Ondas

Método e recomendacións

♦ PROBLEMAS

• Ecuación de onda

- 1. Unha onda cuxa amplitude é 0,3 m percorre 300 m en 20 s. Calcula:
 - a) A máxima velocidade dun punto que vibra coa onda se a frecuencia é 2 Hz.
 - b) A lonxitude de onda.
 - c) Constrúe a ecuación de onda, tendo en conta que o seu avance é no sentido negativo do eixe X.

(P.A.U. xuño 16)

Rta.: a) $v_m = 3,77 \text{ m/s}$; b) $\lambda = 7,50 \text{ m}$; c) $y(x, t) = 0,300 \cdot \text{sen}(12,6 \cdot t + 0,838 \cdot x)$ [m]

Datos	Cifras significativas: 3
Amplitude	A = 0.0300 m
Distancia percorrida pola onda en 20 s	$\Delta x = 300 \text{ m}$
Tempo que tarda en percorrer 300 m	$\Delta t = 20.0 \text{ s}$
Frecuencia	f = 2,00 Hz = 2,00 s ⁻¹
Velocidade de propagación	$v_{\rm p} = 20.0 {\rm m/s}$
Incógnitas	
Máxima velocidade dun punto que vibra coa onda	$ u_{ m m}$
Lonxitude de onda	λ
Ecuación da onda (frecuencia angular e número de onda)	ω , k
Outros símbolos	
Posición do punto (distancia ao foco)	x
Período	T
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Frecuencia angular	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{\rm p} = \lambda \cdot f$
Velocidade de propagación	$v_{\rm p} = \Delta x / \Delta t$

Solución:

b) Calcúlase a velocidade de propagación a partir da distancia percorrida e o tempo empregado;

$$v_{\rm p} = \frac{\Delta x}{\Delta t} = \frac{300 \,[\,\mathrm{m}\,]}{20.0 \,[\,\mathrm{s}\,]} = 15.0 \,\mathrm{m/s}$$

Calcúlase a lonxitude de onda a partir da velocidade de propagación da onda e da frecuencia:

$$v_{p} = \lambda \cdot f \Rightarrow \lambda = \frac{15.0 \text{ [m/s]}}{2.00 \text{ [s}^{-1}]} = 7.50 \text{ m}$$

c) Tómase a ecuación dunha onda harmónica en sentido negativo do eixe X:

$$y = A \cdot \text{sen}(\omega \cdot t + k \cdot x)$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$ω = 2 π · f = 2 · 3,14 · 2,00 [s^{-1}] = 4,00 · π [rad·s^{-1}] = 12,6 rad·s^{-1}$$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14 \text{ [rad]}}{7,50 \text{ [m]}} = 0,838 \text{ rad/m}$$

A ecuación de onda queda:

$$v(x, t) = 0.300 \cdot \text{sen}(12.6 \cdot t + 0.838 \cdot x) \text{ [m]}$$

a) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d[0,300 \cdot \sin(12,6 \cdot t + 0,838 \cdot x)]}{dt} = 0,300 \cdot 12,6 \cos(12,6 \cdot t + 0,838 \cdot x) [\text{m/s}]$$
$$v = 3,77 \cdot \cos(12,6 \cdot t - 0,838 \cdot x) [\text{m/s}]$$

A velocidade é máxima cando $cos(\varphi) = 1$

$$v_{\rm m} = 3.77 \; {\rm m/s}$$

- 2. Unha onda harmónica transversal propágase na dirección do eixe X e vén dada pola seguinte expresión (en unidades do sistema internacional): $y(x,t) = 0,45 \cos(2 x 3 t)$. Determina:
 - a) A velocidade de propagación.
 - b) A velocidade e aceleración máximas de vibración das partículas.
 - c) A diferenza de fase entre dous estados de vibración da mesma partícula cando o intervalo de tempo transcorrido é de 2 s.

(P.A.U. xuño 15)

Rta.: a) $v_p = 1,50 \text{ m/s}$; b) $|v_m| = 1,35 \text{ m/s}$; $|a_m| = 4,05 \text{ m/s}^2$; c) $\Delta \varphi = 6,0 \text{ rad}$

Datos	Cifras significativas: 3
Ecuación da onda	$y = 0.450 \cdot \cos(2.00 \cdot x - 3.00 \cdot t)$ [m]
Intervalo de tempo transcorrido	$\Delta t = 2,00 \text{ s}$
Incógnitas	
Velocidade de propagación	$ u_{ m p}$
Velocidade máxima de vibración	$ u_{ m m}$
Aceleración máxima de vibración	a_m
Diferenza de fase entre dous estados separados por Δt = 2 s	$\Delta arphi$
Outros símbolos	
Pulsación (frecuencia angular)	ω
Frecuencia	f
Lonxitude de onda	λ
Número de onda	k
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_p = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$$
$$y = 0.450 \cdot \cos(-3.00 \cdot t + 2.00 \cdot x) \text{ [m]}$$

Frecuencia angular: $\omega = 3,00 \text{ rad/s}$ Número de onda: k = 2,00 rad/m

Calcúlanse a lonxitude de onda e a frecuencia para determinar a velocidade de propagación.

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{3,00 \text{ [rad \cdot s}^{-1}]}{2 \cdot 3.14 \text{ [rad]}} = 0,477 \text{ s}^{-1} = 0,477 \text{ Hz}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2 \cdot 3,14 \text{ [rad]}}{2,00 \text{ [rad·m}^{-1]}} = 3,14 \text{ m}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 3.14 \text{ [m]} \cdot 0.477 \text{ [s}^{-1} \text{]} = 1.50 \text{ m} \cdot \text{s}^{-1}$$

b) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d \left[0.450 \cdot \cos(-3.00 \cdot t + 2.00 \cdot x) \right]}{dt} = 0.450 \cdot (-3.00) \cdot (-\sin(-3.00 \cdot t + 2.00 \cdot x)) \text{ [m/s]}$$

$$v = 1.35 \cdot \sin(-3.00 \cdot t + 2.00 \cdot x) \text{ [m/s]}$$

A velocidade é máxima cando sen(φ) = 1

$$v_{\rm m} = 1.35 \; {\rm m/s}$$

A aceleración obtense derivando a velocidade con respecto ao tempo:

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}\left[1,35\cdot\sin(-3,00\cdot t + 2,00\cdot x)\right]}{\mathrm{d}t} = 1,35\cdot(-3,00)\cdot\cos(-3,00\cdot t + 2,00\cdot x)\left[\,\mathrm{m/s^2}\right]$$

$$a = -4,05\cdot\cos(-3,00\cdot t + 2,00\cdot x)\left[\,\mathrm{m/s^2}\right]$$

A aceleración é máxima cando $cos(\varphi) = -1$

$$a_{\rm m} = 4.05 \text{ m/s}^2$$

c) Nun punto x, a diferenza de fase entre dous instantes t_1 e t_2 é:

$$\Delta \varphi = [-3.00 \cdot t_2 + 2.00 \cdot x] - [-3.00 \cdot t_1 + 2.00 \cdot x] = -3.00 \cdot (t_2 - t_1) = -3.00 \cdot \Delta t = -3.00 \cdot 2.00 = 6.00 \text{ rad}$$

Análise: Como os instantes que están en fase ou cuxa diferencia de fase é múltiplo de 2π atópanse a unha distancia temporal que é múltiplo do período, un intervalo de tempo de 2,00 s, que é algo inferior ao período, corresponde a unha diferenza de fase algo inferior a $2\pi = 6,3$ rad. O resultado de 6,0 rad é aceptable.

- 3. Unha onda harmónica transversal propágase no sentido positivo do eixe x con velocidade $v = 20 \text{ m} \cdot \text{s}^{-1}$. A amplitude da onda é A = 0,10 m e a súa frecuencia é f = 50 Hz.
 - a) Escribe a ecuación da onda.

Datos

- b) Calcula a elongación e a aceleración do punto situado en x = 2 m no instante t = 0.1 s.
- c) Cal é a distancia mínima entre dous puntos situados en oposición de fase?

(P.A.U. set. 11)

Cifras significativas: 3

Rta.: a) $y = 0.100 \cdot \text{sen}(100 \cdot \pi \cdot t - 5.00 \cdot \pi \cdot x)$ [m]; b) y(2, 0.1) = 0; a(2, 0.1) = 0; c) $\Delta x = 0.200$ m a') $y = 0.100 \cdot \cos(100 \cdot \pi \cdot t - 5.00 \cdot \pi \cdot x)$ [m]; b') y(2, 0.1) = 0.100 m; $a(2, 0.1) = -9.87 \cdot 10^3$ m/s²

		3
Amplitude		A = 0.100 m
Frecuencia		$f = 50.0 \text{ Hz} = 50.0 \text{ s}^{-1}$
Velocidade de propagación		$v_p = 20.0 \text{ m/s}$
Para o cálculo da elongación e aceleración:	Posición	x = 2,00 m
· ·	Tempo	t = 0.100 s
Incógnitas	-	
Ecuación da onda		ω , k
Elongación do punto situado en x = 2 m no ir	stante $t = 0,1$ s.	<i>y</i> (2, 0,1)
Aceleración do punto situado en $x = 2 m$ no i	nstante t = 0,1 s.	a (2, 0,1)
Distancia mínima entre dous puntos situados	en oposición de fase	Δx
Outros símbolos		
Posición do punto (distancia ao foco)		x
Período		T
Lonxitude de onda		λ
Ecuacións		
Ecuación dunha onda harmónica unidimensio	onal	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda		$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecue	encia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocio	dade de propagación	$v_{\rm p} = \lambda \cdot f$

Solución:

a) Tómase a ecuación dunha onda harmónica en sentido positivo do eixe X:

$$y = A \cdot \text{sen}(\omega \cdot t - k \cdot x)$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3.14 \cdot 50.0 \text{ [s}^{-1}] = 100 \cdot \pi \text{ [rad} \cdot \text{s}^{-1}] = 314 \text{ rad} \cdot \text{s}^{-1}$$

Calcúlase a lonxitude de onda a partir da velocidade de propagación da onda e da frecuencia:

$$v_{\rm p} = \lambda \cdot f \Rightarrow \lambda = \frac{20.0 \,[{\rm m/s}]}{50.0 \,[{\rm s}^{-1}]} = 0.400 \,{\rm m}$$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14 \text{ [rad]}}{0,400 \text{ [m]}} = 5,00 \cdot \pi \text{ [rad/m]} = 15,7 \text{ rad/m}$$

A ecuación de onda queda:

$$y(x, t) = 0.100 \cdot \text{sen}(100 \cdot \pi \cdot t - 5.00 \cdot \pi \cdot x) \text{ [m]} = 0.100 \cdot \text{sen}(314 \cdot t - 15.7 \cdot x) \text{ [m]}$$

b) Para x = 2,00 m e t = 0,100 s, a elongación é:

$$y(2, 0,1) = 0,100 \cdot \text{sen}(100 \cdot \pi \cdot 0,100 - 5,00 \cdot \pi \cdot 2,00) = 0,100 \cdot \text{sen}(0) = 0 \text{ m}$$

A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d \left[0,100 \cdot \sin(100 \cdot \pi \cdot t - 5,00 \cdot \pi \cdot x) \right]}{dt} = 0,100 \cdot 100 \cdot 3,14 \cdot \cos(100 \cdot \pi \cdot t - 5,00 \cdot \pi \cdot x) \left[\text{m/s} \right]$$

$$v = 31.4 \cdot \cos(100 \cdot \pi \cdot t - 5.00 \cdot \pi \cdot x) \text{ [m/s]}$$

A aceleración obtense derivando a velocidade con respecto ao tempo:

$$a = \frac{dv}{dt} = \frac{d|31,4 \cdot \cos(100 \cdot \pi \cdot t - 5,00 \cdot \pi \cdot x)|}{dt} = -31,4 \cdot 100 \cdot 3,14 \cdot \sin(100 \cdot \pi \cdot t - 5,00 \cdot \pi \cdot x) \left[\text{m/s}^2 \right]$$

$$a = -9.87 \cdot 10^3 \operatorname{sen}(100 \cdot \pi \cdot t - 5.00 \cdot \pi \cdot x) [\text{m/s}^2]$$

Para x = 2,00 m e t = 0,100 s, a aceleración é:

$$a(2,0,1) = -9.87 \cdot 10^3 \operatorname{sen}(100 \cdot \pi \cdot 0.100 - 5.00 \cdot \pi \cdot 2.00) = -9.87 \cdot 10^3 \cdot \operatorname{sen}(0) = 0 \text{ m/s}^2$$

(Se a ecuación de onda escríbese en función do coseno, en vez do seno, as respostas serían: y(2,0,1)=0,100 m e $a(2,0,1)=-9,87\cdot10^3$ m/s²)

Análise: A aceleración é proporcional e de sentido contrario á elongación. Se a elongación é nula tamén o é a aceleración.

c) Nun instante t, a diferenza de fase entre dous puntos situados en x_1 e x_2 é:

$$\Delta \varphi = [(100 \cdot \pi \cdot t - 5,00 \cdot \pi \cdot x_2)] - [(100 \cdot \pi \cdot t - 5,00 \cdot \pi \cdot x_1)] = 5,00 \cdot \pi (x_1 - x_2) = 5,00 \cdot \pi \cdot \Delta x$$

Como están en oposición de fase, a diferenza de fase é π [rad]

$$5,00 [rad/m] \cdot \pi \cdot \Delta x = \pi [rad]$$

$$\Delta x = 1 \text{ [rad] / (5,00 [rad/m])} = 0,200 \text{ m}$$

Análise: A lonxitude de onda é a distancia mínima entre dous puntos que están en fase. A distancia mínima entre dous puntos que están en oposición é fase é: $\Delta x = \lambda / 2 = 0,200$ m, que coincide co calculado.

