5

We claim:

1. A compound having the general formula (A),

$$R^3$$
 X R^2 R^{25} R^{25} R^{26} R^{26} R^{26} R^{26}

10 wherein:

20

the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;

R¹ is selected from hydrogen, aryl, heterocyclic, C₁-C₁₀ alkoxy,

C₁-C₁₀ thioalkyl, C₁-C₁₀ alkyl-amino, C₁-C₁₀ dialkyl-amino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and C₄₋₁₀ cycloalkynyl, wherein each are optionally substituted with 1 or more R⁶;

Y is selected from single bond, O, $S(O)_m$, NR^{11} , or C_{1-10} alkylene, C_{2-10} alkenylene, C_{2-10} alkynylene, wherein each may optionally include 1 to 3 heteroatoms selected from O, S or N;

 R^2 and R^4 are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸,

haloalkyloxy, haloalkyl, -C(=O)R9, -C(=S)R9, SH, aryl, aryloxy, arylthio, arylalkyl,

C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀

cycloalkenyl, C_{7-10} cycloalkynyl, or heterocyclic, provided that when one of R^{25} or R^{26} is present, then either R^2 or R^4 is selected from (=O), (=S), and =N R^{27} ;

X is selected from $C_1.C_{10}$ alkylene, C_{2-10} alkenylene or C_{2-10} alkynylene, where each may include one or more heteroatoms selected from O, S, or N, provided any such heteroatom is not adjacent to the N in the ring;

m is any integer from 0 to 2;

R³ is selected from aryl, aryloxy, arylthio, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl-N(R¹⁰)-, or heterocyclic, where each said substituent may be optionally substituted with at least one R¹⁷, provided that for cycloalkenyl the double bond is not adjacent to a nitrogen, and provided R³ M-Q- is not biphenyl;

5

10

15

20

25

30>

 R^5 is selected from hydrogen; C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkynyl, or heterocyclic;

R⁶ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkynyl, C₁₋₁₈ alkynyl, C₁₋₁₈ alkylsulfonide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halo-alkyl, C₂₋₁₈ halo-alkyl, C₂₋₁₈ halo-alkynyl, C₁₋₁₈ halo-alkoxy, C₁₋₁₈ halo-alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkynyl, halogen, OH, CN, cyanoalkyl, -CO₂R¹⁸, NO₂, -NR⁷R⁸, C₁₋₁₈ haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C₁₋₁₈)alkyl, aryl(C₁₋₁₈)alkyloxy, aryl(C₁₋₁₈)alkylthio, heterocyclic, C₁₋₁₈ hydroxyalkyl, where each may be optionally substituted with at least 1 R¹⁹;

R⁷ and R⁸ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocyclic, -C(=O)R¹²; -C(=S) R¹², an amino acid residue linked through a carboxyl group thereof, or where R⁷ and R⁸ together with the nitrogen form a heterocyclic;

R⁹ and R¹⁸ are independently selected from hydrogen, OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, CH₂OCH(=O)R^{9a}, or CH₂OC(=O)OR^{9a} where R^{9a} is C₁-C₁₂ alkyl, C₆-C₂₀ aryl, C₆-C₂₀ alkylaryl or C₆-C₂₀ aralkyl;

 R^{10} and R^{11} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, aryl, $-C(=O)R^{12}$, heterocyclic, or an amino acid residue;

R¹² is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈
35 alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;

 R^{15} and R^{16} are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;

R¹⁷ is independently M-Q- wherein M is a ring optionally substituted with 1 or more R¹⁹, and Q is a bond or a linking group connecting M to R³ having 1 to 10 atoms and optionally substituted with 1 or more R¹⁹;

 R^{19} is selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{2-18} alkenyloxy, C_{2-18} alkynyloxy, C_{1-18} alkylthio, C_{3-10} cycloalkyl, C_{4-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C_{1-18} haloalkyl, C_{1-18} haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocyclic, C_{1-18} alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C_{1-18})alkyloxy, aryloxy, aryl(C_{1-18})alkylhio or aryl(C_{1-18})alkyl, where each may be optionally substituted with 1 or more =O, NR²⁰R²¹, CN, C_{1-18} alkoxy, heterocyclic, C_{1-18} haloalkyl, heterocyclic alkyl, heterocyclic connected to R¹⁷ by alkyl, alkoxyalkoxy or halogen;

 R^{20} and R^{21} are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, or $-C(=S)R^{12}$;

R²⁷ is selected from hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, (C₃₋₁₀ cycloalkyl)25 C₁₋₆ alkyl, aryl, and aryl C₁₋₁₈ alkyl, and
salts, tautomers, isomers and solvates thereof.

