Fundamentos de Inferencia Estadística

Francisco Javier Mercader Martínez

Índice

1	Mue	estreo y distribuciones muestrales	2
	1.1	Introducción	2
	1.2	Ejemplos	2
	1.3	Surge una pregunta	2
	1.4	Esbozo de respuesta: tasa de participación	3
	1.5	Realización del experimento: conclusiones	4
	1.6	En la práctica	4
	1.7	Uso de la distribución muestral	5
	1.8	Antes de extraer una muestra:	5
	1.9	Otro ejemplo: valores muestrales de una distribución normal $\dots \dots \dots$	5
	1.10	Un resultado importante	6
	1.11	Algunos términos	6
	1.12	Ejemplos de estadísticos	6
	1.13	La media muestral	7
		1.13.1Esperanza y varianza de la media muestral	7
	1.14	Consecuencia práctica	8
		1.14.1 Analogía con una diana	8
	1.15	Varianza muestral	8
		1.15.1 Dos apuntes	9
	1.16	Esperanza de la varianza muestral	9
	1.17	Distribuciones muestrales de \bar{X} y S^2	9
	1.18	Distribución de \bar{X} y S^2 para una m.a.s. de una distribuación normal	9
	1.19	Recordatorio: distribución χ^2 con p grados de libertad	9
	1.20	Distribución & Chudant	10

Tema 1: Muestreo y distribuciones muestrales

1.1) Introducción

i El contexto

- Tenemos una pregunta acerca de un fenómeno aleatorio.
- \bullet Formulamos un modelo para la variable de interés X.
- Traducimos la pregunta de interés en términos de uno o varios parámetros del modelo.
- \bullet Repetimos el experimento varias veces, apuntamos los valores de X.
- ¿Cómo usar estos valores para extraer información sobre el parámetro?

1.2) Ejemplos

¿Está la moneda trucada?

 \bullet Experimento: tirar una moneda. X =resultado obtenido:

$$P(X=+) = p, P(X=c) = 1-p$$

$$\label{eq:power} \natural p = \frac{1}{2}?$$

Sondeo sobre intención de participación en una elecciones

- Queremos estimar la tasa de participación antes de unas elecciones generales.
- Formulamos un modelo:
 - \rightarrow Experimento: "escoger una persona al azar en el censo".
 - $\rightarrow X$: participación, variable dicotómica ("Sí" o "No"). p = P(X = "Sí").
- ¿Cuánto vale p?
- Censo: aprox. 37 000 000. Escogemos aprox. 3000 personas.

Determinación de la concentración de un producto

- Quiero determinar la concentración de un producto.
- Formulo el modelo:
 - ightarrow Experimento: "llevar a cabo una medicación".
 - \rightarrow X: "valor proporcionado por el aparato".
 - $\rightarrow X \sim \mathcal{N}(\mu, \sigma^2).$
- ¿Qué vale μ ?

1.3) Surge una pregunta

En todas estas situaciones donde nos basamos en la repetición de un experimento simple...

- ¿Cómo sabemos que nuestra situación es fiable?
- ¿Qué confianza tenemos al extrapolar los resultados de una muestra de 3000 personas a una población de 37 millones de personas?

1.4) Esbozo de respuesta: tasa de participación

i Para convenceros, un experimento de simulación

- Voy a simular el proceso de extracción de una muestra de 3000 personas en una población de 37 millones de personas.
- Construyo a mi antojo los distintos componentes:
 - → La población: defino en mi ordenador un conjunto de 37 000 000 de ceros y unos (⇔ el censo electoral)
 - "1" \Leftrightarrow "la persona piensa ir a votar".
 - "0" \Leftrightarrow "la persona no piensa ir a votar".
 - \rightarrow La tasa de participación "real": Decido que en mi población el 70% piensa en ir a votar \rightarrow 25 900 000 "1"s.
 - \rightarrow La extracción de una muestra: construyo un pequeño programa que extrae al azar una muestra de 3000 números dentro del conjunto grande.

```
## [1] 0.7056667
```

Queremos descartar que haya sido suerte. Vamos a repetir muchas veces (10000 veces por ejemplo), la extracción de una muestra de 3000 personas en la población.

