INTERMEDIATE QUANTITATIVE METHODS

Measurement Error and Missing Data

Per Engzell (Nuffield College)

Hilary term 2018

Sociology Department, University of Oxford

KNOW YOUR DATA

How did we get from this ...

VS.	ELLEN WAISUM KO	
		THE PERSON NAMED IN COLUMN
		5
APPE/	ARANCE	17 11
	Present Not Present	
		Info Arr Plea DDC PTC
		Wav Bail/ OR/ SORP Rect Dr
	red by CRT NGBRI / Adv	☐ PSet ☐ Prelim ☐ Readine
		fusal Further Jury CT Pe
	/ TW / WD TW Sentence	
		☐ APO / DADS/ Prop 36 ☐ P
	RelievedAppt'd	☐ Crim Proc Susp ☐ Rein
		Doubt Decl Pursuant PC 1368
		al Subm on Report Found
		Max Term Comm
		ction MDA / COM Amended to
		3(a) Pur VC23103.5 DA Stmt
Condit	tions: None No Stat	e Prison PC17 after 1 Yr Pro
Prison	Term of Records	LIAMECAIDI OF DE
	Striking WF OKIU	
		☐ Immig ☐ Reg PC290/HS11590/P
Right to	☐ Counsel ☐ Court / Jury Tr	ial Subpoena / Confront / Examir
		to charges & admits enhancements /
p 36 Gi	ranted / Unamenable / Refu	sed / Term DEJ Eligibility File

... to this?

	id	v3	v4	v5
1	2630	22	3	1930
2	8590	23	2	1745
3	7523	23	4	1700
4	8114	19	1	1730
5	9036	24	6	1000
6	2270	23	6	1010
7	8290	16	4	1000
8	1738	20	2	1600
9	7498	17	4	1130
10	11240	20	4	1845
11	3995	0	0	9900
12	1538	19	5	1715
13	5960	17	1	1300
14	11556	22	3	1755
15	7090	21	2	1800
16	10896	24	4	1930
17	3467	24	3	1800
18	7615	0	0	9900
19	4111	20	1	1700

Photo credit: http://www.flickr.com/photos/elleko/7539221216 (CC-BY-2.0)

KNOW YOUR DATA

Your variables do <u>not</u> equal the concepts you want to measure!

Comprehension Retrieval Judgement Reporting

To provide data, every respondent has to

- · interpret the question (ideally in the same way as each other and the researcher)
- · gather the information from memory
- make a judgement about how it corresponds to given alternatives
- · formulate and communicate an answer

In each of these steps, mistakes and random variability are inevitable. Additional errors arise from vague response options, coarseness of categories, coding errors etc.

Adapted from: Robert M. Groves, et al. Survey Methodology (Wiley, 2011).

MEASUREMENT ERROR

Often, the x and y in our data are imperfect representations of the concepts we are interested in

For example, we want to know about someone's overall life satisfaction but what we observe is how they ticked a box on a 1–5 scale on a particular day

Even for seemingly straightforward concepts like income, survey responses lack accuracy and response categories may be limited (e.g., 10 different income brackets)

An important type of error is proxy error. Say we want to measure wealth but only know about home ownership (yes/no). This is certainly part of wealth but not all of it!

In formal terms, we are unable to observe the true variable x^* but instead we observe $x = x^* + w$, where w is measurement error

How does this affect the conclusions we are able to draw?

Recap of: Variance, Standard Deviation, Covariance, Correlation Variance of x

- · Written as Var(x) or σ_X^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Recap of: Variance, Standard Deviation, Covariance, Correlation Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Recap of: Variance, Standard Deviation, Covariance, Correlation Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Recap of: Variance, Standard Deviation, Covariance, Correlation Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Recap of: Variance, Standard Deviation, Covariance, Correlation Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Recap of: Variance, Standard Deviation, Covariance, Correlation Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Recap of: Variance, Standard Deviation, Covariance, Correlation

Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Covariance of (x, y)

- · Written as = Cov(x, y) or σ_{xy}^2
- $\cdot \ \mathsf{E}\{(\mathsf{X}-\mu_\mathsf{X})(\mathsf{y}-\mu_\mathsf{y})\}$
- The expected product of the distance between x and its mean and the distance between y and its mean
- · Ranges between $-\infty$ and $+\infty$

Recap of: Variance, Standard Deviation, Covariance, Correlation

Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Covariance of (x, y)

