PRESENTATION SYNOPSIS

Automated

Cost

Estimates

ACE

Definition

Purpose

Products Derived

Concept

Assumptions

Functional Definitions

Symbolic Equations

Mathematical Relationships

Generalized Schematic

Data Processing Example

Characteristics

Reliability

ADDRESS ANY INQUIRIES REGARDING TECHNICAL DETAILS, OR ADDITIONAL COPIES OF THIS BROCHURE, TO 1

JAMES A. FLEENER, OR WAYNE L. JONES RESEARCH & PLANNING SECTION (AMSMI-IOAR) TELEPHONE 876-4825

CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION CESTI DOCUMENT MANAGEMENT BRANCH 410.11

LIMITATIONS IN REPRODUCTION QUALITY

ACCESSION # AD 609268					
Ø	₹.	LEGIBILITY OF THIS DOCUMENT IS IN PART UNSATISFACTORY. REPRODUCTION HAS BEEN MADE FROM THE BEST AVAIL 18LE COPY.			
	2.	ORIGINAL DOCUMENT CONTAINS COLOR OTHER THAN BEACK AND WHITE AND IS AVAILABLE IN LIMITED SUPPLY. AFTER PRESENT STOCK IS EXHAUSTED, IT WILL BE AVAILABLE IN BLACK-AND-WHIT? ONLY.			
	3.	THE REPRODUCIBLE QUALITY OF THIS DOCUMENT IS NOT ADEQUATE FOR PUBLIC SALE. AVAILABLE TO CUSTOMERS OF THE DEFENSE DOCUMENTATION CENTER ONLY.			
	4.	DOCUMENT AVAILABLE FROM CLEARINGHOUSE ON LOAM ONLY (TECHNICAL TRANSLATIONS).			

PROCESSOR: Trance

TSL-107-12/64

DEFINITION

It is a means of forecasting research and development and engineering services cost and direct manhours. More precisely, it is a computer application employing mathematical methods of calculating various cost and DMH relationships and behavior trends; automatically selecting the network that will produce the best calculated forecast based upon historical data.

TREND

RATE OF FIRE PER MINUTE

PURPOSE

Forecast to contractor's estimated contract completion date:

Camulative DMH	
Cumulative Dollars	In Relation to Time Periods
*Overrun/Underrun	

*Dollars/Manhours - provided contractor furnishes an estimate.

PRODUCTS DERIVED

MISSILE SYS R & D TOTAL	9 7594			
		-ACTU	AL-	
DATE	Cost	DMH	\$/DMH	% CONTRACT VALUE
1 QR 61	\$ 1,631.	243.	6.71	•85
2 QR 61	4,654.	542.	8•58	2.44
3 QR 61	10,432.	1,043.	10.00	5.47
4 QR 61	17,445.	1,686.	10.35	9.14
1 QR 62	25,769.	2,495.	10.33	13.51
2 QR 62	36,261.	3,700.	9.80	19.01
3 QR 62	49,150.	4,792.	10.25	25.77
		-FORECAST	(ACE)-	
3 QR 62	62,213.	6,067.	10.25	32.62
4 QR 62	76,655.	7,476.	10.25	40.19
1 QR 63	92,444.	9,017.	10.25	48.47
2 QR 63	109,551.	10,678.	10.25	57.44
3 QR 63	127,952.	12,482.	10.25	67 .09
4 QR 63	147,625.	14,402.	10.25	77.40
1 QR 64	168,550.	16,444.	10.25	88.38

In addition to this report for "Total", the same product can be run for manufacturing, tooling, and engineering, provided the following criteria is adhered to: Direct manhour input is in relation to dollar input for a specific, consistent time period, e.g., total IMH for 1QR61, total dollars for 1QR61. Additional data input requirements: (1) Contractor's estimated completion date; (2) Total contract value.

