

EMC TEST REPORT for Intentional Radiator No. 140601072SHA-001

Applicant : Canton Elektronik GmbH & Co. KG

Neugasse 21-23, 61276 Weilrod / Niederlauken,

Germany

Manufacturer : Canton Elektronik GmbH & Co. KG

Neugasse 21-23, 61276 Weilrod / Niederlauken,

Damed Thero

Germany

Product Name : Soundbar

Type/Model : SCA 3

SUMMARY

The equipment complies with the requirements according to the following standard(s):

47CFR Part 15 (2013): Radio Frequency Devices

ANSI C63.4 (2003): American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

RSS-210 Issue 8 (December 2010): Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment

RSS-Gen Issue 3 (December 2010): General Requirements and Information for the Certification of Radiocommunication Equipment

Date of issue: June 23, 2014

Tesse

Prepared by: Reviewed by:

Jesse Xu (*Project Engineer*) Daniel Zhao (*Reviewer*)

Description of Test Facility

Name: Intertek Testing Services Ltd. Shanghai ETL Semko

Address: Building No.86, 1198 Qinzhou Road(North), Shanghai 200233, P.R. China

FCC Registration Number: 236597

IC Assigned Code: 2042B-1

Name of contact: Steve Li Tel: +86 21 64956565 ext. 214 Fax: +86 21 54262335 ext. 214

Content

	JMMARY	
D	ESCRIPTION OF TEST FACILITY	2
1.		
	1.1 Applicant Information	
	1.2 Identification of the EUT	
	1.3 Technical specification	
	1.4 Mode of operation during the test / Test peripherals used	6
2.	TEST SPECIFICATION	7
	2.1 Instrument list	7
	2.2 Test Standard	7
3.	20 DB BANDWIDTH	9
	3.1 Limit	9
	3.2 Test Configuration	9
	3.3 Test Procedure and test setup	9
	3.4 Test Protocol	. 10
4.	CARRIER FREQUENCY SEPARATION	. 12
	4.1 Limit	.12
	4.2 Test Configuration	
	4.3 Test Procedure and test setup	
	4.4 Test Protocol	
5.	MAXIMUM PEAK OUTPUT POWER	. 15
	5.1 Test limit	.15
	5.2 Test Configuration	
	5.3 Test procedure and test setup	
	5.4 Test protocol	
6.	RADIATED SPURIOUS EMISSIONS	
	6.1 Test limit	
	6.2 Test Configuration	
	6.3 Test procedure and test setup	
	6.4 Test protocol	. 19
7.	•	
	7.1 Limit	
	7.2 Test Configuration	
	7.3 Test procedure and test setup	
	7.4 Test protocol	
8.	•	
	8.1 Limit	
	8.2 Test configuration	
	8.3 Test procedure and test set up	
	8.4 Test protocol	
9.		
-•	9.1 Limit	
	9.2 Test Configuration	
	9.3 Test procedure and test setup.	
	9.4 Test protocol	
	- · · · · · · · · · · · · · · · · · · ·	

10. DWELL TIME	34
10.1 Limit	34
10.2 Test Configuration	
10.3 Test procedure and test setup	
10.4 Test protocol	
11. OCCUPIED BANDWIDTH	
11.1 Test limit	42
11.2 Test Configuration	
11.3 Test procedure and test setup	
11.4 Test protocol	
12. SPURIOUS EMISSION FOR RECEIVER	
12.1 Test limit	45
12.2 Test Configuration	
12.3 Test procedure and test setup	
12.4 Test protocol	
A	

1. General Information

1.1 Applicant Information

Applicant: Canton Elektronik GmbH & Co. KG

Neugasse 21-23, 61276 Weilrod / Niederlauken,

Germany

Name of contact: Mr. Markus Brueckner

Tel: +49 6083 28734

Fax: +49 6083 2730

Manufacturer: Canton Elektronik GmbH & Co. KG

Neugasse 21-23, 61276 Weilrod / Niederlauken,

Germany

Sample received date: May 10, 2014

Sample Identification No: *0140510-22-001*

Date of test: May 14, 2014

1.2 Identification of the EUT

Equipment: Soundbar Type/model: SCA 3

FCC ID: WHZ-SCA3

IC: 7824A- SCA3

1.3 Technical specification

Operation Frequency Band: 2402 - 2480 MHz

Modulation: GFSK (Frequency Hopping Spread Spectrum)

Antenna Designation: internal antenna, detachable

Gain of Antenna: 2.0dBi max used.

Rating: AC 100-240V~, 50/60 Hz, max.150W

Description of EUT: Here is one model only.

BT Module using Bluetooth 3.0 technology.

Channel Description: There are 79 channels in all. The designed channel

spacing is 1MHz.

