Strong self-regulation and widespread facilitative interactions between

groups of phytoplankton

Coralie Picoche & Frédéric Barraquand

February 28, 2019

5 Abstract

The persistence of phytoplanktonic diversity in spite of competition for basic resources has long been a source of wonder and inspiration to ecologists. To sort out, among the many coexistence mechanisms suggested by theory and experiments, which ones actually maintain diversity in natural ecosystems, long-term field studies are paramount. Here, we analyze a large dataset of phytoplankton abundance time series, counted every two weeks over 20 years, at 10 sites along the French coastline. We estimate biotic interactions using dynamic, multispecies autoregressive models. We show that a strong self-regulation, with intraspecific competition strength an order of magnitude higher than interspecific, was present in all phytoplanktonic interaction networks. Furthermore, positive net effects between phytoplanktonic taxa constituted at least 40% of non-null interactions in all sites. Both strong self-regulation and widespread net facilitation should therefore be key features of coexistence mechanisms intending to explain phytoplankton diversity maintenance.

Introduction

10

11

12

13

14

27

- How species or related genera can coexist together in spite of competition is one of the main puzzles of community
 ecology, especially for primary producers that seemingly share the same basic resources¹. Many theoretical studies
 of competition models have shown that competitive exclusion is likely in those circumstances^{2,3}, unless mechanisms
 involving spatial or temporal variation are at play^{4,5,6,7}. Neutral theory, that assumes a non-equilibrium coexistence
 maintained by dispersal and equal competitive abilities for all species⁸ (though there are exceptions^{9,10}) has been
 proposed as a solution to explain highly diverse communities^{8,11}.
- However, the evidence gathered from terrestrial plant communities starts to suggest that, in fact, niche rather
 than neutral processes may be paramount to explain coexistence, with intraspecific competition dwarfing interspecific competition in most cases^{12,13}. Whether these conclusions drawn from studies of annual plants and forest trees
 apply to other ecosystems and taxa is currently little known (but see¹⁴).
 - Moreover, even within a single trophic level, competition may not be the rule: the meta-analysis by Adler et al. ¹³

reported a large number of facilitative interactions (30%) and several reviews^{15,16} have highlighted that facilitation may be much more widespread than ecologists usually tend to think. Although some theoretical studies suggest that 29 facilitative interactions can be destabilizing (sensu resilience) and therefore undermine coexistence in Lotka-Volterra models¹⁷, multiple other modelling¹⁸ and empirical^{15,19} studies have suggested that facilitative interactions can to 31 a large degree benefit coexistence, especially when multiple interaction types are considered simultaneously^{20,21}. Here, we analyse a large multi-species dataset consisting of several multivariate long-term time series of phyto-33 plankton dynamics along the French coastline, which we then analyze using multivariate autoregressive (MAR) time series models, allowing for interactions between genera. Although many ecological studies focus on interactions between species, competition has been shown experimentally to occur between different genera of phytoplankton^{22,23}. Because competition should - according to theory and experiments - occur between genera, and the genus level 37 is for phytoplankton interaction studies a rather fine taxonomic scale (most phytoplankton interaction studies are restricted to interaction between different classes or even phyla^{24,25,26}, we study here interactions between different genera of phytoplankton, belong mostly to diatoms and dinoflagellates. To put our results into a more general context, we then compare our interaction strengths estimates to previously published interaction networks produced under the same statistical framework.

43 Results

Jacobian community matrices on the logarithmic scale²⁴. Best-fitting models corresponded to a phylogeneticallystructured interaction scenario, where interaction only occurred between closely related genera (Supplementary Fig. 3). This led to sparse, modular matrices that have two main features. First, we observe a strong self-regulation for all sites (Fig. 1, diagonal elements of all matrices), a feature that we have previously highlighted in a more detailed analysis on one of the considered study regions²⁷. The ratio of mean intragenus to intergenus interaction 49 coefficients varied between 6 and 10, not counting coefficients set to 0 in the estimation process. If we include the zeroes in the interaction matrix in the computation of the intra/inter mean interaction strength, the ratio rises to between 21 and 43. Therefore, intragenus interactions are on average much stronger than intergenus interactions, approximately 10 to 20 times stronger. 53 Second, although the percentage of facilitative interactions seemed to vary among sites (between 40% and 71% of interactions in the selected models), facilitation remained predominant in 9 sites out of 10 (only Lazaret, in the Mediterranean Sea, has 60% negative interactions). Our observational setup being nested, with sites within regions, we can examine whether locally positive interactions remain positive in a regional context: the percentage of consistently positive interactions at the regional level varies between 30% and 53%, higher than the percentage 58 of similarly defined negative interactions (between 15% and 40%), except for sites in the Mediterranean Sea.

MAR(1) estimates Using MAR(1) autoregressive models, we have produced interaction matrices – i.e.,

We have found that the percentage of true mutualism (+/+) is substantial: averaged over all sites, 32% of all interactions are (+/+) while only 12% of them are (-/-). The sign correspondence is not always maintained between French regions: the only interaction that is non-zero in the 10 sites (CHA/SKE) is mutualistic in Men er Roue only (Brittany) and mixed (+/-) at all other sites. Within the same region, however, interactions measured at different sites tend to keep the same sign. In the 3 sites of Marennes-Oléron, for instance, there were 4 interactions which remained positive on both sides (CHA/GUI, DIT/GUI, LEP/THP, SKE/THP), 3 of them being also mutualistic in some of the Brittany sites. This contradicts previous observations that mutualistic interactions tend to be more context-dependent than competitive interactions²⁸.

Figure 1: Interaction matrices estimated in 10 sites along the French coastline. Four regions are distinguished: Brittany (a), Marennes-Oléron (b), Arcachon (d) and the Mediterranean Sea (e). Only interactions between clades (pennate and centric diatoms, dinoflagellates, other planktonic taxa) are allowed, as this is the best fitting interaction scenario (Supplementary Fig.3). Taxon j (in columns) has an effect illustrated by the bar height on taxon i's growth rate (in rows). We present the log-scale interaction matrix minus the identity matrix ($\mathbf{B} - \mathbf{I}$) because this compares unambigously the effects of intra- and inter-group interactions on population growth rates. The scale for the coefficient values is given at the bottom left of panel a). 95% significance of coefficients was determined by bootstrapping and is marked by asterisks (*). The composition of planktonic groups is given in Supplementary Table 2. The fraction of positive interactions in each matrix is given by points in c) while the dashed (resp., dotted) line represents the ratio of interactions remaining positive (resp., negative) for all sites of a

Interaction network analysis The stability (sensu resilience²⁹) of all interaction matrices was not strongly affected by the percentage of positive interactions or their connectivity properties (Fig. 2). The maximum modulus of the interaction matrix eigenvalues remained between 0.65 and 0.80. There was also a slight increase in stability with weighted connectance, with a drop in eigenvalue modulus for weighted connectances between 0.09 and 0.1.

Figure 2: Relation between stability and complexity of the interaction networks. The maximum modulus of the interaction matrix **B** eigenvalues indicates stability *sensu* resilience. Each point color corresponds to a given region. Metrics formula for weighted connectance and linkage density are given in Supplementary Information.

Given that a direct complexity-stability link was not obvious, we investigated whether the matrix coefficients had some particular structure that could help theoretical ecology to make better null models of joint community dynamics and interactions³⁰. We defined two scores, vulnerability (summed effect of others on the focal species growth rate, Supplementary Eq. 5) and impact (summed effect of the focal species onto other species growth rates, Supplementary Eq. 6). Relations between inter- and intragroup interactions emerged (Fig. 3): species that were more self-regulating also had also a higher vulnerability score and a lower impact score. Those two influences are likely to trade-off: a high degree of self-regulation somehow buffers outside influences. Species that were less self-regulating were also more likely to have a broad range of effects onto other species. As these species tended to be more abundant (Supplementary Fig. 6), they were more likely to affect other species. It is important to note, however, that these trends are weak and there is therefore a considerable amount of randomness dominating the interaction matrix: many scenarios of self-regulation vs limitation by others are therefore possible.

Figure 3: Relation between vulnerability/impact and self-regulation. Average vulnerability (effects of others onto the focal species growth rate, a-b) and impact (effects of the focal species unto other's growth rates, c-d), as well as self-regulation, are computed for untransformed (a-c) or absolute (b-d) values of the coefficients of the interaction matrix $(\mathbf{B} - \mathbf{I})$ for the 10 study sites. Each color corresponds to a given region (Supplementary Fig. 1). The p-value of the Pearson correlation between vulnerability (respectively impact) and self-regulation is given in the top left of each panel and the slope of the linear regression is given by the black line across scatter plots.

Aside from these trade-offs, some of which promote some stability (sensu invariability), we found no remarkable patterns of covariation between matrix elements (other than a mean-variance scaling of interaction coefficients, Supplementary Fig. 5).

Literature comparison Finally, we sought to put these results in a broader context by compiling the intra vs. inter group estimates of previous MAR(1) studies of long-term observational count data (listed in Supplementary Table 3). We found that the order of magnitude of intra/inter interaction strengths considered here is not particularly above those found for most planktonic systems to which MAR(1) models have been fitted, considering that our systems are relatively high-dimensional and that the higher the dimension, the larger the intraspecific regulation³¹. We included in Fig. 4 not only plankton studies but also a couple of vertebrate or insect studies on less diverse communities, where interactions are stronger. The conclusion from this comparison seems to be that any diverse system of competitors and facilitators has evolved large niche differences making intragroup competition much larger in magnitude than intergroup interactions.

Figure 4: Ratio of intra- to inter-group interaction strength in Multivariate AutoRegressive (MAR) models in the ecological literature. The name of each studies, corresponding to each code, is given in Supplementary Table 3. The symbol color corresponds to the sparsity of the interaction matrix (e.g., the proportion of null interactions in the matrix) and the symbol shape corresponds to the number of species taken into account. Intergroup interactions were set to 0 when they were not specified in the articles (in most cases, articles removed non-significant interactions at the 95% threshold). Last column corresponds to the present study.

