Slido: #ADA2020

CSIE 2136 Algorithm Design and Analysis, Fall 2020

National Taiwan University 國立臺灣大學

Graph Algorithms - IV

Hsu-Chun Hsiao

3.5-week Agenda

Graph basics

- Graph terminology [B.4, B.5]
- Real-world applications
- Graph representations [Ch. 22.1]

Graph traversal

- Breadth-first search (BFS) [Ch. 22.2]
- Depth-first search (DFS) [Ch. 22.3]

DFS applications

- Propological sort [Ch. 22.4]
- Strongly-connected components [Ch. 22.5]

Minimum spanning trees [Ch. 23]

- Kruskal's algorithm
- Prim's algorithm

Single-source shortest paths [Ch. 24]

- Dijkstra algorithm
- Bellman-Ford algorithm
- SSSP in DAG

All-pairs shortest paths [Ch. 25]

- Floyd-Warshall algorithm
- Johnson's algorithm

Today's Agenda

- All-pairs shortest paths [Ch. 25]
 - Floyd-Warshall algorithm
 - Johnson's algorithm

Variants of shortest-path problems

- Single-source shortest-path problem: Given a graph G = (V, E) and a source vertex s in V, find the minimum cost paths from s to every vertex in V
- Single-destination shortest-path problem: Given a graph G = (V, E) and a destination vertex t in V, find the minimum cost paths to t from every vertex in V
- Single-pair shortest-path problem: Find a shortest path from s to t for given s and t
- All-pair shortest path problem: Find a shortest path from s to t for every pair of s and t

All-pairs shortest paths Algorithms

- Repeated squaring of matrices
- Floyd-Warshall algorithm
- Johnson's algorithm

Recap: DP view of Bellman-Ford algorithm

- Let $\ell_{sn}^{(k)}$ be the shortest path value from s to v using at most k edges
 - Subproblems: given s, $\ell_{sv}^{(k)}$ for all v, k
 - Optimal substructure: by Lemma 24.1
- Base cases: $\ell_{ss}^{(0)} = 0$; $\ell_{sv}^{(0)} = \infty$ when $s \neq v$
- The recurrence relation can be formulated as

e recurrence relation can be formulated as
$$\ell_{sv}^{(k)} = \min\left\{\ell_{sv}^{(k-1)}, \min_{u \in V} \left\{\ell_{su}^{(k-1)} + \psi_{uv}\right\}\right\}_{0, \quad i = j}$$
$$= \min_{u \in V} \left\{\ell_{su}^{(k-1)} + \psi_{uv}\right\}$$
$$= \min_{u \in V} \left\{\ell_{su}^{(k-1)} + \psi_{uv}\right\}_{\infty, \quad i \neq j \text{ and } (i,j) \notin E}$$

Optimal values: $\ell_{sv}^{(|V|-1)}$ for all $v \in V$

Generalization to all-pairs shortest paths

- \triangleright Let $\ell_{ij}^{(k)}$ be the shortest path value from i to j using at most k edges
 - Subproblems: $\ell_{ij}^{(k)}$ for all i, j, k
 - Optimal substructure: by Lemma 24.1
- Pase cases: $\ell_{ii}^{(0)} = 0$; $\ell_{ij}^{(0)} = \infty$ when $i \neq j$
- P The recurrence relation can be formulated as

$$\ell_{ij}^{(k)} = \min_{x \in V} \left\{ \ell_{ix}^{(k-1)} + w_{xj} \right\}$$

• Optimal values: $\ell_{ij}^{(|V|-1)}$ for all $i, j \in V$

```
//Extend shortest paths by one hop EXTEND-SHORTEST-PATHS(L, W)  \begin{array}{l} \text{n = W.rows} \\ \text{let } L' = (\ell_{ij}') \text{ be a new nxn matrix} \\ \text{for i = 1 to n} \\ \text{for j = 1 to n} \\ \ell'_{ij} = \min_{x \in V} \{\ell_{ix} + w_{xj}\} \\ \text{return } L' \end{array}  for x = 1 to n  \ell'_{ij} = \min\{\ell'_{ij}, \ell_{ix} + w_{xj}\}  return \ell'
```

- $P L^{(k)} = (\ell_{ij}^{(k)}), \text{ the matrix of } \ell_{ij}^{(k)}$
- $W = (w_{ij})$, the matrix of w_{ij} s
- $L^{(1)} = W$
- Partial Running time of Extend-Shortest-Paths: $\Theta(V^3)$

Similarity to matrix multiplication

- Paths of extend-shortest-paths (L, w) as "multiplying" the two matrices, $L \cdot W$
 - ρ + is replaced by min, · is replaced by +
 - \circ 0 (the identity for +) is replaced by ∞ (the identity for min)
- P Then we have
 - $\rho L^{(1)} = W$
 - $\rho L^{(k)} = L^{(k-1)} \cdot W = W^k$
- P Shortest path wights are: $L^{(n-1)} = W^{n-1}$
- P The overall running time: $Θ(V^4)$

Can we do better than $\Theta(V^4)$?

• Observation: $L^{(k)} = L^{(n-1)}$ for all $k \ge n-1$

Q: Based on this observation, can we reduce it to $\Theta(V^3 \lg V)$? Repeated squaring: keep squaring W for r times until $2^r > n-1$

Floyd-Warshall algorithm

Floyd-Warshall algorithm: intuition

- P Consider a shortest path p_{ij} from i to j whose intermediate vertices are all in $\{1,2,...,k\}$
- Possible cases:

 Depending on whether k is an intermediate vertex of p_{ij} , there are two possible cases:
 - ho k is not an intermediate vertex of p_{ij} : all intermediate vertices are in $\{1,2,...,k-1\}$
 - p k is an intermediate vertex of p_{ij} : p_{ij} can be decomposed into two sub-paths, $p_{ij} = i \sim k \sim j$, and the first (second) sub-path is a shortest path from i to k (k to j) with all intermediate vertices in $\{1,2,\ldots,k-1\}$.

all intermediate vertices in $\{1, 2, ..., k-1\}$ all intermediate vertices in $\{1, 2, ..., k-1\}$

Floyd-Warshall algorithm: intuition

- Based on the observation, we can define a recurrence relation among shortest paths
- Purpose Let $d_{ii}^{(k)}$ be the weight of a shortest path from vertex i to j whose intermediate vertices are all in {1,2, ..., k}

$$d_{ij}^{(k)} = \begin{cases} w_{ij}, & k = 0 \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right), k \ge 1 \end{cases} \qquad w_{ij} = \begin{cases} 0, & i = j \\ w(i,j), & i \ne j \text{ and } (i,j) \in E \\ \infty, & i \ne j \text{ and } (i,j) \notin E \end{cases}$$

$$w_{ij} = \begin{cases} 0, & i = j \\ w(i,j), & i \neq j \text{ and } (i,j) \in E \\ \infty, & i \neq j \text{ and } (i,j) \notin E \end{cases}$$

 $\underline{\text{Claim}} : d_{i,i}^{(n)} = \delta(i,j) \ \forall i,j \in V$

Floyd-Warshall algorithm

```
FLOYD-WARSHALL (W) // W is the matrix of w_{ij}s n = W.rows D^{(0)} = W for k = 1 to n let D^{(k)} = (d_{ij}^{(k)}) be a new nxn matrix for i = 1 to n for j = 1 to n d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) return D^{(n)}
```

Q: What's the running time?

 $\Theta(n^3)$

Q: How to construct the shortest paths?

Exercise 25.2-3, Exercise 25.2-7

Q: Can the following variant correctly compute all-pairs shortest path values?

```
FLOYD-WARSHALL-1 (W) // W is the matrix of w_{ij}s n = W.rows D^{(0)} = W for k = 1 to n let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix for i = 1 to n for j = 1 to n for k = 1 to n d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) return D^{(n)}
```

No

Johnson's algorithm for sparse graphs

Key idea: Reweighting

- Observation: If all edge weights are nonnegative, simply run Dijkstra's algorithm from each vertex
 - $\rho O(V^2 \lg V + VE)$ using Fibonacci-heap min-priority queue
- Can we somehow reweight each edge such that all edge weights become nonnegative, while preserving the shortest paths?

Key idea: Reweighting

- Reweighing (using weight function w instead of w) should satisfy two important properties:
 - 1. Shortest-path preservation: $\forall u, v \in V$, a path p is a shortest path from u to v using weight function $w \Leftrightarrow \forall u, v \in V$, a path p is a shortest path from u to v using weight function \widehat{w}
 - 2. Nonnegative weights: $\forall u, v \in V, \widehat{w}(u, v)$ is nonnegative

Preserving shortest paths by reweighting

- Let $h: V \to \mathbb{R}$ be any function mapping vertices to real numbers
- Define a new weight function as

$$\widehat{w}(u,v) = w(u,v) + h(u) - h(v)$$

Q: Show that this reweighting preserve shortest paths

Q: Show that G has a negative-weight cycle using $w \Leftrightarrow G$ has a negative-weight cycle using \widehat{w}

Producing nonnegative weights by reweighting

- Poal: Pick a function $h: V \to \mathbb{R}$ such that for all $u, v \in V$ $\widehat{w}(u, v) = w(u, v) + h(u) h(v) \ge 0$
- Johnson's algorithm takes advantage of the triangle inequality for shortest paths (Lemma 24.10)

Triangle inequality (Lemma 24.10)

Given a source vertex s, for any edge $(u, v) \in E$, $\delta(s, v) \leq \delta(s, u) + w(u, v)$

Producing nonnegative weights by reweighting

- Pick a function $h: V \to \mathbb{R}$ such that for all $u, v \in V$ $\widehat{w}(u, v) = w(u, v) + h(u) h(v) \ge 0$
 - Add an additional source vertex s
 - Add an edge from s to every vertex v in the original graph, w(s,v)=0
 - Let $h(v) = \delta(s, v)$, which can be computed using Bellman-Ford algorithm

Johnson's Algorithm

```
Johnson(G, w)
```

```
compute G', where G' \cdot V = G \cdot V \cup \{s\},
          G'.E = G.E \cup \{(s, v) : v \in G.V\}, \text{ and }
          w(s, v) = 0 for all v \in G.V
    if BELLMAN-FORD(G', w, s) == FALSE
          print "the input graph contains a negative-weight cycle"
     else for each vertex \nu \in G'. V
 5
               set h(v) to the value of \delta(s, v)
                    computed by the Bellman-Ford algorithm
          for each edge (u, v) \in G'.E
 6
               \widehat{w}(u,v) = w(u,v) + h(u) - h(v)
          let D = (d_{uv}) be a new n \times n matrix
 9
          for each vertex u \in G.V
               run DIJKSTRA(G, \widehat{w}, u) to compute \widehat{\delta}(u, v) for all v \in G.V
10
               for each vertex \nu \in G.V
11
                    d_{uv} = \widehat{\delta}(u, v) + h(v) - h(u)
12
13
          return D
```

1. Transform the graph and run Bellman-Ford algorithm from the added source vertex

- 2. Reweight edges
- 3. Run Dijkstra from each vertex and reconstruct the original distance

Time complexity

- P Johnson's algorithm: $O(V^2 \lg V + VE)$
- \circ C.f. Floyd-Warshall algorithm: $\Theta(V^3)$

Q: When will Johnson's algorithm run faster than Floyd-Warshall algorithm? On sparse graphs, i.e., $|E| \sim |V|$

Application: Internet routing

- AS65101

 BGP router
 Level 2 IS-IS router
 Interdomain links
 Intradomain links

 R2

 R3

 AS65303

 AS65404

 R6

 R7
 - Source: cisco.com

- Vertices = routers, ASes
- Edges = network links between routers
- Edge weight = delay, bandwidth, cost, hop count, etc.
- Link-state (commonly using Dijkstra's algorithm)
 - Nodes flood link state to whole network
 - E.g., Open Shortest Path First (OSPF)
- Distance-vector (commonly using Bellman-Ford's algorithm)
 - Nodes send vectors of destination and distance to neighbors
 - E.g., Routing Information Protocol (RIP)
- Path-vector (not necessarily shortest paths)
 - Nodes advertise the full paths to each destination
 - E.g., Border Gateway Routing Protocol (BGP)

Summary of graph algorithms

Graph search/traversal BFS
Topological sort DFS
Minimum spanning trees Kruskal's
Shortest paths Prim's
Negative cycle detection Dijkstra's

Bellman-Ford