USB_CAN TOOL调试软件

说明书

说明书版本: V2.04

更新日期: 2019.12.05

目 录

第一章 软件安装	1
1.1 USB-CAN TOOL 软件安装	1
第二章 USB-CAN TOOL 使用说明	8
2.1 界面介绍	9
2.1.1 标题栏	9
2.1.2 菜单栏	9
2.1.3 发送设置区	9
2.1.4 CAN 中继状态	10
2.1.5 智能过滤	10
2.1.6 控制按钮	10
2.1.7 统计区	10
2.1.8 数据列表	11
2.2 启动和关闭设备	11
2.2.1 选择设备类型	
2.2.2 启动 USBCAN 适配器	
2.2.3 <i>关闭USBCAN 适配器</i>	
2.3 发送消息	
2.3.1 帧 ID	
2.3.2 发送总帧数	
2.3.3 ID 递增	
2.3.4 数据递增	
2.3.5 数据	
2.3.6 发送文件	
2.4 接收消息	
2.5 CAN 参数	
2.5.1 CAN 参数设置(内部功能)	
2.6 其他设置	
2.6.1 接收扫描时间	
2.6.2 递增校验	
2.6.3 通道接收使能	
2.7 信息	
2.7.1 当前参数	
2.7.2 设备信息	
2.8 数据显示	
2.8.1 高速模式(内部测试用)	
2.8.2 列表数据	
2.8.3 信息实时存储	
2.8.4 字节顺序	
2.8.5 <i>合并相同</i> ID 数据	23

2.8.6 数据格式	24
2.8.7 接收帧率显示	24
2.8.8 发送帧率显示	25
2.8.9 时间标识格式	25
2.9 数据接收软件滤波	26
2.10 数据显示列表	26
2.10.1 序号	
2.10.2 系统时间	27
2.10.3 时间标识	27
2.10.4 CAN 通道	27
2.10.5 传输方向	27
2.10.6 ID 号	27
2.10.7 帧类型	
2.10.8 帧格式	
2.10.9 长度	27
2.10.10 数据	28
2.11 便捷辅助功能	28
2.11.1 配置信息自动保存	28

第一章 软件安装

1.1 USB-CAN TOOL 软件安装

直接运行光盘或网盘资料目录下"光盘或网盘资料\调试工具\原厂调试工具\USB_CAN TOOLSetup(V9.xx).exe,安装即可。

运行安装包, 出现下图所示界面。

先选择对应的语言。

点击下一步, 进入许可协议确认界面。

勾选"我同意此协议"选项,点击下一步。进入安装路径选择界面。

选择所需的安装路径,点击下一步,进入安装组件选择界面。

USB_CAN TOOL:调试软件,必选项,默认已勾选。

MS VC++ 2008 Redistributable: VC++ 2008运行库,大部分系统已集成,部分系统上面未安装的,需要安装:

LABVIEW运行基本环境:首次安装必选,这是基于LABVIEW平台开发出来的应用程序所需的运行环境安装包。

驱动安装程序: USB驱动。

注意: 系统已全部勾选, 并且会自动静默安装。

点击下一步。

根据需要选择,点击下一步。

点击"安装"。开始安装第一项USB_CAN TOOL软件。

USB_CAN TOOL软件安装完成后,会直接进入第二项: MS VC++ 2008 Redistributable 插件的安装。

安装程序自动进入NI LabVIEW Run-Time Engine 2011 SP1运行环境安装。

最后 , 点击安装一下驱动, 关闭软件。

第6页

至此,并完成整个软件的安装。

第二章 USB-CAN Tool 使用说明

如果需要终端电阻,USBCAN请将R+与R-用导线短接,CANalyst-II分析仪请将拨码开 关拨到ON位置。

注:正常CAN总线上必须保证有两个120欧终端电阻,否则会影响CAN总线正常工作。 通过 USB 连接线将设备与 PC 的 USB 接口相连;

第一次运行 USB-CAN Tool 时,因其对注册表的操作(该操作有 LabVIEW 运行时引擎自动完成),可能导致 360 防火墙等软件拦截,请按下图所示选择并确定,否则可能造成程序运行后不可预知的错误。

