Term rewriting characterisation of LOGSPACE for finite and infinite data

Łukasz Czajka, University of Copenhagen

July 11, 2018

Cons-free programs

Neil Jones:

· introduced a minimal functional programming language with lists,

Cons-free programs

Neil Jones:

- · introduced a minimal functional programming language with lists,
- \cdot defined cons-free programs: cannot generate new data,

Cons-free programs

Neil Jones:

- · introduced a minimal functional programming language with lists,
- · defined cons-free programs: cannot generate new data,
- · showed a characterisation of LOGSPACE by tail-recursive cons-free programs.

Cons-free rewriting

Here we extend the cons-free approach to:

• term rewriting systems (TRSs), showing that finite orthogonal tail-recursive cons-tree constructor TRSs characterise LOGSPACE,

Cons-free rewriting

Here we extend the cons-free approach to:

 term rewriting systems (TRSs), showing that finite orthogonal tail-recursive cons-tree constructor TRSs characterise LOGSPACE, (extension to TRSs for other complexity classes studied earlier by e.g. Kop, Simonsen, Carvalho)

Cons-free rewriting

Here we extend the cons-free approach to:

- term rewriting systems (TRSs), showing that finite orthogonal tail-recursive cons-tree constructor TRSs characterise LOGSPACE, (extension to TRSs for other complexity classes studied earlier by e.g. Kop, Simonsen, Carvalho)
- infinitary reductions, showing that simple stream TRSs characterise logarithmic space computation on streams, as defined by Ramyaa and Leivant.

· A term rewriting system (TRS) is a set of rules of the form $l \rightarrow r$ where l, r are terms and l is not a variable and $Var(r) \subseteq Var(l)$.

- · A term rewriting system (TRS) is a set of rules of the form $l \rightarrow r$ where l, r are terms and l is not a variable and $Var(r) \subseteq Var(l)$.
- · A *defined symbol* in a TRS *R* is a symbol which occurs at the root of a left-hand side of a rule in *R*.

- · A term rewriting system (TRS) is a set of rules of the form $l \rightarrow r$ where l, r are terms and l is not a variable and $Var(r) \subseteq Var(l)$.
- · A *defined symbol* in a TRS *R* is a symbol which occurs at the root of a left-hand side of a rule in *R*.
- · A *constructor symbol* in a TRS *R* is a symbol which is not a defined symbol in *R*.

- · A term rewriting system (TRS) is a set of rules of the form $l \rightarrow r$ where l, r are terms and l is not a variable and $Var(r) \subseteq Var(l)$.
- · A *defined symbol* in a TRS *R* is a symbol which occurs at the root of a left-hand side of a rule in *R*.
- · A *constructor symbol* in a TRS *R* is a symbol which is not a defined symbol in *R*.
- A constructor term is a term which does not contain defined function symbols (it may contain variables). A constructor normal form is a constructor term which does not contain variables (so it contains only constructors).

- · A term rewriting system (TRS) is a set of rules of the form $l \rightarrow r$ where l, r are terms and l is not a variable and $Var(r) \subseteq Var(l)$.
- · A *defined symbol* in a TRS *R* is a symbol which occurs at the root of a left-hand side of a rule in *R*.
- · A *constructor symbol* in a TRS *R* is a symbol which is not a defined symbol in *R*.
- · A *constructor term* is a term which does not contain defined function symbols (it may contain variables). A *constructor normal form* is a constructor term which does not contain variables (so it contains only constructors).
- A constructor TRS is a TRS R such that for $l \to r \in R$ we have $l = f(l_1, ..., l_n)$ where $l_1, ..., l_n$ are constructor terms.

Term Rewriting Systems – Example

$$\begin{array}{ccc} f(c(x)) & \to & g(x) \\ g(x,c(y)) & \to & c(f(g(x,y))) \end{array}$$

Cons-free:

 $\cdot\,$ right-hand sides may contain constructor normal forms as subterms,

Cons-free:

- · right-hand sides may contain constructor normal forms as subterms,
- $\cdot\,$ right-hand sides may contain subterms of their corresponding left-hand side,

Cons-free:

- · right-hand sides may contain constructor normal forms as subterms,
- · right-hand sides may contain subterms of their corresponding left-hand side,
- right-hand sides cannot contain any other occurrences of constructors.

