Questions 2.

An experimenter wishes to compare the number of bacteria of types A and B in a water source. A total of n independent water samples are taken from the source, and counts are made for each sample. Let X_i denote the number of type A bacteria and Y_i denote the number of type B bacteria for sample i. Assume that the two bacteria types are sparsely distributed within a water sample so that X_1, X_2, \dots, X_n and Y_1, Y_2, \dots, Y_n can be considered independent random samples from Poisson distributions with means λ_1 and λ_2 , respectively.

1. Find the MLE of $\tau = \lambda_1/(\lambda_1 + \lambda_2)$ and show that it is consistent. (7 marks) Solution:

2. Using asymptotic properties of the maximum likelihood estimators and the δ -method find an approximate pivotal quantity and make a $100 \times (1-\alpha)\%$ confidence interval for τ . (8 marks)

Solution: