Contents

1	Cha	apter 1												
2	Chapter 2													
	2.1	Section	1 2.1											
		2.1.1	2.2.2											
		2.1.2	2.2.3											
		2.1.3	2.2.5											
		2.1.4	2.2.6 DO!!											
	2.2	Section	1 2.6											
		2.2.1	2.6.1											
		2.2.2	2.6.2 DO!!											
		2.2.3	2.6.3 DO!!											
		2.2.4	2.6.4 CHECK!!											
		2.2.5	2.6.5 CHECK!!											
		2.2.6	2.6.5 DO!!											
		2.2.7	2.6.7											
		2.2.8	2.6.8 ASK RON!!											
		2.2.9	2.6.9 DO!!											
		2.2.10	2.6.10 DO!!											
		2.2.11	2.6.11 ASK RON!!											
3	Cha	apter 3												
	3.1	Section	n 3.1											
		3.1.1	3.1.1 DO!!											
		3.1.2	3.1.2											
		3.1.3	3.1.3 DO!!											
		3.1.4	3.1.4 DO!!											
		3.1.5	3.1.5 DO!!											
		3.1.6	3.1.7 DO!!											
		3.1.7	3.1.8 DO!!											
		3.1.8	3.1.12 DO!!											
		3 1 9	3 1 13 DO!!											
	3.2	Section	1 3.2		•									
	3.2	3.2.1	3.2.1											
		3.2.2	3.2.2											
		3.2.3	3.2.4											
		3.2.4	3.2.5 DO!!											
		3.2.4 $3.2.5$	3.2.6											
		3.2.6	3.2.7 DO!!											
		3.2.7	3.2.8											
		3.2.8	3.2.9 DO!!											
		3.2.9	3.2.10 CHECK!!											
			3.2.11											
		3.2.11	3.2.12 DO!!											
			3.2.13											
		3.2.13	3.2.14 DO!!											

		3.2.14	3.2.1	5		 		 	 		 				 					8
		3.2.15	3.2.1	6		 		 	 		 				 					8
	3.3	Section	n 3.3			 		 	 		 				 					9
		3.3.1	3.3.1	DO!!	١	 		 	 		 				 					9
		3.3.2	3.3.2	DO!!	١	 		 	 		 				 					9
		3.3.3		B DO!!																9
4	Cha	pter 4																		9
	4.1	Section	n 4.1			 		 	 		 				 					9
		4.1.1	4.1.1			 		 	 		 				 					9
		4.1.2	4.1.2	2		 			 		 				 					10
		4.1.3	4.1.3	3 DO!!	!	 		 	 		 				 					10
		4.1.4	4.1.4	!		 		 	 		 				 					10
		4.1.5	4.1.5	DO!!	١	 		 	 		 				 					10
	4.2	Section	n 4.1			 		 	 		 				 					10
		4.2.1	4.2.1	DO!!	١	 		 	 		 				 					10
		4.2.2	4.2.2	DO!!	١	 		 	 		 				 					10
		4.2.3	4.2.3	B DO!!	١	 		 	 		 				 					10
		4.2.4	4.2.4	DO!!		 		 	 		 				 					10
		4.2.5		DO!!																10
		4.2.6	4.2.6	.		 		 	 		 				 					10
		4.2.7		7 DO!!																11
		4.2.8	4.2.8	3		 		 	 		 				 					11
		4.2.9		DO!!																11
	4.3	Section																		11
		4.3.1		DO!!																11
		4.3.2		2 DO!!																12
		4.3.3		B DO!!																12
		4.3.4		DO!!																12
		4.3.5		CHE																12
		4.3.6																		13
		4.3.7		' DO!!																13
		4.3.8		B DO!!		 			 	-	 	 -		 -	 		-	 -	-	13
		4.3.9)																13
		4.3.10																		13
	4.4	Section																		14
	1.1	4.4.1		DO!!																14
		4.4.2		2																14
		4.4.3		ASK																14
		4.4.4		ASK																14
		4.4.5		5 DO!!																14
		4.4.6		DO::																14
		4.4.7	_	DO:: ' DO!!																14
		4.4.8																		14
		4.4.9																		14
		4.4.9																		$\frac{14}{15}$
		4.4.10				 •	•	 •	 	•	 • •	 •	• •	 •	 •	•	•	 •	•	15

		4.4.12 4.4.12	16
5	Cha	apter 5	16
	5.1	Section 5.1	16
		5.1.1 5.1.1 DO!!	16
	5.2	Section 5.2	16
		5.2.1 5.2.1 DO!!	16
	5.3	Section 5.3	16
		5.3.1 5.3.1 DO!!	16
6	Cha	apter 6	16
		•	16
			16
			17
		6.1.3 6.1.3	17
7	Ext	ara Questions for Ron	18
		7.0.1 1	
			18

1 Chapter 1

2 Chapter 2

2.1 Section 2.1

$2.1.1 \quad 2.2.2$

Given an exact sequence of vector bundles,

$$0 \longrightarrow L \stackrel{\varphi}{\longrightarrow} E \stackrel{\psi}{\longrightarrow} F \longrightarrow 0$$

where L is a line bundle. Consider the exact sequence,

$$0 \longrightarrow L \otimes \bigwedge^{i-1} F \longrightarrow \bigwedge^{i} E \longrightarrow \bigwedge^{i} F \longrightarrow 0$$

where the first map is defined by taking sections $s_1 \otimes (f_2 \wedge \cdots \wedge f_i)$ and lifting each f_i to a section e_j of E up to a section s_j of L and then map $s_1 \otimes (f_2 \wedge \cdots \wedge f_i) \mapsto s_1 \wedge e_2 \wedge \cdots \wedge e_i$. This map is well-defined because,

$$s_1 \wedge e_2' \wedge \cdots \wedge e_i' = s_1 \wedge (e_2 + \varphi(s_2)) \wedge \cdots \wedge (e_i + \varphi(s_i)) = s_1 \wedge e_2 \wedge \cdots \wedge e_n + s_1 \wedge s_2 \wedge \cdots \wedge e_n + \cdots$$
$$= s_1 \wedge e_2 \wedge \cdots \wedge e_n$$

because $s_1 \wedge s_j = 0$ since L is a line bundle. Thus this map is well-defined and clearly $\ker \wedge^i \psi$ is the image of this map because $L \subset E$ maps to zero under ψ thus the kernel is exterior products where one factor is in L. Furthermore, dualizing if we have an exact sequence of vector bundles,

$$0 \longrightarrow F \longrightarrow E \longrightarrow L \longrightarrow 0$$

where L is a line bundle then there is an exact sequence,

$$0 \longrightarrow \bigwedge^{i} F \longrightarrow \bigwedge^{i} E \longrightarrow L \otimes \bigwedge^{i-1} F \longrightarrow 0$$

$2.1.2 \quad 2.2.3$

Let E be a holomorphic vector bundle E of rank r there exists a non-degenerate pairing,

$$\bigwedge^k E \times \bigwedge^{r-k} E \to \det E$$

via $(e_1 \wedge \cdots \wedge e_k, e_{k+1} \wedge \cdots \wedge e_r) \mapsto e_1 \wedge \cdots \wedge e_r$. Locally $E \cong \mathcal{O}_X^{\oplus r}$ and thus the pairing is nondegenerate because we can take e_i to be the standard basis of $\mathcal{O}_X^{\oplus r}$. Then $\det E \cong \mathcal{O}_X$ and $(e_1 \wedge \cdots \wedge e_k, e_{k+1} \wedge \cdots \wedge e_r) \mapsto e_1 \wedge \cdots \wedge e_r$ is a generator of $\det E \cong \mathcal{O}_X$.

