

Quantum-Electrodynamical Density-Functional Theory

for the Dicke Hamiltonian

NKS meeting 2024

A. Laestadius

oslo metropolitan university

STORBYUNIVERSITETET

Acknowledgements

Vebjørn Bakkstuen [1], Vegard Falmår [1], Maryam Lotfigolian [1], Mihaly Csirik [1,2], Markus Penz [1,3], and Michael Ruggenthaler [3]

- Department of Computer Science, Oslo Metropolitan University
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo
- Max Planck Institute for the Structure and Dynamics of Matter

Funded under ERC StG No. 101041487 REGAL

Established by the European Commission

Motivation

- Importance of light-matter interactions QED = how charged particles interact through coupling to a quantum field
- Simple model (that can be extended)
- Study ground-state effects of coupling photons to electronic systems
- Studying an (almost) explicit form of a DFT functional: QEDFT

The Dicke Model

- Two physically different subsystems matter and light
 - *N* two-level fermionic systems
 - Individually coupled to M modes of a quantized radiation field, described as quantum harmonic oscillators.
- Susceptible to a "DFT program".
- We can achieve considerable more mathematically than for standard DFT
 - results concerning v-representability
 - properties of the universal functional

Notations

For any j = 1, ..., N, we have set

$$\sigma_a^j = \mathbb{1} \otimes \ldots \otimes \mathbb{1} \otimes \underbrace{\sigma_a}_{j ext{th}} \otimes \mathbb{1} \otimes \ldots \mathbb{1} \in \mathbb{C}^{2^N imes 2^N},$$

where the Pauli matrices are given by

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}, \quad \text{and} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Vector of lifted Pauli matrices

$$\boldsymbol{\sigma}_a = (\sigma_a^1, \dots, \sigma_a^N)^\top \in \left(\mathbb{C}^{2^N \times 2^N}\right)^N.$$

Examples

Let N=2, then

$$oldsymbol{\sigma}_z = \left(egin{pmatrix} 1 & & & & \\ & 1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix}, egin{pmatrix} 1 & & & \\ & & 1 & \\ & & & -1 \end{pmatrix}
ight)^{-1}$$

has always diagonal form and

$$m{\sigma}_x = \left(egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}, egin{pmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix}
ight)^{-1}$$

Dicke Hamiltonian

"Internal" part of Hamiltonian $\mathbf{H}_0: \mathcal{H} \to \mathcal{H}$,

$$\mathbf{H}_0 = (-\mathbf{\Delta} + |\mathbf{x}|^2) \mathbb{1}_{\mathbb{C}^{2^N}} + \mathbf{x} \cdot \mathbf{\Lambda} \boldsymbol{\sigma}_z - \mathbf{t} \cdot \boldsymbol{\sigma}_x$$

Full Hamiltonian

$$\mathbf{H}(\mathbf{v}, \mathbf{j}) = \mathbf{H}_0 + \mathbf{v} \cdot \boldsymbol{\sigma}_z + \mathbf{j} \cdot \mathbf{x}$$

$$\mathbf{v} \in \mathbb{R}^N, \quad \mathbf{j} \in \mathbb{R}^M$$

Hilbert space: $\mathcal{H} = \mathcal{H}_{\mathrm{ph}} \otimes \mathcal{H}_{\mathrm{f}}$ $\mathcal{H}_{\mathrm{ph}} = \bigotimes^M L^2(\mathbb{R}) \text{ and } \mathcal{H}_{\mathrm{f}} = \bigotimes^N \mathbb{C}^2 \simeq \mathbb{C}^{2^N}$

Ground-state energy

$$E(\mathbf{v}, \mathbf{j}) = \inf_{\substack{\psi \in Q_0 \\ \|\psi\| = 1}} \langle \psi, \mathbf{H}(\mathbf{v}, \mathbf{j}) \psi \rangle$$

$$Q_0 := Q(\mathbf{H}_0)$$

Internal "density" variables

Definition (Magnetization vector and photon coordinate)

