Лабораторная работа №3

1. Методы простой итерации и Зейделя.

2. Методы касательных и секущих, метод деления отрезка пополам 1. Методы простой итерации и Зейделя для решения СЛАУ.

Теорема 3.1. Пусть ${}^>g \in {}^>\mathbb{R}^n$ — вектор-стобец высоты n, $F \in L(\mathbb{R};n)$ — квадратная матрица размера $n \times n$, чебышевская норма $\|F\| = \max\{\sum_{j=1}^n \left|f_j^i\right| : i = \overline{1,n}\}$ которой удовлетворяет условию: $\|F\| < 1$. Тогда СЛАУ:

$$x = F \cdot x + g - \tag{1}$$

совместна и имеет единственное решение ${}^{>}x_* \in {}^{>}\mathbb{R}^n$.

1.1. Метод простой итерации

Для решения СЛАУ (1) используется метод простой итерации $itr(F, {}^{>}g; {}^{>}x_{(0)})$, в котором:

- 1) выбирается произвольный вектор ${}^{>}x_{(0)} \in {}^{>}\mathbb{R}^{n}$ (начальный вектор итераций);
- 2) если вектор ${}^{>}x_{(k)} \in {}^{>}\mathbb{R}^{n}$, где $k \in \mathbb{Z}_{+} = \{n \in \mathbb{Z} : n \geq 0\}$, уже задан, то вычисляется вектор ${}^{>}x_{(k+1)} \in {}^{>}\mathbb{R}^{n}$, для которого

$${}^{>}x_{(k+1)} = \mathbf{F} \cdot {}^{>}x_{(k)} + {}^{>}g;$$
 (2)

3) при достаточно большом $k \in \mathbb{N}$ вектор ${}^{>}x_{(k)} \in {}^{>}\mathbb{R}^{n}$ считается приближённым решением СЛАУ (1).

Определение 3.1 (рабочей формулы метода простой итерации и его последовательности). Формула (2) называется рабочей формулой метода простой итерации для решения СЛАУ (1) и последовательность ${}^{>}x_{(\bullet)} = ({}^{>}x_{(k+1)})_{\mathbb{N}}$, индуцированная рабочей формулой (2) из фиксированного вектора ${}^{>}x_{(0)} \in {}^{>}\mathbb{R}^{n}$, - последовательностью приближённых решений СЛАУ (1) метода простой итерации, для которого, в этом случае, используется обозначение: $\operatorname{itr}(F, {}^{>}g; {}^{>}x_{(0)})$. ▶

Теорема 3.2 (об оценке погрешности метода простой итерации). Пусть ${}^{>}x_{(\bullet)} = ({}^{>}x_{(k)})_{\mathbb{N}} - 1$ последовательность приближённых решений метода простой итерации $\mathrm{itr}(F, {}^{>}g; {}^{>}x_{(0)})$ для СЛАУ (1). Тогда, если $\|F\| < 1$, эта последовательность ${}^{>}x_{(\bullet)}$ сходится к решению ${}^{>}x_{*} = (E + \sum_{k=1}^{+\infty} F^{k}) \cdot {}^{>}g = (E - F)^{-1} \cdot {}^{>}g$ СЛАУ (1). Кроме того, в этом случае при любом $k \in \mathbb{N}$ справедливы оценки:

$$\|\mathbf{x}_{(k)} - \mathbf{x}_*\| \le \frac{\|\mathbf{F}\|^k}{1 - \|\mathbf{F}\|} \cdot \|\mathbf{g}\| + \|\mathbf{F}\|^k \cdot \|\mathbf{x}_{(0)}\|$$
(3)

И

$$\|\mathbf{x}_{(k+1)} - \mathbf{x}_*\| \le \|\mathbf{F}\| \cdot \|\mathbf{x}_{(k)} - \mathbf{x}_*\|,$$
 (4)

где $\|\mathbf{x}\| = \max\{|x^1|,...,|x^n|\}$ — чебышевская норма вектора $\mathbf{x} = [x^1,...,x^n\rangle \in \mathbb{R}^n$, которой подчинена норма банаховой алгебры $L(\mathbb{R};n)$.

