Chapitre 28

Matrices et applications linéaires

Dans tout ce chapitre, on fixe un corps commutatif K (en général \mathbb{R} ou \mathbb{C}). Tous les espaces vectoriels seront des K-espaces vectoriels. On fixe également trois K-espaces vectoriels E, F et G de dimension respective $p \in \mathbb{N}^*$, $n \in \mathbb{N}^*$ et $q \in \mathbb{N}^*$, et

$$B_E = (e_1, \dots, e_p), \qquad B_F = (f_1, \dots, f_n), \qquad B_G = (g_1, \dots, g_q)$$

des bases de E, F et G.

On rappelle également que $\mathcal{M}_{n,p}(K)$ est un K-espace vectoriel de dimension np. En effet, les np matrices élémentaires

$$\left(E_{ij}^{np}\right)_{1\leqslant i\leqslant n\atop 1\leqslant j\leqslant p}$$

forment une base de $\mathcal{M}_{np}(K)$.

Enfin, on rappelle que la base canonique de K^n est la base

$$((1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,\ldots,0,1)),$$

et que celle de $K_n[X]$ est

$$(1, X, \ldots, X^n).$$

1 Matrice d'une application linéaire

1.1 Matrices de composantes

Définition 1.1 (Matrice des composantes)

Soit

$$x = \sum_{i=1}^{p} x_i e_i \in E.$$

La matrice des composantes de x dans la base B_E est la matrice colonne

$$\operatorname{Mat}_{B_E}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathcal{M}_{p,1}(K).$$

Remarque.

La matrice des composantes d'un vecteur dépend bien entendu de la base que l'on considère.

Proposition 1.2

L'application

$$E \longrightarrow \mathcal{M}_{p,1}(K)$$

$$x \longmapsto \operatorname{Mat}_{B_E}(x)$$

est un isomorphisme de K-espaces vectoriels. On a donc en particulier, si $x, y \in E$ et $\lambda, \mu \in K$,

$$\operatorname{Mat}_{B_E}(\lambda x + \mu y) = \lambda \operatorname{Mat}_{B_E}(x) + \mu \operatorname{Mat}_{B_E}(y)$$

 et

$$x = y \iff \operatorname{Mat}_{B_E}(x) = \operatorname{Mat}_{B_E}(y).$$

Définition 1.3 (Matrice des composantes d'une famille de vecteurs)

Soient $\mathcal{F} = (v_1, \dots, v_r)$ une famille de vecteurs de E. La matrice des composantes de \mathcal{F} dans la base B_E est la matrice

$$\operatorname{Mat}_{B_E}(\mathcal{F}) \in \mathcal{M}_{p,r}(K)$$

dont la $j^{\text{ème}}$ colonne est $\text{Mat}_{B_E}(v_j)$. Autrement dit, si

$$\operatorname{Mat}_{B_E}(\mathcal{F}) = (a_{ij})_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant r}}$$

alors a_{ij} est la $i^{\text{ème}}$ composantes de v_j , ou encore

$$\forall j = 1, \dots, r, \quad v_j = \sum_{i=1}^p a_{ij} e_i.$$

1.2 Matrice d'une application linéaire

Définition 1.4 (Matrice d'une application linéaire)

Soit $u \in \mathcal{L}(E, F)$.

1. Sa matrice relative aux bases B_E et B_F (ou dans les bases, ou par rapport aux bases) est la matrice

$$\operatorname{Mat}_{B_E,B_F}(u) \in \mathcal{M}_{n,p}(K)$$

des composantes de la famille

$$(u(e_1),\ldots,u(e_p))=u(B_E)$$

dans la base B_F , i.e.

$$\operatorname{Mat}_{B_E,B_F}(u) = \operatorname{Mat}_{B_F}(u(e_1),\ldots,u(e_p)) = \operatorname{Mat}_{B_F}(u(B_E)).$$

Autrement dit,

$$\operatorname{Mat}_{B_E,B_F}(u) = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}},$$

si et seulement si on a pour tout $j = 1, \ldots, p$,

$$u(e_j) = \sum_{i=1}^n a_{ij} f_i.$$

2. Lorsque E = F, $u \in \mathcal{L}(E)$, on appelle matrice de u relative à la base B_E la matrice de u relative aux bases B_E et B_E .

Remarques.

