Anemia Sense: Leveraging Machine Learning For Precise Anemia Recognitions

1. INTRODUCTION

Project Overview: AnemiaSense

AnemiaSense is an innovative healthcare technology initiative focused on the precise detection of anemia using advanced machine learning algorithms. The primary goal of the project is to enhance the accuracy and efficiency of anemia diagnosis, facilitating early intervention and better patient management. By leveraging extensive datasets of blood parameters and patient profiles, AnemiaSense aims to identify early signs of anemia and flag potential cases for further investigation by healthcare professionals.

Objectives

1. Develop Robust Machine Learning Models for Anemia Detection

- **Objective:** Create and refine machine learning models trained on comprehensive datasets to accurately detect anemia based on key blood parameters such as hemoglobin levels, red blood cell counts, and other relevant biomarkers.
- **Goal:** Improve the precision and reliability of anemia diagnoses, ensuring that potential cases are identified promptly and accurately.

2. Enhance Data Collection and Quality

- **Objective:** Improve the quality and breadth of data collected from patients to support more accurate machine learning model training and validation.
- **Goal:** Ensure that the models have access to high-quality data, including diverse patient profiles and comprehensive blood parameter records, to enhance their predictive accuracy.

3. Enable Early and Proactive Intervention

- **Objective:** Use machine learning models to identify early signs of anemia, allowing for timely medical interventions and treatment plans.
- **Goal:** Reduce the progression and severity of anemia through early detection and management, ultimately improving patient health outcomes.

2.PROJECT INITIALIZATION AND PLANNING PHASE

Define Problem Statement:

Anemia remains a widespread and underdiagnosed condition, particularly in rural and underserved areas, due to outdated and inefficient diagnostic and management methods. Patients often experience delayed detection, generalized treatment plans, and the necessity for frequent in-person visits. These issues result in suboptimal care, increased healthcare costs, and significant patient dissatisfaction. The current approach fails to provide timely, personalized, and continuous care, exacerbating the condition's impact on patients' health and quality of life. Addressing these challenges is crucial for improving patient outcomes and overall satisfaction with anemia management.

Problem	I am	I'm trying to	But	Because	Which makes
Statement	(Customer)				me feel
(PS)					
PS-1	a patient seeking to detect anemia early.	manage my condition proactively and ensure timely treatment.	current methods for detecting anemia are outdated and inefficient.	delayed diagnosis, generalized treatments, and require frequent visits to healthcare providers, increased costs.	frustrated and worried about my health outcomes

Project Proposal (Proposed Solution)

This project aims to significantly improve anemia management using machine learning, resulting in better patient outcomes and satisfaction. Through timely diagnosis, individualized treatment, and continuous care, we can mitigate the impact of anemia and enhance the quality of life for affected individuals.

Project Overview	
Objective	The primary objective is to revolutionize anemia diagnosis and management by implementing advanced technology solutions, ensuring timely and personalized care for patients.
Scope	The project will focus on improving diagnostic accuracy, reducing healthcare costs, and enhancing patient satisfaction through innovative technology solutions.
Problem Statement	
Description	Widespread underdiagnosis and inefficient management of anemia, Current practices lead to delayed detection, generalized treatment approaches, and high healthcare costs, contributing to patient dissatisfaction and compromised health outcomes.
Impact	This approach could potentially reduce healthcare costs associated with prolonged or ineffective treatments while enhancing overall patient satisfaction and quality of life.
Proposed Solution	
Approach	Developing and deploying machine learning models for predicting anemia based on comprehensive datasets of relevant health indicators. Validate model accuracy through rigorous testing and refinement phases, aiming to streamline and improve the efficiency of anemia diagnosis.
Key Features	Utilizing sophisticated machine learning algorithms to analyze comprehensive health data and predict anemia with high accuracy.

