

Credit Card Users Churn Prediction

Problem Statement

Business Context

The Thera bank recently saw a steep decline in the number of users of their credit card, credit cards are a good source of income for banks because of different kinds of fees charged by the banks like annual fees, balance transfer fees, and cash advance fees, late payment fees, foreign transaction fees, and others. Some fees are charged to every user irrespective of usage, while others are charged under specified circumstances.

Customers' leaving credit cards services would lead bank to loss, so the bank wants to analyze the data of customers and identify the customers who will leave their credit card services and reason for same – so that bank could improve upon those areas

You as a Data scientist at Thera bank need to come up with a classification model that will help the bank improve its services so that customers do not renounce their credit cards

Data Description

- CLIENTNUM: Client number. Unique identifier for the customer holding the account
- Attrition_Flag: Internal event (customer activity) variable if the account is closed then "Attrited Customer" else "Existing Customer"
- Customer_Age: Age in Years
- Gender: Gender of the account holder
- Dependent_count: Number of dependents
- Education_Level: Educational Qualification of the account holder Graduate, High School, Unknown, Uneducated, College(refers to college student), Post-Graduate, Doctorate
- Marital_Status: Marital Status of the account holder
- Income_Category: Annual Income Category of the account holder
- Card_Category: Type of Card
- Months_on_book: Period of relationship with the bank (in months)

- Total_Relationship_Count: Total no. of products held by the customer
- Months_Inactive_12_mon: No. of months inactive in the last 12 months
- Contacts_Count_12_mon: No. of Contacts in the last 12 months
- Credit_Limit: Credit Limit on the Credit Card
- Total_Revolving_Bal: Total Revolving Balance on the Credit Card
- Avg_Open_To_Buy: Open to Buy Credit Line (Average of last 12 months)
- Total_Amt_Chng_Q4_Q1: Change in Transaction Amount (Q4 over Q1)
- Total_Trans_Amt: Total Transaction Amount (Last 12 months)
- Total_Trans_Ct: Total Transaction Count (Last 12 months)
- Total_Ct_Chng_Q4_Q1: Change in Transaction Count (Q4 over Q1)
- Avg_Utilization_Ratio: Average Card Utilization Ratio

What Is a Revolving Balance?

• If we don't pay the balance of the revolving credit account in full every month, the unpaid portion carries over to the next month.

That's called a revolving balance

What is the Average Open to buy?

• 'Open to Buy' means the amount left on your credit card to use. Now, this column represents the average of this value for the last 12 months.

What is the Average utilization Ratio?

• The Avg_Utilization_Ratio represents how much of the available credit the customer spent. This is useful for calculating credit scores.

Relation b/w Avg_Open_To_Buy, Credit_Limit and Avg_Utilization_Ratio:

• (Avg_Open_To_Buy / Credit_Limit) + Avg_Utilization_Ratio = 1

Importing necessary libraries

```
In [628...
```

```
# Libraries needed
import numpy as np
import pandas as pd
```

```
import seaporn as sns
import matplotlib.pyplot as plt
import sklearn
%matplotlib inline
from xgboost import XGBClassifier
from sklearn.ensemble import (AdaBoostClassifier,
                              BaggingClassifier,
                              GradientBoostingClassifier,
                              RandomForestClassifier,
from sklearn.model selection import train test split
from sklearn.model selection import GridSearchCV
from sklearn.model selection import RandomizedSearchCV
from sklearn.model selection import KFold
from sklearn.model selection import cross val score
from sklearn.impute import SimpleImputer
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear model import LogisticRegression
from sklearn.metrics import (classification report,
                             confusion matrix,
                             accuracy score,
                             recall score,
                             precision score,
                             f1 score,
                             make scorer
from imblearn.over sampling import SMOTE
from imblearn.under sampling import RandomUnderSampler
import warnings
warnings.filterwarnings('ignore')
```

• Libraries successfully loaded.

```
# Preventing scientific notation.

pd.set_option("display.float_format", lambda x: "%.3f" % x)
```

• Code ran to block scientific notation.

Loading the dataset

In [630...

Out[632...

```
# Importing and mounting google drive to access the data in colab.
from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=T rue).

• Accessing google drive to save/read data.

```
# Saving the path of the .csv file.

path = '/content/drive/MyDrive/Project 3/BankChurners.csv'

# Creating the data frame, data, to load the .csv to the notebook

data = pd.read_csv(path)

# Creating copy of the data frame, df, to keep the original data unaltered.

df = data.copy()
```

- Loaded data into a pandas dataframe named data.
- Created a copy of data frame called df to keep original data unmodified.

Data Overview

(10127, 21)

```
In [632... # Shape of the data frame.

df.shape
```

• The data set has 10,127 rows and 21 columns.

First 5 rows of the data frame.

df.head()

Out[633...

	CLIENTNUM	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status	Income_Category	Card_Cat
0	768805383	Existing Customer	45	М	3	High School	Married	60K-80K	
1	818770008	Existing Customer	49	F	5	Graduate	Single	Less than \$40K	
2	713982108	Existing Customer	51	М	3	Graduate	Married	80K $-$ 120K	
3	769911858	Existing Customer	40	F	4	High School	NaN	Less than \$40K	
4	709106358	Existing Customer	40	М	3	Uneducated	Married	60K-80K	

5 rows × 21 columns

4

- The top 5 rows of the data set.
- Some columns are omitted to save space.

In [634...

Last 5 rows of the data frame.
df.tail()

Out[634...

	CLIENTNUM	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status	Income_Category	Card
10122	772366833	Existing Customer	50	М	2	Graduate	Single	$40K{-}60\mathrm{K}$	
10123	710638233	Attrited Customer	41	М	2	NaN	Divorced	$40K{-}60\mathrm{K}$	
	_,	Attrited		_					

	Credit-Card-Us	sers-Churn-Prediction/F	⁻ inal_ETMT_Project_L	.earnerNoteb	ook_FullCode_v2.ipynb a	at main · dardenkyle/C	redit-Card-Users-Cl	hurn-Prediction · GitHub	
10124	7 10500003	Customer	44	۲	I	High School	ıvıarrıed	Less than \$40K	
10125	717406983	Attrited Customer	30	М	2	Graduate	NaN	$40K{-}60\mathrm{K}$	
10126	714337233	Attrited Customer	43	F	2	Graduate	Married	Less than \$40K	

5 rows × 21 columns

- The last 5 rows of the data set.
- Some columns are omitted to save space.

In [635...

Information about the data frame's columns.
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10127 entries, 0 to 10126
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	CLIENTNUM	10127 non-null	int64
1	Attrition_Flag	10127 non-null	object
2	Customer_Age	10127 non-null	int64
3	Gender	10127 non-null	object
4	Dependent_count	10127 non-null	int64
5	Education_Level	8608 non-null	object
6	Marital_Status	9378 non-null	object
7	Income_Category	10127 non-null	object
8	Card_Category	10127 non-null	object
9	Months_on_book	10127 non-null	int64
10	Total_Relationship_Count	10127 non-null	int64
11	Months_Inactive_12_mon	10127 non-null	int64
12	Contacts_Count_12_mon	10127 non-null	int64
13	Credit_Limit	10127 non-null	float64
14	Total_Revolving_Bal	10127 non-null	int64
15	Avg_Open_To_Buy	10127 non-null	float64
16	Total_Amt_Chng_Q4_Q1	10127 non-null	float64
17	Total_Trans_Amt	10127 non-null	int64
1Ω	Total Trans C+	10177 non-null	in+61

```
19 Total_Ct_Chng_Q4_Q1 10127 non-null float64 20 Avg_Utilization_Ratio 10127 non-null float64 dtypes: float64(5), int64(10), object(6) memory usage: 1.6+ MB
```

- All columns except 6 are numerical columns. The other 6 are of the object data type.
- 19 columns have no null values, 2 columns have null values.

```
# Checking the data frame for duplicate values.

df.duplicated().value_counts()
```

Out[636... False 10127 dtype: int64

Out[637...

• There are no duplicated entries (rows).

```
# Checking the data frame for na values.

df.isna().sum()
```

```
CLIENTNUM
Attrition Flag
                                0
Customer Age
Gender
Dependent count
Education Level
                             1519
Marital Status
                              749
                                0
Income Category
Card Category
                                0
Months on book
Total_Relationship_Count
                                0
Months Inactive 12 mon
                                0
Contacts Count 12 mon
Credit Limit
Total Revolving Bal
                                0
Avg_Open_To_Buy
                                0
Total Amt Chng Q4 Q1
Total Trans Amt
Total Trans Ct
                                0
```

Total Ct Chng Q4 Q1

Avg_Utilization_Ratio

0

dtype: int64

- Education_Level has 1519 null values.
- Marital_Status has 749 null values.
- These values will be imputed after splitting the data into training, validation, and test sets to avoid data leakage.

In [638...

Statistical summary of the columns with data type of "Int64" and "Float64".
df.describe().T

Out[638...

	count	mean	std	min	25%	50%	75%	
CLIENTNUM	10127.000	739177606.334	36903783.450	708082083.000	713036770.500	717926358.000	773143533.000	82834:
Customer_Age	10127.000	46.326	8.017	26.000	41.000	46.000	52.000	
Dependent_count	10127.000	2.346	1.299	0.000	1.000	2.000	3.000	
Months_on_book	10127.000	35.928	7.986	13.000	31.000	36.000	40.000	
Total_Relationship_Count	10127.000	3.813	1.554	1.000	3.000	4.000	5.000	
Months_Inactive_12_mon	10127.000	2.341	1.011	0.000	2.000	2.000	3.000	
Contacts_Count_12_mon	10127.000	2.455	1.106	0.000	2.000	2.000	3.000	
Credit_Limit	10127.000	8631.954	9088.777	1438.300	2555.000	4549.000	11067.500	34
Total_Revolving_Bal	10127.000	1162.814	814.987	0.000	359.000	1276.000	1784.000	í
Avg_Open_To_Buy	10127.000	7469.140	9090.685	3.000	1324.500	3474.000	9859.000	34
Total_Amt_Chng_Q4_Q1	10127.000	0.760	0.219	0.000	0.631	0.736	0.859	
Total_Trans_Amt	10127.000	4404.086	3397.129	510.000	2155.500	3899.000	4741.000	18
Total_Trans_Ct	10127.000	64.859	23.473	10.000	45.000	67.000	81.000	
Total_Ct_Chng_Q4_Q1	10127.000	0.712	0.238	0.000	0.582	0.702	0.818	
Avg_Utilization_Ratio	10127.000	0.275	0.276	0.000	0.023	0.176	0.503	

Observations

- CLIENTNUM is unique for all customers and will not be useful for analysis. This column will be dropped later.
- Customer_Age has a mean of 46 years, a min of 26, and a max of 73 years.
- Dependent_count has a mean of 2.3 dependents, a min of 0, and a max of 5 dependents.
- Months_on_book has a mean of 35.9 months, a min of 13, and a max of 56 months.
- Total_Relationship_Count has a mean of 3.8 products with the bank, a min of 1, and a max of 6 products with the bank.
- Months_Inactive_12_mon has a mean of 2.3 months, a min of 0, and a max of 6 months.
- Contacts Count 12 mon has a mean of 2.4 times contacted, a min of 0, and a max of 6 contacts.
- Credit_Limit has a mean of 8632 dollars, a min of 1438, and a max of 34516 dollars (rounded to nearest dollar). This is a very large range.
- Total Revolving Bal has a mean of 1163 dollars, a min of 0, and a max of 2517.
- Avg_Open_To_Buy has a mean of 7469 dollars, a min of 3, and a max of 34516 dollar. This is a very large range.
- Total_Amt_Chng_Q4_Q1 has a mean of 0.76, a min of 0, and a max of 3.397. This is a ratio of amount spent in Q4 to amount spend in Q1 (Q4/Q1).
- Total_Trans_Amt has a mean of 4404 dollars, a min of 510, and a max of 18484 dollars.
- Total_Trans_Ct has a mean of 64.8 total transactions, min of 10, and a max of 139 total transactions.
- Total_Ct_Chng_Q4_Q1 has a mean 0.71, a min of 0, and a max of 3.71. This is a ratio of number of transactions in Q4 to number of transactions in Q1 (Q4/Q1).
- Avg_Utilization_Ratio has a mean of 27.5%, a min of 0%, and a max of 99.9%. This is the customers percent of credit used.

In [639...

Statistical summary of the columns with data type of "object".
df.describe(include=["object"]).T

Out[639...

	count	unique	top	freq
Attrition_Flag	10127	2	Existing Customer	8500
Gender	10127	2	F	5358
Education_Level	8608	6	Graduate	3128
Marital_Status	9378	3	Married	4687
Income_Category	10127	6	Less than \$40K	3561

Card_Category 10127 4 Blue 9436

Observations

- Attrition_Flag has 10127 non-null entries and 2 unique entries, with the most frequent being "Existing Customer".
- Gender has 10127 non-null entries and 2 unique entries, with the most frequent being "F".
- Education_Level has 8608 non-null entries and 6 unique entries, with the most frequent being "Graduate". Null values are present and will be imputed after data is split into training, validation, and test sets to avoid data leakage.
- Marital_Status has 9369 non-null entries and 3 unique entries, with the most frequent being "Married". *Null values are present and will be imputed after data is split into training, validation, and test sets to avoid data leakage.*
- Income Category has 10127 non-null entries and 6 unique entries, with the most frequent being "Less than 40k"
- Card_Category has 10127 non-null entries and 4 unique entries, with the most frequent being "Blue".

