Analyse 1: Algorithme pour l'optimisation sans contrainte

Joseph Salmon

Septembre 2014

La descente de gradient : intuition

- ▶ Enjeu : minimiser f (dans \mathbb{R}^d) en trouvant un nouveau point pour lequel f diminue le plus.
- Approximation du premier ordre :

$$f(x) \approx f(x^0) + \langle \nabla f(x^0), x - x^0 \rangle$$

Solution : il faut "s'aligner" avec la direction opposée au gradient $x - x_0 = -\alpha \nabla f(x^0)$

 $\alpha>0$ contrôle la "vitesse" avec laquelle on progresse dans la direction. Ce paramètre est appelé le **pas** de la méthode.

- $\blacktriangleright \|\nabla f(x^t)\| \leq \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\qquad \qquad \|x^{t+1} x^t\| \leq \varepsilon \text{ ou } \frac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

- $\blacktriangleright \|\nabla f(x^t)\| \leq \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\qquad \qquad \|x^{t+1} x^t\| \leq \varepsilon \text{ ou } \frac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

- $\blacktriangleright \|\nabla f(x^t)\| \leq \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\blacktriangleright \ \|x^{t+1} x^t\| \leq \varepsilon \text{ ou } \frac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

- $\blacktriangleright \|\nabla f(x^t)\| \leq \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\qquad \qquad \|x^{t+1} x^t\| \leq \varepsilon \text{ ou } \frac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

- $\blacktriangleright \|\nabla f(x^t)\| \leq \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\qquad \qquad \|x^{t+1} x^t\| \leq \varepsilon \text{ ou } \frac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

- $\blacktriangleright \|\nabla f(x^t)\| \leq \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\qquad \qquad \|x^{t+1}-x^t\| \leq \varepsilon \text{ ou } \frac{\|x^{t+1}-x^t\|}{\|x^t\|} \leq \varepsilon$

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

 $\boldsymbol{\alpha}$: paramètre crucial pour obtenir la convergence vers un minimum

Divergence: pas beacoup trop grand

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

 $\boldsymbol{\alpha}$: paramètre crucial pour obtenir la convergence vers un minimum

Convergence lente : pas rop grand

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

 α : paramètre crucial pour obtenir la convergence vers un minimum

Convergence rapide : bon pas

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

 α : paramètre crucial pour obtenir la convergence vers un minimum

Convergence lente : pas trop petit

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

 α : paramètre crucial pour obtenir la convergence vers un minimum

Parfois, il faut choisir le pas à chaque itération : α^t évolue avec les itérations. On note $d^t=-\nabla f(x^t)$ une direction de descente

Règle de la minimisation

Minimisation sur l'amplitude : il faut résoudre le problème 1D :

$$f(x^t + \alpha^t d^t) = \min_{\alpha > 0} f(x^t + \alpha d^t)$$

Rem: Pour cela il faut que le problème 1D soit simple à résoudre

Règle d'Armijo (ou du backtracking géométrique)

Règle d'Armijo (ou du backtracking géométrique)

Règle d'Armijo (ou du backtracking géométrique)

Règle d'Armijo (ou du backtracking géométrique)

Règle d'Armijo (ou du backtracking géométrique)

Règle d'Armijo (ou du backtracking géométrique)

Règle d'Armijo (ou du backtracking géométrique)

Règle d'Armijo (ou du backtracking)

En pratique on fait souvent les choix, cf. Bertsekas (1999) :

- \triangleright s=1
- $\beta = 1/2$ ou $\beta = 1/10$
- $\qquad \qquad \sigma \in [10^{-5}, 10^{-1}]$

Objectif : la méthode de Newton (ou Newton-Raphson) sert à trouver les zéros d'une fonction, *i.e.*, résoudre f(x)=0 L'idée : approximation locale par une fonction affine

$$f(x) \approx f(x^0) + f'(x^0)(x - x^0)$$

La règle de mise à jour est donc :

$$\left| x^{t+1} \leftarrow x^t - \frac{f'(x^t)}{f(x^t)} \right|$$

 $\begin{array}{ll} \textbf{Data} \text{: point initial } x^0 \text{, nombre max. d'itérations } T \text{, critère d'arrêt } \varepsilon \\ \textbf{Result} \text{: un point } x_T \text{ "proche" du minimum de la fonction } f \\ \textbf{for } 1 \leq t \leq T-1 \text{ do} \\ & \qquad \qquad x^{t+1} \leftarrow x^t - \frac{f'(x^t)}{f(x^t)} \\ \end{array}$

STOP si critère d'arrêt inférieur à ε end

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε **Result**: un point x_T "proche" du minimum de la fonction f for $1 \le t \le T - 1$ do

 $\begin{array}{c|c} x^{t+1} \leftarrow x^t - \frac{f'(x^t)}{f(x^t)} \\ \text{STOP si critère d'arrêt inférieur à } \varepsilon \end{array}$

end

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε **Result**: un point x_T "proche" du minimum de la fonction f for 1 < t < T

$$\begin{array}{c|c} \textbf{for} \ 1 \leq t \leq T-1 \ \textbf{do} \\ & x^{t+1} \leftarrow x^t - \frac{f'(x^t)}{f(x^t)} \end{array}$$

STOP si critère d'arrêt inférieur à ε

end

$$\begin{array}{c|c} \text{for } 1 \leq t \leq T-1 \text{ do} \\ & x^{t+1} \leftarrow x^t - \frac{f'(x^t)}{f(x^t)} \end{array}$$

STOP si critère d'arrêt inférieur à arepsilon

end

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε **Result**: un point x_T "proche" du minimum de la fonction f

$$\quad \text{for } 1 \leq t \leq T-1 \,\, \text{do}$$

$$x^{t+1} \leftarrow x^t - \frac{f'(x^t)}{f(x^t)}$$

STOP si critère d'arrêt inférieur à ε

Méthode de Newton pour la minimisation

Localement, en un point x^0 une fonction deux fois différentiable ressemble à :

$$f(x) \approx f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + \frac{1}{2} (x - x^*)^\top \nabla^2 f(x^*) (x - x^*)$$

- ► Enjeu : minimiser en *x* l'approximation (quadratique) précédente
- ► Solution : CNO

$$\nabla f(x^*) + \nabla^2 f(x^*)(x - x^*) = 0$$

► Nouvelle règle de mise à jour :

$$x^{t+1} \leftarrow x^t - (\nabla^2 f(x^t))^{-1} \nabla f(x^t)$$

Rem: C'est donc la méthode de Newton appliquée à la recherche de zéros d'une approximation du gradient de f

 x_2 $f(x) = c_1 < c_0$ $f(x) = c_0$

Références I

▶ D. P. Bertsekas.
Nonlinear programming.
Athena Scientific, 1999.