田田ypothesis testing: Hypothesis is an assumption about a parameter (that indeades random quantity of distribution). This assumption may no or may not be true. Hypothesis testing refers to the Jormal procedure used 2 types OHo!: Null Hypothesis by the statisticions to accept or reject this hypothesis-MHV: Alternative 4 HI द्राक्ट या test कठांट पां / ता type ocssume कठांटक जा। रिन्दी हिट्याव। 4 steps (For all) _ step1: Ho & HI & select macal 1 <u>step2:</u> Test statistic value (वं कव्या । या भएं Rejection region- वं स्वाटि compare step3: H1 to low the h >/ step4: Test statistic value region क बाठा राज Ho rejected_ n rejection region " A " Ho cannot be rejected. - अन्न निष्णन: (Since the calculated value falls in the rejection region, so we comment reject Ho (mull hypothesis). The Assumption is (Since the calculated value doesn't dall in the region, so we can not reject to (null hypothesis). The Assumption is wrong)? 1 Hypothesis test dov the mean (M) [conditions | Hi: M) Mo Dess/1000er h

3type Situation - 2 ov H: H + Mo DAL not equal [Case] x has a general distri Case 2 | X has a normal distribut case 1 x has a normal distribut. but we have a large sample with [unknown] population var (a) size (>30) otisknown with Known population was. Test Statistic is X-Howt(n-1) * KNOWN or variance (02) Ts: $\frac{\overline{\chi} - \mu_o}{\sqrt{\frac{\sigma^L}{\mu}}} \sim N(0,1)$ The statistic is $\frac{\overline{X} - \mu_0}{-} \sim N(0.1)$ *2 Unknown or a X = - + + + - + + - + + - + Testatitisticis X-Mo ~N(0.1) Hi: H > Mo, the rejection region Wen HI: M>Mo 3 The rejection region [2x, +00 [is [tx,+&[wher s= sample variance HI: H< M. = \(\hat{\chi} (\chi_i - \overline{\chi})^\chi HI: M< MO n is]-0,-3x the rejection region is]-0,-to The " HI: M >Mo HI:M +M. When Hy: M # Mo The rejection region is [3, two] the ve... The " Hz: M < Mo]- 2,-3,] U[3x,+0)[コーめーな了ひ[な,+の] ··]-0,-2₀] (Table 1; page 787) Page [790] H3: H + M]- W> - 54]0[84 +400[* @-TO NOTHE (PO) SIDE O 1 page 787

. The The Matched pairs to test: Matched-pairs + test is used to test whether there is a significant mean difference between two sets of paired 2) is the distrevence between paired Step 1: Ho: Mo = 0 value from two data sets HI: MD>0 or, HIMD O OV HI: MD +0 カ=ソ-X D is the sample mean difference Step2: Test statistics = \frac{1}{\sqrt{ss}} \sim \tan-1. between paired observation/data. $S_{D}^{2} = \underbrace{\begin{array}{c} \frac{1D}{N} \frac{\overline{\lambda}_{1} = \overline{y}_{1} - \overline{x}_{1}}{\overline{y}_{1} - \overline{x}_{1}} \\ \frac{1}{N} \frac{\overline{y}_{1} - \overline{x}_{1}}{\overline{y}_{1} - \overline{x}_{1}} \\ \frac{1}{N} \frac{\overline{y}_{1} - \overline{x}_{1}}{\overline{y}_{1} - \overline{x}_{1}} \end{array}}_{N-1} : \overline{D} = \underbrace{\frac{(y_{1} - x_{1}) + (y_{1} - x_{1}) + ... + (y_{n} - x_{1})}{n}}_{n}$ So is the wriance of the difference. n is the number of paired data <u>Step3。Hi:Mp20</u> | Hi:Mp60 | Hi:Mp60 | Tejethorvejim:Eta,n-1) +の[| rej. rej. rej. - ta,n-1] | コーロテた変, n-1] U[た変,n-1) +の[Step3: HI: Mo>0 Step4: comment. 面面Independent Sample totest: also called unpaired sample + test helps us to compare means of two sets (HABB) M1 1 M2 RARB AI BI AI BI Step1: Ho: MI = M2 - Ho: MI - ML = O HI: MI < M2 - HA: MI-M2 < 0 And Baz H1: M1> M2 - H1: 141-M2)0 Step3: H1: M1-M2 <0 | H1: H1-M2 >0 | H1: H1-M2 >0 | The reject region:]-00,-tog] U [tog,+00]

reject region:]-00,-tog] U [tog,+00] Step 4: Comment.