1/30

Group >	25:1		50:1	
Ex. No v	Control	Peptides from Casein	Control	Peptides from Casein
1	16.10	43.80	27.50	62.80
2	25.70	45.40	18.20	43.40
3	0.00	3.10	0.00	35.00
4	_	-	9.00	35.00
Average	13.93	30.77	13.68	44.05
SD	12.99	23.97	11.84	13.11

PEPTIDES FROM CASEIN EFFECT ON NK ACTIVITY

Fig. 1

2/30

Dose>	0	5	10	25	50	100	250	500
1:50	3.9	5.4	11.3	10.9	9.1	8.3	12.5	15.5
1:100	4.6	5.1	12.4	12.8	11.9	10.8	12.1	14.9

PEPTIDES FROM CASEIN EFFECT ON NK ACTIVITY

Peptides from Casein (µg/ml)

Fig. 2a

Patient	Туре	0	10	25	100	250	500
1	Normal	13	15	15	12	13	15
2	NHL	10.1	13.8	14.3	_	15.8	13.7
3	NHL	3.5	10.4	8.4	10.8	-	-
4	Br.Ca	4.2	2.7	7.1	7.7	5.9	10.1
5		12.2	18.1	19.1	14.3	13.4	15.8
6	•	17	15	15	15	13	9

Fig. 2b

3/30

Patient	Control	Peptides from Casein
1	0.60	0.20
2	0.60	1.90
3	0.10	0.90
4	0.40	3.30
5	1.50	3.70
Mean	0.64	2.00
SD	0.52	1.50

EFFECT OF PEPTIDES FROM CASEIN EFFECT ON NK PROLIFERATION

Fig. 3a

4/30

Patient	Control	Peptides from Casein
1	7.90	10.40
2	8.19	10.46
3	12.82	58.64
4	62.86	50.44
5	5.49	47.76
Mean	19.45	35.54
SD	24.41	23.27

EFFECT OF PEPTIDES FROM CASEIN EFFECT ON T CELL PROLIFERATION

Fig. 3b

5/30 T Cells antigens

Patient	Control	Peptides from Casein
1	8.00	25.00
2	1.1	4.3
3	0.1	0.85
4	2.77	3.89
5	1.74	4.34
6	0.84	4.53
7	0	2.55
Mean	2.08	6.49
SD	2.78	8.27

EFFECT OF PEPTIDES FROM CASEIN ON PBSC PROLIFERATION

Fig. 3c

	*1880 7% 1803 6.2% 2006 9.2% 1761 5.6% 1762 5.6% 1908 7.7% 1840 6.7% 1805 6.2%	4.3% 2003 9.1% 1868 7.1% 1847 6.8% 1671 4.2% 1997 9.1%	10%1	-%8	- 1a	- 2a R. R. S. 4%.	_	700	07% 0 10 25 100 250 500	ug/ml cPeptides from Casein	i
PEPTIDE 0		3a 4.3%			+ 1a	- 2a	3				

7/30

Blood origin	Incubation period (days)	Control	50 (μg/ml)	100 (μg/ml)	300 (μg/ml)	600 (μ g/ml)
PBSC	20	1663	3007	1800	4306	3310
PBSC	15	741	1612	784	-	920
BM Normal	21	675	-	660	834	817
BM Auto	21	945	-	916	1537	1284
BM 1	21	1829	4217	4396	9178	1446
BM 2	21	1829	5039	2939	1496	-
CB1	14	1159	1191	1694	3961	3297
CB2	14	3434	_	10882	-	13560

Fig. 5c

Donor	Days Of Incubation	Factors Added			ttive Cell No. X 10⁴/ml Peptides from Casein/ml						
			<u>0</u>	<u>25</u>	<u>100</u>	<u>250</u>	<u>500</u>				
Bone Marow	14	EPO, hIL-3, hSCF, AB serum	41	64	-	67	51				
Cord Blood	13	EPO, hIL-3, hSCF, AB serum	27.	158	66	50	-				

Fig. 6

9/30

Synthetic Casein-Derived Peptides

EFFECT OF PEPTIDE LENGTH ON RELATIVE CELL DISTRIBUTION (DIFFERENTIAL COUNT) (%)

Identification	PEPTIDE'S LENGTH	CONC.	Мф	PMN	EARLY MK	LATE MK	TOTAL MK	EARLY RBC	LATE RBC	TOTAL RBC	PLASMA CELLS	DENDRITIC CELLS	EOS BAS	MITOSES	TOTAL
74	2	25	17.8	2.6	3.5	3.7	7.2	15.8	20.4	36.2	8.3	23.0	2.8	4	544
1P	3	25	11.3	2.9	8.8	5.4	14.2	16.5	38.6	55.1	6.7	7.5	2.3	9	521
2P	4	25	6.1	2.3	7.4	9.1	16.5	19.4	51.8	71.2	•	•	0.6	4	700
3P	5	25	12.9	1.8	16.0	16.9	32.9	18.9	23.4	42.3	2.2	7.4	0.5	2	551
4P	6	25	22.0	3.1	21.6	24.6	46.2	5.7	11.5	17.2	0.1	4.5	4.6	4	842
5P	7	25	30.1	9.0	7.8	7.5	15.3	12.9	12.8	25.7	2.4	14.0	3.5	5	744
x	9	25	30.0	6.6	5.6	3.0	8.6	16.4	18.5	34.9	0.5	15.2	4.3	2	762
2a	11	25	8.6	1.8	14.2	28.9	43.1	13.5	26.5	40.0	3.0	3.0	0.6	12	931
2a	11	250	8.4	0.9	19.4	19.8	39.2	12.6	35.0	47.6	2.2	0.5	1.2	11	651
3a	12	25	9.5	1.8	24.1	22.5	46.6	14.0	23.4	37.4	-	3.7	1.0	16	779
D	16	25	41.0	4.5	7.0	7.6	14.6	9.6	20.2	29.8	3.4	-	6.8	7	471
D	16	250	26.6	4.8	11.9	19.4	31.3	4.2	13.1	17.3	12.3	2.4	4.5	6	620
E	17	100	15.4	5.1	12.9	14.5	27.4	20.5	23.6	44.1	4.5	1.4	2.2	7	552
Ε	17	1250	7.0	2.1	12.7	19.2	31.9	15.2	36.2	51.4	3.2	0.7	3.8	11	759
F	18	25	17.8	4.8	14.5	19.3	33.8	8.6	24.3	32.9	7.2	•	3.4	9	580
F	18	250	9.9	6.1	18.3	19.5	37.8	15.0	27.9	42.9	2.2	0.5	0.6	13	791
G	19	25	19.9	9.7	14.4	17.0	31.4	8.8	15.3	24.1	9.7	-	5.2	5	659
н	20	25	12.8	3.3	17.0	31.2	48.2	15.4	17.6	33.0	1.8	0.6	0.4	11	826
ı	21	25	19.2	9.0	11.9	30.0	41.9	7.9	20.9	28.8	1.4	-	-	8	708
J	22	25	15.0	4.5	13.2	14.0	27.2	18.9	28.4	47.3	4.0	0.2	1.8	15	952
K	23	25	28.6	14.9	3.9	6.5	10.4	3.2	-	3.2	6.5	14.3	22.1	1	154
L	24	25	10.4	3.6	18.9	36.8	55.7	10.3	12.2	22.5	4.6	2.2	0.9	14	768
N	26	100	13.8	3.6	13.6	16.4	30.0	12.4	14.2	26 .6	1.5	19.8	4.6	14	675
control (with	out synthetic ;	peptides	17.4	1.6	12.4	10.6	23.0	13.1	44.0	57.1	0.3	0.1	0.2	10	686

Fig. 7

	SS .									1											
15	Peptides from Casein	800	540	800	640	009	640	0/9	97.81												
	Control	200	440	380	009	520	380	470	78.95												
12	Peptides Control Peptides Control from Casein Casein	280	280	220	440	340	160	286.67	88.44												
	Control	100	160	140	280	40	320	173.33	97.75		**								15	ı	
	Peptides from Casein	205	100	130	125	155	06	134.17	38.01	titution									12		Sasein
6		06	135	100	130	0/	85	101.67	23.57	recons				al de		À		The state of the state of		ent	s from (
	Peptides Control from Casein	55	45	85	58	09	45	58*	13.42	cocyte	-								တ. 	Jays after treatment	Peptides from Casein
9	Control	55	40	20	35	75	25	41.67	18.63	of leuk									ဖွ	ays aπe	+
4	Peptides Control Peptides Control from Casein	32	34	40	14	18	90	38*	24.95	Elevation of leukocyte reconstitution									4	ñ	Control
7	Control	9	18	14	8	16	18	13.33	4.71										5		+
	Peptides from Casein	6	10	9	9	9	10	7.83	1.86		200	000	800	600	3	400	200		-		
2	Control	9	10	4	9	12	8	79.7	2.69	80	7	_			ဝ၁						
Day	After Treatment	1	2	3	4	5	9	Mean	CS	* p<0.008	ŧ							i	Fig. 8		

11/30

		11		13		15
Day After	Control	Peptides	Control	Peptides	Control	Peptides
Treatment 1	43	50	75	103	98	110
2	48	54	71	105	99	128
3	68	68	80	110	102	111
4	64	64	104	104	96	103
5	67	67	91	101	104	133
6	63	54	90	90	97	114
7	54	45	104	107	87	104
8		63		104		116
9		61		93		115
10		57		116		112
Mean	58.14	58.3	87.86	103.3*	97.57	114.6**

^{*} p<0.01 ** p<0.0001

Elevation of platelets reconstitution

Fig. 9

Peptides from	3	days	7	days
Casein	cpm	Proliferation	cpm	Proliferation
μg/ml	Counts	Index	Counts	Index
50	9268	1.18	120954	1.10
100	9940	1.26	112436	1.02
300	8425	1.07	102957	0.93
600	9771	1.24	101987	0.93
1000	8390	1.06	86649	0.79
Control	7862		109560	
Peptides	1	0 days	14	4 days
Peptides from Casein	cpm	0 days Proliferation		4 days Proliferation
from		<u>-</u>	cpm Counts	
from Casein	cpm	Proliferation	cpm	Proliferation
from Casein μg/ml	cpm Counts	Proliferation Index	cpm Counts	Proliferation Index
from Casein μg/ml	cpm Counts 17695	Proliferation Index 1.03	cpm Counts 22272	Proliferation Index 1.36
from Casein μg/ml 50 100	cpm Counts 17695 19168	Proliferation Index 1.03 1.12	cpm Counts 22272 22842	Proliferation Index 1.36 1.40
from Casein μg/ml 50 100 300	cpm Counts 17695 19168 21806	Proliferation Index 1.03 1.12 1.28	cpm Counts 22272 22842 15318	Proliferation Index 1.36 1.40 0.93

Fig. 11

14/30

	Peptides	CEM cel	lls
	from Casein μg/ml	Cell No. (x10 ⁶) 15 days	P ²⁴ Ag ng/ml
	50	0.29	16.39
	100	0.55	7.73
3H	300	0.54	1.61
	600	0.75	0.18
	1000	0.57	0.19
	50	0.40	0.24
	100	0.48	4.21
24H	300	0.56	2.94
	600	0.62	0.18
	1000	0.79	4.03
	50	0.37	10.05
	100	0.50	9.16
48H	300	0.56	3.21
	600	0.70	16.49
	1000	0.84	2.16
Control	IF	0.35	11.42
Control	UIF	0.42	0.17

Fig. 12

15/30

Peptide	0	СЕМ се	lls
(3hr pre- treatment)	Conc. μg/ml	Cell No. (x10°) 15 days	P ²⁴ Ag ng/ml
1P	100	1.29	0.17
(SEQ ID NO 2)	500	2.01	0.14
3P (SEQ ID NO 4)	10	1.17	0.26
,	25	1.26	0.18
4P	25	1.26	0.42
(SEQ ID	100	1.00	1.4
NO 5)	250	1.59	0.10
	1F	1.06	0.52
Control	UIF	0.42	0.17

Fig. 13

16/30

Sample*	Group**	Food	TC	HDL	LDL
1	Normal	Normal	91	48	<1
2	Nomiai	Normal	92	56	<1
3	Control	Enriched	375	58	305
4	Control	Enriched	411	51	348
5	В	Enriched	442	52	372
6		Enriched	445	42	386
7	С	Enriched	409	52	341
8	٥	Enriched	411	37	361
9	2a	Enriched	279	36	229
10	Za	Enriched	278	47	213
11	3P	Enriched	312	42	251
12	3P	Enriched	305	43	243

^{*} One blood sample represents blood drawn from 2 mice.

^{**} Each group included 4 mice.

