Amit Chaudhari

Email Mobile Webpage chaudharia@cardiff.ac.uk

+44 7907879653

https://amitmc1.github.io/Materialsmodelling/

Education

MEng Chemical Engineering MSc Molecular Modelling

PhD Computational Chemistry

University of Birmingham Sept 2016- June 2020 University College London Sept 2020- Sept 2021 Cardiff University
October 2021-March 2025

PhD Summary: Integrating Machine Learning Algorithms in Ab-Initio Modelling

Designing/applying algorithms and workflows to improve DFT-based atomistic materials modelling (heterogeneous catalysis), in collaboration with **Johnson Matthey** and **bp**:

- Optimising ab-initio methods: DFT+U projectors and meta-GGA DFT functionals
- Multiscale modelling accelerated using machine learned interatomic potentials
- · Leveraging symbolic regression, deep learning and large language models

Quantum Chemistry

•	Planewave and all-electron density functional theory, with Hubbard	VASP and
	(DFT+U) and dispersion (D3) corrections, with/without spin	FHI-aims
	polarisation	
•	Constructing kinetic energy density functionals for deorbitalising the	FHI-aims
	exchange correlation energy in meta-GGA DFT	(Fortran90)
•	High performance computing using CPU and GPU nodes on the UK	LINUX
	(ARCHER2) and Welsh (Hawk, Isambard) national supercomputers	

Methods and Software Packages

•	Structure generation, geometry optimisation and molecular dynamics	ASE/Pymatgen
•	Finetuning foundation model machine learned interatomic potentials	MACE/ASE
•	Deep neural networks	PyTorch
•	Symbolic regression/classification using sparse regression and	SISSO++ and
	large language models (MistralAl's Mathstral-7B and OpenAl's	Hugging Face
	GPT-4o)	Transformers
•	Support vector machines and principal component analysis	Scikit-learn
•	Bayesian optimisation	GPyOpt
•	Parallel tempering Monte Carlo	SuSMoST
•	Computing structural fingerprints using many body tensor representations	DScribe

Amit Chaudhari

Email chaudharia@cardiff.ac.uk Mobile +44 7907879653

Webpage https://amitmc1.github.io/Materialsmodelling/

Conference Talks

- Machine learning the DFT+U projectors to model polarons in energy materials: FHI-aims UK Developers' and Users' Meeting, May 2024, Warwick; Materials Chemistry Consortium Conference (Novel Algorithms for Materials Modelling), July 2024, Daresbury
- Designing catalysts for Net-Zero 2050 using first-principles computational modelling: Cardiff Chemistry Conference, May 2024
- Accurate modelling of n-type doped TiO₂ polymorphs using DFT+*U* with occupation matrix control: Materials Chemistry Consortium Workshop on the Modelling Point Defects, January 2024, Lancaster
- A computational study of the adsorption and activation of H₂, CO and CO₂ on stoichiometric CeO₂(110) supported Cu₁₋₃ nanoclusters: World Congress in Oxidation Catalysis, September 2022, Cardiff

Presentations to Industry

- Machine learning algorithms for simulating realistic catalytic reaction environments: Johnson Matthey and bp, Cardiff, January 2025
- Combining DFT, global optimisation and machine learning to understand metal oxide support effects in catalysis: Johnson Matthey Computational Modelling Group, Reading, May 2024
- Sustainable Catalysis for Clean Growth- Advanced Methods Overview: bp International Centre for Advanced Materials Annual Conference, Manchester, October 2023

Poster Presentations

- Advancing ab-initio materials modelling using symbolic regression and large language models: CECAM Machine Learning for Materials Discovery (ML4MD) workshop, May 2025, Finland
- Machine learning generalised DFT+*U* projectors to model polarons in catalyst and battery materials: Thomas Young Centre 7th Energy Materials workshop: from data to discovery of new energy materials, July 2024, London
- Ab-initio adsorption phase diagrams using DFT parameterised Monte Carlo methods: STFC CCP5 Annual General Meeting, September 2023, Warwick

Competitive Funding Awards and Supervision

- STFC CCP5 Postgraduate Industrial Secondment worth £2248.80 supporting placement at Johnson Matthey Technology Centre, Sonning Common, UK
- Supervised research students as part of Nuffield and MChem projects