ENHANCING TRAFFIC SIGN DETECTION FOR AUTONOMOUS VEHICLES

Presented By Ramazan Bozkurt 200254031 Abdulkadir Sözgen 210254031

INTRODUCTION

Objective:

• To detect and highlight traffic signs from images under challenging conditions (e.g., low contrast, noisy backgrounds).

Problem Statement:

- Traffic signs can be hard to detect in low-contrast or noisy environments.
- Autonomous systems require accurate and reliable detection for safe navigation.

METHODOLOGY OVERVIEW

1. Image Preprocessing:

- Convert input image to grayscale.
- Enhance contrast using CLAHE (Contrast Limited Adaptive Histogram Equalization).

2. Noise Reduction:

Apply Gaussian Blur to reduce random noise.

3. Edge Detection:

Use Canny Edge Detection to identify potential traffic sign contours.

METHODOLOGY OVERVIEW CONTINUING

4. Contour Analysis:

• Analyze shapes and filter based on size to detect traffic sign candidates.

5. Output Generation:

Highlight detected signs on the enhanced image.

TOOLS AND TECHNOLOGIES

- Programming Language:
 - Python
- Libraries:
 - OpenCV
- Techniques Used:
 - CLAHE for contrast enhancement.
 - Gaussian Blur for noise reduction.
 - Canny Edge Detection for edge detection.

WORKFLOW

Blurred Image

RESULTS

Enhanced Image

Edges Detected

Final Output

RESULTS CONTINUING

Input Image

Blurred Image

Edges Detected

Final Output

RESULTS CONTINUING

Input Image

Blurred Image

100 (120)

Edges Detected

Final Output

RESULTS CONTINUING

Input Image

Blurred Image

Enhanced Image

Edges Detected

Final Output

