

Machine Learning with Python-From Linear Models to Deep Learning

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

A Course / Unit 1. Linear Classifiers and Generali... / Lecture 4. Linear Classification

4. Gradient Descent

 \square Bookmark this page

Exercises due Feb 22, 2023 08:59 -03 Completed

Gradient Descent

. 10

Video

♣ Download video file

Transcripts

- ▲ Download SubRip (.srt) file
- **▲** Download Text (.txt) file

Gradient Descent: Geometrically Revisited

2/2 points (graded)

Assume $heta \in \mathbb{R}$. Our goal is to find heta that minimizes

$$J\left(heta, heta_0
ight) = rac{1}{n} \sum_{i=1}^n \operatorname{Loss}_h\left(y^{(i)}\left(heta \cdot x^{(i)} + heta_0
ight)
ight) + rac{\lambda}{2} \mid\mid heta \mid\mid^2$$

through gradient descent. In other words, we will

- 1. Start heta at an arbitrary location: $heta \leftarrow heta_{start}$
- 2. Update heta repeatedly with $heta \leftarrow heta \eta rac{\partial J(heta, heta_0)}{\partial heta}$ until heta does not change significant

Connect

<u>Blog</u>

Contact Us

Help Center

Security