- 4. Unha onda harmónica propágase en dirección x con velocidade v = 10 m/s, amplitude A = 3 cm e frecuencia f = 50 s⁻¹. Calcula:
 - a) A ecuación da onda.
 - b) A velocidade e aceleración máxima dun punto da traxectoria.
 - c) Para un tempo fixo t, que puntos da onda están en fase co punto x = 10 m?

(P.A.U. set. 10)

Rta.: a)
$$y = 0.0300 \text{ sen}(100 \cdot \pi \cdot t - 10 \cdot \pi \cdot x) \text{ [m]}$$
; b) $v_{\text{m}} = 9.42 \text{ m/s}$; $a_{\text{m}} = 2.96 \cdot 10^3 \text{ m/s}^2$ c) $x' = 10.0 + 0.200 \cdot n \text{ [s]}$, $(n = 0, 1, 2 \dots)$

Datos	Cifras significativas: 3
Velocidade de propagación	$v_{\rm p} = 10.0 \; {\rm m/s}$
Amplitude	A = 3,00 cm = 0,0300 m
Frecuencia	$f = 50.0 \text{ s}^{-1}$
Posición do punto	$x_2 = 10.0 \text{ m}$
Incógnitas	
Ecuación dá onda	ω , k
Velocidade máxima	$ u_{ m m}$
Aceleración máxima	a_m
Puntos da onda que están en fase co punto en $x = 10$ m	x'
Outros símbolos	
Pulsación (frecuencia angular)	ω
Número de onda	k
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_p = \lambda \cdot f$

Solución:

a) Tómase a ecuación dunha onda harmónica en sentido positivo do eixe X:

$$y = A \cdot \text{sen}(\omega \cdot t - k \cdot x)$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3.14 \cdot 50.0 \text{ [s}^{-1}\text{]} = 100 \cdot \pi \text{ [rad} \cdot \text{s}^{-1}\text{]} = 314 \text{ rad} \cdot \text{s}^{-1}$$

Calcúlase a lonxitude de onda a partir da velocidade de propagación da onda e da frecuencia:

$$v_p = \lambda \cdot f \Rightarrow \lambda = \frac{10.0 \text{ [m/s]}}{50.0 \text{ [s}^{-1}} = 0.200 \text{ m}$$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3.14 \text{ [rad]}}{0.200 \text{ [m]}} = 10.0 \cdot \pi \text{ [rad/m]} = 31.4 \text{ rad/m}$$

A ecuación de onda queda:

$$y(x, t) = 0.0300 \cdot \text{sen}(100 \cdot \pi \cdot t - 10.0 \cdot \pi \cdot x) \text{ [m]}$$

b) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d\{0,030 \text{ } 0 \text{sen}(100 \cdot \pi \cdot t - 10,0 \cdot \pi \cdot x)\}}{dt} = 0,030 \text{ } 0100 \cdot 3,14 \cdot \cos(100 \cdot \pi \cdot t - 10,0 \cdot \pi \cdot x) \text{ [m/s]}$$

$$v = 9.42 \cdot \cos(100 \cdot \pi \cdot t - 10.0 \cdot \pi \cdot x) \text{ [m/s]}$$

A velocidade é máxima cando $cos(\varphi) = 1$

$$v_{\rm m}$$
 = 9,42 m/s

A aceleración obtense derivando a velocidade con respecto ao tempo:

$$a = \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\mathrm{d} \left\{ 9,42 \cdot \cos \left(100 \cdot \pi \cdot t - 10,0 \cdot \pi \cdot x \right) \right\}}{\mathrm{d} t} = -9,42 \cdot 100 \cdot 3,14 \cdot \sin \left(100 \cdot \pi \cdot t - 10,0 \cdot \pi \cdot x \right) \left[\, \mathrm{m/s^2} \right]$$

$$a = -2.96 \cdot 10^3 \cdot \text{sen}(100 \cdot \pi \cdot t - 10.0 \cdot \pi \cdot x) \text{ [m/s}^2\text{]}$$

A aceleración é máxima cando sen $(\varphi) = -1$

$$a_{\rm m} = 2.96 \cdot 10^3 \, {\rm m/s^2}$$

c) Nun instante t, a diferenza de fase entre dous puntos situados en x_1 e x_2 é:

$$\Delta \varphi = (100 \cdot \pi \cdot t - 10, 0 \cdot \pi \cdot x_2) - (100 \cdot \pi \cdot t - 10, 0 \cdot \pi \cdot x_1) = 10 \cdot \pi \cdot (x_1 - x_2)$$

Dous puntos atópanse en fase cando a diferenza de fase é múltiplo de 2 π :

$$\Delta \varphi = 2 \pi \cdot n \text{ (sendo } n = 0, 1, 2...)$$

No caso de atoparse en fase cúmprese:

$$10 \cdot \pi \cdot (x_1 - x_2) = 2 \pi \cdot n$$

 $x_1 - x_2 = 0,200 \cdot n \text{ [m]}$

Substitúese o valor do punto $x_2 = 10,0$ m e despéxase x_1

$$x_1 = 20.0 \cdot n + x_2 = 10.0 + 0.200 \cdot n \text{ [m]}$$

Como a elección de cal é o punto 1 e cal o punto 2 é arbitraria, é máis xeral a expresión:

$$x' = 10.0 \pm 0.200 \cdot n$$
 [m]

Análise: Os puntos que están en fase atópanse a unha distancia que é múltiplo da lonxitude de onda, $\Delta x = n \cdot \lambda = 0,200 \cdot n \text{ [m]}$

- 5. A ecuación dunha onda é $y(t, x) = 0.2 \text{ sen } \pi \text{ (100 } t 0.1 \text{ x)}$. Calcula:
 - a) A frecuencia, o número de ondas k, a velocidade de propagación e a lonxitude de onda.
 - b) Para un tempo fixo t, que puntos da onda están en fase co punto que se atopa en x = 10 m?
 - c) Para unha posición fixa *x*, para que tempos o estado de vibración dese punto está en fase coa vibración para *t* = 1 s?

(P.A.U. xuño 10)

Cifras significations 2

Rta.: a)
$$f = 50.0$$
 Hz; $k = 0.314$ rad/m; $v = 1.00 \cdot 10^3$ m/s; $\lambda = 20.0$ m; b) $x = 10.0 + 20.0 \cdot n$ [m] c) $t = 1.00 + 0.0200 \cdot n$ [s], $(n = 0, 1, 2 ...)$

Datos	Cifras significativas: 3
Ecuación da onda	$y = 0.200 \cdot \text{sen } \pi (100 \cdot t - 0.100 \cdot x) \text{ [m]}$
Posición do punto	$x_2 = 10.0 \text{ m}$
Tempo de referencia	$t_1 = 1,00 \text{ s}$
Incógnitas	
Frecuencia	f
Número de ondas	k
Velocidade de propagación	$ u_{ m p}$
Lonxitude de onda	λ
Puntos da onda que están en fase co punto que se atopa en $x = 10$	m x'
Tempos nos que a vibración está en fase coa vibración para $t = 1$ s	s t'
Outros símbolos	
Pulsación (frecuencia angular)	ω
Número de onda	k
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a frecuencia e o período	f= 1 / T
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{ m p} = \lambda \cdot f$

Solución:

Datos

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$
$$y = 0,200 \cdot \text{sen} \pi (100 \cdot t - 0,100 \cdot x) = 0,200 \cdot \text{sen} (100 \cdot \pi \cdot t - 0,100 \cdot \pi \cdot x) \text{ [m]}$$

Frecuencia angular:

$$\omega = 100 \cdot \pi \text{ [rad/s]} = 314 \text{ rad/s}$$

Número de onda:

$$k = 0.100 \cdot \pi \, [rad/m] = 0.314 \, rad/m$$

Calcúlanse a lonxitude de onda e a frecuencia para determinar a velocidade de propagación.

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{100 \cdot \pi \left[\text{rad} \cdot \text{s}^{-1} \right]}{2\pi \left[\text{rad} \right]} = 50,0 \text{ s}^{-1} = 50,0 \text{ Hz}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2\pi \text{ [rad]}}{0,100 \cdot \pi \text{ [rad \cdot m}^{-1]}} = 20,0 \text{ m}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 20.0 \text{ [m]} \cdot 50.0 \text{ [s}^{-1}] = 1.00 \cdot 10^3 \text{ m} \cdot \text{s}^{-1}$$

b) Nun instante t, a diferenza de fase entre dous puntos situados en x $_1$ e x_2 é:

$$\Delta \varphi = [\pi (100 \cdot t - 0.100 \cdot x_2)] - [\pi (100 \cdot t - 0.100 \cdot x_1)] = 0.100 \cdot \pi \cdot (x_1 - x_2)$$

Dous puntos atópanse en fase cando a diferenza de fase é múltiplo de 2π :

$$\Delta \varphi = 2 \pi \cdot n \text{ (sendo } n = 0, 1, 2...)$$

Se se atopan en fase cúmprese:

$$0,100\cdot\pi\cdot(x_1-x_2)=2\ \pi\cdot n$$

Substitúese o valor do punto $x_2 = 10,0$ m e despéxase x_1

$$x_1 = 20.0 \cdot n + x_2 = 10.0 + 20.0 \cdot n$$
 [m]

Como a elección de cal é o punto 1 e cal o punto 2 é arbitraria, é máis xeral a expresión:

$$x' = 10.0 \pm 20.0 \cdot n$$
 [m]

Análise: Os puntos que están en fase atópanse a unha distancia que é múltiplo da lonxitude de onda, $\Delta x = n \cdot \lambda = 20,0 \cdot n \text{ [m]}$

c) Nun punto x, a diferenza de fase entre dous instantes t_1 e t_2 é

$$\Delta \varphi = [\pi (100 \cdot t_2 - 0.100 \cdot x)] - [\pi (100 \cdot t_1 - 0.100 \cdot x)] = 100 \pi (t_2 - t_1)$$

Se se atopan en fase cúmprese:

$$100 \cdot \pi (t_2 - t_1) = 2 \pi \cdot n$$

Substitúese o valor do instante t_1 = 1,00 s e despéxase t_2 .

$$t_2 = 0.0200 \cdot n + t_1 = 1.00 \pm 0.0200 \cdot n$$
 [s]

Como a elección de cal é o instante 1 e cal o instante 2 é arbitraria, é máis xeral a expresión:

$$t' = 1,00 \pm 0,0200 \cdot n$$
 [s]

Análise: O período pode calcularse a partir da frecuencia: $T = 1 / f = 1 / (50,0 \text{ s}^{-1}) = 0,0200 \text{ s}$. Os instantes en que están en fase son múltiplos do período. $\Delta t = n \cdot T = 0,0200 \cdot n \text{ [s]}$

- 6. A ecuación dunha onda é $y(x, t) = 2 \cos 4\pi (5 t x)$ (S.I.). Calcula:
 - a) A velocidade de propagación.
 - b) A diferenza de fase entre dous puntos separados 25 cm.
 - c) Na propagación dunha onda que se transporta materia ou enerxía? Xustifícao cun exemplo.

(P.A.U. xuño 09)

Rta.: a) $v_p = 5{,}00 \text{ m/s}$; b) $\Delta \varphi = \pi \text{ rad}$

Datos

Ecuación da onda

Distancia entre os puntos

 $y = 2,00 \cdot \cos 4 \pi (5,00 \cdot t - x) [m]$

 $\Delta x = 25,0 \text{ cm} = 0,250 \text{ m}$

Datos	Cifras significativas: 3
Incógnitas	v e v
Velocidade de propagación	$ u_{ m p}$
Diferenza de fase entre dous puntos separados 25 cm	$\Delta arphi$
Outros símbolos	
Pulsación (frecuencia angular)	ω
Frecuencia	f
Lonxitude de onda	λ
Número de onda	k
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_p = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$$

$$y = 2,00 \cdot \cos 4 \pi (5,00 \cdot t - x) = 2,00 \cdot \cos(20,0 \cdot \pi \cdot t - 4,00 \cdot \pi \cdot x) \text{ [m]}$$

Frecuencia angular:

$$\omega = 20.0 \cdot \pi \text{ [rad/s]} = 62.8 \text{ rad/s}$$

Número de onda: $k = 4,00 \cdot \pi \text{ [rad/m]} = 12,6 \text{ rad/m}$ Calcúlanse a lonxitude de onda e a frecuencia para determinar a velocidade de propagación.