For $\psi \in \mathcal{H}$, we define

$$m{\sigma_{m{\psi}}} = \langle m{\psi}, m{\sigma}_z m{\psi}
angle := egin{pmatrix} \langle m{\psi}, \sigma_z^1 m{\psi}
angle \ dots \ \langle m{\psi}, \sigma_z^N m{\psi}
angle \end{pmatrix} \in [-1, 1]^N \subset \mathbb{R}^N$$

$$\boldsymbol{\xi_{\psi}} = \langle \boldsymbol{\psi}, \mathbf{x} \boldsymbol{\psi} \rangle = \int_{\mathbb{R}^M} \mathbf{x} |\boldsymbol{\psi}(\mathbf{x})|^2 d\mathbf{x} \in \mathbb{R}^M.$$

Theorem (Hohenberg–Kohn)

Suppose that $\psi^{(1)}, \psi^{(2)} \in Q_0$ are ground states of $\mathbf{H}(\mathbf{v}^{(1)}, \mathbf{j}^{(1)})$ and $\mathbf{H}(\mathbf{v}^{(2)}, \mathbf{j}^{(2)})$ respectively.

If $\sigma = \sigma_{\psi^{(1)}} = \sigma_{\psi^{(2)}}$ and $\xi = \xi_{\psi^{(1)}} = \xi_{\psi^{(2)}}$, then $\psi^{(1)}$ is also a ground state of $\mathbf{H}(\mathbf{v}^{(2)},\mathbf{j}^{(2)})$ and $\psi^{(2)}$ is also a ground state of $\mathbf{H}(\mathbf{v}^{(1)},\mathbf{j}^{(1)})$. Furthermore, $\mathbf{j} = \mathbf{j}^{(1)} = \mathbf{j}^{(2)}$ and

- [(Regular case) If σ is regular, then $\mathbf{v}^{(1)} = \mathbf{v}^{(2)}$.
- (Irregular case) Otherwise, for all $\alpha \in I^{(1)} \cup I^{(2)}$ there holds

$$\sum_{n=1}^{N} (\boldsymbol{\sigma}_{z}^{n})_{\alpha\alpha} (v_{n}^{(1)} - v_{n}^{(2)}) = E(\mathbf{v}^{(1)}, \mathbf{j}) - E(\mathbf{v}^{(2)}, \mathbf{j}),$$
 (5)

where $I^{(i)}$ denotes the set of spinor indices α for which $(\psi^{(i)})^{\alpha} \not\equiv 0$.

Regular case: Example

$$N = 1$$
. $\mathcal{R}_1 = (-1, 1)$

N=2. $\mathcal{R}_2\subset (-1,1)^2$ is the union of 4 congruent open triangles.

The set $\mathcal{R}_3 \subset (-1,1)^3$ is the union of 24 congruent open tetrahedra.

Whenever $(\boldsymbol{\sigma}, \boldsymbol{\xi}) \in [-1, 1]^N \times \mathbb{R}^M$ is the ground-state density of $\mathbf{H}(\mathbf{v}, \mathbf{j})$ for some $(\mathbf{v}, \mathbf{j}) \in \mathbb{R}^N \times \mathbb{R}^M$, we say $(\boldsymbol{\sigma}, \boldsymbol{\xi})$ is v-representable.

Levy-Lieb (universal density) functional

Definition

For every $(\sigma, \xi) \in [-1, 1]^N \times \mathbb{R}^M$ the *Levy-Lieb* (universal density) *functional* $F_{\mathrm{LL}}: [-1, 1]^N \times \mathbb{R}^M \to \mathbb{R}$ is

$$F_{\mathrm{LL}}(\boldsymbol{\sigma}, \boldsymbol{\xi}) = \inf_{\boldsymbol{\psi} \in \mathcal{M}_{\boldsymbol{\sigma}, \boldsymbol{\xi}}} \langle \boldsymbol{\psi}, \mathbf{H}_0 \boldsymbol{\psi} \rangle$$

$$\mathcal{M}_{\sigma,\xi} = \{ \psi \in Q_0 : ||\psi|| = 1, \ \sigma_{\psi} = \sigma, \ \xi_{\psi} = \xi \}.$$

Theorem (Existence of an optimizer for $F_{\rm LL}$)

For every $(\sigma, \xi) \in [-1, 1]^N \times \mathbb{R}^M$ there exists a $\psi \in \mathcal{M}_{\sigma, \xi}$ such that

$$F_{\rm LL}(\boldsymbol{\sigma}, \boldsymbol{\xi}) = \langle \boldsymbol{\psi}, \mathbf{H}_0 \boldsymbol{\psi} \rangle.$$

Theorem (Optimality)

