Математичний аналіз 1 семестр

Зміст

1	Пер	оші дрібниці. Дійсні числа	6			
	1.1	Аксіоматика множини дійсних чисел, принцип Дедекінда.	7			
	1.2	Принцип мат. індукції	7			
	1.3	Основні нерівності	9			
	1.4	Відкриті, замкнені множини	10			
	1.5	Точкові межі	13			
	1.6	Принцип Архімеда та основні твердження мат. аналізу	16			
2	Границі числової послідовності 19					
	2.1	Основні означення	19			
	2.2	Нескінченно малі/великі послідовності	22			
	2.3	Нерівності в границях	25			
	2.4	Монотонні послідовності. Число е				
	2.5	Підпослідовності				
	2.6	Фундаментальна послідовність				
	2.7	*Деякі теоретичні факти				
	2.8	*Константа Ейлера-Маскероні				
	2.9	*Теорема Штольца				
	2.10		40			
	2.11		41			
3	Границі функції 43					
	3.1	Основні поняття про функції	43			
	3.2	Границі функції				
	3.3	Перша чудова границя				
	3.4	Друга чудова границя				
	3.5	Односторонні границі та границі монотонних функцій	55			
	3.6	Порівняння функцій, відношення О-велике, о-маленьке та				
		еквівалентності	56			
4	Неперервність функції 6					
	4.1	Неперервність в точці	61			
	4.2	Неперервність елементарних функцій	64			
	4.3	Неперервність функції на відрізку	66			
	4.4	Рівномірна неперервність	69			
	4.5	*Неперервність функції Діріхле та Рімана	71			
	4.6	*Інші факти з неперервною функцією				
		T T -I T // T // T //	. –			

5	Диф	реренціювання	73		
	5.1	Основні означення	73		
	5.2	Дотична та нормаль до графіку функції	78		
	5.3	Приблизне обчислення значень для диференційованих функт	цій 80		
	5.4	Диференціал функції	80		
	5.5	Похідні по один бік	81		
	5.6	Інваріантність форми першого диференціалу	83		
	5.7	Похідна від параметрично заданої функції	84		
	5.8	Похідна вищих порядків	84		
	5.9	Основні теореми	87		
	5.10	Дослідження функції на монотонність	89		
	5.11	Екстремуми функції	91		
		5.11.1 Локальні			
		5.11.2 Глобальні	92		
	5.12	Формула Тейлора та правила Лопіталя	94		
	5.13	Опуклі функції та точки перегину	98		
6	Інтегрування				
	6.1	Первісна, невизначений інтеграл	105		
	6.2	Заміна змінної			
	6.3	Інтегрування за частинами			
	6.4	Інтегрування дробово-раціональних функцій			
	6.5	Інтегрування тригонометричних функцій			
	6.6	Інтегрування ірраціональних виразів			
	6.7	Диференціальний біном			
7	Виз	начений інтеграл	115		
•	7.1	Підхід Рімана			
	7.2	Існування інтеграла			
8	Визначені інтеграли (спроба 2) 12				
Ü	8.1	Визначений інтеграл Рімана			
9	Нев	ласні інтеграли	129		
10	Ряд	И	130		
	•	Первинний аналіз збіжності та арифметика рядів			
		Знакододатні ряди			
		Знакозмінні ряди			
	_	1 11	-		

11 Функціональні ряди					
11.1 Функціональні послідовності	143				
11.2 Функціональні ряди	145				
11.3 Степеневі ряди	148				
11.4 Зв'язок з Тейлором	152				
12 Premilinaries	155				

Момент Богданського (або с вікі)

Зведення числа в дійсну степінь

Нехай $a \in (0, +\infty), a \neq 1$. Надалі для визначеності вважатимемо a > 1Починали з натуральних степененй

$$a^n = a \cdot a \cdot \cdots \cdot a$$
 - множення n разів

$$a^1 = a$$

Потім цілі степені

$$a^{-n} = \frac{1}{a^n}$$

Далі розглядали властивості, які вже зі школи ми знаємо

Тепер розглянемо раціональну степінь $q \in \mathbb{Q}$

Lemma Для a > 0 існує єдине число b > 0, що $b^n = a$ Proof.

Розглянемо множину $X = \{x \ge 0 | x^n < a\}$ та $Y = \{x \ge 0 | x^n > a\}$

Оскільки $0 \in X$, то X - непорожня. Оскільки при a > 1 $a \in Y$, а при $a < 1 \ 1 \in Y, Y$ - непорожня

Тоді для $x \in X, y \in Y \Rightarrow x^n < a < y^n \Rightarrow x < y$

Остання імплікація від супротивного доводиться

Тоді за принципом Дедекінда, $\exists!b \in \mathbb{R}: x \leq b \leq y$

Лишилось показати, що $b^n = a$

Ми припустимо, що $b^n>a$, але тоді $\lim_{m\to\infty}\left(b-\frac{1}{m}\right)^n=b^n>a$

Отже, $\exists m \in \mathbb{N} : \left(b-\frac{1}{m}\right)^n > a$, тому елемент $b-\frac{1}{m} \in Y$, проте

 $b \leq b - \frac{1}{m}$. Суперечність! Випадок $b^n < a$ аналогічно

Останній крок: перевірити єдиність

Припускаємо протилежне, але тоді $b_1 < b_2 \Rightarrow b_1^n < b_2^n \Rightarrow a < a$

Тепер відповідаємо, що таке раціональна степінь. Якщо $q = \frac{m}{n}$, то тоді $a^q = (\sqrt[n]{a})^m = \sqrt[n]{a^m}$

Властивості досі зберігаються

Нарешті, дістались до дійсної степені. Візьмемо $x_0 \in \mathbb{R}$

Нехай також $X = \mathbb{Q} \cap (-\infty, x_0), a > 1$ - тобто множина всіх раціональних чисел, лівіша за дійсне число x_0

На множині X функція a^x - зростаюча

 $x_0 \not\in X$ - гранична точка. Тоді існує границя

$$\lim_{Q \ni x \to x_0^-} a^x = \lim_{X \ni x \to x_0} a^x = \sup_X a^x$$

Аналогічно визначається множина $Y=\mathbb{Q}\cap(x_0,+\infty)$ та $\exists\lim_{Y\ni x\to x_0}a^x=$

 $\inf_{\mathbf{v}} a^x$

 $\tilde{\Box}$ оведемо, що $\sup_X a^x = \inf_Y a^x$

Зрозуміло, що для $r_1 \in X, r_2 \in Y$ справедлива нерівність

 $r_1 < x_0 < r_2$

Але ми візьмемо такі раціональні числа, що $r_2 - r_1 < \frac{1}{n}$. При цьому

 $a^{r_1} < \sup_X a^x \le \inf_Y a^x < a^{r_2}$

Тоді

$$1 \le \frac{\inf_{X} a^x}{\sup_{X} a^x} \le a^{r_2 - r_2} < a^{\frac{1}{n}}$$

Оскільки $\lim_{n\to\infty}a^{\frac{1}{n}}=1$, тоді маємо, що $\inf_Ya^x=\sup_Xa^x$

Достатньо лише показати, що $f(x) = a^x$ буде неперевною на $\mathbb Q$

Достатьно показати тоді, що для послідовності $x_n \in \mathbb{Q}$, для якої $x_n \to x_0^+$ має збіжність $a^{x_n} \to a^{x_0}$

$$a^{x_n - x_0} = a^{x_0} (a^{x_n - x_0} - 1)$$

Останню дужку можна довести через епсілон означення. Остаточно отримаємо $\lim_{n\to\infty}a^{x_n}=a^{x_0}$

Отже,
$$\lim_{x \to x_0} a^x = a^{x_0}$$

1 Перші дрібниці. Дійсні числа

Вже з такими числами було більш-менш ознайомлено в школі. Починалось все з натуральних чисел

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

Далі пішли цілі числа

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Саме в цілих числах ми змогли визначити вже операцію +, але цього недостатньо

Потім раціональні числа

$$\mathbb{Q} = \left\{ \frac{m}{n} | m \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

А тут вже ми змогли визначити операцію , і цього теж мало

Настав саме час дослідити поле дійсних чисел - $\mathbb R$

Одна з головних мотивацій зробити - це прямокутний трикутник зі сторонами 1

За теоремою Піфагора, ми вже знаємо, що

$$x^2 = 1^2 + 1^2 \implies x^2 = 2$$

I от тут виникли проблеми

Proposition 1. He існує числа $x \in \mathbb{Q}$, щоб $x^2 = 2$

Proof.

!А давайте припустимо, що все ж таки існує $x \in \mathbb{Q}$, тобто $x = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$, для якого

$$\mathbb{Z},n\in\mathbb{N},$$
 для якого $x^2=2\implies rac{m^2}{n^2}=2\implies m^2=2n^2$

Оскільки $2n^2$ - це парне число, то m^2 - також парне, а відтоді m - парне, тоді таке число представмо у вигляді $m=2k, k\in\mathbb{Z}$

$$4k^2 = 2n^2 \implies 2k^2 = n^2$$

Оскільки $2k^2$ - це парне число, то n^2 - також парне, а відтоді n - парне, тоді таке число представимо у вигляді $n=2l, l\in \mathbb{Z}$

Проте m, n одночасно не можуть бути парними, оскільки ми отримаємо скоротиму дріб, а за умовою ми не брали таких. Суперечність!

Таким чином, наше припущення було невірним ■

 $\mathbb C$ два варіанти, як розвиватись далі. Проте я піду за принципом Дедекінда: він дуже просто визначив $\mathbb R$

1.1 Аксіоматика множини дійсних чисел, принцип Дедекінда

Axiom 1.1.1. Візьмемо якісь числа $a, b, c \in \mathbb{R}$. Тоді наступні аксіоми справедливі:

Відносно операції +:

a+b=b+a - комутативність

$$(a+b)+c=a+(b+c)$$
 - асоціативність

 $\exists 0 \in \mathbb{R} : a+0=a$ - існування нейтрального елементу

 $\exists (-a) \in \mathbb{R} : a + (-a) = 0$ - існування оберненого елементу

Відносно операції ::

 $a \cdot b = b \cdot a$ - комутативність

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
 - асоціативність

 $\exists 1 \in \mathbb{R} : a \cdot 1 = a$ - існування нейтрального елементу

$$\exists \left(\frac{1}{a}\right) \in \mathbb{R} : a \cdot \frac{1}{a} = 1$$
 - існування оберненого елементу

$$(a+b) \cdot c = a \cdot c + b \cdot c$$
 - дистрибутивність

Відношення порядка:

Якщо a > b, то a + c > b + c

Якщо a > b, c > 0, то a + c > b

Якщо $a>b,\,c>0,$ то $a\cdot c>b\cdot c$

Axiom 1.1.2. Принцип Дедекінда

Нехай є дві множини $A,B\subset\mathbb{R}$. Відомо, що $\forall a\in A,\, \forall b\in B:a\leq b.$ Тоді $\exists c\in\mathbb{R}:a\leq c\leq b$

1.2 Принцип мат. індукції

Definition 1.2.1. Числова множина E називається **індуктивною**, якщо $\forall x \in E: x+1 \in E$

Theorem 1.2.2. Множина натуральних чисел \mathbb{N} - мінімальна індуктивна множина, що містить 1

Інакше кажучи про другу частину, $\forall E$ - індуктивна: $1 \in E \Rightarrow \mathbb{N} \subset E$ **Proof.**

- 1) Те, що $\mathbb N$ індуктивна, зрозуміло, тому що $\forall k \in \mathbb N: k+1 \in \mathbb N$
- 2) Оскільки $1 \in E$ і більш того, вона є індуктивною, то $2 \in E, 3 \in E, \ldots, k \in E$

$$\forall k \in \mathbb{N} \Rightarrow k \in E$$

Таким чином, $\mathbb{N} \subset E \blacksquare$

Corollary 1.2.3. Принцип мат. індукції

Розглянемо числову множину $E = \{n \in \mathbb{N} : P(n)\}$

Тут P(n) - це деяка умова

Тоді якщо $1 \in E$ та індуктивна, то $E = \mathbb{N}$

Proof.

За умовою наслідка, маємо, що $E \subset \mathbb{N}$

Оскільки $1 \in E$ та індуктивна, то $\mathbb{N} \subset E$

Отже, $E = \mathbb{N} \blacksquare$

Інакшою мовою: хочемо стверджитись, що P(n) виконується при будь-яких $n\in\mathbb{N}$

1. База індукції

P(1) виконується

2. Крок індукції

Вважаємо, що P(n) - виконано. Показуємо, що P(n+1) виконується Тоді наша множина E - індуктивна, що містить одиницю. Отже, МІ перевірено

Example 1.2.4 Довести, що

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Тут множина
$$E = \left\{ n \in \mathbb{N} : 1 + 2 + \dots + n = \frac{n(n+1)}{2} \right\}$$

1. База індукції

$$1 \in E \Rightarrow 1 = \frac{1(1+1)}{2} = 1$$

2. Крок індукції

Нехай $k \in E$, тобто

$$1 + 2 + \dots + k = \frac{k(k+1)}{2}$$

Доведемо, що $k+1 \in E$

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + k = \frac{k(k+1) + 2k}{2} = \frac{(k+1)(k+2)}{2}$$

Отже, $k+1 \in E$

А значить, $E=\mathbb{N},$ тобто наше твердження виконується $\forall n\in\mathbb{N}.$ МІ доведено

Основні нерівності 1.3

Theorem 1.3.1. Нерівність Бернуллі

Для всіх x > -1 виконується нерівність:

$$(1+x)^n \ge 1 + nx$$

Proof MI.

- 1. База індукції: при n=1: $(1+x)^1 \ge 1+1\cdot x$. Нерівність виконується
- 2. Крок індукції: нехай для фіксованого n дана нерівність виконується. Доведемо для значення n+1

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

Отже, така нерівність справедлива $\forall n \geq 1$. МІ доведено

Theorem 1.3.2. Нерівність Коші

Для всіх $a_1, \cdots, a_n \geq 0$ виконується нерівність:

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdots a_n}$$

Proof.

Тимчасове перепозначення: $A_n = \frac{a_1 + \dots + a_n}{n}$, $G_n = \sqrt[n]{a_1 \dots a_n}$

Зрозуміло, що $\frac{A_n}{A_{n-1}} > 0 \Rightarrow \frac{A_n}{A_{n-1}} - 1 > -1$. Тоді за нерівністю Бернуллі

$$\left(1 + \left(\frac{A_n}{A_{n-1}} - 1\right)^n\right)^n \ge 1 + n \cdot \left(\frac{A_n}{A_{n-1}} - 1\right)$$

$$\Rightarrow \frac{(A_n)^n}{(A_{n-1})^n} \ge \frac{a_n}{A_{n-1}}$$

$$\Rightarrow (A_n)^n \geq a_n (A_{n-1})^{n-1}, \, \forall n \geq 1.$$
 Тоді

$$\Rightarrow (A_n)^n \ge a_n (A_{n-1})^{n-1}, \ \forall n \ge 1. \$$
Тоді $(A_n)^n \ge a_n (A_{n-1})^{n-1} \ge \cdots \ge a_n a_{n-1} \cdots a_1.$

Отже, $A_n \geq G_n$, що й хотіли довести \blacksquare

Theorem 1.3.3. Нерівність трикутника

Для довільних $x, y \in \mathbb{R}$ справедлива нерівність:

$$|x+y| \le |x| + |y|$$

Proof.

$$(|x+y|)^2 = (x+y)^2 = x^2 + 2xy + y^2 = |x|^2 + 2xy + |y|^2 \le |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2$$

$$\Rightarrow |x+y| \le |x| + |y| \blacksquare$$

1.4 Відкриті, замкнені множини

Definition 1.4.1. U(x) - **окіл** т. x, тобто довільний інтервал, що містить т. x

Definition 1.4.2. $U_{\varepsilon}(x)$ - ε -окіл т. $x \in \mathbb{R}$ називають інтервал: $(x - \varepsilon, x + \varepsilon), \forall \varepsilon > 0$

Proposition 1.4.3. Задано U(x) - окіл т. x. Тоді $\exists \varepsilon > 0 : U_{\varepsilon}(x) \subset U(x)$ **Proof.**

Задамо будь-який окіл U = (a, b)

$$\frac{}{} \stackrel{\cdot}{} \stackrel{}} \stackrel{\cdot}{} \stackrel{\cdot}{} \stackrel{\cdot}{} \stackrel{\cdot}{} \stackrel{\cdot}{} \stackrel{}} \stackrel{\cdot}{} \stackrel{\cdot}{} \stackrel{\cdot}{} \stackrel{\cdot}{} \stackrel{\cdot}{} \stackrel{} \stackrel{\cdot}{} \stackrel{$$

Тоді існує $\varepsilon=\min\{|x-a|,|x-b|\}$. І такий окіл $(x-\varepsilon,x+\varepsilon)\subset U(x)$

Definition 1.4.4 Задана множина $A \subset \mathbb{R}$ та елемент $a \in A$ a - **внутрішня точка** множини A, якщо $\exists U(a) \subset A$

Proposition 1.4.5. a - внутрішня т. $A \iff \exists \varepsilon > 0 : (a - \varepsilon, a + \varepsilon) \subset A$ Proof.

 \Longrightarrow Дано: a - внутрішня т. A Тоді $\exists U$ - окіл т. a, а отже, $\exists \varepsilon > 0: (a-\varepsilon,a+\varepsilon) \subset U \subset A$

 $\exists \varepsilon > 0 : (a - \varepsilon, a + \varepsilon) \subset A$

 $\overline{\mathrm{A}}_{\mathrm{BTOMATUYHO}}$ означає, що A - окіл т. a, а тому a - внутрішня точка

Definition 1.4.6. Множина $A \subset \mathbb{R}$ називається **відкритою**, якщо $\forall a \in A$ - внутрішня

Example 1.4.7. Розглянемо множини: $(a,b), [a,b], (a,+\infty), [a,+\infty), \emptyset, \mathbb{R}$ (a,b) - відкрита, оскільки $\forall x \in (a,b) : \exists \varepsilon = \min\{|x-a|, |x-b|\} : U_{\varepsilon}(x) \subset (a,b) \Rightarrow \forall x \in (a,b) : x$ - внутрішня точка

[a,b] - НЕ відкрита. Якщо припустити, що a - внутрішня точка, то $\exists \varepsilon > 0: (a-\varepsilon, a+\varepsilon) \subset [a,b]$, проте $a-\frac{\varepsilon}{2} \in (a-\varepsilon, a+\varepsilon), \not\in [a,b]$, тому т. a не може бути внутрішньою. Аналогічно для b. Решта - внутрішні, задавши той самий ε , як попередього разу

 $(a, +\infty)$ - відкрита, тому що $\forall x : \exists \varepsilon = |x - a|$

 $[a,+\infty)$ - НЕ відкрита через т. a: не ϵ внутрішньою. Решта - внутрішні

 \emptyset - відкрита. Оскільки порожня множина не містить точок, ми не зможемо

знайти точку в порожній множині, яка $HE \in$ внутрішньою, щоб зруйнувати означення

 \mathbb{R} - відкрита

Proposition 1.4.8. Якщо $\{A_{\lambda}\}$ - сім'я відкритих підмножин, то $\bigcup_{\lambda} A_{\lambda}$ - відкрита

Proof.

Візьмемо довільну т. $a\in\bigcup_{\lambda}A_{\lambda}\Rightarrow$ принаймні одному з сімей множин $a\in A_{\lambda}$

Така множина є відкритою, а тому a - внутрішня точка Із нашого ланцюга отримаємо: $\forall a \in \bigcup_{\lambda} A_{\lambda} \Rightarrow a-$ внутрішня. Тобто $\bigcup_{\lambda} A_{\lambda}$

- відкрита 🛮

Example 1.4.9. Маємо $A=(1,2)\cup(4,16)\cup(32,64)$. Попередньо ми знаємо, що будь-який інтервал є відкритою множиною. Тому їхнє об'єднання буде відкритою множиною, тобто A

Definition 1.4.10. Задана множина $A \subset \mathbb{R}$, $a \in \mathbb{R}$ Число a - гранична точка множини A, якщо: $\forall U(a): \exists x \in A: x \neq a$

Proposition 1.4.11. Задана множина $A \subset \mathbb{R}, \ a \in \mathbb{R}$ a - гранична точка $A \iff \forall \varepsilon > 0: \exists x \in A: |x-a| < \varepsilon$ **Proof.**

 \Longrightarrow Дано: a - гранична точка A Тобто $\forall U(a): \exists x \in A: x \neq a$ Тоді зокрема $\forall U_{\varepsilon}(a): \exists x = a + \frac{\varepsilon}{2} \in A: x \neq a$ $\Rightarrow \forall \varepsilon > 0: \exists x \in A: |x - a| = \frac{\varepsilon}{2} < \varepsilon$

 \sqsubseteq Дано: $\forall \varepsilon > 0: \exists x \in A: |x-a| < \varepsilon$ Тоді $\forall U(a): \exists \varepsilon > 0: U_{\varepsilon}(a) \subset U(a) \Rightarrow \exists x \in A: x = a + \frac{\varepsilon}{2} \neq a$

Definition 1.4.12. Проколений окіл т. a: $\overset{\circ}{U}(a) = U(a) \setminus \{a\}$

Proposition 1.4.13. Наступні твердження є еквівалетними між собою: 1) a - гранична т. A

2) $\forall \overset{\circ}{U}(a) : A \cap \overset{\circ}{U}(a) \neq \emptyset$

3) $\forall \tilde{U}_{\varepsilon}(a) : A \cap \tilde{U}_{\varepsilon}(a) \neq \emptyset$

4) $\forall \varepsilon > 0 : A \cap (a - \varepsilon, a + \varepsilon)$ - нескінченна множина

Proof.

 $\boxed{1)\Rightarrow 2)$ Дано: a - гранична т. A

Тоді $\forall U(a) : \exists x \in A : x \neq a$

Зафіксуймо $\overset{\circ}{U}a$. Для неї існує т. $x\in A,$ отже $A\cap \overset{\circ}{U}a\neq \emptyset$

 $(2) \Rightarrow 3)$ Дано: $\forall \overset{\circ}{U}(a) : A \cap \overset{\circ}{U}(a) \neq \emptyset$

Оскільки для окілу $\overset{\circ}{U}(a)$ існує $\varepsilon > 0$: $\overset{\circ}{U_{\varepsilon}}(a) \subset \overset{\circ}{U}(a)$, тоді $A \cap \overset{\circ}{U_{\varepsilon}}(a) \neq \emptyset$. Тоді й для довільного спрацьовує

 $\boxed{3)\Rightarrow 4}$ Дано: $\forall \overset{\circ}{U_{\varepsilon}}(a):A\cap \overset{\circ}{U_{\varepsilon}}(a)\neq \emptyset$

Тоді справедливі нерівності

$$\begin{cases} |x_1 - a| < \varepsilon^* \\ \vdots \\ |x_n - a| < \varepsilon^* \end{cases}$$

Я̀кщо обрати $\varepsilon = \min\{|x_1 - a|, \dots, |x_n - a|\}$, то в цьому проколеному околі нема жодних точок, а отже, $A \cap \overset{\circ}{U_{\varepsilon}}(a) = \emptyset$, суперечність!

 $\boxed{4)\Rightarrow 1)}$ Дано: $\forall \varepsilon>0: A\cap(a-\varepsilon,a+\varepsilon)$ - нескінченна множина Зафіксуймо т. $x=a-\frac{\varepsilon}{2}\in A\cap(a-\varepsilon,a+\varepsilon)$, тоді a - гранична т. A

Definition 1.4.14. Множниа $A \subset \mathbb{R}$ називається **замкненою**, якщо вона містить всі свої граничні точки

Example 1.4.15. Розглянемо множини: $(a, b), [a, b], (a, +\infty), [a, +\infty), \emptyset, \mathbb{R}$ (a, b) - НЕ замкнена, оскільки кожний окіл т. a, b - граничні т. для (a, b), які не належать цієї множини

[a,b] - замкнена, тому що $\forall x \in [a,b]: \forall \varepsilon > 0: [a,b] \cap (x-\varepsilon,x+\varepsilon) = \begin{bmatrix} [a,x+\varepsilon) \\ (x-\varepsilon,x+\varepsilon) \\ (x-\varepsilon,b] \end{bmatrix}$ - всі вони нескінченні множини [a,b]

 $(a, +\infty)$ - НЕ замкнена, тому що точка a - гранична для $(a, +\infty)$, але не належить

 $[a,+\infty)$ - замкнена (аналогічно)

 \emptyset - замкнена: вона містить всі свої граничні точки, яких просто нема

 \mathbb{R} - замкнена

Remark 1.4.15. Єдині множини, які є одночасно відкритими та замкненими - це \emptyset , $\mathbb R$

Proposition 1.4.16. A - відкрита множина $\iff \overline{A}$ - замкнена **Proof.**

Дано: А - відкрита множина

!Припустімо, що \overline{A} - НЕ замкнена множина, тобто вона містить НЕ всі свої граничні точки, тобто $\exists a' \in A$, яка буде граничною для \overline{A} Оскільки $a' \in A$, то вона є внутрішньою, тобто $\exists \varepsilon > 0 : (a' - \varepsilon, a' + \varepsilon) \subset A \Rightarrow (a' - \varepsilon, a' + \varepsilon) \cap \overline{A} = \emptyset$. Суперечність! Бо тут, навпаки, не має виконуватись рівність

!Припустімо, що A - НЕ відкрита множина, тобто $\exists a \in A$, яка НЕ є внутрішньою, тобто

 $\forall \varepsilon > 0: U_{\varepsilon}(a) \not\subset A \Rightarrow U_{\varepsilon}(a) \cap \overline{A} \neq \emptyset$, тобто a - гранична точка \overline{A} Оскільки \overline{A} - замкнена, то вона містить всі свої граничні точки, проте $a \not\in \overline{A}$. Суперечність! \blacksquare

Proposition 1.4.17. Якщо $\{A_{\lambda}\}$ - сім'я замкнених підмножин, то $\bigcap_{\lambda} A_{\lambda}$ - замкнена

Випливае із Ргр. 1.4.8., Ргр. 1.4.16. та правила де Моргана

1.5 Точкові межі

Definition 1.5.1.(1) Задана множина $A \subset \mathbb{R}$ Множина A називається **обмеженою зверху**, якщо

 $\exists c \in \mathbb{R} : \forall a \in A : a \le c$

Definition 1.5.1.(2) Задана множина $B \subset \mathbb{R}$ Множина B називається **обмеженою знизу**, якщо

$$\exists d \in \mathbb{R} : \forall b \in B : b \ge d$$

Множину всіх чисел, що обмежують множину зверху, позначу за UpA, тобто

$$UpA = \{c \in \mathbb{R} : \forall a \in A : a \le c\}$$

Множину всіх чисел, що обмежують множину зверху, позначу за DownB, тобто

$$DownB = \{ d \in \mathbb{R} : \forall b \in B : b \ge d \}$$

Example 1.5.2. Задана множина $A = \{1 - 2^{-n} | n \in \mathbb{N}\} = \left\{\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots\right\}$ Є обмеженою зверху, наприклад, числом $2 \in \mathbb{R}$, тобто $\forall a \in A : a < 2$ Є обмеженою знизу, наприклад, числом $0 \in \mathbb{R}$, тобто $\forall a \in A : a > 0$

Proposition 1.5.3.(1) Якщо $c \in UpA$ та $c_1 > c$, то $c_1 \in UpA$ **Proposition 1.5.3.(2)** Якщо $d \in DownB$ та $d_1 < d$, то $d_1 \in DownB$ Обидва твердження випливають з визначення множин

Proposition 1.5.4. Множина UpA обмежена знизу, а множина DownB обмежена зверху

Випливає з означень обмеженості

Proposition 1.5.5. Для множини UpA існує мінімальний елемент, а для множини DownB існує максимальний елемент (причому вони єдині) **Proof.**

$$UpA = \{c \in \mathbb{R} : \forall a \in A : a \le c\}$$

За аксіомою відокремленості, $\exists c' \in \mathbb{R} : a \leq c' \leq c \Rightarrow c' \in UpA$

 $\forall c \in UpA : c' \le c \Rightarrow c' = \min UpA$

Доведемо єдиність:

!Припустимо, що $\exists c'' = \min UpA$

Але це автоматично не є можливо, оскільки якщо c'' > c', то c'' не є більше мінімальним елементом, а якщо c'' < c', то вже c' не є мінімальним елементом. Суперечність!

Для DownB доведення аналогічне

Definition 1.5.6.(1) Точковою верхньою межею називають наступне число:

$$\sup A = \min U p A$$

Definition 1.5.6.(2) Точковою нижньою межею називають наступне число:

$$\inf B = \max DownB$$

Theorem 1.5.7.(1) Критерій супремуму

$$c' = \sup A \iff \begin{cases} \forall a \in A : a \le c' \\ \forall \varepsilon > 0 : \exists a_{\varepsilon} \in A : a_{\varepsilon} > c' - \varepsilon \end{cases}$$

Proof.

 \Rightarrow Дано: $c' = \sup A$

Тоді автоматично $c' \in UpA$, тобто $\forall a \in A : a \leq c'$

Оскільки це мінімальне значення, то

 $\forall \varepsilon > 0 : c' - \varepsilon \notin UpA \Rightarrow \exists a_{\varepsilon} \in A : a_{\varepsilon} > c' - \varepsilon$

(остання умова - це заперечення означення обмеженості зверху)

 $\overline{3}$ другої умови випливає, що не лише $c' \in UpA$, а ще й

 $c' = \min UpA = \sup A \blacksquare$

Theorem 1.5.7.(2) Критерій інфімуму

$$d' = \inf B \iff \begin{cases} \forall b \in B : b \ge d' \\ \forall \varepsilon > 0 : \exists b_{\varepsilon} \in B : b_{\varepsilon} < d' + \varepsilon \end{cases}$$

Доведення є аналогічним до критерію супремуму

Example 1.5.8. Повернемось до множини $A = \{1 - 2^{-n} | n \in \mathbb{N}\} =$

$$\left\{\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots\right\}$$

Доведемо, що $\sup A = 1$

Дійсно, $\forall a \in A : a = 1 - \frac{1}{2^n} < 1$

Залишилось довести, що $\tilde{\forall} \varepsilon > 0 : \exists a_{\varepsilon} : a_{\varepsilon} > 1 - \varepsilon$

Або
$$\exists n: 1-2^{-n} > 1-\varepsilon$$

Або $1-\frac{1}{2^n} > 1-\frac{1}{n} > 1-\varepsilon \Rightarrow \frac{1}{n} < \varepsilon \Rightarrow n > \frac{1}{\varepsilon}$

Можна обрати $n = \left[\frac{1}{\varepsilon}\right] + 1$, і тоді елемент з цим номером задовільнятиме умові

Definition 1.5.9. Множина $F \subset \mathbb{R}$ називається обмеженою, якщо

$$\exists p > 0 : \forall f \in F : |f| \le p$$

Якщо A не ϵ обмеженою зверху, то вважаємо $\sup A = +\infty$ Якщо B не ϵ обмеженою знизу, то вважаємо $\inf B = -\infty$

Принцип Архімеда та основні твердження мат. 1.6 аналізу

Theorem 1.6.1. Принцип Архімеда

 $\forall x \in \mathbb{R} : \forall h > 0 : \exists ! n \in \mathbb{Z} : nh \le x < (n+1)h$

Proof.

Задамо множину $M = \left\{ k \in \mathbb{Z} : k \leq \frac{x}{h} \right\}$

Така множина є обмеженою, тоді $\exists \sup_{i=1}^{n} M = \max_{i=1}^{n} M = n$

$$\Rightarrow n+1 \not\in M$$

$$\Rightarrow n + 1 \not\in M$$
$$\Rightarrow n \le \frac{x}{h} < n + 1 \blacksquare$$

Corollary 1.6.1.(1). $\forall \varepsilon > 0 : \exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$ Proof.

Встановимо за принципом Архімеда $x=1, h=\varepsilon$

Тоді
$$\exists ! m = n - 1 \in \mathbb{Z} : (n - 1)\varepsilon \le 1 < n\varepsilon$$

$$\Rightarrow \frac{1}{n} < \varepsilon \blacksquare$$

Corollary 1.6.1.(2). $\forall x \in \mathbb{R} : x > 0. \ \forall \varepsilon > 0 : x < \varepsilon \Rightarrow x = 0$!Proof.

Припустимо, що x > 0. Тоді за попереднім наслідком, $\exists n : \frac{1}{n} < x$

Розглянемо
$$\varepsilon = \frac{1}{n} > 0 \Rightarrow \varepsilon < x$$

Суперечність! \blacksquare

Corollary 1.6.1.(3). $\forall a, b \in \mathbb{R} : a < b : \exists q \in \mathbb{Q} : a < q \leq b$ Proof.

a < b, тоді розглянемо число $b - a > 0 \Rightarrow \exists n : \frac{1}{n} < b - a$

В принципі Архімеда встановимо $x = a, h = \frac{1}{n}$

Тоді
$$\exists ! m : \frac{m}{n} \le a < \frac{m+1}{n}$$

А тепер покажемо, що $q=\frac{m+1}{n}\leq b$!Від супротивного, припускаємо, що $\frac{m+1}{n}>b$ Тоді $b-a\leq \frac{m+1}{n}-a\leq \frac{m+1}{n}-\frac{m}{n}=\frac{1}{n}$ Але ми мали, що $b-a>\frac{1}{n}$, суперечність! Тож, $q\leq b$ Остаточно $a< q\leq b$

Definition 1.6.2. Цілою частиною числа $x \in \mathbb{R}$ називають найближче менше ціле число [x]

Для
$$h=1:\exists!n\in\mathbb{Z}:n\leq x< n+1$$
 $[x]=n$

Theorem 1.6.3. Лема Кантора про вкладені відрізки

Задані відрізки наступним чином: $\forall n \geq 1 : [a_n, b_n] \supset [a_{n+1}, b_{n+1}]$. Тоді

- 1) $\exists c \in \mathbb{R} : \forall n \ge 1 : c \in [a_n, b_n]$
- 2) Якщо $\forall \varepsilon > 0: \exists n \in \mathbb{N}: b_n a_n < \varepsilon$, то $\exists ! c \in \mathbb{R}: \forall n \geq 1: c \in [a_n, b_n]$

Proof.

1) Із умови випливає, що $\forall n, m \in \mathbb{N}$:

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq \cdots < \cdots \leq b_n \leq \cdots \leq b_2 \leq b_1$$

Отже, $\forall n, m \in \mathbb{N} : a_n \leq b_m$

Тому що:

$$-n < m : a_n \le \dots \le a_m < b_m \le \dots \le b_n$$

$$-n > m : a_n < b_n \le \dots \le b_m$$

Розглянемо множини
$$A = \{a_1, \dots, a_n\}, B = \{b_1, \dots, b_m\}$$

Тоді за принципом Дедекінда, $\exists c \in \mathbb{R} : \forall n, m \in \mathbb{N} : a_n \leq c \leq b_m$

Таким чином, $\forall n \geq 1 : c \in [a_n, b_n]$

2) Розглянемо окремо, коли $\forall \varepsilon > 0: \exists n: b_n - a_n < \varepsilon$

!Припустимо, що
$$\exists c' \in \mathbb{R} : \forall n \geq 1 : c' \in [a_n, b_n]$$
, але $c \neq c'$

Задамо $\varepsilon = |c' - c| > 0$

Тоді $\exists n: b_n - a_n < \varepsilon$, але $c, c' \in [a_n, b_n]$ для заданого n

Тому $\varepsilon = |c' - c| < a_n - b_n < \varepsilon$ - суперечність!

Отже, така точка ε єдиною, причому

$$[a_1, b_1] \cap [a_2, b_2] \cap \dots = \{c\} \blacksquare$$

Theorem 1.6.4. Теорема Больцано-Вейєрштраса

Задана множина A - обмежена множина з нескінченною кількістю елементів.

Тоді вона містить принаймні одну граничну точку

Proof.

Оскільки A - обмежена, то:

 $\exists a \in \mathbb{R} : \forall x \in A : x \ge a$

 $\exists b \in \mathbb{R} : \forall x \in A : x \leq b$

Тобто маємо множину $A \subset [a,b]$

Розіб'ємо множину [a,b] навпіл: $\left[a,\frac{a+b}{2}\right]$ та $\left[\frac{a+b}{2},b\right]$

Оскільки A має нескінченну кількість чисёл, то принаймні одна з множин

 $\left[a, \frac{a+b}{2}\right] \cap A$ або $\left[\frac{a+b}{2}, b\right] \cap A$ - нескінченна множина. Ту половину

позначимо за множину $[a_1, b_1]$ (якщо обидва нескінченні, то вибір довільний). Тоді $A \cap [a_1, b_1]$ - нескінченна множина

Розіб'ємо множину $[a_1,b_1]$ навпіл: $a_1,\frac{a_1+b_1}{2}$ та $\left|\frac{a_1+b_1}{2},b_1\right|$

I за аналогічними міркуваннями одна з множин нескінченна, позначу за $[a_2, b_2]$. Тоді $A \cap [a_2, b_2]$ - нескінченна множина

Розіб'ємо множину $[a_2,b_2]$ навпіл: $\left[a_2,\frac{a_2+b_2}{2}\right]$ та $\left[\frac{a_2+b_2}{2},b_2\right]$

В результаті матимемо вкладені відрізки: $[a,b] \supset [a_1,b_1] \supset [a_2,b_2] \supset \dots$

Причому $\forall n: b_n - a_n = \frac{b-a}{2^n}$ Зафіксуємо $\varepsilon > 0$ та перевіримо, чи існує n, що $b_n - a_n < \varepsilon$ Маємо: $\frac{b-a}{2^n} < \frac{b-a}{n} < \varepsilon \Rightarrow n > \frac{b-a}{\varepsilon}$

Тоді за лемою Кантора, $\exists ! c \in \mathbb{R} : \forall n \geq 1 : c \in [a_n, b_n]$

А далі покажемо, що c - дійсно гранична точка множини A

Зафіксуємо $\varepsilon > 0$. Знайдемо, чи існує n: $b_n - a_n = \frac{b-a}{2^n} < \frac{\varepsilon}{2} \Rightarrow \cdots \Rightarrow$

 $n > \frac{2(b-a)}{a}$

Тоді $[a_n,b_n]\subset (c-\varepsilon,c+\varepsilon)$, оскільки $c-a_n\leq \frac{\varepsilon}{2}$ та $b_n-c\leq \frac{\varepsilon}{2}$

I це все виконується $\forall \varepsilon > 0$

Таким чином, $A \cap (c - \varepsilon, c + \varepsilon) \supset A \cap [a_n, b_n]$ - нескінченна множина, а отже, c - гранична точка A

2 Границі числової послідовності

2.1Основні означення

Definition 2.1.0. Числовою послідовністю називають якийсь набір чисел $\{a_n, n \ge 1\}$

Тобто кожному номеру n буде зіставлено якесь число a_n Можна її задати або довільним чином, або формулою, або рекурсивно за початковими умовами

Definition 2.1.1. Число a називається границею числової послідовності $\{a_n, n \ge 1\}$, якщо справедливе таке твердження:

$$\forall \varepsilon > 0 : \exists N(\varepsilon) \in \mathbb{N} : \forall n \ge N : |a_n - a| < \varepsilon$$

Позначення: $\lim_{n\to\infty} a_n = a$ або $a_n \stackrel{n\to\infty}{\longrightarrow} a$

Якщо в деякої послідовності існує чисельна границя, то така послідовність називається збіжною. В інакшому випадку - розбіжна

Theorem 2.1.2. Для збіжної границі існує єдина границя !Proof.

Нехай задана збіжна числова послідовність $\{a_n, n \geq 1\}$, для якої існують дві границі:

$$\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} a_n = b$$

 $\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} a_n = b$ Врахуємо, що a < b (для a > b міркування є аналогічними)

Оскільки границі існують, ми можемо задати $\varepsilon = \frac{b-a}{3}$. Тоді

$$\exists N_1 : \forall n \ge N_1 : |a_n - a| < \frac{b - a}{3} \Rightarrow a_n < a + \frac{b - a}{3}$$

$$\exists N_2 : \forall n \ge N_2 : |a_n - b| < \frac{b - a}{3} \Rightarrow a_n > b - \frac{b - a}{3}$$

Аби обидві нерівності працювали одночасно, ми зафіксуємо новий $N = \max\{N_1, N_2\}$. Тоді:

$$\forall n \ge N : a_n < \frac{a + (a+b)}{3} < \frac{b + (a+b)}{3} < a_n$$

Отримали суперечність! Отже, обидва ліміти не існують одночасно

Example 2.1.3! Доведемо за означенням, що $\lim_{n\to\infty} \frac{1}{n} = 0$

Задано довільне $\varepsilon > 0$. Необхідно знайти $N: \forall n \geq N: \left| \frac{1}{n} - 0 \right| < \varepsilon$

$$\left| \frac{1}{n} - 0 \right| < \varepsilon \iff \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$$

Зафіксуймо $N = \left| \frac{1}{\varepsilon} \right| + 1$. Тоді маємо: $\forall \varepsilon > 0 : \exists N = \left[\frac{1}{\varepsilon}\right] + 1 : \forall n \ge N : n > \frac{1}{\varepsilon} \Rightarrow \left|\frac{1}{n} - 0\right| < \varepsilon$ Отже, означення виконується, тому $\lim_{n\to\infty}\frac{1}{n}=0$

Тут на малюнку я обрав $\varepsilon = 0.1$. Тоді починаючи з n = 11 (або з 12, 13,...), всі решта члени не покидатимуть червоні лінії. Якщо члени не будуть покидати ці лінії для будь-якого заданого ε , то тоді границя існує

Example 2.1.4! Доведемо за означенням, що $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Знову задамо довільне $\varepsilon>0$. Знову необхідно знайти $N: \forall n\geq N:$ $\left|\sqrt[n]{n}-1\right|<arepsilon\iff\sqrt[n]{n}<1+arepsilon$

Використовуючи нерівність Коші, ми отримаємо таку оцінку:
$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdots 1} \leq \frac{\sqrt{n} + \sqrt{n} + 1 + \cdots + 1}{n} = \frac{2\sqrt{n} + n - 2}{n} = \frac{2}{\sqrt{n}} + 1 - \frac{2}{n} < \frac{2}{\sqrt{n}} + 1.$$
 Тоді:
$$\sqrt[n]{n} < \frac{2}{\sqrt{n}} + 1 < 1 + \varepsilon \iff \frac{2}{\sqrt{n}} < \varepsilon \iff n > \frac{4}{\varepsilon^2}$$

Тепер зафіксуємо $N=\left|\frac{4}{\varepsilon^2}\right|+2021.$ Ну тоді $\forall n\geq N$ всі нерівності виконуються, зокрема $|\sqrt[n]{n} - 1| < \varepsilon$ Остаточно, $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Example 2.1.5! Доведемо за означенням, що $\lim_{n\to\infty}\frac{n^k}{b^n}=0, b>1$ Вже було доведено в **Ex. 2.1.4.**, що $\lim_{n\to\infty}\sqrt[n]{n}=1$, а тому означення працює: $\forall \varepsilon'>0: \exists N_0(\varepsilon'): \forall n\geq N_0: \left|\sqrt[n]{n}-1\right|<\varepsilon'\iff \sqrt[n]{n}<1+\varepsilon'$ Оскільки границя існує, ми оберемо $\varepsilon' = \sqrt[2k]{b} - 1$. Тоді:

$$\sqrt[n]{n} < 1 + \sqrt[2k]{b} - 1 \iff n^k < b^{\frac{n}{2}}$$

Отже, ми отримали, що $\forall n \geq N_0 : n^k < b^{\frac{n}{2}}$. Дану оцінку використаємо для доведення бажаного ліміту

Зафіксуємо інше $\varepsilon>0$. Хочемо знайти $N_1: \forall n\geq N_1: \left|\frac{1}{h^{\frac{n}{2}}}\right|<\varepsilon$

$$\iff \cdots \iff n > 2\log_b \frac{1}{\varepsilon}$$
. Тоді $N_1 = \left\lceil \log_b \frac{1}{\varepsilon} \right\rceil + 2^2$

Нарешті, якщо зафіксувати $N = \max\{N_0, N_1\}$, то $\forall n \geq N$ справедлива оцінка:

$$\left|\frac{n^k}{b^n}\right| < \left|\frac{1}{b^{\frac{n}{2}}}\right| < \varepsilon'$$

Остаточно, $\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \geq N : \left| \frac{n^k}{b^n} - 0 \right| < \varepsilon \iff \lim_{n \to \infty} \frac{n^k}{b^n} = 0,$ b > 1

Example 2.1.6. Доведемо, що не існує $\lim_{n\to\infty} (-1)^n$

Припускаемо, що даний ліміт збіжний, тобто $\lim_{n\to\infty} (-1)^n = a$, тобто

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |(-1)^n - a| < \varepsilon.$$
 Тоді $2 = \left| (-1)^n - (-1)^{n+1} \right| = \left| (-1)^n - a + a - (-1)^{n+1} \right| \le \left| (-1)^n - a \right| + \left| a - (-1)^{n+1} \right| < 2\varepsilon \Rightarrow \varepsilon > 1$

Прийшли до суперечності. Тому даний ліміт існувати не може

$$\begin{array}{ccc}
 & 1 - \varepsilon & 1 + \varepsilon \\
 & -1 & 1 & a_n = (-1)^n
\end{array}$$

Тут на малюнку я встановил границю a=1. Лише для деяких ε всі члени потраплятимуть всередину. Однак, скажімо, не для $\varepsilon=0.5$ як на малюнку, ось чому ліміт не може бути рівним 1. І так для кожного a

Definition 2.1.7. Послідовність $\{a_n, n \geq 1\}$ називається **обмеженою**, якщо

$$\exists C > 0 : \forall n \ge 1 : |a_n| \le C$$

Theorem 2.1.8. Будь-яка збіжна послідовність є обмеженою **Proof.**

Нехай задана збіжна послідовність $\{a_n, n \geq 1\}$, тобто для неї

$$\exists \lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |a_n - a| < \varepsilon$$

Оскільки ліміт існує, то задамо $\varepsilon=1$. Тоді: $\forall n\geq N: |a_n-a|<1$ Спробуємо оцінити вираз $|a_n|$ для нашого бажаного:

 $|a_n| = |a_n - a + a| \le |a_n - a| + |a| < 1 + |a|$. Це виконується $\forall n \ge N$. Інакше кажучи, всі числа, починаючи з N, є обмеженими.

