

Data Analysis with Python

House Sales in King County, USA

This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015.

Description	Variable
A notation for a house	id
Date house was sold	date
Price is prediction target	price
Number of bedrooms	bedrooms
Number of bathrooms	bathrooms
Square footage of the home	sqft_living
Square footage of the lot	sqft_lot
Total floors (levels) in house	floors
House which has a view to a waterfront	waterfront
Has been viewed	view
How good the condition is overall	condition
overall grade given to the housing unit, based on King County grading system	grade
Square footage of house apart from basement	sqft_above
Square footage of the basement	sqft_basement
Built Year	yr_built
Year when house was renovated	yr_renovated
Zip code	zipcode
Latitude coordinate	lat
Longitude coordinate	long
Living room area in 2015(implies some renovations) This might or might not have affected the lotsize area	sqft_living15
LotSize area in 2015(implies some renovations)	sqft lot15

You will require the following libraries:

In [1]: | | import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.pipeline import Pipeline from sklearn.pipelrosessing import StandardScaler,PolynomialFeatures from sklearn.linear_model import LinearRegression %matplotlib inline

Module 1: Importing Data Sets

Load the csv:

In [2]: **M** file_name='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DA0101EN-SkillsNetwork/labs/FinalModule_Coursera/data/kc_house_data_NaN.csv' df=pd.read_csv(file_name)

We use the method head to display the first 5 columns of the dataframe.

In [3]: M df.head()

Out[3]:

Unnamed:) id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	g	rade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat	long	sqft_living15	sqft_lot15
0	7129300520	20141013T000000	221900.0	3.0	1.00	1180	5650	1.0	0		7	1180	0	1955	0	98178	47.5112	-122.257	1340	5650
1	6414100192	20141209T000000	538000.0	3.0	2.25	2570	7242	2.0	0		7	2170	400	1951	1991	98125	47.7210	-122.319	1690	7639
2	2 5631500400	20150225T000000	180000.0	2.0	1.00	770	10000	1.0	0		6	770	0	1933	0	98028	47.7379	-122.233	2720	8062
3	3 2487200875	20141209T000000	604000.0	4.0	3.00	1960	5000	1.0	0		7	1050	910	1965	0	98136	47.5208	-122.393	1360	5000
4	1 1954400510	20150218T000000	510000 0	3.0	2 00	1680	8080	10	0		8	1680	0	1987	0	98074	47 6168	-122 045	1800	7503

5 rows × 22 columns

Question 1

Display the data types of each column using the function dtypes, then take a screenshot and submit it, include your code in the image

In [4]: ► df.dtypes

Out[4]: Unnamed: 0 int64 object float64 float64 date price bedrooms bedrooms bathrooms sqft_living sqft_lot floors waterfront float64 int64 float64 int64 int64 int64 view condition grade sqft_above int64 int64 sqft_above sqft_basement yr_built yr_renovated zipcode int64 int64 int64 float64 long sqft_living15 float64 int64 sqft_lot15 dtype: object int64

We use the method describe to obtain a statistical summary of the dataframe.

In [5]: ⋈ df.describe()

Out[5]:

	Unnamed: 0	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view		grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat	long	sqft_living15	sqft_lot15
count	21613.00000	2.161300e+04	2.161300e+04	21600.000000	21603.000000	21613.000000	2.161300e+04	21613.000000	21613.000000	21613.000000	216	613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000
mean	10806.00000	4.580302e+09	5.400881e+05	3.372870	2.115736	2079.899736	1.510697e+04	1.494309	0.007542	0.234303		7.656873	1788.390691	291.509045	1971.005136	84.402258	98077.939805	47.560053	-122.213896	1986.552492	12768.455652
std	6239.28002	2.876566e+09	3.671272e+05	0.926657	0.768996	918.440897	4.142051e+04	0.539989	0.086517	0.766318		1.175459	828.090978	442.575043	29.373411	401.679240	53.505026	0.138564	0.140828	685.391304	27304.179631
min	0.00000	1.000102e+06	7.500000e+04	1.000000	0.500000	290.000000	5.200000e+02	1.000000	0.000000	0.000000		1.000000	290.000000	0.000000	1900.000000	0.000000	98001.000000	47.155900	-122.519000	399.000000	651.000000
25%	5403.00000	2.123049e+09	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	1.000000	0.000000	0.000000		7.000000	1190.000000	0.000000	1951.000000	0.000000	98033.000000	47.471000	-122.328000	1490.000000	5100.000000
50%	10806.00000	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	0.000000	0.000000		7.000000	1560.000000	0.000000	1975.000000	0.000000	98065.000000	47.571800	-122.230000	1840.000000	7620.000000
75%	16209.00000	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000	0.000000	0.000000		8.000000	2210.000000	560.000000	1997.000000	0.000000	98118.000000	47.678000	-122.125000	2360.000000	10083.000000
max	21612.00000	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	1.000000	4.000000		13.000000	9410.000000	4820.000000	2015.000000	2015.000000	98199.000000	47.777600	-121.315000	6210.000000	871200.000000

