Work #9: Nov. 27 — Dec. 6 ${\bf 12}\text{-Hour biweek}$ Obligatory problems are marked with [**]

1. [Basic Adversary Method.]

- (a) [**] Prove the Basic Adversary Method Theorem (generalizing the Super-Basic Adversary Method Theorem) stated towards the end of the Lecture 20 video. Of course, you should mimic the proof of the Super-Basic Adversary Method Theorem.
- (b) Use that theorem to show a quantum query lower bound of $\gtrsim \sqrt{N/k}$ for the following promise-decision problem (assuming $1 \le k \le N/2$): Output "yes" if the input string $w \in \{0,1\}^N$ has at least k 1's; output "no" if it is the all-0's tring.

2. [Product probability spaces.]

- (a) Let $p \in \mathbb{R}^d$ be a probability distribution on $[d] = \{1, 2, ..., d\}$. Let $q \in \mathbb{R}^e$ be a probability distribution on $[e] = \{1, 2, ..., e\}$. Prove that the Kronecker product $p \otimes q$ (which is a vector naturally indexed by the set $[d] \times [e]$) is the associated "product probability distribution" on $[d] \times [e] = \{(i, j) : 1 \leq i \leq d, 1 \leq j \leq e\}$; i.e., it's the distribution gotten by drawing i from p and j from q independently.
- (b) [**] Let $(p_1, |\psi_1\rangle), \ldots, (p_m, |\psi_m\rangle)$ be the mixed state of a d-dimensional particle (meaning we have probability p_i of pure state $|\psi_i\rangle \in \mathbb{C}^d$, $i=1\ldots m$). Similarly, let $(q_1, |\phi_1\rangle), \ldots, (q_n, |\phi_n\rangle)$ be the mixed state of an e-dimensional particle. Write $\rho \in \mathbb{C}^{d\times d}$ for the density matrix of the first mixed state and $\sigma \in \mathbb{C}^{e\times e}$ for the density matrix of the second. Suppose the particles were created completely separately and independently, but we now decide to view them as a joint de-dimensional state. Recalling the rules of how to do this for pure states, show that the resulting de-dimensional mixed state has density matrix $\rho \otimes \sigma$, the Kronecker product of ρ and σ .

- 3. [Positive semidefinite matrices.] A Hermitian matrix $M \in \mathbb{C}^{d \times d}$ is said to be positive, or positive semidefinite (denoted $M \geq 0$ or $M \succeq 0$) if $\langle u|M|u \rangle \geq 0$ for all vectors $|u \rangle \in \mathbb{C}^d$.
 - (a) Prove that $M \geq 0$ if and only if $\langle u|M|u\rangle \geq 0$ holds for all unit vectors $|u\rangle \in \mathbb{C}^d$.
 - (b) Let $M \in \mathbb{C}^{d \times d}$ be a diagonal matrix (meaning all off-diagonal entries are 0). Verify that M is Hermitian if and only if all its diagonal entries are real. In this case, prove that $M \geq 0$ if and only if each of its diagonal entries is nonnegative.
 - (c) Let $A \in \mathbb{C}^{k \times d}$ be any matrix (possibly rectangular). First show that $A^{\dagger}A$ is Hermitian; then show that $A^{\dagger}A \geq 0$.
 - (d) Let $R, X \in \mathbb{C}^{d \times d}$ be positive semidefinite matrices. Prove that $\langle R, X \rangle \geq 0$. (See Equation (1) if you forget the definition of $\langle R, X \rangle$.) You may use the fact that every Hermitian matrix M can be represented as $M = \sum_{i=1}^d \lambda_i |\psi_i\rangle\langle\psi_i|$ for some real $\lambda_1, \ldots, \lambda_d$ and some orthonormal basis $|\psi_1\rangle, \ldots, |\psi_d\rangle$.

4. [The basics of quantum random variables.] Let $\rho \in \mathbb{C}^{d \times d}$ be a density matrix. Recall that for an *observable* (i.e., Hermitian matrix) $X \in \mathbb{C}^{d \times d}$, we define

$$\mathbf{E}_{\rho}[X] = \langle \rho, X \rangle = \operatorname{tr}\left(\rho^{\dagger}X\right) = \operatorname{tr}(\rho X) = \sum_{i,j=1}^{d} \rho_{ij} X_{ij}. \tag{1}$$

In this problem, we will extend the above notation to allow for a non-Hermitian matrix X. This is not "physically meaningful" (since there is no measurement instrument corresponding to a non-Hermitian matrix X), but it will be mathematically convenient to let us reason about observables.

