EEM16 Homework #1

TIAN YE

TOTAL POINTS

92 / 100

QUESTION 1

1 Problem #1 12 / 20

- 0 pts All Correct
- 2 pts wrong schematic in part f
- √ 4 pts Completely wrong schematics in part e
 - 2 pts Partial incorrect schematic in part e/f
- √ 4 pts Completely wrong schematics in part f
 - 20 pts Incomplete
 - 18 pts Only Part A correct

QUESTION 2

2 Problem #2 20 / 20

- √ 0 pts Correct
 - 10 pts Only Part A is Correct

QUESTION 3

3 Problem #3 20 / 20

√ - 0 pts Correct

- 1 pts wrong boolean expression for part A
- 2 pts wrong implementation of schematic in part A
- 2 pts wrong implementation of schematic in part B
- 1 pts not using only nand nor gates
- 1 pts wrong boolean expression for part B
- 9 pts Did not implement the logic for part A and

part B

- 10 pts Missing Part A
- 10 pts Missing Part B
- 4 pts Not implementing the logic for part A

QUESTION 4

4 Problem #4 20 / 20

√ - 0 pts Correct

- 2 pts wrong/(did not implement) bit representation

for start time lecture for first method

- 2 pts wrong/(did not implement) bit representation

for end time lecture for second method

QUESTION 5

5 Problem #5 20 / 20

√ - 0 pts Correct

- 6 pts Wrong K Map & Prime Implicants in Part A
- 2 pts Wrong Expression in Part B
- 6 pts Wrong K Map & Prime Implicants in Part C
- 2 pts Wrong Expression in Part D
- 2 pts Wrong Expression in Part E
- 2 pts Incorrect Truth Table for Part F

Prof. C.K. Yang

Homework #1 (v180404)

(Deadline: 11:59PM PDT, April 20, 2018)

Name (Last, First): 1/2 / //wn

Student Id #: 70493/660

INSTRUCTIONS

This homework is to be done individually. You may use any tools or refer to published papers or books, but may not seek help from any other person or consult solutions to prior exams or homeworks from this or other courses (including those outside UCLA). You're allowed to make use of tools such as Logisim, WolframAlpha (which has terrific support for boolean logic) etc.

You must submit all sheets in this file based on the procedure below. Because of the grading methodology, it is much easier if you print the document and answer your questions in the space provided in this problem set. It can be even easier if you answer in electronic form and then download the PDF. Answers written on sheets other that the provided space will not be looked at or graded. Please write clearly and neatly - if we cannot easily decipher what you have written, you will get zero credit

SUBMISSION PROCEDURE: You need to submit your solution online at Gradescope (https://gradescope.com/). Please see the following guide from Gradescope for submitting homework. You'd need to upload a PDF and mark where each question is answered.

http://gradescope-static-assets.s3-us-west-2.amazonaws.com/help/submitting_hw_guide.pdf

A 6-bit decoder takes in 6 address bits, addr[5:0], and for all possible binary combinations of the address, only assert one of the outputs, dec[n-1:0], HIGH where n is the number of outputs. We discuss this as a building block later as a common block for a memory. Note that in a memory often 10-20 bits of address are decoded, so this is a greatly simplified design problem.

(a) How many combinations of the 6 address bits are there (in other words, how many outputs does this logic have)?

Now, a pre-decoder is a logic block that processes only a subset of the input address bits. Let the 0th pre-decode output, pdec[0], be asserted HIGH (1'b1) when addr[5:2] are all LOWs (4'b0000) and addr[1:0] are don't cares.

- (b) Write the output, pdec[0], as a Boolean function of addr[5:0], in fully-disjunctive normal form.
- (c) Write the output, pdec[0], as a simplified Boolean function of inputs.
- (d) In some decoder implementation, the output, pdec[0] for instance, is asserted LOW (1'b0). Write a simplified Boolean expression of the output, pdec[0], in Normal Form.
- (e) Implement the function in (c) using only 2-input NAND gates.
- (f) Implement the function in (c) using 2-input NAND and NOR gates. Answer the question for all parts in the space below.

