1 Matrices et applications linéaires

1.1 Rang d'une famille de vecteurs

E est un \mathbb{K} -espace vectoriel.

Rang d'une famille de vecteurs

Soit $\{v_1,\ldots,v_p\}$ une famille finie de vecteurs de E. Le rang de la famille $\{v_1,\ldots,v_p\}$ est la dimension du sous-espace vectoriel $\mathrm{Vect}(v_1,\ldots,v_p)$ engendré par les vecteurs v_1,\ldots,v_p :

$$rg(v_1, ..., v_p) = dim Vect(v_1, ..., v_p)$$

Proposition. Soient E un \mathbb{K} -espace vectoriel et $\{v_1,\ldots,v_p\}$ une famille de p vecteurs de E. Alors :

- 1. $0 \le \operatorname{rg}(v_1,\ldots,v_p) \le p$: le rang est inférieur ou égal au nombre d'éléments dans la famille.
- 2. Si E est de dimension finie alors $\operatorname{rg}(\nu_1,\ldots,\nu_p) \leqslant \dim E$: le rang est inférieur ou égal à la dimension de l'espace ambiant E.

Exemple. Le rang d'une famille $\{\nu_1,\dots,\nu_p\}$ vaut p si et seulement si la famille $\{\nu_1,\dots,\nu_p\}$ est libre.

Rang d'une matrice

Le rang d'une matrice est le rang de ses vecteurs colonnes.

Proposition. Le rang d'une matrice échelonnée par colonnes est égal au nombre de colonnes non nulles.

Voici un exemple d'une matrice 6×6 échelonnée par colonnes ; les * désignent des coefficients quelconques, les + des coefficients non nuls. Cette matrice est de rang 4.

$$\begin{pmatrix} + & 0 & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 & 0 \\ * & + & 0 & 0 & 0 & 0 \\ * & * & + & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 \\ * & * & * & + & 0 & 0 & 0 \end{pmatrix}$$

Proposition. Le rang d'une matrice ayant les colonnes $C_1, C_2, ..., C_p$ n'est pas modifié par les trois opérations élémentaires suivantes sur les vecteurs :

- 1. $C_i \leftarrow \lambda C_i$ avec $\lambda \neq 0$: on peut multiplier une colonne par un scalaire non nul.
- 2. $C_i \leftarrow C_i + \lambda C_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): on peut ajouter à la colonne C_i un multiple d'une autre colonne C_i .
- 3. $C_i \leftrightarrow C_j$: on peut échanger deux colonnes.

Plus généralement, l'opération $C_i \leftarrow C_i + \sum_{i \neq j} \lambda_j C_j$ conserve le rang de la matrice.

 $\bf M\acute{e}thodologie.$ Comment calculer le rang d'une matrice ou d'un système de vecteurs ?

Il s'agit d'appliquer la méthode de Gauss sur les colonnes de la matrice A (considérée comme une juxtaposition de vecteurs colonnes). Le principe de la méthode de Gauss affirme que par les opérations élémentaires $C_i \leftarrow \lambda C_i$, $C_i \leftarrow C_i + \lambda C_j$, $C_i \leftarrow C_j$, on transforme la matrice A en une matrice échelonnée par rapport aux colonnes. Le rang de la matrice est alors le nombre de colonnes non nulles.

Théorème (Matrice inversible et rang). Une matrice carrée de taille n est inversible si et seulement si elle est de rang n.

L'espace vectoriel engendré par les vecteurs colonnes $(v_i)_{1 \le i \le p}$ et l'espace vectoriel engendré par les vecteurs lignes $(w_i)_{1 \le i \le n}$ sont de même dimension :

Proposition. $rgA = dim Vect(w_1, ..., w_n)$

Autrement dit le rang d'une matrice égale le rang de sa transposée :

$$rgA = rgA^T$$

Attention! Les dimensions $\dim \operatorname{Vect}(\nu_1,\ldots,\nu_p)$ et $\dim \operatorname{Vect}(w_1,\ldots,w_n)$ sont égales, mais les espaces vectoriels $\operatorname{Vect}(\nu_1,\ldots,\nu_p)$ et $\operatorname{Vect}(w_1,\ldots,w_n)$ ne sont pas les mêmes.

