NOTAÇÕES

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$

Z: conjuntodosnúmerosinteiros

Q: conjuntodosnúmeros racionais

 \mathbb{R} : conjuntodosnúmerosreais

C: conjuntodosnúmeroscomplexos

i: unidadeimaginária; $i^2 = -1$

|z|: módulodonúmero $z \in \mathbb{C}$

 \overline{z} : conjugadodonúmero $z \in \mathbb{C}$

Re z: parterealde $z \in \mathbb{C}$

Im z: parteimagináriade $z \in \mathbb{C}$

 $\binom{n}{n}$: número de combinações de n elementos tomados p a p.

mdc(j,k): máximo divisor comum dos números inteiros $j \in k$.

n(X): número de elementos de um conjunto finito X.

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}.$$

Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais.

Questão 01. Se A, B, C forem conjuntos tais que

$$n(A \cup B) = 23$$
, $n(B - A) = 12$, $n(C - A) = 10$, $n(B \cap C) = 6$ e $n(A \cap B \cap C) = 4$,

então n(A), $n(A \cup C)$, $n(A \cup B \cup C)$, nesta ordem,

A () formam uma progressão aritmética de razão 6.

B () formam uma progressão aritmética de razão 2.

C () formam uma progressão aritmética de razão 8, cujo primeiro termo é 11.

D () formam uma progressão aritmética de razão 10, cujo último termo é 31.

E () não formam uma progressão aritmética.

Questão 02. Seja A um conjunto com 14 elementos e B um subconjunto de A com 6 elementos. O número de subconjuntos de A com um número de elementos menor ou igual a 6 e disjuntos de B é

A ()
$$2^8 - 9$$
.

B ()
$$2^8 - 1$$
.

B ()
$$2^8 - 1$$
. **C** () $2^8 - 2^6$. **D** () $2^{14} - 2^8$. **E** () 2^8 .

$$\mathbf{D}$$
 () $2^{14} - 2^8$.

$$\mathbf{E} \ (\) \ 2^8.$$

Questão 03. Considere a equação:

$$16\left(\frac{1-ix}{1+ix}\right)^3 = \left(\frac{1+i}{1-i} - \frac{1-i}{1+i}\right)^4.$$

Sendo x um número real, a soma dos quadrados das soluções dessa equação é

Questão 04. Assinale a opção que indica o módulo do número complexo

$$\frac{1}{1+i\cot x}, \quad x \neq k\pi, \quad k \in \mathbb{Z}.$$

$$\mathbf{A}$$
 () $|\cos x|$
 \mathbf{D} () $|\csc x|$

$$\mathbf{B} () (1 + sen x)/2 \\ \mathbf{E} () | sen x |$$

$$\mathbf{C}$$
 () $\cos^2 x$

Questão 05. Considere: um retângulo cujos lados medem B e H, um triângulo isósceles em que a base e a altura medem, respectivamente, B e H, e o círculo inscrito neste triângulo. Se as áreas do retângulo, do triângulo e do círculo, nesta ordem, formam uma progressão geométrica, então B/H é uma raiz do polinômio

A ()
$$\pi^3 x^3 + \pi^2 x^2 + \pi x - 2 = 0$$
. **B** () $\pi^2 x^3 + \pi^3 x^2 + x + 1 = 0$.

B ()
$$\pi^2 x^3 + \pi^3 x^2 + x + 1 = 0$$

$$\mathbf{C}$$
 () $\pi^3 x^3 - \pi^2 x^2 + \pi x + 2 = 0$.

$$\mathbf{D} \ (\) \ \pi x^3 - \pi^2 x^2 + 2\pi x - 1 = 0.$$

E ()
$$x^3 - 2\pi^2 x^2 + \pi x - 1 = 0$$
.

Questão 06. Se as medidas dos lados de um triângulo obtusângulo estão em progressão geométrica de razão r, então r pertence ao intervalo

A ()
$$(0, (1+\sqrt{2})/2)$$
.

