Задачи оценивания геномного расстояния на графах де Брёйна

Константинов Антон Владимирович, гр. 15.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Коробейников А. И. Рецензент: Шлемов А. Ю.

Санкт-Петербург 2019

Основные понятия, связанные с геномом

- Геномом будем называть строку ${\cal S}$ над четырёхбуквенным алфавитом $\{A,T,G,C\}$.
- Рид (или прочтение) короткая подстрока ${\cal S}.$
- k-мер подстрока S, имеющая длину k.
- Спектр k-меров множество всех k-меров, встречающихся в S.

Задача сборки генома

Рассмотрим некоторый геном $\mathcal S$ и предположим, что имеется набор его ридов. Обозначим его через $\mathfrak R$ и будем называть библиотекой ридов для $\mathcal S$.

Задача сборки генома:

По набору строк $\mathfrak R$ восстановить как можно более длинные контиги — непрерывные подстроки исходной строки $\mathcal S$ (в идеале, конечно, всю строку целиком).

Граф де Брёйна

Граф де Брёйна строки \mathcal{S} :

- 1. В качестве вершин графа берётся спектр k-меров строки \mathcal{S} .
- 2. Для каждого (k+1)-мера, содержащегося в \mathcal{S} , в граф добавляется ребро $v_1 \to v_2$, где v_1 и v_2 его префикс и суффикс длины k соответственно.
- 3. Количество таких рёбер равно количеству вхождений соответствующего (k+1)-мера в геном.

Замечание: На практике вместо кратных рёбер обычно используют взвешенные, а однозначно продолжимые рёбра склеивают вместе.

Свойства графа де Брёйна

Эйлеров путь в мультиграфе — это путь, проходящий по каждому ребру мультиграфа ровно столько раз, какова его кратность.

Пусть G — граф де Брёйна строки $\mathcal S$. Тогда

- 1. В этом графе существует соответствующий исходной строке $\mathcal S$ эйлеров путь. Будем называть этот путь геномным.
- 2. Если в графе всего один эйлеров путь, то мы получаем возможность однозначно восстановить исходную строку.

Сборка при помощи графа де Брёйна

Итак, есть библиотека ридов \mathfrak{R} .

Проблема: для построения графа де Брёйна требуется знать все k+1-меры неизвестной строки \mathcal{S} .

Решение: необходимо наложить на библиотеку ридов \Re дополнительные условия.

Предположим, что риды из $\mathfrak R$ содержат все (k+1)-меры, имеющиеся в $\mathcal S$ (т. н. *модель плотных ридов*).

Тогда можно извлечь из $\mathfrak R$ спектр её (k+1)-меров и построить граф де Брёйна, используя их.

Проблемы подхода

Плохое качество сборки может быть следствием

- 1. Ошибок в ридах (неточных прочтений),
- 2. Нарушения предположения о плотности покрытия генома ридами,
- 3. Особенностей структуры генома повторы последовательностей (имеющие длину больше k) в $\mathcal S$ приводят к неединственности эйлерова пути.

Повторы

Предположим, что геном имеет вид $\mathbf{e_1}\mathbf{fe_2}\dots\mathbf{g_1}\mathbf{fg_2}$, где \mathbf{e}_i , \mathbf{g}_i и \mathbf{f} — некоторые строки.

Рис. 1: Простой повтор в графе

Как должен проходить эйлеров путь,

- $e_1 \rightarrow f \rightarrow e_2$ или $e_1 \rightarrow f \rightarrow g_2$?
- $g_1 \rightarrow f \rightarrow g_2$ или $g_1 \rightarrow f \rightarrow e_2$?

Повторы

- Следовательно, повторы жизненно необходимо каким-то образом разрешать.
- Для разрешения повторов в графе сборки обычно используются специальные структуры, несущие дополнительную информацию о связи между последовательностями на рёбрах графа.
- Одной из таких структур являются так называемые парные риды.

Вероятностная модель парных ридов

Пусть

- ξ дискретная случайная величина с носителем $\{1,\dots,|\mathcal{S}|\}$, имеющая смысл координаты в геноме,
- η независимая от ξ неотрицательная целочисленная случайная величина (т. н. **длина вставки**),
- ℓ положительное целое число (длина рида).
- 1. Фрагмент подстрока генома, имеющая вид $\mathcal{S}[\xi,\xi+\eta]$;
- 2. Левый рид префикс длины ℓ фрагмента, т. е. подстрока $\mathcal{S}[\xi,\xi+\ell];$
- 3. Правый рид суффикс длины ℓ фрагмента, т.е. подстрока $\mathcal{S}[\xi+\eta-\ell,\xi+\eta].$

Разрешение повторов

Рис. 2: Простой повтор

Графовое расстояние между r_1 и r_2 вдоль $\mathbf{p}=(e_1,f,e_2)$:

$$d_{graph}(r_1, r_2) = d(e_1, e_2) - r_1^{(s)} + r_2^{(s)},$$

где $d(e_1,e_2)=|\mathbf{p}|-|e_2|$ — расстояние между e_1 и e_2 вдоль \mathbf{p} , $r_i^{(s)}$ — координата начала r_i на e_i .

