Cálculo diferencial en varias variables

Luis Guijarro

UAM

18 de marzo de 2020

Límite de una función.

Tenemos un conjunto abierto $U \subset \mathbb{R}^n$, una función $f: U \to \mathbb{R}^m$, y puntos $x_0 \in U$ y $L \in \mathbb{R}^m$.

Definición

Decimos que f tiene límite L en x_0 , si

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ \forall x \in U \ con \ 0 < \|x - x_0\| < \delta \ \Rightarrow \ \|f(x) - L\| < \varepsilon$$

En este caso, escribiremos

$$\lim_{x \to x_0} f(x) = L$$

Observación: Si m=1 (i.e, si f toma valores reales), entonces ||f(x) - L|| = |f(x) - L|.

Unicidad del límite

Definición

Si existe el límite de una función, es único.

Demostración.

Supongamos que no; esto es, $\lim_{x\to x_0} f(x) = L_1$, $\lim_{x\to x_0} f(x) = L_2$ con $L_1 \neq L_2$.

Sea $\varepsilon:=rac{\|L_1-L_2\|}{2}.$ Hay un $\delta_1>0$, y un $\delta_2>0$ tal que

$$||f(x) - L_1|| < \varepsilon$$
, si $0 < ||x - x_0|| < \delta_1$,

$$||f(x) - L_2|| < \varepsilon$$
, si $0 < ||x - x_0|| < \delta_2$.

Si $\delta := \min\{\delta_1, \delta_2\} > 0$, y $0 < \|x - x_0\| < \delta$, entonces

$$||L_1 - L_2|| \le ||L_1 - f(x)|| + ||f(x) - L_2|| < \varepsilon + \varepsilon = 2\varepsilon = ||L_1 - L_2||$$

Límites y funciones coordenadas

En el siguiente teorema, $f(x) = (f_1(x), f_2(x), \dots, f_m(x))$, donde cada f_i toma valores reales (e.g, $f_i : U \to \mathbb{R}$).

Teorema

Sea
$$f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
, un punto $x_0 \in U$ y un punto $L = (L_1, L_2, \cdots, L_m) \in \mathbb{R}^m$. Entonces

$$\lim_{x \to x_0} f(x) = L \qquad \Leftrightarrow \qquad \lim_{x \to x_0} f_i(x) = L_i \quad \forall i = 1, 2, \cdots, m$$

Útil: Para calcular el límite de una función $F:U\subseteq\mathbb{R}^n\to\mathbb{R}^m$, basta calcular el límite de cada función coordenada por separado.

Ejercicio

Demuestre, usando la definición, los siguientes límites

$$\lim_{(x,y)\to(0,0)} (2x^2 + y^2) = 0,$$

$$\lim_{(x,y)\to(0,0)} \frac{5x^2y}{x^2+y^2} = 0,$$

$$\lim_{(x,y)\to (1,0)} \sqrt{(x-1)^2+y^2} \, {\rm sen} \, \frac{x}{(x-1)^2+y^2} = 0.$$

Propiedades de los límites

Sean $f,g:U\in\mathbb{R}^n\longrightarrow\mathbb{R}^m$ dos funciones tal que existen $\lim_{x\to x_0}f(x)$ y $\lim_{x\to x_0}g(x)$, entonces:

- (1) $\lim_{x\to x_0} (\lambda f(x)) = \lambda (\lim_{x\to x_0} f(x)), \text{ donde } \lambda \in \mathbb{R}.$
- (2) $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$.
- (3) $\lim_{x \to x_0} (f(x)g(x)) = (\lim_{x \to x_0} f(x)) (\lim_{x \to x_0} g(x))$, si m = 1.
- (4) $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$, si m = 1, y $\lim_{x \to x_0} g(x) \neq 0$.

Sucesiones en \mathbb{R}^n .

Una **sucesión** en \mathbb{R}^n es una colección de puntos de \mathbb{R}^n indexada por \mathbb{N} ; i.e,

$$p_1, p_2, \ldots, p_k, p_{k+1}, \cdots \subset \mathbb{R}^n$$

Cada punto $p_k \in \mathbb{R}^n$, así que

$$p_k = (x_k^1, x_k^2, \dots, x_k^n),$$

donde x_k^1 es la primera coordenada de p_k , x_k^2 es la segunda coordenada de $p_k i$, y así hasta la última.

Fijándonos en una coordenada determinada (por ejemplo, la tercera), tenemos una sucesión usual de números reales

$$x_1^3, x_2^3, \dots, x_k^3, x_{k+1}^3, \dots$$

Por ello también podemos definir una sucesión en \mathbb{R}^n como un conjunto de n-sucesiones en \mathbb{R} , una para cada coordenada.

Límite de una sucesión en \mathbb{R}^n

Definición

Decimos que una sucesión $\{p_k\}_{k\in\mathbb{N}}$ en \mathbb{R}^n converge a un punto $L\in\mathbb{R}^n$, escrito como $\lim_{k\to\infty}p_k=L$, si para todo $\varepsilon>0$, existe un $N\in\mathbb{N}$ tal que para todo k>N, se tiene que $\|p_k-L\|<\varepsilon$.

Teorema

El límite de una sucesión, si existe, es único.

Lemma

Dada una sucesión $\{p_k\}_k = \{(x_k^1, x_k^2, \dots, x_k^n)\}_k \in \mathbb{R}^n$ y un punto $L = (L_1, L_2, \dots, L_n) \in \mathbb{R}^n$, se tiene que

$$\lim_{k\to\infty} p_k = L \quad \Leftrightarrow \quad \lim_{k\to\infty} x_k^i = L_i, \quad \forall i = 1, 2, \dots, n$$

Conjuntos cerrados y sucesiones

Teorema

Un conjunto E en \mathbb{R}^n es cerrado si y solamente si el límite L de toda sucesión $\{p_k\}$ convergente de puntos en E permanece en E.

- Para ver que un conjunto no es cerrado, basta encontrar una sucesión p_k ∈ E con lím_{k→∞} p_k ∉ E;
- para ver que es cerrado hay que ver que para cualquier sucesión $p_k \in E$ con $\lim_{t\to\infty} p_k = L$, tiene $L \in E$.

Límites y sucesiones

Teorema (Caracterización del límite de funciones por sucesiones)

Sea U un abierto de \mathbb{R}^n , una función $f:U\longrightarrow \mathbb{R}^m$, un punto $x_0\in U$ y un punto $L\in \mathbb{R}^m$. Entonces

$$\lim_{x \to x_0} f(x) = L \qquad \Leftrightarrow \qquad$$

$$\forall \{x_k\}_k \xrightarrow[k \to \infty]{} x_0, \ con \ \{x_k\}_k \in U \setminus \{x_0\}, \ se \ tiene \ que \ \lim_{k \to \infty} f(x_k) = L$$

Útil: Si hay dos sucesiones diferentes x_k , $y_k \to x_0$, tal que las sucesiones $f(x_k)$ y $f(y_k)$ tienen límites diferentes, entonces $\lim_{x\to x_0} f(x)$ no existe.

Si $f(x_k)$ y $f(y_k)$ tienen el mismo límite, **todavía no podemos decir nada** sobre la existencia del límite.

Ejemplo: Demuestra que $\lim_{(x,y)\to(0,0)} f(x,y)$ no existe:

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Límite de una función escalar en \mathbb{R}^2 .

Este es un caso frecuente en los ejercicios, así que estudiamos algunas pautas para tratar de encontrarlos. Suponemos $f:U\subset\mathbb{R}^2\to\mathbb{R}$ una función, y queremos decidir si existe, y en ese caso hallar

$$L = \lim_{(x,y)\to(a,b)} f(x)$$

Si existe L, podemos usar que cualquier forma de aproximarnos a (a, b) debería dar valores de f que se aproximan a L. Por ejemplo, podemos probar

$$\lim_{y\to b} f(a,y)$$
, o $\lim_{x\to a} f(x,b)$

Muy importante: Con esto hallamos un candidato al límite, pero no demostramos que el límite exista; podría ser que al aproximarnos de otra forma a (a, b), los valores de f se aproximaran a otro límite.

Límite de una función escalar en \mathbb{R}^2 (cont).

2 Límites laterales: Si

$$\lim_{x \to a} \left(\lim_{y \to b} f(x, y) \right) \neq \lim_{y \to b} \left(\lim_{x \to a} f(x, y) \right),$$

entonces no hay límite.

Cuidado: si coinciden, entonces todavía no sabemos si hay límite.

Límite de una función escalar en \mathbb{R}^2 (cont).

