Techniki Optymalizacji: Metody klasyfikacji

Wojciech Kotłowski

Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl

pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek 15:00-16:30 Slajdy dostępne pod adresem: http://www.cs.put.poznan.pl/wkotlowski/

25.11.2013

Spis treści

- 1 Problem klasyfikacji
- f 2 Trenowanie klasyfikatora liniowego: błąd 0/1
- 3 Relaksacja błędu 0/1
- 4 Regresja logistyczna
- 5 Optymalizacja regresji logistycznej: metoda Cauchy'ego
- 6 Optymalizacja regresji logistycznej: metoda Newtona
- 7 Przykład
- 8 Zawiasowa funkcja błędu

Spis treści

- 1 Problem klasyfikacji
- 2 Trenowanie klasyfikatora liniowego: błąd 0/3
- 3 Relaksacja błędu 0/1
- 4 Regresja logistyczna
- 5 Optymalizacja regresji logistycznej: metoda Cauchy'ego
- 6 Optymalizacja regresji logistycznej: metoda Newtona
- 7 Przykład
- 8 Zawiasowa funkcja błędu

Przewidywania/wyjaśnienie jednej zmiennej dyskretnej (Y) przez inne zmienne (X).

- Przewidywania/wyjaśnienie jednej zmiennej dyskretnej (Y) przez inne zmienne (X).
- Klasyfikacja vs. regresja:
 - Regresja *Y* ciągła.
 - Klasyfikacja Y dyskretna, np. $Y \in \{1, ..., K\}$.

- Przewidywania/wyjaśnienie jednej zmiennej dyskretnej (Y) przez inne zmienne (X).
- Klasyfikacja vs. regresja:
 - Regresja *Y* ciągła.
 - Klasyfikacja Y dyskretna, np. $Y \in \{1, ..., K\}$.
- lacktriangle Wartości Y nazywane: klasami, kategoriami, etykietami,

- Przewidywania/wyjaśnienie jednej zmiennej dyskretnej (Y) przez inne zmienne (X).
- Klasyfikacja vs. regresja:
 - Regresja Y ciągła.
 - Klasyfikacja Y dyskretna, np. $Y \in \{1, ..., K\}$.
- Wartości Y nazywane: klasami, kategoriami, etykietami,

Przykłady

- **X** wyniki testów medycznych, $Y \in \{chory, zdrowy\}$.
- **X** jasność pikseli w obrazie $Y \in \{0, \dots, 9\}$ cyfra na obrazie.
- **X** słowa w dokumencie tekstowym, $Y \in \{spam, niespam\}$.
- X treść strony internetowej + słowa kluczowe zapytania, $Y \in \{odwiedzona, nieodwiedzona\}$ czy strona została(by) odwiedzona po pokazaniu w wyszukiwarce.

Przykład

- Zbiór uczący: IRIS (Ronald Fisher, 1936)
- Zmienne wejściowe (X): sepal-length, sepal-width, petal-length, petal-width
- Zmienna wyjściowa (Y): type

College Colleg				
X_1	X_2	X_3	X_4	Y
sepal length	sepal width	petal length	petal width	type
4.4	2.9	1.4	0.2	setosa
6.8	2.8	4.8	1.4	versicolor
5.1	3.5	1.4	0.2	setosa
7.7	3.0	6.1	2.3	virginica
6.2	2.9	4.3	1.3	versicolor
				•

Przykład

- Zbiór uczący: IRIS (Ronald Fisher, 1936)
- Zmienne wejściowe (X): sepal-length, sepal-width, petal-length, petal-width
- Zmienna wyjściowa (Y): type

X_1	X_2	X_3	X_4	Y
sepal length	sepal width	petal length	petal width	type
4.4	2.9	1.4	0.2	setosa
6.8	2.8	4.8	1.4	versicolor
5.1	3.5	1.4	0.2	setosa
7.7	3.0	6.1	2.3	virginica
6.2	2.9	4.3	1.3	versicolor
4.0	2.9	1.9	1.0	?

Klasyfikator

- Klasyfikator to funkcja, która każdemu x przyporządkowuje przewidywaną klasę \hat{y} .
- Klasyfikator jest zwykle wyznaczany (uczony) na podstawie zbioru danych (treningowych).
- lacktriangle Klasyfikator dzieli przestrzeń x-ów na obszary odpowiadające przewidywanym klasom.

Granica między klasami jest nazywana granicą decyzyjną

Hastie, Tibshirani, Friedman, Elements of Statistical Learning

Użycie klasyfikatora typu "najbliższy sąsiad" (nearest neighbour).

Przykład – 3 klasy (Iris)

Hastie, Tibshirani, Friedman, Elements of Statistical Learning

Klasyfikator liniowy: granica decyzyjna jest funkcją liniową.

