Exercices

C'est à vous maintenant de jouer avec l'infini!

1. Réchauffement fini

Soit X un ensemble fini, de cardinal $n \in \mathbb{N}$.

- a) Pour un $k \in \mathbb{N}$ fixé, soit $X^k = \underbrace{X \times \cdots \times X}_{k \text{ fois}}$ l'ensemble des k-uplets d'éléments de X (les listes ordonnées (x_1, \dots, x_k) avec $x_i \in X$ pour tout i). Calculer $|X^k|$.
- b) Calculer le cardinal de l'ensemble $\mathcal{P}(X)$ de toutes les parties de X, en fonction de n. Par exemple, si $X = \{a, b, c\}$, alors n = 3,

$$\mathcal{P}(X) = \left\{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X \right\}$$

et donc $|\mathcal{P}(X)| = 8$. (*Idée*: établir une bijection entre $\mathcal{P}(X)$ et l'ensemble $\{0,1\}^X$ de toutes les applications $f: X \to \{0,1\}$ (voir pour ceci l'exercice 6 si nécessaire), puis établir le cardinal de $\{0,1\}^X$.)

- c) Plus en général: si Y est un autre ensemble fini de cardinal $m \in \mathbb{N}$, dénotons par Y^X l'ensemble de toutes les applications $f \colon X \to Y$. Quel est le cardinal de Y^X ?
- **2.** Dénotons par $2\mathbb{N} = \{0, 2, 4, \ldots\}$ l'ensemble des nombre naturels pairs, et par P l'ensemble des nombres premiers. Montrer que $2\mathbb{N}$ et P sont deux ensembles dénombrables.
- **3.** Démontrer que \mathbb{Q} est dénombrable: $|\mathbb{N}| = |\mathbb{Q}|$. (Par exemple, on peut le faire en complétant le raisonnement expliqué pendant l'exposé.)
- **4.** Démontrer que $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$. Plus en général, démontrer que si X est un ensemble infini dénombrable, alors $X \times X$ ainsi que X^k (l'ensemble des k-uplets d'éléments de X) sont aussi dénombrables.
- 5. Montrer que \mathbb{R} et]0,1[ont le même cardinal! ($Id\acute{e}e$: se souvenir en premier que l'application $\tan(x) = \sin(x)/\cos(x)$: $]-\frac{\pi}{2},\frac{\pi}{2}[\to\mathbb{R}$ admet une réciproque, $\arctan(x)$; puis trouver une bijection entre les deux intervalles ouverts $]-\frac{\pi}{2},\frac{\pi}{2}[$ et]0,1[.)
- **6.** Montrer que, pour un ensemble X quelconque, l'ensemble de ses parties $\mathcal{P}(X)$ a le même cardinal que l'ensemble $\{0,1\}^X$ de toutes les applications $f\colon X\to \{0,1\}$.

(*Idée*: chaque application $f: X \to \{0,1\}$ nous définit la partie $A_f \subseteq X$ de tous les éléments de X dont l'image par f est 1. Réciproquement, chaque partie $A \subseteq X$ a une fonction "charactéristique" $f_A: X \to \{0,1\}$ telle que $f_A(x) = 1$ si et seulement si $x \in A$.)

7. Le théorème d'équivalence de Cantor-Bernstein-Schröder

Théorème: Si X et Y sont deux ensembles tels que $|X| \leq |Y|$ et $|X| \geq |Y|$, alors |X| = |Y|; en d'autres mots, s'il existe une injection $f: X \to Y$ et aussi une injection $g: Y \to X$, alors il existe une bijection $h: X \to Y$.

Nous allons démontrer cet énoncé en quelques pas. (Attention! À différence du cas des ensembles finis, en général f et g ne sont pas bijectives elles mêmes: il faut vraiment trouver un h!) Soient donc $f: X \to Y$ et $g: Y \to X$ deux applications injectives. Nous pouvons admettre, sans perte de généralité, que $X \cap Y = \emptyset$.

