- Input Offset Voltage Drift . . . Typically 0.1 μV/Month, Including the First 30 Days
- Wide Range of Supply Voltages Over **Specified Temperature Range:**

0°C to 70°C . . . 3 V to 16 V -40°C to 85°C . . . 4 V to 16 V -55°C to 125°C . . . 5 V to 16 V

- **Single-Supply Operation**
- **Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix** and I-Suffix Types)
- Low Noise . . . 25 nV/√Hz Typically at f = 1 kHz (High-Bias Mode)
- **Output Voltage Range includes Negative**
- High Input Impedance . . . $10^{12} \Omega$ Typ
- **ESD-Protection Circuitry**
- **Small-Outline Package Option Also** Available in Tape and Reel
- **Designed-In Latch-Up Immunity**

description

The TLC271 operational amplifier combines a wide range of input offset voltage grades with low offset voltage drift and high input impedance. In addition, the TLC271 offers a bias-select mode

that allows the user to select the best combination of power dissipation and ac performance for a particular application. These devices use Texas Instruments silicon-gate LinCMOS™ technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

AVAILABLE OPTIONS

			PACK	(AGE	
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)
0°C to 70°C	2 mV 5 mV 10 mV	TLC271BCD TLC271ACD TLC271CD		-	TLC271BCP TLC271ACP TLC271CP
-40°C to 85°C	2 mV 5 mV 10 mV	TLC271BID TLC271AID TLC271ID			TLC271BIP TLC271AIP TLC271IP
-55°C to 125°C	10 mV	TLC271MD	TLC271MFK	TLC271MJG	TLC271MP

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC271BCDR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinCMOS is a trademark of Texas Instruments Incorporated.

DEVICE FEATURES

DADAMETER	BIA	BIAS-SELECT MODE					
PARAMETERT	HIGH	MEDIUM	LOW	UNIT			
PD	3375	525	50	μW			
SR	3.6	0.4	0.03	V/μs			
v _n	25	32	68	nV/√ Hz			
В1	1.7	0.5	0.09	MHz			
AVD	23	170	480	V/mV			

[†] Typical at V_{DD} = 5 V, T_A = 25°C

description (continued)

Using the bias-select option, these cost-effective devices can be programmed to span a wide range of applications that previously required BiFET, NFET or bipolar technology. Three offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC271 (10 mV) to the TLC271B (2 mV) low-offset version. The extremely high input impedance and low bias currents, in conjunction with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS™ operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC271. The devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and output are designed to withstand –100-mA surge currents without sustaining latch-up.

The TLC271 incorporates internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

bias-select feature

The TLC271 offers a bias-select feature that allows the user to select any one of three bias levels depending on the level of performance desired. The tradeoffs between bias levels involve ac performance and power dissipation (see Table 1).

bias-select feature (continued)

Table 1. Effect of Bias Selection on Performance

	TYPICAL PARAMETER VALUES		MODE						
	$T_A = 25^{\circ}C$, $V_{DD} = 5 \text{ V}$	HIGH BIAS $R_L = 10 \text{ k}\Omega$	MEDIUM BIAS $R_L = 100 kΩ$	LOW BIAS $R_L = 1 M\Omega$	UNIT				
P_{D}	Power dissipation	3.4	0.5	0.05	mW				
SR	Slew rate	3.6	0.4	0.03	V/μs				
٧n	Equivalent input noise voltage at f = 1 kHz	25	32	68	nV/√Hz				
В1	Unity-gain bandwidth	1.7	0.5	0.09	MHz				
φm	Phase margin	46°	40°	34°					
A_{VD}	Large-signal differential voltage amplification	23	170	480	V/mV				

bias selection

Bias selection is achieved by connecting the bias select pin to one of three voltage levels (see Figure 1). For medium-bias applications, it is recommended that the bias select pin be connected to the midpoint between the supply rails. This procedure is simple in split-supply applications, since this point is ground. In single-supply applications, the medium-bias mode necessitates using a voltage divider as indicated in Figure 1. The use of large-value resistors in the voltage divider reduces the current drain of the divider from the supply line. However, large-value resistors used in conjunction with a large-value capacitor require significant time to charge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint can be used if it is within the voltages specified in Figure 1.

bias selection (continued)

Figure 1. Bias Selection for Single-Supply Applications

high-bias mode

In the high-bias mode, the TLC271 series features low offset voltage drift, high input impedance, and low noise. Speed in this mode approaches that of BiFET devices but at only a fraction of the power dissipation. Unity-gain bandwidth is typically greater than 1 MHz.

medium-bias mode

The TLC271 in the medium-bias mode features low offset voltage drift, high input impedance, and low noise. Speed in this mode is similar to general-purpose bipolar devices but power dissipation is only a fraction of that consumed by bipolar devices.

low-bias mode

In the low-bias mode, the TLC271 features low offset voltage drift, high input impedance, extremely low power consumption, and high differential voltage gain.

ORDER OF CONTENTS

TOPIC	BIAS MODE
schematic	all
absolute maximum ratings	all
recommended operating conditions	all
electrical characteristics operating characteristics typical characteristics	high (Figures 2 – 33)
electrical characteristics operating characteristics typical characteristics	medium (Figures 34 – 65)
electrical characteristics operating characteristics typical characteristics	low (Figures 66 – 97)
parameter measurement information	all
application information	all

equivalent schematic

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{DD} (s	ee Note 1)	18 V
Differential input voltag	e, V _{ID} (see Note 2)	±V _{DD}
	(any input)	
Input current, II		±5 mA
	t current at (or below) 25°C (see Note 3)	
	ation	
Operating free-air temp	erature, T _A : C suffix	0°C to 70°C
	I suffix	– 40°C to 85°C
	M suffix	
Storage temperature ra	ınge	– 65°C to 150°C
Case temperature for 6	0 seconds: FK package	260°C
Lead temperature 1,6 r	nm (1/16 inch) from case for 10 seconds: D or P p	backage 260°C
Lead temperature 1,6 r	nm (1/16 inch) from case for 60 seconds: JG pack	kage 300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	200 mW

recommended operating conditions

		C SUFFIX		I SUFFIX		M SUFFIX		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
Supply voltage, V _{DD}		3	16	4	16	5	16	V	
Common mode input voltage Vie	V _{DD} = 5 V	-0.2	3.5	-0.2	3.5	0	3.5	V	
Common-mode input voltage, V _{IC}	V _{DD} = 10 V	-0.2	8.5	-0.2	8.5	0	8.5	V	
Operating free-air temperature, T _A		0	70	-40	85	-55	125	°C	

electrical characteristics at specified free-air temperature (unless otherwise noted)

			TECT	TLC271C, TLC271AC, TLC271BC							
	PARAMETER		TEST CONDITIONS	T _A †	V	DD = 5 \	<i>'</i>	۷	OD = 10	٧	UNIT
			CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
		TLC271C		25°C		1.1	10		1.1	10	
		1102/10	V _O = 1.4 V,	Full range			12			12	
\/. -	Innut offeet voltege	TI C074 A C	V _{IC} = 0 V,	25°C		0.9	5		0.9	5	\ /
VIO	Input offset voltage	TLC271AC	$R_S = 50 \Omega$,	Full range			6.5			6.5	mV
		TLC271BC	$R_L = 10 \text{ k}\Omega$	25°C		0.34	2		0.39	2	
		TLC27 IBC		Full range			3			3	
α_{VIO}	Average temperature of input offset voltage	coefficient		25°C to 70°C		1.8			2		μV/°C
1	Input offeet ourrent (or	no Noto 4)	$V_O = V_{DD}/2$,	25°C		0.1			0.1		n A
lio	O Input offset current (see Note 4)		$V_{IC} = V_{DD}/2$	70°C		7	300		7	300	pA
lin.	Input bigg gurrent (gg	Note 4)	$V_O = V_{DD}/2$,	25°C		0.6			0.7		π Λ
İΒ	Input bias current (see	e Note 4)	$V_{IC} = V_{DD}/2$	70°C		40	600		50	600	pA
				25°C	-0.2 to 4	-0.3 to 4.2		-0.2 to 9	-0.3 to 9.2		V
VICR	Common-mode input voltage range (see Note 5)			Full range	-0.2 to 3.5			-0.2 to 8.5			٧
	High-level output voltage			25°C	3.2	3.8		8	8.5		
VOH			$V_{ID} = 100 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	0°C	3	3.8		7.8	8.5		V
				70°C	3	3.8		7.8	8.4		
				25°C		0	50		0	50	
V_{OL}	Low-level output volta	ge	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	0°C		0	50		0	50	mV
			.OL = 0	70°C		0	50		0	50	
	1 1 - 1'ff ('	-1	D 4010	25°C	5	23		10	36		
AVD	Large-signal differenti voltage amplification	aı	R_L = 10 kΩ, See Note 6	0°C	4	27		7.5	42		V/mV
	ronago ampimoanon		000 11010 0	70°C	4	20		7.5	32		
				25°C	65	80		65	85		
CMRR	Common-mode reject	ion ratio	V _{IC} = V _{ICR} min	0°C	60	84		60	88		dB
				70°C	60	85		60	88		
	0			25°C	65	95		65	95		
k _{SVR}	Supply-voltage rejecti (ΔV _{DD} /ΔV _{IO})	on ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$ $V_{O} = 1.4 \text{ V}$	0°C	60	94		60	94		dB
				70°C	60	96		60	96		
I _{I(SEL)}	Input current (BIAS SI	ELECT)	V _{I(SEL)} = 0	25°C		-1.4			-1.9		μΑ
		_	$V_O = V_{DD}/2$,	25°C		675	1600		950	2000)
I_{DD}	Supply current	Supply current \	$V_{IC} = V_{DD}/2,$ $V_{IC} = V_{DD}/2,$	0°C		775	1800		1125	2200	μΑ
			No load	70°C		575	1300		750	1700	

