The Grothendieck Construction for Enriched, Internal and ∞ -Categories

Liang Ze Wong

Final Exam

26 Feb 2019

Publications

- BW1 Jonathan Beardsley and Liang Ze Wong. *The enriched Grothendieck construction*. Advances in Math, 2019.
- BW2 _____. The operadic nerve, relative nerve, and the Grothendieck construction. arXiv:1808.08020, 2018.
 - W Liang Ze Wong. Smash products for Non-cartesian Internal Prestacks, 2019.
 - Alex Chirvasitu, S Paul Smith and Liang Ze Wong.
 Noncommutative geometry of homogenized quantum sl(2, C),
 Pacific Journal of Math, 2017.
 - Krzysztof Kapulkin, Zachery Lindsey and Liang Ze Wong. A co-reflection of cubical sets into simplicial sets with applications to model structures, 2019.
 - Simon Cho, Cory Knapp, Clive Newstead and Liang Ze Wong.
 Weak equivalences between categories of models of type theory. (in preparation)

Let G be a group, and N another group with a G-action

$$G \times N \rightarrow N$$
.

Let G be a group, and N another group with a G-action

$$G \times N \rightarrow N$$
.

Can form $N \times G$

Let G be a group, and N another group with a G-action

$$G \times N \rightarrow N$$
.

Can form $N \rtimes G$ = the set $N \times G$ with multiplication

$$(n,g)(m,f)=(n(g\cdot m),gf).$$

Let G be a group, and N another group with a G-action

$$G \times N \rightarrow N$$
.

Can form $N \rtimes G = \text{the set } N \times G \text{ with multiplication}$

$$(n,g)(m,f)=(n(g\cdot m),gf).$$

Also have a *split* surjection:

$$N \times G \xrightarrow{\pi} G$$

Let G be a group, and N another group with a G-action

$$G \times N \rightarrow N$$
.

Can form $N \rtimes G = \text{the set } N \times G \text{ with multiplication}$

$$(n,g)(m,f)=(n(g\cdot m),gf).$$

Also have a *split* surjection:

$$N = \ker \pi \hookrightarrow N \rtimes G \xrightarrow{\pi} G$$

And we can recover N by taking the kernel of π .

Splitting Lemma (Classical)

There is a bijective correspondence:

$$\left\{ \begin{array}{c} G\text{-actions} \\ G \times N \to N \end{array} \right\} \qquad \stackrel{\bowtie}{\underset{\text{ker}}{\cong}} \qquad \left\{ \begin{array}{c} \text{Split surjections} \\ N \rtimes G \twoheadrightarrow G \end{array} \right\}$$

Splitting Lemma (Classical)

There is a bijective correspondence:

$$\left\{ \begin{array}{c} G\text{-actions} \\ G \times N \to N \end{array} \right\} \qquad \stackrel{\bowtie}{\underset{\text{ker}}{\cong}} \qquad \left\{ \begin{array}{c} \text{Split surjections} \\ N \rtimes G \twoheadrightarrow G \end{array} \right\}$$

Today, we'll see that G and N don't have to be groups:

Splitting Lemma (Classical)

There is a bijective correspondence:

$$\left\{ \begin{array}{c} G\text{-actions} \\ G \times N \to N \end{array} \right\} \qquad \stackrel{\bowtie}{\underset{\text{ker}}{\cong}} \qquad \left\{ \begin{array}{c} \text{Split surjections} \\ N \rtimes G \twoheadrightarrow G \end{array} \right\}$$

Today, we'll see that G and N don't have to be groups: They can be algebras, categories, ∞ -categories, and more!

A group G can be treated as a category $C = * \bigcirc^G$.

A group G can be treated as a category C = *

A group action $G \times N \to N$ can be treated as a group hom $G \to \mathbf{Aut}(N)$

A group G can be treated as a category $C = * \bigcirc^G$.

A group action $G \times N \to N$ can be treated as a group hom $G \to \mathbf{Aut}(N)$, or a *functor*

$$C \to \mathbf{Grp}, \quad * \mapsto \mathsf{N}.$$

A group G can be treated as a category C = * \bigcirc^G .

A group action $G \times N \to N$ can be treated as a group hom $G \to \mathbf{Aut}(N)$, or a *functor*

$$C \rightarrow \mathbf{Grp}, \quad * \mapsto N.$$

Generalizing, we may start with a category C (with many objects)

A group G can be treated as a category C = * C.

A group action $G \times N \to N$ can be treated as a group hom $G \to \mathbf{Aut}(N)$, or a *functor*

$$C \rightarrow \mathbf{Grp}, \quad * \mapsto N.$$

Generalizing, we may start with a category C (with many objects) acting on a collection of categories $\{N_c\}_{c \in C}$.

A group G can be treated as a category C = *

A group action $G \times N \to N$ can be treated as a group hom $G \to \mathbf{Aut}(N)$, or a *functor*

$$C \rightarrow \mathbf{Grp}, \quad * \mapsto N.$$

Generalizing, we may start with a category C (with many objects) acting on a collection of categories $\{N_c\}_{c \in C}$.

i.e. a functor $N_{\bullet}: C \rightarrow \mathbf{Cat}$

$$c \mapsto N_c, \qquad (c \xrightarrow{g} d) \mapsto (N_c \xrightarrow{g_*} N_d).$$

Given $N_{\bullet}: C \to \mathbf{Cat}$, we can define a new category $N_{\bullet} \rtimes C$:

• objects are (x, c) where $x \in N_c$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

- objects are (x, c) where $x \in N_c$
- arrows are $(g_*x \xrightarrow{n} y, c \xrightarrow{g} d)$
- with composition:

$$(n,g)\circ(m,f)=(n(g_*m),gf).$$

Splitting Lemma (Classical)

