Universidade do Estado do Rio de Janeiro Instituto Politécnico do Rio de Janeiro

Gustavo de Souza Curty 202110049111

Visão Computacional: Relatório EP3 Professor(a): Silvia Dias

Nova Friburgo 2024

Sumário

2	\mathbf{EP}	3.1: Segmentação do Objeto de Interesse					
	2.1	Objetivo					
	2.2	Ferramentas Utilizadas					
	2.3	Metodologia					
		2.3.1 Segmentação Automática					
		2.3.2 Segmentação Manual					
	2.4	Metodologia: Thresholding de Otsu					
		2.4.1 Definição do Método					
		2.4.2 Como Funciona					
	2.5	Resultados e Exemplos					
		2.5.1 Segmentações Satisfatórias e Insatisfatórias					
3	EP:	3.2: Avaliação do Método de Classificação					
	3.1	Objetivo					
	3.2	Metodologia					
	3.3	Resultados e Análise de Performance					
	ა.ა						
	3.4	Análise					

1 Introdução

Este relatório apresenta as etapas desenvolvidas no trabalho EP3, focado na segmentação de objetos de interesse e classificação com base nos resultados segmentados. O trabalho foi dividido em duas partes principais:

- **EP3.1**: Segmentação dos objetos de interesse, incluindo o uso de um método automático e a criação de *ground-truth* manual.
- **EP3.2**: Avaliação do método de classificação utilizando os resultados das segmentações obtidas.

2 EP3.1: Segmentação do Objeto de Interesse

2.1 Objetivo

O objetivo desta etapa ë segmentar os objetos de interesse nas imagens, produzindo imagens binárias (0 para o fundo e 1 para o objeto). Dois métodos foram empregados:

- Manual: Geração do ground-truth para 15% das amostras utilizando o software ImageJ.
- **Automático**: Implementação de um algoritmo baseado no *thresholding* de Otsu.

2.2 Ferramentas Utilizadas

As ferramentas e bibliotecas utilizadas incluem:

- Python: Para implementação do algoritmo automático.
- Bibliotecas: numpy, opency-python, scikit-image, pillow-heif.
- ImageJ: Para criação do *ground-truth* manual.

2.3 Metodologia

2.3.1 Segmentação Automática

Os passos seguidos no método automático foram:

- 1. Conversão das imagens para tons de cinza.
- 2. Aplicação do thresholding de Otsu para gerar máscara binária.
- 3. Salvamento das máscaras geradas em um diretório específico.

2.3.2 Segmentação Manual

A geração do ground-truth seguiu os passos:

- 1. Abrir a imagem no software ImageJ: File Open.
- 2. Selecione o modo Polygon Selection para delimitar o objeto de interesse.
- 3. Preencha o objeto selecionado: Edit Fill.
- 4. Remova o fundo: Edit clear outside.
- 5. Transforme a imagem final em Binária: Process Binary Make Binary.
- 6. E por fim, salve a imagem: File Save As: jpeg.

2.4 Metodologia: Thresholding de Otsu

2.4.1 Definição do Método

O thresholding de Otsu ë um algoritmo de segmentação baseado em histograma. Ele busca automaticamente um limiar que minimiza a variância intraclasse entre o fundo e os objetos presentes na imagem.

2.4.2 Como Funciona

O funcionamento do método pode ser descrito em três etapas principais:

1. Cálculo do Histograma: O histograma da imagem ë utilizado para contar a frequência de cada nível de intensidade (0 a 255 para imagens em tons de cinza).

2. Busca do Limiar Otimizado: O algoritmo varre todos os valores possíveis de limiar, calculando para cada um a variância intraclasse como:

$$\sigma_{\text{intraclasse}}^2(t) = \omega_1(t)\sigma_1^2(t) + \omega_2(t)\sigma_2^2(t), \tag{1}$$

onde ω_1 e ω_2 são as proporções de pixels no fundo e no objeto, respectivamente, e σ_1^2 e σ_2^2 são as variâncias correspondentes.

3. **Aplicação do Limiar**: O limiar que minimiza a variância intraclasse ë escolhido e aplicado para transformar a imagem em binária.

2.5 Resultados e Exemplos

2.5.1 Segmentações Satisfatórias e Insatisfatórias

Figura 1: Exemplo de segmentação satisfatória.

Figura 2: Exemplo de segmentação insatisfatória.

