Formula Sheet

Quotient Identity:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Pythagorean Identities:

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Cofunction Identity:

$$\sin(\pi/2 - \theta) = \cos \theta$$
 $\cos(\pi/2 - \theta) = \sin \theta$ $\tan(\pi/2 - \theta) = \cot \theta$

$$\cos(\pi/2 - \theta) = \sin\theta$$

$$\tan(\pi/2 - \theta) = \cot \theta$$

$$\csc(\pi/2 - \theta) = \sec \theta$$

$$\csc(\pi/2 - \theta) = \sec \theta$$
 $\sec(\pi/2 - \theta) = \csc \theta$ $\cot(\pi/2 - \theta) = \tan \theta$

$$\cot(\pi/2 - \theta) = \tan\theta$$

Sum and Difference Formula:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Double Angle Formula:

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta = 1 - 2\sin^2\theta = 2\cos^2\theta - 1$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

Power Reducing Formula:

$$\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$$
$$\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$$
$$\tan^2 \theta = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}$$

Power Reducing Formula:

$$\sin x \sin y = 1/2(\cos(x - y) - \cos(x + y))$$

$$\cos x \cos y = 1/2(\cos(x - y) + \cos(x + y))$$

$$\sin x \cos y = 1/2(\sin(x + y) + \sin(x - y))$$

$$\cos x \sin y = 1/2(\sin(x + y) - \sin(x - y))$$

Sum Product Formula:

$$\sin x + \sin y = 2\sin(\frac{x+y}{2})\cos(\frac{x-y}{2})$$

$$\sin x - \sin y = 2\cos(\frac{x+y}{2})\sin(\frac{x-y}{2})$$

$$\cos x + \cos y = 2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})$$

$$\cos x - \cos y = -2\sin(\frac{x+y}{2})\sin(\frac{x-y}{2})$$

Trig Functions for Special Angles

	$\theta = 0$ (0°)	π/6 (30°)	π/4 (45°)	π/3 (60°)	π/2 (90°)	2π/3 (120°)	3π/4 (135°)	5π/6 (150°)	π (180°)	3π/2 (270°)	2π (360°)
$\sin \theta$	0	1/2	1/√2	$\sqrt{3}/2$	1	$\sqrt{3}/2$	1/√2	1/2	0	-1	0
$\cos \theta$	1	$\sqrt{3}/2$	1/√2	1/2	0	-1/2	$-1/\sqrt{2}$	$-\sqrt{3}/2$	-1	0	1
$\tan \theta$	0	1/√3	1	$\sqrt{3}$	_	$-\sqrt{3}$	-1	$-1/\sqrt{3}$	0	_	0
$\csc \theta$	_	2	$\sqrt{2}$	2/√3	1	2/√3	$\sqrt{2}$	2	_	-1	_
$\sec \theta$	1	2/√3	$\sqrt{2}$	2	_	-2	$-\sqrt{2}$	$-2/\sqrt{3}$	-1	_	1
$\cot \theta$	_	$\sqrt{3}$	1	1/√3	0	$-1/\sqrt{3}$	-1	_√3	_	0	_

The Law of Sine: For any triangle with sides a,b, and c, and respective opposite angels α , β , and γ ,

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

The Area of an Oblique Triangle: For any oblique triangle with side lengths a, b, and c, and angles α , β , and γ , the area of the triangle is given by $A = \frac{cb \sin \alpha}{2} = \frac{ca \sin \beta}{2} = \frac{ab \sin \gamma}{2}$.

The Law of Cosine: For any triangle with sides a,b, and c, and respective opposite angels $\alpha, \beta,$ and $\gamma,$

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

$$c^2 = b^2 + a^2 - 2ba\cos\gamma$$