Maman 11

Note: I'll be using e.g. $\neg(A \cup B)$ to represent the complement of $(A \cup B)$ (My editor doesn't support superscript or overline)

2

Prove:

if $P(A) \vee P(B) = P(C)$, then $(C=A) \vee (C=B)$

Since:

 $(C=A) \vee (C=B) \equiv (C\subseteq A \wedge A\subseteq C) \vee (C\subseteq B \wedge B\subseteq C)$

I'll be proving the latter.

First: proof that $C \subseteq A \lor C \subseteq B$

 $C \in P(C)$ // power set definition $P(C) = P(A) \lor P(B) \Rightarrow C \in (P(A) \lor P(B))$ $C \in P(A) \lor C \in P(B)$