Final Project - Precision agriculture

de la Roza, Ignacio Smith, Ashley

31/5/2018

Table of contents

- Abstract
- 2 Proyect overview
 - Operation
 - Hardware used
 - Flashing the device
- 3 Environmental sensing and control
 - Sensors
 - Estimation and control
- Database and visualization
 - Storage
 - Visualization
- Conclusions

Abstract

The goal of this project is to implement a smart agriculture gadget with a Fishino Piranha board. It can measure the environmental conditions of a particular plant, plantation or greenhouse, upload them to a remote database and control actuators to maintain the environmental conditions in the desired range.

Operation

Setup

- Connect to WiFi and database
- Define parameters

Loop

- Acquire data
- Estimate and control
- Send data

Algorithm

Hardware used

- Fishino Piranha board
- DHT11 temperature and humidity sensor
- Proto board
- Flat cables
- Computer ¹
- 5V USB power source
- USB to micro USB cable (also used for flashing the device)
- LEDs
- 100Ω resistors

¹used to flash the device, store the database and visualize the data. In a real deployment, these three functions would be carried out by different entities.

Hardware

Picture of the device

Flashing the device

- Install Fishino drivers and libraries
- Connect to computer with USB to micro USB cable
- Press reset button until LED start blinking
- Upload the code via Arduino IDE

Sensors

- We use the DHT11 humidity and temperature sensor
- 16 bit resolution
- Serial communicatios
- \bullet Common $V_{\rm cc}$ and ground

Sensors

Estimation

The last few samples are saved and a moving average prediction is made. If a sample is lost the prediction is used in its place

Control

- on/off control
- Estimated value used if measurement fails
- System shuts down and informs user if sensors are lost

Storage

- Open source time-series database system InfluxData
- Database in the same network as the end device
- Packets sent through HTTP requests

Storage

HTTP format

Visualization

- Grafana software provides a solution for visualization
- Integrated with InfluxData
- As well as data, errors are recorded

Visualization

Grafana screenshot

Conclusions

- The project was successful
- Control algorithm and actuators can be easily modified
- InfluxData, grafana, Arduino IDE, Fishino libraries provide a great deal of help

Future work

- Specific, more complex control algorithms
- Exploration of different wireless protocols
- Battery optimization