HDU物理营:959238750

2020-2021-2 学期《大学物理 1》期中考试试卷答案

(2020.4.26)

一、选择题(每题3分,共27分)

- 1. C
- 2. B
- 3. B
- 4. C
- 5. B
- 6. B
- 7. D
- 8. A
- 9. B 二、填空题 (每题 3 分, 共 23 分)

10.
$$a_n = 4Rt^2$$

2 分

$$\beta = 2 \text{ rad/s}^2 \qquad 1 \, \text{ }$$

1分 2分

12.
$$g/\mu_s$$

3分

参考解: 当 $mg = f = \mu_s N = \mu_s ma$ 时不致掉下,则 $a = g/\mu_s$.

13.
$$m\sqrt{GMR}$$

3分

14.
$$-3\sigma/(2\varepsilon_0)$$
 1分

$$-\sigma/\left(2\varepsilon_{0}\right)$$

1分

$$\sigma/\left(2arepsilon_{0}
ight)$$

1分

$$3\sigma/(2\varepsilon_0)$$

1分

15. h^2/l^2

参考解:由质点角动量守恒定律有

$$h m v_0 = l m v$$

即 $\boldsymbol{v}/\boldsymbol{v}_0 = \boldsymbol{h}/\boldsymbol{l}$

则动能之比为 $E_K/E_{K0} = h^2/l^2$

16.
$$\lambda/(2\pi\varepsilon_0 r)$$
 2分

$$\lambda L/(4\pi\varepsilon_0 r^2)$$
 2分

三、计算题(共52分)

17. (本题 8 分)

解: (1) 质点绕行一周所需时间: $3\pi t^2 + \pi t = 2\pi R$, t = 1s

质点绕行一周所经历的位移: $\Delta \vec{r} = 0$;

2分

平均速率:
$$v = \frac{s}{\Delta t} = 4\pi$$
 m/s

2分

HDU物理营:959238750

(2) 质点在任一时刻的速度大小: $v = \frac{ds}{dt} = 6\pi t + \pi$

加速度大小:
$$|\bar{a}| = \overline{\left|a_n^2 + a_\tau^2\right|} = \overline{\left(\frac{v^2}{R}\right)^2 + \left(\frac{dv}{dt}\right)^2}$$
 2 分

质点在 1 秒末速度的大小: $V = 7\pi(m/s)$ 2 分

18. (本题 8 分)

解:
$$F = ma, \quad a = F / m = \frac{2t}{5} (\mathbf{m} \cdot \mathbf{s}^{-2})$$
$$d \mathbf{v} / d t = a = \frac{2t}{5}, \quad d \mathbf{v} = \frac{2t}{5} d t$$

 $\int_{0}^{v} dv = \int_{0}^{t} \frac{2t}{5} dt, \ \ \text{θ} \quad v = 0.2t^{2} \text{ (m/s)}$ $t = 3 \text{ s 时}, \quad v_{2} = 1.8 \text{m/s}$

故

根据动能定理, 外力的功

$$W = \frac{m}{2} v_2^2 - 0 = \frac{m}{2} v_2^2 = 8.1 \text{ J}$$
 3 \Re

19. (本题 8 分)

由

解:两自由质点组成的系统在自身的引力场中运动时,系统的动量和机械能均守恒.设两质点的间距变为 1/2 时,它们的速度分别为 v₁ 及 v₂,则有

$$m_1 v_1 - m_2 v_2 = 0$$
 ① 2 分

$$\frac{-Gm_1m_2}{I} = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 - \frac{2Gm_1m_2}{I}$$
 ② 3 分

联立①、②,解得

$$v_1 = m_2 \sqrt{\frac{2G}{l(m_1 + m_2)}}, \quad v_2 = m_1 \sqrt{\frac{2G}{l(m_1 + m_2)}}$$
 3 $\%$

20. (本题 5 分)

解:两个粒子的相互作用力 $f = k/r^3$

已知
$$f=0$$
 即 $r=\infty$ 处为势能零点,则势能

$$E_P = W_{P\infty} = \int_r^{\infty} \vec{f} \cdot d\vec{r} = \int_r^{\infty} \frac{k}{r^3} dr$$
 2 \(\frac{\partial}{r}\)

$$=k/(2r^2)$$
 2

21. (本题 5 分)

解: 由人和转台系统的角动量守恒

$$J_1\omega_1 + J_2\omega_2 = 0 \qquad 2 \mathcal{H}$$

其中 $J_1 = 300 \text{ kg} \cdot \text{m}^2$, $\omega_1 = v/r = 0.5 \text{ rad/s}$, $J_2 = 3000 \text{ kg} \cdot \text{m}^2$

HDU物理营:959238750

$$\omega_2 = -J_1 \omega_1/J_2 = -0.05 \text{ rad/s}$$
 1 分
人相对于转台的角速度
$$\omega_r = \omega_1 - \omega_2 = 0.55 \text{ rad/s}$$
 1 分

∴
$$t=2\pi/\omega_r=11.4 \text{ s}$$
 1 \Rightarrow

22. (本题 6 分)

解:□根据题意作出如图所示的电荷分布,选取坐标系 OXY

$$q_I$$
在 P 产生的场强: $\vec{E}_I = \frac{q_I}{4\pi\varepsilon_0 b^2} (-\vec{j})$ 2 分

$$q_2$$
在 P 产生的场强: $\bar{E}_2 = \frac{\lfloor q_2 \rfloor}{4\pi\varepsilon_0 c^2} (\cos\alpha \vec{i} + \sin\alpha \vec{j})$ 2 分

$$P$$
点的电场强度: $\vec{E} = \frac{q_1}{4\pi\varepsilon_0 b^2} (-\vec{j}) + \frac{\lfloor q_2 \rfloor}{4\pi\varepsilon_0 c^2} (\cos\alpha \vec{i} + \sin\alpha \vec{j})$

将
$$\sin \alpha = \frac{4}{5}$$
, $\cos \alpha = \frac{3}{5}$, $b = 0.4m$, $c = 0.5m$ 代 入 得 到 :

$$\vec{E} = 4320 \ \vec{i} - 5490 \ \vec{j}$$
 2 \(\frac{1}{2}\)

23. (本题 10分)

解:设小球滑到 B 点时相对地的速度为 v, 槽相对地的速度为 V. 小球从 $A \rightarrow B$ 过程中球、槽组成的系统水平方向动量守恒,

$$mv+MV=0$$
 ① 2分
对该系统,由动能定理 $mgR-EqR=\frac{1}{2}mv^2+\frac{1}{2}MV^2$ ② 3分

①、②两式联立解出
$$v = \sqrt{\frac{2MR(mg - qE)}{m(M+m)}}$$
 2分

方向水平向右.

$$V = -\frac{mv}{M} = -\sqrt{\frac{2mR(mg - qE)}{M(M + m)}}$$
 1 \mathcal{D}

方向水平向左.
$$1$$
 分 小球通过 B 点后,可以到达 C 点. 1 分