See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/229336522

Middle to late Holocene fluctuations of C3 and C4 vegetation in a Northern New England Salt Marsh, Sprague Marsh...

	n Organic Geochemistry · March 2007 5/j.orggeochem.2006.06.006	
CITATIONS		READS
20		46
5 author	rs , including:	
	Beverly J. Johnson	
	Bates College	
	42 PUBLICATIONS 1,541 CITATIONS	
	SEE PROFILE	

Some of the authors of this publication are also working on these related projects:

Promoting blue carbon in Latin America and the Caribbean View project

Organic Geochemistry

Organic Geochemistry 38 (2007) 394-403

www.elsevier.com/locate/orggeochem

Middle to late Holocene fluctuations of C₃ and C₄ vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine

Beverly J. Johnson ^{a,*}, Karen A. Moore ^a, Charlotte Lehmann ^a
Curtis Bohlen ^b, Thomas A. Brown ^c

Department of Geology, Bates College, Lewiston, ME 04240, USA
 B 3 Bowden Lane, Freeport, ME 04032, USA
 Center for Accelerator Mass Spectrometry, LLNL, Livermore, CA 94551, USA

Received in revised form 3 January 2006; accepted 1 June 2006 Available online 9 August 2006

Abstract

A 3.1 m sediment core was analyzed for stable carbon isotope composition of organic matter and higher plant leaf wax (HPLW) lipid biomarkers to determine Holocene shifts in C_3 (higher high marsh) and C_4 (low and/or high marsh) plant deposition at the Sprague River Salt Marsh, Phippsburg, Maine. The carbon isotope composition of the bulk sediment and the HPLW parallel each other throughout most of the core, suggesting that terrestrial plants are an important source of organic matter to the sediments, and diagenetic alteration of the bulk sediments is minimal. The current salt marsh began to form 2500 cal yr BP. Low and/or high C_4 marsh plants dominated deposition at 2000 cal yr BP, 700 cal yr BP, and for the last 200 cal yr BP. Expansion of higher high marsh C_3 plants occurred at 1300 and 600 cal yr BP. These major vegetation shifts result from a combination of changes in relative sea-level rise and sediment accumulation rates.

Average annual carbon sequestration rates for the last 2500 years approximate 40 g C yr⁻¹ m⁻², and are in strong agreement with other values published for the Gulf of Maine. Given that Maine salt marshes cover an area of ~79 km², they represent an important component of the terrestrial carbon sink. More detailed isotopic and age records from a network of sediment cores at Sprague Marsh are needed to truly evaluate the long term changes in salt marsh plant communities and the impact of more recent human activity, including global warming, on salt marsh vegetation. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In New England salt marshes, the vegetation is zoned according to elevation of surface relative to mean high tide (summarized in Nixon, 1982; Teal,

E-mail address: bjohnso3@bates.edu (B.J. Johnson).

1986; Bertness and Ellison, 1987; Bertness, 1991). The low marsh is closest to the tidal stream, and is located between mean high tide and the mean high water (MHW) level. It is inundated with salt water twice daily and is inhabited primarily by the tall form of *Spartina alterniflora* (C₄ plant; smooth cordgrass), a species that is well adapted to anoxic and saline conditions. The high marsh is located in

^{*} Corresponding author.

the area above the MHW level. It is flooded irregularly at high tides (e.g., spring tides) and is inhabited by a mosaic of *Spartina patens* (C₄ plant; salt meadow hay), *Distichlis spicata* (C₄ plant; spike grass), and the short form of *S. alterniflora* (C₄ plant). The higher high marsh is at or above mean higher high water (MHHW) and is flooded during big storm events. It is inhabited by increasing amounts of *Juncus* spp. (C₃ plants), a plant with lower salinity tolerance than either *Spartina* spp. or *D. spicata* (Bertness, 1991), as well as *Scirpus* spp. (C₃ plants). The brackish marsh borders the salt marsh and is generally dominated by *Scirpus* spp. and *Phragmites* spp. (C₃ plant; reed-grass) among other C₃ species.

