Compact Operators

Tan-Jianbin

School of Mathematics Sun Yat-sen University

Seminar on Statistics 105c

Compact Operators

- The Spectrum of Operators
 - Spectrum Decomposition
 - Singular Value Decomposition
- 2 Hilbert-Schmidt Operators
 - Eckart-Young Theorem
- Trace Class Operators
 - von Neumann's Trace Inequality

Definition

 V_i normed vector space, $T \in L(V_1, V_2)$ is a compact operator: \forall bound set $A \subset V_1$, $T(A) \subset \subset V_2$. We mark that $T \in K(V_1, V_2)$.

Theorem

T is compact $\Leftrightarrow T(B_1[V_1]) \subset\subset V_2$

Proof.

"
$$\Leftarrow$$
 ": Let bound set $A\subset B_1(0,r)$, then $T(A)\subset T(B_1(0;r))=rT(B[V_1])\subset\subset V_2$

Note that $K(V_1,V_2) \subset B(V_1,V_2)$. If V_2 is banach space, we just need to show $T(B_1[V_1])$ is totally bounded.

$\mathsf{Theorem}$

 V_2 Banach space, then $K(V_1,V_2)$ is closed sub-space of $B(V_1,V_2)$.

Proof.

Let $T_n \to T$, $T_n \in K(V_1, V_2) \Leftrightarrow T_n(B[V_1]) \subset \subset V_2 \Leftrightarrow T_n(B[V_1])$ is totally bounded.

 $\forall \ \varepsilon>0, \ \exists \ T_n \text{ s.t. } ||T-T_n||<\varepsilon/3. \ T_n(B[V_1]) \text{ is totally bounded} \Rightarrow \exists \text{ finite } \{T_nx_k\}, \ \forall \ x\in B[V_1], \ \exists \ x_j\in B[V_1] \text{ s.t} \\ ||T_nx-T_nx_j||_2<\varepsilon/3.$

$$||Tx - Tx_j||_2 \le ||Tx - T_nx||_2 + ||T_nx - T_nx_j|| + ||T_nx_j - Tx_j||$$

Property

 $T \in B(V_1,V_2)$, $S \in B(V_2,V_3)$, $ST \in K(V_1,V_3)$ if S or T is compact.

Proof.

If
$$T$$
 is compact, $\forall \{x_n\} \subset \text{bound } A$, $\exists T(x_{n_k}) \to a \in V_2 \Rightarrow ST(x_{n_k}) \to Sa \in V_3$.

If V_i infinite-dim normed vector space, let T be a bijection in $B(V_1,V_2)$, then T is not compact since $I=T^{-1}T$ is not compact.

Lemma

 $T \in K(V_1, V_2)$, then $\overline{Im(T)}$ is separable.

$$T \in B(V_1, V_2)$$
 s.t. $Rank(T) < \infty \Rightarrow T \in K(V_1, V_2)$.

Proof.

 $\frac{Im(T) \subset \cup_n T(B(0;n))}{Im(T)}$ separable \Rightarrow $\overline{Im(T)}$ separable.

$$T(B[V_1]) \subset Im(T) \Rightarrow T(B[V_1]) \subset Im(T) \subset V_2.$$

$$T \in K(H_1, H_2) \Leftrightarrow \exists T_n \to T, Rank(T_n) < \infty.$$

Proof.

"
$$\Rightarrow$$
": $Im(T)$ is separable, let $\{e_n\}$ is COB of $Im(T)$.
Let $M_k = span\{e_n, n \leq k\}$, $T_n: H_1 \rightarrow M_k$, $T_k x = P_{M_k}(Tx)$,

$$Rank(T_k) < \infty$$
.

Note that $||Tx - P_{M_k}Tx||_2 \to 0$, $\forall x \in B[H_1]$ and $T(B[H_1])$ totally bounded, $\forall \ \varepsilon > 0$, \exists finite x_m s.t. $||Tx - Tx_m||_2 < \varepsilon/3$. $||Tx - T_kx||_2 \le ||Tx - Tx_m||_2 + ||Tx_m - T_kx_m||_2 + ||T_kx_m - T_kx_m||_2 \to 0$.

$$T \in K(H_1,H_2) \Leftrightarrow T^* \in K(H_2,H_1) \text{ since } ||T-T_n|| = ||T^*-T_n^*|| \text{ and } Rank(T) = Rank(T^*).$$

Definition

 $T \in B(H)$, if $\lambda \in R$ s.t. $Ker(T - \lambda I) \neq \{0\}$, then λ is the eigenvalue of T and $Ker(T - \lambda I)$ is the eigenspace of λ . $\sigma_p(T) = \{\lambda \in R, \lambda \text{ is an eigenvalue } T \}$.