Покладемо $C=\max\{|a_1|,|a_2|,\cdots,|a_{N-1}|,1+|a|\}$. Тоді отримаємо, що $\forall n\geq 1:|a_n|\leq C$, що й позначає обмеженість \blacksquare

Remark 2.1.8. Обернене твердеження не є вірним В **Ex. 2.1.4.** послідовність $\{(-1)^n, n \ge 1\}$ є обмеженою, але не збіжна

Definition 2.1.9. Посідовність $\{a_n, n \ge 1\}$ має границю ∞ , якщо виконується твердження:

$$\forall E > 0 : \exists N(E) \in \mathbb{N} : \forall n \ge N : |a_n| > E$$

Якщо $+\infty$, то $a_n > E$ Якщо $-\infty$, то $-a_n > E$

Example 2.1.10. Доведемо за означенням, що $\lim_{n\to\infty} 2^n = +\infty$ Задано довільне E>0. Необхідно знайти $N: \forall n\geq N: 2^n>E$ Думаю, зрозуміло, що $2^n>n$. Вимагатимемо тепер, щоб n>E Фіксуймо N=[E]+2. Тоді $\forall n\geq N: n>E$, а тим паче $2^n>n>E$ Тому $\lim_{n\to\infty} 2^n=+\infty$

Рис. 1: Тут на малюнку E=6. Тоді починаючи з n=3 (або з 4, 5,...), всі решта члени будуть правіше за червону лінію

Example 2.1.11. Доведемо, що $\lim_{n\to\infty} (-1)^n n = \infty$ Задано довільне E>0. Необхідно знайти $N: \forall n\geq N: |(-1)^n n|=n>E$. Але це ми вже доводили зверху

Remark 2.1.11. Тут не можна визначитись, чи $+\infty$, чи $-\infty$ через знакочередованість

Дійсно, $\lim_{n\to\infty} (-1)^n n \neq +\infty$, оскільки

$$\exists E = 10 : \forall N : \exists n = 2N - 1 \ge N : (-1)^n n = (-1)^{2N-1} (2N - 1) = 1 - 2N \le E$$

Аналогічно, $\lim_{n\to\infty} (-1)^n n \neq -\infty$

2.2 Нескінченно малі/великі послідовності

Definition 2.2.1.(1). Якщо послідовність $\{a_n, n \geq 1\}$ містить границю $\lim_{n \to \infty} a_n = 0$, то така послідовність називається **нескінченно малою** (**н.м.**)

Definition 2.2.1.(2). Якщо послідовність $\{a_n, n \ge 1\}$ містить границю

 $\lim_{n\to\infty} a_n = \infty$, то така послідовність називається **нескінченно великою** (н.в.)

Example 2.2.2. Зокрема $\left\{\frac{1}{n}, n \geq 1\right\}$ є нескінченно малою, а $\left\{2^n, n \geq 1\right\}$ є нескінченно великою, виходячи з минулих прикладів

Theorem 2.2.3. Арифметика н.м. та н.в.

Задані такі послідовності:

1.
$$\{a_n, n \geq 1\}$$
 - H.M.;

2.
$$\{b_n, n \ge 1\}$$
 - H.M.;

3.
$$\{c_n, n \ge 1\}$$
 - обмежена;

4.
$$\{d_n, n \ge 1\}$$
 - H.B.;

5.
$$\{p_n, n \geq 1\}$$
 - послідовність, що віддалена від 0

$$(\exists \delta > 0 : \forall n \ge 1 : |p_n| \ge \delta)$$

Тоді наступні послідовності:

1)
$$\{a_n + b_n, n \ge 1\}$$
 - H.M.

2)
$$\{C \cdot a_n, n \ge 1\}$$
 - н.м.

3)
$$\{c_n \cdot a_n, n \ge 1\}$$
 - H.M.

4)
$$\left\{\frac{1}{a_n}, n \ge 1\right\}$$
 - H.B.

5)
$$\left\{\frac{1}{d_n}, n \ge 1\right\}$$
 - H.M.

6)
$$\{p_n \cdot d_n, n \ge 1\}$$
 - H.B.

Proof.

1)
$$\lim_{n \to \infty} a_n = 0$$
, $\lim_{n \to \infty} b_n = 0$ $\stackrel{\text{def.}}{\Longleftrightarrow}$

$$\forall \varepsilon > 0 : \exists N_1(\varepsilon) : \forall n \ge N_1 : |a_n - 0| < \varepsilon \Rightarrow |a_n| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 : \exists N_2(\varepsilon) : \forall n \ge N_2 : |b_n - 0| < \varepsilon \Rightarrow |b_n| < \frac{\varepsilon}{2}$$

Нехай існує $N = \max\{N_1, N_2\}$. Тоді $\forall n \geq N$:

$$|a_n + b_n| \le |a_n| + |b_n| < \varepsilon$$

Отже, $\{a_n + b_n, n \ge 1\}$ - н.м.

3)
$$\lim_{n \to \infty} a_n = 0 \iff \forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |a_n - 0| < \varepsilon \Rightarrow |a_n| < \frac{\varepsilon}{M}$$

Також $\exists M > 0 : \forall n \geq 1 : |c_n| < M$

Тоді $\forall n \geq N : |a_n \cdot c_n| = |a_n| \cdot |c_n| < \varepsilon$

Отже, $\{a_n \cdot c_n, n \ge 1\}$ - н.м.

4)
$$\lim_{n\to\infty} a_n = 0 \iff \forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |a_n - 0| < \varepsilon \Rightarrow |a_n| < \varepsilon$$

Зафіксуємо
$$\varepsilon=\frac{1}{E}$$
. Тоді $\forall n\geq N: |a_n|<\frac{1}{E}\iff \left|\frac{1}{a_n}\right|>E$ Отже, $\left\{\frac{1}{a_n},n\geq 1\right\}$ - н.в.

2), 6) доводиться як 3). 5) доводиться аналогічно як 4) ■

Theorem 2.2.4. Про характеризацію збіжної послідовності

Послідовність $\{a_n, n \geq 1\}$ є збіжною $\iff a_n = a + \alpha_n$, де $\{\alpha_n, n \geq 1\}$ - н.м.

Proof.

$$\Longrightarrow$$
 Дано: $\{a_n, n \ge 1\}$ - збіжна, тобто $\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |a_n - a| < \varepsilon$

Позначимо $a_n - a = \alpha_n$. Тоді $a_n = a + \alpha_n$ та послідовність $\{\alpha_n, n \geq 1\}$ н.м., оскільки $|\alpha_n - 0| = |\alpha_n| = |a_n - a| < \varepsilon$

Дано:
$$\{\alpha_n, n \geq 1\}$$
 - н.м., де $a_n = a + \alpha_n$. Тоді $\forall \varepsilon > 0: \exists N(\varepsilon): \forall n \geq N: |\alpha_n - 0| < \varepsilon \Rightarrow |a_n - a| < \varepsilon$ Отже, $\{a_n, n \geq 1\}$ - збіжна \blacksquare

Theorem 2.2.5. Арифметика границь

Задані $\{a_n, n \ge 1\}$, $\{b_n, n \ge 1\}$ та $\exists \lim_{n \to \infty} a_n = a, \exists \lim_{n \to \infty} b_n = b$ Тоді:

- 1) $\exists \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$ 2) $\forall C \in \mathbb{R} : \exists \lim_{n \to \infty} C \cdot a_n = C \lim_{n \to \infty} a_n$ 3) $\exists \lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$

4)
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

Proof.

Обидва послідовності збіжні \iff $a_n = a + \alpha_n, \{\alpha_n, n \geq 1\}$ - н.м., а також $b_n = b + \beta_n, \, \{\beta_n, n \geq 1\}$ - н.м.

1)
$$a_n + b_n = a + \alpha_n + b + \beta_n = (a+b) + (\alpha_n + \beta_n)$$
, причому $\{\alpha_n + \beta_n, n \ge 1\}$ - н.м. \iff послідовність $\{a_n + b_n, n \ge 1\}$ має границю: $\lim_{n \to \infty} (a_n + b_n) = a + b = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$

- 2) довести самостійно
- 3) $a_nb_n ab = (a + \alpha_n)(b + \beta_n) ab = \alpha_nb + \alpha_n\beta_n + a\beta_n = \gamma_n$, причому послідовність $\{\gamma_n, n \geq 1\}$ - н.м. \iff послідовність $\{a_nb_n, n \geq 1\}$ має границю:

$$\lim_{n \to \infty} (a_n \cdot b_n) = ab = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

4) В принципі, це є наслідком 3), якщо представити послідовність $\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n}$

Треба лишень довести, що $\frac{1}{b_n} \to \frac{1}{b}, n \to \infty$

Відомо, що $b_n \to b \iff \forall \varepsilon > 0 : \exists N' : \forall n \geq N : |b_n - b| < \varepsilon$

Зафіксую $\varepsilon = \frac{|b|}{2}$, тоді $\exists N : \forall b \geq N'' : \forall n \geq N'' :$

 $|b| = |b - b_n + b_n| \le |b - b_n| + |b_n| < \frac{|b|}{2} + |b_n| \Rightarrow |b_n| > \frac{|b|}{2}$

Я хочу одночасно $|b_n| > \frac{|b|}{2}$ та $|b_n - b| < \varepsilon$, тож нехай $N = \max\{N', N''\}$,

 $\forall n \ge N : \left| \frac{1}{b_n} - \frac{1}{b} \right| = \frac{|b_n - b|}{|b_n||b|} < \frac{\varepsilon}{\frac{|b|}{2}|b|} = \frac{2}{|b|^2} \varepsilon$

Таким чином, можна твердити, що $\frac{1}{b_n} \to \frac{1}{b}, n \to \infty \Rightarrow \frac{a_n}{b_n} \to \frac{a}{b}$

Example 2.2.6. Знайти границю $\lim_{\substack{n \to \infty \\ 5}} \frac{2n^2 - 3n + 5}{1 - n - 3n^2}$

Example 2.2.6. Знайти границю
$$\lim_{n \to \infty} \frac{2n}{1 - n - 3n^2}$$

$$\lim_{n \to \infty} \frac{2n^2 - 3n + 5}{1 - n - 3n^2} = \lim_{n \to \infty} \frac{2 - \frac{3}{n} + \frac{5}{n^2}}{\frac{1}{n^2} - \frac{1}{n} - 3} = \frac{\lim_{n \to \infty} 2 - \frac{3}{n} + \frac{5}{n^2}}{\lim_{n \to \infty} \frac{1}{n^2} - \frac{1}{n} - 3} = \frac{\lim_{n \to \infty} 2 - \lim_{n \to \infty} \frac{1}{n^2} - \frac{1}{n} - 3}{\lim_{n \to \infty} \frac{1}{n^2} - \lim_{n \to \infty} \frac{1}{n} - \lim_{n \to \infty} \frac{5}{n}} = \frac{2 - 0 + 5}{0 - 0 - 3} = -\frac{2}{3}$$

$$= \frac{\lim_{n \to \infty} 2 - \lim_{n \to \infty} \frac{3}{n} + \lim_{n \to \infty} \frac{5}{n^2}}{\lim_{n \to \infty} \frac{1}{n^2} - \lim_{n \to \infty} \frac{1}{n^2}} = \frac{2 - 0 + 5}{0 - 0 - 3} = -\frac{2}{3}$$

Remark 2.2.6. Більш детально, чому рівності спрацьовують:

Оскільки існують ліміти в четвертому дробі, то існують ліміти в третьому дробі (як сума), то тоді існує ліміт в другому дробі (як частка)

Нерівності в границях 2.3

Theorem 2.3.1. Задані дві збіжні числові послідовності $\{a_n, n \ge 1\}$, $\{b_n, n \geq 1\}$ таким чином, що $\exists N' : \forall n \geq N' : a_n \leq b_n$. Тоді $\lim_{n\to\infty} a_n \le \lim_{n\to\infty} b_n$!Proof.

Задані дві збіжні послідовності, для яких $\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}b_n=b$

Припустимо, що a>b та розглянемо $\varepsilon=\frac{a-b}{2}$. Тоді за означенням границі,

 $\exists N_1 : \forall n \ge N_1 : |a_n - a| < \varepsilon \Rightarrow a_n > a - \varepsilon$

 $\exists N_2 : \forall n \ge N_2 : |b_n - b| < \varepsilon \Rightarrow b_n < b + \varepsilon$

Задамо $N = \max\{N_1, N_2\}$. Тоді

$$b_n < b + \varepsilon = b + \frac{a-b}{2} = \frac{a+b}{2} = a - \frac{a-b}{2} = a - \varepsilon < a_n \Rightarrow b_n < a_n$$
. Суперечність! \blacksquare

Corollary 2.3.1. Задана збіжна числова послідовность $\{b_n, n \geq 1\}$ таким чином, що $\exists N' : \forall n \geq N' : a \leq b_n$. Тоді $a \leq \lim_{n \to \infty} b_n$

Вказівка: розглянути послідовність $\{a_n = a, n \geq 1\}$ - так звана стаціонарна послідовність

Remark 2.3.1. Для інших нерівності ≥ аналогічно все. А також ця теорема спрацьовує для < або >, проте нерівність з границями залишається нестрогою

Theorem 2.3.2. Теорема про 3 послідовності

Задані три послідовності: $\{a_n,n\geq 1\},\{b_n,n\geq 1\},\{c_n,n\geq 1\}$ таким чином, що $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=a$. Більш того, $\exists N':\forall n\geq N':a_n\leq c_n\leq b_n$. Тоді $\exists \lim_{n\to\infty}c_n=a$

Proof.

$$\lim_{n\to\infty} a_n = a \iff \forall \varepsilon > 0 : \exists N_1(\varepsilon) : \forall n \geq N_1 : |a_n - a| < \varepsilon \Rightarrow a_n > a - \varepsilon$$

$$\lim_{n\to\infty} b_n = a \iff \forall \varepsilon > 0 : \exists N_2(\varepsilon) : \forall n \geq N_2 : |b_n - a| < \varepsilon \Rightarrow b_n < a + \varepsilon$$
Зафіксуємо $N = \max\{N_1, N_2, N'\}$. Тоді $\forall n \geq N$:
$$a - \varepsilon < a_n \leq c_n \leq b_n < a + \varepsilon \Rightarrow |c_n - a| < \varepsilon$$
Отже,
$$\lim_{n\to\infty} c_n = a \blacksquare$$

Example 2.3.3. Знайти границю $\lim_{n\to\infty} \sqrt[n]{2^n+7^n}$

Можна отримати наступну оцінку:

$$\sqrt[n]{7^n} \le \sqrt[n]{2^n + 7^n} \le \sqrt[n]{n \cdot 7^n}$$

Ця нерівність виконується завжди, починаючи з якогось номера n. Рахуємо ліміти з обох сторін

$$\lim_{n \to \infty} \sqrt[n]{7^n} = 7$$

$$\lim_{n \to \infty} \sqrt[n]{n \cdot 7^n} = 7 \lim_{n \to \infty} \sqrt[n]{n} = 7$$

Тому з цього випливає, що $\lim_{n\to\infty} \sqrt[n]{2^n+7^n}=7$

Монотонні послідовності. Число е 2.4

Definition 2.4.1. Послідовність $\{a_n, n \ge 1\}$ називається:

- строго монотонно зростаючою, якщо $\forall n \geq 1 : a_{n+1} > a_n$
- монотонно не спадною, якщо $\forall n \geq 1 : a_{n+1} \geq a_n$
- строго монотонно спадною, якщо $\forall n \geq 1 : a_{n+1} < a_n$
- монотонно не зростаючою, якщо $\forall n \geq 1 : a_{n+1} \leq a_n$

Example 2.4.2. Дослідимо послідовність
$$\left\{a_n = \sqrt{n}, n \geq 1\right\}$$
 на монотонність $a_{n+1} - a_n = \sqrt{n+1} - \sqrt{n} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} > 0$

 $\Rightarrow a_{n+1} > a_n$, тобто дана послідовність зростає

Theorem 2.4.3. Теорема Вейєрштрасса

Будь-яка обмежена та монотонна (принаймні починаючи з якогось номера) послідовність є збіжною

Proof.

Нехай задана послідовність $\{a_n, n \geq 1\}$, що задовільняє умові теореми.

Нехай вона монотонно не спадає

Оскільки вона монотонна, а ще - обмежена, то $\exists \sup\{a_n\} = a < +\infty$.

За критерієм sup:

$$\forall n \ge 1 : a_n \le a$$

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : a_N > a - \varepsilon$$

Отримаємо наступний ланцюг нерівностей: $\forall n \geq N$:

$$a - \varepsilon < a_N \le a_n \le a < a + \varepsilon \Rightarrow |a_n - a| < \varepsilon$$

Отже,
$$\exists \lim_{n\to\infty} a_n = \sup\{a_n\}$$

Для інших випадків монотонності все аналогічно

Example 2.4.4. Довести, що для послідовності $\left\{a_n = \frac{2000^n}{n!}, n \ge 1\right\}$

існує границя

Перевіримо на монотонність:

$$\frac{a_{n+1}}{a_n} = \frac{2000^{n+1}n!}{(n+1)!2000^n} = \frac{2000}{n+1}$$

Отримаємо, що $a_{n+1} < a_n$ принаймні $\forall n \geq 2000$

Послідовність обмежена принаймні знизу, тобто $a_n > 0$. Тоді для цієї

послідовності існує ліміт:

$$a = \lim_{n \to \infty} a_n$$
. Тоді також $a = \lim_{n \to \infty} a_{n+1}$ $a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{2000}{n+1} a_n = 0$. Отже, $\lim_{n \to \infty} a_n = 0$

Remark 2.4.4. Такими самими міркуваннями можна довести, що $\frac{n^k}{b^n}, \frac{b^n}{n!}, \frac{n!}{n^n} \to 0$, якщо $n \to \infty$

Example 2.4.5. Дізнатись, який вираз більший при надто великих n 2^n або n^{1000}

Відомо, що
$$\lim_{n\to\infty}\frac{n^{1000}}{2^n}=0$$

Якщо зафіксую $\varepsilon=1,$ то $\exists N: \forall n\geq N: \frac{n^{1000}}{2^n}<1$ Значить, $2^n > n^{1000}$

Розглянемо послідовність $\left\{a_n = \left(1 + \frac{1}{n}\right)^n, n \geq 1\right\}$. Спробуємо для неї знайти границю

1. Покажемо, що вона є монотонно зростаючою

$$\frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} = \left(1 + \frac{1}{n+1}\right) \left(\frac{1 + \frac{1}{n+1}}{1 + \frac{1}{n}}\right)^n = \frac{n+2}{n+1} \cdot \left(\frac{n(n+2)}{(n+1)^2}\right)^n = \frac{n+2}{n+1} \cdot \left(1 - \frac{1}{(n+1)^2}\right)^n = \frac{\frac{n+2}{n+1}}{1 - \frac{1}{(n+1)^2}} \cdot \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} = \frac{n+2}{n+1} \cdot \frac{(n+1)^2}{n^2 + 2n} \cdot \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \ge 1$$

Тут ми маємо права на третю дужку використати нерівність Бернуллі,

Тут ми маємо права на третю дужку використати нерівність Бернуллі,

оскільки
$$-\frac{1}{(n+1)^2} > -1$$

$$\ge \frac{n+2}{n+1} \cdot \frac{(n+1)^2}{n^2+2n} \cdot \left(1 - \frac{n+1}{(n+1)^2}\right) = \frac{n+1}{n} \left(1 - \frac{1}{n+1}\right) = 1$$

Коротше, $\frac{a_{n+1}}{a_n} \ge 1 \Rightarrow a_{n+1} \ge a_n$. Тобто наша послідовність монотонно зростає

2. Доведемо, що вона є обмеженою

Для цього требя розглянути $\left\{b_n = \left(1 + \frac{1}{n}\right)^{n+1}, n \geq 1\right\}$ і довести, що:

- a) $a_n < b_n \forall n \ge 1$
- b) вона є монотонно спадною
- а) Перший пункт очевидний, оскільки $\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n}\right)^{n+1}$ через однакову основу степені, що є більше одинички
- b) A це розпишу:

$$\frac{b_{n-1}}{b_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{1}{\left(1 + \frac{1}{n}\right)} \cdot \left(\frac{n^2}{n^2 - 1}\right)^n = \frac{n}{n+1} \cdot \left(1 + \frac{1}{n^2 - 1}\right)^n \ge 1$$

За аналогічними причинами я можу користатися нерівностю Бернуллі для другої дужки

$$\ge \frac{n}{n+1} \left(1 + \frac{n}{n^2 - 1} \right) = \frac{n}{n+1} + \frac{n^2}{(n+1)(n^2 - 1)} = \frac{n^3 + n^2 - n}{n^3 + n^2 - n - 1} > 1$$

Коротше, $\frac{b_{n-1}}{b_n} > 1 \Rightarrow b_n < b_{n-1}$. Тобто ця послідовність монотонно спадає

В результаті всього можемо отримати наступну обмеженність:

$$2 = a_1 \le a_2 \le \dots \le a_n < b_n \le \dots \le b_2 \le b_1 = 4$$
. Обмежена

 $2 = a_1 \le a_2 \le \dots \le a_n < b_n \le \dots \le b_2 \le b_1 = 4$. Обмежена А це означає, що для послідовності $\left\{a_n = \left(1 + \frac{1}{n}\right)^n, n \ge 1\right\}$ існує границя:

Theorem. 2.4.6.
$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e \approx 2.71...$$

До речі, оскільки $\{a_n\}$ зростає, а $\{b_n\}$ спадає та обидва обмежені, то:

$$\forall n \ge 1 : a_n < e < b_n$$

$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$$

Зробимо нове позначення: $\log_e a = \ln a$. Тоді:

$$n\ln\left(1+\frac{1}{n}\right) < 1 < (n+1)\ln\left(1+\frac{1}{n}\right)$$

В результаті ми можемо отримати одну оцінку:

$$\frac{1}{1+n} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$$

2.5Підпослідовності

Definition 2.5.1. Задана послідовність $\{a_n, n \geq 1\}$ Послідовність $\{a_{n_k}, k \geq 1\}$ називається **підпослідовністю**

Definition 2.5.2. Послідовністю натуральних чисел називають строго зростаючу послідовність $\{n_k, k \geq 1\} \subset \mathbb{N}$

Example 2.5.3.
$$\{n_k = 2k, k \ge 1\} = \{2, 4, 6, 8, \dots\} \subset \mathbb{N}$$

Proposition 2.5.3. Якщо для послідовності $\{a_n, n \geq 1\}$ $\exists \lim_{n \to \infty} a_n = a$, то

$$\exists \lim_{k \to \infty} a_{n_k} = a$$

Proof.

$$\exists \lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |a_n - a| < \varepsilon$$

Візьмемо підпослідовність $\{a_{n_k}, k \geq 1\}$. Оскільки послідовність

 $\{n_k, k \geq 1\}$ - строга зростаюча послідовність натуральних чисел, то $\exists \lim n_k = +\infty$

Тоді для
$$E=N(\varepsilon):\exists K(\varepsilon): \forall k\geq K: n_k>N$$

Зокрема оскільки $n_k > N$, то одразу $|a_{n_k} - a| < \varepsilon$

$$\Rightarrow \lim_{k \to \infty} a_{n_k} = a \blacksquare$$

Theorem 2.5.4. Теорема Больцано-Вейєрштрасса

Для будь-якої обмеженої послідовності існує збіжна підпослідовність Proof.

Розглянемо послідовність $\{a_n, n \ge 1\}$. Існують 2 випадки:

- 1. Послідовність скінченна (наприклад, як в Ех. 2.1.6.) Тоді одне із значень послідовності буде прийматись нескінченну кількість разів. Отримаємо стаціонарну підпослідовність, яка є збіжною
- 2. Послідовність нескінченна (наприклад, як Ех. 2.5.6.) Оскільки вона є обмеженою, то за іншою теоремою Больцано-Вейерштрасса, в неї існує гранична точка $b_* \iff \forall \varepsilon > 0 : \{a_n\} \cap (b_* - \varepsilon, b_* + \varepsilon)$ нескінченна множина

Розглянемо
$$\varepsilon = \frac{1}{k}$$

Розглянемо
$$\varepsilon = \frac{1}{k}$$
 $k=1:\{a_n\}\cap(b_*-1,b_*+1)\ni a_{n_1}$ $k=2:\{a_n\}\cap(b_*-\frac{1}{2},b_*+\frac{1}{2})\ni a_{n_2},n_2>n_1$

Побудовали підпослідовність $\{a_{n_k}, k \geq 1\}$ таким чином, що

$$b_* - \frac{1}{k} < a_{n_k} < b_* + \frac{1}{k}$$

А далі спрямуємо
$$k$$
 до нескінченності. В результаті чого отримаємо:
$$b_* - \frac{1}{k} < a_{n_k} < b_* + \frac{1}{k}, k \to \infty$$

$$\downarrow \qquad \swarrow$$

Тоді за теоремою про 2 поліцая, $\exists \lim_{k\to\infty} a_{n_k} = b_* \blacksquare$

Corollary 2.5.4. Множина всіх часткових границь не є порожньою Таку множину позначу за A

Definition 2.5.5.(1) Верхньою границею називають число:

$$\overline{\lim}_{n\to\infty} a_n \stackrel{\text{afo}}{=} \limsup_{n\to\infty} a_n = \sup A$$

Definition 2.5.5.(2) Нижньою границею називають число:

$$\underline{\lim}_{n \to \infty} a_n \stackrel{\text{afo}}{=} \liminf_{n \to \infty} a_n = \inf A$$

Example 2.5.6. Знайдемо часткові границі для послідовнонсті

$$\{a_n, n \ge 1\}$$
, де $a_n = (-1)^{n-1} \left(2 + \frac{3}{n}\right)$

Якщо n = 2k - 1, то маємо послідовність $\left\{ a_{n_k} = 2 + \frac{3}{2k - 1} \right\}$

$$\lim_{k \to \infty} \left(2 + \frac{3}{2k - 1} \right) = 2$$

Якщо n = 2k, то маємо послідовність $\left\{ a_{n_k} = -2 - \frac{3}{2k} \right\}$

$$\lim_{k \to \infty} \left(-2 - \frac{3}{2k} \right) = -2$$

Множина часткових границь: $A = \{-2, 2\}$ - не порожня

Тоді за означенням верхньої та нижньої границі,

$$\overline{\lim}_{n \to \infty} a_n = 2, \underline{\lim}_{n \to \infty} a_n = -2$$

Зауважимо одразу, що $\sup_{n\geq 1}\{a_n\}=5$ та $\inf_{n\geq 1}\{a_n\}=-3.5$

Example 2.5.6.(2). \in ще така послідовність $\left\{0, 1, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \dots\right\}$ У неї множина часткових границь задається так: A = [0, 1]

Remark 2.5.5. Якщо послідовність $\{a_n, n \geq 1\}$ не є обменежою:

- зверху, то
$$\overline{\lim}_{n\to\infty}=+\infty$$
 - знизу, то $\underline{\lim}_{n\to\infty}=-\infty$

Theorem 2.5.7. Будь-яка обмежена послідовність має верхню/нижню границю

Remark 2.5.7. Зазвичай, коли ми говоримо про верхні, нижні грані деякої множини X, то не обов'язково, щоб елемент $\sup X$, $\inf X$ лежали безпосередньо в множині X. Проте ця теорема каже, що верхня та нижня грані завжди будуть лежать в цій множині

Proof.

Наша мета: показати, що існує така $\{a_{n_k}, k \geq 1\}$, що

$$\lim_{k\to\infty}a_{n_k}=\varliminf_{n\to\infty}a_n=x_*=\inf X$$

Оскільки X - множина часткових границь, то

$$\forall \varepsilon > 0 : \exists x_{\varepsilon} \in X : x_* \le x_{\varepsilon} < x_* + \frac{\varepsilon}{2}$$

Оскільки $x_{\varepsilon} \in X$, то тоді це - часткова границя для послідовності

 $\{a_n, n \geq 1\}$. Тому за Больцано-Вейерштрасса, $\exists \{a_{n_m}^{(\varepsilon)}, m \geq 1\}$:

$$\lim_{m \to \infty} a_{n_m}^{(\varepsilon)} = x_{\varepsilon}$$

$$\Rightarrow \exists M(\varepsilon) : \forall m \ge M : |a_{n_m}^{(\varepsilon)} - x_{\varepsilon}| < \varepsilon$$

$$\Rightarrow |a_{n_m}^{(\varepsilon)} - x_*| = |a_{n_m}^{(\varepsilon)} - x_{\varepsilon} + x_{\varepsilon} - x_*| \le |a_{n_m}^{(\varepsilon)} - x_{\varepsilon}| + |x_{\varepsilon} - x_*| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

При
$$\varepsilon = 1$$
 маємо: $|a_{n_{M(1)}}^{(1)} - x_*| < 1$

При
$$\varepsilon=rac{1}{2}$$
 маємо: $|a_{n_{M(rac{1}{2})}}^{(rac{1}{2})}-x_{*}|<rac{1}{2}$

А тепер розглянемо підпослідовність $\{a_{n_k}, k \geq 1\}$, таку, що $a_{n_k} = a_{n_{M(\frac{1}{k})}}^{(\frac{1}{k})}$

За побудовою,
$$|a_{n_k} - x_*| < \frac{1}{k} \Rightarrow x_* - \frac{1}{k} < a_{n_k} < x_* + \frac{1}{k}, k \to \infty$$

Таким чином, для $\{a_{n_k}, k \geq 1\}$ існує $\lim_{k \to \infty} a_{n_k} = x_* = \lim_{n \to \infty} a_n \blacksquare$

Theorem 2.5.8. Задана $\{a_n, n \geq 1\}$ - обмежена та $L^* \in \mathbb{R}$. Наступні твердження еквівалентні:

$$I. L^* = \overline{\lim}_{n \to \infty} a_n$$

II. $\forall \varepsilon > 0$: проміжок $(L^* + \varepsilon, +\infty)$ містить скінченну кількість елементів та проміжок $(L^* - \varepsilon, +\infty)$ містить нескінченну кількість елементів

III. Нехай задана послідовність $\{b_m, m \geq 1\}$, де $b_m = \sup\{a_n\}$.

Тоді
$$\exists \lim_{m \to \infty} b_m = L^*$$

Proof.

$$\boxed{I \Rightarrow II}$$
 Дано: $L^* = \overline{\lim}_{n \to \infty} a_n$

Тоді $L^* = \sup A$. За попередньою теоремою, $L^* \in A$, тож існує $\{a_{n_k}, k \geq 1\}$, для якої $\lim_{k \to \infty} a_{n_k} = L^*$

$$\Rightarrow \forall \varepsilon > 0 : \exists K : \forall n_k \ge \overset{\kappa \to \infty}{K} : L^* - \varepsilon < a_{n_k} < L^* + \varepsilon$$

Звідси ми вже маємо, що на проміжку $(L^* - \varepsilon, +\infty)$ маємо нескінченну кількість елементів

!А далі припустимо, що $\exists \varepsilon^* > 0$: проміжок $(L^* + \varepsilon, +\infty)$ має НЕскінченну кількість елементів

Оскільки $\{a_n, n \geq 1\}$ - обмежена, то за Больцано-Вейєрштрасса, маємо підпослідовність $\{a_{n_m}, m \geq 1\}$ таку, що $a_{n_m} > L^* + \varepsilon$

Тоді звідси $\lim a_{n_m} = L^{**} \ge L^* + \varepsilon$

Тобто $L^{**} > L^*$, але L^* - верхня границя. Суперечність!

Висновок: $\forall \varepsilon > 0$: проміжок $(L^* + \varepsilon, +\infty)$ має скінченну кількість елементів

 $[II \Rightarrow III]$ Дано: $\forall \varepsilon > 0$: проміжок $(L^* + \varepsilon, +\infty)$ містить скінченну кількість елементів та проміжок $(L^*-\varepsilon, +\infty)$ містить нескінченну кількість елементів

Для початку розглянемо $\{b_m, m \geq 1\}$ та покажемо, що в неї дійсно ϵ границя

$$b_{m+1} \leq b_m$$
, тобто $\sup_{n \geq m+1} \{a_n\} \leq \sup_{n \geq m} \{a_n\}$. Думаю, зрозуміло

Також оскільки $\{a_n, n \geq 1\}$ - обмежена, то b_m будуть теж обмеженими Тоді за Вейєрштрассом, $\exists \lim_{m \to \infty} b_m = \inf_{m \ge 1} \{b_m\}$

Оскільки $(L^*+\varepsilon,+\infty)$ має скінченну кількість елементів, то $\exists M: \forall m \geq 1$

$$M: x_m \le L^* + \frac{\varepsilon}{2}$$

Тоді $\forall m \geq M : \overline{b}_m < L^* + \varepsilon$

Також оскільки $(L^* - \varepsilon, +\infty)$ має нескінченну кількість елементів, то $b_m > L^* - \varepsilon, \forall m \ge 1$

Остаточно, $\forall \varepsilon > 0 : \exists M : \forall m \geq M : |b_m - L^*| < \varepsilon$ Отже, $\lim_{m\to\infty} b_m = L^*$

$$\fbox{III} \Rightarrow \textmd{I}$$
 Дано: $\lim_{m \to \infty} b_m = L^*$

Візьмемо деяку підпослідовність $\{a_{n_k}, k \geq 1\}$. Маємо нерівність:

$$a_{n_k} \le b_{n_k} \le b_k \Rightarrow \lim_{k \to \infty} a_{n_k} \le L^*$$

Візьмемо деяку підпослідовність
$$\{a_{n_k}, k \geq 1\}$$
. Маємо нерівніс $a_{n_k} \leq b_{n_k} \leq b_k \Rightarrow \lim_{k \to \infty} a_{n_k} \leq L^*$

$$\lim_{m \to \infty} b_m = L^* \Rightarrow \forall \varepsilon > 0 : \exists M : \forall m \geq M : L^* - \varepsilon < b_m < L^* + \varepsilon$$

Для номера M виконано $b_M > L^* - \varepsilon$. Але не всі a_n , де $n \ge M$, можуть виконувати нерівність

Отже, виділимо підпослідовність $\{a_{n_k}^\varepsilon, k \ge 1\}$, для яких $a_{n_k}^\varepsilon > L^* - \varepsilon$

A тоді $a_{\varepsilon} > L^* - \varepsilon$

Таким чином, ми отримали:

 $1) \forall a \in A : a \leq L^*$

 $2)\forall \varepsilon > 0: \exists a_{\varepsilon}: a_{\varepsilon} > \underline{L}^* - \varepsilon$

Тобто $L^* = \sup A = \overline{\lim}_{n \to \infty} a_n \blacksquare$

2.6 Фундаментальна послідовність

Definition 2.6.1. Послідовність $\{a_n, n \geq 1\}$ називається **фундаментальною**, якщо

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \ge N : |a_n - a_m| < \varepsilon$$

Theorem 2.6.2. Критерій Коші

Послідонвість $\{a_n, n \geq 1\}$ є збіжною \iff вона є фундаментальною **Proof.**

 \implies Дано: $\{a_n, n \geq 1\}$ - збіжна, тобто: $\forall \varepsilon > 0: \exists N:$

 $\forall n \ge N : |a_n - a| < \frac{\varepsilon}{2}$

 $\forall m \ge N : |a_m - a| < \frac{\varepsilon}{2}$

А тоді отримаємо,

 $|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a_m - a| < \varepsilon$

Отже, послідовність є фундаментальною

 \sqsubseteq Дано: $\{a_n, n \geq 1\}$ - фундаментальна, тобто

 $\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \geq N : |a_n - a_m| < \varepsilon$

I. Доведемо, що вона ε обмеженою

Для $\varepsilon=1:\exists N: \forall n\geq N, m=N: |a_n-a_N|<1$

$$\Rightarrow |a_n| = |a_n - a_N + a_N| \le |a_n - a_N| + |a_N| < 1 + |a_N|$$

Задамо $C = \max\{|a_1|, \ldots, |a_{N-1}|, |1| + |a_N|\}$

Тоді $\forall n \geq 1 : |a_n| \leq C$, тобто обмежена

II. Доведемо її збіжність

Оскільки наша послідовність обмежена, виділимо збіжну підпослідовність

$$\{a_{n_k}, k \ge 1\}, \lim_{n \to \infty} a_{n_k} = a \Rightarrow$$

$$\forall \varepsilon > 0 : \exists K : \forall n_k \ge K : |a_{n_k} - a| < \frac{\varepsilon}{2}$$

Покладемо $m=n_k$. Тоді:

$$|a_n - a| = |a_n - a_{n_k} + a_{n_k} - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \varepsilon$$

Тобто $\exists \lim_{n \to \infty} a_n = a \blacksquare$

Remark 2.6.1. Означення фундаментальної послідовності можна записати й таким чином

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \geq N : \forall p \geq 1 : |a_{n+p} - a_n| < \varepsilon$$

Дійсно, якщо покласти m=n+p, де $p\in\mathbb{N}$, то отримаємо бажане

Example 2.6.3. Розглянемо послідовність
$$\{a_n, n \geq 1\}$$
: $a_n = \frac{\sin 1}{1^2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{n^2}$ Доведемо її фундаментальність за означенням

$$|x_{n+p} - x_n| \le \frac{1}{(n+1)^2} + \dots + \frac{1}{(n+p)^2} \le \frac{1}{n(n+1)} + \dots + \frac{1}{(n+p-1)(n+p)} = \frac{1}{n} - \frac{1}{n-1} + \dots + \frac{1}{n+p-1} - \frac{1}{n+p} = \frac{1}{n} - \frac{1}{n+p} \le \frac{1}{n} < \varepsilon$$

$$\Rightarrow n > \frac{1}{\varepsilon}$$

Встановимо $N = \left[\frac{1}{\varepsilon}\right] + 1$. Тоді $\forall n \geq N : \forall p \geq 1 : |x_{n+p} - x_n| < \varepsilon$

Отже, наша послідовність - фундаментальна

2.7 *Деякі теоретичні факти

Proposition 2.7.1. Задано $\{a_n, n \geq 1\}$ - збіжний. Тоді $\{|a_n|, n \geq 1\}$ - збіжний

Proof.

Тоог.
$$\exists \lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 : \exists N : \forall n \ge N : |a_n - a| < \varepsilon$$
 Тоді $||a_n| - |a|| \le |a_n - a| < \varepsilon$ А це означає, що $\exists \lim_{n \to \infty} |a_n| = |a|$

Remark 2.7.1. В зворотньому порядку не працює, принаймні для $\{a_n = (-1)^n, n \ge 1\}$

Theorem 2.7.2. Задано множина $A \subset \mathbb{R}$

$$a$$
 - гранична точка $A\iff\exists\{a_n,n\geq 1\}\subset A:\lim_{n\to\infty}a_n=a$, причому $\forall n\geq 1:a_n\neq a$

Proof.

 \Longrightarrow Дано: a - гранична т. A, тоді $\forall \varepsilon>0: (a-\varepsilon,a+\varepsilon)\cap A$ - нескінченна множина

$$\varepsilon = 1 : \exists a_1 \in (a - 1, a + 1) \cap A$$

$$\varepsilon = \frac{1}{2} : \exists a_2 \in (a - \frac{1}{2}, a + \frac{1}{2}) \cap A$$

Побудували послідовність $\{a_n, n \geq 1\}$, таку, що $a_n \in (a - \frac{1}{n}, a + \frac{1}{n}) \cap A$

Тобто
$$a - \frac{1}{n} < a_n < a + \frac{1}{n}$$

За теоремою про двох поліцаїв, якщо $n \to \infty$, то отримаємо, що $\exists \lim_{n \to \infty} a_n = a$

Дано:
$$\exists \{a_n, n \geq 1\} \subset A : \forall n \geq 1 : a_n \neq a : \lim_{n \to \infty} a_n = a$$
 $\Longrightarrow \forall \varepsilon > 0 : \exists N : \forall n \geq N : |a_n - a| < \varepsilon \Longrightarrow a_n \in (a - \varepsilon, a + \varepsilon)$ А отже, $(a - \varepsilon, a + \varepsilon) \cap A$ - нескінченна множина, тож a - гранична точка

2.8 *Константа Ейлера-Маскероні

Розглянемо дві послідовності
$$\{a_n, n \geq 1\}, \{b_n, n \geq 1\}$$
, такі, що $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n+1)$ $b_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$

Покажемо, що ці дві послідовності є взагалі збіжними

1) Покажемо, що
$$\forall n \geq 1: a_n < b_n$$
. Справді, $a_n - b_n = -\ln(n+1) + \ln n = \ln \frac{n}{n+1} = \ln \left(1 - \frac{1}{n+1}\right) < 0$

2) Покажемо, що
$$\forall n \geq 1: a_{n+1} > a_n$$
 $a_n - a_{n+1} = -\ln(n+1) - \frac{1}{n+1} + \ln(n+2) = -\frac{1}{n+1} + \ln\left(1 + \frac{1}{n+1}\right)$ \leq Згадаємо нерівність $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$ $\leq -\frac{1}{n+1} + \frac{1}{n+1} = 0$ $\Rightarrow a_{n+1} > a_n$

3) Показується аналогічним чином як в 1), що $\forall n \geq 1 : b_{n+1} < b_n$ Тоді ми маємо:

$$\forall n \ge 1 : 1 - \ln 2 = a_1 < a_2 < \dots < a_n < b_n < \dots < b_2 < b_1 = 1$$

Остаточно: $\{b_n, n \geq 1\}$ - монотонна та обмежена послідовність. Тоді

$$\exists\lim_{n\to\infty}\left(1+rac{1}{2}+rac{1}{3}+\cdots+rac{1}{n}-\ln n
ight)=\gammapprox0.57$$
 - стала Ейлера-Маскероні Туди ж прямує послідовність $\{a_n,n\geq 1\}$

*Теорема Штольца 2.9

Theorem 2.9.1. Теорема Штольца

Задані дві послідовності $\{a_n, n \geq 1\}, \{b_n, n \geq 1\}$, які мають наступні властивості

1) $\{b_n\}$ - н.в. та монотонно строго зростає (можливо, з якогось номера)

2)
$$\exists \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L$$

Тоді $\exists \lim_{n \to \infty} \frac{a_n}{b_n} = L$

Тоді
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = L$$

Proof.

