Details of CNN-RNN Structure and Experiments on YOLOX-6D-Pose Models

LU Weicheng 2025/04/17

- Details of CNN-RNN Structure
- Experiments on YOLOX-6D-Pose Models
- Some Ideas
- Future Plan

Details of CNN-RNN Structure

- CNN-RNN Structure
- Spatio-temporal Explanation
- PART1: From Image to Pose[R|T]
- PART2: Transition
- PART3: RNN Prediction
- Experiments on YOLOX-6D-Pose Models
- Some Ideas
- Future Plan

CNN-RNN Structure

Spatio-temporal Explanation

PART1: From Image to Pose[R|T]

PART1: End-to-end Network can be used

- Two main method of Monocular 6D pose estimation
 - Using Algorithm (Indirect):

Directly regress:

(Note that: They all need to do the Feature Extraction first, using CNN.)

PART2: Transition

PART3: RNN Prediction

PART2&3: Details of RNN (Transformer)

- Details of CNN-RNN Structure
- Experiments on YOLOX-6D-Pose Models
 - Pose Estimation Network on GPU
 - YOLO-6D-Pose: Basic Structure
 - YOLO-6D-Pose: 6D-Pose Head
 - YOLO-6D-Pose: test on YCBV
- Some Ideas
- Future Plan

Pose Estimation Network on GPU

Method	PoseCNN	RNNPose	CRT-6D	YOLOX- 6D-Pose	NOPE	YOLOv10 -pose
Year	2018	2022	2023	2024	2024	2025
Accuracy (ADD↑)	79.30%	97.37%	83.7%	x: 88.5% l: 83.7% m: 72.8% s: 66.3%	87.1%	>90%
Speed & Device	~70fps (RTX3090) ~90fps (RTX4090)	~60-20fps (RTX3090)	~38fps (GTX1080Ti)	x: ~34fps l: ~40fps m: ~47fps s: ~60fps (RTX2080Ti)	1fps (V100)	n: ~92fps s: ~87fps m: ~75fps b: ~68fps (RTX2080Ti)
My Comment	Classic e2e model which regress semantic and 6D pose.	Use RNN Structure to do pose refinement.	Use RNN Structure to do pose refinement.	YOLOX based, e2e network, 2*4=8 versions of different model size.	Cross- attention module, but slow.	YOLO based, but only keypoint head and no 6D-pose head.

YOLOX-6D-Pose: Basic Structure

YOLOX-6D-Pose: 6D-Pose Head

- In 6D-Pose Head, there are Convs everywhere.
- Instead of using PnP, it directly regress Pose [R|T] by just connecting convolution layers.

YOLOX-6D-Pose: test on YCBV

Training Parameters:

- max_epoch = 3 (for faster training)
- batch_size = 16 or 32 (restrict by GPU memories)

Model	S	s-ti-lite	m	m-ti-lite	I	I-ti-lite
Inference Time	73.8ms	73.5ms	100.37ms	79.5ms	79.5ms	86.9ms
Speed	~13fps	~13fps	~10fps	~12.5fps	~12.5fps	~11.5fps
ADD-0.1	0.0567	0.0228	0.0679	0.0352	0.0673	0.0449
ADD-0.2	0.1626	0.0934	0.1954	0.1284	0.2391	0.1306
ADD-0.3	0.2518	0.1878	0.2836	0.2180	0.3652	0.1977
ADD-0.4	0.3313	0.2930	0.3826	0.2930	0.4594	0.2561
ADD-0.5	0.4265	0.3894	0.4760	0.3544	0.5492	0.3046

Result of yolox-l-object-pose

- Details of CNN-RNN Structure
- Experiments on YOLOX-6D-Pose Models
- Some Ideas
 - Encoding Pose or Image?
 - Model Pruning: Only 6D-Pose is Needed.
- Future Plan

Encoding Pose or Image?

- Inspiration from Xu Zhe's Head Pose Prediction Work: What about directly encode images?
 - My Proposed Method:

Xu's TFSANet Method:

Model Pruning: Only 6D-Pose is Needed.

- Details of CNN-RNN Structure
- Experiments on YOLOX-6D-Pose Models
- Some Ideas
- Future Plan

Future Plan

- Try to train & test YOLOX-6D-Pose models with our own datasets, then evaluate their performance.
- Build up the prototype of the CNN-RNN Structure I proposed.