1.2 Applications linéaires en dimension finie

E et F sont deux \mathbb{K} -espace vectoriels.

Théorème (Construction d'une application linéaire). Si E est de dimension finie n et (e_1,\ldots,e_n) est une base de E, alors pour tout choix (v_1,\ldots,v_n) de n vecteurs de F, il existe une et une seule application linéaire $f:E\to F$ telle que, pour tout $i=1,\ldots,n$:

$$f(e_i) = v_i.$$

Rang d'une application linéaire

Soit $f: E \to F$ une application linéaire et E est de dimension finie.

- Im $f = f(E) = \{f(x) | x \in E\}$ est un espace vectoriel de dimension finie
- Si $(e_1, ..., e_n)$ est une base de E, alors Im $f = \text{Vect}(f(e_1), ..., f(e_n))$. La dimension de cet espace vectoriel Im f est appelée $rang\ de\ f$:

$$\operatorname{rg}(f) = \dim \operatorname{Im} f = \dim \operatorname{Vect}(f(e_1), \dots, f(e_n))$$

Le rang est plus petit que la dimension de E et aussi plus petit que la dimension de F, si F est de dimension finie.

Théorème du rang

On rappelle que le *noyau* de f est $\operatorname{Ker} f = \{x \in E \mid f(x) = 0_F\}$, c'est un sous-espace vectoriel de E.

Théorème (Théorème du rang). Soit $f: E \to F$ une application linéaire, E étant de dimension finie.

$$\dim E = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$$

Autrement dit : $\dim E = \dim \operatorname{Ker} f + \operatorname{rg} f$

Cette formule sert à déterminer la dimension du noyau connaissant le rang, ou bien le rang connaissant la dimension du noyau.

Application linéaire entre deux espaces de même dimension

 $f: E \to F$ est un *isomorphisme* si f est une application linéaire bijective. La bijection réciproque est aussi une application linéaire.

Proposition. Soit $f: E \to F$ un isomorphisme d'espaces vectoriels. Si E (respectivement F) est de dimension finie, alors F (respectivement E) est aussi de dimension finie et on a dim E = dim F.

Voici une sorte de réciproque extrêmement utile :

Théorème. Soit $f: E \to F$ une application linéaire avec dim $E = \dim F$. Les assertions suivantes sont équivalentes :

- (i) f est bijective
- (ii) f est injective
- (iii) f est surjective

Ainsi, si $\dim E = \dim F$, pour montrer que f bijective, il suffit de démontrer f injective ou bien f surjective.

1.3 Matrice d'une application linéaire

- Soit E un espace vectoriel de dimension p et $\mathscr{B}=(e_1,\ldots,e_p)$ une base de E
- Soit F un espace vectoriel de dimension n et $\mathscr{B}' = (f_1, \ldots, f_n)$ une base de F.
- Soit $f: E \to F$ une application linéaire.
- Pour $j \in \{1, ..., p\}$, $f(e_j)$ s'écrit de manière dans la base \mathscr{B}' :

$$f(e_j) = a_{1j}f_1 + a_{2j}f_2 + \dots + a_{nj}f_n = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}_{\mathfrak{B}'}.$$

La *matrice de l'application linéaire* f par rapport aux bases \mathcal{B} et \mathcal{B}' est la matrice $(a_{i,j}) \in M_{n,p}(\mathbb{K})$ dont la j-ème colonne est constituée par les coordonnées du vecteur $f(e_i)$ dans la base $\mathcal{B}' = (f_1, f_2, \ldots, f_n)$:

$$\text{Mat}_{\mathscr{B},\mathscr{B}'}(f) = \begin{bmatrix} f(e_1) & \dots & f(e_p) & \dots & f(e_p) \\ f_1 & a_{11} & & a_{1j} & \dots & a_{1p} \\ a_{21} & & a_{2j} & \dots & a_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & & a_{nj} & \dots & a_{np} \end{bmatrix}$$

Les vecteurs colonnes sont l'image par f des vecteurs de la base de départ \mathcal{B} , exprimée dans la base d'arrivée \mathcal{B}' .

Matrice d'une composition.

La matrice associée à la composition de deux applications linéaires est le produit des matrices associées à chacune d'elles, dans le même ordre.

