Therenin's theorem:

Any two terminal linear network containing impedances and sources may be replaced by a single independent source of voltage Vita and internal imbedance Zit. Where It is the open circuit voltage at the terminal and Zth is the impedance viewed at the terminal.

Norton's theorem

Compensation Theorem

Statement: Consider a linear network in which an Indépendent source is délivering current I 6 a boad impedance Z. If Z is changed to (Z+82). Then the Change in current 'SI' can be found by replacing The independent source by its internal impedance and placing a compensation voltage source has magnitude $V_e = I \delta Z$ and its $\frac{1}{2g} + \frac{1}{2g} + \frac{1}{2g}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}$

$$\delta I = I' - I = \frac{-V_g \delta 2}{(2g^{\dagger} 2 + \delta 2)} = \frac{I \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = -\left(\frac{V_c}{Z + 2g + \delta 2}\right)$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

$$\delta I = \frac{V_g \delta 2}{Z + 2g + \delta 2}$$

'SZ'is The change in load impedance.

Millman's Theorem

$$V_{0} = \frac{V_{1}Y_{1} + V_{2}Y_{2} - \cdots + V_{n}Y_{n}}{Y_{1} + Y_{2} + \cdots + Y_{n}} = \frac{\sum_{i} V_{i}Y_{i}}{\sum_{i} Y_{i}}$$

$$Y_{0} = Y_{i} + Y_{2} + \cdots + Y_{n} = \sum_{i} Y_{i}^{2}$$

Maximum power to ansfer Theorem

i) $Z_1 = R_L$ and $Z_9 = R_9$: $I_L = \frac{V_9}{R_9 + R_L}$ Power delivered to the bad $(P_1) = T^2 R_2 = \left(\frac{V_9}{R_9 + R_L}\right)^2$. R_2 .

If the P, is maximum Then $\frac{V_g^2 \left[(R_L + R_g)^2 - 2R_L (R_L + R_g) \right]}{(R_L + R_g)^4} = 0$

Vy2 Efficiency is 50%.

4R "Half"

Half power will be dissipated in The source resistance Rg"

ii) Zg=Rg+jxg and Zz=Rz+jxL: $= \frac{v_9}{(R_1 + R_9) + \mathring{j}(x_1 + x_9)}; \quad III = \frac{v_9^2}{(R_1 + R_9)^2 + (x_1 + x_9)^2}$ Power adivored to the load (P2) = III'. R. = \frac{V_g^2 R_L}{(R_c + R_g)^2 + (\chi_t + \chi_g)^2} for maximum fower tronsfer by adjusting bad reactance, [X2 = - Xg | com be set

$$\frac{P}{L}$$
, max $\frac{V_g}{(R_L^+ R_g)^2}$

If R2=Rg Then P2, nax = Tmax.

Therefore the conditions for maximum power tromsfer

a. $\chi_2 = -\chi_g$ b. $R_L = Rg$