-based models, 346	Pearl-Verhulst equation, 45	Polymorphonuclear (PMN)
predator-prey, 218-223, 346-351	Pellet, 472	leukocytes, 443
relaxation, 333	size distribution, 473–477	phagocytes, 481
voltage, giant muscle fiber of barna-	Per capita force of infection, 256	Polypeptide, 282
cle, 336, 366	Periodic	Poplar gall aphid, 7
Oscillators, cellular, 362	boundary conditions, 426-427	Population
Oviposit, 78	orbit (See also limit cycle) 327ff,	biology, 210ff
•	346	decaying, 118
Parameter plane, 76, 84, 190	Periodicity, externally imposed, 252	dispersal, diffusion, 437–441
Parameters, 7, 40ff, 91, 120	Perturbations, 42, 130, 503-504, 507,	dynamics, 210ff
dimensionless, 91, 127	510ff	dynamics, chaotic, 77
reduction of, 45, 91, 127	excitable, 524	dynamics of molecules, 272
Parasitism, 78ff, 80	Pests, 72	fluctuation, 313
Parasitoid, 239	Petri dish, 416	oscillations in, 211, 346ff
computer simulations, 84-87	PFK (phosphofructokinase), 304	Position vector, 172
efficiency of, 87, 104	Phagocytes, 482	Positional information, 283
Parasitoid fly (Cyzenis albicans), 77	chemotaxis of, 545	Positive assortative mating, 108
Parasitoid, host system, 73, 78ff, 103	Phagocytosis, 443, 498	Positive feedback, 240, 295-299, 303-
Parastichies, 4-5	Phase, cell cycle (G_0, G_1, G_2, S) , 463	305, 516

D 14 050	O. Park	D. 111111. 07. 02
Positive semiorbit, 379	Qualitative	Red blood cells, 27, 33
Positively cooperative reactions, 282,	matrix, 239, 261	Reduction of parameters, 45, 91, 127
302	solutions, 165ff	Refuge, 87–89, 105, 258
Potassium (K+), 314, 316ff	stable system, 237, 238, 261	Relaxation oscillations, 333
channels, 317-318, 366	stability, 211, 236-241	Release in finite region, 428
Potato beetle Leptinotarsa de-	Quality	Removed class, 244ff
cemlineata, 103	of plants, 107, 368–369, 489–491	Repeated eigenvalues, 20, 29, 133,
Potential	Quasi-steady-state assumption, 275-	136
electric, 314	279, 281, 300, 301–302	Repetitive firing of axon, 341
membrane, 314ff, 337	Quirk-Ruppert conditions, 238	Repetitive impulses, 337
Power		Repressor, 292
of complex numbers, 23	Rabbit problem, 32	Reproductive factor Ro of infection,
series, 68	Radially symmetric	247, 254–255
Precursors, 356	diffusion equation, 406, 416, 418	Repulsion, 403
Predation, 218ff	region in plane, 421	Rescaling (equations), 91, 127
community, 241, 261	Radiolabeled tracers, 149-151	Resistance, (electrical), 320
efficiency of, 219	Radius of convergence, 68	to herbicides, 19
link, 241	Random	Resistivity, intracellular, 402
Predator-prey, 210, 218-223, 346-351,	dispersal, 439	Respiration in bacterial culture, 335
536	disturbance, 129	Resting state, 316, 324-325, 340
limit cycles in systems, 346-351,	mating, 99, 100	Retina, 540
367–368	motion, 404–406, 412–413, 442	Retinocortical map, 540
oscillation, 351	walk and the diffusion equation,	Reversible reaction, 274ff
spatially distributed systems, 477,	405, 478	Rhythms
549, 552	-walk models, 384	circadian, 360
stable oscillations, 222, 346–351	Range of inhibition, 517–518, 522,	endogenous, 362
Predators, 239	525	Ribosomes, 308
Prepattern, chemical, 509ff	Range of activation, 517-518, 522	Ricker equation, 62, 257
Prespore-prestalk, 547	Rank of matrices, 300	Rodent population cycles, 267
commitment, 499	Rate	Rotation, 401
ratio, 507	of encounter, 78, 245	Routh-Hurwitz criteria, 211, 231–235
Presynaptic terminal, 315	of propagation, 438	Rubella (German measles), 255, 256
Prey, logistic, 220	of transmission of disease, 243	Rubinow-Blum model, 461–462, 487
Principle(s)	Ratio test, 68	Radinow Blain model, 401 402, 107
competitive exclusion, 224, 229	Ray cells, 287–289	Saccharomyces cervisiae, 230, 266
conservation, 124, 384, 393ff	RBCs (See Red blood cells)	Saddle point, 180, 185–186, 190
linear superposition, 13, 133, 156,	Reacting and diffusing chemicals, 496—	local, 387
414	498, 509ff	Salmonella typhimurium, 418
Product inhibition, 299	Reaction	Saltatory motion, 461
Proof of Bendixson's criterion, 380		Saturation, in nutrient consumption,
•	Belousov-Zhabotinsky, 352, 548	•
Propagated action potentials, 402,	diagram, 274	125, 273ff in chemical kinetics, 273
422–423, 487	velocity, 300	
Propagating	Reaction diffusion, 496–498, 509ff,	Scalar multiplication, 400
waves, 451, 453ff	547–548	Scale of measurement, 126
Propagation 455 460	finite domains, 520–527	Scarlet fever, 255
speed of, 439–441, 455, 460	in two dimensions, 548	Schistosomiasis, 242
Protein-mRNA interactions, 370	Real-valued solution, 24, 136, 156	Schizosaccharomyces kephir, 120, 153,
Pseudomonas fluorescens, 441	Receptor	266, 230
Pseudopodial extension, 441	membrane, 273	Schnakenberg
Pseudowaves, 460, 463	nutrient complex, 273	chemical system, 357–359, 548
Pterula gracilis, 446–447	nutrient kinetics, 272–277	Searching efficiency (parasitoids),
Pump(s)	occupancy, 278, 281	104
active, 314	Recovery, 244	Seasonality, 252
infusion, 145–147	variable, 337	Second-order, linear difference equa-
Pupae, 78	Recursion relation, 5	tions, 12