- (a) [**] Prove that $\mathbf{E}_{\rho}[1] = 1$, where 1 denotes the $d \times d$ identity matrix.
- (b) Prove that $\mathbf{E}_{\rho}[X^{\dagger}] = \mathbf{E}_{\rho}[X]^*$.
- (c) [**] Let $X, Y \in \mathbb{C}^{d \times d}$ be Hermitian and let $\alpha, \beta \in \mathbb{C}$. Prove "linearity of expectation": $\mathbf{E}_{\rho}[\alpha X + \beta Y] = \alpha \, \mathbf{E}_{\rho}[X] + \beta \, \mathbf{E}_{\rho}[Y]$. Also, show that $\alpha X + \beta Y$ is Hermitian if $\alpha, \beta \in \mathbb{R}$ (otherwise, we can't be sure).
- (d) [**] Prove that $\mathbf{E}_{\rho}[A^{\dagger}A] \geq 0$ for any matrix $A \in \mathbb{C}^{k \times d}$. (You may use Problem 3.)
- (e) [**] Let $\sigma \in \mathbb{C}^{d \times d}$. Referring to Problem 2, prove that $\mathbf{E}_{\rho \otimes \sigma}[X \otimes Y] = \mathbf{E}_{\rho}[X] \mathbf{E}_{\sigma}[Y]$. (This generalizes the classical probability fact that if x and y are independent random variables then $\mathbf{E}[xy] = \mathbf{E}[x] \mathbf{E}[y]$.)
- (f) [**] Let $X,Y\in\mathbb{C}^{d\times d}$, not necessarily Hermitian. Define their *covariance* with respect to ρ to be

$$\operatorname{Cov}_{\rho}[X, Y] = \mathbf{E}_{\rho}[(X - \mu_X \mathbb{1})^{\dagger}(Y - \mu_Y)],$$

where $\mu_X = \mathbf{E}_{\rho}[X]$, $\mu_Y = \mathbf{E}_{\rho}[Y]$. Prove that $\mathbf{Cov}_{\rho}[X,Y] = \mathbf{E}_{\rho}[X^{\dagger}Y] - \mu_X^* \mu_Y$.

- (g) [**] Prove that covariance is "translation-invariant" in each argument, meaning $\mathbf{Cov}[X + \alpha \mathbb{1}, Y + \beta \mathbb{1}] = \mathbf{Cov}[X, Y]$ for all $\alpha, \beta \in \mathbb{C}$. Prove also that $\mathbf{Cov}[\alpha X, \beta Y] = \alpha^* \beta \mathbf{Cov}[X, Y]$.
- (h) [**] Let $X\in\mathbb{C}^{d\times d}$, not necessarily Hermitian. Define the variance of X with respect to ρ to be

$$\mathbf{Var}_{\rho}[X] = \mathbf{Cov}_{\rho}[X, X].$$

Show that $\mathbf{Var}_{\rho}[X] \geq 0$ always, that $\mathbf{Var}_{\rho}[X]$ is translation-invariant, and that $\mathbf{Var}_{\rho}[\alpha X] = |\alpha|^2 \mathbf{Var}_{\rho}[X]$.

(i) We wish to prove the quantum Cauchy-Schwarz inequality: For $X,Y\in\mathbb{C}^{d\times d}$

$$|\mathbf{Cov}_{\rho}[X,Y]|^2 \le \mathbf{Var}_{\rho}[X]\mathbf{Var}_{\rho}[Y].$$
 (2)

It's a little annoying to handle the cases when $\mathbf{Var}_{\rho}[X] = 0$ or $\mathbf{Var}_{\rho}[Y] = 0$, so let's assume we don't need to worry about these cases. Otherwise, show that in attempting to prove the above, we may assume without loss of generality that $\mathbf{Var}_{\rho}[X] = \mathbf{Var}_{\rho}[Y] = 1$ and that $\mathbf{Cov}_{\rho}[X,Y]$ is a nonnegative real. (Hint: consider multiplying X and Y by scalars.)

- (j) Show that it also suffices to assume $\mathbf{E}_{\rho}[X] = \mathbf{E}_{\rho}[Y] = 0$. (Hint: consider subtracting scalar multiples of the identity.)
- (k) Thus it remains to show $\mathbf{Cov}_{\rho}[X,Y] \leq 1$ assuming $\mathbf{Var}_{\rho}[X] = \mathbf{Var}_{\rho}[Y] = 1$, $\mathbf{Cov}_{\rho}[X,Y] \in \mathbb{R}^{\geq 0}$, and $\mathbf{E}_{\rho}[X] = \mathbf{E}_{\rho}[Y] = 0$. Prove this.

- 5. [The Uncertainty Principle.] Let $X, Y \in \mathbb{C}^{d \times d}$ be observables; i.e., Hermitian matrices.
 - (a) [**] Prove that X^2 and Y^2 are Hermitian.
 - (b) [**] Prove that XY is Hermitian if and only if X and Y commute (i.e., XY = YX).
 - (c) [**] Let]X,Y[denote XY+YX (this is nonstandard notation). Prove that $\frac{1}{2}]X,Y[$ is Hermitian. (This matrix is the "symmetrization" of XY, or perhaps "Hermitianization".)
 - (d) [**] Let [X,Y] denote the matrix XY YX, called the "commutator" of X and Y because it's 0 if and only if X and Y commute (this is standard notation). Prove that $\frac{1}{2i}[X,Y]$ is Hermitian.
 - (e) [**] Prove that $XY = \frac{1}{2} X, Y[+i \cdot \frac{1}{2i} [X, Y]]$.
 - (f) In 1927, Werner Heisenberg stated his famous *Uncertainty Principle* for two particular observables of a quantum particle, its "position" and "momentum". In 1928, Earle Kennard properly mathematically proved Heisenberg's Uncertainty Principle. In 1929, Bob Robertson generalized the Uncertainty Principle to a statement about *any* two observables. Specifically, he proved the following:

$$\sigma_{\rho}[X] \cdot \sigma_{\rho}[Y] \ge \left| \mathbf{E}_{\rho} \left[\frac{1}{2i} [X, Y] \right] \right|,$$
 (3)

where $\sigma_{\rho}[X] = \sqrt{\operatorname{Var}_{\rho}[X]}$ is the *standard deviation* of the observable X (and similarly for $\sigma_{\rho}[Y]$). Here $\operatorname{Var}_{\rho}[X]$ is as defined in Problem 4h.

Show that if we want to establish (3), we can reduce to the case that $\mathbf{E}_{\rho}[X] = \mathbf{E}_{\rho}[Y] = 0$. (Hint: use Problem 4h.)

(g) [**] Having made this reduction, prove the Uncertainty Principle (3). (Hint: use the Cauchy–Schwarz inequality (2) and the decomposition from Problem (5e).)

6. [The SWAP test.] We've previously discussed the SWAP gate operating on two qubits, but it also makes sense as an operator on two qudits. In general, a two-qudit state looks like

$$|\psi\rangle = \sum_{i,j=1}^{d} \alpha_{ij} |i\rangle \otimes |j\rangle \in \mathbb{C}^{d^2}.$$
 (4)

(Mathematicians would probably prefer to write \mathbb{C}^{d^2} as " $\mathbb{C}^d \otimes \mathbb{C}^d$ " here.) The SWAP operator is the linear transformation defined by

$$\text{SWAP} |\psi\rangle = \sum_{i,j=1}^{d} \alpha_{ij} |j\rangle \otimes |i\rangle$$

when $|\psi\rangle$ is as in Equation (4).

- (a) [**] Explicitly write the matrix for SWAP in the case of d=3. Label the rows and columns using a natural order like $|11\rangle$, $|12\rangle$, $|13\rangle$, $|21\rangle$, ..., $|33\rangle$.
- (b) We're used to SWAP being a quantum gate and thus unitary. Prove that SWAP is also a Hermitian matrix, hence a valid *observable* for density matrices ϱ on \mathbb{C}^{d^2} (or $\mathbb{C}^d \otimes \mathbb{C}^d$, if you prefer).
- (c) [**] Suppose $|u_1\rangle, \ldots, |u_d\rangle$ is any orthonormal basis for \mathbb{C}^d . This means that the set of all vectors $|u_i\rangle \otimes |u_j\rangle$ $(1 \leq i, j \leq d)$ is an orthonormal basis for \mathbb{C}^{d^2} . Show that SWAP is "basis-independent" in the sense that

$$|\phi\rangle = \sum_{i,j=1}^{d} \beta_{ij} |u_i\rangle \otimes |u_j\rangle \implies \text{SWAP} |\phi\rangle = \sum_{i,j=1}^{d} \beta_{ij} |u_j\rangle \otimes |u_i\rangle.$$

(d) [**] Suppose you have some quantum apparatus that produces a d-dimensional particle in a mixed state with density matrix $\rho \in \mathbb{C}^{d \times d}$. Write the eigenvalues of ρ as $\lambda_1, \ldots, \lambda_d$, with associated eigenvectors $|u_1\rangle, \cdots, |u_d\rangle$. Let $\varrho = \rho \otimes \rho$, which is the d^2 -dimensional density matrix corresponding to the state you get if you run your quantum apparatus two times independently and then treat the two particles as a joint system. Prove that

$$\mathbf{E}_{\varrho}[\text{SWAP}] = \sum_{i=1}^{d} \lambda_i^2.$$

- (e) [**] The quantity $\sum_{i=1}^{d} \lambda_i^2$ is called the *purity* of the mixed state ρ . Show that the maximum possible value of the purity is 1 and it occurs when ρ is a pure state. Show also that the minimum possible value of the purity is 1/d, and it occurs when ρ is the maximally mixed state $\frac{1}{d}\mathbb{1}_{d\times d}$.
- (f) Let $p \in \mathbb{R}^d$ be a probability distribution, and consider the following experiment: make two independent draws from i, j from p, and let S be the random variable which is 1 if (i,j)=(j,i) and is 0 otherwise. Show that $\mathbf{E}[S]=\sum_{i=1}^d p_i^2$. Prove that this quantity has maximal value 1, occurring when p has all of its probability on a single outcome; and, prove that this quantity has minimal value 1/d, occurring when p is the uniform distribution $\frac{1}{d}\vec{\mathbb{I}}=(1/d,\ldots,1/d)$.

- 7. [Zero-error state discrimination.] Back in Lecture 4.5, we considered the following task. There were two fixed qubit states $|u\rangle$, $|v\rangle \in \mathbb{R}^2$ which we assumed had real amplitudes for simplicity. We were given access to an unknown qubit state $|\psi\rangle \in \mathbb{R}^2$ (with real amplitudes) and were promised that either $|\psi\rangle = |u\rangle$ or $|\psi\rangle = |v\rangle$. Our goal was to try to guess which is the case. In Lecture 4.5 we saw the optimal algorithm allowing for "two-sided error", and the optimal algorithm allowing for "one-sided error". We also saw a natural "zero-sided error" algorithm, but observed that it couldn't be optimal. In this problem we will see the optimal zero-sided error algorithm (though we won't prove its optimality). Assume henceforth that the angle between $|u\rangle$ and $|v\rangle$ is $0 < \theta < \pi/2$. Also, write $|u^{\perp}\rangle$ for a unit vector perpendicular to $|u\rangle$, and $|v^{\perp}\rangle$ for a unit vector perpendicular to $|v\rangle$.
 - (a) [**] Let $\Pi_1 = |u^{\perp} \rangle \langle u^{\perp}|$, the linear operator on \mathbb{R}^2 that projects onto the $|u^{\perp}\rangle$ vector. Show that $\Pi_1 = \mathbb{1} |u\rangle \langle u|$ (where $\mathbb{1}$ denotes the 2×2 identity matrix) and that this is a positive operator. We'll similarly let $\Pi_2 = |v^{\perp}\rangle \langle v^{\perp}|$.
 - (b) [**] The idea of the algorithm is to define $E_1 = \frac{1}{c}\Pi_1$ and $E_2 = \frac{1}{c}\Pi_2$, where c is a positive scalar that is just large enough such that $E_0 = \mathbb{1} E_1 E_2$ is a positive operator. Having done this, $\{E_0, E_1, E_2\}$ becomes a valid POVM. Suppose we then measure the unknown state $\rho = |\psi\rangle\langle\psi|$ with this POVM. Show that when $|\psi\rangle = |u\rangle$, the probability of outcome 1 is 0, and similarly when $|\psi\rangle = |v\rangle$, the probability of outcome 2 is 0.
 - (c) [**] In light of the previous problem, we see that if we get outcome 1 we can safely guess $|\psi\rangle=|v\rangle$, and if we get outcome 2 we can safely guess $|\psi\rangle=|u\rangle$. If we get outcome 0, we will guess "don't know". Our goal, therefore, is to minimize the probability of getting outcome 0. Show that this probability is $1-\frac{1-\cos^2\theta}{c}$.
 - (d) [**] In light of the previous problem, we clearly want c to be as small as possible. As mentioned, we have the restriction that E_0 must be a positive operator. Show that if $|w\rangle \in \mathbb{R}^2$ is any unit vector, $\langle w|E_0|w\rangle = 1 \frac{\sin^2\theta_1 + \sin^2\theta_2}{c}$, where θ_1 is the angle from $|u\rangle$ to $|w\rangle$ and θ_2 is the angle from $|w\rangle$ to $|v\rangle$. We have the restriction $\theta_1 + \theta_2 = \theta$. Hence the least possible c for which E_0 is positive is the least c such that $1 \frac{\sin^2\theta_1 + \sin^2\theta_2}{c} \geq 0$ whenever $\theta_1 + \theta_2 = \theta$. Show that this least c is $c = 1 + \cos\theta$.
 - (e) [**] Deduce that there is a zero-sided error qubit discrimination algorithm with failure probability $\cos \theta$, as claimed at the end of Lecture 4.5.

8. [Quantum information theory.] Learn more about it by watching these lectures of Reinhard Werner on Tobias Osborne's YouTube channel.					

9. [A primer on the statistics of longest increasing subsequences and quantum states.] Take a look at this survey paper describing some research on quantum learning/statistics.