Package 'modSaRa2'

June 20, 2018

Type Package

)-
2 3 4 5 5 6

2 CNVcluster

example.data	map .				 											
fInverse					 									 		
gausianMixtu																
getOneBIC					 									 		
Likeli.single					 									 		
localDiagnost	ic				 									 		
localMax .					 									 		1
modifiedSaRa	ı				 									 		. 1
multiSaRa .					 									 		. 1
QuanNorm					 									 		1
SARA					 									 		. 1
SARAp					 									 		1
smooth					 									 		. 1
																1

CNVcluster

CNVcluster

Description

This function uses different priors settings to achieve convergence of the Expectation-Maximization algorithm, and then determine the best clustering results by applying the modified BIC.

Usage

```
CNVcluster(Y, cp, L)
```

Arguments

Y the numeric vector of the intensities of markers

cp the numeric vector of the position index for the identified change-points

L repeat times in the EM algorithm, defaults to 100

Value

The return is the clustered CNV segments by presenting the start position and end position, length of the CNV and the copy number states (duplication or deletion). It also returns a vector of final candidates of change-points.

newcp the final list of change-points

h the bandwidth used for the identification of change-points

cnv.state copy number state for each CNV

cnv.start start position of each CNV

cnv.end end position of each CNV

See Also

gausianMixture for clustering of CNVs using Expectation-Maximization algorithm.

CNVout 3

Description

This function annotates the identified CNV using the reference map file and output the annotation of all identified CNVs. Each line of the output describes one CNV in nine columns: individual ID; chromosome ID; CNV start marker identifier; CNV start location (in base pair units); CNV end marker identifier; CNV end location (in base pair units); length of CNV (in base pair units); length of CNV (number of markers); copy number states (duplication or deletion).

Usage

Arguments

map	Each line of the map file describes a single marker and must contain exactly 3 columns: chromosome ID; rs# or marker identifier; position (in bp units)
h1	the bandwidth 1 for the screening procedure, defaults to 5
h2	the bandwidth 2 for the screening procedure, defaults to 10
h3	the bandwidth 3 for the screening procedure, defaults to 15
L	number of iterations in the EM algorithm for CNV clustering
alpha	the significance levels for the test to accept change-points
thre	the threshold for CNV length
dis.thre	the threshold for distance between CNVs for merging adjacent closely located $\ensuremath{\text{CNVs}}$
outname	name for the output file
eCN	the matrix of the eCN intensities. Each column describes a single sample or sequence and each row describes a single marker

Value

This function generates a text file describing all detected CNVs. In addition, it also returns a list of detected change-points for all samples.

cp a list of position index for the final change-points identified by modSaRa

See Also

modifiedSaRa for processing the modified SaRa method

4 eCN

Examples

```
# Input the example data of SNP genotyping data from Affymatrix Human SNP Array 6.0 platform.
# The map file displays annotation of the markers including the chromosome and location
# information of each SNP or CNV marker.
data(example.data.lrr)
data(example.data.baf)
data(example.data.map)
data(FINV)
\# Use LRR and BAF information of ten samples to calculate eCN
eCN.cal <- eCN(lrr=example.data.lrr,baf=example.data.baf)
e_CN <- eCN.cal$e_CN
# This returns a matrix of new signal intensites of copy number estimates
# Use eCN information of ten samples to detect CNVs
cnv.out <- CNVout(e_CN = e_CN, 1rr = example.data.lrr, 1af = eCN.cal$laf, map = example.data.map, FINV = FINV, a</pre>
# The following file will be generated: "out.csv"
# This file contains CNV output for each individual.
# Each line represents one CNV detected from one sample or sequence.
# For each line, the individual ID, start position, end position, length and state
# (duplication or deletion) of the CNV will be shown.
out.cp <- cnv.out$cp
# This returns a list of vectors containing detected change-points by modSaRa for each
# sample in the marker name.
```

Description

eCN

This function calculates the copy number estimate eCN using the LRR and BAF intensities.

