

## Practical Machine Learning

## Day 7: Mar22 DBDA

Kiran Waghmare

## Agenda

Preprocessing Techniques

# Data Pre-processing Data Preparation Process

#### Data Collection

- Articulating the problem
- Defining data required
- Gathering and combining data from different sources

**RAW Data** 

#### Data Preprocessing

- Formatting
- Cleaning
- Sampling

#### Data Transformation

- Feature engineering
- Scaling/normalizing
- Decomposition
- Aggregation

Excel

#### Data warehouse



## Data Preprocessing and Data Wrangling

in Machine Learning

## Why preprocess the data?

- Data in the real world is *Dirty*...
  - Incomplete Data: Lacking attribute values, Lacking certain attributes of interest, or containing only aggregate data

```
e.g. Occupation="", year_salary = "13.000", ...
```

- Inconsistent Data: Containing discrepancies in codes or names
  - e.g. Age="42" Birthday="03/07/1997"

Previous rating "1,2,3", Present rating "A, B, C"

Discrepancy between duplicate records

Noisy Data: Containing errors or outliers

e.g. Salary="-10", Family="Unknown", ...

### **Data Preparation**



MEasures of Data Quality: Accuracy, Completeness, Consistency, Timeliness,

#### **Data Quality: Why Preprocess the Data?**

- Measures for data quality: A multidimensional view
  - Accuracy: correct or wrong, accurate or not
  - Completeness: not recorded, unavailable, ...
  - Consistency: some modified but some not, dangling, ...
  - Timeliness: timely update?
  - Believability: how trustable the data are correct?
  - Interpretability: how easily the data can be understood?



#### **Major Tasks in Data Preprocessing**

#### Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

#### Data integration

Integration of multiple databases, data cubes, or files

#### Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

#### Data transformation and data discretization

- Normalization
- Concept hierarchy generation

## Where is Data Cleaning used?



## **Data Cleaning**

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
  - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data

Binning

Clustering

interpret

- · e.g., Occupation="" (missing data)
- noisy: containing noise, errors, or outliers
  - e.g., Salary="-10" (an error)
- inconsistent: containing discrepancies in codes or names, egression
  - Age="42", Birthday="03/07/2010"
  - Was rating "1, 2, 3", now rating "A, B, C"
  - · discrepancy between duplicate records
- Intentional (e.g., disguised missing data)
  - Jan. 1 as everyone's birthday?

equal frequenc

## **Incomplete (Missing) Data**

- Data is not always available
  - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
  - equipment malfunction
  - inconsistent with other recorded data and thus deleted
  - data not entered due to misunderstanding
  - certain data may not be considered important at the time of entry
  - not register history or changes of the data
- Missing data may need to be inferred

### **How to Handle Missing Data?**

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
  - a global constant : e.g., "unknown", a new class?!
  - the attribute mean
  - the attribute mean for all samples belonging to the same class: smarter
  - the most probable value: inference-based such as Bayesian formula or decision tree

## Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15 21, 21, 24, 25, 26, 28, 29, 34
  - Partition into equal-frequency (e@i-depth) bine 29
    - Bin 1: 4, 8, 9, 15
    - Bin 2: 21, 21, 24, 25
    - Bin 3: 26, 28, 29, 34
  - Smoothing by bin means:
    - Bin 1: 9, 9, 9, 9
    - Bin 2: 23, 23, 23, 23
    - Bin 3: 29, 29, 29, 29
  - Smoothing by bin boundaries:
    - Bin 1: 4, 4, 4, 15(boundaries 4 and 15, report closest boundary)
    - Bin 2: 21, 21, 25, 25
    - Bin 3: 26, 26, 26, 34



## How to handle noisy data: Regression



## Handle Noisy Data: Cluster Analysis

