Laboratório 9

Operações com vetores; Vetores multidimensionais.

Introdução à Programação C (CMT012) Prof. Ronald Souza

IC/UFRJ — 18/10/2023

Objetivo

Praticar os conceitos de programação vistos na Aula 9.

Todos os seus programas devem preencher a estrutura abaixo.

```
/*
Autor: <nome do aluno>
Data: <data de hoje>
Descrição: <o que o programa faz>
Entrada: <o que o programa espera receber como entrada>
Saída: <o que o programa retorna para o usuário>
Defesa: <restrições sobre os dados de entrada, se existirem>
*/
#include <stdio.h>
int main() {
    //dicionário de dados
    //corpo do programa
    return 0;
}
```

Atividade 1: Chama-se **Quadrado Mágico** uma matriz quadrada de números em que a soma de cada coluna, de cada linha e das duas diagonais são iguais. Veja o exemplo para uma matriz 3x3:

2 7 6

9 5 1 4 3 8

Repare acima que a soma dos elementos de **cada linha**, de **cada coluna** e das **duas diagonais** é sempre igual a 15!

Tarefa: Escreva um programa em C que receba como entrada uma matriz quadrada de ordem N (1 < N < 100) e imprima na tela se trata-se de um quadrado mágico ou não.

Entrada: A entrada contém um inteiro indicando a dimensão da matriz e em seguida os elementos da matriz.

Saída: O seu programa deve imprimir "Verdadeiro", quando a matriz de entrada for um quadrado mágico, ou "Falso" caso contrário.

Exemplo 1:

ENT	RAD	Α		SAÍDA	
5					"Verdadeiro"
11	24	7	20	3	
4	12	25	8	16	
17	5	13	21	9	
10	18	1	14	22	
23	6	19	2	15	

Exemplo 2:

_				
ENTRADA				SAÍDA
4				"Falso"
4	14	15	1	
9	7	7	12	
5	11	10	8	
16	2	3	13	

Atividade 2: Complete o programa em C abaixo, para que ele realize a **multiplicação** e também a **soma** de duas **matrizes quadradas** e em seguida exiba na tela tanto as matrizes de entrada quanto a matriz resultante de cada operação.

Copie o código abaixo (onde as matrizes de entrada e a resultante são inicializadas) e implemente a função reportarOpMatrizes(). Siga as instruções descritas após o código!

```
#include <stdio.h>
#include <stdlib.h>
#define DIM 2 //Alterar esse valor ao testar outras dimensões!
void reportarOpMatrizes(int A[DIM][DIM],int B[DIM][DIM],int C[DIM][DIM],char op);
    int A[DIM][DIM] = \{ \{-4, 2\}, \{3, 7\} \}; //"Comente" ao testar o caso 3x3
    int B[DIM][DIM] = \{ \{1, -2\}, \{12, 9\} \};
    //int A[DIM][DIM] = \{ \{3, 4, 5\}, \{8, -2, 7\}, \{9, 0, 5\} \}; //"Descomente" ao testar
    //int B[DIM][DIM] = { {5, 1, 2}, {-8, 2, 2}, {11, 4, 9} };
    int C[DIM][DIM] = { 0 }; //Inicializa com 0 TODOS os elementos de C!
    /* MULTIPLICAÇÃO */
    //Implementar aqui!
    reportarOpMatrizes(A, B, C, 'X');
    printf("\n\n");
    /* SOMA */
    //Implementar aqui!
    reportarOpMatrizes(A, B, C, '+');
    return 0;
void reportarOpMatrizes(int A[DIM][DIM],int B[DIM][DIM],int C[DIM][DIM],char op){
      //IMPLEMENTAR!
```

Atenção! As operações de multiplicação e soma devem ser implementadas na função main(). A função de "reportar" irá apenas exibir na tela os resultados **formatados**.

Teste os casos de entrada!

Após efetuar as operações, sua função de relatório deverá imprimir as duas matrizes de entrada, a operação (multiplicação e, a seguir, soma) e a matriz resultante exatamente como nos dois exemplos abaixo (2x2 e 3x3).

Exemplo 1 (matrizes 2x2):

```
-4
     2
                       -2
                                    20
                                        26
 3
     7
                                        57
                  12
                        9
                                    87
-4
     2
                   1
                      -2
                                          0
                                    -3
 3
     7
                  12
                        9
                                    15
                                        16
```

Após testar as matrizes 2x2, "comente" essas linhas e "descomente" as matrizes 3x3. Lembre-se de alterar a constante DIM para 3!

Exemplo2 (3x3):

3	4	5	X	5	1	2	=	38	31	59
8	-2	7		-8	2	2		133	32	75
9	0	5		11	4	9		100	29	63
3	4	5	+	5	1	2	=	8	5	7
8	-2	7		-8	2	2		0	0	9
9	0	5		11	4	9		20	4	14

Teste também outros casos por sua própria conta!

Atividade 3 (OBI 2011):

Pedrinho é um garoto fascinado por jogos de tabuleiro. Nas férias de janeiro, ele aprendeu um jogo chamado Campo Minado, que é jogado em um tabuleiro com N células dispostas na horizontal. O objetivo desse jogo é determinar, para cada célula do tabuleiro, o número de minas explosivas nos arredores da mesma (que são a própria célula e as células imediatamente vizinhas à direita e à esquerda, caso existam). Por exemplo, considere um tabuleiro com 5 células, configuradas da seguinte forma (# significa "mina"):

[][#][#][][#]

A primeira célula não possui nenhuma mina explosiva, mas é vizinha de uma célula que possui. Nos arredores da segunda célula temos duas minas (ela mesma e a vizinha à direita), e o mesmo acontece para a terceira e quarta células; a quinta célula só tem uma mina explosiva em seus arredores. A resposta para o caso acima seria:

[1][2][2][2][1]

Pedrinho sabe que você está cursando Prog-I e resolveu lhe pedir para escrever um programa em C que, dado um tabuleiro, imprima o número de minas na vizinhança de cada posição.

A entrada deverá ser lida de teclado. A primeira linha da entrada contém um inteiro N indicando o número de células no tabuleiro. O tabuleiro é dado na próxima linha. O i-ésimo elemento da segunda linha contém 0 se não existe uma mina na i-ésima célula do tabuleiro e 1 caso contrário.

A saída é composta por N valores e deverá ser escrita na tela. O i-ésimo valor da saída contém o número de minas explosivas nos arredores da i-ésima célula do tabuleiro.

Exemplos de entrada e saída:

ENTRADA:	SAÍDA:
5	1 2 3 2 1
0 1 1 1 0	
8	1 2 3 2 1 0 1 1
0 1 1 1 0 0 0 1	

Atividade 4:

Crie um **novo tipo de dados** para representar uma **Pessoa** com os campos **idade** e **peso**. Agora, implemente uma função que, dado um vetor de Pessoas, ordene esse vetor em ordem **decrescente** de **idade** e imprima o vetor ordenado na tela.

Finalmente, implemente a função **main**, onde um vetor de Pessoas (máximo de 50) deverá ser preenchido pelo usuário e em seguida ordenado (chamando a função definida anteriormente).