Automatentheorie DEA Optimierung

Prof. Dr. Franz-Karl Schmatzer schmatzf@dhbw-loerrach.de

- C.Wagenknecht, M.Hielscher; Formale Sprachen, abstrakte Automaten und Compiler; 2.Aufl. Springer Vieweg 2014;
- A.V.Aho, M.S.Lam,R.Savi,J.D.Ullman, Compiler Prinzipien,Techniken und Werkzeuge. 2. Aufl., Pearson Studium, 2008.
- Güting, Erwin; Übersetzerbau –Techniken, Werkzeuge, Anwendungen, Springer Verlag 1999
- Sipser M.; Introduction to the Theory of Computation; 2.Aufl.; Thomson Course Technology 2006
- Hopecroft, T. et al; Introduction to Automata Theory, Language, and Computation; 3. Aufl. Pearson Verlag 2006

- DEA Optimierung
- Markierungsalgorithmus
- Mengenalgorithmus

- Zwei Zustände s_i und s_k in einem endlichen Automaten A heißen äquivalent $s_i \equiv s_k$, falls die Wörter $w \in \Sigma^*$, die aus dem Zustand s_i gefolgert werden können, genau dieselben sind, die auch aus Zustand s_k gefolgert werden können.
 - $(s_i, w) \rightarrow^* (s_e, \epsilon) \Leftrightarrow (s_k, w) \rightarrow^* (s_e, \epsilon) \text{ mit } s_e \in F$
 - \rightarrow d.h. $L(A,s_i) = L(A,s_k)$
- Aufsuchen von äquivalenter Zustände ist eine Möglichkeit den Automaten zu optimieren.
- Solche Zustände können zusammengefasst werden.

Sprache eines DEAs

Beispiel: Sprache aus Zustände L(A,s)

- **Bestimmen** der L(A, s) für den DEA_2 :
 - von s₀: Wörter wären w: = {01, 11, 001, 101,...}, allg. L(A,s₀)=L(A)={0+1(0|1)*,1+0*1(0|1)*} = {(0|1)*0*1(0|1)*}
 - von s₁: Wörter wären w: = {1, 01, 001, 10, 11,...}, allg. L(A,s₁)={1(0|1)*,0+1(0|1)*} = {0*1(0|1)*}
 - von s₂: Wörter wären w: = {1, 01, 001, 10, 11,...}, allg. L(A,s₂)={1(0|1)*,0+1(0|1)*} = {0*1(0|1)*}
 - von s₃: Wörter wären w: = {ε, 1, 0, 01, 10, 11,...} ,allg. L(A,s₃)={ε, (0 | 1)* }
- \blacksquare /Man beobachtet, dass $L(A,s_1) = L(A,s_2)$

Beispiele

→ s₁ und s₂ sind äquivalent

$$L(DEA_2,s_1) = \{0*1(0+1)*\}$$

$$L(DEA_2,s_2) = \{0*1(0+1)*\}$$

DEA₂

Beispiele

 $ightharpoonup s_1$ und s_2 sind äquivalent $L(DEA_2, s_1) = \{0*1(0+1)*\}$

$$L(DEA_2,s_2) = \{0*1(0+1)*\}$$

Minimierter Automat

Markierungsalgorithmus

- Die Methode Sprachen, die von den einzelnen Zuständen erzeugt werden, kann man benutzen um äquivalente Zustände zu finden.
- Dazu stellt man eine Äquivalenz-Tabelle auf und markiert zuerst einmal alle nicht äquivalente Zustände.
- Die nicht markierten Zustände untersucht man dann auf ihre mögliche Verschmelzung (Äquivalenz).
- Zustände, die äquivalent sind, können verschmolzen werden

Verschmelzung

- Verschmelzen immer möglich:
 - für alle $w \in \Sigma^*$ gilt $\delta(s_1, w) = \delta(s_2, w)$

- Verschmelzen bedingt möglich:
 - Für alle $w \in \Sigma^*$ gilt $\delta(s_1, w) = \delta(s_2, w)$ genaudann, wenn s_3 und s_4 ebenfalls verschmolzen werden können.
 - Bilden eines Abhängigkeitsgraphen

Beispiel Verschmelzung Beispiel 1

Aufstellen der Abhängigkeitstabelle

X: keiner der Zustände s₀, s₁ und s₂ ist mit s₃ äquivalent, da das leere Wort ε nicht aus diesen Zuständen ableitbar ist.

