

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C12Q 1/68

A2

(11) International Publication Number: WO 99/57322

(43) International Publication Date: 11 November 1999 (11.11.99)

(21) International Application Number: PCT/US99/09702

(22) International Filing Date: 4 May 1999 (04.05.99)

(30) Priority Data: 60/084,807 7 May 1998 (07.05.98) US

(71) Applicant: AXYS PHARMACEUTICALS, INC. [US/US]; 180 Kimball Way, South San Francisco, CA 94080 (US).

(72) Inventors: PENNY, Laura; 3903 Falcon Street, San Diego, CA 92103 (US). GALVIN, Margaret; 7768 Corte Promenade, Carlsbad, CA 92009 (US).

(74) Agent: FRANCIS, Carol, L.; Bozicevic, Field & Francis LLP, Suite 200, 285 Hamilton Avenue, Palo Alto, CA 94301 (US). (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GENOTYPING THE HUMAN UDP-GLUCURONOSYLTRANSFERASE 1 (UGT1) GENE

(57) Abstract

Genetic polymorphisms are identified in the human UGT1 gene that alter UGT1-dependent drug metabolism. Nucleic acids comprising the polymorphic sequences are used to screen patients for altered metabolism for UGT1 substrates, potential drug-drug interactions, and adverse/side effects, as well as diseases that result from environmental or occupational exposure to toxins. The nucleic acids are used to establish animal, cell and *in vitro* models for drug metabolism.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HŲ	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IŁ	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Келуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2	Emiliaswo
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

GENOTYPING THE HUMAN UDP-GLUCURONOSYLTRANSFERASE 1 (UGT1) GENE

INTRODUCTION

5

10

20

25

30

35

The metabolic processes commonly involved in the biotransformation of xenobiotics have been classified into functionalization reactions (phase I reactions), in which lipophilic compounds are modified via monooxygenation, dealkylation, reduction, aromatization, or hydrolysis. These modified molecules can then be substrates for the phase II reactions, often called conjugation reactions, as they conjugate a functional group with a polar, endogenous compound. Drug glucuronidation, a major phase II conjugation reaction in the mammalian detoxification system, is catalyzed by the UDP-glucuronosyltransferases (UGTs) (Batt AM, et al. (1994) Clin Chim Acta 226:171-190; Burchell et al. (1995) Life Sci. 57:1819-31).

The UGTs are a family of enzymes that catalyze the glucuronic acid conjugation of a wide range of endogenous and exogenous substrates including phenols, alcohols, amines and fatty acids. The reactions catalyzed by UGTs permit the conversion of a large range of toxic endogenous/xenobiotic compounds to more water-soluble forms for subsequent excretion (Parkinson A (1996) Toxicol Pathol 24:48-57).

The UGT isoenzymes are located primarily in hepatic endoplasmic reticulum and nuclear envelope (Parkinson A (1996) <u>Toxicol Pathol</u> **24**:48-57), though they are also expressed in other tissues such as kidney and skin. UGTs are encoded by a large multigene superfamily that has evolved to produce catalysts with differing but overlapping substrate specificities. Three families, UGT1, UGT2, and UGT8, have been identified within the superfamily. UGTs are assigned to one of the subfamilies based on amino acid sequence identity, e.g., UGT1 family members have greater than 45% amino acid sequence identity (Mackenzie et al. 1997) <u>Pharmacogenetics</u> **7**:255-69).

The UGT1 locus is located on chromosome 2q37, and contains at least 12 promoters/first exons, which are apparently able to splice with common exons 2 through 5, producing gene products having strikingly different N-terminal halves (amino acid sequence identities ranging from 24% to 49%), but identical C-terminal halves (Fig. 1). At least eight different isoenzymes are encoded by the UGT1 locus; at least one or more first exons encode pseudogenes. The different N-terminal halves encoded by the first exons confer different substrate binding specificities upon the UGT1 isoenzymes, while exons 2-5, which are present in all UGT1 isoenzyme mRNAs, encode the UDP-glucuronic acid binding domain, membrane anchorage site, and ER retention signal that are common to all UGT proteins (Ritter et al. (1992) J Biol Chem 267:3257-3261). UGT1 locus isoenzymes are

best known for their role in glucoronidation and metabolism of many substrates, including bilirubin (1A1, 1D1), planar and non-planar phenols, naphthols (1F1) (Ouzzine M, et al. (1994) <u>Arch Biochem Biophys</u> **310**:196-204), anthraquinones, flavones, aliphatic alcohols, aromatic carboxylic acids, and steroids (Ebner T, et al. (1993) <u>Drug Metab Dispos</u> **21**:50-55).

5

10

15

20

25

30

35

In addition to UGT1 exon usage, metabolism of endogenous and exogenous substrates can also be affected by competitive binding phenomena. For example, in some cases exogenous substrates for the UGT1 enzymes have a higher binding affinity or avidity for the enzyme than the endogenous UGT1 substrates. For example, UGT1*1, the major bilirubin-metabolizing form of UGT1, more readily binds both octyl-gallate and emodin than it binds bilirubin, thus indicating the potential of these xenobiotics to cause jaundice by inhibition of bilirubin binding to UGT1*1 (where 1*1 indicates that the first exon is used in the spliced gene product). UGT1*1 is also responsible for glucuronidation of the oral contraceptive ethinylestradiol (Ebner et al. (1993) Mol. Pharmacol. 43:649-54), and can also glucuronidate phenols, anthroquinones, flavones, and certain endogenous steroids.

As noted above, the first exon present in UGT1 can affect substrate binding specificity of the UGT1 gene product (for a review, see Burchell (1995) Life Sci. 57:1819-31). For example, UGT1*2 accepts a wide range of compounds as substrates including non-planar phenols, anthraquinones, flavones, aliphatic alcohols, aromatic carboxylic acids, steroids (4-hydroxyestrone, estrone) and many drugs of varied structure (Ebner et al. (1993) Drug. Metab. Disp. 21:50-5; Burchell (1995) Life Sci. 57:1819-31). In contrast, UGT1*6 exhibits only limited substrate specificity for planar phenolic compounds relative to other human UGTs.

Polymorphisms can markedly affect binding of the endogenous substrate, which can be manifested as clinical syndromes. At least two conditions, Crigler-Najjar syndrome and Gilbert syndrome, are associated with UGT1 polymorphisms. Both of these syndromes are hereditary and are associated with predominantly unconjugated hyperbilirubinemia. Crigler-Najjar syndrome is associated with intense, persistent jaundice which begins at birth. Some affected infants die in the first weeks or months of life with kernicterus; others survive with little or no neurologic defect. Crigler-Najjar syndrome is caused by a defect in the ability of UGT1 to catalyze UDP-glucuronidation of bilirubin, resulting in accumulation of bilirubin in the blood (Erps et al. (1994) J. Clin. Invest. 93:564-70). Gilbert syndrome is a benign mild form of unconjugated hyperbilirubinemia that is characterized by normal liver function tests, normal liver histology, delayed clearance of bilirubin from the blood, and mild jaundice that tends to fluctuate in severity. As with Crigler-Najjar syndrome, Gilbert

syndrome is associated with a defect in UGT1. Specific UGT polymorphisms that are known to be associated with disease are indicated in Fig. 1.

Alteration of the expression or function of UGTs may also affect drug metabolism. For example, there may be common polymorphisms in the human UGT1 gene that alter expression or function of the protein product and cause drug exposure-related phenotypes. Thus, there is a need in the field to identify UGT1 polymorphisms in order to provide a better understanding of drug metabolism and the diagnosis of drug exposure-related phenotypes.

10

15

20

25

30

35

RELEVANT LITERATURE

Genbank accession number M84122 provides UGT1 exon 2, M84123 provides exons 3 and 4, M84124 provides 5, M84125 provides exon 1A, M84127 provides exon 1C, M84128 provides exon 1D, M84129 provides exon 1E, M84130 provides exon 1F, U39570 provides exon 1G, U42604 provides exon 1H, U39550 provides exon 1J.

The UGT gene superfamily and recommended nomenclature for describing UGT genes and alleles are reviewed in Mackenzie et al. (1997) Pharmacogenet. **7**:255-69.

The two UGT1A6 genetic polymorphisms are described in Ciotti et al. (1997) <u>Am. J. Hum. Genet.</u> **61(Supp)**:A249. The identification of Asp446 as a critical residue in UGT1 is described in Iwano et al. (1997) <u>Biochem. J.</u> **325**:587-91.

A review of the substrate specificity of human UDP-glucuronosyltransferases is provided by Burchell et al. (1995) <u>Life Sci.</u> **57**:1819-31. For a review of drug glucoronidation in humans, see Miners et al. (1991) <u>Pharmacol. Ther.</u> **51**:347-69.

At least twelve UGT1A1 polymorphisms have been identified and linked to disease. These UGT1A1 alleles, each of described in OMIM Entry 191740 (at http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?191740) and in OMIM Entry 143500 (at http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?143500), include:

- 1) UGT1*FB (UGT1A1, 13-BP DEL, EX2; 191740.0001), which contains a 13 bp deletion in exon 2 and is associated with Crigler-Najjar syndrome type I (CN-I);
- 2) UGT1A1, EXON4, C-T, SER-PHE (191740.0002), which contains a C-to-T transition in exon 4 (resulting in an amino acid change from serine to phenylalanine) is associated with CN-I and deficiency of both bilirubin-UGT and phenol-UGT activities in the liver;
- 3) UGT1A1, GLN331TER (191740.0003), which contains a C-to-T transition 6 bp upstream from the 3-prime end of exon 2 of the common region (replacement of a glutamine codon with a stop codon), is associated with CN-I;

4) UGT1A1, ARG341TER (191740.0004), which contains a nonsense mutation (CGA-to-TGA) in exon 3 and is associated with CN-I and a total absence of all phenol/bilirubin UGT proteins and their activities in liver homogenate by enzymologic and immunochemical analysis;

- 5) UGT1A1, GLN331ART (191740.0005), which contains an A-to-G transition 5 bp upstream of the exon 2/intron 2 boundary (resulting in a glutamine-to-arginine substitution), is associated with Crigler-Najjar Syndrome, type II (CN-II);
- 6) UGT1A1, PHE170DEL (191740.0006), which contains a deletion of the phenylalanine codon at position 170 in exon 1, and is associated with CN-I;

5

10

15

20

25

30

35

- 7) UGT1A1, SER376PHE (191740.0007), which contains a C-to-T transition in codon 376 (resulting in a change of serine to phenylalanine) and is associated with CN-I;
- 8) UGT1A1, GLY309GLU (191740.0008), which contains a G-to-A transition in codon 309 (resulting in a glycine to glutamic acid change) and is associated with CN-I;
- 9) UGT1A1, NT840, C-A, CYS-TER (191740.0009), which contains a C-to-A transversion at base position 840 in exon 1 (resulting in replacing a cysteine with a stop codon), is associated with CN-I;
- 10) UGT1A1, PRO229GLN (191740.00010), which contains C-to-A transversion at nucleotide 686 (changing proline-229 to glutamine), is associated with Gilbert syndrome;
- 11) UGT1A1, 2-BP INS, TA INS, TATAA ELEMENT (191740.00011) contains 2 extra bases (TA) in the TATAA element of the 5-prime promoter region of the gene (where normally an A(TA)6TAA element is present between nucleotides -23 and -3) and is associated with Gilbert syndrome; and
- 12) UGT1A1, 1-BP INS, 470T INS (191740.00012), which contains 470insT mutation in exon 1 and is associated with CN-I.

SUMMARY OF THE INVENTION

Genetic sequence polymorphisms are identified in the UGT1 gene. Nucleic acids comprising the polymorphic sequences are used in screening assays, and for genotyping individuals. The genotyping information is used to predict an individuals' rate of metabolism for UGT1 substrates, potential drug-drug interactions, and adverse/side effects.

Accordingly, in one aspect the invention features an isolated nucleic acid molecule comprising a UGT1 sequence polymorphism of SEQ ID NOS:87-124, as part of other than a naturally occurring chromosome. In related aspects, the invention features nucleic acid probes for detection of UGT1 locus polymorphisms, where the probe comprises a polymorphic sequence of SEQ ID NOS:87-124.

In another aspect the invention features an array of oligonucleotides comprising two or more probes for detection of UGT1 locus polymorphisms, where the probes comprise at least one form of a polymorphic sequences of SEQ ID NOS:87-124.

In still another aspect, the invention features a method for detecting in an individual a polymorphism in UGT1 metabolism of a substrate, where the method comprises analyzing the genome of the individual for the presence of at least one UGT1 polymorphism of SEQ ID NOS:87-124; wherein the presence of the predisposing polymorphism is indicative of an alteration in UGT1 expression or activity.

5

10

15

20

30

35

In one embodiment, the analyzing step of the method is accomplished by detection of specific binding between the individual's genomic DNA with an array of oligonucleotides comprising two or more probes for detection of UGT1 locus polymorphisms, where the probes comprise at least one form of a polymorphic sequence of SEQ ID NOS:87-124.

In other embodiments of the method, the alteration is UGT1 expression or activity is tissue specific, or is in response to a UGT1 modifier. The UGT1 modifier may either induce or inhibit UGT1 expression.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic showing the UGT1 locus. Each of the first exons is denoted by both its alphabetic and numerical nomenclatures (e.g., 1A and 1.1).

Fig. 2 is a schematic showing exons 1A-1J of the UGT1 locus and the polymorphisms described in the present application.

Fig. 3 is a schematic showing the exons 1A-1F, and 2-5 of the UGT1 locus and the polymorphisms that have been publicly disclosed.

25 BRIEF DESCRIPTION OF THE SEQUENCE LISTING

UGT1 Reference Sequences. SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, and 15 are the UGT1 reference polynucleotide sequences for UGT1 exons 1A, 1C, 1D, 1E, 1F, 1G, 1H, and 1J. The polypeptide sequences are encoded by these reference exon sequences are SEQ ID NOS:2, 4, 6, 8, 12, 14, and 16. SEQ ID NOS: 17 and 18 are the reference polynucleotide and amino acid sequences for UGT1 exons 2-5.

PCR Primers. The primary and secondary PCR primers for amplification of polymorphic sequences are presented as SEQ ID NOS:19-50.

Sequencing Primers. The primers used in sequencing isolated polymorphic sequences are presented as SEQ ID NOS:51-86.

Polymorphisms. Polymorphic sequences of the invention are presented as SEQ ID NOS:88-124.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Pharmacogenetics is the linkage between an individual's genotype and that individual's ability to metabolize or react to a therapeutic agent. Differences in metabolism or target sensitivity can lead to severe toxicity or therapeutic failure by altering the relation between bioactive dose and blood concentration of the drug. Relationships between polymorphisms in metabolic enzymes or drug targets and both response and toxicity can be used to optimize therapeutic dose administration.

5

10

15

20

25

30

35

Genetic polymorphisms are identified in the UGT1 gene. Nucleic acids comprising the polymorphic sequences are used to screen patients for altered metabolism for UGT1 substrates, potential drug-drug interactions, and adverse/side effects, as well as diseases that result from environmental or occupational exposure to toxins. The nucleic acids are used to establish animal, cell culture and *in vitro* cell-free models for drug metabolism.