8 rows × 21 columns

Module 2: Data Wrangling

Question 2

Drop the columns "id" and "Unnamed: 0" from axis 1 using the method drop(), then use the method describe() to obtain a statistical summary of the data. Take a screenshot and submit it, make sure the inplace parameter is set to True

In [6]: M df.drop(['id','Unnamed: 0'],axis=1,inplace=True)
df.describe()

Out[6]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat	long	sqft_living15	sqft_lot15
count	2.161300e+04	21600.000000	21603.000000	21613.000000	2.161300e+04	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000
mean	5.400881e+05	3.372870	2.115736	2079.899736	1.510697e+04	1.494309	0.007542	0.234303	3.409430	7.656873	1788.390691	291.509045	1971.005136	84.402258	98077.939805	47.560053	-122.213896	1986.552492	12768.455652
std	3.671272e+05	0.926657	0.768996	918.440897	4.142051e+04	0.539989	0.086517	0.766318	0.650743	1.175459	828.090978	442.575043	29.373411	401.679240	53.505026	0.138564	0.140828	685.391304	27304.179631
min	7.500000e+04	1.000000	0.500000	290.000000	5.200000e+02	1.000000	0.000000	0.000000	1.000000	1.000000	290.000000	0.000000	1900.000000	0.000000	98001.000000	47.155900	-122.519000	399.000000	651.000000
25%	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	1.000000	0.000000	0.000000	3.000000	7.000000	1190.000000	0.000000	1951.000000	0.000000	98033.000000	47.471000	-122.328000	1490.000000	5100.000000
50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	0.000000	0.000000	3.000000	7.000000	1560.000000	0.000000	1975.000000	0.000000	98065.000000	47.571800	-122.230000	1840.000000	7620.000000
75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000	0.000000	0.000000	4.000000	8.000000	2210.000000	560.000000	1997.000000	0.000000	98118.000000	47.678000	-122.125000	2360.000000	10083.000000
may	7 7000000+06	33 000000	9 000000	12540 000000	1 651250a±06	3 500000	1 000000	4 000000	6.000000	12 000000	0410 000000	4920 000000	2015 000000	2015 000000	09100 000000	47 777600	121 215000	6210 000000	971200 000000

We can see we have missing values for the columns bedrooms and bathrooms

```
In [7]: M print("number of NaN values for the column badrooss:", df['bedrooss'].isnull().sum())

number of NaN values for the column badrooss: 13
number of NaN values for the column badrooss: 13
number of NaN values for the column badrooss: 18

We can replace the missing values of the column 'bedrooss' using the method replace(). Don't forget to set the inplace parameter to True

In [8]: M mean-df['bedrooss'].mean()

df['bedrooss'].replace(np.nam,mean, inplace=True)

We also replace the missing values of the column 'batrooss' with the mean of the column 'batrooss' using the method replace(). Don't forget to set the inplace parameter to True

In [9]: M mean-df['batrooss'].mean()

df['batrooss'].mean()

df['batrooss'].mean()

df['batrooss'].mean()

ff['batrooss'].simull().sum())

print("number of NaN values for the column batrooss: 0

number of NaN values for the column batrooss: 0

number of NaN values for the column batrooss: 0

number of NaN values for the column batrooss: 0

number of NaN values for the column batrooss: 0

number of NaN values for the column batrooss: 0
```

Module 3: Exploratory Data Analysis

Question 3

Use the method value_counts to count the number of houses with unique floor values, use the method .to_frame() to convert it to a dataframe.