- Si encuentro dos formas distintas de acercarme a (a, b) donde la función f se aproxima a dos valores diferentes, entonces el límite no existe.
 - A menudo uno se aproxima con rectas de pendientes diferentes

$$(x, \lambda(x-a) + b),$$
 donde $\lambda \in \mathbb{R}$;

Si

$$\lim_{x \to a} f(x, \lambda(x - a) + b)$$
 depende de λ ,

el límite de la función no existe.

A veces hay que probar con curvas más complicadas:

$$(x, \lambda(x-a)^k + b), \quad \text{con } x \to a, \lambda \in \mathbb{R},$$

ó

$$(\lambda(y-b)^k+a,y), \qquad \text{con } y\to b, \lambda\in\mathbb{R},$$

Límite de una función escalar en \mathbb{R}^2 (cont).

9 Puedo probar con coordenadas polares centradas en (a, b): si encuentro una función F(r) con $\lim_{r\to 0^+} F(r) = 0$, tal que

$$|f(a+r\cos\theta,b+r\sin\theta)-L|\leq F(r)\underset{r\to 0}{\longrightarrow}0,$$

entonces
$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$
.

Y finalmente, muchas veces, para demostrar el valor de un límite, hay que trabajar con desigualdades (ver ejemplos de clase). **Ejemplo:** Resuelve $\lim_{(x,y)\to(0,0)} f(x,y)$ para:

(a)
$$f(x,y) = \frac{x^2}{x^2 + y^2}$$
 (b) $f(x,y) = \begin{cases} x \operatorname{sen}(\frac{1}{y}) & \operatorname{si } y \neq 0 \\ 0 & \operatorname{si } y = 0 \end{cases}$ (c) $f(x,y) = \frac{x^2y}{x^4 + y^2}$ (d) $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \operatorname{si } (x,y) \neq (0,0) \\ 0 & \operatorname{si } (x,y) = (0,0) \end{cases}$ (e) $f(x,y) = \frac{x^3 + y^3}{x^2 + y^2 + y^4}$

Continuidad de funciones.

Definición (Funcion continua)

• Dado un conjunto abierto $U \subset \mathbb{R}^n$, decimos que $f: U \to \mathbb{R}^m$ es continua en un punto $x_0 \in U$ si:

$$\forall \varepsilon > 0, \ \exists \delta > 0: \ \forall x \in U \ con \ \|x - x_0\| < \delta \ \Rightarrow \ \|f(x) - f(x_0)\| < \varepsilon$$

O, equivalentemente:
$$\lim_{x \to x_0} f(x) = f(x_0)$$

• f es **continua** en U si es continua en todo punto $x_0 \in U$.

Resumiendo, para que f sea continua en el punto x_0 , necesitamos:

- que exista $\lim_{x\to x_0} f(x)$,
- que f esté definida en x_0 , esto es, que exista $f(x_0)$,
- que ambos valores coincidan: $\lim_{x \to x_0} f(x) = f(x_0)$

Propiedades de las funciones continuas.

Sean $f,g:U\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}^m$ continuas en x_0 , entonces:

- \bullet $\lambda f(x)$ es continua en x_0 .
- 2 f(x) + g(x) es continua en x_0 .
- f(x)g(x) es continua en x_0 , si m=1.
- f(x)/g(x) es continua en x_0 , si m=1 y $g(x_0) \neq 0$.

Lemma

Si $f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$, $f(x) = (f_1(x), \dots, f_m(x))$ entonces f es continua en x_0 si y sólo si f_i es continua para todo $i = 1, 2, \dots, m$.

Teorema

Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$, $g: B \subset \mathbb{R}^m \to \mathbb{R}^k$. Si

- $x_0 \in A, f(x_0) \in B,$
- 2 f es continua en x_0 , y
- \circ g es continua en $f(x_0)$,

entonces la composición $g \circ f$ es continua en x_0 .

En pocas palabras, la composición de funciones continuas $(g \circ f)(x) = g(f(x))$ es continua.

Ejemplo: Demostrar que f es continua en todo \mathbb{R}^2

$$f(x,y) = \begin{cases} \frac{5x^2y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) \neq (0,0) \end{cases}$$

Caracterización topológica de la continuidad

Sea $f:U\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}^m$ y $V\subset\mathbb{R}^m$, definimos la **preimagen/ imagen** inversa de V por f como

$$f^{-1}(V) = \{x \in U : f(x) \in V\}$$

Teorema

Una función $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ es continua si y solo si para todo $V\subset\mathbb{R}^m$ abierto, la preimagen $f^{-1}(V)$ es un abierto.

Análogamente, una función $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ es continua si y solo si para todo $C\subset\mathbb{R}^m$ cerrado, la preimagen $f^{-1}(V)$ es un cerrado.

Cuidado: La *imagen* de un abierto/cerrado por una función continua no es, necesariamente, una abierto/cerrado.

La derivada en $\mathbb R$

Como motivación para la definición de derivada de funciones en \mathbb{R}^n , recordamos el caso de \mathbb{R} (que es el caso n = 1).

Definición

La derivada de la función f en el punto x_0 , denotada $f'(x_0)$, es

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

siempre que ese límite exista.

La derivada es la pendiente de la tangente

Ecuación de la recta tangente en el punto (a, f(a)):

$$y - f(a) = f'(a)(x - a)$$

Derivadas parciales

Definición

Sean $U \subseteq \mathbb{R}^n$ un conjunto abierto $y \ f : U \longrightarrow \mathbb{R}$. Entonces la **derivada** parcial i-ésima de f, $\partial f/\partial x_i$, se define como la derivada de f respecto a la variable x_i manteniendo el resto de variables fijas:

$$\frac{\partial f}{\partial x_i}(x_1,\ldots,x_n) = \lim_{h\to 0} \frac{f(x_1,x_2,\ldots,x_i+h,\ldots,x_n)-f(x_1,\ldots,x_n)}{h}$$

Si $f: U \longrightarrow \mathbb{R}^m$, entonces $f(x) = (f_1(x), \dots, f_m(x))$, y podemos hablar de la **derivada parcial** $\partial f_j/\partial x_i$ de la componente j-ésima de f con respecto a la variable x_i .

Derivadas parciales (cont.)

Dada una **función escalar en** \mathbb{R}^2 , $f:U\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}$, y un punto $(x_0,y_0)\in U$, tenemos dos derivadas parciales:

$$\frac{\partial f}{\partial x}(x_0, y_0) \underset{\text{Notación}}{=} f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$
$$\frac{\partial f}{\partial y}(x_0, y_0) \underset{\text{Notación}}{=} f_y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

A efectos prácticos, una derivada parcial con respecto a una variable x_i , se calcula considerando el resto de variables como constantes, y derivando con respecto a la x_i .

Ejemplo: Hallar $f_x(x, y)$ y $f_y(x, y)$ para las funciones:

(a)
$$f(x,y) = x^2 + y^4$$
 (b) $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$

Interpretación geométrica de las derivadas parciales en \mathbb{R}^2

Intersecamos la superficie descrita por la gráfica de la función z=f(x,y) (en negro) con el plano $y=y_0$ (en verde), y obtenemos la curva C (en rojo).

La derivada parcial de f respecto de x en (x_0, y_0) , $f_x(x_0, y_0)$, es la pendiente de la recta tangente a C en el punto (x_0, y_0, z_0) (en azul) en la dirección del eje OX.

Obs: Interpretación análoga para f_y , intercambiando el papel de x e y.

El plano tangente

Ecuación del **plano tangente** a la gráfica de z = f(x, y) en (x_0, y_0) :

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

Es el plano que:

- pasa por el punto $(x_0, y_0, f(x_0, y_0);$
- tiene vector normal $\left(\frac{\partial f}{\partial x}(x_0,y_0),\,\frac{\partial f}{\partial y}(x_0,y_0),\,-1\right)$.

Diferenciabilidad y derivadas parciales

Muy importante: Una función puede tener derivadas parciales y no ser diferenciable.

De hecho, puede tener derivadas parciales y ni siquiera ser continua.

Ejemplo: Sea $f:\mathbb{R}^2 \to \mathbb{R}$ la funcion definida como

$$f(x,y) = \begin{cases} 0, & \text{si } x = 0, \text{ ó } y = 0; \\ 1, & \text{si } x \neq 0, \text{ e } y \neq 0. \end{cases}$$

f tiene parciales $f_x(0,0) = f_y(0,0) = 0$, pero en cualquier entorno de (0,0) hay puntos (x,y) con f(x,y) = 1 y puntos con f(x,y) = 0 (con lo que no es ni siquiera continua en (0,0).

Definición de diferenciabilidad de $f: U \subset \mathbb{R}^2 \to \mathbb{R}$

Definición

 $f: U \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}$ es diferenciable en $(x_0, y_0) \in U$ si $\partial f/\partial x$ y $\partial f/\partial y$ existen en (x_0, y_0) y si

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)-f(x_0,y_0)-\frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)-\frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)}{\|(x,y)-(x_0,y_0)\|}=0$$

Significado: El plano tangente en el punto es la mejor aproximación con un plano a la función cerca del punto.

Muy importante: Para que f sea diferenciable en un punto, necesitamos:

- derivadas parciales en ese punto,
- y además que el límite de arriba exista.

Definición de diferenciabilidad de $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$

$$f:U\subseteq\mathbb{R}^n\to\mathbb{R}^m,\quad f(x_1,\ldots,x_n)=(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)).$$

Definición

 $f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es diferenciable en $x_0 \in U$ si:

- Las derivadas parciales de todas las f_1, \ldots, f_m existen en x_0 ;
- para la matriz de m filas y n columnas $\mathbf{D}f(x_0)$ formada por esas parciales, se tiene que

$$\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - \mathbf{D}f(x_0)(x - x_0)\|}{\|x - x_0\|} = 0$$

 $\mathbf{D}f(x_0)$ es la derivada, la diferencial o la matriz jacobiana de f en x_0 .

La matriz jacobiana

La matriz jacobiana $\mathbf{D}f(x_0)$ tiene

- tantas filas como funciones f_i en f;
- tantas columnas como variables x_i;
- la entrada en la i-ésima fila y j-ésima columna es la derivada parcial $\frac{\partial f_i}{\partial x_i}$ evaluada en x_0 .

Casos:

$$\mathbf{D}f(x_0) = \nabla f(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), \cdots, \frac{\partial f}{\partial x_n}(x_0)\right)$$

En este caso, a $\nabla f(x_0)$ se le llama **el gradiente de** f **en** x_0 .

La matriz jacobiana (cont.)

② Si $f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ entonces

$$f = (f_1(x_1, x_2, \cdots, x_n), f_2(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n)) \qquad y$$

$$\mathbf{D}f(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ & \cdots & \cdots & \cdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

donde todas esas parciales están calculadas en el punto x_0 .

Ejemplo

Hallar la matriz de Df(a) en cada uno de los siguientes casos:

(a)
$$f(x, y) = (y, x, xy, y^2 - x^2)$$
, $a = (1, 2)$.

(b)
$$f(x,y) = (sen(x+y), cos(x-y)), a = (\pi, -\pi/4).$$

(c)
$$f(x, y, z) = z^2 e^x \cos y$$
, $a = (0, \pi/2, -1)$.

(d)
$$f(x) = (e^x \operatorname{sen} x, e^x \operatorname{cos} x, x^2), \ a = \pi/6.$$

Relación entre diferenciabilidad y continuidad

Teorema

Sean $U \subseteq \mathbb{R}^n$ un conjunto abierto, $f: U \longrightarrow \mathbb{R}^m$ y $x_0 \in U$. Si f es diferenciable en x_0 , entonces f es continua en x_0 .

Teorema

Sean $U \subseteq \mathbb{R}^n$ un conjunto abierto, $f: U \longrightarrow \mathbb{R}^m$ y $x_0 \in U$. Si existen todas las derivadas parciales, $\partial f_j/\partial x_i$, de f y son continuas en un entorno de x_0 , entonces f es diferenciable en x_0 .

 $Derivadas\ parciales\ continuas\Rightarrow Diferenciabilidad\Rightarrow Continuidad$

Pero las implicaciones inversas son, en general, todas falsas:

Continuidad \Rightarrow Diferenciabilidad \Rightarrow Derivadas parciales continuas

Propiedades de la matriz jacobiana $\mathbf{D}f(x_0)$

Sean $f, g: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$ diferenciables en x_0 , entonces:

- (1) $\mathbf{D}(cf)(x_0) = c\mathbf{D}f(x_0)$.
- (2) $\mathbf{D}(f+g)(x_0) = \mathbf{D}f(x_0) + \mathbf{D}g(x_0)$.
- (3) Si m = 1, $\mathbf{D}(fg)(x_0) = g(x_0)\mathbf{D}f(x_0) + f(x_0)\mathbf{D}g(x_0)$.
- (4) Si $m = 1, g(x_0) \neq 0$, $\mathbf{D}(f/g)(x_0) = \frac{g(x_0)\mathbf{D}f(x_0) f(x_0)\mathbf{D}g(x_0)}{g(x_0)^2}$.

Regla de la cadena

Teorema

Sean

$$f: U \subset \mathbb{R}^n \to \mathbb{R}^m, \quad g: V \subset \mathbb{R}^m \to \mathbb{R}^k$$

funciones tal que

- f es diferenciable en $x_0 \in U$;
- g es diferenciable en $y_0 = f(x_0)$;
- $f(U) \subset V$, así que la función $h = g \circ f$ está definida.

Entonces la composición $(g \circ f)(x) = g(f(x))$ es diferenciable en x_0 , y su matriz diferencial está dada por

$$\mathbf{D}(g \circ f)(x_0) = \mathbf{D}g(y_0) \cdot \mathbf{D}f(x_0).$$

donde el lado derecho es un producto de matrices.

Primer caso de la regla de la cadena

Sean

$$f: \mathbb{R} \longrightarrow \mathbb{R}^3, \qquad g: \mathbb{R}^3 \longrightarrow \mathbb{R}$$

Denotamos

$$f(t) = (x(t), y(t), z(t)), \qquad g = g(x, y, z)$$

Si $h: \mathbb{R} \longrightarrow \mathbb{R}$ es la función h(t) = g(f(t)) = g(x(t), y(t), z(t)), entonces

$$h'(t_0) = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right) \cdot \begin{pmatrix} x_0(t_0) \\ y'(t_0) \\ z'(t_0) \end{pmatrix} = \frac{\partial g}{\partial x} \frac{dx}{dt} + \frac{\partial g}{\partial y} \frac{dy}{dt} + \frac{\partial g}{\partial z} \frac{dz}{dt}.$$

donde las parciales de g están evaluadas en el punto $(x(t_0),y(t_0),z(t_0))$.

Segundo caso de la regla de la cadena

Sean $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ y $g: \mathbb{R}^3 \longrightarrow \mathbb{R}$, definimos la función $h: \mathbb{R}^3 \longrightarrow \mathbb{R}$ por h(x,y,z) = g(f(x,y,z)) = g(u(x,y,z),v(x,y,z),w(x,y,z)), entonces

$$\left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}, \frac{\partial h}{\partial z} \right) = \left(\frac{\partial g}{\partial u}, \frac{\partial g}{\partial v}, \frac{\partial g}{\partial w} \right) \left(\begin{array}{ccc} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{array} \right)$$

$$\begin{split} \frac{\partial h}{\partial x} &= \frac{\partial g}{\partial u} \, \frac{\partial u}{\partial x} + \frac{\partial g}{\partial v} \, \frac{\partial v}{\partial x} + \frac{\partial g}{\partial w} \, \frac{\partial w}{\partial x} \; , \\ \frac{\partial h}{\partial y} &= \frac{\partial g}{\partial u} \, \frac{\partial u}{\partial y} + \frac{\partial g}{\partial v} \, \frac{\partial v}{\partial y} + \frac{\partial g}{\partial w} \, \frac{\partial w}{\partial y} \; , \\ \frac{\partial h}{\partial z} &= \frac{\partial g}{\partial u} \, \frac{\partial u}{\partial z} + \frac{\partial g}{\partial v} \, \frac{\partial v}{\partial z} + \frac{\partial g}{\partial w} \, \frac{\partial w}{\partial z} \; . \end{split}$$

Derivada direccional

Definición

Sean $f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^m$, $x_0 \in U$ y $\vec{u} \in \mathbb{R}^n$ un vector unitario (esto es, un vector \vec{u} con norma $||\vec{u}||=1$).

Se llama la derivada direccional de f en x_0 en la dirección del vector \vec{u} a

$$\mathbf{D}_{\vec{u}}f(x_0) = \frac{d}{dt}f(x_0 + t\vec{u})\Big|_{t=0} = \lim_{t \to 0} \frac{f(x_0 + t\vec{u}) - f(x_0)}{t}.$$

- Representa la tasa de cambio (pendiente) de la función en la dirección de dicho vector.
- Si $\|\vec{u}\| \neq 1$, $\mathbf{D}_{\vec{u}} f(x_0)$ es la derivada según el vector \vec{u} .

