```
In [ ]: import seaborn as sns
In [ ]: df = sns.load_dataset('car_crashes')
```

In [ ]: df

| _          |     |     |    |
|------------|-----|-----|----|
| $^{\circ}$ |     |     |    |
| v          |     | וכו |    |
| _          | ~ ~ | _   | ٠. |

|    | total | speeding | alcohol | not_distracted | no_previous  | ins_premium | ins_losses | abbrev |
|----|-------|----------|---------|----------------|--------------|-------------|------------|--------|
| 0  | 18.8  | 7.332    | 5.640   | 18.048         | 15.040       | 784.55      | 145.08     | AL     |
| 1  | 18.1  | 7.421    | 4.525   | 16.290         | 17.014       | 1053.48     | 133.93     | Ak     |
| 2  | 18.6  | 6.510    | 5.208   | 15.624         | 17.856       | 899.47      | 110.35     | AZ     |
| 3  | 22.4  | 4.032    | 5.824   | 21.056         | 21.280       | 827.34      | 142.39     | AF     |
| 4  | 12.0  | 4.200    | 3.360   | 10.920         | 10.680       | 878.41      | 165.63     | CA     |
| 5  | 13.6  | 5.032    | 3.808   | 10.744         | 12.920       | 835.50      | 139.91     | CC     |
| 6  | 10.8  | 4.968    | 3.888   | 9.396          | 8.856        | 1068.73     | 167.02     | C      |
| 7  | 16.2  | 6.156    | 4.860   | 14.094         | 16.038       | 1137.87     | 151.48     | DE     |
| 8  | 5.9   | 2.006    | 1.593   | 5.900          | 5.900        | 1273.89     | 136.05     | DC     |
| 9  | 17.9  | 3.759    | 5.191   | 16.468         | 16.826       | 1160.13     | 144.18     | FI     |
| 10 | 15.6  | 2.964    | 3.900   | 14.820         | 14.508       | 913.15      | 142.80     | G/     |
| 11 | 17.5  | 9.450    | 7.175   | 14.350         | 15.225       | 861.18      | 120.92     | Н      |
| 12 | 15.3  | 5.508    | 4.437   | 13.005         | 14.994       | 641.96      | 82.75      | IE     |
| 13 | 12.8  | 4.608    | 4.352   | 12.032         | 12.288       | 803.11      | 139.15     | II     |
| 14 | 14.5  | 3.625    | 4.205   | 13.775         | 13.775       | 710.46      | 108.92     | 11     |
| 15 | 15.7  | 2.669    | 3.925   | 15.229         | 13.659       | 649.06      | 114.47     | 14     |
| 16 | 17.8  | 4.806    | 4.272   | 13.706         | 15.130       | 780.45      | 133.80     | K      |
| 17 | 21.4  | 4.066    | 4.922   | 16.692         | 16.264       | 872.51      | 137.13     | K١     |
| 18 | 20.5  | 7.175    | 6.765   | 14.965         | 20.090       | 1281.55     | 194.78     | L      |
| 19 | 15.1  | 5.738    | 4.530   | 13.137         | 12.684       | 661.88      | 96.57      | ME     |
| 20 | 12.5  | 4.250    | 4.000   | 8.875          | 12.375       | 1048.78     | 192.70     | ME     |
| 21 | 8.2   | 1.886    | 2.870   | 7.134          | 6.560        | 1011.14     | 135.63     | M      |
| 22 | 14.1  | 3.384    | 3.948   | 13.395         | 10.857       | 1110.61     | 152.26     | M      |
| 23 | 9.6   | 2.208    | 2.784   | 8.448          | 8.448        | 777.18      | 133.35     | M      |
| 24 | 17.6  | 2.640    | 5.456   | 1.760          | 17.600       | 896.07      | 155.77     | MS     |
| 25 | 16.1  | 6.923    | 5.474   | 14.812         | 13.524       | 790.32      | 144.45     | МС     |
| 26 | 21.4  | 8.346    | 9.416   | 17.976         | 18.190       | 816.21      | 85.15      | M      |
| 27 | 14.9  | 1.937    | 5.215   | 13.857         | 13.410       | 732.28      | 114.82     | NE     |
| 28 | 14.7  | 5.439    | 4.704   | 13.965         | 14.553       | 1029.87     | 138.71     | N\     |
| 29 | 11.6  | 4.060    | 3.480   | 10.092         | 9.628        | 746.54      | 120.21     | NH     |
| 30 | 11.2  | 1.792    | 3.136   | 9.632          | 8.736        | 1301.52     | 159.85     | N.     |
| 31 | 18.4  | 3.496    | 4.968   | 12.328         | 18.032       | 869.85      | 120.75     | NN     |
| 32 | 12.3  | 3.936    | 3.567   | 10.824         | 9.840        | 1234.31     | 150.01     | N      |
| 33 | 16.8  | 6.552    | 5.208   | 15.792         | 13.608       | 708.24      | 127.82     | NC     |
| 34 | 23.9  | 5.497    | 10.038  | 23.661         | 20.554       | 688.75      | 109.72     | NE     |
| 35 | 14.1  | 3.948    | 4.794   | 13.959         | 11.562       | 697.73      | 133.52     | OF     |
| -  |       |          | - '     |                | <del>-</del> |             |            |        |

