CMPE 212 Principles of Digital Design

Lecture 5

Computer Codes

February 8, 2016

www.csee.umbc.edu/~younis/CMPE212/CMPE212.htm

Lecture's Overview

Previous Lecture:

- → Boolean Algebra (History, postulates, theorems)
- → Simplification of Boolean expressions (how to put postulates and theorem to work)
- → Boolean algebra and switching circuits (Logic gates and algebraic method for minimization)

This Lecture:

- → Binary codes (BCD, Character representation)
- → Representations for floating point numbers
- → Error detect and correction codes

Computer Codes

- □ A binary code is a definition of the meaning of a sequence of bits of a certain size
- ☐ Encoding refers to defining the mapping between a set of words and the corresponding code words (bit sequence)
- Decoding refers to the opposite operation in which a sequence of bits are interpreted
- ☐ Sample categorization of binary codes:
 - 1. Numeric codes (fixed size integer and floating point)
 - Character codes
 - 3. Cyclic codes
 - 4. Error detection and correction code

Excess (Biased)

- ☐ The leftmost bit is the sign (usually 1 = positive, 0 = negative). Representations of a number are obtained by adding a bias to the two's complement representation. This goes both ways, converting between positive and negative numbers.
- ☐ The effect is that numerically smaller numbers have smaller bit patterns, simplifying comparisons for floating point exponents.
- □ Example (excess 128 "adds" 128 to the two's complement version, ignoring any carry out of the most significant bit):

$$+12_{10} = 10001100_2$$
 , $-12_{10} = 01110100_2$

☐ Only one representations for zero:

$$+0 = 10000000_2$$
 , $-0 = 10000000_2$

- \square Range for an 8-bit representation is [+127₁₀, -128₁₀]
- \square Range for an N-bit representation is $[+(2^{N-1}-1)_{10}, -(2^{N-1})_{10}]$

3-Bit Signed Integer Representations

Decimal	<u>Unsigned</u>	Sign-Mag.	1's Comp.	2's Comp.	Excess 4
7	111	_	_	_	_
6	110	-	-	-	-
5	101	_	_	_	_
4	100	_	_	_	_
3	011	011	011	011	111
2	010	010	010	010	110
1	001	001	001	001	101
+0	000	000	000	000	100
-0	-	100	111	000	100
-1	_	101	110	111	011
-2	-	110	101	110	010
-3	_	111	100	101	001
-4	_	_	_	100	000

CMPE 212, Principles of Digital Design

* Slide is courtesy of M. Murdocca and V. Heuring

Binary Coded Decimal (BCD)

☐ Each binary coded decimal digit is composed of 4 bits.

(a)
$$0000 \ 0011 \ (3)_{10} \ (0)_{10} \ (0)_{10} \ (0)_{10} \ (1)_{10} \ (+301)_{10}$$
 Nine's and ten's complement

(b)
$$1001$$
 0110 1001 1000 (-301)₁₀ Nine's complement $(9)_{10}$ $(6)_{10}$ $(9)_{10}$ $(8)_{10}$

(c)
$$\underbrace{1\ 0\ 0\ 1}_{(9)_{10}}$$
 $\underbrace{0\ 1\ 1\ 0}_{(6)_{10}}$ $\underbrace{1\ 0\ 0\ 1}_{(9)_{10}}$ $\underbrace{1\ 0\ 0\ 1}_{(9)_{10}}$ (-301)₁₀ Ten's complement

- ☐ Example: Represent +079₁₀ in BCD: 0000 0111 1001
- Example: Represent -079₁₀ in BCD: 1001 0010 0001
 - 1. Subtract each digit of –079 from 9 to obtain the nine's complement, so 999 079 = 920.
 - 2. Adding 1 produces the ten's complement: 920 + 1 = 921.
 - 3. Converting each base 10 digit of 921 to BCD produces 1001 0010 0001

Addition Example Using BCD

☐ Addition is performed digit by digit (not bit by bit), in 4-bit groups

$$\square$$
 Example (255 + 63 = 318)₁₀:

* Slide is courtesy of M. Murdocca and V. Heuring

Subtraction Example Using BCD

- Subtraction is carried out by adding the ten's complement negative of the subtrahend to the minuend
- ☐ Ten's complement negative of subtrahend is obtained by adding 1 to the nine's complement negative of the subtrahend
- \square Example: $(255 63 = 192)_{10}$

$$99999 - 0063$$
 9936

$$9936 + 0001$$
 9937

Floating Point Numbers

Signed magnitude

Issues:

- Arithmetic (+, -, *, /)
- Representation, Normal form (no leading zeros)
- Range and Precision
- Rounding
- Exceptions (e.g., divide by zero, overflow, underflow)
- Errors
- Properties (negation, inversion, if $A \ge B$ then $A B \ge 0$)

* Slide is courtesy of Dave Patterson

IEEE F.P. ± 1.M x 2 e - 127

Base 10 Floating Point Numbers

- ☐ Floating point numbers allow very large and very small values to be represented using only few digits, at the expense of precision
- □ The precision is primarily determined by the number of digits in the fraction (or significand, which has integer and fractional parts), and the range is primarily determined by the number of digits in the exponent
- \Box Example (+6.023 × 10²³)

* Slide is courtesy of M. Murdocca and V. Heuring

Conversion Example

- \triangleright Example: Convert (9.375 \times 10⁻²)₁₀ to base 2 scientific notation
- ➤ Start by converting from base 10 floating point to base 10 fixed point by moving the decimal point two positions to the left, which corresponds to the -2 exponent: .09375.
- ➤ Next, convert from base 10 fixed point to base 2 fixed point:

$$.09375 \times 2 = 0.1875$$

 $.1875 \times 2 = 0.375$
 $.375 \times 2 = 0.75$
 $.75 \times 2 = 1.5$
 $.5 \times 2 = 1.0$

- \rightarrow Thus, $(.09375)_{10} = (.00011)_2$.
- > Finally, convert to normalized base 2 floating point:

$$.00011 = .00011 \times 2^{0} = 1.1 \times 2^{-4}$$

Floating-Point Representation

- ☐ The size of the exponent determines the range of represented numbers
- ☐ Accuracy of the representation depends on the size of the significand
- ☐ The fixed word size requires a trade-off between accuracy and range
- ☐ Too large number cannot be represented causing an "overflow" while too small number cause an "underflow"
- □ Negative and positive mantissas are designated by a sign bit using a sign and magnitude representation
- ☐ Exponents are usually represented using "excess *E*" representation to facilitate comparison between floating point numbers
- ☐ Double precision uses multiple words to expand the range of both the exponent and mantissa and limits overflow and underflow conditions

Single precision

Double precision

Floating Point Example

□ Represent .254 × 10³ in a normalized base 8 floating point format with a sign bit, followed by a 3-bit excess 4 exponent, followed by four base 8 digits

Step #1: Convert to the target base.

$$.254 \times 10^3 = (254)_{10} = 376 \times 8^0$$
 (Using the remainder method)

254/8 = 31 R 6 31/8 = 3 R 73/8 = 0 R 3

Step #2: Normalize: $376 \times 8^0 = .376 \times 8^3$

Step #3: Fill in the bit fields, with a positive sign (sign bit = 0), an exponent of 3 + 4 = 7 (excess 4), and 4-digit fraction = .3760:

0 111 . 011 111 110 000

Error, Range, and Precision

- □ In the previous example, we have the base b = 8, the number of significant digits (not bits!) in the fraction s = 4, the largest exponent value (not bit pattern) M = 3, and the smallest exponent value m = -4
- ☐ In the previous example, there is no explicit representation of 0, but there needs to be a special bit pattern reserved for 0 otherwise there would be no way to represent 0 without violating the normalization rule. We will assume a bit pattern of 0 000 000 000 000 000 represents 0
- \square Using b, s, M, and m, generally:
- ➤ Largest representable number: $b^{M} \times (1 b^{-s}) = 8^{3} \times (1 8^{-4})$
- Smallest representable number: $b^m \times b^{-1} = 8^{-4-1} = 8^{-5}$
- ► Largest gap between two successive numbers: $b^{M} \times b^{-s} = 8^{3-4} = 8^{-1}$
- ➤ Smallest gap between two successive numbers: b^m × b^{-s} = 8^{-4 4} = 8⁻⁸

Counting Representable Number

For the total count of representable numbers, there are 5 components:

- (A) sign bit
- (B) (M m) + 1 bits for exponents
- (C) b 1 values for the first digit (0 is disallowed in normalized numbers)
- (D) b^{s-1} values for each of the s-1 remaining digits,
- (E) A special representation for 0
- \triangleright For .376 \times 8³, the 5 components result in:
 - $2 \times ((3-4)+1) \times (8-1) \times 8^{4-1}+1$ numbers that can be represented
- Notice this number must be no greater than the number of possible bit patterns that can be generated, which is 2¹6

Example Floating Point Format

- Smallest number is 1/8
- Largest number is 7/4
- Smallest gap is 1/32
- Largest gap is 1/4
- Number of representable numbers is 33.

