What does it mean to 'solve' the problem of discrimination in hiring? Social, technical and legal perspectives from the UK on automated hiring systems

By: Javier Sánchez-Monedero, Lina Dencik, Lilian Edwards

Sini Suresh M1 – DATA AI IP Paris

02/12/2020

Automated Hiring Systems (AHSs) - Concerns

- Fairness
- Accountability
- Transparency
- Models analysed Pymetrics, HireVue, Applied
- Rarely scrutinized/ based on US socio-legal perspective
- Lack of information about how the algorithm works

Models

Pymetrics

- Conducts games tests generates metrics of cognitive, social and emotional traits.
- Unsupervised learning clustering algorithm
- Follows 4/5th rule of Equal Employment Opportunity Commission (US)

HireVue

- Games and questions based on Industrial Organization psychology research.
- Applies 4/5th rule and trains the model until there is no bias detected.
- · Applies clustering methods to detect protected groups.
- Proposes to replace the objective function, typically a global sum of squared errors, with a corrected function that sums the separate error of the model for each protected group.
- Proposes to sum a penalty term to the corrected error to account for the regulations

Applied

- Specialised in promoting diversity and inclusion in recruitment.
- Numerical, analytical and problem solving platform Mapped

Contributions

- Proposes to compare the previously rejected candidates to give better statistics of best fit candidates wrongly rejected.
- Points out that all the categories depend on clear definitions of groups.
- In HireVue adding many terms to functions will decrease the influence of each term, causing convergence problems in the learning algorithm.
- Creates awareness and brings up a the topic for further research.

Limitations

- The study is done based on publicly available data information relating to code, data sets, features design, trained models, or even the application user interface was not possible
- The study states that algorithm to find the best fit based on the existing employees brings in bias - but without access to the source code or training model, it is not clear whether it can bring in biased groups.
- Number of models used for the study is comparetively less.

eKTELO

- A Review

Challenges – Differentially Private Algorithms

- Difficulty of designing utility-optimal algorithms: i.e., algorithms that can extract the maximal accuracy given a fixed "privacy budget."
- 2. The tasks in which practitioners are interested are diverse and may differ from those considered in the literature.
- 3. Correctly implementing differentially private algorithms can be difficult There are known examples of algorithm pseudocode in research papers not satisfying differential privacy as claimed.

eKTELO - Design Principles & Framework

- Expressiveness
- Inbuilt privacy use of a Protected Kernel
- Algorithms expressed as Plans
- Operators Figure 1
- Transparency
- Modularity
- Flexibility
- Use cases
 - Census data
 - Naïve Bayes

Query selection	
SI	Identity
ST	Total
SP	Privelet
SH2	H2
SHB	НВ
SG	Greedy-H
SU	UniformGrid
SA	AdaptiveGrids
SQ	Quadtree
SW	Worst-approx
SPB	PrivBayes select

Figure 1: The operators currently implemented in ϵ KTELO. Private operators are red, Private \rightarrow Public operators are orange, and Public operators are green.

Contributions of eKTELO

- Every plan implemented in εKTELO comes with a proof of privacy
 - Isolates privacy critical functions in operators.
 - Reduces the amount of code that needs to be verified for privacy
- Improvements to the state-of-art:
 - a general-purpose, efficient and scalable inference engine
 - a new dimensionality reduction operator
 - empirically lowers error
- Operator-based approach:
 - Modularity
 - Transparency
 - Flexibility

Limitations of eKTELO

- εKTELO currently handles only programs that use linear queries on single tables
- JOIN operator is not yet supported.
- Frainess in case of Private->Public operator where privacy budget is utilized.

Thank you!