9:54 pm

Functions and Models

Functions arise whenever one quantity depends on another. Consider the following four situations.

- **A.** The area A of a circle depends on the radius r of the circle. The rule that connects r and A is given by the equation $A = \pi r^2$. With each positive number r there is associated one value of A, and we say that A is a *function* of r.
- **B**. The human population of the world P depends on the time t. The table gives estimates of the world population P(t) at time t, for certain years. For instance,

$$P(1950) \approx 2,560,000,000$$

But for each value of the time t there is a corresponding value of P, and we say that P is a function of t.

- C. The cost C of mailing an envelope depends on its weight w. Although there is no simple formula that connects w and C, the post office has a rule for determining C when w is known.
- D. The vertical acceleration a of the ground as measured by a seismograph during an earthquake is a function of the elapsed time t. Figure 1 shows a graph generated by seismic activity during the Northridge earthquake that shook Los Angeles in 1994. For a given value of t, the graph provides a corresponding value of a.

A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

FIGURE 2

Machine diagram for a function f

FIGURE 3

Arrow diagram for f

range y = f(x)domain

FIGURE 4

FIGURE 5

FIGURE 6

EXAMPLE 1 The graph of a function f is shown in Figure 6.

- (a) Find the values of f(1) and f(5).
- (b) What are the domain and range of f?

EXAMPLE 2 Sketch the graph and find the domain and range of each function. (a) f(x) = 2x - 1 (b) $g(x) = x^2$

(a)
$$f(x) = 2x - 1$$

(b)
$$q(x) = x^2$$

EXAMPLE 3 If $f(x) = 2x^2 - 5x + 1$ and $h \ne 0$, evaluate $\frac{f(a+h) - f(a)}{h}$.

Representations of Functions

There are four possible ways to represent a function:

- verbally (by a description in words)
- numerically (by a table of values)
- visually (by a graph)
- algebraically (by an explicit formula)

EXAMPLE 6 Find the domain of each function.

(a)
$$f(x) = \sqrt{x+2}$$

(b)
$$g(x) = \frac{1}{x^2 - x}$$

The Vertical Line Test A curve in the *xy*-plane is the graph of a function of *x* if and only if no vertical line intersects the curve more than once.

Piecewise Defined Functions

The functions in the following four examples are defined by different formulas in different parts of their domains. Such functions are called **piecewise defined functions**.

\mathbf{V} **EXAMPLE7** A function f is defined by

$$f(x) = \begin{cases} 1 - x & \text{if } x \le -1\\ x^2 & \text{if } x > -1 \end{cases}$$

Evaluate f(-2), f(-1), and f(0) and sketch the graph.

The next example of a piecewise defined function is the absolute value function. Recall that the **absolute value** of a number a, denoted by |a|, is the distance from a to 0 on the real number line. Distances are always positive or 0, so we have

$$|a| \ge 0$$
 for every number a

For example,

$$|3| = 3$$
 $|-3| = 3$ $|0| = 0$ $|\sqrt{2} - 1| = \sqrt{2} - 1$ $|3 - \pi| = \pi - 3$

In general, we have

$$|a| = a$$
 if $a \ge 0$
 $|a| = -a$ if $a < 0$

(Remember that if a is negative, then -a is positive.)

EXAMPLE 8 Sketch the graph of the absolute value function f(x) = |x|.

SOLUTION From the preceding discussion we know that

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

EXAMPLE 9 Find a formula for the function f graphed in Figure 17.

Symmetry

If a function f satisfies f(-x) = f(x) for every number x in its domain, then f is called an **even function.** For instance, the function $f(x) = x^2$ is even because

$$f(-x) = (-x)^2 = x^2 = f(x)$$

FIGURE 19 An even function

FIGURE 20 An odd function

If f satisfies f(-x) = -f(x) for every number x in its domain, then f is called an **odd function**. For example, the function $f(x) = x^3$ is odd because

$$f(-x) = (-x)^3 = -x^3 = -f(x)$$

V EXAMPLE 11 Determine whether each of the following functions is even, odd, or neither even nor odd.

(a)
$$f(x) = x^5 + x$$

(b)
$$g(x) = 1 - x^4$$
 (c) $h(x) = 2x - x^2$

(c)
$$h(x) = 2x - x^2$$

Increasing and Decreasing Functions

A function f is called increasing on an interval I if

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$ in I

It is called decreasing on ${\cal I}$ if

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$ in I

