Tutorial #2

1. Show that the limit of the function

$$f(z) = \left(\frac{z}{\overline{z}}\right)^2$$

as z tends zero does not exist.

2. Verify the Cauchy–Riemann equations for $f(z) = z^3$.

3. Determine where $f(z) = xy^2 + ix^2y$ is differentiable.

4. Let

$$f(z) = \begin{cases} \frac{\overline{z}^2}{z} & \text{when } z \neq 0 \\ 0 & \text{when } z = 0. \end{cases}$$

Show that if z = 0, then

$$\lim_{\Delta z \to 0} \frac{f(\Delta z)}{\Delta z} = \begin{cases} 1 & \text{when } \Delta z = \Delta x, \\ -1 & \text{when } \Delta z = \Delta y + i\Delta y. \end{cases}$$

Thus f(z) is not differentiable at z = 0. Verify that the Cauchy-Riemann equations hold at z = 0. Hence C-R equations hold true is only necessary but not sufficient condition for f(z) to be differentiable at a point.

5. Suppose that $f(z_0) = g(z_0) = 0$ and that $f'(z_0)$ and $g'(z_0)$ exist, where $g'(z_0) \neq 0$. Show that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$$

6. Recall that

$$x = \frac{z + \bar{z}}{2}, \qquad y = \frac{z - \bar{z}}{2i}.$$

By formally applying the chain rule to a function F(x,y), derive the expression

$$\frac{\partial F}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial F}{\partial x} + i \frac{\partial F}{\partial y} \right).$$

Determine the operator

$$\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

suggested by the above formula, to show that if the real and imaginary parts of f(z) = u(x, y) + iv(x, y) satisfy the Cauchy–Riemann equations, then

$$\frac{\partial f}{\partial \bar{z}} = 0,$$

which is the *complex form* of the Cauchy–Riemann equations. Using this to show that $f(z) = |z|^2$ is not differentiable for all $z \neq 0$.