Principal Component Analysis and Singular Value Decomposition

Pritha Banerjee

University of Calcutta banerjee.pritha74@gmail.com

March 28, 2025

Overview

PCA

Singular Value Decomposition

Pritha Banerjee (CU) PCA and SVD March 28, 2025 2/1

Principal Component Analysis (PCA):

Steps of Computing PCA:

- Consider a d-dimensional data set $A_{n\times d}$ with n entries
- Compute mean for every column and subtract the mean from each element in that column $\bar{A} = [\bar{x}_{i1} \ \bar{x}_{i2} \cdots \bar{x}_{id}]$,ie. **mean centered data matrix**. Let the new matrix be $X_{n \times d} = A_{n \times d} \bar{A}_{n \times d}$, ie.
- Compute Covariance matrix $V_{d\times d}$, which is a symmetric matrix (to capture covariance between different attributes)
- Compute Eigenvales and eigenvectors of V, Eigenvectors are linearly independent as V is symmetric.
- Sort the eigenvalues in decreasing order. Highest eogenvalue corresponds to the maximum variance.
- Create a matrix, called **projection matrix** $W_{d \times k}$, k < d, by choosing k eigenvectors corresponding to decreasing eigenvalues.
- Use $W_{d \times k}$ to transform X to new subspace of dimension k. $X' = X_{n \times d}.W_{d \times k}$

Principal Component Analysis: Merits/ Demerits

Can we get back the original A from X'? if all d eigenvectors are available, $\hat{A} = X'W^T + \bar{A}$

Merits:

- PCA works best for dimensionality reduction when attributes are highly correlated
- PCA helps in data compression
- Eliminates components with low variance (assumed to be noise), enhancing data clarity.
- Helps identifying outlier, by showing which point significant deviates in the reduces space.

Demerits:

- PCA needs proper scaling (mean centered data, standardization)
- If number of principal components chosen are small there may be information loss
- PCA works well if relationship between attributes are linear
- PCA may be slow for very large dataset
- If too many components are chosen or data set is too small PCA may not generalize well

Diagonalization of a Matrix

- Given a square matrix A, find a matrix P and a diagonal matrix D such that $D = P^{-1}AP$ or $A = PDP^{-1}$
- Multiplying on both sides by P, we get PD = AP,
- ullet For P^{-1} to exist, columns of P must be linearly independent,
- Eigenvectors corresponding to distinct non-zero eigenvalues are linearly independent. Thus, we use eigenvalue and eigenvectors to obtain D.
- k^{th} column of AP is $AP_{.k}$ and k^{th} column of PD is $PD_{.k}$; $P_{.k}$ and $D_{.k}$ are k^{th} column of P and D
- Since D is diagonal, the only non-zero entry of $D_{.k}$ is D_{kk} . Therefore, $PD_{.k} = D_{kk}.P_{.k} \implies AP_{.k} = D_{kk}.P_{.k}$
- From above, $P_{.k}$ is an eigenvector of A corresponding to eigenvalue D_{kk} . Thus, non-zero diagonal entries in D are eigenvalues of A and P are the eigenvectors corresponding to them.
- Note that, depending on the arrangements of eigenvalues λ , P matrix may differ.

Singular Value Decomposition

- helps to produce approximate representation of a matrix of any desired number of dimension by eliminating the least important "content"
- **Definition:** Let $A_{m \times n}$ be a matrix with rank r, then we can find matrices, U, V, Σ such that $A = U_{m \times r} \Sigma_{r \times r} V^T r \times n$, where
 - U is column orthonormal matrix (dot product of two columns is zero)
 - Σ is a digonal matrix and values of the diagonals are called singular values of M (square root of the positive eigen values of AA^T or A^TA
 - **Note:** AA^T or A^TA are symmetric matrices and have same eigenvalues
 - ullet V column orthonormal matrix, thus, rows of V^T are orthonormal
- We will not diagonalize A by $D = P^{-1}AP$; sice A may not be square matrix, eigenvectors may not be orthogonal
- **Singular vectors** of A solve the above problems.

