ЛЕКЦІЯ 6

2. ВИПАДКОВІ ВЕЛИЧИНИ 2.1. ВИПАДКОВІ ВЕЛИЧИНИ ТА ЗАКОНИ ЇХ РОЗПОДІЛУ 2.1.1. Означення та види випалкових величин

В практичній діяльності часто зустрічаються експерименти, випробування, досліди, результатами яких ϵ чисельні значення. Наприклад, кількість замовлень на авіаквитки, що надходить до системи бронювання та продажу квитків впродовж часу t, не ϵ сталою величиною і може приймати різні значення 0, 1, 2, ..., n, ... в залежності від впливу факторів випадкового характеру. Величина "кількість замовлень" відноситься до величин, які називаються випадковими. Вони дають кількісну оцінку результату випробування на відміну від випадкових подій, розглянутих у гл.1, які характеризують результат випробування якісно.

Означення 2.1. Випадковою називається величина, яка в результаті випробування приймає те чи інше можливе значення, заздалегідь невідоме, яке змінюється від випробування до випробування і залежить від ряду випадкових факторів.

Випадкові величини позначаються великими літерами X, Y, Z, ..., а їх можливі значення відповідними малими літерами з індексами. Наприклад, випадкова величина X, її можливі значення $x_1, x_2, ..., x_n,$

Застосовується також інше означення випадкової величини.

<u>Означення 2.2.</u> Випадковою величиною називається функція X, означена на множині наслідків $x_1, x_2, ..., x_n, ...$ даного випробування.

Наведемо приклади випадкових величин.

- 1. Кількість електричних ламп, що виходять з ладу в системі освітлення та сигналізації аеропорту на протязі доби, не ε сталою і змінюється в залежності від якості ламп, умов експлуатації, рівня напруги в електромережі тощо. Ця випадкова величина ма ε множину можливих значень $\{0, 1, 2, ..., n, ...\}$, яка теоретично може бути нескінченною.
- 2. Рівень напруги в електромережі аеропорту також не є сталою величиною і змінюється в залежності від режиму роботи електростанції, кількості споживачів, системи стабілізації тощо. Ця випадкова величина має множину можливих значень, які суцільно заповнюють деякий інтервал.

Випадкові величини бувають двох видів: дискретні і неперервні.

- 1. Дискретні випадкові величини величини, які в результаті випробувань приймають окремі, ізольовані можливі значення, множина яких може бути скінченною або нескінченною. Можливі значення дискретної величини зображуються точками числової осі. Прикладами дискретних випадкових величин є кількість літаків в зоні диспетчера по керуванню повітряним рухом, кількість пасажирів на рейсі, кількість квитків, виданих на протязі зміни по запитам пасажирів системою продажу авіаквитків, число вузлів системи, які вийшли з ладу впродовж певного часу тощо.
- 2. Неперервні випадкові величини величини, які в результаті випробувань приймають можливі значення, які суцільно заповнюють деякий інтервал числової осі, скінченний або нескінченний. Множина можливих значень неперервної випадкової величини нескінченна і незліченна. Прикладами неперервних величин є похибки вимірювань фізичних величин з допомогою приладів, час безвідмовної роботи окремих вузлів системи і всієї системи в цілому, відхилення геометричних розмірів виготовленої деталі від стандартних тощо.

2.1.2. Закон розподілу випадкової величини. Ряд розподілу

Для задання випадкової величини недостатньо перелічити всі її можливі значення, необхідно також вказати ймовірності, з якими ця величина приймає те чи інше можливе значення (для дискретної випадкової величини), або ймовірності, з якими випадкова величина попадає в деякий інтервал (для неперервної випадкової величини). Такі повні дані про випадкову величину дають так звані закони розподілу випадкової величини.

<u>Означення 2.3.</u> Законом розподілу випадкової величини називається залежність (таблиця, графік, функція тощо) між її можливими значеннями і відповідними їм імовірностями.