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{20.0 \cdot \pi \,[\text{rad} \cdot \text{s}^{-1}]}{2\pi \,[\text{rad}]} = 10.0 \,\text{s}^{-1} = 10.0 \,\text{Hz}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2\pi \text{ [rad]}}{4,00 \cdot \pi \text{ [rad \cdot m}^{-1]}} = 0,500 \text{ m}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 0.500 \text{ [m]} \cdot 10.0 \text{ [s}^{-1}] = 5.00 \text{ m} \cdot \text{s}^{-1}$$

b) Nun instante t, a diferenza de fase entre dous puntos situados en x_1 e x_2 é:

$$\Delta \varphi = [4 \pi (5,00 \cdot t - x_2)] - [4 \pi (5,00 \cdot t - x_1)] = 4 \pi (x_1 - x_2) = 4 \pi \Delta x = 4 \pi \cdot 0,250 = \pi \text{ rad}$$

Análise: A distancia entre os puntos é 0,250 m que é a metade da lonxitude de onda. Como os puntos que están en fase ou cuxa diferencia de fase é múltiplo de 2 π atópanse a unha distancia que é múltiplo da lonxitude de onda, unha distancia de media lonxitude de onda corresponde a unha diferenza de fase da metade de 2 π , ou sexa, π rad.

- c) Unha onda é un mecanismo de transporte de enerxía sen desprazamento neto de materia. Nunha onda lonxitudinal dunha corda vibrante, as partículas do medio volven á súa posición inicial mentres a perturbación que provoca a elevación e depresión desprázase ao longo da corda.
- 7. Unha onda harmónica transversal propágase na dirección do eixe X: y(x, t) = 0.5 sen (4 x 6 t) (S.I.). Calcula:
 - a) A lonxitude de onda, a frecuencia coa que vibran as partículas do medio e a velocidade de propagación da onda.
 - b) A velocidade dun punto situado en x = 1 m no instante t = 2 s
 - c) Os valores máximos da velocidade e a aceleración.

(P.A.U. set. 08)

Rta.: a)
$$\lambda = 1,57 \text{ m}$$
; $f = 0,955 \text{ Hz}$; $v_p = 1,50 \text{ m/s}$; b) $v_1 = 0,437 \text{ m/s}$; c) $v_m = 3,00 \text{ m/s}$; $a_m = 18,0 \text{ m/s}^2$

Datos	Cifras significativas: 3
Ecuación da onda	$y = 0.500 \cdot \text{sen}(-6.00 \cdot t + 4.00 \cdot x) \text{ [m]}$
Incógnitas	
Lonxitude de onda	λ
Frecuencia	f
Velocidade de propagación	$ u_{ m p}$
Velocidade dun punto situado en $x = 1$ m no instante $t = 2$ s	v_1
Velocidade máxima	$ u_{ m m}$
Aceleración máxima	a_m
Outros símbolos	
Posición do punto (distancia ao foco)	x
Amplitude	A
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_n = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$
$$y = 0.500 \cdot \text{sen}(-6.00 \cdot t + 4.00 \cdot x) \text{ [m]}$$

Frecuencia angular: Número de onda:

$$\omega = 6,00 \text{ rad} \cdot \text{s}^{-1}$$

 $k = 4,00 \text{ rad} \cdot \text{m}^{-1}$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2 \cdot 3,14 \text{ [rad]}}{4,00 \text{ [rad \cdot m^{-1}]}} = 1,57 \text{ m}$$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{6.00 \text{ [rad \cdot s}^{-1}]}{2 \cdot 3.14 \text{ [rad]}} = 0.955 \text{ s}^{-1} = 0.955 \text{ Hz}$$

A frecuencia coa que vibran as partículas do medio é a mesma que a da onda.

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 1,57 \text{ [m]} \cdot 0,955 \text{ [s}^{-1} \text{]} = 1,50 \text{ m} \cdot \text{s}^{-1}$$

b) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d \left| 0,500 \cdot \sin(-6,00 \cdot t + 4,00 \cdot x) \right|}{dt} = 0,500 \cdot (-6,00) \cdot \cos(-6,00 \cdot t + 4,00 \cdot x) \text{ [m/s]}$$

$$v = -3.00 \cdot \cos(-6.00 \cdot t + 4.00 \cdot x) \text{ [m/s]}$$

Substituíndo os valores de x = 1,00 m e t = 2,00 s

$$v_1 = -3.00 \cdot \cos(-6.00 \cdot 2.00 + 4.00 \cdot 1.00) = 0.437 \text{ m/s}$$

c) A velocidade é máxima cando $cos(\varphi) = -1$

$$v_{\rm m} = 3{,}00 \; {\rm m/s}$$

A aceleración obtense derivando a velocidade con respecto ao tempo:

$$a = \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\mathrm{d} \left[-3,00 \cdot \cos\left(-6,00 \cdot t + 4,00 \cdot x \right) \right]}{\mathrm{d} t} = -3,00 \cdot \left(-6,00 \right) \cdot \left[-\sin\left(-6,00 \cdot t + 4,00 \cdot x \right) \right] \left[\, \mathrm{m/s^2} \right]$$

$$a = -18,0 \, \sin(-6,00 \cdot t + 4,00 \cdot x) \left[\, \mathrm{m/s^2} \right]$$

A aceleración é máxima cando sen $(\varphi) = -1$

$$a_{\rm m} = 18,0 \; {\rm m/s^2}$$

8. A ecuación dunha onda sonora que se propaga na dirección do eixe X é:

 $y = 4 \text{ sen } 2\pi (330 \ t - x) (S.I.)$. Acha:

- a) A velocidade de propagación.
- b) A velocidade máxima de vibración dun punto do medio no que se transmite a onda.
- c) Define a enerxía dunha onda harmónica.

(P.A.U. set. 07)

Rta.: a) $v_p = 330 \text{ m} \cdot \text{s}^{-1}$; b) $v_m = 8,29 \cdot 10^3 \text{ m/s}$

Datos	Cifras significativas: 3
Ecuación da onda	$y = 4.00 \cdot \text{sen}[2 \pi (330 \cdot t - x)] [\text{m}]$
Incógnitas	
Velocidade de propagación	$v_{ m p}$
Velocidade máxima de vibración dun punto do medio	$v_{ m m}$
Outros símbolos	
Amplitude	A
Frecuencia	f
Posición do punto (distancia ao foco)	x
Período	T
Lonxitude de onda	λ
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{\rm p} = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$
$$y = 4,00 \cdot \text{sen}[2 \pi (330 \cdot t - x)] = 4,00 \cdot \text{sen}(660 \cdot \pi \cdot t - 2,00 \cdot \pi \cdot x) \text{ [m]}$$

Frecuencia angular: Número de onda:

$$\omega = 660 \cdot \pi \text{ [rad·s}^{-1}\text{]} = 2,07 \cdot 10^3 \text{ rad·s}^{-1}$$

 $k = 2,00 \cdot \pi \text{ [rad·m}^{-1}\text{]} = 6,28 \text{ rad·m}^{-1}$

Calcúlanse a lonxitude de onda e a frecuencia para determinar a velocidade de propagación.

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2\pi [\text{rad}]}{2,00 \cdot \pi [\text{rad} \cdot \text{m}^{-1}]} = 1,00 \text{ m}$$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{660 \cdot \pi \, [\, \text{rad} \cdot \text{s}^{-1}]}{2\pi \, [\, \text{rad}\,]} = 330 \, \text{s}^{-1} = 330 \, \text{Hz}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 1,00 \text{ [m]} \cdot 330 \text{ [s}^{-1}\text{]} = 330 \text{ m} \cdot \text{s}^{-1}$$

b) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d \left[4,00 \cdot \text{sen} \left[2\pi (330 \cdot t - x) \right] \right]}{dt} = 4,00 \cdot 2 \cdot 3,14 \cdot 330 \cdot \text{cos} \left[2\pi (330 \cdot t - x) \right] \left[\text{m/s} \right]$$

$$v = 8.29 \cdot 10^3 \cdot \cos[2 \pi (330 \cdot t - x)] [\text{m/s}]$$

A velocidade é máxima cando $cos(\phi) = -1$

$$v_{\rm m} = 8.29 \cdot 10^3 \, {\rm m/s}$$

c) A enerxía que transmite unha onda harmónica produce un movemento harmónico simple das partículas do medio. A enerxía dun M.H.S. é:

$$E = (E_c + E_p) = \frac{1}{2} m \cdot v^2 + \frac{1}{2} k \cdot x^2 = \frac{1}{2} m \cdot v_m^2 = \frac{1}{2} k \cdot A^2$$

A velocidade máxima dun movemento harmónico simple é:

$$v_{\rm m} = \omega \cdot A = 2 \pi \cdot f \cdot A$$

A enerxía que transporta unha onda é directamente proporcional ao cadrado da amplitude e ao cadrado da frecuencia.

$$E = \frac{1}{2} m \cdot v_{\mathrm{m}}^2 = 2 \pi^2 \cdot m \cdot f^2 \cdot A^2$$

- 9. A ecuación dunha onda transversal é $y(t, x) = 0.05 \cos(5 t 2 x)$ (magnitudes no S.I.). Calcula:
 - a) Os valores de t para os que un punto situado en x = 10 m ten velocidade máxima.
 - b) Que tempo ten que transcorrer para que a onda percorra unha distancia igual a 3 λ ?
 - c) Esta onda é estacionaria?

(P.A.U. xuño 07)

Rta.: a) $t_1 = 4.3 + 0.63 \ n$ [s], (n = 0, 1, 2 ...); b) $t_2 = 3.8 \ s$

Datos	Cifras significativas: 3
Ecuación da onda	$y = 0.0500 \cdot \cos(5.00 \cdot t - 2.00 \cdot x)$ [m]
Posición do punto (distancia ao foco)	x = 10,0 m
Incógnitas	
Tempos para os que un punto en $x = 10$ m ten velocidade máxima	t_1
Tempo para que a onda percorra unha distancia igual a 3 λ	t_2
Outros símbolos	
Período	T
Lonxitude de onda	λ
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a frecuencia e o período	f=1/T
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{\rm p} = \lambda \cdot f$

Solución:

a) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d \left[0,050 \ \theta \cos \left(5,00 \cdot t + 2,00 \cdot x \right) \right]}{dt} = -0,050 \ \theta 5,00 \cdot \sin \left(5,00 \cdot t + 2,00 \cdot x \right) \left[\text{m/s} \right]$$
$$v = -0,250 \cdot \sin \left(5,00 \cdot t - 2,00 \cdot x \right) \left[\text{m/s} \right]$$

A velocidade é máxima cando sen(φ) = -1

$$v_{\rm m} = 0.250 \; {\rm m/s}$$

Este valor do seno corresponde a un ángulo de $\varphi = \pi/2$ ou 3 $\pi/2$ [rad] na primeira circunferencia, e, en xeral

$$\varphi = n \cdot \pi + \pi / 2 \text{ [rad]}$$

Sendo n un número natural ($n=0,\,1,\,2....$)

Igualando e substituíndo x = 10,0 m

$$(5,00 \ t - 2,00 \cdot 10,0) = n \cdot \pi + \pi / 2$$
$$t_1 = 4,00 + 0,100 \cdot \pi + 0,200 \cdot n \cdot \pi = 4,31 + 0,628 \cdot n \text{ [s]}$$

Análise: A primeira vez que a velocidade é máxima para x = 10 m é (n = 0) para t = 4,31 s. O período pode calcularse a partir da frecuencia no apartado b: $T = 1 / f = 1 / (0,796 \text{ s}^{-1}) = 1,26 \text{ s}$. O tempo volverá ser máximo cada vez que pase polo punto de equilibrio, ou sexa, cada medio período: 0,628 s.

b) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$$
$$y(t, x) = 0.0500 \cdot \cos(5.00 \cdot t - 2.00 \cdot x)$$

Frecuencia angular: $\omega = 5,00 \text{ rad/s}$ Número de onda: k = 2,00 rad/m

Calcúlanse a lonxitude de onda e a frecuencia para determinar a velocidade de propagación.

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{5,00 \text{ [rad \cdot s}^{-1}]}{2 \cdot 3,14 \text{ [rad]}} = 0,796 \text{ s}^{-1} = 0,796 \text{ Hz}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2 \cdot 3,14 \text{ [rad]}}{2,00 \text{ [rad·m}^{-1]}} = 3,14 \text{ m}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 3,14 \text{ [m]} \cdot 0,796 \text{ [s}^{-1}\text{]} = 2,50 \text{ m} \cdot \text{s}^{-1}$$

Calcúlase o tempo que tarda en percorrer unha distancia igual a $\Delta x = 3 \cdot \lambda = 3 \cdot 3,14$ [m] = 9,42 m a partir da velocidade de propagación constante da onda

$$v_{p} = \frac{\Delta x}{\Delta t} \Rightarrow t_{2} = \frac{\Delta x}{v_{p}} = \frac{9,42 \text{ [m]}}{2,50 \text{ [m/s]}} = 3,77 \text{ s}$$

Análise: Pódese definir o período como o tempo que tarda unha onda en percorrer unha distancia igual á lonxitude de onda. Por tanto o tempo necesario para que a onda percorra unha distancia igual a $3 \cdot \lambda$, será o triplo do período: $t_2 = 3 \cdot T = 3 \cdot 1,26$ [s] = 3,77 s.

c) As ondas estacionarias non se propagan e non hai unha transmisión neta de enerxía.