Розглянемо випадок, коли $L<\infty$

$$\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = L \Rightarrow \exists N: \forall n\geq N: \left|\frac{a_{n+1}-a_n}{b_{n+1}-b_n}-L\right|<\varepsilon$$

$$\Rightarrow L-\varepsilon<\frac{a_{n+1}-a_n}{b_{n+1}-b_n}< L+\varepsilon$$

Оскільки $\{b_n\}$ - монотонно зростає, то ми домножимо на $b_{n+1}-b_n$, отримаємо:

$$\Rightarrow (L-\varepsilon)(b_{n+1}-b_n) < a_{n+1}-a_n < (L+\varepsilon)(b_{n+1}-b_n)$$

Зафіксуємо k > N та просумуємо це до k

Матимемо, що $(b_{N+1}-b_N)+(b_{N+2}-b_{N+1})+\cdots+(b_{k+1}-b_k)=b_{k+1}-b_N$ Аналогічно $(a_{N+1}-a_N)+(a_{N+2}-a_{N+1})+\cdots+(a_{k+1}-a_k)=a_{k+1}-a_N$ $\Rightarrow (L - \varepsilon)(b_{k+1} - b_N) < a_{k+1} - a_N < (L + \varepsilon)(b_{k+1} - b_N)$

Поділимо на $b_{k+1} > 0$, оскільки вона строго монотонно зростає

Поділимо на
$$b_{k+1} > 0$$
, оскільки вона строго монотонно зростає $\Rightarrow (L - \varepsilon) \left(1 - \frac{b_N}{b_{k+1}} \right) < \frac{a_{k+1}}{b_{k+1}} - \frac{a_N}{b_{k+1}} < (L + \varepsilon) \left(1 - \frac{b_N}{b_{k+1}} \right)$ $\Rightarrow (L - \varepsilon) \left(1 - \frac{b_N}{b_{k+1}} \right) + \frac{a_N}{b_{k+1}} < \frac{a_{k+1}}{b_{k+1}} < (L + \varepsilon) \left(1 - \frac{b_N}{b_{k+1}} \right) + \frac{a_N}{b_{k+1}}$ Спрямуємо $k \to \infty$, тоді за теоремою про нерівність та з урахуві

Спрямуємо $k \to \infty$, тоді за теоремою про нерівність та з урахуванням тим, що $\{b_n\}$ - н.в. величина, маємо

$$(L - \varepsilon) < \lim_{k \to \infty} \frac{a_{k+1}}{b_{k+1}} < (L + \varepsilon)$$

$$\Rightarrow \left| \lim_{k \to \infty} \frac{a_{k+1}}{b_{k+1}} - L \right| < \varepsilon, \forall \varepsilon > 0$$

Остаточно отримаємо:
$$\lim_{k\to\infty}\frac{a_{k+1}}{b_{k+1}}=L$$

А тепер
$$\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}=+\infty$$
 $\Rightarrow E=1:\exists N:\forall n\geq N: a_{n+1}-a_n>b_{n+1}-b_n\Rightarrow a_{n+1}>a_n$ Тоді $\lim_{n\to\infty} \frac{b_{n+1}-b_n}{a_{n+1}-a_n}=0$

Щойно зверху довели, що звідси $\lim_{n\to\infty}\frac{b_n}{a_n}=0\Rightarrow\lim_{n\to\infty}\frac{a_n}{b_n}=+\infty$ Для $-\infty$ треба розглянути послідонвість $\{-a_n\}$

Theorem 2.9.2. Теорема Штольца 2

Задані дві послідовності $\{a_n, n \geq 1\}, \{b_n, n \geq 1\}$, які мають наступні властивості

1) $\{a_n\}, \{b_n\}$ - н.м. та монотонно строго спадають (можливо, з якогось номера)

2)
$$\exists \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L$$
 Тоді $\exists \lim_{n \to \infty} \frac{a_n}{b_n} = L$

Доведення ϵ аналогічним

Example 2.9.3. Знайдемо границю $\lim_{n\to\infty}\frac{1^k+2^k+\cdots+n^k}{n^{k+1}}, k\in\mathbb{N}$ Маємо зверху послідовність $\{a_n=1^k+2^k+\cdots+n^k, n\geq 1\}$, що строго монотонно зростає, а також є н.в. Знайдемо одну границю як в теоремі

Штольца:

Перед цим ми маємо ще послідовність $\{b_n = n^{k+1}, n \ge 1\}$

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n \to \infty} \frac{(n+1)^k}{(n+1)^{k+1} - n^{k+1}} =$$

$$x^{n} - y^{n} = (x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})$$

$$\begin{array}{l}
x - y = (x - y)(x + x + y + \dots + xy + y) \\
\equiv \lim_{n \to \infty} \frac{(n + 1)^k}{(n + 1 - n)((n + 1)^k + (n + 1)^{k-1}n + \dots + (n + 1)n^{k-1} + n^k)} = \\
= \lim_{n \to \infty} \frac{1}{1 + \frac{n}{(n + 1)} + \dots + \frac{n^{k-1}}{(n + 1)^{k-1}} + \frac{n^k}{(n + 1)^k}} = \frac{1}{1 + 1 + \dots + 1} = \frac{1}{k + 1}
\end{array}$$

Тоді за теоремою Штольца, $\lim_{n\to\infty}\frac{1^k+2^k+\cdots+n^k}{n^{k+1}}=\frac{1}{k+1}, k\in\mathbb{N}$

Theorem 2.9.4. Теореми Чезаро

1. Якщо
$$\exists \lim_{n \to \infty} a_n = L$$
, то $\exists \lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = L$

2. Якщо
$$\exists \lim_{n \to \infty}^{n \to \infty} a_n = L$$
, то $\exists \lim_{n \to \infty}^{n \to \infty} \sqrt[n]{a_1 \dots a_n} = L$. Причому $\forall n \ge 1 : a_n > 0$

1. Якщо
$$\exists \lim_{n \to \infty} a_n = L$$
, то $\exists \lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = L$
2. Якщо $\exists \lim_{n \to \infty} a_n = L$, то $\exists \lim_{n \to \infty} \sqrt[n]{a_1 \dots a_n} = L$. Причому $\forall n \ge 1 : a_n > 0$
3. Якщо $\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$, то $\exists \lim_{n \to \infty} \sqrt[n]{a_n} = L$. Причому $\forall n \ge 1 : a_n > 0$

Proof.

1. Зафіксуємо послідовність
$$\{S_n = a_1 + \dots + a_n, n \ge 1\}$$

1. Зафіксуємо послідовність
$$\{S_n = a_1 + \dots + a_n, n \geq 1\}$$
 Тоді маємо $\lim_{n \to \infty} \frac{S_n}{n}$ Тh. Штольца $\lim_{n \to \infty} \frac{S_{n+1} - S_n}{(n+1) - n} = \lim_{n \to \infty} a_{n+1} = L$

2.
$$\exists \lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = L \Rightarrow \forall \varepsilon > 0 : \exists N : \forall n : \left| \frac{a_1 + \dots + a_n}{n} - L \right| < \varepsilon$$
 Тоді $\left| \sqrt[n]{a_1 \dots a_n} - L \right| \le \left| \frac{a_1 + \dots + a_n}{n} - L \right| < \varepsilon$

$$\Rightarrow \exists \lim_{n \to \infty} \sqrt[n]{a_1 \dots a_n} = n$$

3. Зафіксуємо послідовність $\{b_1 = a_1, b_n = \frac{a_n}{a_{n-1}}, n \geq 2\}$. Тоді маємо:

$$\lim_{n\to\infty} \frac{a_n}{a_{n-1}} = \lim_{n\to\infty} b_n = \lim_{n\to\infty} \sqrt[n]{b_1 \dots b_n} = \lim_{n\to\infty} \sqrt[n]{a_1 \frac{a_2}{a_1} \dots \frac{a_n}{a_{n-1}}} = \lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{a_1 \frac{a_2}{a_1} \dots \frac{a_n}{a_{n-1}}} = \lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{a_1 \frac{a_2}{a_1} \dots \frac{a_n}{a_{n-1}}} = \lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{a_1 \frac{a_2}{a_1} \dots \frac{a_n}{a_{n-1}}} = \lim_{n\to\infty} \sqrt[n]{a_1 \frac{a_2}{a_1} \dots \frac{a_n}{a_n}} = \lim_{n\to\infty} \sqrt[n]{a_1 \frac{a_2}{a_1} \dots \frac{a_n}{a_n}} = \lim_{n\to\infty} \sqrt[n]{a_1 \frac{a_2}{a_1} \dots \frac{a_n}{a_n}} = \lim_{n\to\infty} \sqrt[n]{a_1 \frac{a_1}{a_1} \dots \frac{a_n}{a_n}} = \lim_{n\to\infty} \sqrt[n]{a_1$$

Example 2.9.5. Знайти границю $\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}$

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{n!}}$$

За третім пунктом Тh. 2.9.4., спробуємо обчислити границю:

$$\lim_{n\to\infty}\frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}}=\lim_{n\to\infty}\frac{(n+1)^n}{n^n}=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$$
 Тоді
$$\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}=\lim_{n\to\infty}\sqrt[n]{\frac{n^n}{n!}}=e$$

*Ірраціональність числа e

Спочатку треба довести інше означення числа e

Proposition 2.10.1.
$$\lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right) = e$$

Proof.

Згадаємо, що $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$. Розкриємо тепер за біномом Ньютона

$$\left(1 + \frac{1}{n}\right)^n = 1 + C_n^1 \frac{1}{n} + C_n^2 \frac{1}{n^2} + \dots + C_n^n \frac{1}{n^n} = 1 + \frac{n}{1!n} + \frac{n(n-1)}{2!n^2} + \frac{n(n-1)(n-2)}{3!n^3} + \dots + \frac{n(n-1)\dots 2 \cdot 1}{n!n^n}$$

$$\Rightarrow \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \left(1 + \frac{n}{1!n} + \frac{n(n-1)}{2!n^2} + \dots + \frac{n(n-1)\dots 2 \cdot 1}{n!n^n}\right) = 1 + \lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right) = e$$

А тепер час припустити, що $e \in \mathbb{Q}$, тобто це - раціональне, отже $e = \frac{m}{k}, m \in \mathbb{Z}, k \in \mathbb{N}$

Водночас ми знаємо, що
$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{k!} + \frac{1}{(k+1)!} + \dots$$

Помножимо обидві частини на k!, отримаємо:

$$ek! = k! + \frac{k!}{1!} + \frac{k!}{2!} + \dots + 1 + \frac{1}{k+1} + \frac{1}{(k+1)(k+2)} + \dots$$

Ліва частина - ціле число, в правій частині всі доданки до дробу - цілі числа, але 1

$$\frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)} + \dots = \lim_{n \to \infty} \left(\frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)} + \dots + \frac{1}{(k+1)(k+2)\dots(k+n)} \right) < 0$$

$$<\lim_{n\to\infty}\left(\frac{1}{(k+1)(k+2)}+\frac{1}{(k+2)(k+3)}+\dots+\frac{1}{(k+(n-1))(k+n)}\right)=\\\lim_{n\to\infty}\left(\frac{1}{k+1}-\frac{1}{k+2}+\frac{1}{k+2}-\frac{1}{k+3}+\dots+\frac{1}{k-(n-1)}-\frac{1}{k+n}\right)=\frac{1}{k+1}$$
 Тобто $ek!< M+\frac{2}{k+1}$

Число, яке ми оцінювали, виявляється, менше за 1, тому що вона менше за такий вираз, який також менше за 1. Отримаємо суперечність! ■

2.11 *Звідки виник окіл в нескінченності

Розглянемо таку картину - коло Рімана. Нижній дотик кола буде відповідати границі 0, а верхня точка - границя ∞ .

Проведемо промінь так, щоб вона перетнула вісь. Кожна точка кола ставить у відповідність точку на вісі - отже, й окіл теж. На цьому малюнку окіл т. a кола ставить у відповідність звичний окіл т. a, тобто $U_{\varepsilon}(a)$

Візьмемо тепер окіл в нескінченності. Я розглядатиму праву частину півкола, де $+\infty$, для іншої аналогічно. Відступимо від $+\infty$ трошки праворуч. Нарешті, проведемо між двома точками пряму

Тоді якщо подивитись на малюнок, околом $U_E(+\infty)=\{x\in\mathbb{R}:x>E\}$ Аналогічними міркуваннями $U_E(-\infty)=\{x\in\mathbb{R}:x<-E\}$ Узагальнення: $U_E(\infty)=\{x\in\mathbb{R}:|x|>E\}$

3 Границі функції

3.1 Основні поняття про функції

Definition 3.1.1 Задані дві множини X, Y.

Відображенням f із множини X в множину Y називають правило, в якому кожному елементу з X ставиться у відповідність елемент з Y Позначення: $f: X \to Y$

Якщо X та Y ϵ числовими множинами, то відображенням називають функцією

Example 3.1.2.(1) Задані дві множини:

$$X = \{0; 1; 2; 3\}$$

$$Y = \{-1; \sqrt{2}, 17, \sqrt{101}, 124, 1111\}$$

Можна побудувати таке відображення $X \to Y$:

- X Y
- $0 \sqrt{2}$
- 1 1111
- $2 \sqrt{2}$
- $3 \sqrt{101}$

Example 3.1.2.(2) Задане таке відображення: $f: [-4; 5] \to \mathbb{R}$ $f(x) = 2^x$

Це вже можна називати функцією

Definition 3.1.3. Задані два відображення: $f: X \to Y, g: Y \to Z$ **Композицією відображень** f та g називають відображення $h: X \to Z$ таке, що:

$$\forall x: h(x) = g(f(x)), \text{ also } h(x) = (g \circ f)(x)$$

Example 3.1.4. $f, g : \mathbb{R} \to \mathbb{R}, f(x) = x^2, g(x) = \sin x$ Тоді $h : \mathbb{R} \to \mathbb{R}, h(x) = g(f(x)) = \sin x^2$

Proposition 3.1.5. Асоціативність композиції

Задані $f:W \to X,\, g:X \to Y,\, h:Y \to Z$

Тоді $h \circ (g \circ f) = (h \circ g) \circ f$

Proof.

$$(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x)))$$

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x))) \blacksquare$$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Definition 3.1.6. Відображення $f: X \to Y$ називається:

- **ін'єкцією**, якщо $\forall x_1, x_2 \in X : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
- **сюр'єкцією**, якщо $\forall y \in Y: \exists x: f(x) = y$
- бієкцією, якщо $\forall y \in Y : \exists !x : f(x) = y$

Example 3.1.7.

- 1) $f: \mathbb{R} \to [-1, 1]: f(x) = \cos x$ сюр'єкція
- 2) $f: \mathbb{R} \to \mathbb{R}$: $f(x) = 3^x$ ін'єкція
- 3) $f: \mathbb{R} \to \mathbb{R}$: $f(x) = x^3$ бієкція
- 4) $f: \mathbb{R} \to \mathbb{R}$: f(x) = |x| жодна з означень

Proposition 3.1.8. Відображення є бієкцією \iff є одначно сюр'єкцією та ін'єкцією

Proof.

 $f: X \to Y$

 \implies Дано: f - бієкція, тобто $\forall y \in Y : \exists !x : f(x) = y \Rightarrow$

1) $\forall y \in Y: \exists x: f(x) = y$ - сюр'єкція

2) Якщо при $x_1 \neq x_2$ вважати, що $f(x_2) = f(x_1) = y$, то це суперечить умові бієкції. Тому $f(x_1) \neq f(x_2)$ - ін'єкція Отже, f - одночасно сюр'єкція та ін'єкція

 \sqsubseteq Дано: f - одночасно сюр'єкцієя та ін'єкція Візьмемо довільне $y_0 \in Y$. Тоді $\exists x_1, x_2 : f(x_1) = f(x_2) = y_0$. Суперечить ін'єкції. Тоді $\exists !x : f(x) = y$ - бієкція \blacksquare

Definition 3.1.9. Відображення $f: X \to Y, g: Y \to X$ називаються **взаємно оберненою**, якщо:

$$\forall x \in X : g(f(x)) = x$$
$$\forall y \in Y : f(g(y)) = y$$

Позначення: $g = f^{-1}$

Example 3.1.10.

1) $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = x^3, g(x) = \sqrt[3]{x}$$

2) $f: \mathbb{R} \to \mathbb{R}$:

 $f(x) = x^2$, але $g(x) = \sqrt{x}$ бути не може

Proposition 3.1.11. Функції f, g - взаємно обернені \iff вони є бієкціями **Proof.**

 \Longrightarrow Дано: $f(g(y)) = y, \forall y$

Тобто $\forall y \in Y: \exists x = g(y): f(x) = f(g(y)) = y$. Отже, f - сюр'єкція

Дано $x_1 \neq x_2$ і нехай $f(x_1) = f(x_2) = y_0$.

Тоді $g(y_0)=g(f(x_1))=x_1$ та $g(y_0)=g(f(x_2))=x_2$ і вони рівні. Отже, суперечення

Тоді $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$. Отже, f - ін'єкція

3 g все аналогічно

Розглянемо функцію $f:X \to Y$. Визначимо функцію $g:Y \to X$ так, що x=g(y)

Definition 3.1.12. Задано відображення $f: X \to Y$ **Образом** множини $X_0 \subset X$ називається множина

$$f(X_0) = \{ f(x) \in Y : x \in X_0 \}$$

Повним прообразом множини $Y_0 \subset Y$ називається множина

$$f^{-1}(Y_0) = \{ x \in X : f(x) \in Y_0 \}$$

Example 3.1.13. $f: \mathbb{R} \to \mathbb{R}$: $f(x) = x^2$

$$A = [-5, 4)$$

$$\Rightarrow f(A) = \{f(x) = x^2 : x \in [-5, 4)\} = [0, 25]$$

$$\Rightarrow f^{-1}(A) = \{x : f(x) = x^2 \in [-5, 4)\} \stackrel{x^2 < 4}{=} (-2, 2)$$

Proposition 3.1.14. Властивості повних прообразів

$$1)f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

$$2)f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

$$3)f^{-1}(\overline{A}) = \overline{f^{-1}(A)}$$

Випливає з теорії множин

Remark 3.1.14. Властивість образів не часто співпадають:

$$f(A \cap B) \neq f(A) \cap f(B)$$

3.2 Границі функції

Definition 3.2.1. Задана функція $f: A \to \mathbb{R}$ та $x_0 \in A$ - гранична точка Число b називається **границею функції в т.** x_0 , якщо:

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon$$
 - def. Komi

$$\forall \{x_n, n \geq 1\} \subset A: x_n \neq x_0: \forall n \geq 1: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$$
 - def. Гейне

Позначення: $\lim_{x \to x_0} f(x) = b$

Theorem 3.2.2. Означення Коші ← Означення Гейне Proof.

⇒ Дано: означення Коші, тобто

 $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon$

Зафіксуємо послідовність $\{x_n, n \ge 1\} \subset A$ таку, що:

$$\forall n \ge 1 : x_n \ne x_0 : \lim_{n \to \infty} x_n = x_0$$

На це ми мали права, оскільки x_0 - гранична точка A

Тоді для нашого заданого $\delta:\exists N:\forall n\geq N:|x_n-x_0|<\delta$

$$\Rightarrow \forall \varepsilon > 0 : \exists N : \forall n \ge N : |f(x_n) - b| < \varepsilon$$

Таким чином, $\lim_{n\to\infty} f(x_n) = b$ - означення Гейне

Дано: означення Гейне, тобто

 $\forall \{x_n, n \ge 1\} \subset A : x_n \ne x_0 : \forall n \ge 1 : \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$

!Припустимо, що означення Коші не виконується, тобто

$$\exists \varepsilon^* > 0 : \forall \delta > 0 : \exists x_\delta \in A : x_\delta \neq x_0 : |x_\delta - x_0| < \delta \Rightarrow |f(x_\delta) - b| \ge \varepsilon^*$$

Зафіксуємо $\delta = \frac{1}{n}$. Тоді побудуємо послідовність $\{x_n, n \geq 1\}$ таким

чином, що $x_n \in A: |x_n - x_0| < \frac{1}{n} \Rightarrow \exists \lim_{x \to \infty} x_n = x_0$ за теоремою про поліцаї, але водночас $|f(x_n) - b| \ge \varepsilon^*$

Отже, суперечність! ■

Remark 3.2.1. Границя функції має єдине значення

Випливає з означення Гейне, оскільки границя числової послідовності є единою

Example 3.2.3.(1) Довести, що $\lim_{x\to 2} x^2 = 4$

За означенням Коші,

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x : |x - 2| < \delta \Rightarrow |x^2 - 4| < \varepsilon$$
$$|x^2 - 4| = |x - 2||x + 2|| < \varepsilon$$

Нехай |x-2| < 1. Тоді $-1 < x-2 < 1 \Rightarrow |x+2| < 5$ $|<|5|x-2|<\varepsilon$

Якщо вказати $\delta = \min\left\{1, \frac{\varepsilon}{5}\right\}$, то тоді наше означення Коші буде виконаним

Схематично це виглядає ось так

Example 3.2.3.(2) Довести, що не існує границі $\lim_{\longrightarrow} \arctan \frac{1}{2}$

За означенням Гейне, зафіксуємо наступну послідовність:

$$\left\{x_n = \frac{(-1)^n}{n}, n \ge 1\right\}, \text{ де } \lim_{n \to \infty} x_n = 0$$
Але $\lim_{n \to \infty} \arctan \frac{1}{x_n} = \begin{bmatrix} \frac{\pi}{2}, n = 2k \\ -\frac{\pi}{2}, n = 2k - 1 \end{bmatrix}$ - не збіжна

Таким чином, прийшли до висновку: границі не існує

Theorem 3.2.4. Властивості границь функції

1) Задана функція $f: A \to \mathbb{R}$, що містить границю навколо т. x_0 . Тоді вона є обмеженою в околі т. x_0

Proof.

$$\exists \lim_{x \to x_0} f(x) = b \Rightarrow \forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon$$
 Зафіксуємо $\varepsilon = 1$, тоді $|f(x) - b| < 1$ $|f(x)| = |f(x) - b + b| \le |f(x) - b| + |b| < 1 + |b|$ Покладемо $c = \max\{1 + |b|, f(x_0)\}$. А тому отримаємо:

$$\forall x \in A : |x - x_0| < \delta \Rightarrow |f(x)| < c$$
. Отже, обмежена

Задані функції $f,g:A\to\mathbb{R}$, такі, що $\exists\lim_{x\to x_0}f(x)=b_1,\ \exists\lim_{x\to x_0}g(x)=b_2.$ Тоді:

$$(2.1)\forall c \in \mathbb{R}: \exists \lim_{x \to x_0} cf(x) = cb_1$$

2.1)
$$\forall c \in \mathbb{R} : \exists \lim_{x \to x_0} cf(x) = cb_1$$

2.2) $\exists \lim_{x \to x_0} (f(x) + g(x)) = b_1 + b_2$

$$2.3) \exists \lim_{x \to x_0} (f(x) + g(x)) = 2.3) \exists \lim_{x \to x_0} f(x)g(x) = b_1b_2$$

2.4)
$$\exists \lim \frac{f(x)}{g(x)} = \frac{b_1}{b_2}$$
 при $b_2, g(x) \neq 0$

Випливають з властивостей границь числової послідовності, якщо доводити за Гейне. Доведу лише перший підпункт

Proof.

$$\forall \{x_n, n \geq 1\} \subset A : x_n \neq x_0 : \forall n \geq 1 : \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$$
 Тоді $\forall c \in \mathbb{R} : \lim_{n \to \infty} cf(x_n) = c \lim_{n \to \infty} f(x_n) = cb_1$ Таким чином, $\exists \lim_{x \to x_0} cf(x) = cb_1$

Example 3.2.5. Обчислити границю:
$$\lim_{x\to 0} \frac{x^2-1}{2x^2-2x-1}$$

$$\lim_{x\to 0} \frac{x^2-1}{2x^2-x-1} = \frac{\lim_{x\to 0} (x^2-1)}{\lim_{x\to 0} (2x^2-x-1)} = \frac{\lim_{x\to 0} x^2-\lim_{x\to 0} 1}{2\lim_{x\to 0} x^2-\lim_{x\to 0} 1} = \frac{0-1}{0-0-1} = 1$$
 = 1 \blacksquare

Definition 3.2.6. Задана функція $f:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Функція **прямує до нескінченності в т.** x_0 , якщо:

$$\forall E > 0 : \exists \delta(E) > 0 : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x)| > E$$
 - def. Komi

$$\forall \{x_n, n \geq 1\} \subset A: x_n \neq x_0: \forall n \geq 1: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = \infty$$
 - def. Гейне

Позначення: $\lim_{x\to x_0} f(x) = \infty$

Definition 3.2.7. Задана функція $f:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Якщо $\lim_{x\to x_0}f(x)=\infty$, то функцію f(x) називають **нескінченно великою в т.** x_0 , або **н.в.**

Якщо $\lim f(x) = 0$, то функцію f(x) називають **нескінченно малою** в т. x_0 , або н.м.

Theorem 3.2.8. Арифметичні властивості н.м. та н.в. великих функцій

Задані функції $f, g, h: A \to \mathbb{R}$ - відповідно н.м., н.в., обмежена, та $x_0 \in A$ - гранична точка. Тоді:

1)
$$f(x) \cdot h(x)$$
 - H.M.

1)
$$f(x) \cdot h(x)$$
 - H.M.
2) $\frac{1}{f(x)}$ - H.B.

3)
$$\frac{1}{g(x)}$$
 - H.M.

Proof.

Зафіксуємо $\{x_n, n \geq 1\}$, таку, що $\lim_{n \to \infty} x_n = x_0$. Тоді за Гейне,

$$\lim_{n\to\infty} f(x_n) = 0, \lim_{n\to\infty} g(x_n) = \infty, \text{ отже}$$
 $\{f(x_n), n \ge 1\}$ - н.м.

$$\{f(x_n), n \ge 1\} - \text{H.M.}$$

$$\{g(x_n), n \ge 1\}$$
 - H.B.

$$\{h(x_n), n \ge 1\}$$
 - досі обмежена

За властивостями границь числової послідовності, $\{f(x_n)\cdot h(x_n)\}$ - н.м.,

$$\left\{\frac{1}{f(x_n)}\right\}$$
 - H.B., $\left\{\frac{1}{g(x_n)}\right\}$ - H.M.

Ну а тому, існують відповідні границі: $\lim_{n\to\infty} f(x_n)h(x_n) = 0$,

$$\lim_{n \to \infty} \frac{1}{f(x_n)} = \infty, \lim_{n \to \infty} \frac{1}{g(x_n)} = 0$$

За гейне, отримаємо бажане 🗖

Example 3.2.9. Знайти границю $\lim_{x\to\infty} \frac{(x-1)(x-2)(x-3)}{(4x-5)^3}$

Завдяки щойно доведеної теореми, ми отримаємо наступне:
$$\lim_{x\to\infty}\frac{(x-1)(x-2)(x-3)}{(4x-5)^3}=\lim_{x\to\infty}\frac{(1-\frac{1}{x})(1-\frac{2}{x})(1-\frac{3}{x})}{(4-\frac{5}{x})^3}=\frac{1}{64}\blacksquare$$

Definition 3.2.10. Задана функція $f: \mathbb{R} \to \mathbb{R}$

Число b називається **границею функції** при $x \to \infty$, якщо:

$$\forall \varepsilon > 0 : \exists \Delta(\varepsilon) > 0 : \forall x \in \mathbb{R} : |x| > \Delta \Rightarrow |f(x) - b| < \varepsilon$$
 - def. Komi

$$\forall \{x_n, n \geq 1\} \subset \mathbb{R}: \forall n \geq 1: \lim_{n \to \infty} x_n = \infty \Rightarrow \lim_{n \to \infty} f(x_n) = b$$
 - def. Гейне

Позначення: $\lim_{x \to \infty} f(x) = b$

Remark 3.2.10.(1) Можна спробувати самостійно записати def. Коші

та def. Гейне для випадку $\lim f(x) = \infty$

Remark 3.2.10.(2) Для інших варіації границь функції, еквівалентність двох означень залишається в силі

Theorem 3.2.11. Задана функція $f: \mathbb{A} \to \mathbb{R}$ та $x_0 \in A$ - гранична точка Відомо, що в околі т. x_0 функція f(x) < c та $\exists \lim_{x \to x_0} f(x) = b$. Тоді $b \le c$ Proof.

За Гейне, $\forall \{x_n, n \geq 1\} \subset A: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$. За властивостями границь числової послідовності, $b \leq c$

Corollary 3.2.11. Задані функції $f, g: A \to \mathbb{R}$ такі, що в околі т. x_0 справедлива $f(x) \leq g(x)$. Також $\exists \lim_{x \to x_0} f(x) = b_1, \ \exists \lim_{x \to x_0} g(x) = b_2$. Тоді $b_1 \leq b_2$

Вказівка: розглянути функцію h(x) = f(x) - g(x)

Theorem 3.2.12. Теорема про 3 функції

Задані функції $f,g,h:A o\mathbb{R}$ та $x_0\in A$ - гранична точка

Відомо, що в околі т. x_0 : $f(x) \le g(x) \le h(x)$ та

$$\exists \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = a$$

Тоді $\exists \lim_{x \to x} g(x) = a$

Тоді
$$\exists \lim_{x \to x_0} g(x) = a$$

Випливає з теореми про поліцаїв в числової послідовності

Theorem 3.2.13. Критерій Коші

Задана функція $f:A \to \mathbb{R}$ та $x_0 \in A$ - гранична точка

$$\exists \lim_{x \to x_0} f(x) \iff \forall \varepsilon > 0 : \exists \delta(\varepsilon) : \forall x_1, x_2 \in A : x_1, x_2 \neq x_0 :$$

$$\begin{cases} |x_1 - x_0| < \delta \\ |x_2 - x_0| < \delta \end{cases} \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$$

 \Longrightarrow Дано: $\exists \lim_{x \to x_0} f(x) = b$, тобто за def. Коші,

$$\forall \varepsilon > 0 : \exists \delta : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x) - b| < \frac{\varepsilon}{2}$$

Тоді $\forall x_1, x_2 \in A : |x_1 - x_0| < \delta$ і одночачно $|x_2 - x_0| < \delta \Rightarrow$ $|f(x_1) - f(x_2)| = |f(x_1) - b + b - f(x_2)| \le |f(x_1) - b| + |f(x_2) - b| < \varepsilon$

Отримали праву частину критерія

$$\sqsubseteq$$
 Дано: $\forall \varepsilon > 0$: $\exists \delta(\varepsilon) : \forall x_1, x_2 \in A : , x_1, x_2 \neq x_0 : \begin{cases} |x_1 - x_0| < \delta \\ |x_2 - x_0| < \delta \end{cases} \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$

Розглянемо послідовність $\{t_n, n \geq 1\}$, таку, що $\lim_{n \to \infty} t_n = x_0$

Тоді за означенням, $\exists N: \forall n,m \geq N: \begin{cases} |t_n-x_0| < \delta \\ |t_m-x_0| < \delta \end{cases}$

$$\Rightarrow |f(t_n) - f(t_m)| < \varepsilon$$

Отримаємо, що $\{f(t_n), n \geq 1\}$ - фундаментальна послідовність, а тому є збіжною, тобто

$$\exists \lim_{n \to \infty} f(t_n) = b$$

Розглянемо послідовність $\{s_n, n \geq 1\}$, таку, що $\lim_{n \to \infty} s_n = x_0$

Тоді за аналогічними міркуваннями, $\exists \lim_{n \to \infty} f(s_n) = a$

Оскільки критерій Коші в границях числової послідовності лише визнає збіжність, то ми не знаємо, куди вона прямує чисельно

I нарешті, побудуємо послідовність $\{p_n, n \geq 1\}$ таким чином, що $p_{2k} = t_k$, $p_{2k-1} = s_k$. Тобто $\{s_1, t_1, s_2, t_2, \dots\}$

Тут $\exists \lim_{n \to \infty} p_n = x_0$. Тоді знову за аналогічними міркуваннями, $\exists \lim_{n \to \infty} f(p_n)$, але чому буде дорівнювати, зараз побачимо

Оскільки $\exists \lim_{n \to \infty} f(p_n)$, то одночасно $\exists \lim_{k \to \infty} f(p_{2k}) = b$, $\exists \lim_{k \to \infty} f(p_{2k-1}) = a$ У збіжної послідовності є лише одна часткова послідовність, тому a = b Це означає, що результат не залежить від вибору послідовності

Тому за Гейне, отримаємо, що $\exists \lim_{x \to x_0} f(x) = b \blacksquare$

Theorem 3.2.14. Границя від композиції функції

Задані функції $f:A\to B,\,g:B\to\mathbb{R}$ та композиція h=g(f(x)). Більш того, $x_0\in A$ - гранична точка, $\exists\lim_{x\to x_0}f(x)=y_0$ та $\exists\lim_{y\to y_0}g(y)=b$

Тоді $\exists \lim_{x \to x_0} h(x) = b$

Proof.

$$\exists \lim_{y \to y_0} g(y) = b \stackrel{\text{def.}}{\Rightarrow} \forall \varepsilon > 0 : \exists \delta : \forall y \in B : |y - y_0| < \delta \Rightarrow |g(y) - b| < \varepsilon$$

$$\exists \lim_{x \to x_0} f(x) = y_0 \stackrel{\text{def.}}{\Rightarrow} \forall \delta > 0 : \exists \tilde{\delta} : \forall x \in A : |x - x_0| < \tilde{\delta} \Rightarrow |f(x) - y_0| < \delta$$

Таким чином, можемо отримати:

$$\forall \varepsilon > 0 : \exists \delta > 0 \Rightarrow \exists \tilde{\delta} : \forall x \in A : |x - x_0| < \tilde{\delta} \Rightarrow$$

$$|f(x) - y_0| = |y - y_0| < \delta \Rightarrow |g(y) - b| = |g(f(x)) - b| = |h(x) - b| < \varepsilon$$

Отже, $\exists \lim_{x \to x_0} h(x) = b \blacksquare$

3.3 Перша чудова границя

Розглянемо наступний геометричний малюнок:

Коло радіусом 1

Виділимо з малюнку наступні дані:

$$|AB| = \sin \alpha$$

$$|AC| = \alpha$$

$$|KC| = \operatorname{tg} \alpha$$

Зрозуміло, що $|AB| < |AC| < |KC| \Rightarrow$

$$\sin\alpha < \alpha < \tan\alpha$$

Розглянемо обидва сторони:

$$\sin \alpha < \alpha \Rightarrow \frac{\sin \alpha}{\alpha} < 1$$

$$\alpha < \operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} \Rightarrow \frac{\sin \alpha}{\alpha} > \cos \alpha = 1 - 2\sin^2 \frac{\alpha}{2} > 1 - 2\frac{\alpha^2}{4} = 1 - \frac{\alpha^2}{2}$$
$$1 - \frac{\alpha^2}{2} < \frac{\sin \alpha}{\alpha} < 1$$

$$\frac{2}{2}$$
 Можна розширити інтервал до $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Тому за теоремою про 3 функції, маємо наступне:

Theorem 3.3.1. Перша чудова границя

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Corollary 3.3.1.(1)
$$\lim_{x\to 0} \frac{\text{tg } x}{x} = 1$$

Corollary 3.3.1.(2)
$$\lim_{x\to 0} \frac{\arcsin x}{x} = 1$$

Proof.
$$\lim_{x \to 0} \frac{\arcsin x}{x} \equiv$$

Проведемо заміну: $\arcsin x = t$, тобто $x = \sin t$. Оскільки $x \to 0$, то $t \to 0$. Тоді за теоремою про границю композиції, рівність буде справедливою

Corollary 3.3.1.(3)
$$\lim_{x\to 0} \frac{\text{arctg } x}{x} = 1$$

Друга чудова границя 3.4

Відомо, що $\forall x \in \mathbb{R}$ справедлива нерівність: $[x] \leq x < [x] + 1$ Тоді можна дійти до цієї нерівності:

$$\left(1 + \frac{1}{[x]+1}\right)^{[x]} < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{[x]}\right)^{[x]+1}$$

Вважаємо, що $x \to +\infty$, тоді відповідно $[x] \to +\infty$ та $[x] + 1 \to +\infty$ Також $[x] \in \mathbb{N}$, тому за визначенням числа Ейлера,

$$\lim_{[x]\to+\infty} \left(1 + \frac{1}{[x]}\right)^{[x]} = e$$

Скористаємось цим фактом в нашої нерівності:

$$\left(1 + \frac{1}{[x]+1}\right)^{[x]} = \frac{\left(1 + \frac{1}{[x]+1}\right)^{[x]+1}}{1 + \frac{1}{[x]+1}} \to \frac{e}{1} = e$$

$$\left(1 + \frac{1}{[x]}\right)^{[x]+1} = \left(1 + \frac{1}{[x]}\right)^{[x]} \left(1 + \frac{1}{[x]}\right) \to e \cdot 1 = e$$

$$\left(1 + \frac{1}{[x]}\right)^{[x]+1} = \left(1 + \frac{1}{[x]}\right)^{[x]} \left(1 + \frac{1}{[x]}\right) \to e \cdot 1 = e$$

I це все при $x \to +\infty$. Тоді за теоремою про поліцаїв, отримаємо так звану ще одну чудову границю

Theorem 3.4.1. Друга чудова границя

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Corollary 3.4.1.(1)
$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Corollary 3.4.1.(2)
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e^{-\frac{1}{x}}$$

Corollary 3.4.1.(2)
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

Corollary 3.4.1.(3) $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$

Corollary 3.4.1.(4)
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

Corollary 3.4.1.(5) $\lim_{x\to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha$
Brasiera: $1 + x = e^t$

3.5 Односторонні границі та границі монотонних функцій

Definition 3.5.1. Задана функція $f:A\to\mathbb{R}$, та $x_0\in A$ - гранична точка

Числом *b* називають **границею справа**, якщо

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall x \in A : x \neq x_0 : 0 < x - x_0 < \delta \Rightarrow |f(x) - b| < \varepsilon$$
 - def. Komi $\forall \{x_n, n \geq 1\} \subset A : \forall n \geq 1 : x_n > x_0 : \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$ - def. Гейне

Позначення: $\lim_{x \to x_0^+} f(x) = b$

Числом \tilde{b} називають **границею зліва**, якщо

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall x \in A : x \neq x_0 : 0 < x_0 - x < \delta \Rightarrow |f(x) - \tilde{b}| < \varepsilon$$
 - def. Komi $\forall \{x_n, n \geq 1\} \subset A : \forall n \geq 1 : x_n < x_0 : \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = \tilde{b}$ - def. Гейне

Позначення: $\lim_{x \to x_0^-} f(x) = \tilde{b}$

Theorem 3.5.2. Задана функція $f:A\to\mathbb{R}$, та $x_0\in A$ - гранична точка

$$\exists \lim_{x \to x_0} f(x) = b \iff \exists \begin{cases} \lim_{x \to x_0^+} f(x) = b \\ \lim_{x \to x_0^-} f(x) = b \end{cases}$$

Proof.

$$\exists \lim_{x \to x_0} f(x) = b \iff \forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

$$\iff \forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow \begin{cases} x - x_0 < \delta \\ x_0 - x < \delta \end{cases} \Rightarrow |f(x) - b| < \varepsilon$$

$$\iff \exists \begin{cases} \lim_{x \to x_0^+} f(x) = b \\ \lim_{x \to x_0^-} f(x) = b \end{cases}$$

Definition 3.5.3. Задана функція $f:(a,b)\to \mathbb{R}$

Ії називають монотонно:

- строго зростаючою, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$
- не спадною, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) \geq f(x_2)$
- строго спадною, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$
- не зростаючою, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) \leq f(x_2)$

 $\ddot{\mathbb{I}}\ddot{\mathbb{I}}$ називають **обмеженою**, якщо $\exists M>0: \forall x\in (a,b): |f(x)|\leq M$

Theorem 3.5.4. Задана функція $f:(a,b) \to \mathbb{R}$ - монотонна та обмежена Тоді $\exists \lim_{x \to b^-} f(x) = d$ або $\exists \lim_{x \to a^+} f(x) = c$ Proof.

Доведу лише першу границю і буду вважати, що функція строго спадна. Для решти аналогічно

Отже, f - строго спадає, тобто $\forall x_1, x_2 \in (a,b): x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$ Більш того, f - обмежена, тому $\exists \inf_{x \in (a,b)} f(x) = d$

Доведемо, що вона є границею ліворуч. За критерієм inf:

- 1) $\forall x \in (a,b) : f(x) \ge d$
- 2) $\forall \varepsilon > 0 : \exists x_{\varepsilon} \in (a,b) : f(x_{\varepsilon}) < c + \varepsilon$

Оберемо $\delta = b - x_{\varepsilon} > 0$. Тоді $\forall x \in (a,b) : b - x < \delta \Rightarrow$

$$x > b - (b - x_{\varepsilon}) = x_{\varepsilon} \Rightarrow f(x) < f(x_{\varepsilon})$$

Звідси справедлива наступна нерівність:

$$d - \varepsilon < d \le f(x) < f(x_{\varepsilon}) < d + \varepsilon \Rightarrow |f(x) - d| < \varepsilon$$

Остаточно, за def. Коші, $\exists \lim_{x \to b^-} f(x) = d \blacksquare$

Порівняння функцій, відношення О-велике, о-маленьке 3.6 та еквівалентності

Definition 3.6.1. Задані функції $f,g:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка

Функція f називається **порівнянною** з функцією g, якщо

$$\exists L > 0 : \exists \delta > 0 : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x)| \le L|g(x)|$$

Позначення: $f(x) = O(g(x)), x \to x_0$

Інакше називають, що f - обмежена відносно g при $x \to x_0$

Чоловіча мова: "функція f(x) наближається до т. x_0 не швидше за g(x)"

Theorem 3.6.2. Властивості

1)
$$f(x) = O(g(x)), x \to x_0 \iff \frac{f(x)}{g(x)}$$
 - обмежена в околі т. x_0

2) Якщо
$$\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = c$$
, то $f(x) = O(g(x)), x \to x_0$

3) Нехай
$$f_1(x) = O(g(x)), f_2(x) = O(g(x))$$
. Тоді:

a)
$$f_1(x) + f_2(x) = O(g(x))$$

b)
$$\forall \alpha \in \mathbb{R} : \alpha f_1(x) = O(g(x))$$

c)
$$\forall \alpha \neq 0 : f_1(x) = O(\alpha g(x))$$

Всюди $x \to x_0$

4) Нехай
$$f(x) = O(g(x)), g(x) = O(h(x)).$$
 Тоді $f(x) = O(h(x)), x \to x_0$

Proof.

