

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2018-2019

MATERIA: FÍSICA

INSTRUCCIONES GENERALES Y CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder a las cuestiones de la opción elegida.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos (1 punto cada apartado).

TIEMPO: 90 minutos.

OPCIÓN A

Pregunta 1.- Los satélites LAGEOS son una serie de satélites artificiales diseñados para proporcionar órbitas de referencia para estudios geodinámicos de la Tierra. Consisten en un cuerpo esférico de masa m = 405 kg que se mueve en órbita circular alrededor de la Tierra a una altura de 5900 km sobre su superficie. Determine:

- a) El periodo de este tipo de satélites.
- b) La energía requerida para que, desde la superficie de la Tierra, pasen a describir dicha órbita.

Datos: Constante de Gravitación Universal, $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$; Masa de la Tierra, $M_T = 5.97 \cdot 10^{24} \text{ kg}$; Radio de la Tierra, $R_T = 6.37 \cdot 10^6 \text{ m}$.

Pregunta 2.- Un detector acústico que se encuentra situado a 200 m de una sirena mide un nivel de intensidad sonora de 80 dB. Suponiendo que la sirena emite como una fuente puntual, determine:

- a) La potencia sonora de la sirena.
- b) La distancia a la que debemos situar dicho detector para que mida la misma intensidad sonora cuando la sirena tiene una potencia doble a la del apartado anterior.

*Dato: Intensidad umbral de audición, I*₀ = 10^{-12} W m⁻².

Pregunta 3.- Una carga q_1 = 10 μ C está situada en el origen de coordenadas, mientras que otra carga q_2 = 20 μ C está situada en el punto (3, 0) m. Calcule:

- a) El punto del espacio en el que el campo eléctrico total generado por ambas cargas es nulo.
- b) El trabajo que realiza el campo para transportar un electrón desde el punto (3, 4) m hasta el punto (2, 0) m.

Datos: Valor absoluto de la carga del electrón, $e = 1,6\cdot10^{-19}$ C; Constante de la Ley de Coulomb, $K = 9\cdot10^9$ N m² C⁻².

Pregunta 4.- Una lente convergente de 10 cm de distancia focal se utiliza para formar la imagen de un objeto de tamaño y = 1 cm. Si queremos que la imagen se forme 14 cm a la derecha de la lente:

- a) Determine la posición donde se debe situar el objeto y el tamaño de la imagen que se obtiene.
- b) Realice el trazado de rayos correspondiente.

Pregunta 5.- Si iluminamos un cierto material con una luz de longitud de onda λ = 589 nm se liberan electrones con una energía cinética máxima de 0,577 eV. Por otro lado al iluminarlo con luz ultravioleta de longitud de onda λ = 179,76 nm, la energía cinética máxima de los electrones emitidos es 5,38 eV. Determine:

- a) El valor de la constante de Planck y el trabajo de extracción del material.
- b) La longitud de onda de de Broglie del electrón con energía cinética máxima para el caso en el que se ilumine el material con la luz ultravioleta.

Datos: Valor absoluto de la carga del electrón, $e = 1,6 \cdot 10^{-19} \,\mathrm{C}$; Masa en reposo del electrón, $m_e = 9,1 \cdot 10^{-31} \,\mathrm{kg}$; Velocidad de la luz en el vacío, $c = 3 \cdot 10^8 \,\mathrm{m \ s^{-1}}$.

OPCIÓN B

Pregunta 1-.El satélite Europa describe una órbita circular alrededor de Júpiter de 671100 km de radio. Teniendo en cuenta que su periodo de revolución es de 3,55 días terrestres, determine:

- a) La masa de Júpiter.
- b) La velocidad de escape desde la superficie de Júpiter.

Datos: Constante de Gravitación Universal, $G = 6.67 \cdot 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2}$; Radio de Júpiter, $R_{Júpiter} = 69911 \,\mathrm{km}$.

Pregunta 2.- La expresión matemática de una onda transversal que se propaga a lo largo del eje *x* viene determinada por la siguiente expresión en unidades del S.I.:

$$y(x,t) = 0.05 \cos (8\pi t - 4\pi x + \varphi_0)$$

Determine:

- a) El valor de la fase incial φ_0 , si sabemos que en el instante t=5 s la velocidad de oscilación de un punto situado en x=3 m es nula y su aceleración es positiva.
- b) El tiempo que tardará en llegar la onda al punto x = 8 m si suponemos que la fuente generadora de dicha onda comienza a emitir en t = 0 en el origen de coordenadas.

Pregunta 3.- Un positrón, partícula idéntica al electrón pero con carga positiva, es acelerado mediante una diferencia de potencial ΔV para posteriormente introducirse en una región del espacio en la que hay un campo magnético $B = 5 \, \mu T$ perpendicular a la velocidad del positrón. Sabiendo que el radio de la órbita circular que describe el positrón es 50 cm, obtenga:

- a) El valor de la diferencia de potencial ΔV utilizada para acelerar el positrón.
- b) El valor de la frecuencia angular de giro del positrón en dicha órbita.

Datos: Valor absoluto de la carga del positrón, $e = 1,6 \cdot 10^{-19} \text{ C}$; Masa del positrón, $m_p = 9,1 \cdot 10^{-31} \text{ kg}$.

Pregunta 4.- Desde lo alto de un trampolín, Carlos es capaz de ver a Laura que está buceando en el fondo de la piscina. Para ello tiene que mirar con un ángulo de 30° con respecto a la vertical. La altura de observación es de 4 m y la piscina tiene una profundidad de 3 m. Si el índice de refracción del agua es $n_{aqua} = 1,33$, determine:

- a) La distancia respecto a la vertical del trampolín a la que se encuentra Laura.
- b) El ángulo límite entre ambos medios y realice un esquema indicando la marcha del rayo.

*Dato: Índice de refracción del aire, n*₀ = 1.

Pregunta 5.- Una muestra de madera de un sarcófago se ha datado mediante el método del ¹⁴C con una edad de 3200 años. En la muestra se ha detectado que la cantidad de ¹⁴C ha disminuido, respecto de la que había originariamente, un 32%.

- a) Calcule la vida media del ¹⁴C y el periodo de semidesintegración.
- b) Si la muestra actual contiene una masa de 8 μg de ^{14}C , ¿qué actividad presenta dicha muestra?

Datos: Número de Avogadro, $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$; Masa atómica del ¹⁴C, M = 14.0 u.

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

FÍSICA

- * Las preguntas deben contestarse razonadamente, valorando en su resolución una adecuada estructuración y el rigor en su desarrollo.
- * Se valorará positivamente la inclusión de pasos detallados, así como la realización de diagramas, dibujos y esquemas.
- * En la corrección de las preguntas se tendrá en cuenta el proceso seguido en la resolución de las mismas, valorándose positivamente la identificación de los principios y leyes físicas involucradas.
- * Se valorará la destreza en la obtención de resultados numéricos y el uso correcto de las unidades en el Sistema Internacional.
- * Cada pregunta, debidamente justificada y razonada con la solución correcta, se calificará con un máximo de 2 puntos.
- * En las preguntas que consten de varios apartados, la calificación máxima será la misma para cada uno de ellos (desglosada en múltiplos de 0,25 puntos).