Замечание 3.1 (о СЛАУ с диагональным преобладанием). Для любой матрицы $A = (a_i^i)_n^n \in GL(\mathbb{R}; n)$ существует такая диагональная матрица $D \in GL(\mathbb{R}; n)$, $\| \boldsymbol{E} - \boldsymbol{D} \cdot \boldsymbol{A} \| < 1$. Поэтому любая СЛАУ вида:

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b} \quad (\mathbf{A} = (a_i^i)_n^n \in \mathrm{GL}(\mathbb{R}; n) \text{ } \mathbf{H} \in \mathbb{R}^n) -$$
 (5)

может быть сведена к равносильной СЛАУ вида:

$$x = F \cdot x + g$$

где $F = E - D \cdot A$, ||F|| < 1 и ||F||метод простой итерации. В частности, если в СЛАУ (5) матрица А имеет диагональное *преобладание*, т.е. $|a_i^i| > |a_i^i| + \ldots + |a_{i-1}^i| + |a_{i+1}^i| + \ldots + |a_n^i|$, $i = \overline{1,n}$, то указанную диагональную матрицу **D** можно выбрать в виде:

$$m{D} = egin{pmatrix} lpha_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & dots \\ dots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & lpha_n \end{pmatrix},$$
 где $lpha_i = rac{1}{a_i^i}$ для $i = \overline{1,n}$.

Теорема 3.3 (об устойчивости метода простой итерации). Пусть ${}^{>}x_{(\bullet)} = ({}^{>}x_{(k)})_{\mathbb{N}}$ − последовательность приближённых решений метода простой итерации $\operatorname{itr}(F, {}^{>}g; {}^{>}x_{\scriptscriptstyle (0)})$ решения СЛАУ (1), где $\| \pmb{F} \| < 1$, $^{>}\pmb{\varepsilon}_{(0)} \in ^{>}\mathbb{R}^{n}$ и последовательность $(^{>}\pmb{\varepsilon}_{(k)})_{\mathbb{N}} \in ^{>}\mathbb{R}^{n}$ такова, что $\| \mathbf{r}_{(k)} \| \leq \| \mathbf{r}_{(0)} \| = \varepsilon > 0$ для любого $k \in \mathbb{N}$. Тогда, положив $\mathbf{r}_{(0)} = \mathbf{r}_{(0)} + \mathbf{r}_{(0)} = \mathbf{r}_{(0)} + \mathbf{r}_{(0)}$ и $\mathbf{x}_{(k)} = \mathbf{F} \cdot \mathbf{x}_{(k-1)} + \mathbf{\varepsilon}_{(k)}$, для любого $k \in \mathbb{N}$ получим:

$$\| x_{(k)} - x_{(k)} \| = \| \mathbf{F}^k \cdot \mathbf{\varepsilon}_{(0)} + \ldots + \mathbf{F} \cdot \mathbf{\varepsilon}_{(k-1)} + \mathbf{\varepsilon}_{(k)} \| \le (1 + \| \mathbf{F} \| + \ldots + \| \mathbf{F} \|^k) \cdot \varepsilon \le \frac{1}{1 - \| \mathbf{F} \|} \cdot \varepsilon.$$

Таким образом, метод простой итерации $itr(\boldsymbol{F}, {}^{\flat}\boldsymbol{g}; {}^{\flat}\boldsymbol{x}_{(0)})$ решения СЛАУ (1) устойчив к вычислительным погрешностям.

1.2. Метод Зейделя для решения СЛАУ (1) является модификацией метода простой итерации и, как правило, он сходится быстрее метода простой итерации.

фиксированный вектор. Тогда последовательности ${}^{>}y_{(\bullet)} = ({}^{>}y_{(k)})_{N}$ приближённых решений СЛАУ (1) метод Зейделя предлагает следующую рабочую формулу:

$$y_{(k)} = P \cdot y_{(k-1)} + Q \cdot y_{(k)} + g, \ k \in \mathbb{N},$$
 (6)

$$\mathbf{B} = \begin{pmatrix} f_{1}^{1} & 0 & \cdots & 0 \\ f_{1}^{2} & f_{2}^{2} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ f_{1}^{n} & f_{2}^{n} & \cdots & f_{n}^{n} \end{pmatrix}, \mathbf{D} = \begin{pmatrix} f_{1}^{1} & 0 & \cdots & 0 \\ 0 & f_{2}^{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & f_{n}^{n} \end{pmatrix}, \mathbf{Q} = \mathbf{B} - \mathbf{D}, \mathbf{P} = \mathbf{F} - \mathbf{Q} \text{ M } \mathbf{F} = (f_{j}^{i})_{n}^{n}.$$
(7)

