Algorithmen und Datenstrukturen

Kapitel 3: Sortieren

Prof. Dr. Peter Kling Wintersemester 2020/21

Übersicht

- 1 Insertionsort
- 2 Mergesort
- 3 Rekursion
- 4 Quicksort
- 5 Heapsort
- 6 Untere Schranke für Vergleichssortierer
- Sortieren in linearer Zeit

Das Sortierproblem

Eingabe

• Folge von *n* Zahlen $(a_1, a_2, ..., a_n)$

Ausgabe

• Umordnung (b_1, b_2, \ldots, b_n) mit $b_1 \leq b_2 \leq \ldots b_n$

Beispiel

- Eingabe: (7,99,12, 3,17,12)
- Ausgabe: (3, 7, 12, 12, 17, 99)

1) Insertionsort

Inkrementelle Algorithmen

Definition 3.1

Ein inkrementeller Algorithmus berechnet eine Teillösung für die ersten i Objekte sukzessive für $i \in \{1, 2, ..., n\}$ aus einer bekannten Teillösung für die ersten i-1 Objekte.

MINSEARCH(A)

- 1 $min \leftarrow 1$
- 2 **for** $i \leftarrow 2$ to length(A)
- 3 **if** A[i] < A[min]4 $min \leftarrow i$
- 5 return min

- Objekte: Einträge des Arrays A
- Teillösung für ersten *i* Objekte:

 Minimum von A[1],...,A[*i*]

InsertionSort

Idee

Berechne sukzessive die Sortierungen der Teilarrays A[1...i] für $i \in \{1, 2, ..., length(A)\}$.

Algorithmus 3.1: INSERTIONSORT(A)

```
1 for j \leftarrow 2 to length(A)

2 key \leftarrow A[j]

3 i \leftarrow j - 1

4 while i > 0 and A[i] > key

5 A[i+1] \leftarrow A[i]

6 i \leftarrow i-1
```

 $A[i+1] \leftarrow key$

Beispiel

$$key = 99$$

$$A = \langle \overbrace{7}, 99, 12, 3, 17, 12 \rangle$$

Was ist die Grundidee des Algorithmus?

- betrachte Variable $key \leftarrow A[j]$ im j-Schleifendurchlauf
- while: schiebe alle $A[1], \dots, A[j-1]$ die größer key sind...
- · ...um eins nach rechts
- · key wird in entstandener Lücke gespeichert

INSERTIONSORT(A) 1 for $j \leftarrow 2$ to length(A) 2 $key \leftarrow A[j]$ 3 $i \leftarrow j - 1$ 4 while i > 0 and A[i] > key5 $A[i+1] \leftarrow A[i]$ 6 $i \leftarrow i - 1$ 7 $A[i+1] \leftarrow key$

Schleifendurchlauf mit j = 2

$$key = 99$$
 $A = \langle 7, 99, 12, 3, 17, 12 \rangle$

Wie gut ist InsertionSort?

Theorem 3.1

INSERTIONSORT löst das Sortierproblem. Das heißt der Algorithmus sortiert eine Folge von *n* Zahlen aufsteigend.

Theorem 3.2

Die worst-case Laufzeit von InsertionSort ist $\Theta(n^2)$.

Beweis von Theorem 3.1 (1/3)

• sei das Eingabearray $A = \langle a_1, a_2, \dots, a_n \rangle$

Schleifeninvariante I(j)

A[1...j-1] enthält die Zahlen a_1,a_2,\ldots,a_{j-1} aufsteigend sortiert

- (a) Initialisierung: ✓
 - das einelementiges Array A[1...2-1] = A[1] ist sortiert
 - also gilt I(2) trivialerweise immer
 - \implies I(2) gilt vor dem ersten for-Schleifendurchlauf
- (b) Erhaltung: !?
- (c) Terminierung: 🗸
 - am Ende der Schleife gilt I(length(A) + 1) = I(n + 1)
 - das heißt A[1...n+1-1] = A[1...n] enthält die Zahlen...
 - ... $a_1, a_2, ... a_{n+1-1} = a_n$ aufsteigend sortiert
 - ⇒ INSERTIONSORT ist korrekt

Beweis von Theorem 3.1 (2/3)

Beweis der Erhaltung: I(j) o I(j+1) Details auf nächster Folie

- gelte I(j) am Anfang des j-Durchlaufs der for-Schleife
- INSERTIONSORT merkt sich A[j] in Variable key
- sei $k \in \{1, 2, \dots, j-1\}$ minimal mit A[k] > key...
 - ...oder k = i falls ein solches k nicht existiert
- der Algorithmus verschiebt A[k ... j 1] nach A[k + 1... j]...
- · ...und setzt anschließend A[k] auf den Wert key
- danach gilt:

(1)
$$A[1] \le A[2] \le \cdots \le A[k-1]$$

(2)
$$A[k-1] \le A[k] \le A[k+1]$$

(3)
$$A[k+1] \le A[k+2] \le \cdots \le A[j]$$

$$\implies$$
 $A[1] \le A[2] \le \cdots \le A[j]$

 \implies I(j+1) gilt am Ende des j-Durchlaufs der for-Schleife

wg. I(j)

Schleife wg. I(j)

"hole at i"

```
Hilfsinvariante H(i, i)
1 // 1(2)
                                              A[1...i-1,i+1,...j] enthält
2 for j \leftarrow 2 to length(A)
3
                                           a_1, a_2, \dots a_{i-1} aufsteigend sortiert
     key \leftarrow A[j]
    // I(j) \wedge key = a_i
5
   i \leftarrow i - 1
7
     // H(j, i + 1) \land key = a_i
     while i > 0 and A[i] > kev
8
             // H(j, i+1) \land key = a_i \land key < A[i] \land i > 0
             A[i+1] \leftarrow A[i]
10
             // H(j,i) \wedge key = a_i \wedge key < A[i+1] \wedge i > 0
11
             i \leftarrow i - 1
12
             // H(j, i+1) \land key = a_i \land key < A[i+2] \land i \ge 0
13
        // Fall 1: i = 0 \implies H(j, 1) \land key = a_i \land key < A[2]
14
         // Fall 2: A[i] \le key \implies H(j, i+1) \land key = a_i \land A[i] \le key < A[i+2]
15
   A[i+1] \leftarrow key
16
   // I(i + 1)
17
18 // I(length(A) + 1)
```

Beweis von Theorem 3.1 (3/3)

- Initialisierung (Zeile 1) & Terminierung (Zeile 18) → vorherige Folie
- · hier im Wesentlichen die Erhaltung
- · benötigen weitere (Hilfs-) Invariante für innere while-Schleife
- · genauere Erläuterungen mündlich und/oder annotiert

- · untere Schranke:
 - konkrete worst-case Eingabe: $A = \langle n, n-1, n-2, ..., 1 \rangle$
 - while-Schleife wird pro j genau j 1-mal Durchlaufen
 - · Details: DIY-Beweis
- · obere Schranke:

InsertionSort(A)		Kosten
1	for $j \leftarrow 2$ to length(A)	$\sum_{i=2}^{n} T(I)$
2	$key \leftarrow A[j]$	O(1)
3	<i>i</i> ← <i>j</i> − 1	O(1)
4	while $i > 0$ and $A[i] > key$	$\leq \sum_{i=1}^{j-1} T(I)$
5	$A[i+1] \leftarrow A[i]$	O(1)
6	<i>i</i> ← <i>i</i> − 1	O(1)
7	$A[i+1] \leftarrow key$	O(1)

$$\Rightarrow$$
 Laufzeit $T(n) = O\left(\sum_{j=2}^{n} \left(1 + \sum_{i=1}^{j-1} 1\right)\right) = O(n^2)$

Beweis von Theorem 3.2 (obere und untere Schranke)

· Laufzeit der while-Schleife folgt mittels Potentialfunktion $\Phi(i) = i$

2) Mergesort

Definition 3.2

Ein Divide & Conquer Algorithmus nutzt Rekursion zur Lösung eines Problems in drei Schritten:

- 1. Teile das Problem in mehrere Teilprobleme auf.
- 2. Erobere große Teilproblem durch rekursive Aufrufe und löse kleine Teilprobleme direkt.
- 3. Kombiniere die Lösungen der Teilprobleme zu einer Gesamtlösung.

Teile & Erobere

17 8 1 99 20 3 12 5

- Teile: rote Linie
- Erobere: Black Magic bzw. Mathematik
- Kombiniere: Merge

· Teile: rote Linie

- Erobere: Black Magic bzw. Mathematik
- Kombiniere: Merge

- · Teile: rote Linie
- Erobere: Black Magic bzw. Mathematik
- Kombiniere: Merge

Pseudocode zu MergeSort

Algorithmus 3.2: MERGESORT(A, l, r)

```
1 if l < r

2 p \leftarrow \lfloor (l+r)/2 \rfloor

3 MERGESORT(A, l, p)

4 MERGESORT(A, p+1, r)

5 MERGE(A, l, p, r)
```

- erstmaliger Aufruf als MergeSort(A, 1, length(A))
- · Hilfsalgorithmus MERGE mischt zwei sortierte Teilfolgen
- · eine Mögliche Umsetzung des D&C Ansatzes zum Sortieren

- Variable l: linker Rand
- Variable r: rechter Rand
- Variable p: Pivot Index (hier Mitte)

- 1 **if** l < r2 $p \leftarrow \lfloor (l+r)/2 \rfloor$ 3 MERGESORT(A, l , p)
 - 4 MERGESORT(A, p + 1, r)
 - 5 MERGE(A, l, p, r)

- · MERGESORT teilt das Array in der Mitte
- · andere Teilungsstrategien denkbar; werden wir noch sehen
- · Pivot Index nicht mit Pivot Element verwechseln; kommt später

- Variable l: linker Rand
- Variable r: rechter Rand
- Variable p: Pivot Index (hier Mitte)

- 1 **if** l < r2 $p \leftarrow \lfloor (l+r)/2 \rfloor$ 3 MERGESORT(A, l , p)
 - 4 MERGESORT(A, p + 1, r)
- 5 MERGE(A, l, p, r)

**State | State | Stat

· MERGESORT teilt das Array in der Mitte

Rekursionsbaum zu MERGESORT

· andere Teilungsstrategien denkbar

Wie genau funktioniert MERGE?

Algorithmus 3.3: MERGE(A, l, p, r)

```
n_1 \leftarrow p - l + 1
     n_2 \leftarrow r - p
      for i \leftarrow 1 to n_1: L[i] \leftarrow A[l+i-1]
      for i \leftarrow 1 to n_2: R[i] \leftarrow A[p+i]
     L[n_1+1] \leftarrow \infty
    R[n_2+1] \leftarrow \infty
     i \leftarrow 1; i \leftarrow 1
      for k \leftarrow 1 to r
              if L[i] \leq R[j]
 9
                   A[k] \leftarrow L[i]
10
                   i \leftarrow i + 1
11
             else
12
                    A[k] \leftarrow R[j]
13
                   i \leftarrow i + 1
```

14

- · Variablen n_1, n_2 : Länge der Teillösungen
- · Variablen L, R: Arrays mit Teillösungen
- Variablen i, j, k: "Merge-Indizes"

(17)

Wie gut ist MERGESORT?

Theorem 3.3

MERGESORT löst das Sortierproblem. Das heißt der Algorithmus sortiert eine Folge von *n* Zahlen aufsteigend.

Theorem 3.4

Die Laufzeit von MERGESORT ist $\Theta(n \cdot \log n)$.

└─Wie gut ist MERGESORT?

- wir reden hier explizit nicht von worst-case Laufzeit
- d.h. MergeSort hat selbst im best-case Laufzeit $\Theta(n \cdot \log n)$

Wie beweist man Korrektheit rekursiver Algorithmen?

