导数的定义,几何意义

(22 级 a)

函数
$$f(x)$$
 在 x_0 处可导意味着(3)实数 A ,(4) $\varepsilon > 0$,(5) $\delta > 0$,当 $0 < |x - x_0| < \delta$ 时,有 $\left| \frac{f(x) - f(x_0)}{x - x_0} - A \right| < \varepsilon$ 。
$$f(\lambda_0) = \bigcup_{A > 0} \frac{f(\lambda_0 + h) - f(\lambda_0)}{h} = \bigcup_{A > 0} \frac{f(\lambda_0 + h) - f(\lambda_0 + h)}{h} = \bigcup_{A > 0} \frac{f(\lambda_0 + h) - f(\lambda_0 + h)}{h} = \bigcup_{A > 0} \frac{f(\lambda_0 + h) - f(\lambda_0 + h)}{h} = \bigcup_{A > 0} \frac{f(\lambda_0 + h) - f(\lambda_0 + h)}{h} = \bigcup_{A > 0} \frac{f(\lambda_0 + h) - f(\lambda_0 + h)}{h} = \bigcup_{A > 0} \frac{f(\lambda_0 + h) - f(\lambda_0 + h)}{h} = \bigcup_{A > 0} \frac{f(\lambda_0 + h) - f(\lambda_0 + h)}{h} = \bigcup_{A > 0} \frac{f(\lambda_0 + h) - f(\lambda_0 + h)}{h} = \bigcup_{A > 0} \frac{f(\lambda_0 + h) - f(\lambda_0 + h)}{h} = \bigcup_{A > 0} \frac{f(\lambda_0 + h)}{h} = \bigcup_{A >$$

17 已知 $\varphi(x)$ 二阶可导并且 $\varphi''(x)$ 连续, $\varphi(0)=1$, $f(x)=\left\{\begin{array}{ll} \displaystyle\frac{\varphi(x)-\cos x}{x}, & x\neq 0\\ \displaystyle\frac{\varphi'(0)}{x}, & x=0 \end{array}\right.$ x = 0 时 $f'(0) = \frac{1}{2}[\varphi''(0) + 1]$ (2) 利用洛必达可知 $x \to 0$ 时 $f'(x) \to f'(0)$,故 f'(x) 在 x = 0 处连续 (17 级) 已知 $f(x) = \begin{cases} \frac{\varphi(x) - \cos x}{x}, x \neq 0 \\ x \end{cases}$ 在 x = 0 处连续,其中 $\varphi(x)$ 在 x = 0 有二阶 导数,且 $4 \cdot (1) \quad \cancel{x} \neq 0. \quad \cancel{f}(x) = \frac{(\cancel{f}(x) + 5 + 3) \cdot \cancel{x} - (\cancel{f}(x) - 100 \cancel{x}) \cdot \cancel{x}}{\cancel{x}}$ 7-0. $f'(0) = \frac{1}{h \to 0} \frac{f(0+h) - f(0)}{h} = \frac{1}{h \to 0} \frac{f(x) - f(0)}{h}$ $= \frac{Q}{\sqrt{\chi}} \frac{\chi}{\sqrt{\chi}} - \frac{\varphi(\chi) - (\chi)\chi}{\sqrt{\chi}} - \frac{\varphi(\chi)}{\sqrt{\chi}} = \frac{\varphi(\chi) - (\chi)\chi}{\sqrt{\chi}} - \frac{\varphi(\chi)}{\sqrt{\chi}} = \frac{\varphi(\chi) - (\chi)\chi}{\sqrt{\chi}} = \frac{\varphi(\chi) - (\chi)\chi}{\chi} = \frac{\varphi(\chi) - (\chi)\chi}{\sqrt{\chi}} = \frac{\varphi(\chi) - (\chi)\chi}{\chi} = \frac{\varphi(\chi) - (\chi)\chi$ $= \underbrace{\frac{Q}{x \to 0}} \frac{\varphi(x) + \widehat{x} + \widehat{x} - \varphi(0)}{2x} = \underbrace{\frac{1}{2} \left[\underbrace{\frac{\partial}{\partial x}}_{x \to 0} \underbrace{\frac{5 i \pi x}{x}}_{x \to 0} + \underbrace{\frac{\varphi(x) - \varphi(0)}{x - 0}}_{x \to 0} \right]}$ = [(1+ 4"(0)) / $PP \mathcal{J}_{XY} = \int_{-\frac{1}{2}}^{1} (x) = \begin{cases} \frac{\chi \varphi(x) + \chi \sqrt{2} \chi - \varphi(x) + \cos x}{\chi^{\perp}}, & x \neq 0 \\ \frac{1}{2} \left[(1 + \varphi''(0)) \right] \checkmark & \chi = 0 \end{cases}$ $\frac{-f'(x)}{x \to 0} = \frac{(x \cdot \varphi'(x) + x \cdot s_{m} x - \varphi(x) + \iota \sigma_{s} x)}{\chi^{2}} \qquad \frac{0}{0}$ $= \frac{1 \cdot \varphi'(x) + x \cdot \varphi''(x) + 1 \cdot s_{m} x + x \cdot \iota \omega x + \varphi'(x) - s_{m} x}{x \to 0} \qquad \frac{1 \cdot \varphi'(x) + x \cdot \varphi''(x) + 1 \cdot s_{m} x + x \cdot \omega x + \varphi'(x) - s_{m} x}{x \to 0} \qquad \frac{1 \cdot \varphi'(x) + x \cdot \varphi''(x) + 1 \cdot s_{m} x + x \cdot \omega x + \varphi'(x)}{x \to 0} \qquad \frac{1}{x \to 0}$ in flust van &

