Compressing Sets of Similar Images Using Hybrid Compression Model

Jiann-Der Lee*, Shu-Yen Wan*, Cherng-Min Ma** and Rui-Feng Wu***

*Graduate Institute of Information Engineering,

*Department of Computer Science and Information Management

***Graduate Institute of Electrical Engineering

Chang Gung University

Tao-Yuan. Taiwan 333. ROC

Abstract

A new compression scheme called hybrid compression model (HCM) is proposed for compressing sets of similar images¹. The HCM employs the region growing technique to partition the median image of a set of similar images; and furthermore, it uses the centroid method to characterize the original image data. The differences between the predicted and the original image data are stored and encoded for later use. The efficacy of its application on progressive transmission of similar images over the networks is also studied. The experimental results on various images show that our method provides significant improvement in compression efficiency, ranging from 5.6% to 134.9% in comparison with traditional centroid methods.

1. Introduction

Compressing an image set with multiple slices is very important in a modern telemedicine system, because the most commonly used digital modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET), can generate multiple slices in a single examination. Multiple slices generated this way are normally anatomically or physiologically correlated to each other. In other words, there are some image structure similarities between adjacent slices. Although it is possible to compress an image set slice by slice, more efficient compression can be achieved by exploring the correlation between slices. Methods to remove slice correlation for sets of similar images include three-dimension (3-D) transforms and prediction methods. In this paper, we will focus on the latter approach.

In the past, several research efforts applied the prediction method to image compression [1-2]. Karadimitriou *et al.* proposed a similar images compression model, called Enhanced Compression Model, which exploits centroid method to reduce set redundancy and improves performance even more [3].

Moreover, efficient transmission over the networks, such as progressive transmission, raises a peripheral

aspect and has introduced significant impact on how the images are compressed [4-5]. The nature of the previously proposed pyramid structure is ideal for progressive transmission. The pyramid decomposition of an image consists of an original image and successively lower resolution images. Roos *et al.* proposed a prediction/residual approach to form the variable resolution pyramid by sub-sampling [6]. This kind of approach has otherwise been termed as hierarchical interpolation (HINT).

In this paper, a new hybrid compression model (HCM) is proposed for compressing sets of similar images such as a stack of two-dimensional (2-D) medical images. HCM is a segmentation based prediction method. It combines region growing and centroid method to predict the values of original images data, and the difference between the predicted values and original data is stored for later use in the stage of progressive transmission. In additions, HINT is also used in the proposed progressive transmission procedure.

2. The proposed hybrid compression model

2.1Centroid method

Predictive decorrelation is an important technique for medical image compression. In predictive decorrelation, an estimate of the image based on previously encoded pixels or on a statistical model of the image is subtracted from the original image. The recorded differences will be small when the estimate agrees well with the original image. A differential image containing mostly small values can be efficiently coded by a variable-length code. Several methods such as DPCM and adaptive DPCM are often used.

For a set of K images with N pixels per image, the formula for predicting the value of a pixel using the average value of the same position across the set of similar image and a correlation term can be expressed as below, i.e.,

$$C_{i+1,j} = m_{i+1} + e_{i,j}$$

$$e_{i,j} = x_{i,j} - m_i$$
(1)

where $C_{i+1,j}$ is an estimate at position i+1 in image j, $x_{i,j}$ is the pixel at position i in image j, and m_i is the average value form position i across all images. Eq.(1) is

¹ This work was supported by National Science Council, R.O.C. and Chang Gung Memorial Hospital, under Grant NSC89-2213-E182-011 and CMRP1243, respectively.

so called centroid method, and it can help to reduce inter-image redundancy and improve compression efficiency [3]. In this paper, the proposed scheme is based on a similar concept of the centroid model, but takes advantages of the median model and image segmentation techniques, to reduce the set redundancy more efficiently. Using median value, instead of the average valuem can avoid the influence of the extreme pixel value due to the noise and reduce the diversion of a pixel set.

2.2 Region Growing Algorithm

In general, region growing techniques are often used for object identification or features analysis [7]. However, the main purpose of region growing in this approach is to group spatially connected pixels lying within a small dynamic gray level range.

There are two conditions required for consideration while applying region growing procedure. The first one is that the neighbor pixel is not a member of any regions already grown, and the other one is the absolute difference between the neighbor pixel and the corresponding center pixel is less than *error level*:

$$ereror\ level = 2^{error\ bits-1} \tag{2}$$

where error bits is a pre-selected number.

During region growing process, an image data will be decomposed three data parts:

- (1) corresponding error image data part
- (2) corresponding discontinuity index image data part
- (3) high-bits seed data part

Examples to illustrate this concept can be found in ref. [7]. When a new (neighbor) pixel x_j is included in the region being grown, its difference e_j with respect to its center pixel x_i is stored as the pixel's "error" value using the Eq. (3).

$$e_i = x_i - x_i + error \ level \tag{3}$$

If only the first of the two region growing conditions is satisfied, the discontinuity index of the pixel is incremented.

