Mathematics For Data Science

Brian J. Mann

Feb 2, 2016

What is Data Science?

- Learning patterns or behavior from observed data, generally to predict behavior of new observations
- Uses statistics, computer science, machine learning

Examples

- Predict when to build new data centers accounting for a noisy demand signal (this is what I did at AWS)
- Given a satellite photo of a whale at the surface of the ocean, determine which particular whale it is (NOAA Right Whale Kaggle competition)
- Determine whether the effect of changing the UI on your company's phone app was significant
- Given a photo of an eye, determine if the individual has diabetic retinopathy

Intro to Classification Algorithms

- Observed data represented by points in \mathbb{R}^N
- \bullet Training observations labelled "positive" or "negative" (we'll use $\{+1,-1\})$
- Goal: create a model function $g : \mathbb{R}^N \to \{+1, -1\}$ that predicts the class of new observations.

How?

- Use the training data!
- Find a function g that minimizes the error on the test set without overfitting
- Think about trying to model a trend on 20 data points with a 20 degree polynomial

Support Vector Machines (SVM)

- Idea: try to separate classes by an optimal hyperplane
- Here optimal means that the minimum distance from the hyperplane to any of the training points (the margin) is maximal.

Figure 1:Maximal Margin

More SVM

- Quadratic programming problem
- Can be solved via the method of Lagrange Multipliers
- The optimal hyperplane in SVM has the form

$$f(x) = \sum_{i} a_i \langle x_i, x \rangle + b = 0$$

where $\{x_i\}$ are your training observations and $a_i \neq 0$ if and only if x_i is what's called a *support vector* (the points on the edge of the margin)

• Let g(x) = sgn(f(x))

Ok, that sounds great. What's the problem?

Figure 2:Well, shit.

The solution

Map our data to a higher dimensional space where it's (almost) linearly separable

Figure 3:Yay!

Talk's over, right?

Not quite, there's still some problems

Issue 1: Memory

- Even for polynomial transformations, the numbers of dimensions (features) in the target space can grow very quickly
- ullet Consider the transformation $\phi:\mathbb{R}^2 o\mathbb{R}^5$ given by

$$(x_1, x_2) \mapsto (x_1^2, x_1x_2, x_2^2, x_1, x_2, 1)$$

- More generally, a mapping $\phi_d: \mathbb{R}^N \to \mathbb{R}^{\binom{N+d}{d}}$ that maps a vector to the vector of all monomial terms in N variables of degree $\leq d$
- $\binom{N+d}{d}$ grows *very* quickly as d >> 0

Issue 2: Computation

The optimal hyperplane for the transformed data is

$$f(x) = \sum_{i} a_{i} \cdot \langle \phi(x_{i}), \phi(x) \rangle + b = 0$$

 Need to compute the dot product of high-dimensional vectors (in fact, sometimes they might be infinite dimensional!)

A solution

- What if there was a way to compute $\langle \phi(x), \phi(y) \rangle$ directly without ever computing $\phi(x)$ or $\phi(y)$?
- There is!
- This is what kernel functions do for us

Kernels

- Make ϕ implicit
- ullet This implicit ϕ might have an infinite dimensional target vector space

What is a kernel function?

A kernel function is a continuous function

$$K: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$$

which satisfies

- K(x,y) = K(y,x) (symmetric)
- K is positive-semidefinite i.e.

$$\sum_{i}\sum_{j}K(x_{i},x_{j})c_{i}c_{j}\geq0$$

for all finite sequences x_1, \ldots, x_n and all $c_i, c_i \in \mathbb{R}$

Mercer's Theorem

Mercer's Theorem says that if $K: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ is a kernel function, then there exists a vector space with an inner product (a Hilbert space) V and a mapping $\phi: \mathbb{R}^N \to V$ so that

$$K(x, y) = \langle \phi(x), \phi(y) \rangle$$

- In English, if K is a kernel function, it consists of a transformation followed by an inner product in some higher dimensional space V.
- Kernels allow us to compute high-dimensional inner products in V in terms of our original inputs in \mathbb{R}^N .

Example: Polynomial kernel

- $K(x,y) = (\langle x,y \rangle + c)^d$
- c and d are choosen a priori by the user, not trained
- ullet Comes from the polynomial transformation ϕ_d

Figure 4:Polynomial Kernel

Example: RBF (Gaussian) kernel

•
$$K(x,y) = \exp(-\gamma||x-y||^2)$$

 $\bullet \ \gamma$ is chosen a priori by the user

More RBF kernel

What are ϕ and the dimension of V in this case?

• Let $\gamma = 1/2$ for ease of computation, then

$$K(x,y) = \sum_{i=0}^{\infty} \frac{\langle x, y \rangle^{j}}{j!} \exp(\frac{-||x||^{2}}{2}) \exp(\frac{-||y||^{2}}{2})$$

With a little algebra one gets

$$\phi(x) = \left(\frac{e^{-\frac{||x||^2}{2j}}}{\sqrt{j!}!^{1/j}} \binom{j}{n_1, \ldots, n_k}^{1/2}\right)_{j=0,\ldots,\infty,\sum_{i=1}^k n_i = j}$$

• V is infinite dimensional ($V = I^2$ the space of square-summable sequences)

More RBF kernel

Figure 5:RBF Kernel