y'(x0) = f(x0) = kg

1

$$y(\theta) = \sin(3\theta) \sin \theta$$
, $x(\theta) = \sin(3\theta) \cos \theta$, 参数方程決定的局部函数为 f , 则 $y(\theta) = f(x(\theta))$ 人 $\frac{y(\theta)}{x'(\theta)} = \frac{\cos(3\theta) \cdot 3 \cdot \sin \theta + \sin(3\theta) \cos \theta}{\cos(3\theta) \cdot 3 \cdot \cos \theta - \sin(3\theta) \sin \theta}$ 日 θ θ

$$f'\left(x\left(\frac{\pi}{4}\right)\right) = \frac{y'\left(\frac{\pi}{4}\right)}{x'\left(\frac{\pi}{4}\right)} = \frac{3(-\sqrt{2}/2) \cdot (\sqrt{2}/2) + (\sqrt{2}/2) \cdot (\sqrt{2}/2)}{3(-\sqrt{2}/2) \cdot (\sqrt{2}/2) - (\sqrt{2}/2) \cdot (\sqrt{2}/2)} = \frac{1}{2}$$

$$(10 \, \text{A}) \stackrel{\text{d}}{=} \theta = \frac{\pi}{4} \, \text{Bt}, \ y\left(\frac{\pi}{4}\right) = \frac{1}{2}, \ x\left(\frac{\pi}{4}\right) = \frac{1}{2}, \ \text{The } y = \frac{1}{2} = \frac{1}{2} \cdot (x - \frac{1}{2})$$

$$Y = Y\left(0\right) \quad \left(P = P\left(0\right)\right) \qquad \Rightarrow \qquad \left\{\begin{array}{c} \chi = Y\left(0\right) \left(\text{sin } 0 = \chi\left(0\right)\right) \\ Y = Y\left(0\right) \cdot \text{sin } 0 = Y\left(0\right) \end{array}\right\}$$

$$\begin{cases} \chi_0 = Y\left(0\right) \quad \text{Is } \theta_0 \\ Y_0 = Y\left(0\right) \quad \text{sin } \theta_0 \end{array}$$

$$\begin{cases} \chi_0 = Y\left(0\right) \quad \text{Is } \theta_0 \\ Y_0 = Y\left(0\right) \quad \text{sin } \theta_0 \end{cases}$$

$$\begin{cases} \chi_0 = Y\left(0\right) \quad \text{sin } \theta_0 \\ Y_0 = Y\left(0\right) \quad \text{sin } \theta_0 \end{cases}$$

简单函数的微分
$$y=f(x)$$
, $dy=y(x)$ \underline{dx} 设 $y=f\left(\ln^2 x-\underline{e^{-x}}\right)$, 求 dy .

$$dy=\frac{y(x)}{y(x)}dx$$

$$=f'(\frac{1}{1}x-\underline{e^{-x}})\cdot\left(2\ln x-\frac{1}{1}-e^{-x}(-1)\right)dx$$

R = 1 R = 1 R = 1

2分: 切线是y=x

(22级b)

15 设 $y=\tan(x+y)$ 在 $(x_0,y_0)=(\frac{\pi}{4}-1,1)$ 附近确定了 y 关于 x 的隐函数 y=f(x),计算 $f'(x_0), f''(x_0)$.