CONCEPT

The concept of ACE evolves from the theory there are significant linear and logarithmic relationships of; direct manhours, dollars and time. A graphic portrayal is the chart shown:

ASSUMPTIONS

Acceptance of the data relationship theorem prompts the assumption this may be expressed schematically as linear and logarithmic relationships:

FUNCTIONAL DEFINITIONS

- 1. Time = Successive numeric values assigned to each unit (or incremental period) from a specific starting point to a specific ending point; e.g. 3QR60=1, 4 QR60=2, 1QR61=3.
- 2. Cost * The dollar expenditure for each expression of time.
- 3. IMH = The direct manhour expenditure for each expression of time.
- 4. A * The initial value of dollars, direct manhours expended in the first time period, (Intercept).
- 5. B The ratio between dollars, DMH, and successive time periods, (Slope).

LINEAR

Al * Time-Cost Initial Value

B1 Time-Cost Ratio

A3 * Time-DMH Initial Value

E3 Time-DMH Ratio

As * DMH-Cost Initial Value

B5 * DMH-Cost Ratio

A7 * Cost-DMH Initial Value

By . Cost-DMH Ratio

LOGARITHMIC

A2 * Time-Cost Initial Value

B2 = Time-Cost Ratio

At = Time-DMH Initial Value

Bu = Time-DMH Ratio

A6 * DMH-Cost Initial Value

B6 - DMH-Cost Ratio

A8 * Cost-Del Initial Value

Bo - Cost-Del Ratio

SYMBOLIC EQUATIONS

- Number of Points 2

$$B_1 = \frac{NS^* XY - SX \cdot SY}{NSX^2 - (SX)^2}$$

$$B_1 = \frac{N \cdot S}{N \cdot S} \frac{\text{Time} \cdot Cost}{\text{Time}} \cdot S \frac{\text{Time}}{\text{Time}} \cdot S \frac{\text{Cost}}{\text{Time}} = \frac{SY - B \cdot SX}{N}$$

$$B_{ll} = N \cdot S \text{ (Log Time \cdot Log IMH)} - S \text{ (Log Time)} \cdot S \text{ (Log IMH)}$$
, $A_{ll} = I_{DG}^{-1} \left(\frac{S \text{ (Log IMH)} - B_{ll} \cdot S \text{ (Log Time)}}{N} \right)$

$$B_{\zeta} = \frac{N \cdot S \left(\text{Lub DMH} \cdot \text{Log Cost} \right) - S \left(\text{Log DMH} \right) \cdot S \left(\text{Log Lost} \right)}{N \cdot S \left(\text{Log DMH} \right) - S \left(\text{Log DMH} \right) \right)^{2}} \cdot \frac{S \left(\text{Log Cost} \right)}{N} \cdot \frac{S \left(\text{Log Cost} \right) - B_{\zeta} \cdot S \left(\text{Log DMH} \right)}{N}$$

$$B_{\gamma} = \frac{N \cdot S \left(\text{Cost} \cdot \text{DMH} \right) - S \left(\text{Cost} \right) \cdot S \left(\text{DMH} \right)}{N \cdot S \left(\text{Cost} \right)^{2} - \left(S \left(\text{Cost} \right) \right)^{2}}$$

$$B_{\beta} = N \cdot 3 \text{ (Log Cost • Log IMH)} - S \text{ (Log Cost)} • S \text{ (Log IMH)}$$
, $A_{\beta} = LOG^{-1} \left(\frac{S \text{ (Log IMH)} - B_{C} \cdot S \text{ (Log Cost)}}{N \cdot S \text{ (Log Cost)}^{2}} - \frac{S \text{ (Log Cost)}}{S \text{ (Log Cost)}^{2}} \right)$

*S * Summation

MATHEMATICAL RELATIONSHIPS

COST

(Time = Any Time Period Specified, Most Commonly Some Future Time Period)

Logarithmic

Linear

MATHEMATICAL RELATIONSHIPS (CONTINUED)

