

Institutt for matematiske fag

# Eksamensoppgave i TMA4130/35 Matematikk 4N/4D

| Faglig kontakt under eksamen: Anne Kværnø <sup>a</sup> , Kurusc                                           | h Ebrahimi-Fard <sup>b</sup> | Xu Wang <sup>c</sup>   |
|-----------------------------------------------------------------------------------------------------------|------------------------------|------------------------|
| <b>Tlf:</b> <sup>a</sup> 92 66 38 24 , <sup>b</sup> 96 91 19 85 , <sup>c</sup> 94 43 03 43                | , Lorainin raid              | , ra mang              |
| ···· 02000021, 00011000, 01100010                                                                         |                              |                        |
|                                                                                                           |                              |                        |
| Eksamensdato: 14. desember 2018                                                                           |                              |                        |
| Eksamenstid (fra-til): 09:00-13:00                                                                        |                              |                        |
| Hjelpemiddelkode/Tillatte hjelpemidler: Kode C: Bester                                                    |                              |                        |
| Et stemplet gult A5-ark med egne håndskrevne notater og                                                   | g formler (begge s           | ider)                  |
| Annen informasjon:                                                                                        |                              |                        |
| Almen mormasjon.                                                                                          |                              |                        |
|                                                                                                           |                              |                        |
| <ul> <li>Alle svar må begrunnes og skal inneholde nok detalj<br/>en har kommet frem til disse.</li> </ul> | jer slik at det komr         | mer klart frem hvordan |
| <ul> <li>Det er to ulike versjoner av Oppgave 3: én for Mater</li> </ul>                                  | matikk 4N og én fo           | or Matematikk 4D.      |
| Lykke til!                                                                                                |                              |                        |
| •                                                                                                         |                              |                        |
|                                                                                                           |                              |                        |
| Målform/språk: bokmål                                                                                     |                              |                        |
| Antall sider: 4                                                                                           |                              |                        |
| Antall sider vedlegg: 1                                                                                   |                              |                        |
|                                                                                                           |                              | Kontrollert av:        |
| Informasjon om trykking av eksamensoppgave                                                                |                              |                        |
| Originalen er:                                                                                            |                              |                        |
| 1-sidig □ 2-sidig ⊠                                                                                       | Data                         | 0:                     |
| sort/hvit ⊠ farger □ skal ha flervalgskjema □                                                             | Dato                         | Sign                   |
| one ne nor raigonjonia 🗆                                                                                  |                              |                        |

## Oppgave 1 Laplacetransformasjon [20 poeng]

a) Bestem laplacetransformasjonen til funksjonen

$$f(t) = te^t$$
.

b) Finn den inverse laplacetransformasjonen  $\mathcal{L}^{-1}(F)(t)$  til følgende funksjon

$$F(s) := \frac{s+3}{s(s-1)(s+2)}.$$

(Vink: du kan bruke delbrøksoppspaltning).

c) Bruk laplacetransformasjon til å finne løsningen til

$$y'(t) - y(t) = e^t + e^{-t},$$
 hvor  $y(0) = \pi.$ 

## Oppgave 2 Fourierrekker og fouriertransformasjon [14 poeng]

a) La  $\sum_{n\in\mathbb{Z}} c_n e^{inx}$  være den komplekse fourierrekken til følgende funksjon

$$f(x) = 1 - x^2, \quad x \in (-\pi, \pi).$$

Bestem  $c_n$ .

b) Bestem fouriertransformasjonen til

$$f(x) = xe^{-|x|}.$$

# Oppgave 3 TMA4130 Matematikk 4N: Fouriertransformasjon [6 poeng]

Vis at for  $a \neq 0$ , så har vi

$$\mathcal{F}(f(at))(\omega) = \frac{1}{|a|} \mathcal{F}(f(t))(\frac{\omega}{a})$$

# Oppgave 3 TMA4135 Matematikk 4D: Partiellderivert [6 poeng]

Vis at varmekjernen  $h(x,t) := \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$  tilfredsstiller  $h_t = \frac{1}{2} h_{xx}$ .

### Oppgave 4 Partielle differensiallikninger [10 poeng]

Løs følgende varmelikning

$$u_t = \frac{1}{2}u_{xx}, \quad t \ge 0, \quad 0 \le x \le \pi,$$

med randbetingelser

$$u(t,0) = u(t,\pi) = 0, \ \forall \ t \ge 0;$$

og initialbetingelse

$$u(0,x) = \sin 3x + \sin 5x, \ \forall \ 0 \le x \le \pi.$$

### Oppgave 5 Polynominterpolasjon [10 poeng]

Finn et polynom  $p(x) \in \mathbb{P}_2$  som interpolerer punktene

$$\begin{array}{c|ccccc} x_i & -2 & 0 & 1 & 2 \\ \hline y_i & 0 & 1 & 9/8 & 0 \end{array}$$

## Oppgave 6 Numerisk integrasjon [10 poeng]

Integralet

$$\int_a^b f(x)dx,$$

kan approksimeres med kvadraturformelen

$$Q(a,b) = \frac{3h}{2} \Big( f(x_1) + f(x_2) \Big),$$

hvor

$$h = \frac{b-a}{3}$$
,  $x_1 = a+h$  og  $x_2 = a+2h$ .

a) Bruk kvadraturregelen på integralet

$$\int_{1}^{2} x \ln(x) dx.$$

**b)** Finn presisjonsgraden til kvadraturregelen. Intervallet [a, b] = [-1, 1] kan brukes.

### Oppgave 7 Numeriske løsninger av ikke-linære likninger [10 poeng]

a) Følgende python-kode er gitt:

```
x = 2.5
for k in range(100):
    x_new = (3*x**4 + 24*x**2 -16)/(8*x**3)
# Stop the iterations when ...
    x = x_new
```

Skriv ned fikspunktsiterasjonsskjemaet som er implementert her.

Foreslå et passende stopp-kriterium og skriv ned den tilsvarende pythonkoden.

**b)** Det er gitt at fikspunktet r er kjent og at alle beregninger er gjort med veldig stor nøyaktighet. I dette tilfellet er feilen  $e_k = |r - x_k|$  for hver k, gitt ved

```
k = 1, error = 9.50e-03
k = 2, error = 1.06e-07
k = 3, error = 1.49e-22
k = 4, error = 4.14e-67
```

Bruk dette til å estimere konvergensraten til iterasjonsskjemaet.

#### Oppgave 8 Ordinære differensiallikninger [10 poeng]

Følgende Runge-Kutta metode er gitt:

$$\mathbf{k}_1 = \mathbf{f}(x_n, \mathbf{y}_n),$$

$$\mathbf{k}_2 = \mathbf{f}(x_n + \frac{h}{2}, \mathbf{y}_n + \frac{h}{2}\mathbf{k}_1),$$

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{k}_2.$$

a) Utfør én iterasjon med steglengde h=0.1 ved å bruke metoden ovenfor på problemet:

$$y'_1 = y_1 + xy_2^2,$$
  $y_1(1) = 1.0,$   
 $y'_2 = y_1y_2,$   $y_2(1) = -1.0.$ 

b) Finn stabilitetsfunksjonen R(z) for denne funksjonen. Finn også det tilsvarende stabilitetsintervallet. metoden

### Oppgave 9 Endelig differanseskjema [10 poeng]

I denne oppgaven skal du sette opp et endelig differanseskjema for to-punkts randverdiproblemet

$$u'' + 2u = x^2$$
,  $u'(0) + u(0) = 0$ ,  $u(1) = 2$ ,

definert på intervallet  $0 \le x \le 1$ .

La N være antall gitterpunkter med h=1/N, og la  $U_i$  være approksimeringer til den eksakte løsningen  $u(x_i)$  i gitterpunktene  $x_i=ih$  for  $i=0,1,\ldots,N$ . Sett opp det endelige differanseskjemaet for en generell N på formen

$$A\mathbf{U} = \mathbf{b},$$

hvor  $\mathbf{U} = [U_0, U_1, \dots, U_N]^T$ , det vil si, sett opp matrisen A og vektoren **b**.

# Fourier Transform

| $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w)e^{iwx} dw$ | $\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iwx} dx$ |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $e^{-ax^2}$                                                                 | $\frac{1}{\sqrt{2a}}e^{-w^2/4a}$                                             |
| $e^{-a x }$                                                                 | $\sqrt{\frac{2}{\pi}} \frac{a}{w^2 + a^2}$                                   |
| $\frac{1}{x^2 + a^2}$                                                       | $\sqrt{\frac{\pi}{2}} \frac{e^{-a w }}{a}$                                   |
| $\begin{cases} 1 & \text{for }  x  < a \\ 0 & \text{otherwise} \end{cases}$ | $\sqrt{\frac{2}{\pi}} \frac{\sin wa}{w}$                                     |

# Laplace Transform

| f(t)              | $F(s) = \int_0^\infty e^{-st} f(t)  dt$ |
|-------------------|-----------------------------------------|
| $\cos(\omega t)$  | $\frac{s}{s^2 + \omega^2}$              |
| $\sin(\omega t)$  | $\frac{\omega}{s^2 + \omega^2}$         |
| $\cosh(\omega t)$ | $\frac{s}{s^2 - \omega^2}$              |
| $\sinh(\omega t)$ | $\frac{\omega}{s^2 - \omega^2}$         |
| $\overline{t^n}$  | $\frac{\Gamma(n+1)}{s^{n+1}},$          |
|                   | for $n = 0, 1, 2,, \Gamma(n+1) = n!$    |
| $e^{at}$          | $\frac{1}{s-a}$                         |
| $\delta(t-a)$     | $e^{-as}$                               |
|                   |                                         |

$$\int x^n \cos ax \, dx = \frac{1}{a} x^n \sin ax - \frac{n}{a} \int x^{n-1} \sin ax \, dx$$
$$\int x^n \sin ax \, dx = -\frac{1}{a} x^n \cos ax + \frac{n}{a} \int x^{n-1} \cos ax \, dx$$