Usage

```
eCN(lrr, baf)
```

Arguments

1rr the matrix of the log R ratio intensities. Each column describes a single sample

or sequence and each row describes a single marker

baf the matrix of the B Allele Frequency intensities. Each column describes a single

sample or sequence and each row describes a single marker

Value

laf the matrix of lesser allele frequency intensities

eCN

e_CN.smo the matrix of copy number estimate intensities after smoothing

e_CN the matrix of copy number estimate intensities

cn.est.L the list of likelihood of being each copy number state for each position in the sequence

See Also

Likeli.single for calculating the likelihood of being each copy number state smooth for smoothing the intensities

estimateSigma 5

Examples

```
# Input the example data of SNP genotyping data from Affymatrix Human SNP Array 6.0 platform.
# The map file displays annotation of the markers including the chromosome and location
# information of each SNP or CNV marker.
data(example.data.lrr)
data(example.data.baf)
# Use LRR and BAF information of ten samples to calculate eCN
eCN.cal <- eCN(lrr=example.data.lrr,baf=example.data.baf)
e_CN <- eCN.cal$e_CN</pre>
# This returns a matrix of new signal intensites of copy number estimates
```

estimateSigma

Estimate the standard deviation of the intensities between two adjacent change-points

Description

This function estimates the standard deviation between two adjacent change-points using a local smoother.

Usage

```
estimateSigma(Y, h = 10)
```

Arguments

Y the numeric vector of the intensities of markers

h the bandwidth of the local smoother

Value

This function estimates the standard deviation of the intensities between two adjacent change points

example.data.baf example.data.baf

Description

An example data to demonstrate modSaRa2 processing multiple sequences

Usage

```
data(example.data.baf)
```

Format

A data frame with 10 individuals on 50000 markers

6 example.data.map

Details

This example data is normalized measure of relative signal intensities for 10 sequences. Each column represents data for one individuals and each row represents data for one marker.

Examples

```
# input the data
data(example.data.baf)
data <- example.data.baf</pre>
```

example.data.lrr

example.data.lrr

Description

An example data to demonstrate modSaRa2 processing multiple sequences

Usage

```
data(example.data.lrr)
```

Format

A data frame with 10 individuals on 50000 markers

Details

This example data is normalized measure of signal intensities for 10 sequences. Each column represents data for one individuals and each row represents data for one marker.

Examples

```
# input the data
data(example.data.lrr)
data <- example.data.lrr</pre>
```

example.data.map

example.data.map

Description

An example map file to demonstrate modSaRa

Usage

```
data(example.data.map)
```

Format

A data frame with 50000 markers on the following three variables: Name as SNP identifier; Chr as chromosome ID; Position as the chromosomal coordinates.

fInverse 7

Examples

```
# input the data
data(example.data.map)
# get general information about the three variables
str(example.data.map)
```

fInverse

Get the inverse cumulative distribution function of local min p-values

Description

This function approximates the inverse cumulative distribution function (CDF) of the local min p-values via simulation.

Usage

```
fInverse(n = 10000, h = 10, hh = 2 * h, precise = 10000, simT = 100)
```

Arguments

n the length of the data to simulate

h the bandwidth for the screening procedure. Defaults to 10

hh the bandwidth for the local minimum procedure

precise the precision of the approximation (the number of quantiles to use)

simT number of simulations

Value

the quantiles of the approximated inverse CDF

gausianMixture

Clustering of CNVs using Expectation-Maximization algorithm

Description

This function clusters the identified change-points to make final CNV calling. The potential CNV segments between two neighbor candidate change-points are assigned to different copy number states according to the average intensities in the segment intervals. We use three clusters including duplication, normal state and deletion. Each cluster is presented by Gaussian distribution with unknown mean and variance. Expectation-Maximization (EM) algorithm is applied for the mixture of Gaussians to assign each segment to the most probable cluster/state. Two physically linked candidate CNV segments in the same group are merged to one unique CNV segment.

Usage

```
gausianMixture(x, cp, priors, L, st)
```

getOneBIC

Arguments

x	the vector of the intensities of markers
ср	the vector of the marker index of the identified change-points
priors	given initial parameters for the EM algorithm
L	repeat times in the EM algorithm. Defaults to 100
st	number of assumed states in the EM algorithm

Value

The return is the clustered CNV segments by presenting the start position and end position using SNP or CNV marker index, and the copy number states. It also returns a vector of final candidates of change-points.

p.final probability of falling into each state for each CNV segment after convergence mu.final segment means of each state after convergence cp.final list of change-points after EM algorithm index.final the bandwidth of change-points

getOneBIC	The modified Bayesian Information Criterion step to remove false pos-
8	
	itives in change-points

Description

The modified Bayesian Information Criterion step to remove false positives in change-points

Usage

```
getOneBIC(x, cp, mod = FALSE)
```

Arguments

x the vector of the intensities of markers

state.new assigned copy number state for each CNV

cp the vector of the marker index of the identified change-points

Value

a list of change-points after filtering false positives

Likeli.single 9

Likeli.single	Likeli.single
---------------	---------------

Description

This function integrates the LRR and BAF intensities to calculate the likelihood of being each copy number state for a position in a sequence

Usage

```
Likeli.single(lrr, laf)
```

Arguments

1rr the matrix of the log R ratio intensities. Each column describes a single sample

or sequence and each row describes a single marker

baf the matrix of the B Allele Frequency intensities. Each column describes a single

sample or sequence and each row describes a single marker

Value

X the calculated copy number estimate

L the vector of likelihood of being each copy number state

L_geno the vector of likelihood of being each genotype

localDiagnostic	Calculate the value for local diagnostic function	

Description

This function calculates local diagnostic function D(x,h) at each point x which depends only on observations in a small neighborhood [x-h,x+h].

