

머신러닝기반유효특허분류기개발에관한연구

장예훈 (가천대학교), 최성철 (가천대학교), 서원철 (부경대학교)

I. 연구배경 및 목적

연구 배경

- 기술 연구 개발 단계에서 특허권 확보는 매우 중요하므로 해당 기술의 유효특허 검색은 필수적인 작업임
- 유효특허 분류 업무 특성상 반드시 사람이 직접 실제 유효특허 수의 10~10,000배의 문서 검토 작업 후 유효특허 여부의 판별이 가능하지만 인력, 시간 등의 비용소모가 심각하며 수작업으로 인한 오차와 중복이

연구 목적

- 특허 데이터의 서지적 정보와 네트워크 정보, text 정보를 활용하여 머신러닝 기반의 유효특허 분류기를 개발하여 유효특허 분류 작업을 자동화 함
- 유효특허 분류기를 통해 1차적으로 분류 작업을 거치면 기존의 검토해야 하는 문서의 절대적인 수치가 줄어들게 되며 분류 과정에서 발생하는 비용과 오차 또한 줄일 수 있음

田. 연구방법 및 결과

1. 데이터 수집

- 특허나라에서 제공하는 '관리형 해상최종처분장 조성기술 개발'의 영문 검색식을 이용하여 WIPS DB에 유효특허 검색 조건에 맞게 검색한 모든 US 특허 데이터를 사용함
 - <표 1> 실험 데이터 set의 valid와 garbage 개수와 비율

	개수 (백분율)
Valid	29 (0.0152)
Garbage	1876 (0.9848)
Total	1905 (1)

• 전체 데이터 중에서 극소수의 유효특허를 찾아내고 Garbage 특허를 제거하는 모델에서는 Recall점수가 중요한 모델 평가지표가 됨

$$recall = \frac{TP}{TP + FN} = \frac{ \text{유효특허 중 튜효특허라고 예측한 개수}}{ \text{유효특허의 개수}}$$

2. 연구 방법

1) 1차 데이터 전처리 및 실험

- WIPS DB에서 기본 제공되는 IPC, US Class, 날짜정보(출원, 공개, 등록), 국제공개등록번호, 우선권번호, 문헌종류코드 등 특허의 서지적 정보를 각 데이터의 특성에 맞게 가공함
- 전체 데이터를 7:3의 비율로 training, test set 분리

0.99

• 머신러닝 모델 학습 결과

precision |

0.99

0.67

accuracy

<표 2> 1차실험결과-Decision Tree

recall

1.00

0.29

n Tree	<표 3> 1차실험결과-Random Forest Classifier					
1-score			precision	recall	f1-score	
0.99		0	0.99	1.00	1.00	
0.40		1 1.00		0.57	0.73	
		accuracy		0.99		

2) 2차 데이터 전처리 및 실험

- 특허 데이터 set 중 등록번호를 이용하여 구글에서 제공하는 USPTO Bulk data에서 assignee, application citation, grant citation 정보를 추출하여 pivot table 형태의 네트워크 데이터 생성 및 전체 학습 데이터에 추가함
- 분류 모델로 학습 해야 하는 valid 특허 개수와 garbage 특허의 개수 비율이 1:9로 클래스 불균형 문제가 발생함. 본 연구에서는 분류 개수가 적은 valid 특허 클래스의 데이터를 SMOTE 기법을 활용하여 생성 후 각각의 데이터 set에 추가하여 valid 특허와 garbage 특허의 비율을 1:1로 조정하여 이 문제를 해결함
- 머신러닝 모델 학습 결과

<표 4> 2차실험결과-Decision Tree

<표 5> 2차실험결과-Random Forest Classifier

	precision	recall	f1-score	
0	0.99	0.99	0.99	
1	0.36	0.57	0.57 0.44	
accuracy		0.9	98	

	precision	recall	f1-score		
0	1.00	1.00	1.00		
1	1.00	0.71	0.83		
accuracy		1.	00		

3) 3차 데이터 전처리 및 실험

- 특허 데이터에서 abstract, title, claim 등과 같은 text 데이터의 TF-IDF 값을 구한 뒤 전체 학습 데이터에 추가함
- 머신러닝 모델 학습 결과

<표 6> 3차실험결과-Decision Tree <표 7> 3차실험결과-Random Forest Classifier

		precision	recall	f1-score		
	0	1.00	1.00	1.00		
	1	1.00	0.85	0.92		
	accuracy		0.9	99		

	precision	recall	f1-score	
0	1.00	0.96	0.98	
1	0.19	0.71	0.30	
accuracy		0.95		

3. 결과

data	Model	accuracy	f1-score	recall
only preprocessed data	Logistic Regression	0.98	0.00	0.00
	SVM	0.98	0.00	0.00
	Decision Tree	0.99	0.67	0.29
	Random Forest	0.99	1.00	0.57
preprocessed data with network data + SMOTE	Logistic Regression	0.87	0.02	0.14
	SVM	0.70	0.02	0.43
	Decision Tree	0.98	0.36	0.57
	Random Forest	1.00	0.36	0.71
preprocessed data with	Decision Tree	0.95	0.19	0.71
network data and text data + SMOTE	Random Forest	0.99	1.00	0.86

皿. 결론 및 개선방향

- 특허의 서지적 데이터 뿐만 아니라 네트워크 데이터, text 데이터를 학습 데이터에 포함하면 예측 모델의 recall 점수가 향상됨
- 머신러닝 모델 중 tree 계열의 모델 성능이 우수함
- 학습 속도 단축을 위해 데이터 set의 size를 줄이는 작업이 필요함
- 머신러닝 모델 뿐만 아니라 딥러닝 모델로 확장 가능함
- 기계번역 모델을 활용하면 여러 국가의 유효특허 분류기로 확장 가능함