UFO SIGHTINGS

Ali Krakowsky

INTRODUCTION

For the final project I'm looking at UFO Sightings again. Here's a quick refresher on the data.

SUMMARY

NUFORC is the National UFO Reporting Center where the reports of UFO sightings are stored. The goal of this project is to use machine learning to see if it's possible to predict the shape of the UFO by location.

PROCESS

- Used Jupyter Notebook to pull data
- Executable path created to search for table
- Looped through each link to create the data frame
- Result = Data pulled from almost 1,000 links

```
math: executable path = {'executable path': ChromeDriverManager().install()}
  browser = Browser('chrome', **executable_path, headless=False)
  url = 'http://www.nuforc.org/webreports/ndxevent.html'
  browser.visit(url)
   ===== WebDriver manager =====
  Current google-chrome version is 94.0.4606
  Get LATEST driver version for 94.0.4606
  Driver [C:\Users\alig \.wdm\drivers\chromedriver\win32\94.0.4606.61\chromedriver
data = browser.find by css("td a")
ufo links = [x["href"] for x in data]

    browser.quit()

df list = []
  for index,i in enumerate(ufo links):
      df = pd.read html(i)[0]
      df_list.append(df)
      print(index)
      time.sleep(1)
```


PROCESS

NUFORC Site

National UFO Reporting Center Report Index by Month

Click on links for details

NUFORC Home

Reports	Count
<u>10/2021</u>	95
09/2021	223
<u>08/2021</u>	238
<u>07/2021</u>	177
06/2021	200
05/2021	458

National UFO Reporting Center Monthly Report Index For 09/2021

Click on links for details

NUFORC Home

Date / Time	City	State	Shape	Duration	
9/30/21 22:50	Ocala	FL		45 seconds	Object trave
9/30/21 22:49	Atlanta	GA	Fireball	2 minutes	Maybe a me
9/30/21 21:45	Lakeland	GA	Other	60 seconds	Straight light
9/30/21 21:25	Grand Haven	MI	Light	01:00	Single, Brigh
9/30/21 20:59	Lewis Center	ОН	Triangle	5 minutes	Traveling eas
9/30/21 20:40	Fenton	MI	Oval	90 seconds	Bright white
9/30/21 20:30	Los Angeles	CA	Circle	10 seconds	Two bright s
9/30/21 19:02	Franklin	KY			MADAR Nod
0/20/21 16:10	Whittier	$C\Lambda$	Changing	2 minutes	Today Cente

DATA CLEANUP

- Data frame created
- Prior to merging the csvs
 - The city and state were combined to a new column(Locations)
 - All sightings that were missing the location were dropped
 - Canadian sightings were dropped due to variation in data entry
- After cleaning- over 100,000 rows were left

```
ufo_sightings['Location'] = ufo_sightings['City'] + ", " + ufo_sightings['State']
 ufo_sightings
        Date / Time
                           City State
                                       Shape
                                                Duration

■ ufo sightings = ufo sightings.dropna(how="all", subset=["Location"])

   ufo_sightings
1]:
              Date / Time
                                    City State
                                                 Shape
                                                           Duration
```


VISUAL #1

- Grouped the sightings by shapes
- Removed any sightings less than 5
- Created a pie chart with the name and percent inside the wedge
- Json.dumps- creates a trace to pass the data through as html

VISUAL #1

- Grouped the sightings by shapes
- Removed any sightings less than 5
- Created a pie chart with the name and percent inside the wedge
- Json.dumps- creates a trace to pass the data through as html

Shapes of UFO Sightings

This pie chart is showing the reported shapes of the UFO sightings with the count and percentage. The most popular shape is Light. Sighting reports were created by viewers and submitted as free-text. This causes a variety in the data provided.

Sunburst Plot of Loca

VISUAL #2

ations


```
+ Code + Text
     import numpy as np
     import pandas as pd
     import datetime
     from sklearn import preprocessing
     from sklearn.preprocessing import LabelEncoder
     from sklearn.ensemble import RandomForestClassifier
     from pathlib import Path
     from sklearn.preprocessing import StandardScaler
     from sklearn.decomposition import PCA
     from sklearn.cluster import KMeans
     import matplotlib.pyplot as plt
     import tensorflow as tf
 [ ] from google.colab import drive
     drive.mount('/content/drive')
     Mounted at /content/drive
 [ ] df = pd.read_csv("./drive/MyDrive/Project_4/ufo_sightings_locations.csv")
     df
```

	Unnamed:	Date / Time	City	State	Shape	Duration	Summary	Posted	Location	ID	STATE_CODE	S1
0	0	9/17/21 22:10	Laguna Hills	CA	Light	15 minutes	At 10:10 pm I walked outside, scattered clouds	NaN	Laguna Hills, CA	2245	CA	
1	1	11/11/20 16:13	Laguna Hills	CA	Circle	13 minutes	It lasted for 13 minutes, moved and then disap	12/23/20	Laguna Hills, CA	2245	CA	
2	2	11/11/20 16:13	Laguna Hills	CA	Circle	13 minutes	Red lights were going inside two red crafts	12/23/20	Laguna Hills, CA	2245	CA	
3	3	8/18/19 21:45	Laguna Hills	CA	Circle	30	Orange light seen. In the blink of an eye it d	8/23/19	Laguna Hills, CA	2245	CA	
4	4	7/7/16 21:47	Laguna Hills	CA	Circle	2:59 seconds	Starlike object observed.	7/15/16	Laguna Hills, CA	2245	CA	
						•••						
111479	111479	NaN	Attica	IN	NaN	NaN	A consistently appearing flying lighted uniden	8/23/19	Attica, IN	7441	IN	
111480	111480	NaN	Warfordsburg	PA	Changing	Minutes, maybe longer, it	I know it's strange to report a craft in the v	1/19/21	Warfordsburg, PA	23235	PA	Pe

SETBACKS

- Submissions are dependent on how the user enters the datathis created a wide variety of data types that needed to be cleaned
- The varied entries limited the number of categories that could be used
- Initially running the machine learning crashed the notebook due to RAMs being used(too many columns)
- There is a very weak correlation between location and shape prediction
- Prediction is currently overfitting

DISCUSSION

The column Category was created by combing the shapes into 2 groups: Light and Dim. The shapes placed in each group was decided by me. This was to help with the accuracy of the training as having even the limited 9 shapes as the class gave poor predictions.

GOING FORWARD

- Interesting to try other categories such as date
- Require more time cleaning the data and making it uniform

QUESTIONS?