SVM Iris parameter tuning

August 2, 2022

1 Introduction

This notebook was basically inspired by:

- In Depth: Parameter tuning for SVC
- SVM Hyperparameter Tuning using GridSearchCV:

The goal of this notebook is to show the basic steps in machine learning and the influence of choosing the "right" the kernel of a **support vector classifier (SVC)**. Furthermore, the SVC parameters are described and their effect on the classification result is shown.

Following steps will be shown in next **chapters**:

- STEP 0: Get the data
- STEP 1: Exploring the data
- STEP 2: Prepare the data
- STEP 3: Classify by support vector classifier SVC
- STEP 4: Evaluate the results metrics
- STEP 5: Vary parameters

2 Load globally used libraries and set plot parameters

```
[40]: import time

from IPython.display import HTML

import pandas as pd
import matplotlib.pyplot as plt
from sklearn import svm, metrics
import seaborn as sns
%matplotlib inline
```

3 STEP 0: Get the data

Since this is intended to be an introduction to the world of machine learning (ML), this step does NOT deal with the design of an application suitable for ML and the acquisition of valid measurement data.

In order to get to know the typical work steps and ML tools, the use of well-known and well-researched data sets is clearly recommended.

In the further course, the famous Iris flower data sets will be used. It can be downloaded on Iris Flower Dataset | Kaggle. Furthermore, the dataset is included in Python in the machine learning package Scikit-learn, so that users can access it without having to find a special source for it.

```
[1]:  # import some data to play with 
    irisdata_df = pd.read_csv('./datasets/IRIS_flower_dataset_kaggle.csv')
```

4 STEP 1: Exploring the data

4.1 Goals of exploration

The objectives of the exploration of the dataset are as follows:

- 1. Clarify the **origins history**:
 - Where did the data come from? => Contact persons and licensing permissions?
 - Who obtained the data and with which (measurement) methods? => Did systematic errors occur during the acquisition?
 - What were they originally intended for? => Can they be used for my application?
- 2. Overview of the internal structure and organisation of the data:
 - Which columns are there? => With which methods can they be read in (e.g. import of CSV files)?
 - What do they contain for (physical) measured variables? => Which technical or physical correlations exist?
 - Which data formats or types are there? => Do they have to be converted?
 - In which value ranges do the measurement data vary? => Are normalizations necessary?
- 3. Identify **anomalies** in the data sets:
 - Do the data have **gaps** or **duplicates**? => Does the data set needs to be cleaned?
 - Are there obvious erroneous entries or measurement outliers? => Does (statistical) filtering have to be carried out?
- 4. Avoidance of tendencies due to bias:
 - Are all possible classes included in the dataset and equally distributed? => Does the data set need to be enriched with additional data for balance?
- 5. Find a first rough **idea of which correlations** could be in the data set

4.2 Clarify the origins history

The *Iris* flower data sets is a multivariate data set introduced by the British statistician and biologist *Ronald Fisher* in his paper "The use of multiple measurements in taxonomic problems as an example of linear discriminant analysis" (1936). It is sometimes called *Anderson's Iris data set* because Edgar Anderson collected the data to quantify the morphologic variation of Iris flowers of three related species (source: Iris flower data set).

The dataset is published in Public Domain with a CC0-License.

This dataset became a typical test case for many statistical classification techniques in machine learning such as **support vector machines**.

- [..] measurements of the flowers of fifty plants each of the two species *Iris setosa* and *I. versicolor*, found **growing together in the same colony** and measured by Dr E. Anderson [..] (source: R. A. Fisher (1936). "The use of multiple measurements in taxonomic problems". Annals of Eugenics)
- [..] Iris virginica, differs from the two other samples in **not being taken from the same natural colony** [..] (source: ibidem)

4.3 Overview of the internal structure and organisation of the data

The data set consists of 50 samples from each of three species of Iris (*Iris setosa*, *Iris virginica* and *Iris versicolor*), so there are 150 total samples. Four features were measured from each sample: the length and the width of the sepals and petals, in centimetres.

Here is a principle illustration of a flower with sepal and petal:

<IPython.core.display.HTML object>

Here are pictures of the three different Iris species (*Iris setosa*, *Iris virginica* and *Iris versicolor*). Given the dimensions of the flower, it will be possible to predict the class of the flower.

```
[22]: display(HTML(" \
                     <figure><img src='./images/Iris_setosa_640px.jpg'_
       \rightarrowwidth='320px'> \
                             <figcaption><i>Iris setosa</i> (source: <a href='https:/
       →/commons.wikimedia.org/wiki/File:Irissetosa1.jpg'>Irissetosa1.jpg</a>)</
       </figure> \
                     <figure><img src='./images/Iris_versicolor_640px.jpg'__
       \rightarrowwidth='320px'> \
                             <figcaption><i>Iris versicolor</i> (source: <a____
       ⊸href='https://en.wikipedia.org/wiki/File:Iris_versicolor_3.jpg'>Iris_
       ⇔versicolor 3.jpg</a>)</figcaption> \
                         </figure> \
                     <figure><img src='./images/Iris_virginica_590px.jpg'_
       \rightarrowwidth='295px'> \
                             <figcaption><i>Iris virginica</i> (source: <a__
       →href='https://en.wikipedia.org/wiki/File:Iris_virginica.jpg'>Iris virginica.
       ⇔jpg</a>)</figcaption> \
                         </figure> \
                      \
                   "))
```

<IPython.core.display.HTML object>

4.3.1 Inspect structure of dataframe

Print first or last 5 rows of dataframe:

[3]: irisdata_df.head()

[3]:	sepal_length	${\tt sepal_width}$	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

[4]: irisdata_df.tail()

[4]:	sepal_length	sepal_width	petal_length	petal_width	species
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

While printing a dataframe - only an abbreviated view of the dataframe is shown :(
Default setting in the pandas library makes it to display only 5 lines from head and from tail.

[6]: irisdata_df

[6]:	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
	•••	•••	•••	•••	
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

[150 rows x 5 columns]

To print all rows of a dataframe, the option display.max_rows has to set to None in pandas:

[7]: pd.set_option('display.max_rows', None)
irisdata_df

[7]:	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	petar_rength 1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa
10	5.4	3.7	1.5	0.2	Iris-setosa
11	4.8	3.4	1.6	0.2	Iris-setosa
12	4.8	3.0	1.4	0.1	Iris-setosa
13	4.3	3.0	1.1	0.1	Iris-setosa
14	5.8	4.0	1.2	0.2	Iris-setosa
15	5.7	4.4	1.5	0.4	Iris-setosa
16	5.4	3.9	1.3	0.4	Iris-setosa
17	5.1	3.5	1.4	0.3	Iris-setosa
18	5.7	3.8	1.7	0.3	Iris-setosa
19	5.1	3.8	1.5	0.3	Iris-setosa
20	5.4	3.4	1.7	0.2	Iris-setosa
21	5.1	3.7	1.5	0.4	Iris-setosa
22	4.6	3.6	1.0	0.2	Iris-setosa
23 24	5.1 4.8	3.3 3.4	1.7 1.9	0.5 0.2	Iris-setosa
24 25	5.0	3.4	1.6	0.2	Iris-setosa Iris-setosa
26	5.0	3.4	1.6	0.4	Iris-setosa Iris-setosa
27	5.2	3.5	1.5	0.2	Iris-setosa
28	5.2	3.4	1.4	0.2	Iris-setosa
29	4.7	3.2	1.6	0.2	Iris-setosa
30	4.8	3.1	1.6	0.2	Iris-setosa
31	5.4	3.4	1.5	0.4	Iris-setosa
32	5.2	4.1	1.5	0.1	Iris-setosa
33	5.5	4.2	1.4	0.2	Iris-setosa
34	4.9	3.1	1.5	0.1	Iris-setosa
35	5.0	3.2	1.2	0.2	Iris-setosa
36	5.5	3.5	1.3	0.2	Iris-setosa
37	4.9	3.1	1.5	0.1	Iris-setosa
38	4.4	3.0	1.3	0.2	Iris-setosa
39	5.1	3.4	1.5	0.2	Iris-setosa
40	5.0	3.5	1.3	0.3	Iris-setosa
41	4.5	2.3	1.3	0.3	Iris-setosa
42	4.4	3.2	1.3	0.2	Iris-setosa
43	5.0	3.5	1.6	0.6	Iris-setosa
44	5.1	3.8	1.9	0.4	Iris-setosa
45	4.8	3.0	1.4	0.3	Iris-setosa