Доведу лише 3 а). Інші очевидно

$$f_1(x) = O(g(x)) \Rightarrow \exists L_1 : \exists \delta_1 : \forall x : |x - x_0| < \delta_1 \Rightarrow |f_1(x)| \leq L_1|g(x)|$$

 $f_2(x) = O(g(x)) \Rightarrow \exists L_2 : \exists \delta_2 : \forall x : |x - x_0| < \delta_2 \Rightarrow |f_2(x)| \leq L_2|g(x)|$
Тоді $\exists \delta = \min\{\delta_1, \delta_2\} : \forall x : |x - x_0| < \delta \Rightarrow$
 $|f(x_1) + f(x_2)| \leq |f(x_1)| + |f(x_2)| \leq (L_1 + L_2)|g(x)|$
А тому $f_1(x) + f_2(x) = O(g(x))$

Example 3.6.3. Довести, що $x + x^2 = O(x), x \to 0$

Знайдемо наступну границю:

$$\lim_{x \to 0} \frac{x + x^2}{x} = \lim_{x \to 0} (1 + x) = 1$$
Otke, $x + x^2 = O(x), x \to 0$

Definition 3.6.4. Задані функції $f,g:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка

Функція f називається **знехтувально малою** відносно g, якщо

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x)| < \varepsilon |g(x)|$$

Позначення: $f(x) = o(g(x)), x \to x_0$

Інакше кажуть, що f - **нескінченно малой порівняльно** з g при $x \to x_0$

Чоловіча мова: "функція f(x) приймає одне значення в околі т. x_0 довше, ніж g(x)"

Theorem 3.6.5. Властивості

1)
$$f(x) = o(g(x)), x \to x_0 \iff \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

2) Нехай
$$f_1(x) = o(g(x)), f_2(x) = o(g(x))$$
. Тоді:

a)
$$f_1(x) + f_2(x) = o(g(x))$$

b)
$$\forall \alpha \in \mathbb{R} : \alpha f_1(x) = o(g(x))$$

c) $\forall \alpha \neq 0 : f_1(x) = o(\alpha g(x))$
Всюди $x \to x_0$

3) Нехай
$$f(x) = o(g(x)), g(x) = o(h(x)).$$
 Тоді $f(x) = o(h(x)), x \to x_0$

Proof.

Доведу лише 1. Інші очевидно

$$f(x) = o(g(x)), x \to x_0 \iff \forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow |f(x)| < \varepsilon |g(x)| \iff \left| \frac{f(x)}{g(x)} - 0 \right| < \varepsilon \iff \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \blacksquare$$

Example 3.6.6. Довести, що $x^3 - x^2 - x + 1 = o(x - 1), x \to 1$ Знайдемо наступну границю:

$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x - 1} = \lim_{x \to 1} \frac{x^2(x - 1) - (x - 1)}{x - 1} = \lim_{x \to 1} (x^2 - 1) = 0$$

Отже, $x^3 - x^2 - x + 1 = o(x - 1), x \to 1$

Тут x-1 миттєво стала нулем і миттєво пішла далі. А x^3-x^2-x+1 набагато довше була близька в нулі

Theorem 3.6.7. Інші властивості

1.1) Нехай
$$f(x) = o(g(x))$$
 та $g(x) = O(h(x))$. Тоді $f(x) = o(h(x)), x \to x_0$
1.2) Нехай $f(x) = O(g(x))$ та $g(x) = o(h(x))$. Тоді $f(x) = o(h(x)), x \to x_0$

2) Нехай
$$f(x) = o(g(x))$$
. Тоді $f(x) = O(g(x)), x \to x_0$ **Proof.**

1) для обох випадків

$$\lim_{x \to x_0} \frac{f(x)}{h(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} \frac{g(x)}{h(x)} = (\text{обм *H.м.}) = 0 \Rightarrow f(x) = o(h(x)), x \to x_0$$

2) Випливає з властивості 2 О-великого 🗖

Definition 3.6.8. Задані функції $f,g:A\to\mathbb{R}$ та $x_0\in A$ - гранична

Функція f називається **еквівалентною** g, якщо

$$f(x) - g(x) = o(g(x)), x \to x_0$$

Позначення: $f(x) \sim g(x), x \to x_0$

Чоловіча мова: "функції f(x) та g(x) в околі т. x_0 дуже близькі між собою"

Theorem 3.6.9.
$$f(x) \sim g(x) \iff \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Proof.

$$f(x) \sim g(x), x \to x_0 \iff f(x) - g(x) = o(g(x)), x \to x_0 \iff \lim_{x \to x_0} \frac{f(x) - g(x)}{g(x)} = 0 \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Theorem 3.6.10. Граничний перехід

Нехай $f_1(x) \sim g_1(x)$ та $f_2(x) \sim g_2(x), x \to x_0$. Тоді:

1)
$$\lim_{x \to x_0} f_1(x) f_2(x) = \lim_{x \to x_0} g_1(x) g_2(x)$$

1)
$$\lim_{x \to x_0} f_1(x) f_2(x) = \lim_{x \to x_0} g_1(x) g_2(x)$$

2) $\lim_{x \to x_0} \frac{f_1(x)}{f_2(x)} = \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)}$

З початкових умов, отримаємо за Тh. 3.6.9., що:

$$\exists \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} = 1, \ \exists \lim_{x \to x_0} \frac{f_2(x)}{g_2(x)} = 1.$$
 Тоді

1)
$$\lim_{x \to x_0} f_1(x) f_2(x) = \lim_{x \to x_0} \frac{f_1(x) f_2(x) g_1(x) g_2(x)}{g_1(x) g_2(x)} = \lim_{x \to x_0} \frac{f_1(x) f_2(x)}{g_1(x) g_2(x)} \lim_{x \to x_0} g_1(x) g_2(x) = \lim_{x \to x_0} \frac{f_1(x) f_2(x)}{g_1(x) g_2(x)} = \lim_{x \to x_0} \frac{f_1(x) f_2(x)}{g_1(x) g_2(x$$

$$= \lim_{x \to x_0} g_1(x)g_2(x)$$

$$2) \lim_{x \to x_0} \frac{f_1(x)}{f_2(x)} = \lim_{x \to x_0} \frac{f_1(x)g_1(x)g_2(x)}{f_2(x)g_1(x)g_2(x)} = \lim_{x \to x_0} \frac{f_1(x)g_2(x)}{f_2(x)g_1(x)} \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)} = \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)}$$

Remark 3.6.10. Еквівалентні функції задають відношення еквівалентності - рефлексивність, симетричність, транзитивність

Використовуючи всі наслідки від чудових границь, ми можемо отримати

наступні еквівалентні функції: $x \to 0$

$$\sin x \sim x \qquad \ln(1+x) \sim x$$

$$\tan x \sim x \qquad e^x - 1 \sim x$$

$$\arcsin x \sim x \qquad (1+x)^{\alpha} - 1 \sim \alpha x$$

$$\arctan x \sim x \qquad a^x - 1 \sim x \ln a$$

Example 3.6.11. Обчислити границю $\lim_{x\to 0} \frac{\arcsin x\cdot (e^x-1)}{1-\cos x}$

Маємо, з таблиці еквівалентності:

$$\lim_{x \to 0} \frac{\arcsin x \cdot (e^x - 1)}{1 - \cos x} = \lim_{x \to 0} \frac{x \cdot x}{2\sin^2 \frac{x}{2}} = \lim_{x \to 0} \frac{x \cdot x}{2\frac{x^2}{4}} = 2 \blacksquare$$

Remark 3.6.12. Узагальнене зауваження:

$$f(x)=O(1), x o x_0 \iff f(x)$$
 - обмежена в околі т. x_0 $f(x)=o(1), x o x_0 \iff f(x)$ - н.м. функція

В околі т. $x_0 = 0$ функція $\sin x$ дуже схожа на x

Неперервність функції 4

Неперервність в точці 4.1

Definition 4.1.1. Задана функція $f:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Функція f(x) називається **неперервною в т.** x_0 , якщо

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

Якщо $\exists\lim_{x\to x_0^+}f(x)=f(x_0)$, то **неперервна праворуч в т.** x_0 Якщо $\exists\lim_{x\to x_0^-}f(x)=f(x_0)$, то **неперервна ліворуч в т.** x_0

Якщо в т. x_0 вона не ϵ неперервною, то її називають **точкою розриву**

Theorem 4.1.2. Задана функція $f:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Функція f - неперервна в т. $x_0 \iff \Phi$ ункція f - неперервна ліворуч та праворуч

Bunлuвae з Th. 3.5.2.

Класифікації точок розриву

І роду:

- усувна, якщо $\exists \lim_{x \to x_0} f(x) \neq f(x_0)$ - стрибок, якщо $\exists \lim_{x \to x_0^+} f(x), \ \exists \lim_{x \to x_0^-} f(x),$ але вони не рівні

II роду:

якщо виконується один з 4 випадків:

- 1) $\lim f(x) = \infty$ $x \rightarrow x_0^-$
- $2) \lim_{x \to x_0^+} f(x) = \infty$
- $3) \not\exists \lim_{x \to x_0^-} f(x)$
- $4) \not\exists \lim_{x \to x_0^+} f(x)$

Example 4.1.1.(1)
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

В т. x_0 функція f(x) є неперервною, оскільки

$$\lim_{x\to 0} \frac{\sin x}{x} \stackrel{\text{I чудова границя}}{=} 1 = f(0)$$

Example 4.1.1.(2)
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

А в цьому випадку в т. x_0 буде усувною, оскільки

$$\lim_{x \to 0} \frac{\sin x}{x}$$
 І чудова границя $1 \neq f(0)$ В цьому випадку у нас $f(0) = 0$

Example 4.1.2.
$$f(x) = 2x - \frac{x-2}{|x-2|}$$

Example 4.1.2.
$$f(x)=2x-\frac{x-2}{|x-2|}$$
 Тут проблема виникає в т. $x_0=2$. Розглянемо границі в різні сторони:
$$\lim_{x\to 2^-}\left(2x-\frac{x-2}{2-x}\right)=\lim_{x\to 2^-}(2x-1)=3$$

$$\lim_{x\to 2^+}\left(2x-\frac{x-2}{x-2}\right)=\lim_{x\to 2^+}(2x+1)=5$$

Обидва ліміти не рівні, а отже, $x_0 = 2$ - стрибок

Example 4.1.3. $f(x) = \frac{1}{x+1}$ Проблема в т. $x_0 = -1$. Але принаймні по одну сторону, наприклад $\lim_{x\to -1^{+}0}=\frac{1}{x+1}=+\infty,$ матимемо нескінченність Тому одразу т. $x_0=-1$ - розрив 2 роду

Theorem 4.1.3. Арифметичні властивості неперервних функцій

Задані функції $f,g:A \to \mathbb{R}$ та $x_0 \in A$ - гранична точка

f, q - неперервні в т. x_0 . Тоді:

- 1) $\forall c \in \mathbb{R} : (cf)(x)$ неперервна в т. x_0
- 2) (f+g)(x) неперервна в т. x_0
- 3) (fg)(x) неперервна в т. x_0
- 4) $\frac{f}{g}(x)$ неперервна в т. x_0 при $g(x_0) \neq 0$

1), 2), 3), 4) Всі вони випливають із означення

Але в 4) Тут більш детально розпишу одну деталь

Переконаємось, що все буде коректно визначено:

g - неперервна в x_0 , тобто $\forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow$ $|g(x) - g(x_0)| < \varepsilon$

Оберемо $\varepsilon = \frac{|g(x_0)|}{2}$ Тоді $g(x_0) - \varepsilon < g(x) < g(x_0) + \varepsilon$

Якщо $g(x_0) > 0$, то $\varepsilon = \frac{g(x_0)}{2} \Rightarrow 0 < g(x) < \frac{3}{2}g(x_0)$

Якщо $g(x_0)<0$, то $\varepsilon=-rac{g(x_0)}{2}\Rightarrow rac{3}{2}g(x_0)< g(x)<rac{1}{2}g(x_0)<0$

Тобто $\exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow q(x) \neq 0$

Отже, наше означення є коректним

Theorem 4.1.4. Неперервність композиції

Задані функції $f:A\to B, g:B\to \mathbb{R}$ та $h=g\circ f$

Відомо, що $x_0 \in A$ - гранична т. A, де f неперервна; та $f(x_0) = y_0$ гранична т. B, де q неперервна.

Тоді h - неперервна в т. x_0

 $Bиплива \epsilon$ з означення та властивості композиції

Definition 4.1.5. Функція $f:A\to\mathbb{R}$ називається **неперервною на**

множині A, якщо вона є неперервною $\forall x \in A$ Позначення: C(A) - множина неперервних функцій в AТобто з означення, $f \in C(A)$

Неперервність елементарних функцій 4.2

0) f(x) = x - неперервна на \mathbb{R}

Proof.

$$\forall \varepsilon > 0 : \exists \delta = \varepsilon : \forall x : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| = |x - x_0| < \delta = \varepsilon$$

1) $f(x) = a_0 + a_1 x + \cdots + x_n x^n$ неперервна на \mathbb{R}

Proof.

Оскільки $g(x) = x \in C(\mathbb{R})$, то

$$h(x)=x^n=x\cdot\cdots\cdot x\in C(\mathbb{R})$$
 як добуток функцій $\forall n\geq 1$

Отже,

$$f(x) = a_0 + a_1 x + \dots + x_n x^n \in C(\mathbb{R})$$
 як сума неперервних функцій, множений на константу

2) $f(x) = \sin x$ - неперервна на \mathbb{R}

Proof.

Вже відома давно нерівність:

$$1 - \frac{x^2}{2} < \frac{\sin x}{x} < 1 \Rightarrow x - \frac{x^3}{2} < \sin x < x$$

 $1-\frac{x^2}{2}<\frac{\sin x}{x}<1\Rightarrow x-\frac{x^3}{2}<\sin x< x$ Якщо $x\to 0$, то за теоремою про 2 поліцая, $\lim_{x\to 0}\sin x=0=\sin 0$

Отже, $\sin x$ - неперервна лише в т. 0

Перевіримо неперервність в т. $a \in \mathbb{R}$:

$$\lim_{x \to a} (\sin x - \sin a) = \lim_{x \to a} 2 \sin \frac{x - a}{2} \cos \frac{x + a}{2} =$$

Проведемо заміну: $\frac{x-a}{2}=t$. Тоді $t \to 0$

$$= \lim_{t \to 0} 2\sin t \cos(t+a) = (\text{H.M * oGM}) = 0$$

 $\Rightarrow \lim \sin x = \sin a$

Остаточно, $f(x) = \sin x \in C(\mathbb{R})$

3) $f(x) = \cos x$ - неперервна на \mathbb{R}

Proof.

$$f \in C(\mathbb{R})$$
 як композиція, бо $\cos x = \sin\left(\frac{\pi}{2} - x\right)$

4.1)
$$f(x)=\operatorname{tg} x$$
 - неперервна всюди, окрім $x=\frac{\pi}{2}+\pi k, k\in\mathbb{Z}$

4.2) $f(x)=\operatorname{ctg} x$ - неперервна всюди, окрім $x=\pi k, k\in\mathbb{Z}$ **Proof.**

$$1.f \in C$$
 як частка, бо $\operatorname{tg} x = \frac{\sin x}{\cos x}$

 $2.f \in C$ за аналогічними міркуваннями

5)
$$f(x) = e^x$$
 - неперервна на $\mathbb R$

Proof.

Спочатку побудуємо цю функцію:

Ми навчились зводити в натуральну, цілу та навіть в раціональну степіні.

Покажемо зведення в дійсну степінь

Визначення: $\forall x \in \mathbb{R} \setminus \mathbb{Q} : e^x = \sup\{e^y | y \in \mathbb{Q}, y < x\}$

Example Для
$$x = \pi$$
: $e^{\frac{3}{1}}, e^{\frac{31}{10}}, e^{\frac{314}{100}}, \dots$

Хочемо виконання наступних умов:

1)
$$e^{x_1}e^{x_2} = e^{x_1+x_2}$$

$$(e^{x_1})^{x_2} = e^{x_1 x_2}$$

3)
$$x_1 < x_2 \Rightarrow e^{x_1} < e^{x_2}$$

4)
$$e^0 = 1$$

Зафіксуємо два числа:

$$e^{x_1} = \sup\{e^{y_1} | y_1 \in \mathbb{Q}, y_1 < x_1\}$$

$$e^{x_2} = \sup\{e^{y_2} | y_2 \in \mathbb{Q}, y_2 < x_2\}$$

1)
$$e^{x_1 + x_2} = \sup\{e^y | y \in \mathbb{Q}, y < x_1 + x_2\} \stackrel{y = y_1 + y_2}{=}$$

$$= \sup\{e^{y_1 + y_2} | y_1, y_2 \in \mathbb{Q}, y_1 + y_2 < x_1 + x_2\} =$$

$$= \sup\{e^{y_1 + y_2} | y_1, y_2 \in \mathbb{Q}, y_1 < x_1, y_2 < x_2\} =$$

$$= \sup\{e^{y_1} | y_1 \in \mathbb{Q}, y_1 < x_1\} \cdot \sup\{e^{y_2} | y_2 \in \mathbb{Q}, y_2 < x_2\} = e^{x_1} e^{x_2}$$

Краще читати в зворотньому напрямку

2)
$$(e^{x_1})^{x_2} = \sup\{(e^{x_1})^{y_2}, y_2 \in \mathbb{Q} : y_2 < x_2\} = \sup\{(e^{y_1})^{y_2}, y_1, y_2 \in \mathbb{Q} : y_1 < x_1, y_2 < x_2\} = \sup\{e^y, y \in \mathbb{Q} : y < x_1x_2\} = e^{x_1x_2}$$

3)
$$x_1 < x_2 \Rightarrow \{y_1 \in \mathbb{Q}, y_1 < x_1\} \subset \{y_2 \in \mathbb{Q} : y_2 < x_2\} \Rightarrow \{e^{y_1} \in \mathbb{Q}, y_1 < x_1\} \subset \{e^{y_2} \in \mathbb{Q} : y_2 < x_2\}$$
 За властивостями $\sup, \sup\{e^{y_1} \in \mathbb{Q}, y_1 < x_1\} \leq \sup\{e^{y_2} \in \mathbb{Q} : y_2 < x_2\} \Rightarrow e^{x_1} < e^{x_2}$

4)
$$\lim_{x \to 0} (e^x - 1) = \lim_{x \to 0} \frac{e^x - 1}{x} \cdot x = 0$$

$$\begin{array}{l} \Rightarrow \lim_{x\to 0} e^x = 1 = e^0, \text{ тобто неперервна в т. 0} \\ \text{Тодi} \\ \lim_{x\to a} (e^x - e^a) = \lim_{x\to a} e^a (e^{x-a} - 1) \stackrel{x-a=t}{=} \lim_{t\to 0} e^a (e^t - 1) = 0 \\ \Rightarrow \lim_{x\to a} e^x = e^a \\ \text{Отже, } f(x) = e^x \in C(\mathbb{R}) \end{array}$$

4.3 Неперервність функції на відрізку

Theorem 4.5.1. Теорема Вейєрштрасса 1

Задана функція $f \in C([a,b])$. Тоді вона є обмеженою на [a,b]!Proof.

Припустимо, що f не є обмежено, тобто

$$\forall n \ge 1 : \exists x_n \in [a, b] : |f(x_n)| > n$$

Отримаємо послідовність $\{x_n, n \ge 1\}$

Є два випадки, тому виділимо 2 підпослідовності:

1)
$$\{x_{n_k}, k \ge 1\}$$
 : $f(x_{n_k}) > n_k$

2)
$$\{x_{n_m}, m \ge 1\}$$
 : $f(x_{n_m}) < -n_m$

Розглянемо другу. Вона є обмеженою, оскільки $\{x_{n_m}, m \geq 1\} \subset [a, b]$

Тоді за Вейєрштраса, для підпослідовності $\{x_{n_{m_n}}, p \geq 1\}$:

$$\exists \lim_{n \to \infty} x_{n_{m_p}} = x_*$$

Тому за означенням Гейне і за неперервністю, $\exists \lim_{p \to \infty} f(x_{n_{m_p}}) = f(x_*)$

Але в той же час ми маємо, що функція не є обмеженою знизу, тобто

$$\exists \lim_{p \to \infty} f(x_{n_{m_p}}) = -\infty$$
. Суперечність!

Для першого пункту все аналогічно і теж є суперечність

Отже, f - все ж таки обмежена на [a,b]

Theorem 4.5.2. Теорема Вейєрштрасса 2

Задана функція $f \in C([a,b])$. Тоді:

$$-\exists x_* \in [a,b] : f(x_*) = \inf_{x \in [a,b]} f(x)$$

$$-\exists x_* \in [a,b] : f(x_*) = \inf_{\substack{x \text{ } in[a,b] \\ x \text{ } in[a,b]}} f(x)$$
$$-\exists x^* \in [a,b] : f(x^*) = \sup_{\substack{x \text{ } in[a,b] \\ x \text{ } in[a,b]}} f(x)$$

Proof.

Доведемо перший випадок, другий є аналогічним

Нехай $\inf_{x \in [a,b]} f(x) = c$. За означенням:

1)
$$\forall x \in [a, b] : f(x) \ge c$$

2)
$$\forall \varepsilon > 0$$
 : $\exists x_{\varepsilon} \in [a, b] : f(x_{\varepsilon}) < c + \varepsilon$ Зафіксуємо $\varepsilon = \frac{1}{n}$

Зафіксуємо
$$\varepsilon = \frac{1}{n}$$

Тоді $\exists x_n \in [a,b] : c \leq f(x_n) < c + \frac{1}{n}$ Ми також маємо обмежену послідовність $\{x_n, n \geq 1\} \subset [a,b]$ Тому за Вейєрштрасом, для $\{x_{n_k}, k \geq 1\} : \exists \lim_{n \to \infty} x_{n_k} = x_*$ Отже, за Гейне і за неперервністю, $\exists \lim_{k \to \infty} f(x_{n_k}) = f(x_*)$ Але в той самий час, $\exists x_{n_k} \in [a,b] : c \leq f(x_{n_k}) < c + \frac{1}{n_k}$ Коли $k \to \infty$, то за теоремою про поліцаїв, $\exists \lim_{k \to \infty} f(x_{n_k}) = c$ Таким чином отримали, що $c = f(x_*) = \inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$

Theorem 4.5.3. Теорема Коші про нульове значення

Задана функція $f \in C([a,b])$, причому $f(a) \cdot f(b) < 0$ Тоді $\exists x_0 \in (a,b): f(x_0) = 0$

Proof.

Розглянемо випадок, коли f(a) < 0, f(b) > 0Розглянемо множину $M = \{x \in [a,b], f(x) < 0\}$ Оскільки f - неперервна, то $\exists \lim_{x \to a} f(x) = f(a)$

$$\Rightarrow$$
 для $\varepsilon = -\frac{f(a)}{2}:\exists \delta: \forall x: |x-a| < \delta \Rightarrow |f(x)-f(a)| < -\frac{f(a)}{2}$ $\Rightarrow \frac{3f(a)}{2} < f(x) < \frac{f(a)}{2} \Rightarrow \forall x: |x-a| < \delta \Rightarrow f(x) < 0$ Отже, $M \neq \emptyset$

3 іншого боку, ми маємо $\lim_{x \to b} f(x) = f(b)$

$$\Rightarrow$$
 для $\tilde{\varepsilon} = \frac{f(b)}{2} : \exists \tilde{\delta} : \forall x : |x - b| < \tilde{\delta} \Rightarrow |f(x) - f(b)| < \frac{f(b)}{2}$
 $\Rightarrow \frac{f(b)}{2} < f(x) < \frac{3f(b)}{2} \Rightarrow \forall x : |x - b| < \tilde{\delta} \Rightarrow f(x) > 0$

Жодна з цих значень аргументів не потрапляє в нашу множину M А оскільки $M \subset [a,b]$, то вона є обмеженою

З двох міркувань випливає, що $\exists \sup M \stackrel{\text{позн.}}{=} x_0$ А тепер перевіримо, що дійсно $f(x_0) = 0$ За критерієм sup:

$$\forall x \in M : x \leq x_0$$
Для $\varepsilon = \frac{1}{n} : \exists x_n \in M : x_n > x_0 - \frac{1}{n}$
Тобто $\forall n \geq 1 : x_0 - \frac{1}{n} < x_n \leq x_0$

Розглянемо послідовність $\{x_n, n \geq 1\} \subset M : \exists \lim_{n \to \infty} x_n = x_0$ Отже, за Гейне та неперервністю, $\exists \lim_{n \to \infty} f(x_n) = f(x_0) \leq 0$ Оскільки ми маємо $\sup M = x_0$, то тоді $\forall n \geq 1 : x_0 + \frac{1}{n} \notin M$

Тому розглянемо послідовність $\{\tilde{x_n} = x_0 + \frac{1}{n}, n \ge 1\}$

Tyr
$$\lim_{n\to\infty} \tilde{x_n} = x_0 \Rightarrow \exists \lim_{n\to\infty} f(\tilde{x_n}) = f(x_0) > 0$$

Остаточно, $f(x_0) = 0$

Corollary 4.5.3. Теорема Коші про проміжкове значення

Задана функція $f \in C([a,b])$

Тоді
$$\forall L \in (f(a), f(b)) : \exists x_L \in (a, b) : f(x_L) = L$$

$$(f(b), f(a))$$

Вказівка: розглянути функцію g(x) = f(x) - L

Theorem 4.2.1. Про існування оберненої функції

Задана функція $f:(a,b) \to (c,d)$ - строго монотонна і неперервна

Відомо, що $\lim_{x\to a^+}f(x)=c,\ \lim_{x\to b^-}f(x)=d$

Тоді існує функція $g:(c,d)\to(a,b)$ - строго монотонна (як і f) і неперервна, яка є оберненою до f

Proof.

Розглянемо випадок монотонно зростаючої функції f. Для спадної аналогічно Тоді c < d

За теоремою про проміжкове значення, $\forall y \in (c,d) : \exists x \in (a,b) : y = f(x)$

Покажемо, що $\forall y \in (c,d) : \exists ! x \in (a,b) : y = f(x)$

!Припустимо, не єдиний x існує, тобто $\exists x_1, x_2 : f(x_1) = y, f(x_2) = y$, але при цьому $x_1 \neq x_2$

Тоді якщо $x_1 < x_2$, то через монотонно зростаючу функцію $f(x_1) < f(x_2)$

Тоді якщо $x_1 > x_2$, то через монотонно зростаючу функцію $f(x_1) > f(x_2)$

Суперечність!

Таким чином, $\exists !x \in (a,b) : y = f(x)$ - бієкція

Ба більше, $\forall x \in (a,b) : f(x) \in (c,d)$

Тоді створімо функцію $g:(c,d)\to(a,b)$, що є оберненою до f

1. Покажемо, що g(x) - монотонно зростає

 $\forall y_1, y_2 : y_1 > y_2$

$$x_1 = g(y_1), x_2 = g(y_2)$$

$$y_1 \neq y_2 \iff x_1 \neq x_2$$

Якщо $x_1 < x_2$, то тоді $y_1 = f(x_1) < f(x_2) = y_2$, що не є можливим

Отже, $x_1 > x_2 \implies g(y_1) > g(y_2)$

Це й ε ознака строгого зростання

2. Покажемо, що $g \in C((c,d))$

!Припустимо, що це не так, тобто $\exists y_0: g(y)$ - не є неперервною в т. y_0 Зафіксуємо дві послідовності, що збігаються до т. y_0

$$\exists \{y_n^1, n \ge 1\}, \{y_n^2, n \ge 1\} : \lim_{n \to \infty} y_n^1 = y_0, \lim_{n \to \infty} y_n^2 = y_0$$

Але водночас $\lim_{n\to\infty} g(y_n^1) \neq g(y_0), \lim_{n\to\infty} g(y_n^1) \neq g(y_0)$ А це означає, що $\lim_{n\to\infty} g(y_n^1) \neq \lim_{n\to\infty} g(y_n^2)$ Позначимо $\{x_n^1 = g(y_n^1), n \geq 1\}, \{x_n^2 = g(y_n^2), n \geq 1\}$ Тоді $\lim_{n\to\infty} x_n^1 \neq \lim_{n\to\infty} x_n^2$ Позначимо $\lim_{n\to\infty} x_n^1 = u_1, \lim_{n\to\infty} x_n^2 = u_2$

Тоді з неперервності
$$f(x)$$
 отримаємо, що:
$$f(u_1) = \lim_{n \to \infty} f(x_n^1) = \lim_{n \to \infty} f(g(y_n^1)) = \lim_{n \to \infty} y_n^1 = y_0 = \lim_{n \to \infty} y_n^2 = \lim_{n \to \infty} f(g(y_n^2)) = \lim_{n \to \infty} f(x_n^2) = f(u_2)$$

Тобто $f(u_1)=f(u_2)$. Суперечність! Оскільки f - СТРОГО монотонно зростаюча функція

Отже, наше припущення - невірне. Тоді $q \in C((c,d))$

Фінальний висновок: $g \in C((c,d))$ та строго монотонно зростаюча на (c,d)

Рівномірна неперервність 4.4

Definition 4.6.1. Функція f називається рівномірно неперервною **на множині** A, якщо

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall x_1, x_2 \in A : |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$$

Proposition 4.6.2. Якщо функція f - рівномірно неперервна на A, то тоді вона ϵ (просто) неперервною на ABunливае з def.

Theorem 4.6.3. Теорема Кантора

Якщо $f \in C([a,b])$, то вона - рівномірно неперервна на [a,b]!Proof.

Припустимо, що вона не є рівномірно неперервною, тобто

$$\exists \varepsilon^* > 0 : \forall \delta : \exists x_{1\delta}, x_{2\delta} \in [a, b] : |x_{1\delta} - x_{2\delta}| < \delta \Rightarrow |f(x_{1\delta}) - f(x_{2\delta})| \ge \varepsilon^*$$

Розглянемо $\delta = \frac{1}{n}$. Тоді $x_{1\delta}, x_{2\delta} = x_{1n}, x_{2n}$

Створимо послідовність $\{x_{1n}, n \geq 1\}$ - обмежена, бо всі в відрізку [a, b],

для
$$\{x_{1n_k}, k \ge 1\} : \exists \lim_{k \to \infty} x_{1n_k} = x_0$$

Оскільки $|x_{1n}-x_{2n}|<\frac{1}{n}$, то маємо, що $|x_{1n_k}-x_{2n_k}|<\frac{1}{n_k}$ Тоді $x_{1n_k}-\frac{1}{n_k}< x_{2n_k}< x_{1n_k}+\frac{1}{n_k}$ Якщо $k\to\infty$, то за теоремою про поліцаї, $\exists\lim_{k\to\infty}x_{2n_k}=x_0$ За умовою неперервності, отримаємо, що $\lim_{k\to\infty}f(x_{1n_k})=\lim_{k\to\infty}f(x_{2n_k})=f(x_0)$ Але $\varepsilon\leq |f(x_{1n_k})-f(x_{2n_k})|\to 0$, коли $k\to\infty$. Суперечність!

*Неперервність функції Діріхле та Рімана 4.5

Розглянемо функцію Діріхле

$$\mathfrak{D}(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Графік такої функції уявити навіть складно

Треба довести, що вона всюди розривна

Зафіксую спочатку $x_0 \in \mathbb{Q}$. І нехай в цій т. вона є неперервною, тобто

 $\forall \varepsilon > 0 : \exists \delta : \forall x : |x - x_0| < \delta \Rightarrow |\mathfrak{D}(x) - \mathfrak{D}(x_0)| < \varepsilon$ Встановлю $\varepsilon = \frac{1}{2}$. Тоді $x_0 - \delta < x < x_0 + \delta \Rightarrow \frac{1}{2} < \mathfrak{D}(x) < \frac{3}{2}$

За принципом Дедекінда, можна знайти в δ -окілу таку точку $x \in \mathbb{Q} \setminus \mathbb{R}$, а тоді наступна нерівність не виконується

Зафіксую тепер т. $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. І знову вважаємо, що вона - неперевна Тут знову $\varepsilon = \frac{1}{2}$, але тепер в δ -околі в будь-якому інтервалі ми можемо завжди знайти раціональне число. Тож знову фейл Таким чином, $\mathfrak{D}(x)$ - ніде не є неперервною

Особливість функції Діріхле полягає в побудуванні функції, яка є неперервною лише в одній точці

Зокрема $f(x) = x\mathfrak{D}(x)$ - неперервна в т. $x_0 = 0$ Дійсно, $\forall \varepsilon > 0 : \exists \delta = \varepsilon : \forall x : |x| < \delta \Rightarrow |x\mathfrak{D}(x)| \le |x| < \varepsilon$

Розглянемо функцію Рімана

$$\mathfrak{R}(x) = \begin{cases} \frac{1}{n}, x = \frac{m}{n} \in \mathbb{Q} \\ 0, x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Зокрема $\Re(0)=1$

Графік такої функції вже можна приблизно уявити Треба довести, що вона неперервна в усіх ірраціональних числах (INSERT INFO)

4.6 *Інші факти з неперервною функцією

Theorem 4.6.1. Задана функція $f:[a,b]\to\mathbb{R}$ - монотонна Тоді вона може містити в [a,b] лише точки розриву І роду, число їхніх точок не більше, ніж зліченна (INSERT INFO)

5 Диференціювання

5.1 Основні означення

Definition 5.1.1. Задана функція $f:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Функцію f називають **диференційованою** в т. x_0 , якщо

$$\exists L \in \mathbb{R} : f(x) - f(x_0) = L(x - x_0) + o(x - x_0), x \to x_0$$

Proposition 5.1.2. Задана функція f - диференційована в т. x_0 . Тоді вона в т. x_0 неперервна

Proof.

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} (L(x - x_0) + o(x - x_0)) = 0 \blacksquare$$

Proposition 5.1.3. Функція f - диференційована в т. $x_0 \iff$

$$\iff \exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = L = f'(x_0)$$

Definition 5.1.3. Тут число $f'(x_0)$ називають **похідною** функції в т. x_0 Proof.

f - диференційована в т. $x_0 \stackrel{\text{def.}}{\Longleftrightarrow}$

$$\iff \exists L:$$

$$f(x) - f(x_0) = L(x - x_0) + o(x - x_0), x \to x_0 \iff$$

$$\iff \exists L : o(x - x_0) = f(x) - f(x_0) - L(x - x_0) \quad x \to x_0 \iff$$

$$\iff \exists L : o(x - x_0) = f(x) - f(x_0) - L(x - x_0), x \to x_0 \iff \lim_{x \to x_0} \frac{f(x) - f(x_0) - L(x - x_0)}{x - x_0} = 0 \iff \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = L =$$

$$f'(x_0) \blacksquare$$

Proposition 5.1.4. Арифметичні властивості

Задані функції f,g - диференційовані в т. $x_0,\,f'(x_0),g'(x_0)$ - їхні похідні.

1) $\forall c \in \mathbb{R} : cf$ - диференційована в т. x_0 , а її похідна

$$(cf)'(x_0) = cf'(x_0)$$

2) $f\pm g$ - диференційована в т. x_0 , а її похідна

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

3) $f \cdot q$ - диференційована в т. x_0 , а її похідна

$$(f \cdot g)(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

4) $\frac{f}{g}$ - диференційована в т. x_0 при $g(x_0) \neq 0$, а її похідна

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$$

Доведення буде проводитись за допомогою минуло доведеного твердження:

1)
$$(cf)'(x_0) = \lim_{x \to x_0} \frac{cf(x) - cf(x_0)}{x - x_0} = cf'(x_0) \Rightarrow cf$$
 - диференційована в т. x_0

2)
$$(f+g)'(x_0) = \lim_{x \to x_0} \frac{f(x) + g(x) - f(x_0) - g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(x_0) + g'(x_0) \Rightarrow f + g$$
 - диференційована в т. x_0

3)
$$(f \cdot g)'(x_0) = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} g(x) \frac{f(x) - f(x_0)}{x - x_0} + f(x_0) \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(x_0)g(x_0) + f(x_0)g'(x_0) \Rightarrow$$
 fg - диференційована в т. x_0

$$4) \left(\frac{f}{g}\right)'(x_0) = \lim_{x \to x_0} \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)(x - x_0)} \stackrel{\text{так само як в 3})}{=}$$

$$= \frac{1}{(g(x_0))^2} (f'(x_0)g(x_0) - f(x_0)g'(x_0)) \Rightarrow \frac{f}{g} - \text{диференційована в т. } x_0 \blacksquare$$

Proposition 5.1.5. Похідна від композиції

Задані функції f, g та $h = g \circ f$. Відомо, що f - диференційована в т. x_0 , а g - диференційована в т. $y_0 = f(x_0)$

Тоді функція h - диференційована в т. x_0 , а її похідна $h'(x) = q'(f(x_0)) \cdot f'(x_0)$

Proof.

$$h'(x) = \lim_{x \to x_0} \frac{h(x) - h(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} =$$
 $= \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \frac{f(x) - f(x_0)}{x - x_0} =$
Розіб'ємо дві дроби на окремі границі. В першому дробі заміна: $y = f(x)$

Якщо
$$x \to x_0$$
, то в силу неперервності, $f(x) \to f(x_0)$ або $y \to y_0$
$$= \lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = g'(y_0) f'(x_0) = g'(f(x_0)) f'(x_0)$$
 $\Rightarrow h$ - диференційована в т. x_0

Definition 5.1.6. Функція $f \in \text{диференційованою на множині } A$, якщо $\forall x_0 \in A: f$ - диференційована

Таблиця похідних

f(x)	f'(x)
const	0
$x^{\alpha}, \alpha \neq 0$	$\alpha \cdot x^{\alpha-1}$
e^x	e^x
a^x	$a^x \cdot \ln a$
$\frac{1}{\sin x}$	$\cos x$
$\cos x$	$-\sin x$
$\operatorname{tg} x$	$\frac{1}{\cos^2 x}$
$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$
$\ln x$	$\frac{1}{x}$
$\log_a x$	$\frac{1}{x \cdot \ln a}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
arctg x	$\frac{1}{1+x^2}$
arcctg x	$-\frac{1}{1+x^2}$
$\frac{\ln\left(x+\sqrt{1+x^2}\right)}{\ln\left(x+\sqrt{1+x^2}\right)}$	$\frac{1}{\sqrt{1+x^2}}$

Для повного доведення таблиць похідних заведу останню теорему:

Theorem 5.1.7. Похідна від оберненої функції

Задані функції f,g - взаємно обернені. Відомо, що f - диференційована в т. x_0 . Тоді g - диференційована в т. $y_0 = f(x_0)$, а її похідна $g'(y_0) = \frac{1}{f'(x_0)}$

$$g'(y_0) = \frac{1}{f'(x_0)}$$

Proof.

$$g'(y_0) = \lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} =$$

Заміна: y = f(x). Звідси через взаємну оберненість g(y) = g(f(x)) = x.

Якщо
$$y \to y_0$$
, то $g(y) \to g(y_0) \Rightarrow x \to x_0$

$$= \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)} \Rightarrow g$$
 - диференційована в т. y_0

Тепер почергово доведемо кожну похідну:

1.
$$f(x) = const$$

$$f'(x_0) = \lim_{x \to x_0} \frac{c - c}{x - x_0} = \lim_{x \to x_0} 0 = 0$$

2.
$$f(x) = x^{\alpha}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{x^{\alpha} - x_0^{\alpha}}{x - x_0} \stackrel{x - x_0 = t \to 0}{=} \lim_{t \to 0} \frac{(t + x_0)^{\alpha} - x_0^{\alpha}}{t} = x_0^{\alpha - 1} \lim_{t \to 0} \frac{\left(1 + \frac{t}{x_0}\right)^{\alpha} - 1}{\frac{t}{x_0}} = \alpha x_0^{\alpha - 1}$$

3.
$$f(x) = e^x$$

3.
$$f(x) = e^x$$

$$f'(x_0) = \lim_{x \to x_0} \frac{e^x - e^{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{e^{x_0}(e^{x - x_0} - 1)}{x - x_0} = e^{x_0}$$

4.
$$h(x) = a^x$$

Перепишемо інакше: $h(x) = e^{x \cdot \ln a}$

Побачимо, що $y = f(x) = x \cdot \ln a$, а в той час $g(y) = e^y \Rightarrow h(x) = g(f(x))$

Тоді за композицією,

$$h'(x_0) = g'(y_0)f'(x_0) = e^{y_0} \ln a = e^{x_0 \ln a} \ln a = a^{x_0} \ln a$$

$$5. f(x) = \sin x$$

$$f'(x_0) = \lim_{x \to x_0} \frac{\sin x - \sin x_0}{x - x_0} = \lim_{x \to x_0} \frac{2 \sin \frac{x - x_0}{2} \cos \frac{x - x_0}{2}}{x - x_0} = \lim_{x \to x_0} \frac{\sin \frac{x - x_0}{2}}{\frac{x - x_0}{2}} \cos \frac{x - x_0}{2} = \cos x_0$$

6.
$$h(x) = \cos x = \sin\left(\frac{\pi}{2} - x\right)$$

$$f(x) = \frac{\pi}{2} - x$$
, $g(y) = \sin y \Rightarrow h(x) = g(f(x))$

Отже,
$$h'(x_0) = g'(y_0)f'(x_0) = \cos y_0(-1) = -\cos\left(\frac{\pi}{2} - x\right) = -\sin x$$

$$7. f(x) = \operatorname{tg} x$$

Afo
$$f(x) = \frac{\sin x}{\cos x}$$

Тоді
$$f'(x) = \frac{(\sin x)' \cos x - \sin x (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

8. $f(x) = \cot x$

За аналогічними міркуваннями до 7.