Definitions

It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, animal species or genera, constructs, and reagents described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

As used herein the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a construct" includes a plurality of such constructs and reference to "the UGT1 nucleic acid" includes reference to one or more nucleic acids and equivalents thereof known to those skilled in the art, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs unless clearly indicated otherwise.

art, and accessible in public databases, as cited above. This sequence is useful as a reference for the genomic location of the human gene, and for specific coding region sequences. As used herein, the term "UGT1 gene" is intended to refer to both the wild-type and variant sequences, unless specifically denoted otherwise. Nucleic acids of particular interest comprise the provided variant nucleotide sequence(s). For screening purposes, hybridization probes may be used where both polymorphic forms are present, either in separate reactions, or labeled such that they can be distinguished from each other. Assays may utilize nucleic acids that hybridize to one or more of the described polymorphisms.

The genomic UGT1 sequence is of particular interest. A polymorphic UGT1 gene sequence, *i.e.* including one or more of the provided polymorphisms, is useful for expression studies to determine the effect of the polymorphisms on enzymatic activity. The polymorphisms are also used as single nucleotide polymorphisms to detect genetic association with phenotypic variation in UGT1 activity and expression.

5

10

15

20

25

30

35

The UGT1 exon structure is illustrated in Fig. 1. The UGT1 locus contains at least 12 promoters/first exons, which are apparently able to splice with common exons 2 through 5, producing gene products having different N-terminal halves but identical C-terminal halves. The first exon utilized at least in part determines the substrate specificity of the resulting UGT1 gene product. Each of the first exons in Fig. 1 is denoted by both its alphabetic and numerical nomenclatures (e.g., 1A and 1.1). Polymorphisms in the UGT1 first exon can be associated with alteration of substrate binding specificity and/or disease. Fig. 2 shows UGT1 exons 1A-1J and the polymorphisms described in the present application. Fig. 3 shows UGT1 exons 1A-1F and 2-5 and the polymorphisms in these exons that have been publicly disclosed. Polymorphisms denoted by an asterisk (*) have been assigned the indicated "allele name" (e.g., *12). The specific associated disease is indicated below in parentheses for several of these disease-associated polymorphisms. Except for the "mutation" that is associated with Gilbert's (*28, which is not universally agreed upon in the literature), all mutations in exons 1D, 1A, and 2-5 were isolated from individuals with disease.

Fragments of the DNA sequence are obtained by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, etc. For the most part, DNA fragments will be of at least 15 nt, usually at least 20 nt, often at least 50 nt. Such small DNA fragments are useful as primers for PCR, hybridization screening, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide, promoter motifs, etc. For use in amplification reactions, such as PCR, a pair of primers will be used. The exact composition of primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art.

The UGT1 nucleic acid sequences are isolated and obtained in substantial purity, generally as other than an intact mammalian chromosome. Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include a UGT1 sequence or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant", i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

UGT1 polypeptides. The UGT1 genetic sequence, including polymorphisms, may be employed for synthesis of a complete UGT1 protein, or polypeptide fragments thereof, particularly fragments corresponding to functional domains; binding sites; *etc.*; and including fusions of the subject polypeptides to other proteins or parts thereof. For expression, an expression cassette may be employed, providing for a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. Various transcriptional initiation regions may be employed that are functional in the expression host. The polypeptides may be expressed in prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. Small peptides can also be synthesized in the laboratory.

5

10

15

20

25

30

35

Substrate. A substrate is a chemical entity that is modified by UGT1, usually under normal physiological conditions. Although the duration of drug action tends to be shortened by metabolic transformation, drug metabolism is not "detoxification". Frequently the metabolic product has greater biologic activity than the drug itself. In some cases the desirable pharmacologic actions are entirely attributable to metabolites, the administered drugs themselves being inert. Likewise, the toxic side effects of some drugs may be due in whole or in part to metabolic products.

Substrates can be either endogenous substrates (e.g., substrates normally found within the natural environment of UGT1, such as the bilirubin or other endobiotic compound) or exogenous (e.g., substrates that are not normally found within the natural environment of UGT1, such as ethinyl estradiol or other xenobiotic compound). Exemplary UGT1 substrates (i.e., substrates of wild-type UGT1 and/or UGT1 polypeptides encoded by UGT1 polymorphisms) include, but are not necessarily limited to endobiotics such as bilirubin, bilirubin monoglucoronide, bile acids, steroids, thyroxine, biogenic amines, fatsoluble vitamins, UDPGA, 17β estradiol, estriol, 2-hydroxy-estriol, T4,rT3, and the like; and xenobiotics such as hydroxylated polycyclic aromatic hydrocarbons, heterocyclics, carcinogens, plant metabolites, octyl gallate, ethinylestradiol, anthraflavic acid, quercetin, 1naphthol, naphthylamines, 4-aminobiphenyl, benzidine, imipamine, BP-3,6-quinol, 5hydroxy-BP, acetaminophen, vanillin, naproxen, 4-methylumbelliferone, monohalogenated phenols, propofol, 4t-pentylphenol, 4-hydroxybiphenyl, carvacrol, emodin, galangin, bulky phenols, carboxylic acids, 5-hydroxy 2AAF, 8-hydroxy 2AAF, and the like. Table 1 provides a summary of the major endobiotic and xenobiotic substrates, as well as exemplary nonsubstrates, of four UGT1 isoenzymes (UGT1*1 (same as UGT1A), UGT1*4 (same as

UGT1D), UGT1*6 (same as UGT1F), and UGT1*02 (same as UGT1G) (see Burchell et al. 91995) <u>Life Sci.</u> **57**:1819-31).

Table 1 Substrate Specificity of Human Liver UGT1 Isoenzymes

Isoenzyme	Endobiotic	Xenobiotic	Non-substrate
UGT1*1	Bilirubin (Km 24 μm) Bilirubin monoglucuronide UDPGA (Km 0.41 mM) 17β estradiol Estriol 2-hydrozy-estriol T4,rT3	Octyl gallate (Km 162 µm) Ethinylestradiol Anthraflavic acid Quercetin 1-naphthol	Gallic acid T3 Menthol Retinoic acid Clofibrate Morphine Propofol Testosterone
UGT1*4	Bilirubin?	Naphthylamines 4-aminobiphenyl Benzide Imipamine	Bilirubin? Carbamazepine
UGT1*6		1-Naphthol BP-3,6-quinol 5-hydroxy-BP Acetaminophen (Km 2 mM) Vanillin Naproxen 4-methylumbelliferone Monohalogenated phenols	4-Hydroxybiphenyl Propofol Galangin Emodin Morphine Estriol Estradiol AZT Menthol
UGT1*7	UDPGA (Km 0.41 mM) T4,rT3	Propofol (Km 172 µm) 4t-pentylphenol 4-hydroxybiphenyl Carvacrol Emodin Galangin Octyl gallate (Km 158 µM) Other bulky phenols Acetaminophen (Km 50 mM) Carboxylic acids (some) 5-hydroxy 2AAF 8-hydroxy 2AAF	Morphine Estriol Estradiol AZT Menthol Chloramphenicol Androsterone T3

10

15

5

Modifier. A modifier is a chemical agent that modulates the action of UGT1, either through altering its enzymatic activity (enzymatic modifier) or through modulation of expression (expression modifier, e.g., by affecting transcription or translation). In some cases the modifier may also be a substrate. For example, the UGT1 gene contains an electrophile responsive element (USPN 5,589,504); thus, compounds such as metabolites of planar aromatic compounds and phenolic antioxidants, as well as reactive oxygen species including peroxides would be expression modifiers via their effect on the

electrophile responsive element. Endogenous and exogenous inducers that are capable of inducing particular UGT activities include phenobarbital, dioxin, peroxisome proliferators, rifamicin, oral contraceptive drug, carbamazepine, cigarette smoke, cabbage, brussel sprouts, polycyclic/aromatic hydrocarbons, and derivatives of indole 3-carbonil (see Burchell et al. (1995), *supra*, Parkinson In: "Biotransformation of Xenobiotics." Chapter 6, Casarett & Doull's Toxicology, 5th Ed., C. Klaassen, ed.)).

5

10

15

20

25

30

35

Pharmacokinetic parameters. Pharmacokinetic parameters provide fundamental data for designing safe and effective dosage regimens. A drug's volume of distribution, clearance, and the derived parameter, half-life, are particularly important, as they determine the degree of fluctuation between a maximum and minimum plasma concentration during a dosage interval, the magnitude of steady state concentration and the time to reach steady state plasma concentration upon chronic dosing. Parameters derived from *in vivo* drug administration are useful in determining the clinical effect of a particular UGT1 genotype.

Expression assay. An assay to determine the effect of a sequence polymorphism on UGT1 expression. Expression assays may be performed in cell-free extracts, or by transforming cells with a suitable vector. Alterations in expression may occur in the basal level that is expressed in one or more cell types, or in the effect that an expression modifier has on the ability of the gene to be inhibited or induced. Expression levels of a variant alleles are compared by various methods known in the art. Methods for determining promoter or enhancer strength include quantitation of the expressed natural protein; insertion of the variant control element into a vector with a reporter gene such as β -galactosidase, luciferase, chloramphenicol acetyltransferase, *etc.* that provides for convenient quantitation; and the like.

Gel shift or electrophoretic mobility shift assay provides a simple and rapid method for detecting DNA-binding proteins (Ausubel, F.M. *et al.* (1989) In: Current Protocols in Molecular Biology, Vol. 2, John Wiley and Sons, New York). This method has been used widely in the study of sequence-specific DNA-binding proteins, such as transcription factors. The assay is based on the observation that complexes of protein and DNA migrate through a nondenaturing polyacrylamide gel more slowly than free DNA fragments or double-stranded oligonucleotides. The gel shift assay is performed by incubating a purified protein, or a complex mixture of proteins (such as nuclear or cell extract preparations), with an end-labeled DNA fragment containing the putative protein binding site. The reaction products are then analyzed on a nondenaturing polyacrylamide gel. The specificity of the DNA-binding protein for the putative binding site is established by competition experiments using DNA fragments or oligonucleotides containing a binding site for the protein of interest, or other unrelated DNA sequences.

Expression assays can be used to detect differences in expression of polymorphisms with respect to tissue specificity, expression level, or expression in response to exposure to various substrates, and/or timing of expression during development. For example, since UGT1A and UGT1E are expressed in liver, UGT1A and UGT1E polymorphisms could be evaluated for expression in tissues other than liver, or expression in liver tissue relative to a reference UGT1A or UGT1E polypeptide. Similarly, expression of polymorphisms in UGT1F, which is normally expressed in liver, kidney and skin, could be assayed in each of these tissues and the relative levels of expression compared to a reference UGT1F polypeptide.

5

10

15

20

25

30

35

Substrate screening assay. Substrate screening assays are used to determine the metabolic activity of a UGT1 protein or peptide fragment on a substrate. Many suitable assays are known in the art, including the use of primary or cultured cells, genetically modified cells (e.g., where DNA encoding the UGT1 polymorphism to be studied is introduced into the cell within an artificial construct), cell-free systems, e.g. microsomal preparations or recombinantly produced enzymes in a suitable buffer, or in animals, including human clinical trials (see, e.g., Burchell et al. (1995) Life Sci. 57:1819-1831, specifically incorporated herein by reference. Where genetically modified cells are used, since most cell lines do not express UGT1 activity (liver cells lines being the exception), introduction of artificial construct for expression of the UGT1 polymorphism into many human and non-human cell lines does not require additional modification of the host to inactivate endogenous UGT1 expression/activity. Clinical trials may monitor serum, urine, etc. levels of the substrate or its metabolite(s).

Typically a candidate substrate is input into the assay system, and the conversion to a metabolite is measured over time. The choice of detection system is determined by the substrate and the specific assay parameters. Assays are conventionally run, and will include negative and positive controls, varying concentrations of substrate and enzyme, etc.

Genotyping: UGT1 genotyping is performed by DNA or RNA sequence and/or hybridization analysis of any convenient sample from a patient, e.g. biopsy material, blood sample (serum, plasma, etc.), buccal cell sample, etc. A nucleic acid sample from an individual is analyzed for the presence of polymorphisms in UGT1, particularly those that affect the activity or expression of UGT1. Specific sequences of interest include any polymorphism that leads to changes in basal expression in one or more tissues, to changes in the modulation of UGT1 expression by modifiers, or alterations in UGT1 substrate specificity and/or activity.

Linkage Analysis: Diagnostic screening may be performed for polymorphisms that are genetically linked to a phenotypic variant in UGT1 activity or expression, particularly through the use of microsatellite markers or single nucleotide polymorphisms (SNP). The microsatellite or SNP polymorphism itself may not phenotypically expressed, but is linked to sequences that result in altered activity or expression. Two polymorphic variants may be in linkage disequilibrium, i.e. where alleles show non-random associations between genes even though individual loci are in Hardy-Weinberg equilibrium.

5

10

15

20

25

30

35

Linkage analysis may be performed alone, or in combination with direct detection of phenotypically evident polymorphisms. The use of microsatellite markers for genotyping is well documented. For examples, see Mansfield et al. (1994) <u>Genomics</u> **24**:225-233; and Ziegle et al. (1992) <u>Genomics</u> **14**:1026-1031. The use of SNPs for genotyping is illustrated in Underhill et al. (1996) <u>Proc Natl Acad Sci U S A</u> **93**:196-200.

Transgenic animals. The subject nucleic acids can be used to generate genetically modified non-human animals or site specific gene modifications in cell lines. The term "transgenic" is intended to encompass genetically modified animals having a deletion or other knock-out of UGT1 gene activity, having an exogenous UGT1 gene that is stably transmitted in the host cells, or having an exogenous UGT1 promoter operably linked to a reporter gene. Transgenic animals may be made through homologous recombination, where the UGT1 locus is altered. Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, and the like. Of interest are transgenic mammals, e.g. cows, pigs, goats, horses, etc., and particularly rodents, e.g. rats, mice, etc.

Genetically Modified Cells. Primary or cloned cells and cell lines are modified by the introduction of vectors comprising UGT1 gene polymorphisms. The gene may comprise one or more variant sequences, preferably a haplotype of commonly occurring combinations. In one embodiment of the invention, a panel of two or more genetically modified cell lines, each cell line comprising a UGT2B4 polymorphism, are provided for substrate and/or expression assays. The panel may further comprise cells genetically modified with other genetic sequences, including polymorphisms, particularly other sequences of interest for pharmacogenetic screening, e.g. UGT1, other UGT2 sequences, cytochrome oxidase polymorphisms, etc.

Vectors useful for introduction of the gene include plasmids and viral vectors, *e.g.* retroviral-based vectors, adenovirus vectors, *etc.* that are maintained transiently or stably in mammalian cells. A wide variety of vectors can be employed for transfection and/or

integration of the gene into the genome of the cells. Alternatively, micro-injection may be employed, fusion, or the like for introduction of genes into a suitable host cell.

Genotyping Methods

5

10

15

20

25

30

35

The effect of a polymorphism in the UGT1 gene sequence on the response to a particular substrate or modifier of UGT1 is determined by *in vitro* or *in vivo* assays. Such assays may include monitoring the metabolism of a substrate during clinical trials to determine the UGT1 enzymatic activity, specificity or expression level. Generally, *in vitro* assays are useful in determining the direct effect of a particular polymorphism, while clinical studies will also detect an enzyme phenotype that is genetically linked to a polymorphism.

The response of an individual to the substrate or modifier can then be predicted by determining the UGT1 genotype, with respect to the polymorphism. Where there is a differential distribution of a polymorphism by racial background, guidelines for drug administration can be generally tailored to a particular ethnic group.