При фиксированном $k \in \mathbb{N}$ из (6) и (7) получаем:

$$\begin{cases} y_{(k)}^{1} = f_{1}^{1} \cdot y_{(k-1)}^{1} + f_{2}^{1} \cdot y_{(k-1)}^{2} + f_{3}^{1} \cdot y_{(k-1)}^{3} + \dots + f_{n-1}^{1} \cdot y_{(k-1)}^{n-1} + f_{n}^{1} \cdot y_{(k-1)}^{n} + g^{1}; \\ y_{(k)}^{2} = f_{1}^{2} \cdot y_{(k)}^{1} + f_{2}^{2} \cdot y_{(k-1)}^{2} + f_{3}^{2} \cdot y_{(k-1)}^{3} + \dots + f_{n-1}^{2} \cdot y_{(k-1)}^{n-1} + f_{n}^{2} \cdot y_{(k-1)}^{n} + g^{2}; \\ y_{(k)}^{3} = f_{1}^{3} \cdot y_{(k)}^{1} + f_{2}^{3} \cdot y_{(k)}^{2} + f_{3}^{3} \cdot y_{(k-1)}^{3} + \dots + f_{n-1}^{3} \cdot y_{(k-1)}^{n-1} + f_{n}^{3} \cdot y_{(k-1)}^{n} + g^{3}; \\ y_{(k)}^{n} = f_{1}^{n} \cdot y_{(k)}^{1} + f_{2}^{n} \cdot y_{(k)}^{2} + f_{3}^{n} \cdot y_{(k)}^{3} + \dots + f_{n-1}^{n} \cdot y_{(k)}^{n-1} + f_{n}^{n} \cdot y_{(k-1)}^{n} + g^{n}; \end{cases}$$

$$(8)$$

где
$$\mathbf{y}_{(k)} = \left[y_{(k)}^1, \dots, y_{(k)}^n \right), \mathbf{y}_{(k-1)} = \left[y_{(k-1)}^1, \dots, y_{(k-1)}^n \right), \mathbf{g} = \left[g^1, \dots, g^n \right) \in \mathbb{R}^n.$$

Таким образом, при любом $k \in \mathbb{N}$ каждая последующая компонента вектора ${}^{\flat}y_{(k)}$ в рабочей формуле (8) метода Зейделя вычисляется с учётом уже найденных в этой формуле предыдущих компонент вектора ${}^{\flat}y_{(k)}$. Поэтому, если для СЛАУ (1) методы простой итерации и Зейделя сходятся к решению СЛАУ (1), то метод Зейделя предпочтительнее, т.к. он сходится «быстрее». Отметим, что, согласно (6) и (7):

$$y_{(k)} = (E - Q)^{-1} \cdot P \cdot y_{(k-1)} + (E - Q)^{-1} \cdot g, \ k \in \mathbb{N}.$$

Теорема 3.4 (о признаке сходимости метода Зейделя). Пусть для матрицы F СЛАУ (1) выполняется условие: ||F|| < 1. Тогда метод Зейделя сходится к решению СЛАУ (1). ▶

<u>ЗАДАНИЕ 1.1</u>

 $(N - номер фамилии студента в журнале, <math>\beta = 1 + 0, 1(n-51), n - номер группы)$

Используя метод простой итерации с нулевым начальным вектором, найти приближённое решение СЛАУ: $A \cdot {}^{>}x = {}^{>}b$, с матрицей, имеющей диагональное преобладание. Абсолютная погрешность приближённого решения не должна превышать величины 0,01. Предполагается, что все компоненты решения заданной СЛАУ равны единице. Матрица A этой СЛАУ приведена ниже в зависимости от варианта задания (см. Tаблицы 1а, δ). Кроме того, используя неравенство (3), найти в методе простой итерации число шагов, необходимое для того чтобы гарантировать абсолютную погрешность приближённого решения не более 0,01. Сравнить это расчётное количество шагов с реальным количеством шагов, обеспечившим заданную погрешность.

