Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

Решение задачи о классификации формулы

Задание. Классифицировать формулу

$$\overline{(xy \to x) \lor y}$$

Решение. Используем известные теоремы:

Теорема (критерий тождественной истинности формул):

Для того, чтобы формула алгебры высказываний была тождественно истинной, необходимо и достаточно, чтобы в равносильной ей КНФ были тождественно истинны все элементарные дизъюнкции.

Теорема (критерий тождественной истинности элементарной дизъюнкции):

Для того, чтобы элементарная дизъюнкция была тождественно истинна, необходимо и достаточно, чтобы в ней существовала хотя бы для одной переменной пара - переменная и ее отрицание.

1)
$$\overline{(\overline{xy} \to x) \lor y}$$

Преобразуем данную формулу, используя законы де Моргана и формулу $a \to b = \bar{a} \lor b$. Получим:

$$F_{1} = (\overline{xy} \to x) \lor y = (\overline{\overline{xy}} \lor x) \lor y = \overline{xy} \lor x \lor y =$$

$$= (\overline{x} \lor \overline{y}) \cdot (\overline{x}) \cdot (\overline{y}) = (\overline{x} \lor \overline{y}) \cdot \overline{x} \cdot \overline{y} = \overline{x} \cdot \overline{x} \cdot \overline{y} \lor \overline{y} \cdot \overline{x} \cdot \overline{y} =$$

$$= \overline{x} \cdot \overline{y} \lor \overline{x} \cdot \overline{y} = \overline{x} \cdot \overline{y}.$$

Полученная элементарная дизъюнкция $\overline{x} \cdot \overline{y}$ не содержит переменную и ее отрицание одновременно. Значит, она не тождественно истинна. Значит, не тождественно истинна исходная формула.

Формула нетривиально выполнима.