К постановке задачи на разработку методики для оценки эффективности организации, разработки и эксплуатация информационного и специального программного обеспечения для интеграции АСУТП металлургического комбината и лабораторной информационной менеджмент-системы

- А. Катенин, к.т.н, АО «ГНИНГИ»
- Н. Лиманский
- В. Милушков

<u>Ключевые слова</u>: доменное производство, доменный цех, методика для оценки эффективности организации, разработки и эксплуатации информационного и специального программного обеспечения для интеграции АСУПП металлургического комбината и лабораторной информационной менеджмент-системы, отдел внешней приёмки

Цель данной статьи — описать постановку задачи на разработку методики для оценки эффективности организации, разработки и эксплуатации информационного и специального программного обеспечения для интеграции АСУТП металлургического комбината и лабораторной информационной менеджмент-системы. Рассматривается производство чугуна и сталей (чёрная металлургия).

1 Основные определения

Агломерат — спекшаяся в пористые куски мелкая руда. Типовой состав: аглоруда (железорудная мелочь), железорудный концентрат, флюсовый известняк, коксовая мелочь или энергетический уголь, возврат. В ход идут и отходы металлургического производства: окалина, шламы, колошниковая пыль

Aглоруда — железная руда крупностью не более 10-12 мм с содержанием железа 54-60%, используется при производстве агломерата.

Возврат — мелкий агломерат и неспекшаяся шихта. Их получают при просеивании готового агломерата. Возврат улучшает процесс спекания.

Доменный процесс — совокупность физико-химических процессов, протекающих в доменной печи, результатом которых является получение жидкого чугуна в качестве основного продукта [15]. Существуют другие процессы получения жидкого чугуна, например, Corex, Romelt.

Концентрат — материал, производимый сепарацией измельченной железной руды с низким содержанием железа. При этом содержание железа в концентрате может быть повышено по сравнению с рудой с 30% до 60-65%.

Окатыши — материал, производимый из железорудного концентрата с добавлением известняка или глины в результате окомкования смеси (около 1 см) и последующего обжига.

 $Pyдный\ двор$ — часть доменного цеха, расположенная вблизи доменных печей (обычно вдоль фронта) и предназначенная для хранения запасов сырых материалов. С одной стороны РД находится разгрузочная эстакада, с другой — бункера для приёма шихты, из которых она поступает в печи.

 $Cырье\ для\ Д\Pi$ — агломерат и окатыши, аглоруда, концентрат мокрой магнитной и сухой сепарации, крупнокусковая руда, товарная железная руда.

 Φ люс — добавка, вводимые в доменную и агломерационную шихту для снижения температуры плавления пустой породы шихтовых материалов. Примеры флюса — известняк (известь — основной флюс), магнезия. Чистый известняк состоит из 56 % извести и 44 % угольной кислоты.

 Φ утеровка — кирпичная кладка любого металлургического агрегата, выполненная из огнеупорного кирпича.

Шихта (шихтовые материалы) — металлические и неметаллические материал, используемый для приготовления литейных сплавов. Состоит из металлической и топливной частей, кроме того, в шихту входит флюс. В состав металлической части шихты могут входить доменный чушковый чугун, чугунный и стальной лом, возврат (литники и брак), брикетированная стружка, природнолегированные чугуны и ферросплавы.

U лак — расплавленная или застывшая масса различных примесей, золы и флюсов, являющаяся побочным продуктом при различных металлургических процессах.

Шлам – отходы разработки горной породы или производственного процесса в виде пыли, грязи, мелкого порошка, осадка. В ДП образуется в результате газоочистки.

Чёрная металлургия — отрасль промышленности по производству чугуна и сталей. В работе [20] перечислены основные металлургические комбинаты отрасли в РФ.

Остальные определения – в соответствии с [15] и ГОСТ Р ИСО 14284-2009 [7].

Далее рассмотрим часть АСУТП для ДП, а также вопросы интеграции АСУТП (ДП) с ЛИМС. Актуальность вопроса обусловлена распространением в РФ данного типа производства стали, см., например, данные за 2017й год [31, с. 110]. В таблице «Основные МК...» приведены аналогичные данные, собранные авторами на 2023й год.

