Pontificia Universidad Católica del Perú

Escuela de Posgrado

Análisis Complejo

Introducción a los números complejos (semana 1)

1. Si z = x + iy (x y y son reales), encuentre la parte real e imaginaria de

$$z^2$$
, $\frac{1}{z}$, $\frac{z-1}{z+1}$, $\frac{1}{z^2}$, \sqrt{i} , $\sqrt{-i}$.

- 2. Si $\alpha + i\beta \in \mathbb{C}$ satisface $\beta \neq 0$, encuentre la solución de la ecuación: $(x + iy)^2 = \alpha + i\beta$.
- 3. (*) Probar que en \mathbb{C} no existe el conjunto de los números positivos 1
- 4. Probar que el sistema de todas la matrices de la forma $\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$ define un cuerpo que contiene a un subcuerpo isomorfo a \mathbb{R} , y la ecuación $x^2 + 1 = 0$ tiene solución.
- 5. Analizar el valor de verdad:
 - Si |a| = 1 y |b| = 1, entonces $\frac{a+b}{1+ab} \in \mathbb{R}$.
 - Si |a| = 1 o bien |b| = 1, entonces $\left| \frac{a-b}{1-\overline{a}b} \right| = 1$.
 - El modulo de un producto es igual al producto de los modulos de cada factor.
- 6. Probar que $|a+b| \le |a| + |b|$, para todo $a, b \in \mathbb{C}$.
- 7. Probar que $\left| \frac{a-b}{1-\overline{a}b} \right| < 1$, siempre que |a| < 1 y |b| < 1.
- 8. Dar todas la soluciones de la ecuación $z^n = r(\cos(\theta) + i \sin(\theta)), n \ge 2$ con r > 0 y probar que todas tienen el mismo modulo, y sus argumentos están igualmente espaciados. Demostrar, en particular, que si $\omega = \cos\left(\frac{2\pi}{n}\right) + i \sin\left(\frac{2\pi}{n}\right), n \ge 2$, la suma

$$1 + \omega^k + \omega^{2k} + \dots + \omega^{(n-1)k}$$

es cero, para cualquier entero k que no sea un multiplo de n.

- 9. Considere la correspondencia $(x_1, x_2, x_3) \mapsto z$ y $(x'_1, x'_2, x'_3) \mapsto z'$ en la proyección estereografica. Probar la siguientes afirmaciones.
 - Cualquier circunferencia en la esfera corresponde a circunferencias o rectas en el plano horizontal y la correspondencia es inyectiva.
 - La suma $(x_1-x_1')^2+(x_2-x_2')^2+(x_3-x_3')^2$ no solo es igual a la diferencia $2-2(x_1x_1'+x_2x_2'+x_3x_3')$ sino también al cociente

$$\frac{(1+|z|^2)(1+|z'|^2)-2|z-z'|^2}{(1+|z|^2)(1+|z'|^2)}.$$

■ Si $z, w \in \mathbb{C}$ son distintos de cero y d(z, w) denota la distancia euclidiana en \mathbb{R}^3 de los puntos correspondientes en la proyección, entonces se cumple las igualdades:

$$d(z, w) = \frac{2|z - w|}{\sqrt{(1 + |z|^2)(1 + |w|^2)}}, \quad z, w \in \mathbb{C};$$
$$d(z, \infty) = \frac{2}{\sqrt{1 + |z|^2}}, \quad z \in \mathbb{C}.$$

- 10. Probar que z y w corresponden a puntos diamentralmente opuestos en la esfera \mathbb{S}^2 si y solo si el producto $z\overline{w} = -1$ (en \mathbb{C}).
- 11. Probar que si hay una rama de \sqrt{z} en un conjunto abierto del plano U con $0 \notin U$, entonces existe también una rama de arg(z).

San Miguel, 2020.

¹Un subconjunto $P \subset F$ de un cuerpo se dice que está formado por elementos positivos si satisfee: (a) 0 ∉ P.(b) por cada elemento $x \neq 0$ se obtiene $x \in P$ o bien $-x \in P$. (c) P es cerrado por las dos operaciones del cuerpo.