Cons-free:

- · right-hand sides may contain constructor normal forms as subterms,
- · right-hand sides may contain subterms of their corresponding left-hand side,
- right-hand sides cannot contain any other occurrences of constructors.

Example:

$$f(c(x)) \rightarrow g(c(x))$$

 $g(x,c(y)) \rightarrow f(g(y,c(0)))$

Cons-free:

- · right-hand sides may contain constructor normal forms as subterms,
- · right-hand sides may contain subterms of their corresponding left-hand side,
- right-hand sides cannot contain any other occurrences of constructors.

Example:

$$f(c(x)) \rightarrow g(c(x))$$

 $g(x,c(y)) \rightarrow f(g(y,c(0)))$

Non-example:

$$\begin{array}{ccc} f(c(x)) & \to & c(g(x)) \\ g(x,c(y)) & \to & f(g(y,c(x))) \end{array}$$

Tail-recursive: there is a preorder \gtrsim on defined function symbols such that for every $f(u_1, \ldots, u_n) \rightarrow r \in R$ and every defined function symbol g the following hold:

- · if $r = g(t_1, ..., t_k)$ then $f \gtrsim g$,
- · if $g(t_1,...,t_k)$ is a proper subterm of r then f > g.

Tail-recursive: there is a preorder \gtrsim on defined function symbols such that for every $f(u_1, ..., u_n) \rightarrow r \in R$ and every defined function symbol g the following hold:

- · if $r = g(t_1, ..., t_k)$ then $f \gtrsim g$,
- · if $g(t_1,...,t_k)$ is a proper subterm of r then f > g.

Example:

$$f(c(x)) \rightarrow g(c(x))$$

$$g(x,c(y)) \rightarrow f(h(x,y))$$

$$h(x,0) \rightarrow x$$

$$h(x,c(y)) \rightarrow h(y,x)$$

Tail-recursive: there is a preorder \gtrsim on defined function symbols such that for every $f(u_1, ..., u_n) \rightarrow r \in R$ and every defined function symbol g the following hold:

- · if $r = g(t_1, ..., t_k)$ then $f \gtrsim g$,
- · if $g(t_1,...,t_k)$ is a proper subterm of r then f > g.

Example:

$$f(c(x)) \rightarrow g(c(x))$$

$$g(x,c(y)) \rightarrow f(h(x,y))$$

$$h(x,0) \rightarrow x$$

$$h(x,c(y)) \rightarrow h(y,x)$$

Non-example:

$$f(c(x)) \rightarrow g(c(x))$$

 $g(x,c(y)) \rightarrow f(g(y,c(0)))$

Term Rewriting Systems – Acceptance

Assuming the signature contains the constants 0, 1, nil and a binary constructor symbol cons, every $w \in \{0, 1\}^*$ may be represented by a term \bar{w} in an obvious way.

Term Rewriting Systems – Acceptance

Assuming the signature contains the constants 0, 1, nil and a binary constructor symbol cons, every $w \in \{0, 1\}^*$ may be represented by a term \bar{w} in an obvious way.

A TRS *R* accepts a decision problem $A \subseteq \{0,1\}^*$ if there is a function symbol f such that for every $w \in \{0,1\}^*$ we have: $f(\bar{w}) \to_R^* 1$ iff $w \in A$.

Theorem

A problem is decidable in LOGSPACE iff it is accepted by a finite orthogonal tail-recursive cons-free constructor TRS.

Theorem

A problem is decidable in LOGSPACE iff it is accepted by a finite orthogonal tail-recursive cons-free constructor TRS.

(⇒) follows directly from previous work,

Theorem

A problem is decidable in LOGSPACE iff it is accepted by a finite orthogonal tail-recursive cons-free constructor TRS.

- (⇒) follows directly from previous work,
- (⇐) more difficult, because the TRS may be not terminating and arbitrarily large reducts are possible:

$$f(x) \to_R f(g(x))$$
 $h(x) \to_R a$

Then $h(f(a)) \to_R a$ but also $h(f(a)) \to_R^* h(f(g^n(a)))$ for any $n \in \mathbb{N}$.

Idea: show that a constructor normal form may always be reached by an eager $R\bot$ -reduction, denoted $\to_{R\bot e}^*$, which contracts only innermost R-redexes and eagerly (as soon as possible) replaces by \bot (a fresh constant) an innermost subterm with no constructor normal form in R. Then show that eager $R\bot$ -reduction is computable in LOGSPACE.

