Simple essence of AD

Artur Ezequiel Nelson

Universidade do Minho

26 de Abril

Index

- Categories
- Pork and Join
- 3 Numeric operations
- Generalizing Automatic Differentiation
- Severse-Mode Automatic Differentiation (RAD)
- 6 Gradient and Duality
- Foward-Mode Automatic Differentiation(FAD)
- Scaling Up
- Related Work and confusion

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. The derivative of f at point $x \in \mathbb{R}$ is defined the following way:

$$f'(x) = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon}$$

This definition will also work with functions of types $\mathbb{C} \to \mathbb{C}$ and $\mathbb{R} \to \mathbb{R}^n$

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. The derivative of f at point $x \in \mathbb{R}$ is defined the following way:

$$f'(x) = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon}$$

This definition will also work with functions of types $\mathbb{C} \to \mathbb{C}$ and $\mathbb{R} \to \mathbb{R}^n$.

For functions F of types $\mathbb{R}^m \to \mathbb{R}$ and $\mathbb{R}^m \to \mathbb{R}^n$ (with n > 1), we need a different definition.

- For functions of type $\mathbb{R}^m \to \mathbb{R}$, it is necessary the introduction of the notion of parcial derivatives, $\frac{\partial F}{\partial x_j}$, with $j \in \{1, ..., m\}$.
- For functions of type $\mathbb{R}^m \to \mathbb{R}^n$ (with n > 1), apart from the use of parcial derivatives, it is necessary the use of Jacobian matrices $\mathbf{J}_{i,j} = \frac{\partial F_i}{\partial x_j}$, where $i \in \{1,...,n\}$ and F_i is a function $\mathbb{R}^m \to \mathbb{R}$.

For functions F of types $\mathbb{R}^m \to \mathbb{R}$ and $\mathbb{R}^m \to \mathbb{R}^n$ (with n > 1), we need a different definition.

- For functions of type $\mathbb{R}^m \to \mathbb{R}$, it is necessary the introduction of the notion of parcial derivatives, $\frac{\partial F}{\partial x_j}$, with $j \in \{1, ..., m\}$.
- For functions of type $\mathbb{R}^m \to \mathbb{R}^n$ (with n > 1), apart from the use of parcial derivatives, it is necessary the use of Jacobian matrices $\mathbf{J}_{i,j} = \frac{\partial F_i}{\partial x_j}$, where $i \in \{1,...,n\}$ and F_i is a function $\mathbb{R}^m \to \mathbb{R}$

For functions F of types $\mathbb{R}^m \to \mathbb{R}$ and $\mathbb{R}^m \to \mathbb{R}^n$ (with n > 1), we need a different definition.

- For functions of type $\mathbb{R}^m \to \mathbb{R}$, it is necessary the introduction of the notion of parcial derivatives, $\frac{\partial F}{\partial x_j}$, with $j \in \{1, ..., m\}$.
- For functions of type $\mathbb{R}^m \to \mathbb{R}^n$ (with n > 1), apart from the use of parcial derivatives, it is necessary the use of Jacobian matrices $\mathbf{J}_{i,j} = \frac{\partial F_i}{\partial x_j}$, where $i \in \{1,...,n\}$ and F_i is a function $\mathbb{R}^m \to \mathbb{R}$.

Generalization and Chain Rule

Let **A** and **B** be two Jacobian matrices.

The chain rule in $\mathbb{R}^m \to \mathbb{R}^n$ is:

$$(\mathbf{A} \cdot \mathbf{B})_{i,j} = \sum_{k=1}^{m} \mathbf{A}_{i,k} \cdot \mathbf{B}_{k,j}$$

Generalization and Chain Rule

Assuming that the notion of derivates that we need matches with a linear map, where it is accepted the chain rule previously seen, we will define a new generalization:

$$\lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon} - f'(x) = 0 \Leftrightarrow \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - (f(x)) + \varepsilon \cdot f'(x)}{\varepsilon} = 0$$
$$\Leftrightarrow \lim_{\varepsilon \to 0} \frac{\|f(x+\varepsilon) - (f(x)) + \varepsilon \cdot f'(x)\|}{\|\varepsilon\|} = 0$$

Generalization and Chain Rule

Assuming that the notion of derivates that we need matches with a linear map, where it is accepted the chain rule previously seen, we will define a new generalization:

$$\lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon} - f'(x) = 0 \Leftrightarrow \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - (f(x)) + \varepsilon \cdot f'(x)}{\varepsilon} = 0$$
$$\Leftrightarrow \lim_{\varepsilon \to 0} \frac{\|f(x+\varepsilon) - (f(x)) + \varepsilon \cdot f'(x)\|}{\|\varepsilon\|} = 0$$

Derivate as a linear map

Definition

Let $f: a \to b$ be a function, where a and b are vetorial spaces that share a common underlying field. The first derivate definition is the following:

$$\mathcal{D}::(a \rightarrow b) \rightarrow (a \rightarrow (astob))$$

If we differentiate two times, we have:

$$\mathcal{D}^2 = \mathcal{D} \circ \mathcal{D} :: (a \rightarrow b) \rightarrow (a \rightarrow (astoastob))$$

Theorem

Let $f :: a \to b$ and $g :: b \to c$ be two functions. Then the derivative of the composition of f and g is:

$$\mathcal{D}(g \circ f) a = \mathcal{D}g(fa) \circ \mathcal{D}fa$$

Unfortunately the previous theorem isn't a efficient recipe for composition. As such we will introduce a second derivate definition:

$$\mathcal{D}_0^+ :: (a \to b) \to ((a \to b) \times (a \to (a \multimap b)))$$

$$\mathcal{D}_0^+ f = (f, \mathcal{D} f)$$

With this, the chain rule will have the following expression:

$$\begin{array}{l} \mathcal{D}_0^+\left(g\circ f\right)\\ \{\text{definition of }\mathcal{D}_0^+\}\\ =\left(g\circ f,\mathcal{D}\left(g\circ f\right)\right)\\ \{\text{theorem and definition of }g\circ f\}\\ =\left(\lambda a\to g(f\,a),\lambda a\to \mathcal{D}\,g\,(f\,a)\circ\mathcal{D}\,f\,a\right) \end{array}$$

Unfortunately the previous theorem isn't a efficient recipe for composition. As such we will introduce a second derivate definition:

$$\mathcal{D}_0^+ :: (a \to b) \to ((a \to b) \times (a \to (a \multimap b)))$$

$$\mathcal{D}_0^+ f = (f, \mathcal{D} f)$$

With this, the chain rule will have the following expression:

$$\begin{array}{l} \mathcal{D}_0^+\left(g\circ f\right) \\ \{\text{definition of }\mathcal{D}_0^+\} \\ = \left(g\circ f,\mathcal{D}\left(g\circ f\right)\right) \\ \{\text{theorem and definition of }g\circ f\} \\ = \left(\lambda a \to g(f\,a), \lambda a \to \mathcal{D}\,g\,(f\,a)\circ\mathcal{D}\,f\,a\right) \end{array}$$

Having in mind optimizations, we introduce the third and last derivate definition:

$$\mathcal{D}^+ :: (a \to b) \to (a \to (b \times (a \multimap b)))$$

$$\mathcal{D}^+ f a = (f a, \mathcal{D} f a)$$

As imes has more priority than o and o, we can rewrite \mathcal{D}^+ as:

$$\mathcal{D}^+ :: (a \to b) \to (a \to b \times (a \multimap b))$$

 $\mathcal{D}^+ f a = (f a, \mathcal{D} f a)$

Having in mind optimizations, we introduce the third and last derivate definition:

$$\mathcal{D}^+ :: (a \to b) \to (a \to (b \times (a \multimap b)))$$

$$\mathcal{D}^+ f a = (f a, \mathcal{D} f a)$$

As \times has more priority than \to and \multimap , we can rewrite \mathcal{D}^+ as:

$$\mathcal{D}^+ :: (a \to b) \to (a \to b \times (a \multimap b))$$

 $\mathcal{D}^+ f a = (f a, \mathcal{D} f a)$

Corollary

 \mathcal{D}^+ is efficiently compositional in relation to (\circ) , that is, in Haskell:

$$\mathcal{D}^+ \ (g \circ f) \ a = \text{let} \ \{(b,f') = \mathcal{D}^+ \ f \ a; (c,g') = \mathcal{D}^+ \ g \ b\}$$
$$\text{in} \ (c,g' \circ f')$$

Rules for Differentiation - Parallel Composition

Another important way of combining functions is the operation cross, that combines two functions in parallel:

$$(\times) :: (a \to c) \to (b \to d) \to (a \times b \to c \times d)$$
$$f \times g = \lambda(a, b) \to (f \ a, g \ b)$$

Theorem

Let $f :: a \to c$ and $g :: b \to d$ be two function. Then the cross rule is the following:

$$\mathcal{D}(f \times g)(a, b) = \mathcal{D}f \ a \times \mathcal{D}g \ b$$

Rules for Differentiation - Parallel Composition

Another important way of combining functions is the operation cross, that combines two functions in parallel:

$$(\times) :: (a \to c) \to (b \to d) \to (a \times b \to c \times d)$$
$$f \times g = \lambda(a, b) \to (f \ a, g \ b)$$

Theorem

Let $f :: a \to c$ and $g :: b \to d$ be two function. Then the cross rule is the following:

$$\mathcal{D}(f \times g)(a, b) = \mathcal{D}f \ a \times \mathcal{D}g \ b$$

Rules for Differentiation - Parallel Composition

Corollary

The function \mathcal{D}^+ is compositional in relation to (\times)

$$\mathcal{D}^+ \; (f \times g) \; (a,b) = \textbf{let} \; \{ (c,f') = \mathcal{D}^+ \; f \; a; (d,g') = \mathcal{D}^+ \; g \; b \}$$

$$\textbf{in} \; ((c,d),f' \times g')$$

Derivative and Linear Functions

Definition

A function f is said to be linear when preserves addition and scalar multiplication.

$$f(a + a') = f a + f a'$$

 $f(s \cdot a) = s \cdot f a$

Theorem

For all linear functions f, $\mathcal{D} f$ a = f.