Найпростішою формою закону розподілу дискретної випадкової величини ϵ *ряд розподілу*. Ряд розподілу явля ϵ собою таблицю, в першому рядку якої наведені всі можливі значення дискретної випадкової величини, а в другому — ймовірності, з якими випадкова величина прийма ϵ ці значення:

Та обставина, що в результаті випробування випадкова величина X приймає певне можливе значення x_i , може розглядатися, як випадкова подія $\{X = x_i\}$. Оскільки в результаті випробування величина X приймає одне і тільки одне можливе значення, події $\{X = x_i\}$ (i = 1, 2, ..., n) утворюють повну групу несумісних подій. Тому

$$\sum_{i=1}^{n} p_i = 1 . {(2.2)}$$

<u>Приклад 2.1.</u> Проводиться випробування надійності системи, яка складається з трьох працюючих незалежно приладів. Надійність (імовірність безвідмовної роботи) першого приладу дорівнює 0,9, другого - 0,8, третього - 0,7. Побудувати ряд розподілу випадкової величини X — числа надійних приладів в системі.

Розв'язання. Випадкова величина X приймає можливі значення 0, 1, 2, 3. Позначимо через g_1, g_2, g_3 імовірності безвідмовної роботи відповідно першого, другого, третього приладів, тоді за умовою задачі $g_1 = 0.9$; $g_2 = 0.8$; $g_3 = 0.7$, отже, ймовірності виходу з ладу приладів відповідно дорівнюють $\overline{g}_1 = 0.1$; $\overline{g}_2 = 0.2$; $\overline{g}_3 = 0.3$. Застосувавши теореми додавання і множення ймовірностей, обчислимо ймовірності того, що випадкова величина X приймає можливі значення 0, 1, 2, 3:

$$p_{0} = P\{X = 0\} = \overline{g_{1}} \overline{g_{2}} \overline{g_{3}} = 0,006,$$

$$p_{1} = P\{X = 1\} = g_{1} \overline{g_{2}} \overline{g_{3}} + \overline{g_{1}} g_{2} \overline{g_{3}} + \overline{g_{1}} g_{1} g_{3} = 0,092,$$

$$p_{2} = P\{X = 2\} = g_{1} g_{2} \overline{g_{3}} + g_{1} g_{2} g_{3} + g_{1} g_{2} g_{3} = 0,398,$$

$$p_{3} = P\{X = 3\} = g_{1} g_{2} g_{2} = 0,504.$$

Ряд розподілу випадкової величини X запишеться у вигляді:

\boldsymbol{X}	0	1	2	3
P	0,006	0,092	0,398	0,504

Для контролю обчислень перевіримо виконання умови (2.2):

$$\sum_{i=0}^{3} p_i = 0,006 + 0,092 + 0,398 + 0,504 = 1.$$

Геометричне зображення ряду розподілу називають многокутником розподілу, для побудови якого на осі абсцис відкладають можливі значення випадкової величини X, а на осі ординат — відповідні їм імовірності, після чого одержані точки з'єднують прямолінійними відрізками.

Многокутник розподілу для ряду, одержаного в прикладі 2.1, наведено на рис.2.1.

2.1.3. Функція розподілу випадкової величини та її властивості

Ряд розподілу досить повно характеризує випадкову величину, проте побудувати його можна лише для дискретної випадкової величини, оскільки множина можливих значень неперервної випадкової величини − незліченна і, отже, їх не можна перелічити в ряді розподілу.

Загальною формою задання закону розподілу, яка застосовується як для дискретних, так і для неперервних випадкових величин, є функція розподілу, яку інколи також називають інтегральною функцією розподілу.

<u>Означення 2.4.</u> Функцією розподілу випадкової величини X називається функція F(x), яка для кожного значення x дорівнює ймовірності того, що випадкова величина X прийме значення, менше за x, тобто

$$F(x) = P\{X < x\}. \tag{2.3}$$

Геометрично функція розподілу F(x) для кожного фіксованого x подає ймовірність попадання випадкової величини в півінтервал $(-\infty, x)$, який знаходиться на числовій осі лівіше точки x.

Побудуємо графік функції розподілу F(x) для дискретної випадкової величини X, заданої рядом розподілу (2.1).

1. Нехай $x \le x_1$. Оскільки випадкова величина X не приймає можливих значень, менших за x, то подія $\{X < x\}$ в цьому випадку неможлива і, отже, її ймовірність дорівнює нулю:

$$F(x) = P\{X < x\} = 0.$$

2. Нехай тепер $x_1 < x \le x_2$. При цьому випадкова величина X приймає єдине можливе значення x_1 , менше за x, з імовірністю p_1 . Тому

$$F(x) = P\{X < x\} = P\{X = x_1\} = p_1.$$

3. Нехай далі $x_2 < x \le x_3$. При цьому випадкова величина X може прийняти або значення x_1 з імовірністю p_1 , або значення x_2 з імовірністю p_2 .

