

Keyboard encoder IC 9600-PRO

RS stock number 633-161

The 9600 is a keyboard encoder that contains all the logic necessary to debounce and encode the SPST key switches used in a keyboard matrix and provide a fully decoded data output consisting of a nine bit simple binary code which can be converted to the required information code by a PROM or microprocessor etc. This permits maximum user flexibility for key layout and coding.

Contact bounce elimination circuitry with an externally controllable delay is included and data outputs are TTL compatible.

Absolute maximum ratings

Positive voltage any pin with respect to Gnd _____+8.0V Negative voltage any pin with respect to Gnd _____0.3V Operating temperature range ______0°C to +70°C Storage temperature range ______55°C to +150°C Lead temperature soldering 10s_____+325°C

Features

- On-chip contact bounce elimination
- N-Key rollover or lockout operation
- TTL compatible data outputs
- Normal, shift, control and shift-control modes
- Simple binary code output for user conversion
- Single + 5V supply.

Electrical characteristics TA = 0°C to 70°C, V_{CC} = 5V ±5%

Parameter	Conditions	Min.	Тур.	Max.	Units
dc characteristics Low level input voltage High level input voltage	Except Y inputs	2.0		0.8	V
Y input high level Y input low level		2.8		0.8	V V
Input leakage current Input with pull down R Y inputs	Except Y $V_{IN} = 5V$ $V_{IN} = 5V$ $V_{YIL} = 1V$	75 -100	-400	10.0 220 –500	μΑ μΑ μΑ
Output voltage levels Low level	I _{OL} = 1.6mA			0.4	V
High level X output voltage	I _{OH} = 1.00μA	2.4		0.4	V
Low level High level	600μ A clock high $I_{OH}=10\mu$ A	2.0	0.4 4.0		V V
Input capacitance Power supply current	All inputs		20	10 40	pF mA
ac characteristics Clock frequency Chip enable access time Switch characteristics		0.01		0.1 250	MHz ns
Contact resistance closed open		10		300	Ω ΜΩ

Operation

The keys are scanned in a nine output by ten input matrix, each key having a unique input-output combination connected to it. The inputs all go selectively to a level detector which has logically variable (1's and 0's) levels and hysteresis. The outputs are enabled one at a time from output X0 towards X8, at a rate of 10-100kHz, through a 9 stage counter. The 10 inputs are searched one at a time from Y0 to Y9, through a 10 stage ring counter, each time one of the outputs is enabled. The output and input pins all have pullups to $V_{\text{\tiny CC}}$ and are precharged each clock even if the scan is stopped at one key. When a level on the selected path to the comparator matches a level on the corresponding comparator input from the 10 stage ring counter and the key has not been encoded, the switch bounce delay network is enabled. The key down stroke is examined without advance to the next key location, until the key has been stable for the length of the DELAY CAP pin to discharge. The code for the depressed key is transferred to the output data buffer and the data ready signal appears.

The scan has two modes as determined by the LOckout/Rollover option. Once a key is determined to be down the scan will not advance if in the LOckout mode. Consequently a new key closure is not detected until the previously depressed key is released. The scan sequence will resume upon key release and the output data buffer stores the code of the last key encoded. In the Rollover mode a "1" is stored in the encoded key memory and the scan sequence is resumed and the code for the last encoded key remains in the data output buffer. Each depressed key is encoded regardless of the state of the previously depressed keys. The internal keyboard ROM is 10 bits wide. Bits 1-8 are output via outputs B1-B8.

