Math2901: Group Assignment

Dylan Wang, Ivan Fang z5422214@ad.unsw.edu.au, z5418045@ad.unsw.edu.au

University of New South Wales — July 31, 2023

Question 1 Solutions

Let $A, B \subseteq \Omega$.

1.

Given that event A is independent of itself, this means that $\mathbb{P}(A|A) = \mathbb{P}(A)$. This implies $\mathbb{P}(A) = \mathbb{P}(A)$ and so $\mathbb{P}(A)$ must equal either 1 or 0.

2.

Given event A such that $\mathbb{P}(A) = 1$ or $\mathbb{P}(A) = 0$, we observe the conditional probability between events A and B.

For the case where $\mathbb{P}(A) = 1$:

$$\begin{split} \mathbb{P}(B|A) &= \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} \\ &= \mathbb{P}(B \cap A) \\ &= \mathbb{P}(B). \end{split}$$

We reach this result because the intersection with a guaranteed event will always be the probability of the other event.

For the case where $\mathbb{P}(A) = 0$:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(B) - \mathbb{P}(A \cup B)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(B) - \mathbb{P}(B)}{\mathbb{P}(B)}$$

$$= 0$$

$$= \mathbb{P}(A).$$

Since the union with an impossible event always returns the probability of the other event, we reach our result.

3.

Note, by the Total Law of Probability, $\mathbb{P}(A \cap B) \leq 0$.

Now observe,

$$\begin{split} \mathbb{P}(A \cap B) &= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \\ 1 &\geq \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \\ \mathbb{P}(A \cap B) &\geq \mathbb{P}(A) + \mathbb{P}(B) - 1. \end{split}$$

The inequality has been proven, thus we are done.

4.

Using the previous proven inequality,

$$\mathbb{P}(A_1 \cap A_2) \ge \mathbb{P}(A_1) + \mathbb{P}(A_2) - 1
\mathbb{P}(A_1 \cap A_2 \cap A_3) \ge \mathbb{P}(A_1) + \mathbb{P}(A_2) - 1
= \mathbb{P}(A_1) + \mathbb{P}(A_2) - 1 + \mathbb{P}(A_3) - 1
= \mathbb{P}(A_1) + \mathbb{P}(A_2) + \mathbb{P}(A_3) - 2
\vdots
\mathbb{P}(\bigcap_{i=1}^{n} A_i) \ge \sum_{i=1}^{n} A_i - (n-1).$$

We have thus proved the inequality.

Question 2 Solutions

Question 3 Solutions

1.

We can see that $\tilde{X}_n = \bar{X}_n + \frac{1}{n}(2X_1) - \frac{1}{n}(X_{n-1} + X_n)$. Now calculating the bias of \tilde{X}_n

$$\begin{split} \mathrm{Bias}(\tilde{X_n}) &= \mathrm{E}(\tilde{X_n}) - \mu \\ &= \frac{1}{n} \mathrm{E}\left(\sum_{i=1}^n X_i + 2X_1 - (X_{n-1} + X_n)\right) - \mu \\ &= \frac{1}{n} \mathrm{E}\left(\sum_{i=1}^n X_i\right) + \frac{1}{n} \mathrm{E}(2X_1) - \frac{1}{n} \mathrm{E}(X_{n-1} + X_n) \mu. \end{split}$$

Because the random sample is independent identically distributed, the expected value of each variable in the sample is equal to the mean. This means that our simplified equation becomes

$$\frac{1}{n}\mathbb{E}\left(\sum_{i=1}^{n} X_i\right) + \frac{2}{n}\mathbb{E}(X_1) - \frac{1}{n}\mathbb{E}(X_{n-1}) - \frac{1}{n}\mathbb{E}(X_n)\mu = \mu + \frac{2}{n}\mu - \frac{1}{n}\mu - \frac{1}{n}\mu - \mu = 0$$

We have thus shown that $\tilde{X_n}$ is an unbiased estimator of μ .

2.

The mean square error can be written as

$$\begin{split} \text{MSE}(\tilde{X_n}) &= \text{Var}(\tilde{X_n}) + (\text{Bias}(\tilde{X_n}))^2 \\ &= \text{Var}(\tilde{X_n}) \\ &= \text{E}(\tilde{X_n}^2) - \text{E}(\tilde{X_n})^2 \\ &= \text{E}\left[\frac{1}{n^2}\left(\sum_{i=1}^n X_i + 2X_1 - X_{n-1} - X_n\right)^2\right] - \mu^2 \\ &= \frac{1}{n^2} \text{E}\left[\left(\sum_{i=1}^n X_i\right)^2 + 2\left(\sum_{i=1}^n\right) (2X_1 - X_{n-1} - X_n) + (2X_1 - X_{n-1} - X_n)^2\right] - \mu^2 \\ &= \frac{1}{n^2} \text{E}\left[\left(\sum_{i=1}^n X_i\right)^2\right] + \frac{2}{n^2} \text{E}\left[\left(\sum_{i=1}^n X_i\right) (2X_1 - X_{n-1} - X_n)\right] + \frac{1}{n^2} \text{E}\left[(2X_1 - X_{n-1} - X_n)^2\right] - \mu^2 \\ &= \frac{1}{n} \text{E}\left(\sum_{i=1}^n X_i\right) \times \frac{1}{n} \text{E}\left(\sum_{i=1}^n X_i\right) + \frac{2}{n} \text{E}\left(\sum_{i=1}^n X_i\right) \times \frac{1}{n} \text{E}(2X_1 - X_{n-1} - X_n) + \frac{1}{n} \text{E}(2X_1 - X_{n-1} - X_n) \times \frac{1}{n} \text{E}(2X_1 - X_n - X_n) \times \frac{1}{n} \text{E$$

Thus, the MSE is 0.

3.

$$\lim_{n \to \infty} \mathsf{MSE}(\tilde{X}_n) = \lim_{n \to \infty} 0$$
$$= 0.$$

4.

Measure consistency of both estimators.

Question 4 Solutions