- a) Par l'injectivité de f, tout élément $y \in Y$ admet au plus une "préimage" $x \in X$ (un x tel que f(x) = y). De même, tout $x \in X$ admet au plus une préimage $y \in Y$ par g. Donc, si on commence par un $x \in X$ ou $y \in Y$ fixé, il y a une unique suite d'élements alternés de X et Y obtenue en "remontant" de préimage en préimage le long de f et g. Pour chaqu'une de ces suites, il n'y a que trois possibilités: elle s'arrête dans X, ou dans Y, ou elle ne s'arrête jamais. Rendre cette idée précise!
- b) Montrer que X est la réunion disjointe (avec intersections vides) de trois ensembles

$$X = X_X \cup X_Y \cup X_{\infty}$$

où : X_X consiste des $x \in X$ tels que sa suite de "remontée", comme en (a), s'arrête dans X (c'est à dire, tel que le dernier terme de la suite est un élément de $X \setminus g(Y)$); X_Y contient les $x \in X$ tels que leurs suites s'arrêtent dans Y; et X_∞ consiste des x dont la suite continue avec un nombre infini de termes.

Montrer aussi que, de façon similare, Y se décompose en $Y = Y_X \cup Y_Y \cup Y_\infty$.

- c) Montrer que, en restreignant f, on obtient une bijection $f: X_X \to Y_X$.
- d) Montrer que f se restraint aussi à une bijection $f: X_{\infty} \to Y_{\infty}$.
- e) Vérifier que, si $x \in X_Y$, alors x appartient au domaine de définition de l'application réciproque g^{-1} de g, et de plus $g^{-1}(x) \in Y_Y$. Montrer qu'on obtient ainsi une bijection $g^{-1}: X_Y \to Y_Y$.
- f) Déduire des points précédents l'existence d'une bijection $h: X \to Y$, comme désiré.
- 8. Nous allons démontrer l'équation fondamental

$$|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$$
 (en notation standard: $\mathfrak{c} = 2^{\aleph_0}$)

au moyen des étappes suivantes.

- a) Se souvenir de l'exercice 5: $|\mathbb{R}| = |]0,1[]$.
- **b)** Conclure de l'exercice 6 que $|\{0,1\}^{\mathbb{N}}| = |\mathcal{P}(\mathbb{N})|$, et aussi $|\{0,1\}^{\mathbb{Q}}| = |\mathcal{P}(\mathbb{Q})|$.
- c) Définir une application $f:]0,1[\to \mathcal{P}(\mathbb{Q})$ par $f(x) = \{q \in \mathbb{Q} \mid q < x\}$. Exploiter la densité de \mathbb{Q} dans \mathbb{R} (le fait que pour chaques deux nombres réels x < y il existe un nombre rationel q tel que x < q < y) pour montrer que f est injective, et en conclure que $|]0,1[] \leq |P(\mathbb{Q})|$.
- d) Démontrer que $|\mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{Q})|$, à l'aide des exercices 3 et 8.(b) si nécessaire.
- e) Déduire des points précédents que $|\mathbb{R}| \leq |\mathcal{P}(\mathbb{N})|$.
- f) Se souvenir que chaque nombre réel $x \in]0,1[$ admet un (unique) développement binaire, c'est à dire, il s'écrit $x = \sum_{n=1}^{\infty} c_n \frac{1}{2^n}$, où $c_n \in \{0,1\}$ est son n-ème chiffre binaire après la virgule. Montrer que ceci définit une application $g:]0,1[\to \{0,1\}^{\mathbb{N}}]$ injective telle que g(x) est l'application $n \mapsto c_{n+1}$. En déduire que $|]0,1[] \leq |\{0,1\}^{\mathbb{N}}|$.
- **g)** Conclure de (e) et (f), à l'aide du théorème de Cantor-Bernstein-Schröder (voir l'exercice 7) que $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$, comme souhaité.