Gabriela Lima 8941071

Segue abaixo resultados dos experimentos. A chance de 2 vértices aleatórias estejam ao alcance um do outro é calculada a partir da média da porcentagem de 100 experimentos repetidos diferentes. O desvio padrão também foi calculado, assim pude construir o intervalo de confiança de 95%. Usarei 80% como padrão para chance "bastante alta".

Vértices	MAX_ARESTAS¹	Chance com 5% Arestas	Chance com 10% Arestas	Chance com 20% Arestas	Chance com 25% Arestas	Chance com 30% Arestas	Chance com 40% Arestas
10	45	(5.32 +- 0.25) %	•	(93.57 +- 2.16) %	•	(92.60 +- 2.24) %	(99.40 +- 0.67) %

Então, com 10 vértices, a chance já é bastante alta com 11 arestas.

Vértices	MAX_ARESTAS	Chance com 5% Arestas
100	49950	(100.00 +- 0.00) %

Repetindo o experimento com 100 vértices, podemos perceber que parece que a chance não deve ser proporcional ao tamanho de MAX_ARESTAS (em outras palavras, ao quadrado do número de vértices). No caso a cima, 5% são 2497 arestas. Seria, então, o número "mágico" de arestas proporcional ao número de vértices linearmente?

Vértices	9 arestas	10 arestas	11 arestas
10	(74.44 +- 2.98) %	(76.07 +- 3.30) %	(87.93 +- 2.84) %

No caso de 10 vértices, teríamos aproximadamente 10% (10 + 1 arestas) como o ponto de virada.

Vértices	90 arestas	100 arestas	110 arestas	120 arestas	125 arestas
100	(54.28 +- 1.31) %	(65.48 +- 1.31) %	(73.94 +- 1.20) %	(78.14 +- 1.11) %	(80.16 +- 0.98) %

Nesse caso, chegamos a 25%.

 $^{^{1}}$ MAX_ARESTAS = $\frac{1}{2}$ V*(V-1)

Vértices	45 arestas	50 arestas	55 arestas	60 arestas	61 arestas
50	(55.41 +- 1.70) %	(66.58 +- 1.58) %	(73.73 +- 1.64) %	(79.72 +- 1.55) %	(80.78 +- 1.35) %
22%					
Vértices	450 arestas	500 arestas	550 arestas	600 arestas	628 arestas
500	(53.57 +- 0.57) %	(64.39 +- 0.58) %	(71.87 +- 0.49) %	(77.95 +- 0.48) %	(80.29 +- 0.49) %

Vértices	1000 arestas	1200 arestas	1250 arestas
1000	(63.47 +- 0.38) %	(77.43 +- 0.37) %	(80.26 +- 0.33) %
25%			

26%

Vértices	2500 arestas	3000 arestas	3150 arestas
2500	(63.33 +- 0.27) %	(77.14 +- 0.25) %	(80.15 +- 0.23) %
26%			

Com isso, podemos concluir que, para atingirmos um grau "suficientemente alto" de alcance, precisamos de aproximadamente 1.25 * V arestas.