[†] Full range is 0°C to 70°C.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

electrical characteristics at specified free-air temperature (unless otherwise noted)

		TEST			TLC271	I, TLC27	1AI, TLC	C271BI			
	PARAMETER		TEST CONDITIONS	T _A †	V	DD = 5 \	/	۷۲	D = 10	/	UNIT
ı			CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
		TLC2711		25°C		1.1	10		1.1	10	
		TLC2711	V _O = 1.4 V,	Full range			13			13	
11/1-	lanut affact valtage	TI C074 A1	V _{IC} = 0 V,	25°C		0.9	5		0.9	5	mV
VIO	Input offset voltage	TLC271AI	$R_S = 50 \Omega$,	Full range			7			7] ""
		TLC271BI	$R_L = 10 \text{ k}\Omega$	25°C		0.34	2		0.39	2	
		TLO21 IBI		Full range			3.5			3.5	
αVIO	Average temperature of input offset voltage	coefficient		25°C to 85°C		1.8			2		μV/°C
1	Input offset current (se	o Noto 4)	$V_O = V_{DD}/2$,	25°C		0.1			0.1		5 Λ
lo	input onset current (se	ee Note 4)	$V_{IC} = V_{DD}/2$	85°C		24	1000		26	1000	pA
	Input bigg ourrent (oos	Note 4	$V_O = V_{DD}/2$,	25°C		0.6			0.7		nΛ
IB	Input bias current (see	e Note 4)	$V_{IC} = V_{DD}/2$	85°C		200	2000		220	2000	рA
					-0.2	-0.3		-0.2	-0.3		
	Common-mode input voltage range (see Note 5)			25°C	to 4	to 4.2		to 9	to 9.2		V
					<u> </u>	4.2			9.2		
				Full range	-0.2 to			-0.2 to			V
				3	3.5			8.5			
	High-level output voltage			25°C	3.2	3.8		8	8.5		
Vон			$V_{ID} = 100 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	−40°C	3	3.8		7.8	8.5		V
			TT_ 10 162	85°C	3	3.8		7.8	8.5		
				25°C		0	50		0	50	
V_{OL}	Low-level output voltage	ge	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	−40°C		0	50		0	50	mV
ı			I'OL = 0	85°C		0	50		0	50	
				25°C	5	23		10	36		
A_{VD}	Large-signal differentiation	al	R_L = 10 kΩ, See Note 6	−40°C	3.5	32		7	46		V/mV
	voltage amplification		See Note 0	85°C	3.5	19		7	31		
				25°C	65	80		65	85		
CMRR	Common-mode rejecti	on ratio	V _{IC} = V _{ICR} min	−40°C	60	81		60	87		dB
				85°C	60	86		60	88		
				25°C	65	95		65	95		
k _{SVR}	Supply-voltage rejection (ΔVDD/ΔVIO)	on ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$ $V_{O} = 1.4 \text{ V}$	-40°C	60	92		60	92		dB
ı	(AADD\AAIO)		VO = 1.4 V	85°C	60	96		60	96		
I _I (SEL)	Input current (BIAS SE	ELECT)	V _{I(SEL)} = 0	25°C		-1.4			-1.9		μΑ
			, ,	25°C		675	1600		950	2000	
I _{DD}	Supply current $V_{O} = V_{DD}/2$, $V_{IC} = V_{DD}/2$, No load	*U = *UU/2,	-40°C		950	2200		1375	2500	_	
יטטי		рріу сипепі									

†Full range is -40°C to 85°C.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETER CONDITIONS TA			TECT				TLC2	71M			
V O		PARAMETER	TEST CONDITIONS	T _A †	V	_{DD} = 5 \	/	۷	OD = 10 \	/	UNIT
Vic			COMBINIONS		MIN	TYP	MAX	MIN	TYP	MAX	
No No No No No No No No	Vio	Input offset voltage	$V_{IC} = 0 V$	25°C		1.1	10		1.1	10	m\/
No No No No No No No No	V10	input onset voltage		Full range			12			12	111 V
In In In In In In In In	ανιο					2.1			2.2		μV/°C
Vic = VDD/2 125°C 1.4 15 1.8 15 nA NA Vo = VDD/2 125°C 0.6 0.7 pA NA NA NA NA NA NA NA	li o	Input offset ourrent (see Note 4)	$V_O = V_{DD}/2$,	25°C		0.1			0.1		pА
In Input bias current (see Note 4) ViC = VDD/2 125°C 9 35 10 35 10 NA	IIO	input onset current (see Note 4)	$V_{IC} = V_{DD}/2$	125°C		1.4	15		1.8	15	nA
Vice	1.5	Input biog ourrent (occ Note 4)	$V_O = V_{DD}/2$,	25°C		0.6			0.7		pA
$V_{ICR} \begin{array}{c} \text{Common-mode input voltage} \\ \text{range (see Note 5)} \end{array} \begin{array}{c} 25^{\circ}\text{C} \\ \text{to} \\ \text{d.} \\ \text{d.} \\ \text{d.} \\ \text{d.} \end{array} \begin{array}{c} \text{to} \\ \text{d.} \\ \text{d.} \\ \text{d.} \\ \text{d.} \end{array} \begin{array}{c} \text{to} \\ \text{d.} \\ \text{d.} \\ \text{d.} \\ \text{d.} \\ \text{d.} \end{array} \begin{array}{c} \text{V} \\ \text{D} \\ \text{d.} \\ \text{d.} \\ \text{d.} \end{array} \begin{array}{c} \text{V} \\ \text{D} \\ \text{Eull range} \end{array} \begin{array}{c} \text{D} \\ \text{To} \\ \text{to} \\ \text{d.} \\ \text{d.} \end{array} \begin{array}{c} \text{D} \\ \text{O} \\ \text{to} \\ \text{d.} \end{array} \begin{array}{c} \text{D} \\ \text{O} \\ \text{d.} \end{array} \begin{array}{c} \text{D} \\ \text{O} \\ \text{d.} \end{array} \begin{array}{c} \text{D}	ΙΊΒ	input bias current (see Note 4)	$V_{IC} = V_{DD}/2$	125°C		9	35		10	35	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0	-0.3		0	-0.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				25°C							V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VICR					4.2			9.2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		range (see Note 3)		Full range	· ·			-			V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				i un rango							,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$., ,,,	25°C	3.2	3.8		8	8.5		
$V_{OL} \text{Low-level output voltage} V_{ID} = -100 \text{mV}, \\ I_{OL} = 0 25^{\circ}\text{C} 0 50 0 50 \\ \hline 125^{\circ}\text{C} 0 0 84 0 60 86 \\ \hline 125^{\circ}\text{C} 0 60 90 0 60 90 \\ \hline 125^{\circ}\text{C} 60 90 0 60 90 \\ \hline 125^{\circ}\text{C} 60 97 60 97 \\ \hline 10[\text{CBL}] \text{Input current (BIAS SELECT)} V_{I(SEL)} = 0 25^{\circ}\text{C} -1.4 -1.9 \mu A \\ \hline 10D \text{Nuply current} \text{Nuple current} Nuple curre$	Vон	High-level output voltage		−55°C	3	3.8		7.8	8.5		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			KL = 10 K22	125°C	3	3.8		7.8	8.4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				25°C		0	50		0	50	mV
	VOL	Low-level output voltage		−55°C		0	50		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			IOL = 0	125°C		0	50		0	50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				25°C	5	23		10	36		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_{VD}			−55°C	3.5	35		7	50		V/mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		voltage amplification	GGG NOIG G	125°C	3.5	16		7	27		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				25°C	65	80		65	85		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	−55°C	60	81		60	87		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				125°C	60	84		60	86		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Oursell configuration and the state of		25°C	65	95		65	95		
125°C 60 97 60 97 97 125°C 12	ksvr	, . ,		−55°C	60	90		60	90		dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ען ייבי עט ייבי (טוייבי)	VU = 1.4 V	125°C	60	97		60	97		
$V_{O} = V_{DD}/2$, $V_{IC} = V_{DD}/2$, $V_{IC} = V_{DD}/2$, $V_{DD}/2$, $V_$	I(SEL)	Input current (BIAS SELECT)	V _I (SEL) = 0	25°C		-1.4			-1.9		μΑ
$V_{IC} = V_{DD}/2$, -55 °C 1000 2500 1475 3000 μA			$V_{\Omega} = V_{DD}/2$	25°C		675	1600		950	2000	
Noload	I_{DD}	Supply current	$V_{IC} = V_{DD}/2,$ -	-55°C		1000	2500		1475	3000	-
125°C 475 1100 625 1400			No load	125°C		475	1100		625	1400	

