System of Linear Equations, Ax = b1

1.1 p-Norm and Condition Number

$$\underline{\text{Vector } p\text{-Norm}}: \quad \boxed{\|\vec{x}\|_p = \sqrt[p]{\sum_i |x_i|^p}}$$

1-Norm: $\|\vec{x}\|_1 = \sum_i |x_i|$

 ∞ -Norm: $\|\vec{x}\|_{\infty} = \max |x_i|$

- $\bullet \quad \|x\|_1 \geq \quad \|x\|_2 \quad \geq \quad \|x\|_{\infty}$
- $||x||_1 \le \sqrt{n} ||x||_2 \le \sqrt{n} ||x||_{\infty}$

 $\underline{\text{Matrix } p\text{-Norm}}:$

$$||A||_p = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

1-Norm: $||A||_1 = \max_j \sum_i |a_{ij}|$

 ∞ -Norm : $||A||_{\infty} = \max_{i} \sum_{i} |a_{ij}|$

• $||AB|| \le ||A|| \cdot ||B||$ • $||Ax|| \le ||A|| \cdot ||x||$ For p-norms (not necessarily in general)

Function/Vector Condition Number:

$$\operatorname{cond}(f(x)) = \left| \frac{[f(\hat{x}) - f(x)]/f(x)}{[\hat{x} - x]/x} \right|$$
$$= \left| \frac{\Delta y/y}{\Delta x/x} \right| = \left| \frac{y' \cdot \Delta x/y}{\Delta x/x} \right|$$
$$= \left| \frac{xf'(x)}{f(x)} \right|$$

Matrix Condition Number:

$$\frac{\operatorname{cond}_{p}(A) = \|A\|_{p} \cdot \|A^{-1}\|_{p}}{\operatorname{max}_{x \neq 0} \|Ax\|_{p} / \|x\|_{p}} = \operatorname{cond}_{p}(\gamma A) \geq 1$$

- Diagonal, $D : \operatorname{cond}(D) = \frac{\max |d_i|}{\min |d_i|}$
- $||z|| = ||A^{-1}y|| \le ||A^{-1}|| \cdot ||y||$ $\rightarrow \frac{\|z\|}{\|u\|} \leq \max \frac{\|z\|}{\|u\|} \stackrel{?}{=} \|A^{-1}\| \quad \text{(optimize)}$

1.2 Error Bounds and Residuals

$$A\hat{x} = b + \Delta b = Ax + A\Delta x$$

$$\bullet \quad \|b\| \quad \leq \quad \|A\| \cdot \|x\|$$

•
$$\|\Delta x\| \le \|A^{-1}\| \cdot \|\Delta b\|$$

$$\to \boxed{\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}}$$

$$A\hat{x} + r = b$$

•
$$\|\Delta x\| = \|A^{-1}(A\hat{x} - b)\| = \|-A^{-1}r\|$$

 $\leq \|A^{-1}\| \cdot \|r\|$

$$\rightarrow \left| \frac{\|\Delta x\|}{\|\hat{x}\|} \le \operatorname{cond}(A) \frac{\|r\|}{\|A\| \cdot \|\hat{x}\|} \right|$$

$$(A + \Delta A)\hat{x} = b$$

•
$$\|\Delta x\| = \|-A^{-1}(\Delta A)\hat{x}\|$$

 $\leq \|A^{-1}\| \cdot \|\Delta A\| \cdot \|\hat{x}\|$

$$\to \boxed{\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|}}$$

$$(A + \Delta A)\hat{x} = b$$

$$\bullet \|r\| = \|b - A\hat{x}\| = \|\Delta A \cdot \hat{x}\|$$

$$\leq \|\Delta A\| \cdot \|\hat{x}\|$$

$$\to \boxed{\frac{\|r\|}{\|A\|\cdot\|\hat{x}\|} \le \frac{\|\Delta A\|}{\|A\|}}, \quad \frac{\|\Delta x\|}{\|x\|} \le \frac{\|A^{-1}\|\cdot\|r\|}{\|\hat{x}\|} \le \operatorname{cond}(A) \quad \frac{\|\Delta A\|}{\|A\|}$$

$$\[A(t)x(t) = b(t)\] = \[(A_0 + \Delta A \cdot t)x(t) = b_0 + \Delta b \cdot t\]$$

•
$$x'(t) = \frac{b'(t) - A'(t)x(t)}{A(t)} = A^{-1}(t) \left[\Delta b - \Delta A \cdot x(t) \right]$$

•
$$x(t) = x_0 + x'(0)t + \mathcal{O}(t^2)$$

$$\rightarrow \boxed{\frac{\|x(t) - x_0\|}{\|x_0\|} \le \operatorname{cond}(A) \left(\frac{\|\Delta b\|}{\|b\|} + \frac{\|\Delta A\|}{\|A\|}\right) |t| + \mathcal{O}(t^2)}$$

Gaussian Elimination with LU/PLU/PLDUQ Decomposition 1.3

Elementary Elimination Matrices, L_k

$$\bullet \ \forall i \neq j \ (L_k^{-1})_{ij} = -(L_k)_{i,j}$$

$$\begin{pmatrix} 1 & 0 & \dots \\ -a_1/a_2 & 1 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} a_1 \\ 0 \\ \vdots \end{pmatrix}$$

LU/PLU Factorization (w/ partial pivoting)

$$A = LU$$
 (L is gen. triang.)
(U is upp. triang.)
 $L = (\dots L_2 P_2 L_1 P_1)^{-1}$

$$\{\dots\}b = (\dots L_2 P_2 L_1 P_1) A x$$
$$L^{-1}b = (P_1^T L_1^{-1} P_2^T L_2^{-1} \dots)^{-1} A x$$
$$= L^{-1}(LU)x = y$$

$$b = Ly , \quad y = Ux$$
(forw.-sub.) , (back.-sub.)

- Permutation matrix, P_i , rowswaps s.t. $a_k \neq 0$
- P_i rowswaps s.t. a_k is largest s.t. $a_{k+i}/a_k \leq 1$ for numerical stability/ minimize errors
- Pivoting isn't needed if A is diag. dom. $(a_{jj} > \sum_{i,i \neq j} a_{ij})$
- A can be singular

$$A = PLU$$
 (P is rowswap permu.)
(L is unit low. triang.)
(U is upp. triang.)
 $P = (\dots P_2 P_1)^{-1}$

$$\{\dots\}b = (\dots P_2 P_1) A x$$
$$P^T b = (P_1^T P_2^T \dots)^{-1} A x$$
$$= P^T (PLU) x = L y$$

$$P^T b = L y \ , \ \ y = U x$$

$$P^T A = LDU \qquad \text{(D is diag.)}$$

- ullet LDU is unique up to D
- LDU is unique if L/U are unit low./upp. diag., resp.

$$P^TAQ^T = LDU \qquad \begin{tabular}{l} \mbox{(P is permu. for rows)} \\ \mbox{(Q is permu. for cols.)} \end{tabular}$$

- "Complete pivoting" search for largest a_k
- Would be most numerically stable
- Expensive, so not really used

Error Bound:
$$\frac{\|r\|}{\|A\|\|x\|} \le \frac{\|\Delta A\|}{\|A\|} \le \rho n^2 \epsilon_{\text{mach}} \sim n \epsilon_{\text{mach}}$$
 (Wilkinson) (usually)

(growth factor, ρ , is the largest entry at any point during factorization - usually at U divided by the largest entry of A)

1.4 Gaussian-Jordan with MD Decomposition

Elementary Elimination Matrices, M_k

$$\begin{pmatrix} 1 & \dots & \frac{-a_1}{a_k} & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & \frac{-a_{k+1}}{a_k} & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \frac{-a_n}{a_k} & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_{k-1} \\ a_k \\ a_{k+1} \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_k \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\bullet a_k \text{ is the "pivot"}$$

$$\bullet \forall i \neq j \quad (M_k^{-1})_{ij} = -(M_k)_{ij}$$

MD Factorization (w/ partial pivoting)

$$A = MD$$
 (M is elem. elim.)
 $(D \text{ is diag.})$
 $M = (\dots M_2 P_2 M_1 P_1)^{-1}$

$$\{\dots\}b = (\dots M_2 P_2 M_1 P_1) A x$$

$$M^{-1}b = (P_1^T M_1^{-1} P_2^T M_2^{-1} \dots)^{-1} A x$$

$$= M^{-1} (MD) x = y$$

$$M^{-1}b = y , \quad y = Dx$$
 (division)

- Permutation matrix, P_i , rowswaps s.t. $a_k \neq 0$
- P_i rowswaps cannot ensure numerical stability (≤ 1)
- Division is $\mathcal{O}(n)$, so may be useful for parallel comps.
- Can also find A⁻¹

Finding A^{-1} $D^{-1}M^{-1}(A|I) = (I|A^{-1})$ $=D^{-1}M^{-1}\begin{bmatrix}a_{11}&\cdots&1&0\\\vdots&a_{nn}&0&1\end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & a'_{11} & \dots \\ 0 & 1 & \vdots & a'_{nn} \end{bmatrix}$

Symmetric Matrices 1.5

Positive Definite: $|x^T Ax| > 0$

Cholesky Factorization for Sym., Pos. Def.: $A = LL^T = LDL^T$

$$\begin{pmatrix} a_{11} & a_{21} & a_{31} & \dots \\ a_{21} & a_{22} & a_{32} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} l_{11} & 0 & 0 & \dots \\ l_{21} & l_{22} & 0 & \dots \\ l_{31} & l_{32} & l_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} l_{11} & l_{21} & l_{31} & \dots \\ 0 & l_{22} & l_{32} & \dots \\ 0 & 0 & l_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} l_{11}^{2} & \dots & \dots & \dots \\ l_{21}l_{11} & l_{21}^{2} + l_{22}^{2} & \dots & \dots \\ l_{31}l_{11} & l_{31}l_{21} + l_{32}l_{22} & l_{31}^{2} + l_{32}^{2} + l_{33}^{2} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• Pivoting not needed

- Only lower triangle needed for storage
- Well defined (always works)
- $A = LDL^T$ is sometimes useful, where D is diag.

Symmetric Indefinite Matrices

- Pivoting Needed: $PAP^T = LDL^T$
- Ideally, D is diag., but if not possible, then D is tridiag. (Assen) or 1x1/2x2 block diag. (Bunch, Parlett, Kaufmann, etc.)

1.6 Banded Matrices

- Similar to normal Gaussian Elim., but less work since more zeroes
- Pivoting means bandwidth will expand no more than double
- Only $\mathcal{O}(\beta n)$ storage needed

1.7 Rank-1 Update with Sherman-Morrison

$$\tilde{A}\tilde{x} = b = (A - uv^{T})\tilde{x}$$

$$\rightarrow \tilde{x} = \tilde{A}^{-1}b$$

$$\tilde{A}^{-1} = (A - uv^{T})^{-1} = A^{-1} + \frac{A^{-1}u}{1 - v^{T}(A^{-1}u)} v^{T}A^{-1}$$

$$\tilde{x} = (A^{-1}b) + \frac{A^{-1}u}{1 - v^{T}(A^{-1}u)} v^{T}(A^{-1}b)$$

$$x + \frac{y}{1 - v^{T}y} v^{T}x$$

General Woodbury Formula:

$$(A - UV^{T})^{-1} = A^{-1} + (A^{-1}U)(I - V^{T}A^{-1}U)^{-1} v^{T}A^{-1}$$

- U and V are general $n \times k$ matrices
- No guarantee of numerical stability, so caution is needed

1.8 Complexity

Explicit Inversion:
$$D^{-1}M^{-1}I = A^{-1} \rightarrow \mathcal{O}(n^3)$$
, $A^{-1}b = x \rightarrow \mathcal{O}(n^2)$