|    | total | speeding | alcohol | not_distracted | no_previous | ins_premium | ins_losses | abbrev |
|----|-------|----------|---------|----------------|-------------|-------------|------------|--------|
| 36 | 19.9  | 6.368    | 5.771   | 18.308         | 18.706      | 881.51      | 178.86     | OK     |
| 37 | 12.8  | 4.224    | 3.328   | 8.576          | 11.520      | 804.71      | 104.61     | OR     |
| 38 | 18.2  | 9.100    | 5.642   | 17.472         | 16.016      | 905.99      | 153.86     | PA     |
| 39 | 11.1  | 3.774    | 4.218   | 10.212         | 8.769       | 1148.99     | 148.58     | RI     |
| 40 | 23.9  | 9.082    | 9.799   | 22.944         | 19.359      | 858.97      | 116.29     | SC     |
| 41 | 19.4  | 6.014    | 6.402   | 19.012         | 16.684      | 669.31      | 96.87      | SD     |
| 42 | 19.5  | 4.095    | 5.655   | 15.990         | 15.795      | 767.91      | 155.57     | TN     |
| 43 | 19.4  | 7.760    | 7.372   | 17.654         | 16.878      | 1004.75     | 156.83     | TX     |
| 44 | 11.3  | 4.859    | 1.808   | 9.944          | 10.848      | 809.38      | 109.48     | UT     |
| 45 | 13.6  | 4.080    | 4.080   | 13.056         | 12.920      | 716.20      | 109.61     | VT     |
| 46 | 12.7  | 2.413    | 3.429   | 11.049         | 11.176      | 768.95      | 153.72     | VA     |
| 47 | 10.6  | 4.452    | 3.498   | 8.692          | 9.116       | 890.03      | 111.62     | WA     |
| 48 | 23.8  | 8.092    | 6.664   | 23.086         | 20.706      | 992.61      | 152.56     | WV     |
| 49 | 13.8  | 4.968    | 4.554   | 5.382          | 11.592      | 670.31      | 106.62     | WI     |
| 50 | 17.4  | 7.308    | 5.568   | 14.094         | 15.660      | 791.14      | 122.04     | WY     |
|    |       |          |         |                |             |             |            |        |

In [ ]: sns.barplot(data=df.iloc[0:25,:],x='abbrev',y='total')

Out[16]: <Axes: xlabel='abbrev', ylabel='total'>



```
In [ ]: sns.barplot(data=df.iloc[25:50,:],x='abbrev',y='total')
```

Out[17]: <Axes: xlabel='abbrev', ylabel='total'>



```
In [ ]: sns.boxplot(y='total',data=df)
```

Out[10]: <Axes: ylabel='total'>



| In | [ | ]: | <pre>df.describe()</pre> |
|----|---|----|--------------------------|
|----|---|----|--------------------------|

