

ארצי האחשק

Ileka paa

1 nfke

```
Java
               --- ט.כניסה: מערך של מספרים שלמים
                                                                    -- ט.כניסה: מערך של מספרים שלמים
                                                      --- ט. יציאה: מוחזר מקומו של המקסימום במערך
--- ט. יציאה: מוחזר מקומו של המקסימום במערך
                                                     public static int bigA (int [] arr)
public static int bigB (int [] arr)
                                                          int max = 0;
    int max = arr[0];
                                                         for (int i = 1; i < arr.length; i++)
   int place = 0;
    for (int i = 1; i < arr.length; i++)</pre>
                                                             if (arr[i] > arr[max])
                                                                 max = i;
        if (arr[i] > max)
                                                         return max;
            max = arr[i];
           place = i;
    1
    return place;
```

```
C#
               --- ט.כניסה: מערך של מספרים שלמים
                                                                         --- ט.כניסה: מערך של מספרים שלמים
                                                         --- ט. יציאה: מוחזר מקומו של המקסימום במערך
--- ט. יציאה: מוחזר מקומו של המקסימום במערך
                                                         public static int bigA(int[] arr)
public static int bigB(int[] arr)
                                                             int max = 0;
   int max = arr[0];
                                                             for (int i = 1; i < arr.Length; i++)</pre>
   int place = 0;
   for (int i = 1; i < arr.Length; i++)</pre>
                                                                if (arr[i] > arr[max])
                                                                    max = i;
       if (arr[i] > max)
                                                             }
                                                             return max;
           max = arr[i];
           place = i;
   return place;
```



```
Java
public class Game
   private String gameName; // שם המשחק
   private int numPlayers; // מספר השחקנים
   private boolean isWater; // פמים?
   --- בנאי ---//
   public Game (String gameName, int numPlayers, boolean isWater)
      this.gameName = gameName;
      this.numPlayers = numPlayers;
      this.isWater = isWater;
   1
   --- פעולה המחזירה את שם המשחק ---
   public String getGameName()
      return gameName;
public class Country
   private String countryName; // שם המדינה
   --- הגדרת אוסף המשחקים ---
   public static int size = 43; // מספר המשחקים
   מערך המשחקים //
   //--- בנאי
   public Country (String name)
       this.countryName = name;
       this.games = new Game[size];
       this.lastGame = 0;
   --- האם מדינה משתתפץ בבπינה?
   public boolean isParticipate (String name)
       int i = 0;
       while (i < this.lastGame)
           if (this.games[i].getGameName().equals(name))
               return true;
           i++;
       }
      return false;
   }
}
```

C#


```
class Game
   private String gameName; // סם המשחק
   private int numPlayers; // מספר השחקנים
                          האם במים? //
   private bool isWater;
   //--- בנאי
   public Game(string gameName, int numPlayers, bool isWater)
      this.gameName = gameName;
      this.numPlayers = numPlayers;
      this.isWater = isWater;
   --- פעולה המחזירה את שם המשחק
   public string GetGameName()
      return gameName;
class Country
{
    private String countryName; // שם המדינה
    --- הגדרת אוסף המשחקים ---/
    public static int size = 43; // מספר המשחקים
    private Game[] games;
private int lastGame;
                                    מערך המשחקים //
                                    מספר המשחקים בפועל //
    private int lastGame;
    //--- בנאי
    public Country(string name)
        this.countryName = name;
        this.games = new Game[size];
        this.lastGame = 0;
    }
    --- האם מדינה משתתפץ בבחינה?
    public bool isParticipate(String name)
        int i = 0;
        while (i < this.lastGame)
            if (this.games[i].GetGameName().Equals(name))
                return true;
            i++;
        }
        return false;
    }
```

18 PINN 3 71NY

3 nfke

blog.csit.org.il

ב. מטרת הפעולה: הכברה של ארתוסטנס (כברה = מסננת) חישוב והדפסת כל המספרים הראשוניים עד n.

