Basic Optimization Nonlinear Problems

minimize
$$f(x)$$

s.t. $x \in E$

where $f: \mathbb{R}^n \to \mathbb{R}$ is a real-valued function and E is the feasible region.

Let $f: \mathbb{R}^n \to \mathbb{R}$. If $f \in C^1$ then

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \\ \vdots \\ \frac{\partial f}{\partial x_r}(x) \\ \vdots \\ \frac{\partial f}{\partial x_{n-1}}(x) \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix}$$

- Derivative of f at a point $x := Df(x) = [\nabla f(x)]^T$.
- sometimes we will use $\nabla f(x) = g(x)$ and $\nabla f(x_k) = g(x_k) = g_k$

Let $f: \mathbb{R}^n \to \mathbb{R}$. If $f \in C^2$ then Hessian of f(x) at point x is $H(x) = \nabla g(x)^T = \nabla \{\nabla^T f(x)\}$. Hence

$$H(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}$$

• H(x) is an $n \times n$ square symmetric matrix.

Gradient and Hessian Information

Let $f: \mathbb{R}^n \to \mathbb{R}^m$. If $f \in C^1$ then Jacobian of f(x) at point x is J(x) = Df(x) and is defined as

$$J(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{bmatrix}$$

- Here $x = [x_1, x_2, x_3, \dots, x_n]^T$ and $f(x) = [f_1(x), f_2(x), f_3(x), \dots, f_m(x)]^T$
- J(x) is an $m \times n$ matrix.

Chain and Product Rules: All functions are differentiable here

```
• Let g: \Omega \subset \mathbb{R}^n \to \mathbb{R}.

Let f: (a, b) \to \Omega.

Define h: (a, b) \to \mathbb{R} by h(t) = g(f(t))

Then Dh(t) = \frac{dh}{dt} = [Dg(f(t))][Df(t)], i.e. = \langle Dg(f(t)), [Df(t)] \rangle

= \begin{bmatrix} \frac{\partial g}{\partial x_1}(f(t)) & \frac{\partial g}{\partial x_2}(f(t)) & \cdots & \frac{\partial g}{\partial x_n}(f(t)) \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial f_1}{\partial t} & \frac{\partial f_2}{\partial t} & \cdots & \frac{\partial f_n}{\partial t} \end{bmatrix}^T
```

• Let $f, g : \mathbb{R}^n \to \mathbb{R}^m$.

Define
$$h: \mathbb{R}^n \to \mathbb{R}$$
 by $h(x) = [f(x)]^T g(x)$

Then $Dh(x) = [f(x)]^T Dg(x) + [g(x)]^T Df(x)$. Particularly

$$D(y^TAx) = y^TA$$

•
$$D(x^TAx) = x^TA + x^TA^T = 2x^TA$$
 (if A is symmetric)

•
$$D(y^Tx) = y^T$$

•
$$D(x^Tx) = x^T + x^T = 2x^T$$

More about Gradient

Definition

The level set of a function $f : \mathbb{R}^n \to \mathbb{R}$ at level c is the set $\{x \in \mathbb{R}^n : f(x) = c\}$.

Particularly

- for $f: \mathbb{R}^2 \to \mathbb{R}$, it is a curve.
- for $f: \mathbb{R}^3 \to \mathbb{R}$, it is a surface.

Let $f: \mathbb{R}^n \to \mathbb{R}$.

• Directional derivative of f at a point x in the direction of d is $\langle g(x), d \rangle$.

Unconstrained Gradient Based Optimization Methods

Problem:

minimize
$$f(x)$$

s.t. $x \in \mathbb{R}^n$

where $f: \mathbb{R}^n \to \mathbb{R}$ is a real-valued function.

Revisit: Gradient Properties

- Directional derivative of f at a point x in the direction of d is $\langle g(x), d \rangle$.
- The gradient g and its negative -g are the steepest ascent and steepest descent directions.

Input: Function f(x) and initial guess x^0 .

Until Convergence Do:

iteration:

$$x^{k+1} = x^k + \alpha_k d(x^k) \tag{1}$$

where x^k is the current estimate of a local minimizer to the problem. $d(x^k)$: is the current search direction in the \mathbb{R}^n . In above equation:

$$d(x^k) = -M_k g^k (2)$$

where $g^k = \nabla f(x^k)$ and M_k is $n \times n$ matrix. And, α_k (step size) is the minimizer of a function $\phi : \mathbb{R}^+ \to \mathbb{R}$ defined as

$$\phi(\alpha) = f(x^k + \alpha d(x^k))$$

= $f(x^k - \alpha M_k g^k)$

Stoping Criteria for iterations

- $g^k = 0$ (In computation gradient is rarely identically zero).
- $||g^k|| < \varepsilon$ for some pre specified small positive value ε .
- $||f(x^{k+1}) f(x^k)|| < \varepsilon$ or $||x^{k+1} x^k|| < \varepsilon$.
- $\frac{||f(x^{k+1})-f(x^k)||}{||f(x^k)||} < \varepsilon$ or $\frac{||x^{k+1}-x^k||}{||x^k||} < \varepsilon$ (relative stoping criteria that is scale-independent).
- $\frac{||f(x^{k+1}) f(x^k)||}{\max\{1, ||f(x^k)||\}} < \varepsilon$ or $\frac{||x^{k+1} x^k||}{\max\{1, ||x^k||\}} < \varepsilon$ (to avoid division by a small number).