Nas ondas estacionarias existen uns puntos, chamados nodos, que non oscilan. O seu elongación é nula en todo instante.

A onda do enunciado non é unha onda estacionaria xa que a ecuación da onda non coincide coa das ondas estacionarias e non existe ningún punto da onda que sexa un nodo, que teña unha elongación nula en calquera instante.

- 10. Unha onda transmítese ao longo dunha corda. O punto situado en x = 0 oscila segundo a ecuación $y = 0.1 \cos(10 \pi t)$ e outro punto situado en x = 0.03 m oscila segundo a ecuación $y = 0.1 \cos(10 \pi t \pi / 4)$. Calcula:
 - a) A constante de propagación, a velocidade de propagación e a lonxitude de onda.
 - b) A velocidade de oscilación dun punto calquera da corda.

(P.A.U. xuño 06)

Rta.: a) k = 26.2 rad/m; $v_p = 1.20 \text{ m/s}$; $\lambda = 0.240 \text{ m}$; b) $v - 3.14 \cdot \text{sen}(31.4 \cdot t - 26.2 \cdot x) \text{ [m/s]}$

Datos	Cifras significativas: 3
Ecuación de oscilación na orixe $x = 0$	$y = 0.100 \cdot \cos (10.0 \cdot \pi \cdot t) [m]$
Ecuación de oscilación en $x = 0.03$ m	$y = 0.100 \cdot \cos (10.0 \cdot \pi \cdot t - \pi / 4.00)$ [m]
Incógnitas	
Número de onda (constante de propagación?)	k
Velocidade de propagación	$ u_{ m p}$
Lonxitude de onda	λ
Velocidade da partícula nun punto calquera da corda.	ν

Outros símbolos

Posición do punto (distancia ao foco) Amplitude \boldsymbol{A} Frecuencia

Ecuacións

Ecuación dunha onda harmónica unidimensional $y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$

Número de onda $k = 2 \pi / \lambda$ Relación entre a frecuencia angular e a frecuencia $\omega = 2 \pi \cdot f$

Relación entre a lonxitude de onda e a velocidade de propagación $v_p = \lambda \cdot f$

Solución:

a) Calcúlase a amplitude e a frecuencia angular comparando a ecuación dunha onda harmónica unidimensional coa ecuación de vibración na orixe:

Ecuación xeral dunha onda harmónica: $y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$ $y = 0.100 \cdot \cos (10.0 \cdot \pi \cdot t) [m]$ Ecuación da onda harmónica na orixe (x = 0):

A = 0.100 mAmplitude:

 $\omega = 10.0 \cdot \pi \, [rad/s] = 31.4 \, rad/s$ Frecuencia angular:

Calcúlase o número de onda comparando a ecuación da onda harmónica unidimensional, na que se substituíron a amplitude e a frecuencia angular, coa ecuación de vibración no punto x = 0.0300 m:

Ecuación da onda harmónica: $y = 0.100 \cdot \cos (10.0 \cdot \pi \cdot t \pm k \cdot x)$ [m] Ecuación da onda harmónica no punto x = 0,0300 m: $y = 0,100 \cdot \cos(10,0 \cdot \pi \cdot t - \pi/4,00) \text{ [m]}$

$$k \cdot x = \frac{\pi}{4,00} \Rightarrow k = \frac{\pi}{4,00 \cdot x} = \frac{3,14 \text{ [rad]}}{4,00 \cdot 0,0300 \text{ [m]}} = 26,2 \text{ rad/m}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2 \cdot 3,14 \text{ [rad]}}{26,2 \text{ [rad/m]}} = 0,240 \text{ m}$$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{10.0 \cdot \pi}{2\pi} = 5.00 \text{ s}^{-1} = 5.00 \text{ Hz}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 0.240 \text{ [m]} \cdot 5.00 \text{ [s}^{-1}] = 1.20 \text{ m/s}$$

b) A ecuación de movemento queda:

$$y = 0.100 \cdot \cos (31.4 \cdot t - 26.2 \cdot x)$$
 [m]

A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d \left[0.100 \cdot \cos(31.4 \cdot t - 26.2 \cdot x) \right]}{dt} = -0.100 \cdot 31.4 \cdot \sin(31.4 \cdot t - 26.2 \cdot x) \left[\text{m/s} \right]$$
$$v = -3.14 \cdot \sin(31.4 \cdot t - 26.2 \cdot x) \left[\text{m/s} \right]$$

- 11. Unha onda periódica vén dada pola ecuación y(t, x) = 10 sen $2\pi(50 t 0.2 x)$ en unidades do S.I. Calcu
 - a) Frecuencia, velocidade de fase e lonxitude de onda.
 - b) A velocidade máxima dunha partícula do medio e os valores do tempo t para os que esa velocidade é máxima (nun punto que dista 50 cm da orixe)

(P.A.U. set. 05)

Rta.: a) f = 50.0 Hz; $\lambda = 5.00$ m; $v_p = 250$ m/s; b) $v_m = 3.14$ km/s; $t = 0.00200 + 0.0100 \cdot n$ [s], (n = 0, 1...)

Datos

Cifras significativas: 3 $y = 10.0 \text{ sen}[2\pi(50.0 \cdot t - 0.200 \cdot x)] \text{ [m]}$

Datos	Cifras significativas: 3
Posición do punto (distancia ao foco)	x = 50.0 cm = 0.500 m
Incógnitas	
Frecuencia	f
Velocidade de fase	$v_{ m p}$
Lonxitude de onda	λ^{-}
Tempo para os que $y(t, x)$ é máxima na posición $x = 50$ cm	t
Outros símbolos	
Período	T
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia e o período	f = 1 / T
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_n = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$
$$y = 10.0 \cdot \text{sen}[2 \pi (50.0 \cdot t - 0.200 \cdot x)] = 4.00 \cdot \text{sen}(100 \cdot \pi \cdot t - 0.400 \cdot \pi \cdot x) \text{ [m]}$$

Frecuencia angular:

$$\omega = 100 \cdot \pi \text{ [rad·s}^{-1}\text{]} = 314 \text{ rad·s}^{-1}$$

 $k = 0,400 \cdot \pi \text{ [rad·m}^{-1}\text{]} = 1,26 \text{ rad·m}^{-1}$

Número de onda:

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{100 \cdot \pi \, [\, \text{rad} \cdot \text{s}^{-1}]}{2\pi \, [\, \text{rad}]} = 50.0 \, \text{s}^{-1} = 50.0 \, \text{Hz}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2\pi \text{ [rad]}}{0.400 \cdot \pi \text{ [rad \cdot m}^{-1]}} = 5,00 \text{ m}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 5,00 \text{ [m]} \cdot 50,0 \text{ [s}^{-1}] = 250 \text{ m} \cdot \text{s}^{-1}$$

b) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}\left[10.0 \cdot \mathrm{sen}\left[2\pi(50.0 \cdot t - 0.200 \cdot x)\right]\right]}{\mathrm{d}t} = 10.0 \cdot 2 \cdot 3.14 \cdot 50.0 \cdot \mathrm{cos}\left[2\pi(50.0 \cdot t - 0.200 \cdot x)\right]\left[\mathrm{m/s}\right]$$
$$v = 3.14 \cdot 10^{3} \cdot \mathrm{cos}\left[2\pi(50.0 \cdot t - 0.200 \cdot x)\right]\left[\mathrm{m/s}\right]$$

A velocidade é máxima cando $cos(\varphi) = -1$

$$v_{\rm m} = 3.14 \cdot 10^3 \, {\rm m/s}$$

Este valor do coseno corresponde a un ángulo de $\varphi = 0$ ou π [rad] na primeira circunferencia, e, en xeral

$$\varphi = n \cdot \pi \text{ [rad]}$$

Sendo n un número natural (n = 0, 1, 2...) Igualando e substituíndo x = 0,500 m

$$2 \pi (50.0 \cdot t - 0.200 \cdot 0.500) = n \cdot \pi$$

$$t = 0.00200 + 0.0100 \cdot n \text{ [s]. } (n = 0.1.2...)$$

Análise: A primeira vez que a velocidade é máxima para x = 0,500 m é (n = 0) $t_1 = 0,00200 \text{ s}$. Como o período é $T = 1 / 50,0 \text{ [s}^{-1}] = 0,0200 \text{ s}$, volverá ser máxima cada vez que pase pola orixe, ou sexa, cada medio período, ou sexa cada 0,00100 s.

- 12. Unha onda plana propágase na dirección X positiva con velocidade v = 340 m/s, amplitude A = 5 cm e frecuencia f = 100 Hz (fase inicial φ_0 = 0)
 - a) Escribe a ecuación da onda.
 - b) Calcula a distancia entre dous puntos cuxa diferencia de fase nun instante dado é 2 $\pi/3$.

(P.A.U. xuño 05)

Rta.: a) $y = 0.0500 \cdot \text{sen}(628 \cdot t - 1.85 \cdot x)$ [m]; b) $\Delta x = 1.13$ m

Datos	Cifras significativas: 3
Amplitude	A = 5,00 cm = 0,0500 m
Frecuencia	$f = 100 \text{ Hz} = 100 \text{ s}^{-1}$
Velocidade de propagación da onda polo medio	$v_{\rm p} = 340 \; { m m/s}$
Incógnitas	
Ecuación de onda	ω , k
Distancia entre dous puntos cuxa diferencia de fase é $2 \pi/3$	Δx
Outros símbolos	
Posición do punto (distancia ao foco)	x
Período	T
Lonxitude de onda	λ
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{ m p} = \lambda \cdot f$

Solución:

a) Tómase a ecuación dunha onda harmónica en sentido positivo do eixe X:

$$y = A \cdot \text{sen}(\omega \cdot t - k \cdot x)$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3.14 \cdot 100 \text{ [s}^{-1}\text{]} = 200 \cdot \pi \text{ [rad} \cdot \text{s}^{-1}\text{]} = 628 \text{ rad} \cdot \text{s}^{-1}$$

Calcúlase a lonxitude de onda a partir da velocidade de propagación da onda e da frecuencia:

$$v_{p} = \lambda \cdot f \Rightarrow \lambda = \frac{340 \text{ [m/s]}}{100 \text{ [s}^{-1}]} = 3,40 \text{ m}$$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14 \text{ [rad]}}{3,40 \text{ [m]}} = 1,85 \text{ rad/m}$$

A ecuación de onda queda:

$$y(x, t) = 0.0500 \cdot \text{sen}(628 \cdot t - 1.85 \cdot x) \text{ [m]}$$

b) Nun instante t, a diferenza de fase entre dous puntos situados en x $_1$ e x_2 é:

$$\Delta \varphi = (628 \cdot t - 1.85 \cdot x_2) - (628 \cdot t - 1.85 \cdot x_1) = 1.85 \cdot \Delta x$$

Se a diferenza de fase é 2 $\pi/3$ = 2,09 rad

$$1,85 \text{ [rad/m]} \cdot \Delta x = 2,09 \text{ rad}$$

$$\Delta x = \frac{2,09 \text{ [rad]}}{1,85 \text{ [rad/m]}} = 1,13 \text{ m}$$

Análise: Se a diferenza de fase fose de 2π rad, a distancia entre os puntos sería unha lonxitude de onda λ . A unha diferenza de fase de $2 \pi/3$ rad correspóndelle unha distancia de $\lambda/3 = 3,40$ [m] /3 = 1,13 m.

- 13. A función de onda que describe a propagación dun son é $y(x) = 6 \cdot 10^{-2} \cos(628 \ t 1,90 \ x)$ (magnitudes no sistema internacional). Calcula:
 - a) A frecuencia, lonxitude de onda e velocidade de propagación.

b) A velocidade e a aceleración máximas dun punto calquera do medio no que se propaga a onda.

