

D-H Table of PUMA 560

$$[G] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0.5 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad [H] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0.06 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Compute individual link and joint transformations

$$[Z(d_i, \theta_i)]$$
 and $[X(a_{i-1,i}, \alpha_{i-1,i})]$

 Compute the end-effector frame [T] relative to the world frame using matrix multiplications

$$[T] = [G][Z(d_1, \theta_1)][X(a_{12}, \alpha_{12})][Z(d_2, \theta_2)][X(a_{23}, \alpha_{23})][Z(d_3, \theta_3)][X(a_{34}, \alpha_{34})]$$

$$[Z(d_4, \theta_4)][X(a_{45}, \alpha_{45})][Z(d_5, \theta_5)][X(a_{56}, \alpha_{56})][Z(d_6, \theta_6)][H]$$

[W](Spherical Wrist Transformation)

Geometric Meaning

$$[T'] = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_x \\ r_{21} & r_{22} & r_{23} & p_y \\ r_{31} & r_{32} & r_{33} & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \longleftarrow \begin{bmatrix} r_{11}(\theta_1, \dots, \theta_6) & r_{12}(\theta_1, \dots, \theta_6) & r_{13}(\theta_1, \dots, \theta_6) & p_x(\theta_1, \theta_2, \theta_3) \\ r_{21}(\theta_1, \dots, \theta_6) & r_{22}(\theta_1, \dots, \theta_6) & r_{23}(\theta_1, \dots, \theta_6) & p_y(\theta_1, \theta_2, \theta_3) \\ r_{31}(\theta_1, \dots, \theta_6) & r_{32}(\theta_1, \dots, \theta_6) & r_{33}(\theta_1, \dots, \theta_6) & p_z(\theta_1, \theta_2, \theta_3) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} p_x = c_1(a_{23}c_2 + a_{34}c_{23} - d_4s_{23}) - d_3s_1 \\ p_y = s_1(a_{23}c_2 + a_{34}c_{23} - d_4s_{23}) + d_3c_1, \\ p_z = -a_{23}s_2 - a_{34}s_{23} - d_4c_{23} \end{cases}$$

where

$$s_1 = \sin(\theta_1), c_1 = \cos(\theta_1),$$

$$s_2 = \sin(\theta_2), c_2 = \cos(\theta_2),$$

$$s_{23} = \sin(\theta_2 + \theta_3), c_{23} = \cos(\theta_2 + \theta_3)$$

[G]: frame 0 to frame 1

[H]: frame 6 to frame [T]

i	$lpha_{i-1,i}$	$a_{i-1,i}$	$d_{_i}$	$ heta_{\scriptscriptstyle i}$	
1	_	_	0	$\theta_{\scriptscriptstyle 1}$	
2	-90°	0	0	$ heta_2$	
3	0	0.43180	0.14909	θ_3	
4	-90°	0.02032	0.43307	$\theta_{\scriptscriptstyle 4}$	spherical
5	90°	0	0	$ heta_{\scriptscriptstyle 5}$	wrist center
6	– 90°	0	0	$ heta_{\!\scriptscriptstyle 6}$	

- Ignore [G] and [H]
- Forward Kinematics

$$[T] =$$

D-H Table of PUMA 560

i	$lpha_{\scriptscriptstyle i=1}$ $_{\scriptscriptstyle i}$	$a_{i-1,i}$	d_{i}	$ heta_{\scriptscriptstyle i}$
1	_	_	0	0
2	-90°	0	0	0
3	0	0.43180	0.14909	-90
4	-90°	0.02032	0.43307	0
5	90°	0	0	0
6	-90°	0	0	0

Transform the equation

$$[R(\theta_1,\theta_2,\theta_3)]$$

$$[T] = \underbrace{[G][Z(d_{1},\theta_{1})][X(a_{12},\alpha_{12})][Z(d_{2},\theta_{2})][X(a_{23},\alpha_{23})][Z(d_{3},\theta_{3})][X(a_{34},\alpha_{34})][Z(d_{4},0)]}_{[Z(0,\theta_{4})][X(a_{45},\alpha_{45})][Z(d_{5},\theta_{5})][X(a_{56},\alpha_{56})][Z(d_{6},\theta_{6})][H]}$$

$$[T] = [G][R(\theta_1, \theta_2, \theta_3)][W(\theta_4, \theta_5, \theta_6)][H]$$

