

计算机组成与结构

第3章 运算方法与运算器

第3章 运算方法与运算器

3.1 定点数运算

- 3.1.1 加减运算
- 3.1.2 乘法运算
- 3.1.3 除法运算

3.2 算数逻辑部件

- 3.2.1 单元电路
- 3.2.2 算数逻辑单元ALU
- 3.2.3 运算器的结构

3.3 浮点运算

- 3.3.1 加减运算
- 3.3.2 乘除运算
- 3.3.3 浮点运算的实现

3.1 定点数运算

3.1.1 加减运算

3.1.1 加减运算 1. 加减运算方法

■ 补码加减法的依据:

$$[X+Y]_{N} = [X]_{N} + [Y]_{N}$$

$$[-X]_{N} = -[X]_{N}$$

$$[X-Y]_{N} = [X]_{N} + [-Y]_{N} = [X]_{N} - [Y]_{N}$$
③式

■ 证明(以纯小数为例):

必要条件:运算不发生溢出。

无论 $X \ge 0$ 还是 X < 0, $[X]_{\stackrel{}{\scriptscriptstyle h}} = 2 + X$ 均成立。

①
$$[X]_{\stackrel{}{h}} + [Y]_{\stackrel{}{h}} = 2 + X + 2 + Y = 2 + (2 + (X + Y))$$

= $2 + [X + Y]_{\stackrel{}{h}} = [X + Y]_{\stackrel{}{h}}$, 得证。

③根据①②式,得证。

3.1.1 加减运算 1. 加减运算方法

- 补码加减运算规则:
 - •参加运算的操作数用补码表示;
 - 补码的符号位与数值位同时进行加运算;
 - □ 加: 两数补码直接相加;
 - □ 减: 减数补码连同符号位一起按位取反,
 - 末位加1; 再与被减数的补码相加。
 - •运算结果即为和/差的补码。

3.1.1 加减运算 1. 加减运算方法

【例】利用补码加法求:

$$63+35=?$$

$$63+35=?$$
 $-63+(-35)=?$

$$63 - 35 = ?$$

【解】

$$[63]_{3|} = 001111111$$

$$[-63]_{3}$$
 = 11000001

$$[35]_{3} = 00100011$$

$$[-35]_{3}=11011101$$

$$\begin{array}{r} 001111111 \cdots 63 \\ + 00100011 \cdots 35 \\ \hline 01100010 \cdots 98 \end{array}$$

$$11000001 \cdots -63$$

$$+ 11011101 \cdots -35$$

$$110011110 \cdots -98$$

$$001111111 \cdots 63 + 110111101 \cdots -35$$

- 当两个同符号的数相加(或者是相异符号数相减) 时,运算结果可能发生溢出。
- 如何防止溢出? 增加补码的**二进制编码长度**。
- $001111111 \cdots 63 \\ +01010101 \cdots 85 \\ \hline 10010100 \cdots -108$
- 如何判断是否发生了溢出?
 - 双符号位判决法;
 - 进位判决法;
 - 根据运算结果的符号位和进位标志判别;
 - 根据运算前后的符号位进行判别。

1) 双符号位判决法

若运算结果两符号分别用 S_2S_1 表示,则判别溢出的逻辑表示式为: $VF = S_2 \oplus S_1$

```
00 10000001 ··· 65
+ 00 1000011 ··· 67 VF=S<sub>2</sub>⊕S<sub>1</sub>=1,
01 0000100 ··· 溢出 发生溢出。
```

双符号位:

- 00: 不溢出,结果为正;
- 11: 不溢出,结果为负;
- 10: 溢出, 负溢;
- 01: 溢出,正溢。

2) 进位判决法

若C_{n-1}为最高数值位向符号位的进位,C_n表示符号位 向更高位的进位,则判别溢出的逻辑表示式为:

$$VF = C_{n-1} \oplus C_n$$

$$\begin{array}{c}
0 \ xxxxxxx \\
+ 1 \ xxxxxxx \\
\hline
x \ xxxxxxx
\end{array}$$

$$VF=C_{n-1}\oplus C_n=1$$
,发生溢出。

3) 根据运算结果的符号位和进位标志判别

适用于两同号数求和或异号数求差时判别溢出。溢出的逻辑表达式为:

$$VF = SF \oplus CF$$

4) 根据运算前后的符号位进行判断

若用Xs、Ys、Zs分别表示两个操作数及运算结果的符号位,当两同号数求和或异号数求差时,就有可能发生溢出。

溢出是否发生可根据运算前后的符号位进行判别,其逻辑表达式为:

$$\mathbf{VF} = X_S \cdot Y_S \cdot Z_S + X_S \cdot Y_S \cdot Z_S$$

4) 根据运算前后的符号位进行判断

- 在CPU中,进行定点算术运算是否发生溢出,通常 是由CPU中的硬件逻辑电路进行检测。
- 一旦溢出发生,则会
 - 在CPU中的标志寄存器中建立溢出标志;
 - 或者产生溢出中断。

3.1.1 加减运算 3. 一位全加器的实现

设一位全加器的输入分别为 X_i 和 Y_i ,低一位对该位的进位为 C_i 。全加器的结果和向高一位的进位分别用 Z_i 和 C_{i+1} 表示。则一位全加器所实现的逻辑表达式:

1) 行波进位加法器

■ 若一位全加器的进位延时为 \triangle t,则n位加法器的延时就是 $n \cdot \triangle$ t。

行波进位的n位加法/减法器

2) 先行进位加法器

四个进位的产生逻辑表达式:

$$\begin{split} &C_{i+1} \! = \! G_i \! + \! P_i C_i \\ &C_{i+2} \! = \! G_{i+1} \! + \! P_{i+1} C_{i+1} \! = \! G_{i+1} \! + \! P_{i+1} G_i \! + \! P_{i+1} P_i C_i \\ &C_{i+3} \! = \! G_{i+2} \! + \! P_{i+2} C_{i+2} \! = \! G_{i+2} \! + \! P_{i+2} G_{i+1} \! + \! P_{i+2} P_{i+1} G_i \! + \! P_{i+2} P_{i+1} P_i C_i \\ &C_{i+4} \! = \! G_{i+3} \! + \! P_{i+3} C_{i+3} \\ &= \! G_{i+3} \! + \! P_{i+3} G_{i+2} \! + \! P_{i+3} P_{i+2} G_{i+1} \! + \! P_{i+3} P_{i+2} P_{i+1} G_i \! + \! P_{i+3} P_{i+2} P_{i+1} P_i C_i \\ &= \! G^*_{i+3} \! + \! P^*_{i+3} C_i \\ &= \! G^*_{i+3} \! + \! P^*_{i+3} C_i \\ &\not \pm \! \Psi_i, \quad G^*_{i+3} \! = \! G_{i+3} \! + \! P_{i+3} G_{i+2} \! + \! P_{i+3} P_{i+2} G_{i+1} \! + \! P_{i+3} P_{i+2} P_{i+1} G_i \\ &P^*_{i+3} \! = \! P_{i+3} P_{i+2} P_{i+1} P_i \end{split}$$

四位先行进位链电路

2) 先行进位加法器

三级门的延时

四位先行进位链电路

- 1) 定义
- 压缩 BCD 数
- 非压缩 BCD 数

3.1

3.1.1 加减运算 5.8421BCD数加法器

2) 加法运算

【例】计算压缩BCD数:

BCD 加法的校正:

- 运算中某位BCD数(四位二进制数)相加的结果 大于9或有向更高位的进位,则结果加6;
- 若不满足上述条件,则无需校正。

2) 加法运算

BCD加法器

2) 加法运算

2) 加法运算

n位行波进位BCD加法器框图

3.1.1 加减运算 6. 移码加减运算

定点整数移码的加减运算的法则:

- ① 对两移码求和差时,首先对该两移码求和差:
- ② 对结果进行修正 —— 将结果的符号取反。

【证明】设X、Y为整数,机器字长n位
$$[X]_{8}=2^{n-1}+X$$
 $[X+Y]_{8}=2^{n-1}+X+Y$ $=2^{n-1}+([X]_{8}-2^{n-1})+([Y]_{8}-2^{n-1})$ $=[X]_{8}+[Y]_{8}-2^{n-1}$ $[X-Y]_{8}=[X]_{8}+[-Y]_{8}-2^{n-1}$ $[-Y]_{8}=2^{n-1}+(-Y)=2^{n-1}+(2^{n-1}-[Y]_{8})$ $=2^{n}-[Y]_{8}=((2^{n}-1)-[Y]_{8})+1$ $=[Y]_{8}]_{x}$ $[Y]_{8}$ 按位取反 末位加1

3.1.1 加减运算 6. 移码加减运算

【例】机器字长为8位,

$$[X]_8 = 101111001$$
 57 $[Y]_8 = 010111101$ -35 求: $[X+Y]_8$, $[X-Y]_8$ 。

【解】

$$[X+Y]_{N} = [X]_{8} + [Y]_{8} = 00010110$$
因此, $[X+Y]_{8} = 10010110$
 $[-Y]_{8} = [[Y]_{8}]_{x^{N}} = 10100011$
 $[X-Y]_{N} = [X]_{8} + [-Y]_{8} = 101111001 + 1010100111$
因此, 010111100
 $[X-Y]_{8} = 110111100$

3.1 定点数运算

3.1.2 乘法运算

3.1.2 乘法运算

- ■原码乘法运算
 - 原码一位乘法
 - 原码二位乘法
- 补码乘法运算
 - •补码一位乘法:校正法,布斯(Booth)法
 - 补码二位乘法
- ■阵列乘法器

用硬件换取速度

3.

