СПЕШИФИКАЦИЯ

диагностической работы по математике для 10-х классов общеобразовательных организаций г. Москвы, участвующих в проекте «Инженерный класс в московской школе»

1. Назначение диагностической работы

Диагностическая работа проводится **25 апреля 2017 г.** с целью определения уровня подготовки обучающихся 10-х классов общеобразовательных организаций города Москвы, участвующих в реализации образовательного проекта «Инженерный класс в московской школе", по математике.

2. Документы, определяющие содержание и характеристики диагностической работы

Содержание и основные характеристики диагностической работы определяются на основе следующих документов:

- Федеральный компонент государственного стандарта среднего (полного) общего образования (приказ Минобразования России от 05.03.2004 № 1089);
- Приказ Министерства образования и науки Российской Федерации от 31 марта 2014 г. № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования»;
- О сертификации качества педагогических тестовых материалов (Приказ Минобразования и науки РФ от 17.04.2000 г. № 1122).

3. Условия проведения диагностической работы

При проведении диагностической работы предусматривается строгое соблюдение порядка организации и проведения независимой диагностики.

Учащимся разрешается использовать линейку. Использование справочных материалов и калькуляторов <u>не предусмотрено</u>.

Ответы учащиеся записывают в бланк тестирования.

4. Время выполнения диагностической работы

На выполнение всей работы отводится 90 минут.

5. Характеристика структуры и содержания диагностической работы

Работа состоит из двух частей, в каждой из которых присутствуют задания по алгебре, геометрии и практико-ориентированных задания, предназначенные для проверки умения применять математические навыки и умения в повседневных ситуациях.

Первая часть состоит из 9 заданий с кратким ответом. При проверке базовой математической компетентности обучающиеся должны продемонстрировать владение основными алгоритмами, знание и понимание

ключевых элементов содержания (математических понятий, их свойств, приёмов решения задач и проч.), умение пользоваться математической записью, применять знания к решению математических задач, не сводящихся к прямому применению алгоритма, а также применять математические знания в простейших практических ситуациях.

Вторая часть работы состоит из трех заданий с развернутым ответом повышенного уровня сложности. Назначение второй части — дифференцировать хорошо успевающих обучающихся по уровням подготовки. Отвечая на задания этой части, учащийся должен самостоятельно выбрать одно из двух предложенных для выбора заданий (с учётом УМК).

Всего в работе 12 заданий.

В таблице 1 даны характеристики частей диагностической работы.

Часть работы Тип заданий Количество Максимальный заланий балл Часть 1 С кратким ответом 9 9 Часть 2 3 2 С развернутым ответом 6 12 15 Итого

Табл. 1. Характеристики частей диагностической работы

Часть 1 диагностической работы содержит задания по всем ключевым разделам математики основной и средней школы. Количество заданий по каждому из разделов примерно соответствует удельному весу этого раздела в курсе.

Распределение заданий части 1 по разделам содержания и требований приведено в таблицах 2 и 3.

TC	TT	TC
Код	Название раздела содержания	Количество
раздела		заданий
1	Числа и вычисления	2
2	Уравнения и неравенства	2
6	Геометрия. Планиметрия	3
7	Геометрия. Стереометрия	1
8	Статистика и теория вероятностей	1

Табл. 2. Распределение заданий части 1 по разделам содержания

Табл. 3. Распределение заданий части 1 по разделам требований

$N_{\underline{0}}$	Название требования	Количество
Π/Π		заданий
1	Уметь выполнять вычисления и преобразования	2
2	Уметь решать уравнения, неравенства и их системы	1
3	Уметь выполнять действия с геометрическими фигурами	4
4	Моделировать реальные ситуации на языке теории	1

	вероятностей и статистики, вычислять в простейших	
	случаях вероятности событий	
5	Уметь использовать приобретенные знания и умения в	1
	практической деятельности и повседневной жизни,	
	уметь строить и исследовать простейшие	
	математические модели	

Задания части 2 направлены на проверку таких качеств математической подготовки обучающихся, как:

- уверенное владение алгебраическим аппаратом;
- умение решить задачу, комбинируя знания из разных тем курса;
- умение математически грамотно записать решение, приводя при этом необходимые пояснения и обоснования;
- владение широким спектром приёмов и способов рассуждений.