Property

 $e_i \in Ker(T-\lambda_i I)/\{0\}$, λ_i is distinct and non-zero, then e_i is mutually linear independent. Moreover, if T is self-adjoint, then e_i is mutually orthonormal.

$$\langle e_i, e_j \rangle = 1/\lambda_i \langle \lambda_i e_i, e_j \rangle = 1/\lambda_i \langle e_i, \lambda_j e_j \rangle = \lambda_j/\lambda_i \langle e_i, e_j \rangle$$

$\mathsf{Theorem}$

$$T \in K(H)$$
, $Ker(T - \lambda I)$ is finite-dimensional for $\lambda \neq 0$. $T \in K(H)$, $\sigma_p(T)/\{0\}$ is countable.

Proof.

$$\forall x \in B[Ker(T - \lambda I)], \ \lambda x = Tx \in T(B[H]) \Rightarrow \lambda B[Ker(T - \lambda I)] \subset T(B[H]) \Rightarrow \lambda B[Ker(T - \lambda I)] \to T(B[H]) \Rightarrow \lambda B[Ker(T - \lambda I)] \to T(B[H]) \Rightarrow \Delta B[Ker(T - \lambda I)] \to T(B[H]) \to T(B[H])$$

$$\lambda B[Ker(T - \lambda I)] \subset T(B[H]) \Rightarrow \lambda B[Ker(T - \lambda I)] \subset \subset H.$$

We firstly proof $\forall \varepsilon > 0$, $A_{\varepsilon} = \sigma_p(T)/(-\varepsilon, \varepsilon)$ is finite. If not, we choose $x_n \in Ker(T-\lambda_n I)/\{0\}$, $\lambda_n \in A_{\varepsilon}$, use GS to $\{x_n\}$ and get a mutually orthonormal sequence $\{e_n\} \subset B[H]$.

 $\{Te_n\}$ has no convergent subsequence since $||Te_n - Te_m||^2 = \lambda_n^2 + \lambda_m^2 \ge 2\varepsilon^2$. Contradiction. (Let ε be rational)

Lemma

If
$$T \in B(H)$$
 is self-adjoint, then $||T||$ or $-||T|| \in \sigma_p(T)$.

$$\begin{array}{c} \text{Let } ||Tx_n|| \to ||T||, \ ||x_n|| = 1, \ ||T^2x_n - ||T||^2x_n||^2 \leq \\ 2||T||^4 - 2\langle T^2x_n, ||T||^2x_n\rangle = 2||T||^4 - 2||T||^2||Tx_n||^2 \to 0. \ \text{Then} \\ (T - ||T||I)(T + ||T||I)x_n \to 0. \\ \text{If } ||T|| \ \text{and} \ -||T|| \ \text{are both not in} \ \sigma_p(T) \Rightarrow Ker(T - ||T||I) \\ = Ker(T + ||T||I) = \{0\} \Rightarrow x_n = (T + ||T||I)^{-1}(T - ||T||I)^{-1} \\ (T - ||T||I)(T + ||T||I)x_n \to 0, \ \text{contradiction.} \end{array}$$

T self-adjoint, let $m=\inf R_T(x)$, $M=\sup R_T(x)$. It's easy to show that $\sigma_p(T)\subset [m,M]\subset [-||T||,||T||]$ and $\sigma_p(T)\neq\emptyset$.

Moreover, T is compact, then $\sigma_p(T)$ is countable. If $\sigma_p(T)$ is infinite set, we can easily show that $0 \in \overline{\sigma_p(T)}$.

Let $T \neq 0$, let $\{a_i\} = \sigma_p(T)/\{0\}$ s.t. $|a_i| > |a_{i+1}|$, and $\{x_{ik_i}\}$ is a finite basis of $Ker(T-a_iI)$.

