The number of irreducible representations of a finite group

George McNinch

2024-02-12

The number of irreducible representations of G

Recall that G denotes a finite group.

Recall that the space $\mathbb{C}[G]$ of all \mathbb{C} -valued functions on G is the vector space underlying the regular representation of G.

We introduced the *convolution multiplication* \star on $\mathbb{C}[G]$ by the rule

$$(f_1 \star f_2)(x) = \sum_{yz=x} f_1(y) f_2(z)$$

for $f_1, f_2 \in \mathbb{C}[G]$.

This product makes $\mathbb{C}[G]$ into a (in-general non-commutative) ring. We mostly will avoid invoking general results about rings, and so we define the *center* $\mathbb{C}[G]$ to be the subspace

$$Z = \{ f \in \mathbb{C}[G] \mid f \star h = h \star f \quad \forall h \in \mathbb{C}[G] \}.$$

Proposition: The subspace Z coincides with the subspace of $\mathbb{C}[G]$ consisting of those functions which are *constant* on the conjugacy classes of G.

In particular, dim $Z = \#\{\text{conjugacy classes of } G\}$.

Proof: Since $\mathbb{C}[G]$ has a vector space basis consisting of the dirac functions δ_g for $g \in G$, one immediately sees that $f \in Z$ if and only if

$$f \star \delta_a = \delta_a \star f$$

for every $g \in G$.

Note that $\delta_g \star \delta_{g^{-1}} = \delta_1$ is a *multiplicative identity for the operation \star , so that for any g, $\delta_{g^{-1}} = (\delta_g)^{-1}$ is a multiplicative inverse.

Thus

$$f\star\delta_q=\delta_q\star f\iff f=\delta_q\star f\star\delta_{q^{-1}}.$$

Now, fix $f \in \mathbb{C}[G]$ and $g \in G$, and let's compute the value of $\delta_q \star f \star \delta_{q^{-1}}$ at an element $h \in G$. We have

$$(\delta_g\star f\star \delta_{g^{-1}})(h)=\sum_{xyz=h}\delta_g(x)f(y)\delta_{g^{-1}}(z)=f(g^{-1}hg)$$

We now conclude that $f \in Z$ if and only if

$$f(h) = f(q^{-1}hq) \quad \forall q, h \in G$$

i.e. if and only if f is constant on the conjugacy classes of G.

Since the characteristic functions ψ_C of the conjugacy classes C of G form a basis for the space of *class functions*, it follows that dim Z is the number of conjugacy classes C of G; this completes the proof of the Proposition.

We write L_1, L_2, \dots, L_r for a complete set of irreducible representations of G on \mathbb{C} -vector spaces, no two of which are isomorphic.

Lemma: Let z be an element of the center $Z\subseteq \mathbb{C}[G]$. For each i there is a scalar $\lambda_i\in \mathbb{C}$ such that for every $v\in L_i$ we have

$$z \star v = \lambda_i v$$
.

Proof of Lemma: Note that for each i the mapping "convolution with z" – i.e. the mapping

$$\phi: L_i \to L_i \quad \text{given by } \phi(v) = z \star v$$

- is a homomorphism of G-representations.

Indeed, note for $g \in G$ that – since $z \in Z$ – we have

$$\phi(gv) = \phi(\delta_q \star v) = z \star \delta_q \star v = \delta_q \star z \star v = \delta_q \star \phi(v) = g\phi(v).$$

Now, Schur's Lemma tells us – since L_i is irreducible – that the endomorphisms of L_i as a G-representation identify with the scalar operators $\mathbb{C}=\mathbb{C}\cdot \mathrm{id}_{W_i}$.

Thus, there is $\lambda_i \in \mathbb{C}$ such that

$$\phi = \lambda_i \operatorname{id}_{W_i};$$

in other words, $z\star w=\phi(w)=\lambda_i w$ for $w\in W_i$, as required.

Theorem: The number r of irreducible representations is equal to dim Z. In particular, r is equal to the number of conjugacy classes in G.

Proof: Write $W_i = \mathbb{C}[G]_{(L_i)}$ for the L_i -isotypic component of the regular representation $\mathbb{C}[G]$.

Thus for each i, W_i is a direct sum of copies of the irreducible representation L_i , and the quotient representation $\mathbb{C}[G]/W_i$ contains no irreducible invariant subspace isomorphic to L_i .

You proved for homework that

$$\mathbb{C}[G] = W_1 \oplus W_2 \oplus \cdots \oplus W_r.$$

In view of this decomposition of $\mathbb{C}[G]$, we may write

$$\delta_1 = f_1 + f_2 + \dots + f_r$$

for uniquely determined elements $f_i \in W_i$.

Let $z \in \mathbb{Z}$. According to the Lemma, there are scalars $\lambda_i \in \mathbb{C}$ for which $z \star v_i = \lambda_i v_i$ for $v_i \in L_i$.

Since W_i is L_i -isotypic, it follows at once that

$$z \star w_i = \lambda_i w_i$$

for each $w_i \in W_i$. In particular,

$$z \star f_i = \lambda_i f_i$$
 for $i = 1, 2, \dots, r$.

Now we notice that

$$\begin{split} z &= z \star \delta_1 = z \star (f_1 + f_2 + \dots + f_r) \\ &= z \star f_1 + z \star f_2 + \dots + z \star f_r \\ &= \lambda_1 f_1 + \lambda_2 f_2 + \dots + \lambda_r f_r \end{split}$$

This proves that Z is contained in the *span* of the vectors f_1, f_2, \cdots, f_r ; i.e.

$$Z \subseteq \sum_{i=1}^r \mathbb{C}f_i$$
.

We conclude that

$$\dim Z \leq \dim \sum_{i=1}^r \mathbb{C} f_i \leq r.$$

But on the other hand, we have proved that the *characters* $\chi_i = \chi_{L_i}$ of the irreducible representations form an orthonormal – hence linearly independent – set of *class functions* on G.

According to the preceding Proposition, $\chi_i \in Z$ for each i. This proves that

$$r=\dim\sum_{i=1}^r\mathbb{C}\chi_i\leq\dim Z.$$

We may now conclude that $\dim Z = r$ as required.

Remarks: With notations as in the proof of the Theorem, note that

- we have an equality $Z = \sum_{i=r}^r \mathbb{C} f_i$ of subspaces of $\mathbb{C}[G]$.
- since $\dim Z=r,$ conclude that f_1,f_2,\cdots,f_r are linearly independent
- $\bullet \ \ \text{Moreover}, f_i \in Z \ \text{for each} \ i.$

T) · I	1.		
Kih	IIΛσ	ran	${f nv}$
<i>D</i> 10	liog	ւսբ	J

Bibliography