Genau so schnell sieht man, dass s_0 nicht mit s_1 oder s_2 äquivalent sein kann. (s_1 und s_2 z.B. enthalten das Wort w = 1, s_0 aber nicht)

Das Paar s₁,s₂ bleibt noch übrig. Hier liegt genau der Fall (1) der vorherigen Folie vor. D.h sie können verschmolzen werden zu s₄.

	S ₀	S ₁	S_2	s_3
S ₀	Ш			
S ₁	X	=		
S ₂	X	X		
S_3	X	Х	Х	=

Aufgabe Minimierung Beispiel 2

- FLACI Modellierung
- Stellen Sie die Abhängigkeitstabelle auf

Beispiel Verschmelzung

Beispiel 2 Schritt 1

 Aufstellen der Abhängigkeitstabelle

X: keiner der Zustände ist mit s₆
 äquivalent

 Andere nicht äquivalente Zustände

S_0 S_1 S_1 S_3 S_4 S_2 S_5 S_5	1,0
3	

	S ₀	S ₁	S ₂	s_3	S ₄	S ₅	S ₆
s_0	=						
S ₁	X	=					
S ₂	Χ		=				
S_3	Χ	X	Χ	=			
S ₄	Χ			X	=		
S ₅	X	X	Χ		X	≡	
S ₆	X	X	X	X	X	X	=

Verschmelzung

Beispiel 2 Schritt 2

- Mögliche Äquivalente Zustände
 - $(s_3, s_5), (s_1, s_2), (s_1, s_4), (s_2, s_4)$
- Abhängigkeiten
 - (s₃,s₅) entspricht Fall (1) auf Folie 7 kann also zusammengefasst werden zu s₇.

(s₁,s₂), (s₂,s₄), (s₁,s₄) sind von einander abhängig (Zirkelverbindung) und verweisen auf das Zustandspaar (s₃,s₅), was verschmolzen wird. Daher kann man diese 3 Zustände zu einem Zustand s₈ zusammenfassen.

DEA₂

Optimierte Variante

Lösung Aufgabe 2 FLACI

Aufgabe Minimierung Beispiel 3

- FLACI Modellierung
- Stellen Sie die Abhängigkeitstabelle auf und Minimieren Sie den Automaten

Beispiel Verschmelzung

Beispiel 2 Schritt 1

 Aufstellen der Abhängigkeitstabelle

Nur ((q₁q₄) sind äquivalent

	q_0	q_1	q_2	q_3	q_4	q_5
q_0						
*q ₁	X	=	-			
q_2	X	X	=			
q_3	X	X	X	=		
*q ₄	X	(q_1q_4)	X	X	=	
*q ₅	X	X	X	X	X	=

Lösung Aufgabe 3 FLACI

Minimiert

Konstruktion des Minimalautomaten

- Sei A_1 = (Q, Σ , δ , s_0 , F) ein DEA, der L = L(A_1) erkennt.
- Zu A wird in mehreren Schritten ein äquivalenter Automat A_{min} konstruiert:
 - 1. Vereinfache A, so dass alle Zustände von s₀ aus erreichbar sind. (Entfernen aller nicht erreichbaren Zustände)
 - 2. Zusammenfassen äquivalenter Zustände.

