Théorie des Langages Rationnels Simplification of ε -NFA

Adrien Pommellet, LRE

March 15, 2023

There must be a simpler answer.

Figure 1: An automaton \mathcal{A} recognizing $\mathcal{L}(a^* + bc)$.

An inefficient model

 ε -NFA are flawed: a short word may require an **arbitrary long** path. Here, it takes 5 edges to accept the word *a* of length 1.

But in a finite automata without spontaneous transitions, a path labelled by a word w is exactly as long as w itself.

Working around spontaneous transitions

Consider a path $q_0 \stackrel{\varepsilon}{\to}_A^* q_1$ and an edge $q_1 \stackrel{a}{\to}_A q_2$ in an automaton.

An edge $q_0 \stackrel{a}{\rightarrow}_{\mathcal{A}} q_2$ could achieve the same result without using any spontaneous transition.

This pattern is known as the backward removal of ε -transitions.

Forward removal

In a similar manner, we could perform a forward elimination of spontaneous transitions.

It is known as forward (resp. backward) because the ε -path is in front of (resp. behind) the actual edge labelled by a.

A rough outline

Our algorithm should feature the following steps:

- Find all the ε -paths $q_0 \xrightarrow{\varepsilon}_{\mathcal{A}}^* q_1$.
- ② Find all the patterns $q_0 \xrightarrow{\varepsilon}_{\mathcal{A}}^* q_1 \xrightarrow{a} q_2$ and for each pattern add a relevant edge $q_0 \xrightarrow{a} q_2$.
- **3** Remove all the ε -transitions.

The forward ε -closure

We define the set of states reachable from a given state using nothing but ε -transitions:

Forward ε -closure of a state

The forward ε -closure $\varepsilon_{\text{forward}}^{\mathcal{A}}(q)$ of a state q of an automaton \mathcal{A} is the set $\{p \in Q \mid q \xrightarrow{\varepsilon}_{\mathcal{A}}^* p\}$.

Note that $q \xrightarrow{\varepsilon_{\mathcal{A}}^*} q$, always: from q we can reach q by not reading anything and using 0 edges. Thus $q \in \varepsilon_{\text{forward}}^{\mathcal{A}}(q)$.

We must compute this set for every state q of the automaton.

An useful property

Theorem

If
$$p \in \varepsilon_{forward}^{\mathcal{A}}(q)$$
 and $r \in \varepsilon_{forward}^{\mathcal{A}}(p)$ then $r \in \varepsilon_{forward}^{\mathcal{A}}(q)$.

Indeed, remember that $\varepsilon \cdot \varepsilon = \varepsilon$. Therefore, if there is an ε -path from q to p and an ε -path from p to r, then there is an ε -path from q to r.

Making our knowledge grow

In order to compute a set E, it is sometimes possible to use a pattern known as an **iterative fixpoint algorithm**:

- We know a non-empty set of base cases $B \subseteq E$.
- ② We also known a set of rules R such that, given $e_1, \ldots, e_k \in E$ and a rule $r \in R$, we can build an element $r(e_1, \ldots, e_k) \in E$.
- **③** We compute an **increasing sequence of sets** $(S_i)_{i \ge 0}$ such that $S_0 = B$ and $\forall i \ge 0$, $S_i \subseteq S_{i+1} \subseteq E$, where S_{i+1} has been grown from S_i by applying rules from R to existing elements in S_i .
- **4** If there exists a rank n such that $S_n = S_{n+1}$, we say that a fixed point S_n has been reached.
- **5** Assuming the algorithm is well-designed, $S_n = E$.

Computing the forward ε -closure

States	Step 0	Step 1	Step 2	Step 3
0	0 1 3	0 1 3 2 1 2 3	0 1 3 2	0 1 3 2
1				
2	2 3	2 3 0	2 3 0 1	2 3 0 1
3	3 0	3 0 <mark>1</mark>	3 0 1 <mark>2</mark>	3 0 1 2

A summary of the closure algorithm

- We design a **table** with |Q| lines, one for each state of A. Cell (q, i) will contain our knowledge of $\varepsilon_{forward}^{A}(q)$ after i iterations.
- ② For each state q, we write in cell (q,0) the state q itself as well as any state p such that there exists an edge $q \xrightarrow{\varepsilon}_{\mathcal{A}} p$. We initialize the table with knowledge we can directly infer from the edges and the states of the automaton itself.
- **3** Assuming column i is known, we compute column i+1 by adding to cell (q, i+1) the content of cell (p, i) for each p in cell (q, i). We extend our knowledge by combining ε -paths identified previously.
- We iterate until columns i and i+1 are the same. We reach a fixpoint when **no new extra information** can be added to the table.