```
# Checking the percentages of classes in the target variable column.

df['Attrition_Flag'].value_counts(1)
```

Out[640... Existing Customer 0.839 Attrited Customer 0.161

Name: Attrition Flag, dtype: float64

• 83.9% of customers are existing customers.

Data Preprocessing

```
# Dropping "CLIENTNUM" column beacuse it is unnecessary information for analysis.

df = df.drop('CLIENTNUM', axis=1)
```

• Dropping "CLIENTNUM" as each is unique and will not add to analysis.

```
## Encoding Existing and Attrited customers to 1 and 0 respectively, for analysis.

df["Attrition_Flag"].replace("Existing Customer", 1, inplace=True)

df["Attrition_Flag"].replace("Attrited Customer", 0, inplace=True)
```

• Encoding "Existing Customer" to 1 and "Attrited Customer" to 0 to use in models.

In [643... # Top 5 rows of the new data frame. df.head()

Out[643		Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status	Income_Category	Card_Category	Month
	0	1	45	М	3	High School	Married	60K-80K	Blue	
	1	1	49	F	5	Graduate	Single	Less than \$40K	Blue	
	2	1	51	М	3	Graduate	Married	80K - 120K	Blue	
	3	1	40	F	4	High School	NaN	Less than \$40K	Blue	
	4	1	40	М	3	Uneducated	Married	$60K{ m -80K}$	Blue	

• Observed encoding was successful.

```
# Checking the values of the Income_Category column.

df['Income_Category'].value_counts()
```

Out[644... Less than \$40K 3561 \$40K - \$60K 1790 \$80K - \$120K 1535 \$60K - \$80K 1402 abc 1112 \$120K + 727 Name: Income_Category, dtype: int64

• Observed 1112 entries of "abc" in the Income Category column.

```
# Replacing "abc" entries in the Income_Category column with np.nan.

df['Income_Category'].replace('abc', np.nan, inplace=True)
```

• Replaced values of "abc" with "np.nan" (i.e. not a number).

```
In [646...
           # Checking the new values of the Income Category column.
           df['Income Category'].value counts()
           Less than $40K
Out[646...
                             3561
           $40K - $60K
                             1790
           $80K - $120K
                             1535
           $60K - $80K
                             1402
                              727
           $120K +
           Name: Income Category, dtype: int64

    Observed "abc" values have been replaced.

In [647...
           # Observing the amount of non-null values in the Income Category column.
           df['Income Category'].info()
         <class 'pandas.core.series.Series'>
         RangeIndex: 10127 entries, 0 to 10126
         Series name: Income Category
         Non-Null Count Dtype
         _____
         9015 non-null object
         dtypes: object(1)
         memory usage: 79.2+ KB
            • Null values will be imputed after splitting data into traning, validation, and test sets to avoid data leakage.
In [648...
           # Creating a list with column labels that need to be converted from "object" to "category" data type.
           cat cols = [
                'Attrition_Flag',
                'Gender',
                'Education Level',
                'Marital Status',
                'Card Category',
                'Income Category'
```

```
# Converting the columns with "object" data type to "category" data type.
df[cat_cols] = df[cat_cols].astype('category')
```

• Converted columns with data type of "object" to "category" for use in analysis.

In [649...

```
# Observing the data types of the new data frame.
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10127 entries, 0 to 10126
Data columns (total 20 columns):

```
Column
                             Non-Null Count Dtype
                             -----
    Attrition Flag
                             10127 non-null category
    Customer Age
1
                             10127 non-null int64
    Gender
 2
                             10127 non-null category
    Dependent count
                             10127 non-null int64
    Education Level
                             8608 non-null category
    Marital Status
                             9378 non-null
                                           category
    Income Category
                             9015 non-null
                                            category
    Card Category
7
                             10127 non-null category
    Months on book
8
                             10127 non-null int64
    Total Relationship Count 10127 non-null int64
10 Months Inactive 12 mon
                             10127 non-null int64
11 Contacts Count 12 mon
                             10127 non-null int64
12 Credit Limit
                             10127 non-null float64
13 Total Revolving Bal
                             10127 non-null int64
                             10127 non-null float64
14 Avg Open To Buy
15 Total Amt Chng Q4 Q1
                             10127 non-null float64
16 Total Trans Amt
                             10127 non-null int64
17 Total Trans Ct
                             10127 non-null int64
18 Total Ct Chng Q4 Q1
                             10127 non-null float64
19 Avg Utilization Ratio
                             10127 non-null float64
dtypes: category(6), float64(5), int64(9)
memory usage: 1.1 MB
```

• Observed the data types were changed to "category".

In [650...

Checking for new na values, will impute after train-test split to avoid data leakage.

```
Out[650...
           Attrition Flag
                                            0
           Customer Age
           Gender
                                            0
           Dependent count
           Education Level
                                        1519
           Marital Status
                                          749
           Income Category
                                        1112
           Card Category
                                            0
           Months on book
                                            0
           Total Relationship Count
```

Months Inactive 12 mon

Contacts_Count_12_mon

Total_Revolving_Bal Avg_Open_To_Buy Total_Amt_Chng_Q4_Q1 Total Trans Amt

Credit Limit

df.isna().sum()

Total_Trans_Ct 0
Total_Ct_Chng_Q4_Q1 0
Avg_Utilization_Ratio 0
dtype: int64

• Observed new null values in Income Category column.

0

• Null values will be imputed after splitting data into training, validation, and test sets to avoid data leakage.

Exploratory Data Analysis (EDA)

Questions:

- 1. How is the total transaction amount distributed?
- 2. What is the distribution of the level of education of customers?
- 3. What is the distribution of the level of income of customers?
- 4. How does the change in transaction amount between Q4 and Q1 (total_ct_change_Q4_Q1) vary by the customer's account status (Attrition_Flag)?
- 5. How does the number of months a customer was inactive in the last 12 months (Months_Inactive_12_mon) vary by the customer's account status (Attrition_Flag)?

6. What are the attributes that have a strong correlation with each other?

Answers:

- 1. The Total_Trans_Amt is right skewed, with a median of about 4000.
- 2. The distribution of Education_Level :
 - Graduate degree 36%
 - High school diploma 23%
 - Uneducated 17%
 - Bachelor's 11.8%
 - Post-Graduate 6%
 - Doctorate 5.2%
- 3. The distribution of Income Level:
 - Less than 40K 39.9%
 - 40k 60k 19.9%
 - 80k 120k 17%
 - 60k 80k 15.6%
 - 120k+ 8.1%
- 4. Total_Ct_Chng_Q4_Q1 is much lower for attrited customers compared to existing customers. Attrited customers have a median of about 50 whereas existing customers have a median of closer to 70. The ratio of Q4 transaction counts to Q1 transaction counts (Q4/Q1) is much higher for existing customers indicating that attrited customers are spending less at the end of the year than existing customers.
- 5. Months_Inactice_12_mon does have some affect on attrition, but a clear pattern is not obvious. Customers with 0 months inactive have about a 50-50 chance of being attrited, but all other values are much less likely to attrition.
- 6. Attributes with a strong correlation:

- Credit-Card-Users-Churn-Prediction/Final_ETMT_Project_LearnerNotebook_FullCode_v2.ipynb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub
- Avg_Open_to_Buy and Credit_Limit are completely positively correlated by necessity. As a customer's credit limit goes up, their open to buy also increases.
- Total_Trans_Amt and Total_Trans_Ct are very highly positively correlated. This makes sense because the more transations a customer makes, the more the customer will spend.
- Customer_Age and Months_on_book are highly positively correlated. This makes sense because as customers age, their time with the bank increases.
- Total_Revolving balance and Avg_Utilization_Ratio is positively correlated. This makes sense because if a customer has a high utilization, they will likely have a higher revolving balance.
- Avg_Open_To_Buy and Avg_Utilization_Ratio are negatively correlated. This is because the higher a customers utilization is, the less their amount open to buy will be.
- Credit_Limit and Avg_Utilization_Ratio are negatively correlated. This is because customers with a higher credit limit tend to have a lower utilization.