3.1.2 乘法运算 1. 原码乘法运算

1) 原码一位乘法的法则

假定被乘数X和乘数Y为用原码表示的纯小数,

$$[X]_{\text{p}} = X_0 . X_{-1} X_{-2} ... X_{-(n-1)}$$

 $[Y]_{\text{p}} = Y_0 . Y_{-1} Y_{-2} ... Y_{-(n-1)}$

X₀、Y₀、Z₀ 为符号位

乘积为: $[Z]_{\mathbb{R}} = Z_0 \cdot Z_{-1} Z_{-2} \dots Z_{-(2n-1)}$

原码一位乘法的法则是:

- ① 乘积的符号为被乘数的符号位与乘数的符号位相 异或;
- ② 乘积的绝对值为被乘数的绝对值与乘数的绝对值 之积。即

$$[X]_{\mathbb{R}} \times [Y]_{\mathbb{R}} = (X_0 \oplus Y_0) (|X| \times |Y|)$$

2) 原码一位乘法的实现思路

【例】若[X]_原=0.1101, $[Y]_{\mathbb{R}} = 1.1011,$ 求两者之积。

【解】

乘积的符号为: 0⊕1=1

2) 原码一位乘法的实现思路

绝对值乘法思路框图

3) 原码一位乘法的运算过程

	D						A	A_0	操作
0	0	0	0	0	1	0	1	1	$A_0=1, +X$
+ 0	1	1	0	1	İ				
0	1	1	0	1					
0	0	1	1	0	1	1	0	1	→右移一次
+ 0	1	1	0	1					$A_0=1, +X$
1	0	0	1	1	1	_1_	0	1	
0	1	0	0	1	1	1	1	0	→右移一次
0	0	0	0	0			<u> </u>		$A_0=0, +0$
0	1	0	0	1	1	1	11	0	
0	0	1	0	0	1	1	1	1	→右移一次
+ 0	1	1	0	1					$A_0=1, +X$
1	0	0	0	1	1	1	1	1	
0	1	0	0	0	1	1	1	1	→右移一次

拼接符号,[X]_原·[Y]_原=1.10001111

4) 原码一位乘法器框图

原码一位乘器框图

5) 原码二位乘法

被乘数X和乘数Y为用原码表示的纯小数

$$[X]_{\mathbb{R}} = X_0 \cdot X_{-1} X_{-2} \dots X_{-(n-1)}$$

$$[Y]_{\mathbb{R}} = Y_0 \cdot Y_{-1} Y_{-2} ... Y_{-(n-1)}$$

两位乘数位有四种组合:

$$Y_{i+1}Y_i = 00$$
 对应+0

$$Y_{i+1}Y_i = 01$$
 对应+ $|X|$

$$Y_{i+1}Y_i=10$$
 对应+2|X|

$$Y_{i+1}Y_i=11$$
 对应+3|X|

 X_0 、 Y_0 为符号位

5) 原码二位乘法

Y_{i+1}	Y _i	C		操	作	
0	0	0	+0,	右移	2 次,	C=0
0	0	1	+ X ,	右移	2次,	C=0
0	1	0	+ X ,	右移	2次,	C=0
0	1	1	+2 X ,	右移	2次,	C=0
1	0	0	+2 X ,	右移	2次,	C=0
1	0	1	$- \mathbf{X} $,	右移	2次,	C=1
1	1	0	$- \mathbf{X} $,	右移	2 次,	C=1
1	1	1	+0,	右移	2次,	C=1

原码二位乘法的法则表

注意事项

- 原码二位乘跟原码一位乘一样,符号位和数值部分的运算是分开进行的,但它是用2位的乘数状态来决定新的部分积的形成。两位的乘数的状态由"00"-"11",分别表示0-3,他们都是用部分积增加0-3倍被乘数后再右移两位。
- 由于3倍的被乘数无法通过被乘数左移来获得,所以可以通过4-1倍来实现,但是00-11只能表示0-3倍,所以要引入标志位C。通 过乘数"11"表示的3倍,再加上C位置"1"来实现加1倍,可以 实现4倍被乘数(加几倍被乘数都是加在部分积上的)。
- 4-1倍被乘数|x|中(|x|是绝对值,因为符号位分开运算),有-|x|,所以要采用"[-|x|]_补"补码来实现,参与原码两位乘运算的操作数都是绝对值的补码(绝对值是正数,所以原码=补码。因为实际上是加3倍的|x|,所以结果为正,补码结果=原码结果)。
- 因为+2倍被乘数,也就是"+[2|x|]_补"时,使部分积的绝对值大于2,所以部分积需取3位符号位并以最高位符号位作真正符号位,才能保证正确运算。

5) 原码二位乘法

【例】

设
$$X = +0.100111$$
, $Y = -0.100111$, 利用原码求积。

【解】

$$[X]_{\text{g}} = 0.100111$$

 $[Y]_{\text{g}} = 1.100111$

$$[-|\mathbf{X}|]_{\nmid h} = 1.011001$$

5) 原码二位乘法

原码二位乘法的运算过程

符号位 D					D				A 操作
0	0	0	0	0	0	0	0	0	1 0 0 1 <u>1 1 C=0</u>
$\frac{1}{1}$	$\frac{1}{1}$	1 1	0	1	1 1	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{1}{1}$	—X C=1
1	1	1	1	1	0	1	1	0	0 1 1 0 0 1 → 右移二位
$\frac{0}{0}$	$\frac{0}{0}$	$\frac{1}{1}$	0	$\frac{0}{0}$	$\frac{1}{0}$	$\frac{1}{1}$	$\frac{1}{0}$	$\frac{0}{0}$	+2X C=0
0	0	0	0	1	0	0	0	1	0 0 0 1 1 0 → 右移二位
$\frac{0}{0}$	0	$\frac{1}{1}$	0	0	1	1	1	$\frac{0}{1}$	+2X
0	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	0	1	1	1	1 1 0 0 0 1 →右移二位

