Planche nº 35. Déterminants. Corrigé

Exercice nº 1:

Soit $(a,b,c) \in \mathbb{R}^3$. Notons Δ le déterminant de l'énoncé. Pour x réel, on pose $D(x) = \begin{vmatrix} -2x & x+b & x+c \\ b+x & -2b & b+c \\ c+x & c+b & -2c \end{vmatrix}$ (de sorte que $\Delta = D(a)$). D est un polynôme de degré infériour en (a,b,c) $(a,b,c) \in \mathbb{R}^3$. que $\Delta = D(a)$). D est un polynôme de degré inférieur ou égal à 2. Le coefficient de x^2 vau

$$-(-2c) + (b+c) + (b+c) - (-2b) = 4(b+c).$$

Puis,

$$D(-b) = \begin{vmatrix} 2b & 0 & -b+c \\ 0 & -2b & b+c \\ c-b & c+b & -2c \end{vmatrix} = 2b(4bc - (b+c)^2) + 2b(c-b)^2 = 0,$$

et par symétrie des roles D(-c) = 0. De ce qui précède, on déduit que si $b \neq c$, D(x) = 4(b+c)(x+b)(x+c) (même si $\mathbf{b} + \mathbf{c} = \mathbf{0}$ car alors D est un polynôme de degré inférieur ou égal à 1 admettant au moins deux racines distinctes et est donc le polynôme nul).

Ainsi, si $b \neq c$ (ou par symétrie des roles, si $a \neq b$ ou $a \neq c$), on $a : \Delta = 4(b+c)(a+b)(a+c)$. Un seul cas n'est pas encore étudié à savoir le cas où a = b = c. Dans ce cas,

$$D(\alpha) = \begin{vmatrix} -2\alpha & 2\alpha & 2\alpha \\ 2\alpha & -2\alpha & 2\alpha \\ 2\alpha & 2\alpha & -2\alpha \end{vmatrix} = 8\alpha^3 \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 32\alpha^3 = 4(\alpha + \alpha)(\alpha + \alpha)(\alpha + \alpha),$$

ce qui démontre l'identité proposée dans tous les cas (on pouvait aussi conclure en constatant que, pour a et b fixés, la fonction Δ est une fonction continue de c et on obtient la valeur de Δ pour c = b en faisant tendre c vers b dans l'expression de Δ déjà connue pour $c \neq b$).

Exercice nº 2:

Soit
$$P = \begin{pmatrix} X & a & b & c \\ a & X & c & b \\ b & c & X & a \\ c & b & a & X \end{pmatrix}$$
. P est un polynôme unitaire de degré 4.

En remplaçant C_1 par $C_1 + C_2 + C_3 + C_4$ et par linéarité par rapport à la première colonne, on voit que P est divisible par (X + a + b + c). Mais aussi, en remplaçant C_1 par $C_1 - C_2 - C_3 + C_4$ ou $C_1 - C_2 + C_3 - C_4$ ou $C_1 + C_2 - C_3 - C_4$, on voit que P est divisible par (X - a - b + c) ou (X - a + b - c) ou (X + a - b - c).

Si les quatre nombres -a - b - c, -a + b + c, a - b + c et a + b - c sont deux à deux distincts, P est unitaire de degré 4 et divisible par les quatre facteurs de degré 1 précédents, ceux-ci étant deux à deux premiers entre eux. Dans ce cas, P = (X + a + b + c)(X + a + b - c)(X + a - b + c)(X - a + b + c).

Notons alors que $-a - b - c = a + b - c \Leftrightarrow b = -a$ et que $-a + b + c = a - b + c \Leftrightarrow a = b$. Par symétrie des rôles, deux des quatre nombres -a-b-c, -a+b+c, a-b+c et a+b-c sont égaux si et seulement si deux des trois nombres a, b ou c sont égaux en valeur absolue ce qui n'est pas le cas.

Exercice nº 3:

On effectue dans cet ordre les transformations $C_{n-1} \leftarrow C_{n-1} - C_n$ puis $C_{n-2} \leftarrow C_{n-2} - C_{n-1}$ puis ... puis $C_1 \leftarrow C_1 - C_2$, ce qui ne modifie pas la valeur du déterminant. On obtient

$$\Delta_n = \left| \begin{array}{ccccc} -1 & -1 & \dots & -1 & n-1 \\ 1 & -1 & & \vdots & n-2 \\ 1 & 1 & -1 & \vdots & \vdots \\ \vdots & & \ddots & -1 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{array} \right|.$$

Puis, on fait apparaître un déterminant triangulaire en constatant que $\det(L_1,L_2,...,L_n) = \det(L_1,L_2+L_1,...,L_{n-1}+L_1,L_n+L_1)$, ce qui fournit :

$$\Delta_n = \left| \begin{array}{ccccc} -1 & -1 & \dots & -1 & n-1 \\ 0 & -2 & \times & & \times \\ 0 & 0 & \ddots & & \\ \vdots & & \ddots & -2 & \times \\ 0 & \dots & 0 & 0 & n-1 \end{array} \right| = (1-n)(-2)^{n-2}.$$

.

$$\textbf{2)} \ \forall (i,j) \in [\![1,n]\!]^2, \ \sin(\alpha_i + \alpha_j) = \sin\alpha_i \cos\alpha_j + \cos\alpha_i \sin\alpha_j \ \mathrm{et} \ \mathrm{donc} \ \mathrm{si} \ \mathrm{on} \ \mathrm{pose} \ C = \left(\begin{array}{c} \cos\alpha_1 \\ \cos\alpha_2 \\ \vdots \\ \cos\alpha_n \end{array} \right) \ \mathrm{et} \ S = \left(\begin{array}{c} \sin\alpha_1 \\ \sin\alpha_2 \\ \vdots \\ \sin\alpha_n \end{array} \right),$$

$$\forall j \in [1, n], C_j = \cos \alpha_j S + \sin \alpha_j C.$$

En particulier, $\text{Vect}(C_1, ..., C_n) \subset \text{Vect}(C, S)$ et le rang de la matrice proposée est inférieur ou égal à 2. Donc,

$$\forall n \geq 3, \det (\sin (a_i + a_j))_{1 \leq i,j \leq n} = 0.$$

 $\mathrm{Si}\ \mathfrak{n}=2,\,\det\left(\sin\left(\mathfrak{a}_{\mathfrak{i}}+\mathfrak{a}_{\mathfrak{j}}\right)\right)_{1\leqslant\mathfrak{i},\mathfrak{j}\leqslant2}=\sin\left(2\mathfrak{a}_{1}\right)\sin\left(2\mathfrak{a}_{2}\right)-\sin^{2}\left(\mathfrak{a}_{1}+\mathfrak{a}_{2}\right).$

3) L'exercice n'a de sens que si le format n est pair. Posons n = 2p où p est un entier naturel non nul.

$$\begin{split} \Delta_n = \begin{vmatrix} \alpha & 0 & \dots & \dots & 0 & b \\ 0 & \ddots & 0 & 0 & \ddots & 0 \\ \vdots & 0 & a & b & 0 & \vdots \\ \vdots & 0 & b & a & 0 & \vdots \\ 0 & \ddots & 0 & 0 & \ddots & 0 \\ b & 0 & \dots & \dots & 0 & a \end{vmatrix} = \begin{vmatrix} \alpha+b & 0 & \dots & \dots & 0 & b \\ 0 & \ddots & 0 & 0 & \ddots & 0 \\ \vdots & 0 & a+b & b & 0 & \vdots \\ \vdots & 0 & b+a & a & 0 & \vdots \\ 0 & \ddots & 0 & 0 & \ddots & 0 \\ b+a & 0 & \dots & \dots & 0 & a \end{vmatrix} \\ = (a+b)^p \begin{vmatrix} 1 & 0 & \dots & \dots & 0 & b \\ 0 & \ddots & 0 & 0 & 0 & 0 \\ \vdots & 0 & 1 & b & 0 & \vdots \\ \vdots & 0 & 1 & a & 0 & \vdots \\ 0 & 0 & 0 & \ddots & 0 \\ 1 & 0 & \dots & \dots & 0 & a \end{vmatrix} \\ = (a+b)^p \begin{vmatrix} 1 & 0 & \dots & \dots & 0 & b \\ 0 & \ddots & 0 & 0 & 0 & 0 \\ \vdots & 0 & 1 & b & 0 & \vdots \\ \vdots & 0 & 1 & b & 0 & \vdots \\ \vdots & \ddots & \alpha-b & 0 & \vdots \\ \vdots & \ddots & \alpha-b & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & \dots & 0 & a-b \end{vmatrix} \\ (pour p+1 \leqslant i \leqslant 2p, \ L_i \leftarrow L_i - L_{2p+1-i}). \end{split}$$

et $\Delta_n = (a+b)^p (a-b)^p = (a^2-b^2)^p$ (déterminant triangulaire).

4) On retranche à la première colonne la somme de toutes les autres et on obtient

$$D_n = \begin{vmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 1 & 0 \\ 1 & 0 & \dots & 0 & 1 \end{vmatrix} = \begin{vmatrix} -(n-2) & 1 & \dots & 1 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & 0 & 1 \end{vmatrix} = -(n-2).$$

5) Pour $1 \leqslant i \leqslant p$,

$$\begin{split} L_{i+1}-L_i &= \left(\binom{n+i}{0}-\binom{n+i-1}{0},\binom{n+i}{1}-\binom{n+i-1}{1},...,\binom{n+i}{p}-\binom{n+i-1}{p}\right) \\ &= \left(0,\binom{n+i-1}{0},\binom{n+i-1}{1},...,\binom{n+i-1}{p-1}\right). \end{split}$$

On effectue alors dans cet ordre les transformations $L_p \leftarrow L_p - L_{p-1}$ puis $L_{p-1} \leftarrow L_{p-1} - L_{p-2}$ puis ... puis $L_2 \leftarrow L_2 - L_1$ pour obtenir, avec des notations évidentes

$$\det\left(A_{\mathfrak{p}}\right) = \left|\begin{array}{cc} 1 & \times \\ 0 & A_{\mathfrak{p}-1} \end{array}\right| = \det(A_{\mathfrak{p}-1}).$$

 $\mathrm{Par} \ \mathrm{suite}, \ \mathrm{det}(A_p) = \mathrm{det}(A_{p-1}) = ... = \mathrm{det}(A_2) = 1.$

6) En développant suivant la dernière colonne, on obtient :

$$D_n = (X + a_{n-1})X^{n-1} + \sum_{k=0}^{n-2} (-1)^{n+k+1} a_k \Delta_k,$$

$$où \; \Delta_k = \begin{vmatrix} X & 0 & 0 \\ \times & \ddots & 0 & \times \\ \times & \times & X & & \\ \hline 0 & \dots & 0 & -1 & \times & \times \\ \vdots & & \vdots & 0 & \ddots & \times \\ 0 & \dots & 0 & 0 & 0 & -1 \end{vmatrix} = (-1)^{n-1-k} X^k \; \mathrm{et} \; \mathrm{donc}$$

$$D_n = (X + a_{n-1})X^{n-1} + \sum_{k=0}^{n-2} (-1)^{n+k+1} a_k (-1)^{n-1-k} X^k = X^n + \sum_{k=0}^{n-1} a_k X^k.$$

Exercice nº 4:

Si deux des b_j sont égaux, $\det(A)$ est nul car deux de ses colonnes sont égales. On suppose dorénavant que les b_j sont deux à deux distincts.

Soient $\lambda_1,...,\lambda_n$, n nombres complexes tels que $\lambda_n \neq 0$.

$$\det\left(A_{n}\right)=\frac{1}{\lambda_{n}}\det\left(C_{1},...,C_{n-1},\sum_{j=1}^{n}\lambda_{j}C_{j}\right)=\frac{1}{\lambda_{n}}\det\left(B_{n}\right),$$

où la dernière colonne de B_n est de la forme $(R(\alpha_i))_{1\leqslant i\leqslant n}$ avec $R=\sum_{j=1}^n \frac{\lambda_j}{X+b_j}.$

On prend $R = \frac{(X - a_1)...(X - a_{n-1})}{(X + b_1)...(X + b_n)}$. R ainsi définie est irréductible (car $\forall (i,j) \in \{1,...,n\}^2$, $a_i \neq -b_j$). Les pôles de R sont simples et la partie entière de R est nulle. La décomposition en éléments simples de R a bien la forme espérée.

Pour ce choix de R, puisque $R(a_1) = ... = R(a_{n-1}) = 0$, on obtient en développant suivant la dernière colonne

$$\det (A_n) = \frac{1}{\lambda_n} R(a_n) \det (A_{n-1}),$$

avec

$$\lambda_n = \lim_{z \to -b_n} (z + b_n) R(z) = \frac{(-b_n - a_1)...(-b_n - a_{n-1})}{(-b_n + b_1)...(-b_n + b_{n-1})} = \frac{(a_1 + b_n)...(a_{n-1} + b_n)}{(b_n - b_1)...(b_n - b_{n-1})}.$$

Donc

$$\forall n\geqslant 2, \; \det\left(A_{n}\right)=\frac{\left(a_{n}-a_{1}\right)...\left(a_{n}-a_{n-1}\right)\left(b_{n}-b_{1}\right)...\left(b_{n}-b_{n-1}\right)}{\left(a_{n}+b_{1}\right)\left(a_{n}+b_{2}\right)...\left(a_{n}+b_{n}\right)..\left(a_{2}+b_{n}\right)\left(a_{1}+b_{n}\right)} \det\left(A_{n-1}\right).$$

En réitérant et compte tenu de $\det(A_1) = \frac{1}{a_1 + b_1}$, on obtient

$$\det\left(A_{n}\right) = \frac{\displaystyle\prod_{1\leqslant i < j \leqslant n} \left(\alpha_{j} - \alpha_{i}\right) \displaystyle\prod_{1\leqslant i < j \leqslant n} \left(b_{j} - b_{i}\right)}{\displaystyle\prod_{1\leqslant i, j \leqslant n} \left(\alpha_{i} + b_{j}\right)} = \frac{\operatorname{Van}\left(\alpha_{1}, ..., \alpha_{n}\right) \times \operatorname{Van}\left(b_{1}, ..., b_{n}\right)}{\displaystyle\prod_{1\leqslant i, j \leqslant n} \left(\alpha_{i} + b_{j}\right)}.$$

Dans le cas particulier où $\forall i \in [\![1,n]\!], \ \alpha_i = b_i = i,$ en notant H_n le déterminant (de Hilbert) à calculer :

$$H_n = \frac{\operatorname{Van}(1,2,...,n)^2}{\displaystyle\prod_{1\leqslant i,j\leqslant n}(i+j)}.$$

Mais.

$$\prod_{1 \leqslant i,j \leqslant n} (i+j) = \prod_{i=1}^{n} \left(\prod_{j=1}^{n} (i+j) \right) = \prod_{i=1}^{n} \frac{(n+i)!}{i!} = \frac{\prod_{k=1}^{2n} k!}{\left(\prod_{k=1}^{n} k! \right)^{2}},$$

et d'autre part,

$$\mathrm{Van}(1,2,...,n) = \prod_{1 \leqslant i < j \leqslant n} (j-i) = \prod_{i=1}^{n-1} \left(\prod_{j=i+1}^n (j-i) \right) = \prod_{i=1}^{n-1} (n-i)! = \frac{1}{n!} \prod_{k=1}^n k!.$$

$$\mathrm{Donc},\,\forall n\geqslant 1,\; H_n=\frac{\left(\prod\limits_{k=1}^n k!\right)^4}{n!^2\prod\limits_{k=1}^{2n} k!}.$$

Exercice nº 5:

On procède par récurrence sur $n \ge 1$.

- Pour n = 1, c'est clair.
- Soit $n \ge 1$. Supposons que tout déterminant Δ_n de format n et du type de l'énoncé soit un entier divisible par 2^{n-1} . Soit Δ_{n+1} un déterminant de format n+1, du type de l'énoncé.

Si tous les coefficients $a_{i,j}$ de Δ_{n+1} sont égaux à 1, puisque $n+1 \ge 2$, Δ_{n+1} a deux colonnes égales et est donc nul. Dans ce cas, Δ_{n+1} est bien divisible par 2^n .

Sinon, on va changer petit à petit tous les -1 en 1.

Soit (i,j) un couple d'indices tel que $a_{i,j}=-1$ et Δ'_{n+1} le déterminant dont tous les coefficients sont égaux à ceux de Δ_{n+1} sauf le coefficient ligne i et colonne j qui est égal à 1.

$$\Delta_{n+1} - \Delta_{n+1}' = \det(C_1,...,C_j,...,C_n) - \det(C_1,...,C_j',...,C_n) = \det(C_1,...,C_j - C_j',...,C_n),$$

où
$$C_j - C_j' = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ -2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 (-2 en ligne i). En développant ce dernier déterminant suivant sa j-ème colonne, on obtient :

$$\Delta_{n+1} - \Delta'_{n+1} = -2\Delta_n,$$

où Δ_n est un déterminant de format n et du type de l'énoncé. Par hypothèse de récurrence, Δ_n est divisible par 2^{n-1} et donc $\Delta_{n+1} - \Delta'_{n+1}$ est divisible par 2^n . Ainsi, en changeant les -1 en 1 les uns après les autres, on obtient

$$\Delta_{n+1} \equiv \left| \begin{array}{ccc} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{array} \right|, \ (\text{mod } 2^n). \ \text{Ce dernier déterminant étant nul, } \Delta_{n+1} \ \text{est un entier divisible par } 2^n.$$

Le résultat est démontré par récurrence.

Exercice nº 6:

En remplaçant les colonnes $C_1,...,$ C_n par respectivement $C_1+iC_{n+1},...,$ $C_n+iC_{2n},$ on obtient :

$$\det C = \det \left(\begin{array}{cc} A + iB & B \\ -B + iA & A \end{array} \right),$$

puis en remplaçant les lignes $L_{n+1},...,L_{2n}$ de la nouvelle matrice par respectivement $L_{n+1}-iL_1,...,L_{2n}-iL_n$, on obtient :

$$\det(C) = \det\left(\begin{array}{cc} A + iB & B \\ 0 & A - iB \end{array}\right) = \det(A + iB)\det(A - iB) = \left|\det(A + iB)\right|^2 \in \mathbb{R}^+.$$

Exercice nº 7:

1ère solution.

$$\begin{split} \det(B) &= \sum_{\sigma \in S_n} \epsilon(\sigma) (-1)^{1+\sigma(1)+2+\sigma(2)+...+n+\sigma(n)} \alpha_{\sigma(1),1} \alpha_{\sigma(2),2}...\alpha_{\sigma(n),n} \\ &= \sum_{\sigma \in S_n} \epsilon(\sigma) \alpha_{\sigma(1),1} \alpha_{\sigma(2),2}...\alpha_{\sigma(n),n} \; (\operatorname{car} 1 + \sigma(1) + 2 + \sigma(2) + ... + n + \sigma(n) = 2(1+2+...+n) \in 2\mathbb{N}) \\ &= \det A. \end{split}$$

2ème solution. On multiplie par -1 les lignes 2, 4, 6... puis les colonnes 2, 4, 6... On obtient $\det B = (-1)^{2p} \det A = \det A$ (où p est le nombre de lignes ou de colonnes portant un numéro pair).

Exercice nº 8:

Soit A un élément de $M_n(\mathbb{C})$ tel que $\forall B \in M_n(\mathbb{C})$, $\det(A+B) = \det A + \det B$. En particulier, $2\det(A) = \det(2A) = 2^n \det A$ puis $(2^n-2)\det A = 0$ puis $\det A = 0$ car $n \ge 2$ et donc $2^n-2 \ne 0$. Donc, $A \notin GL_n(\mathbb{C})$.

Si $A \neq 0$, il existe une certaine colonne C_j qui n'est pas nulle. Puisque la colonne $-C_j$ n'est pas nulle, on peut compléter la famille libre $(-C_j)$ en une base $(C_1',...,-C_j,...,C_n')$ de $M_{n,1}(\mathbb{C})$. La matrice B dont les colonnes sont justement $C_1',...,-C_j,...,C_n'$ est alors inversible de sorte que $\det A + \det B = \det B \neq 0$. Mais, A+B a une colonne nulle et donc $\det(A+B)=0 \neq \det A + \det B$.