9. $q(y) = \ln y$

Маємо функцію
$$f(x)=e^x$$
, тоді f,g - взаємно обернені Тоді оскільки $f'(x_0)=e^{x_0}$, то $g'(y_0)=\frac{1}{f'(x_0)}=\frac{1}{e^{x_0}}=\frac{1}{e^{\ln y_0}}=\frac{1}{y_0}$

10.
$$f(x) = \log_a x$$

Або $f(x) = \frac{\ln x}{\ln a} \Rightarrow f'(x_0) = \frac{1}{\ln a} \frac{1}{x_0}$

11. $q(y) = \arcsin y$

Маємо функцію
$$f(x)=\sin x$$
, тоді f,g - взаємно обернені Тоді оскільки $f'(x_0)=\cos x_0$, то $g'(y_0)=\frac{1}{f'(x_0)}=\frac{1}{\cos x_0}=\frac{1}{\cos(\arcsin y_0)}=$

$$= \frac{1}{\sqrt{1 - \sin^2(\arcsin y_0)}} = \frac{1}{\sqrt{1 - y_0^2}}$$

Важливо, що тут функція $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$

12. $f(x) = \arccos x$

Aбо
$$f(x) = \frac{\pi}{2} - \arcsin x \Rightarrow f'(x_0) = -\frac{1}{\sqrt{1 - x_0^2}}$$

13. $g(y) = \operatorname{arctg} y$

За аналогічними міркуваннями до 11., але тут вже $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R},$ $f(x) = \operatorname{tg} x$

14. $f(x) = \operatorname{arcctg} x$

За аналогічними міркуваннями до 12., але $\operatorname{arcctg} x = \frac{\pi}{2} - \operatorname{arctg} x$

15.
$$f(x) = \ln(x + \sqrt{1 + x^2})$$

$$f'(x_0) = \frac{1}{x_0 + \sqrt{1 + x_0^2}} \cdot (x_0 + \sqrt{1 + x^2})'_{x=x_0} = \frac{1 + \frac{1}{2\sqrt{1 + x_0^2}} \cdot (1 + x^2)'_{x=x_0}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{1}{2\sqrt{1 + x_0^2}} \cdot (1 + x^2)'_{x=x_0}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1}{x_0 + \sqrt{1 + x_0^2}} = \frac{1}{\sqrt{1 + x_0^2}} = \frac{1}{\sqrt{1 + x_0^2}}$$

Remark Тут треба більш детально про $f(x) = \ln(x + \sqrt{1 + x^2})$ сказати: Розглянемо рівняння $\operatorname{sh} x = y$

Розв'яжемо її відносно x

$$\frac{e^x - e^{-x}}{2} = y \Rightarrow e^x - e^{-x} = 2y \Rightarrow e^{2x} - 2ye^x - 1 = 0$$

$$\Rightarrow e^x = y \pm \sqrt{1 + y^2} \Rightarrow e^x = y + \sqrt{1 + y^2}$$

$$\Rightarrow x = \ln\left(y + \sqrt{1 + y^2}\right)$$

Таким чином, можна стверджувати, що $\ln\left(y+\sqrt{1+y^2}\right)=\operatorname{arcsh}\,y$ Але найбільше застосування все ж таки виявляється згодом (коли підуть інтеграли)

Дотична та нормаль до графіку функції 5.2

Definition 5.2.1. Пряма $y = k(x - x_0) + f(x_0)$ називається **дотичною** до графіку функції f(x) в т. x_0 , якщо

$$f(x) - [k(x - x_0) + f(x_0)] = o(x - x_0), x \to x_0$$

Чоловічою мовою: 'навколо т. x_0 функція f(x) та пряма $k(x-x_0)+f(x_0)$ '

Proposition 5.2.2. Функція f має дотичну в т. $x_0 \iff f$ - диференційована в т. x_0 . При цьому $k = f'(x_0)$

Proof.

$$f(x) - [k(x-x_0) + f(x_0)] = o(x-x_0), x \to x_0 \iff f(x) - f(x_0) = k(x-x_0) + o(x-x_0), x \to x_0 \iff f$$
-диференційована в т. $x_0, k = f'(x_0)$
Таким чином, $y - f(x_0) = f'(x_0)(x-x_0)$ - рівняння дотичної

Є ще інше пояснення дотичної

Нехай є фіксована точка $(x_0, f(x_0))$ та точка $(x^*, f(x^*))$. Через ці дві точки проведемо пряму - її ще називають січною. Маємо таке рівняння:

$$\frac{x-x_0}{x^*-x_0} = \frac{y-f(x_0)}{f(x^*)-f(x_0)} \Rightarrow \frac{f(x^*)-f(x_0)}{x^*-x_0}(x-x_0) = y-f(x_0)$$
 Ну а далі спрямуємо $x^* \to x_0$. І якщо функція f - диференційована в т.

 x_0 , то одразу маємо

$$f - f(x_0) = f'(x_0)(x - x_0)$$

Що й хотіли

Definition 5.2.3. Пряма, яка проходить через т. дотику $(x_0, f(x_0))$ та

Рис. 2: Графік функції, до якої проведена дотична (червоний) та нормаль (синій)

перпендикулярна до дотичної, називається **нормаллю до графіку функції** f(x) в т. x_0

Знайдемо безпосереднью рівняння нормалі. Маємо рівняння дотичної: f'(m)(m-m) = f(m)(m-m) = 0

$$f'(x_0)(x - x_0) - (y - f(x_0)) = 0$$

Нормальний вектор дотичної задається координатами $\vec{n} = (f'(x_0); -1)$ Тоді для рівняння нормалі даний вектор буде напрямленим. Нам також відомо, що нормаль проходить через т. $(x_0, f(x_0))$, а отже,

$$\frac{x - x_0}{f'(x_0)} = \frac{y - f(x_0)}{-1} \Rightarrow f'(x_0)(y - f(x_0)) = -(x - x_0)$$

Таким чином $y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0)$ - рівняння нормалі

Example 5.2.4. Знайти дотичну до графіку функції $f(x) = 2\cos x + 5$

В Т.
$$x_0 = \frac{\pi}{2}$$
 $y = f'(x_0)(x - x_0) + f(x_0)$ $f(x_0) = f(\frac{\pi}{2}) = 5$ $f'(x_0) = f'(\frac{\pi}{2}) = -2\sin x|_{x=\frac{\pi}{2}} = -2$ ОТЖЕ, МАЄМО: $y = -2(x - \frac{\pi}{2}) + 5 = -2x + (5 - \pi)$

Але що таке дотична, більше до вподоби таке пояснення На графіку функції f задамо точку $(x_0, f(x_0))$, та точку $(x_1, f(x_1))$ Запишемо рівняння прямої, що проходить через ці дві точки

$$\frac{x-x_0}{x_1-x_0} = \frac{y-f(x_0)}{f(x_1)-f(x_0)}$$
 Обережно виразимо y
$$y = \frac{f(x_1)-f(x_0)}{x_1-x_0}(x-x_0)+f(x_0)$$
 А тепер $x_1\to x_0$. Тоді отримаємо $y=f'(x_0)(x-x_0)+f(x_0)$

5.3 Приблизне обчислення значень для диференційованих функцій

Задана функція f - диференційована в т. x_0

Тоді за твердженням, функція має дотичну $y = f'(x_0)(x - x_0) + f(x_0)$, для якого:

$$f(x) - y = o(x - x_0), x \to x_0$$

Тому коли x 'близьке' до x_0 , тобто $|x-x_0| << 1$, то маємо:

$$f(x) - y \approx 0$$

$$\Rightarrow f(x) \approx f'(x_0)(x - x_0) + f(x_0)$$

Example 5.3.1. Знайти значення $\sqrt{65}$

Перетворимо значення іншим чином:

$$\sqrt{65} = \sqrt{64 \cdot \frac{65}{64}} = 8\sqrt{\frac{65}{64}} = 8\sqrt{1 + \frac{1}{64}}$$

А тепер розглянемо функцію $f(x) = 8\sqrt{x}$

Тут
$$x = \frac{65}{64}$$
, в той час $x_0 = 1$

$$|x - x_0| = \left| \frac{65}{64} - 1 \right| = \frac{1}{64} << 1$$

Знайдемо значення функції та похідну в т. x_0 :

$$f(x_0) = f(1) = 8$$

$$f'(x_0) = f'(1) = 8\frac{1}{2\sqrt{x}}|_{x=1} = 4$$

Таким чином, отримаємо:

$$\sqrt{65} \approx 4\left(\frac{65}{64} - 1\right) + 8 = \frac{1}{16} + 8 = 8.0625$$

5.4 Диференціал функції

Задана функція f - диференційована в т. x_0 Почнемо з позначення: $dx \stackrel{\text{позн.}}{=} x - x_0, x \to x_0$

Remark Якщо б $x \not\to x_0$, то це б було просто $\Delta x = x - x_0$. Ось і вся різниця між dx та Δx

Definition 5.4.1. Диференціалом функції f(x) в т. x_0 називають приріст дотичної, коли $x \to x_0$ Позначення: $df(x_0)$

А тепер знайдемо, чому дорівнює це $df(x_0)$ Побудуємо дотичну в т. x_0

Синій - це $df(x_0)$: приблизна різниця між функціями в двох точках. А синій+зелений - це $\Delta f(x_0)$: точна різниця між функціями в двох точках

Нагадування: $k = f'(x_0) = \operatorname{tg} \alpha$ Тоді з малюнка можна виділити: $\operatorname{tg} \alpha = f'(x_0) = \frac{df(x_0)}{dx}$

$$\Rightarrow df(x_0) = f'(x_0) \frac{dx}{dx}$$

Для більш простого випадку, якщо y = f(x), то тоді:

$$dy = f'(x) dx$$

Похідні по один бік 5.5

Definition 5.5.1. Односторонню похідну функції f(x) в т. x_0 називають:

- праворуч:
$$f'(x_0^+) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

- ліворуч:
$$f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

Theorem 5.5.2. Функція f - диференційована в т. $x_0 \iff$ вона містить похідну ліворуч та праворуч, а також $f'(x_0^+) = f'(x_0^-)$

Proof.

f - диференційована в т. $x_0 \iff \exists f'(x_0)$, тобто \exists границя $\iff \exists$ та сама границя ліворуч та праворуч, які рівні \iff вона містить похідну ліворуч та праворуч та $f'(x_0^+) = f'(x_0^-) \blacksquare$

Example 5.5.3. Знайти похідну функції f(x) = |x|

Якщо
$$x > 0$$
, то $f(x) = x \Rightarrow f'(x) = 1$

Якщо
$$x < 0$$
, то $f(x) = -x \Rightarrow f'(x) = -1$

Перевіримо існування похідної в т. $x_0 = 0$

$$f'(0^+) = \lim_{x \to 0^+} \frac{|x| - |0|}{x - 0} = 1$$
 $f'(0^-) = \lim_{x \to 0^-} \frac{|x| - |0|}{x - 0} = -1$
 $\Rightarrow f'(0^+) \neq f'(0^-)$, отже $\not\exists f'(0)$

Взагалі-то кажучи, похідну функції можна переписати інакше:

$$f'(x) = \frac{|x|}{x}$$

Ліричний відступ

Тут вже виникає необхідність поговорити про похідну функції, якщо вона раптом стане рівною нескінченність. І дійсно, ми можемо допускати такий випадок

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$$

Одразу зауважу, що просто ∞ границі бути не може, тобто це еквівалетно в неіснуванні

Example Нехай є функція $f(x) = \sqrt[3]{x^2}$. Знайдемо похідну цієї штуки в т. $x_0 = 0$ за означенням

$$f'(0) = \lim_{x \to 0} \frac{\sqrt[3]{x^2 - 0}}{x} = \lim_{x \to 0} \frac{1}{\sqrt[3]{x}} = \infty$$

Проте для існування похідної необхідно і достатньо існування похідних з різних боків, а тут

$$f'(0^{-}) = \lim_{x \to 0^{-}} \frac{\sqrt[3]{x^{2}} - 0}{x} = -\infty$$

$$f'(0^+) = \lim_{x \to 0^+} \frac{\sqrt[3]{x^2} - 0}{x} = +\infty$$

Зрозуміло, що жодним чином $f'(0^-) \neq f'(0^+)$, тож похідна в ∞ існувати точно не може

А тепер повернімось до геометричних застосувань. Вже відомо, що $f'(x_0) =$ tg α для дотичних

Якщо $f'(x_0) \to \pm \infty$, тобто $\operatorname{tg} \alpha \to \pm \infty$, то тоді кут $\alpha \to \pm \frac{\pi}{2}$. Тобто це означає, що ми матимемо справу з дотичною, яка є вертикальною прямою в т. x_0 , тобто

$$x = x_0$$

Example Нехай є функція $f(x) = \sqrt[3]{x}$. Знайдемо похідно цієї штуки в т. $x_0 = 0$ за означенням

$$f'(0) = \lim_{x \to 0} \frac{\sqrt[3]{x} - 0}{x - 0} = \lim_{x \to 0} \frac{1}{\sqrt[3]{x^2}} = +\infty$$

Похідна існує. Це можна навіть перевірити, пошукавши похідну зліва та справа

Тоді дотичною графіка функції f в т. $x_0=0$ буде вертикальна пряма $x_0=0$

5.6 Інваріантність форми першого диференціалу

Задана функція y = f(x), коли в той же час x = x(t)

Мета: знайти значення dy - перший диференціал

З одного боку:

$$dy \stackrel{\text{def.}}{=} f'(x) dx = f'(x(t)) d(x(t)) = f'(x(t)) \cdot x'(t) dt$$

З іншого боку:

$$dy = df(x(t)) = (f(x(t)))' dt \stackrel{\text{композиція}}{=} f'(x(t)) \cdot x'(t) dt$$

Помічаємо, що ми отримали один й той самий результат, що й свідчить про інваріантність форми першого диференціалу

5.7 Похідна від параметрично заданої функції

Задана параметрично функція $y: \begin{cases} y=y(t) \\ x=x(t) \end{cases}$

Мета: знайти y_x' - похідну функції за x

З точки зору диференціалу:

$$\begin{cases} dx = x'_t dt \\ dy = y'_t dt \end{cases} \Rightarrow \frac{dy}{dx} = \frac{y'_t}{x'_t} \Rightarrow$$

$$y_x'(t) = \frac{y_t'(t)}{x_t'(t)}$$

Example Знайти похідну від функції: $y: \begin{cases} x = \ln t \\ y = t^3 \end{cases}$

$$x'_t = \frac{1}{t}, y'_t = 3t^2$$
$$\Rightarrow y'_x = \frac{3t^2}{\frac{1}{t}} = 3t^3$$

Сюда ми ще повернемось

5.8 Похідна вищих порядків

Definition 5.8.1.(1) Задана функція f, для якої $\exists f'(x)$ **Похідною 2-го порядку від** f(x) називають f''(x) = (f'(x))', якщо вона існує

Definition 5.8.1.(2) Задана функція f, для якої $\exists f^{(n)}(x)$ **Похідною** (n+1)-го порядку від f(x) називають $f^{(n+1)}(x) = (f^{(n)}(x))'$, якщо вона існує

Example 5.8.1. Знайдемо похідну n-го порядку функції $f(x) = \cos x$ $g(x) = \cos x \Rightarrow g'(x) = -\sin x \Rightarrow g''(x) = -\cos x \Rightarrow g'''(x) = \sin x \Rightarrow g^{(4)}(x) = \cos x \Rightarrow \dots$

Продовжувати можна довго, але можемо помітити, що:

$$\cos x = \cos x$$
$$-\sin x = \cos \left(x + \frac{1\pi}{2}\right) = (\cos x)'$$

$$-\cos x = \cos(x + \pi) = \cos\left(x + \frac{2\pi}{2}\right) = (\cos x)''$$
$$\sin x = \cos\left(x + \frac{3\pi}{2}\right) = (\cos x)'''$$
...

Спробуємо ствердити, що працює формула: $(\cos x)^{(n)} = \cos \left(x + \frac{n\pi}{2}\right)$.

Покажемо, що для (n+1)-го члену це теж виконується

$$(\cos x)^{(n+1)} = ((\cos x)^{(n)})' = (\cos \left(x + \frac{n\pi}{2}\right))' = -\sin \left(x + \frac{n\pi}{2}\right) = \cos \left(x + \frac{n\pi}{2} + \frac{\pi}{2}\right) = \cos \left(x + \frac{(n+1)\pi}{2}\right)$$

Остаточно отримаємо, що

$$f(x) = \cos x$$

$$\forall n \ge 1 : f^{(n)}(x) = \cos\left(x + \frac{n\pi}{2}\right)$$

А тепер уявімо собі іншу проблему: задані функції f, g, для яких існують n похідних

Спробуємо знайти $(fg)^{(n)}$

Будемо робити по черзі:

$$(fg)' = f'g + fg'$$

 $(fg)'' = ((fg)')' = (f'g+fg')' = (f'g)'+(fg')' = (f''g+f'g')+(f'g'+fg'') = f''g + 2f'g' + fg''$
 $(fg)''' = ((fg)'')' = (f''g + 2f'g' + fg'')' = f''g' + fg''$

$$= f'''g + f''g + 2f''g'' + 2f'g'' + f'g''' + fg''' = f'''g + 3f''g' + 3f'g'' + fg'''$$

Це можна продовжувати до нескінченності, але можна зробити деякі зауваження, що форма виразу схожа дуже на формулу Бінома-Ньютона, якщо порядок похідної замінити УЯВНО на степінь

Тоді якщо посилатись на MI, то доведемо таку формулу

Theorem 5.8.2. Формула Лейбніца

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x)g^{(n-k)}(x)$$

Example 5.8.2. Знайти похідну *n*-го порядку функції $y = x^2 \cos x$ $f(x) = x^2 \Rightarrow f'(x) = 2x \Rightarrow f''(x) = 2 \Rightarrow f'''(x) = 0 \Rightarrow \dots$

Коротше,
$$\forall n \ge 3 : f^{(n)}(x) = 0$$

$$g(x) = \cos x \stackrel{\text{минулий приклад}}{\Rightarrow} \forall n \ge 1 : g^{(n)}(x) = \cos \left(x + \frac{n\pi}{2}\right)$$

Скористаємось ф-лою Лейбніца:

$$y^{(n)} = (f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x) g^{(n-k)}(x) =$$

$$= C_n^0 f(x) g^{(n)}(x) + C_n^1 f'(x) g^{(n-1)}(x) + C_n^2 f''(x) g^{(n-2)}(x) +$$

$$+ C_n^3 f'''(x) g^{(n-3)}(x) + \cdots + C_n^n f^{(n)}(x) g(x) =$$

$$= f(x) g^{(n)}(x) + n f'(x) g^{(n-1)}(x) + \frac{n(n-1)}{2} f''(x) g^{(n-2)}(x) + 0 =$$

$$= x^2 \cos\left(x + \frac{n\pi}{2}\right) + 2nx \cos\left(x + \frac{(n-1)\pi}{2}\right) + n(n-1)\cos\left(x + \frac{(n-2)\pi}{2}\right) =$$

$$\text{Тут зауважу, що}$$

$$\cos\left(x + \frac{(n-1)\pi}{2}\right) = \cos\left(x + \frac{n\pi}{2} - \frac{\pi}{2}\right) = \sin\left(x + \frac{n\pi}{2}\right)$$

$$(n-2)\pi$$

$$\cos\left(x + \frac{(n-1)\pi}{2}\right) = \cos\left(x + \frac{n\pi}{2} - \frac{\pi}{2}\right) = \sin\left(x + \frac{n\pi}{2}\right)$$

$$\cos\left(x + \frac{(n-2)\pi}{2}\right) = \cos\left(x + \frac{n\pi}{2} - \pi\right) = -\cos\left(x + \frac{n\pi}{2}\right)$$

$$= [x^2 - n(n-1)]\cos\left(x + \frac{n\pi}{2}\right) + 2nx\sin\left(x + \frac{n\pi}{2}\right)$$
Остаточно,

OCTATOUHO, $y^{(n)} = \left[x^2 - n(n-1)\right] \cos\left(x + \frac{n\pi}{2}\right) + 2nx\sin\left(x + \frac{n\pi}{2}\right)$

Повертаємось до п. 5.7.

Нагадую, є функція
$$y: \begin{cases} y=y(t) \\ x=x(t) \end{cases}$$

Вже з'ясували, що
$$y_x'(t) = \frac{y_t'(t)}{x_t'(t)}$$

Знайдемо другу похідну:

$$y_{x^2}''(t) = (y_x'(t))_x' = \frac{(y_x'(t))_t'}{x_t'(t)} = \frac{y_{t^2}''(t)x_t'(t) - x_{t^2}''(t)y_t'(t)}{(x_t'(t))^3}$$

Складно, тому краще повернемось до прикладу з того пункту

Маємо
$$y$$
:
$$\begin{cases} x = \ln t \\ y = t^3 \end{cases}$$

$$x'_t = \frac{1}{t}, y'_t = 3t^2$$

$$\Rightarrow y'_x = 3t^3$$

Тоді отримаємо:

$$y_{x^2}'' = \frac{(y_x')_t'}{x_t'} = \frac{9t^2}{t^3} = \frac{9}{t}$$

Основні теореми 5.9

Тheorem 5.9.1. 'Лема' Ферма

Задана функція $f:(a,b)\to\mathbb{R}$ - диференційована в т. $x_0\in(a,b)$. Більш того, в т. x_0 функція f приймає найбільше (або найменше) значення Тоді $f'(x_0) = 0$

Proof.

Розглянемо випадок тах. Для тіп аналогічно

В т. x_0 функція f приймає найбільше значення, тобто

$$\forall x \in (a, b) : f(x_0) \ge f(x)$$

Оскільки $\exists f'(x_0)$, то тоді $\exists f'(x_0^+), f'(x_0^-)$

$$f'(x_0^+) \stackrel{\text{def.}}{=} \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \left(\stackrel{\leq 0}{\geq 0} \right) \leq 0$$

$$f'(x_0^-) \stackrel{\text{def.}}{=} \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \left(\stackrel{\leq 0}{\leq 0} \right) \geq 0$$

$$f'(x_0^-) \stackrel{\text{def.}}{=} \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\leq 0}{\leq 0}\right) \geq 0$$

Таким чином, $0 \le f'(x_0^-) = f'(x_0^+) \le 0 \Rightarrow f'(x_0^-) = f'(x_0^+) = 0$ $\Rightarrow f'(x_0) = 0 \blacksquare$

Theorem 5.9.2. Теорема Ролля

Задана функція $f:[a,b]\to\mathbb{R},\,f\in C([a,b])$ та диференційована на (a,b)

Більш того,
$$f(a) = f(b)$$

Тоді
$$\exists \xi \in (a,b) : f'(\xi) = 0$$

Proof.

Оскільки $f \in C([a,b])$, то за Th. Вейерштраса,

$$\exists x_1 \in [a, b] : f(x_1) = \min_{x \in [a, b]} f(x)$$

$$\exists x_1 \in [a, b] : f(x_1) = \min_{x \in [a, b]} f(x)$$
$$\exists x_2 \in [a, b] : f(x_2) = \max_{x \in [a, b]} f(x)$$

Розглянемо два випадки:

I.
$$f(x) = const \Rightarrow f'(x) = 0 \forall x \in (a, b), \xi = x$$

II. $f(x) \neq const \Rightarrow$ або ϵx_1 , або ϵx_2 , або навіть обидва

Якщо беремо x_2 , то функція f приймає найбільше значення, тому за лемою Ролля, $f'(x_2) = 0 \Rightarrow \xi = x_2$

Для x_1 - аналогічно

Theorem 5.9.3. Теорема Лагранжа

Задана функція $f:[a,b]\to\mathbb{R},\,f\in C([a,b])$ та диференційована на (a,b) Тоді $\exists c\in(a,b):f'(c)=\dfrac{f(b)-f(a)}{b-a}$

Proof.

Розглянемо функцію $h(x) = (f(x) - f(a)) - \frac{f(b) - f(a)}{b - a}(x - a)$

За сумою та добутками, маємо, що $h \in C([a,b])$ і теж диференційована на (a,b)

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

Зауважимо, що h(a) = 0 та $h(b) = 0 \Rightarrow h(a) = h(b)$

Тому за теоремою Ролля, $\exists \xi = c \in (a, b) : f'(c) = 0$

$$\Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a} \blacksquare$$

Для f в т. c проведемо дотичну. І в цій точці відрізок, що сполучає початкову та кінцеву точку, буде паралельна дотичній

Corollary 5.9.3. Всі наслідки з теореми Лагранжа

- 1. Якщо $\forall x \in (a, b) : f'(x) = 0$, то f(x) = const
- 2. Якщо $\forall x \in (a,b) : f'(x) = k$, то f(x) = kx + q
- 3. Нехай g така ж за властивостями як і f

Якщо $\forall x \in (a,b) : f'(x) = g'(x)$, то f(x) = g(x) + C

4. Якщо $\exists M \in \mathbb{R}: \forall x \in (a,b): |f'(x)| \leq M$, то вона задовільняє умові Ліпшиця

Remark 5.9.4.(4). Умова Ліпшиця f виконується, якщо:

$$\exists L \in \mathbb{R} : \forall x_1, x_2 \in [a, b] : |f(x_1) - f(x_2)| \le L|x_1 - x_2|$$

Proof.

1.
$$\exists c : f(b) - f(a) = f'(c)(b - a) \Rightarrow f(b) = f(a)$$

Але взагалі-то кажучи $\exists c \in (x_1, x_2) \subset (a, b) : f(x_1) = f(x_2)$ Коротше, f(x) = const

2. Розглянемо функцію g(x) = f(x) - kx, теж неперервна і диференційована на (a,b)

Тоді
$$g'(x) = f'(x) - k \Rightarrow g'(x) = 0 \stackrel{\text{насл 1.}}{\Rightarrow} g(x) = q$$

Отже, $g(x) = kx + q$

3. Розглянемо функцію h(x) = f(x) - g(x), теж неперервна і диференційована на (a,b)

Тоді
$$h'(x) = f'(x) - g'(x) = 0 \stackrel{\text{насл 1.}}{\Rightarrow} h(x) = C \Rightarrow f(x) = g(x) + C$$

4.
$$\exists c \in (x_1, x_2) \subset (a, b): f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$$
 $\Rightarrow |f(x_2) - f(x_1)| = |f'(c)||x_2 - x_1| \leq M|x_2 - x_1|$. Тоді встановлюючи $L = M$, маємо умову Ліпшиця \blacksquare

Theorem 5.9.4. Теорема Коші

Задані функції $f,g:[a,b]\to\mathbb{R},\,f\in C([a,b])$ та диференційовані на (a,b). При цьому $g(x)\not\equiv 0$

Тоді
$$\exists c \in (a,b) : \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Proof.

За теоремою Лагранжа, отримаємо, що $\exists c \in (a, b)$:

$$f'(c) = \frac{f(b) - f(a)}{b - a}, g'(c) = \frac{g(b) - g(a)}{b - a}$$

$$\Rightarrow \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \blacksquare$$

Example 5.9.5. Довести нерівність: $|\arctan a - \arctan b| \le |a - b|$ Оскільки $\arctan x$ - неперервна та диференційована на (a,b), то за теоремою Лагранжа,

$$\exists c \in (a,b) : (\operatorname{arctg} x)'_{x=c} = \frac{\operatorname{arctg} b - \operatorname{arctg} a}{b-a}$$
Тобто $\frac{1}{1+c^2} = \frac{\operatorname{arctg} b - \operatorname{arctg} a}{b-a}$
Тоді $|\operatorname{arctg} a - \operatorname{arctg} b| = \left|\frac{1}{1+c^2}\right| |a-b| \le |a-b|$

5.10 Дослідження функції на монотонність

Означення монотонної функції можна побачити в розділу про границі функції. Тому приступимо безпосередньо до теорем

Theorem 5.10.1. Задана функція $f:[a,b]\to\mathbb{R}, f\in C([a,b])$ та диференційована на [a,b]

Функція
$$f$$
 монотонно $\begin{bmatrix} \text{зростає} \\ \text{спадає} \end{bmatrix} \iff \forall x \in [a,b] : \begin{bmatrix} f'(x) \geq 0 \\ f'(x) \leq 0 \end{bmatrix}$

Proof.

Розглянемо випадок зростаючої функції. Для спадної аналогічно

 \implies Дано: f - зростає

Оскільки диференційована $\forall x_0 \in [a, b]$, то

$$\exists f'(x_0^+) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\geq 0}{\geq 0}\right) \geq 0$$

$$\exists f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\leq 0}{\leq 0}\right) \geq 0$$

$$\exists f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\le 0}{\le 0}\right) \ge 0$$

Також $f'(x_0^+) = f'(x_0^-)$, а отже, $\forall x_0 \in [a, b] : f(x_0) \ge 0$

 \sqsubseteq Дано: $\forall x \in [a,b]: f'(x) > 0$

Зафіксуємо такі x_1, x_2 , що $x_2 \ge x_1$

Знаємо, що $\forall x \in (x_1, x_2) \subset [a, b] : f$ - неперервна та диференційована. Тоді за Лагранжом,

$$\exists c \in (x_1, x_2) : f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \ge 0$$

Остаточно, $f(x_2) \ge f(x_1)$, тобто монотонно зростає

Theorem 5.10.2. Критерій строгої монотонності

Задана функція $f:[a,b] \to \mathbb{R}, f \in C([a,b])$ та диференційована на (a,b) Функція f строго монотонно $\begin{bmatrix} \text{зростає} \\ \text{спадає} \end{bmatrix}$

1.
$$\forall x \in (a, b) : \begin{bmatrix} f'(x) \ge 0 \\ f'(x) \le 0 \end{bmatrix}$$

2.
$$\not\exists (\alpha, \beta) \subset [a, b] : \forall x \in (\alpha, \beta) : f'(x) = 0$$

Proof.

Розглянемо випадок зростаючої функції. Для спадної аналогічно

 \Rightarrow Дано: f - монотонно строго зростає

Тоді за попередньою теоремою, $\forall x \in (a,b): f'(x) \geq 0$

A тепер припустимо, що $\exists (\alpha, \beta) \subset [a, b] : \forall x \in (\alpha, \beta) : f'(x) = 0$

Тоді за наслідком Лагранжа, f(x) = const на інтервалі (α, β) , що суперечить умові строгої монотонності

Таким чином, отримали 2 пункти з теореми

(₹ Дано:

 $\overline{1.\ \forall x \in (a,b): f'(x) \ge 0}$

2.
$$\not\exists (\alpha, \beta) \subset [a, b] : \forall x \in (\alpha, \beta) : f'(x) = 0$$

3 першого пункту одразу випливає за попередньою теоремою, що f -

монотонно зростає

А тепер припустимо, що наша функція дійсно зростає нестрого, тобто

$$\exists x_1^*, x_2^* \in (a, b) : x_1^* < x_2^* \Rightarrow f(x_1^*) = f(x_2^*)$$

Тоді
$$\forall x \in (x_1^*, x_2^*) : f(x_1^*) \le f(x) \le f(x_2^*)$$

Звідси f(x) = const на інтервалі $(x_1^*, x_2^*) \subset [a, b]$, а отже, f'(x) = 0 - суперечність.

Таким чином, функція f монотонно строго зростає \blacksquare

Example 5.10.1. Розглянемо функцію $f(x) = x^3$

Похідна $f'(x) = 3x^2 \ge 0$. Тобто дана функція монотонно зростає на всьому інтервалі

5.11 Екстремуми функції

5.11.1 Локальні

Definition 5.11.1. Задана функція $f: A \to \mathbb{R}, x_0 \in A$

Точку x_0 називають точкою **локального**

максимуму, якщо
$$\exists \varepsilon > 0 : \forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap A : f(x_0) \ge f(x)$$
 мінімуму, якщо $\exists \varepsilon > 0 : \forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap A : f(x_0) \le f(x)$

Definition 5.11.2. Якщо в т. x_0 маємо $f'(x_0) = 0$ або $\not\exists f'(x_0)$, то таку точку називають **критичною**

Theorem 5.11.3. Необхідна умова для екстремума

Задана функція $f:A\to\mathbb{R}$ та т. $x_0\in A$ - локальний екстремум Тоді ця точка є критичною

Proof.

Розглянемо випадок точки максимуму. Для мінімума аналогічно x_0 - локальна точка максимуму - тобто, приймає в околі т. x_0 функція f приймає найбільшого значення. Тоді за лемою Ферма, $f'(x_0) = 0$ При строгого локального максимуму $\not \exists f'(x_0) \blacksquare$

Example 5.11.3. Головні приклади, чому ця умова не є достатньою, - функції $f(x) = x^3, \, g(x) = \frac{1}{x}$

 $f'(x) = 3x^2 \stackrel{f'(x)=0}{\Rightarrow} x = 0$, але вона не є естремумом, оскільки минулого разу дізнались, що така функція зростає всюди

$$f'(x) = -\frac{1}{x^2}$$
, тобто $\not\exists f'(0)$, але не екстремум

Theorem 5.11.4. Достатня умова для екстремума

Задана функція $f:A \to \mathbb{R}$ та т. $x_0 \in A$ - критична точка

Відомо, що f - диференційований на $(x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon)$

Також
$$\forall x \in \begin{cases} (x_0 - \varepsilon, x_0) : f'(x_0) < 0 \\ (x_0, x_0 + \varepsilon) : f'(x_0) > 0 \end{cases}$$
 (або нерівності навпаки)

Тоді x_0 - точка локального мінімуму (максимуму)

Proof.

Розглянемо випадок, коли
$$\forall x \in \begin{cases} (x_0 - \varepsilon, x_0) : f'(x_0) < 0 \\ (x_0, x_0 + \varepsilon) : f'(x_0) > 0 \end{cases}$$
. Для нерівностей

навпаки все аналогічно

Тоді звідси f - спадає на $(x_0 - \varepsilon, x_0)$ і зростає на $(x_0, x_0 + \varepsilon)$

Або математично,

$$\forall x \in (x_0 - \varepsilon, x_0) : f(x_0) < f(x) \text{ Ta } \forall x \in (x_0, x_0 + \varepsilon) : f(x_0) < f(x)$$

За означенням, це й є точка локального мінімуму ■

Висновок: щоб знайти локальний екстремум, треба спочатку знайти всі критичні точки, а потім дослідити, які значення вона приймає навколо

Example 5.11.4. Задана функція $f(x) = x^3 - 3x^2 - 9x + 2$. Знайдемо всі локальні екстремуми

Спочатку шукаємо критичні точки:

$$f'(x) = 3x^2 - 6x - 9 = 0$$

$$f'(x) = 0 \Rightarrow x^2 - 2x - 3 = 0 \Rightarrow x = -1, x = 2$$

Перевіримо екстремуми на інтервалі

Стрілки вказують на зростання або на спадання функції на даному інтервалі. Тоді можемо зробити висновок, що x=-1 - локальний максимум, а x=2 - локальний мінімум

5.11.2 Глобальні

Theorem 5.11.5. Задана функція
$$f:[a,b] \to \mathbb{R}, f \in C([a,b])$$
 x_1, x_2, \ldots, x_n - критичні точки на (a,b) . Тоді $\max_{x \in [a,b]} f(x) = \max\{f(a), f(x_1), f(x_2), \ldots, f(x_n), f(b)\}$

$$\min_{x \in [a,b]} f(x) = \min\{f(a), f(x_1), f(x_2), \dots, f(x_n), f(b)\}\$$

Proof.

Нехай $\max_{x \in [a,b]} f(x) = f(x^*)$, де $x^* \in (a,b)$

Оберемо $\varepsilon > 0$: $\varepsilon = \min\{b - x^*, x^* - a\}$

Тоді маємо, що $\forall x \in (x^* - \varepsilon, x^* + \varepsilon) \subset (a, b) : f(x^*) \ge f(x)$

Тоді x^* - локальний екстремум $\Rightarrow x^*$ - критична точка, тобто $f'(x^*)=0$, або $\not \exists f'(x^*)$

Тому $x^* \in \{x_1, x_2, \dots, x_n\}$, тобто це є один з наборів критичних точок.

Таким чином, $\max_{x \in [a,b]} f(x) = \max\{f(a), f(x_1), f(x_2), \dots, f(x_n), f(b)\}$

Випадок, коли $\max_{x \in [a,b]} f(x) = f(a)$ або f(b) автоматично доводить теорему

Випадок min аналогічний

Theorem 5.11.6. \in три випадки для функції. x_1, x_2, \ldots, x_n - критичні точки на області визначення для кожного пункту. Розглянемо кожну окремо:

- 1. Задана фукнція $f:(a,+\infty)\to\mathbb{R}, f\in C((a,+\infty))$. Тоді $\sup_{x\in(a,+\infty)} f(x) = \max\{f(a^+), f(x_1), f(x_2), \dots, f(x_n), f(+\infty)\}$ $\inf_{x\in(a,+\infty)} f(x) = \min\{f(a^+), f(x_1), f(x_2), \dots, f(x_n), f(+\infty)\}$
- 2. Задана фукнція $f:(-\infty,b)\to\mathbb{R},\,f\in C((-\infty,b))$. Тоді $\sup_{x\in(-\infty,b)}f(x)=\max\{f(-\infty),f(x_1),f(x_2),\ldots,f(x_n),f(b^-)\}$ $\inf_{x\in(-\infty,b)}f(x)=\min\{f(-\infty),f(x_1),f(x_2),\ldots,f(x_n),f(b^-)\}$
- 3. Задана фукнція $f: \mathbb{R} \to \mathbb{R}, f \in C(\mathbb{R})$. Тоді $\sup_{x \in \mathbb{R}} f(x) = \max\{f(-\infty), f(x_1), f(x_2), \dots, f(x_n), f(+\infty)\}$ $\inf_{x \in \mathbb{R}} f(x) = \min\{f(-\infty), f(x_1), f(x_2), \dots, f(x_n), f(+\infty)\}$ Всі вони доводяться аналогічно до минулої теореми

Example 5.11.5. Задана функція $f(x) = |x^2 - 7x + 10|$ на інтервалі [-1,4]. Знайдемо глобальні екстремуми

$$f(x) = |(x-2)(x-5)| \Rightarrow f(x) = \begin{cases} x^2 - 7x + 10, & x \in [-1, 2] \\ -x^2 + 7x - 10, & x \in [2, 4] \end{cases}$$
$$f'(x) = \begin{cases} 2x - 7, & x \in [-1, 2] \\ -2x + 7, & x \in [2, 4] \end{cases}$$

$$f'(x) = 0 \Rightarrow \begin{bmatrix} x = 3.5 \\ x = -3.5 \end{bmatrix}$$

Але точка x = -3.5 не в інтервалі, тому залишається x = 3.5

Якщо перевірити на інтервалі, то ця точка буде локальним максимумом Отже, ми маємо безліч кандидатів:

$$x = -1, x = 2, x = 3.5, x = 4$$

 $f(-1) = 18, f(2) = 0, f(3.5) = 2.25, f(4) = 2$

Остаточно маємо:

$$\max_{x \in [-1,4]} f(x) = 18, \min_{x \in [-1,4]} f(x) = 0$$

5.12 Формула Тейлора та правила Лопіталя

Theorem 5.12.1. Теорема Тейлора (варіант 1)

Задана функція $f \in C^{(n)}([a,b])$, т. $x_0 \in [a,b]$ та існує $f^{(n+1)}$ на (a,b)

Тоді
$$\exists \theta(x) \in (x_0, x)$$
:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\theta(x))}{(n+1)!} (x - x_0)^{n+1}$$
 остатковий член у формі Лагранжа

Proof.

Розглянемо наступну функцію:

$$g(t) = f(x) - \left(\sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x-t)^k + \frac{L}{(n+1)!} (x-t)^{(n+1)}\right)$$

За умовою теореми та властивостями неперервних функцій, $g \in C([a,b])$ Знайдемо її похідну:

$$g'(t) = 0 - \left(f(t) + \frac{f'(t)}{1!} (x - t) + \dots + \frac{f^{(n)}}{n!} (x - t)^n + \frac{L}{(n+1)!} (x - t)^{(n+1)} \right)' =$$

$$= -f'(t) - \frac{f''(t)}{1!} (x - t) - \frac{f'(t)}{1!} (-1) - \frac{f'''(t)}{2!} (x - t)^2 - \frac{f''(t)}{2!} (-2) (x - t) - \dots - \frac{f^{(n+1)}(t)}{n!} (x - t)^n - \frac{f^{(n)}(t)}{n!} (-n) (x - t)^{n-1} - \frac{L}{(n+1)!} (-1) (n-1) (x - t)^n =$$

Якщо обережно придивитись, то із нашої суми залишуться лише два доданки, а решта скоротяться

$$= -\frac{f^{(n+1)}(t)}{n!}(x-t)^n + \frac{L}{n!}(x-t)^n$$

Зрозуміло, що якщо t=x, то g(x)=0

Ми уявно хочемо таке L, щоб $g(x_0) = 0$

Тоді уявно спрацьовує теорема Ролля на $[x_0,x]$, тобто $\exists c \in (x_0,x): g'(c)=0$

Тоді:

$$g'(c) = \frac{L}{n!}(x-c)^n - \frac{f^{(n+1)}(c)}{n!}(x-c)^n = 0$$

$$\Rightarrow L = f^{(n+1)}(c)$$

Підставимо отримане значення L в наше рівняння $g(x_0) = 0$:

$$g(x_0) = f(x) - \left(\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{(n+1)}\right) = 0$$

Перепозначимо $c = \theta(x) \in (x_0, x)$ та отримаємо нашу бажану формулу:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\theta(x))}{(n+1)!} (x - x_0)^{n+1} \blacksquare$$

Theorem 5.12.1. Теорема Тейлора (варіант 2)

Задана функція $f \in C^{(n)}([a,b])$, т. $x_0 \in [a,b]$ та існує $f^{(n+1)}$ на (a,b)Тоді

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$
 остатковий член у формі Пеано

Вже доведена попередня теорема. Тому достатньо довести, що:

$$\frac{f^{(n+1)}(\theta(x))}{(n+1)!}(x-x_0)^{(n+1)} = o((x-x_0)^n), x \to x_0$$

$$\lim_{x\to x_0} \frac{\frac{f^{(n+1)}(\theta(x))}{(n+1)!}(x-x_0)^{(n+1)}}{(x-x_0)^n} = \lim_{x\to x_0} \frac{f^{(n+1)}(\theta(x))}{(n+1)!}(x-x_0) =$$
У нас $f\in C^{(n+1)}([a,b])$, тому є обмеженою. $x-x_0\to 0$ - н.м.. Отже,

H.M*обм. = H.M

$$=0$$

Основні розклади в Тейлора

Всі вони розглядатимуться в т. $x_0 = 0$, всюди $x \to x_0$

I.
$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

II. $\sin x = \frac{x}{1!} - \frac{x^{3}}{3!} + \dots + \frac{(-1)^{n}}{(2n+1)!} x^{(2n+1)} + o(x^{2n+2})$
III. $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{(-1)^{n}}{(2n)!} x^{2n} + o(x^{2n+1})$
IV. $(1+x)^{\alpha} = \frac{\alpha x}{1!} + \frac{\alpha(\alpha-1)x^{2}}{2!} + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-(n-1))x^{n}}{n!} + o(x^{n})$

Example 5.12.2. Обчислити границю функції
$$\lim_{x\to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{x(1 - \cos x)}$$

Маємо, що:

$$\lim_{x \to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{x(1 - \cos x)} = \lim_{x \to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{2x \sin^2 \frac{x}{2}} = 2\lim_{x \to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{x^3} = 2\lim_{x \to$$

Розкладемо
$$e^x$$
 та $\sin x$ до степеня знаменника:
$$= 2 \lim_{x \to 0} \frac{1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3) - 1 - x + \frac{x^3}{6} + o(x^4) - \frac{x^2}{2}}{x^3} = 2 \lim_{x \to 0} \frac{\frac{x^3}{6} + o(x^3) + \frac{x^3}{6} + o(x^4)}{x^3} = 2 \lim_{x \to 0} \left(\frac{1}{3} + \frac{o(x^3)}{x^3} + \frac{o(x^4)}{x^3} \right) = 2 \lim_{x \to 0} \left(\frac{1}{3} + \frac{x^4}{x^3} + \frac{x^5}{x^3} \right) = \frac{2}{3}$$

Theorem 5.12.3. I правило Лопіталя

Задані функції $f,g \in C([a,b])$ - диференційовані на (a,b) та $\forall x \in (a,b)$: $g'(x) \neq 0$. Також відомо, що:

1.
$$\exists \lim_{x \to b^{-}} f(x) = 0, \ \exists \lim_{x \to b^{-}} g(x) = 0$$

2.
$$\exists \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = L$$

Тоді
$$\exists \lim_{x \to b^-} \frac{f(x)}{g(x)} = L$$

Tym можна замість $x \to b^-$ записати $x \to a^+$, доведення аналогічне

Proof.

