Cognome	Nome
Matricola	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 08/06/2023

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Nota: nelle domande da Q2 a Q6 una risposta giusta da 1 punto, una risposta sbagliata sottrae 0.25 punti. Si puó scegliere di non rispondere, nel qual caso non vengono dati né sottratti punti.

Q1 (5 punti). Nel seguito, sia code(-) una funzione iniettiva calcolabile che codifichi macchine di Turing come stringhe in $\{0,1\}^*$. Per ciascuno dei seguenti linguaggi, indica se é (1) decidibile, (2) indecidibile ma riconoscibile, (3) non riconoscibile.

	Linguaggio	Decidicible	Indecidibile ma riconoscibile	Non riconoscibile
(a)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M si ferma sulla stringa 010 $\}$			
(b)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M va sempre a destra durante la computazione $\}$			
(c)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M non si ferma su $\operatorname{code}(M)\}$			
(d)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M \text{ e} M \text{ si ferma su almeno una stringa di lunghezza pari} \}$			
(e)	$\{\langle y,x\rangle\in\{0,1\}^\star\times\{0,1\}^\star\mid y=\operatorname{code}(M)\text{ e }x=\operatorname{code}(M')$ per qualche TM $M,M',\text{ e }M$ si ferma sulle stesse stringe di $M'\}$			

a: (2), b: (1), c: (3), d: (2). e: (3)

Q2 (5 punti). Indica (con un Si o No) a quali dei linguaggi di Q2 (indicati con (a), (b), (c) e (d)) é applicabile il teorema di Rice.

	Rice?								
(a)		(b)		(c)		(d)		(e)	

Il teorema di Rice si applica ad $a \in d$.

Q3 (5 punti). Per ciascuno dei seguenti linguaggi, indica se l'algoritmo noto di complessità minore é nella classe P o NP. Si assume che $\langle - \rangle$ sia una codifica di un oggetto del problema (grafo, strategia, formula, etc.) come stringa del linguaggio. Come in classe, assumiamo che calcolare $\langle - \rangle$ impieghi tempo al piú polinomiale.

	Linguaggio	Р	NP
(a)	Considera il seguente problema riferito a grafi diretti G : $\{\langle G,s,t\rangle \mid \text{ esiste un percorso da } s \text{ a } t \text{ in } G\}$		
(b)	Dato un grafo indiretto G , ricorda che un k -clique in G é un sottografo G' di G con k nodi, tale che ogni coppia di nodi di G' é collegata da un arco. Considera il linguaggio $\{\langle G,k\rangle \mid G \text{ ha un } k\text{-clique}\}$		
(c)	Dato un grafo indiretto G , ricorda che un k -clique in G é un sottografo G' di G con k nodi, tale che ogni coppia di nodi di G' é collegata da un arco. Considera il linguaggio $\{\langle G \rangle \mid G \text{ ha un 3-clique}\}$		
(d)	Considera il seguente problema riferito a grafi indiretti G : $\{\langle G \rangle \mid \text{ esiste un percorso in } G \text{ che visita tutti i nodi esattamente una volta}\}$		
(e)	Considera il seguente problema riferito a grafi diretti G : $\{\langle G,s,t\rangle \mid \text{ non esiste alcun percorso da } s \text{ a } t \text{ in } G\}$		

(a) P. (b) NP. (c) P. (d) NP. (e) P.

Cognome	Nome
Matricola	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 08/06/2023

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Q4 (10 punti). Indica (senza dimostrazione) quali di queste affermazioni sono vere, quali sono false, e quali sono problemi aperti.

