Introduction to Superconductivity

Wentao Jiang

1 1

1

1

2

2 2

2

 $\mathbf{2}$

2 2

2

3 3

3

3

3

Contents

1 Historical overview

	1.1	The Basic Phenomena
	1.2	The London Equations
	1.3	The Pippard Nonlocal Electrodynamics
	1.4	The Energy Gap and the BCS Theory
	1.5	The Ginzburg-Landau Theory
	1.6	Type II Superconductors
	1.7	Josephson Tunneling and Flux Quantization .
	1.8	Fluctuation and Nonequilibrium Effects
	1.9	High-temperature Superconductivity
2	Introduction to Electrodynamics of Superconductivity	
		· ·
	2.1	Screening
		2.1.1 E.G. Flat Slab in Parallel Magnetic Field
		2.1.2 Critical Current of Wire
	2.2	The Intermediate State
		2.2.1 In Strong Magnetic Fields
		2.2.2 Above Critical Current of a supercon-
		ducting Wire
	2.3	High-frequency Electrodynamics
		2.3.1 High-frequency Dissipation in Super-
		$conductors \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
3	The	BCS Theory

Historical overview 1

The Basic Phenomena

- perfect conductivity
- perfect diamagnetism, $H_c(T) \approx H_c(0) \left[1 (T/T_c)^2\right]$

The London Equations 1.2

$$\boldsymbol{E} = \frac{\partial}{\partial t} (\Lambda \boldsymbol{J}_s) \tag{1.1}$$

$$\boldsymbol{h} = -c\nabla \times (\Lambda \boldsymbol{J}_s) \tag{1.2}$$

$$\Lambda = \frac{4\pi\lambda^2}{c^2} = \frac{m}{n_s e^2} \tag{1.3}$$

h: microscopic flux density

B: macroscopic average value

 n_s : number density of superconducting electrons

Combining Maxwell equation $\nabla \times \mathbf{h} = 4\pi \mathbf{J}/c$ leads to $\nabla^2 \mathbf{h} = h/\lambda^2$, predicting penetration depth λ . Emprically:

$$\lambda(T) \approx \lambda(0) \left[1 - (T/T_c)^4 \right]^{-1/2} \tag{1.4}$$

Consider a perfect normal conductor in a uniform Efield, $d(m\mathbf{v})/dt = e\mathbf{E}, \mathbf{J} = ne\mathbf{v}$. But it's not rigorous for spacially nonuniform fields within λ , for which the LEs are most useful. It's because the response of an electron gas to

A more profound motivation for LEs is a quantum one by considering $\mathbf{p} = (m\mathbf{v} + e\mathbf{A}/c)$ to have zero expectancy for ground state, i.e.,

$$\langle \boldsymbol{v}_s \rangle = \frac{-e\boldsymbol{A}}{mc} \tag{1.5}$$

$$\langle \mathbf{v}_s \rangle = \frac{-e\mathbf{A}}{mc}$$
 (1.5)
$$\mathbf{J}_s = n_s e \langle \mathbf{v}_s \rangle = \frac{-\mathbf{A}}{\Lambda c}$$
 (1.6)

which contains the two LEs in a compact form (it's not gauge-invariant, London gauge $\nabla \cdot \mathbf{A} = 0$ is required).

1.3 The Pippard Nonlocal Electrodynamics

Introduce the coherence length ξ to propose a nonlocal generalization of the LEs, in analogy to Chamber's nonlocal generalization of Ohm's law:

$$m{J}(m{r}) = rac{3\sigma}{4\pi l} \int rac{m{R} [m{R} \cdot m{E}(m{r}')] e^{-R/l}}{R^4} dm{r}'$$

From uncertainty principle, for electrons play a major role in superconductive phenomenon, $E \sim kT_c, \Delta p \approx$ kT_c/v_F , thus

$$\xi_0 = a \frac{\hbar v_F}{kT_-} \tag{1.7}$$

hence

$$J_s(\mathbf{r}) = -\frac{3}{4\pi\xi_0 \Lambda c} \int \frac{\mathbf{R}[\mathbf{R} \cdot \mathbf{A}(\mathbf{r}')]e^{-R/\xi}}{R^4} d\mathbf{r}'$$
 (1.8)

instead of $J_s = n_s e \langle v_s \rangle = \frac{-A}{\Lambda c}$, where $1/\xi = 1/\xi_0 + 1/l$.

The Energy Gap and the BCS The-

orv

Experimental hints:

Electronic specific heat: $C_{es} \approx \gamma T_c a e^{-bT_c/T}$, while normal state $C_{en} = \gamma T$

Spectroscopic measurement gives minimum energy E_g to create excitations, while thermal one measures $E_g/2$ per statistically independent particle, suggesting pair production.

Key prediction of BCS: $E_g(0) = 2\Delta(0) = 3.528kT_c$ for $T \ll T_c$.

1.5 The Ginzburg-Landau Theory

7 years before BCS, they introduce a complex pseudowavefunction as an order parameter within Landau's general theory of 2nd order phase transitions. Eqt for ψ are obtained from a variational principle and expansion of the free energy in powers of ψ and $\nabla \psi$ with coefficients α and β :

$$n_s = |\psi(x)|^2 \tag{1.9}$$

$$\frac{1}{2m^*} \left(\frac{\hbar}{i} \nabla - \frac{e^*}{c} A \right)^2 \psi + \beta |\psi|^2 \psi = -\alpha(T) \psi \qquad (1.10)$$

$$J_{s} = \frac{e^{*}\hbar}{i2m^{*}} (\psi^{*}\nabla\psi - \psi\nabla\psi^{*}) - \frac{e^{*2}}{m^{*}c} |\psi|^{2} \mathbf{A}$$
 (1.11)

GL coherence length: $\xi(T) = \frac{\hbar}{|2m^*\alpha(T)|^{1/2}}$

GL parameter: $\kappa = \frac{\lambda}{\xi}$

1.6 Type II Superconductors

 $\xi < \lambda$ leads to a negative surface energy, so that subdivision proceeds until limited by the microscopic length ξ .

Another result: mixed state, or Schubnikov phase. Between H_{c1} and H_{c2} , the flux penetrates in a regular array of flux tubes carrying flux of

$$\Phi_0 = \frac{hc}{2e} = 2.07 \times 10^{-7} G/cm^2 \tag{1.12}$$

1.7 Josephson Tunneling and Flux Quantization

Phase and particle number are conjugate variables:

$$\Delta N \Delta \phi \gtrsim 1 \tag{1.13}$$

Josephson predicted pairs should be able to tunnel between two superconductor even at zero voltage difference:

$$J = J_c \sin(\phi_1 - \phi_2) \tag{1.14}$$

and with a voltage difference V_{12} , the phase difference $\phi = 2eV_{12}t/\hbar$ so that the current would oscillate.

Single-valuedness of $\psi=|\psi|e^{i\phi}$ requires that the fluxoid introduced by F. London:

$$\Phi' = \Phi + \frac{m^*c}{e^*} \oint \frac{J_s \cdot ds}{|\psi|^2}$$
 (1.15)

to take only integral multiples of $\Phi_0 = hc/2e$, where $\Phi = \oint \mathbf{A} \cdot d\mathbf{s}$ is the ordinary magnetic flux. For ring with thickness comparable to λ , $J_s = 0$ on the integration path, $\Phi = \Phi' = n\Phi_0$.

${\bf 1.8 \quad Fluctuation \ and \ Nonequilibrium \ Effects}$

1.9 High-temperature Superconductivity

2 Introduction to Electrodynamics of Superconductivity

2.1 Screening

From the LEs:

$$d\mathbf{J}_s/dt = (c^2/4\pi\lambda^2)\mathbf{E} \tag{2.1}$$

Taking the time derivative of the Maxwell eqt $\nabla \times \mathbf{h} = 4\pi \mathbf{J}/c$ and eliminating $\partial \mathbf{h}/\partial t$ using $\nabla \times \mathbf{E} = -(1/c)\partial \mathbf{h}/\partial t$, we obtain

$$-\nabla \times \nabla \times \mathbf{E} = \nabla^2 \mathbf{E} = \mathbf{E}/\lambda^2 \tag{2.2}$$

Taking the curl of the Maxwell eqt $\nabla \times \mathbf{h} = (4\pi/c)\mathbf{J}$ and by substituting $-\mathbf{h}/c\Gamma = \nabla \times \mathbf{J}$, we see that

$$\nabla^2 \mathbf{h} = (1/\lambda^2) \mathbf{h} \tag{2.3}$$

where $\lambda^2 = mc^2/4\pi n_s e^2$

2.1.1 E.G. Flat Slab in Parallel Magnetic Field

Boundary: $h = H_a$ at the two surfaces at $x = \pm d/2$ Solution:

$$h = H_a \frac{\cosh(x/\lambda)}{\cosh(d/2\lambda)} \tag{2.4}$$

Average over the sample thickness d, gives

$$B \equiv \bar{h} \equiv H_a + 4\pi M = H_a \frac{2\lambda}{d} \tanh \frac{d}{2\lambda}$$
 (2.5)

from which when $d\gg \lambda, B\to 0$ and $M\to -H_a/4\pi$. This is **Meissner effect** limit of perfect diamagnetism of bulk superconductors. On the other hand, when $d\ll \lambda$, series expansion shows

$$M \to -(H_a/4\pi)(d^2/12\lambda^2)$$
 (2.6)

2.1.2 Critical Current of Wire

Consider a long superconducting wire of radius $a \gg \lambda$, carrying a current I. The current generate self-field at the surface of the wire of magnitude $H=2I/ca \leq H_c$, hence $I_c=caH_c/2$, which scales with the perimeter, suggesting that the current flows only in a surface layer of constant thickness. It can be confirmed analytically by solving the LEs and MEs in this geometry that the thickness of the layer is λ , hence the critical current density

$$J_c = \frac{c}{4\pi} \frac{H_c}{\lambda} \tag{2.7}$$

This J_c also holds for wires thinner than λ , where the current density is nearly uniform and I_c is proportional to the cross-sectional area. J_c is typically of order 10^8A/cm^2 , very large.

2.2 The Intermediate State

Such effect depends on the ${f shape}$ of the sample.

- 2.2.1 In Strong Magnetic Fields
- ${\bf 2.3} \quad {\bf High\mbox{-}frequency} \ {\bf Electrodynamics}$
- 2.3.1 High-frequency Dissipation in Superconductors
- 3 The BCS Theory