HW 4 - MATH411

Danesh Sivakumar

February 17, 2022

Problem 1 (Exercise 1, Page 304)

Determine which of the following subsets of $\mathbb R$ is sequentially compact. Justify your conclusions.

- a) $\{x \text{ in } [0,1] \mid x \text{ is rational}\}$
- b) $\{x \text{ in } \mathbb{R} \mid x^2 > x\}$
- c) $\{x \text{ in } \mathbb{R} \mid e^x x^2 < 2\}$

Proof.

- a) This set is not sequentially compact; take $\{u_k\} = \frac{1}{3}(1+\frac{1}{k})^k$. Each u_k is rational and in [0,1], but $\{u_k\} \to \frac{e}{3} \in [0,1]$, which is not rational, so it is not closed. Also, because \mathbb{Q} is dense in \mathbb{R} , every point in \mathbb{R} is a limit point of \mathbb{Q} , so that there exist sequences of rationals converging to an irrational; in particular, there exists sequences of rationals in [0,1] converging to an irrational in [0,1].
- b) This set is not sequentially compact; take $\{u_k\} = 1 + \frac{1}{k}$. Each u_k is in the set, but $\{u_k\} \to 1$, which is not in the set, so it is not closed.
- c) This set is not sequentially compact, because it is not bounded. To prove so, assume that it is bounded; that is, there exists M>0 such that $|e^x-x^2|\leq M$. Take $x=-\sqrt{M}$; then it follows that $|e^{-\sqrt{M}}-((-\sqrt{M})^2)|=|e^{-\sqrt{M}}-\sqrt{M}^2|>|0-\sqrt{M}^2|=M$, a contradiction.

Problem 2 (Exercise 6, Page 304)

Let A be a subset of \mathbb{R}^n and let the function $f: A \to \mathbb{R}$ be continuous.

- a) If A is bounded, is f(A) bounded?
- b) If A is closed, is f(A) closed?

Proof.

- a) No; consider $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x}$ on the set A = (0,1). Clearly, A is bounded with M = 1 and f is continuous by the continuity of quotients of continuous functions. However, f(A) is not bounded; to prove this, suppose that there exists M > 0 such that $f(x) \leq M$ for all $x \in (0,1)$. Consider $x = \frac{1}{M+1}$; then f(x) = M+1 > M, a contradiction.
- b) No; consider $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{1+x^2}$ on the set $A = [0, \infty)$. Note that A is closed, but f(A) is (0, 1], which is not closed in \mathbb{R} (consider the sequence $\{u_k\} = \frac{1}{k}$, which converges to $0 \notin A$.)

Problem 3 (Exercise 7, Page 304)

Suppose that the function $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and that $f(u) \geq ||u||$ for every point u in \mathbb{R}^n . Prove that $f^{-1}([0,1])$ is sequentially compact.

Proof. Note that because [0,1] is closed in \mathbb{R} and $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, it follows that $f^{-1}([0,1])$ is closed in \mathbb{R}^n . Let $x \in [0,1]$ be arbitrary. It follows that $0 \le f(x) \le 1$. Because $f(x) \ge ||x||$, we have that $||x|| \le 1$, meaning that $f^{-1}([0,1])$ is bounded in \mathbb{R}^n . Because $f^{-1}([0,1])$ is closed and bounded in \mathbb{R}^n , it is sequentially compact.

Problem 4 (Exercise 8, Page 304)

Let A and B be sequentially compact subsets of \mathbb{R} . Define $K = \{(x, y) \text{ in } \mathbb{R}^2 \mid x \text{ in } A, y \text{ in } B\}$. Prove that K is sequentially compact.

Proof. Take any arbitrary $u_k \in K$. We have that each $u_k = (x_k, y_k)$, with each $\{x_k\} \in A$ and each $\{y_k\} \in B$. Because A is sequentially compact, there exists a subsequence $\{x_{k_j}\} \to x \in A$. Now consider $\{y_{k_j}\}$; because B is sequentially compact, there exists a subsequence $\{y_{k_{j_l}}\} \to y \in B$. Because $\{x_{k_{j_l}}\} \to x$ as well (any subsequence of a convergent sequence converges to the same value), we use the component-wise convergence criterion to deduce that $\{u_{k_{j_l}}\} \to (x,y) = u \in K$, so that K is sequentially compact.

Problem 5

Theorem 0.1. Let $A \subseteq \mathbb{R}^n$ and consider $F: A \to \mathbb{R}^m$ a continuous mapping. If A is compact then F is uniformly continuous on A.

Recall that by definition, F is uniformly continuous on A provided that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $u, v \in A$, if $||u - v|| < \delta$ then $||F(u) - F(v)|| < \varepsilon$.

The purpose of this problem is to prove the preceding theorem in the following steps.

1. Assume by contradiction that F is not uniformly continuous on A. Show that there exist $\varepsilon_0 > 0$ and sequences $\{u_k\}$ and $\{v_k\}$ in A such that

$$||u_k - v_k|| < \frac{1}{k}$$
 and

$$||F(u_k) - F(v_k)|| > \varepsilon_0$$

- 2. Use the compactness of A to obtain a subsequence $\{u_{k_l}\}$ converging to some $u \in A$. Then show that $\{v_{k_l}\}$ also converges to u.
- 3. Use the continuity of F to derive a contradiction to (0.2).