Derivada direccional y parciales

• Si $f: U \to \mathbb{R}$ y $v = \mathbf{e}_i$ es un vector de la base canónica,

$$\mathbf{D}_{\vec{\mathbf{e}}_i} f(x_0) = \lim_{t \to 0} \frac{f(x_0 + t\vec{\mathbf{e}}_i) - f(x_0)}{t} = \frac{\partial f}{\partial x_i}(x_0)$$

Gradiente de una función escalar $f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$

El **gradiente** de una función $f:U\subset\mathbb{R}^n\to\mathbb{R}$ en x_0 es el vector formado por las derivadas parciales de f en x_0 .

$$\nabla f(x_0) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

A veces lo denotamos como grad f.

- Si f es diferenciable en x_0 , existe el gradiente de f en x_0 :
- pero si existe el gradiente de f en x₀, f no tiene por qué ser diferenciable en x₀.

Teorema (Relación entre gradiente y derivada direccional)

Sean $f:U\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}$ una función diferenciable en $x_0\in U$ y $\vec{u}\in\mathbb{R}^n$ un vector unitario, entonces

$$\mathbf{D}_{\vec{u}}f(x_0) = \langle \nabla f(x_0), \vec{u} \rangle$$

El gradiente apunta en la dirección de mayor crecimiento

Teorema

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$ una funcion diferenciable en $x_0 \in U$. Supongamos que $\nabla f(x_0) \neq 0$. Entonces de entre todas las direcciones unitarias \vec{v} , la derivada direccional de f es **máxima** cuando

$$\vec{v} = \frac{\nabla f(x_0)}{\|\nabla f(x_0)\|}$$

Análogamente, la dirección unitaria en la que la derivada direccional de f en x_0 es **mínima**, es

$$\vec{v} = -\frac{\nabla f(x_0)}{\|\nabla f(x_0)\|}$$

El gradiente es ortogonal a las superficies de nivel

Sea $f:U\subset\mathbb{R}^n\to\mathbb{R}$ diferenciable. Si $a\in\mathbb{R}$, la superficie de nivel de f correspondiente a a es

$$S_a = \{ x \in U : f(x) = a \}.$$

Teorema

Si $c: (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ es una curva contenida en S_a con $c(0) = x_0$ (e.g., $f(c(t)) \equiv a$ para todo t), entonces

$$\langle \nabla f(x_0), c'(0) \rangle = 0$$

La dirección ∇f es perpendicular a las conjuntos de nivel en cada punto.

Plano tangente a una superficie de nivel en \mathbb{R}^3

Supongamos $f(x_0, y_0, z_0) = a$, y $\nabla f(x_0, y_0, z_0) \neq 0$. La ecuación del plano tangente en el punto (x_0, y_0, z_0) a la superficie de nivel f(x, y, z) = a, es

$$\langle \nabla f(x_0, y_0, z_0), (x - x_0, y - y_0, z - z_0) \rangle = 0.$$

Más explícitamente,

$$\frac{\partial f(x_0,y_0,z_0)}{\partial x}(x-x_0) + \frac{\partial f(x_0,y_0,z_0)}{\partial y}(y-y_0) + \frac{\partial f(x_0,y_0,z_0)}{\partial x}(z-z_0) = 0$$

Ejemplo: Hallar la ecuación del plano tangente a la superficie $z = x^3 + y^3 - 6xy$, en el punto (1, 2, -3).

Derivadas de orden superior

Para una función f de una variable, sabemos que podemos calcular derivadas iteradas de f, a saber $\frac{d}{dx}f$, $\frac{d^2}{dx^2}f$, etc. Vamos a estudiar las operaciones análogas para funciones multivariables.

Empezamos con el caso particular de las derivadas de orden 2 para f(x, y), $\mathbb{R}^2 \to \mathbb{R}$ diferenciable. Se pueden tomar las derivadas siguientes:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}, \qquad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2},$$
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}, \qquad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}.$$

Notación: A menudo usaremos la notación f_{xx} para denotar $\frac{\partial^2 f}{\partial x^2}$, f_{xy} para denotar $\frac{\partial^2 f}{\partial x \partial y}$, etc.

Las derivadas $\frac{\partial^2 f}{\partial x \partial y}$ y $\frac{\partial^2 f}{\partial y \partial x}$ se llaman a menudo **derivadas mixtas**.

Definición

Si todas estas derivadas existen en cada punto de \mathbb{R}^2 y son funciones continuas, se dice que f es una función de clase \mathcal{C}^2 , o se escribe $f \in \mathcal{C}^2$.

Para estas funciones tenemos el resultado siguiente.

Teorema

Si
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 es de clase C^2 , entonces $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$.

Derivadas de orden superior

Ejemplo: Sea $f(x,y) = xy + (x+2y)^2$. Entonces

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (y + 2(x + 2y)) = 2, \quad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (x + 4(x + 2y)) = 8.$$

Por otra parte, las derivadas mixtas se calculan como

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (y + 2(x + 2y)) = \frac{\partial}{\partial y} (2x + 5y) = 5;$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (x + 4(x + 2y)) = \frac{\partial}{\partial x} (5x + 8y) = 5.$$

Encontramos también que $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = 5$.

Más generalmente, si la función es de más de 2 variables, podemos tomar de modo similar las derivadas parciales de orden 2, fijando $i,j \in 1,\ldots,n$ y tomando la derivada $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} (\frac{\partial f}{\partial x_j})$.

Notación: Como en el caso anterior, a menudo se usa la notación $f_{x_ix_j}$ para $\frac{\partial^2 f}{\partial x_i \partial x_i}$.

Definición

Sea $U \subset \mathbb{R}^n$ abierto y sea $f: U \to \mathbb{R}$. Decimos que f es **de clase** \mathcal{C}^2 **en** U si para todo $i, j \in {1, \dots, n}$ la derivada $\frac{\partial^2 f}{\partial x_i \partial x_j}$ existe y es continua en U.

Como en el caso n = 2, tenemos en general lo siguiente.

Teorema

Si $f: U \subset \mathbb{R}^n \to \mathbb{R}$ es de clase \mathcal{C}^2 en U, entonces para todo $i, j \in 1, \ldots, n$, para todo punto $x_0 \in U$, tenemos $\frac{\partial^2 f}{\partial x_i \partial x_i}(x_0) = \frac{\partial^2 f}{\partial x_i \partial x_i}(x_0)$.

Ejemplo: Sea $f(x, y, z) = e^{xy} + z \cos(x)$. Las derivadas de orden 2 (o derivadas segundas) de f son las siguientes:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (y e^{xy} - z \operatorname{sen}(x)) = y^2 e^{xy} - z \operatorname{cos}(x).$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (x e^{xy}) = x^2 e^{xy}.$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} \operatorname{cos}(x) = 0.$$

Verifiquemos que las derivadas cruzadas son iguales:

$$\begin{split} \frac{\partial^2 f}{\partial x \partial y} &= \frac{\partial}{\partial x} \big(x e^{xy} \big) = e^{xy} + x y e^{xy}, \qquad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \big(y e^{xy} - z \operatorname{sen}(x) \big) = e^{xy} + x y e^{xy}, \\ \frac{\partial^2 f}{\partial x \partial z} &= -\operatorname{sen}(x), \qquad \frac{\partial^2 f}{\partial z \partial x} = -\operatorname{sen}(x), \\ \frac{\partial^2 f}{\partial y \partial z} &= 0, \qquad \frac{\partial^2 f}{\partial z \partial y} = 0. \end{split}$$

En general, si todas las derivadas de orden k existen y son continuas en U, decimos que la función es **de clase** C^k **en** U.

En este caso, las derivadas de orden $\leq k$ conmutan, es decir que no importa el orden de las variables en que tomemos las derivadas, la función obtenida al final será la misma.

Recordad: A la hora de hacer derivadas mixtas de una función C^k , podemos elegir el orden de derivación que nos convenga:

Ejemplo: Hallar la derivada $\frac{\partial^2 f}{\partial x \partial y}$ para la función $f(x,y) = x^2 y + \int_0^{y^2} \sin e^t dt$:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (2xy) = 2x.$$

Repaso: Polinomio de Taylor en una variable

Polinomio de Taylor en una variable.

- Queremos aproximar una función, cerca de un punto dado x_0 , por un polinomio.
- La idea es imponer que el polinomio comparta con la función el valor de las sucesivas derivadas en ese punto x_0 .

El **polinomio de Taylor** de orden n de f alrededor del punto x_0 es

$$P_{n,x_0}f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Idea: Cuando x está cerca de x_0 , los valores del polinomio $P_{n,x_0}f(x)$ se aproximan a los de f(x). Más aún, la aproximación mejora cuando n aumenta.