Gaussian Elimination:
$$A = LU \longrightarrow \mathcal{O}(n^3/3)$$
, $LUx = b \longrightarrow \mathcal{O}(n^2)$

Gaussian-Jordan:
$$A = MD \rightarrow \mathcal{O}(n^3/2)$$
, $MDx = b \rightarrow \mathcal{O}(n)$

Symmetric:
$$A = LL^T$$

 $PAP^T = LDL^T$ $\rightarrow \mathcal{O}(n^3/6)$, $LL^Tx = b \rightarrow \mathcal{O}(n^2)$

Banded:
$$A_{\beta} = LU \rightarrow \mathcal{O}(\beta^2 n)$$
, $LUx = b \rightarrow \mathcal{O}(\beta n)$

Sherman-Woodbury:
$$\tilde{A} = A - uv^T \rightarrow \mathcal{O}(n^2)$$
, $\tilde{x} = \tilde{A}b \rightarrow \mathcal{O}(n^2)$

1.9 Diagonal Scaling

Ill-conditioned

$$\begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ \epsilon \end{pmatrix}$$

Well-conditioned

$$\begin{pmatrix} 1 & 0 \\ 0 & 1/\epsilon \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1/\epsilon \end{pmatrix} \begin{pmatrix} 1 \\ \epsilon \end{pmatrix}$$

• No general way to correct poor scaling

1.10 Iterative Refinement

- $\bullet\,$ Double storage needed to hold original matrix
- \bullet r_n usually must be computed with higher precision than x_n
- $\bullet\,$ Useful for badly scaled systmes, or making unstable systems stable
- If x_n is not accurate, r_n might not need better accuracy

Least ||r|| Linear Regression/Fit, Ax + r = b2

- $A = A_{m \times n}$ (m > n, underdetermined)
- ||r(y = Ax)|| is cont. & coer. $\rightarrow \exists ||r(y)||_{\min}$
- r(y) is strictly convex $\rightarrow y = Ax$ is unique
- $|\operatorname{rank}(A) = n|$ $\Rightarrow A(x_1 x_2) = 0$ (unique x) (full column rank) $(x_1 x_2) = 0 \rightarrow x_1 = x_2$

Example - Vandermonde Matrix, A:

$$Ax = \begin{pmatrix} -\vec{f}(t_1) - \\ \vdots \\ -\vec{f}(t_1) - \end{pmatrix} \begin{pmatrix} | \\ \vec{x} \\ | \end{pmatrix} = \begin{pmatrix} y(t_1) \\ \vdots \\ y(t_m) \end{pmatrix} = \begin{pmatrix} | \\ \vec{y} \\ | \end{pmatrix} = (x^T A^T)^T , \quad y(t) = \sum_{i=1}^n x_i f_i(t) = \vec{x} \cdot \vec{f}$$

Decompose b: Projector of A, P

$$b = Ax + r$$

$$= y + r$$

$$= Pb + P_{\perp}b$$

Minimize residual, r:

$$\nabla ||r||_2^2 = 0 \qquad \left(\frac{\partial r^2}{\partial x_i} = 0\right)$$

$$= \nabla \left[(b - Ax)^T (b - Ax) \right]$$

$$= \nabla \left(b^T b - 2x^T A^T b + x^T A^T Ax \right)$$

$$0 = 2A^T Ax - 2A^T b$$

$$\downarrow$$

$$A^T Ax = A^T b \quad \text{(Solvable with Cholesky)}$$

$$Ax = Pb$$

$$A^{T}Ax = A^{T}Pb = (P^{T}A)^{T}b$$

$$A^{T}Ax = A^{T}b \quad \text{(System of Normal Equations)}$$

 $||r||_2^2 = ||Pr + P_{\perp}r||_2^2 = ||b - Ax||^2$

 $= \|Pb - Ax\|_2^2 + \|P_{\perp}b\|_2^2$

 $= ||Pr||^2 + ||P_1r||^2$

Cross-Product Matrix of A: A^TA

Symmetric: $(A^T A)^T = A^T A$

Pos. Def.:
$$\operatorname{rank}(A) = n$$

 $\rightarrow \langle x | A^T A x \rangle = x^T A^T A x$
 $= (Ax)^T (Ax)$
 $= \|Ax\|^2 \ge 0$

Nonsingular :
$$A^T A x = 0$$

 $\rightarrow ||Ax||^2 = 0 = Ax$
 $\rightarrow (x = 0)$

System of Normal Equations:
$$A^T A x = A^T b$$

Pseudoinverse, A^+

$$\begin{bmatrix} x = (A^T A)^{-1} A^T b \\ \equiv A^+ b \end{bmatrix} \rightarrow \begin{bmatrix} A^+ \equiv (A^T A)^{-1} A^T \\ A^+ A = I \end{bmatrix}$$

Ortho. Proj., P

$$\begin{vmatrix} Ax = A(A^T A)^{-1} A^T b \\ = Pb \end{vmatrix} \rightarrow \begin{vmatrix} P = A(A^T A)^{-1} A^T \\ = AA^+ \end{vmatrix}$$

System of Normal Equations Issues:

• Info can be lost forming $A^T A$, e.g, $A = \begin{pmatrix} 1 & 0 \\ \epsilon & 0 \\ 0 & \epsilon \end{pmatrix} \rightarrow A^T A = \begin{pmatrix} 1 + \epsilon^2 & 1 \\ 1 & 1 + \epsilon^2 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (singular)

• System of Normal Equations: $cond(A^TA) = [cond(A)]^2$

2.1 Error Bounds and Residuals

Norm and Conditioning:

$$||A|| = \max_{x \neq 0} \left(\frac{||Ax||}{||x||} = \frac{||AA^+b||}{||A^+b||} \right)$$

$$\operatorname{cond}(A) = \begin{cases} ||A||_2 \cdot ||A^+||_2 & \operatorname{rank}(A) = n \\ \infty & \operatorname{rank}(A) < n \end{cases}$$

$$A^{T}A(x + \Delta x) = A^{T}A(b + \Delta b) \qquad (A + \Delta A)^{T}(A + \Delta A)(x + \Delta x) = (A + \Delta A)^{T}b$$

