The group G is isomorphic to the group labelled by [36, 3] in the Small Groups library. Ordinary character table of $G \cong (C2 \times C2)$: C9:

	1a	9a	3a	2a	9b	9c	3b	6a	9d	9e	6b	9f
(1	1	1	1	1	1	1	1	1	1	1	1	1
(2	1	$E(3)^{2}$	1	1	E(3)	$E(3)^{2}$	1	1	E(3)	$E(3)^{2}$	1	E(3)
(3	1	E(3)	1	1	$E(3)^{2}$	E(3)	1	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$
(4	1	$-E(9)^2 - E(9)^5$	$E(3)^{2}$	1	$E(9)^{7}$	$E(9)^{5}$	E(3)	$E(3)^{2}$	$E(9)^4$	$E(9)^{2}$	E(3)	$-E(9)^4 - E(9)^7$
(5	1	$-E(9)^4 - E(9)^7$	E(3)	1	$E(9)^{2}$	$E(9)^4$	$E(3)^{2}$	E(3)	$E(9)^{5}$	$E(9)^{7}$	$E(3)^{2}$	$-E(9)^2 - E(9)^5$
(6	1	$E(9)^{7}$	E(3)	1	$E(9)^{5}$	$-E(9)^4 - E(9)^7$	$E(3)^{2}$	E(3)	$-E(9)^2 - E(9)^5$	$E(9)^4$	$E(3)^{2}$	$E(9)^2$
(7	1	$E(9)^{5}$	$E(3)^{2}$	1	$-E(9)^4 - E(9)^7$	$E(9)^2$	E(3)	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^{2} - E(9)^{5}$	E(3)	$E(9)^4$
(8	1	$E(9)^4$	E(3)	1	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	$E(3)^{2}$	E(3)	$E(9)^{2}$	$-E(9)^4 - E(9)^7$	$E(3)^{2}$	$E(9)^{5}$
(9	1	$E(9)^{2}$	$E(3)^{2}$	1	$E(9)^4$	$-E(9)^2 - E(9)^5$	E(3)	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	E(3)	$E(9)^{7}$
(10	3	0	3	-1	0	0	3	-1	0	0	-1	0
(11	3	0	3 * E(3)	-1	0	0	$3*E(3)^2$	-E(3)	0	0	$-E(3)^2$	0
(12	3	0	$3*E(3)^2$	-1	0	0	3 * E(3)	$-E(3)^2$	0	0	-E(3)	0

Trivial source character table of $G \cong (C2 \times C2)$: C9 at p = 3:

Normalisers N_i				N_2	
p-subgroups of G up to conjugacy in G	1	P_1		P_2	
Representatives $n_j \in N_i$	1 <i>a</i>	2a	1a	2a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		9	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} $	9	-3	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		3	3	3	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	3	-1	3	-1	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1

 $P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1,3,10)(2,7,17)(4,11,21)(5,12,22)(6,14,24)(8,18,28)(9,19,29)(13,23,31)(15,25,32)(16,26,33)(20,30,35)(27,34,36)]) \cong C3 \\ P_3 = Group([(1,3,10)(2,7,17)(4,11,21)(5,12,22)(6,14,24)(8,18,28)(9,19,29)(13,23,31)(15,25,32)(16,26,33)(20,30,35)(27,34,36),(1,2,6,3,7,14,10,17,24)(4,9,27,11,19,34,21,29,36)(5,20,15,12,30,25,22,35,32)(8,16,23,18,26,31,28,33,13)]) \cong C9$

 $N_1 = Group([(1,2,6,3,7,14,10,17,24)(4,9,27,11,19,34,21,29,36)(5,20,15,12,30,25,22,35,32)(8,16,23,18,26,31,28,33,13),(1,3,10)(2,7,17)(4,11,21)(5,12,22)(6,14,24)(8,18,28)(9,19,29)(13,23,31)(15,25,32)(16,26,33)(20,30,35)(27,34,36),(1,5)(2,9)(3,12)(4,13)(6,16)(7,19)(8,20)(10,22)(11,23)(14,25)(16,27)(17,29)(18,30)(21,31)(24,32)(26,34)(28,35)(32,36)]) \\ = Group([(1,3,10)(2,7,17)(4,11,21)(5,12,22)(6,14,24)(8,18,28)(9,19,29)(13,23,31)(15,25,32)(16,26,33)(20,30,35)(27,34,36),(1,2,6,37,14,10,17,24)(4,9,27,11,19,34,21,29,36)(5,20,15,12,30,25,22,35,32)(8,16,23,18,26,31,28,33,13),(1,3,10)(2,7,17)(4,11,21)(5,12,22)(6,14,24)(8,18,28)(9,19,29)(13,23,31)(15,25,32)(16,26,33)(20,30,35)(27,34,36)]) \\ = Group([(1,2,6,3,7,14,10,17,24)(4,9,27,11,19,34,21,29,36)(5,20,15,12,30,25,22,35,32)(8,16,23,18,26,31,28,33,13),(1,3,10)(2,7,17)(4,11,21)(5,12,22)(6,14,24)(8,18,28)(9,19,29)(13,23,31)(15,25,32)(16,26,33)(20,30,35)(27,34,36)]) \\ = Group([(1,2,6,3,7,14,10,17,24)(4,9,27,11,19,34,21,29,36)(5,20,15,12,30,25,22,35,32)(8,16,23,18,26,31,28,33,13),(1,3,10)(2,7,17)(4,11,21)(5,12,22)(6,14,24)(8,18,28)(9,19,29)(13,23,31)(15,25,32)(16,26,33)(20,30,35)(27,34,36)]) \\ = Group([(1,2,6,3,7,14,10,17,24)(4,9,27,11,19,34,21,29,36)(5,20,15,12,30,25,22,35,32)(8,16,23,18,26,31,28,33,13),(1,3,10)(2,7,17)(4,11,21)(5,12,22)(6,14,24)(8,18,28)(9,19,29)(13,23,31)(15,25,32)(16,26,33)(20,30,35)(27,34,36)]) \\ = Group([(1,2,6,3,7,14,10,17,24)(4,9,27,11,19,34,21,29,36)(5,20,15,12,30,25,22,35,32)(8,16,23,18,26,31,28,33,33),(1,3,10)(2,7,17)(4,11,21)(5,12,22)(6,14,24)(8,18,28)(9,19,29)(13,23,31)(15,25,32)(16,26,33)(20,30,35)(27,34,36)]) \\ = Group([(1,2,6,3,7,14,10,17,24)(4,9,27,11,19,34,21,29,36)(5,20,15,12,30,25,22,35,32)(8,16,23,18,26,31,28,33,33),(1,3,10)(2,7,17)(4,11,21)(5,12,22)(6,14,24)(8,18,28)(9,19,29)(13,23,31)(15,25,32)(16,26,33)(20,30,35)(27,34,36)]) \\ = Group([(1,2,6,3,7,14,10,17,24)(4,9,27,11,19,34,21,29,36)(5,20,15,12,30,25,22,35,32)(8,16,23,18,26,31,28,33,33),(1,3,10,12,23)(14,25)(16,24,31,28,23)(16,24,32)(16,24,32)(16,24,32)(16,24,32)(16,24,32)(16,24,3$