Corollary

For all linear functions f, $\mathcal{D}^+ f = \lambda a \rightarrow (fa, f)$

Derivative and Linear Functions

Definition

A function f is said to be linear when preserves addition and scalar multiplication.

$$f(a+a') = f a + f a'$$

 $f(s \cdot a) = s \cdot f a$

Theorem

For all linear functions f, $\mathcal{D} f$ a = f.

Corollary

For all linear functions f, $\mathcal{D}^+ f = \lambda a \rightarrow (fa, f)$

Derivative and Linear Functions

Definition

A function f is said to be linear when preserves addition and scalar multiplication.

$$f(a+a') = f a + f a'$$

 $f(s \cdot a) = s \cdot f a$

Theorem

For all linear functions f, $\mathcal{D} f$ a = f.

Corollary

For all linear functions f, $\mathcal{D}^+ f = \lambda a \rightarrow (fa, f)$.

- We want to calculate \mathcal{D} .
- However, \mathcal{D} is not computable.
- Solution: reimplement corollaries using category theory

- We want to calculate \mathcal{D} .
- However, \mathcal{D} is not computable.
- Solution: reimplement corollaries using category theory

- We want to calculate \mathcal{D} .
- However, \mathcal{D} is not computable.
- Solution: reimplement corollaries using category theory

Corollary 1.1

$$\mathcal{D}^+ \ (g \circ f) \ a = \text{let} \ \{(b,f') = \mathcal{D}^+ \ f \ a; (c,g') = \mathcal{D}^+ \ g \ b\}$$
 in $(c,g' \circ f')$

Corollary 2.1

$$\mathcal{D}^+ \; (f \times g) \; (a,b) = \textbf{let} \; \{ (c,f') = \mathcal{D}^+ \; f \; a; (d,g') = \mathcal{D}^+ \; g \; b \}$$

$$\textbf{in} \; ((c,d),f' \times g')$$

Corollary 3.1

For all linear functions f, $\mathcal{D}^+ f = \lambda a \rightarrow (fa, f)$.

Categories

A category is a collection of objects (sets and types) and morphisms(operation between objects), with 2 basic operations (identity and composition) of morfisms, and 2 laws:

- (C.1) $id \circ f = f \circ id = f$
- (C.2) $f \circ (g \circ h) = (f \circ g) \circ h$

Note

For this paper, objects are data types and morfisms are functions

class Category k where

$$id :: (a'k'a)$$

 $(\circ) :: (b'k'c) \rightarrow (a'k'b) \rightarrow (a'k'c)$

instance Category
$$(\rightarrow)$$
 where

$$id = \lambda a \rightarrow a$$

 $g \circ f = \lambda a \rightarrow g (f a)$

Functors

A functor F between 2 categories \mathcal{U} and \mathcal{V} is such that:

- given any object $t \in \mathcal{U}$ there exists an object F $t \in \mathcal{V}$
- given any morphism m :: a \rightarrow b \in $\mathcal U$ there exists a morphism F m :: F a \rightarrow F b \in $\mathcal V$
- F id $(\in \mathcal{U})$ = id $(\in \mathcal{V})$
- $F(f \circ g) = Ff \circ Fg$

Note

Given this papers category properties (objects are data types) functors map types to themselves

Objective

\mathcal{D} definition

newtype
$$\mathcal{D}$$
 a b = \mathcal{D} $(a \rightarrow b \times (a \multimap b))$

Adapted definition for \mathcal{D} type

$$\hat{\mathcal{D}}$$
 :: $(\mathbf{a} \to \mathbf{b}) \to \mathcal{D}$ \mathbf{a} \mathbf{b} $\hat{\mathcal{D}}$ $\mathbf{f} = \mathcal{D} (\mathcal{D}^+ \mathbf{f})$

Our objective is to deduce an instance of a Category for $\mathcal D$ where $\hat{\mathcal D}$ is a functor.

Using corollaries 3.1 and 1.1 we can determine that

- (DP.1) \mathcal{D}^+ $id = \lambda a \rightarrow (id \ a, id)$
- (DP.2)

$$\mathcal{D}^+ (g \circ f) = \lambda \mathbf{a} \to \mathbf{let} \ \{ (b, f') = \mathcal{D}^+ \ f \ \mathbf{a}; (c, g') = \mathcal{D}^+ \ g \ b \}$$
$$\mathbf{in} \ (c, g' \circ f')$$

Saying that $\hat{\mathcal{D}}$ is a functor is equivalent to, for all f and g functions of apropriate types:

$$id = \hat{\mathcal{D}} id = \hat{\mathcal{D}} (\hat{\mathcal{D}}^+ id)$$

 $\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f = \hat{\mathcal{D}} (g \circ f) = \mathcal{D} (\hat{\mathcal{D}} (g \circ f))$

Based on (DP.1) and (DP.2) we'll rewrite the above into the following definition:

$$egin{aligned} id &= \mathcal{D} \ (\lambda a
ightarrow (id \ a, id)) \ \hat{\mathcal{D}} \ g \circ \hat{\mathcal{D}} \ f &= \mathcal{D} \ (\lambda a
ightarrow \mathbf{let} \ \{(b, f') = \mathcal{D}^+ \ f \ a; (c, g') = \mathcal{D}^+ \ g \ b\} \ \mathbf{in} \ (c, g' \circ f')) \end{aligned}$$

The first equation shown above has a trivial solution.