- · Written as = Cov(x, y) or σ_{xy}^2
- $\cdot E\{(x-\mu_x)(y-\mu_y)\}$
- The expected product of the distance between x and its mean and the distance between y and its mean
- · Ranges between $-\infty$ and $+\infty$

Recap of: Variance, Standard Deviation, Covariance, Correlation

Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Covariance of (x, y)

- · Written as = Cov(x, y) or σ_{xy}^2
- $\cdot E\{(x-\mu_x)(y-\mu_y)\}$
- The expected product of the distance between x and its mean and the distance between y and its mean
- · Ranges between $-\infty$ and $+\infty$

Recap of: Variance, Standard Deviation, Covariance, Correlation

Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Covariance of (x, y)

- · Written as = Cov(x, y) or σ_{xy}^2
- $\cdot \ \mathsf{E}\{(\mathsf{X}-\mu_{\mathsf{X}})(\mathsf{Y}-\mu_{\mathsf{Y}})\}$
- The expected product of the distance between x and its mean and the distance between y and its mean
- · Ranges between $-\infty$ and $+\infty$

Recap of: Variance, Standard Deviation, Covariance, Correlation

Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x-\mu_x)^2\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Covariance of (x, y)

- · Written as = Cov(x, y) or σ_{xy}^2
- $\cdot \ \mathsf{E}\{(\mathsf{X}-\mu_{\mathsf{X}})(\mathsf{Y}-\mu_{\mathsf{Y}})\}$
- The expected product of the distance between x and its mean and the distance between y and its mean
- · Ranges between $-\infty$ and $+\infty$

Recap of: Variance, Standard Deviation, Covariance, Correlation
Variance of x

- · Written as Var(x) or σ_x^2
- $\cdot E\{(x \mu_x)^2\} = E\{(x \mu_x)(x \mu_x)\}$
- · The expected squared distance between x and its mean
- \cdot Ranges between 0 and ∞

Covariance of (x, y)

- · Written as = Cov(x, y) or σ_{xy}^2
- $\cdot \ \mathsf{E}\{(\mathsf{X}-\mu_{\mathsf{X}})(\mathsf{Y}-\mu_{\mathsf{Y}})\}$
- The expected product of the distance between x and its mean and the distance between y and its mean
- · Ranges between $-\infty$ and $+\infty$

Recap of: Variance, Standard Deviation, Covariance, Correlation Standard deviation of x

- · Written as SD(x) or σ_x
- · Simply the square root of the variance: $\sqrt{E\{(x \mu_x)^2\}}$
- \cdot Also ranges between 0 and ∞

Correlation of (x, y)

- · Written as corr(x, y) or r_{xy}
- The covariance of (x, y) divided by the product of their standard deviations:

$$\frac{\mathsf{E}\{(\mathsf{X}-\mu_{\mathsf{X}})(\mathsf{y}-\mu_{\mathsf{y}})\}}{\sigma_{\mathsf{X}}\sigma_{\mathsf{y}}}$$

 \cdot Ranges between -1 and +1

Remember this?

Least Squares Principle

It is a remarkable fact about the world that the slope that minimises the squared deviations is described by:

$$\frac{Cov(x,y)}{Var(x)}$$

This extends to multivariate regression (but the notation becomes a bit more complex)

Keep this in mind, it will be useful later

• True relationship: $y^* = \beta_1 + \beta_2 x + u$

- True relationship: $y^* = \beta_1 + \beta_2 x + u$
- · Adding error in y: $y = y^* + w$

- True relationship: $y^* = \beta_1 + \beta_2 x + u$
- · Adding error in y: $y = y^* + w$
- Estimated: $y = \beta_1 + \beta_2 x + u$

- True relationship: $y^* = \beta_1 + \beta_2 x + u$
- Adding error in y:y = y* + w
- Estimated: $y = \beta_1 + \beta_2 x + u$
- · No difference here!

- True relationship: $y^* = \beta_1 + \beta_2 x + u$
- · Adding error in y: $y = y^* + w$
- Estimated: $y = \beta_1 + \beta_2 x + u$
- · No difference here!
- But: increased sampling variance

• True relationship: $y = \beta_1 + \beta_2 x^* + u$

- True relationship: $y = \beta_1 + \beta_2 x^* + u$
- · Adding error in x: $x = x^* + w$

- True relationship: $y = \beta_1 + \beta_2 x^* + u$
- Adding error in x:x = x* + w
- Estimated: $y = \beta_1 + \beta_2 x + u$

- True relationship: $y = \beta_1 + \beta_2 x^* + u$
- Adding error in x:x = x* + w
- Estimated: $y = \beta_1 + \beta_2 x + u$
- · Look, β_2 is biased downward!

