

SemARFlow: Injecting Semantics into Unsupervised Optical Flow Estimation for Autonomous Driving

Shuai Yuan, Shuzhi Yu, Hannah Kim, and Carlo Tomasi Department of Computer Science, Duke University, USA

Introduction

- Unsupervised optical flow estimation: poorly constrained (occlusions, motion boundaries, poor texture, illumination change, etc.)
- Can we inject additional information to help? Example: semantics and domain knowledge
- Autonomous driving: labeling flow is hard, but labeling semantics is feasible (and indeed available)
- SemARFlow: add Semantic Segmentation inputs (estimated by trained semantic models) to an unsupervised optical flow network (ARFlow[1])
- Improved performance; sharper edges; better results on vehicles; better generalization ability

Network Architecture

Adapted from ARFlow[1]

- +enc: adding semantic encoder
- +up: adding learned upsampler
- +no sm: turning off smoothness loss

Code: https://github.com/duke-vision/semantic-unsup-flow-release

Semantic Augmentation as Self-Supervision

- 1. Estimate flow in the first forward pass
- 2. Extract vehicles and poles from other random samples
- 3. Copy and paste vehicles/poles with augmented motions to generate augmented samples and pseudo-labels
- 4. Estimate flow for the augmented samples in the second forward pass, self-supervised by pseudo-labels

Evaluation

We greatly outperform state-of-the-arts on KITTI [2]

Method		Train		Test					
		2012	2015	2012		2015			
			EPE	<u>Fl-noc</u>	EPE	<u>Fl-all</u>	Fl-noc	Fl-bg	Fl-fg
supervised	PWC-Net+ [66]	-	(1.50)	3.36	1.4	7.72	4.91	7.69	7.88
	IRR-PWC [22]	_	(1.63)	3.21	1.6	7.65	4.86	7.68	7.52
	RAFT [68]	_	(0.63)	_	-	5.10	3.07	4.74	6.87
	Separable Flow [85]	_	(0.69)	-	-	4.53	2.78	4.25	5.92
unsupervised	SelFlow [39]	1.69	4.84	4.31	2.2	14.19	9.65	12.68	21.74
	SimFlow [24]	_	5.19	_	-	13.38	8.21	12.60	17.27
	ARFlow [37]	1.44	2.85	_	1.8	11.80	-	-	-
	UFlow [27]	1.68	2.71	4.26	1.9	11.13	8.41	9.78	17.87
	UPFlow [42]	1.27	2.45	_	1.4	9.38	-	-	-
	Ours (baseline)	1.39	2.61	4.30	1.7	9.89	6.98	8.82	15.21
	Ours (+enc) [†]	1.29	2.42	3.97	1.5	8.99	3.97	8.19	13.01
	Ours (+enc +aug) [†]	1.28	2.18	3.90	1.5	8.38	3.90	7.48	12.91

Generalization: train on Cityscapes[3], test on KITTI[2]

Method	Fl-all	EPE-all	EPE-noc	EPE-occ
ARFlow (our impl.)	13.21	4.08	2.88	9.40
Ours (baseline)	12.27	3.81	2.43	9.91
Ours (+enc) [†]	11.28	3.33	2.12	8.75
Ours (+enc +aug) [†]	10.32	2.64	1.56	7.12

Demo

Our method outputs sharper edges around objects

Other Info

Acknowledgments:
This research is based upon work supported by the National Science Foundation under Grant No. 1909821.

[1] Liu, L., *et al.*: Learning by analogy: Reliable supervision from transformations for unsupervised optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6489–6498 (2020)

- [2] Menze, M. and Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)
- [3] Cordts, M., *et al.*: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3213–3223 (2016)