The below functions need to be defined to carry out the Exploratory Data Analysis.

```
In [651...
           # function to plot a boxplot and a histogram along the same scale.
           def histogram boxplot(data, feature, figsize=(12, 7), kde=False, bins=None):
               Boxplot and histogram combined
               data: dataframe
               feature: dataframe column
               figsize: size of figure (default (12,7))
               kde: whether to the show density curve (default False)
               bins: number of bins for histogram (default None)
               f2, (ax box2, ax hist2) = plt.subplots(
                   nrows=2, # Number of rows of the subplot grid= 2
                   sharex=True, # x-axis will be shared among all subplots
                   gridspec_kw={"height_ratios": (0.25, 0.75)},
                   figsize=figsize,
               ) # creating the 2 subplots
               sns.boxplot(
                   data=data, x=feature, ax=ax box2, showmeans=True, color="violet"
               ) # boxplot will be created and a triangle will indicate the mean value of the column
               sns.histplot(
                   data=data v=feature kde=kde av=av hist? hins=hins nalette="winter"
```

```
1/11/25, 9:20 PM
                                        Credit-Card-Users-Churn-Prediction/Final ETMT Project LearnerNotebook FullCode v2.ipynb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub
```

```
MACA-MACA, A-TEMENTE, RAC-RAC, MA-MA_HESCE, DEHIS-DEHIS, PAECEC- MEHICLE
) if bins else sns.histplot(
    data=data, x=feature, kde=kde, ax=ax hist2
) # For histogram
ax hist2.axvline(
    data[feature].mean(), color="green", linestyle="--"
) # Add mean to the histogram
ax hist2.axvline(
    data[feature].median(), color="black", linestyle="-"
) # Add median to the histogram
```

```
In [652...
           # function to create labeled barplots
           def labeled barplot(data, feature, perc=False, n=None):
               Barplot with percentage at the top
```

```
data: dataframe
feature: dataframe column
perc: whether to display percentages instead of count (default is False)
n: displays the top n category levels (default is None, i.e., display all levels)
total = len(data[feature]) # length of the column
count = data[feature].nunique()
if n is None:
    plt.figure(figsize=(count + 1, 5))
else:
    plt.figure(figsize=(n + 1, 5))
plt.xticks(rotation=90, fontsize=15)
ax = sns.countplot(
    data=data,
    x=feature,
    palette="Paired",
    order=data[feature].value counts().index[:n].sort values(),
for p in ax.patches:
    if perc == True:
        label = "{:.1f}%".format(
            100 * p.get_height() / total
```

```
Credit-Card-Users-Churn-Prediction/Final_ETMT_Project_LearnerNotebook_FullCode_v2.ipynb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub / # per centuage of each cluss of the category

else:
    label = p.get_height() # count of each level of the category

x = p.get_x() + p.get_width() / 2 # width of the plot
y = p.get_height() # height of the plot

ax.annotate(
    label,
        (x, y),
        ha="center",
        va="center",
```

```
In [653...
           # function to plot stacked bar chart
           def stacked barplot(data, predictor, target):
               Print the category counts and plot a stacked bar chart
               data: dataframe
               predictor: independent variable
               target: target variable
               count = data[predictor].nunique()
               sorter = data[target].value counts().index[-1]
               tab1 = pd.crosstab(data[predictor], data[target], margins=True).sort values(
                   by=sorter, ascending=False
               print(tab1)
               print("-" * 120)
               tab = pd.crosstab(data[predictor], data[target], normalize="index").sort values(
                   by=sorter, ascending=False
               tab.plot(kind="bar", stacked=True, figsize=(count + 1, 5))
               plt.legend(
```

1/1-- "....a. 1-f+" | bb-.. +- ---b-.. /4 4\\

loc="lower left", frameon=False,

size=12,

xytext=(0, 5),

plt.show() # show the plot

textcoords="offset points",

) # annotate the percentage

```
pit.iegenu(ioc= upper iett , obox_co_anchor=(i, i))
plt.show()
```

In [654...

```
### Function to plot distributions
def distribution plot wrt target(data, predictor, target):
   fig, axs = plt.subplots(2, 2, figsize=(12, 10))
   target uniq = data[target].unique()
   axs[0, 0].set title("Distribution of target for target=" + str(target uniq[0]))
    sns.histplot(
        data=data[data[target] == target uniq[0]],
        x=predictor,
        kde=True,
        ax=axs[0, 0],
       color="teal",
   axs[0, 1].set title("Distribution of target for target=" + str(target uniq[1]))
   sns.histplot(
       data=data[data[target] == target_uniq[1]],
        x=predictor,
        kde=True,
        ax=axs[0, 1],
        color="orange",
   axs[1, 0].set title("Boxplot w.r.t target")
    sns.boxplot(data=data, x=target, y=predictor, ax=axs[1, 0], palette="gist rainbow")
   axs[1, 1].set title("Boxplot (without outliers) w.r.t target")
    sns.boxplot(
        data=data,
        x=target,
        y=predictor,
        ax=axs[1, 1],
        showfliers=False,
        palette="gist rainbow",
   plt.tight_layout()
```

Univariate Analysis

• Customer_Age is normally distributed, with a median of 46 years.

• Not many outliers.

- Months_on_book is normally distributed with a very high frequency of the mode.
- 24% of the entries have 36 Months_on_book .
- Not many outliers.

In [659... df['Credit Limit'l.min()

Out[659... 1438.3

- Credit_Limit is right skewed with many outliers. It seems like these values are just outside the range, but are actual credit limits.
- Minimum is 1438 dollars, since all customers have a credit line it is expected that the minimum is > 0.

In [660...

histogram_boxplot(df, 'Total_Revolving_Bal')

- Min Total_Revolving_bal is 0, indicating some customers pay off their balance every month.
- Median Total_Revolving_bal is around 1250 with the mean being slightly lower.
- The customers with 0 Total_Revolving_bal are very slightly left skewing the data.

- Avg_Open_To_Buy is right skewed as indicated by the mean being so much greater than the median.
- Avg_Open_To_Buy has a range of nearly 35,000.
- Avg_Open_To_Buy has so many outliers it seems that they cant possibly be all outliers.

In [662...

histogram_boxplot(df, 'Total_Amt_Chng_Q4_Q1')

- Total_Amt_Chng_Q4_Q1 is normally distributed with many outliers and centered around 0.6.
- It is unlikely that this many outliers are actually outliers

- Total_Trans_Amt is right skewed with many outliers. It has a median of about 4000.
- No customer had a 0 dollar transaction amount, or all customers used their card.

In [664... | Line | Lin

- Total_Trans_Ct is pretty normally distributed with almost a median equal to the mean.
- It does not have many outliers.

In [665...

histogram_boxplot(df, 'Total_Ct_Chng_Q4_Q1')

- Total_Ct_Chng_Q4_Q1 is normally distributed and centered around 0.6.
- The median and mean are almost identical and many outliers are present.

In [666... histogram_boxplot(df, 'Avg_Utilization_Ratio')

• Avg_Utilization_Ratio is right skewed with no outlier. The range is 1 because this is a utilization ratio from 0 to 100 percent.

Avg_Utilization_Ratio

In [667...

labeled_barplot(df, 'Attrition_Flag')

- 83.9% of all customers are existing customers.
- This is the target variable.

In [668...

labeled_barplot(df, 'Gender')

• 52.9% of customers are female.

In [669... labeled_barplot(df, 'Dependent_count')


```
In [670...
           # Getting percentages of values
           df['Dependent count'].value counts(1)
Out[670...
               0.270
               0.262
               0.181
               0.155
               0.089
               0.042
           Name: Dependent count, dtype: float64
            • 26.9% of customers have 3 dependents.
            • 26.2% of customers have 2 dependents.
            • 18% of customers have 1 dependent.
            • 15% of customers have 4 dependents.
In [671...
           labeled barplot(df, 'Education Level')
                                               3128.0
            3000
            2500
                                                           2013.0
            2000
                                                                                      1487.0
            1500
                     1013.0
            1000
```



```
# Getting percentages of values

df['Marital_Status'].value_counts(1)
```

Out[674... Married 0.500 Single 0.420 Divorced 0.080

Name: Marital_Status, dtype: float64

- 49% of customers are married.
- 42% of customers are single.
- 7% of customers are divorced.

```
In [675... labeled_barplot(df, 'Income_Category')
```



```
$80K - $120K 0.170
$60K - $80K 0.156
$120K + 0.081
```

Name: Income_Category, dtype: float64

- 39% of customers make less than 40k.
- 19% of customers make between 40k 60k.
- 17% of customers make between 80k 120k.

In [677...

labeled_barplot(df, 'Card_Category')

Card_Category

```
In [678... # Getting percentages of values
    df['Card_Category'].value_counts(1)

Out[678... Blue     0.932
     Silver     0.055
     Gold     0.011
```

Name: Card_Category, dtype: float64

0.002

Platinum

- 93% of customers have a Blue card.
- 5% of customers have a Silver card.

```
In [679... labeled_barplot(df, 'Total_Relationship_Count')
```



```
In [682... # Getting percentages of values
    df['Months_Inactive_12_mon'].value_counts(1)
Out[682... 3 0.380
```

2 0.324 1 0.220 4 0.043 5 0.018 6 0.012 0 0.003

Name: Months_Inactive_12_mon, dtype: float64

- 38% of customers have 3 months inactive.
- 32% of customers have 2 months inactive.
- 22% of customers have 1 months inactive.

```
In [683... labeled_barplot(df, 'Contacts_Count_12_mon')

3500 - 3227.0 3380.0
```



```
# Getting percentages of values
df['Contacts_Count_12_mon'].value_counts(1)
```

```
Out[684...
```

- 3 0.3342 0.319
- 1 0.148
- 4 0.137
- 0 0.039
- 5 0.017
- 6 0.005

Name: Contacts_Count_12_mon, dtype: float64

- 33% of customers have been contacted 3 times in the last 12 months.
- 31% of customers have been contacted 2 times in the last 12 months.
- 14% of customers have been contacted 1 times in the last 12 months.

Multivariate Analysis

Most important indicators

```
In [685... distribution nlot wrt target(df. "Total Trans Amt". "Attrition Flag")
```


- The distribution of Total_Trans_Amt looks similar for both existing and attrited customers.
- The median Total Trans Amt for attrited customers is 2500, while the median for existing customers is closer to 4000.
- The IQR of Total Trans Amt for attrited customers is much smaller than that of existing customers.
- The maximum Total_Trans_Amt for attrited customers is about half as much compared to exsiting customers.

In [686...

distribution_plot_wrt_target(df, "Total_Trans_Ct", "Attrition_Flag")

- The distribution of Total_Trans_Ct is more normally distributed for attrited customers
- The distribution of Total_Trans_Ct for attrited customers is centered around 50 while for existing customers the center is around 70.
- Attrited customers have a much lower median and max Total_Trans_Ct than existing customers.

- Total_Revolving_Bal has similar distributions for both attrited and existing customers, but the existing customers have a bulge in the center.
- Attrited customers have peaks at both the min and max of the distribution.
- The median Total_Revolving_Bal for existing customers is higher than that of more than 75% of attrited customers.

