Lecture 5: Experiment 4 EE380 (Control Systems)

Ramprasad Potluri

Associate Professor potluri@iitk.ac.in

Manavaalan Gunasekaran

PhD student manvaal@iitk.ac.in

Department of Electrical Engineering Indian Institute of Technology Kanpur

Back

Forward Close

4

4

6

8

9

11

12

Contents

	OII		ILL
1	Anno	oun	ceme

ents

Procedure of Exp.4

Outline of the experiment Tasks common to all 6 experiments Homework (HW) vs. Lab work (LW)

Hardware connections Discretization

Correct current to use for feedback

П

Simulate; LW: C code, Implement, Analyze

Review of Exp.2

13 14

Back

Forward Close

Announcements

- Before doing an experiment, download latest versions of supporting documents from Brihaspati.
- Latest version of program listings are on Brihaspati.
- Turn off power supply to board when not programming dsPIC or taking readings.
- After completion of experiment
 - Shut down PC, FG, PS.
 - Remove PICkit 2 from dsPIC board.

Back

Procedure of Exp.4

Part I

5/20

44

1

Back Forward

Outline of the experiment

Feedback of ω assumed absent. Want ω to track ω_{ref} . Steps:

- Obtain estimate $\widehat{\omega}$ of ω using u and i.
- Use feedback of $\widehat{\omega}$ to track ω_{ref} with controller from Exp.1.

- Repeat control using feedback of ω with controller from Exp.1.
- Is $\widehat{\omega}$ an adequate replacement for ω ?

Back

Tasks common to all 6 experiments

Simulation

- Perform PC-based simulation of CL system using GNU Octave.
- Perform PC-based simulation of digital control of a continuous-time system using GNU Octave.

Realization on hardware

- Utilize the various components of an integrated development environment (IDE): editor, compiler, linker, debugger, and programmer to program a μ C.
- Program controller using C language into μ C.
- Monitoring: read data into PC from μ C using UART modules.

Analysis

• Compare actual performance with predicted performance.

Back

Forward

Back

Forward Close

Homework (HW) vs. Lab work (LW)

Back Forward Close

Hardware connections

The setup

Pin 1 of L298 is connected to Pin 1 of CN4-I/P of μ C board.

Where R_s is in the H-bridge

Armature resistance includes all the resistance in the path of the armature: R_H (sum of resistance of S1 & S2 or S3 & S4, whichever pair is conducting), R_m (resistance of motor's armature), and R_s .

Back Forward

Correct current to use for feedback

- Instead of i_{sens} , more accurate to use $i_m \approx \frac{1}{1.8}i_{\text{sens}} \frac{1}{30}$, which fits the straight line in the right hand figure.
- If time permits, replace i_{sens} with i_m and redo experiment.

Forward

Discretization

44

>>

Back Forward

Simulate; LW: C code, Implement, Analyze

- Simulation: easysim.m
- Discretized controller
 - \longrightarrow C code:

- Implement: As in demo slides
- Analyze: Compare results

```
  \begin{aligned}
    x_1(k+1) &= a_{11}x_1(k) + a_{12}x_2(k) + b_1u(k) \\
    x_2(k+1) &= a_{21}x_1(k) + a_{22}x_2(k) + b_2u(k) \\
    y(k) &= c_1x_1(k) + c_2x_2(k) + du(k)
  \end{aligned}
```

In main-prog.c before main() insert float x1[2],x2[2];
In main() insert x1[0] = x2[0] = 0;

```
x1[1] = a11 * x1[0] + a12 * x2[0] + b1 * u;

x2[1] = a21 * x1[0] + a22 * x2[0] + b2 * u;

y = c1 * x1[0] + c2 * x2[0] + d * u;

x1[0] = x1[1];

x2[0] = x2[1];
```


Forward

Part II

Review of Exp.2

Back Forward

Least squares sys-id theory

Bilinear transform and Z-transform

- Both *s*-domain & *z*-domain are fictitious domains.
- They simplify working with differential equations & difference equations respectively.
- Bilinear transform is not the only way to go $G(s) \leftrightarrow G(z)$.
- T_s constrained by Nqyquist sampling rate.

