

یادگیری چند نمایی و کاربرد آن در کشف دارو

دانشجو ارشد هوش مصنوعي

Deep Learning Workshops

Multi-view learning and its applications in drug discovery

Abbas Mehrbaniyan

MSc. Artificial Intelligence

Representation learning

Representation of data matters!

Raw data Representation

- Feature engineering had a key role in ML
 - Hand-crafted features (e.g., word co-occurrence, term frequency)

Data driven features

• Deep neural network (DNN) as feature/representation learner:

Convolution Neural Network (CNN)

Data driven features

• Deep neural network (DNN) as feature/representation learner

Representation learning - Challenges

• Training data for a DNN:

Label: Cow

Representation learning - Challenges

Testing model:

X Predicted: Polar Bear

✗ Predicted: Camel

Representation learning - Challenges

DNNs may not always find relevant representation

Challenges:

- Huge models, limited labels
- Black-box nature of DNNs
- What is a good representation?

What is a good representation?

A good representation:

- ✓ Should be invariant across different scenes (views)
- ✓ Should contain essential info, not the redundant info.

What is a good representation?

Here's an idea:

Multi-view data

Natural multi-view data:

Multi language data

Data captured by multiple sensors (ex. Camera)

Multi-view shopping graphs

Multi-view data

Hand crafted multi-view data:

Original

Augmentation

Crop & Rotate

Add Noise

Original

Deletion

Edge Manipulation

Feature Manipulation

Sub Graph

Canonical Correlation Analysis (CCA)

• To understand the relationship between two sets of variable

$$(w_x^*, w_y^*) = \operatorname{arg\,max}_{w_x, w_y} \operatorname{corr}(Xw_x, Yw_y)$$

$$corr(Xw_x, Yw_y) = \frac{w_x^T C_{xy} w_y}{\sqrt{w_x^T C_{xx} w_x} \sqrt{w_y^T C_{yy} w_y}}$$

Invariant to the scaling of w_x and w_y

- C_{xx} and C_{yy} are the covariance matrices of X and Y
- C_{xy} is the cross-covariance matrix between X and Y

Canonical Correlation Analysis (CCA)

• Constrained form:

$$\operatorname{corr}(Xw_{x}, Yw_{y}) = \underset{w_{x}, w_{y}}{\operatorname{arg max}} w_{x}^{T} C_{xy} w_{y}$$

$$s.t. \ w_{x}^{T} C_{xx} w_{x} = I, w_{y}^{T} C_{yy} w_{y} = I$$

• When the feature dimensionality is high, the covariance matrix C_{xx} (or C_{yy}) is singular

$$C_{xx} = \frac{1}{N}XX^T + r_x I$$
$$C_{yy} = \frac{1}{N}YY^T + r_Y I$$

Canonical Correlation Analysis (CCA)

- How to find w_x and w_y ?
- 1. Generalized eigenvalue decomposition problem:

$$\begin{bmatrix} \mathbf{0} & \Sigma_{xy} \\ \Sigma_{yx} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{w_x} \\ \mathbf{w_y} \end{bmatrix} = \lambda \begin{bmatrix} \hat{\Sigma}_{xx} & \mathbf{0} \\ \mathbf{0} & \hat{\Sigma}_{yy} \end{bmatrix} \begin{bmatrix} \mathbf{w_x} \\ \mathbf{w_y} \end{bmatrix} \qquad \begin{array}{c} \Sigma_{xy} = \frac{1}{N}XY^T \\ \Sigma_{yx} = \frac{1}{N}YX^T \end{array}$$

2. Preform singular value decomposition (SVD) on:

$$T = \Sigma_{xx}^{-1/2} \Sigma_{xy} \Sigma_{yy}^{-1/2}$$

 $\operatorname{corr}(Xw_x, Yw_y) \to \operatorname{K} \operatorname{largest singular values of} \operatorname{T}$

Let W_x' and W_y' be the K largest left and right singular vectors of T

Canonical Correlation Analysis (CCA)

- How to find w_x and w_y ?
- 2. Preform singular value decomposition (SVD) on:

$$T = \Sigma_{xx}^{-1/2} \Sigma_{xy} \Sigma_{yy}^{-1/2}$$

 $\operatorname{corr}(Xw_x, Yw_y) \to \operatorname{K} \operatorname{largest singular values of} \operatorname{T}$

