MATH 3110 HOMEWORK #4

KIRILL CHERNYSHOV

Problem 5.1.4 Suppose $\frac{a_n}{b_n} \to L, b_n \neq 0 \ \forall \ n \ \text{and} \ b_n \to 0$. Show that $a_n \to 0$.

Proof. $a_n = \frac{a_n}{b_n} \cdot b_n$. Therefore, $\lim a_n = \lim \left(\frac{a_n}{b_n} \cdot b_n\right) = \lim \frac{a_n}{b_n} \cdot \lim b_n = L \cdot 0 = 0$, by the limit product rule.

Problem 5.3.4

(i)

Proof. Since b_n is convergent, it must also be bounded above. Since $a_n \leq b_n \, \forall \, n, \, a_n$ must also be bounded above. By a theorem from earlier in the course, since a_n is also increasing, it must converge.

Since both a_n and b_n are convergent sequences, $a_n \leq b_n \, \forall \, n$ implies that $\lim a_n \leq \lim b_n$, by the limit location theorem (part (15c)).

(ii) A simple counterexample is the pair of sequences $a_n = \frac{1}{n^2}$ and $b_n = \frac{1}{n}$, for $n \ge 2$. Since $n \ge 2 \implies n^2 > n$, $a_n < b_n \ \forall \ n$. But, $\lim a_n = \lim b_n = 0$, so the statement $\lim a_n < \lim b_n$ is false.

Problem 5.4.1

(a) (b) Implied by part (c)

(c)

Proof. Suppose there are K colourings, and denote the different subsequences as a_k , and their terms as a_{k_m} for $0 < k \le K, m \ge 1$. Suppose all of these subsequences converge to L, that is, $\forall k, \forall \epsilon > 0$ there exists M_k such that $|a_{k_m} - L| < \epsilon \forall m \ge M_k$.

Let $N = \max(\{M_i | 0 < i \le K\})$. Then, one version of the above statement applies to all of the subsequences: $\forall k, \forall \epsilon > 0, |a_{k_m} - L| < \epsilon \ \forall m \ge N$.

Since every term of $\{a_n\}$ is coloured in some way, we know that for any a_n there exist k, m such that $a_n = a_{k_m}$. Therefore, for any $\epsilon > 0$, $|a_n - L| = |a_{k_m} - L| < \epsilon \ \forall \ m \ge N$, that is, $\{a_n\}$ converges to L.

Problem 5.4.2

Suppose s(n) is the sum of the prime factors of $n \in \mathbb{Z}^+$, and define the sequence $a_n = \frac{s(n)}{n}$. Show that $\lim_{n\to\infty} a_n$ does not exist.

Proof. There are infinitely many numbers that are greater than the sum of their prime factors. An example is 10 > 5 + 2. To show that there are infinitely many, note that if n > s(n), n > 2 then s(2n) = s(n) + 2 < n + 2 < 2n. There are also infinitely many prime numbers (*Elements*, Euclid, c. 300BC), and if n is prime, then n = s(n). Define two subsequences of $\{a_n\}$ as follows: $\{b_k\}$ as the members of $\{a_n\}$ where n was generated by the above rule, that is, $b_k = \frac{s(n)}{n}$ where $n = 10 \cdot 2^k$; and $\{c_p\}$ as $\frac{s(p)}{p}$ where p is prime. In the case of b_n , since $n > s(n) \, \forall \, n, \, \frac{s(n)}{n} < 1 \, \forall \, n$. Consider the ratio between two consecutive terms:

$$\frac{b_{k+1}}{b_k} = \frac{s(10 \cdot 2^{k+1})}{10 \cdot 2^{k+1}} \cdot \frac{10 \cdot 2^k}{s(10 \cdot 2^k)}$$
$$= \frac{20(k+1)}{10 \cdot 2^{k+1}} \cdot \frac{10 \cdot 2^k}{20k}$$
$$= \frac{k+1}{2k}$$

Since for all $k \geq 2$, this ratio is less than 1, this means that for $k \geq 2$, $\{b_k\}$ is decreasing, and so its limit must be less than one. On the other hand, $p_n = \frac{s(p)}{p} = 1$, so $\lim_{n \to \infty} p_n = 1$. Since the two subsequences converge to different limits, a_n cannot have a limit.

Problem 5-5

Suppose $a_n \to L$, and b_n lies between a_n and a_{n+1} for all n. Show that $b_n \to L$.

Proof. Define two subsequences of b_n : $\{b_{\alpha}\}$, consisting of terms of $\{b_n\}$ where $a_n \leq b_n \leq a_{n+1}$, and $\{b_{\beta}\}$, consisting of the terms of $\{b_n\}$ for which $a_{n+1} \leq b_n \leq a_n$. Since $a_n \to \infty$ and $a_{n+1} \to \infty$, by the Squeeze theorem, $\{b_{\alpha}\}$ must converge to L, and $\{b_{\beta}\}$ must also converge to L. Since all terms of $\{b_n\}$ are in exactly one of $\{b_{\alpha}\}$ or $\{b_{\beta}\}$, $\{b_n\}$ converges to L by the subsequence theorem proven in problem (5.4.1).