算法与复杂性 作业十三

516021910528 - SHEN Jiamin

2020年5月17日

1 0511

1. 设计算法求出 n 个矩阵 $M_1, M_2, ..., M_n$ 相乘最多需要多少次乘法,请给出详细的算法描述和时间 复杂性

给定 n+1 个正整数 c_0,c_1,\ldots,c_n ,其中 c_{i-1} 和 c_i 为矩阵 M_i 的行数和列数, $1\leq i\leq n$ 。 记 M_{ij} 为 $M_iM_{i+1}\ldots M_j$ 的乘积,Q(i,j) 为计算 M_{ij} 所需要的最多乘法数量,则

$$Q(i,j) = \begin{cases} \max_{i \le k < j} \left\{ Q(i,k) + Q(k+1,j) + c_{i-1}c_kc_j \right\} &, i < j \\ 0 &, i = j \end{cases}$$

伪代码见算法1, 算法的时间复杂度为 $O(n^3)$ 。

算法 1 矩阵最多乘法次数

```
输入: n+1 个正整数 c[0...n]
输出: 最大乘法次数

1: Q[1...n][1...n] \leftarrow \{0\}

2: for j \leftarrow 2 to n do

3: for i \leftarrow j-1 down to 1 do

4: precompute \leftarrow c[i-1]c[j]

5: for k \leftarrow i to j-1 do

6: t \leftarrow Q[i][k] + Q[k+1][j] + c[k] \cdot precompute

7: Q[i][j] \leftarrow t if Q[i][j] < t

8: end for

9: end for

10: end for

11: return Q[1][n]
```

2. 设有算法 A 能够在 O(i) 时间内计算一个 i 次多项式和一个 1 次多项式的乘积,算法 B 能够在 $O(i\log i)$ 时间内计算两个 i 次多项式的乘积。现给定 d 个整数 n_1, n_2, \ldots, n_d ,设计算法求出满足 $P(n_1) = P(n_2) = \cdots = P(n_d) = 0$ 且最高次项系数为 1 的 d 次多项式 P(x),并给出算法的时间复 杂性。

满足
$$P(n_1) = P(n_2) = \cdots = P(n_d) = 0$$
 且最高次项系数为 1 的 d 次多项式 $P(x)$ 为
$$P(x) = (x - n_1)(x - n_2) \cdots (x - n_d)$$
 记 $Q(i,j) = (x - n_i) \cdots (x - n_j)$,则 $P(x) = Q(1,d)$
$$Q(i,j) = \begin{cases} A(Q(i,j-1),(x-n_j)) & ,j-i+1 \equiv 1 \bmod 2 \\ B(Q(i,(i+j-1)/2),Q((i+j-1)/2+1,j)) & ,j-i+1 \equiv 0 \bmod 2 \end{cases}$$

伪代码见算法2

设该算法运行所需时间为T(d),则

$$T(d) = \begin{cases} 1 & , d = 2 \\ T(d-1) + O(d-1) & , d \equiv 1 \mod 2 \\ 2T(\frac{d}{2}) + O(\frac{d}{2}\log\frac{d}{2}) & , d \equiv 0 \mod 2 \end{cases}$$

$$\begin{split} T\left(2^{k}\right) &= 2T\left(2^{k-1}\right) + O\left((k-1)2^{k-1}\right) \\ &= 2^{2}T\left(2^{k-2}\right) + O\left(2(k-2)2^{k-2} + (k-1)2^{k-1}\right) \\ &= 2^{2}T\left(2^{k-2}\right) + O\left(\left[(k-2) + (k-1)\right]2^{k-1}\right) \\ &= 2^{k-1}T\left(2\right) + O\left(\sum_{i=1}^{k-1}(k-i)2^{k-1}\right) \\ &= 2^{k-1} + O\left(k^{2}2^{k-1}\right) = O\left(d \cdot \log^{2}d\right) \end{split}$$

•
$$\stackrel{\text{d}}{=} d = 2^k - 1$$
 $\stackrel{\text{d}}{=} d = 2^k - 1$, $\stackrel{\text{d}}{=} d = 2u_{k-1}$

$$T(2^k - 1) = T(u_k) = T(u_k - 1) + O(u_k - 1) = T(2u_{k-1}) + O(2u_{k-1})$$

$$= 2T(u_{k-1}) + O(u_{k-1}\log(u_{k-1})) + O(2u_{k-1})$$

$$= 2^2T(u_{k-2}) + O(2u_{k-2}\log(u_{k-2}) + u_{k-1}\log(u_{k-1})) + O(2^2u_{k-2} + 2u_{k-1})$$

$$= 2^{k-2}T(u_2) + O\left(\sum_{i=2}^{k-1} 2^{k-i-1}u_i\log(u_i)\right) + O\left(\sum_{i=2}^{k-1} 2^{k-i}u_i\right)$$

$$= O(3 \cdot 2^{k-2}) + O\left(\sum_{i=2}^{k-1} 2^{k-i-1}(2^i - 1)i + \sum_{i=2}^{k-1} 2^{k-i}(2^i - 1)\right)$$

$$= O(2^{k-2}k^2 + 3 \times 2^{k-2}k + k - 3 \times 2^k + 3) = O(2^kk^2) = O(d\log^2 d)$$

算法 2 零点多项式

```
输入: d 个整数 n[1...d]
输出: 多项式
 1: procedure Q(n[1 \dots d])
        if d=1 then
            return (-n[d],1)
                                                                                                                \triangleright x - n_d
 4:
        else if d \equiv 0 \mod 2 then
            P_1 \leftarrow \mathrm{Q}(n[1\dots d/2])
 5:
            P_2 \leftarrow \mathrm{Q}(n[d/2+1\dots d])
            return GIVENALGOB(P_1, P_2)
 7:
        else
 8:
            P_1 \leftarrow \mathrm{Q}(n[1\dots d-1])
 9:
            P_2 \leftarrow Q(n[d \dots d])
10:
            return GIVENALGOA(P_1, P_2)
11:
12:
        end if
13: end procedure
14: return Q(n)
```

3. 将正整数 n 表示成一系列正整数之和: $n = n_1 + n_2 + \cdots + n_k$, 其中 $n_1 \ge n_2 \ge \cdots \ge n_k \ge 1$, $k \ge 1$ 。 正整数 n 的这种表示称为正整数 n 的划分,例如正整数 n 有如下 n 种不同的划分:

$$\begin{matrix} 6 \\ 5+1 \\ 4+2 \\ 3+3 \\ 2+2+2 \end{matrix} \qquad \begin{matrix} 4+1+1 \\ 3+2+1 \\ 2+2+1+1 \end{matrix} \qquad \begin{matrix} 3+1+1+1 \\ 2+1+1+1+1 \end{matrix}$$

设计算法求正整数 n 的不同划分个数并证明其时间复杂性为 $\Theta(n^2)$ 。

记 Q(n,m) 为最大数为 m 的 n 的所有划分,即 $m=n_1\geq n_2\geq \cdots \geq n_k\geq 1$ 。当一个划分中最大的数为 k 时,划分中剩余的部分为 Q(n-k,k),使用动态规划求解。

$$P(n) = \bigcup_{1 \le m \le n} Q(n, m)$$

其中

$$Q(n,m) = \begin{cases} \bigcup_{1 \le k \le m, k < n} \{k\} \times Q(n-k,k) & n > m \ge 1 \\ \{\{n\}\}\} & n = m \end{cases}$$

代码见算法3

求解 P(n), 需要求解 $\frac{n(n-1)}{2}$ 个子问题 Q, 所以时间复杂度为 $\Theta(n^2)$

算法 3 正整数分划

```
Q_state = {}
def Q(n, m):
    if(n, m) in Q_state: # 如果已经求解过该问题,不重复求解
       return Q_state[(n, m)]
    assert (n >= m)
   result = []
    if n == m:
       result = [[m]]
    else:
       r = n - m
       for k in range(1, min(r, m)+1):
           for q in Q(r, k):
               assert(max(q) <= m)</pre>
               result.append([m] + q)
    Q_state[(n, m)] = result
    return result
def solve(n):
    result = []
    for i in range(1, n+1):
       result += Q(n, i)
   return result
```

2 0514

4. 输入是由数轴上的区间所组成的集合,这些区间由它们的两个端点表示。设计 $O(n \log n)$ 算法识别 所有包含在集合中其它某个区间的区间。这个问题与二维平面极大点问题有什么关系

例如输入: (1,3),(2,8),(4,6),(5,7),(7,9), 则输出为 (4,6) 和 (5,7)

极大点的定义 设 $p_1=(x_1,y_1)$ 和 $p_2=(x_2,y_2)$ 是平面上的两个点,如果 $x_1 \leq x_2$ 并且 $y_1 \leq y_2$,则称 p_2 支配 p_1 ,记为 $p_1 \prec p_2$ 。点集 S 中的点 p 为极大点,意味着在 S 中找不到一个点 q, $q \neq p$ 并且 $p \prec q$,即 p 不被 S 中其它点支配。

