

University of Texas at Austin Invitational

Circuit Lab B

Exam Booklet

- DO NOT BEGIN UNTIL GIVEN PERMISSION
- You will have **50 minutes** to complete the exam || You **may** separate the exam
- For calculation questions, it is **not** required that you show your work, however partial credit will be assigned if correct steps are shown with an incorrect answer.
- Answers must be given with appropriate significant figures and units to receive full credit.
- All final answers must be placed inside the designated box, including multiple choice.
- Lab: You will have up to 10 minutes to complete the lab section. A proctor will instruct you when it is
 your turn. You will not be given any replacement components, so be careful not to damage them.
- Allowed materials: 3-ring binder, writing utensils, two calculators, basic multimeter
- Tie-breaker order: 31, 32, 34, 46, 40, 28, 24, 26, Chronologically

Competitors:	Rank:
School Name:	Score:
Team Number:	Score:

Kevin Hao1, Asher Noel2, Roger Zhong3

¹University of Florida - BS Biology '21, MD '24

²Harvard College – BS Physics '23

³University of Texas at Austin – BS Computer Science '22

kevin@floridascienceolympiad.org ashernoel@college.harvard.edu rzhong688@gmail.com This page is for administrative use only. DO NOT WRITE ON THIS PAGE.

Page Number	Possible Score	Your Score
3	24	
4	18	
5	22	
6	24	
7	32	
8	22	
9	32	
LAB	44	
Total	218	

ntify	the last n	ame of the individual asso	ociat	ed with the following e	oithe	ts for questions 1-10. (10 pts; 1 pt each)
1.	Rejected	a knighthood. 2 (1 pt)			6.	Believed in 'contiguous particles'.2 (1 pt)
2.	Conteste	d with a man over frogs. ²	(1 p	t)	7.	Showed the sun has sodium. 2 (1 pt)
3.	Regularly	y got two hours of sleep. ²	(1 p	t)	8.	Won the Nobel prize for helping invent alternating
					O.	current. 2 (1 pt)
4.	Fled Pari	s around 1800. ² (1 pt)				
					9.	Published the following: "On Magnetism". 2 (1 pt)
5.	Theorize	d that sound is perceived	26.2	number of		
Э.		c tones. ² (1 pt)	as a	number of	10	Winner of the Berlin Prize. 2 (1 pt)
		1 1			10.	whiler of the Berlin Frize. 2 (1 pt)
11	What is t	the voltage of a diesel eng	ine h	attery?2 (2 nts)		
		1.5V	В.	9V		
		12V	D.	24V		
12.	In a pola	rized receptable, which p	rong	is "hot", and what does	that	mean? ² (2 pts)
	_	Shorter, swings (-)		Shorter, swings (+)		
	C.	Longer, swings (-)	D.	Longer, swings (+)		
13.	How man	ny deaths were due to Cor	ona	Discharge from 2005-2	015 i	n the US? 2 (2 pts)
	A.	<u>0</u>	B.	550		
	C.	1050	D.	16,360		
14.	Which m	ultiway switching system	is no	otable for its usefulness	for l	ong hallways?² (2 pts)
	Α.	Alternative	B.	California		
	C.	Carter	D.	Traveler		
15.		ises currents to change ev			2 pts	s)
		Programming		Commutator		
L	_	Combinatorics		Bigfoot		
16.	_	or is associated with an Ll		_	drop	of 4.15V? 2 (2 pts)
		Red		Green		
17		Blue		White		
17.	_	the curie temperature of G				
		192K		292K		
10		392K		492K	nd +0	the feet in 20 ms? ² (2 pts)
10.	_	No effect		tingling	nu to	the reet in 20 ms: - (2 pts)
		shaking		death		
_	<u> </u>	JIIUINIIIS	υ.	ucuui		

