Outline

- Language used: Matlab
- Main program file: main.m
- Required function: Rouwenhorst.m
- Procedures:
 - 1. set up the environment
 - 2. discretize the AR(1) process $\log(z_{t+1}) = \rho \log(z_t) + \varepsilon_{t+1}$ using the Rouwenhorst's method
 - 3. find the roots for the nonlinear system of equations
 - 4. find the stationary distribution by iteration
 - 5. simulate a sequence from the AR(1) process and plot the results

Baseline Mortensen-Pissarides

 Use Rouwenhorst's method to discretize the AR(1) process

• Grid size = 40, evenly spaced between $(-\sigma \sqrt{\frac{N-1}{1-\rho^2}}, \ \sigma \sqrt{\frac{N-1}{1-\rho^2}})$

Baseline Mortensen-Pissarides

• Simulation (T = 150)

Hagedorn and Manovskii (2008)

- Bargaining weight for workers μ : 0.72 \rightarrow 0.05
- Unemployment utility b:
 0.4 → 0.95

Hagedorn and Manovskii (2008)

• Compared to the baseline case, market tightness (θ) is now more volatile (magnitude of change is larger across business cycles)

