文章引言

方法概括

Papers

深度强化学习解决 组合优化问题的应 用 该神经网络网络每次只能学习并解决单个小规模 TSP 问题实例,对于新给定的一个TSP 问题需要从头开始再次训练,相对于传统算法并没有优势

在 1985 年提出 Hopfield 网络, 用于求解 TSP 问题以及其他组合优化问题

在 2015 年, Vinyals 等人将组合 优化问题类比为机器翻译过程 (即序列到序列的映射),提出了 可以求解组合优化问题的指针网 络模型<mark>(Pointer Network, Ptr-</mark> Net) Summary

都是"端到端 (end-to-end) 方法", 即给定问题实例作为输入, 利用训 练好的深度神经网络直接输出问题 的解

上述方法在小规模问题上可以接近最优解,但是在中大规模问题上与LKH3、Google OR tools、Gurobi、Concorde 等专业组合优化求解器的优化能力还存在一定差

首先需要将组合优化问题建模为马尔科夫过程, 其核心要素为状态、动作以及反馈,TSP 问题

 $p_{\theta}(\pi \mid s) = \prod_{t=0}^{n-1} p_{\theta}(\pi_t \mid s, \pi_{1:t-1})$

策略由神经网络参数 θ 进行参数化,在马尔科夫过程中,每一步动作的概率为 $p_{\theta}(\pi_{t}|s,\pi_{1:t-1})$,即

根据已访问过的城市 $\pi_{1:t-1}$ 和城市坐标 s 计算选择下一步访问各个城市的概率,根据链式法则累乘即

可以得到城市坐标s到城市最终访问顺序 π 的映射

 $p_{\theta}(\pi|s)$,该随机策略可以建模为上节所述的指针网络模型, 其参数为 θ .

Research Reviews of Combinatorial Optimization Methods Based on Deep Reinforcement Learning

Pointer Network 的强化学 习训练方法

图神经网络 (Graph Neural

Network, GNN)

最优路径的标签数据集, 实际应用较为困难, 因此目前研究中通常以强化学习算法对模型的 W和v等参数进行训练.

由于监督式学习方法需要提供大量

NeurlPS

ICLR

1

基于蒙特卡洛的策略梯度方法,即不断执行动作 直到结束,在一个回合结束之后计算总反馈,然 后根据总反馈对策略的参数进行更新. TSP为例:

 $\nabla \mathcal{L}(\theta \mid s) =$

$$\begin{split} & \mathbb{E}_{p_{\theta}(\pi\mid s)}\left[(L(\pi) - b(s))\nabla \log p_{\theta}(\pi\mid s)\right] \\ & \theta \leftarrow \theta + \nabla \mathcal{L}(\theta\mid s) \end{split}$$

基本原理介绍

以GNN为例

REINFORCE 强化学习算法

$$\mathbf{h}_{v}^{(t)} = \sum_{u \in N(v)} f\left(\mathbf{x}_{v}, \mathbf{x}_{(v,u)}^{\mathbf{e}}, \mathbf{x}_{u}, \mathbf{h}_{u}^{(t-1)}\right)$$

其中 $\mathbf{h}_v^{(t)}$ 代表节点 v 的表征向量,N(v) 代表 v 的邻居节点的集合, \mathbf{x}_v 是节点 v 的特征, $\mathbf{x}_{(v,u)}^{\epsilon}$ 是与 v 相连的边的特征, \mathbf{x}_u 是邻居节点 u 的特征, $\mathbf{h}_u^{(t-1)}$ 是邻居节点 u 在上一步更新的特征向量。因此该公式根据节点 v 本身的特征、边的特征以及邻居节点的特征对节点 v 的表征向量进行更新,从 t=0 开始对不断对 $\mathbf{h}_v^{(t)}$ 进行更新直到收敛,从而得到节点 v 的准确特征向量。

精确方法 (Exact approaches)

求解得到问题<mark>全局最优</mark> 解的一类算法

LINK: https://www.baidu.com/link?

<u>ırl=j-</u>

plT4vC2EoZN8wBy9D8Ah8rb3aeUJt gzPzfvvgM8-

a3gHyTpY6DfldJllKXk7Z9NqHaEDG zFTVBL_xKi9gYFdb7VhThfKjxjR1sp D1dZCi&wd=&eqid=f228743e0035d be400000005616ae700 分支定界法 (Branch and Bound)

动态规划法 (Dynamic Programming)

割平面法(Cutting Plane)

Drawbacks

精确方法可以求解得到组合优化问题的全局最优解,但是当问题规模扩大时,该类算法将消耗巨大的计算量,很难拓展到大规模问题。

近似算法 (Approximate

Algorithms)

贪心算法

解决思想

的全局最优解.