Define
$$[T'] = [G]^{-1}[T][H]^{-1} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_x \\ r_{21} & r_{22} & r_{23} & p_y \\ r_{31} & r_{32} & r_{33} & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$[G] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad [H] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & l \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} [T'] &= [R(\theta_1, \theta_2, \theta_3)][W(\theta_4, \theta_5, \theta_6)] \\ &= [Z(0, \theta_1)][X(0, -90^\circ)][Z(0, \theta_2)][X(a_{23}, 0)][Z(d_3, \theta_3)][X(a_{34}, -90^\circ)][Z(d_4, 0)][W] \\ &= \begin{bmatrix} f_{11}(\theta_1, \cdots, \theta_6) & f_{12}(\theta_1, \cdots, \theta_6) & f_{13}(\theta_1, \cdots, \theta_6) & p_x(\theta_1, \theta_2, \theta_3) \\ f_{21}(\theta_1, \cdots, \theta_6) & f_{22}(\theta_1, \cdots, \theta_6) & f_{23}(\theta_1, \cdots, \theta_6) & p_y(\theta_1, \theta_2, \theta_3) \\ f_{31}(\theta_1, \cdots, \theta_6) & f_{32}(\theta_1, \cdots, \theta_6) & f_{33}(\theta_1, \cdots, \theta_6) & p_z(\theta_1, \theta_2, \theta_3) \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

$$\begin{cases} p_x = c_1(a_{23}c_2 + a_{34}c_{23} - d_4s_{23}) - d_3s_1 \\ p_y = s_1(a_{23}c_2 + a_{34}c_{23} - d_4s_{23}) + d_3c_1, \\ p_z = -a_{23}s_2 - a_{34}s_{23} - d_4c_{23} \end{cases}$$
 Goal: find $\theta_1, \theta_2, \theta_3$

- Numerical Iteration Method
 - Mathematica solver: NSolve[]
 - Matlab command: fsolve(f,x,x0)
 - Can only find one solution
 - Need an initial guess to the solution
- Symbolic Solver
 - Mathematica solver: Solve[]
 - Matlab command: solve(f,x)
- Analytical Method (closed form solution)

Inverse Kinematics of PUMA 560 (Analytical Method 1)

$$[T^{*}] = [Z(0,\theta_{1})][X(0,-90^{\circ})][X(0,\theta_{2})][X(a_{23},0)][Z(d_{3},\theta_{3})][X(a_{34},-90^{\circ})][Z(d_{4},0)][W]$$

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} * & * & * & c_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23}) - d_{3}s_{1} \\ * & * & * & s_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23}) + d_{3}c_{1} \\ * & * & * & -a_{23}s_{2} - a_{34}s_{23} - d_{4}c_{23} \end{bmatrix}$$

$$= [Z(0,-\theta_{1})][T^{*}] = [X(0,-90^{\circ})][Z(0,\theta_{2})][X(a_{23},0)][Z(d_{3},\theta_{3})][X(a_{34},-90^{\circ})][Z(d_{4},0)][W]$$

$$\begin{bmatrix} c_{1} & s_{1} & 0 & 0 \\ -s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{1} & r_{12} & r_{13} & p_{x} \\ -s_{1} & c_{1} & 0 & 0 \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{1} & s_{1} & 0 & 0 \\ -s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} * & * & * & c_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23}) - d_{3}s_{1} \\ -s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} * & * & * & s_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23}) - d_{3}s_{1} \\ * & * & * & s_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23}) - d_{3}s_{1} \\ * & * & * & s_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23}) - d_{3}s_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C(0,\theta_{2})[X(a_{23},0)][Z(a_{3},\theta_{3})][X(a_{34},-90^{\circ})][Z(d_{4},0)][W]$$

$$\begin{bmatrix} c_{1} & s_{1} & 0 & 0 \\ r_{21} & r_{12} & r_{13} & p_{x} \\ r_{13} & r_{22} & r_{23} & p_{y} \\ s_{13} & r_{22} & r_{23} & p_{y} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{1} & s_{1} & 0 & 0 \\ s_{1} & * & * & s_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23}) - d_{3}s_{2} \\ s_{2} & * & * & s_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23}) \end{bmatrix}$$

$$\begin{bmatrix} * & * & * & c_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23} - d_{4}s_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} * & * & * & c_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23} - d_{4}s_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} * & * & * & c_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23} - d_{4}s_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} * & * & * & c_{1}(a_{23}c_{2} + a_{34}c_{23} - d_{4}s_{23} - d_{4}s_{23} - d_{4}s_{23} \\ 0$$

$$A\cos\psi + B\sin\psi = C$$

$$\psi^{\pm} = \delta \pm \arccos(\frac{C}{\sqrt{A^2 + B^2}})$$
where $\delta = \text{ArcTan}[A, B]$

Conclusion: there are 2*2=4 set of solutions (θ_1 , θ_2 , θ_3) for the inverse kinematics of PUMA 560 (position part)

Left shoulder, elbow down

Right shoulder, elbow down

FIGURE 4.4 Four solutions of the PUMA 560.