The average carbon isotopic composition (δ^{13} C) of salt marsh plants is $-28.2 \pm 2.3\%$ (n = 8) and $-13.9 \pm 1.2\%$ (n = 3) for C₃ and C₄ species, respectively. Therefore, salt marsh surface soil δ^{13} C values should decrease from the low/high marsh to the higher high marsh, because of the increased C₃ plant biomass (e.g., Juncus spp. and Scirpus spp.) with increasing distance from the tidal channel (Fig. 1: after Chmura and Aharon, 1995). Several have used this relationship as the basis for interpreting sedimentary organic matter (SOM) δ^{13} C values in salt marsh cores. Isotopic changes reflect changes in salt marsh plant communities which result from changes in relative sea level (RSL) through time (DeLaune, 1986; Chmura et al., 1987; Craft et al., 1988; Orson et al., 1998; Choi et al., 2001). These studies assume that salt marsh plants (i.e., autochthonous material) are the dominant source of organic matter to the sediments, and that algal biomass (i.e., allochthonous material) is not significant.

The δ^{13} C values of C₃ plants are similar to those of particulate organic matter (POM) in the Gulf of

Maine, and the δ^{13} C values of C₄ plants are similar to certain macroalgae (McMahon et al., 2005), both of which could be contributing substantially to organic matter deposition. Thus, independent proxies for identifying organic matter are needed to determine the relative importance of allochthonous and autochthonous deposition in the salt marsh. Recent lipid biomarker studies provide more specific information on cycling of plant organic matter within salt marsh sediments (Bull et al., 1999; Wang et al., 2003), but these studies lack a longer-term, geologic perspective from which valuable baseline information about salt marsh history can be obtained.

In the Gulf of Maine, the systematic use of carbon isotopes for reconstructing changes in C₃ and C₄ salt marsh plant communities has been secondary to the analysis of salt marsh peat rhizomes and salt marsh benthic foraminifera distributions for past sea level studies (Gehrels, 1994, 1999). We contend that given potential difficulties associated with rhizome and foraminifera identification and a lack of foraminifera in some settings, carbon isotopic investigations of Maine salt marsh cores could be useful for studies of RSL. Studies indicate that diagenetic modification of SOM in marshes is less than a few permil (Benner et al., 1987; Chmura et al., 1987; Ember et al., 1987; Fogel et al., 1989), significantly less than the isotopic shifts accompanying shifts in salt marsh plant communities expected through time.

In this paper, we analyze the stable carbon isotope composition of bulk sediments and higher plant leaf wax (HPLW) biomarkers (i.e., the C_{24} , C_{26} , C_{28} , C_{30} , and C_{32} n-alkanoic acids) extracted from a sediment core to reconstruct middle to late Holocene shifts in salt marsh plant communities in

Fig. 1. Generalized cross-section of a New England salt marsh showing major vegetation types, where Sat = tall Spartina alterniflora; Sp = Spartina patens; Ds = Distichlis spicata; Sas = short Spartina alterniflora; Se = Salicornia europaea; If = Iva fructescens; Jg = Juncus gerardii, Pv = Panicum virgatum; Pa = Phragmites australis (figure modified from Niering and Warren (1980)).

Phippsburg, Maine. The HPLW lipid biomarkers are $\sim 7-10\%$ depleted relative to the plant from which they are derived and are generally well preserved through geologic time (summarized in Brassell, 1993; Meyers, 1997), having been successfully recovered in samples as old as the Miocene (cf., Freeman and Colarusso, 2001). The isotopic offset between the bulk sediments and the HPLW should be consistent in unaltered material dominated by terrestrial plant deposition due to the refractory nature of the HPLW. We use the isotopic offset between HPLW and bulk sediments to evaluate diagenetic alteration of the SOM at Sprague Marsh, and to evaluate changes in relative abundance of autochthonous and allochthonous organic material. Finally, we illustrate the importance of Maine salt marshes as a carbon sink by evaluating the long term carbon sequestration rates in the Sprague Marsh.

1.1. Study site

The Sprague River Marsh is located within the Bates–Morse Mountain Conservation Area in Phippsburg, Maine, at 43° 45′N/ 69° 50′W (latitude/longitude) (Fig. 2). It is bordered on the east and west by two glacially carved north-south trending bedrock ridges, including Morse Mountain, and to the south by Seawall Beach, a barrier spit extending 2.2 km from the eastern rocky headland. The marsh is approximately 2 km long and 800 m wide in the southern section and is drained by the Sprague River. There is a single-lane gravel causeway traversing the north end of the marsh that was put into place in the 1940s. The coring site was approximately 15 m south of the causeway on the west side of the tidal channel (Fig. 2).

