CIS 621 Assignment 1

Steven Walton

February 8, 2019

Problem 1

For the linear program below, where $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, d_3, e_1, e_2, e_3$ are non-zero constants, derive (1) its dual linear program and (2) the KKT conditions for the dual linear program.

$$\inf_{x_1 \ge 0, x_2 \le 0, x_3} a_1 x_1 + a_2 x_2 + a_3 x_3$$

$$s.t. \qquad b_1 x_1 + b_2 x_2 + b_3 x_3 \le e_1$$

$$c_1 x_1 + c_2 x_2 = e_3$$

$$d_3 x_3 > e_3$$

Part 1)

Solving for the dual problem

First we rewrite as a sup function and rearrange our constraints

$$\sup_{x_1 \ge 0, x_2 \le 0, x_3} -a_1 x_1 - a_2 x_2 - a_3 x_3$$

$$s.t. \qquad b_1 x_1 + b_2 x_2 + b_3 x_3 - e_1 \le 0$$

$$c_1 x_1 + c_2 x_2 - e_2 = 0$$

$$e_3 - d_3 x_3 \le 0$$

Now we rewrite and regroup with the associated x's

$$\sup_{\lambda_1 \geq 0, \lambda_2, \lambda_3 \geq 0} \sup_{x_1 \geq 0, x_2 \leq 0, x_3} x_1(\lambda_1 b_1 + \lambda_2 c_1 - a_1) + x_2(\lambda_1 b_2 + c_2 - a_2) + x_3(b_3 - a_3 - \lambda_3 d_3) - \lambda_1 e_1 - \lambda_2 e_2 + \lambda_3 e_3$$

Rewriting

$$\sup_{\lambda_1 \ge 0, \lambda_2, \lambda_3 \ge 0} -\lambda_1 e_1 - \lambda_2 e_2 + \lambda_3 e_3$$

$$s.t. \qquad \lambda_1 b_1 + \lambda_2 c_1 \ge a_1$$

$$\lambda_1 b_2 \le a_2 - c_2$$

$$\lambda_3 d_3 = b_3 - a_3$$

Resulting in the dual function

$$\inf_{\lambda_1 \ge 0, \lambda_2, \lambda_3 \ge 0} \lambda_1 e_1 + \lambda_2 e_2 - \lambda_3 e_3$$

$$s.t. \qquad \lambda_1 b_1 + \lambda_2 c_1 \ge a_1$$

$$\lambda_1 b_2 \le a_2 - c_2$$

$$\lambda_3 d_3 = b_3 - a_3$$

Part 2)

Stationary:

$$f(x) = x_1(a_1 + b_1 + c_1) + x_2(a_2 + b_2 + c_2) + x_3(a_3 + b_3 - d_3) - e_1 - e_2 + e_3$$

$$\frac{\partial L}{\partial x_1} = a_1 + b_2 + c_1$$

$$\frac{\partial L}{\partial x_2} = a_2 + b_2 + c_2$$

$$\frac{\partial L}{\partial x_2} = a_3 + b_3 - d_3$$

From here we can see that for a stationary solution we need

$$-e_1 - e_2 + e_3 = 0$$

Complementary Slackness:

We know that the conditions that have constraints need to result in 0. But because the constraints cannot be zero we must conclude that

$$b_1x_1 + b_2x_2 + b_3x_3 - e_1 = 0$$
$$e_3 - d_3x_3 = 0$$

Primal Feasibility:

Our conditions established with the problem satisfy the primal feasibility condition. **Dual Feasibility:**

Our conditions given with the dual problem satisfy the dual feasibility condition.

