```
import numpy as nm
import matplotlib.pyplot as pt
import pandas as pd
import seaborn as sns
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split # Import train_test_split function
from sklearn import metrics
import matplotlib.pyplot as plt
%matplotlib inline
data = pd.read_csv("/content/tinder.csv")
```

data.head()

	Srno	Texting	Outings	Common Intrest	Like
0	1	2	2	1	Didntlike
1	2	3	15	5	LargeDoses
2	3	3	7	2	SmallDoses
3	4	3	4	3	SmallDoses
4	5	1	1	0	Didntlike

data.describe() data.isnull().sum()

Srno	0
Texting	0
Outings	0
Common Intrest	0
Like	0

dtype: int64

dataset_n = data.drop(["Srno"],axis=1) dataset_n.head()

	Texting	Outings	Common Intrest	Like
0	2	2	1	Didntlike
1	3	15	5	LargeDoses
2	3	7	2	SmallDoses
3	3	4	3	SmallDoses
4	1	1	0	Didntlike

```
x = dataset_n.drop("Like",axis=1)
x.head()
```

	Texting	Outings	Common Intrest
0	2	2	1
1	3	15	5
2	3	7	2
3	3	4	3
4	1	1	0

```
y = pd.DataFrame(dataset_n.iloc[:,-1].values)
y.head()
```

0

- 0 Didntlike
- 1 LargeDoses
- 2 SmallDoses
- 3 SmallDoses
- 4 Didntlike

C→

0

- 32 LargeDoses
- 39 SmallDoses
- 21 LargeDoses
- 36 Didntlike

Fitting Logistic Regression Model

```
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train, y_train)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:993: DataConversic
       y = column_or_1d(y, warn=True)
     LogisticRegression(random_state=0)
prediction = classifier.predict(X_test)
prediction
     array(['SmallDoses', 'LargeDoses', 'Didntlike ', 'SmallDoses',
            'LargeDoses', 'SmallDoses', 'SmallDoses', 'Didntlike ',
            'LargeDoses', 'SmallDoses'], dtype=object)
from sklearn.metrics import confusion matrix
cm = confusion_matrix(y_test, prediction)
cm
     array([[2, 0, 0],
            [0, 2, 1],
            [0, 1, 4]]
from sklearn.metrics import accuracy_score
acc=accuracy score(y test, prediction)
acc
     0.8
from sklearn.tree import export graphviz
from io import StringIO
from IPython.display import Image
import pydotplus
dot_data = StringIO()
export_graphviz(clf, out_file=dot_data,
                filled=True, rounded=True,
                special_characters=True,feature_names = feature_cols)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
```

graph.write_png('Tinder Matches.png')
Image(graph.create png())

Loading and predicting Test dataset !!

```
test_data = pd.read_csv('/content/tinder.csv')
test_data.head()
```

Like	Common Intrest	Outings	Texting	Srno	
Didntlike	1	2	2	1	0
LargeDoses	5	15	3	2	1
SmallDoses	2	7	3	3	2

test_data.isnull().sum()

Srno 0
Texting 0
Outings 0
Common Intrest 0
Like 0

dtype: int64

test_data = test_data.drop(["Srno"],axis=1)
test_data.head()

	Texting	Outings	Common Intrest	Like
0	2	2	1	Didntlike
1	3	15	5	LargeDoses
2	3	7	2	SmallDoses
3	3	4	3	SmallDoses
4	1	1	0	Didntlike

from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
test_data['Like']= label_encoder.fit_transform(test_data['Like'])
print(test_data.head())

	Texting	Outings	Common Intrest	Like
0	2	2	1	0
1	3	15	5	1
2	3	7	2	2
3	3	4	3	2
4	1	1	0	0

```
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
t_d = pd.DataFrame(ohe.fit_transform(x[["Texting"]]).toarray())
testdata_new=pd.concat([x,t_d],axis=1)
testdata_new
```

	Texting	Outings	Common	Intrest	0	1	2	3
0	2	2		1	0.0	0.0	1.0	0.0
1	3	15		5	0.0	0.0	0.0	1.0
2	3	7		2	0.0	0.0	0.0	1.0
3	3	4		3	0.0	0.0	0.0	1.0
4	1	1		0	0.0	1.0	0.0	0.0
5	3	5		2	0.0	0.0	0.0	1.0
6	1	1		3	0.0	1.0	0.0	0.0
7	3	14		6	0.0	0.0	0.0	1.0
8	2	5		4	0.0	0.0	1.0	0.0
9	2	8		4	0.0	0.0	1.0	0.0
10	2	7		5	0.0	0.0	1.0	0.0
11	3	6		2	0.0	0.0	0.0	1.0
12	3	9		5	0.0	0.0	0.0	1.0
13	2	4		2	0.0	0.0	1.0	0.0
14	0	2		0	1.0	0.0	0.0	0.0
15	2	3		2	0.0	0.0	1.0	0.0
16	2	1		1	0.0	0.0	1.0	0.0
17	2	5		3	0.0	0.0	1.0	0.0
18	2	2		0	0.0	0.0	1.0	0.0
19	3	8		4	0.0	0.0	0.0	1.0
20	3	7		5	0.0	0.0	0.0	1.0
21	2	9		6	0.0	0.0	1.0	0.0
22	1	2		2	0.0	1.0	0.0	0.0
23	2	1		1	0.0	0.0	1.0	0.0
24	3	5		3	0.0	0.0	0.0	1.0
25	3	5		2	0.0	0.0	0.0	1.0
26	2	2		3	0.0	0.0	1.0	0.0
27	2	2		2	0.0	0.0	1.0	0.0

test = testdata_new.drop("Texting",axis=1)
test.head()

	Outings	Common	Intrest	0	1	2	3
0	2		1	0.0	0.0	1.0	0.0
1	15		5	0.0	0.0	0.0	1.0
2	7		2	0.0	0.0	0.0	1.0

test = test_data.drop(["Like"],axis=1)
test.head()

	Texting	Outings	Common Intrest				
0	2	2	1				
1	3	15	5				
2	3	7	2				
3	3	4	3				
4	1	1	0				
45) 2	. t	5 4	U.U	U.U	1.0	U.U

prediction_new = classifier.predict(test)
prediction_new.shape

(50,)

res = pd.DataFrame(prediction_new)
res.head()

0

- 0 Didntlike
- 1 LargeDoses
- 2 SmallDoses
- 3 SmallDoses
- 4 Didntlike

res.columns = ["prediction"]

Colab paid products - Cancel contracts here

