Claims

5

10

15

25

- 1. A method of securely implementing a public-key cryptography algorithm, the public key being composed of an integer n that is a product of two large prime numbers p and q, and of a public exponent e, said method consisting in determining a set E comprising a predetermined number of prime numbers e_i that can correspond to the value of the public exponent e, said method being characterized in that it comprises the following steps consisting in:
 - a) computing a value $\Phi = \prod_{ei \in E} ei$

such that Φ/e_i is less than $\Phi(n)$ for any e_i belonging to E, where Φ is the Euler totient function;

- b) applying the value Φ to a predetermined computation;
- c) for each e_i , testing whether the result of said predetermined computation is equal to a value Φ/e_i :
- 20 if so, then attributing the value e_i to e, and storing e with a view to it being used in computations of said cryptography algorithm;
 - otherwise, observing that the computations of the cryptography algorithm using the value e cannot be performed.
 - 2. A method according to claim 1, characterized in that the cryptography algorithm is based on an RSA-type algorithm in standard mode.

- 3. A method according to claim 2, characterized in that the predetermined computation of step b) consists in computing a value C:
- 5 $C=\Phi.d$ modulo $\Phi(n)$, where d is the corresponding private key of the RSA algorithm such that e.d = 1 modulo $\Phi(n)$ and Φ is the Euler totient function.
- 4. A method according to claim 2, characterized in that the predetermined computation of step b) consists in computing a value C:
 - $C=\Phi.d$ modulo $\Phi(n)$, where d is the corresponding private key of the RSA algorithm such that e.d = 1 modulo $\Phi(n)$, with Φ being the Carmichael function.

15

25

- 5. A method according to claim 1, characterized in that the cryptography algorithm is based on an RSA-type algorithm in CRT mode.
- 6. A method according to claim 5, characterized in that the predetermined computation of step b) consists in computing a value C:
 - $\label{eq:corresponding} C = \Phi.d_p \quad \text{modulo} \quad \text{(p-1),} \quad \text{where} \quad d_p \quad \text{is} \quad \text{the}$ corresponding private key of the RSA algorithm such that $e.d_p$ = 1 modulo (p-1).
 - 7. A method according to claim 5, characterized in that the predetermined computation of step b) consists in computing a value C:

- $C = \Phi.d_q \quad \text{modulo} \quad (q\text{-}1)\,, \quad \text{where} \quad d_q \quad \text{is} \quad \text{the}$ corresponding private key of the RSA algorithm such that e.d_q = 1 modulo (q-1).
- 8. A method according to claim 5, characterized in that the predetermined computation of step b) consists in computing two values C₁ and C₂ such that:

10

- $C_1 = \Phi.d_p$ modulo (p-1), where d_p is the corresponding private key of the RSA algorithm such that $e.d_p = 1$ modulo (p-1);
- $C_2 = \Phi.d_q \mod (q\text{-}1)\,, \quad \text{where} \quad d_q \quad \text{is} \quad \text{the}$ corresponding private key of the RSA algorithm such that e.d_q = 1 modulo (q-1);
- and in that the test step c) consists, for each e_i , in testing whether C_1 and/or C_2 is equal to the value Φ/e_i :
 - if so, then attributing the value e_i to e and storing e with a view to it being used in computations of said cryptography algorithm;
- otherwise, observing that the computations of said cryptography algorithm using the value e cannot be performed.
- 9. A method according to claim 3 or claim 4 and in which a value e_i has been attributed to e, said method being characterized in that the computations using the value e consist in:

choosing a random integer r;

computing a value d* such that d* = d+r.(e.d-1); and

implementing a private operation of the algorithm in which a value x is obtained from a value y by applying the relationship $x = y^{d*}$ modulo n.

- 10. A method according to any one of claims 2 to 4, and in which a value e_i has been attributed to e, said method being characterized in that it consists, after a private operation of the algorithm, in obtaining a value x from a value y, and in that the computations using the value e consist in checking whether $x^e = y$ modulo n.
- 11. A method according to any one of claims 5 to 8, and in which a value e_i has been attributed to e, characterized in that it consists, after a private operation of the algorithm, in obtaining a value x from a value y, and in that the computations using the value 20 e consist in checking firstly whether $x^e = y \mod p$ and secondly whether $x^e = y \mod p$.
- 12. A method according to any preceding claim, characterized in that the set E comprises at least the following e_i values: 3, 17, 2¹⁶+1.
 - 13. An electronic component characterized in that it comprises means for implementing the method according to any preceding claim.