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f(x) - f(b)}{g(x) - g(b)} =$$

За теоремою Коші,
$$\exists c \in (x, b) : \frac{f(x) - f(b)}{g(x) - g(b)} = \frac{f'(c)}{g'(c)}$$

Тут x < c < b. Коли $x \to b^-, b \to b^-$. Отже, $c \to b^-$

$$= \lim_{c \to b^-} \frac{f'(c)}{g'(c)} = L \blacksquare$$

Theorem 5.12.4. II правило Лопіталя

Задані функції $f,g \in C([a,b])$ - диференційовані на (a,b) та $\forall x \in (a,b)$: $g'(x) \neq 0$. Також відомо, що:

1.
$$\exists \lim_{x \to b^-} g(x) = \infty$$

1.
$$\exists \lim_{x \to b^{-}} g(x) = \infty$$
2.
$$\exists \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = L$$

Тоді
$$\exists \lim_{x \to b^-} \frac{f(x)}{g(x)} = L$$

Tym можна замість $x \to b^-$ записати $x \to a^+$, доведення аналогічне

Proof.

$$\exists \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = L \iff \forall \varepsilon > 0 : \exists \delta : \forall x \in (b - \delta, b) :\Rightarrow \left| \frac{f'(x)}{g'(x)} - L \right| < \varepsilon \Rightarrow L - \varepsilon < \frac{f'(x)}{g'(x)} < L + \varepsilon$$

Тоді за Коші,
$$\forall x, x_0 \in (b - \delta, b) : \exists c \in (x_0, x) : \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)}$$

Для
$$c \in (x_0, x) \Rightarrow c \in (b - \delta, b) \Rightarrow L - \varepsilon < \frac{f'(c)}{g'(c)} < L + \varepsilon$$

$$\Rightarrow L - \varepsilon < \frac{f(x) - f(x_0)}{g(x) - g(x_0)} < L + \varepsilon \Rightarrow L - \varepsilon < \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x)}}{1 - \frac{g(x_0)}{g(x)}} < L + \varepsilon$$

Фіксуємо $x_0 \in (b - \delta, b)$

Нам ще відомо з дано, що:

$$\lim_{x\to b^-} g(x) = \infty \Rightarrow \lim_{x\to b^-} \frac{f(x_0)}{g(x)} = 0 \text{ Ta } \lim_{x\to b^-} \frac{g(x_0)}{g(x)} = 0 \iff$$

Для нашого
$$\varepsilon: \exists \delta_1, \delta_2: \forall x \in (b-\delta_1,b), \forall x \in (b-\delta_2,b)$$

$$\Rightarrow \left| \frac{f(x_0)}{g(x)} \right| < \varepsilon, \left| \frac{g(x_0)}{g(x)} \right| < \varepsilon$$

Розглянемо $\tilde{\delta} = \min\{\delta, \delta_1, \delta_2\}$

$$x_0 \in (b - \tilde{\delta}, b)$$

$$\Rightarrow -\varepsilon < \frac{f(x_0)}{g(x)} < \varepsilon, -\varepsilon < \frac{g(x_0)}{g(x)} < \varepsilon$$

Скоро це сюди підставимо:

$$L - \varepsilon < \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x)}}{1 - \frac{g(x_0)}{g(x)}} < L + \varepsilon \iff$$

$$\iff (L - \varepsilon) \left(1 - \frac{g(x_0)}{g(x)} \right) < \frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x)} < (L + \varepsilon) \left(1 - \frac{g(x_0)}{g(x)} \right) \iff$$

$$\iff (L - \varepsilon)(1 - \varepsilon) < \frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x)} < (L + \varepsilon)(1 + \varepsilon) \iff$$

$$\iff (L-\varepsilon)(1-\varepsilon) + \frac{f(x_0)}{g(x)} < \frac{f(x)}{g(x)} < (L+\varepsilon)(1+\varepsilon) + \frac{f(x_0)}{g(x)} \iff$$

$$\iff L - 2\varepsilon - L\varepsilon + \varepsilon^2 < +\frac{f(x)}{g(x)} < L + 2\varepsilon + L\varepsilon + \varepsilon^2 \iff$$

$$\iff$$
 $-L\varepsilon - 3\varepsilon < -L\varepsilon - 2\varepsilon - \varepsilon^2 < -L\varepsilon - 2\varepsilon + \varepsilon^2 < +\frac{f(x)}{g(x)} - L <$

$$L\varepsilon + 2\varepsilon + \varepsilon^2 < L\varepsilon + 3\varepsilon \Rightarrow \left| \frac{f(x)}{g(x)} - L \right| < \varepsilon(L+3)$$
 Остаточно: $\forall \varepsilon > 0 : \exists \tilde{\delta} : \forall x \in (b-\tilde{\delta},b) : \left| \frac{f(x)}{g(x)} - L \right| < \varepsilon(L+3) \Rightarrow \exists \lim_{x \to b^-} \frac{f(x)}{g(x)} = L \blacksquare$

Example 5.12.5. Обчислити границю $\lim x^x$

$$\lim_{x\to 0^+} x^x = \lim_{x\to 0^+} e^{x\ln x} = e^{\lim_{x\to x_0} \frac{\ln x}{\frac{1}{x}}} \equiv$$
Перевіримо цю границю за Лоцітал

Перевіримо цю границю за Лопіталем:

$$\lim_{x \to 0^+} \frac{(\ln x)'}{\left(\frac{1}{x}\right)'} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0$$

Отже, можемо продовжувати наш ланцюг обчислення:

$$=e^0=1$$

Remark 5.12.6. Границю типа $\lim_{x\to 0} \frac{\sin x}{x}$ в жодному (!) випадку не можна рахувати за Лопіталем, хоча й результат буде таким самим. Все це тому, що $(\sin x)'$ ми отримали завдяки цієї границі, ми посилаємось на те, що ми знаємо цю границю вже. Коротше, замнений круг відносно логічної послідовності виклада

Опуклі функції та точки перегину 5.13

Розглянемо графік функції f(x) на множині A. Із множини A розглядаються дві точки x_1, x_2 , так, що $x_1 > x_2$

Це приклад так називаємої опуклої функції донизу (або просто опуклої),

коли на множині A справедлива нерівність

$$\forall x \in A : f(x) \le l(x)$$

Прийнято трошки інше означення, а це просто пояснення, звідки все це береться

Знайдемо рівняння прямої, що проходить через т. $(x_1, f(x_1)), (x_2, f(x_2))$ $\frac{x-x_1}{x_2-x_1}=\frac{l(x)-f(x_1)}{f(x_2)-f(x_1)}\Rightarrow l(x)=f(x_1)+\frac{f(x_2)-f(x_1)}{x_2-x_1}(x-x_1)$

 Її підставити можна в нерівність, проте таке означення все рівно не ϵ минруде

Зафіксуємо $\lambda \in [0,1]$ та розглянемо точку $x = \lambda x_1 + (1-\lambda)x_2$ Для довільних λ точка $x \in [x_1, x_2]$.

Я якщо це рівняння розв'язти відносно λ , ми отримаємо, що

$$\lambda = \frac{x_2 - x_1}{x_2 - x_1}$$
 $1 - \lambda = \frac{x - x_1}{x_2 - x_1}$
Отримане $\lambda \in (0, 1)$. Тоді

$$x = \frac{x_2 - x}{x_2 - x_1} x_1 + \frac{x - x_1}{x_2 - x_1} x_2$$
, це все $\forall x_1 < x < x_2$

Але поки що обмежимось першим виглядом

Підставимо цю точку в рівняння прямої

$$l(x) = l(\lambda x_1 + (1 - \lambda)x_2) = f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (\lambda x_1 + (1 - \lambda)x_2 - x_1) =$$

$$= f(x_1) + (f(x_2) - f(x_1))(1 - \lambda) = \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Таким чином, якщо повернутись до нерівності, то отримаємо наступне:

$$\forall \lambda \in [0, 1] : f(\lambda x_1 + (1 - \lambda)x_2)) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

А ось таке означення можна використовувати подалі для інших досліджень Аналогічні міркування будуть для **опуклої функції догори** (або просто угнутої), але тут нерівність навпаки

Definition 5.13.1. Задана функція $f: A \to \mathbb{R}$

Цю функцію називають опуклою донизу, якщо

$$\forall x_1, x_2 \in A : \forall \lambda \in [0, 1] : f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Remark 5.13.1. Якщо $\lambda \in (0,1)$ нерівність строга

Lemma 5.13.2. Лема про 3 хорди

Функція $f:A\to\mathbb{R}$ опукла донизу \iff справедлива нерівність $\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$

Нерівність означає наступне: кутовий коефіцієнт $PP_1 \leq$ кутовий коефіцієнт $P_2P_1 \leq$ кутовий коефіцієнт P_2P

Remark 5.13.2.(1) Для опуклої догори нерівність навпаки Remark 5.13.2.(2) Для строгої опуклості нерінвість буде строгою

Proof.

Зафіксуємо точки $x_1, x_2 \in A$ та точку $x \in (x_1, x_2)$

$$f$$
 - опукла донизу $\iff f(x) \leq \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2)$
 $\iff (x_2 - x_1) f(x) \leq (x_2 - x) f(x_1) + (x - x_1) f(x_1)$
 $\iff (f(x) - f(x_1)) (x_2 - x_1) \leq (f(x_2) - f(x)) (x - x_1)$
 $\iff \frac{f(x) - f(x_1)}{x - x_1} \leq \frac{f(x_2) - f(x)}{x_2 - x}$

Середня нерівність мене поки що не цікавить, це я так, щоб було

 \mathbf{Lemma} 5.13.3. Задана функція $f:A \to \mathbb{R}$ - диференційована на Af - опукла донизу \iff f' не спадає на A не зростає

Proof.

 \Rightarrow Дано: f - опукла донизу

Розглянемо т.
$$x_1, x_2 \in A$$
, тоді $\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$

Ба більше, оскільки f - диференційована, то $\exists f'(x_1), \exists f'(x_2)$

Тоді отримаємо ось що, використовуючи границі в нерівностях:
$$f'(x_1) = \lim_{x \to x_1^+} \frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \lim_{x \to x_2^-} \frac{f(x_2) - f(x)}{x_2 - x} = f'(x_2)$$
 Отже, $\forall x_1, x_2 \in A : x_2 > x_1 \Rightarrow f'(x_2) \ge f'(x_1)$

 \sqsubset Дано: f' - неспадна на A, тобто $\forall x_1, x_2 \in A : x_1 < x_2 \Rightarrow f'(x_1) \le f'(x_2)$ Оскільки f - диференційована на A, то за теоремою Лагранжа,

Remark 5.14.3. Майже аналогічно для строгої опуклості Єдине, що в першій частині доведення треба застосувати теореми Лагранжа для точок $z_1 \in (x_1, x)$ та $z_2 \in (x, x_2)$

Theorem 5.13.4. Задана функція $f:(a,b) \to \mathbb{R}$ - $f \in C([a,b])$ та двічі диференційована на (a,b)

$$f$$
 - опукла $\begin{bmatrix}$ догори \Longleftrightarrow $\end{bmatrix}$ 1. $\forall x \in (a,b): \begin{bmatrix} f''(x) \leq 0 \\ f''(x) \geq 0 \end{bmatrix}$

1.
$$\forall x \in (a,b)$$
:
$$\begin{bmatrix} f''(x) \le 0 \\ f''(x) \ge 0 \end{bmatrix}$$

2.
$$\not\exists (\alpha, \beta) \subset (a, b) : f''(x) = 0$$

Proof.

$$f$$
 - опукла догори $\iff f'$ - спадає \iff 1. $\forall x \in (a,b): \begin{bmatrix} f''(x) \leq 0 \\ f''(x) \geq 0 \end{bmatrix}$

2.
$$\not\exists (\alpha, \beta) \subset (a, b) : f''(x) = 0 \blacksquare$$

Example 5.13.4. Функція $f(x) = x^2$ буде опуклою донизу, оскільки f''(x) = 2 > 0

Theorem 5.13.5. Задана функція $f:(a,b) \to \mathbb{R}, \ f \in C([a,b])$ та диференційована на (a, b)

f - опукла донизу на $(a,b) \iff \forall x_0 \in (a,b)$: дотична в т. x_0 лежить ничже графіка функції f

Proof.

 \Rightarrow Дано: f - опукла донизу на (a,b)

Зафіксуємо т. $x_0 \in (a, b)$, тоді маємо рівняння дотичної

$$au(x)=f(x_0)+f'(x_0)(x-x_0)\Rightarrow f(x)- au(x)=f(x)-f(x_0)-f'(x_0)(x-x_0)$$
 За теоремою Лагранжа, отримаємо: $\exists z\in (x,x_0):$ $f(x)-f(x_0)=f'(z)(x-x_0)\Rightarrow f(x)- au(x)=(f'(z)-f'(x_0))(x-x_0)$ За дано, маємо: $x< x_0\Rightarrow z\leq x_0\Rightarrow f'(z)\leq f'(x_0)$ Тоді маємо, що $f(x)- au(x)\geq 0\Rightarrow au(x)\leq f(x)$ Тобто дійсно, дотична знаходиться нижче за графіка функції

Тобто дійсно, дотична знаходиться нижче за графіка функції Для (x_0, x) ситуація є аналогічною

$$\sqsubseteq$$
 Дано: $\forall x_0 \in (a,b)$, дотична в т. x_0 нижче f , тобто $\forall x \in [a,b]: \tau(x) = f(x_0) + f'(x_0)(x-x_0) \leq f(x)$ $\Rightarrow f(x) - \tau(x) = f(x) - f(x_0) - f'(x_0)(x-x_0) \geq 0$ Тоді отримаємо:

$$\begin{cases} \frac{f(x) - f(x_0)}{x - x_0} \ge f'(x_0), x > x_0\\ \frac{f(x) - f(x_0)}{x - x_0} \le f'(x_0), x < x_0 \end{cases}$$

Візьмемо точки $x_1 < x < x_2$, тоді матимемо таку нерівність

$$\frac{f(x_1) - f(x)}{x_1 - x} \le \frac{f(x_2) - f(x)}{x_2 - x}$$

Що $\ddot{\mathbf{n}}$ свідчить про випуклість функції f донизу

Definition 5.13.6. Задана функція $f:A\to\mathbb{R}$ - диференційована в т. $x_0 \in A$

Точку x_0 називають **точкою перегину**, якщо в лівому та правому околі т. x_0 вони мають протилежні напрямки опуклості Варто уточнити, що може існувати $f'(x_0) = \pm \infty$

Example 5.13.5. Maemo
$$f(x) = \frac{(x-1)^3}{4} + 2$$

$$f''(x) = \frac{3}{2}(x-1) = 0$$

Тут буде т. $x_0 = 1$ - точка перегину

Якщо x > 1, то f''(x) > 0. А якщо x < 1, то f''(x) < 0

Отже, на $(-\infty, 1)$ - випукла догори, а на $(1, +\infty)$ - випукла донизу

Example 5.13.5. Maemo $f(x) = \sqrt[3]{x}$

$$f''(x) = \frac{1}{3} \left(-\frac{2}{3} \right) x^{-\frac{5}{3}}$$

Тут буде т. $x_0 = 0$ - точка перегину

Водночас
$$\exists y'(0^+) = \lim_{x \to 0^+} \frac{\sqrt[3]{x} - 0}{x - 0} = +\infty \quad \exists y'(0^-) = \lim_{x \to 0^-} \frac{\sqrt[3]{x} - 0}{x - 0} = +\infty$$

Example 5.13.5. Macmo $f(x) = \sqrt{|x|}$

Тут т. $x_0 = 0$ не може бути точкою перегину, оскільки $\not \exists f'(0)$

Theorem 5.13.6. Необхідна умова для перегину

Задана функція $f:A\to\mathbb{R}$ та т. $x_0\in A$ - точка перегину

Тоді $f''(x_0) = 0$

Тут все зрозуміло

Theorem 5.13.7. Достатня умова для перегину

Задана функція $f: A \to \mathbb{R}, f \in C(A)$ та диференційована в околі т. x_0 та має другу похідну. Якщо по обидва боки від точки x_0 маємо протилежні знаки, то тоді x_0 - точка перегину

Тут теж все зрозуміло

Theorem 5.13.8. Достатня умова 2 для перегину

Задана функція $f:A\to\mathbb{R}$. Відомо, що в околі т. x_0

 $f''(x_0) = 0, f'''(x_0) = 0, \ldots, f^{(n-1)}(x_0) = 0$, але водночас $f^{(n)}(x_0) \neq 0$. Тоді

- x_0 точка перегину, якщо n = 2k 1
- x_0 НЕ точка перегину, якщо n=2k

Proof.

Доведемо згодом

Theorem 5.13.6. Нерівність Єнсена

Задана функція $f:(a,b)\to\mathbb{R}$ - опукла донизу. Тоді

 $\forall \alpha_1, \dots, \alpha_n \in (0, 1) : \alpha_1 + \dots + \alpha_n = 1 :$ $f(\alpha_1 x_1 + \dots + \alpha_n x_n) < \alpha_1 f(x_1) + \dots + \alpha_n f(x_n)$

Proof MI.

n=2. Тоді $\forall \alpha_1, \alpha_2: \alpha_1+\alpha_2=1 \Rightarrow \alpha_2=1-\alpha_1:$

 $f(\alpha_1 x_2 + \alpha_2 x_2) = f(\alpha_1 x_2 + (1 - \alpha_1) x_2) < \alpha_1 f(x_1) + (1 - \alpha_1) f(x_2)$, оскільки наша функція опукла донизу

Припустимо, що для n-1 нерівність виконана. Доведемо для n:

$$\forall \alpha_{1}, \dots, \alpha_{n} \in (0, 1) : \forall x \in (a, b) :$$

$$f(\alpha_{1}x_{1} + \dots + \alpha_{n}x_{n}) = f\left(\alpha_{n}x_{n} + (1 - \alpha_{n})\left(\frac{\alpha_{1}}{1 - \alpha_{n}}x_{1} + \dots + \frac{\alpha_{n-1}}{1 - \alpha_{n-1}}x_{n-1}\right)\right) <$$
Зауважу, що
$$\frac{\alpha_{1}}{1 - \alpha_{n}} + \dots + \frac{\alpha_{n-1}}{1 - \alpha_{n-1}} = 1 \text{ та всі доданки} > 0$$

$$< \alpha_{n}f(x_{n}) + (1 - \alpha_{n})\left(\frac{\alpha_{1}}{1 - \alpha_{n}}x_{1} + \dots + \frac{\alpha_{n-1}}{1 - \alpha_{n-1}}x_{n-1}\right) =$$

$$= \alpha_{1}f(x_{1}) + \dots + \alpha_{n}f(x_{n}) \blacksquare$$

Example 5.13.7. Розглянемо функцію $f(x) = \ln x$

Вона є опуклою догори, тому що $f''(x) = -\frac{1}{x^2} < 0$

Тоді за нерівністю Єнсена, отримаємо

 $\ln(\alpha_1 x_1 + \dots + \alpha_n x_n) > \alpha_1 \ln x_1 + \dots + \alpha_n \ln x_n$

де $\alpha_1 + \cdots + \alpha_n = 1$

Можемо встановити $\alpha_1 = \dots = \alpha_n = \frac{1}{n}$, сума буде також рівна одинички.

Прийдемо до такої нерівності
$$\ln \frac{x_1 + \dots + x_n}{n} \ge \frac{1}{n} \left(\ln x_1 + \dots + \ln x_n \right)$$

6 Інтегрування

6.1 Первісна, невизначений інтеграл

Definition 6.1.1. Первісною для функції f(x) називають функцію F(x), для якої

$$F'(x) = f(x)$$

Proposition 6.1.2. Якщо $F(x), \Phi(x)$ - первісні для f(x), то

$$\Phi(x) = F(x) + C$$

Випливає з наслідків теореми Лагранжа

Definition 6.1.3. Множину всіх первісних для функції f(x) називають **невизначеним інтегралом функції** f(x)

Позначення:
$$\int f(x) dx = \{F(x) : F'(x) = f(x)\}$$

Remark 6.1.3. Але надалі можна вважати, що $\int f(x) dx = F(x) + C$

Proposition 6.1.4. Властивості

1)
$$\int \alpha f(x) \, dx = \alpha \int f(x) \, dx$$

$$2) \int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$$

$$3) \int f'(x) dx = f(x) + C$$

4)
$$\left(\int f(x) dx\right)' = f(x)$$

Proof.

Покладемо
$$\int f(x) dx = F(x) + C_1$$
 $\int g(x) dx = G(x) + C_2$. Тоді

1)
$$\int \alpha f(x) dx = \alpha F(x) + C = \alpha (F(x) + C) = \alpha \int f(x) dx$$

2)
$$\int f(x) + g(x) dx = F(x) + G(x) + C = F(x) + C_1 + G(x) + C_2 = \int f(x) dx + \int g(x) dx$$

3), 4) випливають з означення ■

Таблиця первісних

$\frac{f(x)}{1}$	F(x)
1	x
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1}, \alpha \neq -1$
$\frac{1}{x}$	$\ln x $
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\frac{1}{\cos^2 x}$	$\operatorname{tg} x$
$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
$\frac{1}{1+x^2}$	$\operatorname{arctg} x$
$\frac{1}{\sqrt{1+x^2}}$	$\ln(x + \sqrt{x^2 + 1})$
e^x	e^x
a^x	$\frac{a^x}{\ln a}$
$\sinh x$	$\operatorname{ch} x$
$\cosh x$	$\sinh x$
$\frac{1}{\cosh^2 x}$	$\operatorname{th} x$
$\frac{1}{\sinh^2 x}$	$-\coth x$

6.2 Заміна змінної

Theorem 6.2.1. $\int f(g(x))g'(x) dx = F(g(x)) + C$ **Proof.** $\int f(g(x))g'(x) dx =$ Тут заміна: g(x) = t

Тоді
$$g'(x) dx = dt$$

= $\int f(t) dt = F(t) + C = F(g(x)) + C$

Example 6.2.1. Обчислити
$$\int \frac{1}{x \ln x} dx$$
 $\int \frac{1}{x \ln x} dx =$ Проведемо заміну: $\ln x = t$ Тоді $\frac{1}{x} dx = dt$ $\int \frac{1}{t} dt = \ln|t| + C = \ln|\ln x| + C$

6.3 Інтегрування за частинами

Все починається з правила диференціювання добутку функції:

$$(u(x)v(x))' = u'(x)v(x) + v(x)v'(x)$$

Тоді отримаємо:

$$u(x)v'(x) = (u(x)v(x))' - u'(x)v(x)$$

$$\int u(x)v'(x) dx = \int (u(x)v(x))' - u'(x)v(x) dx$$

$$\int u(x)v'(x) dx = \int (u(x)v(x))' dx - \int u'(x)v(x) dx$$
Зауважимо, що: $v'(x) dx = dv(x)$ $u'(x) dx = du(x)$
Отримаємо таку формулу:

Theorem 6.3.1.
$$\int u(x) \, dv(x) = u(x)v(x) - \int v(x) \, du(x)$$

Більш зручно записати таку формулу:

$$\int u \, dv = uv - \int v \, du$$

Example 6.3.1. Обчислити
$$\int x^2 e^x dx = u = x^2 \Rightarrow du = 2x dx$$
 $e^x dx = dv \Rightarrow v = e^x = x^2 e^x - \int 2x e^x dx = u = 2x \Rightarrow du = 2 dx$ $e^x dx = dv \Rightarrow v = e^x = x^2 e^x - (2x e^x - \int 2e^x dx) = x^2 e^x - 2x e^x + 2e^x + C$

6.4 Інтегрування дробово-раціональних функцій

Розглянемо $\int \frac{P(x)}{Q(x)} dx$

де P(x), Q(x) - многочлени. Є два випадки:

I. $pow(P(x)) \ge pow(Q(x))$

Тоді можемо поділити їх з остачею:

$$P(x) = S(x)Q(x) + R(x)$$
 Тоді $\int \frac{P(x)}{Q(x)} dx = \int S(x) + \frac{R(x)}{Q(x)} dx$

,але тут pow(R(x)) < pow(Q(x)), зараз буде пункт, як такий інтегрувати

II. pow(P(x)) < pow(Q(x))

Розкладемо $Q(x) = (x-a_1)^{k_1} \dots (x-a_m)^{k_m} (x^2+p_1x+q_1)^{l_1} (x^2+p_sx+q_s)^{l_s}$

Причому дискримінант квадратних трьохчленів - від'ємний

Тоді за теоремою десь із курсу ліналу,

$$\frac{P(x)}{Q(x)} = S(x) + \frac{A_{11}}{x - a_1} + \dots + \frac{A_{1k_1}}{(x - a_1)^{k_1}} + \dots + \frac{A_{m1}}{x - a_m} + \dots + \frac{A_{mk_m}}{(x - a_m)^{k_m}} + \dots + \frac{B_{11}x + C_{11}}{x^2 + p_1x + q_1} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{(x^2 + p_1x + q_1)^{l_1}} + \dots + \frac{B_{s1}x + C_{s1}}{x^2 + p_sx + q_s} + \dots + \frac{B_{sl_s}x + C_{sl_s}}{(x^2 + p_sx + q_s)^{l_s}}$$

Коротше, залишається розглянути 4 вигляди інтегралу:

$$1) \int \frac{1}{x-a} dx = \ln|x-a| + C$$

2)
$$\int \frac{1}{(x-a)^k} dx = \int (x-a)^{-k} dx = \frac{(x-a)^{-k+1}}{-k+1} + C = \frac{1}{(1-k)(x-a)^{k-1}} + C$$

$$3) \int \frac{Bx + C}{x^2 + px + q} dx = 1$$

$$x^{2} + px + q = \left(x + \frac{p}{2}\right)^{2} + \frac{4q - p^{2}}{4}$$

Зробимо заміну: $x + \frac{p}{2} = t \Rightarrow dx = dt$

Також
$$Bx + C = Bt - B\frac{p}{2} + C$$

Перепозначення:
$$\frac{4q - p^2}{4} = a^2 > 0$$
 $C - B\frac{p}{2} = M$

$$\boxed{\exists} \int \frac{Bt + M}{t^2 + a^2} dt = B \int \frac{t}{t^2 + a^2} dt + M \int \frac{1}{t^2 + a^2} dt \boxed{\exists}$$

$$\int \frac{t}{t^2 + a^2} dt = \frac{dt^2}{2(t^2 + a^2)} = \frac{1}{2} \ln|t^2 + a^2|$$

$$\int \frac{1}{t^2 + a^2} dt = \frac{1}{a^2} \int \frac{1}{1 + \left(\frac{t}{a}\right)^2} dt = \frac{1}{a} \int \frac{d\frac{t}{a}}{1 + \left(\frac{t}{a}\right)^2} = \frac{1}{a} \arctan \frac{t}{a}$$

$$\boxed{\exists} \frac{B}{2} \ln|t^2 + a^2| + \frac{M}{a} \arctan \frac{t}{a} + C$$

Hy $\overset{\iota}{a}$ далі робимо зворотню заміну - інтеграл розв'язан

$$4) \int \frac{Bx + C}{(x^2 + px + q)^l} dx =$$

Тут робимо ті самі заміни, що в 3)

$$= \int \frac{Bt + M}{(t^2 + a^2)^l} dt = B \int \frac{t}{(t^2 + a^2)^l} dt + M \int \frac{1}{(t^2 + a^2)^l} dt$$

Ну і тут я ланцюг рівностей зупиню, якщо перший інтеграл - ще ок, то другий - це дупа

$$\int \frac{t}{(t^2 + a^2)^l} dt = \int \frac{dt^2}{2(t^2 + a^2)^l} dt = \frac{1}{2} \frac{1}{(1 - l)s^{l-1}}$$

$$\begin{split} &\int \frac{1}{(t^2+a^2)^l} \, dt = \\ &u = \frac{1}{(t^2+a^2)^l} \qquad dv = dt \\ &= \frac{t}{(t^2+a^2)^l} + 2l \int \frac{t^2}{(t^2+a^2)^{l+1}} \, dt + \frac{t}{(t^2+a^2)^l} + 2l \left(\int \frac{dt}{(t^2+a^2)^l} - a^2 \frac{dt}{(t^2+a^2)^{l+1}} \right) \\ &\text{Позначимо за } I_l = \int \frac{t}{(t^2+a^2)^l} \, dt \end{split}$$

Тоді маємо таке рівняння:

$$I_{l} = \frac{t}{(t^{2} + a^{2})^{l}} + 2l \cdot I_{l} - 2la^{2} \cdot I_{l+1}$$

Залишилось виразити I_{l+1} та розв'язати рівняння рекурсивно, причому I_1 ми вже рахували

Example 6.4.1. Обчислити $\int \frac{x^4}{1+x^3} dx$

Оскільки $pow(x^4) > pow(1+x^3)$, то ми поділимо многочлени. Отримаємо:

$$\int \frac{x^4}{1+x^3} \, dx = \int x - \frac{x}{x^3+1} \, dx = x^2 - \int \frac{x}{x^3+1} \, dx$$

Обчислимо другий інтеграл:

$$\frac{x}{x^3+1} = \frac{x}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1} =$$

$$A(x^2-x+1)+(Bx+C)(x+1)=x$$

$$\Rightarrow \begin{cases} A+B=0 \\ -A+B+C=1 \end{cases} \Rightarrow A=-\frac{1}{3}, B=\frac{1}{3}, C=\frac{1}{3} \end{cases}$$

$$\boxed{\blacksquare}-\frac{1}{3(x+1)}+\frac{1}{3}\frac{x+1}{x^2-x+1}$$

$$\Rightarrow \int \frac{x}{x^3+1}\,dx=-\frac{1}{3}\int \frac{1}{x+1}\,dx+\frac{1}{3}\int \frac{x+1}{x^2-x+1}\,dx$$

$$\boxed{\blacksquare}$$
 I розглянемо другий інтеграл:
$$\int \frac{x+1}{x^2-x+1}\,dx=\int \frac{4x+4}{(2x-1)^2+3}\,dx=\int \frac{4x-2}{(2x-1)^2+3}\,dx+\int \frac{6}{(2x-1)^2+3}\,dx=\ln((2x-1)^2+3)+6\frac{1}{2\sqrt{3}}\arctan\frac{2x-1}{\sqrt{3}}=\ln(4x^2-4x+4)+\sqrt{3}\arctan\frac{2x-1}{\sqrt{3}}$$

$$\boxed{\blacksquare}-\frac{1}{3}\ln|x+1|+\frac{1}{3}\ln(4x^2-4x+4)+\frac{1}{\sqrt{3}}\arctan\frac{2x-1}{\sqrt{3}}$$
 Остаточно отримаємо:
$$\int \frac{x^4}{1+x^3}\,dx=x^2+\frac{1}{3}\ln|x+1|-\frac{1}{3}\ln(4x^2-4x+4)-\frac{1}{\sqrt{3}}\arctan\frac{2x-1}{\sqrt{3}}+C$$

6.5 Інтегрування тригонометричних функцій

I.
$$\int \sin^k x \cos^m x \, dx = k, m \in \mathbb{Z}$$
1) k - непарне, тобто $k = 2l + 1$
Тоді заміна: $\cos x = t$. Тоді
 $-\sin x \, dx = dt$ і $\sin^2 x = 1 - \cos^2 x = 1 - t^2$
 $= \int \sin^{2l+1} x t^m \frac{dt}{-\sin x} = -\int t^m (1 - t^2)^l \, dt$
2) m - непарне, тобто $m = 2l + 1$
Тоді заміна: $\sin x = t$. Тоді $\cos x \, dx = dt$ і $\cos^2 x = 1 - \sin^2 x = 1 - t^2$
 $= \int t^k \cos^{2l+1} x \frac{dt}{\cos x} = \int t^k (1 - t^2)^l \, dt$
3) k, m - парні, тобто $k = 2l, m = 2n$
Тоді $\sin^2 x = \frac{1 - \cos 2x}{2}$ $\cos^2 x = \frac{1 + \cos 2x}{2}$
 $= \int \left(\frac{1 - \cos 2x}{2}\right)^l \left(\frac{1 + \cos 2x}{2}\right)^n \, dx$

Всі отримані інтеграли є випадком інтегрування дробово-раціональних виразів

II.
$$\int R(\sin x, \cos x) \, dx =$$
 де R - дробово-раціональний вираз від $\sin x, \cos x$ Заміна: $t = \operatorname{tg} \frac{x}{2} \Rightarrow x = 2 \operatorname{arctg} t \Rightarrow dx = \frac{2}{1+t^2} \, dt$ $\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1+\operatorname{tg}^2 \frac{x}{2}} = \frac{2t}{1+t^2}$ $\cos x = \frac{1-\operatorname{tg}^2 \frac{x}{2}}{1+\operatorname{tg}^2 \frac{x}{2}} = \frac{1-t^2}{1+t^2} = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \cdot \frac{2}{1+t^2} \, dt$

Отримуємо випадок інтегрування дробово-раціональних виразів

Example 6.5.1. Обчислити
$$\int \cos^3 x \, dx$$

Заміна: $t = \sin x$, випадок І.2 \tilde{z}

Tоді: $dt = \cos x \, dx$

$$\Rightarrow \int \cos^3 x \, dx = \int (1 - t^2) \, dt = t - \frac{t^3}{3} + C = \sin x - \frac{\sin^3 x}{3} + C$$

Example 6.5.2. Обчислити
$$\int \frac{dx}{5-3\cos x}$$

Заміна: $t=\lg\frac{x}{2}$, випадок II. Тоді беремо решта замін звідси, з нашого пункту

$$\Rightarrow \int \frac{dx}{5 - 3\cos x} = \int \frac{1}{5 - 3\frac{1 - t^2}{1 + t^2}} \frac{2}{1 + t^2} dt = \int \frac{2 dt}{5 + 5t^2 - 3 + 3t^2} = \int \frac{dt}{4t^2 + 1} = \frac{1}{2} \arctan 2t + C = \frac{1}{2} \arctan \left(2 \operatorname{tg} \frac{x}{2}\right) + C$$

6.6 Інтегрування ірраціональних виразів

I.
$$\int R\left(\sqrt[k_1]{\frac{ax+b}{cx+d}}, \dots, \sqrt[k_n]{\frac{ax+b}{cx+d}}\right) dx$$

Нехай $m = LCM(k_1, \ldots, k_n)$

Заміна:
$$\frac{ax+b}{cx+d} = t^m$$

Виразимо х з цього рівняння:

$$ax + b = t^m cx + t^m d \Rightarrow x = \frac{t^m d - b}{a - ct^m}$$

Отримаємо інтеграл дробово-раціонального виразу

II.1.
$$\int R(x, \sqrt{a^2 - x^2}) dx =$$

$$\exists \text{аміна: } x = a \sin t \Rightarrow dx = a \cos t dt$$

$$\equiv \int R(a \sin t, a \cos t) \cdot a \cos t dt$$

II.3.
$$\int R(x, \sqrt{x^2 - a^2}) dx \equiv$$
Заміна:
$$x = \frac{a}{\cos t} \Rightarrow dx = \frac{a}{\cos^2 t} \sin t dt$$
$$\equiv \int R\left(\frac{a}{\cos t}, a \operatorname{tg} t\right) \cdot \frac{a \sin t}{\cos^2 t} dt$$

Усі отримані інтеграли II є інтегралами тригонометричних/гіперболічних функцій

Example 6.6.1. Обчислити
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}}\,dx$$
 Заміна: $t^2=x+1$, випадок І. Тоді $x=t^2-1\Rightarrow dx=2t\,dt$
$$\Rightarrow \int \frac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}}\,dx=\int \frac{t+2}{t^4-t}\cdot 2t\,dt=2\int \frac{t+2}{t^3-1}\,dt=$$

обчислення цього інтегралу проводиться як в п. 4, тому я пропускаю цей момент

$$= -\ln(t^2 + t + 1) - \frac{2}{\sqrt{3}} \arctan \frac{2t+1}{\sqrt{3}} + 2\ln|t-1| + C =$$

$$= -\ln(x+2+\sqrt{x+1}) - \frac{2}{\sqrt{3}} \arctan \frac{2\sqrt{x+1}+1}{\sqrt{3}} + 2\ln|\sqrt{x+1}-1| + C$$

Example 6.6.2. Обчислити $\int \sqrt{4-x^2} \, dx$

Заміна: $x = 2\sin t$, випадок ІЇ.1.

Tоді $dx = 2\cos t \, dt$

$$\Rightarrow \int \sqrt{4 - x^2} \, dx = \int 2 \cos t \cdot 2 \cos t \, dt = \int 2(1 + \cos 2t) \, dt = 2t + \sin 2t + C$$

$$= 2t + 2 \sin t \cos t + C = 2 \arcsin \frac{x}{2} + 2\frac{x}{2}\sqrt{1 - \frac{x^2}{4}} + C =$$

$$= 2 \arcsin \frac{x}{2} + \frac{x\sqrt{4 - x^2}}{2} + C$$

6.7 Диференціальний біном

$$\int x^m (ax^n + b)^p dx = m, n, p \in \mathbb{Q}$$

1) $p \in \mathbb{Z}$, тоді маємо:

1)
$$p \in \mathbb{Z}$$
, тоді маємо $m = \frac{p_1}{q_1}; n = \frac{p_2}{q_2}$

$$\operatorname{Hexaй} q_1 = \operatorname{LCM}(q_1, q_2)$$

Заміна: $x = t^q$

2)
$$p \notin \mathbb{Z}$$
, але $\frac{m+1}{n} \in \mathbb{Z}$, тоді маємо:

$$p = \frac{j}{l}$$

Заміна: $ax^n + b = t^l$

3)
$$p \not\in \mathbb{Z}, \, \frac{m+1}{n} \not\in \mathbb{Z},$$
 але $p+\frac{m+1}{n} \in \mathbb{Z},$ тоді маємо: $p=\frac{j}{l}$

Заміна: $a + bx^{-n} = t^l$

Заміни в 1), 2), 3) називають підстановками Чебишова, що призводять до інтегралу дробово-раціональних виразів

Якщо жодна з пунктів не спрацьовує, то інтеграл не може бути обчисленим через елементарні функції

Example 6.7.1. Обчислити
$$\int \sqrt[3]{x-x^3} \, dx = \int x^{\frac{1}{3}} (1-x^2)^{\frac{1}{3}} \, dx$$

$$\equiv$$
 Тут у нас $m=\frac{1}{3}, \ n=2, \ p=\frac{1}{3}$ Спрацьовує п. 3, тому що $p+\frac{m+1}{n}=\frac{1}{3}+\frac{1+\frac{1}{3}}{2}=1\in\mathbb{Z}$ Заміна: $-1+x^{-2}=t^3$
$$-2x^{-3} \, dx=3t^2 \, dt$$

$$\equiv \int (x^{-2}-1)^{\frac{1}{3}}x^{\frac{2}{3}}x^{\frac{1}{3}} \, dx = \int t \cdot x \cdot \frac{3t^2x^3 \, dt}{-2} = \int \frac{3t^3 \, dt}{-2(t^3+1)^2} =$$

$$=\frac{3}{-2}\left(\int \frac{dt}{t^3+1} - \int \frac{dt}{(t^3+1)^2}\right) =$$
 обчислення цього інтегралу проводиться як в п. 4, тому я пропускаю цей момент
$$=-\frac{\ln|t+1|}{2} + \frac{\ln(t^2-t+1)}{4} - \frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}} + \frac{\ln|t+1|}{3} - \frac{\ln(t^2-t+1)}{6} + \frac{\sqrt{3}}{3} \arctan \frac{2x-1}{\sqrt{3}} + \frac{t}{2t^3+2} + C =$$

$$=-\frac{1}{6}\ln|t+1| + \frac{1}{12}\ln(t^2-t+1) - \frac{\sqrt{3}}{6} \arctan \frac{2x-1}{\sqrt{3}} + \frac{t}{2t^3+2} + C$$
 І підставляємо $t=\sqrt[3]{x^{-2}+1}$

7 Визначений інтеграл

7.1 Підхід Рімана

Definition 7.1.1. Розбиттям множини [a, b] називають множину точок $\tau = \{x_0, x_1, \dots, x_{n-1}, x_n\}$, для яких

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

Definition 7.1.2. Позначимо за $\Delta x_1 = x_1 - x_0, \dots, \Delta x_n = x_n - x_{n-1}$. Тоді числом

$$|\tau| = \max\{\Delta x_1, \dots, \Delta x_n\}$$

називають **діаметром** розбиття au

Definition 7.1.3. Задані розбиття τ, τ' відрізка [a, b]. Якщо $\tau \subset \tau'$, то τ' називають **підрозбиттям** розбиття τ

Proposition 7.1.4. Задано τ' - підрозбиття для τ . Тоді $|\tau'| \le |\tau|$ **Proof.**

Дійсно, із розбиття ми можемо отримати підрозбиття шляхом додавання точок. Тоді деякі інтервали будуть ділитись на підінтервали через додавання точки. Відповідно діаметр зменшується ■

Definition 7.1.5. Задано $\tau = \{x_0, x_1, \dots, x_n\}$ - розбиття відрізка [a, b] Елементи множини $\xi^{\tau} = \{\xi_1, \dots, \xi_n\}$ називають **відміченими точками** Тут $\xi_1 \in [x_0, x_1), \xi_2 \in [x_1, x_2), \dots, \xi_n \in [x_{n-1}, x_n]$

Definition 7.1.6. Задана функція $f:[a,b]\to\mathbb{R}$, розбиття $\tau=\{x_0,x_1,\ldots,x_n\}$ та відмічені точки $\xi^{\tau}=\{\xi_1,\ldots,\xi_n\}$

Інтегральною сумою Рімана функції f для нашого розбиття τ та відмічених точокк називають число

$$S_{\tau,\xi^{\tau}}(f) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Definition 7.1.7. Задана функція $f:[a,b] \to \mathbb{R}$

Функція f називається **інтегрованою за Ріманом** на [a,b], якщо існує таке число I, для якого виконана умова:

$$\forall \varepsilon > 0 : \exists \tau_{\varepsilon} : \forall \tau \supset \tau_{\varepsilon} : \forall \xi^{\tau} : |S_{\tau, \xi^{\tau}}(f) - I| < \varepsilon$$

Число *I* називають **інтегралом Рімана**

$$I = \int_a^b f(x) \, dx$$

Множина інтегрованих функцій за Ріманом: R([a,b])

Remark 7.1.7. Зауважимо, що:

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

Example 7.1.8. Доведемо, що функція $f(x) = 1 \in R([a, b])$, а також:

$$\int_{a}^{b} 1 \, dx = b - a$$

Для початку зафіксуємо розбиття $au = \{x_0, x_1, \dots, x_n\}$ та відмітимо точки $\xi^{\tau} = \{\xi_1, \dots, \xi_n\}$. Це аби знайти інтегральну суму:

$$S_{\tau,\xi^{\tau}}(f) = \sum_{k=1}^{n} f(\xi_k) \Delta_k$$

$$\Rightarrow S_{\tau,\xi^{\tau}}(1) = \sum_{k=1}^{n} \Delta_k = x_1 - x_0 + x_2 - x_1 + \dots + x_n - x_{n-1} = x_n - x_0 = b - a$$

I ця інтегральна сума має це значенням при довільному розбитті Якщо встановити I = b - a, то тоді:

$$\forall \varepsilon > 0: \exists \tau_{\varepsilon}: \forall \tau \supset \tau_{\varepsilon}: |S_{\tau,\xi^{\tau}}(f) - I| = |b - a - (b - a)| = 0 < \varepsilon$$
 Отже, $f(x) = 1 \in R([a,b])$, а інтеграл:

$$\int_{a}^{b} 1 \, dx = b - a$$

Example 7.1.9. Доведемо, що функція $f(x) = 1_{x^*} \in R([a, b])$, причому $x^* \in [a, b]$

Також покажемо, що
$$\int_a^b 1_{x^*}(x) dx = 0$$

Для початку зафіксуємо розбиття $au = \{x_0, x_1, \dots, x_n\}$ та відмітимо точки $\xi^{\tau} = \{\xi_1, \dots, \xi_n\}$. Знаходимо інтегральну суму:

Якщо виявиться, що $x^* \notin \xi^{\tau}$, то $\forall k = 1, \ldots, n : 1_{x^*}(\xi_k) = 0$. Отже, S = 0 А якщо $x^* \in \xi^{\tau}$, то існує єдина точка $\xi_m \in \tau$, що $x^* = \xi_m$. Тоді $\forall k \neq m : 1_{x^*}(\xi_k) = 0$, а тоді

$$S = \Delta_m = x_m - x_{m-1}$$

Для другого випадку якщо покласти I = 0, то:

$$\forall \varepsilon > 0 : \exists \tau_{\varepsilon} : |\tau_{\varepsilon}| < \varepsilon : \forall \tau \supset \tau_{\varepsilon} : |S_{\tau, \xi^{\tau}}(f) - I| = |x_m - x_{m-1}| < \varepsilon$$

Example 7.1.10. Доведемо, що функція $1_{\mathbb{Q}} \notin R([a,b])$

Знайдемо інтегральні суми:

Якщо взяти всі точки $\xi_k \in \Delta_k \cap \mathbb{Q}$, то $\forall k = 1, \dots, n : 1_{\mathbb{Q}}(\xi_k) = 1$

$$\Rightarrow S_{\tau,\xi^{\tau}}(1_{\mathbb{Q}}) = (x_1 - x_0) + \dots + (x_n - x_{n-1}) = b - a$$

Проте коли всі точки $\xi_k \in \Delta_k \setminus \mathbb{Q}$, то $\forall k=1,\ldots,n: 1_{\mathbb{Q}}(\xi_k)=0$

$$\Rightarrow S_{\tau,\xi^{\tau}}(1_{\mathbb{Q}}) = 0$$

Отримані значення не залежать від розбиття, але залежить від відмічених точок. Тобто однозначно задати I ми не можемо. Отже, $1_{\mathbb{Q}} \notin R([a,b])$

7.2 Існування інтеграла

Theorem 7.2.1. Задана функція $f \in R([a, b])$.

