

MIHICTEPCTBO OCBITU І НАУКИ УКРАЇНИ

ДЕРЖАВНИЙ ДЕПАРТАМЕНТ **ІНТЕЛЕКТУАЛЬНОЇ** ВЛАСНОСТІ

ОПИС

ДО ДЕКЛАРАЦІЙНОГО ПАТЕНТУ на винахід

видається під відповідальність власника патенту

(54) СПОСІБ ВИРОБНИЦТВА СОЄВОГО МОЛОКА

(21) 2000116305

(22) 08.11.2000

(24) 16.07.2001

(33) UA

(46) 16.07.2001, Бюл. № 6, 2001 р.

(72) Гончаренко Сергій Петрович, Гончарєнко Олєг Пєтровіч, RU

(73) Гончаренко Сергій Петрович, UA, Гончарєнко Олег Петровіч, RU

(57) 1. Спосіб виробництва соєвого молока, що включає замочування у воді соєвих бобів, подрібнення, кип'ятіння і фільтрацію, який відрізняється тим, що перед замочуванням соєві боби підлягають тепловій обробці і плющенню.

2. Спосіб по п. 1, який відрізняється тим, що подрібнення соєвих бобів проводять після плющен-

Винахід відноситься до області приготування харчових продуктів, зокрема, до обробки соєвих бобів з метою зміни їх поживних властивостей шляхом фізичної обробки бобів. Він може бути використаний для виробництва соєвого молока, придатного як для використання в харчових цілях, так і для подальшої концентрації.

Відомий спосіб виробництва соєвого молока, що включає в себе видалення з бобів сої жиру, виділення білкового ізоляту з наступним розведенням у вод: (Способ производства соевого молока (ФРГ) // Молочная промышленность: Экспресс-информация. Зарубежный опыт АгроНИИТЭИММП, 1989. - Вып. 10), 🕬

Недоліком даного способу є низька енергетична цінність отриманого молока через відсутність в молоці рослинних жирів, складність одержання молока, висока вартість.

Відомий спосіб виробництва соєвого молока, що включає в себе лущення соєвих бобів, короткочасне витримування у воді, подрібнення, нагрівання і витримування при температурі 100-160°C декілька секунд (Соя в белковых продуктах типа творога // Молочная промышленность. - 1994. - № 3-4. - C. 15).

Недоліком даного способу є наявність у молоці антипоживних і токсичних речовин, низька енергетична цінність молока, а також низька якість молока (характерний присмак зелених бобів).

Найбільш близьким до способу, що пропонується, є спосіб виробництва соєвого молока, що включає в себе замочування у воді соєвих бобів протягом 12 годин, розтирання у водяному середовищі, проварювання і фільтрацію (Соя в белковых продуктах типа творога // Молочная промышленность. - 1994. - № 3-4. - С. 15).

- Недоліком способу є наявність у молоці інгібіторів, у першу чергу, трипсину, низька енергетична цінність молока, а також характерний присмак зелених бобів в молоці, що не дозволяє використовувати дане молоко для одержання згущеного соєвого молока:

Метою винаходу є створення такого способу виробництва соєвого молока, у якому запропоновані умови обробки соєвих бобів дозволяють зруйнувати антипоживні і токсичні речовини, зберегти повний склад білків, жирів і зольних елементів, підвищити енергетичну цінність молока, одержати молоко, придатне як для використання в харчових цілях, так і для подальшої концентрації.

Поставлена задача вирішується запропонованим способом виробництва соєвого молока, що включає замочування у воді соєвих бобів, подрібнення, кип'ятіння і фільтрацію, у котрому перед замочуванням соєві боби підпягають тепловій обробці і плющенню, а подрібнення проводять після плюшення.

Теплова обробка соєвих бобів, наприклад, обробка інфрачервоними променями (тобто мікронізація) сприяє інактивації антипоживних речовин, інгібіторів ферментів травлення і руйнації токсичних речовин. Інфрачервоні промені ефективні в генеруванні тепла усередині матеріалів, що поглинають, якими є соєві боби. При проникненні інфрачервоних променів у матеріал збуджується коливання молекул матеріалу з частотою 70...120 млн. мегациклів у секунду, завдяки чому відбувається швидкий внутрішній нагрів зерна і різке підвищення тиску парів води в ньому. Це призводить до великих фізико-хімічних і біологічних змін. Зерно розм'якшується, розбухає, спучується і розтріскується. При цьому практично цілком пригнічуються антипоживні речовини при повному зберіганні в

An Yuparechick in промыслены влиськость O IX

(11) 40263

соєвих бобах білків, жирів, вітамінів і зольних елементів (Микронизация компонентов комбикормов / Черняев Н.П. Производство комбикормов. - М.: Агропромиздат, 1989. - 224 с.).

Плющення соєвих бобів після теплової обробки сприяє звільненню 80% обмінної енергії жирів, а подрібнення після теплової обробки і плющення сприяє звільненню до 90% обмінної енергії жирів, що утримуються в соєвих бобах. Плющення соєвих бобів здійснюється тисхом 70-90 кг/см², розмір часток після подрібнення складає не більш 0,25 мм.

При інактивації антипоживних і токсичних речовин із соєвих бобів видаляється і характерний бобовий присмак, властивий сої. Одержуване соєве молоко має приємний горіховий присмак і придатне не тільки для вживання в їжу в дитячому і дієтичному харчуванні, але і для подальшої концентрації й одержання згущеного соєвого молока.

Дані порівняльного аналізу фізико-хімічних показників сирих і оброблених соєвих бобів, що показують весь комплекс біохімічних змін, які відбуваються в них, надані в табл. 1.