47 4.6 3.2 1.4 0.2 Iris-setosa 48 5.3 3.7 1.5 0.2 Iris-setosa 50 7.0 3.2 4.7 1.4 Iris-versicolor 51 6.4 3.2 4.5 1.5 Iris-versicolor 52 6.9 3.1 4.9 1.5 Iris-versicolor 53 5.5 2.3 4.0 1.3 Iris-versicolor 54 6.5 2.8 4.6 1.5 Iris-versicolor 55 5.7 2.8 4.5 1.3 Iris-versicolor 56 6.3 3.3 4.7 1.6 Iris-versicolor 57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62<	46	5.1	3.8	1.6	0.2	Iris-setosa
48 5.3 3.7 1.5 0.2 Iris-setosa 50 7.0 3.2 4.7 1.4 Iris-versicolor 51 6.4 3.2 4.5 1.5 Iris-versicolor 52 6.9 3.1 4.9 1.5 Iris-versicolor 53 5.5 2.3 4.0 1.3 Iris-versicolor 54 6.5 2.8 4.6 1.5 Iris-versicolor 55 5.7 2.8 4.5 1.3 Iris-versicolor 56 6.3 3.3 4.7 1.6 Iris-versicolor 57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 59 5.2 2.7 3.9 1.4 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
49 5.0 3.3 1.4 0.2 Iris-setosa 50 7.0 3.2 4.7 1.4 Iris-versicolor 51 6.4 3.2 4.5 1.5 Iris-versicolor 52 6.9 3.1 4.9 1.5 Iris-versicolor 53 5.5 2.3 4.0 1.3 Iris-versicolor 54 6.5 2.8 4.6 1.5 Iris-versicolor 55 5.7 2.8 4.5 1.3 Iris-versicolor 56 6.3 3.3 4.7 1.6 Iris-versicolor 57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
50 7.0 3.2 4.7 1.4 Iris-versicolor 51 6.4 3.2 4.5 1.5 Iris-versicolor 52 6.9 3.1 4.9 1.5 Iris-versicolor 53 5.5 2.3 4.0 1.3 Iris-versicolor 54 6.5 2.8 4.6 1.5 Iris-versicolor 55 5.7 2.8 4.5 1.3 Iris-versicolor 56 6.3 3.3 4.7 1.6 Iris-versicolor 57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor						
51 6.4 3.2 4.5 1.5 Iris-versicolor 52 6.9 3.1 4.9 1.5 Iris-versicolor 53 5.5 2.3 4.0 1.3 Iris-versicolor 54 6.5 2.8 4.6 1.5 Iris-versicolor 55 5.7 2.8 4.5 1.3 Iris-versicolor 56 6.3 3.3 4.7 1.6 Iris-versicolor 57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor						
52 6.9 3.1 4.9 1.5 Iris-versicolor 53 5.5 2.3 4.0 1.3 Iris-versicolor 54 6.5 2.8 4.6 1.5 Iris-versicolor 55 5.7 2.8 4.5 1.3 Iris-versicolor 56 6.3 3.3 4.7 1.6 Iris-versicolor 57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 59 5.2 2.7 3.9 1.4 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor						
53 5.5 2.3 4.0 1.3 Iris-versicolor 54 6.5 2.8 4.6 1.5 Iris-versicolor 55 5.7 2.8 4.5 1.3 Iris-versicolor 56 6.3 3.3 4.7 1.6 Iris-versicolor 57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor						
54 6.5 2.8 4.6 1.5 Iris-versicolor 55 5.7 2.8 4.5 1.3 Iris-versicolor 56 6.3 3.3 4.7 1.6 Iris-versicolor 57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 69 5.2 2.7 3.9 1.4 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 3.6 1.3 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor						
55 5.7 2.8 4.5 1.3 Iris-versicolor 56 6.3 3.3 4.7 1.6 Iris-versicolor 57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 59 5.2 2.7 3.9 1.4 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor						
56 6.3 3.3 4.7 1.6 Iris-versicolor 57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 59 5.2 2.7 3.9 1.4 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 69 5.6 2.5 3.9 1.1 Iris-versicolor						
57 4.9 2.4 3.3 1.0 Iris-versicolor 58 6.6 2.9 4.6 1.3 Iris-versicolor 59 5.2 2.7 3.9 1.4 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 66 5.6 3.0 4.5 1.5 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor						
58 6.6 2.9 4.6 1.3 Iris-versicolor 59 5.2 2.7 3.9 1.4 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 66 5.6 3.0 4.5 1.5 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor						
59 5.2 2.7 3.9 1.4 Iris-versicolor 60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 66 5.6 3.0 4.5 1.5 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor						
60 5.0 2.0 3.5 1.0 Iris-versicolor 61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 66 5.6 3.0 4.5 1.5 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor						
61 5.9 3.0 4.2 1.5 Iris-versicolor 62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 66 5.6 3.0 4.5 1.5 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 68 6.2 2.5 3.9 1.1 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor						
62 6.0 2.2 4.0 1.0 Iris-versicolor 63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 66 5.6 3.0 4.5 1.5 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 69 5.6 2.5 3.9 1.1 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor						
63 6.1 2.9 4.7 1.4 Iris-versicolor 64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 66 5.6 3.0 4.5 1.5 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 69 5.6 2.5 3.9 1.1 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor						
64 5.6 2.9 3.6 1.3 Iris-versicolor 65 6.7 3.1 4.4 1.4 Iris-versicolor 66 5.6 3.0 4.5 1.5 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 69 5.6 2.5 3.9 1.1 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 77 6.7 3.0 5.0 1.7 Iris-versicolor						
65 6.7 3.1 4.4 1.4 Iris-versicolor 66 5.6 3.0 4.5 1.5 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 69 5.6 2.5 3.9 1.1 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor						
66 5.6 3.0 4.5 1.5 Iris-versicolor 67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 69 5.6 2.5 3.9 1.1 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 77 6.7 3.0 5.0 1.7 Iris-versicolor 79 5.7 2.6 3.5 1.0 Iris-versicolor						
67 5.8 2.7 4.1 1.0 Iris-versicolor 68 6.2 2.2 4.5 1.5 Iris-versicolor 69 5.6 2.5 3.9 1.1 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 79 5.7 2.6 3.5 1.0 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
68 6.2 2.2 4.5 1.5 Iris-versicolor 69 5.6 2.5 3.9 1.1 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 79 5.7 2.6 3.5 1.0 Iris-versicolor 81 5.5 2.4 3.8 1.1 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor						
69 5.6 2.5 3.9 1.1 Iris-versicolor 70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 77 6.7 3.0 5.0 1.7 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor						
70 5.9 3.2 4.8 1.8 Iris-versicolor 71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 77 6.7 3.0 5.0 1.7 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor						
71 6.1 2.8 4.0 1.3 Iris-versicolor 72 6.3 2.5 4.9 1.5 Iris-versicolor 73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 77 6.7 3.0 5.0 1.7 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.8 1.1 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
72 6.3 2.5 4.9 1.5 Iris-versicolor 73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 77 6.7 3.0 5.0 1.7 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 79 5.7 2.6 3.5 1.0 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
73 6.1 2.8 4.7 1.2 Iris-versicolor 74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 77 6.7 3.0 5.0 1.7 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 79 5.7 2.6 3.5 1.0 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.8 1.1 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor						
74 6.4 2.9 4.3 1.3 Iris-versicolor 75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 77 6.7 3.0 5.0 1.7 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 79 5.7 2.6 3.5 1.0 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
75 6.6 3.0 4.4 1.4 Iris-versicolor 76 6.8 2.8 4.8 1.4 Iris-versicolor 77 6.7 3.0 5.0 1.7 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 79 5.7 2.6 3.5 1.0 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
76 6.8 2.8 4.8 1.4 Iris-versicolor 77 6.7 3.0 5.0 1.7 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 79 5.7 2.6 3.5 1.0 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
77 6.7 3.0 5.0 1.7 Iris-versicolor 78 6.0 2.9 4.5 1.5 Iris-versicolor 79 5.7 2.6 3.5 1.0 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
78 6.0 2.9 4.5 1.5 Iris-versicolor 79 5.7 2.6 3.5 1.0 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
79 5.7 2.6 3.5 1.0 Iris-versicolor 80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
80 5.5 2.4 3.8 1.1 Iris-versicolor 81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
81 5.5 2.4 3.7 1.0 Iris-versicolor 82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
82 5.8 2.7 3.9 1.2 Iris-versicolor 83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
83 6.0 2.7 5.1 1.6 Iris-versicolor 84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
84 5.4 3.0 4.5 1.5 Iris-versicolor 85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
85 6.0 3.4 4.5 1.6 Iris-versicolor 86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
86 6.7 3.1 4.7 1.5 Iris-versicolor 87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
87 6.3 2.3 4.4 1.3 Iris-versicolor 88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
88 5.6 3.0 4.1 1.3 Iris-versicolor 89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
89 5.5 2.5 4.0 1.3 Iris-versicolor 90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
90 5.5 2.6 4.4 1.2 Iris-versicolor 91 6.1 3.0 4.6 1.4 Iris-versicolor						
91 6.1 3.0 4.6 1.4 Iris-versicolor						
92 5.8 2.6 4.0 1.2 Iris-versicolor						
	92	5.8	2.6	4.0	1.2	Iris-versicolor