- Distributions of Total_Ct_Chng_Q4_Q1 for both attrited and existing customers are normally distributed.
- Distribution of Total Ct Chng 04 01 is centered around 0.5 for attrited customers

- Distribution of Total_Ct_Chng_Q4_Q1 is centered around 0.7 for existing customers.
- Median of Total_Ct_Chng_Q4_Q1 for existing customers is greater than that of 75% of attrited customers.
- Max of Total_Ct_Chng_Q4_Q1 for existing customers similar to attrited customers.
- Min of Total_Ct_Chng_Q4_Q1 for existing customer much greater than that of attrited customers.

In [689...

distribution_plot_wrt_target(df, "Total_Amt_Chng_Q4_Q1", "Attrition_Flag")

- Total Amt Chng Q4 Q1 has similar distributions for both attrited customers.
- Median is higher for existing customers.
- Min is much lower for attrited customers.

Less important indicators

In [690... # Created a correlation matrix to show any correlations between non-categorical columns. # Values of 1 are highly positively correlated, values of -1 are highly negatively correlated. plt.figure(figsize=(15, 7)) sns.heatmap(df.corr(), annot=True, vmin=-1, vmax=1, fmt=".2f", cmap="Spectral") plt.show() 1.00 -0.01 0.05 Customer Age -1.00 -0.12 -0.02 0.00 0.01 0.00 -0.06 -0.05 -0.07 -0.01 0.01 Dependent count - -0.12 1.00 -0.10 -0.04 -0.01 -0.00 0.07 -0.04 0.07 -0.040.03 0.05 0.01 -0.040.75 Months_on_book --0.10 1.00 -0.01 0.07 -0.01 0.01 0.01 0.01 -0.05 -0.04-0.05 -0.01 -0.01Total Relationship Count - - 0.01 -0.04 -0.01 1.00 -0.00 0.06 0.05 0.04 -0.070.01 -0.07 -0.35-0.240.07 0.50 Months Inactive 12 mon - 0.05 -0.01 0.07 -0.00 1.00 0.03 -0.02 -0.04 -0.02 -0.03 -0.04 -0.04 -0.04 -0.01 0.25 Contacts Count 12 mon - -0.02 -0.04-0.01 0.06 0.03 1.00 0.02 -0.05 0.03 -0.02 -0.11 -0.15 -0.09 -0.06 Credit Limit - 0.00 0.01 -0.07 -0.02 0.02 1.00 0.04 1.00 0.01 0.17 0.08 -0.00 -0.48 0.07 - 0.00 Total Revolving Bal - 0.01 -0.00 0.01 0.01 -0.04-0.05 0.04 1.00 -0.05 0.06 0.06 0.06 0.09 0.62 1.00 Avg Open To Buy - 0.00 0.07 0.01 -0.07-0.02 0.03 1.00 -0.05 0.01 0.17 0.07 -0.01 - -0.25

- Avg_Open_to_Buy and Credit_Limit are completely positively correlated by necessity. As a customer's credit limit goes up, their open to buy also increases.
- Total_Trans_Amt and Total_Trans_Ct are very highly positively correlated. This makes sense because the more transations a customer makes, the more the customer will spend.
- Customer_Age and Months_on_book are highly positively correlated. This makes sense because as customers age, their time with the bank increases.
- Total_Revolving balance and Avg_Utilization_Ratio is positively correlated. This makes sense because if a customer has a high utilization, they will likely have a higher revolving balance.
- Avg_Open_To_Buy and Avg_Utilization_Ratio are negatively correlated. This is because the higher a customers utilization is, the less their amount open to buy will be. * Credit_Limit and Avg_Utilization_Ratio are negatively correlated. This is because customers with a higher credit limit tend to have a lower utilization.

• Customer_Age appears to be nearly identically distributed for existing customer and attrited customers.

In [692... distribution_plot_wrt_target(df, "Months_on_book", "Attrition_Flag")

Attrition_Flag

Attrition_Flag

Attrition_Flag

Attrition_Flag

• Months_on_book appears to be nearly identically distributed for existing customer and attrited customers.

• Credit_Limit appears to be nearly identically distributed for existing customer and attrited customers.

Avg_Open_To_Buy appears to be nearly identically distributed for existing customer and attrited customers.

- The median Avg_Utilization_Ratio for attrited customers is 20%.
- The median Avg_Utilization_Ratio for existing customers is 0%.
- Close to 75% of existing customers have an Avg_Utilization_Ratio less than the median of attrited customers.

stacked_barp	lot(df,	ot(df, 'Gender', 'Attrition_Flag')							
Attrition_Flag Gender	0	1	All						
All	1627	8500	10127						
F	930	4428	5358						
М	697	4072	4769						

• From this stacked barplot, Gender does not appear to affect attrition.

In [697... stacked_barplot(df, "Dependent_count", "Attrition_Flag") Attrition_Flag All Dependent count All

• From this stacked barplot, Dependent_Count does not appear to affect attrition.

In [698	<pre>stacked_barplot(df, 'Education_Level', 'Attrition_Flag')</pre>							
	Attrition_Flag	0	1	All				
	Education_Level							
	All	1371	7237	8608				
	Graduate	487	2641	3128				
	High School	306	1707	2013				
	Uneducated	237	1250	1487				
	College	154	859	1013				
	Doctorate	95	356	451				
	Post-Graduate	92	424	516				

• From this stacked barplot, Education_Level does not appear to significantly affect attrition.

```
In [699...
           stacked_barplot(df, 'Marital_Status', 'Attrition_Flag')
                                      All
         Attrition_Flag
                                  1
         Marital Status
         All
                                     9378
                         1498
         Married
                          709
                                     4687
                               3978
         Single
                                     3943
                          668 3275
```


• From this stacked barplot, Marital_Status does not appear to affect attrition.

```
$40K - $60K 271 1519 1790
$80K - $120K 242 1293 1535
$60K - $80K 189 1213 1402
$120K + 126 601 727
```

• From this stacked barplot, Income_Category does not appear to significantly affect attrition.

In [701... stacked_barplot(df, 'Card_Category', 'Attrition_Flag')

• Slighly less customers with a Platinum card attrit, but not by a significant amount.

In [702...

```
stacked_barplot(df, "Total_Relationship_Count", "Attrition_Flag")
```

Attrition_Flag	0	1	All
Total_Relationship_Count			
All	1627	8500	10127
3	400	1905	2305
2	346	897	1243
1	233	677	910
5	227	1664	1891
4	225	1687	1912
6	196	1670	1866

- Customers that have 1 or 2 products with the bank attrit the most, followed by customers who have 3 products.
- Customers that have either 4, 5, or 6 products with the bank attrit at nearly the same rates.

• From this stacked bar plot it can be observed that Months_Inactice_12_mon does have some affect on attrition, but a clear pattern is not obvious.

- 0 customers with 6 contacts in the last 12 months attrited.
- Customers with less contacts in the last 12 months attrited more often.

Data Pre-processing

Outlier Detection

```
In [705...
           # Code to be used checking for outliers.
           Q1 = df.quantile(0.25) # The 25th percentile.
           Q3 = df.quantile(0.75) # The 75th percentile.
                                   # Inter Quantile Range (75th perentile - 25th percentile)
           IOR = 03 - 01
           lower = 01 - 1.5 * IOR # Finding the lower bounds for all values. All values outside these bounds are outliers.
           upper = 03 + 1.5 * IOR # Finding the upper bounds for all values. All values outside these bounds are outliers.
In [706...
           # Checking the percentages of outliers, as defined by the previous cell.
           ((df.select dtypes(include=["float64", "int64"]) < lower)</pre>
               |(df.select dtypes(include=["float64", "int64"]) > upper)
           ).sum() / len(data) * 100
          Customer Age
                                      0.020
Out[706...
           Dependent count
                                      0.000
           Months on book
                                      3.812
           Total Relationship Count
                                      0.000
           Months Inactive 12 mon
                                      3.268
           Contacts Count 12 mon
                                      6.211
                                      9.717
           Credit Limit
           Total Revolving Bal
                                      0.000
           Avg_Open_To_Buy
                                      9.509
           Total Amt Chng Q4 Q1
                                      3.910
           Total Trans Amt
                                      8.848
           Total Trans Ct
                                      0.020
           Total Ct Chng Q4 Q1
                                      3.891
           Avg Utilization Ratio
                                      0.000
           dtype: float64
```

- It was determined not necessary to treat any outliers.
- Although some values are outside the outlier range, these values are determined as significant for analysis.

Train-test split

```
# Creating the independent variable data frame.
X = df.drop('Attrition_Flag', axis=1)
# Creating the dependent variable data frame.
y = df['Attrition_Flag']

• Split data into independent and dependent variables.

In [708... # Splitting data into training and temp data frames.
```

```
# Splitting temp data frame into validation and test data frames.

X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.4, random_state=1, stratify=y_temp)
```

X train, X temp, y train, y temp = train test split(X, y, test size=0.5, random state=1, stratify=y)

```
In [710...
           # Printing the size of the Training, Validation, and Test data frames.
           print("*"*40)
           print("Shape of Training Set : ", X train.shape)
           print("Shape of Validation Set", X val.shape)
           print("Shape of Test Set : ", X test.shape)
           print("*"*40)
           print("Percentage of classes in training set:")
           print(y train.value counts(normalize=True))
           print("*"*40)
           print("Percentage of classes in validation set:")
           print(y val.value counts(normalize=True))
           print("*"*40)
           print("Percentage of classes in test set:")
           print(y test.value counts(normalize=True))
           print("*"*40)
```

```
Shape of Training Set: (5063, 19)
Shape of Validation Set (3038, 19)
Shape of Test Set: (2026, 19)
************
Percentage of classes in training set:
1 0.839
0 0.161
Name: Attrition Flag, dtype: float64
***********
Percentage of classes in validation set:
1 0.839
0 0.161
Name: Attrition Flag, dtype: float64
************
Percentage of classes in test set:
1
   0.839
   0.161
Name: Attrition Flag, dtype: float64
```

- Split data into training, validation, and test sets.
- Models will be trained on training data, and evaluated on validation data.
- The best models will be tuned and finally evaluated on the test data.

Missing value imputation

• Observed how many Null values are present in the data sets.

```
In [712...
           # Creating an imputer to impute values by the mode.
           imp mode = SimpleImputer(missing values=np.nan, strategy='most frequent')
In [713...
           # Creating list of column labels that need to be imputed.
           col impute = ['Education Level', 'Income Category', 'Marital Status']
In [714...
           # Imputing X train columns.
           X train[col impute] = imp mode.fit transform(X train[col impute])
           # Imputing X val columns.
           X val[col impute] = imp mode.fit transform(X val[col impute])
           # Imputing X test columns.
           X test[col impute] = imp mode.fit transform(X test[col impute])
In [715...
           # Printing the number of na values in each data frame.
           print("Number of X train na values:", X train.isna().sum().sum())
           print("*" * 30)
           print("Number of X val na values:", X val.isna().sum().sum())
           print("*" * 30)
           print("Number of X test na values:", X test.isna().sum().sum())
         Number of X train na values: 0
         **********
         Number of X val na values: 0
         Number of X test na values: 0
```

• Removed Null values by imputing them with the mode of their column.

