1 Semantic Tableaux

a) From the open leaves of the tableau we see that there are the following models that satisfy the formula $(p \to q) \to r$: $\{\{(p \to F), (q, \to F), (r \to T)\}, \{(p \to F), (q, \to F), (r \to T)\}, \{(p \to T), (q, \to F), (r \to F)\}, \{(p \to T), (q, \to F), (r \to T)\}, \{(p \to T), (q, \to T), (r \to T)\}\}$. In the set of propositions $P = \{p, q, r\}$, the formula $(\neg p \to r) \land (q \to r)$ has the same models $M((p \to q) \to r) = M((\neg p \to r) \land (q \to r))$. Therefore, we conclude that $(p \to q) \to r$ and $(\neg p \to r) \land (q \to r)$ are logically equivalent.

Figure 1: Left-hand side

Figure 2: Right-hand side

b) To show that $(((p \to (q \land r)) \lor ((q \land r) \to p)) \to p)$ is falsifiable, we must show that there exist models for the inverse, namely $\neg(((p \to (q \land r)) \lor ((q \land r) \to p)) \to p)$. The semantic tableaux of the inverse can be found in Figure 3. Two examples of interpretations which yield false are: $\{\{(p \to F), (q \to T), (r \to T)\}, \{(p \to F), (q \to F), (r \to F)\}\}$

Figure 3: Semantic Tableaux for $\neg(((p \to (q \land r)) \lor ((q \land r) \to p)) \to p)$

- 2 Logical Equivalence
- 3 Gentzen
- 4 Hilbert