MTH 442: Time Series Analysis Problem Set # 3

- Let $\{\varepsilon_i\}$ be a sequence of i.i.d. random variables with mean zero and finite variance σ^2 . Define a complex valued time series $Z_t = \varepsilon_t + i Y_t$ with $Y_t = \begin{cases} t \varepsilon_t, & \text{if } t \text{ is odd,} \\ -t \varepsilon_t, & \text{if } t \text{ is even.} \end{cases}$
 - Find $Cov(Z_{t+h}, Z_t)$ for $h \in \{0, \pm 1, \pm 2, ...\}$ and verify whether $\{Z_t\}$ is covariance stationary.
- Let $X_t = U_t + iV_t$ be a complex valued stationary process with $\{U_t\}$ and $\{V_t\}$ real valued stationary processes. Prove or disprove " $\gamma_X^*(h) = \gamma_X(-h)$; $\forall h$, where '*' denotes the complex conjugate".
- **1** Let $Z_1, ..., Z_n$ be *n* random variables from $\{Z_t\}$ that is $WN(\mu, \sigma^2)$. Show that $\overline{Z}_n \xrightarrow{p} \mu$.
- [4] Let $Z_1,, Z_n$ be *n* random variables from a stationary $\{Z_t\}$ with mean μ and ACVF $\gamma_Z(.)$. Suppose $\gamma_Z(h)$ is estimated by

$$\hat{\gamma}_{Z}^{*}(h) = \frac{1}{n-h} \sum_{t=1}^{n-h} (Z_{t} - \overline{Z}_{n}) (Z_{t+h} - \overline{Z}_{n}).$$

- Show that if we assume that $\sum_{t=1}^{n-h} (Z_t \overline{Z}_n) \cong \sum_{t=1}^{n-h} (Z_{t+h} \overline{Z}_n) \cong \sum_{t=1}^{n} (Z_t \overline{Z}_n)$, then the bias of $\hat{\gamma}_Z^*(h)$ for estimating $\gamma_Z(h)$ is $-V(\overline{Z}_n)$.
- [5] Let $\{X_t\}$ be given by $X_t = \phi X_{t-1} + \varepsilon_t$, where $\{\varepsilon_t\}$ is WN(0,1).

 (a) Compute the variance of the sample mean $(X_1 + X_2 + X_3 + X_4)/4$ when $\phi = 0.8$.
 - **(b)** Define a new process $Y_t = \sum_{i=1}^{t} X_i$ and verify whether $\{Y_t\}$ is covariance stationary?
- Let $\{Z_t\}$ be i.i.d. N(0,1) variable and define

$$X_{t} = \begin{cases} Z_{t}, & \text{if } t \text{ is even} \\ \left(Z_{t-1}^{2} - 1\right) / \sqrt{2}, & \text{if } t \text{ is odd} \end{cases}$$

Show that $\{X_t\}$ is WN(0,1).

Consider the following $MA(\infty)$ process

$$X_{t} = \varepsilon_{t} + C\left(\varepsilon_{t-1} + \varepsilon_{t-2} +\right)$$

where, $\{\varepsilon_t\}$ is $WN(0, \sigma^2)$ and $C < \infty$ is a constant.

- (a) Is $\{X_t\}$ covariance stationary?
- Is the first difference series covariance stationary?
- Suppose $\{X_t\}$ is an MA(1) process $X_t = \varepsilon_t + 0.5 \varepsilon_{t-1}$. Verify whether $Y_t = X_t X_{t-1}$ is covariance stationary and has any standard model.
- 1 2 Let $\{X_t\}$, $\{Y_t\}$ and $\{Z_t\}$ be 3 independent mean zero covariance stationary processes; $\{X_t\}$ having an MA(1) process $X_t = \varepsilon_t + \varepsilon_{t-1}$, $\varepsilon_t \sim WN(0,1)$, $\{Y_t\}$ and $\{Z_t\}$ are WN(0,1) processes. Define $U_t = (1 - Z_t)X_t + Y_t.$ (a) Is $\{U_t\}$ covariance stationary?

 - (b) Does $\{U_t\}$ follow a white noise process?

- Prove that sum of two independent white noise processes is also a white noise process. Give an example to show that sum of two stationary independent non-white noise series can also be stationary
- . Let $\{X_t\}$ be a time series given by $X_t = \mu + \varepsilon_t + \varepsilon_{t-1} + \phi \varepsilon_{t-2}$; $\{\varepsilon_t\}$ is a sequence of i.i.d. $N(0, \sigma^2)$.

