Information and Coding Theory

University of Chinese Academy of Sciences

Fall 2023

Kewei Lv, Liping Wang

Homework 1123

Chenkai GUO

2023.11.23

- 1. Determine whether the following polynomials are generator polynomials of cyclic codes of given lengths:
 - (a) $g(x) = 1 + x + x^2 + x^3 + x^4$ for a binary cyclic code of length 7;
 - (b) $g(x) = 2 + 2x^2 + x^3$ for a ternary cyclic code of length 8;
 - (c) $q(x) = 2 + 2x + x^3$ for a ternary cyclic code of length 13.

SOLUTION

(a) Let the binary cyclic code of length 7 as C_1 . Since $n_{C_1} = 7$, now divides $x^7 - 1$, obviously, $x^7 - 1 = (x+1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$, then calculate:

Thus $1+x+x^2+x^3+x^4$ is not a monic polynomial of x^7-1 , $g(x)=1+x+x^2+x^3+x^4$ is not the generator polynomial of C_1

(b) Let the ternary cyclic code of length 8 as C_2 . Since $n_{C_2} = 8$, now divides $x^8 - 1$, obviously, $x^8 - 1 = (x+2)(x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$, then calculate:

$$x^{4} + 2x^{3} + 2x + 2$$

$$x^{3} + 2x^{2} + 2 \overline{\smash)x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1}$$

$$x^{7} + 2x^{6} + 2x^{4}$$

$$2x^{6} + x^{5} + 2x^{4} + x^{3} + x^{2} + x + 1$$

$$2x^{6} + x^{5} + x^{5} + x^{3}$$

$$2x^{4} + x^{2} + x + 1$$

$$2x^{4} + x^{3} + x^{2} + x + 1$$

$$2x^{3} + x^{2} + x + 1$$

Thus $2 + 2x^2 + x^3$ is a monic polynomial of $x^8 - 1$, $g(x) = 2 + 2x^2 + x^3$ is the generator polynomial of C_2

(c) Let the ternary cyclic code of length 13 as C_3 . Since $n_{C_3} = 13$, now divides $x^{13} - 1$, then calculate:

Thus $2+2x+x^3$ is a monic polynomial of $x^{13}-1$, $g(x)=2+2x+x^3$ is the generator polynomial of C_3