The basal expression level in different tissue may be determined by analysis of tissue samples from individuals typed for the presence or absence of a specific polymorphism. Any convenient method may be use, e.g. ELISA, RIA, etc. for protein quantitation, northern blot or other hybridization analysis, quantitative RT-PCR, etc. for mRNA quantitation. The tissue specific expression is correlated with the genotype.

The alteration of UGT1 expression in response to a modifier is determined by administering or combining the candidate modifier with an expression system, *e.g.* animal, cell, *in vitro* transcription assay, etc. The effect of the modifier on UGT1 transcription and/or steady state mRNA levels is determined. As with the basal expression levels, tissue specific interactions are of interest. Correlations are made between the ability of an expression modifier to affect UGT1 activity, and the presence of the provided polymorphisms. A panel of different modifiers, cell types, etc. may be screened in order to determine the effect under a number of different conditions.

A UGT1 polymorphism that results in altered enzyme activity or specificity is determined by a variety of assays known in the art. The enzyme may be tested for metabolism of a substrate *in vitro*, for example in defined buffer, or in cell or subcellular lysates, where the ability of a substrate to be metabolized by UGT1 under physiologic conditions is determined. Where there are not significant issues of toxicity from the substrate or metabolite(s), *in vivo* human trials may be utilized, as previously described.

The genotype of an individual is determined with respect to the provided UGT1 gene polymorphisms. The genotype is useful for determining the presence of a phenotypically

evident polymorphism, and for determining the linkage of a polymorphism to phenotypic change.

5

10

15

20

25

30

35

A number of methods are available for analyzing nucleic acids for the presence of a specific sequence. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. The nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki et al. (1985) Science 230:1350-1354, and a review of current techniques may be found in Sambrook et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2–14.33. Amplification may be used to determine whether a polymorphism is present, by using a primer that is specific for the polymorphism. Alternatively, various methods are known in the art that utilize oligonucleotide ligation as a means of detecting polymorphisms, for examples see Riley et al. (1990) Nucleic Acids Res 18:2887-2890; and Delahunty et al. (1996) Am J Hum Genet 58:1239-1246.

A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. 32P, 35S, 3H; etc. The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.

The sample nucleic acid, e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, etc. The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in U.S. 5,445,934, or in WO95/35505, may also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), mismatch cleavage detection, and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively,

where a polymorphism creates or destroys a recognition site for a restriction endonuclease (restriction fragment length polymorphism, RFLP), the sample is digested with that endonuclease, and the products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels.

5

10

15

20

25

30

35

In one embodiment of the invention, an array of oligonucleotides are provided, where discrete positions on the array are complementary to one or more of the provided polymorphic sequences, e.g. oligonucleotides of at least 12 nt, frequently 20 nt, or larger, and including the sequence flanking the polymorphic position. Such an array may comprise a series of oligonucleotides, each of which can specifically hybridize to a different polymorphism. For examples of arrays, see Hacia et al. (1996) Nat Genet 14:441-447 and DeRisi et al. (1996) Nat Genet 14:457-460. Arrays of interest may further comprise sequences, including polymorphisms, of other genetic sequences, particularly other sequences of interest for pharmacogenetic screening, e.g. UGT1, other UGT2 sequences, cytochrome oxidase polymorphisms, etc.

The genotype information is used to predict the response of the individual to a particular UGT1 substrate or modifier. Where an expression modifier inhibits UGT1 expression, then drugs that are a UGT1 substrate will be metabolized more slowly if the modifier is co-administered. Where an expression modifier induces UGT1 expression, a co-administered substrate will typically be metabolized more rapidly. Similarly, changes in UGT1 activity will affect the metabolism of an administered drug. The pharmacokinetic effect of the interaction will depend on the metabolite that is produced, *e.g.* a prodrug is metabolized to an active form, a drug is metabolized to an inactive form, an environmental compound is metabolized to a toxin, *etc.* Consideration is given to the route of administration, drug-drug interactions, drug dosage, *etc.*

EXAMPLES

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g., amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.

EXAMPLE: IDENTIFICATION OF UGT1 POLYMORPHISMS

MATERIALS AND METHODS

5

DNA Samples. Blood specimens were collected from approximately 48 individuals after obtaining informed consent. All samples were stripped of personal identifiers to maintain confidentiality. Genomic DNA was isolated from these samples using standard techniques. Genomic DNA was stored either as a concentrated solution, or in a dried form in microtiter plates.

PCR amplifications. The primers used to amplify all exons are shown in Table 2, and were designed with NBI's Oligo version 5.0 program.

10	Table	e 2. PCR Primers. (Ex = Exon)	
	PRI	MARY PCR AMPLIFICATION	
	EX	FORWARD PRIMER	REVERSE PRIMER
	1A	TGGTGTATCGATTGGTTTT (SEQ ID NO:19)	CATATATCTGGGGCTAGTTAATC (SEQ ID NO:20)
	lC	ACAAGGTÄATTAAGATGAAGAAAGCA (SEQ ID NO:21)	ACCTGAGATAGTGGCTTCCT (SEQ ID NO:22)
15	1D	TTTGTCTTCCAATTACATGC (SEQ ID NO:23)	AGTAGATATGGAAGCACTTGTAAG (SEQ ID NO:24)
	lE	TCTCAGTGACAAGGTAATTAAGAC(SE Q ID NO:25)	CATTGATTGGATAAAGGCA (SEQ ID NO:26)
	1F	AATTTGGGTTCTTACATATCAA(SEQ ID NO:27)	GAGTGAGGGAGGACAGAG (SEQ ID NO:28)
	1G	ATAAGTACACGCCTTCTTTTG (SEQ ID NO:29)	GCTGCTTTATACAATTTGCTAC (SEQ ID NO:30)
	1H	CGCCTACGTATCATAGCAGTTA(SEQ ID NO:31)	GGAAAGAAATTTGAAATGCAAC (SEQ ID NO:32)
20	1J	TCTTTCCGCCTACTGTATCA (SEQ ID NO:33)	TTCAAGAAGGGCAGTTTTAT (SEQ ID NO:34)
	SEC	ONDARY PCR AMPLIFICATION	
	EX	FORWARD PRIMER	REVERSE PRIMER
	1A	CTCTGGCAGGAGCAAAG (SEQ ID NO:35)	ATACACACCTGGGATAGTGG (SEQ ID NO:36)
25	1C	GGTAATTAAGATGAAGAAAGCA(SEQ ID NO:37)	CTGAGATAGTGGCTTCCTG (SEQ ID NO:38)
	1D	GTGGCTCAATGACAAGG (SEQ ID NO:39)	ATATGGAAGCACTTGTAAGTAAA(SEQ ID NO:40)
	ΙE	TTAAGACGAAGGAAACAATTCT(SEQ ID NO:41)	ACCTGAGATAGTGGCTTCC (SEQ ID NO:42)
	1F	ATCAAAGGGTAAAATTCAGA (SEQ ID NO:43)	GGCAGTCCAAAAGAAATA (SEQ ID NO:44)
	1G	TTTTGAGGGCAGGTTCTA (SEQ ID NO:45)	AATGGGACAAATGTAAATGATA (SEQ ID NO:46)
30	lH	TTCTCTCATGGCTCGCA (SEQ ID NO:47)	ATGTCAAATCACAATTCAGTAAGG (SEQ ID NO:48)
	1J	CCGCCTACTGTATCATAGCA (SEQ ID NO:49)	CAACGAAATGTCAAATCACAG (SEQ ID NO:50)

Publicly available genomic sequences were used as references. Twenty-five nanograms of genomic DNA were amplified in the primary amplifications using the Perkin Elmer GeneAmp PCR kit according to the manufacturer's instructions in 25 µl reactions with AmpliTaq Gold DNA polymerase. Reactions contained 25 mM MgCl2 and 0.2 µM of each primer. Thermal cycling was performed using a GeneAmp PCR System 9600 PCR machine (Perkin Elmer), utilizing a touch-down PCR protocol. The protocol, unless indicated otherwise in Table 3, consisted of an initial incubation of 95°C for 10 min, followed by eight cycles of 95°C for 20 sec, 66°C (minus 1°C per cycle) for 15 sec, 72°C for 2 min, and twenty-seven cycles of 95°C for 20 sec, 54°C for 15 sec, 72°C for 2 min, and one final extension step of 72°C for 10 min.

For the secondary PCR reactions, one microliter of each primary PCR reaction was reamplified using the secondary PCR primers, also listed in Table 2. The thermal cycling profile that was used for the primary PCR for an exon was used for the secondary PCR.

15 Table 3. Cycling Profile Modifications

5

10

30

35

	Exon	Primary PCR	Secondary PCR
	1E	Touch-Down PCR step: 8 cycles	same as Primary PCR
		64 C (minus 1 C per cycle), for 15 sec	Ž
		Total Number of cycles: 35	
0.	1F	Touch-Down PCR step: 10 cycles	same as Primary PCR
		64 C (minus 1 C per cycle), for 15 sec	·
		Total Number of cycles: 35	
	1G	Touch-Down PCR step: 7 cycles	same as Primary PCR
		64 C (minus 1 C per cycle), for 15 sec	•
5		Total Number of cycles: 35	
	1H	Touch-Down PCR step: 10 cycles	same as Primary PCR
		66 C (minus 1 C per cycle), for 15 sec	•
		Total Number of cycles: 35	

DNA sequencing. PCR products from 48 individuals, approximately one-third representing each of the 3 major racial groups (see above), were prepared for sequencing by treating 8 μ L of each PCR product with 0.15 μ L of exonuclease I (1.5 U/reaction), 0.3 μ L of Shrimp Alkaline Phosphatase (0.3 U/reaction), q.s. to 10 μ L with MilliQ water, and incubated at 37°C for 15 min, followed by 72°C for 15 min. Cycle sequencing was performed on the GeneAmp PCR System 9600 PCR machine (Perkin Elmer) using the ABI Prism dRhodamine Terminator Cycle Sequencing Ready Reaction Kit according to the manufacturer's directions, with the following changes: (1) 2 μ L of dRhodamine terminator premix, instead of 8 μ L; and (2) 10% (v/v) Dimethylsulfoxide was added to each individual

nucleotide. The oligonucleotide primers (unlabeled), at 3 picomoles per reaction, used for the sequencing reactions are listed in Table 4. Sequencing reactions, with a final volume of 5 μ L, were subjected to 30 cycles at 96°C for 20 sec, 50°C for 5 sec, and 60°C for 4 min, followed by ethanol precipitation. After decanting the ethanol, samples were evaporated to dryness using a SpeedVac for roughly 15 min and were resuspended in 2 μ l of loading buffer (5:1 deionized formamide:50 mM EDTA pH 8.0). The samples were then, heated to 94°C for 2 min, and electrophoresed through 5.25% polyacrylamide/6M urea gels in an ABI Prism 377 DNA Sequencer according to the manufacturer's instructions for sequence determination. All sequences were determined from both the 5' and 3' (sense and antisense) direction.

5

10

Of the forty-eight samples, 38 polymorphisms were identified. The polymorphisms are described in Table 5 below.

Table 4. Sequencing Primers (No. = Polymorphism No.) No. FORWARD PRIMER REVERSE PRIMER 1 CTCTGGCAGGAGCAAAG (SEQ ID NO:51) ACAGTGGGCAGAGACAG (SEQ ID NO:52) 2 GTGGTTTATTCCCCGTAT (SEQ ID NO:53) ATACACACCTGGGATAGTGG (SEQ ID NO:54) 5 3-5 GGTAATTAAGATGAAGAAAGCA (SEQ GAAATGGCATAGGTTGTC (SEQ ID ID NO:55) NO:56) 6 GGCCACACTCAACTGTA (SEQ ID NO:57) CTCAAAAAAACACAGTAGG (SEQ ID NO:58) 7,8 ACTTTTCTGCCCCTTAT (SEQ ID NO:59) ATATGGAAGCACTTGTAAGTAAA (SEQ ID NO:60) 9-12 TTAAGACGAAGGAAACAATTCT (SEQ ID AATGGCATACGTTGTCA (SEQ ID NO:62) NO:61) AGAATGGCAATTATGAACA (SEO ID. 13,14 TGTGTGCCCTTAAAGTCT (SEQ ID NO:63) NO:64) 10 AGAATGGCAATTATGAACA (SEQ ID 15-17 ACCTGAGATAGTGGCTTCC (SEQ ID NO:65) NO:66) 18-24 CTCTGGC T CTGTCCTAC* (SEQ ID ACCTGAGATAGTGGCTTCC (SEQ ID NO:67) NO:68) 25 ATCAAAGGGTAAAATTCAGA (SEQ ID CAGCAGCTTGTCACCTAC (SEQ ID NO:69) NO:70) 26 AATTTGCTTTTGAAAGAATC (SEQ ID GGTAGGCCCAAATACTCA (SEQ ID NO:71) NO:72) 27,28 AATTTGCTTTTGAAAGAATC (SEO ID GGCAGTCCAAAAGAAATA (SEQ ID NO:73) NO:74) 15 29,30 TTTTGAGGGCAGGTTCTA (SEQ ID CACCTCTGGCATGACTAC (SEQ ID NO:75) NO:76) TTGCAGGAGTTTGTTTAAT (SEQ ID 31,32 AATGGGACAAATGTAAATGATA (SEQ

ID NO:78)

ID NO:82)

NO:80)

NO:84)

CATCTGAGAACCCTAAGAGA (SEQ ID

ATGTCAAATCACAATTCAGTAAGG(SEQ

GAGTGTACGAGGTTGAGTAAG (SEQ ID

CAACGAAATGTCAAATCACAG (SEQ ID

NO:77)

NO:79)

NO:81)

NO:83)

NO:85)

33

34

35

36-38

20

CATTGCAGGAGTTTGTTTA (SEQ ID

AGAAATAGCCTCTGAAATTC (SEQ ID

CCGCCTACTGTATCATAGCA (SEQ ID

ATTTTGCCAGTATCTTTTTAG (SEO ID

NO:86) Note polymorphism in primer. The reference sequence has a "C" at the highlighted position.

Table 5. UGT1 polymorphisms. Amino acid changes numbered from first methionine for that exon (Ex).

		CAUII	(-/).		•
	No	Ex	Ntd	AA	SEQUENCE (SEQ ID NO:)
	1	lA	G 227 A	Gly 71 Arg	CATCAGAGAC <u>A</u> GAGCATTTTACACCTT(SEQ ID NO:87)
5	2	lA	T 765 C	Ser 251 Pro	GGACCTATTGAGC C CTGCATCTGTCT (SEQ ID NO:88)
	3	1C	T 75 C	Trp 11 Arg	GGTTCCCCTGCCG C GGCTGGCCACA (SEQ ID NO:89)
	4	1C	G 125 A		GCCCTGGGCTGA A AGTGGAAAG (SEQ ID NO:90)
	5	1C	T 184 C	Val 47 Ala	ATGCGGGAGG CTTGCGGGAGCT (SEQ ID NO:91)
	6	1C	A 521 G		CTCTGCGCGGC G GTGCTGGCTAAG (SEQ ID NO:92)
10	7	1D	G 848 A		TACCCCAGGCC A ATCATGCCCAACA (SEQ ID NO:93)
	8	1D	C 43 T	Intronic	TCCAGGCAAAA <u>T</u> ACTTTTTAAAAAATG(SEQ ID NO:94)
	9	1E	T 187 C	Leu 48 Ser	AGCATGCGGGAGGCCT C GCGGGA (SEQ ID NO:95)
	10	ΙE	C 194 G	Asp 58 Glu	GCGGGA G CTCCATGCGAGAGG (SEQ ID NO:96)
	11	1E	T 232 C	Leu 63 Pro	TGGTGGTCCTCACCC C GGAGGTGAA (SEQ ID NO:97)
15	12	1E	A 257 G		TACATCAAAGA <u>G</u> GAGAACTTTTTCAC (SEQ ID NO:98)
	13	1E	C 468 A	His 142 Asn	TGATCAGGCACCTG A ATGCTACTTCC (SEQ ID NO:99)
	14	1E	C 517 G	Ala 158 Gly	ACCTCTGCG G GGCGGTGCTGG (SEQ ID NO:100)
	15	1E	C 689 T		AAGAACATGCT T TACCCTCTGGC (SEQ ID NO:101)
	16	ΙE	C 701 T		CTCTGGC T CTGTCCTACC (SEQ ID NO:102)
20	17	1E	C 717 T		TCCTACCTTTGC T ATGCTGTTTCT (SEQ ID NO:103)
	18	1E	C 786 A	Leu 248 Ile	TGTCAGTGGTGGAT A TT (SEQ ID NO:104)
	19	1E	G 789 C	Val 249 Leu	GGTGGAT A TT C* TCAGC (SEQ ID NO:105)
	20	1E	C 795 T	His 251 Tyr	TCAGC T ATGCATC (SEQ ID NO:106)
	21	1E	T 803 C	Ser 253 Phe	GCATC C GTGTGGCTGTTCCGA (SEQ ID NO:107)
25	22	1E	G 819 C	Gly 259 Arg	TGGCTGTTCCGA C GGGACTT (SEQ ID NO:108)
	23	1E	T 827 C		GGGACTT C GTGATGGA (SEQ ID NO:109)
	24	ΙE	T 836 C		GTGATGGA C TACCCCAGGCCGAT (SEQ ID NO:110)
	25	1 F	T 161 G	Ser 7 Ala	CCTGCCTCCTTCGC G CATTTCAGAG (SEQ ID NO:111)
	26	lF	A 457 G		GCGATCATTCCT G ACTGCTCCTCAG (SEQ ID NO:112)
30	27	1 F	A 683 G	Thr 181 Ala	CCCTGGAGCAT G CATTCAGCAG (SEQ ID NO:113)
	28	1F	A 694 C	Arg 184 Ser	CATTCAGCAG C AGCCCAGACCCT (SEQ ID NO:114)
	29	1G	T 35 G		TACTTCTTCCAC G TACTATATTA (SEQ ID NO:115)
	30	1G	C 124 A		GGCCTCCTTCC A CTATATGTGTGT (SEQ ID NO:116)
	31	1G	T 712 C	Trp 208 Arg	GGAGAGAGTA C GGAACCACAT (SEQ ID NO:117)
35	32	1G	G 846 A		TCAATTTGGTT A TTGCGAACTGA (SEQ ID NO:118)
	33	1H	G 518 C	Gly 173 Ala	CAGGGGAATAG C TTGCCACTAT (SEQ ID NO:119)
	34	1H	A 765 G		TGTTGCGAAC G GACTTTGTTTTGG (SEQ ID NO:120)
	35	IJ	G 127 A		TTCACCAGCA A TCGGTGGTGG (SEQ ID NO:121)
	36	1 J	C 694 T		CTAGAAATAGC T TCTGAAATTCTCC (SEQ ID NO:122)
40	37	1J	C 731 A	Leu 244 Ile	CGGCATATGAT A TCTACAGTCACA (SEQ ID NO:123)
	38	IJ	T 761 C	Arg 254 Stop	TCAATTTGGTTG C TGCGAACAGGAC (SEO JD NO:124)
		The	e asterisk a	ssociated with	the second nucleotide residue in polymorphism no. 19

is in the sequence surrounding the newly discovered polymorphism at residue 789 (nucleotide change from C at residue 786 to A).

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

10

What is Claimed is:

5

20

25

1. An isolated nucleic acid molecule comprising a UGT1 sequence polymorphism of SEQ ID NOS: 87-124, as part of other than a naturally occurring chromosome.

- 2. A nucleic acid probe for detection of UGT1 locus polymorphisms, comprising a polymorphic sequence of SEQ ID NOS:87-124.
- 10 3. A nucleic acid probe according to Claim 2, wherein said probe is conjugated to a detectable marker.
 - An array of oligonucleotides comprising:

two or more probes for detection of UGT1 locus polymorphisms, said probes comprising at least one form of a polymorphic sequences of SEQ ID NOS:87-124.

5. A method for detecting in an individual a polymorphism in UGT1 metabolism of a substrate, the method comprising:

analyzing the genome of said individual for the presence of at least one UGT1 polymorphism of SEQ ID NOS:87-124; wherein the presence of said predisposing polymorphism is indicative of an alteration in UGT1 expression or activity.

6. A method according to Claim 5, wherein said analyzing step comprises detection of specific binding between the genomic DNA of said individual with an array of oligonucleotides comprising:

two or more probes for detection of UGT1 locus polymorphisms, said probes comprising at least one form of a polymorphic sequence of SEQ ID NOS:87-124.

- A method according to Claim 5, wherein said alteration in UGT1 expression
 is tissue specific.
 - 8. A method according to Claim 5, wherein said alteration in UGT1 expression is in response to a UGT1 modifier.
- 9. A method according to Claim 8, wherein said modifier induces UGT1 expression.

10. A method according to Claim 8, wherein said modifier inhibits UGT1 expression.

<u>H</u>

FIG. 2

SEQUENCE LISTING

<110> Penny, Laura Galvin, Margaret <120> Genotyping the Human UDP-Glucuronosyltransferase 1 (UGT1) Gene <130> SEQ-17WO <140> Unassigned <141> 1999-05-04 <150> 60/084,807 <151> 1998-05-07 <160> 124 <170> FastSEQ for Windows Version 3.0 <210> 1 <211> 864 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)...(864) <400> 1 atg gct gtg gag tcc cag ggc gga cgc cca ctt gtc ctg ggc ctg ctg 48 Met Ala Val Glu Ser Gln Gly Gly Arg Pro Leu Val Leu Gly Leu Leu 10 ctg tgt gtg ctg ggc cca gtg gtg tcc cat gct ggg aag ata ctg ttg 96 Leu Cys Val Leu Gly Pro Val Val Ser His Ala Gly Lys Ile Leu Leu 20 30 atc cca gtg gat ggc agc cac tgg ctg agc atg ctt ggg gcc atc cag 144 Ile Pro Val Asp Gly Ser His Trp Leu Ser Met Leu Gly Ala Ile Gln cag ctg cag agg gga cat gaa ata gtt gtc cta gca cct gac gcc 192 Gln Leu Gln Gln Arg Gly His Glu Ile Val Val Leu Ala Pro Asp Ala 50 tcg ttg tac atc aga gac gga gca ttt tac acc ttg aag acg tac cct 240 Ser Leu Tyr Ile Arg Asp Gly Ala Phe Tyr Thr Leu Lys Thr Tyr Pro gtg cca ttc caa agg gag gat gtg aaa gag tct ttt gtt agt ctc ggg 288 Val Pro Phe Gln Arg Glu Asp Val Lys Glu Ser Phe Val Ser Leu Gly 85 cat aat gtt ttt gag aat gat tct ttc ctg cag cgt gtg atc aaa aca 336 His Asn Val Phe Glu Asn Asp Ser Phe Leu Gln Arg Val Ile Lys Thr 100 tac aag aaa ata aaa aag gac tot got atg ott ttg tot ggo tgt too 384 Tyr Lys Lys Ile Lys Lys Asp Ser Ala Met Leu Leu Ser Gly Cys Ser 115 120

cac His	tta Leu 130	ctg Leu	cac His	aac Asn	aag Lys	gag Glu 135	ctc Leu	atg Met	gcc Ala	tcc Ser	ctg Leu 140	Ala	gaa Glu	agc Ser	agc Ser	432
ttt Phe 145	Asp	gtc Val	atg Met	ctg Leu	acg Thr 150	Asp	cct Pro	ttc Phe	ctt Leu	cct Pro 155	tgc Cys	agc Ser	ccc Pro	atc Ile	gtg Val 160	480
gcc Ala	cag Gln	tac Tyr	ctg Leu	tct Ser 165	ctg Leu	ccc Pro	act Thr	gta Val	ttc Phe 170	ttc Phe	ttg Leu	cat His	gca Ala	ctg Leu 175	cca Pro	528
tgc Cys	agc Ser	ctg Leu	gaa Glu 180	ttt Phe	gag Glu	gct Ala	acc Thr	cag Gln 185	tgc Cys	ccc Pro	aac Asn	cca Pro	ttc Phe 190	tcc Ser	tac Tyr	576
gtg Val	ccc Pro	agg Arg 195	cct Pro	ctc Leu	tcc Ser	tct Ser	cat His 200	tca Ser	gat Asp	cac His	atg Met	acc Thr 205	ttc Phe	ctg Leu	cag Gln	624
cgg Arg	gtg Val 210	aag Lys	aac Asn	atg Met	ctc Leu	att Ile 215	gcc Ala	ttt Phe	tca Ser	cag Gln	aac Asn 220	ttt Phe	ctg Leu	tgc Cys	gac Asp	672
gtg Val 225	gtt Val	tat Tyr	tcc Ser	ccg Pro	tat Tyr 230	gca Ala	acc Thr	ctt Leu	gcc Ala	tca Ser 235	gaa Glu	ttc Phe	ctt Leu	cag Gln	aga Arg 240	720
gag Glu	gtg Val	act Thr	gtc Val	cag Gln 245	gac Asp	cta Leu	ttg Leu	agc Ser	tct Ser 250	gca Ala	tct Ser	gtc Val	tgg Trp	ctg Leu 255	ttt Phe	768
aga Arg	agt Ser	gac Asp	ttt Phe 260	gtg Val	aag Lys	gat Asp	tac Tyr	cct Pro 265	agg Arg	ccc Pro	atc Ile	atg Met	ccc Pro 270	aat Asn	atg Met	816
gtt Val	ttt Phe	gtt Val 275	ggt Gly	gga Gly	atc Ile	aac Asn	tgc Cys 280	ctt Leu	cac His	caa Gln	Asn	cca Pro 285	cta Leu	tcc Ser	cag Gln	864

<210> 2

<211> 288

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Val Glu Ser Gln Gly Gly Arg Pro Leu Val Leu Gly Leu Leu Leu Cys Val Leu Gly Pro Val Val Ser His Ala Gly Lys Ile Leu Leu 25 Ile Pro Val Asp Gly Ser His Trp Leu Ser Met Leu Gly Ala Ile Gln 40 Gln Leu Gln Gln Arg Gly His Glu Ile Val Val Leu Ala Pro Asp Ala 55 Ser Leu Tyr Ile Arg Asp Gly Ala Phe Tyr Thr Leu Lys Thr Tyr Pro 70 75 Val Pro Phe Gln Arg Glu Asp Val Lys Glu Ser Phe Val Ser Leu Gly 90 His Asn Val Phe Glu Asn Asp Ser Phe Leu Gln Arg Val Ile Lys Thr 105 110 Tyr Lys Lys Ile Lys Lys Asp Ser Ala Met Leu Leu Ser Gly Cys Ser 115 120

His Leu Leu His Asn Lys Glu Leu Met Ala Ser Leu Ala Glu Ser Ser Phe Asp Val Met Leu Thr Asp Pro Phe Leu Pro Cys Ser Pro Ile Val 150 155 Ala Gln Tyr Leu Ser Leu Pro Thr Val Phe Phe Leu His Ala Leu Pro 165 170 Cys Ser Leu Glu Phe Glu Ala Thr Gln Cys Pro Asn Pro Phe Ser Tyr 185 Val Pro Arg Pro Leu Ser Ser His Ser Asp His Met Thr Phe Leu Gln 200 Arg Val Lys Asn Met Leu Ile Ala Phe Ser Gln Asn Phe Leu Cys Asp 215 Val Val Tyr Ser Pro Tyr Ala Thr Leu Ala Ser Glu Phe Leu Gln Arg 230 235 Glu Val Thr Val Gln Asp Leu Leu Ser Ser Ala Ser Val Trp Leu Phe 245 250 Arg Ser Asp Phe Val Lys Asp Tyr Pro Arg Pro Ile Met Pro Asn Met 265 Val Phe Val Gly Gly Ile Asn Cys Leu His Gln Asn Pro Leu Ser Gln <210> 3 <211> 867 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1) ... (867) <400> 3 atg gcc aca gga ctc cag gtt ccc ctg ccg tgg ctg gcc aca gga ctg 48 Met Ala Thr Gly Leu Gln Val Pro Leu Pro Trp Leu Ala Thr Gly Leu 10 ctg ctt ctc ctc agt gtc cag ccc tgg gct gag agt gga aag gtg ttg 96 Leu Leu Leu Ser Val Gln Pro Trp Ala Glu Ser Gly Lys Val Leu gtg gtg ccc att gat ggc agc cac tgg ctc agc atg cgg gag gtc ttg 144 Val Val Pro Ile Asp Gly Ser His Trp Leu Ser Met Arg Glu Val Leu egg gag etc cat gee aga gge cae cag gea gtg gte etc ace eca gag 192 Arg Glu Leu His Ala Arg Gly His Gln Ala Val Val Leu Thr Pro Glu gtg aat atg cac atc aaa gaa gag aac ttt ttc acc ctg aca acc tat 240 Val Asn Met His Ile Lys Glu Glu Asn Phe Phe Thr Leu Thr Thr Tyr gcc att tcg tgg acc cag gat gaa ttt gat cgc cat gtg ctg ggc cac 288 Ala Ile Ser Trp Thr Gln Asp Glu Phe Asp Arg His Val Leu Gly His act caa ctg tac ttt gaa aca gaa cat ttt ctg aag aaa ttt ttc aga 336 Thr Gln Leu Tyr Phe Glu Thr Glu His Phe Leu Lys Lys Phe Phe Arg agt atg gca atg ttg aac aat atg tct ttg gtc tat cat agg tct tgt 384 Ser Met Ala Met Leu Asn Asn Met Ser Leu Val Tyr His Arg Ser Cys 120

