學號:B06705027 系級:資管三 姓名:黃柏叡

1. (2%) 請比較實作的 generative model 及 logistic regression 的準確率,何者較佳?請解釋為何有這種情況?

A: 透過修正不同的 learning rate,比較不同情況下 generative 和 logistic regression 的準確率:

Learning rate	0.05	0.1	0.2
Accuracy			
generative	0.8735818	0.8735818	0.8735818
logistic	0.8851321	0.8852959	0.8849272

Learning rate 的調整只對 logistic regression 有所影響。然而在實作這次作業的過程中,只要 learning rate 不是大的誇張或是小的離譜, logistic regression 得出的 accuracy 都會比 generative model 還要好。 理由是在這次的作業中,我們擁有 2 萬多筆資料,每筆資料又包含上百筆 feature,因此並不算是一個缺乏資料的資料集。對 generative model 來說,因其數學式子的關係,可能會對資料有「腦補」的狀況,以至於對 feature 作出錯誤的判斷;相反的,如果在資料缺乏的情況下,利用 generative model 可能會有奇效。

2. (2%) 請實作 logistic regression 的正規化 (regularization),並討論其對於你的模型準確率的影響。接著嘗試對正規項使用不同的權重 (lambda),並討論其影響。(有關 regularization 請參考 https://goo.gl/SSWGhf p.35)

A: regularization 的做法是在 cross_entropy 後面加上 $\frac{\lambda}{n}\sum_{i=1}^{n}(w_i)^2$,在 python 中如圖所示;並透過設定不同的 lambda 權重,得到以下結果:

Lambda Accuracy	0.1	100	100000
Training	0.8849273	0.8735818	0.8849273
Development	0.8797321	0.8852959	0.8781791

從結果可以看到,對於 lambda 而言,設太大或是設太小都不是好的選擇,理由是作 regularization 的動機就是希望 function 對輸入不要太敏感,但同時也不希望太無感,因此需要通過改變 lambda 進行反覆的測試,找到一個折衷的數字才能得到較高的準確率。

至於有沒有做 regularization 與否,在我所設定的參數下,對於 development set 的準確率是沒有影響的。但因為不能排除測試的資料有極端的狀況出現,因此有實作 regularization 是較佳的選擇。

3. (1%) 請說明你實作的 best model, 其訓練方式和準確率為何?

A: 在 best model 中,我實作的方式為 logistic regression。

首先,因為不能使用 scipy 套件,因此我自己實作了 pearsonr 相關係數,得出資料中 510 筆 features 對 y 的關係;透過篩選|相關係數 |>0.01 者,最後刪除了 145 項 feature。

Pre-processing 中,我分別對資料進行 regularization 以及 normalization,以降低極端值誤差及確保進行 gradient descent 中資料 能如期的往最低點前進;在 gradient descent 中我並沒有使用更進階的 gradient descent 技巧。

透過調整 mx_iter、batch_size、以及 learning_rate 並在 development set 中進行測試,我認為最佳數據組合為 48、10、0.1,其 結果在 development set 中有 0.879 的準確率。

最後將結果上傳至 kaggle,其 accuracy 為 0.89102,成功通過 strong baseline。

4. (1%) 請實作輸入特徵標準化 (feature normalization),並比較是否應用 此技巧,會對於你的模型有何影響。

A: 圖為 nrmalization 的程式碼:

```
...if specified_column == None:
....specified_column == np.arange(X.shape[1])
....# print(specified_column.shape)
...if train:
.....X_mean == np.mean(X[:, specified_column] , 0).reshape(1, -1)
....X_std == np.std(X[:, specified_column], 0).reshape(1, -1)
....# print(X_mean)
...X[:, specified_column] == (X[:, specified_column] -- X_mean) -/ (X_std ++ 1e-8)
....
```

透過修正不同的 learning rate,比較不同情況下有無 normalization 在 development set 的準確率:

Learning rate	0.01	0.02	0.03
Accuracy			
有 normalization	0.8755990	0.8791006	0.8791006
無 normalization	0.7698120	0.7611500	0.7661261

由圖我們可以看到有沒有 normalization 對於資料的準確率有極大的影響:有進行 normalization 處理過的資料比沒有的資料準確率高出許多是否應用 normalization 是項很重要的變因,通常經過 normalization處裡過後的資料都有較佳的準確率及較低的 loss;原因是我們在進行gradient descent 時,每一次的更新都是確切往低處前進,未處理過的資料,其更新的方向則未必是朝低點前進。