Chapter 14

Homework 21935004 谭焱

In these exercises U always denotes an open subset of \mathbb{R}^n , with a smooth boundary ∂U . As usual, all given functions are assumed smooth, unless otherwise stated.

Problem 14.1. Assume $0 < \beta < \gamma \le 1$. Prove the interpolation inequality

$$||u||_{C^{0,\gamma}(U)} \le ||u||_{C^{0,\beta}(U)}^{\frac{1-\gamma}{1-\beta}} ||u||_{C^{0,1}(U)}^{\frac{\gamma-\beta}{1-\beta}}$$

Solution. Assume $\|u\|_{C^{0,\gamma}(U)} = \sup_{x \in U} |u(x)| + [u]_{C^{0,\gamma}(\bar{U})} = |u(a)| + \frac{|u(x) - u(y)|}{|x - y|^{\gamma}}, \|u\|_{C^{0,\beta}(U)}^{\frac{1 - \gamma}{1 - \beta}} = (\sup_{x \in U} |u(x)| + [u]_{C^{0,\beta}(\bar{U})})^{\frac{1 - \gamma}{1 - \beta}} \geq (|u(a)| + \frac{|u(x) - u(y)|}{|x - y|^{\beta}})^{\frac{1 - \gamma}{1 - \beta}}, \|u\|_{C^{0,1}(U)}^{\frac{\gamma - \beta}{1 - \beta}} = (\sup_{x \in U} |u(x)| + [u]_{C^{0,1}(\bar{U})})^{\frac{\gamma - \beta}{1 - \beta}} \geq (|u(a)| + \frac{|u(x) - u(y)|}{|x - y|})^{\frac{\gamma - \beta}{1 - \beta}}$ Let $p_1 = \frac{1-\beta}{1-\gamma}$, $p_2 = \frac{1-\beta}{\gamma-\beta}$, we have $\frac{1-\beta}{p_1} + \frac{1}{p_2} = 1$. By Hölder inequality

$$(|u(a)| + \frac{|u(x) - u(y)|}{|x - y|^{\beta}})^{\frac{1 - \gamma}{1 - \beta}} (|u(a)| + \frac{|u(x) - u(y)|}{|x - y|})^{\frac{\gamma - \beta}{1 - \beta}} \ge |u(a)| + \frac{|u(x) - u(y)|}{|x - y|^{\gamma}},$$

which implies that $||u||_{C^{0,\gamma}(U)} \leq ||u||_{C^{0,\beta}(U)}^{\frac{1-\gamma}{1-\beta}} ||u||_{C^{0,1}(U)}^{\frac{\gamma-\beta}{1-\beta}}$

Problem 14.2. Let U be bounded, with a C^1 boundary. Show that a "typical" function $u \in L^p(U)$ $(1 \le p < \infty)$ does not have a trace on ∂U . More precisely, prove there does not exist a bounded linear operator

$$T: L^p(U) \to L^p(\partial U)$$

such that $Tu = u|_{\partial U}$ whenever $u \in C(\bar{U}) \cap L^p(U)$

Solution. Assume T is the bounded linear operator. Take $u_m = \max\{0, 1 - m \operatorname{dist}(x, \partial U)\}$, we have $\forall x \in \mathbb{R}$ $\partial U, Tu_m(x) = 1$, so $||Tu_m||_{L^p(\partial U)} = (\int_{\partial U} 1^p dS)^{\frac{1}{p}} = (S(\partial U))^{\frac{1}{p}} > 0$.

However, let $B_m = \{x \mid x \in \overline{U}, u_m(x) \neq 0\}$, By the definition of u_m , we know $V(B_m) \to 0$, as $m \to +\infty$.

So $||u_m||_{L^p(\bar{U})} = (\int_U u_m^p dx)^{\frac{1}{p}} = (\int_{B_m} u_m^p dx)^{\frac{1}{p}} \le (\int_{B_m} 1 dx)^{\frac{1}{p}} = (V(B_m))^{\frac{1}{p}} \to 0$, as $m \to +\infty$. After all, we have $||T|| \ge \limsup_{m \to +\infty} (\frac{||Tu_m||_{L^p(\partial U)}}{||u_m||_{L^p(U)}})^{\frac{1}{p}} = (\frac{S(\partial U)}{0})^{\frac{1}{p}} = +\infty$. That is contradict with T is bounded operator.

Problem 14.3. Integrate by parts to prove the interpolation inequality:

$$||Du||_{L^2} \le C||u||_{L^2}^{1/2} ||D^2u||_{L^2}^{1/2}$$

for all $u \in C_c^{\infty}(U)$. Assume U is bounded, ∂U is smooth, and prove this inequality if $u \in H^2(U) \cap H^1_0(U)$ (Hint: Take sequences $\{v_k\}_{k=1}^{\infty} \subset C_c^{\infty}(U)$ converging to u in $H_0^1(U)$ and $\{w_k\}_{k=1}^{\infty} \subset C^{\infty}(\bar{U})$ converging to u in $H^2(U)$.)

Solution.

1. $u \in C_c^{\infty}(U)$

$$||Du||_{L^{2}} = \left(\int_{U} |Du|^{2} dx\right)^{\frac{1}{2}}$$

$$= \left(\int_{U} Du \cdot Du dx\right)^{\frac{1}{2}}$$

$$= \left(-\int_{U} u \Delta u dx\right)^{\frac{1}{2}}$$

$$\leq \left(\int_{U} |u|^{2} dx \int_{U} |\Delta u|^{2} dx\right)^{\frac{1}{4}}$$

$$\leq C\left(\int_{U} |u|^{2} d\right)^{\frac{1}{4}} \left(\int_{U} |D^{2}u|^{2} dx\right)^{\frac{1}{4}}$$

$$= C||u||_{L^{2}}^{\frac{1}{2}} ||Du||_{L^{2}}^{\frac{1}{2}}$$

2. $u \in H_0^1(U) \cup H^2(U)$

Choose $\{v_n\} \in C_c^{\infty}(U)$, $s.t.v_n \to u \in H_0^1(U)$, $\{w_n\} \in C^{\infty}(U)$, $s.t.w_n \to u \in H^2(U)$, Therefore, $\lim_{n \to \infty} \|v_n\|_{L^2} = \|u\|$, $\lim_{n \to \infty} \|D^2w_n\|_{L^2} = \|D^2u\|_{L^2}$.

$$\int_{U} Dv_{k} \cdot Dw_{k} dx = -\int_{U} v_{k} \Delta w_{k} dx$$

$$\leq C \|v_{k}\|_{L^{2}}^{\frac{1}{2}} \|D^{2} w_{k}\|_{L^{2}}^{\frac{1}{2}}$$

And

$$\int_{U} |Du|^{2} - Dv_{k} \cdot Dw_{k} dx$$

$$= \int_{U} Du(Du - Dv_{k}) + Dv_{k}(Du - Dw_{k}) dx$$

$$\leq ||Du||_{L^{2}} |||Du - Du_{k}||_{L^{2}} + ||Dv_{k}||_{L^{2}} ||Du - Dw_{k}||_{L^{2}}$$

$$\to 0 \quad \text{as } k \to \infty$$

In summary, $\lim_{k \to \infty} \int_U Dv_k \cdot Dw_k dx \le \lim_{k \to \infty} C \|v_k\|_{L^2}^{\frac{1}{2}} \|D^2 w_k\|_{L^2}^{\frac{1}{2}} \Longrightarrow \|Du\|_{L^2} \le C \|u\|_{L^2}^{1/2} \|D^2 u\|_{L^2}^{1/2}$.