Введение в Архитектуру ЭВМ

Для вопросов по курсу: natalya.shevskaya@moevm.info Префикс в теме письма [CS_23XX]

> Шевская Наталья Владимировна СПбГЭТУ "ЛЭТИ", ФКТИ, МОЭВМ

M

Позиционные системы счисления

• Десятичная система счисления

$$56789_{10} = 5 * 10^4 + 6 * 10^3 + 7 * 10^2 + 8 * 10^1 + 9 * 10^0$$

• Двоичная система счисления

$$10011_2 = 1 * 2^4 + 0 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0$$

• Восьмеричная система счисления

$$567_8 = 5 * 8^2 + 6 * 8^1 + 7 * 8^0$$

• Шестнадцатеричная система счисления

$$56A8C_{16} = 5 * 16^4 + 6 * 16^3 + A * 16^2 + 8 * 16^1 + C * 16^0$$

Булева Алгебра

Логическое отрицание "HE"

a	¬а
0	1
1	0

Логическое

умножение "И"

a	b	a&b
0	0	0
0	1	0
1	0	0
1	1	1

Логическое

сложение "ИЛИ"

a	b	a b
0	0	0
0	1	1
1	0	1
1	1	1

Джордж Буль (2 ноября 1815 -- 8 декабря 1864)

Применение. Схемы И и ИЛИ

Применение. Вентили и инвертор

Разностная машина (Difference Engine)

Чарлз Бэббидж (26 декабря 1791 - 18 октября 1871) английский математик, изобретатель

Первое изобретение (незавершенное): <u>Разностная машина</u> (1820 - 1833 гг.)

Конструкция разностной машины основывалась на использовании десятичной системы счисления.

Аналитическая машина

Конструкция:

- хранилище (память)
- «мельница» (арифметическое устройство)
- устройство ввода-вывода

Ада Лавлейс (10 декабря 1815—27 ноября 1852) создала первую в мире программу для аналитической машины Беббиджа

Реле. Схема

До подачи напряжения

После подачи напряжения -- переключатель притягивается

Марк I

1943 г., первый цифровой компьютер:

«Automated Sequence Controlled Calculator», позже получивший имя «Марк I».

Компьютер оперировал 72 числами, состоящими из 23 десятичных разрядов, делая по 3 операции сложения или вычитания в секунду. Умножение выполнялось в течение 6 секунд, деление — 15,3 секунды.

Радиолампа. Схема

На сетку подается напряжение, "облако" электронов катода дополнится электронами сетки и они начнут движение к аноду

На катод подается напряжение, и за счет нити накала катод нагревается и создается "облако" электронов

ENIAC

ЭНИАК (1945) - первый электронный цифровой вычислитель.

Построен на 18000 радиолампах.

Самый большой компьютер в истории (30т).

Домашние компьютеры обогнали его по быстродействию в 1977 г.

Вычисления производились в десятичной с.с.

EDVAC. Архитектура фон Неймана

Использовалась двоичная с.с., использовались условные переходы.

Время операции сложения - 864 микросекунды, умножения - 2900 микросекунд (2,9 миллисекунды).

Первый компьютер на базе архитектуры фон Неймана.

Архитектура Фон-Неймана

- 1. Адресность
- 2. Однородность памяти
- 3. Программное управление

Типы архитектур

Von Neumann Architecture

Harvard Architecture

Транзистор

Е - Эммиттер

Переход на транзисторные компьютеры

Изготовление из единого куска кремния:

- июль 1958 г. Джек Килби
- январь 1959 Роберт Нойс

Гордон Мур, 1965 г. "Закон Мура"

Связь цифрового и аналогового мира

Для микросхемы ТТЛ (транзисторно-транзисторной логики):

- \triangleright 0 соответствует Low
- 1 соответствует High

Сумматор

Сумматор. Начало

- Используем переключатели, лампочки и логические вентили.
- Практически все операции в выч. машине представимы через сумму.
- Для двоичных чисел принцип тот же, что и для десятичных -сложение в столбик
- Как представить "один в уме" в логической схеме?
- Сперва:

