HW 08

Due Online, Friday, Dec. 10th, 11:50 PM

1 Discrete Impact Based Contact Simulation

Figure 1: Double pendulum model.

In this problem, you will extend your previous simulation to include constraints. In this homework, we will add the slippery surface, which makes a friction force depending on the friction coefficient and the normal force. Please include your simulate_pend_HW8.m code in your submission.

- 1. Given a ground height $y_c = -1.1$ m, complete skeleton the code for the function discrete_impact_contact in simulate_pend_HW8.m. This function should:
 - Compute the height of the foot relative to the ground $C_y = y y_c$.
 - Compute the $\dot{C}_y = \dot{y}$.
 - If the constraints are not violated (i.e. $C_y > 0$ or $\dot{C}_y > 0$), then your function should not update \dot{q} .
 - If the constraints are violated (i.e. $C_y < 0$ and $\dot{C}_y < 0$), compute the vertical impulse force, $\hat{F}_{c,y} = \Lambda_{c,y}(-\gamma \dot{C}_y J_{c,y}\dot{q})$, where $\Lambda_{c,y}$ is the vertical directional operational space mass, γ is the coefficient of restitution, and $J_{c,y}$ is the vertical directional Jacobian at the contact point.
 - Update \dot{q} using the equation, $\dot{q} = \dot{q} + M^{-1} J_{c,y}^{\top} \hat{F}_{c,y}$.
 - Using the same procedure, update \dot{q} by applying tragential impulse force to satisfy a friction cone constraint. Compute the tangential impulse force, $\hat{F}_{c,x} = \Lambda_{c,x}(0 J_{c,x}\dot{q})$.
 - Truncate $\hat{F}_{c,x}$ if it is outside of friction cone, $> \mu \hat{F}_{c,y}$.
 - Update \dot{q} using the equation, $\dot{q} = \dot{q} + M^{-1} J_{c,x}^{\top} \hat{F}_{c,x}$.
- 2. Find a proper place to put the update function in the simulation. Does it need to be in dynamics function? Or in the middle of numeric integration?
- 3. Use the coefficient of resitution $\gamma = 0$ and a friction coefficient $\mu = 0.3$ to simulate trajectory tracking for the circle task with $\omega = 3$ rad/s. Provide position and velocity plots of x and y over the interval t = [0s, 10s].
- 4. Increase μ to 3 and perform another simulation. Describe what changes in this simulation.

