How to Make Ad Hoc Proof Automation Less Ad Hoc

Georges Gonthier¹ Beta Ziliani²
Aleks Nanevski³ Derek Dreyer²

¹Microsoft Research Cambridge

²Max Planck Institute for Software Systems (MPI-SWS)

³IMDEA Software Institute, Madrid

ICFP 2011, Tokyo

Why proof automation at ICFP?

Ad hoc polymorphism \approx Overloading terms Ad hoc proof automation \approx Overloading lemmas

"How to make ad hoc polymorphism less ad hoc"

Haskell type classes (Wadler & Blott '89)

"How to make ad hoc proof automation less ad hoc"

 Canonical structures: A generalization of type classes that's already present in Coq

Lemma noalias:

If pointers x_1 and x_2 appear in disjoint heaps, they do not alias.

```
noalias : \forall h : heap. \forall x_1 x_2 : ptr. \forall v_1 : A_1 . \forall v_2 : A_2.

def (x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 != x_2
```

Lemma noalias:

If pointers x_1 and x_2 appear in disjoint heaps, they do not alias.

noalias :
$$\forall h$$
 : heap. $\forall x_1 x_2$: ptr. $\forall v_1 : A_1$. $\forall v_2 : A_2$. def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 != x_2$ singleton heaps

Lemma noalias:

If pointers x_1 and x_2 appear in disjoint heaps, they do not alias.

Lemma noalias:

If pointers x_1 and x_2 appear in disjoint heaps, they do not alias.

noalias :
$$\forall h$$
 : heap. $\forall x_1 x_2$: ptr. $\forall v_1 : A_1$. $\forall v_2 : A_2$. def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \to x_1 \ != x_2$ test for definedness/disjointness

Lemma noalias:

If pointers x_1 and x_2 appear in disjoint heaps, they do not alias.

noalias :
$$\forall h$$
 : heap. $\forall x_1 x_2$: ptr. $\forall v_1 : A_1 . \forall v_2 : A_2$.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 != x_2$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def} \; \big(\mathit{h}_1 \; \uplus \; \big(\mathit{y}_1 \mapsto \mathit{w}_1 \; \uplus \; \mathit{y}_2 \mapsto \mathit{w}_2 \big) \; \uplus \; \big(\mathit{h}_2 \; \uplus \; \mathit{y}_3 \mapsto \mathit{w}_3 \big) \big)$$

$$(y_1 != y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def} \; \left(\mathit{h}_1 \; \uplus \; \left(\mathit{y}_1 \; \mapsto \; \mathit{w}_1 \; \uplus \; \mathit{y}_2 \; \mapsto \; \mathit{w}_2 \right) \; \uplus \; \left(\mathit{h}_2 \; \uplus \; \mathit{y}_3 \; \mapsto \; \mathit{w}_3 \right) \right)$$

$$(y_1 != y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def} \; \big(\mathit{h}_1 \; \uplus \; \big(\mathit{y}_1 \mapsto \mathit{w}_1 \; \uplus \; \mathit{y}_2 \mapsto \mathit{w}_2 \big) \; \uplus \; \big(\mathit{h}_2 \; \uplus \; \mathit{y}_3 \mapsto \mathit{w}_3 \big) \big)$$

$$(y_1 != y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def} \; \left(\mathit{h}_1 \; \uplus \; \left(\mathit{y}_1 \; \mapsto \; \mathit{w}_1 \; \uplus \; \mathit{y}_2 \; \mapsto \; \mathit{w}_2 \right) \; \uplus \; \left(\mathit{h}_2 \; \uplus \; \mathit{y}_3 \; \mapsto \; \mathit{w}_3 \right) \right)$$

$$(y_1 != y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def} \ \big(y_1 \mapsto w_1 \ \uplus \ y_2 \mapsto w_2 \ \uplus \ \big(h_1 \ \uplus \ \big(h_2 \ \uplus \ y_3 \mapsto w_3\big)\big)\big)$$

$$(y_1 != y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def} \ \big(y_1 \mapsto w_1 \ \uplus \ y_2 \mapsto w_2 \ \uplus \ \big(h_1 \ \uplus \ \big(h_2 \ \uplus \ y_3 \mapsto w_3\big)\big)\big)$$

