Report on SkillMatch Resume Matcher and Skill Recommender

1. What is Machine Learning (ML)?

Machine Learning is a crucial component of Artificial Intelligence.

- Core Definition: Machine learning is a subset of Artificial Intelligence (AI) which
 provides machines the ability to learn automatically & improve from experience
 without being explicitly programmed.
- Alternative Definition: Machine Learning is the science of making computers learn and act like humans by feeding data and information without being explicitly programmed.

- The Learning Rule: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."
- History: Arthur Samuel first coined the term Machine Learning in the year 1959.
- Basic Flow: Data \$\rightarrow\$ Training the Machine \$\rightarrow\$ Building a Model \$\rightarrow\$ Predicting Outcome.
 - The machine takes Past Data, Analyses it, and Trains on it to Predict an Output.

2. The Machine Learning Process and Life-Cycle

The Machine Learning process involves building a **Predictive model** that can be used to find a **solution for a Problem Statement**.

The 7-Step Machine Learning Life-Cycle

The process is cyclical and involves:

- 1. Gathering Data
- 2. Data preparation
- 3. Data Wrangling
- 4. Analyse Data
- 5. Train Model
- 6. Test Model
- 7. Deployment

Alternative ML Process Steps

Another view of the process emphasizes model development:

- Define Objective
- Data Gathering
- Preparing Data
- Data Exploration
- Building a Model
- Model Evaluation
- Predictions

3. Real-World Applications of Machine Learning

ML is widely applied across various domains, including:

- Automatic Language Translation
- Medical Diagnosis
- Stock Market trading
- Online Fraud Detection
- Virtual Personal Assistant
- Email Spam and Malware Filtering
- Self driving cars

- Product recommendations
- Traffic Prediction
- Speech Recognition
- Image Recognition
- Face Recognition
- Siri and Cortana
- Healthcare Industry
- Weather Forecasting
- Produce a Web Series (e.g., Netflix recommendations)

Certainly! I can expand section 4 to include **Matplotlib** and **Seaborn**, which are essential libraries for data visualization in the ML process, often used in the **Analyze Data** and **Test Model** phases.

Here is the updated and detailed report.

Detailed Report: Machine Learning and Data Science Fundamentals

This report is compiled from the provided instructional slides and expanded with essential information about core Python data visualization libraries.

1. What is Machine Learning (ML)?

Machine Learning is a crucial component of Artificial Intelligence.

- Core Definition: Machine learning is a subset of Artificial Intelligence (AI) which
 provides machines the ability to learn automatically & improve from experience
 without being explicitly programmed.
- Alternative Definition: Machine Learning is the science of making computers learn and act like humans by feeding data and information without being explicitly programmed.
- The Learning Rule: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

- History: Arthur Samuel first coined the term Machine Learning in the year 1959.
- **Basic Flow:** Data \$\rightarrow\$ Training the Machine \$\rightarrow\$ Building a Model \$\rightarrow\$ Predicting Outcome.
 - The machine takes Past Data, Analyses it, and Trains on it to Predict an Output.

2. The Machine Learning Process and Life-Cycle

The Machine Learning process involves building a **Predictive model** that can be used to find a **solution for a Problem Statement**.

The 7-Step Machine Learning Life-Cycle

The process is cyclical and involves:

- 1. Gathering Data
- 2. Data preparation
- 3. Data Wrangling
- 4. Analyse Data
- 5. Train Model
- 6. Test Model
- 7. **Deployment**

Alternative ML Process Steps

Another view of the process emphasizes model development:

- Define Objective
- Data Gathering
- Preparing Data
- Data Exploration
- Building a Model
- Model Evaluation
- Predictions

3. Real-World Applications of Machine Learning

ML is widely applied across various domains, including:

- Automatic Language Translation
- Medical Diagnosis
- Stock Market trading
- Online Fraud Detection
- Virtual Personal Assistant
- Email Spam and Malware Filtering
- Self driving cars
- Product recommendations
- Traffic Prediction
- Speech Recognition
- Image Recognition
- Face Recognition
- Siri and Cortana
- Healthcare Industry
- Weather Forecasting
- Produce a Web Series (e.g., Netflix recommendations)

4. Key Python Libraries for Data Science

The Python ecosystem relies on several libraries for data handling and analysis in ML. **NumPy** and **Pandas** handle the data itself, while **Matplotlib** and **Seaborn** handle its visual representation.

