Q1 a)

```
In [21]: import pandas as pd
    from pandas import Series
    import numpy as np
    import matplotlib.pyplot as plt
    measurement = pd.read_csv('Measurement_Ql.csv', names = ["time", "measure
    measurement
```

	0	u	t		2	1]	÷
--	---	---	---	--	---	---	---	---

	time	measurement
C	1	1.84
1	2	3.93
2	2 3	4.00
3	3 4	5.42
4	J 5	6.89
••		
145	146	3.65
146	147	2.82
147	148	2.81
148	149	1.64
149	150	0.00

150 rows × 2 columns

```
In [2]: x = measurement.time
    y = measurement.measurement
    plt.plot (x, y)
    plt.xlabel ('Time')
    plt.ylabel ('Measurement')
    plt.show()
```



```
[3]:
         import statsmodels.api as sm
In [4]:
         measurement model = sm.tsa.arima.ARIMA(measurement.measurement, order=(0,
In [5]:
         output = measurement_model.fit()
In [6]:
         output.summary()
                               SARIMAX Results
Out[6]:
            Dep. Variable:
                             measurement No. Observations:
                                                                150
                  Model:
                             ARIMA(0, 1, 1)
                                             Log Likelihood -202.609
                    Date: Thu, 13 Oct 2022
                                                       AIC
                                                             409.217
                   Time:
                                 12:54:06
                                                       BIC
                                                            415.225
                 Sample:
                                                     HQIC
                                                             411.658
                                       0
                                    - 150
         Covariance Type:
                                     opg
```

	coef	std err	Z	P> z	[0.025	0.975]
ma.L1	0.7531	0.060	12.573	0.000	0.636	0.871
sigma2	0.8834	0.109	8.080	0.000	0.669	1.098
Ljur	ng-Box (L	.1) (Q):	0.26 J a	rque-B	era (JB):	1.10
	Pr	ob(Q):	0.61	Р	rob(JB):	0.58
Heteros	kedastici	ty (H):	1.00		Skew:	-0.21
Prob(H) (two-s	sided):	0.99	ŀ	Curtosis:	2.98

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Q1b)

```
In [7]: measurement2=measurement.diff()
   plt.plot(measurement2)
```


Q1 c)

```
In [8]:
          measurement diff = measurement2.iloc[1:]
          measurement model2 = sm.tsa.arima.ARIMA(measurement diff.measurement, ord
          measurement model fit2 = measurement model2.fit()
 In [9]:
In [10]:
          measurement_model_fit2.summary()
                               SARIMAX Results
Out[10]:
             Dep. Variable:
                             measurement No. Observations:
                                                                149
                   Model:
                                             Log Likelihood -202.607
                             ARIMA(0, 0, 1)
                    Date: Thu, 13 Oct 2022
                                                       AIC
                                                             411.215
                    Time:
                                 12:54:06
                                                       BIC
                                                            420.227
                  Sample:
                                                     HQIC
                                                            414.876
                                       0
                                    - 149
```

opg

Covariance Type:

	coef	std err	z	P> z	[0.025	0.975]
const	-0.0064	0.137	-0.047	0.962	-0.274	0.26	1
ma.L1	0.7531	0.061	12.392	0.000	0.634	0.872	2
sigma2	0.8834	0.110	8.052	0.000	0.668	1.098	3
Ljur	ng-Box (L1) (Q): C).26 J a	ırque-Be	ra (JB):	1.10	
	Pro	b(Q):	0.61	Pr	ob(JB):	0.58	

Heteroskedasticity (H):0.99Skew:-0.21Prob(H) (two-sided):0.98Kurtosis:2.98

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Q1 d)

After implementing all parts above it can be observed that both methods give basically the same result because they are doing the same thing. a) part is more of a direct approach whereas, b) is a longer process. We can oberserve one more thing that is AIC which tells the better fit for a model. The lower the AIC better the model will fit. Therefore, a) has lower AIC means it is likely that the model will fit better through this method.