93	5.0	2.3	3.3	1.0	Iris-versicolor
94	5.6	2.7	4.2	1.3	Iris-versicolor
95	5.7	3.0	4.2	1.2	Iris-versicolor
96	5.7	2.9	4.2	1.3	Iris-versicolor
97	6.2	2.9		1.3	Iris-versicolor
			4.3		
98	5.1	2.5	3.0	1.1	Iris-versicolor
99	5.7	2.8	4.1	1.3	Iris-versicolor
100	6.3	3.3	6.0	2.5	Iris-virginica
101	5.8	2.7	5.1	1.9	Iris-virginica
102	7.1	3.0	5.9	2.1	Iris-virginica
103	6.3	2.9	5.6	1.8	Iris-virginica
104	6.5	3.0	5.8	2.2	Iris-virginica
105	7.6	3.0	6.6	2.1	Iris-virginica
106	4.9	2.5	4.5	1.7	Iris-virginica
107	7.3	2.9	6.3	1.8	Iris-virginica
108	6.7	2.5	5.8	1.8	Iris-virginica
109	7.2	3.6	6.1	2.5	Iris-virginica
110	6.5	3.2	5.1	2.0	Iris-virginica
111	6.4	2.7	5.3	1.9	Iris-virginica
112	6.8	3.0	5.5	2.1	Iris-virginica
113	5.7	2.5	5.0	2.0	Iris-virginica
114	5.8	2.8	5.1	2.4	Iris-virginica
115	6.4	3.2	5.3	2.3	Iris-virginica
116	6.5	3.0	5.5	1.8	Iris-virginica
117	7.7	3.8	6.7	2.2	Iris-virginica
118	7.7	2.6	6.9	2.3	_
		2.0			Iris-virginica
119	6.0		5.0	1.5	Iris-virginica
120	6.9	3.2	5.7	2.3	Iris-virginica
121	5.6	2.8	4.9	2.0	Iris-virginica
122	7.7	2.8	6.7	2.0	Iris-virginica
123	6.3	2.7	4.9	1.8	Iris-virginica
124	6.7	3.3	5.7	2.1	Iris-virginica
125	7.2	3.2	6.0	1.8	Iris-virginica
126	6.2	2.8	4.8	1.8	Iris-virginica
127	6.1	3.0	4.9	1.8	Iris-virginica
128	6.4	2.8	5.6	2.1	Iris-virginica
129	7.2	3.0	5.8	1.6	Iris-virginica
130	7.4	2.8	6.1	1.9	Iris-virginica
131	7.9	3.8	6.4	2.0	Iris-virginica
132	6.4	2.8	5.6	2.2	Iris-virginica
133	6.3	2.8	5.1	1.5	Iris-virginica
134	6.1	2.6	5.6	1.4	Iris-virginica
135	7.7	3.0	6.1	2.3	Iris-virginica
136	6.3	3.4	5.6	2.4	Iris-virginica
137	6.4	3.1	5.5	1.8	Iris-virginica
138	6.0	3.0	4.8	1.8	Iris-virginica
139	6.9	3.1	5.4	2.1	Iris-virginica
100	0.0	J. 1	J. 1	۷.1	TITO VILGILIO

140	6.7	3.1	5.6	2.4	Iris-virginica
141	6.9	3.1	5.1	2.3	Iris-virginica
142	5.8	2.7	5.1	1.9	Iris-virginica
143	6.8	3.2	5.9	2.3	Iris-virginica
144	6.7	3.3	5.7	2.5	Iris-virginica
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

4.3.2 Get data types

```
[8]: irisdata_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	${\tt sepal_width}$	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object
_			

dtypes: float64(4), object(1)

memory usage: 5.3+ KB

```
[9]: irisdata_df.describe()
```

[9]:		sepal_length	sepal_width	petal_length	petal_width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.054000	3.758667	1.198667
	std	0.828066	0.433594	1.764420	0.763161
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

4.3.3 Get data ranges with Boxplots

Boxplots can be used to explore the data ranges in the data set. These also provide information about **outliers**.

```
[36]: sns.set_context("notebook", font_scale=1.3, rc={"lines.linewidth": 2.0}) sns.set_style("whitegrid")
```


4.4 Identify anomalies in the data sets

4.4.1 Find gaps in dataset

This section was inspired by Working with Missing Data in Pandas.

Checking for missing values using isnull() In order to check for missing values in Pandas DataFrame, we use the function isnull(). This function returns a dataframe of Boolean values which are True for NaN values.

```
[37]: pd.set_option('display.max_rows', 40)
pd.set_option('display.min_rows', 30)

[38]: irisdata_df.isnull()
```

ırı	sdata_df.isnull	-()			
	sepal_length	sepal_width	petal_length	petal_width	species
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
5	False	False	False	False	False
6	False	False	False	False	False
7	False	False	False	False	False
8	False	False	False	False	False
9	False	False	False	False	False
10	False	False	False	False	False
11	False	False	False	False	False
12	False	False	False	False	False
13	False	False	False	False	False
14	False	False	False	False	False
		•••	•••		
135	False	False	False	False	False
136		False	False	False	False
137		False	False	False	False
138		False	False	False	False
139		False	False	False	False
140			False	False	False
141		False	False	False	
142		False	False	False	
143			False	False	
144		False	False	False	
145		False	False	False	
146			False	False	
147			False	False	
148	False	False	False	False	False

149 False False False False False [150 rows x 5 columns] Show only the gaps: [5]: | irisdata_df_gaps = irisdata_df[irisdata_df.isnull().any(axis=1)] irisdata_df_gaps [5]: Empty DataFrame Columns: [sepal_length, sepal_width, petal_length, petal_width, species] Index: [] Fine - this dataset seems to be complete:) So let's look for something else for exercise: employes.csv [39]: # import data to dataframe from csv file employees_df = pd.read_csv("./datasets/employees_edit.csv") employees_df [39]: Bonus % \ First Name Gender Start Date Last Login Time Salary 0 Douglas Male 8/6/1993 12:42 PM 97308 6945.00 1 Thomas Male 3/31/1996 6:53 AM 61933 4.17 2 Maria Female 4/23/1993 11:17 AM 130590 11858.00 3 Jerry Male 3/4/2005 1:00 PM 138705 9.34 4 Larry Male 1/24/1998 4:47 PM 101004 1389.00 5 Dennis Male 4/18/1987 1:35 AM 115163 10125.00 8/17/1987 6 Ruby Female 4:20 PM 65476 10012.00 7 ${\tt NaN}$ Female 7/20/2015 10:43 AM 45906 11598.00 8 Angela Female 11/22/2005 6:29 AM 95570 18523.00 9 Frances Female 8/8/2002 6:51 AM 139852 7524.00 10 Louise Female 8/12/1980 9:01 AM 63241 15132.00 Female 11 Julie 10/26/1997 3:19 PM 102508 12637.00 12 Brandon Male 12/1/1980 1:08 AM 112807 17492.00 13 Male 1/27/2008 11:40 PM 109831 5831.00 Garv 14 Kimberly Female 1/14/1999 7:13 AM 41426 14543.00 989 Stephen NaN 7/10/1983 8:10 PM 85668 1909.00 990 Donna Female 11/26/1982 7:04 AM 82871 17999.00 136709 991 Gloria Female 12/8/2014 5:08 AM 10331.00 992 Alice Female 10/5/2004 9:34 AM 47638 11209.00 993 Justin NaN2/10/1991 4:58 PM 38344 3794.00 994 Robin Female 7/24/1987 1:35 PM 100765 10982.00

5:12 AM

8:35 AM

3:53 PM

134505

112769

56450

11051.00

11625.00

19.04

8/25/2002

5/15/1997

10/16/2011

995

996

997

Rose Female

Tina Female

Anthony

Male

998	George	Male	6/21/2013	5:47 PM	98874	4479.00
999	Henry	NaN	11/23/2014	6:09 AN	132483	16655.00
1000	Phillip	Male	1/31/1984	6:30 AM	42392	19675.00
1001	Russell	Male	5/20/2013	12:39 PM	96914	1421.00
1002	Larry	Male	4/20/2013	4:45 PM	60500	11985.00
1003	Albert	Male	5/15/2012	6:24 PN	129949	10169.00

	Senior Management	Team
0	True	Marketing
1	True	NaN
2	False	Finance
3	True	Finance
4	True	Client Services
5	False	Legal
6	True	Product
7	NaN	Finance
8	True	Engineering
9	True	Business Development
10	True	NaN
11	True	Legal
12	True	Human Resources
13	False	Sales
14	True	Finance
	•••	•••
989	False	Legal
990	False	Marketing
991	True	Finance
992	False	Human Resources
993	False	Legal
994	True	Client Services
995	True	Marketing
996	True	Finance
997	True	Engineering
998	True	Marketing
999	False	Distribution
1000	False	Finance
1001	False	Product
1002	False	Business Development
1003	True	Sales

[1004 rows x 8 columns]

Show only the gaps from this gappy dataset again:

```
[40]: employees_df_gaps = employees_df[employees_df.isnull().any(axis=1)] employees_df_gaps
```

[40]:	First Name	Gender	Start Date	_		Salary	Bonus %	/
1	Thomas	Male	3/31/1996		:53 AM	61933	4.17	
7	NaN	Female	7/20/2015		:43 AM	45906	11598.00	
10	Louise	Female	8/12/1980		:01 AM	63241	15132.00	
20	Lois	NaN	4/22/1995	7	:18 PM	64714	4934.00	
22	Joshua	NaN	3/8/2012	1	:58 AM	90816	18816.00	
23	NaN	Male	6/14/2012	4	:19 PM	125792	5042.00	
25	NaN	Male	10/8/2012	1	:12 AM	37076	18576.00	
27	Scott	NaN	7/11/1991	6	:58 PM	122367	5218.00	
31	Joyce	NaN	2/20/2005	2	:40 PM	88657	12752.00	
32	NaN	Male	8/21/1998	2	:27 PM	122340	6417.00	
39	NaN	Male	1/29/2016	2	:33 AM	122173	7797.00	
41	Christine	NaN	6/28/2015	1	:08 AM	66582	11308.00	
49	Chris	NaN	1/24/1980	12	:13 PM	113590	3055.00	
51	NaN	NaN	12/17/2011	8	:29 AM	41126	14009.00	
53	Alan	NaN	3/3/2014	1	:28 PM	40341	17578.00	
		•••	•••	•••	•••	•••		
916	Joe	Male	12/8/1998	10	:28 AM	126120	1.02	
927	Irene	NaN	2/28/1991	10	:23 PM	135369	4.38	
929	NaN	Female	8/23/2000	4	:19 PM	95866	19388.00	
941	Aaron	NaN	1/22/1986	7	:39 PM	63126	18424.00	
942	Mark	NaN	9/9/2006	12	:27 PM	44836	2657.00	
943	Ralph	NaN	7/28/1995	6	:53 PM	70635	2147.00	
949	Gerald	NaN	4/15/1989	12	:44 PM	93712	17426.00	
950	NaN	Female	9/15/1985	1	:50 AM	133472	16941.00	
951	NaN	Male	7/30/2012	3	:07 PM	107351	5329.00	
955	NaN	Female	9/14/2010	5	:19 AM	143638	9662.00	
965	Antonio	NaN	6/18/1989	9	:37 PM	103050	3.05	
976	Victor	NaN	7/28/2006	2	:49 PM	76381	11159.00	
989	Stephen	NaN	7/10/1983	8	:10 PM	85668	1909.00	
993	-	NaN	2/10/1991	4	:58 PM	38344	3794.00	
999	Henry	NaN	11/23/2014	6	:09 AM	132483	16655.00	
	v							
	Senior Mana	gement		Team				
1		True		NaN				
7		NaN		Finance				
10		True		NaN				
20		True		Legal				
22		True	Client	Services				
23		NaN		NaN				
25		NaN	Client	Services				
27		False		Legal				
31		False		Product				
32		NaN		NaN				
39		NaN	Client	Services				
41		True	Business Dev					
49		False		Sales				

Sales	NaN	51
Finance	True	53
•••	•••	
NaN	False	916
Business Development	False	927
Sales	NaN	929
Client Services	False	941
Client Services	False	942
Client Services	False	943
Distribution	True	949
Distribution	NaN	950
Marketing	NaN	951
NaN	NaN	955
Legal	False	965
Sales	True	976
Legal	False	989
Legal	False	993
Distribution	False	999

[237 rows x 8 columns]

Fill the missing values with fillna() Now we are going to fill all the null (NaN) values in Gender column with "No Gender".

Attention: We are doing that directly in this dataframe with inplace = True - we don't make a deep copy!

```
[41]: # filling a null values using fillna()
employees_df["Gender"].fillna("No Gender", inplace = True)
employees_df
```

[41]:	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	\
0	Douglas	Male	8/6/1993	12:42 PM	97308	6945.00	
1	Thomas	Male	3/31/1996	6:53 AM	61933	4.17	
2	Maria	Female	4/23/1993	11:17 AM	130590	11858.00	
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.34	
4	Larry	Male	1/24/1998	4:47 PM	101004	1389.00	
5	Dennis	Male	4/18/1987	1:35 AM	115163	10125.00	
6	Ruby	Female	8/17/1987	4:20 PM	65476	10012.00	
7	NaN	Female	7/20/2015	10:43 AM	45906	11598.00	
8	Angela	Female	11/22/2005	6:29 AM	95570	18523.00	
9	Frances	Female	8/8/2002	6:51 AM	139852	7524.00	
10	Louise	Female	8/12/1980	9:01 AM	63241	15132.00	
11	Julie	Female	10/26/1997	3:19 PM	102508	12637.00	
12	Brandon	Male	12/1/1980	1:08 AM	112807	17492.00	
13	Gary	Male	1/27/2008	11:40 PM	109831	5831.00	
14	Kimberly	Female	1/14/1999	7:13 AM	41426	14543.00	

•••	•••	•••	•••	•••	•••		•••	
989	Stephen	No Gender	7/10/1983		8:10	ΡM	85668	1909.00
990	Donna	Female	11/26/1982		7:04	AM	82871	17999.00
991	Gloria	Female	12/8/2014		5:08	AM	136709	10331.00
992	Alice	Female	10/5/2004		9:34	AM	47638	11209.00
993	Justin	No Gender	2/10/1991		4:58 1	PΜ	38344	3794.00
994	Robin	Female	7/24/1987		1:35	PΜ	100765	10982.00
995	Rose	Female	8/25/2002		5:12	AM	134505	11051.00
996	Anthony	Male	10/16/2011		8:35	AM	112769	11625.00
997	Tina	Female	5/15/1997		3:53 1	ΡM	56450	19.04
998	George	Male	6/21/2013		5:47	ΡM	98874	4479.00
999	Henry	No Gender	11/23/2014		6:09	AM	132483	16655.00
1000	Phillip	Male	1/31/1984		6:30	AM	42392	19675.00
1001	Russell	Male	5/20/2013		12:39 1	PΜ	96914	1421.00
1002	Larry	Male	4/20/2013		4:45	PΜ	60500	11985.00
1003	Albert	Male	5/15/2012		6:24	PΜ	129949	10169.00

Team	Senior Management	
Marketing	True	0
NaN	True	1
Finance	False	2
Finance	True	3
Client Services	True	4
Legal	False	5
Product	True	6
Finance	NaN	7
Engineering	True	8
ness Development	True	9
NaN	True	10
Legal	True	11
Human Resources	True	12
Sales	False	13
Finance	True	14
•••	***	•••
Legal	False	989
Marketing	False	990
Finance	True	991
Human Resources	False	992
Legal	False	993
Client Services	True	994
Marketing	True	995
Finance	True	996
Engineering	True	997
Marketing	True	998
Distribution	False	999
Finance	False	1000
Product	False	1001

1002	False	Business	Development
1003	True		Sales

[1004 rows x 8 columns]

Dropping missing values using dropna() In order to drop null values from a dataframe, we use dropna() function. This function drops rows or columns of datasets with NaN values in different ways.

Default is to drop rows with at least 1 null value (NaN). Giving the parameter how = 'all' the function drops rows with all data missing or contain null values (NaN).

