[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2023-2024 Scribed by: Manas Jitendrakumar Ingle (202151086) Lecture 1,2 (Week 4)

1 Subgroup

A non-empty subset H in a group (G, *) is a subgroup of G if H is itself a group with respect to the operation * of G. If it is a proper subset and a group with respect to * of G and $H \neq G$, then H is called a proper subgroup of (G, *).

- 1. $H \subseteq G$ or not
- 2. H is itself a group with *

Property:

$$(G,*)$$
 is a Group
 $a \in G \to a*a \in G, a*a*a \in G$
 $a*a = a^2, a*a*a = a^3 \in G$
 $a^i = a*a*...*a \in G, (a*a)^i \to i$ operations *

2 Generators and Cyclic Group

Consider a group (G,*). Let $\alpha \in G$. The identity element α^0 belongs to G. Therefore,

$$\alpha^{0} * \alpha = \alpha^{1}$$
$$\alpha^{1} * \alpha = \alpha^{2}$$
$$\alpha^{2} * \alpha = \alpha^{3}$$

Note: The * here is not multiplication, it is a binary operation not necessarily multiplication. $\alpha^1, \alpha^2, \alpha^3$ and so on, are just notation of using the binary operation * on same element.

Since, G is closed under *, any two elements belonging to G, will give the result in G on performing

the binary operation *. Since $\alpha^0 \in G$ and $\alpha \in G$, therefore $\alpha^1 \in G$. Now, since $\alpha^1 \in G$, therefore $\alpha^2 \in G$, and so on. That means,

$$\alpha^0,\alpha^1,\alpha^2,\ldots\in G$$

The set $\alpha^0, \alpha^1, \alpha^2, \dots$ is denoted by $\langle \alpha \rangle$. Also, $\langle \alpha \rangle \subseteq G$. α is called the generator of (G, *) iff:

for any
$$b \in G \; \exists \; i \geq 0$$
 such that $b = \alpha^i$ and hence $G \subseteq \langle \alpha \rangle$.

We can conclude that $(G,*) = \langle \alpha \rangle$

A group is called a cyclic group if there is an element $\alpha \in G$, such that for every $b \in G$, there is an integer i with $b = \alpha^i$. In simple words, every element in G can be expressed as some exponent of α , then α is the generator of G.

Order of an element 2.0.1

Consider $(G,^*)$ and |G|: finite. Let $a \in G$.

We already know that a^0 is identity. Now, the order of an element is the least positive integer m such that $a^m = e$.

$$o(a) = m$$
 such that $a^m = e$

Since $a^m = e$, so $a^{m+1} = a$, $a^{m+2} = a^2$ and so on. So we define a set H such as:

$$\mathbf{H} = \{a^0, a^1, a^2, \dots, a^{m-1}\}\$$

We understand that

- $H \subseteq G$
- H is a group under *

Lagrange's Theorem:

If G is a finite group and H is a subgroup of g then |H| divides |G|.

• G is a finite group

$$a \in G$$

$$O(a) \mid |G|$$

$$\Rightarrow a \in G$$

$$H = \{ e = a^0, a^1, a^2, \dots, a^{O(a)-1} \}$$

H is a subgroup of G

From Lagrange's theorem:

$$|H| \mid |G|$$

 $\Rightarrow O(a) \mid |G|$

• If the order of $a \in G$ is t

then
$$O(a^k) = \frac{t}{\gcd(t,k)}$$

• If
$$gcd(t,k) = 1$$

then
$$O(a^k) = t = O(a)$$

 $\Rightarrow | < a^k > | = | < a > |$

$$\Rightarrow | < a^n > | = | < a > |$$

 $\Rightarrow x = (a^k)^i = a^{ki} = \langle a \rangle$

 $x \in \langle a^k \rangle$

$$\langle a^k \rangle \subseteq \langle a \rangle$$

 $\langle a^k \rangle = \langle a \rangle$

$$\langle a^k \rangle \subseteq \langle a \rangle$$

$$\Rightarrow < a^k > = < a >$$

 a^k is also a generator of $\langle a \rangle$

$$\langle a^k \rangle = \langle a \rangle$$
 Subgroup generated by a

$$\langle a \rangle = \langle a^k \rangle$$
 Subgroup generated by a^k

3 Ring:

3.1 Introduction:

A ring $(R, +_R, \times_R)$ consists of one set R with two binary operations arbitrarily denoted by $+_R$ (addition) and \times_R (multiplication) on R, satisfying the following properties:

- 1. $(R, +_R)$ is an abelian group with the identity element 0_R
- 2. The operation \times_R is associative,i.e, $a \times_R (b \times_R c)$
- 3. There is a multiplication identity denoted by 1_R with $1_R \neq 0_R$ such that
 - $1_R \times_R a = a \times_R 1_R = a$ $\forall a \in R$
- 4. The operation \times_R is distributive over $+_n$, i.e, $(b +_R c) \times_R a = (b \times_R a) +_R (c \times_R a)$ $a \times_R (b +_R c) = (a \times_R b) +_R (a \times_R c)$

Field

A field is a non-empty set F together with two binary operation +(addition) and *(multiplication) fow which the following properties are satisfied

- (F, +) is an abelian group
- If 0_F denotes the additive identity element of (F,+) then $(F \setminus \{0_F\},*)$ is a commutative/abelian group.
- \forall a,b,c \in F, we have,

$$a^*(b+c) = (a^*b) + (a^*c)$$

Note:

- $(Z, +, \cdot)$ is not a field because inverse does not exist
- \bullet $(Q,+,\cdot)$

(Q, +): abelian group

0: additive identity

1: multiplicative identity

 $(Q \setminus \{0\}, \cdot \text{ forms an abelian group.})$

Hence, it is a field.

Example: Is $(\mathbb{F}_p, +_p, *_p)$ a field, where p is a prime number?

Solution: We know that $(\mathbb{F}_p, +_p)$ an abelian group with identity element 0. Now, the set $\mathbb{F}_p - \{0\}$ has existing multiplicative inverse iff gcd(x, p) = 1 for each $x \in \mathbb{F}_p - \{0\}$. Since, p is prime, gcd(x, p) = 1 for all possible integers that x can take. Hence, $(\mathbb{F}_p, +_p, *_p)$ is a field.

4 Field Extension

Suppose K_2 is a field with addition(+) and multiplication(*).

Suppose K_1K_2 is closed under both these operations such that K_1 itself is a field with the restriction of + and * to the set K_1 . Then K_1 is called a subfield of K_2 and K_2 is called a field extension of K_1 .

As K_1 is a subset of K_2 . Let F be a field (F, +, *). Consider the polynomial ring F[x], which consists of all polynomials with coefficients in the field F:

$$F[x] = \{a_0 + a_1x + a_2x^2 + \dots | a_i \in F\}$$

The addition operation of two polynomials in F[x]:

$$(a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}) + (b_0 + b_1x + b_2x^2 + \dots + b_{n-1}x^{n-1})$$

results in:

$$(a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots + (a_{n-1} + b_{n-1})x^{n-1}$$

where a_i+b_i is the additive operation in the field F. The multiplication operation of two polynomials in F[x]:

$$(a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1}) * (b_0 + b_1x + b_2x^2 + \ldots + b_{n-1}x^{n-1})$$

results in:

$$(a_0b_0) + (a_0b_1 + a_1b_0)x + \ldots + (a_{n-1}b_{n-1})x^{2n-2}$$

5 Irreducible Polynomial

A polynomial $P(x) \in F[x]$ of degree $n \ge 1$ is called irreducible if it cannot be written in the form of $P_1(x) * P_2(x)$ with $P_1(x), P_2(x) \in F[x]$ and degree of $P_1(x), P_2(x)$ must be greater than or equal to 1. It means that P(x) is irreducible if it can not be factorised.

Example: $x^2 + 1 \in \mathbb{F}_2[x]$.

Solution: $(x+1)*(x+1) = x^2 + (1+1) \cdot x + 1 = x^2 + 1$. Therefore, $(x^2+1) = (x+1)*(x+1)$ in $\mathbb{F}_2[x]$. Hence, (x^2+1) is reducible in $\mathbb{F}_2[x]$. Note that it is not possible to factor x^2+1 in $\mathbb{R}[x]$, where \mathbb{R} is set of real numbers.

6 Advanced Encryption Standard:

- It is Standardized by NIST.
- Rijndael winner of Advanced Encryption Standard Competition.
- Winner of the Competition was named AES.

AES is based on -

- 1. Iterative block cipher.
- 2. It is based on SPN.

6.1 Types of AES:

- 1. AES 128
 - (a) Block size = 128 bit
 - (b) Number of Rounds = 10
 - (c) Secret key size = 128 bit
- 2. AES 192
 - (a) Block size = 128 bit
 - (b) Number of Rounds = 12
 - (c) Secret key size = 192 bit
- 3. AES 256
 - (a) Block size = 128 bit
 - (b) Number of Rounds = 14
 - (c) Secret key size = 256 bit