- 1. Attention : il n'y a pas une seule matrice d'une application linéaire! Il y en a une pour chaque couple de bases de E et F.
- 2. Il faut bien comprendre que la j-ème colonne contient les composantes de $u(e_j)$, et plus précisément, la composante de $u(e_j)$ devant e_i est a_{ij} .

Remarque.

On dit souvent que les colonnes de A forment une famille génératrice de Im(f). C'est un abus de language, qui signifie les vecteurs de F dont les composantes sont données par les colonnes de A forment une famille génératrice de Im(f).

Proposition 1.5

L'application

$$\mathcal{L}(E,F) \longrightarrow \mathcal{M}_{n,p}(K)$$

 $u \longmapsto \operatorname{Mat}_{B_E,B_E}(u)$

est un isomorphisme. En particulier, pour tous $u, u' \in \mathcal{L}(E, F)$ et $\lambda, \lambda' \in K$, on a

$$\operatorname{Mat}_{B_E,B_F}(\lambda u + \lambda' u') = \lambda \operatorname{Mat}_{B_E,B_F}(u) + \lambda' \operatorname{Mat}_{B_E,B_F}(u')$$

et

$$u = u' \iff \operatorname{Mat}_{B_F, B_F}(u) = \operatorname{Mat}_{B_F, B_F}(u').$$

Remarques.

- 1. La matrice d'une application linéaire dépend des bases de E et F que l'on considère.
- 2. Cet isomorphisme n'existe qu'une fois des bases de E et F fixées.
- 3. On en déduit que $\mathcal{L}(E, F)$ est un K-espace vectoriel de dimension np.

Corollaire 1.6

Soient $u, v \in \mathcal{L}(E, F)$. Alors $u = v \iff \operatorname{Mat}_{B_E, B_F}(u) = \operatorname{Mat}_{B_E, B_F}(v)$.

Corollaire 1.7 (Isomorphisme Canonique)

L'application

$$\mathcal{L}(K^p, K^n) \longrightarrow \mathcal{M}_{n,p}(K)$$

qui à une application linéaire $u \in \mathcal{L}(K^p, K^n)$ associe sa matrice relative aux bases canoniques de K^p et K^n , est un isomorphisme, appelé isomorphisme canonique entre $\mathcal{L}(K^p, K^n)$ et $\mathcal{M}_{n,p}(K)$.

Pour tout $u \in \mathcal{L}(K^p, K^n)$, sa matrice relative aux bases canoniques de K^p et K^n s'appelle la matrice canoniquement associée à u.

Réciproquement, pour $A \in \mathcal{M}_{n,p}(K)$, l'unique application linéaire $u \in \mathcal{L}(K^p, K^n)$ dont la matrice relative aux bases canoniques de K^p et K^n est A s'appelle l'application linéaire canoniquement associée à A.

En particulier, si p = n, on a un isomorphisme $\mathcal{L}(K^n) \longrightarrow \mathcal{M}_n(K)$, et on parle alors d'endomorphisme canoniquement associé à une matrice.

Remarque.

On verra qu'à l'usage ce corollaire est très utile. Il permettra de transformer un problème matriciel en problème d'application linéaire et vice-versa par *identification* de ces espaces.

1.3 Propriétés

Proposition 1.8

Soient $u \in \mathcal{L}(E, F)$, $x \in E$, $y = u(x) \in F$, et

$$A = \operatorname{Mat}_{B_E, B_F}(u) \in \mathcal{M}_{n,p}(K), \qquad X = \operatorname{Mat}_{B_E}(x) \in \mathcal{M}_{p,1}(K), \qquad Y = \operatorname{Mat}_{B_F}(y) \in \mathcal{M}_{n,1}(K).$$

Alors

$$Y = AX$$
.

Remarque.

Cette formule permet de facilement calculer les composantes de l'image d'un vecteur grâce à la matrice de l'application linéaire.

Proposition 1.9

Soient $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$. Alors

$$\operatorname{Mat}_{B_E,B_G}(v \circ u) = \operatorname{Mat}_{B_F,B_G}(v) \times \operatorname{Mat}_{B_E,B_F}(u).$$

Remarque.

Faîtes très attention à ne pas faire d'erreur dans cette formule. L'ordre d'apparition de B_E et B_G est inversé dans un membre par rapport à l'autre! Mais par contre, B_E est toujours la base de l'espace de départ, et B_G celle de l'espace d'arrivée.

