Household's Problem

Pascal Michaillat https://www.pascalmichaillat.org/t5.html

_____/

Howhold's problem. Choose
$$c(t)$$
 1 with to maximize $\frac{z-t}{z-1}$ be $\left[\frac{z}{z-1}\right] + \sigma(w,t) - \overline{w}(t)$ at $\frac{z-t}{z-1}$ be $\left[\frac{z}{z-1}\right] + \sigma(w,t) - \overline{w}(t)$ at $\frac{z-t}{z-1}$ be $\left[\frac{z}{z-1}\right] + \sigma(w,t) + \sigma(w,t) + \sigma(w,t)$ be $-\left[\frac{z-t}{z-1}\right] + \sigma(w,t) + \sigma(w,t)$ be $-\left[\frac{z-t}{z-1}\right] + \sigma(w,t)$ be $-\left[\frac{z-t}{z-1$

In a propriete transversality and trans

Linn
$$e^{-St}$$
 $\mathcal{T}(t)$ $\mathcal{W}(t) = 0$

then \mathcal{Y} 13 in Accurage (2007) — any interior

Arberton \mathcal{T} 14 in Accurage (2007) — any interior

Arberton to necessary and him s is global anaximum.

Euler equation:

 $\partial H/\partial c = 0 \implies \frac{c}{2-1} \times \frac{c}{2} \times c = \mathcal{Y}(t) + \mathcal{T}(t) = 0$
 $d = 0$