

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Master Regenerative Energien Regenerative Wärmetechnik

1. Energie- und Exergiebilanzen

Prof. Dr.-Ing. Petra Bittrich petra.bittrich@htw-berlin.de

Tel. 5019 – 4345

Wärmebereitstellung - Überblick

Qualität der Energie

I. HS bewertet alle Energieformen gleich

• Spezifische (massenbezogene) Größen
$$h = \frac{H}{m}$$
 $[h, q, w_t] = \frac{kJ}{kq}$

 $\Delta h = q_{12} + W_{t12}$

 $\Delta H = \mathbf{Q}_{12} + \mathbf{W}_{t12}$

- Arbeit und Wärme haben unterschiedliche Qualitäten (Umwandelbarkeit)
- Umwandlung in Richtung niedere Qualität ist mit Verlusten verbunden
- Aufwertung zu höherer Qualität kann nicht von selbst erfolgen
- II. HS berücksichtigt unterschiedliche Qualitäten der Energie
- Zustandsgröße Entropie: "schwierige" Einheit kJ/(kg K) (Energie pro Temperatur), Arbeit - entropiefreie Größe, taucht in der Bilanz nicht auf

$$dS = \frac{dQ}{T} + dS_{irr} \qquad [S] = \frac{kJ}{K} \qquad [s] = \frac{kJ}{kg K}$$

Exergie –
 verbindet Aussagen von I. und II. HS und hat Energieeinheit kJ

 $[H,Q,W_t] = kJ, kWh$

Berechnungsgleichungen für die Enthalpie

$$dh = \left(\frac{\partial h}{\partial T}\right)_{p} dT + \left(\frac{\partial h}{\partial p}\right)_{T} dp$$

Für die Berechnung von Absolutwerten der Enthalpie muss stets ein Bezugspunkt festgelegt

$$h^{\varnothing} = h(T^{\varnothing}, p^{\varnothing})$$
 $z.B.$ $h^{\varnothing} = h(T_0, p_0) = 0$

$$\left(\frac{\partial h}{\partial T}\right)_{p} = c_{p}$$

 $\left(\frac{\partial h}{\partial T}\right)_{\perp} = C_p$ spezifische Wärmekapazität: bei konstantem Druck

a) für <u>isobare Zustandsänderungen</u> dp = 0 im einfachen System gilt für ideale Gase, Feststoffe und Flüssigkeiten:

$$dh = c_p dT$$

$$dH = m c_p dT$$

$$|\overrightarrow{fur} c_p = const. \Rightarrow h_2 - h_1 = \Delta h = c_p(T_2 - T_1)$$

$$h_2 - h_1 = \Delta h = c_p (T_2 - T_1)$$

$$H_2 - H_1 = \Delta H = m c_p \Delta T$$

b) Feststoffe, Flüssigkeiten und reale Gase bei dp ≠ 0

$$dh = c_{p} dT + \left[v - T \left(\frac{\partial v}{\partial T} \right)_{p} \right] dp$$

c) Für Phasenänderung bzw. chem. Reaktionen:

$$\Delta^{\alpha\beta}h$$

$$\Delta^{R} \overline{h}$$

$$H_{i}$$

Berechnungsgleichungen für die Entropie id. Gase

$$ds = \left(\frac{\partial s}{\partial T}\right)_{p} dT + \left(\frac{\partial s}{\partial p}\right)_{T} dp$$

$$ds = \frac{dh - vdp}{T} = \frac{du + pdv}{T}$$

$$ds = \frac{c_p}{T}dT - \left(\frac{\partial V}{\partial T}\right)_p dp$$

a) für <u>isobare Zustandsänderungen</u> *dp* = 0 im einfachen System gilt für ideale Gase, Feststoffe und Flüssigkeiten:

$$\Delta s = c_p \ln \frac{T_2}{T_1}$$

b) Ideale Gase bei dp \neq 0

$$\Delta s = c_p \ln \frac{T_2}{T_1} - R_K \ln \frac{p_2}{p_1}$$

Tabelle: Zustandsänderung ideales Gas auf Moodle unter Formelsammlung

Die thermischen Koeffizienten

Messbare physikalische Eigenschaften, die die Berechnung der energetischen Größen ermöglichen