		MEAN VALUES		
		TC	HDL	LDL
1+2	Normal	91.5	52	<1
3+4	Control	393	54.5	326.5
5+6	В	449.5	47	379
7+8	С	410	44.5	351
9+10	2a	278.5	42	221
11+12	3P	308.5	42.5	247

Cholesterol, HDL & LDL in C57Bl/6 Black Mice Treated with Peptides

17/30

Patient	M	WBC	Д	PLT	<u> </u>	RBC	゛゛゛	НСВ
	Before	After	Before	After	Before	After	Before	After
_	1,200	4,100	17,000	17,000 224,000	3.27	4.05	10.4	12.6
G.T.	ב	n+241%	ב	n+1217%	_	n+23%	L	n+21%
7	5,400	6,300	204,000	6,300 204,000 259,000	3.37	3.46	10.8	11.0
E.C.	n.	n+16.6%	ב	n+26.9%	د	n+2.6%	c	n+1.8%
က	3,400	5,100	12,700	17,900	4.49	4.71	12.9	13.2
E.S.	C	n+50%	c	n+40%	ב	n+8.4%	L	n+2.3%
4	4,900	6,400						
J.R.	C	n+30%						
2	200	4,600	47,000	151,000	2.88	3.45	9.8	10.5
D.M.	u	n+557%	ב	n+221%	L	n+19.7%	u	n+22%

White blood cells Platelets Red blood cells Hemoglobin

Fig. 16

X	<u> Y</u>	18/30
0	11	
1	10	
3	10	·
5	32.5	
7	15	
8	27.5	
12	40	
14.25	28	
17	35	
21	45	
26.35	70.3	
31.7	74	•
40	100.7	

V	LV	19/30
<u>X</u>	Y	_
0	23	
1	18.5	
2	25	
3	16	
4	20.8	
6	20.8	
7	20	
8	23.5	
9	26	
10	19.5	
11	23	
13	18.5	
14	18.5	
15	20	
17.2	22	
20.3	30	
24	44	
29	75.6	
36.5	86.4	
41	139.5	
	•	

20/30

Myeloid Colonies / 1x10⁵ MNC plated (CFU-GM) CFU-GM

Factor added	Colonies per 10 ⁵ MNC Plated
Control + IL-3	52
G-CSF+ IL-3	61
30-4 + IL-3	58
J + IL-3	52
G-CSF+ 30-4 + IL-3	72
G-CSF+ J + IL-3	76

Fig. 19

Myeloid Colonies / 1x10⁵ MNC plated (CFU-GM) CFU-GM

Factor added	Conc.	Colonies per 10 ⁵ MNC Plated	Enhancement of Response to GCSF
G-CSF	75 units/ml	50	0
J+G-CSF	100 μg/ml	77	1.54
	300 μg/ml	60	1.2
β+G-CSF	100 μg/ml	58	1.16
	300 μg/ml	65	1.3

Fig. 20

Percent Megakaryocytes of Total Cells Counted

Factor Added	Conc.	Early MK	Late MK	Total MK	
Control		4.4	13.6	18.0	
Synthetic Kappa (106- 127)(SEQ ID NO: 30)	25µg	6.8	15.0	21.8	
Synthetic Beta (193- 208)(SEQ ID NO: 28)	25μg	7.5	16.4	23.9	
Synthetic Alpha-S1 (1-22)(SEQ ID NO:21)	25µg	12.7	15.5	28.2	

Fig. 21

21/30 Number of Colonies from Murine Bone Marrow Progenitor Cells (CFU-GEMM)

		C	onc. μg/ml
Factor Added	Days of Incubation	0	25
β (SEQ ID NO: 28)	8	17	38
κ(SEQ ID NO: 30)	8	17	36
β+κ	8	17	62

Fig. 22

Platelet reconstitution

Factor added	Platelet count (x10 ⁻³) per ml at 10 days
Control	332
J (SEQ ID NO: 21)1mg	445
Control	338
β (SEQ ID NO: 28)1mg	447
Control	370
κ (SEQ ID NO: 30) 1mg	468

Fig. 23

Leukocyte Proliferation (Mean WBC counts)

Factor Added	5 Days	7 Days	10 Days
α-S1(1-23)	5.25×10^4	52.5 x 10 ⁴	1.80×10^6
κ-casein (106-169)	7.20×10^4	79.0×10^4	1.76×10^6
β-casein(Synthetic) (SEQ ID NO: 28)	17.4×10^4	56.0×10^4	1.90×10^6
α-S1casein(1-22)(Synthetic) (SEQ ID NO: 21)	7.80×10^4	72.0×10^4	1.70 x 10 ⁶
Control	4.80×10^4	39.0×10^4	1.56×10^6

Fig. 24

Leukocyte Proliferation (Mean WBC counts)

	WBC (x 10⁻³ per mm³) at					
Factor added	day 4	day 10	day 12			
J (αS1 1-22) (SEQ ID NO: 21)	2.3	35.8	35.2			
β-casein (193-208) (SEQ ID NO: 28)	4.0	28.0	32.8			
J+ β	3.0	31.0	41.0			
Saline	2.2	25.2	36.8			

Fig. 25

22/30

Chimeric Peptides of αS1- and β-casein

αS1-peptide	SEQ ID NO:	β- peptide	SEQ ID NO:	β- peptide YQE
RP	34	RPYQ	35	RPYQE
RPK	36	RPKYQ	37	RPKYQE
RPKH	38	RPKHYQ	39	RPKHYQE
RPKHP	40	RPKHPYQ	41	RPKHPYQE
RPKHPI	42	RPKHPIYQ	43	RPKHPIYQE
RPKHPIK	44	RPKHPIKYQ	45	RPKHPIKYQE
RPKHPIKH	46	RPKHPIKHYQ	47	RPKHPIKHYQE
RPKHPIKHQ	48	RPKHPIKHQYQ	49	RPKHPIKHQYQE
RPKHPIKHQG	50	RPKHPIKHQGYQ	51	RPKHPIKHQGYQE
RPKHPIKHQGL	52	RPKHPIKHQGLYQ	53	RPKHPIKHQGLYQE
RPKHPIKHQGLP	54	RPKHPIKHQGLPYQ	55	RPKHPIKHQGLPYQE
RPKHPIKHQGLPQ	56	RPKHPIKHQGLPQYQ	57	RPKHPIKHQGLPQYQE
RPKHPIKHQGLPQE	58	RPKHPIKHQGLPQEYQ	59	RPKHPIKHQGLPQEYQE
RPKHPIKHQGLPQEV	60	RPKHPIKHQGLPQEVYQ	61	RPKHPIKHQGLPQEVYQE
RPKHPIKHQGLPQEVL	62	RPKHPIKHQGLPQEVLYQ	63	RPKHPIKHQGLPQEVLYQ E
RPKHPIKHQGLPQEVL N				RPKHPIKHQGLPQEVLNY
	64	RPKHPIKHQGLPQEVLNYQ	65	QE
RPKHPIKHQGLPQEVL NE	66	RPKHPIKHQGLPQEVLNEYQ	67	RPKHPIKHQGLPQEVLNE YQE