• 11 •

5

10

• •

25

- 14. A smart card including an electronic component according to claim 13.
- 15. A method of securely implementing a publickey cryptography algorithm, the public key being composed of an integer n that is a product of two large prime numbers p and q, and of a public exponent e, said method consisting in determining a set E comprising a predetermined number of prime numbers e_i that can correspond to the value of the public exponent e, said method being characterized in that it comprises the following steps consisting in:
 - a) choosing a value \boldsymbol{e}_{i} from the values of the set $\boldsymbol{E};$

 $(1-e_i.d) \mod n < e_i.2^{(\Phi(n)/2)+1}$

or said relationship as simplified:

 $(-e_i.d)$ modulo $n < e_i.2^{(\Phi(n)/2)+1}$

where $\Phi(p)$, $\Phi(q)$, and $\Phi(n)$ are the functions giving the numbers of bits respectively encoding the number p, the number q, and the number n;

otherwise, when p and q are unbalanced, testing whether the chosen $e_{\rm i}$ value satisfies the following relationship:

 $(1-e_i.d)$ modulo $n < e_i.2^{g+1}$

or said relationship as simplified:

 $(-e_i.d)$ modulo $n < e_i.2^{g+1}$

with g=max $(\Phi(p), \Phi(q))$, if $\Phi(p)$ and $\Phi(q)$ are known, or, otherwise, with $g=\Phi(n)/2+t$, where t designates the imbalance factor or a limit on that factor;

- c) if the test relationship applied in the preceding step is satisfied and so $e=e_i$, storing e with a view to using it in computations of said cryptography algorithm;
- otherwise, reiterating the preceding steps while choosing another value for e_i from the set E until an e_i value can be attributed to e and, if no e_i value can be attributed to e, then observing that the computations of said cryptography algorithm using the value of e cannot be performed.

15

25

5

- 16. A method according to claim 15, characterized in that, for all values of i, $e_i \le 2^{16} + 1$, and in that the step b) is replaced by another test step consisting in:
- b) if $\Phi(p) = \Phi(q)$, testing whether the chosen e_i value satisfies the relationship:

 $(1-e_i.d) \mod n < e_i.2^{(\Phi(n)/2)+17}$

or said relationship as simplified:

(-e_i.d) modulo n < e_i.2 $^{(\Phi(n)/2)+17}$

where $\Phi(p)$, $\Phi(q)$, and $\Phi(n)$ are the functions giving the numbers of bits respectively encoding the number p, the number q, and the number n;

otherwise, when p and q are unbalanced, testing whether the chosen $\mathbf{e_i}$ value satisfies the following relationship:

(1-e_i.d) modulo n < e_i. 2^{g+17} or said relationship as simplified: (-e_i.d) modulo n < e_i. 2^{g+17}

. . .

with g=max $(\Phi(p), \Phi(q))$, if $\Phi(p)$ and $\Phi(q)$ are known, or, otherwise, with g= $\Phi(n)/2+t$, where t designates the imbalance factor or a limit on that factor.

17. A method according to claim 15, characterized in that step b) is replaced with another test step consisting in:

testing whether the chosen $\ensuremath{e_{i}}$ value satisfies the relationship whereby:

the first most significant bits of $(1-e_i.d)$ modulo n are zero;

or said relationship as simplified whereby:

the first most significant bits of $(-e_i.d)$ modulo n are zero.

- 18. A method according to claim 17, characterized in that the test is performed on the first 128 most significant bits.
- 19. A method according to any one of claims 15 to 25 18, characterized in that the cryptography algorithm is based on an RSA-type algorithm in standard mode.
 - 20. A method according to any one of claims 15 to 19, and in which an e_i value has been attributed to e_i

said method being characterized in that the computations using the value e consist in:

- choosing a random integer r;
- computing a value d* such that d* = d+r.(e.d-5)

implementing a private operation of the algorithm in which a value x is obtained from a value y by applying the relationship $x = y^{d*}$ modulo n.

- 10 21. A method according to any one of claims 15 to 19 and in which an e_i value has been attributed to e, said method being characterized in that it consists, after a private operation of the algorithm, in obtaining a value x from a value y and in that the computations using the value e consist in checking whether $x_e = y$ modulo n.
- 22. A method according to any one of claims 15 to 21, characterized in that the set E comprises at least the following e_i values: 3, 17, $2^{16}+1$.
 - 23. A method according to claim 22, characterized in that the preferred choice of the values e_i from the values of the set E is made in the following order: $2^{16}+1$, 3, 17.
 - 24. An electronic component characterized in that it comprises means for implementing the method according to any one of claims 15 to 23.

25

· ., . .

25. A smart card including an electronic component according to claim 24.