IEEE 754 Standard Representation

☐ Virtually has been used in every computer since 1980

Single precision

sign S

1 8 23 S E M

Actual exponent is e = E - 127

exponent: excess 127 binary integer

mantissa: sign + magnitude, normalized binary significand w/ hidden integer bit: 1.M

$$N = (-1)^{S} 2^{E-127} (1.M)$$

$$0 < E < 255$$

$$-1.5 = 1 01111111 10 ... 0$$

☐ Magnitude of numbers that can be represented is in the range:

$$2^{-126}$$
 (1.0) to 2^{127} (2 - 2^{-23})

which is approximately:

$$1.8 \times 10^{-38}$$
 to 3.40×10^{-38}

Integer comparison is valid on IEEE Floating Point numbers of same sign

IEEE-754 Floating Point Formats

Example: show -12.625₁₀ in single precision IEEE-754 format.

Step #1: Convert to target base. $-12.625_{10} = -1100.101_{2}$

Step #2: Normalize. -1100.101₂ = -1.100101₂ \times 2³

Step #3: Fill in bit fields. Sign is negative, so sign bit is 1.

Exponent is in excess 127 (not excess 128!), so exponent is represented as the unsigned integer 3 + 127 = 130. Leading 1 of significand is hidden, so final bit pattern is:

An Example

Show the IEEE 754 binary representation of -0.75 in single & double precision

Sign Exponent

$$(-0.75)_{10} = (-3/4)_{10} = (-3/2^{2})_{10} = (-11 \times 2^{-2})_{2} = (-0.11)_{2} = (-1.1 \times 2^{-1})_{2}$$

Single precision representation is: $(-1)^s \times (1+Significand) \times 2^{(Exponent + 127)}$

$$(-0.75)_{10}$$
 is represented as $(-1)^{1} \times (1+.1000\ 0000\ 0000\ 0000\ 0000\ 000) \times 2^{(126)}$

Sign Exponent

Last 32-bit of Significand

Double precision representation is:
$$(-1)^s \times (1+Significand) \times 2^{(Exponent + 1023)}$$

 $(-0.75)_{10}$ is represented as $(-1)^{1} \times (1+.1000\ 0000\\ 0000\ 0000) \times 2^{(1022)}$

Symbol Representation

- Early versions (60s and 70s):
 - Six-bit binary code (Control Data Corp., CDC)
 - EBCDIC extended binary coded decimal interchange code (IBM)
- Presently used:
 - ASCII American standard code for information interchange – 7 bit code specified by American National Standards Institute (ANSI); an eighth MSB is often used as parity bit to construct a byte-code.
 - ISO/IEC 646 a version of ASCII that supports extension for languages other than English.
 - Unicode 16 bit code and an extended 32 bit version

ASCII Character Code

- > ASCII is a 7-bit code, commonly stored in 8-bit bytes
- "A" is at 41₁₆. To convert upper case letters to lower case letters, add 20_{16} "a" is at $41_{16} + 20_{16} = 61_{16}$
- The character "5" at position 35₁₆ is different from the number 5. To convert character-numbers into number-numbers, subtract 30₁₆:

$$35_{16} - 30_{16} = 5_{16}$$

00 NUL	10 DLE	20	SP	30	0	40	(a)	50	P	60	٠.	70	р
01 SOH	11 DC1	21	!	31	1	41	Ā	51	Q	61	a	71	q
02 STX	12 DC2	22	"	32	2	42	В	52	R	62	b	72	r
03 ETX	13 DC3	23	#	33	3	43	C	53	S	63	С	73	S
04 EOT	14 DC4	24	\$	34	4	44	D	54	T	64	d	74	t
05 ENQ	15 NAK	25	%	35	5	45	Ε	55	U	65	e	75	u
06 ACK	16 SYN	26	&	36	6	46	F	56	V	66	f	76	v
07 BEL	17 ETB	27	1	37	7	47	G	57	W	67	g	77	W
08 BS	18 CAN	28	(38	8	48	Н	58	X	68	h	78	X
09 HT	19 EM	29)	39	9	49	I	59	Y	69	i	79	y
0A LF	1A SUB	2A	*	3A	:	4A	J	5A	Z	6A	j	7A	Z
0B VT	1B ESC	2B	+	3B	;	4B	K	5B	[6B	k	7B	{
0C FF	1C FS	2C	,	3C	<	4C	L	5C	\	6C	1	7C	
0D CR	1D GS	2D	-	3D	=	4D	M	5D]	6D	m	7D	3
0E SO	1E RS	2E		3E	>	4E	N	5E	Ā	6E	n	7E	~
0F SI	1F US	2F	/	3F	?	4F	O	5F	_	6F	0	7F	DEL

