Instituto Tecnológico de Buenos Aires

TEORIA DE CIRCUITOS

Trabajo Práctico de Laboratorio N^o3

GIC, Gyrator, Amplificador de Instrumentación y Ecualizador

Grupo 6: Paulo Navarro 57.775 Benjamín Carlos Lin 57.242 Nicolas Lorenzo Mestanza 57.521 Facundo Nicolas Molina 60.526 German Carlos Bertachini 58.750

Responsables de la cátedra:
Daniel Andres Jacoby
Carlos Belaustegui Goitia

Presentado: Corrección:

${\rm \acute{I}ndice}$

- 1. Filtro con GIC
- 1.1. Filtro con GIC

2. Introducción a Diseño de Filtros

1. Diseñar una función transferencia que cumpla con las especificaciones. 2. Diseñar un circuito que implemente la función transferencia utilizando un Gyrator. Justificar adecuadamente la elección de todos sus componentes y redactar una introducción teórica al tema. 3. Determinar rangos de operación en zona lineal. Se espera adecuada profundidad en este análisis. 4. Contrastar el diseño del circuito con las simulaciones correspondientes. 5. Implementar el circuito y comprobar su funcionamiento con las mediciones correspondientes. 6. Analizar el comportamiento del sistema en altas frecuencias. 7. Diseñar un PCB que contenga todos los circuitos pedidos (en el mismo PCB). A su vez, puede utilizarse un sólo IC en la implementación pedida.

En la presente sección, se implementarán cuatro filtros de segundo orden según las siguientes especificaciones:

Tipo de Filtro	$f_p[Hz]$	$f_a[Hz]$	$f_c[Hz]$
Low-Pass	5000	17500	-
High-Pass	21000	6000	-
Band-Pass	-	-	10000
Band-Rejection	-	-	6000

En los casos Low-Pass y High-Pass se espera también:

- Ganancia mayor a -3 dB cuando $f < f_p$ o $f > f_p$
- Ganancia menor a -10 dB cuando $f > f_a$ o $f < f_a$
- Ganancia nunca superior a 0 dB
- lacksquare Ganancia unitaria en continua $(f \to \infty)$

Cada circuito será empleado implementando una resistencia R, una inductancia L y un capacitor C, es decir un circuito RLC clásico.

La inductancia L será reemplazada por componentes que unidos presenten un comportamiento similar a ella, en este caso un Gyrator.

Antes de introducirnos en el diseño de filtros propiamente, se realizará una introducción a este elemento que se utilizará para observar por qué es tan útil y por qué lo emplearemos para las experiencias reemplazando la inductancia.

2.0.1. Introducción a Gyrators

Un Gyrator o girador es considerado un elemento pasivo adicional a los ya conocidos y analizados. Una de sus tantas funcionalidades es ser empleado como un inductor. El motivo de reemplazar a un inductor real por este dispositivo, se encuentra en fines prácticos, ya que al utilizar éste en lugar de una inductancia, se pueden reducir tanto el tamaño de un circuito como el costo del mismo.

Una inductancia tiene asociada una resistencia que por lo general no podremos controlar. El cable que se utiliza para elaborar una inductancia tiene dicha resistencia asociada. Por otro lado, se pueden obtener capacitores de alta calidad y con un girador, por ende, obtener inductores de alta calidad y a su vez, pudiendo manipular el valor de la resistencia asociada.

Un gyrator puede ser empleado de diferentes maneras. En el presente trabajo, nos focalizaremos en el gyrator compuesto por un amplificador operacional, dos resistencias y un capacitor. Es importante saber que se puede definir también al gyrator como un inversor de las características corriente voltaje de un componente eléctrico.

El símbolo circuital utilizado para el gyrator es el siguiente:

Figura 1: Símbolo circuital del Gyrator

2.0.2. Implementación real de un Gyrator

En la cátedra se han demostrado diferentes formas de implementarlo incluso con dos amplificadores, pero con el fin de simplificar las mediciones y armado de los distintos filtros se analizará el caso con un solo amplificador y se focalizará la atención en cómo lograr que éste se comporte como un inductor.