Recogemos los valores obtenidos en un histograma.

1.5) Realización del experimento: conclusiones

- La enorme mayoría de las muestras de 300 individuos proporcionan una tasa de participación muy próxima a la de la población.
 - \rightarrow El riesgo de cometer un error superior a ± 2 puntos, al coger una una muestra de 3000 individuos es muy pequeño (y asumible...)
- Si nos limitamos a muestras de 300 individuos, ¿qué esperáis?

1.6) En la práctica

i Usamos las distribuciones muestrales

- Las empresas de sondeos no se basan en simulaciones sino en cálculos teóricos.
- Experimento aleatorio: escoger al azar una muestra de 3000 personas dentro de una población de 37 000 000, con una tasa de participación p.
- \bullet Llamamos a \hat{p} la variable aleatoria: proporción de "1"s en la muestra escogida.
- ¿Cuál es la distribución de valores de \hat{p} ?

$$\hat{p} \sim \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

1.7) Uso de la distribución muestral

i La distribución muestra de \hat{p} :

Es la distribución esperada de los valores de \hat{p} respecto a todas las muestras de ese tamaño que podría extraer

1.8) Antes de extraer una muestra:

- ¿Es suficiente el tamaño para el riesgo asumible y la precisión requerida?
- Una vez la muestra:
 - \rightarrow ¿Puedo dar un margen de error?
 - \rightarrow ¿Puedo decidir si p poblacional es, por ejemplo, mayor que un valor dado?

1.9) Otro ejemplo: valores muestrales de una distribución normal

1.10) Un resultado importante

Ley (débil) de los grandes números

Sea X una variable aleatoria y q(X) una variable aleatoria transformada de X, con esperanza y momento de orden 2 finitos. Supongamos $X_1, X_2, \ldots, X_n, \ldots$ una sucesión de variables aleatorias (vv.aa) independientes con la misma distribución que X, entonces

$$\lim_{n\to\infty} P\left[\left|\frac{\sum_{i=1}^n g(X_i)}{n} - E[g(X)]\right| < \varepsilon\right] = 1, \text{ para todo } \varepsilon > 0.$$

1.11) Algunos términos

Definición 1.11.1 • Sea una variable aleatoria X. Consideramos n variables aleatorias independientes e idénticamente distribuidas X_1, X_2, \ldots, X_n , que se distribuyen como X. La variable aleatoria multidimensional (X_1, X_2, \ldots, X_n) es una muestra aleatoria simple (m.a.s.) de X.

- Cualquier cantidad calculada a partir de las observaciones de una muestra: estadístico.
- Experimento aleatorio: extraer una muestra. Consideramos un estadístico como una variable aleatoria. Nos interesa conocer la distribución del estadístico: distribución muestral.

1.12) Ejemplos de estadísticos

- Proporción muestral: \hat{p} .
- Media muestral: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- Desviación típica muestral: $S_X = \sqrt{\frac{1}{n+1} \sum_{i=1}^n (X_i \bar{X})^2}$

1.13) La media muestral

Contexto

Estudiamos una variable X cuantitativa.

- Estamos interesados en μ , el centro de la distribución de X.
- ullet Extraemos una muestra de tamaño n:

$$x_1, x_2, \ldots, x_n$$
.

- Calculamos su media \bar{x} para aproximar μ .
- ¿Cuál es la distribución muestral de \bar{X} ?

Ejemplo:

- Quiero medir una cantidad. Hay variabilidad en las mediciones.
- Introduzco una variable aleatoria X = "valor proporcionado por el aparato".
- $\bullet~\mu$ representa el centro de los valores.
- \bullet Extraigo una muestra de tamaño 5 del valor de X.

1.13.1) Esperanza y varianza de la media muestral

Llamamos $\mu = E[X]$ y $\sigma^2 = Var(X)$.

• Tenemos

$$E[\bar{X}] = \mu.$$

- ightarrow Es decir que el centro de la distribución muestral de \bar{X} coincide con el centro de la distribución X.
- Tenemos $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$, es decir, la dispersión de la distribución muestral de \bar{X} es \sqrt{n} veces más pequeña que la dispersión inicial de X.