2. A compound having the general formula (A),

$$R^3$$
 X R^{25} R^{25} R^{26} R^{26} R^{26} R^{26}

wherein:

30

5

10

15

the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;

 R^1 is selected from hydrogen, aryl, heterocyclic, $C_1.C_{10}$ alkoxy, $C_1.C_{10}$ thioalkyl, $C_1.C_{10}$ alkyl-amino, $C_1.C_{10}$ dialkyl-amino, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, and C_{4-10} cycloalkynyl, wherein each are optionally substituted with 1 or more R^6 ;

Y is selected from single bond, O, $S(O)_m$, NR^{11} , or C_{1-10} alkylene, C_{2-10} alkenylene, C_{2-10} alkynylene, wherein each may optionally include 1 to 3 heteroatoms selected from O, S or N;

 R^2 and R^4 are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, or heterocyclic, provided that when one of R^{25} or R^{26} is present, then either R^2 or R^4 is selected from (=O), (=S), and =NR²⁷;

X is selected from $C_1.C_{10}$ alkylene, C_{2-10} alkenylene or C_{2-10} alkynylene, where each may include one or more heteroatoms selected from O, S, or N, provided any such heteroatom is not adjacent to the N in the ring;

m is any integer from 0 to 2;

5

10

15

20

25

R³ is a heterocycle optionally substituted with at least one R¹⁷ provided, however, that R³ optionally substituted with at least one R¹⁷ is not pyridinyl or 5-chlorothienyl, provided that R³-MQ is not biphenyl;

R⁵ is selected from hydrogen; C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, 30 -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkynyl, or heterocyclic;

R⁶ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, heterocyclic, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halo-alkyl, C₂₋₁₈ halo-alkenyl, C₂₋₁₈ halo-alkynyl, C₁₋₁₈ halo-alkoxy, C₁₋₁₈ halo-alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, OH, CN,

5 cyanoalkyl, -CO₂R¹⁸, NO₂, -NR⁷R⁸, C₁₋₁₈ haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C₁₋₁₈)alkyl, aryl(C₁₋₁₈)alkyloxy, aryl(C₁₋₁₈)alkylthio, C₁₋₁₈ hydroxyalkyl, where each may be optionally substituted with at least 1 R¹⁹;

10

15

20

25

 R^7 and R^8 are independently selected from hydrogen, C_{1-18} alkyl, C_{1-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, heterocyclic, $-C(=O)R^{12}$; $-C(=S)R^{12}$, an amino acid residue linked through a carboxyl group thereof, or where R^7 and R^8 together with the nitrogen form a heterocyclic;

 R^9 and R^{18} are independently selected from hydrogen, OH, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{1-18} alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, CH₂OCH(=O)R^{9a}, or CH₂OC(=O)OR^{9a} where R^{9a} is C_1 - C_{12} alkyl, C_6 - C_{20} aryl, C_6 - C_{20} alkylaryl or C_6 - C_{20} aralkyl:

 R^{10} and R^{11} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, aryl, $-C(=0)R^{12}$, heterocyclic, or an amino acid residue;

 R^{12} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;

 R^{15} and R^{16} are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;

R¹⁷ is independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halogenated alkyl, C₂₋₁₈ halogenated alkenyl, C₂₋₁₈

halogenated alkynyl, C₁₋₁₈ halogenated alkoxy, C₁₋₁₈ halogenated alkylthio, C₃₋₁₀

cycloalkyl, C₃₋₁₀ cycloalkenyl, C7-10 cycloalkynyl, halogen, OH, CN, CO₂H, CO₂R¹⁸, NO₂, NR⁷R⁸, haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl, arylalkyloxy, arylalkylthio, heterocyclic, C₁₋₁₈ hydroxyalkyl, where each of said aryl, aryloxy, arylalkylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl, arylalkyloxy, arylalkylthio, heterocycle, or C₁₋₁₈ hydroxyalkyl is optionally substituted with 1 or more R¹⁹;

