Concepts this Week

Relevant Lectures for Discussion Session:

Lectures 14-17 (Review)

Lecture 23 Simple Harmonic Motion

- 1. Restoring force leads to oscillations
- 2. Initial conditions determine the amplitude and phase of the motion
- 3. The angular velocity (and therefore period) of the motion is determined so<u>lely</u> by the properties of the system (e.g. spring constant and mass)

Lecture 24 Pendula

- 1. Simple harmonic motion always has the same functional form, all that changes is the expression for the angular frequency ω
- 2. We read off the angular frequency from the differential equation giving the acceleration in terms of the displacement
- 3. We only get simple harmonic motion for pendula if the angular displacements are small (less than ~30°)

Current PreLectures: PreLectures 23, 24

Key concepts this week:

- Simple Harmonic Motion (PreLecture 23)
 - A restoring force leads to the signature differential equation of simple harmonic motion ($\frac{d^2x}{dt^2} = -\omega^2x$ where ω is a constant)
 - ° The angular frequency is constant and does not depend on the initial conditions (e.g. $\omega = \sqrt{\frac{k}{m}}$)
 - The functional form of the displacement, velocity, and acceleration is sinusoidal
- Pendula (PreLecture 24
 - For small oscillations, pendula undergo simple harmonic motion
 - O The angular frequency is determined by the size and shape (but not the mass) of the pendulum

Equation of Motion

A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical wall as shown in the figure. At time t=0 s the mass is at x=2.6 cm and moving to the right at a speed of 47 cm/s (the equilibrium position of the mass is at x=0). It is at this position with this velocity next at t=0.2 s. Find an expression for the position as a function of time and in so doing find the frequency and the amplitude of oscillation.

Plate, Block, and Spring

A flat plate P of mass 5.0 kg is attached to a spring of spring constant k=60 N/m and executes horizontal simple harmonic motion by sliding across a frictionless surface. A block B of mass 2.0 kg rests on the plate and the coefficient of static friction between the block and the plate is μ = 0.60. What is the maximum amplitude of oscillation that the plate-block system can have in order that the block not slip on the plate?

Block, Clay, and Spring

A block of mass $M_1 = 5$ kg is attached to a spring of spring constant k = 20 N/m and rests on a frictionless horizontal surface. A wad of clay of mass M_2 =2 kg and traveling horizontally with speed V = 14 m/s hits and sticks to the block. Find the frequency and amplitude for the subsequent simple harmonic oscillations.

Bird Feeder Torsion Pendulum

A bird feeder consists of a solid circular disk of mass $M=0.34~\rm kg$ and radius R=0.25~m suspended by a wire attached at the center. Two birds, each of mass $m=65~\rm g$ land at opposite ends of a diameter, and the system goes into torsional oscillation with a frequency $f=2.6~\rm Hz$. What is the torsional constant of the wire?

Falling Meter Stick

A uniform meter stick of mass 1.5kg is attached to the wall by a frictionless hinge at one end. On the opposite end it is supported by a vertical massless string such that the stick makes an angle of 40° with the horizontal.

- 1. Find the tension in the string and the magnitude and direction of the force exerted on the stick by the hinge.
- 2. Suppose the string is cut. Find the angular acceleration of the stick immediately thereafter.

Kinematics

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{a}t$$

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 t + \mathbf{a}t^2/2$$

$$\mathbf{v}^2 = \mathbf{v}_0^2 + 2\mathbf{a}(\mathbf{x} - \mathbf{x}_0)$$

$$g = 9.81 \text{ m/s}^2 = 32.2 \text{ ft/s}^2$$

Uniform Circular Motion

$$a = v^2/r = \omega^2 r$$
$$v = \omega r$$

$$\omega = 2\pi/T = 2\pi f$$

Dynamics

$$\mathbf{F}_{\text{net}} = \mathbf{m}\mathbf{a} = \mathbf{d}\mathbf{p}/\mathbf{d}t$$

 $\mathbf{F}_{\text{A.B}} = -\mathbf{F}_{\text{B.A}}$

$$\begin{split} F &= mg \ (near \ earth's \ surface) \\ F_{12} &= -Gm_1m_2/r^2 \ (in \ general) \\ (where \ G &= 6.67x10^{-11} \ Nm^2/kg^2) \\ F_{spring} &= -kx \end{split}$$

Friction

$$f = \mu_k N$$
 (kinetic)
 $f \le \mu_S N$ (static)

Work & Kinetic energy

$$W = \int \mathbf{F} \cdot \mathbf{ds}$$

$$W = \mathbf{F} \cdot \mathbf{S} = \mathbf{F} \mathbf{S} \cos \theta$$
(constant force)

$$W_{grav} = -mg\Delta y$$

$$W_{spring} = -k(x_2^2 - x_1^2)/2$$

$$K = mv^2/2 = p^2/2m$$

$$W_{NET} = \Delta K$$

Potential Energy

$$\begin{split} &U_{grav} = mgy \quad (near\ earth\ surface) \\ &U_{grav} = \text{-}GMm/r \ (in\ general) \\ &U_{spring} = kx^2/2 \\ &\Delta E = \Delta K + \Delta U = W_{nc} \end{split}$$

Power

$$P = dW/dt$$

 $P = \mathbf{F} \cdot \mathbf{v}$ (for constant force)

