Exercícios de

Física Computacional

(Parte 9)

Mestrado em Engenharia Física-Tecnológica (MEFT)

Rui Coelho

Departamento de Física do Instituto Superior Técnico

Ano Lectivo: 2019-20

rui.alves.coelho@tecnico.ulisboa.pt

versão: 1 de Outubro de 2019

9. Equações diferenciais ordinárias

Exercício 60. Neste exercício vamos testar o método de **Euler** num problema muito simples. Considere a equação diferencial

$$dx/dt = t^2 com x(t=0)=2.0$$

- a) Calcule através do método de Euler a solução da equação diferencial entre t=0 e t=4. Use um passo no tempo h=0.1.
- b) Produza numa figura a solução numérica, sobreposta à solução analítica. Será o método minimamente preciso ?

Exercício 61. Neste exercício vamos testar o método **trapezoidal** (*aka* Crank-Nicholson ou Heun) no mesmo problema do Exercício 60. A equação diferencial e condição inicial é dada por

$$dx/dt = t^2 com x(t=0)=2.0$$

- a) Queremos calcular a solução da equação diferencial entre t=0 e t=4 usando o mesmo passo no tempo h=0.1.
- b) Produza numa figura a solução numérica, sobreposta à solução analítica. Será o método mais preciso que o de Euler ?

Exercício 62. Neste exercício vamos testar o método **Leap-Frog** (*aka* Stormer-Verlet) no mesmo problema do Exercício 60. A equação diferencial e condição inicial é dada por

$$dx/dt = t^2 com x(t=0)=2.0$$

- a) Queremos calcular a solução da equação diferencial entre t=0 e t=4 usando o mesmo passo no tempo h=0.1.
- b) Produza numa figura a solução numérica, sobreposta à solução analítica. Será o método mais preciso que o trapezoidal ?

Exercício 63. Neste exercício vamos testar o método **RK2** noutro problema sendo equação diferencial e condição inicial é dada por

$$dy/dt = 0.5Y - t + 1 com Y(t=0.4)=0.2$$

- a) Queremos calcular a solução da equação diferencial entre t=0.4 e t=1.8 usando um passo no tempo h=0.1.
- b) Produza uma figura com a solução numérica.

Exercício 64. (adaptado de *Barão 2016*) A resolução de equações diferenciais ordinárias (ODEs) por via numérica, exige a implementação dos diferentes métodos iterativos (Euler, Runge-Kutta, etc.) de forma a obter-se a solução das equações. Dado que o número de variáveis dependentes do sistema, correspondentes ao número de equações diferenciais de primeira ordem a resolver, podem ser diferentes em cada problema, será útil implementar uma classe em C++ suficientemente flexível e capaz de lidar com os diferentes números de variáveis. Além do mais, na resolução do sistema de equações diferenciais, a variável independente (habitualmente o tempo) e as variáveis dependentes (os graus de liberdade necessários à resolução do problema bem como as suas primeiras derivadas) são iteradas e os seus valores registados. Torna-se por isso conveniente, definir uma classe ODEpoint que aramazene em cada iteração os valores das variáveis

a) Implemente a classe ODEpoint de acordo com a declaração incompleta abaixo. A descrição completa encontra-se nos slides da UC e os métodos a implementar deverão seguir <u>integralmente</u> a descrição dada (eventuais alterações apenas se forem com métodos adicionais).

```
class ODEpoint {
public:
    ODEpoint();//default constructor
    ~ODEpoint();//destructor
...
private:
    double t;
    vector<double> var;
    int Ndim;
};
```

b) Implemente a classe ODEsolver de acordo com a declaração incompleta abaixo. Os métodos a implementar deverão seguir <u>integralmente</u> a descrição dada (eventuais alterações apenas se forem com métodos adicionais).

```
class ODEsolver{
public:
  ODEsolver(vector<TFormula> Form);
  ~ODEsolver();
  vector <ODEpoint> Eulersolver(const ODEpoint& PO, double xmin, double xmax, double h step);
  vector<ODEpoint> RK2solver(const ODEpoint& P0, double xmin, double xmax, double h_step);
  vector <ODEpoint> RK4solver(const ODEpoint& PO, double xmin, double xmax, double h_step);
  vector <ODEpoint> RK4_AdapStep(const ODEpoint& PO, double xmin, double xmax, double h_step);
  vector<ODEpoint> Heun(const ODEpoint& P0, double xmin, double xmax, double h_step);
  void SetODEfunc(vector<TFormula> Form);
private:
  ODEpoint Heun_iterator (const ODEpoint&, double step);
  ODEpoint EULER_iterator (const ODEpoint&, double step);
  ODEpoint RK2_iterator (const ODEpoint&, double step);
  ODEpoint RK4_AS_iterator(const ODEpoint&, double step, vector<vector<double> >& K);
  ODEpoint RK4 iterator(const ODEpoint&, double step);
  vector<TFormula> F;
```

Exercício 65. Utilize agora a classe *ODEsolver* para resolver a seguinte (*a mesma do Exercicio 63*) equação diferencial com condição inicial dada:

```
dy/dt = 0.5Y - t + 1 com Y(t=0.4) = 0.2
```

a) Utilize os métodos de Euler, Runge-Kutta2 e Runge-Kutta4 e obtenha uma figura onde mostre as soluções obtidas pelos 3 métodos no mesmo sistema de eixos. O passo no tempo nos 3 métodos é o mesmo i.e. h=0.1s.

Exercício 66. Utilize agora a classe *ODEsolver* para obter a famosa figura do atrator de Lorentz:

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = x(\rho - z) - y$$

$$\frac{dz}{dt} = xy - \beta z$$
Parameters
$$\sigma = 10$$

$$\rho = 28$$

$$\beta = 8/3$$

- a) Utilize apenas o método de **Runge-Kutta4**, com passo no tempo h=1e-5s e obtenha a trajectória ao longo de **100s** no tempo.
- b) Obtenha a figura que ilustre a solução de pontos (x,y,z) ao longo do tempo (há classes do ROOT TGraph2D propositadamente para gráficos 3D...) tal como indicado nos slides de apoio da Unidade Curricular.

Exercício 67. Finalmente, vamos utilizar uma extensão da classe *ODEsolver* com o método de Verlet para a resolução de equações diferenciais de 2ªordem. O objective é resolver a equação do pêndulo

$$\frac{d^2\theta}{dt^2} = -k\sin(\theta) \quad , k = g/L \qquad \theta(0) = \theta_0 \quad , \quad \omega(0) = \omega_0$$

a) Usando k=5, θ_0 =2rad e $\omega(0)$ =0, obtenha figuras com a trajectória $\theta(t)$ com t=[0,2 π] quer com o método de Verlet quer com o método de RK4. Passo no tempo h=0.1s.

Exercício 68. (Barão 2016) Uma barra cilíndrica de diâmetro D = 101 cm e comprimento de L = 100 cm está em contacto com uma fonte de calor à temperatura de T_s = 40 graus Celsius.

a) Admitindo que a barra está isolada, conduzindo calor entre as duas extremidades, a temperatura da barra obedece à seguinte equação:

$$\frac{\partial^2 T}{\partial x^2} = 0$$

resolva numericamente esta equação sabendo que as temperaturas nas extremidades da barra são T(x=0)=40 e T(x=L)=10graus Celsius. Utilize como passo s=10cm e s=2 cm. Produza um plot para cada um dos casos.