PROPERTY	GOMPERT2	LOGISTIC
Equation	$y = ke - e^{a - bx}$	$y = \frac{k}{1 + e^{a-bx}}$
Number of constants	3	3
Asymptotes	$\begin{cases} y = 0 \\ y = k \end{cases}$	$\begin{cases} y = 0 \\ y = k \end{cases}$
Inflection	$\begin{cases} x = \frac{a}{b} \\ y = \frac{k}{e} \end{cases}$	$\begin{cases} x = \frac{a}{b} \\ y = \frac{k}{2} \end{cases}$
Straight line form of equation	$\log\log\frac{k}{y} = a - bx$	$\log \frac{k-y}{y} = a - bx$
Symmetry	Assymetrical	Symmetrical about inflection
Growth rate	$\frac{dy}{dx} = bye^{a-bx} = by \log \frac{k}{y}$	$\frac{dy}{dx} = \frac{b}{k} y(k - y)$
Maximum growth rate	$rac{boldsymbol{k}}{oldsymbol{e}}$	$rac{bk}{4}$
Relative growth rate as function of time	$\frac{1}{y}\frac{dy}{dx} = be^{a-bx}$	$\frac{1}{y}\frac{dy}{dx} = \frac{b}{1 + e^{-a + bx}}$
Relative growth rate as function of size	$\frac{1}{y}\frac{dy}{dx} = b\left(\log k - \log y\right)$	$\frac{1}{y}\frac{dy}{dx} = \frac{b}{k}(k-y)$