

GT9 非单层多点系列编程指南文件

GT913/GT915/GT927/GT928/GT9110

GT913P/GT915P /GT9110P

目

一、	接口说明	 2
_,	通信时序	 2
	2.1 主机对 GT9 系列进行写操作时序	 2
	2. 2 主机对 GT9 系列进行读操作时序	 3
三、		
	寄存器列表3.1 实时命令(Write only)	 3
	3.2 配置信息(R/W)	 4
	3.3 坐标信息	
四、	上电初始化与寄存器动态修改	. 14
	4.1 GT9 系列上电时序	
	4. 2 I2C 地址选择	
	4.3 寄存器动态修改	
Ŧi.	坐标读取	. 16
	工作模式切换	
	版本修订记录	18

一、接口说明

GT9 非单层多点系列(以下简称 GT9 系列)与主机接口共有 6 PIN,分别为: VDD、GND、SCL、 SDA、INT、RESET。

主控的 INT 口线需具有上升沿或下降沿中断触发功能,并且当其在输入态时,主控端必需设为悬浮态, 取消内部上下拉功能;主机通过输出高、低来控制 GT9 系列的 RESET 口为高或低。为保证可靠复位,建 议 RESET 脚输出低 100μ s 以上。

GT9 系列与主机通信采用标准 I^2C 通信,最高速率可以支持至 400K bps。当主机采用 200K 以上的通 信速率时,需要特别注意 I²C 口的外部上拉电阻阻值,以保证 SCL、SDA 边沿足够陡峭。GT9 系列在通信 中始终作为从设备,其 I²C 设备地址由 7 位设备地址加 1 位读写控制位组成,高 7 位为地址,bit 0 为读写 控制位。GT9 系列有两个从设备地址可供选择,如下表:

7位地址	8位写地址	8 位读地址
0x5D	0xBA	0xBB
0x14	0x28	0x29

每次上电或复位时需要使用 INT 脚进行 I²C 地址设置,方法请参考"上电初始化与 I2C 地址选择"一 章节。

二、通信时序

2.1 主机对 GT9 系列进行写操作时序

		A		A		Α		A			Α	
S	Address_W	C	Register_H	C	Register_L	C	Data_1	C	••••	Data_n	C	E
		K		K		K		K			K	

S: 起始信号。

Address_W: 带写控制位的从设备地址。

ACK: 应答信号。

Register_H、Register_L: 待写入的 16 位寄存器首地址。

Data 1至 Data n: 数据字节 1-n。

E: 停止信号。

设定了写操作寄存器首地址后,可以只写 1 字节数据,也可以一次性写入多个字节数据,GT9 系列自 动将其往高地址顺序存储。

2.2 主机对 GT9 系列进行读操作时序

先通过前述写操作时序设定需要读取的寄存器首地址,重新发送起始信号进行读寻址,读取寄存器数据。

Address_R: 带读控制位的从设备地址。

NACK: 最后 1 字节读完主控回 NACK。

设定了读操作寄存器地址后,主控可以一次读取1字节,也可以一次性读取多个字节数据,GT91XX 自动递增寄存器地址,将后续数据顺序发送。

设定完读操作寄存器地址后的停止信号(上图中的第一个 E 信号)可发可不发,但是重新开始 I2C 通信 的起始信号必须再次发送。

三、寄存器列表

3.1 实时命令 (Write only)

0x8040	Command		2: 软件复位 5:关屏
0x8041	NC	Reserved	
0x8042	Proximity_En	接近感应开关	

3.2 配置信息 (R/W)

