Inverse Z transform

Definition: F(z) be a function of complex variable z such that

$$F(z) = Z\{f(k)\}\$$

then the sequence f(k) is called inverse Z transform of F(z). Written as,

$$\mathbf{Z}^{-1}\{\mathbf{F}(\mathbf{z})\} = f(k)$$

Methods to find Inverse Z transform:

- Power series Method
- 2. Partial Fractions
- 3. Inversion Integral Method

Method 1: Power series Method

This Method also known as Long division Method.

F(z) is expressed as a power series in z

$$F(z) = a_0 z^{-0} + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}$$
$$= \sum_{n=0}^{\infty} a_n z^{-n}$$

Working Rule:

step1: observe the expression and try to obtain standard form

e.g.
$$\frac{1}{1-x}$$
 or $\frac{1}{1+x}$

step2: Consider ROC and expand in power series.

Note the coefficients

Solved Examples:

e.g. 1) Obtain $Z^{-1}\left\{\frac{1}{z-a}\right\}$ where |z|<|a|

Soln:
$$\frac{1}{z-a} = -\frac{1}{a} \frac{1}{1-\frac{z}{a}}$$
 given $|z| < |a| \rightarrow \left| \frac{z}{a} \right| < 1$

$$= -\frac{1}{a} \left(1 + \frac{z}{a} + \left(\frac{z}{a} \right)^2 + \cdots \right)$$

$$= -\frac{1}{a} - \frac{z}{a^2} - \frac{z^2}{a^3} - \cdots$$

$$= -\sum_{r=0}^{\infty} \frac{z^r}{a^{r+1}}$$
(1)

By definition of Z transform: $F(z) = \sum_{k=0}^{\infty} f(k)z^{-k}$ (2)

Comparing (1) and (2) we get, r = -k and r: 0 to $\infty \to k: -\infty$ to 0 i.e. $k \le 0$

Coefficient of z^{-k} is $-a^{-r-1} = -a^{k-1} = f(k)$

Thus, $f(k) = -a^{k-1}, k \le 0$

e.g. 2) Obtain
$$Z^{-1}\left\{\frac{1}{z-a}\right\}$$
 where $|z|>|a|$

Soln:
$$\frac{1}{z-a} = \frac{1}{z\left(1-\frac{a}{z}\right)}$$
 given $|z| > |a| \to \left|\frac{a}{z}\right| < 1$

$$= \frac{1}{z} \left(1 + \frac{a}{z} + \left(\frac{a}{z} \right)^2 + \cdots \right)$$

$$=\frac{1}{z}+\frac{a}{z^2}+\frac{a^2}{z^3}+\cdots$$

$$=\sum_{r=0}^{\infty} \frac{a^r}{z^{r+1}} \tag{1}$$

By definition of Z transform:
$$F(z) = \sum_{k=0}^{\infty} f(k)z^{-k}$$
 (2)

Comparing (1) and (2)we get, r+1=k and r:0 to $\infty \to k:1$ to ∞ i.e. $k \ge 1$

Coefficient of
$$z^{-k}$$
 is $a^r = a^{k-1} = f(k)$. Thus, $f(k) = a^{k-1}$, $k \ge 1$

Exercise: 1) Obtain
$$Z^{-1}\left\{\frac{z}{z-a}\right\}$$
 where $|z|>|a|$ Ans: $f(k)=a^k$, $k\geq 0$

2) Obtain
$$Z^{-1}\left\{\frac{z}{z-a}\right\}$$
 where $|z|<|a|$ Ans: $f(k)=-a^k, k<0$

Method 2: Partial fraction Method

Recall from Partial fractions:

Form of the Partial Fraction
$\frac{A}{x-a} + \frac{B}{x-b}$
$\frac{A}{x-a} + \frac{B}{(x-a)^2}$
$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$
$\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$
$\frac{A}{x-a} + \frac{Bx + C}{x^2 + bx + c}$

Working Rule:

step1: observe the expression and try to obtain standard form

e.g.
$$\frac{1}{1-x}$$
 or $\frac{1}{1+x}$

step2: Consider ROC and expand in power series.