Let $(\sigma, \xi) \in \mathcal{R}_N \times \mathbb{R}^M$ and suppose that $\psi \in \mathcal{M}_{\sigma, \xi}$ is an optimizer of $F_{\mathrm{LL}}(\sigma, \xi)$. Then there exist Lagrange multipliers $E \in \mathbb{R}$, $\mathbf{v} \in \mathbb{R}^N$ and $\mathbf{j} \in \mathbb{R}^M$, such that ψ satisfies the strong Schrödinger equation

$$\mathbf{H}(\mathbf{v}, \mathbf{j})\boldsymbol{\psi} = E\boldsymbol{\psi} \tag{11}$$

and the second-order condition

$$\langle \boldsymbol{\chi}, \mathbf{H}(\mathbf{v}, \mathbf{j}) \boldsymbol{\chi} \rangle \ge E \| \boldsymbol{\chi} \|^2,$$
 (12)

for all $\chi \in \mathcal{T}_{\psi}(\mathcal{M}_{\sigma,\xi})$. Moreover,

$$F_{\rm LL}(\boldsymbol{\sigma}, \boldsymbol{\xi}) = \langle \boldsymbol{\psi}, \mathbf{H}_0 \boldsymbol{\psi} \rangle = E - \mathbf{v} \cdot \boldsymbol{\sigma} - \mathbf{j} \cdot \boldsymbol{\xi}. \tag{13}$$

The second-order information (12) about a minimizer gives a result which is analogous to the Aufbau principle in Hartree–Fock theory.

Theorem (Optimizers are low-lying eigenstates)

Let $(\sigma, \xi) \in \mathcal{R}_N \times \mathbb{R}^M$, and suppose that $\psi \in \mathcal{M}_{\sigma, \xi}$ is an optimizer of $F_{\mathrm{LL}}(\sigma, \xi)$, with Lagrange multipliers $E \in \mathbb{R}$, $\mathbf{v} \in \mathbb{R}^N$ and $\mathbf{j} \in \mathbb{R}^M$, so that (11) and (12) holds true. Then ψ is at most the (N+M)th excited eigenstate of $\mathbf{H}(\mathbf{v}, \mathbf{j})$.

Any $(\sigma, \xi) \in \mathcal{R}_N \times \mathbb{R}^M$, while not proven to be pure-state v-representable in the usual sense, can be called "low-lying excited-pure-state v-representable".

M = N = 1

Corollary 4.8. Consider a regular density pair $(\sigma, \xi) \in (-1, 1) \times \mathbb{R}$. Then the following holds:

- 1. (v-representability) The (σ, ξ) is uniquely purestate v-representable.
- 2. (equivalence of functionals) $F_{LL}(\sigma, \xi) = F_{L}(\sigma, \xi)$.
- 3. (differentiability) The $F_{\rm LL}$ is differentiable at (σ, ξ) and $(v, j) = -\nabla F_{\rm LL}(\sigma, \xi)$ are its representing external potentials.

Summary

- Study of an (almost) explicit form of a DFT
- Sharper results on Hohenberg–Kohn and v-rep
- More direct properties of the functional (to be used in future work)

Availabe on arXiv

QUANTUM-ELECTRODYNAMICAL DENSITY-FUNCTIONAL THEORY FOR THE DICKE HAMILTONIAN

VEBJØRN H. BAKKESTUEN

Department of Computer Science, Oslo Metropolitan University, Norway

MIHÁLY A. CSIRIK AND ANDRE LAESTADIUS

Department of Computer Science, Oslo Metropolitan University, Norway

Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Norway

MARKUS PENZ

Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

Department of Computer Science, Oslo Metropolitan University, Norway

ABSTRACT. A detailed analysis of density-functional theory for quantum-electrodynamical model systems is provided. In particular, the quantum Rabi model, the Dicke model, and a generalization of the latter to multiple modes are considered. We prove a Hohenberg–Kohn theorem that manifests the magnetization and displacement as internal variables, along with several representability results. The constrained-search functionals for pure states and ensembles are introduced and analyzed. We find the optimizers for the pure-state constrained-search functional to be low-lying eigenstates of the Hamiltonian and, based on the properties of the optimizers, we formulate an adiabatic-connection formula. In the reduced case of the Rabi model we can even show differentiability of the universal density functional, which amounts to unique pure-state v-representability.

Thank you for your attention!