[†]Full range is -55°C to 125°C.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER		TEST CONDITIONS			TLC271C, TLC271AC, TLC271BC			
				TA	MIN	TYP	MAX		
				25°C		3.6			
			V _{I(PP)} = 1 V	0°C		4			
SR	Class rate at units anim	$R_L = 10 \text{ k}\Omega$		70°C		3		V/μs	
J SK	Slew rate at unity gain	C _L = 20 pF, See Figure 98		25°C		2.9		V/μS	
		3	$V_{I(PP)} = 2.5 \text{ V}$	0°C		3.1			
			. ,	70°C		2.5			
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz	
				25°C		320		kHz	
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	0°C		340			
			See Figure 90	70°C		260			
				25°C		1.7			
В ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	0°C		2		MHz	
		See rigule 100		70°C		1.3			
				25°C		46°			
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 100	0°C		47°			
		OL = 20 pi ,	oce i iguie 100	70°C		44°			

	PARAMETER		TEST CONDITIONS			TLC271C, TLC271AC, TLC271BC		
			_	TA	MIN	TYP	MAX	
				25°C		5.3		
		V _{I(PP)} = 1 V	0°C		5.9			
SR	Claus rate at units racin	$R_L = 10 \text{ k}\Omega$		70°C		4.3		\//v.a
SK	Slew rate at unity gain	C _L = 20 pF, See Figure 98		25°C		4.6		V/μs
		3	$V_{I(PP)} = 5.5 \text{ V}$	0°C		5.1		
				70°C		3.8		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
			C _L = 20 pF, See Figure 98	25°C		200		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,		0°C		220		kHz
			See Figure 90	70°C		140		
				25°C		2.2		
В ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	0°C		2.5		MHz
		Occ riguic 100		70°C		1.8		
		, ,		25°C		49°		
φm	Phase margin	$f = B_1,$ $C_1 = 20 pF,$	V _I = 10 mV, See Figure 100 0°C 50°					
		-L F. ,	22090.000	70°C		46°		

HIGH-BIAS MODE

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST CO	TA	TLC271I, TLC271AI, TLC271BI			UNIT	
				MIN	TYP	MAX		
				25°C		3.6		
			V _{I(PP)} = 1 V	−40°C		4.5		
SR	Slow rate at unity gain	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 98		85°C		2.8		\//uo
SK	Slew rate at unity gain			25°C		2.9		V/μs
			$V_{I(PP)} = 2.5 V$	−40°C		3.5		
				85°C		2.3		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		320		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF,	-40°C		380		kHz
		1 10 KS2,	See Figure 90	85°C		250		
				25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	-40°C		2.6		MHz
'		See Figure 100		85°C		1.2		
				25°C		46°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 100	-40°C		49°		
YIII		OL = 20 pr,	See Figure 100	85°C		43°		

	PARAMETER	TEST CO	TEST CONDITIONS			TLC271I, TLC271AI, TLC271BI			
					MIN	TYP	MAX		
				25°C		5.3			
			V _{I(PP)} = 1 V	-40°C		6.8			
CD.	Class rate at units agin	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 98		85°C		4		\//··•	
SR	Slew rate at unity gain			25°C		4.6		V/μs	
			$V_{I(PP)} = 5.5 \text{ V}$	-40°C		5.8			
			85°C		3.5				
V _n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz	
				25°C		200			
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,		C _L = 20 pF, See Figure 98	-40°C		260		kHz
			See Figure 90	85°C		130			
				25°C		2.2			
B ₁	Unity-gain bandwidth	V _I = 10 mV,	$C_L = 20 pF$,	-40°C		3.1		MHz	
	See Figure 100	See Figure 100		85°C		1.7			
				25°C		49°			
φm		$V_{I} = 10 \text{ mV},$ $C_{I} = 20 \text{ pF},$	f= B ₁ , See Figure 100	f= B ₁ ,	-40°C		52°		
		OL = 20 pr,		85°C		46°			

HIGH-BIAS MODE

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	NDITIONS	Τ.	Т	LC271M		
	PARAMETER	1551 60	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		3.6		
			V _{I(PP)} = 1 V	−55°C		4.7		
SR	Clay rate at unity rain	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 98		125°C		2.3		1///
J SK	Slew rate at unity gain			25°C		2.9		V/μs
			$V_{I(PP)} = 2.5 \text{ V}$	−55°C		3.7		
				125°C		2		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
	Maximum output-swing bandwidth			25°C		320		
ВОМ		$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	See Figure 98	−55°C		400		kHz
				125°C		230		
				25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	−55°C		2.9		MHz
		occ rigure 100		125°C		1.1		
		V 40V	, D	25°C		46°		
φm		$V_{ } = 10 \text{ mV},$ $C_{ } = 20 \text{ pF},$		−55°C		49°		
			2223410 100	125°C		41°		

	PARAMETER	TEST CO	NDITIONS	т.	Т	LC271M		
	PARAMETER	IESI CO	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		5.3		
			V _{I(PP)} = 1 V	−55°C		7.1		
SR	Clausete et units goin	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 98		125°C		3.1		\//···
J SK	Slew rate at unity gain			25°C		4.6		V/μs
		3	V _{I(PP)} = 5.5 V	−55°C		6.1		
				125°C		2.7		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		25		nV/√ Hz
				25°C		200		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$,	C _L = 20 pF, See Figure 98	−55°C		280		kHz
				125°C		110		
				25°C		2.2		
B ₁	Unity-gain bandwidth	$V_{\parallel} = 10 \text{ mV},$	$C_L = 20 pF$,	−55°C		3.4		MHz
	See Figure 100	See rigule 100		125°C		1.6		
				25°C		49°		
φm	Phase margin	$f = B_1,$ $C_1 = 20 pF,$	= B ₁ , V _I = 10 mV, = 20 pF, See Figure 100	−55°C		52°		
		,	235gaio 100	125°C		44°		

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	2, 3
ανιο	Temperature coefficient	Distribution	4, 5
VOH	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	6, 7 8 9
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	10, 11 12 13 14, 15
A _{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	16 17 28, 29
I _{IB}	Input bias current	vs Free-air temperature	18
lιο	Input offset current	vs Free-air temperature	18
VIC	Common-mode input voltage	vs Supply voltage	19
IDD	Supply current	vs Supply voltage vs Free-air temperature	20 21
SR	Slew rate	vs Supply voltage vs Free-air temperature	22 23
	Bias-select current	vs Supply voltage	24
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	25
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	26 27
A _{VD}	Large-signal differential voltage amplification	vs Frequency	28, 29
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	30 31 32
٧n	Equivalent input noise voltage	vs Frequency	33
	Phase shift	vs Frequency	28, 29

Figure 2

Figure 4

Figure 3

-4 -3 -2 -1 0

- 5

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

V_{IO} - Input Offset Voltage - mV

Figure 5

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

4 5

HIGH-LEVEL OUTPUT VOLTAGE **HIGH-LEVEL OUTPUT CURRENT** 16 $V_{ID} = 100 \text{ mV}$ 14 V_{OH} - High-Level Output Voltage - V $T_A = 25^{\circ}C$ V_{DD} = 16 V 12 10 8 **V**_{DD} = 10 **V** 6 4 2 0 -15 -20 -25 -30 -35 -40 - 10 IOH - High-Level Output Current - mA

Figure 6

HIGH-LEVEL OUTPUT VOLTAGE vs

Figure 9

20

 T_A – Free-Air Temperature – $^{\circ}$ C

50

75

100

125

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

- 75

- 50

- 25

LOW-LEVEL OUTPUT VOLTAGE

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)†

LOW-LEVEL OUTPUT VOLTAGE COMMON-MODE INPUT VOLTAGE 700 $V_{DD} = 5 V$ IOL = 5 mA650 V_{OL} - Low-Level Output Voltage - mV T_A = 25°C 600 550 $V_{ID} = -100 \text{ mV}$ 500 450 400 $V_{ID} = -1 V$ 350 300 2 V_{IC} - Common-Mode Input Voltage - V

Figure 10

Figure 12

COMMON-MODE INPUT VOLTAGE 500 V_{DD} = 10 V $I_{OL} = 5 \text{ mA}$ T_A = 25°C 450 400

V_{OL} - Low-Level Output Voltage - mV $V_{ID} = -100 \text{ mV}$ $V_{ID} = -1 V$ 350 $V_{ID} = -2.5 V$ 300 250 10 V_{IC} - Common-Mode Input Voltage - V

Figure 11

LOW-LEVEL OUTPUT VOLTAGE FREE-AIR TEMPERATURE

Figure 13

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 14

LARGE-SIGNAL

Figure 16

LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT

Figure 15

LARGE-SIGNAL **DIFFERENTIAL VOLTAGE AMPLIFICATION**

Figure 17

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

CURRENT FREE-AIR TEMPERATURE 10000 $V_{DD} = 10 V$ V_{IC} = 5 V See Note A 1000 IlB and IlO – Input Bias and Input Offset Currents – nA lιΒ 100 lιο 10 1 0. 25 45 65 85 10 T_A – Free-Air Temperature – $^{\circ}$ C 105 125

INPUT BIAS CURRENT AND INPUT OFFSET

Figure 18

COMMON-MODE INPUT VOLTAGE (POSITIVE LIMIT)
vs

SUPPLY CURRENT vs FREE-AIR TEMPERATURE

Figure 21

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 24

V_{DD} – Supply Voltage – V

Figure 23

16

12

14

0

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 26 Figure 27

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SCALE DIFFERENTIAL VOLTAGE **AMPLIFICATION AND PHASE SHIFT**

Figure 29

PHASE MARGIN FREE-AIR TEMPERATURE 50° $V_{DD} = 5 V$ V_I = 10 mV $C_L = 20 pF$ 48° See Figure 100 φm- Phase Margin 46° **44**° 42° - 75 - 50 - 25 0 25 50 75 100 125 T_A - Free-Air Temperature - °C

