Table of Contents

Frequency Division Multiplexing for DSB-SC	1
Program Initialization	
Read Song File	1
Display the whole song	
Create the triangle wave	
Display the part of the triangle signal	3
Generate Modulated Signal	
Display the Segments of Signal and Modulated Signal (Song)	4
Display the Segments of Signal and Modulated Signal (Triangle)	5
The DSB-SC Receiver Processing	(
Fourier Transforms of Song, Modulated and Demodulated Signals	7
Display the Original Song and the Receiver Output Segments	
Display the Fourier Transform of the Transmitter Output (Question 2a)	
Display the time waveform of song signal (Question 2b)	
Display the time waveform of triangle signal (Question 2b)	
Play the demodulated sound	

Frequency Division Multiplexing for DSB-SC

This documents describes/implements the Frequency Division Multiplexing

Program Initialization

```
%Clear Variables and Close All Figure Windows
% Clear all previous variables
clear
% Close all previous figure windows
close all
```

Read Song File

song.mat contains song variable containing Song samples and Fs which is the sampling frequency

```
% Load the song file
load song.mat
% song is the song samples
% Fs is the sampling frequency
% Transform the song to low rate sampling for listening (sound command)
```

```
% requires sampling rate to be less than 44K
songlowrate=downsample(song,10);
% Listen to
sound(songlowrate,Fs/10);
% convert it to row array
song=reshape(song,1,length(song));
% Sampling Period
Ts=1/Fs;
% Sampling times
t=(0:1:(length(song)-1))*Ts;
```

Display the whole song

```
% Display the whole song
figure(1)
plot(t,song);
grid
title('Whole song signal');
xlabel('Time (seconds)');
```


Create the triangle wave

```
% Fundamental frequency
Fstr = 3000;
```

```
tr=sawtooth(2*pi*Fstr*t,1/2);
tr = lowpass(tr, 30e3, Fs);
```

Display the part of the triangle signal

```
% In order to get a clear vision, I plot only a part
% Display the part of the triangle signal
figure(2)
plot(t(1:3000)*1000, tr(1:3000));
grid
title('Partf of the triangle signal')
xlabel('Time (miliseconds)')
```


Generate Modulated Signal

Generate carrier signal and multiply with the song signal to obtain DSB-SC modulated waveform

Carrier frequency for song signal:

```
f_c=60kHz fc=60e3; % 60 kHz;
```

Generate carrier signal and multiply with the triangle signal to obtain DSB-SC modulated waveform

Carrier frequency for triangle signal;

```
f_ctr=120kHz

fctr= 120e3;

Carrier signal for song signal:
c(t)=cos(2\pi f_ct)

c=cos(2*pi*fc*t);

Carrier signal for triangle
ctr(t)=cos(2\pi f_ctrt)

ctr=cos(2*pi*fctr*t);

DSB-SC Modulated waveforms
x(t)=s(t)c(t)

x=song.*c;
xtr(t)=tr(t)ctr(t)

xtr=tr.*ctr;

Output of the transmitter
x_final = x + xtr;
```

Display the Segments of Signal and Modulated Signal (Song)

Display small section of the original signal and then the DSB-SC modulated version

```
figure(3)
% plot the song segment (for about 3000 samples)
subplot(2,1,1)
plot(t(1:3000)*1000, song(1:3000));
xlabel('Time (msecs)')
title('Song Signal Segment')
grid
subplot(2,1,2)
% plot the modulated signal
plot(t(1:3000)*1000,x(1:3000),'r');
hold on
% plot also positive and negative envelopes
p1=plot(t(1:3000)*1000,song(1:3000),'k');
p2=plot(t(1:3000)*1000,-song(1:3000),'k');
xlabel('Time (msecs)')
set(p1, 'LineWidth', 3)
set(p2,'LineWidth',3)
grid
```


Display the Segments of Signal and Modulated Signal (Triangle)

Display small section of the original triangle signal and then the DSB-SC modulated version

```
figure(4)
% plot the triangle segment (for about 3000 samples)
subplot(2,1,1)
plot(t(1:3000)*1000, tr(1:3000));
xlabel('Time (msecs)')
title('Triangle Signal Segment')
grid
subplot(2,1,2)
% plot the modulated signal
plot(t(1:1000)*1000,xtr(1:1000),'r');
hold on
% plot also positive and negative envelopes
p1=plot(t(1:1000)*1000,tr(1:1000),'k');
p2=plot(t(1:1000)*1000,-tr(1:1000),'k');
xlabel('Time (msecs)')
set(p1,'LineWidth',3)
set(p2,'LineWidth',3)
```


