

Elementary Graph Algorithms

Foundations of AlgorithmsGuven

Reading Assignment

• Cormen, Chapter 22

Graph Algorithms Outline

- Graph definitions
- DFS of graphs
- Biconnected components
- DFS of digraphs
- Finding articulation points

Graph Terminology

- Graph G = (V,E)
- Vertex set V
- Edge set E = pairs of adjacent vertices
- Incidence
 - pair (u,e) where u∈V, e∈E e is incident to u
- Adjacency
 - two distinct incidences (u,e) and (v,f) are adjacent iff u=v,
 e=f or (u,v)=e or f

Directed and Undirected Graphs

- G directed
 edges are ordered pairs (u,v)
 also called digraph
- G undirected
 edges are unordered pairs {u,v}

Proper Graphs and Subgraphs

Proper graph

 no loops
 no multi-edges

- Subgraph G' of G
 - G' = (V', E') such that $V' \subset V$, $E' \subset E$

Paths in Graphs

- Path p
- p is a sequence of vertices v_0 , ..., v_k where for i=1,..., k, v_{i-1} is adjacent to v_i
- p is a sequence of edges e₁, ..., e_k
 where for i=2,..., k, edges e_{i-1} and e_i share a vertex

Simple Paths and Cycles

- Simple path no edge or vertex is repeated, except possibly $v_0 = v_k$
- Cycle a path p with $v_0 = v_k$ where k>1

A Connected Undirected Graph

 G is connected if ∃ path between each pair of vertices

Connected Components of an Undirected Graph

 Or G has ≥ 2 connected components, which are called maximal connected subgraphs

Biconnected Undirected Graphs

 G is biconnected if ∃ two disjoint paths between each pair of vertices

G can be a single edge

Size of a Graph

Graph G = (V,E)
 n = |V| = # vertices
 m = |E| = # edges
 size of G is n+m

- Degree of vertices
 - deg(v) = number of edges for v
 - $\sum_{v \in V} \deg(v) = 2|E|$

Adjacency Matrix

Adjacency matrix A

A is n-by-n square matrix

$$A(i,j) = \begin{cases} 1 & (i,j) \in E \\ 0 & else \end{cases}$$

space cost = $n^2 - n$

 no need to store the diagonal which has to be always zero in a proper graph

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4 \times 4}$$

Adjacency List

- Adjacency lists Adj(1), ..., Adj(n)
 Adj(v) = list of vertices adjacent to v
 - space cost O(n+m)
- Note, the following example uses n+2m space

4

Definition of an Undirected Tree

Tree T

T is a graph with unique path between every pair of its vertices

k = # vertices

k-1 = # edges

Forest set of trees

Definition of a Directed Tree

Directed tree

T is a digraph with distinguished vertex root r such that each vertex is reachable from r by a unique path

- Family relationships
 - ancestors
 - descendants
 - parent
 - child
 - siblings
 - leaves have no proper descendants

An Ordered Tree

Ordered Tree is a directed tree with siblings ordered

Preorder Recursive Tree Traversal

- Preorder : 1, 2, 3, 4, 5, 6, 7, 8
 - 1. root (order vertices as pushed on a stack)
 - 2. preorder left subtree
 - 3. preorder right subtree

Postorder Recursive Tree Traversal

- Postorder: 2, 5, 4, 7, 8, 6, 3, 1
 - 1. postorder left subtree
 - 2. postorder right subtree
 - root (order vertices as popped off stack)

Spanning Tree and Forest of a Graph

- T is a spanning tree of graph G if
 - T is a directed tree with the same vertex set as G
 - 2. $e \in T$ is a directed version of an $e \in G$ Size T = n + (n-1)
- Spanning forest

forest of spanning trees of connected components of G

Example Spanning Tree of a Graph

Classification of Edges of G with a Spanning Tree T

- An edge (u,v) of T is a tree edge
- An edge (u,v) of G T is a back edge if u is a descendent or ancestor of v
- Else an edge (u,v) of G T is a cross edge
- G = T + back edges + cross edges
 (Note: directions of edges were ignored)

Recursive Depth First Search Algorithm

```
def init():
  # Introduce dfsnum attribute of the vertices V
  set all v.dfsnum = -1 # node is undiscovered
  dfscounter = 1
def dfs(v):
  # starts from root or first vertex
  v.dfsnum = dfscounter++
  for each edge (v,x):
    if x.dfsnum == -1:
      call dfs(x) # recursive
    else: # have seen/past this node previously
      process further() # process for back edges, etc.
```