Тому, застосовуючи теорему 1.1 додавання ймовірностей несумісних подій, одержимо:

$$F(x) = P\{X = x_1\} + P\{X = x_2\} = p_1 + p_2.$$

4. Для випадку $x_{n-1} < x \le x_n$ аналогічно одержимо:

$$F(x) = P\{X = x_1\} + P\{X = x_2\} + \dots + P\{X = x_{n-1}\} = p_1 + p_2 + \dots + p_{n-1}.$$

5. Нехай, нарешті, $x > x_n$. Тоді випадкова величина X приймає одне з усіх можливих значень $x_1, x_2, ..., x_n$. Ця подія достовірна і, отже, її ймовірність дорівнює одиниці, тобто F(x) = 1.

Таким чином, функція розподілу F(x) для дискретної випадкової величини X, заданої рядом розподілу (2.1), має такий аналітичний вираз:

$$F(x) = \begin{cases} 0 & \text{при } x \leq x_1; \\ p_1 & \text{при } x_1 < x \leq x_2; \\ p_1 + p_2 & \text{при } x_2 < x \leq x_3; \\ \dots & \dots & \dots \\ p_1 + p_2 + \dots + p_{n-1} & \text{при } x_{n-1} < x \leq x_n; \\ 1 & \text{при } x > x_n. \end{cases}$$
 (2.4)

Побудуємо графік функції F(x) (рис.2.2).

Як видно з рис.2.2, графік функції розподілу F(x) дискретної випадкової величини X є розривна східчаста лінія, стала в інтервалах між можливими значеннями випадкової величини, причому розмір стрибка функції F(x) в точках x_i дорівнює ймовірності p_i , з якою випадкова величина приймає відповідне можливе значення x_i .

При збільшенні числа n можливих значень, які приймає випадкова величина X, довжини східців і розміри стрибків в точках розриву зменшуються, і графік функції F(x) наближається до певної плавної неперервної кривої. У випадку *неперервної випадкової величини*, у якої множина можливих значень на інтервалі (a;b) незліченна, графік функції F(x) є неперервною лінією, яка схематично зображена суцільною кривою на рис.2.3.

Що ж стосується конкретної неперервної випадкової величини X, то її функція розподілу F(x) повинна бути заданою аналітично або графічно. Наприклад, якщо неперервна випадкова величина X задана функцією розподілу F(x), то графік функції F(x) має вигляд, представлений на рис. 2.4.

$$F(x) = \begin{cases} 0 & \text{при } x \le 0; \\ \frac{x\sqrt{x}}{8} & \text{при } 0 < x \le 4; \\ 1 & \text{при } x > 4, \end{cases}$$

Рис. 2.4

Властивості функції розподілу випадкової величини

<u>Властивість 1.</u> Функція розподілу приймає значення з відрізка [0; 1]:

$$0 \le F(x) \le 1$$
.

<u>Властивість 2.</u> F(x) — неспадна функція, тобто при $x_2 > x_1$

$$F(x_2) \ge F(x_1).$$
 (2.6)

<u>Властивість</u> 3. Імовірність того, що випадкова величина X в результаті випробування прийме значення з інтервалу $(\alpha;\beta)$, дорівнює приросту функції розподілу F(x) на цьому інтервалі:

$$P\{\alpha \le X < \beta\} = F(\beta) - F(\alpha). \tag{2.9}$$

3 властивості 3 одержуємо такий важливий висновок:

імовірність того, що випадкова величина X в результаті випробування прийме одне конкретне можливе значення x_i , обчислюється за формулою

$$P\{X = x_i\} = P\{x_i \le X < x_i + 0\} = F(x_i + 0) - F(x_i). \tag{2.10}$$

Зокрема, якщо в точці x_i функція F(x) неперервна, то

$$P\{X = x_i\} = 0, (2.11)$$

оскільки за означенням неперервної функції в точці x_i : $F(x_i + 0) = F(x_i)$.