19.	What	t ma	gnetism results from the orbita	l angular mom	ent	um of electrons antiparallel to the	external field? 2 (2 pts)
Г	\neg	A.	Para magnetism B.	diamagnetisr	n		
		C.	ferromagnetism D.	antiferromag	neti	sm	
20.	What	t is a	disadvantage of Eddy Current	Brakes used in	slo	w high-speed trains and roller coa	sters?1 (2 pts)
Г	\neg	A.	Frequent replacement of com	ponents	B.	Temperature-dependent	
	╝	C.	No force when stationary		D.	Rare metals required	
21.	Two	initi	ally uncharged metal spheres, A	A and B, are in	cont	act. A negatively charged rod is br	ought near but does not
	toucl	ı the	m. With the rod held in place, s	phere B is mo	ved	to the right, so that the spheres are	e now separated. Which of
	the fo	ollov	ving is now true of sphere B? ³ ((2 pts)			
	\neg	A.	It is uncharged		B.	It is positively charged	
		C.	It is negatively charged		D.	It is charged, but its sign cannot b	e predicted
22.	High	freq	uency UV light with an energy	of 300 eV per p	hot	on strikes a metal surface with a w	ork function of 108.57
	eV. W	√hat	is the velocity of the electrons	ejected from tl	ne m	aterial? 3 (2 pts)	
		A.	8.21 E6 m/s		B.	1.24 E7 m/s	
		C.	9.28 E6 m/s		D.	1.31 E7 m/s	
23.	Two	capa	citors are connected in paralle	l. A voltage V is	sap	olied to the pair. What is the ratio	of charge stored on C1 to
	the c	harg	e stored on C2, when C1 = $1.5*$	C2?3 (2 pts)			
Г		A.	2/3		B.	3/2	
		C.	1		D.	9/4	
24.	A sin	nple	circuit consists of a battery and	l a single varia	ble 1	resistor. Data of the current and	I V
	volta	ge d	rop over the variable resistor a	t 4 different se	ttin	gs is shown to the right. Which	0.1A 14.1V
	value	e bes	t approximates the internal res	sistance of the	batt	ery? 3 (2 pts) (TB#7)	1.5A 13.3V
Г		A.	0.38 ohms		B.	0.44 ohms	3.1A 12.6V
		C.	0.47 ohms		D.	0.51 ohms	4.6A 11.8V
25.	In th	e un	likely event that a high voltage	power line hit	s yo	ur car, what is the best method of	escape if no one else can
	help	you?	²³ (2 pts)				
Г	1	A.	Jump out with both feet toget	her	B.	Slide out of the window feet first	
		C.	Roll out onto the ground		D.	Crawl out	
26.	Sup	pose	a power transmission line has	a current of 2	000	A and a resistance of 2.3 ohms. Wh	at is the total power loss
	acros	ss th	e line? 3 (2 pts) (TB#8)				
Г	\neg	A.	4.6 kW		B.	9.2 kW	
		C.	4.6 MW		D.	9.2 MW	
27.	The A	AC go	enerator shown below generate	es a voltage cu	rve 1	hat is a sinusoidal wave. The peak	voltage of said sine wave
	is 16	V. W	ith the rectangular coil in its cu	ırrent position	, wh	at is the absolute value voltage out	tput of the generator at
	that	mon	nent? 3 (2 pts)			Magnetic Poles	
Г	\neg	A.	0 V		B.	8 V N Magnetic Flux	
		C.	12 V		D.	16 V	S

28. A smartphone with a 3000 mAh 4.4V battery has an average battery life of 6 hours. What is the average power consumption of the phone? ³ **(4 pts) (TB#6)**

29. Draw the electric field lines for the pairs of charges shown. Include direction on the lines. ³ **(6 pts; 2 pts each)**

30. When the switches S1 and S2 are open, the equivalent capacitance of the circuit is 6 μ F. What is the equivalent capacitance of the circuit when both switches are closed? ³ **(4 pts)**

31. Find the voltage drop (V_{R3}) and power dissipated (P_{R3}) over the 3 Ω resistor. Provide your answers to 3 significant figures. ³ (8 pts; 4, 4) (TB#1)

32. Find the value of the missing resistor if the total current flowing through the circuit is 3.18 A. Provide your answer to 3 significant figures. ³ **(6 pts) (TB#2)**

33. Switches S1 and S2 are in the "open" position as shown in the diagram. Note how S2 is able to redirect current. Consider two scenarios where S2 is either open (bypass R3) or closed (connected to R3) and determine if power dissapated over R1 would increase, decrease, or stay the same when S1 moves from open to closed. ³ (6 pts; 3, 3)

34. Determine the value of the voltage source V_s given V₁=20 V and a current source I_s=6A.³ (4 pts) (TB#3)

35. Draw the Thévenin equivalent circuit with respect to the terminals A and B in the circuit below. Provide your answers to 3 significant figures. ³ **(8 pts)**

36. <u>Part 1:</u> Determine the current thru each of the lightbulbs connected to the battery in series (B). <u>Part 2:</u> Determine the current thru each of the lightbulbs connected to the battery in parallel (A). Provide your answers to 3 significant figures. ¹ **(12 pts; 2 pts each)**

37. Determine the current (I_{V1}) thru the battery V1 and the voltage (V_{R2}) across the resistor R2. Provide your answers to 3 significant figures. ¹ (8 pts; 4, 4)