Define mutually orthonormal sequence $\{e_n\}$ from $\cup_i \{x_{ik_i}\}$, λ_n is the eigenvalue of e_n then $|\lambda_n| \geq |\lambda_{n+1}| \to 0$. We call (λ_n, e_n) is a spectrum decomposition of T.

$\mathsf{Theorem}$

$$\overline{Im(T)} = \overline{span\{e_n\}}$$
 and $T = \sum_n \lambda_n e_n \otimes e_n$.

$$\begin{array}{l} \operatorname{Let} \ Im(T) = span\{e_n\} \oplus N. \ \forall x \in N, \ \langle Tx,y \rangle = \langle x,Ty \rangle = 0, \\ \forall y \in \overline{span\{e_n\}} \Rightarrow T(N) \subset N \Rightarrow T|_N \ \text{is self-adjoint} \Rightarrow \pm ||T|_N|| \\ \in \sigma_p(T|_N) = \{0\} \Rightarrow T|_N = 0 \Rightarrow N \subset Ker(T). \\ \text{Note that} \ H = Ker(T) \oplus \overline{Im(T)} \Rightarrow N = 0. \\ Tx = \sum_n \langle Tx,e_n \rangle e_n = \sum_n \langle x,\lambda_n e_n \rangle e_n = \sum_n \lambda_n e_n \otimes e_n x. \end{array}$$

Corollary

If T self-adjoint and compact, then T^k is compact and corresponding eigenvalue-eigenvector is (e_n, λ_n^k) .

Moreover, $T \gg 0 \Leftrightarrow \sigma_p(T) \subset [0, \infty]$, and $T^{1/2}$ is compact and corresponding eigenvalue-eigenvector is $(e_n, \lambda_n^{1/2})$.

$$T \in K(H) \text{ is self-adjoint. } M_{k-1} = span\{e_n, n \leq k-1\}, \text{ then } |\lambda_k| = ||T|_{M_{k-1}^\perp}|| = \max_{x \in M_{k-1}^\perp} |R_T(x)|.$$

If
$$N_{k-1}^{\perp} \cap M_{k-1} \neq \{0\}$$
, take $x \in N_{k-1}^{\perp} \cap M_{k-1}$ and $||x|| = 1$, $R_T(x) = \langle \sum_{i=1}^{k-1} e_n \langle e_n, x \rangle, T(\sum_{i=1}^{k-1} e_n \langle e_n, x \rangle) \rangle = \sum_{i=1}^{k-1} \lambda_i \langle x, e_n \rangle^2 \geq \lambda_k$.

$$N_k \cap M_k^{\perp} \neq \{0\} \Rightarrow R_T(x) = \sum_{i=k+1}^{\infty} \lambda_i a_i^2 \le \lambda_k.$$

Corollary

 $T,G\in K(H)$ and $T,G\gg 0$, $\{\lambda_n\}$ and $\{\phi_n\}$ corresponding eigenvalue, then $\sup_n |\lambda_n-\phi_n|\leq ||T-G||$.

$$||x|| = 1, R_T(x) = \langle Tx, x \rangle = \langle Gx, x \rangle + \langle (T - G)x, x \rangle$$

= $R_G(x) + R_{T-G}(x) \Rightarrow \lambda_n \le \phi_n + ||T - G||.$

$$T \in K(H_1, H_2)$$
, then $\sigma_p(T^*T) = \sigma_p(TT^*)$.

Proof.

We know that $T^*T \in K(H_2)$ and $TT^* \in K(H_1)$ and they are both $\gg 0$. Let (λ_n^2, e_n) be the eigenvalue-eigenvector of T^*T , $TT^*(Te_n) = \lambda_n^2 Te_n \Rightarrow \sigma(T^*T) \subset \sigma(TT^*) \Rightarrow \sigma(T^*T) = \sigma(TT^*)$. and $||Te_n|| = \sqrt{\langle Te_n, Te_n \rangle} = \sqrt{\langle e_n, T^*Te_n \rangle} = \lambda_n \ (\lambda_n > 0)$. \square

 $(\lambda_n^2, Te_n/\lambda_n)$ is the eigenvalue-eigenvector of TT^* .

$$T\in K(H_1,H_2)$$
, let $e_{1n}=e_n$, $e_{2n}=Te_n/\lambda_n$, then $T=\sum_n\lambda_n\ e_{1n}\otimes_1e_{2n}$ and $||T||=\lambda_1$.

