Time Complexity

- 1. Wg basius + iterations
- 2. Companing iterations using graph
- 3. Time complexity Big O
- 4. TLE
- 5. Imp. of countraink

loganitum

log is inverse of exponential franchion

10g(a) -> To what power we need to saise to b' S.t. we get 'a'.

2'= 2

22 = 4

23 = 8

27=16

25 = 32

2° = 64

$$2^{K} = N$$
 $\Rightarrow \log_2 N$

$$\log_2(2^6) = 6$$

$$\log_2(3^5) = 5$$
 $\log_2(3^5) = 5$

$$0.92(35)$$
 $2^{c} = 35 = 243$
 $c = 8...$

23 =8

23 = 8

29 = 16

2 = 16 3 < C < 4

line N, now many times do we need to divide if by 2, until it seaches 1. N>0

$$100 \xrightarrow{12} 50 \xrightarrow{12} 25 \xrightarrow{12} 12 \xrightarrow{12} 6 \xrightarrow{12} 3 \xrightarrow{12} 1$$

$$count = 6$$

$$9 \frac{1}{3} \cdot 4 \frac{12}{2} \cdot 2 \frac{12}{3} \cdot 1$$

$$count = 3$$

$$N \xrightarrow{13} N/2 \xrightarrow{24} N/4 \xrightarrow{324} N/8 \rightarrow \cdots \rightarrow 1$$

$$N/2^{0} \xrightarrow{19} N/2^{1} \xrightarrow{214} N/2^{2} \xrightarrow{324} N/2^{3} \rightarrow \cdots \xrightarrow{K^{+h}} N/2^{K}$$

$$N/2K = 1$$

$$2^{K} = N \Rightarrow K = 1$$

$$\Rightarrow$$
 K = $10g_2N$
times division
to get |

$$K = 109227$$
 $2 = 16$
 $2 = 32$

$$i=N$$
 $\xrightarrow{14}$ $N/2$ $\xrightarrow{2rd}$ $N/4$ \cdots $\xrightarrow{K^{4n}}$ $N/2K$

$$N/2K=1 \implies K = log N \text{ or } log_2N \text{ } OClog N)$$

Buiz 4

3

$$i=1$$
 $\xrightarrow{+2}$ $i=2$ $\xrightarrow{\times2}$ $i=2^2$ $\xrightarrow{\times3}$ $i=2^3$ $\xrightarrow{\times2}$ $i=2^5$

$$2^{K} = N$$
 \Rightarrow $K = 1092N$

$$N=64$$
 = $10g_2N = 6$ $N(z = 32$

Oclosh)

Quiz 5

for (i=0; i'<=N; i=i+2) }

i=0
$$\xrightarrow{\times 2}$$
 i=0 $\xrightarrow{\times 2}$ i=0 $\xrightarrow{\times 2}$ or finite

Ouiz 6

for (i=0; i'<=N; i=i+2) }

for (i=0

O(N)

> 10N

Duz7

for Liz1; i<=N; ++i) ?

for ljz1; j<=N; ++j) ?

3

3NAN

O(N2)

ì	j	ifeas how
1	[100]	N
2	CNVI)	Ž
-		•
•		r
		(
N	[CN/1]	N
	2	N×N

Suiz 8

for (i=1) i <= N; ++i) f for (j=1); j <= N; j=j*2) f for (j=1); j <= N; j=j*2) for (j=1); j <= N; j=j*2)

		l .
l	J	itesation
1	[1,24,8.1)	10gN
2		rogri
•		7 +
¢		١
C		r e
•		, +
N		1051
	2	NIOGN

3

NCN+1) iterations

Ċ	j	itesations
4	[1,1]	1,
2	21/2]	2
3	[1,3]	3
•		4
r	٠	•
C	•	•
•	-	· ·
И	[0,12]	NT

1+2+3+ ... +N

$$= N^{\frac{2}{4}N}$$

$$=\frac{N^2}{2}+\frac{N}{2}$$

$$O(N^2)$$

Sure!

