Computational Linear Algebra Conditioning: A Measure of Error Magnification

David Shuman

February 10, 2022

Conditioning and Stability

- ► Conditioning refers to the perturbation behavior of a problem
 - Problem is well-conditioned if a small perturbation in the input data leads to a small perturbation in the output of the problem
 - Problem is ill-conditioned if a small perturbation in the input data leads to a large perturbation in the output of the problem

Conditioning and Stability

- ► Conditioning refers to the perturbation behavior of a problem
 - Problem is well-conditioned if a small perturbation in the input data leads to a small perturbation in the output of the problem
 - Problem is ill-conditioned if a small perturbation in the input data leads to a large perturbation in the output of the problem
- ► Stability refers to the perturbation behavior of a numerical algorithm to solve that problem on a computer

Forward and Backward Error (for Root-Finding Problem)

Our problem solving process is like this. If r is the exact solution to f(x) = 0 and r_a is our approximate solution, then

$$\underbrace{\left\{\begin{array}{c} \text{data that defines} \\ \text{the problem:} \\ f(x) \end{array}\right\}}_{\text{backward error: } |f(r_a)|} \longrightarrow \left\{\begin{array}{c} \text{equation} \\ \text{solver} \end{array}\right\} \longrightarrow \underbrace{\left\{\begin{array}{c} r \text{ such that} \\ f(r) = 0 \end{array}\right\}}_{\text{forward error: } |r - r_a|}$$

- ► The forward error is the difference between the exact answer and the computed answer $|r r_a|$
- The computed answer r_a is the solution to some perturbed problem $\bar{f}(x)=0$. Thus $\bar{f}(r_a)=0$ with $\bar{f}\approx f$
- The backward error is the difference between the original problem and the perturbed problem: $|f(r_a) \bar{f}(r_a)| = |f(r_a)|$. In some sense tells us how far we are from the problem that the algorithm actually solved

Forward and Backward Error (for Root-Finding Problem)

▶ If r_a is our approximate solution to f(x) = 0 and r is the exact solution, then

forward error:
$$|r - r_a|$$
 backward error: $|f(r_a)|$

▶ In Example 1.7

$$r = 2/3$$
, $r_a = 0.6666641$, and $f(r_a) = 0$

- forward error: $|r r_a| = 2.543132 * 10^{-6}$
- ▶ backward error: $|f(r_a)| = 0$ (less than ε_M)

Condition Number (informally)

- ► The condition number is the maximum error magnification: (forward error) ≤ (condition number) * (backward error).
- ► If the condition number is big, then small changes in the problem (backward error) lead to big errors in the solution (forward error)
- ▶ That is, how much small changes in the problem are magnified
- ► A problem with large condition number is ill-conditioned
- ▶ The condition number of root finding is proportional to $\frac{1}{f'(r)}$
- ► Note: Conditioning can be different at different points!

Reminder: Matrix Norms

Def. The Matrix *p*-norm is given by

$$||A||_p = \max_{\vec{x} \neq \vec{0}} \frac{||A\vec{x}||_p}{||\vec{x}||_p} = \max_{||\vec{x}||_p = 1} ||A\vec{x}||_p$$

- $|A|_p$ gives the maximum relative expansion by A
- Apply A to the unit sphere in \mathbb{R}^n . Then $||A||_p$ is the length of the vector that is farthest from the origin in the image
- Key property: $||A\vec{x}||_p \le ||A||_p ||\vec{x}||_p$

Error Magnification in Solving $A\vec{x} = b$

Suppose we solve $A\vec{x}=b$ and get an approximate answer \vec{x}_a

	Backward Error	Forward Error
Absolute	$ \mathbf{b} - \mathbf{A}\vec{\mathbf{x}}_a $	$ \vec{x} - \vec{x}_{a} $
Relative	$\frac{ \mathbf{b} - \mathbf{A}\vec{x}_{a} }{ \mathbf{b} }$	$\frac{ \vec{x} - \vec{x}_a }{ \vec{x} }$

The error magnification is the number given by

$$(\textit{relative backward error}) \times (\textit{error magnification}) = (\textit{relative forward error})$$

or

$$\text{(error magnification)} = \frac{\text{(relative forward error)}}{\text{(relative backward error)}} = \frac{\left(\frac{||\vec{x} - \vec{x}_a||}{||\vec{x}||}\right)}{\left(\frac{||b - A\vec{x}_a||}{||b||}\right)}$$

Book's Example 2.11 on board

The Condition Number of a Matrix

Def. The condition number $Cond(A) = \kappa(A)$ is the lowest upper bound on the error magnification for solving $A\vec{x} = b$

Thm. For an
$$n \times n$$
 matrix A , $Cond(A) = ||A|| \cdot ||A^{-1}||$

- Note how it depends on the matrix norm, and it bounds the error magnification in the corresponding vector norm
- Computing the inverse is hard, so many algorithms give a "cheap" estimate of the condition number without computing it exactly
- ► In today's activity, I've provided a function Cond that computes it
- Read the help menu on R's built in function: kappa

