Privacy-preserving machine learning

Bo Liu, the HKUST March, 1st, 2015.

Some slides extracted from

- Wang Yuxiang, Differential Privacy: a short tutorial.
- Cynthia Dwork, The Promise of Differential Privacy. A Tutorial on Algorithmic Techniques
- Christine Task, A Practical Beginners' Guide to Differential Privacy.
- Katrina Ligett, Tutorial on Differential Privacy.

Outlines

- Why privacy protection?
 - The attack model.
 - The privacy model.
 - The differential privacy*.
- How differential privacy?
 - Global sensitivity
 - Laplacian mechanism
 - Exponential mechanism
 - Sample and aggregate
- Differential privacy and machine learning.
 - Private machine learning
 - Non-interactive model.
 - Private Transfer Learning.
- Conclusion.

Outlines

- Why privacy protection?
 - The attack model.
 - The privacy model.
 - The differential privacy*.
- How differential privacy?
 - Global sensitivity
 - Laplacian mechanism
 - Exponential mechanism
 - Sample and aggregate
- Differential privacy and machine learning.
 - Private machine learning
 - Non-interactive model.
 - Private Transfer Learning.
- Conclusion.

Privacy Leakage Example

Allowing public access or querying of sensitive database directly is vulnerable to privacy leakage.

- The Netflix Dataset.
 - Cross-correlating volunteer public records from the IMDB identifies specific user in Netflix.
 - Very few background knowledge is required.
- The Facebook advertisement system.
 - The private information can be inferred by posing well designed ad for target user.
 - Very few public knowledge in open FB profile can lead to leakage.

Narayanan, A., & Shmatikov, V. (2008, May). Robust de-anonymization of large sparse datasets. In Security and Privacy, 2008. SP 2008. IEEE Symposium on (pp. 111-125). IEEE.

Korolova, A. (2010, December). Privacy violations using microtargeted ads: A case study. In Data Mining Workshops (ICDMW), 2010 IEEE International Conference on (pp. 474-482). IEEE.

Attack Models

- Record Linkage:
 - The attacker can confidently identify a small number of records in the released dataset.
 - k-anonymity used for protection
 - Each published group contains at least k records.
- Table Linkage:
 - The attacker can identify whether the target is in the database or not.

Output only >3 records	2) WHYH VHI (W)			
-	Job	Sex	Age	Disease (sensitive)
	Professional	Male	[35-40]	HIV
	Artist	Female	[30-35]	Flu
	One published group			

Attack Models

Attribute Linkage:

- The attacker does not precisely identify the individual but can infer the sensitive attribute confidently.
- l-diversity used for protection.
- Each published group contains at least I distinct sensitive values.

Probabilistic attack:

- To ensure that the difference between the prior and posterior beliefs is small.
- Differential Privacy for protection.

3-diversity

Job	Sex	Age	Disease (sensitive)
Professional	Male	[35-40]	HIV, Flu, Hepatitis
Artist	Female	[30-35]	HIV, Flu, Hepatitis

Group contains at least 3 kind of disease

Differential Privacy(DP) Notations

Interactive Model:

- \succ Untrustworthy data miners pose aggregate queries Q to database.
- \succ Trustworthy database owner utilizes **mechanism** \tilde{Q} to response the query privately.

Mohammed, N., Chen, R., Fung, B., & Yu, P. S. (2011, August). Differentially private data release for data mining. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 493-501). ACM.

DP Example

Suppose hand in a survey about music taste.

- Do you like music of Justin Bieber?
- How many albums of Justin Bieber do you own?
- Your age?
- You gender?
- Your job?

DP Example

- In what situations you will feel safe to hand in this survey.
 - The previous attack methods demonstrate that anonymous publishing is vulnerable to attack.
 - Your result has **no influence** on the query result.
 - Then your result enjoys no utility at all.
 - The attacker will learn **no new knowledge** about you by accessing the dataset.
 - Impossible! Your age will leakage if the attacker owns proper background knowledge(ex: you are 2 years older than average.)
 - No matter whether you hand in the survey or not.

DP

- DP guarantees that the query result R will be almost the same whether or not you hand in the survey.
- DP guarantees that the harm(privacy leakage) is almost the same whether or not you hand in the survey.
- Ex: The average age of survey taker is 21.31, whether or not you join the survey.

ϵ -DP definition

Mechanism \tilde{Q} is dp, if its result R does not change much when one individual in the dataset changes (addition, deletion and modification).

Definition: ϵ -Differential Privacy, ϵ is called privacy budget.

$$\frac{Pr(\tilde{Q}(D) = R)}{Pr(\tilde{Q}(D_{\pm 1}) = R)} \le e^{\epsilon}$$

For D and $D_{\pm 1}$ differs in 1 instance and any $R \in \text{Range}(Q)$

12

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of cryptography (pp. 265-284). Springer Berlin Heidelberg.

