EE5609: Matrix Theory Assignment-14

Major Saurabh Joshi MTech Artificial Intelligence **AI20MTECH13002**

Download codes from

https://github.com/saurabh13002/EE5609/tree/master/Assignment14

1 Question

Let $M_n(K)$, denote the space of all $n \times n$ matrices with entries in a field K. Fix a non singular matrix $A = (A_{ii}) \in M_n(K)$, and consider the linear map $T : M_n(K) \to M_n(K)$ given by T(X) = AX. Then

- 1) trace(\mathbf{T}) = $n \sum_{i=1}^{n} \mathbf{A}_{ii}$. 2) trace(\mathbf{T}) = $\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{A}_{ij}$. 3) $rank(\mathbf{T}) = n^{2}$.
- 4) **T** is non singular.

2 Solution

Statement	Solution		
Definition	$T: \mathbb{F}^{nxm} \to \mathbb{F}^{nxm}$ defined as:		
	$T(X) = AX \label{eq:T}$ where A n x n is fixed and is a linear transformation.		
Properties	If A is the matrix representation of a linear transformation T , then		
	$nullity(\mathbf{T}) = \text{m.}nullity(\mathbf{A})$	(2.0.1)	
	$rank(\mathbf{T}) = m.rank(\mathbf{A})$	(2.0.2)	
	$tr(\mathbf{T}) = \mathbf{m}.tr(\mathbf{A})$	(2.0.3)	
	Also, rank of a non singular $n \times n$ matrix, $A = n$	(2.0.4)	
	$tr(\mathbf{A}) = \sum_{i=1}^{n} \mathbf{A}_{ii}$	(2.0.5)	
Checking $tr(\mathbf{T})$.	from (2.0.3), $tr(\mathbf{T}) = m.tr(\mathbf{A})$,	(2.0.6)	
	Since, A is a square matrix ∴ m=n	(2.0.7)	
	also, from (2.0.5),	(2.0.8)	
	$\implies tr(\mathbf{T}) = n \sum_{i=1}^{n} \mathbf{A}_{ii}$	(2.0.9)	
	Hence it is a correct option.	(2.0.10)	

Checking $tr(T) =$	from (2.0.9), $tr(\mathbf{T}) = n \sum_{i=1}^{n} \mathbf{A}_{ii}$, Hence, discarding the option.		
$\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{A}_{ij}.$	i=1	(2.0.11)	
Checking $rank(\mathbf{T}) = n^2$.	from (2.0.2) and (2.0.4), $rank(\mathbf{T}) = m.rank(\mathbf{A})$	(2.0.12)	
	from (2.0.7), $rank(\mathbf{T}) = n.rank(\mathbf{A})$	(2.0.13)	
	$\implies rank(\mathbf{T}) = n.n = n^2$	(2.0.14)	
	∴ Option 3 is also correct.	(2.0.15)	
Checking T is non singular.	from the given data $T(X) = AX$ is a linear map and A is non singular. (2.0.16)		
Checking 1 is non singular.	Hence, T is non singular. (2.0.17)		
Conclusion	Hence, from (2.0.9),(2.0.11),(2.0.14) and (2.0.17) option 1,3 and 4 are the correct answers.		

Table1:Solution