Fig. 26a
Fig. 26c
Fig. 26d
Fig. 26e
Fig. 26f

Fig. 26g

Fig. 26h Fig. 26i

Fig. 26

Fig. 26a

		23/30		
RPKHPIKHQGLPQEVL NEN	68	RPKHPIKHQGLPQEVLNENYQ	69	RPKHPIKHQGLPQEVLNE NYQE
RPKHPIKHQGLPQEVL		711 1011 1111 12011		
NENL	70	RPKHPIKHQGLPQEVLNENLY Q	71	RPKHPIKHQGLPQEVLNE NLYQE
RPKHPIKHQGLPQEVL NENLL	72	RPKHPIKHQGLPQEVLNENLL YQ	73	RPKHPIKHQGLPQEVLNE NLLYQE
RPKHPIKHQGLPQEVL NENLLR	74	RPKHPIKHQGLPQEVLNENLL RYQ	75	RPKHPIKHQGLPQEVLNE NLLRYQE
RPKHPIKHQGLPQEVL NENLLRF	76	RPKHPIKHQGLPQEVLNENLL RFYQ	77	RPKHPIKHQGLPQEVLNE NLLRFYQE
RPKHPIKHQGLPQEVL NENLLRFF	78	RPKHPIKHQGLPQEVLNENLL RFFYQ	79	RPKHPIKHQGLPQEVLNE NLLRFFYQE
RPKHPIKHQGLPQEVL NENLLRFFV	80	RPKHPIKHQGLPQEVLNENLL RFFVYQ	81	RPKHPIKHQGLPQEVLNE NLLRFFVYQE
RPKHPIKHQGLPQEVL NENLLRFFVA	82	RPKHPIKHQGLPQEVLNENLL RFFVAYQ	83	RPKHPIKHQGLPQEVLNE NLLRFFVAYQE
	SEQ ID NO:	YQEP	SEQ ID NO:	YQEPV
RP		DEMOSE	95	DDVOCDV
	84	RPYQEP	85	RPYQEPV
RPK	86	RPKYQEP	87	RPKYQEPV
RPKH	88	RPKHYQEP	89	RPKHYQEPV
RPKHP	90	RPKHPYQEP	91	RPKHPYQEPV
RPKHPI	92	RPKHPIYQEP	93	RPKHPIYQEPV
RPKHPIK	94	RPKHPIKYQEP	95	RPKHPIKYQEPV
RPKHPIKH	96	RPKHPIKHYQEP	97	RPKHPIKHYQEPV
RPKHPIKHQ	98	RPKHPIKHQYQEP	99	RPKHPIKHQYQEPV
RPKHPIKHQG RPKHPIKHQGL	100	RPKHPIKHQGYQEP	101	RPKHPIKHQGYQEPV
RPRHFIRHQGL	102	RPKHPIKHQGLYQEP	103	RPKHPIKHQGLYQEPV
RPKHPIKHQGLP	104	RPKHPIKHQGLPYQEP	105	RPKHPIKHQGLPYQEPV
RPKHPIKHQGLPQ	106	RPKHPIKHQGLPQYQEP	107	RPKHPIKHQGLPQYQEPV
RPKHPIKHQGLPQE	108	RPKHPIKHQGLPQEYQEP	109	RPKHPIKHQGLPQEYQEP V
RPKHPIKHQGLPQEV	110	RPKHPIKHQGLPQEVYQEP	111	RPKHPIKHQGLPQEVYQE PV
RPKHPIKHQGLPQEVL	112	RPKHPIKHQGLPQEVLYQEP	113	RPKHPIKHQGLPQEVLYQ EPV
RPKHPIKHQGLPQEVL N				RPKHPIKHQGLPQEVLNY
	114	RPKHPIKHQGLPQEVLNYQEP	115	QEPV
RPKHPIKHQGLPQEVL NB	114	RPKHPIKHQGLPQEVLNYQEP RPKHPIKHQGLPQEVLNEYQE	115 117	

Fig. 26b

24/30					
RPKHPIKHQGLPQEVL NENL	120	RPKHPIKHQGLPQEVLNENLY QEP	121	RPKHPIKHQGLPQEVLNE NLYQEPV	
RPKHPIKHQGLPQEVL NENLL	122	RPKHPIKHQGLPQEVLNENLL YQEP	123	RPKHPIKHQGLPQEVLNE NLLYQEPV	
RPKHPIKHQGLPQEVL NENLLR	124	RPKHPIKHQGLPQEVLNENLL RYQEP	125	RPKHPIKHQGLPQEVLNE NLLRYQEPV	
RPKHPIKHQGLPQEVL NENLLRF	126	RPKHPIKHQGLPQEVLNENLL RFYQEP	127	RPKHPIKHQGLPQEVLNE NLLRFYQEPV	
RPKHPIKHQGLPQEVL NENLLRFF	128	RPKHPIKHQGLPQEVLNENLL RFFYQEP	129	RPKHPIKHQGLPQEVLNE NLLRFFYQEPV	
RPKHPIKHQGLPQEVL NENLLRFFV	130	RPKHPIKHQGLPQEVLNENLL RFFVYQEP	131	RPKHPIKHQGLPQEVLNE NLLRFFVYQEPV	
RPKHPIKHQGLPQEVL NENLLRFFVA	132	RPKHPIKHQGLPQEVLNENLL RFFVAYQEP	133	RPKHPIKHQGLPQEVLNE NLLRFFVAYQEPV	
	SEQ ID NO:	YQEPVL	SEQ ID NO:	YQEPVLG	
RP.					
RPK	134	RPYQEPVL	135	RPYQEPVLG	
RPKH	136 138	RPKYQEPVL	137 139	RPKYQEPVLG	
RPKHP	140	RPKHYQEPVL RPKHPYQEPVL	141	RPKHYQEPVLG RPKHPYQEPVLG	
RPKHPI	142	RPKHPIYQEPVL	143	RPKHPIYQEPVLG	
RPKHPIK	144	RPKHPIKYQEPVL	145	RPKHPIKYQEPVLG	
RPKHPIKH	146	RPKHPIKHYQEPVL	147	RPKHPIKHYQEPVLG	
RРКНРІКНQ	148	RPKHPIKHQYQEPVL	149	RPKHPIKHQYQEPVLG	
RPKHPIKHQG	150	RPKHPIKHQGYQEPVL	151	RPKHPIKHQGYQEPVLG	
RPKHPIKHQGL	152		153	RPKHPIKHQGLYQEPVLG	
RPKHPIKHQGLP	154	RPKHPIKHQGLYQEPVL RPKHPIKHQGLPYQEPVL	155	RPKHPIKHQGLPYQEPVL G	
RPKHPIKHQGLPQ	156	RPKHPIKHQGLPQYQEPVL	157	RPKHPIKHQGLPQYQEPV LG	
RPKHPIKHQGLPQE	158	RPKHPIKHQGLPQEYQEPVL	159	RPKHPIKHQGLPQEYQEP VLG	
RPKHPIKHQGLPQEV	160	RPKHPIKHQGLPQEVYQEPVL	161	RPKHPIKHQGLPQEVYQE PVLG	
RPKHPIKHQGLPQEVL	162	RPKHPIKHQGLPQEVLYQEPV L	163	RPKHPIKHQGLPQEVLYQ EPVLG	
RPKHPIKHQGLPQEVL N	164	RPKHPIKHQGLPQEVLNYQEP VL	165	RPKHPIKHQGLPQEVLNY QEPVLG	
RPKHPIKHQGLPQEVL NE	166	RPKHPIKHQGLPQEVLNEYQE PVL	167	RPKHPIKHQGLPQEVLNE YQEPVLG	
RPKHPIKHQGLPQEVL NEN	168	RPKHPIKHQGLPQEVLNENYQ EPVL	169	RPKHPIKHQGLPQEVLNE NYQEPVLG	
RPKHPIKHQGLPQEVL NENL	170	RPKHPIKHQGLPQEVLNENLY QEPVL	171	RPKHPIKHQGLPQEVLNE NLYQEPVLG	