Since the above pairing is nondegenerate, we get an isomorphism $\bigwedge^k E \xrightarrow{\sim} \bigwedge^{r-k} E^* \otimes \det E$.

2.1.3 2.2.5

Let L, L^* be holomorphic line bundles on a compact complex manifold X. Suppose that L and L^* admit nonzero global holomorphic sections s, s'. Then consider $s \otimes s'$ a global section of $L \otimes L^* \cong \mathcal{O}_X$. However, all nonzero sections of \mathcal{O}_X are nonvanishing because X is compact and thus $H^0(X, \mathcal{O}_X) = \mathbb{C}$. Therefore, s and s' are nonvanishing meaning that $L \cong L^* \cong \mathcal{O}_X$.

2.1.4 2.2.6 DO!!

2.2 Section 2.6

$2.2.1 \quad 2.6.1$

I think f is holomorphic iff df(Iv) = idf(v)

2.2.2 2.6.2 DO!!

2.2.3 2.6.3 DO!!

2.2.4 2.6.4 CHECK!!

Let $f: X \to Y$ be a surjective holomorphic map between connected xomplex manifolds. We want to look at the smooth locus of f.

I claim the following is true: for a morphism of vector budles (not necessarily constant rank) $\phi: \mathcal{E}_1 \to \mathcal{E}_2$ then ϕ has full rank $k = \min\{m, n\}$ iff the morphism $\phi': \bigwedge^k \mathcal{E}_1 \to \bigwedge^k \mathcal{E}_2$ is nonzero (is this true).

Therefore, the locus where ϕ is not full rank is the vanishing the section

$$\phi' \in \mathcal{HOM}_{\mathcal{O}_X} \left(\bigwedge^k \mathcal{E}_{,} \bigwedge^k \mathcal{E}_2 \right)$$

Now apply this to the map $f^*\Omega_Y \to \Omega_X$ to get the nonsmooth locus.

2.2.5 2.6.5 CHECK!!

The cousins' problem has a solution because $H^1(X, \mathcal{O}_X) = 0$. Question: why is every hypersurface defined by a $H^0(K^{\times}/\mathcal{O}_X^{\times})$. Question: how are we supposed to use the poincare lemma.

2.2.6 2.6.5 DO!!

$2.2.7 \quad 2.6.7$

We define,

$$H^{p,q}_{\mathrm{BC}}(X) = \frac{\{\alpha \in \mathcal{A}^{p,q}(X) \mid \mathrm{d}\alpha = 0\}}{\partial \bar{\partial} \mathcal{A}^{p-1,q-1}(X)}$$

This makes sense because if $\alpha = \partial \bar{\partial} \gamma$ then

$$d\alpha = \partial^2 \bar{\partial} \gamma - \bar{\partial}^2 \partial \gamma = 0$$

Now, the inclusion of d-closed forms into $\bar{\partial}$ -closed forms induces a map,

$$H^{p,q}_{\mathrm{BC}}(X) \to H^{p,q}(X)$$

which is well-defined because if $\alpha = \partial \bar{\partial} \gamma$ then $\alpha = -\bar{\partial} \partial \gamma$ and is thus $\bar{\partial}$ -exact. If X is furthermore compact Kahler then by the $\partial \bar{\partial}$ -lemma we see if α maps to zero i.e. $\alpha = \partial \bar{\partial} \beta$ and $d\alpha = 0$ then $\alpha = d\gamma$ so the map is injective. Furthermore, by the Hodge decomposition, $H^{p,q}(X)$ can be represented by Harmonic forms which are d-closed and thus this map is surjective as well.

2.2.8 2.6.8 ASK RON!!

Is this just because we can take $M \to M$ via complex conjugation.

2.2.9 2.6.9 DO!!

2.2.10 2.6.10 DO!!

2.2.11 2.6.11 ASK RON!!

3 Chapter 3

3.1 Section 3.1

3.1.1 3.1.1 DO!!

Let X be a complex manifold with an almost complex structure (M, I). We need to find a Riemannian structure g on M such that g is compatible with I meaning g(I-, I-) = g(-, -). (FINISH)

$3.1.2 \quad 3.1.2$

Let X be a connected complex manifold of dimension n > 1 and let g be a Kähler metric. Suppose that $g' = e^f \cdot g$ for some real smooth function $f \in \mathcal{A}^0(X)$ is also a Kähler metric. Then the associated Kähler forms satisfy $\omega' = e^f \cdot \omega$. Since both are Kähler forms, we must have $d\omega' = 0$ and $d\omega = 0$. However,

$$\mathrm{d}\omega' = e^f \mathrm{d}f \wedge \omega + e^f \mathrm{d}\omega = e^f \mathrm{d}f \wedge \omega$$

Therefore, $df \wedge \omega = 0$ and thus L(df) = 0. However, since n > 1 the Lefschetz operator is injective on k-forms for k < n and thus df = 0. Since X is connected then f is constant so $\omega' = c\omega$.

- 3.1.3 DO!!
- 3.1.4 3.1.4 DO!!
- 3.1.5 DO!!
- 3.1.6 3.1.7 DO!!
- 3.1.7 3.1.8 DO!!
- 3.1.8 3.1.12 DO!!
- 3.1.9 3.1.13 DO!!
- 3.2 Section 3.2
- 3.2.1 3.2.1
- 3.2.2 3.2.2
- 3.2.3 3.2.4

What does this really mean?? Ask Ron.

- 3.2.4 3.2.5 DO!!
- 3.2.5 3.2.6

Let X be a compact Kähler manifold. Then,

$$H^n(X,\mathbb{C}) = \bigoplus_{p+q=n} H^{p,q}(X)$$

Furthermore, $H^{q,p} = \overline{H^{p,q}}$. Therefore,

$$b_{2k+1} = \sum_{p+q=2k+1} h^{p,q} = \sum_{i=0}^{k} (h^{2k+1-i,i} + h^{i,2k+1-i}) = 2\sum_{i=0}^{k} h^{2k+1-i,i}$$

is even.

3.2.6 3.2.7 DO!!

No! (PROVE IT)

3.2.7 3.2.8

Let X be a compact Kähler manifold. Let $\omega \in H^0(X, \Omega_X^p)$. Clearly, $\bar{\partial}\omega = 0$ since ω is a holomorphic (p, 0)-form. Furthermore,

$$\bar{\partial}^*\omega = -(\bar{\star} \circ \bar{\partial} \circ \bar{\star})\,\omega$$

but $\bar{\star}\omega$ is a (n-p,n)-form and thus $\bar{\partial}\bar{\star}\omega=0$. Therefore, $\bar{\partial}\omega=0$ and $\bar{\partial}^*\omega=0$ and thus $\Delta_{\bar{\partial}}\omega=0$.

3.2.8 3.2.9 DO!!

3.2.9 3.2.10 CHECK!!

Let (X,g) be a compact hermitian manifold. Show that any d-harmonic (p,q)-form is also $\bar{\partial}$ -harmonic.

Since α is d-harmonic, we have $d\alpha = 0$ and $d^*\alpha = 0$. Therefore, $\partial \alpha = 0$ and $\bar{\partial} \alpha = 0$ and $\partial^*\alpha = 0$ and $\bar{\partial} \alpha = 0$.

$3.2.10 \quad 3.2.11$

Let $X = \mathbb{P}^n$. Consider the Euler sequence,

$$0 \longrightarrow \Omega_X \longrightarrow \mathcal{O}_X(-1)^{\oplus (n+1)} \longrightarrow \mathcal{O}_X \longrightarrow 0$$

Then we may apply exterior powers to get the following sequence,

$$0 \longrightarrow \Omega_X^p \longrightarrow \bigwedge^p \mathcal{O}_X(-1)^{\oplus (n+1)} \longrightarrow \mathcal{O}_X \otimes_{\mathcal{O}_X} \Omega_X^{p-1} \longrightarrow 0$$

However,

$$\bigwedge^{p} \mathcal{O}_{X}(-1)^{\oplus (n+1)} = \mathcal{O}_{X}(-p)^{\oplus \binom{n+1}{p}}$$

and thus we have the sequence,

$$0 \longrightarrow \Omega_X^p \longrightarrow \mathcal{O}_X(-p)^{\oplus \binom{n+1}{p}} \longrightarrow \Omega_X^{p-1} \longrightarrow 0$$

Now applying the cohomology sequence we find,

$$H^{q-1}(X, \mathcal{O}_X(-p))^{\oplus \binom{n+1}{p}} \longrightarrow H^{q-1}(X, \Omega_X^{p-1}) \longrightarrow H^q(X, \Omega_X^p) \longrightarrow H^q(X, \mathcal{O}_X(-p))^{\oplus \binom{n+1}{p}}$$

Therefore, if 0 < q < n and p > 0 then $H^{q-1}(X, \Omega_X^{p-1}) \xrightarrow{\sim} H^q(X, \Omega_X^p)$. Furthermore, if q = 0 and p > 0 then $H^0(X, \Omega_X^p) = 0$ because we get an exact sequence,

$$0 \longrightarrow H^0(X, \Omega_X^p) \longrightarrow H^0(X, \mathcal{O}_X(-p))^{\oplus \binom{n+1}{p}}$$

and $H^0(X, \mathcal{O}_X(-p)) = 0$. Finally, if q = n and p < n+1 (which it must) then $H^{q-1}(X, \Omega_X^{p-1}) \xrightarrow{\sim} H^q(X, \Omega_X^p)$ because $H^n(X, \mathcal{O}_X(-p)) = H^0(X, \mathcal{O}_X(p-n-1))$ by Serre duality.

To finish the base case p = 0 we know,

$$H^{q}(X, \mathcal{O}_{X}) = \begin{cases} \mathbb{C} & q = 0\\ 0 & q > 0 \end{cases}$$

Therefore, by induction, $H^p(X,\Omega_X^p)=H^{p-1}(X,\Omega_X^{p-1})=\mathbb{C}$ for $p\leq n$. Furthermore, if $p\neq q$ then reducing via $H^{q-1}(X,\Omega_X^{p-1})\stackrel{\sim}{\to} H^q(X,\Omega_X^p)$ we get to either $H^q(X,\Omega_X^0)=0$ with q>0 or $H^0(X,\Omega_X^p)=0$ with p>0. Therefore,

$$H^{q}(X, \Omega_X^p) = \begin{cases} \mathbb{C} & p = q \le n \\ 0 & p \ne q \end{cases}$$

Now consider the exponential sequence,

$$H^0(X,\mathcal{O}_X^\times) \longrightarrow H^1(X,\mathbb{Z}) \longrightarrow H^1(X,\mathcal{O}_X) \longrightarrow H^1(X,\mathcal{O}_X^\times) \longrightarrow H^2(X,\mathbb{Z}) \longrightarrow H^2(X,\mathcal{O}_X)$$

but $H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0$ and $H^1(X, \mathcal{O}_X^{\times}) = \operatorname{Pic}(X)$. Therefore, the exponential sequence defines an isomorphism $\operatorname{Pic}(X) \xrightarrow{\sim} H^2(X, \mathbb{Z})$. By the Kähler decomposition $H^2(X, \mathbb{C}) = H^{1,1}(X) = H^1(X, \Omega_X^1)$ and thus $\dim_{\mathbb{C}} H^2(X, \mathbb{C}) = 1$. Therefore, $H^2(X, \mathbb{Z}) = \mathbb{Z}$ because $H^2(X, \mathbb{Z})$ is torsion-free (WHY?).

3.2.11 3.2.12 DO!!

$3.2.12 \quad 3.2.13$

Let X be a compact Kähler manifold and $\alpha \in \mathcal{A}^k(X)$ which is d-closed and d^c -exact where $\mathrm{d}^c = i(\bar{\partial} - \partial)$. Notice that $\mathrm{dd}^c = 2i\partial\bar{\partial}$. Write $\alpha = \alpha^{k,0} + \cdots + \alpha^{0,k}$. Since $\mathrm{d}\alpha = 0$ and $\mathrm{d}^c\alpha = 0$ we see that $\partial\alpha = 0$ and $\bar{\partial}\alpha = 0$ and this must be true for each $\alpha^{p,q}$ because $\Pi^{p+1,q}\partial\alpha = \partial\alpha^{p,q}$ etc. Then by the $\partial\bar{\partial}$ -lemma we know $\alpha^{p,q} = \partial\bar{\partial}\beta$ for $\beta \in \mathcal{A}^{p-1,q-1}(X)$. Therefore,

$$\alpha = \alpha^{k,0} + \dots + \alpha^{0,k} = \partial \bar{\partial} (\beta^{k,0} + \dots + \beta^{0,k}) = -\frac{i}{2} dd^c \beta$$

where $\beta = \beta^{k,0} + \cdots + \beta^{0,k}$.

3.2.13 3.2.14 DO!!

DO! LOOK AT PREVIOUS BC PROBLEM AND CORRESPOND

$3.2.14 \quad 3.2.15$

Let (X, g) be a compact hermitian manifold and let $[\alpha] \in H^{p,q}(X)$ be a cohomology class. If we deform $\alpha' = \alpha + t\bar{\partial}\beta$ by an exact form such that $[\alpha'] = [\alpha]$. Then consider the norm,

$$||\alpha'||^2 = \langle \alpha + t\bar{\partial}\beta, \alpha + t\bar{\partial}\beta \rangle = ||\alpha||^2 + 2t\Re\langle \alpha, \bar{\partial}\beta \rangle + t^2||\bar{\partial}\beta||^2$$

Suppose that α has minimal norm then the linear term must be zero so $\Re\langle \alpha, \bar{\partial}\beta \rangle = 0$. Likewise, replacing β by $i\beta$ then $\Re\langle \alpha, \bar{\partial}i\beta \rangle = \operatorname{Im}(\langle \alpha, \bar{\partial}\beta \rangle)$ so we must have $\langle \alpha, \bar{\partial}\beta \rangle = 0$. However, $\langle \alpha, \bar{\partial}\beta \rangle = \langle \bar{\partial}^*\alpha, \beta \rangle = 0$ for arbitrary (p, q - 1)-forms β . In particular, we can take,

$$||\bar{\partial}^*\alpha||^2 = \langle \bar{\partial}^*\alpha, \bar{\partial}^*\alpha \rangle = 0$$

so $\bar{\partial}^* \alpha = 0$. Furthermore $\bar{\partial} \alpha = 0$ since it defines a cohomology class. Thus $\Delta_{\bar{\partial}} \alpha = 0$ so the representatives of minimal norm are exactly the harmonic representatives.

