MA2047 Algebra och diskret matematik Något om potenser

Mikael Hindgren

7 oktober 2024

Potenser

Exempel 1

 2^3 , e^2 , π^e är potenser.

Definition 1

Talet a^{α} kallas en potens. a kallas basen och α exponenten.

Exempel 2

$$5^3 = 5 \cdot 5 \cdot 5$$

•
$$5^3 \cdot 5^2 = (5 \cdot 5 \cdot 5)(5 \cdot 5) = 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 = 5^5 = 5^{3+2}$$

$$\bullet \ \, \frac{5^5}{5^2} = \frac{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}{5 \cdot 5} = 5 \cdot 5 \cdot 5 = 5^3 = 5^{5-2}$$

$$(5^2)^3 = (5 \cdot 5)(5 \cdot 5)(5 \cdot 5) = 5^6 = 5^{2 \cdot 3}$$

Potenser med heltalsexponent

Sats 1 (Potenslagar)

För positiva heltalsexponenter gäller:

$$a^{n} = \underbrace{a \cdot a \cdot \cdot \cdot a}_{n \text{ st}}$$
 (1) $(a^{n})^{m} = a^{nm}$ (4) $a^{n}a^{m} = a^{n+m}$ (2) $a > 1, m < n \Rightarrow a^{m} < a^{n}$ (6) $a > 1, m < n \Rightarrow a^{m} < a^{n}$ (6) $a > 1, m < n \Rightarrow a^{m} < a^{n}$ (7)

• Hur ska vi definiera a^0 ? Om (2) skall gälla även för m = 0:

$$a^n \cdot a^0 = a^{n+0} = a^n \Leftrightarrow a^0 = 1$$

• Hur ska vi definiera a^n om n < 0? Om (3) skall gälla även för m > n:

$$a^{-m} = a^{0-m} = \frac{a^0}{a^m} = \frac{1}{a^m}$$
 (8)

Räknelagarna (1) - (8) nu gäller för alla heltalsexponenter.

Potenser med rationell exponent

Definition 2

För alla a > 0 och heltal p och q > 0 sätter vi

- $a^{1/q} = \sqrt[q]{a} = \det positiva reella tal som är rot till <math>x^q = a$
- $a^{p/q} = (a^{1/q})^p$

Exempel 3

 $27^{1/3} = \sqrt[3]{27} = \{\text{det positiva reella tal som \"{ar rot till ekvationen }} x^3 = 27\} = 3$

Exempel 4

$$27^{2/3} = \left(27^{1/3}\right)^2 = 3^2 = 9$$

Anm: Man kan visa att

- $x^q = a$, där a > 0 och $q \in \mathbb{Z}^+$, har precis en positiv rot
- o potenslagarna (1) (8) gäller även för rationella exponenter

Potenser med rationell exponent

Exempel 5

Förenkla

$$2^{7/24}\sqrt[2]{2\sqrt[3]{2\sqrt[4]{2}}}$$

$$\begin{split} 2^{7/24} \sqrt[3]{2\sqrt[4]{2}} & = & 2^{7/24} \left(2\left(2\left(2^{1/4}\right)\right)^{1/3} \right)^{1/2} = 2^{7/24} \left(2\left(2^{5/4}\right)^{1/3} \right)^{1/2} \\ & = & 2^{7/24} \left(2 \cdot 2^{5/12} \right)^{1/2} = 2^{7/24} \left(2^{17/12} \right)^{1/2} \\ & = & 2^{7/24} 2^{17/24} = 2^{7/24 + 17/24} = 2^1 = 2 \end{split}$$

Potenser med irrationell exponent

Vad ska vi mena med 2^{π} ?

