# Week 3 – Physical Layer Contd

### COMP90007 Internet Technologies

Lecturer: Ling Luo

Semester 1, 2023

 Nyquist's theorem relates the data rate to the bandwidth (B) and number of signal levels (V) (of a channel without noise):

Max. data rate = 2B log<sub>2</sub>V bits/sec

- Increase the bandwidth B can increase the data rate.
- If signal has V levels, each symbol can represent log<sub>2</sub>V bits.

If signal has V levels, each symbol can represent log<sub>2</sub>V bits.



**Figure 1.** Data bits where logical "0" and "1" are represented by 0 volts and 3 volts respectively



**Figure 2.** Four signaling levels per clock cycle can represent two data bits.

Shannon's theorem relates the data rate to the bandwidth (B) and signal strength (S) relative to the noise (N):





# Example 1: Lets Consider Nyquist first

**Q**: If a binary signal is sent over a 3-kHz channel, what is the maximum data rate?

#### Ans:

Nyquist limit is:

 $2B \log_2 V = 2 \times 3000 \times \log_2 2 = 6 \text{ kbps}.$ 

... but there is no mention of noise here!

# Example 2

**Q**: Given the signal-to-noise ratio (SNR) of 20 dB, and the bandwidth of 4kHz (using phone line), what is the maximum data rate according to Shannon's theorem?

#### <u>Ans</u>:

SNR(dB) =  $10*\log_{10}(S/N)$ SNR of 20 dB is equivalent to S/N = 100 $4*\log_2(1+100) = 4*\log_2(101) = 26.63$  kbps.

# Example 3

**Q**: If a binary signal is sent over a 3-kHz channel whose signal-to-noise ratio is 20 dB, what is the maximum achievable data rate?

### Ans:

SNR of 20 dB = S/N = 100.

The Shannon limit is: 3\* log<sub>2</sub>(101) ≈ 19.975 kbps

The Nyquist limit is:

 $2B \log_2 V = 2 \times 3 \times \log_2 2 = 6 \text{ kbps}.$ 

The bottleneck is therefore the Nyquist limit, giving a maximum channel capacity of 6 kbps

### Summary

- Timing aspect
  - Bandwidth and Latency
- Mechanical aspect: transmission media
  - Twisted pair
  - Co-axial
  - Fibre optics
  - Wireless: EM waves, satellites
- Electrical aspect
  - Data communication using signals
  - Digital modulation
- Capacity of a channel
  - Maximum data rate

# Data Link Layer

COMP90007 Internet Technologies

### The Data Link Layer in OSI and TCP/IP



- Reliable, efficient communication of "frames" between two adjacent machines.
- Handles transmission errors and flow control.

# Typical Implementation



# Functions of the Data Link Layer

- Functions of the data link layer:
  - Provide a well-defined service interface to network layer
  - 2. Handling transmission errors
  - 3. Data flow regulation
- Primary process:
  - Take packets from network layer, and encapsulate them into frames

### Relation Between Packets and Frames

- Each frame contains a header, a payload and a trailer
- Link layer accepts packets from the network layer, and encapsulates them into frames that it sends using the physical layer; reception is the opposite process



# Type of Services

- Connection-Oriented vs Connectionless:
  - Whether a connection is setup before sending a message
- Acknowledged vs Unacknowledged:
  - Whether the receiver gives the sender an acknowledgement upon receiving the message

# Services Provided to Network Layer

 Transferring data from the network layer on source host to the network layer on destination host

- Services provided:
  - Unacknowledged connectionless service
  - Acknowledged connectionless service
  - Acknowledged connection-oriented service

# Unacknowledged Connectionless Service

- Source host transmits independent frames to recipient host with no acknowledgement
- No logical connection establishment or release
- No lost frame recovery mechanism (or left to higher levels)
- Applications:
  - Ethernet LANs
  - Real-time traffic, e.g. voice

### Acknowledged Connectionless Service

- Source host transmits independent frames to recipient host with acknowledgement
- No logical connection establishment or release
- Each frame is individually acknowledged, and retransmitted if lost or errors
- Application: Wireless IEEE 802.11 WiFi

# Acknowledged Connection-Oriented Service

- Source host transmits independent frames to recipient host after connection establishment and with acknowledgement
- Connection established and released (communicate rate and details of message)
- Frames are numbered, counted, acknowledged with logical order enforced
- Application: Unreliable links such as satellite channel

# Framing (1)

- Framing: breaks raw bit stream into discrete units
- Physical layer provides no guarantee a raw stream of bits is error free
- The primary purpose of framing is to provide some level of reliability over the unreliable physical layer
- Checksums can be computed and embedded at the source, then computed and compared at the destination checksum = f(payload)

# Framing (2)

- Methods:
  - Character (Byte) count
  - Flag bytes with byte stuffing
  - Start and end flags with bit stuffing
- Most data link protocols use a combination of character count and one other method