-20V to +75V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

General Description

The MAX9918/MAX9919/MAX9920 are single-supply, high-accuracy current-sense amplifiers with a high input common-mode range that extends from -20V to +75V. These amplifiers are well suited for current monitoring of inductive loads such as motors and solenoids, where common-mode voltages can become negative due to inductive kickback, reverse-battery conditions, or transient events.

The MAX9918/MAX9920 feature adjustable gain set by an external resistive-divider network. The MAX9919 features fixed gains of 45V/V (MAX9919F) and 90V/V (MAX9919N). The MAX9918/MAX9919/MAX9920 operate as unidirectional amplifiers when $V_{REFIN} = GND$ and as bidirectional amplifiers when $V_{REFIN} = V_{CC}/2$. The MAX9920 attenuates the input signal by a factor of 4 at the input level-shifting stage allowing the device to sense voltages up to 200mV (unidirectional operation) or ± 100 mV (bidirectional operation).

The MAX9918/MAX9919/MAX9920 operate with a single 5V supply voltage, are fully specified over the -40°C to +125°C automotive temperature range, and are available in an 8-pin SOIC package.

Applications

H-Bridge Motor Current Sensing
Solenoid Current Sensing
Current Monitoring of Inductive Loads
High- and Low-Side Precision Current Sensing
Super-Capacitor Charge/Discharge Monitoring
Precision High-Voltage Current Monitoring

Benefits and Features

- Reduce Protective Clamping for High Inductive Kickback Voltage
 - -20V to +75V Input Common-Mode Voltage Range
- Supports Wide Range of Precision AC and DC Current Sensing Applications
 - · Uni- or Bidirectional Current Sensing
 - 0.6% (max) Gain Accuracy Error
 - 400µV (max) Input Offset Voltage
 - 120kHz, -3dB Bandwidth (MAX9919N)
 - Reference Input for Bidirectional OUT
 - · Rail-to-Rail Output
- Saves Board Space
 - 8-Pin SOIC Package
 - Single-Supply Operation (4.5V to 5.5V)

Ordering Information/ Selector Guide

PART	V _{SENSE} (mV)	GAIN (V/V)	PIN- PACKAGE
MAX9918ASA+	±50	Adjustable	8 SO-EP*
MAX9918ASA/V+	±50	Adjustable	8 SO-EP*
MAX9919FASA+	±50	45	8 SO-EP*
MAX9919FASA/V+	±50	45	8 SO-EP*
MAX9919NASA+	±50	90	8 SO-EP*
MAX9919NASA/V+	±50	90	8 SO-EP*
MAX9920ASA+	±200	Adjustable	8 SO-EP*
MAX9920ASA/V+	±200	Adjustable	8 SO-EP*

Note: All devices operate over the -40°C to +125°C temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

N denotes an automotive qualified part.

*EP = Exposed pad.

Typical Operating Circuit

-20V to +75V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

ABSOLUTE MAXIMUM RATINGS

V_{CC} to GND0.3V to +6V RS+, RS- to GND (V_{CC} = 5V)30V to +80V RS+, RS- to GND (V_{CC} = 0V)15V to +80V (15 minutes)	Outp Cont (N
Differential Input Voltage (V _{RS+} - V _{RS-}) (MAX9918/MAX9919)±15V (Continuous)	Cont
Differential Input Voltage	Juno
(V _{RS+} - V _{RS-}) (MAX9920)±5V (Continuous) REFIN, FB, OUT to GND0.3V to (V _{CC} + 0.3V) SHDN to GND0.3V to +20V	Stora Lead Sold
31 IDIN 10 GIND0.3V 10 +20V	3010

Output Short Circuit to VCC or GND	Continuous
Continuous Current into Any Pin	
(Not to exceed package power dissipation).	±20mA
Continuous Power Dissipation ($T_A = +70$ °C)	
8-Pin SO-EP (derate 24.4mW/°C above +70°C	c)1951.2mW**
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

