TD20: Forces centrales

Exercice 1 : LA PLANÈTE MARS

1. On utilise la troisième loi de Kepler

$$\frac{T_T^2}{R_{TS}^3} = \frac{T_M^2}{R_{MS}^3} \quad \text{soit} \quad R_{MS} = R_{TS} \left(\frac{T_M}{T_T}\right)^{2/3} \approx 2,30 \times 10^8 \,\text{km} \tag{1}$$

2. La relation entre le rayon de Mars R_M , son diamètre apparent α et la distance Terre-Mars $d_{TM} = R_{MS} - R_{TS}$ est

$$2R_M = \alpha d_{TM}$$
 soit $R_M = \frac{\alpha}{2} (R_{MS} - R_{TS}) \approx 3534 \,\mathrm{km}$ (2)

3. On applique à nouveau la troisième loi de Kepler :

$$\frac{T^2}{R^3} = \frac{4\pi^2}{Gm_M}$$
 soit $m_M = \frac{4\pi^2 R^3}{GT^2} \approx 6.86 \times 10^{23} \,\mathrm{kg}$ (3)

4. L'énergie potentielle de pesanteur à la surface de Mars est

$$E_{pM} = \frac{-Gm_M m}{R_M} \approx -1.29 \times 10^8 \,\text{J}$$
 (4)

5. Pour que le vaisseau quitte l'attraction de la planète Mars, il faut lui donner une énergie cinétique suffisante pour que son énergie mécanique soit nulle soit

$$\frac{1}{2}mv_1^2 = E_{pM} \quad \text{soit} \quad v_1 = \sqrt{\frac{2Gm_M}{R_M}} \approx 5.1 \,\text{km s}^{-1}$$
 (5)

6. Pour quitter le système solaire, il faut échapper à l'attraction de Mars et du Soleil, l'énergie potentielle totale est $E_p = E_{pM} + E_{pS}$. En procédant de la même manière que pour la question précédente, on obtient

$$v_2 = \sqrt{2G\left(\frac{m_M}{R_M} + \frac{m_S}{R_{MS}}\right)} \approx 34,50 \,\mathrm{km}\,\mathrm{s}^{-1}$$
 (6)

Exercice 2 : COMÈTE DE HALLEY

1. En appliquant la troisième loi de Kepler à la Terre et à la comète, on obtient

$$\frac{T^2}{a^3} = \frac{T_T^2}{R_{TS}^3} \quad \text{soit} \quad a = R_{TS} \left(\frac{T}{T_T}\right)^{2/3} \approx 18 \,\text{au} \tag{1}$$

L'excentricité de l'ellipse est

$$e = \frac{a - d_p}{a} \approx 0.967 \tag{2}$$

où d_p est la distance du périhélie.

2. L'énergie mécanique de la comète est $E_m = -\frac{Gmm_S}{2a}$. Au périhélie, son énergie potentielle est $E_p = -\frac{Gmm_S}{d_p}$, on peut en déduire son énergie cinétique et sa vitesse au périhélie est

$$v_p = \sqrt{2Gm_S \left(\frac{1}{d_p} - \frac{1}{2a}\right)} \tag{3}$$

Or d'après la troisième loi de Kepler, on a $m_S = \frac{4\pi^2}{G} \frac{a^3}{T^2}$. On en déduit l'expression de v_p :

$$v_p = \frac{2\pi a}{T} \sqrt{\frac{2a}{d_p} - 1} \approx 54.6 \,\mathrm{km}\,\mathrm{s}^{-1}$$
 (4)

De même, à l'aphélie, sa vitesse est

$$v_a = \frac{2\pi a}{T} \sqrt{\frac{2a}{2a - d_p} - 1} \approx 912 \,\mathrm{m \, s^{-1}}$$
 (5)

Exercice 3 : Trajectoire d'une comète

1. Pour une trajectoire parabolique, $E_m=0$ donc $E_c=E_p$ et on peut calculer la vitesse v_P de la comète au périhélie comme :

$$\frac{1}{2}mv_P^2 = G\frac{mm_S}{r_P} \Leftrightarrow v_P = \sqrt{\frac{2Gm_S}{r_P}}.$$
 (1)

Où m est la masse de la comète et m_S la masse du Soleil. On utilise la troisième loi de Képler pour exprimer Gm_S en fonction des caractéristiques de l'orbite de la Terre. On sait que $v_T = \sqrt{\frac{Gm_S}{r_0}}$ donc $Gm_S = r_0v_T^2$. On a alors

$$v_P = v_T \sqrt{\frac{2r_0}{r_P}} = v_T \sqrt{\frac{2}{\alpha}} = 20v_T = 600 \,\mathrm{km \, s^{-1}}$$
 (2)

2. Schéma:

3. Avec l'équation de l'ellipse, on note que $r_P = \frac{p}{1+e}$ et $r_A = \frac{p}{1-e} = \frac{1+e}{1-e}r_P$. Et, avec e = 1-x, on trouve

$$r_A = \frac{2-x}{x} r_P = \frac{2-x}{x} \alpha r_0 \approx 100 r_0 = 1.5 \times 10^{10} \,\mathrm{km}.$$
 (3)