R¹⁹ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₁₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₂₋₁₈ alkenyloxy, C₂₋₁₈ alkynyloxy, C₁₋₁₈ alkylthio, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C₁₋₁₈ haloalkyl, C₁₋₁₈ haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocyclic, C₁₋₁₈alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C₁₋₁₈)alkyloxy, aryloxy, aryl(C₁₋₁₈ alkyl)oxy, arylthio, aryl(C₁₋₁₈)alkylthio or aryl(C₁₋₁₈)alkyl, where each may be optionally substituted with 1 or more =O, NR²⁰R²¹, CN, C₁₋₁₈ alkoxy, heterocyclic, C₁₋₁₈ haloalkyl, heterocyclic alkyl, heterocyclic connected to R¹⁷ by alkyl, alkoxyalkoxy or halogen;

 R^{20} and R^{21} are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, carboxylester-substituted heterocyclic or $-C(=S)R^{12}$;

 R^{25} and R^{26} are not present, or are independently selected from hydrogen, C_{1-18} alkyl, C_{3-10} cycloalkyl, aryl, heterocyclic, where each is optionally independently substituted with 1 to 4 of C_{1-6} alkyl, C_{1-6} alkoxy, halo, CH_2OH , benzyloxy, and OH; and

 R^{27} is selected from hydrogen, C_{1-18} alkyl, C_{3-10} cycloalkyl, $(C_{3-10}$ cycloalkyl)- C_{1-6} alkyl, aryl, and aryl C_{1-18} alkyl, and

the salts, tautomers, isomers and solvates thereof.

25

15

20

3. A compound having the general formula (A),

wherein:

the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;

 R^1 is selected from hydrogen, aryl, heterocyclic, C_1 - C_{10} alkoxy, C_1 - C_{10} thioalkyl, C_1 - C_{10} alkyl-amino, C_1 - C_{10} dialkyl-amino, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, and C_{4-10} cycloalkynyl, wherein each are optionally substituted with 1 or more R^6 :

Y is selected from single bond, O, $S(O)_m$, NR^{11} , or C_{1-10} alkylene, C_{2-10} alkenylene, C_{2-10} alkynylene, wherein each may optionally include 1 to 3 heteroatoms selected from O, S or N;

 R^2 and R^4 are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkynyl, or heterocyclic, provided that when one of R^{25} or R^{26} is present, then either R^2 or R^4 is selected from (=O), (=S), and =NR²⁷;

X is selected from $C_1.C_{10}$ alkylene, C_{2-10} alkenylene or C_{2-10} alkynylene, where each may include one or more heteroatoms selected from O, S, or N, provided any such heteroatom is not adjacent to the N in the ring;

m is any integer from 0 to 2;

5

10

15

20

35

25 R³ is a heterocycle optionally substituted with at least one R¹⁷, provided R³-M-Q is not biphenyl;

R⁵ is selected from hydrogen; C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, C₁₋₁₈ -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, or heterocyclic;

R⁶ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halo-alkyl, C₂₋₁₈ halo-alkenyl, C₂₋₁₈ halo-alkynyl, C₁₋₁₈ halo-alkoxy, C₁₋₁₈ halo-alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkynyl, halogen, OH, CN, cyanoalkyl, -CO₂R¹⁸, NO₂, -NR⁷R⁸, C₁₋₁₈ haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy,

arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl (C_{1-18}) alkyl, aryl (C_{1-18}) alkyloxy, aryl (C_{1-18}) alkylthio, heterocyclic, C_{1-18} hydroxyalkyl, where each may be optionally substituted with at least 1 R^{19} ;

 R^7 and R^8 are independently selected from hydrogen, C_{1-18} alkyl, C_{1-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, heterocyclic, $-C(=O)R^{12}$; $-C(=S)R^{12}$, an amino acid residue linked through a carboxyl group thereof, or where R^7 and R^8 together with the nitrogen form a heterocyclic;

10

15

20

25

 R^9 and R^{18} are independently selected from hydrogen, OH, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{1-18} alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, CH₂OCH(=O)R^{9a}, or CH₂OC(=O)OR^{9a} where R^{9a} is C_1 - C_{12} alkyl, C_6 - C_{20} aryl, C_6 - C_{20} alkylaryl or C_6 - C_{20} aralkyl;

 R^{10} and R^{11} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, aryl, $-C(=O)R^{12}$, heterocyclic, or an amino acid residue;

 R^{12} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;

 R^{15} and R^{16} are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;

 R^{17} is M-Q-, wherein M is a C_{3-10} cycloalkyl optionally substituted with 1 or more R^{19} , and Q is a bond, or C_{1-10} alkyl optionally substituted with 1 or more R^{19} ;

R¹⁹ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₂₋₁₈ alkenyloxy, C₂₋₁₈ alkynyloxy, C₁₋₁₈ alkylthio, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹,