2.1 界面介绍

2.1.1 标题栏

设备关闭时显示 USB-CAN Tool V9.xx, 其中 V9.xx 表示当前程序版本号;当成功打开一个 USB-CAN 适配器后,将在上述名称后追加型号、序列号、固件版本号、品牌名称。

2.1.2 菜单栏

本工具的大部分功能均整理在菜单里,通过点击相应菜单实现功能。

2.1.3 发送设置区

本区域包含与 CAN 信息发送相关的设置信息,其中"ID 递增"功能为在发送多帧数据时,下一帧数据的 ID 值比上一帧的 ID 值大 1;"数据递增"功能为将发送的 8 个字节数据按照由低到高的字节顺序组成一个 64 位数,每次发送数据自动加 1,该功能配合"接收递增校验"

功能测试高速传输时的丢帧率。

注:此功能一般为内部测试时使用,不推荐用户使用。数据长度设置小于 8 字节时,会自动补 0,补齐到 8 字节。

2.1.4 CAN 中继状态

CAN 中继功能通过菜单"设备操作"->"中继模式选项"配置。当配置为中继模式后,这里会显示中继状态。如果要关闭中继功能,需要通过菜单"设备操作"->"中继模式选项"关闭。

注意:中继功能开启后,波特率等参数设置无效,但是发送与接收、智能滤波功能可正常使用。

2.1.5 智能过滤

两个通道可以单独设置,滤波只针对接收,使能滤波后,滤波列表中的 ID 或 ID 段中的 ID 将被接收显示,滤波列表以外的数据将会被屏蔽丢弃。通过智能滤波的灵活设置,可以允许接收或屏蔽接收任何 ID 或 ID 段。

2.1.6 控制按钮

"停止发送"——停止当前的发送操作;"发送文件"——把发送的帧信息以特定格式存储在文件中,并按照文件存储的帧顺序发送;"打开 CAN 接收"——勾选后则打开 CAN 接收,否则 CAN 接收功能处于"挂起"状态,此时上位机不再显示 USBCAN 设备接收到的 CAN 总线数据,但是 USBCAN 设备还是在接收 CAN 总线上面的数据;"清空"——清空当前数据列表中的内容;"实时存储"——将实时数据保存到文件。

注意:发送文件或能与实时存储功能保存的文件格式一致,可以将保存的文件直接以文件的形式发送出去。

2.1.7 统计区

包括通道 1 和通道 2 的单向速率及接收递增校验错误计数器。"帧率 R"——接收速率,单位: fps (帧每秒);"帧率 T"——发送速率,单位: fps (帧每秒);"校验错误"(内部功能 第10页

默认隐藏)——接收数据递增校验错误计数器,该值即为接收递增校验时的丢帧总数。

2.1.8 数据列表

数据的发送和接收信息显示列表。

2.2 启动和关闭设备

2.2.1 选择设备类型

在菜单栏选择"设备型号"下拉菜单中对应的设备型号,其中:"USB-CAN"为单通道 USBCAN 适配器,"USB-CAN2.0"为双通道 USBCAN 适配器。本公司所有型号产品都选"USB-CAN2.0"。

2.2.2 启动 USBCAN 适配器

在菜单栏选择"设备操作"下拉菜单中的"启动设备",程序将自动查找并打开 USB-CAN 适配器。

2.2.3 关闭 USBCAN 适配器

第11页

在菜单栏选择"设备操作"下拉菜单中的"关闭设备",关闭已打开的 USB-CAN 适配器。

2.3 发送消息

在发送设置区设置好发送条件: 帧格式、帧类型、帧 ID、CAN 通道、发送总帧数、是否 ID 递增、是否数据递增、发送周期和数据,然后按发送消息按钮,开始发送; 这里着重解释下帧 ID、发送总帧数、ID 递增、数据递增和数据。

2.3.1 帧 ID

即 CAN 消息帧的 ID 值,本工具中均采用右对齐方式,ID 值分 4 个字节输入,以 16 进制表示,字节之间用空格分开,如 ID=0x18FF0023 时,帧 ID 应写成:"18 FF 00 23";

