FUZZY LOGIC

Arun Pandian J

Assistant Professor,

MAM College of Engineering and Technology, Trichy.

Contact: aparunpandian@gmail.com and www.arunpandianj.com

leadingindia.ai

OVERVIEW

- What is Fuzzy Logic?
- Where did it begin?
- Membership Functions
- Fuzzy Logic vs. Neural Networks
- Fuzzy Logic in Control Systems
- Fuzzy Logic in Real Time Example
- Future

WHAT IS FUZZY LOGIC?

- Definition of fuzzy
 - Fuzzy "not clear, distinct, or precise; blurred"
- Definition of fuzzy logic
 - A form of knowledge representation suitable for notions that cannot be defined precisely, but which depend upon their contexts.

Users of L who do not fit easily into

NN or N categories

Definite native users of language L

TRADITIONAL REPRESENTATION OF LOGIC

Speed = 0

```
bool speed;
get the speed
if ( speed == 0) {
// speed is slow
}
else {
// speed is fast
}
```


Speed = 1

FUZZY LOGIC REPRESENTATION

 For every problem must represent in terms of fuzzy sets.

Slowest

[0.0 - 0.25]

Slow

[0.25 - 0.50]

Fast

[0.50 - 0.75]

FUZZY LOGIC REPRESENTATION CONT.

Slowest

Slow

Fast

Fastest

```
float speed;
get the speed
if ((speed >= 0.0) & (speed < 0.25)) {
// speed is slowest
else if ((speed \geq 0.25)&&(speed < 0.5))
// speed is slow
else if ((speed \geq 0.5)&&(speed < 0.75))
// speed is fast
else // speed \geq 0.75 & speed < 1.0
// speed-is-fastest-
```

ORIGINS OF FUZZY LOGIC

- Traces back to Ancient Greece
- Lotfi Asker Zadeh (1965)
 - First to publish ideas of fuzzy logic.
- Professor Toshire Terano (1972)
 - Organized the world's first working group on fuzzy systems.
- F.L. Smidth & Co. (1980)
 - First to market fuzzy expert systems.

Special Lecture, Bennett University 16.11.2018

 $\mu (\Delta V)$

FUZZY LOGIC VS. NEURAL NETWORKS

- O How does a Neural Network work?
- Both model the human brain.
 - Fuzzy Logic
 - Neural Networks
- Both used to create behavioral systems.

Fig. 2 A simple, single-unit adaptive network

FUZZY LOGIC IN CONTROL SYSTEMS

- Fuzzy Logic provides a more efficient and resourceful way to solve Control Systems.
- Some Examples
 - Temperature Controller
 - Anti Lock Break System (ABS)

TEMPERATURE CONTROLLER

- The problem
 - Change the speed of a heater fan, based off the room temperature and humidity.
- A temperature control system has four settings
 - Cold, Cool, Warm, and Hot
- Humidity can be defined by:
 - Low, Medium, and High
- Using this we can define the fuzzy set.

BENEFITS OF USING FUZZY LOGIC

ANTI LOCK BREAK SYSTEM (ABS)

- Nonlinear and dynamic in nature
- Inputs for Intel Fuzzy ABS are derived from
 - Brake
 - 4 WD
 - Feedback
 - Wheel speed
 - Ignition
- Outputs
 - Pulsewidth
 - Error lamp

Fig. 6 ABS block diagram

FUZZY LOGIC IN OTHER FIELDS

- Business
- Hybrid Modeling
- Expert Systems

Clone Project:

https://github.com/arunpandianj/bennett_fuzzy_example

Self Assessments:

- Traditional set theory is also known as Crisp Set theory. (True / False)
- Fuzzy logic is extension of Crisp set with an extension of handling the concept of Partial Truth. (True / False)
- Japanese were the first to utilize fuzzy logic practically on highspeed trains in Sendai. (True / False)
- Fuzzy logic is a form of ______.
- The values of the set membership is represented by______.

CONCLUSION

- Fuzzy logic provides an alternative way to represent linguistic and subjective attributes of the real world in computing.
- It is able to be applied to control systems and other applications in order to improve the efficiency and simplicity of the design process.

Next Session:

- Challenges in Fuzzy Logics
- More Membership Functions
- Fuzzy Set representation
- Neuro Fuzzy systems
- Case study: Fuzzy @ MATLAB

QUESTIONS?