Notes du Cours : MATH2310P

Cours assuré par Sébastien GODILLON

Rédigé par Corentin 邱天意

Semestre 2024-2025-2

1 Notations

Couleurs pour les tcolorboxes :

Définition/théorème/lemme

The color is "red".

Proposition/propriété

The color argument is "blue".

Remarque

The color argument is "yellow".

Exemple

The color argument is "cyan".

Rappel

The color argument is "gray".

Corollaire

The color argument is "purple".

Ces t
colorboxes seront numérotés (sauf les corollaires qui seront nommés comme "Corollaire du théorème x.y").

Exemple : "Définition 2.3" sera la troisième définition du deuxième chapitre.

Table des matières

1	Notations	2
Ι	Équations différentielles ordinaires	4
1	Cours 21 févr : Généralités	4
II	Courbes et Surfaces	9

Première partie

Équations différentielles ordinaires

1 Cours 21 févr : Généralités

Définition 1.1

Une Équation différentielle linéaire(EDO) est une équation de la forme :

$$\forall t \in I, F(t, X(t), X'(t)...X^{(k)}(t)) = 0$$

Plus spécifiquement sur les notations :

- X est une fonction inconnue, d'une seule variable réelle, et à valeurs réelles ou vectorielles $(X : \mathbb{R} \to \mathbb{R}^n, n \in \mathbb{N}^*)$. Elle est supposée k-fois dérivable sur I/.
- t est la variable da la fonction X.
- $I \subset \mathbb{R}$, c'est l'intervalle de définition de l'équation différentielle.
- F est une fonction de plusieurs variables, elle est fixée.
- $k \in \mathbb{N}^*$, on l'appelle l'ordre de l'EDO.

Exemple 1.1

Chercher les primitives

Soit f une fonction réelle qui est continue sur l'intervalle $I \in \mathbb{R}$.

D'après the théorème fondamental de l'analyse (TFA), on sait que f admet des primitives sur I.

Alors, trouver des primitives de f revient à résoudre l'EDO :

$$\forall t \in I, X'(t) = f(t)$$

ici on a F(t, X(t), X'(t)) = X'(t) - f(t), une EDO d'ordre 1.

Exemple 1.2

L'oscillateur harmonique

Le mouvement d'un oscillateur harmonique est modélisé par l'EDO :

$$\forall t \in I, X''(t) + \frac{k}{m}X(t) = 0$$

Elle est d'ordre 2. En considérant le problème physique on trouve que : $I = \mathbb{R}_+$, et que X(0) est une condition initiale à déterminer. k et m désignent respectivement le raideur du ressort et la masse.

La forme générale s'écrit : $F(t, X(t), X'(t), X''(t)) = X''(t) + \frac{k}{m}X(t)$.

Exemple 1.3

Le pendule simple

Il est modélisé par l'équation :

$$\theta''(t) + \frac{g}{l}\sin\theta(t) = 0$$

Où l est la longeur de la corde, g le module de l'accélération gravitationelle, et θ l'angle aigu entre la corde et la verticale. Attention, elle n'est pas linéaire car la fonction sin ne l'est pas.

Exemple 1.4

Dynamique d'une population : Lotka-Volterra

On se place dans le monde où il n'y a que les proies et les prédateurs.

Notons : X(t) la population des proies et Y(t) celle des prédateurs à l'instant t.

On a:

$$\begin{cases} X'(t) = X(t)(\alpha - \beta Y(t)) \\ Y'(t) = Y(t)(\gamma X(t) - \eta) \end{cases}$$

Il y a deux équations donc posons la fonction vectorielle Z(t) = (X(t), Y(t)). La forme générale de notre EDO s'écrit : F(t, X(t), X'(t)) = Z(t). Elle est d'ordre 1.

Rappel 1.1

Équations différentielles linéaires homogènes d'ordre 1

Une équation de la forme :

$$(E_1): X'(t) + a(t)X(t) = 0$$

Où a est une fonction fixée et continue.

Théorème 1.1

Les solutions de (E_1) sont toutes de la forme : $t \mapsto \lambda e^{-A(t)}$. λ est une constante quelconque, et A est une primitive de a.