2.3.2 发送总帧数

设置本次发送的总帧数,值=-1 表示不限制发送帧数(即持续发送),值=0 无效,值>=1 表示具体的发送帧数,发送帧数达到设置值则自动停止发送;

2.3.3 ID 递增

在发送总帧数大于 1 时,如勾选了 ID 递增项,则当前发送的帧 ID 值在之前发送帧 ID 的值基础上加 1,如 ID 序列: "00 00 00 01"、"00 00 00 02"、"00 00 00 03" ······(右对齐)

2.3.4 数据递增

在发送总帧数大于 1 时,若勾选数据递增,则发送时,将 8 个字节的数据域值由低到高组合成一个 64 位无符号数,每次发送数据递增 1,如第 1 帧数据为: "00 00 00 00 00 00 00 00",则第 2 帧的数据为: "01 00 00 00 00 00 00 00" ·······第 10 帧数据为: "09 00 00 00 00 00 00",第 17 帧数据为: "10 00 00 00 00 00 00 00" ········依次类推; (显示方式: 先低后高)

注: 上述数据域均为 16 进制表示。

CAN 发送数据输入框中,从左到右依次是 CAN 消息中数据域的第 1 字节~第 8 字节,如:输入框中填写 "01 23 45 67 89 AB CD EF",由低到高组合成的 64 位无符号数为 0xEFCDAB8967452301。在 CAN 消息列表中,先低后高显示为: "01 23 45 67 89 AB CD EF"(默 认显示方式):先高后低显示为: "EF CD AB 89 67 45 23 01"。(在显示菜单下可先显示方式)

2.3.5 数据

数据填写时低字节在左,高字节在右,CAN 消息数据域包含最多 8 个字节的数据,所以数据的标准填写格式为以空格间隔的 0 到 8 个 16 进制数 (每个数的最大值为 0xFF),数据域的长度根据填写的字节个数自动判断; 若勾选了"数据递增"选项,则数据域的长度被锁定为 8 个,如输入的字节数不够 8 个,则向高字节方向自动填零至 8 字节,例如数据填写为"12 34 56 78"时,会被自动补充为:"12 34 56 78 00 00 00 00"。(先低后高)

2.3.6 发送文件

点击"发送文件"按钮,如下图所示,选择并开始发送文件。

发送文件的格式为 csv 文件, 文件中每行为一帧数据, 包含 10 个元素:

- 1、序号:从0开始。
- 2、系统时间:实时存储保存的文件,系统时间显示的 PC 时钟,发送文件时,将以系统时

第13页

间间隔发送。没有时系统时间时,以界面的发送周期设定值发送。

- 3、时间标识:实时存储保存的文件,时间标识指示接收的准确时间,以上电时间为起点,单位 0.1ms。对于发送,无效。
- 4、CAN 通道:实时存储保存的文件,有指示 CAN 通道,对于发送,无效。
- 5、传输方向:实时存储保存的文件,有指示传输方向,对于发送,无效。
- 6、ID: 0x 开头, 用 16 进制表示。
- 7、帧类型:数据帧/远程帧。
- 8、帧格式:标准帧/扩展帧。
- 9、长度: 0x 开头, 用 16 进制表示。1-8 字节
- 10、数据: x|开头,用 16 进制表示。1-8 字节。
- 注意: 具体样列查看光盘"资料光盘\二次开发示例源代码\Example For Send File.csv"/或软件安装目录: "C:\Program Files (x86)\USB_CAN TOOL\ Example For Send File.csv"参考。也可以实时存储一份文件,然后在文件上修改。
- 6、发送文件时,软件主界面的发送周期是有效的,需根据需要配置。

2.4 接收消息

勾选"打开 CAN 接收"选项后,开始接收已使能了的 USBCAN 适配器特定通道上的数据。

通过改变参数设定菜单下的接收使能下的相关通道勾选状态,来打开通道1及通道2的接收。

2.5 CAN 参数

2.5.1 CAN 参数设置(内部功能)

在 USBCAN 适配器已打开的情况下,点选"参数设置"→"CAN 参数设置"菜单项,进入 USBCAN 适配器参数设置界面。

USBCAN 适配器的每个通道有一组独立参数,可独立设置并独立运行,在参数设置界面中通过选择"CAN 通道"来改变当前要修改的目标通道参数:

注:该功能为内部功能,用户配置参数时,直接在菜单"设备操作"->"启动设备"界面中配置滤特率等参数。

2.5.1.1 波特率设置

波特率参数下拉列表中提供了 10k 到 1000k 的标准波特率设置,并提供了非常规波特率设置方式,选择列表中的"self define",并在设置波特率各寄存器值即可。

其中,波特率的计算公式为:

CAN 波特率=16000000/(同步段+传播时间段+相位缓冲段 1+相位缓冲段 2)/预分频;

2.5.1.2 工作模式

可选择正常工作模式、仅监侦听模式和自测模式(环回模式):

2.5.1.3 滤波器设置

在模块接收到报文时,会将报文标识符与过滤器中的相应位进行比较。如果标识符与用户配置的过滤器匹配,报文会被存储到 CAN 控制器相应的接收缓存队列中。

接收屏蔽器可用于在接收时忽略标识符的选定位。在接收报文时,这些位将不与过滤器中的位进行比较。例如,如果用户希望接收带有标识符 0、1、2 和 3 的所有报文,用户需要屏蔽掉标识符的低 2 位。

USB-CAN总线适配器提供了3种滤波方式,其说明如下表所示:

值	名称	说明
3	接收所有类型	滤波器同时对标准帧与扩展帧过滤!
4	只接收标准帧	滤波器只对标准帧过滤,扩展帧将直接被滤除。
7	只接收扩展帧	滤波器只对扩展帧过滤,标准帧将直接被滤除。

注:关于波特率、工作模式、滤波等设置的详尽说明,请参照 《9.*附件2:CAN参数设置说明*》 说明文档。

点击滤波设置区域的"高级设置"按钮,进入滤波器高级设置界面,如下图所示:

用户可在该界面中进行对滤波器的自定义设置,提供方便!

2.6 其他设置

2.6.1 接收扫描时间

点选"参数设定"→"接收扫描时间(xx ms)"菜单项来修改 CAN 接收的最小扫描周期,其中的 xx 表示当前设置的扫描周期,单位毫秒。

接收扫描周期,默认值(最佳值)为30ms。

第18页

2.6.2 递增校验

点选"参数设定"→"接收递增校验"中的对应菜单项,开启或关闭"通道 1"或"通道 2"的接收数据递增校验功能,该功能配合数据发送时的"*数据递增*"功能使用,常用于高速收发 CAN 消息时的丢帧率测试。

2.6.3 通道接收使能

点选"参数设定"→"接收使能"中的对应菜单项,打开或关闭通道1或通道2的接收功能。

2.7 信息

2.7.1 当前参数

点选"信息"→"当前参数"菜单项,来实时获取当前 USBCAN 适配器的参数。

设备类型为 USB-CAN2.0 时,可通过 "CAN 通道"选择查看其他通道的参数。

2.7.2 设备信息

点选"信息"→"设备信息"菜单项,打开设备信息查看窗口。

该窗口中显示了当前打开的 USBCAN 适配器的详细设备信息:

2.8 数据显示

2.8.1 高速模式(内部测试用)

点选"显示"→"高速模式"菜单项,开启或关闭信息显示的高速模式,当高速模式打开后, "列表数据"显示和"信息存储"两个功能将失效,该功能一般用于高速收发测试。

注: 当 USBCAN 适配器的收发帧率较高时(如 8000 帧/秒),一般列表显示会相对迟钝并占用计算机资源而影响 USBCAN 适配器的收发效率,而打开"高速模式"时,USB-CAN Tool 工具将只处理数据接收、数据发送、数据校验,不再处理数据显示、数据存储等耗时操作!

下图说明了启用了高速模式后,相关项被禁用的情况:

2.8.2 列表数据

点选"显示"→"列表数据"菜单项,打开或关闭 CAN 消息在数据列表中的显示,在数据列表中显示实时消息,在一定程度上会影响软件对 CAN 消息的处理速度。

注:"高速模式"打开时,本功能失效!

