SIOC嵌入式軟體實驗

實驗四: Embedded SRAM

實驗目的

□瞭解ARM Cortex-M3與SRAM連接的架構,實驗存取SRAM,並透過VCP傳送到超級終端機顯示結果

系統架構圖

Embedded SRAM

- □ 20KBytes of embedded SRAM
- accessed (read/write) at CPU clock speed with 0 wait states

Memory Mapping

Keil環境設定

Device	Target	Output Listin	ng User	C/C++ As	m Li	nker D	ebug Utilities	1		
STMicroe	electronics	STM32F103C8	3 <u>X</u> tal (MHz): 8	0	Code G	ieneration				
Operating system: None					Use Cross-Module Optimization					
					IV U	se MicroLl	в Г	Big Endlan		
					□ Us	se Link-Tir	ne Code Genera	ation		
Read/Only Memory Areas						Read/Write Memory Areas				
default	off-chip	Start	Size	Startup	default	off-chip	Start	Size	NoInit	
	ROM1:					RAM1:				
	ROM2:					RAM2:				
	ROM3:					RAM3:				
	on-chip					on-chip		,		
~	IROM1:	0x8003000	0x10000	•	✓	IRAM1:	0x20000000	0x5000		
	IROM2:					IRAM2:				
		,	,					,		
				-						

實驗:SRAM資料存取

UART Protocol

UART Transmit Protocol

Explanation

Start Bit Transmit or Receive Start

Stop Bit Transmit or Receive End

LSB Least Significant Bit

MSB Most Significant Bit

實驗說明

```
u8 A[128],B[128];
u8 *temp1=&A[0],*temp2=&B[0];
u32 *temp3 = (u32 *)A, *temp4 = (u32 *)B;
int i;
printf("Matrix A= \r\n");
for(i=0;i<128;i++)
   *(temp1+i)=i;
   printf("%40",*(temp1+i));
}printf("\r\n");
printf("8bit \r\n");
for(i=0;i<128;i++)
   *(temp2+i)=*(temp1+i);
   State_flag = 1;
   Stopwatch_counter();
}printf("\r\n");
printf("32bit \r\n");
for(i=0;i<32;i++)
    *(temp4+i)=*(temp3+i);
    State_flag = 2;
    Stopwatch counter();
}printf("\r\n");
```

```
printf("8bit \r\n");
  for(i=0;i<128;i++)
  {
     printf("%40",*(temp2+i));
  }
  printf("\r\n");
  printf("32bit \r\n");
  for(i=0;i<128;i++)
  {
     printf("%40",*(((u8*)temp4)+i));
  }
  printf("\r\n");</pre>
```


實驗結果

```
for 1:128 for 2:15
for 1:128 for 2:16
for 1:128 for 2:17
for 1:128 for 2:18
for 1:128 for 2:19
for 1:128 for 2:20
for 1:128 for 2:21
for 1:128 for 2:22
for 1:128 for 2:23
for 1:128 for 2:24
for 1:128 for 2:25
for 1:128 for 2:26
for 1:128 for 2:27
for 1:128 for 2:28
for 1:128 for 2:29
for 1:128 for 2:30
for 1:128 for 2:31
for 1:128 for 2:32
8bit
     1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21 22 23
 24 25 26 27 30 31 32 33 34 35 36 37 40 41 42 43 44
                                                              45 46 47
 50 51 52 53 54 55 56 57 60 61 62 63 64 65 66 67 70 71 72 73
 74 75 76 77 100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117
 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137 140 141 142 143
144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166 167
170 171 172 173 174 175 176 177
32bit
                        6 7 10 11 12 13 14 15 16 17 20 21 22 23
 24 25 26 27 30 31 32 33 34 35 36 37 40 41 42 43 44 45 46 47
 50 51 52 53 54 55 56 57 60 61 62 63 64 65 66 67 70 71 72 73
 74 75 76 77 100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117
 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137 140 141 142 143
144 145 146 147 150 151 152 153 154 155 156 157 160 161 162 163 164 165 166 167
170 171 172 173 174 175 176 177
```