Loop Invariants and Insertion-sort COMS10018 - Algorithms

Dr Christian Konrad

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

```
Require: Array of n positive integers A
m \leftarrow A[0]
for i = 1, \dots, n-1 do
if A[i] > m then
m \leftarrow A[i]
return m
```

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A
m \leftarrow A[0]
for i = 1, \dots, n-1 do
if A[i] > m then
m \leftarrow A[i]
return m
```

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

Require: Array of n positive integers A $m \leftarrow A[0]$ for $i=1,\ldots,n-1$ do if A[i]>m then $m \leftarrow A[i]$ return m

Proof:

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i = 1, \dots, n-1 do
   if A[i] > m then
   m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i=1,\ldots,n-1 do if A[i]>m then m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

Base case.

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A
m \leftarrow A[0]
for i = 1, \dots, n-1 do
if A[i] > m then
m \leftarrow A[i]
return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

• Base case. i = 1:

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A
m \leftarrow A[0]
for i = 1, \dots, n-1 do
if A[i] > m then
m \leftarrow A[i]
return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto (m_1 = A[0])$.

• Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\}$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A
m \leftarrow A[0]
for i = 1, \dots, n-1 do
if A[i] > m then
m \leftarrow A[i]
return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

• Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\} \checkmark$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i=1,\ldots,n-1 do if A[i]>m then m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\} \checkmark$
- Induction step.

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i=1,\ldots,n-1 do if A[i]>m then m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\}$
- Induction step.Case A[i] > m_i:

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A
m \leftarrow A[0]
for i = 1, \dots, n-1 do
if A[i] > m then
m \leftarrow A[i]
return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\}$
- Induction step.

Case
$$A[i] > m_i$$
: $m_{i+1} =$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A
m \leftarrow A[0]
for i = 1, \dots, n-1 do
if A[i] > m then
m \leftarrow A[i]
return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\} \checkmark$
- Induction step.

Case
$$A[i] > m_i$$
: $m_{i+1} = A[i]$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i=1,\ldots,n-1 do if A[i]>m then m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto (m_1 = A[0])$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\}$
- Induction step.

Case
$$A[i] > m_i$$
: $m_{i+1} = A[i] > m_i$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i=1,\ldots,n-1 do if A[i]>m then m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\}$
- Induction step. Case $A[i] > m_i$: $m_{i+1} = A[i] > m_i = \max\{A[j] : 0 \le j < i\} \Rightarrow m_{i+1}$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A
m \leftarrow A[0]
for i = 1, \dots, n-1 do
if A[i] > m then
m \leftarrow A[i]
return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\}$
- Induction step.

Case
$$A[i] > m_i$$
: $m_{i+1} = A[i] > m_i = \max\{A[j] : 0 \le j < i\} \Rightarrow m_{i+1} = \max\{A[j] : 0 \le j < i+1\}$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i=1,\ldots,n-1 do if A[i]>m then m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\} \checkmark$
- Induction step.

Case
$$A[i] > m_i$$
: $m_{i+1} = A[i] > m_i = \max\{A[j] : 0 \le j < i\}$
 $m_{i+1} = \max\{A[j] : 0 \le j < i+1\}$

Case $A[i] \leq m_i$:

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i=1,\ldots,n-1 do if A[i]>m then m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\} \checkmark$
- Induction step.

Case
$$A[i] > m_i$$
: $m_{i+1} = A[i] > m_i = \max\{A[j] : 0 \le j < i\}$
 $A[j] : 0 \le j < i+1\}$

Case
$$A[i] \le m_i$$
: $m_{i+1} =$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i=1,\ldots,n-1 do if A[i]>m then m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\} \checkmark$
- Induction step.

Case
$$A[i] > m_i$$
: $m_{i+1} = A[i] > m_i = \max\{A[j] : 0 \le j < i\}$
 $A[j] : 0 \le j < i+1\}$

Case
$$A[i] \le m_i$$
: $m_{i+1} = m_i =$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A
m \leftarrow A[0]
for i = 1, \dots, n-1 do
if A[i] > m then
m \leftarrow A[i]
return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto (m_1 = A[0])$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\}$
- Induction step.

Case
$$A[i] > m_i$$
: $m_{i+1} = A[i] > m_i = \max\{A[j] : 0 \le j < i\}$
 $i \ge m_{i+1} = \max\{A[j] : 0 \le j < i+1\}$

Case
$$A[i] \le m_i$$
: $m_{i+1} = m_i = \max\{A[j] : 0 \le j < i\}$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i=1,\ldots,n-1 do if A[i]>m then m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\} \checkmark$
- Induction step.

Case
$$A[i] > m_i$$
: $m_{i+1} = A[i] > m_i = \max\{A[j] : 0 \le j < i\}$
 $i > m_{i+1} = \max\{A[j] : 0 \le j < i+1\}$

Case $A[i] \le m_i$: $m_{i+1} = m_i = \max\{A[j] : 0 \le j < i\} = \max\{A[j] : 0 \le j < i+1\}$

Definition: A *loop invariant* is a property P that, if true before iteration i, it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A
m \leftarrow A[0]
for i = 1, \dots, n-1 do
if A[i] > m then
m \leftarrow A[i]
return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\}$
- Induction step.

Case
$$A[i] > m_i$$
: $m_{i+1} = A[i] > m_i = \max\{A[j] : 0 \le j < i\}$
 $i > m_{i+1} = \max\{A[j] : 0 \le j < i+1\}$

Case $A[i] \le m_i$: $m_{i+1} = m_i = \max\{A[j] : 0 \le j < i\} = \max\{A[j] : 0 \le j < i+1\} \checkmark$

Main Parts:

Main Parts:

• Initialization: It is true prior to the first iteration of the loop.

Main Parts:

• Initialization: It is true prior to the first iteration of the loop.