寄存器	Config Data	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
0x8047	Config_ Version		配置文件的版本号(新下发的配置版本号大于原版本,或等于原版本号但配置内容有变化时保存,版本号版本正常范围: 'A'~'Z',发送0x00则将版本号初始化为'A')								
0x8048	X Output Max (Low Byte)		x 坐标输出最大值								
0x8049	X Output Max (High Byte)		A 王柳柳山取入臣								
0x804A	Y Output Max (Low Byte)				Y 坐标输出	1.最大值					
0x804B	Y Output Max (High Byte)			4	主生小相山	1取入匝					
0x804C	Touch Number		Reser	ved		输出	出触点个数。	上限: 1~1	LO		
0x804D	Module_ Switch1	_	Stylus_priority Stretch_rank (预定义)				Sito (软件 降噪)	00: 上 01: 下 02: 低 ¹	2发方式 升沿触发 降沿触发 电平查询 电平查询		
0x804E	Module_ switch2		Reser	ved		WP_dis	Reserv	SCM_e n	Touch _key		
0x804F	Shake_Count		Reser	ved		手	指按下/松	F去抖次数	女		
0x8050	Filter	First_E	Filter	No	rmal_Filte	er(原始坐标	窗口滤波值	,系数为1	1)		
0x8051	Large_Touch				大面积触摸	莫点个数					
0x8052	Noise_ Reduction		Reser	ved		噪声消降	余值(系数)	力 1, <mark>0-15</mark>	有效)		
0x8053	Screen_ Touch_Level			屏上	.触摸点从无	元到有的阈 值	<u>İ</u>				
0x8054	Screen_ Leave_Level			屏上	:触摸点从有	頁到 无的阈值	1				
0x8055	Low_Power_ Control		Reser	ved		ì	进低功耗时间	可(0~15s)			
0x8056	Refresh_Rate		Reser	ved		坐标	上报率(周期	期为 5+N n	ns)		
0x8057	x_threshold										
0x8058	y_threshold	Reserved									
0x8059	X_Speed_Limit				Reser	ved					
0x805A	Y_Speed_Limit					T T					
0x805B	Space	上边框	的空白区(以 32 为系	(数)	下边框	的空白区(以 32 为系	系数)		

用 心 Devoted	团队 Collaborat	创 cive Cre	新 eative	绩 效 Effici	ent		GŒ	DDiX®	
0x805C		左边	左边框的空白区(以 32 为系数)				的空白区	(以 32 为系数)	
0x805D	Stretch_Rate	Reserved				弱拉伸的拉伸程度(拉伸 x/16 Pitch) (beta 版占用,发布版无效)			
0x805E	Stretch_R0				区间1				
0x805F	Stretch_R1				区间 2	系数			
0x8060	Stretch_R2				区间 3	系数			
0x8061	Stretch_RM				各区间	基数			
0x8062	Drv_GroupA_ Num	All_Dri ving	Reser	ved		Driver_(Group_A_	number	
0x8063	Drv_GroupB_ Num	Res	erved	Dual_F req		Driver_0	Group_B_	_number	
0x8064	Sensor_Num	Se	nsor_Grou	o_B_Numb	er	Sen	sor_Gro	up_A_Number	
0x8065	FreqA_factor	驱	动组 A 的驱动]频率倍频	系数 Group	pA_Frequen	ce = 倍频	系数 * 基频	
0x8066	FreqB_factor	驱	动组 B 的驱动]频率倍频	系数 Grou	pB_Frequen	ce = 倍频	系数 * 基频	
0x8067	Pannel_ BitFreqL		귔口	ヹ ゠゚ れが日 ∧ □ R	的基频(15	2647/其紙/	1460047)		
0x8068	Pannel_ BitFreqH		IJĸ	14715H N. D	17至%(15)	ZONZ、至例、	14000112)		
0x8069	Pannel_Sensor _TimeL	相邻两次	相邻两次驱动信号输出时间间隔(以 us 为单位), Reserved(beta 版占用,发布版无						
0x806A	Pannel_Sensor _TimeH				效)				
0x806B	Pannel_Tx_ Gain		Reserved		put	Drv_out Pannel_DAC_Gain t_R 0:Gain 最大 可调 7: Gain 最小			
0x806C	Pannel_Rx_ Gain	Pannel _PGA_C	Pannel_	PGA_R	Pannel_ (4 档)	_		nel_PGA_Gain (8 档可调)	
0x806D	Pannel_Dump_ Shift		Reser	ved		屏原始	值放大系数	数(2的n次方)	
0x806E	Drv_Frame_ Control	Reserv ed		Sub	Frame_DrvN	um		Repeat_Num (采样累加次数)	
0x806F	NC				Reser	ved			
0x8070	NC				Reser	ved			
0x8071	NC				Reser	ved			
0x8072	Stylus_Tx_ Gain		誓	未定义()	≝ stylus_p	riority=0	时无效)		
0x8073	Stylus_Rx_ Gain		暂	未定义()	≝ stylus_p	riority=0	时无效)		
0x8074	Stylus_Dump_ Shift			笔原始	值放大系数	(2的N次)	 方)		

