Proposed guide UACIE Applied Mathematics 2022

Qms	Answers	Marks
	SECTION A. (40 marks)	
1.	$mgsin\theta$ μR mg $mgcos\theta$	
	From Newton's second law, $F = ma$ But $F = F_D - (mgsin\theta + \mu R)$ $ma = F_D - (1500x9.8xsin\theta + \frac{1}{4}x1500x9.8xcos\theta)$	
	But, $sin\theta = \frac{3}{4}$, $cos\theta = \frac{\sqrt{7}}{4}$ At steady speed, acceleration, $a = 0ms^{-1}$	
	$F_D = 1500x9.8x \frac{3}{4} + \frac{1}{4}x1500x9.8x \frac{\sqrt{7}}{4}$ $F_D = 13455.7840N$ Therefore the driving force is 13455.7840N	5 marks
2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(a)	From mean, $\bar{x} = \frac{\sum fx}{\sum f}$ $\bar{x} = \frac{195}{100}$	
(b)	$\bar{x} = 1.95$ From variance, $var(x) = \frac{\sum fx^2}{\sum f} - (\bar{x})^2$ $var(x) = \frac{481}{100} - (1.95)^2$ $var(x) = 1.0075$	5 moules
3	Since given is the number of ordinates, to get the number of sub- intervals we subtract a one. $h = \frac{2-0}{6} = \frac{1}{3}, \text{ and } f(x) = \frac{1}{3+4x^2}$	5 marks

	x	$f(x) = \frac{1}{3 + 4x^2}$	$f(x) = \frac{1}{3 + 4x^2}$		
	0	0.3333			
	$\frac{1}{3}$		0.2903		
	$\frac{\frac{3}{3}}{\frac{2}{3}}$		0.2093		
	1		0.1429		
	$\frac{4}{3}$		0.0989		
	3 5 -3		0.0707		
	2	0.0526			
	sum	0.3859	0.8121		
	From $\int_0^2 \frac{1}{3+4x^2} dx \approx \frac{1}{2} h[(f(x)) + 2(f(x))]$				
	$\int_0^2 \frac{1}{3+4x^2} dx \approx \frac{1}{2} x \frac{1}{3} [(0.3859) + 2(0.8121)]$				
		$4x \approx 0.335 (3dps)$			5 marks
4	T = 3gsi But, $R = T = 3gsi$ 29.4 = 32 $\mu = 0.346$		x9.8 <i>xcos</i> 30 ⁰	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	Therefore contact is	the coefficient of fr 0.3464	iction between the t	wo surfaces in	5 marks
5	$P(\bar{B}nA)$	$P(B) = \frac{7}{12}, P(\bar{A}nB)$ $= P(A) - P(AnB)$ $P(B) = P(B) - P(AnB)$ $P(AnB)$	L		

	$D(A \cap D) = {1 \choose 1} = {7 \choose 1}$	
	$P(AnB) = \frac{1}{2} - \frac{7}{12} = \frac{1}{12}$	
	$\Rightarrow \text{ Therefore, } P(\bar{B}nA) = \frac{1}{2} - \frac{1}{12} = \frac{5}{12}$	5 marks
6	Extract, 97	
	Extract, $ \begin{array}{c cccc} 79 & 85 & 97 \\ \hline 64 & y & 78 \\ \hline \frac{y-64}{85-79} & = \frac{78-64}{97-79} \end{array} $	
	y = 68.667 Therefore 69 Euros are equivalent to 85 dollars	5 marks
7 (a)	Velocity of the boat relative to the river, $v_{b}v_{r} = v_{b} - v_{r}$ $4 = v_{b} - 3$ $v_{b} = 1ms^{-1}$	
(b)	d = vxt $50 = 1xt$ $t = 50seconds$	5 marks
8 (a)	$=\frac{7}{11}x\frac{6}{14}+\frac{4}{11}x\frac{5}{14}$	
(b)	$P(R \ removed \ from \ B) = \frac{\frac{11}{31}}{\frac{31}{77}}$ $P(B_1/R) = \frac{\frac{P(B_1 nR)}{P(R)}}{\frac{31}{77}} = \frac{\frac{4}{11}x_{14}^{5}}{\frac{31}{77}} = \frac{10}{31}$	5 marks