Eager $R\perp$ -reduction – Example

$$f(x) \rightarrow_R f(g(x))$$
 $h(x) \rightarrow_R a$

· Eager $R \perp$ -reduction: $h(f(a)) \rightarrow_{\perp} h(\perp) \rightarrow_{R} a$.

Eager $R \perp$ -reduction – Example

$$f(x) \rightarrow_R f(g(x))$$
 $h(x) \rightarrow_R a$

- · Eager $R \perp$ -reduction: $h(f(a)) \rightarrow_{\perp} h(\perp) \rightarrow_{R} a$.
- · Not an eager $R \perp$ -reduction: $h(f(a)) \rightarrow_R h(f^2(a))$.

Eager $R \perp$ -reduction – Example

$$f(x) \rightarrow_R f(g(x))$$
 $h(x) \rightarrow_R a$

- · Eager $R \perp$ -reduction: $h(f(a)) \rightarrow_{\perp} h(\perp) \rightarrow_{R} a$.
- · Not an eager $R \perp$ -reduction: $h(f(a)) \rightarrow_R h(f^2(a))$.
- f(a) does not have a constructor normal form in R, so it *cannot* be R-contracted in an eager $R \perp$ -reduction it *must* be contracted to \perp .

Computing eager $R\perp$ -reduction

$$f_1(w_1^1, \dots, w_{n_1}^1) \to_{R \perp e}^* f_1(t_1^1, \dots, t_{n_1}^1) \to_{R}^{\epsilon} f_2(w_1^2, \dots, w_{n_2}^2) \to_{R \perp e}^* f_2(t_1^2, \dots, t_{n_2}^2) \to_{R}^{\epsilon} \dots$$

- · t_i^j is the constructor normal form w.r.t. eager $R \perp$ -reduction of w_i^j (\perp is considered to be a constructor),
- · $f_i \gtrsim f_j$ for $i \leq j$.

$$f_1(w_1^1, \dots, w_{n_1}^1) \to_{R \perp e}^* f_1(t_1^1, \dots, t_{n_1}^1) \to_{R}^{\epsilon} f_2(w_1^2, \dots, w_{n_2}^2) \to_{R \perp e}^* f_2(t_1^2, \dots, t_{n_2}^2) \to_{R}^{\epsilon} \dots$$

- · t_i^j is the constructor normal form w.r.t. eager $R\perp$ -reduction of w_i^j (\perp is considered to be a constructor),
- $f_i \gtrsim f_j \text{ for } i \leq j.$

At some point either we reach a constructor normal form or a term $f_i(t_1^i, ..., t_{n_i}^i)$ repeats.

$$f_1(w_1^1, \dots, w_{n_1}^1) \to_{R \perp e}^* f_1(t_1^1, \dots, t_{n_1}^1) \to_{R}^{\epsilon} f_2(w_1^2, \dots, w_{n_2}^2) \to_{R \perp e}^* f_2(t_1^2, \dots, t_{n_2}^2) \to_{R}^{\epsilon} \dots$$

- · t_i^j is the constructor normal form w.r.t. eager $R\perp$ -reduction of w_i^j (\perp is considered to be a constructor),
- $f_i \gtrsim f_j \text{ for } i \leq j.$

At some point either we reach a constructor normal form or a term $f_i(t_1^i, ..., t_{n_i}^i)$ repeats.

 \cdot "cons-free" implies: there are only polynomially many such terms,

$$f_1(w_1^1, \dots, w_{n_1}^1) \to_{R \perp e}^* f_1(t_1^1, \dots, t_{n_1}^1) \to_{R}^{\epsilon} f_2(w_1^2, \dots, w_{n_2}^2) \to_{R \perp e}^* f_2(t_1^2, \dots, t_{n_2}^2) \to_{R}^{\epsilon} \dots$$

- · t_i^j is the constructor normal form w.r.t. eager $R \perp$ -reduction of w_i^j (\perp is considered to be a constructor),
- $f_i \gtrsim f_j \text{ for } i \leq j.$

At some point either we reach a constructor normal form or a term $f_i(t_1^i, ..., t_{n_i}^i)$ repeats.