Consider $\delta_1 = \frac{2X_1 + X_3}{2}$ and $\delta_2 = \frac{X_3 + X_4 + X_5}{2}$ as two estimators of μ .

- (a) Verify whether the estimators δ_1 and δ_2 are unbiased or not.
- Find the values of ϕ , if any, for which $Var(\delta_1) > Var(\delta_2)$.
- (e) Find the joint distribution of $(X_1, X_2, ... X_n)$ and hence (or otherwise) verify whether or not $\{X_t\}$ is strict stationary.
- Let $\{X_t\}$ be an AR(1) process $X_t = \phi X_{t-1} + \varepsilon_t$; $|\phi| < 1$; $\varepsilon_t \sim WN(0, \sigma^2)$. Define $Y_t = X_t \frac{1}{\phi} X_{t-1}$.

Verify whether $\{Y_t\}$ is a white noise process.

Let $\{X_t\}$ be a stationary MA(1) process

$$X_t = \varepsilon_t + \phi \, \varepsilon_{t-1}; \ \varepsilon_t \sim WN(0,1).$$

Define $T_1 = \frac{X_4 + X_5}{2}$ and $T_2 = \frac{X_3 + X_4 + X_5}{2}$.

Does any of the two estimators of mean dominate the other in terms of lower variance (for all values of ϕ)?

- [14] Let $\{X_t\}$ be a MA(I) process $X_t = \varepsilon_t + \theta \varepsilon_{t-1}$; $\varepsilon_t \sim WN(0, \sigma^2)$, $|\theta| > 1$. Define a new process $\{Y_t\}$ as $Y_t = \sum_{j=0}^{\infty} (-\theta)^{-j} X_{t-j}$. Verify whether $\{Y_t\}$ is stationary and/or white.
- Consider the AR(2) process $\{Y_t\}$ satisfying

$$Y_t - \phi Y_{t-1} - \phi^2 Y_{t-2} = \varepsilon_t; \varepsilon_t \sim WN(0, \sigma^2)$$

 $Y_t - \phi Y_{t-1} - \phi^2 Y_{t-2} = \varepsilon_t; \varepsilon_t \sim WN(0, \sigma^2).$ Find the value (s) of ϕ for which the above process is stationary.

- Show that the AR(2) process $X_t = X_{t-1} + c X_{t-2} + \varepsilon_t$ is stationary provided -1 < c < 0
- Let $\{X_t\}$ be a stationary AR(2) process with ACVF $\gamma_X(.)$. If it is given that $\gamma_X(1)/\gamma_X(0) = 1/2$ and $\gamma_X(2)/\gamma_X(1) = 1/4$, determine $\gamma_X(3)/\gamma_X(2)$.
- For a stationary AR(1) process $Y_t = \phi Y_{t-1} + \varepsilon_t$; $\varepsilon_t \sim WN(0, \sigma^2)$. Prove that $\gamma(-h) = \phi \gamma(-h+1)$, for
- $\{X_i\}$ and $\{Y_i\}$ are two independent covariance stationary ARMA processes given by

$$\left(1 - \phi_1^{(1)} B\right) X_t = \left(1 + \theta_1^{(1)} B + \theta_2^{(1)} B^2 + \theta_3^{(1)} B^3\right) \varepsilon_t \text{ and } \left(1 - \phi_1^{(2)} B\right) Y_t = \left(1 + \theta_1^{(2)} B + \theta_2^{(2)} B^2\right) \delta_t;$$

$$\left|\phi_1^{(i)}\right| < 1, i = 1, 2; \ \left\{\varepsilon_t\right\} \text{ and } \left\{\delta_t\right\} \text{ are independent white noise processes, } \varepsilon_t \sim WN\left(0, \sigma^2\right) \text{ and }$$

$$\delta_t \sim WN\left(0, \sigma^2\right).$$

- Prove or disprove, " $Z_t = (1 \phi_1^{(1)}B)(1 \phi_1^{(2)}B)X_t$ " is a stationary MA process.
- Let $U_t = (1 \phi_1^{(1)}B)(1 \phi_1^{(2)}B)(X_t + Y_t)$. Find the smallest k, if any, such that $Cov(U_{\iota}, U_{\iota + h}) = 0, \forall h \geq k.$

Prove that an $MA(\infty)$ process $X_t = \sum_{j=0}^{\infty} \psi_j \, \varepsilon_{t-j}$ with absolutely summable coefficients $\{\psi_j\}_{j=0}^{\infty}$ has absolutely summable autocovariance sequence $\{\gamma_j\}_{j=0}^{\infty}$.