Resource Requirements

Resource Type	Description	Specification/Allocation
Hardware		
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU
Memory	RAM specifications	8 GB
Storage	Disk space for data, models, and logs	1 TB SSD
Software		
Frameworks	Python frameworks	Flask
Libraries	Additional libraries	scikit-learn, pandas, numpy, matpotlib, seaborn
Development Environment	IDE, version control	Jupyter Notebook, Git,Spyder
Data		
Data	Source, size, format	Kaggle dataset, 37KB,csv

Initial Project Planning

Product Backlog, Sprint Schedule, and Estimation

Sprint	Functional Requireme nt (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Membe rs	Sprint Start Date	Sprint End Date (Planned)
Sprint-1	Data Collection and Preparation	AS-1	Collect the data	2	High	Avishi	05/07/24	05/07/24
Sprint-1	Data Collection and	AS-2	Importing the libraries	1	High	Avishi	05/07/24	05/07/24

	Preparation							
Sprint-1	Data Collection and Preparation	AS-3	Read the dataset	2	Low	Avishi	05/07/24	05/07/24
Sprint-1	Data Collection and Preparation	AS-5	Data Preparation and handling imbalanced values	2	Medium	Avishi	05/07/24	05/07/24
Sprint-2	Exploratory Data Analysis	AS-8	Visual Analysis of data	1	High	Anagha	08/07/24	10/07/24
Sprint-2	Exploratory Data Analysis	AS-9	Descrptive statistical	2	Medium	Anagha	08/07/24	10/07/24
Sprint-2	Exploratory Data Analysis	AS-11	Univariate Analysis	2	Medium	Anagha	08/07/24	10/07/24
Sprint-2	Exploratory Data Analysis	AS-13	Splitting Data into Train and Test	2	High	Anagha	08/07/24	10/07/24
Sprint-3	Model Building	AS-15	Testing the model	2	High	Avishi	10/07/24	11/07/24
Sprint-3	Model Building	AS-16	Training the model	2	High	Avishi	10/07/24	11/07/24
Sprint-4	Performan ce Testing Hyper	AS-17	Testing Model with mutliple	2	Medium	Avishi	10/07/24	11/07/24

	Parameter Tuning		evaluation metrics					
Sprint-5	Model Deployme nt	AS-20	Save the best model	3	High	Meghana	10/07/24	11/07/24
Sprint-5	Model Deployme nt	AS-21	Build HTML pages	3	Medium	Rishitha	10/07/24	12/07/24
Sprint-5	Model Deployme nt	AS-22	Build Python code	3	High	Meghana	10/07/24	12/07/24
Sprint-5	Model Deployeme nt	AS-23	Integrate with web framework	3	High	Meghana	10/07/24	12/07/24
Sprint-5	Model Deployme nt	AS-24	Run the web application	1	Low	Meghana	10/07/24	12/07/24
Sprint-6	Project Initial Report	AS-25	Problem Statement	2	high	Rishitha	10/07/24	12/07/24
Sprint-6	Project Initial Report	AS-26	Project Proposal	2	high	Rishitha	10/07/24	12/07/24
Sprint-6	Project Initial Report	AS-27	Project Planning	3	medium	Rishitha	10/07/24	12/07/24
Sprint-7	Final Report	AS-28	Detailed report on the project	3	medium	Everyone	10/07/24	12/07/24

Screenshots:

3. DATA COLLECTION AND PREPROCESSING PHASE

Data collection plan

Section	Description
	Anaemia - sense utilizes machine learning
Project Overview	models trained on vast datasets of blood
	parameters and patient profiles to detect
	early signs of anaemia. By analysing key
	indicators such as haemoglobin levels, red
	blood cell counts, and other relevant
	biomarkers, the system can flag potential
	cases for further investigation by healthcare
	professionals. Early detection enables timely
	interventions and treatment plans, improving
	patient outcomes.
Data Collection Plan	Kaggle dataset
Raw Data Sources Identified	The raw data sources for this project include datasets obtained from
	Kaggle, a popular platform for data science competitions
	and repositories. The provided sample data represents a subset of
	the collected information, encompassing variables such as gender,
	Hemoglobin, MCH, MCV and MCHC details for machine learning
	analysis

Raw data sources

Source name	Description	Location / URL	Format	Size	Access permissions
Kaggle dataset	The dataset comprises Gender, MCV, MCH, MCHC and the overall result	https://www.ka ggle.com/datase ts/biswaranjanra o/anemia- dataset	CSV	37KB	Public

Data Quality Report

The Data Quality Report summarizes data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

Data Source	Data Quality Issue	Severity	Resolution Plan
Kaggle Dataset	Female count is observed to be more than male count	Moderate	The dataset has more females than males, it means the data is imbalanced. To
			address this issue, Undersampling can be used.
			Undersampling involves reducing the number of samples in the majority class (females, in this case) to match the

	number of samples in
	the minority class
	(males). This creates a
	balanced dataset where
	both classes have an
	equal number of
	samples.

