MSBA7002 Business Statistics Tutorial 1

Yutao DENG

The University of Hong Kong

November 7, 2023

1/29

Outline

- Concept Review
 - Model Selection
 - ANOVA
 - Bias Variance Trade-off
 - Regularization
 - Validation Set and Cross-Validation
- 2 R Markdown

Model Selection

Two goals of fitting a model

- Prediction Accuracy: for the new data
- Model Interpretability: better understanding of the relation and causality

Two types of error measurements involved in statistical learning

- "Wellness of fit": training error
 - \bullet R^2
 - Training RMSE
 - ...
- "Prediction accuracy": testing error
 - Cross validation RMSE
 - ...

Model Comparison Criteria

Quiz 1

Which of Criteria could be used in model parameters selection? Select all that apply:

- \mathbf{A} R^2
- $oldsymbol{\Theta}$ adjusted R^2
- Akaike Information Criterion (AIC)
- Mallow's C_p
- Bayesian Information Criterion (BIC)
- Training RMSE
- Cross-Validation RMSE

Three Types of ANOVA¹

ANOVA

Short model v.s. Long model

$$Y \sim \sum_{i=1}^{p} X_i \tag{1}$$

$$Y \sim \sum_{i=1}^{p} X_i + \sum_{j=p+1}^{p+q} X_j$$
 (2)

5/29

 Check if the "additional" SSR is significant compared to that of original model (F-value).

$$\frac{(SSR_2 - SSR_1)/(df_2 - df_1)}{SSR_2/df_2} \sim F(df_2 - df_1, df_2)$$

https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/ > 4 📱 > 📜 💉 🔾 Q 🔾

Yutao DENG (HKU) Tutorial 1 November 7, 2023

Type I ANOVA

$$Y \sim X_1 + X_2 + X_3$$

- anova(fit1, fit2) ← basic R function
- Specific the order. e.g. $X_2 o X_3 o X_1$
- fit them steps by steps (from "short" model to "longer" model)

$$Y \sim X_2$$
 (3)

$$Y \sim X_2 + X_3 \tag{4}$$

$$Y \sim X_2 + X_3 + X_1 \tag{5}$$

 Check if the "additional" SSR is significant compared to that of original model (F-value).

(□) (□) (□) (□) (□) (○)

6/29

Type I ANOVA

Remarks:

- *q* in equation (2) could be larger than 1, for each comparison.
- Order will drive the final result.
- Stop once insignificant p-value (p > 0.05) appears.

Type II ANOVA

$$Y \sim X_1 + X_2 + X_3$$

- Anova(fit) ← R function in "car" package
- Start from the longest model with all independent variables
- Try to delete one independent variables

$$Y \sim X_1 + X_2 + X_3$$
 (6)

$$Y \sim X_2 + X_3 \tag{7}$$

$$Y \sim X_1 + X_3 \tag{8}$$

$$Y \sim X_1 + X_2 \tag{9}$$

 Check if the "reduced" SSR is significant compared to that of original model (F-value).

Type II ANOVA

Remarks:

- q in equation (2) must be 1.
- Delete the most insignificant independent variable first, and the do Type-II anova iteratively until all $\widehat{\beta}$ is significant.
- Other way to delete variable?

Bias and Variance

Figure: Bias: how much far off on average the model is from the truth.

Variance: how much that estimate varies around its average

Derive the Bias-Variance Decomposition

Preliminary Knowledge

X,Y are random variables; α is a constant; f is the real model; \hat{f} is the estimation of the model; y and \hat{y} are the response and the predicted value respectively.

- E(X + Y) = E(X) + E(Y)
- $E(\alpha X) = \alpha E(X)$
- E(y) = f
- $(\hat{y}) = E(\hat{f})$
- \bullet and \hat{f} are independent

Derive the Bias-Variance Decomposition

Derivation

Proof.