Таким чином, не має сенсу розглядати ймовірність того, що неперервна випадкова величина прийме одне конкретне можливе значення, доцільно розглядати ймовірність її подання в деякий інтервал, нехай навіть досить малий.

<u>Властивість 4.</u> Якщо випадкова величина X приймає всі можливі значення на інтервалі (a;b), то F(x) = 0 при $x \le a$ і F(x) = 1 при x > b.

Якщо випадкова величина X приймає можливі значення на всій числовій осі, то

$$F(-\infty) = 0 \quad i \quad F(\infty) = 1. \tag{2.12}$$

<u>Приклад</u> **2.2.** Випадкова величина X — число надійних приладів в системі, розглянута в прикладі 2.1, має ряд розподілу

X	0	1	2	3
P	0,006	0,092	0,398	0,504

Знайти функцію розподілу F(x) та обчислити ймовірності подій:

а)
$$\{X < 2\}$$
; б) $\{1 \le X \le 3\}$; в) $\{1 < X < 3\}$; г) $\{X = 2\}$; д) $\{X = 2, 5\}$.

Розв'язання. Функція розподілу F(x) будується за схемою (2.4).

$$F(x) = \begin{cases} 0 & \text{при } x \le 0; \\ 0,006 & \text{при } 0 < x \le 1; \\ 0,098 & \text{при } 1 < x \le 2; \\ 0,496 & \text{при } 2 < x \le 3; \\ 1 & \text{при } x > 3. \end{cases}$$

а) Імовірність події $\{X < 2\}$ обчислюється за формулою (2.3):

$$P{X < 2} = F(2) = 0.098;$$

б) Для обчислення ймовірності події $\{1 \le X \le 3\}$ застосовуємо формули (2.9) і (2.10):

$$P{1 \le X \le 3} = P{1 \le X < 3} + P{X = 3} = F(3) - F(1) + F(3+0) - F(3+0) = F(3) + F(3) = F(3) = F(3) + F(3) = F(3) + F(3) = F(3) = F(3) + F(3) = F(3) = F(3) + F(3) = F(3) = F(3) = F(3) + F(3) = F(3$$

$$-F(3) = F(3+0) - F(1) = 1 - 0,006 = 0,994;$$

- B) $P{1 < X < 3} = P{1 \le X < 3} P{X = 1} = F(3) F(1) F(1+0) + F(1) = F(3) F(1+0) = 0,496 0,098 = 0,398,$
- Γ) $P{X = 2} = F(2+0) F(2) = 0,496 0,098 = 0,398,$
- д) $P\{X=2,5\}=0$, оскільки в точці x=2,5 функція розподілу F(x) неперервна.

<u>Приклад 2.3.</u> Неперервна випадкова величина X задана функцією розподілу

$$F(x) = \begin{cases} 0 & \text{при } x \le -\frac{\pi}{2}; \\ A(1+\sin x) & \text{при } -\frac{\pi}{2} < x \le \frac{\pi}{2}; \\ 1 & \text{при } x > \frac{\pi}{2}. \end{cases}$$

Знайти коефіцієнт A, побудувати графік функції F(x) і обчислити ймовірність того, що в результаті випробування X прийме значення з інтервалу $\left(-\frac{\pi}{4}; \frac{\pi}{4}\right)$.

Розв'язання. 1. Випадкова величина X приймає можливі значення на інтервалі $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$. Коефіцієнт A знайдемо за властивістю 4, згідно з якою $F\left(\frac{\pi}{2}\right)=1$, отже, $A=\frac{1}{2}$.

2. Графік функції F(x) на інтервалі $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ одержуємо з графіка функції $\sin x$ зсувом на одиницю в додатному напрямі осі ординат і стисканням уздовж цієї осі вдвічі.

Графік функції F(x) поданий на рис.2.5.

3. Імовірність того, що випадкова величина прийме можливе значення з інтервалу $\left(-\frac{\pi}{4}; \frac{\pi}{4}\right)$, обчислимо за формулою (2.9):

$$P\left\{-\frac{\pi}{4} \le X < \frac{\pi}{4}\right\} = F\left(\frac{\pi}{4}\right) - F\left(-\frac{\pi}{4}\right) =$$

$$= \frac{1}{2}\left(1 + \frac{\sqrt{2}}{2}\right) - \frac{1}{2}\left(1 - \frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2} \approx 0,707.$$