Isochorer Spannungskoeffizient

$$\beta = \frac{1}{p_0} \left(\frac{dp}{dT} \right)_V$$

$$[\beta] = \frac{1}{K}$$

(Isobarer) thermischer Ausdehnungskoeffizient

$$\alpha = \frac{1}{v_0} \left(\frac{\partial v}{\partial T} \right)_p$$

$$[\alpha] = \frac{1}{K}$$

(isothermer) Kompressibilitätskoeffizient

$$\chi = -\frac{1}{v_0} \left(\frac{\partial v}{\partial p} \right)_T$$

$$[\chi] = \frac{1}{Pa}$$

$$\alpha = p_0 \beta \chi$$

Wichtige Differentialgleichungen der TD

Zurückführung der energetischen Zustandsgrößen auf die thermische Koeffizienten

$$dh = \left(\frac{\partial h}{\partial T}\right)_{p} dT + \left(\frac{\partial h}{\partial p}\right)_{T} dp$$

$$dh = c_p dT + \left[v - T \left(\frac{\partial v}{\partial T} \right)_p \right] dp$$

$$du = \left(\frac{\partial u}{\partial T}\right)_{v} dT + \left(\frac{\partial u}{\partial v}\right)_{T} dv$$

$$du = c_{v}dT + \left[T\left(\frac{\partial p}{\partial T}\right)_{v} - p\right]_{T}dv$$

$$ds = \left(\frac{\partial s}{\partial T}\right)_p dT + \left(\frac{\partial s}{\partial p}\right)_T dp$$

$$ds = \frac{c_p}{T}dT - \left(\frac{\partial v}{\partial T}\right)_p dp$$

$$ds = \left(\frac{\partial s}{\partial T}\right)_{v} dT + \left(\frac{\partial s}{\partial v}\right)_{T} dv$$

$$ds = \frac{c_v}{T}dT - \left(\frac{\partial p}{\partial T}\right)_v dv$$

Definition der Exergie

- Exergie = Arbeitsfähigkeit
- Exergie = maximal aus einem System gewinnbare Arbeit bei reversibler Überführung in den Umgebungszustand
- Exergie beinhaltet die Festlegung eines Umgebungszustands, der einen wesentlichen Bezugspunkt für technische Prozesse darstellt (Zustandsgröße 2. Art)
- Umgebungszustand kann mit Thermodynamischem Normzustand oder mit abweichender Temperatur und Druck festgelegt werden
- Umgebungszustand = Gleichgewichtszustand, aus dem das System zu keiner Änderung, also auch keiner Arbeitsleistung, mehr fähig ist $e_U = 0$
- Exergie ermöglicht in der Verknüpfung der Aussagen des I.HS und II.HS die Darstellung der unterschiedlichen Qualitäten der Energie in Energieeinheiten

Ableitung der Definitionsgleichung der Exergie

Maximal gewinnbare Arbeit bei reversibler Überführung eines Arbeitsmittels vom Zustand 1 bis in den Umgebungszustand: $\mathbf{W}_t = \Delta \mathbf{h} - \mathbf{q}$

Zerlegung in zwei reversible Teilzustandsänderungen:

 rev. adiabate Entspannung kein Verlust an Arbeitsfähigkeit durch Wärmeaustausch

$$q_{1Z}=0 w_{t,1\to Z}=h_Z-h_1$$

2. reversibel isotherme Entspannung/Verdichtung bei Umgebungstemperatur, Wärmeaustausch bei T_U hat keinen Einfluss auf Arbeitsfähigkeit