Prof. C.K. Yang

ASCII (American Standard Code for Information Interchange) is a standard way to represent characters in binary. It takes 7-bits to represent an assortment of different characters including the alphabet (both lower and upper case), numbers from 0-9, and various symbols. In this problem, the input, <code>ascii[6:0]</code>, can only be one of the alphanumeric characters (no symbols). Design the logic for the three outputs, <code>alphaCap</code>, <code>alphaNoCap</code>, and <code>numbers</code>.

- (a) Write the truth table for each of the three outputs. Since there are many don't care conditions, condense the table as needed.
- (b) Based on your result in (a), write the simplified Boolean expression as a function of ascii[6:0]. Feel free to use any logic simplification methods such as K-map.

1-2: F

LE : GAF

Prof. C.K. Yang

Consider the two Boolean functions below. Try to implement the logic using the fewest number of n-input NAND gates n-input NOR. Only true inputs (a,b,c,d) are used. You may need to simplify the logic.

$$Y = \neg \big((\neg a \land c) \land (d \lor b) \big) \land (\neg b \lor c \lor d) \land \big(\neg \big((a \land \neg b) \lor (\neg a \land b) \big) \lor \neg c \lor \neg d \big)$$

(b)
$$Z = \neg (\neg ((a \land b) \lor \neg c) \lor (d \lor e) \lor \neg a)$$

Answer the question for all parts in the space below.

(End) v (bn d) v (Ln bnc)

b. ((and)vE)ndnena (bvc) ~ d ~ e ~ a ~ (~ (bvz) v d v e v a)

Prof. C.K. Yang

Time is often represented with HOUR:MINUTE:SECOND {AM,PM}. There are many ways of representing this information. Let's consider two. First is to use a separate binary number for each of the four fields. A second is to use a single binary number representing the number of seconds from midnight.

- (a) How many bits does one need to represent the first method? Show the result for the start time of the lecture.
- (b) How many bits does one need to represent the second method? Show the result for the end time of the lecture.
- (c) To calculate time difference most easily, what would be the better choice? Explain your answer.
- (d) To display the time on a clock, what would be the better choice? Explain your answer.
- (e) An additional field is actually needed to represent time zone. Time zone can be expressed as deviation from GMT and can be +14 to -11:45. What is the minimum number of bits one needs to indicate the shift due to time zone?

r.	andre 17 640. 0010:000000:000000:1
6.	17 bis. 1000000000 0110111010101000
C .	The second method, is there in no med to wary over remarders from one two part of the flast method to another. I require less calculation, the first method, an it is more madable, requires less calculation, and it is more madable, requires less calculation.
,	one the part of the first method to another.
d.	The first method, an it is more madable, requires less contentes
	al is in the sparse
e.	torbe 6 bits (38 time Torse total?)

Prof. C.K. Yang

Prof. C.K. Yang

A	В	С	D	h/
0	0	0	A Comment	Υ
0	0		0	1
0		0	1	X
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1	1	0
1	1	0	0	1
1	1	0	1	Х
1	1	1	0	1
1	1	1	1	1

- (a) Draw K-Map of the function corresponding to the truth table shown above. Identify on the K-Map the prime implicants of the function and identify which of the prime implicants (if any) are essential.
- (b) Write the minimum cover as a sum-of-product Boolean function using the prime implicants found in (a)
- (c) Draw the K-Map of the complement function, Y'. Identify on the K-Map the prime implicants of the function and identify which of the prime implicants (if any) are essential.
- (d) Write the minimum cover as a sum-of-product Boolean function using the prime implicants found in (c).
- (e) Write the complement function, Y', as a minimal product-of-sum.
- (f) Draw the truth table of the dual of the function Y, YD.

Essential prime implements: 11X3

6. (ANB)V(BNCND)V(END)V(BNE)

0100 XAOIX

d. (INBACAD) v (BAC) v (AACAD)

Prof C.K. Yang