Fig. 26c

		<u> </u>	·	-
RPKHPIKHQGLPQEVL NENLL	172	RPKHPIKHQGLPQEVLNENLL YQEPVL	173	RPKHPIKHQGLPQEVLNE NLLYQEPVLG
RPKHPIKHQGLPQEVL NENLLR	174	RPKHPIKHQGLPQEVLNENLL RYQEPVL	175	RPKHPIKHQGLPQEVLNE NLLRYQEPVLG
RPKHPIKHQGLPQEVL NENLLRF	176	RPKHPIKHQGLPQEVLNENLL RFYQEPVL	177	RPKHPIKHQGLPQEVLNE NLLRFYQEPVLG
RPKHPIKHQGLPQEVL NENLLRFF	178	RPKHPIKHQGLPQEVLNENLL RFFYQEPVL	179	RPKHPIKHQGLPQEVLNE NLLRFFYQEPVLG
RPKHPIKHQGLPQEVL NENLLRFFV	180	RPKHPIKHQGLPQEVLNENLL RFFVYQEPVL	181	RPKHPIKHQGLPQEVLNE NLLRFFVYQEPVLG
RPKHPIKHQGLPQEVL NENLLRFFVA	182	RPKHPIKHQGLPQEVLNENLL RFFVAYQEPVL	183	RPKHPIKHQGLPQEVLNE NLLRFFVAYQEPVLG
	SEQ ID NO:	YQEPVLGP	SEQ ID NO:	YQEPVLGPV
RP	184	RPYQEPVLGP	185	RPYQEPVLGPV
RPK	186	RPKYQEPVLGP	187	RPKYQEPVLGPV
RPKH	188	RPKHYQEPVLGP	189	RPKHYQEPVLGPV
RPKHP	190	RPKHPYQEPVLGP	191	RPKHPYQEPVLGPV
RPKHPI	192	RPKHPIYQEPVLGP	193	RPKHPIYQEPVLGPV
RPKHPIK	194	RPKHPIKYQEPVLGP	195	RPKHPIKYQEPVLGPV
RPKHPIKH	196	RPKHPIKHYQEPVLGP	197	RPKHPIKHYQEPVLGPV
RPKHPIKHQ	198	RPKHPIKHQYQEPVLGP	199	RPKHPIKHQYQEPVLGPV
RPKHPIKHQG	200	RPKHPIKHQGYQEPVLGP	201	RPKHPIKHQGYQEPVLGP V
RPKHPIKHQGL	202	RPKHPIKHQGLYQEPVLGP	203	RPKHPIKHQGLYQEPVLG PV
RPKHPIKHQGLP	204	RPKHPIKHQGLPYQEPVLGP	205	RPKHPIKHQGLPYQEPVL GPV
RPKHPIKHQGLPQ	206	RPKHPIKHQGLPQYQEPVLGP	207	RPKHPIKHQGLPQYQEPV LGPV
RPKHPIKHQGLPQE	208	RPKHPIKHQGLPQEYQEPVLG P	209	RPKHPIKHQGLPQEYQEP VLGPV
RPKHPIKHQGLPQEV	210	RPKHPIKHQGLPQEVYQEPVL GP	211	RPKHPIKHQGLPQEVYQE PVLGPV
RPKHPIKHQGLPQEVI.	212	RPKHPIKHQGLPQEVLYQEPV LGP	213	RPKHPIKHQGLPQEVLYQ EPVLGPV
RPKHPIKHQGLPQEVL N	214	RPKHPIKHQGLPQEVLNYQEP VLGP	215	RPKHPIKHQGLPQEVLNY QEPVLGPV
RPKHPIKHQGLPQEVL NE	216	RPKHPIKHQGLPQEVLNEYQE PVLGP	217	RPKHPIKHQGLPQEVLNE YQEPVLGPV
RPKHPIKHQGLPQEVL NEN	218	RPKHPIKHQGLPQEVLNENYQ EPVLGP	219	RPKHPIKHQGLPQEVLNE NYQEPVLGPV
RPKHPIKHQGLPQEVL NENL	220	RPKHPIKHQGLPQEVLNENLY QEPVLGP	221	RPKHPIKHQGLPQEVLNE NLYQEPVLGPV
RPKHPIKHQGLPQEVL NENLL	222	RPKHPIKHQGLPQEVLNENLL YQEPVLGP	223	RPKHPIKHQGLPQEVLNE NLLYQEPVLGPV