Description of pin functions

Name	Symbol	Pin	Function
X outputs	X0-X8	40-32	External outputs from the 9-stage ring counter to the keyboard to form X-Y matrix with the keyboard switches as the crosspoints.
Y inputs	Y0-Y9	17-26	External inputs from the keyboard X-Y matrix
Clock		CK	1-3 Oscillator connection pins
Any key down	AKO	5	Output indicator of key closure
Data outputs	B9-B1	6-14	Data outputs B1-B9 parallel outputs
Data ready	DR	16	This output is a pulse which signals that a key closure has been detected and that data is available at the output port.
Delay node input	Delay	31	Externally controllable delay network for eliminating the effect of switch contact bounce.
Shift input	Shift	29	This input is used to select the shift mode data
Control input	CNTRL	28	This input is used to select the control mode data. Simultaneous assertion of shift and control inputs will place the encoder into the shift-control mode.
Lockout/rollover	LO/RO	4	Selects the mode of operation for key scan
Power supply	Vcc	30	+5V power supply
Ground	Gnd	15	Ground

Oscillator:

The main clocks are derived from the Internal oscillator, three pins (pins #1,2,3) for frequency selection via an external resistor and capacitor are used.

Lockout/Rollover: LO/RO

This option selects the operation of the key scan when a new key is detected. In Lockout the scan stops as long as the key is down. In Rollover the scan stops till the new key is debounced by the DELAY CAP and the key code is output. Then the key position is marked as down and the scan continues until another new key is seen. The option is selected by an external pin. Lockout is active high and an on chip pulldown resistor is included.

Data ready:

The data ready pin gives a pulse upon an output state ready to transfer. This transfer occurs when a new key is encoded or when the current key is repeated.

Any key down: AKO output

The AKO output is an indicator to tell there is at least one key determined to be depressed. The output is logic high (true).

Shift control: SC

These two pins determine the output in response to a new key being detected. See coding sheet for specific outputs.

Minimum switch closure

The output of the 9600 PRO is a simple binary code which may be converted to a standard information code by a PROM or directly by a microprocessor. This permits a user maximum flexibility of key layout with simple field programming.

The code in the 9600 is shown in Table 1. The format is simple: output bits, 9,8,7,6,5,4 and 1 are a binary sequence. The count starts at X0, Y0 and increments through X0Y1, X0Y2...X8Y9; bit 9 is the LSB; bit 1 is the MSB.

Bit 2 and 3 indicate the mode as follows:

Bit 2	Bit 3	
0	0	Normal
0	1	Shift
1	0	Control
1	1	Shift Control

For maximum ease of use and flexibility, an internal scanning oscillator is used, with pin selection of N-key lockout (also known as 2-key rollover) and N-key rollover. An 'any-key-down' output is provided for such uses as repeat oscillator keying.

