Atividade 3 - Séries Temporais 2

Caroline Cogo* João Inácio Scrimini[†] Joelmir Junior[‡] Renata Stone§ agosto 2022

Sumário

1	Série Temporal	2
2	Testes de tendência deterministica e estocástica	4
3	Verificando memória longa	5
4	Seleção do modelo	5

^{*}carolcogo 808@gmail.com

 $[\]begin{tabular}{ll} †joao.inacio.scrimini@gmail.com \\ †moura22jr@hotmail.com \\ \end{tabular}$

[§]renastan@gmail.com

1 Série Temporal

Na Figura 1 está sendo apresentada a série em estudo com 1000 observações.

Figura 1: Gráfico da série temporal em estudo.

Agora, considerando a Figura 2 (FAC), pode-se ver que existe autocorrelação, contendo um grande pico e significância no lag 1, diminuindo nos seguintes, entretanto a série não se torna significativa em nenhum lag. O decaimento da função de autocorrelação ocorre de forma lenta, indicando uma longa dependência entre as observações, além da possibilidade de modelagem ARFIMA. Agora, considerando a Figura 3 (FACP), nota-se que o primeiro lag é significativo e ao decorrer dos lags, até antes do lag 20 temos algumas correlações significativas. Mas na sequência, as correlações tornam-se não significativas, estando dentro dos limites estabelecidos.

Figura 2: Autocorrelação amostral (FAC Amostral) da série em estudo.

Figura 3: Autocorrelação parcial amostral (FACP Amostral) da série em estudo.

Sendo assim, na sequência foi verificado a presença de normalidade nos dados, através dos testes de Shapiro Wilk e Jarque-Bera.

Teste de Jarque-Bera, H0: Os dados possuem distribuição normal.

Com p valor igual a $4.736 \times e^{-7}$, ao nível de significância igual a $\alpha = 0.05$, conclui-se que rejeitamos **H0**.

Teste de Shapiro Wilk, H0: Os dados possuem distribuição normal.

Com p valor igual a 0.0001014, ao nível de significância igual a $\alpha = 0.05$, conclui-se que rejeitamos **H0**.

Como a série não apresenta normalidade, aplicou-se inicialmente a transformação de BoxCox nos dados, entretanto, após a transformação foi realizados os testes novamente e a série continuou não apresentando normalidade, por isso, continuamos as análises com os dados originais. Na Figura 4, é apresentado o envelope simulado (qq plot) da série, mas é possível perceber que nos extremos os ponto não estão bem ajustados e dentro das bandas de confiança do envelope simulado.

Figura 4: Envelope simulado da série temporal em estudo.

2 Testes de tendência deterministica e estocástica

Pela Tabela 1 abaixo, em todos os testes de tendência determinística aplicados, os p-valores são inferiores ao alpha $(\alpha = 5\%)$. Portanto, rejeita-se a hipótese nula (H_0) , **considerando como** H_0 : **Sem Tendência Determinística** (STD) e H_1 : **Possui Tendência Determinística** (TD). Sendo assim, conclui-se pelos testes realizados que a série apresenta tendência determinística.

A partir da Tabela 2, considere RU como sendo a hipótese de existir raiz unitária e Estacionária como a hipótese de ter estacionariedade. Para o teste Aumentado de Dickey-Fuller (ADF) e teste de Phillips-Perron (PP), observase p-valor menor que 0,05, logo, rejeitamos a hipótese nula (H_0) , demonstrando não haver Raiz unitária. Agora, segundo os testes de Kwiatkowski-Phillips-Schmidt-Shin (KPSS), sendo o primeiro referente a tendência estocástica, a série apresentou raiz unitária, com p-valor sendo menor que 0,05, rejeitando a hipótese nula (H_0) . Já no segundo, referente a tendência determinística, temos que a série apresenta estacionariedade, com p-valor maior que 0,05, rejeitando H_0 .

Tabela 1: Testes de Tendência Determinística							
Teste	Rotina	H_0	H_1	P-valor	Conclusão		
Cox-Stuart	cox.stuart	STD	TD	$< 2 \times e^{-16}$	TD		
Cox-Stuart	cs.test	STD	TD	$< 2 \times e^{-16}$	TD		
Wald-Wolfowitz	runs.test	STD	TD	$< 2 \times e^{-16}$	TD		
Wald-Wolfowitz	ww.test	STD	TD	$< 2 \times e^{-16}$	TD		
Mann-Kendall	mk.test	STD	TD	$< 2 \times e^{-16}$	TD		
Mann-Kendall	MannKendall	STD	TD	$=$ < $2 \times e^{-16}$	TD		

Tabela 2: Testes de Tendência Estocástica - Raiz Unitária								
Teste	Rotina	H_0	H_1	P-valor	Conclusão			
ADF	adf.test	RU	Estacionária	0,01	Estacionária			
PP	pp.test	RU	Estacionária	0,01	Estacionária			
KPSS	kpss.test	Estacionária	RU	0,01	RU			
KPSS	kpss.test	Estacionária	TD	0,0643	Estacionária			

3 Verificando memória longa

A partir dos resultados das análises anteriores podemos verificar que a série apresenta as duas tendências, determinística e estocástica. Além de que o gráfico ACF indicou decaimento lento, ou seja, indicativo de longa dependência entre as observações.