2 Le groupe $GL_n(K)$

Proposition 2.1

Si p = n (i.e. $\dim(E) = \dim(F)$), $u \in \mathcal{L}(E, F)$. Alors u est un isomorphisme si et seulement si $\operatorname{Mat}_{B_E, B_F}(u)$ est inversible, et dans ce cas

$$\operatorname{Mat}_{B_F, B_E}(u^{-1}) = \left(\operatorname{Mat}_{B_E, B_F}(u)\right)^{-1}.$$

Proposition 2.2

Soit $A \in \mathcal{M}_n(K)$ telle que

$$\forall X \in \mathcal{M}_{n,1}(K), AX = 0 \Longrightarrow X = 0.$$

Alors A est inversible.

Nous pouvons maintenant démontrer la proposition 2.7 du chapitre ??. On redonne quand même l'énoncé.

Proposition 2.3

Soient $A, B \in \mathcal{M}_n(K)$ telles que $AB = I_n$. Alors A et B sont inversibles et $A^{-1} = B$.

Proposition 2.4

Soit $\mathcal{F} = (x_1, \dots, x_p)$ une famille de vecteurs de E (avec $p = \dim(E)$). Alors $\operatorname{Mat}_{B_E}(\mathcal{F})$ est inversible si et seulement si \mathcal{F} est une base de E.

Remarque.

Attention, le nombre de vecteurs doit être égal à la dimension de E, sinon la matrice n'est même pas carrée.

3 Formules de changement de base

Définition 3.1

Soient B et B' deux bases de E. La matrice de passage $P_{B,B'}$ de B à B' est la matrice des composantes de la famille B' dans la base B, i.e.

$$P_{B,B'} = \operatorname{Mat}_B(B') \in \mathcal{M}_p(K),$$

ou encore la $j^{\text{ème}}$ colonne de $P_{B,B'}$ contient les composantes du $j^{\text{ème}}$ vecteur de B' dans la base B.

Remarque.

On parle de l'ancienne base (B), et de nouvelle base (B'), et $P_{B,B'}$ exprime la nouvelle base dans l'ancienne.

Proposition 3.2

Avec les notations de la définition 3.1, les matrices $P_{B,B'}$ et $P_{B',B}$ sont inversibles et

$$P_{B',B} = P_{B,B'}^{-1}.$$

De plus, si $B^{\prime\prime}$ est une troisième base de E, on a

$$P_{B,B''} = P_{B,B'} P_{B',B''}.$$

Proposition 3.3

Avec les notations de la définition 3.1:

1. Si $x \in E$, et si X (resp. X') sont les composantes de x dans la base B (resp. B'), alors

$$X = P_{B,B'}X'$$
.

2. Soit $\mathcal{F} = (v_1, \dots, v_p)$ une famille de $p(=\dim(E))$ vecteurs de E. Alors

$$\operatorname{Mat}_{B}(\mathcal{F}) = P_{B,B'}\operatorname{Mat}_{B'}(\mathcal{F}).$$

Remarques.

- 1. On parle d'anciennes et de nouvelles composantes.
- 2. Attention au piège : $P_{B,B'}$ exprime la nouvelle base dans l'ancienne, mais

$$X = P_{B,B'}X'$$

exprime les anciennes composantes en fonction des nouvelles.

Théorème 3.4 (Formule de changement de base)

1. Soit $u \in \mathcal{L}(E, F)$, B'_E et B'_F des bases de E et F,

$$P = P_{B_E, B_E'}, \qquad Q = P_{B_F, B_E'}, \qquad A = \operatorname{Mat}_{B_E, B_F}(u), \qquad A' = \operatorname{Mat}_{B_E', B_E'}(u).$$

Alors

$$A' = Q^{-1}AP.$$

2. Soit $u \in \mathcal{L}(E)$, B'_E une base de E, $P = P_{B_E, B'_E}$, $A = \operatorname{Mat}_{B_E}(u)$, $A' = \operatorname{Mat}_{B'_E}(u)$. Alors $A' = P^{-1}AP$.

4 Trace d'un endomorphisme

Proposition 4.1

Soit $f \in \mathcal{L}(E)$, et \mathcal{B} et \mathcal{B}' deux bases de E. Alors $\operatorname{tr}(\operatorname{Mat}_{\mathcal{B}}(f)) = \operatorname{tr}(\operatorname{Mat}_{\mathcal{B}'}(f))$.