 $\bullet \quad \|\Delta x\| \leq \|A^+\| \cdot \|\Delta b\|$

$$\rightarrow \frac{\|\Delta x\|}{\|\hat{x}\|} \leq \left(\operatorname{cond}(A) \frac{\|b\|}{\|Ax\|}\right) \frac{\|\Delta b\|}{\|b\|} \\
= \left(\operatorname{cond}(A) \frac{1}{\cos \theta}\right) \frac{\|\Delta b\|}{\|b\|}$$

• Cond. number is a func. of cond(A) and b

• $Pb \approx 0$ or $\theta \approx 90^{\circ}$ is highly sensitive

$$\bullet \quad \mathcal{A}^{T} \overrightarrow{Ax} + A^{T} \Delta Ax + (\Delta A)^{T} Ax + (\overline{\Delta A})^{T} \Delta Ax = A^{T} b + (\Delta A)^{T} b$$

$$+ A^{T} A \Delta x + \overline{A}^{T} \Delta A \Delta x + (\overline{\Delta A})^{T} A \Delta x + (\overline{\Delta A})^{T} \Delta A \Delta x$$

•
$$\|\Delta x\| = \|(A^T A)^{-1} (\Delta A)^T r - A^+ \Delta A x\|$$

 $\leq \|(A^T A)^{-1}\| \cdot \|\Delta A\| \cdot \|r\| + \|A^+\| \cdot \|\Delta A\| \cdot \|x\|$

$$\rightarrow \frac{\frac{\|\Delta x\|}{\|\hat{x}\|} \le \left([\operatorname{cond}(A)]^2 \frac{\|r\|}{\|Ax\|} + \operatorname{cond}(A) \right) \frac{\|\Delta A\|}{\|A\|}}{= \left([\operatorname{cond}(A)]^2 \tan \theta + \operatorname{cond}(A) \right) \frac{\|\Delta A\|}{\|A\|}}$$

2.2 Solving $A^TAx = A^Tb$ with an Augmented Matrix

$$\begin{array}{ccc} r + Ax & = & b \\ A^T r & = & 0 \end{array} \Rightarrow \quad \begin{pmatrix} I & A \\ A^T & 0 \end{pmatrix} \begin{pmatrix} r \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} \alpha I & A \\ A^T & 0 \end{pmatrix} \begin{pmatrix} r/\alpha \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$$

ullet Solvable with LU Decomp or Symm. Pos. Def. Methods

• α "controls the relative weights of the two subsystems in chooing pivots from either"

• $\alpha = \max a_{ij}/1000$ (rule of thumb)

• MATLAB uses it for large, sparse systems

2.3 QR Decomposition

Orthogonal Matrix,
$$Q$$

$$Q^T Q = Q Q^T = I$$

QR Factorization

$$A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$$

Reduced QR Factorization

$$A = Q \begin{pmatrix} R \\ 0 \end{pmatrix} = \begin{pmatrix} Q_{\parallel} & Q_{\perp} \end{pmatrix} \begin{pmatrix} R \\ 0 \end{pmatrix} = Q_{\parallel} R$$

Q^T is a span(A) Plane Rotation through \mathbb{R}^m to span($[R \ 0]^T$)

2-norm Preserved (Q is a rotation/reflection)

- $\bullet \quad ||Qv||^2 = \langle v|Q^TQv\rangle = ||v||^2$ $||Q^T v||^2 = \langle v|QQ^T v\rangle = ||v||^2$
- $\bullet Q^T = H_n \dots H_1$ $\bullet H_i^T H_i = H_i H_i^T = I$
- $\bullet \ A = [a_1 \ \dots \ a_n] \qquad \bullet \ I_n = [e_1 \ \dots \ e_n]$

$$H_1 a_1 = \alpha_1 e_1 \quad (\|a_1\| = |\alpha_1|)$$

$$H_i \dots H_1 a_i = \sum_{j=1}^{i} c_j e_j = H_n \dots H_1 a_i$$

 $(\|a_i\|^2 = |\alpha_1|^2 = \sum_{j=1}^{i} c_j^2)$

$$\langle r|a_i\rangle = 0$$
 $(1 \le i \le n)$

$$\langle H_i \dots H_1 r | e_i \rangle = 0$$
 $(1 \le j \le i)$

Q^TA rotates A until the column vectors are aligned with certain axes described above

A is a Lin. Sum of Q_{\parallel} 's Orthogonal 2.Column Vectors Given by R

$$\left\{ Q_{\parallel} = Q_{m \times n} \mid \operatorname{span}(Q_{\parallel}) = \operatorname{span}(A) \right\}$$

$$\rightarrow Q^+ = (Q^T Q)^{-1} Q^T = Q^T$$

$$\rightarrow P = Q_{\parallel}Q_{\parallel}^T$$

$$\rightarrow Q_{\parallel}^{T}Ax = Q_{\parallel}^{T}Pb = Q_{\parallel}^{T}Q_{\parallel}Q_{\parallel}^{T}b$$

 $=Q_{\parallel}^T b$ (System of Orthogonal Equations?)

$$A = Q_{\parallel} R = \begin{pmatrix} | & | & | \\ \vec{q_1} \dots \vec{q_n} \\ | & | & | \end{pmatrix} \begin{pmatrix} r_{11} \dots r_{1n} \\ 0 & \ddots & \vdots \\ 0 & 0 & r_{nn} \end{pmatrix} = \begin{pmatrix} | & | & | \\ \vec{a_1} \dots \vec{a_n} \\ | & | & | \end{pmatrix}$$

$$\bullet \ \vec{a_j} = \sum_{i}^{j} r_{ij} \cdot \vec{q_i}$$

 $\rightarrow \mid R \text{ transforms the } Q_{\parallel} \text{ column vectors about}$ $\operatorname{span}(A)$, an \mathbb{R}^n plane, until they equal the column vectors of A

