

• K-nearest neighbors of a new testing point x: data points that have the k smallest distance to x.

1

Collect training data.

For a new testing gray point, you will want to classify the point to yellow, blue, or pink.

4

Maximum Likelihood Estimation

Foundations of Data Analysis

February 13, 2023

Why Maximum Likelihood?

Goal of MLE is to find the best distributions to fit your data.

Likelihood as Joint Probability Function

 $\boldsymbol{\theta}$ is a parameter, for example, mean and variance of Gaussian.

$$L(\theta; x_1, \dots, x_n) = \prod_{i=1}^{n} p(x_i; \theta)$$

Maximum a Likelihood

Maximize the likelihood function to estimate θ :

$$L(\theta; x_1, \dots, x_n) = \prod_{i=1}^n p(x_i; \theta)$$

(See class notes for derivations of MLE of Gaussians).

 $X \sim \mathrm{Ber}(\theta), \;\; \theta$ is the probability of x_i taking value one, $1-\theta$ is the probability of x_i taking value zero .

For *n* data points, we assume *k* points take the value one.

$$L(\theta \mid x_1, \dots, x_n) = \theta^k (1 - \theta)^{n-k}$$
, where $k = \sum x_i$

$$X \sim \text{Ber}(\theta)$$

$$L(\theta \mid x_1, \dots, x_n) = \theta^k (1 - \theta)^{n-k}, \text{ where } k = \sum_i x_i$$

$$\frac{dL}{d\theta} = k\theta^{k-1} (1 - \theta)^{n-k} - (n - k)\theta^k (1 - \theta)^{n-k-1}$$

$$X \sim \text{Ber}(\theta)$$

$$L(\theta | x_1, ..., x_n) = \theta^k (1 - \theta)^{n-k}, \text{ where } k = \sum_i x_i$$

$$\frac{dL}{d\theta} = k\theta^{k-1} (1 - \theta)^{n-k} - (n - k)\theta^k (1 - \theta)^{n-k-1}$$

$$= (k(1 - \theta) - (n - k)\theta)\theta^{k-1} (1 - \theta)^{n-k-1}$$

 $X \sim \text{Ber}(\theta)$

$$L(\theta | x_1, ..., x_n) = \theta^k (1 - \theta)^{n-k}, \text{ where } k = \sum_i x_i$$

$$\frac{dL}{d\theta} = k\theta^{k-1} (1 - \theta)^{n-k} - (n - k)\theta^k (1 - \theta)^{n-k-1}$$

$$= (k(1 - \theta) - (n - k)\theta)\theta^{k-1} (1 - \theta)^{n-k-1}$$

$$= (k - n\theta)\theta^{k-1} (1 - \theta)^{n-k-1}$$

$$X \sim \text{Ber}(\theta)$$

$$L(\theta | x_1, ..., x_n) = \theta^k (1 - \theta)^{n-k}, \text{ where } k = \sum_i x_i$$

$$\frac{dL}{d\theta} = k\theta^{k-1} (1 - \theta)^{n-k} - (n - k)\theta^k (1 - \theta)^{n-k-1}$$

$$= (k(1 - \theta) - (n - k)\theta)\theta^{k-1} (1 - \theta)^{n-k-1}$$

$$= (k - n\theta)\theta^{k-1} (1 - \theta)^{n-k-1}$$

$$\frac{dL}{d\theta}(\hat{\theta}) = 0 \implies \hat{\theta} = \frac{k}{n}$$