Sprague Marsh is classified as a back-barrier marsh (after Kelley et al., 1988; Gehrels et al., 1996) in the south-central region of the Gulf of Maine (Jacobson et al., 1987). At the coring site, low marsh vegetation is found fringing the tidal channel and the ditches and is composed of the tall form of *S. alterniflora*. High marsh dominates the salt marsh surface, and is represented primarily by a mosaic of *S. patens* and *D. spicata* with lesser amounts of the short form of *S. alterniflora*. The higher high marsh is represented by the presence of *Juncus gerardii* in addition to *S. patens* and *D. spicata* with lesser amounts of *Solidago* spp. (C₃ plants) *Scirpus robustus*, and *Triglochin maritimum* (C₃ plant). The brackish marsh is dominated

Fig. 2. The Sprague River Marsh, in the Bates-Morse Mountain Conservation Area, Phippsburg, Maine. The stippled areas represent water, where the Sprague River runs N/S in the middle of the marsh, and joins the Atlantic Ocean to the SW of Seawall Beach. The dark lines in the marsh represent a combination of the natural meanders of the Sprague River channel prior to dredging, and human made ditches. Arcview (ESRI, Inc. Redlands, CA) was used to generate the map and electronic data for the coastline, river and road were obtained from USGS 1:24,000 scale quadrangle maps obtained from the Maine Office of GIS website (http://apollo.ogis.state.me.us/).

by S. robustus, J. gerardii, and T. maritimum. Salicornia europaea (C₃ plant) is present across the marsh, but represents a small portion of the total biomass. Nomenclature follows Gleason and Conquist (1991).

2. Methods

2.1. Sample collection

A vibracorer was used to extract a 3.1 m sediment core from the high marsh at the northern end of Sprague Marsh, in May, 2002 (Fig. 2). The core was labeled SM02-VC1, and stored for several months at 4 °C prior to splitting and subsampling. Once opened, the sediments were logged and subsampled every 10 cm for bulk geochemical analyses and every 30 cm for lipid analyses.

2.2. Sample preparation and analysis

Bulk dry densities were determined by drying a 1 cc aliquot of sediment at 100 °C until a constant mass was achieved. Dried core sediments were homogenized with a mortar and pestle and sieved at 40 mesh. A subsample of the <40 mesh fraction was decalcified using 1 N $\rm H_3PO_4$ (after Weliky et al., 1983) to remove any trace amounts of carbonate that might have been present. The decalcified sediments were analyzed for bulk geochemical parameters (i.e., %OC, C/N, and δ^{13} C).

To isolate the HPLW, between 1 and 10 g of the homogenized, <40 mesh fraction were Soxhlet extracted for ~24 h in methylene chloride: methanol (2:1 by volume) (after Wakeham and Canuel, 1988). The resultant total lipid extract was saponified in 0.5 N KOH in methanol and separated into neutral and acid fractions. The acid fraction was methylated with 3% BF₃ in methanol and the resultant fatty acid methyl esters (FAME) were analyzed and quantified by GC-FID (Agilent 6890N) in the Envi-Geochemistry ronmental Laboratory (EGL), Department of Geology, Bates College. Compound identification was undertaken using the GC/MS (Agilent 6890/MS 5973) in the Department of Chemistry, Bates College.

Carbon isotope measurements of bulk organic matter were made in the EGL at Bates College using a ThermoFinnigan Delta Plus Advantage stable isotope ratio mass spectrometer (IRMS) interfaced to a Costech elemental analyzer (EA) via the Conflo III combustion interface. Compound specific isotopic analyses were made using a Trace GC and GCIII combustion interfaced to the aforementioned IRMS.

The running conditions for all GC analyses were similar so results could be readily compared. Samples were injected isothermally at 250 °C and com-

pounds were separated on an HP-5MS column (30 m, 0.25 mm i.d., 0.25 μ m film). The oven temperature program was as follows: $T_1 = 55$ °C (5 min hold); $T_2 = 180$ °C (15 °C/min with 0 hold); and, $T_3 = 310$ °C (8 °C/min with 25 min hold).

All stable carbon isotope values are reported in delta (δ) notation, in units of per mil (%), where $\delta^{13}C = [((^{13}C/^{12}C)_{sample}/(^{13}C/^{12}C)_{standard}) - 1] * 1000$, and the standard is VPDB (Craig, 1957). The external reproducibility, as determined by the standard deviation of multiple analyses of the bulk sediment was $\pm 0.2\%$, and of the individual FAME was $\pm 1.0\%$. The $\delta^{13}C_{HPLW}$ is presented as the weighted mean according to the following equation:

$$\frac{E(\delta^{13}C_i*X_i)}{E(X_i)}$$

where i = 24, 26, 28 and 30 carbons, and X represents the concentration of the n-alkanoic acids.