À cette distance, sa vitesse est (comme pour la question 1)

$$v_A = v_T \sqrt{\frac{2r_0}{r_A}} \approx 4.2 \,\mathrm{km} \,\mathrm{s}^{-1}$$
 (4)

4. la durée τ correspond à une demi-période T de l'orbite de la comète, or la troisième loi de Képler donne $\frac{T^2}{a^3} = \frac{4\pi^2}{Gm_S} = \frac{4\pi^2}{r_0v_T^2}$ donc on trouve

$$\tau = \frac{T}{2} = \frac{\pi}{v_T} \sqrt{\frac{a^3}{r_0}} \approx \frac{\pi}{v_T} \sqrt{\frac{(r_A/2)^3}{r_0}} \approx 5.6 \times 10^9 \,\text{s} = 176 \,\text{ans}$$
 (5)

Exercice 4 : Orbite de transfert de Hohman

1. Schéma

2. — Sur l'orbite basse : $E_{m,1} = -\frac{Gmm_T}{2r_1}$;

— Sur l'orbite géostationnaire : $E_{m,2} = -\frac{Gmm_T}{2r_2}$;

— Sur l'orbite de transfert : $2a = 2r_1 + r_2 - r_1 = r_1 + r_2$ donc $E_{m,t} = -\frac{Gmm_T}{r_1 + r_2}$;

3. — En $P: \Delta E_P = E_{m,t} - E_{m,1} = Gmm_T \left(\frac{1}{2r_1} - \frac{1}{r_1 + r_2}\right)$

- En $A: \Delta E_A = E_{m,2} - E_{m,t} = Gmm_T \left(\frac{1}{r_1 + r_2} - \frac{1}{2r_2}\right)$

4. La durée τ du transit est égale à une demi période de l'orbite de transfert. On utilise la troisième loi de Képler :

$$\frac{4\tau^2}{a^3} = \frac{4\pi^2}{Gm_T} \Leftrightarrow \tau = \pi \sqrt{\frac{a^3}{Gm_T}} = \pi \sqrt{\frac{\left(\frac{r_1 + r_2}{2}\right)^3}{Gm_T}} \tag{1}$$

5. La vitesse v_1 sur l'orbite basse est $v_1^2 = \frac{Gm_T}{r_1}$. En P, on a $E_{m,t} = -\frac{Gmm_T}{r_1 + r_2} = \frac{1}{2}mv_P^2 - \frac{Gmm_T}{r_1}$ soit $v_P^2 = v_1^2 \frac{2r_2}{r_1 + r_2}$. On en déduit que (avec un raisonnement identique pour Δv_A)

$$\Delta v_P = v_1 \left(\sqrt{\frac{2r_2}{r_1 + r_2}} - 1 \right) \quad \text{et} \quad \Delta v_A = v_2 \left(1 - \sqrt{\frac{2r_1}{r_1 + r_2}} \right)$$
 (2)

Exercice 5 : Modèle classique d'un trou noir

- 1. Si la vitesse de libération est égale à c, on a $c^2 = \frac{2Gm}{R_S}$. Soit $R_S = \frac{2Gm}{c^2}$.
- 2. On trouve les résultats suivants
 - Pour la Terre : $R_S = 8.9 \,\mathrm{mm}$ et une densité $2.0 \times 10^{30} \,\mathrm{kg} \,\mathrm{m}^{-3}$
 - Pour le Soleil : $R_S = 3.0 \,\mathrm{km}$ et une densité $1.8 \times 10^{19} \,\mathrm{kg} \,\mathrm{m}^{-3}$

Exercice 6 : Expérience de Rutherford

1. La force d'interaction \vec{F} entre le noyau d'hélium de charge 2e et le noyau d'or de charge Ze et l'énergie potentielle E_p correspondante sont :

$$\vec{F} = \frac{2Ze^2}{4\pi\varepsilon_0 r^2} \vec{e}_r \quad \text{et} \quad E_p = \frac{2Ze^2}{4\pi\varepsilon_0 r} \tag{1}$$

2. La particule α n'est soumise qu'à des forces conservatives, donc son énergie mécanique est constante. Comma la particule vient de l'infini où son énergie potentielle est nulle, son énergie mécanique est :

$$E_m = \frac{1}{2}mv_0^2 \tag{2}$$

3. Comme la seule force appliquée à la particule α est la force \vec{F} qui est centrale, donc de moment nul par rapport à O, le théorème du moment cinétique appliqué à la particule α montre que son moment cinétique \vec{L}_O est une constante du mouvement. On a

$$\vec{L}_O = \overrightarrow{OM}_0 \wedge m \vec{v}_0 = (x_0 \vec{e}_x + b \vec{e}_y) \wedge m \vec{v}_0 \vec{e}_x = -mbv_0 \vec{e}_z$$
 (3)