Data Exploration and Preprocessing

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions

Section	Description
Data overview	<u>Dimension</u> : 1421 rows x 6 columns

	riptive stat	isticaL				
	Gender	Hemoglobin	МСН	мснс	MCV	Result
count	1240.000000	1240.000000	1240.000000	1240.000000	1240.000000	1240.000000
mean	0.540323	13.218145	22.903952	30.277984	85.620968	0.500000
std	0.498573	1.975190	3.993624	1.394515	9.673794	0.500202
min	0.000000	6.600000	16.000000	27.800000	69.400000	0.000000
25%	0.000000	11.500000	19.400000	29.100000	77.300000	0.000000
50%	1.000000	13.000000	22.700000	30.400000	85.300000	0.500000
75%	1.000000	14.900000	26,200000	31.500000	94.225000	1.000000
max	1.000000	16.900000	30.000000	32.500000	101.600000	1.000000
	t.plot(kind=		nts()			
plt.y plt.t	label('Gende label('Frequ itle('Gender how()	'bar',color= er') mency')		reen'])		
plt.y plt.t plt.s	label('Gender label('Frequ itle('Gender how()	'bar',color= er') mency')				
plt.y plt.t	label('Gender label('Frequ itle('Gender how()	'bar',color= er') mency')	['orange','g			
plt.y plt.t plt.s	:label('Gender label('Frequ itle('Gender how()	'bar',color= er') mency')	['orange','g			
plt.y plt.t plt.s	Page 1 (Gender 1 (Gender 1 (Gender 1) ('bar',color= er') mency')	['orange','g			

200 -

100 -

0 -

0

Gender

Loading Data	<pre>df = pd.read_csv("data/anemia.csv") df.head()</pre>
	Gender Hemoglobin MCH MCHC MCV Result
	0 1 14.9 22.7 29.1 83.7 0
	1 0 15.9 25.4 28.3 72.0 0
	2 0 9.0 21.5 29.6 71.2 1
	3 0 14.9 16.0 31.4 87.5 0
	4 1 14.7 22.0 28.2 99.5 0
Handling Missing Data	df.info()
	<pre> Class 'pandas.core.frame.DataFrame'> RangeIndex: 1421 entries, 0 to 1420 Data columns (total 6 columns): # Column Non-Null Count Dtype 0 Gender 1421 non-null int64 1 Hemoglobin 1421 non-null float64 2 MCH 1421 non-null float64 4 MCV 1421 non-null float64 5 Result 1421 non-null int64 dtypes: float64(4), int64(2) memory usage: 66.7 KB df.isnull().sum() Gender 0 Hemoglobin 0 MCH 0 MCH 0 MCH 0 MCH 0 MCH 0 MCH 0 MCY 0 Result 0 Result 0 dtype: int64</pre>
	There are no missing values in the dataset
Data Transformation	# femole count is observed to be more than male so we balance it using undesampling from sklearn.utils import resample majorclass = dfidf[Result] == 0] minorclass - dfidf[Result] == 1] major_downsample = resample(majorclass, replace=False, n_samples=len(minorclass), random_state=42) if = pd.concat([major_downsample,minorclass]) ff[Result].value_counts() Result 0 520
	1 520 Name: count, dtype: Int64
Feature Engineering	Attached the codes in final submission

4. MODEL DEVELOPMENT PHASE

Feature Selection Report

In the forthcoming update, each feature will be accompanied by a brief description. Users will indicate whether it's selected or not, providing reasoning for their decision. This process will streamline decision-making and enhance transparency in feature selection.

Feature	Description	Selected (Yes/No)	Reasoning
Gender	User's Gender	Yes	Gender plays a vital role in diagnosis of health issues
Hemoglobi n	Hemoglobin is a protein in RBCs that carries oxygenn	Yes	Vital indicator for blood related diagnoses
МСН	Mean corpuscular Hemoglobin signifies the average amount of hemoglobin within a blood cell	Yes	Vital indicator for blood related diagnoses

МСНС	Mean corpuscular hemoglobin concentration is a measure of concentration of hemoglobin in RBCs	Yes	Vital indicator for blood related diagnoses
MCV	Mean corpuscular volume measures the average size of RBCs	Yes	Vital indicator for blood related diagnoses

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
import pickle
import warnings
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report, f1_score, confusion_matrix
```