ϵ -DP definition

 $\epsilon - dp$ mechanism returns a noisy result that The average age of survey taker is 21.34.

The attackers have no idea whether I submit the survey or not.

Given R, how can anyone guess which possible world it came from?

k-fold composition of ϵ -dp.

- Utilizing ϵdp mechanism \tilde{Q} k times for k queries is equivalent to $k\epsilon dp$ mechanism.
- \bullet The protection of privacy is compromised. (Larger ϵ means less strict protection)

Advantages of DP

- DP serves as one of the most strict protection of privacy.
- DP makes no assumption about attackers' background knowledge.

Limits of DP

- DP does not protect the harm led by query result.
 - The attacker knows that Brody is 4cm higher than average.
 - Querying the average height will harm the privacy whether Brody join the survey or not.
- DP only protects the individual information rather than group information.
 - The attacker knows that you always act similar your 5 friends in the data.

Outlines

- Why privacy protection?
 - The attack model.
 - The privacy model.
 - The differential privacy*.
- How differential privacy?
 - Global sensitivity
 - Laplacian mechanism
 - Exponential mechanism
 - Sample and aggregate
- Differential privacy and machine learning.
 - Private machine learning
 - Non-interactive model.
 - Private Transfer Learning.
- Conclusion.

Global sensitivity(GS)

Definition:

The global sensitivity directly decides the noise magnitude added on data.

The maximum change of the result of query given a pair of neighbor dataset.

$$S = max_{D,D_{\pm 1}}|Q(D) - Q(D_{\pm 1})|$$

The global sensitivity for vector-value query.

$$S = \max_{D, D_{\pm 1}} ||Q(D) - Q(D_{\pm 1})||_1$$

The global sensitivity is query specific rather than data specific.

Example of GS

- How many survey takers are female?
 - At most, one individual changes lead to #female changes by 1.
 - Thus, GS = 1.
- In total, how many Justin Bieber albums are bought by survey takers?
 - At most, the changed individual buys all 4 albums or buy no albums at all.
 - Thus, GS = 4.

How design dp mechanism?

- Laplace mechanism.
- Exponential mechanism.
- Sample and aggregate.

Laplace Mechanism

$$S = max_{D,D_{\pm 1}}|Q(D) - Q(D_{\pm 1})|$$

For Query Q whose result is R, the mechanism $\tilde{Q}=R+Lap(0,\frac{S}{\epsilon})$ is $\epsilon-dp$. Lap denotes Laplace distribution.

$$\tilde{Q} = R + Lap(0, \frac{S}{\epsilon})$$

To obtain $\epsilon - dp$ mechanism, the noise required only depends on global sensitivity of query Q and privacy budget ϵ .

Exponential Mechanism

- Suppose the query "The most frequent job that joins the survey?".
 - Add noisy on such categorical result is not applicable.
- Define utility function: For $R \in \text{Range}(Q)$, utility function u(D, R) outputs a score. Ex, the frequency of job R in database D.
- Global Sensitivity: $S = \max_{D,D+1} |u(D,R) u(D_{\pm 1},R)|$.
- Given dataset D, exponential mechanism select result R randomly.

$$Pr(R \text{ is selected}) \propto e^{\epsilon u(D,R)/2S}$$

Sample and aggregate

$$\tilde{Q}(D) = g(Q(U_1), Q(U_2), \dots, Q(U_m))$$

- Suitable for queries whose answers can be approximated well with a small number of samples, while ensuring ε -dp.
- Suitable for queries with large or unbounded sensitivity caused the sensitivity of g will be used.

The Q in the dense region is preferable.

Objective of DP Paper

- While keep the same level of DP, or keep privacy budget ϵ unchanged.
- Improve the utility of mechanism, or equivalently, minimize the noise added on result.

Outlines

- Why privacy protection?
 - The attack model.
 - The privacy model.
 - The differential privacy*.
- How differential privacy?
 - Global sensitivity
 - Laplacian mechanism
 - Exponential mechanism
 - Sample and aggregate
- · Differential privacy and machine learning.
 - Private machine learning
 - Non-interactive model.
 - Private Transfer Learning.
- Conclusion.

Structure of a private machine learning paper

- Introduction
 - Why the data need to be learnt privately.
- Main contributions:
 - Propose a randomized algorithm.
 - Show this randomization need guarantee dp.
 - Show the sample complexity and usefulness under randomization.
- Evaluation:
 - Compare with brute force method (such Laplace mechanism)
 - Compare with non-private learning methods to show that the deterioration of performance is not significant. (The deterioration is the price of privacy.)

General method of private ML

- Output perturbation.
 - · Learn the model from the clean data.
 - Utilize Laplacian mechanism or exponential mechanism to generate noisy model.
- Target perturbation.
 - · Add the well designed perturbation item to the target function.
- Sample and aggregate.
 - For queries whose result can be approximated well using part of samples.

Differentially private logistic regression

The loss function/query for logistic regression(LR):

$$L(D,\lambda) = \frac{1}{n} \sum_{i=1}^{n} log(1 + e^{-y_i w^T x_i}) + \frac{1}{2} \lambda w^T w$$

$$Q(D) = w * = argmin_w L(D,\lambda)$$

$$(x_i, y_i) \in D$$

The logistic regression query expects the minimizer of loss function.

Output perturbation(OP) LR

Given dataset D with sample size n and dimension d. The regularization parameter is λ .

Global sensitivity:

$$S = \max_{D, D_{\pm 1}} |w^*(D) - w^*(D_{\pm 1})| \le \frac{2}{n\lambda}$$

Output Perturbation, add Laplace noise on each dimension

$$z \sim Lap(0, \frac{2}{n\epsilon\lambda})$$
$$\tilde{Q}(D) = w^* + z$$

Intuition:

The larger regularization parameter, the more robust the model. Thus, the less noise is required to satisfy $\epsilon - dp$.

Target perturbation(TP) LR

Random sample a noise vector **b**, each dimension $b_i \sim Lap(0, \frac{\epsilon}{2})$.

The perturbed objective function:

$$\begin{split} \tilde{L}(D,\lambda) &= \frac{1}{n} \sum_{i=1}^{n} log(1 + e^{-y_i w^T x_i}) + \boxed{\frac{\mathbf{b}^T w}{n}} + \frac{1}{2} w^T w \\ \tilde{Q}(D) &= argmin_w \tilde{L}(D,\lambda) \end{split}$$

• OP and TP both guarantee ε -differential privacy.

The private model $\tilde{Q}_{TP}(D)$ by TP is guaranteed to be closer to clean model than OP.

Differentially private k-means

$$cost_x(c_1, ..., c_k) = \frac{1}{n} \sum_{i=1}^n \min_j ||x_i - c_j||_2^2$$

- Laplace mechanism based on global sensitivity overwhelms the result completely.
- Assume the data is "well-separated" that the cluster can be accurately estimated using a random subset.
 - Sample and aggregate framework works.

Differentially private k-means

Sample

Private k-means:

- 1. Randomly split the training set as (U_1, U_2, \ldots, U_m)
- 2. Run non-private k-means method on each subset. And output cluster centers of each subset as (z_1, z_2, \ldots, z_m) .
- 3. Aggregate, $g(z_1, z_2, \ldots, z_m)$ outputs z_i in dense region. (Ex: z_i with minimum distance to t_{th} nearest neighbor).
 - 4. Add Gaussian noise based on smooth sensitivity to guarantee $(\epsilon, \delta) {}^{3}\!dp$.

Aggregate

Non-interactive Model

- Disadvantage of interactive model.
 - Assume m queries will be posed and ϵdp is required.
 - According to composition properties, $\frac{\epsilon}{m} dp$ is required for each query.
 - Noise destroy the result.
- Non-interactive model.
 - Database owner publishes approximation of raw data.
 - Providing utility and privacy protection simultaneously.

Non-interactive DP data release

- Partition based method.
- Model based method.
 - Specific designed for graph data.
- Public dataset based method.
 - If a similar structure public dataset is available.
 - Noisy reweighs the public instances so that the public and private dataset share similar marginal distribution(Domain Adaptation).
- Etc.

Partition based data release

Model based data release

- Dk-series serves as a generator model which captures topology of a graph.
- And a random graph can be generated to reproduce the raw graph.

Such method publishes a noisy data generator model(dk-series) such that the raw graph can be reproduced.

Private transfer learning

Take TrAdaBoost as example.

Interactive model

Private TrAdaBoost

For $i=1,\ldots,N$:

#Train a i_{th} base classifier.

For each iteration in training base classifier:

Target send the weight w_i to source.

Target queries the required statistics.

Private source returns the noisy result.

Disadvantages:

- Querying many times requires larger noise.
- Facing untrustworthy auxiliary, target has to protect privacy of target data as well.

Private transfer learning

Non-private transfer learning can be used directly.

- How to represent noisy knowledge?(What to transfer)
 - A noisy generator model or synthetic dataset.
 - A noisy classification model.
 - A noisy histogram.
 - etc.
- How target learns from noisy knowledge more efficiently and robust? (How to transfer)

Conclusion

- An introduction of privacy and popular protection differential privacy.
- An introduction of differentially private machine learning.
- Transfer learning:
 - Transfer learning from sensitive dataset faces privacy risks directly.
 - Obtaining a private knowledge representation facilitates private transfer learning.

Thank You!

