第二章 映 射

2.1 映射的概念

函数是数学中的重要概念。函数的主要特征是,对定义域的 每个自变量,有惟一的函数值。数学中函数的定义域主要是实数 或实数的子集。将函数推广到一般集合上就是映射。

2.1.1 定义 映射 A 是非空集合 , A 到 B 的映射是指 : A 中每个元素都对应到 B 中的某个元素 , 记为 $f: A \rightarrow B$ (图 2.1.1)。

图 2.1.1

在 A 到 B 的映射 f 中,A 的元素 a 对应到 B 中的元素是惟一的,这个元素记为 f(a),称为 a 在 f 下的象,也称 f 将 a 映成 f(a)。如果 $a = \langle a_1, ..., a_n \rangle$,则 f(a)经常记为 $f(a_1, ..., a_n)$ 。注意 $f(a_1, ..., a_n)$ 是一个元素 $\langle a_1, ..., a_n \rangle$ 的象,而不是 n 个元素 $\langle a_1, ..., a_n \rangle$ 的象。

如果对 A 中每个元素 x , 它的象 f(x)确定了 , 则这个映射就确定了。所以只要对 A 中每个元素 x 都描述了映射 f(x) , 也就描述 A 到 B 的映射 f(x) 。这种描述方法表示为:

39

$$f: A \rightarrow B \quad f(x) = y$$

如果 A 是两个不相交集合 A_1 和 A_2 的并,即

 $A = A_1 \cup A_2 \not A A_1 \cap A_2 = \emptyset$,

则可以在 A_1 和 A_2 上分别描述 f 如下:

$$f: A \to B \quad f(x) = \begin{cases} y & \text{out } x \in A_1 \\ z & \text{out } x \in A_{20} \end{cases}$$

这种情况类似于数学中函数的分情况定义。

当 $A = \{a_1, ..., a_n\}$ 时,常用列举 A 中每个元素的象的方法来描述映射。如果 a_i 的象是 b_i (i = 1, ..., n),则这个映射就可以表示为:

$$f: A \to B$$
 $f(a_1) = b_1, ..., f(a_n) = b_{no}$

在 A 到 B 的映射的定义中,我们允许 $B=\emptyset$ 而不允许 $A=\emptyset$ 。 但如果 $B=\emptyset$,则不存在 A 到 B 的映射。注意这两种情况的区别, 当 $B=\emptyset$ 时,按定义不存在 A 到 B 的映射,当 $A=\emptyset$ 时,我们没 有定义 A 到 B 的映射。

为了统一起见,任给集合 B,我们规定 \emptyset 到 B 有一个映射,这个映射称为空映射,特记为 θ_B 。这样,在映射

$$f: A \rightarrow B$$

中,A 就可以是空集 \varnothing 了,而且当 A 是空集时,就有 A 到 \varnothing 的映射 θ_{\varnothing} 。注意当 $A\neq\varnothing$ 仍不存在 A 到 \varnothing 的映射。

一般用小写英文字母 f, g, h 等表示映射。

2.1.2 定义 定义域和值域 在映射

$$f: A \rightarrow B$$

中, A 称为 f 的定义域, 记为 dom(f), 即 dom(f) = A。集合

$$\{f(x) \mid x \in A\}$$

称为 f 的值域,记为 ran(f)。显然 $ran(f) \subseteq B$ 。

- **2.1.3 定义** 映射的相等 f 和 g 是两个映射 , 如果 f 和 g 满足:
 - $(1) \operatorname{dom}(f) = \operatorname{dom}(g) ,$
 - (2) 任给 $x \in dom(f)$, 都有 f(x) = g(x),

则称 f 和 g 相等 , 记为 f = g (图 2.1.2)。

图 2.1.2

f 和 g 相等要求 f 和 g 有同样的定义域 , 所以

如果 $dom(f) \neq dom(g)$,则 $f \neq g$ 。

当 dom(f) = dom(g)时 , $f \neq g$ 的条件是:

存在 $x \in \text{dom}(f)$, 使得 $f(x) \neq g(x)$ 。

任给集合 B, C, 都有 $dom(\theta_B) = \emptyset = dom(\theta_C)$, 又因为 $dom(\theta_B)$ 中没有元素,所以也成立,

任给 $x \in \text{dom}(\theta_B)$, 都有 $\theta_B(x) = \theta_C(x)$,

因此 $\theta_B = \theta_{Co}$

这就是说,在映射相等的意义上,只有一个空映射。

映射是集合论中除集合外的另一重要概念,我们通过以下一 些例子来加深对它的理解。

2.1.4 例 $f: \mathbf{R} \rightarrow \mathbf{R}$ 称为一元实函数,这是数学中常见的映射。如

$$f: \mathbf{R} \rightarrow \mathbf{R} \quad f(x) = x^2$$
,

 $g: \mathbf{R} \rightarrow \mathbf{R} \quad g(x) = 3x_{o}$

2.1.5 例 请看以下两个映射

 $f: \mathbf{Z} \rightarrow \mathbf{Z}$ f(x) = x+1,

 $g: \mathbf{N} \rightarrow \mathbf{N} \quad g(x) = x+1_{\circ}$

虽然它们对于元素的象的描述是一样的,但因为它们有不同的定

义域,所以它们是不同的映射。

2.1.6 例 令 A = 多边形集合。考虑以下两个映射

$$f: A \rightarrow \mathbf{N}$$
 $f(x) = x$ 的边数

$$g: A \rightarrow \mathbf{N}$$
 $g(x) = x$ 的角数,

虽然它们描述不一样,但因为多边形的边数等于角数,所以f = g,它们实际上是同一个映射。

2.1.7 例 $n \ge 1$, $A^n \supseteq A$ 的映射 f 称为 $A \ge n$ 元函数,也称为 $A \ge n$ 元运算。如 N 和 R 上的加法和乘法分别是 N 和 R 上的二元运算。又如

$$f: \mathbf{Z} \rightarrow \mathbf{Z}$$
 $f(x) = -x$

是 Z 上的一元运算, 称为 Z 上的负运算。

2.1.8 例 $T = \{ 真, \# \}$ 。 $T \perp n$ 元函数也称为 n 元真值函项。如一元真值函项:

$$f: \mathbf{T} \to \mathbf{T}$$
 $f(\mathbf{q}) = \mathbf{q}$, $f(\mathbf{q}) = \mathbf{q}$ 。

和二元真值函项:

$$g: \mathbf{T}^2 \to \mathbf{T}$$
 $g(\mathbf{\bar{q}}, \mathbf{\bar{q}}) = \mathbf{\bar{q}}$, $g(\mathbf{\bar{q}, \mathbf{\bar{q}}) = \mathbf{\bar{q}}$, $g(\mathbf{\bar{q}}, \mathbf{\bar{q}})$

f 对应于真值联结词"否定", g 对应于真值联结词"合取", h 对应于真值联结词"析舍"。这些映射的性质说明了相应的真值联结词的性质。如

任给
$$x \in \mathbf{T}$$
,都有 $f(x) = h(x, x)$

的逻辑意义就是:一个命题自身和自身的析舍就是这个命题的否定。也说明了"否定"可以由"析舍"来定义。

构成 A 到 B 的映射需要两个条件,一是对 A 中每个元素,都有 B 中的元素与之对应,二是这个对应是惟一的。不满足这两个条件就不能构成映射。

2.1.9 例 令 A = 人类。任给 $x \in A$, 将 x 对应到 x 的子女 , 因

为并非每个人都有子女,所以这个对应不能构成 A 到 A 的映射。 任给 $x \in A$,将 x 对应到 x 的父亲,因为每个人都有惟一的父亲, 所以这个对应能够构成 A 到 A 的映射

 $f: A \rightarrow A$ f(x) = x 的父亲。

2.1.10 例 任给 $x \in \mathbb{R}$, 将 x 对应到比 x 小的整数,因为比 x 小的整数不止一个,所以这个对应不惟一,不能构成 \mathbb{R} 到 \mathbb{Z} 的映射。任给 $x \in \mathbb{R}$, 将 x 对应到比 x 小的最大整数,这个对应不但存在而且惟一,所以存在 \mathbb{R} 到 \mathbb{Z} 映射

$$f: \mathbf{R} \rightarrow \mathbf{Z}$$
 $f(x) = \mathbf{t} x$ 小的最大整数。

从已知的映射可以构造新映射。

2.1.11 例 已知映射 $f: A \rightarrow B$, 构造 A 到 ran(f)的映射

$$g: A \rightarrow ran(f)$$
 $g(x) = f(x)_{\circ}$

首先有 dom(f) = A = dom(g) , 又任给 $x \in A$, 都有 f(x) = g(x) , 所以 f = g。

如果将 f 看成 A 的元素到 B 的元素的对应 ,则 g 就是同样的对应 ,只不过将它看做 A 的元素到 ran(f)的元素的对应(图 2.1.3)。

2.1.12 例 $f: A \rightarrow C$,任给 $B \subseteq A$,可以构造 $B \supseteq C$ 的映射 $g: B \rightarrow C$ g(x) = f(x)。

g 称为f 在 B 上的限制,记为 $f|_{B}$ 。 如果将f 看做 A 的元素到 C 的元素的对应,则只在 B 上考虑这种对应就是 g (图 2.1.4)。任给 B 到 C 的映射 h , $h = f|_{B}$ 的条件是:

任给
$$x \in B$$
,都有 $h(x) = f(x)$ 。

43

2.1.13 例 $A_1 \cap A_2 = \emptyset$, $f: A_1 \rightarrow B_1$ 和 $g: A_2 \rightarrow B_2$ 是两个映射。将 A_1 到 B_1 的对应 f 和 A_2 到 B_2 的对应 g 放在一起,就是 $A_1 \cup A_2$ 到 $B_1 \cup B_2$ 的对应。

如果 $A_1 \cap A_2 \neq \emptyset$, 则 $A_1 \cap A_2$ 中的元素 x 既要对应 f(x) , 又要对应到 g(x) , 可能使得 x 不能对应到惟一的元素。

条件 $A_1 \cap A_2 = \emptyset$ 保证了 $A_1 \cup A_2$ 中的任何 x 不能同时对应到 f(x) 和 g(x) ,从而保证了 x 对应到 $B_1 \cup B_2$ 中惟一的元素,所以可以构成 $A_1 \cup A_2$ 到 $B_1 \cup B_2$ 的映射 h 如下(图 2.1.5):

$$h: A_1 \cup A_2 \rightarrow B_1 \cup B_2 \quad h(x) = \begin{cases} f(x) & \text{on } \mathbb{R} x \in A_1 \\ g(x) & \text{on } \mathbb{R} x \in A_2. \end{cases}$$

