Seatwork 11.1 Exploratory Data Analysis for Machine Learning

```
Name: Xander Sam E. Galapia
Section: CPE22S3
!pip install hvplot
Requirement already satisfied: hvplot in /usr/local/lib/python3.10/dist-packages (0.9.2)
     Requirement already satisfied: bokeh>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (3.3.4)
     Requirement already satisfied: colorcet>=2 in /usr/local/lib/python3.10/dist-packages (from hvplot) (3.1.0)
     Requirement already satisfied: holoviews>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (1.17.1)
     Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from hvplot) (2.0.3)
     Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.10/dist-packages (from hvplot) (1.25.2)
     Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from hvplot) (24.0)
     Requirement already satisfied: panel>=0.11.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (1.3.8)
     Requirement already satisfied: param<3.0,>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (2.1.0)
     Requirement already satisfied: Jinja2>=2.9 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (3.1.3)
     Requirement already satisfied: contourpy>=1 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (1.2.1)
     Requirement already satisfied: pillow>=7.1.0 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (9.4.0)
     Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (6.0.1)
     Requirement already satisfied: tornado>=5.1 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (6.3.3)
     Requirement already satisfied: xyzservices>=2021.09.1 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (2024.4.0)
     Requirement already satisfied: pyviz-comms>=0.7.4 in /usr/local/lib/python3.10/dist-packages (from holoviews>=1.11.0->hvplot) (3.0.2)
     Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->hvplot) (2.8.2)
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->hyplot) (2023.4)
     Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->hvplot) (2024.1)
     Requirement already satisfied: markdown in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (3.6)
     Requirement already satisfied: markdown-it-py in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (3.0.0)
     Requirement already satisfied: linkify-it-py in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (2.0.3)
     Requirement already satisfied: mdit-py-plugins in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (0.4.0)
     Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (2.31.0)
     Requirement already satisfied: tqdm>=4.48.0 in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (4.66.2)
     Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (6.1.0)
     Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (4.11.0)
     Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=2.9->bokeh>=1.0.0->hvplot) (2.1.5)
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->hvplot) (1.16.0)
     Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->panel>=0.11.0->hvplot) (0.5.1)
     Requirement already satisfied: uc-micro-py in /usr/local/lib/python3.10/dist-packages (from linkify-it-py->panel>=0.11.0->hvplot) (1.0.3)
     Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py->panel>=0.11.0->hvplot) (0.1.2)
     Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=0.11.0->hvplot) (3.3.2)
     Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=0.11.0->hvplot) (3.7)
     Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=0.11.0->hvplot) (2.0.7)
     Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=0.11.0->hvplot) (2024.2.2)
pip install ucimlrepo
     Requirement already satisfied: ucimlrepo in /usr/local/lib/python3.10/dist-packages (0.0.6)
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LinearRegression
```

```
from ucimlrepo import fetch_ucirepo

# fetch dataset
automobile = fetch_ucirepo(id=10)

# data (as pandas dataframes)
X = automobile.data.features
y = automobile.data.targets

# metadat
print(automobile.metadata)

# variable information
print(automobile.variables)

. body-style: hardtop, wagon, sedan, hatchback, convertible.\r\n 8. drive-wheels: 4wd, fwd, rwd.\r\n 9. engine-location: front, rear.\r\n 10. wheel-base: continuous from 86.6 120.9.\r\n 11. length:
```

```
wine = fetch_ucirepo(id=109)
# data (as pandas dataframes)
Xx = wine.data.features
yy = wine.data.targets
# metadata
print(wine.metadata)
# variable information
print(wine.variables)
    {'uci_id': 109, 'name': 'Wine', 'repository_url': 'https://archive.ics.uci.edu/dataset/109/wine', 'data_url': 'https://archive.ics.uci.edu/dataset/109/wine', 'area': 'Physics
                                  role
                                              type demographic \
                           name
                           class Target Categorical
                                                         None
                         Alcohol Feature Continuous
                                                         None
                       Malicacid Feature Continuous
                                                         None
                           Ash Feature Continuous
                                                         None
                 Alcalinity_of_ash Feature Continuous
                                                         None
                       Magnesium Feature
                                           Integer
                                                         None
                    Total_phenols Feature Continuous
                                                         None
                      Flavanoids Feature Continuous
                                                         None
              Nonflavanoid_phenols Feature Continuous
                                                         None
                  Proanthocyanins Feature Continuous
                                                         None
    10
                  Color_intensity Feature Continuous
                                                         None
    11
                            Hue Feature Continuous
                                                         None
    12 0D280_0D315_of_diluted_wines Feature Continuous
                                                         None
    13
                         Proline Feature
                                            Integer
                                                         None
      description units missing_values
            None None
            None None
            None None
                                no
            None None
                                no
```

Double-click (or enter) to edit

10

11

12

13

AutoMobile = pd.concat([X,y], axis = 1)
AutoMobile

None None

None None

None None

None None

None None

None None

None

None

None

None

None

None

no

no

no

no

no

no

no

no

from ucimlrepo import fetch_ucirepo

fetch dataset

	price	highway- mpg	city- mpg	peak- rpm	horsepower	compression- ratio	stroke	bore	fuel- system	engine- size	•••	wheel- base	engine- location	drive- wheels	body- style	num- of- doors	aspiration	fuel- type	make
0	13495.0	27	21	5000.0	111.0	9.0	2.68	3.47	mpfi	130		88.6	front	rwd	convertible	2.0	std	gas	alfa- romero
1	16500.0	27	21	5000.0	111.0	9.0	2.68	3.47	mpfi	130		88.6	front	rwd	convertible	2.0	std	gas	alfa- romero
2	16500.0	26	19	5000.0	154.0	9.0	3.47	2.68	mpfi	152		94.5	front	rwd	hatchback	2.0	std	gas	alfa- romero
3	13950.0	30	24	5500.0	102.0	10.0	3.40	3.19	mpfi	109		99.8	front	fwd	sedan	4.0	std	gas	audi
4	17450.0	22	18	5500.0	115.0	8.0	3.40	3.19	mpfi	136		99.4	front	4wd	sedan	4.0	std	gas	audi
* * *	•••						•••												
200	16845.0	28	23	5400.0	114.0	9.5	3.15	3.78	mpfi	141		109.1	front	rwd	sedan	4.0	std	gas	volvo
201	19045.0	25	19	5300.0	160.0	8.7	3.15	3.78	mpfi	141		109.1	front	rwd	sedan	4.0	turbo	gas	volvo
202	21485.0	23	18	5500.0	134.0	8.8	2.87	3.58	mpfi	173		109.1	front	rwd	sedan	4.0	std	gas	volvo
4																			+

```
Wine = pd.concat([Xx, yy], axis = 1)
Wine
```

	Alcohol	Malicacid	Ash	Alcalinity_of_ash	Magnesium	Total_phenols	Flavanoids	Nonflavanoid_phenols	Proanthocyanins	Color_intensity	Hue	0D280_0D315_of_diluted_wines	Proline	class
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065	1
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050	1
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185	1
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480	1
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735	1
***			•••										***	
173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740	3
174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750	3
175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835	3
176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840	3
177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560	3
178 r	ows x 14 cc	olumns												

Next steps: View recommended plots

→ Finding where and how many missing values are there in all columns of AutoMobile

AutoMobile.isna().sum()

price highway-mpg city-mpg peak-rpm horsepower compression-ratio stroke bore fuel-system engine-size num-of-cylinders engine-type curb-weight height width length wheel-base engine-location drive-wheels body-style num-of-doors aspiration fuel-type make normalized-losses 41 symboling 0 dtype: int64

AutoMobile.describe()

	price	highway-mpg	city-mpg	peak-rpm	horsepower	compression-ratio	stroke	bore	engine-size	num-of-cylinders	curb-weight	height	width	length	wheel-base	num-of-doors	normalized-losses	symboling	Ħ
count	201.000000	205.000000	205.000000	203.000000	203.000000	205.000000	201.000000	201.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	203.000000	164.000000	205.000000	11.
mean	13207.129353	30.751220	25.219512	5125.369458	104.256158	10.142537	3.255423	3.329751	126.907317	4.380488	2555.565854	53.724878	65.907805	174.049268	98.756585	3.123153	122.000000	0.834146	
std	7947.066342	6.886443	6.542142	479.334560	39.714369	3.972040	0.316717	0.273539	41.642693	1.080854	520.680204	2.443522	2.145204	12.337289	6.021776	0.994841	35.442168	1.245307	
min	5118.000000	16.000000	13.000000	4150.000000	48.000000	7.000000	2.070000	2.540000	61.000000	2.000000	1488.000000	47.800000	60.300000	141.100000	86.600000	2.000000	65.000000	-2.000000	
25%	7775.000000	25.000000	19.000000	4800.000000	70.000000	8.600000	3.110000	3.150000	97.000000	4.000000	2145.000000	52.000000	64.100000	166.300000	94.500000	2.000000	94.000000	0.000000	
50%	10295.000000	30.000000	24.000000	5200.000000	95.000000	9.000000	3.290000	3.310000	120.000000	4.000000	2414.000000	54.100000	65.500000	173.200000	97.000000	4.000000	115.000000	1.000000	
75%	16500.000000	34.000000	30.000000	5500.000000	116.000000	9.400000	3.410000	3.590000	141.000000	4.000000	2935.000000	55.500000	66.900000	183.100000	102.400000	4.000000	150.000000	2.000000	
max	45400.000000	54.000000	49.000000	6600.000000	288.000000	23.000000	4.170000	3.940000	326.000000	12.000000	4066.000000	59.800000	72.300000	208.100000	120.900000	4.000000	256.000000	3.000000	

