What is Machine Learning (ML)?

Applied Machine Learning with R www.therbootcamp.com
(a) therbootcamp

January 2019

What do you think?

No Googling :)

What is Machine Learning?

Machine learning (ML) is a **field of artificial intelligence** that uses **statistical techniques** to give computer systems the ability to **"learn"** (e.g., progressively improve **performance** on a specific task) **from data**, without being explicitly programmed. **Wikipedia**

www.towardsdatascience.com

What is Machine Learning?

Machine learning (ML) is a **field of artificial intelligence** that uses **statistical techniques** to give computer systems the ability to "**learn**" (e.g., progressively improve **performance** on a specific task) **from data**, without being explicitly programmed. **Wikipedia**

What does this mean?

- Machine Learning is about making decisions.
- To do machine learning, you need (clean, relevant) data!
- ML algorithms try to automatically figure out which information is important and which is not.
- ML algorithms are always guided by a

www.towardsdatascience.com

Examples

Predicting Heart Attacks

You are an intake nurse at an emergency room.

A patient comes in complaining of chest pain and thinks they are having a heart attack

Predicting sales

You are an analyst at a retail corporation.

The executive team is considering whether or not to open a new retail location in Basel.

ucsf.edu

location.ch

Solution 1: Intuition

Many decisions are based on an individual's intuitive 'gut' judgment.

"I have a feeling this patient is having a heart attack"

"Sales will be at least 100,000 CHF per month, trust me on this."

What are potential problems with intuition?

ucsf.edu

location.ch

Solution 1: Intuition

What are potential problems with intuition?

- Might not tell you anything about it makes a prediction.
- Could be based on reasons other than accuracy (e.g.; self protection)
- Without rigorous testing, impossible to know if **critical information is being ignored**.
- If the decision isn't programmed, it might be **impossible to** replicate (and improve) in the future.
- Intuition is rarely consistently tracked and evaluated. When wrong, intuition can always be defended 'in hindsight' (ML too!).

ucsf.edu

location.ch

One very influential world leader really trusts his intuition...

Solution 2: Data-Driven Machine Learning

Here's how a data-driven, ML approach would look:

^	diagnosis	age 🗦	sex *	ср	trestbps	chol ‡	fbs ‡	restecg	
1	FALSE	63	1	ta	145	233	1	hypertrophy	
2	TRUE	67	1	a	160	286	0	hypertrophy	
3	TRUE	67	1	a	120	229	0	hypertrophy	
4	FALSE	37	1	np	130	250	0	normal	
5	FALSE	41	0	aa	130	204	0	hypertrophy	
6	FALSE	56	1	aa	120	236	0	normal	
7	TRUE	62	0	a	140	268	0	hypertrophy	
8	FALSE	57	0	a	120	354	0	normal	
9	TRUE	63	1	a	130	254	0	hypertrophy	
10	TRUE	53	1	a	140	203	1	hypertrophy	
11	FALSE	57	1	a	140	192	0	normal	

Based on historical data from past patients at this hospital, a regression model, using the patient's age, cholesterol level, and ecg, predicts the probability that this patient is having a heart attack is only 20%.

gstatic.com

WK Digital

Solution 2: Data-Driven Machine Learning

What are the benefits of ML?

- Algorithms fit to your past data can tell you which variables are important and which are not.
- Make explicit, quantitative predictions of variables of interest.
- Many can give you probability estimates, and estimated errors, rather than single decisions or point estimates.
- Can reveal novel insights about your data!
- Can be programmed and automated.

gstatic.com

WK Digital

Data Terminology

Term	Definition	Example		
Data (Tidy)	Data represented in a rectangular format with rows and columns	Excel spreadsheet, .csv		
Case	A specific observation of data	A patient, a site		
Feature	An individual, measurable property of cases	Age, temperature, country		
Criterion	Something you want to predict	Total sales, success (yes or no)		

What are the steps of machine learning?

Medium.com

There are many types of machine learning tasks, each of which call for different models.

We will focus on **Supervised** tasks.

Three general categories

Туре	Example
Reinforcement Learning	Robot navigation, game playing AI
Unsupervised	Customer segmentation
Supervised	Classification, regression

Wordstream.com

There are many types of machine learning tasks, each of which call for different models.

