Customer Transactions Preprocessing Summary Report

Group Members and roles

Member	Role (task)
Glen Miracle	Part 1: Data Augmentation on CSV files
Peter Johnson	Part 2: Merging Datasets with Transitive properties
Nguepi Jordan	Part 3: Data consistency and Quality checks

Preprocessing Steps

The preprocessing of the customer_transactions.csv dataset involved several steps to clean, augment, and prepare the data for predicting customer_rating:

1. Data Loading and Inspection

- Loaded the dataset (150 rows, 6 columns: customer_id_legacy, transaction_id, purchase_amount, purchase_date, product_category, customer_rating) using Pandas.
- Inspected with head() and describe(), identifying 10 missing values in customer_rating.

2. Data Cleaning

- Imputed missing customer_rating values with the mean (≈2.985) to preserve the distribution.
- Converted purchase_date to datetime for temporal feature extraction.

3. Data Augmentation

- Generated synthetic data by duplicating the dataset (150 \rightarrow 300 rows).
- Ensured unique transaction_id values by incrementing originals (e.g., 1150
 → 1151+).

- Added noise to purchase_amount (±10%) and customer_rating (±0.1, clipped to [1, 5]).
- Sampled product_category from each customer's historical categories for realism.

4. Feature Engineering

- Created temporal features: days_since_purchase (days from current date), purchase_month, purchase_day_of_week.
- Normalized purchase_amount to a 0-100 scale (purchase_amount_normalized).
- Computed moving averages (ma_3_purchases, ma_6_purchases) per customer.
- Added behavioral features: avg_monthly_purchases (transactions/month),
 avg_q2_spend (Q2 average spend).

5. Feature Selection

- Selected numeric features, dropped identifiers (customer_id_legacy, transaction_id).
- Used SelectKBest with f_classif to pick the top 10 features for customer_rating: cluster, days_since_purchase, recency_weight, purchase_amount_normalized, ma_3_purchases, ma_6_purchases, purchase_month, purchase_day_of_week, avg_monthly_purchases, avg_q2_spend.

6. Output

 Saved the augmented, transformed dataset (300 rows) as final_dataset_ready.csv.

Key Insights

- **Missing Data**: customer_rating had 6.67% missing values (10/150), addressed via mean imputation to retain all rows.
- **Spending Patterns**: purchase_amount ranged from 51 to 495 (mean ≈280.78), with synthetic data maintaining this distribution.

- **Feature Relevance**: Temporal (e.g., days_since_purchase) and behavioral (e.g., avg_monthly_purchases) features strongly correlated with customer_rating, suggesting predictive power.
- **Data Expansion**: Doubling the dataset improved robustness for modeling without overfitting risks.

Challenges and Solutions

Challenge: Limited Data Size

 Solution: Augmented with synthetic data, adding controlled noise and customer-specific category sampling to mimic real transactions.

Challenge: Missing Values in customer_rating

 Solution: Imputed with the mean to avoid dropping rows, given the low missing rate and numeric nature.

Challenge: Skewed purchase_amount

 Solution: Applied normalization (purchase_amount_normalized) to reduce skewness, aiding clustering and selection.

• Challenge: Temporal Feature Accuracy

 Solution: Used the current date (March 16, 2025) for days_since_purchase, assuming recent data relevance; future adjustments could use a fixed reference date.

• Challenge: Feature Overload

 Solution: Employed SelectKBest to focus on the top 10 predictive features, balancing complexity and utility.

Conclusion

The preprocessing transformed a small, partially incomplete dataset into a clean, augmented, and feature-rich version suitable for machine learning. The steps addressed data quality, quantity, and relevance, setting the stage for accurate customer_rating predictions.