UVOD V GEOMETRIJSKO TOPOLOGIJO, 2. TEST 13.5.2011

TEORETIČNA NALOGA

Pravilne so 1., 3., 4., 7., 9. in 10. trditev.

1. PROBLEMSKA NALOGA

Z indukcijo pokažimo, da je za $n \in \mathbb{N}$ prostor X_n absolutni ekstenzor za razred normalnih prostorov (AE(\mathbb{N})). Prostor X_1 je unija dveh premic $\mathbb{R} \times \{1\}$ in $\{0\} \times \mathbb{R}$, ki sta zaprta prostora v \mathbb{R}^2 in sta AE(\mathbb{N}). Ker je presek ($\mathbb{R} \times \{1\}$) \cap ($\{0\} \times \mathbb{R}$) = $\{(0,1)\}$ le točka, je zato tudi X_1 AE(\mathbb{N}).

Denimo, da je X_n AE(N). Ker je $X_{n+1} = X_n \cup \mathbb{R} \times \{n+1\}$, X_n ter $\mathbb{R} \times \{n+1\}$ sta zaprta podprotora v \mathbb{R}^2 (saj sta produkta dveh zaprtih množic iz \mathbb{R}), X_n ter $\mathbb{R} \times \{n+1\}$ sta AE(N) in presek $X_n \cap \mathbb{R} \times \{n+1\} = \{(0, n+1)\}$ je le točka, je X_{n+1} tudi AE(N).

Za $n \in \mathbb{N}$ je tako X_n AE(\mathbb{N}) in zaprt podprostor \mathbb{R}^2 , zato je X_n retrakt ravnine \mathbb{R}^2 .

Pokažimo še, da je X_{∞} retrakt ravnine \mathbb{R}^2 . Naj bo $A_0^+ = [0,\infty) \times (-\infty,0]$ in za $n \in \mathbb{N}$ naj bo $A_n^+ = [0,\infty) \times [n-1,n]$. Rob $B_0^+ = ([0,\infty) \times \{0\}) \cup (\{0\} \times (-\infty,0])$ množice A_0^+ je homeomorfen \mathbb{R} , zato je AE(\mathbb{N}). Ker je B_0^+ zaprta podmnožica normalnega prostora A_0^+ , obstaja retrakcija $r_0^+ \colon A_0^+ \to B_0^+$. Za $n \in \mathbb{N}$ je $B_n^+ = ([0,\infty) \times \{n-1n\}) \cup (\{0\} \times [n-1,n])$ rob množice A_n^+ tudi homeomorfen \mathbb{R} , zato je AE(\mathbb{N}). Ker je B_n^+ zaprta podmnožica normalnega prostora A_n^+ , obstaja retrakcija $r_n^+ \colon A_n^+ \to B_n^+$. Naj bo $i \colon \mathbb{R}^2 \to \mathbb{R}^2$ zrcaljenje preko y-osi. Za $A_n^- = i(A_n^+)$ in $B_n^- = i(B_n^+)$ je $r_n^-(x) = i(r_n^+(i(x)))$ retrakcija množice A_n^- na njen rob B_n^- .

Definirajmo retrakcijo $r\colon\mathbb{R}^2\to X_\infty$ s predpsiom $r(x)=r_n^z(x)$, če je $x\in A_n^z$. Ker je $\{A_n^z\mid n\in\mathbb{N}\cup\{0\},z\in\{+,-\}\}$ lokalno končno zaprto pokritje za \mathbb{R}^2 in se predpisi na presekih ujemajo $(A_n^z\cap A_m^w\subset X_\infty=\cup_{l=0}^\infty\cup_{t=\pm}B_l^t)$, je r zvezna in je retrakcija.

2. PROBLEMSKA NALOGA

Prostor X je narisan spodaj levo. Vsaka orbita delovanja grupe G ima vsaj enega predstavnika v množici

 $A = X \cap [0, \infty)^2$. Ker sta poljubni različni točki iz A v različnih orbitah, bo X/G homeomorfen prostoru A. Za preslikavo $f \colon X \to A$ definirano s predpisom f(x,y) = (|x|,|y|) velja f(x,y) = f(u,v) natanko tedaj, ko sta točki (x,y) in (u,v) v isti orbiti. Torej f porodi zvezno bijekcijo $\widetilde{f} \colon X/G \to A$. Ker \widetilde{f} slika iz kompaktnega v Hausdorffov prostor, je homeomorfizem.

Vsaka orbita delovanja grupe H ima vsaj enega predstavnika v množici $\widetilde{B} = ([0,1] \times \{0\}) \cup (S^1 \cap [0,\infty)^2)$. Edini različni točki v \widetilde{B} , ki sta v isti orbiti sta (0,1) in (1,0). Torej je prostor orbit X/H homeomorfen prostoru B, ki ga dobimo iz \widetilde{B} tako, da "staknemo" točki (0,1) in (1,0). Definirajmo preslikavo $g \colon X \to B$ s predpisom

$$g(x,y) = \begin{cases} (|x|,0), & (x,y) \in [0,1] \times \{0\}, \\ (|y|,0), & (x,y) \in \{0\} \times [0,1], \\ (\cos(2\pi|x|), \sin(2\pi|x|)), & (x,y) \in S^1, xy \ge 0, \\ (\cos(2\pi|y|), \sin(2\pi|y|)), & (x,y) \in S^1, xy \le 0. \end{cases}$$

Preslikava g je zvezna in naredi prave identifikacije, zato inducira zvezno bijekcijo $\widetilde{g} \colon X \to B$. Ker je \widetilde{g} zaprta (slika iz kompaktnega v Hausdorffov prostor), je homeomorfizem.