To Perform and Analysis og Logistic Regression Algorithm

Importing the Libraries

```
In [7]: import pandas as pd
import numpy as np
```

Data acquisitionuing Pandas

```
In [8]:
          import os
 In [9]: os.getcwd()
 Out[9]: 'C:\\Users\\RH'
In [11]: os.chdir('C:\\Users\\RH\\Downloads')
In [12]: data=pd.read_csv("heart - heart.csv")
In [13]: data.head()
Out[13]:
             age sex cp trestbps chol fbs restecg
                                                       thalach exang
                                                                        oldpeak slope ca thal ta
                                                                                               3
              52
                        0
                                     212
                                                            168
                                                                     0
                                                                             1.0
                                                                                      2
                                125
                                140
              53
                    1
                        0
                                     203
                                                     0
                                                            155
                                                                             3.1
                                                                                               3
                                                                                      0
                                                                     1
                                                                                               3
              70
                        0
                                145
                                     174
                                                            125
                                                                             2.6
                        0
                                     203
                                                            161
                                                                     0
                                                                             0.0
                                                                                               3
              61
                                148
                                                                                               2
              62
                                138
                                     294
                                                            106
                                                                     0
                                                                             1.9
                                                                                         3
```

```
In [14]: data.tail()
Out[14]:
                age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
                                                                                              2
          1020
                                  140
                                       221
                                              0
                                                      1
                                                            164
                                                                     1
                                                                             0.0
                                                                                     2
                 59
                       1
                           1
                                                                                        0
          1021
                                              0
                                                      0
                                                                                              3
                 60
                       1
                          0
                                  125
                                       258
                                                            141
                                                                     1
                                                                             2.8
                                                                                     1
                                                                                        1
                                                                                              2
          1022
                 47
                       1
                          0
                                  110
                                       275
                                              0
                                                      0
                                                            118
                                                                     1
                                                                             1.0
                                                                                     1
                                                                                        1
                                                                                              2
          1023
                                                                     0
                 50
                       0
                          0
                                  110
                                       254
                                              0
                                                      0
                                                            159
                                                                             0.0
                                                                                     2
                                                                                       0
                                                                                              3
          1024
                 54
                       1
                          0
                                  120
                                       188
                                              0
                                                      1
                                                            113
                                                                     0
                                                                             1.4
                                                                                     1
                                                                                        1
In [15]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1025 entries, 0 to 1024
        Data columns (total 14 columns):
             Column
                       Non-Null Count Dtype
        ---
             -----
                       -----
                       1025 non-null
         0
             age
                                        int64
         1
             sex
                       1025 non-null
                                        int64
                       1025 non-null
         2
             ср
                                        int64
         3
             trestbps 1025 non-null
                                        int64
         4
             chol
                       1025 non-null
                                        int64
         5
             fbs
                       1025 non-null
                                        int64
         6
             restecg
                       1025 non-null
                                        int64
         7
             thalach
                       1025 non-null
                                        int64
         8
             exang
                       1025 non-null
                                        int64
         9
             oldpeak
                       1025 non-null
                                        float64
            slope
                       1025 non-null
                                        int64
         10
                       1025 non-null
                                        int64
         11
             ca
         12 thal
                       1025 non-null
                                        int64
         13 target
                       1025 non-null
                                        int64
        dtypes: float64(1), int64(13)
        memory usage: 112.2 KB
```

In [16]: data.describe()

Out[16]:		age	sex	ср	trestbps	chol	fbs	r			
	count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.0			
	mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.5			
	std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.5			
	min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.0			
	25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.0			
	50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.0			
	75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.0			
	max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.0			
	4	_	_					•			
In [17]:	data.shape										
Out[17]:	(1025, 14)										
In [18]:	data.size										
Out[18]:	14350										
In [19]:	data.ndim										
Out[19]:	2										

Data preprocessing data cleaning missing value treatment

```
In [20]: # check Missing Value by record
data.isna()
```

Out[20]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	
	0	False	False	False	False	False	False	False	False	False	False	False	F
	1	False	False	False	False	False	False	False	False	False	False	False	Fá
	2	False	False	False	False	False	False	False	False	False	False	False	Fä
	3	False	False	False	False	False	False	False	False	False	False	False	Fa
	4	False	False	False	False	False	False	False	False	False	False	False	Fá
	•••				•••			•••	•••	•••			
	1020	False	False	False	False	False	False	False	False	False	False	False	Fá
	1021	False	False	False	False	False	False	False	False	False	False	False	Fá
	1022	False	False	False	False	False	False	False	False	False	False	False	Fá
	1023	False	False	False	False	False	False	False	False	False	False	False	Fá
	1024	False	False	False	False	False	False	False	False	False	False	False	Fi
	1025 rows × 14 columns												
	4												•
In [21]:	<pre>data.isna().any()</pre>												
Out[21]:	age sex cp trestbps chol fbs restecg		False False False False False False	e e e e									

```
thalach
                     False
         exang
                     False
         oldpeak
                     False
         slope
                     False
         ca
                     False
         thal
                     False
         target
                     False
         dtype: bool
In [22]: data.isna().sum()
```

Independent and Dependent Variables

```
In [23]: x=data.drop("target", axis=1)
    y=data["target"]
```

Splitting of DataSet into train and Test

```
In [25]: #splitting the data into training and testing data sets
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2 ,random_state=42)
```

Logistic Regression

```
In [28]: y_pred1 = log.predict(x_test)
In [29]: from sklearn.metrics import accuracy_score
In [30]: accuracy_score (y_test,y_pred1)
Out[30]: 0.7853658536585366
In [31]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.metrics import confusion_matrix
In [32]: cm = confusion_matrix(y_test,y_pred1)
In [33]: labels = np.unique(y_test) # Get unique class Labels
         cm_df = pd.DataFrame(cm, index=labels, columns=labels)
In [34]: # Plot confusion matrix using seaborn
         plt.figure(figsize=(6, 4))
         sns.heatmap(cm_df, annot=True, fmt='d', cmap='Greens', linewidths=1, linecolor='bla
         plt.xlabel("Predicted Label")
         plt.ylabel("True Label")
         plt.title("Confusion Matrix")
         plt.show()
```