true &&
$$(y_2 != y_3)$$
 && $(y_3 != y_1)$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def} \ \big(y_1 \mapsto w_1 \ \uplus \ y_2 \mapsto w_2 \ \uplus \ \big(h_1 \ \uplus \ \big(h_2 \ \uplus \ y_3 \mapsto w_3\big)\big)\big)$$

true &&
$$(y_2 != y_3)$$
 && $(y_3 != y_1)$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def} \ \big(y_1 \mapsto w_1 \ \uplus \ y_2 \mapsto w_2 \ \uplus \ \big(h_1 \ \uplus \ \big(h_2 \ \uplus \ y_3 \mapsto w_3\big)\big)\big)$$

true &&
$$(y_2 != y_3)$$
 && $(y_3 != y_1)$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \uplus x_2 \mapsto v_2 \uplus h) \rightarrow x_1 != x_2$

$$D: \mathsf{def} \ \big({\color{red} y_2} \mapsto {\color{red} w_2} \ \uplus \ {\color{red} y_3} \mapsto {\color{red} w_3} \ \uplus \ \big({\color{red} y_1} \mapsto {\color{red} w_1} \ \uplus \ {\color{red} h_1} \ \uplus \ {\color{red} h_2} \big) \big)$$

true &&
$$(y_2 != y_3)$$
 && $(y_3 != y_1)$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def} \ \big(y_2 \mapsto w_2 \ \uplus \ y_3 \mapsto w_3 \ \uplus \ \big(y_1 \mapsto w_1 \ \uplus \ h_1 \ \uplus \ h_2\big)\big)$$

true && true &&
$$(y_3 != y_1)$$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def} \ \big(y_2 \mapsto w_2 \ \uplus \ y_3 \mapsto w_3 \ \uplus \ \big(y_1 \mapsto w_1 \ \uplus \ h_1 \ \uplus \ h_2\big)\big)$$

true && true &&
$$(y_3 != y_1)$$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \uplus x_2 \mapsto v_2 \uplus h) \rightarrow x_1 != x_2$

$$D: \mathsf{def} \ \big(y_2 \mapsto w_2 \ \uplus \ y_3 \mapsto w_3 \ \uplus \ \big(y_1 \mapsto w_1 \ \uplus \ h_1 \ \uplus \ h_2\big)\big)$$

true && true &&
$$(y_3 != y_1)$$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \uplus x_2 \mapsto v_2 \uplus h) \rightarrow x_1 != x_2$

$$D: \mathsf{def} \ \big(\textit{y}_3 \mapsto \textit{w}_3 \ \uplus \ \textit{y}_1 \mapsto \textit{w}_1 \ \uplus \ \big(\textit{y}_2 \mapsto \textit{w}_2 \ \uplus \ \textit{h}_1 \ \uplus \ \textit{h}_2 \big) \big)$$

true && true &&
$$(y_3 != y_1)$$

noalias :
$$\forall h \ x_1 \ x_2 \ v_1 \ v_2$$
.
def $(x_1 \mapsto v_1 \ \uplus \ x_2 \mapsto v_2 \ \uplus \ h) \rightarrow x_1 \ != x_2$

$$D: \mathsf{def}\ (y_3 \mapsto w_3 \ \uplus \ y_1 \mapsto w_1 \ \uplus \ (y_2 \mapsto w_2 \ \uplus \ h_1 \ \uplus \ h_2))$$

true && true && true

Glue proof, formally (in Coq)

```
rewrite -!unA -!(unCA (y_2 \mapsto \_) -!(unCA (y_1 \mapsto \_)) unA in D. rewrite (noalias D).

rewrite -!unA - (unC (y_3 \mapsto \_)) -!(unCA (y_3 \mapsto \_)) in D.

rewrite -!(unCA (y_2 \mapsto \_)) unA in D.

rewrite (noalias D).

rewrite -!unA -!(unCA (y_1 \mapsto \_)) -!(unCA (y_3 \mapsto \_)) unA in D.

rewrite (noalias D).
```

Glue proof, formally (in Coq)

```
rewrite -!unA -!(unCA (y_2 \mapsto \_) -!(unCA (y_1 \mapsto \_)) unA in D.
rewrite (noalias D).
rewrite -!unA - (unC (y_3 \mapsto \_)) -!(unCA (y_3 \mapsto \_)) in D.
rewrite -!(unCA (y_2 \mapsto \_)) unA in D.
rewrite (noalias D).
rewrite -!unA -!(unCA (y_1 \mapsto \_)) -!(unCA (y_3 \mapsto \_)) unA in D.
rewrite (noalias D).
```

Automation as it is today

Write custom tactic:

For each $x_i != x_i$ in the goal:

- rearrange hypothesis, to bring x_i and x_i to the front
- apply the noalias lemma
- repeat

Automation as it is today

Write custom tactic:

For each $x_i != x_i$ in the goal:

- rearrange hypothesis, to bring x_i and x_i to the front
- apply the noalias lemma
- repeat

However, custom tactics have several limitations

- Can be untyped or weakly specified
- Automation as a second class citizen

What we want: automated lemmas!

