МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 2.4.1 Определение теплоты испарения жидкости

Салтыкова Дарья Б04-105

1 Введение

Цель работы: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона–Клаузиуса.

Оборудование: термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчетный микроскоп.

2 Теоретические сведения

Теплоту парообразования жидкостей можно измерить непосредственно при помощи калориметра. Такой метод, однако, не позволяет получить точных результатов из-за неконтролируемых потерь тепла, которые трудно сделать малыми. В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона–Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)} (1).$$

Здесь P — давление насыщенного пара жидкости при температуре T, T — абсолютная температура жидкости и пара, L — теплота испарения жидкости, V2 — объем пара, V1 — объем жидкости. Найдя из опыта $\frac{dP}{dT}$, T, V2 и V1, можно определить L путем расчета. Величины L, V2 и V1 в формуле (1) должны относиться к одному и тому же количеству вещества; мы будем относить их к одному молю. В нашем приборе измерения производятся при давлениях ниже атмосферного. В этом случае задача существенно упрощается.

С помощью уравнения Ван-дер-Ваальса можно получить зависимость P(T), с помощью которой определить искомую величину:

$$(P + \frac{a}{V^2})(V - b) = RT (2)$$

В таблице ниже приведены все значения параметров различных жидкостей уранения Ван-дер-Ваальса в условиях данного опыта.

	$T_{ ext{кип}}$	$V_1,$	V_2 ,	b,	a	a/V_2^2
Вещество		10^{-6}	10^{-3}	10^{-6}		
	K	$\frac{_{ m M}3}{_{ m MOЛЬ}}$	$\frac{_{\rm M}3}{_{ m MOJL}}$	$\frac{_{\rm M}3}{_{ m MOЛЬ}}$	$\frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\mathbf{mojb}^2}$	кПа
Вода	373	18	31	26	0,4	0,42
CCl ₄	350	97	29	126	1,95	2,3
Этиловый эфир	307	104	25	137	1,8	2,9
Этиловый спирт	351	58	29	84	1,2	1,4

Откуда видно, что $\frac{V_1}{V_2} < 0.005$, а $\frac{a}{PV^2} < 0.03$, ошибка метода измерений равна 4%, тогда записав уравнение Клапейрона-Менделеева для насыщенного пара, получим: $V = \frac{RT}{P}$. Пренебрегая V_1 (который не превосходит 0,5% от V_2), запишем:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)}$$
(3).

Эта формула является окончательной.

3 Экспериментальная установка

Схема установки изображена на рисунке. Наполненный водой резервуар 1 играет роль термостата. Нагревание термостата производится спиралью 2, подогреваемой электрическим током. Для охлаждения воды в термостате через змеевик 3 пропускается водопроводная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измеряетс я термометром 5. В термостат погружен запаянный прибор 6 с исследуемой жидкостью водой. Над ней находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по ртутному манометру, соединенному с исследуемым объемом. Отсчет показаний манометра производится при помощи микроскопа.

Описываемый прибор обладает важным недостатком: термометр определяет температуру термостата, а не исследуемой жидкости (или ее пара). Эти температуры близки друг к другу, если нагревание происходит достаточно медленно. Убедиться в том, что нагревание не является слишком быстрым, можно, сравнивая результаты, полученные при нагревании и при остывании прибора.

Рис. 1: Схема установки для определения теплоты испарения

4 Ход работы

- 1. Измерим разность уровней в ртутном U-образном манометре с помощью микроскопа и температуру по термометру.
- 2. Будем нагревать воду в калориметре, пропуская ток через нагреватель. Измерять давление будем с интервалом в 1° C.

F . C					~~				
T,° C	21,1	22	23	24	25	26	27	28	29
T, K	294,1	295	296	297	298	299	300	301	302
σ_T , K	0,2								
	20,1	20,8	21,8	22,0	23,6	26,2	26,5	28,3	29,2
P', MM	20,1	20,8	21,8	22,1	23,7	26,2	26,6	28,3	29,2
рт ст	20,1	20,7	21,8	22,1	23,6	26,2	26,6	28,3	29,2
	20,0	20,8	21,8	22,1	23,6	26,2	26,6	28,3	29,2
	20,1	20,7	21,8	22,1	23,6	26,2	26,6	28,4	29,2
$\langle P \rangle, \Pi a$	2659	2749	2887	2924	3128	3470	3520	2750	3867
$\sigma_P, \Pi a$	26,59	26,65	26,48	26,60	26,60	26,48	26,59	26,59	26,48
lnP	7,88	7,92	7,97	9,98	8,04	8,15	8,17	8,22	8,26
$\sigma_{ln_P}, *10^{-3}$	10,2	9,7	9,2	9,2	9,1	8,5	7,6	7,5	7,1
$1/T, 10^{-3} * K^{-1}$	3,40	3,39	3,378	3,367	3,356	3,344	3,33	3,322	3,311