To solve the second we'll first solve a more general one $\mathcal{D} g \circ \mathcal{D} f = \mathcal{D} (\lambda a \to \text{let } \{(b, f') = f \ a; (c, g') = g \ b\} \text{ in } (c, g' \circ f'))$

This condition also leads us to a trivial solution inside our instance.

Based on (DP.1) and (DP.2) we'll rewrite the above into the following definition:

$$egin{aligned} id &= \mathcal{D} \ (\lambda a
ightarrow (id \ a, id)) \ \hat{\mathcal{D}} \ g \circ \hat{\mathcal{D}} \ f &= \mathcal{D} \ (\lambda a
ightarrow \mathbf{let} \ \{(b, f') = \mathcal{D}^+ \ f \ a; (c, g') = \mathcal{D}^+ \ g \ b\} \ \mathbf{in} \ (c, g' \circ f')) \end{aligned}$$

The first equation shown above has a trivial solution.

To solve the second we'll first solve a more general one $\mathcal{D} g \circ \mathcal{D} f = \mathcal{D} (\lambda a \to \text{let } \{(b, f') = f \ a; (c, g') = g \ b\} \text{ in } (c, g' \circ f'))$

This condition also leads us to a trivial solution inside our instance.

Based on (DP.1) and (DP.2) we'll rewrite the above into the following definition:

$$egin{aligned} id &= \mathcal{D} \ (\lambda a
ightarrow (id \ a, id)) \ \hat{\mathcal{D}} \ g \circ \hat{\mathcal{D}} \ f &= \mathcal{D} \ (\lambda a
ightarrow \ \text{let} \ \{(b, f') = \mathcal{D}^+ \ f \ a; (c, g') = \mathcal{D}^+ \ g \ b\} \ \text{in} \ (c, g' \circ f')) \end{aligned}$$

The first equation shown above has a trivial solution.

To solve the second we'll first solve a more general one:

$$\mathcal{D} \ g \circ \mathcal{D} \ f = \mathcal{D} \ (\lambda a \rightarrow \text{let } \{(b, f') = f \ a; (c, g') = g \ b\} \ \text{in} \ (c, g' \circ f'))$$

This condition also leads us to a trivial solution inside our instance.

$\hat{\mathcal{D}}$ definition for linear functions

linearD ::
$$(a \rightarrow b) \rightarrow \mathcal{D}$$
 a b linearD $f = \mathcal{D} (\lambda a \rightarrow (f \ a, f))$

Categorical instance we've deduced

instance $Category \mathcal{D}$ where

$$id = linearD id$$

 $\mathcal{D} g \circ \mathcal{D} f =$

$$\mathcal{D}\left(\lambda a \rightarrow \text{let }\{(b,f')=f \text{ } a;(c,g')=g \text{ } b\} \text{ in } (c,g'\circ f')\right)$$

Instance proof

In order to prove that the instance is correct we must check if it follows laws (C.1) and (C.2).

First we must make a concession: that we only use morfisms arising from \mathcal{D}^+ . If we do, then \mathcal{D}^+ is a functor.

(C.1) proof

```
\begin{split} & \text{id} \circ \hat{\mathcal{D}} \\ & \{ \text{ functor law for id (specification of } \hat{\mathcal{D}}) \, \} \\ & = \hat{\mathcal{D}} \, \text{id} \circ \hat{\mathcal{D}} \, \text{f} \\ & \{ \text{ functor law for } (\circ) \, \} \\ & = \hat{\mathcal{D}} \, (\text{id} \circ \text{f}) \\ & \{ \text{ categorical law } \} \\ & = \hat{\mathcal{D}} \, \text{f} \end{split}
```

Instance proof

(C.2) proof

```
\hat{\mathcal{D}} \ h \circ (\hat{\mathcal{D}} \ g \circ \hat{\mathcal{D}} \ f)
{ 2x functor law for (o) }
= \hat{\mathcal{D}} \ (h \circ (g \circ f))
{ categorical law }
= \hat{\mathcal{D}} \ ((h \circ g) \circ f)
{ 2x functor law for (o) }
= (\hat{\mathcal{D}} \ h \circ \hat{\mathcal{D}} \ g) \circ \hat{\mathcal{D}} \ f
```

Note

This proofs don't require anything from \mathcal{D} and $\hat{\mathcal{D}}$ aside from functor laws. As such, all other instances of categories created from a functor won't require further proving like this one did.