地址: 深圳市福田保税区腾飞工业大厦B座13层 邮编: 518000 电话: +86-755-3333 8828 传真: +86-755-3333 8788 Email: info@goodix.com

用 心 Devoted	团队 d Collaborat	创新 ive Creative	绩 效 Efficient		GOODiX®			
0x8075	Stylus_Driver _Touch_Level		笔触摸	有效阈值	1(驱动方向)			
0x8076	Stylus_Sensor _Touch_Level		笔触摸有效阈值(感应方向)					
0x8077	Stylus_ Control		触摸笔超时	退出时	间(以秒为单位)			
0x8078	Base_reduce	S 型改善量(通	常为 2-4)		削底系数 N,削底量=Base+Base/2 的 N 次方 (通常 2-4)			
0x8079	NC			Rese	rved			
0x807A	Freq_Hopping_ Start	跳频范围的	起点频率(し	以 2KHz 🗦	为单位,例如 50 表示 100KHz)			
0x807B	Freq_Hopping_ End	跳频范围的:	终点频率(じ	しい 2KHz サ	为单位,例如 150 表示 300KHz)			
0x807C	Noise_Detect_ Times	Detect_Stay_Times (一次噪声检测中每个 Detect_Confirm_Times 频率点上检测次数,建						
0x807D	Hopping_Flag	Hopping Rese	rved	4	Detect_Time_Out (噪声检测超时时间,以秒为单位)			
0x807E	Hoppging_ Threshold	Large_Noise_Thre (beta 版占用,发布) Reserved)			Hopping_Hit_Threshold 频率选定条件,当前工作频率干扰量一最小量>设定值 x4,则选定最优频率和跳频)			
0x807F	Noise_ Threshold	判别有干扰的	的门限(所有	「频率点	上干扰量小于此值认为无干扰)			
0x8080	NC			Rese	rved			
0x8081	NC			Rese	rved			
0x8082	Hopping_seg1_ BitFreqL	跳瓶桧	测区间新段	1 由心占	·基频(适用于驱动 A、B)			
0x8083	Hopping_seg1_ BitFreqH	め (1977) [52.	· 网色同次校	I 1 .G.W.				
0x8084	Hopping_seg1_ Factor	跳频检测区间频段1中	心点倍频系	数(适月	月于驱动 A, 驱动 B 在此基础上换算出来)			
0x8085	Hopping_seg2_ BitFreqL							
0x8086	Hopping_seg2_ BitFreqH	跳频检测区间频段 2 中心点基频(适用于驱动 A、B)						
0x8087	Hopping_seg2_ Factor	跳频检测区间频段 2 中	心点倍频系	数(适月	月于驱动 A, 驱动 B 在此基础上换算出来)			
0x8088	Hopping_seg3_	跳频检	测区间频段:	3 中心点	基频(适用于驱动 A、B)			