■ Granica decyzyjna jest funkcją liniową

- Granica decyzyjna jest funkcją liniową
- $\blacksquare \ \, \mathsf{Klasy} \,\, \mathsf{zwykle} \,\, \mathsf{kodowane} \,\, \mathsf{jako} \,\, Y \in \{-1, +1\}.$

- Granica decyzyjna jest funkcją liniową
- Klasy zwykle kodowane jako $Y \in \{-1, +1\}$.
- Klasyfikator złożony z dwóch części:

- Granica decyzyjna jest funkcją liniową
- Klasy zwykle kodowane jako $Y \in \{-1, +1\}$.
- Klasyfikator złożony z dwóch części:
 - Funkcja liniowa **X**:

$$f(\boldsymbol{X}) = w_0 + \sum_{j=1}^m w_j X_j = \boldsymbol{w}^\top \boldsymbol{X}$$

- Granica decyzyjna jest funkcją liniową
- Klasy zwykle kodowane jako $Y \in \{-1, +1\}$.
- Klasyfikator złożony z dwóch części:
 - Funkcja liniowa X:

$$f(\boldsymbol{X}) = w_0 + \sum_{j=1}^m w_j X_j = \boldsymbol{w}^\top \boldsymbol{X}$$

■ Klasyfikacja poprzez progowanie w zerze:

$$\hat{Y}(\boldsymbol{X}) = \begin{cases} +1 & \text{jeśli} \ f(\boldsymbol{X}) \geq 0 \\ -1 & \text{jeśli} \ f(\boldsymbol{X}) < 0 \end{cases} = \operatorname{sgn}(f(\boldsymbol{X})).$$

- Granica decyzyjna jest funkcją liniową
- Klasy zwykle kodowane jako $Y \in \{-1, +1\}$.
- Klasyfikator złożony z dwóch części:
 - Funkcja liniowa X:

$$f(\boldsymbol{X}) = w_0 + \sum_{j=1}^m w_j X_j = \boldsymbol{w}^\top \boldsymbol{X}$$

■ Klasyfikacja poprzez progowanie w zerze:

$$\hat{Y}(\boldsymbol{X}) = \begin{cases} +1 & \text{jeśli} \ f(\boldsymbol{X}) \geq 0 \\ -1 & \text{jeśli} \ f(\boldsymbol{X}) < 0 \end{cases} = \operatorname{sgn}(f(\boldsymbol{X})).$$

 Dla większej ilości klas zwykle rozbicie problemu na problemy dwuklasowe (jedna klasa vs. pozostałe klasy).

- Granica decyzyjna jest funkcją liniową
- Klasy zwykle kodowane jako $Y \in \{-1, +1\}$.
- Klasyfikator złożony z dwóch części:
 - Funkcja liniowa X:

$$f(\boldsymbol{X}) = w_0 + \sum_{j=1}^m w_j X_j = \boldsymbol{w}^\top \boldsymbol{X}$$

Klasyfikacja poprzez progowanie w zerze:

$$\hat{Y}(\boldsymbol{X}) = \begin{cases} +1 & \text{jeśli} \ f(\boldsymbol{X}) \geq 0 \\ -1 & \text{jeśli} \ f(\boldsymbol{X}) < 0 \end{cases} = \operatorname{sgn}(f(\boldsymbol{X})).$$

- Dla większej ilości klas zwykle rozbicie problemu na problemy dwuklasowe (jedna klasa vs. pozostałe klasy).
- Model liniowy jest bardzo ogólny:
 - Przykład: klasyfikacja wielomianowa to klasyfikacja liniowa!
 - Mając X, tworzymy zmienne $X_1 = X, X_2 = X^2, X_3 = X^3, \dots$

$$f(X) = w_1 X + w_2 X^2 + \ldots + w_0 = w_1 X_1 + w_2 X_2 + \ldots + w_0$$

Spis treści

- 1 Problem klasyfikacji
- f 2 Trenowanie klasyfikatora liniowego: błąd 0/1
- 3 Relaksacja błędu 0/1
- 4 Regresja logistyczna
- 5 Optymalizacja regresji logistycznej: metoda Cauchy'ego
- 6 Optymalizacja regresji logistycznej: metoda Newtona
- 7 Przykład
- 8 Zawiasowa funkcja błędu

Trenowanie klasyfikatora liniowego

■ Mając zbiór uczący $(x_1, y_1), \dots, (x_n, y_n)$, jak znaleźć wektor współczynników w?

Trenowanie klasyfikatora liniowego

Mając zbiór uczący $(x_1, y_1), \dots, (x_n, y_n)$, jak znaleźć wektor współczynników w?

Podejście I: Minimalizacja błędu klasyfikacji

- Naturalny błąd klasyfikacji (błąd 0/1): liczba niepoprawnie sklasyfikowanych obserwacji.
- lacktriangle Wyznacz współczynniki $m{w}$ jako te, które minimalizują całkowity błąd klasyfikacji na danych.

■ Prosty zapis błędu klasyfikacji $(y_i, \hat{y}_i \in \{-1, 1\})$:

$$\operatorname{err}_i = \begin{cases} 1 & \text{jeśli } y_i \hat{y}_i \leq 0 \\ 0 & \text{jeśli } y_i \hat{y}_i > 0 \end{cases} = \mathbb{1}[y_i \hat{y}_i \leq 0],$$

gdzie $\mathbb{1}[C]$ to funkcja indykatorowa: \mathbb{C} ? 1 : 0.

■ Prosty zapis błędu klasyfikacji $(y_i, \hat{y}_i \in \{-1, 1\})$:

$$\operatorname{err}_i = \left\{ \begin{array}{ll} 1 & \text{ jeśli } y_i \hat{y}_i \leq 0 \\ 0 & \text{ jeśli } y_i \hat{y}_i > 0 \end{array} \right. = \mathbb{1}[y_i \hat{y}_i \leq 0],$$

 $\mathsf{gdzie}\ \mathbb{1}[C]\ \mathsf{to}\ \mathsf{funkcja}\ \mathsf{indykatorowa}\colon \mathsf{C}\ ?\ 1\ :\quad \mathsf{0}.$

Minimalizujemy:

$$\min : L = \sum_{i=1}^{n} \operatorname{err}_{i}$$

$$= \sum_{i=1}^{n} \mathbb{1}[y_{i}\hat{y}_{i} \leq 0]$$

$$= \sum_{i=1}^{n} \mathbb{1}[y_{i}\boldsymbol{w}^{\top}\boldsymbol{x}_{i} \leq 0].$$

■ Prosty zapis błędu klasyfikacji $(y_i, \hat{y}_i \in \{-1, 1\})$:

$$\operatorname{err}_i = \begin{cases} 1 & \text{ jeśli } y_i \hat{y}_i \leq 0 \\ 0 & \text{ jeśli } y_i \hat{y}_i > 0 \end{cases} = \mathbb{1}[y_i \hat{y}_i \leq 0],$$

 $\mathsf{gdzie}\ \mathbb{1}[C]\ \mathsf{to}\ \mathsf{funkcja}\ \mathsf{indykatorowa}\colon \mathsf{C}\ ?\ 1\ :\quad \mathsf{0}.$

Minimalizujemy:

$$\min : L = \sum_{i=1}^{n} \operatorname{err}_{i}$$

$$= \sum_{i=1}^{n} \mathbb{1}[y_{i}\hat{y}_{i} \leq 0]$$

$$= \sum_{i=1}^{n} \mathbb{1}[y_{i}\boldsymbol{w}^{\top}\boldsymbol{x}_{i} \leq 0].$$

Silnie nieliniowy problem z powodu funkcji indykatorowej.

■ Prosty zapis błędu klasyfikacji $(y_i, \hat{y}_i \in \{-1, 1\})$:

$$\operatorname{err}_i = \begin{cases} 1 & \text{ jeśli } y_i \hat{y}_i \leq 0 \\ 0 & \text{ jeśli } y_i \hat{y}_i > 0 \end{cases} = \mathbb{1}[y_i \hat{y}_i \leq 0],$$

 $\mathsf{gdzie}\ \mathbb{1}[C]\ \mathsf{to}\ \mathsf{funkcja}\ \mathsf{indykatorowa}\colon \mathsf{C}\ ?\ 1\ :\quad \mathsf{0}.$

Minimalizujemy:

$$\begin{aligned} \min: L &= \sum_{i=1}^n \operatorname{err}_i \\ &= \sum_{i=1}^n \mathbb{1}[y_i \hat{y}_i \leq 0] \\ &= \sum_{i=1}^n \mathbb{1}[y_i \boldsymbol{w}^\top \boldsymbol{x}_i \leq 0]. \end{aligned}$$

- Silnie nieliniowy problem z powodu funkcji indykatorowej.
- Można pokazać, że w ogólności problem jest NP-trudny!

■ Wprowadzamy zmienne binarne $\operatorname{err}_i \in \{0,1\}$, które określają błędy klasyfikacji.

- Wprowadzamy zmienne binarne $\operatorname{err}_i \in \{0,1\}$, które określają błędy klasyfikacji.
- Minimalizujemy liniową funkcję $L = \sum_{i=1}^{n} \operatorname{err}_{i}$.

- Wprowadzamy zmienne binarne $\operatorname{err}_i \in \{0,1\}$, które określają błędy klasyfikacji.
- Minimalizujemy liniową funkcję $L = \sum_{i=1}^{n} \operatorname{err}_{i}$.
- Chcemy wprowadzić ograniczenia liniowe, które gwarantują, że $\operatorname{err}_i = \mathbb{1}[y_i \boldsymbol{w}^\top \boldsymbol{x}_i \leq 0]$:

- Wprowadzamy zmienne binarne $\operatorname{err}_i \in \{0,1\}$, które określają błędy klasyfikacji.
- Minimalizujemy liniową funkcję $L = \sum_{i=1}^{n} \operatorname{err}_{i}$.
- Chcemy wprowadzić ograniczenia liniowe, które gwarantują, że $\operatorname{err}_i = \mathbb{1}[y_i \boldsymbol{w}^\top \boldsymbol{x}_i \leq 0]$:

$$y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i \leq M(1 - \operatorname{err}_i),$$

 $y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i \geq -M \operatorname{err}_i + \epsilon,$

gdzie M jest bardzo dużą liczbą, a ϵ bardzo małą liczbą.

min
$$L = \sum_{i=1}^{n} \operatorname{err}_{i}$$

p.o. $y_{i} \boldsymbol{w}^{\top} \boldsymbol{x}_{i} \leq M(1 - \operatorname{err}_{i})$ $i = 1, \dots, n$
p.o. $y_{i} \boldsymbol{w}^{\top} \boldsymbol{x}_{i} \geq -M \operatorname{err}_{i} + \epsilon$ $i = 1, \dots, n$
 $\operatorname{err}_{i} \in \{0, 1\}$ $i = 1, \dots, n$

Sprowadzenie do problemu liniowego całkowitoliczbowego

min
$$L = \sum_{i=1}^{n} \operatorname{err}_{i}$$

p.o. $y_{i} \boldsymbol{w}^{\top} \boldsymbol{x}_{i} \leq M(1 - \operatorname{err}_{i})$ $i = 1, \dots, n$
p.o. $y_{i} \boldsymbol{w}^{\top} \boldsymbol{x}_{i} \geq -M \operatorname{err}_{i} + \epsilon$ $i = 1, \dots, n$
 $\operatorname{err}_{i} \in \{0, 1\}$ $i = 1, \dots, n$

Oczywiście, problem jest nadal NP-trudny ...