Au cours du temps, on a $\vec{L}_O = \overrightarrow{OM} \wedge m\vec{v} = r\vec{e}_r \wedge m(\dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta) = mr^2\dot{\theta}\vec{e}_z$

4. On note $C=r^2\dot{\theta}$, c'est une constante du mouvement. Donc $\dot{\theta}=C/r^2$. L'énergie mécanique s'écrit alors :

$$E_m = E_c + E_p = \frac{1}{2}mv^2 + \frac{K}{r} = \frac{1}{2}m(\dot{r}^2 + (r\dot{\theta})^2) + \frac{K}{r} = \frac{1}{2}m\dot{r}^2 + \underbrace{\frac{mC^2}{2r^2} + \frac{K}{r}}_{E_p^*(r)}.$$
 (4)

 $E_n^*(r)$ est l'énergie potentielle effective de la particule.

5. Comme S est la position où r est minimum, on sait qu'en ce point $\dot{r}=0$. La conservation de l'énergie mécanique s'écrit alors

$$\frac{1}{2}mv_0^2 = \frac{mC^2}{2r_{\min}^2} + \frac{K}{r_{\min}} \Leftrightarrow r_{\min}^2 - \frac{2K}{mv_0^2}r_{\min} - \frac{C^2}{v_0^2} = 0$$
 (5)

Cette équation a deux solution dont la seule positive étant l'expression demandée.

$$r_{\min} = \frac{K}{mv_0^2} \left[1 + \sqrt{1 + \left(\frac{mbv_0^2}{K}\right)^2} \right]$$
 (6)

- 6. On remplace dans la relation précédente $\frac{mbv_0^2}{K}$ par $\frac{1}{\tan(\varphi/2)^2}$ et on utilise l'égalité $1 + \frac{1}{\tan(x)^2} = \frac{1}{\sin(x)^2}$. On obtient directement le résultat demandé.
- 7. La distance d'approche est minimale pour $\sin(\varphi/2) = 1$ soit $\varphi/2 = \pi/2$ ou $\varphi = \pi$. La particule repart dans la direction opposée. Dans ce cas, on a $r_{\min} = \frac{2K}{mv^2}$.
- 8. On donne l'énergie cinétique E_c des particules α . On a alors

$$r_{\min} = \frac{K}{E_c} = \frac{Ze^2}{4\pi\varepsilon_0 E_c} \approx 2.3 \times 10^{-14} \,\mathrm{m} \tag{7}$$

Exercice 7: Précision du lancement d'un satellite géostationnaire

1. L'énergie mécanique du satellite est $E_0 = -\frac{Gm_Tm}{r_0} + \frac{1}{2}mv_0^2$. Avec $v_0^2 = Gm_T/r_0$ on a

$$E_0 = -\frac{1}{2}mv_0^2 \tag{1}$$

TD20: Forces centrales

2. L'énergie mécanique du satellite est $E_m = -mv_0^2 + \frac{1}{2}m\left(v_0 + \Delta v\right)^2 \approx -\frac{1}{2}mv_0^2 + mv_0\Delta v$. On a négligé le terme en Δv^2 . On sais aussi que l'énergie mécanique pour une orbite elliptique de demi grand axe a est

$$E_m = -\frac{Gmm_T}{2a} = -\frac{1}{2}mv_0^2 \frac{r_0}{a} \tag{2}$$

En égalant ces deux expressions de l'énergie mécanique, on obtient finalement

$$a = \frac{r_0}{1 - 2\frac{\Delta v}{v_0}} \approx r_0 \left(1 + 2\frac{\Delta v}{v} \right) \tag{3}$$

On a fait un développement limité à l'ordre 1 de $f(x) = \frac{1}{1-x}$ et on a remplacé utilisé $v_0 \approx v$. Pour déterminer l'excentricité, on remarque que $c = a - r_0 = 2r_0 \frac{\Delta v}{a}$ et on utilise l'expression de l'énoncé e = c/a.

$$e = \frac{c}{a} = \frac{2\frac{\Delta v}{v}}{1 + 2\frac{\Delta v}{v}} \approx 2\frac{\Delta v}{v} \tag{4}$$

3. en appliquant la troisième loi de Képler, on a

$$\frac{T^2}{a^3} = \frac{T_0^2}{r_0^3} \quad \text{donc} \quad \frac{T}{T_0} = \left(\frac{a}{r_0}\right)^{3/2} \quad \text{et} \quad \frac{\Delta T}{T_0} = \left(\frac{a}{r_0}\right)^{3/2} - 1 \approx 3\frac{\Delta v}{v}$$
(5)

4. Pour que la vitesse de rotation apparente autour de la Terre n'excède pas un tour par an, il faut que $\frac{\Delta T}{T} < \frac{1}{365}$ et donc on doit avoir

$$\frac{\Delta v}{v} < \frac{1}{3 \times 365} \approx 10^{-3} \tag{6}$$