(הפעולה מדפיסה גם את 1 למרות שאינו נחשב כמספר כמספר ראשוני)

										\exists		נולה	ט הפז	פי			
1	2	3	5	7	11	13	_							_			
~~	~~~~		-														
14	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
13	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
12	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
11	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
10	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
9	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
8	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
7	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
6	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
5	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
4	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
3	:	0	1	2	3	0	5	0	7	0	0	0	11	0	13	0	0
2	:	0	1	2	3	0	5	0	7	0	9	0	11	0	13	0	15

יופ פרק

4 nfke

- O(1) פעולות הוספה ו-האם-קיים ב- O(n) פעולות הצג-מינימום ו- הוצא-מקסימום ב-
 - ייצוג: רשימה דו-כיוונית ממוינת (בסדר עולה או יורד) (בגודל ח
 - הפנייה לאיבר בקצה אחד (מינימום) ולאיבר בקצה האחר (מקסימום).

מעבר על הרשימה למציאת המקום המתאים לאיבר.	הוספה בצורה ממוינת	O(n)
(O(1) - prev והכנסה אחרי prev ו- pos נעשה בעזרת שתי הפניות O(n) נעשה בעזרת שתי הפניות	insert (x)	
עדכון ההפניות למינימום ולמקסימום במידת הצורך.	Insert (x)	
מעבר על כל הרשימה עד למציאת האיבר או עד שמגיעים לאיבר ראשון	האם-קיים?	O(n)
הגדול (או הקטן, תלוי בסוג המיון) ממנו.	exists(x)	
	Exists (x)	
רת ה- value של ההפניה למינימום.	הצג-מינימום	O(1)
הנחה: הרשימה לא ריקה.	showMin()	
	ShowMin()	
גישה מידית לאיבר המקסימום והוצאתו מהרשימה תוך עדכון ההפניה	הוצא-מקסימום	O(1)
להפנות למקסימום החדש (הקודם במיון בסדר עולה / העוקב במיון בסדר יורד).	getMax()	
הנחה : הרשימה לא ריקה.	GetMax()	

ייצוג: • מערך חד-ממדי ממוין בסדר עולה • מערך חד-ממדי ממוין בסדר עולה

שמירת אינדקס לאיבר ראשון (מינימום) ולאיבר אחרון (מקסימום).

מעבר על המערך למציאת המקום המתאים לאיבר, הזזת האיברים כדי לפנות מקום לאיבר והכנסתו למערך.	הוספה בצורה ממוינת insert (x)	O(n)
· ·	` ′	
עדכון מקום המינימום והמקסימום במידת הצורך.	Insert (x)	
הנחה : יש מספיק מקום במערך.		
מעבר על כל המערך עד למציאת האיבר או עד שמגיעים לאיבר ראשון	האם קיים!	O(n)
הגדול ממנו.	exists(x)	
	Exists (x)	
החזרת הערך שאינדקס התא שלו נמצא במינימום.	הצג מינימום	O(1)
הנחה: המערך לא ריק.	showMin()	
	ShowMin()	
הוצאת האיבר האחרון במערך ועדכון ההפניה למקסימום	הוצא מקסימום	O(1)
(האיבר האחרון החדש)	getMax()	
הנחה: המערך לא ריק.	GetMax()	

O(1) בסיבוכיות div7 הפעולה O(n) ב- ביצוע פעולות הוספה ו-הוצא-מקסימום ב-

יצוג: • רשימה/שרשרת חד או דו-כיוונית, ממוינת (בגודל n)

מונה למספר האיברים המתחלקים ב- 7

	מעבר על הרשימה למציאת המקום המתאים לאיבר.	הוספה בצורה ממוינת	O(n)
(C	O(1) - prev ו- prev והכנסה אחרי אחרי ורי אחרי אחרי O(n) המעבר (המעבר עשה בעזרת שתי הפניות	insert(x)	
	אם המספר מתחלק ב- 7 - עדכון המונה.	Insert(x)	
	מעבר על כל הרשימה למציאת המקסימום והוצאתו.	הוצא-מקסימום	O(n)
(pre	ev -ו pos ברשימה חד-כיוונית, המעבר נעשה בעזרת שתי הפניות	getMax()	
	אם המספר מתחלק ב- 7 - עדכון המונה.	GetMax()	
	הנחה: הרשימה לא ריקה.		
	החזרת מצב המונה (החזר: מונה == 0)	מתחלק ב-7?	O(1)
		div7() / Div7()	

ייצוג: • מערך חד-ממדי ממוין בסדר יורד (המכיל n איברים)

מונה למספר האיברים המתחלקים ב- 7

 וים וומוניוניוניוניוניוניוניוניוניוניוניוניוניו	- 1111 - 0/27 121/2 -	
מעבר על המערך למציאת המקום המתאים לאיבר, הזזת האיברים כדי	הוספה בצורה ממוינת	O(n)
לפנות מקום לאיבר והכנסתו למערך.	insert(x)	
אם המספר מתחלק ב- 7 - עדכון המונה.	Insert(x)	
הנחה: יש מספיק מקום המערך.		
המקסימום הוא האיבר הראשון, מחיקתו על ידי ציפוף שאר	הוצא-מקסימום	O(n)
איברי המערך מקום אחד שמאלה (סגירת ייהחוריי).	getMax()	
אם המספר מתחלק ב- 7 עדכון המונה.	GetMax()	
הנחה: המערך לא ריק.		
החזרת מצב המונה (החזר: מונה == 0)	מתחלק ב-7	O(1)
	div7() / Div7()	

ייצוג: • מחסנית / תור ממוינים בסדר עולה • באודל ח

מונה למספר האיברים המתחלקים ב- 7

מעבר על איברי המחסנית/תור למציאת המקום המתאים לאיבר (כרוך בהעברת לכל היותר n איברים למחסנית/תור עזר והחזרתם). אם המספר מתחלק ב- 7 עדכון המונה. הנחה עבור מחסנית/תור הממומשים במערך: יש מספיק מקום להוספת האיבר.	הוספה בצורה ממוינת insert(x) Insert(x)	O(n)
הערך המקסימלי נמצא בתחתית המחסנית / סוף התור. כרוך בהעברת כל n האיברים למחסנית / תור עזר והחזרתם. אם המספר מתחלק ב- 7, עדכון המונה. הנחה: המחסנית / תור לא ריקים.	הצג-מקסימום getMax() GetMax()	O(1)
החזרת מצב המונה (החזר: מונה == 0)	מתחלק ב-7 div7() / Div7()	O(1)

א. (1)

** (2)

(3)

	0	1	2	3	4	5
c	2	1	1	1	0	2
	2	3	4	5	5	7

	0	1	2	3	4	5
c	2	3	4	5	5	7
	1	2	3	4	4	6

_	0	1	2	3	4	5	6	length
arr	5	0	2	1	3	0	5	7

 θ length 7

length

6

	0	1	2	3	4	5	6
b	θ	θ	θ	θ	θ	θ	Θ
	0	0	1	2	3	5	5

n	j	$j \ge n$	arr[j]	c[arr[j]] לפני	c[arr[j]] אחרי	b[c[arr[j]] - 1]
7	6	Т	5	c[5] = 7	6	b[7-1] = b[6] = 5
	5	T	0	c[0] = 2	/ 1	b[2-1] = b[1] = 0
	4	T	3	c[3] = 5	4	b[5-1] = b[4] = 3
	3	T	1	c[1] = 3	2	b[3-1] = b[2] = 1
	2	Т	2	c[2] = 4	3	b[4-1] = b[3] = 2
	1	Т	0	c[0] = 1	0	b[1-1] = b[0] = 0
	0	Т	5	c[5] = 6	5	b[6-1] = b[5] = 5
	-1	F				