Starting point: MSE loss

$$\begin{split} E\Big(y-\hat{y}\Big)^2 &= E(y^2-2y\hat{y}+\hat{y}^2),\\ &= E(y^2)-2fE(\hat{f})+E(\hat{y}^2),\\ &= \mathrm{Var}(y)+[E(y)]^2-2fE(\hat{f})+\mathrm{Var}(\hat{y})+[E(\hat{y})]^2,\\ &= \sigma_\epsilon+f^2-2fE(\hat{f})+\mathrm{Var}(\hat{y})+[E(\hat{f})]^2,\\ &= \sigma_\epsilon+[f-E(\hat{f})]^2+\mathrm{Var}(\hat{y}),\\ &= \mathrm{Irreducible\ error}+\mathrm{Bias}^2+\mathrm{Variance}. \end{split}$$

Bias Variance Trade-off

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon)$$

High Bias - underfit

Just Fit

Tutorial 1

High Variance – overfit

$$y = \alpha$$
,

$$y = \beta x^2 + \alpha,$$

$$y = \sum_{i=1}^{4} \beta_i x^i + \alpha$$

Bias Variance Trade-off

14/29

Double descent*

Figure: Nakkiran P, Kaplun G, Bansal Y, et al. Deep double descent: Where bigger models and more data hurt[J]. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021(12): 124003.

Yutao DENG (HKU) Tutorial 1 November 7, 2023 15/29

Regularization

Two Regularization Methods

Lasso regression (L1 penalty)

$$\begin{split} & \min_{\beta} \left(\mathrm{RSS} + \lambda \sum_{j=1}^{p} |\beta_j| \right) \\ & \Longleftrightarrow \min_{\beta} \left(\mathrm{RSS} \right) \text{ subject to } \sum_{j=1}^{p} |\beta_j| \leq s \end{split}$$

Ridge regression (L2 penalty)

$$\min_{\beta} \left(\text{RSS} + \lambda \sum_{j=1}^{p} \beta_{j}^{2} \right)$$
 $\iff \min_{\beta} \left(\text{RSS} \right) \text{ subject to } \sum_{j=1}^{p} \beta_{j}^{2} \leq s$

Regularization

Two Regularization Methods

Elastic net (L1 penalty + L2 penalty)

$$\min_{\beta} \left(\text{RSS} + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=1}^{p} \beta_j^2 \right)$$

$$\iff \min_{\beta} \left(\lambda \text{RSS} + \alpha \sum_{j=1}^{p} |\beta_j| + (1 - \alpha) \sum_{j=1}^{p} \beta_j^2 \right)$$

Remarks:

- Selecting a good weight for regularization is critical; cross-validation is used for this.
- Standardizing the predictors before adding regularization.

17/29

• Why do we need validation?

- Why do we need validation?
 - No test data is available when fitting the model.

18/29

- Why do we need validation?
 - No test data is available when fitting the model.
- Validation procedure:
 - Divide the whole sample into two parts:
 - The model is fit on the training set, accessed on the validation set.

18/29

- Why do we need validation?
 - No test data is available when fitting the model.
- Validation procedure:
 - Divide the whole sample into two parts:
 - The model is fit on the training set, accessed on the validation set.
- How can we use the whole sample for validation?

- Why do we need validation?
 - No test data is available when fitting the model.
- Validation procedure:
 - Divide the whole sample into two parts:
 - The model is fit on the training set, accessed on the validation set.
- How can we use the whole sample for validation?
 - Use Cross-Validation
 - Randomly divide the data into K equal-sized parts.

- Why do we need validation?
 - No test data is available when fitting the model.
- Validation procedure:
 - Divide the whole sample into two parts:
 - The model is fit on the training set, accessed on the validation set.
- How can we use the whole sample for validation?
 - Use Cross-Validation
 - Randomly divide the data into K equal-sized parts.
- Key point of Cross-Validation:
 - Model fitting and validation are two independent procedure.
 - Can we use Cross-Validation on time-series data?

Adjustment for time-series*

Cross-Validation

Do we have any problems?

Adjustment for time-series*

Cross-Validation

- Do we have any problems?
 - Forecast / test data occurs before the training data.
 - Data leakage.

