Mathematisch-Naturwissenschaftliche Fakultät Wilhelm-Schickard-Institut für Informatik Datenbanksysteme · Prof. Dr. Grust

Datenbanksysteme I

WS 2017/18 Torsten Grust, Christian Duta

Assignment #12

Submission Deadline: January 28, 2020 - 10:00

Exercise 1: $ER \rightarrow SQL$

(10 Points)

Recall the hospital ER in assignment #10. We provided you with a possible ER diagram in Figure 1 created from the information given. Translate the ER diagram in Figure 1 into a SQL database schema. Make use of the translation rules presented in the lectures.

Note: Translate relationship cardinalities as faithfully as relational constraints permit. In this exercise disregard EER inheritance.

Exercise 2: $SQL \rightarrow ER$

(10 Points)

The SQL DDL commands listed in Figure 2 were generated from an EER diagram by applying the mapping steps discussed in the lectures (slides 20 - 32, slide set 11 "The Entity-Relationship Model").

Please restore the EER diagram the mapping steps were applied on. Make sure to model **all** entity types, relationship types, attributes and do not forget to underline key attributes.

Exercise 3: Relational Algebra

(10 Points)

Consider the following relations containing airline flight information:

Aircraft(<u>aid</u>, name, manufacturer, cruisingrange)
Pilots(<u>pid</u>, name, salary)
Certified(<u>pid</u>, <u>aid</u>)
Flights(<u>flno</u>, from, to, distance, departs, arrives)

The *cruiserange* describes the maximum distance an aircraft is able to travel airborne before having to land. The *distance* is the total distance required to complete a flight from source to destination. Formulate the following queries in relational algebra:

1. Find the flno and the origin of all flights to 'Berlin'.

result(flno, origin)

2. Find the aid of all aircraft which can be used on non-stop flights from 'Bonn' to 'Madras'.

result(aid)

3. Find the pid and name of all pilots certified for some 'Boeing' aircraft.

result(pid, name)

4. Find the name of all cities that lie on a round trip flight route with exactly three flights. *Note:* Departure and arrival times do *not* have to be considered here.

result(from)

Figure 1: ER of the hospital description of assignment #10

```
CREATE TABLE countries (
    code
                VARCHAR(2).
    name
                VARCHAR (50),
    population int
ALTER TABLE countries ADD PRIMARY KEY (code);
CREATE TABLE cities (
   name VARCHAR(50),
    lat
         float,
    lon
          float
ALTER TABLE cities ADD COLUMN code VARCHAR(2);
ALTER TABLE cities ADD COLUMN __id__ integer GENERATED ALWAYS AS IDENTITY;
ALTER TABLE cities ADD PRIMARY KEY (code, __id__);
ALTER TABLE cities ADD FOREIGN KEY (code)
    REFERENCES countries(code) ON DELETE CASCADE;
ALTER TABLE countries ADD COLUMN __id__ int;
ALTER TABLE countries ADD FOREIGN KEY (code, __id__)
    REFERENCES cities(code, __id__);
CREATE TABLE languages (
    language VARCHAR(50)
ALTER TABLE languages ADD PRIMARY KEY (language);
CREATE TABLE speaks (
    code
                VARCHAR(2),
    language
               VARCHAR (50),
                DECIMAL(5, 2)
    percent
ALTER TABLE speaks ADD PRIMARY KEY (code, language);
ALTER TABLE speaks ADD FOREIGN KEY (code)
    REFERENCES countries(code) ON DELETE CASCADE;
ALTER TABLE speaks ADD FOREIGN KEY (language)
    REFERENCES languages (language) ON DELETE CASCADE;
```

Figure 2: Schema translated from an ER diagram