B ()
$$\left((1+\sqrt{2})/2, \sqrt{(1+\sqrt{5})/2} \right)$$
.

C ()
$$\left(\sqrt{(1+\sqrt{5})/2}, (1+\sqrt{5})/2\right)$$
.

D ()
$$\left((1+\sqrt{5})/2, \sqrt{2+\sqrt{2}/2} \right)$$
.

$$\mathbf{E} \ (\) \ \left(\sqrt{2 + \sqrt{2}/2}, (2 + \sqrt{3})/2 \right).$$

Questão 07. Sejam x, y e z números reais positivos tais que seus logaritmos numa dada base k são números primos satisfazendo

$$\log_k(xy) = 49,$$

$$\log_k(x/z) = 44.$$

Então, $\log_k(xyz)$ é igual a

E () 97.

Questão 08. Sejam $x \in y$ dois números reais tais que e^x , e^y e o quociente

$$\frac{e^x - 2\sqrt{5}}{4 - e^y\sqrt{5}}$$

são todos racionais. A soma x + y é igual a

$$\mathbf{B} \ (\) \ 1. \qquad \quad \mathbf{C} \ (\) \ 2\log_5 3. \qquad \quad \mathbf{D} \ (\) \ \log_5 2. \qquad \quad \mathbf{E} \ (\) \ 3\log_e 2.$$

$$\mathbf{D}$$
 () $\log_5 2$

$$\mathbf{E}$$
 () $3\log_e 2$

A () 9.

B () 7.

C () 5.

D () 3.

E () 1.

Questão 10. Sendo c um número real a ser determinado, decomponha o polinômio $9x^2 - 63x + c$, numa diferença de dois cubos

$$(x+a)^3 - (x+b)^3$$
.

Neste caso, |a + |b| - c | é igual a

A () 104. 144.

B () 114.

C () 124. **D**() 134.

 \mathbf{E} ()

Questão 11. Sobre a equação na variável real x,

$$| | | x - 1 | - 3 | - 2 | = 0,$$

podemos afirmar que

A () ela não admite solução real.

B () a soma de todas as suas soluções é 6.

C () ela admite apenas soluções positivas.

D () a soma de todas as soluções é 4.

E () ela admite apenas duas soluções reais.

Questão 12. Determine quantos números de 3 algarismos podem ser formados com 1, 2, 3, 4, 5, 6 e 7, satisfazendo à seguinte regra: O número não pode ter algarismos repetidos, exceto quando iniciar com 1 ou 2, caso em que o 7 (e apenas o 7) pode aparecer mais de uma vez. Assinale o resultado obtido.

A () 204

B () 206

C () 208

D() 210

E () 212

Questão 13. Seja x um número real no intervalo $0 < x < \pi/2$. Assinale a opção que indica o comprimento do menor intervalo que contém todas as soluções da desigualdade

$$\frac{1}{2}\operatorname{tg}\left(\frac{\pi}{2} - x\right) - \sqrt{3}\left(\cos^2\frac{x}{2} - \frac{1}{2}\right)\operatorname{sec}(x) \ge 0.$$

A () $\pi/2$

B () $\pi/3$ **C** () $\pi/4$

D () $\pi/6$

E () $\pi/12$

C() 2

Questão 14. Assinale a opção que indica a soma dos elementos de $A \cup B$, sendo:

$$A = \left\{ x_k = sen^2 \left(\frac{k^2 \pi}{24} \right) : k = 1, 2 \right\}$$
 e
 $B = \left\{ y_k = sen^2 \left(\frac{(3k+5)\pi}{24} \right) : k = 1, 2 \right\}.$

A () 0 **B** () 1 **D** ()
$$\left(2 - \sqrt{2 + \sqrt{3}}\right)/3$$
 E () $\left(2 + \sqrt{2 - \sqrt{3}}\right)/3$