Encoding Categorical Variables

```
# Dropping first of each encoded column to reduce data frame size.

# Encoding X_train data frame categorical columns.
```

```
Credit-Card-Users-Churn-Prediction/Final_ETMT_Project_LearnerNotebook_FullCode_v2.ipynb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub

X_train = pd.get_dummies(X_train, columns=['Gender', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category', 'Card_Category']

# Encoding X_val data frame categorical columns.

X_val = pd.get_dummies(X_val, columns=['Gender', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category']

# Encoding X_test data frame categorical columns.

X_test = pd.get_dummies(X_test, columns=['Gender', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category')
```

- Encoded categorical columns so they can be used in the models.
- Dropped 1 dummy variable column from each category as it is unnecessary to have all columns.

```
In [717... # Printing shape of new data frames.
print("Shape of X_train:", X_train.shape)
print("Shape of X_val:", X_val.shape)
print("Shape of X_test:", X_test.shape)

Shape of X_train: (5063, 29)
Shape of X_val: (3038, 29)
Shape of X_test: (2026, 29)

• Observed shape of data sets.
```

In [718...

```
# Checking information of new data frame's columns.
X_train.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5063 entries, 5930 to 10034
Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype
0	Customer_Age	5063 non-null	int64
1	Dependent_count	5063 non-null	int64
2	Months_on_book	5063 non-null	int64
3	Total_Relationship_Count	5063 non-null	int64
4	Months_Inactive_12_mon	5063 non-null	int64
5	Contacts_Count_12_mon	5063 non-null	int64
6	Credit_Limit	5063 non-null	float64
7	Total_Revolving_Bal	5063 non-null	int64
8	Avg_Open_To_Buy	5063 non-null	float64
9	Total_Amt_Chng_Q4_Q1	5063 non-null	float64
4.0	T 1 3 T A 1	F063 11	

```
lotal Irans Amt
                                    2003 non-null
                                                    10164
 TΩ
                                                    int64
11 Total Trans Ct
                                    5063 non-null
12 Total Ct Chng 04 01
                                                    float64
                                    5063 non-null
13 Avg Utilization Ratio
                                    5063 non-null
                                                    float64
14 Gender M
                                    5063 non-null
                                                    uint8
15 Education Level Doctorate
                                    5063 non-null
                                                    uint8
   Education Level Graduate
                                    5063 non-null
                                                    uint8
17 Education Level High School
                                    5063 non-null
                                                    uint8
   Education Level Post-Graduate
                                    5063 non-null
                                                    uint8
19 Education Level Uneducated
                                    5063 non-null
                                                    uint8
20 Marital Status Married
                                    5063 non-null
                                                    uint8
21 Marital Status Single
                                    5063 non-null
                                                    uint8
22 Income Category $40K - $60K
                                    5063 non-null
                                                    uint8
 23 Income Category $60K - $80K
                                    5063 non-null
                                                    uint8
 24 Income Category $80K - $120K
                                    5063 non-null
                                                    uint8
25 Income Category Less than $40K
                                    5063 non-null
                                                    uint8
                                    5063 non-null
 26 Card Category Gold
                                                    uint8
27 Card Category Platinum
                                    5063 non-null
                                                    uint8
28 Card Category Silver
                                    5063 non-null
                                                    uint8
dtypes: float64(5), int64(9), uint8(15)
memory usage: 667.5 KB
```

• Observed data types of training set.

In [719...

```
# Checking information of new data frame's columns.
X_val.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3038 entries, 9952 to 1898
Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype
0	Customer_Age	3038 non-null	int64
1	Dependent_count	3038 non-null	int64
2	Months_on_book	3038 non-null	int64
3	Total_Relationship_Count	3038 non-null	int64
4	Months_Inactive_12_mon	3038 non-null	int64
5	Contacts_Count_12_mon	3038 non-null	int64
6	Credit_Limit	3038 non-null	float64
7	Total_Revolving_Bal	3038 non-null	int64
8	Avg_Open_To_Buy	3038 non-null	float64
9	Total_Amt_Chng_Q4_Q1	3038 non-null	float64
10	Total Trans Amt	3038 non-null	int64

```
11 Total Trans Ct
                                    3038 non-null
                                                    int64
12 Total Ct Chng Q4 Q1
                                    3038 non-null
                                                    float64
   Avg Utilization Ratio
                                    3038 non-null
                                                    float64
 14 Gender M
                                    3038 non-null
                                                    uint8
   Education Level Doctorate
                                                    uint8
                                    3038 non-null
16 Education Level Graduate
                                    3038 non-null
                                                    uint8
    Education Level High School
                                    3038 non-null
                                                    uint8
18 Education Level Post-Graduate
                                    3038 non-null
                                                    uint8
                                    3038 non-null
   Education Level Uneducated
                                                    uint8
 20 Marital Status Married
                                    3038 non-null
                                                    uint8
21 Marital Status Single
                                    3038 non-null
                                                    uint8
 22 Income Category $40K - $60K
                                    3038 non-null
                                                    uint8
                                    3038 non-null
                                                    uint8
 23 Income Category $60K - $80K
 24 Income Category $80K - $120K
                                    3038 non-null
                                                    uint8
 25 Income Category Less than $40K
                                    3038 non-null
                                                    uint8
 26 Card Category Gold
                                    3038 non-null
                                                    uint8
 27 Card Category Platinum
                                    3038 non-null
                                                    uint8
28 Card Category Silver
                                    3038 non-null
                                                    uint8
dtypes: float64(5), int64(9), uint8(15)
memory usage: 400.5 KB
```

• Observed data types of validation set.

```
In [720...
```

```
# Checking information of new data frame's columns.
X_test.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2026 entries, 3043 to 215
Data columns (total 29 columns):

Duca	coramis (cocar 23 coramis).		
#	Column	Non-Null Count	Dtype
0	Customer_Age	2026 non-null	int64
1	Dependent_count	2026 non-null	int64
2	Months_on_book	2026 non-null	int64
3	Total_Relationship_Count	2026 non-null	int64
4	Months_Inactive_12_mon	2026 non-null	int64
5	Contacts_Count_12_mon	2026 non-null	int64
6	Credit_Limit	2026 non-null	float64
7	Total_Revolving_Bal	2026 non-null	int64
8	Avg_Open_To_Buy	2026 non-null	float64
9	Total_Amt_Chng_Q4_Q1	2026 non-null	float64
10	Total_Trans_Amt	2026 non-null	int64

```
11 Total Trans Ct
                                   2026 non-null
                                                   int64
12 Total Ct Chng 04 01
                                                   float64
                                   2026 non-null
13 Avg Utilization Ratio
                                   2026 non-null
                                                   float64
   Gender M
                                   2026 non-null
                                                   uint8
   Education Level Doctorate
                                   2026 non-null
                                                   uint8
   Education Level Graduate
                                   2026 non-null
                                                   uint8
   Education Level High School
                                   2026 non-null
                                                   uint8
   Education Level Post-Graduate
                                   2026 non-null
                                                   uint8
   Education Level Uneducated
                                   2026 non-null
                                                   uint8
  Marital Status Married
                                   2026 non-null
                                                   uint8
21 Marital Status Single
                                   2026 non-null
                                                   uint8
22 Income Category $40K - $60K
                                   2026 non-null
                                                   uint8
                                   2026 non-null
23 Income Category $60K - $80K
                                                   uint8
24 Income Category $80K - $120K
                                   2026 non-null
                                                   uint8
   Income Category Less than $40K 2026 non-null
                                                   uint8
26 Card Category Gold
                                   2026 non-null
                                                   uint8
27 Card Category Platinum
                                   2026 non-null
                                                   uint8
28 Card Category Silver
                                   2026 non-null
                                                   uint8
```

dtypes: float64(5), int64(9), uint8(15)

memory usage: 267.1 KB

- Observed data types of test set.
- The data is prepared for model building.

Model Building

Model evaluation criterion

The nature of predictions made by the classification model will translate as follows:

- True Positives (TP) are existing customers correctly predicted by the model.
- True Negatives (TN) are atritioned customers correctly predicted by the model.
- False Positives (FP) are atritioned customers incorrectly predicted as an existing customer by the model.
- False Negatives (FN) are existing customers incorrectly predicted as an atritioned customer by the model.

Which metric to optimize?

- We need to choose the metric which will ensure that the maximum number of customer attritions are predicted correctly by the model.
- We would want Precision to be maximized as greater the Precision, the higher the chances of minimizing False Positives.
- We want to minimize False Positives because if a model predicts that a customer will not attrit, but they do, the customer is lost.

```
In [721...
           # Defining a function to compute different metrics to check performance of a classification model built using sklearn.
           def model performance classification sklearn(model, predictors, target):
               Function to compute different metrics to check classification model performance
               model: classifier
               predictors: independent variables
               target: dependent variable
               0.000
               # Predicting using the independent variables.
               pred = model.predict(predictors)
               acc = accuracy score(target, pred) # To compute Accuracy.
               recall = recall score(target, pred) # To compute Recall.
               precision = precision score(target, pred) # To compute Precision.
               f1 = f1 score(target, pred) # To compute F1-score.
               # Creating a dataframe of metrics.
               df perf = pd.DataFrame(
                       "Accuracy": acc,
                       "Recall": recall,
                       "Precision": precision,
                       "F1": f1
                   },
                   index=[0],
               return df perf
```

```
In [722...
```

```
# Defining a function to create a confusion matrix to check TP, FP, TN, adn FN values.
def confusion_matrix_sklearn(model, predictors, target):
```

```
To plot the confusion matrix with percentages
model: classifier
predictors: independent variables
target: dependent variable
# Predicting using the independent variables.
v pred = model.predict(predictors)
# Creating the confusion matrix.
cm = confusion matrix(target, y pred)
labels = np.asarray(
        ["{0:0.0f}".format(item) + "\n{0:.2%}".format(item / cm.flatten().sum())]
        for item in cm.flatten()
).reshape(2, 2)
# Plotting the confusion matrix.
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=labels, fmt="")
plt.ylabel("True label")
plt.xlabel("Predicted label")
```

Model Building with original data

```
print("\n" "Validation Performance:" "\n")
for name, model in models:
    model.fit(X_train, y_train)
    scores_val = precision_score(y_val, model.predict(X_val))
    print("{}: {}".format(name, scores_val))
```

Training Performance:

Bagging: 0.9974135904067717

Random forest: 1.0

AdaBoost: 0.9716080986734932 GradientBoost: 0.9827786828019549

XGBoost: 1.0

Validation Performance:

Bagging: 0.9675907848496681 Random forest: 0.9563898369359121 AdaBoost: 0.9640232108317215 GradientBoost: 0.9670371789957838 XGBoost: 0.9748159628051143

• Observed the precision scores of 5 models that were fit on orginal training data.

Model Building with Oversampled data

```
# Synthetic Minority Over Sampling Technique.

sm = SMOTE(sampling_strategy=1, k_neighbors=5, random_state=1)
X_train_over, y_train_over = sm.fit_resample(X_train, y_train)
```

• Oversampled the training data to fit next models with.