Figure 30 Figure 31

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

MEDIUM-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

								1AC, TL	C271BC		
	PARAMETER		TEST CONDITIONS	T _A †	V	DD = 5 \	1	٧	OD = 10 \	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
		TI 00740		25°C		1.1	10		1.1	10	
		TLC271C	V _O = 1.4 V,	Full range			12			12	
\	lanut affaat valtana	TI 0074 A 0	V _{IC} = 0	25°C		0.9	5		0.9	5	\/
VIO	Input offset voltage	TLC271AC	$R_S = 50 \Omega$	Full range			6.5			6.5	mV
		TI 0074D0	$R_{\parallel} = 100 \text{ k}\Omega$	25°C		0.25	2		0.26	2	
		TLC271BC		Full range			3			3	
ανιο	Average temperature of input offset voltage			25°C to 70°C		1.7			2.1		μV/°C
i .		N (1)	$V_O = V_{DD}/2$,	25°C		0.1			0.1		
10	Input offset current (see Note 4)	$V_{IC} = V_{DD}/2$	70°C		7	300		7	300	pA
	Lamest Is have assumed to	NI-(- 4)	$V_O = V_{DD}/2$,	25°C		0.6			0.7		A
lВ	Input bias current (se	ee Note 4)	$V_{IC} = V_{DD}/2$	70°C		40	600		50	600	pА
					-0.2	-0.3		-0.2	-0.3		
				25°C	to	to		to	to		V
VICR	Common-mode inpu				4	4.2		9	9.2		
VICK	vice voltage range (see No	lote 5)			-0.2			-0.2			
				Full range	to			to			V
				25°C	3.5	3.9		8.5 8	8.7		
V	High lovel output val	togo	V _{ID} = 100 mV,	0°C	3.2			7.8	8.7		V
VOH	High-level output vol	lage	$R_L = 100 \text{ k}\Omega$	70°C	3	3.9		7.8			V
				70°C 25°C	3	0	50	7.6	8.7	50	
V	l avvilavial avitavit valt		$V_{ID} = -100 \text{ mV},$	25°C 0°C					0		>/
VOL	Low-level output volt	age	IOL = 0			0	50		0	50 50	mV
				70°C	0.5		50	0.5		50	
Δ	Large-signal differen	tial	$R_L = 100 \text{ k}\Omega$	25°C	25	170		25	275		\//m\/
AVD	voltage amplification		See Note 6	0°C	15	200		15	320		V/mV
-				70°C	15	140		15	230		
OMBB	0		N N min	25°C	65	91		65	94		-ID
CMRR	Common-mode rejec	ction ratio	V _{IC} = V _{ICR} min	0°C	60	91		60	94		dB
				70°C	60	92		60	94		
l .	Supply-voltage reject	tion ratio	V _{DD} = 5 V to 10 V	25°C	70	93		70	93		
ksvr	(ΔV _{DD} /ΔV _{IO})		V _O = 1.4 V	0°C	60	92		60	92		dB
ļ		251 505;		70°C	60	94		60	94		
I(SEL)	Input current (BIAS	SELECT)	$V_{I(SEL)} = V_{DD}/2$	25°C		-130			-160	225	nA
1.			$V_O = V_{DD}/2$	25°C		105	280		143	300	
lDD	Supply current		V _{IC} = V _{DD} /2, No load	0°C		125	320		173	400	μΑ
+	ao io 0°C to 70°C		INU IUdu	70°C		85	220		110	280	

† Full range is 0°C to 70°C.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

MEDIUM-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

					TLC271	I, TLC27	1AI, TLC	271BI			
	PARAMETER		TEST CONDITIONS	T _A †	V	DD = 5 \	/	۷۲	D = 10	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
		TLC271I		25°C		1.1	10		1.1	10	
		TLG2711	V _O = 1.4 V,	Full range			13			13	
\/.a	Input offset voltage	TLC271AI	$V_{IC} = 0 V$	25°C		0.9	5		0.9	5	mV
VIO	Input offset voltage	TLCZITAI	$R_S = 50 \Omega$,	Full range			7			7	IIIV
		TLC271BI	$R_L = 100 \text{ k}\Omega$	25°C		0.25	2		0.26	2	
		TEGZTTBI		Full range			3.5			3.5	
ανιο	Average temperature of input offset voltage			25°C to 85°C		1.7			2.1		μV/°C
li o	Input offset current (ooo Noto 4)	$V_O = V_{DD}/2$,	25°C		0.1			0.1		nΛ
10	input onset current (see Note 4)	$V_{IC} = V_{DD}/2$	85°C		24	1000		26	1000	pА
	Input bias current (se	no Noto 4)	$V_O = V_{DD}/2$,	25°C		0.6			0.7		nΛ
lΒ	input bias current (so	ee Note 4)	$V_{IC} = V_{DD}/2$	85°C		200	2000		220	2000	pА
					-0.2	-0.3		-0.2	-0.3		
				25°C	to	to		to	to		V
VICR	Common-mode input CR voltage range (see Note 5)			4	4.2		9	9.2			
	voltage range (see Note 5)				-0.2			-0.2			.,
				Full range	to 3.5			to 8.5			V
				25°C	3.2	3.9		8	8.7		
VOH	High-level output vol	tage	$V_{ID} = 100 \text{ mV},$	-40°C	3	3.9		7.8	8.7		V
	3	3	$R_L = 100 \text{ k}\Omega$	85°C	3	4		7.8	8.7		
				25°C		0	50		0	50	
VOL	Low-level output volt	age	$V_{ID} = -100 \text{ mV},$	-40°C		0	50		0	50	mV
"-		-	IOT = 0	85°C		0	50		0	50	
				25°C	25	170		25	275		
AVD	Large-signal different voltage amplification		R_L = 100 kΩ, See Note 6	-40°C	15	270		15	390		V/mV
	voitage amplification		See Note 6	85°C	15	130		15	220		
				25°C	65	91		65	94		
CMRR	Common-mode rejec	ction ratio	V _{IC} = V _{ICR} min	-40°C	60	90		60	93		dB
				85°C	60	90		60	94		
	Orana karan ta		V 5V: 40V	25°C	70	93		70	93		
ksvr	Supply-voltage reject (ΔVDD/ΔVIO)	tion ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$ $V_{O} = 1.4 \text{ V}$	-40°C	60	91		60	91		dB
	(7,0D/7,0D)		VU = 1.4 V	85°C	60	94		60	94		
I(SEL)	Input current (BIAS	SELECT)	V _{I(SEL)} = V _{DD} /2	25°C		-130			-160		nA
			$V_O = V_{DD}/2$,	25°C		105	280		143	300	
I _{DD}	Supply current		$V_{IC} = V_{DD}/2$,	-40°C		158	400		225	450	μΑ
			No load	85°C		80	200		103	260	

† Full range is -40°C to 85°C.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

MEDIUM-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

		TEST				TLC2				
	PARAMETER	CONDITIONS	T _A †	V	_{DD} = 5 \	<i>'</i>	۷	OD = 10 \	/	UNIT
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
V _{IO}	Input offset voltage	V _O = 1.4 V, V _{IC} = 0 V,	25°C		1.1	10		1.1	10	mV
10	par eneet renage	$R_S = 50 \Omega$, $R_L = 100 kΩ$	Full range			12			12	
ανιο	Average temperature coefficient of input offset voltage		25°C to 125°C		1.7			2.1		μV/°C
1	Innut offeet current (e.e. Note 4)	$V_O = V_{DD}/2$,	25°C		0.1			0.1		pА
110	Input offset current (see Note 4)	$V_{IC} = V_{DD}/2$	125°C		1.4	15		1.8	15	nA
1	Input his surrent (see Note 4)	$V_O = V_{DD}/2$,	25°C		0.6			0.7		pА
ΙΙΒ	Input bias current (see Note 4)	$V_{IC} = V_{DD}/2$	125°C		9	35		10	35	nA
				0	-0.3		0	-0.3		
			25°C	to	to		to	to		V
VICR	Common-mode input			4	4.2		9	9.2		
I TOIL	voltage range (see Note 5)			0			0			.,
			Full range	to 3.5			to 8.5			V
			2500		2.0		8	8.7		
. ,	$V_{ m r}$	V _{ID} = 100 mV,	25°C	3.2	3.9					V
VOH	High-level output voltage	$R_L = 100 \text{ k}\Omega$	-55°C	3	3.9		7.8	8.6		V
			125°C	3	4		7.8	8.6		
\/ - ·	Low lovel output voltage	$V_{ID} = -100 \text{ mV},$	25°C -55°C		0	50	-	0	50 50	mV
VOL	Low-level output voltage	IOL = 0				50	-			IIIV
			125°C	0.5	0	50		0	50	
.	Large-signal differential	$R_{I} = 10 \text{ k}\Omega$	25°C	25	170		25	275		\ //\ /
AVD	voltage amplification	See Note 6	-55°C	15	290		15	420		V/mV
			125°C	15	120		15	190		
		l., ., .	25°C	65	91		65	94		
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	−55°C	60	89		60	93		dB
			125°C	60	91		60	93		
	Supply-voltage rejection ratio	V _{DD} = 5 V to 10 V	25°C	70	93		70	93		
ksvr	SVR Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$	V _O = 1.4 V	−55°C	60	91		60	91		dB
		Ŭ	125°C	60	94		60	94		
I _I (SEL)	Input current (BIAS SELECT)	$V_{I(SEL)} = V_{DD}/2$	25°C		-130			-160		nA
		$V_O = V_{DD}/2$,	25°C		105	280		143	300	
IDD	Supply current	$V_{IC} = V_{DD}/2$,	−55°C		170	440		245	500	μΑ
		No load	125°C		70	180		90	240	

† Full range is -55°C to 125°C.

^{5.} This range also applies to each input individually.

^{6.} At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

MEDIUM-BIAS MODE

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	TEST CONDITIONS			TLC271C, TLC271AC, TLC271BC			
				MIN	TYP	MAX			
				25°C		0.43			
			V _{I(PP)} = 1 V	0°C		0.46			
SR	Slow rate at unity gain	$R_L = 100 \text{ k}\Omega,$ $C_L = 20 \text{ pF},$ See Figure 98		70°C		0.36		\//uo	
J SK	Slew rate at unity gain			25°C		0.40		V/μs	
			$V_{I(PP)} = 2.5 V$	0°C		0.43			
				70°C		0.34			
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz	
				25°C		55			
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 100 \text{ k}\Omega$,	C _L = 20 pF, See Figure 98	0°C		60		kHz	
			occ riguic 50	70°C		50			
		.,		25°C		525			
B ₁	Unity-gain bandwidth	$V_{l} = 10 \text{ mV}, C_{L} = 20 \text{ pF},$		ity-gain bandwidth $V_{\parallel} = 10 \text{ mV}, \qquad C_{\parallel} = 20 \text{ pF},$ See Figure 100	0°C		600		kHz
	See Figure 100			70°C		400			
				25°C		40°			
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 100	0°C		41°			
TIII		OL - 20 pr ,	CCC 1 igale 100	70°C		39°			

	PARAMETER	TEST CO	TEST CONDITIONS			TLC271C, TLC271AC, TLC271BC		
					MIN	TYP	MAX	
				25°C		0.62		
			V _{I(PP)} = 1 V	0°C		0.67		
SR	Slow rate at unity gain	R_L = 100 kΩ, C_L = 20 pF,		70°C		0.51		\//v.o
J SK	Slew rate at unity gain	See Figure 98		25°C		0.56		V/μs
			$V_{I(PP)} = 5.5 V$	0°C		0.61		
				70°C		0.46		
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz
				25°C		35		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 100 \text{ k}\Omega$,	C _L = 20 pF, See Figure 98	0°C		40		kHz
			See Figure 90	70°C		30		
				25°C		635		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	0°C		710		kHz
		See Figure 100		70°C		510		
				25°C		43°		
φm	Phase margin	$V_{\parallel} = 10 \text{ mV},$ $C_{\parallel} = 20 \text{ pF},$	f = B ₁ , See Figure 100	0°C		44°		
		CL = 20 pr,	See Figure 100	70°C		42°		

MEDIUM-BIAS MODE

operating characteristics at specified free-air temperature, V_{DD} = 5 V

	PARAMETER		NDITIONS	TA	TLC271I, TLC271AI, TLC271BI			UNIT	
						TYP	MAX		
				25°C		0.43			
			V _{I(PP)} = 1 V	-40°C		0.51			
SR	Slow rate at unity gain	R _L = $100 \text{ k}\Omega$, C _L = 20 pF , See Figure 98		85°C		0.35		\//uo	
SK	Slew rate at unity gain			25°C		0.40		V/μs	
				$V_{I(PP)} = 2.5 \text{ V}$	-40°C		0.48		
				85°C		0.32			
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz	
				25°C		55			
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 100 \text{ k}\Omega$,	C _L = 20 pF, See Figure 98	-40°C		75		kHz	
		T(_ = 100 K22,		85°C		45			
		.,,		25°C		525			
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	-40°C		770		MHz	
		See rigure 100		85°C		370			
		.,,		25°C		40°			
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{I} = 20 \text{ pF},$	$f = B_1$, oF, See Figure 100	f = B ₁ ,	-40°C		43°		
		0 - 20 pr ,		85°C		38°			

	PARAMETER	TEST CO	TA	TLC271I, TLC271AI, TLC271BI														
					MIN	TYP	MAX											
				25°C		0.62												
			V _{I(PP)} = 1 V	−40°C		0.77												
SR	Slow rate at unity gain	$R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 98		85°C		0.47		\//uo										
SK	Slew rate at unity gain		V _I (PP) = 5.5 V	25°C		0.56		V/μs										
				-40°C		0.70												
			85°C		0.44													
٧n	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz										
				25°C		35												
ВОМ	Maximum output-swing bandwidth					V _O = V _{OH} ,3					VO = VOH,3 $R_L = 100 \text{ k}\Omega,$		C _L = 20 pF, See Figure 98	-40°C		45		kHz
		KL = 100 KS2,	See Figure 90	85°C		25												
				25°C		635												
В ₁	See Figure 100		-40°C		880		kHz											
		See rigure 100		85°C		480												
				25°C		43°												
φm	Phase margin	$V_{l} = 10 \text{ mV},$		$V_{I} = 10 \text{ mV},$	$V_{l} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	$V_{I} = 10 \text{ mV},$	$V_{l} = 10 \text{ mV},$	$V_I = 10 \text{ mV},$ $f = B_1,$ $C_L = 20 \text{ pF},$ See Figure 100		-40°C		46°						
TIII		OL = 20 pi ,	oce rigule 100	85°C		41°												

MEDIUM-BIAS MODE

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

DADAMETED		TEST COMPLIANS		Τ.	TLC271M			
	PARAMETER	TEST CONDITIONS		TA	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 98	V _{I(PP)} = 1 V	25°C		0.43		V/μs
				−55°C		0.54		
				125°C		0.29		
			V _{I(PP)} = 2.5 V	25°C		0.40		
				−55°C		0.50		
				125°C		0.28		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz
	Maximum output-swing bandwidth	$V_O = V_{OH},$ $R_L = 100 \text{ k}\Omega,$	C _L = 20 pF, See Figure 98	25°C		55		kHz
ВОМ				−55°C		80		
				125°C		40		
	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	C _L = 20 pF,	25°C		525		kHz
B ₁				−55°C		850		
				125°C		330		
	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 100	25°C		40°		
φm				−55°C		43°		
				125°C		36°		

DAD AMETER TEXT CONDITIONS				- I	TLC271M			
PARAMETER		TEST CONDITIONS		TA	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, See Figure 98	V _I (PP) = 1 V	25°C		0.62		V/μs
				−55°C		0.81		
				125°C		0.38		
			V _{I(PP)} = 5.5 V	25°C		0.56		
				−55°C		0.73		
				125°C		0.35		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		32		nV/√ Hz
	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 100 \text{ k}\Omega$,	C _L = 20 pF, See Figure 98	25°C		35		kHz
ВОМ				−55°C		50		
				125°C		20		
	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	C _L = 20 pF,	25°C		635		kHz
В1				−55°C		960		
				125°C		440		
	Phase margin	V _I = 10 mV, C _L = 20 pF,	f = B ₁ , See Figure 100	25°C		43°		
φm				−55°C		47°		
				125°C		39°		

Table of Graphs

			FIGURE	
VIO	Input offset voltage	Distribution	34, 35	
ανιο	Temperature coefficient	Distribution	36, 37	
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	38, 39 40 41	
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	42, 43 44 45 46, 47	
A _{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	48 49 60, 61	
I _{IB}	Input bias current	vs Free-air temperature	50	
IIO	Input offset current	vs Free-air temperature	50	
VI	Maximum Input voltage	vs Supply voltage	51	
IDD	Supply current	vs Supply voltage vs Free-air temperature	52 53	
SR	Slew rate	vs Supply voltage vs Free-air temperature	54 55	
	Bias-select current	vs Supply voltage	56	
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	57	
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	58 59	
φm	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	62 63 64	
٧n	Equivalent input noise voltage	vs Frequency	65	
	Phase shift	vs Frequency	60, 61	

Figure 34

Figure 36

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

Figure 35

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

Figure 37

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 38

HIGH-LEVEL OUTPUT VOLTAGE

Figure 39

HIGH-LEVEL OUTPUT VOLTAGE

Figure 41

20

T_A - Free-Air Temperature - °C

50

75

100

125

0

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

- 2.4

75 – 50

- 25

Figure 42

Figure 44

Figure 43

Figure 45

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT D = -1 V

Figure 46

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

Figure 47

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

Figure 49

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

MAXIMUM INPUT VOLTAGE vs **SUPPLY VOLTAGE** 16 T_A = 25°C 14 V_I - Maximum Input Voltage - V 12 10 8 6 4 2 0 0 2 6 8 10 12 14 16 V_{DD} - Supply Voltage - V

Figure 50

400

350

300

250

200

150

100

DD - Supply Current - mA

Figure 51

3....

