L'->,SL'|E

So, we can get the estimate form after doing
the Left-factoring and left-recursion:

$$S \rightarrow (L)|\alpha S'$$

 $S' \rightarrow S|E$
 $L \rightarrow SL'$
 $L' \rightarrow ,SL'|E$

Qz

$$S \rightarrow E + S \mid E$$

 $E \rightarrow num \mid (s)$

(1) After doing the left-factoring, the grammar will become us

 $S \rightarrow ES'$ $S' \rightarrow E \mid +S$ $E \rightarrow num/(s)$

(2) P44-45. According to the note.
nonterminals are S.S'. E; terminals are E, +, num, (,).

Determining FIRST(X)

1. if X is a terminal, then add x to FIRST(x).
2. if X→E then add E to FIRST(X).

3. if X is a nonterminal and X→Yi½···yk then a is in FIRST(X) if a is in FIRST(yi) and ε is in FIRST(yj) for j=1,2,···i··1 (i.e. its possible to have an empty prefix y1 y2···yk-1.

4. if & is in FIRST (Y, 1/2.../k) then & is in

FIRST (X).

O According ts'→ E/+S. we should add E, + into FIRST(S'). then we have FIRST(S') = {E, +; According to E → num/(S), we should add num, (into FIRST(E), then we have FIRST(E) = {num, (...)}.

② According to S → ES', here E is not in

FIRST (E) So, FIRST (E) - E should be added into FIRST(S) So, FIRST(S) = (num, (...

There is no other spare prodution which can be used to analyze. So we can get the FIRST set as follows:

 $F1RST(s) = \{num, (\}\}$ $F1RST(s') = \{E, +\}$ $F1RST(E) = \{num, (\}\}$

(3) Determing the Follow set

Determining FOLLOW(X)

1. if S is the start symbol then \$ is in Follow(s).

2. if A→aBB then add all FIRST(B)!=E to FOLLOW(B).

3. if $A \rightarrow aB$ or $aB\beta$ and ϵ is in FIRST(β) then add FOLLOW(A) to FOLLOW(B)

According to the rules, we should determine the containment relationship of the nonterminals.

O 1° S-ES'. then FOLLOW(S) S-FOLLOW(S')

2° As s'→ E, combine with S → Es', then S ★ E, that is to say S → EEE then Follow(s) ⊆ Follow(E)

3° s'-+s, then Follow(s') = Follow(s)

In one word. | Follow(s)=Follow(s') | Follow(s) & Follow(E).

2 According to rule 1, Follow(s)= (\$,

3 According to rule 2.

1° S→ES' can be seen as S→EES' So FIRST(S')-E should be add into Follow(E)

So FOLLOW(E)= +

 $2^{\circ}E \rightarrow (s)$ then) should be added into Follow(s) So Follow(s)={\$\frac{1}{5}\$,}

Combine with 0 2 3, we can get

Follow (5) = {\$,)}

Follow (5') = (\$.)}

Follow (E) = (+, \$, 1)

(4) Determine the parsing table.

FIRST OF ALL. We can use the select table to get the parsing Table.

Determine the Select set

对于单式A→A,集合 select (A→A)定义如下:
①告及不能指出 E, N) select (A→A)= **f**IRST(A).
②告及能推挥出 E, N) select (A→A)
=FIRST(A) U FOLLOW(A)

③如果 Select (A→a)={a,b,c},那么需要将 A→d镇进A行a引,A行b到,A行c3小.

1° Here, Select (S→ES')=FIRST(ES) = FIRST(E)= {num, (}.

2° Select $(S' \rightarrow \varepsilon) = FIRST(\varepsilon) \cup FOLLOW(S')$ = $\{\varepsilon\} \cup \{\xi, 1\}$ = $\{\xi, 1, \varepsilon\}$

3° Select (5'-+5) = FIRST (+5)= (+)

4° select (E -> num)= FIRST (num)= {num}

5° select $(E \rightarrow (s)) = F1RST((s)) = \{1\}$

So we can construct the parsing table.

the column is about the nonterminals.

the row is about the terminals (except for E).

	++	num	(1	\$
S		S→ES'	S→ES'		
5'	s'->+s			5'→8	5'→ €
E		E anum	[_/s)		

There is no conflict in this table. So this grammar is LL(1) grammar

(5) string: (1+2+(3+4))+5
Granimar: S -> ES'
$S' \longrightarrow \varepsilon + S$ $E \longrightarrow num (s)$
Using Leftmost derivation
S _ S+ES' ES' E>(S) S' S>ES' (ES') S'
E→num (15')5' S'→+5 (1+5)5'
S→ES' (I+ES')S' E→ Num (I+2S')S'
$S' \rightarrow +s \rightarrow (1+2+5)s' \xrightarrow{S \rightarrow ES'} (1+2+ES')s'$
E-(s) (1+2+(s)s')s' S-ES' (1+2+(ES')s')s'
$\xrightarrow{E \to \text{num}} \left(1 + 2 + (35')5')5' \xrightarrow{S' \to +5} \left(142 + (3+5)5' \right)5'$
$S \to ES'$ (1+2+(3+ES')S') $S' \xrightarrow{E \to num} (1+2+(3+4S')S')$
S'→E (1+2+(3+4)S')S' S'→E (H2+(3+4))S'
5'-+5 (H2+(3+4))+5 5+ES' (H2+(3+4))+ES'
E->num (1+2+(3+4))+55' 5'->E (1+2+(3+4))+5

Stack	Input	Output
\$5	(1+2+(3+4))+5\$	
\$5'E	(1+2+(3+4))+5\$	S→ES'
\$5')5((1+2+(3+4))+5\$	E → (s)
\$5')5	1+2+ (3+4))+5\$	
\$5') S'E	1+2+(3+4))+5\$	S→ES'
\$5')5'1	1+2+(3+4))+5\$	E → num
\$5')5'	+2+(3+4))+5\$	
\$5')5+	+2+(3+4))+5\$	5'->+5
\$5')5	2+(3+4))+5\$	
\$5')5'E	2+(3+4))+5\$	S→ES'
\$5')5'2	2+(3+41)+5\$	E→num
\$5')5'	+ (3+4))+5\$	
\$5')5+	+ (3+4))+5\$	5'→+5
\$5')5	(3+4))+5\$	
\$5')5'E	(3+4))+5\$	S-ES'
\$5)5')5((3+4))+5\$	E→(s)
\$5')5')5	3+4))+5\$	
\$5')5')5'E	3+4))+5\$	S→ES'
\$5')5')5'3	3+4))+5\$	E→num
\$5')5')5'	+41)+5\$	

stack	Input	Output
\$5')S')S+	+4])+5\$	5'→+5'
\$5')5')5	4))+5\$	
\$5')5')5'E	4))+5\$	S-PES'
\$5')5')5'4	4))+5\$	E→num
\$5')5')5'))+5\$	
\$s')s')	1)+5\$	5'→ €
\$5')5')+5\$	
\$5'))+5\$	S' → E
\$5'	+5\$	
\$5+	+5\$	S'→+S
\$5	5\$	
\$5'E	5\$	S-ES'
\$5'5	5\$	E → num
\$5'	\$	
\$	\$	5'→€