МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа №4

«Параметрический синтез и исследование цифровой системы управления с ПД-регулятором и объектом в виде последовательно включенных апериодического и интегрирующего звеньев из условия обеспечения заданного по качеству переходного процесса»

по дисциплине Системы управления в электроприводе

Выполнил: Студент группы

R34362 Ванчукова Т. С.

Преподаватель: Ловлин С.Ю.

Содержание

Задание
Ход работы5
Задание 1. Моделирование Д-регулятора5
Задание 1.1. Работа цифрового Д-регулятора 5
Задание 1.2. Цифровой ПД-регулятор – апериодическое звено первого порядка
Задание 1.3. Поиск эквивалентного числа запаздывания 7
Задание 2. Синтез системы с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового ПД-регулятора для случая вычислительной задержки $\varepsilon = 08$
Задание 2.1. Синтез регулятора
Задание 2.2. Моделирование работы системы, настроенной на технический оптиум
Задание 2.3
Задание 3. Синтез системы с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового ПД-регулятора для случая вычислительной задержки $\varepsilon = To$
Задание 3.1. Аппроксимация апериодическим звеном
Задание 3.2. Синтез цифрового ПД-регулятора методом переоборудования
Задание 4. Синтез системы из условия обеспечения в ней «биномиальной настройки» и провести моделирование согласно заданиям №2 и №3 17
Результаты работы
Выволы

Задание

Задание 1

- 1.1 Снять временные диаграммы, иллюстрирующие работу цифрового Дрегулятора при постоянном и линейно нарастающем входных воздействиях на входе регулятора для случая вычислительной задержки $\varepsilon = 0$. Представить схему модели.
- 1.2 Проанализировать работу разомкнутой системы «Цифровой ПД-регулятор апериодическое звено первого порядка с постоянной времени Т и единичным коэффициентом передачи» в режиме компенсации постоянной времени Т при значениях коэффициента $K_{\rm д} = \frac{T}{T0}$ и $K_{\rm д} = \frac{1}{\exp\left(\frac{T0}{T}\right)-1}$. Снять временные диаграммы работы.
- 1.3 Построить непрерывную модель цифрового ПД-регулятора, учитывающую неполную компенсацию цифровым регулятором постоянной объекта Т.

Определить величину малой некомпенсированной постоянной $T_{\mu r}$, учитывающей в непрерывной модели неполную компенсацию цифровым ПД-регулятором постоянной объекта Т. Искомая величина $T_{\mu r}$ определяется в режиме моделирования, когда процессы в исследуемой цифровой системе и эквивалентной модели максимально приближены друг к другу. Максимальное приближение процессов имеет место при минимальном значении функционала

$$F = \int abs(y - y_{\vartheta}(T_{uri}))dt,$$

где у — процесс в цифровой системе, $y_9(T_{\mu ri})$ — процесс в эквивалентной системе при некотором значении постоянной $T_{\mu r}$.

Результаты моделирования занести в Таблица l, построить зависимость $F = \varphi(\mathsf{T}_{\mu r i}).$

Режим моделирования $T_0=1$; T=5-10; $T_{\mu r}=(0.1,0.4,0.9)T_0$. Снять временные диаграммы, иллюстрирующие работу. Представить схему модели.

Задание 2. Синтез системы с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового ПД-регулятора для случая вычислительной задержки $\varepsilon=0$

2.1 Построить эквивалентную модель и осуществить ее настройку на «оптимум по модулю».

- 2.2 Построить полную эквивалентную модель системы, учитывающую динамические свойства цифрового ПД-регулятора в виде системы, содержащей объект управления, аналоговый П-регулятор, компенсирующий постоянную времени Т ПД-регулятор, а также находящееся в цепи обратной связи апериодическое звено первого порядка с единичным коэффициентом передачи и постоянной времени T_{3an} . Величину постоянной времени T_{3an} считать равной $\frac{T_0}{2}$.
- 2.3 Осуществить настройку полной эквивалентной модели системы на «оптимум по модулю» при малой некомпенсированной постоянной времени, определяемой на основании соотношения $T_{\mu} = T_{\mu r} + T_{3an}$. Снять осциллограммы переходных процессов для значений $T_0 = 1,0.5; T_1 = 10,5;$ параметры переходных процессов занести в Таблица 2. Представить схему модели.
- Задание 3. Синтез системы с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового ПД-регулятора для случая вычислительной задержки $\varepsilon = T_0$.
- 3.1 Снять временные диаграммы, иллюстрирующие работу цифрового ПД-регулятора при постоянном и линейно нарастающем входных воздействиях на входе регулятора для случая вычислительной задержки $\varepsilon = T_0$. Представить схему модели.
- 3.2 Построить цифровую модель системы и полную эквивалентную модель, учитывающие вычислительную задержку $\varepsilon = T_0$.
- 3.3 Осуществить настройку полной эквивалентной модели системы на «оптимум по модулю» при малой некомпенсированной постоянной времени, определяемой на основании соотношения $T_{\mu} = T_{\mu r} + T_{3an} + T_0$. Снять осциллограммы переходных процессов для значений $T_0 = 1$; 0.5; $T_1 = 10$, 5; параметры переходных процессов занести в Таблица 3. Представить схему модели.
- Задание 4. Осуществить синтез системы из условия обеспечения в ней «биномиальной настройки» и провести моделирование согласно пп.2, 3.

