SBVORIN: Organização e Recuperação da Informação

Aula 04: Arquivos e Ordenações Externas

2/37 Arquivos

- Os arquivos são normalmente armazenados em algum meio durável de armazenamento:
 - Fitas magnéticas, discos magnéticos flexíveis (disquetes), discos magnéticos rígidos (HD), drives de estado sólido (SSD), cartões de memória, pen drives, mídias óticas (CD, DVD, Blu-Ray etc.) etc.
- Dépendendo da aplicação computacional empregada na leitura e escrita de úm arquivo, há um formato associado ao mesmo, mas basicamente os arquivos são de texto ou binários;
- Dependendo da linguagem usada na manipulação de arquivos, pode haver suporte nativo mais ou menos sofisticado/abstrato ou existirem bibliotecas mais específicas do que o suporte fornecido pela API da linguagem de programação em questão.

3/37 Arquivos

- Em Java, de forma nativa, a manipulação se dá através das classes essencialmente contidas nos pacotes:
 - **java.io**: manipulação de fluxos de dados de entrada e saída do sistema, além de mecanismos de serialização/desserialização e comunicação com o sistema de arquivos do sistema operacional;
 - Referência
 - **java.nio** (e vários subpacotes): definição de buffers (contêineres de dados), charsets, canais e seletores para E/S não bloqueante (non-blocking I/O);
 - Referência
- No repositório de estruturas de dados e algoritmos há exemplos de manipulação de arquivos de texto, binário, de acesso randômico e serialização no pacote aesd.algorithms.files, que nos dará base para entender o algoritmo de ordenação externa que será estudado.

- Consistem em ordenar arquivos de tamanho maior que a memória interna disponível;
- Os algoritmos devem diminuir o número de acesso às unidades de memória externa;
- Os dados dos arquivos são armazenados de forma sequencial;
- Apenas um registro armazenado pode ser acessado em um dado momento;
 - Em comparação com as ordenações:
 - O custo para acessar os itens que serão ordenados é algumas ordens de grandeza maior;
 - O custo principal é relacionado à transferência de dados entre a memória interna e a externa.

- A Ordenação por Intercalação é o método mais importante;
 - Intercalar: combinar dois ou mais blocos ordenados em um único bloco ordenado (lembre-se do Merge Sort);
 - A intercalação é usada como uma operação auxiliar;
- Estratégia geral:
 - Quebrar o arquivo em blocos do tamanho da memória interna disponível;
 - Ordenar cada bloco de memória;
 - Intercalar os blocos ordenados, realizando diversas passadas pelo arquivo;
- Importante:
 - Reduzir o número de passadas sobre o arquivo, usando mais memória interna;
 - O número de leituras e escritas em memória auxiliar é uma boa medida de complexidade;
 - Bons algoritmos de ordenação externa envolvem menos de dez passada<mark>s pe</mark>lo arquivo.

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

Arquivo com 22 registros

INTERCALACAOBALANCEADA

6 unidades de fita magnética disponíveis

fita 1:					
fita 2:					
fita 3:					
fita 4:					
fita 5:					
fita 6:					

Memória interna com capacidade para 3 registros

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

				_						
fita 1:	I	N	Τ	Α	С	0	Α	D	Е	
fita 2:	С	Е	R	Α	В	L	Α			
fita 3:	A	A	Ш	Α	С	N				
fita 4:	A	A	С	Е	Ι	L	N	R	Т	
fita 5:										
fita 6:										

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

I N T E R C A L A C A O B A L A N C E A D A

							_			_
fita 1:	I	N	Τ	Α	С	0	Α	D	Е	
fita 2:	C	Е	R	A	В	\Box	Α			
fita 3:	А	А	Ш	Α	С	N				
fita 4:	А	А	С	Ε	Ι	L	N	R	Т	
fita 5:	Α	Α	Α	В	С	С	L	N	0	
fita 6:										

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

1	fita 1:	I	N	Τ	Α	С	0	Α	D	Е
1	fita 2:	С	Е	R	А	В	Ш	Α		
1	fita 3:	Α	Α	Ш	Α	С	N			
1	fita 4:	А	Α	С	Ε	Ι	L	N	R	Т
1	fita 5:	Α	Α	Α	В	С	С	L	N	0
1	fita 6:	Α	Α	D	Ε					

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

resultado da primeira passada da segunda fase

- Quantas passadas são necessárias para ordenar um arquivo de tamanho arbitrário?
- Seja:
 - n: quantidade de registros do arquivo;
 - -m: quantidade de palavras na memória interna ocupadas pelos registros;
 - $\frac{n}{n}$: quantidade de blocos ordenados produzidos na primeira etapa;
 - ightharpoonup P(n): o número de passadas para a fase de intercalação;
 - f: o número de fitas usadas em cada passada;
- Assim temos: $P(n) = \log_f \frac{n}{m}$
- Para o exemplo, n = 22, m = 3 e f = 3, temos: $P(n) = \log_3 \frac{22}{3} = 2$

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

				-		-			
fita 1:	Α	Α	Α	Α	Α	A	A	С	D
fita 2:	С	Ε	R	А	В	L	Α		
fita 3:	Α	Α	L	Α	С	N			
fita 4:	Α	Α	С	Ε	I	L	N	R	Т
fita 5:	Α	Α	Α	В	С	С	L	N	0
fita 6:	A	A	D	E					

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

					_			-	
fita 1:	Α	Α	Α	Α	Α	Α	Α	С	D
fita 2:	В	С	С	Ε	Ε	Ι	L		
fita 3:	Α	Α	L	Α	С	N			
fita 4:	Α	Α	С	Ε	Ι	L	N	R	Т
fita 5:	Α	Α	Α	В	С	С	L	N	0
fita 6:	Α	Α	D	Ε					

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

fita 1:	Α	А	А	А	А	А	А	С	D
fita 2:	В	С	С	Е	Е	Ι	L		
fita 3:	L	N	N	0	R	Т			
fita 4:	Α	А	С	Ε	Ι	L	N	R	Т
fita 5:	Α	Α	Α	В	С	С	L	N	0
fita 6:	Α	Α	D	Е					

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

^{20/37} Ordenações Externas

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

^{22/37} Ordenações Externas

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

^{23/37} Ordenações Externas

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

^{24/37} Ordenações Externas

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

^{25/37} Ordenações Externas

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

^{27/37} Ordenações Externas

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

^{28/37} Ordenações Externas

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

^{29/37} Ordenações Externas

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

- Intercalação Balanceada de Vários Caminhos:
- Exemplo:
 - Objetivo: ordenar 22 registros e coloca-los em uma fita de saída

- Obviamente, essa abordagem pode ser melhorada usando menos fitas, aplicando outras estruturas de dados como filas de prioridades (seleção por substituição) e aplicando a intercalação polifásica, onde blocos obtidos através de seleção por substituição são intercalados de duas em duas fitas, tornando sempre uma vazia até que a intercalação finalize;
 - Não entraremos em mais detalhes, pois partiremos para um exemplo de implementação real do algoritmo Quick Sort Externo, proposto por Monard em 1980 (Maria Carolina Monard, tese de doutorado);
- Caso queira, consulte a obra de Ziviani (2006), apresentada na bibliografia, para mais detalhes em relação à seleção por substituição e à intercalação polifásica.

Quick Sort Externo

- Como sua contraparte interna, usa o paradigma de divisão e conquista;
- Ordena um arquivo $A = \{R_1, ..., R_n\}$ de n registros in situ;
- O armazenamento dos registros é feito de forma consecutiva em memória secundária de acesso randômico, por isso aprendemos a Íidar com ponteiros de arquivos em arquivos de acesso randômico no início da aula;
- O algoritmo usa $O(\lg n)$ unidades de memória interna, não havendo necessidade de memória externa adicional;
- Lembre-se que $\lg n = \log_2 n$;

Quick Sort Externo

- Seja R_i , $1 \le i \le n$, o *i*-ésimo registro do arquivo A;
- Algoritmo:
 - Particionar A da seguinte forma:
 - Invocar recursivamente o algoritmo em cada um dos subarquivos:
 - $ightharpoonup A_1 = \{R_1, ..., R_i\} \in A_2 = \{R_i, ..., R_n\}$
- O particionamento usa uma área de armazenamento na memória interna;
 - T é o tamanho da área e é dado por: T = j i 1, $T \ge 3$

35/37 Quick Sort Externo

- Para as chamadas recursivas, consideraremos que:
 - Primeiro deve-se ordenar os subarquivos de menor tamanho, implicando que, em média, $O(\lg n)$ subarquivos tenham o processamento postergado;
 - Subarquivos vazios ou com um único registro são ignorados;
 - \nearrow Caso o arquivo de entrada A possua no máximo T registros, ele é ordenado em um único passo;
 - Note a semelhança com o Quick Sort interno.

36/37

Simulação do Quick Sort Externo

Bibliografia

ZIVIANI, N. Projeto de Algoritmos com Implementações em Java e C++. São Paulo: Cengage, 2006. 644 p.

SEDGEWICK, R.; WAYNE, K. Algorithms. 4. ed. Boston: Pearson Education, 2011. 955 p.

GOODRICHM M. T.; TAMASSIA, R. Estruturas de Dados & **Algoritmos em Java**. Porto Alegre: Bookman, 2013. 700 p.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos - Teoria e Prática. 3. ed. São Paulo: GEN LTC, 2012. 1292 p.