Üblicherweise ähnlich zur vollständigen Induktion

- Initialisierung:
 Algorithmus ist korrekt für Basisfall
- Erhaltung:
 rekursiver Aufruf korrekt ⇒ aktueller Aufruf korrekt

Anmerkung zur Erhaltung

- · die Annhame der Korrektheit der rekursiven Aufrufe...
- ...setzt Terminierung voraus!
- ⇒ Müssen wir zeigen! (oder direkt Laufzeitanalyse machen)

Terminierung

- · über Potentialfunktion (analog zu while/repeat Schleifen)
 - $\Phi(\bullet)$ sinkt bei jedem Rekursionsaufruf um $\delta > 0$
 - Φ(•) ist nach unten beschränkt
- natürlicher Kandidat für $\Phi(\bullet)$: $\Phi(A, l, r) = r l$
 - · sinkt pro Aufruf um mindestens 1 (siehe Zeilen 3 und 4)
 - ist garantiert nichtnegativ

Länge Teilproblem

MergeSort(A, l, r)		
1	if $l < r$	
2	$p \leftarrow \lfloor (l+r)/2 \rfloor$	
3	MergeSort(A, l, p)	
4	MergeSort(A, p + 1, r)	
5	Merge(A, l, p, r)	

Beweis von Theorem 3.3 (1/2)

- \cdot δ sollte nicht von der Rekursionstiefe abhängen
- analog kann $\Phi(\bullet)$ steigen und nach oben beschränkt sein
- $\Phi(A, l, r)$ halbiert sich sogar (im Wesentlich) pro Aufruf!
- · implizit nehmen wir hier die Terminierung von MERGE an
- formal zeigen wir die Terminierung von MERGE in Lemma 3.2

nur ein Flement

Initialisierung & Erhaltung (✓)

- Behauptung: MERGESORT(A, l, r) sortiert A[l ... r]
- Initialisierung: Basisfall $l \ge r$ ist trivialerweise sortiert
- · Erhaltung:
 - nach rekursiven Aufrufen sind A[l...p] und A[p+1,r] sortiert
 - \implies wenn Merge(A, l, p, r) diese Teillösungen...
 - ...korrekt zusammenführt, so ist $A[l \dots r]$ am Ende sortiert

MERGESORT(A, l, r)		
1	if $l < r$	
2	$p \leftarrow \lfloor (l+r)/2 \rfloor$	
3	MergeSort(A, l, p)	
4	MergeSort(A, p + 1, r)	
5	Merge(A, l, p, r)	

Müssen also noch MERGE analysieren!

Lemma 3.1

Angenommen die Teilarrays $A[l \dots p]$ und $A[p+1 \dots r]$ sind sortiert. Dann ist nach dem Aufruf MERGE(A, l, p, r) das Teilarray $A[l \dots r]$ sortiert.

Lemma 3.2

Es sei n = r - l + 1 die Größe des von MERGE betrachteten Teilarrays. MERGE hat Laufzeit $\Theta(n)$.

```
MERGE(A, l, p, r)
```

```
1 n_1 \leftarrow p - l + 1
 2 n_2 \leftarrow r - p
3 for i \leftarrow 1 to n_1: L[i] \leftarrow A[l+i-1]
4 for j \leftarrow 1 to n_2: R[j] \leftarrow A[p+j]
5 L[n_1+1] \leftarrow \infty
6 R[n_2+1] \leftarrow \infty
      i \leftarrow 1: i \leftarrow 1
      for k \leftarrow 1 to r
             if L[i] < R[j]
                  A[k] \leftarrow L[i]
10
                  i \leftarrow i + 1
11
            else
12
13
                  A[k] \leftarrow R[j]
                  j \leftarrow j + 1
14
```

Müssen also noch MERGE analysieren!

Müssen also noch MERGE analysieren! A[l...p] und A[p+1...r] sind sortiert. Dann ist nach dem Auf- $\begin{array}{ll} \text{s for } i \leftarrow 1 \text{ to } m : L[i] \leftarrow A[i+i-1] \\ \text{s for } j \leftarrow 1 \text{ to } m : R[j] \leftarrow A[p+j] \\ \text{s } L[n_1+1] \leftarrow \infty \\ \text{s } R[n_2+1] \leftarrow \infty \end{array}$ ruf Menge(A, I, p, r) das Teilarray A[L...r] sortiert. AM + 41 Es sei n = r-l+1 die Größe des A[H ← A[I] / ← / + 1 von Merge betrachteten Teilarrays. Merce hat Laufzeit $\Theta(n)$.

• auch hier: selbst im best-case $\Theta(n)$

Beweis von Lemma 3.1 (1/2)

Schleifeninvariante I(i, j, k)

A[l...k-1] enthält die k-l kleinsten Zahlen aus L und R in sortierter Reihenfolge. Außerdem sind L[i] und R[j] die kleinsten noch nicht nach A kopierten Elemente.

- (a) Initialisierung:
 - die Aussage I(1, 1, l) gilt trivialerweise
 - $\implies I(1,1,l)$ gilt vor dem ersten Schleifendurchlauf
- (b) Erhaltung: !?
- (c) Terminierung:
 - am Ende der Schleife gilt $I(\bullet, \bullet, r+1)$
 - \implies A[l...r] enthält die r-l+1 kleinsten Zahlen aus L und R... ...in sortierter Reihenfolge
 - ⇒ MERGE ist korrekt

Merge(A, l, p, r) $n_1 \leftarrow p - l + 1$ $n_2 \leftarrow r - p$ for $i \leftarrow 1$ to n_1 : $L[i] \leftarrow A[l+i-1]$ for $i \leftarrow 1$ to n_2 : $R[i] \leftarrow A[p+i]$ $L[n_1+1] \leftarrow \infty$ $R[n_2 + 1] \leftarrow \infty$ $i \leftarrow 1; i \leftarrow 1$ // I(i, i, l) for $k \leftarrow 1$ to r 10 if L[i] < R[i]11 $//I(i,j,k) \wedge L[i] < R[j]$ 12 13 $A[k] \leftarrow L[i]$ 14 $i \leftarrow i + 1$ 15 else 16 $// I(i, j, k) \wedge L[i] > R[j]$ $A[k] \leftarrow R[j]$ 18 19 $i \leftarrow i + 1$ 20 //I(i, j, k+1)21 //I(i, i, k + 1) $// I(\bullet, \bullet, r + 1)$

Schleifeninvariante I(i, j, k)

A[l...k – 1] enthält die k – l kleinsten Zahlen aus L und R in sortierter Reihenfolge. Außerdem sind L[i] und R[j] die kleinsten noch nicht wieder nach A kopierten Elemente.

- gelte l(i, j, k) vor dem k-Schleifendurchlauf
- o.B.d.A. sei L[i] ≤ R[j], also L[i] das kleinste noch nicht einsortierte Element
 - Fall L[i] > R[j] geht analog
- nach Zeile 13 enthält $A[l \dots k]$ die k-l+1 kleinsten Elemente aus L und R in sortierter Reihenfolge
- nach Zeile 14 gilt dann I(i, j, k + 1)

Beweis von Lemma 3.2

Merge(A, l, p, r)	Kosten	
$n_1 \leftarrow p - l + 1$	Θ(1)	• Eingabegröße $n = r - l + 1$
$n_2 \leftarrow r - p$	$\Theta(1)$	• Behauptung: Laufz. $\Theta(n)$
3 for i ← 1 to n_1 : $L[i]$ ← $A[l+i-1]$	$\Theta(n_1)$	benauptung. Lauiz. O(II)
$_{4}$ for $i \leftarrow 1$ to n_{2} : R[i] ← A[n + i]	$\Theta(n_2)$	$n_1 + n_2 = r - l + 1 = n$

for $j \leftarrow 1$ to n_2 : $R[j] \leftarrow A[p+j]$ $L[n_1+1] \leftarrow \infty$

$$\infty$$

$$R[n_2+1] \leftarrow \infty$$

$$R[n_2 + 1] \leftarrow \infty$$

$$i \leftarrow 1; i \leftarrow 1$$

for
$$k \leftarrow l$$
 to r
if $L[i] \leq R[j]$

$$L[i] \leq R[j]$$

 $A[k] \leftarrow L[i]$

$$i \leftarrow i + 1$$
 else

else
$$A[k] \leftarrow R[j]$$

$$j \leftarrow j + 1$$

9

10

11

$$\Theta(n_1)$$

$$\Theta(n_2) \quad \cdot \quad n_1 + n_2 = r - l + 1 = n$$

$$\Theta(1) \quad \cdot \quad \text{exakt } r - l + 1 = n \text{ Durch-}$$

$$\Theta(1)$$

$$\Theta(1)$$
 $\Theta(1)$

$$\Theta(r-l)$$

$$\Theta(1)$$

 $\Theta(1)$

$$\Theta(1)$$
 $\Theta(1)$

$$\Theta(n)$$

läufe der for-Schleife

· alle anderen Operatio-

also hat MFRGE Laufzeit

nen haben Laufzeit $\Theta(1)$

Es bleibt die Laufzeit von MERGESORT zu beweisen!

Laufzeitanalyse für D&C Algorithmen

Die Laufzeit eines D&C Algorithmus lässt sich beschränken durch

$$T(n) \le \begin{cases} c_B & \text{, falls } n \le n_B, \\ a \cdot T(n/b) + D(n) + C(n) & \text{, sonst.} \end{cases}$$

Dabei ist:

- T(n): worst-case Laufzeit bei Eingabegröße n
- $c_B \& n_B$: Basisfälle haben Größe $\leq n_B$ und Laufzeit $\leq c_B$
- <u>a:</u> Anzahl der Teilprobleme durch Teilung
- *n/b*: Größe der Teilprobleme
- $\underline{D(n)}$: Laufzeit für die Teilung
- · <u>C(n):</u> Laufzeit für die Kombinierung

Rekursionsformel für MERGESORT

Lemma 3.3

Es gibt eine Konstante c_1 , so dass für die Laufzeit T(n) von MERGESORT gilt:

$$T(n) \le \begin{cases} c_1 & \text{, falls } n = 1, \\ 2T(n/2) + c_1 \cdot n & \text{, falls } n > 1. \end{cases}$$

Beweis.

- Basisfall hat Größe $n_B = 1$ und benötigt konstante Zeit c_B
- jeder Aufruf erzeugt a=2 Teilprobleme der Größe $\approx n/2$
- Aufteilung benötigt konstante Zeit $D(n) = const_1$
- Kombinierung benötigt Zeit $C(n) \leq \text{const}_2 \cdot n$
- wähle $c_1 = \max\{c_B, \mathsf{const}_2\} + \mathsf{const}_1$

vereinfacht

2 rek. Aufrufe

Lemma 3.2 ☐ Rekursionsformel für MERGESORT

 wir gehen hier vereinfachend davon aus, dass die Länge der Eingabe einer Zweierpotenz ist

Rekursionsformel für MERGESORT

Lemma 3.4

Es gibt eine Konstante c_1 , so dass für die Laufzeit T(n) von MERGESORT gilt:

$$T(n) \ge \begin{cases} c_2 & \text{, falls } n = 1, \\ 2T(n/2) + c_2 \cdot n & \text{, falls } n > 1. \end{cases}$$

Beweis.

- Basisfall hat Größe $n_B = 1$ und benötigt konstante Zeit c_B
- jeder Aufruf erzeugt a=2 Teilprobleme der Größe $\approx n/2$
- Aufteilung benötigt konstante Zeit $D(n) = const_1$
- Kombinierung benötigt Zeit $C(n) \ge \text{const}_2' \cdot n$
- wähle $c_2 = \min \{ c_B, \operatorname{const}_2' \}$

vereinfacht

2 rek Aufrufe

☐ Rekursionsformel für MERGESORT

• wir gehen hier vereinfachend davon aus, dass die Länge der Eingabe einer Zweierpotenz ist

Laufzeit von MERGESORT aus der Rekursionsformel

Mit Lemmata 3.3 und 3.4 kann man Theorem 3.4 beweisen!