```
[42]: # making a new dataframe with dropped NaN values
employees_df_dropped = employees_df.dropna(axis = 0, how ='any')
employees_df_dropped
```

[42]:	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	\
0	Douglas	Male	8/6/1993	12:42 PM	97308	6945.00	
2	Maria	Female	4/23/1993	11:17 AM	130590	11858.00	
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.34	
4	Larry	Male	1/24/1998	4:47 PM	101004	1389.00	
5	Dennis	Male	4/18/1987	1:35 AM	115163	10125.00	
6	Ruby	Female	8/17/1987	4:20 PM	65476	10012.00	
8	Angela	Female	11/22/2005	6:29 AM	95570	18523.00	
9	Frances	Female	8/8/2002	6:51 AM	139852	7524.00	
11	Julie	Female	10/26/1997	3:19 PM	102508	12637.00	
12	Brandon	Male	12/1/1980	1:08 AM	112807	17492.00	
13	Gary	Male	1/27/2008	11:40 PM	109831	5831.00	
14	Kimberly	Female	1/14/1999	7:13 AM	41426	14543.00	
15	Lillian	Female	6/5/2016	6:09 AM	59414	1256.00	
16	Jeremy	Male	9/21/2010	5:56 AM	90370	7369.00	
17	Shawn	Male	12/7/1986	7:45 PM	111737	6414.00	
	•••	•••	•••		•••		
989	Stephen	No Gender	7/10/1983	8:10 PM	85668	1909.00	
990	Donna	Female	11/26/1982	7:04 AM	82871	17999.00	
991	Gloria	Female	12/8/2014	5:08 AM	136709	10331.00	
992	Alice	Female	10/5/2004	9:34 AM	47638	11209.00	
993	Justin	No Gender	2/10/1991	4:58 PM	38344	3794.00	
994	Robin	Female	7/24/1987	1:35 PM	100765	10982.00	
995	Rose	Female	8/25/2002	5:12 AM	134505	11051.00	
996	Anthony	Male	10/16/2011	8:35 AM	112769	11625.00	
997	Tina	Female	5/15/1997	3:53 PM	56450	19.04	
998	George	Male	6/21/2013	5:47 PM	98874	4479.00	
999	Henry	No Gender	11/23/2014	6:09 AM	132483	16655.00	
1000	Phillip	Male	1/31/1984	6:30 AM	42392	19675.00	
1001	Russell	Male	5/20/2013	12:39 PM	96914	1421.00	
1002	Larry	Male	4/20/2013	4:45 PM	60500	11985.00	

1003	Albert N	Male 5	/15/2012	6:24 PM	129949	10169.00
Se	enior Management		Team			
0	True		Marketing			
2	False		Finance			
3	True		Finance			
4	True	C	lient Services			
5	False		Legal			
6	True		Product			
8	True		Engineering			
9	True	Busine	ss Development			
11	True		Legal			
12	True	H	uman Resources			
13	False		Sales			
14	True		Finance			
15	False		Product			
16	False	H	uman Resources			
17	False		Product			
•••	•••		•••			
989	False		Legal			
990	False		Marketing			
991	True		Finance			
992	False	H	uman Resources			
993	False		Legal			
994	True	C	lient Services			
995	True		Marketing			
996	True		Finance			
997	True		Engineering			
998	True		Marketing			
999	False		Distribution			
1000	False		Finance			
1001	False		Product			
1002	False	Busine	ss Development			
1003	True		Sales			

Finally we compare the sizes of dataframes so that we learn how many rows had at least 1 Null value.

Old data frame length: 1004 New data frame length: 903

[903 rows x 8 columns]

Number of rows with at least 1 NaN value: 101

4.4.2 Find and remove duplicates in dataset

This section was inspired by: - How to Find Duplicates in Pandas DataFrame (With Examples) - How to Drop Duplicate Rows in a Pandas DataFrame

Checking for duplicate values using duplicated() In order to check for duplicate values in Pandas DataFrame, we use a function duplicated(). This function can be used in two ways:
- find duplicate rows across all columns with duplicateRows = df[df.duplicated()] - find duplicate rows across specific columns duplicateRows = df[df.duplicated(subset=['col1', 'col2'])]

Find duplicate rows across all columns:

```
[44]: # import (again) data to dataframe from csv file
      employees_df = pd.read_csv("./datasets/employees_edit.csv")
[45]: # find duplicate rows across all columns
      duplicateRows = employees df[employees df.duplicated()]
      duplicateRows
[45]:
          First Name
                     Gender Start Date Last Login Time
                                                           Salary Bonus % \
      112
               Karen Female
                              11/30/1999
                                                  7:46 AM
                                                           102488
                                                                   17653.0
      127
               Linda Female
                               5/25/2000
                                                  5:45 PM
                                                           119009
                                                                   12506.0
      296
                               11/3/1997
                                                           121333
             Brandon
                         {\tt NaN}
                                                  8:17 PM
                                                                   15295.0
      580
            Nicholas
                                3/1/2013
                                                  9:26 PM
                                                           101036
                                                                     2826.0
                        Male
          Senior Management
                                              Team
                       True
                                           Product
      112
      127
                       True Business Development
      296
                      False
                             Business Development
      580
                       True
                                   Human Resources
[46]: # argument keep='last' displays the first duplicate rows instead of the last
      duplicateRows = employees_df[employees_df.duplicated(keep='last')]
      duplicateRows
[46]:
          First Name
                      Gender
                              Start Date Last Login Time
                                                           Salary
                                                                    Bonus %
      55
               Karen
                      Female
                              11/30/1999
                                                  7:46 AM
                                                           102488
                                                                    17653.0
      92
               Linda
                     Female
                               5/25/2000
                                                  5:45 PM
                                                           119009
                                                                    12506.0
      153
             Brandon
                         {\tt NaN}
                               11/3/1997
                                                  8:17 PM
                                                           121333
                                                                    15295.0
      442
            Nicholas
                        Male
                                3/1/2013
                                                  9:26 PM
                                                           101036
                                                                     2826.0
          Senior Management
                                              Team
      55
                       True
                                           Product
      92
                       True Business Development
      153
                      False Business Development
      442
                                   Human Resources
                       True
```

Find duplicate rows across **specific columns**:

```
[47]: # identify duplicate rows across 'First Name' and 'Last Login Time' columns
      duplicateRows = employees_df[employees_df.duplicated(subset=['First Name',__
       duplicateRows
[47]:
          First Name
                     Gender
                              Start Date Last Login Time
                                                          Salary Bonus % \
               Karen Female
                              11/30/1999
                                                 7:46 AM
                                                          102488
                                                                  17653.0
      112
      127
               Linda Female
                                                 5:45 PM
                                                          119009
                               5/25/2000
                                                                  12506.0
      296
            Brandon
                               11/3/1997
                                                          121333
                         NaN
                                                 8:17 PM
                                                                  15295.0
      577
                 NaN
                     Female
                                                 1:01 PM
                                                          118736
                                                                   7421.0
                               1/13/2009
      580
            Nicholas
                        Male
                                                 9:26 PM
                                                                   2826.0
                                3/1/2013
                                                          101036
      632
                 NaN
                        NaN
                                9/2/1988
                                                12:49 PM
                                                          147309
                                                                   1702.0
      881
                 NaN
                        Male
                                9/5/1980
                                                 7:36 AM
                                                          114896
                                                                  13823.0
      929
                 NaN
                     Female
                               8/23/2000
                                                 4:19 PM
                                                           95866
                                                                  19388.0
      934
                               9/10/2001
                                                           85213
               Nancy
                     Female
                                                11:57 PM
                                                                   2386.0
      973
               Linda
                     Female
                                2/4/2010
                                                 8:49 PM
                                                           44486
                                                                  17308.0
          Senior Management
                                             Team
      112
                       True
                                          Product
      127
                       True
                             Business Development
      296
                      False
                             Business Development
                        NaN
                                  Client Services
      577
      580
                       True
                                  Human Resources
      632
                        NaN
                                     Distribution
      881
                        NaN
                                  Client Services
      929
                        NaN
                                            Sales
      934
                       True
                                        Marketing
      973
                       True
                                      Engineering
[48]: # argument keep='last' displays the first duplicate rows instead of the last
      duplicateRows = employees_df[employees_df.duplicated(subset=['First Name',_
       duplicateRows
[48]:
          First Name
                      Gender Start Date Last Login Time
                                                          Salary
                                                                   Bonus % \
      23
                 NaN
                        Male
                               6/14/2012
                                                 4:19 PM
                                                          125792
                                                                   5042.00
      37
               Linda Female
                              10/19/1981
                                                 8:49 PM
                                                           57427
                                                                   9557.00
      55
               Karen
                     Female
                              11/30/1999
                                                 7:46 AM
                                                          102488
                                                                  17653.00
                                                          125250
      66
               Nancy
                     Female
                              12/15/2012
                                                11:57 PM
                                                                   2672.00
      92
                                                          119009
               Linda Female
                               5/25/2000
                                                 5:45 PM
                                                                  12506.00
      153
             Brandon
                         {\tt NaN}
                               11/3/1997
                                                 8:17 PM
                                                          121333
                                                                  15295.00
      222
                 NaN
                    Female
                               6/17/1991
                                                12:49 PM
                                                           71945
                                                                      5.56
      269
                 NaN
                        Male
                               2/4/2005
                                                 1:01 PM
                                                           40451
                                                                  16044.00
      442
                                3/1/2013
                                                          101036
            Nicholas
                        Male
                                                 9:26 PM
                                                                   2826.00
      778
                 NaN
                    Female
                               6/18/2000
                                                 7:36 AM
                                                          106428
                                                                 10867.00
```

Team

Senior Management

23	NaN	NaN
37	True	Client Services
55	True	Product
66	True	Business Development
92	True	Business Development
153	False	Business Development
222	NaN	Marketing
269	NaN	Distribution
442	True	Human Resources
778	NaN	NaN

Dropping duplicate values using drop_duplicates() In order to drop duplicate values from a dataframe, we use drop_duplicates() function.

This function can be used in two ways: - remove duplicate rows across all columns with df.drop_duplicates() - find duplicate rows across specific columns df.drop_duplicates(subset=['col1', 'col2'])

Attention: We are doing that directly in this dataframe with inplace = True - we don't make a deep copy!

Remove duplicate rows across all columns:

```
[49]: # remove duplicate rows across all columns
employees_df.drop_duplicates(inplace=True)
employees_df
```

```
[49]:
           First Name
                                 Start Date Last Login Time
                                                                         Bonus % \
                        Gender
                                                               Salary
               Douglas
                                                                97308
                                                                         6945.00
      0
                          Male
                                   8/6/1993
                                                    12:42 PM
      1
                Thomas
                          Male
                                  3/31/1996
                                                     6:53 AM
                                                                61933
                                                                            4.17
      2
                 Maria
                        Female
                                  4/23/1993
                                                    11:17 AM
                                                               130590
                                                                        11858.00
      3
                          Male
                                   3/4/2005
                                                     1:00 PM
                                                               138705
                                                                            9.34
                 Jerry
      4
                                                               101004
                 Larry
                          Male
                                  1/24/1998
                                                     4:47 PM
                                                                         1389.00
      5
                Dennis
                          Male
                                  4/18/1987
                                                               115163
                                                                        10125.00
                                                     1:35 AM
      6
                  Ruby Female
                                  8/17/1987
                                                     4:20 PM
                                                                65476
                                                                        10012.00
      7
                   {\tt NaN}
                        Female
                                                                45906
                                                                        11598.00
                                  7/20/2015
                                                     10:43 AM
                Angela
      8
                        Female
                                 11/22/2005
                                                     6:29 AM
                                                                95570
                                                                        18523.00
      9
              Frances
                        Female
                                   8/8/2002
                                                     6:51 AM
                                                               139852
                                                                         7524.00
      10
                Louise
                        Female
                                  8/12/1980
                                                     9:01 AM
                                                                63241
                                                                        15132.00
      11
                 Julie
                        Female
                                 10/26/1997
                                                     3:19 PM
                                                               102508
                                                                        12637.00
      12
               Brandon
                          Male
                                  12/1/1980
                                                               112807
                                                                        17492.00
                                                     1:08 AM
      13
                                                               109831
                  Gary
                          Male
                                  1/27/2008
                                                     11:40 PM
                                                                         5831.00
      14
             Kimberly
                        Female
                                  1/14/1999
                                                     7:13 AM
                                                                41426
                                                                        14543.00
      989
              Stephen
                            NaN
                                  7/10/1983
                                                     8:10 PM
                                                                85668
                                                                         1909.00
      990
                 Donna Female
                                 11/26/1982
                                                     7:04 AM
                                                                82871
                                                                        17999.00
      991
                Gloria
                        Female
                                  12/8/2014
                                                     5:08 AM
                                                               136709
                                                                        10331.00
      992
                 Alice Female
                                  10/5/2004
                                                     9:34 AM
                                                                47638
                                                                        11209.00
```

993	Justin	NaN	2/10/1991	4:58 P	M 38344	3794.00
994	Robin	Female	7/24/1987	1:35 P	M 100765	10982.00
995	Rose	Female	8/25/2002	5:12 A	M 134505	11051.00
996	Anthony	Male	10/16/2011	8:35 A	M 112769	11625.00
997	Tina	Female	5/15/1997	3:53 P	M 56450	19.04
998	George	Male	6/21/2013	5:47 P	M 98874	4479.00
999	Henry	NaN	11/23/2014	6:09 A	M 132483	16655.00
1000	Phillip	Male	1/31/1984	6:30 A	M 42392	19675.00
1001	Russell	Male	5/20/2013	12:39 P	M 96914	1421.00
1002	Larry	Male	4/20/2013	4:45 P	M 60500	11985.00
1003	Albert	Male	5/15/2012	6:24 P	M 129949	10169.00

	Senior	Management	Team
0		True	Marketing
1		True	NaN
2		False	Finance
3		True	Finance
4		True	Client Services
5		False	Legal
6		True	Product
7		NaN	Finance
8		True	Engineering
9		True	Business Development
10		True	NaN
11		True	Legal
12		True	Human Resources
13		False	Sales
14		True	Finance
•••		•••	***
989		False	Legal
990		False	Marketing
991		True	Finance
992		False	Human Resources
993		False	Legal
994		True	Client Services
995		True	Marketing
996		True	Finance
997		True	Engineering
998		True	Marketing
999		False	Distribution
1000		False	Finance
1001		False	Product
1002		False	Business Development
1003		True	Sales

[1000 rows x 8 columns]

Remove duplicate rows across **specific columns**:

[50]:	First Name	Gender	Start Date	Last Login Ti	ime	Salary	Bonus %	\
0	Douglas	Male	8/6/1993	12:42		97308	6945.00	
1	Thomas	Male	3/31/1996	6:53	AM	61933	4.17	
2	Maria	Female	4/23/1993	11:17	AM	130590	11858.00	
3	Jerry	Male	3/4/2005	1:00	ΡM	138705	9.34	
4	Larry	Male	1/24/1998	4:47	ΡM	101004	1389.00	
5	Dennis	Male	4/18/1987	1:35	AM	115163	10125.00	
6	Ruby	Female	8/17/1987	4:20		65476	10012.00	
7	NaN	Female	7/20/2015	10:43	AM	45906	11598.00	
8	Angela	Female	11/22/2005	6:29	AM	95570	18523.00	
9	Frances	Female	8/8/2002	6:51		139852	7524.00	
10	Louise	Female	8/12/1980	9:01	AM	63241	15132.00	
11	Julie	Female	10/26/1997	3:19		102508	12637.00	
12	Brandon	Male	12/1/1980	1:08		112807	17492.00	
13	Gary	Male	1/27/2008	11:40		109831	5831.00	
14	Kimberly	Female	1/14/1999	7:13		41426	14543.00	
•••		•••	•••	•••		•••		
989	Stephen	NaN	7/10/1983	8:10	ΡM	85668	1909.00	
990	Donna	Female	11/26/1982	7:04	AM	82871	17999.00	
991	Gloria	Female	12/8/2014	5:08		136709	10331.00	
992	Alice	Female	10/5/2004	9:34		47638	11209.00	
993	Justin	NaN	2/10/1991	4:58		38344	3794.00	
994	Robin	Female	7/24/1987	1:35		100765	10982.00	
995	Rose	Female	8/25/2002	5:12		134505	11051.00	
996	Anthony	Male	10/16/2011	8:35		112769	11625.00	
997	Tina	Female	5/15/1997	3:53		56450	19.04	
998	George	Male	6/21/2013	5:47	ΡM	98874	4479.00	
999	Henry	NaN	11/23/2014	6:09		132483	16655.00	
1000	•	Male	1/31/1984	6:30		42392	19675.00	
1001	-	Male	5/20/2013	12:39		96914	1421.00	
1002		Male	4/20/2013	4:45		60500	11985.00	
1003	•	Male	5/15/2012	6:24		129949	10169.00	
	Senior Mana	gement		Team				
0		True	1	Marketing				
1		True		NaN				
2		False		Finance				
3		True		Finance				
4		True	Client	Services				
5		False		Legal				

6	True	Product		
7	NaN	Finance		
8	True	Engineering		
9	True	Business Development		
10	True	NaN		
11	True	Legal		
12	True	Human Resources		
13	False	Sales		
14	True	Finance		
•••	•••	•••		
989	False	Legal		
990	False	Marketing		
991	True	Finance		
992	False	Human Resources		
993	False	Legal		
994	True	Client Services		
995	True	Marketing		
996	True	Finance		
997	True	Engineering		
998	True	Marketing		
999	False	Distribution		
1000	False	Finance		
1001	False	Product		
1002	False	Business Development		
1003	True	Sales		

[994 rows x 8 columns]

4.5 Avoidance of tendencies due to bias

The description of the Iris dataset says, that it consists of **50 samples** from **each of three species** of Iris (Iris setosa, Iris virginica and Iris versicolor), so there are **150 total samples**.

But how to prove it?

4.5.1 Count occurrences of unique values

To prove whether all possible classes included in the dataset and equally distributed, you can use the function df.value_counts.

Following parameters can be used for fine tuning: - dropna=False causes that NaN values are included - normalize=True: relative frequencies of the unique values are returned - ascending=False: sort resulting classes descending