Тоді значення інтеграла Рімана єдине

Proof.

Припустимо, що I_1, I_2 - значення інтегралу Рімана для функції f Тоді за означенням:

$$\exists \tau_{\varepsilon 1} : \forall \tau \supset \tau_{\varepsilon 1} : |S_{\tau,\xi} - I_1| < \frac{\varepsilon}{2}$$

$$\exists \tau_{\varepsilon 2} : \forall \tau \supset \tau_{\varepsilon 2} : |S_{\tau,\xi} - I_2| < \frac{\varepsilon}{2}$$

Зафіксуємо $\tau^*=\tau_{\varepsilon 1}\cup\tau_{\varepsilon 2}$. Причому τ^* - підрозбиття одночасно для $\tau_{\varepsilon 1}$ та $\tau_{\varepsilon 2}$

Тоді $\forall \tau \supset \tau^*$:

$$|I_1 - I_2| = |I_1 - S_{\tau,\xi} + S_{\tau,\xi} - I_2| \le |I_1 - S_{\tau,\xi}| + |S_{\tau,\xi} - I_2| < \varepsilon$$

З цього випливає негайно, що $I_1 = I_2$. Суперечність!

Theorem 7.2.2. Задана функція $f \in R([a, b])$. Тоді вона є обмеженою **Proof.**

 $f \in R([a,b])$, тоді означення спрацьовує. Нехай $\varepsilon = 1$

Тоді
$$\exists \tau = \{x_0, x_1, \dots, x_n\} : |S_{\tau, \xi^{\tau}}(f) - I| < 1$$

!Припустимо, що f не є обмеженою. Тоді функція f не буде обмеженою принаймні в одному інтервалі Δ_{k_0}

Нехай вона не є обмеженою зверху. Тобто $\exists \{\xi_{k_0}^n \in \Delta_{k_0}, n \geq 1\}$:

$$\lim_{n \to \infty} \xi_{k_0}^n = \xi_{k_0} \Rightarrow \lim_{n \to \infty} f(\xi_{k_0}^n) = +\infty$$

Розглянемо множину відмічених точок $\xi_n^{ au} = \{\xi_1, \dots, \xi_{k_0}, \dots, \xi_n\}$

$$S_n = S_{\tau,\xi_j^{\tau}}(f) = \sum_{k=1}^n f(\xi_k) \Delta x_k$$

Тоді маємо, що:

$$\lim_{n\to\infty} S_n = f(\xi_1)\Delta x_1 + \dots + \lim_{n\to\infty} f(\xi_{k_0}^n)\Delta x_{k_0} + \dots + f(\xi_n)\Delta x_n = +\infty$$
 Суперечність! Оскільки $|S_{\tau,\xi_n^{\tau}}(f) - I| < 1$

Аналогічно все для обмеженості знизу. Отже, f - обмежена \blacksquare (TODO)

Definition 7.2.3. Задана функція $f:[a,b] \to \mathbb{R}$ - обмежена. Визначмо такі значення для розбиття $\tau = \{x_0, x_1, \dots, x_n\}$:

$$m_k = \inf_{x \in \Delta_k} f(x)$$
 $M_k = \sup_{x \in \Delta_k} f(x)$ $k = 1, \dots, n$

Визначимо такі функції $\underline{f}_{\tau}, \overline{f}_{\tau}: [a,b] \to \mathbb{R}:$

$$\underline{f}_{\tau} = \sum_{k=1}^{n} m_k 1_{\Delta_k} \qquad \overline{f}_{\tau} = \sum_{k=1}^{n} M_k 1_{\Delta_k}$$

$$\overline{f}_{\tau} = \sum_{k=1}^{n} M_k 1_{\Delta_k}$$

Theorem 7.2.4.(1). Функції \underline{f}_{τ} , $\overline{f}_{\tau} \in R([a,b])$, а їхні інтеграли дорівнюють:

$$\int_a^b \underline{f}_{ au}(x) \, dx = \sum_{k=1}^n m_k (x_k - x_{k-1})$$
 - нижня сума Дарбу

$$\int_a^b \underline{f}_{\tau}(x) dx = \sum_{k=1}^n M_k(x_k - x_{k-1}) - \text{верхня сума Дарбу}$$

Proof.

Фіксуємо $\varepsilon > 0$. І нехай $\tau_{\varepsilon} = \tau = \{x_0, x_1, \dots, x_n\}$

Тоді
$$\forall \tau' \supset \tau_{\varepsilon}$$
, де

$$\tau' = \{x_0 = x_{0,0}, x_{0,1}, \dots, x_{0,s_0} =$$

$$= x_1 = x_{1,0}, x_{1,1}, \dots x_{1,s_1} = x_2 = x_{2,0}, \dots,$$

$$x_{n-1} = x_{n-1,0}, x_{n-1,1}, \dots, x_{n-1,s_{n-1}} = x_n$$

$$\forall \xi^{\tau'} : \underline{f}(\xi_{k,l}) = m_{k+1}, k = 0, \dots, n-1$$

Отримаємо:

$$S_{\tau',\xi^{\tau'}}(f) = \sum_{k=0}^{n-1} \sum_{l=1}^{s_k} f_{\tau}(\xi_{k,l})(x_{k,l} - x_{k,l-1}) = \sum_{k=0}^{n-1} \sum_{l=1}^{s_k} m_k(x_{k,l} - x_{k,l-1}) = \sum_{k=0}^{n-1} m_k \sum_{l=1}^{s_k} (x_{k,l} - x_{k,l-1}) = \sum_{k=0}^{n-1} m_k(x_{k+1} - x_k) = \sum_{k=1}^{n} m_k(x_k - x_{k-1})$$

$$\Rightarrow |S_{\tau',\xi'}(f) - I| = 0 < \varepsilon$$
Для \overline{f}_{τ} аналогічно

Theorem 7.2.4.(2). Задано $\tau' \supset \tau$ - підрозбиття розбиття τ . Тоді $\forall x \in$ [a,b]:

$$\frac{f_{\tau}(x)}{f_{\tau}(x)} \leq \underline{f}_{\tau'}(x) \qquad \overline{f}_{\tau}(x) \geq \overline{f}_{\tau'}(x)
\int_{a}^{b} \underline{f}_{\tau}(x) \leq \int_{a}^{b} \underline{f}_{\tau'}(x) \qquad \int_{a}^{b} \overline{f}_{\tau}(x) \geq \int_{a}^{b} \overline{f}_{\tau'}(x)
\mathbf{D}_{\sigma, \sigma} \mathbf{f}_{\sigma}$$

Зафіксуємо $x \in [a, b]$. Розглянемо підрозбиття τ' як в попередній теоремі, тобто $x \in \Delta_{k,l}$ для деяких k,l

Через те, що
$$\tau' \supset \tau$$
, то маємо: $\Delta_{k,l} \subset \Delta_{k+1}$ $\Rightarrow m_{k,l} = \inf_{t \in \Delta_{k,l}} f(t) \ge \inf_{t \in \Delta_{k+1}} f(t) = m_k$

$$\Rightarrow \underline{f}_{\tau}(x) \leq \underline{f}_{\tau'}(x)$$

 $\Rightarrow \underline{f}_{\tau}(x) \leq \underline{f}_{\tau'}(x)$ Покажемо тепер нерівність з інтегралами $n = s_k$

$$\int_{a}^{b} \underline{f}_{\tau}(x) dx = \sum_{k=1}^{m} m_{k}(x_{k} - x_{k-1}) = \sum_{k=1}^{n} \sum_{l=1}^{s_{k}} \underline{m_{k}}(x_{k-1,l} - x_{k-1,l-1}) \le$$

$$\leq \sum_{k=1}^{n} \sum_{l=1}^{s_{k}} \underline{m_{k,l}}(x_{k-1,l} - x_{k-1,l-1}) = \int_{a}^{b} \underline{f}_{\tau'}(x) dx$$

Для \overline{f}_{τ} аналогічно \blacksquare

Theorem 7.2.4.(3). $\forall \tau', \tau''$ - розбиття відрізка $[a, b] : \forall x \in [a, b] :$ $f_{\tau'}(x) \le f(x) \le \overline{f}_{\tau''}(x)$

Proof.

Фіксуємо τ', τ'' . Розглянемо розбиття $\tau = \tau' \cup \tau''$ - підрозбиття, до речі, обох розбить

Тому за попередньою теоремою,

$$\underline{f}_{\tau'}(x) \le \underline{f}_{\tau}(x) \le f(x) \le \overline{f}_{\tau}(x) \le \overline{f}_{\tau''}(x) \blacksquare$$

Theorem 7.2.4.(4). $\forall \tau$ - розбиття відрізка $[a,b]: \forall \xi^{\tau}:$

$$\int_{a}^{b} \underline{f}_{\tau}(x) \, dx \le S_{\tau,\xi}(f) \le \int_{a}^{b} \overline{f}_{\tau}(x) \, dx$$

Proof.

Фіксуємо τ, ξ^{τ} . Оскільки $\xi_k \in \Delta_k$, то

$$f(\xi_k) \ge \inf_{t \in \Lambda_k} f(t) = m_k$$

$$f(\xi_k) \ge \inf_{t \in \Delta_k} f(t) = m_k$$

 $f(\xi_k) \le \sup_{t \in \Delta_k} f(t) = M_k$

Обидві нерівності ми помножимо обидві частини на $(x_k - x_{k-1})$, а потім просумуємо по k. Отримаємо:

$$S_{\tau,\xi}(f) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) \ge \sum_{k=1}^{n} m_k(x_k - x_{k-1}) = \int_a^b \underline{f}_{\tau}(x) dx$$

$$S_{\tau,\xi}(f) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) \le \sum_{k=1}^{n} M_k(x_k - x_{k-1}) = \int_a^b \overline{f}_{\tau}(x) dx \blacksquare$$

Задана функція $f:[a,b] \to \mathbb{R}$ - обмежена. Покладемо наступні числа:

$$\underline{I} = \sup_{\tau} \int_{a}^{b} \underline{f}_{\tau}(x) dx \qquad \overline{I} = \inf_{\tau} \int_{a}^{b} \overline{f}_{\tau}(x) dx$$

Тобто нас цікавить найбільша сума з прямокутників інфінума та найменша сума з прямокутників супремума

Theorem 7.2.5.(1). $I \leq \overline{I}$

Proof.

Візьмемо два довільних розбиття τ', τ'' . Зафіксуємо $\tau = \tau' \cup \tau''$. За **Th.** 7.2.4.(2),(4), маємо:

$$\int_{a}^{b} \underline{f}_{\tau'}(x) \, dx \le \int_{a}^{b} \underline{f}_{\tau}(x) \le \int_{a}^{b} \overline{f}_{\tau}(x) \, dx \le \int_{a}^{b} \overline{f}_{\tau''}(x) \, dx$$

Візьмемо супремум по всім розбиттям τ' , отримаємо:

$$\underline{I} \le \int_{a}^{b} \overline{f}_{\tau''}(x) \, dx$$

I це для довільного τ'' . Тому:

$$I < \overline{I} \blacksquare$$

Theorem 7.2.5.(2). $f \in R([a,b]) \iff I = \overline{I} = I$ Proof.

$$\sqsubseteq$$
 Дано: $\underline{I} = \overline{I} = I$

 $\overline{\text{Тоб}}$ то за критерієм супремума та інфімума, $\forall \varepsilon > 0: \exists \tau', \tau'':$

$$0 \le \underline{I} - \int_{a}^{b} \underline{f}_{\tau'}(x) \, dx < \varepsilon(*)$$
$$0 \le \overline{I} - \int_{a}^{b} \overline{f}_{\tau''}(x) \, dx < \varepsilon(**)$$

Покладемо $\tau_{\varepsilon} = \tau' \cup \tau''$. Тоді $\forall \tau \supset \tau_{\varepsilon} \Rightarrow \forall \tau \supset \tau', \tau \supset \tau''$:

$$-\varepsilon < \int_{a}^{b} \underline{f}_{\tau'}(x) \, dx - \underline{I} \le \int_{a}^{b} \underline{f}_{\tau}(x) \, dx - \underline{I} \le S_{\tau,\xi^{\tau}}(f) - I \le$$

$$\le \int_{a}^{b} \overline{f}_{\tau}(x) \, dx - \overline{I} \le \int_{a}^{b} \overline{f}_{\tau''}(x) \, dx - \overline{I} < \varepsilon$$

$$\Rightarrow |S_{\tau,\xi^{\tau}}(f) - I| < \varepsilon$$
Отже, $f \in R([a,b])$

$$\implies$$
 Дано: $f \in R([a,b])$

тобто
$$\forall \varepsilon > 0 : \exists \tau_{\varepsilon} : \forall \tau \supset \tau_{\varepsilon} : \forall \xi : |S_{\tau,\xi} - I| < \varepsilon$$

Оберемо такі точки
$$\xi_k'$$
, щоб $f(\xi_k') - m_k < \frac{\varepsilon}{b-a}$

Помножимо цю нерівність на $(x_k - x_{k-1})$ та просумуємо по k. Тоді:

$$\sum_{k=1}^{n} f(\xi_k')(x_k - x_{k-1}) - \sum_{k=1}^{n} m_k(x_k - x_{k-1}) < \frac{\varepsilon}{b - a} \sum_{k=1}^{n} (x_k - x_{k-1})$$

$$\Rightarrow 0 \leq S_{\tau_{\varepsilon},\xi'}(f) - \int_{a}^{b} \underline{f}_{\tau_{\varepsilon}}(x) \, dx < \varepsilon$$

Аналогічно для точок ξ_k'' , для яких $M_k - f(\xi_k'') < \frac{\varepsilon}{b-a}$ можемо отримати, що:

$$M_k - f(\xi_k'') < \frac{\varepsilon}{b-a}$$

$$\Rightarrow 0 \le \int_a^b \overline{f}_{\tau_{\varepsilon}}(x) \, dx - S_{\tau_{\varepsilon}, \xi''}(x) < \varepsilon$$

Тоді отримаємо, що:

$$0 \leq \overline{I} - \underline{I} \leq \int_{a}^{b} \overline{f}_{\tau_{\varepsilon}}(x) dx - \int_{a}^{b} \underline{f}_{\tau_{\varepsilon}}(x) dx = \left| \int_{a}^{b} \overline{f}_{\tau_{\varepsilon}}(x) dx - \int_{a}^{b} \underline{f}_{\tau_{\varepsilon}}(x) dx \right| =$$

$$= \left| \int_{a}^{b} \overline{f}_{\tau_{\varepsilon}}(x) dx - S_{\tau,\xi''}(f) + S_{\tau,\xi'}(f) - \int_{a}^{b} \underline{f}_{\tau_{\varepsilon}}(x) dx + S_{\tau,\xi''}(f) - I + I - S_{\tau_{\varepsilon},\xi'}(f) \right| \leq$$

$$\left| \int_{a}^{b} \overline{f}_{\tau_{\varepsilon}}(x) dx - S_{\tau,\xi''}(f) \right| + \left| S_{\tau,\xi'}(f) - \int_{a}^{b} \underline{f}_{\tau_{\varepsilon}}(x) dx \right| + \left| S_{\tau,\xi''}(f) - I \right| + \left| I - S_{\tau_{\varepsilon},\xi'}(f) \right| <$$

$$\varepsilon + \varepsilon + \varepsilon + \varepsilon = 4\varepsilon$$

Оскільки це $\forall \varepsilon > 0$, то отримаємо, що $\overline{I} = \underline{I} = 0$

Theorem 7.2.6. Визначимо наступні величини

$$\omega_{\Delta_k}(f) = M_k - m_k$$

$$\omega_{\tau}(f) = \int_a^b \overline{f}(x) \, dx - \int_a^b \underline{f}(x) \, dx$$

 $f \in R([a,b]) \iff$

 $1) \ f$ - обмежена на [a,b]

2) $\forall \varepsilon > 0 : \exists \tau_{\varepsilon} : \omega_{\tau_{\varepsilon}}(f) < \varepsilon$

Proof.

Дано: дві умови

Доведемо, що $\overline{I} = \underline{I}$

Задамо $\varepsilon>0$, тоді $\exists \tau_{\varepsilon}:\omega_{\tau_{\varepsilon}}(f)<\varepsilon$

$$\Rightarrow \overline{I} - \underline{I} = \inf_{\tau'} \int_a^b \overline{f}_{\tau'}(x) \, dx - \sup_{\tau'} \int_a^b \underline{f}_{\tau'}(x) \, dx \le \int_a^b \overline{f}_{\tau_{\varepsilon}}(x) \, dx - \int_a^b \underline{f}_{\tau_{\varepsilon}}(x) \, dx < \varepsilon$$

$$\Rightarrow \overline{I} = \underline{I} \Rightarrow f \in R([a, b])$$

 \Rightarrow Дано: $f \in R([a,b])$

Тоді вона є автоматично обмеженою, а тому завдяки **Theorem 7.2.5.(2).**, маємо, що $\overline{I} = \underline{I}$

8 Визначені інтеграли (спроба 2)

8.1 Визначений інтеграл Рімана

Definition 7.1.1. Розбиттям відрізка [a, b] називають множину точок

$$P: a = x_0 < x_1 < \dots < x_n = b$$

Визначимо деякі величини

$$\Delta x_i = x_i - x_{i-1}, i = \overline{1, n}$$

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x) \quad m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$

Definition 7.1.2. Сумою Дарбу називають такі значення

$$U(P, f) = \sum_{i=1}^{n} M_i \Delta x_i \quad L(P, f) = \sum_{j=1}^{n} m_i \Delta x_i$$

Definition 7.1.3. Верхнім та нижнім інтегралами називають такі значення

$$\overline{I}(f) = \inf_{P} U(P, f) \quad \underline{I}(f) = \sup_{P} U(P, f)$$

Definition 7.1.4. Функція f(x) називається інтегрованою за Ріманом на [a.b], якщо $\overline{I}(f)=\underline{I}(f)$

Позначення: $f \in R([a,b])$

В цьому випадку визначеним інтегралом Рімана від f(x) на [a,b] називають значення

$$\int_{a}^{b} f(x) dx = \overline{I}(f) = \underline{I}(f)$$

Definition 7.1.5. Підрозбиттям розбиття P називають розбиття $P^* \supset P$

Lemma 7.1.6. Задано розбиття P та підрозбиття P^* . Тоді $U(P^*,f) \geq L(P,f)$ $U(P^*,f) \leq U(P,f)$

Proof.

Розглянемо першу нерівність

Нехай $P^* = P \cup \{x^*\}$, де $x^* \in (x_{k-1}, x_k)$ - фіксований інтервал

Тоді
$$U(P^*, f) = \sum_{j=1}^{n+1} M_j^* \Delta x_j^* =$$

$$= \sum_{i=1}^{k-1} M_i \Delta x_i + \sum_{i=k+1}^n M_i \Delta x_i + M_k^* (x^* - x_{k-1}) + M_{k+1}^* (x_k - x^*) \le M_k^* \le M_k \quad M_{k+1}^* \le M_k$$

$$\le \sum_{i=1}^{k-1} M_i \Delta x_i + \sum_{i=k+1}^n M_i \Delta x_i + M_k (x_k - x_{k-1}) = U(P, f)$$

I так ми можем додавати по точці скільки нам буде потрібно Для другої нерівності аналогічно ■

Рис. 3: Праворуч сума площ прямокутників менша за площ прямокутників ліворуч, що й свідчить наша нерівність

Corollary 7.1.6. Для довільної функції f справедлива нерівність: $\underline{I}(f) \leq \overline{I}(f)$

Theorem 7.1.7. Критерій інтегрованості

$$f \in R([a,b]) \iff \forall \varepsilon > 0 : \exists P : U(P,f) - L(P,f) < \varepsilon$$

Proof.

$$\Longrightarrow$$
 Дано $f \in R([a,b])$, тобто

$$\int_{a}^{b} f(x) dx = \overline{I}(f) = \underline{I}(f)$$

 $\ddot{3}$ афіксуємо $\varepsilon > 0$, тоді за критерієм sup, inf:

$$\exists P_1: \int_a^b f(x) \, dx = \inf_P U(P, f) > U(P_1, f) - \frac{\varepsilon}{2} > U(P^*, f) - \frac{\varepsilon}{2}$$

$$\exists P_2: \int_a^b f(x) \, dx = \sup_P U(P, f) < L(P_2, f) + \frac{\varepsilon}{2} < L(P^*, f) + \frac{\varepsilon}{2}$$

$$\exists P_3: \int_a^b f(x) \, dx = \sup_P U(P, f) < L(P_3, f) + \frac{\varepsilon}{2} < L(P^*, f) + \frac{\varepsilon}{2}$$

Другу нерівність домножимо на (-1), а потім додамо ці нерівності отримаємо

$$U(P^*,f) - L(P^*,f) < \varepsilon$$

Відомо, що $L(P, f) \leq \underline{I}(f) \leq \overline{I}(f) \leq U(P, f)$ Звідси $0 \leq \overline{I}(f) - I(f) \leq U(P, f) - L(P, f) < \varepsilon$ Оскільки виконується $\forall \varepsilon > 0$, то маємо, що $\overline{I}(f) = \underline{I}(f)$, а отже, $f \in$ $R([a,b]) \blacksquare$

Theorem 7.1.8. Задана функція $f \in C([a,b])$. Тоді $f \in R([a,b])$ Proof.

$$f \in C([a,b]) \Rightarrow f \in C_{unif}([a,b]) \Rightarrow$$
 $\forall \varepsilon > 0: \exists \delta > 0: \forall x_1, x_2: |x_1-x_2| < \delta \Rightarrow |f(x_1)-f(x_2)| < \varepsilon$ Зафіксуємо таке розбиття $P: a = x_0 < x_1 < \cdots < x_n = b$ таким чином, що $\max_{i=\overline{1,n}} \Delta x_i < \delta$

Remark 7.1.8. $\max_{i=\overline{1,n}} \Delta x_i = \mu(P)$ - діаметр розбиття

Візьмемо відрізок $[x_{k-1}, x_k]$. Тоді $\forall x^{(1)}, x^{(2)} \in [x_{k-1}, x_k]$: $|x^{(1)} - x^{(2)}| < \mu(P) < \delta \Rightarrow |f(x^{(1)}) - f(x^{(2)})| < \varepsilon$ Зокрема для таких точок, де $f(x^{(1)}) = M_k$, $-f(x^{(2)}) = m_k$ матимемо: $M_k - m_k < \varepsilon$

$$\Rightarrow U(P,f) - L(P,f) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k < \varepsilon \sum_{k=1}^{n} \Delta x_k = \varepsilon (b-a)$$

Остаточно, $f \in R([a,b])$

Theorem 7.1.9. Задана функція f - монотонна на [a, b]. Тоді $f \in R([a, b])$ Proof.

Нехай
$$f$$
 зростає, тоді $\forall P: \frac{M_k = f(x_k)}{m_k = f(x_{k-1})}$

Нехай f зростає, тоді $\forall P: \frac{M_k = f(x_k)}{m_k = f(x_{k-1})}$ Візьмемо таке розбиття P, щоб $x_k = a + \frac{b-a}{n}k, \ k = \overline{0,n}$

Тобто
$$\Delta x_k = \frac{b-a}{n}, k = \overline{1,n}$$

Тоді
$$U(P,f)-L(P,f)=\sum_{k=1}^n(f(x_k)-f(x_{k-1}))\frac{b-a}{n}=(M-m)\frac{b-a}{n}<$$
 Ми знаємо, що $\forall \varepsilon>0:\exists N:\forall n\geq N:\frac{1}{n}<\varepsilon<(M-m)(b-a)\varepsilon$ Остаточно $f\in R([a,b])$

Theorem 7.1.10. Властивості

1. Задано
$$f_1, f_2 \in R([a,b])$$
. Тоді $f_1 + f_2 \in R([a,b])$ причому $\forall c \in \mathbb{R} : cf_1 \in R([a,b])$,

$$\int_{a}^{b} f_{1}(x) + f_{2}(x) dx = \int_{a}^{b} f_{1}(x) dx + \int_{a}^{b} f_{2}(x) dx$$
$$\int_{a}^{b} c f_{1}(x) dx = c \int_{a}^{b} f_{1}(x) dx$$

2. Задано
$$f_1, f_2 \in R([a,b])$$
 таким чином, що $\forall x \in [a,b]: f_1(x) \leq f_2(x)$ Тоді $\int_a^b f_1(x) \, dx \leq \int_a^b f_2(x) \, dx$

3. Функція
$$f \in R([a,b]) \iff \forall x \in (a,b) : \begin{cases} f \in R([a,c]) \\ f \in R([c,b]) \end{cases}$$
, причому
$$\int\limits_a^b f(x) \, dx = \int\limits_a^c f(x) \, dx + \int\limits_c^b f(x) \, dx$$

4. Задано
$$f$$
 - обмежена. Функція $f \in R([a,b]) \iff \left| \int\limits_a^b f(x) \, dx \right| \le M(b-a)$

Proof.

1.
$$\forall \varepsilon > 0 : \begin{cases} \exists P_1 : U(P_1, f_1) - L(P_1, f_1) < \varepsilon \\ \exists P_2 : U(P_2, f_2) - L(P_2, f_2) < \varepsilon \end{cases}$$

Зафіксуємо $P = P_1 \cup P_2$. Тоді ці нерівності виконуються одночасно Розглянемо таку суму Дарбу

$$U(P, f_1 + f_2) = \sum_{k=1}^{n} M_k(f_1 + f_2) \Delta x_k \le 1$$

$$M_k(f_1 + f_2) = \sup_{x \in [x_{k-1}, x_k]} (f_1(x) + f_2(x)) \le \sup_{x \in [x_{k-1}, x_k]} f_1(x) + \sup_{x \in [x_{k-1}, x_k]} f_2(x) = M_k(f_1) + M_k(f_2)$$

$$\leq \sum_{k=1}^{n} M_k(f_1) \Delta x_k + \sum_{k=1}^{n} M_k(f_2) \Delta x_k = U(P, f_1) + U(P, f_2)$$

Аналогічно з іншою сумою Дарбу

$$L(P, f_1 + f_2) \ge L(P, f_1) + L(P, f_2)$$

$$\Rightarrow U(P, f_1 + f_2) - L(P, f_1 + f_2) \le (U(P, f_1) - L(P, f_1)) + (U(P, f_2) - L(P, f_2)) < 2\varepsilon$$

Отже, $f \in R([a,b])$

А тепер доведемо рівність. Ми знаємо, що

$$L(P, f_1) \le \int_a^b f_1(x) \, dx \le U(P, f_1)$$
$$L(P, f_2) \le \int_a^b f_2(x) \, dx \le U(P, f_2)$$

Якщо складемо два нерівності, отримаємо

$$0 \le \left| \int_a^b f_1(x) + f_2(x) \, dx - \left(\int_a^b f_1(x) \, dx + \int_a^b f_2(x) \, dx \right) \right| < 2\varepsilon$$

A оскільки $\forall \varepsilon > 0$ виконано, то тоді

$$\int_{a}^{b} f_1(x) + f_2(x) dx = \int_{a}^{b} f_1(x) dx + \int_{a}^{b} f_2(x) dx$$

Довести $cf_1 \in R([a,b])$ нескладно. Єдине треба зауважити, що

 $\forall c > 0 : \sup cf(x) = c \sup f(x)$

 $\forall c < 0 : \sup cf(x) = c \inf f(x)$

2. Оскільки
$$f_1(x) \leq f_2(x)$$
, то тоді $f_2(x) - f_1(x) \geq 0, \forall x \in [a, b]$ $M_k(f_2 - f_1) = \sup_{x \in [x_{k-1}, x_k]} (f_2(x) - f_1(x)) \geq 0$ $m_k(f_2 - f_1) = \inf_{x \in [x_{k-1}, x_k]} (f_2(x) - f_1(x)) \geq 0$ $\Rightarrow \int_{a}^{b} f_2(x) - f_1(x) \, dx \geq 0 \Rightarrow \int_{a}^{b} f_2(x) \, dx$

3. Нехай є розбиття $P: a = x_0 < x_1 < \cdots < x_n = b$

Вважаємо точку $c = x_k$. Тоді маємо два розбиття:

$$P_1: a = x_0 < x_1 < \dots < x_k = c$$

$$P_2: c = x_k < x_{k+1} < \dots < x_n = b$$

Тоді
$$U(P, f) = U(P_1, f) + U(P_2, f)$$

Аналогічно $L(P, f) = L(P_1, f) + L(P_2, f)$

Нам відомо, що $f\in R([a,b])\Rightarrow \forall \varepsilon>0$: $\exists P:U(P,f)-L(P,f)<\varepsilon$

$$\Rightarrow \begin{cases} U(P_1, f) - L(P_1, f) < \varepsilon \\ U(P_2, f) - L(P_2, f) < \varepsilon \end{cases} \Rightarrow \begin{cases} f \in R([a, c]) \\ f \in R([c, b]) \end{cases}$$

Більш того,

$$\left| \int\limits_a^b f(x) \, dx - \left(\int\limits_a^c f(x) \, dx + \int\limits_c^b f(x) \, dx \right) \right| \, < \, \varepsilon \, \, \text{(перевірити самостійно)},$$

це виконується $\forall \varepsilon > 0$

Отже,
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

4.
$$|U(P,f)| = \left| \sum_{k=1}^{n} M_k \Delta x_k \right| \le \sum_{k=1}^{n} |M_k| \Delta x_k \le M \sum_{k=1}^{n} \Delta x_k = M(b-a)$$
Tyr $M = \max_{k=\overline{1,n}} M_k$

Theorem 7.1.11. Інтегрованість композиції

Задано $g \in R([a,b])$. Відомо, що $\forall x \in [a,b]: m \leq g(x) \leq M$ а також $f \in C([m,M])$. Тоді $h=f \circ g \in R([a,b])$

Proof.

$$f \in C([m, M]) \Rightarrow f \in C_{unif}([m, M]) \Rightarrow \forall \varepsilon > 0 : \exists \delta > 0 : \forall y_1, y_2 \in [m, M] : |y_1 - y_2| < \delta \Rightarrow |f(y_1) - f(y_2)| < \varepsilon$$

 $g \in R([a, b]) \Rightarrow \exists P : U(P, g) - L(P, g) < \delta^2$

Розглянемо h(x) = f(g(x)) та його суми Дарбу на цьому розбитті

$$U(P,h) - L(P,h) = \sum_{k=1}^{n} (M_k(h) - m_k(h)) \Delta x_k$$

9 Невласні інтеграли

(TODO)

10 Ряди

Definition 9. Рядами називають формальну нескінченну суму нескінченної послідовності чисел $\{a_n, n \ge 1\}$

$$a_1 + a_2 + \dots + a_n + \dots + \sum_{n=1}^{\infty} a_n$$

Частковою сумою даного ряда називають суму перших k членів

$$S_k = \sum_{n=1}^k a_n = a_1 + a_2 + \dots + a_k$$

В такому випадку в нас виникає послідовність часткових сум $\{S_k, k \geq 1\}$ Якщо така послідовність часткових сум є збіжною, то ряд $\sum_{i} a_{n}$ називають збіжним та значення цього ряду дорівнює

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} S_k = S$$

Інакше - розбіжним

Example 9. Знайдемо суму: $1 + q + q^2 + \dots$

Розглянемо часткову суму $S_k = 1 + q + \dots + q^k = \frac{1 - q^k}{1 - a}$ - сума геом. прогресії

$$\lim_{k \to \infty} S_k = \lim_{k \to \infty} \frac{1 - q^k}{1 - q} = \begin{bmatrix} \frac{1}{1 - q}, |q| < 1\\ \infty, |q| > 1 \end{bmatrix}$$

При q=1 маємо: $1+1+1+\dots$ $S_k=k\Rightarrow \lim_{k\to\infty}S_k=\infty$

$$S_k = k \Rightarrow \lim_{k \to \infty} S_k = \infty$$

Підсумуємо:

- сума є збіжною при |q|<1 та дорівнює

$$1 + q + q^2 + \dots = \frac{1}{1 - q}$$

- сума є розбіжнрю при $|q| \ge 1$

Первинний аналіз збіжності та арифметика рядів 10.1

Proposition 9.1.1. Необхідна ознака збіжності ряду

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний. Тоді $\lim_{n \to \infty} a_n = 0$

Proof.

Зафіксуємо часткові суми:

$$S_{k+1} = \sum_{n=1}^{k+1} a_n \quad S_k = \sum_{n=1}^k a_n$$

Оскільки ряд є збіжним, то
$$\lim_{k \to \infty} S_{k+1} = \lim_{k \to \infty} S_k = S$$
 Тоді $\lim_{k \to \infty} a_{k+1} = \lim_{k \to \infty} (S_{k+1} - S_k) = S - S = 0$

Remark 9.1.1. Якщо виникне, що $\lim_{n\to\infty}a_n\neq 0$, або її взагалі не існує,

то
$$\sum_{n=1}^{\infty} a_n$$
 - розбіжний

Remark 9.1.1.(2) Це лише - необхідна ознака, в жодному випадку не достатня. Якщо границя буде нулевою, то це не означає, що ряд збігається, потрібну інші дослідження

Example 9.1.2. Розглянемо ряд
$$\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + \dots$$
 Оскільки $\not\exists \lim_{n\to\infty} (-1)^n$, то за **Rm. 9.1.1.** маємо, що ряд - розбіжний

Theorem 9.1.3. Критерій Коші

Задано
$$\sum_{n=1}^{\infty} a_n$$

Ряд - збіжний
$$\iff \forall \varepsilon>0: \exists K: \forall k\geq K: \forall p\geq 1: \left|\sum_{n=k+1}^{k+p} a_n\right|<\varepsilon$$

Proof.

$$\sum_{n=1}^{\infty} a_n$$
 - збіжний $\iff \exists \lim_{k \to \infty} S_k$ - збіжна границя $\stackrel{\text{критерій Коші}}{\iff}$

$$\iff \forall \varepsilon > 0 : \exists K : \forall k \ge K : \forall p \ge 1 : |S_{k+p} - S_k| = \left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon \blacksquare$$

Proposition 9.1.4. Задані $\sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$ - збіжні. Тоді збіжними будуть

й наступні ряди

1)
$$\forall \alpha \in \mathbb{R} : \sum_{n=1}^{\infty} \alpha a_n = \alpha \sum_{n=1}^{\infty} a_n$$

2)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

Proof.

Доведу друге. Зафіксуємо часткові суми

2)
$$S_k(a) = \sum_{n=1}^k a_n$$
 , $S_k(b) = \sum_{n=1}^k b_n$

Тоді
$$S_k(a) + S_k(b) = \sum_{n=1}^k (a_n + b_n) = \sum_{n=1}^k a_n + \sum_{n=1}^k b_n$$

Оскільки $\sum_{n=1}^{\infty} a_n$ $\sum_{n=1}^{\infty} b_n$ - збіжні, то $\lim_{k\to\infty} S_k(a) = S(a)$, $\lim_{k\to\infty} S_k(b) = S(b)$

$$\sum_{n=1}^{\infty} (a_n + b_n) = \lim_{k \to \infty} (S_k(a) + S_k(b)) = S(a) + S(b) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

Перший пункт аналогічно

Definition 9.1.5. Хвостом ряда $\sum_{n=1}^{\infty} a_n$ називають ряд $\sum_{n=m}^{\infty} a_n$, де $m \in \mathbb{N}$ Тобто ми відкидуємо перші m-1 доданків та сумуємо, починаючи з m

Proposition 9.1.6.
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний $\iff \sum_{n=m}^{\infty} a_n$ - збіжний

Proof.

$$\sum_{n=1}^{\infty} a_n$$
 - збіжний $\stackrel{\text{критерій Коші}}{\Longleftrightarrow} \forall \varepsilon > 0 : \exists K : \forall k \geq K : \forall p \geq 1 :$

$$\left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon \iff \exists K' = \max\{K, m\} : \forall k \ge K' : \forall p \ge 1 :$$

$$\left|\sum_{n=k+1}^{k+p} a_n
ight| - збіжний $lacksquare$$$

10.2 Знакододатні ряди

Тобто розглядаємо зараз лише ряди $\sum_{n=1}^{\infty} a_n$, такі, що $\forall n \geq 1: a_n \geq 0$

Proposition 9.2.1. $\{S_k, k \ge 1\}$ - мононтонно неспадна послідовність **Proof.**

$$\forall k \ge 1 : S_{k-1} - S_k = a_{k+1} \ge 0 \Rightarrow S_k \le S_{k+1} \blacksquare$$

Proposition 9.2.2. Якщо $\{S_k, k \geq 1\}$ - обмежена, то тоді $\sum_{n=1}^{\infty} a_n$ - збіжний

Proof.

Щойно дізнались що послідовність часткових сум монотонна. До того ж, вона є обмеженою за умовою. Отже, $\exists \lim_{k \to \infty} S_k = S$, тобто $\sum_{n=1}^{\infty} a_n$ збіжний \blacksquare

Theorem 9.2.3. Ознака порівняння в нерівностях

Задані $\sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$ таким чином, що $\exists N: \forall n \geq N: a_n \leq b_n$. Тоді:

1) якщо
$$\sum_{n=1}^{\infty} b_n$$
 - збіжний, то $\sum_{n=1}^{\infty} a_n$ - збіжний теж

2) якщо
$$\sum_{n=1}^{\infty} a_n$$
 - розбіжний, то $\sum_{n=1}^{\infty} b_n$ - розбіжний теж

Proof.

Оскільки скінченна кількість чисел членів ряду жодним чином не впливає на збіжність, то можна вважати, що $\forall n \geq 1: a_n \leq b_n$

Тоді
$$\sum_{n=1}^k a_n \le \sum_{n=1}^k b_n$$

1) Якщо $\sum_{n=1}^{\infty} b_n$ - збіжний ряд, то збіжною буде часткова сума, яка буде обмеженою

Тоді $\{S_k(a), k \geq 1\}$ - обмежена послідовність та монотонна. Отже, існує границя, а тому $\sum_{n=1}^k a_n$ - збіжний

2) Це є оберненим твердженням до 1) (TODO) ■

Theorem 9.2.4. Ознака порівняння в границях

Задані
$$\sum_{n=1}^{\infty}a_n\sum_{n=1}^{\infty}b_n$$
, тут члени строго додатні Нехай $\exists\lim_{n\to\infty}\frac{a_n}{b_n}=l$. Тоді

1) Якщо $l \neq 0$ та $l \neq \infty$, то $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ збіжні або розбіжні одночасно

2) Якщо l=0, то із збіжності $\sum_{n=1}^{\infty}b_n$ випливає збіжність $\sum_{n=1}^{\infty}a_n$

Remark 9.2.4. До речі, $l \ge 0$, оскільки всі члени - додатні **Proof.**

Proof.
1) $\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l \neq 0$, тобто

 $\forall \varepsilon > 0 : \exists N : \forall n \ge N : \left| \frac{a_n}{b_n} - l \right| < \varepsilon$

Оберемо $\varepsilon = \frac{l}{2}$, тоді

 $\frac{l}{2} < \frac{a_n}{b_n} < \frac{3l}{2} \Rightarrow \frac{l}{2}b_n < a_n < \frac{3l}{2}b_n, \forall n \ge N$

Припустимо, що $\sum_{n=1}^{\infty} b_n$ - збіжний, тоді збіжним буде $\sum_{n=1}^{\infty} \frac{3l}{2} b_n$, а отже, за

попередньою теоремою, $\sum_{n=1}^{\infty} a_n$ - збіжний

Припустимо, що тепер $\sum_{n=1}^{\infty} b_n$ - розбіжний, тоді розбіжним буде $\sum_{n=1}^{\infty} \frac{l}{2} b_n$,

а отже, за попередньою теоремою, $\sum_{n=1}^{\infty} a_n$ - розбіжний

Остаточно маємо, що при $l \neq 0$ властивість збіжності обох рядів однакова

2)
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l = 0$$
, тобто

$$\forall \varepsilon > 0 : \exists N : \forall n \ge N : \left| \frac{a_n}{b_n} \right| < \varepsilon$$

Оберемо $\varepsilon=1$, тоді

 $\forall n \geq N : a_n < b_n$

Тоді виконується попередня теорема, один з двох пунктів

Example 9.2.5! Розглянемо $\sum_{n=1}^{\infty} \frac{1}{n}$ - гармонічний ряд

Доведемо, що даний ряд - розбіжний, використовуючи критерій Коші, тобто

$$\exists \varepsilon > 0 : \forall K : \exists k_1, k_2 \ge K : \left| \sum_{n=k_1}^{k_2} \frac{1}{n} \right| \ge \varepsilon$$

Дійсно, якщо $\varepsilon = 0.5, k_1 = K, k_2 = 2K$, то отримаємо:

$$\left| \sum_{n=K}^{2K} \frac{1}{n} \right| = \frac{1}{K} + \frac{1}{K+1} + \dots + \frac{1}{2K} > K \frac{1}{2K} = 0.5$$

Отже, цей ряд - розбіжний

Example 9.2.6! Розглянемо далі $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ ряд Діріхле

Нехай $\alpha < 1$, тоді $\forall n \geq 1 : \frac{1}{n} < \frac{1}{n^{\alpha}}$

За ознакою порівняння та минулим прикладом, отримаємо, що $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ - розбіжний

Нехай $\alpha > 1$, тоді розглянемо часткову суму

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}}\right) + \dots \le$$

$$\le 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{2^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \dots =$$

$$= 1 + \frac{1}{2^{\alpha-1}} + \frac{1}{4^{\alpha-1}} + \frac{1}{8^{\alpha-1}} + \dots = 1 + \frac{1}{2^{\alpha-1}} + \left(\frac{1}{2^{\alpha-1}}\right)^{2} + \dots = \frac{1}{1 - \frac{1}{2^{\alpha-1}}}$$

Наш ряд - обмежений, а послідовність часткових сум - монотонна. Тоді - збіжний

Підсумуємо:

$$\sum_{n=1}^{\infty}\frac{1}{n^{\alpha}}$$
 - $\begin{bmatrix}$ розбіжний, $\alpha\leq 1$ збіжний, $\alpha>1$

Theorem 9.2.7. Ознака Даламбера

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - строго додатній

Нехай
$$\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q$$
. Тоді:

1) Якщо q < 1, то ряд - збіжний

- 2) Якщо q > 1, то ряд розбіжний
- 3) Якщо q = 1, то відповіді нема

Proof.

