Билет 63

Автор1, ..., Aвтор<math>N

20 июня 2020 г.

Содержание

0.1 Билет 63: Теорема о перестановке пределов и о перестановке предела и суммы. . . $\,1\,$

Билет 63 СОДЕРЖАНИЕ

0.1. Билет 63: Теорема о перестановке пределов и о перестановке предела и суммы.

Теорема 0.1 (О перестановке пределов).

 $f_n, f: E \mapsto \mathbb{R}, f_n \rightrightarrows f$ на E, а – предельная точка E, $b_n := \lim_{x \to a} f_n(x) \in \mathbb{R}.$

Тогда существуют $\lim_{n\to\infty} b_n$ и $\lim_{x\to a} f(x)$ и они равны.

Спанада покажем сходимость b_n . Проверим, что b_n фундаментальна.

По критерию Коши для равномерной сходимости имеем:

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m \ge N \ \forall x \in E \ |f_n(x) - f_m(x)| < \varepsilon$$

Сделаем переход к пределу в неравенстве (устремим $x \to a$, строгое неравенство превратилось в нестрогое), получим:

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m \ge N \ |b_n - b_m| \le \varepsilon$$

А это и есть определение фундаментальной последовательности! Значит, b_n фундаментальна. Значит, по критерию Коши для последовательностей имеет конечный предел.

Пусть $b:=\lim_{n\to\infty}b_n\in\mathbb{R}.$ Осталось проверить, что $\lim_{x\to a}f(x)=b.$ Тогда автоматически докажем существование и равенство.

Посмотрим на разность |f(x) - b|. Творчески оценим её по неравенству треугольника следующим образом:

$$|f(x) - b| \le |b_n - b| + |f_n(x) - b_n| + |f_n(x) - f(x)|$$

Заметим, что это верно для любых п. Теперь посмотрим по отдельности на каждое слогаемое в правой части неравенства. По определению предела $\forall n \geq N_1 \ |b_n - b| < \varepsilon$. По определению равномерной сходимости $\forall n \geq N_2 \ \forall x \in E \ |f_n(x) - f(x)| < \varepsilon$. Выберем $\max(N_1, N_2)$. Теперь посмотрим на $|f_n(x) - b_n|$. Мы знаем, что $\lim_{x \to a} f_n(x) = b_n$ (формулировка теоремы). Значит, мы можем сказать, что $|f_n(x) - b_n| < \varepsilon$ при $|x - a| < \delta$. Получили

$$|f(x) - b| \le |b_n - b| + |f_n(x) - b_n| + |f_n(x) - f(x)| < 3\varepsilon$$

Собирая всё в кучу, получим определение предела:

 $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{если} \; |x - a| < \delta \Rightarrow |f(x) - b| < 3\varepsilon.$

Значит, $\lim f(x) = b$. Что и требовалось доказать.

$$u_n: E \mapsto \mathbb{R}, \sum_{n=1}^{\infty} u_n(x)$$
 равномерно сходится на E и $\lim_{x \to a} u_n(x) = b_n$

Теорема 0.2 (О перестановке предела и суммы). $u_n: E \mapsto \mathbb{R}, \ \sum_{n=1}^\infty u_n(x) \ \text{равномерно сходится на } E \ \text{и} \ \lim_{x \to a} u_n(x) = b_n$ Тогда $\lim_{x \to a} \sum_{n=1}^\infty u_n(x) = \sum_{n=1}^\infty b_n = \sum_{n=1}^\infty \lim_{x \to a} u_n(x)$ и все эти пределы конечны.

Доказательство.

Посмотрим на частичные суммы $S_n(x) := \sum_{k=1}^n u_k(x)$. Так как сумма конечная, можно написать

так: $\lim_{x\to a}S_n(x)=\sum_{k=1}^nb_k:=B_n.$ Мы также знаем, что $S_n\rightrightarrows S.$

Тогда по предыдущей теореме $\lim_{n\to\infty} B_n = \lim_{x\to a} S(x)$. А это как раз то, что нам нужно.

Следствие.

Если u_n непрерывны в точке a и $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится, то $\sum_{n=1}^{\infty} u_n(x)$ непрерывна в точке a.

Билет 63 COДЕРЖАНИЕ

Доказательство.

 $\lim_{x\to a} u_n(x) = u_n(a) =: b_n(\text{по непрерывности}).$

По предыдущей теореме $\lim_{x\to a} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} u_n(a)$, а это и есть непрерывность.