Monoidal categories and functors

Generalized parallel composition shall be defined using a monoidal category:

class Category
$$k \Rightarrow$$
 Monoidal k where $(\times) :: (a' k' c) \rightarrow (b' k' d) \rightarrow ((a \times b)' k' (c \times d))$ instance Monoidal (\rightarrow) where $f \times g = \lambda(a, b) \rightarrow (f a, g b)$

Monoidal Functor definition

A monoidal functor F between categories $\mathcal U$ and $\mathcal V$ is such that:

- F is a functor
- $F(f \times q) = Ff \times Fq$

From corollary 2.1 we can deduce that:

$$\mathcal{D}^+ \ (f \times g) = \lambda(a,b) \rightarrow \text{let} \ \{(c,f') = \mathcal{D}^+ \ f \ a; (d,g') = \mathcal{D}^+ \ g \ b\}$$
 in $((c,d),f' \times g')$

Deriving F from $\hat{\mathcal{D}}$ leaves us with the following definition:

$$\mathcal{D}\left(\mathcal{D}^{+}|f
ight) imes\mathcal{D}\left(\mathcal{D}^{+}|g
ight)=\mathcal{D}\left(\mathcal{D}^{+}|(f imes g)
ight)$$

Using the same method as before, we replace \mathcal{D}^+ with it's definition and generalize the condition:

$$\mathcal{D} f \times \mathcal{D} g =$$

$$\mathcal{D}(\lambda(a,b) \to \text{let } \{(c,f') = f \text{ } a; (d,g') = g \text{ } b\} \text{ in } ((c,d),f' \times g'))$$
 and this is enough for our new instance

From corollary 2.1 we can deduce that:

$$\mathcal{D}^+ \ (f \times g) = \lambda(a,b) \rightarrow \text{let} \ \{(c,f') = \mathcal{D}^+ \ f \ a; (d,g') = \mathcal{D}^+ \ g \ b\}$$
 in $((c,d),f' \times g')$

Deriving F from $\hat{\mathcal{D}}$ leaves us with the following definition:

$$\mathcal{D}\left(\mathcal{D}^{+}|f
ight) \times \mathcal{D}\left(\mathcal{D}^{+}|g
ight) = \mathcal{D}\left(\mathcal{D}^{+}|(f \times g)\right)$$

Using the same method as before, we replace \mathcal{D}^+ with it's definition and generalize the condition:

$$\mathcal{D} f \times \mathcal{D} g =$$

 $\mathcal{D}(\lambda(a,b) \to \text{let } \{(c,f') = f \text{ } a; (d,g') = g \text{ } b\} \text{ in } ((c,d),f' \times g'))$ and this is enough for our new instance.

From corollary 2.1 we can deduce that:

$$\mathcal{D}^+ \ (f \times g) = \lambda(a,b) \rightarrow \text{let} \ \{(c,f') = \mathcal{D}^+ \ f \ a; (d,g') = \mathcal{D}^+ \ g \ b\}$$
 in $((c,d),f' \times g')$

Deriving F from $\hat{\mathcal{D}}$ leaves us with the following definition:

$$\mathcal{D}\left(\mathcal{D}^{+} f\right) imes \mathcal{D}\left(\mathcal{D}^{+} g\right) = \mathcal{D}\left(\mathcal{D}^{+} \left(f imes g\right)\right)$$

Using the same method as before, we replace \mathcal{D}^+ with it's definition and generalize the condition:

$$\mathcal{D}\ f \times \mathcal{D}\ g = \mathcal{D}\ (\lambda(a,b) \to \mathbf{let}\ \{(c,f') = f\ a; (d,g') = g\ b\}\ \mathbf{in}\ ((c,d),f' \times g'))$$
 and this is enough for our new instance.

Categorical instance we've deduced

instance Monoidal \mathcal{D} where

$$\mathcal{D} \ f \times \mathcal{D} \ g = \mathcal{D} \ (\lambda(a,b) \to \text{let} \ \{(c,f') = f \ a; (d,g') = g \ b\}$$
 in $((c,d),f' \times g'))$

Cartesian categories and functors

```
class Monoidal k \Rightarrow Cartesian k where exl :: (a, b) ' k' a exr :: (a, b) ' k' b dup :: a ' k' (a, a) instance Cartesian (\rightarrow) where exl = \lambda(a, b) \rightarrow a exr = \lambda(a, b) \rightarrow b dup = \lambda a \rightarrow (a, a)
```

A cartesian functor F between categories $\mathcal U$ and $\mathcal V$ is such that:

- F is a monoidal functor
- F exl = exl
- F exp = exp
- F dup = dup

From corollary 3.1 and from exl, exr and dup being linear functions we can deduce that:

$$\mathcal{D}^{+}$$
 exl = $\lambda p \rightarrow$ (exl p, exl)
 \mathcal{D}^{+} exr = $\lambda p \rightarrow$ (exr p, exr)
 \mathcal{D}^{+} dup = $\lambda p \rightarrow$ (dup a, dup)

With this in mind we can arrive at our instance:

$$exl = \mathcal{D} (\mathcal{D}^+ exl)$$

 $exr = \mathcal{D} (\mathcal{D}^+ exr)$
 $dup = \mathcal{D} (\mathcal{D}^+ dup)$

Replacing \mathcal{D}^+ with it's definition and remembering linearD's definition we can obtain:

```
exl = linearD exl
```

exr = linearD exr

dup = linearD dup

and convert this directly into a new instance:

Categorical instance we've deduced

instance Cartesian D where

exl = linearD exl

exr = linearD exr

dup = linearD dup

Cocartesian category

This type of categories is the dual of the cartesian type of categories.

