

2.720 D-Lab 2

April 8th, 2024 Pen Palz

Purpose/Goals

- Provide Staff update on cross-slide design choices, including:
 - Dovetail modifications
 - CNC Motor placement
 - Lead screw integration

 Receive feedback to inform remaining subassemblies

Gantt Chart

Functional Requirements

Name	Definition	Value & Range	Measurement	Requirement Met?
Repeatability The x-slide travels the same amount for each rotation within x in.		0.0002"	0.00017"	Ø
Accuracy For a distance set on the dial, the x stravel that amount, within a range of		0.0035"	0.0028"	Ø
Resolution	The smallest distance the x-slide can travel (lead size)	0.0005", -0.00025"/+0.0005"	.00003125"	
Stiffness	x-slide stiffness in X direction	13,200 lbf/in (min)	375,000 lbf/in	
Size Weight	Outer envelope of the cross slide	width (in z): 8" length (in x): 12" (max)	10.25"in x 3.75"in	
	Weight of all components of the x-slide	35lb (max)	7.7 lb	Ø
Lifetime	Number of times the x-slide can traverse its full range	10^6 traverses	>10 ⁶ cycles	Ø
Travel	Total distance that can be traversed by the x-slide	0.55" (min)	1.5"	
Load capacity	Passive load that the x-slide can handle during operation	22.5 lb in Y, 13.5 lb in X, 18 lb in Z (min)	> 22.5 lb in all directions	Ø

Name	Definition/Explanation	Value & Range	Measurement	Requirement Met?
Material Size	Maximum diameter and length of stock that can be held by the chuck and cut.	8" long, 1" diameter	Diameter: 0.375" - 1.0" Length: 3.0" - 9.0"	Ø
Power Requirement	Max power used during cut	< 430 W (max)	~ 80 W	Ø
Lathe temperature	Components of the lathe that the user may be able to touch must be kept below a certain temperature for safety.	44°C	35°C	Ø
Accuracy of produced cut	The difference between the size of a cut and the intended/expected size of a cut	(+/-) 0.026 in	.007"	Ø
Repeatability/ precision of produced cut	The standard deviation of a set of distinctly cut diameter values all intended to be cut to the same value	σ = 0.002" (50 microns)	.002"	Ø
Weight	The total weight of the lathe (without the base)	35 lbs ± 15 lbs	32.5 lbs, 51 with base + electronics	Ø
Footprint	The total size of the lathe (without the base)	20"x12"x14" (LxWxH) + 2 in (max)	24" by 24" by 16" with base 17" X 14" X 14" without	⊘
Cost/Price	Total cost of all lathe components, excluding staff-provided parts and the CNC kit	\$200	\$172	Ø
5 LMITMECHE				

Cross Slide Design Process: Are we concerned? Yes No Maybe

Concern	Yes	Maybe	No
Backdriving the motor by hand during manual mode	X		
Torque required for human to turn the lead screw	Х		
Friction between materials, need for thrust bearings	Х		
Concentricity of the lead screw due to human load		Х	
Strength of the thrust bearings		X	
Power required by the CNC motor to turn the lead screw			X
Torsional stiffness of the lead screw			X

X-slide Design

Dovetail made of steel with brass gib inserted

1/4"-20 lead screw assembly runs 9.5" all the way through connecting CNC motor, handle, and male dovetail

X-slide Design

X-slide Design

X-slide Fabrication

X-Slide Assembly

X-Slide Machined Parts

Lead Screw

Clamp

Leadscrew life

Assumptions:

- Average position of nut at 2.5 inches from handle end of dovetail
- Force of 6 lbf on handle, concentric with leadscrew clamp through hole
- Hole on motor side of dovetail imposes deflection on leadscrew

Zinc-Plated Steel Endurance Limit

$$S_e = k_a k_b k_c k_d k_e k_f (0.5 S_{UTS})$$
 $S_e = 0.41(39.15 \text{ ksi}) = 16.1 \text{ ksi}$

Mean and Alternating Stress

$$\sigma_m = \frac{32(15lbf)(0.125in)}{\pi(0.25 in)^4} = 4.88 ksi \qquad \sigma_a = \frac{32(4.65lbf)(0.125in)}{\pi(0.25 in)^4} = 1.79 ksi$$

Fatigue Factor of Safety for Infinite Life

$$n_f = \frac{1}{\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}}} = \frac{1}{\frac{\sigma_a}{16.1ksi} + \frac{\sigma_m}{60.2ksi}} = 5.2$$

Modified Goodman criterion predicts infinite life with SF 5.2

System Spring Model

System Spring Model

$ au_{ heta} = 25.225 \; \textit{lbf} \cdot \textit{in}$	φ = 4.356 °
$F_x = 14.264 \ lbf$	$\delta_x = \left(8.333 \cdot 10^{-5}\right) \ in$

	Base	Bronze Bearing	Nylon Washer	Lead Screw	Cross-Slide
K _x (lbf/in)	~10 ⁷	~10 ⁷	~105	~105	~1.71×10 ⁵
θ_x (lbf-in/deg)	N/A	N/A	N/A	~5.79	~5.79

FR for X
Stiffness:
~1.32×10⁴ lbf/in

Efficiency

Need an efficiency of 4.6% given expected human's 3.1 in-lbf of input torque and 18 lbf passive force from tool. $\epsilon_{\rm actual}$ = 6.2%> $\epsilon_{\rm needed}$

$$T_{ideal} = T_{threads} \quad \text{when } f = 0$$

$$T_{actual} = T_{threads} + T_{bearings} + T_{dovetail}$$

$$\epsilon = \frac{T_{ideal}}{T_{actual}} = \frac{0.1416in \cdot lbf}{0.8673in \cdot lbf + 1.4in \cdot lbf + 4.69 \times 10^{-5}in \cdot lbf} = 6.2\%$$

Measurement

No-load Repeatability (N=11)

Repeatability (2σ): 0.09 (thou)

Backlash (N=11)

Accuracy(mean): 2.7 (thou)

X Deflection@ 22 lbf load(N=10)Accuracy(mean):

0.06 (thou)

Repeatability (2 σ):

0.08 (thou)

Required X
Accuracy(mean):
3.5 (thou)
Required X
Repeatability (2σ):
0.2 (thou)

Final X
Accuracy(mean):
2.76 (thou)
Final X Repeatability
(2σ):

0.17 (thou)

Measurement

Z Deflection @ 22 lbf load (N = 10)

Z Accuracy(mean): 0.28 (thou) Z Repeatability (2σ): 0.09 (thou)

Z Accuracy Requirement: 0.5 (thou) **Z Repeatability Requirement**: 0.2 (thou)

Static Torque Friction (N = 10, mean \pm 2 σ) 0.42 \pm 0.06 in-lbs

Requirement: 1.2 in-lbs

BACKUP SLIDES

Length of leadscrew affecting motor placement

- Yasin's calc showing that it doesn't matter if the leadscrew is longer, bending won't lead to error

NEMA 23 Experiment

- Motor should be mechanically disconnected when in manual mode
 - "Free spinning" can damage rotor/stator alignment
 - Shorten motor life
- Possible to generate problematic voltages
 - Risk frying electronics

Test A

Test B

Real A

Real B

NEMA 23 Experiment

Efficiency calcs

Efficiency calcs cont.

