ANALYSIS QUALIFYING EXAM SPRING 2012

Part A. Choose any 3 of the 4 problems and solve. Justify each step! May quote named-theorems.

- Q-A1. Give an example of a function that is
 - (i) Lebesgue integrable but not Riemann integrable. Explain why.
 - (ii) Riemann integrable but not Lebesgue integrable. Explain why.

Q-A2. For this problem, consider just Lebesgue measurable functions $f:[0,1]\to\mathbb{R}$ together with the Lebesgue measure.

- (i) State Fatou's lemma (no proof required).
- (ii) State the Dominated Convergence Theorem (no proof required).
- (iii) Give an example where $f_n(x) \to 0$ almost everywhere, but $\int f_n(x)dx = 1$.
- Q-A3. Find the exact value of the limit

$$\lim_{n\to\infty}\int_0^\infty \left(\sum_{k=0}^n \frac{(-1)^k x^{2k}}{(2k)!}\right)e^{-2x}dx.$$

Q-A4. Suppose $f(x), xf(x) \in L_2(\mathbb{R})$. Prove that $f \in L_1(\mathbb{R})$.

Part B. Choose any 3 of the 5 problems and solve. Justify each step! May quote named-theorems.

Q-B1. Is the metric space C[0,1] of continuous functions under $d(f,g)=\int_0^1|f-g|dx$ complete? Justify.

Q-B2. Given the integral equation

(*)
$$f(t) = \frac{1}{2}\sin(f(t)) + \lambda \int_0^1 (t-s)^2 f(s) ds.$$

Show that there exists $\lambda_0 > 0$ such that for all $\lambda \in [0, \lambda_0)$, the equation (*) has a unique solution $f \in C[0, 1]$.

Q-B3. Consider the subset K of the Hilbert space $L_2[0,1]$ consisting of the functions $u_n(x) = (1+2^{-n})e^{2\pi i nx}$, where $n=1,2,3,\ldots$

- (i) Show K does not contain an element of smallest norm.
- (ii) Show that K is closed.

Q-B4. If $f \in L_1[-\pi, \pi]$, prove the fourier coefficients decay to 0, i.e. $\lim_{|n| \to \infty} \widehat{f}(n) = 0$.

Q-B5. Apply Fourier series to prove that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Hint. Parseval, f(x) = x of period 1.

COMPLEX ANALYSIS part of Analysis Qualifier Exam, January 13, 2012. All your answers must be justified whether or not the problem asks for a proof.

1. Let γ be the counterclockwise circle with center 0 and radius 3. Find the value of

$$\int_{\gamma} \frac{e^z - 1}{z^3 (z - 2)^2} \, dz.$$

2.Let $f(x+iy)=(sin(x)e^y+xy)+i(cos(x)e^y+\frac{x^2}{2}+\frac{y^2}{2}).$ Is f a holomorphic function? Justify your answer.

3.Let D be a bounded domain in $\mathbb C$ with a C^1 boundary. Let f(z) be a holomorphic function defined on an open set containing the closure of D. For any $z_0 \in D$, prove that f(z) can be expressed as a convergent power series with center z_0 and positive radius of convergence.(Prove this result, do not simply quote a theorem that says that this is true.) Is this power series unique (explain)?

4.Suppose f(z) is a holomorphic function on the punctured disk $D^* = \{z \mid 0 < |z-p| < R\}$ centered at the point $p \in \mathbb{C}$ of radius R > 0. Assume that |f(z)| is bounded on D^* . Prove that f(z) can be extended to also be holomorphic at p.

5.Suppose f(z) is holomorphic on a disk $\Delta(p,R)$ of center p and radius R>0 and that $f(p)=o,\ f(z)\neq 0$ for all $z\neq p,\ f'(p)=0$, and f''(p)=0. For small $\delta>0$ and $w\in\mathbb{C}$ with $|w|<\delta$, how many solutions $z\in\Delta(p,R)$ are there for f(z)=w? Justify your answer precisely.