· "cons-free" implies: there are only polynomially many such terms, so a logarithmic counter may be used to detect looping,

$$f_1(w_1^1, \dots, w_{n_1}^1) \to_{R \perp e}^* f_1(t_1^1, \dots, t_{n_1}^1) \to_R^{\epsilon} f_2(w_1^2, \dots, w_{n_2}^2) \to_{R \perp e}^* f_2(t_1^2, \dots, t_{n_2}^2) \to_R^{\epsilon} \dots$$

- · t_i^j is the constructor normal form w.r.t. eager $R \perp$ -reduction of w_i^j (\perp is considered to be a constructor),
- $f_i \gtrsim f_j \text{ for } i \leq j.$

At some point either we reach a constructor normal form or a term $f_i(t_1^i, \dots, t_{n_i}^i)$ repeats.

- · "cons-free" implies: there are only polynomially many such terms, so a logarithmic counter may be used to detect looping,
- · "tail-recursive" implies: t_i^j may be computed recursively, and the recursion depth will be constant.

Stream TRSs

A *stream TRS* is a two-sorted constructor TRS with sorts s (the sort of streams) and d (the sort of finite data), finitely many defined function symbols, finitely many data constructors $c_i: d^n \to d$, and one binary stream constructor (::): $d \times s \to s$. Terms of sort s are *stream terms*. Terms of sort s are *data terms*.

Simple stream rule:

$$f(u_1,\ldots,u_n) \to t_1 :: \ldots :: t_k :: g(w_1,\ldots,w_m)$$

- · u_1, \ldots, u_n are constructor terms,
- · w_1, \ldots, w_m cons-free with respect to stream subterms,
- · if k = 0 then cons-free with respect to data subterms.

Simple stream rule:

$$f(u_1,\ldots,u_n)\to t_1:\ldots:t_k::g(w_1,\ldots,w_m)$$

- · u_1, \ldots, u_n are constructor terms,
- w_1, \dots, w_m cons-free with respect to stream subterms,
- · if k = 0 then cons-free with respect to data subterms.

Simple stream TRS:

· finite and orthogonal,

Simple stream rule:

$$f(u_1,\ldots,u_n)\to t_1:\ldots:t_k::g(w_1,\ldots,w_m)$$

- u_1, \ldots, u_n are constructor terms,
- · w_1, \ldots, w_m cons-free with respect to stream subterms,
- · if k = 0 then cons-free with respect to data subterms.

Simple stream TRS:

- · finite and orthogonal,
- · simple stream rules,

Simple stream rule:

$$f(u_1,\ldots,u_n)\to t_1:\ldots:t_k::g(w_1,\ldots,w_m)$$

- u_1, \ldots, u_n are constructor terms,
- w_1, \dots, w_m cons-free with respect to stream subterms,
- · if k = 0 then cons-free with respect to data subterms.

Simple stream TRS:

- · finite and orthogonal,
- · simple stream rules,
- · data rules form a finite tail-recursive cons-free constructor TRS,

Simple stream rule:

$$f(u_1,\ldots,u_n) \to t_1 :: \ldots :: t_k :: g(w_1,\ldots,w_m)$$

- u_1, \ldots, u_n are constructor terms,
- · w_1, \ldots, w_m cons-free with respect to stream subterms,
- · if k = 0 then cons-free with respect to data subterms.

Simple stream TRS:

- · finite and orthogonal,
- · simple stream rules,
- · data rules form a finite tail-recursive cons-free constructor TRS,
- there exists a unary data constructor $S: d \to d$ such that for every stream rule $l \to r \in R$, if t is a data subterm of r such that $\text{Var}(t) \neq \emptyset$ then t = S(t') or t is a variable.

Simple stream TRS – example

```
\begin{array}{rcl}
f(x) & \to & g(x, x, 0, 0) \\
g(y :: x, x', 0, y') & \to & y :: g(x', x', S(y'), S(y')) \\
g(0 :: x, x', S(y), y') & \to & g(x, x', y, y') \\
g(1 :: x, x', S(y), y') & \to & g(x, x', y', y')
\end{array}
```

Simple stream TRS – example

$$\begin{array}{rcl}
f(x) & \to & g(x, x, 0, 0) \\
g(y :: x, x', 0, y') & \to & y :: g(x', x', S(y'), S(y')) \\
g(0 :: x, x', S(y), y') & \to & g(x, x', y, y') \\
g(1 :: x, x', S(y), y') & \to & g(x, x', y', y')
\end{array}$$

In this stream TRS the stream function symbol f defines a function $F: \Sigma^{\omega} \to \Sigma^{\omega} \cup \Sigma^*$ such that F(s) has in position n the first element of s following a block of n consecutive 0's.