Gum =
$$\alpha \left(\frac{\sqrt[N]{N-1}}{\sqrt[N]{N-1}} \right)$$
 = $\alpha \left(\frac{\sqrt[N]{N-1}}{\sqrt[N]{N-1}} \right)$ = $\alpha \left(\frac{\sqrt[N]{N-1}}{\sqrt[N]{N-1}} \right)$ = $\alpha \left(\frac{\sqrt[N]{N-1}}{\sqrt[N]{N-1}} \right)$

j:[1,2i] liferation

1 $[1,2^{1}]$ 2 $[1,2^{2}]$ 3 $[1,2^{3}]$

Algo 1 Samy A190 2 Kmentos

100 1092 N

N/10

$$N=9$$
 = algol = $\log \log 9 = 300$
algo $2 = 9/10 = 0.8$

for small input (N <= 3500), Algo 2 is better
for large input (N > 3500), Algo 1 is better U

Ind v Pak viewers -> 18M
Baby Shark video -> 2.8B

Asymptotic Avalysis of algo Big(0)

(3) it workes for sufficiently range input

steps to calculate Big D

- 1. Calculak iterations based on input size
- 2. Ignore Lower Order teams
- 3. Ignore comfaut coeffrents

Algo 1 \rightarrow 100 10g N $O(10g_2N)$ Algo 2 \rightarrow N/10 O(N)

$$109N$$
 JN
 $N=9$ 2
 16 9 9
 69 6 8
 256 8 16 \Rightarrow $109N$ $< JN$

Why ignore lower order terms?

ikeration lower oder /
$$\frac{10N}{N^2+10N}$$
 *100

N
= 10 (500+100) 1000 $\frac{100}{200}$ \$0%

100 1000+1000 1000 $\frac{10^3}{10^4+10^3}$ \$29%.

1000 106+104 109 $\frac{10^4}{10^6+10^4}$ \$20.1%.

Why ignor count. wf.

100 103N / N

Tysues with Big 0

Algo1 $\rightarrow 10^3 \text{ N} \rightarrow 0(\text{N})$ Algo2 $\rightarrow \text{N}^2 \rightarrow 0(\text{N}^2)$ N=10,100,1000 Algo 2 is better

Dui214

Č	j: Drij	ilesation
N	(411)	N
W/2	U1N12]	10/2
N/4		N/y +
r		•
<u> </u>		r -
1	C1/13	17

$$N_{20} N_{12} + N_{12} + N_{12} + \cdots + N_{2k}$$

 $\alpha = N_{1} \quad \gamma = 112 \quad , \quad \gamma = 109 N$

Sum:
$$a\left(\frac{\pi}{8-1}\right)$$
 \Rightarrow $a\left(\frac{1-x^{m}}{1-x}\right)$

$$= N \left(\frac{1 - (1/2)^{109}N}{1 - 1/2} \right)$$

$$= N \left(\frac{1 - 1/2103N}{112} \right)$$

$$= 2N \left(1 - 1/2109N \right)$$

$$= 2N \left(1 - \frac{1}{N} \right) = 2N(N-1)$$

$$= 2(N-1)$$

$$= 2(N-1)$$

$$= 0(N)$$

$$= 2(N-1)$$

$$= 0(N)$$

$$= 000$$

$$= 000$$

$$= 000$$

$$= 000$$

Time livit Exceeded

Online IDE -> 109 instructions per see

Importance of countrains

$$O(N^3)$$
 $(10^5)^3 = 10^{15}$

$$O(N^2)$$
 $(0^5)^2 = (0^{10})$

$$O(N109N)$$
 $10^{5}[0910^{5} \approx 20\times10^{5}]$

$$10^{3} \approx 2^{10}$$
 $\rightarrow 1092^{10} = 10$
 $10^{6} = 2^{20}$ $= 20$

1<= N <= 100

$$O(N^3)$$
 $(100)^3 = (0^6)$