

Product Specification AU OPTRONICS CORPORATION

(V) Preliminary Specifications() Final Specifications

Module	10.1"(10.1") HD 16:9 Color TFT-LCD (RGB 6-bits+FRC) Without LED Backlight design
Model Name	B101XAN01.3 (H/W:1A)
Note (<table-cell-rows>)</table-cell-rows>	Open Cell with LED driving circuit design

Customer	Date
Checked & Approved by	Date
Note: This Specification without notice.	is subject to change

Approved by	Date			
YW Lee	09/18/2013			
Prepared by	Date			
Terry Chien	09/18/2013			
NBBU Marketing Division AU Optronics corporation				

Contents

1.	. Handling Precautions	4
	. General Description	
	2.1 General Specification	
	2.2 Optical Characteristics	
3.	. Functional Block Diagram	
	. Absolute Maximum Ratings	
	4.1 Absolute Ratings of TFT LCD Module	
	4.2 Absolute Ratings of Environment	
5.	Electrical Characteristics	
	5.1 TFT LCD Module	13
6.	. Signal Interface Characteristic	
	6.1 Pixel Format Image	16
	6.2 The Input Data Format	
	6.3 Integration Interface Requirement	
7.	. Panel Reliability Test	
	TBD	
8.	. Mechanical Characteristics	
	8.1 Open Cell Outline Dimension	23
9.	. Shipping and Package	
	9.1 Shipping Label Format	
	9.2 Carton Label Format	
	9.3 Packing Flow	26

Product Specification AU OPTRONICS CORPORATION

Record of Revision

Ve	rsion and Date	Page	Old description	New Description	Remark
0.0	2013/03/12	All	Preliminary Edition for Customer		
0.1	2013/06/04	P26~ P27		Packing Update	
0.2	2013/09/18	P1		Update H/W code	
		P6		Update Color / Chromaticity Coodinates	
		P25		Update Shipping Label Format	

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11)After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostatic breakdown.

2. General Description

B101XAN01.3 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit. The screen format is intended to support the 16:9 WXGA, 1,366(H) x768(V) screen and 16.7M colors without LED backlight driving circuit. All input signals are LVDS interface.

B101XAN01.3 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 $^{\circ}\mathrm{C}$ condition:

Items	Unit	Specifications					
Screen Diagonal	[mm]	255.28 (10.05inch)					
Active Area	[mm]	222.5214X	125.107	72 typ			
Pixels H x V		1,366x3(R0	GB) x 76	8			
Pixel Pitch	[mm]	0.1629x 0.	1629				
Pixel Format		R.G.B. Ver	tical Stri	pe			
Display Mode		AHVA, Nor	mally Bl	ack			
Response Time	[ms]	25 typ / 35	Max				
Power Consumption (Column Inversion)	[Watt]	0.7W patte	rn (with	out LED o	driver)		
Weight	[Grams]	57g max (0	Open Ce	ll Only)			
Physical Size	[mm]		Min.	Тур.	Max.		
		Length	230.42	230.62	230.82		
		Width	135.61	135.81	136.01		
		Thickness 0.805 0.865 (Panel Side) 1.8 (PCBA Side)					
Electrical Interface		40 pin LVDS, with LED driver					
Glass Thickness	[mm]	0.25					
Surface Treatment		HC+LR					