Proof.

$$\overline{span\{e_n\}} = \overline{Im(T^*T)} = Ker(T^*T)^{\perp} = Ker(T)^{\perp}.$$

$$\forall x \in H_1, \ y = P_{Ker(T)^{\perp}}x, \ Tx = Ty = T \sum_n \langle e_n, y \rangle_1 e_n$$

$$= \sum_n \langle e_n, x \rangle_1 Te_n = \sum_n (e_n \otimes_1 Te_n) x.$$

$$||T||^2 = ||T^*T|| = \lambda_1^2.$$

Example

 $A \in M_{p \times q}(R)$, \exists orthonormal matrices $U_{p \times k}, V_{k \times q}$ and $\Lambda = diag(\lambda_1, ..., \lambda_k)$, $\lambda_i > 0$ s.t. $A = U\Lambda V^T$.

$$\begin{array}{l} T \in B(H_1,H_2) \text{, if } \exists \ \lambda_n \downarrow 0 \text{ and } \underbrace{\textit{MOS} \ \{e_{1n}\}}_{} \subset \underbrace{H_1 \text{ and}}_{} \\ \{e_{2n}\} \subset H_2 \text{, } \underbrace{span\{e_{1n}\}}_{} = Ker(T)^{\perp} \text{, } \underbrace{span\{e_{2n}\}}_{} = \underbrace{Im(T)}_{} \text{ s.t.} \\ T = \sum_n \lambda_n \ e_{1n} \otimes_1 e_{2n} \Leftrightarrow T \in K(H_1,H_2). \end{array}$$

$$"\Rightarrow"\colon \mathsf{Let}\ T_k = \sum_{n=1}^k \lambda_n\ e_{1n} \otimes_1 e_{2n} \Rightarrow T_k \in K(H_1,H_2), \\ \mathsf{then}\ \forall x \in H_1,\ ||(T_k-T)x|| = ||\sum_{n=k+1}^\infty \lambda_n\ \langle e_{1n},x\rangle_1 e_{2n}|| = \\ \sqrt{\sum_{n=k+1}^\infty \lambda_n^2 \langle e_{1n},x\rangle_1^2} \leq \lambda_{k+1}||x||_1 \Rightarrow T \in K(H_1,H_2). \\ "\Leftarrow"\colon T = \sum_n \lambda_n\ e_{1n} \otimes_1 e_{2n},\ \lambda_n^2 \in \sigma_p(T^*T) \Rightarrow \lambda_n \to 0. \ \mathsf{And} \\ \overline{span\{e_{2n}\}} = \overline{Im(TT^*)} = Ker(TT^*)^\perp = Ker(T^*)^\perp = \overline{Im(T)}.$$

 $T\in K(H_1,H_2)$ and the svd of T is $\sum_n \lambda_n \ e_{1n}\otimes_1 e_{2n}$, then $T^\dagger=\sum_n e_{2n}\otimes_2 e_{1n}/\lambda_n$.

$$T^{\dagger}: Im(T) + Im(T)^{\perp} \rightarrow Ker(T)^{\perp}, \ \forall y \in Im(T) + Im(T)^{\perp},$$
 let y_1 is the part of y in $Im(T)$, $T^{\dagger}y = T^{\dagger}y_1 = \sum_n \langle T^{\dagger}y_1, e_{1n} \rangle_1 e_{1n}$
$$= \sum_n \langle T^{\dagger}y_1, T^*Te_{1n}/\lambda_n \rangle_1 e_{1n}/\lambda_n = \sum_n \langle TT^{\dagger}y_1, e_{2n} \rangle_2 e_{1n}/\lambda_n$$

$$= \sum_n \langle P_{\overline{Im(T)}}y_1, e_{2n} \rangle_2 e_{1n}/\lambda_n = \sum_n \langle y_1, e_{2n} \rangle_2 e_{1n}/\lambda_n = \sum_n \langle y, e_{2n} \rangle_2 e_{1n}/\lambda_n = (\sum_n e_{2n} \otimes_2 e_{1n}/\lambda_n)y.$$

Corollary

 $T \in K(H_1, H_2)$, if H_i is infinite-dim, then Im(T) is not closed.

Proof.

Noticed that T isn't invertible, svd of T: $\sum_n \lambda_n \ e_{1n} \otimes_1 e_{2n}$. If Im(T) is closed, let $y = \sum_k \lambda_{n_k} e_{2n_k}$, $\lambda_{n_k} \leq k^{-4}$, then $y \in Im(T)$.

 $||T^{\dagger}y||_1^2 = ||\sum_n \langle y, e_{2n} \rangle_2 e_{1n} / \lambda_n||_1^2 = ||\sum_k e_{1n_k}||_1^2 = \infty \Rightarrow T^{\dagger}y$ doesn't exist, contradiction.

Lemma

 $T_1,T_2\in B(H_1,H_2)$, H_i is separable Hilbert space, which COB is $\{e_{in}\}$, then $\sum_n\langle T_1e_{1n},T_2e_{1n}\rangle_2=\sum_m\langle T_1^*e_{2m},T_2^*e_{2m}\rangle_1$ if one of them exists.

Proof.

$$\sum_{n} \langle T_{1}e_{1n}, T_{2}e_{1n} \rangle_{2} = \sum_{n} \langle T_{1}e_{1n}, \sum_{m} \langle T_{2}e_{1n}, e_{2m} \rangle_{2} e_{2m} \rangle_{2}
= \sum_{n} \sum_{m} \langle T_{1}e_{1n}, e_{2m} \rangle_{2} \langle T_{2}e_{1n}, e_{2m} \rangle_{2}
= \sum_{n} \sum_{m} \langle e_{1n}, T_{1}^{*}e_{2m} \rangle_{1} \langle e_{1n}, T_{2}^{*}e_{2m} \rangle_{1} = \sum_{m} \langle T_{1}^{*}e_{2m}, T_{2}^{*}e_{2m} \rangle_{1}$$

If $\sum_n(||T_1e_{1n}||_2^2+||T_2e_{1n}||_2^2)<\infty$, then $\sum_n\langle T_1e_{1n},T_2e_{1n}\rangle_2$ exist.

Definition

 $T\in B(H_1,H_2)$, if $\sum_n||Te_{1n}||_2^2:=||T||_{HS}^2<\infty$, we call T a Hilbert-Schmidt operator. We mark that $T\in B_{HS}(H_1,H_2)$.

Property

$$B_{HS}(H_1,H_2)$$
 normed vector space. If $T \in B_{HS}(H_1,H_2)$, $\sum_n ||Te_{1n}||_2^2 = \sum_n ||T^*e_{2n}||_1^2$, then $T^* \in B_{HS}(H_1,H_2)$.

It also means that $||T||_{HS}$ doesn't depend on the COB of H_i .

$\mathsf{Theorem}$

$$B_{HS}(H_1, H_2) \subset K(H_1, H_2).$$

$$\begin{array}{c} \forall T \in B_{HS}(H_1,H_2)\text{, define } T_n x = \sum_{k \leq n} \langle Tx,e_{2k} \rangle_2 e_{2k}\text{,} \\ \forall x \in B[H_1]\text{, } ||Tx-T_n x||_2^2 = \sum_{k > n} \langle Tx,e_{2k} \rangle_2^2 \leq \sum_{k > n} \langle x,T^*e_{2k} \rangle_1^2 \\ \leq \sum_{k > n} ||T^*e_{2k}||_1^2. \end{array}$$

Definition

Define
$$\langle \cdot, \cdot \rangle_{HS}$$
: $\langle T_1, T_2 \rangle_{HS} = \sum_n \langle T_1 e_{1n}, T_2 e_{1n} \rangle_2$

Without loss of generation, let $\{e_{1n}\}$ be the eigenvector of T^*T , and make a complement to get a COB of H_1 , then

$$||T||_{HS}^2 = \sum_n ||Te_{1n}||_2^2 = \sum_n \lambda_n^2$$

 $B_{HS}(H_1,H_2)$ is separable Hilbert space and $\{e_{1n}\otimes_1 e_{2m}\}$ is a COB of $B_{HS}(H_1,H_2)$.

