PM 592 Regression Analysis for Public Health Data Science

Week 12

Survival Analysis

1

Survival Analysis

Introduction to Survival Analysis
Kaplan-Meier Tables
Cox Proportional Hazards Model
Cox Model Assumptions & Diagnostics
Stratified Cox Regression

2

Lecture Objectives

- $\boldsymbol{\succ}$ Explain the necessary variables for a survival analytic model
- > Construct a Kaplan-Meier table and survival curves
- > Implement a Cox Proportional Hazards regression model
- > Evaluate the fit of a Cox PH model, including the proportional hazards assumption
- $\boldsymbol{\succ}$ Describe two ways of variable adjustment for the Cox regression model

1. Review	
✓ Generalized Linear Models	
✓ Suitable data for Poisson regression	
✓ Interpreting Poisson model output	
✓ Poisson diagnostics and overdispersion	
✓ Negative binomial regression: when to use	
✓ Assessing rate outcomes	
4	
4	
2. Introduction to Survival Analysis	
Cohort Studies are a type of study in which:	
We identify an "exposed" group (vs. an "unexposed" group) We follow these individuals forward in time to determine some outcome (disease,	
mortality, etc.)	
For example:	
Comparing mortality due to COVID-19 during hospital stay for white vs. nonwhite	
patients. Comparing mortality for individuals who received a new type of surgery vs.	
traditional surgery.	
Comparing HIV rates for individuals on pre-exposure prophylaxis vs. control. Comparing substance abuse rate for individuals on treatment vs. control	
5	
2. Introduction to Survival Analysis	
Prospective cohort	
Identify a cohort without disease and follow the cohort forward in time	-
Retrospective cohort	
Identify outcome status and then retrospectively assemble the cohort	
This is typically done based on medical records, union records, etc. Most commonly performed on occupational studies – date of employment and	
exposure history is assessed	
6	

xample					
Study	Inclusion	Entry Date	Outcome	Exposure	Unexpose
Japanese Atomic Bomb Survivors	All survivors within 2500 meters of epicenter and resident in city during 1950 census	Date of bomb	Cancer mortality, leukemia	Radiation level due to bomb	National mortality rates
Montana Smelter Workers (Historical)	Men employed >12 months prior to 12/31/56 in the smelter plant	Date at which 12 months of employment was completed, or 1/1/38	Cancer mortality		Montana male mortality rates
Framingham Heart Study	Men and women aged 30-62 in Framingham, MA, free of CVD	First recruitment	Heart disease, stroke, heart failure, and others	High blood pressure, high cholesterol, smoking, obesity, diabetes, physical activity, etc.	

2. Introduction to Survival Analysis

Survival Functions of Time

Let the random variable T represent the time to event. We can describe the distribution of T with some important functions.

1. Survival Function. The probability that an individual survives past time t.

$$S(t) = P(T>t) = cumulative survival probability$$

 $S(0) = 1, S(\infty) = 0$

 $F(t) = 1 - S(t) = P(T \le t) = cumulative disease/event probability$

The cumulative survival probability will never increase over time.

10

2. Introduction to Survival Analysis

 $\textbf{2. Probability density}. \ \ \text{The probability the individual fails at time t}.$

f(t) = P(subject fails at t)

$$S(t) = P(T > t) = \int_{t}^{\infty} f(u)du$$
 and thus: $f(t) = -\frac{dS(t)}{dt}$

The cumulative survival beyond *t* is equal to

The probability an individual fails at time t is inversely related to the instantaneous change in their probability of surviving past time t

$$S(t) = P(T > t) = \sum_{t_j > t} p(t_j)$$
 where $p(t_j) = P(T = t_j)$

This is the probability an event occurs in interval t

11

2. Introduction to Survival Analysis

3. Hazard Rate. The probability an individual who is free of disease at time t has the event in the next instant of time.

