Chapter 02 Modeling

IR Models

IR Problem

- 2. How exact is the representation of the query?
- 3. How well is query matched to data?
- 4. How relevant is the result to the query?

Probabilistic Model

- Objective: to capture the IR problem using a probabilistic framework
- Given a user query, there is an ideal answer set
- Querying as specification of the properties of this ideal answer set (clustering)
- But, what are these properties?
- Guess at the beginning what they could be (i.e., guess initial description of ideal answer set)
- Improve by iteration

Retrieved Document

$$K_1 = Cat$$

 $K_2 = Dog$

$$N = 20$$

R = 12
not R = 8

Relevance Docs

d1 =
$$\{1,1\}$$

d2 = $\{1,1\}$
d3 = $\{1,1\}$
d4 = $\{1,1\}$
d6 = $\{1,0\}$
d7 = $\{1,0\}$
d8 = $\{1,0\}$
d9 = $\{1,0\}$
d12= $\{0,1\}$
d13= $\{0,1\}$

$$not K_1, not R = 5$$

 $K_1 = Cat$

 $K_2 = Dog$

N = 20

R = 12

not R = 8

 $K_1, N = 11$

 K_1 ,not R = 3

not $K_1, R = 4$

 $K_1, R = 8$

$$K_2,N = 11$$

 $K_2,R = 7$
 $K_2,\text{not } R = 4$
 $\text{not } K_2,R = 5$

not K_2 , not R = 4

$$d1 = \{1,1\}$$

$$d2 = \{1,1\}$$

$$d3 = \{1,1\}$$

$$d4 = \{1,1\}$$

$$d6 = \{1,0\}$$

$$d7 = \{1,0\}$$

$$d8 = \{1,0\}$$

$$d9 = \{1,0\}$$

$$d12 = \{0,1\}$$

$$d13 = \{0,1\}$$

$$d14 = \{0,1\}$$

$$d18 = \{0,0\}$$

$$K_1 = 8$$

$$K_2 = 7$$

Non Relevance Docs

$$d5 = \{1,1\}$$

$$d10 = \{1,0\}$$

$$d11 = \{1,0\}$$

$$d15 = \{0,1\}$$

$$d16 = \{0,1\}$$

$$d17 = \{0,1\}$$

$$d19 = \{0,0\}$$

$$d20 = \{0,0\}$$

$$K_1 = 3$$

 $K_2 = 4$

Retrieved Document

Retrieved Document

 $d20 = \{0,0\}$

$$K_{1} = \text{Cat}$$

$$K_{2} = \text{Dog}$$

$$Q_{2} = \{1,1\} R$$

$$Q_{3} = \{1,1\} R$$

$$Q_{4} = \{1,1\} R$$

$$Q_{4} = \{1,1\} R$$

$$Q_{4} = \{1,1\} R$$

$$Q_{5} = \{1,1\} R$$

$$Q_{7} = \{1,0\} R$$

$$Q_{7} = \{1,0$$

We need ??? \Longrightarrow $sim(d_j, q) = ???$

$$sim(d_j, q) = \frac{P(R|\overrightarrow{d_j})}{P(\overline{R}|\overrightarrow{d_i})}$$

Bayes' rule

$$\frac{P(R|\overrightarrow{d_j})}{P(\overline{R}|\overrightarrow{d_j})} = \frac{P(\overrightarrow{d_j}|R).P(R)}{P(\overrightarrow{d_j}|\overline{R}).P(\overline{R})}$$

<u>เหตุการณ์โยนลูกเต๋า 1 ลูก</u>

N คือเหตุการณ์ทั้งหมด (6 หมายเลข)

A คือเหตุการณ์ที่ได้เลขคู่

B คือเหตุการณ์ที่ได้เลขน้อยกว่า 5

1 3	2 4	В
5	6	A

$$P(A|N) = \frac{3}{6} \qquad P(A)$$

$$P(B|N) = \frac{4}{6} \quad \Longrightarrow \quad P(B)$$

$$P(A|B) = \frac{2}{4}$$

 $P(A|B) = \frac{2}{4}$ ความน่าจะเป็นที่ลูกเต้าจะออกเลขคู่จากเหตุการณ์ที่ลูกเต้ามีแต้มน้อยกว่า 5

$$P(B|A) = \frac{2}{3}$$

 $P(B|A) = \frac{2}{3}$ ความน่าจะเป็นที่ลูกเต๋าจะมีค่าน้อยกว่า 5 จากเหตุการณ์ที่ลูกเต๋ามีแต้มเป็นเลงคู่

เหตุการณ์โยนลูกเต๋า 1 ลูก

N คือเหตุการณ์ทั้งหมด (6 หมายเลข)

A คือเหตุการณ์ที่ได้เลขคู่

B คือเหตุการณ์ที่ได้เลขน้อยกว่า 5

$$P(A) = \frac{3}{6}$$
$$P(B) = \frac{4}{6}$$

$$P(B) = \frac{4}{6}$$

$$P(A|B) = \frac{2}{4}$$

$$P(B|A) = \frac{2}{3}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{\frac{2}{6}}{\frac{4}{6}} = \frac{2}{6} * \frac{6}{4} = \frac{1}{2}$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

$$= \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{6} * \frac{6}{3} = \frac{2}{3}$$

<u>เหตุการณ์โยนลูกเต๋า 1 ลูก</u>

N คือเหตุการณ์ทั้งหมด (6 หมายเลข)

A คือเหตุการณ์ที่ได้เลขคู่

B คือเหตุการณ์ที่ได้เลขน้อยกว่า 5

$$P(A) = \frac{3}{6}$$

$$P(B) = \frac{4}{6}$$

$$P(A|B) = \frac{2}{4}$$

$$P(B|A) = ???$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \implies P(A|B) = \frac{P(B \cap A)}{P(B)}$$

$$P(B \cap A) = P(A|B) * P(B)$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)} \implies P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

$$P(B|A) = \frac{\frac{2}{4} * \frac{4}{6}}{\frac{3}{6}} = \frac{2}{6} * \frac{6}{3} = \frac{2}{3}$$

<u>เหตุการณ์โยนลูกเต๋า 1 ลูก</u>

N คือเหตุการณ์ทั้งหมด (6 หมายเลข)