PACKAGE THERMAL CHARACTERISTICS (Note 1)

SO-FP

Junction-to-Ambient Thermal Resistance (θJA)41°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC}=5V,V_{RS+}=V_{RS-}=+14V,V_{SENSE}=(V_{RS+}-V_{RS-})=0V,V_{SHDN}=V_{GND}=0V,V_{REFIN}=V_{CC}/2,R_L=100k\Omega; for MAX9918, A_V=90V/V,R_2/R_1=89k\Omega/1k\Omega; for MAX9920, A_V=20V/V,R_2/R_1=79k\Omega/1k\Omega; T_A=-40^{\circ}C to +125^{\circ}C, unless otherwise noted. Typical values are at T_A=+25^{\circ}C.) (Note 1)$

PARAMETER	SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS
			V _{RS+} = V _{RS-} =	$T_A = +25^{\circ}C$		±0.14	±0.4	
		MAYOOTO	+14V, V _{REFIN} = 0V	$T_A = -40$ °C to +125°C			±0.7	
		MAX9918	V _{RS+} = V _{RS-} =	T _A = +25°C		±0.08	±0.4	
				$T_A = -40$ °C to +125°C			±1.3	- mV
		MAX9919_	+14V, VREFIN = 0V	T _A = +25°C		±0.18	±0.4	
	.,,			$T_A = -40$ °C to +125°C			±0.9	
Input Offset Voltage (Note 2)	Vos		V _{RS+} = V _{RS-} =	T _A = +25°C		±0.11	±0.4	
			-2V, V _{REFIN} = 0V	$T_A = -40$ °C to +125°C			±1.0	
			V _{RS+} = V _{RS-} =	T _A = +25°C		±0.48	±1.2	
			+14V, VREFIN = 0V	$T_A = -40$ °C to +125°C			±3.0	
		MAX9920	V _{RS+} = V _{RS-} =	T _A = +25°C		±0.10	±0.9	1
			-2V, V _{REFIN} =	$T_A = -40^{\circ}C$ to +125°C			±3.5	

^{**}As per JEDEC51 Standard (multilayer board).

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=5V,V_{RS+}=V_{RS-}=+14V,V_{SENSE}=(V_{RS+}-V_{RS-})=0V,V_{SHDN}=V_{GND}=0V,V_{REFIN}=V_{CC}/2,R_L=100k\Omega; for MAX9918, A_V=90V/V,R_2/R_1=89k\Omega/1k\Omega; for MAX9920, A_V=20V/V,R_2/R_1=79k\Omega/1k\Omega; T_A=-40^{\circ}C to +125^{\circ}C, unless otherwise noted. Typical values are at T_A=+25^{\circ}C.) (Note 1)$