Konstruktion des Minimalautomaten Beispiel Schritt 1

Elimination nicht erreichbarer Zustände s₅ und s₆

Aufgabe Optimierung

Optimieren Sie folgenden Automaten

Konstruktion des Minimalautomaten

Beispiel Schritt2

 Aufstellen der Abhängigkeitstabelle

- Nicht äquivalente Zustände
- Mögliche Verschmelzung (s₁,s₂) zu s₅ und (s₃,s₄) zu einem neuen Endzustand s₆

Abhängigkeiten

					→ (
	s ₀	S ₁	S ₂	S_3	S ₄
s_0	=				
S ₁	X	=			
S_2	X	s ₃ ,s ₄	=		
S_3	X	X	X	=	
S ₄	X	X	X	s ₁ ,s ₂	=

Optimierte Variante

Minimalautomaten

Mengenvariante

Nachfolgend finden Sie eine andere in der Literatur gebräuchliche Variante um DEAs zu minimieren.

Konstruktion des Minimalautomaten

- Sei $A = (Q, \Sigma, \delta, s_0, F)$ ein DEA, der L = L(A) erkennt.
- Zu A wird in mehreren Schritten ein äquivalenter Automat A_{min} konstruiert:
- 1. Vereinfache A, so dass alle Zustände von s₀ aus erreichbar sind.
- 2./Zerlege die Zustandsmenge disjunkt in zwei Teile: $\pi_1 = \{F, E F\}$
- 3. Verfeinere die aktuelle Zerlegung π_i = {s₁, ..., s_k}: In der neuen Zerlegung π_{i+1} gehören Zustände s, s' genau dann zur gleichen Menge, wenn s \in S_i und s' \in S_i sowie δ (s, a) \in S_j und δ (s', a) \in S_j für alle a \in S und i, j \in {1, ..., k}. Aufgeteilt werden muss S_i, wenn für s, s' \in S_i gilt: δ (s, a) \neq δ (s', a)
- Ergab die letzte Verfeinerung mehr Mengen, gehe zurück zu 3; sonst sind die Mengen der letzten Zerlegung die Zustände von A_{min}.

Ein zu minimierender DEA

Starten mit den Mengen

$$M_1 = \{s_3, s_4\} \text{ und } M_2 = \{s_0, s_1, s_2\}$$

Folgerung:

- M₁ braucht nicht weiter zerlegt werden, denn bei Eingabe von 0 gehen wir immer zu M₂ und bei Eingabe von 1 bleiben wir in M₁
- M_2 muss weiterzerlegt werden, denn bei Eingabe von 1 bleiben wir in M_1 oder gehen nach M_2 .
 - Zerlegung die sich anbietet
 - $M_{21} = \{s_0\}$
 - $M_{22} = \{s_1, s_2\}$

π_1	M ₁		M_2		
	S_3	S ₄	S ₀	S ₁	S ₂
0	M_2	M_2	M_2	M_2	M_2
1	M_1	M_1	M_2	M ₁	M ₁

Ein zu minimierender DEA

Beispiel

Zerlegung von M₂ in M₂₁ und M₂₂

π_2	M ₁		M_2			
			M ₂₁	M ₂	22	
	S_3	S ₄	S ₀	S ₁	S ₂	
0	M ₂₂					
1	M ₁	M_1	M ₂₂	M ₁	M_1	

Beispiel Verschmelzung

Beispiel 1 Mengenvariante

Minimieren Sie den Automaten mit der Mengenvariante

Ein zu minimierender DEA

Starten mit den Mengen $M_1 = \{q_3\} \text{ und } M_2 = \{q_0, q_1, q_2\}$

Folgerung:

- M₁ braucht nicht weiter zerlegt werden, denn bei Eingabe von 0 gehen wir immer zu M₂ und bei Eingabe von 1 bleiben wir in M₁
- M_2 muss weiterzerlegt werden, denn bei Eingabe von 1 bleiben wir in M_1 oder gehen nach M_2 .
 - Zerlegung die sich anbietet
 - $M_{21} = \{q_0\}$
 - $M_{22} = \{q_1, q_2\}$

