Developing Knowledge Graph Based On OpenAire Database

Table of contents

- 1. Goal
- 2. What is the OpenAIRE Graph?
- 3. Dataset overview
- 4. Data structure
- 5. Implementation steps
- 6. Visualization of Knowledge Graph
- 7. Usage examples
- 8. Sources

Goal

To develop a knowledge graph based on the OpenAIRE dataset to extract information about the most important research papers.

What is the OpenAIRE Graph?

The OpenAIRE Graph is a free and open resource that brings together and interlinks hundreds of millions of metadata records from over 100k data sources trusted by researchers.

Dataset overview

The dataset selected contains metadata records of the OpenAIRE Graph for the research community "Technological University Network (TU-NET)."

TU-NET is a network for the Irish Technological Universities to share expertise, information and resources

Data structure

The dataset is stored in multiple archive files, where each line represents a metadata record. Below is an example of a single line from the dataset:

Contest (Collines 'Ungarity, and 'near') hands' han

1. Read each line from all archive files and store it in a variable.

```
def read_json(input_folder):
    all_records = []

for file_name in os.listdir(input_folder):
    if file_name.endswith(".json.gz"):
        input_path = os.path.join(input_folder, file_name)

    with gzip.open(input_path, 'rt', encoding='utf-8') as f:
        for line in f:
            record = json.loads(line)
            all_records
```

2. Convert the data into CSV format by selecting relevant fields. Each CSV file represents a node in the knowledge graph.

```
def flatten_main(record):
    indicators = record.get('indicators', {}) or {}
    citation_impact = indicators.get('citationImpact', {}) or {}
    return {
        'id': record.get('id', ''),
        'title': record.get('mainTitle', ''),
        'description': ' '.join(record.get('description', [])),
        'type': record.get('type', ''),
        'citationCount': citation_impact.get('citationCount', 0),
        'influence': citation_impact.get('influence', 0),
        'popularity': citation_impact.get('popularity', 0),
        'url': record.get('url', [None])[0],
}
```

3. Preprocess and clean the data to ensure consistency and accuracy.

```
df = pd.read_csv("./keywords.csv")
# To lowercase
df = df.applymap(lambda x: x.lower() if isinstance(x, str) else x)
# Then remove duplicates
df = df.drop_duplicates()
df.to_csv("keywords.csv", index=False)
```

4. Connect to Neo4j Aura (console) using the Neo4j library.

driver = GraphDatabase.driver(uri, auth=(username, password))

5. Use Cypher queries to establish relationships between the nodes.

```
query main =
MERGE (r:Record {id: $id})
SET r.title = $title,
    r.description = $description,
    r.type = $type,
    r.citationCount = $citationCount,
    r.influence = $influence,
    r.popularity = $popularity,
    r.url = $url
.....
```

6. Upload the processed data into the Neo4j database.

Visualization of Knowledge Graph

Usage examples

The following Cypher query retrieves the most cited records in English:

```
MATCH (r:Record)-[:HAS_LANGUAGE]->(1:Language)
WHERE r.citationCount IS NOT NULL AND 1.language = 'English
WITH r
ORDER BY r.citationCount DESC
LIMIT 5
```

MATCH p=(r)-[rel]-(m)
RETURN p

Usage examples

Usage examples

All records associated with the keyword architecture

Sources

- 1. OpenAire Graph https://graph.openaire.eu
- 2. Neo4j documentation https://neo4j.com/docs/getting-started/languages-guides/neo4j-python/
- 3. Dataset source https://zenodo.org/records/13135167