Output: $x^* = x^{k+1}$ and $f^* = f(x^*)$

Some properties of the Algorithms

$$x^{k+1} = x^k + \alpha_k d(x^k)$$

where

$$d(x^k) = -M_k g^k$$

and, α_k (step size) is the minimizer of a function $\phi:\mathbb{R}^+\to\mathbb{R}$ defined as

$$\phi(\alpha) = f(x^k + \alpha d(x^k))$$

= $f(x^k - \alpha M_k g^k)$

Different choice of matrix M_k gives a different name to our algorithm.

- $M_K = I_n$: Steepest Descent Method (SD).
- If M_k is generated by conjugate vectors with respect to an appropriate PD matrix: Conjugate Gradient Method (CG), Fletcher Reeves Method (FR).
- $M_k = [H(x^k)]^{-1} = H_k^{-1}$: Newton Method.
- If M_k is some approximation of Hessian inverse: Quasi-Newton Type Method.

Some properties of the Algorithms

$$x^{k+1} = x^k + \alpha_k d(x^k)$$

where

$$d(x^k) = -M_k g^k$$

and, $\alpha_{\it k}$ (step size) is the minimizer of a function $\phi:\mathbb{R}^+\to\mathbb{R}$ defined as

$$\phi(\alpha) = f(x^k + \alpha d(x^k))$$

= $f(x^k - \alpha M_k g^k)$

Definition

Any iterative method as defined in the main frame-work is said to have descent property if $f(x^{k+1}) < f(x^k)$, $\forall k$, provided $g^k \neq 0$.

Definition

Any iterative method as defined in the main frame-work is said to have quadratic termination property if the minimum of $f(x) = \frac{1}{2}x^TAx - b^Tx + C$, A is $n \times n$ SPD matrix, is reached in at most n iteration. $b \in \mathbb{R}^n$, C is a constant.

Some properties of the Algorithms

Definition

Any iterative method as defined in the main frame-work is said to be globally convergent if $x^k \to x^*$ (a local minimizer of f) for any initial guess x^0 as $k \to \infty$.

Definition

Any iterative method as defined in the main frame-work is said to have order of convergence p if there exists $0 < a < \infty$ such that

$$\lim_{k \to \infty} \frac{||x^{k+1} - x^*||}{||x^k - x^*||^p} = a$$

If p = 1 and a = 0 then it is called super linear convergent method.

Algorithm for SD method

```
minimize f(x) s.t. x \in \mathbb{R}^n

\checkmark Input f(x), x^0, and \varepsilon (for stoping condition)

\checkmark Until Convergence Do: for k=0,\,1,\,2,\,3,\cdots

Step 1 Calculate g^k:=\nabla f(x^k)

Step 2 Set d^k=-g^k

Step 3 Find \alpha_k, the value of \alpha that minimizes f(x^k+\alpha d^k)

Step 4 Set x^{k+1}=x^k+\alpha_k d^k

\checkmark EndDo
```

Theorem

SD is a descent method.

Proof:

$$x^{k+1} = x^k + \alpha_k d^k$$

where $d(x^k) = -g^k$ and, α_k is the minimizer of a function $\phi : \mathbb{R}^+ \to \mathbb{R}$ defined as $\phi(\alpha) = f(x^k + \alpha d^k)$. Since

$$\frac{d\phi}{d\alpha}|_{\alpha=0} = [Df(x^k + \alpha d(x^k))|_{\alpha=0}]d^k$$
$$= [g^k]^T d^k = -[d^k]^T d^k = -||d^k||^2 < 0$$

So there exists $\overline{\alpha} > 0$ such that $\phi(\alpha) < \phi(0) \ \forall \ 0 < \alpha \leq \overline{\alpha}$. Hence, we have

$$\phi(\alpha_k) = f(x^k + \alpha_k d^k) = f(x^{k+1}) \le \phi(\alpha) < \phi(0) = f(x^k).$$

Apply Basic frame-work to Quadratic problem

Problem: minimize
$$f(x) = \frac{1}{2}x^TAx - b^Tx$$
, A is SPD.

Step 1 Calculate
$$g^k := \nabla f(x^k)$$
.
Here: $g^k = Ax^k - b = r^k$ (say)

Step 2 Set
$$d^k = -M_k g^k$$
. Here: $d^k = -M_k r^k$.

Step 3 Find
$$\alpha_k$$
, the value of α that minimizes $\phi(\alpha) := f(x^k + \alpha M_k d^k)$.

Here:
$$\alpha_k = -\frac{\langle M_k d^k, r^k \rangle}{\langle M_k d^k, AM_k d^k \rangle}$$

Step 4 Set
$$x^{k+1} = x^k + \alpha_k M_k d^k$$
.
Here: $x^{k+1} = x^k - \frac{< M_k d^k, r^k>}{< M_k d^k, AM_k d^k>} M_k d^k$

SD does not have quadratic termination property

Problem: minimize
$$f(x) = \frac{1}{2}x^TAx - b^Tx$$
, A is SPD.