Back

Forward

$$G(s) \longleftrightarrow G(z)$$

ullet Consider definitions of ${\mathcal L}$ and ${\mathcal Z}$

$$Y(s) = \mathcal{L} \{y(t)\} \triangleq \int_{t=0}^{\infty} y(t)e^{-st}dt$$
 $Y(z) = \mathcal{Z} \{y(k)\} \triangleq \sum_{k=0}^{\infty} y(k)z^{-k}$

- Comparison suggests $z = e^{sT_s}$.
- To convert G(s) to G(z), can substitute $s = \frac{\ln z}{T_s}$.
- Easier to work with an approximation

$$z = e^{sT_s} = e^{\frac{sT_s}{2}} e^{\frac{sT_s}{2}} = \frac{e^{\frac{sT_s}{2}}}{e^{-\frac{sT_s}{2}}} = \frac{1 + \frac{\left(\frac{sT_s}{2}\right)}{1!} + \frac{\left(\frac{sT_s}{2}\right)^2}{2!} + \cdots}{1 + \frac{\left(-\frac{sT_s}{2}\right)}{1!} + \frac{\left(-\frac{sT_s}{2}\right)^2}{2!} + \cdots} \approx \frac{1 + \frac{sT_s}{2}}{1 - \frac{sT_s}{2}}$$

44

>>

▶ Back

orward

How Z-transform used in our sys-id

- u(k) denotes sample of u(t) at sampling instant $t = kT_s$.
- Let $u(k) \to \omega(k)$ TF be G(z).
- Use u(k), $\omega(k)$ pairs to build G(z).
- Use bilinear transform to go from G(z) to G(s).

Important property of Z-transform used:

$$z^{-l}X(z) \leftrightarrow x(k-l)$$
 given $X(z) \leftrightarrow x(k)$.

Forward

What is least squares sys-id? (1/2)

• Let
$$G(z) = \frac{b_1 z^2 + b_2 z + b_3}{z^3 + a_1 z^2 + a_2 z + a_3} = \frac{Y(z)}{U(z)}$$
.

Cross multiply:

 $b_1 z^2 U(z) + b_2 z U(z) + b_3 U(z) = z^3 Y(z) + a_1 z^2 Y(z) + a_2 z Y(z) + a_3 Y(z)$.

• Multiply throughout by z^{-3} :

$$Y(z) + a_1 z^{-1} Y(z) + a_2 z^{-2} Y(z) + a_3 z^{-3} Y(z).$$

• Take \mathcal{Z}^{-1} to obtain difference equation

$$b_1u(k-1) + b_2u(k-2) + b_3u(k-3) =$$

 $y(k) + a_1y(k-1) + a_2y(k-2) + a_3y(k-3)$.

 $b_1 z^{-1} U(z) + b_2 z^{-2} U(z) + b_3 z^{-3} U(z) =$

Back **Forward**

What is least squares sys-id? (2/2)

Consider
$$b_1 u(k-1) + b_2 u(k-2) + b_3 u(k-3) =$$

 $y(k) + a_1 y(k-1) + a_2 y(k-2) + a_3 y(k-3).$ (1)

- Let $\sigma = |b_1 \quad b_2 \quad b_3 \quad -a_1 \quad -a_2 \quad -a_3|^{\mathsf{T}}$.
- Suppose we have data of u(k) and y(k) for k = 0, 1, ..., N.
- Problem: Find σ such that (1) holds for this data. I.E., find parameters of a TF that <u>fits</u> to input-output data.
- Let error in the fit be $\varepsilon(k,\sigma) = b_1 u(k-1) + b_2 u(k-2) + b_3 u(k-3) - y(k)$ $-a_1y(k-1)-a_2y(k-2)-a_3y(k-3).$
- Modified problem: Find σ to minimize $\mathcal{J}(\sigma) \triangleq \sum_{k=0}^{N} \varepsilon^{2}(k, \sigma)$.
- If $\mathcal{J}(\sigma = \sigma_0) = 0$, then find best estimate $\hat{\sigma}$ of σ_0 .

What the experiment taught

- Sys-id techinques from Exp.1 & Exp.2 give different results.
- Likely cause is not only the dead zone nonlinearity in the plant, but also the input signals the sys-id technique uses.
 - E.g., the step input (u=7) in Exp.1 does not keep plant in dead zone, while the low-frequency (5 10 Hz) triangular input makes the plant go into dead zone twich every cycle.
- Will using rectangular waveform instead of triangular waveform (TW) give a different model with least squares sys-id (LSS)?
- If plant behaves as 1st order even with TW, LSS will say that plant has one LHP pole that is 10 20 times deeper than the other.

Back

Forward