$3.2.15 \quad 3.2.16$

Let X be a compact Kähler manifold. Let ω and ω' be Kähler forms such that $[\omega] = [\omega'] \in H^2(X, \mathbb{R})$. Then $\eta = \omega - \omega' = d\alpha$ for some real 1-form α . Thus η is a closed real (1, 1)-form which is d-exact and thus by the $\partial \bar{\partial}$ -lemma $\eta = i\partial \bar{\partial} f$ for some $f \in \mathcal{A}^{0,0}$. Notice,

$$\bar{\eta} = -i\bar{\partial}\partial\bar{f} = i\partial\bar{\partial}\bar{f}$$

however η is real so $\bar{\eta} = \eta$ and thus $\bar{f} = f$ so $f \in \mathcal{A}^0_{\mathbb{R}}$ is a real function and,

$$\omega = \omega' + i\partial\bar{\partial}f$$

3.3 Section 3.3

3.3.1 3.3.1 DO!!

3.3.2 3.3.2 DO!!

3.3.3 3.3.3 DO!!

4 Chapter 4

4.1 Section 4.1

4.1.1 4.1.1

Let L be a holomorphic line bundle globally generated by sections $s_1, \ldots, s_k \in H^0(X, L)$. Then L admits a canonical hermitian structure h defined by locally choosing a trivialization, $\phi: L|_U \xrightarrow{\sim} \mathcal{O}_U$ then for any local sections $\alpha, \beta \in \mathcal{L}(U)$,

$$h(\alpha, \beta) = \frac{\psi(\alpha) \cdot \overline{\psi(\beta)}}{\sum_{i} |\psi(s_i)|^2}$$

This is well-defined because for any other choice of local trivialization $\psi': L|_u \xrightarrow{\sim} \mathcal{O}_U$ gives a transition function $t = \psi' \circ \psi^{-1}: \mathcal{O}_U \to \mathcal{O}_U$ which is a holomorphic function on U. Then $\psi' = (\psi' \circ \psi^{-1}) \circ \psi = t\psi$ and therefore,

$$\frac{\psi'(\alpha) \cdot \overline{\psi'(\beta)}}{\sum_{i} |\psi'(s_{i})|^{2}} = \frac{t\psi(\alpha) \cdot \overline{t\psi(\beta)}}{\sum_{i} |t\psi(s_{i})|^{2}} = \frac{|t|^{2}\psi(\alpha \cdot \overline{\psi(\beta)}}{|t|^{2} \sum_{i} |\psi(s_{i})|^{2}} = \frac{\psi(\alpha) \cdot \overline{\psi(\beta)}}{\sum_{i} |\psi(s_{i})|^{2}}$$

Then the dual bundle L^* obtains a natural hermitian structure h^* defined on $\alpha, \beta \in L^*(U)$ i.e. maps $L|_U \to \mathcal{O}_U$ via,

$$h^*(\alpha, \beta) = \alpha(h^{-1}(\beta))$$

viewing h as an \mathbb{C} -antilinear isomorphism $h: \mathcal{L} \xrightarrow{\sim} \mathcal{L}^*$. Furthermore, there is an inclusion $L^* \hookrightarrow \mathcal{O}_X^{\oplus k}$ dual to $\mathcal{O}_X^{\oplus k} \twoheadrightarrow \mathcal{L}$ defined by applying $\alpha \in L^*(U)$ to s_1, \ldots, s_n . By restricting the standard hermitian structure on $\mathcal{O}_X^{\oplus k}$ to L^* we get a hermitian structure h' on \mathcal{L} . Explicitly, for $\alpha, \beta \in L^*(U)$,

$$h'(\alpha, \beta) = \sum_{i} \alpha(s_i) \overline{\beta(s_i)}$$

However, chooseing a local trivialization $\psi : \mathcal{L}|_U \xrightarrow{\sim} \mathcal{O}_U$ then $\psi^* : \mathcal{O}_U \xrightarrow{\sim} \mathcal{L}^*|_U$ given by $\psi^*(f) = f\psi$ is an isomorphism. We explicitly find,

$$h^{-1}(\psi^*(f)) = \bar{f}h^{-1}(\psi) = f\sum_{i} s_i \cdot \overline{\psi(s_i)}$$

Therefore,

$$h^*(\psi^*(f), \psi^*(g)) = f\bar{g}\psi(h^{-1}(\beta)) = f\bar{g}\sum_i |\psi(s_i)|^2 = h'(\psi^*(f), \psi^*(g))$$

Thus $h^* = h'$.

$4.1.2 \quad 4.1.2$

Let L be a holomorphic line bundle of degree d > 2g(C) - 2 on a curve C where deg $K_C = 2g(C) - 2$. By Serre duality $H^1(C, L) = H^0(X, L^* \otimes K_C) = 0$ since deg $(L^* \otimes K_C) = 2g(C) - 2 - d < 0$. In particular if L is a line bundle with deg L > 0 then $H^1(C, K_C \otimes L) = 0$.

4.1.3 4.1.3 DO!!

Let $X = \mathbb{P}^n$. To compute the cohomology $H^q(X, \mathcal{O}_X(k))$ consider the

$4.1.4 \quad 4.1.4$

Let E be a hermitian holomorhic vector bundle on a compact Kähler manifold X Let $s \in H^0(X, \Omega^p \otimes E)$ be a global section. Then we know,

$$\Delta_E(s) = 0 \iff \bar{\partial}_E s = 0 \text{ and } \bar{\partial}_E^* s = 0$$

Notice that $\Omega^p \otimes E$ is the kernel of $\bar{\partial}_E : \mathcal{A}^{p,0}(X,E) \to \mathcal{A}^{p,1}(X,E)$ therefore $\bar{\partial}_E s = 0$ automatically. Furthermore,

$$\bar{\partial}_E^* s = -\bar{\star}_E \bar{\partial}_{E^*} \bar{\star}_E s$$

However $\bar{\star}_E s \in \mathcal{A}^{n-p,n}(X, E^*)$ and thus $\bar{\partial}_{E^*} \bar{\star}_E s \in \mathcal{A}^{n-p,n+1}(X, E^*) = 0$. Therefore, $\bar{\partial}_E^* s = 0$ so $\nabla_E s = 0$ and thus s is Harmonic.

4.1.5 4.1.5 DO!!

4.2 Section 4.1

4.2.1 DO!!

4.2.2 **4.2.2 DO!!**

4.2.3 4.2.3 DO!!

4.2.4 **4.2.4** DO!!

4.2.5 4.2.5 DO!!

Let (E, h) be a hermitian vector bundle and suppose $E = E_1 \oplus E_2$. Then E_1, E_2 are hermitian with hermitian structures h_1 and h_2 induced by the inclusions. Now let ∇_1 and ∇_2 be the induced connections.

$4.2.6 \quad 4.2.6$

Let E be a vector bundle and ∇ a connection on E. Then there is an induced connection ∇' : $\bigwedge^2 E \to \Omega^1_X \otimes \bigwedge^2$ as the quotient of the induced connection on $E^{\otimes 2}$. Explicitly,

$$\nabla'(s_1 \wedge s_2) = \nabla s_1 \wedge s_2 + s_1 \wedge \nabla s_2$$

This is well-defined because,

$$\nabla'(s \wedge s) = \nabla s \wedge s + s \wedge \nabla s = 0$$

Furthermore, there is an induced connection ∇' : det $E \to \Omega^1_X \otimes \det E$ as the quotient of the induced connection on $E^{\otimes n}$. Explicitly,

$$\nabla'(s_1 \wedge \cdots \wedge s_n) = \nabla s_1 \wedge \cdots \wedge s_n + \cdots + s_1 \wedge \cdots \wedge \nabla s_n$$

which is well-defined as above. Let e_i be a local frame of E then we can write $\nabla = d + A$ where A is a matrix of 1-forms which really means,

$$\nabla(f_i e_i) = \mathrm{d}f_i \otimes e_i + f_i \nabla e_i = \mathrm{d}f_i \otimes e_i + f_i A_{ii} \otimes e_i = (\mathrm{d}f_i + A_{ii} f_i) \otimes e_i$$

where $A_{ij} \otimes e_i = \nabla e_j$. Then we find that,

$$\nabla'(e_1 \wedge \cdots \wedge e_n) = A_{1k} \otimes e_k \wedge \cdots \wedge e_n + \cdots + e_1 \wedge \cdots \wedge A_{nk} \otimes e_k = (A_{11} + \cdots + A_{nn}) \otimes (e_1 \wedge \cdots \wedge e_n)$$
$$= \operatorname{tr}(A) \otimes (e_1 \wedge \cdots \wedge e_n)$$

Therefore, the connection ∇' : det $E \to \Omega^1_X \otimes \det E$ on the line bundle det E is locally given by the 1-form tr (A).

4.2.7 **4.2.7 DO!!**

4.2.8 4.2.8

First note that if ∇_1 and ∇_2 are connections on E_1 and E_2 we define a connection $\nabla: E_1 \otimes E_2 \to \Omega \otimes (E_1 \otimes E_2)$ via $\nabla(s_1 \otimes s_2) = \nabla_1 s_1 \otimes s_2 + s_1 \otimes \nabla_2 s_2$ and also $\nabla: \operatorname{Hom}_{\mathcal{O}_X}(E_1, E_2) \to \operatorname{Hom}_{\mathcal{O}_X}(E_1, E_2)$ via $\varphi \mapsto \nabla \varphi$ such that $(\nabla \varphi)(s) = \nabla_2 \varphi(s) - \varphi(\nabla_1(s))$ for any $s \in \Gamma(U, E)$.

Therefore, if ∇ is a connection on E define the dual connection $\nabla^*: E^* \to \Omega_X^1 \otimes E^*$ on E^* via sending $\varphi: E \to \mathcal{O}_X$ so $(\nabla^* \varphi)(s) = \mathrm{d}\varphi(s) - \varphi(\nabla s)$.

Consider the induced connection ∇ on $(E \otimes \overline{E})^*$. Then for any section $h \in \Gamma(U, (E \otimes \overline{E})^*)$, for instance a hermitian metric, we get ∇h such that for any $s_1, s_2 \in E$,

$$(\nabla h)(s_1 \otimes \bar{s}_2) = \mathrm{d}h(s_1 \otimes \bar{s}_2) - h(\nabla(s_1 \otimes \bar{s}_2)) = \mathrm{d}h(s_1 \otimes \bar{s}_2) - h(\nabla s_1 \otimes \bar{s}_2) - h(s_1 \otimes \bar{\nabla}\bar{s}_2)$$
$$= \mathrm{d}h(s_1 \otimes \bar{s}_2) - h(\nabla s_1 \otimes \bar{s}_2) - h(s_1 \otimes \overline{\nabla}\bar{s}_2)$$

Therefore, as a metric,

$$(\nabla h)(s_1, s_2) = dh(s_1, s_2) - h(\nabla s_1, s_2) - h(s_1, \nabla s_2)$$

Therefore, ∇ is hermitian with respect to the hermitian structure (E, h) iff $\nabla h = 0$.

4.2.9 **4.2.9 DO!!**

4.3 Section 4.3

4.3.1 **4.3.1** DO!!

Consider $\nabla^2: \mathcal{A}^k(E) \to \mathcal{A}^{k+2}(E)$ on $\omega \otimes s$ where ω is a k-form and s is a section of E. Then,

$$\nabla(\omega \otimes s) = d\omega \otimes s + (-1)^k \omega \wedge \nabla(s)$$

and thus,

$$\nabla^{2}(\omega \otimes s) = dd\omega \otimes s + (-1)^{k+1}d\omega \wedge \nabla s + (-1)^{k}d\omega \wedge \nabla(s) + (-1)^{2k}\omega \wedge \nabla^{2}(s)$$
$$= \omega \wedge \nabla^{2}(s)$$

since the $dd\omega = 0$ and the middle terms cancel. Here we use the generalized Leibniz formula,

$$\nabla(\omega \wedge \alpha) = d\omega \wedge \alpha + (-1)^k \omega \wedge \nabla \alpha$$

where ω is a k-form and $\alpha \in \mathcal{A}^{\ell}(E)$. Furthermore $\nabla^2(s) = F_{\nabla}(s)$ so we find,

$$\nabla^2(\omega \otimes s) = \omega \wedge F_{\nabla}(s)$$

and therefore for a general E-valued k-form α we see that $\nabla^2(\alpha) = \operatorname{tr}(\omega \wedge F_{\nabla})$ where we view $\omega \in H^0(X, \Omega_X^k \otimes E)$ and $F_{\nabla} \in H^0(X, \Omega_X^2 \otimes E \otimes E^*)$ and taking the map $\wedge : \Omega_X^k \otimes \Omega_X^2 \to \Omega_X^{k+2}$ and contracting the E^* from F_{∇} with the E from ω .

4.3.2 4.3.2 DO!!

4.3.3 4.3.3 DO!!

Let (E_1, h_1) and (E_2, h_2) be two hermitian holomorphic vector bundles endowed with hermitian connections ∇_1, ∇_2 such that the curvature of both is (semi)-positive.

- (a) The curvature of ∇^* on E^* is $F_{\nabla^*} = -F_{\nabla}^{\top}$ which is (semi)-negative since F_{∇} is (semi)-positive.
- (b) The curvature of ∇ on $E_1 \otimes E_2$ is $F_{\nabla} = F_{\nabla_1} \otimes \operatorname{id} + \operatorname{id} \otimes F_{\nabla_2}$ which is (semi)-positive since F_{∇_1} and F_{∇_2} are. Furthermore if one of F_{∇_i} is positive then F_{∇} is positive since the other term is nonegative.
- (c) The curvature of ∇ on $E_1 \oplus E_2$ is $F_{\nabla} = F_{\nabla_1} \oplus F_{\nabla_2}$ which is (semi)-positive since F_{∇_1} and F_{∇_2} are.

4.3.4 **4.3.4** DO!!

4.3.5 4.3.5 CHECK!!