DIRECT MANHOURS

GENERALIZED SCHEMATIC

DATA PROCESSING EXAMPLE

(2)		
 Calculate C₁ - C₆ and D₁ - D₆ for the Fourth point of actual cost and DMH Data. Compare C₁ - C₆ and D₁ - D₆ to the Fourth point of actual cost and DMH data to determine the "C" equation and "D" equation which gives the best projection for the fourth point. 	Cost = 17,445 $C_1 = 24,833$ $C_2 = 16,508$ $C_3 = 14,869$ $C_4 = 15,380$ $C_5 = 16,477$ $C_6 = 15,839$	$\begin{array}{cccc} \underline{DMK} &=& 1,636 \\ \hline D_1 &=& 1,443 \\ D_2 &=& 1,488 \\ D_3 &=& 1,439 \\ [D_4 &=& 1,588] \\ D_5 &=& 1,490 \\ D_6 &=& 1,369 \\ \end{array}$
M = M + 1 M = 4 + 1 = 5		
 Calculate C₁ - C₆ and D₁ - D₆ for the <u>Fifth</u> point of actual cost and DMH data. Compare C₁ - C₆ and D₁ - D₆ to the <u>Fifth</u> point of actual cost and DMH data to determine the "C" equation and "D" equation which gives the best projection for the fifth point. 	Cost = 25,769 C1 = 19,508 C2 = 24,187 C3 = 19,566 C4 = 21,218 C5 = 24,126 C6 = 21,901	DMH = 2,495 D1 = 1,863 D2 = 2,010 D3 = 1,856 D4 = 2,274 D5 = 2,014 D6 = 1,700
M = M + 1 M = 5 + 1 = 6		
1. Calculate C1 - C6 and D1 - D6 for the Sixth point of actual cost and DMH data. 2. Compare C1 - C6 and D1 - D6 to the Sixth point of actual cost and DMH data to determine the "C" equation and "D" equation which gives the best projection for the sixth point.	Cost * 36,261 C1 * 24,184 C2 * 33,046 C3 * 24,264 C4 * 27,478 C5 * 32,945 C6 * 28,345	DMH = 3,700 D1 = 2,283 D2 = 2,570 D3 = 2,274 D4 = 3,065 D5 = 2,575 D6 = 2,013
M = M 4 1 M = 6 + 1 = 7		
 Calculate C₁ - C₀ and D₁ - D₆ for the <u>Seventh</u> point of actual cost and DMH data. Compare C₁ - C₆ and D₁ - D₆ to the Seventh point of actual cost and DMH data to determine the "C" equation and "D" equation which gives the best projection for the seventh point. 	Cost = 49,150 C1 = 28,860 C2 = 43,024 C3 = 28,962 C4 = 34,113 C5 = 42,873 C6 = 35,116	Det • 4,792 D1 • 2,703 D2 • 3,163 D3 • 2,692 D4 • 3,975 D5 • 3,171 D6 • 2,314

Calculate A₁ - A₈ and B₁ - B₈ for first Four points.

- Calculate C₁ C₆ and D₁ D₆ for the <u>fifth</u> point of actual cost and Deli data.
- 2. Compare C₁ C₆ and D₁ D₆ to the fifth point of actual cost and DMH data to determine the "C" equation and the "D" equation which gives the best projection for the fifth point.

Cost = 25,769	DMH = 2,495
$C_1 = 22,643$	$D_1 = 2,154$
C ₂ = 25,379	D ₂ = 2,241
$c_3 = 22,650$	$D_3 = 2,153$
C4 = 23,606	$D_4 = 2,401$
C5 = 25,280	D5 = 2,244
C6 = 24,106	$D_6 = 2,042$

M • M + 1 N • 5 + 1 • 6

- 1. Calculate C₁ C₆ and D₁ D₆ for the sixth point of actual cost and DM data.
- 2. Compare C₁ C₆ and D₁ D₆ to the <u>sixth</u> point of actual cost and DMI data to determine the "C" equation and the "D" equation which gives the best projection for the sixth point.

DE = 3,700
D1 = 2,672
D2 = 2,907
D3 = 2,670
D4 = 3,266
D5 = 2,923
D6 = 2,460

.....

