SOLUTIONS TO HOMEWORK 3

Problem 1. It suffices to show that for any pair of coordinate charts (U, ϕ) for M and (V, ψ) for N (with $F(U) \subset V$) that the map $\widehat{F} = \psi \circ F \circ \phi^{-1} \colon \phi(U) \to \psi(V)$ is constant. By chain rule, the differential of this map at $\phi(p) \in \mathbb{R}^m$ is

(1)
$$\mathrm{d}\widehat{F}_{\phi(p)} = \mathrm{d}\psi_{F(p)} \circ \mathrm{d}F_p \circ \mathrm{d}\phi_{\phi(p)}^{-1}$$

which is zero by assumption. In other words, with respect to the coordinates determined by ϕ , ψ the matrix of partial derivatives of \widehat{F} at $\phi(p)$ is the zero matrix. For fixed $i=1,\ldots,n$ consider the component function $\widehat{F}^i\colon \phi(U)\to \mathbf{R}$. Fix an integer $j=1,\ldots,m$ and real numbers y_1,\ldots,y_{m-1} such that for appropriate $t\in \mathbf{R}$ we have $(y_1,\ldots,y_{j-1},t,y_{j+1},\ldots,y_{m-1})\in U$. Necessarily the set of all such t is an open interval which we call J. For $j=1,\ldots,m$ let $f_i^i\colon J\to \mathbf{R}$ be the function

(2)
$$f_j^i(t) = F^i(y_1, \dots, y_{j-1}, t, y_j, \dots, y_{m-1})$$

By assumption we know that

$$\frac{\mathrm{d}\widehat{f}_{j}^{i}}{\mathrm{d}t} = 0$$

on J. By the (ordinary, single variable) mean value theorem this implies that f_j^i is constant. Doing this for all i, j we see that \widehat{F} is constant.

Problem 2.

(a) Consider the map

$$\mathbf{C}^2 \setminus \{0\} \to \mathbf{C}\mathbf{P}^1$$

which sends a nonzero vector to the line that it spans. This map descends to the set of equivalence classes

(5)
$$(\mathbf{C}^2 \setminus \{0\}) / \sim \to \mathbf{C}\mathbf{P}^1.$$

The inverse to this map sends a line to equivalence class of any non-zero vector which lies on the line.

(b) By definition $U_z = \pi(V_z)$ is the set of classes [(z,w)] such that $z \neq 0$. Any such class can be written as [(1,w')] for $w' \in \mathbb{C}$. Thus $\pi^{-1}(U_z)$ is the set of all nonzero vectors (z,w) such that [(z,w)] = [(1,w')] for some w'. This means $z = \lambda$, $w = \lambda w'$ for some nonzero complex number λ which shows that $\pi^{-1}(U_z) = V_z$. This set is open by definition. Similarly U_w is open.

(c) We show that ϕ_z is a homeomorphism onto its image. In this case the image is **C**. The inverse is defined by

(6)
$$\phi^{-1}(a) = [1, a].$$

This is clearly an inverse at the level of sets. It is continuous because both π and $\phi \circ \pi$ are continuous. Similarly ϕ_w is a homeomorphism onto its image.

(d) Note that

(7)
$$\phi_z(U_z \cap U_w) = \mathbf{C}^{\times} = \phi_w(U_z \cap U_w).$$

We need to show that $\phi_z \circ \phi_w^{-1}$, $\phi_w \circ \phi_z^{-1}$ are smooth as functions $\mathbf{C}^{\times} \to \mathbf{C}^{\times}$. Let's consider the first composition. We have

(8)
$$\phi_z(\phi_w^{-1}(a)) = \phi_z([a,1]) = \frac{1}{a}.$$

This map is smooth. To make this completely clear, let us write this out in real coordinates. If $a = x + iy \neq 0$ then

(9)
$$\frac{1}{a} = \frac{1}{x^2 + y^2} - i\frac{1}{x^2 + y^2}.$$

Thus, as a map $\mathbb{R}^2 \setminus \{0\}$ to itself, this composition is

(10)
$$(x,y) \mapsto \left(\frac{1}{x^2 + y^2}, -\frac{1}{x^2 + y^2}\right).$$

This is certainly smooth.

Problem 3.

