NONLINEAR OBSERVABILITY AND IDENTIFIABILITY

VIPUL SINGHAL¹

ABSTRACT. A brief set of notes on nonlinear control. To be used as a base for building the theory of nonlinear controllability and observability for synthetic and systems biology.

Keywords. system composability, submanifolds, foliations, system identification, genetic circuits, machine learning, manifold learning

Contents

1.	Introduction	1
2.	Mathematical Preliminaries	1
2.1.	Lie Derivatives, distributions and Frobenius' Theorem	1
2.2.	One-forms and codistributions	1
2.3.	Nonlinear Observability	3
References		4

1. Introduction

2. Mathematical Preliminaries

We assume some familiarity with basic notions from differential geometry: smooth (more generally differentiable) manifolds, coordinate charts and local representatives of maps and points, derivatives as operators ([Boothby(2002)]), etc. We explicitly review some definitions and propositions we will need in subsequent sections. A more complete treatment can be found in any standard nonlinear control text, such as [Nijmeijer and Van Der Schaft(1990)].

In what follows, we assume that all manifolds are smooth (C^{∞}) .

2.1. Lie Derivatives, distributions and Frobenius' Theorem. define vector field and distribution.

Add Lie derivative, Lie bracket, involutivity, and frobenius thm

2.2. **One-forms and codistributions.** Let N denote a smooth manifold, T_pN its tangent space at point $p \in N$, and T_p^*N the dual cotangent space. If $\{x_1, \ldots, x_n\}$ are local coordinates around p, then $\{\frac{\partial}{\partial x_1}\Big|_p, \ldots, \frac{\partial}{\partial x_n}\Big|_p\}$ is a basis for T_pN in local coordinates, with the corresponding dual basis denoted $\{dx_1|_p, \ldots, dx_n|_p\}$, with the defining relationship $dx_i|_p\left(\frac{\partial}{\partial x_j}\Big|_p\right) = \delta_{ij}$.

¹INTEGRATED BIOSCIENCES, REDWOOD CITY, CA, UNITED STATES *E-mail address*: vs@alumni.caltech.edu.

Let $s: N \to \mathbb{R}$ be a smooth function. At every point $p \in N$, the differential of s at p is an element of T_p^*N , defined via its action on vectors,

(2.1)
$$ds(p)(X_p) \triangleq X_p(s)(p)$$

$$= \left(\sum_{j=1}^n X_{p,j} \frac{\partial}{\partial x_j}\Big|_p\right) s(p)$$

$$= \sum_{j=1}^n \frac{\partial s}{\partial x_i}\Big|_p X_{p,i},$$

where we note that vectors are differential operators on real valued smooth functions.

We can endow ds(p) with a representation in terms of the basis of T_p^*N by considering its action on a basis of T_pN , which results¹ in $ds(p) = \sum_{i=1}^n \frac{\partial s}{\partial x_i}(p) dx_i|_p$. Then, (2.1) can be written as ², $ds(p)(X_p) = \left(\sum_{i=1}^n \frac{\partial s}{\partial x_i}(p) dx_i\right) \left(\sum_{j=1}^n X_{p,j} \frac{\partial}{\partial x_j}\right)$.

The cotangent bundle of a manifold N is defined as $T^*N \triangleq \bigcup_{p \in N} T_p^*N$, and can be given a manifold structure. Then, a smooth one-form σ on a smooth manifold N is defined as a smooth map $\sigma: N \to T^*N$ satisfying

$$\pi \circ \sigma = identity (on N),$$

where $\pi: T^*N \to N$ is the natural projection. That is, a one-form is a smooth map assigning a cotangent vector to each point $p \in N$.

In local coordinates x, one forms may be expressed³ as $\sigma(x) = \sum_{i=1}^{n} \sigma_i(x) dx_i|_x$. Being dual objects of vector fields, one-forms act on them as expected: $\sigma(X)(p) = \sigma(p)X(p) \in \mathbb{R}$, and define smooth real-valued functions on N, $\sigma(X): N \to \mathbb{R}$. Any smooth real-valued function s defines a one-form $ds \in T^*N$ via (2.1). Note the relationship with the Lie derivative, $ds(X) = X(s) = L_sX$. Note also that not every one form can be written as ds for some smooth real-valued function s. However, those that can, are called exact.

Recall that a (smooth) distribution add to that section! assigns a subspace of the tangent space to each point on the manifold in a smooth manner. Similarly, we can define a dual notion, the smooth codistribution. A smooth codistribution assigns, to each point on the manifold, a subspace of the corresponding cotangent space in a smooth manner (to be made precise below). Just as distributions and accessibility algebras play a fundamental role in describing nonlinear controllability, codistributions and observation spaces play a similar role in describing nonlinear observability (and by extension, identifiability). We discuss these ideas in the following sections.

Definition 2.2 (Smooth Codistribution). Around any point p, let there exist a neighbourhood U of p and a set of smooth one-forms $\sigma_i \in T_p^*N, i \in I$ (I possibly infinite), such that for each $q \in U$, $P(q) = \text{span}\{\sigma_i(q); i \in I\}$. Then P is called a *smooth codistribution* on N.

In what follows, codistribution will always mean smooth codistribution. A one-form belongs to P(p) if $\sigma(p) \in P(p)$ for any $p \in N$, and a codistribution is constant dimensional if the dimension of P(p) does not depend on p. If a codistribution is constant dimensional of dimension l, then around each point p, there exist l independent one-forms (called the *local generators*) $\sigma_1, \ldots, \sigma_l$ such that $P(q) = \text{span}\{\sigma_1(q), \ldots, \sigma_l(q)\}$, for q near p.