DEA₂

π_1	M ₁	M_2				
	q_3	q_0	q_1	q_2		
0	M_1	M_2	M_2	M_2		
1	M_1	M_2	M ₁	M ₁		

Ein zu minimierender DEA

Beispiel

Zerlegung von M₂ in M₂₁ und M₂₂

π_1	M ₁	M_2				
	q_3	q_0	q_1	q_2		
0/	M_1	M_2	M_2	M_2		
1	M_1	M_2	M_1	M_1		

π_2	M_1	M_2				
		M ₂₁	22			
	q_3	q_0	q_1	q_2		
0	M_1	M ₂₂	M ₂₂	M_{22}		
1	M_1	M ₂₂	M ₁	M_1		

Beispiel Verschmelzung

Beispiel 1 Mengenvariante

Minimieren Sie den Automaten mit der Mengenmethode

Lösung Beispiel 2

- Mengen
- 1. Zerlegung
- $M_1 = \{q_6\}$
- $M_2 = \{q_0, q_1, q_2, q_3, q_4, q_5\}$
- 2. Zerlegung
- $M_{21} = \{q_0, q_1, q_2, q_4\}$
- $M_{22} \neq \{q_3, q_5\}$
- 3. Zerlegung
- $M_{31} = \{q_0\}$

$M_{32} = \{q_1,$	q_{2}, q_{4}		
	0	1	1,0
1 M.	M	1 May 0	
131	0	22	

π_1	M ₁		M_2					
	*q ₆	q_0	q_1	q_2	q_3	q_4	q_5	
0	M_1	M_2	M_2	M_2	M_1	M_2	M ₁	
1	M_1	M_2	M_2	M_2	M_2	M_2	M ₂	

π_2	M_1	M ₂₁				M ₂₂	
	*q ₆	q_0	q_1	q_2	q ₄	q_3	q ₅
0	M_1	M ₂₁	M ₂₁	M ₂₁	M ₂₁	M_1	M_1
1	M ₁	M ₂₁	M ₂₂				

π3	M_1	M ₃₁	M ₃₂			M ₂₂	
	*q ₆	q_0	q_1	q_2	q_4	q_3	q ₅
0	M_1	M ₂₂	M_{32}	M_{32}	M_{32}	M_1	M_1
1	M ₁	M ₃₂	M ₂₂				

Aufgabe Minimierung Beispiel 3

- Das Alphabet sei {0,1,2}
- Minimieren Sie den Automaten mit der Mengenmethode

Lösung Beispiel 3

- Mengen
- 1. Zerlegung

$$M_1 = \{q_1, q_4, q_5\}$$

- $M_2 = \{q_0, q_2, q_3\}$
- 2. Zerlegung
 - $M_{11} \neq \{q_1, q_4\}$
 - $M_{12} = \{q_5\}$
 - $M_{21} = \{q_0\}$
 - $M_{22} = \{q_2\}$
 - $M_{23} = \{q_3\}$

π_1	M ₁			M_2		
	*q ₁	*q ₄	*q ₅	q_0	q_2	q_3
0	M_2	M_2	M_2	M_1	M_2	M_2
1	M_2	M_2	M_1	M_1	M ₁	M_2
2	M_2	M_2	M_2	M_2	M_2	M_2

π_2	M ₁₁		M ₁₂	M ₂₁	M ₂₂	M ₂₃
	*q ₁	*q ₄	*q ₅	q_0	q_2	q_3
0	M_{23}	M_{23}	M_{23}	M ₁₂	M_{23}	M ₂₃
1	M ₂₃	M_{23}	M ₁₁	M ₁₁	M ₁₁	M ₂₃
2	M ₂₃	M ₂₃	M ₂₃	M ₂₂	M ₂₃	M ₂₃

Lösung Beispiel 3

Minimalautomat

π_2	M ₁₁		M ₁₂	M ₂₁	M ₂₂	M ₂₃
	*q ₁	*q ₄	*q ₅	q_0	q_2	q_3
0	M ₂₃	M ₂₃	M ₂₃	M ₁₂	M ₂₃	M ₂₃
1	M ₂₃	M_{23}	M ₁₁	M ₁₁	M ₁₁	M ₂₃
2	M ₂₃	M ₂₃	M ₂₃	M ₂₂	M ₂₃	M ₂₃

