VERSUCH NUMMER

TITEL

TU Dortmund – Fakultät Physik

Maximilian Sackel
Maximilian.sackel@gmx.de

Philip Schäfers phil.schaefers@gmail.com

Abgabe: DATUM

Durchführung: DATUM

Inhaltsverzeichnis

1	Theoretische Grundlage					
	1.1	Fehler	rechnung	3		
		1.1.1	Mittelwert			
		1.1.2	Gauß'sche Fehlerfortpflanzung	3		
		1.1.3	Lineare Regression	3		
2	Dur	chführu	ing und Aufbau	3		
3	Auswertung 3.1 Funktionengenerator					
	3.1	Funkt	ionengenerator	3		
	3.2	Phase	nabhängigkeit der Ausgangsspannung	4		
4	Diskussion			6		
Literatur						

1 Theoretische Grundlage

1.1 Fehlerrechnung

Sämtliche Fehlerrechnungen werden mit Hilfe von Python 3.4.3 durchgeführt.

1.1.1 Mittelwert

Der Mittelwert einer Messreihe $x_1,...,x_{\rm n}$ lässt sich durch die Formel

$$\overline{x} = \frac{1}{N} \sum_{k=1}^{N} x_k \tag{1}$$

berechnen. Die Standardabweichung des Mittelwertes beträgt

$$\Delta \overline{x} = \sqrt{\frac{1}{N(N-1)} \sum_{k=1}^{N} (x_k - \overline{x})^2}$$
 (2)

1.1.2 Gauß'sche Fehlerfortpflanzung

Wenn $x_1,...,x_n$ fehlerbehaftete Messgrößen im weiteren Verlauf benutzt werden, wird der neue Fehler Δf mit Hilfe der Gaußschen Fehlerfortpflanzung angegeben.

$$\Delta f = \sqrt{\sum_{k=1}^{N} \left(\frac{\partial f}{\partial x_k}\right)^2 \cdot (\Delta x_k)^2}$$
 (3)

1.1.3 Lineare Regression

Die Steigung und y-Achsenabschnitt einer Ausgleichsgeraden werden gegebenfalls mittels Linearen Regression berechnet.

$$y = m \cdot x + b \tag{4}$$

$$m = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{5}$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x}\,\overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{6}$$

[1]

2 Durchführung und Aufbau

3 Auswertung

3.1 Funktionengenerator

Zunächst wird das Signal des Funktionengenerators auf dem Oziloskop ausgegeben. Dort wird die Frequenz der gewählten Sinusfunktion auf 1 kHz justiert und eine Spannung von

 $52 \cdot 10^{-3}$ Volt gewählt. Anschließend wird der Aufbau wie in der Beschreibung beschrieben aufgebaut. Dabei werden die Filter der Frequenz entsprechend auf 1 Kiloherz angepasst und die Vorerstärkung am Low-Pass Amplifier auf 200 eingestellt. Der Noise Generatoir wird zunächst einmal überbrückt indem er auf off gestellt wird.

3.2 Phasenabhängigkeit der Ausgangsspannung

Ziel des Versuchsteil ist es die Abhängigkeit der Ausgangsspannung $U_{\rm out}$ von der Phasendifferenz ϕ der Eingangsspannung $U_{\rm sig}$ und der Referenzsspannung $U_{\rm ref}$ genauer zu beobachten. Zunächst wird eine Art offset Messung der Phasenverschiebung der beiden Spannungen durchgeführt. Dafür wird der Phasenwinkel solange justiert bis ein Osziloskopausschlag wie in Bild 1 erscheint, was einen Phasenwinkel von $\phi=0$ entspricht. Daran wird die Phasenskala für den weiteren Versuchsverlauf dran ausgerichtet. Mittels

Abbildung 1: $\phi = 0$, offset Messung.

eines Tiefpasses wird die Spannung, durch den Innenwiederstand integriert und die Zeitlich gemittelte Spannung auf einem Messgerät ausgegeben. Nach Berücksichtigung der Verstärkung ergibt sich nach Formel 7 für eine Phasenverschiebung von $\phi=0^\circ$ eine Spannung von

$$U_{\text{out}} = \frac{2}{\pi} \cdot \frac{52 \cdot 10^{-3} \, V}{200} = 33.1 \cdot 10^{-3} \, V \tag{7}$$

Nach Formel ?? werden die theoretischen und praktischen Spannungswerte ausgerechnet und in Tabelle ?? mit dem dazugehörigen Phasenwinkel aufgelistet.

ϕ	$U_{\mathrm{theoretisch}}/10^{-3} \cdot \mathrm{V}$	$U_{\mathrm{praktisch}}/10^{-3} \cdot \mathrm{V}$
0	33.1	32.5
30	28.6	27.5
60	16.5	12.5
90	0.0	2.5
120	-16.5	-17.5
150	-28.6	-30.0
180	-33.1	-35.0
210	-28.6	-27.5
240	-16.5	-12.5
270	0.0	2.5
300	16.5	17.5
330	28.6	30.0

Tabelle 1: $U_{\rm out}$ bei verschiedenen Phasen.

Abbildung 2: Spannungsverlauf

4 Diskussion

Literatur

 $[1] \quad {\rm TU~Dortmund}.~\textit{Versuch~zum~Literaturverzeichnis}.~2014.$