T							
TNUSUDO	ating Rotation	is - sierps	•				
Idoa:	Interpolate	using aua	terions.		Aside:		
	· cer pointe	9 900				ie us linear	
Problem.	Interpolating	notation is thi	cker than	positions		to interpola	
	Interpolating size, color, etc			1	` c .	C	2
					C= / T1	C (92)) t
→ In	terpolating martin	ces doesn't ma	te sense		(9,)	(92	
→ In	terpolating eulen	- angles is pro	blematic		/ b,)	/2-	,
	terpolating eulen > Dout always	, take "short	est routine				
	Ex Consic	ler Z notati	ou - 170 ve	Asion			
	2 R	otation 160.					
7 No	eed to be carefu	il of special c	ases.	F 4			
Solution:	Use quaterion	15					
11	Method 1" G	Puick and Di	irtu				
	> Linearly int	erpolate ou	02 w/t				
	Method 1" G > Linearly int g=LERP(g)	(, 92, t) b	9				
	6	6					
	= g1(1-t)	tg. t, tEl	راره				
Normalize	after to ensi	use lenorth=1	. > 0	= 3_			
			76	11911			
Intuition			Poker	stic Draw	wback:		
	/ g(1-t)	ty,t		speed from	n g, tog,	is not con	retant
	8,	ŧ g,		•			
	795	701		speed	Coustant	,	
Method 2	Slam					⇒ _ન	
inethod 2	, steep						
	1 = sin (D)	(-t)) a 4	cia (St)		0 201	= A A	
	g = Sin (D)	2 4	Sins	92 "	WE W332	31 92	
	^				slend	(q1, q2, t)	
	preserve with	hout length	into	ui-t io n		1. 1.	
		3					
					92 90		

```
Implementation Gotchas
     O. Potential divide by &
         > Return with q, or q;
     O. Potential NaN
             when acos (q, , q 2) 6[-1, 1].
                                      A flank point impension
                              Use clamp
Ex Suppose q= [sin(o)] = rotation of o degrees.
                92 = [ Sin (90) &, cos (2)] = 90 degrees around & axis.
                R=(0,0,1)
      Compute q= Slerp (q1, q2, 1/2)
Step 1: What are q, k q= as 4-tuples?
          91= (0,0,0,1)
           92 = (0,0, \(\frac{1}{2}\),\(\frac{1}{2}\))
Step 2: Compute the angle 12
       COS D= 12
          12= 90 = 45.
Step 3: Compute q= Sin(D(1-t))q+ sin(D+) q= Sin D q2
          9= 8in (45(1-t)) 9, sin (45 t) 9=
            = 12 sin(45(1-t)) g, + J2 sin(45t) q2
            = 52 ( sin(45-45t)) q, + 5= sin (45t)q2
           = 52 5in 22.5 q1 + 525in 23 & q2
= 52 5in 22.5 (q1 + q2)
                                                  Check:
                                                            aces [0. 9239) * 2 2 45'
           = \int \sum \sin 22.5 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \frac{1}{4} \end{pmatrix}
                                                            Sin (45) a 0.3827
                                                            (0.92392+0.38272)4221
           ≥ CO o a 3827 .9239]
```


Consider the origin of F_i & call it p $p' = (0, 0, 0)^T \leftarrow p$ wr.t. F_i $p' = (5, 2, 0)^T \leftarrow p$ wr.t F_i

Homogoneous Coordinates

> coordinates in "projective geometry"

Idea: Use 4-types/4-D vertors to represent points and directions

Transformations:

4 x 4 matries that operate on homogeneous coordinates.

Ex Pure translation transform looks like

multiplying a point

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & b
\end{bmatrix}
\begin{bmatrix}
V_x & z \\
V_y & z
\end{bmatrix}
\begin{bmatrix}
V_x + 0 & 0 \\
V_y + 0 & b
\end{bmatrix}
\begin{bmatrix}
V_x \\
V_y \\
V_z
\end{bmatrix}$$

multiplying a vector direction does not change

We use "block matrix" notation to make working w/ transforms easier "Pure" translation.

The property of the p

$$\begin{bmatrix} R & \emptyset \\ \hline 0 & 1 \end{bmatrix}$$

Block notation for homogeneous coordinates.