Ход работы

Задание 1. Моделирование Д-регулятора

Задание 1.1. Работа цифрового Д-регулятора

Рисунок 1 — Графики выхода аналогового и цифровых Д-регуляторов при постоянном входном воздействии

Рисунок 2 — Графики выхода аналогового и цифровых Д-регуляторов при линейно-возрастающем входном воздействии

Рисунок 3 – Схема моделирования

Задание 1.2. Цифровой ПД-регулятор – апериодическое звено первого порядка

Рисунок 4 — Графики выхода аналогового и цифровых ПД-регуляторов при двух вариантах расчета значения коэффициента $K_{\rm д}$

В первом варианте использовали следующую формулу для вычисления $K_{\rm д}$: $K_{\rm д}=\frac{\rm T}{\rm T0}$. Для второго варианта: ${\rm K}_{\rm д}=\frac{1}{\exp\left(\frac{{\rm T0}}{\rm T}\right)-1}$.

Видим, что второй вариант лучше, так как нет перерегулирования. Коэффициент $K_{\text{д}} = \frac{1}{\exp\left(\frac{T_0}{T}\right) - 1}$ позволяет компенсировать Д-звено.

Рисунок 5 – Схема моделирования

Задание 1.3. Поиск эквивалентного числа запаздывания

Рисунок 6 – График функционала системы

Видим по Рисунок 6, что $T_{\mu r}=0.5$. Моделирование при $T_{\mu r}=0.5$ представлено Рисунок 7.

Рисунок 7 — Схема моделирования

Рисунок 8 – Результаты моделирования

Задание 2. Синтез системы с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового ПД-регулятора для случая вычислительной задержки $\epsilon=0$

Задание 2.1. Синтез регулятора

Передаточная функция разомкнутой системы, настроенной на технический оптиум.

$$T_{t} = 0.005$$

$$T_{\mu} = T_{t}$$

$$W_{ol} = \frac{1}{2T_{\mu}s(T_{\mu}s + 1)}$$

$$W_{ob} = Ce \cdot \frac{kdw}{(J \cdot s)}$$

$$W_{reg} = \frac{W_{ol}}{W_{ob}} = \frac{J(T_t s + 1)}{2Ce \cdot T_u \cdot kdw (T_u s + 1)}$$

Д-регулятор должен компенсировать T_t и T_μ .

Задание 2.2. Моделирование работы системы, настроенной на технический оптиум

$$Tt = 0.005$$

$$To = 0.1 \cdot Tt$$

$$Tur = 0.5 \cdot To$$

Вводим запаздывание: Tu = Tur

$$Kg = \frac{J}{2 \cdot Ce \cdot Tu \cdot kdw}$$

Аналоговый ПД-регулятор:

$$Kda = Kg \cdot Tt$$
,
 $Kpa = Kg \cdot 1$.

Цифровой ПД-регулятор:

$$Kd2dg = Kg \cdot \frac{1}{\exp\left(\frac{T_o}{T_t}\right) - 1},$$

$$Kp2dg = Kg \cdot 1.$$

Рисунок 9 — Схема моделирования системы, настроенной на технический оптиум

Рисунок 10 – График моделирование работы, настроенный на технический оптиум ($T_o = 0.1 \cdot T_t$)

$$t_{p1} = t_1 - t_0 = 3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 16.8 \cdot T_{\mu}$$

 t_0 — время начала переходного процесса t_{p1} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \ge D$$
, $D = 0.05 \cdot |y_0 - y_{ss}|$

 t_{p2} — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \le D, D = 0.05 \cdot |y_0 - y_{ss}|$$

