Name- Roll No-

LS2101: BIOCHEMISTRY Class Test 2

Date: 27.09.23 Full Marks= 20

Time= 45 minutes

Answer ALL the questions

Q1. What is the net gain of ATP molecules in glycolysis per molecule of glucose?

a) 0 b) 2

c) 4 d) 6 [1]

Q2. What is the pH of a solution containing 0.24 mol/L of NH4Cl and 0.02 mol/L of NaOH (pKa of NH₄⁺/NH₃ is 9.25)? [1]

Q3. An enzyme:

- a) Reduces the free energy change of the reaction
- b) Increases the free energy change of the reaction
- c) Reduces the activation energy of the reaction
- d) Reduces the heat of reaction

[1]

Q4. Below is a ribbon representation of the K+ channel, a membrane spanning protein made up of four copies of a single polypeptide. The K+ channel allows K+ ions to be shuttled through the membrane. [1+1+2=4]

a)	What protein	secondary struc	cture is part of the K+ cha	nnel protein as shown above?	
b)	Does the K+	channel have qu	naternary structure? If yes	, describe it.	
c)	 c) What type(s) of amino acids do you expect to find on the K+ channel polypeptides i) next to the tails of the membrane lipids? (Circle all that apply) 				
	Polar	Nonpolar	Positively charged	Negatively charged	
		our answer.	nembrane lipids? (Circle a	all that apply)	
	Polar	Nonpolar	Positively charged	Negatively charged	
	iv) Justify yo	our answer.			
Q5. Fi	ll in the blanks	s:			
		_ is an organis	m that is capable of mak getting food from the env	[1] ting its own food store, while a ironment.	

Q6. Sucrose has

[1]

- i) α 1,2 glycosidic bond
- iii) α- 1, 4 glycosidic bond
- ii) β 1, 2 glycosidic bond
- iv) β- 1,4 glycosidic bond

Q7. Below is the energy diagram for the reaction C+D \rightarrow A+B.

[2]

- a) On the energy diagram above, label the following:
 - i) $E_a (\Delta G^{\dagger})$
- ii) ΔG
- iii) A+B
- iv) C+D

- b) Based on the diagram above,
 - i) $\Delta G > 0$
- ii) $\Delta G = 0$
- iii) $\Delta G < 0$

Q8) For the first pair of amino acids listed below, draw the two amino acids with the side chains interacting and list the strongest type of interaction that can occur between the side chain groups. For the remaining pairs, simply list the strongest type of interaction that occurs between the side chain groups. Choose from covalent bonds, hydrogen bonds, ionic bonds, or van der Waals interactions.

i) tyrosine, serine

- ii) cysteine, cysteine-
- iii) Leucine, Isoleucine-
- iv) Glutamic acid, Lysine-

Q9. Which transport of		nzyme complex is part of both citric acid cycle and electro	n [1]		
i)Succinat iii)Citrate	e dehydrogenase synthase	ii) Malate dehydrogenase iv) α- Ketoglutarate dehydrogenase			
Q10. Whe	ere does TCA cycle t	ake place in-	[1]		
i) Mitocho iii) Cytoso	ondrial matrix ol	ii) Outer mitochondrial membraneiv) Plasma membrane			
Q11. Which step is the isomerisation step in TCA cycle. Name the isomers. [2]					
014 1 1					
	the citric acid cycle o	perating under aerobic conditions, which one of the follow	ving [1]		
i)	NAD+				
ii) iii)	FAD+ Molecular Oxygen				
iv)	Succinate Succinate				