Proof.

- 1. Assume that F is not uniformly continuous. Then there exists $\varepsilon > 0$ such that for all $\delta > 0$, there exist $x, y \in A$ such that $|x y| < \delta$ but $|F(x) F(y)| \ge \varepsilon$. In particular, set $\delta = 1/k$ for each natural number k, and let $\{u_k\}$ be the sequence of x values that satisfy the first inequality and $\{v_k\}$ be the sequence of y values that satisfy the first inequality. Letting $\varepsilon_0 = \varepsilon/2$ gives us the second strict inequality.
- 2. Because A is compact, by definition $\{u_k\}$ has a convergent subsequence $\{u_{k_l}\}$ converging to some $u \in A$, so that for all $\varepsilon > 0$ we have that there exists $L \in \mathbb{N}$ such that for all $l \geq L$, it follows that $||u_{k_l} u|| < \frac{\varepsilon}{2}$. By the triangle inequality, we have that for $k_l \geq \frac{2}{\varepsilon}$, it follows that $||v_{k_1} u|| = ||v_{k_1} u_{k_l} + u_{k_l} u|| \leq ||v_{k_1} u_{k_l}|| + ||u_{k_l} u|| < \frac{1}{k_l} + \frac{\varepsilon}{2} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, so that $\{v_{k_1}\}$ also converges to u.
- 3. Because F is continuous, it follows that if $\{u_{k_l}\}$ converges to u, then $\{F(u_{k_l})\}$ converges to F(u). Since $\{v_{k_l}\}$ also converges to u, it follows that $\{F(v_{k_l})\}$ also converges to F(u). Note that for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have that $||F(u_{k_1}) F(v_{k_l})|| = ||F(u_{k_l}) F(u) + F(u) F(v_{k_l})|| \le ||F(u_{k_l}) F(u)|| + ||F(u) F(v_{k_l})|| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, which contradicts the fact that for every index k, $||F(u_k) F(v_k)|| > \varepsilon_0$.

Problem 6 (Problem 4, Page 309)

Let A and B be convex subsets of \mathbb{R}^n . Prove that the intersection $A \cap B$ is also convex. Is it true that the intersection of two pathwise-connected subsets of \mathbb{R}^n is also pathwise-connected?

Proof. Suppose that there exist $u, v \in A \cap B$; we want to show that there exists a line segment $\{tu+(1-t)v\mid 0\leq t\leq 1\}\subseteq A\cap B$. Since $u,v\in A\cap B$, in particular $u,v\in A$ and $u,v\in B$. By assumption, A is convex, so that there exists a line segment joining u and v $\{tu+(1-t)v\mid 0\leq t\leq 1\}\subseteq A$. By assumption, B is convex too, so that there exists a line segment joining u and v $\{tu+(1-t)v\mid 0\leq t\leq 1\}\subseteq B$. Since $\{tu+(1-t)v\mid 0\leq t\leq 1\}\subseteq A$ and $\{tu+(1-t)v\mid 0\leq t\leq 1\}\subseteq B$, it follows that $\{tu+(1-t)v\mid 0\leq t\leq 1\}\subseteq A\cap B$, so that for any arbitrary points $u,v\in A\cap B$ there exists a line segment joining them within $A\cap B$; thus $A\cap B$ is convex.

No, the intersection of two pathwise-connected subsets of \mathbb{R}^n is not necessarily also pathwise-connected. Take $A = \{(x,y) \in \mathbb{R}^2 \mid x = 0\}$ and $B = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Then each of A and B are pathwise-connected, because A is a line and B is the unit circle $(B = \{(\cos(t), \sin(t)) \mid 0 \le t \le 2\pi\})$, but the intersection $A \cap B$ consists of only the two points (-1,0) and (1,0), which is not pathwise-connected in \mathbb{R}^2 .

Problem 7 (Problem 6, Page 309)

Show that the set $S = \{(x, y) \text{ in } \mathbb{R}^2 \mid \text{ either } x \text{ or } y \text{ is rational} \}$ is pathwise-connected.

Proof. It suffices to show that any point $(x,y) \in S$ can be brought to the origin with a path contained in the set, as any path from another arbitrary point (x_1,y_1) to the origin can be reversed to get a path from the (0,0) to (x_1,y_1) . This means that we can get a path from (x,y) to (0,0) to (x_1,y_1) . The only restriction is that x and y are not both irrational. To this end, we break this into cases: consider the case where initially x is rational. Then there exists a straight line-segment path from (x,y) to (x,0) because there is no restriction on y. Because 0 is rational, there is now no restriction on x, so that there exists a straight line-segment path from (x,0) to (0,0). Now consider the case where initially y is rational. Then there exists a straight line-segment path from (x,y) to (0,y). Because 0 is rational, there is now no restriction on y, so that there exists a straight line-segment path from (0,y) to (0,0).