Разрешение повторов

Предположим, что длины ридов и длина вставки известны точно.

В этом случае известно **геномное расстояние** между r_1 и r_2 (то есть расстояние между ними как подстроками генома):

$$d_{genome}(r_1, r_2) = L - |r_2|,$$

где L — точное значение длины вставки.

Тогда если

$$d_{graph}(r_1, r_2) \neq d_{genome}(r_1, r_2),$$

то можно утверждать, что путь $\mathbf{p}=(e_1,f,e_2)$ не является частью геномного пути.

Постановка задачи

Рис. 3: Расположение ридов на рёбрах графа

Зафиксируем пару рёбер e_1 , e_2 . Пусть известны координаты ридов r_i на рёбрах e_i . Введём обозначения:

- 1. g гэп между e_1 и e_2 ,
- 2. t расстояние от конца r_1 до конца e_1 ,
- 3. au координата начала r_2 на e_2 .

Постановка задачи

Будем считать, что рид r_1 приложен к ребру e_1 . Введём событие

$$A_{e_2}(r_2) = \{$$
рид r_2 приложен к $e_2\}.$

Пусть

$$\mathbb{D} = \{g^{(1)}, \dots, g^{(k)}\}\$$

— набор гэпов между рёбрами e_1 и e_2 в графе сборки.

Рассмотрим $\mathbb{T}=\Big((t_1,\tau_1),\dots,(t_n,\tau_n)\Big)$ — повторную независимую выборку из совместного распределения t и τ при условии $A_{e_2}(r_2)$.

Пусть гэп g имеет неизвестное распределение \mathcal{P}_g , а распределение η известно в точности.

 $\exists \mathsf{A} \exists \mathsf{A} \exists \mathsf{A} \exists \mathsf{A}$: статистический вывод для \mathcal{P}_q по выборке \mathbb{T} .

Иерархическая модель

- $1.~~g \sim \mathcal{P}_g$,
- 2. $(au,t,i) \sim \mathcal{P}_{ au,t|g,A_{e_2}}$ для всех $i \in \overline{1..n}$.

Для g введём естественным образом априорное распределение:

$$g \sim \begin{pmatrix} g^{(1)} & \cdots & g^{(k)} \\ 1/k & \cdots & 1/k \end{pmatrix}.$$

Так как i определяется исключительно эмпирическим распределением выборки \mathbb{T} , то можно считать, что

$$i \sim \mathrm{U}(n)$$
.

В дальнейших формулах для упрощения будем опускать условие $A_{e_2}.$

Апостериорное распределение (одно наблюдение)

Предложение

Пусть $\eta=\lfloor \tilde{\eta} \rfloor$, где $\tilde{\eta}$ имеет распределение $N(\mu,\sigma^2)$ с известными средним μ и дисперсией $\sigma^2.$

Тогда

$$p(g|\tau, t, i) = \frac{q(\tau_i, g, t_i)}{\sum_{j=1}^k q(\tau_i, g^{(j)}, t_i)},$$

где

$$q(x,y,z) = \frac{\Phi(x+y+z+2\ell+1) - \Phi(x+y+z+2\ell)}{1 - \Phi(y+z+2\ell)},$$

а Φ — функция распределения закона $N(\mu, \sigma^2)$.

Апостериорное распределение (набор наблюдений)

По формуле полной вероятности

$$p(g|\tau,t) = \int p(g|\tau,t,i)p(i) = \frac{1}{n} \sum_{i=1}^{n} p(g|\tau,t,i).$$

Предложение

В тех же условиях

$$p(g|\tau,t) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{q(\tau_i, g, t_i)}{\sum_{j=1}^{k} q(\tau_i, g^{(j)}, t_i)} \right].$$

Моделирование

За основу были взяты первые 400 тысяч нуклеотидов генома E.coli. При помощи пакета art были промоделированы парные риды с длиной вставки, имеющей распределение N(1000,30).

По получившимся ридам при помощи геномного ассемблера **SPAdes** был построен граф де Брёйна.

Для выравнивания рёбер получившегося графа на исходный геном и выравнивания ридов на рёбра использовался пакет **bwa**.

Пример апостериорных вероятностей

(а) Граф