We really want an automated version of the noalias lemma:

noaliasA :
$$\forall ...???... x_1 != x_2$$

where ??? asks type inference to construct glue proof.

Why?

- Strongly-typed custom automation!
- Composable, modular custom automation!

$$(y_1 != y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$

$$(y_1 != y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$
 \downarrow

true && true && true

$$(y_1 != y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$

true && true && true

by performing

 $\underline{\mathsf{rewrite}} \ ! \ (\mathsf{noaliasA} \ D)$

$$(y_1 != y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$

true && true && true

by performing

$$(y_1 == y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$

$$(y_1 == y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$
 \downarrow

false &&
$$(y_2 != y_3)$$
 && $(y_3 != y_1) = false$

$$(y_1 == y_2) \&\& (y_2 != y_3) \&\& (y_3 != y_1)$$

$$\downarrow$$
false && $(y_2 != y_3) \&\& (y_3 != y_1) = false$

by performing

where

negate :
$$\forall b$$
 : bool. ! b = true $\rightarrow b$ = false

How? Lemma automation by overloading

Curry-Howard correspondence!

- Overloading: infer code for a function based on arguments
- Lemma overloading: infer proof for a lemma based on arguments

Our Main Contributions

Idea: proof automation through lemma overloading

Realizing this idea by Coq's canonical structures:

- A generalization of Haskell type classes
- Instances pattern-match terms as well as types

"Design patterns" for controlling Coq type inference

Several interesting examples from HTT

Our Main Contributions

Idea: proof automation through lemma overloading

Realizing this idea by Coq's canonical structures:

- A generalization of Haskell type classes
- Instances pattern-match terms as well as types

"Design patterns" for controlling Coq type inference

Several interesting examples from HTT

See the paper for details!

```
class Eq a where

(==) :: a \rightarrow a \rightarrow Bool

instance Eq Bool where

(==) = \lambda x \ y . (x \&\& y) \mid | (!x \&\& !y)

instance (Eq a, Eq b) \Rightarrow Eq (a \times b) where

(==) = \lambda x \ y . (fst \ x == fst \ y) \&\& (snd \ x == snd \ y)
```

```
class Eq a where

(==) :: a \rightarrow a \rightarrow Bool

instance Eq Bool where

(==) = eq_bool

instance (f_1: Eq a, f_2: Eq b) \Rightarrow Eq (a \times b) where

(==) = eq_pair f_1 f_2
```

Example:

$$(x, true) == (false, y)$$

```
class Eq a where

(==) :: a \rightarrow a \rightarrow Bool

instance Eq Bool where

(==) = eq_bool

instance (f_1 : Eq \ a, \ f_2 : Eq \ b) \Rightarrow Eq \ (a \times b) where

(==) = eq_pair f_1 \ f_2
```

Example:

$$(x, true) == (false, y)$$

eq_pair eq_bool eq_bool

```
class Eq a where

(==) :: a \rightarrow a \rightarrow Bool

instance Eq Bool where

(==) = eq_bool

instance (f_1: Eq a, f_2: Eq b) \Rightarrow Eq (a \times b) where

(==) = eq_pair f_1 f_2
```

Coq overloading: equality type class

Coq structure: just a dependent record type

Coq overloading: equality type class

Coq structure: just a dependent record type

Coq overloading: equality type class

Coq structure: just a dependent record type

Creates projectors for each field, e.g.:

```
sort : Eq \rightarrow Type (_ == _) : \forall e : Eq. sort e \rightarrow sort e \rightarrow bool
```