Spis treści

- 1 Problem klasyfikacji
- 2 Trenowanie klasyfikatora liniowego: błąd 0/3
- 3 Relaksacja błędu 0/1
- 4 Regresja logistyczna
- 5 Optymalizacja regresji logistycznej: metoda Cauchy'ego
- 6 Optymalizacja regresji logistycznej: metoda Newtona
- 7 Przykład
- 8 Zawiasowa funkcja błędu

lacksquare Przypomnijmy, że błąd 0/1 ma postać $\operatorname{err}_i = \mathbb{1}[y_i oldsymbol{w}^ op oldsymbol{x}_i \leq 0].$

- Przypomnijmy, że błąd 0/1 ma postać $\operatorname{err}_i = \mathbb{1}[y_i \boldsymbol{w}^\top \boldsymbol{x}_i \leq 0].$
- Wprowadzamy pojęcie marginesu (margin) $marg_i = y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i$.

- Przypomnijmy, że błąd 0/1 ma postać $\operatorname{err}_i = \mathbb{1}[y_i \boldsymbol{w}^\top \boldsymbol{x}_i \leq 0].$
- Wprowadzamy pojęcie marginesu (margin) $marg_i = y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i$.
- Dodatni margines oznacza poprawną klasyfikację (brak błędu), ujemny margines oznacza niepoprawną klasyfikację (błąd).

- Przypomnijmy, że błąd 0/1 ma postać $\operatorname{err}_i = \mathbb{1}[y_i \boldsymbol{w}^\top \boldsymbol{x}_i \leq 0].$
- Wprowadzamy pojęcie marginesu (margin) $\operatorname{marg}_i = y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i$.
- Dodatni margines oznacza poprawną klasyfikację (brak błędu), ujemny margines oznacza niepoprawną klasyfikację (błąd).

- Przypomnijmy, że błąd 0/1 ma postać $\operatorname{err}_i = \mathbb{1}[y_i \boldsymbol{w}^\top \boldsymbol{x}_i \leq 0].$
- Wprowadzamy pojęcie marginesu (margin) $marg_i = y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i$.
- Dodatni margines oznacza poprawną klasyfikację (brak błędu), ujemny margines oznacza niepoprawną klasyfikację (błąd).

Główny problem: nieciągły błąd klasyfikacji.

Dokonujemy relaksacji nieciągłego błędu 0/1 do ciągłego błędu będącego nadal funkcją marginesu.

Dokonujemy relaksacji nieciągłego błędu 0/1 do ciągłego błędu będącego nadal funkcją marginesu.

 Zrelaksowany błąd powinien być funkcją nieujemną i osiągać zero dla nieskończonego marginesu (chcemy, aby rozwiązanie bezbłędne miało błąd zerowy).

Dokonujemy relaksacji nieciągłego błędu 0/1 do ciągłego błędu będącego nadal funkcją marginesu.

- Zrelaksowany błąd powinien być funkcją nieujemną i osiągać zero dla nieskończonego marginesu (chcemy, aby rozwiązanie bezbłędne miało błąd zerowy).
- Zrelaksowany błąd powinien być malejącą funkcją marginesu (im większy margines, tym mniejszy błąd).

Dokonujemy relaksacji nieciągłego błędu 0/1 do ciągłego błędu będącego nadal funkcją marginesu.

- Zrelaksowany błąd powinien być funkcją nieujemną i osiągać zero dla nieskończonego marginesu (chcemy, aby rozwiązanie bezbłędne miało błąd zerowy).
- Zrelaksowany błąd powinien być malejącą funkcją marginesu (im większy margines, tym mniejszy błąd).
- Zrelaksowany błąd powinien być wypukłą funkcją marginesu (daje to problem o złożoności wielomianowej).

Spis treści

- 1 Problem klasyfikacji
- 2 Trenowanie klasyfikatora liniowego: błąd 0/3
- 3 Relaksacja błędu 0/1
- 4 Regresja logistyczna
- 5 Optymalizacja regresji logistycznej: metoda Cauchy'ego
- 6 Optymalizacja regresji logistycznej: metoda Newtona
- 7 Przykład
- 8 Zawiasowa funkcja błędu

Błąd logistyczny

$$\operatorname{err}(\operatorname{margin}) = \log(1 + \exp(-\operatorname{marg})) = \log(1 + \exp(-y\boldsymbol{w}^{\top}\boldsymbol{x}))$$

Błąd logistyczny

$$\operatorname{err}(\operatorname{margin}) = \log(1 + \exp(-\operatorname{marg})) = \log(1 + \exp(-y\boldsymbol{w}^{\top}\boldsymbol{x}))$$

- Błąd logistyczny otrzymujemy poprzez:
 - lacksquare wzięcie funkcji liniowej $oldsymbol{w}^ op oldsymbol{x}$,
 - 2 przemnożenie przez prawdziwą etykietę klasy y, otrzymując margines $\max = y \boldsymbol{w}^{\top} \boldsymbol{x}$,
 - \blacksquare przekształcenie przez nieliniową funkcję $\log(1 + \exp(-\text{marg}))$.

Wynika z popularnego modelu statystycznego (szczegóły: wykład dr. Dembczyńskiego).

- Wynika z popularnego modelu statystycznego (szczegóły: wykład dr. Dembczyńskiego).
- Ma bardzo dobre własności:

- Wynika z popularnego modelu statystycznego (szczegóły: wykład dr. Dembczyńskiego).
- Ma bardzo dobre własności:
 - Jest funkcją wypukłą (prosta do optymalizacji = jedno minimum globalne).

