Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modı	ıle			Fin Plate
MainMo	odule			Shear Connection
Connect	ivity			Column flange-Beam web
Shear(l	· ·			50.0
		Supporting Se	ection	
	1	ng Section		PBP 260X87.3
	Mate			E 250 (Fe 410 W)A
т Ү		ngth, fu (MPa)		410
		th , fy (MPa)		250
α	Mass	87.3	Iz(cm4)	125856000.0
ZZ D	Area(cm2) -	11120.0	Iy(cm4)	44500200.00000001
	D(mm)	253.0	rz(cm)	106.4
R ₁	B(mm)	267.0	ry(cm)	63.3
-r ₂	t(mm)	14.0	Zz(cm3)	994910.0
В	T(mm)	14	Zy(cm3)	333340.0
•	FlangeSlope	90	Zpz(cm3)	1123540.0
	R1(mm)	2.4	Zpy(cm3)	333340.0
	R2(mm)	0.0		
		Supported Se	ction	
		d Section		MB 250
v	Material *		E 250 (Fe 410 W)A	
т	Ultimate strength, fu (MPa)		410	
		th , fy (MPa)		250
(B-t)	Mass	37.2	Iz(cm4)	51190000.0
ZZ D	Area(cm2) -	4740.0	Iy(cm4)	3210000.0
	D(mm)	250.0	rz(cm)	104.0
-R ₁	B(mm)	125.0	ry(cm)	26.0
	t(mm)	6.9	Zz(cm3)	409600.0
В				
В	T(mm)	12.5	Zy(cm3)	51000.0
	T(mm) FlangeSlope	98	Zpz(cm3)	464500.0
	T(mm) FlangeSlope R1(mm)	98 13.0	,	
	T(mm) FlangeSlope	98 13.0 6.5	Zpz(cm3) Zpy(cm3)	464500.0
Ÿ	T(mm) FlangeSlope R1(mm) R2(mm)	98 13.0	Zpz(cm3) Zpy(cm3)	464500.0 51000.0
Diameter	T(mm) FlangeSlope R1(mm) R2(mm)	98 13.0 6.5	Zpz(cm3) Zpy(cm3)	464500.0 51000.0 [12.0, 16.0, 20.0]
Diameter Grade	T(mm) FlangeSlope R1(mm) R2(mm) (mm)*	98 13.0 6.5	Zpz(cm3) Zpy(cm3)	[12.0, 16.0, 20.0] , 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Diameter Grade Type	T(mm) FlangeSlope R1(mm) R2(mm) (mm)*	98 13.0 6.5	Zpz(cm3) Zpy(cm3)	464500.0 51000.0 [12.0, 16.0, 20.0] , 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9] Bearing Bolt
Diameter Grade Type Bolt hole	T(mm) FlangeSlope R1(mm) R2(mm) (mm)* e * e type	98 13.0 6.5	Zpz(cm3) Zpy(cm3)	464500.0 51000.0 [12.0, 16.0, 20.0] , 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9] Bearing Bolt Standard
Diameter Grade Type	T(mm) FlangeSlope R1(mm) R2(mm) (mm)* e * e type	98 13.0 6.5	Zpz(cm3) Zpy(cm3)	464500.0 51000.0 [12.0, 16.0, 20.0] , 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9] Bearing Bolt

Type of edges

a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Plate Det	ails
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Material *	E 250 (Fe 410 W)A
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
Weld Det	ails
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		16.0	
Grade *		5.8	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{500.0 * 1 * 157}{\sqrt{3} \ * 1.25}$ $= 36.26$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.49 * 16.0 * 6.9 * 410}{1.25}$ $= 44.36$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (36.26, 44.36)$ = 36.26	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{50.0^{2} + 50.0^{2}}}{36.26}$ $= 2$	3	
No of Columns		1	
No of Rows		3	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 16.0 = 40.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.9, \ 300 \ mm)$ = 300	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	50	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.9, \ 300 \ mm)$ = 300	50	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 18.0 = 30.6	35	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	35	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 18.0 = 30.6	35	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	35	Pass
Capacity (kN)	42.57	44.36	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 250.0 = 150.0$	170	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		
Max. Plate Height (mm)	= 250.0 - 2 * (12.5 + 13.0 + 10)	170	Pass
	= 199.0		
	$2 * e_{min} + (n \ c - 1) * p_{min})$		
Min. Plate Length (mm)	= 2 * 30.6 + (1 - 1) * 40.0	80.0	Pass
	=71.2		
Min.Plate Thickness (mm)	$t_w = 6.9$	8.0	Pass
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
		$\sqrt{3} * \gamma_{mo}$	
Shear yielding Capacity		$=\frac{170*8.0*250}{\sqrt{3}*1.1}$	
(V_dy) (kN)			
		=178.45 $0.75*A_{vvv}*f_{vv}$	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity		= 1 * (170 - (3 * 18.0)) * 8.0 * 410)
(V_dn) (kN)		= 285.36	
Block Shear Capacity in		186.35	
Shear (V_db) (kN)			
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	50.0	= Min(178.45, 285.36, 186.35)	Pass
(kN)		= 178.45	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Tension Yielding Capacity		/1110	
(kN)		$=\frac{170*8.0*250}{1.1}$	
		= 309.09	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
		γ_{m1}	
Tension Rupture Capacity		$= \frac{0.9 * (170 - 3 * 18.0) * 8.0 * 410}{1.25}$	0
(kN)			
Block Shear Capacity in		= 358.96 227.78	
Tension (T db) (kN)		221.10	
(4~) (1)		$T_d = Min(T_{dq}, T_{dn}, T_{db})$	
Tension Capacity (kN)	50.0	= Min(309.09, 358.96, 227.78)	Pass
. , ,		= 227.78	
Moment Capacity (kN-m)	2.25	13.14	Pass
Interaction Ratio	≤1	$\frac{2.25}{1.000000000000000000000000000000000000$	Pass
THOUGHTON TONIO	·	$\frac{13.14}{13.14} + \frac{227.78}{227.78} = 0.39$	1 4000

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)		5	Pass
Max Weld Size (mm)	$Thickness of Thinner part$ $= Min(14, 8.0) = 8.0$ $t_{w_{max}} = 8.0$	5	Pass
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{2250000.0 * 80.0}{682666.67}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{2250000.0 * 0.0}{682666.67}$ $V_{wv} = \frac{V}{l_{w}} = \frac{50000.0}{320}$ $A_{wh} = \frac{A}{l_{w}} = \frac{50000.0}{320}$ $R_{w} = \sqrt{(263.67 + 156.25)^{2} + (0.0 + 156.25)^{2}}$ $= 448.05$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3.5 * 410}{\sqrt{3} * 1.25}$ $= 662.8$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View