Zusammen

$$c \cdot n \cdot \log n + c \cdot n$$

Algorithmen und Datenstrukturen —Mergesort

Laufzeit von MERGESORT aus der Rekursionsformel

- jede Kante ist ein rekursiver Aufruf \rightsquigarrow Kosten $\Theta(1)$ pro Kante
- jedes Blatt ist ein Basisfall \rightsquigarrow Kosten $\Theta(1)$ pro Blatt
- lernen noch systematische Methode kennen, um die Lösung solch rekursiver Gleichungen für Laufzeiten zu berechnen
- → Stichwort Master Theorem

INSERTIONSORT VS MERGESORT

INSERTIONSORT VS MERGESORT

- n^2 wächst viel stärker als $n \cdot \log n$
- Konstanten spielen kaum eine Rolle (für große n ist asymptotische Laufzeit entscheidend)

3) Rekursion

Laufzeitanalyse rekursiver Algorithmen

• insbesondere – aber nicht nur – für D&C Algorithmen

Verschiedene Ansätze

- Substitutionsmethode
 Rekursionsbaum-Methode
 Master Theorem

Beispiele rekursiver Laufzeiten

· Rekursion für FACTORIAL

$$T(n) = \begin{cases} \Theta(1) & \text{, falls } n = 1, \\ T(n-1) + \Theta(1) & \text{, falls } n > 1. \end{cases}$$

Rekursion für MergeSort

$$T(n) = \begin{cases} \Theta(1) & \text{, falls } n = 1, \\ 2T(n/2) + \Theta(n) & \text{, falls } n > 1. \end{cases}$$

Substitutionsmethode

Idee

- · rate eine Lösung
- beweise Korrektheit über Induktion

Beispiel

$$T(n) \le \begin{cases} c_1 & \text{, falls } n = 1, \\ T(n-1) + c_2 & \text{, falls } n > 1. \end{cases}$$

Wir rechnen...

$$T(n) \le T(n-1) + c_2$$

 $\le (T(n-2) + c_2) + c_2 = T(n-2) + 2c_2$
 $\le (T(n-3) + c_2) + 2c_2 = T(n-3) + 3c_2$
 $< \vdots$

Wir raten...

$$T(n) \le T(1) + (n-1) \cdot c_2$$

 $\le c_1 + (n-1) \cdot c_2.$

Korrektheit...

DIY-Induktions-Beweis!

Algorithmen und Datenstrukturen —Rekursion

└─Substitutionsmethode

- · man kann auch gut "von unten" anfangen
- also sukzessiv T(1) = ..., T(2) = ..., etc. berechnen

Laufzeit von FACTORIAL

Theorem 3.5

Die Laufzeit von FACTORIAL ist $\Theta(n)$.

- · folgt aus der eben gesehener Rekursion
- · beachte: funktioniert für obere und untere Schranke
- · mit der Zeit sammelt man Erfahrung & Intuition
- \cdot mehr Erfahrung \Longrightarrow weniger rechnen

Also übt!

Rekursionsbaum-Methode

· manchmal fehlt die Intuition...

Was dann?

· ...und die Rechnungen werden schnell haarig

⇒ Rechnen mit Bildern!

$c \cdot n$ ----- $c \cdot n/2$ log(n)c · n ----- c · n/4 $c \cdot n/4$

☐ Rekursionsbaum-Methode

- · Rekursionsbaum aufbauen und...
 - Höhe abschätzen
 - Anzahl der Knoten pro Ebene abschätzen
 - in jeder Ebene Kosten pro Knoten abschätzen

Anwendung 1:

- wenn man nur eine Lösung raten möchte...
- ...und diese später per Induktion verifiziert

Anwendung 2:

- wenn man sehr genau "malt"/rechnet...
- ...dient er auch direkt als Beweis
- (so werden wir das Master-Theorem beweisen)

Das (lineare) Master-Theorem

Theorem 3.6: Master-Theorem

einfache Version

Es seien $a \ge 1$ und b > 1 Konstanten und $n = b^k \in \mathbb{N}$ für ein $k \in \mathbb{N}$. Weiterhin sei f(n) = n und

$$T(n) = \begin{cases} \Theta(1) & \text{, falls } n = 1, \\ a \cdot T(n/b) + f(n) & \text{, falls } n > 1. \end{cases}$$

Dann gilt:

(a)
$$T(n) = \Theta(n^{\log_b a})$$
 falls $a > b$,

(b)
$$T(n) = \Theta(n \cdot \log n)$$
 falls $a = b$,

(c)
$$T(n) = \Theta(n)$$
 falls $a < b$.

Algorithmen und Datenstrukturen LRekursion

└─ Das (lineare) Master-Theorem

- \cdot man hätte sich das f hier natürlich sparen können...
- ...und statt f(n) einfach n in der Rekursion schreiben können.
 - so muss ich aber nur einen Rekursionsbaum malen... 😉

Beweis von Theorem 3.6 (1/2)

$$T(n) = \begin{cases} \Theta(1) & \text{, falls } n = 1, \\ a \cdot T(n/b) + f(n) & \text{, falls } n > 1. \end{cases}$$

- · Beweis mittels Rekursionsbaum
- insgesamt erhalten wir $T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b (n)-1} a^j \cdot f(n/b^j)$

$$(n) = \begin{cases} \Theta(1) & \text{, falls } n = 1, \\ a \cdot T(n/b) + f(n) & \text{, falls } n > 1. \end{cases}$$

- · Beweis mittels Rekursionsbaum
- insgesamt erhalten wir $T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b (n)-1} a^j \cdot f(n/b^j)$
- einsetzen von f(n) = n

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b(n)-1} a^j \cdot n/b^j$$
$$= \Theta(n^{\log_b a}) + n \cdot \sum_{i=0}^{\log_b(n)-1} (a/b)^i$$

Falls
$$a = b$$
: $T(n) = \Theta(n^1) + n \cdot \log_b n = \Theta(n \log n)$

Falls $a \neq b$: nutze $\sum_{i=0}^{k} z^i = \frac{z^{k+1}-1}{z-1}$ für $z \neq 1$ und...

...unterscheide die verbleibenden Fälle a > b und a < b

Algorithmen und Datenstrukturen — Rekursion

□ Beweis von Theorem 3.6 (2/2)

Beweis von Theorem 3.

 $\sum_{i=0}^{k} z^{i} = \frac{z^{k+1}-1}{z-1}$ ist eine Partialsumme der geometrischen Reihe

_

Das Master-Theorem

Theorem 3.7: Master-Theorem (M-Thm.)

Es seien $a \ge 1$ und b > 1 Konstanten und f(n) eine nichtnegative Funktion. Weiterhin sei

$$T(n) = \begin{cases} \Theta(1) & \text{, falls } n = 1, \\ a \cdot T(n/b) + f(n) & \text{, falls } n > 1. \end{cases}$$

Dann gilt:

(a)
$$T(n) = \Theta(n^{\log_b a})$$
 falls $f(n) = O(n^{\log_b(a) - \epsilon})$ für ein $\epsilon > 0$,

(b)
$$T(n) = \Theta(n^{\log_b a} \cdot \log n)$$
 falls $f(n) = \Theta(n^{\log_b a})$,

(c)
$$T(n) = \Theta(f(n))$$
 falls $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ für ein $\epsilon > 0$ und falls $a \cdot f(n/b) \le c \cdot f(n)$ für konstantes $c < 1$ und große n .

- man schreibt das Master Theorem meist einfach mit n/b, ...
- ... und meint damit symbolisch entweder $\lceil n/b \rceil$ oder $\lceil n/b \rceil$
- · Details dazu in Cormen 4.6.2

-Das Master-Theorem

Das Master-Theorem

Theorem 3.7: Master-Theorem (M-Thm.)

Es seien $a \ge 1$ und b > 1 Konstanten und f(n) eine nichtnegative Funktion. Weiterhin sei

$$T(n) = \begin{cases} \Theta(1) & \text{, falls } n = 1, \\ a \cdot T(\lceil n/b \rceil) + f(n) & \text{, falls } n > 1. \end{cases}$$

Dann gilt:

(a)
$$T(n) = \Theta(n^{\log_b a})$$
 falls $f(n) = O(n^{\log_b(a) - \epsilon})$ für ein $\epsilon > 0$,

(b)
$$T(n) = \Theta(n^{\log_b a} \cdot \log n)$$
 falls $f(n) = \Theta(n^{\log_b a})$,

(c)
$$T(n) = \Theta(f(n))$$
 falls $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ für ein $\epsilon > 0$ und falls $a \cdot f(n/b) \le c \cdot f(n)$ für konstantes $c < 1$ und große n .

-Das Master-Theorem

- man schreibt das Master Theorem meist einfach mit n/b, ...
- ... und meint damit symbolisch entweder $\lceil n/b \rceil$ oder $\lceil n/b \rceil$
- · Details dazu in Cormen 4.6.2

Das Master-Theorem

Theorem 3.7: Master-Theorem (M-Thm.)

Es seien $a \ge 1$ und b > 1 Konstanten und f(n) eine nichtnegative Funktion. Weiterhin sei

$$T(n) = \begin{cases} \Theta(1) & \text{, falls } n = 1, \\ a \cdot T(\lfloor n/b \rfloor) + f(n) & \text{, falls } n > 1. \end{cases}$$

Dann gilt:

(a)
$$T(n) = \Theta(n^{\log_b a})$$
 falls $f(n) = O(n^{\log_b(a) - \epsilon})$ für ein $\epsilon > 0$,

(b)
$$T(n) = \Theta(n^{\log_b a} \cdot \log n)$$
 falls $f(n) = \Theta(n^{\log_b a})$,

(c)
$$T(n) = \Theta(f(n))$$
 falls $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ für ein $\epsilon > 0$ und falls $a \cdot f(n/b) \le c \cdot f(n)$ für konstantes $c < 1$ und große n .

- man schreibt das Master Theorem meist einfach mit n/b, ...
- ... und meint damit symbolisch entweder $\lceil n/b \rceil$ oder $\lceil n/b \rceil$
- · Details dazu in Cormen 4.6.2

-Das Master-Theorem

Ist einfacher als es aussieht...

- gegeben Rekursion der Form $T(n) = a \cdot T(n/b) + f(n)$
- Vergleiche die Funktionen f(n) und $n^{\log_b(a)}$
 - (a) $f(n) = O(n^{\log_b(a) \epsilon})$:
 - · d. h. f(n) ist polynomiell kleiner als $n^{\log_b(a)}$
 - Lösung ist $\Theta(n^{\log_b(a)})$
 - (b) $\underline{f(n)} = \Theta(n^{\log_b(a)})$:
 - d. h. f(n) und $n^{\log_b(a)}$ asymptotisch gleich gros
 - Lösung ist $\Theta(n^{\log_b(a)} \cdot \log n) = \Theta(f(n) \cdot \log n)$
 - (c) $f(n) = \Omega(n^{\log_b(a) \epsilon})$:
 - d. h. f(n) ist polynomiell größer als $n^{\log_b(a)}$
 - · Lösung ist $\Theta(f(n))$, wenn "Regularitätsbedingung" erfüllt ist
 - also falls $a \cdot f(n/b) \le c \cdot f(n)$ für c < 1 und große n

Beweisidee zu Theorem 3.7

(aber selbe Grundidee)

39

Beispiele

• MERGESORT:
$$a = b = 2$$
 und $f(n) = \Theta(n)$

$$\cdot n^{\log_b a} = n \implies f(n) = \Theta(n^{\log_b a})$$

$$\implies (M-\text{Thm. (b)}) \quad T(n) = \Theta(n \cdot \log n)$$

$$T(n) = 9T(n/3) + n$$
: $a = 9$, $b = 3$ und $f(n) = n$

$$\cdot n^{\log_b a} = n^2 \implies f(n) = O(n^{\log_b(a) - \epsilon}) \text{ für } \epsilon = 1$$

$$\implies$$
 (M-Thm. (a)) $T(n) = \Theta(n^2)$

$$T(n) = 3T(n/4) + n \cdot \log n$$
 $a = 3, b = 4 \text{ und } f(n) = n \cdot \log n$

$$\cdot n^{\log_b a} = O(n^{0.793}) \implies f(n) = \Omega(n^{\log_b(a) + \epsilon}) \text{ für } \epsilon \approx 0.2$$

· außerdem gilt

$$a \cdot f(n/b) = (3/4) \cdot n \cdot \log n \le (3/4) \cdot n \cdot \log n = (3/4) \cdot f(n)$$

$$\implies$$
 (M-Thm. (c)) $T(n) = \Theta(n \cdot \log n)$

Wann kann man das M-Thm. nicht anwenden?

- · das Master Theorem deckt viele D&C Algorithmen ab...
- · ...aber längst nicht alle!

$T(n) = 2T(n/2) + n \cdot \log n$

- hier waren a = b = 2 und $f(n) = n \cdot \log n$
- also $n^{\log_b a} = n...$
- ...und damit $f(n) = n \cdot \log n = \Omega(n^{\log_b a})$
- somit ist f(n) zwar größer als $\Omega(n^{\log_b a})$, ...
- · ...aber nicht polynomiell größer!
- ⇒ können Theorem 3.7 nicht anwenden

└─Wann kann man das M-Thm. nicht anwenden?

Wanni kann man das M-Thm. nicht anwenden?

- das Master Theorem deckt velle D&C Algorithmen ab.,
- aber langs nicht allel $T(\alpha) = 2T(\alpha/2) + \alpha \log \alpha$ - he wannen $\alpha = b - 2 \text{ und } f(\alpha) = n \cdot \log \alpha$ - abo orea. $-\alpha$ - und dam $(r) = n \cdot \log \alpha - \Omega(r^{\text{th} - 1})$ - sonn is so $(r) = n \cdot \log \alpha - \Omega(r^{\text{th} - 1})$ - sonn is so $(r) = n \cdot \log \alpha - \Omega(r^{\text{th} - 1})$ - aber nicht groupmentig golder!

- können Theorem 37 nicht anwenden

• <u>polynomiell Größer:</u> um einen Faktor n^{ϵ} für ein beliebiges $\epsilon>0$

4) Quicksort

Pseudocode zu QUICKSORT

Algorithmus 3.4: QUICKSORT(A, l, r)

```
1 if l < r

2 p \leftarrow PARTITION(A, l, r)

3 QUICKSORT(A, l, p - 1)

4 QUICKSORT(A, p + 1, r, q)
```

- · ein alternativer D&C-Ansatz zum Sortieren
- erstmaliger Aufruf als QUICKSORT(A, 1, length(A))
- · Hilfsalgorithmus Partition wählt ein Pivot Element...
- · ...und nutzt es zur Aufteilung der Array Elemente

Pseudocode zu Partition

Algorithmus 3.5: Partition (A, l, r)

```
1 x \leftarrow A[r]

2 i \leftarrow l - 1

3 for j \leftarrow l to r - 1

4 if A[j] \leq x

5 i \leftarrow i + 1

6 A[i] \leftrightarrow A[j]

7 A[i + 1] \leftrightarrow A[r]

8 return i + 1
```

- Pivot Element x = A[r]
- $\underline{\text{Ziel:}}$ ordne $A[l \dots r]$ so um, dass
 - Elemente $\leq x$ links von x stehen
 - Element > x rechts von x stehen

- 8
- 1
- 6
- 20
- 3

Pseudocode zu Partition

Algorithmus 3.5: Partition (A, l, r)

```
1 x \leftarrow A[r]

2 i \leftarrow l - 1

3 for j \leftarrow l to r - 1

4 if A[j] \leq x

5 i \leftarrow i + 1

6 A[i] \leftrightarrow A[j]

7 A[i + 1] \leftrightarrow A[r]

8 return i + 1
```

- Pivot Element x = A[r]
- $\underline{\text{Ziel:}}$ ordne $A[l \dots r]$ so um, dass
 - Elemente $\leq x$ links von x stehen
 - Element > x rechts von x stehen

Anmerkungen zu Quicksort

- · wie MergeSort auch ein D&C Algorithmus
- · Umordnung findet hier vor der Teilung statt
- · es existieren viele Varianten...
- · ...von denen einige in der Praxis besonders effizient sind

Pivot Wahl!

Theorem 3.8

Die worst-case Laufzeit von QUICKSORT ist $\Theta(n^2)$.

Die average-case Laufzeit von QUICKSORT ist $O(n \cdot \log n)$.

Algorithmen und Datenstrukturen —Quicksort

└─Anmerkungen zu Quicksort

- · average-case LZ: durchschnittliche Laufzeit über alle Eingaben
- randomisierte Variante hat erwartete Laufzeit $\Theta(n \cdot \log n)$

Zunächst: Analyse von Partition

- sei x = A[r] letztes Element von A[l ... r] vor Partition(A, l, r)
- sei $p \in \{l, l+1, ..., r\}$ die Ausgabe von Partition(A, l, r)

Lemma 3.5

PARTITION(A, l, r) ordnet A[l ... r] so um, dass A[p] = x sowie

- $A[k] \le x$ für alle $l \le k \le p$ und
- A[k] > x für alle $p < k \le r$.

PARTITION (A, l, r)

```
1 X \leftarrow A[r]

2 i \leftarrow l - 1

3 \text{for } j \leftarrow l \text{ to } r - 1

4 \text{if } A[j] \leq X

5 i \leftarrow i + 1

6 A[i] \leftrightarrow A[j]

7 A[i + 1] \leftrightarrow A[r]
```

return i + 1

Lemma 3.6

Es sei n = r - l + 1 die Größe des von Partition betrachteten Teilarrays. Partition hat Laufzeit $\Theta(n)$.

Laufzeitbeweis & Invariante

Beweis von Lemma 3.6.

- jede Zeile für sich hat offensichtlich konstante Laufzeit
- Schleife in Zeilen 3 bis 6 wird r l = n 1 mal durchlaufen
- zusammen also $\Theta(n)$

Geeignete

Schleifeninvariante für Korrektheitsbeweis?

Schleifeninvariante I(i,j)

Für alle $k \in \{l, l+1, ..., r\}$ gilt:

- 1. $l \le k \le i \implies A[k] \le x$
- $2. i < k < j \implies A[k] > X$
- 3. $k = r \implies A[k] = x$

Beweis von Lemma 3.5 (1/2)

(a) Initialisierung: 🗸

- betrachte l(l-1, l) gilt direkt vor Zeile 3
- Punkte 1 und 2 sind triviale Aussagen
- Punkt 3 gilt wegen Zeile 1
- $\implies l(l-1,l)$ gilt direkt vor Zeile 3

(b) Erhaltung: !?

(c) Terminierung: 🗸

- · am Ende der Schleife gilt I(i, r), also
 - 1. $l \le k \le i \implies A[k] \le x$
 - 2. $i < k < r \implies A[k] > x$
 - 3. $k = r \implies A[k] = x$
- \implies nach Zeile 7 gilt für Ausgabe p = i + 1:
 - 1. $l \le k \le p \implies A[k] \le x$
 - $2. p < k \le r \implies A[k] > x$
 - 3. $k = p \implies A[k] = x$

Schleifeninvariante I(i, j)

Für alle $k \in \{l, l+1, \ldots, r\}$ gilt:

1.
$$l \le k \le i \implies A[k] \le x$$

$$2. i < k < j \implies A[k] > x$$

3.
$$k = r \implies A[k] = x$$

PARTITION (A, l, r)

- 1 $X \leftarrow A[r]$
- $2 \quad i \leftarrow l 1$
- 3 **for** $j \leftarrow l$ to r 1
- 4 **if** $A[j] \leq x$ 5 $i \leftarrow i + 1$
- $6 A[i] \leftrightarrow A[j]$
- $7 \quad A[i+1] \leftrightarrow A[r]$
- 8 **return** *i* + 1

Beweis von Lemma 3.5 (2/2)

Beweis der Erhaltung: $I(i,j) \rightarrow I(i,j+1)$

- gelte I(i,j) am Anfang des j-Durchlaufs der Schleife
- Fall 1: A[j] > x
 - zweite Bedingung auch für k = j wahr

$$\implies I(i, j+1)$$
 gilt

$\frac{\mathsf{PARTITION}(A,l,r)}{\mathsf{PARTITION}(A,l,r)}$

1	$x \leftarrow A[r]$
2	i ← l − 1
3	for $j \leftarrow l$ to $r - 1$
4	if $A[j] \leq x$
5	$i \leftarrow i + 1$
6	$A[i] \leftrightarrow A[j]$
7	$A[i+1] \leftrightarrow A[r]$
_	

Beweis von Lemma 3.5 (2/2)

Beweis der Erhaltung: $I(i,j) \rightarrow I(i,j+1)$

- gelte I(i,j) am Anfang des j-Durchlaufs der Schleife
- Fall 2: $A[j] \leq x$
 - i wird auf i + 1 gesetzt (Zeile 5)...
 - ...und (das neue) A[i] > x wird mit $A[j] \le x$ vertauscht (Zeile 6)
 - \implies I(i, j + 1) gilt direkt nach Zeile 6

PARTITION(A, l, r)			
1	$x \leftarrow A[r]$		
2	$i \leftarrow l - 1$		
3	for $j \leftarrow l$ to $r - 1$		
4	if $A[j] \leq x$		
5	$i \leftarrow i + 1$		
6	$A[i] \leftrightarrow A[j]$		
7	$A[i+1] \leftrightarrow A[r]$		

Nun können wir Quicksort analysieren!

Theorem 3.10

QUICKSORT löst das Sortierproblem. Das heißt der Algorithmus sortiert eine Folge von *n* Zahlen aufsteigend.

```
QUICKSORT(A, l, r)
```

- 1 if l < r2 $p \leftarrow PARTITION(A, l, r)$
- QUICKSORT(A, l, p-1)

QUICKSORT(A, p + 1, r)

Beweis (Terminierung).

- via Potentialfunktion $\Phi(l,r) = r l + 1$
- betrachte beliebigen Aufruf QuickSort(A, l, r) mit $\Phi(l, r) > 1$
- · rekursive Aufrufe sind für Teilarrays deren Länge...
- ...nichtnegativ und echt kleiner als $\Phi(l,r) = r l + 1$ ist
- \implies Φ sinkt bei jedem rekursiven QUICKSORT Aufruf um \ge 1...
 - ...und ist nach unten durch 0 beschränkt
 - \Rightarrow QUICKSORT terminiert (Rekursionstiefe < r l)

Algorithmen und Datenstrukturen —Quicksort

└─Nun können wir Quicksort analysieren!

Nun können wir Quicksort analysieren!				
Theorem 3.10 QUICKSORT löst das Sortierpro- blem. Das heißt der Algorithmus sortiert eine Folge von n Zahlen aufsteigend.	$ \begin{array}{c c} \hline \\ QuickSort(A,I,r) \\ 1 & \text{if } I < r \\ 2 & p \leftarrow Partition(A,I,r) \\ 3 & QuickSort(A,I-,p-1) \\ 4 & QuickSort(A,p+1,r-) \\ \end{array} $			
Beweis (Terminierung). • via Potendiantian $\Phi(t,t) = t-t+1$ • betachts beliebigen Anful GuccGow(h,t) m $\Phi(t,t) > 1$ • betachts beliebigen Anful GuccGow(h,t) m $\Phi(t,t) > 1$ • reducives Anful and für Teilaurge deren Lingue. • anchtmegstiv und exit Lisienz als $\Phi(t,t) = t-t+1$ int. • a sint bei göden reducivine QuicGov $\Phi(t)$ m $m \ge t$ und ist nach unten durit 0 beochränkt. • QuccGow reminiert (Bekurcondies $e < t t$)				
 nichtnogativ und ocht kleiner als Φ(l,r) = r - l + 1 ist → sinkt bei jedem rekursiven QuicxSoxr Aufruf um ≥ 1 _und ist nach unten durch 0 beschränkt 				

• beachte: nach Lemma 3.6 terminiert auch der Aufruf von PARTITION!