$$w_{t,\text{max}} = w_{t,Z\to U} = (h_U - h_Z) - q_{ZU}$$

= $(h_U - h_Z) - T_U \Delta s = (h_U - h_Z) - T_U (s_U - s_{1=Z})$

Ableitung der Definitionsgleichung der Exergie

Exergie = - insgesamt reversibel gewinnbare Wärme

$$W_{t,1\to Z}=h_Z-h_1$$

$$W_{t,Z\to U} = (h_U - h_Z) - T_U(s_U - s_{1=Z})$$

$$W_{t,1\to U} = (h_U - h_1) - T_U(s_U - s_1)$$

$$e_1 = -W_{t,1 \rightarrow U}$$

Definitionsgleichung der spezifischen Exergie

$$e = (h - h_U) - T_U(s - s_U)$$

$$\dot{E} = \dot{m}e = \dot{m}[(h - h_U) - T_U(s - s_U)]$$

Exergie und Exergieänderung des idealen Gases

$$e_1 = (h_1 - h_U) - T_U(s_1 - s_U)$$

$$\Delta e = e_2 - e_1 = (h_2 - h_1) - T_U(s_2 - s_1)$$
$$= \Delta h - T_U \Delta s$$

$$\Delta h = c_{\rho} \Delta T$$
 $\Delta s = c_{\rho} \ln \frac{T_2}{T_1} - R_{\kappa} \ln \frac{p_2}{p_1}$

$$e = c_{p} \left(T - T_{U} \right) - T_{U} \left[c_{p} \ln \frac{T}{T_{U}} - R_{K} \ln \frac{p}{p_{U}} \right]$$

$$\Delta \mathbf{e} = \mathbf{c}_{p} \left(T_{2} - T_{1} \right) - T_{U} \left[\mathbf{c}_{p} \ln \frac{T_{2}}{T_{1}} - R_{K} \ln \frac{p_{2}}{p_{1}} \right]$$

Unterscheidung zwischen Bezugszustand (thermodynamischer Normzustand p_0, T_0) und Umgebungszustand ist möglich

$$h_U = c_p \left(T_U - T_0 \right)$$

$$\mathbf{s}_U = \mathbf{c}_p \ln \frac{T_U}{T_0} - \mathbf{R}_K \ln \frac{\mathbf{p}_U}{\mathbf{p}_0}$$

$$h_U = c_p (T_U - T_0)$$
 $s_U = c_p \ln \frac{T_U}{T_0} - R_K \ln \frac{p_U}{p_0}$ $e_U = (h_U - h_U) - T_U (s_U - s_U) = 0$

ÜA1 Exergie+E.-Verlust/1

Berechnen Sie die spezifische Exergie von Luft mit einem (Turbineneintritts-) Zustand mit dem Druck $p_1 = 1$ MPa und $t_1 = 600$ °C.

Der Bezugszustand für die Energie ist mit h_0 , $s_0 = 0$ bei t_0 und p_0 festgelegt.

Der Umgebungszustand ist mit $T_U = 293,15$ K und $p_U = p_0 = 101,3$ kPa anzunehmen.

Stoffeigenschaften Luft: ideales Gas, $c_{pL} = 1,005 \text{ kJ/(kg K)}$, $R_L = 0,287 \text{ kJ/(kg K)}$

Bilanzgleichung der Exergie und Exergieverlust

Verknüpfung der Exergiedefinition mit den Prozessgrößen Wärme und Arbeit

Def.-Gleichung

$$\Delta e = e_2 - e_1 = (h_2 - h_1) - T_U(s_2 - s_1) = \Delta h - T_U \Delta s$$

$$de = dh - T_U ds$$

$$de = dq + dw_t - T_U \left(\frac{dq}{T} + ds_{irr} \right)$$

Bilanz – Gleichung der Exergie

$$de + T_U ds_{irr} = \left(1 - \frac{T_U}{T}\right) dq + dw_t$$

$$de_v = T_U ds_{irr}$$

Vergleich mit 1. Hauptsatz

$$dh = dq + dw_t$$

$$dW_t$$
 Arbeit (entropiefrei) = 100 % Arbeitsfähigkeit

$$de_q = \left(1 - \frac{T_U}{T}\right)dq$$
 Arbeitsfähigkeit der Wärme – abhängig von Temperatur

Exergie der Wärme

$$de_q = \left(1 - \frac{T_U}{T}\right) dq$$

Arbeitsfähigkeit der Wärme – abhängig von Temperatur

$$\mathbf{e}_{q} = \left(1 - \frac{T_{U}}{T}\right) \mathbf{q}_{12}$$

Für Wärme bei konstanter Temperatur (z.B. Phasenänderung)

