Appunti di analisi matematica I

Ivan Santagati Docente: Daniele Del Santo

Dipartimento di Matematica, Informatica e Geoscienze September 2024

Indice

L	\mathbf{Pre}	requisit	ti																				
	1.1	Alfabet	to g	eco																			
	1.2	Logica																					
		1.2.1																					
		1.2.2																					
		1.2.3	Qua	ntif	icato	ori .																	
	1.3	Insiemi	i																				
		1.3.1																					
		1.3.2	Insi	$_{ m emi}$	Fini	ti e	In	ıfin	iti														
		1.3.3	Sot	toins	iem	i.,																	
		1.3.4	One	erazi	oni '	tra.	Ins	sier	ni												 		

1 Prerequisiti

1.1 Alfabeto greco

Alfa	α A	Iota	ιΙ	Rho	ρ P
Beta	β B	Kappa	$\kappa \ \mathrm{K}$	Sigma	$\sigma \Sigma$
Gamma	γ Γ	Lambda	λ Λ	Tau	τ T
Delta	$\delta \Delta$	Mu (Mi)	$\mu \; \mathrm{M}$	Upsilon	v Y
Epsilon	$\epsilon \to$	Nu (Ni)	ν N	Phi	$\phi \Phi$
Zeta	ζ Z	Xi	ξ Ξ	Chi	χX
Eta	$\eta { m H}$	Omicron	o O	Psi	$\psi \Psi$
Theta	$\theta \Theta$	Pi	π Π	Omega	$\omega \Omega$

Table 1: Tabella dell'alfabeto greco

1.2 Logica

1.2.1 Proposizioni

Una proposizione è un'affermazione alla quale si può assegnare un valore di verità o falsità, ma non entrambi contemporaneamente. In altre parole, una proposizione è un enunciato con un valore di verità ben definito. Le proposizioni costituiscono la base della logica matematica e sono utilizzate per formulare teoremi, lemmi e corollari.

In logica formale, una proposizione può essere rappresentata mediante una variabile proposizionale, come p, q, o r. Ogni variabile proposizionale rappresenta un enunciato che può essere classificato come vero o falso. Queste variabili possono essere combinate utilizzando diversi operatori logici per formare proposizioni più complesse e costruire argomentazioni logiche:

1. Negazione:

```
\neg, si legge <u>non</u> \neg p, si legge non p
```

Esempio: p: Trieste è una città francese. $(\neg p)$

Il comportamento di un connettivo logico è stabilito dalla tabella di verità.

p	$\neg p$
V	F
F	V

Table 2: Tabella di verità per p e $\neg p$.

2. congiunzione:

```
\wedge si legge \underline{e} p \wedge q, si legge p \in q
```

p	q	$p \wedge q$
V	V	V
V	F	\mathbf{F}
F	V	\mathbf{F}
F	F	\mathbf{F}

Table 3: Tabella di verità per $p \wedge q$.

3. disgiunzione:

 \vee , si legge \underline{o} $p \vee q$, si legge \underline{p} o q

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	\mathbf{F}

Table 4: Tabella di verità per $p\vee q.$

La disgiunzione non è esclusiva; è possibile trovare un rapporto tra questi connettivi. In particolare, possiamo trovare due modi equivalenti per esprimere:

$$\neg(p \land q) \\ \neg(p \lor q)$$

Le leggi di De Morgan stabiliscono le seguenti equivalenze:

$$\neg (p \land q) \equiv (\neg p \lor \neg q)$$

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

Table 5: Tabella di verità per $\neg(p \land q) \equiv (\neg p \lor \neg q)$.

$$\neg(p \lor q) \equiv (\neg p \land \neg q)$$

p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
V	V	V	F	F	F	F
V	F	V	F	F	V	F
F	V	V	F	V	F	F
F	F	F	V	V	V	V

Table 6: Tabella di verità per $\neg(p \lor q) \equiv (\neg p \land \neg q)$.

4. implicazione:

L'implicazione $p \implies q$ è vera in tutti i casi tranne quando p è vero e q è falso. $p \implies q$, si legge se p allora q, p implica q

p	q	$p \implies q$
V	V	V
V	F	F
F	V	V
F	F	V

Table 7: Tabella di verità per $p \implies q$.

Doppia Negazione:

L'implicazione logica $p \implies q$ è equivalente alla disgiunzione di $\neg p$ e q, in simboli:

$$p \implies q \equiv \neg p \vee q$$

La negazione dell'implicazione, $\neg(p \implies q)$, è equivalente a $p \wedge \neg q$. In simboli:

$$\neg(p \implies q) \equiv p \land \neg q$$

p	q	$\neg p$	$p \implies q$	$\neg p \lor q$
V	V	F	V	V
V	F	F	\mathbf{F}	F
F	V	V	V	V
F	F	V	V	V

Doppia implicazione:

Il bicondizionale, rappresentato con $p \iff q$, è vero se e solo se entrambe le proposizioni sono entrambe vere o entrambe false. Si legge p se e solo se q.

p	q	$p \iff q$
V	V	V
V	F	F
F	V	F
F	F	V

Table 8: Tabella di verità per $p \iff q$.

Di conseguenza il bicondizionale può essere espresso come la combinazione di due implicazioni:

$$p \iff q = (p \implies q) \land (q \implies p)$$

p	q	$p \implies q$	$q \implies p$	$(p \implies q) \land (q \implies p)$
V	V	V	V	V
V	F	F	V	${ m F}$
F	V	V	\mathbf{F}	${ m F}$
F	F	V	V	V

Table 9: Tabella di verità per $p \iff q = (p \implies q) \land (q \implies p)$.