乘积的符号为: 0⊕1=1, [X·Y]_原=1.010111110001

补码乘法的运算规则

设被乘数X,乘数Y均为字长为n位的定点小数,且

$$[Y]_{\nmid h} = y_0 \cdot 2^0 + y_{-1} \cdot 2^{-1} + \cdots + y_{-(n-2)} \cdot 2^{-(n-2)} + y_{-(n-1)} \cdot 2^{-(n-1)}$$

 $(y_0$ 为符号位的值, y_i 为其他各位的值, 2^i 为各位的权)

1) 当
$$Y \ge 0$$
, 即 $y_0 = 0$ 时,

$$Y = [Y]_{\nmid h} = 0 \cdot 2^{0} + y_{-1} \cdot 2^{-1} + \cdots + y_{-(n-2)} \cdot 2^{-(n-2)} + y_{-(n-1)} \cdot 2^{-(n-1)}$$

2) 当Y < 0,即 $y_0 = 1$ 时,

$$[Y]_{k}=2+Y \pmod{2}$$
,

$$Y = -2 + [Y]_{\lambda h}$$

$$= -2 + y_0 \cdot 2^0 + y_{-1} \cdot 2^{-1} + \dots + y_{-(n-2)} \cdot 2^{-(n-2)} + y_{-(n-1)} \cdot 2^{-(n-1)}$$

$$= -1 \cdot 2^{0} + y_{-1} \cdot 2^{-1} + \cdots + y_{-(n-2)} \cdot 2^{-(n-2)} + y_{-(n-1)} \cdot 2^{-(n-1)}$$

$$Y = -y_0 \cdot 2^0 + y_{-1} \cdot 2^{-1} + \dots + y_{-(n-2)} \cdot 2^{-(n-2)} + y_{-(n-1)} \cdot 2^{-(n-1)}$$

1)校正法

假定被乘数X和乘数Y为用补码表示的纯小数:

$$[X]_{\nmid h} = X_0 . X_{-1} X_{-2} \cdots X_{-(n-1)}$$

 $[Y]_{\nmid h} = Y_0 . Y_{-1} Y_{-2} \cdots Y_{-(n-1)}$

$$X_0$$
、 Y_0 为符号位

校正法补码一位乘法的算法公式:

$$[X \cdot Y]_{\nmid h} = [X]_{\nmid h} (-Y_0 + 0.Y_{-1}Y_{-2} \cdots Y_{-(n-1)})$$

$$= [X]_{\nmid h} (-Y_0 2^0 + Y_{-1} 2^{-1} + Y_{-2} 2^{-2} + \cdots + Y_{-(n-1)} 2^{-(n-1)})$$

注意事项

- 当乘数为正数时,不管被乘数符号如何,都可按原码乘法的规则进行运算("加"和"移位"都按照补码规则进行)。
- 当乘数为负数时,补码乘法可以按照"先不考虑符号位,当作正数进行原码相乘,再在最后加上[-x]_补进行校正"的做法即可(x是被乘数,最后这步称为校正)。
- 补码乘法中,乘积的符号位是在运算过程中自然 形成的,与原码中的"符号位与数值部分分开计 算"有着重要的区别。

1) 校正法

【例】已知

$$X = -0.1101$$

$$Y = 0.1011$$

利用校正法补码

一位乘法求积。

【解】

$$[X]_{\frac{1}{2}} = 11.0011$$

$$[Y]_{3} = 00.1011$$

∴
$$[X \cdot Y]_{\not \uparrow h}$$

=1.01110001

	符号	D	A	操作
	0 0	0 0 0 0	1 0 1 1	
+	11	0 0 1 1	1	+[X] _补
	1 1	0 0 1 1	[[[-]	
	1 1	1 0 0 1	1 1 0 1	右移1位
+	11	0 0 1 1		+[X] _{ネト}
	1 0	1 1 0 0		
	1 1	0 1 1 0	0 1 1 0	右移1位
+	0 0	0 0 0 0		+ 0
	1 1	0 1 1 0	- 7	
	1 1	1 0 1 1	0 0 1 1	右移1位
+	11	0 0 1 1		+[X] _{ネト}
	1 0	1 1 1 0	i 	
	1 1	0 1 1 1	0 0 0 1	右移1位

1) 校正法

【例】已知

$$X = -0.1101$$

$$Y = -0.1011$$

利用校正法补码

一位乘法求积。

【解】

$$[X]_{k} = 11.0011$$

$$[Y]_{k} = 11.0101$$

 $∴ [X \cdot Y]_{\not{\uparrow}}$ = 0.10001111

	符号	D	A	操作
	0 0	0 0 0 0	0 1 0 1	
+	1 1	0 0 1 1		+[X] _{ネト}
	1 1	0 0 1 1	1	
	1 1	1 0 0 1	1 0 1 0	右移1位
+	0 0	0 0 0 0		+0
	1 1	1 0 0 1		
	1 1	1 1 0 0	1 1 0 1	右移1位
+	1 1	0 0 1 1		+[X] _{ネト}
	1 0	1 1 1 1		
	1 1	0 1 1 1	1 1 1 0	右移1位
+	0 0	0 0 0 0		+0
	1 1	0 1 1 1		
	1 1	1 0 1 1	1111	右移1位
+	0 0	1 1 0 1		$+[-X]_{\not =}$
	0 0	1 0 0 0	1 1 1 1	

