Chapter 4

4.1 Sportsware Brands

- Annabel Gonzalez, chief retail analyst at marketing firm Longmeadow Consultants is tracking the sales of compression-gear produced by Under Armour, Inc., Nike, Inc, and Adidas Group.
- After collecting data from 600 recent purchases, Annabel wants to determine whether age influences brand choice.

	Brand Name			
Age Group	Under Armour	Nike	Adidas	
Under 25 years	174	132	90	
35 years and older	54	72	78	

Table 4.1: Live Example for Chapter 4

4.2 Fundamental Probability Concepts

- A probability is a numerical value that ...
- An experiment

4.2.1 Assigning Probabilities

Subjective Probabilities

• Draws on personal and subjective judgment.

Objective Probabilities

- Empirical probability: a relative frequency of occurrence
- a priori probability: a logical analysis

4.2.2 Probabilities expressed as odds

Percentages and odds are an alternative approach to expressing probabilities include.

4.2.3 Converting an odds ratio to a probability

Given odds for event A occurring of "a to b", the probability of A is:

$$\frac{a}{a+b}$$

Given odds against event A occurring of "a to b", the probability of A is:

$$\frac{b}{a+b}$$

4.2.4 Converting probability to an odds ratio

4.3 Rules of Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{4.1}$$

4.3.1 Multiplication Rule

$$P(A \cap B) = P(A|B) \times P(B) = P(B|A) \times P(A) \tag{4.2}$$

4.4 Contingency Tables and Probabilities

4.4.1 Contingency Tables

• A contingency table generally shows frequencies for two qualitative ...

4.5 Bayes' Rule

$$P(B|A) = \frac{P(A \cap B)}{P(A \cap B) + P(A \cap B^{c})}$$

$$= \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^{c})P(B)^{c}}$$
(4.3)

We find:

$$P(T|D) = \frac{(0.005)(0.99)}{(0.005)(0.99) + (0.95)(0.01)}$$
$$= \frac{0.00495}{0.00495 + 0.0095}$$
$$= \frac{0.00495}{0.01445}$$
$$= 0.342560554$$

Prior Probability	Conditional Probability	Joint Probability	Posterior Probability
P(T) = 0.99			
$P(T^c) = 0.01$			
$P(T) + P(T^c) = 1$			

Table 4.2: Bayes' Rule Example

4.6 Counting Rules

$${}_{n}C_{x} = \begin{pmatrix} n \\ x \end{pmatrix} = \frac{n!}{(n-x)!x!} \tag{4.4}$$

$$_{n}P_{x}=\dots$$
 (4.5)