Figura 3: Exemplo de máscara manual (ground-truth).

Figura 4: Exemplo de segmentação satisfatória.

Figura 5: Exemplo de segmentação insatisfatória.

Figura 6: Exemplo de máscara manual (ground-truth).

Figura 7: Exemplo de segmentação satisfatória.

Figura 8: Exemplo de segmentação insatisfatória.

Figura 9: Exemplo de máscara manual (ground-truth).

3 EP3.2: Avaliação do Método de Classificação

3.1 Objetivo

Avaliar o desempenho do método de classificação com base nas imagens segmentadas.

3.2 Metodologia

- Representação das RoIs (Regiões de Interesse) utilizando o Feret Box.
- Descrição das RoIs com PCA (Análise de Componentes Principais).
- Classificação utilizando o algoritmo SVM (Máquina de Vetor de Suporte).
- Divisão do dataset em treino e teste para validação cruzada.

3.3 Resultados e Análise de Performance

Os resultados indicam:

• Precisão: 50%

• Revocação (Recall): 50%

• Acurácia: 50%

• **F1-Score**: 50%

Tabela 1: Relatório de Classificação por Classe

		3 1		
Classe	Precisão	Revocação	F1-Score	Suporte
Caneca	0.40	0.40	0.40	42
Öculos	0.49	0.44	0.46	41
Relógio	0.51	0.57	0.54	42
Ténis	0.62	0.59	0.60	41

Além disso, foi realizada uma comparação entre diferentes kernels para o SVM:

Tabela 2: Comparação de Kernels do SVM

Kernel	Acurácia
Linear	50%
RBF	77.7%
Polinomial	73.5%

3.4 Análise

Os resultados revelaram:

- O kernel RBF apresentou o melhor desempenho, sugerindo maior flexibilidade para capturar relações não lineares.
- Apesar da simplicidade, o kernel linear obteve desempenho significativamente inferior.
- A acurácia geral foi influenciada pelas dificuldades em segmentações complexas.

A matriz de confusão mostra as taxas de acertos e erros entre as classes envolvidas:

Adicionalmente, foi analisado o impacto dos autovetores do PCA na explicação da variância do conjunto de dados. A Figura 11 apresenta os componentes principais mais relevantes, conforme gerados pelo *outputPCAAutovetores*.

3.5 Conclusão

O método apresentou desempenho consistente em imagens com boa segmentação, mas houve queda de performance em casos de segmentações insatisfatórias. Melhorias sugeridas incluem:

- Refinar a qualidade das segmentações para reduzir ruídos.
- Explorar mais componentes no PCA ou utilizar técnicas alternativas para reduzir dimensionalidade.
- Testar outros kernels no SVM, como RBF ou polinomial, para capturar complexidades entre as classes.
- Ampliar o conjunto de dados para melhorar a representatividade.

Figura 10: Matriz de confusão mostrando a classificação entre as classes caneca e $\ddot{o}culos$.

Figura 11: Autovetores mais relevantes gerados pelo PCA.

4 Trabalhos Futuros

Embora este trabalho tenha alcançado seus objetivos principais, existem algumas direções promissoras que podem ser exploradas para aprimorar os resultados em estudos futuros. Entre essas possibilidades, destacam-se:

- Criação de Conjuntos de Dados Especializados: O desenvolvimento de conjuntos de dados personalizados e balanceados é fundamental para garantir o treinamento adequado dos modelos. Esses conjuntos poderiam incluir imagens anotadas com maior precisão, abrangendo variações em diferentes condições (iluminação, escala e orientação). Além disso, pode-se considerar a ampliação do dataset com técnicas de aumento de dados (data augmentation) para melhorar a generalização do modelo em cenários mais desafiadores.
- Avaliação de Modelos em Cenários de Tempo Real: A aplicação em tempo real é um dos desafios mais práticos em projetos de visão computacional. Para alcançar esse objetivo, é necessário otimizar os métodos propostos, reduzindo a latência sem comprometer a precisão. Estratégias como quantização de modelos, uso de bibliotecas otimizadas (como TensorRT) e execução em dispositivos especializados, como GPUs embarcadas ou TPUs, podem ser investigadas.

O aprofundamento nessas áreas permitirá avanços significativos na eficiência e aplicabilidade dos métodos desenvolvidos, aproximando-os de cenários reais e ampliando seu impacto em soluções práticas.