显然, h 满足:

44

任给 $x \in A_1$,都有 h(x) = f(x), 任给 $x \in A_2$,都有 h(x) = g(x)。

2.1.14 例 $f: A_1 \rightarrow B_1$ 和 $g: A_2 \rightarrow B_2$ 是两个映射,可以构造 $A_1 \times A_2$ 到 $B_1 \times B_2$ 的映射

 $h: A_1 \times A_2 \rightarrow B_1 \times B_2$ $h(\langle x, y \rangle) = \langle f(x), g(y) \rangle_{\circ}$

2.1.15 例 $f: A \rightarrow B$ 和 $g: A \rightarrow C$ 是两个映射,可以构造 A 到 $B \times C$ 的映射

 $h: A \rightarrow B \times C$ $h(x) = \langle f(x), g(x) \rangle$

记 h = f*g。 任给 A 到 $B \times C$ 的映射 h , h = f*g 的条件是:

任给 $x \in A$, 都有 $h(x) = \langle f(x), g(x) \rangle$ 。

设 f_1 和 f_2 是 A 到 B 映射, g_1 和 g_2 是 A 到 C 的映射,则任给 $x \in A$,都有

$$(f_1*g_1)(x) = (f_2*g_2)(x)$$

当且仅当 $< f_1(x), g_1(x) > = < f_2(x), g_2(x) >$

当且仅当 $f_1(x) = f_2(x)$ 且 $g_1(x) = g_2(x)$ 。

因此 $f_1*g_1 = f_2*g_2$ 当且仅当 $f_1 = f_2$ 且 $g_1 = g_2$ 。

以下是关于集合自身的一些重要映射。

2.1.16 例 将 A 的每一个元素映成自身的映射称为 A 上恒等映射,记为 i_A ,即

 $i_A: A \rightarrow A \quad i_A(x) = x_0$

2.1.17 例 $b \in B$,将 A 的每一个元素都映成 b 的映射称为 A 到 B 的以 b 为值的常映射,记为 b,即

$$b: A \rightarrow B$$
 $b(x) = b_o$

 $b \not\in b$ 的 Arial 体,以后都采用这样的办法,当我们用某个字母表示一个元素时,以这个元素为值的常映射就用相应的 Arial 体字母表示,如以 a,b,c 为值的常映射就分别用 a,b,c 来表示。

显然 , 如果 $b \neq c$ 则 $b \neq c$ 。

当 $A = \{a\}$ 且 $B \neq \emptyset$ 时,任给 A 到 B 的映射 f,令 b = f(a),则 f = b。所以当 $A = \{a\}$ 且 $B \neq \emptyset$ 时, A 到 B 的映射都是常映射。

当 $B = \{b\}$ 且 $A \neq \emptyset$ 时,A 到 B 的映射只有一个,就是常映射 b。

2.1.18 例 $B \subseteq A$, 任给 $x \in A$, 如果 $x \in B$ 就让 x 对应到 1, 如果 $x \in A \setminus B$ 就让 x 对应到 0, 这样就构成了 A 到 $\{0, 1\}$ 的映射

$$\mu_B: A \to \{0, 1\} \quad \mu_B(x) = \begin{cases} 1 & \text{on } x \in B \\ 0 & \text{on } x \in A \setminus B_o \end{cases}$$

对于(A 中的)元素 x 来说 ,x 是否属于 $B \text{ 由}\mu_B(x)$ 是否等于 1 来表示 , 所以映射 μ_B 称为 B (在 A 中)的特征函数(图 2.1.6)。

2.1.19 例 Γ 是集合族, $\emptyset \notin \Gamma$,h 是 Γ 到 $\bigcup \Gamma$ 的映射。如果 h 满足:

任给 $X \in \Gamma$, 都有 $h(X) \in X$,

则称 $h \in \Gamma$ 上的选择函数。

它的意义是:同时对 Γ 中的每个集合 X,指定 X 自身的一个元素,这个元素就是 h(X)。

数学归纳法的等价命题最小数原理是指:

N 的任何非空子集都有最小数。

用最小数原理可以构造映射

 $h: P(N) \setminus \{\emptyset\} \to N$ h(X) = X 的最小数,因为 $h(X) \in X$, $\bigcup (P(N) \setminus \{\emptyset\}) = N$,所以 $h \neq P(N) \setminus \{\emptyset\}$ 上的选择函数。

习题 2.1

- 2.1.1 判断以下对应是否构成 A 到 B 的映射。能够构成映射的写出其值域,不能构成映射的说明理由。
- (1)A = 小学生,B = 学校。将每个小学生对应到他所在的学校。
 - (2) A = 人类, B = 国家。将每个人对应到他曾到过的国家。
 - (3) $A = B = \mathbf{R}$ 。将每个 $x \in \mathbf{R}$ 对应到 \sqrt{x} 。
 - (4) $A = \mathbf{N}$, $B = \mathbf{R}$ 。将每个 $x \in \mathbf{N}$ 对应到 \sqrt{x} 。
- 2.1.2 $B \in A$ 的真子集。C 中至少有两个元素, $g \in B$ 到 C 的映射。证明:存在 A 到 C 映射 f_1 和 f_2 ,使得

 $f_1 \neq f_2 \coprod f_1 \mid_{B} = f_2 \mid_{B} = g_0$

2.1.3 $f: A \rightarrow C$ 和 $g: B \rightarrow C$ 是两个映射,其中 $A \cap B = \emptyset$ 。按例 2.1.13 构造映射

$$h: A \cup B \to C \quad h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B_0 \end{cases}$$

证明: $h \mid_{A} = f \perp h \mid_{B} = g_{o}$

2.1.4 $h: A \rightarrow B \times C$,构造映射 f 和 g 如下:

$$f: A \rightarrow B$$
 $f(x) = y$ (如果 $h(x) = \langle y, z \rangle$),
 $g: A \rightarrow C$ $g(x) = z$ (如果 $h(x) = \langle y, z \rangle$).

证明:h = f*g (*的定义见例 2.1.15)。

- 2.1.5 $f: A \rightarrow \{0, 1\}$, 令 $B = \{x \mid x \in A \perp f(x) = 1\}$, $\mu_B \neq B$ 的特征函数。证明: $\mu_B = f_0$
 - 2.1.6 构造集合族 $\Gamma = \{(x, x+1) \mid x \in \mathbb{Z}\}$ 上的选择函数。

2.2 单射、满射和双射 逆映射

A 到 B 的映射,只要求 A 中每个元素的象是惟一的,并不要求 A 中不同的元素的象不一样,只要求 A 中每个元素都有象,并不要求 B 中每个元素都是象。

然而对于 A 到 B 的映射来说,A 中不同的元素有不同的象和 B 中每个元素都是象是两种重要性质。相对于这两种性质,就有两类重要的映射。

2.2.1 定义 单射 $f \in A$ 到 B 的映射 , 如果 A 中不同的元素 有不同的象 , 则称 f 是单射(图 2.2.1)。 f 是单射的条件是:

任给 $x, y \in A$, 如果 $x \neq y$ 则 $f(x) \neq f(y)$ 。

因为不同的元素有不同的象,所以如果两个元素有相同的象,则它们就是同一个元素。因此 *f* 是单射的另一条件是:

任给 $x, y \in A$, 如果 f(x) = f(y)则 x = y。

图 2.2.1

如果 f 不是单射,则 A 中有两个不同的元素,它们的象是一样的(图 2.2.2)。所以 f 不是单射的条件是:

存在 $x, y \in A$, 使得 $x \neq y$ 且 f(x) = f(y)。

任给集合 B, 因为∅中没有元素, 所以成立

任给 $x, y \in \emptyset$,如果 $x \neq y$ 则 $f(x) \neq f(y)$ 。

因此 \varnothing 到 B 的空映射 θ_B 是单射。

2.2.2 定义 满射 $f \in A$ 到 B 的映射 , 如果 B 中每个元素都 是 A 中元素的象 , 则称 f 是满射。 f 是满射就是说 ran(f) = B , 它的条件是:

任给 $y \in B$, 存在 $x \in A$, 使得 f(x) = y

如果 f 不是满射,则 B 中有元素不是象。所以 f 不是满射的条件是:

存在 $y \in B$, 使得任给 $x \in A$, 都有 $f(x) \neq y$

任给非空集合 B , 取 $b \in B$, 则因为 \varnothing 中没有元素 , 所以

任给 $x \in \emptyset$, 都有 $f(x) \neq b$,

因此 \varnothing 到 B 的空映射 θ_B 不是满射。

对于Ø来说,显然有

任给 $y \in \emptyset$,存在 $x \in \emptyset$,使得 f(x) = y,

因此 \varnothing 到 \varnothing 的空映射 θ_{\varnothing} 是满射。

以下是单射和满射的一些例子。

2.2.3 例 对于例 2.1.4 中的一元实函数

 $f: \mathbf{R} \rightarrow \mathbf{R} \quad f(x) = x^2$

来说,因为 f(1) = f(-1) = 1,所以 f 不是单射,又因为任给 $x \in \mathbb{R}$,都有 $f(x) \ge 0$,所以 f 也不是满射。

49

2.2.4 例 $f \cap f \cap g$ 的关系($f \cap g$ 的定义见例 2.1.12)。

如果 f 是单射,则 A 中不同的元素有不同的象,当然 B 中不同的元素也有不同的象,所以 $f|_{B}$ 是单射。

如果 $f \mid_B$ 是满射,则 C 中每个元素都是 B 中某个元素的象, 当然也是 A 中某个元素的象,所以 f 是满射。

2.2.5 例 $f:A_1\to B_1$ 和 $g:A_2\to B_2$ 是两个映射,其中 $A_1\cap A_2=\varnothing$ 。由 2.1.13 构造 $A_1\cup A_1$ 到 $B_1\cup B_1$ 的映射

$$h: A_1 \cup A_2 \rightarrow B_1 \cup B_2 \quad h(x) = \begin{cases} f(x) & \text{on } x \in A_1 \\ g(x) & \text{on } x \in A_2 \end{cases}$$

如果 f, g 都是满射,则 h 是满射,理由如下:

任给 $y \in B_1 \cup B_2$, 当 $y \in B_1$ 时,由 f 是满射得

存在 $x \in A_1$, 使得 f(x) = y ,

当 $y \in B_2$ 时,由 g 是满射得

存在 $x \in A_2$, 使得 g(x) = y。

所以在两种情况下都有:

存在 $x \in A_1 \cup A_2$, 使得 h(x) = y。

因此 h 是满射。

2.2.6 例 $f: A_1 \rightarrow B_1$ 和 $g: A_2 \rightarrow B_2$ 是两个映射,构造 $A_1 \times A_2$ 到 $B_1 \times B_2$ 的映射

 $h: A_1 \times A_2 \to B_1 \times B_2: h(\langle x, y \rangle) = \langle f(x), g(y) \rangle$,

如果f和g都是单射,则h是单射,如果f,g都是满射,则h是满射,理由如下:

任给< $x_1, y_1>$, < $x_2, y_2>$ \in $A_1 \times A_2$, 如果 $h(< x_1, y_1>) = h(< x_2, y_2>)$,则

$$\langle f(x_1), g(y_1) \rangle = \langle f(x_2), g(y_2) \rangle$$
,

由有序对相等的定义得

$$f(x_1) = f(x_2) \coprod g(y_1) = g(y_2)$$
,

由 $f(x_1) = f(x_2)$ 和 f 是单射得

$$x_1 = x_2$$
,

由 $g(y_1) = g(y_2)$ 和 g 是单射得

$$y_1 = y_2$$
,

所以 $< x_1, y_2 > = < x_2, y_2 >$ 。

任给 $\langle x, y \rangle \in B_1 \times B_2$,都有

 $x \in B_1$ 且 $y \in B_2$,

由f是满射得

存在 $x_0 \in A_1$, 使得 $f(x_0) = x$,

由 g 是满射得

存在 $y_0 \in A_1$, 使得 $f(y_0) = y$,

所以

存在 $< x_0, y_0 > \in A_1 \times A_2$,

使得 $h(\langle x_0, y_0 \rangle) = \langle f(x_0), g(y_0) \rangle = \langle x, y \rangle$ 。

2.2.7 **例** Γ 是以 I 为指标集的集合族,即 $\Gamma = \{A_i \mid i \in I\}$,令

$$f: I \rightarrow \Gamma$$
 $f(i) = A_i$

则f是满射。如果 Γ 满足

任给 i, j \in I, 只要 i \neq j, 就有 $A_i \neq A_j$,

则上述的f还是单射。特别地,

$$g: \mathbf{N} \rightarrow \Gamma(\mathbf{N}) \quad g(\mathbf{n}) = \mathbf{N}_{\mathbf{n}}$$

和

$$h: \mathbf{R} \rightarrow \Gamma(\mathbf{Q}) \quad h(a) = \mathbf{Q}_a$$

都既是满射又是单射(见例 1.1.4 和习题 1.2.2)。

既是单射又是满射的映射是另一类重要的映射。

2.2.8 定义 双射 $f \in A$ 到 B 的映射,如果 f 既是单射又是满射,则称 f 是双射。

满射保证了对于 A 中每个元素都存在 B 中某个元素与之对应,单射保证了 A 中不同的元素对应到不同的元素,所以双射就是 A 的元素和 B 的元素一个一个对应。

因此,如果存在 A 到 B 的双射,则称 A 和 B 的元素间有一一对应。

2.2.9 例
$$f:(0,1)\to \mathbf{R}$$
 $f(x)=\frac{1}{1-x}-\frac{1}{x}$, 任给 $a\in \mathbf{R}$, 方程 $\frac{1}{1-x}-\frac{1}{x}=a$,

在开区间(0,1)中有惟一的解,所以f是双射。

2.2.10 例 f 是 Q⁺到 Z⁺的双射,可以将它扩充为 Q 到 Z 的 双射如下:

$$g: \mathbf{Q} \to \mathbf{Z} \quad g(x) = \begin{cases} f(x) & \text{on } \mathbf{Z} = \mathbf{Z} \\ -f(x) & \text{on } \mathbf{Z} = \mathbf{Z} \\ 0 & \text{on } \mathbf{Z} = \mathbf{Z} \end{cases}$$

可以证明g也是双射。

 $f \in A$ 到 B 的双射。任给 $x \in B$,由 f 是满射得存在 $y \in A$,使得 f(y) = x ,

由f是单射得这样的y是惟一的,所以

任给 $x \in B$, 存在惟一的 $y \in A$, 使得 f(y) = x。

因此将 B 中的元素 x 对应到 A 中满足 f(y) = x 的惟一的 y 可以构成 B 到 A 的映射。

2.2.11 定义 逆映射 $f \in A$ 到 B 的双射,将 B 中元素 x 对应到 A 中元素 y(满足 f(y) = x)的映射称为 f 的逆映射,记为 f^{-1} 。即

$$f^{-1}: B \to A$$
 $f^{-1}(x) = y($ 如果 $f(y) = x)_{o}$

逆映射的直观意义是:如果将双射 f 看做 A 到 B 的对应,则将这个对应反过来就是 B 到 A 的对应 f^{-1} (图 2.2.3)。

2.2.12 例 例 2.1.18 中的一元真值函项

$$f: \mathbf{T} \to \mathbf{T}$$
 $f(\mathbf{Q}) = \mathbf{Q}$, $f(\mathbf{Q}) = \mathbf{Q}$ 。

是双射,它的逆映射是它自身,即 $f^{-1} = f$ 。

例 2.1.4 中的一元实函数

$$g : \mathbf{R} \quad \mathbf{R} \quad g(x) = 3x$$

是双射,它的逆映射是

$$g^{-1}: \mathbf{R} \to \mathbf{R} \quad g^{-1}(x) = \frac{1}{3} x_{\circ}$$

根据逆映射的定义可知:任给 $x \in B$, 任给 $y \in A$, 都有 $f^{-1}(x) = y \text{ 当且仅当 } f(y) = x_{\circ}$

由这点可以证明逆映射的以下性质。

- **2.2.13 定理** $f \in A$ 到 B 的双射 $, f^{-1} \in F$ 的逆映射。
- (1) 任给 $x \in B$, 都有 $f(f^{-1}(x)) = x_0$
- (2) 任给 $y \in A$, 都有 $f^{-1}(f(y)) = y_0$
- $(3) f^{-1}$ 是双射,并且 $(f^{-1})^{-1} = f$ 。

证 (1) 任给 $x \in B$, 令 $y = f^{-1}(x)$,则 $y \in A$,所以 $f^{-1}(x) = f^{-1}(x)$ 当且仅当 $f(f^{-1}(x)) = x$,

因此 $f(f^{-1}(x)) = x$ (图 2.2.4)。

(2) 任给 $y \in A$, 令 x = f(y),则 $x \in B$,所以 $f^{-1}(f(y)) = y$ 当且仅当 f(y) = f(y),

因此 $f^{-1}(f(y)) = y$ (图 2.2.4)。

(3) 任给 $x, y \in B$, 如果 $f^{-1}(x) = f^{-1}(y)$, 则 $x = f(f^{-1}(x)) = f(f^{-1}(y)) = y$,

所以 f^{-1} 是单射。

任给 $y \in A$, 存在 $f(y) \in B$, 使得 $f^{-1}(f(x)) = y$, 所以 f^{-1} 是满射。 f^{-1} 既是单射又是满射,所以 f^{-1} 是双射,因此 f^{-1} 有逆映射 $(f^{-1})^{-1}: A \rightarrow B$ 。

任给 $x \in A$, 对于 f^{-1} 来说 , 由(1)得 $f^{-1}((f^{-1})^{-1}(x)) = x$,

对于f来说,由(2)得

$$f^{-1}(f(x)) = x ,$$

所以

$$f^{-1}(f(x)) = f^{-1}((f^{-1})^{-1}(x))$$

又由 f-1 是单射得

$$(f^{-1})^{-1}(x) = f(x)_{o}$$

这就证明了任给 $x \in A$, 都有

$$(f^{-1})^{-1}(x) = f(x)$$
,

因此 $(f^{-1})^{-1} = f_{\circ}$

习题 2.2

- 2.2.1 $f: \mathbb{Z} \rightarrow \mathbb{Z}$ f(x) = x+1, $g: \mathbb{N} \rightarrow \mathbb{N}$ g(x) = x+1
- (1) 证明 f 是双射并写出逆映射。
- (2) 证明 g 是单射但不是满射。
- 2.2.2 $A_1 \cap A_2 = \emptyset$, f 和 g 分别是 A_1 到 B_1 和 A_2 到 B_2 的单射,按例 2.1.13 构造

$$h: A_1 \cup A_2 \rightarrow B_1 \cup B_2 \quad h(x) \begin{cases} f(x) & \text{ uh } x \in A_1 \\ g(x) & \text{ uh } x \in A_2 \end{cases}$$

- (1) 证明:如果 $B_1 \cap B_2 = \emptyset$,则 h 是单射。
- (2) 举例说明当 $B_1 \cap B_2 \neq \emptyset$ 时, h 不一定是单射。
- 2.2.3 $f: A_1 \rightarrow B_1$, $g: A_2 \rightarrow B_2$, 按例 2.1.14 构造 $h: A_1 \times A_2 \rightarrow B_1 \times B_2$ $h(< x, y>) = < f(x), g(y)>_\circ$

证明:

- (1) 如果 h 是单射,则 f 和 g 都是单射。
- (2) 如果 h 是满射,则 f 和 g 都是满射。
- 2.2.4 $f \in \mathbf{Q}^+$ 到 \mathbf{Z}^+ 的双射,构造 \mathbf{Q} 到 \mathbf{Z} 的双射如下:

$$g: \mathbf{Q} \to \mathbf{Z} \quad g(x) = \begin{cases} f(x) & \text{on } \mathbf{x} > 0 \\ -f(x) & \text{on } \mathbf{x} < 0 \\ 0 & \text{on } \mathbf{x} = 0 \end{cases}$$

证明: g是双射。

- 2.2.5 $f: A \times B \rightarrow B \times A$ $f(\langle x, y \rangle) = \langle y, x \rangle$, 证明 f 是双射。
- 2.2.6 构造一个双射 $f: A \times (B \times C) \rightarrow (A \times B) \times C_{\bullet}$
- 2.2.7 构造 $N \times N$ 到 N 的配对函数 f 如下:

$$f: \mathbf{N} \times \mathbf{N} \to \mathbf{N}$$
 $f(x, y) = \frac{1}{2} (x+y)(x+y+1) + x$,

任给 $x \in \mathbb{N}$, 令 $n(x) = \{n \mid n^2 + 3n \ge 2x\}$ 的最小数。

证明:

- (1) 如果 $x_1+y_1 \neq x_2+y_2$, 则 $f(x_1, y_1) \neq f(x_2, y_2)$ 。
- (2) 如果 $x_1+y_1 = x_2+y_2$ 且 $x_1 \neq x_2$,则 $f(x_1, y_1) \neq f(x_2, y_2)$ 。
- (3) 任给 $x \in \mathbb{N}$, $x \frac{1}{2} (n(x)^2 + n(x))$, $\frac{1}{2} (n(x)^2 + 3n(x)) x \in \mathbb{N}_{\circ}$
- (4) 任给 $x \in \mathbb{N}$, $f(x \frac{1}{2}(n(x)^2 + n(x)), \frac{1}{2}(n(x)^2 + 3n(x)) x) = x_0$
- (5) f 是双射。

2.3 映射的复合

f 是 A 到 B 的映射,g 是 B 到 C 的映射。对于 A 中的每个元素 x , f 将 x 映成 $f(x) \in B$, g 又将 f(x) 映成 $g(f(x)) \in C$, 又因为 g(f(x)) 是惟一的,所以将 A 中元素 x 对应到 C 中元素 g(f(x))能够构成 A 到 C 的映射。

2.3.1 定义 映射的复合 $f \in A$ 到 B 的映射, $g \in B$ 到 C 的映射。将 A 中元素 x 对应到 C 中元素 g(f(x))的映射称为 f 和 g 的复合,记为 $g \circ f$,即

$$g \circ f : A \rightarrow C$$
 $(g \circ f)(x) = g(f(x))$ ($\S 2.3.1$)

图 2.3.1

先来看一些例子。

2.3.2 例 取例 2.1.5 中的映射 $f: \mathbb{Z} \to \mathbb{Z}$ f(x) = x+1,则 $f \circ f: \mathbb{Z} \to \mathbb{Z}$ $(f \circ f)(x) = x+2$ 。

取例 2.1.8 中的一元真值函项 f , 二元真值函项 g 和 h , 则 $f \circ g = h$, $f \circ h = g$,

这两个复合的逻辑意义是:"析舍"可以由"合取"和"否定"来定义,"合取"可以由"析舍"和"否定"来定义。

2.3.3 例 f 和 g 分别是 A 到 B 和 B 到 A 的映射,则 $g \circ f$ 是 A 到 A 的映射, $f \circ g$ 是 B 到 B 的映射。

如果 $A \neq B$,当然 $g \circ f \neq f \circ g$ 。就是 A = B ,一般也没有 $g \circ f = f \circ g$ 。 如对于例 2.1.4 中的映射

$$f: \mathbf{R} \rightarrow \mathbf{R}$$
 $f(x) = x^2 \pi g : \mathbf{R} \rightarrow \mathbf{R}$ $g(x) = 3x$

就有

$$(f \circ g)(1) = (3 \cdot 1)^2 = 3^2 = 9 \neq 3 = 3 \cdot 1^2 = (g \circ f)(1)_{o}$$

所以 $g \circ f \neq f \circ g$ 。

现在讨论映射复合的性质。

- **2.3.4 定理** f 和 g 分别是 A 到 B 和 B 到 C 的映射, i_A 和 i_B 分别是 A 和 B 上的恒等映射。
 - (1) $dom(g \circ f) = dom(f)$, $ran(g \circ f) \subseteq ran(g)$
 - $(2) f \circ \mathbf{i}_A = f$, $\mathbf{i}_B \circ f = f_{\mathbf{o}}$
 - (3) 如果f是双射,则 $f^{-1}\circ f = i_A$, $f\circ f^{-1} = i_B$ 。
 - (4) 如果 g 和 f 都是单射,则 $g \circ f$ 是单射。
 - (5) 如果 g 和 f 都是满射,则 $g \circ f$ 是满射。
 - 证 (1)(2)显然。
 - (3) 由定理 2.2.13(1)(2)直接可得。
 - (4) 任给 $x, y \in A$, 如果 $(g \circ f)(x) = (g \circ f)(y)$, 则 g(f(x)) = g(f(y))。

由 g 是单射得

f(x) = f(y) ,

再由 f 是单射得

 $x = y_{\circ}$

因此 gof 是单射。

(5) 任给 $z \in C$, 由 g 是满射得存在 $y \in B$, 使得 g(y) = z ,

对于这个y,由f是满射得

存在 $x \in A$, 使得 f(x) = y ,

所以

存在 $x \in A$, 使得 $(g \circ f)(x) = g(f(x)) = g(y) = z$ 。

57

因此 gof 是满射。

设 $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$ 是三个映射。

任给 $x \in A$, f 将 x 映成 $f(x) \in B$, 再由 g 将 f(x)映成 $g(f(x)) \in C$, 最后由 h 将 g(f(x))映成 $h(g(f(x))) \in D$,这样就得到了 A 到 D 的一个映射。

这个映射有两种看法,一是看做将 A 中元素先由 $g \circ f$ 映到 C ,再由 h 映到 D ,一是看做将 A 中元素先由 f 映到 B ,再由 $h \circ g$ 映到 D。 按前一种看法,这个映射是 $h \circ (g \circ f)$,按后一种看法,这个映射是 $(h \circ g) \circ f$ 。 所以应该有 $h \circ (g \circ f) = (h \circ g) f$ (图 2.3.2)。

2.3.5 定理 映射复合的结合律 任给三个映射

 $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$,

都有 $h \circ (g \circ f) = (h \circ g) \circ f$ 。

证 任给 $x \in A$, 都有 $h \circ (g \circ f)(x) = h(g \circ f)(x) = h(g(f(x)))$

和

$$(h \circ g) \circ f = (h \circ g)(f(x)) = h(g(f(x))),$$

所以

$$h \circ (g \circ f)(x) = ((h \circ g) \circ f)(x)_{\circ}$$

因此 $h \circ (g \circ f) = (h \circ g) \circ f_{\bullet}$

由定理 2.3.5, 当三个或更多的映射复合时, 可以省略括号。

f和 g 分别是 A 到 B 和 B 到 A 的映射,定理 2.3.4(3)是说,当 g 是 f 的逆映射时,g 和 f 的复合是 A 上恒等映射,f 和 g 的复合是 B 上恒等映射。

反之也成立,即,如果g和f的复合是A上恒等映射,f和g的复合是B上恒等映射,则g是f的逆映射。

2.3.6 定理 $f \in A$ 到 B 的映射, $g \in B$ 到 A 的映射,如果 $g \circ f = i_A \coprod f \circ g = i_B$,则 $g = f^{-1}$ 。

证 任给
$$x, y \in A$$
 , 如果 $f(x) = f(y)$,则 $g(f(x)) = g(f(y))$,所以 $x = i_A(x) = (g \circ f)(x) = g(f(x)) = g(f(y))$ $= (g \circ f)(y) = i_A(y) = y_{\circ}$

因此 f 是单射。

任给
$$y \in B$$
 , 都有 $g(y) \in A$, 令 $x = g(y)$, 则存在 $x \in A$, 使得 $f(x) = f(g(y)) = (f \circ g)(y) = i_B(y) = y_o$

因此f是满射。

由 f 是双射得 f 有逆映射 f^{-1} 。

任给 $y \in B$, 都有

$$f(g(y)) = (f \circ g)(y) = i_B(y) = (f \circ f^{-1})(y) = f(f^{-1}(y))$$

由 f 是单射得

$$g(y) = f^{-1}(y)_{\bullet}$$

因此 $g = f^{-1}$ 。

由定理 2.3.6 可证映射的复合和逆映射的以下关系。

2.3.7 定理 f 和 g 分别是 A 到 B 和 B 到 C 的映射,如果 f 和 g 都是双射,则 $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ 。

证 首先有 $g \circ f$ 是 A 到 C 的映射, $f^{-1} \circ g^{-1}$ 是 C 到 A 的映射,由定理 2.3.6,只需证 $(f^{-1} \circ g^{-1}) \circ (g \circ f) = i_A \pi (g \circ f) \circ (f^{-1} \circ g^{-1}) = i_C$ 。

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = ((f^{-1} \circ g^{-1}) \circ g) \circ f$$

$$= (f^{-1} \circ (g^{-1} \circ g)) \circ f$$

$$= (f^{-1} \circ i_B) \circ f = f^{-1} \circ f$$

$$= i_A ,$$

 $(g \circ f) \circ (f^{-1} \circ g^{-1}) = ((g \circ f) \circ f^{-1}) \circ g^{-1}$ $= (g \circ (f \circ f^{-1})) \circ g^{-1}$ $= (g \circ i_B) \circ g^{-1} = g \circ g^{-1}$ $= i_{C_2}$

习题 2.3

- 2.3.1 求 gof和fog。
- $(1) f : \mathbf{R}^2 \to \mathbf{R} \quad f(x, y) = xy ,$

 $g: \mathbf{R} \rightarrow \mathbf{R}^2 \quad g(x) = \langle x, x+1 \rangle_{\circ}$

 $(2) f : \mathbf{N}^2 \to \mathbf{N} \quad f(x, y) = x ,$ $g : \mathbf{N} \to \mathbf{N}^2 \quad g(x) = \langle x, 0 \rangle_0$

- (3) $f: A \times (B \times C) \rightarrow A \times (B \times C)$ $f(\langle x, \langle y, z \rangle) = \langle y, \langle x, z \rangle)$, $g: A \times (B \times C) \rightarrow A \times (B \times C)$ $g(\langle x, \langle y, z \rangle) = \langle x, \langle z, y \rangle)$
- 2.3.2 写出定理 2.3.4(1)(2)(3)的详细证明。
- 2.3.3 $f \in A$ 到 B 的映射 , $g \in B$ 到 C 的映射。证明:如果 $g \circ f \in X$ 是双射 , 则 $g \in B$ 是满射且 $f \in B$ 是单射。
- 2.3.4 定义性质, φ_1 : 双射, φ_2 : 单射非满射, φ_3 : 满射非单射, φ_4 : 非单射非满射。 f 是 A 到 B 的映射,g 是 B 到 C 的映射。

讨论当 f 有性质 φ_i , g 有性质 φ_j 时 , $g \circ f$ 有和没有哪种性质。 例如 , 当 f 和 g 都有性质 φ_1 时 , $g \circ f$ 有性质 φ_1 而没有性质 φ_2 , φ_3 和 φ_4 。