Recursive DFS Example

Adjacency list

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

DFS

Vertex	dfs#
A	1
B C	
С	
D	
E	
F	
G	
Н	
I	
J	
K	
L	
M	

DFS

new v from recursion

seen before, dfs#!=-1

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	dfs#
A	1
В	2
С	
D	
E	
F	
G	
H	
I	
J	
K	
L	
M	

DFS

new v from recursion

seen before, dfs#!=-1

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	dfs#
A	1
В	2
C D	3
D	
E	
F	
F G	
H	
I	
J	
K	
L	
M	

DFS

new v from recursion

seen before, dfs#!=-1

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	dfs#
A	1
В	2
C D	2 3 4
D	4
E	
F	5
G	
H	
I	6
J	
K	
L	
M	

DFS

new v from recursion

seen before, dfs#!=-1

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	dfs#
A	1
В	1 2 3 4
B C D E	3
D	4
E	
F	5
F G H	
н	
I J	6
J	
K L	7
L	
M	

DFS

new v from recursion

seen before, dfs#!=-1

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	dfs#
A	1
В	2
B C D	2 3 4 8
D	4
E	8
F	5 9
G	9
н	
F G H I	6
K L	7
L	
M	

DFS

new v from recursion

seen before, dfs#!=-1

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	dfs#
A	1
B C D	2
С	2 3
D	4
E F G H I J	8
F	5
G	9
н	10
I	6
J	11
K	7
L	12
M	

DFS

new v from recursion

seen before, dfs#!=-1

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	dfs#
A	1
B C D E	1 2 3 4 8
С	3
D	4
E	8
F	5 9
G	9
Н	10
I	6
J	11
F G H J K L	7
L	12
M	13

Time Cost of DFS Algorithm

- Input size n = |V|, m = |E|
- Theorem

Depth First Search Algorithm is O(n+m)

Proof

Each edge and vertex is associated with constant number of operations

Breadth First Search Algorithm

```
def bfs():
    set all v.bfsnum = -1  # node is undiscovered
    bfscounter = 1
    Q.enqueue(root)  # A queue Q is used for BFS
    root.bfsnum = bfscounter++
    while Q is not empty:
        v = Q.dequeue()  # pick first element from queue
        for each edge(v,x):
        if x.bfsnum == -1:  # x is not visited
            Q.enqueue(x)
            x.bfsnum = bfscounter++
```

BFS Example

Adjacency list

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

BFS Example (cont.)

BFS

in queue: B, H

Vertex	bfs#
A	1
В	1 2
B C D	
D	
E	
F	
E F G H I	
Н	3
I	
J	
K	
L	
M	

BFS

in queue: H, C

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	bfs#
A	1
В	2 4
B C D	4
E	
F G	
Н	3
I J	
J	
K	
L	
M	

BFS

in queue: E, J, L, D, K

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	bfs#
A	1
В	1 2 4 8 5
С	4
D	8
E	5
F	
G	
н	3
I	
J	6
B C D E G H I J K L	6 9 7
L	7
M	

BFS

in queue: D, K, G, M

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	bfs#
A	1
В	2
С	1 2 4 8
D	8
A B C D E F G	5
F	
G	10 3
	3
I	
J	6
H J K L	6 9
L	7
M	11

BFS

in queue: K, G, M, F, I

A
$$\rightarrow$$
B \rightarrow H \rightarrow Ø
B \rightarrow A \rightarrow C \rightarrow H \rightarrow Ø
C \rightarrow B \rightarrow D \rightarrow E \rightarrow K \rightarrow Ø
D \rightarrow C \rightarrow F \rightarrow I \rightarrow Ø
E \rightarrow C \rightarrow G \rightarrow H \rightarrow Ø
F \rightarrow D \rightarrow I \rightarrow Ø
G \rightarrow E \rightarrow Ø
H \rightarrow A \rightarrow B \rightarrow E \rightarrow J \rightarrow L \rightarrow Ø
I \rightarrow D \rightarrow F \rightarrow K \rightarrow Ø
J \rightarrow H \rightarrow L \rightarrow Ø
K \rightarrow C \rightarrow I \rightarrow Ø
L \rightarrow H \rightarrow J \rightarrow M \rightarrow Ø
M \rightarrow L \rightarrow Ø

Vertex	bfs#
A	1
В	1 2 4 8
С	4
D	8
B C D E F G H	5
F	12
G	10
H	3
I J	13
1	6 9
K L	9
L	7
M	11

Classification of Edges of a Graph via DFS Spanning Tree

Classification of Edges of a Graph via DFS Spanning Tree (cont.)

