Consider a dataset $D=(\boldsymbol{x_i},y_i)^N$ of N data points, where $\boldsymbol{x_i}=(x_{i1},x_{i2},\cdots,x_{iM})$ is a feature vector with M features, and y_i is the target, i.e., the response, variable. Let $\boldsymbol{x_j}$ denote the jth variable in feature space. A **typical linear regression** model can then be expressed mathematically as:

feature slope vector
$$y= \overset{\downarrow}{\beta_0} + \overset{\downarrow}{\beta_1} \overset{\downarrow}{x_1} + \overset{\downarrow}{\beta_2} \overset{\downarrow}{x_2} + \cdots + \overset{\downarrow}{\beta_M} \overset{\downarrow}{x_M}$$
 target

This model assumes that the relationships between the target variable y_i and features x_j are linear and can be captured in slope terms $\beta_1, \beta_2, \ldots, \beta_M$.