

Team Presentation

Sofía Castaño

Andrés Camilo Álvarez

Simón Marín

Mauricio Toro

Training Process

Healthy-Cattle Images

Testing Process

Compression Algorithm Design

The objective of this seam carving algorithm is to perform content aware resizing of images. This allows image to be resized without losing meaningful content from cropping or scaling. The idea is to locate the image's optimal seams, connected pixel paths going from top to bottom or left

Illustration 1.

to right, to remove or insert while preserving the photorealism of the image. Furthermore, manipulating the gradient energy map that describes how optimal a seam is allows for functionality such as object removal. In the illustration 1 we can see the energy map of the image pixels.

Compression Algorithm Design

We are using the Huffman Coding as a lossless image compression algorithm for animal-health automatic classification. In the illustration 2 we got an example in which we can see a simulation of the sentence "This is our code" being compressed by the Huffman Coding).

Illustration 2.

Huffman tree or Huffman coding tree defines as a full binary tree in which each leaf of the tree corresponds to a letter in the given alphabet, creating a "dictionary" in which we store the frequencies of each data and create a priority queue with a minheap

Compression Algorithm Complexity

Create the table in Powerpoint. Do not copy pixelated screenshots from the technical report please!

	Time Complexity	Memory Complexity
Image compression	O(N ² *M*2 ^M)	O(N*M*2 ^M)
Image decompression	O(N*M)	O(1)

Time and memory complexity of the (In this semester, one could be LZS, LZ77, LZ78, Huffman... please choose) algorithm. Please explain what do N and M mean in this problem. PLEASE DO IT!

Explain the tables in your own words

Include a HD picture related to the problem of animal health in precision livestock farming

Time and Memory Consumption

Create the plots in Excel. Do not copy pixelated screenshots from the technical report please!

Average Compression Ratio

For the third deliverable

DO NOT use red color in the slides

Create the table in Powerpoint. Do not copy pixelated screenshots from the technical report please!

	Compression Ratio
Healthy Cattle	100 : 1
Sick Cattle	98 : 1

Average compression ratio for Healthy Cattle and Sick Cattle.

Include a HD picture related to the problem of animal health in precision livestock farming

Classification Evaluation Metrics

For the third deliverable

DO NOT use red color in the slides

relevant elements

Keep this title

Use vectorized figures to explain the algorithm the evaluation metrics, so they are not pixelated like mines

• • • •

If possible, avoid equations for simple concepts that can be explained through diagrams

Explain Accuracy too...

Create a graphical representation using the notation proposed in this slide

DO NOT use red color in the slides

Create the table in Powerpoint. Do not copy pixelated screenshots from the technical report please!

	Testing data set (original images)	Testing data set (compressed images)
Accuracy	0.3	0.2
Precision	0.25	0.21
Recall	0.12	0.11

Evaluation metrics using a testing dataset of ?? healthy cattle and ?? sick cattle images. Compressed images were obtained with ??? algorithm (Please, complete with your algorithm)

Include a HD picture related to the problem of animal health in precision livestock farming

DO NOT use red color in the slides

Include the citation of the report in arXiv and link. Alternatively, use OSF

C. Patiño-Forero, M. Agudelo-Toro, and M. Toro. Planning system for deliveries in Medellín. ArXiv e-prints, Nov. 2016. Available at: https://arxiv.org/abs/1611.04156

Include a screenshot

arXiv.org > cs > arXiv:1611.04156

Computer Science > Data Structures and Algorithms

[Submitted on 13 Nov 2016]

Planning system for deliveries in Medellín

Catalina Patiño-Forero, Mateo Agudelo-Toro, Mauricio Toro

Here we present the implementation of an application capable of planning the shortest delivery route in the city of Medellín, Colombia. We discuss the different approaches to this problem which is similar to the famous Traveling Salesman Problem (TSP), but differs in the fact that, in our problem, we can visit each place (or vertex) more than once. Solving this problem is important since it would help people, especially stores with delivering services, to save time and money spent in fuel, because they can plan any route in an efficient way.

Comments: 5 pages, 9 figures

Subjects: Data Structures and Algorithms (cs.DS)

ACM classes: F.2.0; G.2.2

Cite as: arXiv:1611.04156 [cs.DS]

(or arXiv:1611.04156v1 [cs.DS] for this version)