补码乘法的运算规则

2) 布斯(Booth)法

$$Y = -y_0 \cdot 2^0 + y_{-1} \cdot 2^{-1} + \cdots + y_{-(n-2)} \cdot 2^{-(n-2)} + y_{-(n-1)} \cdot 2^{-(n-1)}$$

$$\begin{split} & [X\cdot Y]_{\nmid k} \\ &= [X\cdot (-y_0\cdot 2^0 + y_{-1}\cdot 2^{-1} + \cdots + y_{-(n-2)}\cdot 2^{-(n-2)} + y_{-(n-1)}\cdot 2^{-(n-1)})]_{\nmid k} \\ &= [-y_0\cdot 2^0\cdot X]_{\nmid k} + [(y_{-1}\cdot 2^{-1} + \cdots + y_{-(n-2)}\cdot 2^{-(n-2)} + y_{-(n-1)}\cdot 2^{-(n-1)})\cdot X]_{\nmid k} \\ & \because [-X]_{\nmid k} = -[X]_{\nmid k}, \ y_{-1}\cdot 2^{-1} + \cdots + y_{-(n-2)}\cdot 2^{-(n-2)} + y_{-(n-1)}\cdot 2^{-(n-1)}) \cdot [X]_{\nmid k} \\ &= -y_0\cdot 2^0\cdot [X]_{\nmid k} + (y_{-1}\cdot 2^{-1} + \cdots + y_{-(n-2)}\cdot 2^{-(n-2)} + y_{-(n-1)}\cdot 2^{-(n-1)}) \cdot [X]_{\nmid k} \\ &= [X]_{\nmid k}\cdot (-y_0\cdot 2^0 + y_{-1}\cdot 2^{-1} + \cdots + y_{-(n-2)}\cdot 2^{-(n-2)} + y_{-(n-1)}\cdot 2^{-(n-1)}) \\ &= [X]_{\nmid k}\cdot (-y_0\cdot 2^0 + y_{-1}\cdot 2^0 - y_{-1}\cdot 2^{-1} + y_{-2}\cdot 2^{-1} - y_{-2}\cdot 2^{-2} + \cdots \\ &\quad + y_{-(n-2)}\cdot 2^{-(n-3)} - y_{-(n-2)}\cdot 2^{-(n-2)} + y_{-(n-1)}\cdot 2^{-(n-2)} - y_{-(n-1)}\cdot 2^{-(n-1)} + 0\cdot 2^{-(n-1)}) \\ &= [X]_{\nmid k}\cdot [(y_{-1}-y_0)\cdot 2^0 + (y_{-2}-y_{-1})\cdot 2^{-1} + \cdots \\ &\quad + (y_{-(n-1)}-y_{-(n-2)})\cdot 2^{-(n-2)} + (0-y_{-(n-1)})\cdot 2^{-(n-1)}] \end{split}$$

2) 布斯(Booth)法

运算法则:

假定被乘数X和乘数Y为用补码表示的纯小数:

$$[X]_{\nmid h} = x_0 \cdot x_{-1} x_{-2} \cdots x_{-(n-1)}$$

 $[Y]_{\nmid h} = y_0 \cdot y_{-1} y_{-2} \cdots y_{-(n-1)}$

 x_0 、 y_0 为符号位

布斯法补码一位乘法的算法公式为:

$$[X \cdot Y]_{\nmid h}$$

=
$$[X]_{\nmid h}$$
 [$(y_{-1} - y_0)2^0 + (y_{-2} - y_{-1})2^{-1} + (y_{-3} - y_{-2})2^{-2} + \cdots + (y_{-(n-1)} - y_{-(n-2)})2^{-(n-2)} + (0 - y_{-(n-1)})2^{-(n-1)}]$

2) 布斯(Booth)法

补码一位乘(Booth法)运算规律:

y _i	y_{i-1}	$y_{i-1}-y_i$	操作
0	0	0	部分积十0,右移1位
0	1	1	部分积+[X] _补 ,右移1位
1	0	-1	部分积+[-X] _补 ,右移1位
1	1	0	部分积十0,右移1位

2) 布斯(Booth)法

Booth 算法描述如下:

- ① 乘数与被乘数均用补码表示,连同符号位一起参 加运算:运算结果(乘积)也是补码。
- ② 乘数最低位后增加一个附加位(可用A₁表示),初 始设定为0。
- ③ 从附加位开始,按上表总共进行n次加操作、n-1次 右移操作(最后一次不右移)。
- ④ 右移按补码规则进行,即符号位复制。

