Usando Jupyter Notebook en el aula

Edward Villegas-Pulgarin @cosmoscalibur

Contenido

- 1. Jupyter Notebook
 - a. ¿Qué es?
 - b. Instalación
 - c. Funcionamiento
 - d. Anatomía de un notebook
- 2. Uso general de un notebook
 - a. Escritura con markdown
 - b. Ecuaciones con LaTeX
 - c. Código ejecutable
 - d. HTML y Controles
 - e. Compartir: nbviewer y mybinder
- 3. Notebook en clase
 - a. Documentar casos prácticos
 - o. Flujo de cálculo (básica y avanzada)
 - c. Demostraciones y ejemplos interactivos
 - d. Reportes del proceso de formación
- 4. Algunas extensiones útiles
 - a. nbconvert
 - b. nbsphinx
 - c. nbgrader

Jupyter Notebook ¿Qué es?

Es una aplicación web de código abierto que permite la creación de documentos interactivos.

Jupyter Notebook ^{Instalación}

Gracias a la distribución Anaconda, es posible tenerlo instalado por defecto.

También se puede usar la utilidad pip:

pip install notebook

En android es posible gracias a PyDroid (python2 solamente).

Jupyter Notebook Funcionamiento

Aplicación servidor cliente compuesta de:

- 1. Kernel
- 2. Servidor de notebooks
- 3. Interfaz web
- 4. Archivo notebook

Jupyter Notebook Anatomía de un notebook

Al iniciar la aplicación, nos encontramos el tablero (dashboard).

El documento *notebook* lo forman celdas de diferente naturaleza.

- Celdas markdown.
- Celdas de código.
- Celdas no procesadas (raw).

Usando Notebook Markdown

Se usa un lenguaje de marcado simple como markdown para la escritura de texto.

Escribir en Markdown

Celda escrita en Markdown

Podemos incorporar imágenes al estilo de enlaces ![Texto Alternativo](ruta o url de la imagen).


```
Bloque de código
```

```
a = len('casa')
print(a)
```

- Mandar presentación.
 - Preparar.
 - Ajustes finales.
- Ir a las charlas del viernes.
- Exponer el sábado.
- Ir a los talleres del domingo.
 - 1. Tanda 1.
 - 2. Tanda 2.

1. Tanda 1. 1. Tanda 2.

```
# Escribir en Markdown
*Celda* **escrita** en [Markdown](https://daringfireball.net/projects/markdown/syntax)
Podemos incorporar imágenes al estilo de enlaces `![Texto Alternativo](ruta o url de la imagen)`.
![logo de libro](https://cdn4.iconfinder.com/data/icons/small-n-flat/24/book-256.png)

Bloque de código

'``'python
a = len('casa')
print(a)

+ Mandar presentación.
- Preparar.
- Ajustes finales.
+ Ir a las charlas del viernes.
+ Exponer el sábado.
+ Ir a los talleres del domingo.
```

Usando Notebook LaTeX

Gracias a la biblioteca de javascript MathJax podemos realizar la escritura de ecuaciones adecuadamente formateadas en *notebook* usando sintaxis LaTeX.

Esto es una ecuación en modo texto $E=mc^2$. Esto es una ecuación en modo matemático $\pi^0 = modo matemático$

Esto es una ecuación en modo texto $E = mc^2$. Esto es una ecuación en modo matemático