NUL	Null	FF	Form feed	CAN	Cancel
SOH	Start of heading	CR	Carriage return	EM	End of medium
STX	Start of text	SO	Shift out	SUB	Substitute
ETX	End of text	SI	Shift in	ESC	Escape
EOT	End of transmission	DLE	Data link escape	FS	File separator
ENQ	Enquiry	DC1	Device control 1	GS	Group separator
ACK	Acknowledge	DC2	Device control 2	RS	Record separator
BEL	Bell	DC3	Device control 3	US	Unit separator
BS	Backspace	DC4	Device control 4	SP	Space
HT	Horizontal tab	NAK	Negative acknowledge	DEL	Delete
LF	Line feed	SYN	Synchronous idle		
VT	Vertical tab	ETB	End of transmission block		

EBCDIC Character Code

EBCDIC is an 8-bit code.

STX DLE BS ACK SOH ENQ ESC BYP CAN RES SI SO DEL SUB NL LF	Start of text Data Link Escape Backspace Acknowledge Start of Heading Enquiry Escape Bypass Cancel Restore Shift In Shift Out Delete Substitute New Line Line Feed	FF TM UC FS HT	Upper Case

	00 NUL	20 DS	40	SP	60	_	80		A0		CO	{	E0	/
	01 SOH	21 SOS	41		61	/	81	a	A1	~	C1	Α	E1	
	02 STX	22 FS	42		62		82	b	A2	s	C2	В	E2	S
	03 ETX	23	43		63		83	c	A3	t	C3	$^{\rm C}$	E3	T
	04 PF	24 BYP	44		64		84	d	A4	u	C4	D	E4	U
	05 HT	25 LF	45		65		85	e	A5	\mathbf{v}	C5	Е	E5	V
	06 LC	26 ETB	46		66		86	f	A6	W	C6	F	E6	W
	07 DEL	27 ESC	47		67		87	g	A7	X	C7	G	E7	X
	08	28	48		68		88	h	A8	У	C8	Η	E8	Y
	09	29	49		69		89	i	A9	Z	C9	Ι	E9	Z
	0A SMM		4A	¢	6A	•	8A		AA		CA		EA	
	0B VT	2B CU2	4B		6B	,	8B		AB		CB		EB	
	OC FF	2C	4C	<	6C	%	8C		AC		CC		EC	
	0D CR	2D ENQ	4D	(6D	_	8D		AD		CD		ED	
	0E SO	2E ACK	4E	+	6E	>	8E		AE		CE		EE	
	0F SI	2F BEL	4F		6F	?	8F		AF		CF		EF	
	10 DLE	30	50	&	70		90		B0		D0	}	F0	0
	11 DC1	31	51		71		91	j	B1		D1	J	F1	1
	12 DC2	32 SYN	52		72		92	k	B2		D2	K	F2	2
	13 TM	33	53		73		93	1	В3		D3	L	F3	3
D	14 RES	34 PN	54		74		94	m	B4		D4	M	F4	4
DO	15 NL	35 RS	55		75		95	n	B5		D5	N	F5	5
DC	16 BS	36 UC	56		76		96	o	B6		D6	O	F6	6
CU CU SY IF:	17 IL	37 EOT	57		77		97	p	В7		D7	P	F7	7
CU	18 CAN	38	58		78		98	q	B8		D8	Q	F8	8
ĬF	19 EM	39	59		79		99	r	B9		D9	R	F9	9
EC ET	1A CC	3A	5A	!	7A	:	9A		BA		DA		FA	
NA	1B CU1	3B CU3	5B	\$	7B	#	9B		BB		DB		FB	
NA SN SC IG	1C IFS	3C DC4	5C	٠	7C	@	9C		BC		DC		FC	
IG	1D IGS	3D NAK	5D)	7D	'	9D		BD		DD		FD	
IR: IU		3E	5E	;	7E	=	9E		BE		DE		FE	
	1F IUS	3F SUB	5F	\neg	7F	"	9F		BF		DF		FF	

