Κατασκευή Έξυπνης, Τηλεχειριζόμενης Κλειδαριάς Θυροτηλεφώνου με χρήση Τεχνολογιών Αιχμής

Πανεπιστήμιο Πειραιώς

Κυριάχος Δ. Γιαννάχης

Day Τεστ Year

Abstract

TODO

Contents

1	$\mathrm{E} \iota \sigma$	αγωγή
	1.1	Internet of Things
	1.2	Αυτοματισμοί Σπιτιού - Home Automation
	1.3	Σχοπός του PiLock
2	Δομή του PiLock	
	2.1	Σύντομη Περιγραφή Λογισμικού Εξυπηρετητή - PiLock Server .
		Σύντομη Περιγραφή Λογισμικού Πελάτη - PiLock Client
	2.3	Υλιχό - Hardware

Chapter 1

Εισαγωγή

Στον σημερινό κόσμο, οι τεχνολογικές μας ανάγκες γίνονται ολοένα και πιο πολύπλοκες. Κάθε μέρα βγαίνουν στην επιφάνεια νέες τεχνολογικές διευκολύνσεις για τον άνθρωπο, σκοπός των οποίων είναι να κάνουν την διαβίωσή του πιο "έξυπνη", δίνοντάς του τον μέγιστο έλεγχο σε κάθε σημείο της ζωής του. Με την άνθιση του internet of things, γίνεται εύκολη η διασύνδεση πολλών συσκευών (από την μικρότερη ως την μεγαλύτερη), με σκοπό τον έλεγχό τους απομακρυσμένα.

Σκοπός της παρούσας πτυχιακής εργασίας είναι να περιγράψει την πλήρη διαδικασία του σχεδιασμού και υλοποίησης ενός συστήματος ελέγχου κλειδαριάς σπιτιού/γραφείου, γνωστό ως PiLock.

Η εφαρμογή υλοποιήθηκε, στο μεγαλύτερο μέρος της, χρησιμοποιόντας λογισμικό τελευταίας τεχνολογίας, πράγμα που μας εγγυάται την μέγιστη ευελιξία όσων αφορά την ανάπτυξη, πράγμα που ισοδυναμεί με μέγιστη ταχύτητα ανάπτυξης και αυξημένη ασφάλεια.

1.1 Internet of Things

Ο όρος "Internet of Things" (IoT) χρησιμοποιήθηκε πρώτη φορά από τον Kevin Ashton το 1999 σε μία παρουσίασή του στην Procter & Gamble (P&G) [1]. Ο όρος επινοήθηκε προκειμένου να μπορεί να τονιστεί η δύναμη της (τότε) δημοφιλούς ιδέας της χρήσης της τεχνολογίας RFID σε συστήματα εφοδιαστικών αλυσίδων εταιριών για παρακολούθηση εμπορευμάτων. Πλέον, ο όρος Internet of Things χρησιμοποιείται προκειμένου να χαρακτηριστούν συσκευές

(μικρές ή μεγάλες) με δυνατότητα σύνδεσης στο Internet. Κάποια παραδείγματα είναι τα αυτοκίνητα με ενσωματομένους αισθητήρες, τα έξυπνα σπίτια (τα οποία αποτελούνται από μια πληθώρα έξυπνων συσκευών), καθώς επίσης και συγκεκριμένες συσκευές παρακολούθησης υγείας (όπως πχ. συσκευές παρακολούθησης καρδιακού ρυθμού) με δυνατότητα σύνδεσης στο διαδίκτυο.

Οι δυνατότητες που έχουν οι συγκεκριμένες συσκευές τις καθιστούν ικανές για σύνδεση στο internet, και κατ'επέκταση, αυξάνουν σημαντικά τις λειτουργίες τους, προσδίδοντας μεγαλύτερο έλεγχο στον χρήστη.