Ainsi, seule la matrice nulle peut donc être solution du problème. Réciproquement A=0 est solution.

Exercice nº 9:

Le coefficient ligne k, colonne l de P^2 vaut :

$$\alpha_{k,l} = \sum_{u=1}^n \omega^{(k-1)(u-1)} \omega^{(u-1)(l-1)} = \sum_{u=1}^n \omega^{(k+l-2)(u-1)} = \sum_{u=1}^n (\omega^{k+l-2})^u.$$

 $\begin{array}{l} \mathrm{Or},\ \omega^{k+l-2} = 1 \Leftrightarrow k+l-2 \in n\mathbb{Z}.\ \mathrm{Mais},\ 0 \leqslant k+l-2 \leqslant 2n-2 < 2n\ \mathrm{et\ donc},\ k+l-2 \in n\mathbb{Z} \Leftrightarrow k+l-2 \in \{0,n\} \Leftrightarrow k+l=2\ \mathrm{ou}\ k+l=n+2.\ \mathrm{Dans\ ce\ cas},\ \alpha_{k,l} = n.\ \mathrm{Sinon}, \end{array}$

$$\alpha_{k,l} = \frac{1 - \left(\omega^{k+l-2}\right)^n}{1 - \omega^{k+l-2}} = \frac{1 - 1}{1 - \omega^{k+l-2}} = 0.$$

Ainsi,
$$P^2 = n \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & \ddots & 1 \\ \vdots & & \ddots & \ddots & 0 \\ & \ddots & \ddots & \ddots & \vdots \\ 0 & 1 & 0 & \dots & 0 \end{pmatrix}$$
.

Calculons ensuite PA. Il faut d'abord écrire proprement les coefficients de A. Le coefficient ligne k, colonne l de A peut s'écrire a_{l-k+1} si l'on adopte la convention commode $a_{n+1}=a_1$, $a_{n+2}=a_2$ et plus généralement pour tout entier relatif k, $a_{n+k}=a_k$.

Avec cette convention d'écriture, le coefficient ligne k, colonne l de PA vaut

$$\sum_{u=1}^n \omega^{(k-1)(u-1)} \alpha_{l-u+1} = \sum_{\nu=1-n+1}^l \omega^{(k-1)(l-\nu)} \alpha_{\nu}.$$

Puis on réordonne cette somme pour qu'elle commence par a_1 .

$$\begin{split} \sum_{\nu=l-n+1}^{l} \omega^{(k-1)(l-\nu)} a_{\nu} &= \sum_{\nu=1}^{l} \omega^{(k-1)(l-\nu)} a_{\nu} + \sum_{\nu=l-n+1}^{0} \omega^{(k-1)(l-\nu)} a_{\nu} \\ &= \sum_{\nu=1}^{l} \omega^{(k-1)(l-\nu)} a_{\nu} + \sum_{w=l+1}^{n} \omega^{(k-1)(l-w+n)} a_{w+n} \text{ (en posant } w = \nu + n) \\ &= \sum_{\nu=1}^{l} \omega^{(k-1)(l-\nu)} a_{\nu} + \sum_{w=l+1}^{n} \omega^{(k-1)(l-w)} a_{w} \\ &= \sum_{\nu=1}^{n} \omega^{(k-1)(l-\nu)} a_{\nu} = \omega^{(k-1)(l-1)} \sum_{\nu=1}^{n} \omega^{(k-1)(1-\nu)} a_{\nu} \end{split}$$

(le point clé du calcul précédent est que les suites a_k et ω_k ont même période n ce qui s'est traduit par $\omega^{(k-1)(l-w+n)}a_{w+n}=\omega^{(k-1)(l-v)}a_v$).

 $\text{Posons alors } S_k = \sum_{\nu=1}^n \omega^{(k-1)(1-\nu)} \alpha_\nu \text{ pour } k \text{ \'el\'ement de } \llbracket 1, n \rrbracket. \text{ On a montr\'e que } PA = (\omega^{(k-1)(l-1)} S_k)_{1\leqslant k, l\leqslant n}.$

$$\det(PA) = \det\left(\omega^{(k-1)(l-1)}S_k\right)_{1\leqslant k,l\leqslant n} = \prod_{k=1}^n S_k \det\left(\omega^{(k-1)(l-1)}\right)_{1\leqslant k,l\leqslant n} = \left(\prod_{k=1}^n S_k\right) \det P.$$

Donc detP detA = $\left(\prod_{k=1}^{n} S_{k}\right)$ detP. Finalement, puisque detP = Van $\left(1\omega, \omega^{2}, \dots, \omega^{n-1}\right) \neq 0$ car les ω^{k} sont deux à deux distincts,

$$\det A = \prod_{k=1}^{n} \left(\sum_{\nu=1}^{n} \omega^{(k-1)(1-\nu)} a_{\nu} \right).$$

Par exemple, pour n=3, $\det A=\left(\alpha_1+\alpha_2+\alpha_3\right)\left(\alpha_1+j\alpha_2+j^2\alpha_3\right)\left(\alpha_1+j^2\alpha_2+j\alpha_3\right)$.

Exercice nº 10:

On a toujours $A \times {}^{t}comA = (det A)I_{n}$ et donc

$$(\det A)(\det(\operatorname{com} A)) = (\det A)(\det(\operatorname{t} \operatorname{com} A)) = \det((\det A)I_n) = (\det A)^n.$$

Si $\det A \neq 0$, on obtient $\det(\operatorname{com} A) = (\det A)^{n-1}$.

Si $\det A = 0$, alors $A^{t} \operatorname{com} A = 0$ et $\operatorname{com} A$ n'est pas inversible car sinon, A = 0 puis $\operatorname{com} A = 0$ ce qui est absurde. Donc, $\det(\operatorname{com} A) = 0$. Ainsi, dans tous les cas,

$$\det(\text{com}A) = (\det A)^{n-1}$$
.

Si $\operatorname{rg} A = n$, alors $\operatorname{com} A \in \operatorname{GL}_n(\mathbb{K})$ (car $\operatorname{det}(\operatorname{com} A) \neq 0$) et $\operatorname{rg}(\operatorname{com} A) = n$.

Si $rgA \leq n-2$, tous les mineurs (de format n-1) sont nuls et donc com(A)=0. Dans ce cas, rg(comA)=0.

