SAMPLING PROBABILITY DISTRIBUTIONS

From conjugacy to Hamiltonian Monte Carlo

August 19, 2019

Jon Fintzi

Biostatistics Research Branch National Institute of Allergy and Infectious Diseases National Institutes of Health

Happy Monday-Funday!

Last time:

• Bayesian inference always starts with a model for the **joint distribution** of θ and y:.

$$\pi(\theta, y) = f(y|\theta)\pi(\theta) = \pi(\theta|y)m(y).$$

- $\circ \pi(\theta|y)$ is the **posterior distribution** of θ given y,
- $\circ \ f(y|\theta)$ is the **sampling distribution** for y given θ ,
- $\circ \pi(\theta)$ is the **prior distribution** of θ ,
- $\circ m(y)$ is the marginal distribution of y.
- Bayes rule yields the posterior distribution

$$\pi(\theta|y) = \frac{f(y,\theta)}{m(y)} = \frac{f(y|\theta)\pi(\theta)}{m(y)} \propto Likelihood \times Prior.$$

All of the information used in the update to our prior is encoded in the likelihood,

$$L(\mathbf{y}|\theta) = \prod_{i=1}^{N} f(y_i|\theta).$$

- o Likelihood principle: implies proportional likelihoods encode equivalent updates for a single observer.
- o Two people can have different epistemic uncertainty (different priors).
- o The likelihood principle does not imply equivalent Bayesian inferences (corollary to Gelman, 2017).

Lecture 10 of Statistical Rethinking

Key takeaways:

- Bayes is all about the posterior distribution, not how you compute it.
- Sometimes, we can't get the posterior analytically, but we can approximate it by sampling.
- Samples also give us a way to approximate the distributions of complicated functionals of the posterior.
- Markov Chain Monte Carlo is one way to sample.
 - o Metropolis/Metropolis-Hastings.
 - o Hamiltonian Monte Carlo.

This Week

Iterations on Bayesian analysis of binomial data

- Motivating example PREVAIL II Trial.
- Analysis with conjugate priors, beta-binomial model.
- Prior selection.
- Analysis with non-conjugate priors.
- First look at Stan if there's time.

Motivating Example — PREVAIL II Trial

Context:

- 2014–2016 Ebola virus disease (EVD) outbreak in Guinea, Liberia, and Sierra Leone.
- Over 28,000 suspected or confirmed cases and 11,000 fatalities.
- Urgent need to identify effective theraputics to reduce mortality.

Partnership for Research on Ebola Virus in Liberia (PREVAIL) II trial:

- Adaptive trial to determine the effectiveness of Zmapp, and possibly other agents, in reducing Ebola mortality.
- Primary endpoint: 28 day mortality on optimized standard of care (oSOC) vs. Zmapp + oSOC.
- 72 patients enrolled at sites in Liberia, Sierra Leone, Guinea, and the US.
 - o Overall mortality: 21/71 died (30%),
 - o SOC alone: 13/35 (37%),
 - o Zmapp + SOC: 8/36 (22%).
- Super-duper Barely Bayesian design (Proschan, 2016).

Motivating Example — PREVAIL II Trial

Target of inference: $\pi(p_T, p_C|y_T, y_C)$, the posterior distributions for probability of death on treatment (T) and control (C).

- p_T, p_C : probabilities of 28 day mortality on T and C.
- y_T, y_C : # of deaths on T and C.
- N_T, N_C : # participants randomized to T and C.

Some questions of interest:

- Evidence for Zmapp + oSOC more effective than oSOC alone: $\Pr(p_T < p_C | y_T, y_C)$.
- Effectiveness of Zmapp + oSOC, effectiveness of oSOC alone: $\pi(p_T|y_T), \ \pi(p_C|y_C)$.

A Simple Model for Count Data

Binomial count model:

- Arises as a model for *independent* binary random variables (RVs), $Z_i \in \{0, 1\}, i = 1, \dots, N$, with common success probability, p.
- Let $Y = \sum_{i=1}^{N} Z_i$. The probability of seeing Y = y successes in N trials is

$$\Pr(Y = y|p) = \binom{N}{y} p^y (1-p)^{N-y}.$$

$$\propto p^y (1-p)^{N-y}$$
(1)

- For fixed y, we can view (1) as a function of p this is the **likelihood function**.
- The maximum likelihood estimate (MLE), $\widehat{p}=y/N$, is the value of p under which the observed data are most likely (i.e., \widehat{p} maximizes the likelihood).