Library	Full Meaning	Core Functionality	Data Structures / Focus
NumPy	Numerical Python	The core library for numeric and scientific computing.	Multi-dimensional array objects and routines for processing them.
Pandas	Panel Data	The core library for data manipulation and data analysis.	Single and multi-dimensional data-structures (like DataFrames).

Library	Full Meaning	Core Functionality	Data Structures / Focus
Matplotlib	Matplotlib	A low-level library for creating static, animated, and interactive visualizations.	Used for basic plotting (line charts, scatter plots, bar charts) and offers high customizability .
Seaborn	Seaborn	A high-level library built on top of Matplotlib for drawing attractive and informative statistical graphics.	Simplifies creating complex plots (like heatmaps and violin plots) with beautiful default themes and statistical functions.

31/10/2025, 19:35

```
import numpy as np
     n1= np.array([10,20,30,40])
    array([10, 20, 30, 40])
    import numpy as np
    n1=np.full((3,3),10)
    array([[10, 10, 10],
            [10, 10, 10],
            [10, 10, 10]])
     Start coding or generate with AI.
     import numpy as np
     # Corrected the function name from 'np.zeroes' to 'np.zeros'
     n1 = np.zeros((1, 2))
    print(n1)
    [[0. 0.]]
     import numpy as np
     # Corrected the function name from 'np.zeroes' to 'np.zeros'
     n1 = np.arange(1,10)
     n1
    array([1, 2, 3, 4, 5, 6, 7, 8, 9])
     import numpy as np
     # Corrected the function name from 'np.zeroes' to 'np.zeros'
    n1 = np.arange(1,100,3)
    array([ 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49,
            52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97])
    import numpy as np
     # Corrected the function name from 'np.zeroes' to 'np.zeros'
    n1 = np.random.randint(1,100,5)
    array([73, 48, 21, 44, 91])
Double-click (or enter) to edit
     import numpy as np
    n1= np.array([[10,200,4,30],[50,6,20,70]])
    n1.shape
     (2, 4)
     import numpy as np
     # Corrected the function name from 'np.zeroes' to 'np.zeros'
    n1 = np.arange(1,10)
    array([1, 2, 3, 4, 5, 6, 7, 8, 9])
     import numpy as np
    n1= np.array([10,20,30,40])
    n2= np.array([50,60,70,90])
    np.vstack((n1,n2))
    array([[10, 20, 30, 40],
            [50, 60, 70, 90]])
```

```
import numpy as np
n1= np.array([10,20,30,40])
n2= np.array([50,60,70,90])
np.hstack((n1,n2))
array([10, 20, 30, 40, 50, 60, 70, 90])
import numpy as np
n1= np.array([10,20,30,40])
n2= np.array([50,60,70,90])
{\sf np.column\_stack((n1,n2))}
array([[10, 50],
       [20, 60],
       [30, 70],
       [40, 90]])
import numpy as np
n1= np.array([10,20,30,40,50,60])
n2= np.array([50,60,70,90])
np.intersect1d(n1,n2)
array([50, 60])
np.setdiff1d(n1,n2)
array([10, 20, 30, 40])
np.setdiff1d(n2,n1)
array([70, 90])
import numpy as np
n1= np.array([10,20,30,40])
n2= np.array([50,60,70,90])
np.sum([n1,n2])
np.int64(370)
import numpy as np
n1= np.array([10,20,30,40])
n2= np.array([50,60,70,90])
np.sum([n1,n2],axis=0)
array([ 60, 80, 100, 130])
import numpy as np
n1= np.array([10,20,30,40])
n2= np.array([50,60,70,90])
np.sum([n1,n2],axis=1)
array([100, 270])
import numpy as np
n1= np.array([10,20,30,40])
n1=n1*2
array([20, 40, 60, 80])
import numpy as np
n1= np.array([10,20,30,40])
n1=n1+2
array([12, 22, 32, 42])
import numpy as np
n1= np.array([10,20,30,40])
```

```
n1=n1/2
array([ 5., 10., 15., 20.])
import numpy as np
n1= np.array([10,20,30,40])
n1=n1-2
n1
array([ 8, 18, 28, 38])
import numpy as np
n1= np.array([10,20,30,40])
np.mean(n1)
np.float64(25.0)
import numpy as np
n1= np.array([10,20,30,40])
np.std(n1)
np.float64(11.180339887498949)
import numpy as np
n1= np.array([10,20,30,40])
np.median(n1)
np.float64(25.0)
import numpy as np
# Added a comma after the second list
n1 = np.array([[10, 200, 4, 30], [50, 6, 20, 70], [20, 33, 1, 3]])
array([[ 10, 200,
                   4, 30],
       [50, 6, 20, 70],
       [ 20, 33, 1, 3]])
import numpy as np
n1= np.array([[10,200,4,30], [50,6,20,70],[20,33,1,3]])
n1.transpose()
                   20],
array([[ 10, 50,
       [200,
              6,
                   33],
       [ 4, 20,
                   1],
       [ 30, 70,
                    3]])
import numpy as np
n1= np.array([[10,20,4,30], [50,6,20,70],[20,33,1,3]])
array([[10, 20, 4, 30],
       [50, 6, 20, 70],
       [20, 33, 1, 3]])
import numpy as np
n2= np.array([[1,2,3,4], [5,6,7,8],[9,10,11,12]])
array([[ 1, 2, 3, 4],
        [ 5, 6, 7, 8],
        [ 9, 10, 11, 12]])
```