We will focus on **Supervised** tasks.

Three general categories

Туре	Example			
Reinforcement Learning	Robot navigation, game playing AI			
Unsupervised	Customer segmentation			
Supervised	Classification, regression			

Reinforcement Learning

towardsdatascience.com

MIT Technology Review

There are many types of machine learning tasks, each of which call for different models.

We will focus on **Supervised** tasks.

Three general categories

Туре	Example			
Reinforcement Learning	Robot navigation, game playing AI			
Unsupervised	Customer segmentation			
Supervised	Classification, regression			

Unsupervised learning

iotforall.com

There are many types of machine learning tasks, each of which call for different models.

We will focus on **Supervised** tasks.

Three general categories

Туре	Example			
Reinforcement Learning	Robot navigation, game playing AI			
Unsupervised	Customer segmentation			
Supervised	Classification, regression			

Supervised learning

There are many types of machine learning tasks, each of which call for different models.

We will focus on **Supervised** tasks.

Three general categories

Туре	Example			
Reinforcement Learning	Robot navigation, game playing AI			
Unsupervised	Customer segmentation			
Supervised	Classification, regression			

Unsupervised vs. Supervised learning

It's not magic.

It's not magic.

A model is a mathematical (computational) representation of data.

It's not magic.

A model is a mathematical (computational) representation of data.

That can be **programmed**, and used to understand, and **predict** relationships between data

Three of the models we will work with

Regression

Decision Tree

Random Forest

Why do we need a model at all?

Theoretical

Which features are most **important** in predicting the criterion and which can be safely ignored?

What is the **relationship** between features and the criterion?

• Strong? Weak? Positive? Negative?

Make **predictions** for new data.

- Is this patient having a heart attack?
- How much will this new site sell?

Improve predictions over time with new data.

Data

^	diagnosis	age 🗦	sex =	cp ÷	trestbps	chol	fbs	restecg	thalach =	exang
1	FALSE	63	1	ta	145	233	1	hypertrophy	150	(
2	TRUE	67	1	a	160	286	0	hypertrophy	108	
3	TRUE	67	1	a	120	229	0	hypertrophy	129	
4	FALSE	37	1	np	130	250	0	normal	187	(
5	FALSE	41	0	aa	130	204	0	hypertrophy	172	(
6	FALSE	56	1	aa	120	236	0	normal	178	(
7	TRUE	62	0	a	140	268	0	hypertrophy	160	(
8	FALSE	57	0	a	120	354	0	normal	163	:
9	TRUE	63	1	a	130	254	0	hypertrophy	147	(
10	TRUE	53	1	a	140	203	1	hypertrophy	155	
11	FALSE	57	1	a	140	192	0	normal	148	(
12	FALSE	56	0	aa	140	294	0	hypertrophy	153	

Why do we need a model at all?

Practical

Need a computational / mathematical representation of the data that can be programmed and **productionised**.

A model is like a **step-by-step recipe**, telling you exactly what data you need, and how to combine it.

amazon.com

Data

^	diagnosis	age 🗦	sex ÷	cp ÷	trestbps	chol [‡]	fbs ÷	restecg	thalach +	exang +
1	FALSE	63	1	ta	145	233	1	hypertrophy	150	0
2	TRUE	67	1	a	160	286	0	hypertrophy	108	1
3	TRUE	67	1	a	120	229	0	hypertrophy	129	1
4	FALSE	37	1	np	130	250	0	normal	187	0
5	FALSE	41	0	aa	130	204	0	hypertrophy	172	0
6	FALSE	56	1	aa	120	236	0	normal	178	0
7	TRUE	62	0	a	140	268	0	hypertrophy	160	0
8	FALSE	57	0	a	120	354	0	normal	163	1
9	TRUE	63	1	a	130	254	0	hypertrophy	147	0
10	TRUE	53	1	a	140	203	1	hypertrophy	155	1
11	FALSE	57	1	a	140	192	0	normal	148	0
12	FALSE	56	0	aa	140	294	0	hypertrophy	153	0

Questions?
Schedule