Proposition. Soient $f: E \to F$ et $g: F \to G$ deux applications linéaires et soient \mathcal{B} une base de E, \mathcal{B}' une base de F et \mathcal{B}'' une base de F. Si on note :

$$A = \operatorname{Mat}_{\mathscr{B}, \mathscr{B}'}(f)$$
 $B = \operatorname{Mat}_{\mathscr{B}', \mathscr{B}''}(g)$ $C = \operatorname{Mat}_{\mathscr{B}, \mathscr{B}''}(g \circ f)$

Alors

$$C = B \times A$$

Matrice d'un endomorphisme

Soit E un espace vectoriel de dimension $n. f: E \to E$ est un *endomorphisme* (l'espace vectoriel de départ est égal à celui d'arrivée). On choisit généralement la même base $\mathcal B$ au départ et à l'arrivée, et on note simplement $\operatorname{Mat}_{\mathcal B}(f)$ la matrice associée à f, c'est une matrice carrée de taille $n \times n$.

Exemple.

- Cas de l'identité : id : E → E, id(x) = x. Quelle que soit la base B de E, Mat_B(id) = I_n.
- Cas d'une homothétie $h_{\lambda}: E \to E$, $h_{\lambda}(x) = \lambda \cdot x: \operatorname{Mat}_{\mathscr{B}}(h_{\lambda}) = \lambda I_{n}$. — Cas d'une symétrie centrale $s: E \to E$, $s(x) = -x: \operatorname{Mat}_{\mathscr{B}}(s) = -I_{n}$.
- Cas d'une symétric centrale $s: E \to E$, s(x) = -x. Mat $_{\mathfrak{B}}(s) = -1_n$.

 Cas de $r_{\theta}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la rotation d'angle θ , centrée à l'origine, dans l'espace vectoriel \mathbb{R}^2 muni de la base canonique $\mathfrak{B}: \mathrm{Mat}_{\mathfrak{B}}(r_{\theta}) =$

 $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

Si A est la matrice associée à f , alors la matrice associée à $f^p=f\circ f\circ \cdots \circ f$ est $A^p=A\times A\times \cdots \times A$.

Matrice d'un isomorphisme

Soit $f: E \to F$ un *isomorphisme* c'est-à-dire une application linéaire bijective. En dimension finie, on a dim $E = \dim F$. On note $A = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$.

Théorème (Caractérisation de la matrice d'un isomorphisme).

- 1. f est bijective si et seulement si la matrice A est inversible.
- 2. Dans ce cas, la matrice de l'application linéaire $f^{-1}: F \to E$ est la matrice A^{-1}

C'est valable pour le cas particulier important d'un endomorphisme $f: E \to E$ où E est muni de la même base $\mathscr B$ au départ et à l'arrivée et $A = \operatorname{Mat}_{\mathscr B}(f)$.

1.4 Changement de bases

Coordonnées

Soit E un espace vectoriel de base $\mathcal{B}=(e_1,e_2,\ldots,e_p)$. Pour chaque $x\in E$, il existe un p-uplet unique d'éléments de \mathbb{K} (x_1,x_2,\ldots,x_p) tel que

$$x = x_1 e_1 + x_2 e_2 + \dots + x_p e_p.$$

On note

La matrice des coordonnées de x est un vecteur colonne, noté $\mathrm{Mat}_{\mathscr{B}}(x) =$

 $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}_{\mathscr{B}}$. Si \mathscr{B} on omet de mentionner la base.

Image

Soit $f:E\to F$ une application linéaire, $\mathcal B$ une base de E et $\mathcal B'$ une base de F.

— Soit $A = \text{Mat}_{\mathcal{B}, \mathcal{B}'}(f)$.

- Pour
$$x \in E$$
, notons $X = \operatorname{Mat}_{\mathscr{B}}(x) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}_{\mathscr{B}}$.
- Pour $y \in F$, notons $Y = \operatorname{Mat}_{\mathscr{B}'}(y) = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{\mathscr{B}}$

Proposition. Si y = f(x), alors on a Y = AX

Matrice de passage d'une base à une autre

Soient \mathcal{B} et \mathcal{B}' deux bases de E. La *matrice de passage* de la base \mathcal{B} vers la base \mathcal{B}' , notée $P_{\mathcal{B},\mathcal{B}'}$, est la matrice carrée de taille $n \times n$ dont la j-ème colonne est formée des coordonnées du j-ème vecteur de la base \mathcal{B}' , par rapport à la base \mathcal{B} .

