

QINGLU青鹿・研究院

DINGLU INSTITUTE

ExoSutlos

分享人:杨毅 时间:2020/6/17

计算机的基本语言 The computer language

102 C语言及其使用 C language and application

C#语言及其使用 C# language and application

python语言及其应用
Python language and application

学习计算机编程语言的时间路线

The timeline of learning programming

人工智能,大数据、机器学习

计算机语言

The language of computer

高级语言 High-level language

人类易于阅读的语言, 如C语言、C#、Java、 Python等

低级语言 Machine code

计算机能够执行的最底 层语言,包括汇编语言、 机器语言等

2020年5月编程语言Top5

排名	编程语言	流行度
1	С	17.19%
2	Java	16.10%
3	Python	8.36%
4	C++	5.95%
5	C#	4.73%

数据来源:www.tiobe.com

经典计算机与量子计算机

Classical and quantum

经典状态的二进制 Classical State

经典计算机使用经典物理状态(高低电势)来操作信息

量子叠加状态 Quantum State

量子计算机使用量子叠加的物理状态(如自旋的状态)来操作信息

Quantum spin state 量子自旋叠加态

Superposition of two spin states

$$\left| \circlearrowleft \right\rangle = a \left| \circlearrowleft \right\rangle + b \left| \circlearrowleft \right\rangle$$

可以同时操作2个信息

保密性强

The First Time for programming 编程解决实际问题

使用C语言与BashShell脚本语言构建

学习面向对象的编程

Study OOP language

C Sharp Language

由微软公司开发,基于.net框架,面向对象的 高级编程语言

面向对象的编程

Object Oriented Programming

利用C#爬虫

Using C# language for web crawling

HtmlAgilityPack

利用Xpath爬取

GeckoFx

使用浏览器加载JS渲染后的 网页爬取数据

爬取国家资源平台资源信息

青鹿资源平台插件

结合GeckoFx与Ribbon技术将青鹿资 源平台嵌入到PPT中

QINGLU青鹿

在PowerPoint中直接调用

基于遗传算法的一键组卷DEMO

Generating the Test based on GA algorism

数学问题:在一定的约束条件下,搜索最优解问题

2 步组卷

python关键词搜索热度 (Google趋势)

Python语言在中国非常流行

QINGLU青鹿

为什么Python语言这几年这 么火?

具有数量巨大的第三方库开源生态圈,约24万*

实现人工智能框架的最 主流语言,如TensorFlow 等

利用FuzzyWuzzy库模糊匹配

Using Python library FuzzyWuzzy

分词

Generating the words

相似度计算

Similarity

```
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
file1=open("章节匹配.csv", 'r', encoding='utf-8')
file2=open("青鹿章节.csv",'r',encoding='utf-8')
ls1_file1.readlines()
ls2=file2.readlines()
for line1 in ls1:
   if "无匹配章节" in line1 and "小学" in line1 and "数学"
       ls11 = line1.strip().replace(",", " ").split()_#
       str1=ls11[ls11.index("小学"、1)-1].strip()_#提取学库
       str1_=str(ls11[:ls11.index("小学"_1)]).strip('[]')
       ls22A=[]
       ls22B=[]
       ls22C=[]
       for line2 in ls2: #遍历青鹿章节信息
           ls22 = line2.strip().strip(",").split(',')
           if ls22[0] == ls11[0] and ls22[1] == ls11[1]
               if len(ls22) > 5:
                                        # 青鹿章节信息组成
                   ls22A.append(ls22[-1])
                   ls22B.append(ls22[-2])
                   ls22C.append(str(ls22).strip())
```


利用Pandas进行青鹿资源题库数据分析

Using Python library Pandas

题目难度系数分布

pandas $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$

题目数量分布

什么是机器学习

What is machine learning?

"Machine Learning is the study of computer algorithms that improve automatically through experience.

—Wikipedia

机器学习方法与传统程序

Machine learning and the normal programming

人工智能、机器学习、深度学习、大数据

Artificial Intelligence, Machine learning, Deep Learning, Bigdata

机器学习中的深度学习

Deep Learning

"利用神经网络模型进行学习过程的机器学习为深度学习"

Full connected neural network 全连接神经网络

预测小强去不去看电影 Predict the results

如花	小倩	小明	小强
0	0	1	0
1	1	1	1
1	0	1	1
0	1	1	0
1	1	0	?

利用Deep Learning预测小强是否去看电影

Using Deep Learning to predict the results

from numpy import random, dot, exp, array

#反向转播:用计算结果和实际结果的误差,反向推算权重的调整量def bp(I1, I2, y):

error = y - l2 slope = l2 * (1-l2) l1_delta = error * slope

10_slope = |1 * (1-|1)

IO_error = I1_delta.dot(w1.T)
IO_delta = IO_slope * IO_error

return l0_delta, l1_delta

#准备数据: X是输入参数, y是正确结果

X = array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])y = array([[0,1,1,0]]).T

#设置随机的权重

random.seed(1)

w0 = random.random((3,10)) * 2 - 1w1 = random.random((10,1)) * 2 - 1

for it in range(10000): #迭代循环

I0 = X I1, I2 = fp(I0) #正向传播计算

IO_delta, I1_delta = bp(I1, I2, y) #反向传播计算

w1 = w1 + dot(l1.T, l1_delta) #更新权重 w0 = w0 + dot(l0.T, l0_delta)

Print(fp([[1,0,1]])[1]) #输出结果

结果: 0,9914

卷积神经网络

Convolution Neural Network

卷积核

Convolution Kernel

深度学习 资源类产品的应用

Deeping Learning in K12education

利用各种卷积神经网络,如TextCNN等
Using various CNN