2.3. Radiocarbon chronology

Three macrofossils were collected for radiocarbon analyses at three different depths within the micaceous sandy layer, including a small piece of wood at 274 cm, and a fragment of *Macoma balthica* at 253 cm and a fragment of *Mya arenaria* at 216 cm. An acid-base-acid extraction was performed on the wood, and the shells were mechanically abraded prior to a $\sim 10\%$ acid leach in 0.1 N HCl. All samples were sent to the AMS 14 C dating laboratory at the Livermore National Laboratory.

Radiocarbon ages were calculated following the conventions of Stuiver and Polach (1977). Radiocarbon dates were calibrated using CALIB 4.4 and are reported as the midpoint of the age range (2σ) with the largest relative probability in calibrated years before present (cal yrs BP) (after Stuiver et al., 1998). The marine reservoir correction for the Gulf of Maine is about 400 yr (Tanaka et al., 1990), but, as the mollusks dated in this study are intertidal, the full marine reservoir correction is not appropriate for these samples. On this basis, we have not applied any marine reservoir corrections before calculating the calibrated ages of the mollusk samples reported here. We note that the actual ages of the mollusk fragments may be up to 400 yr younger than indicated by the reported radiocarbon dates, and further, that such shifts in the mollusk ages would have no significant impact on the preliminary core chronology nor on this study's conclusions.

3. Results

3.1. Core stratigraphy and chronology

Five stratigraphic units were differentiated from one another based on sediment color, texture, mineralogy and rhizome composition (Fig. 3). These units include a lower organic rich layer of unknown origin between 298 and 276 cm, overlain by tidal flat muds and sands containing sporadic shell fragments, including the wood and *Macoma balthica* and *Mya arenaria* shell pieces used for radiocarbon dating. The tidal flat deposits grade into a rhizome rich salt marsh peat beginning at approximately 175 cm. Between 175 and 0 cm, fluctuations in rhizome morphology occur and are used to discern an overall regression in sea level, where low marsh at the bottom grades into mixed low/high marsh in the middle and high marsh at the top of the peat (Fig. 3).

The radiocarbon dates increase with depth in the core, where the base of the intertidal sands is 3700 cal yr BP (Table 1). An age-depth model was constructed by fitting a linear regression through the three radiocarbon-dated data points and the origin (Fig. 3). The resultant average sedimentation rate is approximately 0.07 cm yr⁻¹ and is in good agreement with modern sedimentation rates of high marshes in the Bay of Fundy, which range between 0.03 and 3 cm yr⁻¹ (Connor et al., 2001). This sedimentation rate is used to assign ages to core depths above the lowest sample dated with the assumption that the marsh surface represents the present day, and that the rate of sedimentation has been constant through the last 3700 yr. The assumption of constant sedimentation is unlikely given the difference in depositional environments and physical properties of the intertidal sands versus the salt marsh peat. Thus, the assigned ages should be considered preliminary until verified with additional AMS 14C dates from multiple units.

Stratigraphic Key

Fig. 3. Sprague marsh core stratigraphy, radiocarbon ages and age model. The three samples that were radiocarbon dated are as follows: A = Mya arenaria; B = Macoma balthica; and, C = wood fragment.

2000

Age (cal yr BP)

4000

3.2. Organic geochemistry

The lowest %OC values are measured in the tidal flat deposits and the highest values are measured in the salt marsh peat and organic rich sediments (Table 2; Fig. 4). Down-core variations in the %OC likely results from a combination of factors, including changes in organic matter sources, changes in inorganic sediment fluxes, and/or changes in rates of organic matter decomposition at the time of burial.

The atomic C/N values of the core sediments range between 14 and 22, and are typical of terres-

Table 1
Radiocarbon and calibrated ages for three samples collected from core SM02-VC1

Sample ID	Depth (cm)	Sample	CAMS #	¹⁴ C age (BP)		Calibrated age (cal yr BP)	
				Age	Stdev	Average	Stdev
BC 2129	216	Mya arenaria	102998	3220	45	3450	100
BC 2130	253	Macoma balthica	102999	3300	40	3540	100
BC 2128	274	Wood	103313	3450	40	3700	80