Probability the subject

$$\lambda(t) = \lim_{dt \to 0} \frac{P(t \le T < t + dt \mid T \ge t)}{dt}$$

fails in the next instant given they don't have the disease at time t

$$\lambda(t) \geq 0$$

When time is measured continuously, the hazard rate can be expressed as:

$$\lambda(t) = \frac{f(t)}{S(t)} = -d \frac{\ln(S(t))}{dt}$$

Probability the subject fails at time divided by the probability the subje survives past time t.

2. I	Introdu	uction	to	Survival	Anal	ysis
------	---------	--------	----	----------	------	------

From this, we can compute:

$$f(t) = \lambda(t)S(t)$$
 t+dt) equals the probability of surviving to the beginning of that time period, times the conditional probability of failing in that time period

If we integrate the hazard function over time, we can get the ${\bf cumulative\ hazard\ function}:$

$$\Lambda(t) = \int_0^t \lambda(u) du = -\ln(S(t))$$

$$S(t) = e^{-\Lambda(t)} = e^{-\int_0^t \lambda(u) du}$$

13

2. Introduction to Survival Analysis

Recap

• In survival analysis we will use the concepts of the cumulative survival/failure probability functions, the hazard rate, and the cumulative hazard rate.

14

2. Introduction to Survival Analysis

Recap

> Explain the benefits of using survival analysis to analyze exposure hazard in cohort studies.

		leier	

The simplest way of observing mortality over time is a **cohort** or **generation lifetable**.

- Uses mortality rates from a particular birth (or other) cohort.
- Observe the mortality $\$ of all persons from $\$ t $_{0}$ until all persons die (or are lost to follow-up)
- Answers epidemiologic questions regarding some outcome:
 - For acute disease, the case fatality rate can be a useful measure of survival.
 - For chronic disease, the case fatality rate is not a useful measure. A lifetable
 can provide specific information about the probability of surviving/dying
 within a specified time period after diagnosis.

16

3. Kaplan-Meier Tables									
Partition time into a fixed	Age interval in years	Probability of dying in interval (x,x+1)	Number living at age x	Number dying in interval (x,x+1)	Fraction of last year of life	Number of years lived in interval (x,x+1)	Total number of years lived beyond age x	Expectation of life at age x	95% Confidence Interval of \hat{e}_x
sequence of intervals	x to x+1	\hat{q}_x	_ lx	d_x	á _x	L_s	T_x	é,	
	0-1	9.0099	12,039	119	0.3	11,953	165,225	13.7	13.7-13.8
(usually 1 year).	1-2	0.0083	11,920	99	0.6	11,876	153,272	12.9	12.8-12.9
The state of the s	2-3	0.0066	11,821	78	0.4	11,775	141,396	12.0	11.9-12.0
l_i = # alive at beginning	3-4	0.0062	11,743	73	0.5	11,706	129,620	11.0	11.0-11.1
of interval i.	4-5	0.0059	11,670	69	0.5	11,633	117,914	10.1	10.0-10.2
	5-6	0.0092	11,601	107	0.5	11,548	106,281	9.2	9.1- 9.2
$d_i = \#$ died during	6-7	0.0124	11,494	143	0.4	11,412	94,732	8.2	8.2 - 8.3
interval i.	7-8	0.0157	11,351	178	0.5	11,257	83,320	7.3	7.3 - 7.4
intervari.	8/9	0.0286	11,173	319	0.5	11,006	72,063	6.4	6.4- 6.5
and the fettle confidence	9-10	0.0404	10,854	438	0.5	10,617	61,057	5.6	5.6- 5.7
q_i = probability of dying	10-11	0.0611	10,416	636	0.4	10,058	50,440	4.8	4.8- 4.9
in interval i, given	11-12	0.0818	9,780	800	0.5	9,347	40,382	4.1	4.1- 4.2
subject is alive at the	12-13	0.1219	8,980	1,095	0.5	8,390	31,035	3.5	3.4- 3.5
	13-14	0.1612	7,885	1,271	0.4	7,184	22,644	2.9	2.8- 2.9
beginning of the	14-15	0.2292	6,614	1,516	0.5	5,797	15,461	2.3	2.3 - 2.4
interval.	15-16	0.3166	5,098	1,614	0.5	4,249	9,664	1.9	1.9- 1.9
	16-17	0.4038	3,484	1,407	0.5	2,732	5,415	1.6	1.5- 1.6
	17-18	0.4872	2,077	1,012	0.5	1,545	2,683	1.3	1.3- 1.3
$u_i = \#$ lost to follow-up	18-19	0.6225	1,065	663	0.5	724	1,137	1.1	1.0- 1.1
during interval i	19-20	0.6741	402	271	0.5	272	414	1.0	0.9- 1.1
	20-21	0.6336	131	83	0.6	94	141	1.1	0.9- 1.2
w_i = # withdrawn from	21-22	0.7292	48	35	0.5	29	47	1.0	0.7- 1.2
study during interval i	22-23	0.5385	13	7	0.9	12	18	1.4	1.0- 1.8
	23-24	0.5000	6	3	0.2	4	6	1.0	0.4- 1.5
	24-25	0.6667	3	2	0.5	2	2	0.8	0.4- 1.2
Inoue, Kwan, & Sugiura (20	118) 25	1.0000	1	1	0.3	0	0	0.3	0- 0.8