Step 1 Calculate
$$g^k := \nabla f(x^k)$$
. Here: $g^k = Ax^k - b = r^k$ (say)

Step 2 Set
$$d^k = -g^k$$
. **Here:** $d^k = -r^k$.

Step 3 Find α_k , the value of α that minimizes $\phi(\alpha) := f(x^k + \alpha d^k)$.

Here:
$$\alpha_k = \frac{\langle r^k, r^k \rangle}{\langle r^k, Ar^k \rangle}$$

Step 4 Set
$$x^{k+1} = x^k + \alpha_k d^k$$
. Here: $x^{k+1} = x^k - \frac{\langle r^k, r^k \rangle}{\langle r^k, Ar^k \rangle} r^k$

SD does not have quadratic termination property

Problem: minimize $x_1^2 + x_1x_2 + 2x_2^2$.

Here: minimize
$$f(x) = \frac{1}{2}x^T A x - b^T x$$
, $b = 0$ and $A = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$.

Theorem

SD moves in orthogonal directions

Proof:

$$x^{k+1} = x^k + \alpha_k d^k, \quad x^{k+2} = x^{k+1} + \alpha_{k+1} d^{k+1}$$

So,

$$< x^{k+2} - x^{k+1}, x^{k+1} - x^k > = \alpha_k \alpha_{k+1} < d^{k+1}, d^k >$$
 (3)

Since, α_k is the minimizer of a function $\phi : \mathbb{R}^+ \to \mathbb{R}$ defined as $\phi(\alpha) = f(x^k + \alpha d^k)$. So

$$\frac{d\phi}{d\alpha}|_{\alpha=\alpha_k} = [Df(x^k + \alpha d(x^k))|_{\alpha=\alpha_k}]d^k$$

$$= [g^{k+1}]^T d^k = -[d^{k+1}]^T d^k = 0$$
(4)

Above two equations imply the conclusion.

SD is a globally convergent method

Theorem

SD is a globally convergent method.

SD convergence rate is linear for quadratic functions

For simplicity, we take

Problem: minimize $f(x) = \frac{1}{2}x^T A x$, A is SPD. It is known here that $x^* = 0$, $f^* = f(x^*) = 0$. Let max and min eigenvalues of matrix A are B and b respectively.

We know that here SD generates the following sequence for minimizer:

$$x^{k+1} = x^k - \alpha_k r^k$$
 where $\alpha_k = \frac{\langle r^k, r^k \rangle}{\langle r^k, Ar^k \rangle}$ and $r^k = \nabla f(x^k) = Ax^k$.

We can show easily that $\frac{f(x^{k+1})}{f(x^k)} = 1 - \beta$ where $\beta = \frac{\langle r^k, r^k \rangle^2}{\langle r^k, Ar^k \rangle \langle r^k, A^{-1}r^k \rangle}$. By Rayleigh inequality:

$$\begin{aligned} & \frac{b}{2} ||x^{k+1}||^2 \le f(x^{k+1}) \text{ and } \frac{B}{2} ||x^k||^2 \ge f(x^k). \text{ Hence} \\ & \frac{b}{2} ||x^{k+1}||^2 \le f(x^{k+1}) = (1-\beta)f(x^k) \le (1-\beta)\frac{B}{2} ||x^k||^2 \\ & \Rightarrow \frac{||x^{k+1}||^2}{||x^k||^2} = \frac{B}{B}(1-\beta) \le \frac{B}{B}\frac{B-b}{B} \text{ (By Kantorovich inequality). Hence} \end{aligned}$$

$$\frac{||x^{k+1}||}{||x^k||} \le \sqrt{\frac{B-b}{b}}$$

Basic Newton Method algorithm

minimize
$$f(x)$$
 s.t. $x \in \mathbb{R}^n$
 $\sqrt{\text{Input } f(x), x^0, \text{ and } \varepsilon \text{ (for stoping condition)}}$
 $\sqrt{\text{Until Convergence Do}}$: for $k = 0, 1, 2, 3, \cdots$
Step 1 Calculate $g^k := \nabla f(x^k)$
Step 2 Set $d^k = -[H(x^k)]^{-1}g^k$
Step 3 Set $x^{k+1} = x^k + d^k$
 $\sqrt{\text{EndDo}}$

Idea:

Let x^k be the current estimator of x^* . Take quadratic approximation q of f near x^k and find its minima instead of f. Minima of g is treated as the next estimator g is treated as the next estimator g. Thus,

$$q(x) = f(x^k) + g(x^k)^T (x - x^k) + \frac{1}{2} (x - x^k)^T H(x^k) (x - x^k)$$
. This gives:
 $Dq(x) = g(x^k)^T + \frac{1}{2} ((x - x^k)^T H(x^k) + (x - x^k)^T H(x^k)^T)$
 $= g(x^k)^T + (x - x^k)^T H(x^k)$. This implies:
 $\nabla g(x) = g(x^k) + H(x^k) (x - x^k) = 0$ gives the step 3.

Basic Newton Method on quadratic problem

minimize
$$f(x) = \frac{1}{2}x^T Ax - b^T x$$
, A is SPD.

