Exercise

Bao Lam

Exercise. Let (M,g) be an oriented and compact Riemannian manifold without boundary. Prove that the volume form on g, $dvol_g$ is not exact, i.e., $dvol_g \neq d\theta$ for any $\theta \in \Omega^{n-1}(M)$.

Proof. By way of contradiction, we seek a $\theta = \theta_K dx^K \in \Omega^{n-1}(\mathbb{R}^n)$ for which $d\theta = d\text{vol}_g$. From above, we have that

$$dvol_g = \det(e^j(\partial_{x^i}))dx^1 \wedge \dots \wedge dx^n.$$
 (1)

Recall that on \mathbb{R}^n , $d\theta$ can be written locally as

$$d\theta = \sum_{J}' \sum_{i=1}^{n} \frac{\partial \theta_{J}}{\partial x^{i}} dx^{i} \wedge dx^{j_{1}} \wedge \dots \wedge dx^{j_{n-1}}, \tag{2}$$

where \sum' means that we are summing over every such increasing multi-set (as in Lee). Furthermore, note that because each $\theta_J \in \mathbb{R}^n$ is independent of each other, we can set $J^* = \{2, 3, \dots, n\}$ and $\partial \theta_J / \partial_{x^i} \equiv 0$ for all $\sigma(n-1) \ni J \neq J^*$ and $i \neq 1$, and constructing the function $\theta_{J^*} = x^1$ so that $\partial \theta_{J^*} / \partial x^1 = \det(g_{ij}) = 1$, hence giving us

$$d\theta = \sum_{J \neq J^*}' \sum_{i \neq 1}^n \left(\frac{\partial \theta_J}{\partial x^i} dx^i \wedge dx^{j_1} \wedge \dots \wedge dx^{j_{n-1}} \right) + \frac{\partial \theta_{J^*}}{\partial x^1} dx^1 \wedge dx^2 \wedge \dots \wedge dx^n$$

$$= dx^1 \wedge dx^2 \wedge \dots \wedge dx^n. \tag{3}$$