Canonical instances

Instances defined as in Haskell

$$\underbrace{\text{canonical bool_inst}}_{\text{canonical pair_inst}} \text{bool} \underbrace{\text{bool eq_bool}}_{\text{eq_bool}}$$

$$\underbrace{\text{canonical pair_inst}}_{\text{sort}} (A B : \text{Eq}) := \underbrace{\text{mkEq (eq_pair } A B)}_{\text{cort}}$$

$$\underbrace{\text{(eq_pair } A B)}_{\text{canonical pair pair } A B}$$

$$(x, true) == (false, y)$$

$$(x, true) == (false, y)$$

Remember

$$(_ == _)$$
 : $\forall e : \mathsf{Eq}$. sort $e \to \mathsf{sort}$ $e \to \mathsf{bool}$

$$(x, true) == (false, y)$$

Remember

$$(x, true) == (false, y)$$

Remember

$$(_ == _)$$
 : $\forall e : \mathsf{Eq}$. sort $e \to \mathsf{sort}$ $e \to \mathsf{bool}$

Coq finds an instance of e: Eq that unifies

```
sort e with (bool \times bool)
```

$$(x, true) == (false, y)$$

Remember

$$(_ == _)$$
 : $\forall e : \mathsf{Eq}$. sort $e \to \mathsf{sort}$ $e \to \mathsf{bool}$

Coq finds an instance of e: Eq that unifies

sort
$$e$$
 with $(bool \times bool)$

e = pair_inst bool_inst bool_inst

Adding a proof

```
We add the proof that (\_==\_) is equivalent to Coq's (\_=\_)

name

structure

constructor

mkEq

{sort : Type;
(\_==\_) : sort \to sort \to bool;
proof : \forall x \ y : sort. x == y \leftrightarrow x = y}
```

Adding a proof

```
We add the proof that (\_==\_) is equivalent to Coq's (\_=\_)

name

structure

constructor

mkEq

{sort : Type;
(\_==\_) : sort \to sort \to bool;
proof : \forall x \ y : sort. x == y \leftrightarrow x = y}
```

Now instances also compute the proof:

```
<u>canonical</u> bool_inst := mkEq bool eq_bool pf_bool

<u>canonical</u> pair_inst (A B : Eq) :=

mkEq (sort A \times sort B) (eq_pair A B) (pf_pair A B)
```

Lemma overloading

Overloading a simple lemma

Goal: Prove x is in the domain of

$$\cdots \uplus (\cdots \uplus x \mapsto v \uplus \cdots) \uplus \cdots$$

Overloading a simple lemma

Goal: Prove x is in the domain of

$$\cdots \uplus (\cdots \uplus x \mapsto v \uplus \cdots) \uplus \cdots$$

Naïve lemma:

```
indom : \forall x : \text{ptr. } \forall v : A. \forall h : \text{heap.}
 x \in \text{dom } (x \mapsto v \uplus h)
```

Overloading a simple lemma

Goal: Prove x is in the domain of

$$\cdots \uplus (\cdots \uplus x \mapsto v \uplus \cdots) \uplus \cdots$$

Naïve lemma:

indom :
$$\forall x : ptr. \forall v : A. \forall h : heap.$$

 $x \in dom(x \mapsto v \uplus h)$

Let's overload it!

indom overloaded

Define structure contains x, of heaps that contain x:

indom overloaded

Define structure contains x, of heaps that contain x:

Induced projections:

```
heap_of : \forall x : ptr. contains x \to \text{heap}
indomO : \forall x : ptr. \forall c : contains x. x \in \text{dom (heap\_of } c)
```

The second one is our overloaded lemma

When solving

 $x \in \text{dom } h$

When solving

$$x \in \text{dom } h$$

type inference should proceed as follows:

• If h is $x \mapsto v$, succeed with

singleton_pf :
$$\forall x \ v. \ x \in \text{dom} \ (x \mapsto v)$$

When solving

$$x \in \text{dom } h$$

type inference should proceed as follows:

- If h is $x \mapsto v$, succeed with
 - singleton_pf : $\forall x \ v. \ x \in dom (x \mapsto v)$
- If h is $h_1 \uplus h_2$:
 - If $x \in \text{dom } h_1$, compose with

```
\mathsf{left\_pf} \; : \; \forall h_1 \; h_2. \; x \in \mathsf{dom} \; h_1 \to x \in \mathsf{dom} \; (h_1 \; \uplus \; h_2)
```

When solving

$$x \in \text{dom } h$$

type inference should proceed as follows:

- If h is $x \mapsto v$, succeed with singleton_pf: $\forall x \ v. \ x \in \text{dom} \ (x \mapsto v)$
- If h is $h_1 \uplus h_2$:
 - If $x \in \text{dom } h_1$, compose with

$$\mathsf{left_pf} \ : \ \forall \mathit{h}_1 \ \mathit{h}_2. \ \mathit{x} \in \mathsf{dom} \ \mathit{h}_1 \to \mathit{x} \in \mathsf{dom} \ (\mathit{h}_1 \ \uplus \ \mathit{h}_2)$$

• If $x \in \text{dom } h_2$, compose with

```
right_pf : \forall h_1 \ h_2. \ x \in \text{dom } h_2 \rightarrow x \in \text{dom } (h_1 \uplus h_2)
```

Algorithm encoded in canonical instances of contains *x*:

```
canonical found A \times (v : A) :=
          Contains x (x \mapsto v) singleton_pf
canonical left x h (c: contains x) :=
          Contains x ((heap_of c) \uplus h) (left_pf (indomO c))
<u>canonical</u> right x h (c : contains x) :=
          Contains x (h \uplus (heap_of c)) (right_pf (indomO c))
```

Algorithm encoded in canonical instances of contains *x*:

```
canonical found A \times (v : A) :=
          Contains x (x \mapsto v) singleton_pf
canonical left x h (c: contains x) :=
          Contains x ((heap_of c) \uplus h) (left_pf (indomO c))
canonical right x h (c : contains x) :=
          Contains x (h \uplus (heap_of c)) (right_pf (indomO c))
```

Algorithm encoded in canonical instances of contains *x*:

As a logic program

```
canonical found A \times (v : A) :=
          Contains x (x \mapsto v) singleton_pf
canonical left x h (c: contains x) :=
          Contains x ((heap_of c) \uplus h) (left_pf (indomO c))
canonical right x h (c: contains x) :=
          Contains x (h \uplus (heap_of c)) (right_pf (indomO c))
```

Algorithm encoded in canonical instances of contains *x*:

Canonical structures \approx term classes

```
canonical found A \times (v : A) :=
          Contains x (x \mapsto v) singleton_pf
canonical left x h (c: contains x) :=
          Contains x ((heap_of c) \uplus h) (left_pf (indomO c))
canonical right x h (c: contains x) :=
          Contains x (h \uplus (heap_of c)) (right_pf (indomO c))
```

indomO :
$$\forall x$$
 : ptr. $\forall c$: contains x . $x \in \text{dom (heap_of } c$)

$$y \in \text{dom} (z \mapsto u \uplus y \mapsto v)$$

indomO :
$$\forall x$$
 : ptr. $\forall c$: contains x . $x \in \text{dom (heap_of } c$)

$$y \in \text{dom} (z \mapsto u \uplus y \mapsto v)$$

Solve it by apply indomO

indomO :
$$\forall x : ptr. \forall c : contains x. x \in dom (heap_of c)$$

$$y \in \text{dom} (z \mapsto u \uplus y \mapsto v)$$

Solve it by apply indomO

indomO :
$$\forall x : ptr. \forall c : contains x. x \in dom (heap_of c)$$

$$y \in \text{dom} (z \mapsto u \uplus y \mapsto v)$$

Solve it by apply indomO , unifying:

x with y

indomO :
$$\forall x : ptr. \forall c : contains x. x \in dom (heap_of c)$$

$$y \in \mathsf{dom}\ (z \mapsto u \uplus y \mapsto v)$$

Solve it by apply indomO, unifying:

```
x with y heap_of c with (z \mapsto u \uplus y \mapsto v)
```

indomO :
$$\forall x$$
 : ptr. $\forall c$: contains x . $x \in \text{dom (heap_of } c$)

$$y \in \mathsf{dom}\ (z \mapsto u \uplus y \mapsto v)$$

Solve it by apply indomO, unifying:

x with y heap_of c with
$$(z \mapsto u \uplus y \mapsto v)$$

Result:

$$c = \text{right } y \ (z \mapsto u) \ (\text{found } y \ v)$$

indomO :
$$\forall x$$
 : ptr. $\forall c$: contains x . $x \in \text{dom (heap_of } c$)

$$y \in \mathsf{dom}\ (z \mapsto u \uplus y \mapsto v)$$

Solve it by apply indomO, unifying:

x with y heap_of c with
$$(z \mapsto u \uplus y \mapsto v)$$

Result:

$$c = \text{right } y \ (z \mapsto u) \ (\text{found } y \ v)$$

Example application of indomO

indomO :
$$\forall x$$
 : ptr. $\forall c$: contains x . $x \in \text{dom (heap_of } c$)

$$y \in \mathsf{dom}\ (z \mapsto u \uplus y \mapsto v)$$

Solve it by apply indomO, unifying:

x with y heap_of c with
$$(z \mapsto u \uplus y \mapsto v)$$

Result:

$$c = \text{right } y \ (z \mapsto u) \ (\text{found } y \ v)$$

The truth revealed

Overlapping instances not allowed in Coq!

```
canonical left x h (c : contains <math>x) :=
Contains x ((heap_of c) \uplus h) (left_pf (indomO c))

canonical right x h (c : contains <math>x) :=
Contains x (h \uplus (heap_of c)) (right_pf (indomO c))
```

The truth revealed

Overlapping instances not allowed in Coq!

"Tagging" pattern for instance disambiguation!

What else is in the paper

"Tagging" pattern for instance disambiguation

Example of proof by reflection

"Hoisting" pattern for ordering unification subproblems

"Search-and-replace" pattern for structural in-place-update

Conclusions

Proof automation by lemma overloading

Curry-Howard correspondence!

- Overloading: infer code for a function based on arguments
- Lemma overloading: infer proof for a lemma based on arguments

Robust, verifiable, composable automation routines

Questions?

Comparison with Coq Type Classes

Coq Type Classes (CTC) [Sozeau and Oury, TPHOLs '08]

- Similar to canonical structures, which predated them
- Instance resolution for CTC guided by proof search, rather than by Coq unification
- They're in beta and it's not my fault!
- Overlapping instances resolved by weighted backtracking

We've ported a number of our examples to CTC

- Could not figure out how to port "search-and-replace" pattern
- Sometimes CTC is faster, sometimes CS is faster
- Further investigation of the tradeoffs is needed
- Future work: unify the two concepts?

A word on performance

Performance for lemma overloading currently not great:

- Time to perform a simple assignment to a unification variable is quadratic in the number of variables in the context, and linear in the size of the term being assigned
- With tactics, it's nearly constant-time

Clearly a bug in the implementation of Coq unification:

- Not always a problem, since interactive proofs often keep variable contexts short
- But it needs to be fixed...

Solution: The "Tagging" Pattern

Present different constants for each instance:

```
<u>canonical</u> found A \times (v : A) := \text{Contains } \times (\text{found\_tag } (x \mapsto v)) \dots
<u>canonical</u> left \times h \ (c : \text{contains } \times) :=
Contains \times (\text{left\_tag } ((\text{heap\_of } f) \uplus h)) \dots
<u>canonical</u> right \times h \ (c : \text{contains } \times) :=
Contains \times (\text{right\_tag } (h \uplus (\text{heap\_of } f))) \dots
```

No overlap anymore! Where:

```
found_tag = left_tag = right_tag
```

Lazy unification algorithm unrolls them upon matching failure!

The Tagging Pattern

We employ the "tagging" design pattern to disambiguate instances.

 Rely on lazy expansion of constant definitions by the unification algorithm.

```
 \begin{array}{l} \text{right\_tag } h := \text{Tag } h \\ \text{left\_tag } h := \text{right\_tag } h \\ \hline \text{canonical found\_tag } h := \text{left\_tag } h \\ \end{array} \right\} \text{ all synonyms of Tag }
```

structure tagged_heap := Tag {untag : heap}

- One synonym of Tag for each canonical instance of find x
- Listed in the reverse order in which we want them to be considered during pattern matching
- Last one marked as a canonical instance of tagged_heap

The Tagging Pattern

And we tag each canonical instance of find x accordingly:

```
<u>canonical</u> found A \times (v : A) := \text{Contains } \times (\text{found\_tag } (x \mapsto v)) \dots
<u>canonical</u> left \times h \ (f' : \text{contains } \times) :=
Contains \times (\text{left\_tag } (\text{untag } (\text{heap\_of } f') \uplus h)) \dots
<u>canonical</u> right \times h \ (f'' : \text{contains } \times) :=
Contains \times (\text{right\_tag } (h \uplus \text{untag } (\text{heap\_of } f''))) \dots
```

No overlap! Each instance has a different constant.