31/10/2025, 19:35 NumPy - Colab

31/10/2025, 19:32 Pandas - Colab

```
import pandas as pd
s1=pd.Series([1,2,3,4,5])
   0
0 1
1 2
2 3
3 4
4 5
dtype: int64
import pandas as pd
s1=pd.Series([1,2,3,4,5], index = ['a','b','c','d','e'])
s1
   0
 a 1
b 2
 c 3
d 4
e 5
dtype: int64
import pandas as pd
s1=pd.Series({'a':1,'b':2,'c':3,'d':4,'e':5})
   0
a 1
b 2
 c 3
d 4
e 5
dtype: int64
import pandas as pd
s1=pd.Series({'a':1,'b':2,'c':3,'d':4,'e':5},index=['b','c','d','a','e'])
s1
    0
b 2
 c 3
 d 4
 a 1
 e 5
dtype: int64
import pandas as pd
s1 = pd.Series(\{'a':1,'b':2,'c':3,'d':4,'e':5\},index = ['f','b','c','d','a','m'])
s1
```

```
0
 f NaN
     2.0
     3.0
     4.0
    1.0
m NaN
dtype: float64
import pandas as pd
s1=pd.Series([1,2,3,4,5])
s1[2]
np.int64(3)
import pandas as pd
s1=pd.Series([1,2,3,4,5])
s1[:2]
   0
0 1
1 2
dtype: int64
import pandas as pd
s1=pd.Series([1,2,3,4,5])
s1[-2:]
   0
3 4
4 5
dtype: int64
import pandas as pd
s1=pd.Series([1,2,3,4,5])
s1+5
    0
0
    6
    7
2 8
3 9
4 10
dtype: int64
import pandas as pd
s1=pd.Series([1,2,3,4,5])
s2=pd.Series([10,20,30,40,50])
s1+s2
```

```
      0
      11

      1
      22

      2
      33

      3
      44

      4
      55

      dtype: int64
```

```
import pandas as pd
pd.DataFrame({"Name":["hemanth","Siri","Ammu"],"Marks":[80,99,100]})

Name Marks

0 hemanth 80
1.
1 Siri 99
2 Ammu 100
```

```
import pandas as pd
ds = pd.read_csv('/Iris.csv')
```