T,° C	30	31	32	33	34				
T, K	303	304	305	306	307				
σ_T , K	0,2								
	31,3	33,4	34,8	35,1	39,8				
P', MM	31,3	33,4	34,8	35,1	39,8				
рт ст	31,2	33,4	34,8	35	39,8				
	31,3	33,4	34,9	35,1	39,8				
	31,3	33,4	34,9	35,1	39,8				
$\langle P \rangle, \Pi a$	4142	4423	4611	4640	5270				
$\sigma_P, \Pi a$	26,59	26,64	26,59	26,64	26,48				
lnP	8,32	8,39	8,43	8,44	8,57				
$\sigma_{ln_P}, *10^{-3}$	6,8	6,4	5,9	5,7	5,1				
$1/T, 10^{-3} * K^{-1}$	3,30	3,289	3,279	3,268	3,257				

3. Проведем те же измерения при охлаждении жидкости.

T,° C	21	22	23	24	25	26	27	28	29
T, K	294	295	296	297	298	299	300	301	302
σ_T , K	0,2								
	20,5	21,2	22,5	23,3	25,2	26,4	27,3	28,4	30,3
P', MM	20,4	21,2	22,6	23,3	25,2	26,3	27,3	28,5	30,3
рт ст	20,4	21,2	22,5	23,3	25,3	26,4	27,3	28,5	30,2
	20,4	21,2	22,5	23,3	25,2	26,5	27,3	28,4	30,3
	20,5	21,2	22,5	23,3	25,2	26,4	27,3	28,4	30,2
$\langle P \rangle, \Pi a$	2706	2807	2982	3085	3340	3496	3615	3766	4007
$\sigma_P, \Pi a$	26,65	26,48	26,59	26,48	26,59	26,75	26,48	26,64	26,65
lnP	7,90	7,94	8,00	8,03	8,11	8,15	8,19	8,23	8,29
$\sigma_{ln_P}, *10^{-3}$	6,6	7,1	7,6	7,9	8,6	8,9	9,4	9,8	9,8
$1/T, 10^{-3} * K^{-1}$	3,40	3,39	3,378	3,367	3,356	3,344	3,33	3,322	3,311

T,° C	30	31	32	33	34				
T, K	303	304	305	306	307				
σ_T , K	0,2								
	31,9	34,9	36,2	37,4	39,8				
P', MM	32,0	34,9	36,2	37,4	39,8				
рт ст	32,0	34,9	36,2	37,3	39,8				
	32,0	34,9	36,3	37,4	39,8				
	32,0	34,9	36,3	37,4	39,8				
$\langle P \rangle, \Pi a$	4235	4621	4799	4950	5271				
$\sigma_P, \Pi a$	26,59	26,48	26,64	26,59	26,49				
lnP	8,57	8,51	8,48	8,44	8,35				
$\sigma_{ln_P}, *10^{-3}$	5,2	5,4	5,6	5,7	6,3				
$1/T, 10^{-3} * K^{-1}$	3,30	3,289	3,279	3,268	3,257				

Погрешность измерения давления оценим по формулам

$$\sigma_P^{\text{случ}} = \sqrt{\frac{1}{N(N-1)} \sum_{k=1}^{N} (P_k - \langle P \rangle)^2}$$

$$\sigma_P^{\text{сист}} pprox 0.2$$
 мм рт ст = 2,65 Па

$$\sigma_P = \sqrt{(\sigma_P^{ ext{chct}})^2 + (\sigma_P^{ ext{chyq}})^2}$$

$$\sigma_{\ln \frac{P}{P_0}} = \frac{\sigma_P}{P}$$

4. Построим графики в координатах T, P и в координатах $\frac{1}{T}, \ lnP$. На графики нанесём точки, полученные при нагревании и охлаждении жидкости.

По формуле (3) вычислим L.