Example

Where f: contains y

heap_of $?f \stackrel{\frown}{=} found_tag (x \mapsto u \uplus y \mapsto v)$

Try instance found and fail

Example

Where f: contains y

heap_of
$$?f \stackrel{\frown}{=} left_{tag} (x \mapsto u \uplus y \mapsto v)$$

Try instance left and fail

Example

Where f: contains y

heap_of
$$?f = right_tag(x \mapsto u \uplus y \mapsto v)$$

Try instance right and succeed

Overloaded cancellation lemma for heaps

Applying lemma cancelO on a heap equation

$$x \mapsto v_1 \uplus (h_3 \uplus h_4) = h_4 \uplus x \mapsto v_2$$

cancels common terms to produce

$$v_1 = v_2 \wedge h_3 = \emptyset$$

Steps:

- Logic program turn equations into abstract syntax trees
 - Executed during type inference by unification engine
 - Equal variables turn into equal natural indices
- Functional program cancels common terms
- Functional program translate back into equations

Requires only the tagging pattern

Overloaded version of noalias

```
noalias : \forall h:heap. \forall x_1 x_2:ptr. \forall v_1:A_1. \forall v_2:A_2. def(x_1 \mapsto v_1 \uplus x_2 \mapsto v_2 \uplus h) \to x_1 != x_2 noaliasO : \forall x \ y: ptr. \forall s: seq ptr. \forall f: scan s. \forall g: check x \ y \ s. def (heap_of f) \to x! = (y_of g)
```

- Requires two recursive logic programs
 - scan traverses a heap collecting all pointers into a list s
 - then check traverses s searching for x and y
- Somewhat tricky to pass arguments from scan to check
- Employs the hoisting pattern to reorder unification subproblems.

Search-and-replace pattern

Useful lemma for verifying "Hoare triples":

bnd_write : verify
$$(x \mapsto v \uplus h)$$
 $(x \mapsto v \uplus h)$ post-condition $(x \mapsto w \uplus h)$ write $(x \mapsto w \uplus h)$ write $(x \mapsto w \uplus h)$ write $(x \mapsto v \mapsto h)$ write $(x \mapsto h)$ write $(x$

But we'd like to do "in-place update" on the initial heap, rather than shifting $x \mapsto ?$ to the front of the heap and then back again.

Search-and-replace pattern: example

Example 1: To prove the goal

$$G$$
: verify $(h_1 \uplus (x_1 \mapsto 1 \uplus x_2 \mapsto 2))$ (write $x_2 \not= 4$; $e) \not= g$

we can apply bnd_writeO to reduce it to:

$$G$$
: verify $(h_1 \uplus (x_1 \mapsto 1 \uplus x_2 \mapsto 4)) e q$

Search-and-replace pattern: idea

Build a logic program that turns a heap into a function that abstracts the wanted pointer.

Example: Turn
$$h_1 \uplus (x_1 \mapsto 1 \uplus x_2 \mapsto 2)$$
 into
$$f = \text{fun } k. \ h_1 \uplus (x_1 \mapsto 1 \uplus k)$$

Then the bnd_writeO lemma can be stated roughly as

verify
$$(f(x \mapsto v)) e q \rightarrow$$

verify $(f(x \mapsto w))$ (write $x v; e) q$

Search-and-replace pattern: more formally

It turns out that f must have a dependent function type.

```
structure partition (k r : heap) :=
Partition {heap_of : tagged_heap;
    _ : heap_of = k \uplus r}

bnd_writeO : \forall r : heap. \forall f : (\Pi k : heap. partition k r). \forall . . .

verify (untag (heap_of (f (x \mapsto v)))) e q \rightarrow

verify (untag (heap_of (f (x \mapsto w)))) (write x v; e) q
```

Search-and-replace pattern: forward reasoning

Example 2: Given hypothesis

$$H: \mathsf{verify}\ (h_1 \ \uplus\ (x_1 \mapsto 1\ \uplus\ x_2 \mapsto 4))\ e\ q$$

we can apply (bnd_writeO $(x := x_2)$ (w := 2)) to it:

$$H: \text{verify } (h_1 \uplus (x_1 \mapsto 1 \uplus x_2 \mapsto 2)) \text{ (write } x_2 4; e) q$$

Note: this duality of use is not possible with tactics