

NPN Silicon Phototransistors

Types OP800SL, OP801SL, OP802SL, OP803SL, OP804SL, OP805SL

Features

- Narrow receiving angle
- Variety of sensitivity ranges
- Enhanced temperature range
- TO-18 hermetically sealed package
- Mechanically and spectrally matched to the OP130 and OP231 series of infrared emitting diodes
- TX/TXV processing available

Description

The OP800SL series device consists of an NPN silicon phototransistor mounted in a hermetically sealed package. The narrow receiving angle provides excellent on-axis coupling. TO-18 packages offer high power dissipation and superior hostile environment operation. The base lead is bonded to enable conventional transistor biasing.

Replaces

OP800 and K5251 series

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Emitter-Collector Voltage
Continuous Collector Current
Storage Temperature Range65° C +150° C
Operating Temperature Range65° C +125° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering iron]
Power Dissipation

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering.
 (2) Derate linearly 2.5 mW/° C above 25° C
 (3) Junction temperature maintained at 25° C

- (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source.

Typical Performance Curves

Typical Spectral Response

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(972) 323-2200

Fax (972) 323-2396

Types OP800SL thru OP805SL

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _{C(ON)}	On-State Collector Current	OP800SL	0.5			mA	
` ,		OP801SL	0.5		3.0	mA	
		OP802SL	2.0		5.0	mA	$V_{CE} = 5 \text{ V, } E_e = 5 \text{ mW/cm}^{2(3)(4)}$
		OP803SL	4.0		8.0	mA	VOL
		OP804SL	7.0		22.0	mA	
		OP805SL	15.0			mA	
ICEO	Collector Dark Current				100	nA	V _{CE} = 10 V, E _e = 0
V _(BR) CEO	Collector-Emitter Breakdown Voltage		30			V·	I _C = 100 μA
V _{(BR)CBO}	Collector-Base Breakdown Voltage		30			V	I _C = 100 μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage		5.0			V	I _E = 100 μA
V _{(BR)EBO}	Emitter-Base Breakdown Voltage		5.0			V	I _E = 100 μA
VCE(SAT)	Collector-Emitter Saturation Voltage				0.40	V	$I_C = 0.4 \text{ mA}, E_e = 5 \text{ mW/cm}^{2(4)}$
tr	Rise Time			7.0		μs	V _{CC} = 5 V, I _C = 0.80 mA,
t _f	Fall Time		1	7.0		μs	$R_L = 100 \Omega$, See Test Circuit

Typical Performance Curves

Switching Time