

Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade

Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, Xiaoou Tang Department of Information Engineering, The Chinese University of Hong Kong {lx015,lz013,pluo,ccloy,xtang}@ie.cuhk.edu.hk

IEEE 2017 Conference on Computer Vision and Pattern Recognition

1. Introduction

Task & General Approaches:

Existing Works:

Increase the model capacity to achieve promising results High runtime complexity

Backbone Network	Speed(300*500 image)
VGG16	5.7 fps
ResNet-101	7.1 fps
Inception-ResNet	9.0 fps
Layer Cascade	14.7 fps
Layer Cascade (fast)	23.6 fps

Motivation:

Partition all pixels into three sets by classification confidence

Nearly 40% easy region

Our Idea:

Treats a single deep model as a cascade of several sub-models Earlier sub-models are trained to handle easy and confident regions Feed-forward harder regions to the next sub-model for processing

2. Approach

Turning Inception-ResNet into Deep Layer Cascade (LC)

Region Convolution

5. Overall Performance

	areo	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	persor	n plant	sheep	sofa	train	tv	mIoU
FCN	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	62.2
DeepLab	84.4	54.5	81.5	63.6	65.9	85.1	79.1	83.4	30.7	74.1	59.8	79.0	76.1	83.2	80.8	59.7	82.2	50.4	73.1	63.7	71.6
RNN	87.5	39.0	79.7	64.2	68.3	87.6	80.8	84.4	30.4	78.2	60.4	80.5	77.8	83.1	80.6	59.5	82.8	47.8	78.3	67.1	72.0
Adelaide	91.9	48.1	93.4	69.3	75.5	94.2	87.5	92.8	36.7	86.9	65.2	89.1	90.2	86.5	87.2	64.6	90.1	59.7	85.5	72.7	79.1
RNN [†]	90.4	55.3	88.7	68.4	69.8	88.3	82.4	85.1	32.6	78.5	64.4	79.6	81.9	86.4	81.8	58.6	82.4	53.5	77.4	70.1	74.7
BoxSup [†]	89.8	38.0	89.2	68.9	68.0	89.6	83.0	87.7	34.4	83.6	67.1	81.5	83.7	85.2	83.5	58.6	84.9	55.8	81.2	70.7	75.2
OPN [†]	89.0	61.6	87.7	66.8	74.7	91.2	84.3	87.6	36.5	86.3	66.1	84.4	87.8	85.6	85.4	63.6	87.3	61.3	79.4	66.4	77.5
DeepLab-v2 [†]	92.6	60.4	91.6	63.4	76.3	95.0	88.4	92.6	32.7	88.5	67.6	89.6	92.1	87.0	87.4	63.3	88.3	60.0	86.8	74.5	79.7
LC	94.1	63.0	91.2	67.9	79.5	93.4	90.0	93.8	37.4	83.7	65.9	90.7	86.1	88.8	87.5	68.5	86.9	64.3	85.6	72.2	80.3
$\mathcal{L}C^{\dagger}$	85.5	66.7	94.5	67.2	84.0	96.1	89.8	93.5	47.2	90.4	71.5	88.9	91.7	89.2	89.1	70.4	89.4	70.7	84.2	79.6	82.7

3. Experiments

Ablation Study on Probability Thresholds ρ ρ controls percentage of easy and hard regions

	1	0.005	0.005	0.070	0.050	0.020	0.000	0.000
ρ		0.995	0.985	0.970	0.950	0.930	0.900	0.800
stage-1 (%)	0	15	23	30	35	35	44	56
stage-2 (%)	0	14	29	31	30	41	31	29
mIoU (%)	72.70	73.56	73.91	73.63	73.03	72.53	71.20	66.95
	1		1					

Stage-wise Label Distribution

Stage-1 handles the easy regions (background)

Stage-2 focus more on the foreground than stage-1 does

4. Stages' Outputs

(c) stage2

(d) stage3

(e) ground truth

Stage-3 further focus on harder classes

(b) stage1

(a) input image

Performance and Speed Trade-off

Comparisons with DeepLab & SegNet

	mIoU(%)	runtime(ms)	FPS
DeepLab-v2	70.42	140.0	7.1
SegNet	59.90	69.0	14.6
LC	73.91	65.1	14.7
LC (fast)	66.95	42.5	23.6

LC is an end-to-end trainable

framework that jointly optimizes the feature learning for different regions.

