EE240: Power Engineering LAB Open Circuit and Short Circuit Tests on Single Phase Transformer

Instructor Prof. B. G. Fernandes

2/2/2021, Tuesday

TRANSFORMERS

An important device used in power transmission, electronic circuits & communication systems.

- \Rightarrow consists of a magnetic circuit in which a time varying ' φ ' lines link two or more coils
- \Rightarrow coupling can be air \rightarrow air core transformer

Iron \rightarrow iron core transformer

core is made up of laminations to \downarrow core loss

<u>Purpose</u>: Transfer electric energy from one circuit to another

No electrical connection between two circuits.

⇒ Electrically isolated

Principle of Operation:

⇒ magnetic circuit in which time varying flux links two or more coils

winding connected to source → Primary

winding connected to load → Secondary

Primary when connected to alternating source & secondary is open

- \Rightarrow no current in secondary
- \Rightarrow AT produced by secondary = 0

- \Rightarrow AT supplied is just sufficient to establish ' ϕ ' in the core
 - ⇒ If core is highly permeable, this AT is small (how small is this small?)
- \Rightarrow since ' ϕ ' is alternating \Rightarrow core loss
- ⇒ source has to supply some power
- ⇒ for the present we will neglect
- \Rightarrow Time varying ' ϕ ' links N₁ turns & voltage (e₁/E₁) is induced

EE240: Power Engineering LAB

$$E_1 = 4.44 f \phi_m N_1$$

$$E_1 = V_1$$

 $\phi_m \rightarrow \text{peak value of '}\phi'$

 \Rightarrow same ϕ links the secondary

 \Rightarrow e₂ /E₂ is the voltage induced in N₂

$$E_2 = 4.44 f \phi_m N_2$$

 \Rightarrow E₂ & E₁ are in phase

$$\therefore \quad \frac{E_2}{E_1} = \frac{N_2}{N_1}$$

If $N_2 > N_1 \Rightarrow$ Step up transformer $N_2 < N_1 \Rightarrow$ Step down transformer

Connect the load to secondary i₂ will flow

 \Rightarrow which sets up its own flux, ϕ_2

- \Rightarrow This ϕ_2 opposes the parent ' ϕ '
- \Rightarrow flux in the core tends to \downarrow
- \Rightarrow E₁ tends to \downarrow
 - V_1 is held constant
 - $V_1 = E_1 \& : '\varphi'$ in the core should remain constant

EE240: Power Engineering LAB

 \Rightarrow can happen when $i_1 \uparrow$ such that

$$\mathsf{N}_1\mathsf{I}_1-\mathsf{N}_2\mathsf{I}_2=\Re\phi$$

 \Rightarrow ' φ ' in the core is determined by V_1 alone

Theory of Ideal Transformer

winding 'r '& leakage 'φ' are neglected

$$V_1 = E_1 \& V_2 = E_2$$

$$\mu_r = \infty$$
 $\therefore \Re = 0$

 $\mu_r = \infty$ $\therefore \Re = 0$ $\therefore AT$ required to establish $\Phi = 0$

$$N_1 I_1 - N_2 I_2 = 0$$

$$N_1 I_1 - N_2 I_2 = 0$$
 $\therefore \frac{E_1}{E_2} = \frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1} = a$

$$: V_1I_1 = V_2I_2 \implies \text{Input VA} = \text{Output VA}$$

$$Z_2 = \frac{V_2}{I_2}$$

$$Z_2 = \frac{V_2}{I_2}$$
 $Z_1 = \frac{V_1}{I_1} = \frac{aV_2}{\frac{I_2}{a}} = a^2 \frac{V_2}{I_2} = a^2 Z_2$

- \therefore Equivalent 'Z' on the primary side = a^2Z_2
- ∴ An impedance Z₂ connected in the secondary can be transferred to the primary
- \therefore Eq. Secondary Z referred to the primary, $Z'_2 = a^2 Z_2$
- \Rightarrow If 'Z₁' is the primary impedance, the equivalent primary 'Z' referred to the secondary,

$${Z'}_1 = \frac{Z_1}{a^2}$$

- ⇒ In an ideal transformer 'V' are transformed in the direct ratio, 'I' in the inverse ratio & Z/R/X in the squareof the ratio
- ⇒ P/S (VI) remain the same