M = N 4 1 N = 6 + 1 = 7

- 1. Calculate C1 C6 and D1 D6 for the seventh point of actual cost and D61 data.
- 2. Compare C₁ C₆ and D₁ D₆ to the seventh point of actual cost and DM data to determine the "C" equation and the "D" equation which gives the best projection for the seventh point.

I	Cost = 49,150	DEI = 4,792
ı	C1 = 34,085	D1 = 3,189
	C2 = 45,824	D2 = 3,647
	C3 = 34,098	D3 = 3,187
1	C4 = 39,164	D4 = 4,248
ı	C5 = 45,544	D5 = 3,655
	c6 • 38,727	D6 = 2,863

- 1. Calculate C1 C6 and B1 D6 for the sixth point of actual cost and DEI data.
- 2. Compare C₁ C₆ and D₁ D₆ to the sixth point of actual cost and DMI data to determine the "C" equation and the "D" equation which gives the best projection for the sixth point.

Cost = 36,261	INEE - 37,000
$c_1 = 31,490$	D1 = 3,012
C2 = 35,338	De • 3,149
 C3 = 31,454	D3 = 3,014
C4 = 32,929	D = 3,3/3
C5 = 35,161	D5 = 3,153
C6 = 33,391	D6 = 2,885
	, -

N = N + 1 N = 6 + 1 = 7

- 1. Calculate C₁ C₆ and D₁ R for the seventh point of actual cost and DM data.
- 2. Compare C1 C6 and D1 D6 to the seventh point of actual cost and D6 data to determine the "C" equation and the "D" equation which gives the best projection for the seventh point.

Cost = 49,150	DE . 4.798
C1 = 38,103	D1 = 3,686
C2 = 45,396	De = 3,980
 C3 = 38,058	Dy = 3,630
Ch = 41,847	12 a 4 405
 C5 = 46,102	13 · 3,905
06 - 41,397	16 • 3,364

- Calculate C₁ C₆ and D₁ D₆ for the <u>seventh</u> point of actual cost and DM data.
- 2. Compare C1 C6 and D1 D6 to the seventh point of actual cost and DE data to determine the "C" equation and the "D" equation which gives the best projection for the seventh point.

Cost = 49,150	DE = 4,792
$C_1 = 42,193$	D1 • 4,216
C2 • 47,123	De = 4,386
C3 = 41,964	D3 = 4,232
C4 = 43,647	D4 = 4,727
C5 = 46,723	D5 = 4,392
C6 = 44,741	D6 = 3,974

.....

Apply the basic "C" equation and "D" equation that was selected the greater number of times in sequential calculation of "C's" and "D's", to produce the final forecast.

	Forecast			
1	Date	Cost	DIGH	
	4 QR 62 1 QR 63	62,213 76,655	6,067	
	2 QR 63	92,444	9,017	
]	3 QR 63 4 QR 63	109,551 127,952	10,678	
	1 QR 64	147,625	14,402	
	2 QR 64	168,550	16,444	

CONTRACTOR'S NAME MISSIE SYSTEM R & D TOTAL

		-ACTU	IAL-		
DATE	Cost	DÆ	\$/DMH	\$ CONTRACT VALUE	
1 QR 61 2 QR 61 3 QR 61 4 QR 61 1 QR 62 2 QR 62 3 QR 62	\$ 1,631. 4,654. 10,432. 17,445. 25,769. 36,261. 49,150.	243. 542. 1,043. 1,636. 2,495. 3,700. 4,792.	6.71 8.58 10.00 10.35 10.33 9.80	.85 2.44 5.47 9.14 13.51 19.01 25.77	
	-PORECAST (ACE)-				
3 QR 62 4 QR 62 1 QR 63 2 QR 63 3 QR 63 - QR 63 1 QR 64	62,213. 76,655. 92,444. 109,551. 127,952. 147,625. 168,550.	6,067. 7,476. 9,017. 10,678. 12,482. 14,402. 16,444.	10.25 10.25 10.25 10.25 10.25 10.25	32.62 40.19 48.47 57.44 67.09 77.40 88.38	

Contract Dollar Value \$190,707. Underrun \$22,157. beginning 1 QR 64

If a comparison of previous forecasts is desired, the following output is available.