ίΥ	Normal	Shift	Control	Shift/Control
	B-12345678910	B-12345678910	B-12345678910	B-12345678910
00	00000000	001000000	01000000	011000000
	00000001	001000001	01000001	011000001
)2)3	00000010 00000011	001000010 001000011 001000100	010000010 010000011 010000100	011000010 011000011 011000100
)4)5	00000100 00000101	001000101	010000101	011000101
06	000000110	001000110	010000110	011000110
07	000000111	001000111	010000111	011000111
)8	000001000	001001000	010001000	011001000
)9	000001001	001001001	010001001	011001001
0	000001010	001001010	010001010	011001010
	000001011	001001011	010001011	011001011
2	000001100	001001100	010001100	011001100
	000001101	001001101	010001101	011001101
4	000001110	001001110	010001110	011001110
5	000001111	001001111	010001111	011001111
6	000010000	001010000	010010000	011010000
.7 .8	000010000 000010001 000010010	001010000 001010001 001010010	010010000 010010001 010010010	011010000 011010001 011010010
.9 30	000010010 000010011 000010100	001010010 001010011 001010100	010010010 010010011 010010100	011010010 011010011 011010100
31	000010100	001010100	010010101	011010101
32	000010101	001010101		011010101
32	000010110	001010110		011010110
12	000010110	001010110	010010110 010010110 010010111	011010110
33	000010111	001010111	010010111	011010111
34	000011000	001011000	010011000	011011000
25	000011001	001011001	010011001	011011001
5 6 7	000011010 000011011	001011010 001011011	010011001 010011010 010011011	011011010 011011011
77 88 89	000011100 000011101	001011100 001011101	010011100 010011101	011011100 011011101
60	000011110	001011110	010011110	011011110
51	000011111	001011111	010100000	011100000
32	000100000	001100000	010100000	011100000
33	001000001	001100001	010100001	011100001
4 5 6	000100010 000100011	001100010 001100011	010100010 010100011	011100010 011100011
36 37	000100100 000100101	001100100 001100101 001100110	010100100 010100101 010100110	011100100 011100101 011100110
37 38 39 40	000100110 000100111	001100111	010100111	011100111
10 11 12 13	000101000 000101001	00110100 001101001 001101010	010101000 010101001 010101010	011101000 011101001
:4 3	000101010 000101011	001101011	010101011	011101010 011101011
.4	000101100	001101100	010101100	011101100
.5	000101101	001101101	010101101	011101101
.6	000101110	001101110	010101110	011101110
7	000101110 000101111 000110000	001101110 001101111 001110000	010101111 010101111 010110000	011101111 011110000
.8 .9 .0	000110001 000110010	001110000 001110010	010110001 010110010	011110001 011110010
50 51 52 53	000110011 000110100	001110011 001110100	010110011 010110100	011110011 011110100
4	000110101	001110101	010110101	011110101
	000110110	001110110	010110110	011110110
55	000110111	001110111	010110111	011110111
66	000111000	001111000	010111000	011111000
57	000111001	001111001	010111001	011111001
88	000111010	001111010	010111010	011111010
59	000111011	001111011	010111011	011111011
50	000111100	001111100	010111100	011111100
61	000111101	001111101	010111101	011111101
62	000111110	001111110	010111110	011111110
3	000111111	00111111	010111111	01111111
4		101000000	110000000	111000000
5 6 7	10000001 10000010	101000001 101000010 101000011	110000001 110000010	111000001 111000010 111000011
7 8 9	100000011 100000100	101000011 101000100 101000101	110000011 110000100	111000100
70 71	100000101 100000110 100000111	101000101 101000110 101000111	110000101 110000110 110000111	111000101 111000110 111000111
'2 '3	10000111 100001000 10000101	101000111 101001000 101001001	110000111 110001000 110001001	111001111 111001000 111001001
74 75	10000101 100001010 100001011	101001001 101001010 101001011	110001001 110001010 110001011	111001001 111001010 111001011
'6	100001100	101001100	110001100	111001100
'7	100001101	101001101	110001101	111001101
'8	100001110	101001110	110001110	111001110
'9	100001111	101001111	110001111	111001111
30	100010000	101010000	110010000	111010000
31	100010001	101010001	110010001	111010001
32	100010010	101010010	110010010	111010010
33	100010011	101010011	110010011	111010011
34	100010100	101010100	110010100	111010100
35	100010101	101010101	110010101	111010101
36	100010110	101010110	110010110	111010110
37	100010111	101010111	110010111	111010111
38	100011000	101011000	110011000	111011000
39	100011001	101011001	110011001	111011001
nternal Oscillator ockout/Rollover			Pulse Data Ready Any Key Down (Pin 5) Pos	sitive Output
Internal Resistor to cockout is Logic 1	to GND		Internal Resistor to GNI and Control Pins	O on Shift

Applications

Figure 4 shows a PROM-encoded 64 key, 4 mode application, using a 256×8 PROM, and Figure 5 a full 90 key, 4 mode application utilising a 512×8 PROM.

If N-key rollover operation is desired, it is recommended that a diode be inserted in series with each switch as shown. This prevents 'phantom' key closures from resulting if three or more keys are depressed simultaneously.

or omissions, or for the use of this information, and all use of such information shall be entirely at the user's own risk.

No responsibility is assumed by RS Components for any infringements of patents or other rights of third parties which may result from its use. Specifications shown in RS Components technical literature are subject to change without notice.

The information provided in RS technical literature is believed to be accurate and reliable; however, RS Components assumes no responsibility for inaccuracies