The error value of the seed pixel of each region is defined as the value of its low (error bits) bits; the value of high (*N- error bits*) bits of the pixel is stored in a "high-bits seed data part," where N is the number of the b/pixel in the original image data.

The above three data parts are used to fully recover the original image during the decode process. The region growing conditions during decoding are that a neighbor pixel under consideration to be included in a specific region must be not in any of the previously grown regions, and its discontinuity index equals to zero. When the conditions are satisfied for a pixel, its pixel value is restored as the sum of its error value e_i and its center

pixel value x_i using Eq. (4):

$$x_i = x_i + e_i - error \ level \tag{4}$$

If only the first of two conditions is satisfied, the discontinuity index of that pixel is decremented. And the "high-bits seed data part" is combined with the "error image data part" to recover the seed pixel value of each region.

2.3 Segmentation based Compression Model

The segmentation technique - region growing is the first step for HCM method. Assume that there is a set of similar images $X = \{x_1, x_2, ..., x_N\}$ that we want to process. The corresponding median image m is determined and treated as the input of region growing procedure. For a pixel m_i , its neighbor pixel is checked with the region growing conditions. The neighbor pixel m_{i+1} is included in the region, if the conditions are satisfied. Furthermore, corresponding pixel is also included in the same region in each image that belong image set X. In other words, the pixel $x_{i,1}$ and $x_{i+1,1}$ in the first image, $x_{i,2}$ and $x_{i+1,2}$ in the second image, and $x_{i,N}$ and $x_{i+1,N}$ in the last image are processed at one time. N sets of corresponding error image data and high-bits seed data are created when region growing procedure is completed, and only one set of discontinuity index is stored.

We exploit region growing technique to analyze the content of the median image which is determined by a set of similar images can group spatially connected pixels lying within a small dynamic gray level range. The next stage is to use centroid method to predict the estimates of the corresponding error image data and the difference between predict values and original data is then determined and stored. Eq. (5) is the modified centroid method formula.

$$C_{e_{x_{i+1},k}} = e_{m_{i+1}} + r_{e_{x_{i,k}}}$$

$$r_{e_{x_{i},k}} = e_{x_{i,k}} - e_{m_{i}}$$
(5)

where $C_{e_{x_{i+1},k}}$ is the estimate of the corresponding error image data at position i+1 in image k, $e_{m_{i+1}}$ is the corresponding error image data at position i+1 in the median image, and $e_{x_{i,k}}$ is the corresponding error image data at position i+1 in image k. The difference value at position i+1 in image k is shown as following.

$$D_{x_{i+1,k}} = e_{x_{i+1,k}} - C_{e_{x_{i+1,k}}}$$

3. Experimental Results

In the experiments, five groups of medical images are

used. Some of these images are shown in Fig.1. Their content is summarized as below.

- 1. Brian CT images ×11, 512×512, 8 bits/pixel gray scale
- 2. Chest CT images x15, 256x 256, 8 bits/pixel gray scale
- 3. Ultrasound images ×15, 256×256, 8 bits/pixel gray scale
- 4. Brain MR T1 imagex15, 256x256, 8 bits/pixel

3.1 Comparison between HCM and centroid method

Sets of similar medical image compressed by various error bit are tabulated in Table I. According to different organization, texture etc., region growing technique analyze the content of image data and classify it become various region we expect. So there are different optimal values for different error bits that are the variables in region growing process. The follow experiment will use the value 5 be the error bit.

Comparison results between HCM and centroid method are tabulated in Table II. It shows that the performances using HCM are all better than centroid method. The improvement range between traditional centroid method and HCM is 5.6% to 134.9%.

3.2 Comparison between compression ratio and PSNR using wavelet transform

Five different wavelet mother functions are used in experiment [8]. For compare with different qualities of images, quantization threshold value T is set in range $5{\sim}50$. Table III and IV are the results for brain CT images and Chest CT images, respectively. It shows that the performances are the best using wavelet mother function HAAR for brain CT image. But there are the worst results relatively for chest CT images. In other words, the key point is not the wavelet mother function. The critical point should be the image features such as contents, organization and texture etc.

3.3 Bit rate vs. PSNR Comparison using HINT

HINT is a progressive transmission technique in spatial domain, and brain CT images x11 (set 1) are used to decompose five different resolution levels. Table V shows the comparison between bit rate and PSNR. The result shows that the progressive transmission using hybrid compression model through HINT can get good

performance in low bit rate.

4. Conclusions

In this paper, a novel compression scheme (HCM) is proposed for compressing sets of similar images. While Compared with traditional still image compression technique whose goal is to reduce the three redundancies, similar images compression can decrease set redundancy further and thus improve the overall performance of the system. That is, the cooperation between HCM and progressive transmission technique can let similar images, especially medical images that have large amount data, transmission efficiently over the networks and achieve low bit rate.