(P.A.U. set. 04)

Rta.: a) f = 100 Hz; $\lambda = 3.31$ m; $v_p = 331$ m/s; b) $v_m = 37.7$ m/s; $a_m = 2.37 \cdot 10^4$ m/s²

Datos	Cifras significativas: 3
Ecuación da onda	$y = 6.00 \cdot 10^{-2} \cdot \cos(628 \cdot t - 1.90 \cdot x)$ [m]
Incógnitas	
Frecuencia	f
Lonxitude de onda	λ
Velocidade de propagación	$ u_{ m p}$
Velocidade máxima	$ u_{ m m}$
Aceleración máxima	$a_{ m m}$
Outros símbolos	
Posición do punto (distancia ao foco)	x
Amplitude	A
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{\rm p} = \lambda \cdot f$

Solución:

a) Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$$
$$y = 6,00 \cdot 10^{-2} \cdot \cos(628 \cdot t - 1,90 \cdot x) \text{ [m]}$$

Frecuencia angular:

 $\omega = 628 \text{ rad} \cdot \text{s}^{-1}$

Número de onda:

 $k = 1,90 \text{ rad} \cdot \text{m}^{-1}$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{628 \text{ [rad \cdot s}^{-1}]}{2 \cdot 3,14 \text{ [rad]}} = 100 \text{ s}^{-1} = 100 \text{ Hz}$$

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2 \cdot 3,14 \text{ [rad]}}{1,90 \text{ [rad \cdot m}^{-1]}} = 3,31 \text{ m}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 3.31 \text{ [m]} \cdot 100 \text{ [s}^{-1}\text{]} = 331 \text{ m} \cdot \text{s}^{-1}$$

b) A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}\left[6,00 \cdot 10^{-2} \cdot \cos(628 \cdot t - 1,90 \cdot x)\right]}{\mathrm{d}t} = -6,00 \cdot 10^{-2} \cdot 628 \cdot \sin(628 \cdot t - 1,90 \cdot x) \left[\mathrm{m/s}\right]$$

$$v = -37.7 \cdot \text{sen}(628 \cdot t - 1.90 \cdot x) \text{ [m/s]}$$

A velocidade é máxima cando sen(φ) = -1

$$v_{\rm m} = 37.7 \; {\rm m/s}$$

A aceleración obtense derivando a velocidade con respecto ao tempo:

$$a = \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\mathrm{d} \left[-37,7 \cdot \mathrm{sen} \left(628 \cdot t - 1,90 \cdot x \right) \right]}{\mathrm{d} t} = -37,7 \cdot 628 \cdot \mathrm{cos} \left(628 \cdot t - 1,90 \cdot x \right) \left[\mathrm{m/s^2} \right]$$
$$a = -2,37 \cdot 10^4 \cdot \mathrm{cos} \left(628 \cdot t - 1,90 \cdot x \right) \left[\mathrm{m/s^2} \right]$$

A aceleración é máxima cando $cos(\varphi) = -1$

$$a_{\rm m} = 2.37 \cdot 10^4 \, \text{m/s}^2$$

- 14. Por unha corda tensa propágase unha onda transversal con amplitude 5 cm, frecuencia 50 Hz e velocidade de propagación 20 m/s. Calcula:
 - a) A ecuación de onda y(x, t)
 - b) Os valores do tempo para os que y(x, t) é máxima na posición x = 1 m

(P.A.U. xuño 04)

Rta.: a) $y = 0.0500 \cdot \text{sen}(100 \cdot \pi \cdot t - 5.00 \cdot \pi \cdot x)$ [m]; b) $t = 0.0550 + 0.0100 \cdot n$ [s], (n = 0, 1, 2...)

Datos	Cifras significativas: 3
Amplitude	A = 5,00 cm = 0,0500 m
Frecuencia	$f = 50.0 \text{ Hz} = 50.0 \text{ s}^{-1}$
Velocidade de propagación	$v_{\rm p} = 20.0 \; {\rm m/s}$
Posición para calcular os valores do tempo nos que <i>y</i> é máxima	x = 1,00 m
Incógnitas	
Ecuación da onda (frecuencia angular e número de onda)	ω , k
Tempo para os que $y(x, t)$ é máxima na posición $x = 1$ m	t
Outros símbolos	
Posición do punto (distancia ao foco)	x
Período	T
Lonxitude de onda	λ
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia e o período	f = 1 / T
Relación entre a frecuencia angular e a frecuencia	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_p = \lambda \cdot f$

Solución:

a) Tómase a ecuación dunha onda harmónica en sentido positivo do eixe X:

$$v = A \cdot \text{sen}(\omega \cdot t - k \cdot x)$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3,14 \cdot 50,0 \text{ [s}^{-1}\text{]} = 100 \cdot \pi \text{ [rad} \cdot \text{s}^{-1}\text{]} = 314 \text{ rad} \cdot \text{s}^{-1}$$

Calcúlase a lonxitude de onda a partir da velocidade de propagación da onda e da frecuencia:

$$v_{p} = \lambda \cdot f \Rightarrow \lambda = \frac{v_{p}}{f} = \frac{20.0 \text{ [m/s]}}{50.0 \text{ [s}^{-1]}} = 0.400 \text{ m}$$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14 \text{ [rad]}}{0,400 \text{ [m]}} = 5,00 \cdot \pi \text{ [rad/m]} = 15,7 \text{ rad/m}$$

A ecuación de onda queda:

$$y(x, t) = 0.0500 \cdot \text{sen}(100 \cdot \pi \cdot t - 5.00 \cdot \pi \cdot x) \text{ [m]} = 0.0500 \cdot \text{sen}(314 \cdot t - 15.7 \cdot x) \text{ [m]}$$

b) y é máxima cando sen (φ) = 1, o que corresponde a un ángulo de $\varphi = \pi/2$ [rad] na primeira circunferencia. Supoñendo que se refire a unha y máxima en valor absoluto, $\varphi = \pm \pi/2$ [rad], e, en xeral:

$$\varphi = \pi / 2 + n \cdot \pi \text{ [rad]}$$

Sendo n un número natural (n = 0, 1, 2...) Igualando e substituíndo x = 1,00 m

$$100 \cdot \pi \cdot t - 5,00 \cdot \pi = \pi / 2 + n \cdot \pi$$
$$t = 0,0550 + 0,0100 \cdot n [s]$$

Análise: A primeira vez que a elongación é máxima para x = 1,00 m é (n = 0) cando $t_1 = 0,0550$ s. Como o período é $T = 1 / f = 1 / (50,0 \text{ s}^{-1}) = 0,0200$ s, volverá ser máxima cada 0,0200 s, e máxima en valor absoluto cada medio ciclo, ou sexa cada 0,0100 s.

Dioptrio plano

- 1. Un raio de luz de frecuencia 5·10¹⁴ Hz incide cun ángulo de incidencia de 30° sobre unha lámina de vidro de caras plano-paralelas de espesor 10 cm. Sabendo que o índice de refracción do vidro é 1,50 e o do aire 1,00:
 - a) Enuncia as leis da refracción e debuxa a marcha dos raios no aire e no interior da lámina de vidro.
 - b) Calcula a lonxitude de onda da luz no aire e no vidro, e a lonxitude percorrida polo raio no interior da lámina.
 - c) Acha o ángulo que forma o raio de luz coa normal cando emerxe de novo ao aire.

Dato: $c = 3.00 \cdot 10^8 \text{ m/s}$ (P.A.U. set. 14)

Rta.: b) λ (aire) = 600 nm; λ (vidro) = 400 nm; L = 10.6 cm; c) $\theta_{r2} = 30^{\circ}$

Datos

Frecuencia do raio de luz Ángulo de incidencia Espesor da lámina de vidro Índice de refracción do vidro Índice de refracción do aire Velocidade da luz no baleiro

Incógnitas

Lonxitude de onda de luz no aire e no vidro Lonxitude percorrida polo raio de luz no interior da lámina Ángulo de desviación do raio ao saír da lámina

Ecuacións

Índice de refracción dun medio $_{\rm i}$ no que a luz se despraza á velocidade $\nu_{\rm i}$

Relación entre a velocidade v, a lonxitude de onda λ e a frecuencia f Lei de Snell da refracción

Cifras significativas: 3

$$f = 5.00 \cdot 10^{14} \text{ Hz}$$

 $\theta_{i1} = 30.0^{\circ}$
 $e = 10.0 \text{ cm} = 0.100 \text{ m}$
 $n_{v} = 1.50$
 $n_{a} = 1.00$
 $c = 3.00 \cdot 10^{8} \text{ m/s}$

$$\lambda_{\rm a}, \, \lambda_{\rm v} \ L \ heta_{\rm r2}$$

$$n_{i} = \frac{c}{v_{i}}$$

$$v = \lambda \cdot f$$

$$n_{i} \cdot \text{sen } \theta_{i} = n_{r} \cdot \text{sen } \theta_{r}$$

Solución:

- a) As leis de Snell da refracción son:
- 1.ª O raio incidente, o raio refractado e a normal están no mesmo plano.
- 2.ª A relación matemática entre os índices de refracción $n_{\rm i}$ e $n_{\rm r}$ dos medios incidente e refractado e os ángulos de incidencia e refracción $\theta_{\rm i}$ e $\theta_{\rm r}$, é:

$$n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$$

Represéntase a traxectoria da luz. O raio incidente no punto A cun ángulo de incidencia $\theta_{i1} = 30^{\circ}$ pasa do aire ao vidro dando un raio refractado que forma o primeiro ángulo de refracción θ_{r1} e o segundo ángulo de incidencia θ_{i2} entre o vidro e o aire. Finalmente sae da lámina de vidro polo punto B co segundo ángulo de refracción θ_{r2} .

b) A velocidade da luz no aire é:

$$v_a = \frac{c}{n_a} = \frac{3,00 \cdot 10^8 \text{ m/s}}{1,00} = 3,00 \cdot 10^8 \text{ m/s}$$

Por tanto, a lonxitude de onda da luz no aire é:

$$\lambda_{a} = \frac{v_{a}}{f} = \frac{3,00 \cdot 10^{8} \text{ m/s}}{5,00 \cdot 10^{14} \text{ s}^{-1}} = 6,00 \cdot 10^{-7} \text{ m} = 600 \text{ nm}$$

A velocidade da luz no vidro é:

$$v_v = \frac{c}{n_v} = \frac{3,00 \cdot 10^8 \text{ m/s}}{1,50} = 2,00 \cdot 10^8 \text{ m/s}$$

Por tanto, a lonxitude de onda da luz no vidro é:

$$\lambda_{\rm v} = \frac{v_{\rm v}}{f} = \frac{2,00 \cdot 10^8 \text{ m/s}}{5.00 \cdot 10^{14} \text{ s}^{-1}} = 4,00 \cdot 10^{-7} \text{ m} = 400 \text{ nm}$$

Como o espesor da lámina é de 10 cm, a lonxitude percorrida polo raio é a hipotenusa L do triángulo ABC. O primeiro ángulo de refracción θ_{r1} pódese calcular aplicando a lei de Snell

$$1,00 \cdot \text{sen } 30^\circ = 1,50 \cdot \text{sen } \theta_{\text{r}_1}$$

$$\sin \theta_{\rm rl} = \frac{1,00 \cdot \sin 30^{\circ}}{1,50} = 0,333$$

$$\theta_{\rm r1} = {\rm arcsen} \ 0.333 = 19.5^{\circ}$$

Por tanto a hipotenusa L vale:

$$L = \frac{e}{\cos \theta_{rl}} = \frac{10.0 \text{ [cm]}}{\cos 19.5^{\circ}} = 10.6 \text{ cm}$$

c) Como a lámina de vidro é de caras paralelas, o segundo ángulo de incidencia a_{i2} é igual ao primeiro ángulo de refracción:

$$\theta_{i2} = \theta_{r1} = 19.5^{\circ}$$

Para calcular o ángulo co que sae da lámina, vólvese a aplicar a lei de Snell entre o vidro (que agora é o medio incidente) e o aire (que é o medio refractado):

$$1,50 \cdot \text{sen } 19,5^{\circ} = 1,00 \cdot \text{sen } \theta_{r2}$$

$$\sin \theta_{\rm r2} = \frac{1,50 \cdot \sin 19,5^{\circ}}{1,00} = 0,500$$

$$\theta_{\rm r2} = {\rm arcsen} \ 0.500 = 30.0^{\circ}$$

Análise: Este resultado é correcto porque o raio sae paralelo ao raio incidente orixinal.

- 2. Un raio de luz pasa da auga (índice de refracción n = 4/3) ao aire (n = 1). Calcula:
 - a) O ángulo de incidencia se os raios reflectido e refractado son perpendiculares entre si.
 - b) O ángulo límite.
 - c) Hai ángulo límite se a luz incide do aire á auga?

(P.A.U. xuño 13)

Rta.: a) $\theta_i = 36.9^\circ$; b) $\lambda = 48.6^\circ$

Datos

Índice de refracción do aire Índice de refracción da auga

Ángulo entre o raio refractado e o reflectido

Incógnitas

Ángulo de incidencia

Ángulo límite

Ecuacións

Lei de Snell da refracción

Solución:

a) Aplicando a lei de Snell da refracción:

$$1,33 \cdot \text{sen } \theta_i = 1,00 \cdot \text{sen } \theta_r$$

Cifras significativas: 3

n = 1,00

 $n_{\rm a} = 4 / 3 = 1,33$ $\Delta \theta_{\rm rr} = 90,0^{\circ}$

 $heta_{
m i}$

λ

 $n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$

Á vista do debuxo debe cumprirse que

$$\theta_{\rm r}$$
 + 90° + $\theta_{\rm rx}$ = 180°

Como o ángulo de reflexión θ_{rx} é igual ao ángulo de incidencia θ_{i} , a ecuación anterior convértese en:

$$\theta_i + \theta_r = 90^\circ$$

É dicir, que o ángulo de incidencia θ_i e o de refracción θ_r son complementarios.