- Wynika z popularnego modelu statystycznego (szczegóły: wykład dr. Dembczyńskiego).
- Ma bardzo dobre własności:
 - Jest funkcją wypukłą (prosta do optymalizacji = jedno minimum globalne).
 - Dla dużego dodatniego marginesu marg wykładniczo szybko zbiega do zera:

$$\log(1 + \exp(-\text{marg})) \simeq \exp(-\text{marg}),$$

gdzie skorzystaliśmy z rozwinięcia Taylor $\log(1+x) \simeq x$ dla małych x.

- Wynika z popularnego modelu statystycznego (szczegóły: wykład dr. Dembczyńskiego).
- Ma bardzo dobre własności:
 - Jest funkcją wypukłą (prosta do optymalizacji = jedno minimum globalne).
 - Dla dużego dodatniego marginesu marg wykładniczo szybko zbiega do zera:

$$\log(1 + \exp(-\text{marg})) \simeq \exp(-\text{marg}),$$

gdzie skorzystaliśmy z rozwinięcia Taylor $\log(1+x) \simeq x$ dla małych x.

■ Dla silnie ujemnego marginesu marg rośnie liniowo:

$$\log(1 + \exp(-\text{marg})) \simeq \log(\exp(-\text{marg})) = -\text{marg}.$$

Odporna na wartości odstające!

Minimalizacja całkowitego błędu logistycznego na zbiorze uczącym.

$$\min: L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

Minimalizacja całkowitego błędu logistycznego na zbiorze uczącym.

$$\min : L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

Ciągła (i wypukła) funkcja bez ograniczeń.

Minimalizacja całkowitego błędu logistycznego na zbiorze uczącym.

$$\min: L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

- Ciągła (i wypukła) funkcja bez ograniczeń.
- Możemy użyć jednej z poznanych metod optymalizacji poznanych na wykładzie.

Minimalizacja całkowitego błędu logistycznego na zbiorze uczącym.

$$\min: L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

- Ciągła (i wypukła) funkcja bez ograniczeń.
- Możemy użyć jednej z poznanych metod optymalizacji poznanych na wykładzie.
- Po optymalizacji współczynników, klasyfikacja nowych obserwacji używając funkcji:

$$\hat{Y} = \operatorname{sgn}(\boldsymbol{w}^{\top} \boldsymbol{X})$$

Spis treści

- 1 Problem klasyfikacji
- 2 Trenowanie klasyfikatora liniowego: błąd 0/1
- 3 Relaksacja błędu 0/1
- 4 Regresja logistyczna
- 5 Optymalizacja regresji logistycznej: metoda Cauchy'ego
- 6 Optymalizacja regresji logistycznej: metoda Newtona
- 7 Przykład
- 8 Zawiasowa funkcja błędu

f 1 Zaczynamy od rozwiązania $m w_0 = f 0$.

- 1 Zaczynamy od rozwiązania $w_0 = 0$.
- 2 Dla $k=1,2,\ldots$ aż do zbieżności

- 1 Zaczynamy od rozwiązania $w_0 = 0$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wyznaczamy gradient w punkcie w_{k-1} , $\nabla_L(w_{k-1})$.

- 1 Zaczynamy od rozwiązania $w_0 = 0$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wyznaczamy gradient w punkcie w_{k-1} , $\nabla_L(w_{k-1})$.
 - Robimy krok wzdłuż negatywnego gradientu:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \alpha_k \nabla_L(\boldsymbol{w}_{k-1}),$$

gdzie α_k jest długością kroku ustaloną przez przeszukiwanie liniowe.

■ Funkcja celu:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

Funkcja celu:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

Pochodne:

$$\frac{\partial L(\boldsymbol{w})}{\partial w_j} = \sum_{i=1}^n \frac{-y_i x_{ij} \exp(-y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}{1 + \exp(-y_i \boldsymbol{w}^\top \boldsymbol{x}_i)} = \sum_{i=1}^n \frac{-y_i x_{ij}}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}.$$

Funkcja celu:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

■ Pochodne:

$$\frac{\partial L(\boldsymbol{w})}{\partial w_j} = \sum_{i=1}^n \frac{-y_i x_{ij} \exp(-y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}{1 + \exp(-y_i \boldsymbol{w}^\top \boldsymbol{x}_i)} = \sum_{i=1}^n \frac{-y_i x_{ij}}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}.$$

Gradient:

$$\nabla_L(\boldsymbol{w}) = -\sum_{i=1}^n \frac{y_i \boldsymbol{x}_i}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}.$$

Krok wzdłuż gradientu:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha_k \sum_{i=1}^n \frac{y_i \boldsymbol{x}_i}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}.$$

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha_k \sum_{i=1}^n y_i \boldsymbol{x}_i \beta_i, \qquad \beta_i = \frac{1}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}$$

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha_k \sum_{i=1}^n y_i \boldsymbol{x}_i \beta_i, \qquad \beta_i = \frac{1}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}$$

Kierunek kroku determinowany przez sumę "wpływów obserwacji" o postaci $y_i x_i \beta_i$.

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha_k \sum_{i=1}^n y_i \boldsymbol{x}_i \beta_i, \qquad \beta_i = \frac{1}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}$$

Kierunek kroku determinowany przez sumę "wpływów obserwacji" o postaci $y_i x_i \beta_i$.

lacktriangle jeśli $y_i=1$, to kierunek jest w stronę wektora $oldsymbol{x}_i$

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha_k \sum_{i=1}^n y_i \boldsymbol{x}_i \beta_i, \qquad \beta_i = \frac{1}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}$$

Kierunek kroku determinowany przez sumę "wpływów obserwacji" o postaci $y_i x_i \beta_i$.