Proof.
1)
$$\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q < 1$$
, тобто

$$\forall \varepsilon > 0 : \exists N : \forall n \ge N : \left| \frac{a_{n+1}}{a_n} - q \right| < \varepsilon$$

Встановимо
$$\varepsilon = \frac{1-q}{2}$$
, тоді

$$\frac{a_{n+1}}{a_n} < q + \varepsilon = \frac{1 + q}{2}$$

$$\forall n \ge N : a_{n+1} < \frac{1+q}{2} a_n$$

$$\Rightarrow a_{N+1} < \frac{1+q}{2}a_N$$

$$\Rightarrow a_{N+2} < \frac{1+q}{2} a_{N+1} < \left(\frac{1+q}{2}\right)^2 a_N$$

$$\Rightarrow \forall k \ge 1 : a_{N+k} < \left(\frac{1+q}{2}\right)^k a_N$$

Розглянемо ряд
$$\sum_{k=1}^{\infty} \left(\frac{1+q}{2}\right)^k a_N = a_N \sum_{k=1}^{\infty} \left(\frac{1+q}{2}\right)^k$$

Вираз під сумою буде менше за 1, цей ряд - геом. прогресія, збіжний

Тоді
$$\sum_{k=1}^{\infty}a_{N+k}=\sum_{n=N+1}^{\infty}a_n$$
 - збіжний, отже, $\sum_{n=1}^{\infty}a_n$ - збіжний

2) Якщо встановити $\varepsilon = \frac{q-1}{2}$, то отримаємо, що

$$\frac{a_{n+1}}{a_n} > q - \varepsilon = \frac{q+1}{2}$$

$$\forall n \ge N : a_{n+1} > \frac{q+1}{2} a_n$$

Аналогічними міркуваннями, отримаємо

$$\forall k \ge 1: a_{N+k} > \left(\frac{q+1}{2}\right)^k a_N$$

Розглянемо ряд
$$\sum_{k=1}^{\infty} \left(\frac{q+1}{2}\right)^k a_N = a_N \sum_{k=1}^{\infty} \left(\frac{q+1}{2}\right)^k$$

А тут геом. прогресія при виразі, що більше одиниці - розбіжний

Тоді
$$\sum_{k=1}^{\infty}a_{N+k}=\sum_{n=N+1}^{\infty}a_n$$
 - розбіжний, отже, $\sum_{n=1}^{\infty}a_n$ - розбіжний

А тепер в чому проблема при q=1

Розглянемо обидва ряди: $\sum_{n=1}^{\infty} \frac{1}{n}$, $\sum_{n=1}^{\infty} \frac{1}{n^2}$

Використаємо для обох ознаку Даламбера:

$$\lim_{n \to \infty} \frac{1}{n+1} \cdot n = 1 \quad \lim_{n \to \infty} \frac{1}{(n+1)^2} \cdot n^2 = 1$$

Результат - однаковий, проте один ряд - розбіжний, а інший - збіжний Тож q=1 не дає відповіді, шукаємо інші методи

Theorem 9.2.8. Радикальна ознака Коші

Задано $\sum a_n$ - знакододатній

Нехай
$$\exists \lim_{n \to \infty}^{n=1} \sqrt[n]{a_n} = q$$
. Тоді:

- 1) Якщо q < 1, то ряд збіжний
- 2) Якщо q > 1, то ряд розбіжний
- 3) Якщо q = 1, то відповіді нема

Proof.

1)
$$\exists \overline{\lim} \sqrt[n]{a_n} = q < 1$$
, тобто

1)
$$\exists \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q < 1$$
, тобто $\forall \varepsilon > 0: \exists N: \forall n \geq N: \sqrt[n]{a_n} < q + \varepsilon$

$$\Rightarrow a_n < (q + \varepsilon)^n$$

$$\Rightarrow a_n < (q+\varepsilon)^n$$
 Оберемо $\varepsilon = \frac{1-q}{2}$. Тоді маємо: $a_n < \left(\frac{1+q}{2}\right)^n$

$$a_n < \left(\frac{1+q}{2}\right)^r$$

Розглянемо ряд $\sum_{n=0}^{\infty} \left(\frac{1+q}{2}\right)^n$ - геом. прогресія, вираз в сумі менше за

одиниці - збіжний

Отже,
$$\sum_{n=1}^{\infty} \left(\frac{1+q}{2}\right)^n$$
 - збіжний, а тому $\sum_{n=1}^{\infty} a_n$ - збіжний

2)
$$\exists \overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q < 1$$
, тобто

2)
$$\exists \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q < 1$$
, тобто $\exists \{\sqrt[n(p)]{a_{n(p)}}, p \ge 1\} : \lim_{p \to \infty} \sqrt[n(p)]{a_{n(p)}} = q$ - така підпослідовність, що містить цю границю

$$\Rightarrow \forall \varepsilon > 0: \exists P: \forall p \geq P: \left| \sqrt[n(p)]{a_{n(p)}} - q \right| < \varepsilon$$

Оберемо
$$\varepsilon = \frac{q-1}{2},$$
 тоді

$$a_{n(p)} > \left(\frac{q+1}{2}\right)^{n(p)}$$

Тоді
$$\lim_{p \to \infty} a_{n(p)} \ge \lim_{p \to \infty} \left(\frac{q+1}{2}\right)^{n(p)} = \infty$$

Отже, $\lim a_n \neq 0$. Це означає, що необхідна умова збіжності не виконується - розбіжний

3) Щоб з'ясувати випадок q=1, розгляньте такі самі ряди як при доведенні ознаки Даламбера

Remark 9.2.8.(1) Тепер питання, чому саме верхня границя

Якщо, насправді, порахувати просто границю, то автоматично існує й верхня границя

Але виникають такі ряди, де стандартно границю не порахуєш. Тому треба розбивати на підпослідовності та шукати верхню границю, що й дасть відповідь на збіжність

Remark 9.2.8.(2) Ознака Коші сильніша за ознаку Даламбера

Нехай є ряд $\sum_{n=1}^{\infty} 3^{-n-(-1)^n}$ Theorem 9.2.9. Радикальна ознака Коші

Задано $\sum a_n$ - знакододатній, такий, що:

1)
$$\exists f: [1, +\infty) \to \mathbb{R}: \forall n \ge 1: a_n = f(x)$$

2) $f(x)$ спадає на $[1, +\infty)$

Тоді
$$\sum_{n=1}^{\infty} a_n$$
 та $\int_1^{+\infty} f(x) \, dx$ збіжні або розбіжні одночасно

Оскільки f(x) спадає, то $\forall k \geq 1 : \forall x \in [k, k+1] :$

$$a_k \ge f(x) \ge a_{k+1}$$

$$a_k \ge f(x) \ge a_{k+1}$$

$$a_k = \int_k^{k+1} a_k \, dx \ge \int_k^{k+1} f(x) \, dx \ge \int_k^{k+1} a_{k+1} \, dx = a_{k+1}$$

Просумуємо ці нерівності від k = 1 до k = M, отримаємо:

$$\sum_{k=1}^{M} a_k \ge \int_{1}^{M} f(x) \, dx \ge \sum_{k=1}^{M} a_{k+1}$$

 $\overset{\kappa=1}{\mathsf{Я}}$ кщо $M \to \infty$, то за теоремою про поліцаїв отримаємо:

$$\lim_{M\to\infty}\sum_{k=1}^M a_k = \sum_{k=1}^\infty a_k \text{ Ta } \lim_{M\to\infty} \int_1^M f(x)\,dx = \int_1^\infty f(x)\,dx$$

Із збіжності ряду випливає збіжність інтегралу і навпаки

Знакозмінні ряди 10.3

Definition 9.3.1. Ряд $\sum a_n$ називається **абсолютно збіжним**, якщо

збігається ряд
$$\sum_{n=1}^{\infty} |a_n|$$

Definition 9.3.2. Ряд $\sum_{n=0}^{\infty} a_n$ називається **умовно збіжним**, якщо $\sum_{n=0}^{\infty} a_n$

- збіжний, але
$$\sum_{n=1}^{\infty} |a_n|$$
 - не збіжний

Proposition 9.3.3. $\sum_{n=1}^{\infty} a_n$ - абсолютно збіжний $\iff \sum_{n=1}^{\infty} a_n$ - збіжний

Proof.

$$\sum_{n=1}^{\infty} a_n$$
 - абсолютно збіжний $\iff \sum_{n=1}^{\infty} |a_n|$ - збіжний \iff

$$\iff \forall \varepsilon > 0 : \exists K : \forall k \ge K : \forall p \ge 1 : \left| \sum_{n=k}^{k+p} |a_n| \right| < \varepsilon \iff$$

$$\iff \left|\sum_{n=k}^{k+p} a_n \right| \leq \left|\sum_{n=k}^{k+p} |a_n| \right| < arepsilon \iff \sum_{n=1}^{\infty} a_n$$
 - збіжний $lacksquare$

Theorem 9.3.4. Ознака Лейбніца

Задано
$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$
. Відомо, що

- $1) \ \forall n \ge 1 : a_n \ge 0$
- 2) $\{a_n, n \geq 1\}$ монотонно спадає 3) $\lim_{n \to \infty} a_n = 0$

Тоді заданий ряд - збіжний

Proof.

Розглянемо послідовність часткових сум $\{S_{2k}, k \geq 1\}$. Отримаємо наступне:

$$S_{2k} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2k-1} - a_{2k}) \ge 0$$

$$\geq 0 \qquad \geq 0 \qquad \geq 0$$

$$S_{2k} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2k-2} - a_{2k-1}) - a_{2k} \le a_1$$

$$\geq 0 \qquad \geq 0 \qquad \geq 0$$

Тобто $0 \le S_{2k} \le a_1$ - обмежена послідовність

Також $S_{2(k+1)}=S_{2k}+(a_{2k+1}-a_{2k+2})\geq S_{2k}$ - монотонна Таким чином, $\exists\lim_{k\to\infty}S_{2k}=S$

Розглянемо ще одну послідовність часткових сум $\{S_{2k+1}, k \geq 1\}$. Зрозуміло, що

$$S_{2k+1} = S_{2k} + a_{2k+1}$$
 $\Rightarrow \lim_{k \to \infty} S_{2k+1} = \lim_{k \to \infty} S_{2k} + \lim_{k \to \infty} a_{2k+1} = S + 0 = S$ Остаточно, маємо, що послідовність $\{S_m, m \ge 1\}$ - збіжна, тоді $\sum_{k=0}^{\infty} (-1)^{n+1} a_n$ - збіжний \blacksquare

Corollary 9.3.4. $\forall k \geq 1 : |S - S_k| \leq a_{k+1}$ Proof.

Розглянемо хвіст ряду
$$S - S_k = \sum_{n=k+1}^{\infty} (-1)^{n+1} a_n$$

А також
$$\tilde{S_m} = \sum_{n=k+1}^m (-1)^{n+1} a_n$$
. Тоді
$$\tilde{S_m} = S_m - S_k = (-1)^{k+1} \left(a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \cdots - \left[(a_{m-1} - a_m), k \not 2 \right]$$

$$\Rightarrow |\tilde{S_m}| = \begin{vmatrix} a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \cdots - \left[(a_{m-1} - a_m), k \not 2 \right] \\ a_m, k \vdots 2 \end{vmatrix} =$$

$$= a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \cdots - \begin{bmatrix} (a_{m-1} - a_m), k \not 2 \\ a_m, k \vdots 2 \end{vmatrix} =$$

$$\Rightarrow |S - S_k| = \lim_{m \to \infty} |\tilde{S_m}| \le a_{k+1} \blacksquare$$

Theorem 9.3.5. Ознака Абеля-Діріхле

Задано
$$\sum_{n=1}^{\infty} a_n b_n$$

Нехай виконано один з двох блок умов:

$$\sum_{n=1}^{\infty}a_n$$
 - збіжний
$$\{b_n,n\geq 1\}$$
 - монотонна та обмежена
$$oзнаки\ Aбеля \qquad \begin{cases} \exists M>0:\forall k\geq 1:\left|\sum_{n=1}^ka_n\right|\leq M\\ \{b_n,n\geq 1\} \text{ - спадна та }\lim_{n\to\infty}b_n=0\\ oзнаки\ \mathcal{I}ipixлe \end{cases}$$
 Тоді
$$\sum_{n=1}^{\infty}a_nb_n$$
 - збіжний

Але спочатку треба сформулювати одну лему

Lemma 9.3.5. Тотожність Абеля

Задані $a_n,\,b_n$ - довільні числа, $S_k=C+\sum a_n,\,$ де C - якась константа

Тоді
$$\forall C: \sum_{n=k}^{k+p} a_n b_n = \sum_{n=k}^{k+p-1} S_n(b_n-b_{n+1}) + S_{k+p} b_{k+p} - S_{k-1} b_k$$

Proof.

Базується на тотожності $a_k = S_k - S_{k-1}$, що виконана $\forall C$. Тоді: k+p k+p

$$\sum_{n=k}^{k+p} a_n b_n = \sum_{n=k}^{k+p} (S_n - S_{n-1}) b_n = \sum_{n=k}^{k+p} S_n b_n - \sum_{n=k}^{k+p} S_{n-1} b_n = \sum_{n=k}^{k+p} S_n b_n - \sum_{n=k-1}^{k+p-1} S_n b_{n+1} = S_{k+p} b_{k+p} + \sum_{n=k}^{k+p-1} S_n b_n - S_{k-1} b_k - \sum_{n=k}^{k+p-1} S_n b_{n+1} = \sum_{n=k}^{k+p-1} S_n (b_n - b_{n+1}) + S_{k+p} b_{k+p} - S_{k-1} b_k \blacksquare$$

Трохи ліричного відступу, нафіга така тотожність:

Подивіться на цю формулу:

$$\int_{a}^{b} f'(x)g(x) dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(x)g'(x) dx$$

А тепер перепишемо тотожність Абеля:
$$\sum_{n=k}^{k+p} (S_n - S_{n-1})b_n = S_{k+p}b_{k+p} - S_{k-1}b_k - \sum_{n=k}^{k+p-1} S_n(b_{n+1} - b_n)$$

По суті, це - дискретна формула інтегрування за частинами, якщо робити криву паралель: сума - інтеграл, різниця - аналог похідної

Proof.

Доведемо ознаку Діріхле

Відомо, що
$$\lim_{n\to\infty} b_n=0 \Rightarrow \forall \varepsilon>0: \exists N: \forall n\geq N: |b_n|<\varepsilon$$
 Також $\forall n\geq 1: b_{n+1}\leq b_n$

Більш того,
$$\exists M>0: \forall k\geq 1: \left|\sum_{n=1}^k a_n\right|\leq M$$
 За критерієм Коші: $\forall k\geq N: \forall p\geq 1: \left|\sum_{n=k}^{k+p} a_n b_n\right| = \left|\sum_{n=k}^{k+p-1} S_n(b_n-b_{n+1}) + S_{k+p}b_{k+p} - S_{k-1}b_k\right|\leq \left|\sum_{n=k}^{k+p-1} S_n(b_n-b_{n+1})\right| + |S_{k+p}b_{k+p} - S_{k-1}b_k|\leq$

$$\leq \sum_{n=k}^{k+p-1} |S_n| |b_n - b_{n+1}| + |b_k| |S_{k+p} - S_{k-1}| \leq M \sum_{n=k}^{k+p-1} (b_n - b_{n+1}) = M(b_k - b_{k+p}) < 2M\varepsilon$$

Отже, отримали, що $\sum_{\cdot}^{\sim} a_n b_n$ - збіжний

Там не обов'язково, щоб послідовність спадала, можна й для зростаючої, буде все ок теж

Доведемо тепер ознаку Абеля

Оскільки $\{b_n, n \geq 1\}$ - монотонна та обмежена, то $\exists \lim_{n \to \infty} b_n = b$

$$\Rightarrow \lim_{n \to \infty} \beta_n = 0$$
, де $\beta_n = b_n - b$
Теж буде монотонною

Оскільки $\sum_{i} a_{n}$ - збіжний, то збіжною буде послідовності часткових сум,

а звідси вони є обмеженими, отже,

$$\exists M > 0 : \forall k \ge 1 : \left| \sum_{n=1}^{k} a_n \right| \le M$$

Тоді за ознакою Діріхле, $\sum_{n=1}^{\infty} a_n \beta_n$ - збіжна, а тому як сума, $\sum_{n=1}^{\infty} a_n b_n$ -

збіжна ■

Theorem 9.3.6. Теорема Рімана

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - умовно збіжний

Тоді для довільного M буде існувати перестановка членів ряду, після якої новий ряд із переставленими членами буде збіжним до числа MПоки без доведення

Тheorem 9.3.7. Теорема Діріхле

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - абсолютно збіжний

Тоді будь-яка перестановка членів ряду не змінить суму Поки без доведення

Функціональні ряди 11

Функціональні послідовності 11.1

Definition 10.1.1. Функціональною послідовністю назвемо послідовність $\{f_n(x), n \ge 1\}$, всі функції задані на одній множині A

Definition 10.1.2. Функція f(x), що задана теж на множині A, називається **точковою границею** функціональної послідовності $\{f_n(x), n \geq 1\},$ ЯКЩО

$$\forall x \in A: \lim_{n \to \infty} f_n(x) = f(x)$$

Remark 10.1.2.(1) Якщо всі функції парні/непарні, то точкова границя теж парна/непарна

Remark 10.1.2.(2) Якщо всі функції монотонні, то точкова границя буде також монотонною

Випливає з нерівностей границь

Definition 10.1.3. Функція f(x) називається **рівномірною границею** функціональної послідовності $\{f_n(x), n \geq 1\}$ на множині A, якщо

$$\sup_{x \in A} |f_n(x) - f(x)| \to 0, n \to \infty$$

Позначення: $f_n(x) \stackrel{\rightarrow}{\to} f(x), n \to \infty$

Proposition 10.1.4. Задано $\{f_n(x), n \ge 1\}$ - послідовність

Якщо $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$ на множині A, то

$$\forall x \in A : f_n(x) \to f(x), n \to \infty$$

Proof.

За умовою, $\sup |f_n(x) - f(x)| \to 0, n \to \infty$, тобто

$$\forall \varepsilon > 0 : \exists N : \forall n \ge N : \sup_{x \in A} |f_n(x) - f(x)| < \varepsilon$$

$$\Rightarrow \forall x \in A : |f_n(x) - f(x)| < \varepsilon \Rightarrow f_n(x) \to f(x), n \to \infty \blacksquare$$

Позначимо множину Fun(A) - множина всіх функції, що задані на множині A

Definition 10.1.5. Нормою функції f(x) назвемо число

$$||f|| = \sup_{x \in A} |f(x)|$$

Властивості:

 $\forall f(x) \in Fun(A)$:

- 1) $||f|| \ge 0$
- 2) $||f|| = 0 \iff f(x) = 0, \forall x \in A$
- 3) $||\lambda f|| = |\lambda| \cdot ||f||, \forall \lambda \in \mathbb{R}$
- 4) $\forall f, g \in Fun(A) : ||f + g|| \le ||f|| + ||g||$

Наслідок) $|||f|| - ||g||| \le ||f - g||$

Proof.

- 1), 3) зрозуміло
- 2) $||f|| = 0 \Rightarrow \sup_{x \in A} |f(x)| = 0 \Rightarrow 0 \le |f(x)| \le 0 \Rightarrow f(x) \equiv 0$

4)
$$||f + g|| = \sup_{x \in A} |f(x) + g(x)| \le \sup_{x \in A} (|f(x)| + |g(x)|) \le \le \sup_{x \in A} |f(x)| + \sup_{x \in A} |g(x)| = ||f|| + ||g||$$

Наслідок) Вказівка: $||f|| \le ||f - g||$ та $||g|| \le ||g - f||$

Theorem 10.1.6. Задана $\{f_n(x), n \geq 1\}$ - послідовність та $f_n(x) \xrightarrow{} f(x)$, $n \to \infty$ на A

Відомо, що $\forall n \geq 1 : f_n(x) \in C(A)$. Тоді $f(x) \in C(A)$

Proof.

Зафіксуємо т. $x_0 \in A$

За умовою, $||f_n - f|| \to 0, n \to \infty$

$$\Rightarrow \forall \varepsilon > 0 : \exists N : \forall n \geq N : \forall x \in A : |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$

$$f_n(x) \in C(A) \Rightarrow \exists \delta(\varepsilon) > 0 : \forall x_1 : |x_1 - x_0| < \delta \Rightarrow |f_n(x_1) - f(x_0)| < \frac{\varepsilon}{3}$$

 $\Rightarrow |f(x_1) - f(x_0)| = |(f(x_1) - f_n(x_1)) + (f_n(x_1) - f_n(x_0)) + (f_n(x_0) - f(x_0))| \le |f(x_1) - f_n(x_1)| + |f_n(x_1) - f_n(x_0)| + |f_n(x_0) - f(x_0)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$
 $\Rightarrow f(x)$ - неперервна в т. x_0 , яка є довільною. Отже, $f(x) \in C(A)$

Theorem 10.1.7. Задана $\{f_n(x), n \geq 1\}$ - послідовність та $f_n(x) \xrightarrow{} f(x)$, $n \to \infty$ на A

Відомо, що $\forall n \geq 1 : f_n(x) \in R(A)$. Тоді $f(x) \in R(A)$ Без доведення

Theorem 10.1.8. Критерій Коші

 $f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty$ Ha $A \iff \forall \varepsilon > 0 : \exists N : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon$ **Proof.**

 \Longrightarrow Дано: $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$ на A

Тоді
$$||f_n - f|| \to 0, n \to \infty \Rightarrow \forall \varepsilon > 0 : \exists N : \forall n, m \ge N :$$

$$||f_n - f|| < \frac{\varepsilon}{2}$$

$$||f_m - f|| < \frac{\varepsilon}{2}$$

$$\Rightarrow ||f_n - f_m|| = ||f_n - f + f - f_m|| \le ||f_n - f|| + ||f_m - f|| < \varepsilon$$

$$\sqsubseteq$$
 Дано: $\forall \varepsilon > 0 : \exists N : \forall n, m \geq N : ||f_n - f_m|| < \varepsilon$
 $\Rightarrow \forall x \in A : |f_n(x) - f_m(x)| < \varepsilon$

Якщо зафіксувати точку $x_0 \in A$, то отримаємо фундаментальну послідовність $\{f_n(x_0), n \geq 1\} \Rightarrow \exists \lim_{n \to \infty} f_n(x_0) = f(x_0)$ Якщо $m \to \infty$, то маємо, що $|f_n(x_0) - f(x_0)| < \varepsilon$

Оскільки це може бути $\forall x_0 \in A$, то тоді $||f_n - f|| < \varepsilon \Rightarrow f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$ на $A \blacksquare$

Функціональні ряди 11.2

Definition 10.2.1. Функціональним рядом називають суму членів функціональної послідовності $\{a_n(x), n \geq 1\}$

$$a_1(x) + a_2(x) + \dots + a_n(x) + \dots = \sum_{n=1}^{\infty} a_n(x)$$

Частковою сумою даного ряда називають суму перших k функцій

$$S_k(x) = \sum_{n=1}^k a_n(x) = a_1(x) + a_2(x) + \dots + a_k(x)$$

В такому випадку в нас виникає функціональна послідовність часткових $\text{сум } \{S_k(x), k \geq 1\}$

Якщо така послідовність збігається в т. x_0 , то ряд є **збіжним** в т. x_0 та значення цього ряду дорівнює

$$\sum_{n=1}^{\infty} a_n(x_0) = \lim_{k \to \infty} S_k(x_0) = S(x_0)$$

Якщо ряд збігається $\forall x \in B$, то B називають **областю збіжності**

Якщо ряд абсолютно збігається $\forall x \in B$, то B називають **областю** абсолютної збіжності

Якщо ряд умовно збігається $\forall x \in B$, то B називають областю умовної

збіжності

Definition 10.2.2. Якщо послідовність часткових сум $\{S_k(x), k \geq 1\}$ збігається рівномірно на множині A, то ряд $\sum_{n=1}^{\infty} a_n(x)$ називають **рівномірно** збіжним на A

Theorem 10.2.3. Критерій Коші

$$\sum_{n=1}^{\infty} a_n(x)$$
 - рівномірно збіжний на множині $A \iff$

$$\iff \forall \varepsilon > 0 : \exists N : \forall k, m \geq M : ||S_k - S_m|| < \varepsilon \text{ aloo } \sup_{x \in A} \left| \sum_{n=k+1}^m a_n(x) \right| < \varepsilon$$

Випливае з критерію Коші рівновірної збіжності функціональних послідовностей

Theorem 10.2.4. Мажорантна ознака Вейерштраса

Задано $\sum_{n=1}^{\infty} a_n(x)$ - ряд на множині A. Відомо, що

1)
$$\exists \{c_n, n \ge 1\} : \forall n \ge 1 : \forall x \in A : |a_n(x)| \le c_n$$

2)
$$\sum_{n=1}^{\infty} c_n$$
 - збіжний. Його ще називають мажорантним рядом

Тоді $\sum_{n=1}^{\infty} a_n(x)$ збігається рівномірно та абсолютно на множині A

Proof.

За критерієм Коші, $\sum_{n=1}^{\infty} c_n$ - збіжний $\iff \forall \varepsilon > 0 : \exists N : \forall k, m \geq M :$

$$\left| \left| \sum_{n=k+1}^m c_n \right| < \varepsilon. \text{ Тодi} \right| \left| \left| \sum_{n=k+1}^m a_n(x) \right| \right| = \sup_{x \in A} \left| \sum_{n=k+1}^m a_n(x) \right| \le \left| \sup_{x \in A} \left| \sum_{n=k+1}^m a_n(x) \right| \right| \le \sum_{n=k+1}^m \sup_{x \in A} |a_n(x)| \le \sum_{n=k+1}^m c_n < \varepsilon$$

Тому за критерієм Коші, $\sum_{n=1}^{\infty} a_n(x)$ - рівномірно та абсолютно збіжний на множині A

Theorem 10.2.5. Ознака Абеля-Діріхле

Задано
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 - ряд на множині A

Нехай виконано один з двох блок умов:

$$\sum_{n=1}^{\infty} a_n(x)$$
 - збіжний рівномірно на A $\left|\exists M>0: \forall k\geq 1: \left|\left|\sum_{n=1}^k a_n(x)\right|\right|\leq M$ $\{b_n(x), n\geq 1\}$ - рівномірно обмежена та монотонна ознаки Абеля ознаки Діріхле

Тоді $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ - збіжний рівномірно на множині A

Theorem 10.2.6. Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$ - рівномірно збіжний на A Відомо, що $\forall n \geq 1 : a_n(x) \in C(A)$. Тоді $S(x) \in C(A)$ **Proof.**

3 умови теореми випливає, що $\forall k \geq 1: S_k(x) = \sum_{n=1}^k a_n(x) \in C(A)$ як

сума неперервних функцій

Оскільки ряд - рівномірно збіжний, то тоді $\{S_k(x), k \geq 1\}$ - рівномірно збіжна. Тоді за **Th. 10.1.6.**, $S(x) \in C(A)$

Theorem 10.2.7. Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$ - рівномірно збіжний на [a,b]

Відомо, що $\forall n \geq 1 : a_n(x) \in R([a,b])$. Тоді $S(x) \in R([a,b])$, а також

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} a_n(x) \right) dx = \sum_{n=1}^{\infty} \left(\int_{a}^{b} a_n(x) dx \right)$$
Proof.

З умови теореми випливає, що $\forall k \geq 1: S_k(x) = \sum_{n=1}^k a_n(x) \in R([a,b])$ як

сума інтегрованих функцій

Оскільки ряд - рівномірно збіжний, то тоді $\{S_k(x), k \geq 1\}$ - рівномірно збіжна. Тоді за **Th. 10.1.7.**, $S(x) \in R([a,b])$

Доведемо тепер тотожність:

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} a_n(x) \right) dx = \int_{a}^{b} \left(\lim_{k \to \infty} \sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k$$

$$= \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_n(x) \, dx \right) = \sum_{n=1}^{\infty} \left(\int_{a}^{b} a_n(x) \, dx \right) \blacksquare$$

Theorem 10.2.8. Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$. Відомо, що:

$$1)\;\exists x_0\in[a,b]:\sum^\infty a_n(x_0)$$
 - збіжний

2)
$$\forall n \ge 1 : a_n(x) \in C'([a, b])$$

$$a_n = \sum_{n=1}^{\infty} a_n'(x)$$
 - рівномірно збіжний на $[a,b]$

Тоді S(x) - збіжний рівномірно та $S(x) \in C'([a,b])$, а також

$$\left(\sum_{n=1}^{\infty} a_n(x)\right)' = \sum_{n=1}^{\infty} a'_n(x)$$

Proof.

Розглянемо ряд
$$\tilde{S}(x) = \sum_{n=1}^{\infty} a'_n(x)$$

За минулою теоремою, можемо отримати, що

$$\forall x \in [a, b] : \int_{x_0}^x \left(\sum_{n=1}^\infty a'_n(t) \right) dt = \sum_{n=1}^\infty \left(\int_{x_0}^x a'_n(t) dt \right) = \sum_{n=1}^\infty \left(a_n(x) - a_n(x_0) \right)$$

- збіжний рівномірно ряд

$$\Rightarrow \sum_{n=1}^{\infty} a_n(x) = \sum_{n=1}^{\infty} (a_n(x) - a_n(x_0) + a_n(x_0)) =$$

$$=\sum_{n=1}^{\infty}(a_n(x)-a_n(x_0))+\sum_{n=1}^{\infty}a_n(x_0)$$
 - рівномірно збіжний

Доведемо тотожність

$$\left(\sum_{n=1}^{\infty} a_n(x)\right)' = \left(\sum_{n=1}^{\infty} (a_n(x) - a_n(x_0))\right)' + \left(\sum_{n=1}^{\infty} a_n(x_0)\right)' = \sum_{n=1}^{\infty} a'_n(x) \blacksquare$$

11.3 Степеневі ряди

Definition 10.3.1. Степеневим рядом називаємо ми такий ряд

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

де $\{a_n, n \ge 1\}$ - числова послідовність

Theorem 10.3.2. Теорема Коші-Адамара

Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд

Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд
Нехай $\frac{1}{\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}}=R$ - радіус збіжності. Тоді ряд:

при $|x - x_0| < R$ - збіжний абсолютно

при $|x-x_0| > R$ - розбіжний

при $|x-x_0|=R$ - відповіді нема

Proof.

Скористаємось радикальною ознакою Коші для нашого ряду:

Скористаємось радикальною ознакою Коші д
$$\lim_{n\to\infty} \sqrt[n]{|a_n(x-x_0)|^n} = |x-x_0| \lim_{n\to\infty} \sqrt[n]{|a_n|} = q$$
 Тоді:

При
$$q < 1$$
, тобто $|x - x_0| < \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}} = R$ - збіжний абсолютно

Аналогічно для решти

Corollary 10.3.2. Наслідок із ознаки Даламбера

Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд

Нехай
$$\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$$
 - радіус збіжності. Тоді ряд:

при $|x-x_0| < R$ - збіжний абсолютно

при $|x - x_0| > R$ - розбіжний

при $|x-x_0|=R$ - відповіді нема

Proof.

Скористаємось ознакою Даламбера для нашого ряду:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x-x_0)^{n+1}}{a_n(x-x_0)^n} \right| = |x-x_0| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = q$$
 Тоді:

При
$$q<1,$$
 тобто $|x-x_0|<\lim_{n\to\infty}\left|\dfrac{a_n}{a_{n+1}}\right|=R$ - збіжний абсолютно

Аналогічно для решти

Theorem 10.3.3. Теорема Абеля

Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд

Тоді ряд - рівномірно збіжний на будь-якому відрізку із області збіжності Proof.

Зафіксуємо довільний відрізок [a,b]

1.
$$[a, b] \subset (x_0 - R, x_0 + R)$$

Зафіксуємо число $M = \max\{|x_0 - a|, |x_0 - b|\}$

Звідси $\forall x \in [a,b]: |x-x_0| < M < R$, а тому $|a_n(x-x_0)^n| < |a_n|M^n$

$$|a_n(x-x_0)^n| < |a_n|M^n$$

Розглянемо ряд $\sum_{n=0}^{\infty} a_n M^n$

$$\lim_{n \to \infty} \sqrt[n]{|a_n| M^n} = M \lim_{n \to \infty} \sqrt[n]{|a_n|} < R \lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$$

Отже, цей ряд - збіжний

Тоді за ознакою Вейерштраса, степеневий ряд - збіжний рівномірно на |a,b|

2.
$$[a, b] \subset [x_0, x_0 + R]$$

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x - x_0}{R}\right)^n$$

Розглянемо випадок, коли ряд $\sum_{n=0}^{\infty} a_n R^n$ - збіжний

Тоді дослідимо ряд $\sum a_n R^n (x-x_0)^n$ за ознакою Абеля:

$$f_n(x) = a_n R^n$$

$$g_n(x) = \left(\frac{x - x_0}{R}\right)^n$$

Домовились, що $\sum_{n=0}^{\infty} f_n(x)$ - збіжний, причому рівномірно, оскільки не

залежить від x

Послідовність $\left\{g_n(x) = \left(\frac{x-x_0}{R}\right)^n, n \geq 1\right\}$ - рівномірно обмежена, оскільки

$$\forall x \in [a, b] \subset [x_0, x_0 + R] : |x - x_0| \le R \Rightarrow \forall n \ge 1 : \left| \frac{x - x_0}{R} \right|^n \le 1$$

А також послідовність є монотонною, тому що $\frac{x-x_0}{R} < 1$

Отже, за Абелем-Діріхле, ряд - рівномірно збіжний на [a,b]

Аналогічно, коли $[a,b]\subset [x_0-R,x_0]$ та $\sum_{a=0}^\infty a_n(-R)^n$ - збіжний \blacksquare

Theorem 10.3.4. Степеневий ряд
$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 $\in C([x_0 - R, x_0 + R])$

Proof.

Візьмемо якусь точку x_* з області збіжності

Нехай відрізок $[a,b] \ni x_*$. Якщо $x_* \neq x_0 - R, x_* \neq x_0 + R$, то беремо відрізок $(a,b) \ni x_*$

На відрізку [a,b] ряд - збіжний рівномірно за теоремою Абеля, члени ряду - неперервні функції. Отже, за **Th. 10.2.6.**, $S(x) \in C([a,b]) \Rightarrow$ $S(x) \in C(\{x_*\})$

Оскільки т. x_* була довільною, то одразу $S(x) \in C([x_0 - R, x_0 + R])$

Theorem 10.3.5. Степеневий ряд
$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$\begin{cases}
R([x_0 - R, x_0 + R]) \\
\int_a^b \sum_{n=0}^\infty a_n (x - x_0)^n dx = \sum_{n=0}^\infty \int_a^b a_n (x - x_0)^n dx
\end{cases}$$

За теоремою Абеля, на [a,b] із області збіжності ряд - рівномірно збіжний, а тоді за **Th. 10.2.7.**, $S(x) \in R([a,b])$

$$\int_{a}^{b} \sum_{n=0}^{\infty} a_{n}(x-x_{0})^{n} dx = \sum_{n=0}^{\infty} \int_{a}^{b} a_{n}(x-x_{0})^{n} dx \blacksquare$$

Theorem 10.3.6. Степеневий ряд
$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

диференційований на $[x_0 - R, x_0 + R]$

$$\left(\sum_{n=0}^{\infty} a_n (x - x_0)^n\right)' = \sum_{n=1}^{\infty} a_n \cdot n(x - x_0)^{n-1}$$

Розглянемо ряд
$$\sum_{n=1}^{\infty} a_n \cdot n(x-x_0)^{n-1}$$

Радіус збіжності збігається, оскільки
$$\frac{1}{\overline{\lim_{n\to\infty}\sqrt[n]{n|a_n|}}} = \frac{1}{\overline{\lim_{n\to\infty}\sqrt[n]{|a_n|}}} = R$$

Візьмемо якусь точку x_* з області збіжності

Нехай відрізок $[a,b] \ni x_*$

На відрізку [a,b] ряд - збіжний рівномірно за теоремою Абеля. Використаємо далі **Th.** 10.2.8.

- 1) $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ збіжний принаймні в одній точці
- 2) Всі члени ряду неперервно-диференційовані функції

$$3)\,\sum_{n=1}^\infty a_n\cdot n(x-x_0)^{n-1}$$
 - рівномірно збіжний на $[a,b]$

Отже, S(x) - диференційований на [a,b], зокрема і в т. x_{st}

Оскільки т. x_* була довільною, то одразу S(x) - диференційований в $[x_0 - R, x_0 + R]$

Тому дійсно,
$$S'(x) = \sum_{n=1}^{\infty} n(x-x_0)^{n-1} \blacksquare$$

Зв'язок з Тейлором 11.4

Theorem 10.4.1. Теорема Тейлора Задана функція f, така, що:

1)
$$f(x) \in C^{(\infty)}((x_0 - R, x_0 + R)), x_0 \in \mathbb{R}$$

2)
$$\exists M \in \mathbb{R} : \forall n \geq 1 : \forall x \in (x_0 - R, x_0 + R) : \left| f^{(n)}(x) \right| \leq M^n$$

Тоді $\forall x \in (x_0 - R, x_0 + R)$ функція розкладується в ряд Тейлора

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Якщо
$$\begin{bmatrix} R < \infty \\ R = \infty \end{bmatrix}$$
 то ряд рівномірно збігається на $\begin{bmatrix} (x_0 - R, x_0 + R) \\ [x_0 - R_0, x_0 + R_0] \end{bmatrix}$, причому $\forall R_0 \in \mathbb{R}$

Proof.

Розкладемо функцію в ряд Тейлора за остачею Лагранжа:

$$f(x) = \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1}$$

Тоді маємо, що:

$$\left| f(x) - \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right| = \left| \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1} \right| \le \frac{M^{k+1}}{(k+1)!} r^{k+1}$$

Розглянемо тепер ряд $\sum_{k=0}^{\infty} \frac{M^{k+1}}{(k+1)!} r^{k+1}$

За ознакою Даламбера, $\lim_{k\to\infty}\frac{a_{k+1}}{a_k}=\lim_{k\to\infty}\frac{Mr}{k+2}=0<1$ Цей ряд є збіжним. Отже, $\lim_{k\to\infty}a_k=0$

Звідси випливає, що

$$\sup_{x \in (x_0 - R, x_0 + R)} \left| f(x) - \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right| \le \frac{M^{k+1}}{(k+1)!} r^{k+1} \to 0, \ k \to \infty$$

Отримали:
$$\sum_{n=0}^k \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n \to^{\rightarrow} f, k \to \infty$$
 Таким чином, $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ - збіжний ріномірно на (x_0-R,x_0+R)

Theorem 10.4.2. Степеневий ряд задається єдиним чином Proof.

Інакше кажучи, доведемо, що якщо
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n, \sum_{n=0}^{\infty} b_n (x-x_0)^n$$
 мають одне значення на $(x_0-\varepsilon,x_0+\varepsilon)$, то $\forall n\geq 0: a_n=b_n$ $S(x_0)=a_0=b_0$ $S'(x_0)=\sum_{n=1}^{\infty} a_n\cdot n(x-x_0)^{n-1}=\sum_{n=1}^{\infty} b_n\cdot n(x-x_0)^{n-1}$ $\Rightarrow S'(x_0)=a_1=b_1$

Таким чином, $\forall n \geq 0 : a_n = b_n$

Corollary 10.4.2. Ряд Тейлора для суми степеневого ряду співпадають с самим степеневим рядом на області збіжності

Цитати означень по-своєму

$$c'=\sup A\iff\begin{cases} c\in UpA\\ \forall \varepsilon>0: \exists a_\varepsilon\in A: a_\varepsilon>c'-\varepsilon\end{cases}$$
 Другий пункт каже ось що: якщо ми візьмемо супремум та трохи зменшимо,

Другий пункт каже ось що: якщо ми візьмемо супремум та трохи зменшимо, то ми знайдемо такий елемент, що буде явно більше за 'зменшеного супремуму' - а отже, цей 'зменший супремум' не буде супремумом. І так для кожного зменшеного

^{&#}x27;набір цілих чисел, що менше за задану дріб'

12 Premilinaries

Проблематичні задачі

Example Знайти точну верхню та нижню грань множини

$$A = \left\{ \frac{mn}{4m^2 + n^2} | m \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

Запишемо дріб таким чином:

$$\frac{mn}{4m^2 + n^2} = \frac{1}{4\frac{m}{n} + \frac{n}{m}} = \frac{1}{4q + \frac{1}{q}}$$

Де $q \in \mathbb{Q} \setminus \{0\}$

Бачимо, що $4q+\frac{1}{q}\geq 2\sqrt{4q\frac{1}{q}}=4$, виконано для q>0

Tomy
$$\frac{1}{4q + \frac{1}{q}} \le \frac{1}{4}$$

Потенційно, може бути $\sup A = \frac{1}{4}$. Перевіримо:

1)
$$\forall q \in \mathbb{Q} \setminus \{0\}$$
 : $\frac{1}{4q+\frac{1}{a}} \leq \frac{1}{4}$ - тут доведено та зрозуміло

2)
$$\forall \varepsilon > 0 : \exists q_{\varepsilon} = \frac{1}{2} : \frac{q}{4q_{\varepsilon} + \frac{1}{q_{\varepsilon}}} > \frac{1}{4} - \varepsilon$$

Отже, $\sup A = \frac{1}{4}$

Пошук inf $A = -\frac{1}{4}$ є аналогічним, якщо q = -u для q < 0

Example Задана функція $f: \mathbb{Z}^2 \to \mathbb{Z}^2$, така, що:

$$\mathbb{Z}^2 \ni (m,n) \mapsto (m,0) \in \mathbb{Z}^2$$

Знайти
$$f^{-1}(D)$$
, якщо $D = \{(m,n)| m \in \mathbb{Z}, n \in \{-1,0,1,2\}\}$

$$f^{-1}(D) = \{(m, n) \in \mathbb{Z}^2 : (m, 0) \in D\} = \{(m, n) : m \in \mathbb{Z}, n \in \mathbb{N}\}$$

Для n=-1,1,2 прообраз має порожню множину. Також ми можемо множину розбити на об'єднання, тому все легітимно тут

Example Довести, що $\forall a, b \in \mathbb{R}$:

$$\min\{a, b\} = \frac{1}{2}(a + b - |a - b|)$$

$$\max\{a, b\} = \frac{1}{2}(a + b + |a - b|)$$

Просто перевірити, коли a > b, а коли a < b. Тут все зрозуміло

Example Довести, що
$$\forall n \geq 1 : \frac{1}{2} \frac{3}{4} \dots \frac{2n-1}{2n} \leq \frac{1}{\sqrt{3n+1}}$$

База: n = 1. Зрозуміло

Крок: нехай для
$$n$$
 це виконується. Перевіримо для $n+1$ $\frac{1}{2}\frac{3}{4}\dots\frac{2n-1}{2n}\frac{2n+1}{2n+2}\leq \frac{1}{\sqrt{3n+1}}\frac{2n+1}{2n+2}<$

Example Довести, що $\sup_{x \in A} (f(x) + g(x)) \le \sup_{x \in A} f(x) + \sup_{x \in A} g(x)$

Маємо, що
$$\forall x \in A: \begin{cases} f(x) \leq \sup_{x \in A} f(x) \\ g(x) \leq \sup_{x \in A} g(x) \end{cases}$$
 $\Rightarrow f(x) + g(x) \leq \sup_{x \in A} f(x) + \sup_{x \in A} g(x)$ Для $f(x) + g(x)$ ми маємо, що сума праворуч - верхня межа, але вона

$$\Rightarrow f(x) + g(x) \le \sup_{x \in A} f(x) + \sup_{x \in A} g(x)$$

не є точною, тобто є межі, що менше за цю

Маємо
$$\forall x \in A : f(x) + g(x) \le \sup_{x \in A} (f(x) + g(x))$$

$$\forall \varepsilon > 0 : \exists x_{\varepsilon} \in A : f(x_{\varepsilon}) + g(x_{\varepsilon}) < \sup_{x \in A} (f(x) + g(x)) - \varepsilon$$

Маємо
$$\forall x \in A : f(x) + g(x) \leq \sup_{x \in A} (f(x) + g(x))$$
 $\forall \varepsilon > 0 : \exists x_{\varepsilon} \in A : f(x_{\varepsilon}) + g(x_{\varepsilon}) < \sup_{x \in A} (f(x) + g(x)) - \varepsilon$
А тому здвіси й випливає, що $\sup_{x \in A} (f(x) + g(x)) \leq \sup_{x \in A} f(x) + \sup_{x \in A} g(x)$