Suppressor Effects in Linear Models

Dr. J. Kyle Roberts

Southern Methodist University
Simmons School of Education and Human Development
Department of Teaching and Learning

Suppressor Effects Effect Size Corrections

Thinking Graphically About Suppressors

- A suppressor effect occurs when a variable has a non-zero β weight but a zero structure coefficient.
- The inclusion of a suppressor in a regression equation removes the unwanted variance from the predictor variable, thus enhancing the relationship between the other independent variable and the dependent variable.

Suppressor Effects Effect Size Corrections

Illustrating Suppressors in R

```
> library(MASS)
> correlation \leftarrow matrix(c(1, 0.5, 0, 0.5, 1, 0.5,
      0, 0.5, 1), ncol = 3, nrow = 3, dimnames = list(c("dv",
      "iv1", "iv2"), c("dv", "iv1", "iv2")))
> correlation
    dv iv1 iv2
dv 1.0 0.5 0.0
iv1 0.5 1.0 0.5
iv2 0.0 0.5 1.0
> set.seed(12346)
> suppressor.set <- data.frame(mvrnorm(n = 1000,
      rep(10, 3), correlation))
```

Illustration cont.

```
> m1 <- lm(dv ~ iv1 + iv2, suppressor.set)
> summary(m1)
Call:
lm(formula = dv ~ iv1 + iv2, data = suppressor.set)
Residuals:
    Min
             1Q Median 3Q
                                    Max
-2.75190 -0.54804 0.03108 0.53789 2.93339
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.00115 0.29836 20.114 <2e-16
iv1
        0.67842 0.03044 22.285 <2e-16
iv2
      -0.28112 0.03015 -9.323 <2e-16
```

Residual standard error: 0.8217 on 997 degrees of freedom Multiple R-squared: 0.3356, Adjusted R-squared: 0.3343 F-statistic: 251.8 on 2 and 997 DF, p-value: < 2.2e-16

Illustration cont.

- > library(yhat)
- > regr(m1)\$Beta_Weights

dv iv1 0.673360 iv2 -0.281694

> regr(m1)\$Structure_Coefficients

iv1 iv2 0.9096263 0.1178144

> regr(m1)\$Commonality_Data\$CC

					Coefficient	%	Total
Unique	to	iv1			0.3310		98.61
Unique	to	iv2			0.0579		17.26
Common	to	iv1,	and	iv2	-0.0533	-	-15.87
Total					0.3356		100.00

Types of Effect Size Corrections

$$\begin{aligned} \text{Wherry-1:} &= 1 - \frac{N-1}{N-p-1}(1-R^2) \\ \text{Claudy3:} &= 1 - \frac{(N-4)(1-R^2)}{N-p-1} \left[1 + \frac{2(1-R^2)}{N-p+1}\right] \\ \text{Smith-1:} &= 1 - \frac{N}{N-p}(1-R^2) \\ \text{Wherry-2:} &= 1 - \frac{N-1}{N-p}(1-R^2) \\ \text{Olkin\&Pratt:} &= 1 - \frac{(N-3)(1-R^2)}{N-p-1} \left[1 + \frac{2(1-R^2)}{N-p+1}\right] \\ \text{Pratt:} &= 1 - \frac{(N-3)(1-R^2)}{N-p-1} \left[1 + \frac{2(1-R^2)}{N-p-2}\right] \end{aligned}$$

uppressor Effects Effect Size Corrections

Yin and Fan, 2001

- Yin and Fan (2002) showed how the multiple \mathbb{R}^2 is really an upward bound for the actual \mathbb{R}^2 in the population.
- Perhaps most important, they noted that the Wherry formula (basis for the default adjusted R^2 in commonly used statistical software) has been found to be an ineffective analytical formula when sample sizes are small.
- What regr does is compute the multiple R^2 correction that has the least amount of bias given the simulations done by Yin and Fan (2002).

Homework

- Find a journal article in a journal in your field that has used multiple regression.
- Make sure that the one you identify has used both multiple regression and has the correlation matrix attached in a table.
- Reproduce their results by simulating their dataset.
- Try other competing models against their full model and see if you can find a different, better (or at least as good as) model.
- Use the anova function to compare the models.

```
> m0 <- lm(dv ~ iv1, suppressor.set)
> anova(m0, m1)
Analysis of Variance Table
Model 1: dv ~ iv1
```

Model 2: $dv \sim iv1 + iv2$