- b לתוך מערך arr ב. הפעולה ממיינת את איברי
 - : O(n) ג. סיבוכיות הפעולה הוא

 ${\bf k}$ או ${\bf n}$ או בגודל מהם מבצעת 4 מעברים על 3 מערכים שכל מבצעת 4

O(k) 0 -b c מעבר ראשון אתחול מערך

מעבר שני *: מערך c מערך מונים :*

O(n) מניית האיברי מערך arr לאיברי

O(k) c מעבר שלישי :** סכום האיברים במערך

O(n) b מעבר רביעי במערך בתא המתאים במערך : *** מעבר רביעי

4n שמספר הצעדים עייי אומכאן שמספר בעדים כך ש- 2n + 2k סהייכ

(counting sort) <u>מיון מנייה</u>או מיון ספירה

הוא <u>אלגוריתם</u> <u>מיון</u> עבור <u>מספרים</u>

<u>שלמים</u> המתבסס על העובדה שהמספרים נמצאים בטווח חסום כדי לבצע את המיון בזמן מהיר יותר מזה שמסוגלים לו אלגוריתמי המיון הכלליים. בצורה אינטואיטיבית, די למיון לעבור על קבוצת האיברים שרוצים למיין ו<u>למנות</u> את מספר המופעים של כל אחד מהאיברים,

ומכאן שמו של האלגוריתם. (גוגל)


```
Java
        קיים בעץ ?
//---
--- פעולה המחזירה אמת אם x
--- קיים בעץ ושקר אחרת
public static boolean exist (BinNode<Integer> bt, int x)
    if (bt == null)
        return false;
    if (bt.getValue() == x)
        return true;
   return exist (bt.getLeft(),x) || exist (bt.getRight(),x);
}
--- פעולה המקבלת שני עצים בינארים ורשימה
--- ומכניסה לרשימה את כל האיברים שנמצאים
           --- בעץ הראשון ולא נמצאים בעץ השני
public static Node<Integer> check (BinNode<Integer> t1,
                                  BinNode<Integer> t2,
                                  Node<Integer> list)
   if (t1 != null)
       int x = t1.getValue();
       if (!exist (t2, x))
           list.setNext (new Node<Integer> (x, list.getNext()));
        list = check (t1.getLeft(), t2, list);
        list = check (t1.getRight(), t2, list);
   return list;
                                   ניתו להחליף את קטע הקוד המסומו בקטע הבא
}
                  if (!exist(t2, x))
                     Node<Integer> pos = list;
                      pos.setNext(new Node<Integer>(x, pos.getNext()));
                                C#
```



```
// --- קיים בעץ ? ---
// --- eעולה המחזירה אמת אם x ---
// --- קיים בעץ ושקר אחרת ---
public static bool exist(BinNode<int> bt, int x)
    if (bt == null)
        return false;
    if (bt.GetValue() == x)
        return true;
   return exist(bt.GetLeft(), x) || exist(bt.GetRight(), x);
}
--- פעולה המקבלת שני עצים בינארים ורשימה ---
--- ומכניסה לרשימה את כל האיברים שנמצאים ---
// --- בעץ הראשון ולא נמצאים בעץ השני
public static Node<int> check (BinNode<int> t1,
                               BinNode<int> t2,
                               Node<int> list)
{
    if (t1 != null) {
        int x = t1.GetValue();
        if (!exist(t2, x))
           list.SetNext(new Node<int>(x, list.GetNext()));
        list = check(t1.GetLeft(), t2, list);
        list = check(t1.GetRight(), t2, list);
                                     ניתן להחליף את קטע הקוד המסומן בקטע הבא
    return list;
}
               if (!exist(t2, x))
                   Node<int> pos = list;
                   pos.SetNext(new Node<int>(x, pos.GetNext()));
```


ieife poo

מערכות מחשב ואסמבלי

הפתרון לפרק זה נכתב עייי: רונית (מרציאנו) גל-אור

7 nfke

MOV AX,7F80H CMP AH,AL JL SMALL

BIG:

MOV BL,AH JMP SOF

SMALL:

MOV BL,AL

SOF:

טבלת מעקב (1)

	AX		BX		CF	OF	SF	ZF
	AH	AL	ВН	BL				
MOV AX,7F80H	7Fh	80h						
CMP AH,AL					1	1	1	
MOV BL,AH				7Fh				

BL = 7Fh

: בסיום הקטע

ואת הערך מכוונים ואת בין מחוכן האוגר AL אוגר אוגר אוגר אוגר מחוכן מחוכן אוגר אוגר אוגר אוגר אוגר הערץ משווה בין אוגר (2) BL הגדול שם באוגר

> JL SMALL JB SMALL

אם נחליף את ההוראה

בהוראה

(3)

80H : ישתנה ויהיה BL ערכו של

ב.