1.2 Αυτοματισμοί Σπιτιού - Home Automation

Μία από τις πιο σημαντικές υποκατηγορίες των συσκευών Internet of Things είναι οι συσκευές αυτοματισμού σπιτιών (Home Automation Devices, Domotics [2]). Οι συσκευές αυτές δίνουν στον χρήστη τους την δυνατότητα να διαχειριστεί διάφορες συσκευές του σπιτιού/γραφείου του. Οι συσκευές αυτές μπορεί να είναι συσκευές κλιματισμού, φωτισμός, συστήματα διασκέδασης (Home Theaters, Music Stereos, κτλ...), καθώς επίσης και συστήματα συναγερμού ή και διαχείρησης πρόσβασης. Το PiLock ανήκει στην τελευταία αυτή κατηγορία.

Συνήθως, οι συσκευές αυτές συνδέονται σε ένα κεντρικό κόμβο (Hub) προκειμένου να ελέγχονται όλες από ένα μοναδικό σημείο. Η δυνατότητα αυτή μπορεί να προστεθεί σε μία επόμενη έκδοση του PiLock (βλ. μελλοντικά σχέδια). Την παρούσα χρονική στιγμή, δεν υπάρχει αυτή η δυνατότητα.

1.3 Σχοπός του PiLock

Το PiLock ανήκει στην κατηγορία συσκευών "έξυπνου σπιτιού" (Smart Home). Σκοπός του είναι να παρέχει στον χρήστη την δυνατότητα να ξεκλειδώνει εύκολα την εξώπορτα/πόρτα του σπιτιού/γραφείου του, μέσω του Smart-Phone ή του SmartWatch του, όλα αυτά χρησιμοποιόντας το ασφαλέστερο δυνατόν περιβάλλον, προκειμένου να αποφευχθεί εισβολή τρίτων.

Μέσω του PiLock Administration Control Panel (PiLock AdminCP), δίνουμε στον διαχειριστή του συστήματος ένα εύχρηστο περιβάλλον διαχείρησης από το οποίο μπορεί εύχολα και γρήγορα να διαχειρίζεται το PiLock. Δίνεται δυνατότητα διαχείρησης των εξουσιοδοτημένων χρηστών

(χρήστες που μπορούν να ξεκλειδώσουν την πόρτα μέσω του PiLock), δυνατότητα λήψης ζωτικής σημασίας πληροφοριών για το σύστημα, καθώς επίσης και της δυνατότητας ξεκλειδώματος της πόρτας απευθείας μέσω του πίνακα διαχείρησης, χωρίς να χρειάζεται να γίνει χρήση της εφαρμογής (AdminCP Unlock).

Ένας από τους στόχους, κατά τον σχεδιασμό του PiLock ήταν η διατήρηση του κόστους στο χαμηλότερο δυνατόν. Για να επιτευχθεί ο στόχος αυτός, χρησιμοποιήθηκε αυστηρά δωρεάν λογισμικό ανοικτού κώδικα, καθώς επίσης και εξαρτήματα εύκολα προσκομίσιμα (βλ. Κεφάλαιο 2, Δομή του PiLock).

Chapter 2

Δομή του PiLock

Το PiLock αποτελείται από 2 κύρια μέρη: Τον εξυπηρετητή (Server) και τον πελάτη (Client).

2.1 Σύντομη Περιγραφή Λογισμικού Εξυπηρετητή - PiLock Server

Ο εξυπηρετητής αποτελείται από το Hardware που χρειάζεται προχειμένου να λειτουργήσει το PiLock, καθώς επίσης και το αντίστοιχο λογισμικό υπεύθυνο για την διαχείρηση της κλειδαριάς, από όλες τις απόψεις. Πιο συγκεκριμένα, το λογισμικό είναι υπεύθυνο για:

- Την διαχείριση του Hardware υπεύθυνου για την λειτουργία του μηχανισμού ξεκλειδώματος.
- Την αυθεντικοποίηση των ήδη υπάρχοντων χρηστών.
- Την δημιουργία νέων χρηστών, ικανών για αυθεντικοποίηση (εξουσιοδοτημένοι χρήστες).
- Την τήρηση ιστορικού αυθεντικοποιήσεων (επιτυχών ή μή).

