Introducción a la programación con MatLAB

Módulo 11 - Matemática simbólica

- AUTORES -1

1 - NOMBRE UNIVERSIDAD -

AÑO

Introducción

Objetivos de esta unidad:

- Crear y manipular variables simbólicas
- Resolver expresiones y ecuaciones simbólicas
- Graficar ecuaciones simbólicas
- Introducir a la diferenciación y integración de ecuaciones simbólicas

Creación de variables simbólicas

Declaración de variable simbólica :

- x = sym(x')
- syms x

Ambas formas hacen al carácter 'x' igual a la variable simbólica x.

Variable simbólica utilizando otras existentes :

$$y = \frac{2 * (x+3)^2}{x^2 + 6 * x + 9}$$

Creación de variables simbólicas

Declaración de variable simbólica :

- x = sym(x')
- 2 syms x

Ambas formas hacen al carácter 'x' igual a la variable simbólica x.

Variable simbólica utilizando otras existentes :

$$y = \frac{2 * (x + 2)^2}{x^2 + 6 * x + 9}$$

Tener en cuenta

El comando **syms** permite crear múltiples variables simbólicas al mismo tiempo.

IEEE Sección Argentina

AÑO

4/36

Creación de variables simbólicas

symsx

$$y = \frac{2*(x+2)^2}{x^2+6*x+9}$$


```
Command Window

>> syms x
>> y = (2*(x+3)^2)/(x^2+6*x+9)

y = |
(2*(x + 3)^2)/(x^2 + 6*x + 9)

f<sub>₹</sub> >> |
```

IEEE Sección Argentina

Extracción de numeradores y denominadores :

Comando

Ver comando : [num,den] = numden(var)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

syms x
y =
$$(2*(x+2)^2)/(x^2+6*x+9)$$

[num,den] = numden(y)

Expansión de expresiones :

Comando

Ver comando: expand(var)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

```
syms x
y = (2*(x+2)^2)/(x^2+6*x+9)
[num,den] = numden(y)
expand(num)
```


Factorización de expresiones :

Comando

Ver comando : factor(var)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

```
syms x
y = (2*(x+2)^2)/(x^2+6*x+9)
[num, den] = numden(y)
factor(num)
```


8/36

Recolección de términos :

Comando

Ver comando : collect(var)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

```
syms x
y = (2*(x+2)^2)/(x^2+6*x+9)
[num,den] = numden(y)
collect(num)
```


Simplificación de ecuaciones simbólicas

Simplificación de ecuación :

Comando

Ver comando : simplify(var)

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$z = sym('x^3-1=(x-3)*(x+3)')$$

simplify(z)

Ejercicio práctico 18

- Cree la variable simbólica x y verifique que se encuentra en el workspace
- Cree las siguientes expresiones simbólicas :
 - $ex1 = x^2 1$ $ex2 = (x + 1)^2$
- Multiplique ex1 por ex2 y llame al resultado y1
- Divida ex1 entre ex2 y llame al resultado y2
- Ise la función numden para extraer el numerador y denominador de y1 y y2
- 6 Use las funciones factor, expand, collect y simplify en y1 e y2.

Resolución de expresiones y ecuaciones simbólicas

Resolución de expresiones y ecuaciones :

Comando

Ver comando: solve()

Se utilizarán dos enfoques, los mismos son :

- Cuando se trata de una expresión
- Cuando se trata de una ecuación
 - Expresión igualada a 0
 - Expresión igualada a una expresión (aplicando transformación)
 - 3 Expresión igualada a una expresión (sin transformación)

Resolución de expresiones y ecuaciones simbólicas : Caso 1

Utilización de la función solve en una expresión :

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

Resolución de expresiones y ecuaciones simbólicas : Caso 1

Utilización de la función solve en una expresión :

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

solve (
$$a*x^2+b*x+c$$
)

Importante

Cuando se usa en una expresión, la función **solve** iguala la expresión a cero y resuelve.

Resolución de expresiones y ecuaciones simbólicas : Caso 1

Especificación de la variable a resolver :

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

solve
$$(a*x^2+b*x+c', a')$$

Importante

Matlab por defecto resuelve para la variable simbólica x.