17

3. Kaplan-Meier Tables

The probability of surviving through each interval i is given as $p_i = 1-q_i$. P_i is the cumulative probability of surviving to interval i, and is computed as $P_i = \prod_i^1 p_i$

3. Kaplan-Meier Tables

A **Kaplan-Meier Table** is similar to a lifetable, but:

- Each interval is constructed whenever an individual fails
- Each interval should have only one failure (time) event
- The number of intervals equals the number of unique failure times
- $q_i = d_i / l_i$

19

3. Kaplan-Meier Tables

 \hat{P}_k is the cumulative survival probability (the product-limit estimate), and reflects the probability of surviving from the start of interval 1 until the end of interval k.

$$\hat{P}_k = \hat{S}(k) = \prod_{i=1}^k \hat{p}_i = \prod_{i=1}^k \frac{l_i - d_i}{l_i}$$

20

3. Kaplan-Meier Tables

Let's read-in the data as a survival object to see what we're working with:

> surv_object [1] 59 115 156 421+ 431 448+ 464 475 477+ 563 638 744+ 269+ [14] 778+ 883+ 855+ 1848+ 1186+ 1129+ 1286+ 1227+ 268 329 353 365 377+

3. Kaplan-Meier Tables $V(\hat{P}_k) = V\left(\hat{S}(k)\right) = \hat{S}_k^2 \sum_{l=1}^k \frac{d_l}{l_l(l_l-d_l)}$ The square root of this variance is often presented as the standard errors on statistical output, but are NOT used in computing the confidence intervals of the survival probability.

3. Kapl	lan-N	leier T	ables				25
Add	Adding A Predictor						
					e tables (rx==2)	separa	tely for individuals on treatment 1
> summ	ary(sur	v2.m)			, data = ovar rx, data = o		
		rx=1					
time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95%	CI
59	13	1		0.0739	0.789		
115	12	1	0.846		0.671		
156	11	1		0.1169	0.571		
268	10	1		0.1280	0.482		
329	9	1		0.1349	0.400		
431	8	1		0.1383	0.326		
638	5	1	0.431	0.1467	0.221	0.8	40
		rx=2					
time	n.risk		survival	std.err	lower 95% CI	unner 95%	CT
353	13	1		0.0739	0.789		
365	12	1	0.846		0.671	1.6	00
464	9	1	0.752		0.542	1.6	00
475	8	1	0.658	0.1407	0.433	1.6	00
563	7	1	0.564	0.1488	0.336	0.9	46