30 N C₁₋₁₈ haloalkyl, C₁₋₁₈ haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocyclic, C₁₋₁₈alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C₁₋₁₈)alkyloxy, aryloxy, aryl(C₁₋₁₈ alkyl)oxy, arylthio, aryl(C₁₋₁₈)alkylthio or aryl(C₁₋₁₈)alkyl, where each may be optionally substituted with 1 or more =O, NR²⁰R²¹, CN, C₁₋₁₈ alkoxy, heterocyclic, C₁₋₁₈ haloalkyl, heterocyclic alkyl,

heterocyclic connected to R17 by alkyl, alkoxyalkoxy or halogen;

R²⁰ and R²¹ are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-1} 0 cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, or $-C(=S)R^{12}$;

 R^{25} and R^{26} are not present, or are independently selected from hydrogen, C_{1-18} alkyl, C_{3-10} cycloalkyl, aryl, heterocyclic, where each is optionally independently substituted with 1 to 4 of C_{1-6} alkyl, C_{1-6} alkoxy, halo, CH_2OH , benzyloxy, and OH; and

 R^{27} is selected from hydrogen, C_{1-18} alkyl, C_{3-10} cycloalkyl, $(C_{3-10}$ cycloalkyl)- C_{1-6} alkyl, aryl, and aryl C_{1-18} alkyl, and

the salts, tautomers, isomers and solvates thereof.

15

10

- 4. The compound of claim 1, 2 or 3 wherein R³ is heterocycle.
- 5. The compound of claims 1, 2 or 3 wherein YR¹ is halophenyl.
- 20 6. The compound of claim 5 wherein halophenyl is ortho-fluorophenyl.
 - 7. The compound of claims 1, 2 or 3 wherein R^3 is isoxazolyl substituted with 1 R^{17} .
- 25 8. The compound of claims 1, 2 or 3 wherein R¹⁷ is anyl or an aromatic heterocycle which is substituted with 1, 2 or 3 R¹⁹.
 - 9. The compound of claims 1, 2 or 3 wherein YR¹ is none of hydrogen, an unsubstituted C₃₋₁₀ cycloalkyl, or C₁₋₆ alkyl.

30

- 10. The compound of claim 9 wherein YR¹ is not hydrogen.
 - 11. The compound of claims 1, 2 or 3 wherein R¹⁹ is trihalomethyl, trihalomethoxy, alkoxy or halogen.

5 12. The compound of claims 1, 2 or 3 wherein R¹ is aryl or aromatic heterocyle substituted with 1, 2 or 3 R⁶ wherein R⁶ is halogen, C₁₋₁₈ alkoxy; or C₁₋₁₈ haloalkyl.

13. The compound of claims 12 wherein R¹ is phenyl substituted with 1, 2 or 3 halogens.

14. The compound of claims 1, 2 or 3 wherein halogen is fluoro.

10

30

- 15. The compound of claims 1, 2 or 3 wherein Y is a single bond, O, C₁₋₆ alkylene, C₂₋₆ alkenylene, C₂₋₆ alkynylene or one of said groups containing 1 to 3
 15 heteroatoms selected from O, S or NR¹¹.
 - 16. The compound of claim 15 wherein Y is $-O(CH_2)_{1-5}$ -, $-(CH_2)_{1-4}$ -O- $(CH_2)_{1-4}$ -, $-S-(CH_2)_{1-5}$ -, $-(CH_2)_{1-5}$ -, $-(CH_2)_{1-4}$ -NR¹¹- $(CH_2)_{1-4}$ -NR

The compound of claim 15 wherein Y is -OCH₂-, -CH₂O-, C₁₋₂ alkylene, C₂₋₃
 alkenylene, C₂₋₃ alkynylene, O or a bond.

18. The compound of claim 15 wherein Y is a bond.

The compound of claims 1, 2 or 3 wherein YR¹ is not any one of H, an unsubstituted C₃₋₁₀ cycloalkyl or C1-C6 alkyl.

- \sim 20. The compound of claims 1, 2 or 3 wherein YR¹ is not H.
- 21. The compound of claims 1, 2 or 3 wherein YR¹ is halo or halomethyl-substituted phenyl.
- 22. The compound of claims 1, 2 or 3 wherein halo or halomethyl are ortho or meta.

5 23. The compound of claims 1, 2 or 3 wherein X is selected from the group consisting of alkylene, alkynylene or alkenylene and said hydrocarbons having an intrachain N, O or S heteroatom.