Householder Transformation/Elementary Reflector, H

$$H\vec{a_1} = \alpha_1 \vec{e_1} \qquad ||a_1|| = |\alpha_1| \text{ (rotation)}$$

$$= \vec{a_1} - 2\hat{v}(\hat{v} \cdot \vec{a_1}) \qquad \rightarrow \qquad H = I - \hat{v}\hat{v}^T = I - \frac{2vv^T}{v^Tv} \qquad \bullet \quad H = H^T = H^{-1} \text{ (symmetric and orthogonal)}$$

•
$$\alpha_1 e_1 = a_1 - (2v_1) \frac{v_1 \cdot a_1}{v_1 \cdot v_1} \Rightarrow v_1 = (a_1 - \alpha e_1) \frac{v_1 \cdot v_1}{2v_1 \cdot a_1}$$
 (magnitude doesn't matter)
$$\rightarrow v_1 = (a_1 - \alpha e_1)$$

$$\alpha_1 = \pm \|a_1\| \rightarrow \alpha_i = -\mathrm{sign}(a_i) \|a_i\|$$
 (avoid "cancellation" in finite-calc. of v above)

$$H_j \dots H_1 a_i = a_i^j \quad \rightarrow \quad \begin{vmatrix} v_{j+1} = \begin{pmatrix} 0 \\ \vdots \\ (a_i^j)_i \\ \vdots \\ (a_i^j)_m \end{vmatrix} - \alpha_i e_i \begin{vmatrix} \bullet & \text{Store } v_i \text{ and } R \text{ into } A \text{ and an extra } n\text{-vector.} \\ \bullet & Q \text{ and } H \text{ can be computed if needed.} \\ \bullet & \text{When column } i \text{ is completed, row } i \text{ is too.} \end{vmatrix}$$

2.3.2 Givens Rotation, G

$$G = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \rightarrow Gx = G \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \pm \begin{pmatrix} \|a\| \\ 0 \end{pmatrix}$$
• creates 0's one at a time useful for spare matrices
• When column *i* is completed, row *i* is too.
$$\rightarrow C = \frac{a_1}{\sqrt{a_1^2 + a_2^2}}, \quad s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}}$$

Avoid squaring any number $\gg 1$ to prevent overflow/underflow

$$\bullet \quad t = \frac{a_2}{a_1} < 1 \quad \rightarrow \quad c = \frac{1}{\sqrt{1+t^2}} \quad , \quad s = c \cdot t$$

•
$$\tau = \frac{a_1}{a_2} < 1 \rightarrow s = \frac{1}{\sqrt{1+\tau^2}}, c = s \cdot \tau$$

2.3.3 Gram-Schmidt Orthogonalization

$$Q_{\parallel}^{T} = \begin{pmatrix} \widehat{q}_{1} : q_{1} = a_{1} \\ \widehat{q}_{2} : q_{2} = a_{2} - \widehat{q}_{1}(\widehat{q}_{1} \cdot a_{2}) \\ \widehat{q}_{3} : q_{3} = a_{3} - \widehat{q}_{1}(\widehat{q}_{1} \cdot a_{3}) - \widehat{q}_{2}(\widehat{q}_{2} \cdot a_{3}) \\ \vdots \\ \widehat{q}_{n} : q_{n} = a_{n} - \sum_{i}^{n} \widehat{q}_{i}(\widehat{q}_{i} \cdot a_{n}) \end{pmatrix}, \quad R = \begin{pmatrix} \|a_{1}\| & \widehat{q}_{1} \cdot a_{2} & \widehat{q}_{1} \cdot a_{3} & \dots & \widehat{q}_{1} \cdot a_{n} \\ 0 & \|a_{2}\| & \widehat{q}_{2} \cdot a_{3} & \dots & \widehat{q}_{2} \cdot a_{n} \\ 0 & 0 & \|a_{3}\| & \dots & \widehat{q}_{3} \cdot a_{n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \|a_{n}\| \end{pmatrix}$$

Classical, Column Oriented: Find \widehat{q}_i , then solve for \widehat{q}_{i+1} , and continue up to \widehat{q}_n .

- For a program, obviously a_k can be replaced by q_k , so less storage is needed.
- Cancellation that causes loss of orthogonality occurs more when ill-conditioned.
- As a result, performing $Q_{\parallel}^T b = b_1'$ isn't always best.
- Can't column-pivot, since that depends on rows being completed first.

Modified, Row Oriented: Let $q_i^{[k]} = a_i - \sum_j^k \widehat{q_j}(\widehat{q_j} \cdot a_i)$. For all $1 \leq i \leq n$, solve for $q_i^{[k]}$ starting first at k = 1, then continue until k = n.

- Allows for column pivoting since rows are completed first.
- Cancellation, though still present, is less severe.

Augmented Matrix:

$$\begin{pmatrix} A \mid b \end{pmatrix} = \begin{pmatrix} Q_{\parallel} \mid q_{n+1} \end{pmatrix} \begin{pmatrix} R & b'_1 \\ 0 & \rho \end{pmatrix}$$

$$\begin{pmatrix} \mid & \mid & \mid & \mid \\ a_1 \dots a_n & b \\ \mid & \mid & \mid & \mid \end{pmatrix} = \begin{pmatrix} \mid & \mid & \mid & \mid \\ \widehat{q}_1 \dots \widehat{q}_n & q_{n+1} \\ \mid & \mid & \mid & \mid \end{pmatrix} \begin{pmatrix} r_{11} \dots r_{1n} \mid \\ 0 & \ddots & \vdots & b'_1 \\ \vdots & \ddots & r_{nn} \mid \\ 0 & \dots & 0 & \rho \end{pmatrix}$$

$$\begin{pmatrix} \text{Use Gram-Schmidt QR on this, then solve } Rx = b \\ \text{This method is preferred numerically to reduce cancelling effects}$$

$$\text{Text didn't recommend what } q_{+1} \text{ or } \rho \text{ should be.}$$

$$\bullet \rho \text{ or } (q_{n+1})_i \text{ looks like it should be 0.}$$

$$\bullet \text{Idk, not much explained.}$$

- Use Gram-Schmidt QR on this, then solve $Rx = b'_1$
- This method is preferred numerically to reduce

