Name:	
Answer Key	
CSE410 Quiz June 15th 2018	
Answer Bank: Associative Software Direct Indexed Hardware Page Table In Page Table Entry(ies) Physical Address(es) Virtual Address(es) TL Working Thrashing Multiprogramming Page Fault Offset Present Level Page Table Resident Demand Paging Prepaging Root/First Replacement Modified Answer Not in List	B Cache Locatity Fetching Second
Question 1 (.5 pts): Locality is the principle/concept that is fund of virtual memory systems and explains that memory references tend to	amental to the success cluster.
Question 2 (1 pts): The resident set is the pages of a process como r king set is the pages of a process that SHOULD be in memory	urrently in memory. The ory.
Question 3 (.5 pts): A higher level of Multiprogram is an advantage of processes, in addition to being able to offer processes more memory that	f the partial loading of an all of RAM.
Question 4 (.5 pts): Thrashing is a state in which the CPU spends process pages in and out of memory than actually executing instructions	more time swapping s.
Question 5 (.5 pts): A(n) page fault occurs when there is a reques is not currently in main memory.	t to a process page that
Question 6 (1 pts): These two bits are added to the page table entry in a present, and wootied.	a virtual memory system:
Question 7 (.5 pts): If there is no free frame in memory a(n) replacement needed to decide which page is swapped out.	
Question 8 (.5 pts): Recently used is/are stored in the 7	ΓLB.
Question 9 (.5 pts): The TLB is a hardware construct. (Hardware	or Software)
Question 10 (.5 pts): The TLB uses Associative mapping, a system entries at the same time.	that searches all

Question 11 (1 pts): In a virtual address using a two level page table the first set of bits are used to index the root page table, the second set of bits are used to index the znd level page table the first set of bits are used to index the znd level page table the first set of bits are used to index the znd level page table the first set of bits are used to index the znd level page table the first set of bits are used to index the znd level page table the first set of bits are used to index the znd level page table the first set of bits are used to index the znd level page table the first set of bits are used to index the znd level page table the znd level page table the first set of bits are used to index the znd level page table table

******Questions on the next page do not use the answer bank and all work must be shown*******

100001	
Name:	

Question 12 (4 pts): 1 2 3 2 1 5 2 1 6 2 7 Use the clock algorithm, with 3 frames per process. Show all page faults, the use bit, and the location of the pointer after each memory

	2	3	2	1	5	2	l	6	2	7
1.	1.	>1°	>1°	>1°	5°	5.	⇒2°	5	2.	>5.
→	z.	5.	s.	2.	>2	→Z°	2	6.	->6°	6
	-5	3.	3 .	3.	3	3	1 4	>10	1	7.
F	F	F			F	<u></u>	F	F	F	F

Question 13 (3 pts): Use the buddy system to show how memory will be partitioned after each operation given the following request stream. Assume main memory is of size 221 bytes.

5 - Release: B 1 - Request: A - 250 KB 6 - Release: D 2 - Request: B - 129 KB 7 - Release: A 3 - Request: C - 50 KB 4 - Request: D - 400 KB 8 - Release: DC

				7	- 1	MB	an area front	
A	256KB	SIZKB				IMB		
A	B	512KB				1mB		
A	В	256	128	64	c	1 MB		
A	B	256	851	64	C	512	D	
A	256	256	128	64	4	512	D	
A	256	256	128	64	C	# 1MB		
512 256 128 64 C		1MB						
				2	21	NB		
***************************************		***************************************						

Question 14 (3 pts): Assume 40 bit virtual addresses, a page size of 8 KB, and a page table entry size of 8 bytes. How many pages can each process have?

40 bits - 13 bits offset = 27 bits for page# =>

Question 15 (3 pts): Make the same assumptions as question 14, how many pages are needed to store the page table for a process?