O seno dun ángulo é igual ao coseno do seu complementario. Entón a primeira ecuación queda:

$$1,33 \cdot \text{sen } \theta_{i} = \text{sen } \theta_{r} = \cos \theta_{i}$$

$$\tan \% itheta_i = \frac{1}{1.33} = 0,75$$

$$\theta_{\rm i} = \arctan 0.75 = 36.9^{\circ}$$

b) Ángulo límite λ é o ángulo de incidencia que produce un ángulo de refracción de 90°

$$1,33 \cdot \text{sen } \lambda = 1,00 \cdot \text{sen } 90,0^{\circ}$$

sen
$$\lambda = 1.00 / 1.33 = 0.75$$

$$\lambda = \text{arcsen } 0.75 = 48.6^{\circ}$$

c) Non. Cando a luz pasa do aire á auga, o ángulo de refracción é menor que o de incidencia. Para conseguir un ángulo de refracción de 90° o ángulo de incidencia tería que ser maior que 90° e non estaría no aire. Tamén pode deducirse da lei de Snell.

$$1,00 \cdot \text{sen } \lambda_1 = 1,33 \cdot \text{sen } 90^\circ$$

$$sen \lambda_1 = 1.33 / 1.00 > 1$$

É imposible. O seno dun ángulo non pode ser maior que uno.

- 3. Sobre un prisma equilátero de ángulo 60° (ver figura), incide un raio luminoso monocromático que forma un ángulo de 50° coa normal á cara AB. Sabendo que no interior do prisma o raio é paralelo á base AC:
 - a) Calcula o índice de refracción do prisma.
 - b) Determina o ángulo de desviación do raio ao saír do prisma, debuxando a traxectoria que segue o raio.
 - c) Explica se a frecuencia e a lonxitude de onda correspondentes ao raio luminoso son distintas, ou non, dentro e fóra do prisma.

Dato:
$$n(aire) = 1$$

Rta.: a)
$$n_p = 1.5$$
; b) $\theta_{r2} = 50^\circ$

(P.A.U. set. 11)

•

Datos

Ángulos do triángulo equilátero Ángulo de incidencia

Índice de refracción do aire

Incógnitas

Índice de refracción do prisma

Ángulo de desviación do raio ao saír do prisma

Ecuacións

Lei de Snell da refracción

Cifras significativas: 2

 $\theta = 60^{\circ}$ $\theta_{\rm i} = 50^{\circ}$

 $n_{\rm a} = 1.0$

 n_{p} θ_{r}

 $n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$

Solución:

a) Na lei de Snell da refracción

$$n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$$

 $n_{\rm i}$ e $n_{\rm r}$ representan os índices de refracción dos medios incidente e refractado

 θ_i e θ_r representan os ángulos de incidencia e refracción que forma cada raio coa normal á superficie de separación entre os dous medios.

O primeiro ángulo de refracción θ_{r1} , que forma o raio de luz refractado paralelo á base do prisma, vale 30°, xa que é o complementario ao de 60° do triángulo equilátero.

$$n_{\rm p} = n_{\rm r} = \frac{n_{\rm i} \cdot \sin \theta_{\rm i1}}{\sin \theta_{\rm r1}} = \frac{1,0 \cdot \sin 50^{\circ}}{\sin 30^{\circ}} = 1,5$$

b) Cando o raio sae do prisma, o ángulo de incidencia θ_{i2} do raio coa normal ao lado BC vale 30°. Volvendo aplicar a lei de Snell

 $\theta_{\rm r2}$ = arcsen 0,77 = 50°

c) A frecuencia f dunha onda electromagnética é unha característica da mesma e non varía co medio.

A lonxitude de onda λ está relacionada con ela por

$$n=\frac{c}{v}$$

A velocidade da luz no aire é practicamente igual á do baleiro, mentres que no prisma é 1,5 veces menor. Como a frecuencia é a mesma, a lonxitude de onda (que é inversamente proporcional á frecuencia) no prisma é 1,5 veces menor que no aire.

♦ CUESTIÓNS

Características e ecuacións das ondas

- 1. A intensidade nun punto dunha onda esférica que se propaga nun medio homoxéneo e isótropo:
 - A) É inversamente proporcional ao cadrado da distancia ao foco emisor.
 - B) É inversamente proporcional á distancia ao foco emisor.
 - C) Non varía coa distancia ao foco emisor.

(P.A.U. set. 16)

 θ_{r_2}

Solución: A

A intensidade dunha onda é a enerxía na unidade de tempo por unidade de superficie perpendicular á dirección de propagación da onda.

$$I = \frac{E}{S \cdot t}$$

Se a onda é esférica, a superficie é: $S = 4 \pi r^2$, na que r é a distancia ao foco.

$$I = \frac{E}{4\pi r^2 \cdot t}$$

2. Cando un movemento ondulatorio se reflicte, a súa velocidade de propagación: A) Aumenta.

- B) Depende da superficie de reflexión.
- C) Non varía.

(P.A.U. set. 15)

Solución: C

A velocidade de propagación dunha onda depende dalgunhas características do medio (temperatura e masa molar nos gases, densidade lineal nas cordas...). Cando unha onda se reflicte, mantense no medio do que procedía despois de rebotar. Por tanto, como o medio non varía, a velocidade de propagación mantense.

- 3. Nunha onda de luz:
 - A) Os campos eléctrico \overline{E} e magnético \overline{B} vibran en planos paralelos.
 - B) Os campos \overline{E} e \overline{B} vibran en planos perpendiculares entre si.
 - C) A dirección de propagación é a de vibración do campo eléctrico.

(Debuxa a onda de luz).

Unha onda electromagnética é unha combinación dun campo eléctrico e un campo magnético oscilante que se propagan en direccións perpendiculares entre si.

- 4. Se unha onda atravesa unha abertura de tamaño comparable á súa lonxitude de onda:
 - A) Refráctase.
 - B) Polarízase.
 - C) Difráctase.

(Debuxa a marcha dos raios)

(P.A.U. xuño 14, set. 09)

Solución: C

Prodúcese difracción cando unha onda «ábrese» cando atravesa unha abertura de tamaño comparable á súa lonxitude de onda. É un fenómeno característico das ondas.

Pode representarse tal como na figura para unha onda plana.

5. A ecuación dunha onda transversal de amplitude 4 cm e frecuencia 20 Hz que se propaga no sentido negativo do eixe X cunha velocidade de 20 m·s⁻¹ é:

A)
$$y(x, t) = 4.10^{-2} \cos \pi (40 \cdot t + 2 \cdot x)$$
 [m]

B)
$$y(x, t) = 4.10^{-2} \cos \pi (40 \cdot t - 2 \cdot x)$$
 [m]

C)
$$y(x, t) = 4 \cdot 10^{-2} \cos 2 \pi (40 \cdot t + 2 \cdot x)$$
 [m]

(P.A.U. set. 13)

Solución: A

A ecuación dunha onda harmónica unidimensional pode escribirse como:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$

Na que

y é a elongación do punto que oscila (separación da posición de equilibrio) *A* é a amplitude (elongación máxima)

 ω é a frecuencia angular que está relacionada coa frecuencia f por ω = 2 π · f. t é o tempo

k é o número de onda, a cantidade de ondas que entran nunha lonxitude de 2 π metros. Está relacionada coa lonxitude de onda λ por k = 2 π / λ

x é a distancia do punto ao foco emisor.

O signo \pm entre $\omega \cdot t$ e $k \cdot x$ é negativo se a onda propágase en sentido positivo do eixe X, e positivo se o fai en sentido contrario.

Como di que se propaga en sentido negativo do eixe X podemos descartar a opción B.

A frecuencia angular ω da ecuación da opción A é $\omega_1 = \pi \cdot 40$ [rad/s], que corresponde a unha frecuencia de 20 Hz.

$$f_1 = \frac{\omega}{2\pi} = \frac{40\pi [\text{rad/s}]}{2\pi [\text{rad}]} = 20 \text{ s}^{-1}$$

- 6. Dous focos O_1 e O_2 emiten ondas en fase da mesma amplitude (A), frecuencia (f) e lonxitude de onda (λ) que se propagan á mesma velocidade, interferindo nun punto P que está a unha distancia λ m de O_1 e 3 λ m de O_2 . A amplitude resultante en P será:
 - A) Nula.
 - B) A.
 - C) 2 A.

(P.A.U. xuño 13)

Solución: C

Represéntanse dúas ondas que se propagan de esquerda a dereita desde dous puntos O_1 e O_2 de forma que o punto P atópase a unha distancia λ de O_1 e a unha distancia λ de O_2 .

Como a diferenza de camiños é un número enteiro de lonxitudes de onda os máximos coinciden e amplifícanse e a interferencia é construtiva.

Como a frecuencia, a fase e amplitude son a mesma, a onda resultante será:

$$y = y_1 + y_2 = A \cdot \operatorname{sen}(\omega \cdot t - k \cdot x_1) + A \cdot \operatorname{sen}(\omega \cdot t - k \cdot x_2)$$
$$y = 2A \cdot \operatorname{sen}\left(\omega \cdot t - k \cdot \frac{(x_1 + x_2)}{2}\right) \cos\left(k \cdot \frac{(x_1 - x_2)}{2}\right)$$

Como $x_1 - x_2 = 2 \lambda$ e $k = 2 \pi / \lambda$, queda unha onda da mesma frecuencia, en fase coas iniciais e cuxa amplitude é o dobre:

$$y = 2 A \cdot \text{sen}(\omega \cdot t - 4 \pi) \cdot \text{cos}(2 \pi) = 2 A \cdot \text{sen}(\omega \cdot t)$$

- 7. A ecuación dunha onda é $y = 0.02 \cdot \text{sen} (50 \cdot t 3 \cdot x)$; isto significa que:
 - A) $\omega = 50 \text{ rad} \cdot \text{s}^{-1} \text{ e } \lambda = 3 \text{ m}.$
 - B) A velocidade de propagación $u = 16,67 \text{ m} \cdot \text{s}^{-1}$ e a frecuencia $f = 7,96 \text{ s}^{-1}$.
 - C) t = 50 s e o número de onda k = 3 m⁻¹.

(P.A.U. xuño 12)

Solución: B

A ecuación dunha onda harmónica unidimensional pode escribirse como:

$$y = A \cdot \text{sen}(\omega \cdot t \pm k \cdot x)$$

Na que

y é a elongación do punto que oscila (separación da posición de equilibrio)

A é a amplitude (elongación máxima)

 ω é a frecuencia angular que está relacionada coa frecuencia f por $\omega = 2 \pi \cdot f$.

t é o tempo

ké o número de onda, a cantidade de ondas que entran nunha lonxitude de 2 π metros. Está relacionada coa lonxitude de onda λ por k = 2 π / λ

x é a distancia do punto ao foco emisor.

O signo \pm entre $\omega \cdot t$ e $k \cdot x$ é negativo se a onda propágase en sentido positivo do eixe X, e positivo se o fai en sentido contrario.

A velocidade u de propagación dunha onda é $u = \lambda \cdot f$

Comparando a ecuación xeral coa do problema obtemos:

A = 0.02 m

 $\omega = 50 \text{ rad/s}$

k = 3 rad/m

Para elixir a opción correcta calcúlanse algúns dos parámetros da ecuación (usando 2 cifras significativas).

$$\lambda = \frac{2\pi}{k} = \frac{2\pi [\text{rad}]}{3.0 [\text{rad/m}]} = 2.1 \text{ m}$$

Iso permite descartar a opción A.

$$f = \frac{\omega}{2\pi} = \frac{50 \text{ [rad/s]}}{2\pi \text{ [rad]}} = 8.0 \text{ s}^{-1} = 8.0 \text{ Hz}$$

$$ou = \lambda \cdot f = 2,1 \text{ [m]} \cdot 8,0 \text{ [s}^{-1}] = 17 \text{ m/s}$$

Coincide coa opción B (se se redondean os valores que aparecen na devandita opción ás cifras significativas que hai que usar).

A opción C non é correcta porque a frecuencia é a inversa do período:

$$T = \frac{1}{f} = \frac{1}{8.0 \text{ [s}^{-1}]} = 0.13 \text{ s}$$

- 8. Razoa cal das seguintes afirmacións referidas á enerxía dun movemento ondulatorio é correcta:
 - A) É proporcional á distancia ao foco emisor de ondas.
 - B) É inversamente proporcional á frecuencia da onda.
 - C) É proporcional ao cadrado da amplitude da onda.

(P.A.U. set. 11)

Solución: C. Véxase unha cuestión parecida na proba de setembro de 2009

- 9. Unha onda de luz é polarizada por un polarizador A e atravesa un segundo polarizador B colocado despois de A. Cal das seguintes afirmacións é correcta con respecto á luz despois de B?
 - A) Non hai luz se A e B son paralelos entre si.
 - B) Non hai luz se A e B son perpendiculares entre si.
 - C) Hai luz independentemente da orientación relativa da e B.