Until Convergence Do:

Step 1 Calculate
$$q^k := \nabla f(x^k)$$

Step 2 Set
$$d^k = -[H(x^k)]^{-1}g^k$$

Step 3 Set
$$x^{k+1} = x^k + d^k$$

EndDo

First iteration:
Step 1
$$g^0 := \nabla f(x^0) = A(x^0) - b$$

Step 2 $d^0 = -A^{-1}g^0$

$$= -x^{0} + A^{-1}b$$
Step 3 $x^{1} = x^{0} - x^{0} + A^{-1}b$

$$= A^{-1}b$$

$$\sqrt{g^1} = A(x^1) - b = 0 \text{ STOP}$$

 $=-A^{-1}(A(x^0)-b)$

Newton's Method give exact answer in only one iteration always! Why?

quadratic Approximation of a quadratic function.

Newton's Method satisfies quadratic termination property

Problem: minimize $x_1^2 + x_1x_2 + 2x_2^2$.

Here: minimize
$$f(x) = \frac{1}{2}x^T A x - b^T x$$
, $b = 0$ and $A = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$.

$$\left(\begin{array}{ccc}
lter & x_1 & x_2 \\
0 & 10.0000 & -10.0000 \\
1 & 0 & 0
\end{array}\right)$$

(Any nonlinear function: not quadratic)

minimize
$$f(x)$$
 s.t. $x \in \mathbb{R}^n$
 $\sqrt{\text{Input } f(x), x^0, \text{ and } \varepsilon \text{ (for stoping condition)}}$
 $\sqrt{\text{Until Convergence Do}: \text{ for } k = 0, 1, 2, 3, \cdots}$
Step 1 Calculate $g^k := \nabla f(x^k)$
Step 2 Set $d^k = -[H(x^k)]^{-1}g^k$
Step 3 Set $x^{k+1} = x^k + d^k$
 $\sqrt{\text{EndDo}}$

Problems:

- \bullet $H(x^k)$ must be invertible for each iteration.
- ② Above scheme is not descent for any arbitrary x_0 (Why?).

Solution of Problem 2: Introduce the Line Search

minimize
$$f(x)$$
 s.t. $x \in \mathbb{R}^n$

Modified Newton's Method:

```
\sqrt{\text{ Input } f(x), x^0, \text{ and } \varepsilon \text{ (for stoping condition)}}
```

$$\sqrt{\ }$$
 Until Convergence Do: for $k=0,\,1,\,2,\,3,\cdots$

Step 1 Calculate
$$g^k := \nabla f(x^k)$$

Step 2 Set
$$d^k = -[H(x^k)]^{-1}g^k$$
 OR Solve $H(x^k)d^k = -g^k$.

Step 3 Find
$$\alpha_k$$
, the value of α that minimizes $f(x^k + \alpha d^k)$

Step 4 Set
$$x^{k+1} = x^k + \alpha_k d^k$$
 $\sqrt{\text{EndDo}}$

Theorem

If Hessian is SPD in each iteration, then Modified Newton Method is descent.

Theorem

If Hessian is SPD in each iteration, then Modified Newton Method is descent.

Proof:

$$x^{k+1} = x^k + \alpha_k d^k$$

where $d(x^k) = -[H(x^k)]^{-1}g^k$ and, α_k is the minimizer of a function $\phi : \mathbb{R}^+ \to \mathbb{R}$ defined as $\phi(\alpha) = f(x^k + \alpha d^k)$. Since

$$\frac{d\phi}{d\alpha}|_{\alpha=0} = [Df(x^k + \alpha d(x^k))|_{\alpha=0}]d^k$$
$$= [g^k]^T d^k = [d^k]^T g^k = -[d^k]^T H(x^k) d^k < 0$$

So there exists $\overline{\alpha} > 0$ such that $\phi(\alpha) < \phi(0) \ \forall \ 0 < \alpha \leq \overline{\alpha}$. Hence, we have

$$\phi(\alpha_k) = f(x^k + \alpha_k d^k) = f(x^{k+1}) \le \phi(\alpha) < \phi(0) = f(x^k).$$

Solution of Problem 1: LM modification

minimize
$$f(x)$$
 s.t. $x \in \mathbb{R}^n$

Levenberg-Marquardt Method:

```
\sqrt{\text{Input } f(x), x^0, \text{ and } \varepsilon} (for stoping condition)
```

$$√$$
 Until Convergence Do: for $k = 0, 1, 2, 3, \cdots$

Step 1 Calculate
$$g^k := \nabla f(x^k)$$

Step 2 Solve
$$[H(x^k) + \mu_k I]d^k = -g^k$$
 for sufficiently large μ_k .

Step 3 Find
$$\alpha_k$$
, the value of α that minimizes $f(x^k + \alpha d^k)$

Step 4 Set
$$x^{k+1} = x^k + \alpha_k d^k$$

Solution of Problem 1: LM modification

minimize
$$f(x)$$
 s.t. $x \in \mathbb{R}^n$

Levenberg-Marquardt Method:

```
\sqrt{\text{Input } f(x), x^0, \text{ and } \varepsilon \text{ (for stoping condition)}}
```

$$\checkmark$$
 Calculate g^0 , $H(x^0)$, and set $\mu = 10^6$ (large number), dif = TRUE.

$$\sqrt{\ }$$
 while $||g^K||$

Step 1 if (dif)
$$\mu = 2\mu$$
; else $\mu = \frac{\mu}{2}$.

