数学 AII(奈須田) 第 1 週 ①

みなさん、お久しぶりです。 — 夏休みはどうでしたか? (私の感想は「短い!」です。)

.....

数学の授業とは関係ないのですが、国際交流室員としての奈須田から、お願いがあります.

◎ 群馬高専では、今年度末の3月16日(日)~3月23日(日)にシドニーで短期海外 語学研修を実施する予定です。つきましては、参加に関する希望調査を form で行う ので、ご回答ください。

さて、後期の「数学 AII」を始める前に、2点 確認です。

成績評価について 前期「数学 AI」同様,

[成績点 100 点]= [中間試験 100 点] \times 0.4 + [定期試験 100 点] \times 0.4 + [平常点 20 点] として計算します。平常点は,毎回の課題の提出 $+\alpha$ によって評価されます。

課題提出について 提出期限を, 次の授業がある日の午前8:30までと変更します. 提出方法はこれまでと同様, Teams 上で提出してください.

0 イントロダクション

0.1 微分の復習

関数 y = f(x) の微分 (differential) dy は,

$$dy = f'(x) dx$$
. 導関数 (derivative)

例 1. $f(x) = x^2$ の微分.

$$\Delta(x^2) = (x + \Delta x)^2 - x^2 = (x^2 + 2x\Delta x + (\Delta x)^2) - x^2 = 2x\Delta x + (\Delta x)^2$$

∴
$$d(x^2) = 2x dx$$

(別) $(x^2)' = 2x$ だから、 $d(x^2) = 2x dx$.

例 2. $f(x) = \sin x$ の微分.

$$\Delta (\sin x) = \sin(x + \Delta x) - \sin x = \sin x \cos \Delta x + \cos x \sin \Delta x - \sin x$$
$$= \sin x (\cos \Delta x - 1) + \cos x \sin \Delta x$$
$$\approx 1$$
$$\approx \Delta x$$

$$\therefore \quad d(\sin x) = \cos x \, dx$$

(別) $(\sin x)' = \cos x$ だから、 $d(\sin x) = \cos x dx$.

問題 0.1 次の関数を微分せよ.ただし,c,α は定数とする. 📧 微分公式を復習しておくこと.

(1)
$$y = c$$
 (2) $y = x^{\alpha}$ (3) $y = \cos x$ (4) $y = e^{x}$ (5) $y = \ln |x|$

数学 AII(奈須田) 第1週①

~微分法の大雑把なまとめ~

- 微分とは、微小な変化量のこと。
- 微分することの<u>意味</u>は、接線の傾きを求める(1 次近似する)ことで、 その計算方法は、定義、あるいはそれから導いた諸公式による。

0.2 微分法以前の求積法

☑ 水たまりの面積

以下の囲まれた部分の面積を求めるには、どうしたら良いだろうか? ※ ここでは、そもそも面積(あるいは体積)とは何か? という議論には立ち入らない.

重要なアイデア: 細かく分けて,足し合わせる!

■ 四角錐の体積

底面積a, 高さhの四角錐の体積Vが, $V = \frac{1}{3}ah$ で求められることは,小学校で学習した.では,この公式はどのようにして導かれたのだろうか? あるいは,なぜこの式が成り立つのだろうか?

― ここでは、「水たまりの面積」の考察で得られた教訓: 細かく分けて、足し合わせる、

というアイデアを使って考えてみよう.

小学校では、四角錐の容器と、これと同じ底面積と高さの直方体の容器とを使って、直方体の容器には四角錐の容器 3 杯分の水が入ることを実験で確かめて納得させられた… 筈.

四角錐を、下図のように、N個の四角柱に分割して考える.

数学 AII(奈須田) 第1週①

下からk番目の四角柱は、底面積が $\left(\frac{N-k+1}{N}\right)^2a$ 、高さが $\frac{h}{N}$ の四角柱で、その体積は

$$\frac{(N-k+1)^2}{N^3}ah$$

である。求めたい四角錐の体積は、この四角柱の体積を、k=1(一番下)から k=N(一番上)まで足し合わせたものにほぼ等しい。特に、四角柱の高さが"限りなくゼロに近づけば"(分割を細かくする; $N\to\infty$ に対応)、その和は求めたい体積に等しくなると考えられる。すなわち、

$$V \approx \frac{1}{N}ah + \frac{(N-1)^2}{N^3}ah + \frac{(N-2)^2}{N^3}ah + \dots + \frac{1}{N^3}ah = \sum_{k=1}^N \frac{(N-k+1)^2}{N^3}ah$$
$$= \frac{ah}{N^3} \sum_{k=1}^N (N-k+1)^2 = \frac{ah}{N^3} \sum_{j=1}^N j^2 = \frac{ah}{N^3} \cdot \frac{1}{6}N(N+1)(2N+1)$$
$$= \frac{1}{3}ah + \frac{1}{2N}ah + \frac{1}{6N^2}ah \rightarrow \frac{1}{3}ah \quad (N \to \infty) \qquad \therefore \quad V = \frac{1}{3}ah .$$

問題 0.2 (Archimedes の方法)

放物線 $y=x^2$ 上に異なる 2 点 $A(\alpha,\alpha^2)$, $B(\beta,\beta^2)$ ($\alpha<\beta$) がある。線分 AB と放物線とが囲む図形を切片 AB と呼び,接線が AB に平行な放物線上の点 P をこの切片の頂点という。このとき

$$\triangle ABP = T_1$$

とする. $(\triangle ABP)$ の面積を T_1 とする.) 次に、切片 AP, PB の頂点をそれぞれ P_1 , P_2 とおき

$$\triangle APP_1 + \triangle PBP_2 = T_2$$

とする. さらに、切片 AP_1 , P_1P , PP_2 , P_2B の頂点をそれぞれ P_3 , P_4 , P_5 , P_6 とおき

$$\triangle AP_1P_3 + \triangle P_1PP_4 + \triangle PP_2P_5 + \triangle P_2BP_6 = T_3$$

とする. 以下同様にして, $T_4, T_5, \ldots, T_n, \ldots$ を定める.

- (1) $T_2 = \frac{1}{4}T_1$ であることを示せ.
- (2) $S_n = \sum_{k=1}^n T_k \ \epsilon \ T_1 \ \epsilon$ 用いて表せ.
- (3) 切片 AB の面積 S を α , β を用いて表せ.

答:
$$S = \frac{(\beta - \alpha)^3}{6}$$

数学 AII (奈須田) 第 1 週 ①

~積分法の概観~

• 積分とは、微小量を積み上げていくこと.

● 積分することの<u>意味</u>は,"面積"を求めることで, 定積分

その計算方法は、微分計算の逆.

☞ 不定積分