Nun können wir Quicksort analysieren!

Theorem 3.10

QUICKSORT löst das Sortierproblem. Das heißt der Algorithmus sortiert eine Folge von *n* Zahlen aufsteigend.

```
QUICKSORT(A, l, r)

1 if l < r

2 p \leftarrow \text{PARTITION}(A, l, r)

3 QUICKSORT(A, l, p - 1)
```

QUICKSORT(A, p + 1, r)

Beweis (Korrekte Sortierung).

- via Induktion über $\Phi(l,r) = r l + 1$
- IA: für $\Phi(l,r) \leq 1$ ist $A[l \dots r]$ trivialerweise sortiert
- IS: sei $\Phi(l, r) = i > 1$ und QUICKSORT korrekt für $\Phi(l, r) < i$ • nach Zeile 2 gilt (folgt aus Lemma 3.5)
 - alle Werte in $A[l \dots p-1]$ sind $\leq A[p]$
 - alle Werte in A[p+1...r] sind > A[p]
 - nach IA sortieren Zeilen 3 und 4 A[$l \dots p-1$] und A[$p+1 \dots r$]

4

zusammen folgt korrekte Sortierung von A[l...r]

Ind. Anfang Ind. Schritt

Algorithmen und Datenstrukturen —Quicksort

└─Nun können wir Quicksort analysieren!

```
Nun können wir Quicksort analysieren!
  QuickSort löst das Sortierpro-
                                             1 if I < r
  blem. Das heißt der Algorithmus
                                                    \rho \leftarrow \text{Partition}(A, l, r)
  sortiert eine Folge von n Zahlen
                                                    QuickSort(A, l , p-1)
                                                    QuickSort(A,p+1,r )
    Beweis (Korrekte Sortierung).

    via Induktion über Φ(l, r) = r − l + 1

    IA: für Φ(l, r) < 1 ist A(l,...r) trivialerweise sortiert.</li>

      • IS; sei \Phi(l,r) = i > 1 und QuickSort korrekt für \Phi(l,r) < i
            · nach Zeile 2 gilt (folgt aus Lemma 3.5)
                 - alle Werte in A[1 ...p - 1] sind \leq A[p]

 alle Werte in A[p + 1...r] sind > A[p]

    nach IA sortieren Zeilen 3 und 4 A[I...p − 1] und A[p+1...r]

    zusammen folgt korrekte Sortierung von A[I...r]
```

• beachte: nach Lemma 3.6 terminiert auch der Aufruf von PARTITION!

Worst-case vs Best-case Laufzeit von Quicksort

Beweisskizze Theorem 3.8.

worstcase LZ $\Theta(n^2)$

• Laufzeitrekursion für Laufzeit T(n) von QUICKSORT:

$$T(n) = \begin{cases} \Theta(1) & , n \le 1, \\ \max_{0 \le q < n} (T(q) + T(n - q - 1)) + \Theta(n) & , n > 1. \end{cases}$$

- rate Laufzeit $\Theta(n^2)$ und beweise Laufzeit per Induktion
- Details: DIY-Beweis

Best-case Laufzeit

- worst-case tritt auf, wenn Partition nicht gut "balanciert"
- · best-case bei gleichmäßiger Aufteilung liefert

$$T(n) = \begin{cases} \Theta(1) & , n \leq 1, \\ 2 \cdot T(n/2) + \Theta(n) & , n > 1. \end{cases}$$

$$\implies$$
 (M-Thm. (b)) $T(n) = \Theta(n \cdot \log n)$

vereinfacht

Worst-case vs Best-case baseful von Quicksort
Beweisskäze Theorem 3.B.

- Judichsortensor für Landbar ($T_i t)$ von Quoddent $T(t) = \binom{|Q|}{n} = \binom{|Q|}{n}$ - rate Landbar ($t(t) = T(n-q-1)) + O(t) \cdot ... + S \cdot ...$ - rate Landbar ($t(t) = T(n-q-1)) + O(t) \cdot ... + S \cdot ...$ - Rost Landbar ($t(t) = T(n-q-1)) + O(t) \cdot ... + S \cdot ...$ - Notes case to the start when Pharmons exist get, Judanosort $t = T(t) = T(t) \cdot ... + T(t) \cdot ... + O(t) \cdot ... + O(t)$ - $T(t) = \binom{|Q|}{n} \cdot ... + O(t) \cdot ... + O(t) \cdot ... + O(t)$ - So ($t = T(t) - T(t) \cdot ... + O(t) \cdot ... + O(t)$ - So ($t = T(t) \cdot ... + O($

Worst-case vs Best-case Laufzeit von Quicksort

- Der Induktionsbeweis für die worst-case LZ von QUICKSORT muss für die obere und untere Laufzeitschranke geführt werden
- Laufzeit $\Theta(n^2)$ auch für bereits sortierte Folge
- · INSERTIONSORT hat in dem Fall nur lineare Laufzeit

Average-case Laufzeit von Quicksort

- Erinnerung Theorem 3.9: average-case Laufzeit von QUICKSORT ist O(n log n)
- Was ist average-case Laufzeit?
 - · betrachte alle Permutationen der n Eingabezahlen
 - · berechne für jede Permutation die Laufzeit von QUICKSORT
 - · average-case LZ ist Durchschnitt all dieser Laufzeiten
- · Alternative Sichtweise:
 - · wähle als Eingabe uniform zufällige Permutation der Länge *n*
 - · Was ist die erwartete Laufzeit für diese Eingabe?

Laufzeit von QUICKSORT für zufällige Permutation (1/2)

- · sei $Q_E(n)$ der erwartete LZ von QuickSort für...
- · …eine uniform zufällig gewählte Permutation der Länge *n*

$$\implies$$
 $A[n]$ ist *i*-kleinste Zahl mit W'keit $1/n$ ($\forall i \in \{1, 2, ..., n\}$)

also

$$Q_{E}(n) = \sum_{i=1}^{n} \frac{1}{n} \cdot (Q_{E}(i-1) + Q_{E}(n-i)) + c \cdot n$$
$$= \sum_{k=0}^{n-1} \frac{2}{n} \cdot Q_{E}(k) + c \cdot n$$

- dies ist equivalent zu $n \cdot Q_E(n) = \sum_{k=0}^{n-1} 2 \cdot Q_E(k) + c \cdot n^2$
- analog gilt für n-1 statt n $(n-1) \cdot Q_E(n-1) = \sum_{k=0}^{n-2} 2 \cdot Q_E(k) + c \cdot (n-1)^2$
- · als Differenz ergibt sich

$$n \cdot Q_F(n) - (n-1) \cdot Q_F(n-1) = 2Q_F(n-1) + c \cdot 2(n-1)$$

vereinfacht

Algorithmen und Datenstrukturen —Ouicksort

Laufzeit von QuickSort für zufällige Permutation (1/2)

- Vereinfachung: nehmen Gleichheit (statt getrennte obere/untere Schranken) im worst-case an
- Subtilität: uniforme Permutation kann unabhängig auf allen Rekursionsstufen angenommen werden

Laufzeit von QuickSort für zufällige Permutation (2/2)

· was wir umstellen können zu

$$n \cdot Q_E(n) = (n+1) \cdot Q_E(n-1) + c \cdot 2(n-1)$$

· und schließlich zu

$$\frac{Q_{E}(n)}{n+1} = \frac{Q_{E}(n-1)}{n} + 2c \cdot \frac{n-1}{n \cdot (n+1)} \le \frac{Q_{E}(n-1)}{n} + \frac{2c}{n}$$

· sukzessives Einsetzen liefert

$$\frac{Q_{E}(n)}{n+1} \le \frac{Q_{E}(n-1)}{n} + \frac{2c}{n} \le \frac{Q_{E}(n-2)}{n-1} + \frac{2c}{n-1} + \frac{2c}{n}$$
$$\le \dots \le \frac{Q_{E}(1)}{2} + 2c \cdot \sum_{i=2}^{n} \frac{1}{i} \le \frac{Q_{E}(1)}{2} + 2c \cdot \ln n$$

$$\implies Q_E(n) = O(n \log n)$$

Was können wir daraus lernen?

- im worst-case ist QuickSort so schlecht wie InsertionSort
 - für vorsortierte Folgen sogar schlechter
- im average-case ist QUICKSORT fast so gut wie im best-case
 - · intuitiv, da für die meisten Eingaben nicht ständig...
 - · ...vollständig mies partitioniert wird

Können wir grundsätzlich schlechte Eingaben vermeiden?

→ Randomisierung!

Algorithmen und Datenstrukturen —Ouicksort

└─Was können wir daraus lernen?

- Gute LZ auch wenn Partition nicht perfekt partitioniert!
- z. B. Partitiosgrößen in $[(1/100) \cdot n, (99/100) \cdot n]$ ausreichend
- generell reicht beliebige Konstante ϵ mit Partitionsgrößen in $[\epsilon \cdot n, (1-\epsilon) \cdot n]$ für logarithmische LZ
- · selbst gelegentliche worst-case Partitionen sind ok

RNDQUICKSORT

Wie könnte man QuickSort gut randomisieren?

```
Algorithmus 3.6: RNDPARTITION(A, l, r)
```

- 1 $i \leftarrow \mathsf{random}(l, r)$
- 2 $A[r] \leftrightarrow A[i]$
- 3 **return** Partition(A, l, r)

```
Algorithmus 3.7: RNDQUICKSORT(A, l, r)
```

- 1 if l < r
- $p \leftarrow RNDPARTITION(A, l, r)$
- 3 RNDQUICKSORT(A, l , p-1)
- 4 RNDQUICKSORT(A, p + 1, r
- random(l,r) wählt uniform zufälligen Wert aus $\{l,l+1,\ldots,r\}$
- <u>alternativ:</u> QUICKSORT auf zufälliger Permutation der Eingabe

Theorem 3.11:

RNDQUICKSORT löst das Sortierproblem und hat erwartete Laufzeit $\Theta(n \cdot \log n)$.

ohne Beweis

• Erwartungswert über dem Zufall aus den RNDPARTITION Aufrufen

Abschließende Bemerkungen zu QuickSort

- · sollte als Familie von Algorithmen verstanden werden
- · im worst-case zwar schlecht, aber einige Varianten...
- · ...im Durchschnitt / Erwartungswert sehr effizient
 - · Extrem erfolgreich in der Praxis!
- beste Partitionierung durch Medians als Pivot Element
- ⇒ viele Varianten approximieren Median effizient

Wie könnte man einen worst-case $\Theta(n \log n)$ QUICKSORT Algorithmus bekommen?

Algorithmen und Datenstrukturen Ouicksort

- colles als families von Algorithmen verstanden werden
- ne nervi esse aus erschacht, aber einige Varianten.
- in merick esse aus erschacht, aber einige Varianten.
- Some entiglijest in der Families erfletter
- Some entiglijest in der Families erfletter
- beste Partisionerung durch Mediam als Prote Element.

- wiele Varianten approximient Mediam efficient.

Abschließende Bemerkungen zu QuickSort

- · Median kann in linearer Zeit berechnet werden
- könnten also vor Partition immer median berechnen und als Pivot Element benutzen
- da Partition auch lineare LZ hat, ändert sich nichts an der asymptotischen LZ
- In der Praxis aber deutlich schlechter!

