Homework 5 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

October 16, 2023

1. First we want to show given $\varepsilon > 0$, we can find finite sequence $x_1, x_2, \dots x_n$ s.t. $\cup D(x_i, \varepsilon) = X$.

Proving this by contrapositive way.

Let y_1 be a point in X, then $D(y_1, \varepsilon)$ can not cover X. Then, we can find $y_2 \in X - D(y_1, \varepsilon)$ s.t. $D(y_1, \varepsilon) \cup D(y_2, \varepsilon)$ can not cover X.

Using the same way, if we cann't find $m \in \mathbb{N}$ s.t. $\cup D(y_i, \varepsilon)$ does not cover X. Which means distance of y_i are greateer than ε . This, is contradiction to the infinite set in X has a accumulation points.

Thus, we can find finite set $\{x_{i,n}\}_{i=1}^{m_i}$ s.t. $\{D(x_{i,n},\frac{1}{n})\}_{i=0}^{m_n}$ cover X. Then, $\{x_{i,n}\}_{1\leq n\leq \infty,\ 1\leq i\leq m_n}$ is countable.

Then, we want to show $S = \bigcup D(x_{i,n}, \frac{1}{n})$ is dense in X.

For any $x \in X - S$, then for all $\varepsilon > 0$, exists $\frac{1}{n_i} \le \varepsilon$ s.t. $D(x, \frac{1}{n_i}) \subseteq D(x, \varepsilon)$ and $x \in D(x_{i,n}, \frac{1}{n_i})$ for some $1 \le i \le m_i \implies x$ is a accumulation point of S. Then, $\bar{S} = X \implies S$ is dense.

2. First, we let $\{U\}$ be disjoint segments that covers the open set in \mathbb{R} . Let $x \sim y$ if $[x,y] \subseteq U$ with $x \leq y$ or $[y,x] \subseteq U$ with $y \leq x$. Then, if $x,y \in U$ with $x \neq y$, since exists $q \in [x,y] \cap \mathbb{Q}$, $q \in U \cap \mathbb{Q}$. Then, for every U contains more than one number, we call it U_x , for a $x \in \mathbb{Q} \cap U$, which $\{U_x\}$ is countable.

3. Since $A_1 \supseteq A_2 \supseteq \cdots A_n$, $A'_1 \supseteq A'_2 \supseteq \cdots A'_n$.

For
$$x \in A$$
, since $\bigcap_{n=1}^{\infty} A_n = \emptyset$, $A = \bigcap_{n=1}^{\infty} \bar{A}_n = (A_1 \cup A'_1) \cap (\bigcap_{n=2}^{\infty} \bar{A}_n)$

$$= (A'_1 \cap (\bigcap_{n=2}^{\infty} \bar{A}_n)) \cup (A \cap (\bigcap_{n=2}^{\infty} \bar{A}_n)) = \dots = (\bigcap_{i=1}^{\infty} A'_i) \cup (\bigcap_{i=2}^{\infty} A'_i) \cup \dots = \bigcap_{n=1}^{\infty} A'_n.$$
Thus, $x \in A'_1$.

4. First, we want to proof $\overline{M-A} \supseteq (\overline{A}-A)$.

Since
$$\overline{M-A} = (M-A)' \cup (M-A)$$
 and $\overline{A} \subseteq M \implies (\overline{A}-A) \subseteq (M-A) \subseteq \overline{M-A}$.
 $(A \cap \overline{M-A}) \cup (\overline{A}-A) = (A \cup (\overline{A}-A)) \cap (\overline{M-A} \cup (\overline{A}-A)) = \overline{A} \cap (\overline{M-A}) = \partial A$