Problem 2

Let $a_{ij}, b_{ij}, c_{ij}, d_{ij}$ where $i = 1, 2, \dots, m$ $j = 1, 2, \dots, n$ $i, j \in \mathbb{R}^+$, (1) show that it is a convex optimization problem (2) derive its KKT conditions

$$\inf \sum_{i=1,j=1}^{m,n} a_{ij} x_{ij} + \sum_{i=1,j=1}^{m,n} b_{ij} ((x_{ij}+1)\log(x_{ij}+1) - x_{ij})$$
s.t.
$$\sum_{i,j}^{m,n} x_{ij} \ge c_j, \forall j$$

$$\sum_{i,j}^{m,n} x_{ij} + d_i \ge \sum_{j}^{n} x_{ij} + \sum_{j}^{n} c_j, \forall i$$

$$x_{ij} \ge 0 \ \forall i, j$$

Part 1)

We know that this is a convex optimization problem because it is written in the standard form. Writing it more conveniently we have

$$\inf \sum_{i=1,j=1}^{m,n} a_{ij} x_{ij} + \sum_{i=1,j=1}^{m,n} b_{ij} ((x_{ij}+1)\log(x_{ij}+1) - x_{ij})$$
s.t.
$$c_j - \sum_{i=1}^m x_{ij} \le 0, j = 1, \dots, n$$

$$\sum_{j=1}^n x_{ij} + \sum_{j=1}^n c_j - \sum_{i=1}^m \sum_{j=1}^n x_{ij} - d_i \le 0, i = 1, \dots, m$$

$$-x_{ij} \le 0, i = 1, \dots, m, j = 1, \dots, n$$

We also notice that all x_{ij} are constrained and that the last constraint can be written as two, one where $x_{ij} = 0$

Next we need to show that the objective function is convex. This is easy to do because we can see that in the summation $x_{ij}ln(x_{ij}+1)$ is the dominant term, and thus $(x_{ij}+1)\log(x_{ij}+1)$ is convex. The other terms are linear, and thus trivially convex.

Part 2)

Stationary:

Taking the partial derivative with respect to x_{ij} of the summation of the above terms we get

$$a_{ij} + b_{ij}\log(x_{ij} + 1) - 2$$

Setting this equal to 0, to find the stationary solution, we find that

$$x_{ij} = e^{\frac{2-a_{ij}}{b_{ij}}} - 1$$

Complementary Slackness:

To determine complementary slackness we need to set $h(x_{ij}) = 0$. Where

$$h(x_{ij}) = c_j - \sum_{i=1}^m x_{ij} + \sum_{j=1}^n (x_{ij} + c_j) - \sum_{i=1, j=1}^{m, n} x_{ij} - d_i - x_{ij}$$

Primal Feasibility:

These are seen from part 1

Dual Feasibility:

We don't need to find the dual solution, but rather can determine that $\lambda_1 \geq 0, \lambda_2 \geq 0, \lambda_3 \geq 0$, where each λ is associated with its respective condition in the primal problem.

Problem 3

Let $a, x \in \mathbb{R}^n, B \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^m$ P_1

$$\inf a^T x \qquad s.t.Bx \le c$$
$$x_i \in \{0, 1\}, i = 1, \dots, n$$

 P_2

$$\inf a^T x \qquad s.t.Bx \leq c$$
$$0 < x_i < 1, i = 1, \dots, n$$

 P_3

$$\inf a^T x \qquad s.t.Bx \leq c$$
$$x_i(1-x_i) = 0, i = 1, \dots, n$$

Part 1)

Derive the dual problem, P_4 , of P_3 First let's rewrite

$$\inf a^T x \qquad s.t.Bx - c \leq 0$$
$$x_i(1 - x_i) = 0, i = 1, \dots, n$$

Then we want to make it a max problem

$$\sup -a^T x \qquad s.t.Bx - c \le 0$$
$$x_i(1 - x_i) = 0, i = 1, \dots, n$$

Then we introduce $\lambda_1 \geq 0$ that will be associated with the first condition and λ_2 (no constraint) that is associated with the x_i constraint. Next we need to find the max value and solve for x

$$\sup_{\lambda_1 \ge 0, \lambda_2} \sup -a^T x + \lambda_1 B x - \lambda_1 c + \lambda_2 \sum_{x=1}^n x_i (1 - x_i)$$

