

Mathematics for Computer Science
MIT 6.042J/18.062J

Random Variables Uniform, Binomial

lbert R Meyer

May 6, 201

nom-uniform

Uniform Random Variables

...all values equally likely

"threshold" variable was uniform:

$$Pr[Z = 0] = \cdots = Pr[Z = 6]$$

$$= \frac{1}{7}$$

@ <u>0</u> <u>0</u> <u>0</u> <u>0</u> 0

Albert R Meyer

Uniform Distribution

D ::= outcome of fair die roll Pr[D=1] = Pr[D=2] =···= Pr[D=6] = 1/6

S := 4-digit lottery number $Pr[S = 0000] = Pr[S = 0001] = \cdots$ = Pr[S = 9999] = 1/10000

@00

Albert R Mever M

binom-uniform.3

Equal Pairs of Uniform Variables Lemma. If R_1,R_2,R_3 have the same range, are mutually independent, and R_1 is uniform, then

 $[R_1=R_2]$, $[R_2=R_3]$, $[R_1=R_3]$ are pairwise independent. Obviously NOT 3-way indep.

@000

Meyer May 6

binom-uniform.4

MIT OpenCourseWare http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.