

Infrastructure investment in a future integrated energy system: an application to power-to-gas

6th December 2017

NREL, Golden, CO

Muireann Á. Lynch Mel T. Devine Valentin Bertsch

Agenda

- ☐ Background, motivation and research questions
- ☐ Literature
- Modelling approach
- ☐ Test system
- ☐ Results
- ☐ Conclusions and further work

- Increased RES means increased variability
- ☐ Energy Systems Integration (ESI) as a means of managing variability

- ☐ Increased RES means increased variability
- ☐ Energy Systems Integration (ESI) as a means of managing variability
 - Increasing integration between energy pathways
 - Increasing integration across scales
 - Making use of the arising synergies

- Increased RES means increased variability
- ☐ Energy Systems Integration (ESI) as a means of managing variability
 - Increasing integration between energy pathways
 - Increasing integration across scales
 - Making use of the arising synergies

- ☐ Increased RES means increased variability
- ☐ Energy Systems Integration (ESI) as a means of managing variability
 - Increasing integration between energy pathways
 - Increasing integration across scales
 - Making use of the arising synergies
- ☐ Power-to-Gas (PtG) as an ESI case study
- ☐ Privately determined infrastructure investment

Technology and research question(s)

- ☐ Power-to-Gas: a form of storage
- ☐ Use electricity for electrolysis
- ☐ Inject hydrogen to grid
- ☐ Convert hydrogen to methane

Technology and research question(s)

- ☐ Power-to-Gas: a form of storage
- ☐ Use electricity for electrolysis
- Inject hydrogen to grid
- ☐ Convert hydrogen to methane

What is the optimal investment in PtG?

Technology and research question(s)

- ☐ Power-to-Gas: a form of storage
- ☐ Use electricity for electrolysis
- ☐ Inject hydrogen to grid
- ☐ Convert hydrogen to methane

- What is the optimal investment in PtG?
- ☐ Impact of RES?
- ☐ Portfolio effects?

Literature review

Broad strands:

- ☐ PtG technology itself
- ☐ Cost-benefit of PtG
- ☐ PtG in electricity systems (especially 100% RES)

Literature review

Broad strands:

- ☐ PtG technology itself
- ☐ Cost-benefit of PtG
- ☐ PtG in electricity systems (especially 100% RES)

- ☐ No real examination of endogenous investment
- No market effects
- No portfolio effects

Methodology

Generators:

Consumers:

Maximise profit

Decision variables:

- ☐ Generation
- Investment and exit

Minimise costs

Decision variables:

- ☐ PV or microgeneration
- ☐ (Load shifting)
- ☐ (Load shedding)

Methodology

Generators:

Consumers:

Maximise profit

Decision variables:

- Generation
- ☐ Investment and exit

Minimise costs

Decision variables:

- ☐ PV or microgeneration
- ☐ (Load shifting)
- ☐ (Load shedding)

Mixed Complementarity Problem (MCP) & Bender's Decomposition

Methodology

Generators:

Consumers:

Maximise profit

Decision variables:

- Generation
- □ Investment and exit

Minimise costs

Decision variables:

- PV or microgeneration
- ☐ (Load shifting)
- ☐ (Load shedding)

Mixed Complementarity Problem (MCP) & Bender's Decomposition Generation firms determine the infrastructure portfolio

Data

Initial Generation portfolio

- Firm 1 Firm 2 Firm 3 Firm 4 Firm 5
- Baseload ■ Mid-merit Peaking ■ Wind (Region 1) ■ Wind (Region 2) Wind (Region 2)

- Firms invest and retire conventional units
- Firms can invest in Power-to-Gas
- ☐ Cost: Investment and electricity price
- ☐ Revenues: Gas prices
- ☐ Wind investment is exogenous

Data

Wind capacity factor scenarios for region 1

Wind receives a Feed-in Premium of €23/MWh

Data

Daily Industrial Demand (MW)

Daily Residential Demand (MW)

☐ PtG is loss-making as a standalone technology

☐ PtG is loss-making as a standalone technology — duh

#ESRIpublications

- ☐ PtG is loss-making as a standalone technology duh
- □ Price gap is ~€25/MWh of gas

P2G investment

☐ PtG investment is positive with wind above 50% of demand

P2G investment

- ☐ PtG investment is positive with wind above 50% of demand
- Portfolio effect?

Firm profits as a % of no P2G case

Increasing wind penetration →

Consumer costs (€/MWh)

Conclusions

- ☐ Profit-maximising firms have an incentive to invest in loss-making Power-to-Gas
- ☐ Portfolio effects drive this result
 - Power-to-Gas increases off-peak demand
 - ☐ Renewable profits increase

Future work

- Market power difficult to model
- ☐ Competition from alternative technologies
 - Small scale battery storage
 - Consumer investments
- ☐ Potential for "green gas" in other sectors
- ☐ Optimal mix of PtG technologies
- Potential synergies with wastewater treatment

Acknowledgements

The authors acknowledge funding from the ESRI's Energy Policy Research Centre. All omissions and errors are our own.

