Act 11: Programando Regresión Logística en Python

Patricio Ricardí

March 2025

¿Qué es la regresión logística?

Es un método para predecir categorías (ej: "Windows/Mac/Linux") usando variables numéricas. A diferencia de la regresión lineal:

- Predice probabilidades (valores entre 0 y 1)
- Usa la función sigmoide:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

donde $z = \beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n$

Pasos realizados

- 1. **Cargar datos**: Información sobre usuarios y sus sistemas operativos 2. **Preparar variables**:
 - X: Características de los usuarios (variables predictoras)
 - y: Sistema operativo (variable objetivo)
- 3. **Entrenar modelo**: Usamos regresión logística multinomial con scikitlearn 4. **Evaluar resultados**:
 - Matriz de confusión
 - Precisión, Recall y F1-score
 - Validación cruzada (5 divisiones)

Código clave

 $[language=Python] \quad \text{Entrenar modelo de regresión logística modelo} = \text{Logistica modelo} = \text{Logistica modelo} \\ \text{CRegression(multi}_{c} lass =' multinomial', solver =' lbfgs') modelo. fit(X_{e}ntrenamiento, y_{e}ntrenamiento) \\ \text{Evaluar predicciones print("Precisión:", modelo. score(X_{p}rueba, y_{p}rueba))} print("Matrizdeconfusión:", confusion_{m}atrix(y_{p}rueba, y_{p}redicha))$

Resultados importantes

 \bullet Precisión general: 77%

• Validación cruzada: 74% promedio

• Mejor categoría:

Precisión: 86%Recall: 84%F1-score: 84%

• Predijo correctamente el sistema operativo de un usuario ficticio

Conclusiones

- Funciona bien para clasificación con datos simples
- Ventajas:
 - Fácil de interpretar
 - Rápido de entrenar
- Mejoras futuras:
 - Usar regularización
 - Probar modelos más complejos (ej: redes neuronales)
 - Optimizar parámetros