What You Always Wanted To Know About C++ Performance Portability (But Were Afraid to Do)

International Conference on Parallel Processing 2024 — ICPP'24

Ruben Laso, Diego Krupitza, and Sascha Hunold {laso, krupitza, hunold}@par.tuwien.ac.at August 13, 2024

Research Group for Parallel Computing, TU Wien

C++ STL in HPC

C++ in High-Performance Computing

- Languages like C, C++ and Fortran are the most used in HPC
 - Existing code base
 - Performance
 - Compatibility with new hardware
- C++ can be used in several types of architectures
 - ullet Multi-core and many-core CPUs o OpenMP, TBB
 - GPUs → CUDA, OpenCL
 - ullet FPGAs o SYCL
- Should we use a different code for each system?

C++ STL in HPC

Performance Portability

Same code performs "well" on different architectures

Performance Portability in C++

- Several libraries: Kokkos, RAJA, HPX, ...
- C++17 with execution policies
 - Parallel execution of the algorithms in STL (standard library)
 - Different compilers/backends

C++ STL in HPC

Questions

- Speedup and efficiency of parallel STL algorithms?
- Which is the **best compiler/backend**? GCC vs ICC, TBB vs OpenMP, . . .
- **GPUs** performance?

Contributions

- pSTL-Bench: micro-benchmark suite
- Evaluation of the performance for
 - Different compilers: GCC, ICC, NVIDIA HPC SDK
 - Different backends: OpenMP, TBB, HPX, CUDA
 - Different systems: Intel and AMD CPUs, NVIDIA GPUs

pSTL-Bench

pSTL-Bench

- Code available on github.com/parlab-tuwien/pSTL-Bench
- Suite of micro-benchmarks to test performance portability in C++
 - STL algorithms: std::for_each, std::reduce, std::sort, ...
- Features:
 - Number of threads: with OMP_NUM_THREADS or --hpx::threads=N
 - HW Perf. Counters: PAPI's HL or Likwid's Marker APIs
 - Different (customizable) input sizes and data types
 - Custom NUMA allocator

Experiments

Variables

- Input sizes: 2^3 to 2^{30} elements \rightarrow 64B to 8GB
- Data type: double and float
- pSTL-Bench's NUMA allocator
- No control of thread and memory placement

Contenders

- Compilers: GCC, ICC, NVIDIA HPC SDK
- Backends: GNU (OpenMP), TBB, HPX, Thrust (OMP), CUDA

Experiments

Machine	VSC-5 (Zen 3)	Hydra (Skylake)	Tesla	Ampere
CPU/GPU	AMD EPYC 7713	Intel Xeon 6130F	NVIDIA Tesla T4	NVIDIA Ampere A2
Architecture	Zen 3	Skylake	Turing	Ampere
Sockets NUMA nodes	2 8	2 2	1 1	1 1
Total #cores threads	128 256	32 32	2560 2560	1280 1280
Max. #threads used	128	32	2560	1280
Memory (node / GPU)	512 GiB	48 GiB	16 GiB	8 GiB
Memory (per core)	4 GiB	1.5 GiB	_	_
STREAM BW 1 all core(s) (GB/s)	42.6 249	11.7 135	N/A 264	N/A 172

Results - Execution time scaling

Execution time scaling of for_each in **VSC-5** (Zen 3). Data type: double. **All cores** are used except for GCC-SEQ. Lower is better.

Results - Speedup

Strong scaling of for_each with 2³⁰ doubles in VSC-5 (Zen 3). Higher is better.

Results - HW Counters and Binary Sizes

Executed instructions in 100 calls to $std::for_each$ $(k_{it} = 1)$ on **Hydra (Skylake)**.

Metric	GCC TBB	GCC GNU	GCC HPX	ICC TBB	NVC OMP
Instructions	1.72T	2.41T	3.83T	1.55T	2.24T
FP scalar	107G	107G	107G	107G	107G
FP 128-bit packed	0	0	0	0	0
FP 256-bit packed	0	0	0	0	0
GFLOP/s	5.41	6.51	4.06	5.02	7.26
Mem. bandwidth (GiB/s)	107.6	116.6	75.6	104.5	119.1
Mem. data volume (GiB)	2128	1925	1850	2151	1762

Binary sizes in **Hydra (Skylake)** and **Tesla**. Lower is better.

	Compiler Backend	Binary size (MiB)
C	CC-SEQ	2.5
G	CC-TBB	17.2
G	CC-GNU	5.3
G	CC-HPX	62.0
10	CC-TBB	16.6
Ν	IVC-OMP	1.8
Ν	IVC-CUDA	7.8

Results - GPUs

Execution time scaling of reduce. Data type: float. **All cores** are used except for GCC-SEQ. Lower is better.

Conclusions

Your mileage will vary

- C++ is rapidly moving towards performance portability with execution policies
 - Actual implementations are not so rapid
- pSTL-Bench is a tool to evaluate the performance of C++ STL
- Performance is heavily dependent on the compiler and backend
- \bullet Algorithms in STL are usually memory-bound \to Not a huge speedup + careful memory placement
- ullet In GPUs, data transfer is the key o keep data in the device

Get your hands on it!

https://github.com/parlab-tuwien/pSTL-Bench

What You Always Wanted To Know About C++ Performance Portability (But Were Afraid to Do)

International Conference on Parallel Processing 2024 — ICPP'24

Ruben Laso, Diego Krupitza, and Sascha Hunold {laso, krupitza, hunold}@par.tuwien.ac.at August 13, 2024

Research Group for Parallel Computing, TU Wien

Additional content

Maximum number of threads such that **efficiency is above** 70 % (compared to the seq. execution) for **VSC-5** (**Zen 3**). Problem size is 2^{30} . Higher is better.

	find		extstyle ext	inclusive_scan	reduce	sort
GCC-TBB	2	1	128	1	16	8
GCC-GNU	1	1	128	N/A	16	32
GCC-HPX	1	2	16	1	4	4
ICC-TBB	1	4	128	1	1	8
NVC-OMP	4	16	128	1	32	2

Additional content

Execution time scaling of for_each. Data type: float. All cores are used except for GCC-SEQ. Lower is better.