95 Discussion

121

122

123

124

125

126

127

We found very large niche differences between genera, as measured by the intra/intergenus interaction strength ratio³², translating into much higher intragenus than intergenus effects on growth rates (i.e., strong self-regulation), together with a high degree of facilitative net interactions. This is in spite of competition being demonstrated in the lab and in experiments between those genera^{22,33,23}. The strong self-regulation that we found can be explained by multiple ecological mechanisms, which can act together to create high net effects of density-dependence. In 100 our previous publication investigating in detail the Arcachon study sites²⁷, we have argued that those large niche 101 differences, with strong intragroup density-dependence could arise from effects of natural enemies^{34,27}. Natural 102 enemies could also very well create apparent mutualism between prey species^{35,36,37}. We believe this to be likely 103 true for the present study as well, given that the new study regions (Oléron, Brittanny, Mediterranean) have similar 104 predators to the Arcachon site (zooplankton^{38,39,40}) and parasites (viruses⁴¹, fungi). Though natural enemies are good candidates to explain the observed niche differences and emerging facilitation, one must bear in mind 106 thatother known drivers of phytoplankton dynamics such as allelopathy⁴², auxotrophy⁴³ or hydrodynamics⁴⁴ can all, in theory, help create different niches and an emerging facilitation (see last subsection of the Discussion). 108 The multidimensionality of the niche⁴⁵could also help explain the large niche differences leading to coexistence. Finally, resources that are usually considered limiting for all species might in fact not always be: the changes in 110 phytoplankton absorption spectrum documented by Burson et al. 46 is an example of fine-scale resource partitioning 111 of one resource, light, that is usually believed to be limiting for all species and genera. 112

No complexity-stability relationship but rarer species have buffered growth There was no relation between the complexity of the communities (measured as either the weighted connectance or linkage density of the interaction matrices) and their stability, as measured by the dominant eigenvalue of the interaction matrix, which measures the return time to a point equilibrium. This results is conditional upon our model being a good approximate description of the system (i.e., no multiyear limit cycles or chaotic attractors as the mapping between eigenvalues and actual stability is distorted in that case⁴⁷), but we showed on a subset of this data that a fixed point in a MAR(1) model, perturbed by seasonality and abiotic variables, is an accurate description of the system²⁷. Therefore, we are confident that the absence of complexity-resilience found here is genuine.

This absence of direct link between complexity and stability could be an actual feature of empirical systems, as shown previously by Jacquet et al.⁴⁸ using a different technique, even though it does contradict previous results on random matrices, especially for competitive and/or mutualistic networks⁴⁹.

The role of mutualistic interactions in stabilizing communities is still debated: an increase in the number of positive interactions can either maximize the persistence of a network²¹ or narrow the range of richness and connectance values allowing for a stable community⁴⁹. Here, we found that such fraction of positive interactions does not strongly alter the stability of the communities we examined.

In addition to weighted connectance, indices at the network-level (vulnerability and generality [F: these were defined at the species level below??], encapsulated in the linkage density) and at the species-level (vulnerability and impact) approximate the average effects exerted and sustained by any given species in the different study sites. While, at the network level, network structure (either complexity measures or the percentage of mutualistic interactions) did not affect stability, a relation emerged between self-regulation, necessary for coexistence, and species-level indices. We found that the more a species is self-regulated, the more it tends to be vulnerable to other species impacts and the less it impacts other species. High self-regulation usually indicates large niche differences with the rest of the community, and it makes therefore sense that a species whose needs strongly differ from the others only marginally impacts the resources of the other coexisting species. Furthermore, a low self-regulation was correlated with strong average abundance, which echoes findings by Yenni et al. [REF] who found that rare species usually show stronger self-regulation (see also [Rovere and Fox] for mechanisms). This correlation could explain the lesser impact effect of high self-regulated species: a species which dominate the community composition can have a major effect on the others, just by a mechanistic increase in the probability of direct and indirect interactions while rarer species have usually less impact. However, it was more difficult to explain the reverse link: a species that is more self-regulated and rarer was found here to be on average more vulnerable to other species increases in densities. Such relation implies greater stability for the network, because the species the most vulnerable to other species impacts are also those that are the most self-regulated and whose dynamics are therefore less perturbed. By which mechanisms this could happen is so far unclear and open to speculation. We caution, however, that the relationships between vulnerability, impact and self-regulation that we evidenced are all relatively weak: considerable stochasticity dominates the distribution of interaction matrix coefficients.

128

129

130

131

132

133

134

135

136

137

138

139

140

142

144

146

147

148

149

150

151

152

153

155

156

157

158

160

To our knowledge, relations between different types of interactions (competitive, commensalist and mutualistic), and frequency-dependence, has not been fully explored up to now (but see⁵⁰). Usually, interactions are only competitive and the intensity of self-regulation may be fixed for all species in the community. In this case, stability in the community is ensured by a correlation between the intensity of self-regulation and the variance of the interspecific interactions⁵¹. This relation still needs to be extended to asymmetric matrices with high abundance variation to be fully applied to empirical systems such as ours. [F: I left the last paragraph because it was not completely clear to me in what direction exactly this was supposed to take the discussion].