Let X be complex manifold. Let L be a holomorphic line bundle with a hermitian structure h whose Chern connection has positive curvature. Then $F_{\nabla} \in \mathcal{A}^{1,1}(X)$ is an imaginary (1, 1)-form. Furthermore, note that $F_{\nabla} = \bar{\partial} \partial \log h$ and thus,

$$dF_{\nabla} = (\partial + \bar{\partial})\bar{\partial}\partial \log h = 0$$

because $\bar{\partial}^2 = 0$ and $\partial\bar{\partial}\partial = -\partial^2\bar{\partial} = 0$. Since $\omega = iF_{\nabla}$ is positive, it is a Kähler form. Furthermore if X is compact then,

$$\int_X A(L)^n = \int_X F_{\nabla}^n = \int_X \omega^n = n! \int_X \operatorname{vol}_{\omega} > 0$$

(CHECK THIS! FACTORS OF I)

4.3.6 4.3.6

Let $X = \mathbb{P}^n$ and $\omega_X = \mathcal{O}_X(-n-1)$ be the canonical bundle. The sections $x_0, \ldots, x_n \in \Gamma(X, \mathcal{O}_X(1))$ define a canonical hermitian structue h on $\mathcal{O}_X(1)$ which has the property that $\frac{i}{2\pi}F_{\nabla} = \omega_{\text{FS}}$ which is positive. Then $\omega_X = \mathcal{O}_X(-n-1)$ has a canonical hermitian structure $(h^*)^{\otimes n+1}$ which has curvature $\frac{i}{2\pi}F_{\nabla'} = -(n+1)\omega_{\text{FS}}$ which is therefore negative.

4.3.7 DO!!

4.3.8 **4.3.8 DO!!**

4.3.9 4.3.9

Let X be a compact Kähler manifold with $b_1(X) = 0$. Suppose that ∇ is a flat connection on \mathcal{O}_X with $\nabla^{0,1} = \bar{\partial}$. Then $\nabla = d + \omega$ where $\omega : \mathcal{A}^0(X) \to \mathcal{A}^1(X)$ is $\mathcal{A}^0(X)$ -linear and thus $\omega \in \mathcal{A}^1(X)$. Furthermore, $\nabla^{0,1} = \bar{\partial}$ so ω is a smooth (1,0)-form. Now consider the curvature,

$$F_{\nabla} = \nabla \circ \nabla(1) = \nabla(\omega \otimes 1) = d\omega \otimes 1 - \omega \wedge \nabla(1) = d\omega \otimes 1 - \omega \wedge \omega \otimes 1 = d\omega$$

Since ∇ is flat we must have $d\omega = 0$. Thus ω defines a de Rham cohomology class $[\omega] \in H^1(X, \mathbb{C})$ but $b_1(X) = 0$ so ω is exact. Take $\omega = \mathrm{d}f$ for some smooth function f. However, ω is a (1,0)-form so f is holomorphic. But X is compact so f is constant and thus $\omega = 0$ showing that $\nabla = \mathrm{d}$.

Now suppose that L is a line bundle on X with $c_1(L) = 0$. From the exponential sequence,

$$H^1(X, \mathcal{O}_X) \longrightarrow \operatorname{Pic}(X) \xrightarrow{c_1} H^2(X, \mathbb{Z})$$

and thus $\ker c_1 = \operatorname{Im}(H^1(X, \mathcal{O}_X) \to \operatorname{Pic}(X))$. However, $b_1(X) = 0$ so by the Kähler decomposition, $H^1(X, \mathcal{O}_X) = 0$. Therefore, $\ker c_1$ is trivial so $L = \mathcal{O}_X$.

4.3.10 **4.3.10 DO!!**

Let ∇ be a connection on a complex vector bundle E. We want to show that E locally has parallel frames iff $F_{\nabla} = 0$.

Suppose that E has a local frame e_1, \ldots, e_n of parallel sections over U i.e. $\nabla e_i = 0$ and these are independent on each fiber. Since the curvature form $\omega_{\nabla}(s) = \nabla_1 \circ \nabla(s)$ is \mathcal{O}_X -linear, writing $s = f_i e_i$ we get,

$$\omega_{\nabla}(f_i e_i) = f_i \omega_{\nabla}(e_i) = f_i \nabla_1 \circ \nabla e_i = 0$$

Therefore, $\omega_{\nabla} = 0$ so ∇ must be flat.

Locally write $E|_U \cong \mathcal{O}_U^{\oplus n}$ write e_i for a local frame of $E|_U$. Now write $\nabla e_j = \omega_{ij} \otimes e_i$ thus we see,

$$\nabla(f_j e_j) = \mathrm{d}f_j \otimes e_j + \omega_{ij} f_j \otimes e_i = (\mathrm{d}f_i + \omega_{ij} f_j) \otimes e_i$$

Now, applying $\nabla_1 : \Omega^1_X \otimes E \to \Omega^2_X \otimes E$ we get,

$$\nabla_{1} \circ \nabla (f_{j}e_{j}) = \nabla_{1}(\mathrm{d}f_{i} + \omega_{ij}f_{j}) \otimes e_{i} = \mathrm{d}\mathrm{d}f_{i} \otimes e_{i} + \mathrm{d}(\omega_{ij}f_{j}) \otimes e_{i} - (\mathrm{d}f_{i} + \omega_{ij}f_{j}) \wedge \nabla e_{i}$$

$$= (\mathrm{d}\omega_{ij}f_{j} - \omega_{ij} \wedge \mathrm{d}f_{j}) \otimes e_{i} - (\mathrm{d}f_{i} + \omega_{ij}f_{j}) \wedge \omega_{ki} \otimes e_{k}$$

$$= \mathrm{d}\omega_{ij}f_{j} \otimes e_{i} + \mathrm{d}f_{j} \wedge \omega_{ij} \otimes e_{i} - \mathrm{d}f_{i} \wedge \omega_{ki} \otimes e_{k} + \omega_{ki} \wedge \omega_{ij}f_{j} \otimes e_{k}$$

$$= (\mathrm{d}\omega_{ij} + \omega_{ik} \wedge \omega_{kj})f_{j} \otimes e_{i}$$

Therefore,

$$\omega_{\nabla}(f_j e_j) = (\mathrm{d}\omega_{ij} + \omega_{ik} \wedge \omega_{kj}) f_j \otimes e_i$$

is linear as it should be. Now assume ∇ is flat i.e. $\omega_{\nabla} = 0$. Thus,

$$d\omega_{ij} + \omega_{ik} \wedge \omega_{kj} = 0$$

First, in the case n=1 the connection is given by a 1-form ω . Then $\omega_{\nabla}=0 \iff d\omega=0$ in which case locally $\omega=-\mathrm{d}f$ and thus $\nabla(fe)=\mathrm{d}f\otimes e+\omega\otimes e=0$ so we get a frame of parallel sections.

Now we proceed by induction for the general case. First, using a $GL_{\ell}(n), \mathbb{C}$ transformation we can Assume we can find a frame e_1, \ldots, e_{n-1}, s such that $\nabla e_i = 0$. (FINISH)

4.4 Section 4.4

4.4.1 4.4.1 DO!!

