Enos: a Holistic Framework for Conducting Scientific Evaluations of OpenStack

Ronan-Alexandre Cherrueau, Adrien Lebre, Dimitri Pertin, <u>Anthony Simonet</u> and Matthieu Simonin

Inria, France

May 14th, 2017

OpenStack

OpenStack

- 164 services in OpenStack
- Some services are composed of sub-services (e.g. nova-scheduler, nova-conductor, ...)
- Most of which can be disabled/enabled depending on one's needs

Deployment topologies

Single controller, multiple compute nodes

Deployment topologies

Single controller, multiple compute nodes

Multiple controllers, multiple compute nodes

Deployment topologies

Single controller, multiple compute nodes

Multiple controllers, multiple compute nodes

Multiple controllers, multiple compute nodes, multiple regions

Motivation

Goals:

- Favour reproducible scientific evaluations
- Automated Performance Regression Testing
- Help developers evaluate their code with multiple setups and topologies

Motivation

Goals:

- Favour reproducible scientific evaluations
- Automated Performance Regression Testing
- Help developers evaluate their code with multiple setups and topologies

Typical experimental workflow:

- 1. Book and provision servers
- 2. Deploy OpenStack
- 3. Perform benchmarks
- 4. Collect and save metrics
- 5. Visualize & share

Motivation

Goals:

- Favour reproducible scientific evaluations
- Automated Performance Regression Testing
- Help developers evaluate their code with multiple setups and topologies

Typical experimental workflow:

- 1. Book and provision servers
- 2. Deploy OpenStack
- 3. Perform benchmarks
- 4. Collect and save metrics
- 5. Visualize & share
- ⇒ Automation & reproducibility means all these steps must be scripted.

Contribution: Enos

A holistic framework for scientific evaluations of OpenStack

- Container based OpenStack deployment with Kolla-ansible-ansible
- Rally benchmark (control plane)/Shaker benchmark (data plane)
- Metrics collection with cAdvisor and collectd and stored in InfluxDB
- Query metrics with Grafana
- Query logs with Heka

Based on high level specifications

Enos: a typical workflow

1. enos deploy:

- Gets testbed resources
- Deploys OpenStack
- Populates OpenStack with cirros image, public/private network

2. enos bench:

- Runs benchmarks
- Measures CPU/RAM/Network consumption per site/node/service

3. enos backup:

• Performs post-mortem analysis

Enos Workflow

enos deploy

enos bench

enos backuj

enos deploy

A *Provider* gets testbed resources

- Resource: anything running a Docker daemon and Enos can ssh to.
- Supports Grid'5000, VirtualBox, OpenStack and Chameleon
- Easy to extend: ~500 LOC

```
provider: g5k
resources:
   paravance:
   control: 1  ⇒
   network: 1
```

compute: 50

- 1. Get 52 nodes from the paravance cluster;
- 2. ssh and install Python and Docker daemon;
- 3. Return a list of IP addresses to install OpenStack to.

Topology control: reservation.yaml

```
provider: g5k
resources:
paravance:
control: 1
database: 1
nova-conductor: 1
network: 1
storage: 1
compute: 50
```


Topology control: inventory.yaml

```
[keystone:children]
control
[horizon:children]
control
[rabbitmq:children]
control
[mariadb:children]
database
. . .
```

[nova-compute:children]

compute

Network control

```
provider: g5k
resources:
  grp1:
                                   network_constraints:
    paravance:
      control: 1
                                     - src: grp1
      database: 1
                                        dst: grp2
      nova-conductor: 1
                                        delay: 150ms
      network: 1
                                        rate: 100mbit
      storage: 1
                                        symetric: true
  grp2:
    paravance:
      compute: 50
```

OpenStack customization

```
kolla:
  openstack_release: 4.0.0
patches:
  - name: patch mariadb bootstrap
    src: mariadb_bootstrap.yml
    dst: kolla/ansible/roles/mariadb/tasks/bootstrap.yml
    enabled: "ves"
  - name: patch galera.cnf.j2
    src: galera.cnf.j2
    dst: kolla/ansible/roles/mariadb/templates/galera.cnf.j2
    enabled: "yes"
  - name: patch haproxy.cfg.j2
    src: haproxy.cfg.j2
    dst: kolla/ansible/roles/haproxy/templates/haproxy.cfg.j2
    enabled: "ves"
```

Enos Workflow

enos deploy

enos bench

enos backup

enos bench

```
Execute arbitrary Rally benchmark
rally:
  enabled: true
  args:
    concurrency:
      - 5
      - 10
    times:
      - 100
    scenarios
      - name: boot and list servers
        file: nova-boot-list-cc.yml
```

\$ enos bench --workload=run.yml

Enos Workflow

enos deploy

enos bench

enos backup

enos backup

enos backup produces a archive with ready-to-share results:

- Rally/Shaker reports
- OpenStack logs
- InfluxDB database filled with collected metrics
- Grafana server for visualisation

Measures Output

Conclusion

Enos

- Complete solution to deploy and evaluate OpenStack https://github.com/BeyondTheClouds/enos
- Integrated, reproducible and sharable
- Fine control over deployment topology and network
- Ready-to-use recipes: https://github.com/BeyondTheClouds/enos-scenarios

Future works

- Multiple Regions
- WANwide OpenStack
- OSProfiler Integration
- Adapt to other complex software stacks

Thank you

Ronan-Alexandre.Cherrueau@inria.fr Adrien.Lebre@inria.fr Dimitri.Pertin@inria.fr

 $\frac{Anthony.Simonet@inria.fr}{Matthieu.Simonin@inria.fr}$