

www.datascienceacademy.com.br

Deep Learning I

Grafos Computacionais

Uma rede neural é um grafo de funções matemáticas, tal como combinações lineares e funções de ativação. O grafo consiste em nós e arestas.

Os nós em cada camada (exceto os nós na camada de entrada) executam funções matemáticas usando entradas de nós nas camadas anteriores. Por exemplo, um nó poderia representar f(x,y) = x + y, onde $x \in y$ são inputs dos nós das camadas anteriores

Da mesma forma, cada nó cria um valor de saída que pode ser passado para nós na próxima camada. O valor de saída da camada de saída não é passado para uma camada adiante, pois é a última camada!

As camadas entre a camada de entrada e a camada de saída são chamadas de camadas ocultas.

As arestas do grafo descrevem as conexões entre os nós, ao longo dos quais os valores fluem de uma camada para a próxima. Essas arestas também podem aplicar operações aos valores que fluem ao longo delas, como multiplicar por pesos, adicionar bias, etc.

Forward Propagation

Ao propagar valores da primeira camada (a camada de entrada) através de todas as funções matemáticas representadas por cada nó, a rede emite um valor. Este processo é chamado de passagem para a frente ou forward propagation.

Grafos

Ao contrário de muitos ramos da matemática, nascidos de especulações puramente teóricas, a teoria dos grafos tem sua origem no confronto de problemas práticos. A teoria dos grafos estuda objetos combinatórios -os grafos- que são um bom modelo para muitos problemas em vários ramos da matemática, da informática, da engenharia, da química, da psicologia e da indústria. Muitos dos problemas sobre grafos tornaram-se célebres porque são um interessante desafio intelectual e porque têm importantes aplicações práticas. É inevitável esbarrar em questões de complexidade computacional, pois muitos dos problemas da teoria dos grafos têm motivação algorítmica.

Um Grafo G(V, E) é uma estrutura matemática constituída pelos conjuntos:

- V, finito e não vazio de n vértices (nós).
- E, de m arestas, que são pares não ordenados de elementos de V.

Os nós e as arestas criam uma estrutura gráfica. Embora o exemplo acima seja bastante simples, não é difícil imaginar que grafos cada vez mais complexos possam ser calculados. Em geral, existem duas etapas para criar redes neurais:

- Definir o grafo de nós e arestas.
- Propagar valores através do grafo.

É o que faremos agora!