2.3.5 $\varphi_1, \varphi_2, \varphi_3$ 和 φ_4 同习题 2.3.4 f 是 A 到 B 的映射 g 是 B 到 C 的映射。

讨论当 $g \circ f$ 有性质 φ_i 时 , f 和 g 有和没有哪种性质。

59

2.4 子集的象和逆象

 $f \in A$ 到 B 的映射 , $X \subseteq A$ 。每个 $x \in X$ 在 B 中有象 f(x) , 这些象的全体组成 B 的一个子集。

2.4.1 定义 子集的象 $f \in A$ 到 B 的映射 $, X \subseteq A$ 。 X 中所有元素的象的集合称为 X 在 f 下的象 , 记为 f(X)。即

 $f[X] = \{f(x) \mid x \in X\}_{o}$

用属于关系表示就是:

 $y \in f[X]$ 当且仅当存在 $x \in X$, 使得 y = f(x)。

有时也称 f 将 X 映成 f[X]。

显然有 $f[\varnothing] = \varnothing$, f[A] = ran(f)。

又当 $X = \{a_1,..., a_n\}$ 时,有 $f[X] = \{f(a_1),..., f(a_n)\}$,特别地有 $f(\{a\}) = \{f(a)\}$ 。

先来看子集的象的一些例子。

2.4.2 例 $f: \mathbf{R} \to \mathbf{R}$ $f(x) = x^2$,则

f[(0,2)] = (0,4), $f[\mathbf{R}^+] = \mathbf{R}^+$

 $g: \mathbf{N} \rightarrow \mathbf{N}$ g(x) = x+1, \diamondsuit

 $A = \{2x \mid x \in \mathbb{N}\}\ , B = \{2x+1 \mid x \in \mathbb{N}\}\ ,$

则 g[A] = B , $g[B] = A \setminus \{0\}$ 。

现在讨论子集的象的性质。

- **2.4.3 定理** $f \in A$ 到 B 的映射 $, X, Y \subseteq A$ 。
- (1) 如果 $X \subseteq Y$,则 $f[X] \subseteq f[Y]$ 。
- $(2) f[X \cup Y] = f[X] \cup f[Y]_{\circ}$
- $(3) f[X] \cap f[Y] = f[X \cap Y] \cup (f[X \setminus Y] \cap f[Y \setminus X]) , 因此 f[X \cap Y] \subseteq f[X] \cap f[Y]_{\bullet}$
 - $(4) f[X] \setminus f[Y] = f[X \setminus Y] \setminus f[Y]$,因此 $f[X] \setminus f[Y] \subseteq f[X \setminus Y]$ 。
 - **证** (1) 任给 y , 如果 $y \in f[X]$,则 存在 $x \in X$,使得 f(x) = y ,

由 $X \subseteq Y$ 得 $x \in Y$, 所以 $f(x) \in f[Y]$,

即

 $y \in f[Y]_{\circ}$

因此 $f[X] \subseteq f[Y]$ 。

(2) 任给 y , 如果 $y \in f[X \cup Y]$, 则 存在 $x \in X \cup Y$, 使得 f(x) = y ,

当 x∈X 时有

 $f(x) \in f[X]$,

当 x ∈ Y 时有

 $f(x) \in f[Y]$,

在两种情况下都有

 $f(x) \in f[X] \cup f[Y]_{\circ}$

因此 $f[X \cup Y] \subseteq f[X] \cup f[Y]$ 。

由 $X, Y \subseteq X \cup Y$ 和(1)得

 $f[X], f[Y] \subseteq f[X \cup Y]$,

因此 $f[X] \cup f[Y] \subseteq f[X \cup Y]$ 。

(3) 由习题 1.4.3(2)得

 $X = (X \cap Y) \cup (X \setminus Y)$ 和 $Y = (X \cap Y) \cup (Y \setminus X)$,

由 $X = (X \cap Y) \cup (X \setminus Y)$ 和(2)得

 $f[X] = f[(X \cap Y) \cup (X \setminus Y)] = f[X \cap Y] \cup f[X \setminus Y]$

由 $Y = (X \cap Y) \cup (Y \setminus X)$ 和(2)得

 $f[Y] = f[(X \cap Y) \cup (Y \setminus X)] = f[X \cap Y] \cup f[Y \setminus X]$

所以

$$\begin{split} f[X] \cap f[Y] &= (f[(X \cap Y) \cup (X \setminus Y)]) \cap (f[(X \cap Y) \cup (Y \setminus X)]) \\ &= f[X \cap Y] \cup (f[X \setminus Y] \cap f[Y \setminus X])_{\circ} \end{split}$$

(4) **由** $f[X] = f[(X \setminus Y) \cup (X \cap Y)] = f[X \setminus Y] \cup f[X \cap Y]$, $f[X \cap Y] \subseteq f[Y]$

和习题 1.4.3(1)。详细证明留给读者。

2.4.4 定理 $f \in A$ 到 B 的单射 $, X, Y \subseteq A$ 。

- (1) 如果 $X \cap Y = \emptyset$, 则 $f[X] \cap f[Y] = \emptyset$ 。
- $(2) f[X \cap Y] = f[X] \cap f[Y]_{\circ}$
- $(3) f[X \setminus Y] = f[X] \setminus f[Y]_{\circ}$

证 (1) 反证法。设 $f[X] \cap f[Y] \neq \emptyset$,则存在 $z \in f[X] \cap f[Y]$,所以

 $z \in f[X]$ 且 $z \in f[Y]$,

由 *z*∈*f* [X]得

存在 $x \in X$, 使得 f(x) = z,

由 $z \in f[Y]$ 得

存在 $y \in Y$, 使得 f(y) = z,

所以

f(x) = f(y),

由f是单射得x = y,所以

 $x \in X \coprod x \in Y$,

因此

存在 x , 使得 $x \in X \cap Y$,

和 $X \cap Y = \emptyset$ 矛盾。

(2) 由 $(X \setminus Y) \cap (Y \setminus X) = \emptyset$ 和(1)得 $f[X \setminus Y] \cap f[Y \setminus X] = \emptyset$,

由 $f[X \setminus Y] \cap f[Y \setminus X] = \emptyset$ 和定理 2.4.3(3)得 $f[X \cap Y] = f[X] \cap f[Y]$ 。

(3) 由 $(X \setminus Y) \cap Y = \emptyset$, 习题 1.4.3(3)和定理 2.4.3(4)。详细证明 留给读者。

可以将子集的象的交和并的性质推广到集合族。

- **2.4.5 定理** $f \in A$ 到 B 的映射,任给 $i \in I$,都有 $A_i \subseteq A$ 。
- $(1) f[\bigcup_{i \in I} A_i] = \bigcup_{i \in I} f[A_i]_{\circ}$
- $(2)f[\bigcap_{i\in I}A_i]\subseteq\bigcap_{i\in I}f[A_i]$,
- (3) 如果 f 是单射,则 $\bigcap_{i \in I} f[A_i] \subseteq f[\bigcap_{i \in I} A_i]$ 。

证 (1) 任给 $i \in I$, 都有 $A_i \subseteq \bigcup_{i \in I} A_i$, 由定理 2.4.3(1)得

 $f[A_i] \subseteq f[\bigcup_{i \in I} A_i]_{\circ}$

因此 $\bigcup_{i \in I} f[A_i] \subseteq f[\bigcup_{i \in I} A_i]$ 。

任给 y, 如果 $y \in f[\bigcup_{i \in I} A_i]$, 则

存在 $x \in \bigcup_{i \in I} A_i$, 使得 f(x) = y ,

对于这个x,存在 $i \in I$,使得 $x \in A_i$,所以 $f(x) \in f[A_i]$,

即

 $y \in f[A_i]$,

这就证明了

存在 $i \in I$, 使得 $y \in f[A_i]$,

由集合族的并的定义得

 $y \in \bigcup_{i \in I} f[A_i]_{\circ}$

因此 $f[\bigcup_{i\in I}A_i]\subseteq\bigcup_{i\in I}f[A_i]$ 。

(2) 任给 $i \in I$, 都有 $\bigcap_{i \in I} A_i \subseteq A_i$, 由定理 2.4.3(1)得 $f[\bigcap_{i \in I} A_i] \subseteq f[A_i]$ 。

因此 $f[\bigcap_{i\in I}A_i]\subseteq\bigcap_{i\in I}f[A_i]$ 。

(3) 任给 $y \in \bigcap_{i \in I} f[A_i]$, 任给 $i \in I$, 都有 $y \in f[A_i]$, 所以

任给 $i \in I$, 存在 $x_i \in A_i$, 使得 $f(x_i) = y_o$

由f是单射得所有的 x_i 都相同,记为x,所以

任给 $i \in I$, 都有 $x \in A_i$,

由集合族的交的定义得 $x \in \bigcap_{i \in I} A_i$, 所以

 $f(x) \in f[\bigcap_{i \in I} A_i]$,

即

 $y \in f[\bigcap_{i \in I} A_i]_{\circ}$

因此 $\bigcap_{i\in I} f[A_i] \subseteq f[\bigcap_{i\in I} A_i]$ 。

利用子集的象,可以从 A 到 B 的映射构造 P(A)到 P(B)的映射,这两个映射的性质有密切的关系。

2.4.6 例 $f: A \rightarrow B$, 构造 P(A)到 P(B)的映射

 $g: P(A) \rightarrow P(B)$ $g(X) = f[X]_o$

64

如果 f 是单射则 g 也是单射, 理由如下:

任给 $X, Y \in P(A)$, 如果 X Y, 则

 $X \setminus Y \neq \emptyset$ 或 $Y \setminus X \emptyset$ (见习题 1.4.4(2)),

不妨设 $X \setminus Y \emptyset$,则由 f 是单射得

 $f[X] \setminus f[Y] = f[X \setminus Y] \neq \emptyset$,

所以

 $f[X] \neq f[Y]$,

即 $g(X) \neq g(Y)_{\circ}$

如果f是满射则g也是满射,理由如下:任给 $Y \in P(B)$,取 $X = \{x \mid x \in A \perp f(x) \in Y\}$

则

 $X \in P(A) \coprod f[X] \subseteq Y$,

又任给 $y \in Y$, 由 f 是满射得

存在 $x \in A$, 使得 f(x) = y ,

由 X 的定义得

 $x \in X$,

再由 y = f(x)和 $f(x) \in f[X]$ 得

 $y \in f[X]$,

因此

 $Y \subseteq f[X]$,

这证明了:存在 $X \in P(A)$,使得g(X) = f[X] = Y。

 $f \in A$ 到 B 的映射 , $Y \subseteq B$ 。 A 中所有象在 Y 中的元素组成 A 的一个子集。

2.4.7 定义 子集的逆象 $f \in A$ 到 B 的映射 $, Y \subseteq B$ 。A 中所有象在 Y 中的元素组成的集合称为 Y 在 f 下的逆象 , 记为 $f^{-1}[Y]$ 。即