Step 2 Solve
$$[H(x^k) + \mu_k I]d^k = -g^k$$
.

Step 3 Set
$$x^{k+1} = x^k + d^k$$

Step 4 Calculate
$$f^{k+1}$$
, g^{k+1} , H^{k+1}

Step 5 if
$$(f(x^{k+1}) < f(x^k))$$
 dif = FALSE; else dif = TRUE.

Conjugate Direction

Definition

Let A be any SPD $n \times n$ matrix. Then Vectors p^0 , p^1 , p^2 , \cdots , p^{n-1} are called A-conjugate directions iff p^i , $p^i >= 0$, $\forall i \neq j$.

- This definition generalize the orthogonality.
- Above *n* directions are LI in \mathbb{R}^n .

minimize
$$f(x)$$
 s.t. $x \in \mathbb{R}^n$
 $\sqrt{\text{Input } f(x), x^0, n A}$ —conjugate directions $p^0, p^1, p^2, \cdots, p^{n-1}$ and ε (for stoping condition) $\sqrt{\text{Until Convergence Do}}$: for $k = 0, 1, 2, 3, \cdots$

Step 1 Find α_k , the value of α that minimizes $f(x^k + \alpha p^k)$

Step 2 Set $x^{k+1} = x^k + \alpha_k p^k$
 $\sqrt{\text{EndDo}}$

Idea:

Instead of negative gradient direction, move in the conjugate directions.

Basic Conjugate Direction Method on quadratic problem

minimize
$$f(x) = \frac{1}{2}x^TAx - b^Tx$$
, A is SPD.

- √ Input f(x), x^0 , n A—conjugate directions p^0 , p^1 , p^2 , \cdots , p^{n-1} and ε (for stoping condition)
- √ Until Convergence Do: for $k = 0, 1, 2, 3, \cdots$
- **Step 1** Find α_k , the value of α that minimizes $f(x^k + \alpha p^k)$.

Here:
$$\alpha_k = -\frac{\langle p^k, r^k \rangle}{\langle p^k, Ap^k \rangle}$$
, where $r^k = \nabla f(x^k) = Ax^k - b$.

Step 2 Set
$$x^{k+1} = x^k + \alpha_k p^k$$
. Here: $x^{k+1} = x^k - \frac{\langle p^k, r^k \rangle}{\langle p^k, Ap^k \rangle} p^k$. $\sqrt{\text{EndDo}}$

Proof:

$$\begin{split} \phi(\alpha) &= f(x^k + \alpha p^k) = \tfrac{1}{2} (x^k + \alpha p^k)^T A(x^k + \alpha p^k) - b^T (x^k + \alpha p^k). \text{ Thus} \\ \frac{d\phi}{d\alpha} &= \tfrac{1}{2} [(p^k)^T A(x^k + \alpha p^k) + (x^k + \alpha p^k)^T A p^k] - b^T p^k \\ &= (p^k)^T A x^k + \alpha (p^k)^T A p^k - (p^k)^T b. \\ \frac{d\phi}{d\alpha} &= 0 \text{ gives } \alpha = \alpha_k. \end{split}$$

Basic Conjugate Direction Method satisfies quadratic termination property

minimize
$$f(x) = \frac{1}{2}x^TAx - b^Tx$$
, A is SPD.
 $\sqrt{\text{Input } f(x), x^0, n \text{ } A}$ -conjugate directions $p^0, p^1, p^2, \cdots, p^{n-1} \text{ and } \varepsilon \text{ (for stoping condition)}$
Step 1 $\alpha_k = -\frac{\langle p^k, r^k \rangle}{\langle p^k, Ap^k \rangle}$, where $r^k = \nabla f(x^k) = Ax^k - b$.
Step 2 Set $x^{k+1} = x^k + \alpha_k p^k$.

Proof:By iterative step:

$$x^{1} = x^{0} + \alpha_{0}p^{0}$$

$$x^{2} = x^{1} + \alpha_{1}p^{1} = x^{0} + \alpha_{0}p^{0} + \alpha_{1}p^{1}$$

$$x^{k} = x^{0} + \alpha_{0}p^{0} + \alpha_{1}p^{1} + \alpha_{2}p^{2} + \dots + \alpha_{k-1}p^{k-1}$$

$$x^{k-1} = x^{k-1} + \alpha_{k-1$$

$$x^{n} = x^{0} + \alpha_{0}p^{0} + \alpha_{1}p^{1} + \alpha_{2}p^{2} + \dots + \alpha_{n-1}p^{n-1}$$
 (6)

We have to show that $x^n = x^*$. Since $x^* \in \mathbb{R}^n$ and p^0 , p^1 , p^2 , \cdots , p^{n-1} is a basis of $x^* \in \mathbb{R}^n$, there exists λ_i 's such that

$$x^* - x^0 = \lambda_0 \rho^0 + \lambda_1 \rho^1 + \lambda_2 \rho^2 + \dots + \lambda_{n-1} \rho^{n-1}$$
 (7)

From (6) and (7), it is clear that to prove $x^n = x^*$, it is sufficient to show that $\lambda_k = \alpha_k$.

Basic Conjugate Direction Method satisfies quadratic termination property

By premultiplying (7) with $(p^k)^T A$ we have

$$\lambda_k = \frac{\langle p^k, A(x^* - x^0) \rangle}{\langle p^k, Ap^k \rangle}$$
 (8)

Now, $x^* - x^0 = (x^* - x^k) + (x^k - x^0)$ implies

$$< p^{k}, A(x^{*} - x^{0}) > = < p^{k}, A(x^{*} - x^{k}) > + < p^{k}, A(x^{k} - x^{0}) >$$
 $= < p^{k}, A(x^{*} - x^{k}) >$
 $(\because \text{ second term is zero by (5)})$
 $= < p^{k}, b - Ax^{k} > = - < p^{k}, r^{k} >$ (9)

From (8) and (9), it is clear that $\lambda_k = \alpha_k$

One more important property of the Basic Conjugate Direction Method for quadratic problem

minimize
$$f(x) = \frac{1}{2}x^TAx - b^Tx$$
, A is SPD.

 $\sqrt{\text{Input } f(x), x^0, n A}$ -conjugate directions $p^0, p^1, p^2, \cdots, p^{n-1}$ and ε (for stoping condition)

Step 1 $\alpha_k = -\frac{\langle p^k, r^k \rangle}{\langle p^k, Ap^k \rangle}$, where $r^k = \nabla f(x^k) = Ax^k - b$.

Step 2 Set $x^{k+1} = x^k + \alpha_k p^k$.

Theorem: New residual \perp all old conjugate directions

For any
$$k \in \{0, 1, 2, \dots, n-1\}, \langle r^{k+1}, p^i \rangle = 0 \, \forall i = 0, 1, 2, \dots, k.$$

Proof: For k = 0, see

$$< r^{1}, p^{0} > = < Ax^{1} - b, p^{0} > = < Ax^{0} + \alpha_{0}Ap^{0} - b, p^{0} >$$

= $< Ax^{0} - b + \alpha_{0}Ap^{0}, p^{0} > = < r^{0} + \alpha_{0}Ap^{0}, p^{0} >$
= $< r^{0}, p^{0} > +\alpha_{0} < Ap^{0}, p^{0} > = 0.$

Last equality is due to the definition of α_0 .

One more important property of the Basic Conjugate Direction Method for quadratic problem

Now Assume that for some k-1 and $i=0,1,2,\cdots,k-1$ statement is correct, i.e., $< r^k, p^i >= 0 \, \forall i=0,1,2,\cdots,k-1$. Then for k and $i=0,1,2,\cdots,k-1$, we have

$$< r^{k+1}, \, p^i > = < r^k + \alpha_k A p^k, \, p^i >$$
 (by the iteration used in the algo: $r^{k+1} = r^k + \alpha_k A p^k$) $= < r^k, \, p^i > + \alpha_k < A p^k, \, p^i > = 0$ (first term is zero by the assumption of induction) (and second is zero by the conjugacy of p^i vectors.)

Now its remains to show that $\langle r^{k+1}, p^k \rangle = 0$. To see it

$$< r^{k+1}, p^k > = < r^k + \alpha_k A p^k, p^k >$$

= $< r^k, p^k > + \alpha_k < A p^k, p^k > = 0.$

Last equality is due to the definition of α_k .

Ques: How we find the A—Conjugate Directions

Problem in consideration: minimize $f(x) = \frac{1}{2}x^T Ax - b^T x$, A is SPD. Iteration step in Basic Conjugate Direction Method:

$$x^{k+1} = x^k - \alpha_k p^k$$
, where $\alpha_k = \frac{\langle p^k, r^k \rangle}{\langle p^k, Ap^k \rangle}$ and $r^k = Ax^k - b$.

Construction of p^{i} , $i = 0, 1, 2, \dots, n-1$:

$$p^0 = -r^0 (10)$$

$$p^{k} = -r^{k} + \beta_{k-1}p^{k-1}, k = 1, 2, \dots, n-1$$
 (11)

where

where
$$\beta_{k-1} = \frac{\langle r^k, Ap^{k-1} \rangle}{\langle p^{k-1}, Ap^{k-1} \rangle}, \ k = 1, 2, \dots, n-1$$
 (12)

This choice of β_{k-1} in equation (11) gives the following facts:

Gradient vectors r^k , $k = 0, 1, 2, \dots, n-1$ are mutually orthogonal

For any
$$k \in \{0, 1, 2, \dots, n-1\}, \langle r^{k+1}, r^i \rangle = 0 \, \forall i = 0, 1, 2, \dots, k.$$

p^k , $k = 0, 1, 2, \dots, n-1$ are mutually A conjugate directions

For any
$$k \in \{0, 1, 2, \dots, n-1\}, \langle p^{k+1}, Ap^i \rangle = 0 \, \forall i = 0, 1, 2, \dots, k$$
.