On résume :

La matrice de passage $P_{\mathscr{B},\mathscr{B}'}$ contient - en colonnes - les coordonnées des vecteurs de la nouvelle base \mathscr{B}' exprimés dans l'ancienne base \mathscr{B} .

Proposition. La matrice de passage $P_{\mathscr{B},\mathscr{B}'}$ de la base \mathscr{B} vers la base \mathscr{B}' est la matrice associée à l'identité $\mathrm{id}_E:(E,\mathscr{B}')\to(E,\mathscr{B}):$

$$P_{\mathcal{B},\mathcal{B}'} = Mat_{\mathcal{B}',\mathcal{B}}(id_E)$$

Faites bien attention à l'inversion de l'ordre des bases!

Proposition.

 La matrice de passage d'une base B vers une base B' est inversible et son inverse est égale à la matrice de passage de la base B' vers la base

$$\mathscr{B}: \left[P_{\mathscr{B}',\mathscr{B}} = \left(P_{\mathscr{B},\mathscr{B}'}\right)^{-1}\right]$$

2. Si \mathscr{B} , \mathscr{B}' et \mathscr{B}'' sont trois bases, alors $P_{\mathscr{B},\mathscr{B}''} = P_{\mathscr{B},\mathscr{B}'} \times P_{\mathscr{B}',\mathscr{B}''}$

Changement de coordonnées

- Soient ℬ et ℬ' deux bases d'un même K-espace vectoriel E.
- Soit $P_{\mathcal{B},\mathcal{B}'}$ la matrice de passage de \mathcal{B} vers \mathcal{B}' .
- Pour $x \in E$, on note $X = \text{Mat}_{\mathscr{B}}(x) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{\mathscr{B}}$.
- Pour ce même $x \in E$, on note $X' = \operatorname{Mat}_{\mathscr{B}'}(x) = \begin{pmatrix} x_1 \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}_{\mathscr{B}'}$

Proposition.

$$X=\mathrm{P}_{\mathscr{B},\mathscr{B}'}\;X'$$

Notez bien l'ordre!

Formule de changement de base

- Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie.
- Soit $f: E \to F$ une application linéaire.
- Soient \mathscr{B}_E , \mathscr{B}'_E deux bases de E.
- Soient \mathscr{B}_F , \mathscr{B}_F^7 deux bases de F.
- Soit $P = P_{\mathscr{B}_E, \mathscr{B}'_E}$ la matrice de passage de \mathscr{B}_E à \mathscr{B}'_E .
- Soit $Q = P_{\mathscr{B}_F, \mathscr{B}_F'}$ la matrice de passage de \mathscr{B}_F à \mathscr{B}_F' .
- Soit $A = \operatorname{Mat}_{\mathscr{B}_E, \mathscr{B}_F}(f)$ la matrice de f de \mathscr{B}_E vers \mathscr{B}_F .
- Soit $B = \operatorname{Mat}_{\mathscr{B}'_{F}, \mathscr{B}'_{F}}(f)$ la matrice de f de \mathscr{B}'_{E} vers \mathscr{B}'_{F} .

Théorème (Formule de changement de base).

$$B = Q^{-1}AP$$

Cas particulier de $f: E \rightarrow E$ endomorphisme.

- Soient \mathscr{B} , \mathscr{B}' deux bases de E.
- Soit $P = P_{\mathcal{B}, \mathcal{B}'}$ la matrice de passage de \mathcal{B} à \mathcal{B}' .
- Soit $A = \text{Mat}_{\mathcal{B}}(f)$ la matrice de f dans la base \mathcal{B} .
- Soit $B = \operatorname{Mat}_{\mathscr{B}'}(f)$ la matrice de f dans la base \mathscr{B}' .

$$B = P^{-1}AP$$

Matrices semblables

Soient A et B deux matrices carrées de $M_n(\mathbb{K})$. Elles sont semblables s'il existe une matrice inversible $P \in M_n(\mathbb{K})$ telle que $B = P^{-1}AP$.

Corollaire. Deux matrices semblables représentent le même endomorphisme, mais exprimé dans des bases différentes.