3. Kaplan-Meier Tables

Comparing the Equality of Survival Curves

Method 1: Log-Rank Test

- H_0 : $\lambda_1(t) = \lambda_2(t) = \lambda_3(t) = \dots$ for groups 1, 2, 3, etc.
- Each failure time contributes to the test statistic
- Treats the hazard function as proportional across groups over follow-up time

$$\chi_{J-1}^2 = \sum_j \frac{\left(D_j - E_j\right)^2}{E_j}$$

J = # groups

 D_j = Total observed failures in group j (summed over all failure times)

 E_i = Expected failures in group j (summed over all failure times)

Under H_{0i} the expected failures in group j at time $t = e_{jt} = \frac{l_j t d_j}{l_i}$

28

3. Kaplan-Meier Tables **Log-Rank Test** There is no statistically significant difference in survival curves between treatment groups (p=.30). > survdiff(surv_object ~ rx, data = ovarian) Call: survdiff(formula = surv_object ~ rx, data = ovarian) Chisq= 1.1 on 1 degrees of freedom, p= 0.3 > ggsurvplot(surv2.m, data = ovarian, pval = T) p = 0.3

29

3. Kaplan-Meier Tables

Comparing the Equality of Survival Curves

Method 2: Wilcoxon Test

- Use when hazards between groups may not differ proportionally across follow-up
- This method weights each failure time contribution by the number of subjects atrisk at that time, giving greater weight to earlier events when more subjects are at
- This test is sensitive to different censoring patterns among groups.

Other tests	can be implemented using differil	ng values of rno in the survoirt() function as follows:
1	log-rank	
n[i]	Gehan-Breslow generalized Wilcoxon	
sqrt(n[i])	Tarone-Ware	
S1[i]	Peto-Peto's modified survival estimate	S1(t) = cumprod(1 - e / (n + 1))
S2[i]	modified Peto-Peto (by Andersen)	S2(t) = S1[i] * n[i] / (n[i] + 1)
FH[i]	Fleming-Harrington	The weight at $t_0 = 1$ and thereafter is: $S(t[i-1])^p * (1 - S(t)[i-1]^q)$

3. Kaplan-Meier Tables	1
Extra Practice	
Examine the survival curves by age tertiles.	
$\hfill \Box$ Create a variable for age tertile and find the median survival time in each tertile.	
☐ Provide the test statistic and p-value for testing the difference among survival curves.	
☐ Use the pairwise_survdiff() function to determine which age groups have different survival curves.	
The different survival curves.	
31	
3. Kaplan-Meier Tables	1
Recap	
Lifetables and Kaplan-Meier tables are ways of summarizing	
information about the number of subjects with an observed event at different times across follow-up.	
Kaplan-Meier curves can be used to visualize the number of subjects experiencing the event.	
The log-rank test is perhaps the most common statistical test for	
comparing Kaplan-Meier curves, but it assumes the hazard is proportional among exposure groups.	
h shares a see 2 2 here a 2 sehen	
22	J
32	
33. Kaplan-Meier Tables	1
Recap	
Compute Kaplan-Meier curves, given survival data.	
Compute and interpret the Log-Rank test.	

Analyzing Event Data					
When we have time-to-event data, each individual is followed for a certain amount of time and their outcome status is ascertained. If we want to perform more sophisticated regression approaches, we can do the following:					
ac the follow	virig.				
Method	Approach	Advantages	Disadvantages		
		Advantages Construct a model with an approach we know	Disadvantages • Follow-up times can vary widely by individual. • Difficult to deal with loss to follow-up. • Difficult to deal with exposures that may vary across time.		

4. Cox Proportional Hazards Model

Modeling Strategy

- Assume a background rate $\lambda_0(t)$ which represents the disease rate when all X=0.
- Model exposures $\underline{x}(t)$ as they modify the background disease rates (perhaps they are higher in exposed individuals, for example).
- Estimate regression parameters $\underline{\beta}$ in the presence of nuisance parameters $(\lambda_0(t))$.