Channel	Frequency
Identifier	(MHz)
low	2402
middle	2441
high	2480

1.4 Mode of operation during the test / Test peripherals used

Within this test report, EUT was tested under work normal operation mode and rated voltage and frequency.

Test Peripherals:

PC: HP Compaq 6280 Pro Microtower

2. Test Specification

2.1 Instrument list

		3.5		0.1.5	.
Equipment	Type	Manu.	Internal no.	Cal. Date	Due date
Test Receiver	ESIB 26	R&S	EC 3045	2013-12-	2014-12-
				21	20
Semi-anechoic	-	Albatross	EC 3048	2013-12-	2014-12-
chamber		project		12	11
Broadband	CBL 6112D	TESEQ	EC 4206	2013-12-	2014-12-
Antenna				16	15
Horn antenna	HF 906	R&S	EC 3049	2013-12-	2014-12-
				13	12
Pre-amplifier	Pre-amp 18	R&S	EC 3222	2014-4-10	2015-4-9
Test Receiver	ESCS 30	R&S	EC 2107	2013-12-	2014-12-
				21	20
A.M.N.	ESH2-Z5	R&S	EC 3119	2013-12-9	2014-12-8
A.M.N.	ESH3-Z5	R&S	EC 2109	2013-12-	2014-12-9
				10	
High Pass Filter	WHKX 1.0/15G-	Wainwright	EC4297-1	2014-1-9	2015-1-8
	10SS				
High Pass Filter	WHKX 2.8/18G-	Wainwright	EC4297-2	2014-1-9	2015-1-8
	12SS				
High Pass Filter	WHKX	Wainwright	EC4297-3	2014-1-9	2015-1-8
	7.0/1.8G-8SS				
Band Reject	WRCGV	Wainwright	EC4297-4	2014-1-9	2015-1-8
Filter	2400/2483-				
	2390/2493-				
	35/10SS				
Power sensor /	N1911A/N1921A	Agilent	EC 4318	2014-4-12	2015-4-11
Power meter		-			
EMC analyzer	E7402A	Agilent	EC2254	2013-8-16	2014-8-15
Loop antenna	9230-1/9229-1		086814/084814	2013-12-	2014-12-
				16	15
Horn antenna	HAP18-26W		EC 4792-3	2012-4-10	2014-4-9

2.2 Test Standard

47CFR Part 15 (2013) ANSI C63.4: 2003 RSS-210 Issue 8 (December 2010)

RSS-Gen Issue 3 (December 2010)

2.3 Test Summary

This report applies to tested sample only. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
20 dB Bandwidth	15.247(a)(1)	RSS-210 Issue 8	Tested
		Annex 8	
Carrier Frequency Separation	15.247(a)(1)	RSS-210 Issue 8	Pass
		Annex 8	
Output power	15.247(b)(1)	RSS-210 Issue 8	Pass
		Annex 8	
Radiated Spurious Emissions	15.205 & 15.209	RSS-210 Issue 8	Pass
		Clause 2	
Conducted Spurious Emissions	15.247(d)	RSS-210 Issue 8	Pass
& Band Edge		Annex 8	
Power line conducted emission	15.207	RSS-Gen Issue 3	Pass
		Clause 7.2.4	
Number of Hopping	15.247(a)(1)(iii)	RSS-210 Issue 8	Pass
Frequencies		Annex 8	
Dwell time	15.247(a)(1)(iii)	RSS-210 Issue 8	Pass
		Annex 8	
Occupied bandwidth	-	RSS-Gen Issue 3	Tested
		Clause 4.6.1	
Spurious emission for receiver	15B	RSS-310 Issue 3	NA
		Clause 3.1	

Note: "NA" means "not applied".

3. 20 dB Bandwidth

Test result: Tested

3.1 Limit

☐ Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. ☐ Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

3.2 Test Configuration

3.3 Test Procedure and test setup

The 20 bandwidth per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span = 2 to 3 times the 20 dB bandwidth, RBW≥1% of the 20 dB bandwidth, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

3.4 Test Protocol

Temperature : 22°C Relative Humidity : 48 %

СН	Bandwidth
	(kHz)
L	1496
M	1488
Н	1504

Channel L

Center 2.441 GHz

SPECTHUM RECEIVER NIXED

FCC ID: WHZ-SCA3 IC: 7824A-SCA3

HEXT PEAK LEFT

Linits

Span 4 IHz

SCREEN B

400 kHz/

4. Carrier Frequency Separation

Test result: Pass

4.1 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping

channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

4.2 Test Configuration

4.3 Test Procedure and test setup

The Carrier Frequency Separation per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span can capture two adjacent channels, RBW≥1% of the span, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

4.4 Test Protocol

Temperature : 22°C Relative Humidity : 48 %

СН	Frequency Separation	Limit
	(kHz)	(kHz)
L	1014	≥1002.67
M	1008	≥1002.67
Н	1014	≥1002.67

Channel L

5. Maximum peak output power

Test result: Pass

5.1 Test limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at
least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725
5850 MHz band: 1 watt
For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts
If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be
reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and
5725-5850 MHz bands: 1 Watt.