- lacksquare jeśli $y_i=1$, to kierunek jest w stronę wektora $oldsymbol{x}_i$
- lacksquare jeśli $y_i=-1$, to kierunek jest w stronę przeciwną do $oldsymbol{x}_i$

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \alpha_k \sum_{i=1}^n y_i \boldsymbol{x}_i \beta_i, \qquad \beta_i = \frac{1}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}$$

Kierunek kroku determinowany przez sumę "wpływów obserwacji" o postaci $y_i x_i \beta_i$.

- lacktriangle jeśli $y_i=1$, to kierunek jest w stronę wektora $oldsymbol{x}_i$
- lacksquare jeśli $y_i=-1$, to kierunek jest w stronę przeciwną do $oldsymbol{x}_i$
- Wpływ danego wektora x_i zależy od wartości β_i :

Spis treści

- 1 Problem klasyfikacji
- 2 Trenowanie klasyfikatora liniowego: błąd 0/1
- 3 Relaksacja błędu 0/1
- 4 Regresja logistyczna
- 5 Optymalizacja regresji logistycznej: metoda Cauchy'ego
- 6 Optymalizacja regresji logistycznej: metoda Newtona
- 7 Przykłac
- 8 Zawiasowa funkcja błędu

1 Zaczynamy od rozwiązania $w_0 = 0$.

- 1 Zaczynamy od rozwiązania $w_0 = 0$.
- ${f 2}$ Dla $k=1,2,\ldots$ aż do zbieżności

- 1 Zaczynamy od rozwiązania $w_0 = 0$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wyznaczamy gradient w punkcie w_{k-1} , $\nabla_L(w_{k-1})$.

- 1 Zaczynamy od rozwiązania $w_0 = 0$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wyznaczamy gradient w punkcie w_{k-1} , $\nabla_L(w_{k-1})$.
 - lacksquare Wyznaczamy hesjan w punkcie $oldsymbol{w}_{k-1}$, $oldsymbol{H}_L(oldsymbol{w}_{k-1}).$

- 1 Zaczynamy od rozwiązania $w_0 = 0$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wyznaczamy gradient w punkcie w_{k-1} , $\nabla_L(w_{k-1})$.
 - lacksquare Wyznaczamy hesjan w punkcie $oldsymbol{w}_{k-1}$, $oldsymbol{H}_L(oldsymbol{w}_{k-1})$.
 - Robimy krok:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \left(\boldsymbol{H}_L(\boldsymbol{w}_{k-1})\right)^{-1} \nabla_L(\boldsymbol{w}_{k-1}),$$

■ Funkcja celu:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

Funkcja celu:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

■ Pochodne:

$$\frac{\partial L(\boldsymbol{w})}{\partial w_j} = \sum_{i=1}^n \frac{-y_i x_{ij} \exp(-y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}{1 + \exp(-y_i \boldsymbol{w}^\top \boldsymbol{x}_i)} = \sum_{i=1}^n \frac{-y_i x_{ij}}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}.$$

Funkcja celu:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

■ Pochodne:

$$\frac{\partial L(\boldsymbol{w})}{\partial w_j} = \sum_{i=1}^n \frac{-y_i x_{ij} \exp(-y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}{1 + \exp(-y_i \boldsymbol{w}^\top \boldsymbol{x}_i)} = \sum_{i=1}^n \frac{-y_i x_{ij}}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}.$$

Drugie pochodne:

$$\frac{\partial^2 L(\boldsymbol{w})}{\partial w_j w_k} = \sum_{i=1}^n \frac{y_i y_k x_{ij} x_{ik} \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i))^2}.$$

Funkcja celu:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)).$$

■ Pochodne:

$$\frac{\partial L(\boldsymbol{w})}{\partial w_j} = \sum_{i=1}^n \frac{-y_i x_{ij} \exp(-y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}{1 + \exp(-y_i \boldsymbol{w}^\top \boldsymbol{x}_i)} = \sum_{i=1}^n \frac{-y_i x_{ij}}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}.$$

Drugie pochodne:

$$\frac{\partial^2 L(\boldsymbol{w})}{\partial w_j w_k} = \sum_{i=1}^n \frac{y_i y_k x_{ij} x_{ik} \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i))^2}.$$

■ Hesjan:

$$\boldsymbol{H}_L(\boldsymbol{w}) = \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^{\top} \frac{\exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))^2}.$$

Wprowadzając ponownie
$$\beta_i = \frac{1}{1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}$$
, zauważamy, że:
$$\frac{\exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))^2} = \frac{\exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))} \cdot \frac{1}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))^2}$$
$$= \beta_i (1 - \beta_i)$$

Wprowadzając ponownie $\beta_i = \frac{1}{1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}$, zauważamy, że:

$$\frac{\exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))^2} = \frac{\exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))} \cdot \frac{1}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))^2}$$
$$= \beta_i (1 - \beta_i)$$

Gradient:

$$\nabla_L(\boldsymbol{w}) = -\sum_{i=1}^n y_i \boldsymbol{x}_i \frac{1}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)} = -\sum_{i=1}^n y_i \boldsymbol{x}_i \beta_i.$$