Percent Variance of Previous Forecast from Subsequent Actual Date Cost IM! 1 QR 62 - 5.37 - 5.81 ********* 2 QR 62 3.50 - 11.73 3 GR 02 6.77 - 11.35 2 UR 62 2.55 - 8.84 3 QR 62 5.00 8.14 3 QR 02 - 4.12 - 1.36

CHARACTERISTICS

- * Generally, the best dollar forecast is obtained by using a DMH-Time Base.
- * Generally, the best DMH forecast is obtained by using a Dollar-Time Base.
- * In many cases calculated forecast does not flatten out nearing the completion of a contract, as does the actual cost or DMR.
- * Trend values are adversely affected by erratic data especially by negative input points.

RELIABILITY

The confidence level expressed here will be gradually improved as experience enables development of more sophisticated termiques. It has been proved that the present products are more valid than any currently available. Predicated on the assumption that the future data behavior will generally follow that of the actual, it is a positive fact that ACE forecasts will be extremely useful in making management decisions.

Improvements, refinements, and expansions are in development, and will be made available as rapidly as possible.

APPENDIX I

EXAMPLE OF ACE COMPUTER OUTPUT USING

CONTRACTOR DATA

· · · · ACTUAL · · · ·

/DMH -71 -58 -00
-58 -00
.00
- 35
• 33
.80
-25
.44
.43
.38
-40
1.7
41
43
.43
44
45
45
46
46
46
47
47
47 🔩
47
47

CONTRACTOR CONTRACT NUMBER SYSTEM FUNCTION

...ACTUAL....

DATE	COST	D. M. H.	\$/DMH
1 QR 61	1,631,795.	0 243,250.	6.71
2 QR 61	4,654,091.	0 542,600.	8.58
3 QR 61	10,432,464.	1,043,100.	10.00
4 QR 61	17,445,311.	1,686,100.	10.35
1 UR 62	25,769,096.	2,495,000.	10.33
2 QR 62	36,261,000.	3,700,000.	9.80
3 QR 62	49,150,000.	4,792,800.	10.25
4 QR 62	62,278,000.	5,965,683.	10.44
1 QR 63	75,685,000.	7,257,681.	10.43
2 UR 63	90,405,000.	8,713,017.	10.38
2 4 WTD.	• • • • •	FORECAST	
3 QR 63	107,524,586.	10,342,024.	10-40
	-0.65	-0.61	
4 QR 63	125,938,198.	12,094,164.	10.41
1 QR 64	145,623,775.	13,967,316.	10.43
2 QR 64	166,560,263.	15,959,566.	10.44
3 QR 64	188,730,389.	18,069,167.	10.44
4 QR 84	212,117,726.	20,294,517.	10.45
1 QR 65	236,704,487.	22,634,133.	10.46
2 QR 65	262,478,485.	25,086,647.	10.46
3 UR 65	289,425,495.	27,650,780.	10.47
4 QR 65	317,533,356.	30,325,332.	10.47
1 QR 66	346,789,382.	33,109,185.	10.47
2 QR 66	377,183,798.	36,001,282.	10.48
3 QR 66	408,703,972.	39,000,621.	10.48
# QR 66	441,341,421.	42,106,258.	10.48
1 QR 67	475,087,794.	45,317,297.	10.48
C 0 24 0 0	4 0		

0 28

....ACTUAL....

DATE	COST	D.M.H.	e /044
1 QR 61	1,631,795.	0 243,250.	\$/DMH
2 QR 61	4.654.091.	0 542,600.	6.71
3 QR 61	10,432,464.	1,043,100.	8.58
4 QR 61	17,445,311.	1,686,100.	10.00
1 QR 62	25,769,096.	2,495,000.	10.35
2 QR 62	36,261,000.	3,700,000.	10.33
3 QR 62	49,150,000.	4,792,800.	9-80
4 QR 62	62,278,000.	5,965,683.	10.25
1 QR 63	75,685,000.	7,257,681.	10.44
		772317661.	10.43
2 4 WTD.	•••	FORECAST	
2 QR 63	91,625,906.	8,768,685.	10.45
3 65 45	1.35	0.64	10043
3 QR 63	108,907,820.	10,406,800.	10.47
1 0- 1-	0.63	0.01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4 QR 63	127,506,238.	12,169,704.	10.48
1 QR 64	147,399,590.	14,055,313.	10.49
2 QR 64	168,566,387.	16,061,744.	10.49
3 QR 64	190,990,454.	18,187,279.	10.50
4 QR 64	214,654,461.	20,430,340.	10.51
1 QR 65	239,543,706.	22,789,466.	10.51
2 QR 65	265,642,104.	25, 263, 314.	10.51
3 QR 65	292,937,484.	27,850,617.	10.52
4 QR 65	321,418,539.	30,550,196.	10.52
1 QR 66	351,071,810.	33,360,948.	10.52
2 QR 66	381,886,550.	36,281,831.	10.53
3 QR 66	413,852,143.	39,311,854.	10.53
4 QR 66	446,960,137.	42,450,088.	10.53
1 QR 67	481,200,193.	45.695.645.	10.53
0 20 0 0	1 0		
0 0 3 21	à ŏ		

CONTRACTOR
CONTRACT NUMBER
SYSTEM
FUNCTION

...ACTUAL...

DATE	COST	D.M.H.	\$/DMH
1 QR 61	1,631,795.	0 243,250.	6.71
2 QR 61	4,654,091.	0 542,600.	8.58
3 QR 61	10,432,464.	1,043,100.	10.00
4 QR 61	17,445,311.	1,686,100.	10.35
1 QR 62	25,769,096.	2,495,000.	10.33
2 QR 62	36,261,000.	3,700,000.	9.80
3 QR 62	49,150,000.	4,792,800.	10.25
4 QR 62	62,278,000.	5,965,683.	10.44
2 4 WTD.	••••	FORECAST	
1 QR 63	76,907,661.	7,359,550.	10.45
	1.62	1.40	
2 QR 63	92,916,151.	8,884,788.	10.46
	2.78	1.97	
3 QR 63	110,276,034.	10,538,782.	10.46
	1.89	1.28	
4 QR 63	128,962,974.	12,319,214.	10.47
1 QR 64	148,955,558.	14,224,001.	10.47
2 QR 64	170,232,349.	16,251,261.	10.48
3 QR 64	192,777,862.	18,399,279.	10.48
4 QR 64	216,573,811.	20,666,476.	10.48
1 QR 65	241,605,535.	23,051,393.	10.48
2 QR 65	267,857,963.	25,552,681.	10.48
3 QR 65	295,318,740.	28,169,080.	10.48
4 QR 65	323,975,935.	30,899,407.	10.48
1 QR 66	353,816,173.	33,742,557.	10.49
2 QR 66	384,830,720.	36,697,490.	10.49
3 QR 66	417,007,978.	39,763,214.	10.49
4 QR 66	450,337,495.	42,938,797.	10.49
1 QR 67	484,811,946.	46,223,350.	10.49
C 0 15 0 0	0 0		
D 0 0 0 15			

...ACTUAL...

