# 1 特殊构型, 唯一性定理, 电像法与 Green 定理等

# 1.1 本构关系

对均匀带电球面:

$$\sigma = \frac{Q}{4\pi R^2}.$$

对均匀带电球:

$$Q = \frac{4}{3}\pi R^3 \rho \Longleftrightarrow \rho = \frac{3Q}{4\pi R^3}.$$

## 1.2 特殊构型

| 几何      | 源电荷                    | 场                                                                                                                                                                                                      |
|---------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 均匀带电导线  | λ                      | $oldsymbol{E} = rac{\lambda}{2\pi\epsilon_0 r} \hat{oldsymbol{r}}$                                                                                                                                    |
| 均匀带电平面  | σ                      | $E = \frac{\sigma}{2\epsilon_0}$                                                                                                                                                                       |
| 均匀带电球壳  | Q                      | 球外: $oldsymbol{E}=rac{Q}{4\pi\epsilon_0 r^2}\hat{oldsymbol{r}}$                                                                                                                                       |
| 均匀带电圆盘  | σ                      |                                                                                                                                                                                                        |
| 均匀带电圆环  | Q                      | 中轴线: $V = \frac{\sigma}{2\epsilon_0} \left( \sqrt{R^2 + z^2} - z \right)$<br>中轴线: $V = \frac{Q}{4\pi\epsilon_0} \frac{1}{\sqrt{R^2 + z^2}}$                                                            |
| 均匀带电球   | Q                      | 球内: $\mathbf{E} = \frac{Qr}{4\pi\epsilon_0 R^3}\hat{\mathbf{r}}, U = \frac{3Q}{8\pi\epsilon_0 R} - \frac{Qr^2}{8\pi\epsilon_0 R^3}$<br>球外: $\mathbf{E} = \frac{Q}{4\pi\epsilon_0 r^2}\hat{\mathbf{r}}$ |
| 偶极子     | p                      | $m{E} = rac{p}{4\pi\epsilon_0 r^3} \left[ 3 \left( m{z} \cdot \hat{m{r}} \right) \hat{m{r}} - m{z}  ight] \ U = rac{m{p} \cdot \hat{m{r}}}{4\pi\epsilon_0 r^2}$                                      |
| 球壳      | $\sigma =$             | 球内: $oldsymbol{E} = -rac{\sigma_0}{3\epsilon_0}\hat{oldsymbol{z}}$                                                                                                                                    |
| . 4.7.0 | $\sigma_0 \cos \theta$ | 球外: $\boldsymbol{E} = \frac{\sigma_0}{3\epsilon_0} \frac{R^3}{r^3} \left[ 3 \left( \hat{\boldsymbol{z}} \cdot \hat{\boldsymbol{r}} \right) \hat{\boldsymbol{r}} - \hat{\boldsymbol{z}} \right]$        |

| 构型 | 能量 |
|----|----|
| 构室 | 比里 |

### 1 特殊构型, 唯一性定理, 电像法与 GREEN 定理等

2

| 均匀带电球  | $W = \frac{3Q^2}{20\pi\epsilon_0 R}$ |
|--------|--------------------------------------|
| 均匀带电球面 | $W = \frac{Q^2}{8\pi\epsilon_0 R}$   |

| 原构型  | 源电荷                             | 等效构型  | 等效电荷                                       | 有效区域 |
|------|---------------------------------|-------|--------------------------------------------|------|
| 有限导线 | λ                               | 切圆投影  | λ                                          | 単点   |
| 带电球壳 | $\sigma = \sigma_0 \cos \theta$ | 均匀极化球 | $oldsymbol{P} = \sigma \hat{oldsymbol{z}}$ | 球外   |

| 构型     | 电容                                                |
|--------|---------------------------------------------------|
| 平行板电容器 | $C = \frac{\epsilon S}{b - a}$                    |
| 圆柱电容器  | $C = \frac{2\pi\epsilon L}{\log\left(b/a\right)}$ |
| 球形电容器  | $C = \frac{4\pi\epsilon}{1/a - 1/b}$              |

