GeodesicSphere

Finding shortest path on a 2D sphere

Sangwook Ryu

I present GeodesicSphere class, which calculates the shortest path between two points — origin (i) and destination (f) — on a 2-dimensional sphere with unit radius. Each point on a sphere can be specified by latitude ϕ and longitude λ . Distance ds between two infinitesimally close points becomes

$$ds^2 = d\phi^2 + \cos^2\phi \, d\lambda^2 \tag{1}$$

where $d\phi$ and $d\lambda$ are difference in latitude and longitude, respectively. The task on hand is to find a trajectory which minimizes

$$S_{i\to f}[\phi, \lambda] = \int_{i}^{f} \sqrt{d\phi^2 + \cos^2 \phi \, d\lambda^2}$$
 (2)

The equation (2) can be written in terms of a parametric variable ξ , such that a trajectory can be specified by $\phi(\xi)$ and $\lambda(\xi)$ as functions in ξ with boundary conditions.

$$u S_{i \to f}[\phi, \lambda] = \int_0^u d\xi \left[\left(\frac{d\phi}{d\xi} \right)^2 + \cos^2 \phi \left(\frac{d\lambda}{d\xi} \right)^2 \right]^{1/2}$$
 (3)

where
$$\phi(\xi = 0, 1) = \phi_{i,f}$$

 $\lambda(\xi = 0, 1) = \lambda_{i,f}$ (4)

Let us consider small variations in ϕ and λ and see how much deviation in S we have.

$$\delta S_{i \to f} = S_{i \to f} [\phi + \delta \phi, \lambda + \delta \lambda] - S_{i \to f} [\phi, \lambda]$$
(5)

$$= -\frac{1}{S_{i\to f}[\phi, \lambda]} \int_{0}^{1} d\xi \left\{ \left[\frac{d^{2}\phi}{d\xi^{2}} + \cos\phi \sin\phi \left(\frac{d\lambda}{d\xi} \right)^{2} \right] \delta\phi(\xi) + \frac{d}{d\xi} \left(\cos^{2}\phi \frac{d\lambda}{d\xi} \right) \delta\lambda(\xi) \right\}$$
(6)

If a trajectory is the shortest path, we have $\delta S_{i\to f} = 0$ for any arbitrary infinitesimal $\delta \phi$ and $\delta \lambda$. Equation (6) implies that $\phi(\xi)$ and $\delta(\xi)$ meet the following set of differential equations, which is also called *geodesic equation*.

$$\frac{d\phi}{d\xi} = \dot{\phi} \tag{7}$$

$$\frac{d\lambda}{d\xi} = \dot{\lambda} \tag{8}$$

$$\frac{d\dot{\phi}}{d\xi} = -\cos\phi \sin\phi \,\dot{\lambda}^2 \tag{9}$$

$$\frac{d\dot{\lambda}}{d\xi} = 2\tan\phi\,\dot{\phi}\,\dot{\lambda} \tag{10}$$

GeodesicSphere class implements relaxation methods¹ to solve the geodesic equation with boundary conditions. There are aforementioned 4 functions of interest — $y[1] = \phi$, $y[2] = \lambda$, $y[3] = \dot{\phi}$ and $y[4] = \dot{\lambda}$, and two boundary conditions (4) at each of boundaries (origin and destination).

¹The mathematical algorithm is described in Numerical Recipes in C (2nd edition).