En el siguiente diagrama se puede ver la implementación de un Gyrator como un inductor observando éste a la izquierda y su equivalente a la derecha:

Figura 2: Equivalente circuital entre Gyrator e Inductor

En la próxima sección se verá que este equivalente no es válido para todo el rango de frecuencias, sino que su comportamiento dependerá de determinadas condiciones. El gyrator actuará como un inductor cuasi ideal hasta determinadas frecuencias donde su comportamiento como tal se deteriorará, factores en los cuales el amplificador operacional toma gran parte.

2.0.3. Análisis de Z_{in}

Para describir el comportamiento del circuito como un inductor es importante analizar la impedancia de entrada a dicho circuito tal que $Z_{in} = \frac{V_{in}}{I_{in}}$. Para ello, utilizaremos el siguiente diagrama circuital:

Figura 3: Diagrama de Gyrator como Inductor

Se puede observar del gráfico que:

$$V_{out} = V^-$$

Por ello:

$$V_{out} = A_{vol}(V^+ - V^-) \longrightarrow V^- = A_{vol}(V^+ - V^-) \longrightarrow V^- = V^+ \frac{A_{vol}}{1 + A_{vol}}$$

Utilizando un divisor de tensión, obtenemos la siguiente relación:

$$V^{+} = V_{in} \frac{R_g}{R_g + \frac{1}{SC_g}}$$

Por definición en el diagrama anterior:

$$I_{in} = i_1 + i_2$$

Como no ingresa corriente al amplificador operacional, definimos a las corrientes como:

$$i_1 = \frac{V_{in} - V^-}{R_L}$$

$$i_2 = \frac{V^+}{R_g}$$

Entonces:

$$I_{in} = \frac{V_{in} - V^{-}}{R_L} + \frac{V^{+}}{R_g} \longrightarrow I_{in} = V_{in} \left(\frac{R_g + \frac{1}{SC_g} + R_L - R_g \frac{A_{vol}}{1 + A_{vol}}}{R_L (R_g + \frac{1}{SC_g})} \right)$$

Finalmente:

$$Z_{in} = \frac{V_{in}}{I_{in}} = \frac{V_{in}}{V_{in} \left(\frac{R_g + \frac{1}{SC_g} + R_L - R_g \frac{A_{vol}}{1 + A_{vol}}}{R_L (R_g + \frac{1}{SC_g})}\right)} \longrightarrow Z_{in} = \frac{R_L (R_g + \frac{1}{SC_g})}{R_g + \frac{1}{SC_g} + R_L - R_g \frac{A_{vol}}{1 + A_{vol}}}$$

Si ahora multiplicamos por el factor SC_q en numerador y denominador:

$$Z_{in} = \frac{R_L(SC_gR_g + 1)}{SC_g(R_g + R_L - R_g\frac{A_{vol}}{1 + A_{vol}}) + 1}$$

Como $A_{vol} = \frac{A_0}{1 + \frac{S}{w_p}}$, el factor $\frac{A_{vol}}{1 + A_{vol}}$ cambia su comportamiento según la frecuencia de trabajo:

$$\frac{A_{vol}}{1 + A_{vol}} = \frac{\frac{A_0}{1 + \frac{S}{w_p}}}{1 + \frac{A_0}{1 + \frac{S}{w_p}}} = \frac{A_0}{A_0 + 1 + \frac{S}{w_p}} = \frac{1}{1 + \frac{1}{A_0} + \frac{S}{A_0 w_p}}$$

Notemos que GBP o el Gain Bandwidth Product es equivalente a A_0w_p , y A_0 tiene un valor alto, por ello se puede aproximar la anterior expresión a:

$$\frac{1}{1 + \frac{S}{GBP}}$$

Siempre que $1 >> \frac{S}{GBP}$, podremos aproximar dicha expresión:

$$\frac{1}{1 + \frac{S}{GBP}} \approx 1$$

Obteniendo así una impedancia de entrada con una forma que se acerca a un inductor real:

$$Z_{in} = \frac{R_L(sC_gR_g+1)}{sC_gR_L+1}$$

Tomaremos dicha relación cuando $\frac{S}{GBP} \ge 10$, o equivalente a decir una diferencia de un orden de magnitud.

Caso contrario, nuestro impedancia no podrá aproximarse a un inductor y el comportamiento no será el esperado así que aquí se presenta una primera condición.

Como $Z_{in} = \frac{R_L(SC_gR_g+1)}{SC_gR_L+1}$, para obtener una expresión de la forma de un inductor, podremos establecer otra relación necesaria tal que:

$$1 >> SC_aR_L$$

Cumpliendo dicha condición, nuestro inductor usando gyrator estará representado por:

$$Z_{in} = R_L(sC_qR_q + 1) \longrightarrow Z_{in} = sC_qR_qR_L + R_L$$

Donde:

$$L = C_q R_q R_L$$

Como nota final de este comportamiento es importante ver que la relación $1 >> SC_gR_L$, se cumplirá a bajas frecuencias, mayores o menores dependiendo de los componentes elegidos. Además de ello, el Gyrator para ser empleado como inductor en este caso deberá estar referenciado a tierra aunque en uno de los filtros a diseñar se lo implementará de

tal manera que esté flotante. Luego se podrán observar las limitaciones tanto por los polos del amplificador operacional como por el rango de trabajo como inductor del gyrator propuesto.

Nuestro equivalente quedará representado por:

Figura 4: Equivalente de Inductor utilizando un Gyrator

2.0.4. Elección del amplificador operacional para el Gyrator

Para la implementación experimental del Gyrator y de los distintos filtros, se ha elegido el circuito integrado TL084, cuya hoja de datos se puede encontrar aquí por diferentes razones:

- Al momento de armar el PCB contaremos con 4 amplificadores operacionales en un solo circuito integrado, ideal para el diseño de 4 filtros con 1 gyrator cada uno.
- Slew-Rate típico de $13\frac{V}{\mu s}$ lo cual nos permitirá trabajar experimentalmente en un amplio rango sin sufrir alinealidad en el comportamiento de los filtros.
- \blacksquare GBP típico de 3MHz, por lo cual nuestra relación $1>>\frac{S}{GBP}$ se cumplirá para un gran rango de frecuencias.

2.1. Filtro Pasa-Bajos (Low-Pass)

Se procederá a realizar un filtro pasa-bajos de segundo orden clásico, tal que podemos ver la disposición de elementos en la siguiente figura:

Figura 5: Circuito Pasa-Bajos de segundo orden con elementos pasivos

Las especificaciones son las siguientes:

- E1: Ganancia mayor a -3 dB cuando f < 5KHz
- \blacksquare E2: Ganancia menor a -10 dB cuando f>17.5KHz
- E3: Ganancia nunca superior a 0 dB
- E4: Ganancia unitaria en continua $(f \to \infty)$

En el dominio de Laplace podemos ver que la función de transferencia para este circuito está dada por:

$$H(S) = \frac{V_{out}(S)}{V_{in}(S)} = \frac{\frac{1}{SC}}{SL + R + \frac{1}{SC}} \longrightarrow H(S) = \frac{1}{S^2LC + SCR + 1}$$

De allí podemos observar que $w_0 = \frac{1}{\sqrt{LC}}$, $Q = \frac{1}{2\xi}$ y $\xi = \frac{R\sqrt{C}}{2\sqrt{L}}$. Por la condición E3, la ganancia nunca deberá superar a 0 dB entonces en otras palabras no se deben presentar sobrepicos en el circuito RLC. Sabiendo que los sobrepicos se presentarán en casos donde $\xi \leq \frac{1}{\sqrt{2}}$, se tomarán valores que cumplan la relación:

$$\xi > \frac{1}{\sqrt{2}}$$

Además de ello, para un circuito de segundo orden la pendiente de la recta que se presenta en H(S) es de $40 \frac{dB}{dec}$. más precisamente -40 $\frac{dB}{dec}$ en este caso.

Para establecer una relación y hallar una frecuencia de corte f_0 apropiada, sabiendo que en valores un poco anteriores a dicha frecuencia, la pendiente se empieza a notar, y tal que se cumplan los requisitos de la plantilla, E1 y E2, estableceremos una diferencia mínima de 10 dB entre 5KHz y 17.5KHz, ya que la diferencia establecida por la plantilla es de por lo menos 7 dB (-3 dB a -10 dB) para dichas frecuencias y buscaremos la relación entre las dos frecuencias para que una vez establecida la f_0 , obtengamos el comportamiento deseado.

Sabiendo que en $\frac{1}{4}$ de década se representará una diferencia de 10 dB para dicha función transferencia, buscando obtener una relación entre ambas frecuencias según lo estipulado previamente y estableciendo la condición E2 para obtener la relación:

$$\frac{1}{4} = \log_{10}(\frac{17.5KHz}{f_0})$$

De esta manera, podremos estimar una f_0 tal que se cumpla la plantilla:

$$f_0 = \frac{17.5KHz}{1.7782} = 9.84KHz$$

Se esperará que antes de dicha frecuencia la ganancia esté por encima de los -3dB, por ende se cumplirá la condición E1. Por ello y para trabajar con frecuencias enteras, se utilizará una frecuencia un poco menor, $f_0 = 9KHz$ ya que con la diferencia establecida de 10 dB, usar una frecuencia menor, no afectará el comportamiento esperado según la plantilla y todavía nos encontraremos en los límites estipulados.

Por las relaciones expresadas previamente:

$$w_0 = \frac{1}{\sqrt{LC}} \longrightarrow 2\pi f_0 = \frac{1}{\sqrt{LC}}$$

Luego:

$$\frac{R\sqrt{C}}{2\sqrt{L}} > \frac{1}{\sqrt{2}}$$

Como tenemos varias incógnitas, elegiremos el C a utilizar basándonos en los elementos disponibles, siendo para este caso, $C = 0.1 \mu F$.

Por ello:

$$2\pi 9KHz = \frac{1}{\sqrt{L0.1\mu F}} \longrightarrow L = 3.1271mH$$

Además:

$$\frac{R\sqrt{0.1\mu F}}{2\sqrt{3.1271mH}} > \frac{1}{\sqrt{2}} \longrightarrow R > 249.76\Omega$$

Es importante notar que a medida que R aumenta nos encontraremos en una situación donde el circuito será cada vez más sobreamortiguado, y por ello buscaremos utilizar un valor de R lo más cercano posible al calculado teóricamente, ya que de otra forma por la reducción de la pendiente debido al sobreamortiguamiento podríamos no encontrarnos en los parámetros establecidos en la plantilla. Se utilizó entonces $R=330\Omega$ ya que es el valor más cercano con el que se contaba.

Una vez obtenidos los valores nominales de los elementos, se buscó implementar dicho circuito pero utilizando el gyrator descripto previamente para reemplazar a la inductancia. Para ello, basándonos en las siguientes relaciones:

$$Z = sC_gR_gR_L + R_L$$

$$1 >> sC_qR_L$$

Partiendo de la última expresión, se escogió:

$R_L[\Omega]$	$C_g[\mu F]$	$R_g[\Omega]$	$L_{eq}[mH]$
10	0.1	3300	3.3

Notar que el valor escogido es tal que $C=C_g$ y R_L es pequeña en comparación a la R del circuito para no generar un sobreamortiguamiento adicional.

Se verifica a continuación el rango de frecuencias de trabajo:

$$1 >> (S0.1\mu)(10) \longrightarrow 1 >> 2\pi f 10^{-6}$$

Se procedió a simular el comportamiento del circuito RLC equivalente con los valores obtenidos de la implementación con el gyrator para observar si su comportamiento es el esperado:

$R + R_L[\Omega]$	$C[\mu F]$	L[mH]
340	0.1	3.3

Figura 6: Circuito Pasa-Bajos de segundo orden

Figura 7: Circuito Pasa-Bajos de segundo orden

Se pudo comprobar entonces que para el circuito equivalente con gyrator se cumple lo establecido en la plantilla. De la simulación se observó que en f = 5.00007KHz, la ganancia es de -1.904dB y en f = 17.503KHz, es de -13.25dB Comprobado ello, se realizó la simulación utilizando ahora el amplificador operacional y los elementos pasivos del gyrator obtenidos anteriormente.

Figura 8: Circuito Pasa-Bajos de segundo orden

Lo obtenido fue lo siguiente:

Figura 9: Circuito Pasa-Bajos de segundo orden

Figura 10: Circuito Pasa-Bajos de segundo orden

Se puede comprobar aquí también que la plantilla se sigue cumpliendo obteniendo el filtro pasa-bajos con el comportamiento deseado.

