Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по лабораторной работе №5

По дисциплине «Вычислительная математика» (4 семестр)

Студент:

Дениченко Александр Р3212

Практик:

Наумова Надежда Александровна

1 Цель работы

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

2 Вычислительная часть

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента X_1 (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента X_2 (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

Трассировка по варианту:

Таблица 1: Трассировка

X	у	№ варианта	X_1	X_2
1,10	0,2234		1,121	1,482
1,25	1,2438	8	1,852	1,652
1,40	2,2644		1,168	1,463
1,55	3,2984		1,875	1,575
1,70	4,3222		1,189	1,491
1,85	5,3516		1,891	1,671
2,00	6,3867		1,217	1,473

3 Решение

Таблица 2: Конечные разности

Gauss	x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
-3	1,10	0,2234	1,0204	0,0002	0,0132	-0,0368	0,0762	-0,1313
-2	1,25	1,2438	1,0206	0,0134	-0,0236	0,0394	-0,0551	
-1	1,40	2,2644	1,0340	-0,0102	0,0158	-0,0157		
0	1,55	3,2984	1,0238	0,0056	0,0001			
1	1,70	4,3222	1,0294	0,0057				
2	1,85	5,3516	1,0351					
3	2,00	6,3867						

Метод Ньютона

$$h_x = 0.15 t = \frac{x - x_0}{0.15}$$

Для $x_1 = 1.852$:

$$t = \frac{1.852 - 2.00}{0.15} = -0.987$$

Так как x_1 лежит ближе к концу набора данных, то будем исопльзовать вторую формулу Ньютона:

$$N_6(x) = 6.3867 + (-0.987) \cdot 1.0351 + \frac{(-0.987)(-0.987 + 1)}{2!} \cdot 0.0057 + \frac{(-0.987)(-0.987 + 1)(-0.987 + 2)(-0.987 + 2)(-0.987 + 3)}{3!} \cdot 0.0001 + \frac{(-0.987)(-0.987 + 1)(-0.987 + 2)(-0.987 + 3)}{4!} \cdot (-0.0157) + \frac{(-0.987)(-0.987 + 1)(-0.987 + 2)(-0.987 + 3)}{4!} \cdot (-0.0157) + \frac{(-0.987)(-0.987 + 1)(-0.987 + 2)(-0.987 + 3)}{4!} \cdot (-0.0157) + \frac{(-0.987)(-0.987 + 1)(-0.987 + 2)(-0.987 + 3)}{4!} \cdot (-0.0157) + \frac{(-0.987)(-0.987 + 1)(-0.987 + 2)(-0.987 + 3)}{4!} \cdot (-0.0157) + \frac{(-0.987)(-0.987 + 1)(-0.987 + 3)}{4!} \cdot (-0.0157) + \frac{(-0.987)(-0.987 + 3)(-0.987 + 3)(-0.987 + 3)}{4!} \cdot (-0.0157) + \frac{(-0.987)(-0.987 + 3)(-0.987 + 3)(-0.987 + 3)}{4!} \cdot (-0.0157) + \frac{(-0.987)(-0.987 + 3)}{4!} \cdot (-0.0157$$

$$+\frac{(-0.987)(-0.987+1)(-0.987+2)(-0.987+3)(-0.987+4)}{5!} \cdot (-0.0551) + \frac{(-0.987)(-0.987+1)(-0.987+2)(-0.987+3)(-0.987+4)(-0.987+5)}{6!} \cdot (-0.1313) = 5.3651$$

Для $x_2 = 1.652$:

$$t = \frac{1.652 - 1.10}{0.15} = 3.68$$

Так как x_2 лежит ближе к концу набора данных, то будем исопльзовать вторую формулу Ньютона:

$$N_6(x) = 0.2234 + 3.68 \cdot 1.0204 + \frac{3.68(3.68 - 1)}{2!} \cdot 0.0002 + \\ + \frac{3.68(3.68 - 1)(3.68 - 2)}{3!} \cdot 0.0132 + \frac{3.68(3.68 - 1)(3.68 - 2)(3.68 - 3)}{4!} \cdot (-0.0368) + \\ + \frac{3.68(3.68 - 1)(3.68 - 2)(3.68 - 3)(3.68 - 4)}{5!} \cdot 0.0762 + \frac{3.68(3.68 - 1)(3.68 - 2)(3.68 - 3)(3.68 - 4)(3.68 - 5)}{6!} \cdot (-0.1313) = 3.9955$$