```
Credit-Card-Users-Churn-Prediction/Final_ETMT_Project_LearnerNotebook_FullCode_v2.ipynb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub models_over.append(( "XGBoost", XGBClassifier(random_state=1)))

# Printing model performance scores on training data.

print("\n" "Training Performance:" "\n")

for name, model in models_over:
    model.fit(X_train_over, y_train_over)
    scores = precision_score(y_train_over, model.predict(X_train_over))
    print("\{\}: \{\}".format(name, scores))

# Printing model performance scores on validation data.

print("\n" "Validation Performance:" "\n")

for name, model in models_over:
    model.fit(X_train_over, y_train_over)
    scores_val = precision_score(y_val, model.predict(X_val))
    print("\{\}: \{\}".format(name, scores_val))
```

Training Performance:

Bagging: 0.9995276334435522

Random forest: 1.0

AdaBoost: 0.9690697121103974 GradientBoost: 0.9831633862935736

XGBoost: 1.0

Validation Performance:

Bagging: 0.9766129032258064 Random forest: 0.9690438871473355 AdaBoost: 0.9744102359056377 GradientBoost: 0.9734863474475662 XGBoost: 0.9793130366900858

• Observed the precision scores of 5 models that were fit on oversampled training data.

Model Building with Undersampled data

```
# Random undersampler for under sampling the data.

rus = RandomUnderSampler(random_state=1, sampling_strategy=1)

X_train_un, y_train_un = rus.fit_resample(X_train, y_train)
```

• Undersampled the training data to fit the next models with.

```
In [727...
           models un = [] # Empty list to store all the models.
           # Appending models into the list.
           models un.append(("Bagging", BaggingClassifier(random state=1)))
           models un.append(("Random forest", RandomForestClassifier(random state=1)))
           models un.append(("AdaBoost", AdaBoostClassifier(random state=1)))
           models un.append(("GradientBoost", GradientBoostingClassifier(random state=1)))
           models un.append(("XGBoost", XGBClassifier(random state=1)))
           # Printing model performance scores on training data.
           print("\n" "Training Performance:" "\n")
           for name, model in models un:
               model.fit(X train un, y train un)
               scores = precision score(y train un, model.predict(X train un))
               print("{}: {}".format(name, scores))
           # Printing model performance scores on validation data.
           print("\n" "Validation Performance:" "\n")
           for name, model in models un:
               model.fit(X train un, y train un)
               scores_val = precision_score(y_val, model.predict(X val))
               print("{}: {}".format(name, scores val))
```

Training Performance:

```
Bagging: 0.9987593052109182
Random forest: 1.0
AdaBoost: 0.9650436953807741
GradientBoost: 0.9851851851851852
XGBoost: 1.0
Validation Performance:
Bagging: 0.9819587628865979
Random forest: 0.9886839899413243
AdaBoost: 0.9878304657994125
GradientBoost: 0.9892517569243489
XGBoost: 0.9860426929392446
```

HyperparameterTuning

- Chose 9 models for tuning, 3 from each training data category (original/oversampled/undersampled).
- Of each category, the 3 models selected were those with the highest Precision performance on the validation data.
- BaggingClassifier was not used due to long computational time.

Models fit on original Data

XGBoost (original training data)

CV score=0.971525521150788:

```
In [728...
           # Defining the model.
           XGB org = XGBClassifier(random state=1)
           # Creating the parameter grid to pass in RandomSearchCV.
           param grid = {
                        'n estimators':np.arange(50,110,25),
                       'scale_pos_weight':[1,2,5],
                       'learning_rate':[0.01,0.1,0.05],
                        'gamma':[1,3],
                        'subsample':[0.7,0.9]
           # Defining the scorer.
           scorer = make scorer(precision score)
           # Calling RandomizedSearchCV.
           randomized cv = RandomizedSearchCV(estimator=XGB org, param distributions=param grid, n iter=10, n jobs = -1, scoring=sco
           # Fitting the parameters in RandomizedSearchCV.
           randomized cv.fit(X train,y train)
           # Printing the best parameters from from the RandomizedSearchCV.
           print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
```

Best parameters are {'subsample': 0.7, 'scale_pos_weight': 1, 'n_estimators': 100, 'learning_rate': 0.05, 'gamma': 1} with

https://github.com/dardenkyle/Credit-Card-Users-Churn-Prediction/blob/main/Final ETMT Project LearnerNotebook FullCode v2.ipynb

In [729...

```
# Creating the tuned model with the best parameters found in RandomizedSearchCV.
           XGB org tuned = XGBClassifier(
               random state=1,
               subsample=0.7,
               scale pos weight=1,
               n estimators=100,
               learning rate=0.05,
               gamma=1)
           # Fitting the model to the original training data.
           XGB org tuned.fit(X train, y train)
         XGBClassifier(base score=None, booster=None, callbacks=None,
Out[729...
                         colsample bylevel=None, colsample bynode=None,
                         colsample bytree=None, device=None, early stopping rounds=None,
                         enable categorical=False, eval metric=None, feature types=None,
                         gamma=1, grow policy=None, importance type=None,
                         interaction constraints=None, learning rate=0.05, max bin=None,
                        max cat threshold=None, max cat to onehot=None,
                        max delta step=None, max depth=None, max leaves=None,
                        min_child_weight=None, missing=nan, monotone_constraints=None,
                        multi strategy=None, n estimators=100, n jobs=None,
                        num parallel tree=None, random state=1, ...)
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [730...
            # Checking the tuned model's performance metrics on the original training data.
           model performance classification sklearn(XGB org tuned, X train, y train)
Out[730...
             Accuracy Recall Precision
                                         F1
                 0.991
                       0.996
                                 0.993 0.994
In [731...
           # Saving the tuned model's scores for later comparison.
           XGB org tuned train scores = model performance classification sklearn(XGB org tuned, X train, y train)
```

Credit-Card-Users-Churn-Prediction/Final_ETMT_Project_LearnerNotebook_FullCode_v2.ipynb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub

Creating the confusion matrix for the tuned model's performance on the original training data.

confusion_matrix_sklearn(XGB_org_tuned, X_train, y_train)

In [733...

 $\label{lem:checking} \textit{# Checking the tuned model's performance metrics on the validation data.} \\ \textit{model_performance_classification_sklearn}(\textit{XGB_org_tuned}, \textit{X_val}, \textit{y_val})$

Out[733... Accuracy Recall Precision F1

0 0.960 0.985 0.968 0.976

In [734...

Saving the tuned model's scores for later comparison.
XGB_org_tuned_val_scores = model_performance_classification_sklearn(XGB_org_tuned, X_val, y_val)

In [735...

Creating the confusion matrix for the tuned model's performance on the validation data. confusion_matrix_sklearn(XGB_org_tuned, X_val, y_val)

Gradient Boost (original training data)

```
randomized_cv.fit(X_train,y_train)

# Printing the best parameters from from the RandomizedSearchCV.
print("Best parameters are {} with CV score={}:" .format(randomized_cv.best_params_,randomized_cv.best_score_))
```

Best parameters are {'subsample': 0.7, 'n_estimators': 100, 'max_features': 0.7, 'learning_rate': 0.05, 'init': DecisionTre eClassifier(random state=1)} with CV score=0.9635312910330839:

Out[737... GradientBoostingClassifier(init=DecisionTreeClassifier(random_state=1), learning_rate=0.05, max_features=0.7, random_state=1, subsample=0.7)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
# Checking the tuned model's performance metrics on the original training data.
model_performance_classification_sklearn(GBC_org_tuned, X_train, y_train)
```

```
        Out[738...
        Accuracy
        Recall
        Precision
        F1

        0
        1.000
        1.000
        1.000
        1.000
```

```
# Saving the tuned model's scores for later comparison.

GBC_org_tuned_train_scores = model_performance_classification_sklearn(GBC_org_tuned, X_train, y_train)
```

In [740...] # Creating the confusion matrix for the tuned model's performance on the original training data.

confusion_matrix_sklearn(GBC_org_tuned, X_train, y_train)

Checking the tuned model's performance metrics on the validation data.
model_performance_classification_sklearn(GBC_org_tuned, X_val, y_val)

 Out[741...
 Accuracy
 Recall
 Precision
 F1

 0
 0.938
 0.965
 0.962
 0.963

Saving the tuned model's scores for later comparison.

GBC_org_tuned_val_scores = model_performance_classification_sklearn(GBC_org_tuned, X_val, y_val)

Creating the confusion matrix for the tuned model's performance on the validation data. confusion_matrix_sklearn(GBC_org_tuned, X_val, y_val)

AdaBoost (original training data)

```
# Fitting parameters in RandomizedSearchCV.
randomized_cv.fit(X_train,y_train)

# Printing the best parameters from from the RandomizedSearchCV.
print("Best parameters are {} with CV score={}:" .format(randomized_cv.best_params_,randomized_cv.best_score_))
```

Best parameters are {'n_estimators': 100, 'learning_rate': 0.1, 'base_estimator': DecisionTreeClassifier(max_depth=3, rando m_state=1)} with CV score=0.9749406645025787:

Out[745... AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=3, random_state=1), learning rate=0.1, n estimators=100, random state=1)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
# Checking the tuned model's performance metrics on the original training data.
model_performance_classification_sklearn(Ada_org_tuned, X_train, y_train)
```

```
        Out[746...
        Accuracy
        Recall
        Precision
        F1

        0
        0.991
        0.997
        0.992
        0.994
```

```
# Saving the tuned model's scores for later comparison.

Ada_org_tuned_train_scores = model_performance_classification_sklearn(Ada_org_tuned, X_train, y_train)
```

Creating the confusion matrix for the tuned model's performance on the original training data. confusion matrix sklearn(Ada org tuned, X train, y train)

Checking the tuned model's performance metrics on the validation data.
model_performance_classification_sklearn(Ada_org_tuned, X_val, y_val)

 Out[749...
 Accuracy
 Recall
 Precision
 F1

 0
 0.964
 0.991
 0.967
 0.979

Saving the tuned model's scores for later comparison.

Ada_org_tuned_val_scores = model_performance_classification_sklearn(Ada_org_tuned, X_val, y_val)

Creating the confusion matrix for the tuned model's performance on the validation data. confusion_matrix_sklearn(Ada_org_tuned, X_val, y_val)

Models built on oversampled data

XGBoost (oversampled training data)

```
# Fitting the parameters in RandomizedSearchCV.
randomized_cv.fit(X_train_over,y_train_over)

# Printing the best parameters from from the RandomizedSearchCV.
print("Best parameters are {} with CV score={}:" .format(randomized_cv.best_params_,randomized_cv.best_score_))
**Rest parameters are {'subsample': 0.7 _'scale pos_weight': 1 _'n estimators': 100 _'learning_rate': 0.05 _'gamma': 1} with
```

Best parameters are {'subsample': 0.7, 'scale_pos_weight': 1, 'n_estimators': 100, 'learning_rate': 0.05, 'gamma': 1} with CV score=0.9726597277052871:

Out[753...

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=1, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.05, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi strategy=None, n estimators=100, n jobs=None,

num parallel tree=None, random state=1, ...)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [754...
```

Checking the tuned model's performance metrics on the oversampled training data.
model_performance_classification_sklearn(XGB_over_tuned, X_train_over, y_train_over)

t[754		Accuracy	Recall	Precision	F1
	0	0.991	0.988	0.994	0.991

In [755...