Приклад 1. Сирі соєві боби замочують у воді протягом 4,5 годин у співвідношенні 1 кг бобів - 5 л води, розмелюють, кип'ятять протягом 30 хв і відфільтровують. Характеристики отриманого соєвого молока надані в табл. 2.

Приклад 2. Сирі соєві боби піддають обробці потоком електромагнітного випромінювання в інфрачервоному діапазоні з довжиною хвилі 1,2 мкм, щільністю потоку 28 кВт/м² і витримкою 40 сек. Потім боби замочують у воді 4,5 години в співвідношенні 1,5, розмелюють, кип'ятять протягом 30 хв і відфільтровують. Характеристики отриманого соєвого молока надані в табл. 2.

Приклад 3. Сирі соєві боби піддають обробці потоком електромагнітного випромінювання в інфрачервоному діапазоні з довжиною хвилі 1,2 мкм, щільністю лотоку 28 кВт/м² і витримкою 40 сек. Потім боби плющать тиском 85 кг/см², замочують у воді 4,5 години у співвідношенні 1:5, розмелюють, кип'ятять протягом 30 хв і відфільтровують. Характеристики отриманого соєвого молока надані в табл. 2.

Приклад 4. Сирі соєві боби піддають обробці потоком електромагнітного випромінювання в інфрачервоному діапазоні з довжиною хвилі 1,2 мкм, щільністю потоку 28 кВт/м² і витримкою 40 сек. Потім боби плющать тиском 85 кг/см², подрібнюють до розміру часток 0,22 мм, замочують у воді 4,5 годин у співвідношенні 1:5, кип'ятять протягом 30 хв і відфільтровують. Характеристики отриманого соєвого молока подані в табл. 2.

Приклад 5. Сирі соєві боби піддають обробці надвисокочастотного (НВЧ) поля потужністю 5,8 кВт/кг і темпом нагрівання 1,6°С/сек протягом 60 сек. Потім боби плющать тиском 85 кг/см², подрібнюють до розміру часток 0,22 мм, замочують у воді 4,5 години в співвідношенні 1:5, кип'ятять протягом 30 хв і відфільтровують. Характеристики отриманого соєвого молока надані в табл. 2.

Приклад 6. Сирі соєві боби піддають тепловій обробці термовипромінюванням температурою 180°С протягом 52 сек. Потім боби плющать тиском 85 кг/см², подрібнюють до розміру часток 0,22 мм, замочують у воді 4,5 години в співвідношенні 1:5, кип'ятять протягом 30 хв і відфільтровують. Характеристики отриманого соєвого молока надані в табл. 2.

Встановлено, що параметри процесу теплової обробки соєвих бобів, що пропонуються, обрані з умов, що забезпечують ефективне проведення процесу руйнації антипоживних і токсичних речовин при зберіганні повного складу білків, жирів і зольних елементів (табл. 1).

Причому, як видно з табл. 2, на процес руйнації антипоживних і токсичних речовин при зберіганні повного складу білків, жирів і зольних елементів практично не впливає спосіб теплової обробки (ІЧ-обробка, НВЧ-обробка або термовипромінювання - розходження складають 1-2%), а впливають тільки параметри проведення самого процесу теплової обробки.

Послідовність і параметри етапів плющення і подрібнення обрані з умов, що забезпечують максимальне звільнення енерпії жиру (до 90%), що утримується в соєвих бобах (Табл. 1, 2).

Таким чином, запропонований спосіб виробництва соєвого молока дозволяє зруйнувати антипоживні і токсичні речовини; зберетти повний склад білків, жирів і зольних елементів, значно (на 100 і більш %) підвищити енергетичну цінність молока, одержати молоко з приємним горіховим присмаком, придатне як для використання в харчових цілях, так і для подальшої концентрації.

Таблиця 1

Найменування показника, %	Соя							
		Оброблена						
	Сира	Теплова обробка	Теплова обробка і плющення	Теплова обробка, плющення, подрібнення				
Вологість	9,48	7,30	7,30	7,30				
Екстрактивні речовини	15,28	20,75	20,75	20,75				
Сирий жир	20,90	21,90	21,97	22,00				
Сирий протеін	38,33	38,85	38,85	3885				
Клітковина	8,48	4,40	4,40	4,40				
Зола	4,85	5,00	5,08	5,02				
Лізин	2,05	2,01	2,01	2,01				
Обмінна енергія, ккал/кг	1700	2970	3210	3450				
Вміст уреази, ед/г	8000	6	6	6				

Таблиця 2

	Соєве молоко						
	Без тер- мообро- бки бобів	Термооброблені боби					
Найменування показника		IЧ-обробка (мікронізація)			НВЧ-обробка,	Термовипромі- нювання,	
Паименування показника		Плющення					
<u> </u>				Подріб- нення	плющення, подрібнення	плющення, подрібнення	
Вміст сухих речовин, %	5,5	5,7	6,0	6,5	6,45	6,5	
Вміст уреази, ед/г	640	0,48	0,48	0,48	0,62	0,50	
Обмінна енергія, ккал/100 г молока	102	178	193	207	201	205	
Білки, г/100 г молока	3,066	3,108	3,108	3,108	3,098	3,101	
Жири, г/100 г молока	1,672	1,752	1,758	1,760	1,740	1,755	

ДП "Український інститут промислової власності" (Укрпатент) Україна, 01133, Київ-133, бульв. Лесі Українки, 26 (044) 295-81-42, 295-61-97

Підписано до друку <u>18.11.</u> 2001 р. Формат 60х84 1/8. Обсяг <u>0,30</u> обл.-вид. арк. Тираж 50 прим. Зам. <u>¥2.15</u>

УкріНТЕІ, 03880, Київ-39 МСП, вул. Горького, 180. (044) 268-25-22