Ghosts of competition past and present The dominance of niche differentation in observational plankton studies is similar to what has been recently found in plant community studies ^{10,13} or empirical food webs including horizontal diversity³¹. Large niche differences might be due to the ghost of the competition past, i.e., competition has occurred in the past, leading to strong selection and subsequent evolution leading to progressive niche separation. Species have evolved niches that allow them not to compete or to interact only weakly (very strong facilitative effects might be likewise destabilizing¹⁷). The likely predator effects that we highlighted above could be comprised

within such niche differentiation sensu largo: specialized predators can make strong conspecific density-dependence emerge^{52,53}, while switching generalists can also promote diversity⁵⁴. Both predators and resources have often 162 symmetrical effects and can therefore contribute almost equally to niche differentation³ 163 An intriguing new possibility, dubbed the "ghost of competition present" s, suggests that spatial patterns in relation to abiotic factors might have a large impact on the patterns inferred from interaction models. Recent 165 combinations of model fitting and removal experiments have shown that the model fitting usually underestimate the effect of competitors that are uncovered by removal experiments^{55,56}. This could occur for instance if species 167 are spatially segregated (at a small scale) because each species only exists within a domain where it is relatively competitive, while a focal species could spread out if competitors were removed. This means that a species can be 169 limited by competitors, but act so as to minimize competition (a little like avoidance behaviour in animals) so that competition is in effect hard to detect when all species are present. This would require some fine-scale 171 segregation between phytoplankton species at the scale of interactions, i.e., at the microscale. At the moment, it is 172 known that turbulence generates inhomogeneities at the microscale^{57,58} but it is quite unclear how this affects 173 multivariate spatial patterns of species distributions (sensu Bolker and Pacala⁵⁹ or Murrell and Law⁶⁰). Also, even 174 if turbulence generates spatial structure with segregation between species, it is not quite clear that the "ghost of 175 competition present" mechanism could work for plancton, because turbulence rather than organism movement 176 may somehow dictates where the plankton patches can or cannot appear.

$_{178}$ Methods

179 Sampling methods

All phytoplankton counts were collected as part of the National Phytoplankton and Phycotoxin Monitoring Network 180 (REPHY⁶¹). Since 1987, this monitoring program has required 26 sites along the French coastline to be sampled 181 every 2 weeks within 2 hours of high tide to determine both biotic (phytoplankton counts) and abiotic (water 182 temperature, salinity) parameters. We focused on sites which had the longest and most recent time series. We also 183 excluded time series which had missing data for over 6 months or an average delay between sampling dates above 184 20 days. This reduced the number of study sites to 10 sites nested within 4 regions (Brittany, Marennes-Oléron, 185 Arcachon and the Mediterranean Sea; Supplementary Fig. 1). 186 Abiotic variables (temperature, salinity) were measured directly from the boat during the sampling process while 187 water samples for biotic analyses were fixed with a Lugol's solution and examined later. Phytoplankton cells above 188 20 µm were identified at the lowest possible taxonomic level and counted with the Utermöhl method using an optical 189 microscope⁶². Throughout the years and sites, more than 600 taxa were identified at different taxonomic levels. We aggregated them at the genus (or group of genera when not possible), level based on previous work^{63,27}, except for 191 cryptophytes and euglenophytes in Arcachon, which could not be identified below the family level. Although the taxonomic resolution used here may seem coarse in comparison to land plants, it is in fact more refined than 86% of the MAR(1) studies of phytoplankton listed in Supplementary Table 3.

For each region, the MAR(1) analysis focused on the most abundant and most frequently observed genera to avoid most of the gaps in the time series. When gaps did not exceed a month, missing values were lineraly interpolated; remaining missing values were replaced by a random number between 0 and half of the lowest observed abundance⁶⁴. We tested extensively this and other methods to deal with missing data in a previous publication on a subset of this dataset²⁷. All time series were scaled and centered before MAR analyses.

$_{200}$ MAR(1) model

195

196

197

198

Multivariate autoregressive (MAR) models are used to determine the interspecific interactions and abiotic variables shaping a community's dynamics²⁴. They are based on a stochastic, discrete-time Gompertz model which relates log-abundance of S species at time t + 1 to interactions with the rest of the community at time t, and effects of Vabiotic variables at time t + 1, following eq. 1.

where \mathbf{n}_t is the 1×S log abundance vector of abundance of phytoplankton groups, \mathbf{B} is the S×S community

$$\mathbf{n}_{t+1} = \mathbf{B}\mathbf{n}_t + \mathbf{C}\mathbf{u}_{t+1} + \mathbf{e}_t, \mathbf{e}_t \sim \mathcal{N}_{\mathcal{S}}(0, \mathbf{Q})$$
(1)