Resolución de expresiones y ecuaciones simbólicas : Caso 2.1 ó 2.2

Transformación en una expresión :

Para el caso:

$$5 * x^2 + 6 * x + 3 = 10$$

Se podría reformular como :

$$5 * x^2 + 6 * x - 7 = 0$$

y resolver la ecuación ejecutando las siguientes líneas :

solve
$$(5*x^2+6*x-7)$$

Resolución de expresiones y ecuaciones simbólicas : Caso 2.3

Sin transformación de expresión :

Para el caso:

$$5 * x^2 + 6 * x + 3 = 10$$

Se resuelve la ecuación ejecutando las siguientes líneas :

E2 =
$$sym('5*x^2+6*x+3=10')$$

solve(E2)

Ejercicio práctico 19

- Cree las variables simbólicas x,a,b y c
- Cree las siguientes expresiones simbólicas :

$$ex1 = a * x^2 - 1$$

 $ex2 = a * x^2 + b * x + c$

$$eq1 = a * x^2 = 1$$

$$eq2 = a * x^2 + b * x + c = 0$$

- Use la función solve para resolver ex1 y eq1 tanto para x como para a
- Use la función solve para resolver ex2 y eq2 tanto para x como para a

Resolución de sistemas de ecuaciones

Resolver el siguiente sistemas de ecuaciones :

$$\begin{cases} 3x + 2y - z = 10 \\ -x + 3y + 2z = 5 \\ x - y - z = -1 \end{cases}$$

Resolución de sistemas de ecuaciones

Definir las tres ecuaciones simbólicas

Resolución de sistemas de ecuaciones

Definir las tres ecuaciones simbólicas

```
Ec1 = sym('3*x+2*y-z=10')
Ec2 = sym('-x+3*y+2*z=5')
Ec3 = sym('x-y-z=-1')
```

Luego utilizando la función solve se obtienen la solución (valores de x, y, z) :

$$[x,y,z] = solve(Ec1,Ec2,Ec3)$$

Graficación de y=f(x):

Comando

Ver comando : ezplot()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$y = sym('x^2-2')$$

ezplot(y)

Graficación de y=f(x):

Comando

Ver comando : ezplot()

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$y = sym('x^2-2')$$

ezplot(y)

Importante

Por defecto, se grafica la función con una variación de x en el intervalo $[-2*\pi, 2*\pi]$

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

$$y = sym('x^2-2')$$

ezplot(y,[-10,10])

Ecuaciones paramétricas :

$$x = sen(t)$$

$$y = cos(t)$$

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

IEEE Sección Argentina

$$y1 = sym('sen(X)')$$
$$y2 = sym('sen(2 * X)')$$
$$y3 = sym('sen(3 * X)')$$

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

ezplot(y1) hold on ezplot(y2) ezplot(y3)

AÑO

27 / 36

Se considera un auto de carreras cuya ecuación de posición es :

$$d = 20 + 20 * sen(\frac{\pi * (t - 10))}{20})$$

28 / 36

Sabiendo que la velocidad es la derivada de la posición y utilizando la función diff

Comando

Ver comando : diff()

Curva de velocidad

Sabiendo que la aceleración es la derivada de la velocidad y utilizando la función diff

Comando

Ver comando : diff()

Curva de aceleración

Funciones de diferenciación simbólica :

diff(f)	Derivada de f respecto a la variable independiente
diff(f,'t')	Derivada de f respecto a la variable t
diff(f,n)	Derivada n-ésima de f respecto a la variable independeinte
diff(f,'t',n)	Derivada n-ésima de f respecto a la variable t

Ejercicio práctico 20

- Encuentre la primera derivada con respecto a x de las siguientes expresiones :
 - $x^2 + x + 1$
 - 2 sen(x)
- Encuentre la primera derivada parcial con respecto a x de las siguientes expresiones :
 - 1 $x^{0.5} 3 * v$
 - 3*x+4*y-3*x*y
- Encuentre la segunda derivada con respecto a x para cada una de las expresiones del problema 1 y 2.
- Encuentre la primera derivada con respecto a y para las siguientes expresiones :
 - 1 y 1
 - 2 a * y + b * x + c * z

Cálculo: Introducción a la integración

Dada la curva de aceleración se procede a calcular la velocidad integrando la misma.

Comando

Ver comando : int()

Curva de velocidad

Cálculo: Introducción a la integración

Cálculo de integral definida :

int(f)	Integral de f respecto a la variable independiente
int(f,'t')	Integral de f respecto a la variable t
int(f,a,b)	Integral respecto a la variable independiente de f entre a y b

Ejercicio práctico 21

- Integre las siguientes expresiones con respecto a x :
 - 1 $x^2 + x + 1$
 - 2 tan(X)
- Integre las siguientes expresiones con respecto a x :
 - 1 $x^{0.5} 3 * y$ 2 3 * x + 4 * y - 3 * x * y
- Realice una integración doble con respecto a x para cada una de las expresiones de los problemas 1 y 2.
- Integre las siguientes expresiones con respecto a y :
 - v 1
 - 2 a * y + b * x + c * z

Ejercicio práctico 21

IEEE Sección Argentina