Como punto final, se empleó el circuito diseñado en la Digital Explorer Board, y se midió la respuesta en frecuencia:

Figura 11: Circuito Pasa-Bajos de segundo orden

Figura 12: Circuito Pasa-Bajos de segundo orden

2.2. Filtro Pasa-Altos (High-Pass)

Se realizó un filtro pasa-altos de segundo orden clásico, tal que podemos ver la disposición de elementos para el mismo en la siguiente figura:

Figura 13: Circuito Pasa-Altos de segundo orden

Las especificaciones para esta experiencia son las siguientes:

- E1: Ganancia mayor a -3 dB cuando f > 21KHz
- E2: Ganancia menor a -10 dB cuando f < 6KHz

- E3: Ganancia nunca superior a 0 dB
- E4: Ganancia unitaria en continua $(f \to \infty)$

En el dominio de Laplace podemos ver que la función de transferencia para este circuito está dada por:

$$H(S) = \frac{V_{out}(S)}{V_{in}(S)} = \frac{SL}{SL + R + \frac{1}{SC}} \longrightarrow H(S) = \frac{S^2LC}{S^2LC + SRC + 1}$$

Aquí también podemos observar que $w_0 = \frac{1}{\sqrt{LC}}$, $Q = \frac{1}{2\xi}$ y $\xi = \frac{R\sqrt{C}}{2\sqrt{L}}$. Como la ganancia nuevamente nunca deberá superar a 0 dB no se deberán presentar sobrepicos en este circuito. Sabiendo que los sobrepicos se presentarán también aquí en casos donde $\xi \leq \frac{1}{\sqrt{2}}$, se tomarán valores que cumplan la relación:

$$\xi > \frac{1}{\sqrt{2}}$$

Se realizará el mismo análisis que para el circuito pasa-bajos, donde para establecer una relación y hallar una frecuencia de corte f_0 apropiada, tal que se cumplan los requisitos de esta plantilla, estableceremos una diferencia mínima de 10 dB entre 21KHz y 6KHz, ya que la diferencia establecida por la plantilla, E1 y E2, es de por lo menos 7 dB (-3 dB a -10 dB).

Mediante dicha relación, entonces sabiendo que en $\frac{1}{4}$ de década se obtendrá una diferencia de 10 dB y tomando como referencia la f de E1:

$$\frac{1}{4} = \log_{10}(\frac{21KHz}{f_0})$$

También podremos estimar una f_0 tal que se cumpla la plantilla:

$$f_0 = \frac{21KHz}{1.7782} = 11.80KHz$$

Se utilizará una frecuencia un poco menor, $f_0 = 11KHz$ ya que con la diferencia establecida de 10 dB, usar una frecuencia menor, no afectará el comportamiento esperado según la plantilla.

Por las relaciones expresadas previamente:

$$w_0 = \frac{1}{\sqrt{LC}} \longrightarrow 2\pi f_0 = \frac{1}{\sqrt{LC}}$$

Luego:

$$\frac{R\sqrt{C}}{2\sqrt{L}} > \frac{1}{\sqrt{2}}$$

Tomando nuevamente C a utilizar como $C = 0.1 \mu F$:

$$2\pi 11KHz = \frac{1}{\sqrt{L0.1\mu F}} \longrightarrow L = 2.0934mH$$

Además:

$$\frac{R\sqrt{0.1\mu F}}{2\sqrt{2.0934mH}} > \frac{1}{\sqrt{2}} \longrightarrow R > 204.58\Omega$$

Otra vez a medida que R aumenta nos encontraremos en una situación donde el circuito será cada vez más sobreamortiguado, obteniendo efectos no contemplados en los cálculos precedentes. Por ello se utilizó un valor de $R=220\Omega$ ya que es el valor más cercano con el que se contaba.

$R[\Omega]$	$C[\mu F]$	L[mH]
220	0.1	2.0934

Para implementar dicho circuito pero utilizando el gyrator descripto previamente para reemplazar a la inductancia y teniendo las relaciones descriptas anteriormente:

$$Z = sC_q R_q R_L + R_L$$

$$1 >> sC_qR_L$$

Partiendo de la última expresión, se escogió:

ĺ	$R_L[\Omega]$	$C_g[\mu F]$	$R_g[\Omega]$	$L_{eq}[mH]$
	10	0.1	2200	2.2

El valor escogido es tal que $C=C_g$ y R_L es pequeña en comparación a la R del circuito para no generar un sobreamortiguamiento adicional.