Метод Гаусса

$$a = 1.55$$

$$x = 1.852$$

$$1.852 > a$$

$$t = \frac{1.852 - 1.55}{0.15} = 2.013$$

$$P_6(x) = 3.2984 + (2.013 \cdot 1.0238) + \frac{2.013(2.013 - 1)}{2} \cdot 0.0056 + \frac{2.013(2.013 - 1)(2.013 - 2)}{6} \cdot 0.0001 + \frac{2.013(2.013 - 1)(2.013 - 2)(2.013 - 3)}{24} \cdot (-0.0368) + \frac{2.013(2.013 - 1)(2.013 - 2)(2.013 - 3)(2.013 - 4)}{120} \cdot 0.0762 = 5.3651$$

$$x = 1.652$$

$$1.652 > a$$

$$t = \frac{1.652 - 1.55}{0.15} = 0.68$$

$$P_6(x) = 3.2984 + (0.68 \cdot 1.0238) + \frac{0.68(0.68 - 1)}{2} \cdot 0.0056 + \frac{0.68(0.68 - 1)(0.68 - 2)}{6} \cdot 0.0001 + \frac{0.68(0.68 - 1)(0.68 - 2)(0.68 - 3)}{24} \cdot (-0.0368) + \frac{0.68(0.68 - 1)(0.68 - 2)(0.68 - 3)}{120} \cdot 0.0762 = 3.994 + 0.0024 = 3.996$$

4 Программная часть

- 1. Исходные данные задаются тремя способами:
 - а) в виде набора данных (таблицы х,у), пользователь вводит значения с клавиатуры;
 - b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
- с) на основе выбранной функции, из тех, которые предлагает программа, например, sin(x). Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 2. Сформировать и вывести таблицу конечных разностей;
- 3. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 2). Сравнить полученные значения;
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);

- 5. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.
- 6. Проанализировать результаты работы программы.

Необязательное задание (до 20 баллов):

- 1. Реализовать в программе вычисление значения функции для заданного значе- ния аргумента, введенного с клавиатуры, используя схемы Стирлинга;
- 2. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Бесселя.

5 Машинная реализация

```
@Override
public void calculate() {
    double v = this.arg;
    double sum = 0.0;

    for (int i = 0; i < this.size; i++) {
        double term = 1.0;
        for (int j = 0; j < this.size; j++) {
            if (j != i) {
                term *= (v - this.xVal.get(j)) / (this.xVal.get(i) - this.xVal.get(j));
            }
        }
        sum += this.yVal.get(i) * term;
    }
    logger.info(sum + "");
    this.interpolatedValue = sum;
}</pre>
```

Листинг 1: Реализация метода Лагранжа для интерполяции значений.

```
public void calculate() {
    initializeDividedDifferenceTable();
    computeDividedDifferences();
    double v = this.arg;
    double sum = this.yVal.get(0);
    for (int i = 1; i < this.size; i++) {</pre>
        double term = 1.0;
        for (int j = 0; j < i; j++) {
            term *= (v - this.xVal.get(j));
        sum += term * this.dividedDifferences.get(0).get(i);
    this.interpolatedValue = sum;
}
private void initializeDividedDifferenceTable() {
    for (int i = 0; i < this.size; i++) {</pre>
        dividedDifferences.add(new ArrayList<>());
        dividedDifferences.get(i).add(this.yVal.get(i));
    }
}
private void computeDividedDifferences() {
    for (int i = 1; i < this.size; i++) {</pre>
```

```
for (int j = 0; j < this.size - i; j++) {
    double diff = dividedDifferences.get(j + 1).get(i - 1) -
    - dividedDifferences.get(j).get(i - 1);
    double denom = this.xVal.get(j + i) - this.xVal.get(j);
    double dividedDifference = diff / denom;
    dividedDifferences.get(j).add(dividedDifference);
}
}
</pre>
```

Листинг 2: Реализация метода Ньютона для интерполяции значений.

```
public void calculate() {
    double[] y_diff = new double[size];
    for (int i = 0; i < size; i++) {</pre>
        y_diff[i] = yVal.get(i);
    double x_target = arg;
    double h = xVal.get(1) - xVal.get(0);
    int n = (size - 1) / 2;
    int nearestIndex = findNearestIndex(x_target);
    double p = (x_target - xVal.get(nearestIndex)) / h;
    interpolatedValue = y_diff[nearestIndex];
    if (nearestIndex <= n) {</pre>
        logger.info("Forward interpolation");
        for (int i = 1; i <= n; i++) {</pre>
            for (int j = nearestIndex; j < size - i; j++) {</pre>
                 y_{diff}[j] = y_{diff}[j + 1] - y_{diff}[j];
             double term = p;
             for (int k = 1; k < i; k++) {</pre>
                 term *= (p - k) / (k + 1);
             interpolatedValue += term * y_diff[nearestIndex];
        }
    } else {
        logger.info("Backwarduinterpolation");
        for (int i = 1; i <= n; i++) {
             for (int j = nearestIndex; j >= i; j--) {
                 y_{diff}[j] = y_{diff}[j] - y_{diff}[j - 1];
             double term = p;
            for (int k = 1; k < i; k++) {</pre>
                 term *= (p + k) / (k + 1);
             interpolatedValue += term * y_diff[nearestIndex - i + 1];
        }
    nodesForGraph();
```