Exergie = Arbeitsfähigkeit:

z.B. in Arbeit umwandelbarer Anteil der Wärme in reversiblem Carnot-Kreisprozess

Carnot -Kreisprozess

$$\eta_{Carnot} = \frac{-W}{q_{zu}} = \frac{q_{zu} - |q_{ab}|}{q_{zu}} = \frac{T_{zu}\Delta s - T_{ab}|\Delta s|}{T_{zu}\Delta s} = \frac{T_{zu} - T_{ab}}{T_{zu}}$$

Einbeziehung Umgebungszustand $T_{ab} = T_{U}$

 $\eta_{Carnot(T,T\underline{U})} \rightarrow Carnot-Faktor \tau$

$$\eta_{{\sf Carnot}(T,T_U)} = au = rac{T - T_U}{T}$$

Exergie der Wärme

$$e_{q} = -w = \tau q_{12} = \frac{T - T_{U}}{T} q_{12}$$

Exergie (Arbeitsfähigkeit) der Wärme

$$\mathbf{e}_{q} = \frac{T - T_{U}}{T} \mathbf{q}_{12}$$

- Wärme mit $T = \infty$ ist gleichwertig mit Arbeit
- Umgebungswärme hat keine Exergie (e_U = 0)
- Oberhalb T_{U} kann Arbeit gewonnen werden $(\tau > 0)$, unterhalb T_{U} ist Arbeit aufzuwenden (Kälteerzeugung, $\tau < 0$)
- Kälteerzeugung bei niedrigen Temperaturen erfordert ein Vielfaches an Arbeit (|τ| > 1)
- Gleiche Temperaturdifferenzen erzeugen im Kältebereich höhere Exergieänderungen(-verluste) als im Wärmebereich

ÜA Exergie+Verbrennung/2

In einem Biomasseheizkessel wird ein Rauchgasstrom $\dot{m}_G = 0.33$ kg/s ($c_p = 1.2$ kJ/(kg K)) von $t_I = 1485$ °C auf $t_2 = 223$ °C isobar ($p = p_U$) abgekühlt. Dabei wird ein Wassermassenstrom bei $t^{LV} = 200$ °C gerade vollständig verdampft ($\Delta h^{LV} = 1940$ kJ/kg)

- a) Welcher Wärmestrom steht zur Verfügung, welcher Massenstrom \dot{m}_W kann verdampft werden?
- b) Welcher Exergieverluststrom $\Delta \dot{E}_V$ tritt bei der Wärmeübertragung auf? ($T_U = T_\theta = 273,15 \text{ K}$)
- c) Geben Sie ein Senkey-Diagramm für Energie- und Exergiefluss an.

Wasserdampftafel Zustandsgrößen auf der Siede- und Taulinie

Tabelle 5.22. Thermodynamische Eigenschaften von Wasser und Wasserdampf im sättigungszustand (Temperaturtafel) /3/