* Slide is courtesy of M. Murdocca and V. Heuring

Unicode Character Code

Unicode is a 16-bit code

0000 NUL	0020	SP	0040	(a)	0060	,	0080	Ctrl	00A0	NBS	00C0	À	00E0	à
0001 SOH	0021	!	0041	A	0061	a	0081	Ctrl	00A1	i	00C1	Á	00E1	á
0002 STX	0022	"	0042	В	0062	b	0082	Ctrl	00A2	¢	00C2	Â	00E2	â
0003 ETX	0023	#	0043	C	0063	c	0083	Ctrl	00A3	£	00C3	Ã	00E3	ã
0004 EOT	0024	s	0044	D	0064	d	0084	Ctrl	00A4	¤	00C4	Ä	00E4	ä
0005 ENQ	0025	%	0045	E	0065	e	0085	Ctrl	00A5	¥	00C5	Å	00E5	å
0006 ACK	0026	&	0046	F	0066	f	0086	Ctrl	00A6	- !	00C6	Æ	00E6	æ
0007 BEL	0027	,	0047	G	0067	g	0087	Ctrl	00A7	§	00C7	Ç	00E7	ç
0008 BS	0028	(0048	H	0068	h	0088	Ctrl	00A8		00C8	È	00E8	è
0009 HT	0029)	0049	I	0069	i	0089	Ctrl	00A9	0	00C9	É	00E9	é
000A LF	002A	*	004A	J	006A	j	008A	Ctrl	00AA	<u>a</u>	00CA	Ê	00EA	ê
000B VT	002B	+	004B	K	006B	k	008B	Ctrl	00AB		00CB	Ë	00EB	ë
000C FF	002C	,	004C	L	006C	1		Ctrl	00AC	_	00CC	Ì	00EC	ì
000D CR	002D	-	004D	M	006D	m		Ctrl	00AD	-	00CD	Í	00ED	í
000E SO	002E		004E	N	006E	n	008E	Ctrl	00AE	®	00CE	Î	00EE	î
000F SI	002F	/	004F	O	006F	o	008F	Ctrl	00AF	-	00CF	Ï	00EF	ï
0010 DLE	0030	0	0050	P	0070	p	0090	Ctrl	00B0		00D0	Đ	00F0	9 I
0011 DC1	0031	1	0051	Q	0071	q	0091	Ctrl	00B1	±	00D1	Ñ	00F1	ñ
0012 DC2	0032	2	0052	R	0072	r	0092	Ctrl	00B2	2	00D2	Ò	00F2	ò
0013 DC3	0033	3	0053	S	0073	s	0093	Ctrl	00B3	3	00D3	Ó	00F3	ó
0014 DC4	0034	4	0054	T	0074	t	0094	Ctrl	00B4	,	00D4	Ô	00F4	ô
0015 NAK	0035	5	0055	U	0075	u	0095	Ctrl	00B5	μ	00D5	Õ	00F5	õ
0016 SYN	0036	6	0056	V	0076	\mathbf{v}	0096	Ctrl	00B6	1	00D6	Ö	00F6	ö
0017 ETB	0037	7	0057	w	0077	w	0097	Ctrl	00B7		00D7	×	00F7	÷
0018 CAN	0038	8	0058	X	0078	x	0098	Ctrl	00B8	,	00D8	Ø	00F8	Ø
0019 EM	0039	9	0059	Y	0079	У	0099	Ctrl	00B9	1	00D9	Ų	00F9	ù
001A SUB	003A	:	005A	Z	007A	Z	009A		00BA	0	00DA		00FA	ú
001B ESC	003B	;	005B	[007B	1	009B	Ctrl	00BB	>>	00DB	Û	00FB	û
001C FS	003C	<	005C	1	007C		009C	Ctrl	00BC		00DC	Ü	00FC	ü
001D GS	003D	=	005D]	007D	}	009D	Ctrl	00BD		00DD	Y	00FD	Þ
001E RS	003E	>	005E	^	007E	~	009E	Ctrl	00BE	3/4	00DE	ý	00FE	þ
001F US	003F	?	005F	_	007F I	DEL	009F	Ctrl	00BF	5	00DF	S	00FF	ÿ