Q2 a)

```
In [11]: df=pd.read_csv('GlobalAirTemperature.csv')
    df.head()
```

Out[11]:		Year	Anomaly, C
	0	1880	-0.11
	1	1881	-0.13
	2	1882	-0.01
	3	1883	-0.04
	4	1884	-0.42

```
In [12]: x = df['Year']
y = df['Anomaly, C']
plt.plot (x, y)
plt.xlabel ('Year')
plt.ylabel ('Anomaly')
plt.show()
```



```
In [13]: anomaly_model = sm.tsa.arima.ARIMA(df['Anomaly, C'], order=(0,1,1))
In [14]: output2=anomaly_model.fit()
In [15]: output2
```

<statsmodels.tsa.arima.model.ARIMAResultsWrapper at 0x7f9f70ce7760> Out[15]: output2.summary() In [16]: SARIMAX Results Out[16]: Dep. Variable: Anomaly, C No. Observations: 125 Model: Log Likelihood ARIMA(0, 1, 1) 72.910 Thu, 13 Oct 2022 **AIC** -141.821 Date: Time: 12:54:06 -136.180 BIC Sample: **HQIC** -139.530 0 - 125 **Covariance Type:** opg coef std err [0.025 0.975] P>|z| **ma.L1** -0.6640 0.072 -9.243 0.000 -0.805 -0.523

8.182 0.000

0.022

0.014

0.002

0.0180

sigma2

Ljung-Box (L1) (Q):	2.36	Jarque-Bera (JB):	2.20
---------------------	------	-------------------	------

Prob(Q):	0.12	Prob(JB):	0.33

Heteroskedasticity (H): 0.87 Skew: -0.29

Prob(H) (two-sided): 0.65 Kurtosis: 3.32

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [17]: anomaly_predict = output2.predict (1, len(y), typ = 'levels').rename("Pre
In [18]: plt.plot (anomaly_predict)
Out[18]: [<matplotlib.lines.Line2D at 0x7f9f6lef4ac0>]
```



```
In [19]: from sklearn.metrics import mean_squared_error
   mse1 = mean_squared_error (y, anomaly_predict)
   mse1
```

Out[19]: 0.007848867110038906

```
In [22]: sse=np.sum((y-anomaly_predict)**2)
sse
Out[22]: 2.2339840576983625
```

Q2 b)

```
In [23]:
          anomaly model2 = sm.tsa.arima.ARIMA(df['Anomaly, C'], order=(0,1,2))
In [24]:
          output ima2 = anomaly model2.fit()
In [25]:
          output ima2.summary()
                                SARIMAX Results
Out[25]:
             Dep. Variable:
                                Anomaly, C No. Observations:
                                                                125
                   Model:
                             ARIMA(0, 1, 2)
                                             Log Likelihood
                                                             76.508
                    Date: Thu, 13 Oct 2022
                                                       AIC -147.016
```

	Time:		12:55:2	29		BIC -	138.555
	Sample:			0	I	HQIC -	-143.579
			- 12	25			
Covariar	nce Type:		10	og			
	coef	std err	Z	P> z	[0.025	0.975]	l
ma.L1	-0.4676	0.099	-4.736	0.000	-0.661	-0.274	Į.
ma.L2	-0.2296	0.090	-2.565	0.010	-0.405	-0.054	ļ
sigma2	0.0170	0.002	7.631	0.000	0.013	0.021	l
Ljur	ng-Box (L1) (Q):	0.13 J a	rque-Be	ra (JB):	1.18	
	Pro	b(Q):	0.72	Pr	ob(JB):	0.55	
Heteros	kedasticit	y (H):	1.04		Skew:	-0.23	
Prob(H) (two-si	ided):	0.91	K	urtosis:	3.12	

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [26]: anomaly_predict2 = output_ima2.predict (1, len(y), typ = 'levels').rename
In [27]: plt.plot(anomaly_predict2)
Out[27]: [<matplotlib.lines.Line2D at 0x7f9f710b0f40>]
```



```
In [28]: mse2 = mean_squared_error (y, anomaly_predict2)
    mse2
```

Out[28]: 0.004493855486524853

```
In [29]: sse=np.sum((y-anomaly_predict2)**2)
sse
Out[29]: 2.1120405362089145
```

Q2 c)

After implementing IMA(1,1) and IMA(1,2) it was observed that sse for order 2 was less, therefore, the model was more close to original values than order 1. Also AIC value was less for order 2 and from above explaination we know that lower AIC is better. Ultimately, we can conclude that for this data IMA(1,2) would be a better fit.