Définition 4.2 (Trace d'un endomorphisme)

Soit $f \in \mathcal{L}(E)$. On définit la trace $\operatorname{tr}(f)$ de f par la trace de sa matrice relative à n'importe qu'elle base.

Proposition 4.3

Soient $f, g \in \mathcal{L}(E)$ et $\lambda, \mu \in K$. Alors $\operatorname{tr}(\lambda f + \mu g) = \lambda \operatorname{tr}(f) + \mu \operatorname{tr}(g)$, *i.e.* la trace est une forme linéaire sur $\mathcal{L}(E)$.

Proposition 4.4 (Trace d'une projection)

Soit p une projection de E. Alors tr(p) = rang(p).

Proposition 4.5 (Trace d'une symétrie)

Soit s une symétrie de E. Alors $tr(s) = dim(Ker(s - id_E)) - dim(Ker(s + id_E))$.

Proposition 4.6

Soient $f, g \in \mathcal{L}(E)$. Alors $\operatorname{tr}(f \circ g) = \operatorname{tr}(g \circ f)$.

Remarque.

Attention : $tr(f \circ g) \neq tr(f) tr(g) !!$

5 Rang d'une matrice

5.1 Définitions

Rappelons la définition déjà vue :

Définition 5.1

Soit $M \in \mathcal{M}_{n,p}(K)$, C_1, \ldots, C_p ses colonnes vues comme vecteurs de K^n . Le rang colonnes de M est l'entier

$$\operatorname{rang}(M) = \dim(\operatorname{vect}(C_1, \dots, C_p)) = \operatorname{rang}(C_1, \dots, C_p).$$

De même pour le rang lignes, mais dans K^p .

Proposition 5.2

1. Soient x_1, \ldots, x_n des vecteurs de E. Alors

$$\operatorname{rang}(x_1,\ldots,x_n) = \operatorname{rang}\left(\operatorname{Mat}_{B_E}(x_1,\ldots,x_n)\right).$$

2. Soit $u \in \mathcal{L}(E, F)$. Alors

$$\operatorname{rang}(u) = \operatorname{rang}\left(\operatorname{Mat}_{B_E,B_F}(u)\right).$$

Corollaire 5.3

Une matrice carrée $A \in \mathcal{M}_p(K)$ est inversible si et seulement si son rang colonne est p.

5.2 Rang et manipulations élémentaires

Proposition 5.4

- 1. Le rang d'une matrice ne change pas lorsqu'on la multiplie par une matrice inversible.
- 2. Les maniupulations élémentaires ne changent pas le rang d'une matrice.

Proposition 5.5

Soient $r \leq \min(n, p)$ et

$$A = \begin{pmatrix} m_1 & \star & \star & \star & \star & \star & \cdots & \star \\ 0 & m_2 & \star & \star & \star & \cdots & \star \\ \vdots & & \ddots & \star & \vdots & & \vdots \\ 0 & \cdots & 0 & m_r & \star & \cdots & \star \\ 0 & \cdots & \cdots & 0 & b_{11} & \cdots & b_{1p-r} \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & \cdots & 0 & b_{n-r1} & \cdots & b_{n-rp-r} \end{pmatrix} \in \mathcal{M}_{n,p}(K)$$

où m_1, \ldots, m_r sont non nuls et \star désigne un élément quelconque de $K, B = (b_{ij}) \in \mathcal{M}_{n-rp-r}(K)$. Alors

$$\operatorname{rang}(A) = r + \operatorname{rang}(B).$$

5.3 Matrice J_r

Définition 5.6

Pour $n, p \in \mathbb{N}^*$ fixé et $r \leq \min(n, p)$, on définit la matrice

$$J_r^{n,p} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & \cdots & 0 \\ \vdots & & \ddots & 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots & \vdots & & \vdots \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix} \in \mathcal{M}_{n,p}(K),$$

avec exactement r 1 sur la diagonale.

Proposition 5.7

Le rang de $J_r^{n,p}$ est r.

Proposition 5.8

Soit $A \in \mathcal{M}_{n,p}(K)$ et $r \leq \min(n,p)$. Alors le rang de A est r si et seulement s'il existe $P \in GL_p(K)$ et $Q \in GL_n(K)$ telles que

$$A = QJ_rP.$$

Proposition 5.9

Soit $A \in \mathcal{M}_{n,p}(K)$. Alors

$$\operatorname{rang}(A) = \operatorname{rang}({}^{t}A),$$

ou encore les rangs colonnes et lignes sont égaux.