Questão 15. Sejam $A = (a_{jk})$ e $B = (b_{jk})$, duas matrizes quadradas $n \times n$, onde a_{jk} e b_{jk} são, respectivamente, os elementos da linha j e coluna k das matrizes A e B, definidos

$$a_{jk} = {j \choose k}$$
, quando $j \ge k$, $a_{jk} = {k \choose j}$, quando $j < k$

е

$$b_{jk} = \sum_{p=0}^{jk} (-2)^p \binom{jk}{p}.$$

O traço de uma matriz quadrada (c_{jk}) de ordem $n \times n$ é definido por $\sum_{p=1}^{n} c_{pp}$. Quando n for ímpar, o traço de A + B é igual a

A ()
$$n(n-1)/3$$
.

B ()
$$(n-1)(n+1)/4$$
.

$$\mathbf{C}$$
 () $(n^2 - 3n + 2)/(n - 2)$.

D ()
$$3(n-1)/n$$
.

$$\mathbf{E}() (n-1)/(n-2).$$

Questão 16. Considere no plano cartesiano xy o triângulo delimitado pelas retas 2x = y, x = 2y e x = -2y + 10. A área desse triângulo mede

$$\mathbf{D}$$
 () 9/4.

$$\mathbf{E}$$
 () 7/2.

Questão 17. Sejam $A:(a,0), B:(0,a) \in C:(a,a)$, pontos do plano cartesiano, em que a é um número real não nulo. Nas alternativas abaixo, assinale a equação do lugar geométrico dos pontos P:(x,y) cuja distância à reta que passa por $A \in B$, é igual à distância de P ao ponto C.

A ()
$$x^2 + y^2 - 2xy - 2ax - 2ay + 3a^2 = 0$$

$$\mathbf{B}(\) x^2 + y^2 + 2xy + 2ax + 2ay + 3a^2 = 0$$

$$\mathbf{C}$$
 () $x^2 + y^2 - 2xy + 2ax + 2ay + 3a^2 = 0$

$$\mathbf{D}(\dot{}) x^2 + y^2 - 2xy - 2ax - 2ay - 3a^2 = 0$$

$$\mathbf{E} (\dot{}) x^2 + y^2 + 2xy - 2ax - 2ay - 3a^2 = 0$$

Questão 18. Seja P_n um polígono regular de n lados, com n>2. Denote por a_n o apótema e por b_n o comprimento de um lado de P_n . O valor de n para o qual valem as desigualdades

$$b_n < a_n$$
 e $b_{n-1} > a_{n-1}$,

pertence ao intervalo

A ()
$$3 < n < 7$$
.

B ()
$$6 < n < 9$$
.

$$C()$$
 8 < n < 11.

$$\mathbf{D}$$
 () $10 < n < 13$.

E ()
$$12 < n < 15$$

Questão 19. Sejam P_1 e P_2 octógonos regulares. O primeiro está inscrito e o segundo circunscrito a uma circunferência de raio R. Sendo A_1 a área de P_1 e A_2 a área de P_2 , então a razão A_1/A_2 é igual a

A ()
$$\sqrt{5/8}$$
.

B ()
$$9\sqrt{2}/16$$
.

C ()
$$2(\sqrt{2}-1)$$
.

A ()
$$\sqrt{5/8}$$
. **B** () $9\sqrt{2}/16$. **D** () $(4\sqrt{2}+1)/8$. **E** () $(2+\sqrt{2})/4$.

$$\mathbf{E}(1)(2+\sqrt{2})/4$$

Questão 20. Considere uma pirâmide regular de base hexagonal, cujo apótema da base mede $\sqrt{3}$ cm. Secciona-se a pirâmide por um plano paralelo à base, obtendo-se um tronco de volume igual a 1 cm³ e uma nova pirâmide. Dado que a razão entre as alturas das pirâmides é $1/\sqrt{2}$, a altura do tronco, em centímetros, é igual a

A ()
$$(\sqrt{6} - \sqrt{2})/4$$
. **B** () $(\sqrt{6} - \sqrt{3})/3$. **C** () $(3\sqrt{3} - \sqrt{6})/21$. **D** () $(3\sqrt{2} - 2\sqrt{3})/6$. **E** () $(2\sqrt{6} - \sqrt{2})/22$.