Reorthogonalizing: Repeating procedure to straighten vectors (usually not needed)

2.3.4 Factorization with Column-Pivoting

- Column with largest norm is pivoted to the current column i to be reduced, and current row i is completed too.
- Choose the next pivoting column based on norms of the smaller columns from remaining uncompleted submatrix.
- Repeat until the end (rank might be n) or if the max norm is smaller than some tolerance (rank might be k < n)
- Pivoting avoids working with 0's on the diag.

2.3.5 Rank Deficiency (or Other) Case

$$\underline{ \text{If } \operatorname{rank}(A) = k < n } : \begin{bmatrix} (Q^TAP)(P^Tx) & = & Q^Tb \\ \begin{pmatrix} R & S \\ 0 & 0' \end{pmatrix} & \begin{pmatrix} z \\ 0 \end{pmatrix} & = & \begin{pmatrix} b_1' \\ b_2' \end{pmatrix} \end{bmatrix}$$
 • 0' is approx. 0 since the remaining norms are too • $R = R_{k \times k}$ • S is the remaining columns after R is completed. • There are multiple solutions for x .

- \bullet 0' is approx. 0 since the remaining norms are too small.

- For a quick solution, $Rz = b'_1$, $x = P\begin{pmatrix} z \\ 0 \end{pmatrix}$
- For the minimized-norm solution with the smallest ||x||, S must be annihilated.
- For another method or if underdetermined (m < n), something like SVD Decomp. can be used.

2.4 Singular Value Decomposition (SVD)

$$A = egin{array}{c} U \Sigma V^T \ = egin{pmatrix} igg| igg|$$

- Underdetermined, m < n is possible too.
- Analagous to Gaussian-Jordan Diagonalization method.
- U and V are orthogonal; u_i and v_i are the respective "left" and "right" singular vectors.
- Usually, the singular values are ordered such that $\sigma_1 \geq \sigma_2 \geq \dots$
- $\forall (k < i), \ \sigma_i = 0 \ \Rightarrow \ \operatorname{rank}(A) = k < n$
- $U_{\parallel} = U_{m \times k}$: $\operatorname{span}(U_{\parallel}) = \operatorname{span}(A)$, $\operatorname{span}(U_{\perp}) = \operatorname{span}(A)^{\perp}$
- $V_{0\perp} = V_{n \times k}$: $\operatorname{span}(V_{0\parallel}) = \operatorname{null}(A)$, $\operatorname{span}(V_{0\perp}) = \operatorname{null}(A)^{\perp}$ $\operatorname{null}(A) = \{x : Ax = 0\}$

 $A^+ \equiv V \Sigma^+ U^T$ Pseudoinverse: $\Sigma^+ \equiv \left[\Sigma^T \text{ and } \sigma_i \to 1/\sigma_i \quad \forall (\sigma_i \neq 0) \right]$

- \bullet $Ax + r = b \rightarrow$ $x = A^+b = (V\Sigma^+U^T)b$
- $\left| x_{\min} = \sum_{i \in \sigma} \frac{u_i \cdot b}{\sigma_i} v_i \right|$ useful for ill-conditioned or rank deficient since small σ can be dropped.

2.4.1Other uses

Euclidean 2-norm : $||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sigma_{\text{max}}$

Euclid. Cond. Num.: $\operatorname{cond}_2(A) = \sigma_{\max}/\sigma_{\min}$

Lower Rank Approx.: $A \approx A_k = \sum_i^k \sigma_i \left(u_i v_i^T \right)$ • Closest rank= k matrix to A in the Frobinius norm. • Frobinius Norm = Euclid. Norm for a "vector" in \mathbb{R}^{mn} .

Total Least Squares: $[A \mid y]_{m \times (n+1)} = U \Sigma V_{(n+1) \times (n+1)}^T$

 $rank([\widehat{A} \mid y]) \le n \rightarrow \sigma_{n+1} = 0 \rightarrow \widehat{A} \cdot v_{n+1} = 0$

 $-\widehat{A}$ is an A with uncertainty, like how y normally is.

 $\begin{bmatrix} \widehat{A} \mid y \end{bmatrix} \cdot \begin{bmatrix} x \\ -1 \end{bmatrix} = 0 \rightarrow \begin{bmatrix} x \\ -1 \end{bmatrix} \propto v_{n+1} = \begin{bmatrix} \overrightarrow{\nu_n} \\ \nu_{n+1} \end{bmatrix} \rightarrow \begin{bmatrix} x = \frac{\overrightarrow{\nu_n}}{-\nu_{n+1}} \end{bmatrix}$

2.5 Complexity

Normal, Cholesky

- $A^T A = A' \text{ costs } \frac{mn^2}{2}$
- $A' = LL^T$ costs $\frac{n^3}{6}$
- Rel. Err. $\propto [\operatorname{cond}(A)]^2$
- Bad if $\operatorname{cond}(A) \approx 1/\sqrt{\epsilon_{\text{mach}}}$

Householder

- $Q^T A = R \text{ costs } mn^2 \frac{n^3}{3}$
- Rel. Err. $\propto [\operatorname{cond}(A)]^2 ||r||_2 + \operatorname{cond}(A)$
- Bad if $\operatorname{cond}(A) \approx 1/\epsilon_{\operatorname{mach}}$
- More accurate than Cholesky and broadly applicable
- Usable for rank deficient or nearly rank-deficient

Givens

- \bullet The normal implementation needs 50% more work than Householder.
- A more complex implementation makes it comparable to Householder.
- Useful if matrix is sparse or zeros need to be maintained.

