

p_T Classification Study in EMTF

Wei Shi
CMS@Rice Meeting
Feb 2, 2018

Introduction

- EMTF
 - Endcap Muon Track Finder
- Offline p_T training
 - Machine learning
 - Regression [1]
 - Classification

Introduction

3

Motivation & Strategies

- Motivation
 - Compare BDT (Boosted-Decision-Trees) classifiers with 2017 BDT regression
- Strategies
 - 1) Use classifiers as reference (set signal efficiency as 95%, 93%)
 - Require 2017 BDT regression to achieve 90% efficiency at same GEN pT as classifiers
 - Compare rate & efficiency
 - 2) Use 2017 BDT regression pT > 16 GeV as reference
 - 16 GeV is scaled to 25.1 GeV in EMTF firmware
 - Require classifiers achieve 90% efficiency at same GEN pT as regression

Classifiers

- Binary classifiers on pT = X GeV
 - Only presents X=25
 - Typical L1 muon trigger threshold
 - Binary Classifier
 - Train 2 classes: background is GEN pT [1, 8) GeV, signal is GEN pT [X, 256] GeV
 - Binary ZB Classifier
 - Train 2 classes: Zerobias data as background, GEN pT [X, 256] GeV as signal
- Both classifiers use same settings as BDT regression
 - Binary classifier has best performance under this setting
 - No weight applied in both classifiers

Total probability $\sum_{i=0}^{n}$ class i=1

BDTG.class3+BDTG.class2+BDTG.class1 {GEN_charge > -2 && GEN_pt > 30 }

Motivation & Strategies

- Motivation
 - Compare BDT (Boosted-Decision-Trees) classifiers with 2017 BDT regression
- Strategies
 - 1) Use classifiers as reference (set signal efficiency as 95%, 93%)
 - Require 2017 BDT regression to achieve 90% efficiency at same GEN pT as classifiers
 - Compare rate & efficiency

Binary Classifier

Binary ZB Classifier

Regression CSC-only 90% Efficiency as Classifier

Regression CSC-only 90% Efficiency as Classifier

Regression 90% efficiency at same GEN pT as Classifiers with signal eff 95%

	2 classes (<8, >=25)	2 classes (ZB, >=25)
Classifier cuts	class1>0.971	class1>0.970
Ratio in all ZB events (classifiers rate)	0.202% (400/197713)	0.354% (348/98384)
Regression pT cuts	17 GeV	17 GeV
Ratio in all ZB events (regression rate)	0.155% (306/197713)	0.155% (306/197713)

Binary Classifier

Binary ZB Classifier

Regression CSC-only 90% Efficiency as Classifier

Regression 90% efficiency at same GEN pT as Classifiers with signal eff 93%

	2 classes (<8, >=25)	2 classes (ZB, >=25)
Classifier cuts	class1>0.986	class1>0.983
Ratio in all ZB events (classifiers rate)	0.146% (289/197713)	0.284% (279/98384)
Regression pT cuts	18 GeV	18 GeV
Ratio in all ZB events (regression rate)	0.135% (266/197713)	0.135% (266/197713)

Motivation & Strategies

- Motivation
 - Compare BDT (Boosted-Decision-Trees) classifiers with 2017 BDT regression
- Strategies
 - 1) Use classifiers as reference (set signal efficiency as 95%, 93%)
 - Require 2017 BDT regression to achieve 90% efficiency at same GEN pT as classifiers
 - Compare rate & efficiency
 - 2) Use 2017 BDT regression pT > 16 GeV as reference
 - 16 GeV is scaled to 25.1 GeV in EMTF firmware
 - Require classifiers achieve 90% efficiency at same GEN pT as regression

Binary Classifier

Binary ZB Classifier

Classifier CSC-only 90% Efficiency as Regression 16 GeV

Classifier CSC-only 90% Efficiency as Regression 16 GeV

Classifiers 90% efficiency at same GEN pT as Regression				
Regression 2 classes ($\langle 8, \rangle = 25$) 2 classes (ZB, $\rangle = 25$)				
pT > 16GeV class1>0.945 class1>0.9575				
0.206% (407/197713)				

Summary & Plans

- Binary classifier has better performance
 - Comparable to the 2017 BDT regression (similar rate, higher efficiency at high pT)
 - Rate ratio 50% lower than classifier trained with Zerobias events
 - Steeper turn-on curve than binary ZB classifier (especially below threshold 25 GeV)

• Plans

- Train on real data (for example, ZeroBias+Muonia+SingleMu+MC)
 - Introduce pileup events from real data
 - New EMTF Ntuple adding RECO pT branch
- Improve regression
- Combine classifier and regression

BACK UP

Binary Classifier

Binary ZB Classifier

Regression CSC-only 90% Efficiency as Classifier

Regression 90% efficiency at same GEN pT as Classifiers with signal eff 94%

	2 classes (<8, >=25)	2 classes (ZB, >=25)
Classifier cuts	class1>0.980	class1>0.979
Ratio in all ZB events (classifiers rate)	0.180% (355/197713)	0.307% (302/98384)
Regression pT cuts	18 GeV	18 GeV
Ratio in all ZB events (regression rate)	0.135% (266/197713)	0.135% (266/197713)

