Simplifying Casts and Coercions

Robert Y. Lewis
Paul-Nicolas Madelaine

PAAR June 30, 2020

Ź

```
import data.complex.basic --\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}
variables (an bn cn dn: \mathbb{N}) (az bz cz dz: \mathbb{Z}) (ag bg cg
        dq:\mathbb{O}
variables (ar br cr dr: \mathbb{R}) (ac bc cc dc: \mathbb{C})
example: (an : \mathbb{Z}) = bn \rightarrow an = bn := sorry
example: an = bn \rightarrow (an: \mathbb{Z}) = bn := sorry
example: az = bz \leftrightarrow (az : \mathbb{O}) = bz := sorry
example: (aq: \mathbb{R}) = br \leftrightarrow (aq: \mathbb{C}) = br := sorrv
example: (an : \mathbb{O}) = bz \leftrightarrow (an : \mathbb{C}) = bz := sorry
example : (((an : \mathbb{Z}) : \mathbb{Q}) : \mathbb{R}) = bq \leftrightarrow ((an : \mathbb{Q}) : \mathbb{C}) = (bq : \mathbb{C})
        \mathbb{R}) := sorry
example: (an : \mathbb{Z}) < bn \leftrightarrow an < bn := sorrv
example: (an : \mathbb{O}) < bz \leftrightarrow (an : \mathbb{R}) < bz := sorry
example: ((an : \mathbb{Z}) : \mathbb{R}) < bq \leftrightarrow (an : \mathbb{Q}) < bq := sorry
```

```
— zero and one cause special problems
example: 0 < (bq: \mathbb{R}) \leftrightarrow 0 < bq: = sorry
example: aq < (1:\mathbb{N}) \leftrightarrow (aq:\mathbb{R}) < (1:\mathbb{Z}) := sorry
example: (an : \mathbb{Z}) + bn = (an + bn : \mathbb{N}) := sorry
example: (an : \mathbb{C}) + bq = ((an + bq) : \mathbb{O}) := sorrv
example: (((an : \mathbb{Z}) : \mathbb{Q}) : \mathbb{R}) + bn = (an + (bn : \mathbb{Z})) :=
        sorry
example: (((((an: \mathbb{Q}): \mathbb{R}) * bq) + (cq: \mathbb{R}) \wedge dn) : \mathbb{C})
       = (an : \mathbb{C}) * (bq : \mathbb{R}) + cq \wedge dn := sorry
example: ((an : \mathbb{Z}) : \mathbb{R}) < bq \land (cr : \mathbb{C}) \land 2 = dz \leftrightarrow
        (an : \mathbb{Q}) < bq \wedge ((cr \wedge 2) : \mathbb{C}) = dz := sorry
```

Goal: transparent reasoning about cast

expressions

Goal

We want to:

- use the familiar Lean tactic language to reason "modulo casts."
- extend to new casts once relevant properties are proved.
- \blacksquare support abstract types with algebraic structure as well as \mathbb{N} , \mathbb{Z} , etc.
- support conditional simplification, e.g. on $\mathbb N$ if result isn't cut off.
- do all of this as transparently to the user as possible.

We do *not* try to introduce any deep theory about casts!

The norm_cast family

We introduce norm_cast, a family of tactics for the Lean proof assistant.

- Implemented in Lean as metaprograms: no changes to source code.
- Meet the desiderata in the previous slide.
- Part of Lean's standard library mathlib.
 - ► Invoked hundreds of times in mathlib alone.

Algorithm idea

The core component: norm_cast, a simplification tactic.

Variants are assembled around the core routine.

The workflow:

- Users tag library lemmas with the @[norm_cast] attribute.
- Users call "mod-cast" tactics when faced with goals containing casts.
- The "mod-cast" tactics call the norm_cast simplification routine, which classifies these tagged lemmas and uses them at the appropriate stage of simplification.

Quick demo!