		_												- '		
gtg Val	gag Glu 130	cta Leu	cta Leu	cat His	aat Asn	gag Glu 135	gcc Ala	ctg Leu	atc Ile	agg Arg	cac His 140	ctg Leu	aat Asn	gct Ala	act Thr	432
tcc Ser 145	Phe	gat Asp	gtg Val	gtt Val	tta Leu 150	aca Thr	gac Asp	ccc Pro	gtt Val	aac Asn 155	ctc Leu	tgc Cys	gcg Ala	gca Ala	gtg Val 160	480
ctg Leu	gct Ala	aag Lys	tac Tyr	ctg Leu 165	tcg Ser	att Ile	cct Pro	act Thr	gtg Val 170	ttt Phe	ttt Phe	ttg Leu	agg Arg	aac Asn 175	att Ile	528
cca Pro	tgt Cys	gat Asp	tta Leu 180	gac Asp	ttt Phe	aag Lys	ggc Gly	aca Thr 185	cag Gln	tgt Cys	cca Pro	aac Asn	cct Pro 190	tcc Ser	tcc Ser	576
tat Tyr	att Ile	cct Pro 195	aga Arg	tta Leu	cta Leu	aca Thr	acc Thr 200	aat Asn	tca Ser	gac Asp	cac His	atg Met 205	aca Thr	ttc Phe	atg Met	624
caa Gln	agg Arg 210	gtc Val	aag Lys	aac Asn	atg Met	ctc Leu 215	tac Tyr	cct Pro	ctg Leu	gcc Ala	ctg Leu 220	tcc Ser	tac Tyr	att Ile	tgc Cys	672
cat His 225	gct Ala	ttt Phe	tct Ser	gct Ala	cct Pro 230	tat Tyr	gca Ala	agc Ser	ctt Leu	gcc Ala 235	tct Ser	gag Glu	ctt Leu	ttt Phe	cag Gln 240	720
aga Arg	gag Glu	gtg Val	tca Ser	gtg Val 245	gtg Val	gat Asp	att Ile	ctc Leu	agt Ser 250	cat His	gca Ala	tct Ser	gtg Val	tgg Trp 255	ctg Leu	768
ttc Phe	cga Arg	ggg Gly	gac Asp 260	ttt Phe	gtg Val	atg Met	gac Asp	tac Tyr 265	ccc Pro	agg Arg	cca Pro	atc Ile	atg Met 270	ccc Pro	aac Asn	816
atg Met	gtc Val	ttc Phe 275	att Ile	ggg Gly	ggc Gly	atc Ile	aac Asn 280	tgt Cys	gcc Ala	aac Asn	agg Arg	aag Lys 285	cca Pro	cta Leu	tct Ser	864
cag Gln								٠.								867

<210> 4 <211> 289 <212> PRT

<213> Homo sapiens

<400> 4

Met Ala Thr Gly Leu Gln Val Pro Leu Pro Trp Leu Ala Thr Gly Leu 10 Leu Leu Leu Ser Val Gln Pro Trp Ala Glu Ser Gly Lys Val Leu 20 25 30 Val Val Pro Ile Asp Gly Ser His Trp Leu Ser Met Arg Glu Val Leu 35 40 45 Arg Glu Leu His Ala Arg Gly His Gln Ala Val Val Leu Thr Pro Glu 55 60 Val Asn Met His Ile Lys Glu Glu Asn Phe Phe Thr Leu Thr Tyr 65 70 75 80 Ala Ile Ser Trp Thr Gln Asp Glu Phe Asp Arg His Val Leu Gly His 90

-4-

Thr Gln Leu Tyr Phe Glu Thr Glu His Phe Leu Lys Lys Phe Phe Arg 100 105 Ser Met Ala Met Leu Asn Asn Met Ser Leu Val Tyr His Arg Ser Cys 120 Val Glu Leu Leu His Asn Glu Ala Leu Ile Arg His Leu Asn Ala Thr 135 140 Ser Phe Asp Val Val Leu Thr Asp Pro Val Asn Leu Cys Ala Ala Val 150 155 Leu Ala Lys Tyr Leu Ser Ile Pro Thr Val Phe Phe Leu Arg Asn Ile 165 170 Pro Cys Asp Leu Asp Phe Lys Gly Thr Gln Cys Pro Asn Pro Ser Ser 180 185 Tyr Ile Pro Arg Leu Leu Thr Thr Asn Ser Asp His Met Thr Phe Met 200 Gln Arg Val Lys Asn Met Leu Tyr Pro Leu Ala Leu Ser Tyr Ile Cys 215 220 His Ala Phe Ser Ala Pro Tyr Ala Ser Leu Ala Ser Glu Leu Phe Gln 230 235 Arg Glu Val Ser Val Val Asp Ile Leu Ser His Ala Ser Val Trp Leu 245 250 Phe Arg Gly Asp Phe Val Met Asp Tyr Pro Arg Pro Ile Met Pro Asn 265 270 Met Val Phe Ile Gly Gly Ile Asn Cys Ala Asn Arg Lys Pro Leu Ser Gln <210> 5 <211> 867 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)...(867) <400> 5 atg gcc aga gga ctc cag gtt ccc ctg ccg cgg ctg gcc aca gga ctg 48 Met Ala Arg Gly Leu Gln Val Pro Leu Pro Arg Leu Ala Thr Gly Leu 10 ctg ctc ctc ctc agt gtc cag ccc tgg gct gag agt gga aag gtg ttg 96 Leu Leu Leu Ser Val Gln Pro Trp Ala Glu Ser Gly Lys Val Leu gtg gtg ccc act gat ggc agc ccc tgg ctc agc atg cgg gag gcc ttg 144 Val Val Pro Thr Asp Gly Ser Pro Trp Leu Ser Met Arg Glu Ala Leu cgg gag ctc cat gcc aga ggc cac cag gcg gtg gtc ctc acc cca gag 192 Arg Glu Leu His Ala Arg Gly His Gln Ala Val Val Leu Thr Pro Glu 55 gtg aat atg cac atc aaa gaa gag aaa ttt ttc acc ctg aca gcc tat 240 Val Asn Met His Ile Lys Glu Glu Lys Phe Phe Thr Leu Thr Ala Tyr 75 gct gtt cca tgg acc cag aag gaa ttt gat cgc gtt acg ctg ggc tac 288 Ala Val Pro Trp Thr Gln Lys Glu Phe Asp Arg Val Thr Leu Gly Tyr act caa ggg ttc ttt gaa aca gaa cat ctt ctg aag aga tat tct aga 336 Thr Gln Gly Phe Phe Glu Thr Glu His Leu Leu Lys Arg Tyr Ser Arg 105

agt Ser	atg Met	gca Ala 115	11e	atg Met	aac Asn	aat Asn	gta Val 120	Ser	ttg Leu	gcc Ala	ctt Leu	cat His 125	Arg	tgt Cys	tgt Cys	384
gtg Val	gag Glu 130	cta Leu	ctg Leu	cat His	aat Asn	gag Glu 135	gcc Ala	ctg Leu	atc Ile	agg Arg	cac His 140	Leu	aat Asn	gct Ala	act Thr	432
tcc Ser 145	Pne	gat Asp	gtg Val	gtt Val	tta Leu 150	aca Thr	gac Asp	ccc Pro	gtt Val	aac Asn 155	ctc Leu	tgt Cys	Gly ggg	gcg Ala	gtg Val 160	480
ctg Leu	gct Ala	aag Lys	tac Tyr	ctg Leu 165	tcg Ser	att Ile	cct Pro	gct Ala	gtg Val 170	ttt Phe	ttt Phe	tgg Trp	agg Arg	tac Tyr 175	att Ile	528
cca Pro	tgt Cys	gac Asp	tta Leu 180	gac Asp	ttt Phe	aag Lys	ggc	aca Thr 185	cag Gln	tgt Cys	cca Pro	aat Asn	cct Pro 190	tcc Ser	tcc Ser	576
tat Tyr	att Ile	cct Pro 195	aag Lys	tta Leu	cta Leu	acg Thr	acc Thr 200	aat Asn	tca Ser	gac Asp	cac His	atg Met 205	aca Thr	ttc Phe	ctg Leu	624
caa Gln	agg Arg 210	gtc Val	aag Lys	aac Asn	atg Met	ctc Leu 215	tac Tyr	cct Pro	ctg Leu	gcc Ala	ctg Leu 220	tcc Ser	tac Tyr	att Ile	tgc Cys	672
cat His 225	act Thr	ttt Phe	tct Ser	gcc Ala	cct Pro 230	tat Tyr	gca Ala	agt Ser	ctt Leu	gcc Ala 235	tct Ser	gag Glu	ctt Leu	ttt Phe	cag Gln 240	720
aga Arg	gag Glu	gtg Val	tca Ser	gtg Val 245	gtg Val	gat Asp	ctt Leu	gtc Val	agc Ser 250	tat Tyr	gca Ala	tcc Ser	gtg Val	tgg Trp 255	ctg Leu	768
ttc Phe	cga Arg	ggg Gly	gac Asp 260	ttt Phe	gtg Val	atg Met	gac Asp	tac Tyr 265	ecc Pro	agg Arg	ccg Pro	atc Ile	atg Met 270	ccc Pro	aac Asn	816
atg Met	gtc Val	ttc Phe 275	att Ile	gly ggg	ggc Gly	Ile	aac Asn 280	tgt Cys	gcc Ala	aac Asn	ggg Gly	aag Lys 285	cca Pro	cta Leu	tct Ser	864
cag Gln																867

<210> 6

<211> 289

<212> PRT

<213> Homo sapiens

<400> 6

 Met
 Ala
 Arg
 Gly
 Leu
 Gln
 Val
 Pro
 Leu
 Pro
 Arg
 Leu
 Ala
 Thr
 Gly
 Leu

 1
 5
 7
 10
 10
 10
 15
 15

 Leu
 Leu
 Ser
 Val
 Gly
 Pro
 Trp
 Ala
 Gly
 Ser
 Gly
 Leu

 Val
 Pro
 Thr
 Asp
 Gly
 Ser
 Pro
 Trp
 Leu
 Ser
 Met
 Arg
 Glu
 Ala
 Leu

 Arg
 Glu
 Leu
 His
 Ala
 Arg
 Gly
 His
 Gln
 Ala
 Val
 Val
 Leu
 Thr
 Pro
 Glu

 Arg
 Glu
 Leu
 His
 Ala
 Arg
 Gly
 His
 Gln
 Ala
 Val
 Val
 Leu
 Thr
 Pro
 Glu

 Arg
 Glu
 Leu
 His
 Ala
 Arg
 Gly
 His
 Gln
 Ala
 Val
 Val
 Leu
 Thr
 Pro
 Glu

 Arg

Val Asn Met His Ile Lys Glu Glu Lys Phe Phe Thr Leu Thr Ala Tyr 70 7.5 Ala Val Pro Trp Thr Gln Lys Glu Phe Asp Arg Val Thr Leu Gly Tyr 8.5 90 Thr Gln Gly Phe Phe Glu Thr Glu His Leu Leu Lys Arg Tyr Ser Arg 105 Ser Met Ala Ile Met Asn Asn Val Ser Leu Ala Leu His Arg Cys Cys 120 Val Glu Leu Leu His Asn Glu Ala Leu Ile Arg His Leu Asn Ala Thr 135 Ser Phe Asp Val Val Leu Thr Asp Pro Val Asn Leu Cys Gly Ala Val 150 155 Leu Ala Lys Tyr Leu Ser Ile Pro Ala Val Phe Phe Trp Arg Tyr Ile 165 170 Pro Cys Asp Leu Asp Phe Lys Gly Thr Gln Cys Pro Asn Pro Ser Ser 180 185 Tyr Ile Pro Lys Leu Leu Thr Thr Asn Ser Asp His Met Thr Phe Leu 200 205 Gln Arg Val Lys Asn Met Leu Tyr Pro Leu Ala Leu Ser Tyr Ile Cys 215 220 His Thr Phe Ser Ala Pro Tyr Ala Ser Leu Ala Ser Glu Leu Phe Gln 230 235 Arg Glu Val Ser Val Val Asp Leu Val Ser Tyr Ala Ser Val Trp Leu 245 250 255 Phe Arg Gly Asp Phe Val Met Asp Tyr Pro Arg Pro Ile Met Pro Asn 260 265 Met Val Phe Ile Gly Gly Ile Asn Cys Ala Asn Gly Lys Pro Leu Ser Gln

<210> 7 <211> 867 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (1)...(867)

<400> 7

atg gcc aca gga ctc cag gtt ccc ctg ccg cag ctg gcc aca gga ctg 48 Met Ala Thr Gly Leu Gln Val Pro Leu Pro Gln Leu Ala Thr Gly Leu ctg ctt ctc ctc agt gtc cag ccc tgg gct gag agt ggg aag gtg ctg 96 Leu Leu Leu Ser Val Gln Pro Trp Ala Glu Ser Gly Lys Val Leu gtg gtg ccc act gat ggc agc cac tgg ctc agc atg cgg gag gcc ttg 144 Val Val Pro Thr Asp Gly Ser His Trp Leu Ser Met Arg Glu Ala Leu 40 cgg gac ctc cat gcg aga ggc cac cag gtg gtg gtc ctc acc ctg gag 192 Arg Asp Leu His Ala Arg Gly His Gln Val Val Val Leu Thr Leu Glu gtg aat atg tac atc aaa gaa gag aac ttt ttc acc ctg aca acg tat 240 Val Asn Met Tyr Ile Lys Glu Glu Asn Phe Phe Thr Leu Thr Thr Tyr gcc att tca tgg acc cag gac gaa ttt gat cgc ctt ttg ctg ggt cac 288

90

-7-

Ala Ile Ser Trp Thr Gln Asp Glu Phe Asp Arg Leu Leu Gly His

act Thr	caa Gln	tcg Ser	ttc Phe 100	Phe	gaa Glu	aca Thr	gaa Glu	cat His 105	ctt Leu	ctg Leu	atg Met	aaa Lys	ttt Phe 110	tct Ser	aga Arg	336
aga Arg	atg Met	gca Ala 115	att Ile	atg Met	aac Asn	aat Asn	atg Met 120	tct Ser	ttg Leu	atc Ile	ata Ile	cat His 125	Arg	tct Ser	tgt Cys	384
gtg Val	gag Glu 130	cta Leu	ctg Leu	cat His	aat Asn	gag Glu 135	gcc Ala	ctg Leu	atc Ile	agg Arg	cac His 140	ctg Leu	cat His	gct Ala	act Thr	432
tcc Ser 145	ttt Phe	gat Asp	gtg Val	gtt Val	cta Leu 150	aca Thr	gac Asp	ccc Pro	ttt Phe	cac His 155	ctc Leu	tgc Cys	gcg Ala	gcg Ala	gtg Val 160	480
ctg Leu	gct Ala	aag Lys	tac Tyr	ctg Leu 165	tcg Ser	att Ile	cct Pro	gct Ala	gtg Val 170	ttt Phe	ttc Phe	ttg Leu	agg Arg	aac Asn 175	att Ile	528
cca Pro	tgt Cys	gat Asp	tta Leu 180	gac Asp	ttt Phe	aag Lys	ggc Gly	aca Thr 185	cag Gln	tgt Cys	cca Pro	aac Asn	cct Pro 190	tcc Ser	tcc Ser	576
tat Tyr	att Ile	cct Pro 195	aga Arg	tta Leu	cta Leu	acg Thr	acc Thr 200	aat Asn	tca Ser	gac Asp	cac His	atg Met 205	aca Thr	ttc Phe	ctg Leu	624
caa Gln	agg Arg 210	gtc Val	aag Lys	aac Asn	atg Met	ctc Leu 215	tac Tyr	cct Pro	ctg Leu	gcc Ala	ctg Leu 220	tcc Ser	tac Tyr	ctt Leu	tgc Cys	672
cat His 225	gct Ala	gtt Val	tct Ser	gct Ala	cct Pro 230	tat Tyr	gca Ala	agc Ser	ctt Leu	gcc Ala 235	tct Ser	gag Glu	ctt Leu	ttt Phe	cag Gln 240	720
aga Arg	gag Glu	gtg Val	tca Ser	gtg Val 245	gtg Val	gat Asp	ctt Leu	gtc Val	agc Ser 250	cat His	gca Ala	tct Ser	gtg Val	tgg Trp 255	ctg Leu	768
ttc Phe	cga Arg	GJ À aaa	gac Asp 260	ttt Phe	gtg Val	atg Met	gat Asp	tac Tyr 265	ccc Pro	agg Arg	ccg Pro	atc Ile	atg Met 270	ccc Pro	aac Asn	816
atg Met	gtc Val	ttc Phe 275	att Ile	G] À āāā	ggc Gly	Ile	aac Asn 280	tgt Cys	gcc Ala	aac Asn	Gly ggg	aag Lys 285	cca Pro	cta Leu	tct Ser	864
cag Gln																867

