贝叶斯分类

内容目录

- 买西瓜的例子
- 相关公式
- 伯努利分布和高斯分布
- 手写数字识别

买西瓜的例子

如何鉴别西瓜熟了?

- 先验概率: 瓜摊上60%的瓜都是 熟瓜
- 后验概率: 瓜蒂脱落的瓜就是熟瓜

求后验概率:

P(瓜熟|瓜蒂脱落) = P(瓜熟) * P(瓜蒂脱落|瓜熟) / P(瓜蒂脱落)

根据以往的买瓜经验:

```
P(瓜熟)=0.6
P(瓜蒂脱落|瓜熟)=0.8
P(瓜蒂脱落)=0.64
```

可得:

P(瓜熟|瓜蒂脱落) = 0.6*0.8 / 0.64 = 0.75

通过3个特征来判断西瓜熟了

瓜蒂脱落	颜色	形状	结果
是	浅绿	<u>员</u>	点熟
否	深绿	尖	瓜生
•••			

给定一个向量X(包含3个特征),分别求出:

```
P(瓜熟|X) = P(瓜熟) * P(X|瓜熟) / P(X)
```

 $P(\mathbb{M} \pm | X) = P(\mathbb{M} \pm) * P(X|\mathbb{M} \pm) / P(X)$

根据以往的买瓜经验:

```
P(瓜蒂脱落|瓜熟)=2/3 P(瓜蒂脱落|瓜生)=0.25 P(浅绿|瓜熟)=1/3 P(浅绿|瓜生)=0.25 P(圆形|瓜熟)=2/3 P(圆形|瓜生)=0.25
```

可得:

```
P(瓜熟|X) = 0.6 * 2/3 * 1/3 * 2/3 = 4/45 P(瓜生|X) = 0.4 * 0.25 * 0.25 * 0.25 = 1/160
```

相关公式

贝叶斯公式

$$P(Y|X) = \frac{P(Y)*P(X|Y)}{P(X)}$$

朴素贝叶斯分类

$$egin{aligned} P(Y=c_k|X=x) &= rac{P(Y=c_k)*P(X=x|Y=c_k)}{P(X=x)} \ y &= arg \max_{c_k} rac{P(Y=c_k)*P(X=x|Y=c_k)}{P(X=x)} \ &= arg \max_{c_k} P(Y=c_k) * P(X=x|Y=c_k) \ &= arg \max_{c_k} P(Y=c_k) * \prod_{j=1}^n P(X^{(j)}=x^{(j)}|Y=c_k) \end{aligned}$$

伯努利分布和高斯分布

伯努利分布

$$p_X(x) = egin{cases} p, & ext{若} x=1 \ 1-p, & ext{若} x=0 \end{cases}$$

高斯分布

$$f_X(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/(2\sigma^2)}$$

3个特征的特征值变成0~255

瓜蒂脱落	颜色	形状	结果
251	1	240	瓜熟
3	155	16	瓜生
•••			

P(瓜熟|X) = 0.6 * 0.06 * 0.04 * 0.01

 $P(\text{$\square$\pm|X$}) = 0.4 * 0.03 * 0.11 * 0.02$

如何求解高斯分布函数?

$$f_X(x) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

其中:

 μ 是特征的均值E[X]

$$\sigma^2$$
是特征的方差 $var(X) = E[(X - E[X])^2]$

手写数字识别

28x28像素的手写数字图片和对应的数字,训练集60000张,测试集10000张

伯努利分布法: 像素是否有色值

0	1	2	•••	783	结果
有	无	有	•••	有	4
无	无	有	•••	有	1
•••					

高斯分布法: 像素的灰度值0~255

0	1	2	•••	783	结果
0	218	0	•••	0	4
0	52	195	•••	163	1
•••					

代码地址: xxx

代码结果:

• 伯努利分布法的准确率: 84%

• 高斯分布法的准确率: 89%

注意事项:

- 1. 朴素贝叶斯分类假设各个特征之间概率彼此独立,但实际上并不是
- 2. 使用概率统计的时候,遇到分母为0情况可以用拉普拉斯平滑
- 3. 使用高斯分布法求特征的概率,概率太小会损失精度,使用对数函数缓解

Thanks