Support Color		16.7M colors (RGB 6-bits+FRC)
Temperature Range Operating Storage (Non-Operating)	[°C]	-20 to +60 -30 to +70
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item		Symbol	Conditions at 25 C (R	Min.	Тур.	Max.	Unit	Note
White Luminance ILED=20mA			5 points average	-	-	-	cd/m ²	1, 4, 5.
		$oldsymbol{ heta}_{R}$	Horizontal (Right)	80	85	-		
Viewing Ar	nale	<i>⊕</i> L	CR = 10 (Left)	80	85	-	degree	
Viewing Ai	igie	ф н	Vertical (Upper)	80	85	-		4, 9
		φ _L	CR = 10 (Lower)	80	85	-		
Luminan Uniformi		δ _{5P}	5 Points	-	-	-		Open
Luminance Uniformity		δ _{13P}	13 Points	-	-	-		cell
Contrast R	atio	CR		700	900	1500		4, 6
Cross ta	Cross talk					4		4, 7
Response Time		T _{RT}	Rising + Falling	-	25	35	ms	4, 8
	Red	Rx		0.558	0.588	0.618		
	neu	Ry		0.318	0.348	0.378		
	Green	Gx		0.296	0.326	0.356		
Color /	Green	Gy		0.543	0.573	0.603		
Chromaticity Coodinates	Dive	Вх	CIE 1931	0.135	0.165	0.195		Open
	Blue	Ву		0.083	0.113	0.143		cell
	\ \ / a:4-	Wx		0.283	0.313	0.343		
	White	Wy		0.299	0.329	0.359		
NTSC		%		-	50	-		

AU OPTRONICS CORPORATION

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

[Object to be managed by priority]

Minimum Brightness Uniformity: 70%

The hot spot & uniformity must be OK when check it by visual

Measurement Condition

Measurement Point :13 point (如上圖)

Uniformity : $(Min)/(Max) \times 100%$

AU OPTRONICS CORPORATION

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

6		Maximum Brightness of five points
δ w5	=	Minimum Brightness of five points
2		Maximum Brightness of thirteen points
δ w13	=	Minimum Brightness of thirteen points

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points \cdot $Y_L = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5 L (x) is corresponding to the luminance of the point X at Figure in Note (1).$

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

AU OPTRONICS CORPORATION

Contrast ratio (CR)= Brightness on the "White" state
Brightness on the "Black" state

Note 7: Definition of Cross Talk (CT)

 $CT = |Y_B - Y_A| / Y_A \times 100$ (%)

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

AU OPTRONICS CORPORATION

Note 9. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

Product Specification AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vin	-0.3	+4	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions			
Operating Temperature	TOP	-20	+60	[°C]	Note 4			
Operation Humidity	HOP	5	95	[%RH]	Note 4			
Storage Temperature	TST	-30	+70	[°C]	Note 4			
Storage Humidity	HST	5	95	[%RH]	Note 4			

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

AU OPTRONICS CORPORATION

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	-	-	TBD	[Watt]	Note 1
IDD	IDD Current	-	-	TBD	[mA]	Note 1
lRush	Inrush Current	-	-	2000	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	

Note 1 : Measurement Condition : White Pattern at 3.3V driving voltage. (P_{max}=V_{3.3} x I_{white})

Note 2: Measure Condition

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
V_{th}	Differential Input High Threshold (Vcm=+1.2V)	-	100	[mV]
V _{tl}	Differential Input Low Threshold (Vcm=+1.2V)	-100		[mV]
V _{ID}	Differential Input Voltage	TBD	TBD	[mV]
V _{cm}	Differential Input Common Mode Voltage	0.2	2.2	[V]

Note: LVDS Signal Waveform

Product Specification AU OPTRONICS CORPORATION

5.1.3 Backlight input signal characteristics

Parameter	Symbol	Min	Тур	Max	Units	Remark
LED Power Supply	VLED	5.5		14	[Volt]	
PWM Logic Input High Level	VDWA EN		2.5		[Volt]	Define as
PWM Logic Input Low Level	VPWM_EN	-	-	0.8	[Volt]	Define as Connector Interface
PWM Input Frequency	FPWM	200	-	2k	Hz	(Ta=25°C)
PWM Duty Ratio	Duty	5		100	%	

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1			1366					
1st Line	R G B R G I	В	R G B	R G B					
	-	- 10	 , 						
	1 : 1 :	(ST)/ (ST)	1 55						
	9 8	1000	***						
	36.		40	2.					
	Se 8	7727	42						
	3								
	ST 55	188	28	*					
	30 0	0.0	*						
		31.40 0.685	:						
		(*)		i					
768 th Line	RGBRGI	В	R G B	R G B					