- True relationship: $y = \beta_1 + \beta_2 x^* + u$
- · Adding error in x: $x = x^* + w$
- · Estimated: $y = \beta_1 + \beta_2 x + u$
- · Look, β_2 is biased downward!
- · Also: increased sampling variance

CLASSICAL ERROR

We want to estimate $y_i = \beta_1 + \beta_2 x_i^* + u_i$.

Unable to observe x_i^* we instead observe $x_i = x_i^* + w_i$ where w_i is the measurement error.

Naively substituting x_i for x_i^* we are led to estimate $y_i = \beta_1 + \beta_2 x_i + (u_i - \beta_2 w_i)$.

Given assumptions that x_i^* , w_i , u_i are joint normal with mean and covariance matrices (μ_x , 0, 0) and diag($\sigma_{x^*}^2$, σ_{u}^2),

$$\operatorname{plim} \widehat{\beta}_2 = \beta_2 \left[1 - \frac{\operatorname{Var}(w)}{\operatorname{Var}(x)} \right]$$

The bracketed expression is bounded between 0 and 1 and the result is one of attenuation of the true gradient.

CLASSICAL ERROR

What is going on? We know that:

$$\beta_2 = \frac{\mathsf{Cov}(\mathsf{x},\mathsf{y})}{\mathsf{Var}(\mathsf{x})}$$

Adding random noise to y increases Var(y) but affects neither Cov(x, y) nor Var(x) so β_2 remains the same

Adding random noise to x increases Var(x) while Cov(x, y) remains the same and leads to a lower β_2

In fact, the bias is exactly proportional to the amount of variance in the observed x that is due to measurement error:

$$\operatorname{plim} \widehat{\beta}_{2} = \beta_{2} \frac{\operatorname{Var}(\mathbf{x}^{*})}{\operatorname{Var}(\mathbf{x})} = \beta_{2} \frac{\operatorname{Var}(\mathbf{x}^{*})}{\operatorname{Var}(\mathbf{x}^{*}) + \operatorname{Var}(\mathbf{w})} = \beta_{2} \left[1 - \frac{\operatorname{Var}(\mathbf{w})}{\operatorname{Var}(\mathbf{x})} \right]$$

CONSEQUENCES

Example: How strong is the relationship between parents' income and their children's income in adulthood?

$$ln(y_{child}) = \beta_1 + \beta_2 ln(y_{parent}) + u$$

 β_2 , called the "intergenerational elasticity", is around 0.50 in the UK and US but for a long time people believed it was closer to 0.15–0.20

· "almost all earnings advantages and disadvantages of ancestors are wiped out in three generations." (Becker and Tomes 1986: 32)

Why? Two types of errors

- · Reporting errors, especially when individuals were asked to remember their parents' income
- Using single-year measures of income that vary from year to year, rather than income averaged over many years

MULTIVARIATE MODEL

What we have seen so far:

```
clear
drawnorm x u w, n(5000)
gen y = x + u
reg y x
replace x = x + w
reg y x
```

Now, let's move to the multivariate case

MULTIVARIATE MODEL

```
clear
#delimit;
matrix C =
  [1, .5, .5 \setminus
    .5, 1, .5 \
    .5, .5, 1];
#delimit cr
drawnorm x1 x2 x3, means(0 \ 0 \ 0) cov(C) n(5000)
drawnorm u
gen y = x1 + u
reg y x1 x2 x3
```

MULTIVARIATE MODEL

Source	SS	df	MS		er of obs	=	5,000
Model	5068.24898	3	1689.4163	3 Prob		=	0.0000
Residual	5009.98048	4,996	1.0027983		uared R-squared	=	0.5029 0.5026
Total	10078.2295	4,999	2.016049	1 Root	MSE	=	1.0014
У	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
x1	1.004857	.0172947	58.10	0.000	.97095	L9	1.038762
x2	.0030808	.0172442	0.18	0.858	030725	55	.0368871
	0071945	.0173546	-0.41	0.678	041217	71	.0268281
x3							