(interaction) matrix, C is the S×V environment matrix describing the effects of V variables \mathbf{u}_{t+1} on species growth, 206 and \mathbf{e}_t is a 1×S noise vector which covers both process and observation error, following a multivariate normal distri-207 bution with a variance-covariance matrix Q. Q is diagonal and we have previously showed that this parsimonious choice did not affect qualitatively the results²⁷. 209 We used the MARSS package⁶⁵ v3.9, in R v3.3.2⁶⁶, to estimate parameters with a maximum likelihood procedure. 210 We have previously published a detailed analysis of one of the dataset (Arcachon) for which more covariables 211 were available²⁷. Covariables included nutrients and hydrodynamics variables, and the latter were found more influential; nutrient dynamics contributed little to phytoplankton dynamics on the two-weeks timescale. Because 213 temperature and salinity sum up seasonal changes in light as well as hydrology (salinity is inversely related to freshwater inflow), these represent the two key drivers needed to account for abiotic influences. The analysis of real 215 data in Barraquand et al.²⁷ was complemented by that of phytoplankton-like simulated data, which confirmed the ability of MAR(1) models to infer biotic interactions and abiotic forcing (e.g., no need for extra non-linearities to 217 model the storage effect, which was found to be nearly non-existent, as in previous analyses of plant data for which 218 strong-self regulation was observed 12,67). Furthermore, using two abiotic variables (temperature and salinity) in this 219 study rather than the full set of used in Barraquand et al.²⁷ led to almost identical estimates to the ones obtained 220 previously²⁷. We are therefore confident that the MAR(1) models presented here are robust to small changes in 221 model specification. In general, MAR(1) models tend to be fairly robust to small deviations of the underlying (non-linear) data-generating model, provided that one asks mainly order of magnitude of coefficients values (rather than precise estimates) and sign of interaction coefficients⁴⁷, which is how these are models are used here.

In this study, the number of phytoplankton groups, S, varies between regions but we keep the same 2 covariates, 225 i.e. water temperature and salinity, that could be measured for all study sites. Therefore, the dimension of the 226 dynamical system only depends on the (square of the) number of phytoplankton groups we study, which ranges 227 between 7 (Mediterranean Sea) and 14 (Brittany). The smallest system still requires 70 parameters to be estimated 228 if we consider all possible interactions between species. To reduce this dimensionality and remove unnecessary parameters, we compared different 'interaction scenarios' based on BIC. The null interaction scenario assumed no 230 interaction between groups of species (diagonal interaction matrix) and was compared to four other interaction 231 scenarios. The first interaction scenario assumed that interactions could only occur between phylogenetically close 232 organisms, i.e., within a class (namely, diatoms, dinoflagellates, and other phytoplanktonic organisms) while the 233 second interaction scenario further differentiated pennate and centric diatoms. The third interaction scenario 234 considered the inverse hypothesis, that only unrelated organisms could interact (i.e., a diatom could only interact 235 with a dinoflagellate or a cryptophyte, but not with another diatom), and the last interaction scenario did not constrain the interactions at all (full interaction matrix). The second interaction scenario, hereafter called the 237 pennate-centric scenario, had the lowest BIC for all sites and was therefore the most accurate while still parsimonious: we chose to further investigate the corresponding networks. 239

240 Analysis of interaction strengths

250

251

252

253

254

255

The interaction matrix obtained from MAR(1) analyses can be used to determine the stability of a discrete-time dynamical system²⁴. We compared the maximum modulus of the eigenvalues of the pennate/centric matrices in each site, as a proxy of stability, to network metrics which could be related to complexity, such as weighted connectance and linkage density⁵⁸. Weighted connectance is a measure of the proportion of realized links, taking into account the shape of the flux distribution, while link density measures the average proportion and strength of interactions for a given species. These metrics are adapted to weighted interaction matrices but cannot accommodate for both positive and negative coefficients: we therefore chose to focus on the absolute values of these coefficients, which can be linked to their strength, irrespective of interaction sign.

In addition to these network-level metrics, we also computed the average vulnerability (average effect of other taxa on a focal taxon, Supplementary Eq. 5) and impact (average effect of a focal taxon on other taxa, Supplementary Eq. 6) on both raw and absolute values of the coefficients, and compared these to the regulation a focal species exerted on itself. Raw values indicate the average effect (i.e., is the effect mostly positive or negative?) that can be expected on a species' growth rate from other planktonic species while absolute effects characterize the strength of all types of interactions on a species (i.e., is a species strongly affected by the others?).

Finally, we compared our results on self regulation/intraspecific interactions v. interspecific interactions to

other published studies based on a MAR model. A list of references is given in Supplementary Table 3. Authors 256 usually reported only coefficients that were significant at the 95% threshold, ignoring potentially many weak effects. 257 We therefore computed both the mean value of all coefficients outside of the matrix diagonal, replacing missing values by 0 (Fig. 4, which decreases the mean intergroup interaction strength), and the mean value of statistically 259 significant coefficients only (Supplementary Fig. 7, which increases the mean intergroup interaction strength). We should mention two potential biases associated with this comparison: low-dimensional matrices tended to be more 261 complete (less sparse) than high-dimensional matrices, as these small interaction matrices were used to study known interaction phenomena (observed predation between organisms, for instance). There is therefore a positive 263 correlation between sparsity and dimensionality (Supplementary Fig.8). The number of parameters to estimate increase as the square of the number of interacting groups, leading authors to reduce this set before the estimation 265 process. A second caveat is that while we informed our model selection by phylogeny (see above), several authors 266 have reduced the number of estimated parameters by an automated procedure, usually based on the comparison of 100 randomly chosen interaction matrices, optimizing BIC²⁴. The latter choice may bias high non-zero interactions in the previous literature, which is why we decided to present in the main text interaction matrices including coefficients set to zero, which should be more robust to the model selection method. 270

