Économétrie — TD 4

Les tests d'hypothèses économétriques

Pierre Beaucoral

Rappel de cours

Les hypothèses des estimations MCO

• L'estimateur des Moindres Carrés Ordinaires est le meilleur estimateur linéaire sous certaines hypothèses

Note

- On dit qu'il est BLUE (Best Linear Unbiased Estimator)
- Néanmoins il est sensible aux observations extrêmes
- Ces hypothèses concernent les termes d'erreurs (ε):
 - Normalité des résidus: $\varepsilon \leadsto N(0,\sigma_\varepsilon^2)$
 - Espérance nulle: $E(\varepsilon_i) = 0$
 - Homoscédasticité: $V(\varepsilon_i) = \sigma^2 = {\rm constante}$
 - Indépendance sérielle: $Cov(\varepsilon_i, \varepsilon_j) = 0, \quad \forall i \neq j$ (Absence de corrélation entre les résidus)
 - Orthogonalité des résidus (ou exogénéité): $Cov(x_i, \varepsilon_i) = 0$

Précisions sémantiques

- On distingue les propriétés sur petits échantillons et grands échantillons. Les propriétés sur petits échantillons:
 - L'estimateur est sans biais si $E(\hat{\beta}) = \beta$.
 - L'estimateur est à variance minimale si $Var(\hat{\beta}) \leq Var(\tilde{\beta})$ avec $\tilde{\beta}$ un autre estimateur sans biais de β .
 - L'estimateur est efficace s'il remplit ces deux propriétés
- Sur grands échantillons:
 - L'estimateur est convergent si la variance de β tend vers 0 quand N tend vers l'infini: $\lim_{N\to\infty} Var(\beta)=0$

Hypothèse et propriétés des estimateurs

Propriété / Hypothèse	Problème si non respectée	Test(s) associé(s)	Méthode(s) de correction
Absence de biais (orthogonalité)	Biais dans les estimations ; non-convergence	_	Instrumentation (variables instrumentales)
Efficience (sphéricité des erreurs)	Estimation non efficace (mais pas de biais)	- Homoscédasticité : tests de Breusch-Pagan, White- Absence d'autocorrélation sérielle : tests de Durbin-Watson, Breusch-Godfrey	- Correction de White (robust std. errors)- HAC (Newey-West)

• Ce TD se concentre uniquement sur le problème d'éfficience

Les tests d'hypothèses

• Objectif:

- Voir si le modèle est **économétriquement** correct.

• Comment?

- En vérifiant que les erreurs respectent les hypothèses des MCO et que l'estimateur est efficace (BLUE).
- En particulier, les tests se concentrent sur cinq hypothèses :
 - 1. Normalité des résidus : $\varepsilon N(0, \sigma_{\varepsilon}^2)$
 - 2. Espérance nulle : $E(\varepsilon_i) = 0$
 - 3. Homoscédasticité : $Var(\varepsilon_i) = \sigma^2$ (constante)
 - 4. Indépendance sérielle : $Cov(\varepsilon_i, \varepsilon_j) = 0$ pour tout $i \neq j$
 - 5. Orthogonalité des résidus : $Cov(x_i, \varepsilon_i) = 0$

• Remarque:

- H2 est respectée par construction de l'estimateur MCO.
- H5 fait l'objet d'un traitement particulier (cf. Semestre 2).

Les tests d'hypothèses

Hypothèse	Test(s) associé(s)	Traité?
H1 : Normalité H3 : Homoscédasticité	Test de Bera–Jarque Test de Goldfeld–Quandt	
H4 : Indépendance sérielle	Test de Breusch-Pagan Test de White Test de Durbin-Watson Test de Breusch-Godfrey	

La normalité des erreurs

Le test de Bera-Jarque

• La normalité des écarts aléatoires est utile pour mettre en œuvre les tests de sphéricité.

- Le test utilisé est celui de Bera-Jarque.
- Ce test repose sur deux indicateurs :
 - Skewness η : mesure l'asymétrie de la distribution (η doit être = 0).
 - **Kurtosis** v: représente l'aplatissement de la distribution (v doit être = 3).

Le test de Bera-Jarque

• La statistique BJ calculée est :

$$BJ = N \left[\begin{array}{c} 2 \end{array} / 6 + (\begin{array}{c} -3)^2 \end{array} / \begin{array}{c} 24 \end{array} \right] \rightarrow suit une loi \ ^2(2)$$

- Hypothèses testées :
 - H : BJ = 0 \rightarrow la distribution suit une loi normale
 - **H** : BJ $0 \rightarrow$ la distribution ne suit pas une loi normale
- Règle de décision :

Si BJ >
$$^{2}(2)$$
 th (6 au seuil de 5 %), on rejette H .

Le test de Bera-Jarque (dans EViews)

- Pour administrer le test via l'interface graphique :
 - 1. Ouvrir la fenêtre de l'équation.
 - 2. Aller dans View \rightarrow Residual Diagnostic.
 - 3. Choisir **Histogram Normality Test** pour lancer le test de BJ.
 - 4. Lire et interpréter les résultats.

Remarque : la procédure est identique pour les autres tests de sphéricité, à l'exception de l'étape 3.

Homoscédasticité

- L'homoscédasticité suppose que la variance est constante : $Var(\varepsilon_i) = \sigma^2$. L'hétéroscédasticité apparaît généralement lorsque la taille des erreurs est proportionnelle aux valeurs prises par une variable explicative.
- Si cette hypothèse n'est pas respectée :
 - l'estimateur MCO reste sans biais,
 - mais il **n'est plus à variance minimale** (moins efficace).
- Tests pour vérifier cette hypothèse :
 - Goldfeld-Quandt (non présenté)
 - Breusch-Pagan
 - White

Test de Breusch-Pagan

- Logique : vérifier si la variance des résidus dépend des variables explicatives.
- Modèle estimé :

$$\begin{array}{l} -\ Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \varepsilon_i \\ -\ \varepsilon_i = Y_i \! - \! \beta_0 \! - \! \beta_1 X_i \! - \! \beta_2 Z_i \end{array}$$

- Hypothèses:
 - $H_0: Var(\varepsilon_i) = \sigma^2$ (la variance ne dépend pas des variables explicatives) $H_1: Var(\varepsilon_i) = \sigma_i^2 = \theta_0 + \theta_1 X_i + \theta_2 Z_i + \omega_i$ ($\theta_1 e t \theta_2 \neq 0 \rightarrow$ variance liée aux variables explicatives)

Remarque : la variance des erreurs est approximée par les résidus au carré : $Var(\varepsilon_i) \approx \varepsilon_i^2$.

Test de Breusch-Pagan : procédure

- 1. Estimer le modèle par MCO.
- 2. Calculer les résidus au carré : ε_i^2 .
- 3. Régression de test :

$$\varepsilon_i^2 = \theta_0 + \theta_1 X_i + \theta_2 Z_i + \omega_i.$$

- 4. Examiner le pouvoir explicatif via le R² de cette équation :
 - Statistique $BP = N \times R^2 \to \text{suit}$ une loi $\chi^2(K-1)$, K = nombre de paramètres.
 - Règle : si $BP \ge \chi_t^2 h$ rejet de H_0 .

Note

Intuition : sous homoscédasticité, $R^2 \to 0$, donc X et Z n'expliquent pas la variance des résidus.

Test de White

- Même logique et démarche que Breusch-Pagan, mais avec une représentation **plus flexible** de l'hétéroscédasticité.
- Hypothèses:

$$\begin{array}{l} -\ H_0: Var(\varepsilon_i) = \sigma^2 \\ -\ H_1: Var(\varepsilon_i) = \sigma_i^2 = \theta_0 + \theta_1 X_i + \theta_2 Z_i + \theta_3 X_i^2 + \theta_4 X_i Z_i + \theta_5 Z_i^2 + \omega_i \\ \text{(les coefficients sont conjointement 0)} \end{array}$$

• Équation de test : $\varepsilon_i^2 = \theta_0 + \theta_1 X_i + \theta_2 Z_i + \theta_3 X_i^2 + \theta_4 X_i Z_i + \theta_5 Z_i^2 + \omega_i$.