Таблица 1а

N		,	\boldsymbol{A}		N	A				
	(10β)	1	2	3)	2	(10β)	1	2	3)	
1	1	10β	3	2		-1	10β	3	2	
1	2	3	10β	1		2	3	10β	1	
	3	2	1	10β		3	2	1	10β	
	(10β)	-1	2	3)	4	(10β)	1	2	3)	
3	1	10β	3	2		1	10β	-3	2	
3	2	3	10β	1		2	3	10β	1	
	3	2	1	10β		3	2	1	10β	
	(10β	1	-2	3)	6	(10β	1	2	3)	
5	1	10β	3	2		1	10β	3	-2	
3	2	3	10β	1		2	3	10β	1	
	3	2	1	10β		3	2	1	10β	

7	(10β)	1	2	-3)		$\sqrt{10\beta}$		2	3		
	7	1	10β	3	2	8	1	10β	3	2	
	,	2	3	10β	1		-2	3	10β	1	
	3	2	1	10β		3	2	1	10β		

Таблица 1б

1аолица 10											
N			\boldsymbol{A}		N		\boldsymbol{A}				
	10β	1	2	3		10β	1	-2	3		
9	-1	10β	-3	2	10	-1	10β	3	2		
	2	3	10β	1		2	3	10β	1		
	(3	2	1	10β		3	2	1	10β		
	(10β)	1	2	-3		(10β)	-1	2	3		
11	1	10β	-3	2	12	1	10β	-3	2		
	2	3	10β	1	12	2	3	10β	1		
	3	2	1	10β		3	2	1	10β		
	(10β)	1	2	3		$\int 10\beta$	1	-2	3		
13	1	10β	3	-2	14	1	10β	3	-2		
	2	-3	10β	1		2	3	10β	1		
	3	2	-1	10β		3	2	1	10β		
	(10β)	1	2	3	16	$\int 10\beta$	1	2	3		
15	1	10β	-3	2		1	10β	3	-2		
	-2	-3	10β	1		2	-3	10β	1		
	(3	2	1	10β		(3	2	1	10β		
	10β	1	2	3	18	10β	4	2	3		
17	1	10β	3	2		-2	10β	3	2		
1,	2	3	10β	-2		2	3	10β	0		
	(3	2	-4	10β		(3	2	4	10β		
	(10β)	-1	2	3	20	10β	1	2	3		
19	1	10β	-3	-2		1	10β	-4	2		
	2	-3	10β	1		2	4	10β	1		
	3	-2	1	10β		3	2	2	10β		
	(10β)				22	10β	1	2	3		
21	1	-	5			1	10β	3	-2		
41	2	3	10β	1		2	3	10β	1		
	3	2	-1	10β		3	1	5	10β		

ЗАДАНИЕ 1.2

Используя метод Зейделя с нулевым начальным вектором, найти приближённое решение СЛАУ: $A \cdot {}^{>}x = {}^{>}b$, с матрицей, имеющей диагональное преобладание. Абсолютная погрешность приближённого решения не должна превышать величины 0,01. Предполагается, что все компоненты решения заданной СЛАУ равны единице. Матрица A этой СЛАУ приведена в $Taблицаx\ 1a$, δ . Сравнить в методах простой итерации и

Зейделя количество шагов для достижения абсолютной погрешности, не превышающей величины 0,01.▶

2. Методы касательных и секущих, метод деления отрезка пополам (*N – номер студента в журнале, вариант*)

