Lower Bounds of Stochastic Bandits MA5249 Presentation II

Dick Jessen William

NUS

November 2021

Outline

Lower Bounds of Stochastic Bandits

Dick Jesser William

Introduction

I acts

Flipping Coins

The General

Non-adaptive Exploration

Instancedependent

Literature

- 1 Introduction
- 2 KL-Divergence Facts
- 3 Flipping Coins
- 4 The General Case
- 5 Non-adaptive Exploration
- 6 Instance-dependent Lower Bounds
- 7 Literature Review

Stochastic Bandits Revisited

Lower Bounds of Stochastic Bandits

Dick Jesser William

Introduction

KL-Divergend Facts

Flipping Coins

The General Case

Non-adaptive Exploration

Instancedependent

Literature

- We will have a look on Stochastic Bandits in a different way
- Instead on looking on one algorithm, we will look at all possible algorithm and prove that it cannot achieves some level of regret rate.

Introduction

Elipping Coin

-- -

The General Case

Non-adaptive Exploration

Instancedependent Lower Bound

Literature

Theorem

For any time horizon T and total number of arms K. For any bandit algorithm, there exist a problem instance such that $\mathbb{E}[R(T)] \geq \Omega \sqrt{KT}$.

Proof.

Consider 0-1 rewards and the following family of problem instances, with $\epsilon>0$ to be adjusted. For $j=\{1,2,\cdots,K\}$, define I_i as below.

$$I_j = egin{cases} \mu_i = rac{1+\epsilon}{2} & ext{if i} = \mathrm{j} \\ \mu_i = rac{1}{2} & ext{otherwise} \end{cases}$$

Instancedependent Lower Bound

Literature Review

(continued).

By noting that Successive Elimination would sample every suboptimal arm at most $O(\epsilon^{-2}\log^k\epsilon^{-2})$ times, we note that sampling each arm $O(\epsilon^{-2}\log^k\epsilon^{-2})$ times suffices for our regret bound. Our goal is to prove that sampling each arm $\Theta(\epsilon^{-2})$ is necessary to check whether the arm is good or not. Hence, the regret is $\Theta(K/\epsilon)$. Choosing $\epsilon = \Omega(\sqrt{K/T})$ finishes our proof. The next sections will explore the technical details of this computation.

The rest of the section will explain the steps here.

KL-Divergence

Lower Bounds of Stochastic Bandits

Dick Jesser William

Introduction

KL-Divergence

Facts

Flipping Coins

The General Case

Non-adaptive Exploration

Instancedependent

Literature

Definition (KL-Divergence)

Consider a finite sample space Ω and p,q be two probability distribution on Ω . Then, define the KL-divergence as

$$\mathit{KL}(p,q) = \sum_{x \in \Omega} p(x) \ln \frac{p(x)}{q(x)} = \mathbb{E}_p \left[\ln \frac{p(x)}{q(x)} \right].$$

Some Useful Facts

Lower Bounds of Stochastic Bandits

Dick Jessei William

Introduction

KL-Divergence

Facts

Flipping Coins

The Genera Case

Non-adaptive Exploration

Instancedependent Lower Bound

Literature Review

Theorem (Gibbs)

For any distribution p, q, we have $KL(p, q) \ge 0$. Equality holds iff p = q.

Theorem (Chain Rule)

Let the sample space be a product $\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$. Let p,q be two distributions of Ω such that $p = p_1 \times p_2 \cdots \times p_n$ and $q = q_1 \times q_2 \times \cdots \times q_n$, with p_i, q_i are distributions on Ω_j for $j \in \{1, 2, \cdots, n\}$. Then, $KL(p, q) = \sum_{i=1}^n KL(p_i, q_i)$.

Dick Jesser William

Introduction

KL-Divergence Facts

Flinning Coins

The General Case

Non-adaptive Exploration

Instancedependent Lower Bound

Literature Review

Theorem (Pinsker)

For any event $A \in \Omega$, we have $2(p(A) - q(A))^2 \le KL(p,q)$.

Theorem (Random Coins)

Let RC_{ϵ} denote a biased random coin with bias $\epsilon/2$ for a positive ϵ . Then, $KL(RC_{\epsilon}, RC_{0}) \leq 2\epsilon^{2}$ and $KL(RC_{0}, RC_{\epsilon}) \leq \epsilon^{2}$ for all $\epsilon \in (0, \frac{1}{2})$.

KL-Divergence

Facts

Flipping Coins

The General Case

Non-adaptive Exploration

Instancedependent Lower Bound

Literatur

Using these theorems, we can prove this lemma.

Lemma

Consider sample space $\Omega = \{0,1\}^n$ and two distributions on Ω , $p = RC_\epsilon^n$ and $q = RC_0^n$. Then, there exists $\epsilon > 0$ such that for all $A \in \Omega$, $|p(A) - q(A)| \le \epsilon \sqrt{n}$.

Flipping One Coin

Lower Bounds of Stochastic Bandits

Dick Jessei William

Introduction

.

Flipping Coins

The General Case

Non-adaptive Exploration

Instancedependent Lower Bound

Literature Review ■ Define $\Omega = \{0,1\}^T$ as the sample space for the T coin tosses.

■ We want to have a decision rule $Rule : \Omega \rightarrow \{HIGH, LOW\}$ that satisfies

$$P(Rule(Observations) = HIGH|\mu = \mu_1) \ge 0.99,$$

$$P(Rule(Observations) = LOW | \mu = \mu_2) \ge 0.99.$$

■ We aim to find T such that Rule exists.

Special Cases

Lower Bounds of Stochastic Bandits

Dick Jessei William

Introduction

Facts

Flipping Coins

The General Case

Non-adaptive Exploration

Instancedependent

Literature

Using the previous lemma, we can prove the following.

Lemma (Special Case when near 0.5)

Let $\mu_1=\frac{1+\epsilon}{2}$ and $\mu_2=\frac{1}{2}$. With a decision rule like above, we have $T>\frac{1}{4\epsilon^2}$.

Lower Bounds of Stochastic Bandits

Dick Jesser William

Introduction

Flipping Coins

i lipping com

The General Case

Non-adaptive Exploration

Instancedependent Lower Bound

Literature Review

- Consider the Best Arm Identification problem : Given a bandit problem, predict the most optimal arm.
- We will not consider the regret on the algorithm.

Definition (Good Algorithm for Best Arm Identification)

An algorithm is called good for best-arm identification if for all problem instances I, $P(y_T \text{ is the best arm}|T) \ge 0.99$.

We will the family of problem instances discussed earlier with parameter ϵ to argue that $T \geq \Omega(\frac{K}{\epsilon^2})$ for any working algorithm.

Non-adaptive Exploration

Instancedependent Lower Bound

Literature Review In fact, the following are true for two arms.

Lemma

Consider a best arm identification problem with $T \leq \frac{cK}{\epsilon^2}$ for a small positive constant. For any fixed deterministic algorithm, there exists at least $\lceil K/3 \rceil$ arms such that for the problem instance in the earlier page I_a , we have $P(y_t = a|I_a) < 0.75$.

Also, lemma implies this fact.

Corollary

Assuming T as above, if we fix any algorithm for best arm identification and we choose an arm a uniformly at random then running the algorithm on instance I_a , then $P(y_T \neq a) > \frac{1}{12}$.

KL-Divergen

Flipping Coins

The General

Non-adaptive Exploration

Instancedependent

Literatur Review Finally, we conclude the lower bound as follows.

Theorem (\sqrt{KT} bound)

Fix time horizon T, number of arms K and a bandit algorithm. Run the algorithm on an instance I_a . Then, $\mathbb{E}[R(T)] \geq \Omega(\sqrt{KT})$.

Introduction

11 0

The General Case

Non-adaptive Exploration

Instancedependent Lower Bounds

Literature Review

- Using the proof for the case K=2 only works if $T \le c/\epsilon^2$.
- Consider an additional problem instance $I_0 = \{\mu_i = \frac{1}{2} \text{ for all arms } i\}.$
- Denote $\mathbb{E}[\cdot]$ be the expectation given this problem instance and T_a be the total number of times arm a is played.
- The following are true:
 - There are at least 2K/3 arms j such that $\mathbb{E}_0(T_j) \leq 3T/K$.
 - There are at least 2K/3 arms j such that $P_0(y_T = j) \le 3/K$.
- Using Markov's inequality, we find out that we conclude that there are at least K/3 arms j such that $P(T_i \le 24T/K) \ge 7/8$ and $P_0(y_T = j) \le 3/K$.
- \blacksquare Fix an arm j satisfying the inequality above.
- The crux move : Prove that $P_i[Y_T = j] \le 1/2$.

Introduction

Facts

Flipping Coins

The General Case

Non-adaptive Exploration

Instancedependent Lower Bounds

Literature Review

- Consider the sample space which j is played only $\min(T, 24T/K)$ times $\Omega^* = \Omega_i^m \times \prod_{a \neq i} \Omega_a^T$.
- Define the distribution P_I^* on Ω^* as $P_I^*(A) = P(A|I_I)$ $\forall A \subset \Omega^*$.
- Using KL-divergence argument, if $T \leq \frac{cK}{\epsilon^2}$ with small c, we have that $|P_0^*(A) P_j^*(A)| \leq \epsilon \sqrt{m} < \frac{1}{8}$ for all $A \subset \Omega^*$.
- Using this, we can do some manipulations to conclude that $P_j(Y_T = j) \le \frac{1}{2}$. Hence, our bound is proven.

Literature Review The information theoretic approach implies stronger bounds for non-adaptive exploration.

Theorem

For any non-adaptive exploration, if we fix T and K with K < T. Then, there exists a problem instance such that $\mathbb{E}[R(T)] \ge \Omega(T^{2/3}K^{1/3})$.

The following version imposes a rule that the algorithm must not perform terribly in worst case.

Theorem

Keep the setup from above. If $\mathbb{E}[R(T)] \leq CT^{\gamma}$ for all problem instances, with $2/3 \geq \gamma < 1$. Then, for any problem instance, a random arms satisfies that $\mathbb{E}[R(T)] \geq \Omega(C^{-2}T^{2-2\gamma}\sum_{a}\Delta(a))$.

Lower Bounds of Stochastic Bandits

Dick Jesser William

Introduction

KL-Divergenc

Flipping Coin

The General Case

Non-adaptive Exploration

Instancedependent Lower Bounds

Literature Review

- The other fundamental lower bounds states that $\Omega(\log T)$ regret with an instance-dependent constant and applies to every problem instance.
- The lower bound can be used to combine the log *T* upper bound in UCB1 and Successive Elimination algorithms.

Theorem

No algorithm can have regret $\mathbb{E}[R(t)] = o(c_l \log t)$ for all problem instance l, for some constant c_l which depends on l but not t.

Hence, we have a guarantee that there is a problem instance which an algorithm has a high regret

Instancedependent Lower Bounds

Next, we see the case where we require an algorithm to perform good enough across every problem instance.

Theorem

For a fixed K, consider an algorithm such that $\mathbb{E}[R(t)] \leq O(C_{I,\alpha}t^{\alpha}), \ \forall I, \alpha > 0. \ Here, \ C_{I,\alpha} \ depends on \ I, \alpha,$ but not on t. Now, fix a problem instance I. For this I, there exists t_0 such that $\forall t \geq t_0, \mathbb{E}[R(t)] \geq C_l \ln t$, with C_l depends on I but not t.

Literature Review We can make this stronger.

Theorem

Keep the setup from the previous theorem. For any I and algorithm that satisfies the previous theorem,

- 1 The bound works with $C_I = \sum_{\Delta(a)>0} \frac{\mu^*(1-\mu^*)}{\Delta(a)}$.
- **2** For each $\epsilon > 0$, the bound holds with $C_I = \sum_{\Delta(a)>0} \frac{\Delta(a)}{KL(\mu(a),\mu^*)} \epsilon$.

Lower Bounds of Stochastic Bandits

William

Introduction

i libbilig colli

The General Case

Non-adaptive Exploration

Instancedependent Lower Bounds

Literature Review Some notable extensions in lower bounds are listed below.

- Lower bounds in dynamic pricing and Lipschitz bandits, researched by Kleinberg (2003).
- Linear Bandits, researched by Shamir (2015).
- For pay-per-click ad auctions, parametized by click probabilities learned over time, researched by Babaioff (2014).
- For dynamic pricing with limited supply and bandits with resource constraints, researched by Badanidiyuru (2018) and Besbes (2009).