```
before iteration i = 1: m = A[0] = \max\{A[j] : j < 1\}
```

Main Parts:

- **Initialization:** It is true prior to the first iteration of the loop. before iteration $i = 1 : m = A[0] = \max\{A[j] : j < 1\}$
- Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

Main Parts:

• Initialization: It is true prior to the first iteration of the loop.

before iteration
$$i = 1$$
: $m = A[0] = \max\{A[j] : j < 1\}$

 Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

```
before iteration i > 1: m = \max\{A[j] : j < i\} \checkmark
```

Main Parts:

• Initialization: It is true prior to the first iteration of the loop.

before iteration
$$i = 1$$
: $m = A[0] = \max\{A[j] : j < 1\}$ \checkmark

 Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

before iteration
$$i > 1$$
: $m = \max\{A[j] : j < i\} \checkmark$

 Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Main Parts:

• Initialization: It is true prior to the first iteration of the loop.

```
before iteration i = 1: m = A[0] = \max\{A[j] : j < 1\}
```

 Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

```
before iteration i > 1: m = \max\{A[j] : j < i\} \checkmark
```

• **Termination:** When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

At the end of the loop, i.e., after iteration n-1 (or before a virtual iteration n) $m=m_n=\max\{A[j]:j< n\}$ \checkmark

Require:
$$n$$
 integer $s \leftarrow 1$ for $j = 2, \dots, n$ do $s \leftarrow s \cdot j$ return s

Require:
$$n$$
 integer $s \leftarrow 1$ for $j = 2, ..., n$ do $s \leftarrow s \cdot j$ return s

Invariant: At beginning of iteration j: s = (j-1)!

```
Require: n integer s \leftarrow 1 for j = 2, ..., n do s \leftarrow s \cdot j return s
```

Invariant: At beginning of iteration j: s = (j - 1)!

1 Let s_j be the value of s prior to iteration j

```
Require: n integer s \leftarrow 1 for j = 2, ..., n do s \leftarrow s \cdot j return s
```

Invariant: At beginning of iteration j: s = (j-1)!

- **1** Let s_j be the value of s prior to iteration j
- **2** Initialization: $s_2 = 1 = (2 1)!$ \checkmark

```
Require: n integer s \leftarrow 1 for j = 2, ..., n do s \leftarrow s \cdot j return s
```

Invariant: At beginning of iteration j: s = (j-1)!

- **1** Let s_j be the value of s prior to iteration j
- **2** Initialization: $s_2 = 1 = (2-1)!$ \checkmark
- **3** Maintenance: s_{j+1}

```
Require: n integer s \leftarrow 1 for j = 2, \dots, n do s \leftarrow s \cdot j return s
```

Invariant: At beginning of iteration j: s = (j-1)!

- **1** Let s_j be the value of s prior to iteration j
- **2** Initialization: $s_2 = 1 = (2-1)!$ \checkmark
- **3** Maintenance: $s_{j+1} = s_j \cdot j$

Require:
$$n$$
 integer $s \leftarrow 1$ for $j = 2, ..., n$ do $s \leftarrow s \cdot j$ return s

Invariant: At beginning of iteration j: s = (j-1)!

- **1** Let s_j be the value of s prior to iteration j
- **2** Initialization: $s_2 = 1 = (2 1)!$ \checkmark
- **3** Maintenance: $s_{j+1} = s_j \cdot j = (j-1)! \cdot j$

```
Require: n integer s \leftarrow 1 for j = 2, ..., n do s \leftarrow s \cdot j return s
```

Invariant: At beginning of iteration j: s = (j-1)!

- **1** Let s_j be the value of s prior to iteration j
- **2** Initialization: $s_2 = 1 = (2-1)!$ \checkmark
- **3** Maintenance: $s_{j+1} = s_j \cdot j = (j-1)! \cdot j = j! \checkmark$

```
Require: n integer s \leftarrow 1 for j = 2, ..., n do s \leftarrow s \cdot j return s
```

Invariant: At beginning of iteration j: s = (j - 1)!

- **1** Let s_j be the value of s prior to iteration j
- **2** Initialization: $s_2 = 1 = (2-1)!$ \checkmark
- **3** Maintenance: $s_{j+1} = s_j \cdot j = (j-1)! \cdot j = j! \checkmark$
- Termination:

```
Require: n integer s \leftarrow 1 for j = 2, ..., n do s \leftarrow s \cdot j return s
```

Invariant: At beginning of iteration j: s = (j - 1)!

- **1** Let s_j be the value of s prior to iteration j
- **2** Initialization: $s_2 = 1 = (2-1)!$ \checkmark
- **Maintenance:** $s_{j+1} = s_j \cdot j = (j-1)! \cdot j = j! \checkmark$
- **4 Termination:** After iteration n, i.e., before iteration n+1, the value of s is $s_{n+1} = (n+1-1)! = n!$

4 / 8

```
Require: n integer s \leftarrow 1 for j = 2, ..., n do s \leftarrow s \cdot j return s
```

Invariant: At beginning of iteration j: s = (j - 1)!

- **1** Let s_j be the value of s prior to iteration j
- **2** Initialization: $s_2 = 1 = (2 1)!$ \checkmark
- **Maintenance:** $s_{j+1} = s_j \cdot j = (j-1)! \cdot j = j! \checkmark$
- **Termination:** After iteration n, i.e., before iteration n+1, the value of s is $s_{n+1}=(n+1-1)!=n!$

4 / 8