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
0	1	5.1	3.5	1.4	0.2	Iris-setosa	II.
1	2	4.9	3.0	1.4	0.2	Iris-setosa	
2	3	4.7	3.2	1.3	0.2	Iris-setosa	
3	4	4.6	3.1	1.5	0.2	Iris-setosa	
4	5	5.0	3.6	1.4	0.2	Iris-setosa	

```
ds.head(20)
```

31/10/2025, 19:32 Pandas - Colab

ds.iloc[100:150,0:6]	
	J

31/10/202	25, 19:32	Pandas - Colab
(

	าบา		6.3		3.3	6.0	2.5	iris-virginica
101	SepalLe 102	ngthCm	PetalWi 58	idthCm		5.1	1.9	Iris-virginica
10		5.4		0.2	ıl.	5.9	2.1	Iris-virginica
11/3	104	4.8	6.3	0.2	2.9	5.6	1.8	Iris-virginica
12		4.8		0.1	3.0	5.8	2.2	Iris-virginica
13 105	106	4.3	7.6	0.1	3.0	6.6	2.1	Iris-virginica
14		5.8		0.2	2.5	4.5	1.7	Iris-virginica
15 107	108	5.7	7.3	0.4	2.9	6.3	1.8	Iris-virginica
16		5.4		0.4	2.5	5.8	1.8	Iris-virginica
17 109	110	5.1	7.2	0.3	3.6	6.1	2.5	Iris-virginica
18		5.7		0.3	3.2	5.1	2.0	Iris-virginica
19 111	112	5.1	6.4	0.3	2.7	5.3	1.9	Iris-virginica
20		5.4		0.2	3.0	5.5	2.1	Iris-virginica

16	117	6.5		5.5		1.8	ris-virginica	
47	1d	Sepaiwidthcm 77	PetalLengthCm	PetalWidthCm	Species	2 2 2 2		
0	1	3.5	1.4	0.2	Iris-setosa		i.	
10	110	1.1	۷.۷	٠.ى		2.ა	.₁is-virginica	
1	2	3.0	1.4	0.2	Iris-setosa			
10	120	6.0		5.0		1.5	Iris-virginica	
2	3	3.2	1.3	0.2	Iris-setosa	0.0	Later of earliests	
∠∪ 3	4	0.9 3.1	3.∠ 1.5	0.2		2.3	Iris-virginica	
ა 24	122	J. I 5.6		υ.∠ 1 α	Iris-setosa	2 0	Iris-virginica	
4	5	3.6	1.4	0.2	Iris-setosa	۷.۷	ma-virgimica	
7 44	120	3.0	2.0	0.2		2.0	Iris-virginica	
							3	
22	19/	6.3		1 Ω		1.8	Iris-virginica	
45	146	3.0	5.2	2.3	Iris-virginica		•	
47	140	0.7	J.J	J.1		2.1	Iris-virginica	
46	147	2.5	5.0	1.9	Iris-virginica			
25	126	7 2		6.0		1.8	Iris-virginica	
47	148	3.0	5.2		Iris-virginica	4.0	Into observatora	
40	140	∪.∠ 2.4		7.0		1.8	Iris-virginica	
48 27	149	3.4 6.1	5.4	2.3	Iris-virginica	1 8	Iris-virginica	
49	150	3.0	5.1	1.8	Iris-virginica	1.0	mo-virginica	
7 3	120	U. 4		0.0		2.1	Iris-virginica	
		5 columns	2.0	0.0		'	9111100	
	130	7.2	3.0	5.8		1.6	Iris-virginica	

