Some CABLE updates and possible future directions

Ying-Ping Wang
CSIRO Marine and Atmospheric
Research

Updates

- land use
- soil carbon modeling
- data assimilation
- benchmarking

Land use

 Land cover change: issue with global land sue data set for Australia. Jatin's contribution

 Biophysical and biogeochemical effects of land use change in CABLE: codes near completion;

Different effects of nutrient limitation

Soil carbon modeling

- Nearly all global carbon model uses the firstorder kinetics (dC/dt=input –kC);
- Recently nonlinear soil carbon models have been proposed ($dC/dt=input-V_cC_bC/(C+K_c)$); Nonlinear models can simulate response to priming, temperature acclimation, whereas linear models cannot;
- Wang et al. (2014) showed some nonlinear models can have unrealistic oscillation.

Model responses to perturbation

Data assimilation

Results of CMIP5 ESM diverges

How much of those differences are caused by parameter errors?

Data assimilation!

Todd-Brown et al. (2013) Biogeosciences

Particle filter

Four steps:

1: start with prior distributions of all parameters to be optimized, and selected N set of parameter values

2: run the model N times and calculate the cost of each set of model parameter values

3: calculate the probability of the each sampled parameter set (Bayesian theorem)

4: re-sample the probability distribution of the each parameter

Repeat 1 to 4 r times until criteria for convergence is met. Calculate the posterior distribution of all parameters.

Parameter estimation using particle filters

Observations:

regional net land carbon fluxes from global inversion Global GPP, LE

Input:

CO₂ emission from LULUC

Output:

key model parameters, such as V_{cmax} , xLAI, m etc.

OCE PDF project: Chris Lu, Tile Ziehn, YP Wang, Peter Rayner, Rachel Law

CABLE in DART (The Data Assimilation Research Testbed)

CABLE has been implemented in DART;

The system will be used to assimilate remotely sensed canopy LAI into CABLE;

A PhD student from BNU Peter Rayner Ying-Ping Wang

Constraining global GPP

Two observations: chlorophyll fluorescence from space and surface carbonyl sulphide (COS)

Model: CABLE

Project led by Alex Norton/Peter Rayner

Model inter-comparison

- •At AGU fall meeting 2013, we organized a workshop on model inter-comparison
- •This model inter-comparison differs from most MIPs (global parameter sensitivity analysis, ensemble simulations).
- •Three models, CABLE, CLM4.5 and BEPS participated the study. JULES will participate.

Participants:

Jianduo Li, Chris Lu, YP Wang Qingyun Duan Jingming Chen Chris Jones

Quantitative SA results

Global mean annual GPP and LE (1960-2005)

In preparation: Li et al.

Ecosystem water use efficiency (GPP/LE)

Li et al. in preparation

Future work

•Technical issues:

- documentation for CABLE2.0
- Better uses of the repository and ticketing systems
- More automated system for benchmarking and diagnosis

•More MIPs:

- •Run CABLE using TRENDY protocol (iLAMB is likely to be funded, and will use TRENDY model output, CMIP5, CMIP6 model output);
- More comparisons of JULES vis CABLE (offline and online);

•New processes:

- •hydraulic conductance in CABLE?
- •Interpreting land use change information
- •Wetland soil carbon, dissolved organic carbon, microbial soil C model;

Use CABLE as tool for global ecology studies:

acclimation of photosynthesis and respiration