		ν'	Λ.,	h/	h"	s'	s"
0 _C	MPa MPa	m3 · kg * 1	m3 - kg - 1	h' kJ·k		kJ·kg·1	
0,01	0,0006112	0,00100022	206,175 147,167	0,000614		-0,0002	9,1562
5	0,0008719	0,001000		21,01	2510,2	0,0762	9,0258
10	0,0012271	0,0010003	106,419	41,99	2519,4	0,1510	8,9009
15	0,0017041	0,0010008	77,97	62,94	2528,6	0,2243	8,7815
20	0,0023368	0,0010017	57,833	83,86	2537,7	0,2963	8,6674
25	0,0031663	0,0010029	43,399	104,77	2546,8	0,3670	8,5583
30	0,0042417	0,0010043	32,929	125,66	2555,9	0,4365	8,4537
35	0,0056217	0,0010060	25,246	146,56	2565,0	0,5049	8,3536
40	0,0073749	0,0010078	19,548	167,45	2574,0	0,5721	8,2576
45	0,0095817	0,0010099	15,278	188,35	2582,9	0,6383	8,1655
50	0,012335	0,0010121	12,048	209,26	2591,8	0,7035	8,0771
55	0,015740	0,0010145	9,5812	230,17	2600,7	0,7677	7,9922
60	0,019919	0,0010171	7,6807	251,09	2609,5	0,8310	7,9106
65	0,025008	0,0010199	6,2042	272,02	2618,2	0,8933	7,8320
70	0,031161	0,0010228	5,0479	292,97	2626,8	0,9548	7,7565
75	0,038448	0.0010259	4,1356	313,94	26,35,3	1,0154	7,6837
80	0,047359	0,0010292	3,4104	334,92	2643,8	1,0752	7,6135
85	0,057803	0,0010326	2,8300	355,92	2652,1	1,1343	7,5459
90	0,070108	0,0010361	2,3624	376,94	2660,3	1,1925	7,4805
95	0,084525	0,0010398	1,9832	397,99	2668,4	1,2500	7,4174
100	0.101325	0.0010437	1,6738	419,06	2676,3	1,3069	7,3564
110	0,14326	0,0010519	1,2106	461,32	2691,8	1,4185	7,2402
120	0,19854	0.0010606	0,69202	503,7	2706,6	1,5276	7,1310
130	0,27012	0,0010700	0,66851	546.3	2720,7	1,6344	7,0281
140	0,36136	0,0010801	0,50875	589,1	2734,0	1,7390	6,9307
150	0.47597	0.0010908	0,39261	632,2	2746,3	1,8416	6.8381
160	0.61804	0,0011022	0,30689	675,5	2757.7	1,9425	6,7498
170	0,79202	0.0011145	0,24259	719,1	2768.0	2.0416	6,6652
180	1.0027	0,0011275	0,19381	763,1	2777.1	2,1393	6,5838
190	1,2552	0,0011415	0,15631	807,5	2784,9	2,2356	6,5052
200	1,5551	0,0011565	0,12714	852,4	2791,4	2,3307	6.4289
210	1,9079	0,0011726	0,10422	897,8	2796,4	2,4247	6,3546
220	2.3201	0,0011900	0,08602	943,7	2799.9	2,5178	5,2819
230	2,7979	0,0012087	0,07143	990,3	2801,7	2,6102	6,2104
240	3,3480	0,0012291	0,05964	1037,5	2801,6	2,7021	6,1397
250	3,9776	0,0012513	0,05002	1085,8	2799,5	2,7930	6,0693
260	4,6940	0,0012756	0,04212	1135.0	2795,2		5,9989
270	5,5051	0,0013025	0,03557	1185,4	2788,3	2,9766	5,9278
280	6,4191	0,0013324	0,03010	1237,0	2778,6	3,0687	5,8555
290	7,4448	0,0013659	0,02551	1290,3	2765,4	3,1616	5,7811
300	8,5917	0,0014041	0,02162	1345,4	2748,4	3,2559	5,7038
310	9,8697	0,0014480	0,01829	1402,9	2726,8	3,3522	5,6224
320	11,290	0,0014995	0,01544	1463,4	2699,6		5,5356
330	12.865	0,0015614	0,01296	1527,5	2665,5	3,5546	5,4414
340	14,608	0,0016390	0,01078	1596,8	2622,3	3,6638	5,3363
350	16,537	0,0017407	0,00882	1672,9	2566,1	3,7816	5.2149
360	18,674	0,0018930	0,006970		2485,7		5,0603
370	21,053	0,0022310	0,004958	1896,2	2335,7	4.1198	4,8031

Tabelle 5.23. Thermodynamische Eigenschaften von Wasser und Wasserdampr im Sättigungszustand (Drucktafel) /3/