解:

$$x+f(x)=rctan f(x)$$
, $1+f'(x)=rac{f'(x)}{1+[f(x)]^2}$,因此 $f'(x)=-rac{1}{[f(x)]^2}-1$,

$$f''(x) = (-2) \cdot \frac{1 + [f(x)]^2}{[f(x)]^5}$$

$$f(x_0)=f(rac{\pi}{4}-1)=1$$
,因此 $f'(x_0)=-2$, $f''(x_0)=-4$

$$\frac{2x + f'(x)}{x^2 + f(x) + 1} = 3x^2 + \frac{f(x)}{x^3} + \frac{x^3}{x^3} f'(x) + \cos x$$

$$2x + f'(x) = (x^2 + f(x) + x^3 + f'(x) + \cos x)$$

$$+ \frac{x^2}{x^5} + \frac{x^3}{x^5} + \frac{x^3}{x^5$$

f''(0) = |-2 = -|

(本題7分) 设
$$y = \ln \frac{1 + \sqrt{\cos x}}{1 - \sqrt{\cos x}} + \arcsin \sqrt{\cos x}, x dy$$
.

$$dy = \left(\frac{1}{1 + \sqrt{\cos x}} + \frac{1}{1 - \sqrt{\cos x}} + \frac{1}{\sqrt{1 - \cos x}}\right) \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$y = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$u = \ln \frac{1 + \mu}{1 - \mu} + \arcsin \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$u'(x) = \frac{1}{2\sqrt{\cos x}} (-\sin x) dx$$

$$dy = y'(x) dx$$

$$= \left(\frac{1}{1+\sqrt{u_{0}x}} + \frac{1-\sqrt{u_{0}x}}{1-\sqrt{u_{0}x}} + \frac{1-\sqrt{u_{0}x}}{1-\sqrt{u_{0}$$

参数式函数的一二级阶导数 🕁

$$\begin{cases} y = y(t) \end{cases}$$

$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)}$$
 二 而二阶导数则相当于讨论一个新的参数方程求导

而三阶等级则相当于讨论一个新的参数方程来等
$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)}(t)$$
即
$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)}(t)$$

$$\frac{d^2y}{dx^2} = \frac{y'(t)}{x'(t)}(t)$$
(19 级) $\frac{d^2y}{dx^2} = \frac{y'(t)}{x'(t)}(t)$

$$\frac{d^2y}{dx^2} = \frac{y'(t)}{x'(t)}(t)$$

$$\frac{d^2y}{dx^2} = \frac{y'(t)}{x'(t)}(t)$$

4. 设函数 y = y(x) 是由参数方程 $\begin{cases} x = \ln(1+t^2), \\ y = t - \arctan t \end{cases}$ 所确定的函数,求 $\frac{d^2y}{dx^2}\Big|_{t=1}$.

4. 设函数
$$y = y(x)$$
 是由参数方程 $\begin{cases} y = t - \arctan t \\ y = t - \arctan t \end{cases}$ 所确定的函数,求 $\frac{dx^2}{dx^2}\Big|_{t=1}$.

$$\frac{d^2y}{dx^2} = \frac{\left(\frac{t}{2}\right)_t'}{\left(\ln(t+t^2)\right)_x'} = \frac{1-t^2}{t+t}, \quad \frac{dy}{dx^2}\Big|_{t=1} = \frac{1}{2}$$

$$\frac{d^2y}{dx^2} = \frac{\left(\frac{t}{2}\right)_t'}{\left(\ln(t+t^2)\right)_x'} = \frac{1-t^2}{t+t}, \quad \frac{dy}{dx^2}\Big|_{t=1} = \frac{1}{2}$$

(21級) elist
$$y'(t) = 0$$
 (本文) $y'(t) = 0$ (本文) $y'(t) =$

极坐标下函数的一阶导数(+几何意义,求切线等)

设曲线的极坐标方程为 $r = r(\theta)$, 则

$$\begin{cases} x(\theta) = r(\theta) \cos \theta \\ y(\theta) = r(\theta) \sin \theta \end{cases}$$

$$\frac{dy}{dx} = \frac{y'(\theta)}{x'(\theta)}$$

高阶导数: 莱布尼茨公式, 比如 $+C_1' \mathcal{U}^{(n)} \mathcal{V}'$ 表示 $f(x) = x^2 \sin x \cos x$, 求 $f^{(2015)}(0)$

$$f(x) = x^2 \sin x \cos x$$
, $\Re f^{(2015)}(0)$

 $f(x) = x^{2} \sin x \cos x, \, \text{\vec{x}} f^{(2015)}(0)$ $= \frac{1}{2} \chi^{2} \sin x \cos x$ 或者求 $(\chi^n)^{(n)} = n!$ $(x^{n-1}\ln x)^{(n)}$ 很多情况下,高阶导数也可以用泰勒展开或者数学归纳法。更特别的例子 $\Rightarrow y = \arctan x, \, \bar{x} \, y^{(2019)}(0).$ $sin(ax+b) = a^n sin(ax+b+n\cdot\frac{\pi}{2})$ $(lnx)^{(n)}$ (22 级 a) $(e^{\chi})^{(n)} = (con(a \times tb))^{(n)}$ $f(x) = \arcsin x$, $\mathbb{U} f^{(3)}(\underline{0}) = 0$ (22 级 B) $y_{\overline{}}f(x)=\arctan x$ 、则 $f^{(4)}(0)=0$ $f'(x) = \frac{1}{1-x^{2}} \qquad f'(b) = 0.$ $= (1-x^{2})^{-\frac{1}{2}}$ $= (1-x^{2})^{-\frac{1}{2}}$ $f''(x) = -\frac{1}{2} (1-x^{2})^{-\frac{1}{2}} (1-x^{2})^{-\frac{1}{2}} (1-x^{2})$ $f''(x) = \frac{1}{1+x^{2}} (1-x^{2})^{-\frac{1}{2}} (1-x^{2})^{-\frac{$ 方132. <u>y'. (HX²)=1</u> y". (HX²)+ y'(x). 2x=0 ×=0 y'(0) そHo)+1·0=0 y". (1+x2)+ y". (2x) + y". 2x+ y.2 =0 21级 3. 设 $f(x) = \cos^2 x$, 则 $f^{(n)}(x) =$ 3. $f^{(n)}(x) = 2^{n-1} \cos(2x + \frac{n\pi}{2})$ $f(x) = c_{00}^{2} \chi = \frac{1 + (c_{01} 2\chi)}{2}$ $f^{(n)}(x) = \frac{1}{2} \cdot (\cos x)^{(n)} = \frac{1}{2} \cdot 2^n \cos(2x + n \cdot \frac{\pi}{2})$

极值与最值

Key: DA 1/2 !

(22级a)

12 一个正圆锥体的侧面和底面均与一个半径为 R 的球面相切。圆锥的高 h 和底半径 r 分别为多少时圆锥的体积最小?

12 一个正圆锥体的侧面和底面均与一个半径为 R 的球面相切。圆锥的高 h 和底半径 r 分别为多少时 圆锥的体积最小?

答案:

3 分:
$$(\sqrt{(h-R)^2-R^2}+r)^2=h^2+r^2$$
 得到 $r^2=rac{R^2h}{h-2R}$

5 分:
$$V(h) = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \frac{R^2 h^2}{h-2R}$$
,对 $V(h)$ 求导来求极值

2 分:
$$h=4R$$
 时 $V(h)$ 取最小值 $\frac{8}{3}\pi R^3$,此时 $r=\sqrt{2}R$

$$f(x) = (x-1)e^{\arctan x}$$
 在 $x \to +\infty$ 时的斜渐近线方程是

$$f(x)=(x-1)e^{\arctan x}$$
 在 $x o +\infty$ 时的斜渐近线方程是 $y=e^{\frac{\pi}{2}}x-2e^{\frac{\pi}{2}}$

$$R = \underset{x \to \infty}{\underbrace{\int}} (f(x) - kx)$$

$$\begin{array}{c|c}
R = (fx) \\
\chi \neq x
\end{array}$$

$$\begin{array}{c|c}
R = (fx) - kx \\
\chi \neq x
\end{array}$$

$$\begin{array}{c|c}
R = (x-1) & e & arctan x = e^{\frac{\pi}{2}} \\
\chi \Rightarrow x \Rightarrow x
\end{array}$$

$$\begin{array}{c|c}
e^{arctan x} = e^{\frac{\pi}{2}} \\
\chi \Rightarrow x \Rightarrow x
\end{array}$$

