CONTROLO

1° semestre 2011-2012

Introdução ao Matlab e Simulink

- Ensaios a realizar durante a sessão de Laboratório -

<u>Objectivo</u>: Familiarização com algumas capacidades do *software* MATLAB/Simulink, no contexto dos Sistemas e Controlo.

Eduardo Morgado

- Setembro 2011 -

Parte A - Usando o Matlab

A.1 - Sistema de 1ª ordem:

$$H_1(s) = \frac{a}{s+b}$$

Exercício - Concretizar a função de transferência $H_1(s)$ para diferentes valores numéricos de 'a' e 'b'. Simular resposta no tempo (step) e na frequência (bode), observar e interpretar.

> Exemplo: a = 1 e b = 2>> num=[1]; den=[1 2]; >> sys=tf(num,den) >> step(sys) >> bode(sys) para sobrepôr diferentes gráficos: >> hold on , ... , >> hold off

Outros comandos úteis:						
>>	tfinal=10;	step(sys,tfinal)	>> step(sys,10)			
>> sys=tf(a,[1 b])						

Resposta no Tempo ao escalão unitário (step): efeitos da variação dos parâmetros a e b. Observe a resposta para diferentes valores de a e b. Assinale as frases correctas:

b aumenta \Rightarrow rapidez aumenta \square constante de tempo = b $p\'olo = b \square$ b aumenta \Rightarrow rapidez diminui \Box constante de tempo = 1/bpólo = - b □

- Qual é o ganho estático de H₁(s) ? Ganho estático =
- Resposta na Frequência (bode); largura de banda, relação tempo-frequência. Para os mesmos valores de 'a' e 'b' anteriormente escolhidos, obtenha os diagramas de Bode da resposta em frequência e estime o correspondente valor da largura de banda a -3dB, LB(-3dB).

Assinale as frases correctas: >> bandwidth(sys)

LB(-3dB) aumenta \Rightarrow rapidez aumenta \square b aumenta \Rightarrow LB(-3dB) aumenta b aumenta \Rightarrow LB(-3dB) diminui \Box LB(-3dB) aumenta \Rightarrow rapidez diminui \square

A.2 - Sistema de 2^a ordem:
$$H_2(s) = \frac{a}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Exercício - Observar o efeito da variação do coeficiente de amortecimento ξ e do módulo **dos polos** ω_n . (por simplicidade, faça $a = \omega_n^2$.)

- resposta no tempo ao escalão: i) $\omega_n = 1$, $\xi = 2 \setminus 1 \setminus 0.707 \setminus 0.5 \setminus 0.2 \setminus 0$, ii) $\xi = 0.2$ $\omega_n = 1 \setminus 2$
- resposta na frequência: iii) $\omega_n = 1$ $\xi = 1 \setminus 0.707 \setminus 0.1 \setminus 0.01$

>> sys=tf(wn.^2,[1 2*csi*wn wn.^2]) >> wn=...

Cálculo dos pólos: roots(den) ou pole(sys)

Relacione as características das respostas no tempo e na frequência com a localização dos pólos, em particular a Sobreelevação na resposta ao escalão, a rapidez de extinção do regime transitório (tempo de estabelecimento), e a Ressonância na frequência.

Exercício - **Suspensão de um automóvel** considerando um modelo físico simplificado, um sistema massa-mola-atrito.

- Determine a equação diferencial que relaciona, em torno do ponto de equilíbrio, os deslocamentos $x_i(t)$ e $x_o(t)$.
- Obtenha e confirme a função de transferência $X_o(s)/X_i(s)$: $\frac{X_o(s)}{X_i(s)} = \frac{bs+k}{ms^2+bs+k}$ (sistema de 2ª ordem com um zero)
- Seja: massa m=1000Kg, elasticidade da mola $k=10^5Nm^{-1}$, coeficiente de atrito $b=10^4Nsm^{-1}$.
- Observe a resposta **no tempo** ao escalão. Ver a resposta **na frequência**. Interpretar.
- Considere uma rugosidade do terreno aproximadamente sinusoidal com um período espacial de 1 m. Avalie o efeito na comodidade dos passageiros para os seguintes valores da velocidade do carro: v = 72 Km/h; 35Km/h; 5Km/h

A.3 - **Sistemas com retroacção** (*feedback*), obtenção da função de transferência da malha fechada em Matlab:

```
>> sys = feedback(sys1,sys2) for negative feedback
>> sys = feedback(sys1,sys2,+1) for positive feedback
```


Parte B - Usando o Simulink

>> simulink

- na janela do Simulink Library Browser clicar 'file \ new model' e fazer drag-and-drop dos blocos necessários
- para resposta ao escalão colocar o bloco 'Step' à entrada
- para **visualizar** as respostas no *scope*: colocar o bloco 'Scope' na saída do sistema
- para visualizar as respostas no workspace: colocar o bloco 'Out1' na saída do sistema;
 simulation/start , >> plot(tout, yout)
- para sobrepôr vários gráficos no workspace: >> hold on , ... , >> hold off
- para obter os valores dos **pólos**, ou a **f.t., da malha fechada**, *a partir do diagrama Simulink:* assinalar a entrada e a saída com os blocos '**In1**' e '**Out1**' (*não deixar blocos não-conectados !*); guardar o diagrama-simulink 'diagr';