Note

In this paper coproducts are categorical products, i.e., biproducts

Definition

```
class Category k \Rightarrow Cocartesian k where inl :: a' k' (a,b) inr :: b' k' (a,b) jam :: (a,a)' k' a
```

Cocartesian functors

Cocartesian functor definition

A cocartesian functor F between categories $\mathcal U$ and $\mathcal V$ is such that:

- F is a functor
- F inl = inl
- F inr = inr
- F jam = jam

Fork and Join

- Δ :: Cartesian $k \Rightarrow (a' k' c) \rightarrow (a' k' d) \rightarrow (a' k' (c \times d))$
- ∇ :: Cartesian $k \Rightarrow (c' k' a) \rightarrow (d' k' a) \rightarrow ((c \times d)' k' a)$

Instance of \rightarrow^+

```
newtype a \rightarrow^+ b = AddFun (a \rightarrow b)
instance Category (\rightarrow^+) where
  type Obj (\rightarrow^+) = Additive
  id = AddFun id
  AddFun g \circ AddFun f = AddFun (g \circ f)
instance Monoidal (\rightarrow^+) where
  AddFun f \times AddFun \ g = AddFun \ (f \times g)
instance Cartesian (\rightarrow^+) where
  exl = AddFun exl
  exr = AddFun exr
  dup = AddFun dup
```

Instance of \rightarrow^+

```
instance Cocartesian (\rightarrow^+) where
   inl = AddFun inlF
   inr = AddFun inrF
   iam = AddFun jamF
in F · · Additive b \Rightarrow a \rightarrow a \times b
inrF :: Additive a \Rightarrow b \rightarrow a \times b
jamF :: Additive \ a \Rightarrow a \times a \rightarrow a
inlF = \lambda a \rightarrow (a, 0)
inrF = \lambda b \rightarrow (0, b)
iamF = \lambda(a,b) \rightarrow a+b
```

NumCat definition

```
class NumCat k a where
  negateC :: a ' k ' a
  addC :: (a \times a) \cdot k \cdot a
  mulC :: (a \times a) \cdot k \cdot a
instance Num a \Rightarrow NumCat (\rightarrow) a where
  negateC = negate
  addC = uncurry(+)
  mulC = uncurry(*)
```

$$\mathcal{D}$$
 (negate u) = negate (\mathcal{D} u)
 \mathcal{D} ($u + v$) = \mathcal{D} $u + \mathcal{D}$ v
 \mathcal{D} ($u * v$) = $u * \mathcal{D}$ $v + v * \mathcal{D}$ u

- Imprecise on the nature of u and v.
- A precise and simpler definition would be to differentiate the operations themselves.

```
class Scalable k a where
  scale :: a \rightarrow (a' k' a)
instance Num a \Rightarrow Scalable (\rightarrow^+) a where
   scale a = AddFun (\lambda da \rightarrow a * da)
instance NumCat D where
  negateC = linearD negateC
  addC = linearD addC
  mulC = D(\lambda(a,b) \rightarrow (a*b, scale b \nabla scale a))
instance FloatingCat D where
  sinC = D (\lambda a \rightarrow (sin \ a, scale (cos \ a)))
  cosC = D (\lambda a \rightarrow (cos \ a, scale (-sin \ a)))
  expC = D \ (\lambda a \rightarrow let \ e = exp \ a \ in \ (e, scale \ e))
```

Examples

```
sqr :: Num \ a \Rightarrow a \rightarrow a

sqr \ a = a * a

magSqr :: Num \ a \Rightarrow a \times a \rightarrow a

magSqr \ (a,b) = sqr \ a + sqr \ b

cosSinProd :: Floating \ a \Rightarrow a \times a \rightarrow a \times a

cosSinProd \ (x,y) = (cos \ z, sin \ z) where z = x * y
```

With a compiler plugin we can obtain

```
sqr = mulC \circ (id \Delta id)

magSqr = addC \circ (mulC \circ (exl \Delta exl) \Delta mulC \circ (exr \Delta exr))

cosSinProd = (cosC \Delta sinC) \circ mulC
```

Generalizing Automatic Differentiation

```
newtype D_k a b = D (a \rightarrow b \times (a \cdot k \cdot b))
linearD :: (a \rightarrow b) \rightarrow (a' k' b) \rightarrow D_k a b
linearD f f' = D (\lambda a \rightarrow (f a, f'))
instance Category k \Rightarrow Category D_k where
  type Obj D_k = Additive \wedge Obj k ...
instance Monoidal k \Rightarrow Monoidal D_k where ...
instance Cartesian k \Rightarrow Cartesian D_k where ...
instance Cocartesian k \Rightarrow Cocartesian D_k where
  inl = linearD inlF inl
  inr = linearD inrF inr
  iam = linearD jamF jam
```

```
instance Scalable k \ s \Rightarrow NumCat \ D_k \ s where negateC = linearD \ negateC \ negateC addC = linearD \ addC \ addC mulC = D \ (\lambda(a,b) \rightarrow (a*b,scale \ b \ \nabla \ scale \ a))
```

Matrices

There exists three, non-exclusive, possibilities for a nonempty matrix W:

- width W = height W = 1;
- W is the horizontal juxtaposition of two matrices U and V, where height W = height U = height V and width W = width U + width V;
- W is the vertical juxtaposition of two matrices U and V, where width W = width U = width V and height W = height U + height V.

