程序代写代做 CS编程辅导

Examination 2018

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程界代号Stion编程辅导

• (a) Discuss the ent types of pulse analogue mo analogue mo and compare their performance in the presence of additive white Gaussian noise.

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序的地域包5编程辅导

Pulse analogue na

- PAM,
- PTM: PWM, and PPM WeChat: cstutorcs
- In PAM: change a hop ligude of pubjectine symplathy with the amplitude of the modulating signal.

Email: tutorcs@163.com

QQ: 749389476

- Advantages: simplicity of modulation and demodulation and time division that plentings.com
- Disadvantage: susceptibility to noise.

PWM: the width of the pulses is varied in sympathy with the amplitud程序价值价格明确模特例al.

information; less 闽溪 circuit.

Advantage: amplit the pulse does not carry ਜ਼ੋ by noise can use limiting

WeChat: cstutorcs

Disadvantage: pulses take more time axis, which makes time multiplexing difficult.

Email: tutorcs@163.com

Synchronisation: decived from oulse edges to convert the width into amplitude which enables the use of https://tutorcs.com PAM detector.

- PPM: position of the pulses carries the information 程序代写代做 CS编程辅导
- Advantage: po vantage over PWM and noise performilities er PAM
- Disadvantage: Startanformation of the pulses is lost requires a synchronisation circuit at the receiver.

Email: tutorcs@163.com

• PWM and PPMQdennodulated using an integrator, that converts RTM: pulses into PAM.

• Noise: PAM is less tolerant to additive noise than PWM or 特例. 写代做 CS编程辅导

• In PTM: if noi the same magnitude as the pulses it rapidly engulfs the signal weChat: cstutorcs threshold.

Assignment Project Exam Help

• Vertical edges cannot be transmitted since channels tend to be band-limited, hence PTM is also affected by horse: com

Questions编程辅导

Binary informat ransmitted using baseband signate form shown in Figure Q.1. Design a correlation detector and find the probability of bit error assuming that the additive white Gaussian noise has a single sided power density equal to 1x10 watts/Hz.

程序的性做包5编程辅导

Replica of space

Sephution Cont辅导

Bit error rate is four equation

$$P_{e} = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{1}{2N}}$$
We Chat: cstutores

To evaluate the above we need the correlation coefficient.

Assignment Project Exam Help

$$\rho = \frac{\int_{0}^{8} s_{mark}(t) s_{space}(t) dt}{\sqrt{\int_{0}^{8} s(t)_{mark}^{2} dt \int_{0}^{8} s(t)_{space}^{2} dt}} \frac{163.\text{com}}{QQ: 749389476}$$

- Evaluating the above integral for the given waveforms gives 0. https://tutorcs.com
- We also need to evaluate the energy per bit

The energy is equa指例代写像做证多编辑等

$$P_{e} = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{8X - 11 - 0}{8X - 11 - 3}} - \frac{3}{2X1X10}$$
We Chat: cstutorcs

Assignment Project Exam Help = 1/2 (erfc(2))
Email: tutorcs@163.com

QQ: 749389476
Using the given table gives 2.3x10⁻³
https://tutorcs.com

Questions编程辅导

Discuss the three-basic forms of bandpass digital modulation methods: ASK-PSK-ESK-Help

Email: tutorcs@163.com

QQ: 749389476

程序的地域包5编程辅导

Digital data mod

Modulate a carrier: amplitude (ASK), 1 transmit the carrier 0 no transmitsionstutores

Assignment Project Exam Help

Frequency (FSK) two different frequencies: 1 and 0 Email: tutorcs@163.com

Phase (PSK): two different phases e.g. transmission of http://riemwithnzero phase transmission of 0: carrier with 180 phase.

Rylestions 2 b辅导

• Discuss the specifical isation requirements for the coherent detector for ESK, showing how these requirements can be achieved.

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序的性故包缩程辅导

Coherent detection

multiply with a loca compare the output between the mark and space correlato eChat: cstutorcs

Assignment Project Exam Help

Requirements:

Email: tutorcs@163.com

- 1. the local replica is synghronized with the received signal in phase and frequency,
- 2. sampling of the popularity detector is synchronized to the bit duration to sample the peak of the detector output

Q.2.c (i) Explain the diffraction mechanism of propagation 程序代写代做 CS编程辅导

Diffraction occurs with large dimensions of the wavelength or by a surface with large dimensions.

Secondary waves behind the State Cting body (Huygens' principle).

Assignment Project Exam Help

Email: tutorcs@163.com

Diffraction: shadowing

QQ: 749389476

Hill tops and building paretusual diffraction obstacles

Question 2.c (ii) 程序代写代做 CS编程辅导

For the geometal gure Q.2.a show that the excess phase Δ dependent on the obstruction, with respect to the first of sight can be written in terms of the Freschakirshhoff diffraction parameter, ν , which is equal to Exam Help

Email: tutorcs@163.com

$$v = h \sqrt{\frac{2(d_1 \mathbf{QQ}_{\dot{2}})^7}{\lambda d_1 d_2 \mathbf{Q}_{\dot{2}} \cdot 1/\text{tutorcs.com}}}$$

Q程序和数2s编型辅导

• Assume h <<

程序的性的包缩程辅导

• Considering ometry of Figure Q.2.a, the difference ath length between the diffracted path and the LOS path weChat: cstutorcs

(d=d₁+d₂) can be found as follows:

$$\Delta R = \sqrt{h^2 + d_{\mathbf{QQ}}^2 + \sqrt{4g_{3894}^2 + d_{\mathbf{Q}}^2} - d}$$

• Assuming that h<<d, d, the above equation can be simplified to

$$\Delta R \cong \frac{1}{2}h^2 \left(\frac{a}{2} \right) = \frac{1}{2} \ln \frac{1}{2}$$

The range difference can be converted to a phase difference il eutores @ 163.com

$$\Delta \phi = \frac{2\pi \Delta R}{\lambda} \frac{\text{QQ: 749389476}}{\text{https://tutoros.}} \frac{2\pi \Delta R}{\overline{\text{co}}} = \frac{\pi}{2} v^2$$

程序代写代做 CS编程辅导

For the geometry of Figure Q.2.b compute the diffraction Ic ficient ν, using the Bullington might for a 900 MHz carrier frequency.

WeChat: cstutorcs

Assignment Project Exam Help

Finail: tutorcs@ 163.com

120 m

12

Solution 程序代写代做 CS编程辅导

draw the dashed identify the height, h of the equivalent obside it per the Bullington method.

We can use the following

$$\frac{h}{0.2} = \frac{d_1}{4}$$
 , $\frac{h}{0.120}$ 程序式写代做 CS编程辅导

$$0.50d_1 = 0.60$$

$$\Delta R \cong \frac{1}{2}h^2 \left(\frac{d_1 + d_2}{d_1 d_2}\right) \begin{array}{l} \text{We Chat: cstutorcs} \\ 1 \\ \text{Ssign} \end{array} \begin{array}{l} 1 \\ \text{Ssign} \end{array} \begin{array}{l} 1 \\ \text{Email: tutorcs@163.com} \end{array} \begin{array}{l} 16 \\ 1.2 \\ d_2 \end{array} \begin{array}{l} \text{He p. 0288} \\ 1.2 \\ d_2 \end{array}$$

$$\Delta \phi = \frac{2\pi \Delta R}{\lambda} = \frac{\pi_{QQ} 2_{749389476}}{2_{\text{https://tutorcs.com}}}$$

which gives a diffraction coefficient of 19.6 where the wavelength is computed to be equal to 33.3 cm.