附加位

2) 布斯(Booth)法

【例】

校正法1

X = 0.1010

校正法2

Y = -0.1101

利用布斯法补码

一位乘法求积。

【解】

 $[X]_{3} = 00.1010$

 $[-X]_{k} = 11.0110$

 $[Y]_{k} = 11.0011$

 $\therefore [X \cdot Y]_{\lambda \mid \lambda}$ =1.01111110

符号	D 部分积	A	A ₋₁	操作说明
0 0	前00000	1 0 0 1 1	0	
1 1	0 1 1 0	乘数		$+[-X]_{{\nmid}\!\!+}$
1 1	0 1 1 0	1		
1 1	1 0 1 1	0 1 0 0 1	1	右移1位
0 0	0 0 0 0			+0
1 1	1 0 1 1			
1 1	1 1 0 1	1 0 1 0 0	1	右移1位
0 0	1 0 1 0	<u> </u>		+[X] _{ネト}
0 0	0 1 1 1	,		
0 0	0 0 1 1	1 1 0 1 0	0	右移1位
0 0	0 0 0 0			+0
0 0	0 0 1 1	- 1		
0 0	0 0 0 1	1 1 1 0 1	0	右移1位
1 1	0 1 1 0			$+[-X]_{-}$
1 1	0 1 1 1	1 1 1 0 1	0	不移位

2) 布斯(Booth)法

补码一位乘法器(Booth算法)框图

3) 补码二位乘法

Booth法改进,将 Y_{i-1} 的状态比较和 Y_{i-1} 与 Y_{i-2} 的状态比较合在一起进行:

$$2(Y_{i-1}-Y_i)+(Y_{i-2}-Y_{i-1})=Y_{i-1}+Y_{i-2}-2Y_i$$

$\mathbf{Y_i}$	Y_{i-1}	Y_{i-2}	$Y_{i-1} + Y_{i-2} - 2Y_{i}$	操作
0	0	0	0	+0,右移2位
0	0	1	1	+[X] _补 ,右移2位
0	1	0	1	+[X]*, 右移2位
0	1	1	2	+2[X] _补 ,右移2位
1	0	0	-2	+2[-X] _补 ,右移2位
1	0	1	-1	+[-X] _补 ,右移2位
1	1	0	-1	+[-X] _补 ,右移2位
1	1	1	0	+0,右移2位

3) 补码二位乘法

补码二位乘法的法则:

- ① 乘数与被乘数均用补码表示,连同符号位一起参加运算。
- ③ 从附加位开始,依据上表所示的操作规律,一次检测相邻 3位决定具体的操作,并每次乘数右移2位。
- ④ 当乘数位数(包括符号位)为偶数n时,右移2位的次数为 n/2次,最后一次只右移1位。
- ⑤ 当乘数位数(包括符号位)为奇数n时,可在乘数最后一位 之后添加一个0,使乘数位数变为偶数n+1,右移次数为 (n+1)/2,且最后一次只右移1位;此时,也可以将乘数增 加一个符号位,使乘数位数变为偶数n+1,右移次数为 [(n+1)/2-1]。

3) 补码二位乘法

【例】已知

$$X = -0.1101$$

$$Y = -0.1011$$

试利用补码二位乘 法求积。

【解】

$$[Y]_{3} = 11.0101$$

$$[X]_{3} = 111.0011$$

$$2[X]_{\nmid h} = 110.0110$$

$$[-X]_{3} = 000.1101$$

$$2[-X]_{k} = 001.1010$$

符号	D	A	A ₋₁	操作说明
0 0 0	0 0 0 0	1 1 0 1 0 1	0	
1 1 1	0 0 1 1			$+[X]_{\not i h}$
1 1 1	0 0 1 1			
1 1 1	1 1 0 0	1 1 1 1 0 1	0	右移2位
1 1 1	0 0 1 1			$+[X]_{\not\uparrow \uparrow}$
1 1 0	1 1 1 1			
1 1 1	1 0 1 1	$1\ 1\ 1\ 1$	0	右移2位
0 0 0	1 1 0 1			$+[-X]_{ eqn}$
0 0 0	1 0 0 0			
0 0 0	1 0 0 0	1 1 1 1 1 1	0	不右移

$$\therefore [X \cdot Y]_{\frac{1}{2}} = 0.10001111$$

1) 手算及单元电路

设
$$X = X_3 X_2 X_1 X_0$$
, $Y = Y_3 Y_2 Y_1 Y_0$, 计算 $X \cdot Y = ?$

1) 手算及单元电路

设
$$X=X_3X_2X_1X_0$$
, $Y=Y_3Y_2Y_1Y_0$,计算 $X\cdot Y=?$

基本乘加单元框图

2) 绝对值(无符号数)阵列乘法器

定点无符号数阵列乘法器

3) 带符号数的阵列乘法器

- 求被乘数与乘数的绝对值
- 进行绝对值乘法
- 根据被乘数与乘数的符号,决定最后乘积的符号。

3) 带符号数的阵列乘法器

求补电路

3) 带符号数的阵列乘法器

n+1位带符号数阵列乘法器框图

作业:

Page83:

13, 17 (1) (2),

20 (1) Booth法

3.1 定点数运算

3.1.3 除法运算

3.1.3 除法运算

- 实现方式:
 - 原码
 - 补码
- 前提条件:
 - •除数不能为0
 - 商可以表示

1) 原码除法的法则

- ① 前提条件:
 - 除数≠0;
 - 定点纯小数时,|被除数|<|除数|;
 - 定点纯整数时,|被除数|>|除数|。
- ② 商的符号=被除数的符号 田除数的符号
- ③ |商|=|被除数|÷|除数|
- ④ 将商的符号与商的值拼接在一起。

1) 原码除法的法则

【例】设X=0.1011, Y=0.1101, 求X÷Y=?

