Practica 2:

Generación del analizador léxico con JLex Diseño de la sintaxis Análisis sintáctico descendente

Grupo 11:
Youssef El Faqir El Rhazoui
Enrique Ávila Rodríguez

1. Conceptualización mediante diagramas

Pasamos a describir el lenguaje mediante los diagramas.

2. Gramática Incontextual

Ahora pasamos a especificar la gramática, teniendo en cuenta la asociatividad y prioridad de los operadores dados por la siguiente tabla.

Operadores	Prioridad	Asociatividad
(binario) +, -	0	Asoc. Izq
And, or	1	And asoc derch.
		Or no asoc
==, ;=, <, <=, >, >=	2	No asoc
*,/	3	Asoc izq
- (unario), not	4	• - asoc
		Not no asoc

Programa → Sec_Declaración && Sec_Instrucción EOF

Sec_Declaración → Declaración

Sec_Declaración → Declaración ; Sec_Declaración

Declaración → Tipo <u>ID</u>

Tipo $\rightarrow \underline{\text{num}}$

Tipo → bool

Sec_Instrucción → Instrucción

Sec_Instrucción → Instrucción ; Sec_Instrucción

Instrucción $\rightarrow \underline{ID} = Exp$

 $Exp \rightarrow Exp0$

 $Exp0 \rightarrow Exp0 Op0 Exp1$

 $Exp0 \rightarrow Exp1$

Op0 **→** +

Op0 → -

 $Exp1 \rightarrow Exp2$ and Exp1

 $Exp1 \rightarrow Exp2 \text{ or } Exp2$

 $Exp1 \rightarrow Exp2$

Exp2 → Exp3 Op2 Exp3

 $Exp2 \rightarrow Exp3$

```
Op2 \rightarrow ;= |== | < | <= | > | >= 

Exp3 \rightarrow Exp3 Op3 Exp4

Exp3 \rightarrow Exp4

Op3 \rightarrow *

Op3 \rightarrow /

Exp4 \rightarrow - Exp4

Exp4 \rightarrow not Exp5

Exp4 \rightarrow Exp5

Exp5 \rightarrow Lit

Exp5 \rightarrow (Exp0)

Lit \rightarrow ID
```

3. Transformaciones para gramática LL1

Para poder hacer un análisis descendente práctico, la gramática anterior no nos vale debido a que presenta problemas de recursión a la izquierda y de factor común.

Resolución de Factor Común

(1)

 $Exp1 \rightarrow Exp2 \text{ and } Exp1$

 $Exp1 \rightarrow Exp2 \text{ or } Exp2$

Lit \rightarrow True

Lit → False

Lit → Numero

 $Exp1 \rightarrow Exp2$

Exp1 → Exp2 Exp1p

Exp1p \rightarrow and Exp1

 $Exp1p \rightarrow or Exp2$

Exp1p $\rightarrow \epsilon$

```
(2)
```

 $Exp2 \rightarrow Exp3 Op2 Exp3$

 $Exp2 \rightarrow Exp3$

Exp2 → Exp3 Exp2p

Exp2p → Op2 Exp3

Exp2p $\rightarrow \epsilon$

(3)

Sec_Declaración → Declaración

Sec_Declaración → Declaración ; Sec_Declaración

Sec_Declaración → Declaración Sec_Declaración_p

Sec_Declaración_p →; Sec_Declaración

Sec_Declaración_p → ε

(4)

Sec_Instrucción → Instrucción

Sec_Instrucción → Instrucción ; Sec_Instrucción

Sec_Instrucción → Instrucción Sec_Instrucción_p

Sec_Instrucción_p →; Sec_Instrucción

Sec_Instrucción_p → ε

Resolución de recursión a la izq

(5)

 $Exp0 \rightarrow Exp0 Op0 Exp1$

 $Exp0 \rightarrow Exp1$

 $Exp0 \rightarrow Exp1 Exp0p$

Exp0p → Op0 Exp1 Exp0p

Exp0p $\rightarrow \epsilon$

Exp3 → Exp3 Op3 Exp4

 $Exp3 \rightarrow Exp4$

Exp3 → Exp4 Exp3p

Exp3p → Op3 Exp4 Exp3p

Exp3p $\rightarrow \epsilon$

Con lo cual, la gramática LL1 resultante es:

Programa → Sec_Declaración <u>&&</u> Sec_Instrucción <u>EOF</u>

Sec_Declaración → Declaración Sec_Declaración_p

Sec_Declaración_p →; Sec_Declaración

Sec_Declaración_p → ε

Declaración → Tipo <u>ID</u>

Tipo → num

Tipo → bool

Sec_Instrucción → Instrucción Sec_Instrucción_p

Sec_Instrucción_p →; Sec_Instrucción

Sec_Instrucción_p → ε

Instrucción $\rightarrow \underline{ID} = Exp$

 $Exp \rightarrow Exp0$

 $Exp0 \rightarrow Exp1 Exp0p$

 $Exp0p \rightarrow Op0 Exp1 Exp0p$

Exp0p $\rightarrow \epsilon$

Op0 → +

Op0 → -

 $Exp1 \rightarrow Exp2 Exp1p$

Exp1p \rightarrow and Exp1

 $Exp1p \rightarrow or Exp2$

Exp1p $\rightarrow \epsilon$

Exp2 → Exp3 Exp2p

 $Exp2p \rightarrow Op2 Exp3$

Exp2p $\rightarrow \epsilon$

 ${\rm Op2} \to {}_{i} = | = | < | < = | > | > =$

Exp3 → Exp4 Exp3p

 $Exp3p \rightarrow Op3 Exp4 Exp3p$

Exp3p \rightarrow ϵ

Op3 **→** *

Op3 **→** /

Exp4 → - Exp4

 $Exp4 \rightarrow \underline{not} Exp5$

 $Exp4 \rightarrow Exp5$

Exp5 \rightarrow Lit

 $Exp5 \rightarrow (Exp0)$

Lit $\rightarrow \underline{ID}$

Lit \rightarrow True

Lit \rightarrow False

Lit → <u>Numero</u>

4. Primeros, siguientes y directores

Nos hemos apoyado en <u>proletool</u> para generarlos, adjuntamos el archivo "proletool_file.txt" usado en esta herramienta.

Anulables

Sec_Instruccion_p Exp1p Exp0p Sec_Declaracion_p Exp3p Exp2p

No terminal	Iniciales	
Instruccion	ID	
Sec_Instruccion	ID	
Sec_Declaracion	bool num	
Op0	+ -	
Op2	menor_igual mayor_igual mayor menor dist igual	
Programa	bool num	
Declaracion	bool num	
Exp0	Numero not (True ID False -	
Tipo	bool num	
Op3	* /	
Exp2	Numero not (True ID False -	
Exp1	Numero not (True ID False -	
Sec_Instruccion_p	;	
Exp4	Numero not (True ID False -	
Lit	Numero True ID False	
Exp3	Numero not (True ID False -	
Exp1p	or and	
Exp0p	+ -	
Exp5	Numero (True ID False	
Sec_Declaracion_p	;	
Exp	Numero not (True ID False -	
Exp3p	* /	
Exp2p	menor_igual mayor_igual mayor menor dist igual	

No terminal	Siguientes
Instruccion	; EOF
Sec_Instruccion	EOF
Sec_Declaracion	&
Op0	Numero not (True ID False -
Op2	Numero not (True ID False -
Programa	\$
Declaracion	&;
Exp0); EOF
Tipo	ID
Op3	Numero not (True ID False -
Exp2	or and) + ; - EOF
Exp1) + ; - EOF
Sec_Instruccion_p	EOF
Exp4	menor_igual mayor_igual or mayor dist) * + - / menor and igual; EOF
Lit	menor_igual mayor_igual or mayor dist) * + - / menor and
Lit	igual; EOF
Exp3	menor_igual mayor_igual or mayor dist) + - menor and igual ; EOF
Exp1p) + ; - EOF
Exp0p) ; EOF
Exp5	menor_igual mayor_igual or mayor dist) * + - / menor and igual ; EOF
Sec_Declaracion_p	&
Exp	; EOF
Exp3p	menor_igual mayor_igual or mayor dist) + - menor and igual ; EOF
Exp2p	or and) + ; - EOF