DATE	222		
1 QR 61	COST	D.M.H.	\$/DMH
2 QR 61	1,631,795.	0 243,250.	6.71
3 QR 61	4.654.091.	0 542.600.	
	10,432,464.	1,043,100.	8.58
4 QR 61	17,445,311.	1,686,100.	10.00
1 QR 62	25,769,096.	% +05 000	10.35
2 QR 62	36,261,000.	2,495,000.	10.33
3 QR 62	49,150,000.	3,700,000.	9.80
		4,792,800.	10.25
2 4 WTD.		E 20 E C A # 7	
	•••	FORECAST	
4 QR 62	62,213,492.	A 247 FOL	
	-G. 10	6,367,584.	10.25
1 QR 63	76,655,565,	1.71	
	·	7,476,895.	10.25
2 QR 63	i.28 92,444,242.	3.02	
		9,017,612.	10.25
3 QR 63	2.26	3.50	
- dii 03	109,551,587.	10,687,010.	10.25
4 QR 63	1.22	2.71	14.63
1 QR 64	127,952,825.	12,482,670.	10 26
	147,625,859.	14,402,424.	10.25
2 UR 64	168,550,103.	16,444,313.	10.25
3 QR 64	190,707,994.	18,606,551.	10.25
4 QR 64	214,082,121.	20,887,497.	10.25
1 QR 65	238,657,715.	22 385 425	10.25
2 QR 65	264,419,609.	23, 285, 634.	10.25
3 QR 65	291,354,542.	25,799,564.	10.25
4 QR 65	319,449,434.	28,427,976.	10.25
1 QR 66	348,694,541	31,169,645.	10.25
2 UR 66	470.074,341.	54,025,424.	10.25
3 QR 66	379,076,101.	36,988,235.	10.25
4 QR 66	410,585,480.	40,063,050.	10.25
1 UR 67	443,212,196.	43,246,900.	10.25
. 44 01	476,947,915.	46,538,873.	10.25
0 10 0 0	A A	• • • • • • • • • • • • • • • • • • • •	.4.63
0 0 0 10	0 0		

....ACTUAL....

	DAT	_					C	OST				D.	M.H.		\$/DMH
1	QR	61)			١,		,795.			0		.250		6.71
2	QR	61)			4,	654	.091.	•				.600		8.58
3	QR	61	1			10,	432	,464.	•				. 100		10.00
4	OR	61						,311.					. 100		10.35
1	QR	62	?					.096.				_	.000		10.33
2	QR	62	?					.000.					.000		9.80
	2	4	WT	D.					•••	.FOF	RECA	st	• •		
3	QR	62)			47,	572	,727.	•		4	,837	, 438	3.	9.83
								-3.					ົ	.93	
4	QR	62				60,	222	.005.	1		6	, 109	.373		9.86
								-3.						.41	
1	QR	6.5	•			74,	170	.087.			7	,511	.907	•	9.87
_								-2.						- 50	
2	QR	63				89,	383	,747.			9	.041	.700	•	9.89
								-1.						.77	
3	QR	0.5			1	105,	834	.033.			10	, 695	. 840		9.89
1.	^^	4 2						-2.						.79	
	QR							, 309.					,751		9.90
	QR					42,	344	, 323.					, 125		9.91
	UR							.676.					. 88 3		9.91
	QR							. 295.					, 151		9.92
	QR					-		. 545.					, 131		9.92
	UR							455.				-	.281		9.92
	OR							,683.				-	, 104	-	9.92
	QR							.674.			_		,217		9.93
	QR							. 022.			_		, 331	-	9.93
	OR							.885.			-		, 239		9.93
	QR							,438.		٠			, 805		 9.93
	QR							,001.					, 951		9.95
	QR							, 054.					,664		9.93
	QR	01			4	55,	106,	,217.			45,	815	986	•	9.93
C	0	6	0	0	0	0									
D	Ü	0	U	6	0	0									

C

CONTRACTOR CONTRACT NUMBER SYSTEM FUNCTION

....ACTUAL....