Extracting a Data Representation

In machine learning, a Gradient-based optimization works by searching for local minima in the domain of a differentiable function $f:: a \to s$. Each step in the search is in the direction opposite of the gradient of f, which is a vector form of \mathcal{D} f.

Given a linear map $f' :: U \multimap V$ represented as a function, it is possible to extract a Jacobian matrix by applying f to every vector in a basis of U.

Extracting a Data Representation

In machine learning, a Gradient-based optimization works by searching for local minima in the domain of a differentiable function $f:: a \to s$. Each step in the search is in the direction opposite of the gradient of f, which is a vector form of \mathcal{D} f.

Given a linear map $f' :: U \multimap V$ represented as a function, it is possible to extract a Jacobian matrix by applying f to every vector in a basis of U.

Generalized Matrices

Given a scalar field s, a free vector space has the form $p \to s$ for some p, where the cardinality of p is the dimension of the vector space and there exists a finite number of values for p.

In particular, we can represent vector spaces over a given field as a representable functor, i.e., a functor F such that:

$$\exists p \ \forall s \ F \ s \cong p \rightarrow s$$

Generalized Matrices

Given a scalar field s, a free vector space has the form $p \to s$ for some p, where the cardinality of p is the dimension of the vector space and there exists a finite number of values for p.

In particular, we can represent vector spaces over a given field as a representable functor, i.e., a functor F such that:

$$\exists p \ \forall s \ F \ s \cong p \rightarrow s$$

- In chapter 4 we've derived an AD algorithm that was generalized in figure 6 of the document
- With fully right-associated compositions this algorithm becomes a foward-mode AD and with fully left-associated becomes a reverse-mode AD
- We want to obtain generalized FAD and RAD algorithms
- How do we describe this in Categorical notation?

- In chapter 4 we've derived an AD algorithm that was generalized in figure 6 of the document
- With fully right-associated compositions this algorithm becomes a foward-mode AD and with fully left-associated becomes a reverse-mode AD
- We want to obtain generalized FAD and RAD algorithms
- How do we describe this in Categorical notation?

- In chapter 4 we've derived an AD algorithm that was generalized in figure 6 of the document
- With fully right-associated compositions this algorithm becomes a foward-mode AD and with fully left-associated becomes a reverse-mode AD
- We want to obtain generalized FAD and RAD algorithms
- How do we describe this in Categorical notation?

- In chapter 4 we've derived an AD algorithm that was generalized in figure 6 of the document
- With fully right-associated compositions this algorithm becomes a foward-mode AD and with fully left-associated becomes a reverse-mode AD
- We want to obtain generalized FAD and RAD algorithms
- How do we describe this in Categorical notation?

Converting morfisms

Given a category k we can represent its morfisms the following way:

Left-Compose functions

 $f :: a' k' b \Rightarrow (\circ f) :: (b' k' r) \rightarrow (a' k' r)$ where r is any object of k.

If h is the morfism we'll compose with f then h is the continuation of f.

Defining new type

newtype
$$Cont_r^k$$
 a b = $Cont$ $((b ' k' r) \rightarrow (a ' k' r))$

Functor derived from type

cont :: Category
$$k \Rightarrow (a' k' b) \rightarrow Cont_r^k a b$$
 cont $f = Cont(\circ f)$

scale s = Cont (scale s)

```
instance Category k \Rightarrow Category Cont_r^k where
  id = Cont id
  Cont g \circ Cont f = Cont (f \circ g)
instance Monoidal k \Rightarrow Monoidal\ Cont_r^k where
  Conf f \times Cont g = Cont (join \circ (f \times g) \circ unjoin)
instance Cartesian k \Rightarrow Cartesian Cont_r^k where
  exl = Cont (join \circ inl); exr = Cont (join \circ inr)
  dup = Cont (iam \circ unjoin)
instance Cocartesian k \Rightarrow Cocartesian Cont_r^k where
  inl = Cont (exl \circ unjoin); inr = Cont (exr \circ unjoin)
  iam = Cont (ioin \circ dup)
instance Scalable k a \Rightarrow Scalable Cont_r^k a where
```

Due to it's widespread use in ML we'll talk about a specific case of RAD: computing gradients(derivatives of functions with scalar codomains)

A vector space A over a scalar field has A \multimap s as its dual. Each linear map in A \multimap s can be represented in the form of dot u for some u :: A where

Definition and instanciation

```
class HasDot(S) u where dot :: u \rightarrow (u \multimap s) instance HasDot(IR) IR where dot = scale instance (HasDot(S) \ a, HasDot(S) \ b) \Rightarrow HasDot(S) \ (a \times b) where dot(u, v) = dot \ u \ \Delta \ dot \ v
```

The internal representation of $Cont_{-\infty}^s$ a b is $(b \multimap s) \to (a \multimap s)$ which is isomorfic to $(a \to b)$.