 \bullet π kan approximeras med ett rationellt tal till godtycklig noggrannhet:

$$\pi \approx r_1 = \frac{3}{1} = 3$$

$$r_2 = \frac{31}{10} = 3.1$$

$$r_3 = \frac{314}{100} = 3.14$$

$$r_4 = \frac{3142}{1000} = 3.142$$

$$r_5 = \frac{31416}{10000} = 3.1416$$

$$\vdots$$

- π kan betraktas som gränsvärdet av en talföljd $\{r_n\}$ av rationella tal.
- Vi sätter

$$2^{\pi} = \text{gränsvärdet av } 2^{r_n} \text{ då } n \to \infty$$

Potensfunktioner

Definition 3 (Potenser)

Om a är ett positivt reellt tal så definierar vi potensen a^{α} enligt:

- \bigcirc α är ett positivt heltal
 - $a^{\alpha} = a \cdot a \cdot a \cdot a \cdot a$ där antalet faktorer är α

 - $a^0 = 1$ $a^{-\alpha} = \frac{1}{a^{\alpha}}$
- 2 $\alpha = \frac{p}{q} \operatorname{där} p \operatorname{och} q \operatorname{är} heltal, q > 0$
 - $a^{\alpha} = (a^{1/q})^p$
 - $a^{1/q} = den$ entydigt bestämda positiva roten till ekvationen $x^q = a$
- \circ α är ett irrationellt tal
 - $a^{\alpha} = \lim_{n \to \infty} a^{r_n} \operatorname{där} \{r_n\}$ är en talföljd av rationella tal med gränsvärdet α

Man kan visa att räknelagarna (1)- (8) för heltalsexponenter gäller för alla positiva reella tal a.

Potensfunktioner

Definition 4

Funktionen $f(x) = x^{\alpha}$, x > 0, kallas en potensfunktion.

Exempel 6

$$f(x) = x^2, x > 0, \quad g(x) = x^{1/2} = \sqrt{x}, \quad h(x) = x^{\pi}, x > 0$$
, är potensfunktioner.

Exempel 7

Graferna till potensfunktionerna

•
$$f(x) = x^2, x > 0$$

•
$$g(x) = x^{1/2} = \sqrt{x}$$

•
$$h(x) = x^{-1} = \frac{1}{x}, x > 0$$

Anm:
$$g(x) = \sqrt{x}$$
 är invers till $f(x) = x^2$, $x > 0$.

Potensfunktioner

Sats 2

Potensfunktionen $f(x) = x^{\alpha}$ är strängt växande om $\alpha > 0$ och strängt avtagande om $\alpha < 0$. Vidare gäller att

$$\lim_{x \to \infty} x^{\alpha} = \begin{cases} & \infty \text{ om } \alpha > 0 \\ & 0 \text{ om } \alpha < 0 \end{cases}$$

Anm:

- Om $x_1 < x_2$ så är funktion f(x) växande om $f(x_1) \le f(x_2)$ och strängt växande om $f(x_1) < f(x_2)$.
- Avtagande och strängt avtagande definieras på motsvarade sätt.
- Om f(x) är (strängt) växande eller avtagande så är f(x) (strängt) monoton.

Exponentialfunktioner

Definition 5

Funktionen $f(x) = a^x$, a > 0, $a \ne 1$, kallas en exponentialfunktion.

Exempel 8

Graferna till exponentialfunktionerna

•
$$f(x) = 2^x$$

•
$$g(x) = (\frac{1}{2})^x = 2^{-x}$$

•
$$h(x) = e^x$$

Exponentialfunktioner

Sats 3

Exponentialfunktionen $f(x) = a^x$ är strängt växande om a > 1 och strängt avtagande om 0 < a < 1. Vidare gäller att

$$\lim_{x \to \infty} a^x = \begin{cases} \infty \text{ om } a > 1\\ 0 \text{ om } a < 1 \end{cases}$$

Exempel 9

Bestäm en funktion f vars värden fördubblas i varje intervall av längden 2 och som uppfyller f(1) = 3.

Ansats:
$$f(x) = Ca^x \Rightarrow f(1) = Ca = 3$$

$$\Rightarrow f(1+2) = f(3) = Ca^3 = 2f(1) = 2Ca$$

$$\Leftrightarrow a^2 = 2 \Leftrightarrow_{a>0} a = 2^{1/2} \Rightarrow C = 3 \cdot 2^{-1/2}$$

$$\therefore f(x) = 3 \cdot 2^{-1/2} \cdot \left(2^{1/2}\right)^x = 3 \cdot 2^{\frac{x-1}{2}}.$$

Logaritmfunktioner

Definition 6

Om $y = a^x$ där a > 0 och $a \ne 1$ så sätter vi

$$y = a^x \Leftrightarrow x = \log_a y$$
.