MULTIVARIATE MODEL

```
drawnorm w
replace x1 = x1 + w
reg y x1 x2 x3
```

MULTIVARIATE MODEL

Source	SS	df	MS		er of ob	s =	5,000 706.53
Model Residual	3002.10501 7076.12444	3 4,996	1000.7016 1.4163579	7 Prob 7 R-sq	4996) > F uared R-square	=	0.0000 0.2979 0.2975
Total	10078.2295	4,999	2.016049	,		u - =	1.1901
у	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
x1 x2 x3 _cons	.4016158 .2012384 .2066106 0238348	.0131599 .0198348 .01986 .016833	30.52 10.15 10.40 -1.42	0.000 0.000 0.000 0.157	.3758 .1623 .1676	535 764	.4274149 .2401234 .2455449 .0091653

Which scenario are you most likely to encounter in the wild?

Which scenario are you most likely to encounter in the wild?

Answer: you should expect the second

Which scenario are you most likely to encounter in the wild?

Answer: you should expect the second

Whenever a variable is measured with (classical) error and there are other correlated variables in the model

- · Attenuation for the mismeasured variable becomes worse
- · Estimates for correlated covariates will be subject to an opposite, upward bias

If someone claims to have "controlled for" something, you should usually be wary. Often there will be residual confounding (but some variables are nearly error free, like gender).

Example: suppose we want to know if grandparents influence their grandchildren's education

Should we run the following regression?

$$edu_{child} = \beta_1 + \beta_2 edu_{parent} + \beta_3 edu_{grandparent} + u$$

A lot of people do, but it will not tell us much: β_3 is almost certainly positive even if grandparents are of no consequence at all

Why? Parents influence their children in a lot of ways that are not in the model

- · Other parent's education (i.e. mother if eduparent is father)
- · Social class, income, culture, interests, etc
- · Genetic inheritance

- . sysuse census (1980 Census data by state)
- . keep pop death marriage divorce
- . codebook, compact

Variable	0bs	Unique	Mean	Min	Max	Label
pop death marriage divorce	50 50 50 50	50 50 50 50		401851 1604 4437 2142	186428	Population Number of deaths Number of marriages Number of divorces

. corr death marriage divorce
(obs=50)

	death	marriage	divorce
death	1.0000		
marriage	0.8921	1.0000	
divorce	0.9003	0.9349	1.0000

. factor death marriage divorce (obs=50)

Factor analysis/correlation

Method: principal factors
Rotation: (unrotated)

Number of obs = 50
Retained factors = 1
Number of params = 3

Factor	Eigenvalue	Difference	Proportion	Cumulative
Factor1 Factor2 Factor3	2.69024 -0.03256 -0.04401	2.72280 0.01145	1.0293 -0.0125 -0.0168	1.0293 1.0168 1.0000

LR test: independent vs. saturated: chi2(3) = 185.33 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable	Factor1	Uniqueness
death	0.9238	0.1466
marriage	0.9555	0.0870
divorce	0.9612	0.0762

```
. predict factpop
(regression scoring assumed)
Scoring coefficients (method = regression)
```

Variable	Factor1
death	0.21062
marriage	0.36780
divorce	0.42768

. pca death marriage divorce, comp(1)

Principal components/correlation Number of obs =

Number of comp. = 1 Trace = 3 Rho = 0.9394

50

Rotation: (unrotated = principal)

Component Eigenvalue Difference Proportion Cumulative Comp1 2.81832 2.70133 0.9394 0.9394 Comp2 .116989 .0522963 0.0390 0.9784 Comp3 .0646923 0.0216 1.0000

Principal components (eigenvectors)

Variable	Comp1	Unexplained
death	0.5718	.07843
marriage	0.5792	.05442
divorce	0.5809	.04883

```
. predict pcapop
(score assumed)
```

Scoring coefficients sum of squares(column-loading) = 1

Variable	Comp1
death	0.5718
marriage	0.5792
divorce	0.5809

. corr pop fact pca death marriage divorce $(\,\mbox{obs=}50\,)$

	рор	factpop	pcapop	death	marriage	divorce
рор	1.0000					
factpop	0.9679	1.0000				
pcapop	0.9778	0.9986	1.0000			
death	0.9876	0.9443	0.9600	1.0000		
marriage	0.9179	0.9767	0.9724	0.8921	1.0000	
divorce	0.9383	0.9825	0.9753	0.9003	0.9349	1.0000

