Пусть мы разбиваем множество $\{x_1, x_2, ..., x_{n+1}\}$. Рассмотрим блок, в котором находится элемент x_1 . Обозначим через i количество элементов кроме x_1 , находящихся в этом блоке. (Так как при разбиении возможны блоки размером от 1 до n+1 $[\{x_1\}|\{x_1,x_2\}|...|\{x_1,...,x_{n+1}\}|]$, то i=0...n.) Эти i элементов могут быть выбраны из оставшихся n элементов $\binom{n}{i}$ способом. У нас осталось n+1-(i+1)=n-i несостоящих в первом блоке элементов. По определению мы можем разделить эти оставшиеся эелементы B_{n-i} способом. Чтобы получить все возможные разбиения исходного множества, просуммируем теперь по i=0...n. Получим $\sum\limits_{i=0}^{n}\binom{n}{i}\cdot B_{n-i}$. Используя симметричность биномиального коэффициента перепишем как $\sum\limits_{i=0}^{n}\binom{n}{n-i}\cdot B_{n-i}$. Заметим, что при суммировании параметр n-i в биномиальном коэффициенте и числе Белла меняется от n до 0. Таким образом полученная сумма эквивалентна $\sum\limits_{i=0}^{n}\binom{n}{i}\cdot B_i$, ч.т.д.