PARAMETERS	SYMBOL	CON	MIN	TYP	MAX	UNITS		
		MAX9918	V _{RS+} = V _{RS-} = +14V		±1.2			
		IVIAA9910	$V_{RS+} = V_{RS-} = -2V$		±3.3			
Input Offset Voltage Drift	\/oop	MAX9919	$V_{RS+} = V_{RS-} = +14V$		±1.8		\//00	
(Note 3)	Vosd	WAX9919_	$V_{RS+} = V_{RS-} = -2V$		±1.8		μV/°C	
		MAX9920	$V_{RS+} = V_{RS-} = +14V$		±2.4			
		IVIAX9920	$V_{RS+} = V_{RS-} = -2V$		±8.8			
Common-Mode Range	V _{CM}	Inferred from CMRR	tests	-20		+75	V	
Common-Mode Rejection Ratio		MAX9918, MAX9919	$-2V \le V_{CM} \le +14V$	80				
	CMRR	IVIAA9916, IVIAA9919	$-20V \le V_{CM} \le +75V$	96			٩٥	
(Note 3)	CIVIAN	MAX9920	$-2V \le V_{CM} \le +14V$	72			dB	
		IVIAA9920	$-20V \le V_{CM} \le +75V$	86				
Input Bias Current	I _{RS+} , I _{RS-}	201/ < 1/21/ < 751/	$T_A = +25^{\circ}C$			±175	μΑ	
		$-20V \le V_{CM} \le +75V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±250	μΑ	
Input Offset Current	(I _{RS+} - I _{RS-})				0	±8	μΑ	
Input Leakage Current in Shutdown		-20V ≤ V _{CM} ≤ +75V, V _{SHDN} = V _{CC} = 5V				±30	μA	
Input Leakage Current		$V_{RS+} = V_{RS-} = +14V$, +75V, V _{CC} = 0V			±30	μΑ	
		MAX9918,	Common mode		300		kΩ	
January Designation		MAX9919_	Differential		715		Ω	
Input Resistance		MAYOOO	Common mode		330		kΩ	
		MAX9920	Differential		224		Ω	
[:: C - C \/- t /N -t 4\	1/-	Inferred from gain	MAX9918, MAX9919_		50		>/	
Full-Scale Sense Voltage (Note 4)	VSENSE	error test	MAX9920		200		mV	
		MAX9918, MAX9920)		Adj			
Gain (Notes 2, 4)	G	MAX9919F			45		V/V	
		MAX9919N			90			
Minimum Adjustable Cain	C.5.	MAX9918			30		\/\/	
Minimum Adjustable Gain	G _{ADJ}	MAX9920			7.5		V/V	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=5V,V_{RS+}=V_{RS-}=+14V,V_{SENSE}=(V_{RS+}-V_{RS-})=0V,V_{SHDN}=V_{GND}=0V,V_{REFIN}=V_{CC}/2,R_L=100k\Omega; for MAX9918, A_V=90V/V,R_2/R_1=89k\Omega/1k\Omega; for MAX9920, A_V=20V/V,R_2/R_1=79k\Omega/1k\Omega; T_A=-40^{\circ}C to +125^{\circ}C, unless otherwise noted. Typical values are at T_A=+25^{\circ}C.) (Note 1)$

PARAMETER	SYMBOL		CONDIT	ONS		MIN	TYP	MAX	UNITS			
			V _{RS+} = V _{RS-} =		T _A = +25°C, V _{REFIN} = 0V		±0.08	±0.6				
		MAX9918	VRS+ = VR +14V	S- =	T _A = -40°C to +125°C, V _{REFIN} = 0V			±1.2				
			$V_{RS+} = V_{R}$	S- =	$T_A = +25^{\circ}C$		±0.02	±0.6				
			-2V, VREFII 0V	1 =	$T_A = -40$ °C to $+125$ °C			±1.0				
			$V_{RS+} = V_{R}$	-	$T_A = +25^{\circ}C$		±0.13	±0.45				
		MAX9919F	+14V, V _{RE} 0V	FIN =	$T_A = -40$ °C to $+125$ °C			±1.2				
		IVIAA9919F	$V_{RS+} = V_{R}$		$T_A = +25^{\circ}C$		±0.10	±0.45				
Gain Error (Note 2)	GE		-2V, V _{REFII}	V =	$T_A = -40$ °C to $+125$ °C			±0.9	%			
			$V_{RS+} = V_{R}$	S- =	$T_A = +25^{\circ}C$		±0.16	±0.6]			
		MAX9919N	+14V, V _{RE} 0V	FIN =	$T_A = -40$ °C to $+125$ °C			±1.2				
			$V_{RS+} = V_{RS}$		$T_A = +25^{\circ}C$		±0.11	±0.6	<u> </u>			
			-2V, V _{REFIN} = 0V		$T_A = -40$ °C to $+125$ °C			±1.0				
		MAX9920	$V_{RS+} = V_{RS}$		$T_A = +25^{\circ}C$		±0.29	±1.0				
			MAXAASO	MAX9920	MAX9920	+14V, V _{RE}	FIN =	$T_A = -40$ °C to $+125$ °C			±1.7	
			$V_{RS+} = V_{R}$	S- =	$T_A = +25^{\circ}C$		±0.24	±1.0				
			-2V, VREFIN		$T_A = -40^{\circ}C$ to $+125^{\circ}C$			±1.7				
FB Input Bias Current	IFB	MAX9918, M	1AX9920				5	15	nA			
Output-Voltage High (Note 4)	V _{CC} - V _{OH}	V _{SENSE} = 20 MAX9918, M	1AX9919_,			3	10	mV				
5 th to 1 to 3 to 3 (1 to 7)		V _{SENSE} = 40 MAX9920	0mV for	R _L =	10k Ω to GND		12	40				
Output-Voltage Low (Note 4)	V _{OL}	V _{SENSE} = -20 MAX9918, M		RL =	100kΩ to V _{CC}		3	10	mV			
Output-voltage Low (Note 4)	VOL	V _{SENSE} = -40 MAX9920	00mV for	RL =	10k Ω to V $_{CC}$		10	40	1110			
Short-Circuit Current	Isc	OUT shorted to V _{CC}				44		mA				
		OUT shorted to GND				41						
Output Resistance	Rout						0.1		Ω			
REFIN Voltage Range		Inferred from	REFIN	MAX9	918, MAX9919_	0	V _{CC} /2	V _{CC} - 1.9	V			
nei iiv voitage hälige		CMRR test	CMRR test		9920	0	V _{CC} /2	V _{CC} - 2.4	V			

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=5V,V_{RS+}=V_{RS-}=+14V,V_{SENSE}=(V_{RS+}-V_{RS-})=0V,V_{SHDN}=V_{GND}=0V,V_{REFIN}=V_{CC}/2,R_L=100k\Omega; for MAX9918, A_V=90V/V,R_2/R_1=89k\Omega/1k\Omega; for MAX9920, A_V=20V/V,R_2/R_1=79k\Omega/1k\Omega; T_A=-40^{\circ}C to +125^{\circ}C, unless otherwise noted. Typical values are at T_A=+25^{\circ}C.) (Note 1)$

PARAMETERS	SYMBOL		CONDITIONS			TYP	МАХ	UNITS	
REFIN Common-Mode Rejection	REFINCMRR	MAX9918, M	AX9919_	0V ≤ V _{REFIN} ≤ (V _{CC} - 1.9V)	82	103		dB	
Ratio	HEFINCMRR	MAX9920		0V ≤ V _{REFIN} ≤ (V _{CC} - 2.4V)	75	90		ив	
REFIN Current	leeeu.	MAX9918, MA	4X9919_, \	$V_{RS+} = V_{RS-} = \pm 50 \text{mV}$			±100		
REFIN Current	IREFIN	MAX9920, V _I	RS+ = VRS	_ = ±200mV			±100	μA	
SHDN Logic-High	VIH				2.0			V	
SHDN Logic-Low	V _{IL}						0.8	V	
SHDN Logic Input Current		0 ≤ V _{SHDN} ≤	Vcc				5	μΑ	
Supply Voltage Range	Vcc	Inferred from	PSRR tes	t	4.5		5.5	V	
Power-Supply Rejection Ratio	PSRR	MAX9918, M	AX9919_	4.5V ≤ V _{CC} ≤ 5.5V	74	103		dB	
(Note 3)	1 01111	MAX9920		$4.5V \le V_{CC} \le 5.5V$	68	100		uБ	
Supply Current	Icc	$V_{RS+} = V_{RS-} = +14V$		T _A = +25°C		0.7	1.2		
		VH2+ - VH2 +14V	- +14V	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$			1.5	mA	
	100	V _{RS+} = V _{RS-} = -2V		T _A = +25°C		1.0	1.6		
				$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			2.2		
Shutdown Supply Current	ICC_SHDN	V _{SHDN} = V _C		0.5	10	μΑ			
		MAX9918, V _{SENSE} = 50mV				75			
Small Signal -3dB Bandwidth	BW	MAX9919F, V _{SENSE} = 50mV				250		kHz	
oman orginal odb bandwidth		MAX9919N, V _{SENSE} = 50mV				120			
		MAX9920, V _{SENSE} = 200mV				230			
		MAX9918				0.6			
Slew Rate	SR	MAX9919F				0.9		V/µs	
Siew Hate	J	MAX9919N				3.0		ν/μδ	
		MAX9920				1.5			
		MAX9918	V _{SENSE} =	= 5mV to 50mV step		12			
		IVIAA9910	V _{SENSE} =	= 50mV to 5mV step		7			
		MAYOOTOE	V _{SENSE} =	= 5mV to 50mV step		3.5			
1% Settling Time from V _{SENSE}		MAX9919F	V _{SENSE} =	= 50mV to 5mV step		2.5			
Step		MAYOOTON	V _{SENSE} =	= 5mV to 50mV step		3.5		μs	
		MAX9919N	V _{SENSE} =	= 50mV to 5mV step		3			
		MAYOOO	V _{SENSE} =	20mV to 200mV step		5			
		MAX9920		= 200mV to 20mV step		3			

