

Sveikieji ir realieji skaičiai

Praėjusios pamokos santrauka

- Supažinome su paprogramių (angl. functions) sąvoka.
- Išmokome kurti ir naudoti paprogrames su parametrais.
- Supratome kaip veikia parametrai, perduodami į paprogrames, bei skirtumus tarp vertės ir nuorodos perdavimo.
- Atlikome praktinius užsiėmimus su paprogramėmis Python ir C++ kalbose.

Ką išmoksime šiandien

- Išmoksime naudoti sveikuosius ir realiuosius skaičius Python ir C++ programose
- Suprasime skaičių tipų skirtumus ir su jais atliekamas operacijas skirtingose programavimo kalbose.

Python: Skaičių tipai

- Sveikieji skaičiai (int):
 - Naudojami teigiamiems, neigiamiems skaičiams ir nuliui be dešimtainės dalies.
 - Pavyzdys: 5, -10, 0.
- Realieji skaičiai (float):
 - Naudojami skaičiams su dešimtainėmis dalimis.
 - Pavyzdys: 3.14, -2.5, 0.001, 2.0, 0.0.

C++: Skaičių tipai

- Sveikieji skaičiai (int, long):
 - int: Naudojami mažesniems sveikiesiems skaičiams (paprastai iki ~2 milijardų).
 - long: Naudojami didesniems sveikiesiems skaičiams.
 - Pavyzdys: int x = 10; long y = 1000000000;
- Realieji skaičiai (float, double):
 - float: Naudojamas realiesiems skaičiams su mažesniu tikslumu (apie 7 skaitmenys po kablelio).
 - double: Naudojamas didesniam tikslumui (apie 15 skaitmenų po kablelio).
 - Pavyzdys: float a = 3.14f; double b = 3.141592653589793;

Skaičių tipų skirtumai tarp Python ir C++

- Python naudoja dinaminę tipų sistemą, todėl jums nereikia aiškiai nurodyti tipo, Python automatiškai priskiria tipą (pvz., int arba float) pagal reikšmę.
- C++ reikalauja statinio tipo priskyrimo, todėl reikia iš anksto nurodyti, kokio tipo duomenis naudosite (int, float, double ir kt.), kas užtikrina didesnį kontrolės lygį ir efektyvumą.

Maksimalios sveikųjų ir realiųjų skaičių reikšmės (Python)

int (Sveikasis skaičius):

- Maksimalios reikšmės:
 - Python neturi fiksuoto int dydžio limito skaičiai gali būti itin dideli (tik ribojami atminties dydžio).
 - Pavyzdys: 123456789012345678901234567890

<mark>float</mark> (Realiai skaičius):

- Maksimali reikšmė:
 - Apytiksliai 1.8 x 10^308
 - Tikslumas: 15-17 skaitmenų po kablelio.
 - Pavyzdys: 1.7976931348623157e+308

Maksimalios sveikųjų ir realiųjų skaičių

reikšmės (C++)

- Maksimali reikšmė:
 - 2,147,483,647 (32 bitų sistemoje)
 - Pavyzdys: 2147483647

long

- Maksimali reikšmė:
- 2³1-1 (32 bitų –2,147,483,647)
- 2^63-1 (64 bitų –9,223,372,036,854,775,807)
- Pavyzdys:9223372036854775807L

float

- Maksimali reikšmė:
 - Apytiksliai 3.4 x 10^38
 - Tikslumas: Apie 7-8 skaitmenys po kablelio.
 - Pavyzdys: 3.4028235e+38

double:

- Maksimali reikšmė:
 - Apytiksliai 1.8 x 10^308
 - Tikslumas: Apie 15-16 skaitmenų po kablelio.
 - Pavyzdys:

1.7976931348623157e+308

Maksimalių reikšmių skirtumai tarp Python ir C++

Python int nėra ribojamas, tuo tarpu C++ int ir long turi fiksuotas maksimalias reikšmes.

 Abiejose kalbose float ir double turi panašias maksimalias reikšmes, tačiau double suteikia didesnį tikslumą.

Konvertavimas tarp tipų (Python)

- Automatinis konvertavimas:
 - Python dažnai automatiškai konvertuoja reikšmes tarp skirtingų tipų (pvz., iš int į float dalybos metu).
- Aiškus konvertavimas:
 - Naudokite int(), float(), kad aiškiai nurodytumėte tipų konvertavimą.

```
# Konvertavimas iš
# int i float
a = int(5)
b = float(a)
```

Konvertavimas tarp tipų (C++)

- Rankinis konvertavimas:
 - C++ reikalauja aiškios konvertavimo komandos (pvz., naudojant static_cast)

```
// Konvertavimas iš int į float
int a = 5;
float b = static cast<float>(a);
```

Kodo pavyzdžiai su sveikaisiais ir realiaisiais skaičiais (Python)

```
# Sveikųjų skaičių pavyzdys
    a = int(input("Įveskite pirmą sveikąjį skaičių: "))
    b = int(input("Įveskite antrą sveikąjį skaičių: "))
     suma = a + b
 6
    print("Suma:", suma)
    # Realieji skaičiai (float)
    x = float(input("Įveskite pirmą realųjį skaičių: "))
     y = float(input("Įveskite antrą realųjį skaičių: "))
10
11
12
     sandauga = x * y
13
    print("Sandauga:", sandauga)
```

Kodo pavyzdžiai su sveikaisiais ir realiaisiais skaičiais (C++)

```
#include <iostream>
     using namespace std;
   □int main() {
         // Sveikieji skaičiai
         int a, b;
         cout << "Iveskite pirma sveikaji skaičiu: ";</pre>
         cin \gg a;
         cout << "Iveskite antrą sveikąjį skaičių: ";
         cin \gg b:
10
11
12
         int suma = a + b;
13
         cout << "Suma: " << suma << endl;
14
15
         // Realieji skaičiai (float)
16
         float x, y;
17
         cout << "Iveskite pirma realųjį skaičių: ";
18
         cin >> x;
         cout << "Įveskite antrą realųjį skaičių: ";
19
20
         cin >> y;
2.1
22
         float sandauga = x * y;
23
         cout << "Sandauga: " << sandauga << endl;</pre>
24
25
         return 0;
26
```

Praktika

Sveikieji skaičiai:

 Užduotis1: Parašykite programą, kuri suskaičiuoja dviejų sveikųjų skaičių sumą, skirtumą ir sandaugą.

Realieji skaičiai:

 Užduotis2: Parašykite programą, kuri suskaičiuoja dviejų realiųjų skaičių sumą, skirtumą ir sandaugą, bei padalina pirmą skaičių iš antro.

Apibendrinimas (Skaičių tipų naudojimo skirtumai)

Python:

- int sveikieji skaičiai.
- float realieji skaičiai.
- Python automatiškai pritaiko atminties dydį pagal reikšmę.

C++:

- int sveikieji skaičiai.
- float ir double realieji skaičiai, skiriasi tikslumu:
 - float mažesnis tikslumas (4 baitai).
 - double didesnis tikslumas (8 baitai).
- C++ reikalauja konkretesnio skaičių tipo pasirinkimo.

Apibendrinimas (Konvertavimas tarp tipų)

Python: automatinis konvertavimas (pvz., iš int į float), bet galima naudoti int() ir float().

C++: reikalauja aiškaus konvertavimo naudojant static_cast<> arba panašius būdus.

Užduotis namuose

Sukurti programą, kuri atlieka skaičių konvertavimą tarp sveikųjų ir realiųjų skaičių tipų abiejose kalbose (pvz., iš sveikojo skaičiaus į realųjį ir atvirkščiai)

Pabaiga