• em alguns casos são gerados pólos que se cancelam com zeros e convém simplificar a função de transferência com o comando "minreal":

```
>> s=minreal(tf(sys))
```

B.1 – Sistema de 2ª ordem - Efeitos de polo e zero adicionais. (pólos dominantes)

Exercício - Considere as seguintes cascatas de dois sistemas:

$$G_1(s) = \frac{1}{s+1}H(s), \quad G_2(s) = \frac{10}{s+10}H(s), \quad G_3(s) = \frac{10(s+9)}{9(s+10)}H(s), \quad G_4(s) = (s+1)H(s)$$

em que H(s) tem a função de transferência:

$$H(s) = \frac{5}{s^2 + 2s + 5} \,.$$

Por exemplo, a representação em Simulink da cascata $G_I(s)$ para resposta ao escalão é a seguinte:

Clicando em simulation/start a resposta pode ser observada com plot(tout, yout).

Para guardar o resultado y1=yout; t1=tout; Tendo as cinco respostas guardadas, (t1,y1), (t2,y2), (t3,y3), (t4,y4), (t5,y5), elas podem ser observadas em conjunto com o seguinte comando:

• Qual dos sistemas $G_1(s)$, ..., $G_4(s)$, tem uma resposta que mais se aproxima da resposta do subsistema H(s)? Porquê?

B.2 – Sistema em malha fechada - controlo de posição

B.2.1 - Na figura está representado um sistema de controlo da posição angular de uma antena (*Norman S. Nise, Control Systems Engineering, ed. John Wiley & Sons*)

• Implemente o correspondente diagrama Simulink da figura:

'v': tensão de entrada do motor ' ω ': velocidade angular do eixo (antena) Como se pretende controlar a posição angular θ_o , existe no diagrama um bloco integrador. Por simplicidade, faça Kp=1.

• Dado que o sistema em malha aberta tem somente pólos reais, será possível que o sistema com retroacção (malha fechada), $\theta_o(s)/\theta_r(s)$, tenha uma resposta transitória oscilatória?

Exercício - Obtenha, em simulação, a resposta do sistema ao escalão unitário para diferentes valores do ganho K, por exemplo K = 0, 1 / 0, 2 / 0, 3 / 1 / 5. **Relacione as respostas observadas com o valor dos polos da função de transferência da malha fechada.**

Nota: Para calcular os pólos a partir do diagrama Simulink deverá colocar na entrada do sistema o bloco 'In1', na saída o bloco 'Out1' e utilizar os comandos [a,b,c,d]=linmod('diagr'); s= ss(a,b,c,d); pole(s), tal como indicado no início da secção B. Obtem a resposta no tempo com o comando step(s).

Para obter apenas a resposta ao escalão pode utilizar um bloco 'Step' na entrada do sistema e fazer simulation/start ... >>plot(tout, yout).

Para ter acessíveis as duas funcionalidades pode usar o bloco 'Sum' como indicado no diagrama.

K	s_1	s_2
0,1		
0.2		
0.2		
1		
5		

- **B.2.2** Considere agora que um amplificador é descrito por uma função de transferência de 1ª ordem.
 - Faça as necessárias modificações no diagrama Simulink:

Nesta configuração a 'lei de controlo' $m = f(\theta_r, \theta_o)$, em que m é a saída do bloco 'K', θ_r é a entrada de referência, e θ_o a variável de saída, pode ser escrita como $m = K(\theta_r - \theta_o)$.

Exercício:

- Verifique, em simulação, que o sistema fica instável para valores de $K > Kcrítico \approx 4.8$.
- Para o valor de K=Kcrítico determine os polos da malha fechada: $s_1=...., s_2=...., s_3=....$
- Determine e represente os pólos da malha fechada para outros valores de K

K	s_1	s_2	S ₃
4.8			
1			
2			
0.1			

(os pólos da malha aberta estão representados por X)

<0 aumento da ordem do sistema promoveu a instabilidade>

- **B.2.3** Considere agora que se dispunha de um **sensor de velocidade** angular (taquímetro). Para tentar estabilizar o sistema vai fazer-se retroacção negativa da velocidade com ganho K_{ν} . Introduziu-se assim uma **malha de retroacção adicional**.
 - Faça as necessárias modificações no diagrama Simulink:

Exercício:

- Determine a nova 'lei de controlo' $m = g(\theta_r, \theta_o)$
- Coloque o sistema numa situação equivalente a B.2.2 ($K_v = 0$) e de franca instabilidade ($K = 2 \times Kcrítico$).

Verifique, em simulação, que o ajuste do ganho K_{ν} permite estabilizar o sistema.

$$K_v =$$

• **Tente justificar o observado** (determine os pólos do sistema em malha fechada para os valores de K_v ensaiados)

<A retroacção pode estabilizar um sistema

se a Lei de Controlo fôr correctamente escolhida >