System of Particles

$$\begin{aligned} \mathbf{R}_{\text{CM}} &= \Sigma m_i \mathbf{r}_i / \Sigma m_i \\ \mathbf{V}_{\text{CM}} &= \Sigma m_i \mathbf{v}_i / \Sigma m_i \\ \mathbf{A}_{\text{CM}} &= \Sigma m_i \mathbf{a}_i / \Sigma m_i \\ \mathbf{P} &= \Sigma m_i \mathbf{v}_i \\ \mathbf{\Sigma} \mathbf{F}_{\text{EXT}} &= \mathbf{M} \mathbf{A}_{\text{CM}} = \mathbf{d} \mathbf{P} / \mathrm{d} t \end{aligned}$$

Impulse

$$\mathbf{I} = \int \mathbf{F} \, dt$$
$$\Delta \mathbf{P} = \mathbf{F}_{av} \Delta \mathbf{t}$$

Collisions:

If $\Sigma \mathbf{F}_{EXT} = 0$ in some direction, then $\mathbf{P}_{before} = \mathbf{P}_{after}$ in this direction: $\Sigma m_i \mathbf{v}_i$ (before) = $\Sigma m_i \mathbf{v}_i$ (after)

In addition, if the collision is elastic:

- * $E_{before} = E_{after}$
- * Rate of approach = Rate of recession
- * The speed of an object in the Center-of-Mass reference frame is unchanged by an elastic collision.

Rotational kinematics

$$\begin{array}{l} s=R\theta,\,v=R\omega,\,a=R\alpha\\ \theta=\theta_0+\omega_0t+{}^1/_2\alpha t^2\\ \omega=\omega_0+\alpha t\\ \omega^2=\omega_0{}^2+2\alpha\Delta\theta \end{array} \hspace{0.5cm} \begin{array}{c} For\\ Constant\\ \alpha \end{array}$$

Rotational Dynamics

$$\begin{split} &I = \Sigma m_i r_i^2 \\ &I_{parallel} = I_{CM} + MD^2 \\ &I_{disk} = I_{cylinder} = {}^1/_2 MR^2 \\ &I_{hoop} = MR^2 \\ &I_{solid-sphere} = {}^2/_5 MR^2 \\ &I_{spherical\,shell} = {}^2/_3 MR^2 \\ &I_{rod-em} = {}^1/_{12} ML^2 \\ &I_{rod-end} = {}^1/_3 \ ML^2 \\ &\tau = I\alpha \ (rotation \ about \ a \ fixed \ axis) \\ &\tau = r \ x \ F \ , \ |\tau| = rFsin\varphi \end{split}$$

Work & Energy

$$\begin{split} &K_{rotation} = {}^{1}/{}_{2}I\omega^{2}\;,\\ &K_{translation} = {}^{1}/{}_{2}MV_{cm}^{2}\\ &K_{total} = K_{rotation} + K_{translation}\\ &W = \tau\theta \end{split}$$

Statics

 $\Sigma \mathbf{F} = 0$, $\Sigma \tau = 0$ (about any axis)

Angular Momentum:

$$\begin{split} \mathbf{L} &= \mathbf{r} \times \mathbf{p} \\ \mathbf{L}_z &= \mathrm{I}\omega_z \\ \mathbf{L}_{\mathrm{tot}} &= \mathbf{L}_{\mathrm{CM}} + \mathbf{L}^* \\ \boldsymbol{\tau}_{\mathrm{ext}} &= \mathrm{d}\mathbf{L}/\mathrm{d}t \\ \boldsymbol{\tau}_{\mathrm{cm}} &= \mathrm{d}\mathbf{L}^*/\mathrm{d}t \\ \Omega_{\mathrm{precession}} &= \tau \ / \ L \end{split}$$

Simple Harmonic Motion:

$$d^2x/dt^2 = -\omega^2x$$

(differential equation for SHM)

$$x(t) = A\cos(\omega t + \phi)$$

$$v(t) = -\omega A\sin(\omega t + \phi)$$

$$a(t) = -\omega^2 A\cos(\omega t + \phi)$$

$$\omega^2 = k/m$$
 (mass on spring)
 $\omega^2 = g/L$ (simple pendulum)
 $\omega^2 = mgR_{CM}/I$ (physical
pendulum)
 $\omega^2 = \kappa/I$ (torsion pendulum)

General harmonic transverse waves:

$$y(x,t) = A\cos(kx - \omega t)$$

$$k = 2\pi/\lambda, \quad \omega = 2\pi f = 2\pi/T$$

$$v = \lambda f = \omega/k$$

Waves on a string:

$$v^2 = \frac{F}{\mu} = \frac{\text{(tension)}}{\text{(mass per unit length)}}$$

$$\overline{P} = \frac{1}{2} \mu v \omega^2 A^2$$

$$\frac{d\overline{E}}{dx} = \frac{1}{2} \mu \omega^2 A^2$$

$$\frac{d^2 y}{dx^2} = \frac{1}{v^2} \frac{d^2 y}{dt^2} \text{ Wave}$$
Equation

Fluids:

$$\rho = \frac{\Delta m}{\Delta V} \qquad p = \frac{\Delta F}{\Delta A}$$

$$B = \frac{\Delta p}{(-\Delta V/V)}$$
 Bulk

modulus

$$p_2 = p_1 + \rho g(y_2 - y_1)$$

$$F_{\rm B} = \rho_{\rm liquid} \, g V_{\rm liquid}$$

$$F_2 = F_1 \frac{A_2}{A_1}$$