10/A/C/5-19

EE24BTECH11040 - Mandara Hosur

C. MCQs with One Correct Answer

1) If $f(x) = \cos(\ln x)$, then

$$f(x) f(y) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]$$

has the value

(1983 - 1Mark)

a) -1

c) -2

b) $\frac{1}{2}$

- d) none of these
- 2) The domain of definition of the function $y = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$ is (1983 - 1Mark)
 - a) (-3, -2) excluding -2.5

c) [-2, 1) excluding 0

b) [0, 1] excluding 0.5

- d) none of these
- 3) Which of the following functions is periodic?

(1983 - 1Mark)

- a) f(x) = x [x] where [x] denotes the largest integer less than or equal to the real number x
- b) $f(x) = \sin \frac{1}{x}$ for $x \neq 0$, f(0) = 0
- c) $f(x) = x \cos x$
- d) none of these
- 4) Let $f(x) = \sin x$ and $g(x) = \ln |x|$. If the ranges of the composition functions $f \circ g$ and gof are R_1 and R_2 respectively, then

(1994 - 2Marks)

(1995)

a)
$$R_1 = \{u : -1 \le u < 1\}, R_2 = \{v : -\infty < v < 0\}$$

b)
$$R_1 = \{u : -\infty < u < 0\}, R_2 = \{v : -1 \le v \le 0\}$$

c)
$$R_1 = \{u : -1 < u < 1\}, R_2 = \{v : -\infty < v < 0\}$$

d)
$$R_1 = \{u : -1 \le u \le 1\}, R_2 = \{v : -\infty < v \le 0\}$$

5) Let $f(x) = (x+1)^2 - 1$, $x \ge -1$. Then the set $\{x : f(x) = f^{-1}(x)\}$ is

a) $\left\{0, -1, \frac{-3+i\sqrt{3}}{2}, \frac{-3-i\sqrt{3}}{2}\right\}$

- b) $\{0, 1, -1\}$
- c) $\{0, -1\}$
- d) empty

6) The function f(x) = |px - q| + r|x|, $x \in (-\infty, \infty)$ where p > 0, q > 0, r > 0 assumes its minimum value only on one point if

(1995)

a)
$$p \neq q$$

c)
$$r \neq p$$

b)
$$r \neq q$$

d)
$$p = q = r$$

7) Let fx be defined for all x > 0 and be continuous. Let fx satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, y and f(e) = 1. Then

(1995S)

a)
$$f(x)$$
 is bounded

c)
$$x f(x) \rightarrow 1$$
 as $x \rightarrow 0$

a)
$$f(x)$$
 is bounded
b) $f(\frac{1}{x}) \to 0$ as $x \to 0$

d)
$$f(x) = \ln x$$

8) If the function $f:[1,\infty)\to[1,\infty)$ is defined by $f(x)=2^{x(x-1)}$, then $f^{-1}(x)$ is (1999 - 2Marks)

a)
$$\left(\frac{1}{2}\right)^{x(x-1)}$$

b) $\frac{1}{2}\left(1 + \sqrt{1 + 4\log_2 x}\right)$

c)
$$\frac{1}{2} \left(1 - \sqrt{1 + 4 \log_2 x} \right)$$

d) not defined

9) Let $f: R \to R$ be any function. Define $g: R \to R$ by g(x) = |f(x)| for all x. Then g is

(2000S)

- a) onto if f is onto
- b) one-one if f is one-one
- c) continuous if f is continuous
- d) differentiable if f is differentiable

10) The domain of definition of the function f(x) given by the equation $2^x + 2^y = 2$ is (2000S)

a)
$$0 < x \le 1$$

c)
$$-\infty < x \le 0$$

b)
$$0 \le x \le 1$$

c)
$$-\infty < x \le 0$$

d) $-\infty < x < 1$

11) Let g(x) = 1 + x - [x] and

$$f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0. \\ 1, & x > 0 \end{cases}$$

Then for all x, f(g(x)) is equal to

(2001S)

a) xb) 1	c) f(x) d) g(x)	
12) If $f:[1,\infty)\to[2,\infty)$ is given by	by $f(x) = x + \frac{1}{x}$ then $f^{-1}(x)$ equals	(2001S)
a) $\frac{(x+\sqrt{x^2-4})}{\frac{x^2}{(1+x^2)}}$	c) $\frac{(x-\sqrt{x^2-4})}{2}$ d) $1+\sqrt{x^2-4}$	
13) The domain of definition of $f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$ is		(2001S)
a) $R \setminus \{-1, -2\}$ b) $(-2, \infty)$	c) $R \setminus \{-1, -2, -3\}$ d) $(-3, \infty) \setminus \{-1, -2\}$	

14) Let $E = \{1, 2, 3, 4\}$ and $F = \{1, 2\}$. Then the number of onto functions from E to F is (2001S)

- a) 14
- b) 16

c) 12

d) 8

15) Let $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$. Then, for what value of α is f((x)) = x? (2001S)

- a) $\sqrt{2}$
- b) $-\sqrt{2}$
- c) 1

d) -1