4.4.2 4.4.2

Let X be a compact complex manifold and L a basepoint-free line bundle. Then L defines a map $f: X \to \mathbb{P}^N$ such that $f^*\mathcal{O}_{\mathbb{P}^N}(1) = L$. Let h be the standard hermitian structure on $\mathcal{O}_{\mathbb{P}^N}(1)$ so f^*h gives a hermitian structure on L. Taking the Chern connections $\nabla_{f^*h} = f^*\nabla_h$ and thus,

$$F(L, f^*h) = F(f^*\mathcal{O}_{\mathbb{P}^N}(1), f^*h) = f^*F(\mathcal{O}_{\mathbb{P}^N}(1), h) = f^*\omega_{FS}$$

which is a positive form. Therefore,

$$c_1(L) = f^*[\omega_{\rm FS}]$$

so we see that,

$$\int_X c_1(L)^n = \int_X (f^*\omega_{\mathrm{FS}})^n = \int_X f^*\omega_{\mathrm{FS}}^n \ge 0$$

4.4.3 4.4.3 ASK RON!!

4.4.4 4.4.4 ASK RON!!

Ask Ron about interpretation!!

4.4.5 DO!!

4.4.6 DO!!

4.4.7 **4.4.7** DO!!

4.4.8 4.4.8 DO!!

4.4.9 4.4.9

Note that End $(E) \cong E^* \otimes E$ then,

$$c_k(\text{End}(E)) = \sum_{i+j=k} c_i(E^*) \cdot c_j(E) = \sum_{i+j} (-1)^i c_i(E) \cdot c_j(E)$$

In particular,

$$c_1(\text{End}(E)) = c_0(E) \cdot c_1(E) - c_1(E) \cdot c_0(E) = 0$$

and likewise,

$$c_2(\operatorname{End}(E)) = c_0(E) \cdot c_2(E) - c_1(E) \cdot c_1(E) + c_2(E) \cdot c_0(E) = 2c_2(E) - c_1(E)^2$$

Then if $E = L \oplus L$ where L is a line bundle we have,

$$c(L) = 1 + c_1(L)$$

and thus,

$$c_1(E) = 2c_1(L)$$
 and $c_2(E) = c_1(L)^2$

Therefore, we see that,

$$(4c_2 - c_1^2)(E) = 4c_1(E)^2 - (4c_1(E))^2 = 0$$

Furthermore, if $E \cong E^*$ then $c_{2k+1}(E) = c_{2k+1}(E^*) = (-1)^{2k+1}c_{2k+1}(E) = -c_{2k+1}(E)$ and thus $c_{2k+1}(E) = 0$.

4.4.10 4.4.10

Let L be a holomorphic line bundle on X a compact Kähler manifold. Suppose that $c_1(L) = [\alpha]$ where α is closed a real (1,1)-form. Let h_0 be a Hermitian structure on L then,

$$c_1(L, h_0) = \frac{i}{2\pi} \bar{\partial} \partial \log h_0$$

Now consider,

$$\eta = \alpha - c_1(L, h_0)$$

is a real (1, 1)-form and since $[\alpha] = [c_1(L, h_0)]$ also η is d-exact. Thus, by the $\partial \bar{\partial}$ -lemma, we know,

$$\eta = -\frac{i}{2\pi} \partial \bar{\partial} f$$

for $f \in \mathcal{A}^{0,0}_{\mathbb{R}}(X)$ i.e. f is a real smooth function. Therefore,

$$\alpha = \frac{i}{2\pi} \bar{\partial} \partial \left[f + \log h_0 \right] = \frac{i}{2\pi} \bar{\partial} \partial \log e^f h_0$$

Therefore, let $h = e^f h_0$ be annother Hermitian structure (since f is real) then we see $c_1(L, h) = \alpha$.

4.4.11 4.4.11

Let X be compact Kähler and E a vector bundle with a Chern connection ∇ . If we let,

$$\sum_{i=0}^{r} \tilde{P}_i(B) = \operatorname{tr}\left(e^B\right) = \sum_{n=0}^{\infty} \frac{1}{n!} \operatorname{tr}\left(B^n\right)$$

so,

$$\tilde{P}_k(B_1,\ldots,B_k) = \frac{1}{k!} \operatorname{tr} (B_1 \cdots B_k)$$

and then define,

$$\operatorname{ch}_k(E, \nabla) := \tilde{P}_k\left(\frac{i}{2\pi}F_{\nabla}\right) \in \mathcal{A}^{2k}_{\mathbb{C}}(M)$$

where \tilde{P}_k acts on End (E)-valued 2-forms via,

$$\tilde{P}_k(\alpha_1 \otimes \varphi_1, \dots, \alpha_k \otimes \varphi_k) = (\alpha_1 \wedge \dots \wedge \alpha_k) \, \tilde{P}_k(\varphi_1, \dots, \varphi_k) = (\alpha_1 \wedge \dots \wedge \alpha_k) \, \frac{1}{k!} \operatorname{tr} \left(\varphi_1 \dots \varphi_k \right)$$

This is the composition of $(\Omega_X^2)^{\otimes k} \to \Omega_X^{2k}$ via exterior product and $\operatorname{End}(E)^{\otimes k} \to \operatorname{End}(E)$ via composition and finally taking trace. We see that,

$$\operatorname{ch}_k(E, \nabla) = \frac{1}{k!} \left(\frac{i}{2\pi} \right)^k \operatorname{tr} \left(F_{\nabla}^{\otimes k} \right)$$

where $F_{\nabla}^{\otimes k}$ is the image under $(\Omega_X^2 \otimes \operatorname{End}(E))^{\otimes k} \to \Omega_X^{2k} \otimes \operatorname{End}(E)$. Now taking Dolbeault cohomology classes via $\mathcal{A}_{\mathbb{C}}^{k,k}(\operatorname{End}(E)) \to H^k(X,\Omega^k \otimes \operatorname{End}(E))$,

$$\operatorname{ch}_{k}(E) = \frac{1}{k!} \left(\frac{i}{2\pi} \right)^{k} \operatorname{tr} \left([F_{\nabla}]^{\otimes k} \right)$$

where $[F_{\nabla}]^{\otimes k}$ is the image under the map,

$$H^1(X, \Omega^1_X \otimes \operatorname{End}(E)) \times \cdots \times H^1(X, \Omega^1_X \otimes \operatorname{End}(E)) \to H^k(X, \Omega^k \otimes \operatorname{End}(E))$$

Furthermore $[F_{\nabla}] = A(E)$ so we get,

$$\operatorname{ch}_k(E) = \frac{1}{k!} \left(\frac{i}{2\pi} \right)^k \operatorname{tr} \left(A(E)^{\otimes k} \right)$$

as a class under the map $H^k(X, \Omega^k \otimes \operatorname{End}(E)) \xrightarrow{\operatorname{tr}} H^k(X, \Omega_X^k) \subset H^{2k}(X, \mathbb{C})$.

$4.4.12 \quad 4.4.12$

Let X be compact Kähler and E a holomorphic vector bundle admitting a holomorphic connection. Then A(E) = 0 and therefore $c_k(E) = 0$.

5 Chapter 5

- 5.1 Section 5.1
- 5.1.1 5.1.1 DO!!
- 5.2 Section 5.2
- 5.2.1 5.2.1 DO!!
- 5.3 Section 5.3
- 5.3.1 5.3.1 DO!!