$$\int_{0}^{\infty} \frac{\alpha}{\pi} T(x) dx$$

Usando Notebook ^{Código}

A través de los diferentes núcleos (kernels) disponibles es posible usar distintos lenguajes de programación para interactuar con sus resultados.

```
In [1]: archivos lista = !ls
          archivos total = len(archivos lista)
                                                                                                           python'
          directorio actual = !pwd
          print("Usted tiene {} archivos en el directorio {}".format(archivos total, directorio actual))
          print("Lista de archivos")
          print(archivos lista)
         Usted tiene 10 archivos en el directorio ['/home/cosmoscalibur/Dropbox/qit/cosmoscalibur/hcomputacionales']
         Lista de archivos
          ['docs', 'environment.yml', 'Exámenes', 'hoja de ruta.md', 'LICENSE', 'Presentaciones', 'pycon', 'README.md', 'requiremen
          ts.txt', 'Untitled.ipynb']
In [12]: d = lm(a \sim polv(b, 2, raw=TRUE))
         # poly crea el modelo polinomico
         # variable, grado, y polinomio tradicional
         summary(d)
         lm(formula = a \sim polv(b, 2, raw = TRUE))
         Residuals:
         -0.4425 0.7364 -0.0339 -0.5677 0.3077
         Coefficients:
```


Estimate Std. Error t value Pr(>|t|)

0.2465

0.8352 1.008

0.8418

Residual standard error: 0.7603 on 2 degrees of freedom Multiple R-squared: 0.9943, Adjusted R-squared: 0.9885

F-statistic: 173.6 on 2 and 2 DF, p-value: 0.005727

Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

poly(b, 2, raw = TRUE)1 -1.8041

polv(b, 2, raw = TRUE)2 1.5376

(Intercept)

Out[3]: funcion_cos(x) = cos(a*x) # Definicion de funciones
 funcion_sin(x) = sin(a*x)
set ytics
set size nosquare # Grafico sin conservacion de aspecto
set output '/tnpy/mplot-inline-1518060188.3310366.244417406904.png'
 plot a=l, funcion_cos(x) t "cos" w boxes, a=2, funcion_sin(x) t "sin" w p # Grafico sobrepuestos y parametricos
unset output

Usando Notebook HTML y controles

Los *notebooks* pueden personalizarse con ayuda de HTML y CSS, y diseñar controles web y javascript (con ipywidgets).

¡Funciona! HTML en notebook.

Usando Notebook Compartir

La rápida aceptación del formato por distintas comunidades ha permitido la aparición de infraestructura de acceso gratuito para compartir *notebooks*.

Servicios:

- MyBinder.
- NBViewer.
- Authorea (existe versión paga).
- Cocalc (existe versión paga).

... 🖸 🌣

Loading repository: cosmoscalibur/talkscript2media

Elementary operations In [2]: Rational(3,2)*pi + exp(I*x) / (x**2 + y)

```
Out[2]: \frac{3\pi}{2} + \frac{e^{ix}}{x^2 + y} 
 In [3]: \exp(I*x).subs(x,pi).evalf() 
 Out[3]: -1.0
```

Aula Notebook Experiencias

Algunos casos de uso:

- Documentar
- Calcular
- Interacción
- Reportes

En el directorio en el cual se encuentran los *notebooks*

jupyter notebook

Si usa Anaconda puede usar Anaconda Navigator para abrir Notebook.

Veamos algunos ejemplos (disponibles en https://github.com/cosmoscalibur/aula-notebook).

Extensiones Notebook Extras

Para complementar lo ya visto, es posible extender el potencial de Jupyter notebooks con extensiones.

Entorno al aula de clase, recomiendo:

- nbconvert
- nbsphinx
- nbgrader

Referencias

Material de la presentación disponible en:

https://github.com/cosmoscalibur/aula-notebook

How IPython and Jupyter Notebook work http://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html

The Jupyter notebook http://jupyter-notebook.readthedocs.io/en/stable/index
http://jupyter-notebook.readthedocs.io/en/stable/index

Jupyter Widgets
https://ipywidgets.readthedocs.io/en/latest/

Jupyter Notebook Quickstart http://jupyter.readthedocs.io/en/latest/content-quickst art.html

Jupyter kernels https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

Herramientas computacionales https://github.com/cosmoscalibur/hcomputacionales

Cuántica Jupyter https://github.com/fisicatyc/Cuantica_Jupyter