区间 (x_1,y_1) 包含区间 (x_2,y_2) 当且仅当

$$x_1 \le x_2 \land y_1 \ge y_2$$

将区间用平面上的点表示,所有的点都在直线 y = x 上方。

图 1: 将区间映射到二维平面上的点

为了与二维平面上极大点的定义相匹配,定义区间 (x,y) 映射到平面上的一点 (-x,y)。则上述区间包含的等价条件相应地变为

$$(x_2, y_2) \subseteq (x_1, y_1) \iff -x_2 \le -x_1 \land y_2 \le y_1 \iff (-x_2, y_2) \prec (-x_1, y_1)$$

所以该问题等价于在平面点集中,找出被其他任何一个点支配的所有点。即将区间集合映射到 二维平面上的点集之后,找出二维平面中所有极大点的补集即可。 5. 证明 Graham 算法是求凸包问题的一种最优算法

在 n 个点中选取 k 个点按一定顺序构成凸包,可能有 P(n,k) 种结果。由于 k 是未知的,所以 共有

$$\sum_{k=3}^{n} P(n,k)$$

种可能性。任取其中一种, 选中正确的凸包的概率为

$$p = \frac{1}{\sum_{k=3}^{n} P(n,k)}$$

其信息量为

$$I = -\log p = \log\left(\sum_{k=3}^{n} P(n,k)\right) = \log\left(\sum_{k=3}^{n} \frac{n!}{(n-k)!}\right) = \log\left(n! \sum_{k=3}^{n} \frac{1}{(n-k)!}\right)$$
$$= \log n! + \log\left(\sum_{k=3}^{n} \frac{1}{(n-k)!}\right) = O(n \log n)$$

一次比较操作能提供的信息量为 $\log 2$,所以凸包问题的信息论下界为 $O(n \log n)$ 。 Graham 算法的时间复杂度为 $O(n \log n)$,与信息论下界同阶,是最优算法。

6. 证明如果存在时间复杂度为 O(T(n)) 的两个 $n \times n$ 下三角矩阵的乘法,则存在时间复杂度为 $O(T(n) + n^2)$ 的任意两个 $n \times n$ 矩阵相乘的算法。

令 E 为 n 阶单位阵。设 A,B,C 均为 n 阶方阵,且 C=AB。则矩阵

$$Q = \begin{pmatrix} E & O & O & O \\ B & E & O & O \\ O & A & E & O \\ O & O & B & E \end{pmatrix}$$

是 4n 阶的下三角方阵。则有

$$Q^{2} = \begin{pmatrix} E & O & O & O \\ 2B & E & O & O \\ AB & 2A & E & O \\ O & BA & 2B & E \end{pmatrix}$$

构造矩阵 Q 需要时间 $(4n)^2$,作矩阵乘法需要时间 T(4n),取出 AB 的值需要时间 n^2 。 因此该算法的时间复杂度为 $O(T(4n)+17n^2)$ 。在假设 T(cn)=T(n) 的条件下,该复杂度即为 $O(T(n)+n^2)$ 。 7. 如果在序列 x_1, x_2, \ldots, x_n 中,存在某个 i 使 x_i 是序列中的最小者,且序列

$$x_i, x_{i+1}, \dots, x_n, x_1, \dots, x_{i-1}$$

是递增的,则称序列 x_1, x_2, \ldots, x_n 是循环序列。设计算法找出循环序列中最小元素的位置。为简单起见,假设该位置是唯一的。证明你的算法是最优的。

遍历整个序列以寻找最小值的时间复杂度为 O(n)。

在 n 个数组中随机选取一个数,该数是序列中最小的值的概率为 p=1/n,信息量为 $\log n$ 。下面给出一种时间复杂度为 $O(\log n)$ 的算法,该算法的时间复杂度达到了问题的信息论下界,是一个最优算法。

若序列 $\{x_i\}$ 是递增的,则 $\forall i, j : i < j \rightarrow x_i < x_j$ 。所以,若 $\exists i < j : x_i > x_j$,则该序列是非增的;又因为该序列是循环递增的,所以序列的极值点一定在 i, j 之间。

伪代码见算法4

该算法类似于二分查找,每次搜索范围减半直到找到最小值,其时间复杂度为 $O(\log n)$ 。

算法 4 循环递增序列的极值点

```
输入: 序列 x[1...n]
输出: \operatorname{argmin}_{i} x_{i}
 1: left \leftarrow 1, right \leftarrow n
 2: if x[left] < x[right] then
                                                                                                    ▷ 序列是有序的
        return left
 4: else
        repeat
 5:
            mid \leftarrow \frac{left+right}{2}
 6:
            if x[mid] < x[right] then
                                                                                           ▷ (mid, right) 是有序的
                right \leftarrow mid
            else
                                                                                            ▷ (left, mid) 是有序的
                left \leftarrow mid
10:
            end if
11:
        until right - left \le 1
12:
        return \ right
14: end if
```