Repaso: Polinomio de Taylor en una variable (cont.)

Ejemplos más habituales:

•
$$e^x$$
, $x_0 = 0$ \rightarrow $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} = \sum_{k=0}^n \frac{x^k}{k!}$

Aqui aparecen las gráficas de $f(x) = e^x$ (gris) y de su segundo polinomio de Taylor (rojo)

• sen
$$x$$
, $x_0 = 0$ \rightarrow $x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!}$

•
$$\cos x$$
, $x_0 = 0$ \rightarrow $1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!}$

•
$$\log(1+x)$$
, $x_0 = 0$ $\rightarrow x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n+1}x^n}{n}$

Repaso: Polinomio de Taylor en una variable (cont.)

La aproximación mejora al aumentar el grado del polinomio:

Ejemplo: $f(x) = \operatorname{sen} x$

$$P_{1,0}f(x)=x$$

$$P_{3,0}f(x) = x - \frac{x^3}{6}$$

Repaso: Polinomio de Taylor en una variable (cont.)

La aproximación mejora al aumentar el grado del polinomio:

Ejemplo: $f(x) = \operatorname{sen} x$

$$P_{5,0}f(x) = x - \frac{x^3}{6} + \frac{x^5}{120}$$

$$P_{7,0}f(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040}$$

Fórmula de Taylor para funciones de varias variables

Teorema (Fórmula de Taylor de 1^{er} orden)

Sea $U \subseteq \mathbb{R}^n$ un abierto $y \ f: U \longrightarrow \mathbb{R}$ diferenciable en $x_0 \in U$. Entonces si $h \in \mathbb{R}^n$ con $x_0 + h \in U$,

$$f(x_0+h)=f(x_0)+\langle \nabla f(x_0),h\rangle+R_1(x_0,h),$$

donde

$$\lim_{h\to 0}\frac{|R_1(x_0,h)|}{\|h\|}=0.$$

Cuando $f:U\subset\mathbb{R}^2 o\mathbb{R}$, el punto es (x_0,y_0) , y n=1, la fórmula queda

$$P_{1,x_0}f(x,y) = f(x_0,y_0) + \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$$

Esto coincide con la fórmula del plano tangente a la gráfica de f en el punto (x_0, y_0) .

Ejemplo: fórmula de Taylor de grado 1

Escriba la fórmula de Taylor de orden 1 centrado en (0,0,1) para la función

$$f(x, y, z) = ze^{x} + \cos(x + y).$$

Solución: Como piden orden 1, empezamos calculando

- el valor de la función en el punto (0,0,1): f(0,0,1)=2;
- el valor de las derivadas parciales de orden 1 en el mismo punto (0,0,1):

$$f_x(0,0,1) = ze^x - \operatorname{sen}(x+y)|_{(0,0,1)} = 1, \quad f_y(0,0,1) = -\operatorname{sen}(x+y)|_{(0,0,1)} = 0,$$

 $f_z(0,0,1) = e^x|_{(0,0,1)} = 1$

Con estos valores, solo hay que sustituir en la fórmula de Taylor:

$$f(x, y, z) = f(0, 0, 1) + f_x(0, 0, 1)(x - 0) + f_y(0, 0, 1)(y - 0) + f_z(0, 0, 1)(z - 1) + R_1$$

= x + z + 1 + R₁

Fórmula de Taylor de 2º orden

Teorema

Sea $U\subseteq \mathbb{R}^n$ un abierto y $f:U\longrightarrow \mathbb{R}$ una función de clase C^2 en un entorno de $x_0\in U$. Entonces la fórmula de Taylor de segundo orden de f en x_0 es

$$f(x_0 + h) = f(x_0) + \sum_{i=1}^n \frac{\partial f(x_0)}{\partial x_i} h_i + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j} h_i h_j) + R_2(x_0, h),$$

donde

$$\lim_{h \to 0} \frac{R_2(x_0, h)}{\|h\|^2} = 0$$

Para hallarla: hay que calcular

- el valor de f en x₀;
- el valor de todas las derivadas parciales de orden 1 en x_0 ;
- el valor de todas las derivadas parciales de orden 2 en x_0 .

Ejemplo: fórmula de Taylor de grado 2

Calcule la fórmula de Taylor de grados 1 y 2 de la función $f(x,y) = \text{sen}(x\,y)$ en el punto $(1,\pi/2)$.

Solución: Tenemos primero $f(1, \pi/2) = \text{sen}(\pi/2) = 1$.

Las derivadas parciales de orden 1 son las siguientes:

$$\frac{\partial f}{\partial x}(1,\pi/2) = y\cos(xy)|_{(1,\pi/2)} = 0, \quad \frac{\partial f}{\partial y}(1,\pi/2) = x\cos(xy)|_{(1,\pi/2)} = 0.$$

Las derivadas parciales de orden 2 son las siguientes:

$$\frac{\partial^2 f}{\partial x^2}(1, \pi/2) = -y^2 \operatorname{sen}(xy)|_{(1, \pi/2)} = -\pi^2/4.$$

$$\frac{\partial^2 f}{\partial y^2}(1, \pi/2) = -x^2 \operatorname{sen}(xy)|_{(1, \pi/2)} = -1.$$

$$\frac{\partial^2 f}{\partial y^2}(1, \pi/2) = -xy \operatorname{sen}(xy)|_{(1, \pi/2)} = -\pi/2.$$

La fórmula de Taylor de grado 1 es $f(x, y) = 1 + R_1$.

La fórmula de Taylor de grado 2 es

$$f(x,y) = 1 - \frac{1}{2} \left(\frac{\pi^2}{4} (x-1)^2 + \pi (x-1) (y - \frac{\pi}{2}) + (y - \frac{\pi}{2})^2 \right) + R_2.$$

Otro ejemplo: fórmula de Taylor de grado 2

Halle la fórmula de Taylor de orden 2 centrado en (0,0) de la función: $f(x,y) = e^{x^2+y^2}$.

Solución: Como antes, empezamos calculando todas las parciales hasta orden dos.

$$f(0,0) = e^{x^2 + y^2}|_{(0,0)} = 1 f_{xx}(0,0) = 2e^{x^2 + y^2}(1 + 2x^2)|_{(0,0)} = 2$$

$$f_x(0,0) = 2xe^{x^2 + y^2}|_{(0,0)} = 0 f_{yy}(0,0) = 2e^{x^2 + y^2}(1 + 2y^2)|_{(0,0)} = 2$$

$$f_y(0,0) = 2ye^{x^2 + y^2}|_{(0,0)} = 0 f_{xy}(0,0) = f_{yx}(0,0) = 4xye^{x^2 + y^2}|_{(0,0)} = 0$$

Y ahora sustituimos en la fórmula:

$$f(x,y) = f(0,0) + f_x(0,0)(x-0) + f_y(0,0)(y-0)$$

$$+ \frac{1}{2} (f_{xx}(0,0)(x-0)^2 + f_{yy}(0,0)(y-0)^2 + 2f_{xy}(0,0)(x-0)(y-0)) + R_2$$

$$= 1 + \frac{1}{2} (2x^2 + 2y^2) + R_2 = 1 + x^2 + y^2 + R_2$$

Fórmula de Taylor general

Definición (Fórmula de Taylor de orden k)

Sea $U \subseteq \mathbb{R}^n$ un abierto y $f: U \longrightarrow \mathbb{R}$ una función $f \in C^k$ en un entorno de $x_0 \in U$. Entonces

$$f(x_0 + h) = f(x_0) + \sum_{i=1}^n \frac{\partial f(x_0)}{\partial x_i} h_i + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j} h_i h_j$$
$$+ \dots + \frac{1}{k!} \sum_{i_1,\dots,i_k}^n \frac{\partial^k f(x_0)}{\partial x_{i_1} \dots \partial x_{i_k}} h_{i_1} \dots h_{i_k} + R_n(x_0, h),$$

donde

$$\lim_{h \to 0} \frac{R_k(x_0, h)}{\|h\|^k} = 0$$

En los sumatorios, cada índice i_1, \ldots, i_k va desde 1 hasta n. Esto implica que, por ejemplo, el último sumatorio que aparece en la fórmula anterior

Polinomio y resto de Taylor

El polinomio de taylor es simplemente las fórmulas de Taylor sin el resto. Por ejemplo,

$$P_{k,x_0,f}(x) = f(x_0) + \sum_{i=1}^n \frac{\partial f(x_0)}{\partial x_i} h_i + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j} h_i h_j$$
$$+ \dots + \frac{1}{k!} \sum_{i_1,\dots,i_k}^n \frac{\partial^k f(x_0)}{\partial x_{i_1} \dots \partial x_{i_k}} h_{i_1} \dots h_{i_k}$$

es el polinomio de Taylor de grado k para la función f en el punto x_0 .

