

Machine Learning. Professional Защита проекта

otus.ru

Меня хорошо видно **&&** слышно?

Защита проекта

Тема: Анализ результатов IELTS методами ML

Золотарева Наталья

Заместитель начальника контрольно-аналитической лаборатории 000 ВТФ

Цель проекта

Создание модели способной прогнозировать оценку письменной части языкового экзамена IELTS на основе текста эссе

План работы

- 1. Исследование данных
- 2. Генерирование дополнительных признаков
- 3. Построение моделей
- 4. Исследовать эффективности сгенерированных признаков

Используемые технологии

- 1. spacy для лемматизации и токенизации
- 2. TF-IDF для векторизации (при построении моделей)
- 3. предобученный Word2Vec из Gensim для векторизации (для генерации признаков)
- 4. readability (для генерации признаков)

Данные

Начальные данные:

- 1435 ненулевых строк
- колонки

Task_Type - тип задания (описание диаграммы или эссе)

Question - текст вопроса

Essay - текст эссе

Overall - итоговая оценка

Ove	all
1.0	1
3.0	2
3.5	4
4.0	8
4.5	21
5.0	92
5.5	161
6.0	238
6.5	214
7.0	222
7.5	118
8.0	126

32 36

Overall

Новые признаки

Word_counter

Количество слов в эссе из списков слов разных уровней A1, A2, B1, B2, C1, C2, AC

https://dictionary.cambridge.org/dictionary/english/

Academic Word List (AWL)

https://simple.wiktionary.org/wiki/Wiktionary:Academic_word_list

Similarity

cosine_similarity между эмбеддингом вопроса и суммарным эмбеддингом кадого абзаца, полученного суммой эмбеддингов их предложений

Для получения эмбеддингов использован предобученный word2vec 'GoogleNews-vectors-negative300.bin.gz'

Данные

readability

https://pypi.org/project/readability/

Реализация метрик удобочитаемости, основанных на поверхностных характеристиках (линейные регрессии, основанные на количестве слов, слогов и предложений).

automated readability index (ARI)

$$4.71 \left(rac{ ext{characters}}{ ext{words}}
ight) + 0.5 \left(rac{ ext{words}}{ ext{sentences}}
ight) - 21.43$$

- characters per word
- LIX (швед. Läsbarhetsindex) индекс удобочитаемости

$$LIX = \frac{A}{B} + \frac{C \cdot 100}{A}$$

где

- А количество слов в тексте,
- В количество предложений в тексте,
- С количество слов длиннее 6 букв.

Результат:

readability

23 признаков

слова

5 признаков

"похожесть"

1 признак

Baseline

train 0.7 test 0.15 val 0.15

stratify=data['Overall']

	test	val
accuracy_score	0.395	0.381

данные: ['Essay', 'Question', 'Task_Type']

модель: LogisticRegression

	precision	recall	f1-score	support			
3.5	0.00	0.00	0.00	1			
4.0	0.50	1.00	0.67	1			
4.5	0.00	0.00	0.00	5			
5.0	0.24	0.24	0.24	17			
5.5	0.25	0.28	0.26	25			
6.0	0.44	0.50	0.47	34			
6.5	0.34	0.50	0.40	34			
7.0	0.33	0.37	0.35	35			
7.5	0.60	0.35	0.44	26			
8.0	0.53	0.36	0.43	25			
8.5	0.00	0.00	0.00	6			
9.0	1.00	0.83	0.91	6			
accura	су		0.38	215			
macro a	vg 0.35	0.37	0.35	215			
weighted	weighted avg 0.39 0.38 0.37 215						

Влияние новых признаков

данные: все признаки vs. нескоррелированные признаки

модель: LogisticRegression

accuracy_score

	baseline все данные		без скоррелированных данных	
test	0.395	0.395	0.391	
val	0.381	0.367	0.367	

Влияние выбора модели

данные: нескоррелированные признаки

accuracy_score

	baseline	LogisticRegression	Gradient Boosting	Random Forest	SVC	CatBoost	Voting Classifier
test	0.395	0.391	0.423	0.433	0.395	0.405	0.405
val	0.381	0.367	0.386	0.451	0.386	0.479	0.414
время обучения	5.6 s	4.23 s	2min 15s	2.71 s	2.25 s	36.7 s	2min 37s

GradientBoosting

RandomForest

Влияние выбора данных

модель: VotingClassifier

accuracy_score	baseline	чистые признаки	все признаки	начальные признаки	простые признаки	сложные признаки
test	0.395	0.405	0.428	0.409	0.414	0.391
val	0.381	0.414	0.423	0.405	0.409	0.437

модель: RandomForestClassifier

accuracy_score	baseline	чистые признаки	все признаки	начальные признаки	простые признаки	сложные признаки
test	0.395	0.433	0.386	0.381	0.386	0.391
val	0.381	0.451	0.465	0.367	0.437	0.442

Проверка модели

https://writeandimprove.com

Результаты модели RandomForestClassifier:

['6.0', '7.0']

Результаты модели VotingClassifier:

['7.0', '6.5']

Выводы

- Даже сравнительно простые модели могут дать хорошие результаты при достаточном количестве данных
- Корреляция в данных иногда не вредна
- 3. Ансамбли из нескольких моделей позволяют получать более стабильный результат

Спасибо за внимание!