Consideration has 242	Soma, 314, 315	Structural
Secondary host, 242	Source distribution, 531	instability, 186, 311, 353
Seed, 8		molecules, 287
bank, 10	Spatial distribution, 387ff, 437ff Spatial variation, 88, 385	stability, 359
coat, 19		Subcritical bifurcation, 342, 344
dispersal, 17	Species competition, 159, 210, 224-	
dormancy of, 17	231, 259–260, 548	Substrate-inhibited reaction, 306, 334, 532, 550
parent-offspring conflict in, 19	parameters, 266 Species interactions, 210ff, 237-241	Substrates, 272
Segel-Goldbeter model, 335, 365	Spherically symmetric diffusion equa-	Succession
Segel-Jackson equations, 549	tion, 406, 421–422	of excitable modes, 522–524, 533
Segmental growth, 33		
Segmental organisms, 26	Spiral growth, 5, 497 Spontaneous generation, 214	Supercritical bifurcation, 342–344 Superposition principle, 13, 133, 156,
Segregated populations, 444, 450	•	414
Self-organizing system, 539	Sporangiophore, 499, 500	
Self-regulation, 220, 240	Spores, amoeba, 500	Surface, 385
in plant-herbivore models, 95	Spots, 533	Survivorship, 7
Separation 405 406	Spread of muskrat population, 438–439	Susceptible, 243ff
column, 485-486	Spreading colonies of microorganisms,	Switch, 282
of variables, 384, 415, 429-430	456–459	bimolecular, 294–295
Separatrix, 291–292, 339	Sprouting, 445	cellular, 285ff
Sigmoidal kinetics, 66, 279–282, 285,	Spruce budworm, 208, 439, 477	Synapses, 314–315, 402
302, 530	S-shaped nullclines, 330–338, 360	Synthesis, 292, 307
Sign patterns, 237–239, 262, 296	Stability, 40, 129	control, 291
Signal	in systems of ODEs, 141	Systems analysis, biochemical, 300
for development, 283–287	Stability condition,	Systems of equations
nerve, 314ff	differential equations, 142	linear difference, 12–13
Simple, closed, oriented curve, 312,	first-order difference equations, 43	linear differential 133–137, 184ff
375	second-order difference equations,	nonlinear difference, 55–57
Single-point release, 427, 438	57	nonlinear differential, 142, 171ff,
Single-species population, 74-78, 116-	two-point cycles, 47	182
120, 211, 212–218	Stabilizing factors, 77, 86, 222	
Singular point, 176	Stable	Tail pattern, 533–535
Sink/source density, 394	age distribution, 36	Takahashi's model, 464-467
SIR model, 243, 244, 253, 263	coexistence, 290	Tangent vectors, 175
SIRS, 252	cycles, predator-prey system, 222-	Taxis, 442
model, 244, 245, 247, 248, 253	223, 346-351, 367-368	Taylor series, 30, 42, 56, 68–71, 130
SIS, 252	limit cycle, 76, 342ff	functions of one variable, 68-69
model, 244, 253	node, 185–186, 190	functions of two variables, 70–71
Size	oscillations, logistic difference equa-	Temporary immunity, 243, 247, 264
distribution, 473	tion, 46	Test for mutagenicity, 417
of domain, 525	spiral, 190, 221	Tetrodotoxin, 318, 319
Sleep-wake cycles, 362	steady state, 43, 55ff, 141–142	Theorems
Slime molds	State variable, 128	center manifold, 344
cellular, 497, 498–502, 505, 507	Steady state, 40, 128, 176, 447	Fourier, 431, 504
slug, 499, 507	distribution, 437	Green's, 377, 378, 380
Slope (derivatives), 165, 388	homogeneous, 502, 508	Hopf bifurcation, 313, 341–346,
Slug, cellular slime mold	multiple, 299	354, 357, 359, 360, 363
locomotion, 507	nonuniform, 444	Jordan curve, 327
Smallpox, 255	solution, 41	Kolmogorov's, 351
Snowshoe hare, lynx, 218	spatially uniform, 448	Theories
Sodium, 316	stable, 43, 55ff, 141–142	cell, 271 Poinceré Randivson, 313, 327, 330
channels, 317–318, 319	Steepness of local variations, 389	Poincaré-Bendixson, 313, 327–330,
ions, 314	Stimulated neuron, 340	354, 360, 379–380
Solid tumor, 157, 216–217, 258	Stimulating electrode, 317	topological index, 360, 375ff
Solution curves, 165ff, 175, 177, 187,	Stomata, 529 Strings, 530, 533	Thermodynamic equilibrium, 356
200	Stripes, 530, 533	Three-compartment model, 160

