Let $G_{1,2}$ be the graph on two vertices with one edge.

$$L_{G_{1,2}} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

 $L_{G_{1,2}} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$ As we see $x^T L_{G_{1,2}} x = (x_1 - x_2)^2$, where $x = (x_1, x_2)$.

For any graph $G_{u,v}$ we define:

$$L_{G_{u,w}} \text{ (i,j)} = \begin{cases} 1 & \text{if } i = j \text{ and } i \in \{\text{u,w}\} \\ -1 & \text{if } i = u \text{ and } j = w, \text{ or } i = w \text{ and } j = u \\ 0 & \text{otherwise} \end{cases}$$

For a graph $G=(V,\,E)$ we define the Laplacian matrix as follows:

$$L_G = \sum_{\{u,w\} \in E} L_{G_{u,w}}.$$

2.

As with circulations, the set \mathcal{B} of all potential differences in D is closed under addition and scalar multiplication and, hence, is a vector space.

Analogous to the function f_c associated with a cycle C, there is a function g_B associated with a bond B. Let $B=[S, \overline{S}]$ be a bond of D. We define g_b by

$$g_{B} \text{ (a)} = \begin{cases} 1 & \text{if } a \in (S, \overline{S}) \\ -1 & \text{if } a \in (\overline{S}, S) \\ 0 & \text{if } a \notin B \end{cases}$$
 It can be verified that $g_{B} = \delta \mathbf{p}$ where
$$\mathbf{p}(\mathbf{v}) = \begin{cases} 1 & \text{if } v \in \mathbf{S} \\ 0 & \text{if } v \in \mathbf{B} \end{cases}$$

$$\mathbf{p}(\mathbf{v}) = \begin{cases} 1 & \text{if } v \in \mathbf{S} \\ 0 & \text{if } v \in \mathbf{B} \end{cases}$$