Aquí el rango de trabajo ideal del inductor al haber elegidos los mismos valores de R_L y C_g

$$1 >> (S0.1\mu)(10) \longrightarrow 1 >> 2\pi f 10^{-6}$$

Se procedió a simular el comportamiento del circuito RLC equivalente con el gyrator implementado para observar si su comportamiento es el esperado:

$R + R_L[\Omega]$	$C[\mu F]$	L[mH]
230	0.1	2.2

Figura 14: Circuito Pasa-Bajos de segundo orden

Figura 15: Circuito Pasa-Bajos de segundo orden

Para el circuito equivalente con gyrator se cumple lo establecido en la plantilla. De la simulación se observó que en f=6.00007KHz, la ganancia es de -10.97dB y en f=21.003KHz, es de -0.6955dB.

Luego, se realizó la simulación utilizando ahora el amplificador operacional y los elementos pasivos del gyrator obtenidos anteriormente.

Figura 16: Circuito Pasa-Bajos de segundo orden

Lo obtenido fue lo siguiente:

Figura 17: Circuito Pasa-Bajos de segundo orden

Figura 18: Circuito Pasa-Bajos de segundo orden

Se puede comprobar aquí también que la plantilla se sigue cumpliendo obteniendo el filtro pasa-altos buscado. Para contrastar aquí empíricamente, también se armó el circuito en la *Electronics Explorer Board* y se midió la respuesta en frecuencia:

Figura 19: Circuito Pasa-Bajos de segundo orden

Figura 20: Circuito Pasa-Bajos de segundo orden

2.3. Filtro Rechaza-Banda (Band-Rejection)

Se procederá a realizar un circuito rechaza-banda de segundo orden clásico, tal que podemos ver la disposición de elementos en la siguiente figura:

Figura 21: Circuito Rechaza-Banda de segundo orden

La única especificación en este caso es:

■ E1: $f_c = 6KHz$

En el dominio de Laplace podemos observar que la función de transferencia para este circuito es:

$$H(S) = \frac{V_{out}(S)}{V_{in}(S)} = \frac{SL + \frac{1}{SC}}{SL + R + \frac{1}{SC}} \longrightarrow H(S) = \frac{S^2LC + 1}{S^2LC + SRC + 1}$$

Podemos ver que aquí también $w_0 = \frac{1}{\sqrt{LC}}$, y por ello:

$$2\pi f_0 = \frac{1}{\sqrt{LC}} \longrightarrow 2\pi 6 KHz = \frac{1}{\sqrt{LC}}$$

Mantendremos una consistencia en el capacitor utilizado, eligiendo nuevamente $C=0.1\mu F$, entonces:

$$L = 7.036mH$$

Para este caso, optaremos por obtener un circuito críticamente amortiguado o cercano a él, por ello utilizando la relación que también aplica a este filtro:

$$\xi = \frac{R\sqrt{C}}{2\sqrt{L}} = \frac{1}{\sqrt{2}} \longrightarrow R = 375.06$$

El valor comercial más cercano con el que contamos es 560Ω por lo que observaremos un comportamiento sobreamortiguado aunque aquí no tendrá mucha importancia ya que no se especificaron parámetros adicionales más que E1.

$R[\Omega]$	$C[\mu F]$	L[mH]
560	0.1	7.036

Al analizar el comportamiendo del inductor mediante Gyrator, se obtuvieron los siguientes valores:

$R_L[\Omega]$	$C_g[\mu F]$	$R_g[\Omega]$	$L_{eq}[mH]$
10	0.1	6800	6.8

Cuyo rango de trabajo se dará también siempre y cuando:

$$1 >> (S0.1\mu)(10) \longrightarrow 1 >> 2\pi f 10^{-6}$$

Se procedió a simular el comportamiento del circuito RLC equivalente para observar su comportamiento:

$R + R_L[\Omega]$	$C[\mu F]$	L[mH]
570	0.1	6.8

Figura 22: Circuito Pasa-Bajos de segundo orden

Figura 23: Circuito Pasa-Bajos de segundo orden

Se comprobó que para el circuito equivalente con gyrator se cumple lo establecido en la plantilla. De la simulación se observó que en $f_c = 6.1031 KHz$, donde la ganancia es de -90.64 dB.

