Simple Linear Regression

Prepared by: Sutikno

Department of Statistics Faculty of Mathematics and Natural Sciences Sepuluh Nopember Institute of Technology (ITS)

Surabaya

Learning Objectives

- How to use regression analysis to predict the value of a dependent variable based on an independent variable
- The meaning of the regression coefficients b₀ and b₁
- How to evaluate the assumptions of regression analysis and know what to do if the assumptions are violated
- To make inferences about the slope and correlation coefficient
- To estimate mean values and predict individual values

Correlation vs. Regression

- A scatter diagram can be used to show the relationship between two variables
- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
 - Correlation is only concerned with strength of the relationship
 - No causal effect is implied with correlation

Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to predict or explain

Independent variable: the variable used to explain the dependent variable

Simple Linear Regression Model

- Only one independent variable, X
- Relationship between X and Y is described by a linear function
- Changes in Y are assumed to be caused by changes in X

Types of Relationships

Linear relationships

Curvilinear relationships

Types of Relationships

(centinued)

Strong relationships

Types of Relationships

(continued)

Simple Linear Regression Model

Simple Linear Regression Model

(centinued)

Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the population regression line

The individual random error terms e, have a mean of zero

Least Squares Method

• b_0 and b_1 are obtained by finding the values of b_0 and b_1 that minimize the sum of the squared differences between Y and \hat{Y} :

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$

Finding the Least Squares Equation

The coefficients b₀ and b₁, and other regression results in this section, will be found using Excel or SPSS

Formulas are shown in the text for those who are interested

Interpretation of the Slope and the Intercept

b₀ is the estimated average value of Y
 when the value of X is zero

 b₁ is the estimated change in the average value of Y as a result of a one-unit change in X

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (Y) = house price in \$1000s
 - Independent variable (X) = square feet

Sample Data for House Price Model

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Graphical Presentation

House price model: scatter plot

Regression Using Excel

Tools / Data Analysis / Regression

Excel Output

Regression Statistics

Multiple R	0.76211
R Square	0.58082
Adjusted R Square	0.52842
Standard Error	41.33032

10

Observations

The regression equation is:

ANOVA					
	df /	SS	MS	F	Significance F
Regression	1/	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

/		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
_	Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
	Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Graphical Presentation

 House price model: scatter plot and regression line

Interpretation of the Intercept, b₀

- b₀ is the estimated average value of Y when the value of X is zero (if X = 0 is in the range of observed X values)
 - Here, no houses had 0 square feet, so $b_0 = 98.24833$ just indicates that, for houses within the range of sizes observed, \$98,248.33 is the portion of the house price not explained by square feet

Interpretation of the Slope Coefficient, b₁

- b₁ measures the estimated change in the average value of Y as a result of a oneunit change in X
 - Here, $b_1 = .10977$ tells us that the average value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Predictions using Regression Analysis

Predict the price for a house with 2000 square feet:

$$= 98.25 + 0.1098(2000)$$

$$= 317.85$$

The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850

Interpolation vs. Extrapolation

 When using a regression model for prediction, only predict within the relevant range of data

Measures of Variation

Total variation is made up of two parts:

$$SST = SSR + SSE$$

Total Sum of Squares

Regression Sum of Squares

Error Sum of Squares

$$SST = \sum (Y_i - \overline{Y})^2 \quad SSR = \sum (\hat{Y}_i - \overline{Y})^2 \quad SSE = \sum (Y_i - \hat{Y}_i)^2$$

where:

Y = Average value of the dependent variable

 Y_i = Observed values of the dependent variable

 \hat{Y}_i = Predicted value of Y for the given X_i value

Measures of Variation

(continued)

- SST = total sum of squares
 - Measures the variation of the Y_i values around their mean Y
- SSR = regression sum of squares
 - Explained variation attributable to the relationship between X and Y
- SSE = error sum of squares
 - Variation attributable to factors other than the relationship between X and Y

Measures of Variation

Coefficient of Determination, r²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called r-squared and is denoted as r²

$$r^2 = \frac{SSR}{SST} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

note:
$$0 \le r^2 \le 1$$

Examples of Approximate r² Values

 $r^2 = 1$

Perfect linear relationship between X and Y:

100% of the variation in Y is explained by variation in X

Examples of Approximate r² Values

Weaker linear relationships between X and Y:

Some but not all of the variation in Y is explained by variation in X

Examples of Approximate r² Values

$$r^2 = 0$$

No linear relationship between X and Y:

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

Excel Output

Regression Statistics

Multiple R 0.76211

R Square 0.58082

Adjusted R Square 0.52842

Standard Error 41.33032

Observations 10

 $\frac{2}{SST} = \frac{SSR}{32600.5000} = 0.58082$

58.08% of the variation in house prices is explained by variation in square feet

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Standard Error of Estimate

 The standard deviation of the variation of observations around the regression line is estimated by

$$S_{YX} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}}$$

Where

SSE = error sum of squares n = sample size

Excel Output

Multiple R 0.76211

R Square 0.58082

Adjusted R Square 0.52842

Standard Error 41.33032

Observations 10

$$S_{YX} = 41.33032$$

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Comparing Standard Errors

S_{YX} is a measure of the variation of observed Y values from the regression line

The magnitude of S_{YX} should always be judged relative to the size of the Y values in the sample data

i.e., S_{YX} = \$41.33K is moderately small relative to house prices in the \$200 - \$300K range

Assumptions of Regression

Use the acronym LINE:

- Linearity
 - The underlying relationship between X and Y is linear
- Independence of Errors
 - Error values are statistically independent
- Normality of Error
 - Error values (ε) are normally distributed for any given value of X
- Equal Variance (Homoscedasticity)
 - The probability distribution of the errors has constant variance

Residual Analysis

$$e_i = Y_i - \hat{Y}_i$$

- The residual for observation i, e_i, is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
 - Examine for linearity assumption
 - Evaluate independence assumption
 - Evaluate normal distribution assumption
 - Examine for constant variance for all levels of X (homoscedasticity)
- Graphical Analysis of Residuals
 - Can plot residuals vs. X

Residual Analysis for Linearity

Residual Analysis for Independence

Residual Analysis for Normality

A normal probability plot of the residuals can be used to check for normality:

Residual Analysis for Equal Variance

Excel Residual Output

RESI	DUAL OUTPUT	
	Predicted House Price	Residuals
1	251.92316	-6.923162
2	273.87671	38.12329
3	284.85348	-5.853484
4	304.06284	3.937162
5	218.99284	-19.99284
6	268.38832	-49.38832
7	356.20251	48.79749
8	367.17929	-43.17929
9	254.6674	64.33264
10	284.85348	-29.85348

House Price Model Residual Plot

Does not appear to violate any regression assumptions

Measuring Autocorrelation: The Durbin-Watson Statistic

- Used when data are collected over time to detect if autocorrelation is present
- Autocorrelation exists if residuals in one time period are related to residuals in another period

Autocorrelation

 Autocorrelation is correlation of the errors (residuals) over time

Time (t) Residual Plot

 Here, residuals show a cyclic pattern, not random. Cyclical patterns are a sign of positive autocorrelation

 Violates the regression assumption that residuals are random and independent

The Durbin-Watson Statistic

 The Durbin-Watson statistic is used to test for autocorrelation

H₀: residuals are not correlated

H₁: positive autocorrelation is present

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

- The possible range is 0 ≤ D ≤ 4
- D should be close to 2 if H₀ is true
- D less than 2 may signal positive autocorrelation, D greater than 2 may signal negative autocorrelation

H₀: positive autocorrelation does not exist

H₁: positive autocorrelation is present

- Calculate the Durbin-Watson test statistic = D
 (The Durbin-Watson Statistic can be found using Excel or Minitab or SPSS)
- Find the values d_L and d_U from the Durbin-Watson table (for sample size n and number of independent variables k)

(continued)

Suppose we have the following time series data:

'oontinued)

Example with n = 25:

Excel/PHStat output:

Durbin-Watson Calculations				
Sum of Squared Difference of Residuals	3296.18			
Sum of Squared Residuals	3279.98			
Durbin-Watson Statistic	1.00494			

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=2}^{n} e_i^2} = \frac{3296.18}{3279.98} = 1.00494$$

(continued)

