CLASSIFICAÇÃO DE IMAGENS COM REDES NEURAIS CONVOLUCIONAIS

PROF. DR. MURILO COELHO NALDI

CARLOS EDUARDO FONTANELI RA 769949

EDUARDO MINORU TAKEDA RA 776857

IVAN DUARTE CALVO RA 790739

Problemática

Aplicar as técnicas de redes neurais convolucionais para classificação de imagens

Conjunto de Dodos

Diversas imagens de paisagens com dimensão 150x150 pixels e 3 canais de cores.

Rótulos

- Montanha
- Rua
- Geleira
- Prédios
- Mar
- Floresta

Estudo dos Dados

Realização da análise exploratória dos dados bem como seu pré-processamento

Treino, Teste e Avaliação de Modelos

Implementação de uma rede neural convolucional e análise de suas métricas.

Objetivos & Metodologia

Objetivos

Gerar e analisar uma rede neural convolucional capaz de classificar imagens de paisagens.

Metodologia

Análise exploratória dos dados.

Implementação sistematizada de modelos, com treino e teste sobre o conjunto de dados.

Avaliação dos resultados obtidos.

Ferramentas

Linguagem de programação multiparadigma orientada a objetos: Python.

Jupiter Notebooks para realização do relatório, através do Google Colab.

Canva para elaboração da apresentação.

Leitura dos Dados e Pré-Processamento

Dados dispostos em pastas de treino e teste, dentro delas imagens divididas em pastas dos rótulos

Leitura e extração dos rótulos de forma sistematizada, embaralhamento dos dados

Redimensionamento das imagens para 150x150 e normalização da escala 0-255 para 0-1

Diminuição do dataset para 3/4 dado a limitação de hardware

Análise Exploratória

Obtenção de informações mais palpáveis e interpretativas

Busca de possíveis desbalanceamentos entre os rótulos

Análise visual dos dados

Visualização de alguns exemplos

Redução dos dados

- Testes de funcionamento com diferentes tamanhos.
- Dataset de treino original: 14034 imagens
- Dataset de treino final: 10526

```
Exemplos de treinamento: 10526
Exemplos de teste: 2250
Dimensão das imagens: (150, 150, 3)
```

- Dataset de teste original 3000: imagens
- Dataset de teste final: 2250

Proporção Treino x Teste

• Proporção de cerca de 80%x20%

Distribuição rótulos para treinamento

• Distribuição equilibrada

Distribuição rótulos para teste

• Distribuição equilibrada

Visualização exemplo isolado

Image #3523 : mountain

Exemplos do dataset

Visualização exemplos

mountain

buildings

sea

sea

Criação do Modelo

Biblioteca Keras utilizada para construção do modelo de classificação

Modelo de Rede Neural Convolucional

2 Camadas de Convolução e 2 Camadas Escondidas

Parâmetros de otimização "adam" e "sparse categorical crossentropy"

Características do Modelo

32 Filtros 3x3 para a extração de características das imagens

MaxPooling 2x2 para reduzir o tamanho da saída

Ativação ReLU nas camadas intermediárias e softmax na classificação

Treinamento por 20 épocas

Treinamento e Validação

- 20 Épocas
- Erro e Acurácia do conjunto de Treinamento
- Erro e Acurácia do conjunto de Validação

```
- loss: 1.3478 - accuracy: 0.5039 - val_loss: 0.9530 - val_accuracy: 0.6434
· loss: 0.8575 - accuracy: 0.6768 - val_loss: 0.7860 - val_accuracy: 0.6971
loss: 0.6511 - accuracy: 0.7683 - val_loss: 0.7281 - val_accuracy: 0.7384
· loss: 0.4926 - accuracy: 0.8281 - val loss: 0.6761 - val accuracy: 0.7664
· loss: 0.3635 - accuracy: 0.8808 - val loss: 0.6471 - val accuracy: 0.7797
· loss: 0.2718 - accuracy: 0.9163 - val loss: 0.7876 - val accuracy: 0.7578
· loss: 0.2115 - accuracy: 0.9334 - val loss: 0.7851 - val accuracy: 0.7692
· loss: 0.1351 - accuracy: 0.9616 - val loss: 0.8004 - val accuracy: 0.7754
· loss: 0.0956 - accuracy: 0.9786 - val loss: 0.8287 - val accuracy: 0.7678
· loss: 0.0854 - accuracy: 0.9792 - val_loss: 1.0454 - val_accuracy: 0.7431
· loss: 0.0589 - accuracy: 0.9885 - val loss: 0.9523 - val accuracy: 0.7593
· loss: 0.0346 - accuracy: 0.9952 - val loss: 1.0111 - val accuracy: 0.7593
· loss: 0.0568 - accuracy: 0.9849 - val loss: 1.1456 - val accuracy: 0.7160
· loss: 0.0518 - accuracy: 0.9887 - val_loss: 1.1406 - val_accuracy: 0.7583
 loss: 0.0236 - accuracy: 0.9968 - val_loss: 1.1949 - val_accuracy: 0.7521
 loss: 0.0201 - accuracy: 0.9977 - val loss: 1.1646 - val accuracy: 0.7583
 loss: 0.0180 - accuracy: 0.9980 - val loss: 1.2597 - val accuracy: 0.7635

    loss: 0.0170 - accuracy: 0.9974 - val_loss: 1.2615 - val_accuracy: 0.7635

· loss: 0.0179 - accuracy: 0.9980 - val loss: 1.3030 - val accuracy: 0.7464
loss: 0.0150 - accuracy: 0.9986 - val loss: 1.3106 - val accuracy: 0.7488
```

Análise do Treinamento

Acurácia converge para valores entre 0.7 e 0.8 no conjunto de validação

Erro aumenta conforme as épocas se passam apresentando possível caso de Overfitting

Conjunto de Teste

loss: 1.3854 - accuracy: 0.7356

Passando o conjunto de Teste no modelo treinado, podemos notar que a acurácia não foi tão elevada, assim como o modelo de Validação

Image #1461 : street

Exemplo isolado de Classificação no conjunto de testes utilizando o modelo treinado

Análise do Erro

Intersecção nas imagens

Possíveis alternativas

Análise do erro

- Acurácia na faixa de 70%;
- Problemas com algumas categorias de imagens

Análise do erro

- Muito bom em classificar florestas;
- Ruim em classificar geleiras e prédios;

	precision	recall	f1-score	support
mountain street glacier buildings sea forest	0.73 0.81 0.61 0.69 0.77 0.95	0.68 0.71 0.83 0.72 0.61 0.90	0.70 0.76 0.70 0.71 0.68 0.92	404 365 409 337 379 356
accuracy macro avg weighted avg	0.76 0.75	0.74 0.74	0.74 0.75 0.74	2250 2250 2250

Considerações Finais

Resultado pode ser aproveitado

Problemas surgem com imagens que possuem várias características

Combinação pode ser vantajosa

