Machine Learning

CSE 142

Xin (Eric) Wang

Monday, October 25, 2021

- Linear learning models (cont.)
 - ✓ Multivariate linear regression

Notes

- Sample midterm questions & answers are released on the Canvas website
- HW #2 problem 2
 - Distance from a point to a plane:
 - Plane: f(x, y, z) = ax + by + cz + d = 0, Point: (x_1, y_1, z_1)
 - Does $f(x_1, y_1, z_1)$ give you the distance from point to plane?
 - No you must divide by $||(a, b, c)|| = (a^2 + b^2 + c^2)^{1/2}$

Linear least-squares regression example

- We wish to find the relationship between the height and weight of adults
 - Data: *n* measurements, $(h_i, w_i) \rightarrow (input, output)$
 - Parametric linear model: w = a + bh \Rightarrow $w_i = a + bh_i + \epsilon_i$
 - Residual: $\epsilon_i = w_i (a + bh_i)$
 - Find (a, b) that minimizes $\sum_{i} [w_i (a + bh_i)]^2$ on the training data

Linear least-squares regression example

• To minimize $\sum_i [w_i - (a + bh_i)]^2$, set the partial derivatives (wrt a and b) to zero and solve for a and b

$$\frac{\partial}{\partial a} \sum_{i=1}^{n} (w_i - (a + bh_i))^2 = -2 \sum_{i=1}^{n} (w_i - (a + bh_i)) = 0 \qquad \Rightarrow \hat{a} = \overline{w} - \hat{b}\overline{h}$$

$$\frac{\partial}{\partial b}\sum_{i=1}^n(w_i-(a+bh_i))^2=-2\sum_{i=1}^n(w_i-(a+bh_i))h_i=0 \qquad \Rightarrow \hat{b}=\frac{\sum_{i=1}^n(h_i-\overline{h})(w_i-\overline{w})}{\sum_{i=1}^n(h_i-\overline{h})^2}$$

• So the regression model is $w = \hat{a} + \hat{b}h = \overline{w} + \hat{b}(h - \overline{h})$

Note that the regression line goes through (\bar{h}, \bar{w})

The regression coefficient

• The slope (\hat{b}) is the regression coefficient

$$\hat{b} = \frac{\sum_{i=1}^{n} (h_i - \overline{h})(w_i - \overline{w})}{\sum_{i=1}^{n} (h_i - \overline{h})^2} = \frac{n\sigma_{hw}}{n\sigma_h^2} = \frac{\sigma_{hw}}{\sigma_h^2}$$

• In general, the regression coefficient for a feature *x* and a target variable *y* is

$$\hat{b} = \frac{\sigma_{xy}}{\sigma_x^2}$$
variance(x, y)

- We often simplify the problem by first normalizing the data
 - Find the data averages (\bar{h}, \bar{w})
 - Subtract the averages from the data: $h_i \leftarrow h_i \overline{h}$ $w_i \leftarrow w_i - \overline{w}$
- This makes $\hat{a} = 0$, so we're just left with estimating the regression coefficient \hat{b}

Multivariate linear regression

- Most linear regression problems involve multiple (N) input variables, x
 - E.g., estimate a patient's cholesterol level from N (N > 1) input variables
- In multivariate LR, there are N+1 regression parameters
- Linear regression function:

$$y(x) = w^T x + w_0$$
 $y(x_2, x_1) = w_2 x_2 + w_1 x_1 + w_0$

Using homogeneous coordinates:

$$y(x) = \mathbf{w}^T x$$
 $y(x_2, x_1, x_0) = w_2 x_2 + w_1 x_1 + w_0 x_0$

Multivariate linear regression

Linear regression equations:

Univariate
$$y_i = w_1 x_i + w_0 + \epsilon_i$$
 Multivariate $y_i = w_2 x_{12} + w_1 x_{11} + w_0 x_{10} + \epsilon_i$ $y_1 = w_2 x_{12} + w_1 x_{11} + w_0 + \epsilon_1$ $y_1 = w_2 x_{12} + w_1 x_{11} + w_0 + \epsilon_1$ $y_2 = w_2 x_{22} + w_1 x_{21} + w_0 + \epsilon_2$ \Leftrightarrow $y_2 = w_2 x_{22} + w_1 x_{21} + w_0 x_{20} + \epsilon_2$ $y_3 = w_2 x_{32} + w_1 x_{31} + w_0 + \epsilon_3$ $y_3 = w_2 x_{32} + w_1 x_{31} + w_0 x_{30} + \epsilon_3$...

