

August 31st 2023 Victoire de Saléon-Terras Supervisor: Dan Elson

MSc Individual project

USE OF HYPERSPECTRAL IMAGES ANALYSIS IN NEUROSURGERY

Introduction

Aim of the project

Background

Absorption and scattering Absorptivity model

Methods

Flowchart

Obtaining the camera spectral response Launching of 1000 photon packets using Monte-Carlo Simulation

Results

Camera spectral responses

Mean optical path length

Simple fit algorithm

Oxygen saturation mapping

Discussion and conclusion

Introduction Aim of the project

Background

Absorption and scattering

Molar extinction coefficient

Example of absorption and scattering coefficients

Absorption coefficient:
$$\mu_a(\lambda) = C_{HbO_2} \varepsilon_{HbO_2}(\lambda) + C_{Hb} \varepsilon_{Hb}(\lambda)$$

Scattering coefficient: $\mu_s(\lambda) = \left(\frac{a}{500}\right)^{-b}$

Background Absorptivity model

Intensity measured by the optical system

$$I(\lambda) = I_0 10^{-A(\lambda)}$$

Absorptivity model

$$A(\lambda) = \left(C_{HbO_2} \varepsilon_{HbO_2}(\lambda) + C_{Hb} \varepsilon_{Hb}(\lambda)\right) \times l(\lambda)$$

With $l(\lambda)$: mean optical pathlength \rightarrow can be estimated with Monte-Carlo simulation C_{HbO_2} and C_{Hb} are parameters for the fitting algorithm

Oxygen saturation

$$SO_2 = \frac{C_{HbO_2}}{C_{HbO_2} + C_{Hb}}$$

Methods

Flowchart

Methods

Obtaining the camera spectral response

0.04 - 0.03 - 0.02 - 0.01 - 0.00 - 450 500 550 600 650 700 750 wavelength (nm)

VariSpec Liquid Crystal Tunable Filters from CRI

Transmission of the filters

White screen used as white reference Red: region of interest selected by the user

Methods

Launching of 1000 photon packets using Monte-Carlo Simulation

Photons wavelength: 500nm

Tissue surface (xy plane)

Reemitted photon packets

Photon packets trajectory

Green: reemitted (534/1000)

Red: absorbed in tissue before reemission

Camera spectral response

Mean optical pathlength

Mean optical pathlength

Simple fitting algorithm

Image HS046 Run 04 – fitting algorithm on one pixel

Oxygen saturation mapping

Image HS046 Run 04 – fitting algorithm on 25x25 blocs of the Dura

Oxygen saturation mapping

HS033 Run 04 – Segmented tissues

Oxygen saturation mapping

HS033 Run 05 – Fitting algorithm on 20x20 blocs in selected polygon

Oxygen saturation mapping

HS033 Run 05 - SO_2 and \mathcal{C}_t of the segmented tissues

Oxygen saturation mapping

HS033 Run 05 - SO_2 and C_t of the segmented tissues

Oxygen saturation mapping

HS033 Run 05 - SO_2 and C_t of the segmented tissues

Oxygen saturation mapping

HS033 Run 05 - SO_2 and \mathcal{C}_t of the segmented tissues

Discussion and conclusion

Clinical insight

Thank you

FOR YOUR ATTENTION