

#ml-papers December 2019

Semi-supervised Sequence Learning

### Section 1: Introduction

- Recurrent neural networks (RNN's) are powerful tools for modelling sequential data, but training them by back propagation through time is difficult
  - rarely used for nlp (text classification etc)
- Thesis: It is possible to use unsupervised learning with more unlabeled data to improve supervised learning.
- Dataset sources
  - Newsgroups , DBpedia
  - IMDB and Rotten Tomatoes
- Presented two approaches
  - Next step prediction model i.e recurrent language model in NLP as unsupervised method
  - Use of sequence encoder
    - Uses a RNN to read a long input sequence into a single vector. Later, use the same vector is recreate the
      original sequence
  - Weights obtained from these 2 pre-training steps can be used to initialize for standard LSTM RNN to improve training and generalization
- Conducted experiments such as data classification on Newsgroups , DBpedia and sentiment analysis on IMDB and Rotten Tomatoes
- Result:
  - Important: Using more unlabeled data from related tasks in the pre-training can improve the generalization of a subsequent supervised model.
  - Long short term memory (LSTMs) pretrained by recurrent language model or sequence encoders are usually better than LSTMs initialized randomly.
- With sequence autoencoders, and outside unlabeled data LSTMs are able to match or surpass previously reported results



## Section 2: Sequence autoencoders and recurrent language models

#### Inspiration:

### seq2seq

enoder: use a recurrent network to read in an input sequence into a hidden state;

decoder: use this hidden state as input for decoder recurrent network

#### pre-training step:

option1: recurrent language model

option2: sequence autoencoder

unsupervised version of seq2seq (replace output seq with input seq-- recreate orig. seq)

the weights for decoder network and encoder network are the same

helpful for limited labeled data

#### whats' next

weights are used as initialization of supervised network

(1. network memorizes input sequence 2. gradients have shortcuts)



### Section 3: Overview of methods

- LSTM recurrent network
  - compare basic LSTM with LSTM initialized with sequence autoencoder (language model LSTM or LM-LSTM vs sequence autoencoder or SA-LSTM)
- Predict document labels from previous time step in most experiments
- Also tried linear label gain, where document label is at each time step and increase weights linearly with each step

## Section 4.0: Experiments - General Setup

- Follow LSTM recipes from this paper, section 3.4 ie: "Although LSTMs tend to not suffer from the vanishing gradient problem, they can have exploding gradients. Thus we enforced a hard constraint on the norm of the gradient [10, 25] by scaling it when its norm exceeded a threshold."
- tasks are <u>text classification</u> and <u>sentiment analysis</u> (a subset of text classification).. I think they should rename the paper to match this test setup it's misleading to imply these results would apply to all sequence learning
- autoencoders are trained without windowing, so they have to reproduce the whole document as 1 sequence which is challenging for long documents
- cap their backprop @ 400 time steps to speed up training
- early stopping & dropout tuned on a validation set taken from the train set

"SA-LSTMs surpassed reported results for all datasets" -> not just their results, but research baselines for these problems!

Table 1: A summary of the error rates of SA-LSTMs and previous best reported resul

| Dataset                | SA-LSTM | Previous best result |
|------------------------|---------|----------------------|
| IMDB                   | 7.24%   | 7.42%                |
| <b>Rotten Tomatoes</b> | 16.7%   | 18.5%                |
| 20 Newsgroups          | 15.6%   | 17.1%                |
| DBpedia                | 1.19%   | 1.74%                |



## Section 4.1: Experiments - Sentiment Analysis on IMBD

- IMBD movie dataset: 25k labeled, 50k unlabeled docs in training, 25k in test. 15% of labeled train was used as validation; average doc had 241 words, max had 2.5k.. so very very long.
- able to reach 86.5% accuracy (5% lower than baselines)
   with their vanilla LSTM setup by fiddling with HPPs
- they found the approach to be very unstable, tweaking the LSTM hyperparameters just a bit lead to garbage models.. makes sense because docs are very very long; in contrast to this they said the SA-LSTM (sequence-autoencoder initialized) was very stable to deviations in hyperparameters, very interesting concept because a lot DL gains attributed to research are actually just better HPP tuning
- included a baseline where the LSTM was initialized with w2v embeddings which I was very happy about

Table 2: Performance of models on the IMDB sentiment classification task.