Сначала воспользуемся данными первого графика. Аппроксимируем методом наименьших квадратов полученные на этом участке температур зависимости функциями вида

$$P = ae^{bT},$$

где a и b – неизвестные параметры.

$$b = \frac{\langle \ln P \cdot T \rangle - \langle T \rangle \langle \ln P \rangle}{\langle T^2 \rangle - \langle T \rangle^2},$$
$$\ln a = \langle \ln P \rangle - b \langle T \rangle.$$

Случайные погрешности вычисления этих величин находим по следующим формулам:

$$\sigma_b^{\text{случ}} = \sqrt{\frac{1}{N-2} \left(\frac{\left\langle (\ln P - \left\langle \ln P \right\rangle)^2 \right\rangle}{\left\langle (T - \left\langle T \right\rangle)^2 \right\rangle} \right) - b^2},$$
$$\sigma_{\ln a}^{\text{случ}} = \sigma_b^{\text{случ}} \sqrt{\left\langle T^2 \right\rangle}.$$

Вкладом систематической погрешности в общую можно пренебречь в виду её малости по сравнению со случайной погрешностью определения коэффициентов. Поэтому будем считать, что

$$\sigma_b pprox \sigma_b^{
m cny\,q},$$
 $\sigma_{\ln a} pprox \sigma_{\ln a}^{
m cny\,q}.$

Получаем:

$$a_{\text{нагр}} = 7.9 * 10^{-6} \text{ Па}, a_{\text{охл}} = 5.7 * 10^{-6} \text{ Па}$$

$$b_{\text{Harp}} = 6.6 * 10^{-2} K^{-1}, b_{\text{OXJ}} = 8.1 * 10^{-2} K^{-1}$$

$$\sigma_{a_{\text{Harp}}} = 0.47 * 10^{-6} \text{ } \Pi a, \sigma_{a_{\text{ox}\pi}} = 0.24 * 10^{-6} \text{ } \Pi a$$

$$\sigma_{b_{\text{Harp}}} = 1.9 * 10^{-2} \text{K}^{-1}, \sigma_{b_{\text{ox},\text{I}}} = 1.3 * 10^{-2} K^{-1}$$

Используя полученные результаты, можно получить формулу для производной давления по температуре:

$$\frac{dP}{dT} = abe^{bT}.$$

Получаем:

$$L = \frac{RT^2ab}{P}e^{bT}.$$

Вычисляем теплоту парообразования воды. Погрешность вычисления этой величины можно оценить формулам:

$$\sigma_{L} = L \varepsilon_{\frac{dP}{dT}},$$

$$\sigma_{\frac{dP}{dT}} = \sqrt{\left(\frac{\partial \frac{dP}{dT}}{\partial a} \sigma_{a}\right)^{2} + \left(\frac{\partial \frac{dP}{dT}}{\partial b} \sigma_{b}\right)^{2}}$$

Таким образом,

$$L_{\rm harp} = 41.7 \pm 4.8 \; \frac{{
m K} \square {
m K}}{{
m MOJ}}, \; L_{
m oxj} = 40.4 \pm 5.1 \; \frac{{
m K} \square {
m K}}{{
m MOJ}}.$$

Теперь вычислим L, пользуясь данными, полученными из второго графика. $\frac{d(\ln P)}{d(1/T)} = k$ - коэффициент наклона графика $(k_{\text{нагр}} = -4.68 * 10^3 K, k_{\text{охл}} = -4.70 * 10^3 K)$.

$$L_{\text{Harp}} = 38.9 \pm 0.8 \; \frac{\text{кДж}}{\text{моль}}, \; L_{\text{охл}} = 39.1 \pm 1.2 \; \frac{\text{кДж}}{\text{моль}}.$$

Погрешности взяты из ошибок в определении коэффициентов аппроксимирующих прямых с помощью МНК.

5 Вывод

В ходе работы было измерено давление насыщенного пара воды при разной температуре. По полученным данным была вычислена теплота испарения. Значения, полученные экспериментально, в пределах погрешности согласуются с табличным ($L=40.7~\mathrm{кДж/моль}$). Для нагревания и охлаждения значения L приблизительно равны, что свидетельствует о том, что нагревание и охлаждение происходили примерно в одном темпе.

Точности методов измерения значительно отличаются. У поточечного измерения теплоты парообразования высокая случайная погрешность. График в координатах 1/T, lnP позволяет вычислить L с лучшей точностью, поскольку происходит усреднение по множеству точек.