# **SymEngine**Symbolic Execution of OpenCL Kernels

Alberto Magni



# **Optimize code for GPUs**



**Optimize Memory Accesses** 

# **GPU Memory Transactions**Coalesced Access

**GPU Core** 1 Load Request = 4 Bytes per Thread



## **GPU Memory Transactions**

#### **UnCoalesced Access**

**GPU Core** 1 Load Request = 4 Bytes per Thread



## **GPU Memory Transactions**

#### **UnCoalesced Access**

**GPU Core** 1 Load Request = 4 Bytes per Thread



## **SymEngine**

Statically Detect Suboptimal Accesses to Memory

# **SymEngine**

Statically Detect Suboptimal Accesses to Memory

#### OpenCL Kernel

```
int threadID = get_global_id(0);
 sX = x[threadID];_
                                                             Resolve Address
sY = y[threadId];
sZ = z[threadId];
sQr = Qr[threadId]:
sQi = Qi[threadId];
for (int kIndex = 0; (kIndex < KERNEL ELEMS PER GRID); kIndex ++,
kGlobalIndex ++) {
                                                                     Compute
 float expArg = PIx2 * (ck[kIndex].Kx * sX + ck[kIndex].Ky * sY +
                                                          Number of Transactions
ck[kIndex].Kz * sZ):
 sQr += ck[kIndex].PhiMag * cos(expArg);
 sQi += ck[kIndex].PhiMag * sin(expArg);
Qr[threadId] = sQr;
Qi[threadId] = sQi;
```

# **Symbolic Execution**



## **Symbolic Execution**

#### Threads in a Warp



## **Symbolic Execution**

Threads in a Warp



Number of Cache lines touched



Transaction Number

### Validation – Nvidia GTX480

**Against Hardware Performance counters** 

#### **Total HW Transactions for Black-Scholes**



### Validation – Nvidia GTX480

**Against Hardware Performance counters** 

#### **Total HW Transactions for Black-Scholes**



## Validation - Nvidia GTX480



### Validation - Nvidia GTX480



### It's on GitHub!

http://github.com/HariSeldon/SymEngine