<210> 8

<211> 289

<212> PRT

<213> Homo sapiens

<400> 8

Met Ala Thr Gly Leu Gln Val Pro Leu Pro Gln Leu Ala Thr Gly Leu 1 5 10 15 Leu Leu Leu Leu Ser Val Gln Pro Trp Ala Glu Ser Gly Lys Val Leu 20 25 30

Val Val Pro Thr Asp Gly Ser His Trp Leu Ser Met Arg Glu Ala Leu Arg Asp Leu His Ala Arg Gly His Gln Val Val Leu Thr Leu Glu 55 Val Asn Met Tyr Ile Lys Glu Glu Asn Phe Phe Thr Leu Thr Tyr 70 Ala Ile Ser Trp Thr Gln Asp Glu Phe Asp Arg Leu Leu Gly His 90 Thr Gln Ser Phe Phe Glu Thr Glu His Leu Leu Met Lys Phe Ser Arg 105 Arg Met Ala Ile Met Asn Asn Met Ser Leu Ile Ile His Arg Ser Cys 115 120 Val Glu Leu Leu His Asn Glu Ala Leu Ile Arg His Leu His Ala Thr 135 Ser Phe Asp Val Val Leu Thr Asp Pro Phe His Leu Cys Ala Ala Val 150 155 Leu Ala Lys Tyr Leu Ser Ile Pro Ala Val Phe Phe Leu Arg Asn Ile 165 170 Pro Cys Asp Leu Asp Phe Lys Gly Thr Gln Cys Pro Asn Pro Ser Ser 180 185 190 Tyr Ile Pro Arg Leu Leu Thr Thr Asn Ser Asp His Met Thr Phe Leu 200 Gln Arg Val Lys Asn Met Leu Tyr Pro Leu Ala Leu Ser Tyr Leu Cys 215 220 His Ala Val Ser Ala Pro Tyr Ala Ser Leu Ala Ser Glu Leu Phe Gln 230 235 Arg Glu Val Ser Val Val Asp Leu Val Ser His Ala Ser Val Trp Leu 245 250 Phe Arg Gly Asp Phe Val Met Asp Tyr Pro Arg Pro Ile Met Pro Asn 265 Met Val Phe Ile Gly Gly Ile Asn Cys Ala Asn Gly Lys Pro Leu Ser Gln <210> 9 <211> 861 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)...(861) <400> 9 atg gcc tgc ctc ctt cgc tca ttt cag aga att tct gca ggg gtt ttc 48 Met Ala Cys Leu Leu Arg Ser Phe Gln Arg Ile Ser Ala Gly Val Phe ttc tta gca ctt tgg ggc atg gtt gta ggt gac aag ctg ctg gtg gtc 96 Phe Leu Ala Leu Trp Gly Met Val Val Gly Asp Lys Leu Leu Val Val cct cag gac gga agc cac tgg ctt agt atg aag gat ata gtt gag gtt 144 Pro Gln Asp Gly Ser His Trp Leu Ser Met Lys Asp Ile Val Glu Val 40 ctc agt gac cgg ggt cat gag att gta gtg gtg gcg gaa gtt aat 192 Leu Ser Asp Arg Gly His Glu Ile Val Val Val Pro Glu Val Asn ttg ctt ttg aaa gaa tcc aaa tac tac aca aga aaa atc tat cca gtg 240 Leu Leu Leu Lys Glu Ser Lys Tyr Tyr Thr Arg Lys Ile Tyr Pro Val

	ccg Pro	tat Tyr	gac Asp	caa Gln	gaa Glu 85	Glu	ctg Leu	aag Lys	aac Asn	cgt Arg 90	Tyr	caa Gln	tca Ser	tti Phe	gga Gly 95	aac Asn	288
	aat Asn	cac	ttt Phe	gct Ala 100	Glu	cga Arg	tca Ser	ttc Phe	cta Leu 105	Thr	gct Ala	cct Pro	cag Gln	aca Thi	Glu	tac Tyr	336
	agg Arg	aat Asn	aac Asn 115	atg Met	att Ile	gtt Val	att Ile	ggc Gly 120	ctg Leu	tac Tyr	ttc Phe	atc Ile	aac Asn 125	Cys	cag Gln	agc Ser	384
	ctc Leu	ctg Leu 130	Gln	gac Asp	agg Arg	gac Asp	acc Thr 135	ctg Leu	aac Asn	ttc Phe	ttt Phe	aag Lys 140	gag Glu	ago Ser	aag Lys	ttt Phe	432
	gat Asp 145	gct Ala	ctt Leu	ttc Phe	aca Thr	gac Asp 150	cca Pro	gcc Ala	tta Leu	ccc Pro	tgt Cys 155	Gly	gtg Val	ato	ctg Leu	gct Ala 160	480
	gag Glu	tat Tyr	ttg Leu	ggc	cta Leu 165	cca Pro	tct Ser	gtg Val	tac Tyr	ctc Leu 170	ttc Phe	agg Arg	ggt Gly	ttt Phe	ccg Pro 175	tgt Cys	528
	tcc Ser	ctg Leu	gag Glu	cat His 180	aca Thr	ttc Phe	agc Ser	aga Arg	agc Ser 185	cca Pro	gac Asp	cct Pro	gtg Val	tcc Ser 190	tac Tyr	att Ile	576
	ccc Pro	agg Arg	tgc Cys 195	tac Tyr	aca Thr	aag Lys	ttt Phe	tca Ser 200	gac Asp	cac His	atg Met	act Thr	ttt Phe 205	tcc Ser	caa Gln	cga Arg	624
	gtg Val	gcc Ala 210	aac Asn	ttc Phe	ctt Leu	gtt Val	aat Asn 215	ttg Leu	ttg Leu	gag Glu	ccc Pro	tat Tyr 220	cta Leu	ttt Phe	tat Tyr	tgt Cys	672
	ctg Leu 225	ttt Phe	tca Ser	aag Lys	tat Tyr	gaa Glu 230	gaa Glu	ctc Leu	gca Ala	tca Ser	gct Ala 235	gtc Val	ctc Leu	aag Lys	aga Arg	gat Asp 240	720
	gtg Val	gat Asp	ata Ile	atc Ile	acc Thr 245	tta Leu	tat Tyr	cag Gln	aag Lys	gtc Val 250	tct Ser	gtt Val	tgg Trp	ctg Leu	tta Leu 255	aga Arg	768
	tat Tyr	gac Asp	ttt Phe	gtg Val 260	ctt Leu	gaa Glu	tat Tyr	cct Pro	agg Arg 265	ccg Pro	gtc Val	atg Met	ccc Pro	aac Asn 270	atg Met	gtc Val	816
1	ttc Phe	att Ile	gga Gly 275	ggt Gly	atc Ile	aac Asn	tgt Cys	aag Lys 280	aag Lys	agg Arg	aaa Lys	gac Asp	ttg Leu 285	tct Ser	cag Gln		861
		<2 <2	210> 211> 212> 213>	287 PRT	sap	oiens											
N	Met		00> Cvs		I.eu	Δεσ	Ser	Dho	C3 =	7~~	T1 ~	Co	7 7 -	C1	17- 3	D.L	
	Ţ				5					10					Val 15		
1	FIIG	ьеи	итg	Leu 20	rrp	GTÀ	меt		Val 25	Gly	Asp	Lys	Leu	Leu 30	Val	Val	

-10-

```
Pro Gln Asp Gly Ser His Trp Leu Ser Met Lys Asp Ile Val Glu Val
Leu Ser Asp Arg Gly His Glu Ile Val Val Val Pro Glu Val Asn
Leu Leu Leu Lys Glu Ser Lys Tyr Tyr Thr Arg Lys Ile Tyr Pro Val
                    70
                                       75
Pro Tyr Asp Gln Glu Glu Leu Lys Asn Arg Tyr Gln Ser Phe Gly Asn
                                   90
Asn His Phe Ala Glu Arg Ser Phe Leu Thr Ala Pro Gln Thr Glu Tyr
                                105
Arg Asn Asn Met Ile Val Ile Gly Leu Tyr Phe Ile Asn Cys Gln Ser
                            120
Leu Leu Gln Asp Arg Asp Thr Leu Asn Phe Phe Lys Glu Ser Lys Phe
                       135
Asp Ala Leu Phe Thr Asp Pro Ala Leu Pro Cys Gly Val Ile Leu Ala
                   150
                                        155
Glu Tyr Leu Gly Leu Pro Ser Val Tyr Leu Phe Arg Gly Phe Pro Cys
                1.65
                                 170
                                                        175
Ser Leu Glu His Thr Phe Ser Arg Ser Pro Asp Pro Val Ser Tyr Ile
           180
                               185
Pro Arg Cys Tyr Thr Lys Phe Ser Asp His Met Thr Phe Ser Gln Arg
                           200
Val Ala Asn Phe Leu Val Asn Leu Leu Glu Pro Tyr Leu Phe Tyr Cys
                       215
                                          220
Leu Phe Ser Lys Tyr Glu Glu Leu Ala Ser Ala Val Leu Lys Arg Asp
                                       235
                    230
Val Asp Ile Ile Thr Leu Tyr Gln Lys Val Ser Val Trp Leu Leu Arg
              245
                                   250
Tyr Asp Phe Val Leu Glu Tyr Pro Arg Pro Val Met Pro Asn Met Val
                            265
Phe Ile Gly Gly Ile Asn Cys Lys Lys Arg Lys Asp Leu Ser Gln
      <210> 11
      <211> 951
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> CDS
      <222> (1)...(951)
      <400> 11
atg gct cgt gca ggg tgg act ggc ctc ctt ccc cta tat gtg tgt cta
                                                                      48
Met Ala Arg Ala Gly Trp Thr Gly Leu Leu Pro Leu Tyr Val Cys Leu
                                    10
ctg ctg acc tgt gct ttg cca agg tca ggg aag ctg ctg gta gtg ccc
                                                                     96
Leu Leu Thr Cys Ala Leu Pro Arg Ser Gly Lys Leu Leu Val Val Pro
atg gat ggg age cac tgg tte ace atg cag teg gtg gag aaa ete
                                                                    144
Met Asp Gly Ser His Trp Phe Thr Met Gln Ser Val Val Glu Lys Leu
atc ctc agg ggg cat gag gtg gtc gta gtc atg cca gag gtg agt tgg
                                                                    192
Ile Leu Arg Gly His Glu Val Val Val Met Pro Glu Val Ser Trp
caa ctg gga aga tca ctg aat tgc aca gtg aag act tac tca acc tca
                                                                    240
Gln Leu Gly Arg Ser Leu Asn Cys Thr Val Lys Thr Tyr Ser Thr Ser
                    70
```

WO 9	99/573	322												F	CT/US99/0	9702
tac Tyr	act Thr	ctg Leu	gag Glu	gat Asp 85	cag Gln	gac Asp	cgg Arg	gag	ttc Phe 90	Met	gtt Val	ttt Phe	gcc Ala	gat Asp 95	Ala	288
cgc Arg	tgg Trp	acg Thr	gca Ala 100	cca Pro	ttg Leu	cga Arg	agt Ser	gca Ala 105	Phe	tct Ser	cta Leu	tta Leu	aca Thr 110	agt Ser	tca Ser	336
tcc Ser	aat Asn	ggt Gly 115	att Ile	ttt Phe	gac Asp	tta Leu	ttt Phe 120	ttt Phe	tca Ser	aat Asn	tgc Cys	agg Arg 125	agt Ser	ttg Leu	ttt Phe	384
aat Asn	gac Asp 130	cga Arg	aaa Lys	tta Leu	gta Val	gaa Glu 135	tac Tyr	tta Leu	aag Lys	gag Glu	agt Ser 140	tgt Cys	ttt Phe	gat Asp	gca Ala	432
gtg Val 145	ttt Phe	ctc Leu	gat Asp	cct Pro	ttt Phe 150	gat Asp	cgc Arg	tgt Cys	ggc Gly	tta Leu 155	att Ile	gtt Val	gcc Ala	aaa Lys	tat Tyr 160	480
ttc Phe	tcc Ser	ctc Leu	ccc Pro	tct Ser 165	gtg Val	gtc Val	ttc Phe	gcc Ala	agg Arg 170	gga Gly	ata Ile	ttt Phe	tgc Cys	cac His 175	tat Tyr	528
ctt Leu	gaa Glu	gaa Glu	ggt Gly 180	gca Ala	cag Gln	tgc Cys	cct Pro	gct Ala 185	cct Pro	ctt Leu	tcc Ser	tat Tyr	gtc Val 190	ccc Pro	aga Arg	576
ctt Leu	ctc Leu	tta Leu 195	GJA aaa	ttc Phe	tca Ser	gac Asp	gcc Ala 200	atg Met	act Thr	ttc Phe	aag Lys	gag Glu 205	aga Arg	gta Val	tgg Trp	624
aac Asn	cac His 210	atc Ile	atg Met	cac His	ttg Leu	gag Glu 215	gaa Glu	cat His	tta Leu	ttt Phe	tgc Cys 220	ccc Pro	tat Tyr	ttt Phe	ttc Phe	672
aaa Lys 225	aat Asn	gtc Val	tta Leu	gaa Glu	ata Ile 230	gcc Ala	tct Ser	gaa Glu	att Ile	ctc Leu 235	caa Gln	acc Thr	cct Pro	gtc Val	acg Thr 240	720
gca Ala	tat Tyr	gat Asp	ctc Leu	tac Tyr 245	agc Ser	cac His	aca Thr	tca Ser	att Ile 250	tgg Trp	ttg Leu	ttg Leu	cga Arg	act Thr 255	gac Asp	768
ttt Phe	gtt Val	ttg Leu	gag Glu 260	tat Tyr	ccc Pro	aaa Lys	ccc Pro	gtg Val 265	atg Met	ccc Pro	aat Asn	atg Met	atc Ile 270	ttc Phe	att Ile	816
ggt Gly	ggt Gly	atc Ile 275	aac Asn	tgt Cys	cat His	cag Gln	gga Gly 280	aag Lys	cca Pro	gtg Val	cct Pro	atg Met 285	gta Val	agt Ser	tat Tyr	864
ctc Leu	ccc Pro 290	ttt Phe	agc Ser	aca Thr	tta Leu	aga Arg 295	ata Ile	atc Ile	tgg Trp	ctt Leu	tgg Trp 300	aaa Lys	tta Leu	aaa Lys	gat Asp	912
ttc Phe 305	tta Leu	cag Gln	aat Asn	His	aat Asn 310	tta Leu	tca Ser	ttt Phe	Thr	ttt Phe 315	gtc Val	cca Pro				951