Talet x kallas a-logaritmen för y.

Anm:

- För baserna 10 respektive *e* så skriver vi lg respektive ln. *e*-logaritmen kallas den naturliga logaritmen.
- Om $f(x) = a^x$, a > 0, $a \ne 1$ så är $f^{-1}(x) = \log_a x$

Logaritmfunktioner

Exempel 10

•
$$\lg 0.1 = -1$$

$$\log_3 9 = 2$$

•
$$\lg 1 = 0$$
, $\ln 1 = 0$

$$\bullet$$
 1000 = 10³ = 10 ^{lg} 1000

$$3 = \lg 1000 = \lg 10^3$$

Sats 4

För logaritmer gäller

$$\log_a 1 = 0$$

 $x = a^{\log_a x} = \log_a a^x, x > 0$

Sats 5 (Logaritmlagarna)

För positiva tal x och y gäller

$$\log_a x + \log_a y = \log_a xy \qquad \log_a x^y = y \log_a x$$

$$\log_a x - \log_a y = \log_a \frac{x}{y} \qquad \log_b x = \frac{\log_a x}{\log_a b}$$

Exempel 11

$$3 \ln 2 - 2 \ln 3 = \ln 2^3 - \ln 3^2 = \ln \frac{2^3}{3^2} = \ln \frac{8}{9}$$
.

Exempel 12

Lös ekvationen In $(2^x + 2^{x+1}) = 1$

$$\ln (2^{x} + 2^{x+1}) = \ln (2^{x} + 2 \cdot 2^{x}) = \ln (3 \cdot 2^{x}) = \ln 3 + \ln 2^{x}$$
$$= \ln 3 + x \ln 2 = 1 \Leftrightarrow x = \frac{1 - \ln 3}{\ln 2}$$

Definition 7

Funktionen $f(x) = \log_a x$, a > 1, x > 0, kallas en logaritmfunktion.

Exempel 13

Grafen till funktionen $f(x) = \ln x$

$$f(x) = \ln x$$
 är invers till e^x

$$y = \ln x$$
 är spegelbilden av $y = e^x$ i linjen $y = x$.

Sats 6

Logaritmfunktionen $f(x) = \log_a x$ är strängt växande om a > 1. Vidare gäller att

$$\log_a x \to \begin{cases} & \infty \ d\mathring{a} \ x \to \infty \\ & -\infty \ d\mathring{a} \ x \to 0^+ \end{cases}$$

Exempel 14

Lös ekvationen $\sqrt{\ln x} = \ln \sqrt{x}$.

Lösning:

$$\ln \sqrt{x} = \ln x^{1/2} = \frac{\ln x}{2}$$

Substitutionen $t = \ln x \Leftrightarrow x = e^t$ ger

$$\sqrt{t} = \frac{t}{2}$$

$$\Leftrightarrow \sqrt{t}(\sqrt{t} - 2) = 0$$

$$\Leftrightarrow t = 0 \text{ eller } t = 4$$

$$\Leftrightarrow x = e^0 = 1 \text{ eller } x = e^4$$

Exempel 15

Radioaktivt sönderfall beskrivs av

$$N(t) = N(0)e^{-\lambda t}$$

där N(t) är antalet radioaktiva kärnor vid tiden t och λ sönderfallskonstanten. Bestäm halveringstiden, dvs den tid T vid vilken häften av de ursprungliga radioaktiva kärnorna sönderfallit.

$$\begin{split} N(T) &= \frac{N(0)}{2} = N(0)e^{-\lambda T} \\ \Leftrightarrow &\frac{1}{2} = e^{-\lambda T} \\ \Leftrightarrow &\ln\left(\frac{1}{2}\right) = -\ln 2 = -\lambda T \\ \Leftrightarrow &T = \frac{\ln 2}{\lambda} \end{split}$$

Exempel 16 (Tenta 101028, uppgift 1a, 2p)

Lös ekvationen $27^x + 2 \cdot 3^x = 3 \cdot 9^x$

Exempel 17

Lös ekvationen ln(x-4) + ln(x-3) = ln 2