Adjustment for time-series*

Rolling windows

Adjustment for time-series*

Rolling windows

Expanding windows

Outline

- Concept Review
 - Model Selection
 - ANOVA
 - Bias Variance Trade-off
 - Regularization
 - Validation Set and Cross-Validation
- R Markdown

Introduction

- R Markdown is a file format for making dynamic documents with R (similar to iPython Notebook!).
- Structure if R Markdown
 - Headers for information and settings
 - R Chunks: small block to implement R codes
 - Text and math equations
 - Table and plots(more details in the next tutorial)

install.packages("rmarkdown")

```
title: "Tutorial 1"
author: "Your name"
date: "Oct 30, 2023"
output:
 pdf_document:
    toc: yes
    toc_depth: "4"
  html_document:
    code_folding: show
    highlight: haddock
    theme: lumen
    toc: yes
    toc_depth: 4
    toc_float: yes
```

```
title: "Tutorial 1"
author: "Your name"
date: "Oct 30, 2023"
output:
 pdf_document:
    toc: yes
    toc_depth: "4"
  html document:
    code_folding: show
    highlight: haddock
    theme: lumen
    toc: yes
    toc depth: 4
    toc_float: yes
```

 Some information required in the title page

```
title: "Tutorial 1"
author: "Your name"
date: "Oct 30, 2023"
output:
 pdf_document:
    toc: yes
    toc_depth: "4"
  html document:
    code_folding: show
    highlight: haddock
    theme: lumen
    toc: yes
    toc depth: 4
    toc_float: yes
```

Formatting the output PDF file.
 Please click here for a more detailed introduction.

```
title: "Tutorial 1"
author: "Your name"
date: "Oct 30, 2023"
output:
 pdf document:
    toc: yes
    toc_depth: "4"
  html document:
    code_folding: show
    highlight: haddock
    theme: lumen
    toc: yes
    toc depth: 4
    toc_float: yes
```

 Formatting the output HTML file. Please click here for a more detailed introduction.

R Chunks

Unlike regular texts, a chunk is where the code will be executed in an R Markdown file. Two ways to quickly add a regular R chunk

- the keyboard shortcut Ctrl+Alt+I (OS X: Cmd+Option+I)
- the Add Chunk command Insert in the editor toolbar

R Chunks

Unlike regular texts, a chunk is where the code will be executed in an R Markdown file. Two ways to quickly add a regular R chunk

- the keyboard shortcut Ctrl+Alt+I (OS X: Cmd+Option+I)
- the Add Chunk command * Insert in the editor toolbar

Regular R chunk

```
'''{r}
```

R Chunks

```
'''{r, include = FALSE}
# code: not shown
                                '''{r, fig.show='hide'}
# results: not shown
                                # code: shown
, , ,
                                # fig results: not shown
                                . . .
'''{r, echo = FALSE}
                                '''{r, warning = FALSE}
# code: not shown
# results: shown
                                # Not printing warnings
, , ,
                                . . .
'''{r, results = 'hide'}
                                '''{r, fig.cap = "..."}
# code: shown
                                # Add caption to figures
# not showing text results
                                . . .
, , ,
```

Working Directory

Claim global setting in "R setup" chunk.

For example, we could set working directory in this chunk.

```
'``{r, setup}
setwd(some_dir) # set the working dir to some_dir
'``
```

Caveat

Duplicated "r setup" chuck is **not** allowed, or RMarkdown will report error :(

Useful links

- Formatting the text!
- Formatting the output PDF file
- Formatting the output HTML file
- R Markdown documentation
- (advance level) R Markdown gallery

Useful links

Installing R, RStudio, and useful links

Install R:

https://cran.rstudio.com/

Install RStudio:

www.rstudio.com/products/rstudio/download/

Data Visualization - A Practical Introduction

https://socviz.co/

RStudio Cheat Sheets

www.rstudio.com/resources/cheatsheets/

R Implementation

Use the rmd file

- Introduction of R
 - Numeric and string objects
 - Vectors, Matrices and Dataframes
 - Defining functions and Control flows
- R Implementation
 - EDA
 - Linear Model
 - Model Selection
 - ANOVA
 - Regularization
 - Subset selection