Wprowadzając ponownie $\beta_i = \frac{1}{1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}$, zauważamy, że:

$$\frac{\exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))^2} = \frac{\exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))} \cdot \frac{1}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))^2}$$
$$= \beta_i (1 - \beta_i)$$

■ Gradient:

$$\nabla_L(\boldsymbol{w}) = -\sum_{i=1}^n y_i \boldsymbol{x}_i \frac{1}{1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)} = -\sum_{i=1}^n y_i \boldsymbol{x}_i \beta_i.$$

Hesjan:

$$\boldsymbol{H}_L(\boldsymbol{w}) = \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^{\top} \frac{\exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))^2} = \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^{\top} \beta_i (1 - \beta_i)$$

Wprowadzając ponownie $\beta_i = \frac{1}{1 + \exp(y_i m{w}^{\top} m{x}_i)}$, zauważamy, że:

$$\frac{\exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))^2} = \frac{\exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))} \cdot \frac{1}{(1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i))^2}$$
$$= \beta_i (1 - \beta_i)$$

Gradient:

$$abla_L(\boldsymbol{w}) = -\sum_{i=1}^n y_i \boldsymbol{x}_i \frac{1}{1 + \exp(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)} = -\sum_{i=1}^n y_i \boldsymbol{x}_i \beta_i.$$

Hesjan:

$$\boldsymbol{H}_L(\boldsymbol{w}) = \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^\top \frac{\exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i)}{(1 + \exp(y_i \boldsymbol{w}^\top \boldsymbol{x}_i))^2} = \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^\top \beta_i (1 - \beta_i)$$

Krok Newtona:

$$oldsymbol{w}_k = oldsymbol{w}_{k-1} + \left(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op eta_i (1-eta_i)\right)^{-1} \left(\sum_{i=1}^n y_i oldsymbol{x}_i eta_i
ight)$$

■ Regresja liniowa:

$$\boldsymbol{w}^* = \left(\sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^\top\right)^{-1} \left(\sum_{i=1}^n y_i \boldsymbol{x}_i\right)$$

■ Regresja logistyczna – krok Newtona.

$$oldsymbol{w}_k = oldsymbol{w}_{k-1} + \left(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op eta_i (1-eta_i)
ight)^{-1} \left(\sum_{i=1}^n y_i oldsymbol{x}_i eta_i
ight)$$

■ Regresja liniowa:

$$\boldsymbol{w}^* = \left(\sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^\top\right)^{-1} \left(\sum_{i=1}^n y_i \boldsymbol{x}_i\right)$$

■ Regresja logistyczna – krok Newtona.

$$oldsymbol{w}_k = oldsymbol{w}_{k-1} + \left(\sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op eta_i (1-eta_i)
ight)^{-1} \left(\sum_{i=1}^n y_i oldsymbol{x}_i eta_i
ight)$$

Rozwiązanie regresji logistycznej przez metodę Newtona to wielokrotne rozwiązywanie problemu najmniejszych kwadratów z obserwacjami ważonymi przez β_i !

Spis treści

- 1 Problem klasyfikacji
- 2 Trenowanie klasyfikatora liniowego: błąd 0/3
- 3 Relaksacja błędu 0/1
- 4 Regresja logistyczna
- 5 Optymalizacja regresji logistycznej: metoda Cauchy'ego
- 6 Optymalizacja regresji logistycznej: metoda Newtona
- 7 Przykład
- 8 Zawiasowa funkcja błędu

South African heart disease

- 462 obserwacje, 160 chorych i 302 obserwacji kontrolnych.
- 7 cech wejściowych (X) i jedna binarna cecha wyjściowa (Y zdrowy/chory).

SBP	systolic blood pressures	
TOBACCO	cumulative tobacco (kg)	
LDL	low density lipoprotein cholesterol	
FAMHIST	family history of heart disease (present/absent)	
OBESITY	obesity (bmi)	
ALCOHOL	alcohol consumption (ltr)	
AGE	age (years)	
DISEASE	presence of heart disease (no/yes)	

Hastie, Tibshirani, Friedman, Elements of Statistical Learning

South African heart disease

South African heart disease

feature	coefficient
(intercept)	-4.130
SBP	0.006
TOBACCO	0.080
LDL	0.185
FAMHIST	0.939
OBESITY	-0.035
ALCOHOL	0.001
AGE	0.043

Spis treści

- 1 Problem klasyfikacji
- 2 Trenowanie klasyfikatora liniowego: błąd 0/1
- 3 Relaksacja błędu 0/1
- 4 Regresja logistyczna
- 5 Optymalizacja regresji logistycznej: metoda Cauchy'ego
- 6 Optymalizacja regresji logistycznej: metoda Newtona
- 7 Przykład
- 8 Zawiasowa funkcja błędu

Relaksacja błędu klasyfikacji

Relaksacja błędu klasyfikacji

Zawiasowa funkcja straty

$$\operatorname{err}(\operatorname{margin}) = \begin{cases} 0 & \text{jeśli} & \operatorname{margin} > 1 \\ 1 - \operatorname{margin} & \text{jeśli} & \operatorname{margin} \leq 1 \end{cases} = (1 - \operatorname{margin})_{+}$$

gdzie:

$$(a)_{+} = \begin{cases} 0 & \text{jeśli} \quad a \leq 0 \\ a & \text{jeśli} \quad a > 0. \end{cases}$$

Zawiasowa funkcja straty

$$\operatorname{err}(\operatorname{margin}) = \begin{cases} 0 & \text{jeśli} & \operatorname{margin} > 1 \\ 1 - \operatorname{margin} & \text{jeśli} & \operatorname{margin} \le 1 \end{cases} = (1 - \operatorname{margin})_{+}$$

gdzie:

$$(a)_{+} = \begin{cases} 0 & \text{jeśli} \quad a \leq 0 \\ a & \text{jeśli} \quad a > 0. \end{cases}$$

Wartość 1 jest tu wzięta arbitralnie – cokolwiek powyżej zera zadziała. Dlaczego?