Перечни разделов содержания и требований, проверяемых в части 2, приведены в таблицах 4 и 5.

Код	Название раздела содержания
раздела	
2	Уравнения и неравенства
3	Функции
4	Начала анализа
7	Геометрия. Стереометрия

Табл. 4. Перечень разделов содержания, проверяемых в части 2

Табл. 5. Перечень требований, проверяемых в части 2

No	Название требования
Π/Π	
1	Уметь решать уравнения, неравенства и их системы
2	Уметь выполнять действия с функциями
3	Уметь выполнять действия с геометрическими фигурами

6. Система оценивания

Правильное выполнение каждого из заданий 1–9 оценивается 1 баллом. Задания считаются выполненными верно, если записан верный ответ.

Правильное выполнение каждого из заданий 10–12 (дано верное решение, в котором проведены все необходимые преобразования и/или рассуждения, приводящие к ответу, получен верный ответ) оценивается 2 баллами. В случае неполного решения выставляется балл в соответствии с критериями оценивания заданий с развернутым ответом.

По каждому из номеров 10–12 обучающему нужно выбрать только одно из двух предлагаемых заданий. Оценивается также <u>только одно</u> из заданий.

Максимальный балл за работу – 15.

В приложении 1 дан обобщенный план варианта диагностической работы. В приложении 2 приведен демонстрационный вариант диагностической работы

Приложение1

Обобщенный план варианта диагностической работы по МАТЕМАТИКЕ

Используемые обозначения: \mathbf{F} – базовый уровень сложности заданий, $\mathbf{\Pi}$ – повышенный уровень сложности.

Коды разделов указаны по кодификатору ЕГЭ по математике (см. сайт ФИПИ).

№ задания	Проверяемые требования математической подготовки	Коды разделов элементов содержания	Уровень сложности	Максимальный балл за выполненное задание
	Часть 1			
1	Уметь выполнять вычисления и преобразования	1	Б	1
2	Уметь выполнять вычисления и преобразования	1	Б	1
3	Уметь выполнять действия с геометрическими фигурами	6	Б	1
4	Уметь решать уравнения, неравенства и их системы	2	Б	1
5	Моделировать реальные ситуации на языке теории	8	Б	1
	вероятностей и статистики, вычислять в простейших			
	случаях вероятности событий			
6	Уметь выполнять действия с геометрическими фигурами	6	Б	1
7	Уметь выполнять действия с геометрическими фигурами	7	Б	1
8	Уметь выполнять действия с геометрическими фигурами	6	Б	1
9	Уметь использовать приобретенные знания и умения в	2	Б	1
	практической деятельности и повседневной жизни, уметь			
	строить и исследовать простейшие математические модели			
Часть 2				
10	Уметь выполнять действия с функциями . Уметь решать	2–4	П	2
	уравнения, неравенства и их системы			
11	Уметь выполнять действия с геометрическими фигурами	7	П	2
12	Уметь решать уравнения, неравенства и их системы	2	П	2

Приложение 2

Демонстрационный вариант

Часть 1

В заданиях 1–9 дайте ответ в виде целого числа, или десятичной дроби.

1	Вычислите: $5, 2 + \frac{2}{11} \cdot \sqrt{4 \frac{21}{25}}$.
	Ответ:
2	Найдите значение выражения $b^{-18} \cdot (2b^5)^4$ при $b = -0, 7$.
	Ответ:
3	На клетчатой бумаге с размером клетки 1 см × 1 см изображён треугольник. Вычислите тангенс его наименьшего угла.
	Ответ:
4	Решите уравнение $\frac{x^2 - x - 56}{x^2 - 16x + 64} = 0$. Если уравнение имеет более одного корня, то в ответ запишите наибольший.
	Ответ:
5	При печати в типографии 10% журналов имеют дефект. При контроле качества выявляют 80% дефектных журналов. Остальные журналь поступают в продажу. Найдите вероятность того, что случайно выбранный при покупке журнал не имеет дефектов. Ответ округлите до тысячных.
	Ответ:

6	На окружности отмечены точки A, B, C и D так, что хорды AC и BD пересекаются в точке O , а хорды BC и AD параллельны и равны. Угол AOD равен 114°. Найдите угол ACB . Ответ дайте в градусах.
7	Взаимно перпендикулярные плоскости α и β пересекаются по прямой l В плоскости α отмечена точка A , в плоскости β — точка B . Прямая Al образует с плоскостью α угол, равный 30° . Найдите расстояние от точки B до прямой l , если расстояние между точками A и B равно 17.
	Ответ:
8	В треугольнике ABC угол ACB равен 90° , $\cos A = 0,8$, $BH = 9$. Отрезок CH — высота треугольника ABC (см. рис.). Найдите длину отрезка AH .
9	Теплоход проходит по течению реки до пункта назначения 384 км и послестоянки возвращается в пункт отправления. Найдите скорость теплохода неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 8 часов, а в пункт отправления теплоход возвращается через 48 часов. Отведайте в км/ч.

Часть 2

В заданиях 10 – 12 запишите полное решение и ответ на обратной стороне бланка тестирования.

Выберите и выполните только ОДНО из заданий 10.1 или 10.2.

- **10.1**] Исследуйте функцию $y = \frac{x^2 + 4x + 25}{x}$ и постройте её график.
- **10.2** Решите уравнение $\log_2^2(x-3)^2 + 2\log_2(3-x) = 2$.

Выберите и выполните только ОДНО из заданий 11.1 или 11.2.

- В параллелограмме ABCD сторона AB равна 4, а сторона BC равна 3. Из точки S, не лежащей в плоскости параллелограмма, проведены наклонные SA, SB, SC и SD, причём SA=4, $SB=4\sqrt{2}$, SD=5, $SC=\sqrt{41}$. Докажите, что прямые AD и AB перпендикулярны.
- **11.2** В кубе $ABCDA_1B_1C_1D_1$ точки M и N середины рёбер A_1B_1 и AA_1 соответственно. Вычислите периметр сечения куба плоскостью MNC, если ребро куба равно 4.

Выберите и выполните только ОДНО из заданий 12.1 или 12.2.

- **12.1** Решите уравнение $4\sin^3\left(\frac{\pi}{2} + x\right) \cos 2x + 2\cos(\pi + x) = 1$.
- **12.2** Решите неравенство $\frac{3}{\left(2^{2-x^2}-1\right)^2} \frac{4}{2^{2-x^2}-1} + 1 \ge 0$.

Критерии оценивания заданий с развернутым ответом

10.1	Критерии оценивания	Баллы
	Свойства функции указаны верно, правильно построен график	2
	График построен неверно из-за вычислительной ошибки	
	Решение не соответствует ни одному из критериев, перечисленных выше	0
	Максимальный балл	2

10.2		
10.2	Критерии оценивания	Баллы
	Обоснованно получен верный ответ	2
	Допущена единичная вычислительная ошибка, возможно, приведшая	1
	к неверному ответу, но при этом имеется верная последовательность	
	всех шагов решения уравнения	
	Решение не соответствует ни одному из критериев, перечисленных	0
	выше	U
	Максимальный балл	2

11.1		
	Критерии оценивания	Баллы
	Обоснованное доказательство перпендикулярности прямых	2
	Доказательство недостаточно обосновано	1
	Решение не соответствует ни одному из критериев, перечисленных выше	0
	Максимальный балл	2

11.2		
	Критерии оценивания	Баллы
	Обоснованно получен верный ответ	2
	Допущена единичная вычислительная ошибка, возможно, приведшая к	1
	неверному ответу, но при этом имеется верная последовательность всех	
	шагов вычисления периметра фигуры	
	Решение не соответствует ни одному из критериев, перечисленных выше	0
	Максимальный балл	2

12.1	. Критерии оценивания	Баллы
	Обоснованно получен верный ответ	2
	Допущена единичная вычислительная ошибка, возможно, приведшая к	1
	неверному ответу, но при этом имеется верная последовательность всех	
	шагов решения уравнения	
	Решение не соответствует ни одному из критериев, перечисленных выше	0
	Максимальный балл	2

2.2	•	
	Критерии оценивания	Баллы
	Обоснованно получен верный ответ	2
	Допущена единичная вычислительная ошибка, возможно, приведшая к	1
	неверному ответу, но при этом имеется верная последовательность всех	
	шагов решения неравенства	
	Решение не соответствует ни одному из критериев, перечисленных выше	0
	Максимальный балл	2