【解】

- 被除数(余数)每次减去右移 一次后的除数,决定上商。
- 实际构成除法器时:
 - 保持除数的位置不动,而每次余数左移一次。
 - 在CPU中,必须减过之后方能判断余数是否够减, 当发现不够减时,在下面操作之前必须恢复余数。

2)恢复余数法

定点纯小数:

- 符号位单独处理。
- 被除数左移一位,减除数,
 - 若够减,上商为1;
 - ●若不够减,上商为0,同时加除数(恢复余数)。
- 余数左移一位,减除数,
 - 若够减,上商为1;
 - ●若不够减,上商为0,同时加除数(恢复余数)。
- 重复上面的过程直到除尽或精度达到要求。
- 拼接商符得到商。

2) 恢复余数法

【例】

被除数 X = -0.10001011

除数 Y=0.1110

利用原码恢复余数法求商及余数。

【解】

前提条件: |X| < |Y|, $|Y| \neq 0$ 。

 $[X]_{\text{ff}} = 1.10001011$

 $[Y]_{\text{@}} = 0.1110$

商符=1⊕0=1

绝对值除法过程:

 $[X]_{\mathbb{R}} = 1.10001011$ $[Y]_{\mathbb{R}} = 0.1110$ $[-Y]_{k} = 1.0010$ 商符=1⊕0=1 绝对值除法过程:

商=1.1001 余数 $=1.1101\times2^{-4}$

余数的符号与 被除数一致。

m, , , , , , , , , , , , , , , , , ,							
符号	被除数(余数)	商	操作				
0 0	1 0 0 0 1 0 1 1	0					
0 1	0 0 0 1 0 1 1 0		左移1位				
1 1	0 0 1 0		$- \mathbf{Y} $				
0 0	0 0 1 1 0 1 1 0	1	够减,商为1				
0 0	0 1 1 0 1 1 0 1		左移1位				
1 1	0 0 1 0		$- \mathbf{Y} $				
1 1	1 0 0 0 1 1 0 1	0	不够减,商为0				
0 0	1 1 1 0		$+ \mathbf{Y} $				
0 0	0 1 1 0 1 1 0 1	0	恢复余数				
0 0	1 1 0 1 1 0 1 0		左移1位				
1 1	0 0 1 0		$- \mathbf{Y} $				
1 1	1 1 1 1 1 0 1 0	0	不够减,商为0				
0 0	1 1 1 0		$+ \mathbf{Y} $				
0 0	1 1 0 1 1 0 1 0	0	恢复余数				
0 1			左移1位				
1 1	余数一商		$- \mathbf{Y} $				
0 0	1 1 0 1 0 1 0 0	1	够减,商为1				

2) 恢复余数法

- 恢复余数法:不同的被除数和除数,其除的过程不规范,何时需恢复余数是不相同的,实现起来不便于控制。
- 加减交替法:

3) 加减交替法

分析恢复余数法:

- 第i次余数减除数B, 得余数R:
- 若R<0, 应:
 - 恢复余数,执行(R+B);
 - 左移一位,即2(R+B);
 - 进行第i+1 次余数减<mark>除数B</mark>操作,即:

$$2(R+B)-B = 2R+B$$

恢复之后 第i+1次 的余数 减除数操作

$$-2B - +B -$$

$$\begin{array}{c} R_{-1}R_{-2}R_{-3}R_{-4}R_{-5}R_{-6}R_{-7}R_{-8} \\ \hline = B_{-1}B_{-2}B_{-3}B_{-4} \\ \hline - (+)B_{-1}B_{-2}B_{-3}B_{-4} \end{array}$$

3) 加减交替法

加减交替法的运算法则:

- 若余数R≥0,则商上1,余数左移一次,减除数;
- 若余数R<0,则商上0,余数左移一次,加除数。

3) 加减交替法 【例】

X = -0.10001011Y = 0.1110

利用原码加减交替 法求商及余数。

【解】

 $[X]_{\text{ff}} = 1.10001011$ $[Y]_{\mathbb{R}} = 0.1110$ $[-Y]_{k} = 1.0010$ 商符=1⊕0=1 $[X \div Y]_{\mathbb{R}} = 1.1001$ 余数=1.1101×2-4

符号	被除数(余数)	商	操作
0 0	1 0 0 0 1 0 1 1	0	
0 1	0 0 0 1 0 1 1 0		左移1位
1 1	0 0 1 0		$- \mathbf{Y} $
0 0	0 0 1 1 0 1 1 0	1	R≥0,商为1
0 0	0 1 1 0 1 1 0 1		左移1位
1 1	0 0 1 0		$- \mathbf{Y} $
1 1	1 0 0 0 1 1 0 1	0	R<0,商为0
1 1	0 0 0 1 1 0 1 0		左移1位
0 0	1 1 1 0		$+ \mathbf{Y} $
1 1	1 1 1 1 1 0 1 0	0	R<0,商为0
1 1	1 1 1 1 0 1 0 0		左移1位
0 0	1 1 1 0		$+ \mathbf{Y} $
0 0	1 1 0 1 0 1 0 0	1	R≥0,商为1

