$Exercices \ MP/MP^*$ $Calcul \ diff\'erentiel$

Exercice 1. Étudier la continuité, la différentiabilité et la classe de

$$f: \mathbb{R}^{3} \to \mathbb{R}$$

$$(x, y, z) \mapsto \begin{cases} \frac{x^{3} + y^{3} - xy^{2} + yz^{2} + xyz}{x^{2} + y^{2} + z^{2}} & si(x, y, z) \neq (0, 0, 0), \\ 0 & sinon. \end{cases}$$
(1)

Exercice 2. Soit U ouvert de \mathbb{R}^n , $(\varphi_1, \ldots, \varphi_k) \in (\mathcal{C}^0(U, \mathbb{R}))^k$.

- 1. Montrer que $\psi = \min_{1 \le i \le k} (\varphi_i)$ est continue.
- 2. Soit $x_0 \in U$, si les $(\varphi_i)_{1 \leq i \leq k}$ sont différentiables en x_0 , donner une condition nécessaire et suffisante pour que ψ le soit. On pourra former

$$J = \{i \in [1, k], \psi(x_0) = \varphi_i(x_0)\}.$$
 (2)

3. Si les $(\varphi_i)_{1\leqslant i\leqslant k}$ sont \mathcal{C}^1 sur U et ψ est différentiable, montrer que ψ est \mathcal{C}^1 sur U.

Exercice 3. On définit

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto f(X) = \sum_{(i,j) \in [\![1,n]\!]^2} \frac{x_i x_j}{i+j+1}$$

$$(3)$$

Soit $H_0 = \{(x_1, \dots, x_n) \in \mathbb{R}^n | \sum_{i=1}^n x_i = 1\}$. Déterminer les extrema de f sur H_0 .

Exercice 4. Étudier la continuité, différentiabilité, classe de

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto \begin{cases} x^2 \sin\left(\frac{y}{x}\right), & si \ x \neq 0, \\ 0 & sinon. \end{cases}$$

$$(4)$$

Exercice 5. Soit $n \ge 2$, en quels points de \mathbb{R}^n , $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ sont-elles différentiables?

Exercice 6. Soit $n \ge 3$. Trouver

$$\sup \left\{ \frac{\prod_{i=1}^{n} x_i}{\prod_{i=1}^{n} (1 - x_i)} \middle| (x_1, \dots, x_n) \in (\mathbb{R}_+)^n, \sum_{i=1}^{n} x_i = 1 \right\}.$$
 (5)

Exercice 7. Trouver les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 telle que pour tout $(x, y) \in \mathbb{R}^2$

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) + x^2 + y^2 = 0.$$
 (6)

Exercice 8. Soit

$$f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}^n$$

$$M \mapsto (\operatorname{Tr}(M), \operatorname{Tr}(M^2), \dots, \operatorname{Tr}(M^n))$$
(7)

- 1. Montrer que f est C^{∞} , calculer sa différentielle.
- 2. Quel est le rang de df_M ? On l'exprimera en fonction du degré du polynôme minimal de M, Π_M .
- 3. Montrer que $C = \{M \in \mathcal{M}_n(\mathbb{R}) | \Pi_M = \chi_M \}$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$.

Exercice 9. Trouver toutes les applications $f: \mathbb{R}^* \times \mathbb{R} \to \mathbb{R}$ de classe C^1 telles que pour tout $(x, y) \in \mathbb{R}^* \times \mathbb{R}$,

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = \frac{1}{x^2}.$$
 (8)

Exercice 10. Soit U un ouvert convexe de \mathbb{R}^n et $f: U \to \mathbb{R}$ convexe et \mathcal{C}^1 .

- 1. Montrer que pour $(x,y) \in U^2$, $f(y) \geqslant f(x) + df_x(y-x)$.
- 2. Montrer que tout point critique de f est un minimum absolu.
- 3. Montrer que l'ensemble E des points critiques de f est convexe.
- 4. On suppose $U = \mathbb{R}^n$, montrer que E est fermé.

Exercice 11. Soit $\alpha \in \mathbb{R}$, on dit que $f: \mathbb{R}^n \to \mathbb{R}$ est homogène de degré α ou α -homogène si et seulement si pour tout $(x,t) \in \mathbb{R}^n \times \mathbb{R}_+^*$, $f(tx) = t^{\alpha} f(x)$.

Soit $f: \mathbb{R}^n \to \mathbb{R}$ \mathcal{C}^1 , montrer que f est α -homogène si et seulement si pour tout $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, $\sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}(x_1, \dots, x_n) = \alpha f(x)$.