Таблица 1 – Основные МК ЧМ (кроме ОЭМК – углеродное восстановление Fe в ДП)

№	Сокр.	Название		
1	3СМК	Западно-Сибирский (АО ЕВРАЗ ЗСМК) ДП: 3 ед – №№ 1-3		
2	MMK	Магнитогорский (ПАО «Магнитогорский металлургический комбинат») (3 ед – 9-11)		
3	HTMK	Нижнетагильский (АО ЕВРАЗ НТМК) (3 ед – №№ 5, 6, 7)		
4	НЛМК	Новолипецкий (ПАО «Новолипецкий металлургический комбинат») (5 ед – №№3-7)		
5	ОЭМК	Оскольский электрометаллургический; ЖПВ, процесс Midrex (4 модуля)		
6	ТЧМ	ПАО «Тулачермет» (ООО УК «Промышленно-металлургический холдинг») (3 ед)		
7	УС	AO «Уральская сталь» (4 ед – №№ 1-4)		
8	ЧелМК	Челябинский (ПАО «Челябинский металлургический комбинат») (3 ед – №№ 1, 4, 5)		
9	ЧерМК	Череповецкий (ПАО «Череповецкий металлургический комбинат») (4 ед–№№1,2,4,5)		

Примечание: 1 ДП – доменная печь

2 Описание предметной области

1 Типовой МК чёрной металлургии (без ЖПВ) имеет доменное производство, конверторный цех, отдел внешней приёмки и центральную измерительную лабораторию. Сырье, включая агломерат, доменные брикеты и присады, железнофлюс, металлодобавки, окатыши и другие материалы, поступает от ГОК и предприятий вторичной переработки. Разгружается, и часть материалов направляется на рудный двор. В состав осховной технологической цепочки могут входить также коксохимическое, сталеплавильное и др. производства, прокатные цеха [3, 4].

В работе рассматриваются подсистемы ДП и КЦ в АСУТП. Рассмотрение АСУТП аглофабрик (АСУТП агломерации [21]) и др. подразделений находится за границами исследования.

- 2 Подсистема ДП в АСУТП состоит из подсистем нижнего уровня:
- загрузки шихтовых материалов;
- теплового состояния печи;
- хода печи.
- 3 Основная задача доменного производства бесперебойная выплавка чугуна с заданными свойствами. Побочный продукт шлак.

- 4 Все шихтовые материалы должны иметь однородный химический состав, например постоянное содержание железа в агломерате, золы в коксе, извести в известняке. Колебания химического состава нарушают нормальный ход доменной печи, приводят к повышенному удельному расходу материалов. При прочих равных условиях производительность доменной печи повышается при росте содержания железа в сырье. Загружаемые в доменную печь материалы с точки зрения влияния их на движение газа в печи можно разделить на две группы: рудные материалы (руды, агломерат, известняк, добавки) и топливо (кокс) [6].
- 5 Отдел внешней приёмки берет пробы сырья, готового продукта и технологические. Например:

Рудный двор [10]:

- 1) ОВП пробы сырья концентрат, аглоруда, отходы марганцевого производства, шлам, шлак, окалина, колошниковая пыль, известь, отсев агломерата и окатышей, торф активированный и подготовленный ракушечник.
- 2) в АСУТП поступают следующие данные: масса каждого вида сырья в штабеле, общая масса смеси и средневзвешенное содержание в штабеле Fe, CaO, SiO2, Mn и влаги.
- 6 Часть результатов анализа поступает в подсистему доменного производства АСУТП. Железорудные концентраты, как материалы с повышенным содержанием железа, различаются по химическому, минералогическому и гранулометрическому составу. Поэтому повышение содержания железа в агломерате и окатышах может сопровождаться различным изменением других показателей качества. Соответственно они отразятся на результатах доменной плавки [4].
- 7 В ОВП созданы участки физико-механических (физико-химических) и термических испытаний. Пробы проходят: 1) на участке ФМИ 1.1) пробоподготовку к XA, 1.2) XA и физические испытания; 2) на участке металлургических (термических) испытаний 2.1) приёмку и пробоподготовку к ТИ, 2.2) ТИ, 2.3) взвешивание и определение гранулометрического состава.

