Question 3. (8+8+4=20 Marks)

- (a) You have to store information about each student in a group of <u>about 200</u> students in a hash table. Each student's key is his id. Number, for example, 427102181.
 - (i) Give a suitable table size and a hash function based on <u>digit selection</u>, assuming that <u>the external chaining</u> is the collision resolution strategy employed.
 - (ii) Give a suitable table size and a hash function based on division if the number of students is exactly 200 and **linear rehashing** is the collision resolution strategy employed.
- (b) Insert the following keys: 904,918,855,913,806,841 and 778, into a hash table with hash function $\underline{H(key) = key \mod 7}$, using linear rehashing as collision resolution strategy.
- (c) How many probes are required to store 913 and 841?

Q3 -a/i)

Table Size = 100 since we are using External chaining for the collision resolution strategy. $H(key) = key \mod 100$.

Q3 -a/ii)

Table Size = 200 since we are using linear rehashing is the collision resolution strategy $H(key) = key \mod 200$.

Q3 -b and c)

E	E	E	E	E	E	E
0	1	2	3	4	5	6

Insert Key 904: H(904) = 904 mod 7 = 1

Props = 1

E	904	E	E	E	E	Е
0	1	2	3	4	5	6

Insert Key 918: H(918) = 918 mod 7 = 1

Collision in index 1.

Rehash = $p + c \mod tableSize = 1 + 1 \mod 7 = 2$

Props = 2

Е	904	918	E	Е	E	Е
0	1	2	3	4	5	6

Insert Key 855: H(855) = 855 mod 7 = 1

Collision in index 1.

Rehash = $p + c \mod tableSize = 1 + 1 \mod 7 = 2$ Collision in index 2.

Rehash = $p + c \mod tableSize = 2 + 1 \mod 7 = 3$

Props = 3

E	904	918	855	E	E	E
0	1	2	3	4	5	6

Insert Key 913: H(913) = 913 mod 7 = 3 Collision in index 3. Rehash = $p + c \mod tableSize = 3 + 1 \mod 7 = 4$ Props = 2Ε 904 918 855 913 Ε Ε 0 1 2 3 4 5 6 Insert Key 806: $H(806) = 806 \mod 7 = 1$ Collision in index 1. Rehash = $p + c \mod tableSize = 1 + 1 \mod 7 = 2$ Collision in index 2. Rehash = $p + c \mod tableSize = 2 + 1 \mod 7 = 3$ Collision in index 3. Rehash = p + c mod tableSize = 3 + 1 mod 7 = 4 Collision in index 4. Rehash = $p + c \mod tableSize = 4 + 1 \mod 7 = 5$ Props = 5Ε 904 918 855 913 806 Ε 2 0 3 5 6 4 Insert Key 841: H(841) = 841 mod 7 = 1 Collision in index 1. Rehash = $p + c \mod tableSize = 1 + 1 \mod 7 = 2$ Collision in index 2. Rehash = $p + c \mod tableSize = 2 + 1 \mod 7 = 3$ Collision in index 3. Rehash = $p + c \mod tableSize = 3 + 1 \mod 7 = 4$ Collision in index 4. Rehash = $p + c \mod tableSize = 4 + 1 \mod 7 = 5$ Collision in index 5. Rehash = $p + c \mod tableSize = 5 + 1 \mod 7 = 6$ Props = 6904 918 913 Ε 855 806 841 0 1 2 5 3 4 6 Insert Key 778: H(778) = 778 mod 7 = 1 Collision in index 1. Rehash = $p + c \mod tableSize = 1 + 1 \mod 7 = 2$ Collision in index 2. Rehash = $p + c \mod tableSize = 2 + 1 \mod 7 = 3$ Collision in index 3. Rehash = $p + c \mod tableSize = 3 + 1 \mod 7 = 4$ Collision in index 4.

Rehash = $p + c \mod table$ Size = $5 + 1 \mod 7 = 6$ Collision in index 6.									
Rehash = p	Props = 7								
	Е	904	918	855	913	806	841		
	0	1	2	3	4	5	6		

Rehash = $p + c \mod tableSize = 4 + 1 \mod 7 = 5$ Collision in index 5.