Trabajo práctico N° 3

Representación digital de datos: Texto y Multimedia

Fecha de finalización: 28 de abril

Introducción a la computación Departamento de Ingeniería de Computadoras Facultad de Informática - Universidad Nacional del Comahue

Objetivo: comprender la representación binaria de texto, imagenes y otros datos más complejos.

Recursos bibliográfico:

- Wikipedia: Run-length encoding: https://en.wikipedia.org/wiki/Run-length_encoding
- Wikipedia: ASCII: http://es.wikipedia.org/wiki/ASCII

Recursos:

- Tabla de caracteres ASCII Extendida: http://www.programasprogramacion.com/caracteres.php
- Tabla de caracteres *UTF-8*: http://www.fileformat.info/info/charset/UTF-8/list.htm

Tabla ASCII:

Dec	ec Hex		Dec	Dec Hex		Dec	Нез	Σ	Dec	Hea	ζ	Dec	Hez	ζ	Dec	Hes	ζ	Dec	Hes	ζ	Dec	Hes	ζ
0	00	NUL	16	10	DLE	32	20		48	30	0	64	40	0	80	50	P	96	60	(112	70	p
1	01	SOH	17	11	DC1	33	21	!	49	31	1	65	41	Α	81	51	Q	97	61	a	113	71	q
2	02	STX	18	12	DC2	34	22	"	50	32	2	66	42	В	82	52	R	98	62	b	114	72	r
3	03	ETX	19	13	DC3	35	23	#	51	33	3	67	43	С	83	53	S	99	63	С	115	73	s
4	04	EOT	20	14	DC4	36	24	\$	52	34	4	68	44	D	84	54	T	100	64	d	116	74	t
5	05	ENQ	21	15	NAK	37	25	%	53	35	5	69	45	E	85	55	U	101	65	е	117	75	u
6	06	ACK	22	16	${\tt SYN}$	38	26	&	54	36	6	70	46	F	86	56	V	102	66	f	118	76	V
7	07	BEL	23	17	ETB	39	27	,	55	37	7	71	47	G	87	57	W	103	67	g	119	77	W
8	80	BS	24	18	CAN	40	28	(56	38	8	72	48	Н	88	58	X	104	68	h	120	78	x
9	09	HT	25	19	EM	41	29)	57	39	9	73	49	Ι	89	59	Y	105	69	i	121	79	у
10	OA	LF	26	1A	SUB	42	2A	*	58	ЗА	:	74	4A	J	90	5A	Z	106	6A	j	122	7A	z
11	OB	VT	27	1B	ESC	43	2B	+	59	ЗВ	;	75	4B	K	91	5B		107	6B	k	123	7B	{
12	OC	FF	28	1C	FS	44	2C	,	60	3C	<	76	4C	L	92	5C	\	108	6C	1	124	7C	
13	OD	CR	29	1D	GS	45	2D	-	61	3D	=	77	4D	М	93	5D]	109	6D	m	125	7D	}
14	0E	SO	30	1E	RS	46	2E		62	3E	>	78	4E	N	94	5E	^	110	6E	n	126	7E	~
15	0F	SI	31	1F	US	47	2F	/	63	3F	?	79	4F	0	95	5F	_	111	6F	0	127	7F	DEL

Lectura obligatoria:

■ Apuntes de cátedra. Capitulo 4:Representación digital de datos: Texto y Multimedia. Disponible en *PEDCO*: https://pedco.uncoma.edu.ar/mod/url/view.php?id=203642

Nota: El prefijo "0x" indica que un número está en hexadecimal.

1. Codificación de texto

- 1. Decodifique los siguientes mensajes codificados en UTF-8 y representados en hexadecimal.
 - a) 41 79 75 64 61
 - $b)~45~6\mathrm{C}~20~\mathrm{C}3~\mathrm{B}1~61~6\mathrm{E}~64~\mathrm{C}3~\mathrm{B}A~20~62~61~6A~\mathrm{C}3~\mathrm{B}3~20~65~6\mathrm{C}~20~\mathrm{C}3~\mathrm{A}1~72~62~6\mathrm{F}~6\mathrm{C}$
 - c) 48 6F 6C 61 20 6D 75 6E 64 6F
 - d) Para cada uno de los mensajes anteriores, responda: ¿cuántos caracteres posee? ¿cuántos bytes ocupa?
- 2. Codifique su apellido y legajo en ASCII, respetando el siguiente formato: "Apellido (legajo)". Remplace aquellos caracteres que no puedan ser representados por el símbolo "?"