35

4. Cox Proportional Hazards Model

Perhaps the most common proportional hazards model is **Cox Proportional Hazards Regression**

In this model, we express the individual hazard rate as a function of some baseline hazard rate that is modified by the measured covariates: $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1$

$$\lambdaig(t_i,\underline{x}_iig) = \lambda_0ig(t_i,\underline{lpha}ig)e^{\underline{eta}^i\underline{x}_i}$$
 The underlying hazard function. The effect of covariates.

Therefore the hazard rate ratio $\frac{\lambda(t_i.x_j)}{\lambda_0(t_i.\underline{\alpha})} = e^{\underline{\beta}'x_j}$. That is, we restrict the hazard functions to be proportional with respect to the covariates.

38

4. Cox Proportional Hazards Model Recap

- The Cox-PH model assumes a baseline hazard rate, and exposure covariates change this hazard rate.
- One large assumption is that covariates affect the hazard rate proportionally across time.

4. Cox Proportional Hazards Model	
Recap	
> Set up a simple survival object and perform preliminary Cox-PH	
regression	
40	
40	
	_
5. Cox PH Model: Assumptions and Diagnostics 43	
Assumptions of the Cox PH Model	
 The covariates are linearly related to the log hazard of outcome Changes in covariates contribute to a proportional change in the 	
hazard function across all time points	
41	
5. Cox PH Model: Assumptions and Diagnostics 42	1
Examining the Linearity Assumption To examine linearity of our covariates with the log hazard, we can use:	
Approaches we currently know, such as grouped smooth or	
fractional polynomials	
 The Martingale residuals; the difference between the observed and model-predicted number of failures, for each individual 	

5. Cox PH Model: Assumptions and Diagnostics	
Fractional Polynomials	
Let's see if treatment is a significant predictor of hazard rate after adjusting for baseline age. > for(Surv(futine, futits) - fp(age) + rx, family = cox, data = overlan) call: sfp(formale = surv(futine, futits) - fp(age) + rx, data = overlan, family = cox)	
Deviance table: Resid. Dev Null nodel. 69.96988 Final nodel 54.0838 Final nodel 54.0838 Final nodel 54.0838 Final nodel 54.0838 Final nodel 51.0838 Fractional polymonials: aff.initial select slaphs of final powerl power2 aff.initial select slaphs of final power power2 aff.initial select slaphs of final power power2 aff.initial select slaphs of final power2 aff.initial sele	
Transformations of covariates: from la	

5. Cox PH Model: Assumptions and Diagnostics

Martingale Residuals

The predicted number of failures for subject i at the end of follow-up time T_i is computed from the fitted model as:

$$\widehat{\Lambda}(T_i) = \widehat{\Lambda}_0(T_i) e^{\underline{\beta'}\underline{x}}$$

The Martingale residual should be linearly related to f(x_i), the optimal

The Martingale residual is calculated as:

 $r_{m_i} = \delta_i - \widehat{\Lambda}(T_i)$, where δ_i is the subject's failure status

Martingale residuals have a mean 0 with range $-\infty, 1$

44

5. Cox PH Model: Assumptions and Diagnostics

Martingale Residuals

- These aren't the usual type of residuals; there's no clear analogy between these residuals and those in linear regression.
- Think of these residuals generally as being some measure of difference in observed vs. predicted values.
- "Observed Y" doesn't make sense in survival time data, as survival is defined as presence of the event (Y=1 or Y=0) and the time at which the event occurred.
- A value of "1" indicates the person had the event but had a very small cumulative hazard.
- A large negative value indicates the person was censored (survived) but had a very large cumulative hazard.

5. Cox PH Model: Assumptions and Diagnostics

Examining the Proportional Hazards Assumption

To test the PH assumption, we can use the scaled Schoenfeld residuals. The Schoenfeld residual for variable x in subject i is calculated as:

$$r_{\!\scriptscriptstyle S} = D_i(x_i - \alpha_i)$$
, where ${\it D}_i$ = 1 when there is an event.