Table 2 Organic geochemical data for the Sprague Marsh sediment core, SM02-VC1

Sample	Depth (cm)	Age (cal yr BP)	C/Nat	%OC	$\delta^{13}C_{Bulk}$	$\delta^{13}C_{HPLW}$	Density (g/cc)
BC 2004	0	0	16.7	19.7	-16.6		
BC 2006	9	129	19.8	36.4	-15.1	-22.1	0.2
BC 2007	20	286	20.3	43.1	-15.6		
BC 2010	30	429	17.9	35.5	-19.6	-29.6	0.2
BC 2012	40	572	15.6	3.1	-20.1		0.5
BC 2014	50	715	17.5	18.6	-14.3		
BC 2016	60	858	16.1	6.3	-15.1	-21.2	0.3
BC 2018	70	1001	15.9	6.7	-16.6		0.4
BC 2020	80	1144	15.8	10.8	-18.9	-25.2	
BC 2022	90	1287	15.0	23.7	-22.9		0.2
BC 2023	102	1459	15.0	16.4	-21.9		
BC 2025	116	1659	21.1	35.6	-16.4		0.2
BC 2062	118	1687	15.7	25.0	-17.3		
BC 2028	130	1859	18.7	17.8	-13.6	-19.5	0.1
BC 2030	140	2002	18.1	18.2	-13.1	-19.5	
BC 2032	150	2145	15.2	9.1	-15.1		0.4
BC 2034	160	2288	16.1	6.3	-17.1		0.3
BC 2035	169	2417	17.7	5.0	-20.0		0.4
BC 2037	177	2531	18.4	0.8	-23.0	-24.6	0.6
BC 2040	190	2717	14.4	0.4	-24.9		0.7
BC 2042	200	2860	17.1	0.4	-24.8		0.7
BC 2044	210	3003	19.7	2.5	-24.9	-29.7	0.5
BC 2059	222	3175	20.3	2.8	-25.0		0.4
BC 2047	230	3289	22.3	2.5	-25.3		0.4
BC 2049	240	3432	18.3	2.2	-25.1	-30.8	0.5
BC 2050	250	3575	17.6	2.7	-24.7		
BC 2053	260	3718	15.9	1.5	-24.3		0.5
BC 2055	270	3861	18.2	3.0	-23.2	-26.3	0.5
BC 2060	277	3961	16.2	19.0	-21.3		0.2
BC 2061	287	4104	15.4	17.6	-20.2		0.2
BC 2057	290	4147	15.0	25.2	-20.9		
BC 2058	298	4261	17.1	17.8	-19.2	-24.7	

Fig. 4. Organic geochemical data from Sprague Marsh core, including percent organic carbon (%OC), atomic C/N values (C/Nat), bulk sediment organic carbon isotope data (δ^{13} C Bulk) and higher plant leaf wax isotope data (δ^{13} C HPLW, presented as the weighted mean for C₂₄, C₂₆, C₂₈, C₃₀, and C₃₂). Ages assigned based on age model (Fig. 3) and sample depth.

trially derived organic matter (Meyers, 1997) (Table 2; Fig. 4). These elevated C/N values are not particularly surprising in the peat sections of the core where terrestrial materials (i.e., rhizomes) are abundant. High C/N values found in the middle of the intertidal sand and silt deposits, however, indicate that terrestrial plant deposition was significant in the near shore tidal flats as well.

The δ^{13} C values of the bulk organic matter range between -13 and -25%, and the weighted δ^{13} C_{HPLW} values range between -20 and -31%. (Table 2; Fig. 4). The HPLW isotope data are consistently depleted in 13 C by $\sim 7\%$ relative to the bulk isotope data and are correlated strongly to each other, where

$$\delta^{13}C_{HPLW} = 0.9 \ \delta^{13}C_{bulk} - 7.5 \ (R^2 = 0.90)$$

at all depths except two (270 and 177 cm). This isotopic consistency between the bulk sediment and the HPLW implies that the bulk isotope data have not been altered significantly by diagenesis, and that the data reflect a terrestrial plant source throughout most of the core.

At 270 and 177 cm, the average isotopic offset between the HPLW and the bulk sediments is 3.1 and 1.7%, respectively. This reduced offset implies that the bulk sedimentary organic matter (1) has been significantly modified by diagenesis, (2) is derived from aquatic sources that are enriched in ¹³C, such as the macroalgae Ascophyllum nodosum $[\delta^{13}C = -17.3 \pm 0.4\%]$ (n = 3); McMahon et al., 2005], or (3) is dominated by HPLW derived from C₃ plants. High C/N values and relatively high HPLW concentrations (Table 2) favor the third scenario listed above; however, a detailed analysis of the HPLW concentration data from the sediments, modern plants and other possible organic sources to the site is needed to corroborate this interpretation.