3) 加减交替法

加减交替法除法器框图

加减交替法除法器框图

1) 补码除法法则

- 先决条件:
 - 定点纯小数
 - 除数≠0
 - |被除数|<|除数|
- 补码除法的法则:

1) 补码除法法则

- 补码除法的法则:
 - ① 如果被除数与除数同号,被除数减除数; 如果被除数与除数异号,被除数加除数。 运算结果称为余数。
 - ② 若余数与除数同号,上商为1,余数左移一位, 下次用余数减除数操作求商; 若余数与除数异号,上商为0,余数左移一位, 下次用余数加除数操作求商。
 - ③ 重复②直至除尽或达到精度要求。
 - ④ 商修正。在除不尽时,通常可用商的最低位恒 置1进行修正来保证精度。

2) 补码除法流程框图

3) 补码除法的过程

【例】

$$X = -0.10001011$$

$$Y = 0.1110$$

利用补码除法求商及余数。

【解】

$$[X]_{k} = 1.01110101$$

$$[Y]_{k} = 0.1110$$

$$[-Y]_{k} = 1.0010$$

400 A 100 A				
	符号	被除数(余数)	商	操作
▼ 及刀 ▼	1 1	0 1 1 1 0 1 0 1		X、Y异号
【解】	0 0	1 1 1 0		+[Y] _补
[X] _补	0 0	0 1 0 1	1	R与Y同号,上商1
=1.01110101	0 0	1 0 1 0 1 0 1 1		左移1位,下步减
$[Y]_{\not \models} = 0.1110$	1 1	0 0 1 0		$+[-Y]_{ eqh}$
$[-Y]_{\nmid \mid} = 1.0010$	1 1	1 1 0 0	0	R与Y异号,上商0
	1 1	1 0 0 1 0 1 1 0		左移1位,下步加
	0 0	1 1 1 0		+[Y] _补
[商] _补	0 0	0 1 1 1	1	R与Y同号,上商1
=1.01101	0 0	1 1 1 0 1 1 0 1		左移1位,下步减
-1.01101	1 1	0 0 1 0		$+[-Y]_{ eqh}$
[余数]**	0 0	0 0 0 0	1	R与Y同号,上商1
=1.0011	0 0	0 0 0 1 1 0 1 1		左移1位,下步减
	1 1	0 0 1 0		$+[-Y]_{ eqh}$
$\times 2^{-4}$	1 1	余数 1 商	0	R与Y异号,上商0
	1 1	0 0 1 1 1 0 1 1		

	符号	被除数(余数)	商	操作
▼	1 1	0 1 1 1 0 1 0 1		X、Y异号
【解】	0 0	1 1 1 0		$+[Y]_{ eqh}$
$[\mathbf{X}]_{ eq h}$	0 0	0 1 0 1	1	R与Y同号,上商1
=1.01110101	0 0	1 0 1 0 1 0 1 1		左移1位,下步减
$[Y]_{\not\models} = 0.1110$	1 1	0 0 1 0		$+[-Y]_{ lapha}$
$[-Y]_{2} = 1.0010$	1 1	1 1 0 0	0	R与Y异号,上商0
	1 1	1 0 0 1 0 1 1 0		左移1位,下步加
		1 1 1 0		+[Y] _补
[商] _补	0 0	0 1 1 1	1	R与Y同号,上商1
	0 0	1 1 1 0 1 1 0 1		左移1位,下步减
=1.0111	1 1	0 0 1 0		$+[-Y]_{ eqh}$
	0 0	0 0 0 0	1	R与Y同号,上商1
	0 0	0 0 0 1 1 0 1 1		左移1位
		1 0 1 1	1	末位恒置1
		余数商		

4) 补码除法器框图

补码除法器框图

- 1) 基本概念: 补码运算的进位
- 在做无符号数减法时,用 被减数十[减数]_{求补}来实现。
 - 若被减数<减数(不够减),没有进位(借位);
 - 若被减数>减数(够减),有进位(借位)。

【例】计算65-32、32-65。

【解】

$$\begin{aligned} 65 &= 01000001_2 \\ [-65]_{\begin{subarray}{l} \end{subarray}} &= 101111111_2 \\ 32 &= 00100000_2 \\ [-32]_{\begin{subarray}{l} \end{subarray}} &= 111000000_2 \end{aligned}$$

1) 基本概念: 补码运算的进位

- 在做无符号数减法时,用 被减数十[减数]_{求补}来实现。
 - 若被减数<减数(不够减),没有进位(借位);
 - 若被减数>减数(够减),有进位(借位)。

1) 基本概念:可控加减单元CAS

- ■异或电路
- ■全加器

2) 无符号数阵列除法器 可控加减

被除数: $X_6X_5X_4X_3X_2X_1X_0$

除数: Y₃Y₂Y₁Y₀

由可控加减单元CAS构成的阵列除法器

作业:

Page84:

22 (1) 原码加减交替法