Question 4

1.5 1910 3.0 613 2.5 161 3.5 8

Use the function boxplot in the seaborn library to determine whether houses with a waterfront view or without a waterfront view have more price outliers.

```
In [12]: Width, height=12,12
wf=df[[\waterfont', \price']]
plt.figure[figiste=(width, height))
ax = sns.boxplot(x='waterfont', y='price', data=wf)

## Will change the labels to be more defined.
# xticks = [\without \n \waterfont', \with \n \waterfont'']
# ax.set_xticklabels(xticks)

## Useful in other contexts, just not in this one
# wf=pd.get_dummies(wf, columns=['waterfront'])
```


Question 5

Use the function regplot in the seaborn library to determine if the feature sqft_above is negatively or positively correlated with price.

```
In [13]: N # sns.set_theme(color_codes=True)
sns.regplot(x="sqft_above",y="price",data=df).set(title="Pretty sure this means the data are positively correlated \n")
```

Out[13]: [Text(0.5, 1.0, 'Pretty sure this means the data are positively correlated \n')]

We can use the Pandas method corr() to find the feature other than price that is most correlated with price.

```
In [14]: M df.corr()['price'].sort_values(ascending=False)
  Out[14]: price
sqft_living
grade
sqft_above
                                  1 000000
                                  0.702035
                                  0.667434
                sqft living15
                                  0.585379
               hathrooms
                                   0 525729
               sqft_basement
bedrooms
                                  0.323816
0.308797
                                   0.207002
                waterfront
                                  0.266369
              floors
yr_renovated
sqft_lot
sqft_lot15
                                   0.256794
                                  0.126434
                                  0.089661
0.082447
               yr_built
                                   0.054012
                condition
                                  0.036363
                long
                                  0.030302
               zipcode
                                  -0.022020
               Name: price, dtype: float64
```

Module 4: Model Development

We can fit a linear regression model using the longitude feature 'long' and calculate the R^2 .

Question 6

Fit a linear regression model to predict the 'price' using the feature 'sqft_living' then calculate the R2. Take a screenshot of your code and the value of the R2.

written by the student

Recall the form of a simple linear regression for a single variable is of the form

```
\hat{Y} = a_0 + a_1 X
```

Question 7

Fit a linear regression model to predict the 'price' using the list of features:

```
In [17]: N features = ["floors", "waterfront", "lat" ,"bedrooms" ,"sqft_basement" ,"view" ,"bathrooms", "sqft_living15", "sqft_above", "grade", "sqft_living"]
```

Then calculate the ${\it R}^{2}$. Take a screenshot of your code.

```
In [18]: N
                 X = df[features]
                 Y = df['price']
                 lm = LinearRegression()
lm.fit(X.Y)
                  ##predicted price
                 Yhat=lm.predict(X)
                 a1=lm.coef
                 a2=lm.intercept_
##correlation of featires and price
                ##correlation of jeatires and price
Repp.sqrt(Im.score(X,V))
print("Here is a list of linear regression statistics:")
print("Slope: ",a1)
print("Intercept: ", a2)
print("Correlation of features and price: ",R)
                  print("coefficient of determination:",lm.score(X, Y))
                 # sns.pairplot(df[features],kind='reg')
                  Here is a list of linear regression statistics:
                 Slope: [-2.75903200e+04 6.08735587e+05 6.73727152e+05 -2.55611780e+04
                   -3.15550843e+15 6.71159510e+04 -1.20458167e+03 7.41464758e+00
                   -3.15550843e+15 8.20123187e+04 3.15550843e+15]
                  Intercept: -32428996.244040627
                 correlation of features and price: 0.810948393594544
coefficient of determination: 0.6576372970735713
In [19]: H #Individual correlation for each feature with respect to every other feature.
mydf=df[sorted(features)] # to show the fields alphabetically.
                  fig, ax = plt.subplots(figsize=(20, 8))
                  sns set(font scale=1 3)
                  sns.heatmap(mydf.corr(),annot=True)
     Out[19]: <AxesSubplot:>
                                                                                                                                                                                                   -10
                                                                                                                                    0.76
                                                  1
                                                                                         -0 0097
                                                                                                                                                                           -0 0068
                                                                                                                                                                                                    - 0.8
```


This will help with Question 8

Create a list of tuples, the first element in the tuple contains the name of the estimator:

'scale'
'polynomial'
'model'

The second element in the tuple contains the model constructor

StandardScaler()

PolynomialFeatures(include_bias=False)

