

IME DISCURSIVO 2

2023

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A}=6.02\cdot 10^{23}\,{
 m mol}^{-1}$ Constante de Faraday, $F=96\,500\,{
 m C\,mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h=6.6\cdot 10^{-34}\,\mathrm{m^2\,kg\,s^{-1}}$ Constante de Rydberg, $\mathcal{R}=1.1\cdot 10^7\,\mathrm{m^{-1}}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$ Velocidade da luz no vácuo, $c=3\cdot 10^8~{\rm m~s^{-1}}$
- Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

Definições

- Composição do ar atmosférico: $79\%~N_2$ e $21\%~O_2$

Aproximações Numéricas

- $\sqrt{2} = 1,4$ $\sqrt{3} = 1,7$ $\sqrt{5} = 2,2$ $\log 2 = 0,3$ $\log 3 = 0,5$ $\ln 10 = 2,3$

Tabela Periódica

Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$
Н	1	1,01	K	19	39,10
С	6	12,01	Ca	20	40,08
Ν	7	14,01	Ti	22	$47,\!87$
0	8	16,00	Mn	25	54,94
Na	11	22,99	Мо	42	$95,\!95$
Mg	12	24,31	Pd	46	$106,\!42$
Р	15	30,97	Ва	56	$137,\!33$
S	16	32,06	Os	76	190,23
CI	17	$35,\!45$			

1ª QUESTÃO Valor: 1,00

O momento magnético, μ , é uma medida da força com que uma substância paramagnética é atraída por um campo magnético externo.

$$\mu = \mu_{\rm B} \sqrt{n(n+2)}$$

Onde n é o número de elétrons desemparelhados e $\mu_{\rm B}$, o magneton de Bohr, é uma constante.

- a. **Determine** a configuração eletrônica do molibdênio, que possui $\mu = 6.93 \, \mu_{\rm B}$.
- b. **Determine** a configuração eletrônica do paládio, que possui $\mu=0$ no estado fundamental.
- c. **Determine** o elemento do terceiro período que possui $\mu=3.87\,\mu_{\rm B}$ no estado fundamental.
- d. **Determine** o elemento do quarto período que possui $\mu=5,92\,\mu_{\rm B}$ no estado fundamental.

2ª QUESTÃO Valor: 1,00

Em uma planta de produção de ácido sulfúrico é conduzida a reação:

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{SO}_3(g) \quad \Delta H_r^{\circ} = -198 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

em um reator dotado de um pistão que se move sem atrito. O reator é carregado com $2\,\mathrm{m}^3$ de dióxido de enxofre, SO_2 , e $10\mathrm{m}^3$ de ar, ambos em $25\,^\circ\mathrm{C}$ e $1\,\mathrm{atm}$. A reação se completa com a temperatura e pressão mantidas constantes.

- a. Determine o volume do reator ao final da reação.
- b. **Determine** o trabalho executado.
- c. **Determine** a variação de entalpia do sistema.
- d. Determine a variação de energia interna do sistema.

3ª QUESTÃO Valor: 1,00

Uma solução é preparada pela dissolução de $0.248\,\mathrm{mol}$ de fosfato de potássio, K_3PO_4 , em $1\,\mathrm{kg}$ de água destilada. Dados de espectrofotometria revelaram que a concentração de íons potássio na solução é $0.738\,\mathrm{mol}\,\mathrm{L}^{-1}$.

- a. Determine a densidade da solução.
- b. **Determine** o volume da solução necessário para obter $106\,\mathrm{g}$ de fosfato de potássio.

4ª QUESTÃO Valor: 1,00

Considere a reação a seguir.

$$\sim$$
 CI \sim NaCN \sim CN

A velocidade dessa reação aumenta consideravelmente quando iodeto de sódio, NaI, é adicionado ao meio reacional. O iodeto de sódio não é formado nem consumido pela reação sendo, portanto, considerado um catalisador.

- a. Proponha um mecanismo para a reação sem a adição do catalisador.
- b. Explique como a adição do catalisador aumenta a velocidade da reação.

