

Introduction to the GATK Best Practices and the Broad production pipelines

Overview of the tools, methods and pipelines for variant discovery

GATK BEST PRACTICES

GATK = Genome Analysis Toolkit

- Toolkit focused on variant discovery (SNP & indel)
- Components:
 - Engine and infrastructure
 - Tools (walkers)

Also a programming framework for developing genome analysis software

GATK command syntax

- Java-based command line tool (see running requirements in FAQs)
- Consult online documentation for details about each tool!
 - Argument names and default values can change
 - Exact arguments depend on the given tool

Picard tools: a companion package to GATK

- broadinstitute.github.io/picard
- Many useful utilities
- Java-based command line interface, much like GATK
- Example 1: sort by genomic coordinate

```
java –jar picard.jar SortSam INPUT=unsorted.sam OUTPUT=sorted.sam \ SORT_ORDER=coordinate
```

Example 2: mark duplicates

```
java –jar picard.jar MarkDuplicatesWithMateCigar \ INPUT=unmarked.sam OUTPUT=marked.sam
```

Picard tools are now supported on the GATK forum!

GATK Best Practices cover complete reads-to-variants workflow

Core competency: Germline Variant Discovery in DNAseq

Emphasis on scalable solutions for cohort analysis

Branching out from DNAseq (WGS/Wex) to RNAseq

KEY HIGHLIGHTS

DNAseq workflow

Reference Confidence (ERC –GVCF mode)

- Scalable & incremental
- Joint analysis of cohorts
- Sophisticated filtering

RNAseq workflow

Handling of splice junctions

- Mapping with STAR
- •"Split N Trim"
- Specific filtering

Latest scope creep: Somatic Variant Discovery (via CGA)

Caveat Emptor

GATK Best Practices

- = generic workflow recommendations
- ≠ concrete pipeline implementations

BROAD PIPELINES

Broad Genomic Services

http://genomics.broadinstitute.org/

Research Exome Analysis Pipelines

- Complete reads-tovariants pipeline implementations
- Two main versions:
 - Germline
 - Cancer (somatic)

Base Calling Pipeline

Prepared libraries (multiple per sample)

Base Calling Pipeline

- Validate basecalls with CheckIlluminaDirectory
 - Sequencing run creates a directory with BCL data
 - Organized by lane, cycle, etc.
- Create unmapped SAM file with IlluminaBasecallsToSam
 - Unlike FASTQ, SAM can store file-level metadata (RG, LB, etc.)
- Low-level QC metrics to assess quality of run

Note that this produces a SAM file rather than FASTQ as was presented in the intro to high-throughput sequencing. Here, we are using an unmapped SAM as a substitute for FASTQ because it can store metadata, which we want to attach to the data as soon as possible.

Picard Exome Pipeline

UNALIGNED PER-LANE BAMS (uBAMs)

ALIGNED, CLEANED, DEDUPPED BAMS
PER-SAMPLE PER-LANE

Picard Exome Pipeline

- Demultiplex data into per-sample per-lane files
- Map reads to reference using BWA MEM
- Combine output with original unmapped SAM using MergeBamAlignment
 - Cleans up mapping issues, sorts reads, adds read group information

Mark duplicates with MarkDuplicates

Picard Aggregation Pipeline

ALIGNED, CLEANED, DEDUPPED BAMS
PER-SAMPLE PER-LANE

ALIGNED, CLEANED, DEDUPPED BAMS
PER-SAMPLE

Picard Aggregation Pipeline

- Aggregate data per sample
- Perform GATK processing steps
 - Indel Realignment
 - Base Recalibration
- Mark duplicates with MarkDuplicates (2nd pass)
- Collect QC metrics

ALIGNED, CLEANED, DEDUPPED BAMS
PER-SAMPLE

Summary of the pre-processing

Generic Best Practices vs. production implementation

Germline Variant Discovery

- Call variants per-sample
- Joint genotyping per cohort
- Variant recalibration

ALIGNED, CLEANED, DEDUPPED BAMS
PER-SAMPLE

Somatic Variant Discovery

- Co-cleaning of Tumor/Normal pair
- Call variants per T/N pair
- Variant filtering and processing

Up next: Quality Control (QC)

QC

SOMATIC VARIANT CALLS

(1) Quality of barcode matching, cluster density, number of reads, bases, etc.

(2) Quality of alignment, library construction, coverage, base quality, internal controls, SAM format validation + Identity through fingerprints

(3) Cumulative quality from (2) by sample, cross-sample contamination + Identity fingerprints, read groups cross-check

(4) VCF format validation, genotype concordance on control samples, variant calling quality metrics

GERMLINE VARIANT CALLS

Further reading

http://www.broadinstitute.org/gatk/guide/best-practices

