IZVOD FUNKCIJE

Predpostavimo da je funkcija f(x) definisana u nekom intervalu (a,b) i da je tačka x_0 iz intervala (a,b) fiksirana. Uočimo neku proizvoljnu tačku x_1 iz tog intervala (a,b). Ova tačka x_1 može da se pomera levo desno, pa ćemo je zvati promenljiva tačka intervala (a,b). Razlika x_1-x_0 pokazuje promenu ili priraštaj vrednosti nezavisno promenljive x i najčešće se obeležava sa $\Delta x = x_1 - x_0$

Razlika $f(x_1)$ - $f(x_0)$ predstavlja odgovarajuću promenu ili priraštaj funkcije f(x) i obično se obeležava sa $\Delta f(x) = f(x_1)$ - $f(x_0)$ ili ako je funkcija označena sa y = f(x) može se zapisati: $\Delta y = f(x_1)$ - $f(x_0)$.

Evo kako bi to izgledalo na slici:

Količnik $\frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ naziva se srednjom ili prosečnom brzinom promene funkcije u intervalu [x₀,x₁] Razmišljamo šta će se dešavati kada se tačka x₁ približava tački x₀?(To jest kad x₁ teži x₀)

Ako ta granična vrednost postoji normalno je da nju uzmemo za brzinu promene funkcije u tački x₀.

Brzina promene funkcije f(x) u tački x_0 u matematici se naziva IZVOD funkcije i obeležava se sa :

 $f(x_0)$ ili sa y'. Dakle **definicija izvoda je:**

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Često se umesto tačke x₀ jednostavno stavlja x pa izvod onda glasi:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Rečima ova definicija bi glasila:

Izvod funkcije jednak je graničnoj vrednosti količnika priraštaja funkcije i priraštaja nezavisno promenljive, kad priraštaj nezavisno promenljive teži nuli.

Geometrijska interpretacija izvoda

Posmatrajmo sečicu S koja prolazi kroz tačke $A(x_0, f(x_0))$ i $B(x_1, f(x_1))$. U situaciji kada se Δx smanjuje, odnosno x_1 se sve više približava tački x_0 , ona sve manje i manje seče datu krivu y=f(x) dok u jednom graničnom trenutku ne **postane tangenta** t te krive!

Tada količnik priraštaja funkcije i priraštaja nezavisno promenljive $\frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ predstavlja koeficijent pravca k, to jest tangens ugla koji tangenta zaklapa sa pozitivnim smerom x ose.

Dakle: VREDNOST PRVOG IZVODA U TOJ TAČKI JE : y' = $tg \alpha = k$

TABLICA IZVODA

2.
$$x=1$$

3.
$$(x^2)=2x$$

4.
$$(x^n)'=nx^{n-1}$$

5.
$$(a^x)=a^x \ln a$$

6.
$$(e^{x}) = e^{x}$$

7.
$$(\log_a x) = \frac{1}{x \ln a}$$

8.
$$(\ln x) = \frac{1}{x}$$

$$9. \quad (\sqrt{x}) = \frac{1}{2\sqrt{x}}$$

$$10.\left(\frac{1}{x}\right)^{\cdot} = -\frac{1}{x^2}$$

12.
$$(\cos x) = -\sin x$$

13.
$$(tgx) = \frac{1}{\cos^2 x}$$

14.
$$(\text{ctgx})^{\cdot} = -\frac{1}{\sin^2 x}$$

15. (arcsinx)'=
$$\frac{1}{\sqrt{1-x^2}}$$

16.
$$(\arccos x)^2 = -\frac{1}{\sqrt{1-x^2}}$$

17.
$$(arctgx) = \frac{1}{1+x^2}$$

18.
$$(arcctgx)^{=} - \frac{1}{1+x^2}$$

PRAVILA ZA IZVODE

1.
$$[cf(x)] = cf'(x)$$

2.
$$[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

3.
$$(u \circ v)=u v+v u$$
 izvod proizvoda

4.
$$\left(\frac{u}{v}\right) = \frac{u'v - v'u}{v^2}$$
 izvod količnika

5.
$$f[g(x)] = f'[g(x)] \circ g'(x)$$
 izvod složene funkcije

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 izvod po definiciji

Izvod funkcije u parametarskom obliku

Ako je funkcija zadata parametarski $\mathbf{x}=\mathbf{x}(\mathbf{t})$ i $\mathbf{y}=\mathbf{y}(\mathbf{t})$ prvi izvod tražimo:

$$\mathbf{y_x} = \frac{y_t}{x_t}$$

Izvod implicitno zadate funkcije

Kada je funkcija y=f(x) zadata u implicitnom obliku F(x,y)=0, njen prvi izvod dobijamo iz relacije:

$$\frac{d}{dx}F(x,y)=0$$

Izvodi višeg reda

y''=(y')' drugi izvod je prvi izvod prvog izvoda y'''=(y'')' treći izvod je prvi izvod drugog izvoda $y^{(n)}=(y^{n-1})'$ n-ti izvod je prvi izvod (n-1)-vog izvoda

Jednačina tangente

Jednačina tangente na krivu y=f(x) u tački (x_0,y_0) u kojoj je funkcija diferencijabilna, računa se po formuli:

$$y - y_0 = f'(x_0)(x - x_0)$$

Jednačina normale

Normala na krivu y=f(x) u tački (x_0,y_0) je prava normalna na tangentu krive u toj tački. Njena jednačina je :

$$\mathbf{y} - \mathbf{y_0} = \frac{-1}{f(x_0)} (\mathbf{x} - \mathbf{x_0})$$

Diferencijal

Ako je funkcija y=f(x) diferencijabilna u tački x, tada je Δ y=y Δ x + o(Δ x) kada Δ x \longrightarrow 0

Glavni deo y' Δx priraštaja Δy vrednosti funkcije nazivamo diferencijalom funkcije y=f(x).

Specijalno za y = x važi da je $dx = x' \Delta x = 1 \Delta x = \Delta x$, pa je:

$$dy = y' dx tj. y' = \frac{dy}{dx}$$

Osnovne teoreme diferencijalnog računa

1) Fermaova teorema

Neka je funkcija y=f(x) definisana na odsečku [a,b] i neka u nekoj tački $c \in (a,b)$ ima najveću (ili najmanju) vrednost. Ako postoji obostrani konačan izvod f'(c), onda je f'(c) = 0

2) Darbuova teorema

Ako funkcija y=f(x) ima konačan izvod u svakoj tački odsečka [a,b], tada funkcija y=f(x) za $x \in [a,b]$ uzima bar jednom sve vrednosti između f(a) i f(b)

3) Rolova teorema

Neka je funkcija y=f(x) definisana i neprekidna na odsečku [a,b] i neka postoji konačan izvod y=f'(x) bar na intervalu (a,b) i neka je f(a)=f(b). Tada postoji bar jedan broj $c \in (a,b)$, takav da je f'(c)=0

4) Lagranžova teorema

Neka je funkcija y=f(x) definisana i neprekidna na odsečku [a,b] i neka postoji konačan izvod y=f(x) bar u svakoj tački na intervalu (a,b). Tada postoji bar jedan broj $c \in (a,b)$, takav da je :

postoji bai jedan broj $c \in (a,b)$, takav da je

$$\frac{f(b) - f(a)}{b - a} = f(c)$$

5) Košijeva teorema

Neka su funkcije f(x) i g(x) definisane i neprekidne na odsečku [a,b], neka postoje konačni izvodi f'(x) i g'(x) bar na intervalu (a,b) i neka je $g'(x) \neq 0$, za svako $x \in (a,b)$. Tada postoji bar jedan broj $c \in (a,b)$ takav da je :

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f`(c)}{g`(c)}$$