Lista de Exercícios 0.4

Igor Lacerda Faria

¹Departamento de Ciência da Computação - Universidade Federal de Minas Gerais (UFMG) - Belo Horizonte - MG - Brasil

igorlfs@ufmg.br

- 1. (a) Um argumento lógico é um tipo de argumento composto por um conjunto de n proposições lógicas e que possui a propriedade de que se as n-1 primeiras proposições (as chamadas premissas) forem verdadeiras, então a proposição restante (chamada conclusão) também é verdadeira. O exemplo canônico disso é a seguinte colocação:
 - p: Todo homem é mortal.
 - q: Sócrates é homem.

Partindo do pressuposto que p e q são verdadeiras, podemos concluir r : Sócrates é mortal.

- (b) Um argumento válido é aquele em que ao se tomar suas premissas como verdadeiras, sua conclusão é **necessariamente** verdaeira. Por outro lado, um argumento inválido é aquele que *apesar de poder ser verdadeiro*, sua veracidade **não é garantida** pela veracidade de suas premissas.
- (c) É possível que argumento válido tenha uma conclusão falsa ao se tomar como verdadeira uma premissa que na realidade é falsa. A validade do argumento não diz respeito ao conteúdo das proposições em si, mas à sua estrutura dentro da lógica.
- (d) Uma falácia lógica é uma colocação que *parece* um argumento válido mas não é. Devido à minha falta de criatividade hoje, irei apenas citar os exemplos vistos em aula:

• Falácia da afirmação da conclusão

Exemplo: Todo natural é inteiro. -1 é inteiro. Logo -1 é natural. Aqui temos algo como: $\forall x: (P(x) \to Q(x)), \ Q(a)$ e concluímos P(a). Sabendo que Q(a), no caso, que dado número é inteiro, não podemos afirmar nada do antecedente: ele pode tanto ser verdadeiro como falso. No exemplo, o número pode ser natural ou negativo.

• Falácia da negação do antecedente

Exemplo: Todo natural é inteiro. -1 não é natural. Logo -1 não é inteiro.

Aqui temos algo como: $\forall x: (P(x) \to Q(x)), \neg P(a)$ e concluímos $\neg Q(a)$. Negando o antencedente, o condicional não introduz nenhuma informação nova, então não podemos afirmar nada sobre Q(a).

- 2. (a) Adição conjuntiva: $p \Rightarrow p \lor q$
 - (b) Simplificação conjuntiva: $p \wedge q \Rightarrow p$
 - (c) Modus Ponens: $p \to q, p \Rightarrow q$
 - (d) Modus Tollens: $p \to q, \neg q \Rightarrow \neg p$
 - (e) Silogismo hipotético: $p \rightarrow q, q \rightarrow r \Rightarrow p \rightarrow r$
- 3. (a) p: Eu tiro o dia de folga
 - q: Chove no dia
 - r: Neva no dia

Para T terça e Q quinta, temos:

$(1) \ \forall x: (p(x) \to (q(x) \lor r(x)))$	Premissa
$(2) \ p(T) \vee p(Q)$	Premissa
$(3) \neg q(T) \wedge \neg r(T)^{1}$	Premissa
$(4) \neg r(Q)$	Premissa
$(5) \neg p(T)$	(1), (3), Modus Tollens
(6) $p(Q)$	(2), (5), Silogismo Disjuntivo
$(7) \ \ q(Q) \vee r(Q)$	(6), (1), Modus Ponens Universal
(8) $q(Q)$	(7), (4), Silogismo Disjuntivo

- \therefore A pessoa em questão tirou folga somente na quinta, e choveu nesse dia.
- (b) C: Eu como comida apimentada
 - S: Eu tenho sonhos estranhos
 - T: Troveja enquanto durmo

 \therefore Não trovejou nem choveu nessa noite e nem comi
 comida apimentada.

- (c) E: Eu sou esperto
 - S: Eu sou sortudo
 - L: Eu ganho na loteria
 - $\begin{array}{cccc} (1) & & E \vee S & & \text{Premissa} \\ (2) & & \neg S & & \text{Premissa} \\ (3) & & S \rightarrow L & & \text{Premissa} \\ (4) & & E & & \text{Silogismo disjuntivo } (1), (2) \end{array}$
 - ∴ Eu sou esperto.
- (d)r(x): x é roedor

c(x): x rói a própria comida

T: $\forall x : (r(x) \to c(x))$

Para R ratos, C coelhos e M morcegos, temos:

(1)	$\forall x: (r(x) \to c(x))$	Premissa
(2)	r(R)	Premissa
(3)	$\neg c(C)$	Premissa
(4)	$\neg r(M)$	Premissa
(5)	c(R)	Modus Ponens Universal: (1), (2)
(6)	$\neg r(C)$	Modus Tollens Universal: (1), (3)

- .: Ratos roem sua própria comida e coelhos não são roedores.
- 4. (a) Modus Ponens Universal;
 - (b) Generalização existencial, instanciação universal.
- 5. (a) Esse argumento está correto. Se P(x) para todo x no domínio então P(c) para um c particular.
 - (b) Incorreto. Natasha pode estar cursando Matemática Discreta mas ser de outro curso, sem contradizer a condição de que todo estudante de CC faz a matéria.
 - (c) Incorreto. Raciocínio análogo ao anterior. Se não vale a condição, o condicional não dá nenhuma informação.
 - (d) Correto. Modus Tollens.
- 6. (a) Inválido. Isso é um exmeplo de falácia de afirmação da conclusão. Saber a conclusão não dá informações sobre o antecedente.
 - (b) Válido. Modus Tollens.
 - (c) Inválido. Isso é um exemplo de falácia de negaçõa do antecedente. Negar o antecedente torna a condicional "inútil".

7. O erro nesse argumento está no passo 6, de adição conjuntiva de (3) e (5). O problema aqui, que muitas vezes é cometido por falta de atenção, é que o c de P(c) não é, necessariamente, o mesmo c de Q(c). Para evitar esse tipo de erro, é útil usar uma notação diferente para cada variável dentro de um escopo (como uma questão ou item de questão). Por exemplo, pode-se usar índices: $\exists c_1: P(c_1)$ e $\exists c_2: Q(c_2)$. Se (6) estivesse correto, então a dedução de (7) seria válida.