# Analysis Note 2: Cosmic Muons

# Parker Lewis Amadie Wijenarayana Ohio University Department of Physics and Astronomy, Athens, OH, 45701, USA

October 17, 2024

#### **Thresholds Tables**

| PMT         | Threshold Voltage (mV) | Counts          | Count Rate (counts/sec) |
|-------------|------------------------|-----------------|-------------------------|
| Bar 1 Left  | 97.5                   | $30433 \pm 174$ | $1014 \pm 5.8$          |
| Bar 1 Right | 85.8                   | $15347 \pm 124$ | $512 \pm 4.1$           |
| Bar 2 Right | 76.8                   | $17362 \pm 132$ | $578 \pm 4.4$           |
| Bar 2 Left  | 120.5                  | $17776 \pm 133$ | $592 \pm 4.4$           |

Table 1: Threshold voltages and count rates for PMT detectors left and right sides.

#### 2-Fold Count Rates

| PMT                        | Bar 1           | Bar 2           |
|----------------------------|-----------------|-----------------|
|                            | Trial 1         | Trial 2         |
| Coincidence 1 (counts/sec) | $93.5 \pm 1.8$  | $97.5 \pm 1.8$  |
| Coincidence 2 (counts/sec) | $107.7 \pm 1.9$ | $106.9 \pm 1.9$ |

Table 2: 2-fold coincidence rates for the top and bottom PMT tubes.

#### **4-Fold Count Rates**

| All PMT's Sides          | Trial 1           | Trial 2         | Trial 3           | Trial 4         |
|--------------------------|-------------------|-----------------|-------------------|-----------------|
| Count Rates (counts/sec) | $5.333 \pm 0.422$ | $5.30 \pm 0.42$ | $4.733 \pm 0.397$ | $5.10 \pm 0.41$ |

Table 3: 4-fold coincidence rates for both PMT's including the sides.

## Count Rate vs. Angular Distribution of $\theta$ and $\cos^2(\theta)$

| $\theta$ (deg) | $\theta$ (rad) | Counts       | Count Rate (counts/sec) |
|----------------|----------------|--------------|-------------------------|
| 90             | 1.5708         | $106 \pm 10$ | $3.533 \pm 0.343$       |
| 80             | 1.3963         | $135 \pm 12$ | 4.5±0.4                 |
| 70             | 1.2217         | $115 \pm 11$ | 3.833±0.357             |
| 60             | 1.0472         | $87 \pm 9$   | $2.9 \pm 0.3$           |
| 50             | 0.8727         | $59 \pm 8$   | $1.966 \pm 0.256$       |
| 40             | 0.6981         | $53 \pm 7$   | $1.766 \pm 0.242$       |
| 30             | 0.5235         | $33 \pm 6$   | $1.1 \pm 0.2$           |
| 20             | 0.3491         | $17 \pm 4$   | $0.566 \pm 0.137$       |
| 10             | 0.1745         | $12\pm3$     | $0.4 \pm 0.1$           |
| 0              | 0.0000         | $11\pm3$     | $0.366 \pm 0.110$       |

Table 4: Angular distribution parameters that demonstrate muon zenith angular dependence.

## **Time Delay Table**

| Peak | Total Count  | Time Delay (μs) | Mean Bin             | RMS                |
|------|--------------|-----------------|----------------------|--------------------|
| 1    | $235 \pm 15$ | 1.46            | $1480 \pm 0.041$     | $0.617 \pm 0.032$  |
| 2    | $295 \pm 17$ | 2.60            | $2647.55 \pm 0.14$   | $2.221 \pm 0.126$  |
| 3    | $266 \pm 16$ | 3.82            | $3810.930 \pm 0.598$ | $6.217 \pm 0.502$  |
| 4    | $255 \pm 16$ | 5.02            | $4967.68 \pm 1.16$   | $9.310 \pm 0.913$  |
| 5    | $202 \pm 14$ | 6.16            | $6063.310 \pm 0.786$ | $9.225 \pm 0.670$  |
| 6    | $124 \pm 11$ | 7.32            | $6238.06 \pm 1.45$   | $10.370 \pm 1.519$ |
| 7    | $257 \pm 16$ | 8.00            | $6776.16 \pm 0.82$   | $9.850 \pm 0.840$  |

Table 5: This is the raw data for time delay calibration. Each peak is gaussian and follows multiple minute trials. Information here is what eventually leads to muon half-life predictions

#### **Time Calibration Parameters**

$$t_{delay} = a \cdot x + b$$
 (1)  
•  $a = 0.001202 \pm 0.000086$   
•  $b = -0.58 \pm 0.43$ 

Figure 1: The function is a linear fit with slope and intercept parameters.

#### **Count Rate vs. Zenith Fit Parameters**

$$f(x) = A\cos^{2}(\omega x + \phi) + B$$

$$\bullet A = 3.60 \pm 0.28$$

$$\bullet B = 0.341 \pm 0.072$$

$$\bullet \omega = -1.10 \pm 0.12$$

$$\bullet \phi = 1.692 \pm 0.076$$
(2)

Figure 2: This is the angular dependence  $\theta$  fit parameters.

# Count Rate vs. $\cos^2(\theta)$ Fit Parameters

$$f(x) = mx + b$$
 (3)  
•  $m = -3.57 \pm 0.20$   
•  $b = 3.85 \pm 0.17$ 

Figure 3: This is the angular dependence  $\cos^2(\theta)$  fit parameters that linearizes the data.

## **Threshold Plots**



Figure 4: Plots that are Representative of count rate and thresholds to get a threshold voltage for each sided PMT.

## **Delay Histogram and Calibration Plot**







(b) Perform calibration on each delay peak defining linear relationship to be able to convert bin to delay time.

Figure 5: This step in the lab is where you take voltage pulses to generate spectrum, then analyze them to perform calibration then see if system is counting muon properly and to obtain half-life.

# **Angular dependence plots of Muons**



Figure 6: Both plots are representative that muon count rate can be modeled by angular fitting. For the cosine squared it makes since for muon rate to decrease.