Metodologia de Pesquisa Simulação

Ricardo Rosal

May 24, 2022

- 1 Simulação como método de pesquisa
 - O que é simulação?
 - Vantagens da simulação
 - Tipos de simulação
 - Eventos discretos
 - Sistemas dinâmicos
 - Simulação baseada em agentes

- Os objetivos de uma simulação
 - Predição

O que é isso?

[adicionar o desenho de uma fruta] isso é um modelo...

Simulação como método de pesquisa

- O principal valor da simulação como método de pesquisa é a flexibilidade dada ao pesquisar de focar na complexidade do sistema e do modelo em estudo e fazer perguntas do tipo "e se?" ao ínves de perguntas como "o que aconteceu? como? e por que?".
- outros métodos de pesquisa, em contra-partida, requer que seja estabelescida algumas preposições sobre causalidade do fenômeno estudado, já a simulação nos permite, desde a dinâmica estabelescida do modelo, "criar/descobrir" tais efeitos e demostrar causalidades.
- A simulação permite o estudo de fenômenos mais complexos, uma vez que as observações são feitas para "avançando" no tempo (ou em outro dimensão em que o sistema tem uma dinâmica definida).

Simulação como método de pesquisa

- O principal valor da simulação como método de pesquisa é a flexibilidade dada ao pesquisar de focar na complexidade do sistema e do modelo em estudo e fazer perguntas do tipo "e se?" ao ínves de perguntas como "o que aconteceu? como? e por que?".
- outros métodos de pesquisa, em contra-partida, requer que seja estabelescida algumas preposições sobre causalidade do fenômeno estudado, já a simulação nos permite, desde a dinâmica estabelescida do modelo, "criar/descobrir" tais efeitos e demostrar causalidades.
- A simulação permite o estudo de fenômenos mais complexos, uma vez que as observações são feitas para "avançando" no tempo (ou em outro dimensão em que o sistema tem uma dinâmica definida).

Simulação como método de pesquisa

- O principal valor da simulação como método de pesquisa é a flexibilidade dada ao pesquisar de focar na complexidade do sistema e do modelo em estudo e fazer perguntas do tipo "e se?" ao ínves de perguntas como "o que aconteceu? como? e por que?".
- outros métodos de pesquisa, em contra-partida, requer que seja estabelescida algumas preposições sobre causalidade do fenômeno estudado, já a simulação nos permite, desde a dinâmica estabelescida do modelo, "criar/descobrir" tais efeitos e demostrar causalidades.
- A simulação permite o estudo de fenômenos mais complexos, uma vez que as observações são feitas para "avançando" no tempo (ou em outro dimensão em que o sistema tem uma dinâmica definida).

- Simulação de eventos discretos: envolve um modelo onde a dinâmica (governing equations) na dimensão ζ (tempo, por exemplo) evolui de forma discreta, normalmente os eventos são disparados por um gatilho, que pode ser implementado com uma callback ou um intervalo pré-definido.
- usalmente, metódos como maquinas de estados-finitos, e teoria das filas são utilizados para simulação de eventos discretos.

exemplo

- Simulação de eventos discretos: envolve um modelo onde a dinâmica (governing equations) na dimensão ζ (tempo, por exemplo) evolui de forma discreta, normalmente os eventos são disparados por um gatilho, que pode ser implementado com uma callback ou um intervalo pré-definido.
- usalmente, metódos como maquinas de estados-finitos, e teoria das filas são utilizados para simulação de eventos discretos.

exemplo:

- Simulação de eventos discretos: envolve um modelo onde a dinâmica (governing equations) na dimensão ζ (tempo, por exemplo) evolui de forma discreta, normalmente os eventos são disparados por um gatilho, que pode ser implementado com uma callback ou um intervalo pré-definido.
- usalmente, metódos como maquinas de estados-finitos, e teoria das filas são utilizados para simulação de eventos discretos.

exemplo:

- Simulação de sistemas dinâmicos: nesse tipo de simulação é
 definido o estado ou estados do sistema, que normalmente é a
 variável dependente de uma função, onde é conhecido a dinâmica do
 mesmo.
- essa dinâmica normalmente é definida por uma equação diferencial ODE ou PDE, dependendo do número de dimensões no espaço onde ocorre a dinâmica do sistema, e a função que define o estado é a solução da equação diferencial.
- Por exemplo:

$$m\frac{d^2x}{dt^2} - f = 0 ag{1}$$

ou:

$$\nabla^2 = \frac{\rho}{\varepsilon} \tag{2}$$

- Simulação de sistemas dinâmicos: nesse tipo de simulação é definido o estado ou estados do sistema, que normalmente é a variável dependente de uma função, onde é conhecido a dinâmica do mesmo.
- essa dinâmica normalmente é definida por uma equação diferencial ODE ou PDE, dependendo do número de dimensões no espaço onde ocorre a dinâmica do sistema, e a função que define o estado é a solução da equação diferencial.
- Por exemplo:

$$m\frac{d^2x}{dt^2} - f = 0 ag{1}$$

OU

$$\nabla^2 = \frac{\rho}{\varepsilon} \tag{2}$$

- Simulação de sistemas dinâmicos: nesse tipo de simulação é definido o estado ou estados do sistema, que normalmente é a variável dependente de uma função, onde é conhecido a dinâmica do mesmo.
- essa dinâmica normalmente é definida por uma equação diferencial ODE ou PDE, dependendo do número de dimensões no espaço onde ocorre a dinâmica do sistema, e a função que define o estado é a solução da equação diferencial.
- Por exemplo:

$$m\frac{d^2x}{dt^2} - f = 0 (1)$$

OU:

$$\nabla^2 = \frac{\rho}{\varepsilon} \tag{2}$$

- Simulação de sistemas dinâmicos: nesse tipo de simulação é definido o estado ou estados do sistema, que normalmente é a variável dependente de uma função, onde é conhecido a dinâmica do mesmo.
- essa dinâmica normalmente é definida por uma equação diferencial ODE ou PDE, dependendo do número de dimensões no espaço onde ocorre a dinâmica do sistema, e a função que define o estado é a solução da equação diferencial.
- Por exemplo:

$$m\frac{d^2x}{dt^2} - f = 0 (1)$$

ou:

$$\nabla^2 = \frac{\rho}{\varepsilon} \tag{2}$$

- Simulaçãos baseadas em agentes: são um grupo de metodos que de simulação que tem como objetivo a iteração de agentes que tendem a otimizar suas funções de utilidade.
- Um dos metodos mais utilizados para esse tipo de simulação a teoria dos jogos.

- Simulaçãos baseadas em agentes: são um grupo de metodos que de simulação que tem como objetivo a iteração de agentes que tendem a otimizar suas funções de utilidade.
- Um dos metodos mais utilizados para esse tipo de simulação a teoria dos jogos.

Simulação como previsão

- As simulações partem de um modelo composto por governing rules e constitutive relations e produz saídas dessas regras.
- Comparando as diferentes saidas de diferentes modelos e parâmetros que constituem os modelos, os pesquisadores podem inferir a relação de dado parâmetro no comportamento da saída.
- A validade dessas dependem intrísicamente da validade do modelo.