2. Considere o autómato $\mathcal{A}=(Q,A,\delta,i,F)$ onde $Q=\{1,2,3,4\},\ A=\{a,b\},\ i=1,$ $F = \{4\}$ e o conjunto de transições é definido pela função de transição δ definida pela

δ	1 .	2	3	4
a	$\{1, 2\}$	{4}	Ø	{4}
b	{1,3}	Ø	{4}	{4}

- (a) Represente o autómato A através de um grafo.
- (b) Dê exemplos de palavras aceites por A e de palavras rejeitadas por A.
- (c) Descreva a linguagem reconhecida pelo autómato A.
- (d) Classifique o autómato.

A=(11,2,3,4}, 1a, b), 5, 1, 145)

- b) Exemply de palarear areits por of: aab, bb, a, B, a bb b n, me 1No, ...
 - Exemplo de palarran rejuisdan polo autimati aba,
- a, b, bab, ...
 c) $L(A) = \{ u \in A^{+} : \delta^{+}(1, u) \cap F \neq \emptyset \}$ = {a,b}*aa {a,b}* U {a,b}*bb {a,b}*
 - A expressa rigular correspondente é $(a+b)^{*}$ $aa(a+b)^{*}$ + $(a+b)^{*}$ bb $(a+b)^{*}$
 - $= (a+b)^{\dagger} (aa+bb) (a+b)^{\dagger}$ L(A) - [((a+b)* (aa+ bb) (a+b)*)
 - que é a linguagem constituéde por tolan an palavear que admitem ace ore bb [166] como fatiros.
- d) O autimational à completé proque, por exemple, $\delta(z,b) = \emptyset$.
 - 0 autimate not i determinist porque # 5 (1,a) = # 11,2) > 1.
 - O outimate à acessivil progue o virtie iniare e'1
 - a é chiquet de um caminho de 1 para 2,
 - aa e' etiquite de un camisho de para 4
 - b é étiquita de um caminho de 1 paras
 - e Q= 11,2,3,47.
 - 1) autimati è w-acessivel parpur f = 343 e

- 4. Considere o alfabeto $A = \{a, b, c\}$.
 - (a) Indique um autómato finito que reconheça o conjunto de todas as palavras sobre A
 - i. ab é um fator; ii. ab não é fator; iii. existe uma única ocorrência de ab.
 - (b) Identifique a tabela das transições de cada um dos autómatos que desenhou.
 - (c) Classifique os autómatos que desenhou.
 - (d) Para cada linguagem da alínea anterior, indique uma expressão regular que a re-

L= A* \ A* ab A*

 $A^* = A^*abA^* U A^* A^*abB^*$

L= que At : ab é fator de u e ab owrre uma inice vez } e ab nas owere rum em (u, rum - Ju, ab ez : u, uz & A*

bbcccacabbba

- 7. Use o Lema da Iteração para provar que não são reconhecíveis as seguintes linguagens sobre o alfabeto $A=\{a,b,c\}.$
 - (a) $\{a^n b^2 c^n \mid n \in \mathbb{N}\}.$ (b) $\{a^i b^j c^k \mid j = i + k \land i, j, k \in \mathbb{N}_0\}.$

a) Seja ne IN. Fazench
$$u=a^nb^2c^n$$
, entor $u\in L$ e $|u|=2n+2>n$.

$$u=a^nb^2c^n=xyy$$
 com $|xy|\leq n$ e $y\neq \varepsilon$

$$u=\left[\begin{array}{c|c}a^n&b^2&c^n\\\hline x&|y|&3\end{array}\right]$$

ansequentemente, pero tema de Iterago, L no é reconhecivel.

8. Considere-se $A=\{a,b\}$ e $L=\{a^nb^m: m\geq n\geq 0\}$. Sejam $n\in\mathbb{N}$, e $u=a^nb^n$ uma palavra de L. Qualquer que seja o prefixo xy de u tal que $|xy|\leq n$ e $y\neq \varepsilon$, tem-se que $x=a^i,\ y=a^j$ com $i+j\leq n,\ i\geq 0$ e $j\geq 1$. Então $|u|\geq n,\ u=xyz$ com $z=a^{n-i-j}b^n$. Se k=2, então $xy^kz=a^{n+j}b^n$ pelo que xy^kz não é uma palavra de L.

De entre as afirmações abaixo diga qual é a afirmação verdadeira.

- (i) Com base no Lema da Iteração, a argumentação apresentada não permite concluir que a linguagem L não é regular.
- (ii) Com base no Lema da Iteração, a argumentação apresentada prova que L é uma linguagem regular.
- (iii) Com base no Lema da Iteração, a argumentação apresentada prova que Lnão é uma linguagem regular.
- (iv) Com base no Lema da Iteração, só poderíamos concluir que L não é uma linguagem regular se, para qualquer $k \geq 0$, xy^kz não fosse uma palavra de L.