Stacking Method for Classification

Tatsuhiro Eguchi, Affiliation 2IE23028R

PR

Purpose of Exercise

- Dataset
 - ■Titanic Dataset
- Reason
 - ■Simple Table Data
 - Famous for Kaggle competition
 - ■25th Anniversary Film Release Celebration
- ■Purpose
 - Achieve high accuracy
 - Compare Multiple Classification Methods

PR

Approach

- **■**Classification methods
 - ■K-nearest neighbors(KNN)
 - ■Extra Tree(EXT)
 - ■Random forest(RFC)
 - Gradient Boosting (GBC)
 - Extreme Gradient Boosting(XGB)
 - **■**Ensemble Learning model(Original)
 - Stacking method
 - Combine the above classification methods

Stacking model

Step 1: Train multiple base models

Step 2: Generate a new data using the predictions

Step 3: Train a meta-model(XGB) on this new data

Results and Conclusion

model	accuracy
KNN	0.742
RFC	0.854
EXT	0.854
GBC	0.837
XGB	0.831
Original	0.860

- Random forest(RFC) and Extra Trees(EXT) achieved the highest accuracy among base models
- The accuracy of Original model is the highest score of all

Results and Conclusion

- We implemented a classification model that combines multiple models using the stacking method and verified its accuracy.
- Ensemble multiple models improved classification accuracy more than a single model.

- Next...
 - Tuning the optimal hyperparameters
 - implement stacking models with more than two layers