<u>לא נכון!</u> - הערכים שווים	10011110101110 2 >27AE16		216 (1)	
<u>לא נכון!</u>	27AE16 < 27AF16 <- 27AE16 > 1015910		10 (2)	
<u>לא נכון!</u> (ההסברים הפוכים)	SP או BP התפקידים של		(3) הת	
		יטיוליי במחסנית	אחראי על היי - BP	
	מצביע על ראש המחסנית -SP			
<u>לא נכון!</u>	- בסיום הקריאה והביצוע של כל הוראה ערכו של IP בסיום הקריאה והביצוע בי		(4) בס	
	ו גדל בהתאם לגודל הפקודה האחרונה אותו ביצע IP		IP	
	נכון!	MOV DX,0000H MOV AX,0064H DIV AX	ענ 1 MOV DX,0000H MOV AX,0064H DIV AL	(5) קט
	לא נכון!	וע 2	יע 1	(6) קט
בסיום קטע 1 ערכו של AL יהיה שווה לערך שהוצב בו בהוראה הראשונה		MOV AL, 5BH MOV CL, 9	MOV AL, 5BH MOV CL, 8	
ערך שהוצב בו בהוראה הראשונה		ROL AL, CL	ROL AL, CL	
AL =	ערכו יהיה B6			

ARR1 DW 2025H,1061H,1492H,5777H,1948H ARR2 DW 1984H,1601H,2914H,9999H,8491H K DW 5

XOR SI,SI ;INDEX OF ARRAY 1 AND 2

MOV CX,K ;LOOP COUNTER

MOV DX,0; COUNT POLINDROM WORDS

AGAIN:

PUSH CX ; KEEP LOOP COUNTER

MOV AX,ARR1[SI]

MOV CL,4

XCHG AH,AL

MOV BH,AH

SHR AH.CL

SHL BH,CL

ADD AH,BH

MOV BL,AL

SHR AL,CL

SHL BL,CL

ADD AL,BL

CMP AX,ARR2[SI]

JNE CONT

INC DX

CONT:

INC SI

INC SI

POP CX

LOOP AGAIN

מודלים חישוביים

הפתרון לפרק זה נכתב ע"י: רחל לודמר / חיים אברבוך

11 nfke

: עייי רחל לודמר

ניעזר במקרא הבא:

q0 a $q1$	
$\begin{pmatrix} & & & & & & & & & & \\ & & & & & & & & $	
$\begin{pmatrix} c \\ c \end{pmatrix}$,
q4 a $q5$	
a	

תאור : השאריות המתאימות של	מצב
עד למצב הנוכחי a, c	
c %3=0, a %2=0	q0
c %3=0, a %2=1	q1
c %3=1, a %2=0	q2
c %3=1, a %2=1	q3
c %3=2 , a %2=0	q4
c %3=2 , a %2=1	q5

: עייי חיים אברבוך

- שארית c ים זוגי ומספר ה a ים מעל a,c) שמספר ה ס שארית מקבל את כל המילים מעל a,c) חלוקה ב 3 שווה ל 0
- (2) כיון ששארית חלוקה ב 2 דורשת 2 מצבים ושארית חלוקה ב 3 דורשת 3 מצבים באוטמט המבוקש יהיו 6 מצבים. (ליד כל מצב רשום שארית החלוקה המתאימה.

