Section 1.4: The Matrix Equation Ax = b

- This section is about solving the "matrix equation" $A\mathbf{x} = \mathbf{b}$, where A is an $m \times n$ matrix and \mathbf{b} is a column vector with m entries (both given in the question), and \mathbf{x} is an unknown column vector with n entries (which we are trying to solve for). The first thing to know is what $A\mathbf{x}$ means: it means we are multiplying the matrix A times the vector \mathbf{x} . How do we multiply a matrix by a vector? We use the "row times column" rule, see the bottom of page 38 for examples.
- Solving $A\mathbf{x} = \mathbf{b}$ is the same as solving the system described by the augmented matrix $[A|\mathbf{b}]$.
- $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is a linear combination of the columns of A.
- Theorem 4 is very important, it tells us that the following statements are either all true or all false, for any $m \times n$ matrix A:
 - (a) For every **b**, the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
 - (b) Every column vector \mathbf{b} (with m entries) is a linear combination of the columns of A.
 - (c) The columns of A span \mathbb{R}^m (this is just a restatement of (b), once you know what the word "span" means).
 - (d) A has a pivot in every row.

This theorem is useful because it means that if we want to know if $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} , we just need to check if A has a pivot in every row. **Note:** If A does not have a pivot in every row, that does *not* mean that $A\mathbf{x} = \mathbf{b}$ does not have a solution for some given vector \mathbf{b} . It just means that there are *some* vectors \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ does not have a solution.

- Finally, it is very useful to know that multiplying a vector by a vector has the following nice properties:
 - (a) $A(\mathbf{u} + \mathbf{v}) = A(\mathbf{u}) + A(\mathbf{v})$, for vectors \mathbf{u}, \mathbf{v}
 - (b) $A(c\mathbf{u}) = cA(\mathbf{u})$, for vectors \mathbf{u} and scalars c.

Section 1.5: Solution Sets of Linear Systems

- A homogeneous system is one that can be written in the form $A\mathbf{x} = \mathbf{0}$. Equivalently, a homogeneous system is any system $A\mathbf{x} = \mathbf{b}$ where $\mathbf{x} = \mathbf{0}$ is a solution (notice that this means that $\mathbf{b} = \mathbf{0}$, so both definitions match). The solution $\mathbf{x} = \mathbf{0}$ is called the **trivial solution**. A solution \mathbf{x} is **non-trivial** is $\mathbf{x} \neq \mathbf{0}$.
- The homogeneous system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution if and only if the equation has at least one free variable (or equivalently, if and only if A has a column with no pivots).
- Parametric vector form: Let's say you have found the solution set to a system, and the free variables are x_3, x_4, x_5 . Then to write the solution set in 'parametric vector form' means to write the solution as

$$\mathbf{x} = \mathbf{p} + x_3 \mathbf{u} + x_4 \mathbf{v} + x_5 \mathbf{w}$$

where $\mathbf{p}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ are vectors with numerical entries. A method for writing a solution set in this form is given on page 46.

Section 1.7: Linear Independence

- Like everything else in linear algebra, the definition of **linear independence** can be phrased in many different equivalent ways. $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ are linearly independent if any of the following equivalent statements are true:
 - (a) the vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_2\mathbf{v}_2 = 0$ has only the trivial solution
 - (b) none of the vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p$ are a linear combination of the others
 - (c) if we put the vectors together as columns of the matrix A, then the system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
 - (c) if we put the vectors together as columns of the matrix A, then the system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
 - (d) if we put the vectors together as columns of the matrix A, then A has a pivot in every column
- If vectors aren't linearly independent, then they are **linearly dependent**. This means that (at least) one of the vectors is a linear combination of the rest. **Note:** This does not mean that all of the vectors are linear combinations of the others. See the following exercise.
- Exercise 1: Find three vectors in \mathbb{R}^3 that are linearly dependent, but where the third vector is not a linear combination of the first two.
- Method to check linear (in)dependence: If we want to check if a set of given vectors is linearly independent, put them together as columns of a matrix, and then row reduce the matrix. If there is a pivot in every column, then they are independent. Otherwise, they are dependent.
- Exercise 2 (1.7.1): Check if the following vectors are linearly independent:

$$\left[\begin{array}{c} 5\\0\\0\end{array}\right], \left[\begin{array}{c} 7\\2\\-6\end{array}\right], \left[\begin{array}{c} 9\\4\\-8\end{array}\right]$$

- Theorem 9: Any set containing the zero vector is linearly dependent. This follows immediately from the method above, because if one of the columns is zero, there can't be a pivot in every column (there are other easy ways to prove this theorem also, see the book for example).
- Theorem 8: If we have p vectors, each with n entries, and p > n, then these vectors have to be linearly dependent. (This follows from the method above too, because if there are more columns than rows, there can't be a pivot in every column).
- Exercise 3: Find 2 vectors in \mathbb{R}^5 that are linearly dependent. Notice that this means that if $p \leq n$ in the theorem above, then the vectors might be dependent or independent.