D-H Table

i	$lpha_{i-1,i}$	$a_{i-1,i}$	d_{i}	$ heta_{\scriptscriptstyle i}$
4	_	_	_	$\theta_{\scriptscriptstyle 1}$
5	90°	0	0	$\theta_{\scriptscriptstyle 2}$
6	-90°	0	0	$\theta_{\scriptscriptstyle 3}$

pointing insidepointing outside

 Compute the end-effector frame [W] relative to the world frame using matrix multiplications

$$[W] = [Z(0, \theta_4)][X(0, 90^\circ)][Z(0, \theta_5)][X(0, -90^\circ)][Z(0, \theta_6)] =$$

$$\begin{bmatrix} \cos\theta_4\cos\theta_5\cos\theta_6 - \sin\theta_4\sin\theta_6 & -\cos\theta_4\cos\theta_5\sin\theta_6 - \sin\theta_4\cos\theta_6 & -\cos\theta_4\sin\theta_5 & 0 \\ \sin\theta_4\cos\theta_5\cos\theta_6 + \cos\theta_4\sin\theta_6 & -\sin\theta_4\cos\theta_5\sin\theta_6 + \cos\theta_4\cos\theta_6 & -\sin\theta_4\sin\theta_5 & 0 \\ \sin\theta_5\cos\theta_6 & -\sin\theta_5\sin\theta_6 & \cos\theta_5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Objective: given the position and orientation of the end-effector [W], find joint angles θ_4 , θ_5 , θ_6 .

$$[W] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta_4\cos\theta_5\cos\theta_6 - \sin\theta_4\sin\theta_6 & -\cos\theta_4\cos\theta_5\sin\theta_6 - \sin\theta_4\cos\theta_6 & -\cos\theta_4\sin\theta_5 & 0 \\ \sin\theta_4\cos\theta_5\cos\theta_6 + \cos\theta_4\sin\theta_6 & -\sin\theta_4\cos\theta_6 + \cos\theta_4\cos\theta_6 & -\sin\theta_4\sin\theta_5 & 0 \\ \sin\theta_5\cos\theta_6 & -\sin\theta_5\sin\theta_6 + \cos\theta_4\cos\theta_6 & -\sin\theta_4\sin\theta_5 & 0 \\ \sin\theta_5\cos\theta_6 & -\sin\theta_5\sin\theta_6 & \cos\theta_5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Step 1: Solve θ_5 from a_{33} to obtain two solutions $\implies \theta_5 = \pm \operatorname{ArcCos}[a_{33}]$
- Step 2: Back substitute each solution of of θ_5 to solve θ_4 from a_{13} and a_{23}

$$\theta_4 = \operatorname{ArcTan}\left[\frac{a_{13}}{-\sin\theta_5}, \frac{a_{23}}{-\sin\theta_5}\right]$$

In Mathematica, use ArcTan[x,y] to obtain the unique solution of θ_4 for each θ_5 . In Matlab, use atan2[y,x] instead

• Step 3: Back substitute each solution of θ_5 to solve θ_6 from a_{31} and a_{32}

$$\theta_6 = \operatorname{ArcTan}\left[\frac{a_{31}}{\sin \theta_5}, \frac{a_{32}}{-\sin \theta_5}\right]$$

Conclusion: there are two set of solutions (θ_4 , θ_5 , θ_6) for the inverse kinematics of spherical wrist.

• What if $\sin \theta_5 = 0$, that is $\theta_5 = 0$, $\pi \cos \theta_5 = \pm 1$

If
$$\theta_5 = 0$$
, $\cos \theta_5 = 1$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta_4\cos\theta_6 - \sin\theta_4\sin\theta_6 & -\cos\theta_4\sin\theta_6 - \sin\theta_4\cos\theta_6 & 0 & 0 \\ \sin\theta_4\cos\theta_6 + \cos\theta_4\sin\theta_6 & -\sin\theta_4\sin\theta_6 + \cos\theta_4\cos\theta_6 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta_4+\theta_6) & -\sin(\theta_4+\theta_6) & 0 & 0 \\ \sin(\theta_4+\theta_6) & \cos(\theta_4+\theta_6) & \cos(\theta_4+\theta_6) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

If
$$\theta_5 = 0$$
, $\cos \theta_5 = 1$

$$\theta_4 + \theta_6 = \operatorname{ArcTan}[a_{11}, a_{21}]$$

If
$$\theta_5 = \pi, \cos \theta_5 = -1$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\cos\theta_4\cos\theta_6 - \sin\theta_4\sin\theta_6 & +\cos\theta_4\sin\theta_6 - \sin\theta_4\cos\theta_6 & 0 & 0 \\ -\sin\theta_4\cos\theta_6 + \cos\theta_4\sin\theta_6 & +\sin\theta_4\sin\theta_6 + \cos\theta_4\cos\theta_6 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\cos(\theta_4 - \theta_6) & -\sin(\theta_4 - \theta_6) & 0 & 0 \\ -\sin(\theta_4 - \theta_6) & \cos(\theta_4 - \theta_6) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\theta_4 - \theta_6 = \operatorname{ArcTan}[-a_{21}, -a_{11}]$$

- Solutions are not isolated but in higher dimension
- Robots at singular configurations lose at least one degree of freedom

Forward Kinematics

$$[W] = [Z(0, \theta_4)][X(0, 90^\circ)][Z(0, \theta_5)][X(0, -90^\circ)][Z(0, \theta_6)] =$$

$$\begin{bmatrix} \cos \theta_4 \cos \theta_5 \cos \theta_6 - \sin \theta_4 \sin \theta_6 & -\cos \theta_4 \cos \theta_5 \sin \theta_6 - \sin \theta_4 \cos \theta_6 & -\cos \theta_4 \sin \theta_5 & 0 \\ \sin \theta_4 \cos \theta_5 \cos \theta_6 + \cos \theta_4 \sin \theta_6 & -\sin \theta_4 \cos \theta_5 \sin \theta_6 + \cos \theta_4 \cos \theta_6 & -\sin \theta_4 \sin \theta_5 & 0 \\ \sin \theta_5 \cos \theta_6 & -\sin \theta_5 \sin \theta_6 & \cos \theta_5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

D-H Table

i	$lpha_{i-1,i}$	$a_{i-1,i}$	d_{i}	$ heta_{\scriptscriptstyle i}$
4	_	_	_	30°
5	90°	0	0	-45°
6	-90°	0	0	90°

Inverse Kinematics (Mathematica)

$$\theta_5 = \pm \operatorname{AcrCos}[a_{33}]$$

$$\theta_4 = \operatorname{ArcTan}\left[\frac{a_{13}}{-\sin \theta_5}, \frac{a_{23}}{-\sin \theta_5}\right]$$

$$\theta_6 = \operatorname{ArcTan} \left[\frac{a_{31}}{+\sin \theta_5}, \frac{a_{32}}{-\sin \theta_5} \right]$$

: pointing inside: pointing outside

Inverse Kinematics of Spherical Wrist

$$[T'] = [R(\theta_1, \theta_2, \theta_3)][W(\theta_4, \theta_5, \theta_6)]$$
$$[R(\theta_1, \theta_2, \theta_3)]^{-1}[T'] = [W(\theta_4, \theta_5, \theta_6)]$$

$$[T'] = [R(\theta_1, \theta_2, \theta_3)][W(\theta_4, \theta_5, \theta_6)]$$

$$[Z(0, -\theta_2)][X(0, +90^\circ)][Z(0, -\theta_1)][T'] = [X(a_{23}, 0)][Z(d_3, \theta_3)][X(a_{34}, -90^\circ)][Z(d_4, 0)][W(\theta_4, \theta_5, \theta_6)]$$

$$[Z(-d_4, 0)][X(-a_{34}, +90^\circ)][Z(-d_3, -\theta_3)][X(-a_{23}, 0)][Z(0, -\theta_2)][X(0, +90^\circ)][Z(0, -\theta_1)][T'] = [W(\theta_4, \theta_5, \theta_6)]$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta_4\cos\theta_5\cos\theta_6 - \sin\theta_4\sin\theta_6 & -\cos\theta_4\cos\theta_5\sin\theta_6 - \sin\theta_4\cos\theta_6 & -\cos\theta_4\sin\theta_5 & 0 \\ \sin\theta_4\cos\theta_5\cos\theta_6 + \cos\theta_4\sin\theta_6 & -\sin\theta_4\cos\theta_5\sin\theta_6 + \cos\theta_4\cos\theta_6 & -\sin\theta_4\sin\theta_5 & 0 \\ \sin\theta_5\cos\theta_6 & -\sin\theta_5\sin\theta_6 & \cos\theta_5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\theta_5 = \pm \operatorname{AcrCos}[a_{33}]$$

$$\theta_4 = \operatorname{ArcTan} \left[\frac{a_{13}}{-\sin \theta_5}, \frac{a_{23}}{-\sin \theta_5} \right]$$

$$\theta_6 = \operatorname{ArcTan} \left[\frac{a_{31}}{+\sin \theta_5}, \frac{a_{32}}{-\sin \theta_5} \right]$$

 $\theta_6 = \operatorname{ArcTan} \left[\frac{a_{31}}{+\sin\theta_5}, \frac{a_{32}}{-\sin\theta_5} \right]$ There are 2*2=4 set of solutions (θ_1 , θ_2 , θ_3) for the inverse kinematics of PUMA 560 (wrist position part)

For each set of solutions $(\theta_1, \theta_2, \theta_3)$, we can obtain two solutions of $(\theta_4, \theta_5, \theta_6)$

Conclusion: there are 2*4=8 set of solutions (θ_1 , θ_2 , θ_3 θ_4 , θ_5 , θ_6) for the inverse kinematics of PUMA 560.

Summary of IK of PUMA 560 (the first three joints)

- 1. Goal: given the target pose matrix [T], 2. Compute $[T'] = [G]^{-1}[T][H]^{-1} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_x \\ r_{21} & r_{22} & r_{23} & p_y \\ r_{31} & r_{32} & r_{33} & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- 3. Solving the following equation for θ_1^{\pm} by using the solution to the equation $A\cos\varphi + B\sin\varphi = C$ (see the bottom) $-s_1p_x + c_1p_y = d_3$
- 4. Solve the following equation for θ_3^{\pm} by using the solution to $A\cos\varphi + B\sin\varphi = C$

$$p_x^2 + p_y^2 + p_z^2 = a_{23}^2 + a_{34}^2 + d_3^2 + d_4^2 + 2a_{23}(a_{34}c_3 - d_4s_3)$$

- 5. There are 4 combinations of θ_1^{\pm} and θ_3^{\pm} : (θ_1^+, θ_3^+) , (θ_1^+, θ_3^-) , (θ_1^-, θ_3^+) , (θ_1^-, θ_3^-)
- 6. Solve the following two linear equations for s_2 and c_2 (consider them as independent unknowns

$$c_2(c_1p_x + s_1p_y) - s_2p_z = a_{23} + a_{34}c_3 - d_4s_3$$
$$-s_2(c_1p_x + s_1p_y) - c_2p_z = a_{34}s_3 + d_4c_3$$

- 7. Substitute each of the 4 solutions θ_1 , θ_3 into $\theta_2 = atan2(s_2, c_2)$
- 8. There are 4 sets of solutions $(\theta_1^+, \theta_{11}, \theta_3^+)$, $(\theta_1^+, \theta_{12}, \theta_3^-)$, $(\theta_1^-, \theta_{13}, \theta_3^+)$, $(\theta_1^-, \theta_{14}, \theta_3^-)$

The solutions to equation $Acos\varphi + Bsin\varphi = C$ are $\varphi^{\pm} = atan2(B,A) \pm acos\left(\frac{C}{\sqrt{A^2+B^2}}\right)$

- 1. Substitute each of 4 solutions of $(\theta_1, \theta_2, \theta_3)$ to compute the reach matrix $[R] = [Z(0, \theta_1)][X(0, -90^\circ)][Z(0, \theta_2)][X(a_{23}, 0)][Z(d_3, \theta_3)][X(a_{34}, -90^\circ)][Z(d_4, 0)]$
- 2. Compute the numerical form of the wrist matrix [W]=[R]-1[T']= $\begin{vmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$
- 3. Calculate two solutions of $\theta_5^{\pm} = \pm a\cos(a_{22})$
- 4. Each solution of θ_5^{\pm} , calculate $\theta_4^{\pm} = atan2\left(\frac{a_{23}}{-sin\theta_5}, \frac{a_{13}}{-sin\theta_5}\right)$
- 5. Each solution of θ_5^{\pm} , calculate $\theta_6^{\pm} = atan2\left(\frac{a_{32}}{-sin\theta_5}, \frac{a_{31}}{sin\theta_5}\right)$
- 6. There should be total of 8 sets of solutions.

Simulation of PUMA 560 Robot in RoboDK

RoboDK DH Parameters

RoboDK - New Station (2) - Free (Limited)

UMA560Robot

PUMA 560 Base **7** PUMA 560

File Edit Program View Tools Utilities Connect Help

θ (deg)

d (mm)

139,700

0.000

0.000

55.880