10 (a)
$$\begin{aligned} r_0 &= (2i-2j+8k)m \\ F &= (44i+t^2j+5k) \\ &\text{From, } F &= ma \\ (44i+t^2j+5k) &= 4a \\ a &= \frac{1}{4}(44i+t^2j+5k) \\ a &= (ti+\frac{t^2}{4}j+\frac{5}{4}k) ms^{-2} \end{aligned} \end{aligned}$$
(b)
$$\begin{aligned} &\text{From, } a &= \frac{dv}{dt} \\ &\sqrt{f} dv &= \int_0^3 (ti+\frac{t^2}{4}j+\frac{5}{4}k) dt \\ v &= \int_0^3 (ti+\frac{t^2}{4}j+\frac{5}{4}k) |3 \\ v &= (\frac{t^2}{2}i+\frac{t^3}{12}j+\frac{5}{4}k) |3 \\ v &= (\frac{t^2}{2}i+\frac{t^3}{12}j+\frac{5}{4}k) |3 \\ v &= (\frac{t^2}{2}i+\frac{t^3}{12}j+\frac{5}{4}k) ms^{-1} \end{aligned}$$
(c)
$$\begin{aligned} &\text{From, } v &= \frac{dv}{dt} \\ &r_{(t)} &= (\frac{t^2}{2}i+\frac{t^3}{12}j+\frac{5}{4}k) dt \\ &r_{(t)} &= (\frac{t^2}{2}i+\frac{t^3}{12}j+\frac{5}{4}k) +c \\ &\text{where } is a constant of integration \\ &\text{But; } at t = 0, \tau_0 = 2i-2j+3k, c = 2i-2j+3k \\ &r_{(t)} &= (\frac{t^3}{6}i+\frac{t^4}{43}j+\frac{5t^2}{8}k) +(2i-2j+3k) \\ &r_{(t)} &= (\frac{t^3}{6}i+\frac{t^4}{43}j+\frac{5t^2}{8}k) \\ &r_{(t)} &= (\frac{t^3}{6}i+\frac{t$$

Since,
$$\Delta y \ll y$$
 then, $\frac{\Delta y}{y} \approx 0$

$$\Delta m = \frac{\frac{Y\Delta x - X\Delta y}{Y^2}}{\frac{Y^2(1 + \frac{\Delta y}{Y})}{\frac{X}{Y}}}$$

$$\frac{\Delta m}{M} = \frac{\frac{\frac{Y\Delta x - X\Delta y}{Y^2(1 + \frac{\Delta y}{Y})}}{\frac{X}{Y}}}{\frac{X}{Y}}$$

$$\frac{\Delta m}{M} = \frac{\frac{Y\Delta x - X\Delta y}{Y}}{\frac{YX}{Y}}$$

$$\frac{\Delta m}{M} = \frac{\Delta x}{X} - \frac{\Delta y}{Y}$$

$$\left|\frac{\Delta m}{M}\right| = \left|\frac{\Delta x}{X} - \frac{\Delta y}{Y}\right|$$

$$\left|\frac{\Delta m}{M}\right| \leq \left|\frac{\Delta x}{X}\right| + \left|\frac{\Delta y}{Y}\right|$$

Therefore the relative error in approximating $\frac{x}{y}$ is $\left|\frac{\Delta x}{X}\right| + \left|\frac{\Delta y}{Y}\right|$

(b) From,
$$T = \frac{673.16}{40.345}$$

Let $x = 673.16$, $y = 40.345$
then,
 $\Delta x = 0.5x10^{-2} = 0.005$, $\Delta y = 0.5x10^{-3} = 0.0005$
 $upper\ limit = \frac{673.16+0.005}{40.345-0.0005} = 16.6854$
 $lower\ limit = \frac{673-0.005}{40.345+0.0005} = 16.6848$

Therefore the interval within which the exact value of T can be expected to lie is [16.6848, 16.6854]

Total

12 Marks

12 (a) From
$$f(x) = \begin{cases} kx^2; & x = 1,2,3 \\ k(7-x)^2; & x = 4,5,6 \\ 0; & else where \end{cases}$$

From,
$$\sum_{all\ x} P(X = x) = 1$$

 $(k + 4k + 9k) + (9k + 4k + k) = 1$
 $28k = 1$
 $k = \frac{1}{28}$

From,
$$E(x) = \sum_{all \ x} xP(X = x)$$

 $E(x) = 1\left(\frac{1}{28}\right) + 2\left(\frac{4}{28}\right) + 3\left(\frac{9}{28}\right) + 4\left(\frac{9}{28}\right) + 5\left(\frac{4}{28}\right) + 6\left(\frac{1}{28}\right) = 3.5$