5.2 Test Configuration

5.3 Test procedure and test setup

The power output per FCC § 15.247(b) is measured using the Spectrum Analyzer with Span = 5 times the 20 dB bandwidth, RBW≥ the 20 dB bandwidth, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

5.4 Test protocol

Temperature : 22 °C Relative Humidity : 48 %

СН	Cable loss	Corrected reading	Limit
	(dB)	(dBm)	(dBm)
L	1.00	4.61	≤20.97
M	1.00	4.27	≤20.97
Н	1.00	4.28	≤20.97

Conclusion: The maximum EIRP = 4.61 + 2.00 = 6.61 dBm = 4.58mW which is lower than the limit of 5W listed in RSS-210.

6. Radiated Spurious Emissions

Test result: PASS

6.1 Test limit

The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)
30 - 88	40.0	3
88 - 216	43.5	3
216 - 960	46.0	3
Above 960	54.0	3

6.2 Test Configuration

6.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna.

The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

For test radiated emission below 30MHz, the center of the loop antenna shall be 1 m above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The X, Y and Z polarities of the loop antenna were assessed and the max hold reading of the three axes was listed in this report.

The radiated emission was measured using the Spectrum Analyzer with the resolutions bandwidth set as:

```
RBW=10kHz, VBW=30kHz (9kHz~30MHz);

RBW = 100kHz, VBW = 300kHz (30MHz~1GHz);

RBW = 1MHz, VBW = 3MHz (>1GHz for PK);

RBW = 1MHz, VBW = 10Hz (>1GHz for AV);
```

If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor".

6.4 Test protocol

СН	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2402.80	33.10	100.70	Fundamental	/	PK
	Н	135.31	12.80	39.80	43.50	3.70	QP
	V	66.93	9.10	37.40	40.00	2.60	QP
	V	74.70	9.20	37.10	40.00	2.90	PK
L	V	2324.64	-8.00	50.60	54.00	3.40	PK
L	V	4803.88	-0.80	56.70	74.00	17.30	PK
	V	4803.88	-0.80	45.20	54.00	8.80	AV
	Н	9583.16	11.60	48.90	54.00	5.10	PK
	Н	2287.84	-8.00	49.80	54.00	4.20	PK
	V	12010.39	11.70	48.10	54.00	5.90	PK
	V	2442.88	34.30	101.40	Fundamental	/	PK
	Н	135.31	12.80	39.80	43.50	3.70	QP
	V	66.93	9.10	37.40	40.00	2.60	QP
M	V	74.70	9.20	37.10	40.00	2.90	PK
M	V	1304.60	-8.00	49.20	54.00	4.80	PK
	V	1328.65	-8.00	50.90	54.00	3.10	AV
	Н	7328.65	10.50	52.00	74.00	22.00	PK
	Н	7328.65	10.50	34.50	54.00	19.50	AV
	Н	2480.16	34.50	102.20	Fundamental	/	PK
	Н	135.31	12.80	39.80	43.50	3.70	QP
	V	66.93	9.10	37.40	40.00	2.60	QP
	V	74.70	9.20	37.10	40.00	2.90	PK
Н	V	2486.91	-8.00	51.20	54.00	2.80	PK
	V	2268.15	-0.20	58.10	74.00	15.90	PK
	V	2268.15	-0.20	33.00	54.00	21.00	AV
	Н	2301.85	-0.20	55.10	74.00	18.90	PK
	Н	2301.85	-0.20	30.90	54.00	23.10	AV

Remark: 1. For fundamental emission, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.
- 6. The emission was conducted from 30MHz to 25GHz.
- 7. All the frequency points assessed with QP detector in above table have repetition rate higher than 10Hz.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10 dBuV + 0.20 dB/m = 10.20 dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 10.20dBuV/m, then Margin =

54 - 10.20 = 43.80 dBuV/m

7. Conducted Spurious Emissions & Band Edge

Test result: PASS

7.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

7.2 Test Configuration

7.3 Test procedure and test setup

The Conducted Spurious Emissions per FCC § 15.247(d) is measured using the Spectrum Analyzer with Span wide enough capturing all spurious from the lowest emission frequency of the EUT up to 10th harmonics, RBW = 100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

7.4 Test protocol

СН	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
L	4.90	56.89	
M	8.53	53.91	≥20
Н	9.88	55.98	

The test was conducted from 30MHz-25GHz. Here only band edge emission was listed as below.