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

40°C

0°C

25°C

70°C

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

16

Figure 54

SLEW RATE vs FREE-AIR TEMPERATURE 0.9 $A_V = 1$ $R_L = 10 \text{ k}\Omega$ 0.8 $V_{DD} = 10 V$ $C_L = 20 pF$ $V_{I(PP)} = 5.5 V$ See Figure 99 SR - Slew Rate - V/µs 0.7 $V_{DD} = 10 V$ 0.6 $V_{I(PP)} = 1 V$ 0.5 0.4 $V_{DD} = 5 V$ 0.3 $V_{I(PP)} = 1 V$ $V_{DD} = 5 V$ $V_{I(PP)} = 2.5 V$ 0.2 _75 25 50 75 100 125 $T_{\mbox{A}}$ – Free-Air Temperature – $^{\circ}\mbox{C}$

Figure 55

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

Figure 57

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 58 Figure 59

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE **AMPLIFICATION AND PHASE SHIFT**

Figure 61

PHASE MARGIN VS FREE-AIR TEMPERATURE 45° $V_{DD} = 5 V$ $V_I = 10 \text{ mV}$ $C_L = 20 pF$ 43° See Figure 100 **φm− Phase Margin** 41° **39**° 37° 35° -75 -50 -25 0 25 50 75 100 125 T_A - Free-Air Temperature - °C

Figure 63

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)†

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

electrical characteristics at specified free-air temperature (unless otherwise noted)

			TECT		TL	.C271C	, TLC27	'1AC, TI	C271B	C		
	PARAMETER		TEST CONDITIONS	T _A †	٧ _I	OD = 5	V	٧	D = 10	V	UNIT	
			CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX		
		TLC271C		25°C		1.1	10		1.1	10		
		TLC2/TC	V _O = 1.4 V,	Full range			12			12		
. ,	land offertualisms	TI 0074 4 0	$V_{IC} = 0 V$	25°C		0.9	5		0.9	5		
VIO	Input offset voltage	TLC271AC	$R_S = 50 \Omega$	Full range			6.5			6.5	mV	
		TI 0074D0	$R_{\parallel} = 1 M\Omega$	25°C		0.24	2		0.26	2		
		TLC271BC		Full range			3			3		
αVIO	Average temperature coeff put offset voltage	cient of in-		25°C to 70°C		1.1			1		μV/°C	
	lament affact assument (a.e. No	.4. 4\	$V_O = V_{DD}/2$,	25°C		0.1			0.1		A	
110	Input offset current (see No	ne 4)	$V_{IC} = V_{DD}/2$	70°C		7	300		8	300	pА	
1	lament bing grownest (and Net	- 4\	$V_O = V_{DD}/2$,	25°C		0.6			0.7		A	
ΙΒ	Input bias current (see Not	e 4)	$V_{IC} = V_{DD}/2$	70°C		40	600		50	600	pА	
					-0.2	-0.3		-0.2	-0.3			
				25°C	to	to		to	to		V	
VICR	Common-mode input				4	4.2		9	9.2			
	voltage range (see Note 5)			Full range	-0.2 to			-0.2 to			V	
				l un rango	3.5			8.5			·	
				25°C	3.2	4.1		8	8.9			
Vон	High-level output voltage		$V_{ID} = 100 \text{ mV},$ $R_L = 1 \text{ M}\Omega$		0°C	3	4.1		7.8	8.9		V
				70°C	3	4.2		7.8	8.9			
			V _{ID} = -100 mV,	25°C		0	50		0	50		
V_{OL}	Low-level output voltage			$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	0°C		0	50		0	50	mV
			I'OL = 0	70°C		0	50		0	50		
				25°C	50	520		50	870			
AVD	Large-signal differential voltage amplification		$R_L = 1 M\Omega$, See Note 6	0°C	50	700		50	1030		V/mV	
	voltage amplification		See Note o	70°C	50	380		50	660			
				25°C	65	94		65	97			
CMRR	Common-mode rejection ra	ntio	V _{IC} = V _{ICR} min	0°C	60	95		60	97		dB	
				70°C	60	95		60	97			
				25°C	70	97		70	97			
ksvr	Supply-voltage rejection ra	tio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$ $V_{O} = 1.4 \text{ V}$	0°C	60	97		60	97		dB	
	$(\Delta V_{DD}/\Delta V_{IO})$		VO = 1.4 V	70°C	60	98		60	98			
I _I (SEL)	Input current (BIAS SELEC	T)	V _{I(SEL)} = V _{DD}	25°C		65			95		nA	
($V_O = V_{DD}/2$,	25°C		10	17		14	23	\Box	
I_{DD}	Supply current		$V_{IC} = V_{DD}/2$, $V_{IC} = V_{DD}/2$,	0°C		12	21		18	33	μΑ	
			No load	70°C		8	14		11	20		

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

- 5. This range also applies to each input individually.
- 6. At V_{DD} = 5 V, V_{O} = 0.25 V to 2 V; at V_{DD} = 10 V, V_{O} = 1 V to 6 V.

LOW-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

			TECT		٦	ΓLC271	I, TLC27	71AI, TL	_C271B	I	
	PARAMETER		TEST CONDITIONS	T _A †	٧	DD = 5	٧	٧ _I	_{DD} = 10	V	UNIT
			CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
		TI C0741		25°C		1.1	10		1.1	10	
		TLC2711	V _O = 1.4 V,	Full range			13			13	
\/	lands offers to college	TI 0074 AI	V _{IC} = 0 V,	25°C		0.9	5		0.9	5	\/
VIO	Input offset voltage	TLC271AI	$R_S = 50 \Omega$	Full range			7			7	mV
		TI C074DI	$R_L = 1 M\Omega$	25°C		0.24	2		0.26	2	1
		TLC271BI		Full range			3.5			3.5	
αVIO	Average temperature co of input offset voltage	efficient		25°C to 85°C		1.1			1		μV/°C
l	Innut offeet ourrent (eee	Note 4)	$V_O = V_{DD}/2$,	25°C		0.1			0.1		^
IO	Input offset current (see	Note 4)	$V_{IC} = V_{DD}/2$	85°C		24	1000		26	1000	рA
1	lanut biog gurrent (age l	ulata 4)	$V_O = V_{DD}/2$,	25°C		0.6			0.7		- A
IB	Input bias current (see I	Note 4)	$V_{IC} = V_{DD}/2$	85°C		200	2000		220	2000	pΑ
					-0.2	-0.3		-0.2	-0.3		
				25°C	to	to		to	to		V
VICR	Common-mode input	. 5)			4	4.2		9	9.2		
	voltage range (see Note 5)	: 3)		Full range	-0.2 to			-0.2 to			V
				T diritaligo	3.5			8.5			·
				25°C	3	4.1		8	8.9		
∨он	High-level output voltag	age $V_{ID} = 100 \text{ mV},$	$V_{ID} = 100 \text{ mV},$ $R_{L} = 1 \text{ M}\Omega$	-40°C	3	4.1		7.8	8.9		V
			KL= 1 Wisz	85°C	3	4.2		7.8	8.9		
				25°C		0	50		0	50	
V_{OL}	Low-level output voltage)	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	-40°C		0	50		0	50	mV
			I'OL = 0	85°C		0	50		0	50	
				25°C	50	520		50	870		
AVD	Large-signal differential voltage amplification		$R_L = 1 M\Omega$ See Note 6	-40°C	50	900		50	1550		V/mV
	voltage amplification		See Note o	85°C	50	330		50	585		
				25°C	65	94		65	97		
CMRR	Common-mode rejectio	n ratio	V _{IC} = V _{ICR} min	-40°C	60	95		60	97		dB
				85°C	60	95		60	98		
				25°C	70	97		70	97		
ksvr	Supply-voltage rejection (ΔV _{DD} /ΔV _{IO})	ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$	-40°C	60	97		60	97		dB
	(AADD)(AAIO)		V _O = 1.4 V	85°C	60	98		60	98		
I _I (SEL)	Input current (BIAS SEL	ECT)	V _{I(SEL)} = V _{DD}	25°C		65			95		nA
` /			$V_O = V_{DD}/2$,	25°C		10	17		14	23	
I _{DD}	Supply current		$V_{IC} = V_{DD}/2$	-40°C		16	27		25	43	μΑ
			No load	85°C		17	13		10	18	

†Full range is -40 to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

electrical characteristics at specified free-air temperature (unless otherwise noted)

