ערמת מינימום. רשימה מקושרת

דו-כיוונית של שורשים, עם מצביע

min למינימלי מביניהם. כל קודקוד

אלגוריתמים 1 תשפ"ד

ידידיה אבן-חן

ערמת פיב<u>ונאצ'י</u>

לכל קודקוד יש את המצביעים הבאים: מצביע לאח ימין ולאח שמאל (כאשר האחים הם גם

ברשימה מקושרת דו-כיוונית מעגלית). מצביע לאחד מהילדים שלו (כדי להגיע לבן אחר, ניתן לעבור דרך המצביעים של האחים).

הוספת קודקוד: מוסיפים בתור שורש חדש, מעדכנים את O(1) .min

,marked דגל – m מחזיק ,אחים - left, right אחד הילדים, -c אבא, $-\pi$ ערך שמור. - k מספר ילדים – degree

 $for(p \in roots)$ while(A[deg(p)] points to root q) $A[deg(p)] \leftarrow null$

merge q, p $A[deg(p)] \leftarrow p$ הוצאת המינימלי: כל אחד מהילדים שלו נהייה שורש חדש, ומבצעים כonsolidate – זה מוודא שאין שני שורשים מאותה דרגה:

נשמור מערך A בגודל D .D הוא חסם עליון לדרגה המקסימלית – נקבע אותו בהמשך.

.p מצביע על השורש שיש לו דרגה i. עוברים על המערך עם מצביע A(i) אינווריאנטה של הלולאה: בשורשים עד p, יש לכל היותר שורש אחד מכל מצביע עליו. A דרגה. ואם יש אז

דוגמה:

לא מצביע על שורש באותה A דרגה כמו g, אז לא נכנסים .while

:p שיצביע על A שידכנים את

ומקדמים את p, בלולאה מצביע על A הראשית: עכשיו

שורש באותה דרגה כמו g: נאחד אותם ונמחק את ,while אנחנו עדיין בA המצביע ב ו-A מצביע לשורש בדרגה כמו p:

0 1 2 3 4 5 6 7 8 9

:decreaseKey – הקטנת ערך

,Aב ונמחק. עכשיו אין כפיל ב אז ה while מסתיים ו-p מתקדם.

מקטינים את הערך של הקודקוד. אם תכונת הערמה נהרסת, מנתקים את הקודקוד והופכים אותו לשורש חדש ומעדכנים את min. לקודקוד שהוא לא שורש מותר לאבד עד ילד אחד – כשזה קורה, מסמנים אותו marked. אם קודקוד מסומן מאבד ילד – הוא הופך לשורש. (ואם גם אבא שלו היה כבר מסומן, גם הוא הופך לשורש...)

ניתוח זמן ריצה:

. ענה 1: יהי v קודקוד מדרגה k, ויהיו $w_1 \cdots w_k$ הילדים שלו, לפי הסדר שבו הם נוספו ל

 $d(w_i) \ge i - 2$ מתקיים, $i \ge 2$, מתקיים שנאבדו). אז לכל להיות שהיו עוד ילדים שנאבדו

 w_i מאז, i – 1. מאז, לפחות במהלך consolidate נוסף לע, הם היו מאותה דרגה: לפחות i-1 מאז, ישרים: מוסיפים ילדים רק איבד לכל היותר ילד אחד.

.(k+2 - המספר המינימלי של קודקודים בשורש מדרגה N(k) = F_{k+2} אז N(k) המספר המינימלי של קודקודים בשורש מדרגה הוכחה באינדוקציה על k:

N(0) = 1, N(1) = 1 + N(0) = 2, N(2) = 1 + N(0) + N(0), N(3) = 1 + N(0) + N(0) + N(1) ... ,1 מטענה k-1, נוכיח עבור k, נוכיח עבור k, נוכיח שורש r מדרגה k מדרגה איים שלו לפי הסדר שבו הם נוספו. מטענה k, נניח שמתקיים עבור . אז: $N(i-2) = F_i$ ומהנ"א, . $d(v_i) \ge i-2$

$$N(k) \ge 2 + \sum_{i=2}^{k} N(i-2) = 2 + \sum_{i=2}^{k} F_i = 1 + \sum_{i=0}^{k} F_i = F_{k+2}$$

טענה 2: אם נתחיל מערמה ריקה, ונבצע: $m \le n$ הכנסות, $n \le n$

no.	basic operation	triggered by	# times
1	create new root	<pre>insert()</pre>	$x_1 = n$
2	delete root	<pre>deleteMin()</pre>	$x_2 = m$
3	move child of deleted root to root list	<pre>deleteMin()</pre>	$x_3 \le m \log n$
4	make root child of another root	<pre>deleteMin()</pre>	$x_4 \le x_1 + x_3 + x_8 + x_9$
5	set A entry to NULL	<pre>deleteMin()</pre>	$x_5 = m \log n + x_4$
6	set A entry to p	<pre>deleteMin()</pre>	$x_6 \le x_5$
7	set marked = true	<pre>decreaseKey()</pre>	$x_7 \le k$
8	move decreased node to root list	<pre>decreaseKey()</pre>	$x_8 \le k$
9	move marked node to root list	<pre>decreaseKey()</pre>	$x_9 \le x_7$

הסברים:

- 1) ע"פ הגדרה
- ע"פ הגדרה (2
- קודקודים, לכל n אם יש אם וויש דרגה לפחות יש דרגה לפחות האים, ולכל אחד אים, ולכל אחד איש אם יש F_{k+2} צאצאים, ולכל אחד מהילדים שלו שורש מדרגה איש לפחות logn איז אם נמחק m קודקודים, נצטרך להזיז לכל היותר logn ילדים. איז אם נמחק
 - $X_1 + X_3 + X_8 + X_9$ זה יכול לקרות לכל היותר כמספר השורשים שיש. נסכם את כל הפעולות שמייצרות שורש: $n + m \cdot \log n + 2k \in O(n + m \log n + k)$ זה יוצא בסה"כ
- .consolidate פעמים. וגם בכל פעם שממזגים בתוך m .logn אורך של A זה consolidate קורה בהתחלה של כל X_4 פעמים. אורך של X_4 פעמים.
 - X_5 קורה לכל היותר מספר פעמים כמו (6
 - 7) קורה רק כשקודקוד שהוא לא שורש מאבד ילד רק בהקטנות. כל קודקוד יכול לקבל סימון רק פעם אחת.
 - 8) כנ"ל, קורה רק בהקטנה.
 - 9) קורה רק אם קודקוד מסומן איבד ילד, אז לכל היותר כמספר הקודקודים המסומנים.

.0(n + mlogn + k) בסה"כ: