1.
$$\operatorname{first}(S) = \operatorname{first}(\operatorname{A}dg) \cup \operatorname{first}(\operatorname{B}h) = \{a, d, f, g\}$$

 $\operatorname{first}(A) = \operatorname{first}(a\operatorname{B}c) \cup \operatorname{first}(\epsilon) = \{a, \epsilon\}$
 $\operatorname{first}(B) = \operatorname{first}(f) \cup \operatorname{first}(f) = \{f, g\}$

2. a. S
$$\rightarrow$$
 bL
L \rightarrow + aL | + bL | ϵ

b. S
$$\rightarrow$$
 cL
L \rightarrow +M | ϵ
M \rightarrow aL | bL

c.
$$S \rightarrow aL$$

 $L \rightarrow bc \mid c$

d.
$$S \rightarrow aL$$

 $L \rightarrow a \mid b \mid \epsilon$

e.
$$S \rightarrow aSL \mid b$$

 $L \rightarrow c \mid b$

3. a.
$$first(true) = \{true\}$$

 $first(false) = \{false\}$
 $first((S)) = \{(\}$
 $first(S \text{ and } S) = \{(, true, false})$
 $first(S \text{ or } S) = \{(, true, false})$

b. The first sets of the productions intersect and the grammar is left recursive.

```
4. a. first(abS) = \{a\}

first(acS) = \{a\}

first(c) = \{c\}

first(S) = \{a, c\}
```

b. The first sets of the productions overlap: $\operatorname{first}(abS) \cap \operatorname{first}(acS) = \{a\} \cap \{a\} \neq \emptyset$.

c.
$$S \rightarrow aL \mid c$$

 $L \rightarrow bS \mid cS$

```
d. parse_S() {
     if (lookahead == "a") {
       match("a"); // S -> aL
       parse_L();
     } else
       if (lookahead == "c")
         match("c"); // S -> c
       else error();
   }
   parse_L() {
     if (lookahead == "b") {
       match("b"); // L -> bS
       parse_S();
     } else
       if (lookahead == "c") {
         match("c"); // L -> cS
         parse_S();
     } else error();
   }
```