| Group # | Student | Last Name | First Name |
|---------|---------|-----------|------------|
|         | 1       |           |            |
|         | 2       |           |            |
|         | 3       |           |            |
|         | 4       |           |            |

(10 marks) What is the electric field,  $\overrightarrow{E}$ , at point P due to two charged rods of infinite length, as presented in the figure below? Rod 1 has a positive, linear charge density  $\lambda_1$  and is oriented vertically, a distance  $d_1$  from P. Rod 2 has a positive, linear charge density  $\lambda_2$  and is oriented horizontally, a distance  $d_2$  from P.



The parts below walk you through related questions, and the steps with which to solve this problem. Please show all work in the boxes provided and then choose the correct answer at the bottom

1. (1 mark) What Gaussian surface (i.e., what 3D shape) makes it easiest to apply Gauss' law for a rod? Explain why.

A cylinder (0.5 mark).

Both  $\overrightarrow{E}$  of a rod and the surface area elements, dA, of a cylinder body point radially outward from the cylinder axis. This makes it easy to apply Gauss' law because  $\overrightarrow{E} \cdot d\overrightarrow{A}$  becomes either 0 or EdA for the different faces of the Gaussian surface. (0.5 mark)



3. (1 mark) Calculate the charge enclosed in each of your Gaussian surfaces, in terms of  $l, \lambda_1$  and  $\lambda_2$ .  $\lambda = Q/l$ 

Rod 1 :  $Q_1 = \lambda_1 l$  (0.5 marks) Rod 2:  $Q_2 = \lambda_2 l$  (0.5 marks)

4. (2.5 marks) Use Gauss' law ( $\oint \overrightarrow{E} \cdot \overrightarrow{dA} = \frac{Q}{\epsilon_0}$ ) to calculate  $\overrightarrow{E_1}$ , the electric field at point P due to Rod 1, in terms of  $\lambda_1$  and  $d_1$ . LHS of Gauss' law (0.5 marks to show work, 0.5 marks answer):

$$\oint \overrightarrow{E_1} \cdot \overrightarrow{dA} = \int \overrightarrow{E_1} \cdot d\overrightarrow{A} \tag{1}$$

$$= \int_{top} \overrightarrow{E_1} \cdot d\overrightarrow{A} + \int_{bottom} \overrightarrow{E_1} \cdot d\overrightarrow{A} + \int_{body} \overrightarrow{E_1} \cdot d\overrightarrow{A}$$
 (2)

$$=0+0+\int_{body}E_1dA\tag{3}$$

$$=E_1 \int_{body} dA \tag{4}$$

$$=E_1 2\pi d_1 l \tag{5}$$

Where  $2\pi d_1 l$  is the surface area of the cylinder body. RHS of Gauss' law (0.5marks):

$$E_1 2\pi d_1 l = \frac{Q}{\epsilon_0} \tag{6}$$

$$=\frac{\lambda_1 l}{\epsilon_0} \tag{7}$$

(8)

With algera (0.5 marks):

$$E_1 = \frac{\lambda_1}{2\pi d_1 \epsilon_0} \tag{9}$$

In particular,  $E_1$  is in the direction of  $\hat{i}$  so (0.5 marks):

$$\overrightarrow{E_1} = \frac{\lambda_1}{2\pi d_1 \epsilon_0} \hat{i} \tag{10}$$

5. (1.5 marks) Use Gauss' law ( $\oint \overrightarrow{E} \cdot \overrightarrow{dA} = \frac{Q}{\epsilon_0}$ ) to calculate  $\overrightarrow{E_2}$ , the electric field at point P due to Rod 2, in terms of  $\lambda_2$  and  $d_2$ .

The math behind the electric field is the same for Rod 2, we just need to sub in from our answer in (4):

 $\lambda_1 \to \lambda_2$ ;  $d_1 \to d_2$  (0.5 marks - "work" is writing/explaining the substitution) Thus, the magnitude  $E_2$  is (0.5 marks for answer):

$$E_2 = \frac{\lambda_2}{2\pi d_2 \epsilon_0} \tag{11}$$

Looking again at the diagram, we see that  $E_2$  will have to be in the **direction** of  $-\hat{i}$  (0.5 marks).

$$\overrightarrow{E_2} = -\frac{\lambda_2}{2\pi d_2 \epsilon_0} \hat{i} \tag{12}$$

6. (1 mark) Write the total electric field  $(\overrightarrow{E})$  at point P in terms of  $\overrightarrow{E_1}$  and  $\overrightarrow{E_2}$ . Using superposition:  $\overrightarrow{E} = \overrightarrow{E_1} + \overrightarrow{E_2}$ 

(1 mark for the correct answer) What is the total electric field in terms of  $\lambda_1, \lambda_2, d_1$  and  $d_2$ ?

A. 
$$\overrightarrow{E} = \frac{1}{2\pi\epsilon_0} (\frac{\lambda_1}{d_1} - \frac{\lambda_2}{d_2})\hat{i}$$
B. 
$$\overrightarrow{E} = \frac{1}{2\pi\epsilon_0} (\frac{\lambda_1}{d_1} + \frac{\lambda_2}{d_2})\hat{i}$$
C. 
$$\overrightarrow{E} = \frac{1}{2\pi\epsilon_0} (\frac{\lambda_1}{d_1}\hat{j} - \frac{\lambda_2}{d_2}\hat{i})$$
D. 
$$\overrightarrow{E} = \frac{1}{2\pi\epsilon_0} (\frac{\lambda_1}{d_1}\hat{j} + \frac{\lambda_2}{d_2}\hat{i})$$

C. 
$$\overrightarrow{E} = \frac{1}{2\pi\epsilon_0} (\frac{\lambda_1}{d_1} \hat{j} - \frac{\lambda_2}{d_2} \hat{i})$$
 D.  $\overrightarrow{E} = \frac{1}{2\pi\epsilon_0} (\frac{\lambda_1}{d_1} \hat{j} + \frac{\lambda_2}{d_2} \hat{i})$