Diskrete Strukturen (WS 2024-25) - Halbserie 9

 $9.1 ag{3}$

Wir definieren für jedes $n \in \mathbb{N}$ die Menge T_n als die Menge der natürlichen Teiler von n, d.h.

$$T_n := \{ t \in \mathbb{N} \colon t \mid n \}.$$

Wir betrachten T_n als eine teilweise geordente Menge mit der Ordnugsrelation $a \leq b$ gdw a teilt b. Geben Sie das Hasse-Diagramm von T_{24} .

Solution.

 $9.2 ag{3}$

Gegeben sei die folgende Ordnungsrelation, dargestellt als Hasse-Diagramm:

Ist das ein Verband? Begründen Sie die Antwort.

Solution. Nein, z.B. $e \wedge f$ existiert nicht.

9.3

Sei (M, \leq) eine total geordnete Menge, und seien $x, y \in M$. In der Volresung gaben wir gezeigt, dass $x \vee y$ existiert. Zeigen Sie dass $x \wedge y$ existiert.

Solution. Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$. Ohne Beschränkung der Allgemeinheit sei $x \leq y$. Dann ist x eine untere Schranke für $\{x, y\}$.

Sei z eine beliebige untere Schranke für $\{x, y\}$. Dann gilt $z \leq x$ und damit ist x die größte untere Schranke für $\{x, y\}$. D.h. $x = x \wedge y$.

9.4 Zeigen Sie dass die folgenden Verbände nicht distributiv sind (in je dem Fall geben Sie ein Gegenbeispiel)

Solution.

- 1. nicht distributiv: $4 \wedge (1 \vee 2)$, $4 \wedge (3 \vee 2)$, $3 \wedge (1 \vee 2)$, $3 \wedge (1 \vee 4)$, $2 \vee (4 \wedge 1)$, $2 \vee (4 \wedge 3)$, $1 \vee (3 \wedge 2)$, $1 \vee (3 \wedge 4)$.
- 2. nicht distributiv: jegliche Kombination aus 1,2,3,4.
- 3. nicht distributiv: jegliche Kombination aus 1,2,3 oder $5 \land (2 \lor 4), \ 2 \lor (5 \land 4), \ 6 \land (\{1/2\} \lor 4), \ 4 \lor (\{1/2\} \land 6).$

9.5 Zeigen Sie, dass in beliebigen Verbänden (M, \leq) für alle $x, y \in M$ gilt:

$$x \le y \Leftrightarrow x \land y = x$$

Solution. " \Rightarrow ": $x \leq y$ impliziert $x \in \{y\} \downarrow$ impliziert $x \in \{x,y\} \downarrow$.

Für alle $z \in \{x,y\} \downarrow$ gilt $z \leq y$ und $z \leq x$. Also ist x das größte Element von $\{x,y\} \downarrow$: $x \wedge y = x$.

"\(: $x = x \land y$ impliziert $x \in \{x, y\} \downarrow$ und somit $x \leq y$.