Iluestración: X inicial, \bar{X} con $n=3, \bar{X}$ con n=10.

1.14) Consecuencia práctica

i Aparato de medición

- Experimento: llevar a cabo una medición con un aparato.
- ullet Variable aleatoria X: "valor proporcionado por el aparato".
- \bullet E[X]: centro de la distribución de los valores proporcionados por el aparato.
 - \rightarrow Lo deseable: E[X] =valor exacto de la cantidad que buscamos medir.
 - \rightarrow En este caso, decimos: el aparato es exacto.
- σ_X : dispersión de la distribución de los valores proporcionados por el aparato.
 - \rightarrow Lo deseable: σ_X pequeño.
 - $\rightarrow\,$ En este caso, decimos: el aparato es preciso.

1.14.1) Analogía con una diana

1.15) Varianza muestral

Si (X_1, X_2, \dots, X_n) es una muestra aleatoria simple de X, definimos la varianza muestral S_n^2 como

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

i Fórmula alternativa apra S_n^2 :

$$S_n^2 = \frac{n}{n-1} \left(\overline{X}_n^2 - (\bar{X}_n)^2 \right),$$

donde
$$\overline{X^2}_n = \frac{1}{n} \sum_{i=1}^n X_i^2$$
.

1.15.1) Dos apuntes

i En algunos textos en castellano

Se suele llamar S_n^2 cuasi-varianza muestral, reservando el término varianza muestral para la cantidad $\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X}_n)^2$

i En estas fórmulas:

Omitimos, si no hay confusión posible, el subíndice n, escribiendo S^2 , $\bar{X} = \sum_{i=1}^n X_i$ y $\bar{X}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$.

Esperanza de la varianza muestral 1.16)

Proposición 1.16.1 Si $(X_1, X_2, ..., X_n)$ es una muestra aleatoria simple de X con varianza σ_X^2 ,

$$E[S_n^2] = \sigma_X^2.$$

Distribuciones muestrales de \bar{X} y S^2 1.17)

Tened en cuenta

- Los resultados anteriores sobre $E[\bar{X}]$ y $\sigma_{\bar{X}}$ son válidos sea cual seal el modelo escogido para la distribución de X.
- ullet Si queremos decir algo más preciso sobre la distribución de \bar{X} (densidad, etc...) necesitamos especificar la distribución de X.
- En el caso en que la variable X siga una distribución normal, el **teorema de Fisher** analiza cómo se comportan los estadísticos anteriores y nos permiten establecer una serie de consecuencias que serán utilizadas posteriormente en los temas de intervalos de confianza y de contrastes de hipótesis.

Distribución de \bar{X} y S^2 para una m.a.s. de una distribuación normal 1.18)

i Teorema de Fisher

Consideramos una muestra aleatoria simple de una variable aleatoria X con distribución normal $\mathcal{N}(\mu, \sigma^2)$, entonces se

- 1) \bar{X}_n y S_n^2 son dos variables aleatorias independientes.
- 2) $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$ 3) $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2.$

Recordatorio: distribución χ^2 con p grados de libertad 1.19)

i La distribución χ^2 .

Para $p \in \mathbb{N}^+$, la función de densidad de la distribución ξ^2 es igual a

$$\frac{1}{\Gamma(\frac{p}{2}) 2^{\frac{p}{2}}} \cdot x^{\frac{p}{2} - 1} e^{\frac{x}{2}}, \text{ si } x > 0,$$

9

donde Γ denota la función Gamma (Nota: para cualquier real $\alpha > 0$, $\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t} dt$).

i Caracterización de la χ^2

Si Z_1, \ldots, Z_p son p variables aleatorias independientes, con $Z_i \sim \mathcal{N}(0,1)$, entonces la variable aleatoria X definida como

$$X = Z_1^2 + \dots + Z_p^2 = \sum_{i=1}^p Z_i^2$$

tiene una distribución χ^2 con p grados de libertad.

¿Cómo es su función de densidad?

Depende de los grados de libertad

1.20) Distribución t-Student

i Hemos visto, si X es Normal:

$$\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

Si queremos centrarnos en μ es natural sustituir en ella σ por S_n .