м Ра	<u>c</u>	A 703		h'	h"	s'	s*
мра	_ °C	m3.kg·1	m3.kg·1	kc-kg-1	kJ·kg ⁻¹	kJ-kg-1-K-1	kJ · kg - 1 · K - 1
0,001	6,98	1,0001	129,208	29,33	2513,8	0,1060	8,9756
0,002	17,51	1,0012	67,006	73,45	2533,2	0,2606	8,7236
0,003	24,09	1,0027	45,668	101,00	2545,2	0,3543	8,5776
0,004	28,98	1,0040	34,803	121,41	2554,1	0,4224	8,4747
0,005	32,90	1,0052	28,196	157,77	2561,2	0,4762	8,3952
0,006	36,18	1,0064	23,742	151,50	2567,1	0,5209	8,3305
0,007	39,02	1,0074	20.532	163,38	2572,2	0,5591	8,2760
0,008	41,53	1,0084	18,106	173.87	2576,7	0,5926	8,2289
0,009	43,79	1,0094	16,206	183,28	2580,8	0,6224	8,1875
0,01	45,83	1,0102	14,676	191,84	2584,4	0,6493	8,1505
0,02	60,09	1,0172	7,6515	251,46	2609,6	0,8321	7,9092
0,03	69,12	1,0223	5,2308	289,31	2625,3	0,9441	7,7695
0,04	75,89	1,0265	3,9949	317,65	2636,8	1,0261	7,6711
0,05	81,35	1,0301	3,2415	340,57	2646,0	1,0912	7,5951
0,06	85,95	1,0333	2,7329	359,93	2653,6	1,1454	7,5332
0,07	89,96		2,3658	376,77	2660,2	1,1921	7,4811
0,08	93,51		2,0789	391,72	2666,0	1,2330	7,4360
0,09	96,71		1,8701	405,21	2671,1	1,2796	7,3963
0,10	99,63		1,6946	417,51	2675,7	1,3027	7,3608
0,15	111,37	-	1,1597	467,13	2693,9	1,4336	7,2243
0,20	120,23		0,88597			1,5301	7,1286
0,25	127,43		0.7188			1,6072	7,0540
0,30	133.54		0.60586			1,6717	6,9930
0,35	138,88	1,0789	0.5242			1,7273	6,9414
0,40	143,62					1,7764	6,8966
0,45	147,92	1,0885	0,4139	2 623,3	2743,8	1,8204	6,8570
0,50	151,85	1,0928	0.3748			1,8604	6,8215
0,5	158,84	1,1009	0,3155	6 670,4	2756,4	1,9308	6,7598
0,7	164,96	1,1082	0,2727	4 697,1	2762,9	1,9918	6,7074
0,8	170,42	1,1150	0,2403	0 720,9	2768,4	2,0457	6,6618
0,9	175,36	1,1213	0,2148	4 742,6	2773,0	2,0941	6,6212
1,0	179,88	1,1274	0,1943	0 762,6	2777,0	2,1382	6,5847
2,0	212,37	1,1766	0,0995	3 908,6	2797,4	2,4468	6,3373
3,0	233,84	1,2163	0,0666	2 1008,	4 2801,9	2,6455	6,1832
4,0	250,33	3 1,2521	0,0497	4 1087,	5 2799,4	2,7967	6,0670
5,0	263,92			-			5,9712
6,0	275,50			_		3,0277	5,8878
8.0	294,98						5,7430
10	310,96						5,6143.
12	324,64		-			3,4986	5,4930
14	336,6					3,6262	5,3737
16	347,3					3,7486	5,2495
18	356,9		0,0075	3 1733,	4 2514,4	3,8739	5,1135
20	365,7					4,0181	4,9338
22	373,6					4,2891	4,5748
	3/3,0	2,0/30	0,003/	0 2007,	, 2172,	*,.031	4,5740

Energiebilanz

Energie (Enthalpie) der Stoffströme

$$\sum_{i} \dot{H}_{zu,i} = \sum_{j} \dot{H}_{ab,j} \approx 800 \,\mathrm{kW}$$

Übertragene Wärme

Exergiebilanz

Exergie der Stoffströme

$$440\,\mathrm{kW} = \sum_{i} \dot{E}_{zu,i} = \sum_{j} \dot{E}_{ab,j} + \Delta \dot{E}_{V}$$