5) Heapsort

Motivation & Idee

- · MaxSearch(A) gebe bei Eingabe eines Arrays...
- · ...den Index eines maximalen Elementes zurück
- · betrachte folgendes Sortierverfahren:

Algorithmus 3.8: MAXSORT(A)

- 1 **for** $i \leftarrow \text{length}(A)$ downto 2
- 2 $m \leftarrow \text{MaxSearch}(A[1...i])$
- $3 \qquad A[m] \leftrightarrow A[i]$
- \implies naive Implementierung hat Laufzeit $\Theta(n^2)$

Geht das auch schneller?!

· <u>beachte:</u> mehrfache Maximum-Suche auf ähnlichen Daten!

Ziele

- · erstes Beispiel für Nützlichkeit von Datenstrukturen
- · Sortieren über geschicktes Organisieren von Daten
- → Unterstützung wiederkehrender Operationen

Heapsort

- · basiert auf der Datenstruktur Heap
- · Heaps gehören zur Familie der Priority Queues

Haufen / Halde -Ziele

2020-12-09

- entes Beigniel für Mützlichkeit von Ditenstrukturen
- Sontrens über geschlicktes Organiseren von Daten
- Internstituting wucke ich mehr Operationen

100 Sant
- Sakert auf der Detenstruktur Haup
- Haups gehören zur Familie der Prozeig Queues

· Priority Queus: Prioritätswarteschlangen

Priority Queue

- sei *U* die Menge möglicher Elemente
 - (Zahlen, Strings, ...) Ur
- sei M die Menge der aktuelle gespeicherten Elemente
- jedes $e \in U$ sei über numerischen Wert key(e) identifiziert

Operationen einer Priority Queue

- max(M): gib $e \in M$ mit maximalem key(e) aus
- INSERT(M, e): $M := M \cup \{e\}$
- DELETEMAX(M): wie max(M), aber zusätzlich $M := M \setminus \{e\}$

Priority Queues in Form von Heaps

Idee

Organisiere Daten in möglichst balancierten binärem Baum!

Bewahre folgende Invarianten

- <u>Balance-Invariante:</u>
 Der Binärbaum ist vollständig balanciert. Das heißt die Tiefe der Blätter unterscheiden sich um höchstens 1.
- Heap-Invariante: Für jedes $e_1 \in M$ mit Kindern e_2, e_3 gilt

$$key(e_1) \geq \max\{ key(e_2), key(e_3) \}$$

Algorithmen und Datenstrukturen Heapsort

Priority Queues in Form von Heaps

· Definition für max-heap; analoge Definition für min-heap

Priority Queues in Form von Heaps

Bewahre folgende Invarianten

- <u>Balance-Invariante:</u>
 Der Binärbaum ist vollständig balanciert. Das heißt die Tiefe der Blätter unterscheiden sich um höchstens 1.
- Heap-Invariante: Für jedes $e_1 \in M$ mit Kindern e_2, e_3 gilt

$$key(e_1) \geq \max\{ key(e_2), key(e_3) \}$$

Algorithmen und Datenstrukturen Heapsort

Priority Queues in Form von Heaps

· Definition für max-heap; analoge Definition für min-heap

Implementierung eines Heaps als Array

- · heap für *n* Elemente...
- ...in Array A[1...N] mit $N \ge n$
- Kinder von A[i]:
 - in A[2i] und A[2i + 1]
- · Balance-Invariante:
 - *A*[1...*n*] besetzt
- Heap-Invariante:
 - key(A[i])
 - $\geq \max\{ \text{key}(A[2i]), \text{key}(A[2i+1]) \}$

Algorithmen und Datenstrukturen —Heapsort

└─Implementierung eines Heaps als Array

beachte: in der Darstellung benutzen wir oft der Einfachheit halber
 e sowohl für ein Element als auch für seinen key key(e)

Heap Definitionen

Definition 3.3: Heap über Array

Ein Heap über einem Array A der Größe N ist das Array A zusammen mit einem Parameter $n := \text{heapsize}(A) \leq N$ und drei Funktionen

- Parent $(i) = \lfloor i/2 \rfloor$ für alle $i \in \{1, 2, ..., n\}$,
- Left(i) = 2i für alle $i \in \{1, 2, ..., n\}$,
- Right(i) = 2i + 1 für alle $i \in \{1, 2, ..., n\}$.

Definition 3.4: max-/min-Heap

- 1. Ein Heap heißt max-Heap, falls für alle $i \in \{2, 3, ..., n\}$ key(A[Parent(i)]) \geq key(A[i]).
- 2. Ein Heap heißt min-Heap, falls für alle $i \in \{2, 3, ..., n\}$ key(A[Parent(i)]) \leq key(A[i]).

Implementierung der Heap Operationen

Zu implementieren:

- max(A): trivial ("return A[1]")
 - Laufzeit ⊖(1)
- INSERT(A, e):
 - Ziel-Laufzeit O(log n)
- DELETEMAX(A):
 - · Ziel-Laufzeit O(log n)

Außerdem

- BuildHeap(A): baue aus einem beliebiges Array A einen Heap
 - naiv: Laufzeit O(n log n)
 - besser: Laufzeit O(n)

folgt

folgt

63

folgt

└ Implementierung der Heap Operationen

• naive Implementierung benutzt n INSERT(A, e) Operationen

Algorithmus 3.9: INSERT(A, e)

- $1 \quad n \leftarrow n+1$
- 2 $A[n] \leftarrow e$
- 3 HEAPIFYUP(A, n)

Algorithmus 3.10: HEAPIFYUP(A, i)

- 1 while i > 1 and key(A[Parent(i)]) < key(A[i])
- $2 A[i] \leftrightarrow A[\mathsf{Parent}(i)]$
- $i \leftarrow \mathsf{Parent}(i)$

- INSERT(A, e): Idee & Pseudocode
- · Balance-Invariante trivialerweise erfüllt
- · müssen aber beweisen, dass $\mathsf{INSERT}(A,e)$ die Heap-Invariante erhält

Algorithmus 3.9: INSERT(A, e)

- 1 $n \leftarrow n + 1$
- $2 A[n] \leftarrow e$
- 3 HEAPIFYUP(A, n)

Algorithmus 3.10: HEAPIFYUP(A, i)

- 1 **while** i > 1 and key(A[Parent(i)]) < key(A[i])
- $2 A[i] \leftrightarrow A[\mathsf{Parent}(i)]$
- $i \leftarrow \mathsf{Parent}(i)$

Balance-Invariante trivialerweise erfüllt.

- müssen aber howeisen, dass NCERT(A e) die Hes
- müssen aber beweisen, dass INSERT(A,e) die Heap-Invariante erhält

Algorithmus 3.9: INSERT(A, e)

- 1 $n \leftarrow n + 1$
- 2 $A[n] \leftarrow e$
- 3 HEAPIFYUP(A, n)

Algorithmus 3.10: HEAPIFYUP(A, i)

- 1 while i > 1 and key(A[Parent(i)]) < key(A[i])
- $2 A[i] \leftrightarrow A[\mathsf{Parent}(i)]$
- $i \leftarrow \mathsf{Parent}(i)$

Balance-Invariante trivialerweise erfüllt.

· müssen aber beweisen, dass $\mathsf{INSERT}(A,e)$ die Heap-Invariante erhält

Insert(A, e): Laufzeitbeweis

INSERT(A, e)	Kosten
1 $n \leftarrow n + 1$ 2 $A[n] \leftarrow e$ 3 HEAPIFYUP(A, n)	O(1) O(1) O(log n)
HEAPIFYUP(A, i)	Kosten
while $i > 1$ and $key(A[Parent(i)]) > key(A[i])$ $A[i] \leftrightarrow A[Parent(i)]$ $i \leftarrow Parent(i)$	$\sum_{j=1}^{k} (T(C) + T(I))$ O(1) O(1)

Was ist k?

- sei i(j) der Wert der Variablen i im j-ten Schleifendurchlauf
- verwende Potentialfunktion $\Phi(j) = |\log(i(j))|$
- es gilt $\Phi(1) = \log n$ und $\Phi(j+1) \le \Phi(j) 1$
- endet spätestens wenn $\Phi(j) \leq 0$

INSERT(A, e): Laufzeitbeweis

- $\Phi(j)$ beschreibt die Tiefe des eingefügten Elements im j-ten Schleifendurchlauf
- $\Phi(1) = 0$ ist offensichtlich
- Φ(j) sinkt in jedem Durchlauf, da das eingefügte Element ein level nach oben wandert
- bei $\Phi(j) = 0$ hat das eingefügte Element die Wurzel erreicht

Definiere

- $P(i) = \{ \lfloor i/2^j \rfloor \mid j \in \{1, 2, \dots, \lfloor \log(i) \rfloor \} \}$
- $T(i) = \{i\} \cup \{j \in \{1, 2, ..., n\} \mid i \in P(j)\}$

parents

Für Analyse: Nehmen o. B. d. A. an, dass key(e) = e

HEAPIFYUP(A, i)

- while i > 1 and A[Parent(i)] > A[i]
- $A[i] \leftrightarrow A[\mathsf{Parent}(i)]$
- $i \leftarrow \mathsf{Parent}(i)$

Schleifeninvariante I(i)

$$\forall j \in \{1,2,\ldots,n\}$$
:

$$A[j] = \max \{A[k] \mid k \in T(j) \setminus \{i\}\}$$

d. h. höchstens eingefügtes Element verletzt Heap-Eigenschaft

 funktioniert, da der Inhalt der Elemente für den Algorithmus keine Rolle spielt

Definiere

- $P(i) = \{ \lfloor i/2^j \rfloor \mid j \in \{1, 2, \dots, \lfloor \log(i) \rfloor \} \}$
- $T(i) = \{i\} \cup \{j \in \{1, 2, ..., n\} \mid i \in P(j)\}$

parents

Für Analyse: Nehmen o. B. d. A. an, dass key(e) = e

HEAPIFYUP(A, i)

- while i > 1 and A[Parent(i)] > A[i]
- $A[i] \leftrightarrow A[\mathsf{Parent}(i)]$
 - $i \leftarrow \mathsf{Parent}(i)$

Schleifeninvariante I(i)

$$\forall j \in \{1, 2, \dots, n\}:$$

 funktioniert, da der Inhalt der Elemente für den Algorithmus keine Rolle spielt

INS	ERT(A, e)	HEA	HEAPIFYUP(A, i)	
1	$n \leftarrow n + 1$	1	while $i > 1$ and $A[Parent(i)] < A[i]$	
2	$A[n] \leftarrow e$	2	$A[i] \leftrightarrow A[Parent(i)]$	
3	HEAPIFYUP(A, n)	3	$i \leftarrow Parent(i)$	

(a) Initialisierung: 🗸

- · vor HEAPIFYUP wurden keine Heap-Elemente verändert...
- · ...sondern nur ein neues Blatt eingefügt
- $\implies I(n)$ gilt trivialerweise
- \implies I(i) gilt direkt vor der while-Schleife (da mit i = n aufgerufen)

```
INSERT(A, e): Korrektheitsbeweis (2/3)
```

```
[j \in \{1, 2, ..., n\} : [j] = \max\{A[k] \mid k \in T(j) \setminus \{i\}\}\}
```

```
INSERT(A, e)

HEAPIFYUP(A, i)

1 n \leftarrow n + 1
1 while i > 1 and A[Parent(i)] < A[i]
2 A[n] \leftarrow e
2 A[i] \leftrightarrow A[Parent(i)]
3 i \leftarrow Parent(i)
```

(b) Erhaltung: 🗸

- \cdot gelte I(i) zu Beginn eines while-Schleifendurchlaufs
- ⇒ (while-Bedingung + Invariante)

$$\land \quad A[\mathsf{Parent}(i)] \ge \max\{A[k] \mid k \in T(\mathsf{Parent}(i)) \setminus \{i\}\}\$$

 \implies nach Vertauschung von A[i] und A[Parent(i)] gelten

$$A[i] \ge \max \{ A[k] \mid k \in T(\mathsf{Parent}(i)) \setminus \{ \mathsf{Parent}(i) \} \}$$

$$\land A[\mathsf{Parent}(i)] > A[i] \ge \max \{ A[k] \mid k \in T(\mathsf{Parent}(i)) \setminus \{ \mathsf{Parent}(i) \} \}$$

