Eric Rouse

Individual Assignments #58

Assignment 1.2; 8, 14, 16, 20, 32

Q8:

- a) Kwame will not take a job in industry and not go to graduate school.
- b) Yoshiko does not know Java or Calculus.
- c) James is not young or strong.
- d) Rita will not move to Oregon and Washington.

Q:14

It is not a tautology, a tautology is always True. If we let p be False and q be True then we get the expression:

• $(\neg F \land (F \rightarrow T)) \rightarrow \neg T$

This evaluates to:

- $T \wedge T \rightarrow F$
- $T \rightarrow F$

Which is False. A tautology is never False.

Q16:

 $p \leftrightarrow q$ is True when p = q.

Let A = $(p \land q)$ and let B = $(\neg p \land \neg q)$. Let C = A \lor B

A is True only when p and q is True, if they are False, A is False.

B is True only when p and q are False. If they are True, B is False.

Hence A and B are exactly opposite and connected by a disjunctive. Thus, C is only True when p = q and so is equivalent to $p \leftrightarrow q$.

Q20:

 $p \leftrightarrow q$ is True when p = q.

 $p \oplus q$ is True when p is exactly not equal to q, or when p is the opposite of q or p != q. Thus the negation of $p \oplus q$ is p = q and so they are logically equivalent.

Q32:

 $(p \land q) \rightarrow r$ is True when p is True buy q and r are False.

Under these same conditions, $(p \to r) \land (q \to r)$ evaluates as $F \land T$ which is False. Thus they are not logically equivalent.