Cuando la función es C^{k+1} entonces el **resto de Taylor de orden** k se describe con fórmulas (bien la de Lagrange, bien la integral). Se pueden encontrar en el libro de texto si se está interesado.

Máximos y mínimos locales

En esta sección estudiamos cómo calcular máximos y mínimos de funciones multivariables. Empecemos recordando estas nociones para funciones $f: \mathbb{R} \to \mathbb{R}$.

 $x_0 = \text{máximo local: } f \text{ toma un valor máximo en un entorno de } x_0$.

 $x_1 = m$ ínimo local: f toma un valor mínimo en un entorno de x_1 .

Estas nociones se generalizan fácilmente a funciones $\mathbb{R}^n \to \mathbb{R}$.

Máximos, mínimos y extremos locales

Definición (Máximo local)

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Decimos que $x_0 \in U$ es un **máximo local** de f si existe un abierto V con $x_0 \in V \subset U$ tal que $\forall x \in V$, $f(x) \leq f(x_0)$.

Definición (Mínimo local)

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Decimos que $x_1 \in U$ es un **mínimo local** de f si existe un abierto V con $x_1 \in V \subset U$ tal que $\forall x \in V$, $f(x) \geq f(x_1)$.

Definición (Extremo local)

Decimos que $x_0 \in U$ es un **extremo local** si es un máximo local o un mínimo local.

¿Cómo se encuentran los extremos de una función?

En el caso de una variable, se usa la derivada (buscando los valores de x donde f'(x) = 0). Para funciones $\mathbb{R}^n \to \mathbb{R}$ usamos el **gradiente**.

Teorema

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$ diferenciable en $x_0 \in U$. Si x_0 es un extremo local, entonces $\nabla f(x_0) = 0$.

Definición

Un punto x_0 donde $\nabla f(x_0) = 0$ se llama un **punto crítico** de f.

El teorema implica que para encontrar un extremo local en un subconjunto abierto V del dominio de f, hay que mirar entre los puntos críticos en V. ¿Cómo averiguar si un punto crítico dado es un máximo o un mínimo?

Máximos y mínimos locales

<u>Ejemplo</u>: Sea $f(x,y) = x^2 + y^2$. Tenemos $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2x, 2y)$, que se anula en $x_0 = (0,0)$. En este caso está claro que se trata de un mínimo.

<u>Ejemplo</u>: Sea $f(x,y)=x^2-y^2$. Tenemos $\nabla f=\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right)=(2x,-2y)$, que de nuevo se anula en $x_0=(0,0)$. Si nos acercamos a (0,0) con y=0, tenemos un máximo en x=0, mientras que si nos acercamos a (0,0) con x=0, tenemos un mínimo en y=0. Un tal punto crítico se llama un *punto de silla*.

Tipos de extremos

Supongamos que $x_0 \in U$ es un extremo de $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Entonces x_0 puede ser de tres tipos:

- un máximo local;
- un mínimo local;
- un punto de silla, si no es ni máximo ni mínimo local.

Los puntos críticos los hallamos resolviendo $\nabla f(x_0) = 0$; una vez hecho esto, ¿cómo sabemos a cuál de los tres tipos de arriba pertenece?

En el caso de $f: \mathbb{R} \to \mathbb{R}$ la segunda derivada f'' nos da el criterio deseado, a saber, que x_0 es un máximo local si $f''(x_0) < 0$ y es un mínimo local si $f''(x_0) > 0$.

La matriz Hessiana de una función f

Para funciones $f: \mathbb{R}^n \to \mathbb{R}$, la herramienta análoga debe tomar en cuenta todas las derivadas parciales de orden 2.

Definición

Dada $f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$, su matriz Hessiana se define como

$$Hf = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Calcular esta matriz nos da la información necesaria para averiguar la estructura de un punto crítico. Veamos esto en detalle.

Distinguiendo extremos, caso general

Dada una matriz M cuadrada de tamaño n, para cada $i \in 1 \dots n$ el menor principal i-ésimo de M es el determinante de la submatriz $M_i \in \mathbb{R}^{i \times i}$ cuyas filas y columnas son las primeras i filas y columnas de M.

Clasificación de puntos críticos (usando el criterio de Sylvester)

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$ de clase C^2 en U. Sea $x_0 \in U$ un punto crítico de f, y supongamos que cada menor de $H_f(x_0)$ es no nulo.

- 1) x_0 es un **mínimo local** si todos los menores principales de $H_f(x_0)$ son positivos, es decir si $H_f(x_0)$ es *definida positiva*.
- 2) x_0 es un **máximo local** si los menores principales *i*-ésimos son negativos para *i* impar y positivos para *i* par, es decir si $H_f(x_0)$ es definida negativa.
- 3) Si los menores principales son todos no nulos y no se da ni 1) ni 2), entonces x_0 es un **punto de silla** (en algunas direcciones es un mínimo y en otras un máximo).

(Si algún menor de $H_f(x_0)$ es nulo, no podemos decir nada en general.)

EL discriminante de una función f(x, y)

Sea $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ una función suave. Recordamos que $\nabla f(x_0, y_0)$ es el vector gradiente de f en un punto (x_0, y_0) .

Definición

El discriminante de f en (x_0, y_0) (denotado por D) es el determinante del Hessiano de f en (x_0, y_0) , esto es

$$D := \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 > 0$$

todo ello evaluado en el punto (x_0, y_0) .

Distinguiendo extremos para f(x, y)

Este caso aparece frecuentemente.

Teorema

Sean $f: U \longrightarrow \mathbb{R}$ una función de clase C^2 en un abierto U.

• Un punto $(x_0, y_0) \in U$ es un **mínimo local estricto** de f si se tiene que

$$\nabla f(x_0, y_0) = (0, 0), \qquad \frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0, \qquad D > 0 \text{ en } (x_0, y_0).$$

• Un punto $(x_0, y_0) \in U$ es un máximo local estricto de f si se tiene que

$$\nabla f(x_0, y_0) = (0, 0), \qquad \frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0, \qquad D > 0 \text{ en } (x_0, y_0).$$

• (x_0, y_0) es un punto de silla si $\nabla f(x_0, y_0) = (0, 0), D < 0.$

Observación: Si D = 0, no podemos decir nada de (x_0, y_0)

Distinguiendo extremos para f(x, y) (resumen)

Queremos hallar los extremos de f(x, y). Entonces:

- **1** Primero calculamos el gradiente ∇f .
- ② Después hallamos todos los puntos (x_0, y_0) donde $\nabla f(x_0, y_0) = (0, 0)$.
- **9** Para cada uno de los puntos calculados en el paso anterior, hallamos el discriminante D de f en ese punto:
 - Si D < 0, (x_0, y_0) es un **punto de silla**.
 - Si D > 0, hay que calcular $\frac{\partial^2 f}{\partial x^2}(x_0, y_0)$:
 - Si $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0$, (x_0, y_0) es un minimo local estricto.
 - Si $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0$, (x_0, y_0) es un máximo local estricto.
 - SI D = 0, no podemos decir nada.

Ejemplo de cálculo y clasificación de extremos

Sea $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 - 2xy + 2y^2$. Calculemos los puntos críticos de f.

$$\frac{\partial f}{\partial x} = 2x - 2y$$
, $\frac{\partial f}{\partial y} = -2x + 4y$. Resolvemos el sistema $\begin{cases} 2x - 2y = 0 \\ 2x - 4y = 0 \end{cases}$.

Encontramos el punto crítico $(x_0, y_0) = (0, 0)$.

Calculamos la hessiana en
$$(0,0)$$
: $\begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix}$.

Los menores principales son
$$\frac{\partial^2 f}{\partial x^2} = 2$$
, $\det \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix} = 4$.

Por lo tanto (0,0) es un mínimo local.

Otro ejemplo de cálculo de mínimos

Queremos encontrar los puntos de **la gráfica de** f(x,y) = 1/(xy) que minimizan la distancia al origen (0,0,0). Esta distancia se da por la fórmula siguiente:

$$||(x, y, f(x, y)) - (0, 0, 0)|| = (x^2 + y^2 + 1/(x^2y^2))^{1/2}.$$

Por lo tanto, el problema consiste en encontrar los mínimos de la función $g(x,y)=x^2+y^2+1/(x^2y^2)$. Calculemos los puntos críticos.

$$\frac{\partial g}{\partial x} = 2x - \frac{2y^2x}{x^4y^4} = 2x - \frac{2}{x^3y^2}, \quad \frac{\partial g}{\partial y} = 2y - \frac{2}{x^2y^3}.$$

Está claro que los puntos críticos tienen x, y ambos no nulos.

Tenemos pues que resolver el sistema $\begin{cases} 2x^4y^2=2\\ 2x^2y^4=2 \end{cases}$. Encontramos cuatro puntos críticos, a saber $(x_0,y_0)=(\pm 1,\pm 1)$. Confirmemos que son mínimos:

$$\tfrac{\partial^2 g}{\partial x^2} = 2 + \tfrac{6y^2x^2}{x^6y^4} = 2 + \tfrac{6}{x^4y^2}, \quad \tfrac{\partial^2 g}{\partial y^2} = 2 + \tfrac{6}{x^2y^4}, \quad \tfrac{\partial^2 g}{\partial x \partial y} = \tfrac{4yx^3}{x^6y^4} = \tfrac{4}{x^3y^3}.$$

Tenemos
$$H_g\left(\pm(1,1)\right)=\left(\begin{array}{cc} 8 & 4 \\ 4 & 8 \end{array}\right)$$
, $H_g\left(\pm(1,-1)\right)=\left(\begin{array}{cc} 8 & -4 \\ -4 & 8 \end{array}\right)$,

luego $(\pm 1, \pm 1)$ son mínimos, por las diapositivas anteriores.

Extremos condicionados

El problema que trataremos aquí es el de hallar extremos de una función bajo ciertas condiciones o restricciones, llamados **extremos condicionados**.

El método principal que estudiaremos para hacer esto es el llamado método de los *multiplicadores de Lagrange*.

Vamos a describir el problema más precisamente.

Sean $f,g:U\subset\mathbb{R}^n\to\mathbb{R}$ funciones de clase \mathcal{C}^1 en U. Denotemos por S_c el conjunto de nivel c de g, a saber $S_c=\{x:g(x)=c\}$. Denotemos por $f|_{S_c}$ la restricción de f a S_c , es decir la función $S_c\to\mathbb{R}$, $x\mapsto f(x)$.

¿Cómo estudiar los extremos de $f|_{S_c}$?

Usando el método de multiplicadores de Lagrange.

Extremos condicionados: multiplicadores de Lagrange

El método se basa en el resultado central siguiente.

Teorema (Multiplicadores de Lagrange)

Sean $f,g:U\subset\mathbb{R}^n\to\mathbb{R}$, y denotemos por S_c el conjunto de nivel c de g. Supongamos que $x_0\in S_c$ es tal que $\nabla g(x_0)\neq 0$. Si $f|_{S_c}$ tiene un extremo en x_0 , entonces existe un número real λ_0 tal que $\nabla f(x_0)=\lambda_0\nabla g(x_0)$.

¿Cómo se usa?:

Para hallar los máximos y los mínimos de f(x) sujetos a la restricción g(x) = c, donde $f, g : U \subset \mathbb{R}^n \to \mathbb{R}$:

• Hay que hallar los $\lambda \in \mathbb{R}$ y los puntos $x_0 \in \mathbb{R}^n$ tal que

$$\nabla f(x_0) = \lambda \cdot \nabla g(x_0), \qquad g(x_0) = c.$$

• Después hay que calcular f(x) en todos los puntos encontrados anteriormente; el mayor sera el máximo, el menor el mínimo.

Extremos condicionados: multiplicadores de Lagrange

Para hallar los máximos y los mínimos de f(x) sujetos a más de una restricción, $g_1(x)=c$, $g_2(x)=c_2,\ldots,g_k(x)=c_k$ donde

$$f, g_1, \ldots, g_k : U \subset \mathbb{R}^n \to \mathbb{R} \text{ y } c_i \in \mathbb{R} :$$

(esto a veces se pide como maximizar y minimizar f en la superficie de nivel $S_c = \{g_1(x) = c_1, \dots, g_k(x) = c_k\}$)

hay que resolver el sistema

$$\nabla f(x_0) = \lambda_1 \nabla g_1(x_0) + \lambda_2 \nabla g_2(x_0) + \dots + \lambda_k \nabla g_k(x_0),$$

$$g_1(x_0) = c_1, \quad g_2(x_0) = c_2, \quad \dots, \quad g_k(x_0) = c_k,$$

donde a menudo hay que hallar tanto las λ 's como los x_0 's, pero prestando especial atención a estos últimos;

• después evaluamos f en los x_0 's encontrados; el mayor valor será el máximo de f, y el menor, el mínimo.

Ejemplo: encontrar el máximo de f(x,y,z)=x+z con la condición que $x^2+y^2+z^2=1$. Para un parámetro real λ , utilizamos la función auxiliar $F=f(x,y,z)-\lambda(g(x,y,z)-1)$, con $g(x,y,z)=x^2+y^2+z^2$.

$$F(x, y, z, \lambda) = f(x, y, z) - \lambda(x^2 + y^2 + z^2 - 1).$$

Consideramos λ como una nueva variable, y buscamos los puntos críticos de la función de *cuatro* variables $F(x, y, z, \lambda)$.

Tenemos
$$\frac{\partial F}{\partial x}=1-2\lambda x$$
, $\frac{\partial F}{\partial y}=-2\lambda y$, $\frac{\partial F}{\partial z}=1-2\lambda z$, $\frac{\partial F}{\partial \lambda}=-x^2-y^2-z^2+1$.

Para que se anulen las tres primeras derivadas parciales, se necesita $\lambda \neq 0$, y=0, $x=z=1/(2\lambda)$. Por lo tanto la cuarta se anula también si $\frac{1}{4\lambda^2}+\frac{1}{4\lambda^2}=1$, i.e. si $\lambda=\pm 1/\sqrt{2}$.

Substituimos λ en $x=z=1/(2\lambda)$, obteniendo los puntos críticos condicionales $(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$ (máximo), y $(\frac{-1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}})$ (mínimo).

Ejemplo: hallar los extremos de f(x, y) = xy en $D: x^2 + y^2 \le 1$.

Aquí haremos como en la clase anterior, a saber, estudiar primero los extremos en el interior D° , y luego mirar si hay extremos en la frontera ∂D .

- 1) Estudio en D° : aquí aplicamos el análisis de extremos visto anteriormente. Tenemos $\frac{\partial f}{\partial x} = y$, $\frac{\partial f}{\partial y} = x$, $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = 0$, $\frac{\partial^2 f}{\partial x \partial y} = 1$. Tenemos pues (0,0) como punto crítico en D° , y $H_f(0,0) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ tiene
- determinante negativo, luego (0,0) es un punto de silla. 2) Estudio en $\partial D = \{(x,y): x^2 + y^2 = 1\}$: aquí, podemos usar el método de los multiplicadores. Ponemos $F(x,y,\lambda) = xy - \lambda(x^2 + y^2 - 1)$.

$$\begin{cases} \frac{\partial F}{\partial x} = y - 2\lambda x = 0 \\ \frac{\partial F}{\partial y} = x - 2\lambda y = 0 \\ \frac{\partial F}{\partial \lambda} = x^2 + y^2 - 1 = 0 \end{cases} \Rightarrow \begin{cases} y = 2\lambda x \\ x(1 - (2\lambda)^2) = 0 \\ x^2 + y^2 = 1 \end{cases} \Rightarrow \begin{cases} 2\lambda = \pm 1 \\ x^2 + y^2 = 1 \end{cases}$$

 $\lambda = 1/2$ \Rightarrow x = y \Rightarrow $(x, y) = \pm (1/\sqrt{2}, 1/\sqrt{2})$, máximos.

Ejemplo: hallar los extremos de $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$ en $D: \frac{x^2}{2} + y^2 \le 1$.

De nuevo, dividimos el análisis en dos partes.

1) Estudio en D° : calculamos los extremos locales. Tenemos

$$\frac{\partial f}{\partial x} = x$$
, $\frac{\partial f}{\partial y} = y$, $\frac{\partial^2 f}{\partial x^2} = 1$, $\frac{\partial^2 f}{\partial y^2} = 1$, $\frac{\partial^2 f}{\partial x \partial y} = 0$.

Tenemos pues (0,0) como punto crítico en D° , y $H_f(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ tiene determinante positivo, luego (0,0) es un mínimo local.