Statistiques du test de White

- Statistique principale :
 - $-W = N \times R^2 \rightarrow loi\chi^2(K-1), K = nombre de paramètres (ici 6).$
- Version petits échantillons (F-test) :
 - $-\ W = ((SCR_r SCR_n r)/SCR_r) \times (N-k)/(k-1) \rightarrow F(k-1,N-k)$
 - * SCR_r : somme des carrés des résidus en régressant ^ 2 sur constante seule.
 - * SCR_nr : idem mais sur l'équation de test.
 - * k : nombre de paramètres sous H (ici 3).
- Règle de décision : si $W \ge \chi_t^2 h \Rightarrow rejet de H_0$.

Mise en œuvre sous EViews

- Les tests de Breusch-Pagan et de White sont directement programmés :
 - View \rightarrow Residual Diagnostic \rightarrow Heteroskedasticity Tests
 - * Breusch-Pagan-Godfrey : test de Breusch-Pagan
 - * White: test de White

Indépendance sérielle

- L'indépendance sérielle est nécessaire pour garantir que l'estimateur des MCO soit efficace (variance minimale).
- Indépendance sérielle = absence d'autocorrélation des erreurs:

$$Cov(\varepsilon_t, \varepsilon_s) = 0, \forall t \neq s$$

- Ce problème concerne surtout les séries temporelles.
- Tests usuels:
 - Durbin-Watson
 - Breusch-Godfrey

Test de Durbin-Watson

- Premier test développé, avec des conditions restrictives :
 - Il faut une **constante** dans le modèle.
 - Le nombre d'observations doit être **supérieur à 15**.
 - La variable expliquée **retardée** ne doit pas être introduite dans le modèle.
 - Pas de données manquantes.
 - On ne peut tester que l'autocorrélation issue d'un processus AR(1) : $\varepsilon_t = \rho \varepsilon_{t-1} + v_t.$
- Ce test a servi de base à de nombreux autres tests d'autocorrélation.

Hypothèses du test

• $H_0: Y_t = \beta_0 + \beta_1 X_t + \beta_2 Z_t + \varepsilon_t$

$$\begin{aligned} \bullet & \ H_1: Y_t = \beta_0 + \beta_1 X_t + \beta_2 Z_t + \varepsilon_t \\ & \text{avec } \varepsilon_t = \rho \varepsilon_{t-1} + \upsilon_t. \end{aligned}$$

- Sous H , l'écart aléatoire est corrélé dans le temps.
- Statistique de Durbin–Watson :

$$DW = \sum_{t=2}^{T} (\varepsilon_t - \varepsilon_{t-1})^2 / \sum_{t=1}^{T} \varepsilon_t^2 \approx 2(1-\rho)$$

• Cette statistique est directement fournie par EViews dans le tableau de régression.

Interprétation

- La statistique DW ne suit pas une loi standard : $0 \le DW \le 4$.
- Les auteurs ont tabulé des valeurs critiques : $D_L et D_U(D_L < D_U)$.

Lecture:

Zone	Interprétation
[0, D_L]	Rejet H : autocorrélation positive
(D_L, D_U)	Zone d'incertitude

Zone	Interprétation
[D_U, 2]	Acceptation H
$[2, 4 - D_U]$	Acceptation H
$(4 - D_U, 4 - D_L)$	Zone d'incertitude
$[4-\mathrm{D_L},4]$	Rejet H : autocorrélation négative

- Test imparfait en raison de la zone de doute et des conditions restrictives.
- Dans la table DW, les colonnes dépendent du nombre de paramètres du modèle hors constante.

