Université des Sciences et de Technologie Houari Boumediene Faculté d'Informatique

Département d'Intelligence Artificielle et Sciences des Données

Game Theory (Théorie des jeux)

par SAHNOUNE Abdelkrim

Master 2 – Informatique Visuelle (IV)

sahnoune.karim78@gmail.com

Théorie des jeux

 Une branche des mathématique appliquée centrée sur la:

```
•Modélisation.•Résolution.Problèmes
```

Dans le contexte des jeux.

Théorie des jeux

Jeu:

- Joueurs.
- Stratégies.
- Gains.
- Interactions.

- Résolution de conflits.
- Prise de décision.

Objectifs du TP

Modélisation de problèmes sous formes de jeux:

- Joueurs.
- Stratégies.
- •Fonctions d'utilité.
- •Implémenter les notions de bases:
 - Stratégie dominante.
 - •Équilibre de Nash.
 - Optimum de Pareto.

Évaluation

- Contrôle continu.
 - Vérification sur place.
 - Pas de mail s'il vous plait
- •Projet:
 - Problème à modéliser sous forme de jeu.
 - •Le résoudre en appliquant une notion de ThJ.
 - •Travail en groupe, pas de monôme!! Et de préférence pas de binôme.
 - •Groupe différent = problème différent.

TP 1

Stratégie dominante Dominant strategy

Exemple:

A B	B1	B2	В3
A1	(3,2)	(7,4)	(4,0)
A2	(2,1)	(1,3)	(2,1)
A3	(1,4)	(0,5)	(0,2)

Stratégie dominante ?

s' = stratégie dominante si:

$$\forall s_i \in S_i - \{s'_i\}, \forall s_{-i} \in S_{-i}: U_i(s'_i, s_{-i}) > U_i(s_i, s_{-i})$$

Exemple:

A B	B1	B2	В3
A1	(3,2)	(7,4)	(4,0)
A2	(2,1)	(1,3)	(2,1)
A3	(1,4)	(0,5)	(0,2)

- •S1 = $\{A1,A2,A3\}$ Ensemble des stratégies du joueur A
- •S2 = {B1,B2,B3} Ensemble des stratégies du joueur B

$$\forall s_1 \in S_1 - \{s'_1\}, \forall s_2 \in S_2 : U_1(s'_1, s_2) > U_1(s_1, s_2)$$

Exemple:

A B	B1	B2	В3
A1	(3,2)	(7,4)	(4,0)
A2	(2,1)	(1,3)	(2,1)
A3	(1,4)	(0,5)	(0,2)

A1, stratégie dominante car :

$$U_1(A_1, B_1) > U_1(A_2, B_1)$$
 et $U_1(A_1, B_1) > U_1(A_3, B_1)$
 $U_1(A_1, B_2) > U_1(A_2, B_2)$ et $U_1(A_1, B_2) > U_1(A_3, B_2)$
 $U_1(A_1, B_3) > U_1(A_2, B_3)$ et $U_1(A_1, B_3) > U_1(A_3, B_3)$

Exemple:

A B	B1	B2	В3
A1	(3,2)	(7,4)	(4,0)
A2	(2,1)	(1,3)	(2,1)
A3	(1,4)	(0,5)	(0,2)

De même, B2 est une stratégie dominante pour le joueur B.

Les deux joueurs ont une stratégie dominante chacun:Le jeu admet un équilibre en stratégie dominante.

Exemple:

A B	B1	B2	В3
A1	(3,2)	(7,4)	(4,0)
A2	(2,1)	(1,3)	(2,1)
A3	(1,4)	(0,5)	(0,2)

Travail demandé:

•Écrire le script qui permet de vérifier l'existence de stratégie dominante pour chaque joueur ainsi que l'existence d'un équilibre en stratégie dominante.

Exemple:

A B	B1	B2	В3
A1	(3,2)	(7,4)	(4,0)
A2	(2,1)	(1,3)	(2,1)
A3	(1,4)	(0,5)	(0,2)

Travail demandé:

Comment représenter la matrice des gains.

À vous de voir !!!