2) a) P: if
$$(x>0)$$
 { $x:=y+1$ } else { if $(x=0)$ { skip} else { $x:=x+1$ } }

using Backward Peasoning:

wp [if($k>0$) { $x:=r+1$ } else { if $(x=0)$ { skip} else { $x:=x+1$ } }

= $((x>0) \land vp[x:=r+1](xy)) \lor ((x\leq 0) \land vp[if(x=0) \{ship \}else \{x:=x+1\}](xy))$

= $((x>0) \land ((x+1>y))) \lor ((x\leq 0) \land ((x=0) \land vp[x+1](xy)) \lor ((x=0) \land (x+1>y)) \lor ((x=0) \land (x+1>y)) \lor ((x=0) \land (x+1>y))$

= $(x>0) \lor ((x\leq 0) \land (x=0) \land (x>y)) \lor ((x\neq 0) \land (x+1>y))$

= $(x>0) \lor ((x\leq 0) \land (x=0) \land (x>y)) \lor ((x\neq 0) \land (x+1>y))$

= $(x>0) \lor ((x\leq 0) \land (x+1>y))$

b) P: while $(x\geq 1)$ { $a:=a*x; x:=x-1$ }

f: $a=x!$

The loop charachteristic function $\phi_F(f)$ is:

$$((x\geq f) \land vp[a:=a*x; x:=x-1](x)) \lor ((x \in f) \land (a=x f))$$

we've seen in the lecture that $\phi_F(f)$ is soft continuous.

using kleenes fixed foired theorem we get:

If $\phi_F = sup_{new} \quad \phi_F(f)$

Lin (F, \Rightarrow)

$$\frac{1}{\sqrt{|x|}} = \frac{1}{\sqrt{|x|}} = \frac{1$$

= ((x ≥ 1) / NP [a=a · x; x = x - 1]((a=1) V(x < 1) / (a = x!)) V ((x < 1) / (a = x!))

$$= ((x \ge 1) \land wp[a := a \times 1]((a = 1) \lor ((x < 2) \land (a = (x - 1)!)))) \lor ((x < 1) \land (a = 1))$$

$$= ((x \ge 1) \land ((a \times 1) \lor (x < 2) \land (a \times 1)!))) \lor ((x < 1) \land (a = x!))$$

$$= ((a = 1) \lor ((x < 1) \land (a = x!))$$

Thus, by computing the loop-characteristing functional $\Phi_f(f)$, we found, using heren's fixed point theorem that WP(P,f) is in fact $(n=1) V((XLI) \Lambda (a=XJ))$