Practical Transformer

 \Rightarrow winding 'r', leakage ϕ & core loss are present

$$\mu_r \infty \neq \qquad \therefore \Re \text{ of the core } \neq 0$$

 \Rightarrow Source has to supply AT to establish ' ϕ ' in the core

Eq. Circuit Representation:

$$e_1 \neq v_1 \& e_2 \neq v_2$$

 $r_1 \& r_2$ are primary & secondary resistances respectively

- \Rightarrow Total flux in the primary winding = $\phi_{11} + \phi$
- \Rightarrow Total flux in the secondary winding = ϕ_{12} + ϕ

- \therefore iron core is used $\phi_{11} \ll \phi$
- ⇒ represent leakage flux by leakage inductance/reactance
- X_{l1} in the primary $(2\pi f L_1)$, $L_1 \rightarrow$ corresponds to leakage flux in primary
- X_{l2} in the secondary (2 π fL₂), L₂ \rightarrow corresponds to leakage flux in secondary
- ⇒ we need to account for only mutual flux or flux in the core
- ⇒This flux links primary and secondary coils

: Equivalent Circuit:

Equivalent Circuit referred on primary side:

$$r_{2}' = r_{2} \left(\frac{N_{1}}{N_{2}}\right)^{2}$$
 $X_{l2}' = X_{l2} \left(\frac{N_{1}}{N_{2}}\right)^{2}$ $V_{2}' = V_{2} \left(\frac{N_{1}}{N_{2}}\right)$ $I_{2}' = I_{2} \left(\frac{N_{1}}{N_{2}}\right)$

$$V_2' = V_2 \left(\frac{N_1}{N_2}\right) \qquad I_2' = I_2 \left(\frac{N_1}{N_2}\right)$$

- ⇒ core has finite permeability
- \Rightarrow finite ATs are required to establish ' ϕ ' in the core
- \Rightarrow can be represented by magnetizing reactance, $X_M = 2\pi fL$
- \Rightarrow since ϕ in the core is alternating, there would be core loss, $I_C^2R_C$

$$I_0 = I_C + I_m$$

⇒ Secondary terminal 'V' changes with load

⇒This change depends on load P.F., R_{eq} & X_{eq}

lagging P.F.

unity P.F.

leading P.F.

⇒ conduct S.C. test to determine these parameters

⇒'V' required to circulate the rated 'I' on S.C. is a small percentage of rated V.

: reduced 'V' is applied to the transformer, core loss can be neglected

EE240: Power Engineering LAB

$$\therefore$$
 P_{in} on S.C. = I^2R_{eq}

⇒ shunt parameters are determined by conducting O.C. test

No load/Open Circuit Test

If power(core loss), V & I are measured, R_c & X_M can be determined

- \Rightarrow what 'V' to apply ?
- \Rightarrow core loss depends on ' ϕ ' & \therefore 'V'
- ⇒ load on the transformer is an independent variable
- ⇒ utilities ensure that almost constant 'V' is applied to the transformer terminals
- ⇒ apply rated 'V' to one of the winding and measure the 'I' drawn and 'P' consumed

- \Rightarrow power input on no load is assumed to be dissipated in the core (core loss + I_0r_1)
- ⇒ which side is to be kept open?

LV side or HV side?

Test condition: apply rated 'V'

⇒ Keep HV open

how to determine $R_{eq} \& X_{eq}$?

$$R_{eq} = r_{1} + r_{2}', \quad X_{eq} = x_{11} + x_{12}'$$

- ⇒ these elements come in the path of main power flow
- ⇒ should be very small compared to shunt branch parameters

Short Circuit Test

- apply reduced V such that rated 'I' flows in the winding. (not a necessary condition)
- V_{sc} is the applied 'V', I_{sc} current flow & 'W' power supplied
- magnitude of 'V' is $\cong 10\%$ of rated V

$$Isc^{2} R_{eq} = W \qquad \therefore R_{eq} = \frac{W}{Isc^{2}} \qquad \frac{V_{sc}}{I_{sc}} = Z_{sc}$$

 $\therefore X_{eq} = \sqrt{Zsc^2 - Req^2}$

Efficiency: Static device

- core loss/iron loss/constant loss
- I^2R loss \Rightarrow cu.loss $R \rightarrow$ winding resistance
- 'I' depends on load & load is an independent variable
- as load changes, 'I' & : cu.loss will change
- ⇒ variable loss

$$\Rightarrow$$
 on no load $Z_L = \infty$, $I'_2 = 0$ or $I_2 = 0$ as load \uparrow , $Z_L \downarrow$

∴
$$%\eta = \frac{\text{o/p power}}{\text{i/p power}} *100$$

if S = VA rating of the transformer, load P.F is $\cos \phi$,

 $P_i \rightarrow iron loss & P_C \rightarrow cu. loss on full load$

let 'x' be the fraction of load the transformer is supplying

power output = $x S cos \phi$

cu loss when the load is x, $P_{CX} = x^2 P_{C}$

on full load cu. loss, $P_C = I_{rated}^2 R_{eq}$

on 1/2 load (x = 0.5), $I_2 = 0.5 I_{rated}$

:.cu. loss(at x = 0.5) =
$$(0.5)^2 I_{rated}^2 R_{eq} = x^2 P_C$$

$$\%\eta = \frac{x * S * \cos(\phi)}{x * S * \cos(\phi) + P_i + P_c * x^2} \times 100$$

1. η is function of load P.F.

2.
$$\eta = \eta_{max}$$
 when $\frac{d\eta}{dx} = 0 \implies x^2 P_c = P_i$ $\therefore x = \sqrt{\frac{P_i}{P_c}}$ \Rightarrow 'x' at which $\eta = \eta_{max}$ is independent of $\cos \phi$ but value of this η depends on

- $\cos \phi$
- generally 'η' is almost a flat curve

Utilities try to maintain \cong constant 'V' at primary terminals

⇒ depending upon the load, secondary terminal 'V' would change

- \Rightarrow this change depends on R_{eq} & X_{eq}
- ⇒ transformer is expected to maintain almost constant 'V' & it should be independent of I₂

$$\Rightarrow$$
 $Z_{eq} = (R_{eq} + jX_{eq}) \rightarrow 0$

Voltage Regulation

⇒ performance index deals with secondary voltage as a function of load 'I' known as regulation

Regulation: The change in secondary voltage expressed in % of rated secondary voltage which occurs when the load at specified power factor is reduced to zero, with primary 'V' maintained constant

$$\%\varepsilon = \frac{V_{2(no\ load)} - V_{2(rated\ load)}}{V_{2(no\ load)}} \times 100$$

 V_1 - rated primary voltage, V_2 - rated secondary voltage

$$\varepsilon = \frac{V_2 - V_{2L}}{V_2} = \frac{\frac{V_1}{a} - V_{2L}}{\frac{V_1}{a}} = \frac{V_1 - aV_{2L}}{V_1} = \frac{V_1 - V_2}{V_1}$$

EE240: Power Engineering LAB

V_{2L}- secondary voltage under load condition

To determine regulation, we assume that $V_1 \& V'_2$ are in phase $\& I_1 \cong I'_2$

$$\therefore \frac{V_1 - {V'}_2}{V_1} = \frac{I_1 R_{eq} \cos(\phi) \pm I_1 X_{eq} \sin(\phi)}{V_1} = \varepsilon_r \cos(\phi) \pm \varepsilon_x \sin(\phi)$$

EE240: Power Engineering LAB

 $+ \rightarrow$ lagging P.F., $- \rightarrow$ leading P.F.

lagging P.F.

unity P.F.

leading P.F.

% ε is always + ve for R & R-L loads

% ϵ could be +, 0 or – ve for R-C loads

$$\varepsilon = 0 = \varepsilon_r \cos(\phi) - \varepsilon_x \sin(\phi)$$

on $X_{eq} R_{eq} \rightarrow low$

If X_{eq} is reduced, regulation improves

- ⇒ In case, if there is an accidental short circuit, I_{sc} is limited by leakage
- \Rightarrow To protect, I_{sc} should be limited
- ⇒ Law of conservation of sorrows: "Sorrows can neither be created nor destroyed"

Three phase transformer

Phase 'V' in the $\Delta = V$

 \Rightarrow Induced phase 'V' in the Y = V

$$\therefore$$
 L –L V in the Y = $\sqrt{3}$ V

what about the phasor relationship between line 'V' in Δ & Y?

- \Rightarrow V_L in \triangle & V_{ph} in Y are in phase (E₁ & E₂ are in phase)
- \Rightarrow V_L leads V_{ph} by 30⁰ in Y connection
- \therefore There is 30° phase shift between V_L in Δ & Y

how to connect 3- ϕ , 3 wire system to 3- ϕ , 4 wire system ?

 \Rightarrow use Y - Δ connection and ground the star point

Phasor for Y connection

Single Phase Transformer Used for Experiment