Note the coefficients

From the formula sheet for inverse Z transform in last slide:

$$Z^{-1}\left\{\frac{z}{z-a}\right\} = a^k, k \ge 0 \text{ if ROC is } |z| > |a|$$

$$Z^{-1}\left\{\frac{z}{z-a}\right\} = -a^k, k < 0 \text{ if ROC is } |z| < |a|$$

In many cases the Z Transform can be written as a ratio of polynomials as shown below.

$$F(z) = \frac{A(z)}{B(z)}$$

If the denominator B(z) can be factorized then $\frac{F(z)}{z}$ can be expanded into partial fractions as shown below.

$$\frac{F(z)}{z} = \frac{A}{z-a} + \frac{B}{z-b} + \cdots$$

Once Coefficients A, B, ... are identified we can find inverse Z transform of $F(z) = A \frac{z}{z-a} + B \frac{z}{z-b} + \cdots$ using formula mentioned above.

Refer examples solved in next slide

Solved examples:

1) Obtain Inverse Z transform for $\frac{z}{(z-1)(z-2)}$, $|z| \ge 2$

Soln: Consider,
$$\frac{F(z)}{z} = \frac{1}{(z-1)(z-2)}$$

Using Partial fractions $\frac{1}{(z-1)(z-2)} = \frac{A}{(z-1)} + \frac{B}{(z-2)}$

$$\Rightarrow \frac{1}{(z-1)(z-2)} = \frac{A(z-2) + B(z-1)}{(z-1)(z-2)}$$

$$\Rightarrow$$
 $A(z-2) + B(z-1) = 1$ which gives $A = -1$ and $B = 1$

Thus,
$$\frac{F(z)}{z} = \frac{-1}{(z-1)} + \frac{1}{(z-2)} \implies F(z) = \frac{-z}{(z-1)} + \frac{z}{(z-2)}$$

Applying inverse Z transform we get,

Solved examples:

2) Obtain Inverse Z transform for $\frac{3z^2+2z}{z^2-3z+2}$, 1 < |z| < 2

Soln: Consider,
$$\frac{F(z)}{z} = \frac{3z+2}{(z-1)(z-2)}$$

Using Partial fractions $\frac{3z+2}{(z-1)(z-2)} = \frac{A}{(z-1)} + \frac{B}{(z-2)}$

$$\Rightarrow \frac{3z+2}{(z-1)(z-2)} = \frac{A(z-2) + B(z-1)}{(z-1)(z-2)}$$

$$\rightarrow$$
 $A(z-2) + B(z-1) = 3z + 2$

Put
$$z = 1 \implies A(1-2) + B(1-1) = 3(1) + 2 \implies -A = 5$$

Put
$$z = 2$$
 \implies $A(2-2) + B(2-1) = 3(2) + 2$ \implies $B = 8$

which gives
$$A = -5$$
 and $B = 8$

.....continued in next slide

Thus,
$$\frac{F(z)}{z} = \frac{-5}{(z-1)} + \frac{8}{(z-2)}$$

$$F(z) = -5\frac{z}{(z-1)} + 8\frac{z}{(z-2)}$$

Applying inverse Z transform we get,

$$f(k) = Z^{-1} \left\{ -5 \frac{z}{(z-1)} + 8 \frac{z}{(z-2)} \right\}$$

$$= -5Z^{-1} \left\{ \frac{z}{(z-1)} \right\} + 8Z^{-1} \left\{ \frac{z}{(z-2)} \right\}$$
Now,
$$|z| > 1 \implies Z^{-1} \left\{ \frac{z}{(z-1)} \right\} = (1)^k, k \ge 0$$
and
$$|z| < 2 \implies Z^{-1} \left\{ \frac{z}{(z-2)} \right\} = -(2)^k, k < 0$$

Thus,
$$f(k) = \frac{-5(1)^k, k \ge 0}{-8(2)^k, k < 0}$$

Let F (z) =
$$\frac{8z^2}{(2z-1)(4z-1)} = \frac{z^2}{(z-\frac{1}{2})(z-\frac{1}{4})}$$

