High-Level Design (HLD) for Restaurant Rating Prediction System

By Ravi Kumar M

High-Level Design Overview

• The High-Level Design (HLD) outlines the architecture and components of the Restaurant Rating Prediction System. It provides a visual representation of the system's structure, interactions, and data flow between different modules.

High-Level Design Components

Components:

User Interface (UI):

- Login Page: Captures user credentials.
- Home Page: Provides navigation to other functionalities.
- Prediction Page: Collects input features for predictions.
- Results Page: Displays prediction results.

Backend:

- Flask Web Server: Handles HTTP requests and responses.
- Authentication Module: Validates user credentials.
- Prediction Module: Processes input features and generates predictions using the ML model.

High-Level Design Components

Machine Learning Model:

- Model Training: Trained on the Zomato dataset.
- Prediction: Uses the trained model to predict restaurant ratings.

Database (if applicable):

• User Data Storage: (optional) Stores user credentials and sessions.

Data Processing Pipeline:

- Data Preprocessing: Cleans and transforms raw data.
- Feature Engineering: Prepares data for model training.

Diagram Layout

User Interface

Flask Server
Authentication

Prediction Module

Machine Learning

Model

Data Processing

Pipeline

Component Descriptions

User Interface (UI):

- Login Page:
 - Allows users to input their credentials for authentication.
- Home Page:
 - Displays options for users to navigate to prediction functionalities.
- Prediction Page:
 - Contains a form for users to input features like location, restaurant type, etc.
- Results Page:
 - Displays the predicted rating along with any relevant insights.

Component Descriptions

2. Backend:

- Flask Web Server:
 - Serves as the application framework, handling user requests and returning responses.
- Authentication Module:
 - Verifies user credentials to ensure secure access to the application.
- Prediction Module:
 - Processes user inputs and communicates with the ML model to generate predictions.

3. Machine Learning Model:

• Utilizes trained algorithms (e.g., XGBoost) to make predictions based on the processed input features.

Component Descriptions

4. Data Processing Pipeline:

- Data Preprocessing:
 - Handles cleaning, normalization, and encoding of input data.
- Feature Engineering:
 - Identifies and constructs relevant features from the dataset for model training.

System Interaction

Description: This section describes how components interact with each other during user activities.

1. User Login:

- User inputs credentials on the Login Page, which are sent to the Authentication Module.
- Successful authentication redirects the user to the Home Page.

2. Making Predictions:

- User navigates to the Prediction Page and inputs required features.
- These features are sent to the Prediction Module, which interacts with the Machine Learning Model to generate a rating.
- The prediction result is displayed on the Results Page.

Future Enhancements

Potential Future Enhancements:

- Database Integration:
 - Implement a database for storing user sessions and data persistently.
- Containerization with Docker:
 - Containerize the application for easier deployment and scalability.
- Cloud Deployment:
 - Host the application on a cloud platform for wider accessibility and live usage.
- Enhanced Security Features:
 - Implement OAuth or JWT for improved authentication and user session management.

Thank You