实验 6:

- 1. 采用局部加权线性回归,预测鲍鱼年龄(使用鲍鱼年龄数据集abalone.txt),随机选取部分数据分别用于训练、余下数据测试。采用不同核大小(不同 k 值),分别计算训练误差和测试误差。
- 使用 places.txt 文件中地图上的点的纬度和经度数据(第 4 列、第 5 列),采用二分 k-means 对地图上的点聚类(k 设定为 5)。
 3. 采用 sklearn 中 make_moons 生成半月形数据集,分别采用 kmeans 聚类和 DBSCAN 聚类,采用 matplotlib 绘制图形聚类结
- 4. 利用 PCA 对半导体制造数据集 secom.data

果,比较聚类效果。

2. 使用二分 k-means 算法对地图上的点聚类

(http://archive.ics.uci.edu/ml/machine-learning-databases/secom) 进行降维。注:该数据包含了较多缺失值,采用平均值对所有缺失值进行替换,平均值由非缺失的数据得到。在实验中取不同的主成分截断值来检验性能。采用自编 python 代码和使用 sklearn 库分别实现。

5.对于用户和菜肴打分的场景可构建如下图所示矩阵,

	Unagi Don	Chicken Katsu	Chirashi	Tri Tip	Salmon Burger	Ruben	Chicken Tandoori	Mapo Tofu	Kung Pao Chicker	Paneer Jalfrazie	Big Dutchman	
Brett	2	0	0	4	4	0	0	0	0	0	0	
Rob	0	0	0	0	0	0	0	0	0	0	5	
Drew	0	0	0	0	0	0	0	1	0	4	0	
Scott	3	3	4	0	3	0	0	2	2	0	0	
Mary	5	5	5	0	0	0	0	0	0	0	0	
Brent	0	0	0	0	0	0	5	0	0	5	0	
Kyle	4	0	4	0	0	0	0	0	0	0	5	
Sara	0	0	0	0	0	4	0	0	0	0	4	
Shaney	0	0	0	0	0	0	5	0	0	5	0	
Brendan	0	0	0	3	0	0	0	0	4	5	0	
Leanna	1	1	2	1	1	2	1	0	4	5	0	

对该矩阵进行 SVD 分解降维,在低维空间下利用 item-based 协同推荐方法进行推荐。(采用余弦相似性进行计算)

6. 使用 Scikit-learn 库中的 Olivetti faces 数据集,选取该数据集中的一张图像,使用 SVD 进行压缩重构,观察和比较不同奇异值数量的压缩效果。