

HOME CONTESTS GYM PROBLEMSET GROUPS RATING API CANADA CUP 🖫 SECTIONS

PROBLEMS SUBMIT STATUS STANDINGS CUSTOM TEST

A. Line to Cashier

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

Little Vasya went to the supermarket to get some groceries. He walked about the supermarket for a long time and got a basket full of products. Now he needs to choose the cashier to pay for the products.

There are n cashiers at the exit from the supermarket. At the moment the queue for the i-th cashier already has k_i people. The j-th person standing in the queue to the i-th cashier has $m_{i,j}$ items in the basket. Vasya knows that:

- the cashier needs 5 seconds to scan one item;
- after the cashier scans each item of some customer, he needs 15 seconds to take the customer's money and give him the change.

Of course, Vasya wants to select a queue so that he can leave the supermarket as soon as possible. Help him write a program that displays the minimum number of seconds after which Vasya can get to one of the cashiers.

Input

The first line contains integer n ($1 \le n \le 100$) — the number of cashes in the shop. The second line contains n space-separated integers: $k_1, k_2, ..., k_n$ ($1 \le k_i \le 100$), where k_i is the number of people in the queue to the i-th cashier.

The i-th of the next n lines contains k_i space-separated integers: $m_{i,1}, m_{i,2}, ..., m_{i,k_i}$ $(1 \le m_{i,j} \le 100)$ — the number of products the j-th person in the queue for the i-th cash has.

Output

Print a single integer — the minimum number of seconds Vasya needs to get to the cashier.

Examples

input	
1	
output	
20	

input			
4			
1432			
100			
100 1 2 2 3			
191			
78			
output			
100			

Note

In the second test sample, if Vasya goes to the first queue, he gets to the cashier in $100 \cdot 5 + 15 = 515$ seconds. But if he chooses the second queue, he will need $1 \cdot 5 + 2 \cdot 5 + 2 \cdot 5 + 3 \cdot 5 + 4 \cdot 15 = 100$ seconds. He will need $1 \cdot 5 + 9 \cdot 5 + 1 \cdot 5 + 3 \cdot 15 = 100$ seconds for the third one and $7 \cdot 5 + 8 \cdot 5 + 2 \cdot 15 = 105$ seconds for the fourth one. Thus, Vasya gets to the cashier quicker if he chooses the second or the third queue.

Codeforces Round #239 (Div. 2)

Finished

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ACM-ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you - solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Problem tags (implementation) No tag edit access

→ Contest materials • Announcement • Tutorial × × ×

Codeforces (c) Copyright 2010-2016 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: Nov/30/2016 19:18:58^{UTC+8} (c4).

Desktop version, switch to mobile version.