

Problem R-08G ($C_{11}H_{14}O_3$). In this problem you are given the part structure of a tetrahydropyran. Your task is to completely assign the ¹H NMR spectrum, determine the position of the second methyl group, which is either at position 5 or 6, and determine the relative stereochemistry of the three substituents on the ring. You may assume that the ring adopts a chair-like conformation. Please use the peak labelling (A-J) shown on the spectrum and the position labelling (1-6, F2-F4, 3Me, 5/6Me) shown on the structure. You may use first order analysis.

$$Me \xrightarrow{6} \begin{array}{c} 0 \\ 2 \\ 5 \\ 3 \end{array} Me$$

(a) Analyze the multiplets A-J. Report your results in the standard format: δ 9.3, dt, J = 14, 6 Hz, 3H. For each proton indicate which other protons (A-J), are coupled to it. You may use first order analysis.

•	` ' '	•
	A-J	1-6, F ₂ -F ₄ 3Me, 5/6Me
Α	Coupled to:	Assigned to:
В	Coupled to:	Assigned to:
C	Coupled to:	Assigned to:
D	Coupled to:	Assigned to:
E	Coupled to:	Assigned to:
F	Coupled to:	Assigned to:
G	Coupled to:	Assigned to:
Н	Coupled to:	Assigned to:
1	Coupled to:	Assigned to:
J	Coupled to:	Assigned to:

(b) Briefly describe how you determined the position of the methyl group

(c) Using the structure below, draw a good representation of the molecule, clearly indicating stereochemistry (axial or equatorial substituents).

Problem R-08G (C₁₁H₁₄O₃). In this problem you are given the part structure of a tetrahydropyran. Your task is to completely assign the ¹H NMR spectrum, determine the position of the second methyl group, which is either at position 5 or 6, and determine the relative stereochemistry of the three substituents on the ring. You may assume that the ring adopts a chair-like conformation. Please use the peak labelling (A-J) shown on the spectrum and the position labelling (1-6, F2-F4, 3Me, 5/6Me) shown on the structure. You may use first order analysis.

$$Me \xrightarrow{6} \begin{array}{c} 0 \\ 5 \\ 3 \end{array} Me$$

(a) Analyze the multiplets A-J. Report your results in the standard format: δ 9.3, dt, J = 14, 6 Hz, 3H. For each proton indicate which other protons (A-J), are coupled to it. You may use first order analysis.

14				A-J		1-6, F ₂ -F ₄ 3Me, 5/6Me
	Α_	δ 7.39, dd, J = 2, 1 Hz, 1H	Coupled to: _	B, C	Assigned to:	F4
	В	δ 6.36, dd, J = 3.5, 2 Hz, 1H	Coupled to: _	A, C	Assigned to:	F3
	С_	δ 6.33, dt, J = 3.5, 1 Hz, 1H	Coupled to: _	A, B, D	Assigned to:	F2
	D _	δ 4.84, dd, J = 3.5, 1 Hz, 1H	Coupled to: _	C, F	Assigned to:	2
	E _	δ 3.92, dqd, J = 12, 6, 3 Hz, 1H	Coupled to: _	H, I, G	Assigned to:	6
	F _	δ 3.92, qdd, J = 7, 3, 1.5 Hz, 1H	Coupled to: _	J, D, H	Assigned to:	3
	G _	δ 2.54, dd, J = 15, 12 Hz, 1H	Coupled to: _	H, E	Assigned to:	5
	н _	δ 2.33, ddd, J = 15, 3, 1.5 Hz, 1H	Coupled to: _	G, E, F	Assigned to:	5
	1 _	δ 1.41, d, J = 6 Hz, 3H	Coupled to: _	Е	Assigned to:	6Me
	J _	δ 1.07, d, J = 7 Hz, 3H	Coupled to: _	F	Assigned to:	3Me

(b) Briefly describe how you determined the position of the methyl group

If Me were at C-5 then here should have been a quartet splitting of a proton near 2.8, similar to the H-3 signal F. Since the proton at 3.9 (E) has the quartet splitting, the methyl group must be at position 6

A number of other criteria can be used - e.g. the large ²J between G and H (15 Hz) argues that the CH₂ must be next to a carbonyl not an oxygen, as does the chemical shift.

(c) Using the structure below, draw a good representation of the molecule, clearly indicating stereochemistry (axial or equatorial substituents).

Note long range (allylic) coupling between C and D, and W-couping between F and H

Assignment of furan protons based on shift and coupling comparisons with models:

Large coupling (4Hz) should be between F2 and F3

Can't actually tell whether Fu is ax or eq, except that if it were axial, the ring would flip

4

8

