Colles - Semaine 13

I. Série 1

Exercice 1

Calculer $\sum_{k=1}^{n} k \binom{n}{k}$ puis $\sum_{k=1}^{n} k(k-1) \binom{n}{k}$.

Exercice 2

Soient A, B, C trois ensembles.

Soient $f: A \to B, g: B \to C$ et $h: C \to A$ trois applications telles que :

- $h \circ g \circ f$ et $f \circ h \circ g$ sont injectives
- $g \circ f \circ h$ est surjective

Montrer que f, g et h sont bijectives.

II. Série 2

Exercice 1

Soient n et p deux entiers tels que $p \leq n$.

1. En raisonnant par récurrence sur n montrer la formule de « Pascal généralisée » :

$$\sum_{k=p}^{n} \binom{k}{p} = \binom{n+1}{p+1}$$

- 2. Justifier, que pour tout k, on a : $\binom{k}{p} = \binom{k+1}{p+1} \binom{k}{p+1}$.
- 3. En déduire une nouvelle démonstration de la formule de « Pascal généralisée ».

Exercice 2

1) On considère tout d'abord les applications f et g suivantes.

- a. Étudier le caractère injectif, surjectif, bijectif de ces applications.
- **b.** Calculer $g \circ f$. Cette application est-elle injective / surjective / bijective?
- c. Calculer $f \circ g$. Cette application est-elle injective / surjective / bijective?
- 2) On considère maintenant $f: E \to E$ et $g: E \to E$ deux applications.
 - a. Démontrer que :

$$g \circ f = id_E \quad \Rightarrow \quad \left\{ \begin{array}{l} f \text{ injective} \\ g \text{ surjective} \end{array} \right.$$

- **b.** Donner un tel exemple avec f et g non bijectives.
- c. La réciproque de l'implication est-elle vraie?
- d. Que devient ce résultat lorsque E est un ensemble fini?

III. Série 3

Exercice 1

Montrer que : $\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots$ et trouver la valeur commune des deux sommes.

Exercice 2

Démontrer que :
$$\forall a \in \mathbb{N}, \forall b \in \mathbb{N}, \forall p \in \mathbb{N}, \sum_{k=0}^{p} \binom{a}{k} \binom{b}{p-k} = \binom{a+b}{p}.$$

- 1. En calculant de deux manières $(1+x)^a(1+x)^b$.
- 2. En cherchant le nombre de parties de cardinal p dans $E \cup F$ où E et F sont des ensembles disjoints de cardinaux a et b.
- 3. Application : soit n, p, q des entiers naturels. Montrer que : $\sum_{k=0}^{q} \binom{q}{k} \binom{n}{p+k} = \binom{n+q}{p+q}$.