Série 2 Espérance Conditionnelle et Martingales

Exercice 1 Soit $X \in (\Omega, \mathcal{F}, P)$ i.e., X est \mathcal{F} mesurable, une v.a telle que $E(|X|) < +\infty$. Montrer que si $\mathcal{A} = \{\Omega, \emptyset\}$ alors $E(X \mid \mathcal{A}) = E(X)$ p.s.

Exercice 2 Si $A_1 \subset A_2$ deux σ -algèbres. Montrer que:

$$1/E(E(Y \mid \mathcal{A}_1) \mid \mathcal{A}_2) = E(Y \mid \mathcal{A}_1)$$

$$2/E\left(E(Y\mid \mathcal{A}_2)\mid \mathcal{A}_1\right) = E(Y\mid \mathcal{A}_1)$$

Exercice 3 Soit X, Y deux v.a. telles que la v.a. X-Y est indépendante de la σ -algèbre \mathcal{A} , avec E(X-Y)=m et variance $V(X-Y)=\sigma^2$. On suppose que Y est \mathcal{A} -mesurable.

1/ Calculer E(X - Y | A). En déduire E(X | A)

2/ Calculer $E[(X-Y)^2|A]$. En déduire $E(X^2|A)$.

Exercice 4 Soit Y une v.a. intégrable et \mathcal{F}_n une filtration. Montrer que $X_n = E(Y \mid \mathcal{F}_n)$ est une martingale.

Exercice 5 Soit X_n une marche aléatoire, i.e. $X_n = Z_1 + ... + Z_n$, avec (Z_n) une suite de v.a. i.i.d. telles que $P(Z_n = 1) = P(Z_n = -1) = \frac{1}{2}$. Montrer que $X_n^2 - n$ est une martingale relativement à la filtration $\mathcal{F}_n = \sigma(Z_1, ..., Z_n)$.

Exercice 6 Lequels de ces temps représente un temps d'arrêt:

- 1/Un joueur décide de s'arrêter au temps T_1 où sa fortune est maximale.
- 2/ Un joueur décide de s'arrêter au temps T_2 lorsque sa fortune dépasse le double de sa mise initiale.
- 3/ Un actionnaire demande à son banquier de vendre ses actions au temps T_3 où le cours de l'action atteint son maximum.
- 4/ Un actionnaire demande à son banquier de vendre au temps T_4 où le cours de l'action a réalisé pour la première fois une progression de 15% sur les 100 derniers jours

Exercice 7 Soit S et T deux temps d'arrêt relativement à la filtration \mathcal{F}_n . Montrer que S+T et $S \wedge T$ sont des temps d'arrêts.

Exercice 8 Deux joueurs jouent à un jeu équitable. On note Z_n le résultat de la $n^{i \`{e}me}$ partie pour le premier joueur. Les Z_n sont indépendantes et: $P(Z_n=+1)=P(Z_n=-1)=1/2$. On note \mathcal{F}_n la filtration engendrée par les résultats des n premières parties, et X_n la fortune du premier joueur après la $n^{i \`{e}me}$ partie. Sa fortune initiale est fixée: $X_0=a$. pour tout $n \geq 1$, on a donc: $X_n=a+Z_1+\ldots+Z_n$. Le second joueur a une fortune initiale fixée à b et la partie se termine par la ruine de l'un des deux joueurs. On définit donc: $T=\min\{n,\ X_n=0\ ou\ X_n=a+b\}$.

1/ Montrer que $(X_n)_n$ est une martingale et que T est un temps d'arrêt, relativement à (\mathcal{F}_n) .

- 2/ Montrer que: $P(T > n) \le P(0 < X_n < a + b)$. Déduire du théorème de la limite centrale que P(T > n) tend vers 0, puis que T est fini.
- 3/ Déduire du théorème d'arrêt que: $P(X_T = 0) = \frac{b}{a+b}$ et $P(X_T = a+b) = \frac{a}{a+b}$.
- 4/ Montrer que $E(X_T^2) E(T) = a^2$. Conclure que E(T) = ab.
- 5/ Observons que pour tout réel $\lambda : E\left[e^{\lambda Z_n}\right] = \frac{e^{\lambda} + e^{-\lambda}}{2} = \cosh(\lambda)$. Pour tout $n \geq 0$, on pose $Y_n(\lambda) = \exp(\lambda X_n) \left(\cosh(\lambda)\right)^{-n}$. Montrer que $(Y_n(\lambda))_n$ est une martingale.
- 6/ Déduire du théorème d'arrêt que: $E\left[\left(\cosh(\lambda)\right)^{-T}\left(I_0\left(X_T\right) + e^{\lambda(a+b)}I_{a+b}\left(X_T\right)\right)\right] = e^{\lambda a}$.

Exercice 9 Trois joueurs jouent à un jeu équitable: chacun a la même probabilité (1/3) de gagner. A chaque partie il y a un gagnant, qui reçoit +2. Les deux autres perdent -1 chacun. On note \mathcal{F}_n la filtration engendrée par les résultats des n premières parties, et X_n , Y_n , Z_n les fortunes respectives des trois joueurs à l'issue des n premières parties. Les fortunes initiales sont fixées: $X_0 = a$, $Y_0 = b$, $Z_0 = c$. Chacune des trois supérieures ou égale à 1. On note s = a + b + c la fortune totale, qui reste constante au cours du jeu.

- 1/ Montrer que (X_n) , (Y_n) et (Z_n) sont des martingales relativement à \mathcal{F}_n .
- 2/ Exprimer $E\left(X_{n+1}^2 \mid \mathcal{F}_n\right)$ en fonction de X_n . Vérifier que (X_n^2) est une sous-martingale.
- 3/ Exprimer $E(X_{n+1}Y_{n+1} | \mathcal{F}_n)$ en fonction de X_nY_n . En déduire que (X_nY_n) est une surmartingale.
- 4/ Exprimer $E(X_{n+1}Y_{n+1}Z_{n+1} | \mathcal{F}_n)$ en fonction de $X_nY_nZ_n$. En déduire que $(X_nY_nZ_n)$ est une sur-martingale.
- $5/On \ note \ R_n = X_n Y_n Z_n + n \ (s-2)$. Montrer que (R_n) est une martingale.
- 6/ On note T le premier instant de ruine de l'un des joueurs: $T = \inf \{ n \ge 1, X_n Y_n Z_n = 0 \}$. Montrer que T est un temps d'arrêt fini.
- 7/ Déduire du théorème d'arrêt que $E(T) = \frac{abc}{s-2}$. que se passe-t-il dans le cas particulier a = b = c = 1?