Baze podataka

svibanj 2009.

Priprema za 2MI

Analiza prethodnih međuispita

- 1. MI SQL + relacijska algebra
- SQL
 - EXISTS
 - UPDATE
 - DELETE
- Integritetska ograničenja
- Funkcijske zavisnosti
- B-stablo
- Indeksi
- Normalizacija

Model – ocjenjivanje serija

Model sadrži podatke o serijama, korisnicima i ocjenama koje su korisnici dali pojedinoj seriji.

serija

sifSerija	naziv	brojSezona
1	Reba	6
2	Desperate Housewives	5
3	Will & Grace	8
4	Allo Allo	9
5	Ghostwhisperer	5

korisnik

sifKorisnik	ime	prezime	ocjenaAktivnost
1	Ivana	Klarić	5
2	Ivana	Balić	2
4	Luka	Klarić	1
5	Krešimir	Peroš	3
19	Robert	Britvić	3

ocjenaSerija

sifSerija	sifKorisnik	datum	ocjena
1	2	2.2.2009.	5,00
5	10	1.10.2008.	7,5
15	19	12.1.2009.	2,5
16	1	10.10.2008.	8

 Svim korisnicima koji nisu u posljednjih godinu dana ocijenili nijednu seriju smanjiti ocjenu aktivnosti za 1.

```
UPDATE korisnik SET ocjenaAktivnost = ocjenaAktivnost - 1
WHERE sifKorisnik NOT IN
    (SELECT DISTINCT sifKorisnik FROM ocjenaSerija
    WHERE datum > MDY (MONTH(TODAY), DAY(TODAY), YEAR(TODAY) - 1))
```

 Obrisati podatke o korisnicima koji su ocijenili manje od 10 serija i dali svima ocjenu manju od 5.

Za svaku seriju koja se prikazivala dulje od 5 sezona, ispisati naziv, broj sezona, godinu ocjenjivanja i prosječnu ocjenu koju je dobila te godine od strane korisnika. U ispisu se trebaju pojaviti i serije koje nisu bile nijednom ocijenjene (a prikazivale su se dulje od 5 sezona). Zapise poredati silazno prema prosječnoj ocjeni i godini.

4. Zadatak (a)

 Kreirati privremenu relaciju top10 koja će sadržavati naziv serije i prosjek za 10 najbolje plasiranih serija.

```
CREATE TEMP TABLE top10 (
naziv CHAR(30),
prosjek DECIMAL(4,2));
INSERT INTO top10
SELECT FIRST 10 naziv, AVG(ocjena) AS prosjek
  FROM serija INNER JOIN ocjenaSerija
    ON serija.sifSerija = ocjenaSerija.sifSerija
 GROUP BY serija.sifSerija, naziv
 ORDER BY 2 DESC
 ili
 SELECT FIRST 10 naziv, AVG(ocjena) AS prosjek
   FROM serija INNER JOIN ocjenaSerija
      ON serija.sifSerija = ocjenaSerija.sifSerija
  GROUP BY serija.sifSerija, naziv
  ORDER BY 2 DESC
  INTO TEMP top10
```

4. Zadatak (b)

 Iz relacije ocjenaSerija obrisati podatke o 10 najbolje plasiranih serija.

```
SELECT FIRST 10 serija.sifSerija, AVG(ocjena) AS prosjek
FROM serija INNER JOIN ocjenaSerija
   ON serija.sifSerija = ocjenaSerija.sifSerija
GROUP BY serija.sifSerija
ORDER BY 2 DESC
   INTO TEMP top10;

DELETE FROM ocjenaSerija
WHERE sifSerija IN (SELECT sifSerija FROM top10);
```

Kreirati pogled koji će sadržavati najbolje ocjenjenu seriju (ili više njih) za 2005. godinu. Pogled treba imati atribute: godina, sifSerija i naziv. Najbolje ocjenjena serija je ona koja ima najveću prosječnu ocjenu.

```
CREATE VIEW najboljeSerije (godina, sifSerija, naziv)

SELECT YEAR(datum), naziv

FROM serija INNER JOIN ocjenaSerija

ON serija.sifSerija = ocjenaSerija.sifSerija

WHERE YEAR(datum) = 2005

GROUP BY 1, ocjenaSerija.sifSerija, naziv

HAVING AVG(ocjena) >= ALL(SELECT AVG(sveOcjene.ocjena)

FROM ocjenaSerija sveOcjene

WHERE YEAR(sveOcjene.datum) = 2005

GROUP BY sveOcjene.sifSerija)
```

Integritetska ograničenja

Napisati SQL naredbe koje će kreirati relacije radnik i orgjed prema relacijskim shemama:

RADNIK={ sifRadnik, ime, prez, sifOrgJed, datZap, datRodj} ORGJED={ sifOrgJed, nazOrgJed, sifNadOrgJed}.

Smisleno odaberite tipove podataka. Osigurati entitetski integritet i integritet ključa u obje relacije. Također:

- u relaciji radnik niti jedan atribut ne smije biti NULL
- vrijednost atributa sifRadnik u relaciji radnik mora biti broj veći od 100,000
- datum zaposlenja mora biti barem 18 godina nakon datuma rođenja
- vrijednost atributa sifOrgJed u relaciji radnik mora odgovarati postojećoj org. jedinici u relaciji orgjed
- ako je poznata, vrijednost atributa sifNadOrgJed u relaciji orgjed mora odgovarati postojećoj org. jedinici u relaciji orgjed
- prilikom brisanja zapisa iz relacije orgjed brišu se i svi zapisi iz relacije orgjed koji se podređeni zapisu koji se briše
- u relaciju orgjed nije dozvoljeno unijeti dvije org.jedinice istog naziva

```
CREATE TABLE orgjed (
   sifOrgJed
                 INTEGER PRIMARY KEY
  , nazOrgJed CHAR(100) NOT NULL
  , sifNadOrgJed INTEGER
  , UNIQUE(nazOrgJed)
  , FOREIGN KEY (sifNadOrgJed) REFERENCES orgjed(sifOrgJed) ON
  DELETE CASCADE
);
CREATE TABLE radnik (
   sifRadnik INTEGER PRIMARY KEY CHECK(sifRadnik > 100000)
  , ime
         CHAR (20)
                      NOT NULL
  , prez CHAR(30) NOT NULL
  , sifOrgJed INTEGER
                      NOT NULL
  , datRodi DATE
                      NOT NULL
  , datZap DATE
                      NOT NULL
  , FOREIGN KEY (sifOrgJed) REFERENCES orgjed(sifOrgJed)
  , CHECK ( YEAR(datZap) - YEAR(datRodj) > 18)
);
```

B-stablo

Relacija *orgJed*(*sifOrgJed*, *nazOrgJed*) sadrži n-torke sa sljedećim vrijednostima atributa *sifOrgJed*:

```
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.
```

Nacrtati B⁺-stablo reda **5** za atribut *sifOrgJed* tako da broj UI operacija pri pretraživanju bude:

- a) **maksimalan** (popunjenost čvorova u stablu minimalna)
- b) **minimalan** (popunjenost čvorova u stablu maksimalna)

- korijen [2, 5]

 najmanji broj kazaljki je 2
 najviše n kazaljki (kao interni čvor)

a) maksimalan (popunjenost čvorova u stablu minimalna)

Koliko UI operacija?

b) minimalan (popunjenost čvorova u stablu maksimalna)

Koliko UI operacija?

Indeksi

Zadana je relacija **radnik(sifRadnik, ime, prez, sifOrgJed)**. Napisati SQL naredbe za kreiranje najmanjeg mogućeg broja indeksa koji će omogućiti efikasno obavljanje (pomoću B+ stabla) navedenih upita.

```
    SELECT * FROM radnik WHERE sifOrgJed = 13;
    SELECT * FROM radnik WHERE ime = 'Marko' AND prezime = 'Horvat';
    SELECT * FROM radnik ORDER BY prezime, ime DESC;
    SELECT * FROM radnik ORDER BY prezime, ime, sifOrgJed;
    SELECT * FROM radnik ORDER BY prezime DESC, ime DESC;
```

Napišite jednu SELECT naredbu nad relacijom nastavnik koja se NE MOŽE efikasno obaviti kreiranim indeksima. Naredba mora u WHERE dijelu koristiti barem jedan, a u ORDER BY dijelu barem dva atributa.

```
CREATE INDEX i1 ON radnik (sifOrgJed); -- 1
CREATE INDEX i2 ON radnik(prezime, ime, sifOrgJed); -- 4, 5, 2
CREATE INDEX i3 ON radnik(prezime, ime DESC); -- 3

SELECT * FROM radnik
WHERE ime = 'Krešimir'
ORDER BY sifOrgJed, ime
```

Normalizacija

Fitness centar evidentira raspored svojih treninga.

Relacijska shema FCRASPORED sastoji se od sljedećih atributa:

- rbrDanUTjednu redni broj dana u tjednu (0-nedjelja, 1-ponedjeljak,...)
- sifDvorana šifra dvorane u kojoj se trening održava
- kapDvorana kapacitet dvorane u kojoj se trening održava
- vrijPoc vrijeme početka
- sifVrTrening šifra vrste treninga
- nazVrTrening naziv vrste treninga (Step, Pilates, Booty Express, ...)
- trajeTrening trajanje treninga
- sifTrener šifra trenera
- imeTrener ime trenera
- prezimeTrener prezime trenera

Normalizacija

Odaberite ključ relacijske sheme FCRASPORED tako da ona bude u 1NF, a zatim postupno normalizirajte relacijsku shemu na 2NF i 3NF ako vrijedi:

- ■istog dana u isto vrijeme može se održavati više treninga ali ne u istoj dvorani
- ■svi treninzi iste vrste jednako traju (npr. Booty Express uvijek traje 30 min; Step uvijek traje 60 min)
- •u određenom terminu (dan u tjednu + vrijeme u danu) u jednoj dvorani održava se samo jedna vrsta treninga
- •u istom terminu se u različitim dvoranama može održavati ista vrsta treninga
- •u istoj dvorani i istom terminu trening uvijek drži isti trener (npr. srijedom u 17:00 u dvorani D01 trening uvijek drži trenerica Sanja Antić a utorkom u 18:00 u dvorani D02 trener Saša Grubišić)

Normalizacija – 1NF

K_{FCRASPORED}= {rbrDanUTjednu, sifDvorana, vrijPoc}

Normalizacija – 2NF

```
2NF? FCRASPORED = {rbrDanUTjednu, sifDvorana, kapDvorana, vrijPoc, sifVrTrening, nazVrTrening, trajeTrening, sifTrener, imeTrener, prezimeTrener}
```

K_{FCRASPORED}= {rbrDanUTjednu, sifDvorana, vrijPoc}

Normalizirati relacijsku shemu FCRASPORED na 2NF.

```
DVORANA= { <u>sifDvorana</u>, kapDvorana} K<sub>DVORANA</sub>= { sifDvorana}
```

```
FCRASPORED<sub>1</sub> = {<u>rbrDanUTjednu</u>, <u>sifDvorana</u>, <u>vrijPoc</u>, 
sifVrTrening, nazVrTrening, trajeTrening, 
sifTrener, imeTrener, prezimeTrener}
```

K_{FCRASPORED1}= {rbrDanUTjednu, sifDvorana, vrijPoc}

Normalizacija – 3NF

```
3NF? DVORANA= {sifDvorana, kapDvorana} K<sub>DVORANA</sub>= { sifDvorana} 3NF OK.

3NF? FCRASPORED<sub>1</sub>= {rbrDanUTjednu, sifDvorana, vrijPoc, sifVrTrening, nazVrTrening, trajeTrening, sifTrener, imeTrener, prezimeTrener}

K<sub>FCRASPORED1</sub>= {rbrDanUTjednu, sifDvorana, vrijPoc}
```

Normalizirati relacijsku shemu FCRASPORED₁ na 3NF.

VRTRENING= {sifVrTrening, nazVrTrening, trajeTrening} K_{VRTRENING}= { sifVrTrening}

TRENER = {sifTrener, imeTrener, prezimeTrener} K_{TRENER} = { sifTrener}

FCRASPORED₂= {<u>rbrDanUTjednu</u>, <u>sifDvorana</u>, <u>vrijPoc</u>, sifVrTrening, sifTrener}

K_{FCRASPORED2}= {rbrDanUTjednu, sifDvorana, vrijPoc}

Normalizacija – 3NF

Shema baze podataka u 3NF sastoji se od relacijskih shema:

FCRASPORED₂, DVORANA, VRTRENING i TRENER

Primjer korištenja pravila o akumulaciji

R = { L, M, N, P, Q, R }, F = { Q
$$\rightarrow$$
 R, M \rightarrow PQ, PQL \rightarrow N } dokazati vrijedi li FZ MQ \rightarrow LN ?

- (A1: refleksivnost) ⇒ MQ → MQ
- MQ → MQ ∧ Q → R (akumulacija) ⇒ MQ → MQR
- $MQ \rightarrow MQR \land M \rightarrow PQ$ (akumulacija) $\Rightarrow MQ \rightarrow MQRP$
- ne postoji FZ kojom bi se moglo nastaviti "uvećavati desnu stranu"
- ⇒ MQ → LN ne vrijedi