HW4

Problem 1

Structure 1:

n=5, arch2 imes 250

MPE: 2.757757

Structure 2:

n=500, arch1 imes 32

MPE: 20.073711

Structure 3:

MPE: 33.878838

The first structure performs the best. It uses relatively smaller train steps and larger size and number of layers. It makes it less likely to be overfitting. Larger size somehow guarantees the size of features so that it can describe the true features better.

Problem 2

Problem 3

Obstacles:

Reacher

Cheetah

Problem 4

Different horizons:

Lower horizon better

Different numseqs:

Higher numseq better

Different ensembles:

ensemble=3 better at last

Problem 5

Performance: cem4 > cem2 > random

Problem 6

The one with rollout=10 performs the best.

Hence, larger rollout will lead to better performance.