Una vez comprobado el correcto funcionamiento del filtro, se realizó la simulación pertinente al circuito con el gyrator:

Figura 24: Circuito Pasa-Bajos de segundo orden

Lo obtenido fue lo siguiente:

Figura 25: Circuito Pasa-Bajos de segundo orden

Figura 26: Circuito Pasa-Bajos de segundo orden

Se puede comprobar aquí también que la plantilla se sigue cumpliendo obteniendo el filtro rechaza-banda solicitado. Se procedió a armar el circuito en la *Electronics Explorer Board*, para medir la respuesta en frecuencia del filtro:

Figura 27: Circuito Pasa-Bajos de segundo orden

Figura 28: Circuito Pasa-Bajos de segundo orden

2.4. Filtro Pasa-Banda (Band-Pass)

Realizaremos como último filtro, un pasa-banda de segundo orden clásico, con los siguientes elementos:

Figura 29: Circuito Pasa-Altos de segundo orden

La única especificación en este caso es:

■ E1: $f_c = 10KHz$

Nuevamente utilizando la transformada de Laplace obtenemos la función de transferencia para el último filtro a diseñar:

$$H(S) = \frac{V_{out}(S)}{V_{in}(S)} = \frac{\frac{1}{SC} \parallel SL}{\frac{1}{SC} \parallel SL + R} \longrightarrow H(S) = \frac{S\frac{L}{R}}{S^2LC + S\frac{L}{R} + 1}$$

Como en los filtros analizados anteriormente, la frecuencia de corte será $w_0 = \frac{1}{\sqrt{LC}}$, por lo tanto:

$$2\pi f_0 = \frac{1}{\sqrt{LC}} \longrightarrow 2\pi 10 KHz = \frac{1}{\sqrt{LC}}$$

En todos los filtros optamos por $C=0.1\mu F$. El mismo será empleado aquí también, por lo que nuestra inductancia será:

$$L = 2.533mH$$

También al buscar un circuito críticamente amortiguado:

$$\xi = \frac{R\sqrt{C}}{2\sqrt{L}} = \frac{1}{sqrt2} \longrightarrow R = 225.04$$

El valor que utilizaremos entonces es 220Ω por lo que observaremes un comportamiento apenas subamortiguado. Nuevamente no es un factor que nos afecte en el diseño del filtro, ya que la única condición establecida es la frecuencia de corte.

$R[\Omega]$	$C[\mu F]$	L[mH]
220	0.1	2.533

Para el gyrator, se escogieron los siguientes elementos:

$R_L[\Omega]$	$C_g[\mu F]$	$R_g[\Omega]$	$L_{eq}[mH]$
10	0.1	2700	2.7

El rango de trabajo del inductor con gyrator es el mismo que para los tres filtros anteriores. Se simuló el comportamiento del circuito RLC equivalente para verificar el correcto funcionamiento del filtro.

$R + R_L[\Omega]$	$C[\mu F]$	L[mH]
230	0.1	2.7

Figura 30: Circuito Pasa-Bajos de segundo orden

Figura 31: Circuito Pasa-Bajos de segundo orden

A simple vista se puede observar que la frecuencia de corte es muy cercana a los 10KHz

Se realizó la simulación utilizando ahora el amplificador operacional y los elementos pasivos del gyrator obtenidos anteriormente.

Figura 32: Circuito Pasa-Bajos de segundo orden

Lo obtenido fue lo siguiente:

Figura 33: Circuito Pasa-Bajos de segundo orden

Figura 34: Circuito Pasa-Bajos de segundo orden

Se puede comprobar aquí también que la plantilla se sigue cumpliendo obteniendo el filtro pasa-banda buscado. Se procedió a armar el circuito en la *Electronics Explorer Board*, para medir la respuesta en frecuencia:

Figura 35: Circuito Pasa-Bajos de segundo orden

Figura 36: Circuito Pasa-Bajos de segundo orden

2.5. Implementación

En esta sección se plantean las consideraciones de diseño llevadas a cabo para implementar los circuitos presentados anteriormente en un PCB. Lamentablemente, dadas las condiciones presentes no se puede implementar físicamente lo expuesto pero se toman todos los recaudos necesarios para lograr un diseño fidedigno a una implementación real.