 $f^{-1}[Y] = \{x \mid x \in A \perp f(x) \in Y\}_{\circ}$

用属于关系表示就是:

 $x \in f^{-1}[Y]$ 当且仅当 $f(x) \in Y_{\circ}$

显然有 $f^{-1}[\varnothing] = \varnothing$, $f^{-1}[\operatorname{ran}(f)] = A$ 。

以下是子集的逆象的一些例子。

2.4.8 例 对于映射 $f: \mathbf{R} \to \mathbf{R}$ $f(x) = x^2$, 有

$$f^{-1}[(0,4)] = (-2,2)$$
, $f^{-1}[\mathbf{R}^+] = \mathbf{R} \setminus \{0\}_{\mathbf{0}}$

对于映射 $g: \mathbb{N} \rightarrow \mathbb{N}$ g(x) = x+1,如果令

$$A = \{2x \mid x \in \mathbb{N}\}\ , B = \{2x+1 \mid x \in \mathbb{N}\}\ ,$$

则有

$$g^{-1}[A] = B$$
, $g^{-1}[B] = A_{\circ}$

子集的逆象的性质要比子集的象的性质简单。

- **2.4.9 定理** $f \in A$ 到 B 的映射 , $X, Y \subseteq B$ 。
- (1) 如果 $X \subseteq Y$, 则 $f^{-1}[X] \subseteq f^{-1}[Y]$ 。
- $(2) f^{-1}[X \cup Y] = f^{-1}[X] \cup f^{-1}[Y]_{\circ}$
- $(3) f^{-1}[X \cap Y] = f^{-1}[X] \cap f^{-1}[Y]_{\circ}$
- $(4) f^{-1}[X \setminus Y] = f^{-1}[X] \setminus f^{-1}[Y]_{\circ}$
- 证 (1) 任给 x, 如果 $x \in f^{-1}[X]$,则 $f(x) \in X$,由 $X \subseteq Y$ 得 $f(x) \in Y$,

所以

 $x \in f^{-1}[Y]_{\circ}$

因此 $f^{-1}[X] \subseteq f^{-1}[Y]$ 。

(2) 任给 x,

$$x \in f^{-1}[X \cup Y]$$
 当且仅当 $f(x) \in X \cup Y$
当且仅当 $(f(x) \in X \ \footnote{off}\ \f$

(3)和(4)的证明类似(2),留给读者。

子集的逆象的交和并的性质也可以推广到集合族。

2.4.10 定理 $f \in A$ 到 B 的映射,任给 $i \in I$,都有 $B_i \subseteq B$ 。

- $(1) f^{-1} [\bigcup_{i \in I} B_i] = \bigcup_{i \in I} f^{-1} [B_i]_{\circ}$
- $(2) f^{-1}[\bigcap_{i \in I} B_i] = \bigcap_{i \in I} f^{-1}[B_i]_{\circ}$

证 留给读者。

子集的象和逆象有以下关系。

- **2.4.11 定理** $f \in A$ 到 B 的映射 $, X \subseteq A$ $, Y \subseteq B$ 。
- (1) $X \subseteq f^{-1}[f[X]]$ 。如果f是单射,则 $f^{-1}[f[X]] = X$ 。
- $(2) f[f^{-1}[Y]] \subseteq Y$ 。如果f是满射,则 $f[f^{-1}[Y]] = Y$ 。

证 (1) 证明 $X \subseteq f^{-1}[f[X]]$ 。任给 x ,如果 $x \in X$,则 $f(x) \in f[X]$,由 $f^{-1}[f[X]]$ 的定义和 $f(x) \in f[X]$ 得

 $x \in f^{-1}[f[X]]_{\circ}$

因此 $X \subseteq f^{-1}[f[X]]$ 。

设 f 是单射,证明 $f^{-1}[f[X]] \subseteq X$ 。任给 x,如果 $x \in f^{-1}[f[X]]$,则 $f(x) \in f[X]$,由 f(X)的定义和 $f(x) \in f[X]$ 得

存在 $y \in X$, 使得 f(y) = f(x),

由 f 是单射得

x = y,

所以 $x \in X$ 。

(2) 证明 $f[f^{-1}[Y]] \subseteq Y$ 。任给 y , 如果 $y \in f[f^{-1}[Y]]$,则 存在 $x \in f^{-1}[Y]$, 使得 f(x) = y ,

由 $f^{-1}[Y]$ 的定义和 $x \in f^{-1}[Y]$ 得

 $f(x) \in Y$,

所以 $y \in Y$ 。

设f是满射,证明 $Y \subseteq f[f^{-1}[Y]]$ 。任给y,如果 $y \in Y$,则 $y \in B$,由f是满射得

存在 $x \in X$, 使得 f(x) = y,

所以

 $f(x) \in Y$,

由 $f^{-1}[Y]$ 的定义和 $f(x) \in Y$ 得

 $x \in f^{-1}[Y]$,

再由 $f[f^{-1}[Y]]$ 的定义和 $x \in f^{-1}[Y]$ 得 $f(x) \in f[f^{-1}[Y]]$,

所以 $y \in f[f^{-1}[Y]]$ 。

在映射的复合下,子集的象和逆象有以下性质。

2.4.12 定理 f和 g 分别是 A 到 B 和 B 到 C 的映射。

- (1) 任给 $X \subseteq A$,都有 $(g \circ f)[X] = g[f[X])$ 。
- (2) 任给 $Y \subseteq C$, 都有 $(g \circ f)^{-1}[Y] = f^{-1}[g^{-1}[Y]]$ 。

证 (1) 任给 $z \in (g \circ f)[X]$, 存在 $x \in X$, 使得 $(g \circ f)(x) = z$, 所以 z = g(f(x)),

由 $x \in X$ 得

 $f(x) \in f[X]$,

由 $f(x) \in f[X]$ 得

 $g(f(x)) \in g[f[X]]$,

因此 $z \in g[f[X]]$ 。

任给 $z \in g[f[X]]$, 存在 $y \in f[X]$, 使得 g(y) = z , 由 $y \in f[X]$ 得 存在 $x \in X$, 使得 f(x) = y ,

所以

$$z = g(y) = g(f(x)) = (g \circ f)(x)$$
,

因此 $z \in (g \circ f)[X]$ 。

(2) 任给 $x \in (g \circ f)^{-1}[Y]$, 都有 $(g \circ f)(x) \in Y$, 所以

 $g(f(x)) \in Y$,

由 $g(f(x)) \in Y$ 得

 $f(x) \in g^{-1}[Y] ,$

由 $f(x) \in g^{-1}[Y]$ 得 $x \in f^{-1}[g^{-1}[Y]]$ 。

任给 $x \in f^{-1}[g^{-1}[Y]]$, 都有 $f(x) \in [g^{-1}[Y]]$, 所以 $g(f(x)) \in Y$,

即

 $(g \circ f)(x) \in Y$,

由 $(g \circ f)(x) \in Y$ 得 $x \in (g \circ f)^{-1}[Y]_{\bullet}$

习题 2.4

2.4.1 求 $f[X_1]$, $f[X_2]$, $f^{-1}[Y_1]$ 和 $f^{-1}[Y_2]$ 。

(1) $f: \mathbf{R}^2 \to \mathbf{R}$ f(x, y) = xy,

 $X_1 = \{ \langle x, x \rangle | x \in \mathbf{R} \}$, $X_2 = (0, 1) \times (0, 1)$,

 $Y_1 = \{0\}$, $Y_2 = (-1, 0) \cup (0, 1)_{\circ \circ}$

(2) $f : \mathbf{N} \to \mathbf{N}$ f(x) = x+1,

 $X_1 = Y_1 = \mathbf{N}_n$, $X_2 = Y_2 = \mathbf{N} \setminus \mathbf{N}_{no}$

(3) $a \in A$, $A \cap B = \emptyset$,

$$f: A \cup B \to A \quad f(x) = \begin{cases} x & \text{oull } x \in A \\ a & \text{oull } x \in B \end{cases},$$

 $X_1 \subseteq A \cup B \coprod X_1 \cap B \neq \emptyset$, $X_2 \subseteq A$,

 $Y_1 \subseteq A \coprod a \in Y_1$, $Y_2 \subseteq A \coprod a \notin Y_2$

2.4.2~~f 是 A 到 B 的映射, $X\subseteq A$,证明:如果 $g=f\mid_X$,则 $f[X]=\operatorname{ran}(g)$ 。

- 2.4.3 证明定理 2.4.3(4)和定理 2.4.4(3),即证明:
- $(1) f[X] \setminus f[Y] = f[X \setminus Y] \setminus f[Y] ,$
- (2) 如果f是单射,则 $f[X \setminus Y] = f[X] \setminus f[Y]$ 。
- 2.4.4 证明定理 2.4.9(3)(4),即证明:
- $(1) f^{-1}[X \cap Y] = f^{-1}[X] \cap f^{-1}[Y]_{\circ}$
- $(2) f^{-1}[X \setminus Y] = f^{-1}[X] \setminus f^{-1}[Y]_{\circ}$
- 2.4.5 证明定理 2.4.10,即证明:
- $(1) f^{-1} [\bigcup_{i \in I} B_i] = \bigcup_{i \in I} f^{-1} [B_i]_{\bullet}$
- $(2) f^{-1}[\bigcap_{i \in I} B_i] = \bigcap_{i \in I} f^{-1}[B_i]_{\circ}$

 $2.4.6 \ f$ 是 A 到 B 的双射, $Y \subseteq B$, $f^{-1}[Y]$ 是 Y 在 f 下的逆象, $(f^{-1})[Y]$ 是 Y 在 f^{-1} 下的象,证明: $f^{-1}[Y] = (f^{-1})[Y]$ 。

2.5 映射族 一般卡氏积

因为集合的元素是任意的,所以映射也可以作为集合的元素。 给予每个元素都是映射的集合一个专门的名称。

2.5.1 定义 映射族 每个元素都是映射的非空集合称为映射族。映射族一般用大写希腊字母 Σ , Γ , Φ , Ψ 等表示。

注意映射族仍然是集合,是具有一定性质的集合。当我们对 这样的集合使用映射族的称呼时,表明我们讨论的重点在于作为 它的元素的那些映射。按定义,映射族总是非空的。

设 I 是一个非空集合,如果任给 $i \in I$, $f_i \in A_i$ 到 B_i 的映射,则 $\{f_i \mid i \in I\}$ 是映射族,称为以 I 为指标集的映射族。

为了简单起见,以后使用映射族 $\{f_i \mid i \in I\}$ 时,总是假定 f_i 是 A_i 到 B_i 的映射。

和集合族类似,任何映射族都可以表示为以某个非空集合为 指标集的映射族。

A 的所有子集组成重要的集合族——幂集 , A 到 B 的所有映射也组成一个重要的映射族。

2.5.2 定义 A 是非空集合 ,由 A 到 B 的所有映射组成的映射 族记为 B^A , 即 $B^A = \{f \mid f : A \rightarrow B\}$ 。

B 是集合,因为 \varnothing 到 B 有惟一的空映射 θ_B ,所以 $B^{\varnothing} = \{\theta_B\}$ 。 如果 $A \neq \varnothing$,则按定义不存在 A 到 \varnothing 的映射,所以 $\varnothing^A = \varnothing$ 。

为了简单起见,将 $\mathbf{N}_{\mathbf{n}}^{A}$ 简记 \mathbf{n}^{A} ,即 $\mathbf{n}^{A}=\{f|f:A{
ightarrow}\mathbf{N}_{\mathbf{n}}\}$ 。以下是映射族的一些例子。

2.5.3 例 $n \ge 1$, $A_0, ..., A_{n-1}$ 是 n 个集合,则 $\{f \mid f : \mathbf{N}_n \to \bigcup_{i < n} A_i$, 任给 $0 \le i \le n-1$, 都有 $f(i) \in A_i\}$

是映射族。这个映射族记为 $\prod_{i < n} A_i$ 。

2.5.4 例 如果 $A \neq \emptyset$, 则 $\{b\}^A = \{b\}$ 。如果 $B \neq \emptyset$, 则

 $B^{\{a\}} = \{b \mid b \in B\}$ (见例 2.1.17)。

映射族既然是集合,所以可以有它到别的集合的映射,也有别的集合到它的映射。为了清楚起见,这样的映射一般用英文大写字母 F, G, H 等表示,当然仍可以用 f, g, h 等表示。

2.5.5 例 任给 $X \in P(A)$, $X \in A$ 中的特征函数 $\mu_X \in 2^A$ (见例 2.1.18),所以可以构造 P(A)到 2^A 的映射

$$F: P(A) \rightarrow 2^A \quad F(X) = \mu_X$$

可以证明 F 是双射。

任给 $X, Y \in P(A)$, 如果 $X \neq Y$, 则

存在 $x \in A$, 使得 $(x \in X \coprod x \notin Y)$ 或 $(x \in Y \coprod x \notin X)$,

不妨假设 $x \in X$ 且 $x \notin Y$, 所以

因此

 $\mu_X \neq \mu_Y$ o

即

 $F(X) \neq F(Y)_{\circ}$

这就证明了 F 是单射。

任给
$$f \in \mathbf{2}^A$$
 , 令 $X = \{x \mid x \in A \perp f(x) = 1\}$, 则 $F(X) = \mu_X = f(见习题 2.1.5)$ 。

这就证明了F是满射。

2.5.6 例 $A \cap B = \emptyset$, 任给 $h \in C^{A \cup B}$, h 在 A 上和 B 上的限制 分别是

 $h|_A \in C^A$ $\exists h|_B \in C^B$,

所以可以构造 $C^{A \cup B}$ 到 $C^A \times C^B$ 的映射

$$F: C^{A \cup B} \rightarrow C^A \times C^B$$
 $F(h) = \langle h \mid A, h \mid B \rangle$

可以证明 F 是双射。

任给 $h, k \in C^{A \cup B}$,如果 $h \neq k$,则

存在 $x \in A \cup B$, 使得 $h(x) \neq k(x)$,

当 $x \in A$ 时有 $h \mid_A (x) \neq k \mid_A (x)$, 所以

$$h \mid_A \neq k \mid_A$$

当 $x \in B$ 时有 $h \mid_{B}(x) \neq k \mid_{B}(x)$, 所以

$$h|_{R} \neq k|_{R}$$

在两种情况下都有

$$\langle h \mid_A, h \mid_B \rangle \neq \langle k \mid_A, k \mid_B \rangle_0$$

因此F是单射。

任给
$$< f, g> \in C^A \times C^B$$
,由例 2.1.13 构造 $h \in C^{A \cup B}$,则 $h \mid_A = f \perp h \mid_B = g \text{ (见习题 2.1.3)}$,

所以

$$F(h) = \langle h \mid_A, h \mid_B \rangle = \langle f, g \rangle_o$$

因此F是满射。

如果 f 是集合 A 到映射族的映射,则任给 $x \in A$, f(x) 是映射,而 dom(f(x))中的元素 y 的象就是 f(x)(y) ,通过这种形式可以定义新的映射,请看以下例子。

2.5.7 例 $f: A \rightarrow C^B$, 可以构造 $B \times A$ 到 C 的映射

$$f^*: B \times A \rightarrow C$$
 $f^*(y, x) = f(x)(y)$

从而可以构造 $(C^B)^A$ 到 $C^B \times A^B$ 的映射

$$F: (C^B)^A \rightarrow C^B \times^A \quad F(f) = f^*$$

 $h: B \times A \rightarrow C$,可以构造 A 到 C B 的映射如下:首先对任意的 $x \in A$,构造 B 到 C 的映射

$$h_x: B \rightarrow C$$
 $h_x(y) = h(\langle y, x \rangle)$

然后构造 A 到 C^B 的映射

$$f: A \rightarrow C^B$$
 $f(x) = h_x$

可以证明 $f^* = h$ 。

在例 2.1.13 中,从映射

$$f: A_1 \rightarrow B_1 \not= B_2 \Rightarrow B_2$$

构造了映射

$$h: A_1 \cup A_2 \rightarrow B_1 \cup B_2 \quad h(\langle x, y \rangle) = \langle f(x), g(y) \rangle_{\circ}$$

h 满足:

任给 $x \in A_1$,都有 h(x) = f(x), 任给 $x \in A_2$,都有 h(x) = g(x)。

容易证明满足如此性质的映射是惟一的,所以我们可以不使用构造的方法,而利用 h 所满足的性质来定义 h。这种定义方法可以推广到映射族。

2.5.8 定义 并映射 $\Gamma = \{f_i \mid i \in I\}$ 是映射族 $h \in A$ 到 B 的映射,其中 $A = \bigcup_{i \in I} A_i$, $B = \bigcup_{i \in I} B_i$ 。如果 h 满足:

任给 $i \in I$, 任给 $x \in A_i$, 都有 $h(x) = f_i(x)$,

则称 h 是映射族 Γ 的并映射,简称 h 是映射族 Γ 的并。

注意映射不是集合,这里的"并"不是集合意义上的"并",但我们只在映射族上使用这种含义的"并",所以决不会和集合意义上的"并"相混。

首先我们来证明一个映射族的并是惟一的。

2.5.9 定理 如果 h 和 k 都是映射族 $\{f_i \mid i \in I\}$ 的并映射,则 $h = k_o$

证 显然有

 $dom(h) = \bigcup_{i \in I} A_i = dom(k)$,

又任给 $x \in \bigcup_{i \in I} A_i$, 存在 $i \in I$, 使得 $x \in A_i$, 所以

$$h(x) = f_i(x) = k(x)_{\circ}$$

因此 $h = k_0$

由并映射的惟一性,以后将映射族 Γ 的并记为 f_{Γ} 。

并不是任何映射族都有并映射的,并映射存在是需要一定条 件的。

2.5.10 定理 $\Gamma = \{f_i \mid i \in I\}$ 是映射族。如果 Γ 满足:

任给 $i, j \in I$, 任给 $x \in A_i \cap A_j$, 都有 $f_i(x) = f_j(x)$,

则Γ的并映射 fr存在。

证 考虑这样的对应:任给 $x \in \bigcup_{i \in I} A_i$,当 $x \in A_i$ 时将 x 对应 到 $f_i(x)$ 。 如果 $x \in A_i \cap A_j$,则由 $x \in A_i$ 得 x 对应到 $f_i(x)$,由 $x \in A_j$ 得 x 对应到 $f_i(x)$,但因为 $f_i(x) = f_j(x)$,所以 x 对应到 $\bigcup_{i \in I} B_i$ 中惟一的元

素 $f_i(x)$ (也是 $f_j(x)$),因此这个对应构成了 $\bigcup_{i \in I} A_i$ 到 $\bigcup_{i \in I} B_i$ 的映射 $h: \bigcup_{i \in I} A_i \to \bigcup_{i \in I} B_i$ $h(x) = f_i(x)$ (当 $x \in A_i$ 时)

任给 $i \in I$, 任给 $x \in A_i$, 都有 $h(x) = f_i(x)$, 所以 h 就是映射族 Γ 的并映射 f_{Γ} 。

实际上,定理 2.5.10 的条件也是并映射 f_{Γ} 存在的必要条件,这个证明留给读者。

为验证映射族的并映射是否存在,定理 2.5.10 使用起来不太方便。下面再给出并映射存在的两个条件。

- **2.5.11 定理** $\Gamma = \{f_i \mid i \in I\}$ 是映射族,令 $\Sigma = \{A_i \mid i \in I\}$ 。在以下两种情况下 f_i 存在。
 - (1) Σ是不交的。
- (2) Σ 是单调的,且满足:任给 i, $j \in I$,如果 $A_i \subseteq A_j$,则任给 $x \in A_i$,都有 $f_i(x) = f_i(x)$ 。

证 (1) 任给 $i, j \in I$,如果 i = j ,则任给 $x \in A_i \cap A_j$,由 $f_i(x) = f_i(x)$ 得

$$f_i(x) = f_j(x)$$
 ,

如果 $i \neq j$,则由Σ是不交的得

$$A_i \cap A_i = \emptyset$$
,

所以不存在满足 $x \in A_i \cap A_j$ 的 x , 因此也有

任给 $x \in A_i \cap A_j$, 都有 $f_i(x) = f_j(x)$ 。

这就证明了

任给 $i, j \in I$, 任给 $x \in A_i \cap A_j$, 都有 $f_i(x) = f_j(x)$,

由定理 2.5.11 得 f_{Γ} 存在。

(2) 任给 i, j∈I , 则由Σ是单调的得 $A_i \subseteq A_i$ 或 $A_i \subseteq A_i$,

不妨设 $A_i \subseteq A_i$, 所以

 $A_i \cap A_j = A_i$,

任给 $x \in A_i \cap A_j$, 都有 $x \in A_i$, 由定理条件得 $f_i(x) = f_i(x)$ 。

这就证明了

任给 i, j \in I, 任给 $x \in A_i \cap A_j$, 都有 $f_i(x) = f_i(x)$,

由定理 2.5.11 得 fr存在。

下面讨论并映射的性质。

2.5.12 定理 $\Gamma = \{f_i \mid i \in I\}$ 是映射族.