用 心 Devoted	团队 Gollaborat	创新 绩效 ive Creative Efficient	G ⊘ DiX®					
	BitFreqL							
0x8089	Hopping_seg3_ BitFreqH							
0x808A	Hopping_seg3_ Factor	跳频检测区间频段 3 中心点倍频系数(适用于驱动 A,驱动 B 在此基础上换算出来)						
0x808B	Hopping_seg4_ BitFreqL	跳频检测区间频段 4 中心点基频 (适用于驱动 A、B)						
0x808C	Hopping_seg4_ BitFreqH	<i>购炒</i> 从位侧 区 间 <i>则</i> 权 4 中心 5	《基例(坦用)》。A、D)					
0x808D	Hopping_seg4_ Factor	跳频检测区间频段 4 中心点倍频系数 (适)	用于驱动 A, 驱动 B 在此基础上换算出来)					
0x808E	Hopping_seg5_ BitFreqL	跳频检测区间频段 5 中心点	与其類(活用于吸引 A D)					
0x808F	Hopping_seg5_ BitFreqH	<u>奶炒</u> 烟火烟 四	《基例(但用 J 池约 A、D)					
0x8090	Hopping_seg5_ Factor	跳频检测区间频段 5 中心点倍频系数 (适)	用于驱动 A, 驱动 B 在此基础上换算出来)					
0x8091	NC	Rese	rved					
0x8092	NC	Rese	rved					
0x8093	Key 1	-	: 0-255 有效 均为 8 的倍数时表示为独立按键)					
0x8094	Key 2	_	: 0-255 有效 均为 8 的倍数时表示为独立按键)					
0x8095	Key 3	-	: 0-255 有效 均为 8 的倍数时表示为独立按键)					
0x8096	Key 4	-	: 0-255 有效 均为 8 的倍数时表示为独立按键)					
0x8097	Key_Area	长按更新时间(1~16s)	按键有效区间设置(单侧):0-15有效					
0x8098	Key_Touch_Lev el	触摸按键	按键阈值					
0x8099	Key_Leave_Lev el	触摸按键	松键阈值					
0x809A	Key_Sens	KeySens_1(按键1灵敏度系数)	KeySens_2(按键 2 灵敏度系数)					
0x809B	Key_Sens	KeySens_3(按键3灵敏度系数)	KeySens_4(按键 4 灵敏度系数)					
0x809C	Key_Restrain	手指从屏上离开后抑制按键的时间(以 100ms 为单位), 0表示 600ms 抑制	独立按键邻键抑制参数(当次大值超过最大值的 Key_Restrain/16 时则不输出按键),推荐设置 7±2					
0x809D	NC	Rese	rved					
0x809E	NC	Reserved						
0x809F	NC	Rese	rved					
0x80A0	NC	Rese	rved					
0x80A1	NC	Rese	erved					

用 心 Devoted	团队 Collaborat	创新 绩效 ive Creative Efficient	G @ DiX [®]
0x80A2	Proximity_Drv _Select	Drv_Start_Ch(驱动方向起始通道)	Drv_End_Ch(结束通道, 为起始通道加此值)
0x80A3	Proximity_ Sens_Select	Sens_Start_Ch(感应方向起始通道)	Sens_End_Ch(结束通道, 为起始通道加此值)
0x80A4	Proximity_ Touch_Level	设定值×10=接近感应生效	阈值
0x80A5	Proximity_ Leave_Level	设定值×10=接近感应无效	阈值
0x80A6	Proximity_Samp le_Add_Times	采样值累加次数	
0x80A7	Proximity_Samp le_Dec_ValL	采样值减此值(16 位)后再累加	口,低字节
0x80A8	Proximity_Samp le_Dec_ValH	采样值减此值(16 位)后再累加	口,高字节
0x80A9	Proximity_Leav e_Shake_Count	退出接近感应去抖次数	ά
0x80AA	Self_Cap_Tx_g ain	自电容发送增益	
0x80AB	Self_Cap_Rx_g ain	自电容接收增益	
0x80AC	Self_Cap_Dump _Shift	自电容原始值放大系数(2的)	N 次方)
0x80AD	SCap_Diff_Up_ Level_Drv	自电容抑制悬浮上升阈值(驱	动方向)
0x80AE	Scap_Merge_To uch_Level_Drv	自电容 Touch Level (驱动	万向)
0x80AF	SCap_Pulse_Ti meL	自电容采样时间(低字节	5)
0x80B0	SCap_Pulse_Ti meH	自电容采样时间(高字节	5)
0x80B1	SCap_Diff_Up_ Level_Sen	自电容抑制悬浮上升阈值(感)	应方向)
0x80B2	Scap_Merge_To uch_Level_Sen	自电容 Touch Level (感应	范方向)
0x80B3	NC	Reserved	
0x80B4	NC	Reserved	
0x80B5	NC	Reserved	
0x80B6	NC	Reserved	
0x80B7	Sensor_CH0	ITO Sensor0 对应的芯片	通道号
0x80B8	Sensor_CH1		
0x80B9	Sensor_CH2		
0x80BA	Sensor_CH3		
0x80BB	Sensor_CH4		

