

SOLUTION OF EXERCISESHEET 8

Exercise 8-1

Lets assume towards contradiction that the MAC construction is not secure \Rightarrow Probablity of forging this construction Π_{MAC} is a non negligible function:

$$Pr[MacForge_{A,\Pi_{MAC}} = 1] \le \epsilon(\lambda)$$

where $\epsilon(\lambda)$ is a non negligible function.

That implies there exists an efficient adversary, A, able to generate a new message and tag pair (m^*, t^*) such that $m^* \notin Q$, and $Ver_k(m^*, t^*) == 1$ with a probablity $\epsilon(\lambda)$.

We now consider $\mathcal B$ attacking the CCA-security. $\mathcal B$ runs $\mathcal A$ as subroutine. $\mathcal B$ only forward all encryption queries that $\mathcal A$ asks for to his own encryption oracle. Finally $\mathcal A$ outputs a message-tagpair m^*, t^* . $\mathcal B$ then chooses two messages, lets say $\widetilde{m_0}$ as m^* and $\widetilde{m_1}$ as any other random message. If $\mathcal B$ gets the tag t^* as $\widetilde{c_b}$, it corresponds to $m_0 = m^*$ otherwise it corresponds to random message m_1 . This holds, because $Dec_k(t) = m \Leftrightarrow Enc_k(m) = t$.

 ${\mathcal B}$ is efficient because it only forwards messages, which are of polynomial length (because ${\mathcal A}$ is efficient), chooses a random number and invokes ${\mathcal A}$. Because ${\mathcal A}$ can break the MAC with nonnegligible probability $\epsilon(\lambda)$ and ${\mathcal B}$ uses this in every case, ${\mathcal B}$ can break the CCA security also with nonnegligible probability $\epsilon(\lambda)$. Because this a contradiction to the CCA security of Π , our assumption that such an adversary ${\mathcal A}$ against the collision resistance of Π_{MAC} exists, is false. So Π_{MAC} is a collision resistant MAC.

Exercise 8-2

(a) Assume H is not collision resistant.

This means finding $x_0 \neq x_1$ so that $H^{s_0||s_1}(x_0) = H^{s_0||s_1}(x_1)$ is possible with non-negl. probability.

 $H^{s_0||s_1}(x_0) = H^{s_0||s_1}(x_1) \Leftrightarrow H^{s_0}_0(H^{s_1}_1(x_0)) = H^{s_0}_0(H^{s_1}_1(x_1))$

Define $H_1^{s_1}(x_0) = y_0$ and $H_1^{s_1}(x_1) = y_1$.

For $H^{s_0||s_1}(x_0)=H^{s_0||s_1}(x_1)$ to have a collision either $y_0=y_1=y$

which makes $H_0^{s_0}(y_0)=H_0^{s_0}(y_1)=H_0^{s_0}(y)$ trivially true because $H_0^{s_0}$ gets the same input or $H_0^{s_0}(y_0)=H_0^{s_0}(y_1)$ with $y_0\neq y_1$

If H_0 is collision resistant but H_1 not, then the probability of finding $x_0 \neq x_1$ so that $H_1^{s_1}(x_0) = H_1^{s_1}(x_1) = y$ is non-negl.

Since H_0 gets the same input y in this case the probability for a collision for H is the same as for H_1 and is non-negl.

 $\Rightarrow H$ is not collision resistant.

(b) Assume H is not collision resistant.

This means finding $x_0 \neq x_1$ so that $H^{s_0||s_1}(x_0) = H^{s_0||s_1}(x_1)$ is non-negl. $H^{s_0||s_1}(x_0) = H^{s_0||s_1}(x_1) \Leftrightarrow H^{s_0}_0(x_0)||H^{s_1}_1(x_0) = H^{s_0}_0(x_1)||H^{s_1}_1(x_1)$

SOLUTION OF EXERCISESHEET 8

We know that at least one H_i $i \in \{0,1\}$ is collision resistant per definition.

Assume H_0 is collision resistant but H_1 is not, making finding $x_0 \neq x_1$ so that $H_0^{s_0}(x_0) = H_0^{s_0}(x_1)$ is negl.

If $H_1^{s_1}(m)=c$ with c being a constant value for all m then $H^{s_0||s_1}(m)=H_0^{s_0}(m)||c$. This produces a string with the same collision resistance propability as H_0 since only a constant string c is added at the end.