6.2 The Input Data Format

NS MODE / 8-bit input

Signal Name	Description	
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of
R5	Red Data 5	these 8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
	Red-pixel Data	
G7	Green Data 7(MSB)	Green-pixel Data
G6	Green Data 6	Each green pixel's brightness data consists of
G5	Green Data 5	these 8 bits pixel data.
G4	Green Data 4	
G3	Green Data 3	
G2	Green Data 2	
G1	Green Data 1	
G0	Green Data 0 (LSB)	
	Green-pixel Data	
B7	Blue Data 8(MSB)	Blue-pixel Data
B6	Blue Data 7	Each blue pixel's brightness data consists of
B5	Blue Data 5	these 8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	

B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
	Blue-pixel Data	
RxCLKIN	Data Clock	The signal is used to strobe the pixel data and
		DE signals. All pixel data shall be valid at the
		falling edge when the DE signal is high.
DE	Display Timing	This signal is strobed at the falling edge of
		RxCLKIN. When the signal is high, the pixel
		data shall be valid to be displayed.
VS	Vertical Sync	The signal is synchronized to RxCLKIN.
HS	Horizontal Sync	The signal is synchronized to RxCLKIN.

Note1: DE Mode Only.

Note 2: Output signals from any system shall be low or High-impedance state when VDD is off.

Product Specification AU OPTRONICS CORPORATION

6.3 Integration Interface Requirement

6.3.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector
Manufacturer	DDK
Type / Part Number	FPC / FF12-40A-R12BN-D3
Mating Housing/Part Number	NA

6.3.2 Pin Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device.

No.	Pin Name	Description
1	VDD	Power Supply +3.3V
2	VDD	Power Supply +3.3V
3	VDD	Power Supply +3.3V
4	NC	Not Connection
5	SDA	EDID Data Input
6	SCL	EDID Clock Input
7	GND	Ground
8	GND	Ground
9	NC	Not Connection
10	LEDPWM	Backlight LED driver PWM Input
11	LED_EN	LED Enable Input
12	AGING	Aging Mode Power Supply (AUO only)
13	NC	Not Connection
14	GND	Ground
15	Rin0-	LVDS data pair 0 negative signal
16	Rin0+	LVDS data pair 0 positive signal
17	GND	Ground
18	Rin01-	LVDS data pair 1 negative signal
19	Rin1+	LVDS data pair 1 positive signal
20	GND	Ground
21	Rin02-	LVDS data pair 2 negative signal
22	Rin2+	LVDS data pair 2 positive signal

00	OND	Oververd
23	GND	Ground
24	DSI_CLKN/Rx-CLKN	LVDS Clock negative signal
25	DSI_CLKP/Rx-CLKP	LVDS Clock positive signal
26	GND	Ground
27	Rin3-	LVDS data pair 3 negative signal
28	Rin3+	LVDS data pair 3 positive signal
29	GND	Ground
30	LED-	LED Ground
31	LED-	LED Ground
32	LED-	LED Ground
33	LED-	LED Ground
34	NC	Not Connection
35	NC	Not Connection
36	NC	Not Connection
37	LED+	LED Power Supply
38	LED+	LED Power Supply
39	LED+	LED Power Supply
40	LED+	LED Power Supply

Connector 插入方向如下

AU OPTRONICS CORPORATION

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings should match the 1366x768 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame	e Rate	-	-	60	-	Hz
Clock fr	equency	1/ T _{Clock}	66.9	70.7	80	MHz
	Period	T _V	777	797	808	_
Vertical	Active	T _{VD}		T _{Line}		
Section	Blanking	T _{VB}	20	29	40	
Horizontal	Period	T _H	1406	1478	2610	
	Active	T _{HD}		1366		T_{Clock}
Section	Blanking	T HB	40	112	1244	

Note 1: The above is as optimized setting

Note 2: DE mode only

Note 3 : The maximum clock frequency = (1366+B)*(768+A)*60<80MHz

Note 4 : Clock frequency number is for reference, real setting value refer to EDID (Clock frequency 70.7MHz) --- This item only for Samsung, pls help to delete this item for other customer.

