Appendix 7A: Random Walks and the Diffusion Equation

251

To do the integral on the right-hand side of (7.70), we multiply both sides of (7.68) by x and formally integrate over x:

$$\int_{-\infty}^{\infty} x \frac{\partial P(x,t)}{\partial t} dx = D \int_{-\infty}^{\infty} x \frac{\partial^2 P(x,t)}{\partial x^2} dx.$$
 (7.71)

The left-hand side can be expressed as

$$\int_{-\infty}^{\infty} x \frac{\partial P(x,t)}{\partial t} dx = \frac{\partial}{\partial t} \int_{-\infty}^{\infty} x P(x,t) dx = \frac{d}{dt} \langle x \rangle. \tag{7.72}$$

The right-hand side of (7.71) can be written in the desired form by doing an integration by parts:

$$D\int_{-\infty}^{\infty} x \frac{\partial^2 P(x,t)}{\partial x^2} dx = D x \frac{\partial P(x,t)}{\partial x} \Big|_{x=-\infty}^{x=\infty} - D\int_{-\infty}^{\infty} \frac{\partial P(x,t)}{\partial x} dx.$$
 (7.73)

The first term on the right-hand side of (7.73) is zero because $P(x=\pm\infty,t)=0$ and all the spatial derivatives of P at $x=\pm\infty$ are zero. The second term is also zero because it integrates to $D[P(x=\infty,t)-P(x=-\infty,t)]$. Hence, we find that

$$\frac{d\langle x\rangle}{dt} = 0, (7.74)$$

or $\langle x \rangle$ is a constant, independent of time. Because x = 0 at t = 0, we conclude that $\langle x \rangle = 0$ for all t.

To calculate $\langle x^2(t) \rangle$, we can use a similar procedure and perform two integrations by parts. The result is

$$\frac{d}{dt}\langle x^2(t)\rangle = 2D,\tag{7.75}$$

or

$$\langle x^2(t)\rangle = 2Dt. \tag{7.76}$$

We see that the random walk and the diffusion equation have the same time dependence. In d-dimensional space, 2D is replaced by 2dD.

The solution of the diffusion equation shows that the time dependence of $\langle x^2(t) \rangle$ is equivalent to the long time behavior of a simple random walk on a lattice. In the following, we show directly that the continuum limit of the one-dimensional random walk model is a diffusion equation.

If there is an equal probability of taking a step to the right or left, the random walk can be written in terms of the simple master equation

$$P(i,N) = \frac{1}{2} [P(i+1,N-1) + P(i-1,N-1)], \tag{7.77}$$

where P(i, N) is the probability that the walker is at site i after N steps. To obtain a differential equation for the probability density P(x, t), we identify $t = N\tau$, x = ia, and

P(i, N) = aP(x, t), where τ is the time between steps and a is the lattice spacing. This association allows us to rewrite (7.77) in the equivalent form

$$P(x,t) = \frac{1}{2} [P(x+a,t-\tau) + P(x-a,t-\tau)]. \tag{7.78}$$

We rewrite (7.78) by subtracting $P(x, t - \tau)$ from both sides of (7.78) and dividing by τ :

$$\frac{1}{\tau}[P(x,t) - P(x,t-\tau)]$$

$$= \frac{a^2}{2\tau} [P(x+a, t-\tau) - 2P(x, t-\tau) + P(x-a, t-\tau)]a^{-2}.$$
(7.79)

If we expand $P(x, t - \tau)$ and $P(x \pm a, t - \tau)$ in a Taylor series and take the limit $a \to 0$ and $\tau \to 0$ with the ratio $D \equiv a^2/2\tau$ finite, we obtain the diffusion equation

$$\frac{\partial P(x,t)}{\partial t} = D \frac{\partial^2 P(x,t)}{\partial x^2}.$$
 (7.80a)

The generalization of (7.80a) to three dimensions is

$$\frac{\partial P(x, y, z, t)}{\partial t} = D \nabla^2 P(x, y, z, t), \tag{7.80b}$$

where $\nabla^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial x^2$ is the Laplacian operator. Equation (7.80) is known as the *diffusion* equation and is frequently used to describe the dynamics of fluid molecules.

The direct numerical solution of the prototypical parabolic partial differential equation (7.80) is a nontrivial problem in numerical analysis (cf. Press et al. or Koonin and Meredith). An indirect method of solving (7.80) numerically is to use a Monte Carlo method; that is, replace the partial differential equation (7.80) by a corresponding random walk on a lattice with discrete time steps. Because the asymptotic behavior of the partial differential equation and the random walk model are equivalent, this approach uses the Monte Carlo technique as a method of numerical analysis. In contrast, if our goal is to understand a random walk lattice model directly, the Monte Carlo technique is a simulation method. The difference between simulation and numerical analysis is sometimes in the eyes of the beholder.

Problem 7.43 Biased random walk

Show that the form of the differential equation satisfied by P(x, t) corresponding to a random walk with a drift, that is, a walk for $p \neq q$, is

$$\frac{\partial P(x,t)}{\partial t} = D \nabla^2 P(x,y,z,t) - v \frac{\partial P(x,t)}{\partial x}.$$
 (7.81)

How is v related to p and q?