(P.A.U. xuño 11)

Solución: B

O fenómeno de polarización só ocorre nas ondas transversais. A luz é un conxunto de oscilacións de campo eléctrico e campo magnético que vibran en planos perpendiculares que se cortan na liña de avance o raio de luz. A luz do Sol ou dunha lámpada eléctrica vibra nunha multitude de planos.

O primeiro polarizador só permite pasar a luz que vibra nun determinado plano. Se o segundo polarizador está colocado en dirección perpendicular ao primeiro, a luz que chega a el non ten compoñen-

tes na dirección desta segunda polarización polo que non pasará ningunha luz.

- 10. Unha onda harmónica estacionaria caracterízase por:
 - A) Ter frecuencia variable.
 - B) Transportar enerxía.
 - C) Formar nodos e ventres.

(P.A.U. xuño 10)

Solución: C

Unha onda estacionaria é xerada por interferencia de dúas ondas de iguais características pero con distinto sentido de desprazamento. Nela existen puntos que non vibran e chámense nodos. Un exemplo sería a onda estacionaria ancorada á corda dun instrumento musical como unha guitarra ou violín. Os extremos da corda están fixos (son os nodos) e a amplitude da vibración é máxima no punto central. Nesta onda a lonxitude da corda sería a metade da lonxitude de onda e a situación correspondería ao modo fundamental de vibración.

- 11. A luz visible abarca un rango de frecuencias que van desde (aproximadamente) 4,3·10¹⁴ Hz (vermello) até 7,5·10¹⁴ Hz (ultravioleta). Cal das seguintes afirmacións é correcta?
 - A) A luz vermella ten menor lonxitude de onda que a ultravioleta.
 - B) A ultravioleta é a máis enerxética do espectro visible.
 - C) Ambas aumentan a lonxitude de onda nun medio con maior índice de refracción que aire.

(P.A.U. xuño 10)

Solución: B

Fago a excepción de que, estritamente, a luz ultravioleta non é visible, pero limita coa violeta, que se o é, nesa frecuencia.

Na teoría clásica, a enerxía dunha onda é directamente proporcional ao cadrado da amplitude e da frecuencia. Como a frecuencia da luz ultravioleta é maior que da luz vermella, terá maior enerxía.

(Na teoría cuántica, a luz pódese considerar como un fai de partículas chamadas fotóns. A enerxía E que leva un fotón de frecuencia f é:

$$E = h \cdot f$$

Sendo h a constante de Planck, que ten un valor moi pequeno: $h = 6,63 \cdot 10^{-34}$ J·s Nese caso, canto maior sexa a frecuencia, maior será a enerxía do fotón).

As outras opcións:

A. Falsa. A lonxitude de onda λ está relacionada coa velocidade de propagación ν e a frecuencia f por:

$$v = \lambda \cdot f$$

Nun medio homoxéneo, a lonxitude de onda e a frecuencia son inversamente proporcionais. Como

$$f_{\rm u} = 7.5 \cdot 10^{14} > 4.3 \cdot 10^{14} = f_{\rm v} \Longrightarrow \lambda_{\rm u} < \lambda_{\rm v}$$

C. Falsa. O índice de refracción dun medio respecto ao baleiro $n_{\rm m}$ é o cociente entre a velocidade da luz no baleiro c e a velocidade da luz no medio $v_{\rm m}$.

$$n_{\rm m} = c / v_{\rm m}$$

Se o índice de refracción do medio é maior que o do aire, a velocidade da luz nese medio ten que ser menor, por ser inversamente proporcionais.

$$n_{\rm m} > n_{\rm a} \Longrightarrow \nu_{\rm m} < \nu_{\rm a}$$

Como a frecuencia da luz é característica (non varía ao cambiar de medio) e está relacionada coa velocidade de propagación da luz no medio por:

$$v_{\rm m} = \lambda_{\rm m} \cdot f$$

Como son directamente proporcionais, ao ser menor a velocidade, tamén ten que ser menor a lonxitude de onda.

- 12. Cando unha onda harmónica plana propágase no espazo, a súa enerxía é proporcional:
 - A) A $1/f(f \acute{e} \text{ a frecuencia})$
 - B) Ao cadrado da amplitude A^2 .
 - C) A 1/r (r é a distancia ao foco emisor)

(P.A.U. set. 09)

Solución: B

A enerxía que transporta unha onda material harmónica unidimensional é a suma da cinética e de potencial:

$$E = (E_c + E_p) = \frac{1}{2} m \cdot v^2 + \frac{1}{2} k \cdot x^2 = \frac{1}{2} m \cdot v_m^2 = \frac{1}{2} k \cdot A^2$$

A ecuación da onda harmónica unidimensional é: $y = A \cdot \cos(\omega \cdot t \pm k \cdot x)$

Derivando con respecto ao tempo: $v = d y / d t = -A \cdot \omega \cdot sen(\omega \cdot t \pm k \cdot x)$

É máxima cando $-\operatorname{sen}(\omega \cdot t \pm k \cdot x) = 1$, $v_{\rm m} = A \cdot \omega$

Substituíndo na ecuación da enerxía: $E = \frac{1}{2} \ m \cdot v_{\rm m}^2 = \frac{1}{2} \ m \cdot A^2 \cdot \omega^2$

Como a pulsación ω ou frecuencia angular é proporcional á frecuencia f: $\omega = 2 \pi \cdot f$

$$E = \frac{1}{2} m \cdot A^2 \cdot \omega^2 = \frac{1}{2} m \cdot A^2 (2 \pi \cdot f)^2 = 2 \pi^2 m \cdot A^2 \cdot f^2$$

A enerxía que transporta unha onda é proporcional aos cadrados da frecuencia e da amplitude.

- 13. Unha onda luminosa:
 - A) Non se pode polarizar.
 - B) A súa velocidade de propagación é inversamente proporcional ao índice de refracción do medio.
 - C) Pode non ser electromagnética.

(P.A.U. xuño 09)

Solución: B

Defínese índice de refracción n dun medio con respecto ao baleiro como o cociente entre a velocidade c da luz no baleiro e a velocidade v da luz en devandito medio.

$$n=\frac{c}{v}$$

Como a velocidade da luz no baleiro é unha constante universal, a velocidade de propagación da luz nun medio é inversamente proporcional ao seu índice de refracción.

As outras opcións:

A. Falsa. A luz é unha onda electromagnética transversal que vibra en moitos planos. Cando atravesa un medio polarizador, só o atravesa a luz que vibra nun determinado plano.

C. Falsa. Maxwell demostrou que a luz é unha perturbación eléctrica harmónica que xera un campo magnético harmónico perpendicular ao eléctrico e perpendiculares ambos á dirección de propagación.

- 14. Se a ecuación de propagación dun movemento ondulatorio é $y(x, t) = 2 \cdot \text{sen}(8 \pi \cdot t 4 \pi \cdot x)$ (S.I.), a súa velocidade de propagación é:
 - A) 2 m/s
 - B) 32 m/s
 - C) 0.5 m/s

(P.A.U. xuño 08)

Solución: A

Obtéñense a frecuencia angular e o número de onda comparando a ecuación dunha onda harmónica unidimensional coa ecuación do problema:

$$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x)$$
$$y = 2 \cdot \operatorname{sen}(8 \cdot \pi \cdot t - 4 \cdot \pi \cdot x) \text{ [m]}$$

Frecuencia angular: Número de onda:

$$\omega = 8 \cdot \pi \left[\text{rad} \cdot \text{s}^{-1} \right]$$
$$k = 4 \cdot \pi \left[\text{rad} \cdot \text{m}^{-1} \right]$$

Calcúlanse a lonxitude de onda e a frecuencia para determinar a velocidade de propagación.

Calcúlase a lonxitude de onda a partir do número de onda:

$$k = \frac{2\pi}{\lambda} \Rightarrow \lambda = \frac{2\pi}{k} = \frac{2\pi [\text{rad}]}{4 \cdot \pi [\text{rad} \cdot \text{m}^{-1}]} = 0,5 \text{ m}$$

Calcúlase a frecuencia a partir da frecuencia angular:

$$\omega = 2\pi \cdot f \Rightarrow f = \frac{\omega}{2\pi} = \frac{8 \cdot \pi \left[\text{rad} \cdot \text{s}^{-1} \right]}{2\pi \left[\text{rad} \right]} = 4 \text{ s}^{-1}$$

Calcúlase a velocidade de propagación da onda a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 0.5 \text{ [m]} \cdot 4 \text{ [s}^{-1} \text{]} = 2 \text{ m} \cdot \text{s}^{-1}$$

- 15. Se un feixe de luz láser incide sobre un obxecto de pequeno tamaño (da orde da súa lonxitude de onda),
 - A) Detrás do obxecto hai sempre escuridade.
 - B) Hai zonas de luz detrás do obxecto.
 - C) Reflíctese cara ao medio de incidencia.

(P.A.U. set. 07)

Solución: B

Chámase difracción ao fenómeno polo cal unha onda «rodea» obstáculos de tamaño similar a se lonxitude de onda. Prodúcense interferencias construtivas e destrutivas detrás do obstáculo, polo que existirán zonas «iluminadas» e zonas escuras.

- 16. Unha onda electromagnética que se atopa cun obstáculo de tamaño semellante á súa lonxitude de onda:
 - A) Forma nunha pantalla, colocada detrás do obstáculo, zonas claras e escuras.
 - B) Polarízase e o seu campo eléctrico oscila sempre no mesmo plano.
 - C) Reflíctese no obstáculo.

(P.A.U. xuño 07)

Solución: A

Difracción é o fenómeno que se produce cando unha onda mecánica ou electromagnética «rodea» un obstáculo de dimensións parecidas á lonxitude de onda. É un fenómeno característico das ondas. Isto producirá un patrón de interferencias que, no caso da luz, dará lugar a unha sucesión de zonas claras e escuras nunha pantalla.

- 17. Na polarización lineal da luz:
 - A) Modifícase a frecuencia da onda.
 - B) O campo eléctrico oscila sempre nun mesmo plano.
 - C) Non se transporta enerxía.

(P.A.U. set. 06)

Solución: B

A luz emitida por un foco (unha lámpada, o Sol...) é unha onda electromagnética transversal que vibra en moitos planos. Cando atravesa un medio polarizador, só o atravesa a luz que vibra nun determinado plano.

As outras opcións:

A. Falsa. A frecuencia dunha onda electromagnética é unha característica da mesma e non depende do medio que atravesa.

B. As ondas, excepto as estacionarias, transmiten enerxía sen transporte neto de materia.

- 18. Cando a luz atravesa a zona de separación de dous medios, experimenta:
 - A) Difracción.
 - B) Refracción.
 - C) Polarización.

(P.A.U. xuño 06)

Solución: B

A refracción é o cambio de dirección que experimenta unha onda cando pasa dun medio a outro no que se transmite a distinta velocidade.

Unha medida da densidade óptica dun medio é o seu índice de refracción n, o cociente entre a velocidade c da luz no baleiro e a velocidade v da luz no medio.

$$n=\frac{c}{v}$$

- 1ª.- O raio incidente, o raio refractado e a normal á superficie de separación están no mesmo plano.
- 2^{a} .- Os senos dos ángulos i (o que forma o raio incidente coa normal á superficie de separación) e r (o que forma o raio refractado con esa mesma normal) son directamente proporcionais ás velocidades da luz en cada medio, e inversamente proporcionais aos seus índices de refracción.

$$\frac{\sin i}{\sin r} = \frac{v_i}{v_r} = \frac{n_r}{n_i}$$

- 19. O son dunha guitarra propágase como:
 - A) Unha onda mecánica transversal.
 - B) Unha onda electromagnética.
 - C) Unha onda mecánica lonxitudinal.

(P.A.U. set. 05)

Solución: C

O son é unha onda mecánica, xa que necesita un medio, (aire, auga, unha parede) para propagarse. É unha onda lonxitudinal porque as partículas do medio vibran na mesma dirección na que se propaga o son.

- 20. Nunha onda estacionaria xerada por interferencia de dúas ondas, cúmprese:
 - A) A amplitude é constante.
 - B) A onda transporta enerxía.
 - C) A frecuencia é a mesma que a das ondas que interfiren.

(P.A.U. xuño 05)

Solución: C

Unha onda estacionaria xerada por interferencia de dúas ondas de iguais características pero con distinto sentido de desprazamento.