A Simple Model for Count Data

Binomial distributions for two values of p

Binomial likelihoods for two datasets Likelihoods in black, MLEs in red

Beta Distribution as a Prior for a Binomial Probability

Beta distribution

- If we though all values of p were equally likely, could take $p \sim \mathrm{Unif}(0,1)$. In general, this is too restrictive.
- More flexible: $\theta \sim \text{Beta}(a, b)$, with a > 0, b > 0, where

$$\pi(\theta|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma b} p^{(a-1)} (1-p)^{b-1},$$

$$\propto p^{(a-1)} (1-p)^{b-1},$$
(2)

for $0 and where <math>\Gamma(\cdot)$ is the gamma function¹.

- $p \sim \mathrm{Unif}(0,1)$ is equivalent to $p \sim \mathrm{Beta}(1,1)$.
- Moments:

$$E(p|a,b) = \frac{a}{a+b},$$

$$Var(p|a,b) = \frac{ab}{(a+b)^2(a+b+1)}.$$

 $^{^{1}\}Gamma(z)=\int_{0}^{\infty}t^{z-1}e^{-t}\mathrm{d}t$, more on the Beta distribution here.

Beta Distribution as a Prior for a Binomial Probability

Beta densities for various hyperparameters Density in black, mean in red

Posterior Derivation

In the Beta-Binomial hierarchy, concentrate only on terms that involve heta.

$$\pi(p|y) \propto L(y|p)\pi(p),$$

$$= p^{y}(1-p)^{N-y} \times p^{a-1}(1-p)^{b-1},$$

$$= p^{y+a-1}(1-p)^{N-y+b-1},$$

$$= p^{\widetilde{a}-1}(1-p)^{\widetilde{b}-1},$$

where $\widetilde{a} = y + a$ and $\widetilde{b} = N - y + b$.

- The posterior takes the form of a $\mathrm{Beta}(\widetilde{a},\widetilde{b})!$
- We say the prior is *conjugate* when the posterior is of the same form as the prior.
- Fun fact: all exponential family distributions have conjugate priors!

PREVAIL II Posterior Distributions

- Priors: $p_T \sim \text{Beta}(1,1)$ and $p_C \sim \text{Beta}(1,1)$.
- ullet Data: $y_T=8$ and $y_C=13$, with $N_T=36$ and $N_C=35$.
- Posteriors: $p_T|y_T \sim \text{Beta}(9,29)$ and $p_C|y_C \sim \text{Beta}(14,23)$.
 - o Posterior medians (95% Credible Intervals):
 - Zmapp + oSOC, $p_T|y_T$ 0.23 (0.12, 0.38),
 - oSOC alone, $p_C | y_C$: 0.38 (0.23, 0.54).
 - $\bullet~$ Risk difference, $p_T-p_C \mid y_T, y_C$: -0.14 (-0.34, 0.06).
 - Risk ratio, $p_T/p_C \mid y_T, y_C$: 0.62 (0.29, 1.24).
 - ullet Odds ratio, $\left[\left(p_T/(1-p_T)\right)/\left(p_C/(1-p_C)\right)\right]\mid y_T,y_C:0.50(0.18,1.36)$
 - $\Pr(p_T < p_C | y_T, y_C) \approx 0.91$.

PREVAIL II Posterior Distributions

Posterior Mean and Likelihood-Prior Interaction

- Recall the mean of a Beta(a,b) is a/(a+b).
- ullet The posterior mean of a $\operatorname{Beta}(y+a,N-y+b)$ is therefore

$$E(p|y) = \frac{y+a}{N+a+b}$$

$$= \frac{y}{N+a+b} + \frac{a}{N+a+b}$$

$$= \frac{y}{N} \times \frac{N}{N+a+b} + \frac{a}{a+b} \times \frac{a+b}{N+a+b}$$

$$= MLE \times W + PriorMean \times (1-W),$$

where the *weight* W is $W = \frac{N}{N+a+b}$.

- ullet As N increases, the weight tends to 1, so that the posterior mean gets closer to the MLE.
- Notice that the uniform prior a=b=1 gives a posterior mean of $E(p|y)=\frac{y+1}{N+2}$.

Choosing Prior Hyperparameters

How to specify hyperparameters a and b?