Το λογισμικό του εξυπηρετητή αναλύεται πλήρως στην αντίστοιχη ενότητα.

2.2 Σύντομη Περιγραφή Λογισμικού Πελάτη - PiLock Client

Η πλευρά του πελάτη αποτελείται από την εφαρμογή του PiLock, σχεδιασμένη για κινητά που τρέχουν Android, καθώς επίσης και από την εφαρμογή σχεδιασμένη για Android Wear Smartwatches.

Πιο συγχεχριμένα, οι εφαρμογές στο πεδίο του πελάτη είναι υπεύθυνες για:

- Σύνδεση στην πλατφόρμα του PiLock*.
- Αποστολή αιτημάτων ξεκλειδώματος.
- Αποστολή αιτημάτων αλλαγής PIN*.

Οι δυνατότητες που είναι σημειωμένες με τον αστερίσκο (*) είναι διαθέσιμες αποκλειστικά στην εφαρμογή για κινητά (mobile app) και όχι στην εφαρμογή για Android Wear.

2.3 Υλικό - Hardware

Όπως αναφέραμε και στην εισαγωγή, ένας εκ των στόχων από τις πρώτες μέρες του σχεδιασμού του PiLock ήταν να υλοποιηθεί το Project με όσο το δυνατόν λιγότερο κόστος. Προκειμένου αυτό να είναι εφικτό, χρησιμοποιήσαμε υλικό εύκολα προσκομίσιμο και, όπου ήταν δυνατόν, Open Source Hardware.

"Εγκέφαλος" όλης της κατασκευής είναι το Raspberry Pi Zero W (RPi Zero W), ένας υπολογιστής μοναδικής πλακέτας (Single Board). Σχεδιάζεται από το Raspberry Pi Foundation στην Αγγλία και η κυκλοφορία του ξεκίνησε τον Φεβρουάριο του 2017. Σκοπός του RPi Zero W είναι να συμπληρώσει το προηγούμενο μοντέλο, το Raspberry Pi Zero, φέρνοντας δυνατότητες συνδεσιμότητας WiFi 802.11n και BlueTooth 4.0 χωρίς Hardware κάποιου τρίτου (μέχρι προτίστως έπρεπε να χρησιμοποιηθεί κάποιο WiFi ή BlueTooth Dongle προκειμένου να υπάρξει αυτή η συνδεσιμότητα) [3].

Στην "καρδιά" του RPi Zero W υπάρχει ένας Broadcom BCM2835, 32-bit επεξεργαστής αρχιτεκτονικής ARMv6, χρονισμένος στο 1Ghz. Για μνήμη τυχαίας προσπέλασης χρησιμοποιούνται 512MB Low Power Double Data Rate 2 (LPDDR2) RAM.

Figure 2.1: To Raspberry Pi Zero W. $\,$

Bibliography

- [1] Kevin Ashton (2009), "That 'Internet of Things' thing" http://www.rfidjournal.com/articles/view?4986
- [2] Jim Hill (2015), "The smart home: a glossary guide for the perplexed" https://www.t3.com/features/the-smart-home-guide
- [3] Ian Paul (2017), "The \$10 Raspberry Pi Zero W brings Wi-Fi and Bluetooth to the minuscule micro-PC" https://www.pcworld.com/article/3175256/computers/the-10-raspberry-pi-zero-w-brings-wi-fi-and-bluetooth-to-the-minusule-micro-html
- [4] Eben Upton (2015), "RASPBERRY PI ZERO: THE \$5 COMPUTER" https://www.raspberrypi.org/blog/raspberry-pi-zero/