131	132	7.9	3.8	6.4	2.0	íris-virginica	
132	Id 133	SepalLengthCm 64	SepalWidthCm 28	PetalLengthCm 56	PetalWidthCm 2つ	Species Iris-virginica	=
0	1	5.1	3.5	1.4	0.2	Iris-setosa	ıl.
4 134	135	5.0 6.1	3.6 2.6	1.4 5.6	0.2 1.4	Iris-setosa Iris-virginica	
5	6	5.4	3.9	1.7	0.4	Iris-setosa	

```
import numpy as np
from matplotlib import pyplot as plt
x=np.arange(1,11)
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
y=2*x
У
array([ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20])
plt.plot(x,y)
plt.show()
 20.0
 17.5
 15.0
 12.5
 10.0
  7.5
  5.0
  2.5
                                                        8
                                                                      10
plt.plot(x,y)
plt.title("Line plot")
plt.xlabel("x-Label")
plt.ylabel("y-Label")
plt.show()
                                      Line plot
    20.0
    17.5
    15.0
    12.5
12.5
10.0
     7.5
     5.0
     2.5
                                4
                                                           8
                                                                        10
                                              6
                                       x-Label
plt.plot(x,y,color="g",linestyle=':',linewidth=2)
plt.show()
```



```
x=np.arange(1,11)
y1=2*x
y2=3*x
```

```
plt.plot(x,y1,color='g',linestyle=':',linewidth=2)
plt.plot(x,y2,color='r',linestyle='-.',linewidth=3)
plt.title("Line Plot")
plt.xlabel("x-label")
plt.ylabel("y-label")
plt.grid(True)
plt.show
```

```
matplotlib.pyplot.show
def show(*args, **kwargs) -> None

Display all open figures.

Parameters
------
block: bool, optional
   Whether to wait for all figures to be closed before returning.
```



```
x=np.arange(1,11)
y1=2*x
y2=3*x

plt.subplot(2,1,1)
plt.plot(x,y1,color='g',linestyle=':',linewidth=2)
```

```
plt.grid(True)
plt.subplot(2,1,2)
plt.plot(x,y2,color='b',linestyle=':',linewidth=2)
plt.grid(True)
plt.show()
 20
 15
 10
  5
                                                               10
             2
                          4
                                      6
                                                   8
 30
 25
 20
 15
             .....
 10
  5
                                      6
                                                   8
                                                               10
```

```
student = {"Ammu":100, "Hemanth":90,"Kannu":10}
```

```
names = list(student.keys())
values = list(student.values())
```



```
plt.bar(names,values)
plt.title("Bar Plot")
plt.xlabel("Names")
plt.ylabel("Marks")
plt.grid(True)
plt.show()
```



```
plt.barh(names,values,color="g")
plt.title(" Horinzontal Bar Plot")
plt.xlabel("Names")
plt.ylabel("Marks")
plt.grid(True)
plt.show()
```



```
from matplotlib import pyplot as plt
x = [10, 20, 30, 40, 50, 60, 70, 80, 90]
a = [8,1,7,2,0,3,7,3,2]
plt.scatter(x,a)
plt.show()
```



```
x = [10, 20, 30, 40, 50, 60, 70, 80, 90]
a = [8,1,7,2,0,3,7,3,2]
b = [7,2,5,6,9,1,4,5,3]
plt.scatter(x,a,marker="*",c="g",s=100)
plt.scatter(x,b,marker=".",c="r",s=200)
plt.show()
 8
 6
 4
 2
 0
     10
            20
                    30
                                  50
                                          60
                                                 70
                                                         80
                                                                90
                           40
```

```
x = [10, 20, 30, 40, 50, 60, 70, 80, 90]
a = [8,1,7,2,0,3,7,3,2]
b = [7,2,5,6,9,1,4,5,3]

plt.subplot(1,2,1)
plt.scatter(x,a,marker="*",c="g",s=100)

plt.subplot(1,2,2)
plt.scatter(x,b,marker="-",c="r",s=200)
plt.show()
```



```
from matplotlib import pyplot as plt
data = [1,3,3,3,3,9,9,5,4,4,8,8,8,6,7]
plt.hist(data)
plt.show()
```


