实验内容

1. 基于决策树的泰坦尼克号幸存者预测

知识点

1) 决策树模型可以用于分类预测

实验目的

- 1) 学习建立决策树分类预测模型,比较决策树和逻辑回归模型的差异
- 2) 学习使用 LabelEncoder 对离散变量进行编码和简单的缺失值处理方法

实验步骤

1) 打开 Jupyter, 并新建 python 工程

2) 读取数据

- 1. Jupyter 输入代码后,使用 shift+enter 执行,下同。
- 2. 数据集包含泰坦尼克号 891 名乘员的基本信息,及幸存数据。字段说明如下:

survival: Survival 0 = No, 1 = Yes

pclass: Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd

sex: Sex

Age: Age in years

sibsp: # of siblings / spouses aboard the Titanic parch: # of parents / children aboard the Titanic

ticket: Ticket number fare: Passenger fare cabin: Cabin number

embarked: C = Cherbourg, Q = Queenstown, S = Southampton

3. 使用 pandas 读取文件

[Code 001]:

import pandas as pd
df = pd.read_csv('/root/experiment/datas/titanic.csv',index_col=0)
df.head()

```
import pandas as pd

df = pd.read_csv('/root/experiment/datas/titanic.csv',index_col=0)
df.head()
```

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerid											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	s
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

3) 描述性分析与可视化分析

1. 查看数据的统计描述

[Code 002]:

df.describe()

df.describe()

	Survived	Pclass	A 000	SibSp	Parch	Fare
	Survived	PCIASS	Age	SiDSP	Parcn	Fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

2. 查看缺失值

[Code 003]:

df.isnull().sum()

```
df.isnull().sum()

Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64
```

3. 查看数据分布(绘图时,由于 jupyter 的问题,执行时可能需重复执行才能显示绘图结果,下同)

[Code 004]:

```
import matplotlib.pyplot as plt
df.hist(figsize=(10,8))
plt.show()
```


4) 数据预处理

1. 去掉无关字段

[Code 005]:

df = df.drop(['Name', 'Ticket', 'Cabin'],axis=1)
df.columns

2. 填充 Age 缺失值

[Code 006]:

```
mean_age = df['Age'].mean()
tmp = df['Age'].copy()
tmp[df.Age.isnull()] = mean_age
df['Age_fill'] = tmp
del tmp
df = df.drop(['Age'],axis=1)
df.columns
```

3. 使用 LabelEncoder 将离散变量转换为编码

```
[Code 007]:
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df\_sex = le.fit(df['Sex'])
df['Sex'] = df\_sex.transform(df['Sex'])
df = df.dropna()
df\_embarked = le.fit(df['Embarked'])
df['Embarked'] = df\_embarked.transform(df['Embarked'])
df.info()
 from sklearn.preprocessing import LabelEncoder
 le = LabelEncoder()
 df_sex = le.fit(df['Sex'])
df['Sex'] = df_sex.transform(df['Sex'])
 df = df.dropna()
 df_embarked = le.fit(df['Embarked'])
 df['Embarked'] = df_embarked.transform(df['Embarked'])
 df.info()
 <class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 1 to 891
 Data columns (total 8 columns):
 Survived
           889 non-null int64
            889 non-null int64
889 non-null int64
 Pclass
           889 non-null int64
889 non-null int64
 SibSp
 Parch
 Fare 889 non-null float64
Embarked 889 non-null int64
Age_fill 889 non-null float64
dtypes: float64(2), int64(6)
memory usage: 62.5 KB
    划分自变量和因变量,训练集和测试集
[Code 008]:
#划分自变量和因变量
X = df.loc[:,df.columns!='Survived']
y = df.loc[:,df.columns=='Survived']
#划分训练集和测试集
from sklearn.model_selection import train_test_split
X_{tr}, X_{ts}, y_{tr}, y_{ts} = train_{test\_split}(X, y)
X_{tr.shape}, X_{ts.shape}
```

```
X = df.loc[:,df.columns!='Survived']
y = df.loc[:,df.columns=='Survived']

from sklearn.model_selection import train_test_split

X_tr,X_ts,y_tr,y_ts = train_test_split(X,y)
X_tr.shape,X_ts.shape
((666, 7), (223, 7))
```

5) 建立模型

1. 建立决策树模型和逻辑回归模型

[Code 009]:

#建立决策树模型

```
from sklearn.tree import DecisionTreeClassifier
```

dtc = DecisionTreeClassifier()

 $dtc = dtc.fit(X_tr,y_tr)$

```
from sklearn.tree import DecisionTreeClassifier

dtc = DecisionTreeClassifier()
dtc = dtc.fit(X_tr,y_tr)
```

#建立逻辑回归模型

from sklearn.linear_model import LogisticRegression log = LogisticRegression(class_weight='balanced') log.fit(X_tr,y_tr.values.ravel())

```
from sklearn.linear_model import LogisticRegression

log = LogisticRegression(class_weight='balanced')
log.fit(X_tr,y_tr.values.ravel())

LogisticRegression(C=1.0, class_weight='balanced', dual=False,
    fit_intercept=True, intercept_scaling=1, max_iter=100,
    multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
    solver='liblinear', tol=0.0001, verbose=0, warm_start=False)
```

6) 模型预测与评估

1. 预测并查看混淆矩阵

[Code 010]:

#对测试集预测,查看混淆矩阵

 $y_dct_pred = dtc.predict(X_ts)$

 $y_log_pred = log.predict(X_ts)$

#查看决策树模型混淆矩阵

from sklearn.metrics import classification_report,confusion_matrix confusion_matrix(y_ts,y_dct_pred)

2. 查看逻辑回归模型混淆矩阵

[Code 011]:

confusion_matrix(y_ts,y_log_pred)

3. 打印决策树模型混淆矩阵评分

[Code 012]:

print(classification_report(y_ts,y_dct_pred))

print(classification_report(y_ts,y_dct_pred))

	precision	recall	f1-score	support
Θ	0.85	0.82	0.83	141
1	0.70	0.74	0.72	82
avg / total	0.79	0.79	0.79	223

4. 打印逻辑回归模型混淆矩阵评分

[Code 013]:

print(classification_report(y_ts,y_log_pred))

<pre>print(classification_report(y_ts,y_log_pred))</pre>								
	precision	recall	f1-score	support				
Θ	0.88	0.80	0.84	141				
1	0.70	0.80	0.75	82				
avg / total	0.81	0.80	0.81	223				

5. 使用 5 折交叉验证计算决策树模型预测准确率

[Code 014]:

from sklearn.model_selection import cross_val_score
scores = cross_val_score(dtc,X,y,cv=5,scoring='accuracy')
scores.mean()

```
from sklearn.model_selection import cross_val_score
scores = cross_val_score(dtc,X,y,cv=5,scoring='accuracy')
scores.mean()
```

0.7750777629657843

6. 使用 5 折交叉验证计算逻辑回归模型预测准确率

[Code 015]:

scores = cross_val_score(log,X,y,cv=5,scoring='accuracy')
scores.mean()

```
scores = cross_val_score(log,X,y.values.ravel(),cv=5,scoring='accuracy')
scores.mean()
0.7750523709769568
```

7) 实验结论

- 1. 本试验中,决策树模型在测试集上 f1-score 得分???
- 2. 本试验中,逻辑回归模型在测试集上 f1-score 得分???, 略 X 于决策树模型。
- 3. 5 折交叉验证显示,决策树模型准确率 XXX。
- 4. 5 折交叉验证显示,逻辑回归模型准确率 XXX。
- 5. 综上,本试验中,逻辑回归模型和决策树模型差异不大。