Theorem: Gradient vectors r^k , $k = 0, 1, 2, \dots, n-1$ are mutually orthogonal

Proof: for arbitrary i, using equation (11) we have

$$\langle r^{k+1}, r^{i} \rangle = \langle r^{k+1}, -p^{i} + \beta_{i-1}p^{i-1} \rangle$$

= $-\langle r^{k+1}, p^{i} \rangle + \beta_{i-1} \langle r^{k+1}, p^{i-1} \rangle$
= 0, (13)

by the previous result that, for any $k \in \{0,1,2,\cdots,n-1\}, < r^{k+1}, p^i >= 0 \ \forall i=0,1,2,\cdots,k.$

Proof: p^1 and p^0 are A conjugate by the definition of β_0 . Now, we show that p^2 is A conjugate to p^1 and p^0 . It is clear that p^2 and p^1 are A conjugate by the definition of β_1 .

$$< p^{2}, Ap^{0} > = < -r^{2} + \beta_{1}p^{1}, Ap^{0} > = - < r^{2}, Ap^{0} > + \beta_{1} < p^{1}, Ap^{0} >$$
 $= - < r^{2}, Ap^{0} > (\because \text{ second term } < p^{1}, Ap^{0} > = 0)$
 $= - < r^{2}, \frac{r^{1} - r^{0}}{\alpha_{0}} > = \frac{1}{\alpha_{0}}[< r^{2}, r^{0} > - < r^{2}, r^{1} >]$
 $\therefore \text{ iterative step } x^{k+1} = x^{k} + \alpha_{k}p^{k} \Rightarrow Ap^{k} = \frac{r^{k+1} - r^{k}}{\alpha_{k}}$
 $= 0 \text{ by the previous result.}$

Theorem: p^k , $k = 0, 1, 2, \dots, n-1$ are mutually A conjugate

Now Assume that for some k-1 and $i=0,1,2,\cdots,k-1$ statement is correct, i.e., $< p^k, p^i >= 0 \ \forall i=0,1,2,\cdots,k-1$. Then for k and $i=0,1,2,\cdots,k-1$, we have

$$< p^{k+1}, Ap^{i} > = < -r^{k+1} + \beta_{k}p^{k}, Ap^{i} >$$

$$= - < r^{k+1}, Ap^{i} > + \beta_{k} < p^{k}, Ap^{i} >$$
(second term is zero by the assumption of induction)
$$= - < r^{k+1}, \frac{r^{i+1} - r^{i}}{\alpha_{i}} >$$

$$= \frac{1}{\alpha_{i}} [< r^{k+1}, r^{i} > - < r^{k+1}, r^{i+1} >]$$

$$\therefore \text{ iterative step } x^{k+1} = x^{k} + \alpha_{k}p^{k} \Rightarrow Ap^{k} = \frac{r^{k+1} - r^{k}}{\alpha_{k}}$$

$$= 0 \text{ by the previous result.}$$

Conjugate Gradient Method for the quadratic Problem

Step 7 $p^{k+1} = -q^{k+1} + \beta_k p^k$

Step 8 Set k = k + 1 and go to Step 3.

minimize
$$f(x) = \frac{1}{2} x^T A x - b^T x$$
, A is SPD.

Step 1 Set $k = 0$, and select the initial point x^0 .

Step 2 $g^0 = \nabla f(x^0) = A x^0 - b = r^0$. If $g^0 = 0$ STOP else $p^0 = -g^0$.

Step 3 $\alpha_k = -\frac{\langle p^k, g^k \rangle}{\langle p^k, Ap^k \rangle}$.

Step 4 $x^{k+1} = x^k + \alpha_k p^k$

Step 5 $g^{k+1} = \nabla f(x^{k+1}) = A x^{k+1} - b = r^{k+1}$. If $g^{k+1} = 0$ STOP.

Step 6 $\beta_k = \frac{\langle g^{k+1}, Ap^k \rangle}{\langle p^k, Ap^k \rangle}$

Since CG method is a conjugate direction method so minimizes the given problem in at most n steps, where n is the order of the matrix A.

CG Method Example

Problem: minimize $x_1^2 + x_1x_2 + 2x_2^2$.

Here: minimize
$$f(x) = \frac{1}{2}x^T A x - b^T x$$
, $b = 0$ and $A = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$.

$$\begin{pmatrix} lter & x_1 & x_2 \\ 0 & 10.0000 & -10.0000 \\ 1 & 6.8750 & -0.6250 \\ 2 & 0 & 0 \end{pmatrix}$$

Modification in the Conjugate Gradient Method for any nonlinear Problem

minimize
$$f(x): x \in \mathbb{R}^n$$
.

Step 1 Set
$$k = 0$$
, and select the initial point x^0 .

Step 2
$$g^0 = \nabla f(x^0) = Ax^0 - b = r^0$$
. If $g^0 = 0$ STOP else $p^0 = -g^0$.

Step 3
$$\alpha_k = -\frac{\langle p^k, g^k \rangle}{\langle p^k, Ap^k \rangle}$$
.

Step 4
$$x^{k+1} = x^k + \alpha_k p^k$$

Step 5
$$g^{k+1} = \nabla f(x^{k+1}) = Ax^{k+1} - b = r^{k+1}$$
. If $g^{k+1} = 0$ STOP.

Step 6
$$\beta_k = \frac{\langle g^{k+1}, Ap^k \rangle}{\langle p^k, Ap^k \rangle}$$

Step 7
$$p^{k+1} = -g^{k+1} + \beta_k p^k$$

Step 8 Set
$$k = k + 1$$
 and go to Step 3.

minimize
$$f(x): x \in \mathbb{R}^n$$
.