Saving the tuned model's scores for later comparison.

XGB_over_tuned_train_scores = model_performance_classification_sklearn(XGB_over_tuned, X_train_over, y_train_over)

In [756...

Creating the confusion matrix for the tuned model's performance on the oversampled training data. confusion_matrix_sklearn(XGB_over_tuned, X_train_over, y_train_over)

In [757...

Checking the tuned model's performance metrics on the validation data. model_performance_classification_sklearn(XGB_over_tuned, X_val, y_val)

 Out[757...
 Accuracy
 Recall
 Precision
 F1

 0
 0.957
 0.970
 0.978
 0.974

```
# Saving the tuned model's scores for later comparison.

XGB_over_tuned_val_scores = model_performance_classification_sklearn(XGB_over_tuned, X_val, y_val)
```

In [759...

Creating the confusion matrix for the tuned model's performance on the validation data. confusion_matrix_sklearn(XGB_over_tuned, X_val, y_val)

AdaBoost (oversampled training data)

```
# Defining the model.
Ada_over = AdaBoostClassifier(random_state=1)

# Creating the parameter grid to pass in RandomSearchCV.
param_grid = {
    "n_estimators": np.arange(50,110,25),
    "learning_rate": [0.01,0.1,0.05],
```

```
"base estimator": |
                   DecisionTreeClassifier(max depth=2, random state=1),
                   DecisionTreeClassifier(max depth=3, random state=1),]
           # Defining the scorer.
           scorer = make scorer(precision score)
           # Calling RandomizedSearchCV.
           randomized cv = RandomizedSearchCV(estimator=Ada over, param distributions=param grid, n iter=10, n jobs = -1, scoring=sd
           # Fitting parameters in RandomizedSearchCV.
           randomized cv.fit(X train over,y train over)
           # Printing the best parameters from from the RandomizedSearchCV.
           print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
         Best parameters are {'n estimators': 100, 'learning rate': 0.1, 'base estimator': DecisionTreeClassifier(max depth=3, rando
         m state=1)} with CV score=0.9601237487327084:
In [761...
           # Creating the tuned model with the best parameters found in RandomizedSearchCV.
           Ada over tuned = AdaBoostClassifier(
               random state=1,
               n estimators=100,
               learning rate=0.1,
               base estimator=DecisionTreeClassifier(max depth=3, random state=1))
           # Fitting the model to the oversampled training data.
           Ada over tuned.fit(X train over, y train over)
         AdaBoostClassifier(base estimator=DecisionTreeClassifier(max depth=3,
Out[761...
                                                                        random state=1),
                              learning rate=0.1, n estimators=100, random state=1)
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [762...
           # Checking the tuned model's performance metrics on the oversampled training data.
           model performance classification sklearn(Ada over tuned, X train over, y train over)
Out[762...
                                          F1
             Accuracy Recall Precision
```

Credit-Card-Users-Churn-Prediction/Final ETMT Project LearnerNotebook FullCode v2.ipvnb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub

0 0.990 0.988 0.992 0.990

In [763...

Saving the tuned model's scores for later comparison.

Ada_over_tuned_train_scores = model_performance_classification_sklearn(Ada_over_tuned, X_train_over, y_train_over)

In [764...

Creating the confusion matrix for the tuned model's performance on the oversampled training data. confusion matrix sklearn(Ada over tuned, X train over, y train over)

In [765...

Checking the tuned model's performance metrics on the validation data. model_performance_classification_sklearn(Ada_over_tuned, X_val, y_val)

Out[765...

	Accuracy	Recall	Precision	F1
0	0.963	0.978	0.979	0.978

```
# Saving the tuned model's scores for later comparison.

Ada_over_tuned_val_scores = model_performance_classification_sklearn(Ada_over_tuned, X_val, y_val)
```

In [767...

Creating the confusion matrix for the tuned model's performance on the validation data. confusion_matrix_sklearn(Ada_over_tuned, X_val, y_val)

Gradient Boost (oversampled training data)

```
Credit-Card-Users-Churn-Prediction/Final ETMT Project LearnerNotebook FullCode v2.ipvnb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub
                        "max features":[0.5,0.7,1],
           # Defining the scorer.
           scorer = make scorer(precision score)
           # Calling RandomizedSearchCV.
           randomized cv = RandomizedSearchCV(estimator=GBC over, param distributions=param grid, n iter=10, n jobs = -1, scoring=sd
           # Fitting the parameters in RandomizedSearchCV.
           randomized cv.fit(X train over,y train over)
           # Printing the best parameters from from the RandomizedSearchCV.
           print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
         Best parameters are {'subsample': 0.7, 'n estimators': 100, 'max features': 0.7, 'learning rate': 0.05, 'init': DecisionTre
         eClassifier(random state=1)} with CV score=0.9413595593075428:
In [769...
           # Creating the tuned model with the best parameters found in RandomizedSearchCV.
           GBC over tuned = GradientBoostingClassifier(
                random state=1,
                subsample=0.7,
               n estimators=100,
               max features=0.7,
               learning rate=0.05,
               init=DecisionTreeClassifier(random state=1))
           # Fitting the model to the original training data.
           GBC over tuned.fit(X train over, y train over)
          GradientBoostingClassifier(init=DecisionTreeClassifier(random state=1),
Out[769...
                                        learning rate=0.05, max features=0.7, random state=1,
                                        subsample=0.7)
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [770...
           # Checking the tuned model's performance metrics on the oversampled training data.
           model performance classification sklearn(GBC over tuned, X train over, y train over)
Out[770...
              Accuracy Recall Precision
                                           F1
```

0 1.000 1.000 1.000 1.000

In [771...

Saving the tuned model's scores for later comparison.

GBC_over_tuned_train_scores = model_performance_classification_sklearn(GBC_over_tuned, X_train_over, y_train_over)

In [772...

Creating the confusion matrix for the tuned model's performance on the oversampled training data. confusion_matrix_sklearn(GBC_over_tuned, X_train_over, y_train_over)

In [773...

Checking the tuned model's performance metrics on the validation data.
model_performance_classification_sklearn(GBC_over_tuned, X_val, y_val)

Out[773...

	Accuracy	Recall	Precision	F1
0	0.929	0.953	0.963	0.958

```
# Saving the tuned model's scores for later comparison.

GBC_over_tuned_val_scores = model_performance_classification_sklearn(GBC_over_tuned, X_val, y_val)
```

In [775...

Creating the confusion matrix for the tuned model's performance on the validation data. confusion_matrix_sklearn(GBC_over_tuned, X_val, y_val)

Models built on undersampled data

Gradient Boost (undersampled training data)

```
Credit-Card-Users-Churn-Prediction/Final ETMT Project LearnerNotebook FullCode v2.ipynb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub
                         TEGITITING FACE . [0.01,0.1,0.0),
                        "subsample": [0.7,0.9],
                        "max features":[0.5,0.7,1],
           # Defining the scorer.
           scorer = make scorer(precision score)
           # Calling RandomizedSearchCV.
           randomized cv = RandomizedSearchCV(estimator=GBC un, param distributions=param grid, n iter=10, n jobs = -1, scoring=scor
           # Fitting the parameters in RandomizedSearchCV.
           randomized cv.fit(X train un, y train un)
           # Printing the best parameters from from the RandomizedSearchCV.
           print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
         Best parameters are {'subsample': 0.7, 'n_estimators': 100, 'max_features': 0.7, 'learning rate': 0.05, 'init': DecisionTre
         eClassifier(random state=1)} with CV score=0.8892064036527325:
In [777...
           # Creating the tuned model with the best parameters found in RandomizedSearchCV.
           GBC un tuned = GradientBoostingClassifier(
                random state=1,
               subsample=0.7,
               n estimators=100,
               max features=0.7,
               learning rate=0.05,
               init=DecisionTreeClassifier(random state=1))
           # Fitting the model to the undersampled training data.
           GBC un tuned.fit(X train un, y train un)
          GradientBoostingClassifier(init=DecisionTreeClassifier(random state=1),
Out[777...
                                        learning rate=0.05, max features=0.7, random state=1,
                                        subsample=0.7)
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [778...
           # Checking the tuned model's performance metrics on the undersampled training data.
           model performance classification sklearn(GBC un tuned, X train un, y train un)
```

 Accuracy
 Recall
 Precision
 F1

 0
 1.000
 1.000
 1.000
 1.000

In [779...

Out|778...

Saving the tuned model's scores for later comparison.

GBC_un_tuned_train_scores = model_performance_classification_sklearn(GBC_un_tuned, X_train_un, y_train_un)

In [780...

Creating the confusion matrix for the tuned model's performance on the undersampled training data. confusion_matrix_sklearn(GBC_un_tuned, X_train_un, y_train_un)

In [781...

Checking the tuned model's performance metrics on the validation data.
model_performance_classification_sklearn(GBC_un_tuned, X_val, y_val)

Out[781...

	Accuracy	Recall	Precision	F1
0	0.885	0.890	0.971	0.929

```
# Saving the tuned model's scores for later comparison.

GBC_un_tuned_val_scores = model_performance_classification_sklearn(GBC_un_tuned, X_val, y_val)
```

In [783...

Creating the confusion matrix for the tuned model's performance on the validation data.
confusion_matrix_sklearn(GBC_un_tuned, X_val, y_val)

Random Forest (undersampled training data)

```
In [784... # Defining the model.
    RF_un = RandomForestClassifier(random_state=1)

# Creating the parameter grid to pass in RandomSearchCV.
param_grid={
    "n_estimators": [50,110,25],
    "min_samples_leaf": np.arange(1, 4),
```

```
"max features": |np.arange(0.3, 0.6, 0.1), sqrt'|,
    "max samples": np.arange(0.4, 0.7, 0.1)
# Defining the scorer.
scorer = make scorer(precision score)
# Calling RandomizedSearchCV.
randomized cv = RandomizedSearchCV(estimator=RF un, param distributions=param grid, n iter=10, n jobs = -1, scoring=score
# Fitting the parameters in RandomizedSearchCV.
randomized cv.fit(X train un,y train un)
# Printing the best parameters from from the RandomizedSearchCV.
print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
```

Best parameters are {'n estimators': 110, 'min samples leaf': 1, 'max samples': 0.6, 'max features': 'sqrt'} with CV score= 0.9320736819168681:

In [785...

```
# Creating the tuned model with the best parameters found in RandomizedSearchCV.
RF un tuned = RandomForestClassifier(
    random state=1,
   n estimators=110,
   min samples leaf=1,
   max samples=0.6,
   max features='sqrt')
# Fitting the tuned model to the undersampled traning data.
RF un tuned.fit(X train un, y train un)
```

Out[785...

