

Solution

 $\sum_{n=1}^{\infty} 3(x+7)^{n-1}$: Radius of convergence is 1, Interval of convergence is -8 < x < -6

Steps

$$\sum_{n=1}^{\infty} 3(x+7)^{n-1}$$

Use the Ratio Test to compute the convergence interval

Hide Steps

$$\sum_{n=1}^{\infty} 3(x+7)^{n-1}$$

Series Ratio Test:

If there exists an N so that for all $n \ge N$, $a_n \ne 0$ and $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$:

If L < 1, then $\sum a_n$ converges

If L > 1, then $\sum a_n$ diverges

If L = 1, then the test is inconclusive

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{3(x+7)^{(n+1)-1}}{3(x+7)^{n-1}} \right|$$

Compute
$$L = \lim_{n \to \infty} \left(\left| \frac{3(x+7)^{(n+1)-1}}{3(x+7)^{n-1}} \right| \right)$$

Hide Steps

$$L = \lim_{n \to \infty} \left(\left| \frac{3(x+7)^{(n+1)-1}}{3(x+7)^{n-1}} \right| \right)$$

Simplify
$$\frac{3(x+7)^{(n+1)-1}}{3(x+7)^{n-1}}$$
: $x+7$

Hide Steps 🖨

$$\frac{3(x+7)^{(n+1)-1}}{3(x+7)^{n-1}}$$

Remove parentheses: (a) = a

$$=\frac{3(x+7)^{n+1-1}}{3(x+7)^{n-1}}$$

$$1 - 1 = 0$$

$$=\frac{3(x+7)^n}{3(x+7)^{n-1}}$$

Divide the numbers: $\frac{3}{2} = 1$

$$= \frac{(x+7)^n}{(x+7)^{n-1}}$$

Apply exponent rule: $\frac{x^a}{b} = x^{a-b}$

$$\frac{(x+7)^n}{(x+7)^{n-1}} = (x+7)^{n-(n-1)}$$

$$=(x+7)^{n-(n-1)}$$

Add similar elements: n - (n - 1) = 1

$$= x + 7$$

$$L = \lim_{n \to \infty} (|x + 7|)$$

$$L = |x + 7| \cdot \lim_{n \to \infty} (1)$$

 $\lim_{n\to\infty} (1) = 1$

Hide Steps

 $\lim_{n\to\infty} (1)$

$$\lim_{x \to a} c = c$$

$$L = |x + 7| \cdot 1$$

Simplify

$$L = |x + 7|$$

$$L = |x + 7|$$

The power series converges for L < 1

$$|x + 7| < 1$$

Find the radius of convergence

Hide Steps

To find radius of convergence of a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ solve for |x-a|

$$|x+7| < 1$$

Therefore

Radius of convergence is 1

Radius of convergence is 1

Then $\lim_{x\to c} f(x)$ does not exist $c = \infty$, $x_n = 2k$, $y_n = 2k + 1$ Hide Steps $\lim_{k\to\infty} (2k) = \infty$ $\lim_{k\to\infty} (2k)$ Apply Infinity Property: $\lim_{x\to\infty} (ax^n + \cdots + bx + c) = \infty, a > 0$, n is odd a = 2, n = 1 $=\infty$ Hide Steps $\lim_{k\to\infty} (2k+1) = \infty$ $\lim_{k\to\infty} (2k+1)$ Apply Infinity Property: $\lim_{x\to\infty} \left(ax^n + \dots + bx + c\right) = \infty, a > 0$, n is odd a = 2, n = 1 $=\infty$ $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = c = \infty$ Hide Steps $\lim_{k\to\infty} \left((-1)^{2k-1} \right) = -1$ $\lim_{k\to\infty} \left((-1)^{2k-1} \right)$ $(-1)^{2k-1} = (-1), \forall k \in \mathbb{Z}$ $=\lim_{k\to\infty} (-1)$ Hide Steps $\lim_{k\to\infty} (-1) = -1$ $\lim_{k\to\infty} (-1)$ $\lim_{x \to a} c = c$ = -1= -1 $\lim_{k\to\infty} \left(\left(-1 \right)^{\left(2k+1 \right) -1} \right) = 1$ Hide Steps $\lim_{k\to\infty} \left((-1)^{(2k+1)-1} \right)$ $(-1)^{(2k+1)-1} = 1, \forall k \in \mathbb{Z}$

 $=\lim_{k\to\infty} (1)$