用 心 Devoted	团 队 Collaborat	创新 ive Creative	绩 效 Efficient	GOODIX®
0x80BC	Sensor_CH5			
0x80BD	Sensor_CH6			
0x80BE	Sensor_CH7			
0x80BF	Sensor_CH8			
0x80C0	Sensor_CH9			
0x80C1	Sensor_CH10			
0x80C2	Sensor_CH11			
0x80C3	Sensor_CH12			
0x80C4	Sensor_CH13			
0x80C5	Sensor_CH14			
0x80C6	Sensor_CH15			
0x80C7	Sensor_CH16			
0x80C8	Sensor_CH17			
0x80C9	Sensor_CH18			
0x80CA	Sensor_CH19			
0x80CB	Sensor_CH20			
0x80CC	Sensor_CH21			
0x80CD	Sensor_CH22			
0x80CE	Sensor_CH23			
0x80CF	Sensor_CH24			
0x80D0	Sensor_CH25			
0x80D1	Sensor_CH26			
0x80D2	Sensor_CH27			
0x80D3	Sensor_CH28			
0x80D4	Sensor_CH29			
0x80D5	Driver_CH0		ITO Driver0 ₹	寸应的芯片通道号
0x80D6	Driver_CH1			
0x80D7	Driver_CH2			
0x80D8	Driver_CH3			
0x80D9	Driver_CH4			
0x80DA	Driver_CH5			
0x80DB	Driver_CH6			
0x80DC	Driver_CH7			
0x80DD	Driver_CH8			
0x80DE	Driver_CH9			
0x80DF	Driver_CH10			
0x80E0	Driver_CH11			
0x80E1	Driver_CH12			
0x80E2	Driver_CH13			
0x80E3	Driver_CH14			
0x80E4	Driver_CH15			
0x80E5	Driver_CH16			

用 心 Devoted	团队 Collaborati	创新 ve Creative	绩 效 Efficient	$GOODiX^{\otimes}$
0x80E6	Driver_CH17			
0x80E7	Driver_CH18			
0x80E8	Driver_CH19			
0x80E9	Driver_CH20			
0x80EA	Driver_CH21			
0x80EB	Driver_CH22			
0x80EC	Driver_CH23			
0x80ED	Driver_CH24			
0x80EE	Driver_CH25			
0x80EF	Driver_CH26			
0x80F0	Driver_CH27			
0x80F1	Driver_CH28			
0x80F2	Driver_CH29			
0x80F3	Driver_CH30			
0x80F4	Driver_CH31			
0x80F5	Driver_CH32			
0x80F6	Driver_CH33			
0x80F7	Driver_CH34			
0x80F8	Driver_CH35			
0x80F9	Driver_CH36			
0x80FA	Driver_CH37			
0x80FB	Driver_CH38			
0x80FC	Driver_CH39			
0x80FD	Driver_CH40			
0x80FE	Driver_CH41			
0x80FF	Config_Chksum	酉	己置信息校验(0x8047 到] 0x80FE 之字节和的补码)
0x8100	Config_Fresh		配置已更新标记	(由主控写入标记)

部分寄存器补充说明如下:

[0x804D] Module_Switch1

Bit7-bit6: Stylus_priority, 供拓展使用,暂无功能。

00: 不包含笔的应用

01: 笔优先级高于屏

02: 屏优先级高于屏

03: 笔屏优先级相同

Bit5-bit4: Stretch_rank, 拉伸方式

00,01:弱拉伸 0.4P

02: 兼容 8110 产品 42 通道特殊拉伸

03: 自定义拉伸

[0x804D] Module_Switch2

Bit3: WP_dis 防水禁止,置1时关掉防水处理,清0时开启防水处理。

Bit1: SCM en 抑制悬浮开关,置1开启,清0关闭。

Bit0: Touch_key 触摸按键,置 1表示有按键,清 0无按键。

[0x805B-0x805C]Space

屏的 4 个边缘的空白区配置, 用于在 ITO 超出实际可视区时对边缘进行裁剪。可设范围 0~15 (表示裁 剪 N×32 个原始坐标点)。其中 0 表示无裁剪,最大裁剪范围为 15×32=480 个原始坐标点(一个 Pitch 有 512 个原始坐标点,若裁剪需要超过一个 Pitch, 直接在配置中先减少一个 Pitch 即可)。