Exergieänderung

$$\Delta \dot{E}_{RG} = \Delta \dot{E}_{D} + \Delta \dot{E}_{V}$$

Exergie der Wärme und Thermodynamische Mitteltemperatur

Bilanzgleichung der Exergie

$$de + de_v = dw_t + \left(1 - \frac{T_U}{T}\right)dq = dw_t + de_q$$

Exergieverlust $de_V = +T_U ds_{irr}$

Exergie der Wärme bei T = const. z.B. $q_{12} = \Delta^{\alpha\beta} h \neq f(T)$

$$\mathbf{e}_{q} = \int \left(1 - \frac{T_{u}}{T}\right) d\mathbf{q} = \left(1 - \frac{T_{u}}{T}\right) \mathbf{q}_{12} = \frac{T - T_{u}}{T} \mathbf{q}_{12}$$

Exergie von Wärme mit gleitender Temperatur $dq = c_n dT$

$$\mathbf{e}_{q} = \int \left(1 - \frac{T_{u}}{T}\right) dq = \int_{T_{1}}^{T_{2}} \left(1 - \frac{T_{u}}{T}\right) c_{n} dT$$

Ziel: Berechnungsgleichung für eine Mitteltemperatur $T_{\rm m}$ für die gilt

$$e_q = \frac{T_m - T_u}{T_m} q_{12}$$
 $q_{12} = c_n (T_2 - T_1)$

Thermodynamische Mitteltemperatur

$$e_q = (1 - \frac{T_u}{T_m}) q_{12} = \int_1^2 1 - \frac{T_u}{T} dq$$

$$dq = c_n dT$$

$$(1 - \frac{T_u}{T_m}) q_{12} = \int_1^2 dq - \int_1^2 \frac{T_u}{T} dq = q_{12} - \int_{T_1}^{T_2} c_n \frac{T_u}{T} dT$$

$$(1-\frac{T_u}{T_m}) q_{12} = = q_{12} - c_n T_U \ln \frac{T_2}{T_1}$$

$$\frac{T_u}{T_m} q_{12} = c_n T_u \ln \frac{T_2}{T_1}$$

$$q_{12} = c_n(T_2 - T_1)$$

$$\frac{T_u}{T_m} c_n (T_2 - T_1) = c_n T_u \ln \frac{T_2}{T_1}$$

$$T_m = \frac{T_2 - T_1}{\ln \frac{T_2}{T_1}}$$
 Thermodynamische Mitteltemperatur

$$T_m = \frac{\Delta h}{\Delta s}$$
 für isobare Prozesse

Energiebilanz

Energie (Enthalpie) der Stoffströme

$$\sum_{i} \dot{H}_{zu,i} = \sum_{j} \dot{H}_{ab,j} \approx 800 \, \text{kW}$$

Übertragene Wärme $\dot{Q}_{zu} pprox 500\,kW$ $\dot{Q}_{D} pprox 500\,kW$

Exergiebilanz

Exergie der Stoffströme

Berechnen Sie die Exergieänderung des Rauchgases bei der Abkühlung von t1 = 1485 °C auf t2 = 223 °C auf Basis der thermodynamischen Mitteltemperatur des abgegebenen Wärmestroms von = 500 kW.

Exergieänderung

$$\Delta \dot{E}_{RG} = \Delta \dot{E}_{D} + \Delta \dot{E}_{V}$$

ÜA1 Exergie+E.-Verlust/3

Eine Turbine entspannt Luft vom unter 1. genannten Turbineneintrittszustand auf den Druck p_2 = p_U = 100 kPa. Berechnen Sie den energetischen und exergetischen Wirkungsgrad für

- a) reversibel adiabate Entspannung
- b) adiabate aber irreversible Entspannung mit einem Isentropenwirkungsgrad $\eta_{is} = 0.8$.
- c) Die Zustandsänderungen und der Exergieverlust sind im T,s-Diagramm darzustellen.

