

Ayudantía 2 Sucesiones y Series

Ayudante: Cristian Cornejo V. (crcornejo@uc.cl)

Problema 1. Calcular:

i)
$$\lim_{n \to \infty} \frac{(-1)^{n-1}}{n^2 + 1}$$
.

ii)
$$\lim_{n \to \infty} \frac{3n^2 + 2n - 1}{n^2 + 2}$$
.

Para el caso ii) compruebe su resultado usando la definición de límite.

Problema 2. Una sucesión $\{a_n\}$ está definida de forma recursiva según

$$a_1 = \sqrt{2}, \qquad a_{n+1} = \sqrt{2 + a_n}$$

- i) Demuestre que $\{a_n\}$ es creciente.
- ii) Demuestre que tiene cota superior 3.
- iii) Determine $\lim_{n\to\infty} a_n$.

Problema 3. Determine la convergencia de la serie en los siguientes casos:

i)
$$\sum_{n=1}^{\infty} \frac{5^n + 1}{2^n - 1}$$
.

ii)
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$$
.

Problema 4. Si la n-ésima suma parcial de la serie $\sum_{n=1}^{\infty} a_n$ es $s_n = 3 - n2^{-n}$. Determine a_n y $\sum_{n=1}^{\infty} a_n$

P."Propuesto". A y B lanzan un tetraedro regular, que tiene sus caras numeradas del 1 al 4, por turnos hasta que uno de ellos gana al obtener la primera cara que señale "uno". Si A tira primero, calcular la probabilidad de que él gane el juego aceptando equiprobabilidad.

1

Solución Problema 4.

Si la n-ésima suma parcial de la serie $\sum_{n=1}^{\infty} a_n$ es $s_n=3-n2^{-n}$. Determine a_n y $\sum_{n=1}^{\infty} a_n$

Recordemos que $s_n = \sum_{i=1}^n a_i$, por lo tanto, la diferencia entre s_n y s_{n-1} nos indicará el valor

de a_n para un n cualquiera, esto se puede ver de a siguiente manera,

$$s_n = a_1 + a_2 + a_3 + \dots + a_{n-2} + a_{n-1} + a_n$$

$$(-) s_{n-1} = a_1 + a_2 + a_3 + \dots + a_{n-2} + a_{n-1}$$

$$s_n - s_{n-1} = a_n$$

Luego, $s_n = 3 - n \cdot 2^{-n}$ y $s_{n-1} = 3 - (n-1) \cdot 2^{-(n-1)}$.

$$a_n = 3 - n \cdot 2^{-n} - \left(3 - (n-1) \cdot 2^{-(n-1)}\right)$$

$$a_n = 3 - 3 - n \cdot 2^{-n} + 2n \cdot 2^{-n} - 2 \cdot 2^{-n}$$
$$a_n = n \cdot 2^{-n} - 2 \cdot 2^{-n} = 2^{-n}(2n - 2) = 2^{-(n-1)} \cdot (n-1).$$

Finalmente, como sabemos que $s_k = \sum_{n=1}^k a_n$, para encontrar el valor de $\sum_{n=1}^\infty a_n$ basta con resolver

$$\lim_{k\to\infty} s_k$$

con $s_k = 3 - k \cdot 2^{-k}$ [recordar que la variable es "muda"]

$$\lim_{k \to \infty} 3 - k \cdot 2^{-k} = \lim_{k \to \infty} 3 - \frac{k}{2^k} = 3$$