<210> 12 <211> 317 <212> PRT

<213> Homo sapiens

```
<400> 12
Met Ala Arg Ala Gly Trp Thr Gly Leu Leu Pro Leu Tyr Val Cys Leu
                                     10
Leu Leu Thr Cys Ala Leu Pro Arg Ser Gly Lys Leu Leu Val Val Pro
            20
                                25
Met Asp Gly Ser His Trp Phe Thr Met Gln Ser Val Val Glu Lys Leu
                            40
Ile Leu Arg Gly His Glu Val Val Val Val Met Pro Glu Val Ser Trp
                        55
Gln Leu Gly Arg Ser Leu Asn Cys Thr Val Lys Thr Tyr Ser Thr Ser
                                        75
Tyr Thr Leu Glu Asp Gln Asp Arg Glu Phe Met Val Phe Ala Asp Ala
                85
                                    90
Arg Trp Thr Ala Pro Leu Arg Ser Ala Phe Ser Leu Leu Thr Ser Ser
                                105
                                                    110
Ser Asn Gly Ile Phe Asp Leu Phe Phe Ser Asn Cys Arg Ser Leu Phe
                            120
Asn Asp Arg Lys Leu Val Glu Tyr Leu Lys Glu Ser Cys Phe Asp Ala
                       135
                                            140
Val Phe Leu Asp Pro Phe Asp Arg Cys Gly Leu Ile Val Ala Lys Tyr
                   ·150
                                        155
Phe Ser Leu Pro Ser Val Val Phe Ala Arg Gly Ile Phe Cys His Tyr
                165
                                   170
Leu Glu Glu Gly Ala Gln Cys Pro Ala Pro Leu Ser Tyr Val Pro Arg
            180
                               185
Leu Leu Gly Phe Ser Asp Ala Met Thr Phe Lys Glu Arg Val Trp
                            200
                                                205
Asn His Ile Met His Leu Glu Glu His Leu Phe Cys Pro Tyr Phe Phe
                        215
                                            220
Lys Asn Val Leu Glu Ile Ala Ser Glu Ile Leu Gln Thr Pro Val Thr
                    230
                                        235
Ala Tyr Asp Leu Tyr Ser His Thr Ser Ile Trp Leu Leu Arg Thr Asp
                245
                                    250
Phe Val Leu Glu Tyr Pro Lys Pro Val Met Pro Asn Met Ile Phe Ile
                                265
Gly Gly Ile Asn Cys His Gln Gly Lys Pro Val Pro Met Val Ser Tyr
        275
                            280
                                                285
Leu Pro Phe Ser Thr Leu Arg Ile Ile Trp Leu Trp Lys Leu Lys Asp
                       295
Phe Leu Gln Asn His Asn Leu Ser Phe Thr Phe Val Pro
305
                    310
      <210> 13
      <211> 930
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> CDS
      <222> (1)...(930)
      <400> 13
atg gct cgc aca ggg tgg acc agc ccc att ccc cta tgt gtt tct ctg
                                                                      48
Met Ala Arg Thr Gly Trp Thr Ser Pro Ile Pro Leu Cys Val Ser Leu
ctg ctg acc tgt ggc ttt gct gag gca ggg aag ctg ctg gta gtg ccc
                                                                      96
Leu Leu Thr Cys Gly Phe Ala Glu Ala Gly Lys Leu Leu Val Val Pro
```

atg Met	gat Asp	ggg Gly 35	Ser	cac His	tgg Trp	ttc Phe	acc Thr 40	Met	cag Gln	tcg Ser	gtç Val	g gtg L Val 45	Glu	aaa Lys	ctt Leu	144
atc Ile	ctc Leu 50	Arg	Gly	cat His	gag Glu	gtg Val 55	Val	gta Val	gtc Val	atg Met	cca Pro 60	Glu	gtg Val	agt Ser	tgg Trp	192
caa Gln 65	ctg Leu	gga Gly	aaa Lys	tca Ser	ctg Leu 70	aat Asn	tgc Cys	aca Thr	gtg Val	aag Lys 75	act Thr	tac Tyr	tca Ser	acc Thr	tca Ser 80	240
tac Tyr	act Thr	ctg Leu	gag Glu	gat Asp 85	ctg Leu	gac Asp	cgg Arg	gaa Glu	ttc Phe 90	atg Met	gat Asp	ttc Phe	gcc Ala	gat Asp 95	Ala	288
caa Gln	tgg Trp	aaa Lys	gca Ala 100	caa Gln	gta Val	cga Arg	agt Ser	ttg Leu 105	ttt Phe	tct Ser	cta Leu	. ttt Phe	ctg Leu 110	agt Ser	tca Ser	336
tcc Ser	aat Asn	ggt Gly 115	ttt Phe	ttt Phe	aac Asn	tta Leu	ttt Phe 120	ttt Phe	tcg Ser	cat His	tgc Cys	agg Arg 125	agt Ser	ttg Leu	ttt Phe	384
aat Asn	gac Asp 130	cga Arg	aaa Lys	tta Leu	gta Val	gaa Glu 135	tac Tyr	tta Leu	aag Lys	gag Glu	agt Ser 140	tct Ser	ttt Phe	gat Asp	gcg Ala	432
gtg Val 145	ttt Phe	ctt Leu	gat Asp	cct Pro	ttt Phe 150	gat Asp	gcc Ala	tgt Cys	gcg Ala	tta Leu 155	att Ile	gtt Val	gcc Ala	aaa Lys	tat Tyr 160	480
ttc Phe	tcc Ser	ctc Leu	ccc Pro	tct Ser 165	gtg Val	gtc Val	ttc Phe	gcc Ala	agg Arg 170	gga Gly	ata Ile	ggt Gly	tgc Cys	cac His 175	tat Tyr	528
ctt Leu	gaa Glu	gaa Glu	ggt Gly 180	gca Ala	cag Gln	tgc Cys	cct Pro	gct Ala 185	cct Pro	ctt Leu	tcc Ser	tat Tyr	gtc Val 190	ccc Pro	aga Arg	576
att Ile	ctc Leu	tta Leu 195	ggg Gly	ttc Phe	tca Ser	gat Asp	gcc Ala 200	atg Met	act Thr	ttc Phe	aag Lys	gag Glu 205	aga Arg	gta Val	cgg Arg	624
aac Asn	cac His 210	atc Ile	atg Met	cac His	ttg Leu	gag Glu 215	gaa Glu	cat His	tta Leu	ttt Phe	tgc Cys 220	cag Gln	tat Tyr	ttt Phe	tcc Ser	672
aaa Lys 225	aat Asn	gcc Ala	cta Leu	gaa Glu	ata Ile 230	gcc Ala	tct Ser	gaa Glu	att Ile	ctc Leu 235	caa Gln	aca Thr	cct Pro	gtc Val	aca Thr 240	720
gca Ala	tat Tyr	gat Asp	ctc Leu	tac Tyr 245	agc Ser	cac His	aca Thr	tca Ser	att Ile 250	tgg Trp	ttg Leu	ttg Leu	cga Arg	aca Thr 255	gac Asp	768
ttt Phe	gtt Val	ttg Leu	gac Asp 260	tat Tyr	ccc Pro	aaa Lys	ccc Pro	gtg Val 265	atg Met	ccc Pro	aat Asn	atg Met	atc Ile 270	ttc Phe	att Ile	816
ggt Gly	ggt Gly	atc Ile 275	aac Asn	tgc Cys	cat His	cag Gln	gga Gly 280	aag Lys	cca Pro	ttg Leu	cct Pro	atg Met 285	gta Val	agt Ser	cac His	864

```
ctc tcc ttt agc aca tta gga ata atc ttg gct ttg gaa att aaa aaa
                                                                      912
Leu Ser Phe Ser Thr Leu Gly Ile Ile Leu Ala Leu Glu Ile Lys Lys
                        295
aga ttc ctt act gaa ttg
                                                                     930
Arg Phe Leu Thr Glu Leu
305
                    310
      <210> 14
      <211> 310
      <212> PRT
      <213> Homo sapiens
      <400> 14
Met Ala Arg Thr Gly Trp Thr Ser Pro Ile Pro Leu Cys Val Ser Leu
                                    10
Leu Leu Thr Cys Gly Phe Ala Glu Ala Gly Lys Leu Leu Val Val Pro
                                25
Met Asp Gly Ser His Trp Phe Thr Met Gln Ser Val Val Glu Lys Leu
                            40
                                                45
Ile Leu Arg Gly His Glu Val Val Val Met Pro Glu Val Ser Trp
Gln Leu Gly Lys Ser Leu Asn Cys Thr Val Lys Thr Tyr Ser Thr Ser
                    70
Tyr Thr Leu Glu Asp Leu Asp Arg Glu Phe Met Asp Phe Ala Asp Ala
                                   90
Gln Trp Lys Ala Gln Val Arg Ser Leu Phe Ser Leu Phe Leu Ser Ser
                              105
                                                   110
Ser Asn Gly Phe Phe Asn Leu Phe Phe Ser His Cys Arg Ser Leu Phe
 115
                           120
                                               125
Asn Asp Arg Lys Leu Val Glu Tyr Leu Lys Glu Ser Ser Phe Asp Ala
                       135
Val Phe Leu Asp Pro Phe Asp Ala Cys Ala Leu Ile Val Ala Lys Tyr
                   150
                                       155
Phe Ser Leu Pro Ser Val Val Phe Ala Arg Gly Ile Gly Cys His Tyr
                                  170
Leu Glu Glu Gly Ala Gln Cys Pro Ala Pro Leu Ser Tyr Val Pro Arg
           180
                                185
Ile Leu Leu Gly Phe Ser Asp Ala Met Thr Phe Lys Glu Arg Val Arg
                           200
Asn His Ile Met His Leu Glu Glu His Leu Phe Cys Gln Tyr Phe Ser
                       215
                                           220
Lys Asn Ala Leu Glu Ile Ala Ser Glu Ile Leu Gln Thr Pro Val Thr
                   230
                                       235
Ala Tyr Asp Leu Tyr Ser His Thr Ser Ile Trp Leu Leu Arg Thr Asp
               245
                                   250
Phe Val Leu Asp Tyr Pro Lys Pro Val Met Pro Asn Met Ile Phe Ile
           260
                               265
Gly Gly Ile Asn Cys His Gln Gly Lys Pro Leu Pro Met Val Ser His
       275
                           280
Leu Ser Phe Ser Thr Leu Gly Ile Ile Leu Ala Leu Glu Ile Lys Lys
                       295
Arg Phe Leu Thr Glu Leu
305
                    310
     <210> 15
     <211> 759
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> CDS
     <222> (1)...(759)
```

	<4 gat Asp		agt												48
	ctc Leu														96
	ctg Leu														144
	act Thr 50	-	-	-	-			_		_	-	-		_	192
	tgg Trp		_	_	-		_					_	_		240
	agt Ser				-				_		-	 -	_		288
	gac Asp														336
	ttt Phe														384
	tcc Ser 130														432
	gaa Glu														480
	ctc Leu							Met							528
	cac His														576
_	aat Asn	-				-		-					_	_	624
	tat Tyr 210														672
	gtt Val														720
	ggt Gly														759

<210> 16

```
<211> 253
     <212> PRT
     <213> Homo sapiens
     <400> 16
Met Asp Gly Ser His Trp Phe Thr Met Gln Ser Val Val Glu Lys Leu
                5
                                   10
                                                      15
Ile Leu Arg Gly His Glu Val Val Val Wal Met Pro Glu Val Ser Trp
           20
                               25
Gln Leu Glu Arg Ser Leu Asn Cys Thr Val Lys Thr Tyr Ser Thr Ser
                                               45
                          40
Tyr Thr Leu Glu Asp Gln Asn Arg Glu Phe Met Val Phe Ala His Ala
                       55
Gln Trp Lys Ala Gln Ala Gln Ser Ile Phe Ser Leu Leu Met Ser Ser
                   70
                                       75
Ser Ser Gly Phe Leu Asp Leu Phe Phe Ser His Cys Arg Ser Leu Phe
                                  90
               85
Asn Asp Arg Lys Leu Val Glu Tyr Leu Lys Glu Ser Ser Phe Asp Ala
           100
                              105
                                                  110
Val Phe Leu Asp Pro Phe Asp Thr Cys Gly Leu Ile Val Ala Lys Tyr
                           120
                                               125
Phe Ser Leu Pro Ser Val Val Phe Thr Arg Gly Ile Phe Cys His His
                       135
                                           140
Leu Glu Glu Gly Ala Gln Cys Pro Ala Pro Leu Ser Tyr Val Pro Asn
                                      155
                  150
Asp Leu Leu Gly Phe Ser Asp Ala Met Thr Phe Lys Glu Arg Val Trp
                                  170
              165
Asn His Ile Val His Leu Glu Asp His Leu Phe Cys Gln Tyr Leu Phe
           180
                              185
                                                 190
Arg Asn Ala Leu Glu Ile Ala Ser Glu Ile Leu Gln Thr Pro Val Thr
                          200
Ala Tyr Asp Leu Tyr Ser His Thr Ser Ile Trp Leu Leu Arg Thr Asp
                                          220
                      215
Phe Val Leu Asp Tyr Pro Lys Pro Val Met Pro Asn Met Ile Phe Ile
225 230
                           235
Gly Gly Ile Asn Cys His Gln Gly Lys Pro Leu Pro Met
      <210> 17
      <211> 735
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> CDS
      <222> (1)...(735)
      <400> 17
                                                                     48
gaa ttt gaa gcc tac att aat gct tct gga gaa cat gga att gtg gtt
Glu Phe Glu Ala Tyr Ile Asn Ala Ser Gly Glu His Gly Ile Val Val
ttc tct ttg gga tca atg gtc tca gaa att cca gag aag aaa gct atg
                                                                     96
Phe Ser Leu Gly Ser Met Val Ser Glu Ile Pro Glu Lys Lys Ala Met
                                25
gca att gct gat gct ttg ggc aaa atc cct cag aca gtc ctg tgg cgg
                                                                    144
Ala Ile Ala Asp Ala Leu Gly Lys Ile Pro Gln Thr Val Leu Trp Arg
                             40
```