271 References

- [1] G.E. Hutchinson. The paradox of the plankton. *The American Naturalist*, 95(882):137–145, 1961. URL: http://www.jstor.org/stable/2458386 (visited on 05/09/2016).
- [2] R.A. Armstrong and R. McGehee. Competitive exclusion. The American Naturalist, 115(2):151–170, 1980.
- P. Chesson. Updates on mechanisms of maintenance of species diversity. *Journal of ecology*, 106(5):1773–1794, 2018.
- 277 [4] R.A. Armstrong and R. McGehee. Coexistence of species competing for shared resources. *Theoretical popula-*278 tion biology, 9(3):317–328, 1976.
- P. Chesson and N. Huntly. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. *The American Naturalist*, 150(5):519–553, 1997.
- ²⁸¹ [6] J. Huisman and F.J. Weissing. Biological conditions for oscillations and chaos generated by multispecies competition. *Ecology*, 82(10):2682–2695, 2001.
- ²⁸³ [7] L. Li and P. Chesson. The effects of dynamical rates on species coexistence in a variable environment: the paradox of the plankton revisited. *The American Naturalist*, 188(2):E46–E58, 2016.
- [8] S.P. Hubbell. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Princeton University Press, 2001. ISBN: 978-0-691-02128-7.

- [9] I. Volkov, J.R. Banavar, S.P. Hubbell, and A. Maritan. Neutral theory and relative species abundance in ecology. *Nature*, 424:1035–1037, 2003.
- ²⁸⁹ [10] I. Volkov, J.R. Banavar, S.P. Hubbell, and A. Maritan. Patterns of relative species abundance in rainforests ²⁹⁰ and coral reefs. *Nature*, 450(7166):45–49, 2007.
- ²⁹¹ [11] J Rosindell, SP Hubbell, and RS Etienne. The unified neutral theory of biodiversity and biogeography at age ten. Trends in ecology & evolution, 26(7):340, 2011.
- P.B. Adler, S.P. Ellner, and J.M. Levine. Coexistence of perennial plants: an embarrassment of niches. *Ecology* letters, 13(8):1019–1029, 2010.
- P.B. Adler, D. Smull, K.H. Beard, R.T. Choi, T. Furniss, A. Kulmatiski, J.M. Meiners, A.T. Tredennick, and
 K.E. Veblen. Competition and coexistence in plant communities: intraspecific competition is stronger than
 interspecific competition. *Ecology letters*, 21(9):1319–1329, 2018.
- ²⁹⁸ [14] C. M. Mutshinda, R. B. O'Hara, and I. P. Woiwod. What drives community dynamics? *Proceedings of the*²⁹⁹ royal society b: biological sciences, 276(1669):2923–2929, 2009.
- R.W. Brooker, F.T. Maestre, R.M. Callaway, C.L. Lortie, L.A. Cavieres, G. Kunstler, P. Liancourt, K. Tielbörger, J.M.J. Travis, F. Anthelme, C. Armas, L. Coll, E. Corcket, S. Delzon, E. Forey, Z. Kikvidze, J. Olofsson, F. Pugnaire, C.L. Quiroz, P. Saccone, K. Schiffers, M. Seifan, B. Touzard, and R. Michalet. Facilitation in plant communities: the past, the present, and the future. *Journal of ecology*, 96(1):18–34, 2008.
- E.J.B. McIntire and A. Fajardo. Facilitation as a ubiquitous driver of biodiversity. New phytologist, 201(2):403–416, 2014.
- ³⁰⁶ [17] K.Z. Coyte, J. Schluter, and K.R. Foster. The ecology of the microbiome: Networks, competition, and stability.

 Science, 350(6261):663–666, 2015.
- [18] K. Gross. Positive interactions among competitors can produce species-rich communities. *Ecology letters*, 11(9):929–936, 2008.
- 1310 [19] L.A. Cavieres and E.I. Badano. Do facilitative interactions increase species richness at the entire community level? *Journal of ecology*, 97(6):1181–1191, 2009.
- ³¹² [20] A Mougi and M Kondoh. Diversity of interaction types and ecological community stability. *Science*, 337(6092):349–313 351, 2012.
- D. García-Callejas, R. Molowny-Horas, and M.B. Araújo. The effect of multiple biotic interaction types on species persistence. *Ecology*, 99(10):2327–2337, 2018.
- D. Titman. Ecological competition between algae: experimental confirmation of resource-based competition theory. *Science*, 192(4238):463–465, 1976.

- B. Descamps-Julien and A. Gonzalez. Stable coexistence in a fluctuating environment: an experimental demonstration. *Ecology*, 86(10):2815–2824, 2005.
- ³²⁰ [24] A. R. Ives, B. Dennis, K. L. Cottingham, and S. R. Carpenter. Estimating community stability and ecological interactions from time-series data. *Ecological monographs*, 73(2):301–330, 2003.
- S.E. Hampton, L.R. Izmest'Eva, M.V. Moore, S.L. Katz, B. Dennis, and E.A. Silow. Sixty years of environmental change in the world's largest freshwater lake - Lake Baikal, Siberia. *Global change biology*, 14(8):1947– 1958, 2008.
- J.R. Griffiths, S. Hajdu, A.S. Downing, O. Hjerne, U. Larsson, and M. Winder. Phytoplankton community interactions and environmental sensitivity in coastal and offshore habitats. *Oikos*, 125(8):1134–1143, 2015.
- F. Barraquand, C. Picoche, D. Maurer, L. Carassou, and I. Auby. Coastal phytoplankton community dynamics and coexistence driven by intragroup density-dependence, light and hydrodynamics. *Oikos*, 127(12):1834–1852, 2018.
- [28] S.A. Chamberlain, J.L. Bronstein, and J.A. Rudgers. How context dependent are species interactions? *Ecology letters*, 17(7):881–890, 2014. Rampal Etienne, editor.
- [29] A. R. Ives and S. R. Carpenter. Stability and diversity of ecosystems. Science, 317(5834):58–62, 2007.
- 333 [30] A. James, M.J. Plank, A.G. Rossberg, J. Beecham, M. Emmerson, and J.W. Pitchford. Constructing random
 334 matrices to represent real ecosystems. *The American Naturalist*, 185(5):680–692, 2015.
- 335 [31] G. Barabás, M.J. Michalska-Smith, and S. Allesina. Self-regulation and the stability of large ecological networks. *Nature ecology & evolution*, 1(12):1870–1875, 2017.
- J.M. Levine and J. HilleRisLambers. The importance of niches for the maintenance of species diversity. *Nature*, 461(7261):254–257, 2009.
- [33] D. Tilman, S.S. Kilham, and P. Kilham. Phytoplankton community ecology: the role of limiting nutrients.
 Annual review of ecology and systematics, 13:349-372, 1982.
- [34] D. Haydon. Pivotal assumptions determining the relationship between stability and complexity: an analytical
 synthesis of the stability-complexity debate. The American Naturalist, 144(1):14-29, 1994.
- P.A. Abrams, R.D. Holt, and J.D. Roth. Apparent competition or apparent mutualism? Shared predation when populations cycle. *Ecology*, 79(1):201–212, 1998.
- F. Barraquand, L.F. New, S. Redpath, and J. Matthiopoulos. Indirect effects of primary prey population dynamics on alternative prey. *Theoretical population biology*, 103:44–59, 2015.
- Peter C. de Ruiter and Ursula Gaedke. Emergent facilitation promotes biological diversity in pelagic food webs. Food webs, 10:15–21, 2017.

- ³⁴⁹ [38] J.-L. Jamet, G. Boge, S. Richard, C. Geneys, and D. Jamet. The zooplankton community in bays of Toulon ³⁵⁰ area (northwest Mediterranean Sea, France). *Hydrobiologia*, 557:155–165, 2001.
- J. Modéran, P. Bouvais, V. David, S. Le Noc, B. Simon-Bouhet, N. Niquil, P. Miramand, and D. Fichet.

 Zooplankton community structure in a highly turbid environment (Charente estuary, France): Spatio-temporal
 patterns and environmental control. Estuarine, coastal and shelf science, 88(2):219–232, 2010.
- S. Tortajada, N. Niquil, H. Blanchet, B. Grami, H. Montanié, V. David, C. Glé, B. Saint-Béat, G.A. Johnson,
 E. Marquis, Y. Del Amo, S. Dubois, D. Vincent, C. Dupuy, F. Jude, H.J. Hartmann, and B. Sautour. Network
 analysis of the planktonic food web during the spring bloom in a semi enclosed lagoon (Arcachon, SW France).
 Acta oecologica, 40:40-50, 2012.
- P. Ory, H.J. Hartmann, F. Jude, C. Dupuy, Y. Del Amo, P. Catala, F. Mornet, V. Huet, B. Jan, D. Vincent,
 B. Sautour, and H. Montanié. Pelagic food web patterns: do they modulate virus and nanoflagellate effects on
 picoplankton during the phytoplankton spring bloom?: Effects of viruses and nanoflagellates on picoplankton.

 Environmental microbiology:2755–2772, 2010.
- A.B. Felpeto, S. Roy, and V.M. Vasconcelos. Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. *Oikos*, 127(1):85–98, 2018.
- Y. Z. Tang, F. Koch, and C. J. Gobler. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs.

 Proceedings of the national academy of sciences, 107(48):20756–20761, 2010.
- M. Lévy, P.J.S. Franks, and K.S. Smith. The role of submesoscale currents in structuring marine ecosystems.

