Study Note for Mask R-CNN

Qinghong Lin 2018/10

Abstract

• Mask R-CNN add a branch for predicting an object mask in paralled (with the existing branch for bounding box recognition) and is simple to train and adds only a small overhead (to Faster R-CNN. running at 5 fps).

1.Introduction

- Goal is to develop a comparably enabling framework for instance segmentation.
- Mask R-CNN extends Faster R-CNN by adding a branch for predicting segmentation masks on each Rol, in parallel with the existing branch for classification and bounding box regression.

- The mask branch is a small **FCN** applied to each RoI, predicting a segmentation mask in a pixel-to-pixel manner.
- RolPool performs coarse spatial quantization for feature extraction, to fix the misalignment, **RolAlign** preserves exact spatial locations.
- RoIAlign impact
- -Improves mask accuracy by 10% to 50%, showing bigger gains under stricter localization metrics.
- -It essential to decouple mask and class prediction:

(we <u>predict a binary mask</u> for each class independently without competition among classes, and rely on the network's Rol classification branch to <u>predict the category</u>).

2.Related Work

R-CNN

- R-CNN approach **to bounding-box object detection** is to <u>attend to a manageable number of candidate object regions</u> and <u>evaluate convolutional networks independently on each **Rol**.</u>
- Fast R-CNN allow Rols on feature maps using RolPool, leading to fast speed and better accuracy.
- Faster R-CNN learning the attention mechanism with a RPN.

Instance Segmentation

- many instance segmentation approaches are based on segment proposals.
- segmentation precedes recognition is slow and less accurate.
- *FCIS* predict a set of position-sensitive output channels FC, errors on <u>overlapping instances and</u> <u>creates spurious edges.</u>
- In contrast to <u>segmentation-first</u> strategy of these methods, Mask R-CNN is based on an <u>instance-first</u> strategy.

3.Mask R-CNN

- •Faster R-CNN has **two outputs** for <u>each candidate object</u>, a class label and <u>a bounding-box offset</u>; to this we **add a third branch** that <u>outputs the object mask</u>.
- But the additional mask output is requiring extraction of much finer spatial layout of an object.

Faster R-CNN

- Faster R-CNN two stages
- -The first stage is **RPN**.
- -The second stage is <u>extracts features using **RolPool** from each candidate box</u> and <u>performs</u> <u>classification and bounding-box regression</u>.

Mask R-CNN

- · Adopts the same two-stage procedure
- -The first stage is **RPN**.
- -The second stage, *in parallel to* <u>predicting the class and box offset</u>, also <u>outputs a **binary mask**</u> <u>for each Rol.</u> (classification depends on mask predictions)
- multi-task loss on each sampled RoI as L = LcIs + Lbox + Lmask
- -the mask branch has a Km^2 -dim output for each RoI.(resolution $m \times m$ for K classes)
- -Apply a per-pixel sigmoid and define Lmask as the average binary cross-entropy loss.
- Allow the network to generate masks for every class without competition among classes;
- -FCNs uses <u>a per-pixel</u> softmax and a <u>multinomial</u> cross-entropy loss, masks across **classes compete**.
- -In our case, with a *per-pixel sigmoid* and a *binary loss* do not.

Mask Representation

- A mask encodes an input object's spatial layout
- -class labels or box offests are inevitably <u>collapsed into short output vectors</u> by *fc* layers
- -Extracting the spatial structure of masks can be addressed naturally by the pixel-to-pixel correspondence provided by convolutions.
- Predict an $m \times m$ mask from each RoI using an FCN. (This allows each layer in the mask branch to **maintain the explicit m** $\times m$ **object spatial layout**

without collapsing it into a vector representation lacks spatial dimensions.)

• To be well aligned to faithfully preserve the explicit per-pixel spatial correspondence.

RolAlign

- RolPool extracting a small feature map from each Rol
 - -first quantizes a floating-number Rol to the discrete granularity of the feature map.
 - -then subdivided into spatial bins.
 - -finally feature values covered by each bin are aggregated.
- RolAlign layer removes the **harsh quantization** of RolPool, *aligning* the extracted features with the input.
 - -Avoid any quantization of the RoI boundaries or bins.
- -Use **bilinear interpolation** to <u>compute the exact values of the input features</u> at four regularly sampled locations in each RoI bin, and <u>aggregate the result.</u>

Network Architecture

- Instantiate Mask R-CNN with multiple architectures.
- (i) the convolutional backbone architecture used for feature extraction over an entire image
- (ii) the network head for bounding-box recognition and mask prediction.
- backbone:ResNet and ResNeXt of depth 50 or 101 layer, FPN
- network head, we add a FC mask prediction branch.

3.1.Implementation Details

Training

- Lmask is defined only on positive Rol
- Image-centric training
- RPN and Mask R-CNN have the same backbones and so they are shareable.

Inference

• predict K masks per RoI, but we only use the k-th mask.(k is the predicted class by the classification branch).

4. Experiments: Instance Segmentation

4.1. Main Results

• Mask R-CNN with ResNet-101-FPN backbone outperforms FCIS+++.

4.2. Ablation Experiments

net-depth-features	AP	AP_{50}	AP_{75}
ResNet-50-C4	30.3	51.2	31.5
ResNet-101-C4	32.7	54.2	34.3
ResNet-50-FPN	33.6	55.2	35.3
ResNet-101-FPN	35.4	57.3	37.5
ResNeXt-101-FPN	36.7	59.5	38.9

	AP	AP_{50}	AP_{75}
softmax	24.8	44.1	25.1
sigmoid	30.3	51.2	31.5
	+5.5	+7.1	+6.4

	align?	bilinear?	agg.	AP	AP_{50}	AP_{75}
RoIPool [12]			max	26.9	48.8	26.4
RoIWarp [10]		√	max	27.2	49.2	27.1
		✓	ave	27.1	48.9	27.1
RoIAlign	√	√	max	30.2	51.0	31.8
	V	√	ave	30.3	51.2	31.5

ResNeXt improves on ResNet.

(a) Backbone Architecture: Better back- (b) Multinomial vs. Independent Masks (c) RoIAlign (ResNet-50-C4): Mask results with various RoI bones bring expected gains: deeper networks do better, FPN outperforms C4 features, and do better FPN outperforms C4 f gains over multinomial masks (softmax). tor that contributes to the large gap between RoI layers.

	AP	AP_{50}	AP_{75}	APbb	$\mathrm{AP_{50}^{bb}}$	$\mathrm{AP^{bb}_{75}}$
RoIPool	23.6	46.5	21.6	28.2	52.7	26.9
RoIAlign	30.9	51.8	32.1	34.0	55.3	36.4
	+73	+ 5 3	+10.5	+5.8	+2.6	+95

	mask branch	AP	AP_{50}	AP_{75}	
MLP	fc: $1024 \rightarrow 1024 \rightarrow 80.28^2$	31.5	53.7	32.8	١
MLP	fc: $1024 \rightarrow 1024 \rightarrow 1024 \rightarrow 80.28^2$	31.5	54.0	32.6	
FCN	conv: $256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 80$	33.6	55.2	35.3	

(d) RoIAlign (ResNet-50-C5, stride 32): Mask-level and box-level AP using *large-stride* features. Misalignments are more severe than with stride-16 features (Table 2c), resulting in massive accuracy gaps. (e) Mask Branch (ResNet-50-FPN): Fully convolutional networks (FCN) vs. multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs improve results as they take advantage of explicitly encoding spatial layout.

Architecture (a)

· benefits from deeper networks

Multinomial vs.Independent Masks (b)

• <u>sigmoid and a binary loss</u> better than <u>per-pixel softmax and a multinomial loss</u>.

Class-Specific vs. Class-Agnostic Masks

• Our approach decouples classification and segmentation.

RolAlign (c)

- RolAlign improves AP over RolPool.
- RolWarp quantizes the Rol, losing alignment with the input.
- ResNet-50-C5 back-bone imroves mask AP. (d)

Mask Branch (e)

• FCNs imroves mask AP over multi-layer perceptrons(MLP).

4.3. Bounding Box Detection Results

-	backbone	APbb	$\mathrm{AP^{bb}_{50}}$	$\mathrm{AP^{bb}_{75}}$	AP^bb_S	$\mathrm{AP}^{\mathrm{bb}}_{M}$	$\mathrm{AP}^{\mathrm{bb}}_{L}$
Faster R-CNN+++ [19]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [27]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [21]	Inception-ResNet-v2 [37]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [36]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

• Mask R-CNN object detection 39.8% while instance segmentation 37.1%

4.4.Timing

Inference

Training

5. Mask R-CNN for Human Pose Estimation

• easy to extend to human pose estimation.

Implementation Details

Main Results and Ablations