tac Tyr	act Thr 50	gga Gly	acc Thr	cga Arg	cca Pro	tcg Ser 55	aat Asn	ctt Leu	gcg Ala	aac Asn	aac Asn 60	acg Thr	ata Ile	ctt Leu	gtt Val	192
aag Lys 65	tgg Trp	cta Leu	ccc Pro	caa Gln	aac Asn 70	gat Asp	ctg Leu	ctt Leu	ggt Gly	cac His 75	ccg Pro	atg Met	acc Thr	cgt Arg	gcc Ala 80	240
ttt Phe	atc Ile	acc Thr	cat His	gct Ala 85	ggt Gly	tcc Ser	cat His	ggt Gly	gtt Val 90	tat Tyr	gaa Glu	agc Ser	ata Ile	tgc Cys 95	aat Asn	288
											gat Asp					336
gca Ala	aag Lys	cgc Arg 115	atg Met	gag Glu	act Thr	aag Lys	gga Gly. 120	gct Ala	gga Gly	gtg Val	acc Thr	ctg Leu 125	aat Asn	gtt Val	ctg Leu	384
gaa Glu	atg Met 130	act Thr	tct Ser	gaa Glu	gat Asp	tta Leu 135	gaa Glu	aat Asn	gct Ala	cta Leu	aaa Lys 140	gca Ala	gtc Val	atc Ile	aat Asn	432
gac Asp 145	aaa Lys	agt Ser	tac Tyr	aag Lys	gag Glu 150	aac Asn	atc Ile	atg Met	cgc Arg	ctc Leu 155	tcc Ser	agc Ser	ctt Leu	cac His	aag Lys 160	480
											ttc Phe					528
											ccc Pro					576
ctc Leu	acc Thr	tgg Trp 195	tac Tyr	cag Gln	tac Tyr	cat His	tcc Ser 200	ttg Leu	gac Asp	gtg Val	att Ile	ggt Gly 205	ttc Phe	ctc Leu	ttg Leu	624
											aaa Lys 220					672
											gtt Val					720
		-	acc Thr													735
	<2 <2	210> 211> 212> 213>	245	sap	oiens	3										
Glu		00> Glu		Tyr	Ile	Asn	Ala	Ser	Gly	Glu	His	Gly	Ile	Val	Val	
1				5					10		Glu	_		15		
								_•								

```
Ala Ile Ala Asp Ala Leu Gly Lys Ile Pro Gln Thr Val Leu Trp Arg
                           40
Tyr Thr Gly Thr Arg Pro Ser Asn Leu Ala Asn Asn Thr Ile Leu Val
                        55
Lys Trp Leu Pro Gln Asn Asp Leu Leu Gly His Pro Met Thr Arg Ala
                                       75
                   70
Phe Ile Thr His Ala Gly Ser His Gly Val Tyr Glu Ser Ile Cys Asn
                                   90
               8.5
Gly Val Pro Met Val Met Met Pro Leu Phe Gly Asp Gln Met Asp Asn
                               105
Ala Lys Arg Met Glu Thr Lys Gly Ala Gly Val Thr Leu Asn Val Leu
                                       125
                          120
       115
Glu Met Thr Ser Glu Asp Leu Glu Asn Ala Leu Lys Ala Val Ile Asn
                                    140
                      135
Asp Lys Ser Tyr Lys Glu Asn Ile Met Arg Leu Ser Ser Leu His Lys
                                       155
                   150
Asp Arg Pro Val Glu Pro Leu Asp Leu Ala Val Phe Trp Val Glu Phe
                                   170
                                                       175
                165
Val Met Arg His Lys Gly Ala Pro His Leu Arg Pro Ala Ala His Asp
                                                   190
                               185
Leu Thr Trp Tyr Gln Tyr His Ser Leu Asp Val Ile Gly Phe Leu Leu
                                               205
                           200
        195
Ala Val Val Leu Thr Val Ala Phe Ile Thr Phe Lys Cys Cys Ala Tyr
                                          220
                        215
Gly Tyr Arg Lys Cys Leu Gly Lys Lys Gly Arg Val Lys Lys Ala His
                                       235
225
Lys Ser Lys Thr His
      <210> 19
      <211> 19
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer
      <400> 19
                                                                      19
tggtgtatcg attggtttt
      <210> 20
      <211> 23
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer
      <400> 20
                                                                       23
catatatctg gggctagtta atc
      <210> 21
      <211> 26
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Primer
      <400> 21
                                                                       26
 acaaggtaat taagatgaag aaagca
       <210> 22
       <211> 20
```

WO 99/57322	PCT/US99/09702	
<212> DNA <213> Artificial	Sequence:	
<220> <223> Primer		
<400> 22 acctgagata gtggcttcct		20
<210> 23 <211> 20 <212> DNA <213> Artificial	Sequence	
<220> <223> Primer		
<400> 23 tttgtcttcc aattacatgc	•	20
<210> 24 <211> 24 <212> DNA <213> Artificial	Sequence	
<220> <223> Primer		
<400> 24 agtagatatg gaagcacttg t	taag	24
<210> 25 <211> 24 <212> DNA <213> Artificial	Sequence	
<220> <223> Primer		
<400> 25 tctcagtgac aaggtaatta	agac	24
<210> 26 <211> 19 <212> DNA <213> Artificial	Sequence	
<220> <223> Primer		
<400> 26 cattgattgg ataaaggca		19
<210> 27 <211> 22 <212> DNA <213> Artificial	Sequence	
<220> <223> Primer		
<400> 27	aa	22

WO 99/57322	PCT/US99/09702
<210> 28 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 28 gagtgaggga ggacagag	18
<210> 29 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 29 ataagtacac gccttctttt g	21
<210> 30 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 30 gctgctttat acaatttgct ac	22
<210> 31 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 31 cgcctacgta tcatagcagt ta	22
<210> 32 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 32 ggaaagaaat ttgaaatgca ac	22
<210> 33 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 33	

NNO 00/57222	PCT/US99/09702
WO 99/57322	20
totttccgcc tactgtatca	
<210> 34	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
(223) FIIMOL	
<400> 34	20
ttcaagaagg gcagttttat	
<210> 35	
<211> 17	
<212> DNA <213> Artificial Sequence	
(ZIS) Altificial boquence	
<220>	
<223> Primer	
<400> 35	. 17
ctctggcagg agcaaag	<i>±</i> ′
<210> 36	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 36	
atacacacct gggatagtgg	20
<210> 37	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 37	22
ggtaattaag atgaagaaag ca	22
<210> 38	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 38	10
ctgagatagt ggcttcctg	19
<210> 39	
<210> 39 <211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

WO 99/57322	PCT/US99/09702
<400> 39 gtggctcaat gacaagg	. 17
<210> 40 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 40 atatggaagc acttgtaagt aaa	23
<210> 41 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 41 ttaagacgaa ggaaacaatt ct	22
<210> 42 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 42 acctgagata gtggcttcc	19
<210> 43 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 43 atcaaagggt aaaattcaga	20
<210> 44 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 44 ggcagtccaa aagaaata	18
<210> 45 <211> 18 <212> DNA <213> Artificial Sequence	
×220>	

WO 99/57322	PCT/US99/09702
<223> Primer	
<400> 45	
ttttgagggc aggttcta	18
<210> 46	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 46	
aatgggacaa atgtaaatga ta	22
(010) A7	
<210> 47 <211> 17	
<212> DNA	
<213> Artificial Sequence	
12107 Michigan Doguenoo	
<220>	
<223> Primer	
<400> 47	17
ttctctcatg gctcgca	17
<210> 48	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
4400 40	
<400> 48 atgtcaaatc acaattcagt aagg	24
acyccaaaco acaacccayc aayy	~ -
<210> 49	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 49	
ccgcctactg tatcatagca	20
<210> 50	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220	
<220> <223> Primer	
ZZZZ ETIMET	
<400> 50	
caacgaaatg tcaaatcaca g	21
<210> 51	
<211> 17	
<212> DNA	
<213> Artificial Sequence	

NO 99/57322	PCT/US99/09702
<220> <223> Primer	
<400> 51 ctctggcagg agcaaag	17
<210> 52 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 52 acagtgggca gagacag	17
<210> 53 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 53 gtggtttatt ccccgtat	18
<210> 54 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 54 atacacacct gggatagtgg	20
<210> 55 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 55 ggtaattaag atgaagaaag ca	22
<210> 56 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 56 gaaatggcat aggttgtc	18
<210> 57 <211> 17 <212> DNA	

WO 99/57322	PCT/US99/09702
<213> Artificial Sequence	
<220> <223> Primer	
<400> 57 ggccacactc aactgta	17
<210> 58 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 58 ctcaaaaaaa acacagtagg	20
<210> 59 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 59 actttttctg ccccttat	18
<210> 60 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 60 atatggaagc acttgtaagt aaa	23
<210> 61 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 61 ttaagacgaa ggaaacaatt ct	22
<210> 62 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 62 aatggcatac gttgtca	17
Z210N 63	

WO 99/57322	I	PCT/US99/09702
<211> 19 <212> DNA <213> Artificial	L Sequence	
<220> <223> Primer		
<pre><400> 63 agaatggcaa ttatgaaca</pre>		19
<210> 64 <211> 18 <212> DNA <213> Artificial	. Sequence	
<220> <223> Primer		
<400> 64 tgtgtgccct taaagtct	•	18
<210> 65 <211> 19 <212> DNA <213> Artificial	Sequence	
<220> <223> Primer		
<400> 65 agaatggcaa ttatgaaca		19
<210> 66 <211> 19 <212> DNA <213> Artificial	Sequence	
<220> <223> Primer		
<400> 66 acctgagata gtggcttcc		19
<210> 67 <211> 17 <212> DNA <213> Artificial	Sequence	
<220> <223> Primer		
<400> 67 ctctggctct gtcctac	·	17
<210> 68 <211> 19 <212> DNA <213> Artificial	Sequence	
<220> <223> Primer		
<400> 68		10

· WO 99/57322	PCT/US99/09702
<210> 69 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 69	
atcaaagggt aaaattcaga	20
<210> 70 <211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 70	
cagcagettg teacetae	18
<210> 71	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 71	
aatttgcttt tgaaagaatc	20
<210> 72	
<211> 18	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 72	
ggtaggccca aatactca	18
<210> 73	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 73	
aatttgcttt tgaaagaatc	20
<210> 74	
<211> 18 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	

WO 99/57322	PCT/US99/09702
<400> 74 ggcagtccaa aagaaata	18
<210> 75 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 75 ttttgagggc aggttcta	18
<210> 76 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 76 cacctctggc atgactac	18
<210> 77 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 77 ttgcaggagt ttgtttaat	19
<210> 78 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 78 aatgggacaa atgtaaatga ta	22
<210> 79 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 79 cattgcagga gtttgttta	19
<210> 80 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	

WO 99/57322	PCT/US99/09702
<223> Primer	
<400> 80	
catctgagaa ccctaagaga	20
<210> 81	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 81	
agaaatagcc tctgaaattc	20
<210> 82	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	·
<400> 82	
atgtcaaatc acaattcagt aagg	24
<210> 83	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
\223> Filmer	
<400> 83	
ccgcctactg tatcatagca	20
<210> 84	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 84	
gagtgtacga ggttgagtaa g	21
<210> 85	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 85	
attttgccag tatcttttta g	21
<210> 86	
<211> 21	
<212> DNA	
<213> Artificial Sequence	

WO 99/57322	PCT/US99/09702
<220> <223> Primer	•
<400> 86 caacgaaatg tcaaatcaca g	23
<210> 87	
<211> 27 <212> DNA	
<212> DNA <213> Homo sapiens	
<400> 87	
catcagagac agagcatttt acacctt	27
<210> 88	
<211> 26	
<212> DNA	
<213> Homo sapiens	
<400> 88	
ggacctattg agccctgcat ctgtct	26
<210> 89	
<211> 25 <212> DNA	
<213> Homo sapiens	
<400> 89	
ggttccctg ccgcggctgg ccaca	25
<210> 90	
<211> 22	
<212> DNA <213> Homo sapiens	
<400> 90 gccctgggct gaaagtggaa ag	22
	. 22
<210> 91 <211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 91	
atgcgggagg ccttgcggga gct	23
<210> 92	
<211> 24 <212> DNA	
<213> Homo sapiens	
<400> 92	
ctctgcgcgg cggtgctggc taag	24
<210> 93	
<211> 25	
<212> DNA <213> Homo sapiens	
<pre><400> 93 taccccaggc caatcatgcc caaca</pre>	25
	25
<210> 94 <211> 27	

WO 99/57322	PCT/US99/09702
<212> DNA	
<213> Homo sapiens	
<400> 94	
tccaggcaaa atactttta aaaaatg	27
, and the second se	21
<210> 95	
<211> 23	
<212> DNA	
<213> Homo sapiens	
•	
<400> 95	
agcatgcggg aggcctcgcg gga	23
	23
<210> 96	
<211> 21	
<212> DNA	
<213> Homo sapiens	
· ·	
<400> 96	
gcgggagctc catgcgagag g	21
<210> 97	
<211> 25	
<212> DNA	
<213> Homo sapiens	
<400> 97	
tggtggtcct caccccggag gtgaa	25
2010: 00	•
<210> 98	
<211> 26	
<212> DNA	
<213> Homo sapiens	
4400 00	
<400> 98	
tacatcaaag aggagaactt tttcac	26
<010 00	
<210> 99	
<211> 26	
<212> DNA	
<213> Homo sapiens	
<400> 99	
tgatcaggca cctgaatgct acttcc	
tyattagyta tettyaatyet aettee	26
<210> 100	
<211> 21	
<211> 21 <212> DNA	
<213> Homo sapiens	
(213) Nomo Sapiens	
<400> 100	
acctctgcgg ggcggtgctg g	0.1
·	21
<210> 101	
<211> 23	
<212> DNA	
<213> Homo sapiens	
-30. Nomo ouptons	
<400> 101	
aagaacatgc tttaccctct ggc	23
J J	23
<210> 102	
<211 \ 10	

WO 99/57322	PCT/US99/09702
<212> DNA <213> Homo sapiens	
<400> 102 ctctggctct gtcctacc	18
<210> 103 <211> 24 <212> DNA	
<213> Homo sapiens	
<400> 103 tectacettt getatgetgt ttet	24
<210> 104 <211> 17 <212> DNA	
<213> Homo sapiens <400> 104	
tgtcagtggt ggatatt	17
<210> 105 <211> 16 <212> DNA <213> Homo sapiens	
<400> 105 ggtggatatt ctcagc	16
<210> 106 <211> 13 <212> DNA <213> Homo sapiens	
<400> 106 tcagctatgc atc	13
<210> 107 <211> 21 <212> DNA <213> Homo sapiens	
<400> 107 gcatccgtgt ggctgttccg a	21
<210> 108 <211> 20 <212> DNA <213> Homo sapiens	
<400> 108 tggctgttcc gacgggactt	20
<210> 109 <211> 16 <212> DNA <213> Homo sapiens	
<400> 109 gggacttcgt gatgga	16
<210> 110 <211> 23	

WU 99/5/322	PC1/US99/09/02
<212> DNA <213> Homo sapiens	
<400> 110 gtgatggact accccaggcc gat	2.
<210> 111 <211> 25 <212> DNA	
<213> Homo sapiens	
<400> 111 cctgcctcct tcgcgcattt cagag	. 25
<210> 112 <211> 25 <212> DNA	
<213> Homo sapiens	
<400> 112	
gcgatcattc ctgactgctc ctcag	25
<210> 113 <211> 22	
<212> DNA <213> Homo sapiens	
•	
<400> 113 ccctggagca tgcattcagc ag	22
<210> 114 <211> 23	•
<212> DNA	
<213> Homo sapiens	
<400> 114 cattcagcag cagcccagac cct	23
<210> 115	
<211> 23 <212> DNA	
<213> Homo sapiens	• .
<400> 115 tacttcttcc acgtactata tta	23
<210> 116	23
<211> 24	
<212> DNA <213> Homo sapiens	
<400> 116 ggcctccttc cactatatgt gtgt	24
<210> 117	
<211> 21	
<212> DNA <213> Homo sapiens	
<400> 117	
ggagagagta cggaaccaca t	21
<210> 118 <211> 23	

WO 33/3/322	PC 1/0899/09/02
<212> DNA	
<213> Homo sapiens	
<400> 118	
tcaatttggt tattgcgaac tga	23
	23
<210> 119	
<211> 22	
<212> DNA	
<213> Homo sapiens	
400- 110	
<400> 119	
caggggaata gcttgccact at	22
<210> 120	
<211> 24	
<211> 24 <212> DNA	
<213> Homo sapiens	
(213) Nomo Sapiens	
<400> 120	
tgttgcgaac ggactttgtt ttgg	24
J 3.5 35 25 2033	24
<210> 121 ·	
<211> 21	
<212> DNA	
<213> Homo sapiens	
•	
<400> 121	
ttcaccagca atcggtggtg g	21
<210> 122	
<211> 25	
<212> DNA	
<213> Homo sapiens	
(400) 100	
<400> 122	
ctagaaatag cttctgaaat tctcc	25
<210> 123	
<211> 24	
<212> DNA	
<213> Homo sapiens	· .
Supreme Supreme	
<400> 123	
cggcatatga tatctacagt caca	24
	24
<210> 124	
<211> 25	
<212> DNA	
<213> Homo sapiens	
<400> 124	
tcaatttggt tgctgcgaac aggac	25