

第四单元 输入/输出系统和设备

刘 卫 东 计算机科学与技术系

教学内容安排

- ◆第一讲 输入/输出系统概述和输入/输出方式
- ♥ 第二讲 总线
- ◆第三讲 接口电路和外部设备
- ◆大实验答辩(12月23日)
- ♥ 第四讲 课程总结

第四单元 第一讲

输入/输出系统概述和输入/输出方式

刘 卫 东 计算机科学与技术系

主要教学内容

- ◆輸入輸出系統的作用、功能及与其他系统的关系
- ⇔输入/输出系统组成
- ⇔要解决的问题
- ⇔输入/输出方式
 - ₩ 程序直接控制
 - 中断
 - DMA
 - 通通道
 - ₩ 外围处理机

计算机运行机制

- ◆ Datapath: 完成算术和逻辑 运算,通常包括其中的寄 存器。
- ◆ Control: CPU的组成部分,它根据程序指令来指挥 datapath, memory以及I/O 运行, 共同完成程序功能。
- ♦ Memory: 存放运行时程序 及其所需要的数据的场所。
- ◆ Input:信息进入计算机的设备,如键盘、鼠标等。
- ◆ Output: 将计算结果展示给 用户的设备,如显示器、 打印机、喇叭等。

作用和功能

- ◆与计算机外部交换信息的 通道
 - ₽ 早期
 - ◈穿孔机、纸带
 - 中期
 - ◆键盘、显示器、打印机、鼠标
 - 即 现在
 - ◆语音、图象、图形等多媒体数据(扫描仪、DC)
 - ◆计算机网络
 - # 将来
 - ◆ 无所不在的计算、普适计算
 - ◆人机交互、脑机交互

计算机科学与技术系 计算机组成原理

计算机科学与技术系 计算机组成原理

10

计算机科学与技术系 计算机组成原理

个人计算机的组成

计算机科学与技术系 计算机组成原理

I/O设备

Device	Behavior	Partner	Data rate (KB/sec)
Keyboard	input	human	0.01
Mouse	input	human	0.02
Voice input	input	human	0.02
Scanner	input	human	400.00
Voice output	output	human	0.60
Line printer	output	human	1.00
Laser printer	output	human	200.00
Graphics display	output	human	60,000.00
Modem	input or output	machine	2.00-8.00
Network/LAN	input or output	machine	500.00-6000.00
Floppy disk	storage	machine	100.00
Optical disk	storage	machine	1000.00
Magnetic tape	storage	machine	2000.00
Magnetic disk	storage	machine	2000.00-10,000.00

计算机科学与技术系 计算机组成原理

I/O 设备

⇔繁多的输入/输出设

₩功能多样

◈满足各种要求

₩服务对象不同

◈人、计算机、

₩ 数据传输率差别

◆ 键盘、鼠标

◆显示器、网卡

⇔多:种类繁多

◆杂:功能繁杂

♥异:速度不一

如何智理外子

要解决的问题

- ◆ 控制方式
 - ™ CPU如何控制输入/输出? (输入/输出方式)
- ◆传输方式
 - □传输通道、方式、速率等(总线、接口)
- ♥ 数据识别和转换
 - 数/模转换、语音识别等,转换为字符、数据等 计算机能识别的格式(设备)

输入/输出方式

- ♥程序直接控制
 - ™ CPU直接使用输入/输出指令来控制外部设备
- ⇔程序中断
 - № 外部设备请求, CPU响应, CPU与外设并行工作
- ●直接存储访问 (DMA)
 - ₩ 专用输入/输出控制器
- ●通道
- ⇔外围处理机

计算机科学与技术系

程序直接控制

BEGIN:

MFPC R7

ADDIU R7 0003

B TESTR

LI R6 0060

SLL R6 R6 0

LW R6 R1 0

LI R6 00FF

AND R1 R6

TESTR:

LI R6 60

SLL R6 R6 0

ADDIU R6 1

LW R6 R0 0

LI R62

AND R0 R6

BEQZ R0 TESTR

JR R7

CPU方:

查询接口状态 (循环等待)

直到外设已经接收到该字符

读字符

外设方:

往接口数据缓 冲中送字符

处理完后,置 状态寄存器

等待下一个字 符

程序直接控制方式特点

- ♥成本低
- ⇔效率低
- ⇔严重占用CPU资源
- ⇔适用情况
 - □早期计算机中高速设备

程序中断方式

- ♥CPU和外部设备同时工作
 - ₩外部设备发起请求
 - ₩ CPU暂停正在执行的程序, 进行响应
 - ₩处理完成后,继续执行原来的程序
- ♥提高CPU的效率
- ⇔可以同时管理多个外部设备

中断的一些概念

- ⇔ 中断源
 - ₩ 外中断: I/O设备等
 - ₽ 异常(内中断):处理器硬件故障、程序"出错", Trap
 - ₩ 中断触发器
 - ₩ 中断状态寄存器
- ◆ 中断优先级
 - ₩ 响应中断的顺序
- ◆ 禁止中断与中断屏蔽
 - 中断允许触发器 (EI、DI)
 - ₩ 有选择封锁

中断的完整过程

- ♥中断请求
 - 中断源设备设置中断触发器
 - ◆每个中断源有1个中断触发器
 - ◆同时可设置1个中断屏蔽触发器
- 中断响应
 - □响应条件
 - ◆允许中断、当前指令结束、优先级
 - □响应实现
 - ◆硬件实现的中断隐指令, 保存断点
- ♥ 中断处理
 - ₩ 保存现场信息
 - ₩ 运行中断服务程序
 - 中断返回

中断处理过程

21

计算机科学与技术系 计算机组成原理

中断设备接口组成

- ♦ 中断请求寄存器
- ◆ 中断屏蔽寄存器
- ♦ 优先级排队线路
- ♦ 数据缓冲寄存器
- ◆ 中断控制和工作状态逻辑
- ♦ 设备选择器
- ♥ 中断向量表

计算机科学与技术系

8259A中断控制器

程序中断方式应用场景

- ⇔ CPU与外部设备并行工作
- ₩硬件故障处理
- ♥ 人机交互
- ◆ 多道程序和分时操作
- ⇔实时处理(监控)
- ⇔应用程序和操作系统之间的联系
- ⇔ 多处理机中各处理机之间联系

中断控制方式特点

- ⇔适用情况
 - □传输速度不高
 - ₩传输量不大
- ⇔对CPU干扰较大

计算机科学与技术系

直接存储访问(DMA)

- ◆ I/O设备和主存储器之间的直接数据通路,为专设的硬件,用于高速I/O设备和主存储器之间成组传送数据。
- ♦ 数据传输过程由DMA自行控制
- ◆ 主存储器需要支持成组传送
- ◆数据传送开始前和结束后通过程序或中断方式对 DMA进行预处理和后处理
- ♦ DMA工作方式
 - ₩ 独占总线方式
 - ₩ 周期窃取方式

DMA控制器组成

DMA数据传送过程

DMA方式的问题

- ●虚拟地址和实地址
 - DMA采用实地址:虚拟地址连续,但实地址不连续
 - ** 采用虚拟地址: DMA进行虚实地址转换
- ◆Cache一致性
 - 主存中的数据可能不是最新的
 - ₩ 采用直接写会带来性能的降低
 - DMA查询Cache, 降低性能
 - ■直接设计硬件控制

DMA方式特点

- ⇔与设备一对一服务
 - ■多DMA控制器同时工作可能发生冲突
- ⇔对CPU打扰适中
 - ₩初始化
 - ■周期挪用
- ⇔无法适用大量高速设备的管理

通道控制方式

31

- ◆ I/O通道是计算机系统中代替CPU管理控制外设的独立部件,是一种能执行有限I/O指令集合——通道命令的I/O处理机。
- ♦ 一对多的连接关系
- ♥ 适应不同速度、不同种类的外部设备,可并行工作

计算机科学与技术系 计算机组成原理

通道的功能

- ♥根据CPU要求选择某一指定外设与系统相连,向该外设发出操作命令,进行初始化
- ⁴指出外设读/写信息的位置以及与外设交换信息的主存缓冲区地址
- ⇔控制外设与主存之间的数据交换
- ⁴指定数据传送结束时的操作内容,检查 外设的状态

通道类型

- ⇔字节多路通道
 - □简单的共享通道,分时处理,面向低、中速字符设备
- ⇔选择通道
 - □选择一台外设独占整个通道,以成组传送方式传送数据块,效率高,适合快速设备
- ⇔数组多路通道
 - 上两种方式的结合,效率高,控制复杂

外围处理机

- ●通道型处理机
 - ₩共享内存
- ♥外围处理机
 - ■通用计算机
 - □ 独立完成输入/输出功能
 - ■通过通道方式与主机进行交互

设计输入/输出系统

- ⇔ 性能
 - ₩ 考虑吞吐量和延迟
 - ☎ 适应各种不同类别的设备的性能的差异
 - ₩ 从操作系统、驱动程序等各方面综合考虑
 - ₩ 考虑到设备性能的提高
- ♥ 可扩展性
 - ₩ 允许更多的设备接入到输入/输出系统
- ♦ 可适应性
 - ₩ 设备有无
 - ₩ 设备故障

输入/输出系统

- ♦ 输入/输出设备多,功能复杂,速度不一
- ◆ 多种控制方式,解决速度不一的问题,尽量少地占用 CPU资源
- ♥ 操作系统管理
- ♥ 硬件直接支持
- ◆ 与不同的设备有直接的依赖关系 (驱动程序)
- ◆尽量使设备使用统一的标准——虚拟设备

阅读和思考

- ♥阅读
 - **教材相关章节
- ♥思考
 - ₩ 输入/输出方式解决了什么问题?
 - ☎它们各自有哪些特点?
- ⇔实践
 - □ 完成实验报告
 - ₩ 完成第三单元作业