[0x807C] Noise Detect Times

Bit7~6: Detect_Stay_Times, 一次噪声检测中每个频率点上检测次数,通常设置为 2

Bit5~0: Detect Confirm Times, 多次噪声检测后确定噪声量,通常设置为 15~20

[0x807D] Hopping Flag

Bit7: Hopping_En, 跳频使能位(1 使能, 0 禁止)

Bit3~0: Detect_Time_Out,噪声检测超时时间,以秒为单位

[0x807E] Hoppging_Threshold

Bit7~4: Large Noise Threshold, 工作频率择优干扰量门限, 当工作频点上干扰量大于 Large Noise Threshold /16 * 最大干扰值时进入频率择优处理

Bit3~0: Hopping_Hit_Threshold,最优频率选定条件,当前工作频率干扰量一最小干扰量>当前工作频率 上干扰量 * Hopping_Hit_Threshold/16 则选定最优频率和跳频

[0x809A-0x809B] Key_Sens

4个独立按键的灵敏度系数配置,可以设置为0~15共16级,越大则灵敏度越高。仅对独立按键有效, 主要了为了避免独立按键在设计时节点电容较容易产生偏差而导致按键灵敏度不一样的问题。

[0x809C] Key_Restrain

Bit3~0: 独立按键临键抑制参数, 当次大值超过最大值的 Key Restrain / 16 时则不输出按键, 推荐设 置7±2

3.3 坐标信息

Addr	Access	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
0x8140	R		Product ID (Lowest Byte,ASCII 码)								
0x8141	R		Product ID (Third Byte,ASCII 码)								
0x8142	R		Product ID (Second Byte,ASCII 码)								

用 心 Devoted	Z C	团队 ollaborative	创 新 Creative	绩 效 Efficient	GOODIX	
0x8143	R	Product ID (Highest Byte,ASCII 码)				
0x8144	R	Firmware version (16 进制数 LowByte)				
0x8145	R	Firmware version (16 进制数 HighByte)				
0x8146	R	x coordinate resolution (low byte)				
0x8147	R	x coordinate resolution (high byte)				
0x8148	R		у со	ordinate resolutior	n (low byte)	
0x8149	R		у со	ordinate resolution	(high byte)	
0x814A	R	Vendor_id(当前模组选项信息)				
0x814B	R			Reserved		
0x814C	R			Reserved		
0x814D	R			Reserved		
0x814E	R/W	buffer status	large detect	Proximity Valid	HaveKey number of touch points	
0x814F	R		track id(笔上	报坐标 ID 复用此位	位置,为特殊的 128)	
0x8150	R		рс	oint 1 x coordinate	(low byte)	
0x8151	R		ро	int 1 x coordinate	(high byte)	
0x8152	R		рс	oint 1 y coordinate	(low byte)	
0x8153	R		ро	int 1 y coordinate	(high byte)	
0x8154	R			Point 1 size (low	v byte)	
0x8155	R			point 1 size (high	h byte)	
0x8156	R			Reserved		
0x8157	R			track id		
0x8158	R		рс	oint 2 x coordinate	(low byte)	
0x8159	R		ро	int 2 x coordinate	(high byte)	
0x815A	R		рс	oint 2 y coordinate	(low byte)	
0x815B	R		po	int 2 y coordinate	(high byte)	
0x815C	R	point 2 size (low byte)				
0x815D	R			point 2 size (high	n byte)	
0x815E	R			Reserved		
0x815F	R		<u> </u>	track id		
0x8160	R			oint 3 x coordinate		
0x8161	R		ро	int 3 x coordinate	(high byte)	
0x8162	R		рс	oint 3 y coordinate	(low byte)	
0x8163	R		ро	int 3 y coordinate	· • · · ·	
0x8164	R			point 3 size (low	v byte)	
0x8165	R			point 3 size (high	h byte)	
0x8166	R			Reserved		
0x8167	R			track id		
0x8168	R	point 4 x coordinate (low byte)				
0x8169	R	point 4 x coordinate (high byte)				
0x816A	R	point 4 y coordinate (low byte)				
0x816B	R		ро	int 4 y coordinate	· · · · · ·	
0x816C	R			point 4 size (low	v byte)	

用 心 Devoted	Z C	国队 创新 绩效 ollaborative Creative Efficient GのDIX ®					
0x816D	R	point 4 size (high byte)					
0x816E	R	Reserved					
0x816F	R	track id					
0x8170	R	point 5 x coordinate (low byte)					
0x8171	R	point 5 x coordinate (high byte)					
0x8172	R	point 5 y coordinate (low byte)					
0x8173	R	point 5 y coordinate (high byte)					
0x8174	R	point 5 size (low byte)					
0x8175	R	point 5 size (high byte)					
0x8176	R	Reserved					
0x8177	R	track id					
0x8178	R	point 6 x coordinate (low byte)					
0x8179	R	point 6 x coordinate (high byte)					
0x817A	R	point 6 y coordinate (low byte)					
0x817B	R	point 6 y coordinate (high byte)					
0x817C	R	point 6 size (low byte)					
0x817D	R	point 6 size (high byte)					
0x817E	R	Reserved					
0x817F	R	track id					
0x8180	R	point 7 x coordinate (low byte)					
0x8181	R	point 7 x coordinate (high byte)					
0x8182	R	point 7 y coordinate (low byte)					
0x8183	R	point 7 y coordinate (high byte)					
0x8184	R	point 7 size (low byte)					
0x8185	R	point 7 size (high byte)					
0x8186	R	Reserved					
0x8187	R	track id					
0x8188	R	point 8 x coordinate (low byte)					
0x8189	R	point 8 x coordinate (high byte)					
0x818A	R	point 8 y coordinate (low byte)					
0x818B	R	point 8 y coordinate (high byte)					
0x818C	R	point 8 size (low byte)					
0x818D	R	point 8 size (high byte)					
0x818E	R	Reserved					
0x818F	R	track id					
0x8190	R	point 9 x coordinate (low byte)					
0x8191	R	point 9 x coordinate (high byte)					
0x8192	R	point 9 y coordinate (low byte)					
0x8193	R	point 9 y coordinate (high byte)					
0x8194	R	point 9 size (low byte)					
0x8195	R	point 9 size (high byte)					
0x8196	R	Reserved					

部分寄存器增补说明如下:

[0x814E]:

Bit7: Buffer status, 1表示坐标(或按键)已经准备好,主控可以读取; 0表示未就绪,数据无效。 当主控读取完坐标后,必须通过 I2C 将此标志(或整个字节)写为 0。

Bit4: HaveKey, 1 表示有按键, 0 表示无按键(已经松键)。

Bit3~0: Number of touch points, 屏上的坐标点个数

[0x819F]: KeyValue

按键值,KeyValue 的位置并不固定,而是跟在有效坐标的后面。例如 0x819F 是屏上有 10 个坐 标时的按键位置,而有 9 个坐标时按键位置则在 0x8197。

四、上电初始化与寄存器动态修改

4.1 GT9 系列上电时序

主机上电后,需要控制 GT9 的 AVDD、VDDIO、INT、Reset 等脚位,控制时序请遵从如下时序图:

INT T2 时间后,主控是要输出高,还是低,取决于主机要用何 I2C 从设备地址与 GT9 芯片通信,若用 地址 0x28/0x29, 则输出高; 若用地址 0xBA/0xBB, 则输出低。

4.2 上电或复位 I2C 地址选择

GT9 系列的 I²C 从设备地址有两组,分别为 0xBA/0xBB 和 0x28/0x29。主控在上电初始化时或通过 Reset 脚复位(唤醒)时,均需要设定 I^2C 设备地址。控制 Reset 和 INT 口时序可以进行地址设定,设定 方法及时序图如下:

设定地址为 0x28/0x29 的时序:

设定地址为 0xBA/0xBB 的时序:

4.3 上电发送配置信息

主机控制 GT9 上电过程中,当主控将自身 INT 转化为悬浮输入态后,需要延时 50ms 再发送配置信息。

4.4 寄存器动态修改

GT9 支持寄存器动态修改,当按照第 2 节时序对配置区内(0x8047-0x80FE)任何寄存器修改时,需 要更新 Config_Chksum (0x80FF),并在最后将 Config_Fresh (0x8100)写为 1,否则不生效;对配置区外 的寄存器改写则无需更改 Config_Chksum 和 Config_Fresh。

五、坐标读取

主控可以采取轮询或 INT 中断触发方式来读取坐标,采用轮询方式时可采取如下步骤读取:

- 1、按第二节时序,先读取寄存器 0x814E,若当前 buffer (buffer status 为 1) 数据准备好,则依据手 指个数读、按键状态取相应个数的坐标、按键信息。
- 2、若在 1 中发现 buffer 数据(buffer status 为 0)未准备好,则等待 1ms 再进行读取。

采用中断读取方式,触发中断后按上述轮询过程读取坐标。

GT9 中断信号输出时序为(以输出上升沿为例,下降沿与此时序类同):

- 1、 待机时 INT 脚输出低。
- 2、 有坐标更新时,输出上升沿。
- 3、2中输出上升沿后,INT 脚会保持高直到下一个周期(该周期可由配置 Refresh Rate 决定)。请

在一个周期内将坐标读走并将 buffer status(0x814E)写为 0。

- 4、2中输出上升沿后,若主控未在一个周期内读走坐标,下次 GT9 即使检测到坐标更新会再输出一 个 INT 脉冲但不更新坐标。
 - 5、若主控一直未读走坐标,则GT9会一直打INT脉冲。

六、工作模式切换

GT9 工作模式分为 Normal、Low Power(Green)、Sleep 三种,各种工作状态间相互转换关系如 下图所示:

默认情况下, GT9 工作自动切换 Normal 和 Low Power 工作模式, 按键时及松键后的一段时间(这 段时间由配置参数 Low_Power_Control 设定, 0~15 秒可设)工作在 Normal mode, 若该段时间后还 处于无按键状态,则进入 Low Power 工作模式 (低速扫描)。

Normal 模式

GT9 在 Normal mode 时,最快的坐标刷新周期为 5ms-20ms 间(依赖于配置信息的设定,配置 信息可控周期步进长度为 1ms)。

Normal mode 下,一段时间无触摸事件发生,GT9 将自动转入 Low Power mode,以降低功耗。 GT9 无触摸自动进入 Low Power mode 的时间可通过配置信息设置,范围为 0~15s,步进为 1s。

Low Power(Green) mode

在 LowPower mode 下, GT9 扫描周期固定为 40ms, 若检测到有触摸动作发生, 自动进入 Normal mode .

Sleep mode 及唤醒

主 CPU 通过 I2C 命令,使 GT9 进入 Sleep mode (需要先将 INT 脚输出低电平)。当需要 GT9 退出 Sleep mode 时, 主机可采用 INT 高电平唤醒或 reset 唤醒。若采用 INT 高电平唤醒, 操作时序为: 输出高电平到 INT 脚(主机打高 INT 脚 2~5ms, 然后转悬浮输入态), 唤醒后 GT9 将进入 Normal mode; 当采用 reset 脚唤醒时,需要按前述上电初始化过程控制 INT 脚和 reset 脚。

七、版本修订记录

文件版本	修订
Rev1.0	首次发布
Rev1.1	2012-9-24
Kevi.i	更新配置信息内容,删除跳频描述
Rev1.2	2012-10-8
Rev1.2	修改部分表述不清晰的地方
	2012-10-23
Rev1.3	1、增加上电初始化发送配置信息时序控制说明。
Rev1.5	2、增加 INT 唤醒和 reset 唤醒时序说明。
	3、更改工作模式切换中 sleep INT 唤醒为高电平唤醒。