Q3 a)

```
In [30]: dfmeasure = pd.read_csv('Measurement_Q3.csv')
    dfmeasure.head()
```

Out[30]:		Year	Measurement
	0	1950	2.429415
	1	1951	2.363364
	2	1952	2.374305
	3	1953	2.295520
	4	1954	2.329716

```
In [31]: x = dfmeasure.Year
y = dfmeasure.Measurement
plt.plot(x,y)
```

Out[31]: [<matplotlib.lines.Line2D at 0x7f9f50249ac0>]


```
In [50]: from statsmodels.graphics.tsaplots import plot_acf
   dfmeasure2 = dfmeasure[['Year', 'Measurement']].set_index(['Year'])
   plot_acf(dfmeasure2,lags=50);
```


In [51]: dfmeasure2

Out [51]: Measurement

Year 1950 2.429415

1951	2.363364
1952	2.374305
1953	2.295520
1954	2.329716
1955	2.233017
1956	2.378179
1957	2.322671
1958	2.416556
1959	2.498199
1960	2.579453
1961	2.580840
1962	2.629293
1963	2.581853
1964	2.720940

1965	2.844774
1966	3.144862
1967	3.433044
1968	3.358418
1969	3.462620
1970	3.647342
1971	3.991080
1972	3.925702
1973	4.490962
1974	4.491541
1975	4.396567
1976	3.984491
1977	4.115111
1978	4.018538

1979	4.201107
1980	4.367459
1981	4.228103
1982	4.145889
1983	3.786691
1984	3.827373
1985	3.820376
1986	4.025134
1987	4.070130
1988	4.105920
1989	4.039027
1990	4.113978
1991	4.410670
1992	4.110586

.357700
959040
.882907
.524803
249564
.139884
.034263
.805041
.304467
.797697
.662227

```
In [36]: from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(dfmeasure2);
```

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/g raphics/tsaplots.py:348: FutureWarning: The default method 'yw' can produ ce PACF values outside of the [-1,1] interval. After 0.13, the default wi ll change tounadjusted Yule-Walker ('ywm'). You can use this method now by setting method='ywm'.

warnings.warn(

Q3 b)

```
In [52]:
          me = diff(dfmeasure2)
In [54]:
          me
Out[54]:
                 Measurement
           Year
           1951
                    -0.066051
           1952
                     0.010941
           1953
                    -0.078785
           1954
                     0.034196
           1955
                    -0.096699
           1956
                     0.145162
           1957
                    -0.055508
```

1958	0.093885
1959	0.081643
1960	0.081254
1961	0.001387
1962	0.048453
1963	-0.047440
1964	0.139087
1965	0.123834
1966	0.300088
1967	0.288182
1968	-0.074626
1969	0.104202
1970	0.184722
1971	0.343738

1972	-0.065378
1973	0.565260
1974	0.000579
1975	-0.094974
1976	-0.412076
1977	0.130620
1978	-0.096573
1979	0.182569
1980	0.166352
1981	-0.139356
1982	-0.082214
1983	-0.359198
1984	0.040682
1985	-0.006997

1986	0.204758
1987	0.044996
1988	0.035790
1989	-0.066893
1990	0.074951
1991	0.296692
1992	-0.300084
1993	0.247114
1994	-0.398660
1995	-0.076133
1996	-0.358104
1997	-0.275239
1998	-0.109680
1999	-0.105621

2000	-0.229222
2001	0.499426
2002	-0.506770
2003	-0.135470
2004	-0.072844

```
In [53]:
```

from statsmodels.tsa.statespace.tools import diff
measurement2= dfmeasure.Measurement.diff()

 Out [53]:
 Year Measurement

 1
 1.0
 -0.066051

 2
 1.0
 0.010941

 3
 1.0
 -0.078785

 4
 1.0
 0.034196

 5
 1.0
 -0.096699

```
In [55]: plt.plot (me)
  plt.show()
```



```
In [58]: # pd.plotting.autocorrelation_plot(measurement2[1:])
    dfmeasure3 = measurement_diff[['time', 'measurement']].set_index(['time']
    plot_acf(me,lags=40);
```


In [59]: plot_pacf(me,lags=20);

/Users/dhavalgarg/opt/anaconda3/lib/python3.9/site-packages/statsmodels/g raphics/tsaplots.py:348: FutureWarning: The default method 'yw' can produ ce PACF values outside of the [-1,1] interval. After 0.13, the default wi ll change tounadjusted Yule-Walker ('ywm'). You can use this method now by setting method='ywm'.

warnings.warn(

Q3 c)

We cannot tell the order of the model just by looking at the ACF and PACF plots. We can determine that the data will use ARMA model.

One way of finding the order p,q can be to build models for different values of p,q and compare the errors as well as AIC values. The lower the AIC value the better the model is.

```
In []:
```