5ª QUESTÃO Valor: 1,00

Considere a distribuição eletrônica de três elementos, A, B e C, a seguir.

$$A: 1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^1$$

$$B: 1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^14d^{10}$$

$$C: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 5d^1$$

As energias de ionização desses elementos são $540\,\mathrm{kJ\,mol^{-1}}$, $600\,\mathrm{kJ\,mol^{-1}}$ e $730\,\mathrm{kJ\,mol^{-1}}$, e os raios atômicos são $160\,\mathrm{pm}$, $180\,\mathrm{pm}$ e $195\,\mathrm{pm}$.

Associe os valores das energias de ionização e dos raios atômicos aos elementos A, B e C.

6ª QUESTÃO Valor: 1,00

O titânio é produzido industrialmente pela redução do óxido de titânio com carbono. Esse processo pode ser descrito por duas reações:

$$TiO_2(s) + 2C(s) \longrightarrow Ti(s) + 2CO(g)$$

 $TiO_2(s) + C(s) \longrightarrow Ti(s) + CO_2(g)$

Suponha que ΔH_r° e ΔS_r° são independentes da temperatura.

- a. **Determine** a entalpia padrão das reações de redução do óxido de titânio em $1000\,\mathrm{K}$.
- b. **Determine** a entropia padrão das reações de redução do óxido de titânio em $1000\,\mathrm{K}$.
- c. Determine a temperatura mínima na qual o óxido de titânio pode ser reduzido pelo carbono.

Dados em $1000\mathrm{K}$	$\mathrm{Ti}(\mathrm{s})$	C(s)	${\rm TiO_2(s)}$	CO(g)	$\mathrm{CO}_2(\mathrm{g})$
Entalpia padrão de formação, $\Delta H_{ m f}^{\circ}/{{ m kJ}\over m mol}$			-940	-137	-394
Entropia padrão molar, $S_{ m m}^{\circ}/{rac{ m J}{ m Kmol}}$	30	6	50	198	214

7ª QUESTÃO Valor: 1,00

Um químico pesou $5{,}14\,\mathrm{g}$ de uma amostra contendo quantidades desconhecidas de óxido de bário, BaO , e óxido de cálcio, CaO . A amostra pesada foi colocada em um balão de $1{,}5\,\mathrm{L}$ contendo dióxido de carbono em $30\,^{\circ}\mathrm{C}$ e $750\,\mathrm{Torr}$. Toda a amostra sólida reagiu formando carbonato de bário, BaCO_3 e carbonato de cálcio, CaCO_3 . Ao final da reação, a pressão no balão caiu para $230\,\mathrm{Torr}$.

Determine a fração mássica de óxido de cálcio na amostra original.

8ª QUESTÃO Valor: 1,00

Uma amostra sólida finamente pulverizada de um óxido de ósmio (que funde em $40\,^{\circ}\mathrm{C}$ e ferve em $130\,^{\circ}\mathrm{C}$), sua massa é $1,509\,\mathrm{g}$, foi colocada em um cilindro dotado de um pistão móvel que pode se expandir contra a pressão atmosférica de $745\,\mathrm{Torr}$. A quantidade de ar residual inicialmente presente no cilindro é desprezível. Quando a amostra é aquecida até $200\,^{\circ}\mathrm{C}$, ocorre a vaporização completa e o volume do cilindro se expande até $235\,\mathrm{mL}$.

- a. Determine a fórmula molecular do óxido.
- b. Determine raiz quadrada da velocidade quadrática média das moléculas do vapor do óxido.

9ª QUESTÃO Valor: 1,00

Um tambor selado contém ar seco e uma mistura equimolar de benzeno e tolueno líquidos em $20\,^{\circ}\mathrm{C}$. A pressão de vapor do benzeno é $90\,\mathrm{Torr}$ e a do tolueno é $30\,\mathrm{Torr}$ nessa temperatura. Um manômetro acoplado ao tambor registra a pressão total de $760\,\mathrm{Torr}$. Em uma queda durante seu transporte, o tambor foi danificado e seu volume interno diminuiu para 70% do volume inicial, sem que tenha havido vazamento. A temperatura interna se manteve estável em $20\,^{\circ}\mathrm{C}$.

- a. Determine a pressão parcial do ar seco no tambor.
- b. Determine a fração molar de benzeno na fase gasosa antes da queda.
- c. Determine a fração molar de benzeno na fase gasosa após a queda.

Classifique cada par de compostos a seguir como enantiômeros, diastereoisômeros, isômeros constitucionais ou representações diferentes de um mesmo composto.

d.
$$CH_3$$
 e H_3C CH_3