Singular Value Decomposition: Intuition (1)

- There are two sets of singular vectors u's and v's. u's are in \mathbb{R}^m and v's are in \mathbb{R}^n
- singular vectors will be the columns of an $m \times m$ matrix U and $n \times n$ matrix V.
- ullet SVD in terms of those basis vectors or SVD in terms of orthonormal matrices U and V
- u's and v's give bases for four fundamental subspaces:
 - $u_1, \cdots u_r$ is an orthonormal basis for the **column space**
 - u_{r+1}, \dots, u_m is an orthonormal basis for the **left nullspace** $N(A^T)$
 - $v_1, \dots v_r$ is an orthonormal basis for the **row space**
 - u_{r+1}, \dots, u_m is an orthonormal basis for the **left nullspace** N(A)
 - These basis vectors diagonalize the matrix A
- A is diagonalized: $Av_1 = \sigma_1 u_1, Av_2 = \sigma_2 u_2 \cdots Av_r = \sigma_r u_r, \ \sigma_1, \cdots \sigma_r$ are positive and σ_i are lengths of $Av_i, \ \sigma'$ s go into diagonal matrix Σ

Pritha Banerjee (CU) PCA and SVD March 28, 2025 7/10

Singular Value Decomposition: Intuition (2)

- Since u's are orthonormal, the matrix U with those r columns has $U^TU = I$, similarly $V^TV = I$
- $Av_i = \sigma_i u_i$ gives $AV_r = U_r \Sigma_r$, where A is $m \times n$, V_r is $n \times r$, U_r is $m \times r$ and Σ_r is $r \times r$

$$A\begin{bmatrix}v_1 & \cdots & v_r\end{bmatrix} = \begin{bmatrix}u_1 & \cdots & u_r\end{bmatrix} \begin{bmatrix}\sigma_1 & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \sigma_r\end{bmatrix}$$

- Above u's and v's define rowspace and columnspace of A
- We have m-r more u's and n-r more v's from the nullspace N(A) and left nullspace $N(A^T)$
- Since they are in nullspace they are orthogonal. also they are orthogonal to first u's and v's
- Considering all u and v in U and V, they become square matrix. $A_{m\times n}V_{n\times n}=U_{m\times m}\Sigma_{m\times m}$
- Σ has m-r extra zero rows and n-r new zero columns.

Pritha Banerjee (CU) PCA and SVD March 28, 2025 8/10

Singular Value Decomposition: Intuition (3)

- Now $AV = U\Sigma$ becomes $A = U\Sigma V^T$, multiplying both sides by V^T
- **SVD:** r matrices, each $u_i \sigma_i v_i^T$ is a column of A and has rank 1 for

$$A = U\Sigma V^T = u_1\sigma_1v_1^T + \cdots + u_r\sigma_rv_r^T$$

Equation (1)

• To show that each σ_i^2 is an eigenvalue of A^TA and also AA^T . When **singular values** are put in descending order, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, Equation 1 gives the r, rank 1 pieces of A in order of importance.

When is $\Lambda = U\Sigma V^T$ (singular values) the same as $X\Lambda X^{-1}$ (eigenvalues)?

- A needs orthonormal eigenvectors to allow X = U = V
- A also needs eigenvalues $\lambda \geq 0$ if $\Lambda = \Sigma$
- Thus, A must be a positive semidefinite or definite symmetric matrix. Then only $A = X\Lambda X^{-1} = U\Sigma V^T$

Singular Value Decomposition: Proof

Proof of SVD: To show how u's and v's are constructed

- v's are orthonormal eigenvectors of A^TA . Since $A^TA = (U\Sigma V^T)^T(U\Sigma V^T) = V\Sigma^T U^T U\Sigma V^T = V\Sigma^T \Sigma V^T$
- On the right, Eigenvector matrix V for symmetric positive (semi) definite matrix A^TA ; Thus, $(\Sigma^T\Sigma)$ must be eigenvale matrix of of A^TA , each σ^2 is λ of A^TA
- In $Av_i = \sigma_i u_i$, u_i 's are orthonormal because of v
- $u_i^T u_j = (\frac{Av_i}{\sigma_i})^T (\frac{Av_i}{\sigma_i}) = \frac{v_i^T A^T AV_j}{\sigma_i \sigma_j} = 0$, since v_i 's are orthogonal.
- Note that u are the eigenvectors of AA^T