Examen 1

29 de noviembre

Equipo

Cano Navarro Fernando Jiménez Rojo Paulina Daniela Mariano Martinez Kevin Marquez López Anavely Pineda Béjair Daniel Sanchez Benitez Eduardo.

Resuelve los siguientes problemas explicando con detalle tus respuestas

Considera los vértices de triángulo ABC y denota por $\mathcal A$ la recta que contiene al lado opuesto al vértice A, similarmente $\mathcal B$ y $\mathcal C$, para

$$A = (5,5), \quad B = (7,1), \quad C = (2,1).$$

- 1. Encuentra la descripción paramétrica de \mathcal{C} .
- 2. Encuentra la ecuación normal de \mathcal{B} .
- 3. Encuentra la ecuación normal del la altura por A (la perpendicular a ${\mathcal A}$ por A).
- 4. Calcula las distancias $b=\mathrm{d}(A,C)$ y $h=\mathrm{d}(B,\mathcal{B})$, para determinar el área $\frac{bh}{2}$ y haz un dibujo del triángulo, indicando h y la recta de la pregunta anterior.
- 5. Obtén las coordenadas polares de los puntos con coordenadas cartesianas

$$P = (1,1)$$
 y $Q = (-1,2)$.

6. Demuestra que dos vectores ${f u}$ y ${f v}$ son perpendiculares si y sólo si $|{f u}+{f v}|=|{f u}-{f v}|$. Haz el dibujo.

Considera los vértices de birángulo ABC y denoto A lo recta que contiene al lado opuesto al vértice A, similarmente B y C
paro A = (5,5), B = (7,1), C=(2,1)

1) Encuentra la descripción paramétrica de C

La descripción parametrica es de la formo épto IteR? donde "p" es un ponto de la recta y "v" es el vector dirección.

51 nos fisemos en el dibojo, observamos que A y B estón en la recta C por lo tento la descripción paramétrico de lo recta C es.

Ahora sustituimos los valores

Simplificamos

2. Encuentra la recuación normal de B Siendo B la recta opuesta al punto B. Primero obtendremos la parametrica. C=(2,1) { $P+tv|t\in\mathbb{R}$ } P=ponto sobre |q| A=(5,5) V=vector directorA= (5,5) B={C+t(C-A) | t e R} $B = \{(2,1) + t((2,1)-(5,5)) | t \in \mathbb{R} \}$ B={(Z,1)+t(-3,-4) | t ∈ R} Para la normal ocuparemos {p+tv|teR}={xeR2|d.x=d.p} {(2,1) + t(-3,-4) | t ∈ R} = {x ∈ R² | d • x = d • P} d=(-3,-4) => d=(4,-3)
por definición de ortogonal d=(a,b) => d=(-b,a) Ahora bien d'x=d. P > Ec, normal $(4,-3)\cdot(x,y)=(4,-3)(2,1)$

3 Encuentra la ecuación normal de la altura por A (la representación a Apor A).

La recta ponteada tiene como ecuación paramétrica

$$L = A + (C - B)^{\perp}$$
, entonces tenemos que, $L = \{A + \lambda (C - B)^{\perp} | \lambda \in \mathbb{R} \}$

Por el teorema visto en clase, sapemos que:

$$p + tv \iff V^{\perp} \cdot x = V^{\perp} \cdot p$$

y tenemos lo siguiente:

$$L = (C - B)^{\perp \perp} \cdot X = (C - B)^{\perp \perp} \cdot A$$

$$L = (B-C) \cdot X = (B-C) \cdot A$$

Sustituyendo los valores, nos queda:

$$L = ((7,1) - (2,1)) \cdot (x,y) = ((7,1) - (2,1)) \cdot (5,5)$$

$$L = (5.0) \cdot (x.y) = (5.0) \cdot (5.5)$$

$$Por lo tanto:$$
Hemos encontrado la ecuación

normal de la altura por A como se pedia en el ejercicio

4: Calcula las distancias b=d(A,C) y h=d(B,B)
para determinar el area bh y haz un dibogo del trióngulo indicando h y la recta de la pregunta anterior. C(5,5) B(7,1) Distancia N=d(8,3) Distancia 0 = d(A,C)
A=(5,5) C=(2,1) de B primero. dAE = /(2-5)2+(1-5)2 B= C + 2(C-A) d(AC) = 19 +16 = 125 B={(2,1)+2((2,1)-(5,5))/2812} d(AC) = 5 B= {(21)+2(-3,-4)/2+R El vector dirección V=(-3,-4) le sacamos el compadre VI=(4,-3) y su ec. Normal. B=(4,-3). X=(4,-3). (2,1) Ahora si calculamos la distancia ol punto B. J(P,T)=1(4,-3).(2,1)-(C4,-3).(7,1))1

(5)-(25) -(28-3) sa comos el área.

Examón 1

28/ Daviembre 2020

Formula de cartesianas a polavos V= 1 x2+ 2 los puntos con coordenados cartesígnas 0= -tan (X) P=(1,1), Q=(-1,2) POD 0= 40x1 (1) 0= tan'(1) V= (1+1 0=450 VEVZ P= (12,45°) + (12,74) D= (-1,2) D: +01/= F= 1-1242 V=11+0 0= fax 1 (-2) 0 = - 53. 99° +180° = 116.56° V 15 Q= (15, 116.56°)= (15, 0.6977)

6. Demuestra que dos vectores \mathbf{u} y \mathbf{v} son perpendiculares si y sólo si $|\mathbf{u}+\mathbf{v}|=|\mathbf{u}-\mathbf{v}|$. Haz el dibujo. =>) U y V son perpen diculares => lutul = lu - v1 Si elevamos al cuadrado las dos normas x franc que $|U_1 V_1|^2 = |U_1|^2 + 2 UV + |V_1|^2$ 10-V12= 1412 - 24V + 1V12 Pero, por hipotesis se filme que u y v son per pen diculares, es de cir, u.v=0, entonces clicho esto, se verifica que 2.uv=0 y -2uv=0, entonces se tiene que 1Utv12 = 1412 +1V12 [U-V|2= [U]2 + [V]2 Aplicando raíz Fe firm que lutul = 14-v1 <=) luty1 = lu-v1 => u y v son perpendiculares Si lutul= lu-v1, mioners lutul= lu-v12, es decir que se verifica que 2. u V= - 2 u. v, a decir, 2UV+2UV=0, =>4 u. v=0, o decr, u.v=0 :. uy v son perpendiculares