Esempio:

p: in un triangolo, 2 lati sono uguali.

q: in un triangolo, 2 angoli sono uguali.

 $p \iff q$

1.2.2 Predicati

Sono parte del nostro ragionamento in cui compaiono 1 o più variabili

P(x) Lo studente x è alto più di 1,80m.

A seconda del valore di x il predicato è vero o falso. Per un valore assegnato a x il predicato diventa una proposizione.

Un predicato può essere:

- <u>unario</u> una variabile P(x)
- binario due variabili Q(x,y)

1.2.3 Quantificatori

I quantificatori ci permettono di fare affermazioni riguardo a tutti o alcuni elementi di un insieme. Esistono due quantificatori principali nella logica:

1. Quantificatore universale

```
\forall x, P(x) \text{ si legge Per ogni } x, \text{ vale } p(X)
```

Esempio:

 $\overline{P(x)}$: Lo studente è più alto di 1,8m.

 $\forall x, P(x)$ ogni studente è più alto di 1,8m.

2. Quantificatore esistenziale

 $\exists x : P(x)$ si legge esiste (almeno) un x per cui vale P(x).

Esempio:

 $\overline{P(x)}$: Lo studente è più alto di 1,8m.

 $\exists x: P(x)$ Almeno uno studente è più alto di 1,8m.

Relazione tra quantificatori:

Q(x,y)= Astronomo x osserva la stella y.

 $\forall x, Q(x,y)$ = Tutti gli astronomi osservano la stella y.

 $\forall x, \exists y, Q(x,y)$ = Per ogni astronomo c'è una stella che viene osservata.

 $\exists x : \forall y, Q(x,y) = C$ 'è un astronomo che osserva tutte le stelle.

Come si nega frase con un quantificativo?

Ogni studente è più alto di 1,8m.

Come si nega?

C'è almeno uno studente più basso di 1,8m.

$$\neg(\forall x, P(x)) = \exists x : \neg P(x)$$
$$\neg(\exists x : Q(x)) = \forall x : \neg Q(x)$$

esempio:

Q(x,y) astronomo x osserva stella y.

 $\forall x, \exists y : Q(x,y)$ Per ogni astronomo x, esiste almeno una stella y tale che x osserva y.

 $\forall x, (\exists y : Q(x,y))$ Ogni astronomo osserva almeno una stella.

 $\neg(\forall x, \exists y: Q(x,y))$ Esiste almeno un astronomo che non osserva nessuna stella.

 $\exists x: \neg (\exists y: Q(x,y)) \quad \textit{Esiste un astronomo che non osserva alcuna stella}.$

 $\exists x: \forall y, \neg Q(x,y)$ Esiste un astronomo che non osserva nessuna stella.

1.3 Insiemi

Un insieme è una nozione primitiva che si riferisce a una collezione (o famiglia) di oggetti, detti <u>elementi dell'insieme</u>. Gli insiemi sono uno dei concetti fondamentali della matematica e vengono utilizzati per descrivere collezioni di oggetti ben definiti, che possono essere di qualsiasi tipo, come numeri, persone, lettere o altri insiemi.

Indichiamo un insieme con una lettera maiuscola, ad esempio A, B, C, mentre gli elementi dell'insieme sono indicati con lettere minuscole, come a, b, c, ecc.

1.3.1 Appartenenza

L'appartenenza di un elemento a un insieme viene indicata con il simbolo \in . Se un elemento a appartiene all'insieme A, si scrive:

$$a \in A$$

Se invece l'elemento a non appartiene all'insieme A, si scrive:

$$a \notin A$$

1.3.2 Insiemi Finiti e Infiniti

Gli insiemi possono essere finiti o infiniti. Un insieme è detto finito se contiene un numero finito di elementi; altrimenti, è detto infinito. Ad esempio:

$$A = \{1, 2, 3, 4\}$$

è un insieme finito, mentre:

$$B = \{1, 2, 3, \dots\}$$

è un insieme infinito, poiché contiene tutti i numeri naturali.

1.3.3 Sottoinsiemi

Se A e B sono insiemi e tutti gli elementi di A sono anche elementi di B, dirò che:

$$A \subseteq B$$

attenzione!

 \in appartiene (si parla di elementi)

è diverso da

⊆ è contenuto di (si parla di insiemi)

Figure 1: Relazione tra insiemi e appartenenza.

Se $A\subseteq B$ diro che A è sottoinsieme di B. vale $A=B\iff A\subseteq B\land B\subseteq A$

Esiste un'insieme che non ha elementi, lo chiamiamo insieme vuoto e lo segnamo come \emptyset . Ho $\forall A$ insieme, $\emptyset \subseteq A$ Il vuoto è unico!

1.3.4 Operazioni tra Insiemi

1. **Unione**: L'unione di due insiemi A e B, denotata con $A \cup B$, è l'insieme di tutti gli elementi che appartengono ad A, B o a entrambi.

$$A \cup B = \{x \mid x \in A \text{ oppure } x \in B\}$$

2. **Intersezione**: L'intersezione di due insiemi A e B, denotata con $A \cap B$, è l'insieme di tutti gli elementi che appartengono sia ad A sia a B.

$$A \cap B = \{x \mid x \in A e x \in B\}$$

3. **Differenza**: La differenza tra due insiemi A e B, denotata con $A \setminus B$, è l'insieme di tutti gli elementi che appartengono ad A ma non a B.

$$A \setminus B = \{ x \mid x \in A e x \notin B \}$$