Factor analysis or principal components are ways to extract the common information in several measures, that can then be stored and entered into a regular regression

However, entering predicted FA or PCA scores into a model ignores remaining uncertainty and leads to underestimation

It is common convention to report this uncertainty as Cronbach's alpha (to access this in Stata, type alpha x1 x2 ...):

$$\alpha = \frac{K}{K - 1} \left[1 - \frac{\sum \sigma_k^2}{\sigma_{\text{total}}^2} \right]$$

Ranges from 0 to 1, and >.8 often thought "acceptable" (K is number of items, $\sum \sigma_{\rm k}^2$ is sum of their variances, $\sigma_{\rm total}^2$ variance of total)

BIAS CORRECTION

A more sophisticated approach is to not only minimise error, but try to correct for it

With classical measurement error the bias follows from the signal-to-total-variance ratio, so we need knowledge about that ratio

$$p\lim \, \widehat{\beta}_2 = \beta_2 \frac{\text{Var}(x^*)}{\text{Var}(x)}$$

Such knowledge can come in the form of

- a) repeated observations
- b) auxiliary data (or "guesstimate")

With repeated observations:

Structural equation modeling (SEM), instrumental variables (IV)

With auxiliary data: Errors-in-variables (EIV) regression

Structural equation modeling (SEM) is a way of thinking about models, of drawing them, and an estimation method – all at once

We distinguish between latent/unobserved variables (or constructs, drawn as "bubbles") and manifest/observed variables (or indicators, drawn as boxes)

Syntax differs a bit from the usual Stata convention:

sem
$$(x1<-X)$$
 $(x2<-X)$ $(x3<-X)$ $(y<-X)$

Lowercase variables (y, x1, x2, ...) are observed variables. Uppercase variables (here: X) are unobserved. Arrow (<-) denotes causality or "is a function of".

Structural equation modeling is very flexible and easy to use, but not very common in sociology

A separate Stata command is **gsem** where "g" stands for "Generalized" SEM.

gsem can do some things that **sem** can't, like estimating multilevel and nonlinear models with latent variables

But sem is superior to gsem in other respects, including survey weighting and clustering, missing data models, goodness-of-fit statistics, etc

Basic syntax is similar between the two

A separate Stata command is **gsem** where "g" stands for "Generalized" SEM.

gsem can do some things that sem can't, like estimating multilevel
and nonlinear models with latent variables*

But sem is superior to gsem in other respects, including survey weighting and clustering, missing data models, goodness-of-fit statistics, etc

Basic syntax is similar between the two

* Many of these things can also be done with an independently developed Stata command gllamm: generalized linear latent and mixed models (to install this, type ssc install gllamm)

OTHER APPROACHES

Instrumental variables

. ivregress 2sls y (x1 = x2 x3)

Instrumental variables (2SLS) regression

Number of obs = 5,000 Wald chi2(1) = 821.10 Prob > chi2 = 0.0000 R-squared = . Root MSE = 1.4296

у	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
					.951218 075626	

Instrumented: x1
Instruments: x2 x3

OTHER APPROACHES

Errors-in-variables (EIV) regression

. eivreg y x1 x2 x3, reliab(x1 .50)

variable	assumed reliability	Errors-in-variables regression
		Number of obs = 5,000
x1	0.5000	F(3, 4996) = 978.29
*	1.0000	Prob > F = 0.0000
		R-squared = 0.4929
		Root MSE = 1.01139

у	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x1	1.000062	.0278484	35.91	0.000	.9454671	1.054657
x2	0211536	.019338	-1.09	0.274	0590647	.0167575
х3	.038338	.018338	2.09	0.037	.0023875	.0742884
_cons	0355175	.0143139	-2.48	0.013	063579	0074559

SUMMARY

Classical error in x is bad: bias toward the null

Classical error in y: not nearly as bad

With more than one x in the model and correlated variables, measurement error will contaminate even the variables that are accurately measured

Ignorance is not an option: assuming that you observe everything without error is also an assumption

Models such as SEM can be used to correct for error in special cases and given that assumptions are satisified, but often we have to live with uncertainty

If someone claims to have "controlled for" something, be sceptical and examine the measures critically. Usually there is likely to be residual confounding

