EEL 5764 Computer Architecture

Sandip Ray

Department of Electrical and Computer Engineering
University of Florida

Lecture 10: Cache Optimizations

Announcements

- Corrected a typo in the homework assignment schedule.
 Look at the updated schedule in the Web page
- Added a tentative schedule of lectures. Note that this is subject to change based on the pace of the class.
- No extension on Problem Set 1. But it's not graded anyhow and we'll only look at the problem sets (rather than HWs) if you're borderline between two grades.
- Please post your questions on canvas.
- Implementation projects can be in groups of 2
 (minimum) or 4 maximum. Surveys by no more than 2.
 - → Please start the process of forming your teams. Feel free to use Canvas discussions for that.
- Surveys will be graded much more stringently than implementation projects

Six Basic Cache Optimizations

- Larger block size
 - → Reduces compulsory misses
 - → Increases capacity and conflict misses, increases miss penalty
- Larger total cache capacity to reduce miss rate
 - → Increases hit time, increases power consumption
- Higher associativity
 - → Reduces conflict misses
 - → Increases hit time, increases power consumption
- Multi-level cache to reduce miss penalty
 - → Reduces overall memory access time
- Giving priority to read misses over writes
 - → Reduces miss penalty
- Avoiding address translation in cache indexing
 - → Reduces hit time

Optimization 1 – Larger Block Size

- Reduce compulsory misses due to spatial locality
- May increase conflict/capacity misses
- Increase miss penalty

Optimization 1 – Larger Block Size

- Reduce compulsory misses due to spatial locality
- May increase conflict/capacity misses
- Increase miss penalty

		Cache size	size		
Miss penalty	4K	16K	64K	256K	
82	8.027	4.231	2.673	1.894	
84	7.082	3.411	2.134	1.588	
88	7.160	3.323	1.933	1.449	
96	8.469	3.659	1.979	1.470	
112	11.651	4.685	2.288	1.549	
	82 84 88 96	82 8.027 84 7.082 88 7.160 96 8.469	Miss penalty 4K 16K 82 8.027 4.231 84 7.082 3.411 88 7.160 3.323 96 8.469 3.659	Miss penalty 4K 16K 64K 82 8.027 4.231 2.673 84 7.082 3.411 2.134 88 7.160 3.323 1.933 96 8.469 3.659 1.979	

Optimization 3 – Higher Associativity

- Reduces conflict misses
- Increases hit time
- Increases power consumption

Cache size (KB)	Associativity				
	1-way	2-way	4-way	8-way	
4	3.44	3.25	3.22	3.28	
8	2.69	2.58	2.55	2.62	
16	2.23	2.40	2.46	2.53	
32	2.06	2.30	2.37	2.45	
64	1.92	2.14	2.18	2.25	
128	1.52	1.84	1.92	2.00	
256	1.32	1.66	1.74	1.82	
512	1.20	1.55	1.59	1.66	

Optimization 4 – Multilevel Cache

- L1 hit time affects CPU speed
 - → Small and fast L1
- Speed of L2 affects L1 miss penalty
 - → Large L2 with higher associativity

Optimization 5 – Giving Priority to Read Misses over Writes

Reduces miss penalty. See example below.

```
SW R3, 512(R0) ;M[512] \leftarrow R3 (cache index 0)
LW R1, 1024(R0) ;R1 \leftarrow M[1024] (cache index 0)
LW R2, 512(R0) ;R2 \leftarrow M[512] (cache index 0)
```

- Write-through cache with write buffers suffers from RAW conflicts with main memory reads on cache misses:
 - → Write buffer holds updated data needed for the read.
 - → Alt #1 wait for the write buffer to empty, increasing read miss penalty (in old MIPS 1000 by 50%).
 - → Alt #2 Check write buffer contents before a read; if no conflicts, let the memory read go first.

Optimization 6 – Avoid Address Translation during Cache Indexing to Reduce Hit Time

Translation 6 – Avoid Address Translation during Cache Indexing to Reduce Hit Time

Advanced Cache Optimizations

Basic Ideas

- Reduce hit time, miss rate, and miss penalty
- Increase cache bandwidth
- Reduce miss rate/penalty via parallelism

Opt 1 – Small and Simple L1 Caches

- Critical timing path in cache hit:
 - → addressing tag memory, then
 - → comparing tags, then
 - → selecting correct set
- Direct-mapped caches can overlap tag comparison and transmission of data
- Lower associativity reduces power because fewer cache lines are accessed. However,
 - → Associativity used to increase size of virtually indexed cache
 - → Higher associativity reduces conflict misses due to multithreading

Opt 1 – L1 Size and Associativity

Access time increases as size & associativity increases

Opt 1 – L1 Size and Associativity

Energy per read increases as size & associativity increases

Opt 2 – Way Prediction

Way prediction set them before tag comparison is done.

Opt 2 – Way Prediction

Opt 2 – Way Prediction

- Block associated with prediction (low order tag) bits.
 - → Predicts the next block to be accessed what locality?
 - → Multiplexer could be set early to select the predicted block, only a single tag comparison
 - → A miss results in checking the other blocks
- Prediction accuracy
 - \rightarrow > 90% for two-way
 - \rightarrow > 80% for four-way
 - → I-cache has better accuracy than D-cache
 - → First used on MIPS R10000 in mid-90s
- Extend to predict block as way selection
 - → Intends to save power consumption.
 - → Increases mis-prediction penalty

Opt 3 – Pipelining Cache

- Pipeline cache access to improve bandwidth
 - → Faster clock cycle, but slow hit time
 - → Examples:
 - ➤ Pentium: 1 cycle
 - Pentium Pro Pentium III: 2 cycles
 - ➤ Pentium 4 Core i7: 4 cycles
- Increases branch mis-prediction penalty
- Makes it easier to increase associativity
 - → In associative cache, tag compare and data output are serialized