La cátedra plantea la condición de que es necesario implementar el diseño de los filtros usando un sólo circuito integrado, por ende, se decide utilizar el TL084CN fabricado por Texas Instruments, encapsulado que cuenta con cuatro amplificadores operacionales en su interior. A su vez, de lo anterior se desprende que habrá que implementar nuestro diseño en el mismo PCB. Consecuentemente, los cuatro filtros solicitados, Band Pass, Band Reject, Low Pass y High Pass, requieren un filtro de segundo orden RLC para cumplir con las especificaciones, utilizando un girator cada uno para simular una inductancia. Para implementar el anterior dispositivo se utiliza el circuito presentado anteriormente en las simulaciones.

2.5.1. Consideraciones de diseño

Dado que cada filtro requiere un amplificador operacional y que los valores de inductancia simulados con el girator son distintos para cada implementación, se considera que lo óptimo es asignar un amplificador operacional a cada filtro, de manera de tener cuatro circuitos implementados en la misma placa pero que no comparten componentes. De esta manera, se minimiza la posibilidad de errores o de incompatibilidades.

Por otro lado, en vista de un uso óptimo, se procede a aislar los cuatro circuitos para poder usarlos de manera independiente. Esto se logra implementando tanto pines a la entrada como a la salida del PCB, los cuales son la conexión eléctrica de entrada y de salida de cada filtro. Se utiliza un header 4x2 en el esquemático que representa las tiras de pares de pines con las conexiones posibles. Para utilizar un filtro es necesario cerrar la conexión eléctricamente entre los dos pines utilizando un jumper. Este procedimiento se debe realizar tanto a la entrada como a la salida de cada filtro. Por otro lado, en las proximidades de las conexiones de salida se colocaron dos pines, conectados a la señal de salida y tierra, de manera tal de colocar de manera sencilla y práctica la punta del osciloscopio para medir.

La limitación que nos plantea este diseño es la imposibilidad de medir más de un filtro a la vez. A nivel lógico lo implementado responde al siguiente esquema:

(a) Implementación a nivel esquemático

(c) Implementación punto de medición

Figura 38: Diagrama de Bloques lógico

La implementación final del PCB se presenta a continuación.

Figura 39: Vista del PCB a nivel conexionado

Figura 40: Vista 3D del PCB

La única consideración a realizar es que se omitió la utilización de agujeros de sujeción para colocar tamecos a la placa. Se decidió omitirlos para poder presentar el diseño de manera más clara y tener más espacio para pistas. Sin

embargo, en una implementación real es indispensable tenerlos en consideración por comodidad y para una correcta manipulación del PCB.

- 3. Amplificador de Instrumentación
- 3.1. Amplificador de Instrumentación

4. Control de Tonos y Ecualizador de Fase

iiiiiii HEAD

4.1. Ecualizador de Fase

======= empieza el 4

4.2. Ecualizador de Fase

Figura 41: Circuito Ecualizador de Fase

4.3. Análisis matemático

Para analizar el circuito propuesto, se opto por reemplazar la resistencia variable R_2 por dos resistencias las cuales llamaremos R_{21} y R_{22} , de esta forma será más fácil poder resolver el circuito propuesto, para esto definimos:

$$R_{22} = R_2.(1 - \delta) \tag{2}$$

 $R_{21} = R_2.\delta(3)$

$$R_{22} = R_2.(1 - \delta) \tag{4}$$

Figura 42: Modelo matemático

Se utilizo el reemplazo de impedancia de configuración triangulo a estrella y luego una transformación de configuración estrella a triangulo como se muestra en las imágenes ?? y ?? para poder simplificar el circuito lo mas posible el circuito. Para el primer reemplazo se usaron las siguientes ecuaciones:

$$Z_{CA} = R_{21} \tag{5}$$

Figura 43: 1° Reemplazo

Para el segundo reemplazose usaron las siguientes ecuaciones:

$$Z_{C'} = \frac{1}{sC_1} + Z_C \tag{6}$$

Para no complicar los cálculos se uso el programa Maple para poder obtener los resultados finales de los reemplazos, dejando asi las siguientes impedancias:

$$Z_3 = \frac{1}{sC_1} + Z_C (7)$$