```
[51]: # import (again) data to dataframe from csv file employees_df = pd.read_csv("./datasets/employees_edit.csv")
```

```
[6]: # count unique values without missing values in a column, ordered descending

→ and normalized

irisdata_df['species'].value_counts(ascending=False, dropna=False,

→normalize=True)
```

[6]: Iris-setosa 0.333333 Iris-versicolor 0.333333 Iris-virginica 0.333333 Name: species, dtype: float64

[59]: # count unique values and missing values in a column, ordered descending and one absolute values
employees_df['Team'].value_counts(ascending=False, dropna=False, one of the count o

[59]: Client Services 106 Business Development 103 Finance 102 98 Marketing Product 96 Sales 94 Engineering 92 Human Resources 92 Distribution 90 Legal 88 NaN 43 Name: Team, dtype: int64

4.5.2 Display Histogram

This section was inspired by: Pandas Histogram – DataFrame.hist().

Histograms represent **frequency distributions** graphically. This requires the separation of the data into classes (so-called **bins**).

These classes are represented in the histogram as rectangles of equal or variable width. The height of each rectangle then represents the (relative or absolute) **frequency density**.

```
[37]: employees_df.hist(column=['Salary'])
```

[37]: array([[<AxesSubplot:title={'center':'Salary'}>]], dtype=object)

4.6 First idea of correlations in data set

To get a rough idea of the **dependencies** and **correlations** in the data set, it can be helpful to visualize the whole dataset in a **correlation heatmap**. They show in a glance which variables are correlated, to what degree and in which direction.

Later, 2 particularly well correlated variables are selected from the data set and plotted in a scatterplot.

4.6.1 Visualise data with correlation heatmap

This section was inspired by How to Create a Seaborn Correlation Heatmap in Python?.

Correlation matrices are an essential tool of exploratory data analysis. Correlation heatmaps contain the same information in a visually appealing way. What more: they show in a glance which variables are correlated, to what degree, in which direction, and alerts us to potential multicollinearity problems (source: ibidem).

Simple correlation matrix Because string values can never be correlated, the class names (species) have to be converted first:

```
[91]:
           sepal_length sepal_width petal_length petal_width species
                     5.1
                                   3.5
                                                   1.4
                                                                 0.2
      1
                     4.9
                                   3.0
                                                   1.4
                                                                 0.2
                                                                             0
      2
                     4.7
                                   3.2
                                                                0.2
                                                   1.3
                                                                             0
      3
                     4.6
                                   3.1
                                                   1.5
                                                                 0.2
                                                                             0
      4
                     5.0
                                   3.6
                                                   1.4
                                                                 0.2
                                                                             0
      145
                     6.7
                                   3.0
                                                   5.2
                                                                 2.3
                                                                             2
                                                  5.0
      146
                     6.3
                                   2.5
                                                                 1.9
                                                                             2
      147
                     6.5
                                   3.0
                                                   5.2
                                                                 2.0
                                                                             2
                                   3.4
                                                                 2.3
                                                                             2
      148
                     6.2
                                                   5.4
                                                                             2
      149
                     5.9
                                   3.0
                                                   5.1
                                                                 1.8
```

[150 rows x 5 columns]

```
[92]: irisdata_df_enc.corr()
```

```
[92]:
                    sepal_length
                                  sepal_width petal_length petal_width
                                                                           species
                        1.000000
                                    -0.109369
      sepal_length
                                                   0.871754
                                                                0.817954 0.782561
      sepal_width
                       -0.109369
                                     1.000000
                                                  -0.420516
                                                               -0.356544 -0.419446
     petal_length
                        0.871754
                                    -0.420516
                                                   1.000000
                                                                0.962757 0.949043
     petal_width
                        0.817954
                                                   0.962757
                                                                1.000000 0.956464
                                    -0.356544
      species
                        0.782561
                                    -0.419446
                                                   0.949043
                                                                0.956464 1.000000
```

Correlation heatmap Choose the color sets from color map.

```
[93]: # increase the size of the heatmap
plt.figure(figsize=(16, 6))

# store heatmap object in a variable to easily access it
# when you want to include more features (such as title)
# set the range of values to be displayed on the colormap from -1 to 1,
# and set 'annotation=True' to display the correlation values on the heatmap
heatmap = sns.heatmap(irisdata_df_enc.corr(), vmin=-1, vmax=1, annot=True, usermap='PRGn_r')

# give a title to the heatmap
# 'pad=12' defines the distance of the title from the top of the heatmap
heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':18}, pad=16)
```

[93]: Text(0.5, 1.0, 'Correlation Heatmap')

Triangle correlation heatmap When looking at the correlation heatmaps above, you would not lose any information by **cutting** away half of it **along the diagonal** line marked by 1-s.

The **numpy** function **np.triu()** can be used to isolate the upper triangle of a matrix while turning all the values in the lower triangle into 0.

```
[94]: import numpy as np
np.triu(np.ones_like(irisdata_df_enc.corr()))
```

```
[94]: array([[1., 1., 1., 1., 1.], [0., 1., 1., 1.], [0., 0., 1., 1., 1.], [0., 0., 0., 1., 1.], [0., 0., 0., 0., 1.]])
```

Use this mask to cut the heatmap along the diagonal:

```
[95]: plt.figure(figsize=(16, 6))

# define the mask to set the values in the upper triangle to 'True'
mask = np.triu(np.ones_like(irisdata_df_enc.corr(), dtype=bool))

heatmap = sns.heatmap(irisdata_df_enc.corr(), mask=mask, vmin=-1, vmax=1, use annot=True, cmap='PRGn_r')

heatmap.set_title('Triangle Correlation Heatmap', fontdict={'fontsize':18}, use apad=16)
```

[95]: Text(0.5, 1.0, 'Triangle Correlation Heatmap')

As a result from the **heatmaps** we can see, that the shape of the **petals** are the **most correlationed columns** (0.96) with the **type of flowers** (species classes).

Somewhat lower correlates sepal length with petal length (0.87).

4.6.2 Visualise data with scatter plot

In the following, Seaborn is applied which is a library for making statistical graphics in Python. It is built on top of matplotlib and closely integrated with pandas data structures.

To investigate whether there are dependencies (e.g. correlations) in irisdata_df between individual variables in the data set, it is advisable to plot them in a scatter plot.

[16]: <seaborn.axisgrid.FacetGrid at 0xa7c69810>

4.6.3 Visualise data with pairs plot

For systematic investigation of dependencies, all variables (each against each) are plotted in separate scatter plots.

With this so called **pairs plot** it is possible to see both **relationships** between two variables and **distribution** of single variables.

This function will create a grid of Axes such that **each numeric variable** in <code>irisdata_df</code> will by shared in the y-axis across a single row and in the x-axis across a single column.

