Uniqueness in Single-Variable Proofs

by Sven Nilsen, 2020

In this paper I show that uniqueness equals existence in single-variable first-order proofs.

In first-order logic, a uniqueness proof is a stricter version of existence written `∃!` instead of `∃`:

$$\exists ! \ a \ \{ \ p(a) \ \}$$
 \iff $\exists \ a \ \{ \ p(a) \land \neg \exists \ b \ \{ \ p(b) \land a \neg = b \ \} \ \}$

When the proof only uses a single variable, the following holds:

$$\exists ! \ a \ \{ \ p(a) \ \}$$
 <=> $\exists \ a \ \{ \ p(a) \ \}$

This is because:

- If `p(a)` returns `true`, then `p(b)` returns `true`, since `a == b`
- If `p(a)` returns `false`, then `p(b)` returns `false`, since `a == b`

Proof:

```
∃ a { p(a) ∧ ¬∃ b { p(b) ∧ a ¬= b } }

∃ a { p(a) ∧ ¬∃ b { p(b) ∧ false } }

∃ a { p(a) ∧ ¬∃ b { false } }

∃ a { p(a) ∧ ¬false }

∃ a { p(a) ∧ ¬false }

∃ a { p(a) ∧ ¬false }

∃ a { p(a) ∧ true }

∃ a { p(a) }
```

Q.E.D.