- Suggestion #1: Use information about prior mean prior "sample size."
 - o Prior mean: $m_{prior} = a/(a+b)$ \$.
 - o Recall, $\mathrm{E}(p|y) = \frac{y+a}{N+a+b}$, so the denominator is like the posterior sample size, $\Longrightarrow N_{prior} = a+b$.
 - \circ Solve for a and b via

$$a = N_{prior} \times m_{prior},$$

 $b = N_{prior} \times (1 - m_{prior}).$

- \circ Intuition: view a and b as pseudo-observations of successes and failures.
- Suggestion #2: Choose a and b by specifying two quantiles for p associated with prior probabilities.
 - \circ e.g., Pr(p < 0.2) = 0.1 and Pr(p > 0.6) = 0.1.
 - \circ Can find values of a and b numerically.
 - o In more complicated models, simulate.

How to Specify Priors in General?

Theme: What aspects of my model do I know something about? How do I encode that knowledge?

- Containment: Does my prior predictive distribution produce realistic datasets?
- Caveat: People who don't interrogate and justify their priors deserve what's coming to them.
 - o Table of priors with references.
 - o Prior predictive checks.
 - Sensitivity analyses.

Issues with Uniformity

We might think that if we have little prior opinion about a parameter then we can simply assign a uniform prior, i.e. a prior $p(\theta) \propto {\rm constant.}$

There are two problems with this strategy:

• We can't be uniform on all scales since, if $\phi = g(\theta)$:

$$\underbrace{p_{\phi}(\phi)}_{\text{Prior for }\phi} = \underbrace{p_{\theta}(g^{-1}(\phi))}_{\text{Prior for }\theta} \times \underbrace{\underbrace{\frac{d\theta}{d\phi}}_{\text{Jacobiar}}}$$

and so if $g(\cdot)$ is a nonlinear function, the Jacobian will be a function of ϕ and hence not uniform (more on this in a bit).

- If the parameter is not on a finite range, an improper distribution will result (that is, the form will not integrate to 1). This can lead to all kinds of paradoxes (see e.g., Dawid, 1973).

Are Priors Really Uniform?

- In the binomial example, $p \sim Unif(0,1)$ seems a natural choice.
- But suppose we are going to model on the logistic scale so that

$$\phi = \log\left(\frac{\theta}{1 - \theta}\right)$$

is a quantity of interest. -A uniform prior on θ produces the very non-uniform distribution on ϕ .

-Not being uniform on all scales is not a problem, and is correct probabilistically, but one should be aware of this characteristic.

Are Priors Really Uniform?

- In the binomial example, $p \sim Unif(0,1)$ seems a natural choice.
- But suppose we are going to model on the logistic scale so that

$$\phi = \log\left(\frac{\theta}{1 - \theta}\right)$$

is a quantity of interest. -A uniform prior on heta produces the very non-uniform distribution on ϕ .

-Not being uniform on all scales is not a problem, and is correct probabilistically, but one should be aware of this characteristic.

Non-Conjugate Priors

Suppose we want to model mortality on the log-odds scale, $\theta = \log(p/(1-p))$.

Bayesian inference always starts with a model for the **joint distribution** of θ and y.

- The parameter in our model is θ .
- Lose conjugacy, no closed form for the posterior, now we rely on MCMC.
- Our MCMC targets the posterior $\pi(\theta|y) \propto \pi(\theta,y) = L(y|\theta)\pi(\theta)$.
- If our prior is on the log-odds of death, we have no problems. It does not matter that $L(y|\theta) = Binomial(N, 1/(1 + exp(-\theta)))$.
- If our prior is on the probability of death but our model is defined in terms of the log-odds, we must include a Jacobian adjustment.

Critical: We must never lose sight of how our model is defined.

For more on this, see this case study by Bob Carpenter.

Why Non-Conjugate Priors?

- Information encoded naturally on other scales.
- More flexible/natural representation using other types of distributions.
- Hierachical information.
- Compuational considerations.
- Induce particular features in the posterior, e.g., sparsity.

Next week

Linear regression. Watch lecture 3 (SmaRt).

We'll talk about:

- Bayesian linear regression.
- Weekly informative priors.

References

P.A. Dawid, M. Stone, and J.V. Zidek. "Marginalization paradoxes in Bayesian and structural inference." Journal of the Royal Statistical Society: Series B (Methodological) 35.2 (1973): 189-213.

A. Gelman, D.A. Simpson, and M. Betancourt. "The prior can often only be understood in the context of the likelihood." *Entropy* 19.10 (2017): 555.

The PREVAIL II Writing Group and Multi-National PREVAIL II Study Team. "A randomized, controlled trial of ZMapp for Ebola virus infection." *The New England Journal of Medicine* 375.15 (2016): 1448.

M.A. Proschan, L.E. Dodd, and D. Price. "Statistical considerations for a trial of Ebola virus disease therapeutics." *Clinical Trials* 13.1 (2016): 39-48.