 Nature communications, 9(1):4758, 2018.
- N.J.B. Kraft, O. Godoy, and J.M. Levine. Plant functional traits and the multidimensional nature of species coexistence. *Proceedings of the national academy of sciences*, 112(3):797–802, 2015.
- A. Burson, M. Stomp, E. Greenwell, J. Grosse, and J. Huisman. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. *Ecology*, 99(5):1108–1118, 2018.
- G. Certain, F. Barraquand, and A. Gårdmark. How do MAR(1) models cope with hidden nonlinearities in ecological dynamics? *Methods in ecology and evolution*, 9(9):1975–1995, 2018.
- ³⁷⁴ [48] C. Jacquet, C. Moritz, L. Morissette, P. Legagneux, F. Massol, P. Archambault, and D. Gravel. No complexity-³⁷⁵ stability relationship in empirical ecosystems. *Nature communications*, 7(1), 2016.
- ³⁷⁶ [49] S. Allesina and S. Tang. Stability criteria for complex ecosystems. *Nature*, 483(7388):205–208, 2012.
- D. García-Callejas, R. Molowny-Horas, and M.B. Araújo. Multiple interactions networks: towards more realistic descriptions of the web of life. *Oikos*, 127(1):5–22, 2018.
- G. Barabás, M.J. Michalska-Smith, and S. Allesina. The Effect of Intra- and Interspecific Competition on Coexistence in Multispecies Communities. *The american Naturalist*, 188(1), 2016.

- R. Bagchi, R.E. Gallery, S. Gripenberg, S.J. Gurr, L. Narayan, C.E. Addis, R.P. Freckleton, and O.T. Lewis.

 Pathogens and insect herbivores drive rainforest plant diversity and composition. *Nature*, 506(7486):85–88,

 2014.
- L.S. Comita, S.A. Queenborough, S.J. Murphy, J.L. Eck, K. Xu, M. Krishnadas, N. Beckman, and Y. Zhu.

 Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distanceand density-dependent seed and seedling survival. *Journal of ecology*, 102(4):845–856, 2014.
- Sergio M Vallina, BA Ward, S Dutkiewicz, and MJ Follows. Maximal feeding with active prey-switching: a killthe-winner functional response and its effect on global diversity and biogeography. *Progress in oceanography*,
 120:93–109, 2014.
- [55] S.L. Tuck, J. Porter, M. Rees, and L.A. Turnbull. Strong responses from weakly interacting species. *Ecology* letters, 21(12):1845–1852, 2018.
- P.B. Adler, A. Kleinhesselink, G. Hooker, J.B. Taylor, B. Teller, and S.P. Ellner. Weak interspecific interactions in a sagebrush steppe? Conflicting evidence from observations and experiments. *Ecology*, 99(7):1621–1632, 2018.
- ³⁹⁵ [57] A.D. Barton, B.A. Ward, R.G. Williams, and M.J. Follows. The impact of fine-scale turbulence on phytoplankton community structure: Phytoplankton and turbulence. *Limnology and oceanography: fluids and* environments, 4(1):34–49, 2014.
- ³⁹⁸ [58] R.E. Breier, C.C. Lalescu, D. Waas, M. Wilczek, and M.G. Mazza. Emergence of phytoplankton patchiness at ³⁹⁹ small scales in mild turbulence. *Proceedings of the national academy of sciences*, 115(48):12112–12117, 2018.
- [59] B.M. Bolker and S.W. Pacala. Spatial Moment Equations for Plant Competition: Understanding Spatial
 Strategies and the Advantages of Short Dispersal. The American Naturalist, 153(6):575–602, 1999.
- [60] D.J. Murrell and R. Law. Heteromyopia and the spatial coexistence of similar competitors. *Ecology letters*, 6(1):48–59, 2003.
- REPHY French Observation, Monitoring program for Phytoplankton, and Hydrology in coastal waters.

 Rephy dataset french observation and monitoring program for phytoplankton and hydrology in coastal
 waters. 1987-2016 metropolitan data. 2017. DOI: 10.17882/47248.
- ⁴⁰⁷ [62] H Utermöhl. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. *Mitt. int. ver. theor. angew.*⁴⁰⁸ limnol., 9, 1958.
- T. Hernández Fariñas, C. Bacher, D. Soudant, C. Belin, and L. Barillé. Assessing phytoplankton realized niches using a French national phytoplankton monitoring network. Estuarine, coastal and shelf science, 159:15–27, 2015.

- 412 [64] S.E. Hampton, M.D. Scheuerell, and D.E. Schindler. Coalescence in the lake washington story: Interaction
 413 strengths in a planktonic food web. *Limnology and oceanography*, 51(5):2042–2051, 2006.
- E. E. Holmes, E. J. Ward, and M. D. Scheuerell. Analysis of multivariate time-series using the MARSS package. User guide: http://cran. r-project. org/web/packages/marss/vignettes/userguide. pdf, 2014.
- 416 [66] W. N. Venables and D. M. Smith. The R Core Team. An introduction to r. notes on r: a programming
 417 environment for data analysis and graphics. url: ran. r-project. org/doc/manuals/r-release/r-intro. pdf, 2013.
- 418 [67] S.P. Ellner, R.E. Snyder, and P.B. Adler. How to quantify the temporal storage effect using simulations instead 419 of math. *Ecology letters*, 19(11):1333–1342, 2016.