The Schoenfeld residual is the difference between the observed x, for the subject who had the event and the weighted average of all x, for all subjects in the risk set when the subject had the event.

$$\alpha_i = \frac{\sum_{l \in R_i} x_l \exp(\beta x_l)}{\sum_{l \in R_i} \exp(\beta x_l)}$$

The scaled Schoenfeld residual is calculated as:

 $\hat{eta} + dVar(\hat{eta})r_{\!\scriptscriptstyle S}$, where d =total number of failure events

47

5. Cox PH Model: Assumptions and Diagnostics What happens if the PH assumption is not met? • We can add an interaction of the particular covariate with time and re-assess. • We can stratify the hazard function by the problematic covariate. 49 5. Cox PH Model: Assumptions and Diagnostics **Model Fit** To examine model fit, including influential observations or outliers, we can use: • The Cox-Snell residuals · The deviance residuals · The dfbeta values 50 5. Cox PH Model: Assumptions and Diagnostics **Cox-Snell Residuals** From before: $r_{m_i} = \delta_i - \widehat{\Lambda}(T_i)$ The Martingale residual is the event status minus the Cox-Snell residual. Therefore: $r_{cs_i} = \delta_i - r_{m_i}$ We use these residuals as pseudo observation times to fit a null Cox model, then obtain the Nelson-Aalen cumulative hazard estimator. The model fits well when:

• The CS residuals are distributed as exponential with a constant hazard rate $\lambda =$

Their cumulative hazard will follow a 45-degree line (slope of 1).

Cou DI Madal, Assumptions and Disputation	r
5. Cox PH Model: Assumptions and Diagnostics 55	
Recap	
 Cox PH regression introduces metrics such as the Martingale residuals, Schoenfeld residuals, and Cox-Snell residuals. 	
 We can still use deviance residuals and dbeta values to examine influential observations. 	
imuential observations.	
55	
	1
5. Cox PH Model: Assumptions and Diagnostics 56	
Recap	
Given a Cox-PH model, evaluate the assumption of linearity of the hazard in the log	
> Evaluate the proportional odds assumption in Cox-PH regression	
	-
66	
5. Stratified Cox Regression 57	
Stratified Cox Regression	
Normally we assume one underlying baseline hazard function for all individuals. However, we can assume different baseline hazard	
functions across k strata of the adjustment variable: $\frac{g'r}{r}$	
$\lambda_k(t,\underline{x}) = \lambda_{0k}(t)e^{\underline{\beta'}\underline{x}}$	
This approach is useful because baseline hazards may differ greatly by some	
covariate, such as age or gender. • Therefore we adjust for the covariate of interest, but we are not able to examine	
the effect of that covariate on hazard.	