A คือเหตุการณ์ที่ได้เลขคู่

B คือเหตุการณ์ที่ได้เลขน้อยกว่า 5

$$P(A) = \frac{3}{6}$$
$$P(B) = \frac{4}{6}$$

$$P(B|A) = \frac{2}{3}$$

$$P(A|B) = ???$$

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

$$P(A|B) = \frac{\frac{2}{3} * \frac{3}{6}}{\frac{4}{6}} = \frac{2}{6} * \frac{6}{4} = \frac{1}{2}$$

Probabilistic Model

$$sim(d_{j}, q) = \frac{P(R|\overrightarrow{d_{j}})}{P(\overline{R}|\overrightarrow{d_{j}})}$$

$$= \frac{P(\overrightarrow{d_{j}}|R) * P(R)}{P(\overrightarrow{d_{j}})}$$

$$= \frac{P(\overrightarrow{d_{j}}|R) . P(\overline{R})}{P(\overrightarrow{d_{j}})}$$

$$= \frac{P(\overrightarrow{d_{j}}|R) * P(R)}{P(\overrightarrow{d_{j}})} * \frac{P(\overrightarrow{d_{j}})}{P(\overrightarrow{d_{j}}|\overline{R}) . P(\overline{R})}$$

$$sim(d_{j}, q) = \frac{P(\overrightarrow{d_{j}}|R) * P(R)}{P(\overrightarrow{d_{j}}|\overline{R}) * P(\overline{R})}$$

Bayes' Rule

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

$$P(R) = \frac{12}{20}$$
 Retrieved Docume $d1 = \{1,1\}$ R $d1 = \{1,1\}$ R $d2 = \{1,1\}$ R $d3 = \{1,1\}$ R $d4 = \{1,1\}$ R

$$=\frac{6}{12}$$
 $d4 = \{1,1\}$ R

$$P(\overline{K_1}|R) = \frac{4}{12}$$
 $d5 = \{1,1\}$ $d6 = \{1,0\}$ R

$$P(K_1|\bar{R}) = \frac{3}{8}$$
 $d7 = \{1,0\} \ R$
 $d8 = \{1,0\} \ R$
 $d9 = \{1,0\} \ R$

$$P(\overline{K_1}|\bar{R}) = \frac{5}{8}$$

$$d9 = \{1,0\} \ R$$

$$d10 = \{1,0\}$$

$$d11 = \{1,0\}$$

$$P(\overline{K_2}|R) = \frac{5}{12} \qquad \begin{array}{c} d14 = \{0,1\} \ R \\ d15 = \{0,1\} \\ d16 = \{0,1\} \end{array}$$

$$P(K_{2}|\bar{R}) = \frac{4}{8}$$

$$P(K_{2}|\bar{R}) = \frac{4}{8}$$

$$P(K_{2}|\bar{R}) = \frac{4}{8}$$

$$d16 = \{0,1\}$$

$$d17 = \{0,1\}$$

$$d18 = \{0,0\} R$$

$$d19 = \{0,0\}$$

 $d20 = \{0,0\}$

Simple Probabilistic Method

$$P(R|(1,1)) = \frac{4}{5}$$

$$P(R|(1,0)) = \frac{4}{6}$$

$$P(R|(0,1)) = \frac{3}{6}$$

$$P(R|(0,0)) = \frac{1}{3}$$

$$d21=\{1,0\}$$
 \implies $sim(d21,q) = ???$

$$d1 = \{1,1\} R$$

 $d2 = \{1,1\} R$

$$d2 = \{1,1\} R$$

$$d2 = \{1,1\} R$$

$$P(R) = \frac{12}{20}$$
 Retrieved Docume $d1 = \{1,1\}$ R $d2 = \{1,1\}$ R $d3 = \{1,1\}$ R $d4 = \{1,1\}$ R $d4 = \{1,1\}$ R

$$d4 = \{1,1\} R$$

 $d5 = \{1,1\}$

$$P(\overline{K_1}|R) = \frac{4}{12}$$
 $d5 = \{1,1\}$
 $d6 = \{1,0\}$ **R**

 $P(K_1|\bar{R}) = \frac{3}{8}$

 $P(\overline{K_1}|\overline{R}) = \frac{5}{\Omega}$

 $P(K_2|R) = \frac{7}{12}$

 $P(\overline{K_2}|R) = \frac{5}{12}$

$$d7 = \{1,0\} R$$

 $d8 = \{1,0\} R$

$$d9 = \{1,0\} \ R$$

$$d12 = \{0,1\} R$$

$$d13=\{0,1\}$$
 R

$$d14=\{0,1\}$$
 R $d15=\{0,1\}$

$$d16 = \{0,1\}$$

$$d17={0,1}$$
 $d18={0,0}$ **R**

$$P(K_2|\bar{R}) = \frac{4}{8}$$

$$P(K_2|\bar{R}) = \frac{4}{8}$$

$$P(K_2|\bar{R}) = \frac{4}{8}$$

$$d17 = \{0,1\}$$

$$d18 = \{0,0\}$$

$$d19 = \{0,0\}$$

$$d20 = \{0,0\}$$

$$sim(d_j, q) = \frac{P(d_j|R) * P(R)}{P(\overline{d_j}|\overline{R}) * P(\overline{R})}$$

$$sim(d_1,q) = \frac{P(\overrightarrow{d_1}|R) * P(R)}{P(\overrightarrow{d_1}|\overline{R}) * P(\overline{R})}$$

$$d1 = \{1,1\} = \frac{P(K_1|R) * P(K_2|R)}{P(K_1|\overline{R}) * P(K_2|\overline{R})} * \frac{12}{8}$$
$$= \frac{\frac{8}{12} * \frac{7}{12}}{\frac{3}{8} * \frac{4}{8}} * \frac{12}{8} = \frac{28}{9}$$

$$sim(d_6, q) = \frac{P(\overrightarrow{d_6}|R) * P(R)}{P(\overrightarrow{d_6}|\overline{R}) * P(\overline{R})}$$

$$d6 = \{1,0\} = \frac{P(K_1|R) * P(\overline{K_2}|R)}{P(K_1|\overline{R}) * P(\overline{K_2}|\overline{R})} * \frac{12}{8}$$

$$\frac{8}{12} * \frac{5}{12} * \frac{12}{12} * \frac{20}{12}$$

$$=\frac{\frac{8}{12}*\frac{5}{12}}{\frac{3}{8}*\frac{4}{8}}*\frac{12}{8}=\frac{20}{9}$$

 $d19 = \{0,0\}$

 $d20 = \{0,0\}$

$$P(R) = \frac{12}{20}$$

$$P(\bar{R}) = \frac{8}{20}$$

$$P(\bar{K}_1|R) = \frac{8}{12}$$

$$P(K_1|R) = \frac{4}{12}$$

$$P(K_1|R) = \frac{4}{12}$$

$$P(K_1|R) = \frac{3}{8}$$

$$P(K_1|\bar{R}) = \frac{3}{8}$$

$$P(K_1|\bar{R}) = \frac{3}{8}$$

$$P(K_1|\bar{R}) = \frac{3}{8}$$

$$P(K_1|\bar{R}) = \frac{5}{8}$$

$$P(K_2|R) = \frac{7}{12}$$

$$P(K_2|R) = \frac{5}{12}$$

$$P(K_2|R) = \frac{5}{12}$$

$$P(K_2|\bar{R}) = \frac{4}{8}$$

$$sim(d_{12}, q) = \frac{P(\overline{d_{12}}|R) * P(R)}{P(\overline{d_{12}}|\overline{R}) * P(\overline{R})}$$

$$d12 = \{0,1\} \qquad = \frac{P(\overline{K_1}|R) * P(K_2|R)}{P(\overline{K_1}|\overline{R}) * P(K_2|\overline{R})} * \frac{12}{8}$$

$$= \frac{\frac{4}{12} * \frac{7}{12}}{\frac{5}{8} * \frac{4}{8}} * \frac{12}{8} = \frac{28}{30}$$

$$sim(d_{18}, q) = \frac{P(\overrightarrow{d_{18}}|R) * P(R)}{P(\overrightarrow{d_{18}}|\overline{R}) * P(\overline{R})}$$

d18 = {0,0}
$$= \frac{P(\overline{K_1}|R) * P(\overline{K_2}|R)}{P(\overline{K_1}|\overline{R}) * P(\overline{K_2}|\overline{R})} * \frac{12}{8}$$
4 5

$$=\frac{\frac{4}{12}*\frac{5}{12}}{\frac{5}{8}*\frac{4}{8}}*\frac{12}{8}=\frac{10}{15}$$

Probabilistic Model

$$d_{j} \rightarrow \{1,1\} \qquad sim(d_{j},q) = \frac{28}{9} \qquad sim(d_{j},q) = \frac{28}{37} = 0.757$$

$$d_{j} \rightarrow \{1,0\} \qquad sim(d_{j},q) = \frac{20}{9} \qquad sim(d_{j},q) = \frac{20}{29} = 0.690$$

$$d_{j} \rightarrow \{0,1\} \qquad sim(d_{j},q) = \frac{28}{30} \qquad sim(d_{j},q) = \frac{28}{58} = 0.483$$

$$d_{j} \rightarrow \{0,0\} \qquad sim(d_{j},q) = \frac{10}{15} \qquad sim(d_{j},q) = \frac{10}{25} = 0.400$$

Probabilistic value \in [0,1]

Then

$$sim(d_j, q) = \frac{sim(d_j, q)}{1 + sim(d_j, q)}$$

Binary Independence Retrieval Model (BIR)

Retrieved Document

$$P(R) = \frac{12}{20}$$

$$P(R) = \frac{8}{20}$$

$$P(R) = \frac{8}{20}$$

$$P(R) = \frac{8}{20}$$

$$P(R) = \frac{8}{20}$$

$$Retrieved Documann and the second of the second o$$

	$d7 = \{1,0\} R$
$P(K_1 \bar{R}) = \frac{3}{8}$	$d8 = \{1,0\} R$
8	49 - 51 n P

$$P(\overline{K_1}|\bar{R}) = \frac{5}{8} \qquad d9 = \{1,0\} \ R$$

$$d10 = \{1,0\}$$

$$d11 = \{1,0\}$$

$$P(K_2|R) = \frac{7}{12}$$
 $\frac{d12=\{0,1\}}{R}$ $\frac{R}{R}$

$$P(\overline{K_2}|R) = \frac{5}{12} \qquad \begin{array}{c} d14 = \{0,1\} \ R \\ d15 = \{0,1\} \\ d16 = \{0,1\} \end{array}$$

$$P(K_2|\bar{R}) = \frac{4}{8}$$

$$P(K_2|\bar{R}) = \frac{4}{8}$$

$$d16 = \{0,1\}$$

$$d17 = \{0,1\}$$

$$d18 = \{0,0\} R$$

$$d19 = \{0,0\}$$

$$d20 = \{0,0\}$$

 $d20 = \{0,0\}$

	{1,1}	{1,0}	{0,1}	{0,0}
Simple	0.800	0.667	0.500	0.333
BIR	0.757	0.690	0.483	0.400

Probabilistic Model

Smooth Tuning

$$P(K_i|R) = \frac{r_i}{R} \qquad \longrightarrow P(K_i|R) = \frac{r_i + 0.5}{R+1} \longrightarrow P(K_i|R) = \frac{r_i + \frac{n_i}{N}}{R+1}$$

$$P(\overline{K}_i|R) = 1 - P(K_i|R)$$

$$P(K_i|\bar{R}) = \frac{n_i - ri}{N - R} \longrightarrow P(K_i|\bar{R}) = \frac{n_i - ri + 0.5}{N - R + 1} \longrightarrow P(K_i|\bar{R}) = \frac{n_i - ri + \frac{n_i}{N}}{N - R + 1}$$

$$P(\overline{K}_i|\overline{R}) = 1 - P(K_i|\overline{R})$$

Probabilistic Ranking Principle

- Given a user query q and a document d_i , the probabilistic model tries to estimate the probability that the user will find the document d_i interesting (i.e., relevant). The model assumes that this probability of relevance depends on the query and the document representations only. Ideal answer set is referred to as R and should maximize the probability of relevance. Documents in the set R are predicted to be relevant.
- But,
 - how to compute probabilities?
 - what is the sample space?

The Ranking

- Probabilistic ranking computed as:
 - $sim(d_j,q) = P(d_j \text{ relevant-to } q) / P(d_j \text{ non-relevant-to } q)$

$$sim(d_j, q) = \frac{P(R|\overrightarrow{d_j})}{P(\overline{R}|\overrightarrow{d_i})}$$

- This is the odds of the document d_i being relevant
- Taking the odds minimize the probability of an erroneous judgement
- Definition:
 - \diamond wij $\in \{0,1\}$
 - $\bullet P(R|\overrightarrow{d_i})$: probability that given doc is relevant
 - $\bullet P(\overline{R}|\overrightarrow{d_i})$: probability doc is not relevant

Where do the probabilities fit?

Pluses and Minuses

- Advantages:
 - Docs ranked in decreasing order of probability of relevance
- Disadvantages:
 - need to guess initial estimates for P(k_i | R)
 - method does not take into account tf and idf factors

ตัวอย่างโจทย์

$K_n = \{Cat, Dog, Tiger\}$

ในการส่ง Query = $\{1,0,1\}$ เข้าไปในระบบ มีผลลัพธ์คือ $D_3,D_{10},D_2,D_5,D_9,D_6,D_1$

เอกสารทั้งหมดในระบบมีดังนี้

$$D_1 = \{1,0,0\}$$

$$D_2 = \{0,0,1\}$$

$$D_3 = \{1,0,1\}$$

$$D_4 = \{1,1,0\}$$

$$D_5 = \{0,1,0\}$$

$$D_6 = \{0,1,1\}$$

$$D_7 = \{0,1,1\}$$

$$D_8 = \{1,1,1\}$$

$$D_{9} = \{1,0,0\}$$

$$D_{10} = \{1,0,1\}$$

เมื่อนำผลลัพธ์ที่ได้มาวิเคราะห์ และนำไปจัดลำดับความตรงประเด็นของเอกสาร ทั้งหมดอีกครั้ง ลำดับของความตรงประเด็นใหม่เป็นเท่าใด (จงแสดงวิธีคำนวณ)

BM25 (Best Matching 25) Extended Probabilistic Model

BM25

Goals

- □ All Documents (not only retrieved documents)
- Term frequency in each document
- Term frequency in query

BM25

$$sim_{bm25}(d_j,q) = \sum_{i \in q} \log \frac{(r_i+0.5)/(R-r_i+0.5)}{(n_i-r_i+0.5)/(N-n_i-R+r_i+0.5)} \cdot \frac{(k_1+1)f_i}{k_1 \left((1-b)+b \cdot \frac{dl}{avdl}\right)+f_i} \cdot \frac{(k_2+1)qf_i}{k_2+qf_i}$$
- เอกสารที่ j
- จำนวนเอกสารที่ตรงประเด็น
- จำนวนเอกสารทั้งหมด

Document term frequency

Document term frequency

- $\mathbf{d_i}$ เอกสารที่ j
- R จำนวนเคกสารที่ตรงประเด็น
- N จำนวนเอกสารทั้งหมด
- $\mathbf{r_i}$ จำนวนเอกสารที่ตรงประเด็นที่มี $keyword\ i$
- $\mathbf{n_i}$ จำนวนเอกสารทั้งหมดที่มี $keyword\ i$
- $\mathbf{f_i}$ ความถี่ของ $keyword\ i$ ในเอกสาร j
- dl จำนวนคำของเอกสาร j
- avdl จำนวนคำเฉลี่ยของทุกเอกสาร
- qf_i ความถี่ของ keyword i ใน query
- ${
 m b}$ ค่าคงที่โดยตาม $\it TREC$ จะใช้ค่า $\it 0.75~(0.5 < b < 0.8)$
- ${
 m k_1}$ ค่าคงที่โดยตาม TREC จะใช้ค่า $1.25~(1.2 < k_1 < 2)$
- ${
 m k_2}$ ค่าคงที่โดยปกติจะอยู่ในช่วง $extit{0}$ $extit{1000}$

BM25

Variables

Inverse document frequence	uency (จำ	นวนของเอกสารที่มี Ke	yword)
Term frequency	(ความถี่ข	อง Keyword ในแต่ละเ	อกสาร)
Document length norm	alization	(ความยาวของเอกสาร	"จำนวนคำ <i>")</i>
Query term frequency	(ความถี่ข	อง Keyword ในแต่ Qu	ıery)

Inverse document frequency

ความน่าจะเป็นที่เอกสารจะตรงประเด็น

ความน่าจะเป็นที่เอกสารจะ<mark>ไม่</mark>ตรงประเด็น

จำนวนเอกสารที่มี Keyword ในเอกสารที่กำหนดว่าตรงประเด็น

จำนวนเอกสารที่ตรงประเด็นทั้งหมด

 $\frac{r_i}{R}$ $\frac{r_i + 0.5}{R + 0.5}$

ความน่าจะเป็นที่เอกสารจะตรงประเด็น = ความน่าจะเป็นที่เอกสารมี Keyword แล้วตรงประเด็น ความน่าจะเป็นที่เอกสาร <mark>ไม่</mark>มี Keyword แล้วตรงประเด็น

$$=\frac{(r_i+0.5)/(R+0.5)}{(R-r_i+0.5)/(R+0.5)}$$

$$=\frac{(r_i+0.5)}{(R-r_i+0.5)}$$

จำนวนเอกสารที่<mark>ใม่</mark>มี Keyword ในเอกสารที่กำหนคว่าตรงประเด็น

จำนวนเอกสารที่ตรงประเด็นทั้งหมด

$$\frac{R-ri}{R}$$

$$\frac{R-ri}{R} \longrightarrow \frac{R-ri+0.5}{R+0.5}$$

Inverse document frequency

ความน่าจะเป็นที่เอกสารจะตรงประเด็น

ความน่าจะเป็นที่เอกสารจะ<mark>ไม่</mark>ตรงประเด็น

จำนวนเอกสารที่มี Keyword ในเอกสารที่กำหนดว่า <mark>ไม่</mark>ตรงประเด็น

จำนวนเอกสารที่<mark>ไม่</mark>ตรงประเด็นทั้งหมด

ความน่าจะเป็นที่เอกสารจะ <mark>ไม่</mark>ตรงประเด็น= ความน่าจะเป็นที่เอกสารมี Keyword แล้ว <mark>ไม่</mark>ตรงประเด็น

ความน่าจะเป็นที่เอกสารใม่มี Keyword แล้วใม่ตรงประเด็น

$$\frac{n_i - ri + 0.5}{N}$$

$$=\frac{(n_i-ri+0.5)/(N-R+0.5)}{(N-ni-R+ri+0.5)/(N-R+0.5)}$$

$$= \frac{n_i - ri + 0.5}{N - ni - R + ri + 0.5}$$

จำนวนเอกสารที่<mark>ไม่</mark>มี Keyword ในเอกสารที่กำหนดว่า<mark>ไม่</mark>ตรงประเด็น

จำนวนเอกสาร<u>ที่<mark>ไ</mark>ม่</u>ตรงประเด็นทั้งหมด

จำนวนเอกสารที่ $^{f l}$ ม่มี Keywordนั้นทั้งหมด - จำนวนเอกสารที่ $^{f l}$ ม่มี Keywordนั้นแล้วตรงประเด็น

จำนวนเอกสารที่<mark>ไม่</mark>ตรงประเด็นทั้งหมด

$$\frac{N-ni-(R-ri)}{N-R}$$

$$\frac{N-ni-(R-ri)}{N-R} \qquad \frac{N-ni-R+ri+0.5}{N-R+0.5}$$

Inverse document frequency

ความน่าจะเป็นที่เอกสารจะตรงประเด็น ความน่าจะเป็นที่เอกสารจะใม่ตรงประเด็น

$$=\frac{(r_i+0.5)/(R-r_i+0.5)}{(n_i-r_i+0.5)/(N-n_i-R+r_i+0.5)}$$

$$= log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)}$$

R- จำนวนเอกสารที่ตรงประเด็น

N- จำนวนเอกสารทั้งหมด

 $\mathbf{r_i}$ – จำนวนเอกสารที่ตรงประเด็นที่มี keyword~i

 $\mathbf{n_i}$ – จำนวนเอกสารทั้งหมดที่มี keyword~i

$$\frac{f_{i,j}}{f_{i,j}+k} \longrightarrow \frac{f_i}{k\left((1-b)+b\cdot\frac{dl}{avdl}\right)+f_i}$$

dl - จำนวนคำของเอกสาร j avdl - จำนวนคำเฉลี่ยของทุกเอกสาร b - ค่าคงที่โดยตาม TREC จะใช้ค่า 0.75~(0.5 < b < 0.8) k - ค่าคงที่โดยตาม TREC จะใช้ค่า 1.25~(1.2 < k < 2)

$$\frac{f_i}{k\left((1-b)+b\cdot\frac{dl}{avdl}\right)+f_i}$$

$$\frac{f_i}{k\left((1-b)+b\cdot\frac{dl}{avdl}\right)+f_i} \qquad \frac{(k+1)f_i}{k\left((1-b)+b\cdot\frac{dl}{avdl}\right)+f_i}$$

$$\frac{(k+1)f_i}{k\left((1-b)+b\cdot\frac{dl}{avdl}\right)+f_i}$$

dl - จำนวนคำของเอกสาร javdl - จำนวนคำเฉลี่ยของทุกเอกสาร

b -ค่าคงที่โดยตาม TREC จะใช้ค่า 0.75~(0.5 < b < 0.8)

k - ค่าคงที่โดยตาม TREC จะใช้ค่า $1.25\ (1.2 < k < 2)$

Query term frequency

$$\frac{(k_2+1)qf_i}{k_2+qf_i}$$

 k_2 - ค่าคงที่โดยปกติจะอยู่ในช่วง 0 - 1000 qf_i - ความถึ่งอง keyword i ใน query

- พิจารณาจากความถี่ของแต่ละ Keyword ใน Query
- ให้ความสำคัญน้อยหรือไม่ให้ความสำคัญเลย
- มีผลน้อยกว่าความถี่ของ Keyword ในเอกสาร

BM25

$$sim_{bm25}(d_j,q) = \sum_{i \in q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{k_1 \left((1 - b) + b \cdot \frac{dl}{avdl} \right) + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$$

 $\mathbf{d_i}$ - เอกสารที่ j

R - จำนวนเอกสารที่ตรงประเด็น

N - จำนวนเอกสารทั้งหมด

 $\mathbf{r_i}$ - จำนวนเอกสารที่ตรงประเด็นที่มี keyword~i

n_i - จำนวนเอกสารทั้งหมดที่มี keyword i

 $\mathbf{f_i}$ – ความถี่ของ keyword~i ในเอกสาร j

 dl - จำนวนคำของเอกสาร j

avdl - จำนวนคำเฉลี่ยของทุกเอกสาร

qf_i - ความถี่ของ keyword i ใน query

 ${
m b}$ - ค่าคงที่โดยตาม $\it TREC$ จะใช้ค่า $\it 0.75~(0.5 < b < 0.8)$

 $\mathbf{k_1}$ - ค่าคงที่โดยตาม TREC จะใช้ค่า $\mathit{1.25}$ $(1.2 < k_I < 2)$

 ${
m k_2}$ - ค่าคงที่โดยปกติจะอยู่ในช่วง $\emph{0}$ - $\emph{1000}$

ตัวอย่างการใช้ BM25

Example (retrieved docs)

Query = Honda , Toyota , Isuzu

	My father is thinking about the car that she want to buy between Isuzu D-MAX X-series, Isuzu D-MAX V-Cross 4 door,
	Isuzu D-MAX V-Cross 2 door, Isuzu Mu-7, Isuzu Mu-X, Isuzu D-MAX Hi-Lander, Toyota Hilux vigo, Toyota Hilux revo or
	Toyota Innova.
	My uncle suggest My father that he should buy Toyota camry, Toyota vios, Toyota yaris or Toyota corolla altis.
R	My mother will buy a car for me and my brother, we think we should Honda city, Honda brio, Honda CR-V, Honda BR-V,
	Honda civic, Honda accord, Toyota Yaris, Toyota vios.
	When i was young, My father driven Toyota Mighty-X but now He want to sell it and he will buy Toyota vigo, Isuzu D-MAX,
	Isuzu Mu-7, Isuzu Mu-X. But my mother do not want to sell it.
R	A silver Honda Accord pulled up and the window rolled down after black Toyota yaris passed the Toyota hilux vigo in front
	of Toyota yaris.
R	Isuzu D-MAX more popular than Honda and Toyota althought Toyota hilux vigo are cheaper than Isuzu D-Max and Honda
	accord.So , <mark>Isuzu</mark> have much more profit than Toyota and Honda .
R	Finally ,I am decide to buy Isuzu Mu-7 because it can carry people than Toyota camry and Honda accord inspite of Honda
	accord has beautiful than Isuzu Mu-7 and Toyota camry ,but Isuzu mu-7 has the most power consumed
R	A new generation of car are leading by Honda Toyota and Isuzu and Toyota have most car in production line ,althought
	Honda have more scientist than Toyota but Toyata have car in production line more Honda.
	R R R

1. หา term frequency ในแต่ละ document

f	Honda	Toyota	Isuzu	
d1	0	3	6	
d2	0	4	0	
d3	6	2	0	R
d4	0	2	3	
d5	1	3	0	R
d6	3	3	2	R
d7	2	2	3	R
d8	3	4	1	R

2. หา document length และ average length

Length (จำนวนคำในเอกสาร)

$$d1 = 42$$
 $d5 = 25$
 $d2 = 19$ $d6 = 31$
 $d3 = 31$ $d7 = 39$
 $d4 = 37$ $d8 = 36$

AVR = 32.5

3. หา Inverse document frequency

R = 5

$$R = 5 \qquad N = 8$$

$$r_{Honda} = 5 \qquad n_{Honda} = 5$$

$$r_{Toyota} = 5 \qquad n_{Toyota} = 8$$

$$r_{Isuzu} = 3 \qquad n_{Isuzu} = 5$$

$$idf_i = log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)}$$

$$idf_{honda} = log \frac{(5 + 0.5)/(5 - 5 + 0.5)}{(5 - 5 + 0.5)/(8 - 5 - 5 + 5 + 0.5)} = 1.89$$

$$idf_{toyota} = log \frac{(5 + 0.5)/(5 - 5 + 0.5)}{(8 - 5 + 0.5)/(8 - 8 - 5 + 5 + 0.5)} = 0.20$$

$$idf_{isuzu} = log \frac{(3 + 0.5)/(5 - 3 + 0.5)}{(5 - 3 + 0.5)/(8 - 5 - 5 + 3 + 0.5)} = -0.08$$

ต้องการหา sim ของ document d10,d20,d30 และ d40

	ความถื่	ความถื่	ความถื่	จำนวนคำใน
	Honda	Toyota	Isuzu	เอกสาร
d10	0	4	2	21
d20	9	15	2	55
d30	11	7	5	35
d40	6	6	6	25

Query = Honda , Toyota , Isuzu

$$sim_{bm25}(d_j,q) = \sum_{i \in q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{k_1 \left((1 - b) + b \cdot \frac{dl}{avdl} \right) + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$$

 ${
m d_i}$ - เอกสารที่ j

R - จำนวนเอกสารที่ตรงประเด็น

N - จำนวนเอกสารทั้งหมด

 $\mathbf{r_i}$ - จำนวนเอกสารที่ตรงประเด็นที่มี keyword~i

 $\mathbf{n_i}$ - จำนวนเอกสารทั้งหมดที่มี $keyword\ i$

 $\mathbf{f_i}$ – ความถี่ของ keyword~i ในเอกสาร j

 dl - จำนวนคำของเอกสาร j

avdl - จำนวนคำเฉลี่ยของทุกเอกสาร

 ${\sf qf}_i$ - ความถี่ของ ${\it keyword}\ i$ ใน ${\it query}$

 ${f b}$ - ค่าคงที่โดยตาม $\it TREC$ จะใช้ค่า $\it 0.75~(0.5 < b < 0.8)$

 ${f k_1}$ - ค่าคงที่โดยตาม $\it TREC$ จะใช้ค่า $\it 1.25~(1.2 < k_1 < 2)$

 ${
m k_2}$ - ค่าคงที่โดยปกติจะอยู่ในช่วง $\emph{0}$ - $\emph{1000}$

$$sim_{bm25}(d_{j},q) = \sum_{i \in q} \log \frac{(r_{i} + 0.5)/(R - r_{i} + 0.5)}{(n_{i} - r_{i} + 0.5)/(N - n_{i} - R + r_{i} + 0.5)} \cdot \frac{(k_{1} + 1)f_{i}}{k_{1}\left((1 - b) + b \cdot \frac{dl}{avdl}\right) + f_{i}} \cdot \frac{(k_{2} + 1)qf_{i}}{k_{2} + qf_{i}}$$

$$sim_{bm25}(d_{30},q) = 1.89 \cdot \frac{(2.25)11}{1.25\left((1 - 0.75) + 0.75 \cdot \frac{35}{32.5}\right) + 11}$$

$$+ 0.20 \cdot \frac{(2.25)7}{1.25\left((1 - 0.75) + 0.75 \cdot \frac{35}{32.5}\right) + 7}$$

$$- 0.08 \cdot \frac{(2.25)5}{1.25\left((1 - 0.75) + 0.75 \cdot \frac{35}{32.5}\right) + 5}$$

$$= 3.789 + 0.371 - 0.135$$

= 4.026

5. จัดลำดับความตรงประเด็น แล้วแสดงผลลัพธ์การ query

	ความถื่ Honda	ความถี่ Toyota	ความถื่ Isuzu	จำนวนคำใน เอกสาร	sim
d30	11	7	5	35	4.026
d40	6	6	6	25	3.852
d20	9	15	2	55	3.810
d10	0	4	2	21	0.242

Example (all docs)

Query = Honda , Toyota , Isuzu

d1	My father is thinking about the car that she want to buy between Isuzu D-MAX X-series, Isuzu D-MAX V-Cross 4 door,
	Isuzu D-MAX V-Cross 2 door, Isuzu Mu-7, Isuzu Mu-X, Isuzu D-MAX Hi-Lander, Toyota Hilux vigo, Toyota Hilux revo or
	Toyota Innova.
d2	My uncle suggest My father that he should buy Toyota camry, Toyota vios, Toyota yaris or Toyota corolla altis.
d3	My mother will buy a car for me and my brother, we think we should Honda city, Honda brio, Honda CR-V, Honda BR-V,
	Honda civic, Honda accord, Toyota Yaris, Toyota vios.
d4	When i was young, My father driven Toyota Mighty-X but now He want to sell it and he will buy Toyota vigo, Isuzu D-MAX,
<u> </u>	Isuzu Mu-7, Isuzu Mu-X. But my mother do not want to sell it.
d5	A silver Honda Accord pulled up and the window rolled down after black Toyota yaris passed the Toyota hilux vigo in front
	of Toyota yaris.
d6	Isuzu D-MAX more popular than Honda and Toyota althought Toyota hilux vigo are cheaper than Isuzu D-Max and Honda
	accord.So , Isuzu have much more profit than Toyota and Honda.
d7	Finally ,I am decide to buy Isuzu Mu-7 because it can carry people than Toyota camry and Honda accord inspite of Honda
	accord has beautiful than Isuzu Mu-7 and Toyota camry ,but Isuzu mu-7 has the most power consumed
d8	A new generation of car are leading by Honda Toyota and Isuzu and Toyota have most car in production line ,althought
	Honda have more scientist than Toyota but Toyata have car in production line more Honda.

1. หา document length และ average length

Length (จำนวนคำในเอกสาร)

$$d1 = 42$$
 $d5 = 25$
 $d2 = 19$ $d6 = 31$
 $d3 = 31$ $d7 = 39$
 $d4 = 37$ $d8 = 36$

AVR = 32.5

2. หา Inverse document frequency

$$R = 0$$
 $N = 8$
 $r_{Honda} = 0$ $n_{Honda} = 5$
 $r_{Toyota} = 0$ $n_{Toyota} = 8$
 $r_{Isuzu} = 0$ $n_{Isuzu} = 5$

$$idf_{i} = log \frac{(r_{i} + 0.5)/(R - r_{i} + 0.5)}{(n_{i} - r_{i} + 0.5)/(N - n_{i} - R + r_{i} + 0.5)}$$

$$idf_{i} = log \frac{N - n_{i} + 0.5}{(n_{i} + 0.5)}$$

$$idf_{honda} = log \frac{(0 + 0.5)/(0 - 0 + 0.5)}{(5 - 0 + 0.5)/(8 - 5 - 0 + 0 + 0.5)} = -0.20$$

$$idf_{toyota} = log \frac{(0 + 0.5)/(0 - 0 + 0.5)}{(8 - 0 + 0.5)/(8 - 8 - 0 + 0 + 0.5)} = -1.23$$

$$idf_{isuzu} = log \frac{(0+0.5)/(0-0+0.5)}{(5-0+0.5)/(8-5-0+0+0.5)} = -0.20$$

$$idf_i = log \frac{N - n_i + 0.5}{(n_i + 0.5)}$$

ต้องการหา sim ของ document d4 และ d8

	ความถื่ Honda	ความถื่ Toyota	ความถี่ Isuzu	จำนวนคำใน เอกสาร
d4	0	2	3	37
d8	3	4	1	36

Query = Honda , Toyota , Isuzu

$$sim_{bm25}(d_j,q) = \sum_{i \in q} \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{k_1 \left((1 - b) + b \cdot \frac{dl}{avdl} \right) + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$$

 ${
m d_i}$ - เอกสารที่ j

R - จำนวนเอกสารที่ตรงประเด็น

N - จำนวนเอกสารทั้งหมด

 $\mathbf{r_i}$ - จำนวนเอกสารที่ตรงประเด็นที่มี $keyword\ i$

n_i - จำนวนเอกสารทั้งหมดที่มี keyword i

 $\mathbf{f}_{\mathbf{i}}$ - ความถี่ของ $keyword\ i$ ในเอกสาร j

 dl - จำนวนคำของเอกสาร j

avdl - จำนวนคำเฉลี่ยของทุกเอกสาร

 ${\sf qf}_i$ - ความถี่ของ $keyword\ i$ ใน query

 ${
m b}$ - ค่าคงที่โดยตาม $\it TREC$ จะใช้ค่า $\it 0.75$ ($\it 0.5 < b < 0.8$)

 ${
m k_1}$ - ค่าคงที่โดยตาม $\it TREC$ จะใช้ค่า $\it 1.25~(1.2 < k_1 < 2)$

 ${
m k_2}$ - ค่าคงที่โดยปกติจะอยู่ในช่วง $extit{0}$ - $extit{1000}$

$$sim_{bm25}(d_{j},q) = \sum_{leq} \log \frac{(r_{l}+0.5)/(R-r_{l}+0.5)}{(n_{l}-r_{l}+0.5)/(N-n_{l}-R+r_{l}+0.5)} \cdot \frac{(k_{1}+1)f_{l}}{k_{1}\left((1-b)+b\cdot\frac{dl}{avdl}\right)+f_{l}} \cdot \frac{(k_{2}+1)qf_{l}}{k_{2}+qf_{l}}$$

$$sim_{bm25}(d_{4},q) = -0.20 \cdot \frac{(2.25)0}{1.25\left((1-0.75)+0.75\cdot\frac{37}{32.5}\right)+0}$$

$$-1.23 \cdot \frac{(2.25)2}{1.25\left((1-0.75)+0.75\cdot\frac{37}{32.5}\right)+2}$$

$$idf_{honda} = -0.20$$

$$idf_{toyota} = -1.23$$

$$idf_{isuzu} = -0.20$$

$$-0.20 \cdot \frac{(2.25)3}{1.25\left((1-0.75)+0.75\cdot\frac{37}{32.5}\right)+3}$$

$$= 0.000 - 1.638 - 0.308$$

$$= -1.941$$

$$sim_{bm25}(d_{j},q) = \sum_{l \in q} \log \frac{(r_{l} + 0.5)/(R - r_{l} + 0.5)}{(n_{l} - r_{l} + 0.5)/(N - n_{l} - R + r_{l} + 0.5)} \cdot \frac{(k_{1} + 1)f_{l}}{k_{1}\left((1 - b) + b \cdot \frac{dl}{avdl}\right) + f_{l}} \cdot \frac{(k_{2} + 1)qf_{l}}{k_{2} + qf_{l}}$$

$$sim_{bm25}(d_{8},q) = -0.20 \cdot \frac{(2.25)3}{1.25\left((1 - 0.75) + 0.75 \cdot \frac{36}{32.5}\right) + 3}$$

$$-1.23 \cdot \frac{(2.25)4}{1.25\left((1 - 0.75) + 0.75 \cdot \frac{36}{32.5}\right) + 4}$$

$$idf_{honda} = -0.20$$

$$idf_{toyota} = -1.23$$

$$idf_{isuzu} = -0.20$$

$$-0.20 \cdot \frac{(2.25)1}{1.25\left((1 - 0.75) + 0.75 \cdot \frac{36}{32.5}\right) + 1}$$

$$= -0.310 - 2.069 - 0.191$$

$$= -2.562$$

5. จัดลำดับความตรงประเด็น แล้วแสดงผลลัพธ์การ query

	ความถี่ Honda	ความถี่ Toyota	ความถี่ Isuzu	จำนวนคำใน เอกสาร	sim
d4	0	2	3	37	-1.941
d8	3	4	1	36	-2.562

Query Q = "omega mike golf" (qf = 1) 🔲 มีเอกสารทั้งหมด 6,200,000 ฉบับ 🗖 คำว่า "omega" ปรากฏในเอกสารทั้งหมด 500,000 เอกสาร (n₁=500,000) 🗖 คำว่า "mike" ปรากฏในเอกสารทั้งหมด 314 เอกสาร (n₂ = 314) 🗖 คำว่า "golf" ปรากฏในเอกสารทั้งหมด 80,000 เอกสาร (n₃ = 80,000) 🗖 คำว่า "omega" ปรากฏ 21 ครั้งในเอกสารที่สนใจ (f₁ = 21) 🗖 คำว่า "mike" ปรากฏ 14 ครั้งในเอกสารที่สนใจ (f₂ = 14) \square คำว่า "golf" ปรากฏ 90 ครั้งในเอกสารที่สนใจ ($f_3 = 90$) \square กำหนดให้ $k_1 = 1.25$, b = 0.75, $k_2 = 200$ $:: K = k_1((1-b) + b \cdot \frac{dl}{avdl})$ $K = 1.25((1-0.75) + 0.75 \cdot 0.4)$:: K = 0.688

$$sim_{bm25}(d_{j},q) = \sum_{leq} \log \frac{(r_{i}+0.5)/(R-r_{i}+0.5)}{(n_{i}-r_{i}+0.5)/(N-n_{i}-R+r_{i}+0.5)} \cdot \frac{(k_{1}+1)f_{i}}{k_{1}\left((1-b)+b\cdot\frac{dl}{avdl}\right) + f_{i}} \cdot \frac{(k_{2}+1)qf_{i}}{k_{2}+qf_{i}}$$

$$sim_{bm25}(d_{j},q) = \sum_{leq} \log \frac{N-n_{i}+0.5}{(n_{i}+0.5)} \cdot \frac{(k_{1}+1)f_{i}}{K+f_{i}} \cdot \frac{(k_{2}+1)qf_{i}}{k_{2}+qf_{i}}$$

$$K = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{2} = 200$$

$$k_{2} = 200$$

$$k_{3} = 0.688 + 1.25$$

$$k_{4} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{2} = 200$$

$$k_{3} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{3} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{3} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{3} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{3} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{3} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{3} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{3} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{3} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{3} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{2} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{2} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{2} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{2} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{2} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{2} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 200$$

$$k_{2} = 0.688$$

$$k_{1} = 1.25$$

$$k_{2} = 0.688$$

 $sim_{bm25}(d_1,q)=15.720$

- \square Query Q = "lincoln lincoln" (qf = 2)
- 🔲 มีเอกสารทั้งหมด 200,000 ฉบับ
- 🗖 คำว่า "lincoln" ปรากฏในเอกสารทั้งหมด 80,000 เอกสาร (n₁ = 80,000)
- \square คำว่า "lincoln" ปรากฏ 90 ครั้งในในเอกสารที่สนใจ ($f_1=90$) \square ขนาดของเอกสารที่สนใจต่อขนาดเฉลี่ยของเอกสารทั้งหมดเท่ากับ $0.5 \ (\frac{dl}{avdl})$
- \square กำหนดให้ $k_1 = 1.25$, b = 0.75, $k_2 = 200$

$$:: K = k_1((1-b) + b \cdot \frac{dl}{avdl})$$

$$K = 1.25((1-0.75) + 0.75 \cdot 0.5)$$

$$:: K = 0.781$$

$$sim_{bm25}(d_{j},q) = \sum_{i \in q} \log \frac{(r_{i} + 0.5)/(R - r_{i} + 0.5)}{(n_{i} - r_{i} + 0.5)/(N - n_{i} - R + r_{i} + 0.5)} \cdot \frac{(k_{1} + 1)f_{i}}{k_{1} \left((1 - b) + b \cdot \frac{dl}{avdl}\right) + f_{i}} \cdot \frac{(k_{2} + 1)qf_{i}}{k_{2} + qf_{i}}$$

$$sim_{bm25}(d_{j},q) = \sum_{i \in q} \log \frac{N - n_{i} + 0.5}{(n_{i} + 0.5)} \cdot \frac{(k_{1} + 1)f_{i}}{K + f_{i}} \cdot \frac{(k_{2} + 1)qf_{i}}{k_{2} + qf_{i}}$$

$$sim_{bm25}(d_{1},q) = \log \frac{(200,000 - 80,000 + 0.5)}{(80,000 + 0.5)} \times \frac{(1.25 + 1)90}{0.781 + 90} \times \frac{(200 + 1)2}{200 + 2}$$

$$sim_{bm25}(d_{1},q) = 0.176 \times 2.231 \times 1.990$$

$$sim_{bm25}(d_{1},q) = 0.176 \times 2.231 \times 1.990$$

$$sim_{bm25}(d_{1},q) = 0.176 \times 2.231 \times 1.990$$

$$sim_{bm25}(d_1,q) = 0.782$$

BM25

ข้อดี

- จัดลำดับละเอียดกว่า BIR (ความถี่ของ Keyword ในเอกสาร,Query)
- ใช้กับเอกสารทั้งหมดหรือเฉพาะเอกสารที่ได้รับจากการเรียกค้น(all docs,retrieved docs)

<u>ข้อเสีย</u>

- รองรับ Query อย่างง่ายเท่านั้น
- การ Ranking เปลี่ยนตาม Document ในระบบ
- ไม่สนใจ Relationship ของ Keyword

BM25

เอกสารอ้างอิง

- http://www.cs.cornell.edu/courses/cs4300/2013fa/lectures/retrieval-models-2-4pp.pdf
- https://en.wikipedia.org/wiki/Okapi_BM25
- http://xapian.org/docs/bm25.html
- https://dato.com/learn/userguide/feature-engineering/bm25.html
- http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf
- http://homepages.inf.ed.ac.uk/vlavrenk/doc/pmir-1x2.pdf
- https://pdfs.semanticscholar.org/524b/35f49e854f0cec5b829ee6cea143e9f27a47.pdf
- http://berlin.csie.ntnu.edu.tw/Courses/Information%20Retrieval%20and%20Extraction/2015S_L ectures/IR2015S-Lecture05-Modeling-II(Set,%20Algebra%20&%20Probabilistic).pdf