A ecuación da onda incidente, supoñendo que viaxa cara á dereita, é

$$y_1 = A \cdot \text{sen}(\omega \cdot t - k \cdot x)$$

A onda incidente ao reflectirse no extremo fixo, sofre un cambio de fase de π rad e a onda reflectida que viaxa cara á dereita ten por ecuación:

$$y_2 = A \cdot \text{sen}(\omega \cdot t + k \cdot x + \pi) = -A \cdot \text{sen}(\omega \cdot t + k \cdot x)$$

Cando as ondas interfiren, a onda resultante ten por ecuación

$$y = y_1 + y_2 = A \cdot \text{sen}(\omega \cdot t - k \cdot x) - A \cdot \text{sen}(\omega \cdot t + k \cdot x)$$

Usando

$$sen \alpha - sen \beta = 2 \cdot cos \left(\frac{\alpha + \beta}{2} \right) \cdot sen \left(\frac{\alpha - \beta}{2} \right)$$

Queda

$$y = 2 A \cdot \cos(\omega \cdot t) \cdot \sin(k \cdot x)$$

É a ecuación dunha onda que ten unha frecuencia angular ω igual.

$$y = A_{x} \cdot \cos(\omega \cdot t)$$

As outras opcións:

A. A amplitude depende do punto *x*:

$$A_x = 2 \cdot A \operatorname{sen}(k \cdot x)$$

B. Unha onda estacionaria non transporta enerxía.

- 21. Tres cores da luz visible, o azul o amarelo e o vermello, coinciden en que:
 - A) Posúen a mesma enerxía.
 - B) Posúen a mesma lonxitude de onda.
 - C) Propáganse no baleiro coa mesma velocidade.

(P.A.U. xuño 04)

Solución: C

As cores da luz visible son ondas electromagnéticas que, por definición, propáganse no baleiro coa velocidade c de 300 000 km/s.

As outras opcións:

A e B: Falsas. Distínguense entre eles na súa frecuencia f e na súa lonxitude de onda $\lambda = c / f$. A enerxía dunha onda depende do cadrado da frecuencia e do cadrado da amplitude, polo que a enerxía que transporta non ten por que ser a mesma.

Dioptrio plano

- 1. Un raio de luz láser propágase nun medio acuoso (índice de refracción n = 1,33) e incide na superficie de separación co aire (n = 1). O ángulo límite é:
 - A) 36,9°
 - B) 41,2°
 - C) 48.8°

(P.A.U. xuño 15)

Solución: C

A lei de Snell da refracción pode expresarse

$$n_i \operatorname{sen} \theta_i = n_r \operatorname{sen} \theta_r$$

 $n_{\rm i}$ e $n_{\rm r}$ representan os índices de refracción dos medios incidente e refractado.

 θ_i e θ_r son os ángulos de incidencia e refracción que forma cada raio coa normal á superficie de separación entre os dous medios.

Ángulo límite λ é o ángulo de incidencia que produce un ángulo de refracción de 90°. Aplicando a lei de Snell

1,33 sen
$$\lambda = 1,00$$
 sen $90,0^{\circ}$
sen $\lambda = 1,00 / 1,33 = 0,75$
 $\lambda = \arcsin 0,75 = 48,6^{\circ}$

- No fondo dunha piscina hai un foco de luz. Observando a superficie da auga veríase luz:
 - A) En toda a piscina.
 - B) Só no punto encima do foco.
 - C) Nun círculo de radio R ao redor do punto encima do foco.

(P.A.U. set. 10)

Solución: C

A superficie circular iluminada débese a que os raios que veñen desde a auga e inciden na superficie de separación con un ángulo superior ao ángulo límite non saen ao exterior, porque sofren reflexión total.

O ángulo límite é o ángulo de incidencia para que produce un raio refractado que sae cun ángulo de refracción de 90°.

Pola 2.ª lei de Snell

$$n(\text{auga}) \cdot \text{sen } \theta_{\text{i}} = n(\text{aire}) \cdot \text{sen } \theta_{\text{r}}$$

 $n(\text{auga}) \cdot \text{sen } \lambda = 1 \cdot \text{sen } 90^{\circ}$
 $\lambda = \arcsin(1/n(\text{auga}))$

$$R = h \cdot \tan \lambda$$

- Cando un raio de luz monocromática pasa desde o aire á auga prodúcese un cambio:
 - A) Na frecuencia.
 - B) Na lonxitude de onda.
 - C) Na enerxía.

Dato:
$$n(\text{auga}) = 4/3$$

(P.A.U. set. 10)

Solución: B?

O índice de refracción n_i dun medio é o cociente entre a velocidade da luz c no baleiro e a velocidade da luz v_i nese medio.

$$n_{\rm i} = \frac{c}{v_{\rm i}}$$

Do valor n(auga) = 4/3, dedúcese que a velocidade da luz na auga é

$$v(\text{agua}) = \frac{c}{4/3} = \frac{3}{4}c < c$$

A frecuencia dunha onda harmónica é característica e independente do medio polo que se propaga. É o número de oscilacións (no caso da luz como onda electromagnética) do campo eléctrico ou magnético na unidade de tempo e corresponde ao número de ondas que pasan por un punto na unidade de tempo.

Ao pasar dun medio (aire) a outro (auga) no que a velocidade de propagación é menor, a frecuencia f mantense pero a lonxitude de onda, λ diminúe proporcionalmente, pola relación entre a velocidade de propagación v e a lonxitude de onda λ ,

$$v = \lambda \cdot f$$

A enerxía dunha luz monocromática é proporcional á frecuencia (*h* é a constante de Planck), segundo a ecuación de Planck,

$$E_{\rm f} = h \cdot f$$

Non variaría ao cambiar de medio se este non absorbese a luz. A auga vai absorbendo a enerxía da luz, polo que se produciría unha perda da enerxía, que ao longo dunha certa distancia faría que a luz deixase de propagarse pola auga.

- 4. Un raio de luz incide desde o aire (n = 1) sobre unha lámina de vidro de índice de refracción n = 1,5. O ángulo límite para a reflexión total deste raio é:
 - A) 41,8°
 - B) 90°
 - C) Non existe.

(P.A.U. set. 08)

Solución: C

Para que exista ángulo límite, a luz debe pasar dun medio máis denso opticamente (con maior índice de refracción) a un menos denso.

Pola lei de Snell

$$n_1 \cdot \text{sen } \theta_1 = n_2 \cdot \text{sen } \theta_2$$

O ángulo límite é o ángulo de incidencia para o que o ángulo de refracción vale 90°.

$$n_1 \cdot \text{sen } \lambda_1 = n_2 \cdot \text{sen } 90^\circ = n_2$$

Se $n_2 > n_1$ entón:

sen
$$\lambda_1 = n_2 / n_1 > 1$$

É imposible. O seno dun ángulo non pode ser maior que uno.

- 5. Cando un raio de luz incide nun medio de menor índice de refracción, o raio refractado:
 - A) Varía a súa frecuencia.
 - B) Achégase á normal.
 - C) Pode non existir raio refractado.

(P.A.U. set. 07)

Solución: C

Cando a luz pasa dun medio máis denso opticamente (con maior índice de refracción) a outro menos denso (por exemplo da auga ao aire) o raio refractado afástase da normal. Pola segunda lei de Snell da refracción:

$$n_i \cdot \text{sen } \theta_i = n_r \cdot \text{sen } \theta_r$$

Se $n_i > n_r$, entón sen $\theta_r > \text{sen } \theta_i$, e $\theta_r > \theta_i$

Pero existe un valor de θ_i , chamado ángulo límite λ , para o que o raio refractado forma un ángulo de 90° coa normal. Para un raio incidente cun ángulo maior que o ángulo límite, non aparece raio refractado. Prodúcese unha reflexión total.

- 6. Cando a luz incide na superficie de separación de dous medios cun ángulo igual ao ángulo límite iso significa que:
 - A) O ángulo de incidencia e o de refracción son complementarios.

- B) Non se observa raio refractado.
- C) O ángulo de incidencia é maior que o de refracción.

(P.A.U. set. 05)

Solución: B

Cando un raio pasa do medio máis denso ao menos denso e incide na superficie de separación cun ángulo superior ao ángulo límite, o raio non sae refractado senón que sofre reflexión total. Se o ángulo de incidencia é igual ao ángulo límite, o raio refractado sae cun ángulo de 90° e non se observa.

- 7. Se o índice de refracción do diamante é 2,52 e o do vidro 1,27.
 - A) A luz propágase con maior velocidade no diamante.
 - B) O ángulo límite entre o diamante e o aire é menor que entre o vidro e o aire.
 - C) Cando a luz pasa de diamante ao vidro o ángulo de incidencia é maior que o ángulo de refracción.

(P.A.U. xuño 05)

Solución: B

O ángulo límite λ é o ángulo de incidencia para o que o ángulo de refracción vale 90°. Aplicando a 2.ª lei de Snell da refracción:

$$n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$$

O índice de refracción do aire n_a é o cociente entre a velocidade da luz no baleiro c e a velocidade da luz no aire v_a . Como son practicamente iguais

$$n_a = c / v_a = 1$$

O ángulo límite entre o diamante e o aire é λ_d :

$$n_{\rm d} \cdot {\rm sen} \ \lambda_{\rm d} = n_{\rm a} \cdot {\rm sen} \ 90^{\circ} = 1$$

 $\lambda_{\rm d} = {\rm arcsen} \ (1 / n_{\rm d}) = {\rm arcsen} \ (1 / 2.52) = 23^{\circ}$

Analogamente para o vidro:

$$\lambda_{\rm v} = {\rm arcsen} (1 / 1,27) = 52^{\circ}$$

As outras opcións:

A. Pódense calcular as velocidades da luz no diamante e no vidro a partir da definición de índice de refracción,

$$n = c / v$$

$$v_{\rm d} = c / n_{\rm d} = 3.10^{8} [{\rm m/s}] / 2,52 = 1,2.10^{8} {\rm m/s}$$

$$v_{\rm v} = c / n_{\rm v} = 3.10^{8} [{\rm m/s}] / 1,27 = 2,4.10^{8} {\rm m/s}$$

C. Cando a luz pasa dun medio máis denso opticamente (diamante) a outro menos denso (vidro) o raio refractado afástase da normal (o ángulo de incidencia é menor que o ángulo de refracción)

- 8. O ángulo límite na refracción auga/aire é de 48,61°. Se se posúe outro medio no que a velocidade da luz sexa ν (medio) = 0,878 ν (auga), o novo ángulo límite (medio/aire) será:
 - A) Maior.
 - B) Menor.
 - C) Non se modifica.

(P.A.U. xuño 04)

Solución: B

O ángulo límite é o ángulo de incidencia para o que o ángulo de refracción vale 90° Aplicando a 2.ª lei de Snell da refracción:

$$\frac{\sin i}{\sin r} = \frac{v_i}{v_r}$$

Para o ángulo límite λ (auga) :

$$\frac{\operatorname{sen} \lambda(\operatorname{auga})}{\operatorname{sen} 90^{\circ}} = \frac{v(\operatorname{auga})}{v(\operatorname{aire})}$$
$$\operatorname{sen} \lambda(\operatorname{auga}) = \frac{v(\operatorname{auga})}{v(\operatorname{aire})}$$

Cos datos:

$$v(\text{auga}) = v(\text{aire}) \cdot \text{sen } \lambda(\text{auga}) = 0.75 \ v(\text{aire})$$

Para un novo medio no que v(medio) = 0,878 v(auga),

$$v(\text{medio}) < v(\text{auga})$$

$$\operatorname{sen} \lambda (\text{medio}) = \frac{v(\text{medio})}{v(\text{aire})} < \operatorname{sen} \lambda (\text{auga}) = \frac{v(\text{auga})}{v(\text{aire})}$$

$$\lambda (\text{medio}) < \lambda (\text{auga})$$

Cos datos:

$$\operatorname{sen} \lambda \left(\operatorname{medio} \right) = \frac{v \left(\operatorname{medio} \right)}{v \left(\operatorname{aire} \right)} = \frac{0,878 \cdot v \left(\operatorname{auga} \right)}{v \left(\operatorname{aire} \right)} = \frac{0,878 \cdot 0,75 \cdot v \left(\operatorname{aire} \right)}{v \left(\operatorname{aire} \right)} = 0,66$$

$$\lambda \left(\operatorname{medio} \right) = 41^{\circ} < 48,61^{\circ}$$

Actualizado: 04/08/23

Cuestións e problemas das <u>Probas de avaliación do Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Sumario

ONDAS	
PROBLEMAS	1
Ecuación de onda	
Dioptrio plano	
CUESTIÓNS	
Características e ecuacións das ondas	
Dioptrio plano	
Índice de probas P.A.U.	
2004	
1. (xuño)	
2. (set.)	
2005	
1. (xuño)	15, 28, 32
2. (set.)	13, 28, 32
2006	
1. (xuño)	12, 28
2. (set.)	
2007	
1. (xuño)	•
2. (set.)	
2008	
1. (xuño)	
2. (set.)	•
2009	
1. (xuño)	•
2. (set.)	•
2010	
1. (xuño) 2. (set.)	
2. (set.)	•
1. (xuño)	
2. (set.)	
2012	
1. (xuño)	
2013	
1. (xuño)	
2. (set.)	•
2014	
1. (xuño)	
2. (set.)	
2015	
1. (xuño)	
2. (set.)	
2016	
1. (xuño)	1