Fig. 26d

		26/30	· · · · · · · · · · · · · · · · · · ·	
RPKHPIKHQGLPQEVL NENLLR	224	RPKHPIKHQGLPQEVLNENLL RYQEPVLGP	225	RPKHPIKHQGLPQEVLNE NLLRYQEPVLGPV
RPKHPIKHQGLPQEVL NENLLRF	226	RPKHPIKHQGLPQEVLNENLL RFYQEPVLGP	227	RPKHPIKHQGLPQEVLNE NLLRFYQEPVLGPV
RPKHPIKHQGLPQEVL NENLLRFF	228	RPKHPIKHQGLPQEVLNENLL RFFYQEPVLGP	229	RPKHPIKHQGLPQEVLNE NLLRFFYQEPVLGPV
RPKHPIKHQGLPQEVL NENLLRFFV	230	RPKHPIKHQGLPQEVLNENLL RFFVYQEPVLGP	231	RPKHPIKHQGLPQEVLNE NLLRFFVYQEPVLGPV
RPKHPIKHQGLPQEVL NENLLRFFVA	232	RPKHPIKHQGLPQEVLNENLL RFFVAYQEPVLGP	233	RPKHPIKHQGLPQEVLNE NLLRFFVAYQEPVLGPV
	SEQ ID NO:	YQEPVLGPVR	SEQ ID NO:	YQEPVLGPVRG
RP	234	RPYQEPVLGPVR	235	RPYQEPVLGPVRG
RPK	236	RPKYQEPVLGPVR	237	RPKYQEPVLGPVRG
RPKH	238	RPKHYQEPVLGPVR	239	RPKHYQEPVLGPVRG
RPKHP	240	RPKHPYQEPVLGPVR	241	RPKHPYQEPVLGPVRG
RPKHPI	242	RPKHPIYQEPVLGPVR	243	RPKHPIYQEPVLGPVRG
RPKHPIK	244	RPKHPIKYQEPVLGPVR	245	RPKHPIKYQEPVLGPVRG
RPKHPIKH				RPKHPIKHYQEPVLGPVR
RPKHPIKHQ	246	RPKHPIKHYQEPVLGPVR RPKHPIKHQYQEPVLGPVR	247	RPKHPIKHQYQEPVLGPV RG
RPKHPIKHQG	250	RPKHPIKHQGYQEPVLGPVR	251	RPKHPIKHQGYQEPVLGP VRG
RPKHPIKHQGL	252	RPKHPIKHQGLYQEPVLGPVR	253	RPKHPIKHQGLYQEPVLG PVRG
RPKHPIKHQGLP	254	RPKHPIKHQGLPYQEPVLGPV R	255	RPKHPIKHQGLPYQEPVL GPVRG
RPKHPIKHQGLPQ	256	RPKHPIKHQGLPQYQEPVLGP VR	257	RPKHPIKHQGLPQYQEPV LGPVRG
RPKHPIKHQGLPQE	258	RPKHPIKHQGLPQEYQEPVLG PVR	259	RPKHPIKHQGLPQEYQEP VLGPVRG
RPKHPIKHQGLPQEV RPKHPIKHQGLPQEVL	260	RPKHPIKHQGLPQEVYQEPVL GPVR	261	RPKHPIKHQGLPQEVYQE PVLGPVRG
	262	RPKHPIKHQGLPQEVLYQEPV LGPVR	263	RPKHPIKHQGLPQEVLYQ EPVLGPVRG
RPKHPIKHQGLPQEVL N	264	RPKHPIKHQGLPQEVLNYQEP VLGPVR	265	RPKHPIKHQGLPQEVLNY QEPVLGPVRG
RPKHPIKHQGLPQEVL NB	266	RPKHPIKHQGLPQEVLNEYQE PVLGPVR	267	RPKHPIKHQGLPQEVLNE YQEPVLGPVRG
RPKHPIKHQGLPQEVL NEN	268	RPKHPIKHQGLPQEVLNENYQ EPVLGPVR	269	RPKHPIKHQGLPQEVLNE NYQEPVLGPVRG
RPKHPIKHQGLPQEVL NENL	270	RPKHPIKHQGLPQEVLNENLY QEPVLGPVR	271	RPKHPIKHQGLPQEVLNE NLYQEPVLGPVRG
RPKHPIKHQGLPQEVL NENLL	272	RPKHPIKHQGLPQEVLNENLL YQEPVLGPVR	273	RPKHPIKHQGLPQEVLNE NLLYQEPVLGPVRG
RPKHPIKHQGLPQEVL NENLLR	274	RPKHPIKHQGLPQEVLNENLL RYQEPVLGPVR	275	RPKHPIKHQGLPQEVLNE NLLRYQEPVLGPVRG

Fig. 26e

		21100		····
RPKHPIKHQGLPQEVL NENLLRF	276	RPKHPIKHQGLPQEVLNENLL RFYQEPVLGPVR	277	RPKHPIKHQGLPQEVLNE NLLRFYQEPVLGPVRG
RPKHPIKHQGLPQEVL NENLLRFF	278	RPKHPIKHQGLPQEVLNENLL RFFYQEPVLGPVR	279	RPKHPIKHQGLPQEVLNE NLLRFFYQEPVLGPVRG
RPKHPIKHQGLPQEVL NENLLRFFV	280	RPKHPIKHQGLPQEVLNENLL RFFVYQEPVLGPVR	281	RPKHPIKHQGLPQEVLNE NLLRFFVYQEPVLGPVRG
RPKHPIKHQGLPQEVL NENLLRFFVA	282	RPKHPIKHQGLPQEVLNENLL RFFVAYQEPVLGPVR	283	RPKHPIKHQGLPQEVLNE NLLRFFVAYQEPVLGPVR G
	SEQ ID NO:	YQEPVLGPVRGP	SEQ ID NO:	YOEPVLGPVRGPF
RP	284	RPYQEPVLGPVRGP	285	RPYQEPVLGPVRGPF
RPK	286	RPKYQEPVLGPVRGP	287	RPKYQEPVLGPVRGPF
RPKH	288	RPKHYQEPVLGPVRGP	289	RPKHYQEPVLGPVRGPF
RРКНР	290	RPKHPYQEPVLGPVRGP	291	RPKHPYQEPVLGPVRGP F
RPKHPI	292	RPKHPIYQEPVLGPVRGP	293	RPKHPIYQEPVLGPVRGP
RPKHPIK	294	RPKHPIKYQEPVLGPVRGP	295	RPKHPIKYQEPVLGPVRG PF
RPKHPIKH	296	RPKHPIKHYQEPVLGPVRGP	297	RPKHPIKHYQEPVLGPVR GPF
RPKHPIKHQ	298	RPKHPIKHQYQEPVLGPVRGP	299	RPKHPIKHQYQEPVLGPV RGPF
RPKHPIKHQG	300	RPKHPIKHQGYQEPVLGPVRG P	301	RPKHPIKHQGYQEPVLGP VRGPF
RPKHPIKHQGL	302	RPKHPIKHQGLYQEPVLGPVR GP	303	RPKHPIKHQGLYQEPVLG PVRGPF
RPKHPIKHQGLP	304	RPKHPIKHQGLPYQEPVLGPV RGP	305	RPKHPIKHQGLPYQEPVL GPVRGPF
RPKHPIKHQGLPQ	306	RPKHPIKHQGLPQYQEPVLGP VRGP	307	RPKHPIKHQGLPQYQEPV LGPVRGPF
RPKHPIKHQGLPQE	308	RPKHPIKHQGLPQEYQEPVLG PVRGP	309	RPKHPIKHQGLPQEYQEP VLGPVRGPF
RPKHPIKHQGLPQEV	310	RPKHPIKHQGLPQEVYQEPVL GPVRGP	311	RPKHPIKHQGLPQEVYQE PVLGPVRGPF
RPKHPIKHQGLPQEVL	312	RPKHPIKHQGLPQEVLYQEPV LGPVRGP	313	RPKHPIKHQGLPQEVLYQ EPVLGPVRGPF
RPKHPIKHQGLPQEVL N	314_	RPKHPIKHQGLPQEVLNYQEP VLGPVRGP	315	RPKHPIKHQGLPQEVLNY QEPVLGPVRGPF
RPKHPIKHQGLPQEVL NE	316	RPKHPIKHQGLPQEVLNEYQE PVLGPVRGP	317	RPKHPIKHQGLPQEVLNE YQEPVLGPVRGPF
RPKHPIKHQGLPQEVL NEN	318	RPKHPIKHQGLPQEVLNENYQ EPVLGPVRGP	319	RPKHPIKHQGLPQEVLNE NYQEPVLGPVRGPF
RPKHPIKHQGLPQEVL NENL	320	RPKHPIKHQGLPQEVLNENLY QEPVLGPVRGP	321	RPKHPIKHQGLPQEVLNE NLYQEPVLGPVRGPF
RPKHPIKHQGLPQEVL NENLL	322	RPKHPIKHQGLPQEVLNENLL YQEPVLGPVRGP	323	RPKHPIKHQGLPQEVLNE NLLYQEPVLGPVRGPF
RPKHPIKHQGLPQEVL NENLLR	324	RPKHPIKHQGLPQEVLNENLL RYQEPVLGPVRGP	325	RPKHPIKHQGLPQEVLNE NLLRYQEPVLGPVRGPF