If H_1 is some other function, the collision probability becomes even smaller since there are even more different strings produceable this way.

Assuming H_1 is collision resistant but H_0 is not, has the same result since it doesn't matter if the collision resistant part is added at first or second.

- \Rightarrow contradiction: H can't be non-negl. since it has to have at least the collision resistant propablility as the collision resistant H_i $i \in \{0,1\}$ which is negl.
- $\Rightarrow H$ is collision resistant.
- (c) $H'(m) = H^{c(m)}(r(m))$ with m of the format $0^n 1 || x$ and c(m) = n and r(m) = x. Since H^n is the n-times application of H we can construct the following attack on this Hash function to break the collision resistance:

 $H^n(x) = y_0$ as one random example and

 $H^1(y_0) = y_1$

We use $x_0 = 0^{n+1}1||x|$ and $x_1 = 01||y_0|$ since

 $H'(x_0) = H^{c(x_0)}(r(x_0)) = H^{n+1}(x) = H^1(H^n(x)) = H^1(y_0) = H^{c(x_1)}(r(x_1)) = H'(x_1).$

 $\Rightarrow H$ is not collision resistant.

Exercise 8-3

 $F_k(x) := H(k \parallel x)$ is not a pseudorandom function.

Proof:

Let's assume the fixed-length collision resistant hash function (Gen, h) that is used in the Merkle-Damgard construction always concatenates a 1 at the beginning of every output. This property is perfectly legal for a fixed-length collision resistant hash function.

For each step in the Merkle-Domgard construction, the output will therefore have a 1 at the beginning as each $z_i := h^s(z_{i-1} \parallel x_i)$.

Therefore, $F_k(x) := H(k \parallel x)$ will also always have its output starting with a 1.

 $F_k(x)$ can easily be distinguished from a uniformly selected function f. In polynomial time, a distinguisher can easily determine that $F_k(x)$ is not truely random as 1 always being the first bit is an obvious hint.

Theresa, Celine, Prisca, Saibaba December 15, 2022

SOLUTION OF EXERCISESHEET 8

Exercise 8-4

To show: $H(m): \{0,1\}^{2k} \to \{0,1\}^{k+n}, H(m):=m_0||H'(m_1)$ is still a collision-resistant hash function when $m=m_0||m_1,|m_0|=|m_1|=k$ and k>n. $H'(m):\{0,1\}^* \to \{0,1\}^n$ is a collision-resistant hash function.

Proof by contradiction. We assume there is an adversary \mathcal{A} , who can break the collision-resistance of H(m) with non-negligible probability. We now build an adversary \mathcal{B} against the collision-resistance of H'(m) who invokes \mathcal{A} . \mathcal{A} then outputs two messages m^1, m^2 . \mathcal{B} computes his output by truncating the first half of m^1 and m^2 ($m^i = m^i_0 || m^i_1, i \in \{1, 2\}$).

 \mathcal{B} is an efficient adversary because \mathcal{A} is efficient, so the message length is poly and the call to \mathcal{A} needs only poly time and sampling and prepend m_0 and truncating bit from m^1 and m^2 can also be done in polynomial time.

To analyse the success, we know, that with non-negligible probability $\mathcal A$ outputs two messages m^1,m^2 with $m^1\neq m^2$ and $H(m^1)=H(m^2).$ $\mathcal B$ outputs only the second half of m^1 and m^2 which results in $m_1^1,m_1^2.$ The probability that these are equal is $\left(\frac{1}{2}\right)^n$, because for each position

the probability that the bits are equal is $\frac{1}{2}$. In all other cases $\mathcal B$ outputs two messages m_1^1,m_1^2 with $m_1^1 \neq m_1^2$ and $H'(m_1^1) = H'(m_1^2)$. This holds because $H(m^1) = H(m^2) \Rightarrow H(m_0^1||m_1^1) = H(m_0^2||m_1^2) \Rightarrow m_0^1||H'(m_1^1) = m_0^2||H'(m_1^2)$.

$$Pr[HashColl_{\mathcal{B}}(\lambda)=1] = Pr[HashColl_{\mathcal{A}}(\lambda)=1] - Pr[x_1'==x_2'] = \texttt{non-negl.} - \left(\frac{1}{2}\right)^k = \texttt{non-negl.}$$

Because this is a contradiction to the collision-resistance of H'(m) such an adversary \mathcal{A} cannot exist.

It follows that H(m) is a collision-resistant hash function.