-20V to +75V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}=5V,V_{RS+}=V_{RS-}=+14V,V_{SENSE}=(V_{RS+}-V_{RS-})=0V,V_{SHDN}=V_{GND}=0V,V_{REFIN}=V_{CC}/2,R_L=100k\Omega; for MAX9918, A_V=90V/V,R_2/R_1=89k\Omega/1k\Omega; for MAX9920, A_V=20V/V,R_2/R_1=79k\Omega/1k\Omega; T_A=-40°C to +125°C, unless otherwise noted. Typical values are at T_A=+25°C.) (Note 1)$

PARAMETERS	SYMBOL	СО	NDITIONS	MIN	TYP	MAX	UNITS
		MAX9918,	$V_{CM} = -2V \text{ to } +14V \text{ step}$		2.5		
		V _{SENSE} = 50mV	$V_{CM} = +14V \text{ to -2V step}$		0.5		
10/ O III T ()/ OI		MAX9919F,	$V_{CM} = -2V \text{ to } +14V \text{ step}$		2.5		
		V _{SENSE} = 50mV	$V_{CM} = +14V \text{ to } -2V \text{ step}$		0.5		
1% Settling Time from V _{CM} Step		MAX9919N,	$V_{CM} = -2V \text{ to } +14V \text{ step}$		3.5		μs
		VSENSE = 50mV	$V_{CM} = +14V \text{ to } -2V \text{ step}$		3.5]] -
		MAX9920, VSENSE = 200mV	$V_{CM} = -2V \text{ to } +14V \text{ step}$		0.25		
			$V_{CM} = +14V \text{ to } -2V \text{ step}$		2.5		
		MAX9918, V _{SENSE} = 50mV, 1% settling			4.5		
Dower I In Time		MAX9919F, V _{SENSE} = 50mV, 1% settling			5		
Power-Up Time		MAX9919N, V _{SENSE} = 50mV, 1% settling			6		μs
		MAX9920, VSENSE	= 200mV, 1% settling		5		
Max Capacitive Load Stability		No sustained oscillations (Note 5)		50			рF
Input-Referred Noise Voltage		101/17	MAX9918, MAX9919_		60	•	nV/√ Hz
Density	e _n	10kHz	MAX9920		174		IIV/VHZ

Note 1: All devices are 100% production tested at T_A = +25°C. All temperature limits are guaranteed by design.

Note 2: Vos is extrapolated from two point gain error tests. Measurements are made at Vsense = 5mV and 50mV for MAX9918/MAX9919N/MAX9919F, and Vsense = 20mV and 200mV for MAX9920.

Note 3: Extrapolated VOS as described above in Note 2 is used to calculate VOS drift, CMRR, and PSRR.

Note 4: OUT should be 100mV away from either rail to achieve rated accuracy, or limited by a V_{SENSE} of 50mV for the MAX9918/MAX9919N/MAX9919F and 200mV for the MAX9920.

Note 5: Not production tested. Guaranteed by design.

Typical Operating Characteristics

 $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

 $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

 $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

 $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

($V_{CC} = 5V$, $T_A = +25$ °C, unless otherwise noted.)

($V_{CC} = 5V$, $T_A = +25$ °C, unless otherwise noted.)

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	RS+	Positive Current-Sensing Input. Power side connects to external sense resistor.
2	RS-	Negative Current-Sensing Input. Load side connects to external sense resistor.
3	SHDN	Active-High Shutdown Input. Connect to GND for normal operation.
4	GND	Ground
5	OUT	Current-Sense Output. VOUT is proportional to VSENSE.
6	FB	Feedback Input. Connect FB to a resistive-divider network to set the gain for the MAX9918 and MAX9920. See the <i>Adjustable Gain (MAX9918/MAX9920)</i> section for more information. Leave FB unconnected for the MAX9919 for proper operation.
7	REFIN	Reference Input. Set REFIN to V _{CC} /2 for bidirectional operation. Set REFIN to GND for unidirectional operation.
8	Vcc	5V Supply Voltage Input. Bypass V _{CC} to GND with 0.1µF capacitor.
	EP	Exposed Pad. Connect to a large-area contiguous ground plane for improved power dissipation. Do not use as the only ground connection for the part.

Detailed Description

The MAX9918/MAX9919/MAX9920 are single-supply, high-accuracy uni-/bidirectional current-sense amplifiers with a high common-mode input range that extends from -20V to +75V. The MAX9918/MAX9919/MAX9920's input stage utilizes a pair of level shifters allowing a wide common-mode operating range when measuring the voltage drop (VSENSE) across the current-sense resistor. The first level shifter accommodates the upper common-mode operating range from +2V to +75V. When the common-mode voltage falls below +2V, the second level shifter is used to accommodate negative voltages down to -20V.

The level shifters translate VSENSE to an internal reference voltage where it is then amplified with an instrumentation amplifier. The instrumentation amplifier configuration provides high precision with input offset voltages of 400µV (max). Indirect feedback of the instrumentation amplifier allows the gain to be adjusted with an external resistive-divider network on the MAX9918/MAX9920. The MAX9919 is a fixed gain device available with laser-trimmed resistors for gains of 45V/V (MAX9919F) and 90V/V (MAX9919N).

The MAX9918/MAX9919 operate with a full-scale sense voltage of 50mV. The input stage of the MAX9920 provides an attenuation factor of 4, enabling a full-scale sense voltage of 200mV.

Uni-/Bidirectional Operation

The MAX9918/MAX9919/MAX9920 support both unidirectional and bidirectional operation. The devices operate in unidirectional mode with V_{REFIN} = V_{GND}. The output is then referenced to ground and the output voltage V_{OUT} is proportional to the positive voltage drop (V_{SENSE}) from RS+ to RS- (Figure 1).

The MAX9918/MAX9919 operate in bidirectional mode by application of a low-source impedance reference voltage in the 0V to VCC - 1.9V range, (typically VCC/2), to REFIN. For the MAX9920, the reference voltage range is 0V to VCC - 2.4V (typically VCC/2). The output voltage VOUT relative to VREFIN is then proportional to the $\pm VSENSE$ voltage drop from RS+ to RS- (Figure 2).

Figure 1. Unidirectional Operation

Figure 2. Bidirectional Operation

-20V to +75V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

Shutdown Mode

Drive SHDN high to enter low-power shutdown mode. In shutdown mode, the MAX9918/MAX9919/MAX9920 draw 0.5µA (typ) of quiescent current.