Three-dimensional conservation equation, 399 Threshold, 286, 313 concentration for mutation, 422 population for disease, 211, 247 voltage, 316 Thromboembolic disease, 145 Time scales, 277-278 Tip-branch anastomosis, 484 Tip-tip anastomosis, 484 Tissue culture, 470-477, 489 Topological index theory, 360, 375ff Topological properties of curves, 375ff Total differential of scalar function. Trace, of 2×2 matrix, 15 Tracheids, 287, 289 Trajectory, 169, 173 closed periodic, 192, 312, 327 heteroclinic, 192-193, 454, 459, 460 homoclinic, 192, 193, 460 Transient solutions, (diffusion equation), 430 Transit time diffusion, 409, 410-412, 423-424 and dimensionality, 409 Transition probability, 464, 487 rule, 542, 543 Transmission, (disease), 244ff Transport active, 316 axonal, 437, 461-463 by diffusion, 407 nutrient, 273ff Traveling waves, 317, 437, 447, 450-460 spread of genes, 452-455 Trialeurodes vaporariorum (greenhouse whitefly), 82, 83

Trimolecular reactions, 280, 304, 357 Tubular flow, 395 Tumbles, 480 Tumor, 146 angiogenesis factor (TAF), 445 growth, 216-217 solid, 157, 216-217, 258 Tuning a parameter, 55 Two-compartment model, 149-151 Two-dimensional manifold, 344 Two-point cycles, 46-48, 62 Tyrosinase, 550 Uncontrolled growth, 115 Uniform steady state, 448 Unit normal vector, 397 Units conventional, 126 of measurement, 126 Unstable node, 185-186, 190 Unstable spiral, 187, 190 Vaccination, 211, 254-256 Van der Pol oscillator, 313, 333ff, 337, 360, 365, 548 Variants of the chemostat, 154 Vectors, 172, 400 curl, 400, 401 dot products, 390, 397, 400 field, 177, 375, 376, 391, 401 gradient, 389ff operations, 400 position, 172 tangent, 175 unit normal, 397-398 velocity, 173 Vegetation, 90 quality of, (See plant quality) Velocity, reaction, 300 Velocity vector, 173 Ventilation volume, 27-28, 34, 66, 207 Venules, 482

Vertebrate skin patterns, 541 Vesicles, 461 Victims/exploiters, 259, 352, 536, 549 Viruses, 242 Visual cortex, 530, 540 Visual hallucination patterns, 540 Vital dynamics, 243, 247, 249, 263 Voles, 267 Voltage, 320 clamp experiment, 318, 321 Fitzhugh's convention, 324 oscillation, 336 oscillation, giant muscle fiber of barnacle, 366 threshold, 316 Volumetric receptor concentration, 274 Wake, sleep cycles, 362 Wave fronts, chemical, 485

Wave fronts, chemical, 485
Wave speed, 439–441, 455, 460
Wavenumber, 504ff
permissible perturbations, 508
Waves
traveling, 317, 437, 447, 449ff
Waves of disease, 65
WBCs (See White blood cells)
Well-posed problem, 414
Whales, krill, 265
White blood cells, 60
Whooping cough, 255
Wing disc, 526
Worms, 242

Xylem, 287, 289

Yeast cell-glucose model, 456-459 Yield, 119, 122, 442

Zebras, 530

Zeiraphera diniana (moth), 77, 103

Zones of toxicity, 416

Zooplankton, 536