- Here, n = 25 and there is k = 1 one independent variable
- Using the Durbin-Watson table, $d_L = 1.29$ and $d_U = 1.45$
- D = 1.00494 < d_L = 1.29, so reject H₀ and conclude that significant positive autocorrelation exists
- Therefore the linear model is not the appropriate model to forecast sales

Inferences About the Slope

 The standard error of the regression slope coefficient (b₁) is estimated by

$$S_{b_1} = \frac{S_{YX}}{\sqrt{SSX}} = \frac{S_{YX}}{\sqrt{\sum (X_i - \overline{X})^2}}$$

where:

 S_{b_1} = Estimate of the standard error of the least squares slope

$$S_{YX} = \sqrt{\frac{SSE}{n-2}}$$
 = Standard error of the estimate

Excel Output

Rec	ressio	on Sta	tistics
,,,,,		,,, Ota	40400

Multiple R	0.76211
R Square	0.58082
Adjusted R Square	0.52842
Standard Error	41.33032
Observations	10

$$S_{b_1} = 0.03297$$

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Comparing Standard Errors of the Slope

 S_{b_1} is a measure of the variation in the slope of regression lines from different possible samples

Inference about the Slope: t Test

- t test for a population slope
 - Is there a linear relationship between X and Y?
- Null and alternative hypotheses

$$H_0$$
: $β_1 = 0$ (no linear relationship)
 H_1 : $β_1 \neq 0$ (linear relationship does exist)

Test statistic

$$t = \frac{b_1 - \beta_1}{S_{b_1}}$$

$$d.f. = n - 2$$

where:

$$\beta_1$$
 = hypothesized slope

Inference about the Slope: t Test

(continued)

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Simple Linear Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

The slope of this model is 0.1098

Does square footage of the house affect its sales price?

Inferences about the Slope: t Test Example

$$H_0: \beta_1 = 0$$

 H_1 : $\beta_1 \neq 0$

From Excel output:

	Coefficients	Star dard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

$$t = \frac{b_1 - \beta_1}{S_{b_1}} = \frac{0.1097770}{0.03297} = 3.32938$$

Inferences about the Slope: t Test Example

Test Statistic: t = 3.329

 $H_0: \beta_1 = 0$

 H_1 : $\beta_1 \neq 0$

From Excel output:

	Coefficients	Standard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

Decision:

Reject H₀

Conclusion:

There is sufficient evidence that square footage affects house price

Inferences about the Slope: t Test Example

(continued)

P-value

P-value = 0.01039

$$H_0$$
: $\beta_1 = 0$

 H_1 : $\beta_1 \neq 0$

From Excel output:

	Coefficients	Standard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

This is a two-tail test, so the p-value is

$$P(t > 3.329) + P(t < -3.329)$$

= 0.01039

Decision: P-value < α so Reject H₀

Conclusion:

There is sufficient evidence that square footage affects house price

F Test for Significance

• F Test statistic:
$$F = \frac{MSR}{MSE}$$

where
$$MSR = \frac{SSR}{k}$$

$$MSE = \frac{SSE}{n-k-1}$$

where F follows an F distribution with k numerator and (n - k - 1) denominator degrees of freedom

(k = the number of independent variables in the regression model)

Excel Output

Regression St	atistics					
Multiple R	0.76211	_ MSR	1893	4.934	8	
R Square	0.58082	├ =	- =		- = 11.0	0848
Adjusted R Square	0.52842	MSE	1708	3.1957	7	
Standard Error	41.33032					
Observations	10	With 1 and	8 degrees			P-value for
	,	of freedom				the F Test
ANOVA					,	
	df /	SS	MS	F/	Significance	<u> </u>
Regression	1	18934.9348	18934.9348	11.0848	0.010	39
Residual	8	13665.5652	1708.1957			
Total	9	32600.5000				

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

F Test for Significance

(continued)

Test Statistic:

$$F = \frac{MSR}{MSE} = 11.08$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is sufficient evidence that house size affects selling price

Confidence Interval Estimate for the Slope

Confidence Interval Estimate of the Slope:

$$b_1 \pm t_{n-2} S_{b_1}$$
 d.f. = n-2

Excel Printout for House Prices:

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

At 95% level of confidence, the confidence interval for the slope is (0.0337, 0.1858)

Confidence Interval Estimate for the Slope

(continued)