Zawiasowa funkcja straty

$$\operatorname{err}(\operatorname{margin}) = \begin{cases} 0 & \text{jeśli} & \operatorname{margin} > 1 \\ 1 - \operatorname{margin} & \text{jeśli} & \operatorname{margin} \le 1 \end{cases} = (1 - \operatorname{margin})_{+}$$

gdzie:

$$(a)_{+} = \begin{cases} 0 & \text{jeśli} \quad a \leq 0 \\ a & \text{jeśli} \quad a > 0. \end{cases}$$

- Wartość 1 jest tu wzięta arbitralnie cokolwiek powyżej zera zadziała. Dlaczego?
- lacktriangle Ponieważ błąd w zerze musi być niezerowy, inaczej trywialne rozwiązanie w=0 byłoby natychmiast optymalne.

Minimalizacja sumy błędów zawiasowych na danych:

$$\min_{\mathbf{w}} : L(\mathbf{w}) = \sum_{i=1}^{n} (1 - y_i \mathbf{w}_i^{\top} \mathbf{x}_i)_{+}$$

Minimalizacja sumy błędów zawiasowych na danych:

$$\min_{\mathbf{w}} : L(\mathbf{w}) = \sum_{i=1}^{n} (1 - y_i \mathbf{w}_i^{\top} \mathbf{x}_i)_{+}$$

Sprowadzamy do problemu programowania liniowego:

Minimalizacja sumy błędów zawiasowych na danych:

$$\min_{\mathbf{w}} : L(\mathbf{w}) = \sum_{i=1}^{n} (1 - y_i \mathbf{w}_i^{\top} \mathbf{x}_i)_{+}$$

Sprowadzamy do problemu programowania liniowego:

 \blacksquare Dla każdego $i=1,\ldots,n$ wprowadzamy zmienną $\mathrm{err}_i\geq 0$ i chcemy zapewnić, że

$$(1 - y_i \boldsymbol{w}_i^{\top} \boldsymbol{x}_i)_+ = \operatorname{err}_i$$

Minimalizacja sumy błędów zawiasowych na danych:

$$\min_{\mathbf{w}} : L(\mathbf{w}) = \sum_{i=1}^{n} (1 - y_i \mathbf{w}_i^{\top} \mathbf{x}_i)_{+}$$

Sprowadzamy do problemu programowania liniowego:

 \blacksquare Dla każdego $i=1,\ldots,n$ wprowadzamy zmienną $\mathrm{err}_i \geq 0$ i chcemy zapewnić, że

$$(1 - y_i \boldsymbol{w}_i^{\top} \boldsymbol{x}_i)_+ = \operatorname{err}_i$$

Wystarczy zapewnić, że

$$1 - y_i \boldsymbol{w}_i^{\top} \boldsymbol{x}_i \leq \operatorname{err}_i,$$

ponieważ będziemy minimalizowali błędy err_i .

Minimalizacja sumy błędów zawiasowych na danych:

$$\min_{\mathbf{w}} : L(\mathbf{w}) = \sum_{i=1}^{n} (1 - y_i \mathbf{w}_i^{\top} \mathbf{x}_i)_{+}$$

Sprowadzamy do problemu programowania liniowego:

■ Dla każdego $i=1,\dots,n$ wprowadzamy zmienną $\operatorname{err}_i \geq 0$ i chcemy zapewnić, że

$$(1 - y_i \boldsymbol{w}_i^{\mathsf{T}} \boldsymbol{x}_i)_+ = \operatorname{err}_i$$

Wystarczy zapewnić, że

$$1 - y_i \boldsymbol{w}_i^{\top} \boldsymbol{x}_i \le \operatorname{err}_i,$$

ponieważ będziemy minimalizowali błędy err_i .

- Dowód:
 - jeśli w rozwiązaniu optymalnym $1 y_i \boldsymbol{w}_i^{\top} \boldsymbol{x}_i < \text{err}_i$, to oznacza, że $\text{err}_i = 0$.
 - Inaczej, gdyby $err_i > 0$, możemy zmniejszyć err_i , co przeczyłoby optymalności.

Optymalizacja

Rozwiązujemy problem:

$$\begin{aligned} & \min \quad L = \sum_{i=1}^n \operatorname{err}_i \\ & \text{p.o.} \quad 1 - y_i \boldsymbol{w}_i^\top \boldsymbol{x}_i \leq \operatorname{err}_i \\ & & \operatorname{err}_i \geq 0 \end{aligned} \qquad \begin{aligned} & i = 1, \dots, n \\ & i = 1, \dots, n. \end{aligned}$$

Regresja logistyczna vs. błąd zawiasowy

- Oba błędy są do siebie bardzo podobne.
- Obie funkcje błędu prowadzą do dobrych klasyfikatorów i żaden błąd nie wydaje się istotnie lepszy od drugiego.
- Regresja logistyczna popularniejsza.
- Regresja logistyczna daje oszacowanie niepewności predykcji (wykład dr. Dembczyńskiego).

Koniec na dzisiaj :)