SVD

- $\bullet\,$ Most expensive cost at $\,\propto\,\,mn^2+n^3$, perhaps 4-10 times or more.
- Robust and reliable.

3 Matrix Information

Orthogonal :
$$QQ^T = Q^TQ = I$$

Unitary : $UU^{\dagger} = U^{\dagger}U = I$

$$\Leftrightarrow U = e^{iH} = (U_h)e^{iD_h}(U_h)^{\dagger}$$

Normal: $AA^{\dagger} = A^{\dagger}A \iff A = UDU^{\dagger}$

 ${\rm Symmetric}: \ S = S^T = QDQ^T \ ({\it D} \ {\rm is} \ {\rm real})$

 ${\rm Hermitian}: \ \ H = H^\dagger = UDU^\dagger \quad {\rm \tiny (D \ is \ real)}$

- $Ax = \lambda x$, $\det(A) \neq 0 \Rightarrow A^{-1}x = (1/\lambda)x$
- Shifting: $(A \sigma I)x = (\lambda \sigma)x$

Similar: $A(Ty) = \lambda(Ty)$

 $\rightarrow A \sim B = T^{-1}AT$

Diagonalize: $T^{-1}AT = D$ $\begin{pmatrix} A \text{ is nondefective} \\ T \text{ is nonsingular} \\ D \text{ is diag.} \end{pmatrix}$

Hessenberg: Triang. but from any diag.

Jordan Form: Nonsing. trans. into a near diag. w/ entries in diag. above

• Simple: Normal [Algebraic] Mult. of 1

• Defective: Geo. Mult. < Alg. Mult.

(eig. vec. #)

Invariant Subspace: $\{S: (AS \subseteq S) \equiv (\forall x \in S \Rightarrow Ax \in S)\}$

3.1 Schur Form

Unitary: $T^{\dagger}AT = R$ (T is unitary) (R is upp. triang.)

- $A\vec{x_i} = r_{ii}\vec{x_i}$
- $\bullet \quad 0 = (R r_{ii}I) \vec{x_i}$ $= \begin{pmatrix} R_{11} - r_{ii}I & \vec{u} & R_{13} \\ 0 & 0 & \vec{v}^T \\ \mathcal{O} & 0 & R_{33} - r_{ii}I \end{pmatrix} \vec{x_i}$ $\downarrow \qquad \qquad \downarrow \qquad$

 $\vec{x_i} = \begin{pmatrix} \vec{y} \\ -1 \\ 0 \end{pmatrix} : (R_{11} - r_{ii}I) \ \vec{y} = \vec{u}$ (nonsingular)

 "Schur form of a real matrix will have complex entries if the matrix has any complex eigenvalues" Real : $Q^T A Q = R$ (Q is ortho.) (R is block upp. triang.)

- $\bullet \ R = \begin{pmatrix} R_{11} & \dots & R_{1p} \\ \mathcal{O} & \ddots & \vdots \\ \mathcal{O} & \mathcal{O} & R_{pp} \end{pmatrix}$
- $\lambda_i(A) = \lambda(R_{ii})$
- $R_{ii} = \begin{cases} R_{1 \times 1} & \text{(real eigenvalue of } A\text{)} \\ R_{2 \times 2} & \text{(complex eigenvalue pairs of } A\text{)} \end{cases}$
- All other entries are real
- Reducible: If $PAP^T = R$ (P is permu.)

Block Upper Triangular Transformation

- $X_{\parallel} = (\vec{x_1} \dots \vec{x_p})$, $Ax_i \in \operatorname{span}(x_i) = \mathcal{S}$ $\Rightarrow AX_{\parallel} = X_{\parallel}B$
- $I_n = X^{-1}X = \begin{pmatrix} Y_{\parallel} \\ Y_{\perp} \end{pmatrix} \begin{pmatrix} X_{\parallel} & X_{\perp} \end{pmatrix} = \begin{pmatrix} Y_{\parallel}X_{\parallel} & Y_{\parallel}X_{\perp} \\ Y_{\perp}X_{\parallel} & Y_{\perp}X_{\perp} \end{pmatrix} = \begin{pmatrix} I_p & \mathcal{O} \\ \mathcal{O} & I_{n-p} \end{pmatrix}$
- $\bullet \ \ X^{-1}AX = \begin{pmatrix} Y_{\parallel}AX_{\parallel} & Y_{\parallel}AX_{\perp} \\ Y_{\perp}AX_{\parallel} & Y_{\perp}AX_{\perp} \end{pmatrix} = \begin{pmatrix} Y_{\parallel}X_{\parallel}B & Y_{\parallel}AX_{\perp} \\ Y_{\perp}X_{\parallel}B & Y_{\perp}AX_{\perp} \end{pmatrix} = \begin{pmatrix} B & Y_{\parallel}AX_{\perp} \\ \mathcal{O} & Y_{\perp}AX_{\perp} \end{pmatrix} = R$

3.2 Upper Hessenberg Transformation (see Householder)

• Extra 0s are added to v to start del. from a diff. row, k.

4 Eigenvalue Equation, $Ax = \lambda x$

4.1 Error Bound and Conditioning

$$A + \Delta A = Q(D + \Delta D)Q^{-1}$$

•
$$v = (\Delta \lambda I - D)^{-1} (\Delta D) v$$

•
$$\|(\Delta \lambda I - D)^{-1}\|_{2}^{-1} \le \|\Delta D\|_{2}$$

 $|\Delta \lambda - \lambda_{i}| \le \|Q(\Delta A)Q^{-1}\|_{2}$

$$\rightarrow |\Delta \lambda - \lambda_i| \leq \operatorname{cond}(Q) \|\Delta A\|_2$$

$$(A + \Delta A)(x + \Delta x) = (\lambda + \Delta \lambda)(x + \Delta x)$$

•
$$Ax = \lambda x$$
 , $y^H A = \lambda y^H$

•
$$\lambda$$
 is simple $\Rightarrow y^H x \neq 0$ (?)