There is a bijective correspondence:

$$G o \mathbf{Aut}(N)$$

$$\left\{ \begin{array}{c} G\text{-actions} \\ G \to \mathbf{Aut}(N) \end{array} \right\} \qquad \stackrel{\rtimes}{\underset{\ker}{\cong}} \qquad \left\{ \begin{array}{c} \mathsf{Split} \; \mathsf{surjections} \\ N \rtimes G \twoheadrightarrow G \end{array} \right\}$$

Theorem (Grothendieck 1959)

There is an isomorphism of categories:

$$\begin{cases}
Functors \\
N_{\bullet} \colon C \to \mathbf{Cat}
\end{cases}$$

$$\left\{ \begin{array}{c} \textit{Functors} \\ \textit{N}_{\bullet} \colon \textit{C} \to \textbf{Cat} \end{array} \right\} \qquad \stackrel{\rtimes}{\underset{\text{fibers}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{Split opfibrations} \\ \textit{N}_{\bullet} \rtimes \textit{C} \to \textit{C} \end{array} \right\}$$

For $c \in C$, let C/c be the *slice category over c*:

For $c \in C$, let C/c be the *slice category over c*:

Have $C/\bullet: C \to \mathbf{Cat}$ sending $g: c \to d$ to $C/c \xrightarrow{g \circ -} C/d$.

 $(C/\bullet) \rtimes C$ has objects $(x \to c, c)$ and morphisms:

For $c \in C$, let C/c be the *slice category over c*:

Have $C/\bullet: C \to \mathbf{Cat}$ sending $g: c \to d$ to $C/c \xrightarrow{g \circ -} C/d$.

 $(C/\bullet) \rtimes C$ has objects $(x \to c, c)$ and morphisms:

For $c \in C$, let C/c be the *slice category over c*:

Have $C/\bullet: C \to \mathbf{Cat}$ sending $g: c \to d$ to $C/c \xrightarrow{g \circ -} C/d$.

 $(C/\bullet) \rtimes C$ has objects $(x \to c, c)$ and morphisms:

For $c \in C$, let C/c be the *slice category over c*:

Have $C/\bullet: C \to \mathbf{Cat}$ sending $g: c \to d$ to $C/c \xrightarrow{g \circ -} C/d$.

 $(C/\bullet) \rtimes C$ has objects $(x \to c, c)$ and morphisms:

$$\begin{array}{ccc}
x & \longrightarrow & y \\
\downarrow & & \downarrow \\
c & \stackrel{g}{\longrightarrow} & d
\end{array}$$

 $(C/\bullet) \rtimes C = \mathbf{Arr} C$ and $\mathbf{Arr} C \to C$ is the codomain functor.

We have a functor $\mathbf{Mod}_{ullet}\colon \mathbf{Ring}^{\mathrm{op}} \to \mathbf{Cat}$ sending $f\colon R \to S$ to $f^*\colon \mathbf{Mod}_S \to \mathbf{Mod}_R.$

We have a functor $\mathbf{Mod}_{ullet} \colon \mathbf{Ring}^{\mathrm{op}} \to \mathbf{Cat}$ sending $f \colon R \to S$ to

 $f^* \colon \mathbf{Mod}_S \to \mathbf{Mod}_R$.

We have a functor $\mathbf{Mod}_{\bullet} \colon \mathbf{Ring}^{\mathsf{op}} \to \mathbf{Cat}$ sending $f \colon R \to S$ to

$$f^* \colon \mathbf{Mod}_S \to \mathbf{Mod}_R$$
.

$$(M,R) \xrightarrow{(} (N,S)$$

We have a functor $\mathbf{Mod}_{\bullet} \colon \mathbf{Ring}^{\mathsf{op}} \to \mathbf{Cat}$ sending $f \colon R \to S$ to

$$f^* \colon \mathbf{Mod}_S \to \mathbf{Mod}_R$$
.

$$(M,R) \xrightarrow{(R,R)} (N,S)$$

We have a functor $\mathbf{Mod}_{\bullet} \colon \mathbf{Ring}^{\mathsf{op}} \to \mathbf{Cat}$ sending $f \colon R \to S$ to

$$f^* \colon \mathbf{Mod}_S \to \mathbf{Mod}_R$$
.

$$(M,R) \xrightarrow{(M \to f^*N, R \xrightarrow{f} S)} (N,S)$$

We have a functor $\mathbf{Mod}_{\bullet} \colon \mathbf{Ring}^{\mathsf{op}} \to \mathbf{Cat}$ sending $f \colon R \to S$ to

$$f^* \colon \mathbf{Mod}_S \to \mathbf{Mod}_R$$
.

 $Mod_{\bullet} \times Ring^{op}$ has objects (M, R) and morphisms:

$$(M,R) \xrightarrow{(M \to f^*N, R \xrightarrow{f} S)} (N,S)$$

This is the global module category **Mod**.

Let G be a group.

Let G be a group. Instead of G acting on another group, suppose it acts on a k-algebra A

$$G \times A \rightarrow A$$
.

Let G be a group. Instead of G acting on another group, suppose it acts on a k-algebra A

$$G \times A \rightarrow A$$
.

Can form the skew group ring $A \rtimes G$

Let G be a group. Instead of G acting on another group, suppose it acts on a k-algebra A

$$G \times A \rightarrow A$$
.

Can form the skew group ring $A \rtimes G = \bigoplus_{g \in G} A$ where

$$(a,g)\cdot(b,h)=(a(g\cdot b),gh).$$

Let G be a group. Instead of G acting on another group, suppose it acts on a k-algebra A

$$G \times A \rightarrow A$$
.

Can form the skew group ring $A \rtimes G = \bigoplus_{g \in G} A$ where

$$(a,g)\cdot(b,h)=(a(g\cdot b),gh).$$

But we don't have an algebra map $A \rtimes G \to kG \ldots$

kG is both an algebra and a coalgebra, with comultiplication:

$$\Delta : kG \to kG \otimes kG, \quad g \to g \otimes g.$$

kG is both an algebra and a coalgebra, with comultiplication:

$$\Delta \colon \textit{kG} \to \textit{kG} \otimes \textit{kG}, \quad \textit{g} \to \textit{g} \otimes \textit{g}.$$

Can define comodules for any coalgebra C, with coactions

$$M \rightarrow M \otimes C$$
.

kG is both an algebra and a coalgebra, with comultiplication:

$$\Delta \colon kG \to kG \otimes kG, \quad g \to g \otimes g.$$

Can define *comodules* for any coalgebra *C*, with *coactions*

$$M \rightarrow M \otimes C$$
.

We can similarly define *comonoids* and their *comodules* in any monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$.

kG is both an algebra and a coalgebra, with comultiplication:

$$\Delta \colon kG \to kG \otimes kG, \quad g \to g \otimes g.$$

Can define comodules for any coalgebra C, with coactions

$$M \rightarrow M \otimes C$$
.

We can similarly define *comonoids* and their *comodules* in any monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$.

Any $X \in \mathbf{Set}$ has a unique comonoid structure

kG is both an algebra and a coalgebra, with comultiplication:

$$\Delta \colon kG \to kG \otimes kG, \quad g \to g \otimes g.$$

Can define comodules for any coalgebra C, with coactions

$$M \rightarrow M \otimes C$$
.

We can similarly define *comonoids* and their *comodules* in any monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$.

Any $X \in \mathbf{Set}$ has a unique comonoid structure, and TFAE:

• a function $f: W \to X$

kG is both an algebra and a coalgebra, with comultiplication:

$$\Delta \colon kG \to kG \otimes kG, \quad g \to g \otimes g.$$

Can define comodules for any coalgebra C, with coactions

$$M \rightarrow M \otimes C$$
.

We can similarly define *comonoids* and their *comodules* in any monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$.

Any $X \in \mathbf{Set}$ has a unique comonoid structure, and TFAE:

- a function $f: W \to X$
- an X-grading $W = \coprod_{x \in X} W_x$

kG is both an algebra and a coalgebra, with comultiplication:

$$\Delta \colon kG \to kG \otimes kG, \quad g \to g \otimes g.$$

Can define comodules for any coalgebra C, with coactions

$$M \rightarrow M \otimes C$$
.

We can similarly define *comonoids* and their *comodules* in any monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$.

Any $X \in \mathbf{Set}$ has a unique comonoid structure, and TFAE:

- a function $f: W \to X$
- an X-grading $W = \coprod_{x \in X} W_x$
- an X-coaction $W \to W \times X$

kG is both an algebra and a coalgebra, with comultiplication:

$$\Delta \colon kG \to kG \otimes kG, \quad g \to g \otimes g.$$

Can define comodules for any coalgebra C, with coactions

$$M \rightarrow M \otimes C$$
.

We can similarly define *comonoids* and their *comodules* in any monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$.

Any $X \in \mathbf{Set}$ has a unique comonoid structure, and TFAE:

- a function $f: W \to X$
- an X-grading $W = \coprod_{x \in X} W_x$
- an X-coaction $W \to W \times X$

kG is both an algebra and a coalgebra, with comultiplication:

$$\Delta \colon kG \to kG \otimes kG, \quad g \to g \otimes g.$$

Can define comodules for any coalgebra C, with coactions

$$M \rightarrow M \otimes C$$
.

We can similarly define *comonoids* and their *comodules* in any monoidal category $(\mathcal{V}, \otimes, \mathbf{1})$.

Any $X \in \mathbf{Set}$ has a unique comonoid structure, and TFAE:

- a function $f: W \to X$
- an X-grading $W = \coprod_{x \in X} W_x$
- an X-coaction $W \to W \times X$

In $Vect_k$, these are not equivalent.

We don't have an algebra map from $A \rtimes G = \bigoplus_{g \in G} A$ to kG.

We don't have an algebra map from $A \rtimes G = \bigoplus_{g \in G} A$ to kG.

But we do have a G-grading on $A \times G$,

We don't have an algebra map from $A \rtimes G = \bigoplus_{\sigma \in G} A$ to kG.

But we do have a G-grading on $A \rtimes G$, or equivalently, a kG-coaction on $A \rtimes G$

$$(a,g)\mapsto (a,g)\otimes g.$$

We don't have an algebra map from $A \rtimes G = \bigoplus_{g \in G} A$ to kG.

But we do have a G-grading on $A \rtimes G$, or equivalently, a kG-coaction on $A \rtimes G$

$$(a,g)\mapsto (a,g)\otimes g.$$

The coaction perspective allows us to replace kG with any bialgebra or Hopf algebra H.

Theorem (Cohen-Montgomery 1984)

For G a group, there is a bijective correspondence:

$$\left\{ \begin{array}{c} \textit{G-actions} \\ \textit{G} \times \textit{A} \rightarrow \textit{A} \end{array} \right\} \qquad \stackrel{\rtimes}{\underset{\text{fibers}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{G-graded algebras} \\ \textit{A} \rtimes \textit{G} \end{array} \right\}$$

$$G$$
-graded algebras $A \rtimes G$

Theorem (Cohen-Montgomery 1984)

For G a group, there is a bijective correspondence:

$$\left\{ \begin{array}{c} \textit{G-actions} \\ \textit{G} \times \textit{A} \rightarrow \textit{A} \end{array} \right\} \qquad \stackrel{\rtimes}{\underset{\text{fibers}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{G-graded algebras} \\ \textit{A} \rtimes \textit{G} \end{array} \right\}$$

Theorem (v.d.Bergh 1984, Blattner-Montgomery 1985)

For H a Hopf algebra, there is a bijective correspondence:

$$\left\{\begin{array}{c} \textit{H-module algebras} \\ \textit{H} \otimes \textit{A} \rightarrow \textit{A} \end{array}\right\} \qquad \stackrel{\times}{\underset{\mathsf{coinv}}{\cong}} \qquad \left\{\begin{array}{c} \textit{H-comodule algebras} \\ \textit{A} \rtimes \textit{H} \end{array}\right\}$$

A small category C has:

- a set of objects C_0
- for all $x, y \in C_0$, a set of arrows $Hom_C(x, y)$

A small category C has:

- a set of objects C_0
- for all $x, y \in C_0$, a set of arrows $Hom_C(x, y)$

Can replace (Set, \times , {*}) with any monoidal category (\mathcal{V} , \otimes , 1):

A small category C has:

- a set of objects C_0
- for all $x, y \in C_0$, a set of arrows $Hom_C(x, y)$

Can replace (Set, \times , {*}) with any monoidal category (\mathcal{V} , \otimes , 1):

A V-enriched category C has:

- a *set* of objects C_0
- for all $x, y \in C_0$, arrows $\operatorname{Hom}_C(x, y) \in \mathcal{V}$

A small category C has:

- a *set* of objects C_0
- for all $x, y \in C_0$, a set of arrows $Hom_C(x, y)$

Can replace (Set, \times , {*}) with any monoidal category (\mathcal{V} , \otimes , 1):

A V-enriched category C has:

- a set of objects C₀
- for all $x, y \in C_0$, arrows $\operatorname{Hom}_{\mathcal{C}}(x, y) \in \mathcal{V}$

A V-internal category C has:

- objects $C_0 \in \mathcal{V}$
- ullet arrows $\mathcal{C}_1 \in \mathcal{V}$

Enriched and Internal Categories

A small category C has:

- a *set* of objects C_0
- for all $x, y \in C_0$, a set of arrows $Hom_C(x, y)$

Can replace (Set, \times , {*}) with any monoidal category (\mathcal{V} , \otimes , 1):

A V-enriched category C has:

- a *set* of objects C_0
- for all $x, y \in C_0$, arrows $\operatorname{Hom}_{\mathcal{C}}(x, y) \in \mathcal{V}$

A V-internal category C has:

- objects $C_0 \in \mathcal{V}$ objects $C_0 \in \mathbf{Comon}(\mathcal{V})$
- arrows $C_1 \in \mathcal{V}$ arrows $C_1 \in C_0$ **Comod** C_0

A **Vect**_k-enriched category is a k-linear category C with:

- a set of objects C₀
- for all $x, y \in C_0$, a k-vector space $\text{Hom}_C(x, y)$

A **Vect**_k-enriched category is a k-linear category C with:

- a set of objects C₀
- for all $x, y \in C_0$, a k-vector space $\text{Hom}_C(x, y)$

e.g. a k-algebra A gives a k-linear category *

A **Vect**_k-enriched category is a k-linear category C with:

- a set of objects C_0
- for all $x, y \in C_0$, a k-vector space $\text{Hom}_C(x, y)$

e.g. a k-algebra A gives a k-linear category *

A many-object enriched category replaces * with any set.

A **Vect**_k-enriched category is a k-linear category C with:

- a set of objects C₀
- for all $x, y \in C_0$, a k-vector space $\text{Hom}_C(x, y)$

e.g. a k-algebra A gives a k-linear category *

A many-object enriched category replaces * with any set.

Any k-linear category gives rise to a **Vect** $_k$ -internal category with:

- objects kC₀
- arrows $\bigoplus_{x,y} \operatorname{Hom}_C(x,y)$

A **Vect**_k-enriched category is a k-linear category C with:

- a set of objects C_0
- for all $x, y \in C_0$, a k-vector space $\text{Hom}_C(x, y)$

e.g. a k-algebra A gives a k-linear category *

A many-object enriched category replaces * with any set.

Any k-linear category gives rise to a **Vect** $_k$ -internal category with:

- objects kC_0
- arrows $\bigoplus_{x,y} \operatorname{Hom}_C(x,y)$

e.g. a k-algebra A gives an internal category $k \bowtie^A$

A **Vect**_k-enriched category is a k-linear category C with:

- a set of objects C_0
- for all $x, y \in C_0$, a k-vector space $\text{Hom}_C(x, y)$

e.g. a k-algebra A gives a k-linear category *

A many-object enriched category replaces * with any set.

Any k-linear category gives rise to a **Vect** $_k$ -internal category with:

- objects kC_0
- arrows $\bigoplus_{x,y} \operatorname{Hom}_{\mathcal{C}}(x,y)$

e.g. a k-algebra A gives an internal category $k \bowtie^A$

A 'many-object' internal category replaces k with a k-coalgebra.

A **Vect**_k-enriched category is a k-linear category C with:

- a set of objects C_0
- for all $x, y \in C_0$, a k-vector space $\text{Hom}_C(x, y)$

e.g. a k-algebra A gives a k-linear category *

A many-object enriched category replaces * with any set.

Any k-linear category gives rise to a **Vect** $_k$ -internal category with:

- objects kC_0
- arrows $\bigoplus_{x,y} \mathsf{Hom}_{\mathcal{C}}(x,y)$

e.g. a k-algebra A gives an internal category $k \bowtie^A$

A 'many-object' internal category replaces k with a k-coalgebra. (possibly with other properties, e.g. cocommutativty)

Suppose ${\mathcal V}$ has coproducts, and \otimes preserves them.

Suppose ${\mathcal V}$ has coproducts, and \otimes preserves them.

Suppose ${\mathcal V}$ has coproducts, and \otimes preserves them.

Want to replace the ordinary category C with a V-category C.

Suppose ${\mathcal V}$ has coproducts, and \otimes preserves them.

Theorem (Cibils-Marcos 2006, Lowen 2008, Tamaki 2009)

$$\left\{\begin{array}{c} \textit{Functors} \\ \mathcal{A}_{\bullet} \colon \textit{C} \to \textit{V}\text{-}\textbf{Cat} \end{array}\right\} \qquad \stackrel{\times}{\underset{\text{fibers}}{\cong}} \qquad \left\{\begin{array}{c} \textit{C-graded V-cats} \\ \mathcal{A}_{\bullet} \rtimes \textit{C} \end{array}\right\}$$

Want to replace the ordinary category C with a \mathcal{V} -category \mathcal{C} .

Theorem (W)

Let C be a comonoidal V-category.

Suppose ${\mathcal V}$ has coproducts, and \otimes preserves them.

Theorem (Cibils-Marcos 2006, Lowen 2008, Tamaki 2009) $\begin{cases} Functors \\ A_{\bullet}: C \to V\text{-Cat} \end{cases} \qquad \begin{cases} C\text{-graded } V\text{-cats} \\ A_{\bullet} \rtimes C \end{cases}$

Want to replace the ordinary category ${\mathcal C}$ with a ${\mathcal V}$ -category ${\mathcal C}.$

Theorem (W) Let \mathcal{C} be a comonoidal \mathcal{V} -category. Then $\left\{ \begin{array}{c} \mathcal{C}\text{-module }\mathcal{V}\text{-cats} \\ \mathcal{C}\otimes\mathcal{A}\to\mathcal{A} \end{array} \right\} \xrightarrow[\text{coinv}]{\cong} \left\{ \begin{array}{c} \mathcal{C}\text{-comodule }\mathcal{V}\text{-cats} \\ \mathcal{A}\rtimes\mathcal{C} \end{array} \right\}$

Theorem (W)

Suppose V has equalizers, and \otimes preserves them.

Theorem (W)

Suppose V has equalizers, and \otimes preserves them.

Let C be a comonoidal internal category. Then

$$C$$
-module int cats

$$\left\{ egin{array}{c} {\cal C} ext{-module int cats} \ {\cal C}\otimes {\cal A} o {\cal A} \end{array}
ight\} \quad \stackrel{
ightarrow}{\cong} \quad \left\{ egin{array}{c} {\cal C} ext{-comod int cats} \ {\cal A}
times {\cal C} \end{array}
ight\}$$

Theorem (W)

Suppose V has equalizers, and \otimes preserves them. Let C be a comonoidal internal category. Then

$$\left\{ \begin{array}{c} \textit{\mathcal{C}-module int cats} \\ \textit{$\mathcal{C} \otimes \mathcal{A} \to \mathcal{A}$} \end{array} \right\} \qquad \overset{\bowtie}{\underset{\mathsf{coinv}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{\mathcal{C}-comod int cats} \\ \textit{$\mathcal{A} \rtimes \mathcal{C}$} \end{array} \right\}$$

Let
$$C = (C_0, C_1)$$
 be comonoidal internal category, and $A = (A_0, A_1)$ be a C -module category.

Theorem (W)

Suppose V has equalizers, and \otimes preserves them. Let C be a comonoidal internal category. Then

$$\left\{ \begin{array}{c} \mathcal{C}\text{-module int cats} \\ \mathcal{C}\otimes\mathcal{A}\to\mathcal{A} \end{array} \right\} \qquad \stackrel{\bowtie}{\underset{\mathsf{coinv}}{\cong}} \qquad \left\{ \begin{array}{c} \mathcal{C}\text{-comod int cats} \\ \mathcal{A}\rtimes\mathcal{C} \end{array} \right\}$$

Let
$$C = (C_0, C_1)$$
 be comonoidal internal category, and $A = (A_0, A_1)$ be a C -module category.

Can form $\mathcal{A} \rtimes \mathcal{C}$ with objects A_0

Theorem (W)

Suppose V has equalizers, and \otimes preserves them. Let C be a comonoidal internal category. Then

$$\left\{ \begin{array}{c} \textit{\mathcal{C}-module int cats} \\ \textit{$\mathcal{C} \otimes \mathcal{A} \to \mathcal{A}$} \end{array} \right\} \quad \stackrel{\rtimes}{\underset{\mathsf{coinv}}{\cong}} \quad \left\{ \begin{array}{c} \textit{\mathcal{C}-comod int cats} \\ \textit{$\mathcal{A} \rtimes \mathcal{C}$} \end{array} \right\}$$

Let $C = (C_0, C_1)$ be comonoidal internal category, and $A = (A_0, A_1)$ be a C-module category.

Can form $A \rtimes C$ with objects A_0 and arrows $A_1 \boxtimes_{A_0} (C_1 \boxtimes_{C_0} A_0)$.

Theorem (W)

Suppose V has equalizers, and \otimes preserves them. Let C be a comonoidal internal category. Then

$$\left\{ \begin{array}{c} \textit{\mathcal{C}-module int cats} \\ \textit{$\mathcal{C} \otimes \mathcal{A} \to \mathcal{A}$} \end{array} \right\} \quad \stackrel{\rtimes}{\underset{\mathsf{coinv}}{\cong}} \quad \left\{ \begin{array}{c} \textit{\mathcal{C}-comod int cats} \\ \textit{$\mathcal{A} \rtimes \mathcal{C}$} \end{array} \right\}$$

Let $C = (C_0, C_1)$ be comonoidal internal category, and $A = (A_0, A_1)$ be a C-module category.

Can form $A \rtimes C$ with objects A_0 and arrows $A_1 \boxtimes_{A_0} (C_1 \boxtimes_{C_0} A_0)$.

When C = (k, H), A = (k, A), this is just $A \boxtimes_k (H \boxtimes_k k) \cong A \otimes H$.

Theorem (Cibils-Marcos 2006, Lowen 2008, Tamaki 2009)

Suppose $\mathcal V$ has coproducts, and \otimes preserves them. Then:

$$\left\{\begin{array}{c} \textit{Functors} \\ \mathcal{A}_{\bullet} \colon \textit{C} \to \textit{V}\text{-}\textbf{Cat} \end{array}\right\} \qquad \overset{\bowtie}{\underset{\mathsf{fibers}}{\cong}} \qquad \left\{\begin{array}{c} \textit{C-graded V-cats} \\ \mathcal{A}_{\bullet} \rtimes \textit{C} \end{array}\right\}$$

Theorem (Cibils-Marcos 2006, Lowen 2008, Tamaki 2009)

Suppose $\mathcal V$ has coproducts, and \otimes preserves them. Then:

$$\left\{ \begin{array}{c} \textit{Functors} \\ \mathcal{A}_{\bullet} \colon \textit{C} \to \mathcal{V}\text{-}\mathbf{Cat} \end{array} \right\} \qquad \overset{\bowtie}{\underset{\text{fibers}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{C-graded \mathcal{V}-cats} \\ \mathcal{A}_{\bullet} \rtimes \textit{C} \end{array} \right\}$$

When do we get an actual functor $\mathcal{A}_{\bullet} \rtimes \mathcal{C} \to \mathcal{C}$?

Theorem (Cibils-Marcos 2006, Lowen 2008, Tamaki 2009)

Suppose $\mathcal V$ has coproducts, and \otimes preserves them. Then:

$$\left\{ \begin{array}{c} \textit{Functors} \\ \mathcal{A}_{\bullet} \colon \textit{C} \to \mathcal{V}\text{-}\mathbf{Cat} \end{array} \right\} \qquad \overset{\bowtie}{\underset{\text{fibers}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{C-graded } \mathcal{V}\text{-}\textit{cats} \\ \mathcal{A}_{\bullet} \rtimes \textit{C} \end{array} \right\}$$

When do we get an actual functor $\mathcal{A}_{\bullet} \rtimes \mathcal{C} \to \mathcal{C}_{\mathcal{V}}$?

Theorem (Cibils-Marcos 2006, Lowen 2008, Tamaki 2009)

Suppose $\mathcal V$ has coproducts, and \otimes preserves them. Then:

$$\left\{ \begin{array}{c} \textit{Functors} \\ \mathcal{A}_{\bullet} \colon \textit{C} \to \mathcal{V}\text{-}\mathbf{Cat} \end{array} \right\} \qquad \overset{\bowtie}{\underset{\text{fibers}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{C-graded } \mathcal{V}\text{-}\textit{cats} \\ \mathcal{A}_{\bullet} \rtimes \textit{C} \end{array} \right\}$$

When do we get an actual functor $\mathcal{A}_{\bullet} \rtimes \mathcal{C} \to \mathcal{C}_{\mathcal{V}}$?

Theorem (BW1)

Suppose further that ${\bf 1}$ is terminal, ${\cal V}$ has pullbacks, and pullbacks and ${\sf Hom}_{\cal V}({\bf 1},-)$ preserve coproducts.

Theorem (Cibils-Marcos 2006, Lowen 2008, Tamaki 2009)

Suppose $\mathcal V$ has coproducts, and \otimes preserves them. Then:

$$\left\{ \begin{array}{c} \textit{Functors} \\ \mathcal{A}_{\bullet} \colon \textit{C} \to \mathcal{V}\text{-}\mathbf{Cat} \end{array} \right\} \qquad \overset{\bowtie}{\underset{\text{fibers}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{C-graded \mathcal{V}-cats} \\ \mathcal{A}_{\bullet} \rtimes \textit{C} \end{array} \right\}$$

When do we get an actual functor $\mathcal{A}_{\bullet} \rtimes \mathcal{C} \to \mathcal{C}_{\mathcal{V}}$?

Theorem (BW1)

Suppose further that $\mathbf{1}$ is terminal, \mathcal{V} has pullbacks, and pullbacks and $\mathsf{Hom}_{\mathcal{V}}(\mathbf{1},-)$ preserve coproducts. Then:

$$\left\{ \begin{array}{c} \textit{Functors} \\ \mathcal{A}_{\bullet} \colon \textit{C} \to \mathcal{V}\text{-Cat} \end{array} \right\} \qquad \overset{\rtimes}{\underset{\mathsf{fibers}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{Split opfibrations} \\ \mathcal{A}_{\bullet} \rtimes \textit{C} \to \textit{C}_{\mathcal{V}} \end{array} \right\}$$

Enriched Results

Theorem (Cibils-Marcos 2006, Lowen 2008, Tamaki 2009)

Suppose $\mathcal V$ has coproducts, and \otimes preserves them. Then:

$$\left\{ \begin{array}{c} \textit{Functors} \\ \mathcal{A}_{\bullet} \colon \textit{C} \to \mathcal{V}\text{-}\mathbf{Cat} \end{array} \right\} \qquad \overset{\rtimes}{\underset{\text{fibers}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{C-graded } \mathcal{V}\text{-}\textit{cats} \\ \mathcal{A}_{\bullet} \rtimes \textit{C} \end{array} \right\}$$

When do we get an actual functor $\mathcal{A}_{\bullet} \rtimes \mathcal{C} \to \mathcal{C}_{\mathcal{V}}$?

Theorem (BW1)

Suppose further that $\mathbf 1$ is terminal, $\mathcal V$ has pullbacks, and pullbacks and $\mathsf{Hom}_{\mathcal V}(\mathbf 1,-)$ preserve coproducts. Then:

$$\left\{ \begin{array}{c} \textit{Functors} \\ \mathcal{A}_{\bullet} \colon \textit{C} \to \mathcal{V}\text{-}\mathbf{Cat} \end{array} \right\} \qquad \overset{\bowtie}{\underset{\textit{fibers}}{\cong}} \qquad \left\{ \begin{array}{c} \textit{Split opfibrations} \\ \mathcal{A}_{\bullet} \rtimes \textit{C} \to \textit{C}_{\mathcal{V}} \end{array} \right\}$$

e.g. $V = \mathbf{sSet}$

A *simplicial set* is a functor $X_{\bullet} : \Delta^{op} \to \mathbf{Set}$.

A simplicial set is a functor $X_{\bullet} : \Delta^{op} \to \mathbf{Set}$.

$$X_0 \stackrel{\longleftarrow}{\longleftrightarrow} X_1 \stackrel{\longleftarrow}{\longleftrightarrow} X_2 \stackrel{\longleftarrow}{\longleftrightarrow} X_3 \dots$$

A simplicial set is a functor $X_{\bullet}: \Delta^{op} \to \mathbf{Set}$.

$$X_0 \stackrel{\longleftarrow}{\longleftrightarrow} X_1 \stackrel{\longleftarrow}{\longleftrightarrow} X_2 \stackrel{\longleftarrow}{\longleftrightarrow} X_3 \qquad \dots$$
oints paths homotopies

points

A *simplicial set* is a functor $X_{\bullet} : \Delta^{op} \to \mathbf{Set}$.

$$X_0 \stackrel{\longleftarrow}{\longleftrightarrow} X_1 \stackrel{\longleftarrow}{\longleftrightarrow} X_2 \stackrel{\longleftarrow}{\longleftrightarrow} X_3 \dots$$
points paths homotopies

Simplicial sets are thus combinatorial models of topological spaces.

A *simplicial set* is a functor $X_{\bullet} : \Delta^{op} \to \mathbf{Set}$.

$$X_0 \stackrel{\longleftarrow}{\longleftrightarrow} X_1 \stackrel{\longleftarrow}{\longleftrightarrow} X_2 \stackrel{\longleftarrow}{\longleftrightarrow} X_3 \dots$$
points paths homotopies

Simplicial sets are thus combinatorial models of topological spaces.

sSet-enriched categories are 'categories enriched in spaces':

A *simplicial set* is a functor $X_{\bullet} : \Delta^{op} \to \mathbf{Set}$.

$$X_0 \stackrel{\longleftarrow}{\longleftrightarrow} X_1 \stackrel{\longleftarrow}{\longleftrightarrow} X_2 \stackrel{\longleftarrow}{\longleftrightarrow} X_3 \dots$$
points paths homotopies

Simplicial sets are thus combinatorial models of topological spaces. **sSet**-enriched categories are 'categories enriched in spaces':

$$\mathsf{Ob}(\mathcal{C}) \hspace{1cm} X_0 \xleftarrow{\longleftarrow} X_1 \xleftarrow{\longleftarrow} X_2 \hspace{1cm} \dots$$

objects

arrows

homotopies

A simplicial set is a functor $X_{\bullet} : \Delta^{op} \to \mathbf{Set}$.

$$X_0 \stackrel{\longleftarrow}{\longleftrightarrow} X_1 \stackrel{\longleftarrow}{\longleftrightarrow} X_2 \stackrel{\longleftarrow}{\longleftrightarrow} X_3$$
 ... points paths homotopies

Simplicial sets are thus combinatorial models of topological spaces. **sSet**-enriched categories are 'categories enriched in spaces':

$$\mathsf{Ob}(\mathcal{C}) \hspace{1cm} X_0 \xleftarrow{\longleftarrow} X_1 \xleftarrow{\longleftarrow} X_2 \hspace{1cm} \dots$$

objects arrows homotopies

i.e. an ∞-category!

But simplicial sets themselves model ∞ -categories:

$$X_0 \stackrel{\longleftarrow}{\longleftrightarrow} X_1 \stackrel{\longleftarrow}{\longleftrightarrow} X_2 \stackrel{\longleftarrow}{\longleftrightarrow} X_3 \qquad \dots$$
objects arrows homotopies

But simplicial sets themselves model ∞ -categories:

$$X_0 \stackrel{\longleftarrow}{\longleftrightarrow} X_1 \stackrel{\longleftarrow}{\longleftrightarrow} X_2 \stackrel{\longleftarrow}{\longleftrightarrow} X_3 \qquad \dots$$
objects arrows homotopies

And both models are related:

Have an ∞ -categorical version in terms of (marked) simplicial sets:

Have an ∞ -categorical version in terms of (marked) simplicial sets:

But applying the result of BW1 gives a **sSet**-enriched version.

Have an ∞ -categorical version in terms of (marked) simplicial sets:

But applying the result of BW1 gives a \mathbf{sSet} -enriched version. How do these compare?

Have an ∞ -categorical version in terms of (marked) simplicial sets:

Theorem (Lurie 2009)

$$\left\{\begin{array}{c} \textit{Simplical maps} \\ A_{\bullet} \colon S \to \mathbf{Cat}_{\infty} \end{array}\right\} \qquad \stackrel{\bowtie}{\sim} \qquad \left\{\begin{array}{c} \textit{Cocartesian fibrations} \\ A_{\bullet} \rtimes S \to S \end{array}\right\}$$

But applying the result of BW1 gives a **sSet**-enriched version. How do these compare?

Theorem (BW2)

Let
$$A_{\bullet}: C \to \mathbf{sCat}$$
 and $A_{\bullet}: C \xrightarrow{A_{\bullet}} \mathbf{sCat} \xrightarrow{\mathsf{N}} \mathbf{sSet}$.

Have an ∞ -categorical version in terms of (marked) simplicial sets:

Theorem (Lurie 2009)

$$\left\{\begin{array}{c} \textit{Simplical maps} \\ A_{\bullet} \colon S \to \mathbf{Cat}_{\infty} \end{array}\right\} \qquad \stackrel{\rtimes}{\smile} \qquad \left\{\begin{array}{c} \textit{Cocartesian fibrations} \\ A_{\bullet} \rtimes S \to S \end{array}\right\}$$

But applying the result of BW1 gives a **sSet**-enriched version. How do these compare?