Then
$$\frac{F(z)}{z} = \frac{z}{(z - \frac{1}{2})(z - \frac{1}{4})}$$

Now,
$$\frac{z}{(z-\frac{1}{2})(z-\frac{1}{4})} = \frac{A}{z-\frac{1}{2}} + \frac{B}{z-\frac{1}{4}}$$

We get,
$$F(z) = \frac{1}{z} - \frac{1}{z^{-1/2}}$$

Therefore,

F (z) = 2
$$\frac{z}{z-\frac{1}{2}} - \frac{z}{z-\frac{1}{4}}$$

Inverting, we get

$$f_n = Z^{-1}{F(z)} = 2 Z^{-1} \left\{ \frac{z}{z - \frac{1}{2}} \right\} - Z^{-1} \left\{ \frac{z}{z - \frac{1}{4}} \right\}$$

i.e,
$$f_n = 2(1/2)^n - (1/4)^n$$
, $n = 0, 1, 2, ...$

4) Obtain Inverse Z transform for $\frac{z}{z^2+7z+10}$

$$\frac{z}{z^2 + 7z + 10}$$

Let F (z) =
$$\frac{z}{z^2 + 7z + 10}$$

Then
$$\frac{F(z)}{z} = \frac{1}{z^2 + 7z + 10} = \frac{1}{(z+2)(z+5)}$$

$$= \frac{1}{3} \quad \frac{1}{z+2} \quad \frac{1}{3} \quad \frac{1}{z+5}$$

Therefore,
$$F(z) = \frac{1}{3} \quad \frac{z}{z+2} \quad \frac{1}{3} \quad \frac{z}{z+5}$$

Inverting, we get

$$= \frac{1}{3} (-2)^{n} - \frac{1}{3} (-5)^{n}$$

Method3: Inversion Integral Method

Suppose $F(z) = \frac{A(z)}{B(z)}$ such that, $B(z) = (z - a)(z - b)^{m+1}$

i.e. z=a is simple pole (linear factor) and z=b pole of order m+1

Then, inverse Z transform $f(k) = \frac{1}{2\pi i} \int_C F(z) Z^{k-1} dz$ where C: Region of Convergence $= sum \ of \ the \ residues \ at \ each \ pole$ $= Res_a \{ F(z) z^{k-1} \} + Res_b \{ F(z) z^{k-1} \}$

Working Rule:

Step1: equate denominator to zero and identify poles and their order.

Step2:calculate residues of $F(z)z^{k-1}$ at each pole using formula given below:

(same as residue done in complex analysis Unit-III)

Residue at simple pole:

$$Res_a \{F(z)z^{k-1}\} = (z-a)F(z)z^{k-1}$$
 at $z = a$

Residue at pole of order m+1:

$$Res_b\{F(z)z^{k-1}\} = \frac{1}{m!} \frac{d^m}{dz^m} [(z-b)^{m+1} F(z)z^{k-1}]$$
 at $z=b$

Step3: write sum of all residues as final answer.

Solved Examples:

1) Obtain
$$Z^{-1}\left\{\frac{3z^2+2z}{z^2-3z+2}\right\}$$
, $|z| \le 2$

Soln:
$$F(z) = \frac{3z^2 + 2z}{z^2 - 3z + 2} \longrightarrow F(z)z^{k-1} = \frac{3z^{k+1} + 2z^k}{(z-1)(z-2)}$$

z = 1 and 2 both are simple poles

$$Res_{1}\{F(z)z^{k-1}\} = \frac{3z^{k+1} + 2z^{k}}{(z-2)} \quad at \ z = 1$$

$$= \frac{3(1)^{k+1} + 2(1)^{k}}{(1-2)} = -5(1)^{k}$$

$$Res_{2}\{F(z)z^{k-1}\} = \frac{3z^{k+1} + 2z^{k}}{(z-1)} \quad at \ z = 2$$

$$= \frac{3(2)^{k+1} + 2(2)^{k}}{(2-1)} = \frac{6(2)^{k} + 2(2)^{k}}{(2-1)} = 8(2)^{k}$$

$$Z^{-1}\left\{\frac{3z^{2} + 2z}{z^{2} - 3z + 2}\right\} = -5(1)^{k} + 8(2)^{k}, k < 0 \ as \ ROC \ is \ |z| \le 2$$

