同型な群の例

3 角形の板を動かして自分自身に移すような変換(対称性)を考える

恒等変換を E で表すと、全部で 6 個の対称性をもつ $D_3 = \{ E, R, R^2, S, RS, R^2S \}$

R2S はSの後でRを2回続けて行うことを意味する

変換の積・を定義する. 例えば $S \cdot R^2 = SR^2$. 演算表は以下の通り

•	${f E}$	\mathbf{S}	R^2S	RS	R	\mathbb{R}^2
E	E	S	R^2S	RS	R	$\overline{ m R^2}$
S	\mathbf{S}	\mathbf{E}	\mathbf{R}	\mathbb{R}^2	$ m R^2S$	RS
R^2S	R^2S	\mathbb{R}^2	\mathbf{E}	\mathbf{R}	RS	\mathbf{S}
RS	RS	R	\mathbb{R}^2	\mathbf{E}	\mathbf{S}	R^2S
R	\mathbf{R}	RS	\mathbf{S}	$ m R^2S$	${ m R}^2$	\mathbf{E}
\mathbb{R}^2	R^2	R^2S	RS	\mathbf{S}	E	\mathbf{R}

全単射 f: D3→S3 を考える

$$f(E) = e$$
, $f(S) = \sigma_1$, $f(R^2S) = \sigma_2$, $f(RS) = \sigma_3$,

$$f(R) = \phi_1, f(R^2) = \phi_2,$$

fは次式を満たすので

$$\forall a, b \in D_3, f(a \cdot b) = f(a) \circ f(b)$$

$$D_3 \cong S_3$$
 となる

一般に正 n 角形(n≥3)の板において 板に垂直で重心を通る軸に関する 2 π /n 回転: R 板面の平面にある対称軸に関する π 回転: S とすると

D_n = { E, R, R², ···, Rⁿ⁻¹, S, RS, R²S, ···, Rⁿ⁻¹S } は積「・」について群をなす→2 面体群(dihedral group)

語源: di(2つの)+hedral(…個の面をもつ)

有限群の元の個数を位数(order)とよぶ

チェッカーフラッグの対称性は次の4つ

恒等変換:e

模様があるために2面体群 D4よりも対称性が少なくなっていることに注意