2. Representación de imágenes

Los archivos de imagen utilizados en los ejercicios respetan el siguiente formato:

Ancho	Alto	Bits por pixel	Datos de la imagen
1 byte	1 byte	1 byte	

Por simplicidad, el formato no incluye la paleta de colores

Ejemplo dado un archivo de imagen cuyo contenido expresado en hexadecimal es: "**04 06 01 69 12 4F**" y cuyo formato es el descripto en la teoría, para poder obtener la imagen se deben seguir los siguientes pasos:

- 1. Extraer los datos de la cabecera de la imagen: ancho, alto, y bits por pixel:
 - Ancho: 4 pixeles.
 - Alto: 6 pixeles.
 - Bits por pixel: 1 bit por pixel.
- 2. Representar en binario los datos de la imagen: 0100 1001 0001 0010 0100 1111

0100 1001 0001 0010 0100 1111

- 3. Crear una cuadricula de anchoxalto pixeles.
- 4. Tomando de a "bits por pixel" de los datos de la imagen, rellenar la cuadricula, comenzando desde la esquina superior izquierda, completando las filas:

Datos de la imagen

raios ac ia imagei							
Hex.	$\mid Binario \mid$						
6	0110						
9	1001						
1	0001						
2	0010						
4	0100						
\mathbf{F}	1111						

Ejercicios:

- 1. Sabiendo que el contenido de un archivo de imagen en hexadecimal es: "08 08 01 00 27 65 65 25 25 77", dibuje su imagen.
- 2. Codifique la siguiente imagen expresando el contenido de su archivo en hexadecimal.

- 3. Observe que el formato de imagen dado no incluye la paleta de colores. ¿Qué problema puede causar esto?
- 4. Codifique la siguiente imagen expresando el contenido de su archivo en hexadecimal.

3. Compresión

1. Dada la siguiente codificación que corresponde a una imagen:

 $0\mathrm{C}$ 10 01 40 22 64 7F E7 0E 70 E4 02 4F 27 FE 06 00 60 3F C4 62 86 10 F0 10 83 0C

- a) Dibuje la imagen resultante considerando una paleta de 2 colores.
- b) ¿Cuántos bits requiere la codificación dada de la imagen? ¿Y la del ejercicio 4 de la sección "Representación de imágenes"?
- c) ¿Qué técnica de compresión se ha utilizado?

2. Considerando la imagen que se muestra abajo, aplique un esquema de compresión que agrupa píxeles consecutivos de igual color y los reemplaza por una codificación "cantidadolor", utilizando una codificación 3+1, con tres bits para la cantidad y un bit para el color.

Tenga en cuenta que al calcular la cantidad se debe considerar que las filas de la imagen son consecutivas. Es decir, si una fila termina con dos pixeles negros y la siguiente comienza con otros dos pixeles negros, la codificación debe ser "4 pixeles negros"

- 3. Si se represente la imagen del ejercicio 4 de la sección "**Representación de imágenes**" utilizando un esquema de compresión "*cantidad/color*":
 - a) ¿De que tipo es la técnica de compresión que utiliza el esquema indicado?
 - b) ¿Con cuántos bits sería conveniente representar la cantidad? ¿y el color?
 - c) Mostrar la codificación de la imagen utilizando el esquema de compresión indicado.
 - d) Comparar la cantidad de bits requeridos para esta codificación frente a las de los ejercicios 4 de la sección "**Representación de imágenes**", y 1 de la sección "**Compresión**".
- 4. Los formatos de imagen presentados no incluyen toda la información necesaria para la decodificación de la imagen.
 - a) Ademas de la paleta de colores ¿que información agregaría para las imágenes comprimidas con y sin perdida? Sugiera una nueva cabecera que incluya la información faltante.
 - b) Para poder decodificar una imagen, un programa debe poder identificar su tipo ¿Que mecanismo puede utilizar para hacerlo? Si es necesario, puede volver a modificar el formato de imagen.

4. Elaboración de un texto

1. Los informáticos denominamos "vuelco de memoria" a la visualización de los datos contenidos en una región de la memoria. Sea el siguiente vuelco de memoria en hexadecimal: **0x420C701B**. ¿Cuáles son sus posibles interpretaciones?