(a) Consider the coordinate map $\phi_w \colon U_w \to \mathbf{C}$ and the composition $\phi_w \circ \pi$. The differential of this composition at a point $(z, w) \in \mathbf{C}^2 \setminus \{w = 0\}$ is of the form

(11)
$$d(\phi_w \circ \pi)_{(z,w)} \colon \mathbf{C}^2 \to \mathbf{C}.$$

Using the formula $\phi_w([z, w]) = z/w$ we find that with respect to the standard basis the differential is represented by the 1×2 matrix

(12)
$$d(\phi_w \circ \pi)_{(z,w)} = \begin{pmatrix} w^{-1} & -zw^{-1} \end{pmatrix}.$$

This is clearly full rank since we are working in a locus where $w \neq 0$. Similarly one can show that $d(\phi_z \circ \pi)_{(z,w)}$ is full rank for any $(z,w) \in \mathbb{C}^2 \setminus \{z=0\}$.

(b) By definition

(13)
$$S^{3} = \{(x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbf{R}^{4} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} = 1\} \subset \mathbf{R}^{4}.$$

In complex notation this is equivalent to

(14)
$$S^3 = \{(z, w) \in \mathbf{C}^2 \mid |z|^2 + |w|^2 = 1\} \subset \mathbf{C}^2.$$

Let $p = \pi|_{S^3}$ be the restriction of π to the subset $S^3 \subset \mathbb{C}^2 \setminus \{0\}$. This is a composition of smooth maps hence smooth.

Consider the point $[1,0] \in \mathbb{CP}^1$. Then $\pi^{-1}([1,0])$ is the subspace $\{(z,0) \mid z \in \mathbb{C}\} \subset \mathbb{C}^2 \setminus \{0\}$. The intersection of this subspace with S^3 is the subspace $\{(z,0) \mid |z|^2 = 1\} \cong S^1$. A similar argument shows that $p^{-1}([z,w]) \cong S^1$ for any [z,w].

(c) We check that F is well-defined. It is clear that each of the components of F is a real number, so the image of F certainly lies in \mathbb{R}^3 . From the relation

(15)
$$|z/w + \overline{z}/\overline{w}|^2 + |z/w - \overline{z}/\overline{w}|^2 + ||z/w|^2 - 1|^2 = (1 + |z/w|^2)^2$$

we see that the image of F lands in S^2 as desired.

Now, let z, w be complex numbers with $w \neq 0$. Then

(16)
$$\frac{z/w + \overline{z}/\overline{w}}{1 + |z/w|^2} = z\overline{w} + \overline{z}w.$$

This is a simple manipulation:

(17)
$$\frac{z/w + \overline{z}/\overline{w}}{1 + z\overline{z}/(w\overline{w})} = \frac{z\overline{w} + \overline{z}w}{w\overline{w} + z\overline{z}}.$$

Using this we see that if $(z,w) \in S^3$ with $w \neq 0$ we see that the first component of F(z,w) can be written as $z\overline{w} + \overline{z}w$. Similarly, the second component can be written as $-\mathrm{i}(z\overline{w} - \overline{z}w)$, and the last component as $z\overline{z} - w\overline{w}$. In total we see that F can be written

(18)
$$F(z,w) = (z\overline{w} + \overline{z}w, -i(z\overline{w} - \overline{z}w), z\overline{z} - w\overline{w}).$$

This expression makes it manifest that F extends to a map \widetilde{F} as in the problem.

(d) (This was a bonus. There are many ways to prove this. The proof here follows part (b)) Consider the map $q: \mathbb{C}^2 \setminus \{0\} \to S^3$ which sends a nonzero vector v to the vector pointing in the same direction as v but with unit norm. That is

(19)
$$q(z,w) = \frac{(z,w)}{|z|^2 + |w|^2}$$

The composition $\widetilde{F} \circ q$ is a smooth map $\mathbb{C}^2 \setminus \{0\} \to S^2$ with the property that it is constant along the fibers of $\pi \colon \mathbb{C}^2 \setminus \{0\} \to \mathbb{C}\mathbf{P}^1$. By theorem 4.30 in the textbook $\widetilde{F} \circ q$ descends to a smooth map $G \colon \mathbb{C}\mathbf{P}^1 \to S^2$ with the property that the diagram below commutes:

(20)
$$\begin{array}{ccc}
\mathbf{C}^{2} \setminus \{0\} & \xrightarrow{q} & S^{3} \\
\downarrow^{\pi} & & \downarrow^{F \circ q} & \downarrow_{F} \\
\mathbf{CP}^{1} & \xrightarrow{G} & S^{2}.
\end{array}$$

Since G is the unique smooth map making this diagram commute, we see that it is a diffeomorphism.