Первый курс, весенний семестр

Практика по алгоритмам #9

Строки: префикс-функция, Z, хеши

Contents

1	Новые задачи	2
2	Домашнее задание	3
	2.1 Обязательная часть	3
	2.2 Дополнительная часть	3

1 Новые задачи

1. gcd – тоже период!

Пусть у строки s есть периоды $a,b \leq \frac{|s|}{2}$. Докажите, что $\gcd(a,b)$ – тоже период.

2. В поисках периода.

- а) Найти кратчайший период строки тремя способами: КМП, Z-функция, хеши.
- b) Найти все периоды строки.

3. Подсчёт различных подстрок.

- а) Найти число различных подстрок строки. $\mathcal{O}(n^2)$. Два способа: Z-функция, хеши.
- b) Найти подстроку данной строки, встречающую максимальное число раз.

4. Позиция строки в суффиксном массиве.

Найти позицию строки в ее суффиксном массиве. Два способа: Z-функция, хеши.

5. k-й суффикс.

Найти k-й в лексикографическом порядке суффикс строки.

- a) $\mathcal{O}(n\log^2 n)$.
- b) $\mathcal{O}(n \log n)$.

6. Суффиксный массив и стандартные сортировки.

Построение суффиксного массива хешами за $\mathcal{O}(n\log^2 n)$:

что оптимальнее использовать sort или stable_sort?

7. Поиск с одной ошибкой.

Научиться искать образец в строке, если допустимо различие в один символ между образцом и найденной подстрокой.

8. Поиск с перестановками символов и алфавита.

Найти образец в строке, если допустимо:

- а) в образце применять к алфавиту перестановку.
- b) в образце переставлять символы.
- с) в образце переставлять и алфавит, и символы.

9. Восстановление строки по Р и Z функциям.

За $\mathcal{O}(n)$ восстановить строку, если дана ее

- а) Z-функция.
- b) префикс-функция.

10. Наибольшая дважды подстрока.

Найти наибольшую по длине строку, которая дважды без перекрытий встречается в заданной строке. $\mathcal{O}(n \log n)$.

11. Палиндромы.

- а) Найти количество подпалиндромов строки. $\mathcal{O}(n \log n)$.
- b) Найти максимальный подпалиндром строки. $\mathcal{O}(n)$.

12. (*) Префиксы представимые в $\alpha\beta$ -виде.

Для каждого префикса строки проверить, представим ли он в виде $\alpha\beta\alpha\beta\dots\alpha$, где α и β – произвольные, возможно пустые, строки, строка β повторяется ровно k раз.

13. (*) Minimal cyclic shift.

Найти минимальный циклический сдвиг строки за $\mathcal{O}(n)$.

2 Домашнее задание

2.1 Обязательная часть

1. (3) Тандемный повтор 1.

Тандемным повтором называется строка вида $\alpha\alpha$. Найдите за $\mathcal{O}(n^2)$ самый длинный тандемный повтор. Нужно представить три решения, используя (a) хеши, (b) Z-функция, (c) предподсчитанный lcp. За каждое решение вы получите по баллу

2. (3) Общий подпалиндром.

Нужно за $\mathcal{O}(n \log n)$ найти максимальный общий подпалиндром.

3. **(3)** Ретрострока.

Для каждого префикса строки найти количество его префиксов равных его суффиксу. $\mathcal{O}(n)$.

4. (3*) LZSS.

Алгоритм кодирования LZSS. Дана строка s. Выписываем её слева направо. Пусть уже выписан префикс [0,i). Можно или, потратив 1 доллар, записать в код строки s_i и выписать i-й символ, или, потратив 5 долларов, записать в код строки (j,len) и выписать сразу len символов. Здесь j < i, а $s[j:j{+}len) = s[i:i{+}len)$. Ваша задача — за $\mathcal{O}(n^2)$ выписать всю строку за минимальную стоимость. Дополнительный балл можно получить, решив задачу с $\mathcal{O}(n)$ памяти.

5. (3) $Z \rightarrow KM\Pi$

Преобразовать Z-функция в префикс-функцию без промежуточного восстановления строки.

6. (3) Поиск с ошибкой в алфавите.

Найти подстроку в тексте. При сравнении строк можно делать циклический сдвиг алфавита в одной из них. $\mathcal{O}(n\Sigma)$. Здесь Σ – размер алфавита.

7. (3) Поиск с двумя ошибками.

Найти подстроку в тексте. При сравнении строк, если несовпадений было не более двух, строки считаются равными. $\mathcal{O}(n)$.

8. (3) Поиск с k ошибками.

Найти подстроку в тексте. При сравнении строк, если несовпадений было не более k, строки считаются равными. $\mathcal{O}(nk\log n)$.

2.2 Дополнительная часть

1. (5) Обезьянка за клавиатурой.

За одну секунду в конец изначально пустого текста дописывается случайная буква (равномерное распределение). Какое матожидание времени T, когда первый раз s станет подстрокой выписанного текста?

2. (6) Антихеш тест.

Даны целые числа p и m. Построить две разных строки, у которых (p,m) полиномиальный хеш совпадёт. $h(s_0, s_1, \ldots, s_n) = (\sum s_i p^i) \bmod m$.

- a) (2) $\mathcal{O}(m^{1/2})$.
- b) (2) $\mathcal{O}(m^{1/3})$.
- c) (2) $m \le 10^{36}$.

3. **(4)** Тандемный повтор 2.

Решите задачу про тандемный повтор за $\mathcal{O}(n \log n)$ методом разделяй и властвуй!

4. **(4)** Покрытие строки.

Говорят, что строка α покрывает строку s, если каждый символ s покрыт хотя бы одним вхождением α . Дана s, найти минимальную по длину α . $\mathcal{O}(n \log n)$.