$$\begin{split} \forall T \in B_{HS}(H_1, H_2), \ Tx &= \sum_m \langle T \sum_n \langle x, e_{1n} \rangle_1 e_{1n}, e_{2m} \rangle_2 e_{2m} \\ &= \sum_{n,m} \langle x, e_{1n} \rangle_1 \langle Te_{1n}, e_{2m} \rangle_2 e_{2m} = \sum_{n,m} a_{nm} (e_{1n} \otimes_1 e_{2m}) x, \\ a_{nm} &= \langle Te_{1n}, e_{2m} \rangle_2 \Rightarrow T = \sum_{n,m} a_{nm} (e_{1n} \otimes_1 e_{2m}) \\ \text{Noticed that } \langle e_{1n} \otimes_1 e_{2m}, e_{1j} \otimes_1 e_{2k} \rangle_{HS} = \delta_{nj} \langle e_{2m}, e_{2k} \rangle_2 \Rightarrow \\ ||T||_{HS} &= \sum_{n,m} a_{nm}^2 < \infty \Rightarrow B_{HS}(H_1, H_2) \approxeq l^2. \\ \text{Let } \langle T, e_{1n} \otimes_1 e_{2m} \rangle_{HS} = 0 \ \forall n, m, \ \text{then } \langle Te_{1n}, e_{2m} \rangle = 0 \Rightarrow \\ Te_{1n} &= 0 \Rightarrow T = 0, \ \text{then } \{e_{1n} \otimes_1 e_{2m} \} \ \text{is a COB of } B_{HS}(H_1, H_2). \end{split}$$

$$T \in B_{HS}(H_1, H_2)$$
 with $(\lambda_n, e_{1n}, e_{2n})$. $\forall G \in B_{HS}(H_1, H_2)$, $Rank(G) \leq n$, $||T - G||_{HS} \geq ||T - \sum_{k=1}^{n} \lambda_k e_{1k} \otimes_1 e_{2k}||_{HS}$.

Note that
$$||T - \sum_{k=1}^n \lambda_k e_{1k} \otimes_1 e_{2k}||_{HS}^2 = \sum_{k > n} \lambda_k^2$$
. $\exists \ \{x_k\}, \ \{y_k\} \ \text{MOS s.t.} \ G = \sum_{k=1}^n \mu_k (x_k \otimes_1 y_k)$. $||G||_{HS} = \sum_{k \leq n} \sum_j ||\mu_k \langle x_k, e_{1j} \rangle_1 y_k||_2^2 = \sum_{k \leq n} \mu_k^2$. $\langle T, \mu_k (x_k \otimes_1 y_k) \rangle_{HS} = \mu_k \sum_j \langle Te_{1j}, \langle x_k, e_{1j} \rangle_1 y_k \rangle_2 = \mu_k \langle x_k, T^*y_k \rangle_1$ $\mu_k^2 - 2\mu_k \langle x_k, T^*y_k \rangle_2 = ||\mu_k x_k - T^*y_k||_1^2 - ||T^*y_k||_1^2 \geq -||T^*y_k||_1^2$ $||T - G||_{HS}^2 \geq ||T||_{HS}^2 - \sum_{k=1}^n ||T^*y_k||_1^2$, then we just need to prove that $\sum_{k \leq n} ||T^*y_k||_1^2 \leq \sum_{k \leq n} \lambda_k^2$.

Lemma

$$\sum_{k \le n} ||T^* y_k||_1^2 \le \sum_{k \le n} \lambda_k^2.$$

$$||T^*y_k||_1^2 = ||\sum_m \lambda_m \langle e_{2m}, y_k \rangle_2 e_{1m}||_1^2 = \sum_m \lambda_m^2 \langle e_{2m}, y_k \rangle_2^2
= \sum_{m=1}^n \lambda_m^2 \langle e_{2m}, y_k \rangle_2^2 + \sum_{m>n} \lambda_m^2 \langle e_{2m}, y_k \rangle_2^2 - \lambda_n^2 \sum_m \langle e_{2m}, y_k \rangle_2^2
+ \lambda_n^2 \le \sum_{m=1}^n (\lambda_m^2 - \lambda_n^2) \langle e_{2m}, y_k \rangle_2^2 + \lambda_n^2
\sum_{m,k \le n} ((\lambda_m^2 - \lambda_n^2) \langle e_{2m}, y_k \rangle_2^2 + n\lambda_n^2 \le \sum_{m \le n} (\lambda_m^2 - \lambda_n^2)
\sum_{k < n} \langle e_{2m}, y_k \rangle_2^2 + n\lambda_n^2 \le \sum_{m < n} \lambda_m^2.$$

Definition

 $T\in B(H_1,H_2)$, H_i separable Hilbert space, then T is a trace class operator if COB $\{e_n\}$ of H_1 , $tr(T):=\sum_n\langle (T^*T)^{1/2}e_n,e_n\rangle_1=||(T^*T)^{1/4}||_{HS}^2<\infty.$

For a matrix
$$A$$
 , $tr(A)=tr((A^TA)^{1/2})=tr(V^T(A^TA)^{1/2}V)$

Property

If
$$tr(T) < \infty$$
, then $T \in K(H_1, H_2)$.

Proof.

 $\{e_{1n}\}$ is the eigen-vector of T^*T and $\{e_{2n}\}$ is TT^* . $\forall x \in H_1$:

$$Tx = \sum_{n} \langle T \sum_{m} \langle x, e_{1m} \rangle_{1} e_{1m}, e_{2n} \rangle_{2} e_{2n}$$

$$= \sum_{n,m} \langle T e_{1m}, e_{2n} \rangle_{2} \langle x, e_{1m} \rangle_{1} e_{2n}$$

$$= \sum_{n,m} \langle T^{*} T e_{1m}, e_{1n} \rangle_{1} / \lambda_{n} (e_{1m} \otimes_{1} e_{2n}) x$$

$$= \sum_{n,m} \langle T^{*} T e_{1m}, e_{1n} \rangle_{1} (e_{1m} \otimes_{1} e_{2n}) x$$

$$= \sum_{n} \langle (T^{*} T)^{1/2} e_{1n}, e_{1n} \rangle_{1} (e_{1n} \otimes_{1} e_{2n}) x$$

Then
$$T = \sum_{n} \lambda_n (e_{1n} \otimes_1 e_{2n}).$$

Property

$$tr(T) = \sum_{n} \lambda_n$$
, λ_n is singular value of T .

Proof.

$$tr(T) = \langle (T^*T)^{1/2}e_n, e_n \rangle_1 = \sum_n \lambda_n.$$

If $T \in B_{HS}(H_1, H_2)$ since $||T||_{HS}^2 = \sum_n \lambda_n^2 \le \lambda_1 tr(T)$.

Let $B_T(H_1,H_2)$ denote the operator which trace is finite. We now can conclude that:

$$B_T(H_1, H_2) \subset B_{HS}(H_1, H_2) \subset K(H_1, H_2) \subset B(H_1, H_2)$$

 $T,G\in B_{HS}(H_1,H_2)$, and $\{\lambda_n\}$ and $\{\phi_n\}$ are corresponding singular values, then $\sum_n (\lambda_n-\phi_n)^2 \leq tr((T-G)^*(T-G))$.

Proof.

$$\begin{split} &\sum_{n}(\lambda_{n}^{2}+\phi_{n}^{2})-2\langle Te_{1n}^{T},Ge_{1n}^{T}\rangle_{2} \\ &\langle Te_{1n}^{T},Ge_{1n}^{T}\rangle_{2}=\lambda_{n}\langle e_{2n}^{T},Ge_{1n}^{T}\rangle_{2}=\lambda_{n}\langle e_{2n}^{T},\sum_{m}\langle Ge_{1n}^{T},e_{2m}^{G}\rangle_{2}e_{2m}^{G}\rangle_{2} \\ &=\sum_{m}\lambda_{n}\langle e_{2n}^{T},\langle e_{1n}^{T},G^{*}e_{2m}^{G}\rangle_{1}e_{2m}^{G}\rangle_{2} \\ &=\sum_{m}\lambda_{n}\langle e_{2n}^{T},\langle e_{1n}^{T},\phi_{m}e_{1m}^{G}\rangle_{1}e_{2m}^{G}\rangle_{2}=\lambda_{n}\phi_{m}\langle e_{2n}^{T},e_{2m}^{G}\rangle_{2}\langle e_{1n}^{T},e_{1m}^{G}\rangle_{1} \end{split}$$

 $tr((T-G)^*(T-G)) = tr(T*T) + tr(G^*G) - 2tr(G^*T) =$

And
$$\sum_{n=m} \lambda_n \phi_m \langle e_{2n}^T, e_{2m}^G \rangle_2 \langle e_{1n}^T, e_{1m}^G \rangle_1 \leq \sum_n \lambda_n \phi_n$$

