7t Som B. Tech (CSE) Assignment-I-M.L

	2	Diag										
	a	Discuss the	e two approache	s to p	reven	t over fitting the data.	7					
	b	Consider the following set of training examples.										
	.	Instance	Classification	A 1	A2							
		1	1	1	1							
	ŀ	2	1	1	1							
		3	0	1	0							
	,	4	1	0	0		10					
	L	5	0	0	1							
		6	0	0	1							
					1							
		ii) What is the	he information	ficatio gain o	on? of A2	n of training examples with respect relative to these training examples?						
2	a	cision tree to represent the	6									
	b	Write the ID	3 algorithm				_					
	С	0.77	5									
		What do you mean by gain and entropy? How it is used to build the decision tree.										
3	a	Define perceptron. Explain the concepts of single perceptron with nea diagram.										
	b	Derive derivation of Backpropagation weight training rule.										
	- Buckpropagation weight training rule.											

7th from B. Teel - Assignment I. M. L

	a	Write Gra	dient descer	nt algorithm to	train a line	ar unit along with the	7				
1	1 : 1: af aradiant descent rule										
	b	Write derivation of Backpropagation rule considering unit j as output unit									
		1it i og hidden unit									
	a	Derive derivation to show maximum likely nood hypothesis has least									
		squared error hypotheses.									
			1 .	ic Using Naïve Baves							
	b	Classify the test data and {Red, SUV, Domestic} using Naïve Bayes classifier for the dataset show in Table Q8(b).									
		Classifier for the dataset show in Tuote Quantum									
		Color	Type	Origin	Stolen						
2		Red	Sports	Domestic	Yes						
		Red	Sports	Domestic	No						
		Red	Sports	Domestic	Yes		10				
		Yellow	Sports	Domestic	No						
		Yellow	Sports	Imported	Yes						
		Yellow	SUV	Imported	No						
		Yellow	SUV	Imported	Yes						
		Yellow	SUV	Domestic	No						
		Red	SUV	Imported	No						
		Red	Sports	Imported	Yes						
	a	Define i) Sample error ii) True error iii) Confidence intervals for discrete valued hypothesis.									
		iii) Confid	ence interv	als for discrete	e valued ny	pomesis.					
	b	Last year,	five randon	nly selected st	udents too	k a math aptitude test before					
			their statis	stics course. I	ne Statitisc	es Department has three					
		questions.									
		i) What linear regression equation best predicts statistics performance, based									
-		their aptitude scores?									
		ii)If a student made on 80 on the aptitude test, what grade would we expect									
		her to make in statistics?									
		iii)How well does the regression equation fit the data?									
		Student	xi	yj							
		1	95	85							
		2	85	95							
		3	80	70							
				65							
-		4	70	05							
		5	60	70							