Вычислим перерегулирование Δу:

$$\Delta y = \frac{|\sup{(y) - y_{ss}|}}{|y_0 - y_{ss}|} = 40.9 \%$$

Задание 2.3

Аппроксимация апериодическим звеном

Рисунок 11 – График функционала системы

Рисунок 12 – Схема моделирования

Синтез цифрового ПД-регулятора методом переоборудования

$$T_o = 0.5 \cdot T_t$$

$$T_{ur} = 0.5 \cdot T_o$$

$$T_z = 0.5 \cdot T_o$$

$$T_u = T_{ur} + T_z$$

Рисунок 13 — График моделирование работы, настроенный на технический оптиум ($T_o = 0.5 \cdot T_t$)

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 3.8 \%$$

$$T_o = 1 \cdot T_t$$

Рисунок 14 — График моделирование работы, настроенный на технический оптиум ($T_o=1\cdot T_t$)

$$t_{p1} = t_1 - t_0 = 3.1 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3.1 \cdot T_{\mu}$$

Вычислим перерегулирование Δу:

$$\Delta y = 2.8 \%$$

Задание 3. Синтез системы с использованием эквивалентной непрерывной модели системы, учитывающей динамические свойства цифрового ПД-регулятора для случая вычислительной задержки $\varepsilon = T_o$

Задание 3.1. Аппроксимация апериодическим звеном

Рисунок 15. График функционала системы

Рисунок 16. Схема моделирования

Задание 3.2. Синтез цифрового ПД-регулятора методом переоборудования

Рисунок 17 — График моделирование работы, настроенный на технический оптиум ($T_o = 0.5 \cdot T_t$)

t,

0.06

S

0.08

0.1

0.04

Найдем время переходного процесса для входа в 5%.

0.02

$$t_{p1} = t_1 - t_0 = 3.2 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3.2 \cdot T_{\mu}$$

Вычислим перерегулирование Δу:

0

$$\Delta y = 3.6 \%$$

Рисунок 18 — График моделирование работы, настроенный на технический оптиум ($T_o=1\cdot T_t$)

$$t_{p1} = t_1 - t_0 = 3.2 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 3.2 \cdot T_{\mu}$$

Вычислим перерегулирование Δy :

$$\Delta y = 3.1 \%$$

С ПД-регулятором не должно быть отличий в системе (имеется в виду быстродействие цифровой и аналоговой систем), потому что ПД-регулятор сдвигает фазу в 90 градусов, и система становится более устойчивой, в отличае от ПИ-регулятора, что мы и можем наблюдать, сравнив графики лабораторной работы №3 и №4.

Задание 4. Синтез системы из условия обеспечения в ней «биномиальной настройки» и провести моделирование согласно заданиям №2 и №3

Задание 4.2 Синтез регулятора

Передаточная функция разомкнутой системы, настроенной на технический оптиум.

$$T_{t} = 0.005$$

$$T_{\mu} = T_{t}$$

$$W_{ol} = \frac{1}{3T_{\mu}s(T_{\mu}s + 1)}$$

$$W_{ob} = Ce \cdot \frac{kdw}{(J \cdot s)}$$

$$W_{reg} = \frac{W_{ol}}{W_{ob}} = \frac{J(T_{t}s + 1)}{3Ce \cdot T_{\mu} \cdot kdw(T_{\mu}s + 1)}$$

Моделирование работы системы, настроенной на технический оптиум

$$Tt = 0.005$$

$$To = 0.1 \cdot Tt$$

$$Tur = 0.5 \cdot To$$

Вводим запаздывание: Tu = Tur

$$Kg = \frac{J}{3 \cdot Ce \cdot Tu \cdot kdw}$$

Аналоговый ПД-регулятор:

$$Kda = Kg \cdot Tt$$
,
 $Kpa = Kg \cdot 1$.