Summary - Survival analysis incorporates information about presence of outcome (e.g., death) and time to outcome, while accounting for the possibility of loss to follow up. - Kaplan-Meer curves show the expected survival by time, and can be statistically compared among state of a creegorical predictor visibile. - The Gove Proportional Nazards assumption must be met; if it is not, then you can include a time interaction or use a different baseline hazard function within each stratum of that variable. - Additional Reading - Incorporate time-varying covariates into the Cox PH model: https://croa.r- project org /web/packages/survival/vignettes/timedep.pdf		
Survival analysis incorporates information about presence of outcome (e.g., death) and time to outcome, while according for the possibility of loss to follow-up. Kapish-Metric curves show the expected survival by time, and can be statistically compress among stase of a designed predictor variable. The Configurational Hazards model sassmes a baseline hazard function As(f). The comportional bazards assumed to must be rect, if it is not, then you can include a fair the telescation or use a different baseline hazard function within each stratum of that variable. Additional Reading Incorporate time-varying covariates into the Cox PH model: https://crant.project.org/web/packages/survival/vignettes/timedep.pdf Incorporate time-varying covariates into the Cox PH model: https://crant.project.org/web/packages/survival/vignettes/timedep.pdf Packages and Functions Packages and Functions	7. Recap 64	
Survival analysis incorporates information about presence of outcome (e.g., death) and time to outcome, while according for the possibility of loss to follow-up. Kapish-Metric curves show the expected survival by time, and can be statistically compress among stase of a designed predictor variable. The Configurational Hazards model sassmes a baseline hazard function As(f). The comportional bazards assumed to must be rect, if it is not, then you can include a fair the telescation or use a different baseline hazard function within each stratum of that variable. Additional Reading Incorporate time-varying covariates into the Cox PH model: https://crant.project.org/web/packages/survival/vignettes/timedep.pdf Incorporate time-varying covariates into the Cox PH model: https://crant.project.org/web/packages/survival/vignettes/timedep.pdf Packages and Functions Packages and Functions	Summary	
Kaplan-Meer curves show the expected survival by time, and can be statistically compared more grown of a categorical predictor varieties. The Cox Proportional Hazards assumes a baseline hazard function A ₂ (C), and covariates synoption hazards assuments in baseline hazard function within each sentence of that varieties. Additional Reading Incorporate time-varying covariates into the Cox PH model: https://cranic_project.org/wies/synoptics	Survival analysis incorporates information about presence of outcome (e.g., death) and time to outcome , while accounting for the possibility of loss to	
The Cop Proportional Pazades model accuracy as basedine heard function A ₂ (c), and covariates proportionally improportionally improportionall	Kaplan-Meier curves show the expected survival by time, and can be statistically	
Titleco Additional Reading Incorporate time-warying covariates into the Cox PH model: https://cram.project.org/web/packages/survival/vignettes/timedep.pdf Titleco Additional Reading Incorporate time-warying covariates into the Cox PH model: https://cram.project.org/web/packages/survival/vignettes/timedep.pdf Titleco For the composite time-warying covariates into the Cox PH model: https://cram.project.org/web/packages/survival/vignettes/timedep.pdf For the composite time-warying covariates into the Cox PH model: https://cram.project.org/web/packages/survival/vignettes/timedep.pdf For the composite time-warying covariates into the Cox PH model: https://cram.project.org/web/packages/survival/vignettes/timedep.pdf For the composite time-warying covariates into the Cox PH model: https://cram.project.org/web/packages/survival/vignettes/timedep.pdf	• The Cox Proportional Hazards model assumes a baseline hazard function $\lambda_0(t)$,	
Additional Reading Incorporate time-varying covariates into the Cox PH model: https://coan project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions Packages and	The proportional hazards assumption must be met; if it is not, then you can	
Additional Reading Incorporate time-varying covariates into the Cox PH model: https://cran.c. project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions - second sec	stratum of that variable.	
Additional Reading Incorporate time-varying covariates into the Cox PH model: https://cran.c. project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions - second sec		
Additional Reading Introporate time-varying covariates into the Cox PH model: https://cran.rs project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions ***********************************	64	
Additional Reading Introporate time-varying covariates into the Cox PH model: https://cran.rs project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions ***********************************		