Рисунок 1 – Схема ДП с номенклатурой материалов [13, 14]

Таблица 2 – Отбор проб и испытания в интересах доменного производства

	олица 2 – Отбор проб и испытания в интересах доменного производства						
N₂	Технологический или бизнес-процесс	Пробы					
1	Отбор проб						
1.1	Место отбора – рудный двор						
	Номенклатура: концентрат, аглоруда, отходы марганцевого производства, шлам, шлак, окалина, колошниковая пыль, известь, отсев агломерата и окатышей, торф активированный и подготовленный ракушечник	Концентраты и флюсы: Fe, CaO, SiO2, Mn, W ₁ (влага, W1 [22]) <u>Кокс</u> : S					
1.2	Место отбора – доменный цех						
1.2	Номенклатура: шихта, ЖСО, основной продукт, побочный проодукт Выходные параметры АСУТП (не являются пробами) [11]: — состав газа (СО, СО2) в печи; — шихта; — дутьё; — состояние печи; — состояние воздунагревателей	Основной продукт: Мп, Cr, Ni, Ti, Si, S, P и углерод, который определяют методом сжигания [18] Шихта и побочный продукт: гранулометрический состав шихты, отсев агломерата, аспирационная пыль, колошниковая пыль, шламы ДП, в т.ч. шлаки – Mg, Al, Si, Ca, Fe ЖСО – химанализ (мокрый, AA и другие) [17]					
1.3	Место отбора – конвертерный цех	смеси металлоотсева, шлаки, шламы КЦ					
	Выходные параметры АСУТП (не являются пробами) [12]: — основные (концентрация углерода, фосфора и серы в металле в процессе и в конце продувки, температура металла в процессе и в конце продувки; масса металла в процессе и в конце продувки); — дополнительные (окисленность металла в конце продувки, масса шлака, состав шлака, количество конвертерных газов, температура конвертерных газов; состав конвертерных газов); — контролируемые возмущающие воздействия; — неконтролируемые возмущающие воздействия; — управляющие воздействия (массы, время ввода материалов и т.п.)						
1.4	Место отбора – сталепрокатный цех						
		Для легированных сталей — $P\Phi A$, определение легирующих добавок Ti, V, Cr, Mn, Co, Ni, Nb, Mo и W_2 (вольфрам)					
2	Испытания по предназначению						
2.1	Прогнозирование параметров кокса, подготовка кокса к доменным плавкам						
	Испытание кокса (в частности, [8])						
_	На МК не выполняются: – испытания ТПМ (в исследовательских учреждениях)						

3 О моделях и показателях

Основными показателями, характеризующими работу доменной печи, являются:

- производительность в единицу времени, например, [т/сутки];
- расход кокса на тонну выплавляемого чугуна;
- для сравнительной оценки эффективности работы доменных печей различного объема КИПО [м3 сутки/т] (меньший показатель лучше).

Также в работах [19, 23] и др. в качестве примера приведены основные технико-экономические показатели ДП.

В работе [16] представлены математические модели для выбора рациональной технологии и управления качеством стали. В статье [22] рассматривается прогнозирование содержания кремния в чугуне методами комплексного математического анализа и моделирования. Известна модельная система поддержки принятия решений (модель доменного процесса УрФУ-ММК) для диагностики работы и прогнозирования технологических ситуаций доменных печей [24, 26, 27], ФИПС № 2021665704 (2021 г.). Основные модельные блоки позволяют выполнить: расчёт материальных и тепловых балансов; моделирование теплового, шлакового и газодинамического режимов работы доменных печей; выбор состава доменной шихты. Модельная система реализована в виде комплекса программных модулей и интегрирована в информационную систему ПАО ММК.

В ПАО ММК также создаётся АСУТП новой структуры, содержащая подсистему интеллектуального анализа данных, подсистему оперативного, адаптивного и технико-экономического управления доменным процессом. В 2018-м году были представлены основные результаты внедрения систем оптимизации и управления в первом переделе ПАО ММК.