Test de Breusch-Godfrey

- Breusch et Godfrey ont développé un test de maximum de vraisemblance plus **flexible** :
 - permet de tester des processus autorégressifs d'ordre 1.
- Exemple d'un processus d'ordre 2 :

$$\begin{split} &-H_0: Y_t = \beta_0 + \beta_1 X_t + \beta_2 Z_t + \varepsilon_t \\ &-H_1: Y_t = \beta_0 + \beta_1 X_t + \beta_2 Z_t + \varepsilon_t \\ &\text{avec } \varepsilon_t = \rho_1 \varepsilon_{t-1} + \rho_2 \varepsilon_{t-2} + \upsilon_t. \end{split}$$

- Équation de test : $\varepsilon_t = \rho_1 \varepsilon_{t-1} + \rho_2 \varepsilon_{t-2} + \theta_1 X_t + \theta_2 Z_t + \omega_t$.
- Statistique : $BG = T \times R^2 \to \text{suit}$ une loi $\chi^2(t)$, où t est l'ordre du processus autorégressif (ici 2).
- Règle de décision : Rejeter H_0 si $BG \ge \chi_t^2 h$.
- Procédure sous EViews :
 - View \rightarrow Residual Diagnostic \rightarrow Serial correlation LM test.
 - Choisir le nombre de retards (lags) à tester.

Correction des écarts aléatoires

- Les tests de **sphéricité** permettent de vérifier si les résidus sont :
 - hétéroscédastiques,
 - et/ou autocorrélés dans le temps.
- Dans les deux cas, il faut appliquer une **correction** pour améliorer l'**efficience** de l'estimateur.

(Il existe de nombreuses méthodes, selon le type de problème rencontré.)

- Sous EViews (cf. Araujo et al., 2007) :
 - Menu : Estimate → Options \rightarrow Coefficient covariance matrix.
 - En cas d'hétéroscédasticité :
 - * choisir White.
 - En cas d'autocorrélation sérielle et/ou d'hétéroscédasticité :
 - * choisir **HAC** (Newey-West).

Questions - Réponses (TD4)

Importez le fichier de travail sur les compagnies aériennes.

Estimez l'équation suivante par les MCO :

 $log(Pass_i) = \beta_0 + \beta_1 Fatal_P assagers_i + \beta_2 NonFatal_P assagers_i + \beta_3 Low_c ost_i \\ + \beta_4 Public_i + \beta_5 Inter_i + \beta_6 Age_i + \beta_7 Trafic_n at_i + \beta_8 Trafic_d est_i \\ + \varepsilon_i$

Homoscédasticité

· Qu'est-ce que l'homoscédasticité et quel problème induit son non-respect pour les MCO ? Afficher la réponse

Homoscédasticité = la variance de l'erreur est constante pour toutes les valeurs des régressseurs :

 $Var(u_i \mid X) = \sigma^2$ pour tout i.

Si cette hypothèse est violée (hétéroscédasticité):

- Les estimateurs MCO $\hat{\beta}$ restent sans biais et consistants si $E[u \mid X] = 0$ tient, mais ils ne sont plus efficaces (plus BLUE) : il existe de meilleurs estimateurs (GLS/WLS).
- Les écarts-types MCO "classiques" sont faussés tests t/F et IC peuvent être trompeurs (trop optimistes ou trop prudents).
- Conséquence pratique majeure : mauvaise inférence.

Que faire?

• Utiliser des **erreurs-types robustes à l'hétéroscédasticité** (HC0–HC3/"White").

Homoscédasticité

· A l'aide des tests de Goldfeld et Quandt, de Breusch-Pagan-Koenker et de White, que peut-on conclure quant à l'homoscédasticité du terme d'erreurs ?

Afficher la réponse

Correction(s)

· En fonction des résultats des divers tests, proposez une correction le cas échéant.

Afficher la réponse

Correction(s)

 \cdot Vos conclusions quant à l'effet des accidents mortels et non mortels sont-elles modifiées ? Afficher la réponse