Na Tabela 3 é calculado o estimador de Geweke e Porter-Hudar (GPH), usado para encontrar o alpha apropriado ao estudo, indicando a longa dependência. Note que, o esperado é um GPH de até 0.5, nesse caso a dependência longa vai até o alpha = 0,65 o qual apresenta valor de GPH menor que 0,5. Com isso, prova-se que utilizar o modelo ARFIMA é apropriado para a série.

Tabela 3: Ajuste de um processo ARFIMA(p,d,q) com estimação do parâmetro d utilizando o estimador de Reisen (SPR), com β =0,9.

Alpha	GPH
0,50	0,4237
$0,\!55$	0,4221
0,60	0,4723
0,65	0,4574
0,70	0,5156
0,75	0,5674
0,80	0,6421
0,85	0,8245
0,90	1,1386

4 Seleção do modelo

Nesta seção serão apresentados a seleção do melhor modelo para a série temporal em estudo, junto com a predição e previsão de 12 períodos. Na tabela 4 é possível visualizar as estimatimas para os modelos nos quais foram ajustados, com no máximo p e q iguais a 2. Portanto, o melhor modelo verificado foi o modelo de p e q iguais a 1, e d = 0,3884. O modelo apresentou menor AIC e também o maior likelihood, os resíduos passando no teste de Box-Pierce de lag = 10 com p-valor de 0,8583, não rejeitando a hipótese nula de não autocorrelação entre os resíduos. Pela tabela 5 é apresentado os coeficientes deste modelo, na qual, todos os parâmetros foram muito sifnificativos. Pelo teste de Shapiro-Wilk para os resídios, obteve-se p-valor de 0,6, não rejeitando a hipótese nula de normalidade dos resíduos, podendo ser visualizado pelo envelope simulado dos resíduos pela Figura 5 onde os resíduos estão praticamente todos ajustados dentro das bandas de confiança, mostrando um bom ajuste do modelo.

Tabela 4: Estimativas dos modelos com no máximo p e q iguais a 2.

p	q	Likelihood	AIC	PValue_BOX	d
0	2	-1414	2835	0,2382	0,4892
1	1	-1407	2821	0,8583	0,3884
1	2	-1408	2827	0,8469	0,3953
2	1	-1408	2827	0,8527	0,3995
2	2	-1408	2827	0,8055	0,1344

Tabela 5: Coeficientes do modelo ARFIMA(p=1,d=0,3884,q=1).

	Estimativa	Erro Padrão	Estatística Z	P-valor($> z $)	
d	0,3884	0,0094	41,2	$< 2 \times e^{-16}$	***
ar	0,4081	0,0324	12,6	$< 2 \times e^{-16}$	***
$_{\mathrm{ma}}$	-0,8353	0,0181	-46,2	$< 2 \times e^{-16}$	***

Código de significância: 0 *** 0.001 ** 0.01 * 0.05 · 0.1 1

Figura 5: Envelope simulado dos resídios do modelo ARFIMA(p=1,d=0,3884,q=1) para a série em estudo.

Na Tabela 6 é apresentado a previsão de 12 períodos para a série em estudo, com os limites de 80% e 95%, podendo ser visualizado pela Figura 6, na qual, é apresentado a predição, a previsão de 12 períodos e os limetes de 95% (Cinza). Observa-se que o modelo prediz muito bem a série temporal, mostrado em vermelho. Para a previsão nota-se que a previsão tende a "estacionar", convergir para média, mostrando que o modelo não é muito apropriado para previsões muito longas, com 12 períodos já é nítido esse comportamento. Assim, sendo sugerido para previsões menores.

Tabela 6: Previsão de 12 períodos do modelo ARFIMA(p=1,d=0,3884,q=1) para a série em estudo.

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
1001	2,561	1,2964	3,825	0,6271	4,494
1002	2,802	0,3825	5,222	-0,8984	6,503
1003	3,007	0,1098	5,904	-1,4237	7,437
1004	3,121	-0,0168	6,259	-1,6780	7,920
1005	3,172	-0,1061	6,451	-1,8415	8,186
1006	3,185	-0,1848	6,556	-1,9688	8,339
1007	3,176	-0,2593	6,612	-2,0781	8,431
1008	3,155	-0,3307	6,641	-2,1761	8,487
1009	3,127	-0,3992	6,653	-2,2660	8,520
1010	3,095	-0,4648	6,655	-2,3492	8,539
1011	3,061	-0,5274	6,649	-2,4269	8,549
1012	3,026	-0,5873	6,639	-2,4999	8,551

Figura 6: Predição e previsão de 12 períodos do modelo ARFIMA(p=1,d=0,3884,q=1) com limites de 95% para a série em estudo.