2) Estudio en $\partial D = \{(x,y): x^2 + 2y^2 = 2\}$: de nuevo usamos multiplicadores. Sea $F(x,y,\lambda) = \frac{1}{2}(x^2 + y^2) - \lambda(\frac{x^2}{2} + y^2 - 1)$.

$$\begin{cases} \frac{\partial F}{\partial x} = x - \lambda x = 0 \\ \frac{\partial F}{\partial y} = y - 2\lambda y = 0 \\ \frac{\partial F}{\partial \lambda} = \frac{x^2}{2} + y^2 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \Rightarrow y = \pm 1, \ \lambda = 1/2, \ \text{o bien} \\ y = 0 \Rightarrow x = \pm \sqrt{2}, \ \lambda = 1 \end{cases}$$

Obtenemos cuatro puntos críticos, a saber $(0,\pm 1)$, $(\pm \sqrt{2},0)$.

Conclusión: $f(0, \pm 1) = \frac{1}{2}$. $f(\pm \sqrt{2}, 0) = 1$. f(0, 0) = 0. Por tanto. en D

En el ejemplo siguiente veremos que el método de multiplicadores se puede aplicar también en casos en que hay más de una condición.

Ejemplo: hallar los extremos de f(x, y, z) = x + y + z bajo las dos condiciones $x^2 + y^2 = 2$, x + z = 1.

Sea
$$F(x, y, z, \lambda_1, \lambda_2) = (x + y + z) - \lambda_1(x^2 + y^2 - 2) - \lambda_2(x + z - 1)$$
.

$$\begin{cases} \frac{\partial F}{\partial x} = 1 - 2\lambda_1 x - \lambda_2 = 0 \\ \frac{\partial F}{\partial y} = 1 - 2\lambda_1 y = 0 \\ \frac{\partial F}{\partial z} = 1 - \lambda_2 = 0 \\ \frac{\partial F}{\partial \lambda_1} = 2 - x^2 - y^2 = 0 \\ \frac{\partial F}{\partial \lambda_2} = 1 - x - z = 0 \end{cases} \Rightarrow \begin{cases} \lambda_2 = 1 \Rightarrow 2\lambda_1 x + 1 = 2\lambda_1 y = 1 \\ \Rightarrow \lambda_1 \neq 0, \quad x = 0, \quad y = 1/(2\lambda_1) \\ \Rightarrow x = 0, \quad y = \pm \sqrt{2}, \quad z = 1. \end{cases}$$

Obtenemos pues dos puntos críticos, a saber

$$(0, \sqrt{2}, 1)$$
 (máximo), $(0, -\sqrt{2}, 1)$ (mínimo).

Extremos condicionados: ejercicio

Hallae los extremos de f restringido a $S(f|_S)$:

②
$$f(x,y) = x + y + z$$
 en $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 2 \text{ y } x + z = 1\}.$

Máximos y mínimos globales

Definición (Máximo y mínimo global)

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Un punto $x_0 \in U$ es un **máximo global** (resp. **míni- mo global**) de f en U si $\forall x \in U$, $f(x) \leq f(x_0)$ (resp. $f(x) \geq f(x_0)$).

Recordemos lo que ocurre para funciones $f : \mathbb{R} \to \mathbb{R}$.

En x_0 , tenemos un mínimo local de f. En x_1 , tenemos un mínimo global. Con los métodos vistos, detectamos que x_1 es un mínimo local, pero no que es global.

Para funciones $\mathbb{R}^n \to \mathbb{R}$ más generalmente, se da el mismo problema de detección. El resultado siguiente nos da por lo menos la existencia de extremos globales bajo ciertas condiciones.

Teorema

Sea $D \subset \mathbb{R}^n$ un conjunto compacto (i.e. cerrado y acotado), y sea $f: D \to \mathbb{R}$ una función continua. Entonces existe al menos un mínimo global de f en D y al menos un máximo global de f en D.

Máximos y mínimos globales

En otras palabras, existen puntos del cerrado y acotado D en los cuales f alcanza sus extremos globales en D.

¿Cómo se hallan el máximo y el mínimo global de f en un compacto C? Sea $C \subset \mathbb{R}^n$ un compacto y $f: C \to \mathbb{R}$ una función continua. Los valores máximo y mínimo de f en C se alcanzan en puntos pertenecientes a alguno de los siguientes conjuntos:

- Los puntos críticos de f en el interior de C, denotado usualmente como $\overset{\circ}{C}$.
- Los puntos donde f no sea diferenciable.
- ① Los puntos máximo y mínimo de f en la frontera de C: $f|_{\partial C}$. En este punto, a veces se pueden usar extremos condicionados, pero a veces es más fácil otros argumentos.

Una vez hallados todos, se calcula f sobre ellos. El mayor valor será el **maximo global**, y el menor valor será el **mínimo global**.

Cálculo de máximos y mínimos globales

Ejemplo: encontrar los mínimos y máximos globales de la función f(x,y) = xy en el rectángulo $D = \{(x,y) : -1 \le x \le 1, -1 \le y \le 1\}.$

Calculamos primero los puntos críticos $x_0 \in \mathring{D}$: tenemos $\frac{\partial f}{\partial x} = y$, $\frac{\partial f}{\partial y} = x$, luego $x_0 = (0,0)$. Calculando, f(0,0) = 0.

f es diferenciable en todos puntos, así que no hay que considerar puntos de no diferenciabilidad. Queda estudiar f en la frontera de D .

A:
$$f(1, y) = y$$
, $y \in [-1, 1] \Rightarrow minimo -1 en $(1, -1)$.$

B:
$$f(x,1) = x$$
, $x \in [-1,1] \Rightarrow m \text{ inimo } -1 \text{ en } (-1,1)$.

C:
$$f(-1, y) = -y$$
, $y \in [-1, 1] \Rightarrow m$ ín. -1 en $(-1, 1)$.

D:
$$f(x, -1) = -x$$
, $x \in [-1, 1] \Rightarrow \min -1$ en $(1, -1)$.

Los mínimos globales se alcanzan pues en (1,-1) y (-1,1). De modo similar se ve que los máximos globales se alcanzan en (1,1) y (-1,-1).

Cálculo de máximos y mínimos globales

Ejemplo: encontrar los mínimos y máximos globales de la función $f(x, y) = \text{sen}(x) + \cos(y) \text{ en } D = \{(x, y) : 0 \le x \le 2\pi, \ 0 \le y \le 2\pi\}.$

Como antes, calculamos primero los puntos críticos en el *interior* D° . Tenemos $\frac{\partial f}{\partial x} = \cos(x)$, $\frac{\partial f}{\partial y} = -\sin(y)$. En D° , estas derivadas se anulan respectivamente en $x=\frac{\pi}{2},\frac{3\pi}{2},\ y=\pi.$ En estos puntos, $f\left(\frac{\pi}{2},\pi\right)=0,\ f\left(\frac{3\pi}{2},\pi\right)=-2.$ Cuidado: queda estudiar lo que pasa en la frontera ∂D .

A:
$$f(2\pi, y) = \cos(y) \Rightarrow \begin{cases} \min 1 \text{ en } y = 0, 2\pi \\ \min -1 \text{ en } y = \pi \end{cases}$$

B:
$$f(x, 2\pi) = \operatorname{sen}(x) + 1 \Rightarrow \begin{cases} \min x & = \pi/2 \\ \min 0 & = x = \pi/2 \end{cases}$$
C: $f(0, y) = \cos(y) \Rightarrow \begin{cases} \min x & = \pi/2 \\ \min 0 & = x = \pi/2 \end{cases}$
D: $f(x, 0) = \operatorname{sen}(x) + 1 \Rightarrow \begin{cases} \max x & = \pi/2 \\ \min x & = \pi/2 \end{cases}$

$$\min x & = \pi/2$$

$$\mathsf{C} \colon f(\mathsf{0},y) = \mathsf{cos}(y) \Rightarrow \left\{ \begin{array}{l} \max \ 1 \ \mathrm{en} \ y = \mathsf{0}, 2\pi \\ \min \ -1 \ \mathrm{en} \ y = \pi \end{array} \right.$$

D:
$$f(x,0) = \operatorname{sen}(x) + 1 \Rightarrow \begin{cases} \max 2 \text{ en } x = \pi/2 \\ \min 0 \text{ en } x = 3\pi/2 \end{cases}$$

Cálculo de máximos y mínimos globales

Conclusión del estudio: en $D=\{(x,y): 0\leq x\leq 2\pi,\ 0\leq y\leq 2\pi\}$, la función $f(x,y)=\operatorname{sen}(x)+\cos(y)$ alcanza su máximo global 2 en los puntos $(\frac{\pi}{2},0),\ (\frac{\pi}{2},2\pi)$, y alcanza su mínimo global -2 en el punto $(\frac{3\pi}{2},\pi)$.

Ejercicio de cálculo de extremos globales

Halle los extremos globales de la función

$$f(x,y) = x^2 + y^2 - x - y + 1$$

en el conjunto

$$C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$