Таблица 3 – Некоторые теоретические математические и реализованные программные модели доменного и связанных с ним производств

№	Год	Модель	Примечание				
1	н.вр.	УрФу	Проекты информационных систем по грантам (Блинков А.,				
			Першин А. и др.) – см. табл. «Проекты»; общий портал [27]				
2	2021	УрФУ-ММК	Шихта: расход и химический состав отдельных компонентов,				
			Флюс: расход и химический состав				
			Кокс: расход и химический состав				
			<u>Дутьё</u> : характеристики				
			Основной продукт: состав и свойства				
			Побочный продукт: состав и свойства колошникового газа				
			<u>Разное</u> : другие параметры				
3	2019	УрФу	Нагревательная печь [28]				
4	1990	Рожков И. и др.	Математические модели для выбора рациональной технологии и				
			управления качеством стали				

Таблица 4 — Проекты информационных систем по грантам в $Ур\Phi У$ для автоматизации ДП, а также проекты ИС, связанные с вышеуказанными по программному стеку ASP.NET MVC или по тематике

исследовательских и выпускных работ ВУЗа

№	Модель, ПО	Примечание
1	HMT-463907	Блинков А. ФИПС № 2020667402 (2020 г.); тепловые потери
2	HMT-463907	Першин А. ФИПС № 2020667459 (2020 г.); горячее дутье и ПГ по фурам
3	HMT-463907	Чечкина Е. расчет показателей работы ДП с ПУТ
4	HMT-453907	Перетыкина К., 2019; техотчёт доменного цеха – формирование сведений о
		работе доменных печей и в целом всего цеха за календарный месяц или за
		период с начала года до указанного месяца; ASP.NET MVC
		Другие цеха
_	HMT-453907	Болгов А. [28], ФИПС № 2019617810 (2019 г.); нагревательная печь;
		ASP.NET MVC
_	HMT-453907	Дегтерев Р. (2019 г.); критическая инфраструктура ЕВРАЗ НТМК
	HMT-453907	Сираев А. (2019 г.); сыпучие материалы; для информации – прим. авт.
_	HMT-443907	Радченко М. (2019 г.); листопрокатный; для информации – прим. авт.
_	HMT-443907	Луговик А. (2017, 2018 гг.); ж.д. транспорт; для информации – прим. авт.
_	Мт-433902	Штина А. (2017 г.); общая задача поиска оптимального маршрута; для
		информации – прим. авт.
	HMT-463907	Симонов М.; металлургический; электронный паспорт плавки

Рисунок 2 – Показатели (элементы ССЦР)

4 Оценка потребности в интеграции подсистемы ДП из АСУТП и ЛИМС

На взгляд авторов и по имеющимся данным, на предприятиях с ДП есть ограниченная потребность в интеграции подсистемы доменного производства АСУТП и внедряемой ЛИМС по данным, касающимся поступившего сырья, т. е. речь не идет об оперативном лабораторном анализе материалов из рабочей зоны, основного и побочного продукта в масштабе времени, близком к реальному.

Таким образом, предполагается, что в первую очередь для прогнозирования плавки будут учитываться следующие результаты из ЛИМС.

Место отбора – рудный двор.

Номенклатура:

- агломерат, кокс, отсев агломерата, отсев окатышей, шихта металлическая, шихта неметаллическая да, возможно:
 - аглоруда, концентрат маловероятно;
- известь, колошниковая пыль, окалина, отходы марганцевого производства, шлак, шлам, торф активированный и подготовленный ракушечник нет.

Химический анализ и влага концентратов и флюсов: Fe, CaO, SiO2, Mn, Wl. Химический анализ кокса: S.

Номенклатура	Тип номенклатуры	ЛИМС → АСУТП (ДП)				
Агломерат	Сырьё ЖРМ	Да				
Аглоруда (железорудная мелочь)	Сырьё для агломерата	Маловероятно				
Известь		Нет				
Колошниковая пыль	Побочный продукт	Нет				
Кокс	Топливо	Да				
Концентрат	Сырьё для агломерата	Маловероятно				
Окалина		Нет				
Окатыши	Сырьё ЖРМ	Да				
Окатыши офлюсованные	Сырьё ЖРМ	Да				
Отсев агломерата	Сырьё ЖРМ	Да				
Отсев окатышей	Сырьё ЖРМ	Да				
Отходы марганцевого производства		Нет				
Подготовленный ракушечник		Нет				
Торф активированный		Нет (только в НИИ и т.п.)				
Шихта металлическая	ШМ	Возможно				
Шихта неметаллическая (флюсы)	ШМ	Да				
Шлак	Побочный продукт	Нет				
Шлам		Нет				

Рисунок 3 – Оценка потребности в интеграции АСУТП (ДП) и ЛИМС

Из ЛИМС по части материалов номенклатуры в АСУТП поступит в таком случае информация по следующим видам анализа: см. рис. «Методы анализа...».

Номенклатура	Химический анализ			Гранулометрический анализ			Технический анализ кокса				Прочность				
		[%]		[%]		(A, V	, WI) [%]		МехПр [%], Основно	сть [ед], Г	Тр на сж [к	г/окатыш		
Агломерат	XA	C, Fe, Si, Mn, S, P	ГРА	Фракционный состав агломерата по классам, %											
Аглоруда (железорудная мелочь)															
Известь															
Колошниковая пыль															
Кокс			ГРА	Ситовой состав кокса по классам, %	TA	WI, 3олы	ность А, Ле	туч V; %	МехПр	M25, M10;	%				
Концентрат															
Окалина															
Окатыши	XA	[C, Fe, Si, Mn, S, P] + [CaO, Fe, MgO, SiO2]	ГРА	Массовая доля фракции 0−5 мм, не более					Основно	ть, ед.; Пр	очность н	а сжатие, к	г/окатыш		
Окатыши офлюсованные	XA	[C, Fe, Si, Mn, S, P] + [CaO, Fe, MgO, SiO2]	ГРА	Массовая доля фракции 0–5 мм, не более					Основность, ед.; Прочность на сжатие, кг/окатыш			г/окатыш			
Отсев агломерата	XA	C, Fe, Si, Mn, S, P													
Отсев окатышей	XA	[C, Fe, Si, Mn, S, P] + [CaO, Fe, MgO, SiO2]	ГРА	Массовая доля фракции 0–5 мм, не более				Основность, ед.; Прочность на с			а сжатие, к	г/окатыш			
Отходы марганцевого производства															
Подготовленный ракушечник															
Торф активированный															
Шихта металлическая	XA	Al2O3, CaO, Fe, Fe2O3, FeO, MgO, MnO, P2O5, S, SiO2, TiO2, Zn													
Шихта неметаллическая (флюсы)	XA	Al2O3, CaO, Fe, Fe2O3, FeO, MgO, MnO, P2O5, S, SiO2, TiO2, Zn													
Шлак															
Шлам															

Рисунок 4 – Методы анализа и контролируемые показатели в ЛИМС

Примечания:

- 1 Основность (индекс основности, коэффициент основности) характеристика металлургического сырья, железной руды или металлургического шлака, показывающая соотношение масс основных оксидов к кислотным; [в долях единицы]. Для ЖРС, подвергающегося переработке перед доменной плавкой (агломерат, брикеты, окатыши), применяют также синоним термин «степень офлюсования»
- 2 Известь указана как основной материал флюса (известняка)

5 Методический подход и план разработки методики

Методический подход и **план разработки** методики для оценки эффективности организации, разработки и эксплуатации информационного и специального программного обеспечения для интеграции АСУТП металлургического комбината и лабораторной информационной менеджмент-системы **включают**:

- обоснование и учёт стоимости, времени и др. показателей разработки, внедрения и т.п. ИО и ПО на разных этапах жизненного цикла ИС, метрик коммерческой разработки ПО (аспект разработки);
- учёт технологических и бизнес-процессов доменного производства, отбора проб, пробоподготовки, лаюораторной деятельности, включая XA, ГРA, ТИ и др., (аспект технологических и бизнес-процессов);
- априорную оценку эффективности и гипотезу о приросте эффективности после внедрения ЛИМС и интеграции ЛИМС с АСУТП (аспект возможного прироста эффективности);
- учёт вариантов построения СПО за счёт разной архитектуры приложений (архитектурный аспект);
- учёт разрабатываемых и поддерживаемых ЛИМС сложившейся архитектуры из 14 модулей ЛИМС (аспект предложений на рынке СПО).

Подробно данные вопросы рассмотрены авторами в статье «Методический подход и план разработки методики для оценки эффективности организации, разработки и эксплуатации информационного и специального программного обеспечения для интеграции АСУТП металлургического комбината и лабораторной информационной менеджмент-системы» [32].