Цифровой ПД-регулятор:

$$Kd2dg = Kg \cdot \frac{1}{\exp\left(\frac{T_o}{T_t}\right) - 1},$$
 $Kp2dg = Kg \cdot 1.$

Рисунок 19 — Схема моделирования системы, настроенной на технический оптиум

Рисунок 20 — График моделирование работы, настроенный на технический оптиум ($T_o = 0.1 \cdot T_t$)

$$t_{p1} = t_1 - t_0 = 4.3 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 9.8 \cdot T_{\mu}$$

 t_0 – время начала переходного процесса

Вычислим перерегулирование Δу:

$$\Delta y = \frac{|\sup (y) - y_{ss}|}{|y_0 - y_{ss}|} = 16 \%$$

Аппроксимация апериодическим звеном

Рисунок 21 – График функционала системы

Рисунок 22 – Схема моделирования

Синтез цифрового ПД-регулятора методом переоборудования

$$T_o = 0.5 \cdot T_t$$

$$T_{ur} = 0.5 \cdot T_o$$

$$T_z = 0.5 \cdot T_o$$

$$T_u = T_{ur} + T_z$$

Рисунок 23 — График моделирование работы, настроенный на технический оптиум ($T_o = 0.5 \cdot T_t$)

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 6 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6 \cdot T_{\mu}$$

Вычислим перерегулирование Δу:

$$\Delta y = 0 \%$$

Рисунок 24 — График моделирование работы, настроенный на технический оптиум ($T_o=1\cdot T_t$)

$$t_{p1} = t_1 - t_0 = 6.1 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 6.1 \cdot T_{\mu}$$

Вычислим перерегулирование Δу:

$$\Delta y = 0 \%$$

Задание 4.3 Аппроксимация апериодическим звеном

Рисунок 25. График функционала системы

Рисунок 26. Схема моделирования

Синтез цифрового ПД-регулятора методом переоборудования

Рисунок 27 — График моделирование работы, настроенный на технический оптиум ($T_o = 0.5 \cdot T_t$)

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 5.8 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 5.8 \cdot T_{\mu}$$

Вычислим перерегулирование Δу:

$$\Delta y = 0 \%$$

$$To = 1 \cdot Tt$$

$$0.8$$

$$0.4$$

$$0.2$$

$$0.02$$

$$0.04$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

Рисунок 28 — График моделирование работы, настроенный на технический оптиум ($T_o=1\cdot T_t$)

Найдем время переходного процесса для входа в 5%.

$$t_{p1} = t_1 - t_0 = 5.8 \cdot T_{\mu}$$

$$t_{p2} = t_{end} - t_0 = 5.8 \cdot T_{\mu}$$

Вычислим перерегулирование Δу:

$$\Delta y = 0 \%$$

Результаты работы

Таблица 1

$T_{ m 3an}$	$0.1 \cdot T_0$	$0.4 \cdot T_0$	$0.9 \cdot T_0$
F	0.096	0.04	0.1

Таблица 2

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 0.5$	0.00025	3	3	3.8
$T_1 = 1$	0.005	3.1	3.1	2.8

Таблица 3

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 0.5$	0.005	3.2	3.2	3.6
$T_1 = 1$	0.01	3.2	3.2	3.1

Таблица 4

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 0.5$	0.0025	6.0	6.0	0
$T_1 = 1$	0.005	6.1	6.1	0

Таблица 5

T_1	T_{μ}	t_{p1} , c	t_{p2} , c	Δy, %
$T_1 = 0.5$	0.0045	5.8	5.8	0
$T_1 = 1$	0.009	5.8	5.8	0

Выводы

В процессе выполнения работы исследовали систему управления с ПД-регулятором и объектом в виде последовательно включенных апериодического и интегрирующего звеньев из условия обеспечения заданного по качеству переходного процесса.

При расчете коэффициента $K_{\rm д}$ для моделирования ПД-регулятора было выяснено, что лучше использовать ${\rm K}_{\rm д}=\frac{1}{\exp\left(\frac{{\rm T}0}{{\rm T}}\right)-1}$, чем $K_{\rm д}=\frac{{\rm T}}{{\rm T}0}$, так как нет перерегулирования. Коэффициент ${\rm K}_{\rm д}=\frac{1}{\exp\left(\frac{{\rm T}0}{{\rm T}}\right)-1}$ позволяет компенсировать Д-звено.

В ходе проведенного исследования было определено, что при величине периода дискретности управления $T_o = 0.5$ (при вводе задержки $T_o = 1.5$) обеспечивается качество переходного процесса в исследуемой цифровой системе, близкое к процессу в эквивалентной непрерывной системе.

При настройке системы на биномиальный оптиума увеличилось время переходного процесса, перерегулирование уменьшилось по сравнению с техническим оптиумом. При вводе задержки значение перерегулирование равно 0. при величине периода дискретности управления $T_o=0.5$ (при вводе задержки $T_o=1.3$) обеспечивается качество переходного процесса в исследуемой цифровой системе, близкое к процессу в эквивалентной непрерывной системе.