Usage

```
localDiagnostic(y, h)
```

Arguments

y the numeric vector of the intensities of markers

h the bandwidth for the screening procedure

10 localMax

Details

Local diagnostic function reflects of position x being or neighborhooding a change-point. A reasonable local diagnostic is

$$D(x) = \frac{\sum_{k=1}^{h} y_{x+k} - \sum_{k=1}^{h} y_{x+1-k}}{h}$$

which is the difference between averages of h data points on the left side and right side of x. Suppose the errors $\varepsilon_i=0$ which means $Y=\mu$ is a piecewise constant vector and D(x) is piecewise linear function. Based on this function, we proposed a recursive formula

$$D(x+1)_h = D(x)_h + \frac{Y_{x-h+1} + Y_{x+h+1} - 2Y_{x+1}}{h}$$

Value

This function generates a numeric vector of local diagnostic function values D(x,h) at each point x

localMax

Get the local maximizers of local diagnostic function

Description

This function finds the local maximizers of local diagnostic function |D(x,h)| and returns the value of position index for all the local maximizers.

Usage

```
localMax(y, span = 5)
```

Arguments

y the list of local diagnostic values within a small neighborhood [x-h, x+h] span the bandwidth to find local Maximizer of local diagnostic function

Details

Local maximizer is defined as follows. For any number x, the interval (x-h, x+h) is called the h-neighborhood of x. And, x is an h-local maximizer of function f(.) if reaches the maximum at x within the h-neighborhood at x. In other words, f(x) >= f(x') for all x' in (x-h, x+h).

Value

numeric vector of position index for all the local maximizers of local diagnostic function

modifiedSaRa 11

modifiedSaRa CNV detection processing multiple sequences using the modified SaRa algorithm	
--	--

Description

This function runs the modified SaRa algorithm and cluster the change-points to CNVs processing multiple sequences.

Usage

```
modifiedSaRa(Y, alpha = 0.01, h1 = 5, h2 = 10, h3 = 15, L = 100, sigma = NULL, precise = 10000, FINV = NULL)
```

Arguments

Υ	the numeric vector of the intensities of markers
alpha	the significance levels for the test to accept change-points
h1	the bandwidth 1 for the screening procedure, defaults to 5
h2	the bandwidth 2 for the screening procedure, defaults to 10
h3	the bandwidth 3 for the screening procedure, defaults to 15
L	number of iterations in the EM algorithm for CNV clustering
sigma	the standard deviation for the intensities between two adjacent change-points, defaults to NULL
precise	the precision of the inverse CDF of local min p-values. This will be used only if FINV is not specified. Defaults to 10000
simT	number of simulations in getting the inverse CDF of the local minimum p values

Value

This function generates a list of detected change-points and clustered CNVs for all samples.

newcp a list of vectors presenting detected change-points, which is in marker index units. Length of the list is the number of samples or sequences

h a list of vectors presenting the bandwidth used for this detected change-points. Length of the list is the number of samples

cnv.state state of detected CNV segments, duplication or deletion cnv.start a list of vectors presenting the start position of CNV segments cnv.end a list of vectors presenting the end position of CNV segments

See Also

multiSaRa for processing the screening and ranking steps for single sequence

12 QuanNorm

multiSaRa	Screening procedure processing single sequence to find local maximizers of the local dignostic statistic

Description

This function runs the screening step under multiple bandwidths processing a single sequence.

Usage

```
multiSaRa(Y, h1 = 3 * round(log10(length(Y))), h2 = 2 *
  round(log10(length(Y))), h3 = round(log10(length(Y))), FINV = NULL,
  precise = 10000, sigma = NULL)
```

Arguments

Υ	the vector of the intensities of markers
h1	the bandwidth 1 for the screening procedure, defaults to 5
h2	the bandwidth 2 for the screening procedure, defaults to 10
h3	the bandwidth 3 for the screening procedure, defaults to 15
FINV	the inverse CDF of the local minimum p-values, approximated by function fInverse()
precise	the precision of the inverse CDF of local min p-values. This will be used only if FINV is not specified. Defaults to 10000
sigma	the standard deviation for the intensities between two adjacent change-points, defaults to NULL

Value

The return is a list of index with local minimum p values at each bandwidth.