	Linguaggio	V	F	Aperto
(a)	Se L é in NP , allora anche il suo complemento é in NP .			
(b)	Sia L in P . Se $SAT \leq_p L$, allora $P = NP$.			
(c)	La classe dei linguaggi in P é chiusa sotto l'operazione di unione.			
(d)	3SAT é in P .			
(e)	PSPACE = NPSPACE.			
(f)	Esistono linguaggi L_1 e L_2 tali che $L_1 \leq L_2$ ma $L_1^- \not\leq L_2^-$, dove L^- indica il complemento di L .			
(g)	Esiste un linguaggio decidibile non in $PSPACE$.			
(h)	Esiste un linguaggio $EXPTIME$ -completo in P .			
(i)	$NP \subseteq PSPACE.$			
(j)	Se $P=NP$, allora il linguaggio della fermata $HALT$ é in P , dove: $HALT=\{\langle y,x\rangle\in\{0,1\}^\star\mid y=\operatorname{code}(M) \text{ per qualche TM }M\text{ e }M\text{ si ferma su }x\}$			

- (a) Problema aperto.
- (b) Vero.
- (c) Vero.
- (d) Problema aperto.
- (e) Vero (teorema di Savitch).
- (f) Falso.
- (g) Vero, per il teorema di gerarchia di spazio.