分而治之:通过将原问题分

解为子问题的方式进行求解

通过不断迭代求解得到问题

局部搜索算法

线性规划和松弛算法

序列算法

模拟退火算法

禁忌搜索

进化算法

蚁群优化算法

粒子群算法

迭代局部搜索

变邻域搜索

组合优化问题特点:决策空间为有限点集,直观上通过穷举法得到问题的最优解,但是可行解数量随问题规模呈指数型增长,无法在多项式时间内穷举得到问题的最优解。

近似方法 (Approximate approaches)

求解得到问题<mark>局部最优</mark> 解的方法

Drawbacks

启发式算法 (Heuristic

Algorithms)

近似方法可以在可接受的计 算时间内搜索得到一个较好 的解.

但仍然很难拓展到在线、实 时优化问题.

Related Papers

表 1 现有算法模型、训练方法、求解问题、以及优化效果比较

方法类别	研究	模型以及训练方法	求解问题及优化效果	
基于Pointer Network的编 到端方法	2015年Vinyals等人 ^[20]	Ptr-Net + 监督式训练	30 TSP问题:接近最优解,优于启发式算法. 40, 50-TSP: 与最优解存在一定差距. 凸包问题、三角剖分问题.	
	2017年Bello等人 ^[11]	Ptr-Net + REINFORCE & Critic baseline	50-TSP: 优于 ^[50] , 100-TSP: 接近Concorde最优解. 200-Knapsack: 达到最优解.	
	2018 年Nazari等人 $^{\scriptscriptstyle{[12]}}$	Ptr-Net + REINFORCE & Critic baseline	100-TSP: 与叫优化效果相近, 训练时间降低约60%. 100-CVRP/随机CVRP: 优于多个启发式算法.	
	2018年Deudon等人[13]	Transformer Attention + REINFORCE & Critic baseline	20, 50-TSP: 优于 ^[10] . 100-TSP: 与 ^[10] 优化效果相近.	
	2019年Kool等人 ^国	$ {\it Transformer~Attention} + \\ {\it REINFORCE~\&~Rollout~baseline} $	100-TSP: 优于[^{103,137,40]} , 100-CVRP、100-SDVRP、100-OP、 100-PCTSP、SPCTSP: 接近Gurobi最优解, 优于多种启发式方法.	
	2020年Ma等人 ^図	Graph Pointer Network + HRL	20, 50-TSP: 优于 ^[11,37] , 劣于 ^[14] , 250, 500, 1000-TSP: 优于 ^[31,34] , 20-TSPTW: 优于OR-Tools、蚁群算法.	
	2020年Li等人 [⋈]	Ptr-Net + REINFORCE & Critic baseline & 分解策略/参数迁移	40, 100, 150, 200, 500-两目标/三目标TSP: 优于MOEA/D、NSGA-II、MOGLS.	
	2017年Dai等人[^{37]}	structure 2 vec + DQN	1200-TSP: 接近 ^[50] . 1200-MVC(最小顶点覆盖): 接近最优解. 1200-MAXCUT(最大割集): 接近最优解.	
	2019年Mittal等人[18]	GCN + DQN	2k至20k-MCP(最大覆盖问题): 优于[27]. 10k, 20k, 50k-MVC: 代	
基于图神经网络 的端到端方法	2018年Li等人 ^[30]	GCN + 监督式训练 + 引导树搜索	实际数据集MVC、MIS(最大独立点集)、MC(极大团)、 Satisfiability(适定性问题): 优于.	
	2017年Nowak等人 [∞]	GNN + 监督式训练 + 波束搜索	20-TSP: 劣于 ^[N] .	
	2019年Joshi等人 ^[4]	GCN + 监督式训练 + 波束搜索	20, 50, 100-TSP: 略微优于[0031,33,34], 优于[17].	
深度强化学习改 进的局部搜索 方法	2019年Chen等人[ii]	Ptr-Net + Actor-Critic	20-CVRP: 达到最优解. 50, 100-CVRP: 优于[12,34]、OR-Tools. 作业车间调度: 优于OR-Tools、DeepRM	
	2019年Yolcu等人[8]	${\rm GNN} + {\rm REINFORCE}$	实际数据集Satisfiability、MIS、MVC、MC、图着色问题: 9 搜索步数得到最优解、但单步运行时间长于传统算法.	
	2020年Gao等人[6]	${\bf Graph\ Attention}+{\bf PPO}$	100-CVPR: 优于 ^[54] , 100-CVPRTW: 优于多个启发式方法. 400-CVRPTW: 劣于单个启发式方法, 优于其他.	
	2020年Lu等人™	Transformer Attention + REINFORCE	20, 50, 100-CVRP: 优于 ^[32,34,47] , 以及优于OR Tools、 LKH3. 且运行时间远低于LKH3.	