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Since the units of the house price variable is \$1000s, we are 95% confident that the average impact on sales price is between \$33.70 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

t Test for a Correlation Coefficient

Hypotheses

$$H_0$$
: $\rho = 0$ (no correlation between X and Y)
 H_A : $\rho \neq 0$ (correlation exists)

Test statistic

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

(with n – 2 degrees of freedom) where

$$r = +\sqrt{r^2}$$
 if $b_1 > 0$

$$r = -\sqrt{r^2}$$
 if $b_1 < 0$

Example: House Prices

Is there evidence of a linear relationship between square feet and house price at the .05 level of significance?

$$H_0$$
: $\rho = 0$ (No correlation)

$$H_0$$
: $\rho = 0$ (No correlation)
 H_1 : $\rho \neq 0$ (correlation exists)

$$\alpha = .05$$
, df = 10 - 2 = 8

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.762 - 0}{\sqrt{\frac{1 - .762^2}{10 - 2}}} = 3.329$$

Example: Test Solution

Decision:

Reject H₀

Conclusion:

There is
evidence of a
linear association
at the 5% level of
significance

Estimating Mean Values and Predicting Individual Values

Goal: Form intervals around Y to express uncertainty about the value of Y for a given X_i

Confidence Interval for the Average Y, Given X

Confidence interval estimate for the mean value of Y given a particular X_i

Confidence interval for $\mu_{Y|X=X_i}$:

$$\hat{Y} \pm t_{n-2} S_{YX} \sqrt{h_i}$$

Size of interval varies according to distance away from mean, \overline{X}

$$h_{i} = \frac{1}{n} + \frac{(X_{i} - \overline{X})^{2}}{SSX} = \frac{1}{n} + \frac{(X_{i} - \overline{X})^{2}}{\sum (X_{i} - \overline{X})^{2}}$$

Prediction Interval for an Individual Y, Given X

Confidence interval estimate for an Individual value of Y given a particular X_i

Confidence interval for $Y_{X=X_i}$:

$$\hat{Y} \pm t_{n-2} S_{YX} \sqrt{1 + h_i}$$

This extra term adds to the interval width to reflect the added uncertainty for an individual case

Estimation of Mean Values: Example

Confidence Interval Estimate for $\mu_{Y|X=X}$

Find the 95% confidence interval for the mean price of 2,000 square-foot houses

Predicted Price $Y_i = 317.85 (\$1,000s)$

$$\hat{Y} \pm t_{n-2} S_{YX} \sqrt{\frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}} = 317.85 \pm 37.12$$

The confidence interval endpoints are 280.66 and 354.90, or from \$280,660 to \$354,900

Estimation of Individual Values: Example

Prediction Interval Estimate for Y_{X=X},

Find the 95% prediction interval for an individual house with 2,000 square feet

Predicted Price $Y_i = 317.85 (\$1,000s)$

$$\hat{Y} \pm t_{n-1} S_{YX} \sqrt{1 + \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}} = 317.85 \pm 102.28$$

The prediction interval endpoints are 215.50 and 420.07, or from \$215,500 to \$420,070

Finding Confidence and Prediction Intervals in Excel

In Excel, use

PHStat | regression | simple linear regression ...

Check the

"confidence and prediction interval for X="

box and enter the X-value and confidence level desired

Finding Confidence and Prediction Intervals in Excel

(continued)

Pitfalls of Regression Analysis

- Lacking an awareness of the assumptions underlying least-squares regression
- Not knowing how to evaluate the assumptions
- Not knowing the alternatives to least-squares regression if a particular assumption is violated
- Using a regression model without knowledge of the subject matter
- Extrapolating outside the relevant range

Strategies for Avoiding the Pitfalls of Regression

- Start with a scatter diagram of X vs. Y to observe possible relationship
- Perform residual analysis to check the assumptions
 - Plot the residuals vs. X to check for violations of assumptions such as homoscedasticity
 - Use a histogram, stem-and-leaf display, box-andwhisker plot, or normal probability plot of the residuals to uncover possible non-normality

Strategies for Avoiding the Pitfalls of Regression

(continued)

- If there is violation of any assumption, use alternative methods or models
- If there is no evidence of assumption violation, then test for the significance of the regression coefficients and construct confidence intervals and prediction intervals
- Avoid making predictions or forecasts outside the relevant range