6.4.2 Timing diagram

AU OPTRONICS CORPORATION

6.5 Power ON/OFF Sequence

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

	Min (ms)	Max (ms)
T1	0.5	10
T2	0	50
T3	200	-
T4	200	-
T5	0	50
T6	0	10
T7	500	-
T8	10	-
T9	10	-
T10	10	-
T11	10	-
T12	0.5	10

Note 1: If T3<200ms, the display garbage may occur. (T3>200ms is recommended)

Note 2 : If T1 or T12<0.5ms, the inrush current may cause the damage of fuse. If T1 or T12<0.5ms, the inrush current I^2 t is under typical melt of fuse Spec, there is no mentioned problem.

THE RESIDENCE OF THE PARTY OF T

Note 3 : T8,T9,T10,T11 value are recommended, T8,T9,T10,T11 \geq 0 could be acceptable--- This item only for Samsung, pls help to delete this item for other customer.

7. Panel Reliability Test

TBD

8. Mechanical Characteristics

8.1 Open Cell Outline Dimension

8.1.1 Front View

Note: Prevention IC damage, IC positions not allowed any overlap over these areas.

B101XAN03.1 Document Version :0.2 23 of 31

8.1.2 Rear View

B101XAN03.1 Document Version :0.2 24 of 31

9. Shipping and Package

9.1 Shipping Label Format

C N US E204356

RoHS

9.2 Carton Label Format

9.3 Packing Flow

PET Tray 共 2 穴,每穴放 2pcs SKD(正面朝上放置),Panel 中間以及上下各間隔放置 EPE spacer,故 1tray 共有 4pcs SKD,6pcs Spacer,放滿后於其上再放置 1pcs 空 tray,依序正向堆疊 tray 盤!

9.4 Shipping Package of Palletizing Sequence

10. Appendix: EDID Description

B101XAN01 3 EDID Code

Address	FUNCTION	Value	Value	Value	Note
HEX		HEX	BIN	DEC	
00	Header	00	00000000	0	
01		FF	11111111	255	
02		FF	11111111	255	
03		FF	11111111	255	
04		FF	11111111	255	
05		FF	11111111	255	
06		FF	11111111	255	
07		00	00000000	0	
08	EISA Manuf. Code LSB	06	00000110	6	
09	Compressed ASCII	AF	10101111	175	
0A	Product Code	DC	11011100	220	
0B	hex, LSB first	13	00010011	19	
0C	32-bit ser #	00	00000000	0	
0D		00	00000000	0	
0E		00	00000000	0	
0F		00	00000000	0	
10	Week of manufacture	08	00001000	8	
11	Year of manufacture	17	00010111	23	
12	EDID Structure Ver.	01	00000001	1	
13	EDID revision #	04	00000100	4	
14	Video input def. (digital I/P, non-TMDS, CRGB)	A0	10100000	160	
15	Max H image size (rounded to cm)	16	00010110	22	
16	Max V image size (rounded to cm)	0D	00001101	13	
17	Display Gamma (=(gamma*100)-100)	78	01111000	120	
18	Feature support (no DPMS, Active OFF, RGB, tmg Blk#1)	02	0000010	2	
19	Red/green low bits (Lower 2:2:2:2 bits)	99	10011001	153	
1 A	Blue/white low bits (Lower 2:2:2:2 bits)	85	10000101	133	
1B	Red x (Upper 8 bits)	95	10010101	149	
1C	Red y/ highER 8 bits	55	01010101	85	
1D	Green x	56	01010110	86	
1E	Green y	92	10010010	146	
1F	Blue x	28	00101000	40	
20	Blue y	22	00100010	34	
21	White x	50	01010000	80	1
22	White y	54	01010100	84	1
23	Established timing 1	00	00000000	0	1
24	Established timing 2	00	00000000	0	<u> </u>
25	Established timing 3	00	00000000	0	
26	Standard timing #1	01	00000001	1	