Binary Classifier

Binary ZB Classifier

Regression CSC-only 90% Efficiency as Classifier

Regression CSC-only 90% Efficiency as Classifier

Regression 90% efficiency at same GEN pT as Classifiers with signal eff 92%

	2 classes (<8, >=25)	2 classes (ZB, >=25)
Classifier cuts	class1>0.990	class1>0.986
Ratio in all ZB events (classifiers rate)	0.125% (248/197713)	0.261% (257/98384)
Regression pT cuts	20 GeV	19 GeV
Ratio in all ZB events (regression rate)	0.094% (186/197713)	0.113% (224/197713)

Tools

- Multi-class(binary class inclusive) training
 - https://github.com/weishi10141993/EMTFPtAssign2017/blob/master/pTMulticlass.C
- Compare classifier and regression:
 - Binary classifier
 - https://github.com/weishi10141993/EMTFPtAssign2017/blob/master/macros/ClassifierROC.C
 - Multi-class classifier
 - https://github.com/weishi10141993/EMTFPtAssign2017/blob/master/macros/MultiClassif ierROC.C

2017 BDT Regression Rate

Total ZeroBias events: 197713 Regression pT (scaled pT @P5 [GeV])	2017 BDT Regression Rate
pT > 20 GeV (34.3)	186
pT > 19 GeV (31.8)	224
pT > 18 GeV (29.5)	266
pT > 17 GeV (27.3)	306
pT > 16 GeV (25.2)	407
pT > 15 GeV (23.2)	507
pT > 14 GeV (21.26)	635

2017 pT scale:

```
pt_xml = fmin(20., pt);
pt_scale = 1.2 / (1 - 0.015*pt_xml);
```


Rate Ratio (Classifier/Regression) vs Classifier trained pT cut Require Classifier achieve 90% at same GEN pT as Regression pT > 16 GeV

Rate Ratio (Classifier/Regression) vs Classifier signal efficiency is 95% vs Classifier trained pT cut Require regression achieve 90% at same GEN pT as classifier

Training & evaluation files

- Binary classifier
 - root://eosuser.cern.ch/eos/user/w/wshi/Binary_Classifier_NonContinuous_Cut
- Binary ZB classifier (train on zerobias events)
 - root://eosuser.cern.ch/eos/user/w/wshi/Binary_Classifier_TrainZBbkg
- Other classifiers
 - Binary lassifiers with continuous cut
 - root://eosuser.cern.ch/eos/user/w/wshi/Binary_Classifier_Continuous_Cut
 - 5 classes classifier
 - root://eosuser.cern.ch/eos/user/w/wshi/MultiClass_Classifier
 - 2017 BDT Regression: different targets & weights
 - root://eosuser.cern.ch/eos/user/w/wshi/Targets_Weights_Regression

Classifiers

- Trained three classifiers
 - 5 classes: GEN pt [32, 256], [24, 32), [16, 24), [8, 16), [1, 8) GeV
 - 2 classes: GEN pt [32, 256], [1, 8) GeV
 - 2 classes: GEN pt [32, 256], [1, 32) GeV
- All classifiers have same BDT settings as 2017 BDT regression
 - No weight applied in all classifiers

Comparison Strategy

- Compare classifiers best rate & efficiency with regression pT > 16 GeV(not scaled)
 - Require classifier signal efficiency to be 95%, 94%, 93% and 92%
 - Signal means [32, 256] GeV
- Compare classifiers best rate & efficiency with 2017 BDT regression
 - Require classifier signal efficiency to be 95%, 94%, 93% and 92%
 - Require regression achieve 90% efficiency at same GEN pT as classifiers
- Compare classifiers rate & efficiency with 2017 BDT regression pT > 16GeV
 - Require three classifiers achieve 90% efficiency at same GEN pT as regression pT >16 GeV

CSC only Efficiency: Regression vs Multi-classifier

CSC only Efficiency: Regression vs Classifier

CSC only Efficiency: Regression vs Classifier

2 classes non-continuous pT

2 classes continuous pT

Rate: Classifiers signal efficiency 95%				
Regression 5 classes 2 classes 2 classes (<8,>=32) (<32,>=32)				
pT > 16GeV	class1>0.342 && class5<0.03	class1>0.9724	class1>0.505	
407 (0.206%)	300 (0.152%)	339 (0.172%)	407 (0.206%)	

CSC only Efficiency: Regression vs Classifier

Rate: Classifiers signal efficiency 94%				
Regression 5 classes 2 classes 2 classes $[1,8][8,16][16,24][24,32][32,1000]$ $(<8,>=32)$ $(<32,>=32)$				
pT > 16GeV	class1>0.462 && class5<0.027	class1>0.981	class1>0.584	
407 (0.206%)	249 (0.126%)	287 (0.145%)	351 (0.178%)	

