Universidade do Minho	2020/2021				Teste 1
Probabilidades e Aplicações (CC+MAT, 3° ano)		23.11.202	0 das	18:00	às 20:00
Nome:		Curso:]	Nº:	
. (6 pontos) Considere a experiência aleatória de lançar um dac	do equilibrado (faces 1	a 6) até sair u	m ás ((face	1).
O espaço de resultados é $\Omega =$					
Estes resultados têm probabilidades					
A v.a. $X:\Omega\longrightarrow\mathbb{R}$ que representa "o nº de lançamentos nec	cessários até sair um ás	s" tem suporte			
e a sua distribuição chama-se	com parâmetro(s)				
Sem recorrer a cálculos, mostre que $P(X > n) = q^n$, especifi	\hat{q} icando o valor de q				
Então $P(X > 3) = \dots$ e $P(X > 13 \mid X > 10) = \dots$					
) (c) D===================================	D 1 1	1.0		1.	1.0
 (6 pontos) <u>RESOLVA NO VERSO</u>. Em cada dia, uma acção da probabilidades 0.39, 0.2 e 0.41, respectivamente. Admita qu 					
	-				
(a) Recorrendo ao TPT, calcule a probabilidade de ao fim	-	ser igual à ini	cial (e:	xpliqu	$\iota e).$
(b) Indique o código R para simular a variação da cotação a	ao fim de 20 dias.				
(c) Por meio de simulação, com $r=10^5$ réplicas, estime	(inclua semp	re o código qu	e usou	na r	esolução)
i. a probabilidade de que ao fim de 20 dias a acção te	enha subido mais do qu	ıe 5€			
ii. graficamente a f.m.p. da v.a. que representa a "alt	teração da cotação ao fi	m de 20 dias"	. Com	ente.	
3. (6 pontos) Considere um par aleatório (X,Y) com f.m.p. con	ijunta representada ao l	ado			
(i) Represente as f.m.p. marginais de X e de Y e identifique-a	as pelo nome usual.				
		$X \setminus Y$	0	1	2
$X: \left\{ \begin{array}{c} Y: \left\{ \end{array} \right.$		-1	$\frac{3}{24}$	$\frac{5}{24}$	0
,		0	0	$\frac{2}{24}$	$\frac{6}{24}$
$X \cap \dots \qquad Y \cap \dots$		1	$\frac{3}{24}$	$\frac{5}{24}$	
(ii) X e Y são independentes? Justifique					
(iii) $E(XY) = \dots$					
(iv) $Cov(X, Y) = \dots$					
(v) Comente os resultados obtidos					
1. A população portuguesa reparte-se pelos grupos sanguíneos A					
(a) Qual a probabilidade de numa amostra (ao acaso) de 1	0 portugueses haver 5	1 0 4 naguel	es ørm	nos (i	resp.)?
() Julia in particular de manuel announce (de deduce) de 1	- r	, , , , , , , , , , , , , , , , , , , ,			
				,	_ ,

.....