Molekulare Orbitale H2+

Abbildung 3.8: Potentialkurven für das H_2^+ -Molekülion. Der $1\,\mathrm{s}\,\sigma$ -Zustand ist bindend und das Minimum liegt bei einem Gleichgewichtsabstand $R_e=2,0\,a_0$. Bezogen auf den Limes entfernter Kerne $R\to\infty$ ist die Bindungsenergie $E_B=-2,79\,\mathrm{eV}$. (Die einfache LCAO-Rechnung ergibt $R_e=2,5\,a_0$ und $E_B=-1,76\,\mathrm{eV}$.)

[nach: Fano & Fano, Physics of Atoms and Molecules]

Molekulare Orbitale

Tabelle 2.1: Quantenzahlen und Termbezeichnung eines Elektrons im Molekül mit Bahndrehimpulsquantenzahl ℓ und Projektionsquantenzahl $\lambda = |m_{\ell}|$.

Quantenzahlen			Term-	
n	Ł	λ	bezeichnung	
1	0	0	1 so	
2	0	0	2 so	
2	1	0	2 pα	
2	1	1	2 pπ	
3	2	0	3 do	
3	2	2	3 dδ	

Abb. 2.12: Elektronische Wellenfunktionen für einige Zustände des H₂⁺ (dunkelgrau = positive, hellgrau = negative Werte). Oben: Blick senkrecht zur Molekülachse; unten: Blickrichtung in die Molekülachse. Wenn die Zeichenebene Knotenebene ist, wird das Vorzeichen oberhalb der Ebene angegeben [2.11].

Anschauliche Interpretation

Abbildung 3.4: Schnitt des Molekülorbitals Ψ_s entlang der z-Achse. Dieses Molekülorbital hat keine Knotenflächen, hat also die Quantenzahlen 1s σ . Durchgezogen die exakte Lösung, gestrichelt die LCAO-Näherung.

[nach: Fano & Fano, Physics of Atoms and Molecules]

Abbildung 3.5: Schnitt des Molekülorbitals Ψ_a entlang der z-Achse. Dieses Molekülorbital hat eine Knotenebene bei z=0, also eine hyperbolische Knotenfläche. Die Quantenzahlen sind $2\,\mathrm{p}\,\sigma$. Durchgezogen die exakte Lösung, gestrichelt die LCAO-Näherung.

H₂-Molekül

Abb. 9.14. Potentialkurven E(R) des H_2 -Grundzustandes für die verschiedenen Näherungen

Korrelationsdiagramm für homonukleare Moleküle

Das "Periodensystem" der Moleküle

Tabelle 2.9: Grundzustands-Elektronenkonfigurationen einiger leichter Molektile.

Mole- kiil	Elektronenkonfiguration	Spektrøskopische Bezeichnung des Grundzustandes	energie (eV)
H ₂ + H ₂	$\sigma_{\rm g}$ 1s $(\sigma_{\rm g}$ 1s) ²	$^2\Sigma_{ m g}^+$, $^1\Sigma_{ m g}^+$	2,648 4,476
He ₂ ⁺ He ₂	$(\sigma_{\rm g} 1s)^2 (\sigma_{\rm u} 1s)$ $(\sigma_{\rm g} 1s)^2 (\sigma_{\rm u} 1s)^2$	$^2\Sigma_{ m u}^+$ $^1\Sigma_{ m g}^+$	2,6 0,001
Li ₂ B ₂	$(\sigma_{\rm g} 1s)^2 (\sigma_{\rm u} 1s)^2 (\sigma_{\rm g} 2s)^2$ $(\sigma_{\rm g} 1s)^2 (\sigma_{\rm u} 1s)^2 (\sigma_{\rm g} 2s)^2 (\sigma_{\rm u} 2s)^2 (\pi_{\rm u} 2p)^2$	$\frac{1}{2}\Sigma_{g}^{+}$	1,02 3,6
C ₂	$(\sigma_{\rm g} 1s)^2 (\sigma_{\rm u} 1s)^2 (\sigma_{\rm g} 2s)^2 (\sigma_{\rm u} 2s)^2 (\pi_{\rm u} 2p)^4$ oder $(\pi_{\rm u} 2p)^3 \sigma_{\rm g} 2p$	$^3\Pi_{\mathrm{u}}^ ^3\Sigma_{\mathrm{u}}^-$	3,6 3,6