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \end{bmatrix} \qquad X = \begin{bmatrix} x_{12} & x_{11} \\ x_{22} & x_{21} \\ \vdots & \vdots \end{bmatrix} \qquad w = \begin{bmatrix} w_2 \\ w_1 \\ w_0 \end{bmatrix} \qquad \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \end{bmatrix}$$
Labels Data (homogeneous)

Regression parameters Residuals

Multivariate least-squares in matrix form

$$y = Xw + \epsilon$$

$$\widehat{\boldsymbol{w}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} \quad \langle \boldsymbol{\boldsymbol{\Box}} \boldsymbol{\boldsymbol{\Box}} \boldsymbol{\boldsymbol{\Box}}$$

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Least-squares solution $\hat{\boldsymbol{w}}$

Note: Here, *X* contains the inputs as row vectors. *X* is often written with the inputs as column vectors, so in that case:

$$y = X^T w + \epsilon$$
$$\widehat{w} = (XX^T)^{-1} X y$$

Need to understand in context

Linear regression function $y(x) = \widehat{w}^T x$

Using homogeneous coordinates

Simple linear regression example

Training set:

$$(-1, 0)$$

 $(0, 1)$
 $(1, 1)$
 $(2, 2)$
inputs (x) outputs (y)

Learn the regression function $y(x) = w^T x = x^T w = w_1 x + w_0$

$$\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_1 \\ w_0 \end{bmatrix}$$
Homogeneous representation

$$\widehat{\boldsymbol{w}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

$$= (\begin{bmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix})^{-1} \boldsymbol{X}^T \boldsymbol{y} = \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix}^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

$$= \begin{bmatrix} 0.2 & -0.1 \\ -0.1 & 0.3 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.7 \end{bmatrix}$$

$$\widehat{\mathbf{w}} = \begin{bmatrix} 0.6 \\ 0.7 \end{bmatrix} = \begin{bmatrix} \text{slope} \\ \text{y-intercept} \end{bmatrix}$$

$$y(\mathbf{x}) = \widehat{\mathbf{w}}^T \mathbf{x} = \begin{bmatrix} 0.6 & 0.7 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = 0.6x + 0.7$$

Feature correlation

- If the features in a multivariate regression problem with d input features are uncorrelated $(\sigma_{x_i x_j} = 0 \text{ if } i \neq j)$ then the problem reduces to d univariate (one variable) problems
 - This relates to the task of feature construction construct uncorrelated features to simplify the problem!
 - We may come back to this in Chapter 10 on features

Outliers

- An outlier is a measurement/observation that is distant from other observations
 - Could be due to measurement error or "heavy-tailed distribution" events
 - In other words, experimental anomalies
- In some machine learning problems we're very interested in such outliers (e.g., anomaly detection)
 - But in linear regression, they can be problematic linear regression is sensitive to outliers

There is a lot of research on reducing sensitivity to outliers.

E.g., robust loss functions, probabilistic modeling methods such as RANSAC

Regularization

• Formulate the multivariate least-squares problem via *optimization*:

$$y = Xw + \epsilon$$

$$w^* = \underset{w}{\operatorname{argmin}} (y - Xw)^T (y - Xw) \quad \text{(least squares minimization)}$$

- Sometimes we'd like to provide constraints on the optimization problem in order to avoid overfitting to the data
 - E.g., if we think the training data may not be representative, or we have external knowledge about the problem beyond the data
- One way to do this is through regularization

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \, \underline{r(\mathbf{w})}$$

Regularization function

 λ is a scalar determining the amount of regularization

- So now when we optimize (minimize) to choose w^* , λ is involved

Least-squares regression for classification

- We can use regression techniques to learn a binary classifier by encoding the two classes as real numbers, learning a regression function, and then thresholding the output
 - Label positive examples with +1 and negative examples with -1
 - I.e., $y_i \in \{+1, -1\}$

$$w = (X^T X)^{-1} X^T y$$

• Assign class $\hat{y} = \text{sign}(w \cdot x)$

$$\operatorname{sgn}(x) = \operatorname{sign}(x) = \begin{cases} +1 & \text{if } x \ge 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$
 (alternatively)

Signum function

Least-squares regression for classification

Training data: $\{(x_i, y_i)\} = \{(0, -1), (1, -1), (2, -1), (3, -1), (5, 1), (6, 1), (7, 1), (8, 1)\}$

Test data point
$$\mathbf{x} = \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$\hat{y} = \operatorname{sign}(\boldsymbol{w} \cdot \boldsymbol{x}) = \operatorname{sign}(0.33x - 1.33)$$

Quiz questions

- For data with N input features, what is the dimensionality of the linear regression function?
 - N (fit a line to 1D data, fit a plane to 2D data, etc.)
- For data with N features, what is the dimensionality of the linear classification boundary?
 - N-1 (a line separates 2D data, a plane separates 3D data, etc.)
- For data with N features, what is (nonhomogeneous) w?
 - An N-dimensional vector
- What's the output/result of linear classifier training?
 - w (homogeneous) or (w, t) (non-homogeneous)

By the way...

- The book is sometimes unclear when they're using homogeneous notation and when they're not
- For example, $\mathbf{w}^T \mathbf{x}$ can mean either

 $w_1 x_1 + w_2 x_2 - t > 0$

Interpret in context...

The perceptron

• A least squared classifier is not guaranteed to find a perfect decision boundary for linearly separable data

Next

• Perceptron, Chapter 7.2