On peut prendre n'importe quelle primitive car la différence entre deux primitives est une constante.

Preuve:

Posons deux ensembles : $S_1 = \{X | X'(t) + a(t)X'(t) = 0\}$ et $S_2 = \{X : t \mapsto \lambda e^{-A(t)} | \lambda \in \mathbb{R}\}$, où X est une fonction. Montrons que les deux ensembles sont égaux par double inclusion.

 $--(S_1\supset S_2)$

Soit λ un réel, on pose la fonction $X: t \mapsto \lambda e^{-A(t)}$, donc elle est un élément de S_2 . X est composée des fonctions dérivables, et d'après les théorèmes généraux elle est aussi dérivable.

On a : $X'(t) = \lambda(-A'(t))e^{-A(t)} = -\lambda a(t)e^{-A(t)}$.

Donc: $X'(t) + a(t)X(t) = -\lambda a(t)e^{-A(t)} + \lambda a(t)e^{-A(t)} = 0$, c'est-à-dire que $X \in S_1$, et que $S_1 \supset S_2$.

 $-(S_2\supset S_1)$

Soit $X \in S_1$. Montrons que $X \in S_2$.

On cherche une constante réelle λ , telle que $X(t) = \lambda e^{-A(t)}$.

Posons la fonction f qui à t associe $\frac{X(t)}{e^{-A(t)}}$, c'est-à-dire $f(t) = \frac{X(t)}{e^{-A(t)}} = X(t)e^{A(t)}$. On suppose que la fonction X est 1-fois dérivable car elle est solution d'un équation différentielle, et donc notre f est aussi dérivable comme composée des fonctions dérivables.

On a : $f'(t) = (X'(t) + X(t)a(t))e^{A(t)} = 0$ car $X \in S_1$. Donc f est constante, on note λ sa valeur.

De plus, $X(t)e^{A(t)} = \lambda, X(t) = \lambda e^{-A(t)} \in S_2$. On trouve que $S_2 \supset S_1$.

Par double inclusion on trouve le résultat énoncé.

Rappel 1.2

Équations différentielles linéaires non-homogènes d'ordre 1

Une équation de la forme :

$$(E_2): X'(t) + a(t)X(t) = b(t)$$

Où a et b sont des fonctions fixées et continues.

Théorème 1.2

Toutes les solutions de (E_2) sont de la forme : $X = X_p + X_h$, où X_p est une solution particulière, et X_h est une solution de l'équation homogène associée à (E_2) .

On appelle ce résultat le principe de superposition.

Preuve:

Exemple 1.5

Résoudre l'équation différentielle : f(t) - tf'(t) = 1 pour $t \in]-\infty, 0[$ ou $]0, +\infty[$.

Faites attention : \mathbb{R}^* n'est pas un intervalle.

Solution:

D'après le théorème 1.2 on sait qu'on doit chercher deux solutions : une particulière et une homogène. On va d'abord manipuler l'équation pour qu'elle soit de la forme générale.

$$f'(t) - \frac{1}{t}f(t) = -\frac{1}{t}$$

— Solution homogène

Cherchons une solution de l'équation homogène associée : $f'(t) - \frac{1}{t}f(t) = 0$.

D'après le théorème 1.1, f est de la forme : $f: t \mapsto \lambda e^{\ln|t|} = \lambda |t|$, avec λ une constante quelconque. Ici on trouve le logarithme népérien comme primitive de $\frac{1}{t}$.

— Solution particulière

On remarque que la fonction constante et égale à 1 est une solution particulière. D'après le théorème 1.2, toutes les solutions sont de la forme : $f:t\mapsto f_p(t)+f_h(t)=1+\lambda|t|$, avec λ une constante réelle.

Rappel 1.3

ÉDLs homogènes d'ordre 2 à coefficients constantes

Une équation de la forme :

$$(E_3): X''(t) + aX'(t) + bX(t) = 0$$

Où a et b sont des constantes.

en TD on voit le théorème associé et la variation de la constante. à rédiger

Deuxième partie

Courbes et Surfaces