We now need to minimize over x (We're going to use Einsteinian notation)

$$-a^{T}x_{i} + (B_{i}x_{i} - c_{i})\lambda_{i1} + x_{i}(1 - x_{i})\lambda_{2i}$$

$$-a^{T}x_{i} + B_{i}x_{i}\lambda_{i1} - c_{i}\lambda_{i1} + x_{i}\lambda_{i2} - x_{i}\lambda_{i2}x_{i}$$

$$\nabla_{x} = -a^{T} + B_{i}\lambda_{i1} + \lambda_{i2} - 2x_{i}\lambda_{i2}$$

$$2x_{i}\lambda_{i2} = -a^{T} + B_{i}\lambda_{i1} + \lambda_{i2}$$

$$x_{i} = \frac{-a^{T} + B_{i}\lambda_{i1} + \lambda_{i2}}{2\lambda_{i2}}$$

First we need to recognize that λ_{i2} could be 0. That would result in a $g(\lambda_1, \lambda_2) = -\infty$. Substituting back in

$$-a_i^T \left(\frac{-a^T + B_i \lambda_{i1} + \lambda_{i2}}{2\lambda_{i2}}\right) + B_i \left(\frac{-a^T + B_i \lambda_{i1} + \lambda_{i2}}{2\lambda_{i2}}\right) \lambda_{i1} - c_i \lambda_{i1}$$

$$+ \left(\frac{-a^T + B_i \lambda_{i1} + \lambda_{i2}}{2\lambda_{i2}}\right) \lambda_{i2} - \left(\frac{(-a^T + B_i \lambda_{i1} + \lambda_{i2})^2}{2\lambda_{i2}\lambda_{i2}}\right) \lambda_{i2}$$

$$-a_{i}^{T} \left(\frac{-a^{T} + B_{i}\lambda_{i1} + \lambda_{i2}}{2\lambda_{i2}} \right) + B_{i} \left(\frac{-a^{T} + B_{i}\lambda_{i1} + \lambda_{i2}}{2\lambda_{i2}} \right) \lambda_{i1} - c_{i}\lambda_{i1}$$

$$+ \frac{-a^{T} + B_{i}\lambda_{i1} + \lambda_{i2}}{2} - \frac{(-a^{T} + B_{i}\lambda_{i1} + \lambda_{i2})^{2}}{2\lambda_{i2}}$$

Now we need to maximize our λ 's

$$B_i \left(\frac{-a^T + B_i \lambda_{i1} + \lambda_{i2}}{2\lambda_{i2}} \right) \lambda_{i1} - c_i \lambda_{i1} + \frac{-a^T + B_i \lambda_{i1} + \lambda_{i2}}{2}$$
$$- c_i \lambda_{i1} + (B_i \lambda_{i1} + \lambda_{i2}) x_i$$

$$\inf c\lambda_1 \qquad s.t.(B_i\lambda_{i1} + \lambda_{i2}) \ge 0$$
$$\lambda_{i2} > 0$$

Part 2)

Are L_1 and L_2 equal?

If we carefully look at the three problems we will notice that they are in fact the same ones. It is clear that P_1 and P_3 are the same, because they trivially have the same solution to the x_i condition, those being $\{0,1\}$. We can rewrite P_2 in a more convenient way to show that the constraints are the same.

$$\inf a^T x \qquad s.t.Bx \leq c$$

$$x_i \geq 0, i = 1, \dots, n$$

$$x_i \leq 1, i = 1, \dots, n$$

$$\inf a^T x \qquad s.t.Bx \leq c$$

$$-x_i \leq 0, i = 1, \dots, n$$

$$x_i - 1 \leq 0, i = 1, \dots, n$$

From here we can see that stationary solutions are, again, when $x_i = \{0, 1\}$. With these primal conditions and our clear dual conditions, we can tell that the KKT conditions are the same as well. \therefore they must have the same optimal solution. \therefore they must be the same problem.