As there is a missing values in some rows in the columns we will use the mean of their specific column and add its mean to the values with missing value

```
Missing_val = ['price', 'peak-rpm', 'horsepower', 'stroke', 'bore', 'num-of-doors', 'normalized-losses']
for col in Missing_val:
   AutoMobile[col].fillna(AutoMobile[col].mean(), inplace=True)
```

Recheking if there is null/missing values

```
AutoMobile.isna().sum()
     price
     highway-mpg
     city-mpg
     peak-rpm
     horsepower
     compression-ratio
     stroke
     bore
     fuel-system
     engine-size
     num-of-cylinders
     engine-type
     curb-weight
     height
     width
     length
     wheel-base
     engine-location
     drive-wheels
     body-style
     num-of-doors
     aspiration
     fuel-type
     make
     normalized-losses
```

Checking the datatypes

AutoMobile.dtypes

symboling
dtype: int64

price	float64
highway-mpg	int64
city-mpg	int64
peak-rpm	float64
horsepower	float64
compression-ratio	float64
stroke	float64
bore	float64
fuel-system	object
engine-size	int64

```
num-of-cylinders
                     int64
engine-type
                    object
curb-weight
                    int64
                   float64
height
width
                   float64
length
                   float64
                   float64
wheel-base
engine-location
                   object
drive-wheels
                    object
body-style
                    object
num-of-doors
                   float64
aspiration
                    object
fuel-type
                    object
make
                    object
normalized-losses
                  float64
symboling
                     int64
dtype: object
```

