Asymptotic Notation - $TC = 2n^2 + 5n + JO$ Dominant term = n

 $1 < \log_n < \sqrt{n} < (n < n \log_n) < n^2 < n^3 < 2^n < 3^n < n^n$ -> Inouring TC -> Investing Dominance for trye values of n. n Lnlogn.

n=1, $1 < 1 \log(1)$

C×g(n)

3 notations—

(1) Big 0 (2) Big Omega (3) Theta

1 Aronye.

Given two functions f(n) and g(n), we say that f(n) is O(g(n)) if there exist constants c > 0 and $n_0 >= 0$ such that f(n) <=c*g(n) for all $n >= n_0$.

Ext Find upper bound of f(n) = 2n + 3. Time f(n) = 0 (g(n)) $f(n) = c \times g(n)$ g(n) = 7 c = 7 $r_0 = 7$ $Cont^n$ c = 7 $r_0 = 7$ $r_0 = 7$

2n+3 <= c x n.

g(n)=n

Trid & Evror method. C=1, 2n+3 <= N

(2) (2)

C=1,
$$2n+3 \le n$$

 $\Rightarrow n \le -3 \implies n \le -3$

$$(n)=3$$

$$\eta = \eta_0 \rightarrow \eta > 0$$

$$\eta = \eta_0 \rightarrow \eta = 1$$

By one -
$$f(n) = \Omega(g(n))$$

$$(c,g(n)) = f(n)$$

find the lower bound of $f(n) = J0n^2 + 5$.

$$f(n) = \Omega \left(g(n)\right)$$

$$\Rightarrow$$
 f $c.g(n) <= f(n)$.

$$\Rightarrow$$
 c. $g(n) = 10n^2 + 5$

$$=$$
 $c \cdot n^2 < = 10n^2 + 5$

c=1,

$$n^{2} \langle = Jon^{2} + 5$$

$$+ \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} = 10n^{2}$$

$$+ \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} = 10n^{2}$$

$$n^2 < =10n$$

$$(n)=1$$

C22,

C = 10, $10n^2 < = 10n^2 + 5$ C = (1..., 10)

$$(n_0 = 1)$$
 $(c = + \sqrt{c})$

c₁, g(n) <= f(n) <= c₂·g(n).