ВЫВОДЫ

- 1 Сформулировано краткое описание предметной области (фон для решения практической задачи разработки методики). Данное описание определяет границы и условия применения разрабатываемого HMA.
- 2 Обоснованы основные показатели, имеющие информационное отображение в ЛИМС (как результаты анализа), и важные для БП доменного цеха
- 3 Предложен подход к обоснованию необходимости и степени интеграции АСУТП (ДП) и ЛИМС
- 4 Представлен план разработки и состав методики.

СПИСОК СОКРАЩЕНИЙ

AA	_	атомно-абсорбционный (об анализе)
ΑΓ	l	аглоруда
ΑГЛ	-	агломерат
ΑЦ	_	агломерационный цех
ГОК	_	горно-обогатительный комбинат
ДП	_	доменная печь (реже – доменное производство)
ДЦ	_	доменный цех
ЖПВ	_	железо прямого восстановления
ЖРМ	_	железнорудные материалы
ЖРС	_	железнорудная смесь
ЖСО	_	железосодержащие отходы
ИО	_	информационное обеспечение
ИС	_	информационная система
КИПО	_	коэффициент использования полезного объема доменной печи
КС	_	концентратная смесь
КХЗ	_	коксохимический завод
КЦ	_	конвертерный цех
MK	_	маталлургический комбинат

HMA	_	научно-методический аппарат
ОВП	_	отдел внешней приёмки
ПГ	_	природный газ
ПО	_	программное обеспечение
ПУТ	_	пылеугольное топливо
РФА	_	рентгенофлуоресцентный анализ
СПО	_	специальное ПО
ССЦР	_	структурная схема целей развития
ТИ	_	термические испытания
ТΠМ	_	топливно-плавильные материалы
ФМИ	_	физико-механические испытания
XA	_	химический анализ
ШМ	_	шихтовые материалы
ЧМ	_	чёрная металлургия

СПИСОК ЛИТЕРАТУРЫ

1	Кочковская С., Разработка алгоритма моделирования характеристик сталей в подсистеме
	управления производственными ресурсами сталеплавильного производства, Мехатроника,
	автоматизация, управление, т. 20, № 10, 2019
2	Сибагатулин С. и др. Повышение содержания железа в агломерате изменением соотношения
	концентратов ОАО «ММК» и Лебединского ГОК по лабораторным исследованиям,
	https://cyberleninka.ru/article/n/povyshenie-soderzhaniya-zheleza-v-aglomerate-izmeneniem-
	sootnosheniya-kontsentratov-oao-mmk-i-lebedinskogo-gok-po-laboratornym, Дата обращения:
	16.05.2023
3	Реконструкция доменных печей № 5 и № 6 ОАО «НТМК», Отчёт о мониторинге проекта за
	2008-2009 г., 2010,
	http://www.carbonunitsregistry.ru/reports/NTMK_Monitoring%20report_01.01.2008-
	<u>31.12.2009_rus.pdf</u> , Дата обращения: 16.05.2023
4	Евстафьева А. «Повышение мощности теплоцентрали на металлургическом предприятии
	Северсталь», https://elibrary.ru/item.asp?id=43899179 , Дата обращения: 16.05.2023
5	Юсупходжаев А. Металлургия чугуна, Ташкент, 2019
6	Гилева Л., Каплун Л., Загайнов С. Металлургия чугуна, Екатеринбург, 2021
7	ГОСТ Р ИСО 14284-2009. Сталь и чугун. Отбор и подготовка образцов для определения
	химического состава
8	Способ испытания кокса, https://findpatent.ru/patent/115/1157062.html , Дата обращения:
	17.05.2023
9	Смольянинов С. и др, Испытание торфяных топливно-плавильных материалов в лаюбораторной
	доменной печи, Томск, 1977, https://cyberleninka.ru/article/n/ispytanie-torfyanyh-toplivo-plavilnyh-
	materialov-v-laboratornoy-domennoy-pechi, Дата обращения: 17.05.2023
10	Складирование и усреднение сырьевых материалов на рудном дворе ПАО «АрсеролМиттал
	Кривой Por», 2013, https://student.zoomru.ru/metall/skladirovanie-i-usrednenie-syrevyh-
	materialov/212496.1715183.s1.html, Дата обращения: 17.05.2023
11	Особенности доменного процесса как объекта автоматического управления,
	https://www.kstu.kz/wp-content/uploads/2018/05/tsifrovaya-mitallurgiya/el-uch-po-ampr/gl28.htm,
	Дата обращения: 17.05.2023
12	Автоматизация конвертерного процесса производства стали, https://www.kstu.kz/wp-
	content/uploads/2018/05/tsifrovaya-mitallurgiya/el-uch-po-ampr/gl29.htm, Дата обращения:
	17.05.2023
13	Схема доменного производства с номенклатурой материалов, Донецк, ДНТУ, 2012,
	https://studfile.net/preview/9718763/page:32/, Дата обращения: 17.05.2023