Removing the columns that have object datatype

price -	1	-0.69	-0.67	-0.1	0.76	0.071	0.082	0.53	0.86	0.69	0.82	0.13	0.73	0.68	0.58	0.046	0.13	-0.082
	-																	
highway-mpg -		1	0.97	-0.054	-0.77	0.27	-0.044	-0.59	-0.68	-0.47	-0.8	-0.11	-0.68	-0.7	-0.54	-0.044	-0.18	0.035
city-mpg -	-0.67	0.97	1	-0.11	-0.8	0.32	-0.042	-0.58	-0.65	-0.45	-0.76	-0.049	-0.64	-0.67	-0.47	-0.021	-0.22	-0.036
peak-rpm –	-0.1	-0.054	-0.11	1	0.13	-0.44	-0.067	-0.25	-0.24	-0.12	-0.27	-0.32	-0.22	-0.29	-0.36	-0.24	0.24	0.27
horsepower –	0.76	-0.77	-0.8	0.13	1	-0.21	0.088	0.58	0.81	0.69	0.75	-0.11	0.64	0.55	0.35	-0.12	0.2	0.071
compression-ratio -	0.071	0.27	0.32	-0.44	-0.21	1	0.19	0.0052	0.029	-0.02	0.15	0.26	0.18	0.16	0.25	0.16	-0.11	-0.18
stroke -	0.082	-0.044	-0.042	-0.067	0.088	0.19	1	-0.056	0.2	0.0082	0.17	-0.055	0.18	0.13	0.16	-0.011	0.055	-0.0087
bore -	0.53	-0.59	-0.58	-0.25	0.58	0.0052	-0.056	1	0.58	0.23	0.65	0.17	0.56	0.61	0.49	0.11	-0.029	-0.13
engine-size -	0.86	-0.68	-0.65	-0.24	0.81	0.029	0.2	0.58	1	0.85	0.85	0.067	0.74	0.68	0.57	0.017	0.11	-0.11
num-of-cylinders -	0.69	-0.47	-0.45	-0.12	0.69	-0.02	0.0082	0.23	0.85	1	0.61	-0.014	0.55	0.43	0.34	-0.017	0.11	-0.11
curb-weight -	0.82	-0.8	-0.76	-0.27	0.75	0.15	0.17	0.65	0.85	0.61	1	0.3	0.87	0.88	0.78	0.2	0.098	-0.23
height -	0.13	-0.11	-0.049	-0.32	-0.11	0.26	-0.055	0.17	0.067	-0.014	0.3	1	0.28	0.49	0.59	0.54	-0.37	-0.54
width -	0.73	-0.68	-0.64	-0.22	0.64	0.18	0.18	0.56	0.74	0.55	0.87	0.28	1	0.84	0.8	0.2	0.084	-0.23
length -	0.68	-0.7	-0.67	-0.29	0.55	0.16	0.13	0.61	0.68	0.43	0.88	0.49	0.84	1	0.87	0.39	0.019	-0.36
wheel-base -	0.58	-0.54	-0.47	-0.36	0.35	0.25	0.16	0.49	0.57	0.34	0.78	0.59	0.8	0.87	1	0.44	-0.057	-0.53
num-of-doors -	0.046	-0.044	-0.021	-0.24	-0.12	0.16	-0.011	0.11	0.017	-0.017	0.2	0.54	0.2	0.39	0.44	1	-0.36	-0.66
normalized-losses -	0.13	-0.18	-0.22	0.24	0.2	-0.11	0.055	-0.029	0.11	0.11	0.098	-0.37	0.084	0.019	-0.057	-0.36	1	0.47
symboling -	-0.082	0.035	-0.036	0.27	0.071	-0.18	-0.0087	-0.13	-0.11	-0.11	-0.23	-0.54	-0.23	-0.36	-0.53	-0.66	0.47	1
	price -	highway-mpg -	city-mpg -	peak-rpm -	horsepower -	compression-ratio -	stroke -	bore -	engine-size -	num-of-cylinders -	curb-weight –	height -	width -	length -	wheel-base -	num-of-doors -	normalized-losses -	symboling -

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

sns.pairplot(AutoMob)

We will use city-mpg and the highway-mpg since it have the highest correlation and we can see that if city-mpg increases the highway-mpg also increases since it both cover distance sns.regplot(x = AutoMob['city-mpg'], y = AutoMob['highway-mpg'])

w correlation where if horsepower

sns.regplot(x = AutoMob['city-mpg'], y = AutoMob['horsepower'])

45 du 40 du 45 du 45 du 45 du 40 du 45 du 40 du 45 du	
15	15 20 25 30 35 40 45 50
	city-mpg
toMob['hig	hway-mpg'].corr(AutoMob['city-mpg'])
0.97133	70423425061
We will	be using another sample
	<pre>x = AutoMob['price'], y = AutoMob['engine-size'])</pre>
<axes:< td=""><td>xlabel='price', ylabel='engine-size'></td></axes:<>	xlabel='price', ylabel='engine-size'>
300	, -
250	
ne-size	
engi	
150	
100	
50	5000 10000 15000 20000 25000 30000 35000 40000 45000 price
toMob['pri	ce'].corr(AutoMob['engine-size'])
0.86175	22436859719
Hoine	city pand and haragnayyar wa can acc that bath have la
	city-mpg and horsepower we can see that both have lo ses the city-mpg doesn't increase
increa	ses the city-hipy doesn't increase

<Axes: xlabel='city-mpg', ylabel='horsepower'>

Double-click (or enter) to edit

AutoMob['horsepower'].corr(AutoMob['city-mpg'])

-0.8031621465372332

Wine

Wine

	Alcohol	Malicacid	Ash	Alcalinity_of_ash	Magnesium	Total_phenols	Flavanoids	Nonflavanoid_phenols	Proanthocyanins	Color_intensity	Hue	0D280_0D315_of_dilut
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	_
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	
***	***											
173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.70	0.64	
174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	7.30	0.70	
175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.20	0.59	
176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.30	0.60	
177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.20	0.61	
178 ro	ws × 14 co	lumns										

Next steps: View recommended plots

Wine.describe()