Si rgA = n - 1, il existe au moins un mineur non nul. Donc, $com(A) \neq 0$. Par suite, $rg(comA) \geqslant 1$. D'autre part,

$$\begin{split} A \times {}^{t}\left(\mathrm{com}A\right) &= 0 \Rightarrow \mathrm{com}A \times {}^{t}A = 0 \Rightarrow \mathrm{Im}\left({}^{t}A\right) \subset \mathrm{Ker}(\mathrm{com}A) \Rightarrow \mathrm{dim}(\mathrm{Ker}(\mathrm{com}A)) \geqslant \mathrm{rg}({}^{t}A) = \mathrm{rg}A = n-1 \\ &\Rightarrow n - \mathrm{rg}(\mathrm{com}A) \geqslant n-1 \\ &\Rightarrow \mathrm{rg}(\mathrm{com}A) \leqslant 1, \end{split}$$

$$\mathrm{et\ finalement\ si\ rg} A = n-1,\ \mathrm{rg}(\mathrm{com} A) = 1.\ \mathrm{En\ r\acute{e}sum\acute{e}},\ \mathrm{rg}(\mathrm{com} A) = \left\{ \begin{array}{l} n\ \mathrm{si\ rg} A = n \\ 1\ \mathrm{si\ rg} A = n-1 \\ 0\ \mathrm{si\ rg} A \leqslant n-2 \end{array} \right..$$

Exercice nº 11:

 $\det A = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} ... a_{\sigma(n),n} \text{ et donc la fonction } x \mapsto \det(A(x)) \text{ est dérivable sur } \mathbb{R} \text{ en tant que combinaison linéaire de produits de fonctions dérivables sur } \mathbb{R}.$ De plus, en notant C_1, \ldots, C_n , les colonnes de A,

$$\begin{split} (\det\! A)' &= \left(\sum_{\sigma \in S_n} \epsilon(\sigma) \alpha_{\sigma(1),1} \alpha_{\sigma(2),2} ... \alpha_{\sigma(n),n}\right)' = \sum_{\sigma \in S_n} \epsilon(\sigma) \left(\sum_{k=1}^n \alpha_{\sigma(1),1} ... \alpha'_{\sigma(k),k} ... \alpha_{\sigma(n),n}\right) \\ &= \sum_{k=1}^n \sum_{\sigma \in S_n} \epsilon(\sigma) \alpha_{\sigma(1),1} ... \alpha'_{\sigma(k),k} ... \alpha_{\sigma(n),n} = \sum_{k=1}^n \det(C_1,...,C'_k,...,C_n) \end{split}$$

Applications.

 $\Delta_n' = \sum_{k=1}^n \delta_k \text{ où } \delta_k \text{ est le déterminant déduit de } \Delta_n \text{ en remplaçant sa k-ème colonne par le k-ème vecteur de la base}$ canonique de $\mathcal{M}_{n,1}(\mathbb{K})$. En développant δ_k par rapport à sa k-ème colonne, on obtient $\delta_k = \Delta_{n-1}$ et donc $\Delta'_n = n\Delta_{n-1}$. On a déjà $\Delta_1 = X + 1$ puis $\Delta_2 = (X + 1)^2 - 1 = X^2 + 2X$...

Montrons par récurrence que pour $n \ge 1$, $\Delta_n = X^n + nX^{n-1}$.

C'est vrai pour n=1 puis, si pour $n\geqslant 1$, $\Delta_n=X^n+nX^{n-1}$ alors $\Delta'_{n+1}=(n+1)X^n+(n+1)nX^{n-1}$ et, par intégration, $\Delta_{n+1}=X^{n+1}+(n+1)X^n+\Delta_{n+1}(0)$. Mais, puisque $n\geqslant 1$, on a $n+1\geqslant 2$ et $\Delta_{n+1}(0)$ est un déterminant ayant au moins deux colonnes identiques. Par suite, $\Delta_{n+1}(0)=0$ ce qui montre que $\Delta_{n+1}=X^{n+1}+(n+1)X^n$.

Le résultat est démontré par récurrence.

$$\mathbf{2)} \; \mathrm{Soit} \; \Delta_n(x) = \begin{vmatrix} x+a_1 & x & \dots & x \\ x & x+a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ x & \dots & x & x+a_n \end{vmatrix} . \; \Delta_n = \det(a_1e_1+xC,...,a_ne_n+xC) \; \mathrm{où} \; e_k \; \mathrm{est} \; \mathrm{le} \; k\text{-\`eme} \; \mathrm{vecteur} \; \mathrm{de} \; \mathrm{le} \; \mathrm{le} \; \mathrm{le} \; \mathrm{le} \; \mathrm{le} \; \mathrm{canonique} \; \mathrm{de} \; M_{n,1}(\mathbb{K}) \; \mathrm{et} \; C \; \mathrm{est} \; \mathrm{la} \; \mathrm{colonne} \; \mathrm{dont} \; \mathrm{toutes} \; \mathrm{les} \; \mathrm{composantes} \; \mathrm{sont} \; \mathrm{\acute{e}gales} \; \mathrm{\grave{a}} \; 1. \; \mathrm{Par} \; \mathrm{lin\acute{e}arit\acute{e}} \; \mathrm{par} \; \mathrm{rapport} \; \mathrm{\grave{a}} \; \mathrm{log} \; \mathrm{log} \; \mathrm{lin\acute{e}arit\acute{e}} \; \mathrm{par} \; \mathrm{rapport} \; \mathrm{\grave{a}} \; \mathrm{log} \; \mathrm{log$$

chaque colonne, Δ_n est somme de 2^n déterminants mais dès que C apparait deux fois, le déterminant correspondant est $\mathrm{nul.\ Donc},\ \Delta_n = \det(a_1e_1,...,a_ne_n) + \det(a_1e_1,...,xC,...,a_ne_n).\ \mathrm{Ceci\ montre\ que}\ \Delta_n\ \mathrm{est\ un\ polyn\^{o}me\ de\ degr\'e\ inf\'erieur}$ ou égal à 1.

 $\mathrm{La\ formule\ de\ Taylor\ fournit\ alors:}\ \Delta_{\mathfrak{n}}=\Delta_{\mathfrak{n}}(0)+X\Delta_{\mathfrak{n}}'(0).\ \mathrm{Imm\'ediatement},\ \Delta_{\mathfrak{n}}(0)=\prod_{k=1}^{n}\alpha_{k}=\sigma_{\mathfrak{n}}\ \mathrm{puis}$

$$\Delta_n'(0) = \sum_{k=1}^n \det(\alpha_1 e_1,...,C,...,\alpha_n e_n) = \sum_{k=1}^n \prod_{i \neq k} \alpha_i = \sigma_{n-1}.$$

Donc, $\Delta_n = \sigma_n + X\sigma_{n-1}$.