Fig. 26f

		28/30		
RPKHPIKHQGLPQEVL NENLLRF	326	RPKHPIKHQGLPQEVLNENLL RFYQEPVLGPVRGP	327	RPKHPIKHQGLPQEVLNE NLLRFYQEPVLGPVRGPF
RPKHPIKHQGLPQEVL NENLLRFF	328	RPKHPIKHQGLPQEVLNENLL RFFYQEPVLGPVRGP	329	RPKHPIKHQGLPQEVLNE NLLRFFYQEPVLGPVRGP F
RPKHPIKHQGLPQEVL NENLLRFFV	330	RPKHPIKHQGLPQEVLNENLL RFFVYQEPVLGPVRGP	331	RPKHPIKHQGLPQEVLNE NLLRFFVYQEPVLGPVRG PF
RPKHPIKHQGLPQEVL NENLLRFFVA	332	RPKHPIKHQGLPQEVLNENLL RFFVAYQEPVLGPVRGP	333	RPKHPIKHQGLPQEVLNE NLLRFFVAYQEPVLGPVR GPF
	SEQ ID NO:	YQEPVLGPVRGPFP	SEQ ID NO:	YQEPVLGPVRGPFPI
RP	334	RPYQEPVLGPVRGPFP	335	RPYQEPVLGPVRGPFPI
RPK	336	RPKYQEPVLGPVRGPFP	337	RPKYQEPVLGPVRGPFPI
RPKH				RPKHYQEPVLGPVRGPF
RРКИР	338	RPKHYQEPVLGPVRGPFP	339	PI RPKHPYQEPVLGPVRGP
	340	RPKHPYQEPVLGPVRGPFP	341	FPI
RPKHPI	342	RPKHPIYQEPVLGPVRGPFP	343	RPKHPIYQEPVLGPVRGP FPI
RPKHPIK	344	RPKHPIKYQEPVLGPVRGPFP	345	RPKHPIKYQEPVLGPVRG PFPI
RPKHPIKH	346	RPKHPIKHYQEPVLGPVRGPF P	347	RPKHPIKHYQEPVLGPVR GPFPI
RPKHPIKHQ	348	RPKHPIKHQYQEPVLGPVRGP FP	349	RPKHPIKHQYQEPVLGPV RGPFPI
RPKHPIKHQG	350	RPKHPIKHQGYQEPVLGPVRG PFP	351	RPKHPIKHQGYQEPVLGP VRGPFPI
RPKHPIKHQGL	352	RPKHPIKHQGLYQEPVLGPVR GPFP	353	RPKHPIKHQGLYQEPVLG PVRGPFPI
RPKHPIKHQGLP	354	RPKHPIKHQGLPYQEPVLGPV RGPFP	355	RPKHPIKHQGLPYQEPVL GPVRGPFPI
RPKHPIKHQGLPQ	356	RPKHPIKHQGLPQYQEPVLGP VRGPFP	357	RPKHPIKHQGLPQYQEPV LGPVRGPFPI
RPKHPIKHQGLPQE	358	RPKHPIKHQGLPQEYQEPVLG PVRGPFP	359	RPKHPIKHQGLPQEYQEP VLGPVRGPFPI
RPKHPIKHQGLPQEV	360	RPKHPIKHQGLPQEVYQEPVL GPVRGPFP	361	RPKHPIKHQGLPQEVYQE PVLGPVRGPFPI
RPKHPIKHQGLPQEVL	362	RPKHPIKHQGLPQEVLYQEPV LGPVRGPFP	363	RPKHPIKHQGLPQEVLYQ EPVLGPVRGPFPI
RPKHPIKHQGLPQEVL N	364	RPKHPIKHQGLPQEVLNYQEP VLGPVRGPFP	365	RPKHPIKHQGLPQEVLNY QEPVLGPVRGPFPI
RPKHPIKHQGLPQEVL NE	366	RPKHPIKHQGLPQEVLNEYQE PVLGPVRGPFP	367	RPKHPIKHQGLPQEVLNE YQEPVLGPVRGPFPI
RPKHPIKHQGLPQEVL NEN	368	RPKHPIKHQGLPQEVLNENYQ EPVLGPVRGPFP	369	RPKHPIKHQGLPQEVLNE NYQEPVLGPVRGPFPI
RPKHPIKHQGLPQEVL NENL	370	RPKHPIKHQGLPQEVLNENLY QEPVLGPVRGPFP	371	RPKHPIKHQGLPQEVLNE NLYQEPVLGPVRGPFPI
RPKHPIKHQGLPQEVL NENLL	372	RPKHPIKHQGLPQEVLNENLL YQEPVLGPVRGPFP	373	RPKHPIKHQGLPQEVLNE NLLYQEPVLGPVRGPFPI
RPKHPIKHQGLPQEVL NENLLR	374	RPKHPIKHQGLPQEVLNENLL RYQEPVLGPVRGPFP	375	RPKHPIKHQGLPQEVLNE NLLRYQEPVLGPVRGPFP I

