Statistique-Mathématique TP

Travail à faire en groupe de 3 personnes. (remise sur Google Classroom)

Exercice 1 Simulation de lois

- 1. Simuler un échantillon de taille 10000 suivant une loi binomiale $\mathcal{B}(30,0.5)$. Tracer l'histogramme de l'échantillon obtenu.
- 2. Simuler un échantillon de taille 10000 suivant une loi normale $\mathcal{N}(3,.9)$. Tracer la fonction de densité de l'échantillon obtenu. Choisir un intervalle contenant 0 pour domaine de représentation.
- 3. Simuler un échantillon de taille 10000 suivant une loi du χ^2 à 20 degrés de liberté. Tracer la fonction de densité de l'échantillon obtenu. Choisir un intervalle contenant 0 pour domaine de représentation.

Exercice 2 Méthode de Monte Carlo

Soit
$$I_2 = \int_0^1 \sqrt{1 - x^2} \ dx$$

Estimer I_2 par une méthode de Monte Carlo avec n = 10000

Observer par graphique l'évolution de cette estimation lorsque n varie et vérifier la cohérence avec la valeur théorique $I_2 = \frac{\pi}{4}$.

Exercice 3 Nous donnons les couples d'observations suivants :

1 -	18		l .					l		
y_i	55	17	36	85	62	18	33	41	63	87

- 1. La première étape est d'obtenir les données. Enregistrer-les dans un format adapté pour une lecture par la suite avec Python.
- 2. Représentez les y_i en fonction des x_i . A la vue de cette représentation, pouvons-nous soupçonner une liaison linéaire entre ces deux variables?
- 3. Déterminer pour ces observations la droite des moindres carrés, c'est-à-dire donner les coefficients de la droite des moindres carrés.
- 4. Donner les ordonnées des y_i calculés par la droite des moindres carrés correspondant aux différentes valeurs des x_i .
- 5. Tracer ensuite la droite sur le même graphique.
- 6. Quelle est une estimation plausible de *Y* à $x_i = 21$?
- 7. Quel est l'écart entre la valeur observée de Y à $x_i = 21$ et la valeur estimée avec la droite des moindres carrés? Comment appelons-nous cet écart?

8. Est-ce que la droite des moindres carrés obtenue en 2. passe par le point (\bar{x}, \bar{y}) ? Pouvons-nous généraliser cette conclusion à n'importe laquelle droite de régression?

Exercice 4 (Données covid-19 Sénégal)

Dans un travail, nous utiliserons les données qui se trouve dans le fichier "regions_cas.csv", qui contient le nombre de malades de covid-19 par région entre le 29 mars 2020 et le 20 Octobre 2020.

- 1. Lire les données dans Python. On créera un dataframe contenant les variables suivantes : date, region et malades. On supprimera les accents et les ".". En suite seule la première lettre du mot sera en majuscule.(par exemple on remplace THIÈS par Thies, KÉDOUGOU par Kédougou).
- 2. Convertir la variable date en type datetime, et supprimer toutes les lignes ayant des valeurs manquantes (s'il en existe).
- 3. Créer une fonction qui retourne un dataframe à 3 colonnes (date, region, maladesparegion). La dernière colonne contiendra le nombre de malades de covid-19 par régions aux différentes dates données.
- 4. Supposons que la variable *maladesparegion* suit une loi de Poisson de paramètre λ . Estimer λ .
- 5. Utiliser un test statistique pour vérifier si la variable *maladesparegion* suit une loi de Poisson.
- 6. Supposons que la variable *maladesparegion* suit une loi de Binomiale négative de paramètres r et p. Estimer r et p.
- 7. Créer une fonction *CarteRegions(madate)* qui affiche la carte choroplèthe des régions en utilisant le nombre de malades.(Vous pouvez télécharger les coordonnées géographiques du Sénégal dans le site https://gadm.org/data.html)