- Edge notation induced by DFS Tree T
- $u \rightarrow v$ iff (u,v) is a tree edge of T
- u*→v iff u is an ancestor of v
- u···v iff (u,v) is a back edge,
 where (u,v) ∈ G–T with either u*→v or v*→u
- Every vertex is an ancestor and a descendant of itself

Descendant Vertices via Preordering of a Tree

- Use v.dfs# determined by DFS
 Notation: v.d = v.dfs#
- Let $|D_v| = \#$ of descendants of v
- Lemma
 u is descendant of v iff
 v.d ≤ u.d ≤ v.d + |D_v|

Proper Ancestors via Preordering of a Tree

Lemma

If u is descendant of v and (u,w) is a back edge s.t. w.d < v.d then w is a proper ancestor of v

Low Values

Lemma

```
low(v) = min{v.d, {low(u) | v\rightarrow u}, {w.d | u\rightarrow \cdots w}} (Proof by induction)
```

low(v) can be computed during DFS in postorder

Example: Low Values of G

Vertex	dfs#	low
A	1	1
В	2	1
B C D	3	1
D	4	3
E	8	1
F	5	3 9
G	9	9
Н	10	1
I J	6	3
	11	10
K L	7	3
	12	10
M	13	13

Biconnected Components

- G is biconnected iff either
 - 1. G is a single edge, or
 - for each triple of vertices (u, v, w)
 - \exists a path p from u to v where w \notin p
 - equivalently, \(\exists \) two disjoint paths for all edges

Example: Biconnected Components

Maximal subgraphs of G which are biconnected

Biconnected Components Meet at Articulation Points

- The intersection of two biconnected components consists of at most one vertex called an Articulation Point
- Example: 1, 2, 5 are articulation points
- Removing the articulation point disconnects the graph
 - Removing the *bridge* edge disconnects the graph

Discovery of Biconnected Components via Articulation Points

 If we can find articulation points then we can compute biconnected components

Algorithm

During DFS, use auxiliary stack to store visited edges
Each time we complete the DFS of a tree child of an
articulation point, pop all stacked edges currently in stack
These popped off edges form a biconnected component

Characterization of an Articulation Point

Theorem

a is an articulation point iff either

- 1. a is root with ≥ 2 tree children, or
- 2. a is not root, a has a tree child v with low(v) ≥ a.d

Proof of Characterization of an Articulation Point

Proof

The conditions are sufficient since any \mathbf{a} -avoiding path from \mathbf{v} remains in the subtree $T_{\mathbf{v}}$ rooted at \mathbf{v} , if \mathbf{v} is a child of \mathbf{a}

To show the condition for necessary, assume a is an articulation point

Characterization of an Articulation Point

- Case 1
 - If **a** is a root and is an articulation point, then **a** must have ≥ 2 tree edges to two distinct biconnected components
- Case 2

If **a** is not root, consider graph $G-\{a\}$ which must have a connected component C consisting of only descendants of **a**, and with no back edge from C to an ancestor of v. Hence **a** has a tree child v in C and low $(v) \ge a.d$

Proof of Characterization of an Articulation Point (cont.)

Case 2

Articulation point a is not the root

Example: Articulation Points

Vertex	dfs#	low
A	1	1
В	2	1
C D	3	1
	4	3
E	8	1
F	5	3
G	9	9
н	10	1*
I	6	3
J	11	10
K	7	3*
L	12	10*
M	13	13
* back edge directly		

Example: Articulation Points (cont.)

Vertex	dfs#	low
A	1	1
В	2	1
С	1 2 3 4	1 3
D	4	
E	8	1 3 9
F	5	3
G	9	9
н	10	1 3
I	6	3
J	11	10
B C D E F G H I J K L M	7	3
L	12	10
M	13	13

Computing Biconnected Components

Theorem

The biconnected components of G = (V,E) can be computed in time O(|V|+|E|)

Proof idea

- Use characterization of biconnected components via articulation points
- Identify these articulation points dynamically during DFS
- Use a secondary stack to store the edges of the biconnected components as they are visited
- When an articulation point is discovered, pop the edges of this stack off to output a biconnected component