Simple stream TRS – example

The following simple stream TRS defines the Thue-Morse sequence *T*:

The *n*-th element T_n of T is defined by the recurrence:

$$T_0 = 0$$
 $T_{2n} = T_n$ $T_{2n+1} = 1 - T_n$

Identifying natural numbers with their representations in the TRS, it may be shown by induction on $\langle 2m-n,n\rangle$ ordered lexicographically that the data term g(n,m) reduces to T_{2m-n} and $\tilde{g}(n,m)$ to $1-T_{2m-n}$.

Stream TRSs – Infinitary reduction

Infinitary R-reduction is defined coinductively.

$$\frac{t \to_R^* t'}{t \to_R^\infty t'} \quad \frac{t \to_R^* u :: w \quad w \to_R^\infty w'}{t \to_R^\infty u :: w'}$$

Stream TRSs – Infinitary reduction

Infinitary R-reduction is defined coinductively.

$$\frac{t \to_R^* t'}{t \to_R^\infty t'} \quad \frac{t \to_R^* u :: w \quad w \to_R^\infty w'}{t \to_R^\infty u :: w'}$$

Example:

$$f(x) \rightarrow_R x :: f(S(x))$$

Then $f(0) \to^{\infty} 0 :: S(0) :: S^{2}(0) :: ...$

Stream TRSs – Definability

Let Σ be an alphabet. Assuming all elements of Σ are data constants in the rewriting system, each word in $\Sigma^{\omega} \cup \Sigma^*$ may be represented as a possibly infinite stream term. For a term t by |t| we denote the corresponding finite or infinite word in $\Sigma^{\omega} \cup \Sigma^*$.

Stream TRSs – Definability

Let Σ be an alphabet. Assuming all elements of Σ are data constants in the rewriting system, each word in $\Sigma^\omega \cup \Sigma^*$ may be represented as a possibly infinite stream term. For a term t by |t| we denote the corresponding finite or infinite word in $\Sigma^\omega \cup \Sigma^*$.

A stream function $F:(\Sigma^\omega)^n\to \Sigma^\omega\cup \Sigma^*$ is defined by an n-ary stream function symbol f if for any $w_1,\ldots,w_n\in \Sigma^\omega$ and s_1,\ldots,s_n with $|s_i|=w_i$ we have $f(s_1,\ldots,s_n)\to_R^\infty s$ with $|s|=F(w_1,\ldots,w_n)$. A stream function is definable in a stream TRS if it is defined by one of its stream function symbols.

LOGSPACE for streams

Jumping Turing Transducer (JTT):

- · finitely many states,
- · read-only input tape, write-only output tape and finitely many read-write work tapes,
- finitely many cursors on the input tape (may move forward or jump to another cursor) and the work tapes (may move in both directions),
- · one cursor on the output tape (may move forward).

LOGSPACE for streams

Jumping Turing Transducer (JTT):

- · finitely many states,
- · read-only input tape, write-only output tape and finitely many read-write work tapes,
- finitely many cursors on the input tape (may move forward or jump to another cursor) and the work tapes (may move in both directions),
- · one cursor on the output tape (may move forward).

A JTT operates in space f(n) if the computation for the first n output symbols does not involve work-tapes of length > f(n). A stream function is computable in LOGSPACE, in the sense of Ramyaa and Leivant, if there is a JTT computing this function which operates in space $O(\log n)$.

Characterisation of LOGSPACE for streams

Theorem

A stream function is definable in a simple stream TRS iff it is computable in LOGSPACE, as defined by Ramyaa and Leivant.

Characterisation of LOGSPACE for streams

Theorem

A stream function is definable in a simple stream TRS iff it is computable in LOGSPACE, as defined by Ramyaa and Leivant.

(⇐) encode any JFT with a local counter in a simple stream TRS, encoding the states as stream function symbols, and the counter as a data term,

Characterisation of LOGSPACE for streams

Theorem

A stream function is definable in a simple stream TRS iff it is computable in LOGSPACE, as defined by Ramyaa and Leivant.

- (⇐) encode any JFT with a local counter in a simple stream TRS, encoding the states as stream function symbols, and the counter as a data term,
- (⇒) construct a JTT operating in LOGSPACE which computes the function defined by the stream TRS, using the memory to store a representation of the data terms and the algorithm from before to compute constructor normal forms of data terms.