第八章 群和环

第十三节 子群的陪集及 拉格朗日定理(3)

定理4 拉格朗日定理(Lagrange定理)

设<G,★>是有限群, |G|=n, <H,★>是<G,★>的任意子群, 且 |H|=m, 则 n=km (k∈I)。

证明: 令 H={ h_1 , h_2 , h_3 ,..., h_m },构造H在G中的不同的左陪集,因 H=eH 是个左陪集,如果存在 $a_1 \in G$ 而 $a_1 \notin H$ 构造左陪集 a_1H ,由定理1及定理3知 $H \cap a_1H = \Phi$,并且 $|a_1H| = m$ 。

如果存在 $a_2 \in G$ 而 $a_2 \notin H$ 且 $a_2 \notin a_1 H$,构造左陪集 $a_2 H$,于是 $H \cap a_2 H = \Phi$, $a_1 H \cap a_2 H = \Phi$,并且 $|a_2 H| = m$ 。如此构造下去……,因为 G 是有限集合,这个构造不同左陪集的过程一定会终止。假设最后一个左陪集是 $a_{k-1} H$,则一共构造了 k 个互不相交的、均有m个元素的左陪集。于是

G= H∪a₁H∪a₂H∪ ...∪a_{k-1}H, 所以 |G|=k|H|, 即 n=km。

拉格朗日定理说明:

n 阶群的子群阶数是 群阶数 的因子。

例: <H₁,★>与:<H₂,★>都是群<G,★>的子群, |H₁|=5, |H₂|=6, 求|H₁∩H₂|=?

$$|H_1 \cap H_2| = 1$$

下面的推论1说明:

群中元素的阶数必是群阶数的因子。

推论1

证明

设<G,★>是 n 阶群,则对任意 a ∈ G, |a| 必是 n 的因子,并且 $a^n = e$ 。

任取 a∈G, 由于有限群中元素的阶都是有限的。令 |a|=m。 构造集合 H={a,a²,a³,..., a^m=e},

下面证明<H,★>是<G,★>的子群 (往证★在H上封闭)

任取 aⁱ,a^j∈H, aⁱ★a^j = a^{i+j}

- (1) 如果 i+j ≤m,则 a^{i+j}∈H,
- (2) 如果 i+j >m, 则 0< i+j ≤ 2m。

令 i+j-m=t, 于是 0≤ t ≤ m, i+j=t+m。

 $a^{i+j}=a^{t+m}=a^t\star a^m=a^t\star e=a^t\in H$,所以 $a^{i+j}\in H$,于是 \star 在 H 上封闭,因 H 是有限集合,所以<H, $\star>$ 是<G, $\star>$ 的子群。而 |H|=m,由 Lagrange定理知 m 是 n 的因子,即 n=km ($k\in I$),

 $a^n = a^{km} = (a^m)^k = e^k = e$.

第十三节 结束