5. Reference

- Marius Midtvik and Ingvil Hovig, "Reversible Compression of MR Images," IEEE Trans. Medical Imaging, vol. 18, no. 9, pp. 795-800, September 1999.
- 2. Jian-Hong H et al., "Multispectral Code Excited Linear Prediction Coding and Its Application in Magnetic Resonance Images," IEEE Trans. Image Processing, vol 6, no 11, pp. 1555-1566, November 1997.
- K. Karadimitriou et al., "Centroid method for compressing sets of similar images," Pattern Recognition Letters, vol. 19, no. 7, pp. 585-593, 1998.
- K. Tzon, "Progressive image transmission: A review and comparison of techniques," Opt. Eng., vol. 26, pp. 581-589, July 1987.
- Yong-Sung Kim and Whoi-Yul Kim, "Reversible Decorrelation Method for Progressive Transmission of 3-D Medical Image," IEEE Trans. Medical Imaging, vol. 17, no 3, June 1998.
- P. Roos et al., "Reversible intraframe compression of medical images," IEEE Trans. Medical Imaging, vol. 7, pp. 328-336, Dec. 1998.
- Liang and R. M. Rangayyan., "A Segmentation Based Lossless Image Coding Method for High-Resolution Medical Image Compression," IEEE Trans. Medical Imaging, vol. 16, no. 3, pp. 301-307, June 1997.
- Daubechies, "Orthogonal bases of compactly supported wavelets," Commun. Pure Appl. Math., vol. XLI, pp. 909-996, 1988.

Fig. 1:Experimental image data set (a) One of brain CT images $\times 11$, 512 $\times 512$ pixels, 8 bits/pixel gray scale (b) One of chest CT images $\times 15$, 256 $\times 256$ pixels, 8 bits/pixel gray scale (c) One of brain MRI T1 images $\times 15$, 256 $\times 256$ pixels, 8 bits/pixel gray scale.

Table I. Comparison between error bit and compression ratio

	Compression Ratio									
	error bit = 6	error bit = 5	error bit = 4	error bit = 3	error bit = 2 3.199					
256X256Chest CT image × 15	3.262	3.341	3.340	3.214						
256X256Brain MR T1image × 15	1.646	1.677	1.679	1.675	1.637					
512X512Brain CT image x 11	17.078	17.213	18.346	17.165	17.155					

Table II. Comparison between HCM and Centroid method

Image data set	Correlation	Centroid Method	HCM		
	coefficient	Compression Ratio	Compression Ratio		
256X256 Chest CT image × 15	0.9411	2.321	3,341		
256X256 Brain MR T1 image x 15	0.4770	1.588	1.677		
512X512 Brain CT image x 11	0.999	7.350	17.213		

Table III. Comparison between (CR) and PSNR using various wavelets functions for brain CT images

	T	05	10	15	20	25	30	35	40	45	50
BIOR 3.7	CR	17.349	21.76	28,033	33.124	36.265	39.330	42.449	44.326	45,783	47.669
	PSNR	83.639	79.010	76.031	74.098	74.056	74.029	73.280	73.469	73.091	72.650
COIF 3	CR	17.194	24.222	33.355	40.197	44.243	46.971	49.575	51.248	53.169	56.797
	PSNR	86.599	82.795	79.859	78.164	75 <u>.3</u> 67	74.067	72.578	72.495	71.588	71.118
DB 4	CR	17.542	25.613	35.762	42.731	47.179	51.437	55.117	57.885	60.447	62.999
	PSNR	85.190	80.623	78.028	76.138	75.290	73.809	73.587	73.507	73.361	72.972
HAAR	CR	20.424	30.302	34.766	48.962	52.778	55.880	58.831	60.952	63.404	68.207
	PSNR	87.525	84.853	83.095	80.387	78.218	74.969	74.615	73.433	72.124	71.544

Table IV. Comparison between (CR) and PSNR using various wavelet functions for chest CT images

Ladic I v	COMP	II ISUII DE	encen (c	,14) 4114 J	LOTAL DE	ning varr	ous mare	ciet iunc	HORS TOL	CHUSE C	I mages
	T	05	10	15	20	25	30	35	40	45	50
	CR	9.075	12.738	17.083	21.262	23.061	25.500	30.529	33.138	33.138	38.071
	PSNR	78.655	75.455	74.572	73.403	72.579	72.153	71.743	71.433	71.065	70.684
ICOHE3 ⊢	CR	8.941	13.259	19.608	26.517	32.769	38.903	43.870	49.210	53.492	58.836
	PSNR	80.664	77.000	74.893	73.020	72.159	72.118	71.467	70.646	70.351	69.952
11)13 4 1	CR	7.875	11.628	17.096	22.918	30.253	36.752	42.413	47.702	52.988	59.029
	PSNR	79.992	76.081	74.592	73.611	72.812	72.117	71.703	71.304	70.991	70.755
IHAAR I	CR	7.306	10.170	10.689	21.156	22.587	22.599	28.907	34.692	37.957	44.102
	PSNR	81.935	78.185	75.835	72.649	71.977	71.478	70.985	70.756	70.110	69.703

Table V. Comparison between PSNR and bit rate using HINT progressive transmission technique and HCM

	Level 1	Level 2	Level 3	Level 4	Level 5
PSNR	79.4705	80.2836	81.2625	85.520	
Bit rate	0.0414	0.1332	0.2951	0.5499	1.0229