Reversibel und irreversibel adiabate Turbinenentspannung

reversibel adiabate Entspannung:

$$T_{2rev} = T_1 \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}}$$
 $W_{trev} = h_{2rev} - h_1 = C_p \left(T_{2rev} - T_1\right)$

adiabat und irreversibel:

$$ds = \frac{dw_{Diss}}{T} = ds_{irr} > 0$$

Isentropenwirkungsgrad, innerer Wirkungsgrad

$$\eta_{is,E} = \frac{W_t}{W_{t,rev}} = \frac{h_2 - h_1}{h_{2rev} - h_1}$$

$$T_2 = T_1 - \eta_{is,E} (T_1 - T_{2,rev})$$

 $dw_{Diss} = T ds_{irr}$

Fläche unter der ZÄ = diss. Arbeit

Entspannung in der Turbine (ÜA 1/3)

Energiebilanz

$$T_{2rev} = T_1 \left(\frac{\boldsymbol{p}_2}{\boldsymbol{p}_1}\right)^{\frac{\kappa-1}{\kappa}}$$
 Reversib

Reversibel
$$h_1 = h_2 + W_t$$

Irrversibel
$$T_2 = T_1 - \eta_{is,E}(T_1 - T_{2,rev})$$

Exergiebilanz

Zusammenfassung: Möglichkeiten der Exergie- Berechnung

Exergie der Wärme (abgeleitet aus Carnot-Prozess)

$$\dot{E}_{Q} = \frac{T_{m} - T_{U}}{T_{m}} \dot{Q}$$

$$\dot{E}_{Q} = \frac{T_{m} - T_{U}}{T_{m}} \dot{Q}$$

$$e_{q} = \frac{T_{m} - T_{U}}{T_{m}} q_{12} = \tau q_{12}$$
Carnot-
Faktor

$$T_m = \frac{T_2 - T_1}{\ln \frac{T_2}{T_1}}$$

Exergie von Stoffströmen (geleistete Arbeit bei rev. Überführung in den Umgebungsanstand)

$$\dot{E} = \dot{m} \left[h - h_U - T_U (s - s_U) \right]$$

$$\dot{E} = \dot{m} \left[h - h_U - T_U (s - s_U) \right] \qquad e = c_p \left(T - T_U \right) - T_U \left[c_p \ln \frac{T}{T_U} - R_K \ln \frac{p}{p_U} \right]$$

Exergieänderung bei isobarer ZÄ (Wärmeübertragung)

$$\Delta e = \Delta h - T_U \Delta s$$

$$T_m = \frac{T_2 - T_1}{\ln \frac{T_2}{T_1}} = \left(\frac{\Delta h}{\Delta s}\right)_{p=const.}$$

$$\Delta e = \Delta h - T_U \frac{\Delta h}{T_m}$$

$$\Delta e = \left[1 - \frac{T_U}{T_m}\right] \Delta h = \frac{T_m - T_U}{T_m} \Delta h = \tau \Delta h$$

Mitteltemperatur und Carnot-Faktor lassen sich auch auf Stoffströme anwenden

Exergie von Brennstoffen

Energie der Brennstoffe ist chemische Energie, die bei sehr hoher Temperatur bereitgestellt werden kann (z.B. durch Luftvorwärmung bei der Verbrennung)

$$H_i = -\Delta^R h$$
 $e_q = \left[\lim_{T \to \infty} \frac{T - T_U}{T}\right] \Delta^R h = 1 \Delta^R h$

$$e_B \approx H_i = \Delta^R h$$
 etwas genauer: $e_B \approx H_i + W \Delta^{LV} h$

Sobald die Verbrennungswärme in fühlbare, nur noch bei abnehmender Temperatur nutzbare Wärme umgewandelt ist, steht diese Exergie nicht mehr vollständig zur Verfügung.

Brennstoffzellen: direkte Umwandlung der chemische Energie in Arbeit (Strom) durch Umleitung der an der Reaktion beteiligten Elektronen.

Je niedriger die Temperatur der dabei abgegebenen Wärme, desto höher der Wirkungsgrad der BZ.

$$egin{aligned} oldsymbol{w}_{el} &pprox oldsymbol{e}_{chem} - oldsymbol{e}_{q} \ & oldsymbol{e}_{q} = rac{T - T_{U}}{T} q \end{aligned}$$