Double-click (or enter) to edit

from matplotlib import pyplot as plt
data = [1,3,3,3,3,9,9,5,4,4,8,8,6,7]
plt.hist(data, color='b',bins =4)
plt.show()


```
import pandas as pd
Iris = pd.read_csv('Iris.csv')
Iris.head()
plt.hist(Iris['SepalLengthCm'],bins=30,color="r")
plt.show()
```



```
one = [1,2,3,4,5,6,7,8,9]
two = [1,2,3,4,5,4,3,2,1]
three = [6,7,8,9,8,7,6,5,4]

data = list([one,two,three])
plt.boxplot(data)
plt.show()
```


from matplotlib import pyplot as plt
fruit = ['Apple','Orange','Mango','Gauva']
quantity =[69,42,33,57]
plt.pie(quantity,labels=fruit)
plt.show()

from matplotlib import pyplot as plt
fruit = ['Apple','Orange','Mango','Gauva']
quantity = [69,42,33,57]
plt.pie(quantity,labels=fruit,radius=2)
plt.pie([1],colors=['w'],radius=1)
plt.show()
Apple

31/10/2025, 19:33 Seaborn - Colab

```
import seaborn as sns
from matplotlib import pyplot as plt
fmri = sns.load_dataset("fmri")
fmri.head()
```

	subject	timepoint	event	region	signal
0	s13	18	stim	parietal	-0.017552
1	s5	14	stim	parietal	-0.080883
2	s12	18	stim	parietal	-0.081033
3	s11	18	stim	parietal	-0.046134
4	s10	18	stim	parietal	-0.037970

```
sns.lineplot(x="timepoint",y="signal",data =fmri)
plt.show()
```


sns.lineplot(x="timepoint", y="signal",hue="event",style="event",markers=True,data=fmri)
plt.show()

import pandas as pd
import seaborn as sns
sns.set(style="whitegrid")

pokemon=pd.read_csv('/content/sample_data/pokemon.csv') pokemon.head()

1 2 Ivysaur Grass Poison 60 62 63 80 80 60 1 False 2 3 Venusaur Grass Poison 80 82 83 100 100 80 1 False 3 4 Mega Venusaur Grass Poison 80 100 123 122 120 80 1 False		#	Name	Type 1	Type 2	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
2 3 Venusaur Grass Poison 80 82 83 100 100 80 1 False 3 4 Mega Venusaur Grass Poison 80 100 123 122 120 80 1 False	0	1	Bulbasaur	Grass	Poison	45	49	49	65	65	45	1	False
3 4 Mega Venusaur Grass Poison 80 100 123 122 120 80 1 False	1	2	Ivysaur	Grass	Poison	60	62	63	80	80	60	1	False
	2	3	Venusaur	Grass	Poison	80	82	83	100	100	80	1	False
4 5 Charmander Fire NaN 39 52 43 60 50 65 1 False	3	4	Mega Venusaur	Grass	Poison	80	100	123	122	120	80	1	False
4 0 Chambardon Filo Hart 60 62 40 60 60 60 1 False	4	5	Charmander	Fire	NaN	39	52	43	60	50	65	1	False

import numpy as np import pandas as pd ${\tt import\ matplotlib.pyplot\ as\ plt}$ import seaborn as sns

ds = sns.load_dataset('tips')

ds.head() total_bill tip sex smoker day time size 2 16.99 1.01 Female No Sun Dinner 3 10.34 1.66 Male Sun Dinner Νo 21.01 3.50 3 Male No Sun Dinner 23.68 3.31 2 Male Sun Dinner No 24.59 3.61 Female No Sun Dinner

(244, 7)

ds.shape

sns.relplot(data=ds,x='total_bill',y='tip',hue='smoker')

sns.relplot(data=ds,x='total_bill',y='tip',size ='size',sizes=(15, 200))

fmri =sns.load_dataset('fmri')

fmr	ri.head()				
	subject	timepoint	event	region	signal
0	s13	18	stim	parietal	-0.017552
1	s5	14	stim	parietal	-0.080883
2	s12	18	stim	parietal	-0.081033
3	s11	18	stim	parietal	-0.046134
4	s10	18	stim	parietal	-0.037970

fmri.shape

(1064, 5)

