1. Divide the data into 60% training and 40% validation

Response:

```
21 library(pROC)
    library("gmodels")
   library(caret)
23
24 library(ISLR)
25 #install.packages("e1071") #install first
26 library(e1071)
27
   library(naivebayes)
28 library(dplyr)
29 library(ggplot2)
   library(psych)
30
31 a3 <- read.csv("FlightDelays.csv")</pre>
32 summary(a3)
33 #Convert week and time variables to factors
34 a3$time <- as.factor(a3$DEP_TIME)</pre>
35 a3$day <- as.factor(a3$DAY_WEEK)</pre>
36 colnames(a3)
37 #Select the 5 variables plus Flight.Status
38 newdata<-a3[,c(1,2,8,13,14,15)]</pre>
39 str(newdata)
44 + ```{r}
45
46 #1. Divide the data into 60% training and 40% validation
47 set.seed(123)
48 Index_Train<-createDataPartition(newdata$Flight.Status, p=0.6, list=FALSE)
49 Train <-newdata[Index_Train,]</pre>
50 Train
51 validate <-newdata[-Index_Train,]</pre>
52 validate
```

data.frame	data.frame					
	CRS_DEP_TIME <int></int>	CARRIER <fctr></fctr>	ORIGIN <fctr></fctr>	Flight.Status <fctr></fctr>	time <fctr></fctr>	day <fctr></fctr>
3	1245	DH	IAD	ontime	1245	4
5	1039	DH	IAD	ontime	1035	4
7	1240	DH	IAD	ontime	1243	4
13	930	DL	DCA	ontime	932	4
15	1430	DL	DCA	ontime	1429	4
21	900	MQ	DCA	ontime	853	4
22	1300	MQ	DCA	ontime	1254	4
23	1400	MQ	DCA	ontime	1356	4
25	1900	MQ	DCA	ontime	1853	4
27	900	US	DCA	ontime	858	4

2. Run the Naive Bayes model to predict whether the flight is delayed or not. Use only categorical variables for the predictor variables. Note that Week and Time variables need to recoded as factors

Response:

```
#2. Run the Naive Bayes model to Predict whether flight delayed or not. Use only categorical variables for the predictor variables. Note that week and Time variables remains as factors

#First remove Non Categorical Variables

New_model <- subset(a3,select = -c(CRS_DEP_TIME,DEP_TIME, DISTANCE, FL_DATE, FL_NUM, Weather))

New_model$DAY_WEEK <- as.factor(New_model$DAY_WEEK)

New_model$DAY_OF_MONTH <- as.factor(New_model$DAY_OF_MONTH)

New_model <- transform(New_model, Flight.Status = ifelse(New_model$Flight.Status == "delayed", 1, 0))

*****Roy Continues: Defining the Naive Bayes Model**

set.seed(123)

nb_model <- naiveBayes(Flight.Status <- ,data = Train, usekernel = T)

redicted_validate_labels <- predict(nb_model,validate, type = "raw")

Predicted_validate_labels <- transform(Predicted_validate_labels, Prediction = ifelse(Predicted_validate_labels[,2] > .5, 1, 0))

redicted_validate_labels
```

delayed <dbl></dbl>	ontime <dbl></dbl>	Prediction <dbl></dbl>
0.155806142	0.84419386	1
0.506574170	0.49342583	0
0.084015320	0.91598468	1
0.056629120	0.94337088	1
0.036673116	0.96332688	1
0.063761208	0.93623879	1
0.072968184	0.92703182	1
0.031888507	0.96811149	1
0.266115219	0.73388478	1
0.003896570	0.99610343	1

3. Output both a counts table and a proportion table outlining how many and what proportion of flights were delayed and on-time at each of the three airports.

Response:

4. Output the confusion matrix and ROC for the validation data

```
95 * ```{r}
96 #4.Output the confusion matrix and ROC for the validation data
97
98 roc(validate$Flight.Status, Predicted_validate_labels[,2])
99
00 plot.roc(validate$Flight.Status,Predicted_validate_labels[,2])
01
02 CrossTable(x=validate$Flight.Status,y=Predicted_validate_labels[,3], prop.chisq = FALSE)
03
04
```


Total Observations in Table: 880

	Predicted_validate_labels[, 3]				
validate\$Flight.Status	0	1	Row Total		
delayed	35	136	171		
	0.205	0.795	0.194		
	0.438	0.170			
	0.040	0.155			
ontime	45	664	709		
	0.063	0.937	0.806		
	0.562	0.830			
	0.051	0.755			
Column Total	80	800	880		
	0.091	0.909			