- (h) Falso, per il teorema di gerarchia di tempo.
- (i) Vero
- (j) Falso

Cognome	Nome
Matricola	Fila 1
	ologna, Corso di Laurea in Informatica
	CA TEORICA (6 CFU), 08/06/2023
in coda con ulteriore testo, indicando in alto nor	o se strettamente necessario, si può allegare un foglio pr
the course contract to the state and the state that	ne, cognome, jud e madricedu.
	pleto. Dimostra che se L fosse in P , allora avre
P = NP.	
is II un linguaggia in ND. Chiamiana	M. la TM cha computa in tampa nelinomia
a funzione di riduzione f che testimonia	la riduzione $L' \leq_p L$ (la quale esiste per NR
a funzione di riduzione f che testimonia	la riduzione $L' \leq_p L$ (la quale esiste per NL
a funzione di riduzione f che testimonia completezza di L). Chiamiamo M la TM cl	M_f la TM che computa in tempo polinomia la riduzione $L' \leq_p L$ (la quale esiste per NI he decide L in tempo polinomiale (la quale esis
a funzione di riduzione f che testimonia ompletezza di L). Chiamiamo M la TM el er assunzione).	la riduzione $L' \leq_p L$ (la quale esiste per NI he decide L in tempo polinomiale (la quale esis
a funzione di riduzione f che testimonia ompletezza di L). Chiamiamo M la TM cher assunzione). Definiamo ora il seguente algoritmo: su in	la riduzione $L' \leq_p L$ (la quale esiste per NL he decide L in tempo polinomiale (la quale esiste put x , computa $f(x)$ usando M_f , poi verifica
a funzione di riduzione f che testimonia completezza di L). Chiamiamo M la TM cher assunzione). Definiamo ora il seguente algoritmo: su in	la riduzione $L' \leq_p L$ (la quale esiste per N), he decide L in tempo polinomiale (la quale esiste put x , computa $f(x)$ usando M_f , poi verifica
a funzione di riduzione f che testimonia completezza di L). Chiamiamo M la TM cher assunzione). Definiamo ora il seguente algoritmo: su in (x) é in L usando M . Accetta se e solo se	la riduzione $L' \leq_p L$ (la quale esiste per NL) he decide L in tempo polinomiale (la quale esiste put x , computa $f(x)$ usando M_f , poi verifica e $f(x) \in L$.
a funzione di riduzione f che testimonia completezza di L). Chiamiamo M la TM el er assunzione). Definiamo ora il seguente algoritmo: su in $f(x)$ é in $f(x)$ usando $f(x)$. Accetta se e solo se Questo algoritmo decide $f(x)$. Infatti abbian	la riduzione $L' \leq_p L$ (la quale esiste per NL he decide L in tempo polinomiale (la quale esiste put x , computa $f(x)$ usando M_f , poi verifica e $f(x) \in L$. mo $x \in L'$ se e solo se $f(x) \in L$ per definizione.
funzione di riduzione f che testimonia ampletezza di L). Chiamiamo M la TM cher assunzione). Pefiniamo ora il seguente algoritmo: su in $f(x)$ é in $f(x)$ usando $f(x)$. Accetta se e solo se questo algoritmo decide $f(x)$. Infatti abbiar i mapping-reduction. Inoltre, l'algoritmo	la riduzione $L' \leq_p L$ (la quale esiste per N_f he decide L in tempo polinomiale (la quale esiste put x , computa $f(x)$ usando M_f , poi verifica e $f(x) \in L$. mo $x \in L'$ se e solo se $f(x) \in L$ per definizione lavora in tempo polinomiale, in quanto M_f e L
funzione di riduzione f che testimonia ampletezza di L). Chiamiamo M la TM cher assunzione). Pefiniamo ora il seguente algoritmo: su in $f(x)$ é in $f(x)$ usando $f(x)$. Accetta se e solo se questo algoritmo decide $f(x)$. Infatti abbiar i mapping-reduction. Inoltre, l'algoritmo	la riduzione $L' \leq_p L$ (la quale esiste per N_f he decide L in tempo polinomiale (la quale esiste put x , computa $f(x)$ usando M_f , poi verifica e $f(x) \in L$. mo $x \in L'$ se e solo se $f(x) \in L$ per definizione lavora in tempo polinomiale, in quanto M_f e L
a funzione di riduzione f che testimonia ampletezza di L). Chiamiamo M la TM cher assunzione). Definiamo ora il seguente algoritmo: su in $f(x)$ é in $f(x)$ usando $f(x)$. Accetta se e solo se duesto algoritmo decide $f(x)$. Infatti abbiari mapping-reduction. Inoltre, l'algoritmo avorano in tempo polinomiale. L'esistenza	la riduzione $L' \leq_p L$ (la quale esiste per NL he decide L in tempo polinomiale (la quale esiste put x , computa $f(x)$ usando M_f , poi verifica e $f(x) \in L$. In $x \in L'$ se e solo se $f(x) \in L$ per definizione lavora in tempo polinomiale, in quanto M_f e a di tale algoritmo dimostra che L' é in P . D
funzione di riduzione f che testimonia ampletezza di L). Chiamiamo M la TM cher assunzione). Pefiniamo ora il seguente algoritmo: su in $f(x)$ é in $f(x)$ usando $f(x)$. Accetta se e solo se questo algoritmo decide $f(x)$. Infatti abbiar i mapping-reduction. Inoltre, l'algoritmo	la riduzione $L' \leq_p L$ (la quale esiste per NL he decide L in tempo polinomiale (la quale esiste put x , computa $f(x)$ usando M_f , poi verifica e $f(x) \in L$. In $x \in L'$ se e solo se $f(x) \in L$ per definizione lavora in tempo polinomiale, in quanto M_f e L a di tale algoritmo dimostra che L' é in P . D
a funzione di riduzione f che testimonia ampletezza di L). Chiamiamo M la TM cher assunzione). Definiamo ora il seguente algoritmo: su in $f(x)$ é in $f(x)$ usando $f(x)$. Accetta se e solo se questo algoritmo decide $f(x)$. Infatti abbiari mapping-reduction. Inoltre, l'algoritmo avorano in tempo polinomiale. L'esistenza	la riduzione $L' \leq_p L$ (la quale esiste per NL he decide L in tempo polinomiale (la quale esiste put x , computa $f(x)$ usando M_f , poi verifica e $f(x) \in L$. In $x \in L'$ se e solo se $f(x) \in L$ per definizione lavora in tempo polinomiale, in quanto M_f e L a di tale algoritmo dimostra che L' é in P . D
funzione di riduzione f che testimonia empletezza di L). Chiamiamo M la TM cher assunzione). efiniamo ora il seguente algoritmo: su in $f(x)$ é in $f(x)$ usando $f(x)$. Accetta se e solo se uesto algoritmo decide $f(x)$. Infatti abbiano mapping-reduction. Inoltre, l'algoritmo vorano in tempo polinomiale. L'esistenza	la riduzione $L' \leq_p L$ (la quale esiste per NL he decide L in tempo polinomiale (la quale esiste put x , computa $f(x)$ usando M_f , poi verifica e $f(x) \in L$. In $x \in L'$ se e solo se $f(x) \in L$ per definizione lavora in tempo polinomiale, in quanto M_f e a di tale algoritmo dimostra che L' é in P . D