(b)

X	1	2	3	4	5	6
P(X=x)	1	4	9	9	4	1
	28	28	28	28	28	28
$F(x) = P(X \le x)$	1	5	14	23	27	1
	28	28	28	28	28	

Total 12 Marks

13 (a)

Resolving horizontally,

Figure 2 + 3 +
$$2\sqrt{2}\cos 45^{\circ} + \sqrt{2}\cos 45^{\circ} = 8N$$

Resolving vertically,

$$F_y = 4 + 2 + 2\sqrt{2}sin45^0 + \sqrt{2}sin45^0 = 7N$$

$$\vec{F}_R = \begin{bmatrix} 8 \\ 7 \end{bmatrix}$$

$$\left|\overrightarrow{F_R}\right| = \sqrt{(F_x)^2 + (F_y)^2}$$

$$|\overrightarrow{F_R}| = \sqrt{(8)^2 + (7)^2} = 10.6301N$$

$$|\overline{F_R}| = \sqrt{(8)^2 + (7)^2} = 10.6301N$$

From, $\theta = tan^{-1} \left(\frac{F_y}{F_x}\right) = tan^{-1} \left(\frac{7}{8}\right) = 41.2^0$

Therefore the resultant force is 10.6301N and acts at 41.20 above the positive x-axis.

From,
$$\begin{vmatrix} F_x & F_y \\ x & y \end{vmatrix} = G$$

$$\begin{vmatrix} 8 & 7 \\ x & y \end{vmatrix} = G$$

Taking moments about A. $G = 3x^2 - 2x^2 + (\sqrt{2})x^{\frac{\sqrt{8}}{2}} = 4Nm$

$$\begin{vmatrix} 8 & 7 \\ x & y \end{vmatrix} = 4$$

$$8y - 7x = 4$$

Therefore the equation of line of action of the resultant force is; 8y -7x = 4

Total

12 Marks

To calculate the tax paid (T) in dollars based on the amount (A) 14 (a) (ii) earned after 200 iterations.

(b)

N	A	T
1	1500	0
2	3500	70
3	9000	260

15 (a) $\mu = 600g, \sigma = 20g$

$$P(X > x) = \frac{7}{100}$$

x - 600

20

$$\frac{x-600}{20} = 1.476$$

$$x = 20x(1.476) + 600$$

$$x = 629.52g$$

(b) n = 1000

$$P\left(Z < \frac{545 - 600}{20}\right)$$

$$P(Z < -2.75) = 2.98x10^{-3}$$

Number of packets that weighed less than 545g is;

 $2.98 \times 10^{-3} \times 1000 = 2.98 \approx 3$ packets

Total

16 (a)

For P, $s = (49\sin 30^{\circ})(t) - \frac{1}{2}x9.8xt^{2}$

For Q,
$$s = (49sin30^0)(t-2) - \frac{1}{2}x9.8x(t-2)^2$$

At the point they met, they had travelled the same distance, therefore;

$$(49sin30^{0})(t) - \frac{1}{2}x9.8xt^{2} = (49sin30^{0})(t-2) - \frac{1}{2}x9.8x(t-2)^{2}$$

$$68.6 = 19.6t$$

t = 3.5seconds

$$h = (49\sin 30^{0})(3.5) - \frac{1}{2}x9.8x3.5^{2} = 25.725m$$

Therefore the two met at 25.725m from the start.

673 A D		46 7/7 11
	Therefore the distance between A and B is 122.5m	
	Therefore the distance between A and B is 122.5m	
	$d_2 = (498th30^3)(3.5 - 3) = 36.75th$ $d = 85.75 + 36.75 = 122.5th$	
	$d_1 = (195in30^{\circ})(3.5 - 3) = 36.75m$ $d_2 = (49sin30^{\circ})(3.5 - 3) = 36.75m$	
	$d_1 = (49\sin 30^0)(3.5) = 85.75m$	
	Horizontally there is no acceleration.	
	From, $s = ut + \frac{1}{2}at^2$	
(b)	<u> </u>	
(1.)	D' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Total

12 Marks