华中科技大学

光电子科学与工程学院二〇〇八级 《光纤光学》考试试卷 B (半开卷)

专业	k:	#	妊级:	_ 姓名:	学号:	
题	号	_	三	Ξ	四	总分
得	分					
阅え	於人					
-,				中有一个或多个 2 分,共 30 分)		将其代号
(A. B. C.	折射; 在包层折 芯-包层界	在有包层的光线 射边界上的全反 中面上的全反射: 涂覆层的反射。	;	原理是:	
(A, B, C,	光散射出 随距离的:	增加,信号脉冲 增加,信号脉冲	不断展宽;		
(A. B. C.	在下列因光纤弯曲波导色散光纤接头;	;	起光纤传输衰减	的原因为:	
(A, B, C,	下面窗口 0.85um; 1.40um; 1.65um; 1.55um。	中不属于三大道	通信窗口的是 :	(多选)	
()5 着		的发展,光纤的 这个极限的主要	为损耗被不断降(要原因是:	氐,但是它的降	低却存在

A、弯曲损耗;

	C、过渡金属离子吸收; D、瑞利散射。
()6 色散位移光纤的实现是通过改变那种色散,从而达到移动零色散点的目的: A、模式色散; B、材料色散; C、波导色散; D、偏振模色散。
() 7 已知 V=10,则阶跃型光纤中支持传输的模式总数近似为: A、20; B、10; C、11; D、50。
() 8 主模式号为 13 的模群中所含的模式总数为: A、 13; B、 24; C、 30; D、 14。
() 9 G.655 光纤同 G.652 最大的区别是: A、损耗不同; B、1550nm 处 G.652 色散值大于 G.655; C、G.655 的零色散波长移动到了 1310nm 处; D、支持的模式数目不同。
() 10 下面论述正确的是: A、光纤包层的损耗比纤芯高; B、对于相同材料、相同折射率差的多模光纤,芯径越细,模式数目越多; C、分析光纤的传输特性只能采用波动光学理论; D、光纤的数值孔径越大,其传输带宽越大。
() 11 某一光纤的截止波长为 1530nm ,则下列波长在该光纤中传输时是单模传输的是:(多选) A、1310nm; B、1450nm; C、1550nm; D、1565nm。
() 12 走离效应的出现主要同下列那种效应相关,(多选)

B、OH 根吸收;

- A、 损耗; B、材料色散; C、非线性效应; D、波导色散。
- () 13 关于 OTDR 的描述,不正确的是:
 - A、 可以用来做光纤端面的判断、色散的测量:
 - B、可以用来做断点的检测、长度的测量;
 - C、它的工作原理是基于背向散射;
 - D、 测量曲线中初始位置和末端的凸起是由于端面的菲涅尔反射引起的。
- ()14 光纤熔接时,哪些因素会对熔接后的功率代价产生影响;(多选)
 - A、两根光纤端面的洁净度;
 - B、两根光纤端面的间隔;
 - C、两根光纤的轴向对准情况;
 - D、光纤端面间的角度。
- ()15 在光链路中,会引入传输损耗的是; (多选)
 - A、光纤的弯折:
 - B、光纤的熔接;
 - C、光纤裸露在雪层中;
 - D、光纤通过了盐碱地。
- 二. 简答题: 每题 6 分共 5 题, 共 30 分
- 1. 弱导光纤中组成线偏振模式存在的条件以及理论依据是什么?
- 2. 列出普通石英玻璃光纤的三个低损耗传输窗口,哪个传输窗口的损耗最小?哪个传输窗口的损耗最大?
- 3. 说明从麦克斯韦方程到波导场方程的三次分离变量的依据。
- 4. 为什么阶跃折射率光纤被称为反射型光纤,而渐变折射率光纤被称为折射型 光纤?

5. 给出有源器件和无源器件的定义。各自列举两种常见的具体器件名称并分别简介其功能和工作原理。

三. 作图题: 每题 5 分共 2 题, 共 10 分

1. 在下图中标注渐变折射率分布光纤纤芯半径大小,泄露光线存在时外散焦面半径最大值及内散焦面半径最小值,最后再用阴影区域表示约束光线存在的最大范围。

2. 画出偏振无关光隔离器的工作原理图。

四. 计算题: 每题 10 分, 共 30 分

- 1. 已知一阶跃折射率光纤,对 1550nm 波长的光,纤芯和包层折射率分别为 1.4672 和 1.4621,纤芯和包层直径分别为 8.6um 和 125um,请计算在 1550nm 处的归一化频率 V? 并计算该光纤的截止波长?
- 2. 已知一光纤长 30 公里,光纤衰减系数为 0.20dB/km,输入光功率为 2mW,那么输出光功率为多少?如果光探测器的灵敏度为 0.05mW,该光信号还能在这种光纤中传输多少距离?

- 3. 如下图所示为一 X 型光纤耦合器,从 Input1 和 Input2 两端输入相同波长的光信号, Lc 为耦合长度(最短耦合周期),求:
 - (1) L=Lc 时,若从 Intput1 和 Input2 端分别注入光功率为 0dBm 及 3dBm,则从 OutPut1 和 Output2 端输出光功率分别为多少?
 - (2) L=Lc/3 时,若从 Intput1 和 Input2 端分别注入光功率为 0dBm 及 3dBm,则从 OutPut1 和 Output2 端输出光功率分别为多少?

Directional Coupler.