```
[60]: sns.set_style("white")
g = sns.pairplot(irisdata_df, diag_kind="kde", hue='species', palette='Dark2',
height=2.5)
g.map_lower(sns.kdeplot, levels=4, color=".2")
```

[60]: <seaborn.axisgrid.PairGrid at 0x618ba670>

5 STEP 2: Prepare the data

Through the intensive exploration of the data in Step 1 (STEP 1: Exploring the data), we know that special **preparation** of the data is **not necessary**. The values are **complete** and **without gaps** and there are **no duplicates**. The values are in similar ranges, which **does not require normalization** of the data.

Furthermore, we know that the **classes** are very **evenly distributed** and thus bias tendencies should be avoided.

6 STEP 3: Classify by support vector classifier - SVC

6.1 Operating principal

Support Vectors Classifier tries to find the best hyperplane to separate the different classes by maximizing the distance between sample points and the hyperplane (source: In Depth: Parameter tuning for SVC).

Following graphic shows the operating principal of SVC: the hyperplane H1 does not separate the

classes. H2 does, but only with a small margin. H3 separates them with the maximal margin (source: Support-vector machine).

<IPython.core.display.HTML object>

6.2 Split the dataset

In the next very important step, the dataset is split into **2 subsets**: a **training dataset** and a **test dataset**. As the names suggest, the training dataset is used to train the ML algorithm. The test data set is then used to check the quality of the trained ML algorithm (here the **recognition rate**). For this purpose, the **class labels** are **removed** from the training data set - after all, these are to be predicted.

Typically, the **test dataset** set should contain **20%** of the entire dataset.

```
[43]: from sklearn.model_selection import train_test_split

X = irisdata_df.drop('species', axis=1)
y = irisdata_df['species']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
```

For training, do not use only the variables that correlate best with each other, but all of them.

Otherwise, the result of the prediction would be significantly worse. Maybe this is already an indication of **overfitting** of the ML model.

```
[42]: # do not use this!

X_train, X_test, y_train, y_test = train_test_split(X[['sepal_length', □ → 'sepal_width']], y, test_size = 0.20)
```

6.3 Create the SVM model

In this step we create the SVC model and fit it to our training data.

```
[44]: from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)

# fit the model for the data
classifier.fit(X_train, y_train)
```

```
[44]: SVC(kernel='linear', random_state=0)
```

6.4 Make predictions

```
[45]: y_pred = classifier.predict(X_test)
#X_test
```

7 STEP 4: Evaluate the results - metrics

And finally for checking the accuracy of the model, the **confusion matrix** is used for the **cross validation**.

By using the function sklearn.metrics.confusion_matrix() a confusion matrix of the true digit values versus the predicted digit values is plotted.

7.1 Textual confusion matrix

```
[46]: cm = metrics.confusion_matrix(y_test, y_pred)
print(cm)
[[ 8  0  0]
```

[0 7 0] [0 0 15]]

7.2 Colored confusion matrix

The function sklearn.metrics.ConfusionMatrixDisplay() plots a colored confusion matrix.

```
[58]: sns.set_style("white")

# print colored confusion matrix
cm_colored = metrics.ConfusionMatrixDisplay.from_predictions(y_test, y_pred)

#cm_colored.figure_.suptitle("Confusion Matrix")
cm_colored.figure_.set_figwidth(7)
cm_colored.figure_.set_figheight(6)

cm_colored.confusion_matrix
plt.show()
```



```
[156]: from sklearn.model_selection import cross_val_score

accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, \( \to \colon v = 10 \)

print("Accuracy: \{:.2f} \%".format(accuracies.mean()*100))

print("Standard Deviation: \{:.2f} \%".format(accuracies.std()*100))
```

Accuracy: 96.67 %

Standard Deviation: 5.53 %

8 STEP 5: Vary parameters

This section was inspired by In Depth: Parameter tuning for SVC

In this section, the 4 SVC parameters kernel, gamma, C and degree will be introduced one by one. Furthermore, their influence on the classification result by varying these single parameters will be shown.

Disclaimer: In order to show the effects of varying the individual parameters in 2D graphs, only the best correlating variables petal_length and petal_width are used to train the SVC.

8.1 Prepare dataset

[98]:	sepal_length	${\tt sepal_width}$	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
	•••	•••	•••		
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

[150 rows x 5 columns]

```
[116]: # copy only 2 feature columns
# and convert pandas dataframe to numpy array
X = irisdata_df_enc[['petal_length', 'petal_width']].to_numpy(copy=True)
#X = irisdata_df_enc[['sepal_length', 'sepal_width']].to_numpy(copy=True)
#X
```

```
[118]: # convert pandas dataframe to numpy array
# and get a flat 1D copy of 2D numpy array
y = irisdata_df_enc[['species']].to_numpy(copy=True).flatten()
#y
```

8.2 Plotting function

This function helps to visualize the modifications by varying the individual SVC parameters.

```
[101]: def plotSVC(title, xlabel, ylabel):
    # create a mesh to plot in
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

# prevent division by zero
    if x_min == 0.0:
```

```
x_min = 0.1

h = (x_max / x_min)/1000
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

plt.subplot(1, 1, 1)
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.6)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel(xlabel)
plt.xlabel(ylabel)
plt.xlim(xx.min(), xx.max())
plt.title(title)
plt.show()
```

8.3 Vary kernel parameter

The kernel parameter selects the type of hyperplane that is used to separate the data. Using linear (linear classifier) kernel will use a linear hyperplane (a line in the case of 2D data). The rbf (radial basis function kernel) and poly (polynomial kernel) kernel use non linear hyperplanes.

```
[102]: kernels = ['linear', 'rbf', 'poly']

xlabel = 'Petal length'
ylabel = 'Petal width'

for kernel in kernels:
    svc = svm.SVC(kernel=kernel).fit(X, y)
    plotSVC('kernel = ' + str(kernel), xlabel, ylabel)
```


8.4 Vary gamma parameter

The gamma parameter is used for non linear hyperplanes. The higher the gamma value it tries to exactly fit the training data set.

As we can see, increasing gamma leads to **overfitting** as the classifier tries to perfectly fit the training data.

```
[106]: gammas = [0.1, 1, 10, 100, 200]

xlabel = 'Petal length'
ylabel = 'Petal width'

for gamma in gammas:
    svc = svm.SVC(kernel='rbf', gamma=gamma).fit(X, y)
    plotSVC('gamma = ' + str(gamma), xlabel, ylabel)
```


8.5 Vary C parameter

The C parameter is the **penalty** of the error term. It controls the trade off between smooth decision boundary and classifying the training points correctly.

But be careful: to high C values may lead to **overfitting** the training data.

```
[108]: cs = [0.1, 1, 10, 100, 10000, 10000]

xlabel = 'Petal length'
ylabel = 'Petal width'

for c in cs:
    svc = svm.SVC(kernel='rbf', C=c).fit(X, y)
    plotSVC('C = ' + str(c), xlabel, ylabel)
```


8.6 Vary degree parameter

The degree parameter is used when the kernel is set to poly. It's basically the degree of the polynomial used to find the hyperplane to split the data.

Using degree = 1 is the same as using a linear kernel. Also, increasing this parameters leads to higher training times.

```
[113]: degrees = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

xlabel = 'Petal length'
ylabel = 'Petal width'

for degree in degrees:
    svc = svm.SVC(kernel='poly', degree=degree).fit(X, y)
    plotSVC('degree = ' + str(degree), xlabel, ylabel)
```


[]: