Comparing RNA-seq vs DNA-seq methods for identifying T cell repertoires

Michelle Miron
12/2/2017

The goal of this project

T cell clones can be identified by the sequence of their T cell receptor gene. Unlike most cells in the body, T cells have rearragned segnemtn of DNA that is esentially a barcode to identify that T cells and all subsequent daughter cells originating from that cell.

There is newly developed software to extract T cell receptor (TCR) sequences from bulk RNA-seq data.

The novelty here, is that usually in order to detect T cell receptor sequences, you design specific primers to sequence the T cell receptor locus within the DNA. However, recently people have designed algorithms to extract TCR sequences from bulk-RNA seq data.

A major limitation in analyzing TCR sequences that were extracted from bulk RNA-seq data, is that you will have very limited sampling. How limited is this sampling? What portion of the reperotire is this capturing? Equivalent to about about many cells? That is the question I will be addressing here.

I am uniquely positioned to answer this questions, with experimenta data from both TCR seq of DNA and bulk RNA-seq of sorted T cells.

Methods

I will be using MiXCR https://milaboratory.com/software/mixcr/.

##			CD	R3.nucleotide	.sequence	Umi.count.x	Umi.count.y
##	1	AGCAGTGCTAG	GCGAGGGGGCG	CAGGACAGATACO	CAGTATTTT	1	Ō
##	2	AGTGCCACC#	AGCACGGAGAC	GGAACAAAAGAC	CAGTACTTC	1	1
##	3	AGTO	GCCAGCAGCGT	AGAGGGGGGCGAG	CAGTACTTC	1	0
##	4 AGT	GCCAGCAGCTATA	ATGGCAGGCCC	CCGAGTGGGCGGC	TACACCTTC	1	0
##	5	AGTO	GCCAGCAGCTT	AGTAAACGATGAC	CAGTTCTTC	8	8
##	6	AGTO	GCCAGCAGCTT	AGTAAGCGATGAG	CAGTTCTTC	1	1
##	Umi	.count					
##	1	0					
##	2	0					
##	3	0					
##	4	0					
##	5	0					
##	6	0					
##				CDR3.nucleot	ide.sequer	nce Umi.count	5.x
##	6695	TGTT	CCTGGGACTC	CGGGACAGGGAGC	GGCTACACCT	TTC	3
##	6696	TGTT	CGAGTTATAC	CAGTGGCTGGTTC	ACTGACTCG1	TGG	0
##	6697	TTCTCTTT	ATTCTCCCAGG	GGGCACTAATGA	AAACTGTTTT	TT	9
##	6698	TTCTCTTT#	ATTCTCCCAGG	GGGCTCTAATGA	AAACTGTTTT	TTT	1
##	6699	TTTGCCACCAGC	AGAGATCTTTG	GGGGGGGGCGAT	GAGCAGTTCT	TTC	2
##	6700	TTTC	GCCAGCGCCAC	TCAGTCGGATCCT	GGCTACACCT	TTC	1
##		Umi.count.y U	Jmi.count				
##	6695	3	0				
##	6696	0	1				
##	6697	9	0				
##	6698	1	0				

```
## 6699
## 6700
## [1] 4
```

Abundance Plot

clone frequency

##		CDR3.nucleotide.sequence	Umi.count
##	1	TGCAGTGCCGAAAGGACAGGGGTGACTGAAAAACTGTTTTTT	41398
##	2	TGTGCCAGTAGTACCGATTTCGACTACGAGCAGTACTTC	36074
##	3	$\tt TGTGCCAGCAGTCCCCCCGTGTGCCGCGGCTCCTACAATGAGCAGTTCTTC$	32925
##	4	TGTGCCAGCAACATGGGGGGGGAAATCAGCCCCAGCATTTT	19645
##	5	TGTGCCACCAGCAGAGATCTCACCCAGGGTAGAAGAAACACCATATATTTT	17757
##	6	TGTGCCAGCAGTTCAGCTAACTATGGCTACACCTTC	15986
##		CDR3.nucleotide.sequence	Umi.count
##	1	TGTGCCAGCAGTTTACCCCAGGTACCCACTGAAGCTTTCTTT	70567
##	2	TGCAGTGCCGAAAGGACAGGGGTGACTGAAAAACTGTTTTTT	6248
##	3	$\tt TGTGCCAGCAGTCCCCCCGTGTGCCGCGGCTCCTACAATGAGCAGTTCTTC$	5345
##	4	TGTGCCAGTAGTACCGATTTCGACTACGAGCAGTACTTC	5121
##	5	TGTGCCAGCAACATGGGGGGGGAAATCAGCCCCAGCATTTT	3390
##	6	TGTGCCAGCAGTTCAGCTAACTATGGCTACACCTTC	2973
##		CDR3.nucleotide.sequence Umi	.count
##	1	TGTGCCAGCAGTTTACCCCAGGTACCCACTGAAGCTTTCTTT	837
##	2	TGTGCTGTGGAGTTAATGAATAATAATGCAGGCAACATGCTCACCTTT	438
##	3	TGTGCCACCTGGGATAAGAAACTCTTT	381
##	4	TGTGCTCTGAACACCGGTAACCAGTTCTATTTT	302
##	5	TGTGCTGCGTGGGATCCCGCCGGCCACTGGTTGGTTCAAGATATTT	144
##	6	TGTGCCAGCAGTACACCGGCGGGACAGGGGATCAATGAGCAGTTCTTC	126