Cours 3 – Arbres et méthodes ensemblistes

1. Arbres de décision

1.1 Exemple

Arbres binaires

Dosoin de one-hot-etc.)

A melange de types
de variables * variables catégoriques (pas * si xj E R, Forme? pointue * interpretable (surtout si l'arbre est petit). x multiclasse

* multimode: plusieurs façous d'être une pomme

75

Classification multiclasse à partir de classification binaire:

méthode générique 1-us-all (1 contre tous) K classes -> K classifiens binaires classe 1 vs {2,3,-k} returner

classe 2 vs {1,3,...,k} la classe

prédite avec

le D goard

score

1.2 Construction d'un arbre

Pour chaque noeud: quelle est la meilleure

- Exemple:
 - 4 petites pommes jaunes, 5 grosses pommes vertes, 3 bananes, 6 mini-concombres

Quand s'arêter? -> quand il n'y a plus d'erreurs

Co risque de surapprentisage! Plutof: > à une profondeur fixée - on: à un no d'observations parfeuille fixé à l'avance lor a trouvé qui de commun à plusieus exemples) = paramètre de régularisation déterminés par recherche engrille / validation crossée.

Complexité algorithmique

1) Pour aj E R

n observations d'entraînement => n valeurs + de x; => (n-1) senil possibles

h=3 $\chi_{ij} = 0.2$ $\chi_{ij} = 0.4$ $\chi_{ij} = 1$ Seril 1 Seril 2

2) Pour chaque nonveau haerd: evaluer tortes les variables et evantuellement tous les senits » voiteux si beaucoup de variables continues et de données.

1.3 Avantages et inconvénients

cf slide 1 sur les arbres

- 1) le temps de calcul
- a) Ophinisation heuristique: on re sait pas resoudre le ob de traver l'arbre de décision ophinal sur les domes d'apprentissage
- => souvent manhaise performance. en pratique.

2. Méthodes ensemblistes

2.1 Sagesse des foules

2.2 Bagging: pour générer plusieurs modèles à partir du nême jeu de donnés. Idée = échantillonner le jeu de données 2 hyper-B = nb de modèles à construic pour b=1,.., B: parallélisable - construire Db: Echantillon bootstrapideD si D contient a observation - tirer a observation arec remise - apprend un nadéle fb sur Db. combiner B modèles: classification = par vote de la majorité regression = moyenne des valeurs prédites

2.3 Forêts aléatoires Randon forsts

Bagging, sur des exbres de décision De chaque arbre est construit uniquement avec une partie des variables et une partie des données (échantillon botstrap) V 2 Vp variables créir des d'entraînement arbrec + de chaque orbre. les uns des outres

2.4 Boosting

- À l'itération m

- 1 Ewillyinf(Zil)
- Apprendre le modèle f_m qui minimise l'erreur empirique de

$$F_m = \sum_{l=1}^m \alpha_l f_l = F_{m-1} + \alpha_m f_m$$

- L'erreur pour (\vec{x}_i, y_i) est pondérée de sorte à donner plus d'importances aux exemples pour lesquels F_{m-1} se trompe.
- AdaBoost (Schapire & Freund 1997) : erreur exponentielle, f_m est un arbre de décision de profondeur 1 (decision stump)
- Gradient Boosting (Friedman 2001): forme générale