38. Determine the node voltages V₁ and V₂ in the circuit. Provide your answers to 3 significant figures. ¹ (8 pts; 4, 4)

39. Determine the current I_3 given $I_1 = 2A$ and $I_2 = 3A$. Provide your answers to 3 significant figures. ¹ (4 pts)

40. <u>Part 1:</u> Indicate the direction the magnet must be moving in order to induce the current in the wire that is shown by circling the arrow for each diagram. <u>Part 2:</u> State the law you used to solve this problem. ¹ (6 pts; 1, 1, 1, 1, 2) (TB#5)

- 41. Four point charges surround a point P as listed below. <u>Part 1:</u> Find the magnitude and direction (East or West) of the electric field at point P. <u>Part 2:</u> Determine the electric potential at point P. Provide your answers to 3 significant figures. ³ (6 pts; 2, 2, 2)
 - 1. +2 mC 40 meters to the west
 - 2. -2 mC 30 meters to the west
 - 3. +2 mC 30 meters to the east
 - 4. -2 mC 40 meters to the east

 Magnitude = _____
 Direction = (E || W) Potential = _____

42. In the image below, a rod moves in the +x direction at a constant speed of 2.0 m/s along the horizontal rails, separated by L=12 cm. The rod, rails, and connecting resistor form a conducting loop. The resistor has a resistance of 200 m Ω ; the rest of the loop has negligible resistance. The entire apparatus is placed in a uniform 1.2 T magnetic field pointing into the page. Determine the direction (+y or -y) and value of the induced current through the resistor. ¹ **(10 pts; 2, 8)**

43. Complete the table to show which lamps (L1, L2, L3) will be turned on based on the potition of each of the switches (S1, S2, S3). Assume each switch in the image is "ON", and flipping it would turn it "OFF". 1 (12 pts; ½ pt each)

S1	S2	S 3	L1	L2	L3	L1 L2 L3
ON	ON	ON				
ON	ON	OFF				S1 (VVV) S2 (VVV) S3 (VVV)
ON	OFF	ON				12V_10W 12V_10W 12V_10W
OFF	ON	ON				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ON	OFF	OFF				
OFF	ON	OFF				
OFF	OFF	ON				
OFF	OFF	OFF				

44. Part 1: A 3-way light switch diagram is shown below. Complete the diagram so that the lightbulb can be powered on. Label hot wires as "HOT". 3 wires are given. The top wire is the hot wire. The middle wire is the neutral wire. The bottom wire is ground. The terminals on the switches are denoted by a letter. "A" refers to the left traveler terminal. "B" refers to the right traveler terminal. "C" refers to the common terminal. "G" refers to the ground terminal. When drawing the wires, connect them directly to the terminal labels (the first step is done for you). Part 2: Notice the ground terminals connected to the switches, draw the ground wires and connect them to the main ground wire to guarantee the safety of the user. (8 pts; 6, 2)

45.	Part 1: Why don't transformers work with DC? Part 2: In a single ideal transformer, the primary (in) coil A has 10
	turns, a current of 10A, and a voltage of 5V. The secondary (out) coil B has 50 turns. What is the current and voltage
	in coil B? Provide your answers to 3 significant figures. ³ (6 pts; 3, 3)

46. Consider two capacitors A and B: Capacitor A has a capacitance of 3 uF with a vacuum as its dielectric. Capacitor B has a capacitance of 241 uF with ______ as its dielectric. Calculate the dielectric constant of the mystery substance and make an educated guess as to what it is. ³ (6 pts; 4, 2) (TB#4)

Dielectric constant =	Dielectric substance =

9

Hands-On Task: For the following questions, your circuit diagrams and calculations MUST be composed of components that are provided (e.g. resistor values used in circuit diagrams should correspond to actual provided values). You will have 15 minutes to work with the physical components to complete the questions in this section.

47.	Draw a simple circuit diagram such that its input is \sim 5 V (battery voltage V_{i1}) and output is \sim 1 V (\sim means within +/-
	10%). Calculate its theoretical output voltage (Vo1). Provide your answer to 3 significant figures. HINT: Your answer
	1 11x0m1 4 00 xx 4 640 x 3

should NOT be 1.00 V.1 (10 pts)

Theoretical $V_o =$ ______

48. Construct the circuit from Q42. Measure and record the input (V_i) and output (V_o) voltages to 3 significant figures. ¹ **(10 pts; 5, 5)**

Measured
$$V_i =$$
______ Measured $V_o =$ ______

49. Study the circuit below and fill out the table to show which LEDs are turned on when each combination of push buttons are pressed. Draw an "X" to indicate the LED is turned on. Determine the theoretical and actual power dissipated by the LEDs when buttons 1 and 2 are pressed. You are provided with the necessary components to build the circuit, but it is NOT required. 1 (24 pts; ½ pt each box; 5, 5)