сумма	0	1
0	0	1
1	1	10

Допишем незначащие нули, что результат был двухбитовым

* занимал одинаковое кол-во ячеек

сумма	0	1
0	00	01
1	01	10

Сумматор: сумма и перенос

• вынесем отдельно бит, который "в уме" (перенос разряда)

сумма	0	1		перенос	0	1		"сумма"	0	1
0	00	01	\Rightarrow	0	0	0		0	0	1
1	01	10		1	0	1	U	1	1	0

$$C_{\text{умматор}} \Rightarrow U, \& U Искл. ИЛИ AND XOR$$

Сумматор. Вентиль "И" для переноса

 нарисуем работу вентиля по таблице истинности ⇒ нарисуем, как работает "1 в уме" (перенос разряда) в логической схеме

перенос	0	1
0	0	0
1	0	1

Сумматор. Искл. ИЛИ для суммы

 нарисуем работу вентиля по таблице истинности ⇒ нарисуем, как работает "сумма" в логической схеме

"сумма"	0	1
0	0	1
1	1	0

Сумматор. Как соединить вентили в схему?

- одноразрядное сложение в двоичной системе
- "положим" сложение в столбик на бок

Полусумматор

- избавляемся от дублирования входов
- прокладываем провода подлиннее
- введем обозначения:
 - входных сигналов х, у (одноразрядные)
 - выходных сигналов S (сумма), Р (перенос)

Полный сумматор

• для трех двоичных цифр (с учетом переноса Р, поданного на вход)

Двухразрядное сложение

- дважды держали "1 в уме" ⇒ два переноса ⇒ два вентиля И
- два разряда в итоговой "сумме" ⇒ два вентиля Искл. ИЛИ:
 - S[0] ⇒ получился естественным путем, породил первую единицу в уме p[1]
 - S[1] \Rightarrow получился за счет сложения x[1]+y[1]+p[1], что породило вторую единицу в уме p[2]
 - > x[1]+y[1] ⇒ известный нам полусумматор

Детализация

1)
$$x[0] + y[0] = 1 0 \Rightarrow S[0] = 0$$
 и $p[1] = 1$

2)
$$x[1] + y[1] = 10 \Rightarrow S^* = 0 p[2] = 1$$

2.1) реализуем p[1] :
$$S^* + p[1] \Rightarrow S[1] = 1$$
 и $p^* = 0$

остались незадействованные р* и р[2] ⇒ ИЛИ (см. след. слайд)

элемент "суммы" и элемент "перенос"

Сумматор. Схема двухразрядного сложения

три полусумматора в схеме -- найди их

Сумматор. Пример

Сумматор. 8-битовая сумма

- Первый вход для переноса -- заземление.
- Обозначени:
 - CI / CO Carry In / Carry Out (вход / выход для переноса)
 - FA -- Full Adder (HF -- Half Adder)
 - o S -- Summ

SR(RS)-Защелка

M

D-Защелка (D-Latch)

CLK		CLK	D	\overline{D}	S	R	Q	\bar{Q}	
-D	Q-		0	X	\overline{X}	0	0	Q_{pre}	\overline{Q}_{prev}
	=		1	0	1	0	1	0	1
	$Q \vdash$		1	1	0	1	0	1	0

D-Триггер (D-flip-flop)

Регистр

Регистр – логическая схема, предназначенная для хранения двоичных чисел заданной разрядности.

Регистр состоит из группы триггеров (например, D-триггеров).

Как устроено простое вычислительное устройство

Источники

- Ч. Петцольд "Код"
- Э. Таненбаум "Архитектура Компьютера"
- > https://stepik.org/course/253 Курс на Stepik "Введение в Архитектуру ЭВМ"

Вопросы по курсу можно задавать:

Шевская Наталья Владимировна natalya.shevskaya@moevm.info