Introduction to Machine Learning Methods in Condensed Matter Physics

LECTURE 5, FALL 2021

Yi Zhang (张亿)

International Center for Quantum Materials, School of Physics Peking University, Beijing, 100871, China

Email: frankzhangyi@pku.edu.cn

What is and why reinforcement learning?

- An agent (strategy) that interacts with an environment and maximizes reward (minimize) penalty, e.g.:
 - Board games, computer games, puzzles
 - Autopilot for cars and airplanes
 - Robot controls, etc.
 - "Artificial intelligence" of a given task
- General setup: S: current state; A: action upon state; R: reward $S \xrightarrow{A} S' \xrightarrow{A'} S'' \xrightarrow{A''} \cdots \rightarrow \text{end}$, where the accumulated reward is determined
 - Video games: S: screen; A: joystick input; R: score, life, cleared levels ...
 - Chess, Goal: S: current board configuration; A: next move; R: win, points ...
 - Rubik's cube: S: current colorings; A: next twist; R: steps taken...

What is and why reinforcement learning?

- Value function: V-learning and Q-learning:
 - V(S): the approximate most accumulated reward from state S. Then, given S, we can choose then optimal action argmax[V(S' = S(A)]]
 - Q(S,A): the approximate most accumulated reward from state S after choosing action A. Then, given S, we can choose the optimal action argmax[Q(S, A)]
 - Example: Q-learning table

 - Better to represent V(S) and/or Q(S,A) with ANNs
- For supervised machine learning, we update the parameters (with MSE cost function) as:

ANN as a regression:
$$\Delta w_t = \alpha (z - V(s_t)) \nabla_w V(s_t),$$

 s_t : input sample, z: target value, V: current output, α : learning rate, w: ANN parameters.

- Why not simply apply supervised machine learning?
 - Accumulated score is only available at the very end, but not at each individual step.
 - Sometimes, a good move locally can be a bad move globally! Example: greedy algorithm

Temporal-difference (TD) learning

• V-learning for a sequence of steps: $w \leftarrow w + \sum_{i=1}^{m} \Delta w_i$

$$w \leftarrow w + \sum_{t=1}^{m} \Delta w_t$$

m: number of steps, $V_{m+1} = z$.

An insight that allows us to treat such multi-step prediction problem incrementally:

$$w \leftarrow w + \sum_{t=1}^{m} \alpha(z - V_t) \nabla_w V_t,$$
$$z - V_t = \sum_{k=t}^{m} (V_{k+1} - V_k)$$

 $w \leftarrow w + \sum_{t=1}^{m} \alpha \sum_{k=t}^{m} (V_{k+1} - V_k) \nabla_w V_t.$ successive prediction values, hence 'temporal difference'

$$\Delta w_t = \alpha \left(V_{t+1} - V_t \right) \sum_{k=1}^t \nabla_w V_k.$$

Generalization: (a decay to discount past gradients, temporal correlation)

$$\Delta w_t = \alpha \left(V_{t+1} - V_t \right) \sum_{k=1}^t \lambda^{t-k} \nabla_w V_k.$$

 $\lambda = 0$ limit: Markov chain

$$\Delta w_t = \alpha \left(V_{t+1} - V_t \right) \nabla_w V_t.$$

The subsequent back propagation is similar to supervised machine learning.

TD-Gammon

How to gather training samples? Play by itself / against itself!

V(S)Using ANN Training ANN for better performance
Training sets

Single hiddenlayer ANN for backgammon

For competitive strategy (two players playing against each other):

 $S \to S' \to S'' \to \cdots \to \text{switch opponent/self after each step}$

- World-champion level performance, novel prior steps:
- Understanding the learning process:
 - Only fair absolute accuracy but good enough relative accuracy
 - A stochastic noise source helps to discover new strategies
- Learn local, linear concepts first before nonlinear correlated ones *Gerald Tesauro, Communications of the ACM 38, 3 (1995).*

Program	Training Games	Орроненts	Results
TDG 1.0	300,000	Robertie, Davis, Magriel	-13 pts/51 games (-0.25 ppg)
TDG 2.0	800,000	Goulding, Woolsey, Snellings, Russell, Sylvester	-7 pts/38 games (-0.18 ppg)
TDG 2.1	1,500,000	Robertie	-1 pt/40 games (-0.02 ppg)

Table 1. Results of testing TD-Gammon in play against world-class human opponents. Version 1.0 used 1-play search for move selection; versions 2.0 and 2.1 used 2-ply search. Version 2.0 had 40 hidden units; versions 1.0 and 2.1 had 80 hidden units.

Deep Q-learning

 $Q^{new}(s_t, a_t) \leftarrow Q(s_t, a_t) + \underbrace{\alpha}_{\text{old value}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q_{\text{-value 1}}}_{\text{Network}} \underbrace{Q_{\text{-value 2}}}_{\text{Network}} \underbrace{Q_{\text{-value 1}}}_{\text{Network}} \underbrace{Q_{\text{-value 1}}}_{\text{Network}} \underbrace{Q_{\text{-value 1}}}_{\text{Network}} \underbrace{Q_{\text{-value 2}}}_{\text{Network}} \underbrace{Q_{\text{-value 1}}}_{\text{Network}} \underbrace{Q_{\text{-value 2}}}_{\text{Network}} \underbrace{Q_{\text{-value 1}}}_{\text{Network}} \underbrace{Q_{\text{-value 2}}}_{\text{Network}} \underbrace{Q_{\text{-value 1}}}_{\text{Network}} \underbrace{Q_{\text{-value 2}}}_{\text{Network}} \underbrace{Q_{\text{-value 1}}}_{\text{Network}} \underbrace{Q_{\text{-value 2}}}_{\text{-value 3}} \underbrace{Q_{\text{-value 1}}}_{\text{-value 3}} \underbrace{Q_{\text{-value 1}}}_{\text{-value 3}} \underbrace{Q_{\text{-value 1}}}_{\text{-value 4}} \underbrace{Q_{\text{-value 1}}}_{\text{-value 4}} \underbrace{Q_{\text{-value 1}}}_{\text{-value 4}} \underbrace{Q_{\text{-value 1}}}_{\text{-value 5}} \underbrace{Q_{\text{-value 1}}}_{\text{-value 6}} \underbrace{Q_{\text{-value 1}}}$

- Two deep ANNs for stability: use the 2nd ANN to update the 1st ANN, which updates the 2nd ANN at intervals
- Memory optimization: experience replay, prioritize the samples with high values
- Nevertheless, convergence is not guaranteed...
- Example: OpenAI gym (https://gym.openai.com/)
 The cart-and-pole game: for your game of interest, simply modify the environment (and reward)

Learning performance learning rate $\alpha=0.5$

Random exploration $\epsilon = 0.1$,

discount factor $\gamma = 0.9$.

https://github.com/vmayoral/basic_reinforcement_learning/blob/master/tutorial4/README.md

Reinforcement learning for fast state preparation

Conventionally, one can prepare a state through adiabatic evolution:

$$H = \frac{c_2}{2N} \mathbf{L}^2 - q(t)N_0$$
 for the Dicke state

The system is kept at the ground state. (black dot-dashed line)

For generic paths, an evaluation (state overlap / fidelity) is only available at the end of path.

An unconventional route by reinforcement learning for faster preparation (red line):