| 场              | 常用边界条件                                                                                           | 适用条件 | 退化情形                                                                                          |  |
|----------------|--------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------|--|
| $oldsymbol{E}$ | $E_{2n} - E_{1n} = \sigma/\epsilon_0$                                                            | 真空   | 无面电荷: $E_{2n} = E_{1n}$                                                                       |  |
|                | $\boldsymbol{E}_2''=\boldsymbol{E}_1''$                                                          | 无条件  |                                                                                               |  |
| D              | $D_{2n} - D_{1n} = \sigma_f$                                                                     | 介质边界 | 无自由面电荷: $D_{2n}=D_{1n}$                                                                       |  |
| V              | $\epsilon_1 \frac{\partial V}{\partial n} - \epsilon_2 \frac{\partial V}{\partial n} = \sigma_f$ | 介质边界 | 无自由面电荷: $\epsilon_1 \frac{\partial V}{\partial n} = \epsilon_2 \frac{\partial V}{\partial n}$ |  |
| J              | $J = \sigma_1 E_1 = \sigma_2 E_2$                                                                | 稳恒电流 |                                                                                               |  |
| n 皆表示从 1 指向 2. |                                                                                                  |      |                                                                                               |  |

#### 注意

### $D^{//}$ 在边界处不连续.

### 1.3 唯一性定理



图 1

### 定理 1.1 (第一唯一性定理). 如图 1a, 若

- 1.  $S = \partial V$  上的电势  $\varphi|_S$  给定;
- 2. V 内部的电荷分布 ρ 已知;

则  $\varphi$  在 V 内唯一确定.

定理 1.2 (第二唯一性定理). 如图 1b, 若

- 1.  $S = \partial V$  上的电势  $\varphi|_S$  给定;
- 2. 诸导体上电荷量  $Q_i$  给定;
- 3. V 内部的电荷分布  $\rho$  已知;

则  $\varphi$  在 V 内唯一确定.

- 推论 1.1 (导体静电场叠加原理). 设空间中有固定导体,
  - 1. 当诸导体电势为  $\varphi_i$ , 相应带电量为  $Q_i$ , 空间电势为  $\varphi$ ;
  - 2. 当诸导体电势为  $\varphi_i$ , 相应带电量为  $Q_i$ , 空间电势为  $\varphi'$ ;

则诸导体电势为  $\varphi_i+\varphi_i'$  时,相应带电量为  $Q_i+Q_i'$ ,空间电势为  $\varphi+\varphi'$ .

### 1.4 电像法

### 定理 1.3 (电像法的原则).

- 1. 源电荷位置即解的有效位置;
- 2. 像电荷之和恰好等于该区域内电荷之和.

| 导体              | 源位置   | 源电荷 | 像位置      | 像电荷                                                                                                         |
|-----------------|-------|-----|----------|-------------------------------------------------------------------------------------------------------------|
| 接地平面            | 上方 +d | +q  | 下方 -d    | -q                                                                                                          |
| 接地平面            | 上方 +d | p   | 下方 -d    | <b>p</b> 沿 z 反射                                                                                             |
| 电介质             |       |     | 上方 +d    | $\frac{\epsilon_0 \left(\epsilon_2 - \epsilon_1\right)}{\epsilon_2 \left(\epsilon_1 + \epsilon_2\right)} q$ |
| 下方 $\epsilon_2$ | 下方 -d | +q  | 下方 -d    | $q\mapsto \frac{\epsilon_0}{\epsilon_2}q$                                                                   |
| 上方 $\epsilon_1$ |       |     | 下方 -d    | $\frac{\epsilon_0 \left(\epsilon_2 - \epsilon_1\right)}{\epsilon_2 \left(\epsilon_1 + \epsilon_2\right)} q$ |
| v=0             |       |     |          |                                                                                                             |
| 接地垂直            | 导体板间  | +q  | 连续 2 次反射 | $\pm q$                                                                                                     |
| 接地 60°          | 导体板间  | +q  | 连续 3 次反射 | ±q                                                                                                          |