Exercice nº 12:

- 1) Pour le deuxième déterminant, on retranche la première colonne à chacune des autres et on obtient un déterminant triangulaire inférieur dont la valeur est $(-1)^{n-1}$. Pour le premier, on ajoute à la première colonne la somme de toutes les autres, puis on met (n-1) en facteurs de la première colonne et on tombe sur le deuxième déterminant. Le premier déterminant vaut donc $(-1)^{n-1}(n-1)$.
- 2) Pour (i, j) élément de $[1, n]^2$, $(i + j 1)^2 = j^2 + 2(i 1)j + (i 1)^2$. Donc,

$$\forall j \in [\![1,n]\!], \ C_j = j^2(1)_{1 \leqslant i \leqslant n} + 2j(i-1)_{1 \leqslant i \leqslant n} + ((i-1)^2)_{1 \leqslant i \leqslant n}.$$

Les colonnes de la matrice sont donc éléments de
$$\operatorname{Vect}\left((1)_{1\leqslant i\leqslant n},(i-1)_{1\leqslant i\leqslant n},((i-1)^2)_{1\leqslant i\leqslant n}\right)$$
 qui est de dimension inférieure ou égale à 3 et la matrice proposée est de rang inférieur ou égal à 3. Donc, si $n\geqslant 4$, $\Delta_n=0$. Il reste ensuite à calculer $\Delta_1=1$ puis $\Delta_2=\left|\begin{array}{ccc}1&4\\4&9\end{array}\right|=-7$ puis $\Delta_3=\left|\begin{array}{ccc}1&4&9\\4&9&16\\9&16&25\end{array}\right|=(225-256)-4(100-144)+9(64-81)=-31+176-153=-8$.

$$\Delta_n = \det(C_1, ..., C_n) = \det(C_1 + ... + C_n, C_2, ..., C_n) = (a + (n-1)b) \begin{vmatrix} 1 & b & ... & ... & b \\ 1 & a & \ddots & \vdots \\ \vdots & b & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & b \\ 1 & b & ... & b & a \end{vmatrix},$$

par linéarité par rapport à la première colonne. Puis, aux lignes numéros 2,..., n, on retranche la première ligne pour obtenir :

$$\Delta_n = (a + (n-1)b) \begin{vmatrix} 1 & b & \dots & b \\ 0 & a-b & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & a-b \end{vmatrix} = (a + (n-1)b)(a-b)^{n-1}.$$

4) Par n linéarité, D_n est somme de 2^n déterminants. Mais dans cette somme, un déterminant est nul dès qu'il contient

au moins deux colonnes de x. Ainsi, en posant
$$\Delta_n = \det(C_1 + xC, ..., C_n + xC)$$
 où $C_k = \begin{pmatrix} \vdots \\ b \\ a_k \\ b \\ \vdots \\ b \end{pmatrix}$ et $C = (1)_{1 \leqslant i \leqslant n}$, on

obtient:

$$\Delta_n = \det(C_1,...,C_n) + \sum_{k=1}^n \det\left(C_1,...,C_{k-1},xC,C_{k+1},...,C_n\right),$$

ce qui montre que Δ_n est un polynôme de degré inférieur ou égal à 1. Posons $\Delta_n = AX + B$ et $P = \prod_{k=1}^n (a_k - X)$. Quand x = -b ou x = -c, le déterminant proposé est triangulaire et se calcule donc immédiatement. Donc :

 $\begin{array}{l} \textbf{1er cas. Si } b \neq c. \ \Delta_n(-b) = P(b) \ \mathrm{et} \ \Delta_n(-c) = P(c) \ \mathrm{fournit \ le \ syst\`{e}me} \ \left\{ \begin{array}{l} -bA + B = P(b) \\ -cA + B = P(c) \end{array} \right. \\ \mathrm{et \ } B = \frac{cP(b) - bP(c)}{c - b}. \ \mathrm{Ainsi, \ si \ } b \neq c, \end{array} \right. \\ \end{array}$

$$\Delta_n = -\frac{P(c) - P(b)}{c - b}x + \frac{cP(b) - bP(c)}{c - b} \text{ où } P = \prod_{k=1}^n (\alpha_k - X).$$

2ème cas. Si b=c, l'expression obtenue en fixant x et b est clairement une fonction continue de c car polynomiale en c. On obtient donc la valeur de Δ_n quand b=c en faisant tendre c vers b dans l'expression déjà connue de Δ_n pour $b\neq c$. Maintenant, quand b tend vers c, $-\frac{P(c)-P(b)}{c-b}$ tend vers -P'(b) et

$$\frac{cP(b)-bP(c)}{c-b} = \frac{c(P(b)-P(c))+(c-b)P(c)}{c-b},$$

tend vers -bP'(b) + P(b). Si b = c,

$$\Delta_n = -xP'(b) + P(b) - bP'(b) \text{ où } P = \prod_{k=1}^n (\alpha_k - X).$$

5) $\Delta_2 = 3$ et $\Delta_3 = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 2 \times 3 - 2 = 4$. Puis, pour $n \geqslant 4$, on obtient en développant suivant la première colonne :

$$\Delta_n = 2\Delta_{n-1} - \Delta_{n-2}$$

D'où, pour $n \geqslant 4$, $\Delta_n - \Delta_{n-1} = \Delta_{n-1} - \Delta_{n-2}$ et la suite $(\Delta_n - \Delta_{n-1})_{n\geqslant 3}$ est constante. Par suite, pour $n \geqslant 3$, $\Delta_n - \Delta_{n-1} = \Delta_3 - \Delta_2 = 1$ et donc la suite $(\Delta_n)_{n\geqslant 2}$ est arithmétique de raison 1. On en déduit que, pour $n \geqslant 2$, $\Delta_n = \Delta_2 + (n-2) \times 1 = n+1$ (on pouvait aussi résoudre l'équation caractéristique de la récurrence double).

$$\forall n \geqslant 2, \ \Delta_n = n+1.$$

Exercice no 13:

1) a) Soit $X \in \mathcal{M}_{n,1}(\mathbb{C})$. $AX = B \Leftrightarrow X = A^{-1}B$. Donc, le système proposé à une solution et une seule.

$$\mathbf{b)} \; \mathbf{B} = \mathbf{AX} = \begin{pmatrix} \sum_{j=1}^{n} \alpha_{1,j} x_{j} \\ \sum_{j=1}^{n} \alpha_{2,j} x_{j} \\ \vdots \\ \sum_{j=1}^{n} \alpha_{n,j} x_{j} \end{pmatrix} = \sum_{j=1}^{n} x_{j} \begin{pmatrix} \alpha_{1,j} \\ \alpha_{2,j} \\ \vdots \\ \alpha_{n,j} \end{pmatrix} = \sum_{j=1}^{n} x_{j} C_{j}.$$

c) Soit $i \in [1, n]$. Par linéarité par rapport à la i-ème colonne,

$$\begin{split} \Delta_i &= \det\left(C_1,\ldots,C_{i-1},B,C_{i+1},\ldots,C_n\right) = \det\left(C_1,\ldots,C_{i-1},\sum_{j=1}^n x_jC_j,C_{i+1},\ldots,C_n\right) \\ &= \sum_{i=1}^n x_j \det\left(C_1,\ldots,C_{i-1},C_j,C_{i+1},\ldots,C_n\right). \end{split}$$

Quand $j \neq i$, det $(C_1, \ldots, C_{i-1}, C_j, C_{i+1}, \ldots, C_n)$ est un déterminant ayant deux colonnes identiques (la i-ème et la j-ème) et donc ce déterminant est nul. Quand j = i, det $(C_1, \ldots, C_{i-1}, C_j, C_{i+1}, \ldots, C_n) = \det(C_1, \ldots, C_{i-1}, C_i, C_{i+1}, \ldots, C_n) = \det(A) = \Delta$. Donc, $\Delta_i = x_i \Delta$ puis, Δ étant non nul,

$$x_i = \frac{\Delta_i}{\Lambda}$$
.