Theorem (BW2)

Let
$$A_{\bullet} \colon C \to \mathbf{sCat}$$
 and $A_{\bullet} \colon C \xrightarrow{A_{\bullet}} \mathbf{sCat} \xrightarrow{\mathsf{N}} \mathbf{sSet}$. Then
$$\mathsf{N}(A_{\bullet}) \rtimes \mathsf{N}(C) \cong \mathsf{N}(A_{\bullet} \rtimes C).$$

Thank you!

Questions?

Recall the *simplex category* Δ :

- objects are $[n] = \{0 \le 1 \le \cdots \le n\}$
- morphisms are order-preserving maps

Recall the *simplex category* Δ :

- objects are $[n] = \{0 \le 1 \le \cdots \le n\}$
- morphisms are order-preserving maps

Let $(C, \otimes, 1)$ be a strict monoidal category.

Recall the *simplex category* Δ :

- objects are $[n] = \{0 \le 1 \le \cdots \le n\}$
- morphisms are order-preserving maps

$$C^{\bullet} \colon \Delta^{\mathsf{op}} \to \mathbf{Cat}, \qquad [n] \mapsto C^n.$$

Recall the *simplex category* Δ :

- objects are $[n] = \{0 \le 1 \le \cdots \le n\}$
- morphisms are order-preserving maps

$$C^{\bullet} \colon \Delta^{\mathsf{op}} \to \mathbf{Cat}, \qquad [n] \mapsto C^{n}.$$

$$* \xleftarrow{\longleftarrow} C \xleftarrow{\longleftarrow} C^2 \qquad \dots$$

Recall the *simplex category* Δ :

- objects are $[n] = \{0 \le 1 \le \cdots \le n\}$
- morphisms are order-preserving maps

$$C^{\bullet} \colon \Delta^{\mathsf{op}} \to \mathbf{Cat}, \qquad [n] \mapsto C^{n}.$$

Recall the *simplex category* Δ :

- objects are $[n] = \{0 \le 1 \le \cdots \le n\}$
- morphisms are order-preserving maps

$$C^{ullet} : \Delta^{\mathrm{op}} o \mathbf{Cat}, \qquad [n] \mapsto C^n.$$

$$* & \longleftrightarrow \qquad C & \longleftrightarrow \qquad C^2 \\ * & \longmapsto \mathbf{1} \\ c \otimes d & \longleftrightarrow \qquad (c,d)$$

Recall the *simplex category* Δ :

 $C^{\otimes} := C^{\bullet} \times \Delta^{\mathrm{op}}$

- objects are $[n] = \{0 \le 1 \le \cdots \le n\}$
- morphisms are order-preserving maps

Let $(C, \otimes, 1)$ be a strict monoidal category. Then we have:

 $C^{\bullet} : \Delta^{op} \to \mathbf{Cat}, \qquad [n] \mapsto C^n.$

Recall the *simplex category* Δ :

- objects are $[n] = \{0 \le 1 \le \cdots \le n\}$
- morphisms are order-preserving maps

Let $(C, \otimes, 1)$ be a strict monoidal category. Then we have:

$$C^{ullet} \colon \Delta^{\mathsf{op}} o \mathbf{Cat}, \qquad [n] \mapsto C^n.$$

$$* & \longleftrightarrow \qquad C & \longleftrightarrow \qquad C^2 \\ * & \longmapsto \qquad \mathbf{1}$$

$$c \otimes d \longleftrightarrow \qquad (c,d)$$

 $C^{\otimes} := C^{\bullet} \rtimes \Delta^{\operatorname{op}}$ has an opfibration down to $\Delta^{\operatorname{op}}$.

Recall the *simplex category* Δ :

- objects are $[n] = \{0 \le 1 \le \cdots \le n\}$
- morphisms are order-preserving maps

Let $(C, \otimes, 1)$ be a strict monoidal category. Then we have:

 $C^{\bullet} : \Delta^{op} \to \mathbf{Cat}, \qquad [n] \mapsto C^n.$

 $C^{\otimes} := C^{\bullet} \rtimes \Delta^{\operatorname{op}}$ has an opfibration down to $\Delta^{\operatorname{op}}$. In fact, we can define monoidal categories in terms of opfibrations $M \to \Delta^{\operatorname{op}}$.

Proposition (Lurie 2007)

A simplicial monoidal category $(C, \otimes, \mathbf{1})$ gives rise to a monoidal ∞ -category $N(C^{\otimes})$.

Proposition (Lurie 2007)

A simplicial monoidal category $(C, \otimes, \mathbf{1})$ gives rise to a monoidal ∞ -category $N(C^{\otimes})$.

Theorem (BW2)

Let C be a strict simplicial monoidal category.

Proposition (Lurie 2007)

A simplicial monoidal category $(C, \otimes, \mathbf{1})$ gives rise to a monoidal ∞ -category $N(C^{\otimes})$.

Theorem (BW2)

Let C be a strict simplicial monoidal category. Then

$$N(C^{op \otimes})$$
 and $N(C^{\otimes})_{op}$

are equivalent as monoidal ∞ -categories.

Proposition (Lurie 2007)

A simplicial monoidal category $(C, \otimes, \mathbf{1})$ gives rise to a monoidal ∞ -category $N(C^{\otimes})$.

Theorem (BW2)

Let C be a strict simplicial monoidal category. Then

$$N(C^{op \otimes})$$
 and $N(C^{\otimes})_{op}$

are equivalent as monoidal ∞ -categories.

This gives a better handle on coalgebras in monoidal ∞ -categories arising from simplicial monoidal categories.