2.8.3 信息实时存储

勾选软件界面中的"实时存储"复选框,选择是否将实时消息信息存储到 Excel 文档中。信息实时存储功能使能时,将弹出"文件保存路径选择"对话框,要求用户选择要存储的文件的存放目录,以及文件名称。

信息实时存储时,将在用户选择文件名称后面追加"_xxx",其中 xxx 为子文件序号,000 为第一个子文件,001 为第二个子文件,依此类推。每个子文件中保存 10000 帧数据。

注: "高速模式"打开时,本功能失效!

2.8.4 字节顺序

点选"显示"→"数据显示先高后低"菜单项,可设置数据在列表中显示时的字节先后顺序。

2.8.5 合并相同 ID 数据

点选"显示"→"合并相同 ID 数据"菜单项,打开或关闭同 ID 数据合并功能,该功能开启

第 23 页

后,相同ID的CAN消息帧在列表中只显示最新的一帧。

2.8.6 数据格式

点选"显示"→"数据格式(xxx)"菜单项中的对应项,来改变当前 CAN 消息列表中的数据显示格式,可选的格式有:二进制、八进制、十进制、十六进制,其中 xxx 表示当前格式的简写。

2.8.7 接收帧率显示

点选"显示"→"显示接收帧率"菜单项中的通道号,打开或关闭接收帧率的显示。

2.8.8 发送帧率显示

点选"显示"→"显示发送帧率"菜单项中的通道号,打开或关闭发送帧率的显示。

2.8.9 时间标识格式

时间标识是指打在接收到的每一帧数据上的一个时间标签,记录着 USBCAN 设备接收到该帧数据的准确时间,该时间以初始化 USBCAN 设备时间为起点。一般用在对时间轴精确绘图等场合。

点选"显示"→"时间标识格式"菜单项,选择时间标识格式为原始值或实际值。其中,实际值的单位为: 1s。原始值单位为 0.1ms。

2.9 数据接收软件滤波

在接收滤波 ID 设置区,点选使能,修改接收滤波 ID 值,并进行设置后,开启接收滤波设置,该功能将从 USBCAN 适配器读取到的 CAN 消息帧 ID 与设置的滤波 ID 组进行对比,允许接收的则显示和处理,否则丢弃。

允许接收的 ID 值可设置多个,以 16 进制表示,用空格分开,例如:接收 ID 设置为"18FF05C8 03 9C8",则表示 USB-CAN Tool 只处理 ID=0x18FF05C8、0x03 和 0x9C8 的 CAN 消息帧,对于接收到的其他 ID 的帧则一律忽略。

2.10 数据显示列表

当"列表数据"菜单被勾选,并且未处于"高速模式"时,数据显示列表中将实时显示正在接收和发送的 CAN 消息内容。

2.10.1 序号

CAN 消息在信息缓存中的位置,从0开始,数据缓存中最多保存 10 万帧数据。

第 26 页

2.10.2 系统时间

CAN 消息发送或接收时的系统时间,该时间从计算机中获取。

2.10.3 时间标识

接收到 CAN 消息时的硬件时间,单位: 秒钟,该时间从 USB-CAN 设备启动时开始计时,精度为 0.1 毫秒。(点选"显示"→"时间标识格式"菜单项,选择时间标识格式为原始值或实际值。其中,实际值的单位为: 1s。原始值单位为 0.1ms。)

2.10.4 CAN 通道

CAN 消息发送或接收时使用的 CAN 设备通道号, ch1 表示通道 1, ch2 表示通道 2。

2.10.5 传输方向

标记 CAN 消息是发送还是接收。

2.10.6 ID 号

CAN 消息的 ID 值,关于 ID 的介绍,请参照:《*附件1: ID 对齐方式详细说明*》 说明文档。

2.10.7 帧类型

标记 CAN 消息是数据帧还是远程帧。

2.10.8 帧格式

标记 CAN 消息是标准帧还是扩展帧。

2.10.9 长度

CAN 消息的数据长度,单位:字节。

第 27 页

2.10.10 数据

CAN 消息的数据。关于数据的显示方式,请参照 2.8.4 节字节顺序以及 2.8.6 节数据格式。

2.11 便捷辅助功能

2.11.1 配置信息自动保存

软件运行后,自动加载上次结束时的界面状态,包括菜单项设置、界面控件值等。