	Alcohol	Malicacid	Ash	Alcalinity_of_ash	Magnesium	Total_phenols	Flavanoids	Nonflavanoid_phenols	Proanthocyanins	Color_intensity	Hue	0D280_0D315_of_diluted_wines	Proline	class	
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.058090	0.957449	2.611685	746.893258	1.938202	
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.318286	0.228572	0.709990	314.907474	0.775035	
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000	0.480000	1.270000	278.000000	1.000000	
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220000	0.782500	1.937500	500.500000	1.000000	
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690000	0.965000	2.780000	673.500000	2.000000	
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.200000	1.120000	3.170000	985.000000	3.000000	
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000	1.710000	4.000000	1680.000000	3.000000	

→ As there is no missing value we don't need to use the mean

```
Wine.isna().sum()

Alcohol
Malicacid
Ash
Alcalinity_of_ash
Magnesium
Total_phenols
Flavanoids
Nonflavanoid_phenols
Proanthocyanins
Color_intensity
Hue
0D280_0D315_of_diluted_wines
Proline
class
dtype: int64
```

→ As there is no object datatype we won't be needing to delete columns

```
Wine.dtypes
```

```
float64
Alcohol
Malicacid
                             float64
                             float64
Alcalinity_of_ash
                             float64
Magnesium
                               int64
                             float64
Total_phenols
Flavanoids
                             float64
Nonflavanoid_phenols
                             float64
                             float64
Proanthocyanins
Color_intensity
                             float64
                             float64
0D280_0D315_of_diluted_wines
                             float64
Proline
                               int64
                               int64
class
dtype: object
```

```
plt.figure(figsize =(20,10))
ax = sns.heatmap(Wine.corr(), annot = True, cmap = 'Reds')
```

Alcohol -	1	0.094	0.21	-0.31	0.27	0.29	0.24	-0.16	0.14	0.55	-0.072	0.072	0.64	-0.33
Malicacid -	0.094	1	0.16	0.29		-0.34	-0.41	0.29	-0.22	0.25	-0.56	-0.37	-0.19	0.44
Ash -	0.21	0.16	1	0.44	0.29	0.13	0.12	0.19	0.0097	0.26	-0.075		0.22	-0.05
Alcalinity_of_ash -	-0.31	0.29	0.44	1		-0.32	-0.35	0.36	-0.2	0.019	-0.27	-0.28	-0.44	0.52
Magnesium -	0.27	-0.055	0.29	-0.083	1	0.21	0.2	-0.26	0.24	0.2	0.055	0.066	0.39	-0.21
Total_phenols -	0.29	-0.34	0.13	-0.32	0.21	1	0.86	-0.45	0.61		0.43	0.7	0.5	-0.72
Flavanoids -	0.24	-0.41	0.12	-0.35	0.2	0.86	1	-0.54	0.65	-0.17	0.54	0.79	0.49	-0.85
Nonflavanoid_phenols -	-0.16	0.29	0.19	0.36	-0.26	-0.45	-0.54	1	-0.37	0.14	-0.26	-0.5	-0.31	0.49
Proanthocyanins -	0.14	-0.22	0.0097	-0.2	0.24	0.61	0.65	-0.37	1	-0.025	0.3	0.52	0.33	-0.5
Color_intensity -	0.55	0.25	0.26	0.019	0.2	-0.055	-0.17	0.14	-0.025	1	-0.52	-0.43	0.32	0.27
Hue -	-0.072	-0.56	-0.075	-0.27	0.055	0.43	0.54	-0.26	0.3	-0.52	1	0.57	0.24	-0.62
0D280_0D315_of_diluted_wines -	0.072	-0.37	0.0039	-0.28	0.066	0.7	0.79	-0.5	0.52	-0.43	0.57	1	0.31	-0.79
Proline -	0.64	-0.19	0.22	-0.44	0.39	0.5	0.49	-0.31	0.33	0.32	0.24	0.31	1	-0.63
class -	-0.33	0.44	-0.05	0.52	-0.21	-0.72	-0.85	0.49	-0.5	0.27	-0.62	-0.79	-0.63	1
	Alcohol -	Malicacid -	Ash -	Alcalinity_of_ash -	Magnesium -	Total_phenols -	- Flavanoids -	Nonflavanoid_phenols -	Proanthocyanins -	Color_intensity -	Hue -	0D280_0D315_of_diluted_wines -	Proline -	class -

sns.pairplot(Wine)

- 0.75 - 0.75 - 0.50 - 0.25 - 0.00 - -0.25 - -0.50