ב. עייי רחל לודמר:

ב. ע"י חיים אברבוך:

א. עייי רחל לודמר: אוטומט מחסנית

א. עייי חיים אברבוך: אוטומט מחסנית

ב. ע"י רחל לודמר: מכונת טיורינג

מכונת טיורינג

ב. עייי חיים אברבוך: תחילה נבדוק שהמבנה הינו a ים לאחר מכן b ים לאחר מכן c ב.

a/a שמאל a/a ימין b/b ימין c/c ימין b/b שמאל c/c שמאל a/a ימין b/b ימין Δ/Δ שמאל b+a וכעת נבדוק שמספר c שווה למספר a/X ימין c/Y שמאל b/X ימין ימין Y/Y ימין Y/Y אמאל Y/Y b/b ימין b/b שמאל a/a ימין a/a שמאל ימין Y/Y Δ/Δ ימין

תכנות מונחה עצמים

15 / 13 nfke

۸.

כל מחלקה המממשת ממשק מתחייבת לממש את הפעולות שבממשק

מחלקה	Java פעולות	C# פעולות
Alpha	boolean firstA (Object x)	bool FirstA (Object x)
_	void firstA (Object x)	void FirstA (Object x)
Beta	int second()	int Second()
	<pre>int fourth()</pre>	<pre>int Fourth()</pre>
Gamma	int second()	int Second()
	<pre>int third()</pre>	<pre>int Third()</pre>

ב. ההגדרה אינה תקינה. יש לשמור על הסדר: מחלקה יורשת ורק אחר כך מממשת. התיקון:

java: **public class** Omega **extends** Beta **implements** IFour { }

C#: **public class** Omega : Beta, IFour { }

ډ. שגוי. לא ניתן ליצור עצם מטיפוס ממשק i ITwo x1 = new ITwo ();ii Beta b = new Beta();תקין. יצירת עצם מטיפוס המחלקה iii Alpha a = new Alpha();.IOne מממשת את Alpha תקין. IOne x2 = a; מתבצעת המרה כלפי מעלה מטיפוס המחלקה לטיפוס הממשק. Gamma c = new Gamma ();וווי. Gamma אינה מממשת את iv IOne x3 = c;

		.π <u>.</u>
i	Beta $b = new \text{ Beta}(); \parallel \text{ ITwo } b = new \text{ Beta}();$ int $x = b.second();$	ITwo מממשת את Beta . תקין .
ii	Gamma g = new Gamma(); Alpha a = (Alpha) g;	שגוי . אין קשר בין שתי המחלקות

16 / 14 nfke

A

 $A \ a1 = \text{new } B();$ גתון:

Object obj = a1; המשפט תקין. המשפט המינה. (i) קביעה לא נכונה. Object - כל העצמים יורשים מ- Object. מתבצעת המרה אוטומטית כלפי מעלה.

A~a2=a1; המשפט תקין. (ii)

ניתן לשים על אובייקט מטיפוס תת-מחלקה הפנייה מסוג מחלקת העל שלו.

 $B \ b1 = (B) \ a1;$ הקביעה נכונה. נגרשת המרה כלפי מטה: התיקון (iii)

ב. יחסי ההורשה הם: iv

ג. לכתוב רק protected

זה יעבור קומפילציה אבל זה אינו תואם את כללי הסתרת המידע .public הערה: ניתן לכתוב גם המויע. הנהוגים בתמייע.

ד. יש ליצור 5 עצמים, ולהפעיל את הפעולה על העצם השלישי, ואז יתקבל הפלט 3 ו- 5 ערך num של העצם השלישי הוא 3

התכונה המשותפת (הסטטית) count גדלה עם כל עצם חדש ולכן ערכה הוא 5.

הערה: הקוד של סעיף זה מטעה.

למרות שהפעולה printNow מדפיסה שני ערכים, מכיוון שאין ביניהם רווח ניתן לקרוא את הפלט כמספר אחד: 35 (ולא כשני מספרים צמודים 3 ו- 5).

חלק מהתלמידים הבינו שיש כאן שגיאה וחסר נתון ולכן לעולם לא יתקבל הפלט 35 (שלושים וחמש) וחלק מהתלמידים הבינו את השאלה כ-: "כמה עצמים יש ליצור על מנת שהמשתנה הסטטי יראה 35". הוספת רווח או פסיק בין המשתנים המוצגים במחרוזת הפלט היו פותרים את הבעיה.

