Solutions: Binary Expansion (Example 6)

Part A — Worked Example

$$241 \div 2 = 120 r1$$

$$120 \div 2 = 60 r0$$

$$60 \div 2 = 30 r0$$

$$30 \div 2 = 15 r0$$

$$15 \div 2 = 7 r1$$

$$7 \div 2 = 3 r1$$

$$3 \div 2 = 1 r1$$

$$1 \div 2 = 0 r1$$

Reading bottom-to-top: $(11110001)_2$.

Part B — Easier Practice Solutions

1. $(13)_{10}$:

$$13 \div 2 = 6 r1, 6 \div 2 = 3 r0, 3 \div 2 = 1 r1, 1 \div 2 = 0 r1.$$

Answer: $(13)_{10} = (1101)_2$.

 $2. (100)_{10}$:

$$100 \div 2 = 50 \, r0, \ 50 \div 2 = 25 \, r0, \ 25 \div 2 = 12 \, r1, \ 12 \div 2 = 6 \, r0, \ 6 \div 2 = 3 \, r0, \ 3 \div 2 = 1 \, r1, \ 1 \div 2 = 0 \, r1.$$

Answer: $(100)_{10} = (1100100)_2$.

Part C — Harder Challenge Solution

 $(1023)_{10}$. Note: $1023 = 2^{10} - 1$.

This means the binary expansion will be ten 1's in a row.

$$(1023)_{10} = (11111111111)_2.$$

Teaching Notes

- Reinforce the bottom-to-top reading of remainders.
- Use powers of 2 to recognize special forms (like $2^n 1$).
- Encourage students to double-check by recomputing in decimal.