Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2021/2022 AL310 - Istituzioni di Algebra Superiore I Esercitazione - 23 marzo 2022

Richiami su estensioni, automorfismi e campi di spezzamento

- 1. Siano $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi e $\alpha \in \mathbb{K}$ algebrico su \mathbb{F} con polinomio minimo $m_{\alpha}(x)$. Allora gli \mathbb{F} -monomorfismi di $\mathbb{F}(\alpha)$ in \mathbb{K} sono in corrispondenza biunivoca con l'insieme delle radici distinte di $m_{\alpha}(x)$ in \mathbb{K} . Tali monomorfismi sono \mathbb{F} -automorfismi di $\mathbb{F}(\alpha)$ sse la corrispondente radice appartiene a $\mathbb{F}(\alpha)$.
- 2. Sia $p(x) \in \mathbb{Z}_p[x]$ irriducibile. Allora un campo di spezzamento di p(x) è $\mathbb{K} = \mathbb{Z}_p[x]/(p(x))$. Se $\alpha \in \mathbb{K}$ è una radice di p(x), le altre radici si ottengono applicando ad α le potenze dell'automorfismo di Frobenius.
- 3. $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$ sse m|n (\mathbb{F}_{p^k} indica "il" campo finito con p^k elementi e $\mathbb{F}_p = \mathbb{Z}_p$).
- 4. Dati un'estensione $\mathbb{F} \subseteq \mathbb{K}$ e un elemento $\alpha \in \mathbb{K}$ algebrico su \mathbb{F} , è abbastanza facile trovare un polinomio monico $m(x) \in \mathbb{F}[x]$ che si annulla in α . Per verificare che m(x) è il polinomio minimo di α su \mathbb{F} si può o mostrare la sua irriducibilità, oppure mostrare che il suo grado coincide con quello dell'estensione $\mathbb{F} \subseteq \mathbb{F}(\alpha)$.

Esercizio 1. Siano p e q due primi distinti. Dimostrare che le estensioni semplici $\mathbb{Q}(\sqrt{p})$ e $\mathbb{Q}(\sqrt{q})$ non sono isomorfe come campi. Cosa si può dire delle stesse strutture viste come \mathbb{Q} -spazi vettoriali? Mostrare due estensioni semplici di \mathbb{Q} isomorfe ma non uguali.

Esercizio 2. . Mostrare che dati comunque $m, n \geq 2$ esiste $r \geq 2$ tale che $\mathbb{Q}(\sqrt[n]{2}, \sqrt[m]{2}) = \mathbb{Q}(\sqrt[r]{2}).$

Esercizio 3. Trovare gli automorfismi di $\mathbb{Q}(\sqrt{2+\sqrt{2}})$. Per ciascuno di essi determinare l'immagine di $\sqrt{2}$.

Esercizio 4. Può un automorfismo di $\mathbb{Q}(\sqrt{2})$ che manda $\sqrt{2}$ in $-\sqrt{2}$ essere esteso ad un automorfismo di $\mathbb{Q}(\sqrt{1+\sqrt{2}})$?

Esercizio 5. Trovare il campo di spezzamento (contenuto in \mathbb{C}) dei seguenti polinomi in $\mathbb{Q}[x]$ ed indicarne il grado su \mathbb{Q} :

a
$$x^4 + 2x^2 + 9$$
;

b
$$(x^2-2)(x^3-3)(x^2+x+1)$$
.

Esercizio 6. Trovare un campo di spezzamento dei seguenti polinomi in $\mathbb{Z}_p[x]$ ed indicarne in grado su \mathbb{Z}_p :

a
$$x^4 + x^3 + x^2 + x + 1$$
 con $p = 2$;

b
$$(x^3 + 2x + 1)(x^2 + 1)$$
 con $p = 3$.

Esercizio 7. (Esonero 2018-2019) Sia $\mathbb{K} = \mathbb{Q}(\sqrt{3}, \sqrt{5})$.

- a Calcolare $[\mathbb{K}:\mathbb{Q}]$ e dimostrare che $\mathbb{K}=\mathbb{Q}(\sqrt{3}+\sqrt{5});$
- b calcolare il polinomio minimo di $\sqrt{3} + \sqrt{5}$ su \mathbb{Q} e su $\mathbb{Q}(\sqrt{3})$;
- c dopo aver mostrato che $\mathbb{Q}(\sqrt{15}) \subseteq \mathbb{K}$, descrivere i monomorfismi $\mathbb{K} \to \mathbb{C}$ che fissano $\mathbb{Q}(\sqrt{15})$.

Esercizio 8. Sia τ un'indeterminata e si ponga $\mathbb{F} = \mathbb{F}_2(\tau^2)$. Mostrare che il polinomio $m(x) = x^4 + \tau^2 x^2 + \tau^2$ è irriducibile e non separabile in $\mathbb{F}[x]$. Determinare un campo di spezzamento \mathbb{K} di m(x) e verificare che $\mathbb{K} = \mathbb{K}_i \mathbb{K}_s$.