RandomForestClassifier(max samples=0.6, n estimators=110, random state=1)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [786...

Checking the tuned model's performance metrics on the undersampled training data. model performance classification sklearn(RF un tuned, X train un, y train un)

Out[786...

	Accuracy	Recall	Precision	F1
0	0.996	0.993	1.000	0.996

Saving the tuned model's scores for later comparison.

RF_un_tuned_train_scores = model_performance_classification_sklearn(RF_un_tuned, X_train_un, y_train_un)

In [788...

Creating the confusion matrix for the tuned model's performance on the undersampled training data. confusion_matrix_sklearn(RF_un_tuned, X_train_un, y_train_un)

In [789...

Checking the tuned model's performance metrics on the validation data.
model_performance_classification_sklearn(RF_un_tuned, X_val, y_val)

 Out[789...
 Accuracy
 Recall
 Precision
 F1

 0
 0.923
 0.920
 0.988
 0.953

In [790...

Savina the tuned model's scores for later comparison.

```
RF un tuned val scores = model performance classification sklearn(RF un tuned, X val, y val)
```

In [791...

Creating the confusion matrix for the tuned model's performance on the validation data. confusion_matrix_sklearn(RF_un_tuned, X_val, y_val)

AdaBoost (undersampled training data)

```
ر [
  # Defining the scorer.
  scorer = make scorer(precision score)
  # Calling RandomizedSearchCV.
  randomized cv = RandomizedSearchCV(estimator=Ada un, param distributions=param grid, n iter=10, n jobs = -1, scoring=scor
  # Fitting the parameters in RandomizedSearchCV.
  randomized cv.fit(X train un,y train un)
  # Printing the best parameters from from the RandomizedSearchCV.
  print("Best parameters are {} with CV score={}:" .format(randomized cv.best params ,randomized cv.best score ))
Best parameters are {'n estimators': 75, 'learning rate': 0.1, 'base estimator': DecisionTreeClassifier(max depth=2, random
```

state=1)} with CV score=0.952813496431437:

```
In [793...
           # Creating the tuned model with the best parameters found in RandomizedSearchCV.
           Ada un tuned = AdaBoostClassifier(
               random state=1,
               n estimators=75,
               learning rate=0.1,
               base estimator=DecisionTreeClassifier(max depth=2, random state=1))
           # Fitting the tuned model to the undersampled traning data.
           Ada un tuned.fit(X train un, y train un)
```

AdaBoostClassifier(base estimator=DecisionTreeClassifier(max depth=2, Out[793... random state=1), learning rate=0.1, n estimators=75, random state=1)

> In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [794...
           # Checking the tuned model's performance metrics on the undersampled training data.
           model performance classification sklearn(Ada un tuned, X train un, y train un)
```

Out[794... **Accuracy Recall Precision** F1 0.964 0.953 0.975 0.964 In [795... # Saving the tuned model's scores for later comparison.

Ada_un_tuned_train_scores = model_performance_classification_sklearn(Ada_un_tuned, X_train_un, y_train_un)

In [796...

Creating the confusion matrix for the tuned model's performance on the undersampled training data. confusion_matrix_sklearn(Ada_un_tuned, X_train_un, y_train_un)

In [797...

Checking the tuned model's performance metrics on the validation data.
model_performance_classification_sklearn(Ada_un_tuned, X_val, y_val)

 Out[797...
 Accuracy
 Recall
 Precision
 F1

 0
 0.928
 0.925
 0.988
 0.956

In [798... # Saving the tuned model's scores for later commanison

```
Ada_un_tuned_val_scores = model_performance_classification_sklearn(Ada_un_tuned, X_val, y_val)
```

In [799...

Creating the confusion matrix for the tuned model's performance on the validation data. confusion_matrix_sklearn(Ada_un_tuned, X_val, y_val)

Model Comparison and Final Model Selection

```
Credit-Card-Users-Churn-Prediction/Final ETMT Project LearnerNotebook FullCode v2.ipynb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub
        GBC over tuned train scores.T,
        GBC un tuned train scores.T,
        RF un tuned train scores.T,
        Ada un tuned train scores.T,
    ],
    axis=1,
models train comp df.columns = [
      "XGBoost trained with Original data",
      "Gradient boosting trained with Original data",
      "AdaBoost trained with Original data",
      "XGBoost trained with Oversampled data",
      "AdaBoost trained with Oversampled data",
      "Gradient boosting trained with Oversampled data",
      "Gradient boosting trained with Undersampled data",
      "Random Forest trained with Undersampled data",
      "AdaBoost trained with Undersampled data"
print("Training performance comparison:")
models train comp df
```

Training performance comparison:

Out[800...

	XGBoost trained with Original data	Gradient boosting trained with Original data	AdaBoost trained with Original data	XGBoost trained with Oversampled data	AdaBoost trained with Oversampled data	Gradient boosting trained with Oversampled data	Gradient boosting trained with Undersampled data	Random Forest trained with Undersampled data	AdaBoost trained with Undersampled data
Accura	cy 0.991	1.000	0.991	0.991	0.990	1.000	1.000	0.996	0.964
Rec	all 0.996	1.000	0.997	0.988	0.988	1.000	1.000	0.993	0.953
Precisio	on 0.993	1.000	0.992	0.994	0.992	1.000	1.000	1.000	0.975
1	F1 0.994	1.000	0.994	0.991	0.990	1.000	1.000	0.996	0.964

```
Credit-Card-Users-Churn-Prediction/Final ETMT Project LearnerNotebook FullCode v2.ipvnb at main · dardenkyle/Credit-Card-Users-Churn-Prediction · GitHub
        UDC OF CUITED VAL SCOTES. 1,
        Ada org tuned val scores.T,
        XGB_over_tuned_val_scores.T,
        Ada over tuned val scores.T,
        GBC over tuned val scores.T,
        GBC un tuned val scores.T,
        RF un tuned val scores.T,
        Ada un tuned val scores.T,
    1,
    axis=1,
models val comp df.columns = [
      "XGBoost trained with Original data",
      "Gradient boosting trained with Original data",
      "AdaBoost trained with Original data",
      "XGBoost trained with Oversampled data",
      "AdaBoost trained with Oversampled data",
      "Gradient boosting trained with Oversampled data",
      "Gradient boosting trained with Undersampled data",
      "Random Forest trained with Undersampled data",
      "AdaBoost trained with Undersampled data"
```

Validation performance comparison:

models val comp df

print("Validation performance comparison:")

Out[801...

	XGBoost trained with Original data	Gradient boosting trained with Original data	AdaBoost trained with Original data	XGBoost trained with Oversampled data	AdaBoost trained with Oversampled data	Gradient boosting trained with Oversampled data	Gradient boosting trained with Undersampled data	Random Forest trained with Undersampled data	AdaBoost trained with Undersampled data
Accuracy	0.960	0.938	0.964	0.957	0.963	0.929	0.885	0.923	0.928
Recall	0.985	0.965	0.991	0.970	0.978	0.953	0.890	0.920	0.925
Precision	0.968	0.962	0.967	0.978	0.979	0.963	0.971	0.988	0.988
F1	0.976	0.963	0.979	0.974	0.978	0.958	0.929	0.953	0.956

Test set final performance

• The 3 models with the highest precision scores were chosen to be ran on the test data.

```
In [802...
           # Saving the top 3 tuned model's scores for later comparison.
           RF un tuned test scores = model performance classification sklearn(RF un tuned, X test, y test)
           Ada un tuned test scores = model performance classification sklearn(Ada un tuned, X test, y test)
           Ada over tuned test scores = model performance classification sklearn(Ada over tuned, X test, y test)
In [803...
           # Top 3 model test performance comparison.
           models test comp df = pd.concat(
                   RF un tuned test scores.T,
                   Ada un tuned test scores.T,
                   Ada over tuned test scores.T,
               ],
               axis=1,
           models test comp df.columns = [
                 "Random Forest trained with Undersampled data",
                 "AdaBoost trained with Undersampled data",
                 "AdaBoost trained with Oversampled data"
           print("Test performance comparison:")
           models test comp df
```

Test performance comparison:

Out[803		Random Forest trained with Undersampled data	AdaBoost trained with Undersampled data	AdaBoost trained with Oversampled data
	Accuracy	0.935	0.938	0.964
	Recall	0.937	0.938	0.980
	Precision	0.985	0.988	0.978
	F1	0.961	0.962	0.979

- The model with highest precision score on test data was chosen for final model.
- This model was the AdaBoost model that was tuned and trained on undersampled training data.

Creating final model.
model_final = Ada_un_tuned

• First exposure to the final model on test data.

In [805...

Checking the final tuned model's performance metrics on the test data.
model_performance_classification_sklearn(model_final, X_test, y_test)

Out[805...

	Accuracy	Recall	Precision	F1
0	0.938	0.938	0.988	0.962

• Model has a precision score of 98%, this is a very good precision score.

In [806...

Creating the confusion matrix for the final tuned model's performance on the test data. confusion_matrix_sklearn(model_final, X_test, y_test)

0 1

- By maximizing the Precision, the model sucessfully minimized False Positive (FP) occurrences.
- FP are cases when the model incorrectly predicts the customer will not attrit, but they do.
- FP should be minimized because each FP occurrence will result in a lost customer.

```
In [807...
```

```
# Creating a figure showing the relative importances of the independent variables.

feature_names = X_train.columns
importances = model_final.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(12, 12))
plt.title("Feature Importances")
plt.barh(range(len(indices)), importances[indices], color="violet", align="center")
plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
plt.xlabel("Relative Importance")
plt.show()
```


- The most important features of the data set are:
 - Total_Trans_Amt
 - Total_Trans_Ct
 - Total_Revolving_Bal
 - Total_Ct_Chng_Q4_Q1
 - Total_Amt_Chng_Q4_Q1
 - Total_Relationship_Ct

Business Insights and Conclusions

- Attrited customers are likely to spend less and spend less frequently. Try to get customers to spend more and more frequently to retain customers.
- Customers with extreme Total_Revolving_Bal are likely to attrit. Customers with a very low revolving balance can easily pay off their balance and leave the product behind, but on the other side, customers with a very high revolving balance are more likely to be lost to default.
- Ideally customers keep a Total_Revolving_Bal, but one that is moderate. This way the bank makes money on the interest, and the customer can afford to keep their balance in control, but the customer is still making payments and can't as easily attrit.
- Total_Ct_Chg_Q4_Q1 is higher for existing customers, indicating existing customers are more likely to spend later in the year than attrited customers. Attrited customers may use the card when they are pressured to do so financially and are only using the product out of necessity.
- Customers with 1 or 2 products are more likely to attrit than those with 3 or more products. A potential strategy to retain customers could be to increase the strength of the bank's relationship with the customer by offering them additional products that the bank offers.