Table 2	Comparison of end-to-end model on TSP.			
方法类别	模型	TSP-20	TSP-50	TSP-100
最优	Concorde	3.84	5.70	7.76
	$Vinyals^{[30]}$	3.88	7.66	_
	$\mathrm{Bello}^{[31]}$	3.89	5.95	8.30
基于指	$\mathrm{Nazari}^{[32]}$	3.97	6.08	8.44
针网络 (Attention	$\mathrm{Deudon}^{\scriptscriptstyle{[33]}}$	3.86	5.81	8.85
机制)	${\rm Deudon^{[33]}+2OPT}$	3.85	5.85	8.17
	$\mathrm{Kool}^{[34]}(\mathrm{greedy})$	3.85(0s)	5.80(2s)	8.12(6s)
	$\mathrm{Kool}^{[34]}(\mathrm{sampling})$	3.84(5m)	$5.73(24\mathrm{m})$	7.94(1h)
	$\mathrm{Dai}^{[37]}$	3.89	5.99	8.31
基于图神	$Nowak^{[40]}$	3.93	_	_
经网络	$Joshi^{[41]}(greedy)$	3.86(6s)	5.87(55s)	8.41(6m)
	$Joshi^{[41]}(BS)$	3.84(12m)	5.70(18m)	$7.87(40 \mathrm{m})$

Table 3	Comparison of models on VRP.			
模型	VRP-20	VRP-50	VRP-100	
LKH3	6.14(2h)	$10.38(7\mathrm{h})$	$15.65(13\mathrm{h})$	
$Nazari^{[32]}$	6.40	11.15	16.96	
$\mathrm{Kool}^{[34]}(\mathrm{greedy})$	6.40(1s)	10.98(3s)	16.80(8s)	
$\mathrm{Kool}^{[34]}(\mathrm{sampling})$	6.25(6m)	10.62(28m)	16.23(2h)	
$\mathrm{Chen}^{[47]}$	6.12	10.51	16.10	
$\mathrm{Lu}^{\scriptscriptstyle{[50]}}$	$6.12(12\mathrm{m})$	$10.35(17\mathrm{m})$	$15.57(24\mathrm{m})$	

Table 4 Summary and comparison of algorithms on different combinatorial optimization problems

组合优化问题	文献	模型细节	
	[30-36]	基于Ptr-Net架构 (Encoder-Decoder-Attention)	
TSP问题	[37]	GNN+DQN	
	[40, 41]	GNN+监督式训练+波束搜索	
	[32, 34]	基于Ptr-Net架构(Encoder- Decoder-Attention)	
VRP问题	[47, 49, 50]	DRL训练局部搜索算子. [47]: Ptr-Net模型, [49]: Graph Attention模型, [50]: Transformer Attention模型.	
最小顶点覆盖问题	[37, 38, 48]	GNN + RL	
(MVC)	[39]	GNN + 监督式训练 + 树搜索	
	[37]	GNN + DQN	
最大割集问题 (MaxCut)	[57]	$\begin{array}{l} {\rm Message~Passing~Neural~Network} \\ {\rm (MPNN)} + {\rm DQN} \end{array}$	
	[58] *	CNN&RNN + PPO	
适定性问题 (Satisfiability)	[39, 48]	GNN + 监督式训练/RL	
最小支配集问题	[48]	GNN + RL	
(MDS)	[59] *	${\rm Decision~Diagram}+{\rm RL}$	
极大团问题(MC)	[39, 48]	GNN + 监督式训练/RL	
最大独立集问题	[39]	GNN + 监督式训练 + 树搜索	
(MIS)	[60] *	GNN + RL + 蒙特卡洛树搜索	
背包问题(Knapsack)	[31]	Ptr-Net + RL	
车间作业调度问题	[47]	LSTM + RL训练局部搜索算子	
	[61] *	LSTM + RL	
装箱问题(BPP)	[62] *	NN + RL + 蒙特卡洛树搜索	
同士力和平	[48]	GNN + RL	
图着色问题	[63] *	LSTM + RL + 蒙特卡洛树搜索	