Fig. 26g

RPKHPIKHQGLPQEVL NENLLRF	376	RPKHPIKHQGLPQEVLNENLL RFYQEPVLGPVRGPFP	377	RPKHPIKHQGLPQEVLNE NLLRFYQEPVLGPVRGPF PI
RPKHPIKHQGLPQEVL NENLLRFF	378	RPKHPIKHQGLPQEVLNENLL RFFYQEPVLGPVRGPFP	379	RPKHPIKHQGLPQEVLNE NLLRFFYQEPVLGPVRGP FPI
RPKHPIKHQGLPQEVL NENLLRFFV	380	RPKHPIKHQGLPQEVLNENLL RFFVYQEPVLGPVRGPFP	381	RPKHPIKHQGLPQEVLNE NLLRFFVYQEPVLGPVRG PFPI
RPKHPIKHQGLPQEVL NENLLRFFVA	382	RPKHPIKHQGLPQEVLNENLL RFFVAYQEPVLGPVRGPFP	383	RPKHPIKHQGLPQEVLNE NLLRFFVAYQEPVLGPVR GPFPI
-	SEQ ID NO:	YQEPVLGPVRGPFPII	SEQ ID NO:	YQEPVLGPVRGPFPIIV
RP	384	RPYQEPVLGPVRGPFPII	385	RPYQEPVLGPVRGPFPII V
RPK	386	RPKYQEPVLGPVRGPFPII	387	RPKYQEPVLGPVRGPFPI IV RPKHYQEPVLGPVRGPF
RPKHP	388	RPKHYQEPVLGPVRGPFPII	389	PIIV
RPKHPI	390	RPKHPYQEPVLGPVRGPFPII	391	RPKHPYQEPVLGPVRGP FPIIV
	392	RPKHPIYQEPVLGPVRGPFPII	393	RPKHPIYQEPVLGPVRGP FPIIV
КРКНРІК	394	RPKHPIKYQEPVLGPVRGPFPI I	395	RPKHPIKYQEPVLGPVRG PFPIIV
КРКНРІКН	396	RPKHPIKHYQEPVLGPVRGPF PII	397	RPKHPIKHYQEPVLGPVR GPFPIIV
КРКНРІКНQ	398	RPKHPIKHQYQEPVLGPVRGP FPII	399	RPKHPIKHQYQEPVLGPV RGPFPIIV
RPKHPIKHQG	400	RPKHPIKHQGYQEPVLGPVRG PFPII	401	RPKHPIKHQGYQEPVLGP VRGPFPIIV
RPKHPIKHQGL	402	RPKHPIKHQGLYQEPVLGPVR GPFPII	403	RPKHPIKHQGLYQEPVLG PVRGPFPIIV
RPKHPIKHQGLP	404	RPKHPIKHQGLPYQEPVLGPV RGPFPII	405	RPKHPIKHQGLPYQEPVL GPVRGPFPIIV
RPKHPIKHQGLPQ	406	RPKHPIKHQGLPQYQEPVLGP VRGPFPII	407	RPKHPIKHQGLPQYQEPV LGPVRGPFPIIV
RPKHPIKHQGLPQE	408	RPKHPIKHQGLPQEYQEPVLG PVRGPFPII	409	RPKHPIKHQGLPQEYQEP VLGPVRGPFPIIV
RPKHPIKHQGLPQEV	410	RPKHPIKHQGLPQEVYQEPVL GPVRGPFPII	411	RPKHPIKHQGLPQEVYQE PVLGPVRGPFPIIV
RPKHPIKHQGLPQEVL	412	RPKHPIKHQGLPQEVLYQEPV LGPVRGPFPII	413	RPKHPIKHQGLPQEVLYQ EPVLGPVRGPFPIIV
RPKHPIKHQGLPQEVL N	414	RPKHPIKHQGLPQEVLNYQEP VLGPVRGPFPII	415	RPKHPIKHQGLPQEVLNY QEPVLGPVRGPFPIIV
RPKHPIKHQGLPQEVL NE	416	RPKHPIKHQGLPQEVLNEYQE PVLGPVRGPFPII	417	RPKHPIKHQGLPQEVLNE YQEPVLGPVRGPFPIIV
RPKHPIKHQGLPQEVL NEN	418	RPKHPIKHQGLPQEVLNENYQ EPVLGPVRGPFPII	419	RPKHPIKHQGLPQEVLNE NYQEPVLGPVRGPFPIIV
RPKHPIKHQGLPQEVL NENL	420	RPKHPIKHQGLPQEVLNENLY QEPVLGPVRGPFPII	421	RPKHPIKHQGLPQEVLNE NLYQEPVLGPVRGPFPIIV
RPKHPIKHQGLPQEVL NENLL	422	RPKHPIKHQGLPQEVLNENLL YQEPVLGPVRGPFPII	423	RPKHPIKHQGLPQEVLNE NLLYQEPVLGPVRGPFPII V

Fig. 26h

424	RPKHPIKHQGLPQEVLNENLL RYQEPVLGPVRGPFPII	425			
426	RPKHPIKHQGLPQEVLNENLL RFYQEPVLGPVRGPFPII	427			
428	RPKHPIKHQGLPQEVLNENLL RFFYQEPVLGPVRGPFPII	429			
430	RPKHPIKHQGLPQEVLNENLL RFFVYQEPVLGPVRGPFPII	431			
432	RPKHPIKHQGLPQEVLNENLL RFFVAYQEPVLGPVRGPFPII	433			
	426 428 430	424 RYQEPVLGPVRGPFPII RPKHPIKHQGLPQEVLNENLL RFYQEPVLGPVRGPFPII 428 RPKHPIKHQGLPQEVLNENLL RFFYQEPVLGPVRGPFPII RPKHPIKHQGLPQEVLNENLL RFFVYQEPVLGPVRGPFPII RPKHPIKHQGLPQEVLNENLL	424 RYQEPVLGPVRGPFPII 425 RPKHPIKHQGLPQEVLNENLL 426 RFYQEPVLGPVRGPFPII 427 RPKHPIKHQGLPQEVLNENLL 428 RFFYQEPVLGPVRGPFPII 429 RPKHPIKHQGLPQEVLNENLL 430 RFFVYQEPVLGPVRGPFPII 431 RPKHPIKHQGLPQEVLNENLL	RPKHPIKHQGLPQEVLNENLL RYQEPVLGPVRGPFPII RPKHPIKHQGLPQEVLNENLL RFYQEPVLGPVRGPFPII RPKHPIKHQGLPQEVLNENLL RFYQEPVLGPVRGPFPII RPKHPIKHQGLPQEVLNENLL RFFYQEPVLGPVRGPFPII RPKHPIKHQGLPQEVLNENLL RFFVYQEPVLGPVRGPFPII RPKHPIKHQGLPQEVLNENLL RFFVYQEPVLGPVRGPFPII RPKHPIKHQGLPQEVLNENLL RFFVYQEPVLGPVRGPFPII RPKHPIKHQGLPQEVLNENLL RPKHPIKHQGLPQEVLNENLL RPKHPIKHQGLPQEVLNENLL RPKHPIKHQGLPQEVLNENLL RPKHPIKHQGLPQEVLNENLL	424 RYQEPVLGPVRGPFPII 425 IIV RPKHPIKHQGLPQEVLNENLL 427 RPKHPIKHQGLPQEV NLLRFYQEPVLGPVR PIIV RPKHPIKHQGLPQEVLNENLL 427 RPKHPIKHQGLPQEV NLLRFFYQEPVLGPV NLLRFFYQEPVLGPV PIIV RPKHPIKHQGLPQEVLNENLL RFFVYQEPVLGPVRGPFPII 429 RPKHPIKHQGLPQEV NLLRFFVYQEPVLGPV NLLRFFVYQEPVLGPV NLLRFFVYQEPVLGP PFPIIV RPKHPIKHQGLPQEVLNENLL RPKHPIKHQGLPQEV NLLRFFVYQEPVLGP NLLRFFVYQEPVLGP NLLRFFVAYQEPVLGP NLLRFT NLLRF

Fig. 26i