

Année scolaire: 2024-2025

Classe: PD

Durée: 03h/ Coefficient: 4

Epreuve: Mathématiques

PROBATOIRE BLANC N°1 DE MATHEMATIQUES

NB: L'épreuve comporte deux parties obligatoires reparties sur 2 pages et est notée sur 20 points. La qualité de la rédaction et le soin apporté aux figures seront pris en compte dans l'évaluation de votre copie.

PARTIE A: EVALUATION DES RESSOURCES

15,00 points

EXERCICE 1:

04pts

PROBATOIRE 2021

Dans un jardin, une observation des poids d'un certain nombre de lapins a donné le résultat suivant :

Poids (en kilogrammes)	[0; 1[[1; 2[[2; 3[[3; 4[[4; 5[
Effectifs	10	10	20	5	5

Déterminer le poids moyen de ces lapins

0.75pt

2. Déterminer la variance 0.5pt

3. Construire la courbe cumulative décroissante encore appelé polygone des effectifs cumulés décroissants

Déterminer la médiane de cette série statistique par interpolation linéaire

1,5pt 0,75pt

5. On choisit au hasard et de façon simultanée cinq lapins parmi ceux dont le poids est inférieur à 2kg pour les soumettre à un régime alimentaire particulier. De combien de façons différentes peut-on opérer ce choix?

0.5pt

EXERCICE 2:

PROBATOIRE 2022

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{3x}{3+4x}$ et (C_f) sa courbe représentative dans un repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$ d'unité sur les axes 2 cm.

1. a) Calculer la limite de f en $+\infty$

0,25pt

b) Calculer f'(x) ou f' est la fonction dérivée de f

0,5pt

2. a) Dresser le tableau de variations de f sur $[0; +\infty[$

0,75pt

b) Construire (C_f)

0,75pt

Soit (U_n) et (V_n) les suites numériques définies respectivement par : $U_0 = 1$ et

$$\forall n \in \mathbb{N}, U_{n+1} = \frac{3U_n}{3+4U_n} \text{ et } V_n = 1 + \frac{3}{U_n}$$

a) Montrer que $\forall n \in \mathbb{N}, \ V_n + 4 = \frac{5U_n + 3}{U_n}$

0,25pt

b) Montrer que (V_n) est une suite arithmétique de raison 4 et de premier terme $V_0 = 4$ **0,5pt**

	-		•
c) Exprimer V_n en fonction de n			0,5pt
d) En déduire U_n ϵ	en fonction de n		0,5pt
4. On pose $S_n = V_1 +$	$-V_2 + V_3 + \dots + V_n$. Dét	erminer S_n	0,5pt
EXERCICE 3:	04pts	PROBATOIRE 2024	
1. Démontrer que	$ \vec{e} \forall x \in \mathbb{R}, on \ a : -2 + $	cosx < 0	0,25pt
2. Démontrer que	$\forall x \in \mathbb{R}, on a : -3cc$	$osx - 2sin^2x = (1 + 2cosx)(-2 + cosx)$	0,5pt
3. Résoudre dans	s [$oldsymbol{0}$; $oldsymbol{2\pi}$ [, l'équation $-$	$3\cos x - 2\sin^2 x = 0$	1,25pt
4. Placer les solu	itions de l'équation pré	écédente dans le cercle trigonométrique	1pt
5. Résoudre dans	s [$oldsymbol{0}$; $oldsymbol{2\pi}$ [, l'inéquation	$-3\cos x - 2\sin^2 x > 0$	1pt
EXERCICE 4:	03pts	PROBATOIRE BLANC 2024 ADAMAOUA	
Soit ABC est un triang	gle équilatéral de coté	3cm, D et E des points plan tels que \overrightarrow{BD} =	$=\frac{1}{2}\overrightarrow{BC}$ et
$4\overrightarrow{AE} + 2\overrightarrow{EB} + 2\overrightarrow{B}$	$\overrightarrow{EC} = \overrightarrow{0}$		-
1. Montrer que E	$= bar\{(A; -1); (D; 4)\}$)}, puis construire les points D et E	1pt
2. Montrer que p	our tout M du plan, or	$a \div \overrightarrow{MA} + 2\overrightarrow{MB} + 2\overrightarrow{MC} = 3\overrightarrow{ME}$ et que	
$-\overrightarrow{MA} + \overrightarrow{MD} = \overrightarrow{A}$		DA = DM+	1pt
3. Déterminer et	, ,	(Φ) des points <i>M</i> tel que :	
$ \overrightarrow{MA} + 2\overrightarrow{MB} +$	$2\overrightarrow{MC}\ = 2\ -\overrightarrow{MA} + \overrightarrow{N}$	\overrightarrow{AD}	1pt
. П 	11 11	ii e	-
PARTIE B : EVALUA		TENCES 05,00pts	

L'entreprise SOSUCAM a produit en 2010, 2800 tonnes de sucres. Chaque année elle augmente sa production de 5% par rapport à l'année précédente. Cette production est conservée dans des sacs de 50kg et revendu l'unité à 36.000 FCFA. Chaque année, toute la quantité de sucre produite est revendue.

M. SADIA, également employer cette entreprise veut s'acheter une moto pour faciliter son déplacement dans les plantations de SOSUCAM. La moto coûte 400.000 FCFA et il n'a que 240.000 FCFA. Il décide de placer le premier janvier 2022 cette somme dans une micro finance et l'intérêt annuel produit par cette micro finance est de 16 000FCFA (chaque année, un taux forfaitaire fixe est ajouté), et de ne retirer que quand ça sera suffisant pour acheter sa moto.

M. SADIA possède une parcelle de terrain et souhaite élever des bêtes. Son ami ALBERT lui propose à crédit, trois fois de suite et aux mêmes prix des bêtes dont 60 poussins, 25 pourceaux et 10 chevreaux à 195 000 FCFA au premier tour; 50 poussins, 20 pourceaux et 30 chevreaux à 245 000 FCFA au deuxième tour et enfin 60 poussins, 20 pourceaux et 20 chevreaux à 210 000 FCFA au troisième tour,

		Pr	ésentation :		0,5pt
3.	En quelle année M SADIA pourra-t-il s'ouvrir cette moto?	•	<i>.</i>		1,5pt
25	Quelle sera le montant total obtenu après les ventes de sucre en 2028 ?				1,5pt
	Quel est le prix unitaire de chaque espèce de bête que lui a fourni son partenaire ?				