| Model                                             | Test error rate |
|---------------------------------------------------|-----------------|
| LSTM with tuning and dropout                      | 13.50%          |
| LSTM initialized with word2vec embeddings         | 10.00%          |
| LM-LSTM (see Section 2)                           | 7.64%           |
| SA-LSTM (see Figure 1)                            | 7.24%           |
| SA-LSTM with linear gain (see Section 3)          | 9.17%           |
| SA-LSTM with joint training (see Section 3)       | 14.70%          |
| Full+Unlabeled+BoW [21]                           | 11.11%          |
| WRRBM + BoW (bnc) [21]                            | 10.77%          |
| NBSVM-bi (Naïve Bayes SVM with bigrams) [35]      | 8.78%           |
| seq2-bown-CNN (ConvNet with dynamic pooling) [11] | 7.67%           |
| Paragraph Vectors [18]                            | 7.42%           |



## Section 4.2: Experiments - Sentiment Analysis on Rotten Tomatoes

- 11k docs split 80/10/10, average length 22 words, max is 52 so its smaller than IMBD in documents && words/doc
- much easier problem: LSTMs train much faster and the gaps between different baselines are smaller, however due to the small training set size the scores are actually worse & models are very prone to overfitting
- they use unlabeled data from IMBD & 7.9M amazon movie reviews (why?) to train the autoencoder & also use word2vec embeddings trained on google news (were the previous ones trained on a larger corp?)
- good results but a bit less convincing than previous table; in particular would be interested to see how their SA-LSTM performed if it was only augmented with google news unsupervised data, or how the nonstatic CNN with w2v on IMBD&Amazon performed)

Table 4: Performance of models on the Rotten Tomatoes sentiment classification task.

| Model                                                                | Test error rate |
|----------------------------------------------------------------------|-----------------|
| LSTM with tuning and dropout                                         | 20.3%           |
| LSTM with linear gain                                                | 21.1%           |
| LM-LSTM                                                              | 21.7%           |
| SA-LSTM                                                              | 20.3%           |
| LSTM with word vectors from word2vec Google News                     | 20.5%           |
| SA-LSTM with unlabeled data from IMDB                                | 18.6%           |
| SA-LSTM with unlabeled data from Amazon reviews                      | 16.7%           |
| MV-RNN [28]                                                          | 21.0%           |
| NBSVM-bi [35]                                                        | 20.6%           |
| CNN-rand [12]                                                        | 23.5%           |
| CNN-non-static (ConvNet with vectors from word2vec Google News) [12] | 18.5%           |

they mention in their analysis that they're comparing methods that only use labeled data against methods that use labeled & non-labeled so it's unclear if the lift is due to approach or more data; they ran some experiments where they gave the SA-LSTM less labeled data to try to find a relationship between labeled <-> unlabeled data.. and were able to find this effect (although they don't mention what the ratios were)

## Section 4.3-4.5: Experiments

#### Text classification experiments with 20 newsgroups

- Is it possible to use SA-LSTMs for tasks that have a substantial number of words?
- 70% input embedding dropout and 75% word dropout, SA-LSTM achieves 15.6% test set error

# Character-level document classification experiments with DBpedia

- This linear gain method works well and achieves 1.32% test set error, which is better than SA-LSTM.
- Combining SA-LSTM and the linear gain method achieves 1.19% test set error

#### Object classification experiments with CIFAR-10

- We attempt to see if our pre-training methods extend to non-textual data
- Our 2-layer pretrained LM-LSTM is able to beat a baseline convolutional DBN model despite not using any convolutions and outperforms the non pre-trained LSTM.

Table 6: Performance of models on the 20 newsgroups classification task.

| Model                  | Test error rate |
|------------------------|-----------------|
| LSTM                   | 18.0%           |
| LSTM with linear gain  | 71.6%           |
| LM-LSTM                | 15.3%           |
| SA-LSTM                | 15.6%           |
| Hybrid Class RBM [17]  | 23.8%           |
| RBM-MLP [5]            | 20.5%           |
| SVM + Bag-of-words [2] | 17.1%           |
| Naïve Bayes [2]        | 19.0%           |

Table 7: Performance of models on the DBpedia character level classification task.

| Model                                 | Test error rate |
|---------------------------------------|-----------------|
| LSTM                                  | 13.64%          |
| LSTM with linear gain                 | 1.32%           |
| LM-LSTM                               | 1.50%           |
| SA-LSTM                               | 2.34%           |
| SA-LSTM with linear gain              | 1.23%           |
| SA-LSTM with 3 layers and linear gain | 1.19%           |
| SA-LSTM (word-level)                  | 1.40%           |
| Bag-of-words                          | 3.57%           |
| Small ConvNet                         | 1.98%           |
| Large ConvNet                         | 1.73%           |

