Sequence Alignment

String Similarity

How similar are two strings?

- ocurrance
- occurrence

6 mismatches, 1 gap

1 mismatch, 1 gap

O mismatches, 3 gaps

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Spell-checking.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ ; mismatch penalty α_{pq} .
- Cost = sum of gap and mismatch penalties.

$$\alpha_{TC}$$
 + α_{GT} + α_{AG} + $2\alpha_{CA}$

$$2\delta + \alpha_{CA}$$

Sequence Alignment

Goal: Given two strings $X = x_1 x_2 ... x_m$ and $Y = y_1 y_2 ... y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i - y_j such that each item occurs in at most one pair and no crossings.

Def. The pair $x_i - y_j$ and $x_{i'} - y_{j'}$ cross if i < i', but j > j'.

$$cost(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i y_j}}_{\text{mismatch}} + \underbrace{\sum_{i: x_i \text{ unmatched}} \delta + \sum_{j: y_j \text{ unmatched}} \delta}_{\text{gap}}$$

Ex: CTACCG VS. TACATG.

Sol:
$$M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6.$$

Sequence Alignment: Problem Structure

Def. $S[i][j] := min cost of aligning strings <math>x_1 x_2 ... x_i$ and $y_1 y_2 ... y_j$.

- Case 1: S matches x_i-y_j .
 - pay mismatch for x_i - y_j + min cost of aligning two strings $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{j-1}$
- Case 2a: 5 leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_j$
- Case 2b: S leaves y_i unmatched.
 - pay gap for y_j and min cost of aligning $x_1\,x_2\,\ldots\,x_i$ and $y_1\,y_2\,\ldots\,y_{j\text{-}1}$

$$S[i][j] = \begin{cases} j\delta & \text{if } i = 0 \\ \alpha_{x_i y_j} + S[i-1][j-1] \\ \delta + S[i-1][j] & \text{otherwise} \\ \delta + S[i][j-1] & \text{if } j = 0 \end{cases}$$

$$i\delta & \text{if } j = 0$$

Sequence Alignment: Algorithm

```
Sequence-Alignment(m, n, x_1x_2...x_m, y_1y_2...y_n, \delta, \alpha) {
   for i = 0 to m
       S[0][i] = i\delta
   for j = 0 to n
       S[j][0] = j\delta
   for i = 1 to m
       for j = 1 to n
           S[i][j] = min(\alpha[x_{i}, y_{j}] + S[i-1][j-1],
                             \delta + S[i-1][j],
                             \delta + S[i][j-1]
   return S[m][n]
```

Analysis. $\Theta(mn)$ time and space.

English words or sentences: $m, n \le 10$.

Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence Alignment as Weighted Graph

Figure 6.17 A graph-based picture of sequence alignment.

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m) space and O(mn) time.

- Compute S[i][·] from S[i-1][·].
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.

Clever combination of divide-and-conquer and dynamic programming.

- Let f(i, j) be shortest path from (0,0) to (i, j).
- Observation: f(i, j) = S[i][j].

- Let f(i, j) be shortest path from (0,0) to (i, j).
- Can compute $f(\cdot, j)$ for any j in O(mn) time and O(m + n) space.

- Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of (0,0) and (m,n)

- Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in O(mn) time and O(m + n) space.

Observation 1. The cost of the shortest path that uses (i, j) is f(i, j) + g(i, j).

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2). Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

• Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

- O(mn) time to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$ and find index q.
- T(q, n/2) + T(m q, n/2) time for two recursive calls.
- Identify constant c so that:

$$T(m, 2) \le cm$$

 $T(2, n) \le cn$
 $T(m, n) \le cmn + T(q, n/2) + T(m-q, n/2)$

- Base cases: m = 2 or n = 2.
- Inductive hypothesis: $T(m, n) \le 2cmn$.

$$T(m,n) \leq T(q,n/2) + T(m-q,n/2) + cmn$$

$$\leq 2cqn/2 + 2c(m-q)n/2 + cmn$$

$$= cqn + cmn - cqn + cmn$$

$$= 2cmn$$