DATL 1 CR 61	COST 1,631,795.	D.M.H. 0 243,250.	\$/DMH 6.71
2 GR 61	4,654,091.	0 542,600.	8.58
3 UR 61	10,432,464.	1,043,100.	10.00
4 GR 61	17,445,311.	1.686,100.	10.35
1 GR 62	25,769,096.	2,495,000.	10.33
2 4 WTD.	••••	FORECAST	
2 QR 62	35,498,218.	3,400,573.	10.44
	-2.10	-8.09	
3 QR 62	46,556,587.	4,429,870.	10.51
	-5.28	-7.57	
4 QR 62	58,896,929.	5,578,491.	10.56
•	-5.43	-6.49	
1 QR 63	72,479,683.	6,842,754.	10.59
	-4.24	-5.72	
2 QR 63	87,271,004.	8,219,509.	10.62
	-3.47	-5.66	
3 QR 63	103,241,426.	9,706,013.	10.64
_	-4.61	-6.72	
4 QR 63	120,364,913.	11,299,842.	10.65
1 QR 64	138,618,096.	12,998,831.	10.66
2 QR 64	157,980,148.	14,801,028.	10.67
3 QR 64	178,432,094.	16,704,660.	10.68
4 QR 64	199,956,186.	18,708,100.	10.69
1 QR 65	222,536,377.	20,809,849.	10.69
2 QR 65	246,158,260.	23,008,529.	10.70
3 QR 65	270,807,952.	25,302,849.	10.70
4 QR 65	296,471,916.	27,691,604.	10.71
1 QR 66	323,138,509.	50,173,671.	10.71
2 QR 66	350,795,890.	32,747,994.	10.71
3 QR 66	379,433,369.	35,413,569.	10.71
4 QR 66	409,041,402.	38,169,451.	10.72
1 QR 67	439,610,607.	41,014,753.	10.72
C 0 3 0 0	0 0		
0 0 0 3 3	0 0		

CONTRACTOR

CONTRACT NUMBER

DYSTEM FUNCTION

....ACTUAL....

DATE 1 QR 61	COST 1,631,795.	D.M.H. 0 243,250.	\$/DMH 6.71
2 OR 61	4,654,091.	0 542,600.	8.58
3 UR 61	10,432,464.	1,043,100.	10.00
4 UR 61	17,445,311.	1,686,100.	10.35
•	• •		
2 4 WID.	• • • • F	ORECAST	
1 UK 62	25,673,453.	2,429,439.	10.57
	-0.37	-2.63	
2 UK 62	35,250,938	3,294,679.	10.70
	-2.79	-10.95	10.70
3 UR 62	46,118,665.	4,276,481.	10.78
	-6.17	-10.77	10.84
4 UR 62	58,228,806.	5,370,524. -9.98	10.04
	-6.50	6,573,198.	10.88
1 uk 63	/1,541,394. -5,4/	-9.45	10.00
2 QR 63	86,022,274.	7,881,416.	10.91
2 QK 03	-4.85	-9.54	10071
3 GR 63	101,641,754.	9,292,496.	10.94
1 44 0.5	80.65	-10.70	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4 UR 63	118.373.628.	10.804.072.	10.96
1 UR 54	136.194.238.	12.414.026.	10.97
2 UR 64	155,083,615.	14.120.450.	10.98
1 UK 64	175.320.387.	15,921,635.	10.99
4 44 64	195, 989, 767.	17,815,975.	11.00
1 QK 65	217,973,702.	19,852,021.	11.01
2 CR 65	240,957,756.	21,878,430.	11.01
3 WK 65	264,927,989.	24,043,948.	11.02
4 WR 65	289,871,958.	26,297,402.	11.02
1 UR 66	315,777,259.	28,637,706.	11.03
2 QR 66	542,632,354.	31,063,831.	11.03
3 UR 66	370,426,644.	33,5/4,803.	11.03
4 QR 66	399,150,502.	36,169,769.	11-04
1 QR 67	428,792,24J.	38,847,684.	11.04
c 0 1 0 0	0 0		
	1 0 0		
	-		

APPENDIX II

Graphical representation of the cost forecasts illusorated in Appendix I.

The graphs depict the six cost forecast with the selected cost forecast circled.

LECEND:

Actual cost data used to make forecast

ACE cost forecasts based upon actual data.

Subsequent actual cost data

1965

0