| $-q$ $+q$ $60^{\circ}$   |        |              |                            |                                      |
|--------------------------|--------|--------------|----------------------------|--------------------------------------|
| 接地球壳                     | 球外 d 处 | +q           | 球内 <u>R</u> <sup>2</sup> 处 | $-\frac{R}{d}q$                      |
| 带电球壳                     | 球外 d 处 | +q           | 球内 <u>R</u> <sup>2</sup> 处 | $q' = -\frac{a}{d}q$                 |
| 市电外允                     | 球壳     | Q            | 球内 O 处                     | Q-q'                                 |
| 接地球壳                     | 球内 d 处 | +q           | 球外 $\frac{R^2}{d}$ 处       | $-\frac{R}{d}q$                      |
| 恒 $\varphi_0$ 球壳         | 球内 d 处 | +q           | 球外 $\frac{R^2}{d}$ 处       | $-\frac{R}{d}q$                      |
|                          | 球壳表面   | 电势 $arphi_0$ | 球壳表面                       | $\sigma' = \epsilon_0 \varphi_0 / R$ |
| $r_p$ $r_1$ $r_2$ $qR/p$ |        |              |                            |                                      |

| 接地球壳 | 轴上方 +d      | +q  | 轴上方 R <sup>2</sup> 处   | $q' = -\frac{R}{d}q$ |
|------|-------------|-----|------------------------|----------------------|
| 组合平面 | 14412/11/14 | 19  | 沿平面反射                  | $\pm q, \pm q'$      |
| 接地球壳 | 板间球外 R 处    | +q  | 板间球内 $\frac{R^2}{d}$ 处 | $q' = -\frac{R}{d}q$ |
| 组合垂直 |             | 1 4 | 连续 2 次反射               | $\pm q, \pm q'$      |



### 注意

球壳的  $q' \neq -q$ , 但圆柱的  $\lambda' = -\lambda$ . 且二者的半径位置相同.

### 1.4.1 对称性论证

对于具有旋转对称性的构型,通过对线圈的 U 积分求出轴线上的 U 和  $\boldsymbol{E}$ .

### 1.5 积分及其他数学

常用积分:

$$\int \sqrt{x^2 + z^2} = \frac{1}{2}x\sqrt{x^2 + z^2} + \frac{1}{2}z^2 \ln\left(x + \sqrt{x^2 + z^2}\right).$$

$$\int \frac{1}{\sqrt{x^2 + z^2}} dx = \ln\left(x + \sqrt{x^2 + z^2}\right).$$

$$\int \frac{x}{\sqrt{x^2 + z^2}} dx = \sqrt{x^2 + z^2}.$$

$$\int \frac{1}{(x^2 + z^2)^{3/2}} dx = \frac{x}{z^2\sqrt{x^2 + z^2}}.$$

$$\int \frac{x}{(x^2 + z^2)^{3/2}} dx = -\frac{1}{\sqrt{x^2 + z^2}}.$$

$$\int \frac{x^2}{(x^2 + z^2)^{3/2}} dx = -\frac{x}{\sqrt{x^2 + z^2}} + \ln\left|x + \sqrt{x^2 + z^2}\right|.$$

$$\int \frac{1}{\sqrt{r^2 + z^2 - 2rzu}} du = \frac{1}{rz}\sqrt{r^2 + z^2 - 2rzu}.$$

$$\int \frac{1}{1 + t} \frac{1}{\sqrt{1 + (r^2 + 1)t}} dx = \frac{2}{r} \arctan \frac{\sqrt{1 + (r^2 + 1)x}}{r}.$$

$$\int \frac{1 + r}{r^2} e^{-r} dr = -\frac{e^{-r}}{r}.$$

$$\int re^{-r} dr = e^{-r} (-1 - r).$$

$$\int r^2 e^{-r} dr = e^{-r} (-2 - 2r - r^2).$$

$$\int r^n e^{-r} dr = e^{-r} \left(-n! - \frac{n!}{1!}r - \frac{n!}{2!}r^2 - \dots - \frac{n!}{n!}r^n\right).$$

#### 注意

对于  $y'' = \lambda y^n$  型的方程, 不能通过设  $y = (ax + b)^{\mu}$  求解, 必须分离变量.

Legendre 多项式展开:

$$\frac{1}{\sqrt{1 - 2x \cos \theta + x^2}} = \sum_{n=0}^{\infty} P_n (\cos \theta) x^n.$$

$$P_0(x) = 1,$$

$$P_1(x) = x,$$

$$P_2(x) = \frac{1}{2} (3x^2 - 1),$$

$$P_3(x) = \frac{1}{2} (5x^3 - 3x^2).$$

曲线坐标系下的散度:

$$\nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 F_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta F_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial F_\varphi}{\partial \varphi}.$$

$$\nabla \cdot \mathbf{F} = \frac{1}{s} \frac{\partial}{\partial s} \left( s F_s \right) + \frac{1}{s} \frac{\partial F_\varphi}{\partial \varphi} + \frac{\partial F_z}{\partial z}.$$

### 1.6 结论

### 1.6.1 一般静电学

cf.G.2.43.,计算电荷分布之一部受令一部施加的力时,可直接对  $\rho E$  积分,盖任何分布皆不对自身有静电力.

cf.G.2.33., 将小量 dq 沿等势面涂抹, 做功为零.

#### 注意

cf.M.3.14., 计算电荷分布能量时, 若为外场导致能量则无需  $\frac{1}{2}$  因子, 反之自能需要  $\frac{1}{2}$  因子.

电荷分布能量为

$$W = \sum_{i} W_{i \text{ self}} + \sum_{i \neq j} W_{i j \text{ inter}}.$$

### 1.6.2 电介质中的静电学

参考 HG.2.21., 电介质中叠加原理亦适用, 适用电像法时可以先引入一个源电荷, 再引入第二个源电荷.

- 1. 电介质填充介面为等势面时,  $\boldsymbol{D}$  前后不变, 即  $\boldsymbol{E}\mapsto \boldsymbol{E}/\epsilon_r$ .
- 2. 电介质填充介面沿电场线时,可假设  $E \mapsto \alpha E$  处处一致成立,通过适当边界条件确定  $\alpha$ . 参考 M.2.3.31.

介质自动将任何自由电荷约化为  $q \mapsto q/\epsilon_r$ (例如介质内嵌电荷),  $\sigma \mapsto \sigma/\epsilon_r$ (例如电容边界处).

#### 1.6.3 电容器相关

电容器几何量

$$U = \frac{Q}{C}, \quad Q = CU, \quad C = \frac{Q}{U}.$$
 
$$W = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CU^2 = \frac{1}{2}QU.$$

电容器串联时, 能量  $W_1 \propto C_2$ ,  $W_2 \propto C_1$ , 并联时  $W_1 \propto C_1$ ,  $W_2 \propto C_2$ , 注意与电阻的情形区分.

参考 M.3.34., 3.35., 3.47, 带电电容器的串接: 电容直接视为并联, 电量直接中和. 电容器内不完全插入电介质, 分解为电容器的串/并联.

参考 M.2.3.4., 2.3.5., 2.3.6., 2.3.25., 存在共用极板/覆叠极板时, 考虑将极板拆分为电容并联.

参考 M.3.38., 3.39., 电容器极板受力

$$F = \frac{1}{2} \epsilon E^2 S.$$

区别于真空下的受力 (cf.G.2.37.)

$$F = \frac{1}{2}\epsilon_0 E^2 S.$$

参考 M.3.40., 电容器对导体的力矩为

$$M = \left(\frac{\partial W}{\partial \theta}\right)_U = -\left(\frac{\partial W}{\partial \theta}\right)_Q.$$

M 为正时力矩使  $\theta$  有增大趋势.

通过对 F 积分计算电容吸入电介质做功时,自电介质达边界处始积分.

#### 1.6.4 电流

$$\sigma = \frac{ne^2\tau}{m}.$$

两个理想导体在无限均匀电介质中成立

$$RC = \rho \epsilon$$
.

体电流发热功率

$$P = \iint \sigma E^2 \, \mathrm{d}V.$$

### 注意

$$R = \int_{a}^{b} \frac{\mathrm{d}r}{\sigma \cdot S}.$$

特别地,对于球壳,

$$R = \int_{a}^{b} \frac{\mathrm{d}r}{\sigma \cdot 4\pi r^{2}}.$$

尤其注意分子分母的位置.