Channel L

Channel L

Channel M

Channel H

8. Power line conducted emission

Test result: Pass

8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	QP	AV		
0.15-0.5	66 to 56*	56 to 46 *		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

8.2 Test configuration

☑ For table top equipment, wooden support is 0.8m height table

For floor standing equipment, wooden support is 0.1m height rack.

8.3 Test procedure and test set up

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a $50\Omega/50uH$ coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a $50\Omega/50uH$ coupling impedance with 50Ω termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement. The bandwidth of the test receiver is set at 9 kHz.

8.4 Test protocol

Frequency	Correct Factor	Corrected Reading		Limit		Margin	
	(dB)	(dBuV)		(dBuV)		(dB)	
		QP AV		QP	AV	QP	AV
0.16 (N)	3.00	51.94	36.24	65.37	55.37	13.43	19.13
0.38 (N)	3.00	40.02	35.64	58.24	48.24	18.22	12.60
0.68 (N)	3.00	40.70	37.76	56.00	46.00	15.30	8.24
1.03 (L)	3.00	40.81	38.28	56.00	46.00	15.19	7.72
2.75 (N)	3.00	39.49	34.84	56.00	46.00	16.51	11.16
3.44 (L)	3.00	40.54	36.22	56.00	46.00	15.46	9.78

Remark: 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB).

2. Margin (dB) = Limit - Corrected Reading.

L line:

N line:

9. Number of Hopping Frequencies

Test result: Pass

9.1 Limit

Number of Hopping Frequencies in the 2400-2483.5 MHz band shall use at least 15 channels.

9.2 Test Configuration

9.3 Test procedure and test setup

The channel number per FCC §15.247(a)(1)(iii) is measured using the Spectrum Analyzer with RBW=100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

9.4 Test protocol

Channel Number	Limit
79	≥15

10. Dwell Time

Test result: Pass

10.1 Limit

The dwell time on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

10.2 Test Configuration

10.3 Test procedure and test setup

Dwell time per FCC § 15.247(a)(1)(iii) is measured using the Spectrum Analyzer with Span = 0, RBW=1MHz, VBW\ge RBW, Sweep can capture the entire dwell time, Detector = peak, Trace = max hold.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

10.4 Test protocol

Packet	Occupancy time	СН	Real observed	Hops among	Dwell time	Limit
	for single hop		period	Observed	(s)	
	(ms)		(s)	period	T	(s)
	0		P	I		
		L	3.16	32	0.13	
DH1	0.42	M	3.16	32	0.13	
		Н	3.16	32	0.13	
	L	3.16	16	0.27		
DH3	1.68	M	3.16	16	0.27	≤0.4
		Н	3.16	16	0.27	
		L	3.16	11	0.32	
DH5	2.93	M	3.16	11	0.32	
		Н	3.16	11	0.32	

Remark: 1. There are 79 channels in all. So the complete observed period P = 0.4 * 79 = 31.6 s.

2. Average time of occupancy T = O *I * 31.6 / P

Channel L of DH1

Channel M of DH1

Channel H of DH1

Single pulse of DH3

Channel L of DH3

Channel M of DH3

Channel H of DH3

Single pulse of DH5

Channel L of DH5

Channel M of DH5

Channel H of DH5

11. Occupied Bandwidth

Test Status: Tested

11.1 Test limit

None

11.2 Test Configuration

11.3 Test procedure and test setup

The occupied bandwidth per RSS-Gen Issue 3 Clause 4.6.1 was measured using the Spectrum Analyzer with the RBW close to 1% of the selected span, VBW = 3 * RBW Detector = Sample, Sweep = Auto.

11.4 Test protocol

 $\begin{array}{lll} \mbox{Temperature} & : & 22 \ ^{\circ}\mbox{C} \\ \mbox{Relative Humidity} & : & 48 \ \% \\ \end{array}$

Channel	Occupied Bandwidth (kHz)
L	870
M	858
Н	858

Channel L

Channel H

12. Spurious emission for receiver

Test result: NA

12.1 Test limit

The spurious emission shall test through 3 times tuneable or local oscillator frequency whichever is the higher, without exceeding 40 GHz. ☐ If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or

5nW above 1 GHz. If a radiated measurement is made, all spurious emissions shall comply with the limits of

Table below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)		
30 - 88	40.0	3		
88 - 216	43.5	3		
216 - 960	46.0	3		
Above 960	54.0	3		

12.2 Test Configuration

Please refer to clause 6.2

12.3 Test procedure and test setup

Please refer to clause 6.3.

12.4 Test protocol

Polarization	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = limit Corrected Reading

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 = 32.20dB/m; Corrected Reading = 10dBuV +

32.20dB/m = 42.20dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 42.20dBuV/m, then Margin =

54 - 42.20 = 11.80 dBuV/m