```
Require: n integer s \leftarrow 1 for j = 2, ..., n do s \leftarrow s \cdot j return s
```

Invariant: At beginning of iteration j: s = (j - 1)!

- **1** Let s_j be the value of s prior to iteration j
- **2** Initialization: $s_2 = 1 = (2 1)!$ \checkmark
- **3** Maintenance: $s_{j+1} = s_j \cdot j = (j-1)! \cdot j = j! \checkmark$
- **4 Termination:** After iteration n, i.e., before iteration n+1, the value of s is $s_{n+1}=(n+1-1)!=n!$

Algorithm computes the factorial function

Example: Insertion Sort

Sorting Problem

- **Input:** An array A of n numbers
- Output: A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

Example: Insertion Sort

Sorting Problem

- **Input:** An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

Insertion-Sort

5 / 8

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do
$$v \leftarrow A[j]$$

$$i \leftarrow j-1$$
 while $i \geq 0$ and $A[i] > v$ do
$$A[i+1] \leftarrow A[i]$$

$$i \leftarrow i-1$$

$$A[i+1] \leftarrow v$$

0	1	2	3	4	5
15	7	3	9	8	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	j = 1	2	3	4	5
15	7	3	9	8	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$

0	j = 1	2	3	4	5
15	7	3	9	8	1

$$v \leftarrow 7$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do
$$v \leftarrow A[j]$$

$$i \leftarrow j-1$$
 while $i \geq 0$ and $A[i] > v$ do
$$A[i+1] \leftarrow A[i]$$

$$i \leftarrow i-1$$

$$A[i+1] \leftarrow v$$

$$i = 0$$
 $j = 1$ 2 3 4 5

15 7 3 9 8 1

$$v \leftarrow 7$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do
$$v \leftarrow A[j]$$

$$i \leftarrow j-1$$
 while $i \geq 0$ and $A[i] > v$ do
$$A[i+1] \leftarrow A[i]$$

$$i \leftarrow i-1$$

$$A[i+1] \leftarrow v$$

$$i = -1$$
 $j = 1$ 2 3 4 5

15 15 3 9 8 1

$$v \leftarrow 7$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

$$i = -1$$
 $j = 1$ 2 3 4 5 7 15 3 9 8 1

$$v \leftarrow 7$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	j = 2	3	4	5
7	15	3	9	8	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	j = 2	3	4	5
7	15	3	9	8	1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$

0
$$i = 1$$
 $j = 2$ 3 4 5
7 15 3 9 8 1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do
$$v \leftarrow A[j]$$

$$i \leftarrow j-1$$
 while $i \geq 0$ and $A[i] > v$ do
$$A[i+1] \leftarrow A[i]$$

$$i \leftarrow i-1$$

$$A[i+1] \leftarrow v$$

$$i = 0$$
 1
 $j = 2$
 3
 4
 5

 7
 15
 15
 9
 8
 1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

$$i = -1$$
 1 $j = 2$ 3 4 5 7 15 9 8 1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

$$i = -1$$
 1 $j = 2$ 3 4 5 7 15 9 8 1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do
$$v \leftarrow A[j]$$

$$i \leftarrow j-1$$
 while $i \geq 0$ and $A[i] > v$ do
$$A[i+1] \leftarrow A[i]$$

$$i \leftarrow i-1$$

$$A[i+1] \leftarrow v$$

$$i = -1$$
 1 $j = 2$ 3 4 5 3 7 15 9 8 1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do
$$v \leftarrow A[j]$$

$$i \leftarrow j-1$$
 while $i \geq 0$ and $A[i] > v$ do
$$A[i+1] \leftarrow A[i]$$

$$i \leftarrow i-1$$

$$A[i+1] \leftarrow v$$

0	1	2	j=3	4	5
3	7	9	15	8	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do
$$v \leftarrow A[j]$$

$$i \leftarrow j-1$$
 while $i \geq 0$ and $A[i] > v$ do
$$A[i+1] \leftarrow A[i]$$

$$i \leftarrow i-1$$

$$A[i+1] \leftarrow v$$

0	1	2	3	j = 4	5
3	7	8	9	15	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	2	3	4	j = 5
3	7	8	9	15	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	2	3	4	j = 5
1	3	7	8	9	15

```
\begin{aligned} & \textbf{for } j = 1, \dots, n-1 \textbf{ do} \\ & v \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \textbf{while } i \geq 0 \textbf{ and } A[i] > v \textbf{ do} \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow v \end{aligned}
```

```
\begin{aligned} & \textbf{for } j = 1, \dots, n-1 \textbf{ do} \\ & v \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \textbf{while } i \geq 0 \textbf{ and } A[i] > v \textbf{ do} \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow v \end{aligned}
```

Loop Invariant: At beginning of iteration j of the outer **for** loop, the subarray A[0,j-1] consists of the elements originally in A[0,j-1], but in sorted order

7/8

```
\begin{aligned} & \textbf{for } j = 1, \dots, n-1 \textbf{ do} \\ & v \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \textbf{while } i \geq 0 \textbf{ and } A[i] > v \textbf{ do} \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow v \end{aligned}
```

Loop Invariant: At beginning of iteration j of the outer **for** loop, the subarray A[0,j-1] consists of the elements originally in A[0,j-1], but in sorted order

• Initialization: j = 1:

```
\begin{aligned} & \textbf{for } j = 1, \dots, n-1 \textbf{ do} \\ & v \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \textbf{while } i \geq 0 \textbf{ and } A[i] > v \textbf{ do} \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow v \end{aligned}
```

Loop Invariant: At beginning of iteration j of the outer **for** loop, the subarray A[0,j-1] consists of the elements originally in A[0,j-1], but in sorted order

• Initialization: j = 1: subarray A[0] is sorted \checkmark

7/8

```
\begin{aligned} & \textbf{for } j = 1, \dots, n-1 \textbf{ do} \\ & v \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \textbf{while } i \geq 0 \textbf{ and } A[i] > v \textbf{ do} \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow v \end{aligned}
```

Loop Invariant: At beginning of iteration j of the outer **for** loop, the subarray A[0,j-1] consists of the elements originally in A[0,j-1], but in sorted order

- Initialization: j = 1: subarray A[0] is sorted \checkmark
- Maintenance:

```
\begin{aligned} & \textbf{for } j = 1, \dots, n-1 \textbf{ do} \\ & v \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \textbf{while } i \geq 0 \textbf{ and } A[i] > v \textbf{ do} \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow v \end{aligned}
```

Loop Invariant: At beginning of iteration j of the outer **for** loop, the subarray A[0,j-1] consists of the elements originally in A[0,j-1], but in sorted order

- Initialization: j = 1: subarray A[0] is sorted \checkmark
- Maintenance: Informally, element A[j] is inserted at the right place within A[0,j]. A formal argument would require another loop invariant for the inner loop. \checkmark

```
\begin{aligned} & \textbf{for } j = 1, \dots, n-1 \textbf{ do} \\ & v \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \textbf{while } i \geq 0 \textbf{ and } A[i] > v \textbf{ do} \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow v \end{aligned}
```

Loop Invariant: At beginning of iteration j of the outer **for** loop, the subarray A[0,j-1] consists of the elements originally in A[0,j-1], but in sorted order

- Initialization: j = 1: subarray A[0] is sorted \checkmark
- Maintenance: Informally, element A[j] is inserted at the right place within A[0,j]. A formal argument would require another loop invariant for the inner loop. \checkmark
- Termination:

7/8

```
\begin{aligned} & \textbf{for } j = 1, \dots, n-1 \textbf{ do} \\ & v \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \textbf{while } i \geq 0 \textbf{ and } A[i] > v \textbf{ do} \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow v \end{aligned}
```

Loop Invariant: At beginning of iteration j of the outer **for** loop, the subarray A[0,j-1] consists of the elements originally in A[0,j-1], but in sorted order

- Initialization: j = 1: subarray A[0] is sorted \checkmark
- Maintenance: Informally, element A[j] is inserted at the right place within A[0,j]. A formal argument would require another loop invariant for the inner loop. \checkmark
- **Termination:** After iteration j = n 1 (i.e., before iteration j = n) the loop invariant states that A is sorted. \checkmark

Worst-case Runtime:

We have two nested loops

- We have two nested loops
- The outer loop goes from j = 1 to j = n 1

- We have two nested loops
- The outer loop goes from j = 1 to j = n 1
- The inner loop goes from i = j 1 down to i = 0 in worst case

- We have two nested loops
- The outer loop goes from j = 1 to j = n 1
- The inner loop goes from i = j 1 down to i = 0 in worst case
- All other operations take time O(1). Hence:

- We have two nested loops
- The outer loop goes from j = 1 to j = n 1
- The inner loop goes from i = j 1 down to i = 0 in worst case
- All other operations take time O(1). Hence:

$$\sum_{j=1}^{n-1} j \cdot O(1)$$

- We have two nested loops
- The outer loop goes from j = 1 to j = n 1
- The inner loop goes from i = j 1 down to i = 0 in worst case
- All other operations take time O(1). Hence:

$$\sum_{j=1}^{n-1} j \cdot O(1) = O(1) \sum_{j=1}^{n-1} j$$

- We have two nested loops
- The outer loop goes from j = 1 to j = n 1
- The inner loop goes from i = j 1 down to i = 0 in worst case
- All other operations take time O(1). Hence:

$$\sum_{j=1}^{n-1} j \cdot O(1) = O(1) \sum_{j=1}^{n-1} j = O(1) \frac{n(n-1)}{2}$$

Worst-case Runtime:

- We have two nested loops
- The outer loop goes from j = 1 to j = n 1
- The inner loop goes from i = j 1 down to i = 0 in worst case
- All other operations take time O(1). Hence:

$$\sum_{j=1}^{n-1} j \cdot O(1) = O(1) \sum_{j=1}^{n-1} j = O(1) \frac{n(n-1)}{2} = O(1)(n^2 - n) = O(n^2).$$

Best-case Runtime:

Worst-case Runtime:

- We have two nested loops
- The outer loop goes from j = 1 to j = n 1
- The inner loop goes from i = j 1 down to i = 0 in worst case
- All other operations take time O(1). Hence:

$$\sum_{j=1}^{n-1} j \cdot O(1) = O(1) \sum_{j=1}^{n-1} j = O(1) \frac{n(n-1)}{2} = O(1)(n^2 - n) = O(n^2).$$

Best-case Runtime: O(n)

E.g., if input is already sorted