Step 2
$$g^0 = \nabla f(x^0) = Ax^0 - b = r^0$$
. If $g^0 = 0$ STOP else $p^0 = -g^0$.

Step 3
$$\alpha_k = -\frac{\langle p^k, g^k \rangle}{\langle p^k, Ap^k \rangle}$$
.

Step 4
$$x^{k+1} = x^k + \alpha_k p^k$$

Step 5
$$g^{k+1} = \nabla f(x^{k+1}) = Ax^{k+1} - b = r^{k+1}$$
. If $g^{k+1} = 0$ STOP.

Step 6
$$\beta_k = \frac{\langle g^{k+1}, Ap^k \rangle}{\langle p^k, Ap^k \rangle}$$
.

Step 7
$$p^{k+1} = -g^{k+1} + \beta_k p^k$$

minimize
$$f(x): x \in \mathbb{R}^n$$
.

Step 2
$$g^0 = \nabla f(x^0)$$
. If $g^0 = 0$ STOP else $p^0 = -g^0$.

Step 3
$$\alpha_k = -\frac{\langle p^k, g^k \rangle}{\langle p^k, Ap^k \rangle}$$
.

Step 4
$$x^{k+1} = x^k + \alpha_k p^k$$

Step 5
$$g^{k+1} = \nabla f(x^{k+1}) = Ax^{k+1} - b = r^{k+1}$$
. If $g^{k+1} = 0$ STOP.

Step 6
$$\beta_k = \frac{\langle g^{k+1}, Ap^k \rangle}{\langle p^k, Ap^k \rangle}$$
.

Step 7
$$p^{k+1} = -g^{k+1} + \beta_k p^k$$

minimize
$$f(x) : x \in \mathbb{R}^n$$
.

Step 2
$$g^0 = \nabla f(x^0)$$
. If $g^0 = 0$ STOP else $p^0 = -g^0$.

Step 3 Find
$$\alpha_k$$
, the value of α that minimizes $f(x^k + \alpha p^k)$.

Step 4
$$x^{k+1} = x^k + \alpha_k p^k$$

Step 5
$$g^{k+1} = \nabla f(x^{k+1}) = Ax^{k+1} - b = r^{k+1}$$
. If $g^{k+1} = 0$ STOP.

Step 6
$$\beta_k = \frac{\langle g^{k+1}, Ap^k \rangle}{\langle p^k, Ap^k \rangle}$$
.

Step 7
$$p^{k+1} = -g^{k+1} + \beta_k p^k$$

minimize
$$f(x) : x \in \mathbb{R}^n$$
.

Step 2
$$g^0 = \nabla f(x^0)$$
. If $g^0 = 0$ STOP else $p^0 = -g^0$.

Step 3 Find α_k , the value of α that minimizes $f(x^k + \alpha p^k)$.

Step 4
$$x^{k+1} = x^k + \alpha_k p^k$$

Step 5
$$g^{k+1} = \nabla f(x^{k+1})$$
. If $g^{k+1} = 0$ STOP.

Step 6
$$\beta_k = \frac{\langle g^{k+1}, Ap^k \rangle}{\langle p^k, Ap^k \rangle}$$
.

Step 7
$$p^{k+1} = -g^{k+1} + \beta_k p^k$$

Possible changes in the formula of β_k for nonlinear CG

Recall:
$$\beta_k = \frac{\langle g^{k+1}, Ap^k \rangle}{\langle p^k, Ap^k \rangle}$$

Actually replacement of A in the above formula is $H(x^k)$. But fortunately, algebraic manipulation in the above formula is possible with the knowledge of the function value $f(x^k)$ and gradient value g^k .

Hestenes-Stiefel (SF) Modification:

It is clear that iterative step that $x^{k+1} = x^k + \alpha_k p^k \Rightarrow Ap^k = \frac{g^{k+1} - g^k}{\alpha_k}$ Use this value in the formula of β_k in place of Ap^k , thus:

$$\beta_k = \frac{\langle g^{k+1}, g^{k+1} - g^k \rangle}{\langle p^k, g^{k+1} - g^k \rangle}$$

Polak-Ribière (PR) Modification:

In the SF formula of β_k , see denominator:

 $< p^k, \, g^{k+1} - g^k > = - < p^k, \, g^k >$ (because new gradient is orthogonal to all old conjugate directions). Thus

$$< p^k, g^{k+1} - g^k > = - < -g^k + \beta_{k-1} p^{k-1}, g^k > = < g^k, g^k > \text{gives:}$$

$$\beta_k = \frac{\langle g^{k+1}, g^{k+1} - g^k \rangle}{\langle g^k, g^k \rangle}$$

Possible changes in the formula of β_k for nonlinear CG

Fletcher - Reeves (FR) Modification:

Use the fact that all new gradients are orthogonal to the old ones in the numerator of the PR modification to get:

$$\beta_k = \frac{\langle g^{k+1}, g^{k+1} \rangle}{\langle g^k, g^k \rangle}$$

Important Remark: Stopping criterion.

For nonquadratic problems, the algorithm will not usually converge in n steps, and as the algorithm, the conjugate direction will tend to deteriorate. Thus a common practice is to reinitialize the direction vector to the negative of gradient after every few iteration (e.g. n).