CORSO DI LAUREA IN FISICA METODI MATEMATICI DELLA MECCANICA CLASSICA – 20 luglio 2018 (A)

TEMA I

Un punto materiale si muove in un piano ed è soggetto solo a un potenziale $U(\rho)$ (in coordinate polari); le possibili traiettorie del punto soddisfano tutte l'equazione $\rho(\theta) = ae^{b(\theta-c)}$, dove le costanti a,b,c dipendono dal dato iniziale del moto.

Applicando all'equazione della traiettoria il teorema della funzione implicita, per cui $\frac{d\rho}{d\theta} = \frac{\dot{\rho}}{\dot{\theta}}$, e usando le costanti del moto del sistema, trovare che forma deve avere il potenziale $U(\rho)$.

TEMA II

Un punto materiale si muove in un piano sotto l'azione di un potenziale centrale $U(\rho)$ (in coordinate polari). Detti p_1 e p_2 i momenti coniugati alle coordinate ρ e θ , rispettivamente, e data sullo spazio della fasi la funzione

$$F(\rho, \theta, p_1, p_2) = p_1 p_2 \sin(\theta) + \frac{\cos(\theta)}{\rho} (p_2)^2 + \cos(\theta),$$

calcolare la parentesi di Poisson $\{H,F\}$ e trovare per quale potenziale $U(\rho)$ la funzione F è una costante del moto.

CORSO DI LAUREA IN FISICA METODI MATEMATICI DELLA MECCANICA CLASSICA – 20 luglio 2018 (B)

TEMA I

Un punto materiale si muove in un piano ed è soggetto solo a un potenziale U(x) (in coordinate cartesiane ortonormali x, y); le possibili traiettorie del punto soddisfano tutte l'equazione $x = c(y - b)^2 + a$, dove le costanti a, b, c dipendono dal dato iniziale del moto.

Applicando all'equazione della traiettoria il teorema della funzione implicita, per cui $\frac{dx}{dy} = \frac{\dot{x}}{\dot{y}}$, e usando le costanti del moto del sistema, trovare che forma deve avere il potenziale U(x).

TEMA II

Un punto materiale si muove in un piano sotto l'azione di un potenziale centrale $U=\frac{k}{\rho}$ (in coordinate polari). Detti p_1 e p_2 i momenti coniugati alle coordinate ρ e θ , rispettivamente, e data sullo spazio della fasi la funzione

$$F(\rho, \theta, p_1, p_2) = p_1 p_2 \cos(\theta) - \frac{\sin(\theta)}{\rho} (p_2)^2 + f(\theta),$$

calcolare la parentesi di Poisson $\{H,F\}$ e determinare $f(\theta)$ in modo che la funzione F sia una costante del moto.

SOLUZIONE TEMA I (A)

La Lagrangiana del sistema è $L=\frac{m}{2}\left(\dot{\rho}^2+\rho^2\dot{\theta}^2\right)+U(\rho)$. Poiché L è independente da t e dalla coordinata θ , sono costanti del moto l'energia totale $\frac{m}{2}\left(\dot{\rho}^2+\rho^2\dot{\theta}^2\right)-U(\rho)=E$ e il momento angolare $m\rho^2\dot{\theta}=J$.

Questo permette di determinare $\dot{\rho}$ e $\dot{\theta}$ in funzione di ρ e delle due costanti del moto: $\dot{\theta} = \frac{J}{m\rho^2}$ e

$$\dot{\rho} = \pm \sqrt{\frac{2}{m}(E + U(\rho)) - \frac{J^2}{m^2 \rho^2}}.$$

Su ciascuna traiettoria si ha $\frac{d\rho}{d\theta}=abe^{b(\theta-c)}=b\rho$. Usando il teorema della funzione implicita $\frac{d\rho}{d\theta} = \frac{\rho}{\dot{\rho}}$ e prendendo il quadrato di entrambi i membri si trova

$$b^{2}\rho^{2} = \left(\frac{2m}{J^{2}}(E + U(\rho))\rho^{2} - 1\right)\rho^{2} \Rightarrow \frac{J^{2}}{2m\rho^{2}}(b^{2} + 1) - E = U(\rho).$$

Di conseguenza il potenziale, definito a meno di una costante additiva, deve avere la forma $U(\rho) = \frac{\kappa}{\rho^2}, \operatorname{con} k > 0.$

SOLUZIONE TEMA I (B)

La Lagrangiana del sistema è $L=\frac{m}{2}\,(\dot{x}^2+\dot{y}^2)+U(x)$. Poiché L è independente da t e dalla coordinata y, sono costanti del moto l'energia totale $\frac{m}{2}(\dot{x}^2+\dot{y}^2)-U(x)=E$ e il momento coniugato a $y,\,m\dot{y}=p_2$. Questo permette di determinare \dot{x} in funzione di x e delle due costanti del moto:

$$\dot{x} = \pm \sqrt{\frac{2}{m}(E + U(x)) - \frac{p_2^2}{m^2}}.$$

Su ciascuna traiettoria si ha $\frac{dx}{dy} = 2c(y-b) = 2\sqrt{c(x-a)}$. Usando il teorema della funzione

implicita $\frac{dx}{du} = \frac{x}{i}$ e prendendo il quadrato di entrambi i membri si trova

$$4c(x-a) = \frac{2m}{p_2^2}(E+U(x)) - 1 \qquad \Rightarrow \qquad \frac{p_2^2}{2m}(4c(x-a)+1) - E = U(x).$$

Di conseguenza il potenziale, definito a meno di una costante additiva, deve avere la forma U(x) = kx.

SOLUZIONE TEMA II (A)

L'Hamiltoniana del sistema è $H=\frac{m}{2}\left(p_1^2+\frac{p_2^2}{\rho^2}\right)+U(\rho)$. Le derivate parziali di H e di F sono

$$\begin{split} \frac{\partial H}{\partial \rho} &= -\frac{p_2^2}{m\rho^3} - \frac{dU}{d\rho} & \frac{\partial H}{\partial \theta} = 0 \\ \frac{\partial H}{\partial p_1} &= \frac{p_1}{m} & \frac{\partial H}{\partial p_2} &= \frac{p_2}{m\rho^2} \\ \frac{\partial F}{\partial \rho} &= -\frac{p_2^2 \cos(\theta)}{\rho^2} & \frac{\partial F}{\partial \theta} &= p_1 p_2 \cos(\theta) - \frac{p_2^2 \sin(\theta)}{\rho} - \sin(\theta) \\ \frac{\partial F}{\partial p_1} &= p_2 \sin(\theta) & \frac{\partial F}{\partial p_2} &= p_1 \sin(\theta) + \frac{2p_2 \cos(\theta)}{\rho} \end{split}$$

e quindi la parentesi di Poisson di H e F è

$$\{H, F\} = \frac{p_2 \sin(\theta)}{m\rho^2} \left(m\rho^2 \frac{dU}{d\rho} - 1 \right).$$

Affinché F sia una costante del moto, ossia $\{H, F\} = 0$, si deve dunque avere

$$\frac{dU}{d\rho} = \frac{1}{m\rho^2} \qquad \Rightarrow \qquad U(\rho) = -\frac{1}{m\rho}$$

SOLUZIONE TEMA II (B)

L'Hamiltoniana del sistema è $H=\frac{m}{2}\left(p_1^2+\frac{p_2^2}{\rho^2}\right)-\frac{k}{\rho}$. Le derivate parziali di H e di F sono

and del sistema è
$$H=\frac{1}{2}\left(p_1^2+\frac{P_2}{\rho^2}\right)-\frac{1}{\rho}$$
. Le derivate parziali di H e $\frac{\partial H}{\partial \rho}=\frac{k}{\rho^2}-\frac{p_2^2}{m\rho^3}$
$$\frac{\partial H}{\partial \theta}=0$$

$$\frac{\partial H}{\partial p_1}=\frac{p_1}{m}$$

$$\frac{\partial H}{\partial p_2}=\frac{p_2}{m\rho^2}$$

$$\frac{\partial F}{\partial \theta}=\frac{p_2^2\sin(\theta)}{\rho^2}$$

$$\frac{\partial F}{\partial \theta}=-p_1p_2\sin(\theta)-\frac{p_2^2\cos(\theta)}{\rho}+\frac{df}{d\theta}$$

$$\frac{\partial F}{\partial p_1}=p_2\cos(\theta)$$

$$\frac{\partial F}{\partial p_2}=p_1\cos(\theta)-\frac{2p_2\sin(\theta)}{\rho}$$

e quindi la parentesi di Poisson di H e F è

$$\{H, F\} = \frac{p_2}{m\rho^2} \left(\frac{df}{d\theta} - km\cos(\theta) \right).$$

Affinché F sia una costante del moto, ossia $\{H,F\}=0$, si deve dunque avere

$$\frac{df}{d\theta} = km\cos(\theta) \qquad \Rightarrow \qquad f(\theta) = km\sin(\theta)$$