Week 12: Tutorial Handout

- (Taylor's theorem) If $f \in C^k([a,b])$ and $|f^{(n+1)}(x)| \leq M$ for some M > 0 then for $x_0, x \in [a,b]$ we have $|f(x) \sum_{k=0}^n \frac{f_k(x_0)}{k!} (x-x_0)^k| \leq M \frac{|x-x_0|^{n+1}}{(n+1)!}$.
- (Weierstrass approximation) If $f \in C([a,b])$, then there exists polynomials $p_k(x) := a_{n_k}x^{n_k} + ... + a_0$ such that $||f p_k|| \to 0$.

Taylor series

- 1. For n=2, find $\frac{f_k(x_0)}{k!}$ and the Taylor approximation around x_0 and estimate the error at the point x.
 - tan(x) around $x_0 = \frac{\pi}{4}$ and error for x = 0.75.
 - $\sqrt{1+x^2}$ around $x_0=0$ and error for x=0.1.
 - x^4 around $x_0 = 1$ and error for x = 0.99.
 - sinh(x) around $x_0 = 0$ and error for x = 0.003.

Weierstrass polynomial approximation

- 2. If $f \in C^1([0,1])$ show that there exists polynomials $p_n(x)$ s.t. both $p_n \Rightarrow f(x)$ and $p'_n \Rightarrow f'(x)$.
- 3. If $0 \notin [a, b]$ then for $f \in C([a, b])$ there exists polynomials p_n s.t. $x^n p_n(x) \rightrightarrows f(x)$.
- 4. If $x_0, ..., x_n \in [a, b]$ and $a_0, ..., a_n \in \mathbb{R}$ show that there is a polynomial p s.t. $p(x_i) = a_i$ for $0 \le i \le n$.