DIABETIC

import numpy as np
import pandas as pd
first upload file
df=pd.read_csv("/content/diabetes.csv")
df

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFuncti	
0	6	148	72	35	0	33.6	0.6	
1	1	85	66	29	0	26.6	0.3	
2	8	183	64	0	0	23.3	0.6	
3	1	89	66	23	94	28.1	0.1	
4	0	137	40	35	168	43.1	2.2	
763	10	101	76	48	180	32.9	0.1	
764	2	122	70	27	0	36.8	0.3	
765	5	121	72	23	112	26.2	0.2	
766	1	126	60	0	0	30.1	0.3	
767	1	93	70	31	0	30.4	0.3	

Pregnancies Glucose BloodPressure SkinThickness

0s completed at 2:53 AM

0.627

0.351

0.672

0.167

2.288

50

31

32

21

33

print(df.columns)

'BMI', 'Diabete dtype='object')

<bound method NDFrame.head of</pre>

df.head

0

2

Insulin	BMI \		_				
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	Θ	137	40	35	168	43.1	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

X

https://colab.research.google.com/drive/1-fYcAYb3e7F4Iexwfslg...

Х

. .

```
763
                          0.171
                                   63
764
                          0.340
                                   27
765
                          0.245
                                    30
766
                          0.349
                                   47
767
                          0.315
                                   23
[768 rows \times 9 columns]>
```

x=df.iloc[:,:-1].values #.values used to print as array

```
v=df.iloc[:,-1].values
У
    array([1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
           1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
           0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
           1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
           1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
           1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
           1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
           1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
           0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,
           1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1,
           1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
           1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
           1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
           0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,
           1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
           0. 0. 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
           0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
```

```
0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0
```

0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30)
x train

```
array([[ 9. , 130. , 70. , ..., 34.2 , 0.652, 45.
            , 134.
                   , 58.
                           , ..., 26.4 , 0.352, 21.
                                                      ],
                   , 80.
                           , ..., 24.6 ,
       8.
            . 107.
                                          0.856. 34.
            , 83.
                  , 65.
                          , ..., 36.8 ,
                                          0.629, 24.
                                                      ],
     [ 4.
            , 97.
                  , 60. , ..., 28.2 , 0.443, 22.
                                                      ],
            , 124. , 70. , ..., 27.4 ,
     [ 0.
                                          0.254, 36.
                                                      11)
```

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x train)
x train=scaler.transform(x train)
x test=scaler.transform(x test)
x test
    array([[-0.84070931, 0.14869086, -0.6367743 , ..., -0.41145023,
             0.96847304, -1.071145621,
           [ 2.74468501, 0.24431599, -3.39759849, ..., 0.9530327 ,
             0.28043597, 0.96796035],
           [ 2.14711929, -0.32943483, 0.7436378 , ..., 1.79365165,
             1.336217 , 1.05661713],
           [-1.13949217. 0.14869086. 0.84223867. .... -0.56982771.
             0.12028941. -1.071145621.
           [-0.54192645, -0.71193538, -3.39759849, \ldots, -1.20333764,
            -1.08674115. -0.893832051.
           [ 1.25077071, 1.83806828, 0.15203262, ..., 0.07586511,
             0.72528753, 0.2587061 11)
# SUPPORT VECTOR MACHINE
from sklearn.svm import SVC
# CREATE OBJECT AND MODEL
model=SVC()
model.fit(x train,y train)
y pred=model.predict(x test)
y pred
```

from sklearn.metrics import confusion_matrix,accuracy_score
mat=confusion_matrix(y_pred,y_test)
score=accuracy_score(y_pred,y_test)
score

0.7359307359307359