IN THE SPECIFICATION

Please insert the following section heading above the title of the invention on page 1:

TITLE OF THE INVENTION

Please insert the following section headings on page 1 above line 1 and below the title:

BACKGROUND OF THE INVENTION

Field of the Invention

17:

Please insert the following section heading at page 1, line 5:

Description of the Related Art

Please insert the following section heading at page 1, line 31:

SUMMARY OF THE INVENTION

Please insert the following section heading on page 6, below line 16 and above line

BRIEF DESCRIPTION OF THE DRAWINGS

Please insert the following section heading on page 6, below line 23 and above line 24:

DETAILED DESCRIPTION OF THE INVENTION

Please replace the paragraph at page 7, lines 8-14, with the following rewritten paragraph:

At instant t_3 , relay R_2 is toggled to make position while relay R_2 is still toggled to make position toward injector I_3 , and simultaneously switch K_2 is closed until instant t_4 while switch K, has been open since instant t_1 , such that voltage V_s at the terminals of secondary winding L_3 L_2 causes resonance of the oscillating circuit composed of inductor L and injector L_3 L_2 to which it is then connected. Voltage signal V_{c3} at the terminals of injector I_3 is a sinusoid of maximum amplitude mGE between the following instants t_3 and t_4 .

Please replace the paragraph at page 7, lines 28-36, with the following rewritten paragraph:

The invention relates to precisely the activation of bridge driver switches with respect to the load C_h connecting the center points of the two bridge arms, this load being composed of the transformer, resonance inductor and actuator, or in other words being a function of the current I_c flowing in this load and of the voltage V_c at its terminals. In the practical example of FIG. 3, the bridge switches P_i P_1 , P_2 , P_3 , and P_4 are each composed of a transistor T_i T_1 , T_2 , T_3 , and T_4 and of a diode D_i - D_1 , D_2 , D_3 , and D_4 connected in anti-parallel. For the periodic voltage V_c at the terminals of the secondary winding of the transformer to permit excitation of piezoelectric actuator I_i , the voltage V_c at the terminals of the load must be of square-wave form and of specified chopping frequency f_r . Fig. 3 also includes capacitor C in parallel with battery B.

Please replace the paragraph at page 6, lines 1-24, with the following rewritten paragraph:

The operation of this driver circuit is as follows, depending on how the different switches are driven. In a first phase, the driving signal sent by the injection computer activates on the one hand closing of the selection switch K_i connected to the chosen injector I_i

Application No. 10/518,435

Reply to Office Action of December 30, 2005

and on the other hand simultaneous closing of bridge switches P1 and P4, thus connecting terminal J_1 of primary winding L_1 to the (+) terminal of battery B and terminal J_2 thereof to the (-) terminal of the battery. During this time interval between instants T_0 and T_1 , the voltage V_1 at the terminals of primary winding L_1 is equal to $\pm E$, such that the voltage V_s at the terminals of the secondary winding L2 is positive and equal to +mE by the effect of the transformation ratio, thus permitting loading through resonance inductor L of the actuator Ii selected by switch K_i activated by the computer. M represents the ratio of the windings between L_2 and L_1 (i.e., L_2/L_1). Then, in a second phase, during the following time interval between times T₁ and T₂, the signal drives switches P₂ and P₄ to open position and simultaneously drives the two switches P2 and P3 to closed position, thus connecting terminal J_1 of primary winding L_1 to the (-) terminal of battery B and terminal J_2 thereof to the (+) terminal, voltage V_i at its negative terminals being equal to -E. Thus the voltage V_s at the terminals of secondary winding L2 becomes negative and equal to -mE. These two phases are repeated a large number of times during the injection period, which lasts for between 100 μ s and 8 ms. The periodic voltage Vs at the terminals of secondary winding L2 as a function of time is represented graphically in FIG. 2a. Voltage V_{ci} at the terminals of injector I_i is then a sinusoidal signal of the same period as voltage V_s at the terminals of secondary winding L₂, as shown in FIG. 2b, oscillating between a maximum value +Vm and a minimum value -Vm. The injection computer then successively drives the other injectors I_i connected in parallel.