Next, we define the notions of the kernel and annihilator of a codistribution and distribution respectively. Let P and D be a codistribution and distribution on N, respectively. Then,

(2.3)
$$\ker P(p) = \{X(p) \mid X \text{ is a vector field s.t. } \sigma(X)(p) = 0, \forall \sigma \in P\}$$
$$\operatorname{ann} D(p) = \{\sigma(p) \mid \sigma \text{ is a one-form s.t. } \sigma(X)(p) = 0, \forall X \in D\}$$

¹Consider $ds(p)\frac{\partial}{\partial x_i} = \frac{\partial}{\partial x_i}s(p)$

²Noting the linearity of dx_i and right-distributivity of the expression in the first parentheses.

³With slight abuses of notation, like dropping the hat from the local representative $\hat{\sigma}$.

If D and P are constant dimensional, then $D = \ker(\operatorname{ann} D)$ and $P = \operatorname{ann}(\ker P)$. If $\ker P$ is involutive, then we call P an involutive codistribution. If P is generated by exact one forms, then it is easily shown that it must be involutive.

2.3. **Nonlinear Observability.** Consider the nonlinear system given by

(2.4)
$$\dot{x} = f(x) + \sum_{j=1}^{m} g_j u_j, \qquad u = (u_1, \dots, u_m) \in U \subset \mathbb{R}^m,$$
$$y_i = h_i(x), \qquad i = 1, \dots, p,$$

where $h = (h_1, ..., h_p)^T : N \to Y = \mathbb{R}^p$ and $y(t, x_0, u) = h(x(t, x_0, u))$

We define the notions of state indistinguishability, local observability, observation space and the observability codistribution. We can then state two versions of the nonlinear observability rank condition. These will allow us to talk about decomposing observability into observable and unobservable modes, analogously to the linear case. These results will be extended to include identifiability using a simple device: including system parameters as additional state variables with zero dynamics, and considering their observability.

Definition 2.5 (Nonlinear observability). Two states $x_1, x_2 \in N$ are indistinguishable for system (2.4) if for every admissible input function u the output functions $t \mapsto y(t, x_1, u), t \geq 0$ and $t \mapsto y(t, x_2, u), t \geq 0$ are identical on their common domain of definition. The system is observable if the states being indistinguishable implies $x_1 = x_2$.

Definition 2.6 (Nonlinear local observability). For an open set $V \subset M$, we say that $x_1, x_2 \in V$ are V-indistinguishable, denoted $x_1I^Vx_2$ if for every admissible constant control u such that $x(t, x_1, u)$ and $x(t, x_2, u)$ remain in V for $t \leq T > 0$, the output functions $y(t, x_1, u)$ and $y(t, x_2, u)$ are equal on their common domain of definition. The system (2.4) is called locally observable at x_0 if there exists a neighborhood W of x_0 such that for every neighborhood $V \subset W$ of x_0 the relation $x_0I^Vx_1$ implies $x_1 = x_0$. A system is locally observable if it is locally observable for all $x_0 \in M$.

A system is locally observable if every state x_0 can be distinguished from its neighbors by using system trajectories remaining close to x_0 .

Definition 2.7 (Observation space). The observation space \mathscr{O} of the system (2.4) is the linear space (over field \mathbb{R}) of real valued smooth functions on N containing $h_i, i = 1, \ldots, p$ and all repeated Lie derivatives

(2.8)
$$L_{X_1} \dots L_{X_k} h_j, \quad j = 1, \dots, p, \quad k = 1, 2, \dots$$

with $X_i \in \{f, g_1, \dots, g_m\}, i \in \{1, \dots, k\}.$

Proposition 2.9. \mathscr{O} is equivalent to the linear space of functions on N containing h_1, \ldots, h_p and all repeated Lie derivatives along system trajectories. These Lie derivatives can be written $L_{Z_1}L_{Z_2}\cdots L_{Z_k}h_j$, with $j\in\{1,\ldots,p\}$ and $k=1,2,\ldots$, and Z_i , $i\in\{1,\ldots,k\}$ of the form

(2.10)
$$Z_i(x) = f(x) + \sum_{j=1}^m g_j(x)u_j^i,$$

for some point $u^i \in U$.

Proof. The linearity properties of the Lie derivative of a function, $L_{X_1+X_2}H = L_{X_1}H + L_{X_2}H$ and $L_X(H_1+H_2) = L_XH_1 + L_XH_2$, together with the fact that the Z_i are linear combinations of f, g_1, \ldots, g_m , imply $L_{Z_1}L_{Z_2}\cdots L_{Z_k}h_j \in \mathscr{O}$. Conversely, all vector fields f, g_1, \ldots, g_m can be written as linear combinations of vector fields of the form Z_i . To see this, note that $f = Z_i$ for $u^i = 0$ for any i, and defining $Z_j^+ = f + g_j$ and $Z_j^- = f - g_j$ (using $u = \pm (0, \ldots, 0, 1, 0, \ldots, 0)$), where the 1 is at the j-th coordinate), we have $g_j = \frac{1}{2}(Z_j^+ - Z_j^-)$.

References

- [Boothby(2002)] William M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised. August 2002. ISBN 978-0-08-057475-2. URL https://shop.elsevier.com/books/an-introduction-to-differentiable-manifolds-and-riemannian-geometry-revised/boothby/978-0-08-057475-2.
- [Nijmeijer and Van Der Schaft(1990)] Henk Nijmeijer and Arjan Van Der Schaft. Nonlinear Dynamical Control Systems. Springer, New York, NY, 1990. ISBN 978-1-4757-2102-7 978-1-4757-2101-0. doi: 10.1007/978-1-4757-2101-0. URL http://link.springer.com/10.1007/978-1-4757-2101-0.