Additional Reading Introporate time-varying covariates into the Cox PH model: https://cran.rs project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions ***********************************		
Additional Reading Introporate time-varying covariates into the Cox PH model: https://cran.rs project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions ***********************************		
Additional Reading Introporate time-varying covariates into the Cox PH model: https://cran.rs project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions ***********************************		
Additional Reading Introporate time-varying covariates into the Cox PH model: https://cran.rs project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions ***********************************		
Additional Reading Introporate time-varying covariates into the Cox PH model: https://cran.rs project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions ***********************************	7 Pocan	
Incorporate time-varying covariates into the Cox PH model: https://cran.r-project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions ***********************************		
https://cranz- project.org/web/packages/survival/vignettes/timedep.pdf 7. Recap Packages and Functions - survival:restrictory - survival:restricto		
7. Recap Packages and Functions - servival: regretives, servidit: cought) - servival: regretives, generated; - servival: regretives, g	Incorporate time-varying covariates into the Cox PH model:	
7. Recap Packages and Functions	nttps://cran.r- project.org/web/packages/survival/vignettes/timedep.pdf	
7. Recap Packages and Functions - survival::Surv() - survival:survit() - survival:survit() - survival::survit() - survival::survit() - survival::survit() - survival::cooph()	<u>μ- σ,</u>	
7. Recap Packages and Functions - survival::Surv() - survival:survit() - survival:survit() - survival::survit() - survival::survit() - survival::survit() - survival::cooph()		
7. Recap Packages and Functions - survival::Surv() - survival:survit() - survival:survit() - survival::survit() - survival::survit() - survival::survit() - survival::cooph()		
7. Recap Packages and Functions - survival::Surv() - survival:survit() - survival:survit() - survival::survit() - survival::survit() - survival::survit() - survival::cooph()		
7. Recap Packages and Functions - survival::Surv() - survival:survit() - survival:survit() - survival::survit() - survival::survit() - survival::survit() - survival::cooph()		
7. Recap Packages and Functions - survival::Surv() - survival:survit() - survival:survit() - survival::survit() - survival::survit() - survival::survit() - survival::cooph()		
7. Recap Packages and Functions - survival::Surv() - survival:survit() - survival:survit() - survival::survit() - survival::survit() - survival::survit() - survival::cooph()		
7. Recap Packages and Functions - survival::Surv() - survival:survit() - survival:survit() - survival::survit() - survival::survit() - survival::survit() - survival::cooph()		
Packages and Functions survival:survfit() survival:survfit() survival:survdiff() survival:survdiff() survival:survdiff() survival:cosph()	65	
Packages and Functions survival:survfit() survival:survfit() survival:survdiff() survival:survdiff() survival:survdiff() survival:cosph()		
Packages and Functions survival:survfit() survival:survfit() survival:survdiff() survival:survdiff() survival:survdiff() survival:cosph()		
Packages and Functions survival:survfit() survival:survfit() survival:survdiff() survival:survdiff() survival:survdiff() survival:cosph()		
Packages and Functions survival:survfit() survival:survfit() survival:survdiff() survival:survdiff() survival:survdiff() survival:cosph()		
Packages and Functions survival:survfit() survival:survfit() survival:survdiff() survival:survdiff() survival:survdiff() survival:cosph()		
Packages and Functions survival:survfit() survival:survfit() survival:survdiff() survival:survdiff() survival:survdiff() survival:cosph()		_
<pre>survival::Surv() survival::survift() survival::survdiff() survival::coxph() survival::coxph()</pre>	7. Recap	
<pre>survival::survfit() survival::survdiff() survival::survdiff() survival::coxph() survival::coxph() survival::coxph() survival::coxph() survival::coxph() survival::coxph() survival::coxph() survival::coxph() survival::coxph()</pre>	Packages and Functions	
<pre>surviner::ggsurvplot() survival::survdiff() survival::coxph() survival::coxph() surviner::ggsdjustedcurves() survival::coxph() survival::coxph() survival::coxph() survival::coxph() survival::coxph()</pre>		
<pre>survminer::pairwise_survdiff() survival::coxph() survival::coxph() survival::coxph() survival::coxph() survminer::ggcoxfunctional() survminer::ggcoxfunctional()</pre>		-
<pre>survival::coxph() survival::coxph() survival::coxph() survival::coxph() survival::coxph() survival::coxph() survival::coxph() survival::coxph()</pre>		
 survival::coxxph() survminer::ggcoxxph() survminer::ggcoxfunctional() survminer::ggcoxdiagnostics() 		
 survminer::ggcoxrph() survminer::ggcoxfunctional() survminer::ggcoxdiagnostics() 		
• survminer::ggcoxdiagnostics()	• survminer::ggcoxzph()	