Practical Application

Exercise 1. Compute $\varepsilon_{\mathsf{forward}}^{\mathcal{A}}(q)$ for each state q of the automaton \mathcal{A} of Figure 1.

Answer

States	Step 0	Step 1	Step 2	Step 3
0	0 1 5	0 1 5 2 4	015249	015249
1	124	1 2 4 <mark>9</mark>	1 2 4 9	1249
2	2	2	2	2
3	3 2 4	3 2 4 <mark>9</mark>	3 2 4 9	3 2 4 9
4	4 9	4 9	4 9	4 9
5	5	5	5	5
6	6 7	6 7	6 7	6 7
7	7	7	7	7
8	8 9	8 9	8 9	8 9
9	9	9	9	9

The next step

Note that if $q_1 \in \varepsilon_{\text{forward}}^{\mathcal{A}}(q_0)$ and there exists an edge $q_1 \xrightarrow{a}_{\mathcal{A}} q_2$, then we can add an edge $q_0 \xrightarrow{a}_{\mathcal{A}} q_2$.

Computing the NFA

States	$arepsilon_{forward}^{\mathcal{A}}$
0	0 1 2
1	1 2
2	2

It's not over yet

The original automaton accepts a, but the new one **does not**. We need to fix our algorithm.

New accepting states

If there is an accepting state r in the forward ε -closure of a state p, then any path $q \stackrel{w}{\to}_{\mathcal{A}}^* p$ can be extended to an accepting path $q \stackrel{w}{\to}_{\mathcal{A}}^* r$ with the same label.

Thus, we may treat p as being accepting as well.

Fixing the example

We will therefore apply the following rule: if $r \in \varepsilon_{\text{forward}}^{\mathcal{A}}(p)$ is an accepting state of the original automaton, then we should make p accepting as well.

States	$arepsilon_{forward}^{\mathcal{A}}$
0	0 1 2
1	1 2
2	2

A summary of the final step

- **①** We remove all the existing ε -transitions, and we only keep the edges whose label is in Σ .
- ② For each state q and each $p \in \varepsilon_{\text{forward}}^{\mathcal{A}}(q)$, if there's an existing edge $p \xrightarrow{\times}_{\mathcal{A}} r$ in the original automaton, then we add an edge $q \xrightarrow{\times}_{\mathcal{A}} r$.
- § if $r \in \mathcal{E}_{\text{forward}}^{\mathcal{A}}(p)$ is an accepting state of the original automaton, then we should make p accepting as well.

The whole algorithm

- **①** Compute the closure $\varepsilon_{\text{forward}}^{\mathcal{A}}$ of the ε -NFA \mathcal{A} .
- **②** Remove all the ε -transitions, then add new edges to the automaton based on $\varepsilon_{\text{forward}}^{A}$ and the remaining original edges.
- $\ \, \ \,$ Depending on $\varepsilon_{\rm forward}^{\mathcal A},$ you may have to change some states to be accepting.

As a consequence:

Theorem

Given a ε -NFA \mathcal{A} on the alphabet Σ , there exists an equivalent NFA \mathcal{A}' on Σ with the same number of states.

Practical Application

Exercise 2. Use $\varepsilon_{\text{forward}}^{\mathcal{A}}$ to convert the automaton \mathcal{A} of Figure 1 into an equivalent NFA.

Answer I

States	$arepsilon^{\mathcal{A}}$ forward
0	015249
1	1249
2	2
3	3 2 4 9
4	4 9
5	5
6	6 7
7	7
8	8 9
9	9

Answer II

States	$arepsilon_{eta}^{\mathcal{A}}$ forward
0	015249
1	1249
2	2
3	3 2 4 9
4	4 9
5	5
6	6 7
7	7
8	8 9
9	9

Simplifying the solution

See you next class!