Job No.:
 401 Yard
 Address:
 82 Carters Road, Amberley, New Zealand
 Date:
 02/04/2024

 Latitude:
 -43.152716
 Longitude:
 172.729438
 Elevation:
 43.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N4	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	2000 Years	Max Height	3.6 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	42.77 m/s
Wind Pressure	1.1 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 1.7 m Cpe = -0.9533 pe = -0.94 KPa pnet = -0.94 KPa

For roof CP,e from 1.7 m To 3.4 m Cpe = -0.8733 pe = -0.86 KPa pnet = -0.86 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward $\,$ CP,e $\,$ from 0 m $\,$ To 6 m $\,$ Cpe = 0.7 $\,$ pe = 0.69 KPa $\,$ pnet = 1.02 KPa

For side wall CP,e from 0 m To 3.4 m Cpe = pe = -0.64 KPa pnet = -0.64 KPa

Maximum Upward pressure used in roof member Design = 0.94 KPa

Maximum Downward pressure used in roof member Design = 0.42 KPa

Maximum Wall pressure used in Design = 1.02 KPa

Maximum Racking pressure used in Design = 1.18 KPa

Design Summary

Purlin Design

Purlin Spacing = 700 mm Purlin Span = 7350 mm Try Purlin 240x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

 $K1\ Short\ term=1 \qquad K1\ Medium\ term=0.8 \qquad K1\ Long\ term=0.6 \qquad K4=1 \qquad K5=1 \qquad K8\ Downward=0.94$

K8 Upward =0.19 S1 Downward =13.82 S1 Upward =39.36

 $Shear\ Capacity\ of\ timber\ = 5.3\ MPa \qquad Bending\ Capacity\ of\ timber\ = 48\ MPa\ NZS3603\ Amt\ 4,\ table\ 2.3$

Capacity Checks

M1.35D	1.6 Kn-m	Capacity	9.37 Kn-m	Passing Percentage	585.62 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	4.4 Kn-m	Capacity	12.49 Kn-m	Passing Percentage	283.86 %
$M_{0.9D\text{-W}n\text{U}p}$	-3.38 Kn-m	Capacity	-3.18 Kn-m	Passing Percentage	94.08 %
V _{1.35D}	0.87 Kn	Capacity	18.41 Kn	Passing Percentage	2116.09 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	2.39 Kn	Capacity	24.54 Kn	Passing Percentage	1026.78 %
$V_{0.9 \mathrm{D-WnUp}}$	-1.84 Kn	Capacity	-30.68 Kn	Passing Percentage	1667.39 %

Deflections

Modulus of Elasticity = 12100 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 24.76 mm Limit by Woolcock et al, 1999 Span/240 = 30.42 mm Deflection under Dead and Service Wind = 29.30 mm Limit by Woolcock et al, 1999 Span/100 = 73.00 mm

Reactions

Second page

Maximum downward = 2.39 kn Maximum upward = -1.84 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design External

External Rafter Load Width = 3750 mm

External Rafter Span = 5813 mm

Try Rafter 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =11.27 S1 Upward =11.27

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	5.35 Kn-m	Capacity	2.23 Kn-m	Passing Percentage	41.68 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	14.73 Kn-m	Capacity	2.97 Kn-m	Passing Percentage	20.16 %
$M_{0.9D ext{-WnUp}}$	-11.33 Kn-m	Capacity	-3.72 Kn-m	Passing Percentage	32.83 %
V _{1.35D}	3.68 Kn	Capacity	9.65 Kn	Passing Percentage	262.23 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	10.14 Kn	Capacity	12.86 Kn	Passing Percentage	126.82 %
$ m V_{0.9D-WnUp}$	-7.79 Kn	Capacity	-16.08 Kn	Passing Percentage	206.42 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 105.47 mm
Deflection under Dead and Service Wind = 124.80 mm

Limit by Woolcock et al, 1999 Span/240= 25.00 mm Limit by Woolcock et al, 1999 Span/100 = 60.00 mm

Reactions

Maximum downward =10.14 kn Maximum upward = -7.79 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 50 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -14.70 \text{ kn} > -7.79 \text{ Kn}$

Single Shear Capacity under short term loads = -10.84 $Kn\!>$ -7.79 Kn

Intermediate Design Front and Back

Intermediate Spacing = 3750 mm

Intermediate Span = 3450 mm

Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =9.63 S1 Upward =0.60

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 5.69 Kn-m
 Capacity
 4.2 Kn-m
 Passing Percentage
 73.81 %

 Vo.9D-WnUp
 6.60 Kn
 Capacity
 -24.12 Kn
 Passing Percentage
 365.45 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 87.45 mm Limit by Woolcock et al, 1999 Span/100 = 34.50 mm

Reactions

Maximum = 6.60 kn

Intermediate Design Sides

Intermediate Spacing = 3000 mm Intermediate Span = 3250 mm Try Intermediate 2xSG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow2.02 Kn-mCapacityNaN Kn-mPassing PercentageNaN %V0.9D-WnUp2.49 KnCapacity0 KnPassing Percentage0.00 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = Infinity mm Limit by Woolcock et al, 1999 Span/100 = 32.50 mm

Reactions

Maximum = 2.49 kn

Girt Design Front and Back

Girt's Spacing = 900 mm Girt's Span = 3750 mm Try Girt 200x50 SG8 Dry

 $Moisture\ Condition = Dry\ (Moisture\ in\ timber\ is\ less\ than\ 16\%\ and\ timber\ does\ not\ remain\ in\ continuous\ wet\ condition\ after\ installation)$

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.85 S1 Downward =11.27 S1 Upward =16.27

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 1.61 Kn-m
 Capacity
 3.17 Kn-m
 Passing Percentage
 196.89 %

 V0.9D-WnUp
 1.72 Kn
 Capacity
 16.08 Kn
 Passing Percentage
 934.88 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 17.12 mm Limit by Woolcock et al, 1999 Span/100 = 37.50 mm

Sag during installation = 11.99 mm

Reactions

Maximum = 1.72 kn

Girt Design Sides

4/8

Girt's Spacing = 900 mm Girt's Span = 3000 mm Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.92 S1 Downward =11.27 S1 Upward =14.55

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow 1.03 Kn-m Capacity 3.42 Kn-m Passing Percentage 332.04 % $V_{0.9D\text{-W}\text{nUp}}$ 1.38 Kn Capacity 16.08 Kn Passing Percentage 1165.22 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 7.01 mm

Limit by Woolcock et al. 1999 Span/100 = 30.00 mm

Sag during installation =4.91 mm

Reactions

Maximum = 1.38 kn

Middle Pole Design

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level) Dry Use 3400 mm Height 35448 mm2 26585.7421875 mm2 Area As Ix 100042702 mm4 Zx 941578 mm3 100042702 mm4 Zx 941578 mm3 Iy

Lateral Restraint 3400 mm c/c

Loads

Total Area over Pole = 22.5 m²

5.63 Kn 5.63 Kn Dead Live Wind Down 9 45 Kn 14.18 Kn Snow Moment wind 21.45 Kn-m Moment snow 6.06 Kn-m Phi 0.8 K8 0.86 K1 snow 0.8 K1 Dead 0.6

K1wind 1

Material

Peeling Steaming Normal Dry Use fs =2.96 MPa fb = 36.3 MPa 18 MPa 7.2 MPa fc =fp = 22 MPa E =9257 MPa ft =

Capacities

PhiNcx Wind 438.78 Kn PhiMnx Wind 23.50 Kn-m PhiVnx Wind 62.96 Kn 37.77 Kn PhiVnx Dead PhiNcx Dead 263.27 Kn PhiMnx Dead 14.10 Kn-m PhiNcx Snow 351.02 Kn PhiMnx Snow 18.80 Kn-m PhiVnx Snow 50.36 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.98 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.90 < 1 OK$

Deflection at top under service lateral loads = 39.84 mm < 34.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3

K0 = $(1-\sin(30))/(1+\sin(30))$ $(1+\sin(30))/(1-\sin(30))$ Kp=

Geometry For Middle Bay Pole

$D_S =$	0.6 mm	Pile Diameter
L=	1300 mm	Pile embedment length

2700 mm Distance at which the shear force is applied f2 = $0 \, \mathrm{mm}$ Distance of top soil at rest pressure

Moment Wind =	21.45 Kn-m	Moment Snow =	Kn-m
Shear Wind =	7.95 Kn	Shear Snow =	6.06 Kn

Pile Properties

Safety Factory 0.55

Ultimate Lateral Strength of the Pile, Short pile Hu= 4.89 Kn

7.84 Kn-m Ultimate Moment Capacity of Pile Mu =

Checks

Applied Forces/Capacities = 2.74 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level)	Dry Use	Height	3400 mm
Area	35448 mm2	As	26585.7421875 mm2
Ix	100042702 mm4	Zx	941578 mm3
Iy	100042702 mm4	Zx	941578 mm3
Lateral Restraint	mm c/c		

Lateral Restraint

Loads

Total Area over Pole = 22.5 m^2

Dead	5.63 Kn	Live	5.63 Kn
Wind Down	9.45 Kn	Snow	14.18 Kn
Moment Wind	10.73 Kn-m	Moment snow	3.03 Kn-m
Phi	0.8	K8	0.86
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	fs =	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	438.87 Kn	PhiMnx Wind	23.51 Kn-m	PhiVnx Wind	62.96 Kn
PhiNcx Dead	263.32 Kn	PhiMnx Dead	14.11 Kn-m	PhiVnx Dead	37.77 Kn
PhiNcx Snow	351.10 Kn	PhiMnx Snow	18.81 Kn-m	PhiVnx Snow	50.36 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.52 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.27 < 1 \text{ OK}$

Deflection at top under service lateral loads = 21.04 mm < 35.91 mm

Ds = 0.6 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 22.5 m^2

Moment Wind = 10.73 Kn-m Moment Snow = 3.03 Kn-m Shear Wind = 3.97 Kn Shear Snow = 3.03 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 1.37 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

 $\begin{array}{lll} \text{Ds} = & & 0.6 \text{ mm} & & \text{Pile Diameter} \\ \text{L} = & & 1300 \text{ mm} & & \text{Pile embedment length} \end{array}$

fl = 2700 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 10.73 Kn-m Moment Snow = 3.03 Kn-m Shear Wind = 3.97 Kn Shear Snow = 3.03 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 1.37 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

 $\frac{Pole\ Shed\ App\ Ver\ 01\ 2022}{Formula\ to\ calculate\ Skin\ Friction} = Safecty\ factor\ (0.55)\ x\ Density\ of\ Soil(18)\ x\ Height\ of\ Pile(1300)\ x\ Ks(1.5)\ x\ 0.5\ x\ tan(30)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(1300)\ x\ Pi\ x\ Dia\ of\ Pile(0.6)\ x\ Height\ of\ Pile(0.6)\ x\ He$

Skin Friction = 13.65 Kn

Weight of Pile + Pile Skin Friction = 17.02 Kn

Uplift on one Pile = 16.09 Kn

Uplift is ok