Linking brain structure and behavioral variability in dynamic structural equation models

Ethan M. McCormick

- Majority of research to date focuses characterizing and predicting the mean of behavior and cognition
 - Group or individual means
 - Change in means over time
- However, a sole focus on modeling mean levels can miss another important source of individual differences in behavioral and cognitive performance: variability
 - Until recently, methodological tools have not been available to predict variability directly

Intrinsic mechanism differences

How performance interacts with external factors

- Similar means do not necessarily reflect similar profiles of repeated performance
 - Consistent versus inconsistent performance
- Understanding potential causes of consistent vs.
 inconsistent performance can help build a better causal model of behavior
 - e.g., limits on response time versus attentional processes
 - e.g., reliability of the mean

Variability and Development

- Across the adult lifespan, reaction time (RT) displays a "Nike swoosh" effects
 - Sharp improvements in early decades followed by protracted slowing over aging

Variability and Development

- Across the adult lifespan, reaction time (RT) displays a "Nike swoosh" effects
 - Sharp improvements in early decades followed by protracted slowing over aging
 - Inverse pattern in cognitive abilities

Variability and the Brain: White Matter

- White matter tracts transmit signals between brain regions via insulated (i.e., myelinated) fibers
 - Impairments in this insulation might lead to inconsistent (i.e., variable) signal propagation (Kail, 1997)
 - Lower signal-to-noise system

Variability and White Matter

- White matter tracts transmit signals between brain regions via insulated (i.e., myelinated) fibers
 - Impairments in this insulation might lead to inconsistent (i.e., variable) signal propagation (Kail, 1997)
 - Lower signal-to-noise system
- Prior work (Fjell et al., 2011; Tamnes et al., 2012; Kievit et al., 2014; 2016) showed that higher fractional anisotropy (FA) in white matter related to faster processing speed and better cognitive performance
 - In clinical samples, white matter injury leads to more variable performance (Britton et al., 1991; Sorg et al., 2021)

Limitations of Work Thus Far

- Most work done in small samples or in clinical populations
- Observed measures of variability (iSD and iCV)
 - Often confounded with mean performance (esp. with floor effects in RT data)
 - Can be inflated by unmodeled components of performance (e.g., trends, autoregression; de Haan-Rietdijk et al., 2016)
 - Treated as fixed and known vs. estimates
 - Want to be able to simultaneously model the mean and variability of performance, as well as predictors of each

Current Work

- Cambridge Centre for Ageing and Neuroscience (Cam-CAN) dataset
 - N=2681 (708 neuroimaging; red); ages 18-102

Current Work: Data

- Cambridge Centre for Ageing and Neuroscience (Cam-CAN) dataset
 - N=2681 (708 neuroimaging); ages 18-102
- Simple RT task
 - 50 trials

Current Work: DSEM Model

Current Work: DSEM Model

$$\log(RT_{t,i}) = \mu_i + \varphi_i RT_{t-1,i} + \beta_{ti} Trial_{t,i} + \varepsilon_{t,i}$$

$$\varepsilon_{t,i} \sim N(0, \psi_i)$$

Level 2:

$$\begin{split} & \mu_{i} = \gamma_{00} + \gamma_{01} W M_{i} + \gamma_{02} A g e_{i} + u_{0i} \\ & \varphi_{i} = \gamma_{10} + \gamma_{11} W M_{i} + \gamma_{12} A g e_{i} + u_{1i} \\ & \beta_{ii} = \gamma_{20} + \gamma_{21} W M_{i} + \gamma_{22} A g e_{i} + u_{2i} \\ & \psi_{i} = exp\Big(\omega_{0} + \omega_{1} W M_{i} + \omega_{2} A g e_{i} + u_{4i}\Big) \\ & u_{i} \sim MV N \Bigg(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau_{\mu} \\ \tau_{21} & \tau_{\varphi} \\ \tau_{31} & \tau_{32} & \tau_{\beta_{i}} \\ \tau_{41} & \tau_{42} & \tau_{43} & \tau_{\psi} \end{bmatrix} \Bigg) \end{split}$$

Current Work: DSEM Model

 Model comparisons based on DIC favored random effects for all 4 components of performance

- Unconditional Model
 - Significant (between-person) variance in both mean level and (within-person) variability in performance
 - As well as in the trend and autoregressive terms

- Mean level (μ) , variability (ψ) , and autoregression (φ) positively correlated
 - All negatively correlated with the trend (β_t)

correlation
between
computed mean
and variability (r
= .666) higher
than modelbased estimate

Computed measures are confounded

In the conditional model, advanced age and reduced WM predicted poorer performance

Poorer WM integrity predicted increased variability

In the conditional model, advanced age and reduced WM predicted poorer performance

Current Work: Conclusions

- Found broad support for a neural noise hypothesis of behavioral variability
 - Lower WM tract FA predicted slower and more variable performance
 - WM effects held controlling for age
- Were able to model both mean and variance simultaneously without convergence issues despite relatively high correlation
 - Additional information from modeling the trend and autoregression terms
 - Provides an exciting tool for future investigations of individual differences

Acknowledgements

LCD Lab

- Rogier Kievit
- Sam Parsons
- Sophia Borgeest
- Michael Aristodemou
- Léa Michel
- Nicholas Judd

Radboudumc PONDERS O

Cambridge Centre for Ageing and Neuroscience THE SCIENCE OF AGEING

24