Метрические пространства

X - метрическое пространство, если:

 $\forall x,y \in X$ задано число $\rho(x,y)$ - расстояние между x и y (метрика)

Примеры

1)
$$\rho(x,y) \ge 0$$
, $\rho(x,y) = 0 \iff x = y$

$$2) \ \rho(x,y) = \rho(y,x)$$

3)
$$\rho(x,z) \le \rho(x,y) + \rho(y,z)$$

$$|\rho(x,z) - \rho(y,z)| \le \rho(x,y)$$
 - следствие из 3)

ho(x,y)=
ho(x-y,0) - инвариантность относительно сдвига

$$\rho(x) \stackrel{\mathrm{dn}}{=} \rho(x,0)$$

$$\rho(x+y) \le \rho(x) + \rho(y)$$

1)
$$\mathbb{R}^n$$
. $\vec{x} = \{x_1, x_2, \dots, x_n\}$

$$\rho^2(x) = \sum_{k=1}^n x_k^2$$

 (x_1, x_2, \dots, x_n) - упорядоченный набор

$$\rho(x) = \max_{k=1,\dots,n} |x_k|$$

3) m - пространство ограниченных числовых последовательностей. $x=(x_1,x_2,\ldots,x_n\ldots)$

$$\rho(x) = \sup_{k=1,\dots,\infty} |x_k|$$

4)
$$l. \ x = (x_1, \ldots, x_n \ldots)$$

$$\rho(x) = \sum_{n=1}^{\infty} |x_n| < +\infty$$

5)
$$l_2$$
. $x = (x_1, \dots, x_n \dots)$

$$\rho^2(x) = \sum_{n=1}^{\infty} x_n^2 < +\infty$$

6) s - пространство всех числовых последовательностей. $x=(x_1,\ldots,x_n\ldots)$

$$\rho(x) = \sum_{n=1}^{\infty} \frac{|x_n|}{2^n (1 + |x_n|)}$$

7) S - измеримые функции. $x(t), t \in [a, b]$

$$\rho(x) = \int_a^b \frac{|x|}{1+|x|} dt$$

$$\rho(x) = \int_{a}^{b} |x(t)| dt$$

$$\rho^2(x) = \int^b x^2(t)dt$$

$$\rho(x) = \max_{t \in [a,b]} |x(t)|$$

11) L_{∞} - ограниченно измеримые функции

$$\rho(x) = \inf\{C : C \ge |x(t)| \text{ п.в. } t \in [a, b]\}$$

12)
$$C^1_{[a,b]} \subset C_{[a,b]}$$

$$\rho(x) = \max_{\forall t} |x(t)| + \max_{\forall t} |x'(t)|$$

Индуцированная метрика

Определение. X - метр. пр-во, $Z\subset X$ Z - метр. пр-во, с метрикой, индуцированной из X

Виды множеств в метрических пространствах

$$a\in X$$
 - м.п., $r\geq 0$

$$S(a,r) = \{x: \ x \in X, \ \rho(a,x) < r\}$$
 открытый шар

$$\overline{S}(a,r)=\{x:\ x\in X,\ \rho(a,x)\leq r\}$$
 замкнутый шар

Определение. Окрестность $S(a,\epsilon),\ \epsilon>0$

Определение. $M \subset X$ - метр. пр-во

Если для $x \in M \ \exists S(x,\epsilon) \subset M$, то x - внутренняя точка M

Определение. $x \in X$ - метр. пр-во, называется точкой прикосновения множества M, если $\forall \epsilon > 0 \ \exists y \in M \ \rho(x,y) < \epsilon$

Определение. Если множество содержит все свои точки прикосновения, то оно называется замкнутым

Утверждение. Замыкание множества является замкнутым множеством

Утверждение. Для того, чтобы множество было замкнутым необходимо и достаточно открытость его дополнения

Определение. $x_n \to x: \rho(x_n, x) \xrightarrow[n \to +\infty]{} 0$