 $f_{\Gamma}: \bigcup_{i \in I} A_i \rightarrow \bigcup_{i \in I} B_i$

是 Γ 的并映射, $\Im \Sigma_1 = \{A_i \mid i \in I\}$, $\Im \Sigma_2 = \{B_i \mid i \in I\}$ 。

- (1) $\operatorname{ran}(f_{\Gamma}) = \bigcup_{i \in I} \operatorname{ran}(f_i)$, 因此,如果任给 $i \in I$, f_i 都是满射,则 f_{Γ} 是满射。
- (2) 如果 Γ_1 是单调的,并且任给 $i \in I$, f_i 都是单射,则 f_Γ 是单射。
- (3) 如果 Γ_2 是不交的,并且任给 $i \in I$, f_i 都是单射,则 f_Γ 是单射。

证 (1) 任给 $y \in \text{ran}(f_{\Gamma})$, 存在 $x \in \bigcup_{i \in I} A_i$, 使得 $f_{\Gamma}(x) = y$, 由 $x \in \bigcup_{i \in I} A_i$ 得

存在 $i \in I$, 使得 $x \in A_i$,

所以

 $y = f_{\Gamma}(x) = f_{i}(x) \in \operatorname{ran}(f_{i})$,

因此

 $y \in \bigcup_{i \in I} ran(f_i)_{\circ}$

这就证明了

任给 $y \in ran(f_{\Gamma})$, 都有 $y \in \bigcup_{i \in I} ran(f_i)$,

因此 $\operatorname{ran}(f_{\Gamma}) \subseteq \bigcup_{i \in I} \operatorname{ran}(f_i)_{\circ}$

任给 $y \in \bigcup_{i \in I} ran(f_i)$, 存在 $i \in I$, 使得 $y \in ran(f_i)$, 所以

存在 $x \in A_i$, 使得 $f_i(x) = y$,

因此

 $y = f_i(x) = f_{\Gamma}(x) \in \operatorname{ran}(f_{\Gamma})_{\circ}$

这就证明了

任给 $y \in \bigcup_{i \in I} ran(f_i)$, 都有 $y \in ran(f_{\Gamma})$,

因此 $\bigcup_{i \in I} \operatorname{ran}(f_i) \subseteq \operatorname{ran}(f_{\Gamma})_{\circ}$

如果任给 $i \in I$, f_i 都是满射 , 则

任给 $i \in I$,都有 $B_i = ran(f_i)$,

所以

 $\operatorname{ran}(f_{\Gamma}) = \bigcup_{i \in I} \operatorname{ran}(f_i) = \bigcup_{i \in I} B_i$,

因此 fr是满射。

(2) 任给 $x, y \in \bigcup_{i \in I} A_i$, 由 Γ_1 是单调的得(见习题 1.5.5)

存在 $i \in I$, 使得 $x, y \in A_i$,

如果 $x \neq y$,则 $f_i(x) \neq f_i(y)$, 所以

 $f_{\Gamma}(x) = f_{i}(x) \neq f_{i}(y) = f_{\Gamma}(y)_{\circ}$

因此 fr是单射。

(3) 任给 $x, y \in \bigcup_{i \in I} A_i$, 存在 $i, j \in I$, 使得

 $x \in A_i \coprod y \in A_j$,

所以

 $f_i(x) \in B_i \coprod f_i(y) \in B_i$,

如果 $x \neq y$, 则当 i = j 时, 由 f_i 是单射得

 $f_i(x) \neq f_i(y)$,

当 i ≠ j 时 , 由 $B_i \cap B_j = \emptyset$ 得

 $f_i(x) \neq f_i(y)$,

所以在两种情况下都有

 $f_{\Gamma}(x) = f_{\rm i}(x) \neq f_{\rm i}(y) = f_{\Gamma}(y)_{\rm o}$

因此 fr是单射。

n 个集合的卡氏积可以和一个映射族联系起来。为了便于对应,将 n 个集合的卡氏积记为 $A_0 \times ... \times A_{n-1}$,将 $A_0 \times ... \times A_{n-1}$ 中的元素记为 $< a_0, ..., a_{n-1} >$ 。

考虑例 2.5.3 中的映射族 $\prod_{i < n} A_i$,则

任给 $f \in \prod_{i < n} A_i$, 都有 $< f(0), \dots, f(n-1) > \in A_0 \times \dots \times A_{n-1}$,

可以构造 $\prod_{i < n} A_i$ 到 $A_0 \times ... \times A_{n-1}$ 的映射

 $F: \prod_{i < n} A_i \rightarrow A_0 \times \dots \times A_{n-1}$ $F(f) = \langle f(0), \dots, f(n-1) \rangle_{\mathbf{o}}$

任给 $f, g \in \prod_{i < n} A_i$, 如果 $f \neq g$, 则 存在 $0 \le i \le n-1$, 使得 $f(i) \ne g(i)$,

所以

$$\langle f(0), ..., f(n-1) \rangle \neq \langle g(0), ..., g(n-1) \rangle$$

即 $F(f) \neq F(g)$ 。 因此 F 是单射。

任给 $\langle a_0, ..., a_{n-1} \rangle \in A_0 \times ... \times A_{n-1}$,构造 \mathbf{N}_n 到 $\bigcup_{i < n} A_i$ 映射 $f: \mathbf{N}_n \rightarrow \bigcup_{i < n} A_i$ $f(i) = a_i$,

则 $f \in \prod_{i < n} A_i$ 且 $F(f) = \langle a_0, ..., a_{n-1} \rangle$ 。 因此 F 是满射。

因为 F 是双射,也可以用 $\prod_{i< n}A_i$ 来定义 n 个集合 A_0,\ldots,A_{n-1} 的卡氏积。

这种用映射族定义卡氏积的方法可以推广到集合族。

2.5.13 定义 一般卡氏积 $\Gamma = \{A_i \mid i \in I\}$ 是集合族,映射族 $\{f \mid f : I \rightarrow \bigcup_{i \in I} A_i$,任给 $i \in I$,都有 $f(i) \in A_i\}$

称为集合族 Γ 的卡氏积 , 记为 $\prod_{i \in I} A_{io}$

 $I = \mathbf{N}_n$ 时, $\prod_{i \in I} A_i$ 就是 $\prod_{i < n} A_i$,所以下标 i < n 就是下标 $i \in \mathbf{N}_n$ 的简写,这和集合族是类似的。

显然,如果存在 $i \in I$,使得 $A_i = \emptyset$,则 $\prod_{i \in I} A_i = \emptyset$ 。

但如果任给 $i \in I$,都有 $A_i \neq \emptyset$,却不容易证明 $\prod_{i \in I} A_i \neq \emptyset$,同样的结论对于 n 个集合的卡氏积是容易证明的(见习题 1.6.5)。

以后,在一般地讨论卡氏积时,都使用这样的定义,但如果 仅讨论 n 个集合的卡氏积时,仍然使用 n 元有序组的定义,特别 是对于两个集合的卡氏积。

如果在集合族 $\{A_i \mid i \in I\}$ 中,每个 A_i 都等于A,则称 $\prod_{i \in I} A_i$ 为A的以 I 为指标集的卡氏幂。这时有

$$\prod_{i \in I} A_i = \{f \mid f : I \to \bigcup_{i \in I} A_i , \text{ 任给 } i \in I , \text{ 都有 } f(i) \in A_i \}$$
$$= \{f \mid f : I \to A , \text{ 任给 } i \in I , \text{ 都有 } f(i) \in A \}$$
$$= \{f \mid f : I \to A \}_o$$

原来, A 的以 I 为指标集的卡氏幂就是 A^{I} 。因此, 以后将映射族 B^{A} 称为卡氏幂。为了简单起见, 将 $A^{N_{n}}$ 简记为 A^{n} 。注意, A^{n} 是指

映射族

$$\{f \mid f : \mathbf{N}_n \rightarrow A\}$$

 $m A^n$ 是指 n 元有序组的集合

$$\{ < x_1, ..., x_n > |$$
 任给 $1 \le i \le n$, 都有 $x_i \in A \}$ 。

习题 2.5

 $2.5.1 \quad A \neq \emptyset$, $b \in A$ 到 B 的以 b 为值的常映射 , 则 $b \in B^A$, 构造 B 到 B^A 的映射

$$F: B \rightarrow B^A \quad F(b) = b_0$$

证明:

- (1) F 是单射。
- (2) 如果 $A = \{a\}$,则 F 是满射。
- (3) 如果 A 和 B 都至少有两个元素,则 F 不是是满射。
- $2.5.2 \quad F: B^A \times C^A \to (B \times C)^A \quad F(f, g) = f * g.$ (*的含义见例 2.1.15)。证明:F 是双射。
- 2.5.3 $(1) f, g \in C^B$, 证明:如果 f = g, 则 $f^* = g^*$ (*的含义见例 2.5.7)。
- (2) 设 $h: B \times A \rightarrow C$, 按例 2.5.7 的方法构造 A 到 C^B 的映射 f。 证明: $f^* = h$ 。
 - 2.5.4 $F: A \rightarrow 2^A$, 构造 A 到 \mathbb{N}_2 的映射

$$f: A \rightarrow \mathbf{N}_2 \quad f(x) = \begin{cases} 1 & \text{out } F(x)(x) = 0 \\ 0 & \text{out } F(x)(x) = 1, \end{cases}$$

证明:不存在 $x \in A$, 使得 F(x) = f。

- 2.5.5 $\Gamma=\{f_i\mid i\in I\}$ 是映射族, Γ 的并映射 f_Γ 存在。证明:任给 $i,j\in I$,任给 $x\in A_i\cap A_j$,都有 $f_i(x)=f_j(x)$ 。
 - 2.5.6 任给 $i \in I$, A_i 都是 N 的非空子集 , 证明 : $\prod_{i \in I} A_i \neq \emptyset$ 。