Листинг 3: Реализация метода Гаусса для интерполяции значений.

```
public void calculate() {
```

```
int n = xVal.size();
    double tSub = (arg - xVal.get(n / 2)) / (xVal.get(1) - xVal.get(0));
    if ((size % 2 != 0) || (Math.abs(tSub) > 0.75) || (Math.abs(tSub) < 0.25)) {
        logger.info(String.valueOf(tSub));
        return;
    for (int i = 0; i < n; i++) {</pre>
        defy.get(i).set(0, yVal.get(i));
    for (int i = 1; i < n; i++) {</pre>
        for (int j = 0; j < n - i; j++) {
            defy.get(j).set(i, defy.get(j + 1).get(i - 1) - defy.get(j).get(i - 1));
        }
    }
    n = xVal.size() - 1;
    int center = n / 2;
    double a = xVal.get(center);
    double t = (arg - a) / (xVal.get(1) - xVal.get(0));
    double result = (defy.get(center).get(0) + defy.get(center + 1).get(0))
     * 0.5 + (t - 0.5) * defy.get(center).get(1) + t * (t - 1)
      * 0.5 * (defy.get(center - 1).get(2) + defy.get(center).get(2)) * 0.5;
    double term = t * (t - 1) / 2;
    for (int k = 3; k < n + 1; k++) {
        if (k % 2 == 0) {
            term /= (t - 0.5);
            term *= (t + (k * 0.5 - 1)) * (t - (k * 0.5)) / k;
            result += term * (defy.get((int) (center - 1 - (k * 0.5 - 1))).get(k)
            + defy.get((int) (center - (k * 0.5 - 1))).get(k)) / 2;
        } else {
            term *= (t - 0.5) / k;
            result += term * defy.get(center - k / 2).get(k);
        }
    interpolatedValue = result;
}
```

Листинг 4: Реализация метода Бесселя для интерполяции значений.

```
public void calculate() {
    int n = xVal.size();
    double tSub = (arg - xVal.get(n / 2)) / (xVal.get(1) - xVal.get(0));
    logger.info(String.valueOf(tSub));
    if ((size % 2 == 0) || (Math.abs(tSub) > 0.25)) {
        return;
    }

    for (int i = 0; i < n; i++) {
        defy.get(i).set(0, yVal.get(i));
    }

    for (int i = 1; i < n; i++) {
        for (int j = 0; j < n - i; j++) {
            defy.get(j).set(i, defy.get(j + 1).get(i - 1) - defy.get(j).get(i - 1));
        }
    }
}</pre>
```

```
n = xVal.size() - 1;
    int center = n / 2;
    double a = xVal.get(center);
    double t = (arg - a) / (xVal.get(1) - xVal.get(0));
    double result = defy.get(center).get(0) + t * (defy.get(center - 1).get(1)
    + defy.get(center).get(1))*0.5 + (Math.pow(t, 2))*0.5 * defy.get(center - 1).get(2);
    double term = (Math.pow(t, 2))* 0.5;
    for(int k = 3; k < n; k++) {
        if(k \% 2 == 0){
            term *= t / k;
            result =result + term * defy.get((center - k/2)).get(k);
        }
            term *= (Math.pow(t, 2) - (int)Math.pow(k*0.5, 2))/ (k * t);
            result += term * (defy.get((center - k/2 - 1)).get(k)
            + defy.get((center - k/2)).get(k))*0.5;
        }
    }
    interpolatedValue = result;
}
```

Листинг 5: Реализация метода Стирлинга для интерполяции значений.

6 Схемы

Схема 1: Лагранж

Схема 2: Ньютон

Схема 3: Гаусс

Схема 4: Стирлинг

Схема 5: Бессель

7 GitHub

Ссылка на мой репозиторий на GitHub: https://github.com/Alex-de-bug/cm_math/tree/main/lab5.

8 Вывод

При выполнении работы были изучены методы интерполяции, очень много проблем создали механизмы Java, но тем не менее разработано веб приложение и проведено тестирование на разных наборах данных. Методы дают примерно одинаковые значения, погреность невилируемая.