		TEST				TLC2				
	PARAMETER	CONDITIONS	T _A †	V	DD = 5	V	VI	_{DD} = 10	V	UNIT
		001121110110		MIN	TYP	MAX	MIN	TYP	MAX	
V. 0	Input offeet veltage	V _O = 1.4 V, V _{IC} = 0 V,	25°C		1.1	10		1.1	10	mV
VIO	Input offset voltage	$R_S = 50 \Omega$, $R_L = 1 MΩ$	Full range			12			12	IIIV
α_{VIO}	Average temperature coefficient of input offset voltage		25°C to 125°C		1.4			1.4		μV/°C
li o	Input offset current (see Note 4)	$V_O = V_{DD}/2$,	25°C		0.1			0.1		pА
IO	input onset current (see Note 4)	$V_{IC} = V_{DD}/2$	125°C		1.4	15		1.8	15	nA
	Input bias current (see Note 4)	$V_O = V_{DD}/2$,	25°C		0.6			0.7		pА
ΙΒ	input bias current (see Note 4)	$V_{IC} = V_{DD}/2$	125°C		9	35		10	35	nA
Vion	Common-mode input		25°C	0 to 4	-0.3 to 4.2		0 to 9	-0.3 to 9.2		V
VICR	voltage range (see Note 5)		Full range	0 to 3.5			0 to 8.5			V
			25°C	3.2	4.1		8	8.9		
۷он	High-level output voltage	$V_{ID} = 100 \text{ mV},$ $R_{L} = 1 \text{ M}\Omega$	−55°C	3	4.1		7.8	8.8		V
		110122	125°C	3	4.2		7.8	9		
			25°C		0	50		0	50	
v_{OL}	Low-level output voltage	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	−55°C		0	50		0	50	mV
		IOL = 0	125°C		0	50		0	50	
			25°C	50	520		50	870		
AVD	Large-signal differential voltage amplification	R_L = 1 MΩ, See Note 6	−55°C	25	1000		25	1775		V/mV
	voltage amplification	CCC NOIC C	125°C	25	200		25	380		
			25°C	65	94		65	97		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	−55°C	60	95		60	97		dB
			125°C	60	85		60	91		
			25°C	70	97		70	97		
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 5 \text{ V to } 10 \text{ V}$ $V_{O} = 1.4 \text{ V}$	−55°C	60	97		60	97		dB
		VO = 1.7 V	125°C	60	98		60	98		
I(SEL)	Input current (BIAS SELECT)	V _I (SEL) = V _{DD}	25°C		65			95		nA
		$V_O = V_{DD}/2$,	25°C		10	17		14	23	
I_{DD}	Supply current	$V_{IC} = V_{DD}/2$,	−55°C		17	30		28	48	μΑ
		No load	125°C		7	12		9	15	

[†]Full range is -55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CO	TA	TLC271C, TLC271AC, TLC271BC			UNIT			
						TYP	MAX			
				25°C		0.03				
			V _{I(PP)} = 1 V	0°C		0.04				
CD.	SR Slew rate at unity gain $ \begin{array}{c} R_L = 1 \ M\Omega, \\ C_L = 20 \ pF, \\ \text{See Figure 9} \end{array} $			70°C		0.03		1////		
J SK				25°C		0.03		V/μs		
			$V_{I(PP)} = 2.5 V$	0°C		0.03				
				70°C		0.02				
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz		
				25°C		5				
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $C_L = 20 \text{ pF}$, $R_I = 1 \text{ M}\Omega$, See Figure 98			C _L = 20 pF, See Figure 98	0°C		6		kHz
			See Figure 90	70°C		4.5				
		.,,		25°C		85				
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 \text{ pF},$	0°C		100		kHz		
		See rigure 100		70°C		65				
		., ., .,	, _	25°C		34°				
φm	Phase margin		f = B ₁ , See Figure 100	0°C		36°				
		C _L = 20 pF,		70°C		30°				

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	PARAMETER		TEST CONDITIONS			TLC271C, TLC271AC, TLC271BC			
				MIN	TYP	MAX			
				25°C		0.05			
		D 4140	V _{I(PP)} = 1 V	0°C		0.05			
SR	Slow rate at unity gain	$R_L = 1 M\Omega$,		70°C		0.04		\//u0	
SK.	Slew rate at unity gain	C _L = 20 pF, See Figure 98		25°C		0.04		V/μs	
		3	V _{I(PP)} = 5.5 V	0°C		0.05			
				70°C		0.04			
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz	
				25°C		1			
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 1 M\Omega$,	C _L = 20 pF,	CL = 20 pF, See Figure 98	0°C		1.3		kHz
			See Figure 90	70°C		0.9			
		N 400 NA		25°C		110			
В1	Unity-gain bandwidth	V _I = 10mV, '	$C_L = 20^{\circ} pF_{,}^{-}$	0°C		125		kHz	
		See Figure 100		70°C		90			
				25°C		38°			
φm	Phase margin	$V_{l} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 100	0°C		40°			
		OL = 20 μr,	See Figure 100	70°C		34°			

operating characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$

	PARAMETER		TEST CONDITIONS			TLC271I, TLC271AI, TLC271BI				
				MIN	TYP	MAX				
				25°C		0.03				
			V _{I(PP)} = 1 V	-40°C		0.04				
CD.	SR Slew rate at unity gain	$R_L = 1 M\Omega$, $C_L = 20 pF$,		85°C		0.03		\//uo		
J SK		See Figure 98		25°C		0.03		V/μs		
			$V_{I(PP)} = 2.5 V$	-40°C		0.04				
				85°C		0.02				
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz		
			C _L = 20 pF,	25°C		5				
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $C_L = 20 \text{ pF}$, $R_L = 1 \text{ M}\Omega$, See Figure 98					-40°C		7	
		11(_ = 1 10122,	occ riguic 50	85°C		4				
		.,,		25°C		85				
В1	1 Unity-gain bandwidth $V_{\parallel} = 10 \text{ mV},$ See Figure 1		$C_L = 20 pF,$	-40°C		130		MHz		
		occ rigure 100		85°C		55				
		., .,	, 5	25°C		34°				
φm	Phase margin	$V_{ } = 10 \text{ mV},$ $C_{ } = 20 \text{ pF},$	f = B ₁ , See Figure 100	-40°C		38°				
		о _L = 20 рг,	CCC Figure 100	85°C		28°				

operating characteristics at specified free-air temperature, $V_{\mbox{DD}}$ = 10 V

	PARAMETER		TEST CONDITIONS			TLC271C, TLC271AC, TLC271BC			
					MIN	TYP	MAX		
				25°C		0.05			
			V _{I(PP)} = 1 V	-40°C		0.06			
SR	Slow rate at unity gain	$R_L = 1 M\Omega$, $C_L = 20 pF$,		85°C		0.03		\//uo	
SK	Slew rate at unity gain	See Figure 98		25°C		0.04		V/μs	
		3		-40°C		0.05			
				85°C		0.03			
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz	
				25°C		1			
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 1 M\Omega$,	C _L = 20 pF,	C _L = 20 pF, See Figure 98	−40°C		1.4		kHz
			See Figure 90	85°C		0.8			
				25°C		110			
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	-40°C		155		MHz	
		See Figure 100		85°C		80			
				25°C		38°			
φm	Phase margin	$V_{l} = 10 \text{ mV,l}$ $C_{L} = 20 \text{ pF,}$	f = B ₁ , See Figure 100	-40°C		42°			
		CL = 20 pr,	See Figure 100	85°C		32°			

LOW-BIAS MODE

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	DADAMETED	TEST CO	NDITIONS	Τ.	T	_C271M		
	PARAMETER	TEST CO	NDITIONS	TA	MIN	TYP	MAX	UNIT
				25°C		0.03		
			V _{I(PP)} = 1 V	−55°C		0.04		
CD.	SR Slew rate at unity gain	$R_L = 1 M\Omega$,		125°C		0.02		\//uo
J SK		C _L = 20 pF, See Figure 98		25°C		0.03		V/μs
			$V_{I(PP)} = 2.5 \text{ V}$	−55°C		0.04		
				125°C		0.02		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz
				25°C		5		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 1 M\Omega$,	C _L = 20 pF, See Figure 98	−55°C		8		kHz
			See Figure 90	125°C		3		
				25°C		85		
B ₁	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 pF$,	−55°C		140		kHz
		See rigule 100		125°C		45		
		., ., .,	, _	25°C		34°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{L} = 20 \text{ pF},$	f = B ₁ , See Figure 100	−55°C		39°		
		OL = 20 pr ,	CCC i iguic 100	125°C		25°		

operating characteristics at specified free-air temperature, V_{DD} = 10 V

	DADAMETED	TEST OF	NDITIONS	TA	TI	_C271M		LINUT
	PARAMETER	IESI CC	TEST CONDITIONS			TYP	MAX	UNIT
				25°C		0.05		
			V _{I(PP)} = 1 V	−55°C		0.06		
SR	Slow rate at unity gain	$R_L = 1 M\Omega$, $C_L = 20 pF$,		125°C		0.03		1//110
SK	SR Slew rate at unity gain	See Figure 98		25°C		0.04		V/μs
		3	V _{I(PP)} = 5.5 V	−55°C		0.06		
				125°C		0.03		
Vn	Equivalent input noise voltage	f = 1 kHz, See Figure 99	$R_S = 20 \Omega$,	25°C		68		nV/√ Hz
				25°C		1		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$, $R_L = 1 M\Omega$,	C _L = 20 pF, See Figure 98	−55°C		1.5		kHz
		1 1 10122,		125°C		0.7		
		.,		25°C		110		
В1	Unity-gain bandwidth	V _I = 10 mV, See Figure 100	$C_L = 20 \text{ pF}$	−55°C		165		kHz
		See rigule 100		125°C		70		
			, _	25°C		38°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$ $C_{I} = 20 \text{ pF},$	f = B ₁ , See Figure 100	−55°C		43°		
		ο_ = 20 μι,	oce rigule 100	125°C		29°		

