$Exercices\ MP/MP^*$ Fonction d'une variable réelle

Exercice 1 (Polnômes de Legendre). On pose, pour tout $n \in \mathbb{N}$, $L_n = P_n^{(n)}$ où

$$P_n = \frac{(X^2 - 1)^n}{2^n n!}$$

1. On munit $C^0([-1,1],\mathbb{R})$ du produit scalaire

$$(f|g) = \int_{-1}^{1} f(t)g(t)dt$$

Montrer que $(L_n)_{n\in\mathbb{N}}$ est orthogonale pour ce produit scalaire.

2. Montrer que

$$L_n(x) = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (x+1)^{n-k} (x-1)^k$$

- 3. Montrer que L_n admet n zéros simples sur]-1,1[.
- 4. Montrer que pour $n \ge 2$,

$$L_n = \frac{2n-1}{n}XL_{n-1} - \frac{n-1}{2n-1}L_{n-2}$$

Exercice 2. Soit $f \in C^n([a,b], \mathbb{R})$, $(x_0, \ldots, x_n) \in [a,b]^{n+1}$ avec a < b et

$$V(x_0, ..., x_n) = \begin{vmatrix} 1 & ... & ... & 1 \\ x_0 & ... & ... & x_n \\ \vdots & & \vdots \\ x_0^{n-1} & ... & ... & x_n^{n-1} \\ f(x_0) & ... & ... & f(x_n) \end{vmatrix} = \prod_{i>j} (x_i - x_j) \Delta f(x_0, ..., x_n)$$

S'il existe $i \neq j$ tel que $x_i = x_j$, alors $\Delta f(x_0, \dots, x_n)$ prend n'importe quelle valeur, sinon $\prod_{i>j} (x_i - x_j) \neq 0$. Montrer qu'il existe $\xi \in]a,b[$ tel que

$$\Delta f(x_0, \dots, x_n) = \frac{f^{(n)}(\xi)}{n!}$$

Exercice 3. Soit

$$E = \left\{ f \in \mathcal{C}^2([0,1], \mathbb{R}) \mid ||f''||_{\infty} \leqslant 1 \right\}$$

Soit pour $f \in E$,

$$A(f) = f(0) - 2f(\frac{1}{2}) + f(1)$$

 $D\acute{e}terminer \sup_{f \in E} A(f).$

Exercice 4. Trouver toutes les fonctions C^1 de \mathbb{R} dans \mathbb{C} telles que pour tout $(x,y) \in \mathbb{R}^2$, $f(x) - f(y) = (x-y)f'\left(\frac{x+y}{2}\right)$.

Exercice 5. Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ convexe.

- 1. Montrer que $\lim_{x \to +\infty} \frac{f(x)}{x} = l \in \mathbb{R}$ existe.
- 2. Montrer que si $l \ge 0$, f est décroissante.
- 3. Montrer que si $l \in \mathbb{R}$, $\lim_{x \to +\infty} f(x) lx$ existe dans $\overline{\mathbb{R}}$.

Exercice 6. Soit $p \in \mathbb{N}^*$.

1. Calculer

$$l_p = \lim_{n \to +\infty} \sum_{k=0}^{np} \frac{1}{n+k}$$

2. Soit $f: \mathbb{R}_+ \to \mathbb{R}$, f de classe C^1 avec f(0) = 0. Montrer que

$$v_n = \sum_{k=0}^{np} f\left(\frac{1}{k+n}\right) \xrightarrow[n \to +\infty]{} \ln(p+1)f'(0).$$

- 3. Si on suppose seulement f continue et f(0) = 0, montrer que l'on peut avoir $(v_n)_{n \in \mathbb{N}}$ divergente.
- 4. Si f est de classe C^2 avec f(0) = f'(0) = 0 et $f''(0) \neq 0$, trouver un équivalent de v_n .

Exercice 7. Soit $f \in C^1(\mathbb{R}_+, \mathbb{R})$, $\lim_{x \to +\infty} f(x) = m$ existe et f' est uniformément continue. Montrer que $\lim_{x \to +\infty} f'(x) = 0$. Et si $f \in C^1(\mathbb{R}_+, \mathbb{C})$? Et si f est seulement C^1 sans f' uniformément continue?

Exercice 8. Trouver toutes les fonctions f et g continues de $\mathbb{R} \to \mathbb{R}$ telles que pour tout $(x,y) \in \mathbb{R}^2$,

$$f(x+y) - f(x-y) = 2yg(x)$$

Exercice 9. Soit $f:]0, +\infty[\to \mathbb{R}$ convexe de classe C^1 . Soit

$$S_n = \frac{1}{2}f(1) + f(2) + \dots + f(n-1) + \frac{1}{2}f(n) - \int_1^n f(t)dt$$

Montrer que pour tout $n \ge 2$,

$$0 \leqslant S_n \leqslant \frac{1}{8} (f'(n) - f'(1))$$

Exercice 10.

1. Soit $f: \mathbb{R} \to E$ où E est un \mathbb{R} -espace vectoriel normé de dimension finie avec f de classe C^2 et telle que f et f'' soient bornées sur \mathbb{R} . On poe $M_0 = \sup_{t \in \mathbb{R}} \|f(t)\|$ et $M_2 = \sup_{t \in \mathbb{R}} \|f''(t)\|$. Montrer que f' est bornée sur \mathbb{R} et que

$$M_1 = \sup_{t \in \mathbb{R}} ||f'(t)|| \leqslant \sqrt{2M_0 M_2}$$

Pour $x \in \mathbb{R}$ et h > 0, on formera

$$\begin{cases} A = f(x+h) - f(x) - hf'(x) \\ B = f(x-h) - f(x) + hf'(x) \end{cases}$$

et on exprimera f'(x) en fonction de A et B.

2. Si f est de classe C^n et telle que f et $f^{(n)}$ soient bornées sur \mathbb{R} , montrer que pour tout $k \in \{1, \ldots, n-1\}$, $f^{(k)}$ l'est aussi. On pourra former

$$\begin{cases} A_1 = f(x+1) - f(x) - f'(x) - \dots - \frac{f^{(n-1)}(x)}{(n-1)!} \\ A_k = f(x+k) - f(x) - kf'(x) - \dots - k^{n-1} \frac{f^{(n-1)}(x)}{(n-1)!} \end{cases}$$

Exercice 11 (Longueur d'un arc). Soit $\gamma: [a,b] \to E$ un arc de classe C^1 . Pour $\sigma = (a_0, \ldots, a_n) \in \Sigma([a,b])$ (ensemble des subdivisions de [a,b]), on définit

$$l_{\sigma,\gamma} = \sum_{i=0}^{n-1} \|\gamma(a_{i+1}) - \gamma(a_i)\|$$

On dit que γ est de longueur finie si et seulement il existe $l(\gamma) = \sup_{\sigma \in \Sigma([a,b])} l_{\sigma,\gamma}$ appelée longueur de γ .

1. Montrer que pour tout $\sigma \in \Sigma([a,b])$,

$$l_{\sigma,\gamma} \leqslant \int_{a}^{b} \|\gamma'(t)\| dt$$

2. Soit $\sigma = (a_1, \dots, a_n) \in \Sigma([a, b])$, montrer que

$$\left| l_{\sigma,\gamma} - \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i) \right| \leqslant \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} \|\gamma'(t) - \gamma'(a_i)\| dt$$

3. Soit $\varepsilon > 0$, justifier qu'il existe $\alpha_0 > tel$ que si $\delta(\sigma) \leqslant \alpha_0$ (où δ est le pas de la subdivision, c'est-à-dire la longueur maximale entre deux a_i), alors

$$\left| \int_{a}^{b} \|\gamma'(t)\| dt - \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i) \right| \leqslant \frac{\varepsilon}{3}$$

Puis montrer qu'il existe $\alpha_1 > 0$ tel que si $\delta(\sigma) \leq \alpha_1$, alors

$$\left| l_{\sigma,\gamma} - \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i) \right| \leqslant \frac{\varepsilon}{2}$$

En déduire que

$$l(\gamma) = \int_{a}^{b} \|\gamma'(t)\| dt$$

4. Étudier

$$\gamma: [0, 2\pi] \to \mathbb{R}^2$$

$$t \mapsto \begin{pmatrix} R\cos(t) \\ R\sin(t) \end{pmatrix} \tag{1}$$

Exercice 12 (Théorème de relèvement). Soit $\gamma \colon I \to \mathbb{C}^*$ un arc \mathcal{C}^k avec $k \geqslant 0$. On appelle relèvement continu de γ toute application continue $\theta \colon I \to \mathbb{R}$ telle que pour tout $t \in I$, $\gamma(t) = |\gamma(t)| e^{\mathrm{i}\theta(t)}$.

- 1. Montrer que si θ_1 et θ_2 sont deux relèvements continue de γ , alors il existe $k_0 \in \mathbb{Z}$ tel que pour tout $t \in I$, $\theta_2(t) \theta_1(t) = 2k_0\pi$.
- 2. On suppose $k \ge 1$. On pose $f(t) = \frac{\gamma(t)}{|\gamma(t)|}$. Montrer que f est C^k et que s'il existe θ relèvement C^1 de γ , alors pour tout $t \in I$,

$$\theta'(t) = -i\frac{f'(t)}{f(t)}$$

3. Pour $k \geqslant 1$, en déduire qu'il existe un relèvement C^k de γ .