Maximize It!

You are given a function $f(X) = X^2$.

You are also given K lists. The i^{th} list consists of N_i elements.

You have to pick exactly one element from each list so that the equation below is maximized:

$$S = (f(X_1) + f(X_2) + \ldots + f(X_k)) \% M$$

 X_i denotes the element picked from the i^{th} list . Find the maximized value S_{max} obtained.

% denotes the modulo operator.

Input Format

The first line contains ${f 2}$ space separated integers ${f K}$ and ${f M}$.

The next K lines each contains an integer N_i followed by N_i space separated integers denoting the elements in the list.

Output Format

Output a single integer denoting the value S_{max} .

Constraints

 $1 \le K \le 7$

 $1 \le M \le 1000$

 $1 \leq N_i \leq 7$

 $1 \leq Magnitude \ of \ elements \ in \ list \ \leq 10^9$

Sample Input

3 1000

254

3789

5578910

Sample Output

206

Explanation

Picking 5 from the 1^{st} list, 9 from the 2^{nd} list and 10 from the 3^{rd} list gives the maximum S value equal to $(5^2 + 9^2 + 10^2)\%1000 = 206$.