See Also

SARA for processing the screening and ranking steps using single bandwidth

QuanNorm	Quantile normalization of the original intentisites	

Description

This function runs the quantile normalization procedure for each sequence separately as a preprocessing step.

Usage

```
QuanNorm(lrr)
```

SARA 13

Arguments

1rr the matrix of intensities. Each column represents a sequence or subject, each

row represents a single marker

Value

This function generates a vector of signal intensities for a single sequence after quantile normalization

Examples

Input the example data of SNP genotyping data from Affymatrix Human SNP Array 6.0 platform data(example.data.lrr)

lrr.qn <- QuanNorm(example.data.lrr) ## quantile normalization of the intensities</pre>

SARA Screening procedure processing single sequence and p value calculation of local maximizers

Description

This function runs the screening and ranking algorithm under single bandwidth processing a single sequence. Local min p-values are corrected by approximation emprically by the distribution of the local minimizers in a long standard normal sequence.

Usage

```
SARA(Y, h = 10, hh = 2 * h, FINV = NULL, sigma = NULL, precise = 10000)
```

Arguments

Y the numeric vector of the intensities of markers

h the bandwidth for the screening procedure, defaults to 10

hh the bandwidth for the local minimum procedure

FINV the inverse CDF of the local min p-values, approximated by function fInverse sigma the standard deviation for the intensities between two adjacent change points,

defaults to NULL

precise the precision of the inverse CDF of local minimum p-values. This will be used

only if FINV is not specified. Defaults to 10000

Value

The return is a vector of corrected local p-value minimum and the marker index of these minimum. index index of markers for the corrected local p-value minimizers

pV corrected local min p-values

See Also

SARAp for processing the screening step using single bandwidth to find local maximizers of the diagnostic statistic

14 smooth

SARAp	Screening procedure processing single sequence to find local maximizers of the dignostic statistic

Description

This function runs the screening procedure under single bandwidth processing a single sequence. Local maximizers of the diagnostic statistic or the corresponding minimum p-values within bandwidth h are identified.

Usage

```
SARAp(Y, h, hh = 2 * h, sigma = NULL)
```

Arguments

Y the numeric vector of the intensities of markers

h the bandwidth for the screening procedure, defaults to 10

hh the bandwidth for the local minimum procedure

sigma the standard deviation for the intensities between two adjacent change points,

defaults to NULL

Value

The return is a vector of local p-value minimum and the marker index of these minimum. index numeric vector a position index for all the local p-value minimum pV local minimum p-values

See Also

estimateSigma for estimation of the standard deviation between two adjacent change-points. local-Max for calculation of the local maximizers of local diagnostic function

smooth	Smooth the original intensities to remove outliers
	•

Description

This function runs the smoothing procedure in the original intensities to remove outliers.

Usage

```
smooth(lrr, R = 10, t = 2)
```

Arguments

1	41	1 1 4 141 17 1	
lrr	the matrix of the signal	i intensities. Each column	presents a sequence or subject.

each row represents a single marker

t the tuning parameter for smoothing region, defaults to 2

smooth 15

Examples

```
# Input the example data of SNP genotyping data from Affymatrix Human SNP Array 6.0 platform.
data(example.data.lrr)
data(example.data.baf)
# Use LRR and BAF information of ten samples to calculate eCN
eCN.cal <- eCN(lrr=example.data.lrr,baf=example.data.baf)
e_CN <- eCN.cal$e_CN
# This returns a matrix of smoothed signal intensites of copy number estimatese
e_CN.smo <- smooth(e_CN, R=10, t=2)</pre>
```

Index

```
*Topic datasets
    example.data.baf, 5
    example.data.lrr,6
    example.data.map, 6
CNVcluster, 2
CNVout, 3
eCN, 4
estimateSigma, 5, 14
example.data.baf, 5
\verb|example.data.lrr|, 6
\verb|example.data.map|, 6
fInverse, 7
{\tt gausianMixture}, {\tt 2}, {\tt 7}
getOneBIC, 8
Likeli.single, 4, 9
localDiagnostic, 9
localMax, 10, 14
modifiedSaRa, 3, 11
multiSaRa, 11, 12
QuanNorm, 12
SARA, 12, 13
SARAp, 13, 14
smooth, 4, 14
```