Winter 2011 Jim Fowler

The only way to learn the game is to play the game. The following represents a *lower bound* on the number of exercises you should be doing; the textbook is full of great exercises, so I encourage you to do as many as possible. The exercises below should be handed in on Monday, January 10, 2011.

Problem 1.1

For each of the following topological spaces, determine whether or not they can be given the structure of a smooth manifold, and, if so, explain how.

- (a) The disjoint union of uncountably many copies of \mathbb{R} ,
- (b) Two copies of \mathbb{R} with all non-zero points identified (I mean, x in the first copy is identified with x in the second copy—in other words, the "line with two origins").
- (c) $\mathbb{R}P^n$,
- (d) $\mathbb{C}P^n$,

(e)
$$T^n = \overbrace{S^1 \times \cdots \times S^1}^{n \text{ times}}$$

Problem 1.2 (Lee 2-10)

- (a) Show that the quotient map $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}P^n$ is smooth.
- (b) Show that $\mathbb{C}P^1$ is diffeomorphic to S^2 .

Problem 1.3

For every pair of positive integers n and m, find infinitely many distinct nonconstant smooth maps from $\mathbb{C}P^n$ to $\mathbb{C}P^m$.

Problem 1.4 (Lee 2-11)

Let G be a connected Lie group, and let $U \subset G$ be any neighborhood of the identity. Show that every $g \in G$ can be written as a finite product of elements of U.

Problem 1.5 (Lee 3-1)

Suppose M and N are smooth manifolds with M connected, and $F: M \to N$ is a smooth map such that $F_{\star}: T_pM \to T_{F(p)}N$ is the zero map for each $p \in M$. Show that F is a constant map.

Problem 1.6 (Lee 3-3)

If a nonempty smooth n-manifold is diffeomorphic to an m-manifold, prove that n=m.