Let W_x' and W_y' be the K largest left and right singular vectors of T

Canonical matrices

$$W_x = \Sigma_{xx}^{-1/2} W_x'$$
 $W_y = \Sigma_{yy}^{-1/2} W_y'$

Canonical variables

$$Z_x = W_x^T X \qquad Z_y = W_y^T Y$$

Deep Canonical Correlation Analysis (DCCA)

• Using DNNs as non-linear mappings.

$$(\theta_x^*, \theta_y^*) = \arg\max_{\theta_x, \theta_y} \operatorname{corr} (f(X; \theta_x), g(Y; \theta_y))$$

- $f(X; \theta_x)$ is a DNN that transforms X into a new representation, parameterized by θ_x
- $g(Y; \theta_y)$ is another DNN that transforms Y into a new representation, parameterized by θ_y

Deep Canonical Correlation Analysis (DCCA)

$$T = \Sigma_{xx}^{-1/2} \Sigma_{xy} \Sigma_{yy}^{-1/2}$$

• $\operatorname{corr}\left(f(X;\theta_{x}),g(Y;\theta_{y})\right)\to \operatorname{K}\operatorname{largest}\operatorname{singular}\operatorname{values}\operatorname{of}\operatorname{T}$

$$T = \left(\frac{1}{N}f(X)f(X)^{T} + r_{\chi}I\right)^{1/2} + \left(\frac{1}{N}f(X)f(Y)^{T}\right) + \left(\frac{1}{N}g(Y)g(Y)^{T} + r_{\chi}I\right)^{1/2}$$

CCA Loss function:

$$\underset{\theta_{x},\theta_{y},w_{x},w_{y}}{\text{maximize}} \sum_{k=1}^{K} \sigma_{k}(T)$$

s.t.
$$w_x^T \left(\frac{1}{N} f(X) f(X)^T + r_x I \right) w_x = I, w_y^T \left(\frac{1}{N} f(Y) f(Y)^T + r_y I \right) w_y = I$$

Deep Canonical Correlation Analysis (DCCA)

• If K = hidden dim, CCA Loss function:

$$\underset{\theta_x,\theta_y,w_x,w_y}{\text{maximize}} Tr(TT')^{1/2}$$

s.t.
$$w_x^T \left(\frac{1}{N} f(X) f(X)^T + r_x I \right) w_x = I, w_y^T \left(\frac{1}{N} f(Y) f(Y)^T + r_y I \right) w_y = I$$

CCA vs. DCCA

Deep multi-view learning

A general framework architecture:

Deep multi-view learning - DCCAE

Autoencoders are widely used in many applications!

$$L_{\text{recon X}} = \|X - D(E(X; \theta_x); \phi_x)\|^2$$

$$L_{\text{recon}_{Y}} = \|Y - D(E(Y; \theta_{y}); \phi_{y})\|^{2}$$

Minimize:

$$\mathcal{L}(\theta_x, \theta_y, \phi_x, \phi_y) = -\text{corr}\left(E(X; \theta_x), E(Y; \theta_y)\right) + \lambda \left(L_{\text{recon}_X} + L_{\text{recon}_X}\right)$$

Drug discovery is an expensive, time-consuming process, with low success rates

Multi-view data of molecules/compounds (Textual)

(a) Sequence-based

SMILES CN1C=NC2=C1C(=O)N(C(=O)N2C)C

InChl 1S/C8H10N4O2/c1-10-4-9-6-...3H3

SELFIES [C][N][C][=Branch1][C][=O][C][=C]...[N][=O]

Morgan [000000...00000001001000...000]

MACCS [000000...11100010101111111110]

IUPAC 1,3,7-trimethylpurine-2,6-dione

caption

Caffeine is a trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee.

Multi-view data of molecules/compounds (Graph)

(b) Graph-based

2D molecular graph

Adjacent Matrix

Shape: (n, n)

3D molecular graph

3D Coordinates

Shape: (n,3)

311ape. (11,5)			
2.14	0.68 -0.30 -1.61	-0.26	
-2.28	2.27 2.80 3.22	-0.45	

Multi-view data of molecules/compounds (Image)

(c) Pixel-based

molecular image

Pixel Matrix

molecular 3D grid

Voxel Array

Shape: (m1, m2, m3, 3)

Dual-view Molecular Pre-training (DVMP)

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023

Different molecular representations describe molecules from different aspects!

Transformer M GNN

DVMP Succeeds!

Dual-view Molecular Pre-training (DVMP)

Cosine similarity

Thanyous

Feel free to ask any question!

Presentation materials

Abbas Mehrbaniyan

