CS & IT & ENGINEERING

Computer Network

IPv4 Addressing

Lecture No. - 04

Recap of Previous Lecture

Topic

Subnet Mask

Topics to be Covered

Topic

ABOUT ME

Hello, I'm Abhishek

- GATE CS AIR 96
- M.Tech (CS) IIT Kharagpur
- 12 years of GATE CS teaching experience

Telegram Link: https://t.me/abhisheksirCS_PW

- → Dividing (logically) a network into smaller manageable sub-networks
- → Sub-network (subnet) : Clustering of hosts inside a network
- → Clustering of hosts based on some bits of host identifier (HostId) field [In practice, most significant bits of host identifier]

→ Before subnetting, IP address having two sections :

1. Network Identifier (Net ID) : x - bits

2. Host Identifier (Host ID): y - bits

→ Size of IP address field = (x + y) bits

Topic: Subnetting

→ After subnetting, IP address having three sections :

1. Network Identifier (Net ID) : x - bits

2. Sub-network Identifier (Subnet ID): y1 - bits

3. Host Identifier

(Host ID) : y_2 - bits

→ Size of IP address field = $(x + y_1 + y_2)$ bits $[y = y_1 + y_2]$

Before Subnetting

Network Id	Host Id
x 6, t	o ybit

After Subnetting

Network Id	Sub-network Id	Host Id
X bit	y, bit	y 2 bit

Topic: Sub-network Address

→ Special IP address (32-bits)

→ Used to represent a sub-network

NetID field = As Assigned

Subnet ID = Anything

HostID field = All Zero Bits

Net Id	Subnet Id	Host Id [0 0 0 0 0 0 0 0]
1 X bit	y, b; t	y 2 b. ts

Topic: Sub-network Broadcast Address

→ Special IP address (32-bits)

→ Used to broadcast a packet to all hosts belongs to a sub-network

NetID field = As Assigned

Subnet ID = Anything

HostID field = All One Bits

Net Id	Subnet Id	Host Id [1 1 1 1 1 1 1 1 1]
Xbit	y bit	yz bit

Topic: Host IP Address

- → Host IP address (32-bits)
- → Used to identify a host uniquely world wide

```
NetID field (x - bits) = As Assigned
Subnet ID field (y_1 - bits) = Anything
HostID field (y_2 - bits) = Anything
[Except all zero and all one bits]
```

Net Id	Subnet Id	Host Id

Topic: Sub-network Mask

→ Sub-network Mask (Subnet mask) [32-bits]

NetID field = All One Bits

Subnet ID field = All One Bits

HostID field = All Zero Bits

→ Used to generate subnet address from a given IP address

Net Id [11..11] Subnet Id [11..11] Host Id [000.....000]

HOSTIDSbit

[00000000

Class C network (Network Address: 200.200.200.0), with 3-bit subnetting.

: 200.200.200. **Network Address**

: 200.200.200.255 **Broadcast Address**

(Network Directed)

Network Mask Default

: 255.255.0

Before Subnetting:-

Network Size = $[2^8 - 2] = 254$ hosts in the network

After 3-bit Subnetting:-

Subnet He ID 3 bit He

Sub-network Address

First Host IP Address

Last Host IP Address

Subnet Broadcast Address (Sub-network Directed) : 200.200.200. _ _ _ 00000

: 200.200.200.____00001

: 200.200.200.___ 11110

: 200.200.200.____11111

: 200.200.200.0 First Sub-network Address

[00000000]

First Host IP Address

: 200.200.200.

00000001

Last Host IP Address

: 200.200.200.30

[00011110]

First Subnet Broadcast Address

: 200.200.200.3

[00011117

(Sub-network Directed)

Second Sub-network Address

: 200.200.200.33

First Host IP Address

: 200.200.200.33

Last Host IP Address

: 200.200.200.62

: 200.200.200.63 Second Subnet Broadcast Address

[00100000]

(Sub-network Directed)

Last Sub-network Address : 200.200.200.224

First Host IP Address : 200.200.200.225

Last Host IP Address : 200.200.200.254

Last Subnet Broadcast Address: 200.200.200.255 (Sub-network Directed)

Sub-network Mask: 255.255.255.255.255.255Sub-network Size = (25-2) hosts persubnet Network Size = (25-2) hosts in the network