Lemma classification

 move lemmas equate expressions with casts at the root to expressions with casts further toward the leaves

$$ightharpoonup \uparrow (m + n) = \uparrow m + \uparrow n$$

■ elim lemmas relate expressions with casts to expressions without casts

$$ightharpoonup \uparrow a < \uparrow b \leftrightarrow a < b$$

- ||↑a|| = ||a|| for a real valued norm function defined on all normed spaces
- squash lemmas equate expressions with one or more casts at the root to expressions with fewer casts at the root

$$ightharpoonup \uparrow
ightharpoonup
angle
ightharpoonup
ightharpoonup
angle
ightharpo$$

Lemma classification

Define

- \blacksquare $\mathcal{H}(\mathbf{e}) := \text{number of cast applications that appear at the root of } e$
- $\mathcal{I}(e)$:= number of non-head casts in e

We classify a lemma with type lhs = rhs or $lhs \leftrightarrow rhs$:

- \blacksquare elim if $\mathcal{H}(\mathtt{lhs}) = 0$ and $\mathcal{I}(\mathtt{lhs}) \geq 1$
- lacksquare move if $\mathcal{H}(\mathtt{lhs}) = 1$, $\mathcal{I}(\mathtt{lhs}) = \mathcal{H}(\mathtt{rhs}) = 0$, and $\mathcal{I}(\mathtt{rhs}) \geq 1$.
- lacksquare squash if $\mathcal{H}(\mathtt{lhs}) \geq \mathtt{1}, \mathcal{I}(\mathtt{lhs}) = \mathcal{I}(\mathtt{rhs}) = \mathtt{0}, \, \mathsf{and} \, \mathcal{H}(\mathtt{lhs}) > \mathcal{H}(\mathtt{rhs}).$

The algorithm

- 1. Replace each numeral (num : α) with \uparrow (num : \mathbb{N}).
 - move, squash
- 2. Working bottom up, move casts upward by rewriting with move lemmas and eliminate them when possible by rewriting with elim lemmas. If no rewrite rules apply to a subexpression that matches the heuristic splitting pattern, fire the *splitting procedure*.
- 3. Clean up any unused repeated casts that were inserted by the heuristic.
 - squash
- 4. Restore numerals to their natively typed form as in Step 1.
 - move, squash

Key implementation detail: Lean's built in simplifier

Heuristic splitting procedure

Fires on an expression of the form P $(\uparrow x)$ $(\uparrow y)$, where

- P is a binary function or relation
- x: X and y: Y are both cast to type Z
- x and Y are not equal

```
Example: ((\mathbf{n}:\mathbb{N}):\mathbb{R}) \leq ((\mathbf{z}:\mathbb{Z}):\mathbb{R}) \Rightarrow ((\mathbf{n}:\mathbb{N}):\mathbb{Z}) \leq (\mathbf{z}:\mathbb{Z})
The procedure tries to find a coercion from \mathbf{X} to \mathbf{Y} (or vice versa).
```

Then tries to replace $\uparrow x$ with $\uparrow \uparrow x$, where the nested coercions go from X to Y to Z. This is justified using squash lemmas.

Interface

- norm_cast: simplify the goal or hypotheses
- exact_mod_cast h: simplify the goal and the term h and use h to close the goal
- apply_mod_cast h: similar, don't close the goal
- assumption_mod_cast: find a hypothesis that closes the goal
- rw_mod_cast: performs a list of rewrites, simplifying in between steps

11 1.

Quick demo!

Library designers think about how casts behave, and tell norm_cast.

Library users get to ignore all the details.

Users should never have to know the names of "contentless" lemmas that only manipulate casts.

Success?

norm_cast is used hundreds of times in mathlib and as a component of other tactics.

Part of the "default toolbox" for new users.

Buzzard, Commelin, Massot: norm_cast "greatly alleviates ... pain" in their formalization of perfectoid spaces.