6 Chapter 6

- 6.1 Section 6.1
- 6.1.1 6.1.1
 - (a) Let $X = \mathbb{P}^n$ then by the Euler sequence,

$$0 \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_X(1)^{\oplus (n+1)} \longrightarrow \mathcal{T}_X \longrightarrow 0$$

giving a long exact sequence,

$$H^1(X, \mathcal{O}_X) \longrightarrow H^1(X, \mathcal{O}_X(1))^{\oplus (n+1)} \longrightarrow H^1(X, \mathcal{T}_X) \longrightarrow H^2(X, \mathcal{O}_X)$$

However, $H^i(X, \mathcal{O}_X(k)) = 0$ for i > 0 when $k \geq 0$ and thus we find $H^1(X, \mathcal{T}_X) = 0$.

- (b) Let $X = \mathbb{C}^n/\Gamma$ be a complex torus. Then we know $\mathcal{T}_X = \mathcal{O}_X^{\oplus n}$ and we need to compute $H^1(X, \mathcal{T}_X) = H^1(X, \mathcal{O}_X)^{\oplus n}$. Then $h^{0,1} = H^1(X, \mathcal{O}_X)$ and $b_1 = h^{0,1} + h^{1,0} = 2h^{0,1}$ by Serre duality. However, $b_1 = 2n$ because $H^1(X, \mathbb{Z}) \cong \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{Z})$ and Γ has rank 2n. Therefore $h^{0,1} = n$ and thus $H^1(X, \mathcal{T}_X) = H^1(X, \mathcal{O}_X)^{\oplus n}$ meaning that $\dim_{\mathbb{C}} H^1(X, \mathcal{T}_X) = n^n$.
- (c) Let X be a compact curve of genus g. Then \mathcal{T}_X is a line bundle of degree 2-2g. Then, by Serre duality, $H^1(X, \mathcal{T}_X) = H^0(X, \Omega_X^{\otimes 2})$. However if g = 0 then Ω_X is negative so $H^1(X, \mathcal{T}_X) = 0$. If g = 1 then $\mathcal{T}_X \cong \Omega_X \cong \mathcal{O}_X$ in which case $\dim_{\mathbb{C}} H^1(X, \mathcal{T}_X) = 1$. Finally, if g > 1 then Ω_X is positive and $\Omega_X^{\otimes 2}$ has degree 4g 4 > 2g 2 so $H^1(X, \Omega_X^{\otimes 2}) = 0$ and thus, by Riemann-Roch,

$$\dim_{\mathbb{C}} H^1(X, \mathcal{T}_X) = \deg \Omega_X^{\otimes 2} + 1 - g = 3g - 3$$

6.1.2 6.1.2 DO!!

Let X be a compact complex manifold (not necessarily Kähler) and $\sigma \in H^0(X, \Omega_X^2)$ an everywhere non-degenerate holomorphic two-form meaning the map $\sigma : \mathcal{T}_X \to \Omega_X$ is an isomorphism. Since σ is nondegenerate fiberwise, we see that dim X = 2r is even. Furthermore,

$$\sigma^r = \sigma \wedge \dots \wedge \sigma \in H^0(X, \Omega_X^{2r})$$

is everywhere nonvanishing and thus $\sigma^r \in H^0(X, K_X)$ trivializes the canonical bundle K_X so X is a Calabi-Yau. Therefore, applying the results of this section with $\Omega = \sigma^r$, if $v \in H^1(X, \mathcal{T}_X)$ is a cohomology class, then there exists a $\bar{\partial}$ -closed lift $\phi_1 \in \mathcal{A}^{0,1}(\mathcal{T}_X)$ representing $H^1(X, \mathcal{T}_X)$ such that the Maurer-Cartan equation admits a formal solution $\sum_i \phi_i t^i$ extending ϕ_1 .

6.1.3 6.1.3

Let X be a compact complex manifold with $H^2(X, \mathcal{T}_X) = 0$. Take a cohomology class $v \in H^1(X, \mathcal{T}_X)$ and lift to some $\bar{\partial}$ -closed $\phi_1 \in \mathcal{A}^{0,1}(\mathcal{T}_X)$ such that $[\phi_1] = v$. Now for induction suppose we have classes $\phi_1, \ldots, \phi_n \in \mathcal{A}^{0,1}(\mathcal{T}_X)$ satisfying the Maurer-Cartan equations up to degree n,

$$\bar{\partial}\phi_1 = 0$$

$$\bar{\partial}\phi_2 = -\sum_{0 < i < 2} [\phi_i, \phi_{2-i}]$$

$$\vdots$$

$$\bar{\partial}\phi_n = -\sum_{0 < i < 2} [\phi_i, \phi_{n-i}]$$

Now consider,

$$\omega = -\sum_{0 < i < n+1} [\phi_i, \phi_{n+1-i}]$$

and we have,

$$\begin{split} \bar{\partial}\omega &= -\sum_{0 < i < n+1} \bar{\partial}[\phi_i, \phi_{n+1-i}] = -\sum_{0 < i < n+1} \left([\bar{\partial}\phi_i, \phi_{n+1-i}] + [\phi_i, \bar{\partial}\phi_{n+1-i}] \right) \\ &= \sum_{0 < i < n+1} \left(\sum_{0 < j < i} [[\phi_j, \phi_{i-j}], \phi_{n+1-i}] + \sum_{0 < j < n+1-i} [\phi_i, [\phi_j, \phi_{n+1-i-j}]] \right) \\ &= \sum_{0 < i < n+1} \sum_{0 < j < i} [[\phi_j, \phi_{i-j}], \phi_{n+1-j}] + \sum_{0 < i < n+1} \sum_{0 < j < i} [\phi_{n+1-i}, [\phi_j, \phi_i]] = 0 \end{split}$$

replacing i by n+1-i in the second sum. Vanishing follows from $[\alpha, \beta] = (-1)^{k\ell+1}[\beta, \alpha]$ for $\alpha \in \mathcal{A}^{0,k}(\mathcal{T}_X)$ and $\beta \in \mathcal{A}^{0,\ell}(\mathcal{T}_X)$ and in our case k=2. Therefore $\omega \in \mathcal{A}^{0,2}(\mathcal{T}_X)$ is $\bar{\partial}$ -closed but $H^2(X,\mathcal{T}_X) = 0$ so every $\bar{\partial}$ -closed \mathcal{T}_X -valued 2-form is $\bar{\partial}$ -exact meaning there exists $\phi_{n+1} \in \mathcal{A}^{0,1}(\mathcal{T}_X)$ such that $\omega = \bar{\partial}\phi_{n+1}$. Explicitly,

$$\bar{\partial}\phi_{n+1} = -\sum_{0 < i < n+1} [\phi_i, \phi_{n+1-i}]$$

solving the Maurer-Cartan equation recursively.

7 Extra Questions for Ron

7.0.1 1

Kodaira embedding says that every positive line bundle is ample in the sense of having some power very ample. Does the algebraic geometry definition work here? I.e. L is ample iff for each bundle Q we have $Q \otimes L^n$ generated by global sections for $n \gg 0$. Do we need Q to be arbitrary coherent sheaf.

Yes, in fact we only need this for vector bundles because it then follows by resolution for all coherent sheaves.

7.0.2 2

If we have a big line bundle $H^0(X, L^{\otimes m}) \sim m^n$ then does it follow there is an ample line bundle i.e. X is projective. I am guessing not. This is similar to asking if there are non algebraic examples of compact Moishezon manifolds $a(X) = \dim X$.