As questões dissertativas, numeradas de 21 a 30, devem ser resolvidas e respondidas no caderno de soluções.

Questão 21. Determine o conjunto C, sendo A, B e C conjuntos de números reais tais que

$$A \cup B \cup C = \{x \in \mathbb{R} : x^2 + x \ge 2\},$$

$$A \cup B = \{x \in \mathbb{R} : 8^{-x} - 3 \cdot 4^{-x} - 2^{2-x} > 0\},$$

$$A \cap C = \{x \in \mathbb{R} : \log(x+4) \le 0\},$$

$$B \cap C = \{x \in \mathbb{R} : 0 \le 2x + 7 < 2\}.$$

Questão 22. Determine o conjunto A formado por todos os números complexos z tais que

$$\frac{\overline{z}}{z-2i} + \frac{2z}{\overline{z}+2i} = 3$$
 e $0 < |z-2i| \le 1$.

Questão 23. Seja k um número inteiro positivo e

$$A_k = \{ j \in \mathbb{N} : j \le k \text{ e } \operatorname{mdc}(j, k) = 1 \}.$$

Verifique se $n(A_3)$, $n(A_9)$, $n(A_{27})$ e $n(A_{81})$, estão ou não, nesta ordem, numa progressão aritmética ou geométrica. Se for o caso, especifique a razão.

Questão 24. Considere a equação:

$$\sqrt{x^2 - p} + 2\sqrt{x^2 - 1} = x.$$

- (a) Para que valores do parâmetro real p a equação admite raízes reais?
- (b) Determine todas essas raízes reais.

Questão 25. Sendo x, y, z e w números reais, encontre o conjunto solução do sistema

$$\log [(x+2y)(w-3z)^{-1}] = 0,$$

$$2^{x+3z} - 8 \cdot 2^{y-3z+w} = 0,$$

$$\sqrt[3]{2x+y+6z-2w} - 2 = 0.$$

Questão 26. Dentre 4 moças e 5 rapazes deve-se formar uma comissão de 5 pessoas com, pelo menos, 1 moça e 1 rapaz. De quantas formas distintas tal comissão poderá ser formada?

- Questão 27. Considere um triângulo isósceles ABC, retângulo em B. Sobre o lado \overline{BC} , considere, a partir de B, os pontos D e E, tais que os comprimentos dos segmentos \overline{BC} , \overline{BD} , \overline{DE} , \overline{EC} , nesta ordem, formem uma progressão geométrica decrescente. Se β for o ângulo $E\widehat{AD}$, determine tg β em função da razão r da progressão.
- **Questão 28.** Considere, no plano cartesiano xy, duas circunferências C_1 e C_2 , que se tangenciam exteriormente em P: (5, 10). O ponto Q: (10, 12) é o centro de C_1 . Determine o raio da circunferência C_2 , sabendo que ela tangencia a reta definida pela equaçã o x = y.
- **Questão 29.** Seja C_1 uma circunferência de raio R_1 inscrita num triângulo equilátero de altura h. Seja C_2 uma segunda circunferência, de raio R_2 , que tangencia dois lados do triâ ngulo internamente e C_1 externamente. Calcule $(R_1 R_2)/h$.
- **Questão 30.** Os quatro vértices de um tetraedro regular, de volume $8/3 \ cm^3$, encontram-se nos vértices de um cubo. Cada vértice do cubo é centro de uma esfera de 1 cm de raio. Calcule o volume da parte do cubo exterior às esferas.