Chapitre 26 Espaces de dimension finie

Soit $F = \{ M \in M_2(\mathbb{R}) : \text{Tr}(M) = 0 \}.$

Exercice 1: $\Diamond \Diamond \Diamond$

Montrer que F est un s.e.v. de $M_2(\mathbb{R})$ et calculer sa dimension.

Solution: La trace est une forme linéaire sur $M_2(\mathbb{R})$, donc F = Ker(Tr) est un s.e.v. de $M_2(\mathbb{R})$.

D'après le théorème du rang, on a $\dim(M_2(\mathbb{R})) = \dim(\operatorname{Ker}(\operatorname{Tr})) + \dim(\operatorname{Tr}(M_2(\mathbb{R}))).$

Ainsi, $\dim(\operatorname{Ker}(\operatorname{Tr})) = \dim(F) = \dim(M_2(\mathbb{R})) - \dim(\mathbb{R}) = 3.$ Exercice 2: $\Diamond \Diamond \Diamond$

Solution:

Montrons que c'est une famille libre.

Montrer que (M_1,M_2,M_3,M_4) est une base de $M_2(\mathbb{R})$ avec :

 $M_1 = I_2, \ M_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ M_3 = \begin{pmatrix} 6 & 6 \\ 6 & 0 \end{pmatrix}, \ M_4 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$

Exercice 3: $\Diamond \Diamond \Diamond$

Solution:

On sait déjà que c'est une famille libre (cf 25.13).

$$\begin{cases} \lambda_1 + \lambda_2 + 6\lambda_3 + \lambda_4 = 0 \\ 6\lambda_3 + 2\lambda_4 = 0 \\ 6\lambda_3 + 3\lambda_4 = 0 \\ \lambda_1 + 4\lambda_4 = 0 \end{cases} \iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \\ \lambda_4 = 0 \end{cases}$$

En résolvant le systeme. Ainsi, (M_1,M_2,M_3,M_4) est une famille libre. Or $\dim(M_2(\mathbb{R})) = 4$, et c'est une famille libre de 4 vecteurs : c'est une base.

Exercice 3:
$$\spadesuit \spadesuit \lozenge$$
Pour $k \in [0, n]$, on pose $P_k = X^k (1 - X)^{n-k}$. Montrer que $(P_0, ..., P_n)$ est base de $\mathbb{K}_n[X]$.

C'est une famille libre de n+1 vecteurs dans un espace de dimension n+1, donc c'est une base.

Montrer qu'il existe $j \in [1, n]$ tel que $(e_1, ..., e_{n-1}, e'_j)$ est une base de E.

Donc, pour tout j, e'_{j} est combinaison linéaire de $(e_{1},...,e_{n-1})$. Donc \mathcal{B}' est combinaison linéaire de \mathcal{B} , ce qui est absurde. Donc il existe un j tel que $(e_1, ..., e_{n-1}, e'_j)$ est une base de E.

Solution:

Exercice 4: $\Diamond \Diamond \Diamond$

On sait que $(e_1, ..., e_{n-1})$ est une famille libre de E.

Soient $\mathcal{B} = (e_1, ..., e_n)$ et $\mathcal{B}' = (e'_1, ..., e'_n)$ deux bases de E, \mathbb{K} -ev de dimension finie.

Par théorème de la base incomplète, on peut compléter cette famille libre en une base de E. Supposons qu'il n'existe pas de j tel que $(e_1, ..., e_{n-1}, e'_j)$ est une base de E. Alors, pour tout j, $(e_1, ..., e_{n-1}, e'_j)$ est liée.

Exercice 5: $\Diamond \Diamond \Diamond$ Justifier que \mathbb{C} est un \mathbb{C} -ev de dimension 1 et un \mathbb{R} -ev de dimension 2.

Solution: $\mathbb C$ est un $\mathbb C$ -ev de dimension 1 car $\forall z \in \mathbb C, z=z\cdot 1$. $\mathbb C$ est un $\mathbb R$ -ev de dimension 2 car $\forall z \in \mathbb C, z = \Re(z) \cdot 1 + \Im(z) \cdot i$ avec $\Re(z), \Im(z) \in \mathbb R$.

Soient $n \in \mathbb{N}^*$ et $(\lambda_k)_{0 \le k \le n} \in \mathbb{K}^{n+1}$ tels que $\sum_{k=0}^n \lambda_k (X+k)^n = 0$. 1. Montrer que $\forall p \in \llbracket 0, n \rrbracket, \sum_{k=0}^n \lambda_k (X+k)^p = 0$. 2. Montrer que $\forall p \in \llbracket 0, n \rrbracket, \sum_{k=0}^n \lambda_k k^p = 0$. 3. Montrer que $\forall P \in \mathbb{K}_n[X], \sum_{k=0}^n \lambda_k P(k) = 0$.

Solution:

Exercice 6: $\Diamond \Diamond \Diamond$

On pose $P = \sum_{k=0}^{n} \lambda_k (X+k)^n = 0$. 1. On a $P' = \sum_{k=0}^{n} \lambda_k n(X+k)^{n-1} = n \sum_{k=0}^{n} \lambda_k (X+k)^{n-1} = 0$. Donc $\sum_{k=0}^{n} \lambda_k (X+k)^{n-1} = 0$. En dérivant n fois, on obtient bien l'égalité pour tout $p \in [0, n]$.

 $\overline{\text{Donc}}$, en particulier pour un polynôme ne s'annulant jamais, on a que les λ_k sont nuls.

2. En évaluant en 0 l'égalité du 1., on obtient bien l'égalité.

4. On a montré que $\forall P \in \mathbb{K}_n[X], \sum_{k=0}^n \lambda_k P(k) = 0$.

Donc $((X + k)^n, k \in [0, n])$ est une famille libre de $\mathbb{K}_n[X]$.

3. Soit $P \in \mathbb{K}_n[X]$. On a $P = \sum_{p=0}^n a_p X^p$. On a $\sum_{k=0}^n \lambda_k P(k) = \sum_{k=0}^n \lambda_k \sum_{p=0}^n a_p k^p = \sum_{p=0}^n a_p \sum_{k=0}^n \lambda_k k^p = 0$.

4. Déduire que $((X+k)^n, k \in [0,n])$ est une base de $\mathbb{K}_n[X]$.

Or, c'est une famille de n+1 vecteurs dans un espace de dimension n+1, donc c'est une base.