Euclidean Domains and Factoring in D[x]

A Euclidean domain is a domain that has a division algorithm.

Def^a: A domain D is a Euclidean domain if there is a valuation
v: D\{0}-> IN such that
① v(a) ≤ v(ab) for all a,b ≠ 0
② for all a,b ≠ 0
There exists a and a such that

① $v(a) \le v(ab)$ for all $a,b \ne 0$ ② for all $a,b \in D$, $b \ne 0$, there exists q and r such that a = bq + r with r = 0 or v(r) < v(b). eg If $D = \mathbb{Z}$, we use $v : \mathbb{Z} \setminus \{0\} - > \|V\|$ $a \mapsto |a|$.

eg. If $D = \mathbb{Z}$, we use $V : \mathbb{Z} \setminus \{0\} = \mathbb{N} \setminus \{0\} =$

eg. $\mathbb{Z}[i] = \{a+bi \mid a,b\in\mathbb{Z}\}$, this a ring with "standard" multiplication and addition. Define $v:(\mathbb{Z}[x]\setminus\{0\}) \longrightarrow \mathbb{N}$ $a+bi \longmapsto a^2+b^2$

Claim: This v makes $\mathbb{Z}[i]$ an Euclidean Domain Check the properties: Let x=a+bi and y=c+di Then.

 $\chi_{y} = (a+bi)(c+di) = (ac-bd) + (ad+bc)i$ So,

 $v(\chi y) = (ac - bd)^{2} + (ad + bc)^{2} = (ac)^{2} + (bd)^{2} + (ad)^{2} + (bc)^{2}$ Note, $v(\chi)v(y) = (a^{2} + b^{2})(c^{2} + d^{2}) = (ac)^{2} + (bd)^{2} + (ad)^{2} + (bc)^{2}$

So have v(xy) = v(x)v(y). But then,

For ②, let z=a+bi and w=c+di with $w\neq 0$.

Viewed as elements of $\mathbb{Q}(i) = \{p+qi \mid p,q \in \mathbb{Q}\},\ \frac{\mathbb{Z}}{\mathbb{Q}} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$ Write $\frac{\Delta C + bd}{C^2 + d^2} = m_1 + \frac{n_1}{C^2 + d^2} \quad \text{and} \quad \left| \frac{n_1}{C^2 + d^2} \right| \leq \frac{1}{2}.$ \hat{L} closest integer to $\frac{ac+bd}{c^2+d^2}$ Also, $\frac{bc-ad}{c^2+d^2} = m_2 + \frac{n_2}{c^2+d^2} \quad \text{and} \quad \left| \frac{n_2}{c^2+d^2} \right| \leq \frac{1}{2}$ integerS0, $\frac{Z}{W} = (m_1 + m_2) + \frac{n_1 + n_2 i}{C^2 + Q^2}$ So. $Z = \frac{Z}{W} \cdot W = (m_1 + n_2 i)(C + di) + \left(\frac{n_1 + n_2 i}{C^2 + d^2}\right)(C + di) = Wq + r$ Note, Z, $Wq \in \mathbb{Z}[i]$, so $Z - Wq = r \in \mathbb{Z}[i]$. Then, $V(r) = V\left(\frac{(n_1 + n_2 i)}{c^2 + d^2}(c + di)\right)$ = $V(C+di)V(\frac{N_1+N_2i}{C^2+d^2})$ $= \sqrt{(C+di)} \left[\left(\frac{N_i}{C^2+d^2} \right)^2 + \left(\frac{N_2}{C^2+d^2} \right)^2 \right]$ $\leq V(C+di)\left(\frac{1}{4}+\frac{1}{4}\right)$ $=\frac{4}{5}v(c+di)$ < v(c+di)Theorem: Every Euclidean Domain is a PID. **Proof** Let D be an Euclidean Domain. Let $I \subseteq D$ be an ideal If $I = \{0\}$. then I=(0) Suppose I + {0}. Let a EI with v(a) < v(b) for all other beI. Claim: I = <a> Proof: Since act, $\langle a \rangle \subseteq I$. Let bcI. By division algorithm, b = aq + r with r = 0 or v(r) < v(a).

If r = 0, then r = b - aq ∈ I and then v(r) < v(a) gives a contradiction to choice of a.

So r = 0, thus I = <a>.</sup>

Corollary: Every Euclidean Domain is a UFD.

Note: Proving a domain is not Euclidean is difficult.

eg. $\mathbb{Z}\begin{bmatrix} \frac{1+\sqrt{19}}{2} \end{bmatrix} = \{a+b(\frac{1+\sqrt{19}}{2}) \mid a,b\in\mathbb{Z}\}$ Idea: Suppose there is a valuation $v:D\setminus\{0\} \rightarrow IN$. Need to check only units in the ring are ± 1 . So, take $a\in D\setminus\{0\}$ with v(a) as small as possible. For any $b\in D$, we have b=aq+r with r=0 or v(r)< v(a). But for units, v(1)=v(-1)< v(a), $v(1)\leq v(1\cdot a)$. Only three choices for r=0,1,-1. So

But, $\chi^2 + \chi + 5$ has no roots in \mathbb{Z}_2 or \mathbb{Z}_3 . So \mathbb{Z}_4 or \mathbb{Z}_4 or \mathbb{Z}_4 as \mathbb{Z}_4 as \mathbb{Z}_4 or \mathbb{Z}_4 as \mathbb{Z}_4 . A contradiction.

In D, $x^2 + x + 5$ has roots $x = \frac{-1 \pm \sqrt{19}}{2}$

Main Theorem: If D is a UFD, then D[x] is a UFD.

PIDs

Corollary: If D is a UFD, then $D[x_1,...,x_n]$ is a UFD. Special class $C[x_1,...,x_n]$.

Domains