Out[11]:

|       | total     | speeding  | alcohol   | not_distracted | no_previous | ins_premium | ins_losses |
|-------|-----------|-----------|-----------|----------------|-------------|-------------|------------|
| count | 51.000000 | 51.000000 | 51.000000 | 51.000000      | 51.000000   | 51.000000   | 51.000000  |
| mean  | 15.790196 | 4.998196  | 4.886784  | 13.573176      | 14.004882   | 886.957647  | 134.493137 |
| std   | 4.122002  | 2.017747  | 1.729133  | 4.508977       | 3.764672    | 178.296285  | 24.835922  |
| min   | 5.900000  | 1.792000  | 1.593000  | 1.760000       | 5.900000    | 641.960000  | 82.750000  |
| 25%   | 12.750000 | 3.766500  | 3.894000  | 10.478000      | 11.348000   | 768.430000  | 114.645000 |
| 50%   | 15.600000 | 4.608000  | 4.554000  | 13.857000      | 13.775000   | 858.970000  | 136.050000 |
| 75%   | 18.500000 | 6.439000  | 5.604000  | 16.140000      | 16.755000   | 1007.945000 | 151.870000 |
| max   | 23.900000 | 9.450000  | 10.038000 | 23.661000      | 21.280000   | 1301.520000 | 194.780000 |

#### Inference

The speeding and alcohol cases have averages that are far from the total mean. This implies that speeding and alcohol cases are rare.

However, the not\_distracted and no\_previous averages are closer to the mean, implying that they are common cases.

```
In [ ]: sns.boxplot(y='total',data=df)
```

Out[4]: <Axes: ylabel='total'>



# Inference

There are no outliers in the total. The maximum value is 23.9 The minimum value is 5.9 q1 = 12.75 The median is 15.6 q3 = 18.5 The IQR is 5.75

```
In [ ]: sns.boxplot(y='speeding',data=df)
```

Out[5]: <Axes: ylabel='speeding'>



```
In [ ]: sns.boxplot(y='alcohol',data=df)
```

Out[6]: <Axes: ylabel='alcohol'>



The alcohol cases have three outliers which are significantly higher than the upper quartile.

```
In [ ]: sns.boxplot(y='not_distracted',data=df)
Out[8]: <Axes: ylabel='not_distracted'>
```



### Inference

The is one outlier in the undistracted cases. It is lower than the lower quartile.

```
In []: sns.boxplot(y='no_previous',data=df)
Out[9]: <Axes: ylabel='no_previous'>

22
20
18
16
9 12
10
8
6
```

There are no outliers in the 'new car crash' cases

```
In [ ]: sns.boxplot(y='ins_premium',data=df)
```

Out[10]: <Axes: ylabel='ins\_premium'>



```
In [ ]: sns.boxplot(y='ins_losses',data=df)
```

Out[11]: <Axes: ylabel='ins\_losses'>



There are no outliers in the insurance values. The average insurance paid is 887. The average insurance loss is \$25.

```
In [ ]: sns.scatterplot(x='total',y='ins_premium',data=df)
```

Out[12]: <Axes: xlabel='total', ylabel='ins\_premium'>



# Inference

There is no correlation between the total and the insurance paid

```
In [ ]: corr= df.iloc[:,0:7].corr()
```

```
In [ ]: sns.heatmap(corr)
```

Out[18]: <Axes: >



### Inference

Insurance loss has the relatively strongest correlation with first accidents ('no\_previous'). The strongest correlation premium insurance has is with speeding accidents.

```
In [ ]:
     sns.distplot(df['total'])
```

<ipython-input-24-2ba73417f012>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df['total'])

Out[24]: <Axes: xlabel='total', ylabel='Density'>



#### Inference

Most crash totals fall between 10 and 20.

```
In [ ]: import matplotlib.pyplot as plt
```



Most accidents are first-time The second-largest value is for undistracted accidents Speeding accidents are the least occurring.

```
In [ ]:
Out[36]: [total
                   805.3
          dtype: float64,
          total
                       805.300
          speeding
                       254.908
          dtype: float64,
          total
                       805.300
          speeding
                       254.908
          alcohol
                       249.226
          dtype: float64,
                             805.300
          total
                             254.908
          speeding
          alcohol
                             249.226
          not_distracted
                            692.232
          dtype: float64]
 In [ ]:
```