4. Discussion

4.1. Middle to late holocene environments of deposition

The basal unit of the core is an organic rich mud layer without rhizomes which appears to correlate with a similar unit of unknown origin noted in other cores from the same general area (Gehrels et al., 1996). The enriched carbon isotope composition of the bulk sediments and the HPLW provides new insights into the origin of this unit, and indicates

that it contains a significant amount of C_4 plant material, and represents a period of low and/or high marsh plant colonization. The absence of rhizomes suggests that the organic matter may have been reworked into the sedimentary sequence above as sea level rose.

Deposition of the intertidal sands and mudflats overlying the lower organic unit began approximately 3700 cal yr BP. This unit is relatively thick and widespread at Sprague Marsh, and may indicate a period of rapid sea level rise (RSLR) (Gehrels et al., 1996) and reworking of the earlier salt marsh unit.

An organic rich, salt marsh peat overlies the intertidal sands and extends from 175 cm to the surface. Assuming a linear sedimentation rate of 0.07 cm yr⁻¹ over the dated region of the core, the peat began to form 2500 yr BP, and is in agreement with other studies at Sprague Marsh (Gehrels et al., 1996). This shift from intertidal deposits to salt marsh deposits coincides with a reduction in rates of RSLR that occurs between 2500 and 1000 cal yr BP (Gehrels, 1994).

The isotopic composition of the upper peat reflects the following conformable salt marsh communities from oldest to youngest: low and/or high marsh (C₄ plants) grading into higher high marsh (C₃ plants) grading into low and/or high marsh (C₄ plants) grading into higher high marsh (C₃ plants) grading into the present high marsh (C₄ plants). These multiple shifts in plant communities were not identified in the rhizome stratigraphy presented herein, nor in the stratigraphy presented by others (Gehrels et al., 1996). These results illustrate the added value of carbon isotope data for discerning changes in salt marsh plant communities through time.

At Sprague Marsh, higher high marsh plant maxima occur at 1300 and 600 cal yr BP and high and/or low marsh plant maxima occur at 2000, 700, and 200 cal yr BP. The balance between RSLR and sediment accumulation is the primary environmental factor determining long term changes in marsh structure (DeLaune et al., 1983; DeLaune, 1986; Warren and Niering, 1993) and depends on a variety of factors, including sediment supply, flooding regime, compaction, and plant community structure (Niering and Warren, 1980; Orson et al., 1998). C₄ marsh forms when RSLR exceeds sediment accumulation rates and C₃ marsh forms when sediment accumulation rates exceed RSLR.

Additional environmental factors to consider when interpreting C₃ and C₄ vegetation shifts in salt marshes include ice rafting, storms and human activity. Over the last 300 yr, for example, humans have altered the hydrology of Northern New England salt marshes dramatically (via salt marsh hay and agricultural production, causeway installation and ditching for mosquito and greenhead fly control), and little is known about the consequences of these actions on salt marsh structure.

5. Carbon sequestration

The long term average carbon sequestration rate of the Sprague River salt marsh is $\sim 40 \text{ g C yr}^{-1} \text{ m}^{-2}$ and was calculated as the product of the average dry bulk density (0.28 g cm^{-3}) , the fraction of sediment comprised of OC (0.20), and the average sedimentation rate $(0.07 \text{ cm yr}^{-1})$ in the upper peat unit (i.e., upper 175 cm). This value is within an order of magnitude of estimates of recent carbon sequestration rates determined for high salt marsh sediments in the Bay of Fundy, eastern North America (Chmura et al., 2003) and southern California (Brevik and Homborg, 2004). Maine salt marshes cover an area of \sim 79 km², more than any other state north of New Jersey (Jacobson et al., 1987), therefore their importance as a carbon sink should not be overlooked.

It has been argued that a continued rise in sea level brought about by global warming would actually increase the terrestrial carbon sink by expanding salt marshes onto gently sloping upland terrain, thus modulating future global warming and sea level rise (Choi et al., 2001). Sprague Marsh, and many others in the south-central region of the Gulf of Maine, occupy glacially carved valleys and are surrounded by topographic highs, and will likely behave differently than those studied by Choi et al. (2001). A rapid sea level rise in the Gulf of Maine might result in drowning of the salt marshes and loss of an effective carbon sink.

6. Conclusions

In Phippsburg Maine, terrestrial plant organic matter has been a significant component of coastal sediments for the last 3700 yr. High C/N values and depleted δ^{13} C of the HPLW suggest that C_3

plant detritus was an important part of nutrients to the food web in the middle Holocene tidal flats at Sprague Marsh as well as the overlying salt marsh peat.

