Tatami mat arrangements of square grids with v vertical dimers by Alejandro Erickson and Frank Ruskey

not

A tatami tiling is a covering of the *n x n* grid with monomer and dimer tiles , in which no four tiles meet at any point. Its structure is characterized by the ray, which propagates itself to the boundary of the grid.

Japanese tatami Mats

Rice straw core

entrance

NO FOUR MATS MEET

Guest's entrance

From Don Knuth's TAOCP Vol 4.

Fig. 29(a) shows a 6 × 5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jinkōki, a book first published in 1627.

We discuss tatami tilings of the *n x n* grid with *n* monomers. A few facts:

- *n* is the maximum possible number of monomers.
- there are $n2^{n-1}$ of them.
- they can all be obtained from a brick tiling via diagonal flips.

unflipped flipped diagonal 3 become

Every (non-black) monomer is in exactly two diagonals, but only one can be flipped

can't flip both conflicting diagonals

different sides

Lemma: For even *n*, the number (up to rotation) of *n* x *n* tatami tilings with *n* monomers and exactly k vertical dimers is V(n,k):=

$$2 \sum_{i=1}^{\lfloor (n-1)/2 \rfloor} \left(\sum_{\substack{k_1 + k_2 = \\ k - (n-i-1)}} |S(n-i-2, k_1)| |S(i-1, k_2)| + \sum_{\substack{k_1 + k_2 = k \\ k_1 + k_2 = k}} \left| S\left(\left\lfloor \frac{n-2}{2} \right\rfloor, k_1 \right) \right| \left| S\left(\left\lfloor \frac{n-2}{2} \right\rfloor, k_2 \right) \right|.$$

Let $V_n(z) = \sum_{k \ge 0} V(n, k) z^k$. Then $V_n(z) = P_n(z) \prod_{j \ge 1} \left(\Phi_{2j}(z) \right)^{\left\lfloor \frac{n-2}{2j} \right\rfloor},$

where $\Phi_i(z)$ is the *i*th cyclotomic polynomial. These factor out of the generating polynomial for *S(n,k)*, but the origin of $P_n(z)$ is mostly mysterious. For 2 < n < 200:

- $P_n(z)$ is irreducible over the integers,
- for some N and k, the first k coefficients of $P_n(z)$ are the same for all n > N; and

$$\sum_{n\geq 2} P_n(-1)z^{n-2} = \frac{(1+z)(1-2z)}{(1-2z^2)\sqrt{1-4z^2}}$$

which is an interleaving of the sequences

$$-\sum_{i=0}^{k} 2^{k-i} {2i \choose i} \text{ and } {2k \choose 2}$$

Partition in Pictures:

Blue is longest flipped diagonal. **Grey** and white diagonals can contribute 2^{n-3} tilings to each class.

Flipping one of these diagonals changes 1, 2, 3, 4, 5, 6, or 7 horizontal dimers into vertical dimers, and they can be flipped independently of each other.

Let S(n,k) be the set of subsets of $\{1, 2, \ldots, n\}$ whose members sum to k.

Bijection in Pictures: tilings with 11 vertical dimers. Blue diagonal contains 8. We need 3 in magenta. $S(7,3) \times S(3,0)$

Table of coefficients of $P_n(z)$

Complex zeros of $P_n(z)$

Plots of $P_n(z)$. Blue is odd. Smaller and darker lines and dots represent larger n.

Proven for all n:

- $\deg(P_n(z)) = \sum_{i=1}^{n-2} \mathrm{Od}(i)$, where $\mathrm{Od}(i)$ is the largest odd divisor of i.
- $P_n(1) = n2^{\nu(n-2)-1}$, where $\nu(i)$ is the number of 1s in the binary representation of *i*.

Two Questions:

- geometric interpretation for factorization of $V_n(z)$?
- how do we calculate $P_n(z)$ independently of $V_n(z)$?

The construction of V(n,k) yields an algorithm to generate tilings in constant amortized time. Here is output for V(8,7).

Based on: Erickson, A. and Ruskey, F. 2012: Enumerating tatami mat arrangements of square grids with v vertical dimers, in preparation.