Type definition for duality

newtype Dual
$$(K)$$
 a $b = Dual (b' k' a)$

All we need to do to create dual representations of linear maps is to convert from $Cont_k^S$ to $Dual_k$ using a functor:

Functor definition

asDual :: (HasDot (S) a, HasDot (S) b)
$$\Rightarrow$$
 ((b \multimap s) \rightarrow (a \multimap s)) \rightarrow (b \multimap a) asDual (Cont f) = Dual (onDot f)

where

onDot :: (HasDot (S) a, HasDot (S) b)
$$\Rightarrow$$
 ((b \multimap s) \rightarrow (a \multimap s)) \rightarrow (b \multimap a) onDot $f = dot^{-1} \circ f \circ dot$

```
instance Category k \Rightarrow Category Dual_k where
  id = Dual id
  Dual g \circ Dual f = Dual (f \circ g)
instance Monoidal k \Rightarrow Monoidal Dual<sub>k</sub> where
  Dual f \times Dual g = Dual (f \times g)
instance Cartesian k \Rightarrow Cartesian Dual<sub>k</sub> where
  exl = Dual inl: exr = Dual inr
  dup = Dual iam
instance Cocartesian k \Rightarrow Cocartesian Dual_k where
  inl = Dual \ exl: inr = Dual \ exr
  iam = Dual dup
instance Scalable k \Rightarrow Scalable Dual_k where
  scale s = Dual (scale s)
```

Final notes

- (∇) and (Δ) mutually dualize $(\textit{Dual } f \ \nabla \ \textit{Dual } g) = \textit{Dual } (f \ \Delta \ g)$ and $\textit{Dual } f \ \Delta \ \textit{Dual } g = \textit{Dual } (f \ \nabla \ g))$
- Using the definition from chapter 8 we can determine that the duality of a matrix corresponds to it's transposition

Fowards-mode Automatic Differentiation(FAD)

We can use the same deductions we've done in Cont and Dual to derive a category with full right-side association, thus creating a generized FAD algorithm.

This algorithm is far more apropriated for low dimention domains.

Type definition and functor from type

newtype
$$Begin_r^k$$
 $a \ b = Begin ((r' k' a) \rightarrow (r' k' b))$
 $begin :: Category \ k \Rightarrow (a' k' b) \rightarrow Begin_r^k \ a \ b$
 $begin \ f = Begin \ (f \circ)$

We can derive categorical instances from the functor above and we can choose r to be the scalar field s, noting that $s \multimap a$ is isomorfic to a.

- Practical applications often involves high-dimensional spaces.
- Binary products are a very inefficient and unwieldy way of encoding high-dimensional spaces.
- A practical alternative is to consider n-ary products as representable functors(?)

```
class Category k \Rightarrow Monoidall k h where crossl :: h(a'k'b) \rightarrow (ha'k'hb) instance Zip h \Rightarrow Monoidall (\rightarrow) h where crossl = zipWith id
```

```
class Monoidall k h \Rightarrow Cartesianl k h where exl :: h (h a ' k ' a) repll :: a ' k ' h a class (Representable h, Zip h, Pointed h) \Rightarrow Cartesianl (\rightarrow) h where exl = tabulate (flip index) repll = point
```

The following is not the class the author was thinking

```
class Representable h where type Rep h :: * tabulate :: (Rep h \rightarrow a) \rightarrow h a index :: h a \rightarrow Rep h \rightarrow a
```

```
iaml :: h a ' k ' a
instance (Monoidall k h, Zip h) \Rightarrow Monoidall D<sub>k</sub> h where
  crossl fs = D((id \times crossl) \circ unzip \circ crossl(fmap unD fs))
instance (Cocartesianl (\rightarrow) h, Cartesianl k h, Zip h) \Rightarrow
  Cartesianl Dk h where
  exl = linearD exl exl
  repll = zipWith linearD repll repll
instance (Cocartesianl k h, Zip h) \Rightarrow Cocartesianl D_k h where
  inl = zipWith linearD inIF inl
  jaml = linearD sum jaml
```

class Monoidall k $h \Rightarrow Cocartesianl k h$ where

inl :: h (a ' k ' h a)

```
inl :: h (a ' k ' h a)
  iaml :: h a ' k ' a
instance (Monoidall k h, Zip h) \Rightarrow Monoidall D<sub>k</sub> h where
  crossI fs = D ((id \times crossI) \circ unzip \circ crossI (fmap unD fs))
instance (Cocartesianl (\rightarrow) h, Cartesianl k h, Zip h) \Rightarrow
  Cartesianl Dk h where
  exI = zipWith\ linearD\ exI\ exI
  repll = linearD repll repll
instance (Cocartesianl k h, Zip h) \Rightarrow Cocartesianl D_k h where
  inl = zipWith linearD inIF inl
  jaml = linearD sum jaml
```

class Monoidall k $h \Rightarrow Cocartesianl k h$ where

- Suggests that some of the work refered does just a part of this paper.
- This paper was a continuation of the [Elliot 2017]
- Suggests that this implementation is simple, efficient, it can free memory dinamically (RAD) and is naturally parallel.
- Future work are detailed performace analysis; higher-order differentiation and automatic incrementation (continuing previous work [Elliot 2017])