(11)

[Tayk]	Tw	12	1	Truk 3	Task	2	Tack	4	Task	1	-
0	2		4	5		7		į	1	16	tine
sequence	ì	Tout	1	Tas	k 2	,	Task	4	Tas	hI.	

Assure there are n devices, each realibility 12: r'(t) = 0.83

$$R(t)=1-(1-r(t))^{n} > R(t)$$
=> $n > 6.73$.

So, at least 7 devices.

Task ID.	reponse time	unitting time
1	17	1 2
2	12	6 3
3	6	1 4
4	(5
5	\$ 8	13

ave
$$\omega = \frac{3+6+9+12+15}{5} = \frac{9}{5}$$
 average walthing time = $\frac{0+2+3+4+15}{5} = 2.8$

- (Q.1)
 (Vi) 3 tasks. L1 bound: $3 \times (2^{\frac{1}{3}} 1) = 0.7798$ $\frac{3}{1 1} u_{i} = \frac{20}{100} + \frac{20}{150} + \frac{90}{200} = 0.85 > LL bound.$ Not schodulable.
- (Vii) No, in some algorithm, thread cannol modiff content directly. For kernel. Tes.
- (Viii) O Matual exclusion @ Hold & wait 3 No precuption.

 Bankers: Hold & wait.

 there's no charge circular wait.
- (ix) P(0) and P(1) may sel "flag = True" at the same time,
 the code will step of "while (flag[1]);"
 black
- (X) It's on off-line. algorithm
 Brantley's algorithm.

although we only add e_i from $4 \rightarrow 7$, is the verrate waiting three is not increase $\frac{7-4}{5} = 0.65$.

(ii) $\pm DF$.

雪丁 Ti= LLM (Pi).

(i)
$$T_1 = (10, 20)$$
, $T_2 = (20, 60)$, $T_3 = (30, 180)$
(execution time, periodice).

$$U = \frac{3}{2a_1} \frac{ei}{Pi} = \frac{10}{70} + \frac{20}{60} + \frac{1}{180} = 1.$$

$$\frac{1}{2}u_i = \frac{1}{60} + \frac{12}{60} + \frac{20}{10} = 0.767 < 0.7798.$$

(1) Success =
$$Pr(s \text{ success}) + Pr(4 \text{ success}) \cdot Ifall)$$

$$= \frac{(s)}{(1)} \frac{1}{2} \frac{1}{2}$$

$$(iii) R(t) = \int_{e}^{\infty} f(t) = \int_{e}^{\infty} 0.2e^{-0.2t} = e^{-0.2t}$$

$$\lambda(t) = -\frac{dR(e)}{d(t)} \cdot \frac{1}{R(t)} = 0.2e^{-0.2t} \cdot \frac{1}{e^{-0.2t}} = 0.2$$