Lecture 8: Cross-validation

Recap:

- · We encountered 4 different methods for Supervised LEARNING

 - Linear regression
 Logistic regression

 Parametric

- KNN
- Decision Trees

Non-parametric

- · We also looked at regularization to keep parameter small and to prevent overfitting 1
- · We "train" the models to fit the training data and hope that they would give us good predictions with new, previously unseen inputs

QUESTION: Can we really expect the trained models to GENERALIZE well?

Expected new data error Enew

- Lets define an error function $E(y,\hat{y})$ to a measured data point y
 - If $E(y,\hat{y})$ is small $\longrightarrow \hat{y}(\underline{x})$ is a good prediction of y
 - If $E(y, \hat{y})$ is large \rightarrow " " bad " " "
- Default choices of error functions are

•
$$E(y, \hat{y}(\underline{x})) = \begin{cases} \mathbb{I}\{\hat{y}(\underline{x}) \neq y\} & \leftarrow \text{Misclassification (Classification)} \\ (\hat{y}(\underline{x}) - y)^2 & \leftarrow \text{Squared error (Regression)} \end{cases}$$

- Error function $E(y, \hat{y})$ has similarities to a loss function $L(y, \hat{y})$
 - But, they are used differently loss function used during learning error function used after learning

Evaluating Performance

- The performance on new unseen data can be mathematically understood as the average of the error function
 - e.g. how often is the classifier right?

 how well does the regression method predict?
- To be able to mathematically describe an endless stream of new unseen data, consider p(x,y) as a joint distribution over entire data (x,y)
- · P(x,y) can be complicated
- x is also treated
 as a random variable
 (usually not the case)
- p(z,y) remains unknown in practice

All training & test data come from this

- Let
$$T = \{ (x_i, y_i) \}_{i=1}^{N}$$
 be training data

- Average training error,
$$E_{\text{train}} = \frac{1}{N} \sum_{i=1}^{N} E(y_i, \hat{y}(x_i; T))$$

a model prediction trained using a given training dataset T

 $\hat{\gamma}(\cdot;\tau)$

Measures how well the learned model performs on training data

- However, we are interested in new unseen data
- So define expected new data error

$$E_{\text{new}} = \mathbb{E}_{*} \left[E(y_{*}, \hat{y}(\underline{x}_{*}; T)) \right] \qquad \mathbb{E}_{\mathsf{x}} [f(x)] = \int f(x) p_{\mathsf{x}}(x) dx$$

$$= \left[E(y_{*}, \hat{y}(\underline{x}_{*}; T)) p(\underline{x}_{*}, y_{*}) d\underline{x}_{*} dy_{*} \right]$$

· Enew measures how well the model generalizes from the training data T to new situations

- We are interested in new unseen data
- Define expected new data error

$$E_{\text{new}} = E_{\star} \left[E(y_{\star}, \hat{y}(x_{\star}; T)) \right] \qquad E_{\star} [f(x)] = \int f(x) P_{\star}(x) dx$$

$$= \int E(y_{\star}, \hat{y}(x_{\star}; T)) P(x_{\star}, y_{\star}) dx_{\star} dy_{\star}$$

$$= \frac{1}{2} \left[E(y_{\star}, \hat{y}(x_{\star}; T)) P(x_{\star}, y_{\star}) \right] dx_{\star} dy_{\star}$$

· Enew measures how well the model generalizes from the training data T to new situations

- Enew cannot be evaluated directly because P(x, y) is not known
- However, minimizing Enew is our ultimate goal
- Therefore, the question is: Can we approximate Frew is some way?

- But before that, why is estimating Enew so important?
 - . to judge if the performance is good (whether Enew is small enough)
 - . to choose between different ML methods
 - · to choose hyperparameters > 'x' in case of ridge regression
- Unfortunately, we cannot compute Enew in practice

Therefore, we will explore a way to estimate Enew

wsing CROSS-VALIDATION

Approximating integrals using Monte Carlo samples

$$\mathbb{E}_{\underline{X}} \left[f(\underline{x}) \right] = \int f(\underline{x}) \, P_{\underline{X}}(\underline{x}) \, d\underline{x}$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} f(\underline{x}_i), \quad \underline{x}_i \stackrel{\text{iid}}{\sim} p(\underline{x}) \quad i=1,3,...,n$$

- with samples from p(x,y), we can estimate $E_{new}!!$
- Training data are (or should be) N samples from P(X, Y)
 - · So can we estimate Enew with training data 7?

$$E_{new} = \int E(y, \hat{y}(\mathbf{z}; T)) P(\mathbf{z}, y) d\mathbf{z} dy$$

$$\stackrel{??}{\approx} \frac{1}{N} \sum_{i=1}^{N} E(y_i, \hat{y}(\mathbf{z}_i; T)) = E_{train}$$

$$E_{\text{new}} = \int E(y, \hat{y}(\mathbf{z}; T)) P(\mathbf{z}, y) d\mathbf{z} dy$$

$$\stackrel{??}{\approx} \frac{1}{N} \sum_{i=1}^{N} E(y_i, \hat{y}(\mathbf{z}_i; T)) = E_{\text{train}}$$

Answer: NO

· Because the same training samples used to train the model are used to approximate the integral, hence there is an explicit dependence

$$E_{new} = \int E(y, \hat{y}(x;T)) p(x,y) dx dy$$

both become

dependent

when using training

samples

· So Enew ≠ Etrain ⇔ Performance on training data is NOT a reliable estimate of generalization

Estimating Enew using HOLD-OUT VALIDATION data

- Split data into training data and validation data

- When splitting the data, always do it RAMDOMLY

• E.g., by shuffling the data points before splitting

Both training L validation data are drawn from p(2, y)

Estimating Enew using HOLD-OUT VALIDATION data

- Split data into training data and validation data

Training data, 7	Validation data
N data points	Ny data points
$\mathcal{T} = \left\{ \underline{x}_{i}, \gamma_{i} \right\}_{i=1}^{N}$	$\left\{\widetilde{\mathbf{z}}_{\mathbf{j}},\widetilde{\mathbf{\gamma}}_{\mathbf{j}} ight\}_{\mathbf{j}=1}^{N_{\scriptscriptstyle V}}$

- Hold-out validation error, Enold-out

$$E_{new} \approx E_{hold-out} = \frac{1}{N_v} \sum_{j=1}^{N_v} E(\vec{y}_j, \hat{y}(\vec{z}_j; \tau))$$

- Hold-out validation error,
$$E_{hold-out}$$

$$E_{new} \approx E_{hold-out} = \frac{1}{N_{v}} \sum_{j=1}^{N_{v}} E(\tilde{y}_{j}, \hat{y}(\tilde{z}_{j}; T))$$

- Assuming that training and validation data points are drawn from p(z,y)
 - · Enold-out is an unbiased estimate of Enew
 - o meaning if the entire procedure is repeated multiple times, each time with new data, the average value of $E_{hold-out} = E_{new}$
 - The top we would not know how close $E_{\text{hold-out}}$ will be to E_{new} in a single experiment
 - o The variance of $E_{hold-out}$ decreases when Nv increases; a small variance of $E_{hold-out}$ means that we can expect it to be close to E_{new}

Training data, 7 Validation data Ny data points N data points $T = \{ \underline{x}_i, \underline{y}_i \}_{i=1}^{N}$ $\{ \underline{\widetilde{x}}_j, \underline{\widetilde{y}}_j \}_{i=1}^{N_v}$

- Hold-out validation error, Ehold-out

$$E_{new} \approx E_{hold-out} = \frac{1}{N_v} \sum_{j=1}^{N_v} E(\tilde{y}_j, \hat{y}(\tilde{z}_j; T))$$

- A good estimate of Enew requires a large validation set Conflicting
- On the other hand, a good prediction requires a large training set
- Whenever there is a lot of data, the hold-out validation data approach works well
- If data is more limited, it becomes a dilemma high variance estimate of Enew

less training data increases

k-fold cross validation

· We would like to use all available data to brain a model and at the same time have a good estimate of E_{new} for that model

- Just like hold-out validation data approach, always split the data randomly for k-fold CV to work!
 - · A good approach is to first randomly permute the entire dataset and then split it into Batches
- A special case when k = N is called leave-one-out CV (LOG-CV)
- Advantage: Gives a very good estimate of Enew
- Downside of k-fold CV: Computationally demanding
 - · Common choice for k = 5, 10

Example

Imagine we have a dataset with 6 observations

į	×	Y
1	0-1	- 0-3
2	0.2	- 0 - 1
3	0.3	0.1
4	0.4	0.3
5	0.5	0.5
6	0.6	0.7

- Lets pick a value for K=3 \rightarrow we will use three folds to split the data
 - · First we shuffle the data randomly
 - · Then split into 3 groups

Fold 1:
$$\{(0.5, 0.5), (0.2, -0.1)\}$$

Fold 2:
$$\{(0.1, -0.3), (0.6, 0.7)\}$$

	×	Υ
5	0.5	0.5
2	0.2	- 0 - 1
1	0.1	- 0.3
_ 6_	0.6	0.7
4	0.4	0.3
3	0-3	0.1

- · K = 3 models are trained, evaluated, and then discarded. Only scores are kept
 - · Model 1: Trained on Fold 1 + Fold 2, Tested on Fold 3
 - · Model 2: Trained on Fold 2 + Fold 3, Tested on Fold 1
 - · Model 3: Trained on Fold 1 + Fold 3, Tested on Fold 2

Using a TEST Set

- An important use of E_{k-fold} (or $E_{hold-out}$), in practice, is to choose between methods and select different types of hyperparameters, such as 'k' in kNN, tree depths in Decision trees, or ' λ ' in ridge regression
- However, selecting Ex-fold (or Enold-out) for choosing hyperparameters or methods will invalidate its use as an estimator of Enew
- Therefore, it is wise to first set aside another hold-out dataset, which is referred to as TEST Set

Training + CV dataset Test Set

- This test set should be used ONLY ONCE (after selecting models & hyperparameter)
 - · It is used to estimate Enew