The DSB-SC Receiver Processing

Coherent DSB-SC Receiver operation

 $y(t) = 2x_f inal(t)c(t)$

First multiply with the receiver carrier (which is assumed to be in phase)

$$y=2*x_final.*c;$$
 $ytr(t)=2x_final(t)ctr(t)$ $ytr=2*x_final.*ctr;$ Then low pass filter this signals $z(t)=y(t)*h_{LP}(t)$ $z=lowpass(y,30e3,Fs);$ $ztr(t)=ytr(t)*h_{LP}(t)$

ztr = lowpass(ytr, 300, Fstr);

Fourier Transforms of Song, Modulated and Demodulated Signals

Calculate and Display the Fourier Transforms of the song, modulated and demodulated signals

```
Calculate the Fourier Transform of the song signal
[ftsong, freqs]=fouriertransform(song, Fs);
Calculate the FT of the triangle signal
[fttr, freqs] = fouriertransform(tr, Fs);
Calculate the Fourier Transform of the DSB-SC signal of song signal
[ftx,freqs]=fouriertransform(x,Fs);
Calculate the Fourier Transform of the DSB-SC signal of triangle signal
[ftxtr,freqs]=fouriertransform(xtr,Fs);
Calculate the FT of the transmitter output
[ftx_final,freqs]=fouriertransform(x_final,Fs);
Calculate Fourier Transform after receiver carrier multiplication of song signal
[fty,freqs]=fouriertransform(y,Fs);
Calculate Fourier Transform after receiver carrier multiplication of triangle signal
[ftytr,freqs]=fouriertransform(ytr,Fs);
Calculate Fourier Transform of the receiver output of song signal
[FTz,freqs]=fouriertransform(z,Fs);
Calculate Fourier Transform of the receiver output of triangle signal
[FTztr,freqs]=fouriertransform(ztr,Fs);
Display these Fourier Transforms
figure(5)
subplot(3,1,1);
plot(freqs/1000, 20*log10(abs(ftsong)));
plot(freqs/1000, 20*log10(abs(ftx)),'r');
grid
legend('Message','Modulated','Location','Best')
xlabel('Frequency (kHz)');
title('Fourier Transform of Message and Modulated Signals')
axis([-Fs/2000 Fs/2000 -40 100])
subplot(3,1,2);
plot(freqs/1000, 20*log10(abs(fty)));
axis([-Fs/2000 Fs/2000 -40 100])
```

grid

```
xlabel('Frequency (kHz)');
title('FT of Receiver Signal After Multiplication with Carrier')
subplot(3,1,3)

plot(freqs/1000, 20*log10(abs(FTz)));
axis([-Fs/2000 Fs/2000 -40 100])
grid
xlabel('Frequency (kHz)')
title('FT of Receiver Demodulator Output')
```


Display the Original Song and the Receiver Output Segments

They are hardly distinguishable!

```
figure(6)
plot(t(40000:190000)*1000,song(40000:190000))
hold on
plot(t(40000:190000)*1000,z(40000:190000),'r:')
grid
xlabel('Time (msec)');
ylabel('Waveform');
legend('Original','Received','Location','Best');
```


Display the Fourier Transform of the Transmitter Output (Question 2a)

```
figure(7)
plot(freqs/1000, 20*log10(abs(ftx_final)));
grid
xlabel('Frequency (kHz)');
title('Fourier Transform of Transmitter Output')
```


Display the time waveform of song signal (Question 2b)

```
figure(8)
plot(t, z)
grid
title('Demodulated song signal (z)')
xlabel('Time (seconds)')
```


Display the time waveform of triangle signal (Question 2b)

```
figure(9)
% Whole triangle signal
subplot(2,1,1);
plot(t, ztr)
grid
title('Demodulated whole triangle signal')
xlabel('Time (seconds)')
% A part of the triangle signal
subplot(2,1,2);
plot(t(1:3000)*1000, ztr(1:3000));
grid
title('Demodulated part of the triangle signal')
xlabel('Time (miliseconds)')
```


Play the demodulated sound

Downsampling

```
zlowrate=downsample(z,10);
% Listen to
sound(zlowrate,Fs/10);
% Although I get the signal z and it is equal to the original song
signal,
% due to interference, I hear a beep sound
```

Published with MATLAB® R2018b