Search and Optimization on TSP, Frozen Lake

Al Assignment 2

Team: ASHANT KUMAR (CS24M113)

IIT TIRUPATI, AI

Submission Date: APRIL 06, 2025

Problem Setup & Heuristics

Environments:

- 🌼 FrozenLake : For BnB & IDA*

Algorithms:

- Branch and Bound (BnB)
- Iterative Deepening A* (IDA*)
- Hill Climbing (HC)
- o Simulated Annealing (SA)

Heuristics Used:

- FrozenLake : Manhattan Distance to goal
- TSP: Total path cost from permutation of cities

Evaluation Metrics:

- o Reward = -1 * Distance/Steps
- Time (sec)
- Convergence Point (iterations)

Branch and Bound vs IDA*

Environment: Frozen Lake

Tested over 5 runs, with $\tau = 10$ mins

Graph: Execution time across iterations

for Branch and Bound vs IDA* on Frozen

Lake

bnb_frozenlake.gif

Matria

ida_frozenlake.gif

ID A * / A . . ~ \

Observation:

- BnB is slightly higher average time due to one outlier run but memory intensive because it maintains an explicit search tree.
- IDA* is faster on average and more consistent, but uses less memory due to its depth-first nature.

Iteration	BnB Execution Time (s)	IDA* Execution Time (s)
1	0.000562	0.000278
2	0.001103	0.000281
3	0.000479	0.000288
4	0.000532	0.000318
5	0.000513	0.000254

Wetric	(Avg)	IDA" (AVG)
Time (FL)	0.0006378 s	0.0002838 s
Success Rate	5/5	5/5

Branch and Bound

Mill Climbing vs Simulated Annealing

Environment: TSP (126 cities) Tested over **5 runs**, with τ = **10 mins**

Metric	Hill Climbing (Avg)	Simulated Annealing (Avg)
Time	23.2s	34.6s
Best Distance	3101.8	3598.2

- Observation:
- HC is faster due to stuck on local minima it restarts which makes it slower than SA but greedy
- **SA** is slower but more exploratory avoids premature convergence.
- Tradeoff: SA takes more time but generally finds better-quality paths.

MAlgorithm Comparison

Algorithm	Time Taken	Converge Pt	Success Rate	Strength
BnB	Low	Fast	High	Guaranteed optimal if time
IDA*	Medium	Medium	Good	Low memory, longer path
HC	High	Early	Moderate	Fast convergence
SA	Medium	Late	High	Better global optima

Takeaway:

Choice of algorithm depends on:

- Problem complexity
- Trade-off: time 🐧 vs solution quality 🧠

Conclusion & GitHub Link

Key Learnings:

- No single algorithm wins everywhere
- Heuristics deeply affect performance
- o SA and BnB give better final results at higher cost
- GitHub Repo: S https://github.com/Ashantfet/Al Optimation search
- Thank You! ¾