```
# Load and split data
df = pd.read_csv("data/anemia.csv")
X = df.drop('Result', axis=1)
Y = df['Result']
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=20)
# Train and evaluate models

wmodels = {
    'Logistic Regression': LogisticRegression(random_state=20),
    'Random Forest': RandomForestClassifier(random_state=20),
    'Decision Tree': DecisionTreeClassifier(random_state=20),
    'Gaussian Naive Bayes': GaussianNB(),
    'SVM': SVC(random_state=20),
    'Gradient Boosting': GradientBoostingClassifier(random_state=20)
}
```

Model Validation and Evaluation Report:

Model		Classific	ation F	Report		Accur acy	Confusion Matrix	
	Classificatio	n Report: precision	recall	f1-score	support			
Logistic	0 1	1.00 1.00	1.00 1.00	1.00 1.00	167 118	1,0	Confusion Matrix: [[167 0]	
Regression	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285	1,0	[0 118]]	
	Classificatio	n Report: precision	recall	f1-score	support			
Random	0 1	1.00 1.00	1.00 1.00	1.00 1.00	167 118	1.0	Confusion Matrix: [[167 0]	
Forest	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285	1,0	[0 118]]	
	Classification	on Report:	recall	f1-score	support			
Decision		1.00	1.00	1.00 1.00	167 118	+0. V240	Confusion Matrix:	
Tree	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285	1,0	[[167 0] [0 118]]	
	Classificatio	n Report: precision	recall	f1-score	support			
Gaussian	0	0.97 0.90	0.93 0.96		167 118		Confusion Matrix: [[155 12]	
Naive Bayes	accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94	285 285 285	0,9405	[5 113]]	
	Classification	n Report: precision	recall	f1-score	support			
CVA	0 1	0.95 0.84	0.87 0.94	0.91 0.89	167 118	0.001	Confusion Matrix: [[146 21]	
SVM	accuracy macro avg weighted avg	0.90 0.91	0.91 0.90	0.90 0.90 0.90	285 285 285	0,901	[7 111]]	
	Classificatio	n Report: precision	recall	f1-score	support			
Gradient	0 1	1.00	1.00	1.00	167 118	1.0	Confusion Matrix: [[167 0]	
Boosting	accuracy macro avg weighted avg	1.00	1.00 1.00	1.00 1.00 1.00	285 285 285 285	1,0	[0 118]]	

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model	Description	Hyperpara meters	Performance Metric (e.g., Accuracy, F1 Score)
Logistic Regression	Logistic regression is a supervised machine learning algorithm that accomplishes binary classification tasks.	-	F1 = 1
Random Forest	Ensemble of decision trees; robust, handles complex relationships, reduces overfitting, and provides feature importance for anemia diagnosis.	-	F1=1
Decision Tree	Simple tree structure; interpretable, captures non-linear relationships, suitable for initial insights into anemia diagnosis patterns.	-	F1=1
Gaussian Naive Bayes	Interpretable model for initial exploration, good at capturing some non-linear relationships in anemia diagnosis patterns.	-	F1=0.940
SVM	Powerful for creating separation hyperplanes to divide healthy and anemic patients.	-	F1=0.902

Gradient Boosting	Gradient boosting with trees; optimizes predictive performance, handles complex relationships, and is suitable anemia diagnosis.	-	F1=1
-------------------	--	---	------

5. MODEL OPTIMIZATION AND TUNING PHASE

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hypeparameter tuning documentation:

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	'Logistic Regression': { 'C': [0.01, 0.1, 1, 10], 'penalty': ['l1', 'l2']	Model: Logistic Regression - Best Parameters: {'C': 10, 'penalty': 'l2'}
Random Forest	'Random Forest': { 'n_estimators': [100, 200, 300], 'max_depth': [4, 6, 8], },	Model: Random Forest - Best Parameters: { 'max_depth': 4, 'n_estimators': 100}
Decision Tree	'Decision Tree': { 'max_depth': [3, 5, 8], 'min_samples_split': [2, 5, 10] }	del: Decision Tree - Best Parameters: max_depth': 3, 'min_samples_split': 2}
Gradient Boosting	'Gradient Boosting': { 'n_estimators': [100, 200, 300], 'learning_rate': [0.1, 0.01, 0.001] },	<pre>Model: SVM - Best Parameters: {'C': 10, 'kernel': 'linear'}</pre>

Performance metrics comparision report

Model		Optim	ized Me	tric	
100 (A 10 10 10 10 A 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Classification			f1-score	support
	0 1	1.00 1.00	1.00 1.00	1.00 1.00	167 118
Logistic Regression	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285
	Confusion [[167 0 [0 118]			
	Classification	n Report: precision	recall	f1-score	support
	0 1	1.00 1.00	1.00 1.00	1.00 1.00	167 118
Random Forest	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285
	Confusion [[167 0 [0 118]			

	Classification	n Report: precision	recall	f1-score	support
	0 1	1.00 1.00	1.00 1.00	1.00 1.00	167 118
Decision Tree	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285
	Confusion [[167 0 [0 118				
	Classificatio	n Report: precision	recall	f1-score	support
	0 1	1.00 1.00	1.00 1.00	1.00 1.00	167 118
Gradient Boosting	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285
	Confusion [[167 6 [0 118	0]			
	Classificatio	n Report:			
		precision	recall		support
	0 1	0.95 0.84	0.87 0.94	0.91 0.89	167 118
SVM	accuracy macro avg weighted avg	0.90 0.91	0.91 0.90	0.90 0.90 0.90	285 285 285
	Confusion [[146 21 [7 111		ı		

FINAL MODEL JUSTIFICATION:

Final Model	Reasoning
	The Gradient Boosting model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model.
Gradient Boosting	

6.RESULTS

Output Screenshots:

About

Hemoglobin

Hemoglobin, a protein in red blood cells, transports oxygen and carbon dioxide. Healthy ranges: Men 13.2-16.6 g/dL, Women 11.6-15 g/dL.

мсн

An MCH value refers to the average quantity of hemoglobin present in a single red blood cell. The normal range for MCH is between 27.5 and 33.2 picograms (pg).

MCHC

The mean corpuscular hemoglobin concentration is the average concentration of hemoglobin in red blood cells. The normal range: 33.4-35.5 g/dL.

MCV

MCV stands for mean corpuscular volume. An MCV blood test measures the average size of red blood cells. The normal range for MCV is between 80 to 100 femtoliters.

Enter the required details below

Prediction Result

Your prediction result is: Not Anemic

7.ADVANTAGES AND DISADVANTAGES

Advantages:

1. Improved Diagnostic Accuracy

Machine learning algorithms can analyze large datasets and identify patterns that may be missed by traditional diagnostic methods, leading to more accurate anemia detection.

2. Early Detection

By identifying early signs of anemia, AnemiaSense allows for timely medical interventions, preventing the condition from progressing and reducing the risk of complications.

3. Remote Monitoring

■ Patients can be monitored remotely, reducing the need for frequent in-person visits and making it easier to manage anemia in remote or underserved areas.

4. Efficiency for Healthcare Providers

Automating the anemia detection process streamlines clinical workflows, allowing healthcare providers to focus on patient care and critical decisionmaking.

5. Comprehensive Data Analysis

AnemiaSense can analyze a wide range of blood parameters and patient demographics, providing a holistic view of a patient's health status and supporting more informed clinical decisions.

Disadvantages:

1. Integration Challenges

■ Integrating AnemiaSense with existing healthcare systems and electronic health records (EHR) can be complex and may require significant time and resources.

2. Initial Costs

■ Developing, implementing, and maintaining AnemiaSense can involve significant

initial costs, which may be a barrier for some healthcare providers.

3. Limited Access to Technology

Patients in areas with limited access to technology or digital health platforms may not benefit fully from AnemiaSense's capabilities, potentially widening the healthcare gap.

8. CONCLUSION

AnemiaSense represents a significant advancement in the field of healthcare technology, specifically targeting the detection and management of anemia through sophisticated machine learning algorithms. By focusing on precise and early detection, the project promises to enhance patient outcomes. The integration of remote monitoring capabilities further broadens its reach, offering continuous care for patients in diverse settings.

Overall, AnemiaSense has the potential to revolutionize anemia care, making it more accurate, proactive, and patient-centered. By addressing the associated challenges and leveraging its innovative features, healthcare providers can significantly improve the diagnosis and management of anemia, ultimately leading to better health outcomes for patients.

9. FUTURE SCOPE

Global Implementation and Accessibility

- **Scalability:** Design scalable solutions that can be deployed in diverse healthcare settings, from well-equipped urban hospitals to resource-limited rural clinics.
- **Low-cost Solutions:** Develop cost-effective versions of AnemiaSense to ensure accessibility for underserved populations and low-income regions, potentially through partnerships with NGOs and government health programs.

Integration with Telemedicine Platforms

- **Telehealth Integration:** Integrate AnemiaSense with telemedicine platforms to facilitate remote consultations and follow-ups, especially beneficial during pandemics or in areas with limited healthcare access.
- **Mobile Health Applications:** Develop mobile applications that allow patients to monitor their anemia status, receive alerts, and communicate with healthcare providers, enhancing patient engagement and self-management.

Personalized Treatment Optimization

■ **Genomic Data Integration:** Incorporate genomic and epigenetic data to further personalize treatment plans based on individual genetic profiles and potential predispositions to different types of anemia.

■ Lifestyle and Environmental Factors: Analyze lifestyle and environmental factors in conjunction with clinical data to optimize treatment plans and preventive measures.

Collaborative Research and Development

- Partnerships: Foster collaborations with academic institutions, research organizations, and pharmaceutical companies to advance the science of anemia detection and treatment.
- **Clinical Trials:** Conduct large-scale clinical trials to validate the effectiveness and reliability of AnemiaSense in diverse patient populations and clinical settings.

Regulatory Approvals and Standards

- **Regulatory Compliance:** Ensure AnemiaSense meets regulatory standards and obtains necessary approvals from health authorities such as the FDA, EMA, and other international bodies.
- Industry Standards: Contribute to the development of industry standards for Aldriven diagnostic tools, promoting best practices and interoperability across different healthcare systems.

Advanced Data Analytics

- **Predictive Analytics:** Develop predictive analytics capabilities to forecast anemia progression and treatment outcomes, enabling proactive and preventive healthcare.
- **Big Data Utilization:** Leverage big data analytics to identify trends and patterns in anemia incidence, treatment efficacy, and patient outcomes on a population level.

10. APPENDIX

Source code : model.py

import pickle

import warnings

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, classification_report

Load and split data

df = pd.read_csv("data/anemia.csv")