• nach Anweisung $"i \leftarrow \mathsf{Parent}(i)"$ gilt wieder die Invariante I(i)

INSERT(A, e): Korrektheitsbeweis (3/3)

```
\{j \in \{1, 2, ..., n\} : [j] = \max\{A[k] \mid k \in T(j) \setminus \{i\}\} \}
```

(c) Terminierung: ✓

- Fall 1: while-Schleife endet da i = 1
 - wegen der Erhaltung gilt I(1) nach der Schleife
 - Element i (einziges, das Heap-Eigenschaft verletzen darf)...
 - · ...liegt in keinem Teilbaum (bzw. nur in eigenem)
 - ⇒ jedes Element maximal in seinem Teilbaum
- Fall 2: while-Schleife endet da A[Parent(i)] ≥ A[i]
 - wegen I(i) ist jedes $j \notin P(i)$ maximal in seinem Teilbaum
 - für jedes $j \in P(i)$ gilt Parent $(i) \in T(j)$ und Parent $(i) \neq i$ \Rightarrow (wegen I(i)) $A[j] \ge A[Parent(i)]$
 - zusammen mit $A[Parent(i)] \ge A[i]$ (aktueller Fall)...
 - ...auch jedes $j \in P(i)$ maximal in seinem Teilbaum

INSERT(A, e): Korrektheitsbeweis (3/3)

 wenn ein Element maximal in seinem Teilbaum ist, ist es natürlich insbesondere mindestens so groß wie seine Kinder, so dass die Heap-Eigenschaft gilt

Algorithmus 3.11: DELETEMAX(A)

```
1 e \leftarrow A[1]
2 A[1] \leftarrow A[n]
3 n \leftarrow n - 1
4 HEAPIFYDOWN(A, 1)
5 return e
```

```
20 4
```

Algorithmus 3.12: HEAPIFYDOWN(A, i)

```
while Left(i) < n
             if Right(i) > n
                  m \leftarrow \text{Left(}i\text{)}
            else
                   if key(A[Left(i)]) > key(A[Right(i)])
                        m \leftarrow \text{Left}(i)
 6
                  else
 7
                        m \leftarrow \mathsf{Right}(i)
 8
             if key(A[i]) \ge key(A[m])
 9
                  return
10
11
            A[i] \leftrightarrow A[m]
12
            i \leftarrow m
```

- HEAPIFYDOWN vergleicht Element *e* das (vlt.) Heap-Eigenschaft verletzt mit seinen Kindern
- · ist das Element größer als seine Kinder, so ist alles in Ordnung
- · andernfalls tausche mit größerem der beiden Kinder
- → Heap-Eigenschaft wieder höchstens durch e verletzt, nun aber eine Ebene tiefer

Algorithmus 3.11: DELETEMAX(A)

- 1 $e \leftarrow A[1]$ $2 A[1] \leftarrow A[n]$ $3 \quad n \leftarrow n-1$
- HEAPIFYDOWN(A, 1)
- return e

Algorithmus 3.12: HEAPIFYDOWN(A, i)

20

```
while Left(i) < n
             if Right(i) > n
                  m \leftarrow \text{Left(}i\text{)}
            else
                   if key(A[Left(i)]) > key(A[Right(i)])
                        m \leftarrow \text{Left}(i)
 6
                  else
 7
                        m \leftarrow \mathsf{Right}(i)
 8
             if key(A[i]) \ge key(A[m])
 9
                  return
10
11
            A[i] \leftrightarrow A[m]
12
            i \leftarrow m
```

- HEAPIFYDOWN vergleicht Element *e* das (vlt.) Heap-Eigenschaft verletzt mit seinen Kindern
- · ist das Element größer als seine Kinder, so ist alles in Ordnung
- · andernfalls tausche mit größerem der beiden Kinder
- → Heap-Eigenschaft wieder höchstens durch e verletzt, nun aber eine Ebene tiefer

DELETEMAX(A): Laufzeitbeweis

- · Laufzeit O(log n)...
- · ...lässt sich analog zur Laufzeit von INSERT zeigen
- nutze wieder Potentialfunktion
- · jede Iteration verringert betrachtetes Level im Baum

DIY-Beweis

DELETEMAX(*A*): Invariante für Korrektheit

Definiere

```
• T(i) = \{i\} \cup \{j \in \{1, 2, ..., n\} \mid i \in P(j)\}
```

subtree

Für Analyse: Nehmen o. B. d. A. an, dass key(e) = e

```
HeapifyDown(A, i)
     while Left(i) \leq n
           if Right(i) > n
                m \leftarrow Left(i)
           else
                 if key(A[Left(i)]) > key(A[Right(i)])
                      m \leftarrow Left(i)
                else
                      m \leftarrow \mathsf{Right}(i)
           if key(A[i]) \ge key(A[m])
                return
           A[i] \leftrightarrow A[m]
           i \leftarrow m
```



```
Schleifeninvariante I(i)
\forall j \in \{1,2,\ldots,n\} \setminus \{i\}:
```

```
A[j] = \max \{A[k] \mid k \in T(j)\}
```

DELETEMAX(A): Invariante für Korrektheit

 funktioniert, da der Inhalt der Elemente für den Algorithmus keine Rolle spielt

DELETEMAX(A): Korrektheitsbeweis

```
j \in \{1, 2, \dots, n\} \setminus \{i\}: 
[j] = \max\{A[k] \mid k \in T(j)\}
```

- (a) Initialisierung: ✓
 - ⇒ I(1) gilt trivialerweise zu Beginn von HEAPIFYDOWN
 - \implies I(i) gilt direkt vor der while-Schleife (da mit i = 1 aufgerufen)
- (b) Erhaltung: ✓
 - o. B. d. A. sei $A[Left(i)] = max \{ A[Left(i)], A[Right(i)] \}$
 - $\implies m = \text{Left}(i) \text{ direkt vor Zeile } 9$
 - Invariante I(i) gilt noch vor Zeile 9 (Heap nicht verändert)
 - falls $A[i] \ge A[\text{Left}(i)] \implies \text{Heap-Eigenschaft gilt für } i \rightsquigarrow \text{fertig}$
 - ansonsten erhält Swap in Zeile 11 Heap-Eigenschaft in *i* auf Kosten von *m*
 - nach Aktualisierung $i \leftarrow m$ mit m = Left(i) gilt I(i) wieder
- (c) Terminierung: ✓
 - am Ende gilt (i) Left(i) > n oder (ii) $A[i] \ge \max\{A[\text{Left}(i)], A[\text{Right}(i)]\}$
 - Fall (i): i ist Blatt → Heap-Eigenschaft gilt
 - <u>Fall (ii):</u> A[i] ist maximal in seinem Teilbaum, da nach I(i) die (kleineren)...
 - · ...Elemente A[Left(i)] und A[Right(i)] maximal in ihren Teilbäumen sind
 - → Heap-Eigenschaft gilt

Algorithmen und Datenstrukturen Heapsort

DELETEMAX(*A***)**: Korrektheitsbeweis

ELETEMAX(A): Korrektheitsbeweis

⇒ I(1) gilt trivialerweise zu Beginn von HEAPIFYDown

⇒ If i) gilt direkt vor der while-Schleife (da mit i = 1 aufgerufen).

(a) Initialisierung: <

-- Heap-Eigenschaft eilt.

- I(1) gilt, da alle Teilbäume T(j) mit $j \neq 1$ höchstens ein Blatt weniger haben als vor Aufruf von DELETEMAX
- falls Right(i) > n denken wir uns ein Dummy-Element $A[Right(i)] = \infty$
- Swap erhält Heap Eigenschaft, da $A[Left(i)] = \max \{ A[Left(i)], A[Right(i)] \}$ nach unserer o. B. d. A.-Annahme

BUILDHEAP(A): Idee & Pseudocode

- · jedes Blatt ist ein gültiger Heap
- · konstruiere Heap levelweise...
- · ...,von unten nach oben"

Algorithmus 3.13: BUILDHEAP(A)

- 1 $n \leftarrow \text{heapsize}(A)$
- 2 **for** $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3 HEAPIFYDOWN(A, i)

BUILDHEAP(A): Idee & Pseudocode

- · jedes Blatt ist ein gültiger Heap
- · konstruiere Heap levelweise...
- · ...,von unten nach oben"

Algorithmus 3.13: BUILDHEAP(A)

- 1 $n \leftarrow \text{heapsize}(A)$
- 2 **for** $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3 HEAPIFYDOWN(A, i)

BuildHeap(A): Idee der Analyse

HEAPIFYDOWN(A, i) für $i = \lfloor n/2 \rfloor$ runter bis 1

Schleifeninvariante I(i)

$$\forall j > i \colon A[j] = \max \{ A[k] \mid k \in T(j) \}$$

DIY-Beweis!

BUILDHEAP(A): Idee der Analyse

- triviale Analyse gibt Laufzeit $O(n \cdot \log n)$ (pro Knoten gehen wir höchstens $\log n$ Level runter)
- · man erhält lineare Laufzeit, wenn man genauer rechnet
 - Nur wenige Knoten mit großer Höhe!
 - genauer: Anzahl Knoten der Höhe h ist $\leq \lceil n/2^{h+1} \rceil$

Algorithmus 3.14: HEAPSORT(A)

- 1 BUILDHEAP(A)
- 2 **for** $i \leftarrow length(A)$ downto 2
- $A[i] \leftarrow \mathsf{DELETEMAX}(A)$

Theorem 3.12

HEAPSORT löst das Sortierproblem und hat Laufzeit $O(n \cdot \log n)$.

Skizze Korrektheit

- Korrektheit von BuildHeap(A)
- Korrektheit von DeleteMax(A)
- Schleifeninvariante: "A[i + 1...length(A)] enthält maximale Eingabezahlen von A aufsteigend sortiert"

Skizze Laufzeit

- Aufruf von BuildHeap: O(n)
- n Durchläufe der for-Schleife
- pro Durchlauf Laufzeit O(log n) (DELETEMAX)

Illustration von HEAPSORT

Illustration von HEAPSORT

6) Untere Schranke für Vergleichssortierer

Übersicht zu Laufzeiten von Sortieralgorithmen

		Laufzeit		
		best-case	average-case	worst-case
Algorithmus	Insertionsort	Θ(n)	$\Theta(n^2)$	$\Theta(n^2)$
	Mergesort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$
	Quicksort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$
	Heapsort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$

- · alle bisherigen Algorithmen haben worst-case LZ $\Omega(n \log n)$
- · Ist das Zufall oder gibt es hierfür einen Grund?

☞ Ziel

- · fasse gemeinsame Eigenschaften durch Modell der...
- · ...Vergleichssortierer zusammen und beweis, dass jeder...
- · ...Vergleichssortierer worst-case LZ $\Omega(n \log n)$ besitzt

Sortieren über Vergleiche

Definition 3.5

Ein Vergleichssortierer ist ein Algorithmus, der das Sortierproblem löst und dazu nur die Operationen =, \neq , \leq , \geq , < und > auf je zwei Eingabezahlen a_i und a_j benutzt, um Informationen über die Eingabe zu gewinnen.

