

CIRCUITOS DIGITAIS EXERCÍCIOS DE FIXAÇÃO – UNIDADE 3 PROF. VICTOR MIRANDA

1 – Determine as Expressões Booleanas de saída dos Circuitos Lógicos abaixo:

EXEMPLOS DE RESPOSTAS:

2 – Determine os Circuitos Lógicos das seguintes Expressões Booleanas:

a)
$$S = \overline{\overline{A + B} \cdot C}$$

d)
$$S = (\overline{A} + B) \cdot (\overline{\overline{A} + B})$$

b)
$$S = \overline{\overline{A \cdot B} + C}$$

e)
$$S = [(A \oplus B) + A].C$$

c)
$$S = (\overline{A.B+C}).\overline{D}$$

f)
$$S = [\overline{B} + (A \oplus B)].\overline{A} + \overline{C}$$

3 - Determine as Tabelas da Verdade para as Expressões Booleanas do exercício anterior.

4 – Determine as Expressões Booleanas nas formas canônicas (SoP e PoS) a partir das Tabelas da Verdade:

a)	Α	В	С	S
	0	0	0	0
	0	0	1	1
	0	1	0	0
	0	1	1	0 1
	1	0	0	1
	1	0	0 1	1
	1	1	0	0
	1	1	1	Λ

Α	В	C	D	S
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
0 0 0 0 0 0 0 1 1 1 1 1	0	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	0 0 0 0 1 1 1 1 0 0 0 1 1 1 1	1	0 1 0 1 0 1 0 1 0 1 0 1 0	1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0

5 - Determine o sinal de saída para os circuitos abaixo:

a)

b)

6 -

[Kleitz 5.4] Escreva a equação booleana e então complete o diagrama temporal em W,X,Y e Z para os circuitos mostrados abaixo:

Utilize o espaço no próprio diagrama do lado direito abaixo.

Converta as expressões seguintes para a forma de soma-de-produtos:

(a)
$$(A+B)(C+\overline{B})$$

(b)
$$(A + \overline{B}C)C$$

(b)
$$(A + \overline{B}C)C$$
 (c) $(A + C)(AB + AC)$

8-

Converta as expressões seguintes para a forma de soma-de-produtos:

(a)
$$AB + CD(A\overline{B} + CD)$$

(b)
$$AB(\overline{B}\overline{C} + BD)$$

(a)
$$AB + CD(A\overline{B} + CD)$$
 (b) $AB(\overline{B}\overline{C} + BD)$ (c) $A + B[AC + (B + \overline{C})D]$

9 -

Obtenha o valor de X nas seguintes expressões lógicas, considerando os seguintes

casos: i)
$$A = 1, B = 1, C = 0, D = 1$$
; ii) $A = 0, B = 1, C = 0, D = 0$;

iii)
$$A = 1, B = 1, C = 1, D = 1$$
; iv) $A = 1, B = 0, C = 1, D = 0$

(a)
$$X = A(B \oplus C)$$

(b)
$$X = (\overline{A+B})(C \oplus (A+\overline{D}))$$

(c)
$$X = B\overline{C}A + \overline{(\overline{C} \oplus D)}$$

(d)
$$X = ((A + \overline{B} \oplus D) \cdot (\overline{C} + A) + B) \cdot \overline{A + B}$$

(e)
$$X = A \oplus B + \overline{C}B + \overline{A}$$

10 -

Implemente o circuito que implementa a funcionalidade descrita na tabela verdade ilustrada na figura 2. Dica: use o poder da negação!

A	В	C	X
0	0	0	1
0	0	1	0
0	1	0	Ŧ
0	1	1	1
1	0	0	1
1	0	1	1
1	1.	0	1
1	1	1	ł

Figura 2: Exemplo de uma tabela verdade.

11- a), b)

[BV09, ex. 2.31] Para o diagrama temporal na figura P2.3, sintetize a função $f(x_1, x_2, x_3)$ na mais simples forma através da soma de produtos.

[BV09, ex. 2.32] Para o diagrama temporal na figura P2.3, sintetize a função $f(x_1, x_2, x_3)$ na mais simples forma através do produto das somas.

Figure P2.3 A timing diagram representing a logic function.