Maschinelles Lernen 1:

1. Klausur WS18/19

4 multiple choice fragen: 20 Punkte 4 x 5

nur eine richtige antwort

What is not a discriminant function:

- a) $P(w_c|x)$
- $b)P(x|w_c)*P(w_c)$
- c) $P(w_c|x)*P(w_c)^{-1}$
- d) $P(x|w_c)^2*P(w_c)^2$

What is likely an overfitted estimator?

- a) High bias model
- b) High variance model
- c) Low bias model
- d) Low variance model

What does Fisher discriminant optimize?

- a)..
- b)..
- c) Maximize ratio Within class variance to between class variance
- d) Minimize ratio Within class variance to between class variance

What does the constant C stand for in SWM?

- a) ability of the decision boundary to be out of the margin
- b) number of points not being classified correctly
- c)
- d)

Boosting: 15 Punkte

Genau wie in der Hausaufgabe, Gewichte der Punkte und gewichte der Classifier angeben

Kernel: 20 Punkte 4 x 5

Genau wie in Hausaufgabe:

- a) Zeige das k_3 = alpha* k_1 + beta* k_2 wieder ein positive semidefiniter Kernel ist. Alpha, beta >= 0
- b) Zeige das wenn alpha oder beta < 0, dass dann die obere bedingung nicht mehr stimmt.
- c) Find a mapping for k_3 asssuming that k_2 = < Phi_2(x_i),Phi_2(x_j)>, k_1 = < Phi_1(x_i),Phi_1(x_j)> and prove that it satisfies k_3 = < Phi_3(x_i),Phi_3(x_j)>
- d) Do the same as in c but for $k4(x_i,x_j)=k3(x_i,x_i)k3(x_j,x_j)$

Lagrang: 25 Punkte 5 x 5

Sigma is the covariance matrix of the dataset max $w w^T$ s.t. $w Sigma^{-1} w^T = 1$

- a) Derive Lagrangian
- b) Show that the problem is a Eigenvalue problem of Sigma.
- c) Show that the solution is the eigenvector corresponding to the largest eigenvalue.
- d) Derive a closed form solution for x^t given:

$$\max z x^{t-1}$$
 s.t $z \text{ Sigma}^{-1} z \land T = 1$

e) What algorith does this look similar to regarding PCA mentioned in ML1?

Regression: 20 Punkte 5, 15

Klassisches Regressionsproblem:

min Summe
$$(y_i - wx_i + b)^2$$
 oder so.

- a) Zeigen das min w^TXXw 2yXw das gleiche problem ist.
- b) Erstelle die Matrixen wie in der hausaufgabe für diesen qudratic solver. Q,b,A,l Da war auch noch eine Konstante C gegeben.