- · also sonst nur Kontrolloperationen + Zuweisungen
- · zur Vereinfachung nehmen wir $a_i \neq a_j$ für alle $i \neq j$ an
- \implies benötigen kein = oder \neq
 - erhalten durch \leq , \geq , < und > die gleiche Information
- ⇒ o. B. d. A. betrachten wir nur <

Baumstruktur der Vergleichsoperationen

Definition 3.6

Ein Entscheidungsbaum über *n* Zahlen ist ein binärer Baum dessen Knoten wie folgt gelabelt sind:

- innere Knoten: Label ist i:j mit $i,j \in \{1,2,\ldots,n\}$
- Blatt: Label ist Permutation $\pi: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$
- · spiegelt mögliche Ausführungen eines Vergleichssortierers wider

- Knoten mit Label "i:j": $a_i \leq a_i$?
 - · ja ⇒ gehe zu linkem Kind
 - \cdot nein \Longrightarrow gehe zu rechtem Kind
- Blatt mit Label " π ": Permutation π sortiert die Eingabe

Beispiel: Entscheidungsbaum & Pfad für Insertionsort

INSERTIONSORT(A)

```
for j \leftarrow 2 to length(A)

key \leftarrow A[j]

i \leftarrow j - 1

while i > 0 and A[i] > key

A[i + 1] \leftarrow A[i]

i \leftarrow i - 1

A[i + 1] \leftarrow key
```

Beispiel: Konstruktion Entscheidungsbaum für Insertionsort

INSERTIONSORT(A)

```
for j \leftarrow 2 to length(A)

key \leftarrow A[j]

i \leftarrow j - 1

while i > 0 and A[i] > key

A[i + 1] \leftarrow A[i]

i \leftarrow i - 1

A[i + 1] \leftarrow key
```

Komplexität von Entscheidungsbäumen

⇒ erhalten so Ent.-Baum für jeden Vergleichssortierer

Lemma 3.7

Für Eingaben der Größe n hat ein Entscheidungsbaum eines Vergleichssortierers mindestens n! Blätter.

Beweis.

- <u>Annahme:</u> eine der *n*! möglichen Permutationen nicht im Ent.-Baum
- wähle Eingabe $(a_1, a_2, ..., a_n)$ mit $a_{\pi(1)} < a_{\pi(2)} < \cdots < a_{\pi(n)}$
- · zugrundeliegender Vergleichssortierer löst Sortierproblem

$$\implies$$
 Ent.-Baum liefert Permutation $\pi' \neq \pi$ mit $a_{\pi'(1)} < a_{\pi'(2)} < \dots < a_{\pi'(n)}$

 haben zwei unterschiedliche sortierte Reihenfolgen gefunden (Sortierung eindeutig, da alle keine zwei Eingabewerte identisch)

Untere Schranke für Vergleichssortierer

Theorem 3.13

Jeder Vergleichssortierer benötigt für Eingabegröße n im worst-case $\Omega(n \log n)$ Vergleiche.

Beweis.

- · betrachte den zugehörigen Entscheidungsbaum
- $\stackrel{\text{Lemma 3.7}}{\Longrightarrow}$ Entscheidungsbaum hat $\geq n!$ Blätter
- \implies Entscheidungsbaum hat Höhe $\ge \log(n!)$
 - Anzahl der Elemente in Baum auf Ebene i ist $\leq 2^i$
 - angenommen der Baum hätte Höhe $\leq \log(n!) 1...$...so hätte er $< 2^{\log(n!)-1} = n!/2 < n!$ viele Blätter 4
- nach Konstruktion des Ent.-Baums gibt es also eine Eingabe...
 ...die > log(n!) Vergleiche benötigt
- Theorem folgt, da $\log(n!) = \Theta(n \log n)$

Hilfslemma für Beweis von Theorem 3.13

Lemma 3.8

Es gilt $\log(n!) = \Theta(n \log n)$.

Beweis.

- $n! = 1 \cdot 2 \cdot \dots \cdot n > (n/2 + 1) \cdot \dots \cdot n > (n/2)^{n/2}$
- $n! = 1 \cdot 2 \cdot \cdots \cdot n < n^n$
- · mit diesen Abschätzungen können wir wie folgt rechnen:

$$\log\left(\left(n/2\right)^{n/2}\right) < \log(n!) < \log(n^n)$$

$$\iff (n/2) \cdot \log(n/2) < \log(n!) < n \cdot \log(n)$$

· die Aussage folgt, da

$$(n/2) \cdot \log(n/2) = (n/2) \cdot (\log(n) - 1) > (n/4) \cdot \log n$$
 für alle $n > 4$

😈 Takeaway

- · Mergesort & Heapsort sind asympt. optimale Vergleichssortierer
- · Grundidee der unteren Laufzeitschranke
 - um korrekt zu sortieren muss ein Vergleichssortierer...
 ...alle n! mögliche Reihenfolgen ausgeben können
 - das geht nur mit log(n!) vielen Vergleichsoperationen
 (da Entscheidungsbaum sonst nicht alle n! Reihenfolgen abdeckt)
 - $\log(n!) = \Theta(n \log n)$

Gibt es also keine Möglichkeit schneller als $\Theta(n \log n)$ zu sortieren?

7) Sortieren in linearer Zeit

Countingsort - Sortieren durch Abzählen

Annahme

- gegeben eine Folge (a_1, a_2, \dots, a_n)
- es gelte $a_i \in \{0, 1, ..., k\}$ für alle $i \in \{1, 2, ..., n\}$

Idee

- bestimmte $\forall i \in \{0, 1, ..., k\}$ die Anzahl C_i der a_i mit $a_i \leq i$
- es gibt also genau $C_i C_{i-1}$ Elemente a_j mit $a_j = i$ • dabei sei $C_{-1} = 0$
- erstelle ein leeres Array B der Länge n
- kopiere die $C_i C_{i-1}$ Elemente mit $a_i = i$ nach $B[C_{i-1} + 1 \dots C_i]$

Pseudocode von CountingSort

- · <u>Zeilen 1 bis 2:</u> erstelle & initialisiere Zählarray *C*
- · Zeilen 3 bis 4: zähle in C[i] wie viele Elemente in A Wert = i haben
- Zeilen 5 bis 6: zähle in C[i] wie viele Elemente in A Werte $\leq i$ haben
- <u>Zeilen 7 bis 9:</u> erstelle sortierte Permutation *B* von *A*

Algorithmus 3.15: COUNTINGSORT(A, B, k)

```
1 for i \leftarrow 0 to k

2 C[i] \leftarrow 0

3 for j \leftarrow 1 to length(A)

4 C[A[j]] \leftarrow C[A[j]] + 1

5 for i \leftarrow 1 to k

6 C[i] \leftarrow C[i] + C[i - 1]

7 for j \leftarrow \text{length}(A) \text{ downto } 1

8 B[C[A[j]]] \leftarrow A[j]

9 C[A[j]] \leftarrow C[A[j]] - 1
```

Illustration von CountingSort

nach Zeile 4

nach Zeile 6

nach Zeile 9

Analyse von CountingSort

- n sei die Länge des Eingabearrays A
- alle Einträge seien aus $\{0,1,\ldots,k\}$

Theorem 3.14

COUNTINGSORT löst das Sortierproblem und hat Laufzeit O(n + k).

COUNTINGSORT(A, B, k)

```
1 for i \leftarrow 0 to k

2 C[i] \leftarrow 0

3 for j \leftarrow 1 to length(A)

4 C[A[j]] \leftarrow C[A[j]] + 1

5 for i \leftarrow 1 to k

6 C[i] \leftarrow C[i] + C[i-1]

7 for j \leftarrow \text{length}(A) \text{ downto } 1

8 B[C[A[j]]] \leftarrow A[j]

9 C[A[j]] \leftarrow C[A[j]] - 1
```

Beweis (Laufzeit).

- Zeilen 1 bis 2 und Zeilen 5 bis 6: jeweils O(k)
- Zeilen 3 bis 4 und Zeilen 7 bis 9: jeweils O(n)
- \implies Gesamtlaufzeit O(n+k)

Algorithmen und Datenstrukturen Lortieren in linearer Zeit

☐Analyse von CountingSort

• für k = O(n) hat COUNTINGSORT lineare Laufzeit

Skizze zum Korrektheitsbeweis von CountingSort (1/2)

- · Korrektheit von vier Schleifen
- Schleife 1: (Zeilen 1 bis 2)
 - initialisiert C mit 0
- · Schleife 2: (Zeilen 3 bis 4)
 - benutze Invariante I₁(j):

```
\forall i \in \{0, 1, \dots, k\} :

C[i] = |\{l \in \{1, 2, \dots, j-1\} \mid A[l] = i\}|
```

```
COUNTINGSORT(A, B, k)

1 for i \leftarrow 0 to k

2 C[i] \leftarrow 0

3 for j \leftarrow 1 to length(A)

4 C[A[j]] \leftarrow C[A[j]] + 1

5 for i \leftarrow 1 to k

6 C[i] \leftarrow C[i] + C[i-1]

7 for j \leftarrow \text{length}(A) downto 1

8 B[C[A[j]]] \leftarrow A[j]

9 C[A[i]] \leftarrow C[A[i]] - 1
```

- · Schleife 3: (Zeilen 5 bis 6)
 - benutze Invariante $l_2(i)$:

```
\forall j \in \{ 0, 1, \dots, i - 1 \} : C[j] = |\{ l \in \{ 1, 2, \dots, n \} \mid A[l] \le j \}|
\forall j \in \{ i, i + 1, \dots, k \} : C[j] = |\{ l \in \{ 1, 2, \dots, n \} \mid A[l] = j \}|
```

Skizze zum Korrektheitsbeweis von Counting Sort (2/2)

- Schleife 4: (Zeilen 7 bis 9)
 - benutze Invariante $l_3(j)$:

```
\forall i \in \{j+1, j+2, \dots, n\} : \text{ Pos. von } A[i] \text{ in } B \text{ ist} \\ |\{l \in \{1, 2, \dots, n-\} \mid A[l] < A[i]\}| \\ + |\{l \in \{1, 2, \dots, i-1\} \mid A[l] = A[i]\}| \\ + 1 \\ \forall i \in \{0, 1, \dots, k\} : C[i] = |\{l \in \{1, 2, \dots, n\} \mid A[l] < i\}| \\ + |\{l \in \{1, 2, \dots, j-1\} \mid A[l] = i\}|
```

Beobachtung:Invariante beinhaltet Stabilität

COUNTINGSORT erhält die relative Ordnung gleicher Elemente aus dem Eingabearray.

Radixsort - Sortieren anhand der Ziffern

Idee von Radixsort

- · verwende *k*-adische Darstellung
- · sortiere Ziffer für Ziffer, angefangen bei der letzten Stelle
 - benutze hierzu ein stabiles Sortierverfahren
 d. h. Eingabereihenfolge gleicher Werte bleibt erhalten

least significant digit Radixsort – Sortieren anhand der Ziffern

der Begriff Radix bezeichnet die Anzahl an Ziffern in einer gegebenen Zahlendarstellung

Pseudocode von RADIXSORT

Annahmen

- · alle Zahlen in A bestehen aus d Ziffern
- jede Ziffer nimmt einen von k Werten an
- STABLESORT(A, i) sei ein Algorithmus der das Array A...
 ...Aufsteigend nach der i-ten Ziffer (von rechts) sortiert

Algorithmus 3.16: RADIXSORT(A, k)

- 1 **for** $i \leftarrow 1$ to d
- 2 STABLESORT(A, i)

Laufzeit

- · (leicht angepasstes) CountingSort für StableSort...
- ...liefert Laufzeit $O(d \cdot (n + k))$

Beweisskizze zur Korrektheit von RADIXSORT

- betrachte beliebiges Paar a < b aus Eingabearray A
- dann existiert ein *i* mit $a_i < b_i$ und $a_j = b_j$ für alle j > i
 - hier bezeichnet xi die i-te Ziffer der Zahl x (von rechts)
- nach *i*-ten Schleifendurchlauf von RADIXSORT:
 - pos(a) < pos(b)
 - (soll heißen, *a* liegt an einer Position vor *b* in Array *A*)
- nach j-ten Schleifendurchlauf von RADIXSORT für alle j > i:
 - Stabilität garantiert, dass pos(a) < pos(b) erhalten bleibt
- gilt für alle Zahlenpaare \implies Folge ist am Ende sortiert \square

Fragen?