Stable carbon isotopes of salt marsh peat cores are useful indicators of low and/or high marsh (C₄ dominant *Spartina* spp.) and higher high marsh (C₃ dominant *Juncus* spp.) plant communities when rhizome identification is equivocal and foraminifera identification is not possible. The isotope data suggest that vegetation has responded to small changes in relative local sea level (i.e., two transgressional–regressional sequences followed by a transgressional sequence) over the last 2500 yr. These shifts represent changes in the balance between RSLR and sediment accumulation.

High resolution sea level records suggest a strong correlation between Greenland bore hole temperatures and relative sea level along the Maine Coast over the last 2000 yr (Gehrels et al., 2002). Different responses have been documented in salt marshes (Choi et al., 2001; Donnelly and Bertness, 2001). High resolution isotopic studies of salt marsh cores covering the last 2000 yr would assist in our understanding of and ability to predict salt marsh responses to global warming and sea level change. A larger network of sediment cores, each with better age control and more isotopic data, would be necessary to determine the response of the Sprague Marsh to these various environmental conditions.

Acknowledgements

We would like to thank Erin Beirne and Ben Tanner for providing valuable comments on earlier drafts of this manuscript, Matt Duvall for providing the site map, and the Bates-Morse Mountain Conservation Area for access to the site. This research was funded in part by a grant to Bates College from the Howard Hughes Medical Institute (and by two Bates College research support programs, the Bates Student Research Fund and the Hoffman Fund) and by the Maine Marine Research Fund, established by the 120th Session of the Maine Legislature, administered by the Maine Technology Institute, and funded through bond issue approved by Maine voters. This work was performed, in part, under the auspices of the US Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

References

- Benner, R., Fogel, M.L., Sprague, E.K., Hodson, R.E., 1987.

 Depletion of ¹³C in lignin and its implications for stable carbon isotope studies. Nature 329, 708–710.
- Bertness, M.D., 1991. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology 72, 138–148.
- Bertness, M.D., Ellison, A.M., 1987. Determinants of pattern in a

 New England salt marsh plant community. Ecological

 Monographs 57, 129–147.
- Brassell, S.C., 1993. Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene. In:

 Engel, M.H., Macko, S.A. (Eds.), Organic Geochemistry.

 Plenum Press, New York, pp. 699–738.
- Brevik, E.C., Homborg, J.A., 2004. A 5000 yr record of carbon sequestration from a coastal lagoon and wetland complex, southern California, USA. Catena 57, 221–232.
- Bull, I.D., van Bergen, P.F., Bol, R., Brown, S., Gledhill, A.R.,
 Gray, A.J., Harkness, D.D., Woodbury, S.E., Evershed, R.P.,
 1999. Estimating the contribution of *Spartina anglica* biomass to salt-marsh sediments using compound specific stable carbon isotope measurements. Organic Geochemistry 30, 477–483.
- Chmura, G.L., Aharon, P., 1995. Stable carbon isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime. Journal of Coastal Research 11, 124–135.
- Chmura, G.L., Aharon, P., Socki, R.A., Abernethy, R., 1987. An inventory of ¹³C abundances in coastal Louisianna, USA: vegetation and sediments. Oecologia 74, 264–271.
- Chmura, G.L., Anisfield, S.C., Cahoon, D.R., Lynch, J.C., 2003.

 Global sequestration in tidal, saline wetland soils. Global
 Biogeochemical Cycles 1111. doi:10.1029/2002GB00191.
- Choi, Y., Wang, Y., Hsieh, Y.-P., Robinson, L., 2001. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: evidence from carbon isotopes. Global Biogeochemical Cycles 15, 311–319.
- Connor, R.F., Chmura, G.L., Beecher, C.B., 2001. Carbon accumulation in the Bay of Fundy salt marshes: implications for restoration of reclaimed marshes. Global Biogeochemical Cycles 15, 943–954.
- Craft, C.B., Broome, S.W., Seneca, E.D., Showers, W.J., 1988. Estimating sources of soil organic matter in natural transplanted estuarine marshes using stable isotopes of carbon and nitrogen. Estuarine Coastal Shelf Science 26, 633–641.
- Craig, H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133–149.
- DeLaune, R.D., 1986. The use of δ^{13} C signature of C-3 and C-4 plants in determining past depositional environments in rapidly accreting marshes of the Mississippi River deltaic plain, Louisiana, USA. Chemical Geology 59, 315–320.
- DeLaune, R.D., Baumann, R.H., Gosselink, J.G., 1983. Relationship among vertical accretion, coastal submergence, and erosion in a Louisiana Gulf Coast marsh. Journal of Sedimentary Petrology 53, 147–157.
- Donnelly, J.P., Bertness, M.D., 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sealevel rise. Proceedings of the Natural Academy of Science 98, 14218–14223.