Adjustable Gain (MAX9918/MAX9920)

The MAX9918/MAX9920 feature externally adjustable gain set by a resistive-divider network circuit using resistors R1 and R2 (see the *Functional Diagram*). The gain frequency compensation is set for a minimum gain of 30V/V for the MAX9918 and 7.5V/V for the MAX9920. The gain G for the MAX9918/MAX9920 is given by the following equation:

$$G = \left(1 + \frac{R2}{R1}\right)$$
 (for MAX9918)

and

$$G = \left(\frac{\left(1 + \frac{R2}{R1}\right)}{4}\right) \text{ (for MAX9920)}$$

Applications Information

Component Selection

Ideally, the maximum load current develops the full-scale sense voltage across the current-sense resistor. Choose the gain needed to yield the maximum output voltage required for the application:

where V_{SENSE} is the full-scale sense voltage, 50mV for the MAX9918/MAX9919, or 200mV for the MAX9920 and G is the gain of the device. G is externally adjustable for the MAX9918/MAX9920. The MAX9919 has a fixed gain version of 45V/V (MAX9919F) or 90V/V (MAX9919N).

In unidirectional applications (VREFIN = 0V), select the gain of the MAX9918/MAX9920 to utilize the full output range between GND and VCC. In bidirectional applications (VREFIN = VCC/2), select the gain to allow an output voltage range of \pm VCC/2. VOUT must be at least 100mV from either rail to achieve the rated gain accuracy.

Sense Resistor, RSENSE

Choose RSENSE based on the following criteria:

Accuracy: A high RSENSE value allows lower currents to be measured more accurately. This is because offsets become less significant when the sense voltage is larger. In the linear region (100mV < V_{OUT} < V_{CC} - 100mV), there are two components to accuracy: input offset voltage (V_{OS}) and gain error (GE). Use the linear equation to calculate total error:

$$VOUT = (G \pm GE) \times (VSENSE \pm VOS)$$

For best performance, select R_{SENSE} to provide approximately 50mV (MAX9918/MAX9919) or 200mV (MAX9920) of sense voltage for the full-scale current in each application. Sense resistors of $5m\Omega$ to $100m\Omega$ are available with 1% accuracy or better.

Efficiency and Power Dissipation

At high current levels, the I²R losses in R_{SENSE} can be significant. Take this into consideration when choosing the resistor value and its power dissipation (wattage) rating. Also, the sense resistor's value might drift if it is allowed to heat up excessively. The precision V_{OS} of the MAX9918/MAX9919/MAX9920 allows the use of small sense resistors to reduce power dissipation and reduce hot spots.

Inductance: Keep inductance low if ISENSE has a large high-frequency component by using resistors with low inductance value.

Power-Supply Bypassing and Grounding

Bypass the MAX9918/MAX9919/MAX9920's V_{CC} to ground with a 0.1µF capacitor. Grounding these devices requires no special precautions; follow the same cautionary steps that apply to the rest of the system. High-current systems can experience large voltage drops across a ground plane, and this drop may add to or subtract from V_{OUT}. Using a differential measurement between OUT and REFIN prevents this problem. For highest current-measurement accuracy, use a single-point star ground. Connect the exposed pad to a solid ground to ensure optimal thermal performance.

Functional Diagram

Chip Information

PROCESS: BICMOS

-20V to +75V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SO-EP	S8E+14	<u>21-0111</u>	<u>90-0151</u>

-20V to +75V Input Range, Precision Uni-/Bidirectional, **Current-Sense Amplifiers**

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/09	Initial release	
1	1/10	Updated Functional Diagram	16
2	12/10	Added automotive qualified part	1
3	6/11	Added MAX9920ASA/V+ to data sheet	1
4	7/11	Added automotive qualified parts for the MAX9919NASA/V+ and the MAX9920ASA/V+	1
5	1/13	Added automotive qualified part for the MAX9919FASA/V+	1
6	1/15	Updated Applications and Benefits and Features section	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

<u>MAX9919FASA+</u> <u>MAX9919FASA+T MAX9920ASA+T MAX9920ASA+ MAX9918ASA+ MAX9918ASA+T MAX9919NASA+T MAX9919NASA+ MAX9920ASA/V+T MAX9920ASA/V+ MAX9919FASA/V+ MAX9919FASA/V+</u>