

UNIVERSIDADE DE BRASÍLIA FACULDADE DO GAMA

CURSO: ENGENHARIAS SEMESTRE/ANO: 01/2018

DISCIPLINA: Aprendizado de Máquina - Turma A CÓDIGO: 120642

CARGA HORÁRIA: 60h CRÉDITOS: 04

PROFESSORES: Dr. Nilton Correia da Silva e Dr. Fabricio Ataides Braz

HORÁRIO/LOCAL: Terça e Quinta: 10hs -11h50min / FGA-S8

PLANO DE ENSINO

1. EMENTA

Introdução. Representação de Dados. Regressão. Métodos de Classificação Supervisionada. Métodos de Classificação Não-Supervisionada. Técnicas de otimização de modelos.

2. OBJETIVOS DA DISCIPLINA

Capacitar o acadêmico a abstrair e implementar soluções utilizando aprendizado de máquina para problemas reais que demandam técnicas de descoberta de conhecimentos em dados.

3. MÉTODO DE ENSINO

A disciplina terá apoio teórico e prático de cursos online gratuitos da plataforma DataCamp (www.datacamp.com), acompanhados pelos professores e auxiliados pelos monitores. Serão propostos trabalhos práticos avaliativos (denominados problemas) pelo professor com apresentação de seus resultados em formato de seminários (relatórios de grupos). O objetivo das práticas é permitir que os alunos elaborem programas para fixar e desenvolver os conceitos abordados.

As atividades práticas serão desenvolvidas utilizando a linguagem Python. Sugere-se o uso do conjunto de bibliotecas scikit-learn (http://scikit-learn.org/stable/) e TensorFlow (https://www.tensorflow.org)

5. AVALIAÇÃO

A menção final do aluno na disciplina dependerá da Média Final (cálculo abaixo) e de sua frequência às aulas.

- 1. Trabalhos:
 - a. Os trabalhos terão notas entre 0.0 e 10.0;
 - b. Datas de aplicações: Conforme item 7. CRONOGRAMA (sujeito a alteração)
 - c. A nota de referência será a média simples dos Trabalhos (MT):
 - i. MT = (T1 + T2 + ... Tn)/n;
- 2. Seminários:
 - a. Os seminários terão notas entre 0.0 e 10.0;
 - b. Datas de aplicações: Conforme item 7. CRONOGRAMA (sujeito a alteração)
 - c. A nota de referência será a média simples dos Seminários (MS):
 - i. MS = (S1 + S2 + ... Sn)/n;
- 3. Aprovação nos cursos de apoio:
 - a. Datas de aplicações: Conforme item 7. CRONOGRAMA (sujeito a alteração)
 - b. A nota de referência será a proporção de aprovação nos cursos (PA):

- i. PA = (Quantidade de aprovações nos cursos / Quantidade total de cursos)*10,0.
- 4. Média Final (MF):
 - a. Será calculada por: MF = 0.4*MT + 0.4*MS + 0.2*PA
- 5. Menção Final: Conforme legislação da Universidade de Brasília (UnB):
 - a. Somente será aprovado o aluno que obtiver, na disciplina, menção igual ou superior a MM ($MF \ge 5.0$) e frequência igual ou superior a 75%;
 - b. Será reprovado na disciplina o aluno que comparecer a menos de 75% das respectivas atividades curriculares ou obtiver menção igual ou inferior a MI (MF<5,0).

6. BIBLIOGRAFIA

BÁSICA:

- 1. Kevin Patrick Murphy. Machine Learning: a Probabilistic Perspective. MIT press, 2012
- 2. Chris Bishop. Pattern Recognition and Machine Learning, New York: Springer, 2006.
- 3. Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin. Learning From Data a Short Course. AMLBook 2012 curso disponível em https://work.caltech.edu/telecourse.html

COMPLEMENTAR:

- 1. Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.
- 2. David Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.
- 3. Carl Edward Rasmussen, Christopher K. I. Williams. Gaussian Processes For Machine Learning. Disponivel online. MIT press, 2016.
- 4. Willi Richert, Luis Pedro Coelho. Building Machine Learning Systems with Python. Packt Publishing, 2013.
- 5. Andrew Ng. Machine Learning Video Lectures. University of Stanford, disponivel online desde 2014.
- 6. Outros livros disponíveis para download: https://github.com/josephmisiti/awesome-machine-learning/blob/master/books.md
- 7. https://work.caltech.edu/telecourse.html

PRÉ-REQUISITOS:

- 1. Introdução à Algebra Linear
- 2. Estrutura de Dados
- 3. Probabilidade e Estatística Aplicada à Engenharia

7. CRONOGRAMA

Aula	Data	Atividades
1	06/03	Apresentação da Disciplina. Introduction to Python for Data Science (Microsoft)
2	08/03	Introduction to Python for Data Science (Microsoft)
3	13/03	Introduction to Python for Data Science (Microsoft)
4	15/03	Introduction to Python & Machine Learning (with Analytics Vidhya Hackathons)
5	20/03	Introduction to Python & Machine Learning (with Analytics Vidhya Hackathons)
6	22/03	What is Machine Learning
7	27/03	Problema 01. Performance measures
8	29/03	Performance measures
9	03/04	Fine-tuning your model
10	05/04	Fine-tuning your model
11	10/04	Classification
12	12/04	Classification

13	17/04	Classification
14	19/04	Relatório Grupo
15	24/04	Relatório Grupo
16	26/04	Relatório Grupo
17	03/05	Problema 02. Regression
18	08/05	Regression
19	10/05	Regression
20	15/05	Regression
21	17/05	Relatório Grupo
22	22/05	Relatório Grupo
23	24/05	Relatório Grupo
24	29/05	Problema 03. <u>Unsupervised Learning in Python</u>
25	05/06	Unsupervised Learning in Python
26	07/06	Unsupervised Learning in Python
27	12/06	Unsupervised Learning in Python
28	14/06	Relatório Grupo
29	19/06	Relatório Grupo
30	21/06	Relatório Grupo