CSC only Efficiency: Regression vs Multi-classifier

CSC only Efficiency: Regression vs Classifier

CSC only Efficiency: Regression vs Classifier

Rate: Classifiers signal efficiency 93%				
Regression 5 classes 2 classes 2 classes (<8,>=32) (<32,>=32)				
pT > 16GeV	class1>0.511 && class5<0.019	class1>0.987	class1>0.641	
407 (0.206%)	196 (0.099%)	254 (0.128%)	318 (0.161%)	

CSC only Efficiency: Regression vs Multi-classifier

CSC only Efficiency: Regression vs Classifier

CSC only Efficiency: Regression vs Classifier

Rate: Classifiers signal efficiency 92%				
Regression 5 classes 2 classes 2 classes (<8,>=32) (<32,>=32)				
pT > 16GeV	class1>0.587 && class5<0.018	class1>0.991	class1>0.697	
407 (0.206%)	171 (0.0865%)	219 (0.1108%)	272 (0.138%)	

Regression CSC-only 90% Efficiency as Classifier

Regression CSC-only 90% Efficiency as Classifier

Regression 90% efficiency at same GEN pT as Classifiers with signal eff 95%

	5 classes	2 classes (<8, >=32)	2 classes (<32, >=32)
Classifier cuts	class1>0.342 && class5<0.03	class1>0.9724	class1>0.505
Classifiers Rate (ratio in all ZB events)	300 (0.152%)	339 (0.172%)	407 (0.206%)
Regression pT cuts	22 GeV	19 GeV	24 GeV
Regression Rate	135 (0.068%)	224 (0.113%)	102 (0.052%)

log2(GEN pT)

Regression CSC-only 90% Efficiency as Classifier

Regression CSC-only 90% Efficiency as Classifier

Regression 90% efficiency at same GEN pT as Classifiers with signal eff 94%

	5 classes	2 classes (<8, >=32)	2 classes (<32, >=32)
Classifier cuts	class1>0.462 && class5<0.027	class1>0.981	class1>0.584
Classifiers Rate (ratio in all ZB events)	249 (0.126%)	287 (0.145%)	351 (0.177%)
Regression pT cuts	24 GeV	20 GeV	25 GeV
Regression Rate	102 (0.051%)	186 (0.094%)	86 (0.043%)

Regression CSC-only 90% Efficiency as Classifier

Regression CSC-only 90% Efficiency as Classifier

Regression 90% efficiency at same GEN pT as Classifiers with signal eff 93%

	5 classes	2 classes (<8, >=32)	2 classes (<32, >=32)
Classifier cuts	class1>0.511 && class5<0.019	class1>0.987	class1>0.641
Classifiers Rate (ratio in all ZB events)	196 (0.099%)	254 (0.128%)	318 (0.161%)
Regression pT cuts	25 GeV	21 GeV	25 GeV
Regression Rate	86 (0.043%)	154 (0.078%)	86 (0.043%)

Regression CSC-only 90% Efficiency as Classifier

Regression CSC-only 90% Efficiency as Classifier

Regression 90% efficiency at same GEN pT as Classifiers with signal eff 92%

	5 classes	2 classes (<8, >=32)	2 classes (<32, >=32)
Classifier cuts	class1>0.587 && class5<0.018	class1>0.991	class1>0.697
Classifiers Rate (ratio in all ZB events)	171 (0.08%)	219 (0.11%)	272 (0.137%)
Regression pT cuts	26 GeV	21 GeV	26 GeV
Regression Rate	75 (0.037%)	154 (0.077%)	75 (0.037%)

Classifier CSC-only 90% Efficiency as Regression 16 GeV

Classifiers 90% efficiency at same GEN pT as Regression					
Regression	5 classes [1,8][8,16][16,24][24,32][32,1000]	2 classes (<8,>=32)	2 classes (<32, >=32)		
pT > 16GeV	class1>0.02 && class5<0.34	class1>0.75	class1>0.0125		
407 (0.206%)	2247 (1.14%)	742 (0.375%)	6121 (3.10%)		

Conclusion

- Best classifier trained with 2 classes setting: GEN pT [32, 256], [1, 8) GeV
 - "Best" under same BDT settings as regression (didn't optimize for all classifiers)
 - Rate ratio close to 2017 BDT regression
 - Always achieve 90% eff at 32 GeV while other classifiers fail (slide 22-25)
 - Steeper turn on curve(slide 26)
- Depending on trained classes settings, the efficiency turn on curve for same pT cut (32 GeV) is different

MVA settings

BDT

factX->BookMethod(loadX, TMVA::Types::kBDT, "BDTG",
"!H:!V:NTrees=400::BoostType=Grad:Shrinkage=0.1:nCuts=1000:MaxDepth=5:Min
NodeSize=0.000001:RegressionLossFunctionBDTG=LeastSquares");