Limited Broad const Add. = 255, 255, 255, 255

→ Sub-network Size: Maximum possible number of hosts can be in a sub-network

For IP address (32-bits)

NetID field

(x - bits)

Subnet ID field (y₁ - bits)

HostID field (y2 - bits)

Sub-network Size = $[2^{y_2} - 2]$ hosts per subnet

Topic: Number of subnets

For IP address (32-bits)

NetID field (x - bits)

Subnet ID field (y₁ - bits)

HostID field (y2 - bits)

Number of subnets = $[2^{y_1}]$ subnets per network

No of subnets
$$= [2] - 2]$$

Topic: Size of networks

→ Network Size: Maximum possible number of hosts can be in a network

For Host IP address (32-bits)

NetID field (x - bits)

Subnet ID field (y1 - bits)

HostID field (y2 - bits)

Network Size = Number of Subnets per network * Sub-network size $= [2^{y_1}] * [2^{y_2} - 2] \text{ hosts per network}$

Network Size (before subnetting)

$$S_1 = [2^{(y_1+y_2)}-2]$$
 hosts per network $= [2^y-2]$

S₂ =
$$[2^{y_1}]$$
 * $[2^{y_2} - 2]$ hosts per network
= $[2^{(y_1+y_2)} - 2^{(y_1+1)}]$ hosts per network

Reduction in Network Size (after subnetting)

$$\frac{S_1 - S_2}{S_1 - S_2} = \frac{[2^{(y_1+1)} - 2]}{S_1 - S_2} \text{ hosts per network} = \left[2 + 2^{(y_1+1)} - 2\right]$$

#Q. An organization has a class B network and wishes to form subnets for 64 departments. The subnet mask would be:

Ans: D

Class B:-NexID=>166it No. of subnets = 64 No. of bits for subnet ID = 1/09 (No. of subnet) bits = 1092(64) bits = 6 bit

6-bit subnetting

[GATE-2005]

Subnet Mask = 255.255.1111100.

255.255.252.0

#Q. If a class B network on the Internet has a subnet mask of 255 . 255 . 248 . 0, what is the maximum number of hosts per subnet?

Class B:-NeXID=) 16 bit

[GATE-2008]

(A) 1022

Subnot Mask = 255.255.248.0

(B) 1023

/ 1010

(C) 2046

(D) 2047

Ans:

255.255.1111000.00000000 Net I) 55it 115it
16bit Subnet I) Host I)

Subnet Size = [2!-2] hosts per subnet
= 2046 hosts -//-

- #Q. The address of a class B host is to be split into subnets with a 6-bit subnet number. What is the maximum number of subnets and the maximum number of hosts in each subnet?
 - Class B:-NetID=>16 bit SubnetID=>6 bit

[GATE-2007]

- (A) 62 subnets and 262142 hosts.
- (B) 64 subnets and 262142 hosts.
- (C) 62 subnets and 1022 hosts.
- (D) 64 subnets and 1024 hosts

Ans:

$$= (6-2) \text{ Subnet}$$
Host ID = $(16-6) = 10 \text{ bit}$
Subnet Size = $(2^{10}-2) \text{ hosts persubnet}$

$$= 1022 \text{ hosts} - 1/1 - 1022 \text{ hosts}$$

max no. of subnets = 2 subnets

#Q. A subnetted Class B network has the following broadcast address:

144.16.95.255. Its subnet mask

[GATE-2006]

- (A) is necessarily 255.255.224.0
- (B) is necessarily 255.255.240.0
- (C) is necessarily 255.255.248.0
- (D) could be any one of 255.255.224.0, 255.255.240.0, 255.255.248.0

Network Address : 40.50.64.0 / 19

Broadcast Address : 40.50.95.255/19

(Network Directed)

Before Subnetting:-

First Host IP Address: 40.50.64.1/19

Last Host IP Address : 40.50.95. 254 / 19

Network Size = $[2^{13} - 2]$ hosts in the network

After 4-bit Subnetting:-

Sub-network Address

: 40.50.010 _ _ _ _ 0.00000000/23

First Host IP Address

: 40.50.010 _ _ _ _ 0.0000001/23

Last Host IP Address

: 40.50.010 _ _ _ _ 1.11111110/23

Subnet Broadcast Address (Sub-network Directed)

: 40.50.010 _ _ _ _ 1.1111111/23

2 mins Summary

THANK - YOU