27		01	0000001	1	
28	Standard timing #2	01	00000001	1	
29	otandara tining #2	01	00000001	1	
2A	Standard timing #3	01	0000001	1	
2B	Standard timing #0	01	0000001	1 1	
2C	Standard timing #4	01	00000001	1	
2D		01	0000001	1	
2E	Standard timing #5	01	0000001	1	
2F	•	01	0000001	1	
30	Standard timing #6	01	0000001	1	
31		01	0000001	1	
32	Standard timing #7	01	0000001	1	
33		01	0000001	1	
34	Standard timing #8	01	0000001	1	
35		01	0000001	1	
36	Pixel Clock/10000 LSB	9E	10011110	158	
37	Pixel Clock/10000 USB	1B	00011011	27	
38	Horz active Lower 8bits	56	01010110	86	
39	Horz blanking Lower 8bits	70	01110000	112	
3A	HorzAct:HorzBlnk Upper 4:4 bits	50	01010000	80	
3B	Vertical Active Lower 8bits	00	00000000	0	
3C	Vertical Blanking Lower 8bits	1D	00011101	29	
3D	Vert Act : Vertical Blanking (upper 4:4 bit)	30	00110000	48	
3E	HorzSync. Offset	30	00110000	48	
3F	HorzSync.Width	20	00100000	32	
40	VertSync.Offset : VertSync.Width	46	01000110	70	
41	Horz‖ Sync Offset/Width Upper 2bits	00	00000000	0	
42	Horizontal Image Size Lower 8bits	DE	11011110	222	
43	Vertical Image Size Lower 8bits	7D	01111101	125	
44	Horizontal & Vertical Image Size (upper 4:4 bits)	00	00000000	0	
45	Horizontal Border (zero for internal LCD)	00	00000000	0	
46	Vertical Border (zero for internal LCD)	00	00000000	0	
47	Signal (non-intr, norm, no stero, sep sync, neg pol)	18	00011000	24	
48	Detailed timing/monitor	00	00000000	0	
49	descriptor #2	00	00000000	0	
4A		00	00000000	0	
4B		0F	00001111	15	
4C		00	00000000	0	
4D		00	00000000	0	
4E		00	00000000	0	
4F		00	00000000	0	
50		00	00000000	0	
51		00	00000000	0	
52		00	00000000	0	

53		00	00000000	0	
54		00	00000000	0	
55		00	0000000	0	
56		00	00000000	0	
57		00	00000000	0	
58		00	0000000	0	
59		20	00100000	32	
5A	Detailed timing/monitor	00	00000000	0	
5B	descriptor #3	00	00000000	0	
5C		00	00000000	0	
5D		FE	11111110	254	
5E		00	00000000	0	
5F	Manufacture	41	01000001	65	Α
60	Manufacture	55	01010101	85	U
61	Manufacture	4F	01001111	79	0
62		0A	00001010	10	
63		20	00100000	32	
64		20	00100000	32	
65		20	00100000	32	
66		20	00100000	32	
67		20	00100000	32	
68		20	00100000	32	
69		20	00100000	32	
6 A		20	00100000	32	
6B		20	00100000	32	
6C	Detailed timing/monitor	00	00000000	0	
6D	descriptor #4	00	00000000	0	
6E		00	00000000	0	
6F		FE	11111110	254	
70		00	00000000	0	
71	Manufacture P/N	42	01000010	66	В
72	Manufacture P/N	31	00110001	49	1
73	Manufacture P/N	30	00110000	48	0
74	Manufacture P/N	31	00110001	49	1
75	Manufacture P/N	58	01011000	88	Х
76	Manufacture P/N	41	01000001	65	Α
77	Manufacture P/N	4E	01001110	78	N
78	Manufacture P/N	30	00110000	48	0
79	Manufacture P/N	31	00110001	49	1
7A	Manufacture P/N	2E	00101110	46	
7B	Manufacture P/N	33	00110011	51	3
7C		20	00100000	32	
7D		0A	00001010	10	
7E	Extension Flag	00	00000000	0	

7F	Checksum	0D	00001101	13	
			SUM	6144	

SUM to HEX 1800