STA286 Lecture 24

Neil Montgomery

Last edited: 2017-03-21 09:02

We'll come back to the problem of determining a good estimator from first principles.

A shortcoming of a *point estimator* is that is doesn't suggest how far wrong it might be.

We'll come back to the problem of determining a good estimator from first principles.

A shortcoming of a *point estimator* is that is doesn't suggest how far wrong it might be.

A better option is to provide a pair of estimators $\hat{\theta}_L$ and $\hat{\theta}_U$ that satisfy the following equation:

$$P\left(\hat{\theta}_L < \theta < \hat{\theta}_U\right) = 1 - \alpha$$

for some pre-determined $\alpha.$

We'll come back to the problem of determining a good estimator from first principles.

A shortcoming of a *point estimator* is that is doesn't suggest how far wrong it might be.

A better option is to provide a pair of estimators $\hat{\theta}_L$ and $\hat{\theta}_U$ that satisfy the following equation:

$$P\left(\hat{\theta}_L < \theta < \hat{\theta}_U\right) = 1 - \alpha$$

for some pre-determined α .

 α can be anything between 0 and 1, but is typically chosen to be small.

We'll come back to the problem of determining a good estimator from first principles.

A shortcoming of a $point\ estimator$ is that is doesn't suggest how far wrong it might be.

A better option is to provide a pair of estimators $\hat{\theta}_L$ and $\hat{\theta}_U$ that satisfy the following equation:

$$P\left(\hat{\theta}_L < \theta < \hat{\theta}_U\right) = 1 - \alpha$$

for some pre-determined α .

 α can be anything between 0 and 1, but is typically chosen to be small.

lpha is arbitrary. There is no "correct" or "better" lpha value. By far and away the most common choice is lpha= 0.05.

We'll come back to the problem of determining a good estimator from first principles.

A shortcoming of a *point estimator* is that is doesn't suggest how far wrong it might be.

A better option is to provide a pair of estimators $\hat{\theta}_L$ and $\hat{\theta}_U$ that satisfy the following equation:

$$P\left(\hat{\theta}_L < \theta < \hat{\theta}_U\right) = 1 - \alpha$$

for some pre-determined α .

 α can be anything between 0 and 1, but is typically chosen to be small.

lpha is arbitrary. There is no "correct" or "better" lpha value. By far and away the most common choice is lpha= 0.05.

The interval $\left[\hat{\theta}_L, \hat{\theta}_U\right]$ is called a $(1-\alpha) \cdot 100\%$ confidence inteval for θ .

We'll come back to the problem of determining a good estimator from first principles.

A shortcoming of a *point estimator* is that is doesn't suggest how far wrong it might be.

A better option is to provide a pair of estimators $\hat{\theta}_L$ and $\hat{\theta}_U$ that satisfy the following equation:

$$P\left(\hat{\theta}_L < \theta < \hat{\theta}_U\right) = 1 - \alpha$$

for some pre-determined α .

 α can be anything between 0 and 1, but is typically chosen to be small.

lpha is arbitrary. There is no "correct" or "better" lpha value. By far and away the most common choice is lpha=0.05.

The interval $\left[\hat{\theta}_L, \hat{\theta}_U\right]$ is called a $(1-\alpha) \cdot 100\%$ confidence inteval for θ .

It is possible to have $\hat{\theta}_L = -\infty$ or $\hat{\theta}_U = \infty$

When $\alpha = 0.05$ (as usual), we have a 95% confidence interval.

(artifical) example of a confidence interval

Suppose the underlying population is $N(\mu, \sigma_0)$ with σ_0 (magically) known.

We plan to gather a sample X_1, \ldots, X_n . There are *lots* of 95% confidence intervals for μ , obtained by isolating μ in the middle of:

$$P\left(a < \frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} < b\right) = 1 - \alpha$$

(artifical) example of a confidence interval

Suppose the underlying population is $N(\mu, \sigma_0)$ with σ_0 (magically) known.

We plan to gather a sample X_1, \ldots, X_n . There are *lots* of 95% confidence intervals for μ , obtained by isolating μ in the middle of:

$$P\left(a < \frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} < b\right) = 1 - \alpha$$

Define z_{α} as the solution of $P(Z \leq z_{\alpha}) = 1 - \alpha$, where $Z \sim N(0, 1)$. The shortest possible 95% confidence interval for μ comes from:

$$P\left(\overline{X} - z_{0.025} \frac{\sigma_0}{\sqrt{n}} < \mu < \overline{X} + z_{0.025} \frac{\sigma_0}{\sqrt{n}}\right) = 0.95$$

Note that $z_{0.025} = 1.96$.

Also, the standard deviation of \overline{X} is $\frac{\sigma_0}{\sqrt{n}}$

Note that $z_{0.025} = 1.96$.

Also, the standard deviation of \overline{X} is $\frac{\sigma_0}{\sqrt{n}}$

A synonym for the phrase "standard deviation of the estimator" is *standard error*, abbreviated: s.e.

Note that $z_{0.025} = 1.96$.

Also, the standard deviation of \overline{X} is $\frac{\sigma_0}{\sqrt{n}}$

A synonym for the phrase "standard deviation of the estimator" is *standard error*, abbreviated: s.e.

Neil's patented universal 95% C.I. formula is:

 $estimator \pm \text{``2''s.e.} (estimator)$

Note that $z_{0.025} = 1.96$.

Also, the standard deviation of \overline{X} is $\frac{\sigma_0}{\sqrt{n}}$

A synonym for the phrase "standard deviation of the estimator" is *standard error*, abbreviated: s.e.

Neil's patented universal 95% C.I. formula is:

estimator \pm "2"s.e.(estimator)

"Two" is in quotation marks because the precise value will vary a little over and under 2, but it will always be close to 2 (for a 95% interval).

A confidence interval is a statement about the "plan" to gather a sample.

A confidence interval is a statement about the "plan" to gather a sample.

C.I. meaning: The "plan" will result in an interval that will capture the true parameter with probability $1-\alpha$.

A confidence interval is a statement about the "plan" to gather a sample.

C.I. meaning: The "plan" will result in an interval that will capture the true parameter with probability $1-\alpha$.

Once the dataset is collected, and the numbers plugged into the suitable C.I. formula, that is a realization of the C.I. formula.

A confidence interval is a statement about the "plan" to gather a sample.

C.I. meaning: The "plan" will result in an interval that will capture the true parameter with probability $1-\alpha$.

Once the dataset is collected, and the numbers plugged into the suitable C.I. formula, that is a realization of the C.I. formula.

Most common myth goes like this. The dataset is collected, and the 95% confidence interval for μ is, say [4.2, 6.8].

There is a 95% chance that μ is between 4.2 and 6.8.

A confidence interval is a statement about the "plan" to gather a sample.

C.I. meaning: The "plan" will result in an interval that will capture the true parameter with probability $1-\alpha$.

Once the dataset is collected, and the numbers plugged into the suitable C.I. formula, that is a realization of the C.I. formula.

Most common myth goes like this. The dataset is collected, and the 95% confidence interval for μ is, say [4.2, 6.8].

There is a 95% chance that μ is between 4.2 and 6.8.

The statement is nonsense. Either μ is between 4.2 and 6.8, or it isn't.

The (artificial) example is nevertheless characteristic:

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}$$

The (artificial) example is nevertheless characteristic:

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}$$

The larger the σ_0 , the wider the C.I. (But you have no control over σ_0 .)

The (artificial) example is nevertheless characteristic:

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}$$

The larger the σ_0 , the wider the C.I. (But you have no control over σ_0 .)

The larger the α , the narrower the C.I. (But α is arbitrary.)

The (artificial) example is nevertheless characteristic:

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma_0}{\sqrt{n}}$$

The larger the σ_0 , the wider the C.I. (But you have no control over σ_0 .)

The larger the α , the narrower the C.I. (But α is arbitrary.)

The larger the n, the narrower the C.I. (The sample size is under your control.)

The (absolute) margin of error e is half the width of a confidence interval.

The (absolute) margin of error e is half the width of a confidence interval.

In the current (artificial) situation, to produce a $(1 - \alpha) \cdot 100\%$ confidence interval of width 2e, the sample size needs to be:

$$n = \left(\frac{\mathsf{z}_{\alpha/2}\sigma_0}{\mathsf{e}}\right)^2$$

The (absolute) margin of error e is half the width of a confidence interval.

In the current (artificial) situation, to produce a $(1 - \alpha) \cdot 100\%$ confidence interval of width 2e, the sample size needs to be:

$$n = \left(\frac{z_{\alpha/2}\sigma_0}{e}\right)^2$$

This won't usually be an interger, so to drive students crazy I say "pick one of the two sample sizes adjacent", because it really doesn't matter.

The (absolute) margin of error e is half the width of a confidence interval.

In the current (artificial) situation, to produce a $(1 - \alpha) \cdot 100\%$ confidence interval of width 2e, the sample size needs to be:

$$n = \left(\frac{\mathsf{z}_{\alpha/2}\sigma_0}{\mathsf{e}}\right)^2$$

This won't usually be an interger, so to drive students crazy I say "pick one of the two sample sizes adjacent", because it really doesn't matter.

In reality σ is not known. There are a few practical options:

▶ collect a "pilot sample" of some moderate size (30 to 50, say), to get an estimate of σ .

The (absolute) margin of error e is half the width of a confidence interval.

In the current (artificial) situation, to produce a $(1 - \alpha) \cdot 100\%$ confidence interval of width 2e, the sample size needs to be:

$$n = \left(\frac{z_{\alpha/2}\sigma_0}{e}\right)^2$$

This won't usually be an interger, so to drive students crazy I say "pick one of the two sample sizes adjacent", because it really doesn't matter.

In reality σ is not known. There are a few practical options:

- ▶ collect a "pilot sample" of some moderate size (30 to 50, say), to get an estimate of σ .
- \blacktriangleright use prior knowledge of the value of σ

The (absolute) margin of error e is half the width of a confidence interval.

In the current (artificial) situation, to produce a $(1 - \alpha) \cdot 100\%$ confidence interval of width 2e, the sample size needs to be:

$$n = \left(\frac{\mathsf{z}_{\alpha/2}\sigma_0}{\mathsf{e}}\right)^2$$

This won't usually be an interger, so to drive students crazy I say "pick one of the two sample sizes adjacent", because it really doesn't matter.

In reality σ is not known. There are a few practical options:

- ▶ collect a "pilot sample" of some moderate size (30 to 50, say), to get an estimate of σ .
- use prior knowledge of the value of σ
- ▶ if the population is plausibly normal, use prior knowledge of the minimum m and maximum M plausible values you might ever see, and use (M m)/6 as a rough guesstimate for σ .

A more realistic situation is that the population is $N(\mu, \sigma)$, both parameters unknown, although the mean is of primary interest. We plan to get a sample X_1, \ldots, X_n .

A more realistic situation is that the population is $N(\mu, \sigma)$, both parameters unknown, although the mean is of primary interest. We plan to get a sample X_1, \ldots, X_n .

The (artificial) interval was based on:

$$rac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$

A more realistic situation is that the population is $N(\mu, \sigma)$, both parameters unknown, although the mean is of primary interest. We plan to get a sample X_1, \ldots, X_n .

The (artificial) interval was based on:

$$rac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim {\sf N}(0,1)$$

We'll do this often—replace σ with S—to obtain:

$$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}$$

A more realistic situation is that the population is $N(\mu, \sigma)$, both parameters unknown, although the mean is of primary interest. We plan to get a sample X_1, \ldots, X_n .

The (artificial) interval was based on:

$$rac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim \mathcal{N}(0,1)$$

We'll do this often—replace σ with S—to obtain:

$$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}$$

Define $t_{n-1,\alpha}$ as the solution of $P(t_{n-1} \leqslant t_{n-1,\alpha}) = 1 - \alpha$. The new interval will be based on:

$$P\left(-t_{n-1,\alpha/2} < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{n-1,\alpha/2}\right) = 1 - \alpha$$

The interval is therefore:

$$\overline{X} \pm t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}$$

The interval is therefore:

$$\overline{X} \pm t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}$$

The value $\frac{S}{\sqrt{n}}$ is (also) called the (estimated) standard error for \overline{X} , or s.e.(\overline{X}), and in the usual 95% case we end up with another example of the universal formula:

estimator
$$\pm$$
 "2"s.e.(estimator)

(patent pending) for any non-insane sample size.

The interval is therefore:

$$\overline{X} \pm t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}$$

The value $\frac{S}{\sqrt{n}}$ is (also) called the (estimated) standard error for \overline{X} , or s.e.(\overline{X}), and in the usual 95% case we end up with another example of the universal formula:

estimator
$$\pm$$
 "2"s.e.(estimator)

(patent pending) for any non-insane sample size.

That's because t calculations aren't wildly different from N(0,1) calculations as long as n-1 isn't tiny.

 $t_{n-1,0.025}$ for some non-insane sample sizes

t	n	
2.131449	15	
2.042273	30	
2.021075	40	
2.008559	50	
2.000298	60	
1.975905	150	

example

Examples themselves tend to be as interesting as watching paint dry.

example

Examples themselves tend to be as interesting as watching paint dry.

So, for example, consider textbook question 9.14, which gives 15 values for the drying time, in hours, of a brand of latex paint.

x_bar	S	n
3.786667	0.9709102	15

example

Examples themselves tend to be as interesting as watching paint dry.

So, for example, consider textbook question 9.14, which gives 15 values for the drying time, in hours, of a brand of latex paint.

x_bar	S	n
3.786667	0.9709102	15

The 95% confidence interval for the mean drying time is:

conf.low	conf.high
3.248994	4.324339