John Garrett

PROFILE

- * I am a Submillimeter Array Fellow at the Harvard & Smithsonian Center for Astrophysics. My research is focused on advanced submillimeter-wave receivers for radio astronomy.
- * I have a strong technical background in:
 - **Superconducting detectors**: modeling superconductors and quantum tunneling effects, testing superconducting devices in cryogenic systems
 - Electrical engineering: RF design, electromagnetic simulations, low-noise testing
 - Software: building complex simulation software, analyzing experimental data, automating experimental test systems
- * I have published my research in top academic journals, including 7 first author papers. These papers combined have +250 citations.

Employment History

Submillimeter Array (SMA) Fellow, Center for Astrophysics | Harvard & Smithsonian

2019 - pres.

- * Developing a new sideband separating receiver for the wSMA
- * Contributing to the wideband SMA (wSMA) upgrade (extending the instantaneous bandwidth)

Postdoctoral research assisant, Department of Physics (Astrophysics), University of Oxford

2018 - 2019

* Developed a new 900 GHz SIS receiver system, a model to simulate distributed SIS frequency multipliers, and a 1×4 focal plane array at 230 GHz

Education

DOCTORATE

DPhil Astrophysics, University of Oxford, Oxford, UK

2014 - 2018

- * Supervisor: Prof. Ghassan Yassin
- * Thesis: A 230 GHz Focal Plane Array Using a Wide IF Bandwidth SIS Receiver
 - Developed a wideband SIS mixer and a 1×4 focal plane array
 - Built a software package to simulate the behavior of SIS junctions (online: QMix)
 - Observed star formation in intermediate redshift galaxies using the IRAM 30 m telescope

Masters

MSc Electrical Engineering, University of Calgary, Calgary, Canada

2012 - 2014

- * Supervisor: Prof. Elise Fear
- * Thesis: Average Dielectric Property Analysis of Non-Uniform Structures
 - Developed a new technique to estimate the average dielectric properties of complex and non-uniform structures using microwave transmission measurements
 - Developed a new tissue mimicking material to test biomedical imaging systems

BACHELORS

BSc Electrical Engineering, University of Alberta, Edmonton, Canada

2008 - 2012

* Capstone project: Nanowire Metamaterials for Biosensing Applications

Publications

Journal Papers

- <u>J. Garrett</u>, and E. Tong, "A Dispersion-Compensated Algorithm for the Analysis of Electromagnetic Waveguides," submitted for publication.
- A. Traini, B.-K. Tan, <u>J. Garrett</u>, et al., "The Influence of LO Power Heating of the Tunnel Junction on the Performance of THz SIS Mixers," *IEEE Trans. THz Sci. Technol.*, vol. 10, no. 6, pp. 721-730, Nov. 2020.
- <u>J. Garrett</u>, et al., "A Non-Linear Transmission Line Model for Simulating Distributed SIS Frequency Multipliers," *IEEE Trans. THz Sci. Technol.*, vol. 10, no. 3, pp. 246–255, May 2020.
- <u>J. Garrett</u>, et al., "Simulating the Behavior of a 230 GHz SIS Mixer Using Multi-Tone Spectral Domain Analysis," *IEEE Trans. THz Sci. Technol.*, vol. 9, no. 9, pp. 540–548, Nov. 2019.
- <u>J. Garrett</u>, A. Pollak, G. Yassin, and M. Henry, "A Compact and Easy to Fabricate *E*-plane Waveguide Bend," *IEEE Microw. Wireless Compon. Lett.*, vol. 29, no. 8, pp. 529–531, Aug. 2019.
- <u>J. Garrett</u>, and G. Yassin, "QMix: A Python package for simulating the quasiparticle tunneling currents in SIS junctions," *J. Open Source Softw.*, vol. 4, no. 35, pp. 1231, Mar. 2019.
- I. Cortzen, J. Garrett, et al., "PAHs as tracers of the molecular gas in star-forming galaxies," Mon. Notices Royal Astron. Soc., vol. 482, no. 2, pp. 1618–1633, Oct. 2018.
- <u>J. Garrett</u>, and E. Fear, "A New Breast Phantom with a Durable Skin Layer for Microwave Breast Imaging," *IEEE Trans. Antennas Propag.*, vol. 63, no. 4, pp. 1693–1700, Jan. 2015.
- <u>J. Garrett</u>, and E. Fear, "Average Dielectric Property Analysis of Complex Breast Tissue with Microwave Transmission Measurements," *Sensors*, vol. 15, no. 1, pp. 1199–1216, Jan. 2015.
- <u>J. Garrett</u>, and E. Fear, "Stable and Flexible Materials to Mimic the Dielectric Properties of Human Soft Tissues," *IEEE Antennas Wireless Propag. Lett.*, vol. 13, pp. 599–602, Mar. 2014.
- J. Bourqui, <u>J. Garrett</u>, and E. Fear, "Measurement and Analysis of Microwave Frequency Signals Transmitted Through the Breast," *Int. J. Biomed. Imag.*, vol. 2012, pp. 562563, Dec. 2012.

SELECTED CONFERENCE PROCEEDINGS

- <u>J. Garrett</u>, P. Grimes, and E. Tong, "Preliminary Design of a Multibeam Receiver for the SMA," in 31st Int. Sym. Space THz Tech., Tempe, AZ, 2020.
- <u>J. Garrett</u>, F. Boussaha, C. Chaumont, B.-K. Tan, and G. Yassin, "Multi-tone Spectral Domain Analysis of a 230 GHz SIS Device," in 30th Int. Sym. Space THz Tech., Göteborg, Sweden, 2019.
- <u>J. Garrett</u>, J. Leech, F. Boussaha, C. Chaumont, B. Ellison, and G. Yassin, "A 1×4 Focal Plane Array Using 230 GHz SIS Mixers," in 29^{th} Int. Sym. Space THz Tech., Los Angeles, CA, 2018.
- <u>J. Garrett</u>, H. Rashid, V. Desmaris, V. Belitsky, and G. Yassin, "Spectral Domain Simulation of SIS Frequency Multiplication," in 28th Int. Sym. Space THz Tech., Cologne, Germany, 2017.
- J. Garrett, F. Boussaha, C. Chaumont, B.-K. Tan, and G. Yassin, "A 230 GHz Finline SIS Receiver with Wide IF Bandwidth," in 27th Int. Sym. Space THz Tech., Nanjing, China, 2016.
- <u>J. Garrett</u>, B.-K. Tan, F. Boussaha, C. Chaumont, and G. Yassin, "A 220 GHz Finline Mixer with Ultra-Wide Instantaneous BW," in 26th Int. Sym. Space THz Tech., Cambridge, MA, 2015.
- <u>J. Garrett</u>, and E. Fear, "Average Property Estimation Validation with Realistic Breast Models," in 8th Eur. Conf. Antennas Propag., The Hague, Netherlands, 2014, pp. 1279–1280.

This page contains hyperlinks. Please click on the titles to go to the open-access versions (if available).