$$\sqrt{b} = \frac{1}{x + 2b} \left[(x + 1) e^{\operatorname{arctanx}} - e^{\frac{7}{2}x} \right]$$

$$= \frac{1}{x + 2b} \left[(x + 1) e^{\operatorname{arctanx}} - e^{\frac{7}{2}x} \right]$$

$$= \frac{1}{x + 2b} \left[(x + 1) e^{\operatorname{arctanx}} - e^{\frac{7}{2}x} \right]$$

$$= \frac{1}{x + 2b} \left[(x + 1) e^{\operatorname{arctanx}} - e^{\frac{7}{2}x} \right]$$

$$= \frac{1}{x + 2b} \left[(x + 1) e^{\operatorname{arctanx}} - e^{\frac{7}{2}x} \right]$$

$$= \frac{1}{x + 2b} \left[(x + 1) e^{\operatorname{arctanx}} - e^{\frac{7}{2}x} \right]$$

$$= \frac{1}{x + 2b} \left[(x + 1) e^{\operatorname{arctanx}} - e^{\frac{7}{2}x} \right]$$

$$= \frac{1}{x + 2b} \left[(x + 1) e^{\operatorname{arctanx}} - e^{\frac{7}{2}x} \right]$$

$$= \frac{1}{1} \left(-\frac{e^{\operatorname{arctanx}}}{-\frac{1}{2}}\right) + \frac{1}{1} \left(-\frac{e^{\operatorname{arctanx}}}{-\frac{1}{2}}\right) + \frac{1}{1} \left(-\frac{e^{\operatorname{arctanx}}}{-\frac{1}{2}}\right)$$

$$= -e^{\frac{\pi}{2}} + \frac{1}{1} \frac{e^{\operatorname{arctanx}} - e^{\frac{\pi}{2}}}{-\frac{1}{2}} \left(\frac{e^{-\frac{\pi}{2}}}{e^{-\frac{\pi}{2}}}\right)$$

$$= -e^{\frac{\pi}{2}} + \frac{1}{1} \frac{e^{\operatorname{arctanx}} + \frac{1}{2}}{-\frac{1}{2}}$$

$$= -2e^{\frac{\pi}{2}}$$

(21级)

五、(本題 7分) 作函数
$$y = \frac{x^2}{x-1}$$
 的图形.
$$y'$$

$$y' = \frac{x(x-2)}{(x-1)^2}, \quad y'' = \frac{2}{(x-1)^3} \implies x = \frac{2}{x-1} = 2$$

单调区间,凹凸区间,

新近线
$$x = 1, y = x + 1$$

Ly = ∞ 元 $y = x + 1$

Ly = ∞ 元 $y = x + 1$

Ly = ∞ 元 $y = x + 1$

Ly = ∞ 元 $y = x + 1$
 $x = x + 1$

6. 求椭圆
$$4x^2 + y^2 = 4$$
在点 $(0,2)$ 处的曲率. $(y')^2 (-2x') = 4x^2 + y'^2 = 4$ 在点 $(0,2)$ 处的曲率. $(y')^2 (-2x') = 2x$
(绍. 4 > 0 以 $(0,2)$ 女的曲率. $(y')^2 (-2x') = 2x$

解:
$$y > 0$$
 of , $y' = -\frac{2X}{\sqrt{1-X^2}}$, $y'(0) = 0$ $x = 0$

$$y'' = -2 \cdot \frac{\sqrt{1-X^2} - x \cdot \frac{-x}{\sqrt{1-X^2}}}{1-X^2}$$
, $y''(0) = -2$

$$\begin{cases} \psi''(0) = -2 \\ \psi''(0) = -2 \end{cases}$$

$$\begin{cases} \psi''(0) = -2 \\ (+y(0))^{\frac{1}{2}} = 2 \end{cases}$$

$$\begin{cases} \psi''(0) = -2 \\ (+y(0))^{\frac{1}{2}} = 2 \end{cases}$$

$$|D|(x) = \frac{1}{1} \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right)$$

$$\Rightarrow \int_{1}^{1} \frac{1}{1} = \frac{1}{1} \left(\frac{1}{1} + \frac{1}$$

中值定理的证明

1). Ragrange. Cauchy \$12 icup (Rolle)

② Fermat 引炮.
③ 众文女式 → { 无报 → 介度 不 Rolle 记程.