Eg. Compute the condition number for various *p*-norms for

$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 \\ 1.0001 & 1 \end{pmatrix}, \qquad \textit{I}_n, \qquad \begin{array}{c} \text{Diagonal Matrices,} \\ \text{Hilbert Matrices } \textit{H}_n \end{array}$$

Properties of the Condition Number

- ▶ In solving $A\vec{x} = b$: (Rel FE) \leq Cond(A) · (Rel BE)
- ▶ Cond(A) ≥ 1 for any matrix A. Cond(αI) = 1
- ightharpoonup Cond(A)Cond(B)
- ► The problem $A\vec{x} = b$ is ill-conditioned if Cond(A) is large (i.e., $10^5, 10^8, 10^{10}$, etc). Otherwise it is well-conditioned
- ► The condition number depends on the underlying norm

► Cond(A) =
$$||A||_p \cdot ||A^{-1}||_p = \frac{\left(\max_{||\vec{x}||_p=1} ||A\vec{x}||\right)}{\left(\min_{||\vec{x}||_p=1} ||A\vec{x}||_p\right)}$$

This measures

- the maximum relative expansion by A divided by the minimum relative expansion by A
- ▶ the eccentricity of the image of the unit sphere by A
- ▶ If Cond(A) is large, then A is close to singular

Examples of the Condition Number for 2x2 Matrices

Cond 2(A)=26.96

- ► Image of the unit sphere in the 2-norm under a linear mapping *A* is a hyperellipse
- ▶ Using the 2-norm, the condition number of A, $\kappa_2(A)$ gives the ratio of the length of the longest principal semiaxis to the length of the shortest principal semiaxis (maximum and minimum singular values)

Cond 2(A)= 1.19

Appendix: Another Numerical Example

- ► Consider $\begin{pmatrix} 0.913 & 0.659 \\ 0.457 & 0.330 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0.254 \\ 0.127 \end{pmatrix}$
- ▶ The condition number is: $Cond_2(A) = 1.25 \times 10^4$
- ▶ The exact solution is $\vec{x} = (1, -1)$.
- Consider the two approximate solutions (2-norm)

$$\begin{array}{lll} \vec{x}_1 = (-0.0827, 0.5) & \vec{x}_2 = (0.999, -1.001) \\ \triangle \vec{x}_1 = (1.0827, -1.5) & \triangle \vec{x}_2 = (0.001, 0.001) \\ ||\triangle \vec{x}_1|| = 1.85 & ||\triangle \vec{x}_2|| = .0014 \\ ||\triangle \vec{x}_1||/||\vec{x}|| = 1.308 & ||\triangle \vec{x}_2||/||\vec{x}|| = .001 \\ b_1 = (0.2539949, 0.1272061) & b_2 = (0.252428, 0.126213) \\ \triangle b_1 = (0.0000051, -0.0002061) & \triangle b_2 = (0.001572, 0.000787) \\ ||\triangle b_1|| = 0.000206 & ||\triangle b_2|| = .00176 \\ ||\triangle b_1||/||b|| = 0.000726 & ||\triangle b_2||/||b|| = .0062 \\ mag = 1.8 \times 10^3 & mag = 1.6 \times 10^1 \end{array}$$

- the condition number bounds the magnification
- with large condition numbers, a small residual does not imply a small error in the solution

Appendix: Conditioning of the Root-Finding Problem

- ▶ Problem: f(x) = 0 with root r
- ▶ Small change $\epsilon g(x)$ is made to input (a function, not a variable)
- ▶ Perturbed problem: $f(x) + \epsilon g(x) = 0$
- ▶ Root of perturbed problem is $r + \Delta r$: $f(r + \Delta r) + \epsilon g(r + \Delta r) = 0$
- \blacktriangleright Expand f and g in degree-one Taylor polynomials:

$$f(r) + (\Delta r)f'(r) + \epsilon g(r) + \epsilon(\Delta r)g'(r) + O((\Delta r)^{2}) = 0$$

For small Δr , ignore higher-order term:

$$(\Delta r)(f'(r) + \epsilon g'(r)) \approx -f(r) - \epsilon g(r) = -\epsilon g(r)$$

▶ So for ϵ small and $f'(r) \neq 0$:

$$(\Delta r) pprox rac{-\epsilon g(r)}{f'(r) + \epsilon g'(r)} pprox rac{-\epsilon g(r)}{f'(r)}$$

- lacksquare |Forward error $|=|\Delta r|/|\epsilon g(r)|pprox 1/|f'(r)|$
- ► Can be used to analyze how errors propagate from the input to the output (see activity A3, Ex. 2, part c and Example 1.10 from the textbook)

