

Hidden Markov Model (HMM)

Industrial AI Lab.

Prof. Seungchul Lee

Hidden Markov Models

- Discrete state-space model
 - Used in speech recognition
 - State representation is simple
 - Hard to scale-up the training

- Assumption
 - We can observe something that's affected by the true state
 - Natural way of thinking
- Limited sensors (incomplete state information)
 - But still partially related
- Noisy sensors
 - Unreliable

Hidden Markov Model (HMM)

- True state (or hidden variable) follows Markov chain
- Observation emitted from state
 - $-Y_t$ is noisily determined depending on the current state X_t

- Forward: sequence of observations can be generated
- Question: state estimation

$$P(X_T = s_i \mid Y_1 Y_2 \cdots Y_T)$$

HMM can do this, but with many difficulties

Hidden Markov Models

• Question 1: State Estimation What is $P(q_t = Si | O_1 O_2 \cdots O_T)$

Interested for us

- Current state estimation given sequence of observations
- Question 2: Most Probable Path Given $O_1O_2\cdots O_T$, what is the most probable path that I took? And what is that probability?
- Question 3: Learning HMMs Given $O_1O_2...O_T$, what is the maximum likelihood HMM that could have produced this string of observations?