Exercice 12. Étudier les extrema de

$$f: \mathbb{R}^3 \to \mathbb{R}$$

$$(x, y, z) \mapsto x^2 + y^2 + z^2 - xyz$$

$$(9)$$

Exercice 13. Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. On définit

$$g: \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto \begin{cases} \frac{f(x)-f(y)}{x-y}, & si \ x \neq y, \\ f'(x), & sinon. \end{cases}$$

$$(10)$$

- 1. Montrer que f est C^1 si et seulement si g est C^0 . On pourra écrire $g(x,y) = \int_0^1 \dots dt$.
- 2. Montrer que f est C^2 si et seulement si g est C^1 .

Exercice 14 (Dérivation au sens complexe). Soit

$$f: \ U \subset \mathbb{C} \to \mathbb{C}$$

$$z \mapsto f(z)$$
(11)

On lui associe

$$\widetilde{f}: E \subset \mathbb{R}^2 \to \mathbb{R}^2
(x,y) \mapsto (\underbrace{\Re(f(x+iy))}_{\widetilde{f}_1(x,y)}, \underbrace{\Im(f(x+iy))}_{\widetilde{f}_2(x,y)}) \tag{12}$$

On a $f(x+iy) = \widetilde{f}_1(x,y) + i\widetilde{f}_2(x,y)$. À quelles conditions nécessaires et suffisantes sur \widetilde{f} , la fonction est-elle dérivable au sens complexe sur U, c'est-à-dire que pour tout $z_0 \in U$, il existe $f'(z_0) = \lim_{\substack{h \to h \in \mathbb{C}^* \\ h \in \mathbb{C}^*}} \frac{f(z_0+h)-f(z_0)}{h}$, respectivement C^1 au sens complexe (c'est-à-dire dérivable sur U et f' continue)?

Exercice 15 (Fonctions harmoniques). On définit, pour $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 ,

$$\Delta f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y). \tag{13}$$

On dit que f est harmonique sur U si et seulement si $\Delta f = 0$ sur U.

Soit U un ouvert borné, et $f \colon \overline{U} \to \mathbb{R}$ continue sur \overline{U} et harmonique sur U. On veut montrer que $\max_{\overline{U}} f$ est atteint sur ∂U .

On suppose que $\max_{\overline{U}} f$ est atteint $sur(x_0, y_0) \in U$.

1. On définit, pour tout $n \ge 1$,

$$f_n: \overline{U} \to \mathbb{R}$$

$$(x,y) \mapsto f(x,y) + \frac{1}{n}(x^2 + y^2)$$
(14)

Montrer que $\Delta f_n(x,y) > 0$, en déduire que $\sup_{\overline{x}} f_n$ est atteint sur ∂U .

- 2. Montrer le résultat.
- 3. En déduire que si $f, g: U \to \mathbb{R}$ sont continues sur \overline{U} et harmoniques sur U et vérifient f = g sur U, alors f = g sur \overline{U} .

Exercice 16 (Laplacien en polaire). Soit

$$f: U \subset \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto f(x,y)$$
(15)

de classe C^2 . On lui associe

$$\widetilde{f}: U' \subset \mathbb{R}^2 \to \mathbb{R}$$

$$(r,\theta) \mapsto \widetilde{f}(r,\theta) = f(\underbrace{r\cos\theta}_{x(r,\theta)}, \underbrace{r\sin\theta}_{y(r,\theta)})$$
(16)

 \widetilde{f} est \mathcal{C}^2 par composition. Exprimer la laplacien en polaire Δf en fonction des dérivées partielles de \widetilde{f} .

Exercice 17 (Égalité de la moyenne). Soit f harmonique sur U continue sur \overline{U} . Soit $(x_0, y_0) \in U$. On veut montrer que pour tout $r \in [0, d((x_0, y_0), \partial U)]$,

$$f(x_0, y_0) = \frac{1}{2\pi} \int_0^{2\pi} f(x_0 + r\cos\theta, y_0 + r\sin\theta) d\theta = G(r).$$
 (17)

La fonction $f_1(x_0, y_0) = f(x_0 + x, y_0 + y)$ est harmonique. On lui associe $\widetilde{f}_1(r, \theta) = f(x_0 + r \cos \theta, y_0 + r \sin \theta)$ fonction de θ 2π -périodique.

- 1. Pour r > 0, calculer $\frac{1}{r} \frac{d}{dr} \left(r \frac{dG}{dr} \right)$.
- 2. En déduire le résultat.

Exercice 18.

- 1. Déterminer l'ensemble des vecteurs tangents à $O_n(\mathbb{R})$ en I_n .
- 2. De même en $\theta \in O_n(\mathbb{R})$.
- 3. On définit sur $\mathcal{M}_n(\mathbb{R})$, $(A|B) = \operatorname{Tr}(A^{\mathsf{T}}B)$ et $||A||_2 = (A|A)$. Évaluer, pour $M \in \mathcal{M}_n(\mathbb{R})$, $d(M, O_n(\mathbb{R})) = \inf\{||M \theta||_2 | \theta \in O_n(\mathbb{R})\}.$