14	Производство чугуна и железа, https://metalspace.ru/production-science/technology/iron-
	<u>furnace/759-proizvodstvo-chuguna.html</u> , Дата обращения: 17.05.2023
15	Симонов Ю. и др. Металлургические технологии, Пермь, ПНИПУ, 2012
16	Рожков И. и др. Математические модели для выбора рациональной технологии и управления
	качеством стали, Москва, Металлургия, 1990
17	Дуда В. и др. Прибор для экспресс-анализа содержания железа в пыли доменного
	производства, осажденной с помощью электрофильтров, Новые материалы и технологии в
	металлургии и машиностроении, 2014, https://cyberleninka.ru/article/n/pribor-dlya-ekspress-
	analiza-soderzhaniya-zheleza-v-pyli-domennogo-proizvodstva-osazhdennoy-s-pomoschyu-
	<u>elektrofiltrov</u> , Дата обращения: 17.05.2023
18	Металлургия: спектрометры для анализа металлов и сплавов,
	<u>https://www.bourevestnik.ru/application/metall/</u> , Дата обращения: 17.05.2023
19	Марсуверский Б., Внедрение АСУ доменной печью по информации об активном весе шихты,
	https://chermetinfo.elpub.ru/jour/article/view/304/266, Дата обращения: 17.05.2023
20	Катунин В. и др. Основные показатели работы чёрной металлургии России в 2017 г, Чёрная
	металлургия, № 4, 2018
21	Фролов Ю. и др. Состояние и перспективы развития технологии производства агломерата
	(АСУТП), Чёрная металлургия, № 4, 2018
22	Новохатский А. и др. Комплексный математический анализ влияния содержания железа в
	агломерате на колебания кремния в чугуне, Чёрная металлургия, № 6, 2018
23	Ганин Д. и др. Анализ показателей и условий улучшения работы доменного цеха АО
2.1	«Уральская сталь», Чёрная металлургия, № 12, 2018
24	Третяк А. Научно-технические итоги IX Международного конгресса доменщиков
2.7	«Металлургия чугуна. Перспективы развития до 2025 года»», Чёрная металлургия, № 1, 2019
25	Петров А. Российские металлургические заводы пока не планируют отказываться от доменных
26	печей (26.01.2022), https://www.steelland.ru/stat/analytics/6238.html, Дата обращения: 19.05.2023
26	Гурин И. и др. Информационно-моделирующая система расчета материального и теплового
	балансов доменной печи, https://elar.urfu.ru/bitstream/10995/107417/1/2021665704.pdf, Дата
27	обращения: 19.05.2023
27	Информационные системы и технологии в металлургии. Проекты студентов, https://programs.edu.urfu.ru/9851/projects/2/ , Дата обращения: 19.05.2023
28	Болгов А. и др. Система моделирования и идентификации параметров внешнего теплообмена в
20	нагревательной печи на платформе ASP.NET CORE MVC,
	https://www.elibrary.ru/item.asp?id=42309797, Дата обращения: 19.05.2023
29	https://habr.com/ru/articles/338120/
30	https://www.purrweb.com/ru/blog/15-metrik-razrabotki-programmnogo-obespecheniya/
31	Инженерно-технический справочник по доступным технологиям, ИТС 26-2017, 2017
32	Катенин А., Милушенков В. Методический подход и план разработки методики для оценки
] 52	эффективности организации, разработки и эксплуатации информационного и
	специального программного обеспечения для интеграции АСУТП металлургического
	комбината и лабораторной информационной менеджмент-системы, М., 1012, в печати
	комонната и ласораторной информационной менеджмент-епетемы, М., 1012, в печати