2) Find Inverse Z transform for $\frac{z(z+1)}{(z-2)^3}$

Soln:
$$F(z) = \frac{z^2 + z}{(z-2)^3}$$
 $F(z)z^{k-1} = \frac{z^{k+1} + z^k}{(z-2)^3}$

z = 2 is pole of order 3

$$Res_{2}\{F(z)z^{k-1}\} = \frac{1}{2!} \frac{d^{2}}{dz^{2}} (z^{k+1} + z^{k}) \quad at \ z = 2$$

$$= \frac{1}{2} \frac{d}{dz} ((k+1)z^{k} + kz^{k-1}) \quad at \ z = 2$$

$$= \frac{1}{2} (k(k+1)z^{k-1} + k(k-1)z^{k-2}) \quad at \ z = 2$$

$$Z^{-1}\left\{\frac{z^2+z}{(z-2)^3}\right\} = \frac{1}{2}\left(k(k+1)(2)^{k-1} + k(k-1)(2)^{k-2}\right)$$
$$= \frac{1}{2}(2)^{k-2}(2k(k+1) + k(k-1))$$
$$= \frac{1}{8}(2)^k(2k^2 + 2k + k^2 - k) = \frac{1}{8}(3k^2 + k)(2)^k$$

Practice questions

1. Find
$$Z^{-1}\{\frac{z}{z-5}\}$$
 if $|Z| < 5$

2. Find
$$Z^{-1}\left\{\frac{z}{(z-2)(z-3)}\right\}$$
 if $|Z| \ge 2$

3. Find
$$Z^{-1}\left\{\frac{z(z+1)}{z^2-2z+1}\right\}$$
 if $|Z|>1$

- 4. Using inversion integral method obtain $Z^{-1}\{\frac{z^3}{\left(z-\frac{1}{2}\right)^2\left(z^2-4\right)}\}$
- 5. Using inversion integral method obtain $Z^{-1}\left\{\frac{z}{(4z-1)(3z-1)}\right\}$

Answers:

1.
$$-5^k, k < 0$$

2.
$$3^k - 2^k, k > 0$$

3.
$$1+2k, k \ge 0$$

4.
$$\frac{2}{3}2^k + \frac{2}{5}(-2)^k - \frac{1}{15}(\frac{1}{2})^k, k \ge 0$$

5.
$$\left(\frac{1}{3}\right)^k - \left(\frac{1}{4}\right)^k, k \ge 0$$

Formula sheet Inverse Z Transform

Note: U(k) denotes the unit step function defined as $U(k) = 1, k \ge 0$ and 0 Otherwise

S. No.	F(z)	$ z \Rightarrow a k \geqslant 0$	$ z \triangleleft a k \triangleleft 0$
1	$\frac{z}{z-a}$	$a^kU(k)$	$-a^k$
2	$\frac{z^2}{(z-a)^2}$	$(k+1)a^kU(k)$	$-(k+1)a^k$
3	$\frac{z^n}{(z-a)^n}$	$\frac{1}{(n-1)!}(k+1)(k+2)(k+n-1)a^{k}U(k)$	$\frac{-1}{(n-1)!}(k+1)(k+2)(k+n-1)a^k$
4	$\frac{1}{z-a}$	$a^{k-1}U(k-1)$	$-a^{k-1}U\left(-k\right)$
5	$\frac{1}{(z-a)^2}$	$(k-1)a^{k-2}U(k-2)$	$-(k-1)a^{k-2}U(-k+1)$
6	$\frac{1}{(z-a)^3}$	$\frac{1}{2}(k-2)(k-1)a^{k-3}U(k-3)$	$\frac{-1}{2}(k-2)(k-1)a^{k-3}U(-k+2)$
7	$\frac{z}{z-1}$	U(k)	
8	$\frac{[z(z-\cos\alpha)]}{(z^2-2z\cos\alpha+1)}; z >1$	cosα k	
9	$\frac{[z\sin\alpha]}{(z^2-2z\cos\alpha+1)}; z >1$	sinα <i>k</i>	