```
X = df.drop('Result', axis=1)
Y = df['Result']
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=20)
# Train and evaluate models
models = {
  'Logistic Regression': LogisticRegression(random_state=20),
  'Random Forest': RandomForestClassifier(random_state=20),
  'Decision Tree': DecisionTreeClassifier(random_state=20),
  'Gaussian Naive Bayes': GaussianNB(),
  'SVM': SVC(random_state=20),
  'Gradient Boosting': GradientBoostingClassifier(random_state=20)
}
results = {}
for name, model in models.items():
  model.fit(x_train, y_train)
  y_pred = model.predict(x_test)
  acc = accuracy_score(y_test, y_pred)
  report = classification_report(y_test, y_pred)
  results[name] = {'Accuracy': acc, 'Report': report}
# Print comparison of models
compare_models = pd.DataFrame.from_dict({name: data['Accuracy'] for name, data in
results.items()), orient='index', columns=['Accuracy'])
print(compare_models)
# Save the best model (Gradient Boosting Classifier)
best_model = models['Gradient Boosting']
with open("model.pkl", "wb") as model_file:
  pickle.dump(best_model, model_file)
# Test prediction
test_input = [[0, 12.4, 23, 32.2, 76.1]]
prediction = best_model.predict(test_input)
print(f"Test prediction for input {test_input}: {prediction}")
# Handle potential warnings
warnings.warn("Ensure the input data has valid feature names when making predictions.")
```

```
app.py
from flask import Flask, request, render_template
import pickle
import numpy as np
app = Flask(__name__)
# Load the machine learning model
with open('model.pkl', 'rb') as model_file:
model = pickle.load(model_file)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def predict():
if request.method == 'POST':
# Get form data
gender = request.form['gender']
hemoglobin = float(request.form['hemoglobin'])
mch = float(request.form['mch'])
mchc = float(request.form['mchc'])
mcv = float(request.form['mcv'])
# Preprocess input data
gender = 1 if gender == 'male' else 0 # Example: convert gender to numerical
# Create a numpy array for prediction
input_features = np.array([[gender, hemoglobin, mch, mchc, mcv]])
# Make prediction
```

```
prediction = model.predict(input_features)

# Determine result based on prediction
result = 'Anemic' if prediction[0] == 1 else 'Not Anemic'

return render_template('result.html', result=result)
return render_template('predict.html')

if __name__ == '__main__':
app.run(debug=True)
```

Github/Demo link: https://github.com/avishi-sreenidhi/anemia-sense
Project Demonstration link:

https://drive.google.com/file/d/1QlqKkQtBte4nPa2tMvbq_mp3CT0JaePD/view?usp=sharing