	ETX ENQ ACK	Start of text End of text Enquiry Acknowledge	DC1 DC2 DC3	Start of heading End of transmission Device control 1 Device control 2 Device control 3	EM SUB ESC FS	Cancel End of medium Substitute Escape File separator	Ctrl FF CR	Space Delete Control Form feed Carriage return
	ACK	Acknowledge	DC3	Device control 3	FS	File separator	CR	Carriage return
		Bell		Device control 4		Group separator		Shift out
	BS	Backspace		Negative acknowledge		Record separator		
				_		_		
М	HT			Non-breaking space	US	Unit separator		1
171.	LF	Line feed	ETB	End of transmission block	SYN	Synchronous idle	VT	Vertical tab

Mohamed Younis

Gray Code

Cyclic codes

 A circular shift of any code word produces a valid code word (the new word may stay the same)

Gray code – example of a cyclic code

- Code words for consecutive numbers differ by one bit only
- Can be generated from the n-bit binary numbers as follows:
 - Bit *i* equals to 1 only if bits *i* and *i*+1 in the binary number are different

Assume 0 in bit n+1;

Decimal	Binary	Gray
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100
CCEF		

Error Detection Code

- Error in binary data
 an incorrect value in one or multiple bits
- Bits can flip due to hardware failure, noise in circuits and in transition during transmission (communication).
- Flip errors is a major concern in space and in wireless system
- Extra bits used for error detection and correction (need more)
- The number of redundant bits increases if multiple bits error is to be detected and tolerated.
- Example: a parity bit in ASCII code

Even parity code for A (even number of 1s)

0400004

7-bit ASCII code

01000001

Parity bits

11000001

Odd parity code for A (odd number of 1s)

Single-bit error in 7-bit code of "A", e.g., 1000101, will change symbol to "E" or 1000000 to "@". But error will be detected in the 8-bit code because the error changes the specified parity.

Slide contents is (partially) curtsey of Vishwani Agrawal

Fundamental Definitions

- Weight of a fixed size binary data is the number of 1's in the data
 - -W(1011101) = 5
- The distance between two equal-sized binary numbers (or data items) is the wright of their difference (XOR)
- Usually referred to as hamming distance
 - HD(1101, 1010) = 3
- Richard Hamming is the one of the pioneers in coding who is to be credited for breakthroughs in the development of error-correcting codes (ECC)

Richard W. Hamming 1915 -1998

The Idea of Hamming Code

Code space contains 2^N possible N-bit code words: N = 4

Error not correctable. Reason: No redundancy.

Hamming's idea: Increase HD between valid code words.

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F

Code

Symbol

Hamming's Distance ≥ 3 Code

Minimum Distance-3 Hamming Code

Symbol	Original code	Odd-parity code	ECC, HD ≥ 3
0	0000	10000	0000000
1	0001	00001	0001011
2	0010	00010	0010101
3	0011	10011	0011110
4	0100	00100	0100110
5	0101	10101	0101101
6	0110	10110	0110011
7	0111	00111	0111000
8	1000	01000	1000111
9	1001	11001	1001100
Α	1010	11010	1010010
В	1011	01011	1011001
С	1100	11100	1100001
D	1101	01101	1101010
E	1110	01110	1110100
F	1111	11111	1111111

Original code: Symbol "0" with a single-bit error will be Interpreted as "1", "2", "4" or "8".

Reason: Hamming distance between codes is 1. A code with any bit error will map onto another valid code.

Remedy 1: Design codes with HD ≥ 2.

Example: Parity code. Single bit error Detectable but not correctable.

Remedy 2: Design codes with HD \geq 3. For single bit error correction, decode as the valid code at HD = 1.

To detect "s" and correct "t " bit errors: $2t + s + 1 \le d_{min}$

Slide contents is (mostly) curtsey of Vishwani Agrawal

Conclusion

□ Summary

- → Multiplication and division of binary numbers (unsigned numbers, determining the sign of the results)
- → Binary codes (BCD, Character representation) (BCD, ASCII, EBCDIC, Unicode, Gray, etc.)
- → Representations for floating point numbers (Format, scientific notation, standard notation)
- → Error detect and correction codes (weight, Hamming distance, Hamming codes)

→ Next Lecture

→ Switching Functions

Reading assignment: section 1.5 in the textbook

