

Low-rank matrix completion: optimization on manifolds at work

Nicolas Boumal

Joint work with Pierre-Antoine Absil

Université catholique de Louvain

April 2011

Recommender systems tell you which items you might like

based on a huge database of ratings

Ratings of items by the users are recorded

One row per item, one column per user

user
$$j$$

Ratings of items by the users are recorded

One row per item, one column per user

user
$$j$$

Most ratings are unknown. Our job is to complete X.

We could exploit similarities between users and items to complete the matrix

In a global, automated, scalable way?

Scalability will guide the algorithm design

for both time and memory complexity

Netflix 1M\$ prize:

- 17,700 movies;
- 480,000 users;
- 100,000,000 ratings (1%).

Scalability will guide the algorithm design

for both time and memory complexity

Netflix 1M\$ prize:

- 17,700 movies;
- 480,000 users;
- 100,000,000 ratings (1%).

- ⇒ The whole matrix won't fit into memory,
- ⇒ but the known ratings will.

We assume that X has low-rank r

Hence, that ratings are inner products in a small space \mathbb{R}^r

Rationale: only a few factors influence our preferences

We map items and users to this small dimensional space without any human intervention

Toward a reasonable formulation

The optimal choice UW is an m-by-n matrix of rank r in best agreement with the k known entries of X

This is reasonable

$$\min_{U \in \mathbb{R}^{m \times r}, W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2$$

- Very natural;
- Search space of dimension r(m+n);
- Objective computable in $\mathcal{O}(rk)$ time;
- Ideal for Gaussian noise on ratings X_{ij} .

This is reasonable, but

$$\min_{U \in \mathbb{R}^{m \times r}, W \in \mathbb{R}^{r \times n}} \left| \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 \right|$$

Minimizers are not isolated.

This is reasonable, but

$$\min_{U \in \mathbb{R}^{m \times r}, W \in \mathbb{R}^{r \times n}} \left| \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 \right|$$

Minimizers are not isolated.

If (U,W) is a minimizer, $(UM,M^{-1}W)$ is too, for any r-by-r invertible matrix M.

The objective is invariant under invertible transformations We don't want that. Why?

■ The search space $\mathbb{R}^{m \times r} \times \mathbb{R}^{r \times n}$ is bigger than it ought to be;

 Most theoretical guarantees of convergence for iterative optimization methods assume isolated critical points;

And it may prevent superlinear convergence rates altogether.

Partial solution: force U to be orthonormal

It's a kind of normalization

Partial solution: force U to be orthonormal

It's a kind of normalization

Minimizers are still not isolated.

Partial solution: force U to be orthonormal

It's a kind of normalization

Minimizers are still not isolated.

If (U,W) is a minimizer, $(UQ,Q^{\top}W)$ is too, for any r-by-r orthogonal matrix Q.

The set of r-dimensional subspaces of \mathbb{R}^m is the Grassmann manifold $\mathrm{Gr}(m,r)$

- The objective is well defined over the equivalence classes $[U] = \{UQ : Q \in \mathbb{R}^{r \times r}, Q^{\mathsf{T}}Q = I_r\};$
- All matrices $UQ \in [U]$ share a common column space: $\operatorname{col}(UQ) = \mathscr{U} \in \operatorname{Gr}(m,r);$

■ We represent a point $\mathscr U$ on Grassmann with any orthonormal matrix U such that $\operatorname{col}(U) = \mathscr U$.

$$\min_{\mathscr{U}\in\operatorname{Gr}(m,r),W\in\mathbb{R}^{r\times n}} \sum_{(i,j)\in\Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2$$

U is any m-by-r orthonormal matrix such that $\operatorname{col}(U)=\mathscr{U}$.

$$\min_{\mathscr{U}\in\mathrm{Gr}(m,r)} \min_{W\in\mathbb{R}^{r\times n}} \left| \sum_{(i,j)\in\Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 \right|$$

U is any m-by-r orthonormal matrix such that $\operatorname{col}(U) = \mathscr{U}$.

 ${\it W}$ is the solution of a simple least squares problem.

The objective is a function of the column space $\mathscr U$

$$\min_{\mathscr{U} \in \operatorname{Gr}(m,r)} \quad \min_{W \in \mathbb{R}^{r \times n}} \quad \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2$$

U is any m-by-r orthonormal matrix such that $\operatorname{col}(U) = \mathscr{U}$.

 ${\it W}$ is the solution of a simple least squares problem.

f is not continuous :(

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2$$

Indeed, the least squares problem may not always have a unique solution.

This stems from unattended entries, see Dai, Milenkovic et al., 2010.

Regularization makes f smooth

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2$$

Regularization makes f smooth

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

Regularization makes f smooth

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

Computation of the inner objective looks like it costs $\mathcal{O}(mnr)$ time :(

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

$$\sum_{(i,j)\notin\Omega}(UW)_{ij}^2$$

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

$$\sum_{(i,j)\notin\Omega} (UW)_{ij}^2 \ + \sum_{(i,j)\in\Omega} (UW)_{ij}^2$$

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

$$\sum_{(i,j) \notin \Omega} (UW)_{ij}^2 \ + \sum_{(i,j) \in \Omega} (UW)_{ij}^2 = \sum_{(i,j)} (UW)_{ij}^2$$

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

$$\begin{split} \sum_{(i,j) \notin \Omega} (UW)_{ij}^2 &+ \sum_{(i,j) \in \Omega} (UW)_{ij}^2 = \sum_{(i,j)} (UW)_{ij}^2 \\ &= \|UW\|_{\mathrm{F}}^2 \end{split}$$

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

$$\sum_{(i,j)\notin\Omega} (UW)_{ij}^2 + \sum_{(i,j)\in\Omega} (UW)_{ij}^2 = \sum_{(i,j)} (UW)_{ij}^2$$

$$= ||UW||_{\mathrm{F}}^2$$

$$= ||W||_{\mathrm{F}}^2$$

Complexity:
$$\mathcal{O}(r(k+n))$$
.

This (final) objective has many good properties

for the low-rank matrix completion problem

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 \left((UW)_{ij} - X_{ij} \right)^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

This (final) objective has many good properties

for the low-rank matrix completion problem

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

It is natural and defined over the "right" space;

This (final) objective has many good properties

for the low-rank matrix completion problem

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

- It is natural and defined over the "right" space;
- It has isolated minimizers and it is smooth;

This (final) objective has many good properties

for the low-rank matrix completion problem

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

- It is natural and defined over the "right" space;
- It has isolated minimizers and it is smooth;
- It is efficiently computable, and so are $\operatorname{grad} f$ and $\operatorname{Hess} f$;

This (final) objective has many good properties

for the low-rank matrix completion problem

$$f(\mathscr{U}) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} C_{ij}^2 ((UW)_{ij} - X_{ij})^2 + \lambda \sum_{(i,j) \notin \Omega} (UW)_{ij}^2$$

- It is natural and defined over the "right" space;
- It has isolated minimizers and it is smooth;
- It is efficiently computable, and so are $\operatorname{grad} f$ and $\operatorname{Hess} f$;
- It should be able to deal with noise.

How do you minimize $f(\mathscr{U})$ over Grassmann?

In \mathbb{R}^n , we would:

In \mathbb{R}^n , we would:

lacksquare build a quadratic model of f around the current iterate x,

In \mathbb{R}^n , we would:

- lacksquare build a quadratic model of f around the current iterate x,
- \blacksquare minimize the model in a *trust*-region around x,

In \mathbb{R}^n , we would:

- lacksquare build a quadratic model of f around the current iterate x,
- \blacksquare minimize the model in a *trust*-region around x,
- lacktriangle make the step if it decreases f and rescale the region accordingly.

In \mathbb{R}^n , we would:

- lacksquare build a quadratic model of f around the current iterate x,
- \blacksquare minimize the model in a *trust*-region around x,
- lacktriangle make the step if it decreases f and rescale the region accordingly.

Absil, Baker and Gallivan (2007) generalized this to manifolds.

Trust-region is much better than a Newton method

The trust-region approach:

guarantees monotonic objective decrease, and

can deal with approximate Hessians (even the identity)

and with approximate solutions of the Newton equations.

GenRTR comes with proofs

Our method is guaranteed to converge toward critical points,

with second-order speed once near the limit point.

Usually, the limit point is a local minimizer.

A few numerical tests

We compare four algorithms

 GenRTR with our objective function, with Hessian (2nd order) and without Hessian (1st order);

OptSpace by Keshavan and Oh;

ADMiRA by Lee and Bresler.

OptSpace is a serious contestant, ADMiRA less so.

Noiseless, $m=n=1\,000$, r=4, knowledge = 10%

Our method seems to scale better.

Noiseless, $m=n=10\,000,\,r=4,\,\mathrm{knowledge}=10\%$

For rectangular matrices, we improve over OptSpace.

Noiseless, $m=1\,000$, $n=80\,000$, r=4, knowledge = 2%

Given enough information, we consistently recover X.

Noiseless, $m = n = 1\,000$, r = 5

Computation time is proportional to \$\pm\$ known entries.

Noiseless, $m = n = 1\,000$, r = 5

Computation time scales reasonably with the rank.

Noiseless, $m=n=1\,000$, knowledge = 25%

In the presence of noise, we are close to optimal.

Noisy, m = n = 500, r = 4

Final thoughts

Conclusions

Our contribution is a sensible objective function fed to a state-of-the-art theory-backed solver with the right complexity;

The algorithm scales well and is easily parallelizable;

In the noiseless case, we get exact completion if enough entries are known;

In the noisy case, we provide a close to optimal reconstruction.

Next step: application to real data sets.

Take home message

Many practical optimization problems are such that either the objective function presents some invariances, giving rise to a quotient manifold, or are constrained by nonlinear equalities describing a submanifold of \mathbb{R}^n .

Efficient tools are readily available to fully exploit the geometry of these problems such as, e.g., GenRTR.

These tools are backed up by a solid theory, described for example in the book by Absil, Mahony and Sepulchre: Optimization Algorithms on Matrix Manifolds, 2008.