- Ember, L.M., Williams, D.F., Morris, J.T., 1987. Processes that influence carbon isotope variations in salt marsh sediments.

 Marine Ecology Progress Series 36, 33–42.
- Fogel, M.L., Sprague, E.K., Gize, A.P., Frey, R.W., 1989.

 Diagenesis of organic matter in Georgia salt marshes.

 Estuarine Coastal and Shelf Science 28, 211–230.
- Freeman, K.H., Colarusso, L.A., 2001. Molecular and isotopic records of C₄ grassland expansion in the late Miocene. Geochimica et Cosmochimica Acta 65, 1439–1454.
- Gehrels, W.R., 1994. Determining relative sea-level change from salt-marsh foraminifera and plant zones on the coast of Maine, USA. Journal of Coastal Research 10, 990–1009.
- Gehrels, W.R., 1999. Middle and late Holocene sea-level changes in eastern Maine reconstructed from foraminiferal salt marsh stratigraphy and AMS ¹⁴C dates on basal peat. Quaternary Research 52, 350–359.
- Gehrels, W.R., Belknap, D.F., Black, S., Newnham, R.M., 2002.

 Rapid sea-level rise in the Gulf of Maine, USA, since AD 1800. The Holocene 12, 383–389.
- Gehrels, W.R., Belknap, D.F., Kelley, J.T., 1996. Integrated high-precision analyses of Holocene relative sea-level changes: lessons from the coast of Maine. Geological Society of America Bulletin 108, 1073–1088.
- Gleason, H.A., Conquist, A., 1991. Manual of vascular plants of northeastern United States and adjacent Canada, 2nd ed., New York Botanical Garden NY.
- Jacobson, H.A., Jacobson Jr., G.L., Kelley, J.T., 1987. Distribution and abundance of tidal marshes along the coast of Maine. Estuaries 10, 126–131.
- Kelley, J.T., Belknap, D.F., Jacobson, G.L., Jacobson, H.A., 1988. The morphology and origin of salt marshes along the glaciated coastline of Maine, USA. Journal of Coastal Research 4, 649–665.
- McMahon, K.W., Johnson, B.J., Ambrose Jr., W.G., 2005. Diet and movement of the killifish, *Fundulus heteroclitus*, in a Maine salt marsh assessed using gut contents and stable isotope analyses. Estuaries 28, 966–973.
- Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27, 213–250.
- Niering, W.A., Warren, R.S., 1980. Vegetation patterns and processes in New England salt marshes. Bioscience 30, 301–307.
- Nixon, S.W., 1982. The ecology of New England high salt marshes: A community profile. Washington D.C., US Fish and Wildlife Service, Division of Biological Services; FWS/OBS-81/55, p. 70.
- Orson, R.A., Warren, R.S., Niering, W.A., 1998. Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh. Estuarine, Coastal, and Shelf Science 47, 419–429.
- Stuiver, M., Polach, H.A., 1977. Discussion: reporting of C–14 data. Radiocarbon 19 (3), 355–363.
- Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., van der Plicht, J., Spurk, M., 1998. INTCAL98: Radiocarbon age calibration 24,000–0 cal BP. Radiocarbon 40, 1041–1083.
- Tanaka, N., Monaghan, M.C., Turekian, K.K., 1990. $\Delta R^{14}C$ balance of the Gulf of Maine, Long Island Sound and the Northern Middle Atlantic Bight: evidence for the extent of the Antarctic intermediate water contribution. Journal of Marine Research 48, 75–87.

- Teal, J.M., 1986. The ecology of regularly flooded salt marshes of New England: a community profile. Report 85(7.4), Washington DC, p. 61.
- Wakeham, S.G., Canuel, E.A., 1988. Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: implications for particle dynamics. Journal of Marine Research 46, 183–213.
- Wang, X.-C., Chen, R.F., Berry, A., 2003. Sources and preservation of organic matter in Plum Island salt marsh sediments (MA, USA): long-chain *n*-alkanes and stable
- isotope compositions. Estuarine, Coastal and Shelf Science 58, 917-928.
- Warren, R.S., Niering, W.A., 1993. Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74, 96–103.
- Weliky, K., Suess, E., Ungerer, C.A., Muller, P.J., Fischer, K., 1983. Problems with accurate carbon measurements in marine sediments and particulate matter in seawater: a new approach. Limnology and Oceanography 28, 1252–1259.