- 2) a) $\det(S) = 2(m(m-5)-6) + (3(m-5)-3) + 7(6-m) = 2m^2 14m + 12 = 2(m-1)(m-6)$. Le système est de Cramer si et seulement si $m \in \{1,6\}$.
- Si $m \notin \{1,6\}$, les formules de Cramer fournissent alors :

$$\begin{aligned} x &= \frac{1}{2(m-1)(m-6)} \begin{vmatrix} 4 & 3 & 1 \\ 5 & m & 2 \\ 7 & 3 & m-5 \end{vmatrix} = \frac{4(m^2-5m-6)-5(3m-18)-7(m-6)}{2(m-1)(m-6)} = \frac{2(m-6)(2m-9)}{2(m-1)(m-6)} = \frac{2m-9}{m-1} \\ y &= \frac{1}{2(m-1)(m-6)} \begin{vmatrix} 2 & 4 & 1 \\ -1 & 5 & 2 \\ 7 & 7 & m-5 \end{vmatrix} = \frac{2(5m-39))+(4m-27)+21}{2(m-1)(m-6)} = \frac{14(m-6)}{2(m-1)(m-6)} = \frac{7}{m-1} \\ z &= \frac{1}{2(m-1)(m-6)} \begin{vmatrix} 2 & 3 & 4 \\ -1 & m & 5 \\ 7 & 3 & 7 \end{vmatrix} = \frac{2(7m-15)+9+7(-4m+15)}{2(m-1)(m-6)} = \frac{-14(m-6)}{2(m-1)(m-6)} = -\frac{7}{m-1} \end{aligned}$$

 $\mathrm{Si}\ \mathfrak{m}\notin\{1,6\},\,\mathscr{S}=\left\{\left(\frac{2\mathfrak{m}-9}{\mathfrak{m}-1},\frac{7}{\mathfrak{m}-1},-\frac{7}{\mathfrak{m}-1}\right)\right\}.$

La dernière équation fournit alors une condition nécessaire et suffisante de compatibilité (les termes en y disparaissent si $m \in \{1,6\}$).

$$7x + 3y + (m - 5)z = 7 \Leftrightarrow 7\frac{3 + (m - 6)y}{5} + 3y + (m - 5)\frac{14 - (2m + 3)y}{5} = 7 \Leftrightarrow 21 + 14(m - 5) - 35 = 0$$
$$\Leftrightarrow 14(m - 6) = 0 \Leftrightarrow m = 6.$$

Si m=1, le système n'a pas de solution et si m=6, l'ensemble des solutions est $\mathscr{S}=\left\{\left(\frac{3}{5},y,-\frac{y}{5}\right),\ y\in\mathbb{R}\right\}$.

b) $\det(M) = \operatorname{Van}(1, 2, ..., n) \neq 0$ et le système est de Cramer. Posons $\Delta = \det M$. Les formules de Cramer fournissent alors pour $k \in [1, n], x_k = \frac{\Delta_k}{\Lambda}$ où

$$\Delta_k = \mathrm{Van}(1,...,k-1,0,k+1,...,n) = (-1)^{k+1} \begin{vmatrix} 1 & \dots & k-1 & k+1 & \dots & n \\ 1 & (k-1)^2 & (k+1)^2 & n^2 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & (k-1)^{n-1} & (k+1)^{n-1} & n^{n-1} \end{vmatrix}.$$

(en développant par rapport à la k-ème colonne). Par linéarité par rapport à chaque colonne, on a

$$\begin{split} \Delta_k &= (-1)^{k+1} \, 1 \times 2... \times (k-1) \times (k+1)... \times n \times \mathrm{Van}(1,2,...,k-1,k+1,...,n) \\ &= (-1)^{k+1} \, \frac{n!}{k} \times \frac{\mathrm{Van}(1,2,...,n)}{(k-(k-1))...(k-1)((k+1)-k)....(n-k)} = (-1)^{k+1} \frac{n!}{k!(n-k)!} \Delta. \end{split}$$

Donc, $\forall k \in [1, n], \ x_k = (-1)^{k+1} \binom{n}{k}$.

Exercice nº 14:

 $(1) \Rightarrow (2)$. Montrons par récurrence sur $n \geqslant 1$ que : $(\forall (a_1, ..., a_n) \in E^n / (\det(f_i(a_i)))_{1 \leqslant i,j \leqslant n} = 0) \Rightarrow ((f_1, ..., f_n) \text{ liée})$.

• Pour n = 1,

$$(\forall \alpha_1 \in E / \det(f_i(\alpha_i))_{1 \le i, j \le 1} = 0) \Rightarrow (\forall \alpha_1 \in E / f_1(\alpha_1) = 0) \Rightarrow (f_1 = 0) \Rightarrow (f_1) \text{ li\'ee.}$$

 $\bullet \ \mathrm{Soit} \ n \geqslant 1. \ \mathrm{Supposons} \ \mathrm{que} \ (\forall (\alpha_1,...,\alpha_n) \in E^n / \ \mathrm{det}(f_i(\alpha_j))_{1 \leqslant i,j \leqslant n} = 0) \Rightarrow (f_1,...,f_n) \ \mathrm{li\acute{e}e}.$ Soient $f_1,..., f_{n+1}$ n+1 fonctions telles que $\forall (a_1,...,a_{n+1}) \in E^{n+1}/\det(f_i(a_j))_{1 \leq i,j \leq n+1} = 0$. Si $(f_1,...,f_n)$ est liée alors $(f_1,...,f_{n+1})$ est liée en tant que sur-famille d'une famille liée. Si $(f_1,...,f_n)$ est libre, par hypothèse de récurrence, il existe $a_1,...,a_n$ n éléments de E tels que $\det(f_i(a_j))_{1 \le i,j \le n} \ne 0$. Mais, par hypothèse, on a :

$$\forall x \in E, \det(f_i(a_1), ..., f_i(a_n), f_i(x))_{1 \le i \le n+1} = 0.$$

En développant ce déterminant suivant sa dernière colonne, on obtient une égalité du type $\sum_{i=1}^{n+1} \lambda_i f_i(x) = 0$ où les λ_i sont