LinearRegression()

Input=[('scale',StandardScaler()),('polynomial', PolynomialFeatures(include_bias=False)),('model',LinearRegression())]

Question 8

Use the list to create a pipeline object to predict the 'price', fit the object using the features in the list features , and calculate the R^2

```
Input=[('scale'.StandardScaler()).
                    ('polynomial', PolynomialFeatures(include_bias=False)),
('model',LinearRegression())]
             pipe=Pipeline(Input)
             df features=df[features]
            df_price=df['price']
# Im.fit(df features, df price)
             # Lm.intercept
             # Im.coef
            # Lm.redict(df_features)
pipe.fit(df features,df price)
             pipe.predict(df features)
    Out[22]: array([351376., 562952., 450802., ..., 418916., 461724., 418820.])
In [23]: H from sklearn.metrics import r2 score
             print("The correlation coefficient R^2 for this pipeline is:",r2 score(pipe.predict(df features),df price))
             The correlation coefficient R^2 for this pipeline is: 0.6641557176322042
         Module 5: Model Evaluation and Refinement
         Import the necessary modules
print("done")
             done
         We will split the data into training and testing sets:
In [25]: N features =["floors", "waterfront", "lat", "bedrooms", "sqft_basement", "view", "bathrooms", "sqft_living15", "sqft_above", "grade", "sqft_living"]
            Y = df['price']
             x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.15, random_state=1)
            print("number of test samples:", x_test.shape[0])
print("number of training samples:",x_train.shape[0])
```

Question 9

number of test samples: 3242 number of training samples: 18371

Create and fit a Ridge regression object using the training data, set the regularization parameter to 0.1, and calculate the R^2 using the test data.

```
In [26]: N from sklearn.linear_model import Ridge

In [27]: N # Create and fit a Ridge regression object using the training data # set the regularization parameter to 0.1

RR_train=Ridge(alpha=0.1)

RR_train.fit(x_train, y_train)

# calculate the R^2 using the test data print("R^2 for the training model on the testing data is: ",RR_train.score(x_test,y_test))
```

R^2 for the training model on the testing data is: 0.6478759163939116

Question 10

Perform a second order polynomial transform on both the training data and testing data. Create and fit a Ridge regression object using the training data, set the regularisation parameter to 0.1, and calculate the R*2 utilising the test data provided. Take a screenshot of your code and the R*2.

Added By Student

Hidden old code that I didn't end up using but don't want to delete and hid so you don't get confused

In [28]: ## Perform a second order polynomial transform on both the training data and testing data.

pr=PolynomialFeatures(degree=2)

x_train_pr=pr_fit_transform(x_train)
x_test_pr=pr_fit_transform(x_test)

Create and fit a Ridge regression object using the training data

RRI_train_fit(age_alpha=0.1)

RRI_train_fit(x_train_pr_y_train)
yhat_train_pr = RRI_train.predict(x_train_pr)

Calculate the R^2 utilising the test data provided
print("The Training model applied to the test data has an R^2 of: ",RRI_train.score(x_test_pr,y_test))

The Training model applied to the test data has an R^2 of: 0.700274426566343

Once you complete your notebook you will have to share it. Select the icon on the top right a marked in red in the image below, a dialogue box should open, and select the option all content excluding sensitive code cells.

You can then share the notebook via a URL by scrolling down as shown in the following image:

About the Authors:

Joseph Santarcangelo (https://www.linkedin.com/in/josephs-50398b136/?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10000555&utm_id=NA-SkillsNetwork-Channel-SkillsNetwork-CoursesIBMDeveloperSkillsNetworkDA0101ENSkillsNetworkDA0101ENSkillsNetwork20235326-2022-01-01) has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.

Other contributors: Michelle Carey (https://www.linkedin.com/in/michelleccarey/?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_source=Exinfluencer&utm_source=Exinfluencer&utm_ion=10006555&utm_id=NA-SkillsNetworkCoursesiBMDeveloperSkillsNetworkDA0101ENSkill

Change Log

Change Description	Changed By	Version	Date (YYYY-MM-DD)	
Coverted Data describtion from text to table	Aije Egwaikhide	2.2	2020-12-01	
Changed markdown instruction of Question1	Lakshmi Holla	2.1	2020-10-06	
Added lab to GitLab	Malika Singla	2.0	2020-08-27	