

# Numerische Darstellung und Codes

Übungen Digitales Design



#### Lösung vs. Hinweise:

Nicht alle hier gegebenen Antworten sind vollständige Lösungen. Einige dienen lediglich als Hinweise, um Ihnen bei der eigenständigen Lösungsfindung zu helfen. In anderen Fällen wird nur ein Teil der Lösung präsentiert.

### 1 NUM - Zahlensysteme

- 1.1 Bestimmen Sie, bis zu welchem Wert man zählen kann, mit Zahlen codiert auf:
  - a) 0 to 15
  - b) 0 to 255
  - c) 0 to 1023

- d) 0 to 65535
- e) 0 to 4'294'967'295 (4 Gbit)

num/number-systems-01

- 1.2 Bestimmen Sie, bis zu welchem Wert man zählen kann, mit Hexadezimalzahlen codiert auf:
  - a) 0 to 65535

b) 0 to 4'294'967'295 (4 Gbit)

num/number-systems-02



### 2 | NUM - Umwandlung von Zahlensystemen

| 2.1 | Führen Sie die Umwandlung folgender reiner Binärzahlen im Dezimalfor- |
|-----|-----------------------------------------------------------------------|
| mat | durch:                                                                |

| a) | $6_{10}$ |
|----|----------|
|    |          |

c) 
$$74_{10}$$

e)  $255_{10}$ 

b) 15<sub>10</sub>

d) 11<sub>10</sub>

num/conversion-01

# 2.2 Führen Sie die Umwandlung folgender Dezimalzahlen im Binärformat durch:

a) 111 1101<sub>2</sub>

c) 1111 1110 0101 1001<sub>2</sub> e) 1001<sub>2</sub>

b) 1 0000<sub>2</sub>

d) 1 0000 0000<sub>2</sub>

num/conversion-02

2.3 Führen Sie die Umwandlung folgender Hexadezimalzahlen im Binärformat durch:

a) 1110<sub>2</sub>

c) 1010 1011 0011 1101<sub>2</sub> e) 10 0011 0100 0110<sub>2</sub>

b) 1 0101 1100<sub>2</sub>

d) 1001 1111 0111<sub>2</sub>

num/conversion-03

2.4 Führen Sie die Umwandlung folgender Binärzahlen im Hexadezimalformat durch:

a)  $A_{16}$ 

c) EB<sub>16</sub>

e)  $C_{16}$ 

b) 6<sub>16</sub>

d)  $2F_{16}$ 

num/conversion-04

2.5 Führen Sie die Umwandlung folgender Hexadezimalzahlen im Dezimalformat durch:

a) 13<sub>10</sub>

c)  $564_{10}$ 

e) 42681<sub>10</sub>

b) 348<sub>10</sub>

d) 254<sub>10</sub>

num/conversion-05

2.6 Führen Sie die Umwandlung folgender Dezimalzahlen im Hexadezimalformat durch:

1. 80<sub>16</sub>

3. FE59<sub>16</sub>

5. 9<sub>16</sub>

2. 10<sub>16</sub>

4. D1<sub>16</sub>



num/conversion-06



# 3 NUM - Operationen auf Logikzahlen

#### 3.1 Führen Sie im Binärsystem folgende Additionen durch:

 $1.\ \ 0010\ \ 1010_2$ 

3. 1011 0011<sub>2</sub>

 $2.\ \ 0110\ \ 1001_2$ 

4.  $1000\ 0000_2$ 

num/operation-01

# 3.2 Führen Sie im Binärsystem folgende Substraktionen durch:

 $1.\ \ 0011\ \ 1010_2$ 

3. 0000 1100<sub>2</sub>

 $2. \ 0011 \ 1010_2$ 

4. 0111 1111<sub>2</sub>

num/operations-02

#### 3.3 Führen Sie im Binärsystem folgende Multiplikationen durch:

1. 0011 1100<sub>2</sub>

3. 0011 0000<sub>2</sub>

2. 0011 1100<sub>2</sub>

4.  $0110\ 0010_2$ 

num/operation-03

#### 3.4 Führen Sie im Hexadezimalsystem folgende Additionen durch:

1. 1300<sub>16</sub>

3. 1333<sub>16</sub>

2. 8984<sub>16</sub>

 $4. 13534_{16}$ 

num/operation-04

#### 3.5 Bestimmen Sie den Binärwert von:

1. 1001<sub>2</sub>

3. 11100001<sub>2</sub>

2. 110001<sub>2</sub>

4.  $111110000001_2$ ;  $(2^{n-1}-1)*2^{n+1}+1$ 

num/operation-05



#### 4 | NUM - Codes

4.1 Führen Sie folgende Additionen auf BCD-codierte Zahlen durch:

1. 0100 0100 0100 $_{\mathrm{BCD}}$ 

3.  $1001\ 0010_{\mathrm{BCD}}$ 

2. 0110 0011 0011 $_{\rm BCD}$ 

4. 0001 0000 0000<sub>BCD</sub>

num/codes-01

4.2 Führen Sie die Umwandlung des Gray-Codes  $1001_{\rm Gray}$  mit Hilfe der Rekursionsformel im Skript durch.

 $1110_{2}$ 

num/codes-02



# NUM - Darstellung von Arithmetischen Zahlen

5.1 Stellen Sie folgende Dezimal- und reine Binärzahlen mit den Verfahren Vorzeichen- Grösse, Einer-Komplement und Zweierkomplement auf 8 Bits codiert dar:

| 1. $0001 \ 0010_s$                           | 4. $0001\ 1010_s$           |
|----------------------------------------------|-----------------------------|
| $0001\ 0010_{\rm 1cl}$                       | $0001\ 1010_{1\mathrm{cl}}$ |
| $0001\ 0010_{\rm 2cl}$                       | $0001\ 1010_{2\mathrm{cl}}$ |
| 2. $1000 \ 0011_s$                           | 5. $0000 \ 1010_s$          |
| $1111  1100_{1{\rm cl}}$                     | $0000\ 1010_{1\mathrm{cl}}$ |
| $1111\ 1101_{\rm 2cl}$                       | $0000\ 1010_{\rm 2cl}$      |
| 3. $0000 \ 0000_s; 1000 \ 0000_s$            | 6. $1110 \ 0100_s$          |
| $0000\ 0000_{\rm 1cl}; 1111\ 1111_{\rm 1cl}$ | $1001\ 1011_{1{\rm cl}}$    |
| $0000\ 0000_{\rm 2cl}$                       | $1001\ 1100_{\rm 2cl}$      |

num/representation-01

- 5.2 Führen Sie eine Zeichenänderung auf die folgenden, im Zweierkomplement codierten Zahlen durch:
- 5.3 Perform a character change to the following numbers encoded in two's complement:
  - 1. 1111 1111<sub>2</sub>
- $3. 0001 0000_2$
- 5. BC<sub>16</sub>

- 2. 1000 1000<sub>2</sub>
- 4. FF<sub>16</sub>

6.  $7F_{16}$ 

num/representation-02

5.4 Gegeben sind die Zahlen  $0001_2$  und  $1001_2$ , ausgedrückt als Zweierkomplement auf 4 Bits codiert. Stellen Sie dieselben Zahlen als Zweierkomplement auf 8 Bits codiert dar.

0000 0001;1111 1001

num/representation-03