Mobile Network Attack Evolution

Karsten Nohl <nohl@srlabs.de>

Security research is successful if vulnerabilities get removed

discover new vulnerability classes (and sometimes mitigations) Industry assesses impact and implements counter measures

This talk focuses on the industry response to mobile network security research

Agenda

Advanced SIM card attacks

- Advanced GSM intercept
- Keeping network operators honest

SIM cards are fully programmable computer systems

SIM have many security layers from smartcards to cryptography and Java process separation

SIM card includes various protection mechanisms

OTA security level is chosen by server while SIM enforces mandatory minimum level

Binary SMS communication

OTA server initiates remote transaction

Response protected according to request, but not below minimum level stored on card

key s	SIM card stores multiple key sets, possibly with different protection levels						
		Ke	y set 3	3			
	Ke	y set	t 2				
Key	set	1					
		DES	3DES	AES	Man- datory		
Encr ptio		•					
Sign ture					✓		

OTA error handling is underspecified, possibly opening attack surface

Binary SMS communication

Attacker probes cards to gain material for DES key cracking

SIM card with DES key (prevalence of DES keys varies between operators; can be up to 100%)

OTA DES do not withstand key cracking

Challenge: Derive 56 bit DES key from OTA response signature

Cracking strategies	Investment	Cracking time
Be patient Brute force on GPU	EUR 1.000	6 months
Throw money at it Brute force on FPGA cluster	EUR 50.000	1 day
Ride the rainbow Time-memory trade-off	EUR 1.500 + 1 year pre-computation	1 minute (but <100% success rate)
using large hard disks & GPU	Only possible when OTA response is fully predictable	

For some cards, even 3DES keys are crackable

Downgrade attack flow

Attacker
Crack first third of key
Crack second third*
Crack final third*

		_
Command	Request DES-signed response (KID = 1)	
Error	DES-signed	
Command	Request 2-key 3DES response (KID = 5)	
Error	2-key 3DES-signed	
Command	Request 3-key 3DES response (KID = 9)	
Error	3-key 3DES-signed	

Java virus does not automatically have access to all SIM assets

OTA-deployed SIM virus can access SIM Toolkit API **Standard STK** function **Abuse potential** Premium SMS fraud Send SMS Circumvent caller-ID checks Dial phone Mess with voice mail numbers, send **DTMF** tones Redirect incoming calls: sometimes also SMS Send USSD numbers Abuse USSD-based payment schemes Track victim Query phone location and settings Phishing Open URL in Malware deployment to phone phone browser Any other browser-based attack Java sand box should protect critical data on SIM

SIM security research motivated some technology upgrades

Security researchers published several **SIM card attacks**

Industry reacted swiftly but
not thoroughly

Finding

1

Anybody can send management SMS to SIM cards

The OTA app mgmt interface is not always protected with good crypto

SIM applications can break out of their JavaCard sandbox

Response

Many networks started filtering the most obvious attack messages

Some operators phased out DES keys in favor of 3DES

The vulnerability has not been addressed yet in affected cards

1 Binary SMS can take many forms to circumvent filters

SMS	field
-----	-------

		PID	DCS	UDHI	User data
		127	*	*	*
Best	Several message types may go to the SIM	*	246 or 22	*	*
practice filters		*	*	1	027000
	Some phones also forward other types	*	*	0	027000
VS.					
Imple- mented filters	Many networks only filter one type	127	*	*	*

Misconfigurations in SIMs go well beyond DES keys

Application (TAR)

SIM configurations need to be assessed in two dimensions

2. Verify that all SIM applications enforce cryptography

1. Verify that all keys are 3DES or AES

Key	/set	000000	000001	•••	FFFFFF
1:	3DES	Sign + encrypt	Unprotected (MSL=0)		
2:	3DES	Sign + encrypt	Sign		•••
•••					
16:	DES	Sign	Sign		

Attack example—Persistent infection of modern SIM card

Target —
New nano-SIM
(October 2013)
in iPhone 5s
from major
European carrier

Attack steps

- A Lure the phone onto fake base station to circumvent network filters
- B Scan the SIM remotely for configuration issues (on the SIM in this demo: discover TAR with MSL=0)
- C Install Java virus through vulnerable TAR
- Let phone connect back to normal network, maintain persistent access through SMS-C&C

Self-assessment tool: Find bugs in your SIM card's configuration

Tool name	SIMtester
Purpose	 Find cryptographic attack surface: Signature disclosure 3DES downgrade Enumerate logical attack surface: Detect hidden application TARs and test their security level Upload traces to gsmmap.org for further analysis (Thank you.)
Requirements	PC/SC smartcard reader –or– Osmocom phone
Source	opensource.srlabs.de

Agenda

- Advanced SIM card attacks
- Advanced GSM intercept
- Keeping network operators honest

GSM intercept attacks are still under addressed

The majority of mobile phone calls worldwide still uses 2G GSM frequencies

To protect customers, mobile networks must support and harden two encryption standards

1

Older phones only support A5/1 encryption

Protection status: Available strengthening measures are rarely seen

2

A5/3 protects much better

Protection status: Still only a minority of networks support A5/3

1 A5/1 decryption can mostly be prevented through randomization

		Features to decrease cryptographic attack surface		
Example call setup trace	Unprotected	Padding randomization	+ SI5 randomization	
Ciphering Mode Cmd				
TMSI Reallocation Cmd				
Null Frame				
System Information 5				
Call Proceeding				
System Information 6				
Null Frame				
Fragment				
Assignment Command				
System Information 5ter				

2 A5/3 makes intercept much harder, but decryption is still possible for well-funded spy agencies

Agenda

- Advanced SIM card attacks
- Advanced GSM intercept
- Keeping network operators honest

You can help: Measuring mobile network security from Android or Linux

Tool name	GSMmap.apk	xgoldscanner	OsmocomBB
Purpose	Collect network traces on Android phone and upload for analysis to gsmmap.org	Record network traces for analysis in Linux	Update to Sylvain's burst_ind setup to capture network traces for analysis in Linux
Requirements	Rooted Samsung Galaxy S2/S3	Samsung Galaxy S2, S3, Note 2, or Nexus	An older Motorola phone (C123,)
Source	Google Play: GSMmap	opensource.srlabs.de	OsmocomBB git: gsmmap branch

Live ISO puts mobile security tools on ready-to-use USB stick

GSM map live ISO bundles mobile security tools

Network measurement with Galaxy S2/S3 Network measurement & IMSI catcher detection with Osmocom BB phone

SIM card assessment with PC/SC reader or Osmocom BB phone

Download and How-Tos

opensource.srlabs.de

gsmmap.org – Tracking mobile network evolution online

Thank you!

Many thanks to Lukas Kuzmiak, Luca
Melette, and Linus Neumann for creating
and supporting our research tools!

Questions?

Karsten Nohl < nohl@srlabs.de>