•
$$y^H A \mathbf{x} + y^H A \Delta x + y^H (\Delta A) x + y^H (\Delta A) \Delta x$$

 $\approx y^H \lambda \mathbf{x} + y^H \lambda \Delta x + y^H (\Delta \lambda) x + y^H (\Delta \lambda) \Delta x$

$$\rightarrow \boxed{ |\Delta \lambda| \lessapprox \frac{\|y\|_2 \cdot \|x\|_2}{|y^H x|} \|\Delta A\|_2 = \frac{1}{\cos \theta} \|\Delta A\|_2}$$

•
$$AA^{\dagger} = A^{\dagger}A \rightarrow \operatorname{cond}(A) = 1$$

- Non-simple (multiple) eigenvalue is complicated:
- allows $y^H x = 0$, depends on eigenvalue spacings, vector angles, etc.
- Balancing (diagonal rescaling) can improve conditioning

4.2 QR Iteration

Power Iteration:

$$A^{k}x_{0} = A^{k} \sum_{i=1}^{n} c_{i}v_{i} = \sum_{i=1}^{n} c_{i} \left(A^{k}v_{i}\right) = \sum_{i=1}^{n} c_{i} \left(\lambda_{i}^{k}v_{i}\right)$$

$$= \lambda_{1}^{k} \left[\sum_{i=1}^{j} c_{i}v_{i} + \sum_{i=j+1}^{n} c_{i} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} v_{i}\right] \quad (\lambda_{1} = \dots = \lambda_{j}) \\ (\lambda_{1} \ge \dots \ge \lambda_{n})$$

$$(A^k x_0 = x_k) \approx \lambda_1^k \sum_{i=1}^{j} c_i v_i = \lambda_1^k (c_1 v_1) \text{ if } j = 1$$

Rayleigh Quotient (for shifts):

$$\left[x\lambda + r = Ax\right] \Rightarrow \left[x^H x\lambda = x^H Ax\right] \Rightarrow \left[\lambda = \frac{\langle x|Ax\rangle}{\langle x|x\rangle}\right]$$

Inverse [Power] Iteration:

$$\left[\left(A^{-1} \right)^k x_0 = x_k \right] \Rightarrow \left[\left(A x_{k+1} = x_k \right) \to \left(\lambda_1 \to \frac{1}{\lambda_1} \right) \right]$$

Inverse Iteration w/ Shifts:

$$\left[\left(A - \sigma I \right)^k x_0 = x_k \right] \Rightarrow \left[\left(\lambda_1 - \sigma \right) \to \frac{1}{\lambda_1 - \sigma} \right]$$

Deflation (concept):

$$T^{-1}A_kT = \begin{pmatrix} \lambda_1 & b^T \\ 0 & A_{k+1} \end{pmatrix}$$

Simultaneous/Subspace [Power] Iteration:

$$X_0 = X_{n \times p}$$
, $\operatorname{rank}(X_0) = p$
 $\to X_{k+1} = AX_k = A^{k+1}X_0$
 $\to \lim_{k \to \infty} \operatorname{span}(X_k) = \operatorname{span}(A)$

Orthogonal [Subspace] Iteration:

$$X = X_{n \times p}$$
, $\operatorname{rank}(X) = p$
 $\to X_k = Q_k R_k$ $(Q = Q_{n \times p})$
 $\to X_{k+1} = AQ_k \left[= Q_k B_{p \times p} \right]$

4.2.1 QR Iteration

$$X_{k+1} \equiv AQ_k \quad (\text{use } X_0 = I \to X_1 = A)$$

$$Q_{k+1}R_{k+1} = Q_k (Q_k^H A Q_k)$$

$$\to A_k \equiv Q_k^H X_{k+1} = Q_k^H A Q_k$$

$$= \begin{cases} (Q_k^H Q_{k+1}) R_{k+1} \equiv Q_{k+1}^{(A)} R_{k+1} \\ Q_k^H (Q_k R_k Q_{k-1}^H) Q_k = R_k Q_k^{(A)} \end{cases}$$

$$\to A_{k+1} = R_{k+1} Q_{k+1}^{(A)}$$

Inverse QR Iteration

$$\left(A_k^{-H} = Q_{k+1}^{(A)} R_{k+1}^{-H} \right) , \left(A_{k+1}^{-H} = R_{k+1}^{-H} Q_{k+1}^{(A)} \right)$$

$$\rightarrow \left(A^{-H} \right)^k = Q_k R_k^{-H}$$

QR Iteration w/ Shifts & Deflation

Rayleigh Quotient Shift: $\sigma = \frac{\langle q_p | A | q_p \rangle}{\langle q_p | q_p \rangle} = \langle q_p | A | q_p \rangle$ $\rightarrow Q_{k+1}^{(A)} R_{k+1} = A_k - \sigma I$ $\rightarrow R_{k+1} Q_{k+1}^{(A)} = A_{k+1} + \sigma I$ \rightarrow Deflation: $\lim_{k \to \infty} A_k = \begin{pmatrix} A'_{k+1} & b^T \\ 0 & \lambda_p \end{pmatrix}$

Hessenberg QR Iteration [w/ Shifts]

(see Hessenberg Transformation, H)

$$H = H^{(1)} \Rightarrow H^H A H$$
 isn't Hessenberg at all $H = H^{(2)} \Rightarrow H^H A H$ is Hessenberg at subdiag.
 $\rightarrow A_1 = H^H A H = H A H$ $\rightarrow A_k \ [+ \sigma I] = R_k Q_k^{(A)} \ (k > 1)$

$$\rightarrow A_k [+ \sigma I] = R_k \Big(A_{k-1} [- \sigma I] \Big) R_k^{-1}$$
 is Hessenberg at subdiag.