24. The compound of claims 1, 2 or 3 wherein X is alkyl.

10

25. The compound of claim 23 wherein X is selected from the group consisting of $-CH_{2^-}$, $-CH(CH_3)$ -, $-CH_2$ - CH_2 -, $-CH_2$

15

- 26. The compound of claims 1, 2 or 3 wherein X is methylene.
- 27. The compound of claims 1, 2 or 3 wherein R^3 is anyl or a heterocycle substituted with 0 to 3 R^{17} .

20

- 28. The compound of claim 27 wherein the heterocycle is an aromatic heterocycle.
- 29. The compound of claim 28 wherein the heterocycle contains 1, 2 or 3 N, S or
 25 O atoms in the ring, is linked to X through a ring carbon atom and contains 4 to 6 total ring atoms.
 - 30. The compound of claims 1, 2 or 3 wherein \mathbb{R}^3 is isoxazolyl substituted with 1 $\stackrel{\sim}{\sim}$ to 3 \mathbb{R}^{17} .

30

- 31. The compound of claims 1, 2 or 3 wherein R^{17} is aryl or a heterocycle further substituted with 1 to 3 R^{19} .
 - 32. The compound of claims 1 or 3 wherein M is aryl or aromatic heterocycle.

5 33. The compound of claims 1 or 3 wherein Q contains 0 to 20 atoms selected from C, O, S, N and H.

- 34. The compound of claims 1 or 3 wherein M is a cyclic group selected from R¹⁷.
- The compound of claim 2 wherein R¹⁷ is selected from the group consisting of C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl; arylalkyloxy; arylalkylthio; heterocycle; C₁₋₁₈ hydroxyalkyl, each of said C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl; arylalkyloxy; arylalkylthio; heterocycle; and C₁₋₁₈ hydroxyalkyl is unsubstituted or is substituted 1 or more R¹⁹.
- 36. The compound of claim 2 wherein R¹⁷ is selected from the group consisting of aryl and heterocycle, and where said aryl or heterocycle is optionally substituted with 1 or more R¹⁹.
 - 37. The compound of claims 1, 2 or 3 wherein R⁹ and R¹⁸ are H, OH or alkyl.
 - 38. The compound of claims 1, 2 or 3 wherein R⁵ is H.

25

- 39. The compound of claims 1, 2 or 3 wherein R⁶ is halogen.
- 40. The compound of claims 1, 2 or 3 wherein R^7 , R^8 , R^{10} , R^{11} , R^{15} , R^{16} , R^{20} , and R^{21} are independently H or C_{1-18} alkyl.

30 `

- 41. The compound of claims 1, 2 or 3 wherein R¹² is OH or alkyl.
- 42. The compound of claims 1, 2 or 3 wherein R¹⁹ is selected from the group consisting of H; C₁₋₁₈ alkyl; C₂₋₁₈ alkenyl; C₂₋₁₈ alkynyl; C₁₋₁₈ alkoxy; alkenyloxy;
 35 alkynyloxy; C₁₋₁₈ alkylthio; C₃₋₁₀ cycloalkyl; C₄₋₁₀ cycloalkenyl; C₄₋₁₀ cycloalkynyl; halogen; OH; CN; cyanoalkyl; NO₂; NR²⁰R²¹; haloalkyl; haloalkyloxy; C(=O)R¹⁸;

5 C(=O)OR¹⁸; OalkenylC(=O)OR¹⁸; -OalkylC(=O)NR²⁰R²¹; aryl; heterocycle; -OalkylOC(=O)R¹⁸; C(=O)N(C₁₋₆ alkyl), N(H)S(O)(O)(C₁₋₆ alkyl); arylalkyloxy; aryloxy; arylalkyloxy; and arylalkyl; each of which is unsubstituted or substituted with 1 or more =O; NR²⁰R²¹; CN; alkoxy; heterocycle; haloalkyl- or alkyl-substituted heterocycle; and heterocycle linked to R¹⁷ by alkyl; alkoxyalkoxy or halogen.

- 43. The compound of claim 42 wherein R^{19} is independently selected from the group consisting of halogen, $N(R^{20} R^{21})$, alkoxy. halo-substituted alkyl and halo-substituted alkoxy.
- 44. The compound of claims 1, 2 or 3 wherein R²⁵ and R²⁶ are not present.
 - 45. The compound of claims 1, 2 or 3 which is not substituted at R^{25} but is substituted at R^{26} , and either R^2 or R^4 is selected from (=0), (=S), and (=N R^{27}).
- 46. The compound of claims 1, 2 or 3 wherein haloalkyl or haloalkyloxy is -CF3 or -OCF3.
- 47. A composition comprising a pharmaceutically acceptable excipient and a compound of claims 1, 2 or 3.
 - 48. A compound having the general formula (B),

$$R^3$$
 X
 R^5
 R^{25}
 R^{25}
 R^{26}
 R^{26}
 R^{26}

wherein:

30

15

the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;

 R^1 is selected from hydrogen, aryl, heterocyclic, $C_1.C_{10}$ alkoxy, $C_1.C_{10}$ thioalkyl, $C_1.C_{10}$ alkyl-amino, $C_1.C_{10}$ dialkyl-amino, C_{3-10} cycloalkyl, C_{4-10} cycloalkynyl, wherein each are optionally substituted with 1 or more R^6 ;

Y is selected from single bond, O, S(O)_m, NR¹¹, or C₁₋₁₀ alkylene, C₂₋₁₀ alkenylene, C₂₋₁₀ alkyrylene, wherein each may optionally include 1 to 3 heteroatoms selected from O, S or N;

R² and R⁴ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, or heterocyclic, provided that when one of R²⁵ or R²⁶ is present, then either R² or R⁴ is selected from (=O), (=S), and =NR²⁷;

X is selected from C_1 - C_{10} alkylene, C_{2-10} alkenylene or C_{2-10} alkynylene, where each may include one or more heteroatoms selected from O, S, or N, provided any such heteroatom is not adjacent to the N in the ring;

m is any integer from 0 to 2;

5

10

15

20

25

R³ is selected from aryl, aryloxy, arylthio, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl-N(R¹⁰)-, or heterocyclic, where each said substituent may be optionally substituted with at least one R¹⁷, provided that for cycloalkenyl the double bond is not adjacent to a nitrogen, and provided R³ M-Q- is not biphenyl;

R⁵ is selected from hydrogen; C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈
30 alkoxy, C₁₋₁₈ alkylthio, halo gen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl,
-C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈
hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀
cycloalkenyl, C₇₋₁₀ cycloalkynyl, or heterocyclic;

R⁶ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈

alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halo-alkyl, C₂₋₁₈

halo-alkenyl, C₂₋₁₈ halo-alkynyl, C₁₋₁₈ halo-alkoxy, C₁₋₁₈ halo-alkylthio, C₃₋₁₀

5 cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, OH, CN, cyanoalkyl, -CO₂R¹⁸, NO₂, -NR⁷R⁸, C₁₋₁₈ haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C₁₋₁₈)alkyl, aryl(C₁₋₁₈)alkyloxy, aryl(C₁₋₁₈)alkylthio, heterocyclic, C₁₋₁₈ hydroxyalkyl, where each may be optionally substituted with at least 1 R¹⁹;

10

15

 R^7 and R^8 are independently selected from hydrogen, C_{1-18} alkyl, C_{1-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, heterocyclic, $-C(=O)R^{12}$; $-C(=S)R^{12}$, an amino acid residue linked through a carboxyl group thereof, or where R^7 and R^8 together with the nitrogen form a heterocyclic;

 R^9 and R^{18} are independently selected from hydrogen, OH, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{1-18} alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, CH₂OCH(=O)R^{9a}, or CH₂OC(=O)OR^{9a} where R^{9a} is C_1 - C_{12} alkyl, C_6 - C_{20} aryl, C_6 - C_{20} alkylaryl or C_6 - C_{20} aralkyl;

R¹⁰ and R¹¹ are independently selected from the group consisting of hydrogen,

C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, aryl, -C(=O)R¹²,

heterocyclic, or an amino acid residue;

R¹² is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;

R¹⁵ and R¹⁶ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈
alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;

R¹⁷ is independently M-Q- wherein M is a ring optionally substituted with 1 or more R¹⁹, and Q is a bond or a linking group connecting M to R³ having 1 to 10 atoms and optionally substituted with 1 or more R¹⁹;

R¹⁹ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₂₋₁₈ alkenyloxy, C₂₋₁₈ alkynyloxy, C₁₋₁₈ alkylthio, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C₁₋₁₈ haloalkyl, C₁₋₁₈ haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl),

-N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocyclic, C₁₋₁₈alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C₁₋₁₈)alkyloxy, aryloxy, aryl(C₁₋₁₈ alkyl)oxy, arylthio, aryl(C₁-

18) alkylthio or aryl(C₁₋₁₈) alkyl, where each may be optionally substituted with 1 or more =O, NR²⁰R²¹, CN, C₁₋₁₈ alkoxy, heterocyclic, C₁₋₁₈ haloalkyl, heterocyclic alkyl, heterocyclic connected to R¹⁷ by alkyl, alkoxyalkoxy or halogen;

 R^{20} and R^{21} are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, or $-C(=S)R^{12}$;

 R^{27} is selected from hydrogen, $C_{1\text{-}18}$ alkyl, $C_{3\text{-}10}$ cycloalkyl, ($C_{3\text{-}10}$ cycloalkyl)- $C_{1\text{-}6}$ alkyl, aryl, and aryl $C_{1\text{-}18}$ alkyl, and

salts, tautomers, isomers and solvates thereof.

10

- 49. The compound of claim 48 wherein Y is a single bond, and R¹ is aryl.
- 50. The compound of claim 48 wherein X is C_{1} - C_{10} alkylene, C_{2-10} alkenylene or C_{2-10} alkynylene.
- 51. The compound of claim 48 wherein \mathbb{R}^3 is heterocylic.
- The compound of claim 48 wherein R³ is heterocyclic substituted with R¹¹²
 where Q is a bond and M is aryl.
 - 53. The compound of claim 48 wherein Y is a single bond, and R¹ is phenyl.
- The compound of claim 48 wherein R³ is isoxazole substituted with R¹¹ where
 Q is a bond and M is aryl.
- The compound of claim 48 wherein R^3 is isoxazole substituted with R^{17} where 30 Q is a bond and M is phenyl.
 - 56. A compound having the general formula (C),

$$R^4$$
 R^5
 R^{25}
 R^{25}
 R^{26}
 R^{26}
 R^{26}

5

10

15

30

wherein:

the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;

 R^1 is selected from hydrogen, aryl, heterocyclic, C_{1} - C_{10} alkoxy, C_{1} - C_{10} thioalkyl, C_{1} - C_{10} alkyl-amino, C_{1} - C_{10} dialkyl-amino, C_{3-10} cycloalkyl, C_{4-10} cycloalkynyl, wherein each are optionally substituted with 1 or more R^6 ;

Y is selected from single bond, O, $S(O)_m$, NR^{11} , or C_{1-10} alkylene, C_{2-10} alkenylene, C_{2-10} alkynylene, wherein each may optionally include 1 to 3 heteroatoms selected from O, S or N;

 R^2 and R^4 are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{1-18} alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸,

20 haloalkyloxy, haloalkyl, $-C(=0)R^9$, $-C(=S)R^9$, SH, aryl, aryloxy, arylthio, arylalkyl, C_{1-18} hydroxyalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyloxy, C_{3-10} cycloalkylthio, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, or heterocyclic, provided that when one of R^{25} or R^{26} is present, then either R^2 or R^4 is selected from (=0), (=S), and = NR^{27} ;

X is selected from C₁.C₁₀ alkylene, C₂₋₁₀ alkenylene or C₂₋₁₀ alkynylene, where each may include one or more heteroatoms selected from O, S, or N, provided any such heteroatom is not adjacent to the N in the ring;

m is any integer from 0 to 2;

R³ is selected from aryl, aryloxy, arylthio, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl-N(R¹⁰)-, or heterocyclic, where each said substituent may be optionally substituted with at least one R¹⁷, provided that for cycloalkenyl the double bond is not adjacent to a nitrogen, and provided R³ M-Q- is not biphenyl;

R⁵ is selected from hydrogen; C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkynyl, or heterocyclic;

5

10

15

20

25

30

 R^6 is selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkynyl, C_{1-18} alkylsulfoxide, C_{1-18} alkylsulfone, C_{1-18} halo-alkyl, C_{2-18} halo-alkynyl, C_{1-18} halo-alkynyl, C_{1-18} halo-alkylthio, C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl, C_{7-10} cycloalkynyl, halogen, OH, CN, cyanoalkyl, C_{0-18} , C_{0-18} , arylcoxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl C_{1-18})alkyloxy, aryl C_{1-18})alkylthio, heterocyclic, C_{1-18} hydroxyalkyl, where each may be optionally substituted with at least 1 R^{19} ;

 R^7 and R^8 are independently selected from hydrogen, C_{1-18} alkyl, C_{1-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, heterocyclic, $-C(=O)R^{12}$; $-C(=S)R^{12}$, an amino acid residue linked through a carboxyl group thereof, or where R^7 and R^8 together with the nitrogen form a heterocyclic;

 R^9 and R^{18} are independently selected from hydrogen, OH, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, C_{1-18} alkoxy, $-NR^{15}R^{16}$, aryl, an amino acid residue linked through an amino group of the amino acid, $CH_2OCH(=O)R^{9a}$, or $CH_2OC(=O)OR^{9a}$ where R^{9a} is C_1-C_{12} alkyl, C_6-C_{20} aryl, C_6-C_{20} alkylaryl or C_6-C_{20} aralkyl;

 R^{10} and R^{11} are independently selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, aryl, $-C(=O)R^{12}$, heterocyclic, or an amino acid residue;

 R^{12} is selected from the group consisting of hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;

 R^{15} and R^{16} are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, or an amino acid residue;

R¹⁷ is independently M-Q- wherein M is a ring optionally substituted with 1 or more R¹⁹, and Q is a bond or a linking group connecting M to R³ having 1 to 10 atoms and optionally substituted with 1 or more R¹⁹;

5

10

15

20

25

57.

 R^{19} is selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, C_{1-18} alkoxy, C_{2-18} alkenyloxy, C_{2-18} alkynyloxy, C_{1-18} alkylthio, C_{3-10} cycloalkyl, C_{4-10} cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C_{1-18} haloalkyl, C_{1-18} haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocyclic, C_{1-18} alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C_{1-18})alkyloxy, aryloxy, aryl(C_{1-18} alkyl)oxy, arylthio, aryl(C_{1-18})alkylthio or aryl(C_{1-18})alkyl, where each may be optionally substituted with 1 or more =O, NR²⁰R²¹, CN, C_{1-18} alkoxy, heterocyclic, C_{1-18} haloalkyl, heterocyclic alkyl, heterocyclic connected to R¹⁷ by alkyl, alkoxyalkoxy or halogen;

 R^{20} and R^{21} are independently selected from hydrogen, C_{1-18} alkyl, C_{2-18} alkenyl, C_{2-18} alkynyl, aryl, C_{3-10} cycloalkyl, C_{4-10} cycloalkenyl, $-C(=O)R^{12}$, or $-C(=S)R^{12}$;

 R^{27} is selected from hydrogen, C_{1-18} alkyl, C_{3-10} cycloalkyl, (C_{3-10} cycloalkyl)- C_{1-6} alkyl, aryl, and aryl C_{1-18} alkyl, and salts, tautomers, isomers and solvates thereof.

- 58. The compound of claim 56wherein X is C_{1} - C_{10} alkylene, C_{2-10} alkenylene or C_{2-10} alkynylene.

The compound of claim 56 wherein Y is a single bond, and R¹ is aryl.

- 30 59. The compound of claim 56 wherein R³ is heterocylic.
 - 60. The compound of claim 56 wherein R^3 is heterocyclic substituted with R^{17} where Q is a bond and M is aryl.
- 35 61. The compound of claim 56 wherein Y is a single bond, and R¹ is phenyl.

The compound of claim 56 wherein R³ is isoxazole substituted with R¹⁷ where Q is a bond and M is aryl.

- 63. The compound of claim 56 wherein R³ is isoxazole substituted with R¹⁷ where Q is a bond and M is phenyl.
- 10
 64. A method comprising administering to a subject in need of treatment or prophylaxis of a viral infection an antivirally effective amount of a compound of claims 1, 2, 3, 48 or 56.
- 15 65. The method of claim 64, wherein the viral infection is an infection of a hepatitis-C virus.
 - 66. The method of claim 65 further comprising administering at least one additional antiviral therapy to the subject.
- The method of claim 66 wherein the additional therapy is is selected from the group consisting of an interferon alpha and ribavirin.
- 68. A method of screening antiviral compounds which comprises providing a compound of claims 1, 2, 3, 48 or 56 and determining the anti-viral activity of said compound.
- 69. The method of claim 68 wherein said anti-viral activity is determined by the activity of said compound against one or more viruses belonging to the family of the Flaviviridae and/or of the Picornaviridae.
 - 70. A method for assaying the structure-activity of analogues of formula (A) compounds

$$\mathbb{R}^{3}$$
 \mathbb{R}^{25}
 \mathbb{R}^{25}
 \mathbb{R}^{26}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}

wherein the substituents are defined in WO 2004/005286, comprising

- (c) preparing a compound of formula (A) in which at least one substituent is not disclosed by WO 2004/005286; and
- (d) determining the anti-HCV activity of the compound of step (a).
 - 71. The method of claim 70 wherein the substituent is located at R^3 , R^2 , R^4 , R^{26} and/or R^5 .

15

10

. 5