 $\mathrm{ind\acute{e}pendants}\ \mathrm{de}\ x\ \mathrm{ou}\ \mathrm{encore}\ \mathrm{une}\ \mathrm{\acute{e}galit\acute{e}}\ \mathrm{du}\ \mathrm{type}\ \sum_{i=1}^{n+1}\lambda_i f_i = 0\ \mathrm{avec}\ \lambda_{n+1} = \det(f_i(\alpha_j))_{1\leqslant i,j\leqslant n} \neq 0\ \mathrm{ce}\ \mathrm{qui}\ \mathrm{montre}\ \mathrm{encore}$ que $(f_1, ..., f_{n+1})$ est liée.

$$(2) \Rightarrow (1). \text{ On suppose que } \exists (a_1,...,a_n) \in \mathbb{E}^n / \det(f_i(a_j))_{1 \leqslant i,j \leqslant n} \neq \emptyset). \text{ Montrons que } (f_1,...,f_n) \text{ est libre.}$$

$$\text{Soit } (\lambda_1,...,\lambda_n) \in \mathbb{C}^n \text{ tel que } \sum_{i=1}^n \lambda_i f_i = \emptyset. \text{ En particulier } : \forall j \in \llbracket 1,n \rrbracket, \sum_{i=1}^n \lambda_i f_i(a_j) = \emptyset. \text{ Les } n \text{ égalités précédentes}$$

fournissent un système d'équations linéaires en les λ_i à n inconnues, n équations, de déterminant non nul et homogène ou encore un système de Cramer homogène dont on sait qu'il admet pour unique solution $(\lambda_1, ..., \lambda_n) = (0, ..., 0)$. On a montré que $(f_1, ..., f_n)$ est libre.

Exercice no 15:

1) Soit $(\lambda_k)_{1 \le k \le n} \in \mathbb{C}^n$.

$$\begin{split} \sum_{k=1}^n \lambda_k f_{\alpha_k} &= 0 \Rightarrow \forall p \in [\![0,n-1]\!], \ \sum_{k=1}^n \lambda_k f_{\alpha_k}^{(p)} = 0 \Rightarrow \forall p \in [\![0,n-1]\!], \ \forall x \in \mathbb{R}, \ \sum_{k=1}^n \lambda_k \alpha_k^p e^{\alpha_k x} = 0 \\ &\Rightarrow \forall p \in [\![0,n-1]\!], \ \sum_{k=1}^n \lambda_k \alpha_k^p = 0 \ (\text{\'egalit\'es obtenues pour } x = 0). \end{split}$$

Les n dernières égalités écrites constituent un système (S) de n équations linéaires à n inconnues $\lambda_1,\ldots,\lambda_n$. Le déterminant de ce système est $\mathrm{Van}\,(\alpha_1,\ldots,\alpha_n)$. Ce déterminant n'est pas nul car les α_k sont deux à deux distincts. Par suite, (S) est un système de Cramer homogène. (S) admet donc l'unique solution $(\lambda_1,\ldots,\lambda_n)=(0,\ldots,0)$. On a montré que la famille $(f_{\alpha_k})_{1\leqslant k\leqslant n}$ est libre.

2) Soit $(\lambda_k)_{1 \leqslant k \leqslant p} \in \mathbb{C}^p$.

$$\sum_{k=1}^{p}\lambda_{k}\left(q_{k}^{n}\right)_{n\in\mathbb{N}}=0\Rightarrow\forall n\in\llbracket0,p-1\rrbracket,\;\sum_{k=1}^{n}\lambda_{k}q_{k}^{n}=0.$$

Les n dernières égalités écrites constituent un système (S) de p équations linéaires à p inconnues $\lambda_1,\ldots,\lambda_p$. Le déterminant de ce système est $\mathrm{Van}\,(q_1,\ldots,q_p)$. Ce déterminant n'est pas nul car les q_k sont deux à deux distincts. Par suite, (S) est un système de Cramer homogène. (S) admet donc l'unique solution $(\lambda_1,\ldots,\lambda_p)=(0,\ldots,0)$. On a montré que la famille $((q_k^n)_{n\in\mathbb{N}})_{1\le k\le n}$ est libre.

Exercice nº 16:

Si z_k est l'affixe complexe de M_k et a_k est l'affixe complexe de A_k , le problème posé équivaut au système :

$$\forall k \in [1, n-1], \ z_k + z_{k+1} = 2a_k \ \text{et} \ z_n + z_1 = 2a_n.$$

Le déterminant de ce système vaut :

$$\begin{vmatrix} 1 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \dots & 0 & 1 \end{vmatrix} = 1 \times 1^{n-1} + (-1)^{n+1} \times 1^{n-1} \text{ (en développant suivant la première colonne)}$$

$$= 1 - (-1)^{n}.$$

• Si n est impair, $\det S=2\neq 0$ et le système admet une et une seule solution. On obtient $z_2=2\alpha_1-z_1, z_3=2\alpha_2-2\alpha_1+z_1,..., z_n=2\alpha_{n-1}-2\alpha_{n-2}+...+2\alpha_2-2\alpha_1+z_1$ et enfin :

$$2a_{n-1} - 2a_{n-2} + ... + 2a_2 - 2a_1 + z_1 + z_1 = 2a_n$$

et donc $z_1 = a_1 - a_2 + \dots - a_{n-1} + a_n$ puis $z_2 = a_1 + a_2 - a_3 + \dots + a_{n-1} - a_n$ puis $z_3 = -a_1 + a_2 + a_3 - a_4 \dots + a_n \dots$ puis $z_n = -a_1 + a_2 - a_3 + \dots + a_{n-1} + a_n$.

• Si n est pair, $\det S = 0$ mais le mineur formé des n-1 premières lignes et n-1 dernières colonnes est non nul. On résout le système constitué par les n-1 premières équations comme un système de Cramer en $z_2,...,z_n$. On obtient

$$z_2 = 2a_1 - z_1, z_3 = 2a_2 - 2a_1 + z_1, ..., z_n = 2a_{n-1} - 2a_{n-2} + ... - 2a_2 + 2a_1 - z_1.$$

La dernière équation fournit alors une condition nécessaire et suffisante de compatibilité :

$$2a_{n-1} - 2a_{n-2} + \dots - 2a_2 + 2a_1 - z_1 + z_1 = 2a_n \Leftrightarrow a_1 + a_3 \dots = a_2 + a_4 + \dots$$

Cette dernière condition se traduit géométriquement par le fait que les systèmes de points $(A_1, A_3, ...)$ et $(A_2, A_4, ...)$ ont même isobarycentre.

En résumé, si \mathfrak{n} est pair et si les systèmes de points $(A_1, A_3, ...)$ et $(A_2, A_4, ...)$ n'ont pas même isobarycentre, le problème n'a pas de solution.

Si \mathfrak{n} est pair et si les systèmes de points $(A_1, A_3, ...)$ et $(A_2, A_4, ...)$ ont même isobarycentre, le problème a une infinité de solutions : M_1 est un point quelconque puis on construit les symétriques successifs par rapport aux points A_1, A_2 ...