Пусть $f \in C^2([a;b],\mathbb{R}^1)$, f'>0 (f'<0) на отрезке [a;b], $f''\geq 0$ на отрезке [a;b] и уравнение f(x)=0 имеет на отрезке [a;b] единственный корень $x_*\in (a;b)$, не являющийся кратным, т.к. $f'(x)\neq 0$ для любой точки $x\in [a;b]$. Тогда метод простой итерации $\operatorname{itr}(\varphi,x_0)$, где $x_0\in [x_*;b]$ $(x_0\in [a;x_*])$ и $\varphi(x)=x-(f'(x))^{-1}\cdot f(x)$ для любого $x\in [a;b]$, сходится к этому корню x_* уравнения f(x)=0. Такой метод $\operatorname{itr}(\varphi,x_0)$ называется методом Ньютона или методом касательных. Его рабочая формула при любом $k\in N$ имеет вид:

$$x_{k} = x_{k-1} - \left(f'(x_{k-1})\right)^{-1} \cdot f(x_{k-1}), \tag{9}$$

т.е. $f(x_{k-1}) + f'(x_{k-1})(x_k - x_{k-1}) = 0$ для $k \in \mathbb{N}$ и, следовательно, точка $x_k \in [x_*; b]$ $(x_k \in [a; x_*])$ является абсциссой точки пересечения касательной к графику функции y = f(x), проведённой в точке $(x_{k-1}, f(x_{k-1}))$, с осью абсцисс, что иллюстрирует рис. 1.

Скорость сходимости метода Ньютона с рабочей формулой (9) достаточно велика (квадратична), т.к.

$$\varphi'(x) = \frac{f''(x)}{(f'(x))^2} \cdot f(x) \to 0$$
 при $x \to x_*$.

Но преимущества метода Ньютона сказываются только в достаточно малой окрестности корня x_* , где значение φ' - мало. Поэтому, прежде, следует «хорошо» локализовать корень x_* каким-либо другим методом (например, графически или методом деления отрезка пополам), а, затем, использовать уже метод Ньютона для достижения высокой точности результата.

В многомерном случае рабочая формула (9), где f' - матрица Якоби, приведет к многомерному (n -мерному) методу Ньютона.

д) Метод секущих.

На каждом шаге метода Ньютона приходится вычислять не только значение функции f, но значение и её производной, что создаёт дополнительные практические трудности. Поэтому, заменив в рабочей формуле (9) метода Ньютона значение производной $f'(x_{k-1})$ на величину $\frac{1}{\left(x_{k-1}-x_{k-2}\right)} \left(f\left(x_{k-1}\right)-f\left(x_{k-2}\right)\right)$ получаем рабочую формулу:

$$x_{k} = x_{k-1} - \frac{(x_{k-1} - x_{k-2})f(x_{k-1})}{f(x_{k-1}) - f(x_{k-2})}$$
(10)

двухшагового метода секущих, где $k \in \mathbb{N}$

Приближение x_k при заданных $k \in \mathbb{N}$ является, согласно формуле (10), абсциссой точки пересечения секущей прямой, проведённой через точки $\left(x_{k-1}+h_{k-1},f\left(x_{k-1}+h_{k-1}\right)\right)$ и $(x_{k-1}, f(x_{k-1}))$, с осью абсцисс, что иллюстрирует рис. 2.

Рис. 2 Если $f(a) \cdot f(b) < 0$ и $f(b) \cdot f'' > 0$ на [a;b], то целесообразно использовать метод, не выпускающий корень $x_* \in (a;b)$ из найденной «вилки» и использующий рабочую формулу:

$$x_{k} = x_{k-1} - \frac{(b - x_{k-1}) f(x_{k-1})}{f(b) - f(x_{k-1})} (k \in N),$$

что иллюстрирует рис. 3, где $x_0 = a$.

использовать рабочую формулу:

$$x_{k} = x_{k-1} - \frac{(x_{k-1} - a) f(x_{k-1})}{f(x_{k-1}) - f(a)} (k \in N),$$

что иллюстрирует рис. 4.

ЗАДАНИЕ 2 (N – номер фамилии студента в журнале, $\alpha = 0,005 \cdot (n-50)$, n – номер группы)

С погрешностью, не превосходящей величину $\varepsilon = 0,0001$, найти все корни уравнения:

$$[N+5,2+(-1)^N\alpha]\cdot x^3 - [2N^2+10,4N+(-1)^{N+1}\alpha]\cdot x^2 - N^2(N+5,2)(x-2N) + (-1)^N\alpha = 0.$$

Нарисовать график функции, стоящей в левой части уравнения. Используя этот график отделить корни уравнения. Для определения левого корня использовать метод касательных, правого - метод секущих. Для определения срединного корня использовать метод деления отрезка пополам.