

Даргель Юлия ВНИУ ВШЭ ДПО Компьютерная лингвистика, 2025

СОДЕРЖАНИЕ

<u>Актуальность</u>

<u>Задача</u>

Цифры

Решение

<u>Результаты</u>

Выводы

АКТУАЛЬНОСТЬ

Актуальность исследования обусловлена быстрым развитием сектора ИТ и его стратегической важностью для экономики страны и национальной безопасности.

Анализ новостных трендов позволяет отслеживать изменения в технологическом ландшафте, выявлять новые возможности для инноваций и адаптировать маркетинговые стратегии.

Также подобные исследования представляют ценность для мониторинга результатов реализации государственной политики в ИТ-отрасли и общественного восприятия технологий, что способствует принятию более обоснованных решений.

Россияне больше доверяют новостным, аналитическим и официальным сайтам, чем мессенджерам, блогам и соцсетям. Даже молодежь предпочитает аккаунты СМИ безымянным ТГ-каналам, и эта тенденция наблюдается уже несколько лет. 2

Почему СМИ, а не соцсети?

¹ https://wciom.ru/analytical-reviews/analiticheskii-obzor/doverie-smi-v-rossii

ЗАДАЧА

Проследить, как менялось количество новостей на разные темы, опубликованных на отраслевом ИТ-портале Comnews.ru с января 2022 г. по июнь 2025 года.

ЦИФРЫ

7980 новостей

проанализированы

4,5 часа

длился парсинг

14 кластеров

сформированы

0.012

лучшее значение коэффициента силуэта

80+ новостей

месячный максимум на тему «Регулирование ИТ-рынка»

2023 г.

самый активный период

РЕШЕНИЕ

АЛГОРИТМ И ВЫБРАННЫЕ ИНСТРУМЕНТЫ

ЗАДАЧА	ИНСТРУМЕНТЫ
Сбор данных. Для каждой новости за выбранный период	BeautifulSoup
собраны следующие данные: дата, заголовок, текст, ссылка	Pandas
Предобработка. Тексты новостей приведены к нижнему	• Регулярные выражения
регистру, удалены знаки препинания, спецсимволы, стоп-слова	 Nltk
и служебные части речи.	 MyStem
Векторизация текста. Векторизованы слова, которые	Numpy
встречаются не менее, чем в 5 текстах и не более, чем в 70%	sklearn
выборки.	 TfidfVectorizer
Выбор оптимального количества кластеров (k). Проведено	K-means
сравнение качества кластеризации при количестве кластеров	Silhouette Score
от 5 до 15 с определением лучшего варианта.	 Davies-Bouldin Index
	 Calinski-Harabasz Index
Кластеризация	K-means
Визуализация кластеров	Matplotlib/seaborn
	• TSNE
Тематическое моделирование	Gensim
	• Латентное распределение Дирихле

ВЫБОР ОПТИМАЛЬНОГО КОЛИЧЕСТВА КЛАСТЕРОВ

Шаг 1. Для большей объективности были использованы три метрики.

Шаг 2. На втором шаге лучшие к по трем метрикам был нормализованы и проведено взвешенное усреднение.

МЕТРИКА	ЧТО ИЗМЕРЯЕТ	ДИАПАЗОН	ИНТЕРПРЕТАЦИЯ
Silhouette Score	Насколько объекты	От -1 до 1	Чем ближе к 1, тем
(Коэффициент	внутри кластера похожи		лучше объекты
силуэта)	друг на друга и насколько		кластеризованы.
	они отличаются от		
	объектов в других		
	кластерах.		
Davies-Bouldin Index	Насколько кластеры	∞	Чем меньше значение
	отличаются друг от друга		тем лучше; низкое
	и насколько они		значение означает,
	компактны.		что кластеры
			достаточно сильно
			разделены и объекты
			внутри них близки
			друг к другу.
Calinski-Harabasz	Отношение	∞	Чем выше значение,
Index	межкластерной		тем лучше структура
(Variance Ratio	дисперсии к		кластеров.
Criterion)	внутрикластерной		

ВИЗУАЛИЗАЦИЯ МЕТРИК ДЛЯ ВЫБОРА ОПТИМАЛЬНОГО К

Лучшие значения метрик

Silhouette Score (k=14)	Davies-Bouldin (k=14)	Calinski-Harabasz (k=5)
0.012	7.051	47.704

РАСПРЕДЕЛЕНИЕ ТЕКСТОВ ПО КЛАСТЕРАМ

визуализация кластеров

ТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Nº	TEMA	КЛЮЧЕВЫЕ СЛОВА		
0	Умный город	система, проект, работа, город, позволять, также, транспорт, цифровой, решение, весь		
1	Связь и телекоммуникации	связь, оператор, сеть, г, интернет, мобильный, оборудование, станция, весь, услуга		
2	Искусственный интеллект	ия, технология, интеллект, искусственный, решение, данные, мочь, система, развитие, также		
3	Оборудование для ИТ	производство, предприятие, система, оборудование, проект, российский, технология, продукция, промышленный, развитие		
4	Технологии в медицине	медицинский, врач, пациент, система, здравоохранение, данные, цифровой, весь, сервис, технология		
5	Цифровизация регионов	цифровой, система, проект, информационный, развитие, работа, область, государственный, также, регион		
6	Персональные данные	данные, утечка, персональный, мочь, информация, защита, штраф, также, система, данный		
7	Регулирование ИТ-рынка	россия, российский, мочь, г, также, весь, сервис, рынок, пользователь, новый		
8	Спутниковая связь	система, спутник, космический, связь, спутниковый, г, проект, аппарат, российский, россия		
9	Образование и кадры	специалист, ита, работа, сотрудник, также, программа, рынок, проект, г, мочь		
10	Информационная безопасность	атака зпоумышпенник данные г мочь также система зашита резоласность доох		
11	Исследования рынка	г, руб, млрд, рынок, рост, выручка, составлять, млн, квартал, российский		
12	Финансовые технологии	банк, цифровой, россия, мочь, рубль, финансовый, клиент, криптовалюта, система, рынок		
13	Импортозамещение	решение, российский, рынок, система, продукт, ита, г, директор, проект, развитие		

РАСПРЕДЕЛЕНИЕ ТЕКСТОВ ПО ТЕМАМ

РЕЗУЛЬТАТЫ

РАСПРЕДЕЛЕНИЕ ВСЕХ НОВОСТЕЙ ПО МЕСЯЦАМ

ВЫВОДЫ

ИТ-РЫНОК СТАБИЛИЗИРУЕТ АКТИВНОСТЬ

- Больше всего новостей публикуется по темам: Регулирование ИТ-рынка (до 80/мес), Импортозамещение (до 40/мес) и Умный город (до 35/мес)
- Меньше всего освещаются Технологии в медицине и Спутниковая связь. Возможная причина это технически сложные направления, где объективно меньше инфоповодов.
- В 2022 году заметен всплеск новостей на темы Информационной безопасности и Персональных данных. Вероятно, в связи с СВО
- В 2023 г. был наиболее активным из проанализированных периодов практически по всем темам. Отдельно можно отметить взлет темы «ИИ»
- В 2024 году в целом новостной фон стабилизировался, активность немного уменьшилась по всем темам, кроме Умного города, ИИ и Цифровизации регионов. Эта тенденция продолжилась в 2025 г.
- Интересно, что все три года ноябрь один из наименее активных месяцев, а летом всплески публикаций, несмотря на отпускной сезон

СПАСИБО

Проект на GitHub:

https://github.com/Dargel/ICT_News

Датасет на HuggingFace

КОД В COLAB:

<u> Часть 1 – Парсинг</u>

Часть 2 – Основная часть