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	66, 67
ανιο	Temperature coefficient	Distribution	68, 69
Vон	High-level output voltage	vs High-level output current vs Supply voltage vs Free-air temperature	70, 71 72 73
VOL	Low-level output voltage	vs Common-mode input voltage vs Differential input voltage vs Free-air temperature vs Low-level output current	74, 75 76 77 78, 79
A _{VD}	Large-signal differential voltage amplification	vs Supply voltage vs Free-air temperature vs Frequency	80 81 92, 93
I _{IB}	Input bias current	vs Free-air temperature	82
IIO	Input offset current	vs Free-air temperature	82
VI	Maximum input voltage	vs Supply voltage	83
IDD	Supply current	vs Supply voltage vs Free-air temperature	84 85
SR	Slew rate	vs Supply voltage vs Free-air temperature	86 87
	Bias-select current	vs Supply voltage	88
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	89
B ₁	Unity-gain bandwidth	vs Free-air temperature vs Supply voltage	90 91
φт	Phase margin	vs Supply voltage vs Free-air temperature vs Load capacitance	94 95 96
٧n	Equivalent input noise voltage	vs Frequency	97
	Phase shift	vs Frequency	92, 93

Figure 66

Figure 68

Figure 67

Figure 69

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 70

Figure 72

HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT CURRENT 16 $V_{ID} = 100 \text{ mV}$ $T_A = 25^{\circ}C$ 14 VoH - High-Level Output Voltage - V $V_{DD} = 16 V$ 12 10 8 $V_{DD} = 10 V$ 6 4 2 0 0 -10 -15 -20 -25 -30-35 -40IOH - High-Level Output Current - mA

Figure 71

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 74

Figure 76

Figure 75

Figure 77

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 78

LOW-LEVER OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT

Figure 79

LARGE-SIGNAL **DIFFERENTIAL VOLTAGE AMPLIFICATION**

Figure 81

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 86

Figure 87

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs

Figure 89

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 90 Figure 91

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

Figure 93

PHASE MARGIN FREE-AIR TEMPERATURE 40° $V_{DD} = 5 \text{ mV}$ $V_I = 10 \text{ mV}$ 38° C_L = 20 pF 36° See Figure 100 **34**° om-Phase Margin **32**° 30° 28° 26° 24° **22**° 20° 25 50 -75 -50 -25 0 75 100 125 T_A - Free-Air Temperature - °C

Figure 94 Figure 95

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

PARAMETER MEASUREMENT INFORMATION

single-supply versus split-supply test circuits

Because the TLC271 is optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

Figure 98. Unity-Gain Amplifier

Figure 99. Noise-Test Circuit

Figure 100. Gain-of-100 Inverting Amplifier

PARAMETER MEASUREMENT INFORMATION

input bias current

Because of the high input impedance of the TLC271 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements:

- 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 101). Leakages that would otherwise flow to the inputs are shunted away.
- 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.

One word of caution: many automatic testers as well as some bench-top operational amplifier testers us the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method.

Figure 101. Isolation Metal Around Device inputs (JG and P packages)

low-level output voltage

To obtain low-supply-voltage operation, some compromise is necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to the Typical Characteristics section of this data sheet.

input offset voltage temperature coefficient

Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

PARAMETER MEASUREMENT INFORMATION

full-power response

Full-power response, the frequency above which the amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measuredby monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained.

Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 98. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 102). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

Figure 102. Full-Power-Response Output Signal

test time

Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices, and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

APPLICATION INFORMATION

single-supply operation

While the TLC271 performs well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This includes an input common mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Figure 103. Inverting Amplifier With Voltage Reference

APPLICATION INFORMATION

single-supply operation (continued)

Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 103). The low input bias current consumption of the TLC271 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption.

The TLC271 works well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended:

- 1. Power the linear devices from separate bypassed supply lines (see Figure 104); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
- 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, RC decoupling may be necessary in high-frequency applications.

Figure 104. Common Versus Separate Supply Rails

APPLICATION INFORMATION

input offset voltage nulling

The TLC271 offers external input offset null control. Nulling of the input off set voltage may be achieved by adjusting a 25-k Ω potentiometer connected between the offset null terminals with the wiper Connected as shown in Figure 105. The amount of nulling range varies with the bias selection. In the high-bias mode, the nulling range allows the maximum offset voltage specified to be trimmed to zero. In low-bias and medium-bias modes, total nulling may not be possible.

Figure 105. Input Offset Voltage Null Circuit

APPLICATION INFORMATION

bias selection

Bias selection is achieved by connecting the bias select pin to one of the three voltage levels (see Figure 106). For medium-bias applications, R is recommended that the bias select pin be connected to the mid-point between the supply rails. This is a simple procedure in split-supply applications, since this point is ground. In single-supply applications, the medium-bias mode necessitates using a voltage divider as indicated. The use of large-value resistors in the voltage divider reduces the current drain of the divider from the supply line. However, large-value resistors used in conjunction with a large-value capacitor requires significant time to charge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint may be used if it is within the voltages specified in the table of Figure 106.

BIAS MODE	BIAS-SELECT VOLTAGE (single supply)
Low	V_{DD}
Medium	1 V to V _{DD} – 1 V
High	GND

Figure 106. Bias Selection for Single-Supply Applications

input characteristics

The TLC271 is specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at $V_{DD}-1$ V at $T_A=25^{\circ}C$ and at $V_{DD}-1.5$ V at all other temperatures.

The use of the polysilicon-gate process and the careful input circuit design gives the TLC271 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically $0.1~\mu\text{V/month}$, including the first month of operation.

Because of the extremely high input impedance and resulting low bias current requirements, the TLC271 is well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 101 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 107).

The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.

noise performance

The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC271 results in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than $50~\mathrm{k}\Omega$, since bipolar devices exhibit greater noise currents.

APPLICATION INFORMATION

noise performance (continued)

Figure 107. Guard-Ring Schemes

feedback

Operational amplifier circuits almost always employ feedback, and since feedback is the first prerequisite for oscillation, a little caution is appropriate. Most oscillation problems result from driving capacitive loads and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 108). The value of this capacitor is optimized empirically.

Figure 108. Compensation for Input Capacitance

electrostatic discharge protection

The TLC271 incorporates an internal electrostatic-discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode.

latch-up

Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC271 inputs and output were designed to withstand -100-mA surge currents without sustaining latchup; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not by design be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 μ F typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

APPLICATION INFORMATION

output characteristics

The output stage of the TLC271 is designed to sink and source relatively high amounts of current (see Typical Characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

All operating characteristics of the TLC271 were measured using a 20-pF load. The devices drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figures 110, 111, and 112). In many cases, adding some compensation in the form of a series resistor in the feedback loop alleviates the problem.

Figure 109. Test Circuit for Output Characteristics

Figure 110. Effect of Capacitive Loads in High-Bias Mode

Figure 111. Effect of Capacitive Loads in Medium-Bias Mode

APPLICATION INFORMATION

output characteristics (continued)

Figure 112. Effect of Capacitive Loads in Low-Bias Mode

Although the TLC271 possesses excellent high-level output voltage and current capability, methods are available for boosting this capability, if needed. The simplest method involves the use of a pullup resistor (R_P) connected from the output to the positive supply rail (see Figure 113). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor, N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately $60~\Omega$ and $180~\Omega$, depending on how hard the operational amplifier input is driven. With very low values of R_P , a voltage offset from 0 V at the output occurs. Secondly, pullup resistor RP acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

Figure 113. Resistive Pullup to Increase VOH

APPLICATION INFORMATION

output characteristics (continued)

NOTE A: d = damping factor, I/O

Figure 114. State-Variable Filter

Figure 115. Single-Supply Function Generator

APPLICATION INFORMATION (HIGH-BIAS MODE)

NOTE A: CMRR adjustment must be noninductive.

Figure 116. Low-Power Instrumentation Amplifier

Figure 117. Single-Supply Twin-T Notch Filter

APPLICATION INFORMATION (HIGH-BIAS MODE)

NOTES: A. $V_I = 3.5 \text{ to } 15 \text{ V}$ B. $V_O = 2.0 \text{ V}, 0 \text{ to } 1 \text{ A}$

Figure 118. Logic-Array Power Supply

Figure 119. Positive-Peak Detector

APPLICATION INFORMATION (MEDIUM-BIAS MODE)

NOTES: A.
$$V_{O(PP)} = 2 V$$

B. $f_{O} = \frac{1}{2\pi \sqrt{R1R2C1C2}}$

Figure 120. Wein Oscillator

Figure 121. Single-Supply AC Amplifier

APPLICATION INFORMATION (MEDIUM-BIAS MODE)

NOTE A: Low to medium impedance dynamic mike

Figure 122. Microphone Preamplifier

NOTES: A. NOTES: V_{DD} = 4 V to 15 V B. V_{ref} = 0 V to V_{DD} -2 V

Figure 123. Photo-Diode Amplifier With Ambient Light Rejection

Figure 124. Precision Low-Current Sink

APPLICATION INFORMATION (LOW-BIAS MODE)

NOTE A: $V_{DD} = 5 \text{ V to } 12 \text{ V}$

Figure 125. Amplifier With Digital Gain Selection

Figure 126. Multivibrator

APPLICATION INFORMATION (LOW-BIAS MODE)

NOTE A: $V_{DD} = 5 \text{ V to } 16 \text{ V}$

Figure 127. Full-Wave Rectifier

NOTE A: $V_{DD} = 5 \text{ V to } 16 \text{ V}$

Figure 128. Set/Reset Flip-Flop

NOTE A: Normalized to F $_{C}$ = 1 kHz and R $_{L}$ = 10 $k\Omega$

Figure 129. Two-Pole Low-Pass Butterworth Filter

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated