Spring 2020

1 Stable Matching

Consider the set of jobs $J = \{1, 2, 3\}$ and the set of candidates $C = \{A, B, C\}$ with the following preferences.

Jobs	Candidates					
1	A	>	В	>	C	
2	В	>	A	>	C	
3	Α	>	В	>	С	

Candidates	Jobs				
A	2	>	1	>	3
В	1	>	3	>	2
С	1	>	2	>	3

Run the traditional propose-and-reject algorithm on this example. How many days does it take and what is the resulting pairing? (Show your work.)

2 Propose-and-Reject Proofs

Prove the following statements about the traditional propose-and-reject algorithm.

(a) In any execution of the algorithm, if a candidate receives a proposal on day *i*, then she receives some proposal on every day thereafter until termination.

(b) In any execution of the algorithm, if a candidate receives no proposal on day i, then she receives no proposal on any previous day j, $1 \le j < i$.

(c) In any execution of the algorithm, there is at least one candidate who only receives a single proposal. (Hint: use the parts above!)

3 Be a Judge

For each of the following statements about the traditional stable matching algorithm with jobs proposing, indicate whether the statement is True or False and justify your answer with a short 2-3 line explanation:

- (a) There is a set of preferences for n jobs and n candidates for n > 1, such that in a stable matching algorithm execution every job ends up with its least preferred candidate.
- (b) In a stable matching instance, if job J and candidate C each put each other at the top of their respective preference lists, then J must be paired with C in every stable pairing.
- (c) In a stable matching instance with at least two jobs and two candidates, if job J and candidate C each put each other at the bottom of their respective preference lists, then J cannot be paired with C in any stable pairing.
- (d) For every n > 1, there is a stable matching instance for n jobs and n candidates which has an unstable pairing in which every unmatched job-candidate pair is a rogue couple.

4 Universal Preference

Suppose that preferences in a stable matching instance are universal: all n jobs share the preferences $C_1 > C_2 > \cdots > C_n$ and all candidates share the preferences $J_1 > J_2 > \cdots > J_n$.

(a) What pairing do we get from running the algorithm with jobs proposing? Can you prove this happens for all n?

/1 `	X X X 71	1	. ·	41 1 141	with candidates	. 0
ın	I M/hat nairina	r do we de	at tram riinnin	t the algorithm	With candidates	nronocing /
117	i vviiai Daiiiii2	\mathbf{u}	ot momi rummi	e uic aigoitumi	with Candidates	DIODOSHIE:
\	,	,		J		p p

(c) What does this tell us about the number of stable pairings?