

FORM PTO-1390

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ATTORNEY'S DOCKET NUMBER

**TRANSMITTAL LETTER TO THE UNITED STATES  
DESIGNATED/ELECTED OFFICE (DO/EO/US)  
CONCERNING A FILING UNDER 35 U.S.C. 371**

50179-081

*Pct*

U.S. APPLIC. NO. (if known, see 37 CFR 1.5)

**09/555275**

|                               |                           |                       |
|-------------------------------|---------------------------|-----------------------|
| INTERNATIONAL APPLICATION NO. | INTERNATIONAL FILING DATE | PRIORITY DATE CLAIMED |
| PCT/AU98/00998 ✓              | November 27, 1998 ✓       | November 27, 1997 ✓   |

## TITLE OF INVENTION

METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTOR ✓

## APPLICANT(S) FOR DO/EO/US

John David BENTLEY, Leah Jane COSGROVE, Maurice John FRENKEL, Thomas Peter John GARRETT, Lynne Jean LAWRENCE, Meizhen LOU, George Oscar LOVRECZ, Neil Moreton MCKERN, Peter Archibald TULLOCH (deceased), Colin Wesley WARD

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1.  This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2.  This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3.  This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
4.  A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5.  A copy of the International Application as filed (35 U.S.C. 371(c)(2))
  - a.  is transmitted herewith (required only if not transmitted by the International Bureau).
  - b.  has been transmitted by the International Bureau.
  - c.  is not required, as the application was filed in the United States Receiving Office (RO/US)
6.  A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7.  Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
  - a.  are transmitted herewith (required only if not transmitted by the International Bureau).
  - b.  have been transmitted by the International Bureau.
  - c.  have not been made; however, the time limit for making such amendment has NOT expired.
  - d.  have not been made and will not be made.
8.  A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
9.  An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
10.  A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

## Items 11. to 16. below concern other document(s) or information included:

11.  An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
12.  An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
13.  A **FIRST** preliminary amendment.  
 A **SECOND** or **SUBSEQUENT** preliminary amendment.
14.  A substitute specification.
15.  A change of power of attorney and/or address letter.
16.  Other items or information.

International Search Report  
 International Preliminary Examination Report  
 Front page of published International application

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--------------|--|-----------|--|
| U.S. APPLIC. NO. (if known, see 37 CFR 1.50)<br><b>09/555275</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INTERNATIONAL APPLICATION NO.<br>PCT/AU98/00998                                                                                                                                                         | ATTORNEY'S DOCKET NUMBER<br>50179-081             |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         | CALCULATIONS      PTO USE ONLY                    |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| <p>17. <input checked="" type="checkbox"/> The following fees are submitted:</p> <p><b>Basic National Fee (37 CFR 1.492(a)(1)-(5)):</b></p> <table> <tr> <td>Search Report has been prepared by the EPO or JPO</td> <td>\$840.00</td> </tr> <tr> <td>International preliminary examination fee paid to USPTO (37 CFR 1.482)</td> <td>\$670.00</td> </tr> <tr> <td>No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2))</td> <td>\$690.00</td> </tr> <tr> <td>Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO</td> <td>\$970.00</td> </tr> <tr> <td>International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4)</td> <td>\$96.00</td> </tr> </table> <p style="text-align: center;"><b>ENTER APPROPRIATE BASIC FEE AMOUNT =</b></p> <table> <tr> <td></td> <td style="text-align: right;">\$ 970.00</td> </tr> </table> <p>Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input checked="" type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)).</p> <table> <tr> <td></td> <td style="text-align: right;">\$ 130.00</td> </tr> </table> |                                                                                                                                                                                                         | Search Report has been prepared by the EPO or JPO | \$840.00    | International preliminary examination fee paid to USPTO (37 CFR 1.482) | \$670.00  | No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)) | \$690.00 | Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO | \$970.00 | International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4) | \$96.00             |  | \$ 970.00    |  | \$ 130.00 |  |
| Search Report has been prepared by the EPO or JPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$840.00                                                                                                                                                                                                |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| International preliminary examination fee paid to USPTO (37 CFR 1.482)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$670.00                                                                                                                                                                                                |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$690.00                                                                                                                                                                                                |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$970.00                                                                                                                                                                                                |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$96.00                                                                                                                                                                                                 |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 970.00                                                                                                                                                                                               |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 130.00                                                                                                                                                                                               |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| Claims                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number Filed                                                                                                                                                                                            | Number Extra                                      | Rate        |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| Total Claims                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33 -20 =                                                                                                                                                                                                | 13                                                | x \$18.00   | \$ 234.00                                                              |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| Independent Claims                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 -3 =                                                                                                                                                                                                  | 0                                                 | x \$78.00   | \$                                                                     |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| Multiple dependent claim(s) (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                         |                                                   | + \$260.00  | \$                                                                     |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         | <b>TOTAL OF ABOVE CALCULATIONS =</b>              | \$ 1,334.00 |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| Reduction by 1/2 for filing by small entity, if applicable. Verified Small Entity Statement must also be filed. (Note 37 CFR 1.9, 1.27, 1.28).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                   | \$          |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         | <b>SUBTOTAL =</b>                                 | \$ 1,334.00 |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| Processing fee of \$130.00 for furnishing the English translation later than the <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         | +                                                 | \$          |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         | <b>TOTAL NATIONAL FEE =</b>                       | \$ 1,334.00 |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | +                                                 | \$          |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         | <b>TOTAL FEES ENCLOSED =</b>                      | \$ 1,334.00 |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         | Amount to be:<br>refunded                         | \$          |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         | charged                                           | \$          |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| a. <input type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A check in the amount of \$ _____ to cover the above fees is enclosed.                                                                                                                                  |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| b. <input checked="" type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Please charge my Deposit Account No. <u>500417</u> in the amount of \$ <u>1,334.00</u> to cover the above fees. A duplicate copy of this sheet is enclosed.                                             |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| c. <input checked="" type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. <u>500417</u> . A duplicate copy of this sheet is enclosed. |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| <p><b>NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| <p>SEND ALL CORRESPONDENCE TO:</p> <p>McDERMOTT, WILL &amp; EMERY<br/>600 13<sup>th</sup> Street, N.W.<br/>Washington, DC 20005-3096<br/>(202) 756-8000<br/>Facsimile (202) 756-8087</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| <table border="1"> <tr> <td>SIGNATURE</td> <td><i>Robert L. Price</i></td> </tr> <tr> <td>NAME</td> <td>Robert L. Price</td> </tr> <tr> <td>22,685</td> <td></td> </tr> <tr> <td>REGISTRATION NUMBER</td> <td></td> </tr> <tr> <td>May 26, 2000</td> <td></td> </tr> <tr> <td>DATE</td> <td></td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                         |                                                   |             |                                                                        | SIGNATURE | <i>Robert L. Price</i>                                                                                                                    | NAME     | Robert L. Price                                                                                                                  | 22,685   |                                                                                                                                     | REGISTRATION NUMBER |  | May 26, 2000 |  | DATE      |  |
| SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>Robert L. Price</i>                                                                                                                                                                                  |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Robert L. Price                                                                                                                                                                                         |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| 22,685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| REGISTRATION NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                         |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| May 26, 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |
| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                         |                                                   |             |                                                                        |           |                                                                                                                                           |          |                                                                                                                                  |          |                                                                                                                                     |                     |  |              |  |           |  |

09/555275

527 Rec'd PCT/PTO 26 MAY 2000

Docket No.: 50179-081

PATENT

**IN THE UNITED STATES PATENT AND TRADEMARK OFFICE**

In re Application of :  
John David BENTLEY, et al. :  
Serial No.: Group Art Unit:  
Filed: May 26, 2000 Examiner:  
For: METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTOR

**PRELIMINARY AMENDMENT**

Assistant Commissioner for Patents  
Washington, DC 20231

Sir:

Prior to examination of the above-referenced application, please amend the application as follows:

**IN THE CLAIMS:**

Claim 4, line 1, please change "any one of claims 1 to 3" to --claim 1--.

Claim 5, line 1, please change "any one of claims 1 to 4" to --claim 1--.

Claim 6, line 1, please change "any one of claims 1 to 4" to --claim 1--.

Claim 7, line 1, please change "any one of claims 1 to 4" to --claim 1--.

Claim 11, line 1, please change "any one of claims 1 to 10" to --claim 1--.

Claim 13, line 1, please change "any one of claims 1 to 12" to --claim 1--.

Claim 14, line 1, please change "any one of claims 1 to 12" to --claim 1--.

Claim 16, line 1, please delete "or claim 15".

Claim 19, line 1, please change "any one of claims 1 to 18" to --claim 1--.

Claim 20, line 1, please change "any one of claims 1 to 18" to --claim 1--.

Claim 23, line 1, please delete "or claim 22".

Claim 24, line 1, please change "any one of claims 21 to 23" to --claim 21--.

Claim 27, line 1, please change "any one of claims 21 to 26" to --claim 21--.

Claim 28, line 1, please change "any one of claims 21 to 26" to --claim 21--.

Claim 29, lines 3 and 4, please change "any one of claims 1 to 29" to --claim 1--.

#### REMARKS

The above-referenced application is amended to delete the multiple dependency of claims 4-7, 11, 13-14, 16, 19-20, 23-24, and 27-29 to avoid the multiple dependent claim filing fee.

Respectfully submitted,

MCDERMOTT, WILL & EMERY

  
Robert L. Price  
Registration No. 22,685

600 13<sup>th</sup> Street, N.W.  
Washington, DC 20005-3096  
(202) 756-8000 RLP:klm  
**Date: May 26, 2000**  
Facsimile: (202) 756-8087



Attorney Docket No. 050179-0081

JC07 Rec'd PCT/PTO 04 FEB 2002

09/555275

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of )  
John David BENTLEY, et al. )  
Serial No.: 09/555,275 ) Group Art Unit: TBA  
Filed: May 26, 2000 ) Examiner: TBA  
For: METHOD OF DESIGNING AGONISTS AND )  
ANTAGONISTS TO IGF RECEPTOR )

RESPONSE TO NOTIFICATION OF MISSING REQUIREMENTS UNDER 35 U.S.C.  
371 IN THE UNITED STATES DESIGNEATE/ELECTED OFFICE  
AND PRELIMINARY AMENDMENT

Honorable Assistant Commissioner for Patents  
BOX SEQUENCE  
Washington, D.C. 20231

Sir:

Prior to initial examination of the above-captioned patent application and in response to the Notification of Missing Requirements Under 35 U.S.C. 371 in the United States Designated/Elected Office, mailed December 04, 2001, please amend the above-captioned patent application as follows:

**IN THE SPECIFICATION:**

Please substitute the second full paragraph on page 10 of the specification with the following rewritten paragraph.

-- **Figure 6.** Amino acid sequence of IGF-IR and related proteins (SEQ ID NO. 1, SEQ ID No. 2, SEQ ID NO. 3, SEQ ID NO. 4, SEQ ID NO. 5, and SEQ ID NO. 6). a, L1 and L2

domains of human IGF-1R are shown based on a sequence alignment for the two proteins and a structural alignment for the L1 and L2 domains. Positions showing conservation physico-chemical properties of amino acids are boxed, residues used in the structural alignment are shown in Times Italic and residues which form the Trp 176 pocket are in Times Bold. Secondary structure elements for L1 (above the sequences) and L2 (below) are indicated as cylinders for helices and arrows for *B*-strands. Strands are shaded (pale, medium and dark grey) according to the *B*-sheet to which they belong. Disulfide bonds are also indicated. b, Cys-rich domains of human IGF-1R, IR and EGFR (domains 2 and 4) are aligned based on sequence and structural considerations. Secondary structural elements and disulfide bonds are indicated above the sequences. The dashed bond is only present in IR. Different types of disulfide bonded modules are labeled below the sequences as open, filled or broken lines. Boxed residues show conservation of physico-chemical properties and structurally conserved residues for modules 4-7 are shown in Times Italic. Residues from EGFR which do not conform to the pattern are in lowercase with probable disulfide bonding indicated below and the conserved Trp 176 and the semi-conserved Gln 182 are in Times Bold.--

**Please substitute the second full paragraph on page 11 of the specification with the following rewritten paragraph.**

-- **Figure 9.** Sequence alignment of hIGF-1R (SEQ ID NO.11), Hir (SEQ ID NO. 12), and hIRR (SEQ ID NO. 13) ectodomains, derived by use of the PileUp program in the software

package of Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA. for assignment of homologous 3D structures see Figure 6.--

**Please substitute the third paragraph on page 20 and continuing on to page 21 of the specification with the following rewritten paragraph.**

-- The expression plasmid pEE14/IGF-1R/462 was constructed by inserting the oligonucleotide cassette (SEQ ID NO. 14 and SEQ ID NO. 15):

*AatII*  
5' GACGTC GACGAT GACGATAAG GAACAAAAACTCATC  
D V D D D K E Q K L I  
(EK cleavage) (c-myc tail)  
S E E D L N (Stop)  
TCAGAAGAGGATCTGAAT TAGAATT C GACGTC 3'

*EcoRI AatII*

encoding an enterokinase cleavage site, c-myc epitope tag (Hoogenboom, H.R., et al., 1991, Nucleic acids Res. 19:4133-4137) and stop codon into the AatII site (within codon 462) of Igf-1r cDNA in the mammalian expression vector pECE (Ebina, Y., et al., 1985, Cell, 40:747-758; kindly supplied by W.J. Rutter, UCSF, USA), and introducing the DNA comprising the 5' 1521 bp of the cDNA (Ulrich, A., et al., 1986, EMBO J. 5:2503-2512) ligated to the oligonucleotide cassette into the EcoRI site of the mammalian plasmid expression vector pEE14 (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163; Celltech Ltd., UK). Plasmid pEE14/IGF-1R/462 was transfected into Lec8

mutant CHO cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) obtained from the American Tissue Culture Collection (CRL:1737), using Lipofectin (Gibco-BRL). Cell lines were maintained after transfection in glutamine-free medium (Glascow modification of Eagle's medium (GMEM; ICN Biomedicals, Australia) and 10% dialysed FCS (Sigma, Australia) containing 25  $\mu$ M methionine sulphoximine (MSX; Sigma, Australia) as described (Bebbington, C.R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol3, p163). Transfectants were screened for protein expression by Western blotting and sandwich enzyme-linked immunosorbent assay (ELISA) (Cosgrove, L., et al., 1995[,]) using monoclonal antibody (Mab) 9E10 (Evan et al., 1985) as the capture antibody, and either biotinylated anti-IGF-1R Mab 24-60 or 24-31 for detection (Soos et al., 1992; gifts from Ken Siddle, University of Cambridge, UK). Large-scale cultivation of selected clones expressing IGF-1R/462 was carried out in a Celligen Plus bioreactor (New Brunswick Scientific, USA) containing 70 g Fibra-Cel Disks (Sterilin, UK) as carriers in a 1.25 L working volume. Continuous perfusion culture using GMEM medium supplemented with non-essential amino acids, nucleosides, 25 $\mu$ M MSX and 10% FCS was maintained for 1 to 2 weeks followed by the more enriched DMEM/F12 without glutamine, with the same supplementation for the next 4-5 weeks. The fermentation production run was carried out three times under similar conditions, and resulted in an estimated overall yield of 50 mg of receptor protein from 430 L of harvested medium. Cell growth was poor during the initial stages of the fermentation when GMEM medium was employed, but improved dramatically following the switch to the more enriched

medium. Target protein productivity was essentially constant during the period from ~100 to 700 h of the 760 h fermentation, as measured by ELISA using Mab 9E10 as capture antibody and biotinylated Mab 24-31 as the developing antibody.--

**Please insert after page 46 and before the claims the attached paper copy of the Sequence Listing.**

**REMARKS**

The specification is corrected and an initial Sequence Listing is herein submitted to comply with the requirements for an application containing a nucleotide and/or amino acid sequence.

Hereto is an attached substitute Sequence Listing in paper and computer readable format. The paper copy and computer readable copy of the substitute Sequence Listing are the same. The substitute Sequence Listing does not include new matter.

**CONCLUSION**

Entry of the Sequence Listing and favorable consideration are respectfully requested.

To the extent necessary, please grant any extension of time deemed necessary for entry of this communication. Please charge any deficient fees, or credit any overpayment of fees, to

0953625 - 0200  
Attorney Docket No. 050179-0081  
Application Serial No. 09/555,275

Deposit Account 500417.

Respectfully submitted,

McDermott, Will & Emery



Kelli N. Watson

Registration No. 47,170

**DATE: February 4, 2002**

McDermott, Will & Emery  
600 Thirteenth Street, N.W.  
Washington, D.C. 20005-3096  
(202) 756-8351 (Telephone, direct)  
(202) 756-8087 (Facsimile)

Attachments:

Notification of Missing Requirements Under 35 U.S.C. 371  
Paper Copy of Sequence Listing  
Diskette Containing Computer Readable  
Copy of Sequence Listing

**ATTACHMENT**

**Version With Markings To Show Changes Made**

**IN THE SPECIFICATION**

**The second full paragraph on page 10 of the specification is substituted with the following rewritten paragraph in its place.**

-- **Figure 6.** Amino acid sequence of IGF-IR and related proteins (SEQ ID NO. 1, SEQ ID No. 2, SEQ ID NO. 3, SEQ ID NO. 4, SEQ ID NO. 5, and SEQ ID NO. 6). a, L1 and L2 domains of human IGF-1R are shown based on a sequence alignment for the two proteins and a structural alignment for the L1 and L2 domains. Positions showing conservation physico-chemical properties of amino acids are boxed, residues used in the structural alignment are shown in Times Italic and residues which form the Trp 176 pocket are in Times Bold. Secondary structure elements for L1 (above the sequences) and L2 (below) are indicated as cylinders for helices and arrows for *B*-strands. Strands are shaded (pale, medium and dark grey) according to the *B*-sheet to which they belong. Disulfide bonds are also indicated. b, Cys-rich domains of human IGF-1R, IR and EGFR (domains 2 and 4) are aligned based on sequence and structural considerations. Secondary structural elements and disulfide bonds are indicated above the sequences. The dashed bond is only present in IR. Different types of disulfide bonded modules are label[l]ed below the sequences as open, filled or broken lines. Boxed residues show conservation of physico-chemical properties and structurally conserved residues for modules 4-7

are shown in Times Italic. Residues from EGFR which do not conform to the pattern are in lowercase with probable disulfide bonding indicated below and the conserved Trp 176 and the semi-conserved Gln 182 are in Times Bold.--

**The second full paragraph on page 11 of the specification is substituted with the following rewritten paragraph.**

-- **Figure 9[:]**. Sequence alignment of hIGF-1R (SEQ ID NO.11), Hir (SEQ ID NO. 12), and hIRR (SEQ ID NO. 13) ectodomains, derived by use of the PileUp program in the software package of Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA. for assignment of homologous 3D structures see Figure 6.--

**The third paragraph on page 20 and continuing on to page 21 of the specification is substituted with the following rewritten paragraph.**

-- \_\_\_\_The expression plasmid pEE14/IGF-1R/462 was constructed by inserting the oligonucleotide cassette (SEQ ID NO. 14 and SEQ ID NO. 15):

*AatII*

5' GACGTC GACGAT GACGATAAG GAACAAAAACTCATC

D V D D D K E Q K L I

(EK cleavage) (c-myc tail)

S E E D L N (Stop)

TCAGAAGAGGATCTGAAT TAGAATTG GACGTC 3'

*EcoRI AatII*

encoding an enterokinase cleavage site, c-myc epitope tag (Hoogenboom, H.R., et al., 1991, Nucleic acids Res. 19:4133-4137) and stop codon into the AatII site (within codon 462) of Igf-1r cDNA in the mammalian expression vector pECE (Ebina, Y., et al., 1985, Cell, 40:747-758; kindly supplied by W.J. Rutter, UCSF, USA), and introducing the DNA comprising the 5' 1521 bp of the cDNA (Ulrich, A., et al., 1986, EMBO J. 5:2503-2512) ligated to the oligonucleotide cassette into the EcoRI site of the mammalian plasmid expression vector pEE14 (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163; Celltech Ltd., UK). Plasmid pEE14/IGF-1R/462 was transfected into Lec8 mutant CHO cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) obtained from the American Tissue Culture Collection (CRL:1737), using Lipofectin (Gibco-BRL). Cell lines were maintained after transfection in glutamine-free medium (Glascow modification of Eagle's medium (GMEM; ICN Biomedicals, Australia) and 10% dialysed FCS (Sigma, Australia) containing 25 µm methionine sulphoximine (MSX; Sigma, Australia) as described (Bebbington, C.R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol3, p163). Transfectants were screened for protein expression by Western blotting and sandwich enzyme-linked immunosorbent assay (ELISA) (Cosgrove, L., et a., 1995[,]) using monoclonal antibody (Mab) 9E10 (Evan et al., 1985) as the capture antibody, and either biotinylated anti-IGF-1R Mab 24-60 or 24-31 for detection (Soos et al., 1992; gifts from Ken Siddle, University of Cambridge, UK). Large-scale cultivation of selected clones expressing IGF-1R/462 was carried out in a Cellgen Plus bioreactor (New Brunswick Scientific, USA)

containing 70 g Fibra-Cel Disks (Sterilin, UK) as carriers in a 1.25 L working volume. Continuous perfusion culture using GMEM medium supplemented with non-essential amino acids, nucleosides, 25 $\mu$ M MSX and 10% FCS was maintained for 1 to 2 weeks followed by the more enriched DMEM/F12 without glutamine, with the same supplementation for the next 4-5 weeks. The fermentation production run was carried out three times under similar conditions, and resulted in an estimated overall yield of 50 mg of receptor protein from 430 L of harvested medium. Cell growth was poor during the initial stages of the fermentation when GMEM medium was employed, but improved dramatically following the switch to the more enriched medium. Target protein productivity was essentially constant during the period from ~100 to 700 h of the 760 h fermentation, as measured by ELISA using Mab 9E10 as capture antibody and biotinylated Mab 24-31 as the developing antibody.--

**A paper copy of the Sequence Listing is inserted after page 46 and before the claims of the specification.**

METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTORField of the Invention

This invention relates to the field of receptor structure and receptor/ligand interactions. In particular it relates to the field of using receptor structure to predict the structure of related receptors and to the use of the determined structures and predicted structures to select and screen for agonists and antagonists of the polypeptide ligands.

Background of the Invention

Insulin is the peptide hormone that regulates glucose uptake and metabolism. The two types of diabetes mellitus are associated either with an inability to produce insulin because of destruction of the pancreatic islet cells (Homo-Delarche, F. & Boitard, C., 1996, Immunol. Today 10: 456-460) or with poor glucose metabolism resulting from either insulin resistance at the target tissues, or from inadequate insulin secretion by the islets or faulty liver function (Taylor, S. I., et al., 1994, Diabetes, 43: 735-740).

Insulin-like growth factors-1 and 2 (IGF-1 and 2) are structurally related to insulin, but are more important in tissue growth and development than in metabolism. They are primarily produced in the liver in response to growth hormone, but are also produced in most other tissues, where they function as paracrine/autocrine regulators. The IGFs are strong mitogens, and are involved in numerous physiological states and certain cancers (Baserga, R., 1996, TibTech 14: 150-152).

Epidermal growth factor (EGF) is a small polypeptide cytokine that is unrelated to the insulin/IGF family. It stimulates marked proliferation of epithelial tissues, and is a member of a larger family of structurally-related cytokines, such as transforming growth factor  $\alpha$ , amphiregulin, betacellulin, heparin-binding EGF and some viral gene products. Abnormal EGF family signalling is a characteristic of certain cancers (Soler, C. & Carpenter, G., 1994 In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp194-197; Walker, F. & Burgess, A. W., 1994, In Nicola, N. (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp198-201).

Each of these growth factors mediates its biological actions through binding to the corresponding receptor. The IR, IGF-1R and the insulin receptor-related receptor (IRR), for which the ligand is not known, are closely related to each other, and are referred to as the insulin receptor subfamily. A

large body of information is now available concerning the primary structure of these insulin receptor subfamily members (Ebina, Y., et al., 1985 Cell 40: 747-758; Ullrich, A., et al., 1985, Nature 313: 756-761; Ullrich, A. et al., 1986, EMBO J 5: 2503-2512; Shier, P. & Watt, V. M., 1989, J. Biol. Chem. 264: 14605-14608) and the identification of some of their functional domains (for reviews see De Meyts, P. 1994, Diabetologia 37: 135-148; Lee, J. & Pilch, P. F. 1994 Amer. J. Physiol. 266: C319-C334.; Schaffer, L. 1994, Eur. J. Biochem. 221: 1127-1132). IGF-1R, IR and IRR are members of the tyrosine kinase receptor superfamily and are closely related to the epidermal growth factor receptor (EGFR) subfamily, with which they share significant sequence identity in the extracellular region as well as in the cytoplasmic kinase domains (Ullrich, A. et al., 1984 Nature 309: 418-425; Ward, C. W. et al., 1995 Proteins: Structure Function & Genetics 22: 141-153). Both the insulin and EGF receptor subfamilies have a similar arrangement of two homologous domains (L1 and L2) separated by a cys-rich region of approximately 160 amino acids containing 22-24 cys residues (Bajaj, M., et al., 1987 Biochim. Biophys. Acta 916: 220-226; Ward, C. W. et al., 1995 Proteins: Structure Function & Genetics 22: 141-153). The C-terminal portion of the IGF-1R ectodomain (residues 463 to 906) is comprised of four domains: a connecting domain, two fibronectin type 3 (Fn3) repeats, and an insert domain (O'Bryan, J. P., et al., 1991 Mol Cell Biol 11: 5016-5031). The C-terminal portion of the EGFR ectodomain (residues 477-621) consists solely of a second cys-rich region containing 20 cys residues (Ullrich, A. et al., 1984, Nature 309: 418-425).

Little is known about the secondary, tertiary and quaternary structure of the ectodomains of these receptor subfamilies. Unlike the members of the EGFR subfamily which are transmembrane monomers which dimerise on binding ligand, the IR subfamily members are homodimers, held together by disulphide bonds. The extracellular region of the IR/IGF-1R/IRR monomers contains an  $\alpha$ -chain (~ 703 to 735 amino acid residues) and 192-196 residues of the  $\beta$ -chain. There is a ~23 residue transmembrane segment, followed by the cytoplasmic portion (354 to 408 amino acids), which contains the catalytic tyrosine kinase domain flanked by juxtamembrane and C-tail regulatory regions and is responsible for mediating all receptor-specific functions (White, M. F. & Kahn, C. R. 1994 J. Biol. Chem. 269: 1-4). Chemical analyses of the receptor suggest that the  $\alpha$ -chains are linked to the  $\beta$ -chains

via a single disulphide bond, with the IR dimer being formed by at least two  $\alpha$ - $\alpha$  disulphide linkages (Finn, F. M., et al., 1990, Proc. Natl. Acad. Sci. 87: 419-423; Chiacchia, K. B., 1991, Biochem. Biophys. Res. Commun. 176, 1178-1182; Schaffer, L. & Ljungqvist, L., 1992, Biochem. Biophys. Res. Comm. 189: 650-653; Sparrow, L. G., et al., 1997, J. Biol. Chem. 272: 29460-29467).

Although the three-dimensional (3D) structures of the ligands EGF, TGF-alpha (Hommel, U., et al., 1992, J. Mol. Biol. 227:271-282), insulin (Dodson, E. J., et al., 1983, Biopolymers 22:281-291), IGF-1 (Sato, A., et al., 1993, Int J Peptide Protein Res 41:433-440) and IGF-2 (Torres, A. M., et al., 1995, J. Mol. Biol. 248:385-401) are known, and numerous analytical and functional studies of ligand binding to EGFR (Soler, C. & Carpenter, G., 1994 In Nicola (ed) Guidebook to Cytokines and Their receptors", Oxford Univ. Press, Oxford, pp194-197), IGF-1R and IR (see De Meyts, P., 1994 Diabetologia, 37:135-148) have been carried out, the mechanisms of ligand binding and subsequent transmembrane signalling have not been resolved.

Ligand-induced, receptor-mediated phosphorylation is the signalling mechanism by which most cytokines, polypeptide hormones and membrane-anchored ligands exert their biological effects. The primary kinase may be part of the intracellular portion of the transmembrane receptor protein, as in the tyrosine kinase receptors (for review see Yarden, Y., et al., 1988, Ann. Rev. Biochem. 57:443-478) or the Ser/Thr kinase receptors (Alevizopoulos, A. & Mermod, N., 1997, BioEssays, 19:581-591) or may be non-covalently associated with the cytoplasmic tail of the transmembrane protein(s) making up the receptor complex, as in the case of the haemopoietic growth factor receptors (Stahl, N., et al., 1995, Science 267:1349-1353). The end result is the same, ligand binding leads to receptor dimerization or oligomerization or a conformational change in pre-existing receptor dimers or oligomers, resulting in activation by transphosphorylation, of the covalently attached or non-covalently associated protein kinase domains (Hunter, T., 1995, Cell, 80:225-236).

Many oncogenes have been shown to be homologous to growth factors, growth factor receptors or molecules in the signal transduction pathways (Baserga, R., 1994 Cell, 79:927-930; Hunter, T., 1997 Cell, 88:333-346). One of the best examples is v-Erb (related to the EGFR). Since overexpression of a number of growth factor receptors results in ligand-dependent transformation, an alternate strategy for oncogenes is to regulate

the expression of growth factor receptors or their ligands or to directly bind to the receptors to stimulate the same effect (Baserga, R., 1994 Cell, 79:927-930). Examples are v-Src, which activates IGF-1R intracellularly; c-Myb, which transforms cells by enhancing the expression of IGF1R; and SV40 T antigen which interacts with the IGF-1R and enhances the secretion of IGF-1 (see Baserga, R., 1994 Cell, 79:927-930 for review). Cells in which the IGF-1R has been disrupted or deleted cannot be transformed by SV40 T antigen. If oncogenes activate growth factors and their receptors, then tumour suppressor genes should have the opposite effect. One good example of this is the Wilm's tumour suppressor gene, WT1, which suppresses the expression of IGF-1R (Drummond, J. A., et al., 1992, Science, 257:275-277). Cells that are driven to proliferate by oncogenes undergo massive apoptosis when growth factor receptors are ablated, since, unlike normal cells, they appear unable to withdraw from the cell-cycle and enter into the G<sub>0</sub> phase (Baserga, R., 1994 Cell, 79:927-930).

The insulin-like growth factor-1 receptor (IGF-1R) is one of several growth-factor receptors that regulate the proliferation of mammalian cells. However, its ubiquitousness and certain unique aspects of its function make IGF-1R an ideal target for specific therapeutic interventions against abnormal growth, with very little effect on normal cells (see Baserga, R., 1996 TIBTECH, 14:150-152). The receptor is activated by IGF1, IGF2 and insulin, and plays a major role in cellular proliferation in at least three ways: it is essential for optimal growth of cells *in vitro* and *in vivo*; several cell types require IGF-1R to maintain the transformed state; and activated IGF-1R has a protective effect against apoptotic cell death (Baserga, R., 1996 TIBTECH, 14:150-152). These properties alone make it an ideal target for therapeutic interventions. Transgenic experiments have shown that IGF-1R is not an absolute requirement for cell growth, but is essential for the establishment of the transformed state (Baserga, R., 1994 Cell, 79: 927-930). In several cases (human glioblastoma, human melanoma; human breast carcinoma; human lung carcinoma; human ovarian carcinoma; human rhabdomyosarcoma; mouse melanoma, mouse leukaemia; rat glioblastoma; rat rhabdomyosarcoma; hamster mesothelioma ) the transformed phenotype can be reversed by decreasing the expression of IGF-1R using antisense to IGF-1R (Baserga, R., 1996 TIBTECH 14:150-152); or by interfering with its function by antibodies to IGF-1R (human breast carcinoma; human

rhabdomyosarcoma) or by dominant negatives of IGF-1R (rat glioblastoma; Baserga, R., 1996 TIBTECH 14:150-152).

Three effects are observed when the function of IGF-1R is impaired: tumour cells undergo massive apoptosis which results in inhibition of 5 tumourogenesis; surviving tumour cells are eliminated by a specific immune response; and such a host response can cause a regression of an established wild-type tumour (Resnicoff, M., et al., 1995, Cancer Res. 54:2218-2222). These effects, plus the fact that interference with IGF-1R function has a limited effect on normal cells (partial inhibition of growth without apoptosis) 10 makes IGF-1R a unique target for therapeutic interventions (Baserga, R., 1996 TIBTECH 14:150-152). In addition IGF-1R is downstream of many other growth factor receptors, which makes it an even more generalised target. The implication of these findings is that if the number of IGF-1Rs on cells can be decreased or their function antagonised, then tumours cease to grow and can 15 be removed immunologically. These studies establish that IGF-1R antagonists will be extremely important therapeutically.

Many cancer cells have constitutively active EGFR (Sandgreen, E. P., et al., 1990, Cell, 61:1121-135; Karnes, W. E. J., et al., 1992, Gastroenterology, 102:474-485) or other EGFR family members (Hines, N. E., 1993, Semin. 20 Cancer Biol. 4:19-26). Elevated levels of activated EGFR occur in bladder, breast, lung and brain tumours (Harris, A. L., et al., 1989, In Furth & Greaves (eds) The Molecular Diagnostics of human cancer. Cold Spring Harbor Lab. Press, CSH, NY, pp353-357). Antibodies to EGFR can inhibit ligand activation of EGFR (Sato, J. D., et al., 1983 Mol. Biol. Med. 1:511-529) and the growth of 25 many epithelial cell lines (Aboud-Pirak E., et al., 1988, J. Natl Cancer Inst. 85:1327-1331). Patients receiving repeated doses of a humanised chimeric anti-EGFR monoclonal antibody showed signs of disease stabilization. The large doses required and the cost of production of humanised monoclonal antibody is likely to limit the application of this type of therapy. These 30 findings indicate that the development of EGF antagonists will be attractive anticancer agents.

#### Summary of the Invention

The present inventors have now obtained 3D structural information concerning the insulin-like growth factor receptor (IGF-1R). This information 35 can be used to predict the structure of related members of the insulin

receptor family and provides a rational basis for the development of ligands for specific therapeutic applications.

Accordingly, in a first aspect the present invention provides a method of designing a compound able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, including the step of assessing the stereochemical complementarity between the compound and the receptor site of the molecule, wherein the receptor site includes:

- (a) amino acids 1 to 462 of the receptor for IGF-1, having the atomic coordinates substantially as shown in Figure 1;
- (b) a subset of said amino acids, or;
- (c) amino acids present in the amino acid sequence of a member of the insulin receptor family, which form an equivalent three-dimensional structure to that of the receptor molecule as depicted in Figure 1.

The phrase "insulin receptor family" encompasses, for example, IGF-1R, IR and IRR. In general, insulin receptor family members show similar domain arrangements and share significant sequence identity (preferably at least 40% identity).

By "stereochemical complementarity" we mean that the biologically active substance or a portion thereof correlates, in the manner of the classic "lock-and-key" visualisation of ligand-receptor interaction, with the groove in the receptor site.

In a preferred embodiment of this aspect of the invention, the compound is selected or modified from a known compound identified from a database.

In a further preferred embodiment, the compound is designed so as to complement the structure of the receptor molecule as depicted in Figure 1.

In a further preferred embodiment, the compound has structural regions able to make close contact with amino acid residues at the surface of the receptor site lining the groove, as depicted in Figure 2.

In a further preferred embodiment, the compound has a stereochemistry such that it can interact with both the L1 and L2 domains of the receptor site.

In a further preferred embodiment, the compound has a stereochemistry such that it can interact with the L1 domain of a first monomer of the receptor homodimer, and with the L2 domain of the other monomer of the receptor homodimer.

In a further preferred embodiment, the interaction of the compound with the receptor site alters the position of at least one of the L1, L2 or cysteine-

rich domains of the receptor molecule relative to the position of at least one of the other of said domains. Preferably, the compound interacts with the  $\beta$  sheet of the L1 domain of the receptor molecule, thereby causing an alteration in the position of the L1 domain relative to the position of the cysteine-rich domain or of the L2 domain. Alternatively, the compound interacts with the receptor site in the region of the interface between the L1 domain and the cysteine-rich domain of the receptor molecule, thereby causing the L1 domain and the cysteine-rich domain to move away from each other. In another preferred embodiment, the compound interacts with the hinge region between the L2 domain and the cysteine-rich domain of the receptor molecule, thereby causing an alteration in the positions of the L2 domain and the cysteine-rich domain relative to each other.

In a further preferred embodiment, the stereochemical complementarity between the compound and the receptor site is such that the compound has a  $K_b$  for the receptor side of less than  $10^{-6}M$ , more preferably is less than  $10^{-8}M$ .

In a further preferred embodiment or the first aspect of the present invention, the compound has the ability to increase an activity mediated by the receptor molecule.

In a further preferred embodiment, the compound has the ability to decrease an activity mediated by the receptor molecule. Preferably, the stereochemical interaction between the compound and the receptor site is adapted to prevent the binding of a natural ligand of the receptor molecule to the receptor site. It is preferred that the compound has a  $K_i$  of less than  $10^{-6}M$ , more preferably less than  $10^{-8}M$  and more preferably less than  $10^{-9}M$ .

In a further preferred embodiment of the first aspect of the present invention, the receptor is the IGF-1R, or the insulin receptor.

In a second aspect, the present invention provides a computer-assisted method for identifying potential compounds able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, using a programmed computer including a processor, an input device, and an output device, including the steps of:

(a) inputting into the programmed computer, through the input device, data comprising the atomic coordinates of the IGF-1R molecule as shown in Figure 1, or a subset thereof;

(b) generating, using computer methods, a set of atomic coordinates of a structure that possesses stereochemical complementarity to the atomic

coordinates of the IGF-1R site as shown in Figure 1, or a subset thereof, thereby generating a criteria data set;

(c) comparing, using the processor, the criteria data set to a computer database of chemical structures;

5 (d) selecting from the database, using computer methods, chemical structures which are structurally similar to a portion of said criteria data set; and

(e) outputting, to the output device, the selected chemical structures which are similar to a portion of the criteria data set.

In a preferred embodiment of the second aspect, the programmed  
10 computer includes a data storage system which includes the database of chemical structures.

In a preferred embodiment of the second aspect, the method is used to identify potential compounds which have the ability to decrease an activity mediated by the receptor.

15 In another preferred embodiment, the computer-assisted method further includes the step of selecting one or more chemical structures from step (e) which interact with the receptor site of the molecule in a manner which prevents the binding of natural ligands to the receptor site.

20 In another preferred embodiment, the computer-assisted method further includes the step of obtaining a compound with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to decrease an activity mediated by the receptor.

25 In a further preferred embodiment, the computer-assisted method is used to identify potential compounds which have the ability to increase an activity mediated by the receptor molecule.

In another preferred embodiment, the computer-assisted method further includes the step of obtaining a molecule with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to increase an activity mediated by the receptor.

30 In a further preferred embodiment of the second aspect of the present invention, the receptor is the IGF-1R, or the insulin receptor.

35 In a third aspect, the present invention provides a method of screening of a putative compound having the ability to modulate the activity of a receptor of the insulin receptor family, including the steps of identifying a putative compound by a method according to the first or second aspects, and testing the

compound for the ability to increase or decrease an activity mediated by the receptor.

In a preferred embodiment of the third aspect, the test is carried out *in vitro*.

5 In a further preferred embodiment of the third aspect, the test is a high throughput assay.

In a preferred embodiment of the third aspect, the test is carried out *in vivo*.

10 **Brief Description of the Drawings**

**Figure 1.** IGF-1R residues 1-462, in terms of atomic coordinates refined to a resolution of 2.6 Å (average accuracy  $\approx$  0.3Å). The coordinates are in relation to a Cartesian system of orthogonal axes.

15

**Figure 2.** Depiction of the residues lining the groove of the IGF-1R receptor fragment 1-462.

20

**Figure 3.** Gel filtration chromatography of affinity-purified IGF-1R/462 protein. The protein was purified on a Superdex S200 column (Pharmacia) fitted to a BioLogic L.C. system (Biorad), equilibrated and eluted at 0.8 ml/min with 40 mM Tris/150 mM NaCl/0.02% NaN<sub>3</sub> adjusted to pH 8.0. (a) Protein eluting in peak 1 contained aggregated IGF-1R/462 protein, peak 2 contained monomeric protein and peak 3 contained the c-myc undecapeptide used for elution from the Mab 9E10 immunoaffinity column. (b) Non-reduced SDS-PAGE of fraction 2 from IGF-1R/462 obtained following Superdex S200 (Fig.1a). Standard proteins are indicated.

25

**Figure 4.** Ion exchange chromatography of affinity-purified, truncated IGF-1R ectodomain. A mixture of gradient and isocratic elution chromatography was performed on a Resource Q column (Pharmacia) fitted to a BioLogic System (Biorad), using 20 mM Tris/pH 8.0 as buffer A and the same buffer containing 1M NaCl as buffer B. Protein solution in TBSA was diluted at least 1:2 with water and loaded onto the column at 2 ml/min. Elution was monitored by absorbance (280 nm) and conductivity (mS/cm). Target protein (peak 2) eluted isocratically with 20 mM Tris/0.14 M NaCl pH 8.0. Inset:

Isoelectric focusing gel (pH 3 - 7; Novex Australia Pty Ltd) of fraction 2. The pI was estimated at 5.1 from standard proteins (not shown).

**Figure 5.** Polypeptide fold for residues 1-462 of IGF-1R. The L1 domain is at the top, viewed from the N-terminal end and L2 is at the bottom. The space at the centre is of sufficient size to accommodate IGF-1. Helices are indicated by curled ribbon and  $\beta$ -strands by arrows. Cysteine side chains are drawn as ball-and-stick with lines showing disulfide bonds. The arrow points in the direction of view for L1 in Figure 7.

10

**Figure 6.** Amino acid sequences of IGF-1R and related proteins. a, L1 and L2 domains of human IGF-1R and IR are shown based on a sequence alignment for the two proteins and a structural alignment for the L1 and L2 domains. Positions showing conservation physico-chemical properties of amino acids are boxed, residues used in the structural alignment are shown in Times Italic and residues which form the Trp 176 pocket are in Times Bold. Secondary structure elements for L1 (above the sequences) and L2 (below) are indicated as cylinders for helices and arrows for  $\beta$ -strands. Strands are shaded (pale, medium and dark grey) according to the  $\beta$ -sheet to which they belong. Disulfide bonds are also indicated. b, Cys-rich domains of human IGF-1R, IR and EGFR (domains 2 and 4) are aligned based on sequence and structural considerations. Secondary structural elements and disulfide bonds are indicated above the sequences. The dashed bond is only present in IR. Different types of disulfide bonded modules are labelled below the sequences as open, filled or broken lines. Boxed residues show conservation of physico-chemical properties and structurally conserved residues for modules 4-7 are shown in Times Italic. Residues from EGFR which do not conform to the pattern are in lowercase with probable disulfide bonding indicated below and the conserved Trp 176 and the semi-conserved Gln 182 are in Times Bold.

20

**Figure 7.** Stereo view of a superposition of the L1 (white) and L2 (black) domains. Residues numbers above are for L1 and below for L2. The side chain of Trp 176 which protrudes into the core of L1 is drawn as ball-and-stick.

25

30

35

**Figure 8.** Schematic diagram showing the association of three  $\beta$ -finger motifs.  $\beta$ -strands are drawn as arrows and disulfide bonds as zigzags.

5 **Figure 9:** Sequence alignment of hIGF-1R, hIR and hIRR ectodomains, derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.  
For assignment of homologous 3D structures see Figure 6.

10 **Figure 10** Gel filtration chromatography of insulin receptor ectodomain and MFab complexes. hIR -11 ectodomain dimer (5 - 20 mg) was complexed with MFab derivatives (15-25 mg each) of the anti-hIR antibodies 18-44, 83-7 and 83-14 (Soos et al., 1986). Flution profiles were generated from samples loaded on to a Superdex S200 column (Pharmacia), connected to a BioLogic chromatography system (Biorad) and monitored at 280 nm. The column was eluted at 0.8 ml/min with 40 mM Tris/150 mM sodium chloride/0.02%  
15 sodium azide buffer adjusted to pH 8.0: Profile 0, hIR -11 ectodomain, Profile 1, ectodomain mixed with MFab 18-44; Profile 2 , ectodomain mixed with MFab18-44 and MFab 83-14; Profile 3, ectodomain mixed with MFab 18-44, MFab 83-14 and MFab 83-7. The apparent mass of each complex was  
20 determined from a plot of the following standard proteins: thyroglobulin (660 kDa), ferritin (440 kDa), bovine gamma globulin (158 kDa), bovine serum albumin (67 kDa), chicken ovalbumin (44 kDa) and equine myoglobin (17 kDa).

25 **Figure 11** Schematic representations of electron microscopy images of the hIR ectodomain dimer.

#### Detailed Description of the Invention

We describe herein the expression, purification, and crystallization of  
30 a recombinant truncated IGF-1R fragment (residues 1-462) containing the L1-cysteine-rich-L2 region of the ectodomain. The selected truncation position is just downstream of the exon 6/exon 7 junction (Abbott, A. M., et al., 1992. J Biol Chem., 267:10759-10763), and occurs at a position where the sequences of the IR and EGFR families diverge markedly (Ward, C. W., et al., 1995, Proteins: Struct., Funct., Genet. 22:141-153; Lax, I., et al., 1988, Molec. Cellul. Biol. 8:1970-1978) suggesting it represents a domain boundary. To

limit the effects of glycosylation, the IGF-1R fragment was expressed in Lec8 cells, a glycosylation mutant of Chinese hamster ovary (CHO) cells, whose defined glycosylation defect produces N-linked oligosaccharides truncated at N-acetyl glucosamine residues distal to mannose residues (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383). Such an approach has facilitated glycoprotein crystallization (Davis, S. J., et al., 1993, Protein Eng. 6:229-232; Liu, J., et al., 1996, J. Biol. Chem. 271:33639-33646).

The IGF-1R construct described herein includes a c-myc peptide tag (Hoogenboom, H. R., et al., 1991, Nucleic Acids Res. 19:4133-4137) that is recognised by the Mab 9E10 (Evan, G. I., et al., 1985, Mol. Cell. Biol. 5:3610-3616) enabling the expressed product to be purified by peptide elution from an antibody affinity column followed by gel filtration over Superdex S200. The purified proteins crystallized under a sparse matrix screen (Jancarik, J. & Kim, S.-H., 1991, J. Appl. Cryst. 24:409-411) but the crystals were of variable quality, with the best diffracting to 3.0-3.5 Å. Isocratic gradient elution by anion-exchange chromatography yielded protein that was less heterogenous and gave crystals of sufficient quality to determine the structure of the first three domains of the human IGF-1R.

The IGF-1R fragment consisted of residues 1-462 of IGF-1R linked via an enterokinase-cleavable pentapeptide sequence to an eleven residue c-myc peptide tag at the C-terminal end. The fragment was expressed in Lec8 cells by continuous media perfusion in a bioreactor using porous carrier disks. It was secreted into the culture medium and purified by peptide elution from an anti-c-myc antibody column followed by Superdex S200 gel filtration. The receptor fragment bound two anti-IGF-1R monoclonal antibodies, 24-31 and 24-60, which recognize conformational epitopes, but could not be shown to bind IGF-1 or IGF-2. Crystals of variable quality were grown as rhombic prisms in 1.7 M ammonium sulfate at pH 7.5 with the best diffracting to 3.0-3.5 Å. Further purification by isocratic elution on an anion-exchange column gave protein which produced better quality crystals, diffracting to 2.6 Å, that were suitable for X-ray structure determination.

The structure of this fragment (IGF-1R residues 1-462; L1-cys rich-L2 domains) has been determined to 2.6 Å resolution by X-ray diffraction. The L domains each adopt a compact shape consisting of a single stranded right-handed β-helix. The cys-rich region is composed of eight disulphide-bonded modules, seven of which form a rod-shaped domain with modules associated

in a novel manner. At the centre of this reasonably extended structure is a space, bounded by all three domains, and of sufficient size to accommodate a ligand molecule. Functional studies on IGF-1R and other members of the insulin receptor family show that the regions primarily responsible for 5 hormone-binding map to this central site. Thus this structure gives a first view of how members of the insulin receptor family might interact with their ligands.

Another group has reported the crystallization of a related receptor, the EGFR, in a complex with its ligand EGF (Weber, W., et al., 1994, J 10 Chromat. 679:181-189). However, difficulties were encountered with these crystals which diffracted to only 6 Å, insufficient for the determination of an atomic resolution structure of this complex (Weber, W., et al., 1994, J Chromat 679:181-189) or the generation of accurate models of structurally related receptor domains such as IGF-1R and IR by homology modelling.

The present inventors have developed 3D structural information 15 about cytokine receptors in order to enable a more accurate understanding of how the binding of ligand leads to signal transduction. Such information provides a rational basis for the development of ligands for specific therapeutic applications, something that heretofore could not have been 20 predicted *de novo* from available sequence data.

The precise mechanisms underlying the binding of agonists and 25 antagonists to the IGF-1R site are not fully clarified. However, the binding of ligands to the receptor site, preferably with an affinity in the order of  $10^{-8}$ M or higher, is understood to arise from enhanced stereochemical complementarity relative to naturally occurring IGF-1 ligands.

Such stereochemical complementarity, pursuant to the present invention, is characteristic of a molecule that matches intra-site surface residues lining the groove of the receptor site as enumerated by the 30 coordinates set out in Figure 1. The residues lining the groove are depicted in Figure 2. By "match" we mean that the identified portions interact with the surface residues, for example, via hydrogen bonding or by enthalpy-reducing Van der Waals interactions which promote desolvation of the biologically active substance within the site, in such a way that retention of the biologically active substance within the groove is favoured energetically.

Substances which are complementary to the shape of the receptor site 35 characterised by amino acids positioned at atomic coordinates set out in

Figure 1 may be able to bind to the receptor site and, when the binding is sufficiently strong, substantially prohibit binding of the naturally occurring ligands to the site.

It will be appreciated that it is not necessary that the complementarity between ligands and the receptor site extend over all residues lining the groove in order to inhibit binding of the natural ligand. Accordingly, agonists or antagonists which bind to a portion of the residues lining the groove are encompassed by the present invention.

In general, the design of a molecule possessing stereochemical complementarity can be accomplished by means of techniques that optimize, either chemically or geometrically, the "fit" between a molecule and a target receptor. Known techniques of this sort are reviewed by Sheridan and Venkataraghavan, *Acc. Chem. Res.* 1987 20 322; Goodford, *J. Med. Chem.* 1984 27 557; Beddell, *Chem. Soc. Reviews* 1985, 279; Hol, *Angew. Chem.* 1986 25 767 and Verlinde C.L.M.J & Hol, W.G.J. *Structure* 1994, 2, 577, the respective contents of which are hereby incorporated by reference. See also Blundell et al., *Nature* 1987 326 347 (drug development based on information regarding receptor structure).

Thus, there are two preferred approaches to designing a molecule, according to the present invention, that complements the shape of IGF-1R or a related receptor molecule. By the geometric approach, the number of internal degrees of freedom (and the corresponding local minima in the molecular conformation space) is reduced by considering only the geometric (hard-sphere) interactions of two rigid bodies, where one body (the active site) contains "pockets" or "grooves" that form binding sites for the second body (the complementing molecule, as ligand). The second preferred approach entails an assessment of the interaction of respective chemical groups ("probes") with the active site at sample positions within and around the site, resulting in an array of energy values from which three-dimensional contour surfaces at selected energy levels can be generated.

The geometric approach is illustrated by Kuntz et al., *J. Mol. Biol.* 1982 161 269, the contents of which are hereby incorporated by reference, whose algorithm for ligand design is implemented in a commercial software package distributed by the Regents of the University of California and further described in a document, provided by the distributor, which is entitled "Overview of the DOCK Package, Version 1.0.", the contents of which are

hereby incorporated by reference. Pursuant to the Kuntz algorithm, the shape of the cavity represented by the IGF-R1 site is defined as a series of overlapping spheres of different radii. One or more extant data bases of crystallographic data, such as the Cambridge Structural Database System  
5 maintained by Cambridge University (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.) and the Protein Data Bank maintained by Brookhaven National Laboratory (Chemistry Dept. Upton, NY 11973, U.S.A.), is then searched for molecules which approximate the shape thus defined.

10 Molecules identified in this way, on the basis of geometric parameters, can then be modified to satisfy criteria associated with chemical complementarity, such as hydrogen bonding, ionic interactions and Van der Waals interactions.

15 The chemical-probe approach to ligand design is described, for example, by Goodford, J. Med. Chem. 1985 28 849, the contents of which are hereby incorporated by reference, and is implemented in several commercial software packages, such as GRID (product of Molecular Discovery Ltd., West Way House, Elms Parade, Oxford OX2 9LL, U.K.). Pursuant to this approach,  
20 the chemical prerequisites for a site-complementing molecule are identified at the outset, by probing the active site (as represented via the atomic coordinates shown in Fig. 1) with different chemical probes, e.g., water, a methyl group, an amine nitrogen, a carboxyl oxygen, and a hydroxyl. Favored sites for interaction between the active site and each probe are thus determined, and from the resulting three-dimensional pattern of such sites a  
25 putative complementary molecule can be generated.

30 The chemical-probe approach is especially useful in defining variants of a molecule known to bind the target receptor. Accordingly, crystallographic analysis of IGF-1 bound to the receptor site is expected to provide useful information regarding the interaction between the archetype ligand and the active site of interest.

35 Programs suitable for searching three-dimensional databases to identify molecules bearing a desired pharmacophore include: MACCS-3D and ISIS/3D (Molecular Design Ltd., San Leandro, CA), ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.), and Sybyl/3DB Unity (Tripos Associates, St. Louis, MO).

Programs suitable for pharmacophore selection and design include: DISCO (Abbott Laboratories, Abbott Park, IL), Catalyst (Bio-CAD Corp., Mountain View, CA), and ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.).

5 Databases of chemical structures are available from a number of sources including Cambridge Crystallographic Data Centre (Cambridge, U.K.) and Chemical Abstracts Service (Columbus, OH).

10 *De novo* design programs include Ludi (Biosym Technologies Inc., San Diego, CA), Sybyl (Tripos Associates) and Aladdin (Daylight Chemical Information Systems, Irvine, CA).

Those skilled in the art will recognize that the design of a mimetic may require slight structural alteration or adjustment of a chemical structure designed or identified using the methods of the invention.

15 The invention may be implemented in hardware or software, or a combination of both. However, preferably, the invention is implemented in computer programs executing on programmable computers each comprising a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the 20 functions described above and generate output information. The output information is applied to one or more output devices, in known fashion. The computer may be, for example, a personal computer, microcomputer, or workstation of conventional design.

25 Each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be compiled or interpreted language.

30 Each such computer program is preferably stored on a storage medium or device (e.g., ROM or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The inventive system may also be considered to be implemented as a computer-readable storage medium, 35 configured with a computer program, where the storage medium so

configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.

Compounds designed according to the methods of the present invention may be assessed by a number of *in vitro* and *in vivo* assays of hormone function. For example, the identification of IGF-1R antagonists of may be undertaken using a solid-phase receptor binding assay. Potential antagonists may be screened for their ability to inhibit the binding of europium-labelled IGF ligands to soluble, recombinant IGF-1R in a microplate-based format. Europium is a lanthanide fluorophore, the presence of which can be measured using time-resolved fluorometry. The sensitivity of this assay matches that achieved by radioisotopes, measurement is rapid and is performed in a microplate format to allow high-sample throughput, and the approach is gaining wide acceptance as the method of choice in the development of screens for receptor agonists/antagonists ( see Apell et.al. J. Biomolec. Screening 3:19-27, 1998 : Inglese et. al. Biochemistry 37:2372-2377, 1998).

Binding affinity and inhibitor potency may be measured for candidate inhibitors using biosensor technology.

The IGF-1R antagonists may be tested for their ability to modulate receptor activity using a cell-based assay incorporating a stably transfected, IGF-1-responsive reporter gene [Souriau, C., Fort, P., Roux, P., Hartley, O., LeFranc, M-P. and Weill, M., 1997, Nucleic Acids Res. 25, 1585-1590]. An IGF-1-responsive, luciferase reporter gene has been assembled and transfected in 293 cells. The assay addresses the ability of IGF-1 to activate the reporter gene in the presence of novel ligands. It offers a rapid (results within 6-8 hours of hormone exposure), high-throughput (assay can be conducted in a 96-well format for automated counting) analysis using an extremely sensitive detection system (chemiluminescence). Once candidate compounds have been identified, their ability to antagonise signal transduction via the IGF-1R can be assessed using a number of routine *in vitro* cellular assays such as inhibition of IGF-1-mediated cell proliferation, induction of apoptosis in the presence of IGF-1 and the ablation of IGF-1-driven anchorage-independent cell growth in soft agar [D'Ambrosio, C., Ferber, A., Resnicoff, M. and Baserga, R., 1996, Cancer Res. 56, 4013-4020]. Such assays may be conducted on the P6 cell line, a cell line highly responsive to IGF as a result of the constitutive overexpression of the IGF-1R

(45-50,000 receptors/cell, [Pietrzkowski, Z., Sell, C., Lammers, R., Ullrich, A. and Baserga, R., 1992, *Cell Growth Diff.* 3, 199-205]). Ultimately, the efficacy of any antagonist as a tumour therapeutic may be tested *in vivo* in animals bearing tumour isografts and xenografts as described [Resnicoff, M., Burgaud, J-L., Rotman, H. L., Abraham, D. and Baserga, R., 1995, *Cancer Res.* 55, 3739-3741; Resnicoff, M., Sell, C., Rubini, M., Coppola, D., Ambrose, D., Baserga, R. and Rubin, R., 1994 *Cancer Res.* 54: 2218-2222].

Tumour growth inhibition assays may be designed around a nude mouse xenograft model using a range of cell lines. The effects of the receptor antagonists and inhibitors may be tested on the growth of subcutaneous tumours.

A further use of the structure of the IGF-1R fragment described here is in facilitating structure determination of a related protein, such as a larger fragment of this receptor, another member of the insulin receptor family or a member of the EGF receptor family. This new structure may be either of the protein alone, or in complex with its ligand. For crystallographic analysis this is achieved using the method of molecular replacement (Brunger, Meth. Enzym. 1997 276 558-580, Navaza and Saludjian, *ibid.* 581-594, Tong and Rossmann, *ibid.* 594-611, Bentley, *ibid.* 611-619) in a program such as XPLOR. In this procedure diffraction data is collected from a crystalline protein of unknown structure. A transform of these data (Patterson function) is compared with a Patterson function calculated from a known structure. Firstly, the one Patterson function is rotated on the other to determine the correct orientation of the unknown molecule in the crystal. The translation function is then calculated to determine the location of the molecule with respect to the crystal axes. Once the molecule has been correctly positioned in the unit cell initial phases for the experimental data may be calculated. These phases are necessary for calculation of an electron density map from which structural differences may be observed and for refinement of the structure. Due to limitations in the method the search molecule must be structurally related to that which is to be determined. However it is sufficient for only part of the unknown structure (e.g. < 50%) to be similar to the search molecule. Thus the three dimensional structure of IGF-1R residues 1-462 may be used to solve structures consisting of related receptors, enabling a program of drug design as outlined above.

In summary, the general principles of receptor-based drug design can be applied by persons skilled in the art, using the crystallographic results presented above, to produce ligands of IGF-1R or other related receptors, having sufficient stereochemical complementarity to exhibit high affinity binding to the receptor site.

The present invention is further described below with reference to the following, non-limiting examples.

#### EXAMPLE 1

##### Expression, Purification and Crystallization of the IGF-1R Fragment.

Several factors hamper macromolecular crystallization including sample selection, purity, stability, solubility (McPherson, A., et al., 1995, Structure 3:759-768); Gilliland, G. L., & Ladner, J. E., 1996, Curr. Opin. Struct. Biol. 6:595-603), and the nature and extent of glycosylation (Davis, S. J., et al., 1993, Protein Eng. 6:229-232). Initial attempts to obtain structural data from soluble IGF-1R ectodomain (residues 1-906) protein, expressed in Lec8 cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) and purified by affinity chromatography, produced large, well-formed crystals (1.0 mm x 0.2 mm x 0.2 mm) which gave no discernible X-ray diffraction pattern (unpublished data). Similar difficulties have been encountered with crystals of the structurally-related epidermal growth factor receptor (EGFR) ectodomain, which diffracted to only 6 Å, insufficient for the determination of an atomic resolution structure (Weber, W. et al., 1994, J Chromat 679:181-189). This prompted us to search for a fragment of IGF-1R that was more amenable to X-ray crystallographic studies.

The fragment expressed (residues 1-462) comprises the L1-cysteine-rich-L2 region of the ectodomain. The selected truncation position at Val462 is four residues downstream of the exon 6/exon 7 junction (Abbott, A. M., et al., 1992, J Biol Chem. 267:10759-10763), and occurs at a position where the sequences of the IR and the structurally related EGFR families diverge markedly (Lax, I., et al., 1988, Molec Cell Biol. 8:1970-1978; Ward, C. W., et al., 1995, Proteins: Struct., Funct., Genet. 22:141-153), suggesting that it represents a domain boundary. The expression strategy included use of the pEE14 vector (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163) in glycosidase-defective Lec8 cells (Stanley, P., 1989, Molec. Cellul. Biol. 9:377-

383), which produce N-linked oligosaccharides lacking the terminal galactose and N-acetylneuraminic acid residues (Davis, S. J., et al., 1993, Protein Eng. 6:229-232; Liu, T., et al., 1996, J Biol Chem 271:33639-33646.). The construct contained a C-terminal c-myc affinity tag (Hoogenboom, H. R., et al., 1991,

5 Nucl Acids Res. 19:4133-4137), which facilitated immunoaffinity purification by specific peptide elution and avoided aggressive purification conditions. These procedures yielded protein which readily crystallized after a further gel filtration purification step. This provided a general protocol to enhance crystallisation prospects for labile, multidomain glycoproteins.

10 The structure of this fragment is of considerable interest, since it contains the major determinants governing insulin and IGF-1 binding specificity (Gustafson, T. A. & Rutter, W. J., 1990, J. Biol. Chem. 265:18663-18667; Andersen, A. S., et al., 1990, Biochemistry, 29:7363-7366; Schumacher, R., et al., 1991, J. Biol. Chem. 266:19288-19295; Schumacher, R., et al., 1993, J. Biol. Chem. 268:1087-1094; Schäffer, L., et al., 1993, J. Biol. Chem. 268:3044-3047; Williams, P. F., et al., 1995, J. Biol. Chem. 270:3012-3016), and is very similar to an IGF-1R fragment (residues 1-486) reported to act as a strong dominant negative for several growth functions and which induces apoptosis of tumour cells *in vivo* (D'Ambrosio, C., et al., 1996,

15 Cancer Res. 56:4013-4020).  
20 The expression plasmid pEE14/IGF-1R/462 was constructed by inserting the oligonucleotide cassette:

AatII

25 5' GACGTC GACGATGACGATAAG GAACAAAAACTCATC  
D V D D D K E Q K L I  
(EK cleavage) (c-myc tail)  
S E E D L N (Stop)  
TCAGAAGAGGATCTGAAT TAGAATTG GACGTC 3'

30 EcoRI AatII

encoding an enterokinase cleavage site, c-myc epitope tag (Hoogenboom, H. R., et al., 1991, Nucleic acids Res. 19:4133-4137) and stop codon into the AatII site (within codon 462) of Igf-1r cDNA in the mammalian expression vector pECE (Ebina, Y., et al., 1985, Cell, 40:747-758; kindly supplied by W. J. Rutter, UCSF, USA), and introducing the DNA comprising the 5' 1521 bp of

the cDNA (Ullrich, A., et al., 1986, EMBO J. 5:2503-2512) ligated to the oligonucleotide cassette into the EcoRI site of the mammalian plasmid expression vector pEE14 (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163; 5 Celltech Ltd., UK). Plasmid pEE14/IGF-1R/462 was transfected into Lec8 mutant CHO cells (Stanley, P. 1989, Molec. Cellul. Biol. 9:377-383) obtained from the American Tissue Culture Collection (CRL:1737), using Lipofectin (Gibco-BRL). Cell lines were maintained after transfection in glutamine-free medium (Glascow modification of Eagle's medium (GMEM; ICN Biomedicals, 10 Australia) and 10% dialysed FCS (Sigma, Australia) containing 25 µM methionine sulphoximine (MSX; Sigma, Australia) as described (Bebbington, C. R. & Hentschel, C. C. G., 1987, In: Glover, D. M., ed. DNA Cloning. Academic Press, San Diego. Vol 3, p163). Transfectants were screened for protein expression by Western blotting and sandwich enzyme-linked 15 immunosorbent assay (ELISA) (Cosgrove, L., et al., 1995, ) using monoclonal antibody (Mab) 9E10 (Evan et al., 1985) as the capture antibody, and either biotinylated anti-IGF-1R Mab 24-60 or 24-31 for detection(Soos et al., 1992; gifts from Ken Siddle, University of Cambridge, UK). Large-scale cultivation of selected clones expressing IGF-1R/462 was carried out in a Celligen Plus 20 bioreactor (New Brunswick Scientific, USA) containing 70 g Fibra-Cel Disks (Sterilin, UK) as carriers in a 1.25 L working volume. Continuous perfusion culture using GMEM medium supplemented with non-essential amino acids, nucleosides, 25 µM MSX and 10% FCS was maintained for 1 to 2 weeks followed by the more enriched DMEM/F12 without glutamine, with the same 25 supplementation for the next 4-5 weeks. The fermentation production run was carried out three times under similar conditions, and resulted in an estimated overall yield of 50 mg of receptor protein from 430 L of harvested medium. Cell growth was poor during the initial stages of the fermentation when GMEM medium was employed, but improved dramatically following the 30 switch to the more enriched medium. Target protein productivity was essentially constant during the period from ~100 to 700 h of the 760 h fermentation, as measured by ELISA using Mab 9E10 as the capture antibody and biotinylated Mab 24-31 as the developing antibody.

Soluble IGF-1R/462 protein was recovered from harvested 35 fermentation medium by affinity chromatography on columns prepared by coupling Mab 9E10 to divinyl sulphone-activated agarose beads (Mini Leak;

Kem En Tec, Denmark) as recommended by the manufacturer. Mini-Leak Low and Medium affinity columns with antibody loadings of 1.5-4.5 mg/ml of hydrated matrix were obtained, with the loading range of 2.5-3 mg/ml giving optimal performance (data not shown). Mab 9E10 was produced by growing hybridoma cells (American Tissue Culture Collection) in serum-free medium in the Celligen Plus bioreactor and recovering the secreted antibody (4 g) using protein A glass beads (Prosep-A, Bioprocessing Limited, USA).

Harvested culture medium containing IGF-1R/462 protein was adjusted to pH 8.0 with Tris-HCl (Sigma), made 0.02% (w/v) in sodium azide and passed at

3-5 ml/min over 50 ml Mab 9E10 antibody columns at 4° C. Bound protein was recovered by recycling a solution of 2-10 mg of the undecamer c-myc peptide EQKLISEEDLN (Hoogenboom et al., 1991) in 20 ml of Tris-buffered saline containing 0.02% sodium azide (TBSA). Between 65% and 75% of the product was recovered from the medium as estimated by ELISA, with a further 15-25% being recovered by a second pass over the columns. Peptide recirculation (~10 times) through the column eluted bound protein more efficiently than a single, slower elution. Residual bound protein was eluted with sodium citrate buffer at pH 3.0 into 1 M Tris HCl pH 8.0 to neutralize the eluant, and columns were re-equilibrated with TBSA.

Gel filtration over Superdex S200 (Pharmacia, Sweden), of affinity-purified material showed a dominant protein peak at ~63 kDa, together with a smaller quantity of aggregated protein (Figure 3a). The peak protein migrated primarily as two closely spaced bands on reduced , sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE; Figure 3b), reacted positively in the ELISA with both Mab 24-60 and Mab 24-31, and gave a single sequence corresponding to the N-terminal 14 residues of IGF-1R. No binding of IGF-1 or IGF-2 could be detected in the solid plate binding assay (Cosgrove et al., 1995, Protein Express Purif. 6:789-798). The IGF-1R/462 fragment was further purified by ion-exchange chromatography on Resource Q (Pharmacia, Sweden). Using shallow salt gradients, protein enriched in the slowest migrating SDS-PAGE band was obtained (data not shown), which formed relatively large, well-formed crystals (see below). Isoelectric focussing showed the presence of one major and two minor isoforms. Protein purified on Resource Q with an isocratic elution step of 0.14 M NaCl in 20 mM TrisCl at pH 8.0 (fraction 2, Figure 4) showed less heterogeneity on isoelectric focussing (Figure 4 inset) and SDS-PAGE (data not shown), and

produced crystals of sufficient quality for structure determination (see below).

Crystals were grown by the hanging drop vapour diffusion method using purified protein concentrated in Centricon 10 concentrators (Amicon Inc, USA) to 5-10 mg/ml in 10-20 mM Tris-HCl pH 8.0 and 0.02% (w/v) sodium azide, or 100 mM ammonium sulfate and 0.02% (w/v) sodium azide. Crystallization conditions were initially identified using the factorial screen (Jancarik, J. & Kim, S.-H., 1991, *J Appl Cryst* 24:409-411), and then optimised. Crystals were examined on an M18XHF rotating anode generator (Siemens, Germany) equipped with Franks mirrors (MSC, USA) and RAXIS IIC and IV image plate detectors (Rigaku, Japan).

From the initial crystallization screen of this protein, crystals of about 0.1 mm in size grew in one week. Upon refining conditions, crystals of up to 0.6 x 0.4 x 0.4 mm could be grown from a solution of 1.7-2.0 M ammonium sulfate, 0.1 M HEPES pH 7.5. The crystals varied considerably in shape and diffraction quality, growing predominantly as rhombic prisms with a length to width ratio of up to 5:1, but sometimes as rhombic bipyramids, the latter form being favoured when using material which had been eluted from the Mab 9E10 column at pH 3.0. Each crystal showed a minor imperfection in the form of very faint lines from the centre to the vertices.

Protein from dissolved crystals did not appear to be different from the protein stock solution when run on an isoelectric focusing gel. Upon X-ray examination, the crystals diffracted to 3.0-4.0 Å and were found to belong to the space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> with  $a = 76.8 \text{ \AA}$ ,  $b = 99.0 \text{ \AA}$ ,  $c = 119.6 \text{ \AA}$ . In the diffraction pattern, the crystal variability noted above was manifest as a large (1-2°) and anisotropic mosaic spread, with concomitant variation in resolution. To improve the quality of the crystals, they were grown in the presence of various additives or were recrystallized. These methods failed to substantially improve the crystal quality although bigger crystals were obtained by recrystallization. The variability in crystal quality appeared to be due to protein heterogeneity, as demonstrated by the observation that more highly purified protein, eluted isocratically from the Resource Q column and showing one major band on isoelectric focusing (Figure 4 inset), produced crystals of sufficient quality for structure determination. These crystals diffracted to 2.6 Å resolution with cell dimensions,  $a = 77.0 \text{ \AA}$ ,  $b = 99.5 \text{ \AA}$ ,  $c = 120.1 \text{ \AA}$  and mosaic spread of 0.5°. Heavy metal derivatives of the IGF-

1R/462 crystals have been obtained and are leading to the determination of an atomic resolution structure of this fragment, which contains the L1, cysteine-rich and L2 domains of human IGF-1R.

5

## EXAMPLE 2

### Structure of the IGF-1R/1-462

Crystals were cryo-cooled to -170°C in a mother liquor containing 20% glycerol, 2.2 M ammonium sulfate and 100 mM Tris at pH 8.0. Native and derivative diffraction data were recorded on Rigaku RAXIS IIc or IV area detectors using copper K $\alpha$  radiation from a Siemens rotating anode generator with Yale/MSC mirroroptics. The space group was P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> with a = 77.39 Å, b = 99.72 Å, and c = 120.29 Å. Data were reduced using DENZO and SCALEPACK (Otwinowski, Z. & Minor, W., 1996, *Mode.Meth. Enzym.* 276:307-326). Diffraction was notably anisotropic for all crystals examined.

Phasing by multiple isomorphous replacement(MIR) was performed with PROTEIN (Steigeman, W. Dissertation (Technical Univ. Munich, 1974) using anomalous scattering for both UO<sub>2</sub> and PIP derivatives. Statistics for data collection and phasing are given in Table 1. In the initial MIR map regions of protein and solvent could clearly be seen, but the path of the polypeptide was by no means obvious. That map was subject to solvent flattening and histogram matching in DM (Cowtan, K., 1994, *Joint CCP4 and ESF-EACBM newslett. Protein Crystallogr.* 31:34-38). The structure was traced and rebuilt using O (Jones, T. A., et al., 1991, *Acta Crystallogr.* A47:110-119) and refined with X-PLOR 3.851 (Brünger, A. T., 1996, *X-PLOR Reference Manual* 3.851, Yale Univ., New Haven, CT). After 5 rounds of rebuilding and energy minimisation the R-factor dropped to 0.279 and Rfree = 0.359 for data 7-2.6 Å resolution. The current model contains 458 amino acids and 3 N-linked carbohydrates but no solvent molecules. For residues with B(Ca) > 70, Å atomic positions are less reliable (37-42, 155-159, 305, 336-341, 404-406, 453-458). There is weak electron density for residues 459-461, but the c-myc tail appears completely disordered.

The 1-462 fragment consists of the N-terminal three domains of IGF-1R (L1, cys-rich, L2), and contains regions of the molecule which dictate ligand specificity (17-23). The molecule adopts a reasonably extended structure (approximately 40 x 48 x 105 Å) with domain 2 (cys-rich region)

making contact along the length of domain 1 (L1) but very little contact with the third domain (L2) (see Figure 5). This leaves a space at the centre of the molecule of approximately 24 Å x 24 Å x 24 Å which is bounded on three sides by the three domains of the molecule. The space is of sufficient size to accommodate the ligand, IGF-1.

**Table 1** Summary of Crystallographic data

|           | Data set <sup>a</sup>           | Resol.<br>(Å)         | Mean<br>I/s | R <sub>merge</sub> <sup>b</sup> | Completeness<br>(multiplicity)  | No. of<br>sites                | R <sub>cullis</sub> <sup>c</sup> | Phasing<br>power <sup>d</sup> | FOMe        |
|-----------|---------------------------------|-----------------------|-------------|---------------------------------|---------------------------------|--------------------------------|----------------------------------|-------------------------------|-------------|
| 10        | Native                          | 2.6                   | 18.7        | 0.064                           | 0.996 (4.1)                     |                                |                                  |                               | 0.47 / 0.71 |
|           | PIP                             | 3.0                   | 15.8        | 0.060                           | 0.982 (2.2)                     | 3                              | 0.66                             | 1.71                          |             |
|           | UO <sub>2</sub> Ac <sub>2</sub> | 4.5                   | 7.5         | 0.095                           | 0.989 (2.3)                     | 2                              | 0.82                             | 1.17                          |             |
| <b>15</b> |                                 |                       |             |                                 |                                 |                                |                                  |                               |             |
|           | Refinement<br>resolution (Å)    | No of refl.<br>(free) |             | No. of Atoms                    | R <sub>cryst</sub> <sup>e</sup> | R <sub>free</sub> <sup>f</sup> | Bonds <sup>g</sup><br>(Å)        | Angles <sup>g</sup><br>(Å)    |             |
| 20        | 7.0-2.6                         | 24270<br>(2693)       |             | 3903                            | 0.237                           | 0.304                          | 0.017                            | 0.048                         |             |

<sup>a</sup> PIP, Di- $\mu$ -iodobis(ethylenediamine)diplatinum dinitrate; UO<sub>2</sub>Ac<sub>2</sub>, Uranyl acetate.

<sup>b</sup> R<sub>merge</sub> =  $\sum_{\mathbf{h}} \sum_j |I_{\mathbf{h},j} - \bar{I}_{\mathbf{h}}| / \sum_{\mathbf{h}} \sum_j I_{\mathbf{h}}$ , where I<sub>h,j</sub> is an intensity measurement j and  $\bar{I}_{\mathbf{h}}$  is the mean intensity for that reflection  $\mathbf{h}$ .

<sup>c</sup> R<sub>cullis</sub> =  $\sum_{\mathbf{h}} ||F_{\mathbf{h}H} - F_{\mathbf{h}}|| - ||F_{\mathbf{h}H\text{calc}}|| / \sum_{\mathbf{h}} ||F_{\mathbf{h}H}|| - ||F_{\mathbf{h}}||$ , where F<sub>hH</sub>, F<sub>h</sub> and F<sub>hHcalc</sub> are, respectively, derivative, native and heavy atom structure factors for centric reflections  $\mathbf{h}$ .

<sup>d</sup> Phasing power =  $\sum_{\mathbf{h}} |F_{\mathbf{h}\text{calc}}| / \sum_{\mathbf{h}} \epsilon$ , where F<sub>hHcalc</sub> is defined above and  $\epsilon$  is the lack of closure.

<sup>e</sup> FOM(figure of merit) =  $\langle \cos(\Delta\alpha_{\mathbf{h}}) \rangle$ , where  $\Delta\alpha_{\mathbf{h}}$  is the error in the phase angle for reflection  $\mathbf{h}$ . Values are given before and after density modification at 3.0 and 2.8 Å resolution, respectively.

<sup>f</sup> R<sub>cryst</sub> and R<sub>free</sub> are defined in Brunger, A.T. *XPLOR* reference manual 3.851 (Yale Univ., New Haven, CT, 1996)

8 r.m.s. deviation from ideal bond and angle-related (1-3) distances.

### The L domains

Each of the L domains (residues 1-150 and 300-460) adopts a compact shape ( $24 \times 32 \times 37 \text{ \AA}$ ) consisting of a single-stranded right handed  $\beta$ -helix and capped on the ends by short  $\alpha$ -helices and disulfide bonds. The body of the domain looks like a loaf of bread, with the base formed from a flat six-stranded  $\beta$ -sheet, 5 residues long and the sides being  $\beta$ -sheets three residues long (Figures 5 & 6). The top is irregular, but in places is similar for the two domains. The two domains are superposable with an rms deviation in  $\text{C}\alpha$  positions of  $1.6 \text{ \AA}$  for 109 atoms (Figure 7). Although this fold is reminiscent of other  $\beta$ -helix proteins it is much simpler and smaller with very few elaborations, and thus it represents a new superfamily of domains. One notable difference between the two domains is that the indole ring of Trp 176 from the cys-rich region (Figure 6b) is inserted into the hydrophobic core of L1, and the C-terminal helix is only vestigial (Figure 8). For the insulin receptor family the sequence motif of residues which form the Trp pocket in L1 does not occur in L2 (Figure 6a). However in the EGF receptor, which has an additional cys-rich region after the L2 domain (14, 15), the pocket motif can be found in both L domains and the Trp is conserved in both cys-rich regions (Figure 6b).

The repetitive nature of the  $\beta$ -helix is reflected in the sequence and the first five turns were correctly identified by Bajaj, M., et al. (1987, Biochim.Biophys. Acta 916:220-226), the conserved Gly residues being found in turns making one bottom edge of the domain. However, their conclusions about the fold were incorrect. The "helix-like" repeat is actually a pair of bends at the top edge of the domain. In their Motif V, the Gly is not in a bend but is followed by the insertion of a conserved loop of 7-8 residues (see Figure 6a). Glycine is structurally important in the Gly bends as mutation of these residues compromises folding of the receptor [van der Vorm, E.R., et al., 1992, J. Biol. Chem. 267, 66-71; Wertheimer, E. et al., 1994, J. Biol. Chem. 269, 7587-7592].

Comparison of the L domains with other right-handed  $\beta$ -helix structures such as pectate lyase (Yoder, M. D., et al., 1993, Structure, 1:241-251-1507) and the p22 tailspike protein (Steinbacher, S., et al., 1997, J.Mol. Biol. 267:865-880) shows some striking similarities as well as differences. In

all cases the ends of the domain are capped by  $\alpha$ -helices, but the L domains also have a disulphide bond at each end to hold the termini. The other  $\beta$ -helix domains are considerably longer and have significant twist to their sheets, while the L domains have flat sheets. Although the sizes of the helix repeats are similar (here 24-25 residues vs 22-23 for pectate lyase) the cross-sections are quite different. The L domains have a rectangular cross-section, while pectate lyase and p22 tailspike protein are V-shaped, and have many, and sometimes quite large, insertions (Yoder, M. D., et al., 1993, Structure, 1:241-251-1507; Steinbacher, S., et al., 1997, J.Mol. Biol. 267:865-880). In the hydrophobic core a common feature is the stacking of aliphatic residues from successive turns of the  $\beta$ -helix, and near the C-terminus of each L domain there is also a short Asn ladder, reminiscent of the long Asn ladder observed in pectate lyase (Yoder, M. D., et al., 1993, Structure 1:241-251-1507). On the opposite side of the L domains the Gly bend, as well as the two bends and sheet preceding it, have no counterpart in the other  $\beta$ -helix domains. Thus although the L domains are built on similar principles to the other  $\beta$ -helix domains they constitute a separate superfamily.

#### The cys-rich domain

The cys-rich domain is composed of eight disulfide-bonded modules (Figure

20 6b), the first of which sits at the end of L1, while the remainder make a curved rod running diagonally across L1 and reaching to L2 (Figure 5). The strands in modules 2-7 run roughly perpendicular to the axis of the rod in a manner more akin to laminin (Stetefeld, J., et al., 1996, J.Mol.Biol. 257:644-657 ) than to TNF receptor (Banner, D. W., et al., 1993, Cell, 73:431-445), but the modular arrangement of the cys-rich domain is different to those of other cys-rich proteins for which structures are known. The first 3 modules of IGF-1R have a common core, containing a pair of disulfide bonds, but show considerable variation in the loops (Figure 6b). The connectivity of these modules is the same as in the first half of EGF (Cys 1-3and 2-4), but their structures do not appear to be closely related to any member of the EGF family. Modules 4 to 7 have a different motif, a  $\beta$ -finger, and best match residues 2152-2168 of fibrillin (Dowling, A. K., et al., 1996, Cell, 85:597-605). Each is composed of three polypeptide strands, the first and third being disulfide bonded and the latter two forming a  $\beta$ -ribbon. The  $\beta$ -ribbon of each  $\beta$ -finger module lines up antiparallel to form a tightly twisted 8-stranded  $\beta$ -sheet (Figures 5 and 8). Module 6 deviates from the common pattern, with

the first segment being replaced by an  $\alpha$ -helix followed by a large loop that is likely to have a role in ligand binding (see below). As module 5 is most similar to module 7 it is possible that the four modules arose from serial gene duplications. The final module is a disulfide-linked bend of five residues.

5       The fact that the two major types of cys-rich modules occur separately implies that these are the minimal building blocks of cys-rich domains found in many proteins. Although it can be as short as 16 residues, the motif of modules 4-7 is clearly distinct, and capable of forming a regular extended structure. Thus cys-rich domains such as these can be considered  
10      as being made of repeat units each composed of a small number of modules.

#### Hormone binding

Attempts have been made to locate the IGF-1 (and insulin) binding site by examining natural (Taylor, S. I., 1992, Diabetes, 41:1473-1490) and site-directed mutants (Williams, P. F., et al., 1995, J. Biol. Chem. 270:3012-  
15      3016; Mynarcik, D. C et al., 1996, J. Biol. Chem. 271:2439-2442; Mynarcik, D. C., et al., 1997, J. Biol. Chem. 272:2077-2081), chimeric receptors (Andersen, A. S., et al., 1990, Biochemistry 29:7363-7366; Gustafson, T. A., & Rutter, W. J., 1990, J. Biol. Chem. 265:18663-18667; Schäffer, L., et al., 1993, J. Biol. Chem. 268:3044-3047; Schumacher, R., 1993, J. Biol. Chem. 268:1087-1094;  
20      Kjeldsen, T., et al., 1991, Proc. Natl Acad. Sci. USA, 88:4404-4408) and by crosslinking studies (Wedekind, F., et al., 1989, Biol. Chem Hoppe-Seyler, 370:251-258; Fabry, M., 1992, J. Biol. Chem. 267:8950-8956; Waugh, S. M., et al., 1989, Biochemistry, 28:3448-3458; Kurose, T., et al., 1994), J. Biol. Chem. 269:29190-29197-34). IGF-1R/IR chimeras not only show which regions of the receptors account for ligand specificity, but also provide an efficient means of identifying some parts of the hormone binding site.  
25      Paradoxically, regions controlling specificity are not the same for insulin and IGF-1. Replacing the first 68 residues of IGF-1R with those of IR confers insulin-binding ability on the chimeric IGF-1R (Kjeldsen, T., et al., 1991, Proc. Natl Acad. Sci. USA, 88:4404-4408), and replacing residues 198-300 in the cys-rich region of IR with the corresponding residues 191-290 of IGF-1R allows the chimeric receptor to bind IGF-1 (Schäffer, L., et al., 1993, J. Biol. Chem. 268:3044-3047). Thus a receptor can be constructed which binds both IGF-1 and insulin with near native affinity. From the structure it is clear that  
30      if the hormone bound in the central space it could contact both these regions.  
35

From analysis of a series of chimeras examined by Gustafson, T. A., & Rutter, W. J. (*J. Biol. Chem.* 265:18663-18667, 1990), the specificity determinant in the cys-rich region can be limited further to residues 223-274. This region corresponds to modules 4-6, and includes a large and somewhat mobile loop (residues 255-263, mean B[Ca atoms] = 57 Å<sup>2</sup>) which extends into the central space (see Figure 5). In IR this loop is four residues bigger, and is stabilised by an additional disulfide bond (Schäffer, L. & Hansen, P.H., 1996, *Exp. Clin. Endocrinol. Diabetes*, 104: Suppl. 2, 89). The larger loop of IR may serve to exclude IGF-1 from the hormone binding site while allowing the smaller insulin molecule to bind. It is interesting to note that mosquito IR homologue, which has a loop two residues larger than the mammalian IRs, also appears to bind insulin but not IGF-1 (Graf, R., et al., 1997, *Insect Molec.Biol.* 6:151-163). Analysis of the structure indicates that the insulin/IGF-1 specificity is controlled by residues in this loop (amino acids 253-272 in IGF-1R; amino acids 260-283 in IR)

As chimeras only address residues which differ between the two receptors, a more precise analysis of the site can be obtained from single site mutants. In particular, from an alanine-replacement study, four regions of L1 important for insulin binding were identified (Williams, P. F., et al., 1995, *J. Biol. Chem.* 270:3012-3016). The first three are at similar positions on successive turns of the β-helix and the fourth lies on the conserved bulge on the large β-sheet. Thus there is a footprint for insulin binding to the L1 domain which lies on the first half of the large β-sheet facing into the central space. Residues further along the sheet which are conserved in IGF-1R could also be important. The conservative substitution of leucine for methionine at residue 119 of IR (113 of IGF-1R) causes a mild form of leprechaunism [Hone, J. et al., 1994, *J. Med. Genet.* 31, 715-716]. This residue is buried, and the mutation could perturb neighbouring residues to affect insulin binding.

The axis of the L2 domain is perpendicular to that of the L1 domain, and the N-terminal end of its β-helix is presented to the hormone-binding site. On this face of the L2 domain the only mutation studied so far is the naturally occurring IR mutant, S323L, which gives rise to Rabson-Mendenhall syndrome and severe insulin resistance (Roach, P., 1994, *Diabetes* 43:1096-1102). As this mutant only affects insulin binding and not cell-surface expression, residue 323 of IR (residue 313 of IGF-1R) is probably at or near the binding site. Structurally this residue lies in the middle of a region

(residues 309-318 of IGF-1R) which is conserved in both IR and IGF-1R, and the surrounding region, 332-345 (of IGF-1R), is also quite well conserved in the these receptors (Figure 6a). Therefore this region is quite likely to form part of the hormone-binding site, but would not have been detected by  
5 chimeras. It is interesting to note that in this region IRR is not as well conserved as the other two receptors (Shier, P. & Watt, V.M., 1989,  
J.Biol.Chem. 264:4605-14608).

The distance from this putative hormone-binding region on L2 to that found on L1 is about 30 Å (Figure 5). Thus L1 and L2 appear too far apart to bind IGF-1 or insulin. However, in the crystal structure there is a deep cleft between part of the cys-rich domain (residue 262)and L2 (residue 305), and this cleft is occupied by a loop from a neighbouring molecule. Thus it seems probable that the position of the L2 domain in the receptor structure or the hormone-receptor complex adopts a different position with respect to the  
10 cys-rich domain than that found in the crystal. The movement required to bind L2 sufficiently close to L1 is small, namely a rotation of approximately  
15 25° about residue 298.

A number of IR mutants have been identified which constitutively activate the receptor, and the majority of these are found in the  $\alpha$  chain.  
20 Curiously all  $\alpha$  chain mutants involve changes to or from proline or the deletion of an amino acid, implying that they cause local structural rearrangements. The mutation R86N is similar to wild type, but R86P reduces cell-surface expression and insulin binding while constitutively activating autophosphorylation [Grønskov, K. et al., 1993, Biochem. Biophys. Res. Commun. 192, 905-911]. The proline mutation probably disturbs residues preceding 87 which lie in the interface between the L1 and cys-rich domains, but it could also affect insulin binding. In the cys-rich domain residues 233, 281, 244 and 247 of IR are not conserved in IGF-1R (Figure 6b), yet L233P [Klinkhamer, M.P. et al., 1989, EMBO J. 8, 2503-2507], deletion of  
25 N281 [Debois-Mouthon, C. et al., 1996, J. Clin. Endocrinol. Metab. 81, 719-727] or the triple mutant P243R, P244R and H247D [Rafaeloff, R. et al., 1989, J. Biol. Chem. 264, 15900-15904] cause constitutive kinase activation. Due to their locations each of these three mutants appears likely to compromise the folding of a  $\beta$ -finger domain and, in turn, the structural integrity of the rod-like cys-rich domain. The structural ramifications of these mutations could  
30 be significant for the whole receptor ectodomain, as disturbing the L1/cys-

rich interface or distorting the rod-like domain could affect the relative position of L1 and the cys-rich domain in this context.

L1 has been further implicated, as deletion of K121 on the opposite side of L1 from the cys-rich domain was also found to cause autophosphorylation [Jospe, N. et al., 1994, J. Clin. Endocrinol. Metab. 79, 1294-1302]. By contrast this mutation does not affect insulin binding. Thus a possible mechanism emerges for insulin binding and signal transduction. When insulin binds between L1 and L2 it modifies the relative position of L1 and the cys-rich domain in the receptor, perhaps by hinge motion between L2 and the cys-rich domain like that suggested above, and the structural rearrangement is transmitted across the plasma membrane. In the absence of insulin the same signal can be initiated by mutations in the cys-rich region or at the L1/cys-rich interface, but at the expense on insulin binding. The signal can also be initiated more directly by mutations on the opposite side of L1 which affect the interaction of L1 with other parts of the ectodomain, possibly the other half of the receptor dimer.

### Ligand Studies

Although there is no structural information about an IGF-1/IGF-1R complex a number of studies have probed the nature of this interaction. Results from cross-linking experiments with IGF-1 and insulin and their cognate receptors are consistent with the hormone binding site proposed above. For example B29 of insulin can be cross-linked to the cys-rich region (residues 205-316) (Yip, C. C., et al., 1988, Biochim. Biophys. Res. Commun. 157:321-329) or the L1 domain (Wedekind, F., et al., 1989, Biol. Chem Hoppe-Seyler, 370:251-258). However, these two regions are reasonably well separated, and those studies may indicate that B29 is mobile. Other studies unfortunately do not map the site any more precisely.

Analogues and site-directed mutants of IGF-1 and IGF-2 have been more fruitful. IGF-1 and IGF-2 contain two extra regions relative to insulin, the C region between B and A and a D peptide at the C-terminus. For IGF-1, replacement of the C region by a four Gly linker reduced affinity for IGF-1R by a factor of 40 but increased affinity for IR 5-fold (Bayne, M.L., et al., 1988, J. Biol. Chem. 264:11004-11008). Changes in affinity are consistent with the deletion in IGF-1 complementing differences in the cys-rich regions of IGF-1R and IR noted above. Mutation of residues either side of the C region (residue 24 for IGF-1 [Cascieri, M.A., et al., 1988, Biochemistry 27:3229-

3233], residues 27,43 for IGF-2, [Sakano, K., et al., 1991, J. Biol. Chem. 266:20626-20635]) also has deleterious effects on the affinity of the hormone for IGF-1R, as has truncation of the nearby D peptide in IGF-2 (Roth, B.V., et al., 1991, Biochem. Biophys. Res. Commun. 181:907-914).

5        Insulin has been extensively mutated. Binding studies [summarised in Kristensen, C. et al., 1997, J. Biol. Chem. 272, 12978-12983] indicate that insulin may bind its receptor via a hydrophobic patch (residues A2, A3, A19, B8, B11, B12, B15 and possibly B23 & B24). However this patch is normally buried, and requires the removal of the B chain's C-terminus from the  
10      observed position. Assuming IGF-1, IGF-2 and insulin bind their receptors in the same orientation, these data suggest an approximate orientation for the hormone when bound to the receptor.

15      One notable feature of IGF-1 and IGF-2 is the large number of charged residues and their uneven distribution over the surface. Basic residues are predominantly found in the C region and, in solution, this region is not well ordered in either IGF-1 or -2 (Sato, A., et al., 1993, Int J Peptide Protein Res. 41:433-440; Torres, A. M., et al., 1995, J. Mol. Biol. 248:385-401). In contrast the binding site of the receptor has a sizable patch of acidic residues in the corner where the cys-rich domain departs from L1. Other  
20      acidic residues which are specific to this receptor are found along the inside face of the cys-rich domain and the loop (residues 255-263) extending from module 6. Thus it is possible that electrostatic interactions play an important part in IGF-1 binding, with the C region binding to the acidic patch of the cys-rich region near L1 and the acidic patch on the other side of the  
25      hormone directed towards a small patch of basic residues (residues 307-310) on the N-terminal end of L2.

30      Although the structure of this fragment gives significant information about the nature of the hormone binding site, residues outside this region have also been shown to affect binding of ligand. A number of studies have implicated residues 704-715 of IR (Mynarcik, D. C et al., 1996, J. Biol. Chem. 271, 2439-2442; Kurose, T., et al., 1994, J. Biol. Chem. 269:29190-29197). These residues could contact insulin on one of the sides left open in the current structure. Using insulin labelled at the B1 residue, Fabry, M., et al., (1992, J. Biol. Chem. 267:8950-8956) cross-linked insulin to the fragment  
35      390-488, part of which is not near the site as described. The explanation for this could be either the region 390-488 reaches back to the hormone binding

site, or this region could contact another hormone bound to the other half of the receptor. Further structural information is needed to establish how these other regions contact the hormone and to elucidate how binding of the hormone is communicated to the kinase inside the cell.

5       The structure of the L1-cys-rich-L2 domains of IGF-1R presented here represents the first structural information for the extracellular portion of a member of the insulin receptor family. The L domains display a novel fold which is common to the EGF receptor family, and the modular architecture of the cys-rich domain implies that smaller building blocks should be used to  
10      describe the composition of cysteine-rich domains. This fragment contains the major specificity determinants of receptors of this class for their ligands. It has an elongated structure with a space in the middle which could accommodate the ligand. The three sides of this site correspond to regions which have been implicated in hormone binding. Although other sites are  
15      present in the receptor ectodomain which interact with the ligand, this structure gives us an initial view of how the insulin, IGF-1 and IGF-2 might interact with their cell surface receptors to control their metabolic and mitogenic effects

20      Such information will provide valuable insight into the structure of the corresponding domains of the IR and insulin receptor-related receptor as well as members of the related EGFR family (Bajaj, M., et al., 1987, Biochim Biophys Acta 916:220-226; Ward, C. W. et al., 1995, Proteins: Struct Funct Genet 22:141-153).

### EXAMPLE 3

25      Prediction of 3D Structure of the Corresponding Domains of IRR and IR Based on Structure of IGF-1R Fragment.

30      The sequence identities between the different members of the insulin receptor family are sufficient to allow accurate sequence alignments to facilitate 3D structure predictions by homology modelling. The alignments of the ectodomains of human IGF-1R, IR, and IRR are shown in Figure 9.

### EXAMPLE 4

Single-Molecule Imaging of Human Insulin Receptor Ectodomain and its Fab Complexes

#### Cloning and expression of hIR -11 ectodomain protein

35      A full length clone of the human IR exon -11 form (hIR -11) was prepared by exchanging an Aat II fragment, nucleotides 1195 to 2987 , of the

exon + 11 clone (plasmid pET; Ellis et al., 1986; gift from Dr W. J. Rutter, UCSF) of hIR (Ebina et al., 1985, *Cell* 40, 747-758) with the equivalent Aat II fragment from a plasmid (pHIR/P12-1, ATCC 57493) encoding part of the extracellular domain and the entire cytoplasmic domain of hIR -11 (Ullrich et al., 1985, *Nature* 313, 756-761). The ectodomain fragment of hIR -11 (2901 bp, coding for the 27 residue signal sequence and residues His1-Asn914) was produced by SalI and SspI digestion and inserted into the mammalian expression vector pEE6.HCMV-GS (Celltech Limited, Slough, Berkshire, UK) into which a stop codon linker had been inserted, as described previously (Cosgrove et al., 1995, *Protein Expression and Purification* 6, 789-798) for the hIR exon + 11 ectodomain.

The resulting recombinant plasmid pHIR II (2 µg) was transfected into glycosylation-deficient Chinese hamster ovary (Lec 8) cells (Stanley, 1989, *Molec. Cellul. Biol.* 9, 377-383) with Lipofectin (Gibco-BRL). After transfection, the cells were maintained in glutamine-free medium GMEM (ICN Biomedicals, Australia) as described previously (Bebbington & Hentschel, 1987, In *DNA Cloning* (Glover, D., ectodomain.), Vol III, Academic Press, san Diego; Cosgrove et al., 1995, *Protein Expression and Purification* 6, 789-798). Expressing cell lines were selected for growth in GMEM with 25 µM methionine sulphoximine (MSX, Sigma). Transfectants were screened for protein expression using sandwich ELISA with anti-hIR monoclonal antibodies 83-7 and 83-14. Metabolic labelling of cells, immunoprecipitations, insulin binding assays and Scatchard analyses were performed as described previously for the exon + 11 form of hIR ectodomain (Cosgrove et al., 1995, *Protein Expression and Purification* 6, 789-798).

#### **hIR -11 ectodomain production and purification**

The selected clone (inoculum of 1.28 x 10<sup>8</sup> cells) was grown in a spinner flask packed with 10 g of Fibra-cel disc carriers (Sterilin, U.K.) in 500 ml of GMEM medium containing 10% fetal calf serum (FCS) and 25 µM MSX. Selection pressure was maintained for the duration of the culture.

Ectodomain was recovered from harvested medium by affinity chromatography on immobilized insulin, and further purified by gel filtration chromatography on Superdex S200 (Pharmacia; 1 x 40 cm) in Tris-buffered saline containing 0.02% sodium azide (TBSA) as described previously (Cosgrove et al., 1995, *Protein Expression and Purification* 6, 789-798). Solutions of purified hIR -11 ectodomain were stored at 4° C prior to use.

5    **Production of Fab fragments and their complexes with ectodomain**

Purification of Mabs 83-7, 83-14 and 18-44 from ascites fluid by affinity chromatography using Protein A-Sepharose, and the production of Fabs, were based on the methodologies described in Coligan et al., 1993, Current Protocols in Immunology, Vol 1, pp 2.7.1-2.8.9, Greene Publishing Associates & Wiley - Interscience, John Wiley and Sons. Fab was produced from monoclonal antibody by mercuripapain digestion for 1-4 h, followed by gel filtration on Superdex S200. Products were monitored by reducing and non-reducing SDS-PAGE. For 83-7 Mab, an IgG Type 1 monoclonal antibody, the bivalent (Fab)2' isolated by this method was reduced to monovalent Fab 83-7 by mild reduction with mM L-cysteine.HCl in 100 mM Tris pH 8.0 (Coligan et al., 1993, Current Protocols in Immunology, Vol 1, pp 2.7.1-2.8.9, Greene Publishing Associates & Wiley - Interscience, John Wiley and Sons).

Complexes of Fab with hIR -11 ectodomain were produced by mixing ~ 2.5 to 3.5 molar excess of Fab with hIR -11 ectodomain at ambient temperature in TBSA at pH 8.0. After 1-3 h, the complex was separated from unbound Fab by gel filtration over a Superdex S200 column in the same buffer.

20    **Electron microscopy**

Uncomplexed hIR -11 ectodomain and the Fab complexes described above were diluted in phosphate-buffered saline (PBS) to concentrations of the order of 0.01-0.03 mg/ml. Prior to dilution, 10% glutaraldehyde (Fluka) was added to the PBS to achieve a final concentration of 1% glutaraldehyde. Droplets of ~ 3ml of this solution were applied to thin carbon film on 700-mesh gold grids after glow-discharging in nitrogen for 30 s. After 1 min. the excess protein solution was drawn off and followed by application and withdrawal of 4-5 droplets of negative stain [2% uranyl acetate (Agar), 2% uranyl formate (K and K), 2% potassium phosphotungstate (Probing and Structure) adjusted to pH 6.0 with KOH, or 2% methylamine tungstate (Agar) adjusted to pH 6.8 with NH4OH]. In the case of both uranyl acetate and uranyl formate staining, an intermediate wash with 2 or 3 droplets of PBS was included prior to application of the stain. The grids were air-dried and

then examined at 60kV accelerating voltage in a JEOL 100B transmission electron microscope at a magnification of 100,000x. It was found that there was a typical thickness of negative stain in which Fabs were most easily seen. Hence areas for photography had to be chosen from particular zones of  
5 the grid. Electron micrographs were recorded on Kodak SO-163 film and developed in undiluted Kodak D19 developer. The electron-optical magnification was calibrated under identical imaging conditions by recording single-molecule images of the antigen-antibody complex of influenza virus neuraminidase heads and NC10 MFab (Tulloch et al., 1986, *J.Mol. Biol.* **190**,  
10 215-225; Malby et al., 1994, *Structure*, **2**, 733-746).

#### Image processing

Electron micrographs showing particles in a limited number of identifiable projections were chosen for digitisation. Micrographs were digitised on a Perkin-Elmer model 1010 GMS PDS flatbed scanning  
15 microdensitometer with a scanning aperture (square) size of 20 mm and stepping increment of 20 mm corresponding to a distance of 0.2 nm on the specimen. Particles were selected from the digitised micrograph using the interactive windowing facility of the SPIDER image processing system (Frank et al., 1996, *J. Struct. Biol.* **116**, 190-199). Particles were scaled to an optical  
20 density range of 0.0 - 2.0 and aligned by the PSPC reference-free alignment algorithm (Marco et al., 1996, *Ultramicroscopy*, **66**, 5-10). Averages were then calculated over a subset of correctly aligned particles chosen interactively as being representative of a single view of the particle. The final average image presented here is derived from a library of 94 images.

#### 25 Biochemical characterization of expressed hIR -11 ectodomain

The recombinant protein examined corresponded to the first 914 residues of the 917 residue ectodomain of the exon -11 form of the human insulin receptor (Ullrich et al., 1986, *Nature* **313**, 756-761). Expressed protein was shown, by SDS-PAGE and autoradiography of immunoprecipitated  
30 product from metabolically labelled cells, to exist as a homodimeric complex of ~270 - 320 kDa apparent mass, which dissociated under reducing conditions into monomeric  $\alpha$  and  $\beta'$  subunits of respective apparent mass ~120 kDa and ~35 kDa (data not shown).

Purified hIR -11 ectodomain, expressed in Lec8 cells and purified by  
35 affinity chromatography on an insulin affinity column, eluted as a symmetrical peak on a Superdex S200 gel filtration column (Figure 10). The

protein eluted with an apparent mass of ~400 kDa, calculated from a standard curve generated by the elution positions of standard proteins (not shown). As expected for protein expressed in Lec 8 cells, whose glycosylation defect produces truncated oligosaccharides (Stanley, 1989, . 5 *Molec. Cellul. Biol.* **9**, 377-383), this value is less than the apparent mass (450 - 500 kDa) reported for hIR + 11 ectodomain expressed in wild-type CHO-K1 cells (Johnson et al., 1988, *Proc. Natl Acad. Sci USA* **85**, 7516-7520; Cosgrove et al., 1995, *Protein Expression and Purification* **6**, 789-798).

Radioassay of insulin binding to purified ectodomain gave linear 10 Scatchard plots and Kd values of 1.5 - 1.8 x 10<sup>-9</sup> M, similar to the values of 2.4 - 5.0 x 10<sup>-9</sup> M reported for the hIR -11 ectodomain (Andersen et al., 1990, *Biochemistry* **29**, 7363-7366; Markusen et al., 1991, *J. Biol. Chem.* **266**, 18814-18818; Schaffer, 1994, *Eur. J. Biochem.* **221**, 1127-1132) and the values 15 of ~1.0 - 5.0 x 10<sup>-9</sup> M reported for the hIR + 11 ectodomain (Schaefer et al., 1992, *J. Biol. Chem.* **267**, 23393-23402; Whittaker et al., 1994, *Molec. Endocrinol.* **8**, 1521-1527; Cosgrove et al., 1995, *Protein Expression and Purification* **6**, 789-798).

#### Expression of hIGF-1R ectodomain

Cloning, expression and purification of this protein used elements 20 common to those described for hIR -11 ectodomain (Cosgrove et al., 1995, *Protein Expression and Purification* **6**, 789-798), and resulted in purified product that was recognised by receptor-specific Mabs 17-69, 24-31 and 24-60 (Soos et al., 1992, *J. Biol. Chem.* **267**, 12955-63) and was composed of  $\alpha$  and  $\beta'$  subunits of mass similar to those of hIR ectodomain.

#### Preparation of hIR -11 ectodomain/MFab complexes

A complex of hIR -11 ectodomain and Fab from antibody 83-14 eluted as a symmetrical peak of 460 -500 kDa (Figure 10), as did complexes generated from a mixture of hIR -11 ectodomain with Fab from antibody 18-44 and a mixture of hIR -11 ectodomain with Fab 83-7 (not shown). A co-complex of ectodomain with Fabs from antibodies 18-44 and 83-14 eluted at ~ 620 kDa, as did a co-complex with MFabs 83-14/83-7 and another with MFabs 83-7/18-44 (not shown). A complex of hIR -11 ectodomain with all 30 three MFab derivatives, 18-44, 83-7 and 83-14, eluted at an apparent mass of ~ 710 kDa (Figure 10).

#### Electron microscopy

#### Imaging of hIR -11 and hIGF-1R ectodomains

Single-molecule imaging of uncomplexed dimeric hIR -11 ectodomain was carried out under a variety of negative staining conditions, which emphasised different aspects of the structure of the molecular envelope. Images obtained by this investigation are depicted in Figure 11.

5       The least aggressive or penetrative stain was potassium phosphotungstate (KPT), which revealed consistent globular particles with very little internal structure other than a suggestion of a division into two parallel bars. Staining with methylamine tungstate also revealed the parallel bar images.

10      Further investigation using progressively more penetrative, but also potentially more disruptive, stains confirmed the observations above. Staining with uranyl acetate and uranyl formate showed the separation of the parallel bars most clearly, but uranyl acetate showed evidence of disrupting the structure of the particles, i.e. a decrease in the consistency of the particle shape and a tendency for particles to look unravelled or denatured despite having been subjected to chemical cross-linking prior to staining. In areas of thicker stain, parallel bars predominated, whereas in more thinly stained regions, U-shaped particles could be identified, sometimes outnumbering the parallel-bar structures (see Figure 11).

15      **20 Imaging of hIR -11 ectodomain complexed with 83-7 MFab**

This complex was particularly noteworthy for the consistency of the form of the particles, especially under the gentler staining conditions afforded by stains such as KPT and methylamine tungstate. The particles were interpreted as having been restricted in the views they presented, after 25 air-drying on the carbon support film, by the almost diametrically opposite binding of the two Fab arms to the antigen to form a highly elongated complex structure. Under these conditions three distinct views could be recognised (see Figure 11). Two views (interpreted as top-down/bottom-up) show the Fab arms displaced clockwise or anti-clockwise as extensions of the parallel plates with two-fold symmetry. The third view shows an image with 30 the two Fab arms in line roughly through the centre of the receptor on its opposite sides, interpreted as a side projection of binding half-way up the plates.

The use of aggressive uranyl stains operating at lower pHs revealed 35 internal structure of the molecular envelope at the expense of consistency of the particle morphology. For example, staining with uranyl acetate or uranyl

formate showed that parallel bars can be seen in particles in which the Fab arms are displaced either clockwise or anticlockwise but not where the intermediate central or axial position of the two Fab arms is presented in projection. These observations show 83-7 MFab binding roughly half-way up the side-edge of each hIR -11 ectodomain plate. The epitope recognised by Mab 83-7 has been mapped to the cys-rich region, residues 191-297, by analysis of chimeric receptors (Zhang and Roth, 1991, *Proc. Natl. Acad. Sci. USA* **88**, 9858-9862).

**Imaging of hIR -11 ectodomain complexed with either 83-14 MFab or 18-44**

**MFab**

Complexes were formed with Fabs from the most insulin-mimetic antibody Mab 83-14. Projections showing the Fab arms bound to and extending out from near the base of the U-shaped particles were identified. A second field of particles showed objects composed of two parallel bars as observed for the undecorated ectodomain, with Fab arms projecting obliquely from diametrically opposite extremities (see Figure 11). Similar but less definitive images were also seen when MFab 18-44 was bound to hIR -11 ectodomain. The epitope for Mab 83-14 is between residues 469-592 (Prigent et al., 1990) in the connecting domain. This domain contains one of the disulphide bonds (Cys524-Cys524) between the two monomers in the IR dimer (Schaffer and Ljungqvist, 1992, *Biochem. Biophys. Res. Commun.* **189**, 650-653). The epitope for Mab 18-44 is a linear epitope, residues 765-770 (Prigent et al., 1990, *J. Biol. Chem.* **265**, 9970-9977) in the  $\beta$ -chain, near the end of the insert domain (O'Bryan et al., 1991, *Mol. Cell. Biol.* **11**, 5016-5031). The insert domain contains the second disulphide bond connecting the two monomers in the IR dimer (Sparrow et al., 1997, *J. Biol. Chem.*, 272, 29460-29467).

**Imaging of hIR -11 ectodomain co-complexed with two different MFabs per monomer**

The double complex of hIR -11 ectodomain with MFabs 83-7 and 18-44 was stained with 2% KPT at pH 6.0, and revealed the molecular envelopes. The particle appears complex in shape, and can assume a number of different orientations on the carbon support film, giving rise to a number of different projections in the micrograph. The predominant view is of an asymmetric X-shape (some examples circled). It shows the 83-7 MFab arms bound at opposite ends of the parallel bars with the two 18-44 MFabs

appearing as shorter projections extending out from either side of each ectodomain.

Images of the double complex of hIR -11 ectodomain with 83-7 and 83-14 MFabs gave X-shaped images similar to those seen with the 83-7/18-44 double complex. In contrast the double complex of hIR -11 ectodomain with 18-44 and 83-14 MFabs did not present the characteristic asymmetric X-shapes described above. Instead, the molecular envelope appeared to be elongated in many views, with only an occasional X-shaped projection. While a detailed interpretation of these images would be premature, it is clear that MFabs 18-44 and 83-14, two of the more potent insulin mimetic antibodies (Prigent et al., 1990, *J. Biol. Chem.* 265, 9970-9977), can bind simultaneously to the receptor.

#### **Imaging of hIR -11 ectodomain co-complexed with three different MFabs per monomer**

A field of particles from a micrograph of hIR -11 ectodomain were complexed simultaneously with MFabs 83-7, 83-14 and 18-44. In the thicker stain regions the molecular envelope was X-shaped, and looked very similar to that of the double complexes of hIR -11 ectodomain with either 83-7 and 18-44 or 83-7 and 83-14. However, in the more thinly stained regions particles of greater complexity were visible, and it was possible occasionally to identify that there are in fact more than four MFabs bound to the ectodomain dimer.

The single-molecule imaging of hIR -11 ectodomain presented here suggests a molecular envelope for this dimeric species significantly different from that of any previously published study. However, an unequivocal determination of the molecular envelope even from the present study is not entirely straightforward. A major complicating factor here has been the relative fragility of the expressed ectodomain when exposed to the rigors of electron microscope preparation by negative staining. For example, staining with potassium phosphotungstate (KPT, pH 6.0-7.0) frequently suggested a denaturation of the dimeric molecules, but when appropriate conditions were satisfied, good seemingly interpretable molecular envelope images were achieved; staining with methylamine tungstate (pH ~7.0) supported the best KPT molecular envelope images, but had the suggestion of a swelling of the molecular structure at neutral pH; and the acid-pH stains of uranyl acetate (pH ~4.2) and uranyl formate (pH~3.0), with their ability to penetrate the

ectodomain structure, appeared to illuminate not so much the molecular envelope as the zones of high projected protein density within the dimer.

An amalgam of impressions from these various staining regimens has led to the following interpretation of single-molecule images of these

5 undecorated, or naked, dimers: the predominant dimeric molecular image encountered here has been that of "parallel bars" of projected protein density.

This view is so predominant, indeed, that it suggests there is either a single preferred orientation of the molecules on the glow-discharged carbon support film, or that this impression of parallel bars of density may represent a

10 mixture of superficially similar structure projections, with the subtleties of these different projections being masked by the relatively coarse resolution of this single-molecule direct imaging. The impression of parallel bars of projected protein density is particularly predominant in regions of thicker negative stain. A second view of the molecular envelope, appreciably less

15 well represented in regions of thicker stain but predominant in regions of thin staining, is that of 'open' U's, or V's. These two views of hIR -11 ectodomain were supported by the single-molecule imaging of hIGF-1R ectodomain under comparable conditions of negative staining.

If the assumption is made that these two recognisable projected views, that of parallel bars and of open U's/V's, are different views of the 20 same dimeric molecule, an assumption strongly supported by the MFab complex imaging, a coarse model of the molecular envelope can be rationalized. The model structure is roughly that of a cube, composed of two almost-parallel plates of high protein density, separated by a deep cleft of low 25 protein main-chain and side-chain density able to be penetrated by stain, and connected by intermediate stain-excluding density near what is assumed here to be their base (that is, nearest the membrane-anchoring region). The width of the low-density cleft appears to be of the order of 30-35 Å, sufficient to accommodate the binding of the insulin molecule of diameter ca. 30 Å, 30 although we have no electron microscopical evidence to support insulin-binding in this cleft at this stage.

It has been established through imaging of bound 83-7 MFab that 35 there is a dimeric two-fold axis normal to the membrane surface between these plates of density. Occasionally, dimer images display a relative displacement of the bars of density, interpreted here as a limited capacity for a shearing of the interconnecting zone between the two plates along their

horizontal axis parallel to the membrane; other images show bars skewed from parallel, implying a limited capacity for the plates to rotate independently around the two-fold axis, again via this interconnecting zone. These two observations each suggest a relatively flexible connectivity 5 between the dimer plates in the membrane-proximal region of intermediate protein density, which could possibly contribute to the transmembrane signalling process.

The approximate overall measured dimensions of the ectodomain dimer are 110 x 90 x 120 Å, calibrated against the dimensions of imaged 10 influenza neuraminidase heads, known from the solved X-ray structure (Varghese et al., 1983, *Nature* **303**, 35-40). It can be noted that there is a compatibility here between the molecular weights and molecular dimensions of these two molecular species: the compact tetrameric influenza neuraminidase heads of Mr ~200 kDa occupy a volume almost 100 x 100 x 15 60 Å; the more open dimeric insulin receptor ectodomains of similar Mr ~240 kDa imaged here occupy a volume approximately 110 x 90 x 120 Å, roughly twice that of the neuraminidase heads, accommodating the slightly higher molecular weight and substantial central low-density cleft.

The low-resolution roughly cubic compact structure proposed here 20 differs substantially from the T-shaped model proposed by Christiansen et al. (1991, *Proc. Natl. Acad. Sci. U. S. A.* **88**, 249-252) and Tranum-Jensen et al., (1994, *J. Membrane Biol.* **140**, 215-223) for the whole receptor and the elongated model proposed by Schaefer et al. (1992, *J. Biol. Chem.* **267**, 23393-23402) for soluble ectodomain. Significantly, those previous studies did not 25 provide any convincing independent electron microscopical evidence that their imaged objects were in fact insulin receptor.

In the present study, the identity of the imaged molecules as hIR -11 ectodomain has been confirmed by imaging complexes of the dimer with Fabs of the three well-established conformational Mabs against native hIR, 30 83-7, 83-14 and 18-44 (Soos et al., 1986, *Biochem. J.* **235**, 199-208; 1989, *Proc. Natl Acad. Sci. USA* **86**, 5217-5221), bound singly and in combination. In all these instances, virtually every particle in the field of view exhibited MFab decoration through binding to conformational epitopes, establishing not only the identity of the imaged particles but also the conformational integrity of 35 the expressed ectodomains. Furthermore, the cleanliness and uniformity of these hIR -11 ectodomain preparations, both naked and decorated, visualised

here by electron microscopy demonstrate their high suitability for X-ray crystallization trials.

The known flexibility of the Fab arms exacerbates image-to-image variability beyond the limited extent already described for the undecorated dimeric ectodomains, complicating any precise interpretation of these antigen-antibody complexes. Such molecular flexibility also renders largely impractical any single-molecule computer image averaging to facilitate image interpretation, progressively more so with the higher order antigen-antibody complexes studied here.

The most readily interpretable of these images, showing least image-to-image variability, are those of 83-7 MFab bound to dimers where, fortuitously, the antigen-antibody complex is constrained in its degrees of rotational freedom on the carbon support film. Many projected images show the two Fab arms in line roughly through the centre of the antigen on its opposite sides, interpreted as a side projection of binding half-way up the plates from their membrane-proximal base. Other sub-sets of images show the two Fab arms still parallel but displaced clockwise or anticlockwise with 2-fold symmetry, each Fab approximating an extension of one of the parallel bars of antigen density, interpreted here as representing top or bottom projections along the 2-fold axis. The third projection, along the axis of the Fab arms, could not be sampled here because of the constraining geometry of this molecular complex. These observations suggest binding of 83-7 MFab roughly half-way up the side-edge of the hIR -11 ectodomain plate. This then allows an initial attempt at spatially mapping the 83-7 MFab epitope, which has been sequence-mapped to residues 191-297 in the cys-rich region of the insulin receptor (Zhang and Roth, 1991, *Proc. Natl. Acad. Sci. USA* **88**, 9858-9862). The spatial separation and relative orientations of the two binding epitopes of Mab 83-7 on the hIR -11 ectodomain dimer as indicated here appear inconsistent with the proposal that Mab 83-7 could bind intramolecularly to hIR (O'Brien et al., 1987, *Biochem J.* **6**, 4003-4010).

Decoration of the ectodomain dimer with 83-7 MFab established that the two plates of high protein-density are arranged with 2-fold symmetry. Decoration with either 83-14 or 18-44 MFab , on the other hand, allowed sampling of the third projection of the ectodomain dimer precluded by 83-7 MFab binding. Significantly, this third view established unequivocally the U-shaped projection of the hIR -11 ectodomain dimer, something which was

only able to be assumed with the undecorated ectodomain images. Further, this projection has allowed a rough spatial mapping close to the base of the U-shaped dimer for the epitopes recognised by 83-14 MFab (residues 469-592, connecting domain) and 18-44 MFab (residues 765-770,  $\beta$ -chain insert domain; exon 11 plus numbering, Prigent et al., 1990, *J. Biol. Chem.* **265**, 9970-9977).

Inherent in the model structure is the implication that, with the two-fold axis aligned normal to the membrane surface, the mouth of the low-density cleft where insulin binding may occur would lie most distant from the transmembrane anchor, whilst the zone of intermediate density connecting the two high-density plates would be in close proximity to the membrane. It follows, in this model, that the L1/cys-rich/L2 domains(Bajaj et al., 1997, *Biochim. Biophys. Acta* **916**, 220-226; Ward et al., 1995, *Proteins: Struct., Funct., Genet.* **22**, 141-153), which comprise much of the insulin-binding region (see Mynarcik et al., 1997, *J. Biol. Chem.* **272**, 2077-2081), most probably lie in the membrane-distal upper halves of the two plates, whilst the membrane-proximal lower halves contain the connecting domains, the fibronectin-type domains, the insert domains and the interchain disulphide bonds (Schaffer and Ljungqvist, 1992, *Biochem. Biophys. Res. Commun.* **189**, 650-653; Sparrow et al., 1997, *J. Biol. Chem.*, **272**, 29460-29467). Such a disposition of domains is supported by the images seen with the single MFab decoration, the 83-7 MFab epitope in the cys-rich region being spatially mapped roughly half-way up the side-edge of the ectodomain plates, and the 83-14 and 18-44 MFab epitopes (connecting domain and  $\beta$ -chain insert domain, respectively) being mapped near the base of the plates. Our preference is for a single a-b $\beta$  monomer to occupy a single plate, although the possibility of a single monomer straddling the two plates of protein density cannot be discounted.

The more complex images involving co-binding of two, and even more so of all three, MFabs to each monomer of the ectodomain dimer are not easily interpretable with respect to relative domain arrangements within the monomer at present, not least of all because of the difficulty of finding conditions of negative staining that will simultaneously maintain the integrity of the Fab binding while highlighting recognisable and reproducible details of the internal structure of the dimeric IR ectodomain.

The data presented here demonstrate the ability of single-molecule imaging to give an initial insight into the topology of multidomain structures such as the ectodomain of hIR, and the value of combining this technique with that of either single or multiple monoclonal Fab attachment per monomer as a potential means of epitope, and domain, mapping of the structure. By imaging Fab complexes of other members of the family, such as hIGF-1R ectodomain, and combining available sequence-mapped epitope information with that presented here, a more comprehensive understanding of domain arrangements within the IR family ectodomains should be forthcoming.

#### EXAMPLE 5

#### Structure-Based Design of Ligands for the IGF Receptor as Potential Inhibitors of IGF Binding

The structure of IGF receptor can be considered as a filter or screen to design, or evaluate, potential ligands for the receptor. Those skilled in the art can use a number of well known methods for de novo ligand design, such as GRID, GREEN, HSITE, MCSS, HINT, BUCKETS, CLIX, LUDI, CAVEAT, SPLICER, HOOK, NEWLEAD, PRO\_LIGAND, ELANA, LEGEND, GenStar, GrowMol, GROW, GEMINI, GroupBuild, SPROUT, and LEAPFROG, to generate potential agonists or antagonists for IGF-1R. In addition, the IGF-1R structure may be used as a query for database searches for potential ligands. The databases searched may be existing eg ACD, Cambridge Crystallographic, NCI, or virtual. Virtual databases, which contain very large numbers (currently up to  $10^{12}$ ) of chemically reasonable structures, may be generated by those skilled in the art using techniques such as DBMaker, ChemSpace, TRIAD and ILIAD.

The IGFR structure contains a number of sites into which putative ligands may bind. Search strategies known to those skilled in the art may be used to identify putative ligands for these sites. Examples of two suitable search strategies are described below:

(i) *Database Search*

The properties of key parts of the putative site may be used as a database search query. For example, the Unity 2.x database software may be used. A flexible 3D search can be run in which a "directed tweak" algorithm is used to find low energy conformations of potential ligands which satisfy the query.

(ii) *De novo design of ligands*

The Leapfrog algorithm as incorporated in the software package, Sybyl version 6.4.2 (Tripos Associates, St Louis), may be used to design potential ligands for IGF-1R sites. The coordinates of residues around the site may be taken from the x-ray structure, hydrogens and charges (Kollman all atom dictionary charges) added. From the size, shape and properties of the site, a number of potential ligands may be proposed. Leapfrog may be used to optimize the conformation of ligands and position on the site, to rank the likely strength of binding interactions with IGF-1R, and to suggest modifications to the structures which would have enhanced binding.

- 5       It is also possible to design ligands capable of interacting with more than one site. One way in which this may be done is by attaching flexible linkers to ligands designed for specific sites so as to join them. The linkers may be attached in such a way that they do not disrupt the binding to individual sites.
- 10      All references cited above are incorporated herein in their entirety by reference.

15      It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims:

1. A method of designing a compound able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, including the step of assessing the stereochemical complementarity between the compound and the receptor site of the molecule, wherein the receptor site includes:
  - (a) amino acids 1 to 462 of the receptor for IGF-1, having the atomic coordinates substantially as shown in Figure 1;
  - (b) a subset of said amino acids, or;
  - (c) amino acids present in the amino acid sequence of a member of the insulin receptor family, which form an equivalent three-dimensional structure to that of the receptor molecule as depicted in Figure 1.
- 10 2. A method according to claim 1, in which the compound is selected or modified from a known compound identified from a database.
- 15 3. A method according to claim 1, in which the compound is designed so as to complement the structure of the receptor molecule as depicted in Figure 1.
- 20 4. A method according to any one of claims 1 to 3, in which the compound has structural regions able to make close contact with amino acid residues at the surface of the receptor site lining the groove, as depicted in Figure 2.
- 25 5. A method according to any one of claims 1 to 4, in which the compound has a stereochemistry such that it can interact with both the L1 and L2 domains of the receptor site.
- 30 6. A method according to any one of claims 1 to 4, in which the compound has a stereochemistry such that it can interact with the L1 domain of a first monomer of the receptor homodimer, and with the L2 domain of the other monomer of the receptor homodimer.
- 35 7. A method according to any one of claims 1 to 4, in which the interaction of the compound with the receptor site alters the position of at least one of the

L1, L2 or cysteine-rich domains of the receptor molecule relative to the position of at least one of the other of said domains.

8. A method according to claim 7, in which the compound interacts with

5 the  $\beta$  sheet of the L1 domain of the receptor molecule, thereby causing an alteration in the position of the L1 domain relative to the position of the cysteine-rich domain or of the L2 domain.

9. A method according to claim 7, in which the compound interacts with

10 the receptor site in the region of the interface between the L1 domain and the cysteine-rich domain of the receptor molecule, thereby causing the L1 domain and the cysteine-rich domain to move away from each other.

10. A method according to claim 7, in which the compound interacts with

15 the hinge region between the L2 domain and the cysteine-rich domain of the receptor molecule, thereby causing an alteration in the positions of the L2 domain and the cysteine-rich domain relative to each other.

11. A method according to any one of claims 1 to 10, in which the

20 stereochemical complementarity between the compound and the receptor site is such that the compound has a  $K_b$  for the receptor side of less than  $10^{-6} M$ .

12. A method according to claim 11, in which the  $K_b$  is less than  $10^{-8} M$ .

25 13. A method according to any one of claims 1 to 12, in which the compound has the ability to increase an activity mediated by the receptor molecule.

14. A method according to any one of claims 1 to 12, in which the

30 compound has the ability to decrease an activity mediated by the receptor molecule.

15. A method according to claim 14, in which the stereochemical

interaction between the compound and the receptor site is adapted to prevent the binding of a natural ligand of the receptor molecule to the receptor site.

16. A method according to claim 14 or claim 15, in which the compound has a  $K_i$  of less than  $10^{-6}M$ .

17. A method according to claim 16, in which the compound has a  $K_i$  of less  
5 than  $10^{-8}M$ .

18. A method according to claim 17, in which the compound has a  $K_i$  of less than  $10^{-9}M$ .

10 19. A method according to any one of claims 1 to 18, in which the receptor is the IGF-1R.

20. A method according to any one of claims 1 to 18, in which the receptor is the insulin receptor.

15 21. A computer-assisted method for identifying potential compounds able to bind to a molecule of the insulin receptor family and to modulate an activity mediated by the molecule, using a programmed computer including a processor, an input device, and an output device, including the steps of:

20 (a) inputting into the programmed computer, through the input device, data comprising the atomic coordinates of the IGF-1R molecule as shown in Figure 1, or a subset thereof;

25 (b) generating, using computer methods, a set of atomic coordinates of a structure that possesses stereochemical complementarity to the atomic coordinates of the IGF-1R site as shown in Figure 1, or a subset thereof, thereby generating a criteria data set;

(c) comparing, using the processor, the criteria data set to a computer database of chemical structures;

30 (d) selecting from the database, using computer methods, chemical structures which are structurally similar to a portion of said criteria data set; and

(e) outputting, to the output device, the selected chemical structures which are similar to a portion of the criteria data set.

22. A computer-assisted method according to claim 21, in which the method is used to identify potential compounds which have the ability to decrease an activity mediated by the receptor.

23. A computer-assisted method according to claim 21 or claim 22, which further includes the step of selecting one or more chemical structures from step (e) which interact with the receptor site of the molecule in a manner which 5 prevents the binding of natural ligands to the receptor site.
24. A computer-assisted method according to any one of claims 21 to 23, which further includes the step of obtaining a compound with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to 10 decrease an activity mediated by the receptor.
25. A computer-assisted method according to claim 21, in which the method is used to identify potential compounds which have the ability to increase an activity mediated by the receptor molecule. 15
26. A computer-assisted method according to claim 25, further including the step of obtaining a molecule with a chemical structure selected in steps (d) and (e), and testing the compound for the ability to increase an activity mediated by the receptor. 20
27. A computer-assisted method according to any one of claims 21 to 26, in which the receptor is the IGF-1R.
28. A computer-assisted method according to any one of claims 21 to 26, in 25 which the receptor is the insulin receptor.
29. A method of screening of a putative compound having the ability to modulate the activity of a receptor of the insulin receptor family, including the steps of identifying a putative compound by a method according to any one of 30 claims 1 to 29, and testing the compound for the ability to increase or decrease an activity mediated by the receptor.
30. A method according to claim 29, in which the test is carried out *in vitro*.
- 35 31. A method according to claim 29, in which the test is a high throughput assay.

32. A method according to claim 29, in which the test is carried out *in vivo*.

33. A method according to claim 30, in which the test is carried out *in vivo*.

09/555275

WO 99/28347

PCT/AU98/00998

1/58

Figure 1

|      |     |     |     |    |        |        |        |      |       |        |
|------|-----|-----|-----|----|--------|--------|--------|------|-------|--------|
| ATOM | 1   | CB  | GLU | 1  | 55.907 | 11.986 | 66.300 | 1.00 | 59.11 | AAAA C |
| ATOM | 2   | CG  | GLU | 1  | 56.138 | 11.012 | 65.162 | 1.00 | 78.17 | AAAA C |
| ATOM | 3   | CD  | GLU | 1  | 57.382 | 11.319 | 64.321 | 1.00 | 85.10 | AAAA C |
| ATOM | 4   | OE1 | GLU | 1  | 58.404 | 10.754 | 64.795 | 1.00 | 86.18 | AAAA O |
| ATOM | 5   | OE2 | GLU | 1  | 57.124 | 12.013 | 63.270 | 1.00 | 78.70 | AAAA O |
| ATOM | 6   | C   | GLU | 1  | 53.508 | 12.557 | 65.350 | 1.00 | 48.46 | AAAA C |
| ATOM | 7   | O   | GLU | 1  | 52.685 | 11.863 | 65.784 | 1.00 | 51.27 | AAAA O |
| ATOM | 10  | H   | GLU | 1  | 54.256 | 10.338 | 67.159 | 1.00 | 61.64 | AAAA N |
| ATOM | 12  | CA  | GLU | 1  | 54.502 | 11.778 | 67.081 | 1.00 | 54.77 | AAAA C |
| ATOM | 13  | H   | ILE | 2  | 53.608 | 13.860 | 66.375 | 1.00 | 37.66 | AAAA N |
| ATOM | 15  | CA  | ILE | 2  | 52.768 | 14.699 | 65.604 | 1.00 | 40.87 | AAAA C |
| ATOM | 16  | CB  | ILE | 2  | 52.925 | 16.122 | 66.160 | 1.00 | 41.97 | AAAA C |
| ATOM | 17  | CG2 | ILE | 2  | 52.036 | 17.122 | 65.484 | 1.00 | 38.50 | AAAA C |
| ATOM | 18  | CG1 | ILE | 2  | 52.560 | 16.006 | 67.663 | 1.00 | 46.58 | AAAA C |
| ATOM | 19  | CD1 | ILE | 2  | 53.150 | 17.176 | 68.498 | 1.00 | 32.29 | AAAA C |
| ATOM | 20  | C   | ILE | 2  | 53.122 | 14.711 | 64.139 | 1.00 | 46.47 | AAAA C |
| ATOM | 21  | O   | ILE | 2  | 54.258 | 15.029 | 63.852 | 1.00 | 51.65 | AAAA O |
| ATOM | 22  | H   | CYS | 3  | 52.235 | 14.409 | 63.196 | 1.00 | 49.61 | AAAA N |
| ATOM | 24  | CA  | CYS | 3  | 52.435 | 14.677 | 61.773 | 1.00 | 38.93 | AAAA C |
| ATOM | 25  | C   | CYS | 3  | 51.429 | 15.708 | 61.302 | 1.00 | 42.06 | AAAA C |
| ATOM | 26  | O   | CYS | 3  | 50.290 | 15.521 | 61.690 | 1.00 | 42.37 | AAAA O |
| ATOM | 27  | CB  | CYS | 3  | 52.159 | 13.415 | 60.999 | 1.00 | 35.66 | AAAA C |
| ATOM | 28  | SG  | CYS | 3  | 53.019 | 12.004 | 61.674 | 1.00 | 36.98 | AAAA S |
| ATOM | 29  | H   | GLY | 4  | 51.851 | 16.709 | 60.580 | 1.00 | 42.39 | AAAA N |
| ATOM | 31  | CA  | GLY | 4  | 50.973 | 17.718 | 60.003 | 1.00 | 47.71 | AAAA C |
| ATOM | 32  | C   | GLY | 4  | 51.703 | 18.407 | 58.869 | 1.00 | 48.23 | AAAA C |
| ATOM | 33  | O   | GLY | 4  | 52.916 | 18.345 | 58.884 | 1.00 | 55.36 | AAAA O |
| ATOM | 34  | H   | PRO | 5  | 51.056 | 19.212 | 58.048 | 1.00 | 49.63 | AAAA N |
| ATOM | 35  | CD  | PRO | 5  | 51.637 | 19.947 | 56.860 | 1.00 | 45.28 | AAAA C |
| ATOM | 36  | CA  | PRO | 5  | 49.605 | 19.341 | 58.083 | 1.00 | 41.57 | AAAA C |
| ATOM | 37  | CB  | PRO | 5  | 49.397 | 20.703 | 57.474 | 1.00 | 44.30 | AAAA C |
| ATOM | 38  | CG  | PRO | 5  | 50.632 | 21.036 | 56.683 | 1.00 | 46.43 | AAAA C |
| ATOM | 39  | C   | PRO | 5  | 48.932 | 18.217 | 57.354 | 1.00 | 36.40 | AAAA C |
| ATOM | 40  | O   | PRO | 5  | 49.403 | 17.094 | 57.396 | 1.00 | 43.35 | AAAA O |
| ATOM | 41  | H   | GLY | 6  | 47.787 | 18.438 | 56.795 | 1.00 | 39.15 | AAAA N |
| ATOM | 43  | CA  | GLY | 6  | 46.896 | 17.336 | 56.350 | 1.00 | 39.24 | AAAA C |
| ATOM | 44  | C   | GLY | 6  | 47.710 | 16.365 | 55.529 | 1.00 | 33.68 | AAAA C |
| ATOM | 45  | O   | GLY | 6  | 48.510 | 16.863 | 54.753 | 1.00 | 36.00 | AAAA O |
| ATOM | 46  | H   | ILE | 7  | 47.586 | 15.111 | 55.788 | 1.00 | 35.70 | AAAA N |
| ATOM | 48  | CA  | ILE | 7  | 48.307 | 14.053 | 55.141 | 1.00 | 37.65 | AAAA C |
| ATOM | 49  | CB  | ILE | 7  | 48.556 | 12.797 | 55.933 | 1.00 | 36.31 | AAAA C |
| ATOM | 50  | CG2 | ILE | 7  | 49.043 | 11.700 | 54.988 | 1.00 | 34.67 | AAAA C |
| ATOM | 51  | CG1 | ILE | 7  | 49.561 | 12.857 | 57.067 | 1.00 | 39.34 | AAAA C |
| ATOM | 52  | CD1 | ILE | 7  | 49.678 | 14.249 | 57.668 | 1.00 | 40.22 | AAAA C |
| ATOM | 53  | C   | ILE | 7  | 47.338 | 13.762 | 53.977 | 1.00 | 45.00 | AAAA C |
| ATOM | 54  | O   | ILE | 7  | 46.150 | 13.843 | 54.195 | 1.00 | 51.52 | AAAA O |
| ATOM | 55  | H   | ASP | 8  | 47.767 | 13.631 | 52.751 | 1.00 | 45.69 | AAAA N |
| ATOM | 57  | CA  | ASP | 8  | 46.938 | 13.283 | 51.631 | 1.00 | 44.05 | AAAA C |
| ATOM | 58  | CB  | ASP | 8  | 47.003 | 14.469 | 50.651 | 1.00 | 43.21 | AAAA C |
| ATOM | 59  | CG  | ASP | 8  | 45.909 | 14.379 | 49.600 | 1.00 | 43.48 | AAAA C |
| ATOM | 60  | OD1 | ASP | 8  | 45.660 | 13.262 | 49.096 | 1.00 | 51.77 | AAAA O |
| ATOM | 61  | OD2 | ASP | 8  | 45.253 | 15.374 | 49.251 | 1.00 | 46.84 | AAAA O |
| ATOM | 62  | C   | ASP | 8  | 47.428 | 12.000 | 50.992 | 1.00 | 42.10 | AAAA C |
| ATOM | 63  | O   | ASP | 8  | 48.423 | 12.143 | 50.330 | 1.00 | 48.50 | AAAA O |
| ATOM | 64  | H   | ILE | 9  | 47.096 | 10.817 | 51.321 | 1.00 | 42.76 | AAAA N |
| ATOM | 66  | CA  | ILE | 9  | 47.441 | 9.505  | 50.939 | 1.00 | 44.05 | AAAA C |
| ATOM | 67  | CB  | ILE | 9  | 47.212 | 8.483  | 52.077 | 1.00 | 40.82 | AAAA C |
| ATOM | 68  | CG2 | ILE | 9  | 47.669 | 7.085  | 51.653 | 1.00 | 36.35 | AAAA C |
| ATOM | 69  | CG1 | ILE | 9  | 47.888 | 8.917  | 53.364 | 1.00 | 41.17 | AAAA C |
| ATOM | 70  | CD1 | ILE | 9  | 49.376 | 8.947  | 53.286 | 1.00 | 43.78 | AAAA C |
| ATOM | 71  | C   | ILE | 9  | 46.530 | 9.137  | 49.794 | 1.00 | 51.48 | AAAA C |
| ATOM | 72  | O   | ILE | 9  | 45.338 | 9.420  | 49.832 | 1.00 | 63.05 | AAAA O |
| ATOM | 73  | H   | ARG | 10 | 47.004 | 8.417  | 48.812 | 1.00 | 54.87 | AAAA N |
| ATOM | 75  | CA  | ARG | 10 | 46.283 | 8.089  | 47.600 | 1.00 | 54.17 | AAAA C |
| ATOM | 76  | CB  | ARG | 10 | 45.703 | 9.358  | 47.023 | 1.00 | 48.54 | AAAA C |
| ATOM | 77  | CG  | ARG | 10 | 46.361 | 10.169 | 45.952 | 1.00 | 46.55 | AAAA C |
| ATOM | 78  | CD  | ARG | 10 | 46.002 | 11.635 | 46.264 | 1.00 | 52.63 | AAAA C |
| ATOM | 79  | NH  | ARG | 10 | 45.082 | 12.326 | 45.284 | 1.00 | 59.27 | AAAA N |
| ATOM | 81  | CG  | ARG | 10 | 44.269 | 13.262 | 45.498 | 1.00 | 56.22 | AAAA C |
| ATOM | 82  | NH1 | ARG | 10 | 44.153 | 13.891 | 46.666 | 1.00 | 55.14 | AAAA N |
| ATOM | 85  | NH2 | ARG | 10 | 43.155 | 13.803 | 44.602 | 1.00 | 52.29 | AAAA N |
| ATOM | 88  | C   | ARG | 10 | 47.019 | 7.373  | 46.492 | 1.00 | 57.23 | AAAA C |
| ATOM | 89  | O   | ARG | 10 | 48.240 | 7.288  | 46.281 | 1.00 | 56.32 | AAAA O |
| ATOM | 90  | H   | ASH | 11 | 46.248 | 6.654  | 45.629 | 1.00 | 57.23 | AAAA N |
| ATOM | 92  | CA  | ASH | 11 | 46.800 | 5.917  | 44.494 | 1.00 | 50.73 | AAAA C |
| ATOM | 93  | CB  | ASH | 11 | 47.704 | 6.798  | 43.671 | 1.00 | 44.65 | AAAA C |
| ATOM | 94  | CG  | ASH | 11 | 46.878 | 7.732  | 42.829 | 1.00 | 50.72 | AAAA C |
| ATOM | 95  | OD1 | ASH | 11 | 45.749 | 7.451  | 42.403 | 1.00 | 72.59 | AAAA O |
| ATOM | 96  | ND2 | ASH | 11 | 47.499 | 8.869  | 42.587 | 1.00 | 54.38 | AAAA N |
| ATOM | 99  | C   | ASH | 11 | 47.635 | 4.736  | 44.915 | 1.00 | 53.07 | AAAA C |
| ATOM | 100 | O   | ASH | 11 | 47.303 | 3.701  | 44.347 | 1.00 | 51.95 | AAAA O |
| ATOM | 101 | H   | ASP | 12 | 48.563 | 4.822  | 45.878 | 1.00 | 50.96 | AAAA N |
| ATOM | 103 | CA  | ASP | 12 | 49.204 | 3.570  | 46.263 | 1.00 | 55.44 | AAAA C |

09/555275

PCT/AU98/00998

WO 99/28347

2/58

|      |     |     |     |    |        |        |        |      |       |      |   |
|------|-----|-----|-----|----|--------|--------|--------|------|-------|------|---|
| ATOM | 104 | CB  | ASP | 12 | 50.668 | 3.568  | 45.758 | 1.00 | 66.47 | AAAA | S |
| ATOM | 105 | CG  | ASP | 12 | 50.879 | 4.026  | 44.314 | 1.00 | 68.25 | AAAA | S |
| ATOM | 106 | OD1 | ASP | 12 | 50.441 | 3.185  | 43.457 | 1.00 | 58.31 | AAAA | O |
| ATOM | 107 | OD2 | ASP | 12 | 51.391 | 5.120  | 43.989 | 1.00 | 70.56 | AAAA | O |
| ATOM | 108 | C   | ASP | 12 | 49.061 | 3.322  | 47.758 | 1.00 | 59.23 | AAAA | C |
| ATOM | 109 | O   | ASP | 12 | 49.687 | 3.849  | 48.711 | 1.00 | 59.65 | AAAA | O |
| ATOM | 110 | H   | TYR | 13 | 48.411 | 2.187  | 48.036 | 1.00 | 59.64 | AAAA | H |
| ATOM | 112 | CA  | TYR | 13 | 48.328 | 1.672  | 49.397 | 1.00 | 64.06 | AAAA | C |
| ATOM | 113 | CB  | TYR | 13 | 47.968 | 0.196  | 49.499 | 1.00 | 64.56 | AAAA | C |
| ATOM | 114 | CG  | TYR | 13 | 47.467 | -0.357 | 50.721 | 1.00 | 69.18 | AAAA | C |
| ATOM | 115 | CD1 | TYR | 13 | 46.216 | -0.024 | 51.248 | 1.00 | 72.71 | AAAA | C |
| ATOM | 116 | CE1 | TYR | 13 | 45.746 | -0.541 | 52.450 | 1.00 | 71.51 | AAAA | C |
| ATOM | 117 | CD2 | TYR | 13 | 48.233 | -1.247 | 51.457 | 1.00 | 70.36 | AAAA | S |
| ATOM | 118 | CE2 | TYR | 13 | 47.788 | -1.778 | 52.661 | 1.00 | 71.64 | AAAA | C |
| ATOM | 119 | CD  | TYR | 13 | 46.542 | -1.420 | 53.160 | 1.00 | 71.31 | AAAA | C |
| ATOM | 120 | OH  | TYR | 13 | 46.144 | -1.977 | 54.358 | 1.00 | 63.25 | AAAA | O |
| ATOM | 122 | C   | TIR | 13 | 49.622 | 1.839  | 50.198 | 1.00 | 65.99 | AAAA | C |
| ATOM | 123 | O   | TYR | 13 | 49.621 | 2.321  | 51.354 | 1.00 | 65.01 | AAAA | O |
| ATOM | 124 | H   | GLN | 14 | 50.786 | 1.541  | 49.594 | 1.00 | 63.51 | AAAA | H |
| ATOM | 126 | CA  | GLN | 14 | 52.078 | 1.681  | 50.218 | 1.00 | 63.51 | AAAA | C |
| ATOM | 127 | CB  | GLN | 14 | 53.174 | 1.318  | 49.219 | 1.00 | 69.37 | AAAA | C |
| ATOM | 128 | CG  | GLN | 14 | 52.863 | -0.078 | 48.686 | 1.00 | 84.62 | AAAA | C |
| ATOM | 129 | CD  | GLN | 14 | 53.990 | -0.515 | 47.754 | 1.00 | 92.28 | AAAA | C |
| ATOM | 130 | OE1 | GLN | 14 | 53.945 | -0.161 | 46.573 | 1.00 | 94.82 | AAAA | O |
| ATOM | 131 | NE2 | GLN | 14 | 54.920 | -1.254 | 48.361 | 1.00 | 98.03 | AAAA | H |
| ATOM | 134 | C   | GLN | 14 | 52.434 | 3.058  | 50.753 | 1.00 | 61.62 | AAAA | C |
| ATOM | 135 | O   | GLN | 14 | 53.266 | 3.292  | 51.644 | 1.00 | 62.09 | AAAA | O |
| ATOM | 136 | H   | GLN | 15 | 51.628 | 4.038  | 50.349 | 1.00 | 57.02 | AAAA | H |
| ATOM | 138 | CA  | GLN | 15 | 51.724 | 5.399  | 50.831 | 1.00 | 51.71 | AAAA | C |
| ATOM | 139 | CB  | GLN | 15 | 50.861 | 6.220  | 49.911 | 1.00 | 43.75 | AAAA | C |
| ATOM | 140 | CG  | GLN | 15 | 51.566 | 6.605  | 48.648 | 1.00 | 53.65 | AAAA | C |
| ATOM | 141 | CD  | GLN | 15 | 51.554 | 8.105  | 48.428 | 1.00 | 72.96 | AAAA | C |
| ATOM | 142 | OE1 | GLN | 15 | 51.168 | 9.005  | 49.184 | 1.00 | 80.58 | AAAA | O |
| ATOM | 143 | NE2 | GLN | 15 | 52.016 | 8.378  | 47.211 | 1.00 | 74.17 | AAAA | H |
| ATOM | 146 | C   | GLN | 15 | 51.219 | 5.530  | 52.258 | 1.00 | 50.15 | AAAA | C |
| ATOM | 147 | O   | GLN | 15 | 51.576 | 6.500  | 52.940 | 1.00 | 48.04 | AAAA | O |
| ATOM | 148 | H   | LEU | 16 | 50.440 | 4.535  | 52.688 | 1.00 | 46.22 | AAAA | H |
| ATOM | 150 | CA  | LEU | 16 | 49.913 | 4.449  | 54.019 | 1.00 | 45.52 | AAAA | C |
| ATOM | 151 | CB  | LEU | 16 | 48.950 | 3.295  | 54.159 | 1.00 | 37.73 | AAAA | C |
| ATOM | 152 | CG  | LEU | 16 | 47.502 | 3.425  | 53.707 | 1.00 | 41.40 | AAAA | C |
| ATOM | 153 | CD1 | LEU | 16 | 46.837 | 2.063  | 53.790 | 1.00 | 42.43 | AAAA | C |
| ATOM | 154 | CD2 | LEU | 16 | 46.687 | 4.424  | 54.545 | 1.00 | 35.93 | AAAA | C |
| ATOM | 155 | C   | LEU | 16 | 51.042 | 4.280  | 55.039 | 1.00 | 51.52 | AAAA | C |
| ATOM | 156 | O   | LEU | 16 | 50.913 | 4.601  | 56.235 | 1.00 | 52.53 | AAAA | O |
| ATOM | 157 | H   | LIS | 17 | 52.252 | 3.936  | 54.560 | 1.00 | 51.01 | AAAA | H |
| ATOM | 159 | CA  | LYS | 17 | 53.422 | 3.914  | 55.404 | 1.00 | 50.73 | AAAA | C |
| ATOM | 160 | CB  | LYS | 17 | 54.609 | 3.252  | 54.737 | 1.00 | 56.10 | AAAA | C |
| ATOM | 161 | CG  | LYS | 17 | 54.539 | 1.733  | 54.831 | 1.00 | 62.40 | AAAA | C |
| ATOM | 162 | CD  | LYS | 17 | 54.768 | 1.278  | 53.387 | 1.00 | 63.85 | AAAA | C |
| ATOM | 163 | CE  | LYS | 17 | 55.316 | -0.141 | 53.426 | 1.00 | 68.40 | AAAA | C |
| ATOM | 164 | N   | LYS | 17 | 56.537 | -0.225 | 52.554 | 1.00 | 73.83 | AAAA | H |
| ATOM | 168 | C   | LYS | 17 | 53.944 | 5.270  | 55.852 | 1.00 | 44.78 | AAAA | C |
| ATOM | 169 | O   | LYS | 17 | 54.492 | 5.262  | 56.933 | 1.00 | 39.39 | AAAA | O |
| ATOM | 170 | H   | ARG | 18 | 53.524 | 6.344  | 55.201 | 1.00 | 41.15 | AAAA | H |
| ATOM | 172 | CA  | ARG | 18 | 53.827 | 7.673  | 55.676 | 1.00 | 43.01 | AAAA | C |
| ATOM | 173 | CB  | ARG | 18 | 53.250 | 8.702  | 54.704 | 1.00 | 43.97 | AAAA | C |
| ATOM | 174 | CG  | ARG | 18 | 53.888 | 8.764  | 53.333 | 1.00 | 53.60 | AAAA | C |
| ATOM | 175 | CD  | ARG | 18 | 52.961 | 9.362  | 52.269 | 1.00 | 60.34 | AAAA | C |
| ATOM | 176 | HE  | ARG | 18 | 52.528 | 10.703 | 52.650 | 1.00 | 50.00 | AAAA | H |
| ATOM | 178 | C2  | ARG | 18 | 51.628 | 11.444 | 52.021 | 1.00 | 48.86 | AAAA | C |
| ATOM | 179 | NH1 | ARG | 18 | 51.068 | 10.941 | 50.943 | 1.00 | 47.96 | AAAA | H |
| ATOM | 182 | NH2 | ARG | 18 | 51.377 | 12.656 | 52.555 | 1.00 | 43.72 | AAAA | H |
| ATOM | 185 | C   | ARG | 18 | 53.368 | 7.924  | 57.077 | 1.00 | 44.03 | AAAA | C |
| ATOM | 186 | O   | ARG | 18 | 53.402 | 9.010  | 57.644 | 1.00 | 45.53 | AAAA | O |
| ATOM | 187 | H   | LEU | 19 | 52.445 | 7.069  | 57.632 | 1.00 | 46.36 | AAAA | H |
| ATOM | 189 | CA  | LEU | 19 | 51.653 | 7.282  | 58.794 | 1.00 | 50.25 | AAAA | C |
| ATOM | 190 | CB  | LEU | 19 | 50.186 | 6.924  | 58.674 | 1.00 | 50.83 | AAAA | C |
| ATOM | 191 | CG  | LEU | 19 | 49.202 | 7.371  | 57.608 | 1.00 | 46.43 | AAAA | C |
| ATOM | 192 | CD1 | LEU | 19 | 47.846 | 6.743  | 57.852 | 1.00 | 22.57 | AAAA | C |
| ATOM | 193 | CD2 | LEU | 19 | 49.018 | 8.866  | 57.495 | 1.00 | 45.88 | AAAA | C |
| ATOM | 194 | C   | LEU | 19 | 52.210 | 6.428  | 59.912 | 1.00 | 49.87 | AAAA | C |
| ATOM | 195 | O   | LEU | 19 | 51.970 | 6.810  | 61.030 | 1.00 | 51.54 | AAAA | O |
| ATOM | 196 | H   | GLU | 20 | 53.270 | 5.708  | 59.652 | 1.00 | 49.35 | AAAA | H |
| ATOM | 198 | CA  | GLU | 20 | 53.819 | 4.833  | 60.679 | 1.00 | 49.60 | AAAA | C |
| ATOM | 199 | CB  | GLU | 20 | 54.876 | 3.960  | 59.982 | 1.00 | 57.91 | AAAA | C |
| ATOM | 200 | CG  | GLU | 20 | 55.893 | 4.840  | 59.272 | 1.00 | 70.16 | AAAA | C |
| ATOM | 201 | CD  | GLU | 20 | 57.095 | 4.077  | 58.757 | 1.00 | 69.35 | AAAA | C |
| ATOM | 202 | OE1 | GLU | 20 | 58.123 | 4.795  | 58.722 | 1.00 | 71.38 | AAAA | O |
| ATOM | 203 | OE2 | GLU | 20 | 56.993 | 2.885  | 58.420 | 1.00 | 72.84 | AAAA | O |
| ATOM | 204 | C   | GLU | 20 | 54.510 | 5.417  | 61.989 | 1.00 | 43.55 | AAAA | C |
| ATOM | 205 | O   | GLU | 20 | 54.301 | 4.652  | 62.937 | 1.00 | 40.01 | AAAA | O |
| ATOM | 206 | H   | ASH | 21 | 54.333 | 6.659  | 62.207 | 1.00 | 41.06 | AAAA | H |
| ATOM | 208 | CA  | ASH | 21 | 55.054 | 7.204  | 63.454 | 1.00 | 47.17 | AAAA | C |
| ATOM | 209 | C   | ASH | 21 | 54.068 | 8.141  | 64.108 | 1.00 | 49.76 | AAAA | C |
| ATOM | 210 | O   | ASH | 21 | 54.229 | 8.456  | 65.303 | 1.00 | 48.10 | AAAA | O |

09/555275

WO 99/28347

PCT/AU98/00998

3/58

|      |     |     |     |    |        |        |        |      |       |        |
|------|-----|-----|-----|----|--------|--------|--------|------|-------|--------|
| ATOM | 211 | CB  | ASN | 21 | 56.379 | 6.003  | 63.394 | 1.00 | 59.11 | AAAA C |
| ATOM | 212 | CG  | ASN | 21 | 57.413 | 7.051  | 61.796 | 1.00 | 68.38 | AAAA C |
| ATOM | 213 | OD1 | ASN | 21 | 57.499 | 8.055  | 63.122 | 1.00 | 58.51 | AAAA O |
| ATOM | 214 | NDC | ASN | 21 | 58.348 | 7.469  | 61.890 | 1.00 | 77.00 | AAAA N |
| ATOM | 216 | H   | CYS | 22 | 53.129 | 8.711  | 63.351 | 1.00 | 47.44 | AAAA N |
| ATOM | 218 | CA  | CYS | 22 | 52.107 | 9.614  | 63.879 | 1.00 | 42.99 | AAAA C |
| ATOM | 219 | C   | CYS | 22 | 51.215 | 9.089  | 65.021 | 1.00 | 40.43 | AAAA C |
| ATOM | 220 | O   | CYS | 22 | 50.750 | 7.923  | 65.069 | 1.00 | 36.07 | AAAA O |
| ATOM | 221 | CB  | CYS | 22 | 51.182 | 9.921  | 62.690 | 1.00 | 44.82 | AAAA C |
| ATOM | 222 | SG  | CYS | 22 | 52.076 | 10.328 | 61.118 | 1.00 | 39.51 | AAAA S |
| ATOM | 223 | H   | THR | 23 | 51.287 | 9.801  | 66.137 | 1.00 | 36.24 | AAAA N |
| ATOM | 225 | CA  | THR | 23 | 50.339 | 9.482  | 67.204 | 1.00 | 43.51 | AAAA C |
| ATOM | 226 | CB  | THR | 23 | 50.944 | 9.481  | 68.593 | 1.00 | 41.38 | AAAA C |
| ATOM | 227 | OG1 | THR | 23 | 51.410 | 10.843 | 66.822 | 1.00 | 51.21 | AAAA O |
| ATOM | 229 | CG2 | THR | 23 | 52.110 | 8.571  | 68.838 | 1.00 | 33.83 | AAAA C |
| ATOM | 230 | C   | THR | 23 | 49.250 | 10.599 | 67.116 | 1.00 | 44.55 | AAAA C |
| ATOM | 231 | O   | THR | 23 | 48.085 | 10.414 | 67.481 | 1.00 | 45.95 | AAAA O |
| ATOM | 232 | H   | VAL | 24 | 49.645 | 11.797 | 66.689 | 1.00 | 33.03 | AAAA N |
| ATOM | 234 | CA  | VAL | 24 | 48.732 | 12.855 | 66.442 | 1.00 | 35.29 | AAAA C |
| ATOM | 235 | CB  | VAL | 24 | 48.925 | 13.979 | 67.456 | 1.00 | 30.60 | AAAA C |
| ATOM | 236 | CG1 | VAL | 24 | 48.056 | 15.157 | 67.082 | 1.00 | 27.21 | AAAA C |
| ATOM | 237 | CG2 | VAL | 24 | 48.656 | 13.566 | 68.886 | 1.00 | 25.37 | AAAA C |
| ATOM | 238 | C   | VAL | 24 | 48.895 | 13.447 | 65.043 | 1.00 | 41.52 | AAAA C |
| ATOM | 239 | O   | VAL | 24 | 49.987 | 13.963 | 64.791 | 1.00 | 44.40 | AAAA O |
| ATOM | 240 | H   | ILE | 25 | 47.855 | 13.450 | 64.203 | 1.00 | 40.13 | AAAA N |
| ATOM | 242 | CA  | ILE | 25 | 47.908 | 14.094 | 62.882 | 1.00 | 32.05 | AAAA C |
| ATOM | 243 | CB  | ILE | 25 | 47.113 | 13.299 | 61.853 | 1.00 | 25.85 | AAAA C |
| ATOM | 244 | CG2 | ILE | 25 | 47.027 | 14.039 | 60.542 | 1.00 | 18.73 | AAAA C |
| ATOM | 245 | CG1 | ILE | 25 | 47.677 | 11.896 | 61.705 | 1.00 | 29.80 | AAAA C |
| ATOM | 246 | CD1 | ILE | 25 | 47.169 | 11.155 | 60.471 | 1.00 | 27.41 | AAAA C |
| ATOM | 247 | C   | ILE | 25 | 47.397 | 15.490 | 62.341 | 1.00 | 32.92 | AAAA C |
| ATOM | 248 | O   | ILE | 25 | 46.223 | 15.776 | 63.213 | 1.00 | 40.91 | AAAA O |
| ATOM | 249 | H   | GLU | 26 | 48.264 | 16.472 | 63.042 | 1.00 | 36.60 | AAAA N |
| ATOM | 251 | CA  | GLU | 26 | 47.832 | 17.847 | 63.226 | 1.00 | 29.24 | AAAA C |
| ATOM | 252 | CB  | GLU | 26 | 48.875 | 18.703 | 63.856 | 1.00 | 29.92 | AAAA C |
| ATOM | 253 | CG  | GLU | 26 | 48.490 | 20.144 | 64.116 | 1.00 | 38.06 | AAAA C |
| ATOM | 254 | CD  | GLU | 26 | 49.561 | 20.762 | 65.013 | 1.00 | 37.39 | AAAA C |
| ATOM | 255 | OE1 | GLU | 26 | 50.654 | 20.937 | 64.489 | 1.00 | 41.56 | AAAA O |
| ATOM | 256 | OE2 | GLU | 26 | 49.571 | 21.175 | 66.182 | 1.00 | 49.16 | AAAA O |
| ATOM | 257 | C   | GLU | 26 | 47.413 | 18.376 | 61.869 | 1.00 | 37.79 | AAAA C |
| ATOM | 258 | O   | GLU | 26 | 48.161 | 19.069 | 61.181 | 1.00 | 39.68 | AAAA O |
| ATOM | 259 | H   | GLY | 27 | 46.117 | 18.104 | 61.582 | 1.00 | 37.28 | AAAA N |
| ATOM | 261 | CA  | GLY | 27 | 45.498 | 18.503 | 60.320 | 1.00 | 31.17 | AAAA C |
| ATOM | 262 | C   | GLY | 27 | 44.531 | 17.400 | 59.893 | 1.00 | 33.72 | AAAA C |
| ATOM | 263 | O   | GLY | 27 | 43.988 | 16.715 | 60.775 | 1.00 | 33.29 | AAAA O |
| ATOM | 264 | H   | TYR | 28 | 44.304 | 17.209 | 58.604 | 1.00 | 29.24 | AAAA N |
| ATOM | 266 | CA  | TYR | 28 | 43.318 | 16.189 | 58.253 | 1.00 | 28.93 | AAAA C |
| ATOM | 267 | CB  | TYR | 28 | 42.403 | 16.794 | 57.217 | 1.00 | 31.53 | AAAA C |
| ATOM | 268 | CG  | TYR | 28 | 43.058 | 17.256 | 55.962 | 1.00 | 31.78 | AAAA C |
| ATOM | 269 | CD1 | TYR | 28 | 43.764 | 16.355 | 55.116 | 1.00 | 36.07 | AAAA C |
| ATOM | 270 | CE1 | TYR | 28 | 44.361 | 16.706 | 53.967 | 1.00 | 28.91 | AAAA C |
| ATOM | 271 | CD2 | TYR | 28 | 43.130 | 18.572 | 55.606 | 1.00 | 30.98 | AAAA C |
| ATOM | 272 | CE2 | TYR | 28 | 43.769 | 18.972 | 54.428 | 1.00 | 28.77 | AAAA C |
| ATOM | 273 | CS  | TYR | 28 | 44.367 | 18.021 | 53.652 | 1.00 | 31.53 | AAAA C |
| ATOM | 274 | OH  | TYR | 28 | 44.971 | 18.425 | 52.464 | 1.00 | 44.74 | AAAA O |
| ATOM | 276 | C   | TYR | 28 | 43.953 | 14.946 | 57.697 | 1.00 | 29.23 | AAAA C |
| ATOM | 277 | O   | TYR | 28 | 45.119 | 15.147 | 57.383 | 1.00 | 35.58 | AAAA O |
| ATOM | 278 | H   | LEU | 29 | 43.250 | 13.900 | 57.445 | 1.00 | 26.63 | AAAA N |
| ATOM | 280 | CA  | LEU | 29 | 43.764 | 12.730 | 56.803 | 1.00 | 29.23 | AAAA C |
| ATOM | 281 | CB  | LEU | 29 | 43.830 | 11.611 | 57.856 | 1.00 | 27.09 | AAAA C |
| ATOM | 282 | CG  | LEU | 29 | 44.012 | 10.258 | 57.242 | 1.00 | 31.90 | AAAA C |
| ATOM | 283 | CD1 | LEU | 29 | 45.538 | 10.396 | 56.469 | 1.00 | 35.03 | AAAA C |
| ATOM | 284 | CD2 | LEU | 29 | 44.551 | 9.203  | 59.290 | 1.00 | 25.05 | AAAA C |
| ATOM | 285 | C   | LEU | 29 | 42.897 | 12.342 | 55.616 | 1.00 | 33.84 | AAAA C |
| ATOM | 286 | O   | LEU | 29 | 41.689 | 12.165 | 55.806 | 1.00 | 43.29 | AAAA O |
| ATOM | 287 | H   | HIS | 30 | 43.389 | 12.285 | 54.395 | 1.00 | 35.95 | AAAA N |
| ATOM | 289 | CA  | HIS | 30 | 42.681 | 11.891 | 53.197 | 1.00 | 34.92 | AAAA C |
| ATOM | 290 | CB  | HIS | 30 | 42.893 | 12.801 | 52.027 | 1.00 | 32.85 | AAAA C |
| ATOM | 291 | CG  | HIS | 30 | 42.372 | 14.155 | 52.046 | 1.00 | 25.08 | AAAA C |
| ATOM | 292 | CD2 | HIS | 30 | 41.519 | 14.753 | 52.907 | 1.00 | 40.88 | AAAA C |
| ATOM | 293 | NDC | HIS | 30 | 42.717 | 15.120 | 51.128 | 1.00 | 33.66 | AAAA N |
| ATOM | 295 | CE1 | HIS | 30 | 42.080 | 16.281 | 51.444 | 1.00 | 31.33 | AAAA C |
| ATOM | 296 | NE2 | HIS | 30 | 41.329 | 16.093 | 52.539 | 1.00 | 37.27 | AAAA N |
| ATOM | 298 | C   | HIS | 30 | 43.173 | 10.538 | 52.714 | 1.00 | 37.68 | AAAA C |
| ATOM | 299 | O   | HIS | 30 | 44.357 | 10.388 | 52.541 | 1.00 | 38.70 | AAAA O |
| ATOM | 300 | H   | ILE | 31 | 42.309 | 9.542  | 52.584 | 1.00 | 40.02 | AAAA N |
| ATOM | 302 | CA  | ILE | 31 | 42.750 | 8.271  | 51.992 | 1.00 | 39.47 | AAAA C |
| ATOM | 303 | CB  | ILE | 31 | 42.668 | 7.204  | 53.063 | 1.00 | 37.95 | AAAA C |
| ATOM | 304 | CG2 | ILE | 31 | 43.161 | 5.830  | 52.651 | 1.00 | 23.86 | AAAA C |
| ATOM | 305 | CG1 | ILE | 31 | 43.481 | 7.555  | 54.335 | 1.00 | 41.66 | AAAA C |
| ATOM | 306 | CD1 | ILE | 31 | 43.170 | 6.575  | 55.473 | 1.00 | 28.22 | AAAA C |
| ATOM | 307 | C   | ILE | 31 | 41.884 | 8.043  | 50.755 | 1.00 | 46.52 | AAAA C |
| ATOM | 308 | O   | ILE | 31 | 40.753 | 7.509  | 50.927 | 1.00 | 43.56 | AAAA O |
| ATOM | 309 | H   | LEU | 32 | 42.314 | 8.489  | 42.556 | 1.00 | 49.89 | AAAA N |
| ATOM | 311 | CA  | LEU | 32 | 41.484 | 9.235  | 48.380 | 1.00 | 49.77 | AAAA C |

09/555275

WO 99/28347

PCT/AU98/00998

4/58

|      |     |     |     |    |        |         |        |             |        |
|------|-----|-----|-----|----|--------|---------|--------|-------------|--------|
| ATOM | 312 | CB  | LEU | 32 | 41.157 | 9.515   | 47.693 | 1.00 47.49  | AAAA C |
| ATOM | 313 | CG  | LEU | 32 | 42.591 | 10.688  | 47.562 | 1.00 45.33  | AAAA C |
| ATOM | 314 | CD1 | LEU | 32 | 41.517 | 11.812  | 46.673 | 1.00 35.77  | AAAA C |
| ATOM | 315 | CD2 | LEU | 32 | 42.371 | 11.229  | 48.960 | 1.00 49.19  | AAAA C |
| ATOM | 316 | C   | LEU | 32 | 42.136 | 7.296   | 47.353 | 1.00 51.00  | AAAA C |
| ATOM | 317 | O   | LEU | 32 | 43.338 | 7.370   | 47.186 | 1.00 41.36  | AAAA O |
| ATOM | 318 | H   | LEU | 33 | 41.370 | 6.722   | 46.497 | 1.00 50.74  | AAAA H |
| ATOM | 320 | CA  | LEU | 33 | 41.602 | 6.175   | 45.197 | 1.00 49.92  | AAAA C |
| ATOM | 321 | CB  | LEU | 33 | 42.091 | 7.262   | 44.182 | 1.00 34.83  | AAAA C |
| ATOM | 322 | CG  | LEU | 33 | 41.233 | 8.537   | 44.164 | 1.00 33.92  | AAAA C |
| ATOM | 323 | CD1 | LEU | 33 | 41.892 | 9.587   | 43.298 | 1.00 37.49  | AAAA C |
| ATOM | 324 | CD2 | LEU | 33 | 39.803 | 8.313   | 43.644 | 1.00 33.01  | AAAA C |
| ATOM | 325 | C   | LEU | 33 | 42.618 | 5.073   | 45.287 | 1.00 48.35  | AAAA C |
| ATOM | 326 | O   | LEU | 33 | 43.580 | 5.077   | 44.538 | 1.00 54.14  | AAAA O |
| ATOM | 327 | H   | ILE | 34 | 42.543 | 4.212   | 46.254 | 1.00 47.61  | AAAA H |
| ATOM | 329 | CA  | ILE | 34 | 43.523 | 3.184   | 46.540 | 1.00 51.70  | AAAA C |
| ATOM | 330 | CB  | ILE | 34 | 44.101 | 3.346   | 47.963 | 1.00 57.98  | AAAA C |
| ATOM | 331 | CG2 | ILE | 34 | 44.538 | 2.043   | 48.600 | 1.00 38.98  | AAAA C |
| ATOM | 332 | CG1 | ILE | 34 | 45.267 | 4.371   | 17.967 | 1.00 46.70  | AAAA C |
| ATOM | 333 | CD1 | ILE | 34 | 45.561 | 4.704   | 49.439 | 1.00 66.47  | AAAA C |
| ATOM | 334 | C   | ILE | 34 | 42.629 | 1.844   | 46.408 | 1.00 59.85  | AAAA C |
| ATOM | 335 | O   | ILE | 34 | 41.726 | 1.531   | 46.856 | 1.00 60.11  | AAAA O |
| ATOM | 336 | H   | SER | 35 | 43.622 | 6.833   | 46.013 | 1.00 67.79  | AAA N  |
| ATOM | 338 | CA  | SER | 35 | 43.048 | -0.511  | 45.922 | 1.00 68.80  | AAA C  |
| ATOM | 339 | CP  | SER | 35 | 42.767 | -0.882  | 44.469 | 1.00 64.16  | AAA C  |
| ATOM | 340 | OG  | SER | 35 | 41.731 | -1.846  | 44.198 | 1.00 75.76  | AAA O  |
| ATOM | 342 | C   | SER | 35 | 43.928 | -1.564  | 46.537 | 1.00 70.73  | AAA C  |
| ATOM | 343 | O   | SER | 35 | 44.885 | -1.954  | 45.929 | 1.00 73.68  | AAA O  |
| ATOM | 344 | H   | LYS | 36 | 43.687 | -2.017  | 47.740 | 1.00 74.75  | AAA N  |
| ATOM | 346 | CA  | LYS | 36 | 44.165 | -3.014  | 48.421 | 1.00 76.09  | AAA C  |
| ATOM | 347 | CB  | LYS | 36 | 44.046 | -3.131  | 49.885 | 1.00 81.22  | AAA C  |
| ATOM | 348 | CG  | LYS | 36 | 45.147 | -3.654  | 50.775 | 1.00 78.87  | AAA C  |
| ATOM | 349 | CD  | LYS | 36 | 44.693 | -4.575  | 51.887 | 1.00 81.39  | AAA C  |
| ATOM | 350 | CE  | LYS | 36 | 44.899 | -6.025  | 51.492 | 1.00 89.58  | AAA C  |
| ATOM | 351 | N   | LYS | 36 | 44.371 | -6.989  | 52.505 | 1.00 91.63  | AAA N  |
| ATOM | 355 | C   | LYS | 36 | 44.252 | -4.362  | 47.753 | 1.00 81.41  | AAA C  |
| ATOM | 356 | O   | LYS | 36 | 43.145 | -4.772  | 47.451 | 1.00 78.20  | AAA O  |
| ATOM | 357 | H   | ALA | 37 | 45.371 | -5.080  | 47.615 | 1.00 88.27  | AAA N  |
| ATOM | 359 | CA  | ALA | 37 | 45.361 | -6.396  | 46.986 | 1.00 90.10  | AAA C  |
| ATOM | 360 | CB  | ALA | 37 | 46.700 | -6.655  | 46.327 | 1.00 95.49  | AAA C  |
| ATOM | 361 | C   | ALA | 37 | 45.011 | -7.473  | 47.995 | 1.00 92.36  | AAA C  |
| ATOM | 362 | O   | ALA | 37 | 45.668 | -7.627  | 49.012 | 1.00 92.35  | AAA O  |
| ATOM | 363 | H   | SER | 38 | 44.031 | -8.301  | 47.622 | 1.00 94.31  | AAA N  |
| ATOM | 365 | CA  | SER | 38 | 43.528 | -9.352  | 48.484 | 1.00 95.70  | AAA C  |
| ATOM | 366 | CB  | SER | 38 | 42.405 | -10.164 | 47.858 | 1.00 97.44  | AAA C  |
| ATOM | 367 | OG  | SER | 38 | 42.061 | -11.176 | 48.814 | 1.00 103.48 | AAA O  |
| ATOM | 369 | C   | SER | 38 | 44.702 | -10.263 | 48.821 | 1.00 96.87  | AAA C  |
| ATOM | 370 | O   | SER | 38 | 44.761 | -10.778 | 49.924 | 1.00 98.06  | AAA O  |
| ATOM | 371 | H   | ASP | 39 | 45.584 | -10.415 | 47.852 | 1.00 97.99  | AAA N  |
| ATOM | 373 | CA  | ASP | 39 | 46.821 | -11.148 | 47.980 | 1.00 99.19  | AAA C  |
| ATOM | 374 | CB  | ASP | 39 | 47.579 | -11.050 | 46.652 | 1.00 102.13 | AAA C  |
| ATOM | 375 | CG  | ASP | 39 | 47.696 | -12.387 | 45.943 | 0.01 101.22 | AAA C  |
| ATOM | 376 | OD1 | ASP | 39 | 46.644 | -12.978 | 45.623 | 0.01 101.42 | AAA O  |
| ATOM | 377 | OD2 | ASP | 39 | 48.833 | -12.848 | 45.718 | 0.01 101.41 | AAA O  |
| ATOM | 378 | C   | ASP | 39 | 47.660 | -10.534 | 49.105 | 1.00 99.40  | AAA C  |
| ATOM | 379 | O   | ASP | 39 | 47.692 | -11.056 | 50.224 | 1.00 99.15  | AAA O  |
| ATOM | 380 | H   | TIR | 40 | 48.354 | -9.479  | 48.818 | 1.00 100.96 | AAA N  |
| ATOM | 382 | CA  | TIR | 40 | 49.120 | -8.706  | 49.802 | 1.00 101.16 | AAA C  |
| ATOM | 383 | CB  | TIR | 40 | 49.511 | -7.393  | 49.130 | 1.00 103.67 | AAA C  |
| ATOM | 384 | CG  | TIR | 40 | 50.159 | -6.281  | 49.887 | 1.00 107.81 | AAA C  |
| ATOM | 385 | CD1 | TIR | 40 | 50.931 | -5.325  | 49.228 | 1.00 109.56 | AAA C  |
| ATOM | 386 | CE1 | TIR | 40 | 51.540 | -4.280  | 49.910 | 1.00 109.67 | AAA C  |
| ATOM | 387 | CD2 | TIR | 40 | 50.044 | -6.115  | 51.254 | 1.00 109.28 | AAA C  |
| ATOM | 388 | CE2 | TIR | 40 | 50.618 | -5.102  | 51.976 | 1.00 109.83 | AAA C  |
| ATOM | 399 | CB  | TIR | 40 | 51.372 | -4.181  | 51.276 | 1.00 110.16 | AAA C  |
| ATOM | 390 | OH  | TIR | 40 | 51.999 | -3.127  | 51.893 | 1.00 109.84 | AAA O  |
| ATOM | 392 | C   | TIR | 40 | 48.343 | -8.529  | 51.100 | 1.00 99.10  | AAA C  |
| ATOM | 393 | O   | TIR | 40 | 47.168 | -8.182  | 51.183 | 1.00 99.05  | AAA O  |
| ATOM | 394 | H   | LYS | 41 | 49.041 | -8.653  | 52.218 | 1.00 98.62  | AAA N  |
| ATOM | 396 | CA  | LYS | 41 | 48.443 | -9.549  | 53.545 | 1.00 100.30 | AAA C  |
| ATOM | 397 | CB  | LYS | 41 | 49.385 | -9.160  | 54.599 | 1.00 104.42 | AAA C  |
| ATOM | 398 | CG  | LYS | 41 | 49.218 | -10.649 | 54.814 | 0.01 101.06 | AAA C  |
| ATOM | 399 | CD  | LYS | 41 | 47.776 | -11.107 | 54.919 | 0.01 100.66 | AAA C  |
| ATOM | 400 | CE  | LYS | 41 | 47.205 | -10.880 | 56.308 | 0.01 99.86  | AAA C  |
| ATOM | 401 | N   | LYS | 41 | 47.882 | -11.728 | 57.328 | 0.01 99.62  | AAA N  |
| ATOM | 405 | C   | LYS | 41 | 48.035 | -7.136  | 53.947 | 1.00 98.99  | AAA C  |
| ATOM | 406 | O   | LYS | 41 | 47.615 | -6.371  | 53.057 | 1.00 103.33 | AAA O  |
| ATOM | 407 | H   | SER | 42 | 48.198 | -6.751  | 55.221 | 1.00 91.75  | AAA N  |
| ATOM | 409 | CA  | SER | 42 | 47.825 | -5.412  | 55.604 | 1.00 85.06  | AAA C  |
| ATOM | 410 | CB  | SER | 42 | 46.385 | -5.520  | 56.147 | 1.00 95.33  | AAA C  |
| ATOM | 411 | OG  | SER | 42 | 46.547 | -6.140  | 57.426 | 1.00 104.63 | AAA O  |
| ATOM | 413 | C   | SER | 42 | 48.628 | -4.715  | 56.687 | 1.00 80.78  | AAA C  |
| ATOM | 414 | O   | SER | 42 | 49.326 | -5.259  | 57.538 | 1.00 81.03  | AAA O  |
| ATOM | 415 | H   | TIR | 43 | 48.495 | -3.395  | 56.673 | 1.00 73.03  | AAA N  |
| ATOM | 417 | CA  | TIR | 43 | 49.069 | -2.488  | 57.635 | 1.00 67.25  | AAA C  |

09/555275

PCT/AU98/00998

WO 99/28347

5/58

|      |     |      |     |    |        |        |        |      |       |          |
|------|-----|------|-----|----|--------|--------|--------|------|-------|----------|
| ATOM | 418 | CG   | TYR | 43 | 49.086 | -1.112 | 56.965 | 1.00 | 65.37 | AAAA C   |
| ATOM | 419 | CG   | TYR | 43 | 49.953 | -1.021 | 55.717 | 1.00 | 63.92 | AAAA C   |
| ATOM | 420 | CD1  | TYR | 43 | 50.931 | -1.935 | 55.406 | 1.00 | 63.87 | AAAA C   |
| ATOM | 421 | CE1  | TYR | 43 | 51.698 | -1.781 | 51.274 | 1.00 | 66.09 | AAAA C   |
| ATOM | 422 | CG2  | TYR | 43 | 49.770 | 0.050  | 54.870 | 1.00 | 63.59 | AAAA C   |
| ATOM | 423 | CG2  | TYR | 43 | 50.536 | 0.214  | 53.729 | 1.00 | 67.62 | AAAA C   |
| ATOM | 424 | CO   | TYR | 43 | 51.508 | -0.712 | 53.432 | 1.00 | 66.94 | AAAA C   |
| ATOM | 425 | OH   | TYR | 43 | 52.262 | -0.543 | 52.305 | 1.00 | 65.23 | AAAA O   |
| ATOM | 427 | C    | TYR | 43 | 48.248 | -2.381 | 58.925 | 1.00 | 64.88 | AAAA C   |
| ATOM | 428 | O    | TYR | 43 | 47.088 | -2.851 | 59.030 | 1.00 | 62.90 | AAAA O   |
| ATOM | 429 | H    | ARG | 44 | 48.782 | -1.567 | 59.825 | 1.00 | 57.88 | AAA A II |
| ATOM | 431 | CA   | ARG | 44 | 48.019 | -1.285 | 61.039 | 1.00 | 56.45 | AAAA C   |
| ATOM | 432 | CB   | ARG | 44 | 47.842 | -2.611 | 61.760 | 1.00 | 46.51 | AAAA C   |
| ATOM | 433 | CG   | ARG | 44 | 47.915 | -2.375 | 63.244 | 1.00 | 54.66 | AAAA C   |
| ATOM | 434 | CD   | ARG | 44 | 46.885 | -3.327 | 63.985 | 1.00 | 58.54 | AAAA C   |
| ATOM | 435 | NH   | ARG | 44 | 47.090 | -2.927 | 65.403 | 1.00 | 68.56 | AAA A II |
| ATOM | 437 | CO   | ARG | 44 | 46.464 | -3.536 | 66.395 | 1.00 | 64.82 | AAAA C   |
| ATOM | 438 | NH1  | ARG | 44 | 45.644 | -4.529 | 66.132 | 1.00 | 61.53 | AAA A II |
| ATOM | 441 | NHC  | ARG | 44 | 46.674 | -3.139 | 67.629 | 1.00 | 66.03 | AAA A II |
| ATOM | 444 | C    | ARG | 44 | 48.811 | -0.285 | 61.845 | 1.00 | 55.59 | AAAA C   |
| ATOM | 445 | O    | ARG | 44 | 49.916 | -0.552 | 62.320 | 1.00 | 58.43 | AAAA O   |
| ATOM | 446 | H    | PHE | 45 | 48.276 | 0.866  | 62.132 | 1.00 | 51.13 | AAA A N  |
| ATOM | 448 | CA   | PHE | 45 | 48.865 | 1.944  | 62.863 | 1.00 | 45.94 | AAAA C   |
| ATOM | 449 | CB   | PHE | 45 | 48.774 | 3.249  | 61.978 | 1.00 | 35.89 | AAAA C   |
| ATOM | 450 | CG   | PHE | 45 | 49.106 | 2.937  | 60.554 | 1.00 | 30.29 | AAAA C   |
| ATOM | 451 | CD1  | PHE | 45 | 50.373 | 3.051  | 59.998 | 1.00 | 45.72 | AAAA C   |
| ATOM | 452 | CD2  | PHE | 45 | 48.127 | 2.428  | 59.728 | 1.00 | 35.95 | AAAA C   |
| ATOM | 453 | CE1  | PHE | 45 | 50.653 | 2.715  | 58.672 | 1.00 | 47.76 | AAAA C   |
| ATOM | 454 | CE2  | PHE | 45 | 48.358 | 2.096  | 58.406 | 1.00 | 39.92 | AAAA C   |
| ATOM | 455 | CS   | PHE | 45 | 49.610 | 2.244  | 57.967 | 1.00 | 46.44 | AAAA C   |
| ATOM | 456 | "    | PHE | 45 | 48.181 | 2.123  | 64.203 | 1.00 | 41.65 | AAAA C   |
| ATOM | 457 | O    | PHE | 45 | 47.708 | 3.223  | 64.475 | 1.00 | 40.99 | AAAA O   |
| ATOM | 458 | H    | PRO | 46 | 48.494 | 1.338  | 65.212 | 1.00 | 43.20 | AAA A II |
| ATOM | 459 | CD   | PRO | 46 | 49.300 | 0.097  | 65.132 | 1.00 | 47.74 | AAAA C   |
| ATOM | 460 | CA   | PRO | 46 | 48.032 | 1.530  | 66.560 | 1.00 | 43.34 | AAAA C   |
| ATOM | 461 | CB   | PRO | 46 | 48.514 | 0.319  | 67.380 | 1.00 | 44.92 | AAAA C   |
| ATOM | 462 | CG   | PRO | 46 | 49.404 | -0.464 | 66.514 | 1.00 | 45.48 | AAAA C   |
| ATOM | 463 | C    | PRO | 46 | 48.568 | 2.768  | 67.233 | 1.00 | 41.30 | AAAA C   |
| ATOM | 464 | O    | PRO | 46 | 48.329 | 2.830  | 68.443 | 1.00 | 44.57 | AAAA O   |
| ATOM | 465 | H    | LYS | 47 | 49.450 | 3.533  | 66.676 | 1.00 | 39.33 | AAA A II |
| ATOM | 467 | CA   | LYS | 47 | 49.991 | 4.679  | 67.362 | 1.00 | 38.10 | AAAA C   |
| ATOM | 468 | CB   | LYS | 47 | 51.378 | 4.981  | 66.852 | 1.00 | 48.07 | AAAA C   |
| ATOM | 469 | CG   | LYS | 47 | 52.032 | 3.995  | 65.902 | 1.00 | 67.95 | AAAA C   |
| ATOM | 470 | CD   | LYS | 47 | 53.563 | 3.976  | 65.891 | 1.00 | 61.33 | AAAA C   |
| ATOM | 471 | CE   | LYS | 47 | 54.115 | 4.648  | 67.147 | 1.00 | 72.19 | AAAA C   |
| ATOM | 472 | NH   | LYS | 47 | 54.024 | 6.132  | 66.874 | 1.00 | 79.29 | AAA A II |
| ATOM | 476 | C    | LYS | 47 | 49.014 | 5.848  | 67.195 | 1.00 | 39.76 | AAAA C   |
| ATOM | 477 | O    | LYS | 47 | 49.189 | 6.827  | 67.952 | 1.00 | 35.45 | AAA A O  |
| ATOM | 478 | H    | LEU | 48 | 48.300 | 5.886  | 66.053 | 1.00 | 36.45 | AAA A II |
| ATOM | 480 | CA   | LEU | 48 | 47.370 | 7.004  | 65.900 | 1.00 | 40.40 | AAAA C   |
| ATOM | 481 | CB   | LEU | 48 | 46.823 | 6.919  | 64.389 | 1.00 | 28.59 | AAAA C   |
| ATOM | 482 | CG   | LEU | 48 | 45.947 | 7.967  | 63.787 | 1.00 | 31.04 | AAAA C   |
| ATOM | 483 | CD1  | LEU | 48 | 46.637 | 9.310  | 63.978 | 1.00 | 36.96 | AAAA C   |
| ATOM | 484 | CD2  | LEU | 48 | 45.591 | 7.738  | 62.294 | 1.00 | 34.49 | AAAA C   |
| ATOM | 485 | C    | LEU | 48 | 46.166 | 7.022  | 66.867 | 1.00 | 42.21 | AAAA C   |
| ATOM | 486 | O    | LEU | 48 | 45.271 | 6.187  | 66.863 | 1.00 | 36.48 | AAAA O   |
| ATOM | 487 | H    | THR | 49 | 46.138 | 8.041  | 67.673 | 1.00 | 38.95 | AAA A II |
| ATOM | 489 | CA   | THR | 49 | 45.045 | 8.151  | 68.574 | 1.00 | 37.96 | AAA A C  |
| ATOM | 490 | CB   | THR | 49 | 45.548 | 8.207  | 70.634 | 1.00 | 48.69 | AAA A C  |
| ATOM | 491 | OGL1 | THR | 49 | 46.396 | 9.340  | 70.225 | 1.00 | 35.90 | AAA A O  |
| ATOM | 493 | CG2  | THR | 49 | 46.230 | 6.957  | 70.529 | 1.00 | 31.99 | AAA A C  |
| ATOM | 494 | C    | THR | 49 | 44.230 | 9.425  | 68.321 | 1.00 | 39.48 | AAA A C  |
| ATOM | 495 | O    | THR | 49 | 43.111 | 9.451  | 68.837 | 1.00 | 34.49 | AAA A O  |
| ATOM | 496 | H    | VAL | 50 | 44.735 | 10.415 | 67.605 | 1.00 | 37.32 | AAA A II |
| ATOM | 498 | CA   | VAL | 50 | 43.995 | 11.664 | 67.418 | 1.00 | 38.72 | AAA A C  |
| ATOM | 499 | CB   | VAL | 50 | 44.293 | 12.708 | 68.503 | 1.00 | 37.24 | AAA A C  |
| ATOM | 500 | CG1  | VAL | 50 | 43.630 | 14.066 | 68.208 | 1.00 | 29.96 | AAA A C  |
| ATOM | 501 | CG2  | VAL | 50 | 43.884 | 12.311 | 69.913 | 1.00 | 32.52 | AAA A C  |
| ATOM | 502 | C    | VAL | 50 | 44.271 | 12.305 | 66.040 | 1.00 | 37.03 | AAA A C  |
| ATOM | 503 | O    | VAL | 50 | 45.195 | 11.863 | 65.431 | 1.00 | 37.96 | AAA A O  |
| ATOM | 504 | H    | ILE | 51 | 43.319 | 12.939 | 65.415 | 1.00 | 37.49 | AAA A II |
| ATOM | 506 | CA   | ILE | 51 | 43.301 | 13.575 | 64.133 | 1.00 | 32.48 | AAA A C  |
| ATOM | 507 | CB   | ILE | 51 | 42.346 | 12.864 | 63.152 | 1.00 | 34.51 | AAA A C  |
| ATOM | 508 | CG2  | ILE | 51 | 41.995 | 13.802 | 61.978 | 1.00 | 32.31 | AAA A C  |
| ATOM | 509 | CG1  | ILE | 51 | 43.026 | 11.611 | 62.671 | 1.00 | 30.78 | AAA A C  |
| ATOM | 510 | CD1  | ILE | 51 | 42.358 | 10.559 | 61.815 | 1.00 | 19.69 | AAA A C  |
| ATOM | 511 | C    | ILE | 51 | 42.659 | 14.939 | 64.431 | 1.00 | 34.14 | AAA A C  |
| ATOM | 512 | O    | ILE | 51 | 41.546 | 14.830 | 64.923 | 1.00 | 29.08 | AAA A O  |
| ATOM | 513 | H    | THR | 52 | 43.342 | 16.058 | 64.238 | 1.00 | 33.93 | AAA A II |
| ATOM | 515 | CA   | THR | 52 | 42.806 | 17.305 | 64.719 | 1.00 | 33.83 | AAA A C  |
| ATOM | 516 | CB   | THR | 52 | 43.961 | 18.338 | 64.939 | 1.00 | 35.39 | AAA A C  |
| ATOM | 517 | OGL1 | THR | 52 | 44.726 | 18.567 | 63.781 | 1.00 | 41.28 | AAA A O  |
| ATOM | 519 | CG2  | THR | 52 | 44.775 | 17.926 | 66.134 | 1.00 | 22.01 | AAA A C  |
| ATOM | 520 | C    | THR | 52 | 41.741 | 17.951 | 63.863 | 1.00 | 39.02 | AAA A C  |
| ATOM | 521 | O    | THR | 52 | 41.200 | 19.030 | 64.243 | 1.00 | 38.88 | AAA A O  |

WO 99/28347

6/58

|      |     |     |     |    |        |        |        |            |        |
|------|-----|-----|-----|----|--------|--------|--------|------------|--------|
| ATOM | 520 | H   | GLU | 53 | 41.524 | 17.477 | 62.638 | 1.00 36.93 | AAAA H |
| ATOM | 524 | CA  | GLU | 53 | 40.434 | 17.953 | 61.795 | 1.00 38.38 | AAAA C |
| ATOM | 525 | CB  | GLU | 53 | 41.064 | 18.512 | 60.483 | 1.00 29.76 | AAAA C |
| ATOM | 526 | CG  | GLU | 53 | 42.061 | 19.552 | 60.834 | 1.00 30.48 | AAAA C |
| ATOM | 527 | CD  | GLU | 53 | 42.517 | 20.396 | 59.697 | 1.00 40.82 | AAAA C |
| ATOM | 528 | OE1 | GLU | 53 | 42.638 | 19.908 | 58.556 | 1.00 57.56 | AAAA O |
| ATOM | 529 | OE2 | GLU | 53 | 42.799 | 21.559 | 59.931 | 1.00 35.74 | AAAA O |
| ATOM | 530 | C   | GLU | 53 | 39.506 | 16.799 | 61.388 | 1.00 39.19 | AAAA C |
| ATOM | 531 | O   | GLU | 53 | 38.922 | 16.311 | 62.386 | 1.00 38.95 | AAAA O |
| ATOM | 532 | H   | TIR | 54 | 39.639 | 16.353 | 60.102 | 1.00 30.60 | AAAA H |
| ATOM | 534 | CA  | TIR | 54 | 38.666 | 15.342 | 59.713 | 1.00 35.96 | AAAA C |
| ATOM | 535 | CB  | TIR | 54 | 37.654 | 15.802 | 58.636 | 1.00 30.71 | AAAA C |
| ATOM | 536 | CG  | TIR | 54 | 38.247 | 16.476 | 57.388 | 1.00 21.18 | AAAA C |
| ATOM | 537 | CD1 | TIR | 54 | 38.487 | 15.733 | 56.305 | 1.00 20.22 | AAAA C |
| ATOM | 538 | CE1 | TIR | 54 | 38.980 | 16.243 | 55.086 | 1.00 21.04 | AAAA C |
| ATOM | 539 | CD2 | TIR | 54 | 38.577 | 17.844 | 57.307 | 1.00 23.97 | AAAA C |
| ATOM | 540 | CE2 | TIR | 54 | 39.049 | 18.384 | 56.124 | 1.00 24.69 | AAAA C |
| ATOM | 541 | CZ  | TIR | 54 | 39.263 | 17.569 | 55.032 | 1.00 26.72 | AAAA C |
| ATOM | 542 | OH  | TIR | 54 | 39.763 | 18.047 | 53.847 | 1.00 37.55 | AAAA O |
| ATOM | 543 | C   | TIR | 54 | 39.405 | 14.115 | 59.142 | 1.00 33.87 | AAAA C |
| ATOM | 545 | O   | TIR | 54 | 40.513 | 14.360 | 58.678 | 1.00 30.40 | AAAA O |
| ATOM | 546 | H   | LEU | 55 | 38.683 | 13.021 | 59.004 | 1.00 23.24 | AAAA H |
| ATOM | 548 | CA  | LEU | 55 | 39.111 | 11.812 | 58.454 | 1.00 30.08 | AAAA C |
| ATOM | 549 | CB  | LEU | 55 | 39.011 | 10.663 | 59.510 | 1.00 14.78 | AAAA C |
| ATOM | 550 | CG  | LEU | 55 | 39.349 | 9.314  | 58.818 | 1.00 26.98 | AAAA C |
| ATOM | 551 | CD1 | LEU | 55 | 40.668 | 9.477  | 58.040 | 1.00 26.66 | AAAA C |
| ATOM | 552 | CD2 | LEU | 55 | 39.496 | 8.093  | 59.705 | 1.00 14.45 | AAAA C |
| ATOM | 553 | C   | LEU | 55 | 38.201 | 11.548 | 57.238 | 1.00 37.43 | AAAA C |
| ATOM | 554 | O   | LEU | 55 | 36.995 | 11.632 | 57.427 | 1.00 39.55 | AAAA O |
| ATOM | 555 | H   | LEU | 56 | 38.700 | 11.348 | 56.035 | 1.00 41.83 | AAAA H |
| ATOM | 557 | CA  | LEU | 56 | 37.955 | 11.201 | 54.794 | 1.00 36.98 | AAAA C |
| ATOM | 558 | CB  | LEU | 56 | 37.998 | 12.446 | 53.949 | 1.00 33.29 | AAAA C |
| ATOM | 559 | CG  | LEU | 56 | 37.984 | 12.514 | 52.416 | 1.00 30.35 | AAAA C |
| ATOM | 560 | CD1 | LEU | 56 | 37.076 | 11.460 | 51.821 | 1.00 47.95 | AAAA C |
| ATOM | 561 | CD2 | LEU | 56 | 37.286 | 13.807 | 51.985 | 1.00 33.47 | AAAA C |
| ATOM | 562 | C   | LEU | 56 | 38.595 | 10.047 | 54.008 | 1.00 39.75 | AAAA C |
| ATOM | 563 | O   | LEU | 56 | 39.714 | 10.205 | 53.547 | 1.00 44.38 | AAAA O |
| ATOM | 564 | H   | LEU | 57 | 37.846 | 9.608  | 53.800 | 1.00 36.68 | AAAA H |
| ATOM | 566 | CA  | LEU | 57 | 38.133 | 7.832  | 53.034 | 1.00 41.53 | AAAA C |
| ATOM | 567 | CB  | LEU | 57 | 37.944 | 6.588  | 53.916 | 1.00 37.00 | AAAA C |
| ATOM | 568 | CG  | LEU | 57 | 39.064 | 6.534  | 55.026 | 1.00 36.13 | AAAA C |
| ATOM | 569 | CD1 | LEU | 57 | 38.513 | 6.890  | 56.417 | 1.00 33.26 | AAAA C |
| ATOM | 570 | CD2 | LEU | 57 | 39.630 | 5.162  | 55.039 | 1.00 24.11 | AAAA C |
| ATOM | 571 | C   | LEU | 57 | 37.203 | 7.825  | 51.838 | 1.00 46.03 | AAAA C |
| ATOM | 572 | O   | LEU | 57 | 35.985 | 7.993  | 51.969 | 1.00 44.78 | AAAA O |
| ATOM | 573 | H   | PHE | 58 | 37.792 | 7.898  | 50.642 | 1.00 47.07 | AAAA H |
| ATOM | 575 | CA  | PHE | 58 | 36.895 | 8.002  | 49.467 | 1.00 48.75 | AAAA C |
| ATOM | 576 | CB  | PHE | 58 | 36.704 | 9.448  | 49.192 | 1.00 46.67 | AAAA C |
| ATOM | 577 | CG  | PHE | 58 | 36.447 | 9.815  | 47.692 | 1.00 54.66 | AAAA C |
| ATOM | 578 | CD1 | PHE | 58 | 37.413 | 9.706  | 46.697 | 1.00 55.19 | AAAA C |
| ATOM | 579 | CD2 | PHE | 58 | 35.200 | 10.301 | 47.326 | 1.00 53.86 | AAAA C |
| ATOM | 580 | CE1 | PHE | 59 | 37.124 | 10.063 | 45.395 | 1.00 50.36 | AAAA C |
| ATOM | 581 | CE2 | PHE | 59 | 34.985 | 10.655 | 46.011 | 1.00 41.84 | AAAA C |
| ATOM | 582 | CP  | PHE | 59 | 35.877 | 10.521 | 45.037 | 1.00 46.50 | AAAA C |
| ATOM | 583 | C   | PHE | 59 | 37.351 | 7.052  | 48.379 | 1.00 49.71 | AAAA C |
| ATOM | 584 | O   | PHE | 59 | 38.187 | 7.073  | 47.934 | 1.00 52.16 | AAAA O |
| ATOM | 585 | H   | ARG | 59 | 36.471 | 6.118  | 47.944 | 1.00 44.26 | AAAA H |
| ATOM | 587 | CA  | ARG | 59 | 36.753 | 5.281  | 46.815 | 1.00 40.80 | AAAA C |
| ATOM | 588 | CB  | ARG | 59 | 36.911 | 5.993  | 45.427 | 1.00 23.79 | AAAA C |
| ATOM | 589 | CG  | ARG | 59 | 35.869 | 7.020  | 45.121 | 1.00 46.53 | AAAA C |
| ATOM | 590 | CD  | ARG | 59 | 35.921 | 7.562  | 43.706 | 1.00 37.64 | AAAA C |
| ATOM | 591 | NE  | ARG | 59 | 35.822 | 6.402  | 42.806 | 1.00 49.23 | AAAA H |
| ATOM | 593 | CS  | ARG | 59 | 34.950 | 5.832  | 42.036 | 1.00 41.36 | AAAA C |
| ATOM | 594 | NH1 | ARG | 59 | 33.702 | 6.277  | 41.931 | 1.00 47.00 | AAAA H |
| ATOM | 597 | NH2 | ARG | 59 | 35.237 | 4.729  | 41.327 | 1.00 42.58 | AAAA C |
| ATOM | 600 | C   | ARG | 59 | 38.037 | 4.494  | 47.049 | 1.00 42.25 | AAAA C |
| ATOM | 601 | O   | ARG | 59 | 38.981 | 4.513  | 46.232 | 1.00 44.11 | AAAA O |
| ATOM | 602 | H   | VAL | 60 | 38.061 | 3.625  | 48.023 | 1.00 40.84 | AAAA C |
| ATOM | 604 | CA  | VAL | 60 | 39.101 | 2.743  | 48.341 | 1.00 39.14 | AAAA C |
| ATOM | 605 | CB  | VAL | 60 | 39.624 | 3.066  | 49.751 | 1.00 40.12 | AAAA C |
| ATOM | 606 | CG1 | VAL | 60 | 40.107 | 1.872  | 50.296 | 1.00 35.05 | AAAA C |
| ATOM | 607 | CG2 | VAL | 60 | 40.425 | 4.352  | 49.833 | 1.00 28.86 | AAAA C |
| ATOM | 608 | C   | VAL | 60 | 38.539 | 1.337  | 48.368 | 1.00 43.56 | AAAA C |
| ATOM | 609 | O   | VAL | 60 | 37.535 | 1.224  | 49.072 | 1.00 47.66 | AAAA O |
| ATOM | 610 | H   | ALA | 61 | 39.094 | 0.371  | 47.659 | 1.00 41.92 | AAAA H |
| ATOM | 612 | CA  | ALA | 61 | 38.617 | -0.992 | 47.749 | 1.00 42.05 | AAAA C |
| ATOM | 613 | CB  | ALA | 61 | 38.302 | -1.483 | 46.364 | 1.00 52.40 | AAAA C |
| ATOM | 614 | C   | ALA | 61 | 39.613 | -1.934 | 48.386 | 1.00 43.08 | AAAA C |
| ATOM | 615 | O   | ALA | 61 | 40.757 | -1.602 | 48.670 | 1.00 50.59 | AAAA O |
| ATOM | 616 | H   | GLY | 62 | 39.200 | -3.105 | 48.849 | 1.00 45.71 | AAAA H |
| ATOM | 618 | CA  | GLY | 62 | 40.136 | -4.079 | 49.385 | 1.00 45.39 | AAAA C |
| ATOM | 619 | C   | GLY | 62 | 40.262 | -3.902 | 50.872 | 1.00 48.04 | AAAA C |
| ATOM | 620 | O   | GLY | 62 | 40.587 | -4.835 | 51.604 | 1.00 52.34 | AAAA O |
| ATOM | 621 | H   | LEU | 63 | 39.985 | -2.734 | 51.383 | 1.00 46.90 | AAAA H |
| ATOM | 623 | CA  | LEU | 63 | 40.003 | -2.343 | 52.806 | 1.00 49.11 | AAAA C |

09/55275

PCT/AU98/00998

WO 99/28347

7/58

|      |     |     |     |    |        |        |        |      |       |        |
|------|-----|-----|-----|----|--------|--------|--------|------|-------|--------|
| ATOM | 624 | CB  | LEU | 63 | 40.274 | -0.953 | 53.027 | 1.00 | 41.41 | AAAA C |
| ATOM | 625 | CG  | LEU | 63 | 40.265 | -0.423 | 54.443 | 1.00 | 53.41 | AAAA C |
| ATOM | 626 | CD1 | LEU | 63 | 41.172 | -1.164 | 55.416 | 1.00 | 48.27 | AAAA C |
| ATOM | 627 | CD2 | LEU | 63 | 40.637 | 1.047  | 54.246 | 1.00 | 50.51 | AAAA C |
| ATOM | 628 | C   | LEU | 63 | 38.643 | -2.881 | 53.323 | 1.00 | 54.20 | AAAA C |
| ATOM | 629 | O   | LEU | 63 | 37.587 | -2.430 | 52.837 | 1.00 | 57.73 | AAAA O |
| ATOM | 630 | H   | GLU | 64 | 38.658 | -3.852 | 54.190 | 1.00 | 53.97 | AAAA H |
| ATOM | 632 | CA  | GLU | 64 | 37.462 | -1.448 | 54.749 | 1.00 | 56.96 | AAAA C |
| ATOM | 633 | CB  | GLU | 64 | 37.689 | -5.956 | 54.734 | 1.00 | 65.33 | AAAA C |
| ATOM | 634 | CG  | GLU | 64 | 37.832 | -6.484 | 53.293 | 1.00 | 75.14 | AAAA C |
| ATOM | 635 | CD  | GLU | 64 | 37.104 | -7.940 | 53.128 | 1.00 | 78.19 | AAAA C |
| ATOM | 636 | OE1 | GLU | 64 | 37.424 | -8.699 | 54.132 | 1.00 | 63.93 | AAAA O |
| ATOM | 637 | OE2 | GLU | 64 | 37.036 | -8.320 | 51.978 | 1.00 | 88.77 | AAAA O |
| ATOM | 638 | C   | GLU | 64 | 37.096 | -4.007 | 56.163 | 1.00 | 57.12 | AAAA C |
| ATOM | 639 | O   | GLU | 64 | 35.986 | -4.332 | 56.600 | 1.00 | 59.82 | AAAA O |
| ATOM | 640 | H   | SER | 65 | 37.766 | -3.042 | 56.761 | 1.00 | 50.64 | AAAA H |
| ATOM | 642 | CA  | SER | 65 | 37.539 | -2.523 | 59.060 | 1.00 | 47.19 | AAAA C |
| ATOM | 643 | CB  | SER | 65 | 37.743 | -3.596 | 59.139 | 1.00 | 49.24 | AAAA C |
| ATOM | 644 | OG  | SER | 65 | 37.501 | -2.971 | 60.429 | 1.00 | 50.90 | AAAA C |
| ATOM | 646 | C   | SER | 65 | 38.516 | -1.405 | 58.432 | 1.00 | 48.35 | AAAA C |
| ATOM | 647 | O   | SER | 65 | 39.716 | -1.692 | 58.374 | 1.00 | 52.75 | AAAA C |
| ATOM | 648 | H   | LEU | 66 | 38.054 | -0.289 | 58.984 | 1.00 | 41.03 | AAAA H |
| ATOM | 650 | CA  | LEU | 66 | 38.956 | 0.758  | 59.405 | 1.00 | 41.94 | AAAA C |
| ATOM | 651 | CB  | LEU | 66 | 38.247 | 2.083  | 59.498 | 1.00 | 25.25 | AAAA C |
| ATOM | 652 | CG  | LEU | 66 | 37.283 | 2.476  | 58.402 | 1.00 | 34.49 | AAAA C |
| ATOM | 653 | CD1 | LEU | 66 | 36.974 | 3.951  | 58.512 | 1.00 | 30.81 | AAAA C |
| ATOM | 654 | CD2 | LEU | 66 | 37.767 | 2.200  | 56.994 | 1.00 | 34.34 | AAAA C |
| ATOM | 655 | C   | LEU | 66 | 39.646 | 0.462  | 60.734 | 1.00 | 45.39 | AAAA C |
| ATOM | 656 | O   | LEU | 66 | 40.762 | 0.947  | 60.927 | 1.00 | 41.05 | AAAA O |
| ATOM | 657 | H   | GLY | 67 | 39.000 | -0.346 | 61.583 | 1.00 | 45.21 | AAAA H |
| ATOM | 659 | CA  | GLY | 67 | 39.773 | -0.672 | 62.799 | 1.00 | 48.14 | AAAA C |
| ATOM | 660 | C   | GLY | 67 | 40.998 | -1.508 | 62.445 | 1.00 | 44.51 | AAAA C |
| ATOM | 661 | O   | GLY | 67 | 41.855 | -1.724 | 63.287 | 1.00 | 45.42 | AAAA O |
| ATOM | 662 | H   | ASP | 68 | 41.013 | -2.189 | 61.309 | 1.00 | 47.60 | AAAA H |
| ATOM | 664 | CA  | ASP | 68 | 42.194 | -2.834 | 60.738 | 1.00 | 50.99 | AAAA C |
| ATOM | 665 | CB  | ASP | 68 | 42.012 | -3.417 | 59.361 | 1.00 | 39.43 | AAAA C |
| ATOM | 666 | CG  | ASP | 68 | 41.205 | -4.678 | 59.311 | 1.00 | 45.82 | AAAA C |
| ATOM | 667 | OD1 | ASP | 68 | 40.912 | -5.341 | 60.320 | 1.00 | 44.69 | AAAA O |
| ATOM | 668 | OD2 | ASP | 68 | 40.819 | -5.065 | 58.187 | 1.00 | 47.23 | AAAA O |
| ATOM | 669 | C   | ASP | 68 | 43.363 | -1.837 | 60.596 | 1.00 | 45.89 | AAAA C |
| ATOM | 670 | O   | ASP | 68 | 44.436 | -2.269 | 60.903 | 1.00 | 44.84 | AAAA O |
| ATOM | 671 | H   | LEU | 69 | 43.145 | -0.609 | 60.247 | 1.00 | 42.49 | AAAA H |
| ATOM | 673 | CA  | LEU | 69 | 44.175 | 0.352  | 60.048 | 1.00 | 45.80 | AAAA C |
| ATOM | 674 | CB  | LEU | 69 | 43.920 | 1.393  | 58.945 | 1.00 | 45.25 | AAAA C |
| ATOM | 675 | CG  | LEU | 69 | 43.902 | 0.882  | 57.494 | 1.00 | 54.25 | AAAA C |
| ATOM | 676 | CD1 | LEU | 69 | 43.541 | 2.037  | 56.565 | 1.00 | 47.26 | AAAA C |
| ATOM | 677 | CD2 | LEU | 69 | 45.211 | 0.200  | 57.113 | 1.00 | 50.76 | AAAA C |
| ATOM | 678 | C   | LEU | 69 | 44.347 | 1.107  | 61.350 | 1.00 | 49.50 | AAAA C |
| ATOM | 679 | O   | LEU | 69 | 45.470 | 1.210  | 61.851 | 1.00 | 54.51 | AAAA O |
| ATOM | 680 | H   | PHE | 70 | 43.296 | 1.737  | 61.869 | 1.00 | 44.60 | AAAA H |
| ATOM | 682 | CA  | PHE | 70 | 43.423 | 2.564  | 63.046 | 1.00 | 39.67 | AAAA C |
| ATOM | 683 | CB  | PHE | 70 | 42.987 | 3.973  | 62.700 | 1.00 | 26.08 | AAAA C |
| ATOM | 684 | CG  | PHE | 70 | 43.465 | 4.501  | 61.390 | 1.00 | 45.32 | AAAA C |
| ATOM | 685 | CD1 | PHE | 70 | 42.532 | 4.748  | 60.384 | 1.00 | 47.41 | AAAA C |
| ATOM | 686 | CD2 | PHE | 70 | 44.815 | 4.767  | 61.130 | 1.00 | 48.77 | AAAA C |
| ATOM | 687 | CE1 | PHE | 70 | 42.945 | 5.263  | 59.159 | 1.00 | 56.16 | AAAA C |
| ATOM | 688 | CE2 | PHE | 70 | 45.229 | 5.256  | 59.895 | 1.00 | 47.24 | AAAA C |
| ATOM | 689 | CJ  | PHE | 70 | 44.293 | 5.506  | 58.896 | 1.00 | 49.54 | AAAA C |
| ATOM | 690 | C   | PHE | 70 | 42.655 | 1.999  | 61.219 | 1.00 | 40.09 | AAAA C |
| ATOM | 691 | O   | PHE | 70 | 41.874 | 2.734  | 64.838 | 1.00 | 35.74 | AAAA O |
| ATOM | 692 | H   | PRO | 71 | 43.053 | 0.852  | 64.768 | 1.00 | 39.19 | AAAA H |
| ATOM | 693 | CD  | PRO | 71 | 44.269 | 0.058  | 64.411 | 1.00 | 39.94 | AAAA C |
| ATOM | 694 | CA  | PRO | 71 | 42.444 | 0.237  | 65.899 | 1.00 | 35.30 | AAAA C |
| ATOM | 695 | CB  | PRO | 71 | 43.308 | -0.983 | 66.246 | 1.00 | 38.03 | AAAA C |
| ATOM | 696 | CG  | PRO | 71 | 44.669 | -0.561 | 65.717 | 1.00 | 38.36 | AAAA C |
| ATOM | 697 | C   | PRO | 71 | 42.453 | 1.089  | 67.126 | 1.00 | 33.72 | AAAA C |
| ATOM | 698 | O   | PRO | 71 | 42.005 | 0.630  | 68.159 | 1.00 | 39.32 | AAAA O |
| ATOM | 699 | H   | ASH | 72 | 43.058 | 2.220  | 67.231 | 1.00 | 36.55 | AAAA H |
| ATOM | 701 | CA  | ASH | 72 | 43.204 | 3.032  | 68.401 | 1.00 | 32.60 | AAAA C |
| ATOM | 702 | CB  | ASH | 72 | 44.637 | 2.916  | 68.962 | 1.00 | 36.89 | AAAA C |
| ATOM | 703 | CG  | ASH | 72 | 44.735 | 1.638  | 69.761 | 1.00 | 47.03 | AAAA C |
| ATOM | 704 | OD1 | ASH | 72 | 44.644 | 1.619  | 70.979 | 1.00 | 64.42 | AAAA O |
| ATOM | 705 | ND2 | ASH | 72 | 44.880 | 0.475  | 69.169 | 1.00 | 63.17 | AAAA H |
| ATOM | 708 | C   | ASN | 72 | 42.875 | 4.477  | 68.135 | 1.00 | 30.11 | AAAA C |
| ATOM | 709 | O   | ASN | 72 | 43.099 | 5.201  | 69.104 | 1.00 | 36.53 | AAAA O |
| ATOM | 710 | H   | LEU | 73 | 42.309 | 4.809  | 66.978 | 1.00 | 27.62 | AAAA H |
| ATOM | 712 | CA  | LEU | 73 | 41.940 | 6.207  | 66.730 | 1.00 | 34.07 | AAAA C |
| ATOM | 713 | CB  | LEU | 73 | 41.476 | 6.373  | 65.292 | 1.00 | 28.37 | AAAA C |
| ATOM | 714 | CG  | LEU | 73 | 40.819 | 7.713  | 64.882 | 1.00 | 29.33 | AAAA C |
| ATOM | 715 | CD1 | LEU | 73 | 41.918 | 8.721  | 64.963 | 1.00 | 31.86 | AAAA C |
| ATOM | 716 | CD2 | LEU | 73 | 40.202 | 7.518  | 63.178 | 1.00 | 32.07 | AAAA C |
| ATOM | 717 | C   | LEU | 73 | 40.929 | 6.569  | 67.817 | 1.00 | 32.14 | AAAA C |
| ATOM | 718 | O   | LEU | 73 | 40.073 | 5.737  | 68.081 | 1.00 | 35.02 | AAAA O |
| ATOM | 719 | H   | THR | 74 | 41.081 | 7.585  | 68.592 | 1.00 | 29.47 | AAAA H |
| ATOM | 721 | CA  | THR | 74 | 40.150 | 7.826  | 69.683 | 1.00 | 34.80 | AAAA C |

09/555275

WO 99/28347

PCT/AU98/00998

8/58

|      |     |     |     |    |        |        |        |            |        |
|------|-----|-----|-----|----|--------|--------|--------|------------|--------|
| ATOM | 722 | CB  | THR | 74 | 41.028 | 7.744  | 70.882 | 1.00 46.09 | AAAA C |
| ATOM | 723 | CG1 | THR | 74 | 41.729 | 6.485  | 70.880 | 1.00 46.30 | AAAA O |
| ATOM | 725 | CG2 | THR | 74 | 40.262 | 7.831  | 70.253 | 1.00 39.45 | AAAA C |
| ATOM | 726 | C   | THR | 74 | 39.424 | 9.155  | 69.602 | 1.00 35.48 | AAAA C |
| ATOM | 727 | O   | THR | 74 | 38.270 | 9.322  | 70.077 | 1.00 35.32 | AAAA O |
| ATOM | 728 | H   | VAL | 75 | 40.047 | 10.199 | 69.073 | 1.00 29.80 | AAA A  |
| ATOM | 730 | CA  | VAL | 75 | 39.351 | 11.474 | 68.892 | 1.00 34.91 | AAA A  |
| ATOM | 731 | CB  | VAL | 75 | 39.856 | 12.445 | 69.955 | 1.00 26.03 | AAA A  |
| ATOM | 732 | CG1 | VAL | 75 | 39.173 | 13.801 | 69.934 | 1.00 24.51 | AAA A  |
| ATOM | 733 | CG2 | VAL | 75 | 39.675 | 11.910 | 71.366 | 1.00 19.87 | AAA A  |
| ATOM | 734 | C   | VAL | 75 | 39.613 | 12.045 | 67.494 | 1.00 37.57 | AAA A  |
| ATOM | 735 | O   | VAL | 75 | 40.724 | 11.808 | 67.022 | 1.00 35.99 | AAA A  |
| ATOM | 736 | H   | ILE | 76 | 38.600 | 12.555 | 66.796 | 1.00 35.91 | AAA A  |
| ATOM | 738 | CA  | ILE | 76 | 38.695 | 13.340 | 65.592 | 1.00 31.48 | AAA A  |
| ATOM | 739 | CB  | ILE | 76 | 37.831 | 12.769 | 64.492 | 1.00 29.60 | AAA A  |
| ATOM | 740 | CG2 | ILE | 76 | 37.856 | 13.630 | 63.208 | 1.00 19.54 | AAA A  |
| ATOM | 741 | CG1 | ILE | 76 | 38.222 | 11.314 | 64.277 | 1.00 28.52 | AAA A  |
| ATOM | 742 | CD1 | ILE | 76 | 37.149 | 10.556 | 63.478 | 1.00 28.85 | AAA A  |
| ATOM | 743 | C   | ILE | 76 | 38.157 | 14.718 | 66.000 | 1.00 33.84 | AAA A  |
| ATOM | 744 | O   | ILE | 76 | 36.987 | 14.777 | 66.274 | 1.00 38.84 | AAA A  |
| ATOM | 745 | H   | ARG | 77 | 38.906 | 15.733 | 66.230 | 1.00 30.32 | AAA A  |
| ATOM | 747 | CA  | ARG | 77 | 38.605 | 16.901 | 67.021 | 1.00 30.82 | AAA A  |
| ATOM | 748 | CB  | ARG | 77 | 39.961 | 17.475 | 67.461 | 1.00 26.62 | AAA A  |
| ATOM | 749 | CG  | ARG | 77 | 39.993 | 18.836 | 68.058 | 1.00 52.42 | AAA A  |
| ATOM | 750 | CD  | ARG | 77 | 41.290 | 18.957 | 68.908 | 1.00 49.10 | AAA A  |
| ATOM | 751 | NE  | ARG | 77 | 41.411 | 17.817 | 69.773 | 1.00 39.23 | AAA A  |
| ATOM | 753 | CE  | ARG | 77 | 40.977 | 18.016 | 71.064 | 1.00 48.79 | AAA A  |
| ATOM | 754 | NH1 | ARG | 77 | 40.440 | 19.164 | 71.610 | 1.00 30.34 | AAA A  |
| ATOM | 757 | NH2 | ARG | 77 | 41.061 | 17.012 | 71.941 | 1.00 40.38 | AAA A  |
| ATOM | 760 | C   | ARG | 77 | 37.643 | 17.733 | 66.225 | 1.00 31.75 | AAA A  |
| ATOM | 761 | O   | ARG | 77 | 36.944 | 18.637 | 66.664 | 1.00 31.40 | AAA A  |
| ATOM | 762 | H   | GLY | 78 | 37.688 | 17.661 | 64.884 | 1.00 32.87 | AAA A  |
| ATOM | 764 | CA  | GLY | 78 | 36.982 | 18.409 | 63.950 | 1.00 16.23 | AAA A  |
| ATOM | 765 | C   | GLY | 78 | 37.199 | 19.880 | 64.063 | 1.00 31.58 | AAA A  |
| ATOM | 766 | O   | GLY | 78 | 36.363 | 20.775 | 63.674 | 1.00 34.03 | AAA A  |
| ATOM | 767 | H   | TRP | 79 | 38.439 | 20.321 | 64.304 | 1.00 31.21 | AAA A  |
| ATOM | 769 | CA  | TRP | 79 | 38.757 | 21.740 | 64.337 | 1.00 30.80 | AAA A  |
| ATOM | 770 | CB  | TRP | 79 | 40.177 | 21.943 | 64.845 | 1.00 39.07 | AAA A  |
| ATOM | 771 | CG  | TRP | 79 | 40.626 | 23.343 | 65.164 | 1.00 36.64 | AAA A  |
| ATOM | 772 | CD2 | TRP | 79 | 41.691 | 21.001 | 64.433 | 1.00 28.52 | AAA A  |
| ATOM | 773 | CE2 | TRP | 79 | 41.826 | 25.288 | 65.002 | 1.00 36.49 | AAA A  |
| ATOM | 774 | CE3 | TRP | 79 | 42.473 | 23.625 | 63.370 | 1.00 37.96 | AAA A  |
| ATOM | 775 | CD1 | TRP | 79 | 40.199 | 24.235 | 66.113 | 1.00 29.59 | AAA A  |
| ATOM | 776 | NE1 | TRP | 79 | 40.917 | 25.413 | 66.054 | 1.00 27.67 | AAA A  |
| ATOM | 778 | CG2 | TRP | 79 | 42.770 | 26.213 | 64.543 | 1.00 31.83 | AAA A  |
| ATOM | 779 | CB3 | TRP | 79 | 43.389 | 24.548 | 62.876 | 1.00 46.14 | AAA A  |
| ATOM | 780 | CH2 | TRP | 79 | 43.525 | 25.794 | 63.470 | 1.00 35.31 | AAA A  |
| ATOM | 781 | C   | TRP | 79 | 38.606 | 22.418 | 62.986 | 1.00 28.75 | AAA A  |
| ATOM | 782 | O   | TRP | 79 | 38.585 | 23.624 | 62.961 | 1.00 23.61 | AAA A  |
| ATOM | 783 | H   | LYS | 80 | 38.659 | 21.684 | 61.895 | 1.00 31.84 | AAA A  |
| ATOM | 785 | CA  | LYS | 80 | 38.305 | 22.153 | 60.573 | 1.00 32.78 | AAA A  |
| ATOM | 786 | CB  | LYS | 80 | 39.453 | 22.498 | 59.689 | 1.00 41.17 | AAA A  |
| ATOM | 787 | CG  | LYS | 80 | 39.838 | 23.311 | 59.470 | 1.00 34.68 | AAA A  |
| ATOM | 788 | CD  | LYS | 80 | 41.025 | 24.350 | 60.306 | 1.00 44.77 | AAA A  |
| ATOM | 789 | CE  | LYS | 80 | 41.276 | 25.811 | 59.898 | 1.00 50.41 | AAA A  |
| ATOM | 790 | NC  | LYS | 80 | 42.530 | 25.752 | 59.092 | 1.00 67.26 | AAA A  |
| ATOM | 791 | C   | LYS | 80 | 37.585 | 20.960 | 59.917 | 1.00 34.52 | AAA A  |
| ATOM | 792 | O   | LYS | 80 | 37.950 | 19.843 | 60.237 | 1.00 37.62 | AAA A  |
| ATOM | 793 | H   | LEU | 81 | 36.477 | 21.267 | 59.207 | 1.00 31.77 | AAA A  |
| ATOM | 795 | CA  | LEU | 81 | 35.742 | 20.157 | 58.600 | 1.00 31.02 | AAA A  |
| ATOM | 796 | CB  | LEU | 81 | 34.290 | 20.315 | 59.092 | 1.00 31.20 | AAA A  |
| ATOM | 797 | CG  | LEU | 81 | 34.115 | 20.319 | 60.632 | 1.00 36.97 | AAA A  |
| ATOM | 798 | CD1 | LEU | 81 | 32.832 | 21.080 | 60.954 | 1.00 27.98 | AAA A  |
| ATOM | 799 | CD2 | LEU | 81 | 34.089 | 18.955 | 61.297 | 1.00 28.77 | AAA A  |
| ATOM | 800 | C   | LEU | 81 | 35.733 | 20.023 | 57.104 | 1.00 29.86 | AAA A  |
| ATOM | 801 | O   | LEU | 81 | 36.082 | 20.947 | 56.368 | 1.00 29.34 | AAA A  |
| ATOM | 802 | H   | PHE | 82 | 35.430 | 18.813 | 56.594 | 1.00 27.78 | AAA A  |
| ATOM | 804 | CA  | PHE | 82 | 35.176 | 18.653 | 55.182 | 1.00 28.68 | AAA A  |
| ATOM | 805 | CB  | PHE | 82 | 35.513 | 17.226 | 54.795 | 1.00 32.78 | AAA A  |
| ATOM | 806 | CG  | PHE | 82 | 35.348 | 16.901 | 53.357 | 1.00 30.48 | AAA A  |
| ATOM | 807 | CD1 | PHE | 82 | 36.378 | 17.130 | 52.447 | 1.00 32.86 | AAA A  |
| ATOM | 808 | CD2 | PHE | 82 | 34.142 | 16.361 | 52.914 | 1.00 30.93 | AAA A  |
| ATOM | 809 | CE1 | PHE | 82 | 36.217 | 16.769 | 51.194 | 1.00 43.27 | AAA A  |
| ATOM | 910 | CE2 | PHE | 82 | 33.963 | 16.061 | 51.538 | 1.00 26.39 | AAA A  |
| ATOM | 911 | CS  | PHE | 82 | 35.005 | 16.238 | 50.672 | 1.00 37.73 | AAA A  |
| ATOM | 912 | C   | PHE | 82 | 33.670 | 18.911 | 54.993 | 1.00 30.06 | AAA A  |
| ATOM | 913 | O   | PHE | 82 | 32.830 | 18.045 | 55.278 | 1.00 27.36 | AAA A  |
| ATOM | 914 | H   | TYR | 83 | 33.301 | 20.148 | 54.770 | 1.00 31.68 | AAA A  |
| ATOM | 915 | CA  | TYR | 83 | 31.911 | 20.605 | 54.633 | 1.00 40.76 | AAA A  |
| ATOM | 916 | C   | TYR | 83 | 31.043 | 19.977 | 55.726 | 1.00 44.00 | AAA A  |
| ATOM | 917 | O   | TYR | 83 | 30.075 | 19.210 | 55.487 | 1.00 50.47 | AAA A  |
| ATOM | 918 | CB  | TYR | 83 | 31.359 | 20.199 | 53.269 | 1.00 31.55 | AAA A  |
| ATOM | 919 | CG  | TYR | 83 | 32.196 | 20.742 | 52.117 | 1.01 20.00 | AAA A  |
| ATOM | 920 | CD1 | TYR | 83 | 33.254 | 19.982 | 51.609 | 1.01 20.00 | AAA A  |
| ATOM | 921 | CD2 | TYR | 83 | 31.906 | 21.998 | 51.575 | 1.01 20.00 | AAA A  |

09/55275

PCT/AU98/00998

WO 99/28347

9/58

|      |     |     |     |    |        |        |        |      |       |         |
|------|-----|-----|-----|----|--------|--------|--------|------|-------|---------|
| ATOM | 822 | CE1 | TYR | 93 | 34.027 | 20.480 | 50.556 | 0.01 | 20.00 | AAAA C  |
| ATOM | 823 | CE2 | TYR | 93 | 32.679 | 22.496 | 50.521 | 0.01 | 20.00 | AAAA C  |
| ATOM | 824 | CG  | TYR | 93 | 33.740 | 21.737 | 50.012 | 0.01 | 20.00 | AAAA C  |
| ATOM | 825 | OH  | TYR | 93 | 34.492 | 22.222 | 48.989 | 0.01 | 20.00 | AAAA O  |
| ATOM | 826 | II  | ASN | 84 | 31.043 | 20.461 | 56.924 | 1.00 | 40.91 | AAAA II |
| ATOM | 827 | CA  | ASN | 84 | 30.250 | 20.057 | 59.056 | 1.00 | 36.54 | AAAA C  |
| ATOM | 828 | CB  | ASN | 84 | 28.763 | 20.046 | 57.700 | 1.00 | 47.84 | AAAA C  |
| ATOM | 829 | CG  | ASN | 84 | 28.274 | 21.164 | 56.797 | 1.00 | 60.75 | AAAA C  |
| ATOM | 830 | OD1 | ASN | 84 | 28.319 | 22.343 | 57.119 | 1.00 | 45.55 | AAAA O  |
| ATOM | 831 | HD2 | ASN | 84 | 27.839 | 20.876 | 55.552 | 1.00 | 65.98 | AAAA II |
| ATOM | 832 | C   | ASN | 84 | 30.686 | 18.679 | 58.556 | 1.00 | 36.33 | AAAA C  |
| ATOM | 833 | O   | ASN | 84 | 30.137 | 18.206 | 59.580 | 1.00 | 38.24 | AAAA O  |
| ATOM | 834 | II  | TYR | 85 | 31.455 | 17.900 | 57.800 | 1.00 | 32.78 | AAAA II |
| ATOM | 836 | CA  | TYR | 85 | 31.517 | 16.504 | 58.222 | 1.00 | 35.45 | AAAA C  |
| ATOM | 837 | CB  | TYR | 85 | 31.473 | 15.579 | 57.000 | 1.00 | 35.54 | AAAA C  |
| ATOM | 838 | CG  | TYR | 85 | 30.078 | 15.733 | 56.453 | 1.00 | 41.35 | AAAA C  |
| ATOM | 839 | CD1 | TYR | 85 | 29.968 | 16.291 | 55.199 | 1.00 | 38.22 | AAAA C  |
| ATOM | 840 | CE1 | TYR | 85 | 28.611 | 16.415 | 54.704 | 1.00 | 40.83 | AAAA C  |
| ATOM | 841 | CD2 | TYR | 85 | 28.954 | 15.371 | 57.200 | 1.00 | 47.42 | AAAA C  |
| ATOM | 842 | CE2 | TYR | 85 | 27.661 | 15.533 | 56.705 | 1.00 | 45.91 | AAAA C  |
| ATOM | 843 | CG  | TYR | 85 | 27.497 | 16.072 | 55.445 | 1.00 | 46.06 | AAAA C  |
| ATOM | 844 | OH  | TYR | 85 | 26.258 | 16.315 | 54.886 | 1.00 | 46.05 | AAAA O  |
| ATOM | 846 | C   | TYR | 85 | 32.977 | 16.367 | 58.891 | 1.00 | 32.08 | AAAA C  |
| ATOM | 847 | O   | TYR | 85 | 33.943 | 16.977 | 58.495 | 1.00 | 37.44 | AAAA O  |
| ATOM | 848 | H   | ALA | 86 | 33.027 | 15.691 | 59.979 | 1.00 | 30.21 | AAAA II |
| ATOM | 850 | CA  | ALA | 86 | 34.257 | 15.325 | 60.670 | 1.00 | 34.10 | AAAA C  |
| ATOM | 851 | CB  | ALA | 86 | 33.999 | 15.370 | 62.157 | 1.00 | 25.48 | AAAA C  |
| ATOM | 852 | C   | ALA | 86 | 34.729 | 13.962 | 60.216 | 1.00 | 32.67 | AAAA C  |
| ATOM | 853 | O   | ALA | 86 | 35.795 | 13.481 | 56.577 | 1.00 | 35.10 | AAAA O  |
| ATOM | 854 | H   | LEU | 87 | 33.832 | 13.173 | 59.597 | 1.00 | 28.56 | AAAA II |
| ATOM | 856 | CA  | LEU | 87 | 34.188 | 11.805 | 59.323 | 1.00 | 29.26 | AAAA C  |
| ATOM | 857 | CB  | LEU | 87 | 33.798 | 10.860 | 60.471 | 1.00 | 13.64 | AAAA C  |
| ATOM | 858 | CG  | LEU | 87 | 33.801 | 9.363  | 60.188 | 1.00 | 25.77 | AAAA C  |
| ATOM | 859 | CD1 | LEU | 87 | 35.140 | 8.915  | 59.571 | 1.00 | 27.21 | AAAA C  |
| ATOM | 860 | CD2 | LEU | 87 | 33.637 | 8.432  | 61.393 | 1.00 | 23.52 | AAAA C  |
| ATOM | 861 | C   | LEU | 87 | 33.530 | 11.429 | 58.021 | 1.00 | 35.60 | AAAA C  |
| ATOM | 862 | O   | LEU | 87 | 32.320 | 11.421 | 58.001 | 1.00 | 38.97 | AAAA O  |
| ATOM | 863 | H   | VAL | 88 | 34.174 | 11.300 | 56.875 | 1.00 | 37.86 | AAAA II |
| ATOM | 865 | CA  | VAL | 88 | 33.438 | 11.032 | 55.628 | 1.00 | 33.32 | AAAA C  |
| ATOM | 866 | CB  | VAL | 88 | 33.666 | 12.085 | 54.553 | 1.00 | 22.38 | AAAA C  |
| ATOM | 867 | CG1 | VAL | 88 | 32.974 | 11.675 | 53.261 | 1.00 | 19.24 | AAAA C  |
| ATOM | 868 | CG2 | VAL | 88 | 33.165 | 13.402 | 55.042 | 1.00 | 13.27 | AAAA C  |
| ATOM | 869 | C   | VAL | 88 | 33.898 | 9.684  | 55.114 | 1.00 | 31.79 | AAAA C  |
| ATOM | 870 | O   | VAL | 88 | 35.069 | 9.407  | 55.117 | 1.00 | 33.57 | AAAA O  |
| ATOM | 871 | H   | ILE | 89 | 33.078 | 8.728  | 54.822 | 1.00 | 31.08 | AAAA II |
| ATOM | 873 | CA  | ILE | 89 | 33.361 | 7.433  | 54.280 | 1.00 | 30.45 | AAAA C  |
| ATOM | 874 | CB  | ILE | 89 | 32.941 | 6.384  | 55.295 | 1.00 | 30.17 | AAAA C  |
| ATOM | 875 | CG2 | ILE | 89 | 32.898 | 4.954  | 54.821 | 1.00 | 37.24 | AAAA C  |
| ATOM | 876 | CG1 | ILE | 89 | 33.893 | 6.420  | 56.500 | 1.00 | 24.92 | AAAA C  |
| ATOM | 877 | CD1 | ILE | 89 | 33.124 | 5.613  | 57.675 | 1.00 | 23.96 | AAAA C  |
| ATOM | 878 | C   | ILE | 89 | 32.509 | 7.206  | 53.027 | 1.00 | 40.64 | AAAA C  |
| ATOM | 879 | O   | ILE | 89 | 31.330 | 6.881  | 53.295 | 1.00 | 38.69 | AAAA O  |
| ATOM | 880 | H   | PHE | 90 | 33.082 | 7.464  | 51.845 | 1.00 | 41.48 | AAAA II |
| ATOM | 882 | CA  | PHE | 90 | 32.346 | 7.371  | 50.591 | 1.00 | 37.67 | AAAA C  |
| ATOM | 883 | CB  | PHE | 90 | 32.347 | 8.776  | 50.110 | 1.00 | 32.17 | AAAA C  |
| ATOM | 884 | CG  | PHE | 90 | 31.591 | 9.081  | 48.865 | 1.00 | 39.77 | AAAA C  |
| ATOM | 885 | CD1 | PHE | 90 | 30.387 | 9.772  | 49.025 | 1.00 | 32.02 | AAAA C  |
| ATOM | 886 | CD2 | PHE | 90 | 32.052 | 8.721  | 47.620 | 1.00 | 29.28 | AAAA C  |
| ATOM | 887 | CE1 | PHE | 90 | 29.611 | 10.111 | 47.938 | 1.00 | 33.30 | AAAA C  |
| ATOM | 888 | CE2 | PHE | 90 | 31.290 | 9.086  | 46.534 | 1.00 | 43.09 | AAAA C  |
| ATOM | 889 | CS  | PHE | 90 | 30.083 | 9.764  | 46.687 | 1.00 | 50.24 | AAAA C  |
| ATOM | 890 | C   | PHE | 90 | 32.856 | 6.384  | 49.557 | 1.00 | 40.72 | AAAA C  |
| ATOM | 891 | O   | PHE | 90 | 34.027 | 6.296  | 49.203 | 1.00 | 46.15 | AAAA O  |
| ATOM | 892 | H   | GLU | 91 | 32.024 | 5.519  | 49.001 | 1.00 | 39.16 | AAAA N  |
| ATOM | 894 | CA  | GLU | 91 | 32.248 | 4.601  | 47.954 | 1.00 | 42.45 | AAAA C  |
| ATOM | 895 | CB  | GLU | 91 | 32.479 | 5.231  | 46.583 | 1.00 | 38.08 | AAAA C  |
| ATOM | 896 | CG  | GLU | 91 | 31.136 | 5.865  | 46.250 | 1.00 | 58.86 | AAAA C  |
| ATOM | 897 | CD  | GLU | 91 | 30.855 | 5.776  | 44.757 | 1.00 | 63.55 | AAAA C  |
| ATOM | 898 | OE1 | GLU | 91 | 31.473 | 6.651  | 44.082 | 1.00 | 64.10 | AAAA O  |
| ATOM | 899 | OE2 | GLU | 91 | 30.058 | 4.813  | 44.573 | 1.00 | 63.64 | AAAA O  |
| ATOM | 900 | C   | GLU | 91 | 33.422 | 3.734  | 48.313 | 1.00 | 42.06 | AAAA C  |
| ATOM | 901 | O   | GLU | 91 | 34.298 | 3.411  | 47.587 | 1.00 | 44.71 | AAAA O  |
| ATOM | 902 | H   | MET | 92 | 33.350 | 3.209  | 49.482 | 1.00 | 46.52 | AAAA II |
| ATOM | 904 | CA  | MET | 92 | 34.409 | 2.401  | 50.028 | 1.00 | 42.26 | AAAA C  |
| ATOM | 905 | CB  | MET | 92 | 34.299 | 2.659  | 51.584 | 1.00 | 38.37 | AAAA C  |
| ATOM | 906 | CG  | MET | 92 | 35.412 | 2.156  | 52.420 | 1.00 | 59.29 | AAAA C  |
| ATOM | 907 | SD  | MET | 92 | 36.802 | 3.306  | 52.401 | 1.00 | 57.67 | AAAA S  |
| ATOM | 908 | CE  | MET | 92 | 36.340 | 4.405  | 51.108 | 1.00 | 38.36 | AAAA C  |
| ATOM | 909 | C   | MET | 92 | 34.012 | 1.005  | 49.745 | 1.00 | 43.37 | AAAA C  |
| ATOM | 910 | O   | MET | 92 | 33.335 | 0.298  | 50.523 | 1.00 | 45.58 | AAAA O  |
| ATOM | 911 | H   | THR | 93 | 34.449 | 0.518  | 48.602 | 1.00 | 47.09 | AAAA II |
| ATOM | 913 | CA  | THR | 93 | 34.175 | -0.900 | 48.273 | 1.00 | 47.32 | AAAA C  |
| ATOM | 914 | CB  | THR | 93 | 34.666 | -1.281 | 46.868 | 1.00 | 55.29 | AAAA C  |
| ATOM | 915 | OG1 | THR | 93 | 34.013 | -0.488 | 45.891 | 1.00 | 57.01 | AAAA O  |
| ATOM | 917 | CG2 | THR | 93 | 34.332 | -2.715 | 46.516 | 1.00 | 44.71 | AAAA C  |

09/555275

WO 99/28347

PCT/AU98/00998

10/58

|      |      |     |     |     |        |         |        |      |       |         |
|------|------|-----|-----|-----|--------|---------|--------|------|-------|---------|
| ATOM | 918  | C   | THR | 93  | 34.885 | -1.874  | 49.186 | 1.00 | 51.83 | AAAAA C |
| ATOM | 919  | O   | THR | 93  | 36.115 | -1.777  | 49.361 | 1.00 | 57.91 | AAAAA O |
| ATOM | 920  | N   | ASN | 94  | 34.237 | -2.983  | 49.493 | 1.00 | 49.85 | AAAAA N |
| ATOM | 922  | CA  | ASN | 94  | 34.747 | -4.069  | 50.285 | 1.00 | 45.64 | AAAAA C |
| ATOM | 923  | CB  | ASN | 94  | 36.241 | -4.315  | 50.001 | 1.00 | 59.01 | AAAAA C |
| ATOM | 924  | CG  | ASN | 94  | 36.494 | -4.849  | 48.599 | 1.00 | 75.44 | AAAAA C |
| ATOM | 925  | OD1 | ASN | 94  | 36.847 | -4.081  | 47.688 | 1.00 | 77.49 | AAAAA O |
| ATOM | 926  | ND2 | ASN | 94  | 36.308 | -6.153  | 48.408 | 1.00 | 79.63 | AAAAA N |
| ATOM | 929  | C   | ASN | 94  | 34.522 | -3.838  | 51.763 | 1.00 | 42.58 | AAAAA C |
| ATOM | 930  | O   | ASN | 94  | 34.752 | -4.814  | 52.501 | 1.00 | 46.36 | AAAAA O |
| ATOM | 931  | H   | LEU | 95  | 34.308 | -2.609  | 52.180 | 1.00 | 37.28 | AAAAA N |
| ATOM | 933  | CA  | LEU | 95  | 34.324 | -2.277  | 53.621 | 1.00 | 39.96 | AAAAA C |
| ATOM | 934  | CB  | LEU | 95  | 34.195 | -0.786  | 53.851 | 1.00 | 34.05 | AAAAA C |
| ATOM | 935  | CG  | LEU | 95  | 34.323 | -0.296  | 55.269 | 1.00 | 35.91 | AAAAA C |
| ATOM | 936  | CD1 | LEU | 95  | 35.795 | -0.537  | 55.598 | 1.00 | 35.18 | AAAAA C |
| ATOM | 937  | CD2 | LEU | 95  | 33.847 | 1.177   | 55.344 | 1.00 | 25.46 | AAAAA C |
| ATOM | 938  | C   | LEU | 95  | 33.163 | -0.986  | 54.275 | 1.00 | 43.75 | AAAAA C |
| ATOM | 939  | O   | LEU | 95  | 32.048 | -2.936  | 53.772 | 1.00 | 44.04 | AAAAA O |
| ATOM | 940  | N   | LYS | 96  | 33.451 | -3.863  | 55.213 | 1.00 | 46.50 | AAAAA H |
| ATOM | 942  | CA  | LYS | 96  | 32.364 | -4.648  | 55.779 | 1.00 | 42.76 | AAAAA C |
| ATOM | 943  | CB  | LYS | 96  | 32.801 | -6.075  | 55.995 | 1.00 | 41.41 | AAAAA C |
| ATOM | 944  | CG  | LYS | 96  | 32.760 | -6.976  | 54.788 | 1.00 | 49.78 | AAAAA C |
| ATOM | 945  | CD  | LYS | 96  | 32.984 | -9.446  | 55.127 | 1.00 | 58.09 | AAAAA C |
| ATOM | 946  | CE  | LYS | 96  | 33.772 | -9.160  | 54.027 | 1.00 | 73.43 | AAAAA C |
| ATOM | 947  | NE  | LYS | 96  | 34.098 | -10.556 | 54.489 | 1.00 | 79.13 | AAAAA H |
| ATOM | 951  | C   | LYS | 96  | 31.970 | -4.055  | 57.122 | 1.00 | 45.29 | AAAAA C |
| ATOM | 952  | O   | LYS | 96  | 30.978 | -4.502  | 57.691 | 1.00 | 46.23 | AAAAA O |
| ATOM | 953  | H   | ASP | 97  | 32.685 | -3.071  | 57.645 | 1.00 | 45.15 | AAAAA H |
| ATOM | 955  | CA  | ASP | 97  | 32.299 | -1.384  | 58.861 | 1.00 | 42.15 | AAAAA C |
| ATOM | 956  | CB  | ASP | 97  | 32.294 | -3.292  | 60.059 | 1.00 | 45.39 | AAAAA C |
| ATOM | 957  | CG  | ASP | 97  | 33.662 | -3.562  | 60.624 | 1.00 | 56.95 | AAAAA C |
| ATOM | 958  | OD1 | ASP | 97  | 34.579 | -2.825  | 61.012 | 1.00 | 59.88 | AAAAA O |
| ATOM | 959  | OD2 | ASP | 97  | 33.931 | -4.782  | 60.714 | 1.00 | 56.01 | AAAAA O |
| ATOM | 960  | C   | ASP | 97  | 33.209 | -1.224  | 59.201 | 1.00 | 41.25 | AAAAA C |
| ATOM | 961  | O   | ASP | 97  | 34.160 | -1.074  | 58.437 | 1.00 | 47.03 | AAAAA O |
| ATOM | 962  | H   | ILE | 98  | 32.822 | -0.366  | 60.129 | 1.00 | 40.41 | AAAAA H |
| ATOM | 964  | CA  | ILE | 98  | 33.675 | 0.820   | 60.340 | 1.00 | 37.83 | AAAAA C |
| ATOM | 965  | CB  | ILE | 98  | 32.983 | 2.006   | 61.006 | 1.00 | 38.99 | AAAAA C |
| ATOM | 966  | CG2 | ILE | 98  | 34.007 | 3.133   | 61.207 | 1.00 | 38.95 | AAAAA C |
| ATOM | 967  | CG1 | ILE | 98  | 31.835 | 2.488   | 60.092 | 1.00 | 34.84 | AAAAA C |
| ATOM | 968  | CD1 | ILE | 98  | 31.629 | 3.958   | 59.948 | 1.00 | 39.29 | AAAAA C |
| ATOM | 969  | C   | ILE | 98  | 34.854 | 0.322   | 61.114 | 1.00 | 35.11 | AAAAA C |
| ATOM | 970  | O   | ILE | 98  | 35.970 | 0.669   | 60.841 | 1.00 | 43.05 | AAAAA O |
| ATOM | 971  | H   | GLY | 99  | 34.618 | -0.393  | 62.192 | 1.00 | 34.22 | AAAAA H |
| ATOM | 973  | CA  | GLY | 99  | 35.477 | -0.972  | 63.121 | 1.00 | 33.74 | AAAAA C |
| ATOM | 974  | C   | GLY | 99  | 36.279 | -0.084  | 64.024 | 1.00 | 35.90 | AAAAA C |
| ATOM | 975  | O   | GLY | 99  | 37.023 | -0.572  | 64.899 | 1.00 | 38.21 | AAAAA O |
| ATOM | 976  | H   | LEU | 100 | 36.190 | 1.221   | 63.913 | 1.00 | 33.35 | AAAAA H |
| ATOM | 978  | CA  | LEU | 100 | 36.763 | 2.215   | 64.771 | 1.00 | 31.65 | AAAAA C |
| ATOM | 979  | CB  | LEU | 100 | 36.496 | 3.636   | 64.294 | 1.00 | 29.87 | AAAAA C |
| ATOM | 980  | CG  | LEU | 100 | 36.943 | 3.980   | 62.835 | 1.00 | 32.13 | AAAAA C |
| ATOM | 981  | CD1 | LEU | 100 | 36.710 | 5.479   | 62.610 | 1.00 | 21.38 | AAAAA C |
| ATOM | 982  | CD2 | LEU | 100 | 38.412 | 3.599   | 62.644 | 1.00 | 37.62 | AAAAA C |
| ATOM | 983  | C   | LEU | 100 | 36.312 | 1.976   | 66.194 | 1.00 | 31.94 | AAAAA C |
| ATOM | 984  | O   | LEU | 100 | 35.950 | 2.863   | 66.979 | 1.00 | 31.95 | AAAAA O |
| ATOM | 985  | H   | TIR | 101 | 36.704 | 0.851   | 66.779 | 1.00 | 31.87 | AAAAA H |
| ATOM | 987  | CA  | TIR | 101 | 36.329 | 0.395   | 68.071 | 1.00 | 33.33 | AAAAA C |
| ATOM | 988  | CB  | TIR | 101 | 36.491 | -1.104  | 68.264 | 1.00 | 41.03 | AAAAA C |
| ATOM | 989  | CG  | TIR | 101 | 37.919 | -1.559  | 68.369 | 1.00 | 46.68 | AAAAA C |
| ATOM | 990  | CD1 | TIR | 101 | 38.571 | -1.380  | 69.587 | 1.00 | 51.20 | AAAAA C |
| ATOM | 991  | CE1 | TIR | 101 | 39.901 | -1.743  | 69.749 | 1.00 | 49.44 | AAAAA C |
| ATOM | 992  | CD2 | TIR | 101 | 38.615 | -2.112  | 67.322 | 1.00 | 45.15 | AAAAA C |
| ATOM | 993  | CE2 | TIR | 101 | 39.927 | -2.505  | 67.479 | 1.00 | 47.09 | AAAAA C |
| ATOM | 994  | CG2 | TIR | 101 | 40.548 | -2.321  | 68.688 | 1.00 | 49.43 | AAAAA C |
| ATOM | 995  | OH  | TIR | 101 | 41.834 | -2.662  | 68.997 | 1.00 | 55.82 | AAAAA O |
| ATOM | 997  | C   | TIR | 101 | 36.989 | 1.059   | 69.214 | 1.00 | 33.46 | AAAAA C |
| ATOM | 998  | O   | TIR | 101 | 36.630 | 0.813   | 70.375 | 1.00 | 43.00 | AAAAA O |
| ATOM | 999  | H   | ASH | 102 | 37.752 | 2.091   | 69.068 | 1.00 | 38.12 | AAAAA H |
| ATOM | 1001 | CA  | ASH | 102 | 38.093 | 2.979   | 70.223 | 1.00 | 30.79 | AAAAA C |
| ATOM | 1002 | CH  | ASH | 102 | 39.503 | 2.911   | 70.363 | 1.00 | 48.63 | AAAAA C |
| ATOM | 1003 | CG  | ASH | 102 | 40.112 | 1.804   | 71.268 | 1.00 | 54.01 | AAAAA C |
| ATOM | 1004 | OD1 | ASH | 102 | 39.738 | 1.861   | 72.454 | 1.00 | 47.22 | AAAAA O |
| ATOM | 1005 | ND2 | ASH | 102 | 40.864 | 0.845   | 70.767 | 1.00 | 43.98 | AAAAA H |
| ATOM | 1008 | C   | ASH | 102 | 37.673 | 4.385   | 69.947 | 1.00 | 33.82 | AAAAA C |
| ATOM | 1009 | O   | ASH | 102 | 38.047 | 5.364   | 70.592 | 1.00 | 39.84 | AAAAA O |
| ATOM | 1010 | H   | LEU | 103 | 36.815 | 4.640   | 68.982 | 1.00 | 35.28 | AAAAA H |
| ATOM | 1012 | CA  | LEU | 103 | 36.473 | 6.040   | 68.621 | 1.00 | 36.57 | AAAAA C |
| ATOM | 1013 | CB  | LEU | 103 | 35.948 | 6.140   | 67.213 | 1.00 | 34.77 | AAAAA C |
| ATOM | 1014 | CG  | LEU | 103 | 35.525 | 7.482   | 66.612 | 1.00 | 30.32 | AAAAA C |
| ATOM | 1015 | CD1 | LEU | 103 | 36.606 | 8.513   | 66.646 | 1.00 | 23.20 | AAAAA C |
| ATOM | 1016 | CDC | LEU | 103 | 35.199 | 7.169   | 65.146 | 1.00 | 37.10 | AAAAA C |
| ATOM | 1017 | C   | LEU | 103 | 35.484 | 6.508   | 69.631 | 1.00 | 37.31 | AAAAA C |
| ATOM | 1018 | O   | LEU | 103 | 34.449 | 5.874   | 69.837 | 1.00 | 34.24 | AAAAA O |
| ATOM | 1019 | H   | ARG | 104 | 35.810 | 7.456   | 70.563 | 1.00 | 33.31 | AAAAA H |
| ATOM | 1021 | CA  | ARG | 104 | 34.920 | 7.041   | 71.605 | 1.00 | 29.66 | AAAAA C |

09/555275

WO 99/28347

PCT/AU98/00998

11/58

|      |      |     |     |     |        |        |        |      |       |        |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 1022 | CB  | ARG | 104 | 35.568 | 7.057  | 73.013 | 1.00 | 38.17 | AAAA C |
| ATOM | 1023 | CG  | ARG | 104 | 36.356 | 6.375  | 73.165 | 1.00 | 48.37 | AAAA C |
| ATOM | 1024 | CD  | ARG | 104 | 35.425 | 5.183  | 73.248 | 1.00 | 50.71 | AAAA C |
| ATOM | 1025 | HE  | ARG | 104 | 34.582 | 5.320  | 74.413 | 1.00 | 52.38 | AAAA H |
| ATOM | 1027 | CJ  | ARG | 104 | 34.900 | 4.847  | 75.621 | 1.00 | 72.73 | AAAA C |
| ATOM | 1028 | NH1 | ARG | 104 | 36.047 | 4.214  | 75.900 | 1.00 | 81.87 | AAAA H |
| ATOM | 1031 | NH2 | ARG | 104 | 33.990 | 5.070  | 76.577 | 1.00 | 78.27 | AAAA H |
| ATOM | 1034 | C   | ARG | 104 | 34.466 | 8.273  | 71.540 | 1.00 | 32.58 | AAAA C |
| ATOM | 1035 | O   | ARG | 104 | 33.553 | 9.743  | 72.223 | 1.00 | 39.89 | AAAA O |
| ATOM | 1036 | H   | ASN | 105 | 34.992 | 10.065 | 70.637 | 1.00 | 33.47 | AAAA H |
| ATOM | 1038 | CA  | ASN | 105 | 34.549 | 11.450 | 70.590 | 1.00 | 30.97 | AAAA C |
| ATOM | 1044 | C   | ASN | 105 | 34.907 | 12.149 | 69.310 | 1.00 | 31.00 | AAAA C |
| ATOM | 1045 | O   | ASN | 105 | 36.086 | 12.067 | 69.050 | 1.00 | 37.79 | AAAA O |
| ATOM | 1039 | CB  | ASN | 105 | 35.203 | 12.194 | 71.721 | 1.00 | 12.28 | AAAA C |
| ATOM | 1040 | CG  | ASN | 105 | 34.786 | 13.568 | 71.756 | 1.00 | 24.93 | AAAA C |
| ATOM | 1041 | OD1 | ASN | 105 | 35.125 | 14.549 | 71.127 | 1.00 | 38.14 | AAAA O |
| ATOM | 1042 | ND2 | ASN | 105 | 33.828 | 13.985 | 70.649 | 1.00 | 35.96 | AAAA H |
| ATOM | 1046 | H   | ILE | 106 | 33.969 | 12.659 | 68.576 | 1.00 | 31.90 | AAAA H |
| ATOM | 1048 | CA  | ILE | 106 | 34.129 | 13.551 | 67.469 | 1.00 | 23.39 | AAAA C |
| ATOM | 1049 | CB  | ILE | 106 | 33.239 | 13.185 | 66.307 | 1.00 | 16.54 | AAAA C |
| ATOM | 1050 | CG2 | ILE | 106 | 33.132 | 14.408 | 65.374 | 1.00 | 20.38 | AAAA C |
| ATOM | 1051 | CG1 | ILE | 106 | 33.928 | 12.034 | 65.558 | 1.00 | 18.30 | AAAA C |
| ATOM | 1052 | CD1 | ILE | 106 | 33.055 | 11.293 | 64.643 | 1.00 | 25.48 | AAAA C |
| ATOM | 1053 | C   | ILE | 106 | 33.803 | 14.909 | 68.009 | 1.00 | 27.40 | AAAA C |
| ATOM | 1054 | O   | ILE | 106 | 32.628 | 15.106 | 68.243 | 1.00 | 32.86 | AAAA O |
| ATOM | 1055 | H   | THR | 107 | 34.719 | 15.789 | 68.350 | 1.00 | 30.43 | AAAA H |
| ATOM | 1057 | CA  | THR | 107 | 34.532 | 16.983 | 69.145 | 1.00 | 28.27 | AAAA C |
| ATOM | 1058 | CB  | THR | 107 | 35.902 | 17.607 | 69.570 | 1.00 | 35.78 | AAAA C |
| ATOM | 1059 | OG1 | THR | 107 | 36.819 | 16.503 | 69.738 | 1.00 | 40.26 | AAAA C |
| ATOM | 1061 | CG2 | THR | 107 | 35.954 | 18.411 | 70.855 | 1.00 | 28.13 | AAAA C |
| ATOM | 1062 | C   | THR | 107 | 33.728 | 17.950 | 69.332 | 1.00 | 27.95 | AAAA C |
| ATOM | 1063 | O   | THR | 107 | 33.392 | 19.060 | 68.831 | 1.00 | 32.99 | AAAA O |
| ATOM | 1064 | H   | ARG | 108 | 33.669 | 17.777 | 67.019 | 1.00 | 30.28 | AAAA H |
| ATOM | 1066 | CA  | ARG | 108 | 33.046 | 18.809 | 66.180 | 1.00 | 31.25 | AAAA C |
| ATOM | 1067 | CB  | ARG | 108 | 33.965 | 20.011 | 65.951 | 1.00 | 25.13 | AAAA C |
| ATOM | 1068 | CG  | ARG | 108 | 33.105 | 21.174 | 65.543 | 1.00 | 30.68 | AAAA C |
| ATOM | 1069 | CD  | ARG | 108 | 33.917 | 22.444 | 65.529 | 1.00 | 17.12 | AAAA C |
| ATOM | 1070 | NE  | ARG | 108 | 33.511 | 23.376 | 64.451 | 1.00 | 33.40 | AAAA H |
| ATOM | 1072 | CZ  | ARG | 108 | 34.045 | 23.608 | 63.266 | 1.00 | 46.41 | AAAA C |
| ATOM | 1073 | NH1 | ARG | 108 | 35.162 | 22.929 | 62.868 | 1.00 | 40.30 | AAAA H |
| ATOM | 1076 | NH2 | ARG | 108 | 33.454 | 24.543 | 62.494 | 1.00 | 39.82 | AAAA H |
| ATOM | 1079 | C   | ARG | 108 | 32.701 | 18.328 | 64.784 | 1.00 | 31.50 | AAAA C |
| ATOM | 1080 | O   | ARG | 108 | 33.379 | 17.381 | 64.430 | 1.00 | 32.67 | AAAA O |
| ATOM | 1081 | H   | GLY | 109 | 31.567 | 18.809 | 64.284 | 1.00 | 32.60 | AAAA H |
| ATOM | 1083 | CA  | GLY | 109 | 31.082 | 18.385 | 62.983 | 1.00 | 28.87 | AAAA C |
| ATOM | 1084 | C   | GLY | 109 | 30.470 | 17.008 | 63.001 | 1.00 | 32.32 | AAAA C |
| ATOM | 1085 | O   | GLY | 109 | 30.471 | 16.306 | 64.006 | 1.00 | 38.03 | AAAA O |
| ATOM | 1086 | H   | ALA | 110 | 29.920 | 16.560 | 61.894 | 1.00 | 34.11 | AAAA H |
| ATOM | 1088 | CA  | ALA | 110 | 29.086 | 15.371 | 61.833 | 1.00 | 36.77 | AAAA C |
| ATOM | 1089 | CB  | ALA | 110 | 27.708 | 15.721 | 61.223 | 1.00 | 15.32 | AAAA C |
| ATOM | 1090 | C   | ALA | 110 | 29.745 | 14.339 | 60.957 | 1.00 | 32.12 | AAAA C |
| ATOM | 1091 | O   | ALA | 110 | 30.921 | 14.332 | 60.687 | 1.00 | 34.11 | AAAA O |
| ATOM | 1092 | H   | ILE | 111 | 29.030 | 13.337 | 60.557 | 1.00 | 26.55 | AAAA H |
| ATOM | 1094 | CA  | ILE | 111 | 29.569 | 12.273 | 59.771 | 1.00 | 32.90 | AAAA C |
| ATOM | 1095 | CB  | ILE | 111 | 29.669 | 10.967 | 60.591 | 1.00 | 38.07 | AAAA C |
| ATOM | 1096 | CG2 | ILE | 111 | 30.091 | 11.140 | 62.036 | 1.00 | 34.05 | AAAA C |
| ATOM | 1097 | CG1 | ILE | 111 | 28.345 | 10.237 | 60.684 | 1.00 | 26.54 | AAAA C |
| ATOM | 1098 | CD1 | ILE | 111 | 28.137 | 8.872  | 61.407 | 1.00 | 27.11 | AAAA C |
| ATOM | 1099 | C   | ILE | 111 | 28.738 | 11.928 | 58.521 | 1.00 | 33.98 | AAAA C |
| ATOM | 1100 | O   | ILE | 111 | 27.533 | 12.179 | 58.532 | 1.00 | 32.15 | AAAA O |
| ATOM | 1101 | H   | ARG | 112 | 29.432 | 11.423 | 57.501 | 1.00 | 30.54 | AAAA H |
| ATOM | 1103 | CA  | ARG | 112 | 26.773 | 11.107 | 56.247 | 1.00 | 27.48 | AAAA C |
| ATOM | 1104 | CB  | ARG | 112 | 29.186 | 12.085 | 55.169 | 1.00 | 26.35 | AAAA C |
| ATOM | 1105 | CG  | ARG | 112 | 28.548 | 11.653 | 53.816 | 1.00 | 25.83 | AAAA C |
| ATOM | 1106 | CD  | ARG | 112 | 28.659 | 12.912 | 52.992 | 1.00 | 32.92 | AAAA C |
| ATOM | 1107 | HE  | ARG | 112 | 27.950 | 12.726 | 51.770 | 1.00 | 50.34 | AAAA H |
| ATOM | 1109 | CZ  | ARG | 112 | 27.778 | 13.403 | 50.720 | 1.00 | 47.61 | AAAA C |
| ATOM | 1110 | NH1 | ARG | 112 | 28.334 | 14.695 | 50.696 | 1.00 | 44.92 | AAAA H |
| ATOM | 1113 | NH2 | ARG | 112 | 27.012 | 12.925 | 49.789 | 1.00 | 46.00 | AAAA H |
| ATOM | 1116 | C   | ARG | 112 | 29.200 | 9.738  | 55.791 | 1.00 | 29.74 | AAAA C |
| ATOM | 1117 | O   | ARG | 112 | 30.343 | 9.611  | 55.406 | 1.00 | 36.52 | AAAA O |
| ATOM | 1118 | H   | ILE | 113 | 28.326 | 8.754  | 55.886 | 1.00 | 33.92 | AAAA H |
| ATOM | 1120 | CA  | ILE | 113 | 28.612 | 7.376  | 55.555 | 1.00 | 36.26 | AAAA C |
| ATOM | 1121 | CB  | ILE | 113 | 28.457 | 6.461  | 56.760 | 1.00 | 33.27 | AAAA C |
| ATOM | 1122 | CG2 | ILE | 113 | 28.850 | 5.021  | 56.449 | 1.00 | 15.85 | AAAA C |
| ATOM | 1123 | CG1 | ILE | 113 | 29.374 | 7.012  | 57.874 | 1.00 | 31.92 | AAAA C |
| ATOM | 1124 | CD1 | ILE | 113 | 29.324 | 6.250  | 59.176 | 1.00 | 42.34 | AAAA C |
| ATOM | 1125 | C   | ILE | 113 | 27.729 | 6.959  | 54.398 | 1.00 | 39.26 | AAAA C |
| ATOM | 1126 | O   | ILE | 113 | 26.637 | 6.482  | 54.664 | 1.00 | 50.72 | AAAA O |
| ATOM | 1127 | H   | GLU | 114 | 28.175 | 7.199  | 53.190 | 1.00 | 35.86 | AAAA H |
| ATOM | 1129 | CA  | GLU | 114 | 27.491 | 7.103  | 51.935 | 1.00 | 38.76 | AAAA C |
| ATOM | 1130 | CB  | GLU | 114 | 27.471 | 8.443  | 51.216 | 1.00 | 25.58 | AAAA C |
| ATOM | 1131 | CG  | GLU | 114 | 26.567 | 8.402  | 49.969 | 1.00 | 27.97 | AAAA C |
| ATOM | 1132 | CD  | GLU | 114 | 26.349 | 9.840  | 49.578 | 1.00 | 36.85 | AAAA C |
| ATOM | 1133 | OE1 | GLU | 114 | 26.763 | 10.662 | 49.414 | 1.00 | 45.57 | AAAA O |

09/555275

PCT/AU98/00998

WO 99/28347

12/58

|      |      |     |     |     |        |        |        |      |       |        |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 1134 | OE2 | GLU | 114 | 25.787 | 10.106 | 49.488 | 1.00 | 35.53 | AAAA O |
| ATOM | 1135 | C   | GLU | 114 | 28.039 | 6.672  | 50.944 | 1.00 | 44.17 | AAAA C |
| ATOM | 1136 | O   | GLU | 114 | 29.120 | 5.538  | 51.090 | 1.00 | 49.97 | AAA O  |
| ATOM | 1137 | N   | LYS | 115 | 27.191 | 5.556  | 50.096 | 1.00 | 40.55 | AAA N  |
| ATOM | 1139 | CA  | LYS | 115 | 27.219 | 4.440  | 49.242 | 1.00 | 41.16 | AAA C  |
| ATOM | 1140 | CB  | LYS | 115 | 27.275 | 4.764  | 47.718 | 1.00 | 23.62 | AAA C  |
| ATOM | 1141 | CG  | LYS | 115 | 27.019 | 6.194  | 47.411 | 1.00 | 18.39 | AAA C  |
| ATOM | 1142 | CD  | LYS | 115 | 26.537 | 6.355  | 45.982 | 1.00 | 24.74 | AAA C  |
| ATOM | 1143 | CE  | LYS | 115 | 26.751 | 7.803  | 45.622 | 1.00 | 41.86 | AAA C  |
| ATOM | 1144 | NC  | LYS | 115 | 27.165 | 8.045  | 44.196 | 1.00 | 60.91 | AAA N  |
| ATOM | 1148 | C   | LYS | 115 | 28.287 | 3.421  | 49.611 | 1.00 | 42.39 | AAA C  |
| ATOM | 1149 | O   | LYS | 115 | 29.102 | 3.103  | 48.749 | 1.00 | 46.68 | AAA O  |
| ATOM | 1150 | N   | ASN | 116 | 28.137 | 2.677  | 50.665 | 1.00 | 40.99 | AAA N  |
| ATOM | 1152 | CA  | ASN | 116 | 29.022 | 1.570  | 50.976 | 1.00 | 37.33 | AAA C  |
| ATOM | 1153 | CB  | ASN | 116 | 29.534 | 1.868  | 52.381 | 1.00 | 46.12 | AAA C  |
| ATOM | 1154 | CG  | ASN | 116 | 30.370 | 3.153  | 52.315 | 1.00 | 49.92 | AAA C  |
| ATOM | 1155 | OD1 | ASN | 116 | 31.337 | 3.016  | 51.593 | 1.00 | 38.59 | AAA O  |
| ATOM | 1156 | ND2 | ASN | 116 | 29.927 | 4.174  | 53.056 | 1.00 | 37.35 | AAA N  |
| ATOM | 1159 | C   | ASN | 116 | 28.275 | 0.277  | 50.974 | 1.00 | 42.52 | AAA C  |
| ATOM | 1160 | O   | ASN | 116 | 28.067 | -0.361 | 52.033 | 1.00 | 48.24 | AAA O  |
| ATOM | 1161 | N   | ALA | 117 | 27.989 | -0.188 | 49.772 | 1.00 | 40.94 | AAA N  |
| ATOM | 1163 | CA  | ALA | 117 | 27.195 | -1.376 | 49.542 | 1.00 | 43.35 | AAA C  |
| ATOM | 1164 | CB  | ALA | 117 | 27.494 | -1.884 | 48.156 | 1.00 | 47.63 | AAA C  |
| ATOM | 1165 | C   | ALA | 117 | 27.294 | -2.504 | 50.529 | 1.00 | 46.55 | AAA C  |
| ATOM | 1166 | O   | ALA | 117 | 26.211 | -2.998 | 50.890 | 1.00 | 51.24 | AAA O  |
| ATOM | 1167 | N   | ASP | 118 | 28.484 | -2.823 | 51.005 | 1.00 | 47.43 | AAA N  |
| ATOM | 1169 | CA  | ASP | 118 | 28.559 | -3.980 | 51.920 | 1.00 | 45.74 | AAA C  |
| ATOM | 1170 | CB  | ASP | 118 | 29.659 | -4.945 | 51.477 | 1.00 | 55.39 | AAA C  |
| ATOM | 1171 | CG  | ASP | 118 | 29.684 | -5.119 | 49.358 | 1.00 | 59.40 | AAA C  |
| ATOM | 1172 | OD1 | ASP | 118 | 28.870 | -5.976 | 49.698 | 1.00 | 64.40 | AAA O  |
| ATOM | 1173 | OD2 | ASP | 118 | 30.448 | -4.447 | 49.207 | 1.00 | 66.73 | AAA O  |
| ATOM | 1174 | C   | ASP | 118 | 28.818 | -3.586 | 53.353 | 1.00 | 37.29 | AAA C  |
| ATOM | 1175 | O   | ASP | 118 | 29.127 | -4.536 | 54.026 | 1.00 | 42.89 | AAA O  |
| ATOM | 1176 | H   | LEU | 119 | 28.670 | -2.327 | 53.685 | 1.00 | 36.46 | AAA N  |
| ATOM | 1178 | CA  | LEU | 119 | 28.986 | -1.885 | 55.047 | 1.00 | 40.58 | AAA C  |
| ATOM | 1179 | CB  | LEU | 119 | 29.159 | -0.389 | 53.145 | 1.00 | 34.31 | AAA C  |
| ATOM | 1180 | CG  | LEU | 119 | 29.640 | 0.331  | 56.378 | 1.00 | 36.58 | AAA C  |
| ATOM | 1181 | CD1 | LEU | 119 | 30.950 | -0.101 | 56.948 | 1.00 | 35.77 | AAA C  |
| ATOM | 1182 | CD2 | LEU | 119 | 29.791 | 1.830  | 56.104 | 1.00 | 29.68 | AAA C  |
| ATOM | 1183 | C   | LEU | 119 | 27.937 | -2.376 | 56.007 | 1.00 | 43.67 | AAA C  |
| ATOM | 1184 | O   | LEU | 119 | 26.748 | -2.248 | 55.743 | 1.00 | 45.32 | AAA O  |
| ATOM | 1185 | N   | CYS | 120 | 28.361 | -2.967 | 57.110 | 1.00 | 43.53 | AAA N  |
| ATOM | 1187 | CA  | CYS | 120 | 27.378 | -3.407 | 58.089 | 1.00 | 38.93 | AAA C  |
| ATOM | 1188 | C   | CYS | 120 | 27.881 | -2.921 | 59.426 | 1.00 | 41.91 | AAA C  |
| ATOM | 1189 | O   | CYS | 120 | 28.660 | -1.960 | 59.446 | 1.00 | 43.66 | AAA O  |
| ATOM | 1190 | CB  | CYS | 120 | 27.285 | -4.907 | 58.100 | 1.00 | 37.59 | AAA C  |
| ATOM | 1191 | SG  | CYS | 120 | 26.568 | -5.622 | 56.639 | 1.00 | 58.32 | AAA S  |
| ATOM | 1192 | H   | TYR | 121 | 27.328 | -3.456 | 60.509 | 1.00 | 38.05 | AAA N  |
| ATOM | 1194 | CA  | TYR | 121 | 27.795 | -3.010 | 61.927 | 1.00 | 39.68 | AAA C  |
| ATOM | 1195 | CB  | TYR | 121 | 23.189 | -3.572 | 62.130 | 1.00 | 34.61 | AAA C  |
| ATOM | 1196 | CG  | TYR | 121 | 28.950 | -5.032 | 62.519 | 1.00 | 36.52 | AAA C  |
| ATOM | 1197 | CD1 | TYR | 121 | 29.087 | -6.645 | 61.582 | 1.00 | 33.58 | AAA C  |
| ATOM | 1198 | CE1 | TYR | 121 | 28.852 | -7.350 | 61.980 | 1.00 | 41.21 | AAA C  |
| ATOM | 1199 | CD2 | TYR | 121 | 28.560 | -5.337 | 63.817 | 1.00 | 36.31 | AAA C  |
| ATOM | 1200 | CE2 | TYR | 121 | 28.297 | -6.630 | 64.201 | 1.00 | 39.48 | AAA C  |
| ATOM | 1201 | CS  | TYR | 121 | 28.432 | -7.641 | 63.270 | 1.00 | 46.07 | AAA C  |
| ATOM | 1202 | QH  | TYR | 121 | 28.161 | -8.924 | 63.730 | 1.00 | 49.20 | AAA O  |
| ATOM | 1204 | C   | TYR | 121 | 27.674 | -1.523 | 61.789 | 1.00 | 38.83 | AAA C  |
| ATOM | 1205 | O   | TYR | 121 | 28.445 | -0.778 | 62.369 | 1.00 | 43.22 | AAA O  |
| ATOM | 1206 | H   | LEU | 122 | 26.587 | -1.045 | 61.180 | 1.00 | 39.58 | AAA N  |
| ATOM | 1208 | CA  | LEU | 122 | 26.361 | 0.405  | 61.098 | 1.00 | 44.82 | AAA C  |
| ATOM | 1209 | CB  | LEU | 122 | 25.990 | 0.715  | 59.634 | 1.00 | 46.48 | AAA C  |
| ATOM | 1210 | CG  | LEU | 122 | 26.497 | 2.014  | 59.108 | 1.00 | 44.44 | AAA C  |
| ATOM | 1211 | CD1 | LEU | 122 | 25.778 | 2.448  | 57.859 | 1.00 | 32.19 | AAA C  |
| ATOM | 1212 | CD2 | LEU | 122 | 26.136 | 3.057  | 50.170 | 1.00 | 47.76 | AAA C  |
| ATOM | 1213 | C   | LEU | 122 | 25.212 | 0.910  | 61.935 | 1.00 | 44.85 | AAA C  |
| ATOM | 1214 | O   | LEU | 122 | 25.269 | 1.759  | 62.839 | 1.00 | 47.66 | AAA O  |
| ATOM | 1215 | H   | SER | 123 | 24.194 | 0.137  | 61.843 | 1.00 | 40.12 | AAA N  |
| ATOM | 1217 | CA  | SER | 123 | 22.949 | 0.435  | 62.703 | 1.00 | 33.98 | AAA C  |
| ATOM | 1218 | CB  | SER | 123 | 21.754 | -0.330 | 62.239 | 1.00 | 19.26 | AAA C  |
| ATOM | 1219 | OG  | SER | 123 | 21.964 | -1.762 | 62.402 | 1.00 | 34.35 | AAA O  |
| ATOM | 1221 | C   | SER | 123 | 23.165 | 0.060  | 64.159 | 1.00 | 37.43 | AAA C  |
| ATOM | 1222 | O   | SER | 123 | 22.326 | 0.280  | 65.025 | 1.00 | 35.33 | AAA O  |
| ATOM | 1223 | H   | THR | 124 | 24.242 | -0.698 | 64.432 | 1.00 | 39.03 | AAA N  |
| ATOM | 1225 | CA  | THR | 124 | 24.554 | -1.165 | 65.753 | 1.00 | 37.78 | AAA C  |
| ATOM | 1226 | CB  | THR | 124 | 25.368 | -0.461 | 65.719 | 1.00 | 42.39 | AAA C  |
| ATOM | 1227 | OG1 | THR | 124 | 26.502 | -2.020 | 64.924 | 1.00 | 47.70 | AAA O  |
| ATOM | 1229 | CG2 | THR | 124 | 24.677 | -3.622 | 65.006 | 1.00 | 40.93 | AAA C  |
| ATOM | 1230 | C   | THR | 124 | 25.522 | -0.206 | 66.445 | 1.00 | 39.29 | AAA C  |
| ATOM | 1231 | O   | THR | 124 | 25.948 | -0.642 | 67.499 | 1.00 | 41.41 | AAA O  |
| ATOM | 1232 | H   | VAL | 125 | 25.737 | 1.001  | 65.985 | 1.00 | 37.80 | AAA N  |
| ATOM | 1234 | CA  | VAL | 125 | 26.594 | 1.964  | 66.661 | 1.00 | 41.06 | AAA C  |
| ATOM | 1235 | CB  | VAL | 125 | 27.683 | 2.542  | 65.711 | 1.00 | 39.50 | AAA C  |
| ATOM | 1236 | CG1 | VAL | 125 | 28.570 | 3.599  | 66.352 | 1.00 | 28.36 | AAA C  |
| ATOM | 1237 | CG2 | VAL | 125 | 28.693 | 1.565  | 65.110 | 1.00 | 33.07 | AAA C  |

09/555275

WO 99/28347

PCT/AU98/00998

## 13/58

|      |      |     |     |     |        |        |        |            |         |
|------|------|-----|-----|-----|--------|--------|--------|------------|---------|
| ATOM | 1238 | C   | VAL | 125 | 25.759 | 3.127  | 67.170 | 1.00 41.17 | AAAA C  |
| ATOM | 1239 | O   | VAL | 125 | 24.941 | 3.750  | 66.531 | 1.00 41.21 | AAAA O  |
| ATOM | 1240 | H   | ASP | 126 | 26.072 | 3.636  | 68.357 | 1.00 44.54 | AAAA II |
| ATOM | 1242 | CA  | ASP | 126 | 25.310 | 4.734  | 68.967 | 1.00 37.44 | AAAA C  |
| ATOM | 1243 | CB  | ASP | 126 | 24.862 | 4.335  | 70.342 | 1.00 34.73 | AAAA C  |
| ATOM | 1244 | CG  | ASP | 126 | 23.879 | 5.303  | 70.993 | 1.00 45.53 | AAAA C  |
| ATOM | 1245 | OD1 | ASP | 126 | 23.699 | 6.520  | 70.585 | 1.00 27.71 | AAAA O  |
| ATOM | 1246 | OD2 | ASP | 126 | 23.220 | 4.865  | 71.264 | 1.00 52.32 | AAAA O  |
| ATOM | 1247 | C   | ASP | 126 | 26.146 | 5.985  | 68.872 | 1.00 40.83 | AAAA C  |
| ATOM | 1248 | O   | ASP | 126 | 26.749 | 6.400  | 69.888 | 1.00 42.78 | AAAA O  |
| ATOM | 1249 | N   | TRP | 127 | 26.029 | 6.649  | 67.704 | 1.00 35.42 | AAAA N  |
| ATOM | 1251 | CA  | TRP | 127 | 26.777 | 7.856  | 67.410 | 1.00 33.02 | AAAA C  |
| ATOM | 1252 | CB  | TRP | 127 | 26.568 | 9.296  | 65.930 | 1.00 24.89 | AAAA C  |
| ATOM | 1253 | CG  | TRP | 127 | 27.195 | 7.372  | 64.907 | 1.00 34.36 | AAAA C  |
| ATOM | 1254 | CD2 | TRP | 127 | 28.587 | 7.208  | 64.518 | 1.00 28.69 | AAAA C  |
| ATOM | 1255 | CE2 | TRP | 127 | 28.631 | 6.186  | 63.579 | 1.00 29.06 | AAAA C  |
| ATOM | 1256 | CE3 | TRP | 127 | 29.778 | 7.845  | 64.873 | 1.00 35.51 | AAAA C  |
| ATOM | 1257 | CD1 | TRP | 127 | 26.465 | 8.456  | 64.188 | 1.00 18.67 | AAAA C  |
| ATOM | 1258 | HE1 | TRP | 127 | 27.311 | 5.712  | 63.391 | 1.00 42.87 | AAAA N  |
| ATOM | 1260 | CG2 | TRP | 127 | 29.792 | 5.783  | 62.954 | 1.00 32.53 | AAAA C  |
| ATOM | 1261 | CD3 | TRP | 127 | 30.972 | 7.445  | 64.285 | 1.00 31.51 | AAAA C  |
| ATOM | 1262 | CH2 | TRP | 127 | 30.937 | 6.405  | 63.336 | 1.00 37.86 | AAAA C  |
| ATOM | 1263 | C   | TRP | 127 | 26.558 | 9.010  | 68.367 | 1.00 36.09 | AAAA C  |
| ATOM | 1264 | O   | TRP | 127 | 27.382 | 9.977  | 68.497 | 1.00 40.87 | AAAA O  |
| ATOM | 1265 | H   | SER | 128 | 25.493 | 8.931  | 69.171 | 1.00 31.24 | AAAA II |
| ATOM | 1267 | CA  | SER | 128 | 25.201 | 10.041 | 70.081 | 1.00 34.04 | AAAA C  |
| ATOM | 1268 | CB  | SER | 128 | 23.757 | 10.042 | 70.603 | 1.00 36.87 | AAAA C  |
| ATOM | 1269 | OG  | SER | 128 | 23.433 | 8.917  | 71.424 | 1.00 28.96 | AAAA O  |
| ATOM | 1271 | C   | SER | 128 | 26.133 | 9.975  | 71.292 | 1.00 32.39 | AAAA C  |
| ATOM | 1272 | O   | SER | 128 | 26.212 | 10.957 | 72.134 | 1.00 30.91 | AAAA O  |
| ATOM | 1273 | H   | LEU | 129 | 26.662 | 8.792  | 71.549 | 1.00 27.18 | AAAA II |
| ATOM | 1275 | CA  | LEU | 129 | 27.701 | 8.607  | 72.526 | 1.00 36.73 | AAAA C  |
| ATOM | 1276 | CB  | LEU | 129 | 27.920 | 7.132  | 72.741 | 1.00 32.53 | AAAA C  |
| ATOM | 1277 | CG  | LEU | 129 | 26.795 | 6.324  | 73.371 | 1.00 39.28 | AAAA C  |
| ATOM | 1278 | CD1 | LEU | 129 | 27.292 | 5.024  | 73.975 | 1.00 32.54 | AAAA C  |
| ATOM | 1279 | CD2 | LEU | 129 | 26.237 | 7.117  | 74.560 | 1.00 32.12 | AAAA C  |
| ATOM | 1280 | C   | LEU | 129 | 29.054 | 9.226  | 72.113 | 1.00 38.04 | AAAA C  |
| ATOM | 1281 | O   | LEU | 129 | 29.645 | 10.001 | 72.874 | 1.00 34.50 | AAAA O  |
| ATOM | 1282 | H   | ILE | 130 | 29.316 | 9.217  | 70.807 | 1.00 42.09 | AAAA N  |
| ATOM | 1284 | CA  | ILE | 130 | 30.480 | 9.743  | 70.144 | 1.00 41.35 | AAAA C  |
| ATOM | 1285 | CB  | ILE | 130 | 30.793 | 8.886  | 68.901 | 1.00 41.73 | AAAA C  |
| ATOM | 1286 | CG2 | ILE | 130 | 31.992 | 9.434  | 68.176 | 1.00 31.95 | AAAA C  |
| ATOM | 1287 | CG1 | ILE | 130 | 30.969 | 7.413  | 69.347 | 1.00 26.64 | AAAA C  |
| ATOM | 1288 | CD1 | ILE | 130 | 31.053 | 6.457  | 68.165 | 1.00 42.65 | AAAA C  |
| ATOM | 1289 | C   | ILE | 130 | 30.305 | 11.178 | 69.679 | 1.00 46.48 | AAAA C  |
| ATOM | 1290 | O   | ILE | 130 | 31.224 | 11.905 | 69.966 | 1.00 38.46 | AAAA O  |
| ATOM | 1291 | H   | LEU | 131 | 29.089 | 11.495 | 69.193 | 1.00 45.14 | AAAA II |
| ATOM | 1293 | CA  | LEU | 131 | 28.895 | 12.865 | 68.651 | 1.00 41.45 | AAAA C  |
| ATOM | 1294 | CB  | LEU | 131 | 28.499 | 12.516 | 67.259 | 1.00 46.81 | AAAA C  |
| ATOM | 1295 | CG  | LEU | 131 | 28.823 | 12.805 | 65.878 | 1.00 36.79 | AAAA C  |
| ATOM | 1296 | CD1 | LEU | 131 | 29.128 | 11.405 | 65.324 | 1.00 30.15 | AAAA C  |
| ATOM | 1297 | CD2 | LEU | 131 | 27.625 | 13.581 | 65.334 | 1.00 19.92 | AAAA C  |
| ATOM | 1298 | C   | LEU | 131 | 27.661 | 13.525 | 69.295 | 1.00 39.28 | AAAA C  |
| ATOM | 1299 | O   | LEU | 131 | 26.599 | 12.867 | 69.311 | 1.00 37.75 | AAAA O  |
| ATOM | 1300 | H   | ASP | 132 | 27.742 | 14.811 | 69.518 | 1.00 33.73 | AAAA II |
| ATOM | 1302 | CA  | ASP | 132 | 26.610 | 15.542 | 70.003 | 1.00 38.20 | AAAA C  |
| ATOM | 1303 | CB  | ASP | 132 | 27.017 | 16.944 | 70.381 | 1.00 43.17 | AAAA C  |
| ATOM | 1304 | CG  | ASP | 132 | 27.349 | 17.137 | 71.834 | 1.00 43.29 | AAAA C  |
| ATOM | 1305 | OD1 | ASP | 132 | 27.536 | 16.122 | 72.521 | 1.00 47.12 | AAAA O  |
| ATOM | 1306 | OD2 | ASP | 132 | 27.413 | 18.331 | 72.208 | 1.00 60.56 | AAAA O  |
| ATOM | 1307 | C   | ASP | 132 | 25.520 | 15.659 | 68.946 | 1.00 43.46 | AAAA C  |
| ATOM | 1308 | O   | ASP | 132 | 24.481 | 15.032 | 68.939 | 1.00 49.32 | AAAA O  |
| ATOM | 1309 | H   | ALA | 133 | 25.754 | 16.398 | 67.900 | 1.00 45.03 | AAAA N  |
| ATOM | 1311 | CA  | ALA | 133 | 24.947 | 16.776 | 66.773 | 1.00 38.62 | AAAA C  |
| ATOM | 1312 | CB  | ALA | 133 | 25.628 | 17.987 | 66.092 | 1.00 33.82 | AAAA C  |
| ATOM | 1313 | C   | ALA | 133 | 24.694 | 15.669 | 65.775 | 1.00 33.33 | AAAA C  |
| ATOM | 1314 | O   | ALA | 133 | 24.777 | 15.791 | 64.517 | 1.00 33.71 | AAAA O  |
| ATOM | 1315 | H   | VAL | 134 | 24.115 | 14.565 | 66.219 | 1.00 27.88 | AAAA II |
| ATOM | 1317 | CA  | VAL | 134 | 23.813 | 13.440 | 65.377 | 1.00 29.90 | AAAA C  |
| ATOM | 1318 | CB  | VAL | 134 | 23.202 | 12.241 | 66.120 | 1.00 40.63 | AAAA C  |
| ATOM | 1319 | CG1 | VAL | 134 | 24.265 | 11.441 | 66.856 | 1.00 35.20 | AAAA C  |
| ATOM | 1320 | CG2 | VAL | 134 | 22.095 | 12.701 | 67.068 | 1.00 30.84 | AAAA C  |
| ATOM | 1321 | C   | VAL | 134 | 22.735 | 13.732 | 64.353 | 1.00 36.98 | AAAA C  |
| ATOM | 1322 | O   | VAL | 134 | 22.616 | 13.106 | 63.292 | 1.00 32.95 | AAAA O  |
| ATOM | 1323 | H   | SER | 135 | 21.920 | 14.777 | 64.626 | 1.00 39.65 | AAAA N  |
| ATOM | 1325 | CA  | SER | 135 | 20.886 | 15.139 | 63.692 | 1.00 43.12 | AAAA C  |
| ATOM | 1326 | CB  | SER | 135 | 20.093 | 16.277 | 64.305 | 1.00 45.19 | AAAA C  |
| ATOM | 1327 | OG  | SER | 135 | 20.882 | 17.369 | 64.684 | 1.00 39.25 | AAAA O  |
| ATOM | 1329 | C   | SER | 135 | 21.396 | 15.516 | 62.309 | 1.00 41.15 | AAAA C  |
| ATOM | 1330 | O   | SER | 135 | 20.516 | 15.642 | 61.359 | 1.00 43.81 | AAAA O  |
| ATOM | 1331 | H   | ASH | 136 | 22.615 | 15.911 | 62.165 | 1.00 41.11 | AAAA II |
| ATOM | 1333 | CA  | ASH | 136 | 23.298 | 16.353 | 60.978 | 1.00 37.21 | AAAA C  |
| ATOM | 1334 | CB  | ASH | 136 | 24.324 | 17.372 | 61.399 | 1.00 39.66 | AAAA C  |
| ATOM | 1335 | CG  | ASH | 136 | 23.724 | 19.709 | 61.717 | 1.00 36.59 | AAAA C  |
| ATOM | 1336 | OD1 | ASH | 136 | 22.695 | 19.079 | 61.149 | 1.00 50.81 | AAAA O  |

09/555275

PCT/AU98/00998

WO 99/28347

14/58

|      |      |         |     |        |        |        |            |        |
|------|------|---------|-----|--------|--------|--------|------------|--------|
| ATOM | 1337 | NDC ASN | 136 | 24.379 | 19.441 | 62.585 | 1.00 47.85 | AAAA N |
| ATOM | 1340 | C ASN   | 136 | 21.031 | 15.230 | 60.259 | 1.00 35.31 | AAAA C |
| ATOM | 1341 | O ASN   | 136 | 24.535 | 15.484 | 59.194 | 1.00 38.70 | AAA O  |
| ATOM | 1342 | H ASN   | 137 | 24.057 | 14.035 | 60.733 | 1.00 29.11 | AAA II |
| ATOM | 1344 | CA ASN  | 137 | 24.721 | 12.959 | 60.126 | 1.00 32.98 | AAA C  |
| ATOM | 1345 | CB ASN  | 137 | 24.737 | 11.703 | 61.033 | 1.00 24.45 | AAA C  |
| ATOM | 1346 | CG ASN  | 137 | 25.631 | 11.965 | 62.217 | 1.00 26.63 | AAA C  |
| ATOM | 1347 | OD1 ASN | 137 | 26.070 | 13.121 | 62.369 | 1.00 30.22 | AAA O  |
| ATOM | 1348 | NDC ASN | 137 | 25.830 | 10.923 | 63.000 | 1.00 18.90 | AAA II |
| ATOM | 1351 | C ASN   | 137 | 23.950 | 12.749 | 58.817 | 1.00 35.89 | AAA C  |
| ATOM | 1352 | O ASN   | 137 | 22.716 | 12.755 | 58.855 | 1.00 38.57 | AAA O  |
| ATOM | 1353 | H TIR   | 138 | 24.592 | 12.251 | 57.785 | 1.00 32.86 | AAA II |
| ATOM | 1355 | CA TIR  | 138 | 24.093 | 11.983 | 56.489 | 1.00 30.25 | AAA C  |
| ATOM | 1356 | CB TIR  | 138 | 24.682 | 12.861 | 55.401 | 1.00 27.10 | AAA C  |
| ATOM | 1357 | CG TIR  | 138 | 24.018 | 12.741 | 54.079 | 1.00 37.89 | AAA C  |
| ATOM | 1358 | CD1 TIR | 138 | 23.083 | 13.671 | 53.648 | 1.00 39.22 | AAA C  |
| ATOM | 1359 | CB1 TIR | 138 | 22.510 | 13.579 | 52.392 | 1.00 37.65 | AAA C  |
| ATOM | 1360 | CD2 TIR | 138 | 24.357 | 11.717 | 53.195 | 1.00 44.29 | AAA C  |
| ATOM | 1361 | CE2 TIR | 138 | 23.801 | 11.615 | 51.951 | 1.00 41.97 | AAA C  |
| ATOM | 1362 | CS TIR  | 138 | 22.868 | 12.562 | 51.564 | 1.00 39.42 | AAA C  |
| ATOM | 1363 | OH TIR  | 138 | 22.296 | 12.503 | 50.318 | 1.00 45.48 | AAA O  |
| ATOM | 1365 | C TIR   | 138 | 24.373 | 10.578 | 56.051 | 1.00 51.33 | AAA C  |
| ATOM | 1366 | O TIR   | 138 | 25.505 | 10.317 | 55.797 | 1.00 37.76 | AAA O  |
| ATOM | 1367 | H ILE   | 139 | 23.461 | 9.660  | 56.116 | 1.00 35.40 | AAA N  |
| ATOM | 1369 | CA ILE  | 139 | 23.637 | 8.249  | 55.935 | 1.00 34.04 | AAA C  |
| ATOM | 1370 | CB ILE  | 139 | 23.234 | 7.450  | 57.171 | 1.00 28.66 | AAA C  |
| ATOM | 1371 | CG2 ILE | 139 | 23.640 | 5.984  | 57.093 | 1.00 21.99 | AAA C  |
| ATOM | 1372 | CG1 ILE | 139 | 23.711 | 8.057  | 58.469 | 1.00 42.81 | AAA C  |
| ATOM | 1373 | CD1 ILE | 139 | 24.485 | 7.100  | 59.389 | 1.00 50.23 | AAA C  |
| ATOM | 1374 | C ILE   | 139 | 22.729 | 7.708  | 54.830 | 1.00 35.73 | AAA C  |
| ATOM | 1375 | O ILE   | 139 | 21.538 | 7.890  | 54.757 | 1.00 42.61 | AAA O  |
| ATOM | 1376 | H VAL   | 140 | 23.286 | 6.997  | 53.873 | 1.00 35.29 | AAA II |
| ATOM | 1378 | CA VAL  | 140 | 22.533 | 6.481  | 52.755 | 1.00 32.39 | AAA C  |
| ATOM | 1379 | CB VAL  | 140 | 21.967 | 7.627  | 51.881 | 1.00 36.05 | AAA C  |
| ATOM | 1380 | CG1 VAL | 140 | 22.800 | 8.375  | 50.881 | 1.00 25.88 | AAA C  |
| ATOM | 1381 | CG2 VAL | 140 | 20.807 | 7.034  | 51.047 | 1.00 34.96 | AAA C  |
| ATOM | 1382 | C VAL   | 140 | 23.422 | 5.670  | 51.874 | 1.00 41.96 | AAA C  |
| ATOM | 1383 | O VAL   | 140 | 24.537 | 6.172  | 51.637 | 1.00 44.03 | AAA O  |
| ATOM | 1384 | H GLY   | 141 | 22.899 | 4.562  | 51.402 | 1.00 42.66 | AAA II |
| ATOM | 1386 | CA GLY  | 141 | 23.381 | 3.805  | 50.278 | 1.00 30.94 | AAA C  |
| ATOM | 1387 | C GLY   | 141 | 24.265 | 2.696  | 50.835 | 1.00 38.98 | AAA C  |
| ATOM | 1388 | O GLY   | 141 | 25.132 | 2.003  | 50.176 | 1.00 35.87 | AAA O  |
| ATOM | 1389 | H ASN   | 142 | 23.985 | 2.418  | 52.116 | 1.00 38.92 | AAA II |
| ATOM | 1391 | CA ASN  | 142 | 24.858 | 1.390  | 52.746 | 1.00 44.32 | AAA C  |
| ATOM | 1392 | CB ASN  | 142 | 25.257 | 1.774  | 54.187 | 1.00 43.12 | AAA C  |
| ATOM | 1393 | CG ASN  | 142 | 26.131 | 3.022  | 54.152 | 1.00 42.00 | AAA C  |
| ATOM | 1394 | OD1 ASN | 142 | 26.904 | 3.077  | 53.269 | 1.00 40.47 | AAA O  |
| ATOM | 1395 | NDC ASN | 142 | 25.945 | 1.022  | 55.019 | 1.00 41.98 | AAA N  |
| ATOM | 1398 | C ASN   | 142 | 24.153 | 0.066  | 52.687 | 1.00 45.84 | AAA C  |
| ATOM | 1399 | O ASN   | 142 | 23.113 | -0.015 | 52.055 | 1.00 49.85 | AAA O  |
| ATOM | 1400 | H LYS   | 143 | 24.574 | -0.990 | 53.272 | 1.00 45.23 | AAA II |
| ATOM | 1402 | CA LYS  | 143 | 24.073 | -2.299 | 53.195 | 1.00 49.14 | AAA C  |
| ATOM | 1403 | CB LYS  | 143 | 25.166 | -3.328 | 53.433 | 1.00 41.49 | AAA C  |
| ATOM | 1404 | CG LYS  | 143 | 24.750 | -4.686 | 53.832 | 1.00 44.96 | AAA C  |
| ATOM | 1405 | CD LYS  | 143 | 25.512 | -5.743 | 53.100 | 1.00 48.66 | AAA C  |
| ATOM | 1406 | CE LYS  | 143 | 25.043 | -7.131 | 53.558 | 1.00 38.35 | AAA C  |
| ATOM | 1407 | NZ LYS  | 143 | 26.080 | -8.093 | 53.040 | 1.00 53.83 | AAA II |
| ATOM | 1411 | C LYS   | 143 | 22.902 | -2.431 | 54.169 | 1.00 52.85 | AAA C  |
| ATOM | 1412 | O LYS   | 143 | 22.960 | -2.099 | 55.360 | 1.00 55.21 | AAA O  |
| ATOM | 1413 | H PRO   | 144 | 21.806 | -3.047 | 53.731 | 1.00 52.39 | AAA II |
| ATOM | 1414 | CD PRO  | 144 | 21.617 | -3.469 | 52.315 | 1.00 52.58 | AAA C  |
| ATOM | 1415 | CA PRO  | 144 | 20.558 | -3.118 | 54.489 | 1.00 48.30 | AAA C  |
| ATOM | 1416 | CB PRO  | 144 | 19.519 | -3.602 | 53.455 | 1.00 51.41 | AAA C  |
| ATOM | 1417 | CG PRO  | 144 | 20.134 | -3.299 | 52.099 | 1.00 50.41 | AAA C  |
| ATOM | 1418 | C PRO   | 144 | 20.601 | -4.050 | 55.659 | 1.00 44.66 | AAA C  |
| ATOM | 1419 | O PRO   | 144 | 20.904 | -5.236 | 55.591 | 1.00 36.84 | AAA O  |
| ATOM | 1420 | H PRO   | 145 | 20.318 | -3.533 | 56.859 | 1.00 45.12 | AAA II |
| ATOM | 1421 | CD PRO  | 145 | 20.123 | -2.054 | 57.094 | 1.00 38.17 | AAA C  |
| ATOM | 1422 | CA PRO  | 145 | 20.448 | -4.233 | 58.128 | 1.00 40.19 | AAA C  |
| ATOM | 1423 | CB PRO  | 145 | 19.704 | -3.298 | 59.099 | 1.00 37.08 | AAA C  |
| ATOM | 1424 | CG PRO  | 145 | 20.040 | -1.910 | 58.602 | 1.00 33.65 | AAA C  |
| ATOM | 1425 | C PRO   | 145 | 19.993 | -5.655 | 58.155 | 1.00 47.17 | AAA C  |
| ATOM | 1426 | O PRO   | 145 | 20.556 | -6.592 | 58.768 | 1.00 48.05 | AAA O  |
| ATOM | 1427 | H LYS   | 146 | 19.879 | -5.924 | 57.489 | 1.00 53.72 | AAA II |
| ATOM | 1429 | CA LYS  | 146 | 19.268 | -7.229 | 57.295 | 1.00 56.94 | AAA C  |
| ATOM | 1430 | CB LYS  | 146 | 16.894 | -7.050 | 56.647 | 1.00 65.44 | AAA C  |
| ATOM | 1431 | CG LYS  | 146 | 16.220 | -8.232 | 55.982 | 1.00 64.32 | AAA C  |
| ATOM | 1432 | CD LYS  | 146 | 14.797 | -8.422 | 56.451 | 0.01 62.75 | AAA C  |
| ATOM | 1433 | CE LYS  | 146 | 14.194 | -9.717 | 55.934 | 0.01 62.14 | AAA C  |
| ATOM | 1434 | NZ LYS  | 146 | 12.720 | -9.610 | 55.753 | 0.01 61.38 | AAA II |
| ATOM | 1436 | C LYS   | 146 | 19.138 | -8.138 | 56.446 | 1.00 61.40 | AAA C  |
| ATOM | 1439 | O LYS   | 146 | 19.237 | -9.346 | 56.732 | 1.00 66.22 | AAA O  |
| ATOM | 1440 | H GLU   | 147 | 19.779 | -7.649 | 55.399 | 1.00 62.92 | AAA II |
| ATOM | 1442 | CA GLU  | 147 | 20.937 | -8.446 | 54.742 | 1.00 67.00 | AAA C  |
| ATOM | 1443 | CB GLU  | 147 | 21.101 | -8.070 | 53.294 | 1.00 62.32 | AAA C  |

09/555275

PCT/AU98/00998

WO 99/28347

15/58

|      |      |     |     |     |        |         |        |      |        |       |   |
|------|------|-----|-----|-----|--------|---------|--------|------|--------|-------|---|
| ATOM | 1444 | C   | GLU | 147 | 19.957 | -7.579  | 52.567 | 1.00 | 73.15  | AAAAA | C |
| ATOM | 1445 | CD  | GLU | 147 | 20.164 | -7.413  | 51.093 | 1.00 | 85.90  | AAAAA | C |
| ATOM | 1446 | OE1 | GLU | 147 | 21.339 | -7.636  | 50.701 | 1.00 | 95.25  | AAAAA | O |
| ATOM | 1447 | OE2 | GLU | 147 | 19.201 | -7.053  | 50.376 | 1.00 | 87.47  | AAAAA | O |
| ATOM | 1448 | C   | GLU | 147 | 22.136 | -8.470  | 55.541 | 1.00 | 69.40  | AAAAA | C |
| ATOM | 1449 | O   | GLU | 147 | 22.983 | -9.437  | 55.361 | 1.00 | 72.86  | AAAAA | O |
| ATOM | 1450 | H   | CYS | 148 | 22.506 | -7.484  | 56.355 | 1.00 | 66.76  | AAAAA | N |
| ATOM | 1452 | CA  | CYS | 148 | 23.693 | -7.588  | 57.183 | 1.00 | 64.65  | AAAAA | C |
| ATOM | 1453 | C   | CYS | 148 | 23.598 | -8.702  | 58.195 | 1.00 | 65.56  | AAAAA | C |
| ATOM | 1454 | O   | CYS | 148 | 24.473 | -9.524  | 58.414 | 1.00 | 65.89  | AAAAA | O |
| ATOM | 1455 | CB  | CYS | 148 | 23.952 | -6.301  | 58.001 | 1.00 | 57.29  | AAAAA | C |
| ATOM | 1456 | SG  | CYS | 148 | 24.565 | -5.091  | 56.808 | 1.00 | 59.22  | AAAAA | S |
| ATOM | 1457 | H   | GLY | 149 | 22.514 | -8.743  | 58.977 | 1.00 | 67.88  | AAAAA | N |
| ATOM | 1458 | CA  | GLY | 149 | 22.387 | -9.744  | 60.029 | 1.00 | 62.15  | AAAAA | C |
| ATOM | 1460 | C   | GLY | 149 | 23.443 | -9.627  | 61.120 | 1.00 | 59.18  | AAAAA | C |
| ATOM | 1461 | O   | GLY | 149 | 23.925 | -10.603 | 61.699 | 1.00 | 61.11  | AAAAA | O |
| ATOM | 1462 | H   | ASP | 150 | 23.717 | -8.426  | 61.596 | 1.00 | 54.88  | AAAAA | N |
| ATOM | 1464 | CA  | ASP | 150 | 24.794 | -8.198  | 62.533 | 1.00 | 55.78  | AAAAA | C |
| ATOM | 1465 | CB  | ASP | 150 | 25.041 | -6.703  | 62.750 | 1.00 | 49.10  | AAAAA | C |
| ATOM | 1466 | CG  | ASP | 150 | 25.320 | -6.034  | 61.410 | 1.00 | 58.50  | AAAAA | C |
| ATOM | 1467 | OD1 | ASP | 150 | 25.726 | -6.796  | 60.480 | 1.00 | 57.73  | AAAAA | O |
| ATOM | 1468 | OD2 | ASP | 150 | 25.102 | -4.819  | 61.363 | 1.00 | 49.69  | AAAAA | O |
| ATOM | 1469 | C   | ASP | 150 | 24.519 | -8.854  | 63.855 | 1.00 | 59.36  | AAAAA | C |
| ATOM | 1470 | O   | ASP | 150 | 23.392 | -8.820  | 64.377 | 1.00 | 67.48  | AAAAA | O |
| ATOM | 1471 | H   | LEU | 151 | 25.532 | -9.369  | 64.524 | 1.00 | 54.39  | AAAAA | N |
| ATOM | 1473 | CA  | LEU | 151 | 25.314 | -9.908  | 65.853 | 1.00 | 52.79  | AAAAA | C |
| ATOM | 1474 | CB  | LEU | 151 | 25.208 | -11.409 | 65.806 | 1.00 | 58.55  | AAAAA | C |
| ATOM | 1475 | CG  | LEU | 151 | 24.063 | -12.101 | 65.092 | 1.00 | 69.45  | AAAAA | C |
| ATOM | 1476 | CD1 | LEU | 151 | 24.515 | -13.421 | 64.489 | 1.00 | 65.26  | AAAAA | C |
| ATOM | 1477 | CD2 | LEU | 151 | 22.937 | -12.372 | 65.951 | 1.00 | 65.43  | AAAAA | C |
| ATOM | 1478 | C   | LEU | 151 | 26.109 | -9.454  | 66.805 | 1.00 | 51.93  | AAAAA | C |
| ATOM | 1479 | O   | LEU | 151 | 27.599 | -9.734  | 66.634 | 1.00 | 55.59  | AAAAA | O |
| ATOM | 1480 | H   | CYS | 152 | 26.024 | -8.773  | 67.849 | 1.00 | 48.62  | AAAAA | N |
| ATOM | 1482 | CA  | CYS | 152 | 26.992 | -8.189  | 68.740 | 1.00 | 56.73  | AAAAA | C |
| ATOM | 1483 | C   | CYS | 152 | 27.650 | -9.325  | 69.493 | 1.00 | 63.58  | AAAAA | C |
| ATOM | 1484 | O   | CYS | 152 | 27.074 | -10.405 | 69.575 | 1.00 | 62.40  | AAAAA | O |
| ATOM | 1485 | CB  | CYS | 152 | 26.358 | -7.144  | 69.657 | 1.00 | 41.99  | AAAAA | C |
| ATOM | 1486 | SG  | CYS | 152 | 25.985 | -5.635  | 68.703 | 1.00 | 55.83  | AAAAA | S |
| ATOM | 1487 | H   | PRO | 153 | 28.826 | -9.072  | 70.059 | 1.00 | 68.05  | AAAAA | N |
| ATOM | 1488 | CD  | PRO | 153 | 29.618 | -7.838  | 69.903 | 1.00 | 66.66  | AAAAA | C |
| ATOM | 1489 | CA  | PRO | 153 | 29.197 | -10.094 | 70.851 | 1.00 | 70.60  | AAAAA | C |
| ATOM | 1490 | CB  | PRO | 153 | 30.601 | -9.323  | 71.557 | 1.00 | 69.98  | AAAAA | C |
| ATOM | 1491 | CG  | PRO | 153 | 30.861 | -8.159  | 70.690 | 1.00 | 70.58  | AAAAA | C |
| ATOM | 1492 | C   | PRO | 153 | 28.513 | -10.734 | 71.850 | 1.00 | 69.64  | AAAAA | C |
| ATOM | 1493 | O   | PRO | 153 | 27.859 | -10.075 | 72.615 | 1.00 | 69.58  | AAAAA | O |
| ATOM | 1494 | H   | GLY | 154 | 28.441 | -12.049 | 71.843 | 1.00 | 71.23  | AAAAA | N |
| ATOM | 1496 | CA  | GLY | 154 | 27.610 | -12.804 | 72.745 | 1.00 | 78.07  | AAAAA | C |
| ATOM | 1497 | C   | GLY | 154 | 26.245 | -13.230 | 72.223 | 1.00 | 81.75  | AAAAA | C |
| ATOM | 1498 | O   | GLY | 154 | 25.786 | -14.318 | 72.547 | 1.00 | 80.26  | AAAAA | O |
| ATOM | 1499 | H   | THR | 155 | 25.649 | -12.468 | 71.314 | 1.00 | 84.54  | AAAAA | N |
| ATOM | 1501 | CA  | THR | 155 | 24.314 | -12.683 | 70.828 | 1.00 | 89.38  | AAAAA | C |
| ATOM | 1502 | CB  | THR | 155 | 24.016 | -11.661 | 69.705 | 1.00 | 85.07  | AAAAA | C |
| ATOM | 1503 | OG1 | THR | 155 | 24.063 | -10.417 | 70.420 | 1.00 | 84.51  | AAAAA | O |
| ATOM | 1505 | CG2 | THR | 155 | 22.686 | -11.995 | 69.092 | 1.00 | 82.27  | AAAAA | C |
| ATOM | 1506 | C   | THR | 155 | 24.060 | -14.094 | 70.383 | 1.00 | 93.69  | AAAAA | C |
| ATOM | 1507 | O   | THR | 155 | 23.005 | -14.664 | 70.617 | 1.00 | 95.92  | AAAAA | O |
| ATOM | 1508 | H   | MET | 156 | 25.003 | -14.655 | 69.617 | 1.00 | 97.23  | AAAAA | N |
| ATOM | 1510 | CA  | MET | 156 | 24.884 | -15.973 | 69.024 | 1.00 | 99.05  | AAAAA | C |
| ATOM | 1511 | CB  | MET | 156 | 25.907 | -16.190 | 67.896 | 1.00 | 100.40 | AAAAA | C |
| ATOM | 1512 | CG  | MET | 156 | 25.456 | -15.675 | 66.542 | 0.01 | 99.75  | AAAAA | C |
| ATOM | 1513 | SD  | MET | 156 | 23.687 | -15.857 | 66.255 | 0.01 | 99.72  | AAAAA | S |
| ATOM | 1514 | CE  | MET | 156 | 23.664 | -17.214 | 65.087 | 0.01 | 99.59  | AAAAA | C |
| ATOM | 1515 | C   | MET | 156 | 25.027 | -17.106 | 70.032 | 1.00 | 100.57 | AAAAA | C |
| ATOM | 1516 | O   | MET | 156 | 24.353 | -18.122 | 69.835 | 1.00 | 101.64 | AAAAA | O |
| ATOM | 1517 | H   | ALA | 157 | 25.974 | -17.057 | 70.967 | 1.00 | 100.53 | AAAAA | N |
| ATOM | 1519 | CA  | ALA | 157 | 26.022 | -18.102 | 71.986 | 1.00 | 101.00 | AAAAA | C |
| ATOM | 1520 | CB  | ALA | 157 | 27.317 | -18.158 | 72.766 | 1.00 | 103.42 | AAAAA | C |
| ATOM | 1521 | C   | ALA | 157 | 24.856 | -17.890 | 72.959 | 1.00 | 101.10 | AAAAA | C |
| ATOM | 1522 | O   | ALA | 157 | 23.893 | -18.654 | 72.921 | 1.00 | 104.59 | AAAAA | O |
| ATOM | 1523 | H   | GLU | 158 | 24.981 | -16.906 | 73.841 | 1.00 | 98.39  | AAAAA | N |
| ATOM | 1525 | CA  | GLU | 158 | 23.935 | -16.629 | 74.781 | 1.00 | 97.43  | AAAAA | C |
| ATOM | 1526 | CB  | GLU | 158 | 23.128 | -17.865 | 75.308 | 1.00 | 105.93 | AAAAA | C |
| ATOM | 1527 | CG  | GLU | 158 | 21.587 | -17.546 | 75.560 | 1.00 | 113.87 | AAAAA | C |
| ATOM | 1528 | CD  | GLU | 158 | 21.347 | -16.081 | 75.302 | 1.00 | 119.34 | AAAAA | C |
| ATOM | 1529 | OE1 | GLU | 158 | 21.284 | -15.733 | 74.096 | 1.00 | 126.27 | AAAAA | O |
| ATOM | 1530 | OE2 | GLU | 158 | 21.199 | -15.317 | 76.282 | 1.00 | 117.79 | AAAAA | O |
| ATOM | 1531 | C   | GLU | 158 | 24.434 | -15.915 | 76.025 | 1.00 | 95.00  | AAAAA | C |
| ATOM | 1532 | O   | GLU | 158 | 23.988 | -16.117 | 77.145 | 1.00 | 95.89  | AAAAA | O |
| ATOM | 1533 | H   | SER | 159 | 25.276 | -14.942 | 75.769 | 1.00 | 93.30  | AAAAA | N |
| ATOM | 1535 | CA  | SER | 159 | 25.810 | -14.119 | 76.848 | 1.00 | 92.28  | AAAAA | C |
| ATOM | 1536 | CB  | SER | 159 | 26.989 | -14.805 | 77.517 | 1.00 | 97.37  | AAAAA | C |
| ATOM | 1537 | O   | SER | 159 | 26.972 | -14.427 | 78.886 | 1.00 | 98.09  | AAAAA | O |
| ATOM | 1539 | C   | SER | 159 | 26.208 | -12.793 | 76.326 | 1.00 | 91.47  | AAAAA | C |
| ATOM | 1540 | O   | SER | 159 | 27.368 | -12.592 | 76.810 | 1.00 | 91.75  | AAAAA | C |
| ATOM | 1541 | H   | PRO | 160 | 25.196 | -12.007 | 75.932 | 1.00 | 88.65  | AAAAA | N |

09/555275

PCT/AU98/00998

WO 99/28347

## 16/58

|      |      |     |     |     |        |         |        |      |       |        |
|------|------|-----|-----|-----|--------|---------|--------|------|-------|--------|
| ATOM | 1542 | CD  | PRO | 160 | 33.789 | -12.122 | 76.395 | 1.00 | 86.67 | AAAA C |
| ATOM | 1543 | CA  | PRO | 160 | 25.463 | -10.701 | 75.361 | 1.00 | 84.74 | AAAA C |
| ATOM | 1544 | CB  | PRO | 160 | 24.125 | -9.978  | 75.456 | 1.00 | 84.79 | AAAA C |
| ATOM | 1545 | CG  | PRO | 160 | 23.370 | -10.671 | 76.515 | 1.00 | 84.62 | AAAA C |
| ATOM | 1546 | C   | PRO | 160 | 26.503 | -10.025 | 76.236 | 1.00 | 79.60 | AAAA C |
| ATOM | 1547 | O   | PRO | 160 | 26.319 | -9.934  | 77.456 | 1.00 | 79.70 | AAAA O |
| ATOM | 1548 | H   | MET | 161 | 27.563 | -9.522  | 75.596 | 1.00 | 74.45 | AAA II |
| ATOM | 1550 | CA  | MET | 161 | 28.530 | -8.735  | 76.370 | 1.00 | 67.04 | AAA C  |
| ATOM | 1551 | CB  | MET | 161 | 29.924 | -9.178  | 76.038 | 1.00 | 69.93 | AAA C  |
| ATOM | 1552 | CG  | MET | 161 | 30.118 | -10.630 | 75.706 | 1.00 | 71.43 | AAA C  |
| ATOM | 1553 | SD  | MET | 161 | 30.716 | -11.621 | 77.094 | 1.00 | 85.25 | AAA S  |
| ATOM | 1554 | CE  | MET | 161 | 29.841 | -10.905 | 78.471 | 1.00 | 69.31 | AAA C  |
| ATOM | 1555 | C   | MET | 161 | 28.358 | -7.234  | 76.189 | 1.00 | 61.76 | AAA C  |
| ATOM | 1556 | O   | HET | 161 | 28.708 | -6.443  | 77.034 | 1.00 | 58.60 | AAA O  |
| ATOM | 1557 | H   | CYS | 162 | 27.681 | -6.819  | 75.095 | 1.00 | 54.81 | AAA II |
| ATOM | 1559 | CA  | CYS | 162 | 27.193 | -5.384  | 74.938 | 1.00 | 49.76 | AAA C  |
| ATOM | 1560 | C   | CYS | 162 | 26.306 | -4.777  | 75.670 | 1.00 | 51.52 | AAA C  |
| ATOM | 1561 | O   | CYS | 162 | 25.224 | -5.324  | 75.928 | 1.00 | 53.89 | AAA O  |
| ATOM | 1562 | CB  | CYS | 162 | 27.422 | -5.099  | 73.459 | 1.00 | 48.31 | AAA C  |
| ATOM | 1563 | SG  | CYS | 162 | 28.533 | -6.064  | 72.432 | 1.00 | 54.92 | AAA S  |
| ATOM | 1564 | H   | GLU | 163 | 26.409 | -3.522  | 76.031 | 1.00 | 46.31 | AAA II |
| ATOM | 1566 | CA  | GLU | 163 | 25.355 | -2.675  | 76.538 | 1.00 | 47.13 | AAA C  |
| ATOM | 1567 | CB  | GLU | 163 | 26.051 | -1.412  | 77.027 | 1.00 | 49.95 | AAA C  |
| ATOM | 1568 | CG  | GLU | 163 | 26.476 | -1.364  | 78.465 | 1.00 | 62.30 | AAA C  |
| ATOM | 1569 | CD  | GLU | 163 | 25.817 | -0.135  | 79.116 | 1.00 | 81.67 | AAA C  |
| ATOM | 1570 | OE1 | GLU | 163 | 26.470 | 0.473   | 80.016 | 1.00 | 73.22 | AAA O  |
| ATOM | 1571 | OE2 | GLU | 163 | 24.646 | 0.208   | 79.721 | 1.00 | 80.93 | AAA O  |
| ATOM | 1572 | C   | GLU | 163 | 24.299 | -2.340  | 75.472 | 1.00 | 49.05 | AAA C  |
| ATOM | 1573 | O   | GLU | 163 | 24.488 | -2.423  | 74.234 | 1.00 | 45.90 | AAA O  |
| ATOM | 1574 | H   | LYS | 164 | 23.142 | -1.815  | 76.880 | 1.00 | 37.43 | AAA II |
| ATOM | 1576 | CA  | LYS | 164 | 22.011 | -1.499  | 75.081 | 1.00 | 43.92 | AAA C  |
| ATOM | 1577 | CB  | LYS | 164 | 20.714 | -2.244  | 75.450 | 1.00 | 44.48 | AAA C  |
| ATOM | 1578 | CG  | LYS | 164 | 20.560 | -3.639  | 74.870 | 1.00 | 48.65 | AAA C  |
| ATOM | 1579 | CD  | LYS | 164 | 19.400 | -4.432  | 75.622 | 1.00 | 49.04 | AAA C  |
| ATOM | 1580 | CE  | LYS | 164 | 18.409 | -5.012  | 74.720 | 1.00 | 49.21 | AAA C  |
| ATOM | 1581 | HE  | LYS | 164 | 17.951 | -6.372  | 75.134 | 1.00 | 37.67 | AAA II |
| ATOM | 1585 | C   | LYS | 164 | 21.615 | -0.040  | 75.204 | 1.00 | 45.01 | AAA C  |
| ATOM | 1586 | O   | LYS | 164 | 21.466 | 0.484   | 76.282 | 1.00 | 45.69 | AAA O  |
| ATOM | 1587 | H   | THR | 165 | 21.333 | 0.570   | 74.034 | 1.00 | 44.94 | AAA H  |
| ATOM | 1589 | CA  | THR | 165 | 20.775 | 1.943   | 74.077 | 1.00 | 43.13 | AAA C  |
| ATOM | 1590 | CB  | THR | 165 | 21.831 | 2.952   | 73.553 | 1.00 | 47.81 | AAA C  |
| ATOM | 1591 | OG1 | THR | 165 | 22.053 | 2.689   | 72.127 | 1.00 | 39.13 | AAA O  |
| ATOM | 1593 | CG2 | THR | 165 | 23.119 | 2.842   | 74.362 | 1.00 | 40.40 | AAA C  |
| ATOM | 1594 | C   | THR | 165 | 19.532 | 1.881   | 73.189 | 1.00 | 40.92 | AAA C  |
| ATOM | 1595 | O   | THR | 165 | 19.346 | 0.897   | 72.414 | 1.00 | 35.91 | AAA O  |
| ATOM | 1596 | H   | THR | 166 | 18.781 | 2.985   | 73.173 | 1.00 | 39.18 | AAA II |
| ATOM | 1598 | CA  | THR | 166 | 17.689 | 2.991   | 72.182 | 1.00 | 42.97 | AAA C  |
| ATOM | 1599 | CB  | THR | 166 | 16.297 | 3.096   | 72.833 | 1.00 | 55.99 | AAA C  |
| ATOM | 1600 | OD1 | THR | 166 | 15.662 | 4.385   | 72.819 | 1.00 | 41.42 | AAA O  |
| ATOM | 1602 | CG2 | THR | 166 | 16.157 | 2.740   | 74.313 | 1.00 | 42.83 | AAA C  |
| ATOM | 1603 | C   | THR | 166 | 17.983 | 4.051   | 71.137 | 1.00 | 40.17 | AAA C  |
| ATOM | 1604 | O   | THR | 166 | 18.219 | 5.206   | 71.509 | 1.00 | 35.72 | AAA O  |
| ATOM | 1605 | H   | ILE | 167 | 17.912 | 3.725   | 69.866 | 1.00 | 42.21 | AAA II |
| ATOM | 1607 | CA  | ILE | 167 | 18.182 | 4.672   | 68.777 | 1.00 | 41.05 | AAA C  |
| ATOM | 1608 | CB  | ILE | 167 | 19.437 | 4.335   | 67.904 | 1.00 | 39.50 | AAA C  |
| ATOM | 1609 | CG2 | ILE | 167 | 19.589 | 5.346   | 66.716 | 1.00 | 15.26 | AAA C  |
| ATOM | 1610 | CG1 | ILE | 167 | 20.722 | 4.305   | 68.724 | 1.00 | 36.20 | AAA C  |
| ATOM | 1611 | CD1 | ILE | 167 | 21.899 | 3.665   | 67.966 | 1.00 | 35.70 | AAA C  |
| ATOM | 1612 | C   | ILE | 167 | 16.937 | 4.524   | 67.882 | 1.00 | 40.94 | AAA C  |
| ATOM | 1613 | O   | ILE | 167 | 16.655 | 3.135   | 67.394 | 1.00 | 35.51 | AAA O  |
| ATOM | 1614 | H   | ASN | 168 | 16.318 | 5.635   | 67.537 | 1.00 | 42.29 | AAA II |
| ATOM | 1616 | CA  | ASN | 168 | 15.112 | 5.633   | 66.713 | 1.00 | 45.22 | AAA C  |
| ATOM | 1617 | CB  | ASN | 168 | 15.526 | 5.253   | 65.292 | 1.00 | 45.69 | AAA C  |
| ATOM | 1618 | CG  | ASN | 168 | 14.497 | 5.696   | 64.244 | 1.00 | 51.19 | AAA C  |
| ATOM | 1619 | OD1 | ASN | 168 | 14.344 | 5.112   | 63.150 | 1.00 | 41.75 | AAA O  |
| ATOM | 1620 | HD2 | ASN | 168 | 13.749 | 6.763   | 64.522 | 1.00 | 48.89 | AAA II |
| ATOM | 1623 | C   | ASN | 168 | 13.954 | 4.739   | 67.141 | 1.00 | 46.58 | AAA C  |
| ATOM | 1624 | O   | ASN | 168 | 13.544 | 3.879   | 66.326 | 1.00 | 45.95 | AAA O  |
| ATOM | 1625 | H   | ASN | 169 | 13.644 | 4.728   | 68.433 | 1.00 | 45.12 | AAA II |
| ATOM | 1627 | CA  | ASN | 169 | 12.717 | 3.759   | 69.007 | 1.00 | 43.67 | AAA C  |
| ATOM | 1628 | CB  | ASN | 169 | 11.315 | 4.106   | 68.540 | 1.00 | 36.84 | AAA C  |
| ATOM | 1629 | CG  | ASN | 169 | 10.943 | 5.487   | 69.093 | 1.00 | 42.75 | AAA C  |
| ATOM | 1630 | OD1 | ASN | 169 | 10.917 | 5.779   | 70.280 | 1.00 | 36.67 | AAA O  |
| ATOM | 1631 | HD2 | ASN | 169 | 10.658 | 6.448   | 68.213 | 1.00 | 40.74 | AAA II |
| ATOM | 1634 | C   | ASH | 169 | 13.003 | 2.306   | 68.719 | 1.00 | 44.69 | AAA C  |
| ATOM | 1635 | O   | ASH | 169 | 12.100 | 1.544   | 68.383 | 1.00 | 45.72 | AAA O  |
| ATOM | 1636 | H   | GLU | 170 | 14.226 | 1.907   | 68.862 | 1.00 | 41.64 | AAA II |
| ATOM | 1638 | CA  | GLU | 170 | 14.655 | 0.513   | 68.850 | 1.00 | 45.88 | AAA C  |
| ATOM | 1639 | CB  | GLU | 170 | 15.283 | 0.278   | 67.524 | 1.00 | 55.92 | AAA C  |
| ATOM | 1640 | CG  | GLU | 170 | 15.028 | -0.953  | 66.702 | 1.00 | 67.08 | AAA C  |
| ATOM | 1641 | CD  | GLU | 170 | 14.517 | -0.605  | 65.294 | 1.00 | 74.56 | AAA C  |
| ATOM | 1642 | OE1 | GLU | 170 | 13.969 | 0.466   | 65.049 | 1.00 | 77.75 | AAA O  |
| ATOM | 1643 | OE2 | GLU | 170 | 14.763 | -1.437  | 64.389 | 1.00 | 70.71 | AAA O  |
| ATOM | 1644 | C   | GLU | 170 | 15.847 | 0.379   | 70.010 | 1.00 | 47.10 | AAA C  |
| ATOM | 1645 | O   | GLU | 170 | 16.582 | 1.172   | 70.213 | 1.00 | 49.92 | AAA O  |

09/555275

PCT/AU98/00998

WO 99/28347

## 17/58

|      |      |     |     |     |        |         |        |            |         |
|------|------|-----|-----|-----|--------|---------|--------|------------|---------|
| ATOM | 1646 | H   | TYR | 171 | 15.344 | -0.462  | 70.952 | 1.00 49.10 | AAAAA H |
| ATOM | 1648 | CA  | TYR | 171 | 16.231 | -0.688  | 70.097 | 1.00 51.81 | AAAAA C |
| ATOM | 1649 | CB  | TYR | 171 | 15.434 | -0.861  | 73.353 | 1.00 49.94 | AAAAA C |
| ATOM | 1650 | CG  | TYR | 171 | 16.175 | -1.168  | 74.620 | 1.00 48.90 | AAAAA C |
| ATOM | 1651 | CO1 | TYR | 171 | 16.980 | -0.210  | 75.237 | 1.00 46.46 | AAAAA C |
| ATOM | 1652 | CE1 | TYR | 171 | 17.634 | -0.469  | 76.307 | 1.00 41.17 | AAAAA C |
| ATOM | 1653 | CD2 | TYR | 171 | 16.065 | -2.429  | 75.194 | 1.00 43.62 | AAAAA C |
| ATOM | 1654 | CE2 | TYR | 171 | 16.734 | -2.675  | 76.366 | 1.00 44.44 | AAAAA C |
| ATOM | 1655 | CZ  | TYR | 171 | 17.516 | -1.718  | 76.973 | 1.00 43.58 | AAAAA C |
| ATOM | 1656 | OH  | TYR | 171 | 18.174 | -2.017  | 78.146 | 1.00 40.16 | AAAAA O |
| ATOM | 1658 | C   | TYR | 171 | 17.058 | -1.938  | 71.832 | 1.00 51.41 | AAAAA C |
| ATOM | 1659 | O   | TYR | 171 | 16.519 | -3.024  | 71.089 | 1.00 52.59 | AAAAA O |
| ATOM | 1660 | N   | ASH | 172 | 18.331 | -1.752  | 71.493 | 1.00 53.70 | AAAAA H |
| ATOM | 1662 | CA  | ASH | 172 | 19.203 | -2.898  | 71.193 | 1.00 52.36 | AAAAA C |
| ATOM | 1663 | CB  | ASH | 172 | 19.085 | -3.278  | 69.709 | 1.00 55.43 | AAAAA C |
| ATOM | 1664 | CG  | ASH | 172 | 18.939 | -4.766  | 69.499 | 1.00 61.75 | AAAAA C |
| ATOM | 1665 | OD1 | ASH | 172 | 19.233 | -5.646  | 70.304 | 1.00 61.61 | AAAAA O |
| ATOM | 1666 | HD2 | ASH | 172 | 18.449 | -5.048  | 68.295 | 1.00 57.97 | AAAAA H |
| ATOM | 1669 | C   | ASH | 172 | 20.665 | -2.712  | 71.560 | 1.00 43.81 | AAAAA C |
| ATOM | 1670 | O   | ASH | 172 | 21.163 | -1.760  | 72.213 | 1.00 39.38 | AAAAA O |
| ATOM | 1671 | H   | TYR | 173 | 21.373 | -3.796  | 71.393 | 1.00 43.20 | AAAAA H |
| ATOM | 1673 | CA  | TYR | 173 | 22.794 | -3.929  | 71.698 | 1.00 44.76 | AAAAA C |
| ATOM | 1674 | CB  | TYR | 173 | 23.223 | -5.374  | 71.514 | 1.00 41.66 | AAAAA C |
| ATOM | 1675 | CZ  | TYR | 173 | 22.759 | -6.274  | 72.630 | 1.00 45.18 | AAAAA C |
| ATOM | 1676 | CD1 | TYR | 173 | 21.931 | -7.316  | 72.237 | 1.00 46.48 | AAAAA C |
| ATOM | 1677 | CE1 | TYR | 173 | 21.438 | -8.181  | 73.193 | 1.00 51.36 | AAAAA C |
| ATOM | 1678 | CD2 | TYR | 173 | 23.081 | -6.132  | 73.978 | 1.00 44.86 | AAAAA C |
| ATOM | 1679 | CE2 | TYR | 173 | 22.583 | -7.016  | 74.916 | 1.00 46.92 | AAAAA C |
| ATOM | 1680 | CZ  | TYR | 173 | 21.757 | -8.038  | 74.535 | 1.00 50.33 | AAAAA C |
| ATOM | 1681 | OH  | TYR | 173 | 21.171 | -9.006  | 75.328 | 1.00 50.64 | AAAAA O |
| ATOM | 1683 | C   | TYR | 173 | 23.673 | -3.099  | 70.762 | 1.00 46.94 | AAAAA C |
| ATOM | 1684 | O   | TYR | 173 | 23.389 | -2.983  | 69.567 | 1.00 49.76 | AAAAA O |
| ATOM | 1685 | H   | ARG | 174 | 24.579 | -2.318  | 71.366 | 1.00 47.79 | AAAAA H |
| ATOM | 1687 | CA  | ARG | 174 | 25.517 | -1.496  | 70.577 | 1.00 49.13 | AAAAA C |
| ATOM | 1688 | CB  | ARG | 174 | 25.537 | -0.132  | 71.233 | 1.00 44.32 | AAAAA C |
| ATOM | 1689 | CG  | ARG | 174 | 24.210 | 0.623   | 71.234 | 1.00 48.14 | AAAAA C |
| ATOM | 1690 | CD  | ARG | 174 | 23.372 | 0.344   | 70.003 | 1.00 51.47 | AAAAA H |
| ATOM | 1691 | HE  | ARG | 174 | 21.974 | 0.760   | 70.039 | 1.00 48.35 | AAAAA C |
| ATOM | 1693 | CC  | ARG | 174 | 21.144 | 0.570   | 69.017 | 1.00 48.23 | AAAAA C |
| ATOM | 1694 | NH1 | ARG | 174 | 21.477 | 0.022   | 67.864 | 1.00 38.96 | AAAAA H |
| ATOM | 1697 | NH2 | ARG | 174 | 19.909 | 1.022   | 69.197 | 1.00 54.65 | AAAAA H |
| ATOM | 1700 | C   | ARG | 174 | 26.921 | -2.094  | 70.461 | 1.00 45.98 | AAAAA C |
| ATOM | 1701 | O   | ARG | 174 | 27.548 | -2.557  | 71.406 | 1.00 44.97 | AAAAA H |
| ATOM | 1702 | N   | CYS | 175 | 27.493 | -2.183  | 69.294 | 1.00 46.21 | AAAAA C |
| ATOM | 1704 | CA  | CYS | 175 | 28.787 | -2.758  | 68.997 | 1.00 45.60 | AAAAA C |
| ATOM | 1705 | C   | CYS | 175 | 29.407 | -2.395  | 67.665 | 1.00 46.23 | AAAAA C |
| ATOM | 1706 | O   | CYS | 175 | 28.755 | -2.018  | 66.666 | 1.00 44.78 | AAAAA O |
| ATOM | 1707 | CB  | CYS | 175 | 28.576 | -4.253  | 69.167 | 1.00 35.62 | AAAAA C |
| ATOM | 1708 | SG  | CYS | 175 | 27.812 | -5.181  | 67.827 | 1.00 51.92 | AAAAA S |
| ATOM | 1709 | H   | TRP | 176 | 30.764 | -2.517  | 67.583 | 1.00 48.16 | AAAAA H |
| ATOM | 1711 | CA  | TRP | 176 | 31.430 | -2.091  | 66.325 | 1.00 42.48 | AAAAA C |
| ATOM | 1712 | CB  | TRP | 176 | 32.769 | -1.409  | 66.564 | 1.00 36.38 | AAAAA C |
| ATOM | 1713 | CG  | TRP | 176 | 32.689 | -9.069  | 67.203 | 1.00 25.56 | AAAAA C |
| ATOM | 1714 | CD2 | TRP | 176 | 32.588 | 1.186   | 66.480 | 1.00 23.71 | AAAAA C |
| ATOM | 1715 | CE2 | TRP | 176 | 32.589 | 2.217   | 67.422 | 1.00 32.40 | AAAAA C |
| ATOM | 1716 | CE3 | TRP | 176 | 32.535 | 1.520   | 65.141 | 1.00 24.31 | AAAAA C |
| ATOM | 1717 | CD1 | TRP | 176 | 32.730 | 0.257   | 68.525 | 1.00 28.37 | AAAAA C |
| ATOM | 1718 | HE1 | TRP | 176 | 32.636 | 1.636   | 68.672 | 1.00 37.21 | AAAAA H |
| ATOM | 1720 | CG2 | TRP | 176 | 32.441 | 3.565   | 67.088 | 1.00 28.51 | AAAAA C |
| ATOM | 1721 | CG3 | TRP | 176 | 32.447 | 2.822   | 64.783 | 1.00 22.23 | AAAAA C |
| ATOM | 1722 | CH2 | TRP | 176 | 32.406 | 3.917   | 65.745 | 1.00 29.51 | AAAAA C |
| ATOM | 1723 | C   | TRP | 176 | 31.631 | -3.268  | 65.408 | 1.00 39.30 | AAAAA C |
| ATOM | 1724 | O   | TRP | 176 | 31.703 | -3.121  | 64.199 | 1.00 39.15 | AAAAA O |
| ATOM | 1725 | H   | THR | 177 | 31.682 | -4.460  | 66.005 | 1.00 41.33 | AAAAA H |
| ATOM | 1727 | CA  | THR | 177 | 31.964 | -5.644  | 65.161 | 1.00 49.28 | AAAAA C |
| ATOM | 1728 | CB  | THR | 177 | 33.480 | -6.062  | 65.161 | 1.00 43.66 | AAAAA C |
| ATOM | 1729 | OG1 | THR | 177 | 34.309 | -5.025  | 64.613 | 1.00 47.85 | AAAAA O |
| ATOM | 1731 | CG2 | THR | 177 | 33.676 | -7.271  | 64.283 | 1.00 58.51 | AAAAA C |
| ATOM | 1732 | C   | THR | 177 | 31.290 | -6.814  | 65.858 | 1.00 48.76 | AAAAA C |
| ATOM | 1733 | O   | THR | 177 | 30.982 | -6.539  | 67.061 | 1.00 51.53 | AAAAA O |
| ATOM | 1734 | H   | THR | 178 | 31.269 | -8.000  | 65.331 | 1.00 51.96 | AAAAA H |
| ATOM | 1736 | CA  | THR | 178 | 30.924 | -9.236  | 65.948 | 1.00 58.95 | AAAAA C |
| ATOM | 1737 | CB  | THR | 178 | 31.253 | -10.500 | 65.092 | 1.00 66.55 | AAAAA C |
| ATOM | 1738 | OG1 | THR | 178 | 31.505 | -10.066 | 63.734 | 1.00 75.70 | AAAAA O |
| ATOM | 1740 | CG2 | THR | 178 | 30.104 | -11.489 | 65.148 | 1.00 74.23 | AAAAA C |
| ATOM | 1741 | C   | THR | 178 | 31.714 | -9.539  | 67.213 | 1.00 60.25 | AAAAA C |
| ATOM | 1742 | O   | THR | 178 | 31.264 | -10.202 | 68.135 | 1.00 66.05 | AAAAA O |
| ATOM | 1743 | N   | ASH | 179 | 32.977 | -9.130  | 67.253 | 1.00 57.56 | AAAAA H |
| ATOM | 1745 | CA  | ASH | 179 | 33.793 | -9.392  | 68.443 | 1.00 53.39 | AAAAA C |
| ATOM | 1746 | CB  | ASH | 179 | 35.130 | -10.024 | 68.068 | 1.00 48.46 | AAAAA C |
| ATOM | 1747 | CG  | ASH | 179 | 34.997 | -11.218 | 67.124 | 1.00 56.25 | AAAAA C |
| ATOM | 1748 | OD1 | ASH | 179 | 34.412 | -12.291 | 67.593 | 1.00 51.38 | AAAAA O |
| ATOM | 1749 | HD2 | ASH | 179 | 35.229 | -11.063 | 65.863 | 1.00 49.10 | AAAAA H |
| ATOM | 1750 | C   | ASH | 179 | 34.096 | -8.100  | 69.298 | 1.00 50.79 | AAAAA C |
| ATOM | 1753 | O   | ASH | 179 | 34.556 | -8.377  | 70.404 | 1.00 57.97 | AAAAA O |

09/555275

PCT/AU98/00998

WO 99/28347

18/58

|      |      |     |     |     |        |        |        |            |        |
|------|------|-----|-----|-----|--------|--------|--------|------------|--------|
| ATOM | 1754 | H   | ARG | 180 | 33.626 | -7.022 | 68.913 | 1.00 47.06 | AAAA C |
| ATOM | 1756 | CA  | ARG | 180 | 33.908 | -5.820 | 69.691 | 1.00 48.25 | AAAA C |
| ATOM | 1757 | CB  | ARG | 180 | 34.925 | -4.962 | 69.071 | 1.00 49.72 | AAAA C |
| ATOM | 1758 | CG  | ARG | 180 | 36.324 | -5.501 | 69.285 | 1.00 60.92 | AAAA C |
| ATOM | 1759 | CD  | ARG | 180 | 37.288 | -4.948 | 68.279 | 1.00 70.83 | AAAA C |
| ATOM | 1760 | NE  | ARG | 180 | 38.569 | -5.605 | 68.203 | 1.00 76.18 | AAAA H |
| ATOM | 1762 | CS  | ARG | 180 | 39.298 | -5.895 | 69.276 | 1.00 76.59 | AAAA C |
| ATOM | 1763 | NH1 | ARG | 180 | 38.877 | -5.608 | 70.498 | 1.00 80.82 | AAAA H |
| ATOM | 1766 | NH2 | ARG | 180 | 40.474 | -6.478 | 69.180 | 1.00 79.33 | AAAA H |
| ATOM | 1769 | C   | ARG | 180 | 32.530 | -4.977 | 69.821 | 1.00 48.10 | AAAA C |
| ATOM | 1770 | O   | ARG | 180 | 31.862 | -4.476 | 68.905 | 1.00 46.99 | AAAA O |
| ATOM | 1771 | H   | CYS | 181 | 32.230 | -4.728 | 71.063 | 1.00 44.80 | AAAA H |
| ATOM | 1773 | CA  | CYS | 181 | 31.199 | -3.924 | 71.619 | 1.00 45.20 | AAAA C |
| ATOM | 1774 | C   | CYS | 181 | 31.645 | -2.463 | 71.692 | 1.00 44.50 | AAAA C |
| ATOM | 1775 | O   | CYS | 181 | 32.835 | -2.227 | 71.724 | 1.00 47.09 | AAAA O |
| ATOM | 1776 | CB  | CYS | 181 | 30.940 | -4.282 | 73.110 | 1.00 43.88 | AAAA C |
| ATOM | 1777 | SG  | CYS | 181 | 30.363 | -5.944 | 73.316 | 1.00 56.08 | AAAA S |
| ATOM | 1778 | H   | GLN | 182 | 30.659 | -1.600 | 71.690 | 1.00 39.30 | AAAA N |
| ATOM | 1780 | CA  | GLN | 182 | 30.948 | -0.177 | 71.690 | 1.00 43.43 | AAAA C |
| ATOM | 1781 | CB  | GLN | 182 | 29.749 | 0.619  | 71.196 | 1.00 23.99 | AAAA C |
| ATOM | 1782 | CG  | GLN | 182 | 29.809 | 2.085  | 71.435 | 1.00 28.57 | AAAA C |
| ATOM | 1783 | CD  | GLN | 182 | 28.757 | 2.867  | 70.733 | 1.00 29.35 | AAAA C |
| ATOM | 1784 | OE1 | GLN | 182 | 27.898 | 2.304  | 70.033 | 1.00 38.55 | AAAA O |
| ATOM | 1785 | NE2 | GLN | 182 | 28.857 | 4.164  | 70.912 | 1.00 28.14 | AAAA H |
| ATOM | 1788 | C   | GLN | 182 | 31.218 | 0.098  | 73.162 | 1.00 46.07 | AAAA C |
| ATOM | 1789 | O   | GLN | 182 | 30.458 | -0.327 | 74.041 | 1.00 47.01 | AAAA O |
| ATOM | 1790 | H   | LYS | 183 | 32.213 | 0.866  | 73.524 | 1.00 46.98 | AAAA H |
| ATOM | 1792 | CA  | LYS | 183 | 32.479 | 1.064  | 74.934 | 1.00 45.26 | AAAA C |
| ATOM | 1793 | CB  | LYS | 183 | 33.966 | 1.275  | 75.185 | 1.00 48.68 | AAAA C |
| ATOM | 1794 | CG  | LYS | 183 | 34.865 | 0.267  | 74.482 | 1.00 47.95 | AAAA C |
| ATOM | 1795 | CD  | LYS | 183 | 36.337 | 0.734  | 74.523 | 1.00 48.06 | AAAA C |
| ATOM | 1796 | CE  | LYS | 183 | 37.178 | -0.208 | 73.684 | 1.00 46.78 | AAAA C |
| ATOM | 1797 | NC  | LYS | 183 | 38.499 | -0.654 | 74.158 | 1.00 44.09 | AAAA N |
| ATOM | 1801 | C   | LYS | 183 | 31.659 | 2.205  | 75.477 | 1.00 48.13 | AAAA C |
| ATOM | 1802 | O   | LYS | 183 | 31.679 | 3.305  | 74.946 | 1.00 48.84 | AAAA O |
| ATOM | 1803 | H   | MET | 184 | 31.165 | 2.014  | 76.698 | 1.00 52.59 | AAAA H |
| ATOM | 1805 | CA  | MET | 184 | 30.388 | 3.041  | 77.413 | 1.00 53.22 | AAAA C |
| ATOM | 1806 | CB  | MET | 184 | 28.927 | 2.613  | 77.537 | 1.00 54.27 | AAAA C |
| ATOM | 1807 | CG  | MET | 184 | 27.855 | 2.955  | 76.536 | 1.00 56.16 | AAAA C |
| ATOM | 1808 | SD  | MET | 184 | 26.911 | 1.601  | 75.912 | 1.00 57.56 | AAAA S |
| ATOM | 1809 | CE  | MET | 184 | 26.738 | 1.855  | 74.171 | 1.00 46.57 | AAAA C |
| ATOM | 1810 | C   | MET | 184 | 31.051 | 3.200  | 78.770 | 1.00 50.55 | AAAA C |
| ATOM | 1811 | O   | MET | 184 | 31.770 | 2.292  | 79.116 | 1.00 48.82 | AAAA O |
| ATOM | 1812 | H   | CYS | 185 | 30.796 | 4.193  | 79.565 | 1.00 53.97 | AAAA H |
| ATOM | 1814 | CA  | CYS | 185 | 31.342 | 4.365  | 80.892 | 1.00 58.63 | AAAA C |
| ATOM | 1815 | C   | CYS | 185 | 30.297 | 4.320  | 81.989 | 1.00 65.16 | AAAA C |
| ATOM | 1816 | O   | CYS | 185 | 29.133 | 4.649  | 81.761 | 1.00 65.87 | AAAA O |
| ATOM | 1817 | CB  | CYS | 185 | 31.965 | 5.772  | 81.000 | 1.00 60.37 | AAAA C |
| ATOM | 1818 | SG  | CYS | 185 | 33.623 | 5.771  | 80.312 | 1.00 60.09 | AAAA S |
| ATOM | 1819 | H   | PRO | 186 | 30.688 | 3.978  | 83.206 | 1.00 69.41 | AAAA H |
| ATOM | 1820 | CD  | PRO | 186 | 32.066 | 3.777  | 83.702 | 1.00 71.11 | AAAA C |
| ATOM | 1821 | CA  | PRO | 186 | 29.717 | 3.933  | 84.304 | 1.00 69.11 | AAAA C |
| ATOM | 1822 | CB  | PRO | 186 | 30.523 | 3.487  | 85.503 | 1.00 68.03 | AAAA C |
| ATOM | 1823 | CG  | PRO | 186 | 31.910 | 3.920  | 85.198 | 1.00 71.02 | AAAA C |
| ATOM | 1824 | C   | PRO | 186 | 29.120 | 5.320  | 84.431 | 1.00 69.47 | AAAA C |
| ATOM | 1825 | O   | PRO | 186 | 29.820 | 6.345  | 84.507 | 1.00 65.93 | AAAA O |
| ATOM | 1826 | H   | SER | 187 | 27.801 | 5.367  | 84.546 | 1.00 68.78 | AAAA H |
| ATOM | 1828 | CA  | SER | 187 | 27.050 | 6.592  | 84.750 | 1.00 69.29 | AAAA C |
| ATOM | 1829 | CB  | SER | 187 | 25.594 | 6.287  | 85.129 | 1.00 78.29 | AAAA C |
| ATOM | 1830 | OG  | SER | 187 | 25.174 | 4.935  | 85.563 | 1.00 91.78 | AAAA O |
| ATOM | 1832 | C   | SER | 187 | 27.630 | 7.476  | 85.836 | 1.00 67.19 | AAAA C |
| ATOM | 1833 | O   | SER | 187 | 27.606 | 8.708  | 85.803 | 1.00 63.98 | AAAA O |
| ATOM | 1834 | H   | THR | 188 | 28.108 | 6.853  | 86.908 | 1.00 68.20 | AAAA H |
| ATOM | 1836 | CA  | THR | 188 | 28.870 | 7.507  | 87.963 | 1.00 68.39 | AAAA C |
| ATOM | 1837 | CB  | THR | 188 | 29.805 | 6.459  | 88.618 | 1.00 73.84 | AAAA C |
| ATOM | 1838 | OG1 | THR | 188 | 28.943 | 5.365  | 89.016 | 1.00 89.33 | AAAA O |
| ATOM | 1840 | CG2 | THR | 188 | 30.605 | 7.048  | 89.759 | 1.00 73.71 | AAAA C |
| ATOM | 1841 | C   | THR | 188 | 29.802 | 8.583  | 97.129 | 1.00 67.52 | AAAA C |
| ATOM | 1842 | O   | THR | 188 | 29.843 | 9.739  | 87.834 | 1.00 68.30 | AAAA O |
| ATOM | 1843 | H   | CYS | 189 | 30.643 | 8.247  | 86.446 | 1.00 63.89 | AAAA H |
| ATOM | 1845 | CA  | CYS | 189 | 31.583 | 9.116  | 85.917 | 1.00 57.29 | AAAA C |
| ATOM | 1846 | C   | CYS | 189 | 30.951 | 10.331 | 85.195 | 1.00 57.70 | AAAA C |
| ATOM | 1847 | O   | CYS | 189 | 31.648 | 11.327 | 85.017 | 1.00 57.56 | AAAA O |
| ATOM | 1848 | CB  | CYS | 189 | 32.416 | 8.372  | 84.769 | 1.00 58.67 | AAAA C |
| ATOM | 1849 | SG  | CYS | 189 | 33.347 | 7.001  | 85.535 | 1.00 53.46 | AAA S  |
| ATOM | 1850 | H   | GLY | 190 | 29.689 | 10.322 | 84.806 | 1.00 56.91 | AAAA H |
| ATOM | 1852 | CA  | GLY | 190 | 29.038 | 11.521 | 84.323 | 1.00 57.28 | AAAA C |
| ATOM | 1853 | C   | GLY | 190 | 29.444 | 11.831 | 82.886 | 1.00 59.62 | AAAA C |
| ATOM | 1854 | O   | GLY | 190 | 29.609 | 10.932 | 82.082 | 1.00 57.91 | AAA O  |
| ATOM | 1855 | H   | LYS | 191 | 29.842 | 13.052 | 82.624 | 1.00 62.78 | AAAA N |
| ATOM | 1857 | CA  | LYS | 191 | 30.359 | 13.520 | 81.364 | 1.00 67.72 | AAA C  |
| ATOM | 1858 | CB  | LYS | 191 | 30.058 | 15.035 | 81.214 | 1.00 72.76 | AAA C  |
| ATOM | 1859 | CG  | LYS | 191 | 28.568 | 15.288 | 81.002 | 1.00 84.69 | AAA C  |
| ATOM | 1860 | CD  | LYS | 191 | 28.207 | 16.733 | 80.723 | 1.00 90.15 | AAA C  |
| ATOM | 1861 | CE  | LYS | 191 | 26.713 | 16.806 | 80.471 | 1.00 91.93 | AAA C  |

09/555275

WO 99/28347

PCT/AU98/00998

19/58

|      |      |     |     |     |        |        |        |      |       |       |   |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|-------|---|
| ATOM | 1862 | NE  | LYS | 191 | 26.368 | 16.182 | 79.152 | 1.00 | 97.61 | AAAAA | S |
| ATOM | 1866 | C   | LYS | 191 | 31.868 | 13.299 | 81.270 | 1.00 | 70.13 | AAAAA | C |
| ATOM | 1867 | O   | LYS | 191 | 32.486 | 13.935 | 80.415 | 1.00 | 71.76 | AAAAA | O |
| ATOM | 1868 | H   | ARG | 192 | 32.488 | 12.441 | 82.079 | 1.00 | 66.20 | AAAAA | H |
| ATOM | 1870 | CA  | ARG | 192 | 33.885 | 12.171 | 82.044 | 1.00 | 59.95 | AAAAA | C |
| ATOM | 1871 | CB  | ARG | 192 | 34.505 | 12.070 | 83.432 | 1.00 | 66.58 | AAAAA | C |
| ATOM | 1872 | CG  | ARG | 192 | 34.670 | 13.400 | 84.131 | 1.00 | 71.59 | AAAAA | C |
| ATOM | 1873 | CD  | ARG | 192 | 34.386 | 13.330 | 85.625 | 1.00 | 73.91 | AAAAA | C |
| ATOM | 1874 | NE  | ARG | 192 | 35.622 | 13.280 | 86.377 | 1.00 | 85.74 | AAAAA | H |
| ATOM | 1876 | CE  | ARG | 192 | 35.968 | 12.407 | 87.330 | 1.00 | 90.67 | AAAAA | C |
| ATOM | 1877 | NH1 | ARG | 192 | 35.026 | 11.485 | 87.600 | 1.00 | 88.49 | AAAAA | H |
| ATOM | 1880 | NH2 | ARG | 192 | 37.162 | 12.463 | 87.950 | 1.00 | 71.95 | AAAAA | H |
| ATOM | 1883 | C   | ARG | 192 | 34.221 | 10.851 | 81.337 | 1.00 | 58.83 | AAAAA | C |
| ATOM | 1884 | O   | ARG | 192 | 33.336 | 10.097 | 81.176 | 1.00 | 55.13 | AAAAA | O |
| ATOM | 1885 | H   | ALA | 193 | 35.621 | 10.795 | 80.968 | 1.00 | 50.19 | AAAAA | H |
| ATOM | 1887 | CA  | ALA | 193 | 35.962 | 9.557  | 80.355 | 1.00 | 46.24 | AAAAA | C |
| ATOM | 1888 | CB  | ALA | 193 | 37.167 | 9.921  | 79.541 | 1.00 | 45.12 | AAAAA | C |
| ATOM | 1889 | C   | ALA | 193 | 36.201 | 8.525  | 81.451 | 1.00 | 48.97 | AAAAA | C |
| ATOM | 1890 | O   | ALA | 193 | 36.220 | 8.908  | 82.616 | 1.00 | 44.80 | AAAAA | O |
| ATOM | 1891 | H   | CYS | 194 | 36.544 | 7.304  | 81.065 | 1.00 | 50.30 | AAAAA | H |
| ATOM | 1893 | CA  | CYS | 194 | 36.836 | 6.302  | 82.043 | 1.00 | 57.50 | AAAAA | C |
| ATOM | 1894 | C   | CYS | 194 | 37.834 | 5.304  | 81.448 | 1.00 | 61.25 | AAAAA | C |
| ATOM | 1895 | O   | CYS | 194 | 37.952 | 5.291  | 80.216 | 1.00 | 61.52 | AAAAA | O |
| ATOM | 1896 | CB  | CYS | 194 | 35.510 | 5.741  | 81.504 | 1.00 | 57.96 | AAAAA | C |
| ATOM | 1897 | SG  | CYS | 194 | 34.785 | 4.524  | 81.402 | 1.00 | 54.49 | AAAAA | S |
| ATOM | 1898 | H   | THR | 195 | 38.422 | 4.499  | 82.311 | 1.00 | 58.51 | AAAAA | H |
| ATOM | 1900 | CA  | THR | 195 | 39.462 | 3.584  | 81.913 | 1.00 | 57.42 | AAAAA | C |
| ATOM | 1901 | CB  | THR | 195 | 40.237 | 3.142  | 83.188 | 1.00 | 65.73 | AAAAA | C |
| ATOM | 1902 | OG1 | THR | 195 | 40.280 | 4.248  | 84.091 | 1.00 | 70.15 | AAAAA | O |
| ATOM | 1904 | CG2 | THR | 195 | 41.684 | 2.864  | 82.745 | 1.00 | 77.91 | AAAAA | C |
| ATOM | 1905 | C   | THR | 195 | 38.857 | 2.404  | 81.226 | 1.00 | 54.59 | AAAAA | C |
| ATOM | 1906 | O   | THR | 195 | 37.633 | 2.315  | 81.318 | 1.00 | 58.75 | AAAAA | O |
| ATOM | 1907 | H   | GLU | 196 | 39.610 | 1.408  | 80.882 | 1.00 | 55.95 | AAAAA | H |
| ATOM | 1909 | CA  | GLU | 196 | 39.139 | 0.145  | 80.364 | 1.00 | 60.07 | AAAAA | C |
| ATOM | 1910 | CB  | GLU | 196 | 40.395 | -0.612 | 79.914 | 1.00 | 68.06 | AAAAA | C |
| ATOM | 1911 | CG  | GLU | 196 | 40.479 | -1.146 | 78.526 | 1.00 | 73.96 | AAAAA | C |
| ATOM | 1912 | CD  | GLU | 196 | 39.235 | -0.983 | 77.670 | 1.00 | 83.08 | AAAAA | C |
| ATOM | 1913 | OE1 | GLU | 196 | 38.356 | -1.884 | 77.687 | 1.00 | 81.19 | AAAAA | O |
| ATOM | 1914 | OE2 | GLU | 196 | 39.060 | 0.041  | 76.939 | 1.00 | 82.10 | AAAAA | C |
| ATOM | 1915 | C   | GLU | 196 | 38.382 | -0.579 | 81.467 | 1.00 | 63.91 | AAAAA | C |
| ATOM | 1916 | O   | GLU | 196 | 37.690 | -1.537 | 81.159 | 1.00 | 63.51 | AAAAA | O |
| ATOM | 1917 | H   | ASH | 197 | 38.666 | -0.312 | 82.739 | 1.00 | 67.40 | AAAAA | H |
| ATOM | 1919 | CA  | ASH | 197 | 38.025 | -0.947 | 83.886 | 1.00 | 69.21 | AAAAA | C |
| ATOM | 1920 | CB  | ASH | 197 | 39.021 | -1.394 | 84.966 | 1.00 | 68.49 | AAAAA | C |
| ATOM | 1921 | CG  | ASH | 197 | 39.722 | -2.692 | 84.672 | 0.01 | 69.09 | AAAAA | C |
| ATOM | 1922 | OD1 | ASH | 197 | 40.364 | -3.273 | 85.551 | 0.01 | 69.04 | AAAAA | O |
| ATOM | 1923 | HD2 | ASH | 197 | 39.622 | -3.183 | 83.443 | 0.01 | 68.97 | AAAAA | H |
| ATOM | 1926 | C   | ASH | 197 | 37.033 | 0.043  | 84.486 | 1.00 | 69.01 | AAAAA | C |
| ATOM | 1927 | O   | ASH | 197 | 36.815 | 0.281  | 85.664 | 1.00 | 68.24 | AAAAA | O |
| ATOM | 1928 | H   | ASH | 198 | 36.384 | 0.795  | 83.607 | 1.00 | 69.91 | AAAAA | H |
| ATOM | 1930 | CA  | ASH | 198 | 35.356 | 1.734  | 84.048 | 1.00 | 68.48 | AAAAA | C |
| ATOM | 1931 | CB  | ASH | 198 | 34.120 | 0.880  | 84.373 | 1.00 | 60.12 | AAAAA | C |
| ATOM | 1932 | CG  | ASH | 198 | 33.806 | 0.095  | 83.102 | 1.00 | 69.29 | AAAAA | C |
| ATOM | 1933 | OD1 | ASH | 198 | 33.475 | 0.654  | 82.054 | 1.00 | 73.20 | AAAAA | O |
| ATOM | 1934 | HD2 | ASH | 198 | 33.980 | -1.206 | 93.268 | 1.00 | 65.34 | AAAAA | H |
| ATOM | 1937 | C   | ASH | 198 | 35.784 | 2.563  | 85.228 | 1.00 | 64.01 | AAAAA | C |
| ATOM | 1938 | O   | ASH | 198 | 34.992 | 2.827  | 86.117 | 1.00 | 64.20 | AAAAA | O |
| ATOM | 1939 | H   | GLU | 199 | 36.955 | 3.164  | 85.157 | 1.00 | 64.75 | AAAAA | H |
| ATOM | 1941 | CA  | GLU | 199 | 37.342 | 4.054  | 86.255 | 1.00 | 64.61 | AAAAA | C |
| ATOM | 1942 | CB  | GLU | 199 | 38.702 | 3.624  | 86.744 | 1.00 | 66.11 | AAAAA | C |
| ATOM | 1943 | CG  | GLU | 199 | 38.846 | 3.717  | 88.233 | 1.00 | 77.15 | AAAAA | C |
| ATOM | 1944 | CD  | GLU | 199 | 39.579 | 2.532  | 88.832 | 1.00 | 80.24 | AAAAA | C |
| ATOM | 1945 | OE1 | GLU | 199 | 39.385 | 2.406  | 90.066 | 1.00 | 81.65 | AAAAA | O |
| ATOM | 1946 | OE2 | GLU | 199 | 40.282 | 1.821  | 88.079 | 1.00 | 77.94 | AAAAA | O |
| ATOM | 1947 | C   | GLU | 199 | 37.314 | 5.463  | 85.690 | 1.00 | 62.92 | AAAAA | C |
| ATOM | 1948 | O   | GLU | 199 | 37.923 | 5.676  | 84.632 | 1.00 | 63.62 | AAAAA | O |
| ATOM | 1949 | H   | CYS | 200 | 36.605 | 6.393  | 86.313 | 1.00 | 56.16 | AAAAA | H |
| ATOM | 1951 | CA  | CYS | 200 | 36.600 | 7.721  | 85.740 | 1.00 | 55.11 | AAAAA | C |
| ATOM | 1952 | C   | CYS | 200 | 37.978 | 8.315  | 85.521 | 1.00 | 57.77 | AAAAA | C |
| ATOM | 1953 | O   | CYS | 200 | 38.884 | 8.058  | 86.300 | 1.00 | 63.79 | AAAAA | O |
| ATOM | 1954 | CB  | CYS | 200 | 35.824 | 8.664  | 86.648 | 1.00 | 52.70 | AAAAA | C |
| ATOM | 1955 | SG  | CYS | 200 | 34.196 | 8.100  | 87.098 | 1.00 | 55.85 | AAAAA | S |
| ATOM | 1956 | H   | CYS | 201 | 38.124 | 9.192  | 84.540 | 1.00 | 54.50 | AAAAA | H |
| ATOM | 1958 | CA  | CYS | 201 | 39.338 | 9.889  | 84.202 | 1.00 | 48.19 | AAAAA | C |
| ATOM | 1959 | C   | CYS | 201 | 39.236 | 11.287 | 84.786 | 1.00 | 42.34 | AAAAA | C |
| ATOM | 1960 | O   | CYS | 201 | 38.165 | 11.704 | 85.166 | 1.00 | 54.32 | AAAAA | O |
| ATOM | 1961 | CB  | CYS | 201 | 39.590 | 10.070 | 82.695 | 1.00 | 40.90 | AAAAA | C |
| ATOM | 1962 | SG  | CYS | 201 | 39.644 | 8.597  | 81.747 | 1.00 | 51.42 | AAAAA | S |
| ATOM | 1963 | H   | HIS | 202 | 40.251 | 12.075 | 84.675 | 1.00 | 39.12 | AAAAA | H |
| ATOM | 1965 | CA  | HIS | 202 | 40.290 | 13.461 | 85.128 | 1.00 | 41.55 | AAAAA | C |
| ATOM | 1966 | C   | HIS | 202 | 39.284 | 14.184 | 84.289 | 1.00 | 46.59 | AAAAA | C |
| ATOM | 1967 | O   | HIS | 202 | 39.176 | 13.851 | 83.103 | 1.00 | 51.64 | AAAAA | O |
| ATOM | 1968 | CB  | HIS | 202 | 41.712 | 13.952 | 84.812 | 1.00 | 45.20 | AAAAA | C |
| ATOM | 1969 | CG  | HIS | 202 | 41.996 | 15.330 | 85.267 | 1.00 | 38.71 | AAAAA | C |
| ATOM | 1970 | ND1 | HIS | 202 | 41.501 | 16.404 | 84.560 | 1.00 | 51.32 | AAAAA | H |

09/555275

PCT/AU98/00998

WO 99/28347

## 20/58

|      |      |     |     |     |        |        |        |            |        |
|------|------|-----|-----|-----|--------|--------|--------|------------|--------|
| ATOM | 1971 | CE1 | HIS | 202 | 41.897 | 17.529 | 85.178 | 1.00 47.62 | AAAA C |
| ATOM | 1972 | CD2 | HIS | 202 | 42.665 | 15.813 | 86.340 | 1.00 39.52 | AAAA C |
| ATOM | 1973 | NE2 | HIS | 202 | 42.563 | 17.207 | 86.258 | 1.00 43.48 | AAAA N |
| ATOM | 1975 | H   | PRO | 203 | 38.738 | 15.293 | 84.711 | 1.00 47.74 | AAAA N |
| ATOM | 1976 | CD  | FRO | 203 | 38.758 | 15.840 | 86.082 | 1.00 46.97 | AAAA C |
| ATOM | 1977 | CA  | PRO | 203 | 37.780 | 15.987 | 83.879 | 1.00 46.44 | AAAA C |
| ATOM | 1978 | CB  | PRO | 203 | 37.248 | 17.107 | 84.742 | 1.00 39.47 | AAAA C |
| ATOM | 1979 | CG  | PRO | 203 | 38.131 | 17.210 | 85.910 | 1.00 43.37 | AAAA C |
| ATOM | 1980 | C   | PRO | 203 | 38.440 | 15.519 | 82.607 | 1.00 53.27 | AAAA C |
| ATOM | 1981 | O   | FRO | 203 | 37.698 | 17.045 | 81.731 | 1.00 53.16 | AAA O  |
| ATOM | 1982 | H   | GLU | 204 | 39.792 | 16.535 | 82.561 | 1.00 50.34 | AAA N  |
| ATOM | 1984 | CA  | GLU | 204 | 40.439 | 17.139 | 81.381 | 1.00 50.52 | AAA C  |
| ATOM | 1985 | CB  | GLU | 204 | 41.727 | 17.891 | 81.804 | 1.00 48.58 | AAA C  |
| ATOM | 1986 | CG  | GLU | 204 | 41.337 | 19.251 | 82.397 | 1.00 43.74 | AAA C  |
| ATOM | 1987 | CD  | GLU | 204 | 40.778 | 20.282 | 81.501 | 1.00 55.26 | AAA C  |
| ATOM | 1988 | OE1 | GLU | 204 | 40.766 | 20.344 | 80.248 | 1.00 64.04 | AAA O  |
| ATOM | 1989 | OE2 | GLU | 204 | 40.226 | 21.198 | 82.141 | 1.00 57.66 | AAA O  |
| ATOM | 1990 | C   | GLU | 204 | 40.718 | 16.084 | 80.319 | 1.00 45.71 | AAA C  |
| ATOM | 1991 | O   | GLU | 204 | 41.238 | 16.405 | 79.251 | 1.00 46.56 | AAA O  |
| ATOM | 1992 | H   | CYS | 205 | 40.612 | 14.830 | 80.735 | 1.00 42.05 | AAA N  |
| ATOM | 1994 | CA  | CYS | 205 | 40.997 | 13.764 | 79.838 | 1.00 45.81 | AAA C  |
| ATOM | 1995 | C   | CYS | 205 | 39.892 | 13.628 | 78.819 | 1.00 49.20 | AAA C  |
| ATOM | 1996 | O   | CYS | 205 | 38.746 | 13.920 | 79.133 | 1.00 50.34 | AAA O  |
| ATOM | 1997 | CB  | CYS | 205 | 41.288 | 12.491 | 80.572 | 1.00 51.55 | AAA C  |
| ATOM | 1998 | SG  | CYS | 205 | 42.923 | 12.246 | 81.251 | 1.00 52.89 | AAA S  |
| ATOM | 1999 | H   | LEU | 206 | 40.232 | 13.579 | 77.520 | 1.00 49.88 | AAA N  |
| ATOM | 2001 | CA  | LEU | 206 | 39.169 | 13.446 | 76.533 | 1.00 41.49 | AAA C  |
| ATOM | 2002 | CB  | LEU | 206 | 39.266 | 14.505 | 76.462 | 1.00 48.66 | AAA C  |
| ATOM | 2003 | CG  | LEU | 206 | 38.274 | 14.365 | 74.305 | 1.00 47.45 | AAA C  |
| ATOM | 2004 | CD1 | LEU | 206 | 36.879 | 14.243 | 74.895 | 1.00 45.79 | AAA C  |
| ATOM | 2005 | CD2 | LEU | 206 | 38.331 | 15.599 | 73.420 | 1.00 50.71 | AAA C  |
| ATOM | 2006 | C   | LEU | 206 | 39.310 | 12.109 | 75.912 | 1.00 38.44 | AAA C  |
| ATOM | 2007 | O   | LEU | 206 | 40.400 | 11.568 | 75.813 | 1.00 36.59 | AAA O  |
| ATOM | 2008 | H   | GLY | 207 | 38.264 | 11.359 | 75.681 | 1.00 42.41 | AAA N  |
| ATOM | 2010 | CA  | GLY | 207 | 38.403 | 10.098 | 74.978 | 1.00 40.57 | AAA C  |
| ATOM | 2011 | C   | GLY | 207 | 38.466 | 9.061  | 76.058 | 1.00 47.15 | AAA C  |
| ATOM | 2012 | O   | GLY | 207 | 37.668 | 8.102  | 76.057 | 1.00 45.04 | AAA O  |
| ATOM | 2013 | N   | SER | 208 | 39.622 | 9.079  | 76.760 | 1.00 50.36 | AAA N  |
| ATOM | 2015 | CA  | SER | 208 | 39.832 | 7.898  | 77.660 | 1.00 48.27 | AAA C  |
| ATOM | 2016 | CB  | SER | 208 | 39.909 | 6.631  | 76.787 | 1.00 35.77 | AAA C  |
| ATOM | 2017 | OG  | SER | 208 | 40.600 | 5.597  | 77.461 | 1.00 61.34 | AAA O  |
| ATOM | 2019 | C   | SER | 208 | 41.144 | 8.068  | 78.377 | 1.00 49.17 | AAA C  |
| ATOM | 2020 | O   | SER | 208 | 41.781 | 9.084  | 78.163 | 1.00 48.24 | AAA O  |
| ATOM | 2021 | H   | CYS | 209 | 41.599 | 7.123  | 79.189 | 1.00 52.04 | AAA N  |
| ATOM | 2023 | CA  | CYS | 209 | 42.824 | 7.307  | 79.964 | 1.00 55.98 | AAA C  |
| ATOM | 2024 | C   | CYS | 209 | 43.453 | 6.035  | 80.484 | 1.00 57.41 | AAA C  |
| ATOM | 2025 | O   | CYS | 209 | 42.862 | 4.963  | 80.423 | 1.00 58.33 | AAA O  |
| ATOM | 2026 | CB  | CYS | 209 | 42.629 | 8.258  | 81.146 | 1.00 52.51 | AAA C  |
| ATOM | 2027 | SG  | CYS | 209 | 41.380 | 7.602  | 82.261 | 1.00 58.22 | AAA S  |
| ATOM | 2028 | H   | SER | 210 | 44.734 | 6.145  | 80.883 | 1.00 59.37 | AAA N  |
| ATOM | 2030 | CA  | SER | 210 | 45.506 | 4.950  | 81.318 | 1.00 58.10 | AAA C  |
| ATOM | 2031 | CB  | SER | 210 | 47.022 | 5.083  | 81.105 | 1.00 55.07 | AAA C  |
| ATOM | 2032 | OG  | SER | 210 | 47.546 | 6.204  | 81.819 | 1.00 64.49 | AAA O  |
| ATOM | 2034 | C   | SER | 210 | 45.331 | 4.713  | 82.826 | 1.00 56.34 | AAA C  |
| ATOM | 2035 | O   | SER | 210 | 45.529 | 3.614  | 83.326 | 1.00 54.42 | AAA O  |
| ATOM | 2036 | H   | ALA | 211 | 45.105 | 5.806  | 83.548 | 1.00 52.79 | AAA N  |
| ATOM | 2038 | CA  | ALA | 211 | 44.980 | 5.684  | 85.004 | 1.00 56.60 | AAA C  |
| ATOM | 2039 | CB  | ALA | 211 | 46.333 | 5.926  | 85.649 | 1.00 63.41 | AAA C  |
| ATOM | 2040 | C   | ALA | 211 | 43.962 | 6.747  | 85.395 | 1.00 56.58 | AAA C  |
| ATOM | 2041 | O   | ALA | 211 | 43.957 | 7.792  | 84.711 | 1.00 53.78 | AAA O  |
| ATOM | 2042 | H   | PRO | 212 | 43.117 | 6.416  | 86.358 | 1.00 55.93 | AAA N  |
| ATOM | 2043 | CD  | PRO | 212 | 43.042 | 5.166  | 87.115 | 1.00 55.86 | AAA C  |
| ATOM | 2044 | CA  | PRO | 212 | 41.951 | 7.257  | 86.575 | 1.00 55.50 | AAA C  |
| ATOM | 2045 | CB  | PRO | 212 | 41.104 | 6.170  | 87.556 | 1.00 59.65 | AAA C  |
| ATOM | 2046 | CG  | PRO | 212 | 42.021 | 5.483  | 88.175 | 1.00 51.56 | AAA C  |
| ATOM | 2047 | C   | PRO | 212 | 42.409 | 6.535  | 87.177 | 1.00 53.64 | AAA C  |
| ATOM | 2048 | O   | PRO | 212 | 43.611 | 8.725  | 87.393 | 1.00 57.48 | AAA O  |
| ATOM | 2049 | H   | ALA | 213 | 41.537 | 9.492  | 87.347 | 1.00 53.87 | AAA N  |
| ATOM | 2051 | CA  | ALA | 213 | 41.912 | 10.710 | 88.057 | 1.00 59.41 | AAA C  |
| ATOM | 2052 | CB  | ALA | 213 | 41.783 | 10.255 | 89.541 | 1.00 66.40 | AAA C  |
| ATOM | 2053 | C   | ALA | 213 | 43.289 | 11.300 | 87.907 | 1.00 61.40 | AAA C  |
| ATOM | 2054 | O   | ALA | 213 | 43.728 | 12.202 | 88.652 | 1.00 60.03 | AAA O  |
| ATOM | 2055 | H   | ASN | 214 | 44.068 | 10.999 | 86.899 | 1.00 64.80 | AAA N  |
| ATOM | 2057 | CA  | ASN | 214 | 45.366 | 11.551 | 86.596 | 1.00 63.36 | AAA C  |
| ATOM | 2063 | C   | ASN | 214 | 45.300 | 12.204 | 85.251 | 1.00 61.56 | AAA C  |
| ATOM | 2064 | O   | ASN | 214 | 45.198 | 11.794 | 84.117 | 1.00 58.38 | AAA O  |
| ATOM | 2058 | CB  | ASN | 214 | 46.336 | 10.379 | 86.608 | 1.00 67.32 | AAA C  |
| ATOM | 2059 | CG  | ASN | 214 | 47.697 | 10.896 | 86.362 | 1.00 75.48 | AAA C  |
| ATOM | 2060 | OD1 | ASN | 214 | 48.251 | 11.105 | 85.302 | 1.00 83.64 | AAA O  |
| ATOM | 2061 | HD2 | ASN | 214 | 48.513 | 11.170 | 87.427 | 1.00 90.05 | AAA N  |
| ATOM | 2065 | H   | ASP | 215 | 45.666 | 13.565 | 85.305 | 1.00 59.78 | AAA N  |
| ATOM | 2067 | CA  | ASP | 215 | 45.618 | 14.432 | 84.143 | 1.00 56.47 | AAA C  |
| ATOM | 2068 | CB  | ASP | 215 | 45.430 | 15.926 | 84.446 | 1.00 40.19 | AAA C  |
| ATOM | 2069 | CG  | ASP | 215 | 46.671 | 16.543 | 84.983 | 1.00 56.36 | AAA C  |
| ATOM | 2070 | OD1 | ASP | 215 | 46.590 | 17.699 | 85.473 | 1.00 56.17 | AAA O  |

09/555275

PCT/AU98/00998

WO 99/28347

21/58

|      |      |                |     |     |        |        |        |      |       |         |
|------|------|----------------|-----|-----|--------|--------|--------|------|-------|---------|
| ATOM | 2151 | O <sub>2</sub> | ASP | 215 | 47.766 | 15.926 | 84.941 | 1.00 | 50.01 | AAAAA O |
| ATOM | 2172 | C              | ASP | 215 | 46.818 | 14.315 | 83.221 | 1.00 | 53.78 | AAAAA C |
| ATOM | 2073 | O              | ASP | 215 | 46.998 | 15.148 | 82.322 | 1.00 | 53.58 | AAAAA O |
| ATOM | 2074 | H              | THR | 216 | 47.719 | 13.425 | 83.511 | 1.00 | 50.87 | AAAAA N |
| ATOM | 2076 | CA             | THR | 216 | 48.883 | 13.114 | 82.734 | 1.00 | 45.76 | AAAAA C |
| ATOM | 2077 | CB             | THR | 216 | 50.201 | 13.176 | 83.529 | 1.00 | 53.46 | AAAAA C |
| ATOM | 2078 | O <sub>1</sub> | THR | 216 | 50.403 | 11.977 | 84.335 | 1.00 | 45.14 | AAAAA O |
| ATOM | 2080 | CG2            | THR | 216 | 50.436 | 14.314 | 84.518 | 1.00 | 41.38 | AAAAA C |
| ATOM | 2081 | C              | THR | 216 | 48.681 | 11.712 | 82.158 | 1.00 | 48.34 | AAAAA C |
| ATOM | 2082 | O              | THR | 216 | 49.596 | 11.282 | 81.444 | 1.00 | 47.42 | AAAAA O |
| ATOM | 2083 | H              | ALA | 217 | 47.553 | 11.057 | 82.476 | 1.00 | 49.65 | AAAAA N |
| ATOM | 2085 | CA             | ALA | 217 | 47.259 | 9.760  | 81.845 | 1.00 | 51.83 | AAAAA C |
| ATOM | 2086 | CB             | ALA | 217 | 46.908 | 9.775  | 82.913 | 1.00 | 52.62 | AAAAA C |
| ATOM | 2087 | C              | ALA | 217 | 46.207 | 9.747  | 80.709 | 1.00 | 50.60 | AAAAA C |
| ATOM | 2088 | O              | ALA | 217 | 45.775 | 8.632  | 80.335 | 1.00 | 49.13 | AAAAA O |
| ATOM | 2089 | H              | CYS | 218 | 45.744 | 10.905 | 80.226 | 1.00 | 43.56 | AAAAA N |
| ATOM | 2091 | CA             | CYS | 218 | 44.802 | 11.030 | 79.157 | 1.00 | 48.09 | AAAAA C |
| ATOM | 2092 | C              | CYS | 218 | 45.166 | 10.331 | 77.869 | 1.00 | 47.06 | AAAAA C |
| ATOM | 2093 | O              | CYS | 218 | 46.300 | 9.907  | 77.642 | 1.00 | 55.57 | AAAAA O |
| ATOM | 2094 | CB             | CYS | 218 | 44.536 | 12.501 | 78.775 | 1.00 | 51.51 | AAAAA C |
| ATOM | 2095 | SG             | CYS | 218 | 44.256 | 13.494 | 80.302 | 1.00 | 56.98 | AAAAA S |
| ATOM | 2096 | H              | VAL | 219 | 44.226 | 10.085 | 75.978 | 1.00 | 43.40 | AAAAA N |
| ATOM | 2098 | CA             | VAL | 219 | 44.575 | 9.547  | 75.654 | 1.00 | 35.02 | AAAAA C |
| ATOM | 2099 | CB             | VAL | 219 | 43.693 | 8.427  | 75.242 | 1.00 | 32.26 | AAAAA C |
| ATOM | 2100 | CG1            | VAL | 219 | 43.952 | 7.873  | 73.886 | 1.00 | 36.19 | AAAAA C |
| ATOM | 2101 | CG2            | VAL | 219 | 43.811 | 7.144  | 76.071 | 1.00 | 45.51 | AAAAA C |
| ATOM | 2102 | C              | VAL | 219 | 44.453 | 10.750 | 74.735 | 1.00 | 32.06 | AAAAA C |
| ATOM | 2103 | O              | VAL | 219 | 45.303 | 10.807 | 73.874 | 1.00 | 42.27 | AAAAA O |
| ATOM | 2104 | H              | ALA | 220 | 43.729 | 11.759 | 75.187 | 1.00 | 24.24 | AAAAA N |
| ATOM | 2106 | CA             | ALA | 220 | 43.630 | 11.085 | 74.385 | 1.00 | 27.09 | AAAAA C |
| ATOM | 2107 | CB             | ALA | 220 | 42.536 | 12.919 | 73.331 | 1.00 | 28.42 | AAAAA C |
| ATOM | 2108 | C              | ALA | 220 | 43.292 | 14.071 | 75.390 | 1.00 | 29.21 | AAAAA C |
| ATOM | 2109 | O              | ALA | 220 | 42.846 | 13.604 | 76.455 | 1.00 | 37.88 | AAAAA O |
| ATOM | 2110 | H              | CYS | 221 | 43.285 | 15.334 | 75.058 | 1.00 | 30.27 | AAAAA N |
| ATOM | 2112 | CA             | CYS | 221 | 42.753 | 16.382 | 75.875 | 1.00 | 35.55 | AAAAA C |
| ATOM | 2113 | C              | CYS | 221 | 41.460 | 17.055 | 75.452 | 1.00 | 47.06 | AAAAA C |
| ATOM | 2114 | O              | CYS | 221 | 41.265 | 17.598 | 74.368 | 1.00 | 49.57 | AAAAA O |
| ATOM | 2115 | CB             | CYS | 221 | 43.804 | 17.478 | 76.063 | 1.00 | 47.45 | AAAAA C |
| ATOM | 2116 | SG             | CYS | 221 | 45.494 | 16.935 | 76.538 | 1.00 | 47.06 | AAAAA S |
| ATOM | 2117 | H              | ARG | 222 | 40.503 | 17.133 | 76.396 | 1.00 | 51.47 | AAAAA N |
| ATOM | 2119 | CA             | ARG | 222 | 39.231 | 17.906 | 76.338 | 1.00 | 51.86 | AAAAA C |
| ATOM | 2120 | CB             | ARG | 222 | 38.647 | 18.074 | 77.712 | 1.00 | 54.53 | AAAAA C |
| ATOM | 2121 | C              | ARG | 222 | 37.314 | 18.687 | 77.854 | 1.00 | 45.56 | AAAAA C |
| ATOM | 2122 | CD             | ARG | 222 | 36.538 | 18.338 | 79.087 | 1.00 | 54.45 | AAAAA C |
| ATOM | 2123 | NH             | ARG | 222 | 36.272 | 16.947 | 79.269 | 1.00 | 65.53 | AAAAA N |
| ATOM | 2125 | CD             | ARG | 222 | 35.534 | 16.080 | 78.617 | 1.00 | 67.60 | AAAAA C |
| ATOM | 2126 | NH1            | ARG | 222 | 34.925 | 16.599 | 77.533 | 1.00 | 70.26 | AAAAA N |
| ATOM | 2129 | NH2            | ARG | 222 | 35.342 | 14.780 | 78.901 | 1.00 | 54.11 | AAAAA N |
| ATOM | 2132 | C              | ARG | 222 | 39.562 | 19.286 | 75.749 | 1.00 | 50.66 | AAAAA C |
| ATOM | 2133 | O              | ARG | 222 | 38.737 | 19.845 | 76.009 | 1.00 | 58.34 | AAAAA O |
| ATOM | 2134 | H              | HIS | 223 | 40.556 | 19.981 | 76.120 | 1.00 | 45.65 | AAAAA N |
| ATOM | 2136 | CA             | HIS | 223 | 40.998 | 21.291 | 78.821 | 1.00 | 46.93 | AAAAA C |
| ATOM | 2137 | CB             | HIS | 223 | 41.057 | 22.251 | 77.011 | 1.00 | 49.51 | AAAAA C |
| ATOM | 2138 | CG             | HIS | 223 | 39.710 | 22.344 | 77.617 | 1.00 | 58.83 | AAAAA C |
| ATOM | 2139 | CD2            | HIS | 223 | 38.820 | 23.360 | 77.556 | 1.00 | 61.08 | AAAAA C |
| ATOM | 2140 | NH1            | HIS | 223 | 39.082 | 21.388 | 78.425 | 1.00 | 63.28 | AAAAA N |
| ATOM | 2142 | CE1            | HIS | 223 | 37.881 | 21.815 | 78.759 | 1.00 | 58.01 | AAAAA C |
| ATOM | 2143 | NH2            | HIS | 223 | 37.681 | 23.010 | 78.232 | 1.00 | 48.56 | AAAAA N |
| ATOM | 2145 | C              | HIS | 223 | 42.363 | 21.260 | 78.122 | 1.00 | 50.78 | AAAAA C |
| ATOM | 2146 | O              | HIS | 223 | 42.506 | 20.753 | 74.003 | 1.00 | 47.43 | AAAAA O |
| ATOM | 2147 | H              | TIR | 224 | 43.359 | 21.847 | 75.769 | 1.00 | 49.20 | AAAAA N |
| ATOM | 2149 | CA             | TIR | 224 | 44.712 | 21.992 | 75.259 | 1.00 | 48.17 | AAAAA C |
| ATOM | 2150 | CB             | TIR | 224 | 45.144 | 23.430 | 75.426 | 1.00 | 44.07 | AAAAA C |
| ATOM | 2151 | CG             | TIR | 224 | 44.318 | 24.234 | 74.417 | 1.00 | 51.77 | AAAAA C |
| ATOM | 2152 | CD1            | TIR | 224 | 43.193 | 24.869 | 74.904 | 1.00 | 48.94 | AAAAA C |
| ATOM | 2153 | CE1            | TIR | 224 | 42.401 | 25.633 | 74.089 | 1.00 | 48.41 | AAAAA C |
| ATOM | 2154 | CD2            | TIR | 224 | 44.623 | 24.358 | 73.065 | 1.00 | 54.82 | AAAAA C |
| ATOM | 2155 | CE2            | TIR | 224 | 43.847 | 25.131 | 72.233 | 1.00 | 56.09 | AAAAA C |
| ATOM | 2156 | CG2            | TIR | 224 | 42.739 | 25.749 | 72.766 | 1.00 | 54.23 | AAAAA C |
| ATOM | 2157 | OH             | TIR | 224 | 41.915 | 26.502 | 72.017 | 1.00 | 61.70 | AAAAA O |
| ATOM | 2159 | C              | TIR | 224 | 45.726 | 21.095 | 75.892 | 1.00 | 48.19 | AAAAA C |
| ATOM | 2160 | O              | TIR | 224 | 45.776 | 20.913 | 77.111 | 1.00 | 55.75 | AAAAA O |
| ATOM | 2161 | H              | TIR | 225 | 46.584 | 20.514 | 75.677 | 1.00 | 48.79 | AAAAA N |
| ATOM | 2163 | CA             | TIR | 225 | 47.655 | 19.653 | 75.555 | 1.00 | 43.02 | AAAAA C |
| ATOM | 2164 | CB             | TIR | 225 | 48.020 | 18.639 | 74.548 | 1.00 | 42.32 | AAAAA C |
| ATOM | 2165 | CG             | TIR | 225 | 49.286 | 17.926 | 74.954 | 1.00 | 46.95 | AAAAA C |
| ATOM | 2166 | CD1            | TIR | 225 | 49.299 | 16.058 | 75.817 | 1.00 | 43.87 | AAAAA C |
| ATOM | 2167 | CE1            | TIR | 225 | 50.450 | 16.221 | 76.173 | 1.00 | 47.26 | AAAAA C |
| ATOM | 2168 | CD2            | TIR | 225 | 50.487 | 18.107 | 74.421 | 1.00 | 52.82 | AAAAA C |
| ATOM | 2169 | CE2            | TIR | 225 | 51.656 | 17.791 | 74.781 | 1.00 | 53.94 | AAAAA C |
| ATOM | 2170 | CG             | TIR | 225 | 51.639 | 16.707 | 75.644 | 1.00 | 52.31 | AAAAA C |
| ATOM | 2171 | OH             | TIR | 225 | 52.896 | 16.196 | 75.005 | 1.00 | 50.71 | AAAAA O |
| ATOM | 2173 | C              | TIR | 225 | 48.872 | 20.007 | 75.793 | 1.00 | 47.13 | AAAAA C |
| ATOM | 2174 | O              | TIR | 225 | 49.080 | 21.514 | 75.150 | 1.00 | 53.97 | AAAAA O |
| ATOM | 2175 | H              | TIR | 225 | 49.634 | 20.293 | 76.821 | 1.00 | 56.84 | AAAAA N |

09/555275

WO 99/28347

PCT/AU98/00998

22/58

|      |      |     |     |     |        |        |        |      |       |        |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 2177 | CA  | TYR | 226 | 50.817 | 21.001 | 77.172 | 1.00 | 56.83 | AAAA C |
| ATOM | 2178 | CB  | TYR | 226 | 50.455 | 22.343 | 77.785 | 1.00 | 59.51 | AAAA C |
| ATOM | 2179 | CG  | TYR | 226 | 51.741 | 23.126 | 77.941 | 1.00 | 65.45 | AAAA C |
| ATOM | 2180 | CD1 | TYR | 226 | 52.121 | 23.557 | 79.197 | 1.00 | 69.12 | AAAA C |
| ATOM | 2181 | CE1 | TYR | 226 | 53.289 | 24.275 | 79.400 | 1.00 | 70.77 | AAAA C |
| ATOM | 2182 | CD2 | TYR | 226 | 52.580 | 23.409 | 76.864 | 1.00 | 69.38 | AAAA C |
| ATOM | 2183 | CG2 | TYR | 226 | 53.758 | 24.118 | 77.020 | 1.00 | 70.94 | AAAA C |
| ATOM | 2184 | CC  | TYR | 226 | 54.099 | 24.549 | 78.301 | 1.00 | 72.96 | AAAA C |
| ATOM | 2185 | CH  | TYR | 226 | 55.267 | 25.254 | 78.435 | 1.00 | 70.84 | AAAA O |
| ATOM | 2187 | C   | TYR | 226 | 51.784 | 20.356 | 78.165 | 1.00 | 57.55 | AAAA C |
| ATOM | 2188 | O   | TYR | 226 | 51.492 | 20.133 | 79.350 | 1.00 | 56.90 | AAAA O |
| ATOM | 2189 | H   | ALA | 227 | 52.978 | 20.080 | 77.642 | 1.00 | 53.82 | AAAA H |
| ATOM | 2191 | CA  | ALA | 227 | 54.061 | 19.557 | 78.440 | 1.00 | 51.82 | AAAA C |
| ATOM | 2192 | CB  | ALA | 227 | 54.528 | 20.620 | 79.428 | 1.00 | 55.81 | AAAA C |
| ATOM | 2193 | C   | ALA | 227 | 53.600 | 18.309 | 79.170 | 1.00 | 53.56 | AAAA C |
| ATOM | 2194 | O   | ALA | 227 | 53.663 | 18.218 | 80.413 | 1.00 | 49.63 | AAAA O |
| ATOM | 2195 | H   | GLY | 228 | 53.076 | 17.360 | 78.393 | 1.00 | 50.68 | AAAA H |
| ATOM | 2197 | CA  | GLY | 228 | 52.585 | 16.135 | 79.028 | 1.00 | 49.02 | AAAA C |
| ATOM | 2198 | C   | GLY | 228 | 51.312 | 16.330 | 79.861 | 1.00 | 51.61 | AAAA C |
| ATOM | 2199 | O   | GLY | 228 | 51.028 | 15.538 | 80.776 | 1.00 | 51.10 | AAAA O |
| ATOM | 2200 | H   | VAL | 229 | 50.643 | 17.495 | 79.791 | 1.00 | 47.09 | AAAA H |
| ATOM | 2202 | CA  | VAL | 229 | 49.489 | 17.671 | 80.635 | 1.00 | 51.11 | AAAA C |
| ATOM | 2203 | CB  | VAL | 229 | 49.908 | 18.610 | 81.774 | 1.00 | 56.52 | AAAA C |
| ATOM | 2204 | CG1 | VAL | 229 | 48.627 | 18.896 | 82.566 | 1.00 | 38.39 | AAAA C |
| ATOM | 2205 | CG2 | VAL | 229 | 51.002 | 18.035 | 82.682 | 1.00 | 50.16 | AAAA C |
| ATOM | 2206 | C   | VAL | 229 | 48.255 | 19.173 | 79.873 | 1.00 | 51.37 | AAAA C |
| ATOM | 2207 | O   | VAL | 229 | 48.344 | 19.279 | 79.309 | 1.00 | 53.71 | AAAA O |
| ATOM | 2208 | H   | CYS | 230 | 47.100 | 17.518 | 80.036 | 1.00 | 42.21 | AAAA H |
| ATOM | 2210 | CA  | CYS | 230 | 45.891 | 18.117 | 79.471 | 1.00 | 40.32 | AAAA C |
| ATOM | 2211 | C   | CYS | 230 | 45.456 | 19.350 | 80.228 | 1.00 | 38.42 | AAAA C |
| ATOM | 2212 | O   | CYS | 230 | 44.964 | 19.248 | 81.321 | 1.00 | 41.62 | AAAA O |
| ATOM | 2213 | CB  | CYS | 230 | 44.746 | 17.132 | 79.370 | 1.00 | 31.54 | AAAA C |
| ATOM | 2214 | SG  | CYS | 230 | 45.149 | 15.753 | 78.266 | 1.00 | 43.61 | AAA S  |
| ATOM | 2215 | H   | VAL | 231 | 45.637 | 20.534 | 79.731 | 1.00 | 39.83 | AAAA H |
| ATOM | 2217 | CA  | VAL | 231 | 45.445 | 21.769 | 80.462 | 1.00 | 46.57 | AAAA C |
| ATOM | 2218 | CB  | VAL | 231 | 46.618 | 22.736 | 80.088 | 1.00 | 50.99 | AAAA C |
| ATOM | 2219 | CG1 | VAL | 231 | 46.798 | 23.878 | 81.053 | 1.00 | 50.41 | AAAA C |
| ATOM | 2220 | CG2 | VAL | 231 | 47.838 | 21.913 | 80.506 | 1.00 | 44.95 | AAAA C |
| ATOM | 2221 | C   | VAL | 231 | 44.111 | 22.321 | 80.057 | 1.00 | 52.59 | AAAA C |
| ATOM | 2222 | O   | VAL | 231 | 43.599 | 22.183 | 78.936 | 1.00 | 55.30 | AAA O  |
| ATOM | 2223 | H   | PRO | 232 | 43.482 | 23.105 | 80.913 | 1.00 | 54.28 | AAAA H |
| ATOM | 2224 | CD  | PRO | 232 | 43.830 | 23.385 | 82.320 | 1.00 | 54.25 | AAAA C |
| ATOM | 2225 | CA  | PRO | 232 | 42.153 | 23.625 | 80.575 | 1.00 | 54.39 | AAAA C |
| ATOM | 2226 | CB  | PRO | 232 | 41.937 | 23.877 | 81.928 | 1.00 | 53.73 | AAAA C |
| ATOM | 2227 | CG  | PRO | 232 | 42.683 | 24.287 | 80.765 | 1.00 | 55.00 | AAAA C |
| ATOM | 2228 | C   | PRO | 232 | 42.361 | 24.913 | 79.795 | 1.00 | 56.37 | AAAA C |
| ATOM | 2229 | O   | PRO | 232 | 41.498 | 25.482 | 79.137 | 1.00 | 55.79 | AAA O  |
| ATOM | 2230 | H   | ALA | 233 | 43.615 | 25.400 | 79.901 | 1.00 | 54.76 | AAAA H |
| ATOM | 2232 | CA  | ALA | 233 | 43.998 | 26.569 | 79.124 | 1.00 | 49.93 | AAA C  |
| ATOM | 2233 | CB  | ALA | 233 | 43.440 | 27.807 | 79.746 | 1.00 | 35.43 | AAA C  |
| ATOM | 2234 | C   | ALA | 233 | 45.502 | 26.662 | 78.974 | 1.00 | 49.79 | AAA C  |
| ATOM | 2235 | O   | ALA | 233 | 46.195 | 25.879 | 79.616 | 1.00 | 51.41 | AAA O  |
| ATOM | 2236 | H   | CYS | 234 | 45.994 | 27.508 | 79.072 | 1.00 | 45.07 | AAAA H |
| ATOM | 2238 | CA  | CYS | 234 | 47.430 | 27.518 | 79.907 | 1.00 | 48.63 | AAA C  |
| ATOM | 2239 | C   | CYS | 234 | 48.061 | 28.340 | 79.076 | 1.00 | 50.93 | AAA C  |
| ATOM | 2240 | O   | CYS | 234 | 47.650 | 29.513 | 79.250 | 1.00 | 47.57 | AAA O  |
| ATOM | 2241 | CB  | CYS | 234 | 47.816 | 28.034 | 76.511 | 1.00 | 43.10 | AAA C  |
| ATOM | 2242 | SG  | CYS | 234 | 47.608 | 26.789 | 75.226 | 1.00 | 43.04 | AAA S  |
| ATOM | 2243 | H   | PRO | 235 | 49.127 | 27.853 | 79.599 | 1.00 | 49.55 | AAAA H |
| ATOM | 2244 | CD  | PRO | 235 | 49.692 | 26.557 | 79.207 | 1.00 | 48.75 | AAA C  |
| ATOM | 2245 | CA  | PRO | 235 | 49.911 | 28.569 | 80.599 | 1.00 | 51.69 | AAA C  |
| ATOM | 2246 | CB  | PRO | 235 | 50.984 | 27.581 | 80.975 | 1.00 | 50.80 | AAA C  |
| ATOM | 2247 | CG  | PRO | 235 | 50.912 | 26.417 | 80.077 | 1.00 | 50.06 | AAA C  |
| ATOM | 2248 | C   | PRO | 235 | 50.187 | 29.052 | 80.050 | 1.00 | 57.11 | AAA C  |
| ATOM | 2249 | O   | PRO | 235 | 50.849 | 29.957 | 78.870 | 1.00 | 59.60 | AAA O  |
| ATOM | 2250 | H   | PRO | 236 | 50.676 | 30.875 | 80.887 | 1.00 | 59.85 | AAA H  |
| ATOM | 2251 | CD  | PRO | 236 | 50.105 | 30.822 | 82.363 | 1.00 | 55.85 | AAA C  |
| ATOM | 2252 | CA  | PRO | 236 | 51.323 | 32.143 | 80.493 | 1.00 | 52.27 | AAA C  |
| ATOM | 2253 | CB  | PRO | 236 | 51.695 | 32.814 | 81.826 | 1.00 | 53.62 | AAA C  |
| ATOM | 2254 | CG  | PRO | 236 | 50.652 | 32.277 | 82.751 | 1.00 | 56.73 | AAA C  |
| ATOM | 2255 | C   | PRO | 236 | 52.545 | 31.886 | 79.671 | 1.00 | 44.21 | AAA C  |
| ATOM | 2256 | O   | PRO | 236 | 53.219 | 30.892 | 79.928 | 1.00 | 43.40 | AAA O  |
| ATOM | 2257 | H   | ASH | 237 | 52.837 | 32.757 | 78.716 | 1.00 | 46.54 | AAA H  |
| ATOM | 2259 | CA  | ASH | 237 | 53.895 | 32.623 | 77.716 | 1.00 | 45.94 | AAA C  |
| ATOM | 2260 | CB  | ASH | 237 | 55.259 | 32.653 | 78.456 | 1.00 | 58.65 | AAA C  |
| ATOM | 2261 | CG  | ASH | 237 | 55.357 | 33.855 | 79.371 | 1.00 | 58.51 | AAA C  |
| ATOM | 2262 | OD1 | ASH | 237 | 56.044 | 33.783 | 80.379 | 1.00 | 72.25 | AAA O  |
| ATOM | 2263 | ND2 | ASH | 237 | 54.631 | 34.910 | 79.051 | 1.00 | 62.99 | AAA H  |
| ATOM | 2266 | C   | ASH | 237 | 53.897 | 31.425 | 76.788 | 1.00 | 46.87 | AAA C  |
| ATOM | 2267 | O   | ASH | 237 | 54.962 | 30.935 | 76.326 | 1.00 | 54.50 | AAA O  |
| ATOM | 2268 | H   | THR | 238 | 52.817 | 30.657 | 76.692 | 1.00 | 42.91 | AAA H  |
| ATOM | 2270 | CA  | THR | 238 | 52.617 | 29.567 | 75.780 | 1.00 | 40.20 | AAA C  |
| ATOM | 2271 | CB  | THR | 238 | 52.481 | 28.248 | 76.466 | 1.00 | 42.60 | AAA C  |
| ATOM | 2272 | OG1 | THR | 238 | 51.227 | 28.343 | 77.237 | 1.00 | 50.88 | AAA O  |
| ATOM | 2274 | CG2 | THR | 238 | 53.552 | 27.886 | 77.424 | 1.00 | 34.84 | AAA C  |

09/555275

PCT/AU98/00998

WO 99/28347

## 23/58

|      |      |     |     |     |        |        |        |      |       |        |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 2275 | C   | THR | 238 | 51.273 | 29.875 | 75.678 | 1.00 | 42.59 | AAAA C |
| ATOM | 2276 | O   | THR | 238 | 50.669 | 30.864 | 75.502 | 1.00 | 42.51 | AAAA O |
| ATOM | 2277 | H   | TIR | 239 | 51.051 | 29.488 | 73.832 | 1.00 | 42.62 | AAAA H |
| ATOM | 2278 | CA  | TIR | 239 | 49.949 | 29.959 | 73.024 | 1.00 | 41.87 | AAA C  |
| ATOM | 2280 | CB  | TIR | 239 | 50.457 | 30.907 | 71.931 | 1.00 | 44.86 | AAA C  |
| ATOM | 2281 | CG  | TIR | 239 | 51.099 | 32.125 | 72.564 | 1.00 | 42.05 | AAA C  |
| ATOM | 2282 | CD1 | TIR | 239 | 52.467 | 32.086 | 72.815 | 1.00 | 39.41 | AAA C  |
| ATOM | 2283 | CE1 | TIR | 239 | 53.092 | 33.152 | 73.415 | 1.00 | 43.27 | AAA C  |
| ATOM | 2284 | CD2 | TIR | 239 | 50.376 | 33.230 | 72.923 | 1.00 | 44.15 | AAA C  |
| ATOM | 2285 | CE2 | TIR | 239 | 50.972 | 34.310 | 73.536 | 1.00 | 46.22 | AAA C  |
| ATOM | 2286 | CS  | TIR | 239 | 52.339 | 34.243 | 73.779 | 1.00 | 50.40 | AAA C  |
| ATOM | 2287 | OH  | TIR | 239 | 53.013 | 35.289 | 74.387 | 1.00 | 55.47 | AAA C  |
| ATOM | 2288 | C   | TIR | 239 | 19.232 | 28.813 | 72.315 | 1.00 | 45.54 | AAA C  |
| ATOM | 2289 | O   | TIR | 239 | 49.922 | 27.810 | 72.021 | 1.00 | 46.66 | AAA C  |
| ATOM | 2291 | H   | ARG | 240 | 47.895 | 28.990 | 72.126 | 1.00 | 40.62 | AAA H  |
| ATOM | 2293 | CA  | ARG | 240 | 47.177 | 27.892 | 71.426 | 1.00 | 38.78 | AAA C  |
| ATOM | 2294 | CB  | ARG | 240 | 45.675 | 28.127 | 71.152 | 1.00 | 39.77 | AAA C  |
| ATOM | 2295 | CG  | ARG | 240 | 45.116 | 28.944 | 72.588 | 1.00 | 43.37 | AAA C  |
| ATOM | 2296 | CD  | ARG | 240 | 43.573 | 28.957 | 72.883 | 1.00 | 38.60 | AAA C  |
| ATOM | 2297 | NH  | ARG | 240 | 13.114 | 29.683 | 71.455 | 1.00 | 53.95 | AAA H  |
| ATOM | 2299 | CC  | ARG | 240 | 43.123 | 31.015 | 71.530 | 1.00 | 48.07 | AAA C  |
| ATOM | 2300 | NH1 | ARG | 240 | 43.513 | 31.562 | 72.668 | 1.00 | 47.65 | AAA N  |
| ATOM | 2303 | NH2 | ARG | 240 | 42.788 | 31.778 | 70.533 | 1.00 | 51.03 | AAA N  |
| ATOM | 2306 | C   | ARG | 240 | 47.627 | 27.737 | 69.379 | 1.00 | 31.72 | AAA C  |
| ATOM | 2307 | O   | ARG | 240 | 47.937 | 28.730 | 69.302 | 1.00 | 32.37 | AAA O  |
| ATOM | 2308 | H   | PHE | 241 | 47.779 | 26.542 | 69.549 | 1.00 | 27.95 | AAA H  |
| ATOM | 2310 | CA  | PHE | 241 | 48.182 | 26.269 | 68.183 | 1.00 | 30.41 | AAA C  |
| ATOM | 2311 | CB  | PHE | 241 | 49.678 | 25.940 | 68.151 | 1.00 | 34.83 | AAA C  |
| ATOM | 2312 | CG  | PHE | 241 | 50.235 | 25.653 | 66.773 | 1.00 | 26.84 | AAA C  |
| ATOM | 2313 | CD1 | PHE | 241 | 50.165 | 26.567 | 65.753 | 1.00 | 25.31 | AAA C  |
| ATOM | 2314 | CD2 | PHE | 241 | 50.785 | 24.417 | 66.573 | 1.00 | 27.38 | AAA C  |
| ATOM | 2315 | CE1 | PHE | 241 | 50.676 | 26.232 | 64.509 | 1.00 | 37.24 | AAA C  |
| ATOM | 2316 | CE2 | PHE | 241 | 51.294 | 24.101 | 65.320 | 1.00 | 38.45 | AAA C  |
| ATOM | 2317 | CG  | PHE | 241 | 51.281 | 25.010 | 64.281 | 1.00 | 21.17 | AAA C  |
| ATOM | 2318 | C   | PHE | 241 | 47.382 | 25.089 | 67.521 | 1.00 | 35.77 | AAA C  |
| ATOM | 2319 | O   | PHE | 241 | 47.543 | 24.013 | 68.186 | 1.00 | 36.77 | AAA O  |
| ATOM | 2320 | H   | GLU | 242 | 46.738 | 25.301 | 66.468 | 1.00 | 32.30 | AAA H  |
| ATOM | 2322 | CA  | GLU | 242 | 45.964 | 24.269 | 65.805 | 1.00 | 35.43 | AAA C  |
| ATOM | 2323 | CB  | GLU | 242 | 46.953 | 23.144 | 65.472 | 1.00 | 37.98 | AAA C  |
| ATOM | 2324 | CG  | GLU | 242 | 47.867 | 23.415 | 64.314 | 1.00 | 38.63 | AAA C  |
| ATOM | 2325 | CD  | GLU | 242 | 47.207 | 23.965 | 63.075 | 1.00 | 39.27 | AAA C  |
| ATOM | 2326 | OE1 | GLU | 242 | 46.380 | 23.205 | 62.517 | 1.00 | 42.79 | AAA O  |
| ATOM | 2327 | OE2 | GLU | 242 | 47.354 | 25.109 | 62.626 | 1.00 | 36.36 | AAA O  |
| ATOM | 2328 | C   | GLU | 242 | 44.752 | 23.771 | 66.600 | 1.00 | 34.36 | AAA C  |
| ATOM | 2329 | O   | GLU | 242 | 44.390 | 22.611 | 66.511 | 1.00 | 28.53 | AAA O  |
| ATOM | 2330 | H   | GLY | 243 | 44.135 | 24.589 | 67.449 | 1.00 | 36.94 | AAA H  |
| ATOM | 2332 | CA  | GLY | 243 | 43.048 | 24.154 | 68.303 | 1.00 | 34.57 | AAA C  |
| ATOM | 2333 | C   | GLY | 243 | 43.428 | 23.107 | 69.319 | 1.00 | 37.76 | AAA C  |
| ATOM | 2334 | O   | GLY | 243 | 42.474 | 22.473 | 69.746 | 1.00 | 43.00 | AAA O  |
| ATOM | 2335 | H   | TRP | 244 | 44.637 | 22.636 | 69.611 | 1.00 | 39.53 | AAA H  |
| ATOM | 2337 | CA  | TRP | 244 | 44.797 | 21.536 | 70.566 | 1.00 | 40.85 | AAA C  |
| ATOM | 2338 | CB  | TRP | 244 | 44.774 | 20.271 | 69.764 | 1.00 | 26.76 | AAA C  |
| ATOM | 2339 | CG  | TRP | 244 | 46.012 | 19.885 | 69.028 | 1.00 | 43.19 | AAA C  |
| ATOM | 2340 | CD2 | TRP | 244 | 47.019 | 19.983 | 69.498 | 1.00 | 39.55 | AAA C  |
| ATOM | 2341 | CE2 | TRP | 244 | 47.998 | 19.906 | 68.489 | 1.00 | 36.50 | AAA C  |
| ATOM | 2342 | CE3 | TRP | 244 | 47.186 | 18.254 | 70.692 | 1.00 | 32.18 | AAA C  |
| ATOM | 2343 | CD1 | TRP | 244 | 46.424 | 20.308 | 67.779 | 1.00 | 43.37 | AAA C  |
| ATOM | 2344 | NE1 | TRP | 244 | 47.595 | 19.727 | 67.469 | 1.00 | 38.89 | AAA N  |
| ATOM | 2346 | CG2 | TRP | 244 | 49.150 | 18.128 | 68.620 | 1.00 | 39.01 | AAA C  |
| ATOM | 2347 | CG3 | TRP | 244 | 48.336 | 17.478 | 70.815 | 1.00 | 43.98 | AAA C  |
| ATOM | 2348 | CH2 | TRP | 244 | 49.302 | 17.425 | 69.784 | 1.00 | 42.50 | AAA C  |
| ATOM | 2349 | C   | TRP | 244 | 45.998 | 21.517 | 71.509 | 1.00 | 42.98 | AAA C  |
| ATOM | 2350 | O   | TRP | 244 | 46.253 | 20.501 | 72.146 | 1.00 | 42.70 | AAA O  |
| ATOM | 2351 | H   | ARG | 245 | 46.888 | 22.485 | 71.435 | 1.00 | 44.16 | AAA H  |
| ATOM | 2353 | CA  | ARG | 245 | 48.168 | 22.472 | 72.095 | 1.00 | 46.47 | AAA C  |
| ATOM | 2354 | CB  | ARG | 245 | 49.203 | 21.602 | 71.367 | 1.00 | 47.30 | AAA C  |
| ATOM | 2355 | CG  | ARG | 245 | 49.985 | 22.309 | 70.203 | 1.00 | 48.97 | AAA C  |
| ATOM | 2356 | CD  | ARG | 245 | 51.129 | 21.552 | 69.819 | 1.00 | 39.28 | AAA C  |
| ATOM | 2357 | NH  | ARG | 245 | 51.586 | 21.665 | 68.444 | 1.00 | 50.86 | AAA H  |
| ATOM | 2359 | CS  | ARG | 245 | 50.629 | 21.044 | 67.895 | 1.00 | 46.73 | AAA C  |
| ATOM | 2360 | IH1 | ARG | 245 | 53.344 | 20.236 | 68.653 | 1.00 | 50.15 | AAA H  |
| ATOM | 2363 | IH2 | ARG | 245 | 53.072 | 21.126 | 66.638 | 1.00 | 41.69 | AAA H  |
| ATOM | 2366 | C   | ARG | 245 | 48.771 | 23.863 | 72.271 | 1.00 | 46.01 | AAA C  |
| ATOM | 2367 | O   | ARG | 245 | 48.394 | 21.793 | 71.541 | 1.00 | 47.44 | AAA O  |
| ATOM | 2368 | H   | CYS | 246 | 49.625 | 23.881 | 73.317 | 1.00 | 42.08 | AAA H  |
| ATOM | 2370 | CA  | CYS | 246 | 50.246 | 25.199 | 73.628 | 1.00 | 43.48 | AAA C  |
| ATOM | 2371 | C   | CYS | 246 | 51.695 | 25.217 | 73.183 | 1.00 | 43.38 | AAA C  |
| ATOM | 2372 | O   | CYS | 246 | 52.476 | 24.239 | 73.320 | 1.00 | 42.51 | AAA O  |
| ATOM | 2373 | CB  | CYS | 246 | 50.102 | 25.392 | 75.138 | 1.00 | 48.91 | AAA C  |
| ATOM | 2374 | SG  | CYS | 246 | 48.386 | 25.049 | 75.797 | 1.00 | 43.68 | AAA S  |
| ATOM | 2375 | H   | VAL | 247 | 52.121 | 26.288 | 72.564 | 1.00 | 41.21 | AAA H  |
| ATOM | 2377 | CA  | VAL | 247 | 53.417 | 26.468 | 71.982 | 1.00 | 36.51 | AAA C  |
| ATOM | 2378 | CB  | VAL | 247 | 53.569 | 26.357 | 70.444 | 1.00 | 36.87 | AAA C  |
| ATOM | 2379 | CG1 | VAL | 247 | 53.089 | 24.988 | 70.024 | 1.00 | 32.71 | AAA C  |
| ATOM | 2380 | CG2 | VAL | 247 | 53.129 | 27.602 | 69.729 | 1.00 | 28.20 | AAA C  |

09/555275

PCT/AU98/00998

WO 99/28347

24/58

|      |      |     |     |     |        |        |        |      |       |        |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 2381 | C   | VAL | 217 | 53.962 | 27.312 | 72.373 | 1.00 | 39.37 | AAAA C |
| ATOM | 2382 | O   | VAL | 217 | 53.230 | 28.770 | 72.540 | 1.00 | 38.80 | AAAA O |
| ATOM | 2383 | H   | ASP | 248 | 55.291 | 27.820 | 72.711 | 1.00 | 45.21 | AAAA H |
| ATOM | 2385 | CA  | ASP | 248 | 55.895 | 29.115 | 73.098 | 1.00 | 40.19 | AAAA C |
| ATOM | 2386 | CB  | ASP | 248 | 57.091 | 28.946 | 73.953 | 1.00 | 42.63 | AAAA C |
| ATOM | 2397 | CG  | ASP | 248 | 58.126 | 27.997 | 73.394 | 1.00 | 58.81 | AAAA C |
| ATOM | 2398 | OD1 | ASP | 248 | 59.067 | 27.795 | 74.187 | 1.00 | 53.06 | AAAA O |
| ATOM | 2389 | OD2 | ASP | 248 | 58.167 | 27.395 | 72.313 | 1.00 | 69.51 | AAAA O |
| ATOM | 2390 | C   | ASP | 248 | 56.315 | 29.883 | 71.839 | 1.00 | 36.99 | AAA C  |
| ATOM | 2391 | O   | ASP | 248 | 56.292 | 29.288 | 70.772 | 1.00 | 39.70 | AAA O  |
| ATOM | 2392 | H   | ARG | 249 | 56.545 | 31.163 | 71.918 | 1.00 | 30.72 | AAA H  |
| ATOM | 2394 | CA  | ARG | 249 | 56.950 | 32.057 | 70.906 | 1.00 | 36.17 | AAA C  |
| ATOM | 2395 | CB  | ARG | 249 | 57.223 | 33.185 | 71.491 | 1.00 | 21.29 | AAA C  |
| ATOM | 2396 | CG  | ARG | 249 | 57.594 | 34.424 | 70.326 | 1.00 | 24.96 | AAA C  |
| ATOM | 2397 | CD  | ARG | 249 | 57.814 | 35.811 | 70.843 | 1.00 | 21.23 | AAA C  |
| ATOM | 2398 | HE  | ARG | 249 | 56.658 | 36.150 | 71.682 | 1.00 | 39.75 | AAA H  |
| ATOM | 2400 | CC  | ARG | 249 | 55.632 | 36.823 | 71.101 | 1.00 | 39.35 | AAA C  |
| ATOM | 2401 | HH1 | ARG | 249 | 55.642 | 37.118 | 69.801 | 1.00 | 25.41 | AAA H  |
| ATOM | 2404 | HH2 | ARG | 249 | 54.641 | 37.118 | 71.946 | 1.00 | 44.04 | AAA H  |
| ATOM | 2407 | C   | ARG | 219 | 58.134 | 31.685 | 70.910 | 1.00 | 49.63 | AAA C  |
| ATOM | 2408 | O   | ARG | 249 | 58.086 | 31.923 | 68.727 | 1.00 | 44.79 | AAA O  |
| ATOM | 2409 | H   | ASP | 250 | 59.149 | 30.974 | 70.168 | 1.00 | 41.87 | AAA H  |
| ATOM | 2411 | CA  | ASP | 250 | 60.287 | 30.739 | 69.606 | 1.00 | 46.90 | AAA C  |
| ATOM | 2412 | CB  | ASP | 250 | 61.740 | 30.726 | 70.154 | 1.00 | 53.11 | AAA C  |
| ATOM | 2413 | CG  | ASP | 250 | 62.421 | 32.122 | 70.981 | 1.00 | 71.49 | AAA C  |
| ATOM | 2414 | OD1 | ASP | 250 | 63.124 | 32.682 | 69.176 | 1.00 | 58.53 | AAA O  |
| ATOM | 2415 | OD2 | ASP | 250 | 62.272 | 32.928 | 71.071 | 1.00 | 70.30 | AAA O  |
| ATOM | 2416 | C   | ASP | 250 | 59.881 | 29.536 | 68.771 | 1.00 | 41.22 | AAA C  |
| ATOM | 2417 | O   | ASP | 250 | 59.291 | 29.443 | 67.616 | 1.00 | 39.06 | AAA O  |
| ATOM | 2418 | H   | PHE | 251 | 59.116 | 28.609 | 69.299 | 1.00 | 36.13 | AAA H  |
| ATOM | 2420 | CA  | PHE | 251 | 58.457 | 27.601 | 69.489 | 1.00 | 34.88 | AAA C  |
| ATOM | 2421 | CB  | PHE | 251 | 57.468 | 26.746 | 69.256 | 1.00 | 29.82 | AAA C  |
| ATOM | 2422 | CG  | PHE | 251 | 56.761 | 25.801 | 68.385 | 1.00 | 41.50 | AAA C  |
| ATOM | 2423 | CD1 | PHE | 251 | 57.101 | 24.479 | 68.263 | 1.00 | 30.66 | AAA C  |
| ATOM | 2424 | CD2 | PHE | 251 | 55.559 | 26.213 | 67.686 | 1.00 | 37.78 | AAA C  |
| ATOM | 2425 | CE1 | PHE | 251 | 56.414 | 23.597 | 67.424 | 1.00 | 29.30 | AAA C  |
| ATOM | 2426 | CE2 | PHE | 251 | 54.847 | 25.372 | 66.856 | 1.00 | 36.09 | AAA C  |
| ATOM | 2427 | CS  | PHE | 251 | 55.294 | 24.070 | 66.715 | 1.00 | 36.21 | AAA C  |
| ATOM | 2428 | C   | PHE | 251 | 57.624 | 28.290 | 67.338 | 1.00 | 39.28 | AAA C  |
| ATOM | 2429 | O   | PHE | 251 | 57.811 | 28.010 | 66.144 | 1.00 | 30.27 | AAA O  |
| ATOM | 2430 | H   | CYS | 252 | 56.734 | 29.225 | 67.713 | 1.00 | 35.13 | AAA H  |
| ATOM | 2432 | CA  | CYS | 252 | 55.895 | 29.870 | 66.728 | 1.00 | 38.80 | AAA C  |
| ATOM | 2433 | C   | CYS | 252 | 56.827 | 30.598 | 65.747 | 1.00 | 44.73 | AAA C  |
| ATOM | 2434 | O   | CYS | 252 | 56.552 | 30.534 | 64.536 | 1.00 | 43.20 | AAA O  |
| ATOM | 2435 | CB  | CYS | 252 | 54.903 | 30.778 | 67.379 | 1.00 | 35.65 | AAA C  |
| ATOM | 2436 | SG  | CYS | 252 | 53.562 | 31.544 | 66.459 | 1.00 | 39.03 | AAA S  |
| ATOM | 2437 | H   | ALA | 253 | 57.872 | 31.256 | 66.285 | 1.00 | 41.53 | AAA H  |
| ATOM | 2439 | CA  | ALA | 253 | 58.687 | 32.071 | 65.415 | 1.00 | 40.39 | AAA C  |
| ATOM | 2440 | CB  | ALA | 253 | 59.529 | 33.089 | 66.172 | 1.00 | 36.07 | AAA C  |
| ATOM | 2441 | C   | ALA | 253 | 59.551 | 31.167 | 64.539 | 1.00 | 42.88 | AAA C  |
| ATOM | 2442 | O   | ALA | 253 | 60.147 | 31.735 | 63.640 | 1.00 | 47.42 | AAA O  |
| ATOM | 2443 | H   | ASH | 254 | 59.657 | 29.859 | 64.702 | 1.00 | 38.75 | AAA H  |
| ATOM | 2445 | CA  | ASH | 254 | 60.546 | 29.073 | 63.929 | 1.00 | 42.94 | AAA C  |
| ATOM | 2446 | CB  | ASH | 254 | 61.667 | 28.497 | 64.847 | 1.00 | 48.09 | AAA C  |
| ATOM | 2447 | CG  | ASH | 254 | 62.696 | 29.635 | 65.031 | 1.00 | 49.54 | AAA C  |
| ATOM | 2448 | OD1 | ASH | 254 | 63.468 | 29.840 | 64.081 | 1.00 | 61.38 | AAA O  |
| ATOM | 2449 | ND2 | ASH | 254 | 62.607 | 30.321 | 65.144 | 1.00 | 48.38 | AAA H  |
| ATOM | 2452 | C   | ASH | 254 | 59.907 | 27.959 | 63.135 | 1.00 | 53.72 | AAA C  |
| ATOM | 2453 | O   | ASH | 254 | 60.552 | 26.965 | 62.804 | 1.00 | 51.19 | AAA O  |
| ATOM | 2454 | H   | ILE | 255 | 58.612 | 28.136 | 62.766 | 1.00 | 57.77 | AAA H  |
| ATOM | 2456 | CA  | ILE | 255 | 57.828 | 27.107 | 62.134 | 1.00 | 53.28 | AAA C  |
| ATOM | 2457 | CB  | ILE | 255 | 56.329 | 27.322 | 62.304 | 1.00 | 50.41 | AAA C  |
| ATOM | 2458 | CG2 | ILE | 255 | 55.177 | 26.595 | 61.246 | 1.00 | 51.95 | AAA C  |
| ATOM | 2459 | CG1 | ILE | 255 | 55.778 | 26.675 | 63.553 | 1.00 | 40.59 | AAA C  |
| ATOM | 2460 | CD1 | ILE | 255 | 54.479 | 27.317 | 61.006 | 1.00 | 38.97 | AAA C  |
| ATOM | 2461 | C   | ILE | 255 | 58.127 | 26.886 | 60.651 | 1.00 | 52.62 | AAA C  |
| ATOM | 2462 | O   | ILE | 255 | 58.196 | 25.709 | 60.252 | 1.00 | 53.96 | AAA O  |
| ATOM | 2463 | H   | LEU | 256 | 58.290 | 27.960 | 59.918 | 1.00 | 49.96 | AAA H  |
| ATOM | 2465 | CA  | LEU | 256 | 58.680 | 27.764 | 58.516 | 1.00 | 63.68 | AAA C  |
| ATOM | 2466 | CB  | LEU | 256 | 58.175 | 29.012 | 57.799 | 1.00 | 56.80 | AAA C  |
| ATOM | 2467 | CG  | LEU | 256 | 56.671 | 29.196 | 57.864 | 1.00 | 59.11 | AAA C  |
| ATOM | 2468 | CD1 | LEU | 256 | 56.310 | 30.654 | 57.645 | 1.00 | 43.31 | AAA C  |
| ATOM | 2469 | CD2 | LEU | 256 | 55.965 | 28.222 | 56.928 | 1.00 | 55.88 | AAA C  |
| ATOM | 2470 | C   | LEU | 256 | 60.193 | 27.622 | 58.355 | 1.00 | 66.23 | AAA C  |
| ATOM | 2471 | O   | LEU | 256 | 60.691 | 27.511 | 57.245 | 1.00 | 70.29 | AAA O  |
| ATOM | 2472 | H   | SER | 257 | 60.942 | 27.569 | 59.430 | 1.00 | 64.61 | AAA H  |
| ATOM | 2474 | CA  | SER | 257 | 62.352 | 27.529 | 59.534 | 1.00 | 69.23 | AAA C  |
| ATOM | 2475 | CB  | SER | 257 | 62.924 | 27.318 | 60.955 | 1.00 | 62.45 | AAA C  |
| ATOM | 2476 | OG  | SER | 257 | 63.381 | 25.990 | 61.074 | 1.00 | 56.18 | AAA O  |
| ATOM | 2478 | C   | SER | 257 | 62.973 | 26.497 | 58.610 | 1.00 | 70.77 | AAA C  |
| ATOM | 2479 | O   | SER | 257 | 64.127 | 26.731 | 59.246 | 1.00 | 72.50 | AAA O  |
| ATOM | 2480 | H   | ALA | 258 | 62.322 | 25.399 | 58.320 | 1.00 | 74.61 | AAA H  |
| ATOM | 2482 | CA  | ALA | 258 | 62.933 | 24.488 | 57.313 | 1.00 | 76.34 | AAA C  |
| ATOM | 2483 | CB  | ALA | 258 | 62.570 | 23.039 | 57.584 | 1.00 | 80.82 | AAA C  |
| ATOM | 2484 | C   | ALA | 258 | 62.663 | 24.964 | 55.921 | 1.00 | 78.21 | AAA C  |

09/55275

WO 99/28347

PCT/AU98/00998

25/58

|       |      |     |     |     |        |        |        |             |        |
|-------|------|-----|-----|-----|--------|--------|--------|-------------|--------|
| ATCII | 2485 | O   | ALA | 259 | 52.980 | 34.130 | 55.020 | 1.00 79.60  | AAAA C |
| ATCII | 2486 | C   | GLU | 259 | 52.069 | 26.109 | 55.651 | 1.00 79.05  | AAAA N |
| ATCII | 2488 | CA  | GLU | 259 | 51.742 | 26.621 | 54.342 | 1.00 83.84  | AAAA C |
| ATCII | 2489 | CB  | GLU | 259 | 50.220 | 26.457 | 54.135 | 1.00 86.99  | AAAA C |
| ATCII | 2490 | CG  | GLU | 259 | 50.687 | 25.049 | 54.314 | 1.00 89.38  | AAAA C |
| ATCII | 2491 | CD  | GLU | 259 | 58.364 | 25.032 | 55.057 | 1.00 97.77  | AAAA C |
| ATCII | 2492 | OE1 | GLU | 259 | 58.080 | 24.088 | 55.833 | 1.00 101.45 | AAAA C |
| ATCII | 2493 | OE2 | GLU | 259 | 57.598 | 26.002 | 54.837 | 1.00 94.58  | AAAA O |
| ATCII | 2494 | C   | GLU | 259 | 62.117 | 28.078 | 54.083 | 1.00 85.43  | AAAA C |
| ATCII | 2495 | O   | GLU | 259 | 62.059 | 29.009 | 54.903 | 1.00 88.01  | AAAA O |
| ATCII | 2496 | H   | SER | 260 | 62.298 | 28.338 | 52.799 | 1.00 84.66  | AAAA N |
| ATCII | 2498 | CA  | SER | 260 | 62.725 | 29.625 | 52.254 | 1.00 84.03  | AAAA C |
| ATCII | 2499 | CB  | SER | 260 | 63.753 | 29.269 | 51.173 | 1.00 87.24  | AAAA C |
| ATCII | 2500 | OG  | SER | 260 | 63.306 | 29.419 | 49.835 | 1.00 93.65  | AAAA O |
| ATCII | 2502 | C   | SER | 260 | 61.558 | 30.466 | 51.789 | 1.00 80.84  | AAAA C |
| ATCII | 2503 | O   | SER | 260 | 61.496 | 30.889 | 50.635 | 1.00 81.31  | AAAA O |
| ATCII | 2504 | H   | SER | 261 | 60.617 | 30.785 | 52.685 | 1.00 78.56  | AAAA N |
| ATCII | 2506 | CA  | SER | 261 | 59.423 | 31.549 | 52.309 | 1.00 72.13  | AAAA C |
| ATCII | 2507 | CB  | SER | 261 | 58.179 | 31.297 | 53.170 | 1.00 67.30  | AAAA C |
| ATCII | 2508 | OG  | SER | 261 | 57.436 | 30.334 | 52.151 | 1.00 74.74  | AAAA C |
| ATCII | 2510 | C   | SER | 261 | 59.683 | 33.032 | 52.318 | 1.00 66.90  | AAAA C |
| ATCII | 2511 | O   | SER | 261 | 60.048 | 33.588 | 53.334 | 1.00 63.24  | AAAA O |
| ATCII | 2512 | N   | ASP | 262 | 59.364 | 33.659 | 51.204 | 1.00 65.30  | AAAA N |
| ATOM  | 2514 | CA  | ASP | 262 | 59.358 | 35.071 | 50.915 | 1.00 58.55  | AAAA C |
| ATOM  | 2515 | CB  | ASP | 262 | 59.268 | 35.285 | 49.400 | 1.00 64.85  | AAAA C |
| ATOM  | 2516 | CG  | ASP | 262 | 59.389 | 36.713 | 48.931 | 1.00 76.42  | AAAA C |
| ATOM  | 2517 | OD1 | ASP | 262 | 59.473 | 37.708 | 49.701 | 1.00 79.81  | AAAA O |
| ATOM  | 2518 | OD2 | ASP | 262 | 59.404 | 36.873 | 47.571 | 1.00 80.46  | AAAA O |
| ATOM  | 2519 | C   | ASP | 262 | 58.121 | 35.706 | 51.509 | 1.00 56.88  | AAAA C |
| ATOM  | 2520 | O   | ASP | 262 | 57.851 | 36.919 | 51.516 | 1.00 52.49  | AAAA C |
| ATOM  | 2521 | H   | SER | 263 | 57.259 | 34.849 | 52.119 | 1.00 53.43  | AAAA N |
| ATOM  | 2523 | CA  | SER | 263 | 56.047 | 35.352 | 52.734 | 1.00 52.84  | AAAA C |
| ATOM  | 2524 | CB  | SER | 263 | 55.020 | 34.245 | 52.385 | 1.00 46.60  | AAAA C |
| ATOM  | 2525 | OG  | SER | 263 | 55.149 | 33.348 | 51.791 | 1.00 66.80  | AAAA O |
| ATOM  | 2527 | C   | SER | 263 | 56.310 | 35.965 | 54.117 | 1.00 49.52  | AAAA C |
| ATOM  | 2528 | O   | SER | 263 | 57.396 | 35.737 | 54.709 | 1.00 42.33  | AAAA O |
| ATOM  | 2529 | H   | GLU | 264 | 55.320 | 36.783 | 54.510 | 1.00 38.93  | AAAA N |
| ATOM  | 2531 | CA  | GLU | 264 | 55.362 | 37.222 | 55.921 | 1.00 36.70  | AAAA C |
| ATOM  | 2532 | CB  | GLU | 264 | 54.359 | 38.337 | 56.208 | 1.00 43.71  | AAAA C |
| ATCII | 2533 | CG  | GLU | 264 | 54.575 | 39.482 | 55.218 | 1.00 37.74  | AAAA C |
| ATCII | 2534 | CD  | GLU | 264 | 55.374 | 40.632 | 55.793 | 1.00 34.36  | AAAA C |
| ATOM  | 2535 | OE1 | GLU | 264 | 55.493 | 40.600 | 57.034 | 1.00 41.55  | AAAA O |
| ATOM  | 2536 | OE2 | GLU | 264 | 55.832 | 41.576 | 55.146 | 1.00 39.60  | AAAA O |
| ATOM  | 2537 | C   | GLU | 264 | 55.098 | 36.056 | 56.827 | 1.00 35.84  | AAAA C |
| ATOM  | 2538 | O   | GLU | 264 | 54.368 | 35.151 | 56.355 | 1.00 39.60  | AAA O  |
| ATOM  | 2539 | H   | GLT | 265 | 55.801 | 35.938 | 57.962 | 1.00 35.64  | AAAA N |
| ATCII | 2541 | CA  | GLY | 265 | 55.671 | 34.690 | 58.727 | 1.00 40.30  | AAAA C |
| ATCII | 2542 | C   | GLY | 265 | 54.622 | 34.716 | 59.829 | 1.00 39.51  | AAAA C |
| ATOM  | 2543 | O   | GLY | 265 | 53.951 | 35.699 | 60.135 | 1.00 37.20  | AAAA O |
| ATOM  | 2544 | H   | PHE | 266 | 54.537 | 33.569 | 60.516 | 1.00 35.75  | AAAA N |
| ATOM  | 2546 | CA  | PHE | 266 | 53.637 | 33.434 | 61.625 | 1.00 33.70  | AAAA C |
| ATCII | 2547 | CB  | PHE | 266 | 53.924 | 32.155 | 62.386 | 1.00 28.20  | AAAA C |
| ATOM  | 2548 | CG  | PHE | 266 | 53.356 | 30.958 | 61.571 | 1.00 37.07  | AAAA C |
| ATCII | 2549 | CD1 | PHE | 266 | 53.760 | 30.618 | 60.377 | 1.00 34.72  | AAAA C |
| ATCII | 2550 | CD2 | PHE | 266 | 52.383 | 30.195 | 62.313 | 1.00 25.65  | AAAA C |
| ATCII | 2551 | CE1 | PHE | 266 | 53.228 | 29.506 | 59.760 | 1.00 37.72  | AAAA C |
| ATCII | 2552 | CE2 | PHE | 266 | 51.879 | 29.094 | 61.672 | 1.00 24.63  | AAAA C |
| ATOM  | 2553 | C   | PHE | 266 | 52.260 | 28.708 | 60.402 | 1.00 23.58  | AAAA C |
| ATOM  | 2554 | C   | PHE | 266 | 53.571 | 34.570 | 62.608 | 1.00 35.82  | AAAA C |
| ATOM  | 2555 | O   | PHE | 266 | 54.446 | 35.372 | 62.279 | 1.00 39.23  | AAAA O |
| ATOM  | 2556 | H   | VAL | 267 | 52.360 | 34.763 | 63.161 | 1.00 37.10  | AAAA N |
| ATOM  | 2558 | CA  | VAL | 267 | 52.118 | 35.812 | 64.113 | 1.00 36.09  | AAA C  |
| ATOM  | 2559 | CB  | VAL | 267 | 51.315 | 35.974 | 63.567 | 1.00 39.01  | AAA C  |
| ATOM  | 2560 | CG1 | VAL | 267 | 51.626 | 37.601 | 62.230 | 1.00 31.16  | AAAA C |
| ATOM  | 2561 | CG2 | VAL | 267 | 49.890 | 36.400 | 63.570 | 1.00 36.88  | AAAA C |
| ATOM  | 2562 | C   | VAL | 267 | 51.506 | 35.260 | 65.406 | 1.00 33.55  | AAAA C |
| ATOM  | 2563 | O   | VAL | 267 | 51.202 | 34.098 | 65.515 | 1.00 32.41  | AAA C  |
| ATOM  | 2564 | H   | ILE | 268 | 51.539 | 36.088 | 66.477 | 1.00 35.98  | AAA C  |
| ATOM  | 2566 | CA  | ILE | 268 | 50.867 | 35.573 | 67.691 | 1.00 39.79  | AAA C  |
| ATOM  | 2567 | CB  | ILE | 268 | 51.791 | 35.232 | 68.849 | 1.00 31.17  | AAA C  |
| ATOM  | 2568 | CG2 | ILE | 268 | 50.922 | 35.253 | 70.150 | 1.00 32.66  | AAA C  |
| ATOM  | 2569 | CG1 | ILE | 268 | 52.403 | 33.866 | 68.724 | 1.00 23.56  | AAA C  |
| ATCII | 2570 | CD1 | ILE | 268 | 53.421 | 33.546 | 69.806 | 1.00 25.93  | AAA C  |
| ATCII | 2571 | C   | ILE | 268 | 49.806 | 36.608 | 68.060 | 1.00 42.44  | AAA C  |
| ATCII | 2572 | O   | ILE | 268 | 50.116 | 37.767 | 68.327 | 1.00 39.99  | AAA O  |
| ATCII | 2573 | H   | HIS | 269 | 48.528 | 36.292 | 67.864 | 1.00 44.26  | AAA N  |
| ATCII | 2575 | CA  | HIS | 269 | 47.191 | 37.320 | 68.173 | 1.00 44.28  | AAA C  |
| ATCII | 2576 | CB  | HIS | 269 | 46.885 | 37.876 | 66.901 | 1.00 45.48  | AAA C  |
| ATCII | 2577 | CG  | HIS | 269 | 45.915 | 38.986 | 67.079 | 1.00 54.33  | AAA C  |
| ATCII | 2578 | CD2 | HIS | 269 | 41.551 | 39.014 | 67.096 | 1.00 46.61  | AAA C  |
| ATCII | 2579 | ND1 | HIS | 269 | 46.356 | 40.280 | 67.307 | 1.00 51.86  | AAA N  |
| ATCII | 2581 | CE1 | HIS | 269 | 46.202 | 41.057 | 67.437 | 1.00 55.17  | AAA C  |
| ATCII | 2582 | NE2 | HIS | 269 | 44.175 | 40.324 | 67.304 | 1.00 46.97  | AAA N  |
| ATCII | 2584 | C   | HIS | 269 | 46.123 | 36.740 | 69.074 | 1.00 45.54  | AAA C  |
| ATCII | 2585 | O   | HIS | 269 | 46.076 | 35.552 | 69.107 | 1.00 42.94  | AAA C  |

09/555275

PCT/AU98/00998

WO 99/28347

26/58

|      |      |     |     |     |        |        |        |            |        |
|------|------|-----|-----|-----|--------|--------|--------|------------|--------|
| ATOM | 2596 | H   | ASP | 270 | 45.950 | 37.506 | 70.059 | 1.00 40.80 | AAAA N |
| ATOM | 2598 | CA  | ASP | 270 | 44.948 | 37.025 | 71.001 | 1.00 48.03 | AAAA C |
| ATOM | 2599 | CB  | ASP | 270 | 43.573 | 37.014 | 70.339 | 1.00 63.63 | AAAA C |
| ATOM | 2600 | O   | ASP | 270 | 42.919 | 38.393 | 70.294 | 1.00 80.82 | AAAA C |
| ATOM | 2601 | OD1 | ASP | 270 | 41.737 | 38.379 | 69.835 | 1.00 90.92 | AAAA O |
| ATOM | 2602 | OD2 | ASP | 270 | 43.407 | 39.494 | 70.652 | 1.00 86.49 | AAAA O |
| ATOM | 2593 | C   | ASP | 270 | 45.226 | 35.667 | 71.594 | 1.00 44.66 | AAAA C |
| ATOM | 2594 | O   | ASP | 270 | 44.357 | 34.782 | 71.576 | 1.00 45.54 | AAAA O |
| ATOM | 2595 | H   | GLY | 271 | 46.477 | 35.379 | 71.924 | 1.00 41.63 | AAAA N |
| ATOM | 2597 | CA  | GLY | 271 | 46.839 | 34.117 | 72.506 | 1.00 37.20 | AAAA C |
| ATOM | 2598 | C   | GLY | 271 | 46.818 | 32.998 | 71.537 | 1.00 39.18 | AAAA C |
| ATOM | 2599 | O   | GLY | 271 | 46.775 | 31.865 | 72.039 | 1.00 46.56 | AAAA O |
| ATOM | 2600 | H   | GLU | 272 | 47.015 | 33.292 | 70.251 | 1.00 41.49 | AAAA N |
| ATOM | 2602 | CA  | GLU | 272 | 47.108 | 32.092 | 69.371 | 1.00 43.56 | AAAA C |
| ATOM | 2603 | CB  | GLU | 272 | 45.752 | 31.737 | 68.876 | 1.00 37.58 | AAAA C |
| ATOM | 2604 | O   | GLU | 272 | 45.774 | 30.600 | 67.839 | 1.00 45.30 | AAAA C |
| ATOM | 2605 | CD  | GLU | 272 | 44.413 | 30.528 | 67.142 | 1.00 36.92 | AAAA C |
| ATOM | 2606 | OE1 | GLU | 272 | 43.515 | 31.345 | 67.533 | 1.00 48.41 | AAAA O |
| ATOM | 2607 | OEC | GLU | 272 | 44.323 | 29.696 | 66.386 | 1.00 44.10 | AAAA O |
| ATOM | 2608 | C   | GLU | 272 | 48.211 | 32.324 | 68.335 | 1.00 49.32 | AAAA C |
| ATOM | 2609 | O   | GLU | 272 | 48.445 | 33.447 | 67.896 | 1.00 37.04 | AAAA O |
| ATOM | 2610 | H   | CYS | 273 | 48.942 | 31.237 | 68.138 | 1.00 38.83 | AAAAN  |
| ATOM | 2612 | CA  | CYS | 273 | 50.046 | 31.187 | 67.108 | 1.00 40.27 | AAAA C |
| ATOM | 2613 | C   | CYS | 273 | 49.321 | 30.810 | 65.883 | 1.00 42.16 | AAAA C |
| ATOM | 2614 | O   | CYS | 273 | 48.713 | 29.712 | 65.831 | 1.00 40.86 | AAAA O |
| ATOM | 2615 | CB  | CYS | 273 | 51.099 | 30.148 | 67.529 | 1.00 40.21 | AAAA C |
| ATOM | 2616 | SG  | CYS | 273 | 52.337 | 29.825 | 66.260 | 1.00 39.79 | AAAAS  |
| ATOM | 2617 | H   | MET | 274 | 49.373 | 31.749 | 64.933 | 1.00 33.70 | AAAAN  |
| ATOM | 2619 | CA  | MET | 274 | 48.586 | 31.351 | 63.720 | 1.00 36.68 | AAAA C |
| ATOM | 2620 | CB  | MET | 274 | 47.136 | 31.861 | 63.847 | 1.00 29.11 | AAAA C |
| ATOM | 2621 | CG  | MET | 274 | 46.923 | 33.379 | 63.691 | 1.00 36.51 | AAAA C |
| ATOM | 2622 | SD  | MET | 274 | 45.477 | 33.921 | 64.677 | 1.00 40.00 | AAAAS  |
| ATOM | 2623 | CE  | MET | 274 | 45.659 | 35.658 | 64.754 | 1.00 22.47 | AAAA C |
| ATOM | 2624 | C   | MET | 274 | 49.426 | 31.990 | 62.608 | 1.00 39.35 | AAAA C |
| ATOM | 2625 | O   | MET | 274 | 50.167 | 32.880 | 62.672 | 1.00 41.00 | AAAA O |
| ATOM | 2626 | H   | GLN | 275 | 49.378 | 31.353 | 61.428 | 1.00 42.55 | AAAAN  |
| ATOM | 2628 | CA  | GLN | 275 | 50.041 | 31.834 | 60.232 | 1.00 37.69 | AAAA C |
| ATOM | 2629 | CB  | GLN | 275 | 49.618 | 30.765 | 59.242 | 1.00 34.01 | AAAA C |
| ATOM | 2630 | CG  | GLN | 275 | 49.329 | 31.274 | 57.854 | 1.00 56.40 | AAAA C |
| ATOM | 2631 | CD  | GLN | 275 | 49.275 | 30.190 | 56.812 | 1.00 66.46 | AAAA C |
| ATOM | 2632 | OE1 | GLN | 275 | 49.941 | 29.151 | 56.910 | 1.00 67.24 | AAAA O |
| ATOM | 2633 | NE2 | GLN | 275 | 48.451 | 30.436 | 55.799 | 1.00 78.29 | AAAAN  |
| ATOM | 2636 | C   | GLN | 275 | 49.721 | 33.195 | 59.720 | 1.00 35.41 | AAAA C |
| ATOM | 2637 | O   | GLN | 275 | 50.526 | 33.831 | 59.064 | 1.00 35.95 | AAAA O |
| ATOM | 2638 | H   | GLU | 276 | 18.566 | 33.754 | 60.056 | 1.00 41.70 | AAAAN  |
| ATOM | 2640 | CA  | GLU | 276 | 48.222 | 35.080 | 59.571 | 1.00 43.96 | AAAA C |
| ATOM | 2641 | CB  | GLU | 276 | 47.387 | 34.884 | 58.245 | 1.00 42.40 | AAAA C |
| ATOM | 2642 | CG  | GLU | 276 | 47.154 | 36.269 | 57.650 | 1.00 53.84 | AAAA C |
| ATOM | 2643 | CD  | GLU | 276 | 48.359 | 37.198 | 57.460 | 1.00 61.37 | AAAA C |
| ATOM | 2644 | OE1 | GLU | 276 | 49.356 | 36.595 | 56.943 | 1.00 67.32 | AAAA O |
| ATOM | 2645 | OE2 | GLU | 276 | 18.242 | 38.411 | 57.811 | 1.00 45.10 | AAAA C |
| ATOM | 2646 | C   | GLU | 276 | 17.444 | 35.935 | 60.540 | 1.00 39.74 | AAAA C |
| ATOM | 2647 | O   | GLU | 276 | 16.760 | 35.449 | 61.444 | 1.00 45.06 | AAAA O |
| ATOM | 2648 | H   | CYS | 277 | 47.495 | 37.235 | 60.500 | 1.00 38.69 | AAAAN  |
| ATOM | 2650 | CA  | CYS | 277 | 46.718 | 38.089 | 61.332 | 1.00 46.11 | AAAA C |
| ATOM | 2651 | C   | CYS | 277 | 45.205 | 37.938 | 60.994 | 1.00 52.70 | AAAA C |
| ATOM | 2652 | O   | CYS | 277 | 44.760 | 37.511 | 59.836 | 1.00 49.43 | AAAA O |
| ATOM | 2653 | CB  | CYS | 277 | 47.039 | 39.537 | 61.111 | 1.00 45.56 | AAAA C |
| ATOM | 2654 | SG  | CYS | 277 | 48.629 | 40.083 | 61.645 | 1.00 52.86 | AAAAS  |
| ATOM | 2655 | H   | PRO | 278 | 44.380 | 38.261 | 61.993 | 1.00 54.63 | AAAAN  |
| ATOM | 2656 | CD  | PRO | 278 | 44.824 | 38.778 | 63.311 | 1.00 57.20 | AAAA C |
| ATOM | 2657 | CA  | PRO | 278 | 42.946 | 38.185 | 61.899 | 1.00 55.80 | AAAA C |
| ATOM | 2658 | CB  | PRO | 278 | 12.445 | 38.635 | 63.267 | 1.00 55.61 | AAAA C |
| ATOM | 2659 | CG  | PRO | 278 | 43.605 | 38.670 | 64.153 | 1.00 55.58 | AAAA C |
| ATOM | 2660 | C   | PRO | 278 | 42.487 | 39.116 | 60.781 | 1.00 52.55 | AAAA C |
| ATOM | 2661 | O   | PRO | 278 | 43.083 | 40.195 | 60.631 | 1.00 48.76 | AAAA O |
| ATOM | 2662 | H   | SER | 279 | 41.370 | 38.845 | 60.143 | 1.00 49.35 | AAAAN  |
| ATOM | 2664 | CA  | SER | 279 | 40.815 | 39.720 | 59.140 | 1.00 52.03 | AAAA C |
| ATOM | 2665 | CB  | SER | 279 | 39.280 | 39.572 | 58.975 | 1.00 47.62 | AAAA C |
| ATOM | 2666 | OG  | SER | 279 | 39.320 | 38.778 | 57.785 | 1.00 68.16 | AAAA O |
| ATOM | 2668 | C   | SER | 279 | 41.003 | 41.209 | 59.173 | 1.00 55.40 | AAAA C |
| ATOM | 2669 | O   | SER | 279 | 41.225 | 41.740 | 58.059 | 1.00 55.40 | AAAA O |
| ATOM | 2670 | H   | GLY | 280 | 40.778 | 41.962 | 60.247 | 1.00 55.32 | AAAAN  |
| ATOM | 2672 | CA  | GLY | 280 | 40.968 | 43.406 | 59.868 | 1.00 48.58 | AAAA C |
| ATOM | 2673 | C   | GLY | 280 | 42.248 | 43.890 | 60.479 | 1.00 55.98 | AAAA C |
| ATOM | 2674 | O   | GLY | 280 | 42.249 | 45.097 | 60.772 | 1.00 56.00 | AAAA O |
| ATOM | 2675 | H   | PHE | 281 | 43.213 | 42.983 | 60.742 | 1.00 55.42 | AAAAN  |
| ATOM | 2677 | CA  | PHE | 281 | 44.506 | 43.411 | 61.262 | 1.00 52.94 | AAAA C |
| ATOM | 2678 | CB  | PHE | 281 | 44.938 | 42.644 | 62.523 | 1.00 61.20 | AAAA C |
| ATOM | 2679 | CG  | PHE | 281 | 43.958 | 42.792 | 63.637 | 1.00 53.66 | AAAA C |
| ATOM | 2680 | CD1 | PHE | 281 | 44.142 | 43.702 | 64.630 | 1.00 60.47 | AAAA C |
| ATOM | 2681 | CD2 | PHE | 281 | 42.939 | 41.992 | 63.712 | 1.00 60.92 | AAAA C |
| ATOM | 2682 | CE1 | PHE | 281 | 43.272 | 43.901 | 65.678 | 1.00 64.71 | AAAA C |
| ATOM | 2683 | CE2 | PHE | 281 | 41.931 | 42.162 | 64.756 | 1.00 63.19 | AAAA C |
| ATOM | 2684 | CG  | PHE | 281 | 42.141 | 43.115 | 65.744 | 1.00 58.89 | AAAA C |

09/555275

PCT/AU98/00998

WO 99/28347

27/58

|      |      |     |     |     |        |        |        |      |       |        |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 2685 | C   | PHE | 281 | 45.630 | 43.217 | 60.249 | 1.00 | 48.00 | AAAA C |
| ATOM | 2686 | O   | PHE | 281 | 45.738 | 42.395 | 59.327 | 1.00 | 38.84 | AAAA O |
| ATOM | 2687 | H   | ILE | 282 | 46.670 | 43.990 | 60.557 | 1.00 | 49.55 | AAAA N |
| ATOM | 2689 | CA  | ILE | 282 | 47.927 | 43.984 | 59.748 | 1.00 | 45.00 | AAAA C |
| ATOM | 2690 | CB  | ILE | 282 | 47.945 | 45.188 | 58.799 | 1.00 | 30.25 | AAAA C |
| ATOM | 2691 | CG2 | ILE | 282 | 48.041 | 46.494 | 59.507 | 1.00 | 24.60 | AAAA C |
| ATOM | 2692 | CG1 | ILE | 282 | 49.092 | 45.022 | 57.795 | 1.00 | 38.71 | AAAA C |
| ATOM | 2693 | CD1 | ILE | 282 | 49.194 | 46.043 | 56.649 | 1.00 | 33.38 | AAAA C |
| ATOM | 2694 | C   | ILE | 282 | 49.081 | 43.889 | 60.673 | 1.00 | 44.30 | AAAA C |
| ATOM | 2695 | O   | ILE | 282 | 49.078 | 44.447 | 61.759 | 1.00 | 48.49 | AAAA O |
| ATOM | 2696 | H   | ARG | 283 | 50.126 | 43.153 | 60.298 | 1.00 | 48.68 | AAAAN  |
| ATOM | 2698 | CA  | ARG | 283 | 51.396 | 43.094 | 61.049 | 1.00 | 39.30 | AAAA C |
| ATOM | 2699 | CB  | ARG | 283 | 52.300 | 42.200 | 60.286 | 1.00 | 41.10 | AAAA C |
| ATOM | 2700 | CG  | ARG | 283 | 52.225 | 40.696 | 60.515 | 1.00 | 39.19 | AAAA C |
| ATOM | 2701 | CD  | ARG | 283 | 53.078 | 39.986 | 59.451 | 1.00 | 29.85 | AAAAN  |
| ATOM | 2702 | HE  | ARG | 283 | 52.823 | 38.545 | 59.404 | 1.00 | 29.39 | AAAA C |
| ATOM | 2704 | CG  | ARG | 283 | 51.962 | 38.024 | 58.646 | 1.00 | 37.61 | AAAAN  |
| ATOM | 2705 | NH1 | ARG | 283 | 51.065 | 38.846 | 57.944 | 1.00 | 31.41 | AAAAN  |
| ATOM | 2708 | NH2 | ARG | 283 | 51.651 | 36.722 | 58.595 | 1.00 | 31.97 | AAAAN  |
| ATOM | 2711 | C   | ARG | 283 | 51.945 | 44.498 | 61.190 | 1.00 | 42.27 | AAAA C |
| ATOM | 2712 | O   | ARG | 283 | 51.931 | 45.228 | 60.173 | 1.00 | 43.42 | AAAAN  |
| ATOM | 2713 | H   | ASH | 284 | 52.362 | 44.886 | 62.422 | 1.00 | 39.49 | AAAA C |
| ATOM | 2715 | CA  | ASH | 284 | 52.733 | 46.311 | 62.574 | 1.00 | 42.07 | AAAA C |
| ATOM | 2721 | C   | ASH | 284 | 54.078 | 46.656 | 61.929 | 1.00 | 41.64 | AAAA C |
| ATOM | 2722 | O   | ASH | 284 | 54.431 | 47.798 | 61.742 | 1.00 | 39.01 | AAAAN  |
| ATOM | 2716 | CB  | ASH | 284 | 52.734 | 46.760 | 64.032 | 1.00 | 37.33 | AAAA C |
| ATOM | 2717 | CG  | ASH | 284 | 53.917 | 46.028 | 64.611 | 1.00 | 50.21 | AAAAN  |
| ATOM | 2718 | OD1 | ASH | 284 | 54.609 | 45.104 | 64.192 | 1.00 | 44.30 | AAAAN  |
| ATOM | 2719 | ND2 | ASH | 284 | 54.323 | 46.432 | 65.842 | 1.00 | 42.46 | AAAAN  |
| ATOM | 2723 | H   | GLY | 285 | 54.831 | 45.699 | 61.562 | 1.00 | 40.10 | AAAA C |
| ATOM | 2725 | CA  | GLY | 285 | 55.971 | 45.815 | 60.593 | 1.00 | 26.91 | AAAA C |
| ATOM | 2726 | C   | GLY | 285 | 56.791 | 44.468 | 59.848 | 1.00 | 33.12 | AAAAN  |
| ATOM | 2727 | O   | GLY | 285 | 55.584 | 43.331 | 60.187 | 1.00 | 29.51 | AAAAN  |
| ATOM | 2728 | H   | SER | 286 | 56.915 | 44.619 | 58.766 | 1.00 | 26.53 | AAAAN  |
| ATOM | 2730 | CA  | SER | 286 | 57.109 | 43.385 | 57.975 | 1.00 | 32.67 | AAAA C |
| ATOM | 2731 | CB  | SER | 286 | 57.944 | 43.681 | 56.757 | 1.00 | 33.19 | AAAA C |
| ATOM | 2732 | OG  | SER | 286 | 58.283 | 42.480 | 56.014 | 1.00 | 31.95 | AAAAN  |
| ATOM | 2734 | C   | SER | 286 | 57.750 | 42.310 | 58.836 | 1.00 | 34.57 | AAAA C |
| ATOM | 2735 | O   | SER | 286 | 58.700 | 42.495 | 59.607 | 1.00 | 44.29 | AAAAN  |
| ATOM | 2736 | H   | GLN | 287 | 57.227 | 41.148 | 58.940 | 1.00 | 34.45 | AAAAN  |
| ATOM | 2738 | CA  | GLN | 287 | 57.738 | 40.005 | 59.634 | 1.00 | 35.25 | AAAA C |
| ATOM | 2739 | CB  | GLN | 287 | 59.139 | 39.610 | 59.083 | 1.00 | 27.97 | AAAA C |
| ATOM | 2740 | CG  | GLN | 287 | 59.037 | 39.234 | 57.664 | 1.00 | 26.61 | AAAA C |
| ATOM | 2741 | CD  | GLN | 287 | 58.539 | 37.963 | 57.130 | 1.00 | 21.25 | AAAA C |
| ATOM | 2742 | OE1 | GLN | 287 | 58.192 | 37.023 | 57.845 | 1.00 | 28.18 | AAAAN  |
| ATOM | 2743 | NE2 | GLN | 287 | 58.192 | 37.838 | 55.782 | 1.00 | 27.55 | AAAAN  |
| ATOM | 2746 | C   | GLN | 287 | 57.773 | 40.286 | 61.111 | 1.00 | 30.25 | AAAAN  |
| ATOM | 2747 | O   | GLN | 287 | 58.163 | 39.415 | 61.908 | 1.00 | 32.78 | AAAAN  |
| ATOM | 2748 | H   | SER | 288 | 57.021 | 41.217 | 61.624 | 1.00 | 32.49 | AAAAN  |
| ATOM | 2750 | CA  | SER | 288 | 56.696 | 41.322 | 63.043 | 1.00 | 28.98 | AAAA C |
| ATOM | 2751 | CB  | SER | 288 | 56.924 | 42.675 | 63.313 | 1.00 | 35.79 | AAAA C |
| ATOM | 2752 | OG  | SER | 288 | 56.639 | 42.612 | 64.701 | 1.00 | 36.61 | AAAAN  |
| ATOM | 2754 | C   | SER | 288 | 56.665 | 40.285 | 63.442 | 1.00 | 28.96 | AAAA C |
| ATOM | 2755 | O   | SER | 288 | 54.993 | 39.776 | 62.553 | 1.00 | 31.16 | AAAAN  |
| ATOM | 2756 | H   | IET | 289 | 55.774 | 39.720 | 64.621 | 1.00 | 32.51 | AAAAN  |
| ATOM | 2758 | CA  | IET | 289 | 54.875 | 38.697 | 65.105 | 1.00 | 34.53 | AAAAN  |
| ATOM | 2759 | CB  | IET | 289 | 55.507 | 37.823 | 66.153 | 1.00 | 30.31 | AAAAN  |
| ATOM | 2760 | CG  | MET | 289 | 56.571 | 36.872 | 65.680 | 1.00 | 40.50 | AAAA C |
| ATOM | 2761 | SD  | MET | 289 | 56.977 | 35.623 | 66.881 | 1.00 | 31.65 | AAAAS  |
| ATOM | 2762 | CE  | MET | 289 | 55.745 | 34.315 | 66.508 | 1.00 | 30.47 | AAAA C |
| ATOM | 2763 | C   | MET | 289 | 53.557 | 39.286 | 65.703 | 1.00 | 35.55 | AAAA C |
| ATOM | 2764 | O   | MET | 289 | 52.630 | 38.512 | 66.014 | 1.00 | 38.37 | AAAAN  |
| ATOM | 2765 | H   | TYR | 290 | 53.380 | 40.565 | 65.742 | 1.00 | 29.54 | AAAAN  |
| ATOM | 2767 | CA  | TYR | 290 | 52.363 | 41.358 | 66.297 | 1.00 | 38.81 | AAAA C |
| ATOM | 2768 | CB  | TYR | 290 | 52.947 | 42.589 | 67.042 | 1.00 | 36.72 | AAAA C |
| ATOM | 2769 | CG  | TYR | 290 | 53.570 | 42.194 | 68.351 | 1.00 | 41.94 | AAAA C |
| ATOM | 2770 | CD1 | TYR | 290 | 54.932 | 41.780 | 68.350 | 1.00 | 37.79 | AAAA C |
| ATOM | 2771 | CE1 | TYR | 290 | 55.548 | 41.368 | 69.503 | 1.00 | 32.60 | AAAA C |
| ATOM | 2772 | CD2 | TYR | 290 | 52.987 | 42.157 | 69.570 | 1.00 | 39.93 | AAAA C |
| ATOM | 2773 | CF2 | TYR | 290 | 53.501 | 41.750 | 70.748 | 1.00 | 36.16 | AAAA C |
| ATOM | 2774 | CC  | TYR | 290 | 54.822 | 41.355 | 70.693 | 1.00 | 38.05 | AAAA C |
| ATOM | 2775 | OH  | TYR | 290 | 55.581 | 40.923 | 71.751 | 1.00 | 43.41 | AAAAN  |
| ATOM | 2777 | C   | TYR | 290 | 51.361 | 41.955 | 65.270 | 1.00 | 45.54 | AAAA C |
| ATOM | 2778 | O   | TYR | 290 | 51.733 | 42.520 | 64.227 | 1.00 | 47.10 | AAAAN  |
| ATOM | 2779 | H   | CYS | 291 | 50.071 | 41.698 | 65.537 | 1.00 | 44.68 | AAAAN  |
| ATOM | 2781 | CA  | CYS | 291 | 49.317 | 42.205 | 64.685 | 1.00 | 47.20 | AAAA C |
| ATOM | 2782 | C   | CYS | 291 | 48.295 | 43.434 | 65.194 | 1.00 | 46.06 | AAAA C |
| ATOM | 2783 | O   | CYS | 291 | 47.892 | 43.550 | 66.343 | 1.00 | 49.45 | AAAAN  |
| ATOM | 2784 | CB  | CYS | 291 | 47.973 | 41.103 | 64.483 | 1.00 | 43.41 | AAAA C |
| ATOM | 2785 | SG  | CYS | 291 | 48.766 | 39.715 | 63.683 | 1.00 | 45.49 | AAAAS  |
| ATOM | 2786 | H   | ILE | 292 | 43.136 | 44.453 | 64.365 | 1.00 | 46.82 | AAAAN  |
| ATOM | 2788 | CA  | ILE | 292 | 47.399 | 45.651 | 64.755 | 1.00 | 50.64 | AAAA C |
| ATOM | 2789 | CB  | ILE | 292 | 48.267 | 46.932 | 64.779 | 1.00 | 39.19 | AAAA C |
| ATOM | 2790 | CG2 | ILE | 292 | 49.291 | 46.885 | 65.361 | 1.00 | 44.39 | AAAA C |
| ATOM | 2791 | CG1 | ILE | 292 | 48.920 | 47.095 | 63.402 | 1.00 | 44.25 | AAAA C |

09/55275

PCT/AU98/00998

WO 99/28347

28/58

|      |      |     |     |     |        |        |         |      |       |         |
|------|------|-----|-----|-----|--------|--------|---------|------|-------|---------|
| ATOM | 2792 | CD1 | ILE | 292 | 49.234 | 48.564 | 63.108  | 1.00 | 32.80 | AAAA C  |
| ATOM | 2793 | C   | ILE | 292 | 46.240 | 46.003 | 63.806  | 1.00 | 50.01 | AAAA C  |
| ATOM | 2794 | O   | ILE | 292 | 46.165 | 45.526 | 62.670  | 1.00 | 46.64 | AAAA O  |
| ATOM | 2795 | H   | PRO | 293 | 45.150 | 46.507 | 64.385  | 1.00 | 51.86 | AAAA II |
| ATOM | 2796 | CD  | PRO | 293 | 45.009 | 46.804 | 65.839  | 1.00 | 51.05 | AAAA C  |
| ATOM | 2797 | CA  | PRO | 293 | 43.958 | 46.930 | 63.675  | 1.00 | 51.40 | AAAA C  |
| ATOM | 2798 | CB  | PRO | 293 | 43.170 | 47.784 | 64.681  | 1.00 | 49.00 | AAAA C  |
| ATOM | 2799 | CG  | PRO | 293 | 43.533 | 47.112 | 65.251  | 1.00 | 53.73 | AAAA C  |
| ATOM | 2800 | C   | PRO | 293 | 44.253 | 47.870 | 62.525  | 1.00 | 51.68 | AAAA C  |
| ATOM | 2801 | O   | PRO | 293 | 45.053 | 48.788 | 62.737  | 1.00 | 51.92 | AAAA O  |
| ATOM | 2802 | H   | CYS | 294 | 43.607 | 47.621 | 61.408  | 1.00 | 50.66 | AAAA II |
| ATOM | 2804 | CA  | CYS | 294 | 43.811 | 48.464 | 60.254  | 1.00 | 57.90 | AAAA S  |
| ATOM | 2805 | C   | CYS | 294 | 43.219 | 49.848 | 60.345  | 1.00 | 59.59 | AAAA C  |
| ATOM | 2806 | O   | CYS | 294 | 43.744 | 50.814 | 59.785  | 1.00 | 60.87 | AAAA O  |
| ATOM | 2807 | CB  | CYS | 294 | 43.229 | 47.686 | 59.046  | 1.00 | 57.58 | AAAA C  |
| ATOM | 2808 | SG  | CYS | 294 | 44.408 | 46.460 | 58.563  | 1.00 | 51.12 | AAAA S  |
| ATOM | 2809 | H   | ALA | 295 | 42.009 | 50.031 | 60.854  | 1.00 | 65.87 | AAAA N  |
| ATOM | 2811 | CA  | ALA | 295 | 41.391 | 51.386 | 60.804  | 1.00 | 71.19 | AAAA C  |
| ATOM | 2812 | CB  | ALA | 295 | 42.311 | 52.159 | 61.323  | 1.00 | 63.82 | AAAA C  |
| ATOM | 2813 | C   | ALA | 295 | 40.971 | 51.770 | 59.370  | 1.00 | 69.17 | AAAA C  |
| ATOM | 2814 | O   | ALA | 295 | 41.421 | 52.717 | 58.762  | 1.00 | 64.70 | AAAA O  |
| ATOM | 2815 | H   | GLY | 296 | 40.153 | 50.920 | 58.775  | 1.00 | 71.30 | AAAA II |
| ATOM | 2817 | CA  | GLY | 296 | 39.640 | 51.049 | 57.416  | 1.00 | 72.66 | AAAA C  |
| ATOM | 2818 | C   | GLY | 296 | 39.895 | 49.686 | 56.769  | 1.00 | 74.20 | AAAA C  |
| ATOM | 2819 | O   | GLY | 296 | 40.408 | 48.819 | 57.490  | 1.00 | 75.04 | AAAA O  |
| ATOM | 2820 | H   | PRO | 297 | 39.561 | 49.540 | 55.497  | 1.00 | 71.98 | AAAA II |
| ATOM | 2821 | CD  | PRO | 297 | 38.928 | 50.561 | 54.637  | 1.00 | 72.15 | AAAA C  |
| ATOM | 2822 | CA  | PRO | 297 | 39.958 | 48.344 | 54.777  | 1.00 | 68.23 | AAAA C  |
| ATOM | 2823 | CB  | PRO | 297 | 39.488 | 48.603 | 53.369  | 1.00 | 72.57 | AAAA C  |
| ATOM | 2824 | CG  | PRO | 297 | 38.470 | 49.687 | 53.490  | 1.00 | 74.01 | AAAA C  |
| ATOM | 2825 | C   | PRO | 297 | 41.480 | 48.306 | 54.1860 | 1.00 | 65.78 | AAAA C  |
| ATOM | 2826 | O   | PRO | 297 | 42.147 | 49.323 | 54.997  | 1.00 | 62.72 | AAAA O  |
| ATOM | 2827 | H   | CYS | 298 | 42.039 | 47.135 | 55.073  | 1.00 | 63.85 | AAAA II |
| ATOM | 2829 | CA  | CYS | 298 | 43.164 | 46.953 | 55.248  | 1.00 | 54.47 | AAAA C  |
| ATOM | 2830 | C   | CYS | 298 | 44.109 | 47.303 | 53.998  | 1.00 | 54.56 | AAAA C  |
| ATOM | 2831 | O   | CYS | 298 | 43.621 | 47.030 | 52.820  | 1.00 | 54.83 | AAAA O  |
| ATOM | 2832 | CB  | CYS | 298 | 43.665 | 45.544 | 55.669  | 1.00 | 47.65 | AAAA C  |
| ATOM | 2833 | SG  | CYS | 298 | 43.501 | 45.115 | 57.371  | 1.00 | 46.12 | AAAA S  |
| ATOM | 2834 | H   | PRO | 299 | 45.310 | 47.876 | 53.967  | 1.00 | 49.83 | AAAA II |
| ATOM | 2835 | CD  | PRO | 299 | 46.087 | 48.168 | 55.194  | 1.00 | 48.14 | AAAA C  |
| ATOM | 2836 | CA  | PRO | 299 | 46.055 | 48.212 | 52.787  | 1.00 | 43.67 | AAAA C  |
| ATOM | 2837 | CB  | PRO | 299 | 47.267 | 48.965 | 53.281  | 1.00 | 44.08 | AAAA C  |
| ATOM | 2838 | CG  | PRO | 299 | 47.454 | 48.361 | 54.628  | 1.00 | 51.38 | AAAA C  |
| ATOM | 2839 | C   | PRO | 299 | 46.341 | 46.969 | 52.010  | 1.00 | 38.86 | AAAA C  |
| ATOM | 2840 | O   | PRO | 299 | 46.372 | 45.874 | 52.546  | 1.00 | 42.85 | AAAA O  |
| ATOM | 2841 | H   | LYS | 300 | 46.310 | 47.073 | 50.712  | 1.00 | 38.30 | AAAA II |
| ATOM | 2843 | CA  | LYS | 300 | 46.484 | 45.958 | 49.812  | 1.00 | 42.62 | AAAA C  |
| ATOM | 2844 | CB  | LYS | 300 | 45.176 | 45.226 | 49.595  | 1.00 | 34.28 | AAAA C  |
| ATOM | 2845 | CG  | LYS | 300 | 45.346 | 43.901 | 48.920  | 1.00 | 41.45 | AAAA C  |
| ATOM | 2846 | CD  | LYS | 300 | 44.013 | 43.413 | 48.376  | 1.00 | 48.31 | AAAA C  |
| ATOM | 2847 | CE  | LYS | 300 | 44.388 | 42.027 | 47.787  | 1.00 | 48.57 | AAAA C  |
| ATOM | 2848 | HC  | LYS | 300 | 43.662 | 42.031 | 48.478  | 1.00 | 63.70 | AAAA N  |
| ATOM | 2852 | C   | LYS | 300 | 46.964 | 46.479 | 48.432  | 1.00 | 48.72 | AAAA C  |
| ATOM | 2853 | O   | LYS | 300 | 46.413 | 47.383 | 47.776  | 1.00 | 46.09 | AAAA O  |
| ATOM | 2854 | H   | VAL | 301 | 48.150 | 45.984 | 48.054  | 1.00 | 48.18 | AAAA II |
| ATOM | 2856 | CA  | VAL | 301 | 48.802 | 46.462 | 46.871  | 1.00 | 44.52 | AAAA C  |
| ATOM | 2857 | CB  | VAL | 301 | 50.292 | 46.729 | 47.074  | 1.00 | 51.52 | AAAA C  |
| ATOM | 2858 | CG1 | VAL | 301 | 51.008 | 47.200 | 45.796  | 1.00 | 43.07 | AAAA C  |
| ATOM | 2859 | CG2 | VAL | 301 | 50.495 | 47.794 | 48.141  | 1.00 | 49.50 | AAAA C  |
| ATOM | 2860 | C   | VAL | 301 | 48.516 | 45.410 | 45.837  | 1.00 | 44.59 | AAAA C  |
| ATOM | 2861 | O   | VAL | 301 | 48.913 | 44.291 | 46.060  | 1.00 | 43.70 | AAAA O  |
| ATOM | 2862 | H   | CYS | 302 | 47.910 | 45.816 | 44.718  | 1.00 | 47.98 | AAAA II |
| ATOM | 2864 | CA  | CYS | 302 | 47.645 | 44.735 | 43.739  | 1.00 | 55.19 | AAAA C  |
| ATOM | 2865 | C   | CYS | 302 | 48.594 | 44.968 | 42.583  | 1.00 | 57.64 | AAAA C  |
| ATOM | 2866 | O   | CYS | 302 | 48.850 | 46.152 | 42.313  | 1.00 | 60.23 | AAAA O  |
| ATOM | 2867 | CB  | CYS | 302 | 46.186 | 44.630 | 43.330  | 1.00 | 68.30 | AAAA C  |
| ATOM | 2868 | SG  | CYS | 302 | 45.070 | 44.360 | 44.751  | 1.00 | 70.31 | AAAA S  |
| ATOM | 2869 | H   | GLU | 303 | 49.103 | 43.921 | 42.075  | 1.00 | 58.15 | AAAA N  |
| ATOM | 2871 | CA  | GLU | 303 | 50.174 | 43.932 | 41.034  | 1.00 | 62.85 | AAAA C  |
| ATOM | 2872 | CB  | GLU | 303 | 51.503 | 44.006 | 41.595  | 1.00 | 67.85 | AAAA C  |
| ATOM | 2873 | CG  | GLU | 303 | 51.760 | 43.487 | 43.014  | 0.01 | 67.46 | AAAA C  |
| ATOM | 2874 | CD  | GLU | 303 | 51.999 | 41.992 | 43.097  | 0.01 | 67.91 | AAAA C  |
| ATOM | 2875 | OE1 | GLU | 303 | 53.011 | 41.514 | 42.561  | 0.01 | 67.67 | AAAA O  |
| ATOM | 2876 | OE2 | GLU | 303 | 51.147 | 41.290 | 43.697  | 0.01 | 67.65 | AAAA O  |
| ATOM | 2877 | C   | GLU | 303 | 50.096 | 42.662 | 40.191  | 1.00 | 64.12 | AAAA C  |
| ATOM | 2878 | O   | GLU | 303 | 50.162 | 41.562 | 40.708  | 1.00 | 65.08 | AAAA O  |
| ATOM | 2879 | H   | GLU | 304 | 49.867 | 42.794 | 38.904  | 1.00 | 67.37 | AAAA II |
| ATOM | 2881 | CA  | GLU | 304 | 49.672 | 41.583 | 38.094  | 1.00 | 71.63 | AAAA C  |
| ATOM | 2882 | CB  | GLU | 304 | 48.285 | 41.596 | 37.458  | 1.00 | 71.71 | AAAA C  |
| ATOM | 2883 | CG  | GLU | 304 | 47.339 | 42.663 | 39.031  | 1.00 | 84.54 | AAAA C  |
| ATOM | 2884 | CD  | GLU | 304 | 45.930 | 42.152 | 36.195  | 1.00 | 87.56 | AAAA C  |
| ATOM | 2885 | OE1 | GLU | 304 | 45.438 | 41.571 | 37.179  | 1.00 | 89.13 | AAAA O  |
| ATOM | 2886 | OE2 | GLU | 304 | 45.219 | 42.269 | 39.233  | 1.00 | 93.19 | AAAA O  |
| ATOM | 2887 | C   | GLU | 304 | 50.966 | 41.307 | 37.100  | 1.00 | 76.10 | AAAA C  |
| ATOM | 2888 | O   | GLU | 304 | 51.311 | 41.962 | 37.217  | 1.00 | 71.78 | AAAA O  |

09/555275

PCT/AU98/00998

WO 99/28347

## 29/58

|      |      |     |     |     |        |        |        |      |       |       |   |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|-------|---|
| ATOM | 2989 | H   | GLU | 305 | 50.899 | 40.126 | 36.566 | 1.00 | 77.31 | AAAAA | H |
| ATOM | 2991 | CA  | GLU | 305 | 51.932 | 39.656 | 35.674 | 1.00 | 75.86 | AAAAA | C |
| ATOM | 2992 | CB  | GLU | 305 | 51.467 | 38.380 | 34.970 | 1.00 | 79.95 | AAAAA | C |
| ATOM | 2993 | CG  | GLU | 305 | 52.307 | 37.937 | 33.847 | 1.00 | 87.28 | AAAAA | C |
| ATOM | 2994 | CD  | GLU | 305 | 51.758 | 36.891 | 32.886 | 0.01 | 83.39 | AAAAA | C |
| ATOM | 2995 | N   | GLU | 305 | 50.762 | 36.234 | 33.252 | 0.01 | 83.66 | AAAAA | O |
| ATOM | 2996 | OE2 | GLU | 305 | 50.310 | 36.700 | 31.780 | 0.01 | 83.73 | AAAAA | O |
| ATOM | 2997 | C   | GLU | 305 | 52.276 | 40.737 | 34.666 | 1.00 | 75.97 | AAAAA | C |
| ATOM | 2998 | O   | GLU | 305 | 53.381 | 41.268 | 34.613 | 1.00 | 76.54 | AAAAA | O |
| ATOM | 2999 | H   | LYS | 306 | 51.291 | 41.181 | 33.882 | 1.00 | 78.22 | AAAAA | H |
| ATOM | 3001 | CA  | LYS | 306 | 51.479 | 42.328 | 33.004 | 1.00 | 75.99 | AAAAA | C |
| ATOM | 3002 | CB  | LYS | 306 | 50.467 | 42.253 | 31.855 | 1.00 | 79.78 | AAAAA | C |
| ATOM | 3003 | CG  | LYS | 306 | 51.208 | 42.227 | 30.527 | 1.00 | 94.52 | AAAAA | C |
| ATOM | 3004 | CD  | LYS | 306 | 50.313 | 42.191 | 29.314 | 1.00 | 92.78 | AAAAA | C |
| ATOM | 3005 | N   | LYS | 306 | 50.740 | 43.227 | 28.261 | 1.00 | 97.10 | AAAAA | C |
| ATOM | 3006 | H   | LYS | 306 | 50.938 | 44.554 | 28.929 | 1.00 | 84.87 | AAAAA | H |
| ATOM | 3010 | C   | LYS | 306 | 51.381 | 43.669 | 33.763 | 1.00 | 73.85 | AAAAA | C |
| ATOM | 3011 | O   | LYS | 306 | 50.703 | 43.862 | 34.718 | 1.00 | 76.08 | AAAAA | O |
| ATOM | 3012 | H   | LYS | 307 | 52.000 | 44.700 | 33.180 | 1.00 | 71.15 | AAAAA | H |
| ATOM | 3014 | CA  | LYS | 307 | 51.934 | 46.053 | 33.592 | 1.00 | 69.45 | AAAAA | C |
| ATOM | 3015 | CB  | LYS | 307 | 53.022 | 46.903 | 33.008 | 1.00 | 79.64 | AAAAA | C |
| ATOM | 3016 | CG  | LYS | 307 | 54.419 | 46.837 | 33.564 | 1.00 | 78.88 | AAAAA | C |
| ATOM | 3017 | CD  | LYS | 307 | 55.257 | 48.084 | 33.374 | 1.00 | 85.84 | AAAAA | C |
| ATOM | 3018 | CE  | LYS | 307 | 55.708 | 48.215 | 31.924 | 1.00 | 97.07 | AAAAA | C |
| ATOM | 3019 | CG  | LYS | 307 | 54.649 | 48.840 | 31.067 | 1.00 | 97.80 | AAAAA | H |
| ATOM | 3023 | C   | LYS | 307 | 50.562 | 46.716 | 33.525 | 1.00 | 67.97 | AAAAA | C |
| ATOM | 3024 | O   | LYS | 307 | 50.010 | 47.369 | 34.431 | 1.00 | 64.46 | AAAAA | O |
| ATOM | 3025 | H   | THR | 308 | 49.979 | 46.661 | 32.323 | 1.00 | 65.84 | AAAAA | H |
| ATOM | 3027 | CA  | THR | 308 | 48.709 | 47.319 | 32.091 | 1.00 | 64.56 | AAAAA | C |
| ATOM | 3028 | CB  | THR | 308 | 48.711 | 47.977 | 30.711 | 1.00 | 59.91 | AAAAA | C |
| ATOM | 3029 | OG1 | THR | 308 | 49.834 | 48.843 | 30.577 | 1.00 | 61.97 | AAAAA | O |
| ATOM | 3031 | CG2 | THR | 308 | 47.392 | 48.742 | 30.561 | 1.00 | 63.64 | AAAAA | C |
| ATOM | 3032 | C   | THR | 308 | 47.514 | 46.379 | 32.234 | 1.00 | 61.82 | AAAAA | C |
| ATOM | 3033 | O   | THR | 308 | 47.412 | 45.415 | 31.477 | 1.00 | 62.05 | AAAAA | O |
| ATOM | 3034 | H   | LYS | 309 | 46.675 | 46.719 | 33.211 | 1.00 | 55.66 | AAAAA | H |
| ATOM | 3036 | CA  | LYS | 309 | 45.456 | 45.926 | 33.415 | 1.00 | 54.67 | AAAAA | C |
| ATOM | 3037 | CB  | LYS | 309 | 45.043 | 45.880 | 34.304 | 1.00 | 56.82 | AAAAA | C |
| ATOM | 3038 | CG  | LYS | 309 | 43.601 | 45.541 | 35.223 | 1.00 | 57.50 | AAAAA | C |
| ATOM | 3039 | CD  | LYS | 309 | 43.390 | 44.039 | 35.086 | 1.00 | 59.50 | AAAAA | C |
| ATOM | 3040 | CE  | LYS | 309 | 42.703 | 43.448 | 36.324 | 1.00 | 57.31 | AAAAA | C |
| ATOM | 3041 | CG  | LYS | 309 | 42.758 | 41.954 | 36.236 | 1.00 | 57.22 | AAAAA | H |
| ATOM | 3045 | C   | LYS | 309 | 44.391 | 46.570 | 32.548 | 1.00 | 51.21 | AAAAA | C |
| ATOM | 3046 | O   | LYS | 309 | 44.074 | 47.763 | 32.680 | 1.00 | 47.23 | AAAAA | O |
| ATOM | 3047 | H   | THR | 310 | 43.895 | 45.772 | 31.610 | 1.00 | 47.67 | AAAAA | H |
| ATOM | 3049 | CA  | THR | 310 | 42.862 | 46.328 | 30.733 | 1.00 | 51.89 | AAAAA | C |
| ATOM | 3050 | CB  | THR | 310 | 43.161 | 46.015 | 29.266 | 1.00 | 54.81 | AAAAA | C |
| ATOM | 3051 | OG1 | THR | 310 | 41.909 | 45.710 | 28.635 | 1.00 | 66.29 | AAAAA | O |
| ATOM | 3053 | CG2 | THR | 310 | 44.032 | 44.791 | 29.139 | 1.00 | 55.18 | AAAAA | C |
| ATOM | 3054 | C   | THR | 310 | 41.468 | 45.841 | 31.117 | 1.00 | 51.15 | AAAAA | C |
| ATOM | 3055 | O   | THR | 310 | 41.162 | 44.680 | 30.891 | 1.00 | 49.27 | AAAAA | O |
| ATOM | 3056 | H   | ILE | 311 | 40.684 | 46.706 | 31.732 | 1.00 | 50.18 | AAAAA | H |
| ATOM | 3058 | CA  | ILE | 311 | 39.363 | 46.483 | 32.276 | 1.00 | 48.67 | AAAAA | C |
| ATOM | 3059 | CB  | ILE | 311 | 39.120 | 47.396 | 33.462 | 1.00 | 49.27 | AAAAA | C |
| ATOM | 3060 | CG2 | ILE | 311 | 37.655 | 47.596 | 33.759 | 1.00 | 50.72 | AAAAA | C |
| ATOM | 3061 | CG1 | ILE | 311 | 39.896 | 48.930 | 34.699 | 1.00 | 41.34 | AAAAA | C |
| ATOM | 3062 | CD1 | ILE | 311 | 39.847 | 48.073 | 35.739 | 1.00 | 52.22 | AAAAA | C |
| ATOM | 3063 | C   | ILE | 311 | 38.334 | 46.729 | 31.186 | 1.00 | 45.37 | AAAAA | C |
| ATOM | 3064 | O   | ILE | 311 | 38.132 | 47.875 | 30.758 | 1.00 | 37.14 | AAAAA | O |
| ATOM | 3065 | H   | ASP | 312 | 37.871 | 45.678 | 30.524 | 1.00 | 50.10 | AAAAA | H |
| ATOM | 3067 | CA  | ASP | 312 | 36.991 | 45.842 | 29.377 | 1.00 | 56.35 | AAAAA | C |
| ATOM | 3068 | CB  | ASP | 312 | 37.546 | 45.152 | 29.128 | 1.00 | 59.45 | AAAAA | C |
| ATOM | 3069 | CG  | ASP | 312 | 37.761 | 43.671 | 28.382 | 1.00 | 65.64 | AAAAA | C |
| ATOM | 3070 | OD1 | ASP | 312 | 38.525 | 43.034 | 27.636 | 1.00 | 72.60 | AAAAA | O |
| ATOM | 3071 | OD2 | ASP | 312 | 37.154 | 43.176 | 29.348 | 1.00 | 66.86 | AAAAA | O |
| ATOM | 3072 | C   | ASP | 312 | 35.589 | 45.337 | 29.693 | 1.00 | 59.39 | AAAAA | C |
| ATOM | 3073 | O   | ASP | 312 | 34.720 | 45.007 | 28.867 | 1.00 | 61.00 | AAAAA | O |
| ATOM | 3074 | N   | SER | 313 | 35.278 | 45.290 | 30.976 | 1.00 | 61.17 | AAAAA | N |
| ATOM | 3076 | CA  | SER | 313 | 34.053 | 44.683 | 31.459 | 1.00 | 55.73 | AAAAA | C |
| ATOM | 3077 | CB  | SER | 313 | 34.121 | 45.201 | 31.093 | 1.00 | 48.22 | AAAAA | C |
| ATOM | 3078 | OG  | SER | 313 | 34.373 | 42.514 | 32.282 | 1.00 | 57.89 | AAAAA | O |
| ATOM | 3080 | C   | SER | 313 | 33.998 | 44.818 | 32.311 | 1.00 | 57.07 | AAAAA | C |
| ATOM | 3081 | O   | SER | 313 | 34.802 | 45.506 | 33.837 | 1.00 | 66.17 | AAAAA | O |
| ATOM | 3082 | H   | VAL | 314 | 33.001 | 44.205 | 33.548 | 1.00 | 64.35 | AAAAA | H |
| ATOM | 3084 | CA  | VAL | 314 | 32.810 | 44.305 | 35.018 | 1.00 | 64.39 | AAAAA | C |
| ATOM | 3085 | CB  | VAL | 314 | 31.369 | 44.340 | 35.343 | 1.00 | 69.57 | AAAAA | C |
| ATOM | 3086 | CG1 | VAL | 314 | 31.024 | 43.693 | 36.691 | 1.00 | 65.60 | AAAAA | C |
| ATOM | 3087 | CG2 | VAL | 314 | 30.927 | 45.823 | 35.319 | 1.00 | 65.27 | AAAAA | C |
| ATOM | 3088 | C   | VAL | 314 | 33.492 | 43.088 | 35.638 | 1.00 | 62.65 | AAAAA | C |
| ATOM | 3089 | O   | VAL | 314 | 34.029 | 43.141 | 35.704 | 1.00 | 63.92 | AAAAA | O |
| ATOM | 3090 | H   | THR | 315 | 33.168 | 42.011 | 34.878 | 1.00 | 61.82 | AAAAA | H |
| ATOM | 3092 | CA  | THR | 315 | 34.029 | 40.752 | 35.284 | 1.00 | 63.44 | AAAAA | C |
| ATOM | 3093 | CB  | THR | 315 | 33.618 | 39.628 | 31.314 | 1.00 | 65.54 | AAAAA | C |
| ATOM | 3094 | OG1 | THR | 315 | 32.403 | 40.004 | 33.634 | 1.00 | 74.05 | AAAAA | O |
| ATOM | 3096 | CG2 | THR | 315 | 33.339 | 38.356 | 35.104 | 1.00 | 64.80 | AAAAA | C |
| ATOM | 3097 | C   | THR | 315 | 35.541 | 40.971 | 35.323 | 1.00 | 65.61 | AAAAA | C |

30/58

|      |      |     |     |     |        |        |        |      |        |        |
|------|------|-----|-----|-----|--------|--------|--------|------|--------|--------|
| ATOM | 2998 | O   | THR | 315 | 36.217 | 40.339 | 36.206 | 1.00 | 66.41  | AAAA O |
| ATOM | 2999 | H   | SER | 316 | 36.071 | 41.593 | 34.332 | 1.00 | 63.28  | AAAA H |
| ATOM | 3001 | CA  | SER | 316 | 37.500 | 41.793 | 34.215 | 1.00 | 58.72  | AAAA C |
| ATOM | 3002 | CB  | SER | 316 | 37.795 | 42.557 | 32.900 | 1.00 | 52.20  | AAAA C |
| ATOM | 3003 | OG  | SER | 316 | 37.298 | 43.859 | 32.933 | 1.00 | 48.04  | AAAA O |
| ATOM | 3005 | C   | SER | 316 | 38.077 | 42.573 | 35.387 | 1.00 | 58.91  | AAAA C |
| ATOM | 3006 | O   | SER | 316 | 39.293 | 42.522 | 35.529 | 1.00 | 59.86  | AAAA O |
| ATOM | 3007 | H   | ALA | 317 | 37.310 | 43.362 | 36.111 | 1.00 | 55.86  | AAAA H |
| ATOM | 3009 | CA  | ALA | 317 | 37.750 | 41.194 | 37.191 | 1.00 | 57.17  | AAAA C |
| ATOM | 3010 | CB  | ALA | 317 | 36.833 | 45.409 | 37.269 | 1.00 | 54.23  | AAAA C |
| ATOM | 3011 | C   | ALA | 317 | 37.689 | 43.487 | 38.538 | 1.00 | 62.05  | AAAA C |
| ATOM | 3012 | O   | ALA | 317 | 37.702 | 44.128 | 38.599 | 1.00 | 60.30  | AAAA O |
| ATOM | 3013 | H   | GLN | 318 | 37.361 | 42.205 | 38.523 | 1.00 | 67.91  | AAAA H |
| ATOM | 3015 | CA  | GLN | 318 | 37.195 | 41.380 | 39.713 | 1.00 | 70.72  | AAAA C |
| ATOM | 3016 | CB  | GLN | 318 | 36.857 | 39.956 | 39.293 | 1.00 | 74.48  | AAAA C |
| ATOM | 3017 | CG  | GLN | 318 | 36.624 | 38.947 | 40.383 | 1.00 | 89.82  | AAAA C |
| ATOM | 3018 | CD  | GLN | 318 | 35.265 | 39.080 | 41.018 | 1.00 | 92.69  | AAAA C |
| ATOM | 3019 | OE1 | GLN | 318 | 34.256 | 38.807 | 40.391 | 1.00 | 98.57  | AAAA O |
| ATOM | 3020 | NE2 | GLN | 318 | 35.356 | 39.509 | 42.308 | 1.00 | 92.51  | AAAA N |
| ATOM | 3023 | C   | GLN | 318 | 38.380 | 41.413 | 40.653 | 1.00 | 72.63  | AAAA C |
| ATOM | 3024 | O   | GLN | 318 | 38.294 | 41.855 | 41.804 | 1.00 | 68.92  | AAAA O |
| ATOM | 3025 | H   | MET | 319 | 39.562 | 41.062 | 40.153 | 1.00 | 75.18  | AAAA N |
| ATOM | 3027 | CA  | MET | 319 | 40.846 | 41.175 | 40.826 | 1.00 | 71.85  | AAAA C |
| ATOM | 3028 | CB  | MET | 319 | 41.950 | 40.960 | 39.772 | 1.00 | 82.00  | AAAA C |
| ATOM | 3029 | CG  | MET | 319 | 41.740 | 39.644 | 39.050 | 1.00 | 91.16  | AAAA C |
| ATOM | 3030 | SD  | MET | 319 | 43.123 | 38.482 | 39.185 | 1.00 | 106.72 | AAAA S |
| ATOM | 3031 | CE  | MET | 319 | 43.486 | 37.105 | 38.231 | 1.00 | 97.56  | AAAA C |
| ATOM | 3032 | C   | MET | 319 | 41.118 | 42.509 | 41.471 | 1.00 | 67.68  | AAAA C |
| ATOM | 3033 | O   | MET | 319 | 41.577 | 42.541 | 42.612 | 1.00 | 69.73  | AAAA O |
| ATOM | 3034 | H   | LEU | 320 | 40.740 | 43.639 | 40.887 | 1.00 | 62.95  | AAAA H |
| ATOM | 3036 | CA  | LEU | 320 | 40.907 | 44.938 | 41.531 | 1.00 | 62.31  | AAAA C |
| ATOM | 3037 | CB  | LEU | 320 | 40.440 | 46.085 | 40.623 | 1.00 | 54.93  | AAAA C |
| ATOM | 3038 | CG  | LEU | 320 | 41.091 | 46.163 | 39.238 | 1.00 | 53.48  | AAAA C |
| ATOM | 3039 | CD1 | LEU | 320 | 41.005 | 47.552 | 38.692 | 1.00 | 51.31  | AAAA C |
| ATOM | 3040 | CD2 | LEU | 320 | 42.557 | 45.709 | 39.403 | 1.00 | 58.43  | AAAA C |
| ATOM | 3041 | C   | LEU | 320 | 40.209 | 45.008 | 42.881 | 1.00 | 60.30  | AAAA C |
| ATOM | 3042 | O   | LEU | 320 | 40.344 | 45.969 | 43.661 | 1.00 | 58.72  | AAAA O |
| ATOM | 3043 | H   | GLN | 321 | 39.267 | 44.106 | 43.112 | 1.00 | 59.62  | AAAA H |
| ATOM | 3045 | CA  | GLN | 321 | 38.482 | 44.128 | 44.343 | 1.00 | 63.50  | AAAA C |
| ATOM | 3046 | CB  | GLN | 321 | 37.373 | 43.089 | 44.250 | 1.00 | 62.52  | AAAA C |
| ATOM | 3047 | CG  | GLN | 321 | 36.611 | 42.854 | 45.522 | 1.00 | 56.83  | AAAA C |
| ATOM | 3048 | CD  | GLN | 321 | 35.337 | 42.064 | 45.291 | 1.00 | 68.77  | AAAA C |
| ATOM | 3049 | OE1 | GLN | 321 | 35.362 | 40.969 | 41.718 | 1.00 | 70.37  | AAAA H |
| ATOM | 3050 | NE2 | GLN | 321 | 34.218 | 42.632 | 45.764 | 1.00 | 63.77  | AAAA H |
| ATOM | 3053 | C   | GLN | 321 | 39.367 | 44.030 | 45.594 | 1.00 | 60.97  | AAAA C |
| ATOM | 3054 | O   | GLN | 321 | 40.262 | 43.196 | 45.782 | 1.00 | 57.29  | AAAA O |
| ATOM | 3055 | H   | GLY | 322 | 39.092 | 44.928 | 46.546 | 1.00 | 57.62  | AAAA H |
| ATOM | 3057 | CA  | GLY | 322 | 39.855 | 44.928 | 47.790 | 1.00 | 60.63  | AAAA C |
| ATOM | 3058 | C   | GLY | 322 | 41.126 | 45.773 | 47.812 | 1.00 | 61.78  | AAAA C |
| ATOM | 3059 | O   | GLY | 322 | 41.581 | 46.198 | 48.889 | 1.00 | 60.16  | AAAA O |
| ATOM | 3060 | H   | CYS | 323 | 41.712 | 46.124 | 46.676 | 1.00 | 60.03  | AAAA H |
| ATOM | 3062 | CA  | CYS | 323 | 42.938 | 46.845 | 46.528 | 1.00 | 54.30  | AAAA C |
| ATOM | 3063 | C   | CYS | 323 | 42.924 | 48.307 | 46.810 | 1.00 | 53.48  | AAAA C |
| ATOM | 3064 | O   | CYS | 323 | 42.105 | 49.148 | 46.503 | 1.00 | 56.43  | AAAA O |
| ATOM | 3065 | CB  | CYS | 323 | 43.458 | 46.822 | 45.096 | 1.00 | 53.33  | AAAA C |
| ATOM | 3066 | SG  | CYS | 323 | 43.325 | 45.222 | 44.248 | 1.00 | 66.22  | AAAA S |
| ATOM | 3067 | H   | THR | 324 | 43.994 | 48.718 | 47.580 | 1.00 | 49.83  | AAAA H |
| ATOM | 3069 | CA  | THR | 324 | 44.164 | 50.161 | 47.811 | 1.00 | 52.29  | AAAA C |
| ATOM | 3070 | CB  | THR | 324 | 44.623 | 50.324 | 49.264 | 1.00 | 52.84  | AAAA C |
| ATOM | 3071 | OG1 | THR | 324 | 45.245 | 49.087 | 49.634 | 1.00 | 59.82  | AAAA O |
| ATOM | 3073 | CG2 | THR | 324 | 43.132 | 50.517 | 50.193 | 1.00 | 60.00  | AAAA C |
| ATOM | 3074 | C   | THR | 324 | 45.151 | 50.802 | 46.844 | 1.00 | 48.91  | AAAA C |
| ATOM | 3075 | O   | THR | 324 | 45.277 | 52.016 | 46.710 | 1.00 | 46.90  | AAAA O |
| ATOM | 3076 | H   | ILE | 325 | 46.921 | 49.963 | 46.254 | 1.00 | 46.87  | AAAA H |
| ATOM | 3078 | CA  | ILE | 325 | 47.114 | 50.511 | 45.445 | 1.00 | 45.10  | AAAA C |
| ATOM | 3079 | CB  | ILE | 325 | 48.473 | 50.577 | 46.183 | 1.00 | 43.60  | AAAA C |
| ATOM | 3080 | CG2 | ILE | 325 | 49.586 | 50.905 | 45.163 | 1.00 | 47.47  | AAAA C |
| ATOM | 3081 | CG1 | ILE | 325 | 48.394 | 51.623 | 47.294 | 1.00 | 34.03  | AAAA C |
| ATOM | 3082 | CD1 | ILE | 325 | 49.895 | 52.010 | 48.028 | 1.00 | 41.94  | AAAA C |
| ATOM | 3083 | C   | ILE | 325 | 47.265 | 49.642 | 44.229 | 1.00 | 42.88  | AAAA C |
| ATOM | 3084 | O   | ILE | 325 | 47.406 | 48.429 | 44.469 | 1.00 | 42.99  | AAAA O |
| ATOM | 3085 | H   | PHE | 326 | 47.170 | 50.238 | 43.042 | 1.00 | 41.19  | AAAA H |
| ATOM | 3087 | CA  | PHE | 326 | 47.312 | 49.334 | 41.880 | 1.00 | 42.88  | AAAA C |
| ATOM | 3088 | CB  | PHE | 326 | 46.186 | 49.437 | 40.877 | 1.00 | 39.15  | AAAA C |
| ATOM | 3089 | CG  | PHE | 326 | 46.403 | 48.474 | 39.738 | 1.00 | 38.03  | AAAA C |
| ATOM | 3090 | CD1 | PHE | 326 | 46.186 | 47.125 | 39.951 | 1.00 | 39.68  | AAAA C |
| ATOM | 3091 | CD2 | PHE | 326 | 46.817 | 48.892 | 38.525 | 1.00 | 37.31  | AAAA C |
| ATOM | 3092 | CE1 | PHE | 326 | 46.447 | 46.139 | 39.023 | 1.00 | 36.52  | AAAA C |
| ATOM | 3093 | CE2 | PHE | 326 | 47.136 | 47.919 | 37.551 | 1.00 | 45.74  | AAAA C |
| ATOM | 3094 | CZ  | PHE | 326 | 46.924 | 46.570 | 37.787 | 1.00 | 39.92  | AAAA C |
| ATOM | 3095 | C   | PHE | 326 | 48.682 | 49.673 | 41.280 | 1.00 | 48.78  | AAAA C |
| ATOM | 3096 | O   | PHE | 326 | 49.224 | 50.826 | 40.966 | 1.00 | 51.39  | AAAA O |
| ATOM | 3097 | H   | LYS | 327 | 49.523 | 48.751 | 41.379 | 1.00 | 50.22  | AAAA H |
| ATOM | 3099 | CA  | LYS | 327 | 50.964 | 48.963 | 46.831 | 1.00 | 51.49  | AAAA C |
| ATOM | 3100 | CB  | LYS | 327 | 50.050 | 48.091 | 41.519 | 1.00 | 58.64  | AAAA C |

09/555275

PCT/AU98/00998

WO 99/28347

31/58

|      |      |     |     |     |        |        |        |      |        |         |
|------|------|-----|-----|-----|--------|--------|--------|------|--------|---------|
| ATOM | 3101 | C3  | LYS | 327 | 53.254 | 48.897 | 41.991 | 1.00 | 59.15  | AAAAA C |
| ATOM | 3102 | CD  | LYS | 327 | 54.528 | 48.257 | 41.617 | 1.00 | 63.49  | AAAAA C |
| ATOM | 3103 | CE  | LYS | 327 | 55.400 | 48.951 | 40.592 | 1.00 | 68.12  | AAAAA C |
| ATOM | 3104 | HE  | LYS | 327 | 56.260 | 47.889 | 39.938 | 1.00 | 71.97  | AAAAA H |
| ATOM | 3108 | C   | LYS | 327 | 50.895 | 48.464 | 39.391 | 1.00 | 45.70  | AAAAA C |
| ATOM | 3109 | O   | LYS | 327 | 50.901 | 47.245 | 39.127 | 1.00 | 49.55  | AAAAA O |
| ATOM | 3110 | H   | GLY | 328 | 50.760 | 49.397 | 38.502 | 1.00 | 39.68  | AAAAA H |
| ATOM | 3112 | CA  | GLY | 328 | 50.647 | 49.038 | 37.086 | 1.00 | 39.44  | AAAAA C |
| ATOM | 3113 | C   | GLY | 328 | 49.845 | 50.161 | 36.427 | 1.00 | 39.49  | AAAAA C |
| ATOM | 3114 | O   | GLY | 328 | 49.858 | 51.307 | 36.881 | 1.00 | 31.92  | AAAAA O |
| ATOM | 3115 | H   | ASN | 329 | 49.286 | 49.813 | 35.289 | 1.00 | 41.47  | AAAAA H |
| ATOM | 3117 | CA  | ASN | 329 | 48.467 | 50.750 | 34.543 | 1.00 | 45.72  | AAAAA C |
| ATOM | 3118 | CB  | ASN | 329 | 49.185 | 50.942 | 33.211 | 1.00 | 42.50  | AAAAA C |
| ATOM | 3119 | CG  | ASN | 329 | 50.624 | 51.426 | 33.357 | 1.00 | 42.26  | AAAAA C |
| ATOM | 3120 | OD1 | ASN | 329 | 50.954 | 52.331 | 34.156 | 1.00 | 34.77  | AAAAA O |
| ATOM | 3121 | ND2 | ASN | 329 | 51.425 | 50.769 | 32.530 | 1.00 | 30.62  | AAAAA H |
| ATOM | 3124 | C   | ASN | 329 | 47.038 | 50.207 | 34.357 | 1.00 | 50.37  | AAAAA C |
| ATOM | 3125 | O   | ASN | 329 | 46.736 | 49.015 | 34.119 | 1.00 | 50.17  | AAAAA O |
| ATOM | 3126 | H   | LEU | 330 | 46.090 | 51.143 | 34.413 | 1.00 | 47.13  | AAAAA H |
| ATOM | 3128 | CA  | LEU | 330 | 44.691 | 50.860 | 34.151 | 1.00 | 42.53  | AAAAA C |
| ATOM | 3129 | CB  | LEU | 330 | 43.751 | 51.530 | 35.153 | 1.00 | 42.84  | AAAAA C |
| ATOM | 3130 | CG  | LEU | 330 | 43.768 | 50.995 | 36.598 | 1.00 | 38.65  | AAAAA C |
| ATOM | 3131 | CD1 | LEU | 330 | 42.864 | 51.924 | 37.417 | 1.00 | 38.12  | AAAAA C |
| ATOM | 3132 | CD2 | LEU | 330 | 43.283 | 49.565 | 36.669 | 1.00 | 38.74  | AAAAA C |
| ATOM | 3133 | C   | LEU | 330 | 44.352 | 51.377 | 32.758 | 1.00 | 39.10  | AAAAA C |
| ATOM | 3134 | O   | LEU | 330 | 44.509 | 52.545 | 32.460 | 1.00 | 40.71  | AAAAA O |
| ATOM | 3135 | H   | LEU | 331 | 43.933 | 50.516 | 31.904 | 1.00 | 36.10  | AAAAA H |
| ATOM | 3137 | CA  | LEU | 331 | 43.367 | 50.869 | 30.625 | 1.00 | 43.10  | AAAAA C |
| ATOM | 3138 | CB  | LEU | 331 | 43.958 | 49.894 | 29.585 | 1.00 | 42.29  | AAAAA C |
| ATOM | 3139 | CG  | LEU | 331 | 43.361 | 49.960 | 28.221 | 1.00 | 40.89  | AAAAA C |
| ATOM | 3140 | CD1 | LEU | 331 | 43.501 | 51.319 | 27.627 | 1.00 | 46.64  | AAAAA C |
| ATOM | 3141 | CD2 | LEU | 331 | 43.844 | 48.834 | 27.367 | 1.00 | 48.76  | AAAAA C |
| ATOM | 3142 | C   | LEU | 331 | 41.872 | 50.568 | 30.705 | 1.00 | 41.12  | AAAAA C |
| ATOM | 3143 | O   | LEU | 331 | 41.562 | 49.365 | 30.779 | 1.00 | 40.08  | AAAAA O |
| ATOM | 3144 | H   | ILE | 332 | 41.029 | 51.566 | 30.862 | 1.00 | 41.13  | AAAAA H |
| ATOM | 3146 | CA  | ILE | 332 | 39.606 | 51.241 | 31.044 | 1.00 | 36.90  | AAAAA C |
| ATOM | 3147 | CB  | ILE | 332 | 38.885 | 52.085 | 32.076 | 1.00 | 34.77  | AAAAA C |
| ATOM | 3148 | CG2 | ILE | 332 | 37.413 | 51.612 | 32.195 | 1.00 | 34.66  | AAAAA C |
| ATOM | 3149 | CG1 | ILE | 332 | 39.550 | 51.295 | 33.452 | 1.00 | 33.64  | AAAAA C |
| ATOM | 3150 | CD1 | ILE | 332 | 39.479 | 53.152 | 34.337 | 1.00 | 48.21  | AAAAA C |
| ATOM | 3151 | C   | ILE | 332 | 38.959 | 51.367 | 29.688 | 1.00 | 34.03  | AAAAA C |
| ATOM | 3152 | O   | ILE | 332 | 38.867 | 52.489 | 29.200 | 1.00 | 35.89  | AAAAA O |
| ATOM | 3153 | N   | ASN | 333 | 38.569 | 50.273 | 29.094 | 1.00 | 35.25  | AAAAA N |
| ATOM | 3155 | CA  | ASN | 333 | 38.014 | 50.283 | 27.737 | 1.00 | 40.34  | AAAAA C |
| ATOM | 3156 | CB  | ASN | 333 | 38.960 | 49.499 | 26.797 | 1.00 | 50.50  | AAAAA C |
| ATOM | 3157 | CG  | ASN | 333 | 38.668 | 49.493 | 25.310 | 1.00 | 59.29  | AAAAA C |
| ATOM | 3158 | OD1 | ASN | 333 | 37.845 | 48.711 | 24.784 | 1.00 | 64.54  | AAAAA O |
| ATOM | 3159 | ND2 | ASN | 333 | 39.290 | 50.350 | 24.467 | 1.00 | 45.83  | AAAAA H |
| ATOM | 3162 | C   | ASN | 333 | 36.666 | 49.591 | 27.755 | 1.00 | 47.63  | AAAAA C |
| ATOM | 3163 | O   | ASN | 333 | 36.462 | 48.409 | 27.398 | 1.00 | 44.40  | AAAAA O |
| ATOM | 3164 | H   | ILE | 334 | 35.644 | 50.213 | 28.315 | 1.00 | 54.13  | AAAAA H |
| ATOM | 3166 | CA  | ILE | 334 | 34.332 | 49.537 | 28.460 | 1.00 | 59.07  | AAAAA C |
| ATOM | 3167 | CB  | ILE | 334 | 33.788 | 49.826 | 29.876 | 1.00 | 61.98  | AAAAA C |
| ATOM | 3168 | CG2 | ILE | 334 | 32.362 | 49.355 | 30.047 | 1.00 | 54.04  | AAAAA C |
| ATOM | 3169 | CG1 | ILE | 334 | 34.737 | 49.224 | 30.915 | 1.00 | 60.43  | AAAAA C |
| ATOM | 3170 | CD1 | ILE | 334 | 34.346 | 49.687 | 32.317 | 1.00 | 68.57  | AAAAA C |
| ATOM | 3171 | C   | ILE | 334 | 33.271 | 50.032 | 27.476 | 1.00 | 59.45  | AAAAA C |
| ATOM | 3172 | O   | ILE | 334 | 32.726 | 51.136 | 27.635 | 1.00 | 56.22  | AAAAA O |
| ATOM | 3173 | H   | ARG | 335 | 32.919 | 49.181 | 26.550 | 1.00 | 59.69  | AAAAA H |
| ATOM | 3175 | CA  | ARG | 335 | 31.910 | 49.567 | 25.573 | 1.00 | 73.93  | AAAAA C |
| ATOM | 3176 | CB  | ARG | 335 | 32.262 | 48.903 | 24.240 | 1.00 | 74.44  | AAAAA C |
| ATOM | 3177 | CG  | ARG | 335 | 33.729 | 48.932 | 23.918 | 1.00 | 82.97  | AAAAA C |
| ATOM | 3178 | CD  | ARG | 335 | 34.102 | 49.289 | 22.500 | 1.00 | 86.49  | AAAAA C |
| ATOM | 3179 | HE  | ARG | 335 | 34.361 | 48.040 | 21.777 | 1.00 | 89.83  | AAAAA H |
| ATOM | 3181 | C3  | ARG | 335 | 34.011 | 47.838 | 20.496 | 1.00 | 93.67  | AAAAA C |
| ATOM | 3182 | HH1 | ARG | 335 | 33.409 | 48.852 | 19.843 | 1.00 | 87.24  | AAAAA H |
| ATOM | 3185 | HH2 | ARG | 335 | 34.256 | 46.674 | 19.877 | 1.00 | 75.31  | AAAAA H |
| ATOM | 3188 | C   | ARG | 335 | 30.492 | 49.233 | 26.021 | 1.00 | 81.52  | AAAAA C |
| ATOM | 3189 | O   | ARG | 335 | 29.664 | 50.115 | 26.239 | 1.00 | 84.11  | AAAAA O |
| ATOM | 3190 | H   | ALA | 336 | 30.208 | 47.953 | 26.234 | 1.00 | 87.51  | AAAAA H |
| ATOM | 3192 | CA  | ALA | 336 | 28.878 | 47.484 | 26.601 | 1.00 | 92.40  | AAAAA C |
| ATOM | 3193 | CB  | ALA | 336 | 28.835 | 45.980 | 26.633 | 1.00 | 94.03  | AAAAA C |
| ATOM | 3194 | C   | ALA | 336 | 28.479 | 48.058 | 27.953 | 1.00 | 96.61  | AAAAA C |
| ATOM | 3195 | O   | ALA | 336 | 29.316 | 48.019 | 28.855 | 1.00 | 96.96  | AAAAA O |
| ATOM | 3196 | H   | GLY | 337 | 27.298 | 48.685 | 28.039 | 1.00 | 99.74  | AAAAA H |
| ATOM | 3198 | CA  | GLY | 337 | 26.986 | 49.385 | 23.272 | 1.00 | 103.11 | AAAAA C |
| ATOM | 3199 | C   | GLY | 337 | 25.568 | 49.303 | 29.763 | 1.00 | 105.51 | AAAAA C |
| ATOM | 3200 | O   | GLY | 337 | 24.801 | 50.267 | 29.596 | 1.00 | 106.64 | AAAAA O |
| ATOM | 3201 | H   | ASN | 338 | 25.243 | 48.145 | 30.346 | 1.00 | 105.41 | AAAAA H |
| ATOM | 3203 | CA  | ASN | 338 | 23.886 | 48.017 | 30.908 | 1.00 | 106.92 | AAAAA C |
| ATOM | 3204 | CB  | ASN | 338 | 23.714 | 46.689 | 31.624 | 1.00 | 109.14 | AAAAA C |
| ATOM | 3205 | CG  | ASN | 338 | 24.403 | 45.511 | 30.929 | 1.00 | 112.30 | AAAAA C |
| ATOM | 3206 | OD1 | ASN | 338 | 25.598 | 45.595 | 30.625 | 1.00 | 117.94 | AAAAA O |
| ATOM | 3207 | ND2 | ASN | 338 | 23.604 | 44.508 | 30.683 | 1.00 | 113.72 | AAAAA H |
| ATOM | 3210 | C   | ASN | 338 | 23.790 | 49.160 | 31.931 | 1.00 | 105.84 | AAAAA C |

09/555275

PCT/AU98/00998

WO 99/28347

32/58

|      |      |     |     |     |        |        |        |            |         |
|------|------|-----|-----|-----|--------|--------|--------|------------|---------|
| ATOM | 3211 | O   | ASH | 338 | 23.544 | 50.345 | 31.739 | 1.00103.97 | AAAAA O |
| ATOM | 3212 | H   | ASH | 339 | 24.290 | 48.762 | 33.093 | 1.00105.47 | AAAAA H |
| ATOM | 3214 | CA  | ASH | 339 | 24.529 | 49.740 | 34.159 | 1.00107.10 | AAAAA C |
| ATOM | 3215 | CB  | ASH | 339 | 23.252 | 49.915 | 34.945 | 1.00109.15 | AAAAA C |
| ATOM | 3216 | CG  | ASH | 339 | 22.777 | 51.351 | 35.003 | 0.01107.52 | AAAAA C |
| ATOM | 3217 | OD1 | ASH | 339 | 22.715 | 51.931 | 36.088 | 0.01107.49 | AAAAA O |
| ATOM | 3218 | HD2 | ASH | 339 | 22.441 | 51.932 | 33.859 | 0.01107.46 | AAAAA H |
| ATOM | 3221 | C   | ASH | 339 | 25.697 | 49.237 | 35.007 | 1.00106.33 | AAAAA C |
| ATOM | 3222 | O   | ASH | 339 | 25.520 | 48.390 | 35.886 | 1.00108.82 | AAAAA O |
| ATOM | 3223 | H   | ILE | 340 | 26.897 | 49.527 | 34.510 | 1.00101.36 | AAAAA H |
| ATOM | 3225 | CA  | ILE | 340 | 28.136 | 49.101 | 35.138 | 1.00 97.43 | AAAAA C |
| ATOM | 3226 | CB  | ILE | 340 | 29.040 | 48.354 | 34.151 | 1.00 93.63 | AAAAA C |
| ATOM | 3227 | CG2 | ILE | 340 | 28.194 | 47.252 | 33.489 | 1.00 99.38 | AAAAA C |
| ATOM | 3228 | CG1 | ILE | 340 | 29.726 | 49.158 | 33.070 | 1.00 85.50 | AAAAA C |
| ATOM | 3229 | CD1 | ILE | 340 | 28.897 | 49.634 | 31.915 | 1.00 92.53 | AAAAA C |
| ATOM | 3230 | C   | ILE | 340 | 28.783 | 50.357 | 35.706 | 1.00 95.32 | AAAAA C |
| ATOM | 3231 | O   | ILE | 340 | 29.472 | 51.099 | 34.997 | 1.00 97.86 | AAAAA O |
| ATOM | 3232 | N   | ALA | 341 | 28.409 | 50.739 | 36.915 | 1.00 89.89 | AAAAA H |
| ATOM | 3234 | CA  | ALA | 341 | 28.892 | 52.008 | 37.450 | 1.00 88.45 | AAAAA C |
| ATOM | 3235 | CB  | ALA | 341 | 28.068 | 53.201 | 37.006 | 1.00 81.56 | AAAAA C |
| ATOM | 3236 | C   | ALA | 341 | 28.786 | 51.968 | 38.970 | 1.00 85.37 | AAAAA C |
| ATOM | 3237 | O   | ALA | 341 | 28.910 | 52.935 | 39.690 | 1.00 86.09 | AAAAA O |
| ATOM | 3238 | H   | SER | 342 | 28.204 | 50.877 | 39.386 | 1.00 84.24 | AAAAA H |
| ATOM | 3240 | CA  | SER | 342 | 27.910 | 50.601 | 40.780 | 1.00 82.05 | AAAAA C |
| ATOM | 3241 | CB  | SER | 342 | 26.426 | 50.667 | 41.112 | 1.00 85.51 | AAAAA C |
| ATOM | 3242 | OG  | SER | 342 | 26.145 | 51.271 | 42.361 | 1.00 86.02 | AAAAA O |
| ATOM | 3244 | C   | SER | 342 | 28.487 | 49.196 | 40.965 | 1.00 76.62 | AAAAA C |
| ATOM | 3245 | O   | SER | 342 | 29.119 | 48.966 | 41.964 | 1.00 71.76 | AAAAA O |
| ATOM | 3246 | H   | GLU | 343 | 28.373 | 48.409 | 39.905 | 1.00 76.23 | AAAAA H |
| ATOM | 3248 | CA  | GLU | 343 | 29.201 | 47.109 | 39.829 | 1.00 74.59 | AAAAA C |
| ATOM | 3249 | CB  | GLU | 343 | 28.595 | 46.300 | 38.616 | 1.00 78.62 | AAAAA C |
| ATOM | 3250 | CG  | GLU | 343 | 27.118 | 46.105 | 38.316 | 1.00 85.33 | AAAAA C |
| ATOM | 3251 | CD  | GLU | 343 | 26.898 | 45.121 | 37.169 | 1.00 92.76 | AAAAA C |
| ATOM | 3252 | OE1 | GLU | 343 | 27.209 | 43.911 | 37.310 | 1.00 96.41 | AAAAA O |
| ATOM | 3253 | OE2 | GLU | 343 | 26.123 | 45.517 | 36.082 | 1.00 98.55 | AAAAA O |
| ATOM | 3254 | C   | GLU | 343 | 30.525 | 47.319 | 39.804 | 1.00 77.75 | AAAAA C |
| ATOM | 3255 | O   | GLU | 343 | 31.273 | 46.787 | 40.637 | 1.00 75.73 | AAAAA O |
| ATOM | 3256 | H   | LEU | 344 | 31.022 | 48.237 | 38.966 | 1.00 75.65 | AAAAA H |
| ATOM | 3258 | CA  | LEU | 344 | 32.415 | 48.596 | 38.839 | 1.00 72.36 | AAAAA C |
| ATOM | 3259 | CB  | LEU | 344 | 32.760 | 49.697 | 37.808 | 1.00 64.33 | AAAAA C |
| ATOM | 3260 | CG  | LEU | 344 | 32.687 | 49.397 | 36.311 | 1.00 50.12 | AAAAA C |
| ATOM | 3261 | CD1 | LEU | 344 | 33.224 | 50.577 | 35.519 | 1.00 57.00 | AAAAA C |
| ATOM | 3262 | CD2 | LEU | 344 | 33.401 | 48.127 | 35.905 | 1.00 51.62 | AAAAA C |
| ATOM | 3263 | C   | LEU | 344 | 32.963 | 49.130 | 40.174 | 1.00 69.74 | AAAAA C |
| ATOM | 3264 | O   | LEU | 344 | 34.079 | 48.739 | 40.551 | 1.00 69.12 | AAAAA O |
| ATOM | 3265 | N   | GLU | 345 | 32.166 | 49.959 | 40.822 | 1.00 63.10 | AAAAA H |
| ATOM | 3267 | CA  | GLU | 345 | 32.555 | 50.591 | 42.061 | 1.00 65.42 | AAAAA C |
| ATOM | 3268 | CB  | GLU | 345 | 31.592 | 51.714 | 42.478 | 1.00 55.59 | AAAAA C |
| ATOM | 3269 | CG  | GLU | 345 | 32.267 | 52.607 | 43.486 | 1.00 69.78 | AAAAA C |
| ATOM | 3270 | CD  | GLU | 345 | 31.324 | 53.374 | 44.376 | 1.00 81.31 | AAAAA C |
| ATOM | 3271 | OE1 | GLU | 345 | 30.614 | 54.320 | 43.976 | 1.00 85.60 | AAAAA O |
| ATOM | 3272 | OE2 | GLU | 345 | 31.237 | 53.078 | 45.595 | 1.00 88.79 | AAAAA O |
| ATOM | 3273 | C   | GLU | 345 | 32.706 | 49.652 | 43.255 | 1.00 63.31 | AAAAA C |
| ATOM | 3274 | O   | GLU | 345 | 33.501 | 49.913 | 44.134 | 1.00 60.06 | AAAAA O |
| ATOM | 3275 | H   | ASH | 346 | 32.151 | 48.462 | 43.201 | 1.00 62.25 | AAAAA H |
| ATOM | 3277 | CA  | ASH | 346 | 32.285 | 47.403 | 44.173 | 1.00 63.92 | AAAAA C |
| ATOM | 3278 | CB  | ASH | 346 | 31.024 | 46.498 | 44.095 | 1.00 61.66 | AAAAA C |
| ATOM | 3279 | CG  | ASH | 346 | 31.110 | 45.292 | 45.006 | 1.00 58.73 | AAAAA C |
| ATOM | 3280 | OD1 | ASH | 346 | 31.188 | 45.352 | 46.224 | 1.00 69.11 | AAAAA O |
| ATOM | 3281 | HD2 | ASH | 346 | 31.155 | 44.092 | 44.444 | 1.00 51.10 | AAAAA H |
| ATOM | 3284 | C   | ASH | 346 | 33.532 | 46.580 | 43.870 | 1.00 63.71 | AAAAA C |
| ATOM | 3285 | O   | ASH | 346 | 33.636 | 45.336 | 43.905 | 1.00 65.65 | AAAAA O |
| ATOM | 3286 | H   | PHE | 347 | 34.419 | 47.173 | 43.066 | 1.00 63.23 | AAAAA H |
| ATOM | 3288 | CA  | PHE | 347 | 35.540 | 46.411 | 42.506 | 1.00 61.39 | AAAAA C |
| ATOM | 3289 | CB  | PHE | 347 | 35.123 | 45.854 | 41.170 | 1.00 61.38 | AAAAA C |
| ATOM | 3290 | CG  | PHE | 347 | 34.457 | 44.534 | 41.142 | 1.00 65.57 | AAAAA C |
| ATOM | 3291 | CD1 | PHE | 347 | 33.090 | 44.438 | 40.982 | 1.00 75.25 | AAAAA C |
| ATOM | 3292 | CD2 | PHE | 347 | 35.148 | 43.351 | 41.267 | 1.00 77.15 | AAAAA C |
| ATOM | 3293 | CE1 | PHE | 347 | 32.426 | 43.224 | 40.951 | 1.00 75.55 | AAAAA C |
| ATOM | 3294 | CE2 | PHE | 347 | 34.512 | 42.130 | 41.249 | 1.00 72.86 | AAAAA C |
| ATOM | 3295 | C2  | PHE | 347 | 33.152 | 42.051 | 41.095 | 1.00 72.74 | AAAAA C |
| ATOM | 3296 | C   | PHE | 347 | 36.712 | 47.375 | 42.440 | 1.00 57.70 | AAAAA C |
| ATOM | 3297 | O   | PHE | 347 | 37.770 | 46.820 | 42.354 | 1.00 59.90 | AAAAA O |
| ATOM | 3298 | H   | MET | 348 | 36.482 | 48.676 | 42.319 | 1.00 50.56 | AAAAA H |
| ATOM | 3300 | CA  | MET | 348 | 37.500 | 49.630 | 41.964 | 1.00 42.86 | AAAAA C |
| ATOM | 3301 | CB  | MET | 348 | 37.402 | 50.096 | 40.493 | 1.00 31.72 | AAAAA C |
| ATOM | 3302 | CG  | MET | 348 | 37.426 | 48.933 | 39.471 | 1.00 33.42 | AAAAA C |
| ATOM | 3303 | SD  | MET | 348 | 37.566 | 49.448 | 37.732 | 1.00 44.79 | AAAAA S |
| ATOM | 3304 | CE  | MET | 348 | 38.408 | 50.999 | 37.791 | 1.00 59.57 | AAAAA C |
| ATOM | 3305 | C   | MET | 348 | 37.368 | 50.831 | 42.867 | 1.00 45.88 | AAAAA C |
| ATOM | 3306 | O   | MET | 348 | 38.210 | 51.772 | 42.901 | 1.00 43.33 | AAAAA O |
| ATOM | 3307 | H   | GLY | 349 | 36.296 | 50.783 | 43.683 | 1.00 45.30 | AAAAA H |
| ATOM | 3309 | CA  | GLY | 349 | 35.990 | 51.965 | 44.504 | 1.00 49.19 | AAAAA C |
| ATOM | 3310 | C   | GLY | 349 | 36.980 | 52.189 | 45.620 | 1.00 52.77 | AAAAA C |
| ATOM | 3311 | O   | GLY | 349 | 37.033 | 53.299 | 46.156 | 1.00 53.43 | AAAAA O |

09/555275

WO 99/28347

PCT/AU98/00998

33/58

|      |      |     |     |     |        |        |        |      |       |       |   |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|-------|---|
| ATOM | 3312 | N   | LEU | 350 | 37.791 | 51.159 | 45.025 | 1.00 | 56.17 | AAAAA | H |
| ATOM | 3314 | CA  | LEU | 350 | 38.735 | 51.256 | 47.621 | 1.00 | 58.04 | AAAAA | C |
| ATOM | 3315 | CB  | LEU | 350 | 38.873 | 49.949 | 47.834 | 1.00 | 49.00 | AAAAA | C |
| ATOM | 3316 | CG  | LEU | 350 | 37.871 | 50.020 | 49.031 | 1.00 | 50.79 | AAAAA | C |
| ATOM | 3317 | CD1 | LEU | 350 | 37.705 | 48.680 | 49.760 | 1.00 | 52.92 | AAAAA | C |
| ATOM | 3318 | CD2 | LEU | 350 | 38.347 | 51.106 | 50.038 | 1.00 | 56.11 | AAAAA | C |
| ATOM | 3319 | C   | LEU | 350 | 40.144 | 51.727 | 46.685 | 1.00 | 61.34 | AAAAA | C |
| ATOM | 3320 | O   | LEU | 350 | 40.931 | 51.962 | 47.618 | 1.00 | 63.52 | AAAAA | O |
| ATOM | 3321 | N   | ILE | 351 | 40.446 | 51.577 | 45.372 | 1.00 | 57.89 | AAAAA | N |
| ATOM | 3323 | CA  | ILE | 351 | 41.729 | 51.098 | 44.873 | 1.00 | 48.69 | AAAAA | C |
| ATOM | 3324 | CB  | ILE | 351 | 41.814 | 51.912 | 43.352 | 1.00 | 48.19 | AAAAA | C |
| ATOM | 3325 | CG2 | ILE | 351 | 43.121 | 52.416 | 42.757 | 1.00 | 40.01 | AAAAA | C |
| ATOM | 3326 | CG1 | ILE | 351 | 41.535 | 50.418 | 43.058 | 1.00 | 36.87 | AAAAA | C |
| ATOM | 3327 | CD1 | ILE | 351 | 41.172 | 50.351 | 41.581 | 1.00 | 36.46 | AAAAA | C |
| ATOM | 3328 | C   | ILE | 351 | 42.031 | 53.533 | 45.179 | 1.00 | 46.80 | AAAAA | C |
| ATOM | 3329 | O   | ILE | 351 | 41.367 | 54.359 | 41.626 | 1.00 | 42.87 | AAAAA | O |
| ATOM | 3330 | N   | GLU | 352 | 43.002 | 53.866 | 46.015 | 1.00 | 50.61 | AAAAA | N |
| ATOM | 3332 | CA  | GLU | 352 | 43.381 | 55.241 | 46.248 | 1.00 | 51.20 | AAAAA | C |
| ATOM | 3333 | CB  | GLU | 352 | 43.907 | 55.353 | 47.678 | 1.00 | 52.12 | AAAAA | C |
| ATOM | 3334 | CG  | GLU | 352 | 42.912 | 55.769 | 48.735 | 1.00 | 65.55 | AAAAA | C |
| ATOM | 3335 | CD  | GLU | 352 | 43.034 | 54.834 | 49.947 | 1.00 | 71.49 | AAAAA | C |
| ATOM | 3336 | OE1 | GLU | 352 | 43.881 | 55.244 | 50.765 | 1.00 | 66.09 | AAAAA | O |
| ATOM | 3337 | OE2 | GLU | 352 | 42.330 | 53.799 | 50.009 | 1.00 | 76.07 | AAAAA | O |
| ATOM | 3338 | C   | GLU | 352 | 44.502 | 55.751 | 45.314 | 1.00 | 47.43 | AAAAA | C |
| ATOM | 3339 | O   | GLU | 352 | 44.798 | 56.951 | 45.181 | 1.00 | 40.38 | AAAAA | O |
| ATOM | 3340 | N   | VAL | 353 | 45.342 | 54.838 | 44.852 | 1.00 | 43.54 | AAAAA | N |
| ATOM | 3342 | CA  | VAL | 353 | 46.512 | 55.236 | 44.078 | 1.00 | 43.71 | AAAAA | C |
| ATOM | 3343 | CB  | VAL | 353 | 47.759 | 55.540 | 44.911 | 1.00 | 45.01 | AAAAA | C |
| ATOM | 3344 | CG1 | VAL | 353 | 47.766 | 55.261 | 45.387 | 1.00 | 30.84 | AAAAA | C |
| ATOM | 3345 | CG2 | VAL | 353 | 48.988 | 54.844 | 44.310 | 1.00 | 42.55 | AAAAA | C |
| ATOM | 3346 | C   | VAL | 353 | 46.823 | 54.233 | 42.957 | 1.00 | 41.41 | AAAAA | C |
| ATOM | 3347 | O   | VAL | 353 | 46.813 | 53.003 | 43.172 | 1.00 | 39.19 | AAAAA | O |
| ATOM | 3348 | N   | VAL | 354 | 47.074 | 54.855 | 41.816 | 1.00 | 36.31 | AAAAA | N |
| ATOM | 3350 | CA  | VAL | 354 | 47.156 | 54.092 | 40.651 | 1.00 | 43.97 | AAAAA | C |
| ATOM | 3351 | CB  | VAL | 354 | 46.725 | 54.390 | 39.407 | 1.00 | 40.86 | AAAAA | C |
| ATOM | 3352 | CG1 | VAL | 354 | 47.347 | 53.896 | 38.123 | 1.00 | 36.72 | AAAAA | C |
| ATOM | 3353 | CG2 | VAL | 354 | 45.293 | 53.849 | 39.678 | 1.00 | 35.35 | AAAAA | C |
| ATOM | 3354 | C   | VAL | 354 | 49.043 | 54.510 | 40.388 | 1.00 | 44.56 | AAAAA | C |
| ATOM | 3355 | O   | VAL | 354 | 49.366 | 55.718 | 40.288 | 1.00 | 43.32 | AAAAA | O |
| ATOM | 3356 | H   | THR | 355 | 49.972 | 53.561 | 40.431 | 1.00 | 43.83 | AAAAA | H |
| ATOM | 3358 | CA  | THR | 355 | 51.392 | 53.914 | 40.284 | 1.00 | 44.85 | AAAAA | C |
| ATOM | 3359 | CB  | THR | 355 | 52.374 | 52.799 | 40.653 | 1.00 | 42.40 | AAAAA | C |
| ATOM | 3360 | OG1 | THR | 355 | 52.273 | 51.744 | 39.695 | 1.00 | 45.30 | AAAAA | O |
| ATOM | 3362 | CG2 | THR | 355 | 52.210 | 52.194 | 42.039 | 1.00 | 38.13 | AAAAA | C |
| ATOM | 3363 | C   | THR | 355 | 51.746 | 54.339 | 38.851 | 1.00 | 43.84 | AAAAA | C |
| ATOM | 3364 | O   | THR | 355 | 52.163 | 55.334 | 38.697 | 1.00 | 44.26 | AAAAA | O |
| ATOM | 3365 | H   | GLY | 356 | 51.127 | 53.704 | 37.870 | 1.00 | 41.16 | AAAAA | H |
| ATOM | 3367 | CA  | GLY | 356 | 51.358 | 54.073 | 36.470 | 1.00 | 37.91 | AAAAA | C |
| ATOM | 3368 | C   | GLY | 356 | 50.505 | 55.204 | 35.955 | 1.00 | 38.07 | AAAAA | C |
| ATOM | 3369 | O   | GLY | 356 | 50.364 | 56.261 | 36.615 | 1.00 | 34.65 | AAAAA | O |
| ATOM | 3370 | H   | TIR | 357 | 49.910 | 55.004 | 34.800 | 1.00 | 38.47 | AAAAA | H |
| ATOM | 3372 | CA  | TIR | 357 | 48.982 | 55.973 | 34.208 | 1.00 | 38.03 | AAAAA | C |
| ATOM | 3373 | CB  | TIR | 357 | 49.557 | 56.343 | 32.805 | 1.00 | 31.44 | AAAAA | C |
| ATOM | 3374 | CG  | TIR | 357 | 49.473 | 55.219 | 31.812 | 1.00 | 33.04 | AAAAA | C |
| ATOM | 3375 | CD1 | TIR | 357 | 49.333 | 54.842 | 31.077 | 1.00 | 32.86 | AAAAA | C |
| ATOM | 3376 | CE1 | TIR | 357 | 48.352 | 53.779 | 30.175 | 1.00 | 32.83 | AAAAA | C |
| ATOM | 3377 | CD2 | TIR | 357 | 50.639 | 54.465 | 31.606 | 1.00 | 34.28 | AAAAA | C |
| ATOM | 3378 | CE2 | TIR | 357 | 50.706 | 53.402 | 30.720 | 1.00 | 32.51 | AAAAA | C |
| ATOM | 3379 | CS  | TIR | 357 | 49.552 | 53.068 | 30.007 | 1.00 | 37.26 | AAAAA | C |
| ATOM | 3380 | CH  | TIR | 357 | 49.726 | 51.997 | 29.166 | 1.00 | 35.95 | AAAAA | O |
| ATOM | 3382 | C   | TIR | 357 | 47.582 | 55.368 | 34.150 | 1.00 | 38.55 | AAAAA | C |
| ATOM | 3383 | O   | TIR | 357 | 47.458 | 54.127 | 34.098 | 1.00 | 36.11 | AAAAA | O |
| ATOM | 3384 | H   | VAL | 358 | 46.593 | 56.216 | 33.814 | 1.00 | 40.98 | AAAAA | H |
| ATOM | 3386 | CA  | VAL | 358 | 45.197 | 55.798 | 33.639 | 1.00 | 38.90 | AAAAA | C |
| ATOM | 3387 | CB  | VAL | 358 | 44.211 | 56.502 | 34.610 | 1.00 | 49.18 | AAAAA | C |
| ATOM | 3388 | CG1 | VAL | 358 | 42.815 | 55.883 | 34.484 | 1.00 | 33.12 | AAAAA | C |
| ATOM | 3389 | CG2 | VAL | 358 | 44.748 | 56.437 | 36.043 | 1.00 | 29.20 | AAAAA | C |
| ATOM | 3390 | C   | VAL | 358 | 44.760 | 56.194 | 32.034 | 1.00 | 35.64 | AAAAA | C |
| ATOM | 3391 | O   | VAL | 358 | 44.792 | 57.359 | 31.885 | 1.00 | 34.58 | AAAAA | O |
| ATOM | 3392 | H   | LYS | 359 | 44.387 | 55.188 | 31.461 | 1.00 | 36.00 | AAAAA | H |
| ATOM | 3394 | CA  | LYS | 359 | 43.894 | 55.410 | 30.117 | 1.00 | 41.27 | AAAAA | C |
| ATOM | 3395 | CB  | LYS | 359 | 44.945 | 54.707 | 29.174 | 1.00 | 37.40 | AAAAA | C |
| ATOM | 3396 | CG  | LYS | 359 | 44.310 | 54.473 | 27.770 | 1.00 | 45.19 | AAAAA | C |
| ATOM | 3397 | CD  | LYS | 359 | 45.010 | 55.317 | 26.750 | 1.00 | 43.40 | AAAAA | C |
| ATOM | 3398 | CE  | LYS | 359 | 45.958 | 54.102 | 25.986 | 1.00 | 43.56 | AAAAA | C |
| ATOM | 3399 | HE  | LYS | 359 | 45.416 | 53.937 | 24.680 | 1.00 | 47.98 | AAAAA | H |
| ATOM | 3403 | C   | LYS | 359 | 42.423 | 54.979 | 29.939 | 1.00 | 42.14 | AAAAA | C |
| ATOM | 3404 | O   | LYS | 359 | 42.055 | 53.791 | 30.006 | 1.00 | 40.40 | AAAAA | O |
| ATOM | 3405 | H   | ILE | 360 | 41.602 | 55.974 | 29.572 | 1.00 | 37.16 | AAAAA | H |
| ATOM | 3407 | CA  | ILE | 360 | 40.164 | 55.742 | 29.334 | 1.00 | 40.02 | AAAAA | C |
| ATOM | 3408 | CB  | ILE | 360 | 39.297 | 56.804 | 30.048 | 1.00 | 38.10 | AAAAA | C |
| ATOM | 3409 | CG2 | ILE | 360 | 37.887 | 56.277 | 29.932 | 1.00 | 39.42 | AAAAA | C |
| ATOM | 3410 | CG1 | ILE | 360 | 39.769 | 57.111 | 31.181 | 1.00 | 28.54 | AAAAA | C |
| ATOM | 3411 | CD1 | ILE | 360 | 39.423 | 56.037 | 32.491 | 1.00 | 33.16 | AAAAA | C |
| ATOM | 3412 | C   | ILE | 360 | 39.988 | 55.837 | 27.834 | 1.00 | 39.49 | AAAAA | C |

09/555275

PCT/AU98/00998

WO 99/28347

## 34/58

|      |      |     |     |     |        |        |        |      |       |         |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|---------|
| ATOM | 3413 | O   | ILE | 360 | 40.013 | 56.942 | 27.235 | 1.00 | 37.32 | AAAAA O |
| ATOM | 3414 | H   | ARG | 361 | 39.567 | 54.721 | 27.221 | 1.00 | 31.31 | AAAAA H |
| ATOM | 3416 | CA  | ARG | 361 | 39.472 | 54.782 | 25.744 | 1.00 | 41.24 | AAAAA C |
| ATOM | 3417 | CB  | ARG | 361 | 40.783 | 54.213 | 25.148 | 1.00 | 47.92 | AAAAA C |
| ATOM | 3418 | CG  | ARG | 361 | 40.805 | 54.203 | 23.646 | 1.00 | 50.39 | AAAAA C |
| ATOM | 3419 | CD  | ARG | 361 | 41.943 | 53.357 | 23.116 | 1.00 | 51.36 | AAAAA C |
| ATOM | 3420 | HE  | ARG | 361 | 41.473 | 51.974 | 23.263 | 1.00 | 50.97 | AAAAA H |
| ATOM | 3422 | CG  | ARG | 361 | 42.297 | 50.962 | 23.490 | 1.00 | 55.78 | AAAAA C |
| ATOM | 3423 | NH1 | ARG | 361 | 43.612 | 51.074 | 23.616 | 1.00 | 51.62 | AAAAA H |
| ATOM | 3426 | NH2 | ARG | 361 | 41.834 | 49.719 | 23.631 | 1.00 | 54.52 | AAAAA H |
| ATOM | 3429 | C   | ARG | 361 | 38.382 | 53.866 | 25.246 | 1.00 | 42.06 | AAAAA C |
| ATOM | 3430 | O   | ARG | 361 | 38.336 | 52.661 | 25.499 | 1.00 | 38.93 | AAAAA O |
| ATOM | 3431 | H   | HIS | 362 | 37.514 | 54.342 | 24.373 | 1.00 | 46.19 | AAAAA H |
| ATOM | 3433 | CA  | HIS | 362 | 36.372 | 53.555 | 23.885 | 1.00 | 49.34 | AAAAA C |
| ATOM | 3434 | CB  | HIS | 362 | 37.000 | 52.300 | 23.266 | 1.00 | 40.94 | AAAAA C |
| ATOM | 3435 | CG  | HIS | 362 | 37.849 | 52.610 | 22.084 | 1.00 | 42.78 | AAAAA C |
| ATOM | 3436 | CD2 | HIS | 362 | 38.049 | 53.765 | 21.411 | 1.00 | 48.32 | AAAAA C |
| ATOM | 3437 | ND1 | HIS | 362 | 38.628 | 51.676 | 21.469 | 1.00 | 43.59 | AAAAA H |
| ATOM | 3439 | CE1 | HIS | 362 | 39.256 | 52.247 | 20.465 | 1.00 | 46.01 | AAAAA C |
| ATOM | 3440 | NE2 | HIS | 362 | 38.923 | 53.515 | 20.408 | 1.00 | 49.22 | AAAAA H |
| ATOM | 3442 | C   | HIS | 362 | 35.295 | 53.113 | 24.913 | 1.00 | 50.32 | AAAAA C |
| ATOM | 3443 | O   | HIS | 362 | 34.686 | 52.030 | 24.795 | 1.00 | 41.31 | AAAAA O |
| ATOM | 3444 | H   | SER | 363 | 35.222 | 53.875 | 26.013 | 1.00 | 46.96 | AAAAA H |
| ATOM | 3446 | CA  | SER | 363 | 34.402 | 53.456 | 27.139 | 1.00 | 52.19 | AAAAA C |
| ATOM | 3447 | CB  | SER | 363 | 35.231 | 53.837 | 28.400 | 1.00 | 53.73 | AAAAA C |
| ATOM | 3448 | OG  | SER | 363 | 35.713 | 52.558 | 28.816 | 1.00 | 41.72 | AAAAA O |
| ATOM | 3450 | C   | SER | 363 | 33.005 | 54.072 | 27.046 | 1.00 | 49.09 | AAAAA C |
| ATOM | 3451 | O   | SER | 363 | 32.653 | 55.040 | 27.694 | 1.00 | 37.49 | AAAAA O |
| ATOM | 3452 | H   | HIS | 364 | 32.243 | 53.577 | 26.058 | 1.00 | 52.29 | AAAAA H |
| ATOM | 3454 | CA  | HIS | 364 | 30.954 | 54.173 | 25.717 | 1.00 | 53.66 | AAAAA C |
| ATOM | 3455 | C   | HIS | 364 | 29.879 | 53.937 | 26.760 | 1.00 | 48.77 | AAAAA C |
| ATOM | 3456 | O   | HIS | 364 | 29.297 | 54.899 | 27.280 | 1.00 | 51.44 | AAAAA O |
| ATOM | 3457 | CB  | HIS | 364 | 30.485 | 53.699 | 24.348 | 1.00 | 49.83 | AAAAA C |
| ATOM | 3458 | CG  | HIS | 364 | 31.493 | 54.182 | 23.338 | 1.00 | 51.51 | AAAAA C |
| ATOM | 3459 | ND1 | HIS | 364 | 31.870 | 55.502 | 23.156 | 1.00 | 44.83 | AAAAA H |
| ATOM | 3460 | CE1 | HIS | 364 | 32.798 | 55.533 | 22.214 | 1.00 | 28.57 | AAAAA C |
| ATOM | 3461 | CD2 | HIS | 364 | 32.194 | 53.393 | 22.472 | 1.00 | 38.62 | AAAAA C |
| ATOM | 3462 | HE2 | HIS | 364 | 32.992 | 54.274 | 21.810 | 1.00 | 41.44 | AAAAA H |
| ATOM | 3464 | N   | ALA | 365 | 29.949 | 52.819 | 27.427 | 1.00 | 47.53 | AAAAA H |
| ATOM | 3466 | CA  | ALA | 365 | 29.211 | 52.488 | 28.621 | 1.00 | 44.41 | AAAAA C |
| ATOM | 3467 | CB  | ALA | 365 | 29.678 | 51.133 | 29.150 | 1.00 | 40.28 | AAAAA C |
| ATOM | 3468 | C   | ALA | 365 | 29.318 | 53.473 | 29.768 | 1.00 | 44.70 | AAAAA C |
| ATOM | 3469 | O   | ALA | 365 | 28.576 | 53.206 | 30.726 | 1.00 | 45.28 | AAAAA O |
| ATOM | 3470 | H   | LEU | 366 | 30.158 | 54.517 | 29.762 | 1.00 | 40.80 | AAAAA H |
| ATOM | 3472 | CA  | LEU | 366 | 30.415 | 55.243 | 30.968 | 1.00 | 42.21 | AAAAA C |
| ATOM | 3473 | CB  | LEU | 366 | 31.885 | 55.241 | 31.350 | 1.00 | 43.78 | AAAAA C |
| ATOM | 3474 | CG  | LEU | 366 | 32.740 | 54.037 | 31.657 | 1.00 | 51.52 | AAAAA C |
| ATOM | 3475 | CD1 | LEU | 366 | 34.192 | 54.373 | 32.043 | 1.00 | 51.77 | AAAAA C |
| ATOM | 3476 | CD2 | LEU | 366 | 32.118 | 53.305 | 32.834 | 1.00 | 51.17 | AAAAA C |
| ATOM | 3477 | "   | LEU | 366 | 29.974 | 56.687 | 30.896 | 1.00 | 46.36 | AAAAA C |
| ATOM | 3478 | O   | LEU | 366 | 30.305 | 57.248 | 29.849 | 1.00 | 48.40 | AAAAA O |
| ATOM | 3479 | H   | VAL | 367 | 29.521 | 57.275 | 32.015 | 1.00 | 43.68 | AAAAA H |
| ATOM | 3481 | CA  | VAL | 367 | 29.972 | 58.675 | 31.940 | 1.00 | 44.18 | AAAAA C |
| ATOM | 3482 | CB  | VAL | 367 | 27.557 | 58.727 | 32.376 | 1.00 | 48.80 | AAAAA C |
| ATOM | 3483 | CG1 | VAL | 367 | 26.923 | 60.073 | 32.571 | 1.00 | 41.69 | AAAAA C |
| ATOM | 3484 | CG2 | VAL | 367 | 26.697 | 57.949 | 31.365 | 1.00 | 34.00 | AAAAA C |
| ATOM | 3485 | C   | VAL | 367 | 29.923 | 59.518 | 32.845 | 1.00 | 44.90 | AAAAA C |
| ATOM | 3486 | O   | VAL | 367 | 29.965 | 60.751 | 32.720 | 1.00 | 44.75 | AAAAA O |
| ATOM | 3487 | H   | SER | 368 | 30.591 | 58.818 | 33.757 | 1.00 | 48.72 | AAAAA H |
| ATOM | 3489 | CA  | SER | 368 | 31.487 | 59.465 | 34.742 | 1.00 | 52.70 | AAAAA C |
| ATOM | 3490 | CB  | SER | 368 | 30.658 | 59.706 | 36.000 | 1.00 | 55.32 | AAAAA C |
| ATOM | 3491 | OG  | SER | 368 | 31.300 | 60.298 | 37.091 | 1.00 | 54.86 | AAAAA O |
| ATOM | 3493 | C   | SER | 368 | 32.590 | 58.497 | 35.179 | 1.00 | 52.76 | AAAAA C |
| ATOM | 3494 | O   | SER | 368 | 32.352 | 57.299 | 34.976 | 1.00 | 48.99 | AAAAA O |
| ATOM | 3495 | H   | LEU | 369 | 33.631 | 59.012 | 35.831 | 1.00 | 53.86 | AAAAA H |
| ATOM | 3497 | CA  | LEU | 369 | 34.716 | 58.129 | 36.274 | 1.00 | 60.15 | AAAAA C |
| ATOM | 3498 | CB  | LEU | 369 | 36.073 | 58.630 | 35.784 | 1.00 | 55.91 | AAAAA C |
| ATOM | 3499 | CG  | LEU | 369 | 36.325 | 58.736 | 34.271 | 1.00 | 45.96 | AAAAA C |
| ATOM | 3500 | CD1 | LEU | 369 | 37.669 | 59.428 | 34.151 | 1.00 | 53.97 | AAAAA C |
| ATOM | 3501 | CD2 | LEU | 369 | 36.207 | 57.384 | 33.619 | 1.00 | 38.77 | AAAAA C |
| ATOM | 3502 | C   | LEU | 369 | 34.645 | 58.036 | 37.811 | 1.00 | 62.52 | AAAAA C |
| ATOM | 3503 | O   | LEU | 369 | 35.569 | 57.700 | 38.595 | 1.00 | 59.33 | AAAAA O |
| ATOM | 3504 | H   | SER | 370 | 33.437 | 58.401 | 38.285 | 1.00 | 56.26 | AAAAA H |
| ATOM | 3506 | CA  | SER | 370 | 33.089 | 58.431 | 39.690 | 1.00 | 53.88 | AAAAA C |
| ATOM | 3507 | CB  | SER | 370 | 31.673 | 59.052 | 39.816 | 1.00 | 57.50 | AAAAA C |
| ATOM | 3508 | OG  | SER | 370 | 30.771 | 58.061 | 39.261 | 1.00 | 69.12 | AAAAA O |
| ATOM | 3510 | C   | SER | 370 | 33.060 | 57.085 | 40.412 | 1.00 | 47.97 | AAAAA C |
| ATOM | 3511 | O   | SER | 370 | 33.228 | 58.943 | 41.596 | 1.00 | 41.93 | AAAAA O |
| ATOM | 3512 | H   | PHE | 371 | 32.967 | 55.936 | 39.792 | 1.00 | 45.48 | AAAAA H |
| ATOM | 3514 | CA  | PHE | 371 | 33.223 | 54.643 | 40.356 | 1.00 | 46.29 | AAAAA C |
| ATOM | 3515 | CB  | PHE | 371 | 32.952 | 53.596 | 39.287 | 1.00 | 43.53 | AAAAA C |
| ATOM | 3516 | CG  | PHE | 371 | 33.724 | 53.629 | 38.012 | 1.00 | 56.45 | AAAAA C |
| ATOM | 3517 | CD1 | PHE | 371 | 34.805 | 52.807 | 37.764 | 1.00 | 58.95 | AAAAA C |
| ATOM | 3518 | CD2 | PHE | 371 | 33.371 | 54.515 | 37.004 | 1.00 | 53.92 | AAAAA C |
| ATOM | 3519 | CE1 | PHE | 371 | 35.490 | 52.842 | 36.570 | 1.00 | 59.50 | AAAAA C |

09/555275

PCT/AU98/00998

WO 99/28347

35/58

|      |      |     |     |     |        |        |        |      |       |        |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 3520 | CCE | PHE | 371 | 34.048 | 54.516 | 35.817 | 1.00 | 56.49 | AAAA C |
| ATOM | 3521 | CC  | PHE | 371 | 35.119 | 53.716 | 35.579 | 1.00 | 56.39 | AAAA C |
| ATOM | 3522 | C   | PHE | 371 | 34.654 | 54.467 | 40.895 | 1.00 | 54.84 | AAAA C |
| ATOM | 3523 | O   | PHE | 371 | 35.005 | 53.592 | 41.728 | 1.00 | 52.23 | AAAA O |
| ATOM | 3524 | H   | LEU | 372 | 35.633 | 55.305 | 40.519 | 1.00 | 50.17 | AAA II |
| ATOM | 3526 | CA  | LEU | 372 | 36.928 | 55.395 | 41.109 | 1.00 | 46.25 | AAA C  |
| ATOM | 3527 | CB  | LEU | 372 | 38.171 | 55.812 | 40.276 | 1.00 | 44.82 | AAA C  |
| ATOM | 3528 | CG  | LEU | 372 | 38.411 | 54.800 | 32.114 | 1.00 | 36.78 | AAA C  |
| ATOM | 3529 | CD1 | LEU | 372 | 38.853 | 55.643 | 37.934 | 1.00 | 45.04 | AAA C  |
| ATOM | 3530 | CD2 | LEU | 372 | 39.260 | 53.657 | 39.565 | 1.00 | 35.55 | AAA C  |
| ATOM | 3531 | C   | LEU | 372 | 36.715 | 56.392 | 42.213 | 1.00 | 42.26 | AAA C  |
| ATOM | 3532 | O   | LEU | 372 | 37.224 | 57.507 | 42.364 | 1.00 | 38.37 | AAA O  |
| ATOM | 3533 | H   | LYS | 373 | 35.970 | 55.862 | 43.192 | 1.00 | 47.06 | AAA II |
| ATOM | 3535 | CA  | LYS | 373 | 35.527 | 56.509 | 44.415 | 1.00 | 50.19 | AAA C  |
| ATOM | 3536 | CB  | LYS | 373 | 34.546 | 55.521 | 45.077 | 1.00 | 56.74 | AAA C  |
| ATOM | 3537 | CG  | LYS | 373 | 33.645 | 56.162 | 46.119 | 1.00 | 59.64 | AAA C  |
| ATOM | 3538 | CD  | LYS | 373 | 32.529 | 56.955 | 45.441 | 0.01 | 60.17 | AAA C  |
| ATOM | 3539 | CE  | LYS | 373 | 31.674 | 57.687 | 46.460 | 0.01 | 60.45 | AAA C  |
| ATOM | 3540 | N   | LYS | 373 | 31.083 | 58.933 | 45.899 | 0.01 | 60.38 | AAA II |
| ATOM | 3544 | C   | LYS | 373 | 36.646 | 56.863 | 45.366 | 1.00 | 49.72 | AAA C  |
| ATOM | 3545 | O   | LYS | 373 | 36.636 | 57.960 | 45.907 | 1.00 | 42.42 | AAA O  |
| ATOM | 3546 | H   | ASN | 374 | 37.657 | 55.986 | 45.513 | 1.00 | 54.43 | AAA II |
| ATOM | 3548 | CA  | ASN | 374 | 38.765 | 56.352 | 46.410 | 1.00 | 59.92 | AAA C  |
| ATOM | 3549 | CB  | ASN | 374 | 39.080 | 55.154 | 47.314 | 1.00 | 63.16 | AAA C  |
| ATOM | 3550 | CG  | ASN | 374 | 38.009 | 54.978 | 48.396 | 1.00 | 64.53 | AAA C  |
| ATOM | 3551 | OD1 | ASN | 374 | 37.892 | 53.972 | 49.096 | 1.00 | 66.40 | AAA O  |
| ATOM | 3552 | ND2 | ASN | 374 | 37.160 | 55.965 | 48.578 | 1.00 | 52.88 | AAA II |
| ATOM | 3555 | C   | ASN | 374 | 40.043 | 56.892 | 45.786 | 1.00 | 62.35 | AAA C  |
| ATOM | 3556 | O   | ASN | 374 | 41.031 | 57.223 | 46.479 | 1.00 | 63.08 | AAA O  |
| ATOM | 3557 | H   | LEU | 375 | 40.091 | 56.893 | 44.438 | 1.00 | 58.34 | AAA II |
| ATOM | 3559 | CA  | LEU | 375 | 41.305 | 57.374 | 43.795 | 1.00 | 54.73 | AAA C  |
| ATOM | 3560 | CB  | LEU | 375 | 41.099 | 57.359 | 42.288 | 1.00 | 56.41 | AAA C  |
| ATOM | 3561 | CG  | LEU | 375 | 42.396 | 57.422 | 41.459 | 1.00 | 54.12 | AAA C  |
| ATOM | 3562 | CD1 | LEU | 375 | 43.135 | 56.112 | 41.689 | 1.00 | 37.88 | AAA C  |
| ATOM | 3563 | CD2 | LEU | 375 | 42.030 | 57.796 | 40.941 | 1.00 | 40.97 | AAA C  |
| ATOM | 3564 | C   | LEU | 375 | 41.712 | 58.754 | 44.245 | 1.00 | 52.37 | AAA C  |
| ATOM | 3565 | O   | LEU | 375 | 41.151 | 59.777 | 43.877 | 1.00 | 52.11 | AAA O  |
| ATOM | 3566 | H   | ARG | 376 | 42.801 | 58.874 | 44.982 | 1.00 | 55.16 | AAA II |
| ATOM | 3568 | CA  | ARG | 376 | 43.320 | 60.155 | 45.134 | 1.00 | 55.45 | AAA C  |
| ATOM | 3569 | CB  | ARG | 376 | 43.706 | 60.222 | 46.928 | 1.00 | 58.68 | AAA C  |
| ATOM | 3570 | CG  | ARG | 376 | 44.288 | 58.907 | 47.415 | 1.00 | 69.10 | AAA C  |
| ATOM | 3571 | CD  | ARG | 376 | 44.286 | 58.817 | 48.944 | 1.00 | 81.17 | AAA C  |
| ATOM | 3572 | NE  | ARG | 376 | 45.377 | 57.926 | 49.410 | 1.00 | 84.46 | AAA II |
| ATOM | 3574 | CE  | ARG | 376 | 46.618 | 58.380 | 49.598 | 1.00 | 85.64 | AAA C  |
| ATOM | 3575 | NH1 | ARG | 376 | 46.966 | 59.645 | 49.383 | 1.00 | 81.84 | AAA II |
| ATOM | 3578 | NH2 | ARG | 376 | 47.571 | 57.540 | 50.012 | 1.00 | 94.15 | AAA C  |
| ATOM | 3581 | C   | ARG | 376 | 44.556 | 60.544 | 44.633 | 1.00 | 50.16 | AAA C  |
| ATOM | 3582 | O   | ARG | 376 | 44.746 | 61.728 | 44.465 | 1.00 | 44.25 | AAA O  |
| ATOM | 3583 | H   | LEU | 377 | 45.375 | 59.578 | 44.219 | 1.00 | 50.99 | AAA II |
| ATOM | 3585 | CA  | LEU | 377 | 46.526 | 59.942 | 43.379 | 1.00 | 49.40 | AAA C  |
| ATOM | 3586 | CB  | LEU | 377 | 47.595 | 60.411 | 44.329 | 1.00 | 64.72 | AAA C  |
| ATOM | 3587 | CG  | LEU | 377 | 48.806 | 59.577 | 44.667 | 1.00 | 70.76 | AAA C  |
| ATOM | 3588 | CD1 | LEU | 377 | 50.031 | 60.157 | 43.954 | 1.00 | 63.32 | AAA C  |
| ATOM | 3589 | CD2 | LEU | 377 | 49.010 | 59.696 | 46.179 | 1.00 | 68.60 | AAA C  |
| ATOM | 3590 | C   | LEU | 377 | 47.043 | 59.022 | 42.311 | 1.00 | 46.33 | AAA C  |
| ATOM | 3591 | O   | LEU | 377 | 46.868 | 57.788 | 42.286 | 1.00 | 45.17 | AAA O  |
| ATOM | 3592 | H   | ILE | 378 | 47.448 | 59.675 | 41.199 | 1.00 | 45.12 | AAA II |
| ATOM | 3594 | CA  | ILE | 378 | 48.042 | 58.976 | 40.042 | 1.00 | 49.10 | AAA C  |
| ATOM | 3595 | CB  | ILE | 378 | 47.342 | 59.303 | 38.724 | 1.00 | 46.36 | AAA C  |
| ATOM | 3596 | CG2 | ILE | 378 | 48.115 | 58.696 | 37.574 | 1.00 | 34.36 | AAA C  |
| ATOM | 3597 | CG1 | ILE | 378 | 45.871 | 58.862 | 38.829 | 1.00 | 38.59 | AAA C  |
| ATOM | 3598 | CD1 | ILE | 378 | 41.999 | 59.515 | 37.765 | 1.00 | 37.18 | AAA C  |
| ATOM | 3599 | C   | ILE | 378 | 49.524 | 59.381 | 40.003 | 1.00 | 49.87 | AAA C  |
| ATOM | 3600 | O   | ILE | 378 | 49.801 | 60.595 | 40.040 | 1.00 | 44.72 | AAA O  |
| ATOM | 3601 | H   | LEU | 379 | 50.154 | 58.423 | 40.067 | 1.00 | 49.97 | AAA II |
| ATOM | 3603 | CA  | LEU | 379 | 51.866 | 58.712 | 40.344 | 1.00 | 48.48 | AAA C  |
| ATOM | 3604 | CB  | LEU | 379 | 52.575 | 57.531 | 41.054 | 1.00 | 48.44 | AAA C  |
| ATOM | 3605 | CG  | LEU | 379 | 52.234 | 57.363 | 42.554 | 1.00 | 50.28 | AAA C  |
| ATOM | 3606 | CD1 | LEU | 379 | 52.926 | 56.187 | 43.217 | 1.00 | 39.89 | AAA C  |
| ATOM | 3607 | CD2 | LEU | 379 | 52.616 | 58.625 | 43.300 | 1.00 | 42.89 | AAA C  |
| ATOM | 3608 | C   | LEU | 379 | 52.309 | 59.019 | 39.080 | 1.00 | 50.94 | AAA C  |
| ATOM | 3609 | O   | LEU | 379 | 53.576 | 59.788 | 39.139 | 1.00 | 54.23 | AAA O  |
| ATOM | 3610 | H   | GLY | 380 | 52.175 | 58.423 | 37.972 | 1.00 | 48.67 | AAA II |
| ATOM | 3612 | CA  | GLY | 380 | 52.931 | 58.715 | 36.702 | 1.00 | 49.94 | AAA C  |
| ATOM | 3613 | C   | GLY | 380 | 54.249 | 58.155 | 36.624 | 1.00 | 52.70 | AAA C  |
| ATOM | 3614 | O   | GLY | 380 | 55.026 | 58.657 | 35.803 | 1.00 | 49.94 | AAA O  |
| ATOM | 3615 | H   | GLU | 381 | 54.549 | 57.033 | 37.272 | 1.00 | 52.51 | AAA II |
| ATOM | 3617 | CA  | GLU | 381 | 55.849 | 56.386 | 37.243 | 1.00 | 52.33 | AAA C  |
| ATOM | 3618 | CB  | GLU | 381 | 56.055 | 55.310 | 38.323 | 1.00 | 45.22 | AAA C  |
| ATOM | 3619 | CG  | GLU | 381 | 55.402 | 55.779 | 39.636 | 1.00 | 52.91 | AAA C  |
| ATOM | 3620 | CD  | GLU | 381 | 56.050 | 55.192 | 40.873 | 1.00 | 42.11 | AAA C  |
| ATOM | 3621 | OE1 | GLU | 381 | 56.160 | 53.966 | 40.890 | 1.00 | 40.26 | AAA O  |
| ATOM | 3622 | OE2 | GLU | 381 | 56.379 | 56.014 | 41.754 | 1.00 | 51.31 | AAA O  |
| ATOM | 3623 | C   | GLU | 381 | 56.070 | 55.784 | 35.859 | 1.00 | 55.86 | AAA C  |
| ATOM | 3624 | O   | GLU | 381 | 57.216 | 55.652 | 35.345 | 1.00 | 54.61 | AAA O  |

## 36/58

|      |      |     |     |     |        |        |        |      |       |        |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 3625 | H   | GLU | 382 | 54.980 | 55.449 | 35.157 | 1.00 | 53.56 | AAAA N |
| ATOM | 3627 | CA  | GLU | 382 | 55.091 | 55.018 | 33.766 | 1.00 | 48.15 | AAAA C |
| ATOM | 3628 | CB  | GLU | 382 | 55.051 | 53.550 | 33.532 | 1.00 | 35.27 | AAAA C |
| ATOM | 3629 | CG  | GLU | 382 | 54.739 | 53.225 | 32.051 | 1.00 | 49.69 | AAAA C |
| ATOM | 3630 | CD  | GLU | 382 | 54.676 | 51.719 | 31.807 | 1.00 | 56.15 | AAAA C |
| ATOM | 3631 | OE1 | GLU | 382 | 55.062 | 50.924 | 32.705 | 1.00 | 61.66 | AAAA O |
| ATOM | 3632 | OE2 | GLU | 382 | 54.264 | 51.291 | 30.745 | 1.00 | 57.69 | AAAA O |
| ATOM | 3633 | C   | GLU | 382 | 54.006 | 55.732 | 32.973 | 1.00 | 50.84 | AAAA C |
| ATOM | 3634 | O   | GLU | 382 | 53.097 | 56.282 | 33.598 | 1.00 | 49.44 | AAAA O |
| ATOM | 3635 | N   | GLN | 383 | 54.347 | 56.256 | 31.780 | 1.00 | 52.29 | AAAA N |
| ATOM | 3637 | CA  | GLN | 383 | 53.498 | 57.153 | 31.016 | 1.00 | 40.15 | AAAA C |
| ATOM | 3638 | CB  | GLN | 383 | 53.914 | 58.609 | 31.155 | 1.00 | 28.50 | AAAA C |
| ATOM | 3639 | CG  | GLN | 383 | 54.489 | 58.909 | 32.542 | 1.00 | 31.10 | AAAA C |
| ATOM | 3640 | CD  | GLN | 383 | 54.950 | 60.301 | 32.752 | 1.00 | 33.19 | AAAA C |
| ATOM | 3641 | OE1 | GLN | 383 | 55.186 | 60.840 | 31.683 | 1.00 | 40.34 | AAAA O |
| ATOM | 3642 | NE2 | GLN | 383 | 55.043 | 60.943 | 33.934 | 1.00 | 36.30 | AAAA N |
| ATOM | 3645 | C   | GLN | 383 | 53.426 | 56.744 | 39.563 | 1.00 | 40.45 | AAAA C |
| ATOM | 3646 | O   | GLN | 383 | 54.131 | 55.858 | 32.139 | 1.00 | 43.45 | AAAA O |
| ATOM | 3647 | H   | LEU | 384 | 52.375 | 57.195 | 38.860 | 1.00 | 42.54 | AAAA N |
| ATOM | 3649 | CA  | LEU | 384 | 52.257 | 56.889 | 37.443 | 1.00 | 43.24 | AAAA C |
| ATOM | 3650 | CB  | LEU | 384 | 50.814 | 57.011 | 36.949 | 1.00 | 43.79 | AAAA C |
| ATOM | 3651 | CG  | LEU | 384 | 49.818 | 56.235 | 37.861 | 1.00 | 41.21 | AAAA C |
| ATOM | 3652 | CD1 | LEU | 384 | 48.611 | 57.095 | 28.221 | 1.00 | 33.99 | AAAA C |
| ATOM | 3653 | CD2 | LEU | 384 | 49.405 | 54.968 | 27.119 | 1.00 | 33.20 | AAAA C |
| ATOM | 3654 | C   | LEU | 384 | 53.204 | 57.809 | 26.672 | 1.00 | 40.51 | AAAA C |
| ATOM | 3655 | O   | LEU | 384 | 53.582 | 58.872 | 27.177 | 1.00 | 29.66 | AAAA O |
| ATOM | 3656 | H   | GLU | 385 | 53.659 | 57.319 | 25.531 | 1.00 | 45.22 | AAAA N |
| ATOM | 3658 | CA  | GLU | 385 | 54.410 | 58.116 | 24.570 | 1.00 | 49.98 | AAAA C |
| ATOM | 3659 | CB  | GLU | 385 | 54.424 | 57.475 | 23.174 | 1.00 | 60.50 | AAAA C |
| ATOM | 3660 | CG  | GLU | 385 | 55.045 | 56.095 | 23.106 | 1.00 | 68.76 | AAAA C |
| ATOM | 3661 | CD  | GLU | 385 | 54.195 | 54.951 | 23.592 | 1.00 | 72.07 | AAAA C |
| ATOM | 3662 | OE1 | GLU | 385 | 53.150 | 55.213 | 24.244 | 1.00 | 81.88 | AAAA O |
| ATOM | 3663 | OE2 | GLU | 385 | 54.565 | 53.786 | 23.301 | 1.00 | 73.13 | AAAA O |
| ATOM | 3664 | C   | GLU | 385 | 53.828 | 59.515 | 24.450 | 1.00 | 47.41 | AAAA C |
| ATOM | 3665 | O   | GLU | 385 | 52.635 | 59.706 | 24.184 | 1.00 | 54.43 | AAAA O |
| ATOM | 3666 | H   | GLY | 386 | 54.614 | 60.470 | 24.902 | 1.00 | 43.69 | AAAA N |
| ATOM | 3668 | CA  | GLY | 386 | 54.181 | 61.870 | 24.897 | 1.00 | 40.34 | AAAA C |
| ATOM | 3669 | C   | GLY | 386 | 54.286 | 62.449 | 26.308 | 1.00 | 40.65 | AAAA C |
| ATOM | 3670 | O   | GLY | 386 | 53.930 | 63.615 | 26.491 | 1.00 | 39.75 | AAAA O |
| ATOM | 3671 | H   | ASN | 387 | 54.441 | 61.537 | 27.272 | 1.00 | 40.75 | AAAA N |
| ATOM | 3673 | CA  | ASN | 387 | 54.479 | 61.912 | 28.675 | 1.00 | 49.18 | AAAA C |
| ATOM | 3674 | CB  | ASN | 387 | 55.500 | 63.084 | 28.874 | 1.00 | 44.41 | AAAA C |
| ATOM | 3675 | CG  | ASN | 387 | 56.925 | 62.541 | 28.722 | 1.00 | 61.51 | AAAA C |
| ATOM | 3676 | OD1 | ASN | 387 | 57.199 | 61.313 | 28.677 | 1.00 | 57.85 | AAAA O |
| ATOM | 3677 | ND2 | ASN | 387 | 58.063 | 63.251 | 28.592 | 1.00 | 61.96 | AAAA N |
| ATOM | 3680 | C   | ASH | 387 | 53.095 | 62.100 | 29.299 | 1.00 | 48.46 | AAAA C |
| ATOM | 3681 | O   | ASH | 387 | 52.836 | 62.891 | 30.218 | 1.00 | 48.99 | AAAA O |
| ATOM | 3682 | H   | TYR | 388 | 52.214 | 61.116 | 29.058 | 1.00 | 46.29 | AAAA N |
| ATOM | 3684 | CA  | TYR | 388 | 50.846 | 61.199 | 29.540 | 1.00 | 45.09 | AAAA C |
| ATOM | 3685 | CB  | TYR | 388 | 49.823 | 60.957 | 28.399 | 1.00 | 40.70 | AAAA C |
| ATOM | 3686 | CG  | TYR | 388 | 49.925 | 62.056 | 27.373 | 1.00 | 42.24 | AAAA C |
| ATOM | 3687 | CD1 | TYR | 388 | 50.343 | 61.854 | 26.063 | 1.00 | 44.38 | AAAA C |
| ATOM | 3688 | CE1 | TYR | 388 | 50.401 | 62.885 | 26.157 | 1.00 | 35.51 | AAAA C |
| ATOM | 3689 | CD2 | TYR | 388 | 49.625 | 63.356 | 27.709 | 1.00 | 44.67 | AAAA C |
| ATOM | 3690 | CE2 | TYR | 388 | 49.699 | 64.428 | 26.830 | 1.00 | 38.14 | AAAA C |
| ATOM | 3691 | CZ  | TYR | 388 | 50.087 | 64.148 | 25.555 | 1.00 | 41.27 | AAAA C |
| ATOM | 3692 | OH  | TYR | 388 | 50.151 | 65.181 | 24.604 | 1.00 | 50.18 | AAAA O |
| ATOM | 3694 | C   | TYR | 388 | 50.563 | 60.288 | 30.714 | 1.00 | 41.88 | AAAA C |
| ATOM | 3695 | O   | TYR | 388 | 50.727 | 59.092 | 30.511 | 1.00 | 32.99 | AAAA O |
| ATOM | 3696 | H   | SER | 389 | 50.020 | 60.917 | 31.733 | 1.00 | 45.42 | AAAA N |
| ATOM | 3698 | CA  | SER | 389 | 49.591 | 60.131 | 32.931 | 1.00 | 50.13 | AAAA C |
| ATOM | 3699 | CB  | SER | 389 | 49.790 | 60.894 | 31.261 | 1.00 | 45.57 | AAAA C |
| ATOM | 3700 | OG  | SER | 389 | 51.185 | 60.899 | 34.504 | 1.00 | 51.11 | AAAA O |
| ATOM | 3702 | C   | SER | 389 | 48.097 | 59.813 | 32.804 | 1.00 | 48.11 | AAAA C |
| ATOM | 3703 | O   | SER | 389 | 47.686 | 58.792 | 33.336 | 1.00 | 49.25 | AAAA O |
| ATOM | 3704 | H   | PHE | 390 | 47.321 | 60.685 | 32.196 | 1.00 | 42.56 | AAAA N |
| ATOM | 3706 | CA  | PHE | 390 | 45.867 | 60.595 | 32.146 | 1.00 | 40.76 | AAAA C |
| ATOM | 3707 | CB  | PHE | 390 | 45.241 | 61.581 | 33.139 | 1.00 | 44.80 | AAAA C |
| ATOM | 3708 | CG  | PHE | 390 | 43.764 | 61.358 | 33.328 | 1.00 | 40.53 | AAAA C |
| ATOM | 3709 | CD1 | PHE | 390 | 43.406 | 60.273 | 34.099 | 1.00 | 40.80 | AAAA C |
| ATOM | 3710 | CD2 | PHE | 390 | 42.769 | 62.157 | 32.748 | 1.00 | 35.59 | AAAA C |
| ATOM | 3711 | CE1 | PHE | 390 | 42.050 | 59.985 | 34.312 | 1.00 | 47.09 | AAAA C |
| ATOM | 3712 | CE2 | PHE | 390 | 41.454 | 61.824 | 32.965 | 1.00 | 44.50 | AAAA C |
| ATOM | 3713 | CZ  | PHE | 390 | 41.063 | 60.745 | 33.739 | 1.00 | 34.54 | AAAA C |
| ATOM | 3714 | C   | PHE | 390 | 45.372 | 60.829 | 30.720 | 1.00 | 38.54 | AAAA C |
| ATOM | 3715 | O   | PHE | 390 | 45.547 | 61.918 | 30.126 | 1.00 | 40.29 | AAAA O |
| ATOM | 3716 | H   | TYR | 391 | 44.819 | 59.818 | 30.096 | 1.00 | 33.48 | AAAA N |
| ATOM | 3718 | CA  | TYR | 391 | 44.596 | 59.782 | 28.663 | 1.00 | 38.58 | AAAA C |
| ATOM | 3719 | CB  | TYR | 391 | 45.579 | 58.871 | 27.972 | 1.00 | 38.95 | AAAA C |
| ATOM | 3720 | CG  | TYR | 391 | 45.760 | 59.006 | 26.503 | 1.00 | 44.54 | AAAA C |
| ATOM | 3721 | CD1 | TYR | 391 | 46.822 | 59.815 | 26.052 | 1.00 | 47.14 | AAAA C |
| ATOM | 3722 | CE1 | TYR | 391 | 47.057 | 59.993 | 24.722 | 1.00 | 46.03 | AAAA C |
| ATOM | 3723 | CD2 | TYR | 391 | 44.927 | 58.390 | 26.584 | 1.00 | 46.94 | AAAA C |
| ATOM | 3724 | CE2 | TYR | 391 | 45.157 | 58.560 | 24.212 | 1.00 | 47.45 | AAAA C |
| ATOM | 3725 | CZ  | TYR | 391 | 46.207 | 59.356 | 23.830 | 1.00 | 45.84 | AAAA C |

09/555275

PCT/AU98/00998

WO 99/28347

37/58

|      |      |     |     |     |        |        |        |      |       |        |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 3726 | OH  | TYR | 391 | 46.374 | 59.492 | 22.481 | 1.00 | 44.79 | AAAA O |
| ATOM | 3728 | C   | TYR | 391 | 43.194 | 59.232 | 24.349 | 1.00 | 39.74 | AAAA C |
| ATOM | 3729 | O   | TYR | 391 | 42.841 | 58.103 | 28.736 | 1.00 | 38.49 | AAAA O |
| ATOM | 3730 | H   | VAL | 392 | 42.417 | 60.158 | 27.773 | 1.00 | 37.07 | AAAA H |
| ATOM | 3732 | CA  | VAL | 392 | 40.958 | 59.874 | 27.603 | 1.00 | 39.52 | AAAA C |
| ATOM | 3733 | CB  | VAL | 392 | 40.075 | 60.880 | 28.440 | 1.00 | 41.12 | AAAA C |
| ATOM | 3734 | CG1 | VAL | 392 | 38.612 | 60.464 | 28.472 | 1.00 | 37.96 | AAAA C |
| ATOM | 3735 | CG2 | VAL | 392 | 40.666 | 61.041 | 29.841 | 1.00 | 33.19 | AAAA C |
| ATOM | 3736 | C   | VAL | 392 | 40.531 | 60.092 | 26.182 | 1.00 | 31.08 | AAAA C |
| ATOM | 3737 | O   | VAL | 392 | 40.508 | 61.277 | 26.804 | 1.00 | 34.71 | AAAA O |
| ATOM | 3738 | H   | LEU | 393 | 40.299 | 59.113 | 25.383 | 1.00 | 34.62 | AAAA H |
| ATOM | 3740 | CA  | LEU | 393 | 39.948 | 59.259 | 23.977 | 1.00 | 38.12 | AAAA C |
| ATOM | 3741 | CB  | LEU | 393 | 41.200 | 59.036 | 23.996 | 1.00 | 42.19 | AAAA C |
| ATOM | 3742 | CG  | LEU | 393 | 41.023 | 58.649 | 21.586 | 1.00 | 26.48 | AAAA C |
| ATOM | 3743 | CD1 | LEU | 393 | 41.128 | 59.879 | 20.753 | 1.00 | 26.57 | AAAA C |
| ATOM | 3744 | CD2 | LEU | 393 | 42.078 | 57.589 | 21.244 | 1.00 | 29.98 | AAAA C |
| ATOM | 3745 | C   | LEU | 393 | 38.821 | 58.375 | 23.482 | 1.00 | 39.15 | AAAA C |
| ATOM | 3746 | O   | LEU | 393 | 38.760 | 57.173 | 23.769 | 1.00 | 37.90 | AAAA O |
| ATOM | 3747 | H   | ASP | 394 | 38.015 | 58.973 | 22.565 | 1.00 | 43.38 | AAA H  |
| ATOM | 3749 | CA  | ASP | 394 | 36.988 | 59.215 | 21.975 | 1.00 | 44.77 | AAA C  |
| ATOM | 3750 | CB  | ASP | 394 | 37.445 | 57.073 | 21.120 | 1.00 | 44.80 | AAA C  |
| ATOM | 3751 | CG  | ASP | 394 | 36.466 | 56.477 | 20.156 | 1.00 | 47.14 | AAA C  |
| ATOM | 3752 | OD1 | ASP | 394 | 36.750 | 55.577 | 19.333 | 1.00 | 52.91 | AAA O  |
| ATOM | 3753 | OD2 | ASP | 394 | 35.311 | 56.948 | 20.180 | 1.00 | 49.27 | AAA O  |
| ATOM | 3754 | C   | ASP | 394 | 35.936 | 57.619 | 23.021 | 1.00 | 43.17 | AAA C  |
| ATOM | 3755 | O   | ASP | 394 | 35.831 | 56.385 | 23.212 | 1.00 | 43.51 | AAA O  |
| ATOM | 3756 | H   | ASH | 395 | 35.299 | 58.495 | 23.746 | 1.00 | 39.90 | AAA H  |
| ATOM | 3758 | CA  | ASH | 395 | 34.305 | 58.158 | 24.776 | 1.00 | 46.30 | AAA C  |
| ATOM | 3759 | CB  | ASH | 395 | 34.804 | 58.512 | 26.212 | 1.00 | 42.96 | AAA C  |
| ATOM | 3760 | CG  | ASH | 395 | 35.952 | 57.619 | 26.579 | 1.00 | 36.92 | AAA C  |
| ATOM | 3761 | OD1 | ASH | 395 | 36.013 | 55.394 | 26.795 | 1.00 | 21.65 | AAA O  |
| ATOM | 3762 | ND2 | ASH | 395 | 37.075 | 58.409 | 26.559 | 1.00 | 27.87 | AAA N  |
| ATOM | 3765 | C   | ASH | 395 | 32.932 | 58.816 | 24.541 | 1.00 | 40.44 | AAA C  |
| ATOM | 3766 | O   | ASH | 395 | 32.749 | 59.982 | 24.882 | 1.00 | 37.06 | AAA O  |
| ATOM | 3767 | H   | GLU | 396 | 32.073 | 58.055 | 23.877 | 1.00 | 46.74 | AAA H  |
| ATOM | 3769 | CA  | GLU | 396 | 30.771 | 58.582 | 23.421 | 1.00 | 52.03 | AAA C  |
| ATOM | 3770 | CB  | GLU | 396 | 29.848 | 57.567 | 22.744 | 1.00 | 52.29 | AAA C  |
| ATOM | 3771 | CG  | GLU | 396 | 30.173 | 57.405 | 21.257 | 1.00 | 46.42 | AAA C  |
| ATOM | 3772 | CD  | GLU | 396 | 29.817 | 55.991 | 20.840 | 1.00 | 55.21 | AAA C  |
| ATOM | 3773 | OE1 | GLU | 396 | 28.835 | 55.421 | 21.312 | 1.00 | 61.17 | AAA O  |
| ATOM | 3774 | HE2 | GLU | 396 | 30.628 | 55.411 | 19.971 | 1.00 | 55.79 | AAA H  |
| ATOM | 3777 | C   | GLU | 396 | 29.874 | 59.224 | 21.458 | 1.00 | 48.64 | AAA C  |
| ATOM | 3778 | O   | GLU | 396 | 29.407 | 60.287 | 21.113 | 1.00 | 51.63 | AAA O  |
| ATOM | 3779 | H   | ASH | 397 | 29.717 | 58.681 | 25.633 | 1.00 | 48.95 | AAA H  |
| ATOM | 3781 | CA  | ASH | 397 | 28.783 | 59.196 | 26.632 | 1.00 | 51.72 | AAA C  |
| ATOM | 3782 | CB  | ASH | 397 | 27.969 | 57.959 | 27.093 | 1.00 | 35.94 | AAA C  |
| ATOM | 3783 | CG  | ASH | 397 | 27.231 | 57.430 | 25.860 | 1.00 | 49.09 | AAA C  |
| ATOM | 3784 | OD1 | ASH | 397 | 26.591 | 58.304 | 25.222 | 1.00 | 49.32 | AAA O  |
| ATOM | 3785 | ND2 | ASH | 397 | 27.258 | 56.175 | 25.431 | 1.00 | 43.31 | AAA H  |
| ATOM | 3788 | C   | ASH | 397 | 29.367 | 59.945 | 27.800 | 1.00 | 52.98 | AAA C  |
| ATOM | 3789 | O   | ASH | 397 | 28.586 | 60.344 | 28.627 | 1.00 | 53.33 | AAA O  |
| ATOM | 3790 | H   | LEU | 398 | 30.682 | 59.990 | 28.061 | 1.00 | 55.73 | AAA H  |
| ATOM | 3792 | CA  | LEU | 398 | 31.312 | 60.550 | 29.179 | 1.00 | 52.12 | AAA C  |
| ATOM | 3793 | CB  | LEU | 398 | 32.827 | 60.388 | 29.149 | 1.00 | 48.47 | AAA C  |
| ATOM | 3794 | CG  | LEU | 398 | 33.606 | 60.293 | 30.460 | 1.00 | 41.81 | AAA C  |
| ATOM | 3795 | CD1 | LEU | 398 | 33.417 | 58.939 | 31.135 | 1.00 | 40.35 | AAA C  |
| ATOM | 3796 | CD2 | LEU | 398 | 35.070 | 60.608 | 30.082 | 1.00 | 39.03 | AAA C  |
| ATOM | 3797 | C   | LEU | 398 | 30.923 | 61.195 | 29.353 | 1.00 | 52.35 | AAA C  |
| ATOM | 3798 | O   | LEU | 398 | 31.122 | 62.609 | 28.681 | 1.00 | 49.91 | AAA O  |
| ATOM | 3799 | H   | GLU | 399 | 30.241 | 62.225 | 30.469 | 1.00 | 58.76 | AAA H  |
| ATOM | 3801 | CA  | GLU | 399 | 29.688 | 63.558 | 30.796 | 1.00 | 60.03 | AAA C  |
| ATOM | 3802 | CB  | GLU | 399 | 28.236 | 63.331 | 31.262 | 1.00 | 59.55 | AAA C  |
| ATOM | 3803 | CG  | GLU | 399 | 27.235 | 63.962 | 30.316 | 1.00 | 73.07 | AAA C  |
| ATOM | 3804 | CD  | GLU | 399 | 25.944 | 63.146 | 30.340 | 1.00 | 78.39 | AAA C  |
| ATOM | 3805 | CE1 | GLU | 399 | 25.097 | 63.155 | 31.194 | 1.00 | 71.79 | AAA O  |
| ATOM | 3806 | HE2 | GLU | 399 | 25.856 | 62.158 | 29.440 | 1.00 | 69.88 | AAA H  |
| ATOM | 3809 | C   | GLU | 399 | 30.490 | 64.250 | 31.888 | 1.00 | 54.49 | AAA C  |
| ATOM | 3810 | O   | GLU | 399 | 30.528 | 65.477 | 32.068 | 1.00 | 51.96 | AAA O  |
| ATOM | 3811 | H   | GLU | 400 | 31.058 | 63.389 | 32.734 | 1.00 | 50.44 | AAA H  |
| ATOM | 3813 | CA  | GLU | 400 | 31.938 | 63.948 | 33.756 | 1.00 | 53.83 | AAA C  |
| ATOM | 3814 | CB  | GLU | 400 | 31.215 | 64.314 | 35.042 | 1.00 | 54.97 | AAA C  |
| ATOM | 3815 | CG  | GLU | 400 | 30.717 | 63.150 | 35.987 | 1.00 | 58.99 | AAA C  |
| ATOM | 3816 | CD  | GLU | 400 | 30.578 | 63.430 | 37.389 | 1.00 | 65.82 | AAA C  |
| ATOM | 3817 | OE1 | GLU | 400 | 30.906 | 64.502 | 37.962 | 1.00 | 68.10 | AAA O  |
| ATOM | 3818 | HE2 | GLU | 400 | 30.341 | 62.444 | 38.222 | 1.00 | 55.35 | AAA H  |
| ATOM | 3821 | C   | GLU | 400 | 33.113 | 63.008 | 34.052 | 1.00 | 52.08 | AAA C  |
| ATOM | 3822 | O   | GLU | 400 | 33.107 | 61.783 | 33.942 | 1.00 | 51.90 | AAA O  |
| ATOM | 3823 | H   | LEU | 401 | 34.073 | 63.580 | 34.751 | 1.00 | 49.58 | AAA H  |
| ATOM | 3825 | CA  | LEU | 401 | 35.175 | 62.844 | 35.334 | 1.00 | 49.57 | AAA C  |
| ATOM | 3826 | CB  | LEU | 401 | 36.378 | 63.903 | 35.260 | 1.00 | 47.94 | AAA C  |
| ATOM | 3827 | CG  | LEU | 401 | 36.530 | 64.237 | 33.772 | 1.00 | 46.61 | AAA C  |
| ATOM | 3828 | CD1 | LEU | 401 | 37.653 | 65.326 | 33.677 | 1.00 | 39.09 | AAA C  |
| ATOM | 3829 | CD2 | LEU | 401 | 36.910 | 63.060 | 31.860 | 1.00 | 40.72 | AAA C  |
| ATOM | 3830 | C   | LEU | 401 | 34.866 | 62.357 | 36.734 | 1.00 | 51.23 | AAA C  |
| ATOM | 3831 | O   | LEU | 401 | 34.258 | 61.299 | 36.892 | 1.00 | 49.06 | AAA O  |

09/555275

WO 99/28347

PCT/AU98/00998

38/58

|       |      |     |     |     |        |        |        |            |        |
|-------|------|-----|-----|-----|--------|--------|--------|------------|--------|
| AT011 | 3832 | H   | TRP | 402 | 35.297 | 63.140 | 37.690 | 1.00 54.59 | AAAA N |
| AT011 | 3834 | CA  | TRP | 402 | 34.975 | 63.090 | 33.097 | 1.00 59.76 | AAAA C |
| AT011 | 3835 | CB  | TRP | 402 | 36.279 | 62.953 | 39.933 | 1.00 59.56 | AAAA C |
| AT011 | 3836 | CG  | TRP | 402 | 36.971 | 61.624 | 39.737 | 1.00 58.17 | AAAA C |
| AT011 | 3837 | CD2 | TRP | 402 | 37.981 | 61.243 | 38.784 | 1.00 53.18 | AAAA C |
| AT011 | 3838 | CE2 | TRP | 402 | 38.286 | 59.897 | 39.002 | 1.00 56.61 | AAAA C |
| AT011 | 3839 | CE3 | TRP | 402 | 38.643 | 61.917 | 37.764 | 1.00 43.25 | AAAA C |
| AT011 | 3840 | CD1 | TRP | 402 | 36.712 | 60.517 | 40.459 | 1.00 53.50 | AAAA C |
| AT011 | 3841 | HE1 | TRP | 402 | 37.488 | 59.467 | 40.032 | 1.00 57.66 | AAA II |
| AT011 | 3843 | CC2 | TRP | 402 | 39.212 | 59.160 | 38.249 | 1.00 51.44 | AAAA C |
| AT011 | 3844 | CC3 | TRP | 402 | 39.546 | 61.199 | 37.026 | 1.00 53.69 | AAAA C |
| AT011 | 3845 | CH2 | TRP | 402 | 39.920 | 59.957 | 37.263 | 1.00 50.75 | AAAA C |
| AT011 | 3846 | C   | TRP | 402 | 34.223 | 64.389 | 39.429 | 1.00 64.09 | AAAA C |
| AT011 | 3847 | O   | TRP | 402 | 34.408 | 65.449 | 38.808 | 1.00 61.98 | AAA O  |
| AT011 | 3848 | N   | ASP | 403 | 33.503 | 64.418 | 40.551 | 1.00 68.85 | AAA II |
| ATOM  | 3850 | CA  | ASP | 403 | 32.047 | 65.668 | 41.068 | 1.00 67.83 | AAA C  |
| AT011 | 3851 | CB  | ASP | 403 | 31.918 | 65.343 | 42.151 | 1.00 72.19 | AAA C  |
| AT011 | 3852 | CG  | ASP | 403 | 30.853 | 65.417 | 42.306 | 1.00 73.98 | AAA C  |
| AT011 | 3853 | OD1 | ASP | 403 | 31.177 | 67.625 | 42.227 | 1.00 71.67 | AAA O  |
| AT011 | 3854 | OD2 | ASP | 403 | 29.693 | 65.979 | 42.454 | 1.00 75.08 | AAA O  |
| AT011 | 3855 | C   | ASP | 403 | 34.045 | 66.607 | 41.607 | 1.00 66.63 | AAA C  |
| AT011 | 3856 | O   | ASP | 403 | 34.245 | 66.672 | 42.811 | 1.00 67.18 | AAA O  |
| AT011 | 3857 | H   | TRP | 404 | 34.449 | 67.588 | 40.846 | 1.00 69.29 | AAA II |
| ATOM  | 3859 | CA  | TRP | 404 | 35.412 | 68.588 | 41.291 | 1.00 77.11 | AAA C  |
| AT011 | 3860 | CB  | TRP | 404 | 35.859 | 69.409 | 40.063 | 1.00 79.10 | AAA C  |
| AT011 | 3861 | CG  | TRP | 404 | 36.504 | 68.509 | 39.047 | 1.00 82.59 | AAA C  |
| ATOM  | 3862 | CD2 | TRP | 404 | 37.294 | 67.346 | 39.322 | 1.00 84.82 | AAA C  |
| AT011 | 3863 | CE2 | TRP | 404 | 37.698 | 66.813 | 38.081 | 1.00 84.56 | AAA C  |
| AT011 | 3864 | CE3 | TRP | 404 | 37.703 | 66.710 | 40.506 | 1.00 80.95 | AAA C  |
| AT011 | 3865 | CD1 | TRP | 404 | 36.460 | 68.622 | 37.694 | 1.00 83.37 | AAA C  |
| AT011 | 3866 | HE1 | TRP | 404 | 37.165 | 67.617 | 37.111 | 1.00 80.33 | AAA II |
| AT011 | 3868 | C22 | TRP | 404 | 38.477 | 65.662 | 37.982 | 1.00 85.91 | AAA C  |
| AT011 | 3869 | C23 | TRP | 404 | 38.471 | 65.573 | 40.392 | 1.00 86.36 | AAA C  |
| AT011 | 3870 | CH2 | TRP | 404 | 38.860 | 65.051 | 39.133 | 1.00 85.05 | AAA C  |
| AT011 | 3871 | C   | TRP | 404 | 35.034 | 69.517 | 42.420 | 1.00 81.60 | AAA C  |
| AT011 | 3872 | O   | TRP | 404 | 35.387 | 70.709 | 42.504 | 1.00 84.57 | AAA O  |
| AT011 | 3873 | N   | ASP | 405 | 34.281 | 69.063 | 43.393 | 1.00 84.45 | AAA II |
| ATOM  | 3875 | CA  | ASP | 405 | 33.771 | 69.861 | 44.496 | 1.00 87.48 | AAA C  |
| ATOM  | 3876 | CB  | ASP | 405 | 32.352 | 70.365 | 44.262 | 1.00 88.04 | AAA C  |
| ATOM  | 3877 | CG  | ASP | 405 | 32.274 | 71.612 | 43.409 | 1.00 92.54 | AAA C  |
| ATOM  | 3878 | OD1 | ASP | 405 | 33.306 | 72.285 | 43.207 | 1.00 94.82 | AAA O  |
| ATOM  | 3879 | OD2 | ASP | 405 | 31.130 | 71.854 | 42.955 | 1.00 95.26 | AAA O  |
| ATOM  | 3880 | C   | ASP | 405 | 33.730 | 68.906 | 45.693 | 1.00 87.80 | AAA C  |
| ATOM  | 3881 | O   | ASP | 405 | 34.245 | 69.224 | 46.743 | 1.00 92.18 | AAA O  |
| AT011 | 3882 | H   | ALA | 406 | 33.239 | 67.709 | 45.460 | 1.00 84.46 | AAA N  |
| AT011 | 3884 | CA  | ALA | 406 | 33.176 | 66.671 | 46.451 | 1.00 82.87 | AAA C  |
| AT011 | 3885 | CB  | ALA | 406 | 31.943 | 65.805 | 46.133 | 1.00 76.32 | AAA C  |
| AT011 | 3886 | C   | ALA | 406 | 34.445 | 65.840 | 46.459 | 1.00 85.77 | AAA C  |
| AT011 | 3887 | O   | ALA | 406 | 34.470 | 64.823 | 47.185 | 1.00 89.38 | AAA O  |
| AT011 | 3888 | H   | ARG | 407 | 35.433 | 66.673 | 45.577 | 1.00 83.74 | AAA N  |
| AT011 | 3890 | CA  | ARG | 407 | 36.541 | 65.151 | 45.400 | 1.00 79.60 | AAA C  |
| AT011 | 3891 | CB  | ARG | 407 | 36.105 | 64.140 | 44.297 | 1.00 77.84 | AAA C  |
| AT011 | 3892 | CG  | ARG | 407 | 35.457 | 62.950 | 44.921 | 1.00 81.91 | AAA C  |
| AT011 | 3893 | CD  | ARG | 407 | 35.362 | 61.688 | 44.113 | 1.00 86.97 | AAA C  |
| AT011 | 3894 | NE  | ARG | 407 | 36.281 | 60.660 | 44.607 | 1.00 86.94 | AAA N  |
| ATOM  | 3896 | CS  | ARG | 407 | 37.564 | 60.583 | 44.379 | 1.00 92.14 | AAA C  |
| AT011 | 3897 | NH1 | ARG | 407 | 38.169 | 61.441 | 43.469 | 1.00 97.06 | AAA N  |
| AT011 | 3900 | NH2 | ARG | 407 | 38.309 | 59.616 | 44.770 | 1.00 96.33 | AAA N  |
| AT011 | 3903 | C   | ARG | 407 | 37.880 | 65.749 | 45.048 | 1.00 76.72 | AAA C  |
| ATOM  | 3904 | O   | ARG | 407 | 37.989 | 66.774 | 44.410 | 1.00 77.47 | AAA O  |
| AT011 | 3905 | H   | ASH | 408 | 38.958 | 65.081 | 45.453 | 1.00 75.75 | AAA N  |
| AT011 | 3907 | CA  | ASH | 408 | 40.311 | 65.556 | 45.173 | 1.00 73.79 | AAA C  |
| AT011 | 3908 | CB  | ASH | 408 | 40.938 | 66.240 | 46.388 | 1.00 74.46 | AAA C  |
| AT011 | 3909 | CG  | ASH | 408 | 41.986 | 67.242 | 45.947 | 1.00 82.51 | AAA C  |
| ATOM  | 3910 | OD1 | ASH | 408 | 41.913 | 68.429 | 46.240 | 1.00 90.33 | AAA O  |
| AT011 | 3911 | ND2 | ASH | 408 | 43.028 | 66.821 | 45.253 | 1.00 84.46 | AAA N  |
| ATOM  | 3914 | C   | ASH | 408 | 41.257 | 64.468 | 44.654 | 1.00 65.97 | AAA C  |
| AT011 | 3915 | O   | ASH | 408 | 41.251 | 63.374 | 45.151 | 1.00 63.82 | AAA C  |
| ATOM  | 3916 | H   | LEU | 409 | 42.041 | 64.793 | 43.650 | 1.00 61.41 | AAA N  |
| AT011 | 3918 | CA  | LEU | 409 | 42.895 | 63.872 | 42.947 | 1.00 60.90 | AAA C  |
| AT011 | 3919 | CB  | LEU | 409 | 42.153 | 63.250 | 41.768 | 1.00 62.98 | AAA C  |
| AT011 | 3920 | CG  | LEU | 409 | 42.992 | 62.553 | 40.704 | 1.00 59.77 | AAA C  |
| AT011 | 3921 | CD1 | LEU | 409 | 43.488 | 61.205 | 41.197 | 1.00 54.06 | AAA C  |
| AT011 | 3922 | CD2 | LEU | 409 | 42.094 | 62.445 | 39.486 | 1.00 55.74 | AAA C  |
| AT011 | 3923 | C   | LEU | 409 | 44.151 | 64.599 | 42.485 | 1.00 61.19 | AAA C  |
| AT011 | 3924 | O   | LEU | 409 | 44.141 | 65.809 | 42.370 | 1.00 60.64 | AAA O  |
| AT011 | 3925 | H   | THR | 410 | 45.281 | 63.903 | 42.424 | 1.00 63.74 | AAA N  |
| AT011 | 3927 | CA  | THR | 410 | 46.588 | 64.462 | 42.131 | 1.00 60.44 | AAA C  |
| AT011 | 3928 | CB  | THR | 410 | 47.151 | 64.676 | 43.385 | 1.00 67.08 | AAA C  |
| AT011 | 3929 | OG1 | THR | 410 | 46.870 | 65.746 | 44.157 | 1.00 74.29 | AAA O  |
| AT011 | 3931 | CG2 | THR | 410 | 48.909 | 65.103 | 43.162 | 1.00 48.56 | AAA C  |
| AT011 | 3932 | C   | THR | 410 | 47.426 | 63.565 | 41.218 | 1.00 56.62 | AAA C  |
| AT011 | 3933 | O   | THR | 410 | 47.382 | 62.351 | 41.317 | 1.00 54.99 | AAA O  |
| AT011 | 3934 | H   | ILE | 411 | 48.077 | 64.245 | 40.288 | 1.00 53.97 | AAA N  |
| AT011 | 3936 | CA  | ILE | 411 | 48.897 | 63.562 | 39.291 | 1.00 53.29 | AAA C  |

09/555275

PCT/AU98/00998

WO 99/28347

39/58

|      |      |                |     |     |        |        |        |      |       |        |
|------|------|----------------|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 3937 | CB             | ILE | 411 | 48.409 | 63.854 | 37.061 | 1.00 | 49.81 | AAAA C |
| ATOM | 3938 | C <sub>2</sub> | ILE | 411 | 49.216 | 63.129 | 36.806 | 1.00 | 30.86 | AAAA C |
| ATOM | 3939 | C <sub>1</sub> | ILE | 411 | 46.911 | 63.489 | 37.729 | 1.00 | 40.83 | AAAA C |
| ATOM | 3940 | CD1            | ILE | 411 | 46.322 | 63.547 | 36.338 | 1.00 | 38.51 | AAAA C |
| ATOM | 3941 | C              | ILE | 411 | 50.319 | 64.018 | 39.568 | 1.00 | 55.38 | AAAA C |
| ATOM | 3942 | O              | ILE | 411 | 50.656 | 65.179 | 39.291 | 1.00 | 57.59 | AAAA O |
| ATOM | 3943 | H              | SER | 412 | 51.073 | 63.182 | 40.270 | 1.00 | 54.26 | AAAA H |
| ATOM | 3945 | CA             | SER | 412 | 52.434 | 63.502 | 40.689 | 1.00 | 54.46 | AAAA C |
| ATOM | 3946 | CB             | SER | 412 | 53.071 | 62.210 | 41.248 | 1.00 | 55.78 | AAAA C |
| ATOM | 3947 | OG             | SER | 412 | 53.756 | 62.536 | 42.434 | 1.00 | 67.12 | AAAA O |
| ATOM | 3949 | C              | SER | 412 | 53.326 | 63.910 | 39.523 | 1.00 | 55.52 | AAAA C |
| ATOM | 3950 | O              | SER | 412 | 54.081 | 64.876 | 39.527 | 1.00 | 55.04 | AAAA O |
| ATOM | 3951 | H              | ALA | 413 | 53.254 | 63.124 | 38.438 | 1.00 | 50.11 | AAAA H |
| ATOM | 3953 | CA             | ALA | 413 | 54.064 | 63.402 | 37.281 | 1.00 | 50.01 | AAA C  |
| ATOM | 3954 | CB             | ALA | 413 | 55.334 | 62.520 | 37.365 | 1.00 | 34.96 | AAAA C |
| ATOM | 3955 | C              | ALA | 413 | 53.301 | 63.078 | 35.994 | 1.00 | 49.71 | AAA C  |
| ATOM | 3956 | O              | ALA | 413 | 52.495 | 62.168 | 35.998 | 1.00 | 48.81 | AAA O  |
| ATOM | 3957 | H              | GLY | 414 | 53.675 | 63.690 | 34.895 | 1.00 | 47.92 | AAA H  |
| ATOM | 3959 | CR             | GLY | 414 | 53.057 | 63.454 | 33.607 | 1.00 | 51.75 | AAA C  |
| ATOM | 3960 | C              | GLY | 414 | 52.017 | 64.524 | 33.294 | 1.00 | 52.77 | AAA C  |
| ATOM | 3961 | O              | GLY | 414 | 51.684 | 65.370 | 34.114 | 1.00 | 53.23 | AAA O  |
| ATOM | 3962 | H              | LYS | 415 | 51.385 | 64.406 | 32.138 | 1.00 | 56.31 | AAA H  |
| ATOM | 3964 | CA             | LYS | 415 | 50.289 | 65.317 | 31.759 | 1.00 | 52.49 | AAA C  |
| ATOM | 3965 | CB             | LYS | 415 | 50.884 | 66.358 | 30.833 | 1.00 | 50.94 | AAA C  |
| ATOM | 3966 | CG             | LYS | 415 | 51.198 | 65.855 | 29.429 | 1.00 | 54.39 | AAA C  |
| ATOM | 3967 | CD             | LYS | 415 | 52.288 | 66.691 | 28.765 | 1.00 | 53.96 | AAA C  |
| ATOM | 3968 | CE             | LYS | 415 | 52.785 | 66.151 | 27.441 | 1.00 | 56.01 | AAA H  |
| ATOM | 3969 | NZ             | LYS | 415 | 52.426 | 67.032 | 26.284 | 1.00 | 66.36 | AAA C  |
| ATOM | 3973 | C              | LYS | 415 | 49.110 | 64.576 | 31.155 | 1.00 | 50.04 | AAA C  |
| ATOM | 3974 | O              | LYS | 415 | 49.077 | 63.337 | 31.036 | 1.00 | 49.77 | AAA O  |
| ATOM | 3975 | H              | MET | 416 | 48.091 | 65.353 | 30.771 | 1.00 | 48.34 | AAA H  |
| ATOM | 3977 | CA             | MET | 416 | 46.890 | 64.734 | 30.186 | 1.00 | 46.77 | AAA C  |
| ATOM | 3978 | CB             | MET | 416 | 45.629 | 65.186 | 30.949 | 1.00 | 42.79 | AAA C  |
| ATOM | 3979 | CG             | MET | 416 | 45.836 | 65.880 | 32.273 | 1.00 | 40.91 | AAA C  |
| ATOM | 3980 | SD             | MET | 416 | 44.511 | 65.636 | 33.517 | 1.00 | 56.20 | AAA S  |
| ATOM | 3981 | CE             | MET | 416 | 44.002 | 67.366 | 33.590 | 1.00 | 35.94 | AAA C  |
| ATOM | 3982 | C              | MET | 416 | 46.623 | 65.064 | 28.729 | 1.00 | 40.40 | AAA C  |
| ATOM | 3983 | O              | MET | 416 | 46.963 | 66.137 | 28.247 | 1.00 | 34.84 | AAA O  |
| ATOM | 3984 | H              | TYR | 417 | 45.893 | 64.169 | 28.104 | 1.00 | 38.49 | AAA H  |
| ATOM | 3986 | CA             | TYR | 417 | 45.355 | 64.387 | 26.765 | 1.00 | 39.50 | AAA C  |
| ATOM | 3987 | CB             | TYR | 417 | 46.156 | 63.471 | 25.831 | 1.00 | 32.02 | AAA C  |
| ATOM | 3988 | CG             | TYR | 417 | 45.583 | 63.430 | 24.428 | 1.00 | 39.48 | AAA C  |
| ATOM | 3989 | CD1            | TYR | 417 | 45.730 | 64.501 | 23.511 | 1.00 | 39.29 | AAA C  |
| ATOM | 3990 | CE1            | TYR | 417 | 45.196 | 64.429 | 22.253 | 1.00 | 34.56 | AAA C  |
| ATOM | 3991 | CD2            | TYR | 417 | 44.884 | 62.321 | 24.005 | 1.00 | 36.81 | AAA C  |
| ATOM | 3992 | CE2            | TYR | 417 | 44.379 | 62.241 | 22.722 | 1.00 | 38.80 | AAA C  |
| ATOM | 3993 | C <sub>2</sub> | TYR | 417 | 44.535 | 63.292 | 21.872 | 1.00 | 44.20 | AAA C  |
| ATOM | 3994 | OH             | TYR | 417 | 44.053 | 63.361 | 20.552 | 1.00 | 58.10 | AAA C  |
| ATOM | 3996 | C              | TYR | 417 | 43.853 | 64.065 | 26.698 | 1.00 | 44.18 | AAA C  |
| ATOM | 3997 | O              | TYR | 417 | 43.376 | 62.974 | 27.135 | 1.00 | 42.19 | AAA O  |
| ATOM | 3998 | H              | PHE | 418 | 43.068 | 64.971 | 26.100 | 1.00 | 45.84 | AAA H  |
| ATOM | 4000 | CA             | PHE | 418 | 41.644 | 61.701 | 25.910 | 1.00 | 45.87 | AAA C  |
| ATOM | 4001 | CB             | PHE | 418 | 40.772 | 65.657 | 26.730 | 1.00 | 47.19 | AAA C  |
| ATOM | 4002 | CG             | PHE | 418 | 40.675 | 65.264 | 28.177 | 1.00 | 43.44 | AAA C  |
| ATOM | 4003 | CD1            | PHE | 418 | 41.552 | 65.685 | 29.132 | 1.00 | 38.43 | AAA C  |
| ATOM | 4004 | CD2            | PHE | 418 | 39.638 | 64.417 | 28.544 | 1.00 | 51.21 | AAA C  |
| ATOM | 4005 | CE1            | PHE | 418 | 41.402 | 65.291 | 30.440 | 1.00 | 46.44 | AAA C  |
| ATOM | 4006 | CE2            | PHE | 418 | 39.486 | 64.023 | 29.845 | 1.00 | 46.63 | AAA C  |
| ATOM | 4007 | C <sub>2</sub> | PHE | 418 | 40.358 | 64.454 | 30.801 | 1.00 | 44.68 | AAA C  |
| ATOM | 4008 | C              | PHE | 418 | 41.251 | 64.730 | 24.440 | 1.00 | 44.64 | AAA C  |
| ATOM | 4009 | O              | PHE | 418 | 41.375 | 65.762 | 23.812 | 1.00 | 47.60 | AAA O  |
| ATOM | 4010 | H              | ALA | 419 | 40.554 | 63.713 | 23.936 | 1.00 | 43.06 | AAA H  |
| ATOM | 4012 | CA             | ALA | 419 | 40.015 | 63.793 | 22.607 | 1.00 | 39.21 | AAA C  |
| ATOM | 4013 | CB             | ALA | 419 | 41.090 | 63.562 | 21.555 | 1.00 | 30.88 | AAA C  |
| ATOM | 4014 | C              | ALA | 419 | 38.837 | 62.846 | 22.366 | 1.00 | 41.77 | AAA C  |
| ATOM | 4015 | O              | ALA | 419 | 38.871 | 61.628 | 22.557 | 1.00 | 36.08 | AAA O  |
| ATOM | 4016 | H              | PHE | 420 | 37.829 | 63.398 | 21.618 | 1.00 | 40.41 | AAA H  |
| ATOM | 4018 | CA             | PHE | 420 | 36.742 | 62.621 | 21.070 | 1.00 | 40.03 | AAA C  |
| ATOM | 4019 | CB             | PHE | 420 | 37.157 | 61.430 | 20.180 | 1.00 | 45.51 | AAA C  |
| ATOM | 4020 | CG             | PHE | 420 | 37.832 | 61.909 | 18.912 | 1.00 | 54.18 | AAA C  |
| ATOM | 4021 | CD1            | PHE | 420 | 39.221 | 61.987 | 18.751 | 1.00 | 49.23 | AAA C  |
| ATOM | 4022 | CD2            | PHE | 420 | 37.006 | 62.345 | 17.871 | 1.00 | 47.65 | AAA C  |
| ATOM | 4023 | CE1            | PHE | 420 | 39.783 | 62.496 | 17.567 | 1.00 | 46.00 | AAA C  |
| ATOM | 4024 | CE2            | PHE | 420 | 37.572 | 62.833 | 16.725 | 1.00 | 51.10 | AAA C  |
| ATOM | 4025 | C <sub>2</sub> | PHE | 420 | 38.964 | 62.928 | 16.549 | 1.00 | 44.01 | AAA C  |
| ATOM | 4026 | C              | PHE | 420 | 35.762 | 62.146 | 22.126 | 1.00 | 41.65 | AAA C  |
| ATOM | 4027 | O              | PHE | 420 | 35.352 | 60.991 | 22.215 | 1.00 | 38.35 | AAA O  |
| ATOM | 4028 | H              | ASN | 421 | 35.459 | 63.024 | 23.049 | 1.00 | 45.35 | AAA N  |
| ATOM | 4030 | CA             | ASN | 421 | 34.477 | 62.960 | 24.112 | 1.00 | 46.86 | AAA C  |
| ATOM | 4031 | CB             | ASN | 421 | 35.183 | 63.276 | 25.449 | 1.00 | 43.60 | AAA C  |
| ATOM | 4032 | CG             | ASN | 421 | 36.407 | 62.401 | 25.654 | 1.00 | 47.90 | AAA C  |
| ATOM | 4033 | OD1            | ASN | 421 | 36.426 | 61.147 | 25.714 | 1.00 | 44.83 | AAA O  |
| ATOM | 4034 | HD2            | ASN | 421 | 37.541 | 63.101 | 25.732 | 1.00 | 37.46 | AAA H  |
| ATOM | 4037 | C              | ASN | 421 | 33.432 | 64.069 | 23.835 | 1.00 | 47.83 | AAA C  |
| ATOM | 4038 | O              | ASN | 421 | 33.617 | 65.233 | 24.237 | 1.00 | 38.95 | AAA C  |

09/555275

WO 99/28347

PCT/AU98/00998

40/58

|      |      |     |     |     |        |        |        |            |         |
|------|------|-----|-----|-----|--------|--------|--------|------------|---------|
| ATOM | 4039 | N   | PRO | 422 | 32.453 | 63.777 | 22.969 | 1.00 47.86 | AAAA II |
| ATOM | 4040 | CD  | PRO | 422 | 32.213 | 62.423 | 22.372 | 1.00 44.11 | AAAA C  |
| ATOM | 4041 | CA  | PRO | 422 | 31.463 | 64.776 | 22.605 | 1.00 47.85 | AAAA C  |
| ATOM | 4042 | CB  | PRO | 422 | 30.731 | 64.084 | 21.446 | 1.00 44.86 | AAAA C  |
| ATOM | 4043 | CG  | PRO | 422 | 30.947 | 62.623 | 21.606 | 1.00 43.01 | AAAA C  |
| ATOM | 4044 | C   | PRO | 422 | 30.577 | 65.284 | 23.735 | 1.00 51.16 | AAAA C  |
| ATOM | 4045 | O   | PRO | 422 | 30.223 | 66.486 | 23.744 | 1.00 48.54 | AAAA O  |
| ATOM | 4046 | H   | LYS | 423 | 30.320 | 64.487 | 24.774 | 1.00 52.90 | AAAA II |
| ATOM | 4048 | CA  | LYS | 423 | 29.431 | 64.908 | 25.865 | 1.00 58.92 | AAAA C  |
| ATOM | 4049 | CB  | LYS | 423 | 28.556 | 63.721 | 26.360 | 1.00 52.93 | AAAA C  |
| ATOM | 4050 | CG  | LYS | 423 | 28.209 | 62.810 | 25.196 | 1.00 70.55 | AAAA C  |
| ATOM | 4051 | CD  | LYS | 423 | 25.743 | 62.448 | 24.996 | 1.00 73.79 | AAAA C  |
| ATOM | 4052 | CE  | LYS | 423 | 26.030 | 63.374 | 24.021 | 1.00 77.06 | AAAA C  |
| ATOM | 4053 | HE  | LYS | 423 | 25.949 | 64.748 | 24.614 | 1.00 64.99 | AAAA II |
| ATOM | 4057 | C   | LYS | 423 | 30.158 | 65.482 | 27.071 | 1.00 57.43 | AAAA C  |
| ATOM | 4058 | O   | LYS | 423 | 29.582 | 65.478 | 28.152 | 1.00 55.22 | AAAA O  |
| ATOM | 4059 | H   | LEU | 424 | 31.425 | 65.859 | 26.862 | 1.00 55.95 | AAAA II |
| ATOM | 4061 | CA  | LEU | 424 | 32.261 | 66.162 | 28.017 | 1.00 57.07 | AAAA C  |
| ATOM | 4062 | CB  | LEU | 424 | 33.463 | 65.250 | 28.237 | 1.00 49.16 | AAAA C  |
| ATOM | 4063 | CG  | LEU | 424 | 34.390 | 65.748 | 29.370 | 1.00 68.27 | AAAA C  |
| ATOM | 4064 | CD1 | LEU | 424 | 33.821 | 65.362 | 30.734 | 1.00 60.66 | AAAA C  |
| ATOM | 4065 | CD2 | LEU | 424 | 35.825 | 65.276 | 29.123 | 1.00 60.35 | AAAA C  |
| ATOM | 4066 | C   | LEU | 424 | 32.709 | 67.585 | 27.878 | 1.00 56.29 | AAAA C  |
| ATOM | 4067 | O   | LEU | 424 | 33.696 | 67.861 | 27.201 | 1.00 59.98 | AAAA O  |
| ATOM | 4068 | H   | CYS | 425 | 31.995 | 68.488 | 28.492 | 1.00 58.76 | AAAA II |
| ATOM | 4070 | CA  | CYS | 425 | 32.342 | 69.916 | 28.406 | 1.00 60.39 | AAAA C  |
| ATOM | 4071 | C   | CYS | 425 | 33.771 | 70.119 | 28.810 | 1.00 62.59 | AAAA C  |
| ATOM | 4072 | O   | CYS | 425 | 34.288 | 69.665 | 29.931 | 1.00 64.45 | AAAA O  |
| ATOM | 4073 | CB  | CYS | 425 | 31.249 | 70.644 | 29.214 | 1.00 68.23 | AAAA C  |
| ATOM | 4074 | SG  | CYS | 425 | 29.916 | 71.303 | 28.086 | 1.00 81.03 | AAAA S  |
| ATOM | 4075 | H   | VAL | 426 | 34.529 | 70.953 | 28.102 | 1.00 65.31 | AAAA N  |
| ATOM | 4077 | CA  | VAL | 426 | 35.943 | 71.149 | 28.358 | 1.00 65.49 | AAAA C  |
| ATOM | 4078 | CB  | VAL | 426 | 36.644 | 72.022 | 27.310 | 1.00 66.66 | AAAA C  |
| ATOM | 4079 | CG1 | VAL | 426 | 36.715 | 71.413 | 25.925 | 1.00 62.49 | AAAA C  |
| ATOM | 4080 | CG2 | VAL | 426 | 35.962 | 73.365 | 27.239 | 1.00 60.92 | AAAA C  |
| ATOM | 4081 | C   | VAL | 426 | 36.105 | 71.711 | 29.757 | 1.00 65.99 | AAAA C  |
| ATOM | 4082 | O   | VAL | 426 | 37.190 | 71.724 | 30.388 | 1.00 64.51 | AAAA O  |
| ATOM | 4083 | H   | SER | 427 | 35.090 | 72.361 | 30.267 | 1.00 67.67 | AAAA II |
| ATOM | 4085 | CA  | SER | 427 | 35.091 | 72.927 | 31.599 | 1.00 66.85 | AAAA C  |
| ATOM | 4086 | CB  | SER | 427 | 33.685 | 73.499 | 31.864 | 1.00 61.16 | AAAA C  |
| ATOM | 4087 | OG  | SER | 427 | 34.088 | 74.860 | 32.098 | 1.00 67.05 | AAAA O  |
| ATOM | 4089 | C   | SER | 427 | 35.515 | 71.972 | 32.701 | 1.00 64.24 | AAAA C  |
| ATOM | 4090 | O   | SER | 427 | 36.332 | 72.328 | 33.573 | 1.00 63.66 | AAAA O  |
| ATOM | 4091 | H   | GLU | 428 | 34.965 | 70.771 | 32.618 | 1.00 58.75 | AAAA II |
| ATOM | 4093 | CA  | GLU | 428 | 35.384 | 69.753 | 33.585 | 1.00 63.39 | AAAA C  |
| ATOM | 4094 | CB  | GLU | 428 | 34.594 | 68.485 | 33.240 | 1.00 68.67 | AAAA C  |
| ATOM | 4095 | CG  | GLU | 428 | 33.115 | 68.560 | 33.537 | 1.00 66.59 | AAAA C  |
| ATOM | 4096 | CD  | GLU | 428 | 32.785 | 68.560 | 35.023 | 1.00 72.33 | AAAA C  |
| ATOM | 4097 | OE1 | GLU | 428 | 32.729 | 67.522 | 35.722 | 1.00 81.62 | AAAA O  |
| ATOM | 4098 | OE2 | GLU | 428 | 32.581 | 69.688 | 35.517 | 1.00 79.97 | AAAA O  |
| ATOM | 4099 | C   | GLU | 428 | 36.870 | 69.485 | 33.429 | 1.00 61.63 | AAAA C  |
| ATOM | 4100 | O   | GLU | 428 | 37.671 | 69.696 | 34.307 | 1.00 62.03 | AAAA O  |
| ATOM | 4101 | H   | ILE | 429 | 37.265 | 69.262 | 32.165 | 1.00 61.26 | AAAA II |
| ATOM | 4103 | CA  | ILE | 429 | 38.631 | 69.038 | 31.789 | 1.00 61.09 | AAAA C  |
| ATOM | 4104 | CB  | ILE | 429 | 38.759 | 68.933 | 30.263 | 1.00 59.32 | AAAA C  |
| ATOM | 4105 | CG2 | ILE | 429 | 40.257 | 68.915 | 39.895 | 1.00 45.93 | AAAA C  |
| ATOM | 4106 | CG1 | ILE | 429 | 37.968 | 67.719 | 39.794 | 1.00 57.66 | AAAA C  |
| ATOM | 4107 | CD1 | ILE | 429 | 38.038 | 67.555 | 38.285 | 1.00 53.48 | AAAA C  |
| ATOM | 4108 | C   | ILE | 429 | 39.498 | 70.166 | 32.323 | 1.00 61.90 | AAAA C  |
| ATOM | 4109 | O   | ILE | 429 | 40.592 | 70.017 | 32.867 | 1.00 61.28 | AAAA O  |
| ATOM | 4110 | H   | TYR | 430 | 38.987 | 71.384 | 32.200 | 1.00 65.34 | AAAA II |
| ATOM | 4112 | CA  | TYR | 430 | 39.729 | 72.543 | 32.719 | 1.00 68.10 | AAAA C  |
| ATOM | 4113 | CB  | TYR | 430 | 39.180 | 73.822 | 32.099 | 1.00 71.02 | AAAA C  |
| ATOM | 4114 | CG  | TYR | 430 | 39.538 | 74.006 | 30.639 | 1.00 75.98 | AAAA C  |
| ATOM | 4115 | CD1 | TYR | 430 | 38.653 | 73.821 | 29.599 | 1.00 77.60 | AAAA C  |
| ATOM | 4116 | CE1 | TYR | 430 | 38.953 | 73.977 | 28.270 | 1.00 75.72 | AAA C   |
| ATOM | 4117 | CD2 | TYR | 430 | 40.810 | 74.401 | 30.260 | 1.00 75.95 | AAAA C  |
| ATOM | 4118 | CE2 | TYR | 430 | 41.155 | 74.575 | 29.937 | 1.00 74.81 | AAAA C  |
| ATOM | 4119 | CI  | TYR | 430 | 40.221 | 74.359 | 37.952 | 1.00 78.51 | AAAA C  |
| ATOM | 4120 | OH  | TYR | 430 | 40.564 | 74.542 | 36.616 | 1.00 85.40 | AAAA O  |
| ATOM | 4122 | C   | TYR | 430 | 39.779 | 72.634 | 34.241 | 1.00 63.72 | AAA C   |
| ATOM | 4123 | O   | TYR | 430 | 40.654 | 73.321 | 31.758 | 1.00 58.26 | AAA O   |
| ATOM | 4124 | H   | ARG | 431 | 38.819 | 72.017 | 34.907 | 1.00 65.53 | AAA II  |
| ATOM | 4126 | CA  | ARG | 431 | 38.747 | 72.043 | 36.356 | 1.00 68.15 | AAA C   |
| ATOM | 4127 | CB  | ARG | 431 | 37.348 | 71.748 | 36.898 | 1.00 73.32 | AAA C   |
| ATOM | 4128 | CG  | ARG | 431 | 37.345 | 71.815 | 38.430 | 1.00 82.99 | AAA C   |
| ATOM | 4129 | CD  | ARG | 431 | 37.270 | 73.279 | 38.860 | 1.00 88.39 | AAA C   |
| ATOM | 4130 | NE  | ARG | 431 | 37.698 | 73.472 | 40.258 | 1.00 92.48 | AAA II  |
| ATOM | 4132 | CE  | ARG | 431 | 36.835 | 73.259 | 41.259 | 1.00 94.93 | AAA C   |
| ATOM | 4133 | NH1 | ARG | 431 | 35.610 | 72.872 | 40.872 | 1.00 87.40 | AAA II  |
| ATOM | 4136 | NH2 | ARG | 431 | 37.021 | 73.371 | 41.567 | 1.00 95.17 | AAA II  |
| ATOM | 4139 | C   | ARG | 431 | 39.718 | 70.986 | 36.877 | 1.00 67.75 | AAA C   |
| ATOM | 4140 | O   | ARG | 431 | 40.637 | 71.292 | 37.629 | 1.00 66.74 | AAA O   |
| ATOM | 4141 | H   | MET | 432 | 39.501 | 69.791 | 36.305 | 1.00 63.87 | AAA II  |
| ATOM | 4143 | CA  | MET | 432 | 40.437 | 68.703 | 36.652 | 1.00 64.40 | AAA C   |

09/555275

WO 99/28347

PCT/AU98/00998

41/58

|      |      |     |     |     |        |        |        |      |       |        |
|------|------|-----|-----|-----|--------|--------|--------|------|-------|--------|
| ATOM | 4144 | CB  | MET | 432 | 40.237 | 67.922 | 39.714 | 1.00 | 64.25 | AAAA C |
| ATOM | 4145 | CG  | MET | 432 | 41.254 | 66.426 | 35.971 | 1.00 | 40.18 | AAAA C |
| ATOM | 4146 | SD  | MET | 432 | 40.829 | 64.925 | 35.112 | 1.00 | 52.21 | AAA S  |
| ATOM | 4147 | CE  | MET | 432 | 41.582 | 63.681 | 36.137 | 1.00 | 54.89 | AAA C  |
| ATOM | 4148 | C   | MET | 432 | 41.891 | 69.170 | 36.626 | 1.00 | 64.65 | AAA C  |
| ATOM | 4149 | O   | MET | 432 | 42.530 | 68.892 | 37.653 | 1.00 | 66.89 | AAA O  |
| ATOM | 4150 | N   | GLU | 433 | 42.331 | 69.811 | 35.556 | 1.00 | 65.78 | AAA N  |
| ATOM | 4152 | CA  | GLU | 433 | 43.622 | 70.469 | 35.510 | 1.00 | 69.16 | AAA C  |
| ATOM | 4153 | CB  | GLU | 433 | 43.704 | 71.506 | 31.401 | 1.00 | 69.58 | AAA C  |
| ATOM | 4154 | CG  | GLU | 433 | 44.121 | 70.967 | 33.048 | 1.00 | 76.91 | AAA C  |
| ATOM | 4155 | CD  | GLU | 433 | 44.623 | 72.149 | 32.242 | 1.00 | 82.02 | AAA C  |
| ATOM | 4156 | OE1 | GLU | 433 | 44.718 | 73.224 | 32.874 | 1.00 | 86.82 | AAA O  |
| ATOM | 4157 | OE2 | GLU | 433 | 44.905 | 72.050 | 31.042 | 1.00 | 88.26 | AAA O  |
| ATOM | 4158 | C   | GLU | 433 | 44.016 | 71.219 | 36.781 | 1.00 | 71.29 | AAA C  |
| ATOM | 4159 | O   | GLU | 433 | 45.133 | 71.083 | 37.294 | 1.00 | 74.29 | AAA O  |
| ATOM | 4160 | N   | GLU | 434 | 43.178 | 72.120 | 37.280 | 1.00 | 72.93 | AAA N  |
| ATOM | 4162 | CA  | GLU | 434 | 43.505 | 72.873 | 38.485 | 1.00 | 72.86 | AAA C  |
| ATOM | 4163 | CB  | GLU | 434 | 42.458 | 73.916 | 38.840 | 1.00 | 81.36 | AAA C  |
| ATOM | 4164 | CG  | GLU | 434 | 41.191 | 73.956 | 38.032 | 1.00 | 83.34 | AAA C  |
| ATOM | 4165 | CD  | GLU | 434 | 40.191 | 75.004 | 38.432 | 1.00 | 97.32 | AAA C  |
| ATOM | 4166 | OE1 | GLU | 434 | 39.521 | 74.928 | 39.505 | 1.00 | 97.34 | AAA O  |
| ATOM | 4167 | OE2 | GLU | 434 | 40.080 | 75.941 | 37.583 | 1.00 | 99.95 | AAA O  |
| ATOM | 4168 | C   | GLU | 434 | 43.675 | 71.886 | 39.632 | 1.00 | 71.46 | AAA C  |
| ATOM | 4169 | O   | GLU | 434 | 44.728 | 71.858 | 40.251 | 1.00 | 78.49 | AAA O  |
| ATOM | 4170 | N   | VAL | 435 | 42.670 | 71.095 | 39.926 | 1.00 | 66.34 | AAA N  |
| ATOM | 4172 | CA  | VAL | 435 | 42.711 | 70.129 | 41.001 | 1.00 | 62.49 | AAA C  |
| ATOM | 4173 | CB  | VAL | 435 | 41.451 | 69.217 | 40.972 | 1.00 | 60.38 | AAA C  |
| ATOM | 4174 | CG1 | VAL | 435 | 41.547 | 68.214 | 42.104 | 1.00 | 52.32 | AAA C  |
| ATOM | 4175 | CG2 | VAL | 435 | 40.203 | 70.073 | 41.029 | 1.00 | 50.79 | AAA C  |
| ATOM | 4176 | C   | VAL | 435 | 43.939 | 69.253 | 41.018 | 1.00 | 60.71 | AAA C  |
| ATOM | 4177 | O   | VAL | 435 | 44.607 | 69.165 | 40.034 | 1.00 | 62.37 | AAA O  |
| ATOM | 4178 | N   | THR | 436 | 44.282 | 68.506 | 39.988 | 1.00 | 60.67 | AAA N  |
| ATOM | 4180 | CA  | THR | 436 | 45.335 | 67.516 | 39.936 | 1.00 | 56.36 | AAA C  |
| ATOM | 4181 | CB  | THR | 436 | 45.199 | 66.565 | 38.736 | 1.00 | 50.92 | AAA C  |
| ATOM | 4182 | OG1 | THR | 436 | 44.913 | 67.283 | 37.503 | 1.00 | 47.03 | AAA O  |
| ATOM | 4184 | CG2 | THR | 436 | 44.108 | 65.526 | 38.901 | 1.00 | 54.38 | AAA C  |
| ATOM | 4185 | C   | THR | 436 | 46.701 | 68.184 | 39.930 | 1.00 | 60.55 | AAA C  |
| ATOM | 4186 | O   | THR | 436 | 47.714 | 67.490 | 40.024 | 1.00 | 60.61 | AAA O  |
| ATOM | 4187 | N   | GLY | 437 | 46.836 | 69.496 | 39.835 | 1.00 | 60.65 | AAA N  |
| ATOM | 4189 | CA  | GLY | 437 | 48.102 | 70.164 | 39.749 | 1.00 | 59.47 | AAA C  |
| ATOM | 4190 | C   | GLY | 437 | 48.800 | 69.864 | 38.424 | 1.00 | 64.78 | AAA C  |
| ATOM | 4191 | O   | GLY | 437 | 49.983 | 70.254 | 38.245 | 1.00 | 62.70 | AAA O  |
| ATOM | 4192 | N   | THR | 438 | 48.112 | 69.387 | 37.380 | 1.00 | 63.79 | AAA N  |
| ATOM | 4194 | CA  | THR | 438 | 48.731 | 69.169 | 36.076 | 1.00 | 65.09 | AAA C  |
| ATOM | 4195 | CB  | THR | 438 | 47.967 | 68.027 | 35.411 | 1.00 | 66.87 | AAA C  |
| ATOM | 4196 | OG1 | THR | 438 | 46.600 | 68.385 | 35.731 | 1.00 | 62.22 | AAA O  |
| ATOM | 4198 | CG2 | THR | 438 | 48.208 | 66.659 | 36.019 | 1.00 | 68.74 | AAA C  |
| ATOM | 4199 | C   | THR | 438 | 48.590 | 70.415 | 35.220 | 1.00 | 66.14 | AAA C  |
| ATOM | 4200 | O   | THR | 438 | 49.003 | 70.543 | 34.070 | 1.00 | 68.05 | AAA O  |
| ATOM | 4201 | N   | LYS | 439 | 48.099 | 71.181 | 35.822 | 1.00 | 67.37 | AAA N  |
| ATOM | 4203 | CA  | LYS | 439 | 47.927 | 72.757 | 35.154 | 1.00 | 71.08 | AAA C  |
| ATOM | 4204 | CB  | LYS | 439 | 47.114 | 73.708 | 36.034 | 1.00 | 69.23 | AAA C  |
| ATOM | 4205 | CG  | LYS | 439 | 46.677 | 74.938 | 35.265 | 1.00 | 77.26 | AAA C  |
| ATOM | 4206 | CD  | LYS | 439 | 45.832 | 75.942 | 36.014 | 1.00 | 81.65 | AAA C  |
| ATOM | 4207 | CE  | LYS | 439 | 44.335 | 75.475 | 36.182 | 1.00 | 87.39 | AAA C  |
| ATOM | 4208 | HE  | LYS | 439 | 43.667 | 76.431 | 37.100 | 1.00 | 93.85 | AAA N  |
| ATOM | 4212 | C   | LYS | 439 | 49.249 | 73.396 | 34.752 | 1.00 | 73.01 | AAA C  |
| ATOM | 4213 | O   | LYS | 439 | 49.996 | 73.986 | 35.541 | 1.00 | 74.60 | AAA O  |
| ATOM | 4214 | N   | GLY | 440 | 49.517 | 73.453 | 33.441 | 1.00 | 73.33 | AAA N  |
| ATOM | 4216 | CA  | GLY | 440 | 50.733 | 74.167 | 33.014 | 1.00 | 71.39 | AAA C  |
| ATOM | 4217 | C   | GLY | 440 | 51.716 | 73.204 | 32.389 | 1.00 | 71.20 | AAA C  |
| ATOM | 4218 | O   | GLY | 440 | 52.684 | 73.650 | 31.822 | 1.00 | 72.70 | AAA O  |
| ATOM | 4219 | H   | ARG | 441 | 51.445 | 71.908 | 32.436 | 1.00 | 72.99 | AAA N  |
| ATOM | 4221 | CA  | ARG | 441 | 52.343 | 70.945 | 31.831 | 1.00 | 74.12 | AAA C  |
| ATOM | 4222 | CB  | ARG | 441 | 52.617 | 69.740 | 32.715 | 1.00 | 69.44 | AAA C  |
| ATOM | 4223 | CG  | ARG | 441 | 51.847 | 69.695 | 34.003 | 1.00 | 63.34 | AAA C  |
| ATOM | 4224 | CD  | ARG | 441 | 52.060 | 68.314 | 34.595 | 1.00 | 67.64 | AAA C  |
| ATOM | 4225 | HE  | ARG | 441 | 52.244 | 68.395 | 36.030 | 1.00 | 61.00 | AAA N  |
| ATOM | 4227 | CG  | ARG | 441 | 52.326 | 67.357 | 36.831 | 1.00 | 59.21 | AAA C  |
| ATOM | 4228 | HH1 | ARG | 441 | 52.258 | 66.117 | 36.325 | 1.00 | 60.57 | AAA N  |
| ATOM | 4231 | HH2 | ARG | 441 | 52.168 | 67.596 | 38.128 | 1.00 | 72.24 | AAA N  |
| ATOM | 4234 | C   | ARG | 441 | 51.760 | 70.446 | 30.511 | 1.00 | 73.50 | AAA C  |
| ATOM | 4235 | O   | ARG | 441 | 52.195 | 69.424 | 30.012 | 1.00 | 74.73 | AAA O  |
| ATOM | 4236 | H   | GLN | 442 | 50.732 | 71.114 | 30.043 | 1.00 | 74.69 | AAA N  |
| ATOM | 4238 | CA  | GLN | 442 | 49.959 | 70.646 | 29.914 | 1.00 | 75.13 | AAA C  |
| ATOM | 4239 | CB  | GLN | 442 | 48.457 | 70.875 | 29.126 | 1.00 | 68.73 | AAA C  |
| ATOM | 4240 | CG  | GLN | 442 | 47.669 | 69.576 | 29.195 | 1.00 | 71.20 | AAA C  |
| ATOM | 4241 | CD  | GLN | 442 | 47.623 | 69.029 | 30.607 | 1.00 | 70.98 | AAA C  |
| ATOM | 4242 | OE1 | GLN | 442 | 47.714 | 67.802 | 30.868 | 1.00 | 78.66 | AAA O  |
| ATOM | 4243 | NE2 | GLN | 442 | 47.477 | 69.907 | 31.584 | 1.00 | 66.86 | AAA N  |
| ATOM | 4246 | C   | GLN | 442 | 50.326 | 71.359 | 27.627 | 1.00 | 77.69 | AAA C  |
| ATOM | 4247 | O   | GLN | 442 | 50.237 | 72.569 | 27.530 | 1.00 | 75.57 | AAA O  |
| ATOM | 4248 | H   | ALA | 443 | 50.474 | 70.554 | 26.575 | 1.00 | 81.51 | AAA N  |
| ATOM | 4250 | CA  | ALA | 443 | 50.613 | 71.148 | 25.236 | 1.00 | 82.95 | AAA C  |
| ATOM | 4251 | CB  | ALA | 443 | 51.104 | 70.118 | 24.220 | 1.00 | 81.69 | AAA C  |

09/555275

WO 99/28347

PCT/AU98/00998

42/58

|      |      |     |      |     |        |        |        |      |       |        |
|------|------|-----|------|-----|--------|--------|--------|------|-------|--------|
| ATOM | 4252 | C   | ALA  | 443 | 49.259 | 71.706 | 24.952 | 1.00 | 83.73 | AAAA C |
| ATOM | 4253 | O   | ALA  | 443 | 48.398 | 71.744 | 25.830 | 1.00 | 83.87 | AAAA C |
| ATOM | 4254 | H   | LYS  | 444 | 48.914 | 72.052 | 23.713 | 1.00 | 86.20 | AAAA N |
| ATOM | 4255 | CA  | LYS  | 444 | 47.559 | 72.524 | 23.482 | 1.00 | 85.88 | AAAA C |
| ATOM | 4257 | CB  | LYS  | 444 | 47.426 | 73.997 | 23.128 | 1.00 | 83.99 | AAAA C |
| ATOM | 4258 | CG  | LYS  | 444 | 46.673 | 74.734 | 24.241 | 1.00 | 93.62 | AAAA C |
| ATOM | 4259 | CD  | LYS  | 444 | 45.883 | 73.841 | 25.186 | 1.00 | 95.14 | AAAA C |
| ATOM | 4260 | CE  | LYS  | 444 | 46.390 | 73.786 | 26.614 | 1.00 | 97.04 | AAAA C |
| ATOM | 4261 | NH  | LYS  | 444 | 45.369 | 73.090 | 27.473 | 1.00 | 97.22 | AAAA N |
| ATOM | 4265 | C   | LYS  | 444 | 46.659 | 71.779 | 21.508 | 1.00 | 84.20 | AAAA C |
| ATOM | 4266 | O   | LYS  | 444 | 45.428 | 71.901 | 21.635 | 1.00 | 85.63 | AAAA O |
| ATOM | 4267 | H   | GLY  | 445 | 47.214 | 70.734 | 21.916 | 1.00 | 78.85 | AAAA N |
| ATOM | 4269 | CA  | GLY  | 445 | 46.368 | 69.786 | 21.208 | 1.00 | 75.06 | AAAA C |
| ATOM | 4270 | C   | GLY  | 445 | 45.803 | 68.844 | 22.260 | 1.00 | 72.30 | AAAA C |
| ATOM | 4271 | O   | GLY  | 445 | 44.963 | 67.993 | 21.940 | 1.00 | 74.90 | AAAA C |
| ATOM | 4272 | H   | ASP  | 446 | 46.300 | 68.981 | 23.492 | 1.00 | 67.97 | AAAA N |
| ATOM | 4274 | CA  | ASP  | 446 | 45.914 | 68.174 | 24.642 | 1.00 | 62.81 | AAAA C |
| ATOM | 4275 | CB  | ASP  | 446 | 46.754 | 68.552 | 25.873 | 1.00 | 55.24 | AAAA C |
| ATOM | 4276 | CG  | ASP  | 446 | 49.213 | 68.169 | 25.801 | 1.00 | 54.07 | AAAA C |
| ATOM | 4277 | OD1 | ASP  | 446 | 48.693 | 67.385 | 21.946 | 1.00 | 45.08 | AAAA O |
| ATOM | 4278 | OD2 | ASP  | 446 | 49.091 | 68.595 | 26.593 | 1.00 | 50.12 | AAAA O |
| ATOM | 4279 | C   | ASP  | 446 | 44.438 | 68.274 | 25.016 | 1.00 | 58.07 | AAAA C |
| ATOM | 4280 | O   | ASP  | 446 | 43.610 | 67.369 | 25.127 | 1.00 | 55.59 | AAAA C |
| ATOM | 4281 | H   | ILE  | 447 | 44.043 | 69.527 | 25.226 | 1.00 | 54.13 | AAAA N |
| ATOM | 4283 | CA  | ILE  | 447 | 42.652 | 69.822 | 25.510 | 1.00 | 54.09 | AAAA C |
| ATOM | 4284 | CB  | ILE  | 447 | 42.505 | 70.502 | 26.877 | 1.00 | 48.92 | AAAA C |
| ATOM | 4285 | CG2 | ILE  | 447 | 41.030 | 70.663 | 27.182 | 1.00 | 41.02 | AAAA C |
| ATOM | 4286 | CG1 | ILE  | 447 | 43.211 | 69.621 | 27.932 | 1.00 | 52.36 | AAAA C |
| ATOM | 4287 | CD1 | ILE  | 447 | 43.468 | 70.323 | 29.237 | 1.00 | 48.47 | AAAA C |
| ATOM | 4288 | C   | ILE  | 447 | 42.027 | 70.591 | 24.364 | 1.00 | 53.06 | AAAA C |
| ATOM | 4289 | O   | ILE  | 447 | 41.718 | 71.772 | 24.423 | 1.00 | 56.08 | AAAA O |
| ATOM | 4290 | H   | ASII | 448 | 41.625 | 69.915 | 23.307 | 1.00 | 53.17 | AAAA N |
| ATOM | 4292 | CA  | ASII | 448 | 41.013 | 70.642 | 22.202 | 1.00 | 54.61 | AAAA C |
| ATOM | 4293 | CB  | ASII | 448 | 41.283 | 69.982 | 20.863 | 1.00 | 49.17 | AAAA C |
| ATOM | 4294 | CG  | ASII | 448 | 40.415 | 68.786 | 20.577 | 1.00 | 49.40 | AAAA C |
| ATOM | 4295 | OD1 | ASII | 448 | 39.287 | 68.977 | 20.113 | 1.00 | 52.34 | AAAA O |
| ATOM | 4296 | ID2 | ASII | 448 | 40.990 | 67.622 | 20.871 | 1.00 | 52.49 | AAAA N |
| ATOM | 4299 | C   | ASII | 448 | 39.518 | 70.824 | 22.402 | 1.00 | 56.44 | AAAA C |
| ATOM | 4300 | O   | ASII | 448 | 38.816 | 69.974 | 22.939 | 1.00 | 55.83 | AAAA O |
| ATOM | 4301 | H   | THR  | 449 | 39.071 | 71.917 | 21.764 | 1.00 | 58.52 | AAAA N |
| ATOM | 4303 | CA  | THR  | 449 | 37.682 | 72.351 | 21.901 | 1.00 | 58.62 | AAAA C |
| ATOM | 4304 | CB  | THR  | 449 | 37.497 | 73.845 | 22.169 | 1.00 | 55.90 | AAAA C |
| ATOM | 4305 | OG1 | THR  | 449 | 37.913 | 74.485 | 20.943 | 1.00 | 68.89 | AAAA O |
| ATOM | 4307 | CG2 | THR  | 449 | 38.354 | 74.352 | 23.310 | 1.00 | 59.06 | AAAA C |
| ATOM | 4308 | C   | THR  | 449 | 36.920 | 72.053 | 20.628 | 1.00 | 56.82 | AAAA C |
| ATOM | 4309 | O   | THR  | 449 | 35.750 | 72.381 | 20.473 | 1.00 | 60.87 | AAAA O |
| ATOM | 4310 | H   | ARG  | 450 | 37.539 | 71.304 | 19.757 | 1.00 | 55.76 | AAAA N |
| ATOM | 4312 | CA  | ARG  | 450 | 36.887 | 70.935 | 18.507 | 1.00 | 54.66 | AAAA C |
| ATOM | 4313 | CB  | ARG  | 450 | 37.845 | 71.179 | 17.377 | 1.00 | 48.33 | AAAA C |
| ATOM | 4314 | CG  | ARG  | 450 | 38.385 | 69.975 | 16.645 | 1.00 | 54.81 | AAAA C |
| ATOM | 4315 | CD  | ARG  | 450 | 39.487 | 70.561 | 15.696 | 1.00 | 44.92 | AAAA C |
| ATOM | 4316 | NH  | ARG  | 450 | 40.706 | 70.719 | 15.488 | 1.00 | 52.49 | AAAA N |
| ATOM | 4318 | CG  | ARG  | 450 | 41.544 | 69.757 | 16.982 | 1.00 | 39.08 | AAAA C |
| ATOM | 4319 | NH1 | ARG  | 450 | 41.176 | 68.572 | 16.466 | 1.00 | 41.07 | AAAA N |
| ATOM | 4322 | NH2 | ARG  | 450 | 42.601 | 70.001 | 17.610 | 1.00 | 45.18 | AAAA N |
| ATOM | 4325 | C   | ARG  | 450 | 36.267 | 69.553 | 18.557 | 1.00 | 56.82 | AAAA C |
| ATOM | 4326 | O   | ARG  | 450 | 35.186 | 69.303 | 17.992 | 1.00 | 58.15 | AAAA O |
| ATOM | 4327 | H   | ASII | 451 | 36.800 | 68.583 | 19.324 | 1.00 | 56.66 | AAAA N |
| ATOM | 4329 | CA  | ASII | 451 | 36.107 | 67.311 | 19.434 | 1.00 | 50.27 | AAAA C |
| ATOM | 4330 | CB  | ASII | 451 | 36.725 | 66.127 | 18.760 | 1.00 | 48.54 | AAAA C |
| ATOM | 4331 | CG  | ASII | 451 | 38.243 | 66.143 | 18.764 | 1.00 | 60.51 | AAAA C |
| ATOM | 4332 | OD1 | ASII | 451 | 38.779 | 66.279 | 19.855 | 1.00 | 53.45 | AAAA O |
| ATOM | 4333 | ID2 | ASII | 451 | 38.707 | 65.976 | 17.506 | 1.00 | 54.88 | AAAA N |
| ATOM | 4336 | C   | ASN  | 451 | 35.849 | 66.854 | 20.869 | 1.00 | 52.97 | AAAA C |
| ATOM | 4337 | O   | ASN  | 451 | 35.330 | 65.750 | 21.036 | 1.00 | 49.71 | AAAA C |
| ATOM | 4338 | H   | ASN  | 452 | 36.126 | 67.668 | 21.951 | 1.00 | 51.98 | AAAA N |
| ATOM | 4340 | CA  | ASN  | 452 | 35.769 | 67.485 | 23.229 | 1.00 | 55.88 | AAAA C |
| ATOM | 4341 | CB  | ASN  | 452 | 36.947 | 67.873 | 24.136 | 1.00 | 54.62 | AAAA C |
| ATOM | 4342 | CG  | ASN  | 452 | 37.936 | 66.736 | 24.285 | 1.00 | 60.96 | AAAA C |
| ATOM | 4343 | OD1 | ASN  | 452 | 37.646 | 65.633 | 24.735 | 1.00 | 51.30 | AAAA C |
| ATOM | 4344 | ID2 | ASN  | 452 | 39.153 | 67.098 | 23.855 | 1.00 | 56.75 | AAAA N |
| ATOM | 4347 | C   | ASN  | 452 | 31.603 | 68.385 | 23.689 | 1.00 | 58.11 | AAAA C |
| ATOM | 4348 | O   | ASN  | 452 | 34.785 | 69.629 | 23.657 | 1.00 | 55.07 | AAAA C |
| ATOM | 4349 | H   | GLY  | 453 | 33.444 | 67.813 | 23.985 | 1.00 | 55.08 | AAAA N |
| ATOM | 4351 | CA  | GLY  | 453 | 32.313 | 68.658 | 24.296 | 1.00 | 59.47 | AAAA C |
| ATOM | 4352 | C   | GLY  | 453 | 31.500 | 69.269 | 23.174 | 1.00 | 64.95 | AAAA C |
| ATOM | 4353 | O   | GLY  | 453 | 30.302 | 69.603 | 23.276 | 1.00 | 65.71 | AAAA O |
| ATOM | 4354 | H   | GLU  | 454 | 31.910 | 69.109 | 21.910 | 1.00 | 67.44 | AAAA N |
| ATOM | 4356 | CA  | GLU  | 454 | 31.266 | 69.543 | 20.690 | 1.00 | 63.63 | AAAA C |
| ATOM | 4357 | CB  | GLU  | 454 | 31.739 | 68.818 | 19.401 | 1.00 | 53.71 | AAAA C |
| ATOM | 4358 | CG  | GLU  | 454 | 31.319 | 67.430 | 19.739 | 1.00 | 49.50 | AAAA C |
| ATOM | 4359 | CD  | GLU  | 454 | 32.368 | 66.620 | 18.454 | 1.00 | 54.61 | AAAA C |
| ATOM | 4360 | OE1 | GLU  | 454 | 31.368 | 66.637 | 17.702 | 0.01 | 54.10 | AAAA C |
| ATOM | 4361 | OE2 | GLU  | 454 | 33.417 | 66.003 | 18.100 | 0.01 | 54.17 | AAAA C |
| ATOM | 4362 | C   | GLU  | 454 | 29.762 | 69.301 | 20.737 | 1.00 | 65.41 | AAAA C |

09/555275

PCT/AU98/00998

WO 99/28347

43/58

|      |      |     |     |     |        |        |        |      |        |      |   |
|------|------|-----|-----|-----|--------|--------|--------|------|--------|------|---|
| ATOM | 4363 | O   | GLU | 454 | 29.002 | 79.089 | 26.169 | 1.00 | 67.86  | AAAA | O |
| ATOM | 4364 | H   | ARG | 455 | 29.298 | 68.187 | 21.333 | 1.00 | 66.45  | AAAA | H |
| ATOM | 4366 | CA  | ARG | 455 | 27.843 | 67.997 | 21.371 | 1.00 | 69.33  | AAAA | C |
| ATOM | 4367 | CB  | ARG | 455 | 27.448 | 66.733 | 20.652 | 1.00 | 73.38  | AAAA | C |
| ATOM | 4368 | CG  | ARG | 455 | 28.167 | 65.912 | 19.924 | 1.00 | 74.27  | AAAA | C |
| ATOM | 4369 | CD  | ARG | 455 | 27.775 | 64.740 | 19.240 | 1.00 | 79.54  | AAAA | C |
| ATOM | 4370 | NIE | ARG | 455 | 27.301 | 63.638 | 20.052 | 1.00 | 86.31  | AAA  | N |
| ATOM | 4372 | CE  | ARG | 455 | 27.802 | 62.412 | 20.189 | 1.00 | 88.60  | AAA  | C |
| ATOM | 4373 | NH1 | ARG | 455 | 28.990 | 61.997 | 19.538 | 1.00 | 84.51  | AAA  | N |
| ATOM | 4376 | NH2 | ARG | 455 | 27.225 | 61.523 | 21.003 | 1.00 | 87.36  | AAA  | N |
| ATOM | 4379 | C   | ARG | 455 | 27.213 | 67.934 | 22.756 | 1.00 | 67.35  | AAA  | C |
| ATOM | 4380 | O   | ARG | 455 | 26.423 | 67.025 | 22.951 | 1.00 | 66.26  | AAA  | O |
| ATOM | 4381 | H   | ALA | 456 | 27.499 | 68.879 | 23.623 | 1.00 | 66.52  | AAA  | H |
| ATOM | 4383 | CA  | ALA | 456 | 26.947 | 68.906 | 24.964 | 1.00 | 72.01  | AAA  | C |
| ATOM | 4384 | CB  | ALA | 456 | 27.832 | 68.147 | 25.939 | 1.00 | 61.84  | AAA  | C |
| ATOM | 4385 | C   | ALA | 456 | 26.802 | 70.379 | 25.371 | 1.00 | 75.25  | AAA  | C |
| ATOM | 4386 | O   | ALA | 456 | 27.706 | 71.219 | 25.202 | 1.00 | 81.30  | AAA  | O |
| ATOM | 4387 | H   | SER | 457 | 25.653 | 70.720 | 25.939 | 0.50 | 71.91  | AAA  | N |
| ATOM | 4389 | CA  | SER | 457 | 25.431 | 72.095 | 26.358 | 0.50 | 69.64  | AAA  | C |
| ATOM | 4390 | CB  | SER | 457 | 23.991 | 72.247 | 26.836 | 0.50 | 73.30  | AAA  | O |
| ATOM | 4391 | CG  | SER | 457 | 23.422 | 73.294 | 26.060 | 0.50 | 73.31  | AAA  | O |
| ATOM | 4393 | C   | SER | 457 | 26.418 | 72.510 | 27.437 | 0.50 | 69.27  | AAA  | C |
| ATOM | 4394 | O   | SER | 457 | 26.458 | 71.957 | 28.530 | 0.50 | 67.32  | AAA  | O |
| ATOM | 4395 | H   | CYS | 458 | 27.197 | 73.531 | 27.117 | 0.50 | 70.44  | AAA  | H |
| ATOM | 4397 | CA  | CYS | 458 | 28.287 | 73.960 | 27.972 | 0.50 | 72.57  | AAA  | C |
| ATOM | 4398 | C   | CYS | 458 | 27.949 | 75.205 | 28.757 | 0.50 | 72.54  | AAA  | C |
| ATOM | 4399 | O   | CYS | 458 | 27.065 | 75.128 | 29.606 | 0.50 | 76.63  | AAA  | O |
| ATOM | 4400 | CB  | CYS | 458 | 29.527 | 74.171 | 27.089 | 0.50 | 75.38  | AAA  | C |
| ATOM | 4401 | SG  | CYS | 458 | 30.844 | 73.032 | 27.490 | 0.50 | 72.18  | AAA  | S |
| ATOM | 4402 | H   | ALA | 459 | 28.607 | 76.306 | 28.441 | 0.50 | 70.13  | AAA  | H |
| ATOM | 4404 | CA  | ALA | 459 | 28.445 | 77.572 | 29.116 | 0.50 | 70.05  | AAA  | C |
| ATOM | 4405 | CB  | ALA | 459 | 27.046 | 78.149 | 28.996 | 0.50 | 70.57  | AAA  | C |
| ATOM | 4406 | C   | ALA | 459 | 28.826 | 77.461 | 30.601 | 0.50 | 70.13  | AAA  | C |
| ATOM | 4407 | O   | ALA | 459 | 29.080 | 78.556 | 31.154 | 0.50 | 69.96  | AAA  | O |
| ATOM | 4407 | OT  | ALA | 459 | 28.855 | 76.301 | 31.054 | 0.50 | 68.22  | AAA  | O |
| ATOM | 4522 | C1  | NAG | 461 | 59.581 | 7.102  | 61.119 | 1.00 | 88.13  | AAA  | C |
| ATOM | 4524 | C2  | NAG | 461 | 59.964 | 7.338  | 59.697 | 1.00 | 91.94  | AAA  | C |
| ATOM | 4526 | H2  | NAG | 461 | 58.738 | 7.699  | 58.920 | 1.00 | 92.72  | AAA  | H |
| ATOM | 4528 | C7  | NAG | 461 | 58.400 | 9.020  | 58.999 | 1.00 | 96.97  | AAA  | C |
| ATOM | 4529 | O7  | NAG | 461 | 58.879 | 9.774  | 59.725 | 1.00 | 98.62  | AAA  | O |
| ATOM | 4530 | C8  | NAG | 461 | 57.323 | 9.390  | 58.043 | 1.00 | 100.60 | AAA  | C |
| ATOM | 4534 | C3  | NAG | 461 | 60.725 | 6.225  | 59.085 | 1.00 | 94.77  | AAA  | O |
| ATOM | 4536 | O3  | NAG | 461 | 61.417 | 6.725  | 57.930 | 1.00 | 98.51  | AAA  | C |
| ATOM | 4538 | C4  | NAG | 461 | 61.873 | 5.869  | 60.064 | 1.00 | 96.01  | AAA  | C |
| ATOM | 4540 | O4  | NAG | 461 | 62.661 | 4.821  | 59.484 | 1.00 | 99.20  | AAA  | O |
| ATOM | 4542 | C5  | NAG | 461 | 61.359 | 5.529  | 61.474 | 1.00 | 95.13  | AAA  | C |
| ATOM | 4545 | C6  | NAG | 461 | 62.465 | 5.321  | 62.495 | 1.00 | 93.66  | AAA  | O |
| ATOM | 4548 | O6  | NAG | 461 | 62.745 | 6.364  | 63.354 | 1.00 | 92.13  | AAA  | O |
| ATOM | 4544 | O5  | NAG | 461 | 60.625 | 6.648  | 61.949 | 1.00 | 91.92  | AAA  | O |
| ATOM | 4550 | C1  | NAG | 463 | 33.054 | 15.249 | 72.938 | 1.00 | 43.58  | AAA  | C |
| ATOM | 4552 | C2  | NAG | 463 | 31.644 | 15.282 | 73.412 | 1.00 | 43.62  | AAA  | H |
| ATOM | 4554 | H2  | NAG | 463 | 30.709 | 14.527 | 72.541 | 1.00 | 42.16  | AAA  | C |
| ATOM | 4556 | C7  | NAG | 463 | 29.912 | 13.584 | 73.099 | 1.00 | 40.84  | AAA  | O |
| ATOM | 4557 | O7  | NAG | 463 | 29.928 | 13.406 | 74.222 | 1.00 | 40.10  | AAA  | O |
| ATOM | 4558 | C8  | NAG | 463 | 29.975 | 12.694 | 72.394 | 1.00 | 35.47  | AAA  | C |
| ATOM | 4562 | C3  | NAG | 463 | 31.150 | 16.675 | 73.448 | 1.00 | 45.40  | AAA  | O |
| ATOM | 4564 | O3  | NAG | 463 | 29.979 | 16.555 | 74.196 | 1.00 | 45.99  | AAA  | O |
| ATOM | 4566 | C4  | NAG | 463 | 32.117 | 17.617 | 74.171 | 1.00 | 50.36  | AAA  | C |
| ATOM | 4568 | O4  | NAG | 463 | 31.596 | 18.919 | 73.891 | 1.00 | 53.97  | AAA  | O |
| ATOM | 4569 | C5  | NAG | 463 | 33.589 | 17.477 | 73.725 | 1.00 | 48.50  | AAA  | C |
| ATOM | 4572 | C6  | NAG | 463 | 34.490 | 17.996 | 74.742 | 1.00 | 48.34  | AAA  | C |
| ATOM | 4575 | O6  | NAG | 463 | 34.906 | 18.739 | 75.671 | 1.00 | 57.11  | AAA  | O |
| ATOM | 4571 | O5  | NAG | 463 | 33.942 | 16.120 | 73.583 | 1.00 | 48.58  | AAA  | O |
| ATOM | 4576 | C1  | FUC | 464 | 34.544 | 19.954 | 76.083 | 1.00 | 81.45  | AAA  | C |
| ATOM | 4578 | C2  | FUC | 464 | 35.179 | 21.173 | 75.463 | 1.00 | 86.35  | AAA  | C |
| ATOM | 4579 | O2  | FUC | 464 | 35.153 | 21.169 | 74.021 | 1.00 | 92.94  | AAA  | O |
| ATOM | 4582 | C3  | FUC | 464 | 34.252 | 22.284 | 75.945 | 1.00 | 86.79  | AAA  | O |
| ATOM | 4584 | O3  | FUC | 464 | 34.691 | 23.613 | 75.596 | 1.00 | 87.83  | AAA  | O |
| ATOM | 4586 | C4  | FUC | 464 | 33.871 | 22.274 | 77.412 | 1.00 | 86.67  | AAA  | C |
| ATOM | 4588 | O4  | FUC | 464 | 34.598 | 23.297 | 78.115 | 1.00 | 87.06  | AAA  | O |
| ATOM | 4590 | C5  | FUC | 464 | 33.921 | 20.894 | 78.040 | 1.00 | 85.85  | AAA  | C |
| ATOM | 4593 | C6  | FUC | 464 | 34.279 | 20.768 | 79.512 | 1.00 | 83.37  | AAA  | C |
| ATOM | 4592 | O5  | FUC | 464 | 35.042 | 20.150 | 77.425 | 1.00 | 82.43  | AAA  | O |
| ATOM | 4597 | C1  | NAG | 465 | 31.575 | 19.813 | 74.940 | 1.00 | 64.68  | AAA  | C |
| ATOM | 4599 | C2  | NAG | 465 | 31.267 | 21.207 | 74.437 | 1.00 | 69.57  | AAA  | C |
| ATOM | 4601 | H2  | NAG | 465 | 32.480 | 21.642 | 73.690 | 1.00 | 71.25  | AAA  | H |
| ATOM | 4603 | C7  | NAG | 465 | 32.401 | 21.953 | 72.381 | 1.00 | 73.86  | AAA  | C |
| ATOM | 4604 | O7  | NAG | 465 | 31.373 | 21.835 | 71.881 | 1.00 | 74.80  | AAA  | O |
| ATOM | 4605 | C8  | NAG | 465 | 33.679 | 22.401 | 71.787 | 1.00 | 76.00  | AAA  | C |
| ATOM | 4609 | C3  | NAG | 465 | 31.050 | 22.214 | 75.546 | 1.00 | 72.71  | AAA  | C |
| ATOM | 4611 | O3  | NAG | 465 | 30.713 | 23.517 | 75.108 | 1.00 | 71.03  | AAA  | O |
| ATOM | 4613 | C4  | NAG | 465 | 30.035 | 21.654 | 76.560 | 1.00 | 75.71  | AAA  | C |
| ATOM | 4615 | O1  | NAG | 465 | 29.993 | 22.409 | 77.793 | 1.00 | 76.79  | AAA  | O |
| ATOM | 4617 | C5  | NAG | 465 | 30.498 | 20.238 | 76.977 | 1.00 | 75.45  | AAA  | C |
| ATOM | 4620 | C6  | NAG | 465 | 29.461 | 19.647 | 77.930 | 1.00 | 75.64  | AAA  | C |

09/555275

PCT/AU98/00998

WO 99/28347

44/58

|      |      |    |     |     |        |        |        |      |        |        |
|------|------|----|-----|-----|--------|--------|--------|------|--------|--------|
| ATOM | 4623 | CG | HAG | 465 | 28.385 | 19.238 | 77.141 | 1.00 | 76.25  | AAAA O |
| ATOM | 4619 | CG | HAG | 465 | 30.511 | 19.425 | 75.807 | 1.00 | 71.44  | AAAA O |
| ATOM | 4625 | C1 | HAG | 467 | 49.927 | 11.058 | 87.926 | 1.00 | 96.51  | AAAA C |
| ATOM | 4627 | C2 | HAG | 467 | 50.538 | 11.751 | 89.100 | 1.00 | 99.92  | AAAA C |
| ATOM | 4629 | H2 | HAG | 467 | 49.662 | 12.898 | 89.459 | 1.00 | 101.79 | AAAA N |
| ATOM | 4631 | C7 | HAG | 467 | 49.299 | 13.021 | 89.759 | 1.00 | 103.63 | AAAA C |
| ATOM | 4632 | O7 | HAG | 467 | 49.541 | 12.267 | 91.586 | 1.00 | 105.48 | AAAA O |
| ATOM | 4633 | CG | HAG | 467 | 48.526 | 14.239 | 91.102 | 1.00 | 105.02 | AAAA C |
| ATOM | 4637 | C3 | HAG | 467 | 51.967 | 12.134 | 88.892 | 1.00 | 101.03 | AAAA C |
| ATOM | 4639 | O3 | HAG | 467 | 52.535 | 12.761 | 89.949 | 1.00 | 100.89 | AAAA O |
| ATOM | 4641 | C4 | HAG | 467 | 52.643 | 10.771 | 88.506 | 1.00 | 101.15 | AAAA C |
| ATOM | 4643 | O4 | HAG | 467 | 54.067 | 10.834 | 88.441 | 1.00 | 101.35 | AAAA O |
| ATOM | 4645 | C5 | HAG | 467 | 52.039 | 10.160 | 87.218 | 1.00 | 100.16 | AAAA C |
| ATOM | 4648 | O6 | HAG | 467 | 52.746 | 8.852  | 86.934 | 1.00 | 99.75  | AAAA C |
| ATOM | 4651 | O6 | HAG | 467 | 52.088 | 7.704  | 87.302 | 1.00 | 101.54 | AAAA O |
| ATOM | 4647 | O5 | HAG | 467 | 50.671 | 9.918  | 87.503 | 1.00 | 98.59  | AAAA O |
| ATOM | 4653 | C1 | HAG | 469 | 55.375 | 46.143 | 66.863 | 1.00 | 18.45  | AAAA C |
| ATOM | 4655 | H2 | HAG | 469 | 56.601 | 46.993 | 66.861 | 1.00 | 50.42  | AAAA C |
| ATOM | 4657 | H2 | HAG | 469 | 57.106 | 47.015 | 65.451 | 1.00 | 51.50  | AAAA N |
| ATOM | 4659 | C7 | HAG | 469 | 57.135 | 48.143 | 64.746 | 1.00 | 48.88  | AAAA C |
| ATOM | 4660 | O7 | HAG | 469 | 56.849 | 49.101 | 65.234 | 1.00 | 55.62  | AAAA O |
| ATOM | 4661 | C8 | HAG | 469 | 57.838 | 48.134 | 63.394 | 1.00 | 43.70  | AAAA C |
| ATOM | 4665 | C3 | HAG | 469 | 57.608 | 46.491 | 67.844 | 1.00 | 49.62  | AAAA C |
| ATOM | 4667 | O3 | HAG | 469 | 58.640 | 47.461 | 68.031 | 1.00 | 47.76  | AAAA O |
| ATOM | 4669 | C4 | HAG | 469 | 56.843 | 46.263 | 69.172 | 1.00 | 48.47  | AAAA C |
| ATOM | 4671 | O4 | HAG | 469 | 57.826 | 45.800 | 70.134 | 1.00 | 50.06  | AAAA O |
| ATOM | 4672 | C5 | HAG | 469 | 55.847 | 45.130 | 68.959 | 1.00 | 50.81  | AAAA C |
| ATOM | 4675 | O6 | HAG | 469 | 55.190 | 44.720 | 70.239 | 1.00 | 53.92  | AAAA C |
| ATOM | 4678 | O6 | HAG | 469 | 54.829 | 45.551 | 71.193 | 1.00 | 56.25  | AAAA O |
| ATOM | 4674 | O5 | HAG | 469 | 54.914 | 45.599 | 68.043 | 1.00 | 55.45  | AAAA O |
| ATOM | 4679 | C1 | FUC | 470 | 53.830 | 46.395 | 71.203 | 1.00 | 61.17  | AAAA C |
| ATOM | 4681 | C2 | FUC | 470 | 53.642 | 47.121 | 72.534 | 1.00 | 59.23  | AAAA C |
| ATOM | 4682 | O2 | FUC | 470 | 54.861 | 46.876 | 73.241 | 1.00 | 55.14  | AAAA O |
| ATOM | 4685 | C3 | FUC | 470 | 53.421 | 48.429 | 71.757 | 1.00 | 58.39  | AAAA C |
| ATOM | 4687 | O3 | FUC | 470 | 53.381 | 49.515 | 72.637 | 1.00 | 56.30  | AAAA O |
| ATOM | 4689 | C4 | FUC | 470 | 52.245 | 48.255 | 70.809 | 1.00 | 61.24  | AAAA C |
| ATOM | 4691 | O4 | FUC | 470 | 51.061 | 47.904 | 71.544 | 1.00 | 63.74  | AAAA O |
| ATOM | 4693 | C5 | FUC | 470 | 52.455 | 47.086 | 69.828 | 1.00 | 62.20  | AAAA C |
| ATOM | 4696 | C6 | FUC | 470 | 51.462 | 46.723 | 68.784 | 1.00 | 59.15  | AAAA C |
| ATOM | 4695 | O5 | FUC | 470 | 52.567 | 45.889 | 70.781 | 1.00 | 64.68  | AAAA O |
| ATOM | 4700 | C1 | HAG | 471 | 58.034 | 46.760 | 71.149 | 1.00 | 37.00  | AAAA C |
| ATOM | 4702 | C2 | HAG | 471 | 58.977 | 46.225 | 72.186 | 1.00 | 40.30  | AAAA C |
| ATOM | 4704 | H2 | HAG | 471 | 58.958 | 44.787 | 72.509 | 1.00 | 36.82  | AAAA N |
| ATOM | 4706 | C7 | HAG | 471 | 57.856 | 44.183 | 72.903 | 1.00 | 44.21  | AAAA C |
| ATOM | 4707 | O7 | HAG | 471 | 56.892 | 44.744 | 72.885 | 1.00 | 51.50  | AAAA O |
| ATOM | 4708 | C8 | HAG | 471 | 58.202 | 42.814 | 73.323 | 1.00 | 46.02  | AAAA C |
| ATOM | 4712 | C3 | HAG | 471 | 58.901 | 47.250 | 73.291 | 1.00 | 34.50  | AAAA C |
| ATOM | 4714 | O3 | HAG | 471 | 59.698 | 46.917 | 74.385 | 1.00 | 35.84  | AAAA O |
| ATOM | 4716 | C4 | HAG | 471 | 59.645 | 48.488 | 72.694 | 1.00 | 38.52  | AAAA C |
| ATOM | 4718 | O4 | HAG | 471 | 59.754 | 49.464 | 73.694 | 1.00 | 37.44  | AAAA O |
| ATOM | 4719 | CG | HAG | 471 | 59.056 | 48.958 | 71.332 | 1.00 | 36.94  | AAAA C |
| ATOM | 4722 | CG | HAG | 471 | 60.116 | 49.692 | 70.525 | 1.00 | 36.14  | AAAA C |
| ATOM | 4725 | O6 | HAG | 471 | 61.106 | 50.390 | 71.080 | 1.00 | 43.49  | AAAA O |
| ATOM | 4721 | O5 | HAG | 471 | 58.853 | 47.785 | 70.530 | 1.00 | 34.98  | AAAA O |
| ATOM | 4727 | C1 | HAN | 472 | 61.035 | 49.984 | 73.953 | 1.00 | 53.37  | AAAA C |
| ATOM | 4729 | C2 | HAN | 472 | 60.920 | 51.497 | 74.260 | 1.00 | 56.72  | AAAA C |
| ATOM | 4730 | O2 | HAN | 472 | 59.924 | 51.584 | 75.272 | 1.00 | 62.11  | AAAA O |
| ATOM | 4733 | C3 | HAN | 472 | 62.216 | 52.031 | 74.840 | 1.00 | 60.70  | AAAA C |
| ATOM | 4735 | O3 | HAN | 472 | 62.028 | 53.337 | 75.383 | 1.00 | 60.70  | AAAA O |
| ATOM | 4736 | C4 | HAN | 472 | 62.787 | 51.161 | 76.932 | 1.00 | 55.46  | AAAA C |
| ATOM | 4738 | O4 | HAN | 472 | 64.095 | 51.595 | 76.171 | 1.00 | 57.16  | AAAA O |
| ATOM | 4740 | CG | HAN | 472 | 62.797 | 49.685 | 75.511 | 1.00 | 52.10  | AAAA C |
| ATOM | 4743 | CG | HAN | 472 | 63.458 | 48.905 | 76.595 | 1.00 | 50.32  | AAAA C |
| ATOM | 4746 | O6 | HAN | 472 | 62.990 | 48.969 | 77.885 | 1.00 | 51.02  | AAAA O |
| ATOM | 4742 | Q5 | HAN | 472 | 61.443 | 49.407 | 75.200 | 1.00 | 53.33  | AAAA O |
| ATOM | 4748 | C1 | HAN | 473 | 62.594 | 54.401 | 74.672 | 1.00 | 72.61  | AAAA C |
| ATOM | 4750 | C2 | HAN | 473 | 62.417 | 55.679 | 75.569 | 1.00 | 75.28  | AAAA C |
| ATOM | 4751 | O2 | HAN | 473 | 63.378 | 56.709 | 75.348 | 1.00 | 74.98  | AAAA O |
| ATOM | 4754 | C3 | HAN | 473 | 60.977 | 56.163 | 75.493 | 1.00 | 78.65  | AAAA C |
| ATOM | 4756 | O3 | HAN | 473 | 60.941 | 57.447 | 76.148 | 1.00 | 79.16  | AAAA O |
| ATOM | 4758 | C4 | HAN | 473 | 60.344 | 56.204 | 74.114 | 1.00 | 78.70  | AAAA C |
| ATOM | 4760 | O4 | HAN | 473 | 58.983 | 56.571 | 74.178 | 1.00 | 78.93  | AAAA O |
| ATOM | 4762 | CG | HAN | 473 | 60.499 | 54.802 | 73.474 | 1.00 | 76.89  | AAAA C |
| ATOM | 4765 | CG | HAN | 473 | 59.968 | 54.490 | 72.091 | 1.00 | 74.73  | AAAA C |
| ATOM | 4768 | O6 | HAN | 473 | 60.239 | 55.469 | 71.138 | 1.00 | 71.38  | AAAA O |
| ATOM | 4764 | O5 | HAN | 473 | 61.916 | 54.562 | 73.463 | 1.00 | 74.97  | AAAA O |
| ATOM | 4408 | CB | ALA | 479 | 42.462 | 74.494 | 16.374 | 1.00 | 82.09  | BBBB C |
| ATOM | 4409 | C  | ALA | 479 | 40.017 | 74.702 | 17.001 | 1.00 | 91.42  | BBBB C |
| ATOM | 4410 | O  | ALA | 479 | 40.393 | 75.108 | 18.103 | 1.00 | 96.11  | BBBB O |
| ATOM | 4413 | H  | ALA | 479 | 40.696 | 74.461 | 14.624 | 1.00 | 86.43  | BBBB N |
| ATOM | 4415 | CA | ALA | 479 | 41.033 | 74.108 | 16.033 | 1.00 | 89.85  | BBBB C |
| ATOM | 4416 | H  | ALA | 480 | 38.749 | 74.752 | 16.610 | 1.00 | 92.12  | BBBB N |
| ATOM | 4418 | CA | ALA | 480 | 37.684 | 75.264 | 17.467 | 1.00 | 91.26  | BBBB C |
| ATOM | 4419 | CB | ALA | 480 | 37.925 | 76.731 | 17.769 | 1.00 | 86.84  | BBBB C |
| ATOM | 4420 | C  | ALA | 480 | 36.306 | 75.030 | 16.849 | 1.00 | 91.39  | BBBB C |

TOP SECRET

09/555275

WO 99/28347

PCT/AU98/00998

45/58

|      |      |     |     |     |        |        |        |      |        |         |
|------|------|-----|-----|-----|--------|--------|--------|------|--------|---------|
| ATOM | 4421 | O   | ALA | 480 | 35.415 | 74.647 | 17.610 | 1.00 | 93.79  | BBBBB O |
| ATOM | 4422 | N   | GLN | 481 | 36.135 | 75.304 | 15.564 | 0.01 | 89.69  | BBBBB N |
| ATOM | 4424 | CA  | GLN | 481 | 34.832 | 75.164 | 14.915 | 1.00 | 87.19  | BBBBB C |
| ATOM | 4425 | CB  | GLN | 481 | 34.471 | 76.492 | 14.224 | 0.01 | 92.74  | BBBBB C |
| ATOM | 4426 | CG  | GLN | 481 | 34.277 | 77.627 | 15.220 | 1.00 | 99.93  | BBBBB C |
| ATOM | 4427 | CD  | GLN | 481 | 34.067 | 79.003 | 14.626 | 1.00 | 103.59 | BBBBB C |
| ATOM | 4428 | OE1 | GLN | 481 | 35.011 | 79.777 | 14.381 | 1.00 | 103.27 | BBBBB O |
| ATOM | 4429 | NE2 | GLN | 481 | 32.792 | 79.328 | 14.398 | 1.00 | 108.00 | BBBBB N |
| ATOM | 4432 | C   | GLN | 481 | 34.755 | 73.947 | 14.005 | 1.00 | 85.31  | BBBBB C |
| ATOM | 4433 | O   | GLN | 481 | 33.736 | 73.508 | 13.456 | 1.00 | 83.41  | BBBBB O |
| ATOM | 4434 | H   | LYS | 482 | 35.849 | 73.188 | 13.908 | 1.00 | 82.85  | BBBBB H |
| ATOM | 4436 | CA  | LYS | 482 | 35.982 | 71.990 | 13.089 | 1.00 | 73.49  | BBBBB C |
| ATOM | 4437 | CB  | LYS | 482 | 37.377 | 71.930 | 12.480 | 1.00 | 73.13  | BBBBB C |
| ATOM | 4438 | CG  | LYS | 482 | 38.287 | 73.128 | 12.494 | 1.00 | 76.33  | BBBBB C |
| ATOM | 4439 | CD  | LYS | 482 | 39.113 | 72.968 | 11.471 | 1.00 | 80.62  | BBBBB C |
| ATOM | 4440 | CE  | LYS | 482 | 39.985 | 74.310 | 11.027 | 0.01 | 76.66  | BBBBB C |
| ATOM | 4441 | NC  | LYS | 482 | 41.352 | 74.136 | 10.262 | 0.01 | 76.20  | BBBBB H |
| ATOM | 4445 | C   | LYS | 482 | 35.779 | 70.701 | 13.872 | 1.00 | 67.70  | BBBBB C |
| ATOM | 4446 | O   | LYS | 482 | 35.879 | 70.744 | 15.092 | 1.00 | 69.29  | BBBBB O |
| ATOM | 4447 | H   | LEU | 483 | 35.530 | 69.585 | 13.199 | 1.00 | 61.47  | BBBBB H |
| ATOM | 4449 | CA  | LEU | 483 | 35.193 | 68.356 | 13.896 | 1.00 | 59.03  | BBBBB C |
| ATOM | 4450 | CB  | LEU | 483 | 34.256 | 67.529 | 13.039 | 1.00 | 55.20  | BBBBB C |
| ATOM | 4451 | CG  | LEU | 483 | 32.779 | 67.860 | 12.875 | 1.00 | 61.94  | BBBBB C |
| ATOM | 4452 | CD1 | LEU | 483 | 32.405 | 69.154 | 13.595 | 1.00 | 44.78  | BBBBB C |
| ATOM | 4453 | CD2 | LEU | 483 | 32.433 | 67.707 | 11.395 | 1.00 | 44.63  | BBBBB C |
| ATOM | 4454 | C   | LEU | 483 | 36.421 | 67.509 | 14.229 | 1.00 | 59.73  | BBBBB C |
| ATOM | 4455 | O   | LEU | 483 | 36.465 | 66.709 | 15.165 | 1.00 | 57.22  | BBBBB O |
| ATOM | 4456 | H   | ILE | 484 | 37.345 | 67.543 | 13.262 | 1.00 | 56.21  | BBBBB H |
| ATOM | 4458 | CA  | ILE | 484 | 38.597 | 66.822 | 13.367 | 1.00 | 52.58  | BBBBB C |
| ATOM | 4459 | CP  | ILE | 484 | 38.490 | 66.390 | 11.870 | 1.00 | 50.27  | BBBBB C |
| ATOM | 4460 | CG2 | ILE | 484 | 37.769 | 65.319 | 11.524 | 1.00 | 44.85  | BBBBB C |
| ATOM | 4461 | CG1 | ILE | 484 | 39.870 | 64.766 | 12.756 | 1.00 | 39.78  | BBBBB C |
| ATOM | 4462 | CD1 | ILE | 484 | 39.888 | 63.291 | 12.404 | 1.00 | 30.43  | BBBBB C |
| ATOM | 4463 | C   | ILE | 484 | 39.623 | 67.645 | 12.608 | 1.00 | 53.49  | BBBBB C |
| ATOM | 4464 | O   | ILE | 484 | 39.158 | 68.568 | 11.942 | 1.00 | 48.33  | BBBBB O |
| ATOM | 4465 | H   | SER | 485 | 40.911 | 67.499 | 11.887 | 1.00 | 50.86  | BBBBB N |
| ATOM | 4467 | CA  | SER | 485 | 41.898 | 68.335 | 12.229 | 1.00 | 49.78  | BBBBB C |
| ATOM | 4468 | CB  | SER | 485 | 41.966 | 69.753 | 12.747 | 1.00 | 46.06  | BBBBB C |
| ATOM | 4469 | OG  | SER | 485 | 43.190 | 70.035 | 13.376 | 1.00 | 63.03  | BBBBB O |
| ATOM | 4471 | C   | SER | 485 | 43.294 | 67.711 | 12.240 | 1.00 | 50.57  | BBBBB C |
| ATOM | 4472 | O   | SER | 485 | 43.510 | 66.601 | 12.740 | 1.00 | 46.55  | BBBBB O |
| ATOM | 4473 | H   | GLU | 486 | 44.246 | 68.389 | 11.604 | 1.00 | 52.16  | BBBBB N |
| ATOM | 4475 | CA  | GLU | 486 | 45.624 | 67.874 | 11.509 | 1.00 | 59.12  | BBBBB C |
| ATOM | 4476 | CB  | GLU | 486 | 46.547 | 68.683 | 10.598 | 1.00 | 59.71  | BBBBB C |
| ATOM | 4477 | CG  | GLU | 486 | 46.221 | 70.162 | 10.568 | 1.00 | 76.75  | BBBBB C |
| ATOM | 4478 | CD  | GLU | 486 | 47.370 | 71.045 | 10.983 | 1.00 | 80.53  | BBBBB C |
| ATOM | 4479 | OE1 | GLU | 486 | 48.315 | 70.404 | 11.472 | 1.00 | 91.67  | BBBBB O |
| ATOM | 4480 | OE2 | GLU | 486 | 47.480 | 72.289 | 10.897 | 1.00 | 86.00  | BBBBB O |
| ATOM | 4481 | C   | GLU | 486 | 46.272 | 67.773 | 12.896 | 1.00 | 56.50  | BBBBB C |
| ATOM | 4482 | O   | GLU | 486 | 46.768 | 66.747 | 13.326 | 1.00 | 49.83  | BBBBB O |
| ATOM | 4483 | H   | GLU | 487 | 45.955 | 68.738 | 13.732 | 1.00 | 58.37  | BBBBB N |
| ATOM | 4485 | CA  | GLU | 487 | 46.120 | 68.736 | 15.169 | 1.00 | 59.36  | BBBBB C |
| ATOM | 4486 | CB  | GLU | 487 | 45.303 | 69.887 | 15.729 | 1.00 | 61.32  | BBBBB C |
| ATOM | 4487 | CG  | GLU | 487 | 45.615 | 70.232 | 17.159 | 1.00 | 79.21  | BBBBB C |
| ATOM | 4488 | CD  | GLU | 487 | 46.397 | 71.545 | 17.177 | 1.00 | 86.09  | BBBBB C |
| ATOM | 4489 | OE1 | GLU | 487 | 45.768 | 72.610 | 17.320 | 1.00 | 92.00  | BBBBB O |
| ATOM | 4490 | OE2 | GLU | 487 | 47.637 | 71.452 | 17.026 | 1.00 | 96.51  | BBBBB O |
| ATOM | 4491 | C   | GLU | 487 | 45.735 | 67.436 | 15.841 | 1.00 | 58.84  | BBBBB C |
| ATOM | 4492 | O   | GLU | 487 | 46.121 | 67.018 | 16.761 | 1.00 | 61.93  | BBBBB O |
| ATOM | 4493 | H   | ASP | 488 | 44.748 | 66.651 | 15.474 | 1.00 | 56.50  | BBBBB N |
| ATOM | 4495 | CA  | ASP | 488 | 44.446 | 65.347 | 15.932 | 1.00 | 55.61  | BBBBB C |
| ATOM | 4496 | CB  | ASP | 488 | 42.947 | 64.977 | 15.699 | 1.00 | 51.22  | BBBBB C |
| ATOM | 4497 | CG  | ASP | 488 | 42.047 | 66.008 | 16.267 | 1.00 | 45.27  | BBBBB C |
| ATOM | 4498 | CD1 | ASP | 488 | 42.114 | 66.563 | 17.387 | 1.00 | 56.45  | BBBBB O |
| ATOM | 4499 | OD2 | ASP | 488 | 41.151 | 66.399 | 15.192 | 1.00 | 55.11  | BBBBB O |
| ATOM | 4500 | C   | ASP | 488 | 45.208 | 64.211 | 15.238 | 1.00 | 58.91  | BBBBB C |
| ATOM | 4501 | O   | ASP | 488 | 44.967 | 63.042 | 15.634 | 1.00 | 57.00  | BBBBB O |
| ATOM | 4502 | H   | LEU | 489 | 45.933 | 64.513 | 14.163 | 1.00 | 57.39  | BBBBB N |
| ATOM | 4504 | CA  | LEU | 489 | 46.659 | 63.426 | 13.528 | 1.00 | 64.03  | BBBBB C |
| ATOM | 4505 | CB  | LEU | 489 | 46.722 | 63.677 | 12.024 | 1.00 | 62.69  | BBBBB C |
| ATOM | 4506 | CG  | LEU | 489 | 45.746 | 62.788 | 11.226 | 1.00 | 53.71  | BBBBB C |
| ATOM | 4507 | CD1 | LEU | 489 | 44.324 | 63.243 | 11.514 | 1.00 | 51.68  | BBBBB C |
| ATOM | 4508 | CD2 | LEU | 489 | 46.922 | 62.967 | 9.766  | 1.00 | 55.20  | BBBBB C |
| ATOM | 4509 | C   | LEU | 489 | 48.017 | 63.355 | 14.210 | 1.00 | 68.12  | BBBBB C |
| ATOM | 4510 | O   | LEU | 489 | 48.850 | 62.560 | 13.838 | 1.00 | 71.57  | BBBBB O |
| ATOM | 4511 | H   | ASN | 490 | 48.306 | 64.318 | 15.063 | 1.00 | 68.24  | BBBBB N |
| ATOM | 4513 | CA  | ASN | 490 | 49.497 | 64.424 | 15.855 | 1.00 | 75.04  | BBBBB C |
| ATOM | 4514 | CB  | ASN | 490 | 49.734 | 65.910 | 16.187 | 1.00 | 84.46  | BBBBB C |
| ATOM | 4515 | CG  | ASN | 490 | 51.191 | 66.105 | 16.589 | 1.00 | 98.83  | BBBBB C |
| ATOM | 4516 | OD1 | ASN | 490 | 52.082 | 65.342 | 16.178 | 1.00 | 97.25  | BBBBB O |
| ATOM | 4517 | ND2 | ASN | 490 | 51.450 | 67.128 | 17.107 | 1.00 | 100.47 | BBBBB N |
| ATOM | 4520 | C   | ASN | 490 | 49.350 | 63.610 | 17.130 | 1.00 | 80.30  | BBBBB C |
| ATOM | 4521 | O   | ASN | 490 | 49.891 | 62.484 | 17.264 | 1.00 | 80.97  | BBBBB O |
| ATOM | 4521 | OT  | ASN | 490 | 48.510 | 64.012 | 18.091 | 1.00 | 89.51  | BBBBB O |
| ATOM | 4770 | S   | SUL | 493 | 37.234 | -7.808 | 65.468 | 1.00 | 108.87 | CCCCC S |

09/555275

PCT/AU98/00998

WO 99/28347

46/58

|      |      |    |     |     |        |        |        |            |        |
|------|------|----|-----|-----|--------|--------|--------|------------|--------|
| ATOM | 4771 | O1 | SUL | 493 | 38.452 | -7.821 | 66.315 | 1.00112.55 | DDDD O |
| ATOM | 4772 | O2 | SUL | 493 | 37.611 | -7.873 | 64.920 | 1.00110.21 | DDDD O |
| ATOM | 4773 | O3 | SUL | 493 | 36.533 | -6.555 | 65.856 | 1.00109.93 | DDDD O |
| ATOM | 4774 | O4 | SUL | 493 | 36.333 | -8.978 | 65.639 | 1.00107.58 | DDDD S |
| ATOM | 4775 | S  | SUL | 494 | 56.567 | 19.753 | 66.302 | 1.00109.81 | DDDD O |
| ATOM | 4776 | O1 | SUL | 494 | 56.597 | 19.128 | 67.659 | 1.00107.98 | DDDD O |
| ATOM | 4777 | O2 | SUL | 494 | 57.964 | 20.027 | 65.795 | 1.00112.59 | DDDD O |
| ATOM | 4778 | O3 | SUL | 494 | 55.749 | 21.006 | 66.267 | 1.00111.35 | DDDD O |
| ATOM | 4779 | O4 | SUL | 494 | 55.886 | 18.792 | 65.379 | 1.00109.86 | DDDD O |
| ATOM | 4780 | S  | SUL | 495 | 34.533 | 11.240 | 75.722 | 1.00114.67 | DDDD S |
| ATOM | 4781 | O1 | SUL | 495 | 35.274 | 12.213 | 76.595 | 1.00111.38 | DDDD O |
| ATOM | 4782 | O2 | SUL | 495 | 35.476 | 12.329 | 74.974 | 1.00113.60 | DDDD O |
| ATOM | 4783 | O3 | SUL | 495 | 33.552 | 11.860 | 74.748 | 1.00112.77 | DDDD O |
| ATOM | 4784 | O4 | SUL | 495 | 33.773 | 10.279 | 76.604 | 1.00113.18 | DDDD O |
| ATOM | 4785 | S  | SUL | 496 | 35.436 | 24.844 | 59.093 | 1.00 50.73 | DDDD S |
| ATOM | 4786 | O1 | SUL | 496 | 35.613 | 24.843 | 60.607 | 1.00 62.59 | DDDD O |
| ATOM | 4787 | O2 | SUL | 496 | 36.002 | 23.581 | 58.571 | 1.00 48.59 | DDDD O |
| ATOM | 4788 | O3 | SUL | 496 | 35.880 | 26.084 | 58.455 | 1.00 56.74 | DDDD O |
| ATOM | 4789 | O4 | SUL | 496 | 33.958 | 21.953 | 59.034 | 1.00 59.34 | DDDD O |
| ATOM | 4790 | S  | SUL | 497 | 47.653 | -2.303 | 70.199 | 1.00 68.98 | DDDD S |
| ATOM | 4791 | O1 | SUL | 497 | 47.849 | -1.058 | 70.996 | 1.00 68.52 | DDDD O |
| ATOM | 4792 | O2 | SUL | 497 | 48.594 | -2.509 | 69.072 | 1.00 70.94 | DDDD O |
| ATOM | 4793 | O3 | SUL | 497 | 46.187 | -2.393 | 69.810 | 1.00 73.47 | DDDD O |
| ATOM | 4794 | O4 | SUL | 497 | 47.799 | -3.446 | 71.129 | 1.00 71.33 | DDDD S |
| ATOM | 4795 | S  | SUL | 498 | 56.527 | 35.758 | 75.513 | 1.00 71.48 | DDDD O |
| ATOM | 4796 | O1 | SUL | 498 | 55.870 | 35.013 | 76.621 | 1.00 72.97 | DDDD O |
| ATOM | 4797 | O2 | SUL | 498 | 57.759 | 34.996 | 75.167 | 1.00 69.11 | DDDD O |
| ATOM | 4798 | O3 | SUL | 498 | 56.619 | 37.237 | 75.785 | 1.00 72.45 | DDDD O |
| ATOM | 4799 | O4 | SUL | 498 | 56.623 | 35.809 | 74.330 | 1.00 72.74 | DDDD O |
| ATOM | 4800 | S  | SUL | 499 | 30.639 | 27.365 | 69.499 | 1.00 74.04 | DDDD S |
| ATOM | 4801 | O1 | SUL | 499 | 40.218 | 26.039 | 70.045 | 1.00 76.00 | DDDD O |
| ATOM | 4802 | O2 | SUL | 499 | 42.389 | 27.608 | 69.835 | 1.00 75.15 | DDDD O |
| ATOM | 4803 | O3 | SUL | 499 | 39.823 | 28.467 | 70.098 | 1.00 77.27 | DDDD O |
| ATOM | 4804 | O4 | SUL | 499 | 40.424 | 27.245 | 68.018 | 1.00 75.70 | DDDD O |
| ATOM | 4805 | S  | SUL | 500 | 44.996 | 53.228 | 20.568 | 1.00 83.89 | DDDD S |
| ATOM | 4806 | O1 | SUL | 500 | 45.080 | 54.400 | 21.461 | 1.00 84.79 | DDDD O |
| ATOM | 4807 | O2 | SUL | 500 | 46.109 | 52.266 | 20.827 | 1.00 90.38 | DDDD O |
| ATOM | 4808 | O3 | SUL | 500 | 45.032 | 53.674 | 19.135 | 1.00 92.23 | DDDD O |
| ATOM | 4809 | O4 | SUL | 500 | 43.762 | 52.396 | 20.723 | 1.00 91.61 | DDDD O |
| ATOM | 4810 | OW | WAT | 501 | 29.970 | 6.904  | 77.713 | 1.00 34.84 | DDDD O |
| ATOM | 4813 | OW | WAT | 502 | 42.522 | 18.998 | 78.232 | 1.00 55.27 | DDDD O |
| ATOM | 4816 | OW | WAT | 503 | 37.561 | 21.003 | 67.518 | 1.00 41.63 | DDDD O |
| ATOM | 4819 | OW | WAT | 504 | 50.446 | 5.721  | 63.485 | 1.00 57.37 | DDDD O |
| ATOM | 4822 | OW | WAT | 505 | 56.668 | 24.854 | 72.729 | 1.00 57.34 | DDDD O |
| ATOM | 4825 | OW | WAT | 506 | 50.605 | 57.695 | 22.727 | 1.00 54.26 | DDDD O |
| ATOM | 4828 | OW | WAT | 507 | 55.123 | 37.781 | 61.204 | 1.00 43.71 | DDDD O |
| ATOM | 4831 | OW | WAT | 508 | 17.414 | -9.070 | 74.793 | 1.00 48.79 | DDDD O |
| ATOM | 4834 | OW | WAT | 509 | 44.263 | 20.885 | 63.811 | 1.00 28.64 | DDDD O |
| ATOM | 4837 | OW | WAT | 510 | 45.095 | 19.708 | 84.433 | 1.00 49.09 | DDDD O |
| ATOM | 4840 | OW | WAT | 511 | 33.537 | 1.927  | 71.115 | 1.00 60.39 | DDDD O |
| ATOM | 4843 | OW | WAT | 512 | 19.279 | 4.902  | 75.254 | 1.00 55.23 | DDDD O |
| ATOM | 4846 | OW | WAT | 513 | 11.502 | -9.835 | 68.996 | 1.00 57.51 | DDDD O |
| ATOM | 4849 | OW | WAT | 514 | 24.591 | 17.207 | 56.665 | 1.00 56.36 | DDDD O |
| ATOM | 4852 | OW | WAT | 515 | 96.947 | 34.914 | 62.552 | 1.00 36.47 | DDDD O |
| ATOM | 4855 | OW | WAT | 516 | 58.092 | 39.983 | 66.234 | 1.00 30.34 | DDDD O |
| ATOM | 4858 | OW | WAT | 517 | 48.308 | 40.726 | 56.768 | 1.00 81.69 | DDDD O |
| ATOM | 4861 | OW | WAT | 518 | 25.776 | 2.355  | 85.630 | 1.00 66.34 | DDDD O |
| ATOM | 4864 | OW | WAT | 519 | 30.644 | 69.108 | 30.765 | 1.00 82.28 | DDDD O |
| ATOM | 4867 | OW | WAT | 520 | 38.739 | 54.257 | 43.611 | 1.00 43.41 | DDDD O |
| ATOM | 4870 | OW | WAT | 521 | 22.986 | 4.470  | 61.871 | 1.00 48.71 | DDDD O |
| ATOM | 4873 | OW | WAT | 522 | 30.939 | 50.249 | 19.364 | 1.00 54.00 | DDDD O |
| ATOM | 4876 | OW | WAT | 523 | 32.413 | 9.061  | 42.441 | 1.00 44.45 | DDDD O |
| ATOM | 4879 | OW | WAT | 524 | 41.019 | 42.560 | 55.653 | 1.00 43.40 | DDDD O |
| ATOM | 4882 | OW | WAT | 525 | 54.268 | 51.393 | 37.513 | 1.00 55.10 | DDDD O |
| ATOM | 4885 | OW | WAT | 526 | 37.120 | 13.599 | 81.397 | 1.00 46.49 | DDDD O |
| ATOM | 4888 | OW | WAT | 527 | 42.585 | 10.244 | 84.472 | 1.00 35.95 | DDDD O |
| ATOM | 4891 | OW | WAT | 528 | 43.661 | 61.633 | 18.450 | 1.00 41.05 | DDDD O |
| ATOM | 4894 | OW | WAT | 529 | 27.980 | 19.862 | 53.348 | 1.00 54.59 | DDDD O |
| ATOM | 4897 | OW | WAT | 530 | 59.527 | 38.520 | 64.116 | 1.00 37.96 | DDDD O |
| ATOM | 4900 | OW | WAT | 531 | 22.451 | 1.046  | 57.437 | 1.00 59.31 | DDDD O |
| ATOM | 4903 | OW | WAT | 532 | 30.360 | 16.123 | 70.205 | 1.00 40.39 | DDDD O |
| ATOM | 4906 | OW | WAT | 533 | 46.835 | 27.888 | 65.854 | 1.00 52.34 | DDDD O |
| ATOM | 4909 | OW | WAT | 534 | 39.446 | 49.001 | 45.379 | 1.00 46.05 | DDDD O |
| ATOM | 4912 | OW | WAT | 535 | 46.992 | 51.272 | 50.722 | 1.00 52.62 | DDDD O |
| ATOM | 4915 | OW | WAT | 536 | 44.263 | 13.776 | 73.017 | 1.00 40.61 | DDDD O |
| ATOM | 4918 | OW | WAT | 537 | 33.670 | 58.861 | 20.848 | 1.00 51.56 | DDDD O |
| ATOM | 4921 | OW | WAT | 538 | 52.469 | 21.639 | 73.804 | 1.00 61.98 | DDDD O |
| ATOM | 4924 | OW | WAT | 539 | 49.985 | 44.871 | 37.324 | 1.00 45.45 | DDDD O |
| ATOM | 4927 | OW | WAT | 540 | 24.074 | -1.791 | 60.077 | 1.00 40.40 | DDDD O |
| ATOM | 4930 | OW | WAT | 541 | 35.207 | 0.714  | 79.039 | 1.00 51.34 | DDDD O |
| ATOM | 4933 | OW | WAT | 542 | 31.231 | -1.176 | 62.362 | 1.00 48.33 | DDDD O |
| ATOM | 4936 | OW | WAT | 543 | 41.726 | -9.156 | 55.290 | 1.00 60.67 | DDDD O |
| ATOM | 4939 | OW | WAT | 544 | 48.564 | 37.335 | 72.612 | 1.00 71.69 | DDDD O |
| ATOM | 4942 | OW | WAT | 545 | 49.501 | 40.030 | 57.582 | 1.00 44.88 | DDDD O |
| ATOM | 4945 | OW | WAT | 546 | 54.851 | 7.987  | 60.018 | 1.00 49.91 | DDDD O |

09/555275

WO 99/28347

PCT/AU98/00998

47/58

ATC1 1948 ON WAT 547 30.452 -14.056 70.554 1.00 84.4E DDDD O  
 ATC1 1951 ON WAT 548 57.310 32.779 60.849 1.00 50.7T DDDD O  
 END

| Face 1 | Cleft 1 | Face 2 | Cleft 2 | Face 3 |
|--------|---------|--------|---------|--------|
|--------|---------|--------|---------|--------|

|       |       |      |             |             |
|-------|-------|------|-------------|-------------|
| (12D) | 1N    | 10R  |             |             |
| (35S) | 33L   | 32L  | 8D          | 259E        |
| (61A) | 59R   | 58F  | (6G) 5P     | 261S        |
|       | 56L   | 30H  | 28Y (27G)   | 262D        |
|       | 90F   | 26E  | 255I        | 263S        |
|       | 82F   | 27G  | 26F 275Q    | 264E        |
|       | (88V) | 54Y  | 276E (283R) | (283R)      |
|       | 83Y   | 53E  | 274M        | 276E        |
| 115K  | 80K   | 242E | {274M}      | 282I        |
| 114E  | 79W   | 241F | 272E        | 300K        |
|       | 112R  | 85Y  | 270D        | 305E        |
|       | 84N   | 84N  | (280G)      | 309K        |
|       | 108R  | 138Y |             | 310I        |
|       |       |      |             | 312D        |
|       |       |      |             | (316S) 313S |
|       |       |      |             | 336R        |
|       |       |      |             | 48/58       |
|       |       |      |             | 315T        |
|       |       |      |             | 318Q        |
|       |       |      |             | (322G) 321Q |
|       |       |      |             | 347F        |
|       |       |      |             | 348C        |
|       |       |      |             | 346Q        |
|       |       |      |             | 343E        |
|       |       |      |             | 338N        |
|       |       |      |             | 314V (344V) |

Figure 2

09/555275

PCT/AU98/00998

WO 99/28347

49/58



Figure 3

50/58

(a)



(b)



(c)



Figure 4

09/555275

PCT/AU98/00998

WO 99/28347

51/58



Figure 5

**a**

**IGF1RL1** 1 H L Y P P G F I C G P G I D I R N D Y Q O L K R E P W C T V T F E G T W W L L I S K A E D Y R S 42  
**IR L1** 1 L E E K G E V C G P G M D I N K R N L D N I L T F R H E L L E N E C S V V I E G H T L O I L L M F K T R P E D F R D 48  
**EGFR L1** 1 X X V C G O G T S N K N L E S F F L A T O R M F F N N D C E V V V F G G H N L E I T Y V Q R N 51  
**EGFR L2 311** X X V C G N G I G I N T D S N A T S N I K H F K N C T S I S S G G D I L M I L P V A F R (7) P P L D P Q E 367  
**IR L2 310** X X V C G H L L E G E K T I D D S V I T S A Q M L Q G C T V S I S G S I L M I N I R R G G N N L A A E L L E 366  
**IGF1RL2 300** X X V C G H L L E E K K T X T I D D S V I T S A Q M L Q G C T V S I S G S I L M I N I R R G G N N I A S E L E 345

**Y P F P X I T** V I T E Y L L F R V A G L Z S L C D L F P N T Y V P G W K L F Y N Y A L V V P P M T N L K D F G L 100  
**L S F P K L I I** M I T D Y L L L F R V Y G L E S R L K D L F P N T V I R G S R L F F N Y A L V V F E M V V H L K E E G L 106  
**L S F P L L K I T** Q E E V A G Y V V L I A L N T V E R P L I E N L L Q I I R G N M Y Y E N S Y A L V V A V L D A N K T I G L 108  
**L D I L K I T V** K E E T G F L L I Q A W P E N R T D L H A F E P N L L Q I I R G A T K Q H G Q F S L A V V S L N I T S O L G L 426  
**A N L I G L I I E** E E H S G Y L K I R R S Y A L V S L S F F R K K L R L I I R G E T L E I G N Y S F Y V A L D N O N L I R O L W D 413  
**N F M G I L V E** V V T G Y Y X K V R H S H A L Y S L S F A K N V R I T G T K G R O Q S K G D I N T R N V G E R A S D C E N 403

**K(2) P M R N I** Y N D R N I T A R G A X X Y E K N A D E C Y L S T V D W S L I I D A V S N N Y V C N X D P P K E E D G D 150  
**R I S I K** Y N I M N E E T A R G S V R I E K N N E E L C Y L A T I D W S R X I I D S V E D D N H I M S M D F F O N H L G S C C O K 157  
**W S K H N L T** R I S I K E E T T A R G D V I F S G N P A L C N V E S I O W M R D I V V S S D F L L S N M S M D F F O N H L G S C C O K 165  
**W D H A N L T** T S D Q G K L L F F H Y N P K L C L S E I H K M E E V V S G T K G R O Q S K G D I N T R N V G E R A S D C E N 470  
**T X A Q K M Y** T S D Q G K L L F F H Y N P K L C L S E I H K M E E V V S G T K G R O Q S K G D I N T R N V G E R A S D C E N 460

**b**

**IGF1R** 150 D L C P G T M E E K P M I C E K T T I N N E Y N Y R C W T T N R C Q K 183  
**IR** 157 D I C P G T A K G K T N C P A T V I N G Q F V E R C W T T H S H C Q K 190  
**EGFR D2** 155 K C D P S C P N G S C W G A G E P E N C C Q K L T K I 189  
**EGFR D4** 480 Q V C H A L Q S P E G C W G F E P E R O C V S C I N V S t g r e c v d k 515

Module 1

**M C P S T C G K R A C T E** N N E C C H P E C L G E C S A P D N D T A C V A C R H Y Y A G V C V P A C P P N 237  
**V C P T I C K S H G C T A** E G L C C H S E C L G N C S Q P D D P T X C V A C R H Y Y A G V C V P A C P P N 244  
**C A Q O C S G R C R G K S P S D C C H N Q C A** P Q A M N L T C T G R G P D N C I Q O G A H Y I D G P H C V K T C P A G 575  
**sk l i e g p r e s i v a n s o c i** Q C H P E C L

Module 2      Module 3      Module 4

**T Y R F E** G W R C V D R O F C A N I L S A E S S D S E G F Y V I W D G E C M Q 275  
**M L Y N P T T Y Q M D V N P E G K Y S F G** D W R C V N F S F C O D L H H K C K N S R R Q G C H Q Y V I H N N K C I P 286  
**V M G E** N N T L V W K Y A D A G H V I C h p n c t y g c t g p g l e g c p t n g p k i p s R N Y V V T D H G S C Y R 282

Module 5      Module 6

**E C P S** G F I R W G S Q S M Y C I P C E G P C P 299  
**E C P S** G Y T M N S S N L L C T P C L G P C P 309  
**A C Q A D S Y E M E E D I G V R K C K K C E G P C R 310**

Module 7      Module 8

Figure 6

53/58



Figure 7

54/58



Figure 8

09/555275

WO 99/28347

PCT/AU98/00998

55/58

Figure 9: Sequence Alignment of hIGF-1R, hIR and hIRR ectodomains.

Derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.

Symbol Comparison table: GenRunData:PileUpPep.Cmp CompCheck: 1254

GapWeight: 3.0  
GapLengthWeight: 0.1

|              |      |     |        |      |         |      |
|--------------|------|-----|--------|------|---------|------|
| Name: Higflr | Len: | 972 | CheCk: | 1781 | Weight: | 1.00 |
| Name: Hir    | Len: | 972 | CheCk: | 2986 | Weight: | 1.00 |
| Name: Hirr   | Len: | 972 | CheCk: | 9819 | Weight: | 1.00 |

Higflr .....EICGP GIDIRNDYQQ LKRLENCTVI EGYLHILLIS K..AEDYRSY 43  
Hir HLYPGEVC.P GMDIRNNLTR LHELENCSVI EGHLQILLMF KTRPEDFRDL 49  
Hirr ....MNVC.P SLDIRSEVAE LRQLENCSVV EGHLQILLMF TATGEDFRGL 45

Higflr RFPKLTVITE YLLLFRVAGL ESLGDLFPNL TVIRGWKL~~FY~~ NYALVIFEMT 93  
Hir SFPKLIMITD YLLLFRVYGL ESLKDLFPNL TVIRGSRLFF NYALVIFEMV 99  
Hirr SFPRLTQVTD YLLLFRVYGL ESLRDLFPNL AVIRGTRLFL GYALVIFEMP 95

Higflr NLKDIGLYNL RMITRGAIRI EKNADLCYLS TVDW~~S~~LILDA VSNNYIVGNK 143  
Hir HLKELGLYNL MNITRGSVRI EKNNELCYLA TIDWSRILDS VEDNYIVLNK 149  
Hirr HLRDVALPAL GAVL~~RGA~~V~~R~~V EKNQELCHLS TIDWGLLOPA PGANHIVGNK 145

Higflr PPK.ECGDLC PGTMEEKPM. CEKTTINNEY NYRCWT~~T~~NRC QKMC~~P~~STCGK 191  
Hir DDNEECGDIC PGTAKGKT~~M~~. CPATVINGQF VERCWTSHC QKVCPTICKS 198  
Hirr LG.EECADVC PGVLGAAGEP CAKTTFSGHT DYRCWTSSHC QRVCPCPHG. 193

Higflr RACTENNECC HPECLGSCSA PDNDTACVAC RHYYAGV~~C~~V PACPPNTYRF 241  
Hir HGCTAEGLCC HSECLGNCSQ PDDPTKVCAC RNFYLDGR~~C~~V ETCPPPYHF 248  
Hirr MACTARGECC HTECLGGCSQ PEDPRACVAC RHLYFQGACL WACPPGT~~Y~~QY 243

Higflr EGWRCVDRDF CANILSAES. ...SDSEG~~F~~V IH~~D~~GECM~~Q~~EC PSGFIRNGSQ 287  
Hir QDWRCVNESF CQDLHHKCKN SRROGCHQYV IHN~~N~~KCIPEC PSGYTMN~~S~~SN 298  
Hirr ESWRCVTAER CASLHSVP~~G~~. ....RASTFG IHQGSCLAQC PSGFTRNSS. 287

Higflr SMYCIPCEGP CPKVCEEKKK TKTIDS~~V~~TSA QMLQGCTIFK GNLLINIRRG 337  
Hir .LLCTPCLGP CPKVCHLLEG EKTIDS~~V~~TSA QELRGCTVIN GSLIINIRGG 347  
Hirr SIFCHKCEGL CPKECKV..G TKTIDS~~I~~QAA QDLVGCTHVE GSLILNL~~R~~QG 335

Higflr NNIASELENF MGLIEVV~~T~~GY VKIRHSHALV SLSFLKNLRL ILGEEQLEG~~N~~ 387  
Hir NNLAEELEAN LGLIEEISGY LKIRRSYALV SLSFFRK~~L~~RL IRGETLEIGN 397  
Hirr YNLEPQLQHS LGLVETITGF LKIKHSFALV SLGFFK~~N~~LKL IRGDAMVDGN 385

Higflr YSFYVLDNQN LQQLWDWDHR NLTIKAGKMY FAFNP~~K~~LCVS EIYRMEEVTG 437  
Hir YSFYALDNQN LRQLWDWSKH NL~~T~~ITQGKLF FHYNPKL~~C~~LS EIHKMEEVSG 447  
Hirr YTLYVLDNQN LQQLGSWVAA GLTIPVGKIY FAFNPRLCLE HIYRLEEV~~T~~G 435

09/555275

PCT/AU98/00998

WO 99/28347

56/58

\* !End of 1-462 fragment

Higflr TKGRQSKGDI NTRNNGERAS CESDV LHFTS TTTSKNRIII TWHRYRPPDY 487  
 Hir TKGRQERNDI ALKTNGDQAS CENEL LKFSY IRTSFDKILL RWEPYWPPDF 497  
 Hirr TRGRQNKAEI NPRTNGDRAA CQTRT LRFVS NVTEADRILL RWERYEPLEA 485

\*  
 Higflr RDLLSFIVYY KEAPFKNVTE YDGQDACGSN SWNMVDVDL P....PNKDV 532  
 Hir RDLLGFMLFY KEAPYQNVTE FDGQDACGSN SWTVVIDPP LRSNDPKSQN 547  
 Hirr RDLLSFIVYY KESPFQONATE HVGPDACTQ SWNLLDVELP L....SRTQ 530

Higflr EPGILLHGLK PWTQYAVYVK AVTLMVEND HIRGAKSEIL YIRTNASVPS 582  
 Hir HPGWLMRGLK PWTQYAIYVK TL.VTFSDER RTYGAKSDII YVQTDATNPS 596  
 Hirr EPGVTLASLK PWTQYAVFVR AITLTTEEDS PHQGAQSPIV YLRTLPAAPT 580

Higflr I PLDVLSASN SSSQLIVKWN PPSLPNGNLS YYIVRWQRQP QDGYLYRHNY 632  
 Hir VPLDPISVSN SSSQIILKWK PPSPNGNIT HYLVFWERQA EDSELFELDY 646  
 Hirr VPQDVISTSN SSHLLVRWK PPTQRNGNLT YYLVLWQRLA EDGDLYLNDY 630

\* \* \* \* \*  
 Higflr CSKD.KIPIR KYADGTIDIE EVTENPKTEV CGGEKGPCCA C...PKTEAE 678  
 Hir CLKGLKLPSR TWS.PPFSE DSQKHINQSE. YEDSAGECCS C...PKTDSQ 691  
 Hirr CHRGLRLPTS N.NDPRFDGE DGDPEAEME. ....SDCCP CQHPPPGQVL 673

$\alpha \dashrightarrow < \beta$   
 Higflr KQAEKEEAAY RKVFENFLHN SIFVPRPERK RRDVMQVANT TMSSRSRNTT 728  
 Hir ILKELEESSF RKTfedYLNH VVFVPRPSRK RSLSGDVGTVN TVAVP...TV 738  
 Hirr PPLEAQEASF QKKFENFLHN AITIPISPWK VTSINKSPQR D.SGRHRRAA 722

\*  
 Higflr AA..DTYNIT DPEELETEYP FFESRVDNKE RTVISNLRPF TLYRIDIHSC 776  
 Hir AAFPNTSSTS VPTSPEEHRP F..EKVNKE SLVISGLRF TGRIELQAC 786  
 Hirr GPLRLGGNSS DFEIQEDKVP .....RE RAVLSQLRF TEYRIDIHAC 764

\*  
 Higflr NHEAEKLGCS ASN FVARTM PAEGADDIPG PVTWEPRPEN SIFLKWPPE 826  
 Hir NQDTPEERCS VAAV SARTM PEAKADDIVG PVTHEIFENN VVHLMWQEPK 836  
 Hirr NHA AHTVGCS AAT FVARTM PHREADGIPG KVAWEASSKN SVLLRWLEPP 814

\* \*  
 Higflr NPNGLILMYE IKYGS.QVED QRECVRQEQ RKYGGAKLNR LNPGNYTARI 875  
 Hir EPNGLIVLYE VS YRRYGDDE LHLCVSRKF ALERGCRLRG LSPGNYSVRI 886  
 Hirr DPNGLILKYE IKYRRLGEEA TVLCVSRRLY AKFGGVHLAL LPPGNYSARV 864

Higflr QATSLSGNGS WTD PVFFYVQ AKTGYENFIH L 906  
 Hir RATSLAGNGS WTE PTYFYVT DYLDVPSNIA K 917  
 Hirr RATSLAGNGS WTDSVAFYIL GPEEEDAGGL H 895

09/555275

PCT/AU98/00998

WO 99/28347

57/58



Figure 10

| Schematic interpretations of EM images |                   |        |        |
|----------------------------------------|-------------------|--------|--------|
| Sample                                 | Projection along: |        |        |
|                                        | y axis            | z axis | x axis |
| hIR                                    |                   |        |        |
| hIR/<br>83-7                           |                   |        |        |
| hIR/<br>83-14                          |                   |        |        |
| hIR/<br>18-44/83-14                    |                   |        |        |
| hIR/<br>83-7/18-44                     |                   |        |        |
| hIR/<br>83-7/83-14                     |                   |        |        |

Figure 11

## COMBINED DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY

(Includes Reference to PCT International Application(s))

Attorney's Docket Number

50179-081

As below named Inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

## METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTOR

the specification of which:

 is attached hereto. was filed as United States application Serial No. 09/555,275on May 26, 2000

and was amended on \_\_\_\_\_ (if applicable).

 was filed as PCT international application Number PCT/AU98/00998on November 27, 1998

and was amended under PCT Article 19 on \_\_\_\_\_ (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is known to me to be material to patentability in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) or Section 365(b) of any foreign and/or international application(s) for patent or inventor's certificate or Section 365(a) of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed:

## PRIOR FOREIGN/PCT APPLICATION(S) AND ANY PRIORITY CLAIMS UNDER 35 U.S.C. 119:

| COUNTRY<br>(If PCT, indicate "PCT") | APPLICATION NUMBER | DATE OF FILING<br>(day, month, year) | PRIORITY CLAIMED<br>UNDER 35 USC 119                                |
|-------------------------------------|--------------------|--------------------------------------|---------------------------------------------------------------------|
| AUSTRALIA                           | PP 0585 ✓          | November 27, 1997 ✓                  | <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No |
| AUSTRALIA                           | PP 2598 ✓          | March 25, 1998                       | <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No |
|                                     |                    |                                      |                                                                     |
|                                     |                    |                                      |                                                                     |
|                                     |                    |                                      |                                                                     |

I hereby claim the benefit under 35 USC §119(e) of any United States provisional application(s) listed below.

## PRIOR PROVISIONAL APPLICATION(S):

| Application Number | Filing Date |
|--------------------|-------------|
|                    |             |

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s), or §365(c) of any PCT international application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application.

PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120:

| U.S. APPLICATIONS                            |                     | STATUS (Check One)                    |         |           |
|----------------------------------------------|---------------------|---------------------------------------|---------|-----------|
| U.S. Application Number                      | U.S. Filing Date    | Patented                              | Pending | Abandoned |
|                                              |                     |                                       |         |           |
|                                              |                     |                                       |         |           |
| <b>PCT APPLICATIONS DESIGNATING THE U.S.</b> |                     |                                       |         |           |
| PCT Application No.                          | PCT Filing Date     | U.S. Serial Numbers Assigned (If any) |         |           |
| PCT/AU98/00998 ✓                             | November 27, 1998 ✓ |                                       |         |           |
|                                              |                     |                                       |         |           |
|                                              |                     |                                       |         |           |

**POWER OF ATTORNEY:** As named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: Stephen A. Becker, Reg. No. 26,527; John G. Bisbikis, Reg. No. 37,095; Christopher D. Bright, Reg. No. P-46,578; Daniel Bucca, Reg. No. 42,368; Kenneth L. Cage, Reg. No. 26,151; Stephen C. Carlson, Reg. No. 39,929; Jennifer Chen, Reg. No. 42,404; Bernard P. Codd, Reg. No. 46,429; Thomas A. Corrado, Reg. No. 42,439; Lawrence T. Cullen, Reg. No. 44,489; Paul Devinsky, Reg. No. 28,553; Margaret M. Duncan, Reg. No. 30,879; Ramyar M. Farid, Reg. No. P-46,692; Brian E. Ferguson, Reg. No. 36,801; Michael E. Fogarty, Reg. No. 36,139; John R. Fuisz, Reg. No. 37,327; Willem F. Gadiano, Reg. No. 37,136; Keith E. George, Reg. No. 34,111; Matthew V. Grumbling, Reg. No. 44,427; John A. Hankins, Reg. No. 32,029; Joseph Hyosuk Kim, Reg. No. 41,425; Eric J. Kraus, Reg. No. 36,190; Catherine Krupka, Reg. No. 46,227; Jack Q. Lever, Reg. No. 28,149; Raphael V. Lupo, Reg. No. 28,363; Michael A. Messina, Reg. No. 33,424; Dawn L. Palmer, Reg. No. 41,238; Joseph H. Paquin, Jr., Reg. No. 31,647; Scott D. Paul, Reg. No. 42,984; William D. Pegg, Reg. No. 42,988; Robert L. Price, Reg. No. 22,685; Thomas D. Robbins, Reg. No. 43,669; Gene Z. Robinson, Reg. No. 33,351; Joy Ann G. Serauskas, Reg. No. 27,852; Daniel H. Sherr, Reg. No. P-46,425; David A. Spenard, Reg. No. 37,449; Arthur J. Steiner, Reg. No. 26,106; David L. Stewart, Reg. No. 37,578; Wesley Strickland, Reg. No. 44,363; Michael D. Switzer, Reg. No. 39,552; Leonie D. Thenor, Reg. No. 39,397; Daniel S. Trainor, Reg. No. 43,959; Cameron K. Weiffenbach, Reg. No. 44,488; Aaron Weisstuch, Reg. No. 41,557; Edward J. Wise, Reg. No. 34,523; Alexander V. Yampolsky, Reg. No. 36,324; and Robert W. Zelnick, Reg. No. 36,976, all of McDermott, Will & Emery.

Send Correspondence to:

Direct Telephone Calls to:

(name and telephone number)

(202) 756-8000

McDERMOTT, WILL & EMERY  
600 13<sup>th</sup> Street, N.W.  
Washington, D.C. 20005-3096

|             |                                                     |                                                    |                                                    |                                                                    |
|-------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
| 1-00<br>201 | Full Name of Inventor<br><u>Bentley</u>             | Family Name<br><u>Bentley</u>                      | First Given Name<br><u>John</u>                    | Second Given Name<br><u>David</u>                                  |
|             | Residence and Citizenship<br><u>Macedon</u>         | City<br><u>Aux</u>                                 | State or Foreign Country<br><u>Victoria</u>        | Country of Citizenship<br><u>Australia</u>                         |
|             | Post Office Address<br><u>85 Margaret Street</u>    | Post Office Address<br><u>85 Margaret Street</u>   | City<br><u>Macedon</u>                             | State & Zip Code/Country<br><u>Victoria 3440, Australia</u>        |
| 2-00<br>202 | Full Name of Inventor<br><u>Cosgrove</u>            | Family Name<br><u>Cosgrove</u>                     | First Given Name<br><u>Leah</u>                    | Second Given Name<br><u>Jane</u>                                   |
|             | Residence and Citizenship<br><u>Somerton Park</u>   | City<br><u>Aux</u>                                 | State or Foreign Country<br><u>South Australia</u> | Country of Citizenship<br><u>Australian</u>                        |
|             | Post Office Address<br><u>22 Tarlton Street</u>     | Post Office Address<br><u>22 Tarlton Street</u>    | City<br><u>Somerton Park</u>                       | State & Zip Code/Country<br><u>South Australia 5044, Australia</u> |
| 3-00<br>203 | Full Name of Inventor<br><u>Frenkel</u>             | Family Name<br><u>Frenkel</u>                      | First Given Name<br><u>Maurice</u>                 | Second Given Name<br><u>John</u>                                   |
|             | Residence and Citizenship<br><u>South Caulfield</u> | City<br><u>Aux</u>                                 | State or Foreign Country<br><u>Victoria</u>        | Country of Citizenship<br><u>Australia</u>                         |
|             | Post Office Address<br><u>232 Ellington Street</u>  | Post Office Address<br><u>232 Ellington Street</u> | City<br><u>South Caulfield</u>                     | State & Zip Code/Country<br><u>Victoria 3162, Australia</u>        |

I hereby declare that all statement made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

|                                                     |                                                  |                                                  |
|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Signature of Inventor 201:<br><u>John D Bentley</u> | Signature of Inventor 202:<br><u>L. Cosgrove</u> | Signature of Inventor 203:<br><u>Alt Frenell</u> |
| Date<br><u>1/8/01</u>                               | Date<br><u>3/5/01</u>                            | Date<br><u>Aug 1, 2001</u>                       |

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s), or §365(c) of any PCT International application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application.

PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120:

| U.S. APPLICATIONS                            |                   | STATUS (Check One)                    |         |           |
|----------------------------------------------|-------------------|---------------------------------------|---------|-----------|
| U.S. Application Number                      | U.S. Filing Date  | Patented                              | Pending | Abandoned |
|                                              |                   |                                       |         |           |
|                                              |                   |                                       |         |           |
|                                              |                   |                                       |         |           |
| <b>PCT APPLICATIONS DESIGNATING THE U.S.</b> |                   |                                       |         |           |
| PCT Application No.                          | PCT Filing Date   | U.S. Serial Numbers Assigned (if any) |         |           |
| PCT/AU98/00998                               | November 27, 1998 |                                       |         |           |
|                                              |                   |                                       |         |           |
|                                              |                   |                                       |         |           |

**POWER OF ATTORNEY:** As named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: Stephen A. Becker, Reg. No. 26,527; John G. Blsbikis, Reg. No. 37,095; Christopher D. Bright, Reg. No. P-46,578; Daniel Bucca, Reg. No. 42,368; Kenneth L. Cage, Reg. No. 26,151; Stephen C. Carlson, Reg. No. 39,929; Jennifer Chen, Reg. No. 42,404; Bernard P. Codd, Reg. No. 46,429; Thomas A. Corrado, Reg. No. 42,439; Lawerence T. Cullen, Reg. No. 44,489; Paul Devinsky, Reg. No. 28,553; Margaret M. Duncan, Reg. No. 30,879; Ramyar M. Farid, Reg. No. P-46,692; Brian E. Ferguson, Reg. No. 36,801; Michael E. Fogarty, Reg. No. 36,139; John R. Fuisz, Reg. No. 37,327; Willem F. Gadiano, Reg. No. 37,136; Keith E. George, Reg. No. 34,111; Matthew V. Grumbling, Reg. No. 44,427; John A. Hankins, Reg. No. 32,029; Joseph Hyosuk Kim, Reg. No. 41,425; Eric J. Kraus, Reg. No. 36,190; Catherine Krupka, Reg. No. 46,227; Jack Q. Lever, Reg. No. 28,149; Raphael V. Lupo, Reg. No. 28,383; Michael A. Messina, Reg. No. 33,424; Dawn L. Palmer, Reg. No. 41,238; Joseph H. Paquin, Jr., Reg. No. 31,647; Scott D. Paul, Reg. No. 42,984; William D. Pegg, Reg. No. 42,988; Robert L. Price, Reg. No. 22,685; Thomas D. Robbins, Reg. No. 43,669; Gene Z. Robinson, Reg. No. 33,351; Joy Ann G. Serauskas, Reg. No. 27,952; Daniel H. Sherr, Reg. No. P-46,425; David A. Spennard, Reg. No. 37,449; Arthur J. Steiner, Reg. No. 26,105; David L. Stewart, Reg. No. 37,578; Wesley Strickland, Reg. No. 44,363; Michael D. Switzer, Reg. No. 39,552; Leonid D. Thenor, Reg. No. 39,397; Daniel S. Trahnor, Reg. No. 43,959; Cameron K. Weiffenbach, Reg. No. 44,488; Aaron Weissbuch, Reg. No. 41,557; Edward J. Wise, Reg. No. 34,523; Alexander V. Yampolsky, Reg. No. 36,324; and Robert W. Zelnick, Reg. No. 36,976, all of McDermott, Will & Emery.

|                                                                                             |                                                                  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Send Correspondence to:                                                                     | Direct Telephone Calls to:<br><i>(name and telephone number)</i> |
| McDERMOTT, WILL & EMERY<br>600 13 <sup>th</sup> Street, N.W.<br>Washington, D.C. 20005-3096 | (202) 756-8000                                                   |

|              |                           |                                       |                                      |                                                      |
|--------------|---------------------------|---------------------------------------|--------------------------------------|------------------------------------------------------|
| 4-100<br>204 | Full Name of Inventor     | Family Name<br>Garrett                | First Given Name<br>Thomas           | Second Given Name<br>Peter John                      |
|              | Residence and Citizenship | City<br>Brunswick                     | State or Foreign Country<br>Victoria | Country of Citizenship<br>Australia                  |
| 5-100<br>205 | Post Office Address       | Post Office Address<br>2 Gray Street  | City<br>Brunswick                    | State & Zip Code/Country<br>Victoria 3055, Australia |
|              | Full Name of Inventor     | Family Name<br>Lawrence               | First Given Name<br>Lynne            | Second Given Name<br>Jean                            |
| 6-100<br>206 | Residence and Citizenship | City<br>Brunswick                     | State or Foreign Country<br>Victoria | Country of Citizenship<br>Australia                  |
|              | Post Office Address       | Post Office Address<br>24 Cook Street | City<br>Brunswick                    | State & Zip Code/Country<br>Victoria 3055, Australia |
| 6-100<br>206 | Full Name of Inventor     | Family Name<br>Lou                    | First Given Name<br>Melzhen          | Second Given Name                                    |
|              | Residence and Citizenship | City<br>Scoresby                      | State or Foreign Country<br>Victoria | Country of Citizenship<br>Australian                 |
|              | Post Office Address       | Post Office Address<br>10 Roma Street | City<br>Scoresby                     | State & Zip Code/Country<br>Victoria 3179, Australia |

I hereby declare that all statement made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

|                                                |                                           |                                                |
|------------------------------------------------|-------------------------------------------|------------------------------------------------|
| Signature of Inventor 204:<br><i>T Garrett</i> | Signature of Inventor 205:<br><i>Alex</i> | Signature of Inventor 206:<br><i>Melzhen C</i> |
| Date<br>1 Aug 01                               | Date<br>3/8/01                            | Date<br>1/8/01                                 |

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s), or §365(c) of any PCT international application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application.

**PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120:**

| U.S. APPLICATIONS                            |                   | STATUS (Check One)                       |         |           |
|----------------------------------------------|-------------------|------------------------------------------|---------|-----------|
| U.S. Application Number                      | U.S. Filing Date  | Patented                                 | Pending | Abandoned |
| <b>PCT APPLICATIONS DESIGNATING THE U.S.</b> |                   |                                          |         |           |
| PCT Application No.                          | PCT Filing Date   | U.S. Serial Numbers<br>Assigned (if any) |         |           |
| PCT/AU98/00998                               | November 27, 1998 |                                          |         |           |
|                                              |                   |                                          |         |           |

**POWER OF ATTORNEY:** As named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: Stephen A. Becker, Reg. No. 26,527; John G. Bisbikis, Reg. No. 37,095; Christopher D. Bright, Reg. No. P-46,578; Daniel Bucca, Reg. No. 42,368; Kenneth L. Cage, Reg. No. 26,151; Stephen C. Carlson, Reg. No. 39,929; Jennifer Chen, Reg. No. 42,404; Bernard P. Codd, Reg. No. 46,429; Thomas A. Corrado, Reg. No. 42,439; Lawerence T. Cullen, Reg. No. 44,489; Paul Devinsky, Reg. No. 28,553; Margaret M. Duncan, Reg. No. 30,879; Ramyar M. Farid, Reg. No. P-45,692; Brian E. Ferguson, Reg. No. 36,801; Michael E. Fogarty, Reg. No. 36,139; John R. Fuisz, Reg. No. 37,327; Willem F. Gadiano, Reg. No. 37,136; Keith E. George, Reg. No. 34,111; Matthew V. Grumpling, Reg. No. 44,427; John A. Hankins, Reg. No. 32,029; Joseph Hyosuk Kim, Reg. No. 41,425; Eric J. Kraus, Reg. No. 36,190; Catherine Krupka, Reg. No. 46,227; Jack Q. Lever, Reg. No. 28,149; Raphael V. Lupo, Reg. No. 28,363; Michael A. Messina, Reg. No. 33,424; Dawn L. Palmer, Reg. No. 41,238; Joseph H. Paquin, Jr., Reg. No. 31,647; Scott D. Paul, Reg. No. 42,984; William D. Pegg, Reg. No. 42,988; Robert L. Price, Reg. No. 22,685; Thomas D. Robbins, Reg. No. 43,669; Gene Z. Robinson, Reg. No. 33,351; Joy Ann G. Serauskas, Reg. No. 27,952; Daniel H. Sherr, Reg. No. P-46,425; David A. Spnardi, Reg. No. 37,449; Arthur J. Steiner, Reg. No. 26,106; David L. Stewart, Reg. No. 37,578; Wesley Strickland, Reg. No. 44,363; Michael D. Switzer, Reg. No. 39,552; Leonic D. Thenor, Reg. No. 39,397; Daniel S. Trainor, Reg. No. 43,959; Cameron K. Weiffenbach, Reg. No. 44,488; Aaron Weissstuch, Reg. No. 41,557; Edward J. Wise, Reg. No. 34,523; Alexander V. Yampolsky, Reg. No. 36,324; and Robert W. Zelnick, Reg. No. 36,976, all of McDermott, Will & Emery.

**Send Correspondence to:**

McDERMOTT, WILL & EMERY  
600 13<sup>th</sup> Street, N.W.  
Washington, D.C. 20005-3096

**Direct Telephone Calls to:**  
(name and telephone number)

(202) 756-8000

|       |                                                    |                                                    |                                             |                                                             |
|-------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|
| 7-200 | Full Name of Inventor<br><u>Lovrecz</u>            | Family Name<br><u>Aux</u>                          | First Given Name<br><u>George</u>           | Second Given Name<br><u>Oscar</u>                           |
| 207   | Residence and Citizenship<br><u>North Balwyn</u>   | City<br><u>North Balwyn</u>                        | State or Foreign Country<br><u>Victoria</u> | Country of Citizenship<br><u>Australia</u>                  |
|       | Post Office Address<br><u>2 Tovey Street</u>       | Post Office Address<br><u>2 Tovey Street</u>       | City<br><u>North Balwyn</u>                 | State & Zip Code/Country<br><u>Victoria 3104, Australia</u> |
| 8-200 | Full Name of Inventor<br><u>McKem</u>              | Family Name<br><u>Aux</u>                          | First Given Name<br><u>Neil</u>             | Second Given Name<br><u>Moreton</u>                         |
| 208   | Residence and Citizenship<br><u>Lilydale</u>       | City<br><u>Lilydale</u>                            | State or Foreign Country<br><u>Victoria</u> | Country of Citizenship<br><u>Australia</u>                  |
|       | Post Office Address<br><u>Cormo Road</u>           | Post Office Address<br><u>Cormo Road</u>           | City<br><u>Lilydale</u>                     | State & Zip Code/Country<br><u>Victoria 3170, Australia</u> |
| 9-200 | Full Name of Inventor<br><u>Ward</u>               | Family Name<br><u>Aux</u>                          | First Given Name<br><u>Colin</u>            | Second Given Name<br><u>Wesley</u>                          |
| 209   | Residence and Citizenship<br><u>Carlton</u>        | City<br><u>Carlton</u>                             | State or Foreign Country<br><u>Victoria</u> | Country of Citizenship<br><u>Australia</u>                  |
|       | Post Office Address<br><u>903 Rathdowne Street</u> | Post Office Address<br><u>903 Rathdowne Street</u> | City<br><u>Carlton</u>                      | State & Zip Code/Country<br><u>Victoria 3053, Australia</u> |

I hereby declare that all statement made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

| Signature of Inventor 207:                   | Signature of Inventor 208:     | Signature of Inventor 209:   |
|----------------------------------------------|--------------------------------|------------------------------|
| Date<br><u>1<sup>st</sup> of August 2001</u> | Date<br><u>2nd August 2001</u> | Date<br><u>2 August 2001</u> |

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s), or §365(c) of any PCT International application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application.

PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120:

| U.S. APPLICATIONS                            |                   | STATUS (Check One)                    |         |           |
|----------------------------------------------|-------------------|---------------------------------------|---------|-----------|
| U.S. Application Number                      | U.S. Filing Date  | Patented                              | Pending | Abandoned |
|                                              |                   |                                       |         |           |
|                                              |                   |                                       |         |           |
|                                              |                   |                                       |         |           |
| <b>PCT APPLICATIONS DESIGNATING THE U.S.</b> |                   |                                       |         |           |
| PCT Application No.                          | PCT Filing Date   | U.S. Serial Numbers Assigned (if any) |         |           |
| PCT/AU98/00998                               | November 27, 1998 |                                       |         |           |
|                                              |                   |                                       |         |           |
|                                              |                   |                                       |         |           |
|                                              |                   |                                       |         |           |

**POWER OF ATTORNEY:** As named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: Stephen A. Becker, Reg. No. 26,527; John G. Bisbikis, Reg. No. 37,095; Christopher D. Bright, Reg. No. P-46,578; Daniel Bucca, Reg. No. 42,368; Kenneth L. Cage, Reg. No. 26,151; Stephen C. Carlson, Reg. No. 39,929; Jennifer Chen, Reg. No. 42,404; Bernard P. Codd, Reg. No. 46,429; Thomas A. Corrado, Reg. No. 42,439; Lawerence T. Cullen, Reg. No. 44,489; Paul Devinsky, Reg. No. 28,553; Margaret M. Duncan, Reg. No. 30,879; Ramyari M. Farid, Reg. No. P-46,692; Brian E. Ferguson, Reg. No. 38,801; Michael E. Fogarty, Reg. No. 36,139; John R. Fuisz, Reg. No. 37,327; William F. Gadiano, Reg. No. 37,136; Keith E. George, Reg. No. 34,111; Matthew V. Grumblng, Reg. No. 44,427; John A. Hankins, Reg. No. 32,029; Joseph Hyosuk Klm, Reg. No. 41,425; Eric J. Kraus, Reg. No. 36,190; Catherine Krupka, Reg. No. 46,227; Jack Q. Lever, Reg. No. 28,149; Raphael V. Lupo, Reg. No. 28,363; Michael A. Messina, Reg. No. 33,424; Dawn L. Palmer, Reg. No. 41,238; Joseph H. Paquin, Jr., Reg. No. 31,647; Scott D. Paul, Reg. No. 42,984; William D. Pegg, Reg. No. 42,988; Robert L. Price, Reg. No. 22,685; Thomas D. Robbins, Reg. No. 43,669; Gene Z. Rubinson, Reg. No. 33,351; Joy Ann G. Serauskas, Reg. No. 27,952; Daniel H. Sherr, Reg. No. P-46,425; David A. Spenard, Reg. No. 37,449; Arthur J. Steiner, Reg. No. 26,106; David L. Stewart, Reg. No. 37,578; Wesley Strickland, Reg. No. 44,363; Michael D. Switzer, Reg. No. 39,552; Leonic D. Thenor, Reg. No. 39,397; Daniel S. Trainor, Reg. No. 43,959; Cameron K. Weiffenbach, Reg. No. 44,488; Aaron Weisstuch, Reg. No. 41,557; Edward J. Wise, Reg. No. 34,523; Alexander V. Yampolsky, Reg. No. 36,324; and Robert W. Zelnick, Reg. No. 36,976, all of McDermott, Will & Emery.

|                                                                                                                                   |                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <b>Send Correspondence to:</b><br><br>McDERMOTT, WILL & EMERY<br>600 13 <sup>th</sup> Street, N.W.<br>Washington, D.C. 20005-2006 | <b>Direct Telephone Calls to:</b><br><br>(name and telephone number)<br><br>(202) 756-8000 |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|

|                           |                                             |                                          |                                                             |
|---------------------------|---------------------------------------------|------------------------------------------|-------------------------------------------------------------|
| 01<br>210                 |                                             |                                          |                                                             |
| Full Name of Inventor     | Family Name<br><u>Tulloch</u>               | First Given Name<br><u>Peter</u>         | Second Given Name<br><u>Archibald</u>                       |
| Residence and Citizenship | City<br><u>Parkville</u>                    | State or Foreign Country<br><u>Aus X</u> | Country of Citizenship<br><u>Australia</u>                  |
| Post Office Address       | Post Office Address<br><u>71 Park Drive</u> | City<br><u>Parkville</u>                 | State & Zip Code/Country<br><u>Victoria 3052, Australia</u> |
| Full Name of Inventor     | Family Name                                 | First Given Name                         | Second Given Name                                           |
| Residence and Citizenship | City                                        | State or Foreign Country                 | Country of Citizenship                                      |
| Post Office Address       | Post Office Address                         | City                                     | State & Zip Code/Country                                    |
| Full Name of Inventor     | Family Name                                 | First Given Name                         | Second Given Name                                           |
| Residence and Citizenship | City                                        | State or Foreign Country                 | Country of Citizenship                                      |
| Post Office Address       | Post Office Address                         | City                                     | State & Zip Code/Country                                    |
| Full Name of Inventor     | Family Name                                 | First Given Name                         | Second Given Name                                           |
| Residence and Citizenship | City                                        | State or Foreign Country                 | Country of Citizenship                                      |
| Post Office Address       | Post Office Address                         | City                                     | State & Zip Code/Country                                    |

I hereby declare that all statement made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

|                                                                                                                   |                            |                            |
|-------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|
| Signature of Inventor 210:<br> | Signature of Inventor 211: | Signature of Inventor 212: |
| Date<br>3 August 2001                                                                                             | Date                       | Date                       |

PAUL TUROCK — AS  
THE LEGAL REPRESENTATIVE  
FOR PETER A. TUROCK.  
INVENTOR N. 2,140

## COMBINED DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY

(Includes Reference to PCT International Application(s))

Attorney's Docket Number

50179-081

As below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

## METHOD OF DESIGNING AGONISTS AND ANTAGONISTS TO IGF RECEPTOR



the specification of which:

- is attached hereto.
- was filed as United States application Serial No. 09/555,275

on May 26, 2000

and was amended on \_\_\_\_\_ (if applicable).

 was filed as PCT international application Number PCT/AU98/00998on November 27, 1998

and was amended under PCT Article 19 on \_\_\_\_\_ (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is known to me to be material to patentability in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) or Section 365(b) of any foreign and/or international application(s) for patent or inventor's certificate or Section 365(a) of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed:

## PRIOR FOREIGN/PCT APPLICATION(S) AND ANY PRIORITY CLAIMS UNDER 35 U.S.C. 119:

| COUNTRY<br>(If PCT, indicate "PCT") | APPLICATION NUMBER | DATE OF FILING<br>(day, month, year) | PRIORITY CLAIMED<br>UNDER 35 USC 119                                |
|-------------------------------------|--------------------|--------------------------------------|---------------------------------------------------------------------|
| AUSTRALIA                           | PP 0585 /          | November 27, 1997 ✓                  | <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No |
| AUSTRALIA                           | PP 2598 /          | March 25, 1998                       | <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No |
|                                     |                    |                                      |                                                                     |
|                                     |                    |                                      |                                                                     |
|                                     |                    |                                      |                                                                     |

I hereby claim the benefit under 35 USC §119(e) of any United States provisional application(s) listed below.

## PRIOR PROVISIONAL APPLICATION(S):

| Application Number | Filing Date |
|--------------------|-------------|
|                    |             |

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s), or §36(c) of any PCT international application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application.

PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120:

| U.S. APPLICATIONS                     |                   | STATUS (Check One)                    |                                                                                                                                             |           |
|---------------------------------------|-------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| U.S. Application Number               | U.S. Filing Date  | Patented                              | Pending                                                                                                                                     | Abandoned |
| PCT APPLICATIONS DESIGNATING THE U.S. |                   |                                       |                                                                                                                                             |           |
| PCT Application No.                   | PCT Filing Date   | U.S. Serial Numbers Assigned (if any) | <br>PATENT & TRADEMARK OFFICE <th data-kind="ghost"></th> |           |
| PCT/AU98/00998                        | November 27, 1998 |                                       |                                                                                                                                             |           |
|                                       |                   |                                       |                                                                                                                                             |           |

POWER OF ATTORNEY: As named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business with the Patent and Trademark Office connected therewith: Stephen A. Becker, Reg. No. 25,527; John G. Bisbikis, Reg. No. 37,095; Christopher D. Bright, Reg. No. P-46,578; Daniel Bucca, Reg. No. 42,368; Kenneth L. Cage, Reg. No. 26,151; Stephen C. Carlson, Reg. No. 39,929; Jennifer Chen, Reg. No. 42,434; Bernard P. Codd, Reg. No. 46,429; Thomas A. Corrado, Reg. No. 42,439; Lawrence T. Cullan, Reg. No. 44,489; Paul Devinsky, Reg. No. 28,553; Margaret M. Duncan, Reg. No. 30,879; Ramyar M. Farid, Reg. No. P-45,692; Brian E. Ferguson, Reg. No. 36,801; Michael E. Fogarty, Reg. No. 36,135; John R. Fuisz, Reg. No. 37,327; Willem F. Gadiano, Reg. No. 37,136; Keith E. George, Reg. No. 34,111; Matthew V. Grumpling, Reg. No. 44,427; John A. Hankins, Reg. No. 32,029; Joseph Hyosuk Kim, Reg. No. 41,425; Eric J. Kraus, Reg. No. 36,190; Catherine Krupka, Reg. No. 45,227; Jack Q. Leva, Reg. No. 28,149; Raphael V. Lupo, Reg. No. 28,363; Michael A. Messina, Reg. No. 33,424; Dawn L. Palmer, Reg. No. 41,238; Joseph H. Paquin, Jr., Reg. No. 31,647; Scott D. Paul, Reg. No. 42,984; William D. Pegg, Reg. No. 42,988; Robert L. Price, Reg. No. 22,685; Thomas D. Robbins, Reg. No. 43,561; Gene Z. Robinson, Reg. No. 33,381; Joy Ann G. Serauskas, Reg. No. 27,952; Daniel H. Sherr, Reg. No. P-46,425; David A. Spanard, Reg. No. 37,444; Arthur J. Steiner, Reg. No. 26,106; David L. Stewart, Reg. No. 37,578; Wesley Strickland, Reg. No. 44,363; Michael D. Switzer, Reg. No. 39,552; Leon D. Thenor, Reg. No. 39,392; Daniel S. Trainor, Reg. No. 43,959; Cameron K. Weiffenbach, Reg. No. 44,488; Aaron Weisstuch, Reg. No. 41,557; Edward J. Wise, Reg. No. 34,523; Alexander V. Yampolsky, Reg. No. 38,324; and Robert W. Zelnick, Reg. No. 36,976, all of McDermott, Will & Emery.

Send Correspondence to:

McDERMOTT, WILL & EMERY  
600 13<sup>th</sup> Street, N.W.  
Washington, D.C. 20005-3096

Direct Telephone Calls to:

(name and telephone number)

(202) 756-8000

|                     |                                                     |                            |                                                        |                                         |
|---------------------|-----------------------------------------------------|----------------------------|--------------------------------------------------------|-----------------------------------------|
| 210                 | Full Name of Inventor<br><br>(LEGAL REPRESENTATIVE) | Family Name<br><br>Tulloch | First Given Name<br><br>Paul                           | Second Given Name<br><br>Alexander      |
|                     | Residence and Citizenship                           | City<br><br>Denmark AUX    | State or Foreign Country<br><br>Western Australia      | Country of Citizenship<br><br>Australia |
| Post Office Address | Post Office Address<br><br>9 Braidwood Elbow        | City<br><br>Denmark        | State & Zip Code/Country<br><br>Western Australia 6333 |                                         |
| 211                 | Full Name of Inventor                               | Family Name                | First Given Name                                       | Second Given Name                       |
|                     | Residence and Citizenship                           | City                       | State or Foreign Country                               | Country of Citizenship                  |
| Post Office Address | Post Office Address                                 | City                       | State & Zip Code/Country                               |                                         |
| 212                 | Full Name of Inventor                               | Family Name                | First Given Name                                       | Second Given Name                       |
|                     | Residence and Citizenship                           | City                       | State or Foreign Country                               | Country of Citizenship                  |
|                     | Post Office Address                                 | Post Office Address        | City                                                   | State & Zip Code/Country                |

I hereby declare that all statement made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

|                                                        |                                    |                                    |
|--------------------------------------------------------|------------------------------------|------------------------------------|
| Signature of Inventor 210:<br><br><i>Bruel Bullock</i> | Signature of Inventor 211:<br><br> | Signature of Inventor 212:<br><br> |
| Date<br><br><i>20/10/2000</i>                          | Date                               | Date                               |

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s), or §18(c) of any PCT International application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application.

PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120:

| U.S. APPLICATIONS                     |                   | STATUS (Check One)                    |         |           |
|---------------------------------------|-------------------|---------------------------------------|---------|-----------|
| U.S. Application Number               | U.S. Filing Date  | Patented                              | Pending | Abandoned |
| PCT APPLICATIONS DESIGNATING THE U.S. |                   |                                       |         |           |
| PCT Application No.                   | PCT Filing Date   | U.S. Serial Numbers Assigned (if any) |         |           |
| PCT/AU98/00998                        | November 27, 1998 |                                       |         |           |
|                                       |                   |                                       |         |           |
|                                       |                   |                                       |         |           |

**POWER OF ATTORNEY:** As named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business with the Patent and Trademark Office connected therewith: Stephen A. Becker, Reg. No. 28,527; John G. Bisbikis, Reg. No. 37,095; Christopher D. Bright, Reg. No. P-46,578; Daniel Bucca, Reg. No. 42,368; Kenneth L. Cage, Reg. No. 26,151; Stephen C. Carlson, Reg. No. 39,929; Jennifer Chen, Reg. No. 42,404; Bernard P. Codd, Reg. No. 46,429; Thomas A. Comando, Reg. No. 42,439; Lawrence T. Cullen, Reg. No. 44,489; Paul Devinsky, Reg. No. 28,553; Margaret M. Duncan, Reg. No. 30,879; Ramyar M. Farid, Reg. No. P-46,592; Brian E. Ferguson, Reg. No. 36,801; Michael E. Fogarty, Reg. No. 36,135; John R. Fuisz, Reg. No. 37,327; Willem F. Gadiano, Reg. No. 37,136; Keith E. George, Reg. No. 34,111; Matthew V. Grumblng, Reg. No. 44,427; John F. Hankins, Reg. No. 32,029; Joseph Hyosuk Kim, Reg. No. 41,425; Eric J. Kraus, Reg. No. 36,190; Catherine Krupka, Reg. No. 46,227; Jack Q. Leve Reg. No. 28,149; Raphael V. Lupo, Reg. No. 28,363; Michael A. Messina, Reg. No. 33,424; Dawn L. Palmer, Reg. No. 41,238; Joseph H. Paquin, Jr., Reg. No. 31,647; Scott D. Paul, Reg. No. 42,984; William D. Pegg, Reg. No. 42,988; Robert L. Price, Reg. No. 22,685; Thomas D. Robbins, Reg. No. 43,661; Gene Z. Robinson, Reg. No. 33,351; Joy Ann G. Serauskas, Reg. No. 27,952; Daniel H. Sherr, Reg. No. P-46,425; David A. Spenard, Reg. No. 37,444; Arthur J. Steiner, Reg. No. 26,106; David L. Stewart, Reg. No. 37,578; Wesley Strickland, Reg. No. 44,363; Michael D. Switzer, Reg. No. 39,552; Leon D. Thenor, Reg. No. 39,397; Daniel S. Trainor, Reg. No. 43,959; Cameron K. Weiffenbach, Reg. No. 44,488; Aaron Weissstuch, Reg. No. 41,557; Edward J. Wise, Reg. No. 34,523; Alexander V. Yampolsky, Reg. No. 36,324; and Robert W. Zelnick, Reg. No. 36,976, all of McDermott, Will & Emery.

Send Correspondence to:

McDERMOTT, WILL & EMERY  
600 13<sup>th</sup> Street, N.W.  
Washington, D.C. 20005-3096

Direct Telephone Calls to:  
(name and telephone number)

(202) 756-8000

|             |                                                        |                                                    |                                                    |                                                         |
|-------------|--------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| 1-00<br>201 | Full Name of Inventor<br><u>Bentley</u>                | Family Name<br><u>Bentley</u>                      | First Given Name<br><u>John</u>                    | Second Given Name<br><u>David</u>                       |
|             | Residence and Citizenship<br><u>Macedon AU</u>         | City<br><u>Macedon</u>                             | State or Foreign Country<br><u>Victoria</u>        | Country of Citizenship<br><u>Australia</u>              |
|             | Post Office Address<br><u>85 Margaret Street</u>       | Post Office Address<br><u>85 Margaret Street</u>   | City<br><u>Macedon</u>                             | State & Zip Code/Country<br><u>Victoria 3440</u>        |
| 2-00<br>202 | Full Name of Inventor<br><u>Cosgrove</u>               | Family Name<br><u>Cosgrove</u>                     | First Given Name<br><u>Leah</u>                    | Second Given Name<br><u>Jane</u>                        |
|             | Residence and Citizenship<br><u>Somerton Park AU</u>   | City<br><u>Somerton Park</u>                       | State or Foreign Country<br><u>South Australia</u> | Country of Citizenship<br><u>Australia</u>              |
|             | Post Office Address<br><u>22 Tarlton Street</u>        | Post Office Address<br><u>22 Tarlton Street</u>    | City<br><u>Somerton Park</u>                       | State & Zip Code/Country<br><u>South Australia 5044</u> |
| 3-00<br>203 | Full Name of Inventor<br><u>Frenkel</u>                | Family Name<br><u>Frenkel</u>                      | First Given Name<br><u>Maurice</u>                 | Second Given Name<br><u>John</u>                        |
|             | Residence and Citizenship<br><u>South Caulfield AU</u> | City<br><u>South Caulfield</u>                     | State or Foreign Country<br><u>Victoria</u>        | Country of Citizenship<br><u>Australia</u>              |
|             | Post Office Address<br><u>232 Ellington Street</u>     | Post Office Address<br><u>232 Ellington Street</u> | City<br><u>South Caulfield</u>                     | State & Zip Code/Country<br><u>Victoria 3162</u>        |

I hereby declare that all statement made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

| Signature of Inventor 201: | Signature of Inventor 202: | Signature of Inventor 203: |
|----------------------------|----------------------------|----------------------------|
| <u>John D Bentley</u>      | <u>L. G. -</u>             | <u>Wentell</u>             |
| Date 9 OCT 2000            | Date 13 October 2000       | Date 10 October 2000       |

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s), or §365(c) of any PCT international application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application.

PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120:

| U.S. APPLICATIONS                            |                   | STATUS (Check One)                    |                                                                                                                                                                 |           |
|----------------------------------------------|-------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| U.S. Application Number                      | U.S. Filing Date  | Patented                              | Pending                                                                                                                                                         | Abandoned |
|                                              |                   |                                       |                                                                                                                                                                 |           |
| <b>PCT APPLICATIONS DESIGNATING THE U.S.</b> |                   |                                       |                                                                                                                                                                 |           |
| PCT Application No.                          | PCT Filing Date   | U.S. Serial Numbers Assigned (if any) | <br>NOV 20 2000<br>PATENT & TRADEMARK OFFICE<br>WASH. D.C.<br>O P T E J O B S |           |
| PCT/AU98/00998                               | November 27, 1998 |                                       |                                                                                                                                                                 |           |
|                                              |                   |                                       |                                                                                                                                                                 |           |
|                                              |                   |                                       |                                                                                                                                                                 |           |



**POWER OF ATTORNEY:** As named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: Stephen A. Becker, Reg. No. 26,527; John G. Bisbikis, Reg. No. 37,095; Christopher D. Bright, Reg. No. P-46,578; Daniel Bucca, Reg. No. 42,368; Kenneth L. Cage, Reg. No. 26,151; Stephen C. Carlson, Reg. No. 39,929; Jennifer Chen, Reg. No. 42,404; Bernard P. Codd, Reg. No. 46,429; Thomas A. Corrado, Reg. No. 42,439; Lawrence T. Cullen, Reg. No. 44,489; Paul Devinsky, Reg. No. 28,553; Margaret M. Duncan, Reg. No. 30,879; Ramyar M. Farid, Reg. No. P-46,692; Brian E. Ferguson, Reg. No. 36,801; Michael E. Fogarty, Reg. No. 36,139; John R. Fulusz, Reg. No. 37,327; Willem F. Gadiano, Reg. No. 37,136; Keith E. George, Reg. No. 34,111; Matthew V. Grumbling, Reg. No. 44,427; John A. Hankins, Reg. No. 32,029; Joseph Hyosuk Kim, Reg. No. 41,425; Eric J. Kraus, Reg. No. 36,190; Catherine Krupka, Reg. No. 46,227; Jack Q. Lever, Reg. No. 28,149; Raphael V. Lupo, Reg. No. 28,363; Michael A. Messina, Reg. No. 33,424; Dawn L. Palmer, Reg. No. 41,238; Joseph H. Paquin, Jr., Reg. No. 31,647; Scott D. Paul, Reg. No. 42,984; William D. Pegg, Reg. No. 42,988; Robert L. Price, Reg. No. 22,685; Thomas D. Robbins, Reg. No. 43,669; Gene Z. Rubinson, Reg. No. 33,351; Joy Ann G. Serauskas, Reg. No. 27,952; Daniel H. Sharr, Reg. No. P-46,425; David A. Spenard, Reg. No. 37,449; Leonid Arthur J. Steiner, Reg. No. 26,106; David L. Stewart, Reg. No. 37,578; Wesley Strickland, Reg. No. 44,363; Michael D. Switzer, Reg. No. 39,552; Leonid D. Thenor, Reg. No. 39,397; Daniel S. Trainor, Reg. No. 43,959; Cameron K. Weiffenbach, Reg. No. 44,488; Aaron Weisstuch, Reg. No. 41,557; Edward W. Wies, Reg. No. 34,523; Alexander V. Yampolsky, Reg. No. 36,324; and Robert W. Zelnick, Reg. No. 36,976, all of McDermott, Will & Emery.

**Send Correspondence to:** McDERMOTT, WILL & EMERY  
600 13<sup>th</sup> Street, N.W.  
**Direct Telephone Calls to:**  
*(name and telephone number)*  
(202) 756-8000

|           |                             |                                              |                                             |
|-----------|-----------------------------|----------------------------------------------|---------------------------------------------|
|           | Washington, D.C. 20005-3096 |                                              |                                             |
| 204<br>80 | Full Name of Inventor       | Family Name<br><u>Garrett</u>                | First Given Name<br><u>Thomas</u>           |
|           | Residence and Citizenship   | City<br><u>Brunswick aux</u>                 | State or Foreign Country<br><u>Victoria</u> |
|           | Post Office Address         | Post Office Address<br><u>2 Gray Street</u>  | City<br><u>Brunswick</u>                    |
| 205<br>00 | Full Name of Inventor       | Family Name<br><u>Lawrence</u>               | First Given Name<br><u>Lynne</u>            |
|           | Residence and Citizenship   | City<br><u>Brunswick aux</u>                 | State or Foreign Country<br><u>Victoria</u> |
|           | Post Office Address         | Post Office Address<br><u>24 Cook Street</u> | City<br><u>Brunswick</u>                    |
| 206<br>00 | Full Name of Inventor       | Family Name<br><u>Loui</u>                   | First Given Name<br><u>Meizhen</u>          |
|           | Residence and Citizenship   | City<br><u>Scoresby aux</u>                  | State or Foreign Country<br><u>Victoria</u> |
|           | Post Office Address         | Post Office Address<br><u>10 Roma Street</u> | City<br><u>Scoresby</u>                     |

I hereby declare that all statement made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

|                                                                                                                   |                                                                                                                   |                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Signature of Inventor 204:<br> | Signature of Inventor 205:<br> | Signature of Inventor 206:<br> |
| Date<br>9 Oct 2000                                                                                                | Date<br>9 October 2000                                                                                            | Date<br>9 Oct. 2000                                                                                                 |

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s), or §363(c) of any PCT International application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application.

PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120:

| U.S. APPLICATIONS                     |                   | STATUS (Check One)                    |                                          |           |
|---------------------------------------|-------------------|---------------------------------------|------------------------------------------|-----------|
| U.S. Application Number               | U.S. Filing Date  | Patented                              | Pending                                  | Abandoned |
| PCT APPLICATIONS DESIGNATING THE U.S. |                   |                                       |                                          |           |
| PCT Application No.                   | PCT Filing Date   | U.S. Serial Numbers Assigned (if any) |                                          |           |
| PCT/AU98/00998                        | November 27, 1998 |                                       | NOV 20 2000<br>PATENT & TRADEMARK OFFICE |           |

POWER OF ATTORNEY: As named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: Stephen A. Becker, Reg. No. 26,527; John G. Bisbikis, Reg. No. 37,095; Christopher D. Bright, Reg. No. P-46,578; Daniel Bucca, Reg. No. 42,368; Kenneth L. Cage, Reg. No. 26,151; Stephen C. Carlson, Reg. No. 39,929; Jennifer Chen, Reg. No. 42,404; Bernard P. Codd, Reg. No. 46,429; Thomas A. Corrado, Reg. No. 42,439; Lawrence T. Cullen, Reg. No. 44,449; Paul Devinsky, Reg. No. 28,553; Margaret M. Duncan, Reg. No. 30,879; Ramyar M. Farid, Reg. No. P-46,692; Brian E. Ferguson, Reg. No. 38,801; Michael E. Fogarty, Reg. No. 36,135; John R. Fuisz, Reg. No. 37,327; Willem F. Gadiano, Reg. No. 37,136; Keith E. George, Reg. No. 34,111; Matthew V. Grumblin, Reg. No. 44,427; John A. Hankins, Reg. No. 32,029; Joseph Hyosuk Kim, Reg. No. 41,425; Eric J. Kraus, Reg. No. 36,190; Catherine Krupka, Reg. No. 46,227; Jack Q. Leve, Reg. No. 28,149; Raphael V. Lupo, Reg. No. 28,363; Michael A. Messina, Reg. No. 33,424; Dawn L. Palmer, Reg. No. 41,238; Joseph H. Paquin, Jr., Reg. No. 31,647; Scott D. Paul, Reg. No. 42,984; William D. Pegg, Reg. No. 42,988; Robert L. Price, Reg. No. 22,685; Thomas D. Robbins, Reg. No. 43,663; Gene Z. Robinson, Reg. No. 33,351; Joy Ann G. Serauskas, Reg. No. 27,952; Daniel H. Sherr, Reg. No. P-46,425; David A. Spanard, Reg. No. 37,447; Arthur J. Steiner, Reg. No. 26,106; David L. Stewart, Reg. No. 37,578; Wesley Strickland, Reg. No. 44,363; Michael D. Switzer, Reg. No. 39,552; Leon D. Thenor, Reg. No. 39,397; Daniel S. Trainor, Reg. No. 43,959; Cameron K. Weiffenbach, Reg. No. 44,488; Aaron Weisstuch, Reg. No. 41,557; Edward J. Wise, Reg. No. 34,523; Alexander V. Yampolsky, Reg. No. 36,324; and Robert W. Zelnick, Reg. No. 36,975, all of McDermott, Will & Emery.

|                                                                                             |                                                           |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Send Correspondence to:                                                                     | Direct Telephone Calls to:<br>(name and telephone number) |
| McDERMOTT, WILL & EMERY<br>600 13 <sup>th</sup> Street, N.W.<br>Washington, D.C. 20005-3096 | (202) 756-8000                                            |

|      |                           |                                                    |                                         |                                                  |
|------|---------------------------|----------------------------------------------------|-----------------------------------------|--------------------------------------------------|
| 207  | Full Name of Inventor     | Family Name<br><u>Favrecz</u>                      | First Given Name<br><u>George</u>       | Second Given Name<br><u>Oscar</u>                |
|      | Residence and Citizenship | City<br><u>North Balwyn</u>                        | State or Foreign Country<br><u>AU X</u> | Country of Citizenship<br><u>Australia</u>       |
| 208  | Post Office Address       | Post Office Address<br><u>2 Toyey Street</u>       | City<br><u>North Balwyn</u>             | State & Zip Code/Country<br><u>Victoria 3104</u> |
|      | Full Name of Inventor     | Family Name<br><u>McKern</u>                       | First Given Name<br><u>Neil</u>         | Second Given Name<br><u>Moreton</u>              |
| 209  | Residence and Citizenship | City<br><u>Lilydale</u>                            | State or Foreign Country<br><u>AU X</u> | Country of Citizenship<br><u>Australia</u>       |
|      | Post Office Address       | Post Office Address<br><u>Como Road</u>            | City<br><u>Lilydale</u>                 | State & Zip Code/Country<br><u>Victoria 3170</u> |
| 9-50 | Full Name of Inventor     | Family Name<br><u>Ward</u>                         | First Given Name<br><u>Colin</u>        | Second Given Name<br><u>Wesley</u>               |
|      | Residence and Citizenship | City<br><u>Carlton</u>                             | State or Foreign Country<br><u>AU X</u> | Country of Citizenship<br><u>Australia</u>       |
|      | Post Office Address       | Post Office Address<br><u>903 Rathdowne Street</u> | City<br><u>Carlton</u>                  | State & Zip Code/Country<br><u>Victoria 3053</u> |

I hereby declare that all statement made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

|                                                 |                                                |                                              |
|-------------------------------------------------|------------------------------------------------|----------------------------------------------|
| Signature of Inventor 207:<br><u>J. Favrecz</u> | Signature of Inventor 208:<br><u>M. McKern</u> | Signature of Inventor 209:<br><u>C. Ward</u> |
| Date<br><u>9th October 2000</u>                 | Date<br><u>9th October 2000</u>                | Date<br><u>9 October 2000</u>                |



13 Rec'd PCT/PTO 04 FEB 2002  
09/555275

SEQUENCE LISTING

<110> Commonwealth Scientific and Industrial Research Organisation  
<120> Method of Designing Agonists and Antagonists to IGF Receptor  
<130> 050179-0081  
<140> 09/555,275  
<141> 2000-05-26  
<150> PCT/AU98/00998  
<151> 1998-11-27  
<150> PP2598  
<151> 1998-03-25  
<150> PP0585  
<151> 1997-11-27  
<160> 15  
<170> PatentIn version 3.1

<210> 1  
<211> 150  
<212> PRT  
<213> Homo sapiens

<400> 1

Glu Ile Cys Gly Pro Gly Ile Asp Ile Arg Asn Asp Tyr Gln Gln Leu  
1 5 10 15

Lys Arg Leu Glu Asn Cys Thr Val Ile Glu Gly Tyr Leu His Ile Leu  
20 25 30

Leu Ile Ser Lys Ala Glu Asp Tyr Arg Ser Tyr Arg Phe Pro Lys Leu  
35 40 45

Thr Val Ile Thr Glu Tyr Leu Leu Leu Phe Arg Val Ala Gly Leu Glu  
50 55 60

Ser Leu Gly Asp Leu Phe Pro Asn Leu Thr Val Ile Arg Gly Trp Lys  
65 70 75 80

Leu Phe Tyr Asn Tyr Ala Leu Val Ile Phe Glu Met Thr Asn Leu Lys  
85 90 95

Asp Ile Gly Leu Tyr Asn Leu Arg Asn Ile Thr Arg Gly Ala Ile Arg  
100 105 110

Ile Glu Lys Asn Ala Asp Leu Cys Tyr Leu Ser Thr Val Asp Trp Ser  
115 120 125

Leu Ile Leu Asp Ala Val Ser Asn Asn Tyr Ile Val Gly Asn Lys Pro  
130 135 140

Pro Lys Glu Cys Gly Asp  
145 150

<210> 2  
<211> 157  
<212> PRT  
<213> Homo sapiens

<400> 2

His Leu Tyr Pro Gly Glu Val Cys Pro Gly Met Asp Ile Arg Asn Asn  
1 5 10 15

Leu Thr Arg Leu His Glu Leu Glu Asn Cys Ser Val Ile Glu Gly His  
20 25 30

Leu Gln Ile Leu Leu Met Phe Lys Thr Arg Pro Glu Asp Phe Arg Asp  
35 40 45

Leu Ser Phe Pro Lys Leu Ile Met Ile Thr Asp Tyr Leu Leu Leu Phe  
50 55 60

Arg Val Tyr Gly Leu Glu Ser Leu Lys Asp Leu Phe Pro Asn Leu Thr  
65 70 75 80

Val Ile Arg Gly Ser Arg Leu Phe Phe Asn Tyr Ala Leu Val Ile Phe  
85 90 95

Glu Met Val His Leu Lys Glu Leu Gly Leu Tyr Asn Leu Met Asn Ile  
100 105 110

Thr Arg Gly Ser Val Arg Ile Glu Lys Asn Asn Glu Leu Cys Tyr Leu  
115 120 125

Ala Thr Ile Asp Trp Ser Arg Ile Leu Asp Ser Val Glu Asp Asn His  
130 135 140

Ile Val Leu Asn Lys Asp Asp Asn Glu Glu Cys Gly Asp  
145 150 155

<210> 3  
<211> 165  
<212> PRT  
<213> Homo sapiens

<220>  
<221> MISC\_FEATURE  
<222> (15)..(24)  
<223> Protein sequence known but not provided in Figure 6a

<220>  
<221> MISC\_FEATURE  
<222> (109)..(110)  
<223> Protein sequence known but not provided in Figure 6a

<400> 3

Leu Glu Glu Lys Lys Val Cys Gln Gly Thr Ser Asn Lys Leu Xaa Xaa  
1 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Phe Leu Ser Leu Gln Arg Met Phe Asn  
20 25 30

Asn Cys Glu Val Val Leu Gly Asn Leu Glu Ile Thr Tyr Val Gln Arg  
35 40 45

Asn Tyr Asp Leu Ser Phe Leu Lys Thr Ile Gln Glu Val Ala Gly Tyr  
50 55 60

Val Leu Ile Ala Leu Asn Thr Val Glu Arg Ile Pro Leu Glu Asn Leu  
65 70 75 80

Gln Ile Ile Arg Gly Asn Met Tyr Tyr Glu Asn Ser Tyr Ala Leu Ala  
85 90 95

Val Leu Ser Asn Tyr Asp Ala Asn Lys Thr Gly Leu Xaa Xaa Lys Pro  
100 105 110

Met Arg Asn Leu Gln Glu Ile Leu His Gly Ala Val Arg Phe Ser Asn  
115 120 125

Asn Pro Ala Leu Cys Asn Val Glu Ser Ile Gln Trp Arg Asp Ile Val  
130 135 140

Ser Ser Asp Phe Leu Ser Asn Met Ser Met Asp Phe Gln Asn His Leu  
145 150 155 160

Gly Ser Cys Gln Lys  
165

<210> 4  
<211> 167  
<212> PRT  
<213> Homo sapiens

<220>  
<221> MISC\_FEATURE  
<222> (11)..(17)  
<223> Protein sequence known but not provided in Figure 6a

<220>  
<221> MISC\_FEATURE  
<222> (44)..(50)  
<223> Protein sequence known but not provided in Figure 6a

<400> 4

Lys Val Cys Asn Gly Ile Gly Ile Gly Glu Xaa Xaa Xaa Xaa Xaa Xaa  
1 5 10 15

Xaa Asn Ala Thr Asn Ile Lys His Phe Lys Asn Cys Thr Ser Ile Ser  
20 25 30

Gly Asp Leu His Ile Leu Pro Val Ala Phe Arg Xaa Xaa Xaa Xaa Xaa  
35 40 45

Xaa Xaa Pro Pro Leu Asp Pro Gln Glu Leu Asp Ile Leu Lys Thr Val  
50 55 60

Lys Glu Ile Thr Gly Phe Leu Leu Ile Gln Ala Trp Pro Glu Asn Arg  
65 70 75 80

Thr Asp Leu His Ala Phe Glu Asn Leu Glu Ile Ile Arg Gly Arg Thr  
85 90 95

Lys Gln His Gly Gln Phe Ser Leu Ala Val Val Ser Leu Asn Ile Thr  
100 105 110

Ser Leu Gly Leu Arg Ser Leu Lys Glu Ile Ser Asp Gly Asp Val Ile  
115 120 125

Ile Ser Gly Asn Lys Asn Leu Cys Tyr Ala Asn Thr Ile Asn Trp Lys  
130 135 140

Lys Leu Phe Gly Thr Ser Gly Gln Lys Thr Lys Ile Ile Ser Asn Arg  
145 150 155 160

Gly Glu Asn Ser Cys Lys Ala  
165

<210> 5  
<211> 161  
<212> PRT  
<213> Homo sapiens

<400> 5

Lys Val Cys His Leu Leu Glu Gly Glu Lys Thr Ile Asp Ser Val Thr  
1 5 10 15

Ser Ala Gln Glu Leu Arg Gly Cys Thr Val Ile Asn Gly Ser Leu Ile  
20 25 30

Ile Asn Ile Arg Gly Gly Asn Asn Leu Ala Ala Glu Leu Glu Ala Asn  
35 40 45

Leu Gly Leu Ile Glu Glu Ile Ser Gly Tyr Leu Lys Ile Arg Arg Ser  
50 55 60

Tyr Ala Leu Val Ser Leu Ser Phe Phe Arg Lys Leu Arg Leu Ile Arg  
65 70 75 80

Gly Glu Thr Leu Glu Ile Gly Asn Tyr Ser Phe Tyr Ala Leu Asp Asn  
85 90 95

Gln Asn Leu Arg Gln Leu Trp Asp Trp Ser Lys His Asn Leu Thr Ile  
100 105 110

Thr Gln Gly Lys Leu Phe Phe His Tyr Asn Pro Lys Leu Cys Leu Ser  
115 120 125

Glu Ile His Lys Met Glu Glu Val Ser Gly Thr Lys Gly Arg Gln Glu  
130 135 140

Arg Asn Asp Ile Ala Leu Lys Thr Asn Gly Asp Lys Ala Ser Cys Glu  
145 150 155 160

Asn

<210> 6  
<211> 161  
<212> PRT  
<213> Homo sapiens

<400> 6

Lys Val Cys Glu Glu Glu Lys Lys Thr Lys Thr Ile Asp Ser Val Thr  
1 5 10 15

Ser Ala Gln Met Leu Gln Gly Cys Thr Ile Phe Lys Gly Asn Leu Leu  
20 25 30

Ile Asn Ile Arg Arg Gly Asn Asn Ile Ala Ser Glu Leu Glu Asn Phe  
35 40 45

Met Gly Leu Ile Glu Val Val Thr Gly Tyr Val Lys Ile Arg His Ser  
50 55 60

His Ala Leu Val Ser Leu Ser Phe Leu Lys Asn Leu Arg Leu Ile Leu  
65 70 75 80

Gly Glu Glu Gln Leu Glu Gly Asn Tyr Ser Phe Tyr Val Leu Asp Asn  
85 90 95

Gln Asn Leu Gln Gln Leu Trp Asp Trp Asp His Arg Asn Leu Thr Ile  
100 105 110

Lys Ala Gly Lys Met Tyr Phe Ala Phe Asn Pro Lys Leu Cys Val Ser  
115 120 125

Glu Ile Tyr Arg Met Glu Glu Val Thr Gly Thr Lys Gly Arg Gln Ser  
130 135 140

Lys Gly Asp Ile Asn Thr Arg Asn Asn Gly Glu Arg Ala Ser Cys Glu  
145 150 155 160

Ser

<210> 7  
<211> 150  
<212> PRT  
<213> Homo sapiens

<400> 7

Asp Leu Cys Pro Gly Thr Met Glu Glu Lys Pro Met Cys Glu Lys Thr  
1 5 10 15

Thr Ile Asn Asn Glu Tyr Asn Tyr Arg Cys Trp Thr Thr Asn Arg Cys  
20 25 30

Gln Lys Met Cys Pro Ser Thr Cys Gly Lys Arg Ala Cys Thr Glu Asn  
35 40 45

Asn Glu Cys Cys His Pro Glu Cys Leu Gly Ser Cys Ser Ala Pro Asp  
50 55 60

Asn Asp Thr Ala Cys Val Ala Cys Arg His Tyr Tyr Tyr Ala Gly Val  
65 70 75 80

Cys Val Pro Ala Cys Pro Pro Asn Thr Tyr Arg Phe Glu Gly Trp Arg  
85 90 95

Cys Val Asp Arg Asp Phe Cys Ala Asn Ile Leu Ser Ala Glu Ser Ser  
100 105 110

Asp Ser Glu Gly Phe Val Ile His Asp Gly Glu Cys Met Gln Glu Cys  
115 120 125

Pro Ser Gly Phe Ile Arg Asn Gly Ser Gln Ser Met Tyr Cys Ile Pro  
130 135 140

Cys Glu Gly Pro Cys Pro  
145 150

<210> 8  
<211> 153  
<212> PRT  
<213> Homo sapiens

<400> 8

Asp Ile Cys Pro Gly Thr Ala Lys Gly Lys Thr Asn Cys Pro Ala Thr  
1 5 10 15

Val Ile Asn Gly Gln Phe Val Glu Arg Cys Trp Thr His Ser His Cys  
20 25 30

Gln Lys Val Cys Pro Thr Ile Cys Lys Ser His Gly Cys Thr Ala Glu  
35 40 45

Gly Leu Cys Cys His Ser Glu Cys Leu Gly Asn Cys Ser Gln Pro Asp  
50 55 60

Asp Pro Thr Lys Cys Val Ala Cys Arg Asn Phe Tyr Leu Asp Gly Arg  
65 70 75 80

Cys Val Glu Thr Cys Pro Pro Tyr Tyr His Phe Gln Asp Trp Arg  
85 90 95

Cys Val Asn Phe Ser Phe Cys Gln Asp Leu His His Lys Cys Lys Asn  
100 105 110

Ser Arg Arg Gln Gly Cys His Gln Tyr Val Ile His Asn Asn Lys Cys  
115 120 125

Ile Pro Glu Cys Pro Ser Gly Tyr Thr Met Asn Ser Ser Asn Leu Leu  
130 135 140

Cys Thr Pro Cys Leu Gly Pro Cys Pro  
145 150

<210> 9  
<211> 146  
<212> PRT  
<213> Homo sapiens

<400> 9

Lys Cys Asp Pro Ser Cys Pro Asn Gly Ser Cys Trp Gly Ala Gly Glu  
1 5 10 15

Glu Asn Cys Gln Lys Leu Thr Lys Ile Ile Cys Ala Gln Gln Cys Ser  
20 25 30

Gly Arg Cys Arg Gly Lys Ser Pro Ser Asp Cys Cys His Asn Gln Cys

35

40

45

Ala Ala Gly Cys Thr Gly Pro Arg Glu Ser Asp Cys Leu Val Cys Arg  
50 55 60

Lys Phe Arg Asp Glu Ala Thr Cys Lys Asp Thr Cys Pro Pro Leu Met  
65 70 75 80

Leu Tyr Asn Pro Thr Thr Tyr Gln Met Asp Val Asn Pro Glu Gly Lys  
85 90 95

Tyr Ser Phe Gly Ala Thr Cys Val Lys Lys Cys Pro Arg Asn Tyr Val  
100 105 110

Val Thr Asp His Gly Ser Cys Val Arg Ala Cys Gly Ala Asp Ser Tyr  
115 120 125

Glu Met Glu Glu Asp Gly Val Arg Lys Cys Lys Lys Cys Glu Gly Pro  
130 135 140

Cys Arg  
145

<210> 10  
<211> 142  
<212> PRT  
<213> Homo sapiens  
  
<400> 10

Gln Val Cys His Ala Leu Cys Ser Pro Glu Gly Cys Trp Gly Pro Glu  
1 5 10 15

Pro Arg Asp Cys Val Ser Cys Arg Asn Val Ser Arg Gly Arg Glu Cys  
20 25 30

Val Asp Lys Cys Lys Leu Leu Glu Gly Glu Pro Arg Glu Phe Val Glu  
35 40 45

Asn Ser Glu Cys Ile Gln Cys His Pro Glu Cys Leu Pro Gln Ala Met  
50 55 60

Asn Ile Thr Cys Thr Gly Arg Gly Pro Asp Asn Cys Ile Gln Cys Ala  
65 70 75 80

His Tyr Ile Asp Gly Pro His Cys Val Lys Thr Cys Pro Ala Gly Val  
85 90 95

Met Gly Glu Asn Asn Thr Leu Val Trp Lys Tyr Ala Asp Ala Gly His  
100 105 110

Val Cys His Leu Cys His Pro Asn Cys Thr Tyr Gly Cys Thr Gly Pro  
115 120 125

Gly Leu Glu Gly Cys Pro Thr Asn Gly Pro Lys Ile Pro Ser  
130 135 140

<210> 11  
<211> 906  
<212> PRT  
<213> Homo sapiens

<400> 11

Glu Ile Cys Gly Pro Gly Ile Asp Ile Arg Asn Asp Tyr Gln Gln Leu  
1 5 10 15

Lys Arg Leu Glu Asn Cys Thr Val Ile Glu Gly Tyr Leu His Ile Leu  
20 25 30

Leu Ile Ser Lys Ala Glu Asp Tyr Arg Ser Tyr Arg Phe Pro Lys Leu  
35 40 45

Thr Val Ile Thr Glu Tyr Leu Leu Leu Phe Arg Val Ala Gly Leu Glu  
50 55 60

Ser Leu Gly Asp Leu Phe Pro Asn Leu Thr Val Ile Arg Gly Trp Lys  
65 70 75 80

Leu Phe Tyr Asn Tyr Ala Leu Val Ile Phe Glu Met Thr Asn Leu Lys  
85 90 95

Asp Ile Gly Leu Tyr Asn Leu Arg Asn Ile Thr Arg Gly Ala Ile Arg  
100 105 110

Ile Glu Lys Asn Ala Asp Leu Cys Tyr Leu Ser Thr Val Asp Trp Ser  
115 120 125

Leu Ile Leu Asp Ala Val Ser Asn Asn Tyr Ile Val Gly Asn Lys Pro

130

135

140

Pro Lys Glu Cys Gly Asp Leu Cys Pro Gly Thr Met Glu Glu Lys Pro  
145 150 155 160

Met Cys Glu Lys Thr Thr Ile Asn Asn Glu Tyr Asn Tyr Arg Cys Trp  
165 170 175

Thr Thr Asn Arg Cys Gln Lys Met Cys Pro Ser Thr Cys Gly Lys Arg  
180 185 190

Ala Cys Thr Glu Asn Asn Glu Cys Cys His Pro Glu Cys Leu Gly Ser  
195 200 205

Cys Ser Ala Pro Asp Asn Asp Thr Ala Cys Val Ala Cys Arg His Tyr  
210 215 220

Tyr Tyr Ala Gly Val Cys Val Pro Ala Cys Pro Pro Asn Thr Tyr Arg  
225 230 235 240

Phe Glu Gly Trp Arg Cys Val Asp Arg Asp Phe Cys Ala Asn Ile Leu  
245 250 255

Ser Ala Glu Ser Ser Asp Ser Glu Gly Phe Val Ile His Asp Gly Glu  
260 265 270

Cys Met Gln Glu Cys Pro Ser Gly Phe Ile Arg Asn Gly Ser Gln Ser  
275 280 285

Met Tyr Cys Ile Pro Cys Glu Gly Pro Cys Pro Lys Val Cys Glu Glu  
290 295 300

Glu Lys Lys Thr Lys Thr Ile Asp Ser Val Thr Ser Ala Gln Met Leu  
305 310 315 320

Gln Gly Cys Thr Ile Phe Lys Gly Asn Leu Leu Ile Asn Ile Arg Arg  
325 330 335

Gly Asn Asn Ile Ala Ser Glu Leu Glu Asn Phe Met Gly Leu Ile Glu  
340 345 350

Val Val Thr Gly Tyr Val Lys Ile Arg His Ser His Ala Leu Val Ser  
355 360 365

Leu Ser Phe Leu Lys Asn Leu Arg Leu Ile Leu Gly Glu Gln Leu  
370 375 380

Glu Gly Asn Tyr Ser Phe Tyr Val Leu Asp Asn Gln Asn Leu Gln Gln  
385 390 395 400

Leu Trp Asp Trp Asp His Arg Asn Leu Thr Ile Lys Ala Gly Lys Met  
405 410 415

Tyr Phe Ala Phe Asn Pro Lys Leu Cys Val Ser Glu Ile Tyr Arg Met  
420 425 430

Glu Glu Val Thr Gly Thr Lys Gly Arg Gln Ser Lys Gly Asp Ile Asn  
435 440 445

Thr Arg Asn Asn Gly Glu Arg Ala Ser Cys Glu Ser Asp Val Leu His  
450 455 460

Phe Thr Ser Thr Thr Ser Lys Asn Arg Ile Ile Ile Thr Trp His  
465 470 475 480

Arg Tyr Arg Pro Pro Asp Tyr Arg Asp Leu Ile Ser Phe Thr Val Tyr  
485 490 495

Tyr Lys Glu Ala Pro Phe Lys Asn Val Thr Glu Tyr Asp Gly Gln Asp  
500 505 510

Ala Cys Gly Ser Asn Ser Trp Asn Met Val Asp Val Asp Leu Pro Pro  
515 520 525

Asn Lys Asp Val Glu Pro Gly Ile Leu Leu His Gly Leu Lys Pro Trp  
530 535 540

Thr Gln Tyr Ala Val Tyr Val Lys Ala Val Thr Leu Thr Met Val Glu  
545 550 555 560

Asn Asp His Ile Arg Gly Ala Lys Ser Glu Ile Leu Tyr Ile Arg Thr  
565 570 575

Asn Ala Ser Val Pro Ser Ile Pro Leu Asp Val Leu Ser Ala Ser Asn  
580 585 590

Ser Ser Ser Gln Leu Ile Val Lys Trp Asn Pro Pro Ser Leu Pro Asn  
595 600 605

Gly Asn Leu Ser Tyr Tyr Ile Val Arg Trp Gln Arg Gln Pro Gln Asp  
610 615 620

Gly Tyr Leu Tyr Arg His Asn Tyr Cys Ser Lys Asp Lys Ile Pro Ile  
625 630 635 640

Arg Lys Tyr Ala Asp Gly Thr Ile Asp Ile Glu Glu Val Thr Glu Asn  
645 650 655

Pro Lys Thr Glu Val Cys Gly Gly Glu Lys Gly Pro Cys Cys Ala Cys  
660 665 670

Pro Lys Thr Glu Ala Glu Lys Gln Ala Glu Lys Glu Glu Ala Glu Tyr  
675 680 685

Arg Lys Val Phe Glu Asn Phe Leu His Asn Ser Ile Phe Val Pro Arg  
690 695 700

Pro Glu Arg Lys Arg Arg Asp Val Met Gln Val Ala Asn Thr Thr Met  
705 710 715 720

Ser Ser Arg Ser Arg Asn Thr Thr Ala Ala Asp Thr Tyr Asn Ile Thr  
725 730 735

Asp Pro Glu Glu Leu Glu Thr Glu Tyr Pro Phe Phe Glu Ser Arg Val  
740 745 750

Asp Asn Lys Glu Arg Thr Val Ile Ser Asn Leu Arg Pro Phe Thr Leu  
755 760 765

Tyr Arg Ile Asp Ile His Ser Cys Asn His Glu Ala Glu Lys Leu Gly  
770 775 780

Cys Ser Ala Ser Asn Phe Val Phe Ala Arg Thr Met Pro Ala Glu Gly  
785 790 795 800

Ala Asp Asp Ile Pro Gly Pro Val Thr Trp Glu Pro Arg Pro Glu Asn  
805 810 815

Ser Ile Phe Leu Lys Trp Pro Glu Pro Glu Asn Pro Asn Gly Leu Ile  
820 825 830

Leu Met Tyr Glu Ile Lys Tyr Gly Ser Gln Val Glu Asp Gln Arg Glu  
835 840 845

Cys Val Ser Arg Gln Glu Tyr Arg Lys Tyr Gly Ala Lys Leu Asn  
850 855 860

Arg Leu Asn Pro Gly Asn Tyr Thr Ala Arg Ile Gln Ala Thr Ser Leu  
865 870 875 880

Ser Gly Asn Gly Ser Trp Thr Asp Pro Val Phe Phe Tyr Val Gln Ala  
885 890 895

Lys Thr Gly Tyr Glu Asn Phe Ile His Leu  
900 905

<210> 12  
<211> 916  
<212> PRT  
<213> Homo sapiens

<400> 12

His Leu Tyr Pro Gly Glu Val Cys Pro Gly Met Asp Ile Arg Asn Asn  
1 5 10 15

Leu Thr Arg Leu His Glu Leu Glu Asn Cys Ser Val Ile Glu Gly His  
20 25 30

Leu Gln Ile Leu Leu Met Phe Lys Thr Arg Pro Glu Asp Phe Arg Asp  
35 40 45

Leu Ser Phe Pro Lys Leu Ile Met Ile Thr Asp Tyr Leu Leu Leu Phe  
50 55 60

Arg Val Tyr Gly Leu Glu Ser Leu Lys Asp Leu Phe Pro Asn Leu Thr  
65 70 75 80

Val Ile Arg Gly Ser Arg Leu Phe Phe Asn Tyr Ala Leu Val Ile Phe  
85 90 95

Glu Met Val His Leu Lys Glu Leu Gly Leu Tyr Asn Leu Met Asn Ile  
100 105 110

Thr Arg Gly Ser Val Arg Ile Glu Lys Asn Asn Glu Leu Cys Tyr Leu  
115 120 125

Ala Thr Ile Asp Trp Ser Arg Ile Leu Asp Ser Val Glu Asp Asn Tyr  
130 135 140

Ile Val Leu Asn Asp Asp Asn Glu Glu Cys Gly Asp Ile Cys Pro Gly  
145 150 155 160

Thr Ala Lys Gly Lys Thr Asn Cys Pro Ala Thr Val Ile Asn Gly Gln  
165 170 175

Phe Val Glu Arg Cys Trp Thr His Ser His Cys Gln Lys Val Cys Pro  
180 185 190

Thr Ile Cys Lys Ser His Gly Cys Thr Ala Glu Gly Leu Cys Cys His  
195 200 205

Ser Glu Cys Leu Gly Asn Cys Ser Gln Pro Asp Asp Pro Thr Lys Cys  
210 215 220

Val Ala Cys Arg Asn Phe Tyr Leu Asp Gly Arg Cys Val Glu Thr Cys  
225 230 235 240

Pro Pro Pro Tyr Tyr His Phe Gln Asp Trp Arg Cys Val Asn Phe Ser  
245 250 255

Phe Cys Gln Asp Leu His His Lys Cys Lys Asn Ser Arg Arg Gln Gly  
260 265 270

Cys His Gln Tyr Val Ile His Asn Asn Lys Cys Ile Pro Glu Cys Pro  
275 280 285

Ser Gly Tyr Thr Met Asn Ser Ser Asn Leu Leu Cys Thr Pro Cys Leu  
290 295 300

Gly Pro Cys Pro Lys Val Cys His Leu Leu Glu Gly Glu Lys Thr Ile  
305 310 315 320

Asp Ser Val Thr Ser Ala Gln Glu Leu Arg Gly Cys Thr Val Ile Asn  
325 330 335

Gly Ser Leu Ile Ile Asn Ile Arg Gly Gly Asn Asn Leu Ala Ala Glu  
340 345 350

Leu Glu Ala Asn Leu Gly Leu Ile Glu Glu Ile Ser Gly Tyr Leu Lys  
355 360 365

Ile Arg Arg Ser Tyr Ala Leu Val Ser Leu Ser Phe Phe Arg Lys Leu  
370 375 380

Arg Leu Ile Arg Gly Glu Thr Leu Glu Ile Gly Asn Tyr Ser Phe Tyr  
385 390 395 400

Ala Leu Asp Asn Gln Asn Leu Arg Gln Leu Trp Asp Trp Ser Lys His  
405 410 415

Asn Leu Thr Ile Thr Gln Gly Lys Leu Phe Phe His Tyr Asn Pro Lys  
420 425 430

Leu Cys Leu Ser Glu Ile His Lys Met Glu Glu Val Ser Gly Thr Lys  
435 440 445

Gly Arg Gln Glu Arg Asn Asp Ile Ala Leu Lys Thr Asn Gly Asp Gln  
450 455 460

Ala Ser Cys Glu Asn Glu Leu Leu Lys Phe Ser Tyr Ile Arg Thr Ser  
465 470 475 480

Phe Asp Lys Ile Leu Leu Arg Trp Glu Pro Tyr Trp Pro Pro Asp Phe  
485 490 495

Arg Asp Leu Leu Gly Phe Met Leu Phe Tyr Lys Glu Ala Pro Tyr Gln  
500 505 510

Asn Val Thr Glu Phe Asp Gly Gln Asp Ala Cys Gly Ser Asn Ser Trp  
515 520 525

Thr Val Val Asp Ile Asp Pro Pro Leu Arg Ser Asn Asp Pro Lys Ser  
530 535 540

Gln Asn His Pro Gly Trp Leu Met Arg Gly Leu Lys Pro Trp Thr Gln  
545 550 555 560

Tyr Ala Ile Phe Val Lys Thr Leu Val Thr Phe Ser Asp Glu Arg Arg  
565 570 575

Thr Tyr Gly Ala Lys Ser Asp Ile Ile Tyr Val Gln Thr Asp Ala Thr  
580 585 590

Asn Pro Ser Val Pro Leu Asp Pro Ile Ser Val Ser Asn Ser Ser Ser  
595 600 605

Gln Ile Ile Leu Lys Trp Lys Pro Pro Ser Asp Pro Asn Gly Asn Ile  
610 615 620

Thr His Tyr Leu Val Phe Trp Glu Arg Gln Ala Glu Asp Ser Glu Leu  
625 630 635 640

Phe Glu Leu Asp Tyr Cys Leu Lys Gly Leu Lys Leu Pro Ser Arg Thr  
645 650 655

Trp Ser Pro Pro Phe Glu Ser Glu Asp Ser Gln Lys His Asn Gln Ser  
660 665 670

Glu Tyr Glu Asp Ser Ala Gly Glu Cys Cys Ser Cys Pro Lys Thr Asp  
675 680 685

Ser Gln Ile Leu Lys Glu Leu Glu Ser Ser Phe Arg Lys Thr Phe  
690 695 700

Glu Asp Tyr Leu His Asn Val Val Phe Val Pro Arg Pro Ser Arg Lys  
705 710 715 720

Arg Arg Ser Leu Gly Asp Val Gly Asn Val Thr Val Ala Val Pro Thr  
725 730 735

Val Ala Ala Phe Pro Asn Thr Ser Ser Thr Ser Val Pro Thr Ser Pro  
740 745 750

Glu Glu His Arg Pro Phe Glu Lys Val Val Asn Lys Glu Ser Leu Val  
755 760 765

Ile Ser Gly Leu Arg His Phe Thr Gly Tyr Arg Ile Glu Leu Gln Ala  
770 775 780

Cys Asn Gln Asp Thr Pro Glu Glu Arg Cys Ser Val Ala Ala Tyr Val

| 785                                                             | 790 | 795 | 800 |
|-----------------------------------------------------------------|-----|-----|-----|
| Ser Ala Arg Thr Met Pro Glu Ala Lys Ala Asp Asp Ile Val Gly Pro |     |     |     |
| 805                                                             | 810 |     | 815 |
| Val Thr His Glu Ile Phe Glu Asn Asn Val Val His Leu Met Trp Gln |     |     |     |
| 820                                                             | 825 |     | 830 |
| Glu Pro Lys Glu Pro Asn Gly Leu Ile Val Leu Tyr Glu Val Ser Tyr |     |     |     |
| 835                                                             | 840 |     | 845 |
| Arg Arg Tyr Gly Asp Glu Glu Leu His Leu Cys Val Ser Arg Lys His |     |     |     |
| 850                                                             | 855 |     | 860 |
| Phe Ala Leu Glu Arg Gly Cys Arg Leu Arg Gly Leu Ser Pro Gly Asn |     |     |     |
| 865                                                             | 870 |     | 875 |
| Tyr Ser Val Arg Ile Arg Ala Thr Ser Leu Ala Gly Asn Gly Ser Trp |     |     |     |
| 885                                                             | 890 |     | 895 |
| Thr Glu Pro Thr Tyr Phe Tyr Val Thr Asp Tyr Leu Asp Val Pro Ser |     |     |     |
| 900                                                             | 905 |     | 910 |
| Asn Ile Ala Lys                                                 |     |     |     |
| 915                                                             |     |     |     |
| <210> 13                                                        |     |     |     |
| <211> 895                                                       |     |     |     |
| <212> PRT                                                       |     |     |     |
| <213> Homo sapiens                                              |     |     |     |
| <400> 13                                                        |     |     |     |
| Met Asn Val Cys Pro Ser Leu Asp Ile Arg Ser Glu Val Ala Glu Leu |     |     |     |
| 1                                                               | 5   |     | 10  |
|                                                                 |     |     | 15  |
| Arg Gln Leu Glu Asn Cys Ser Val Val Glu Gly His Leu Gln Ile Leu |     |     |     |
| 20                                                              | 25  |     | 30  |
| Leu Met Phe Thr Ala Thr Gly Glu Asp Phe Arg Gly Leu Ser Phe Pro |     |     |     |
| 35                                                              | 40  |     | 45  |
| Arg Leu Thr Gln Val Thr Asp Tyr Leu Leu Leu Phe Arg Val Tyr Gly |     |     |     |
| 50                                                              | 55  |     | 60  |

Leu Glu Ser Leu Arg Asp Leu Phe Pro Asn Leu Ala Val Ile Arg Gly  
65 70 75 80

Thr Arg Leu Phe Leu Gly Tyr Ala Leu Val Ile Phe Glu Met Pro His  
85 90 95

Leu Arg Asp Val Ala Leu Pro Ala Leu Gly Ala Val Leu Arg Gly Ala  
100 105 110

Val Arg Val Glu Lys Asn Gln Glu Leu Cys His Leu Ser Thr Ile Asp  
115 120 125

Trp Gly Leu Leu Gln Pro Ala Pro Gly Ala Asn His Ile Val Gly Asn  
130 135 140

Lys Leu Gly Glu Glu Cys Ala Asp Val Cys Pro Gly Val Leu Gly Ala  
145 150 155 160

Ala Gly Glu Pro Cys Ala Lys Thr Thr Phe Ser Gly His Thr Asp Tyr  
165 170 175

Arg Cys Trp Thr Ser Ser His Cys Gln Arg Val Cys Pro Cys Pro His  
180 185 190

Gly Met Ala Cys Thr Ala Arg Gly Glu Cys Cys His Thr Glu Cys Leu  
195 200 205

Gly Gly Cys Ser Gln Pro Glu Asp Pro Arg Ala Cys Val Ala Cys Arg  
210 215 220

His Leu Tyr Phe Gln Gly Ala Cys Leu Trp Ala Cys Pro Pro Gly Thr  
225 230 235 240

Tyr Gln Tyr Glu Ser Trp Arg Cys Val Thr Ala Glu Arg Cys Ala Ser  
245 250 255

Leu His Ser Val Pro Gly Arg Ala Ser Thr Phe Gly Ile His Gln Gly  
260 265 270

Ser Cys Leu Ala Gln Cys Pro Ser Gly Phe Thr Arg Asn Ser Ser Ser  
275 280 285

Ile Phe Cys His Lys Cys Glu Gly Leu Cys Pro Lys Glu Cys Lys Val  
290 295 300

Gly Thr Lys Thr Ile Asp Ser Ile Gln Ala Ala Gln Asp Leu Val Gly  
305 310 315 320

Cys Thr His Val Glu Gly Ser Leu Ile Leu Asn Leu Arg Gln Gly Tyr  
325 330 335

Asn Leu Glu Pro Gln Leu Gln His Ser Leu Gly Leu Val Glu Thr Ile  
340 345 350

Thr Gly Phe Leu Lys Ile Lys His Ser Phe Ala Leu Val Ser Leu Gly  
355 360 365

Phe Phe Lys Asn Leu Lys Leu Ile Arg Gly Asp Ala Met Val Asp Gly  
370 375 380

Asn Tyr Thr Leu Tyr Val Leu Asp Asn Gln Asn Leu Gln Gln Leu Gly  
385 390 395 400

Ser Trp Val Ala Ala Gly Leu Thr Ile Pro Val Gly Lys Ile Tyr Phe  
405 410 415

Ala Phe Asn Pro Arg Leu Cys Leu Glu His Ile Tyr Arg Leu Glu Glu  
420 425 430

Val Thr Gly Thr Arg Gly Arg Gln Asn Lys Ala Glu Ile Asn Pro Arg  
435 440 445

Thr Asn Gly Asp Arg Ala Ala Cys Gln Thr Arg Thr Leu Arg Phe Val  
450 455 460

Ser Asn Val Thr Glu Ala Asp Arg Ile Leu Leu Arg Trp Glu Arg Tyr  
465 470 475 480

Glu Pro Leu Glu Ala Arg Asp Leu Leu Ser Phe Ile Val Tyr Tyr Lys  
485 490 495

Glu Ser Pro Phe Gln Asn Ala Thr Glu His Val Gly Pro Asp Ala Cys  
500 505 510

Gly Thr Gln Ser Trp Asn Leu Leu Asp Val Glu Leu Pro Leu Ser Arg

515

520

525

Thr Gln Glu Pro Gly Val Thr Leu Ala Ser Leu Lys Pro Trp Thr Gln  
530 535 540

Tyr Ala Val Phe Val Arg Ala Ile Thr Leu Thr Thr Glu Glu Asp Ser  
545 550 555 560

Pro His Gln Gly Ala Gln Ser Pro Ile Val Tyr Leu Arg Thr Leu Pro  
565 570 575

Ala Ala Pro Thr Val Pro Gln Asp Val Ile Ser Thr Ser Asn Ser Ser  
580 585 590

Ser His Leu Leu Val Arg Trp Lys Pro Pro Thr Gln Arg Asn Gly Asn  
595 600 605

Leu Thr Tyr Tyr Leu Val Leu Trp Gln Arg Leu Ala Glu Asp Gly Asp  
610 615 620

Leu Tyr Leu Asn Asp Tyr Cys His Arg Gly Leu Arg Leu Pro Thr Ser  
625 630 635 640

Asn Asn Asp Pro Arg Phe Asp Gly Glu Asp Gly Asp Pro Glu Ala Glu  
645 650 655

Met Glu Ser Asp Cys Cys Pro Cys Gln His Pro Pro Pro Gly Gln Val  
660 665 670

Leu Pro Pro Leu Glu Ala Gln Glu Ala Ser Phe Gln Lys Lys Phe Glu  
675 680 685

Asn Phe Leu His Asn Ala Ile Thr Ile Pro Ile Ser Pro Trp Lys Val  
690 695 700

Thr Ser Ile Asn Lys Ser Pro Gln Arg Asp Ser Gly Arg His Arg Arg  
705 710 715 720

Ala Ala Gly Pro Leu Arg Leu Gly Gly Asn Ser Ser Asp Phe Glu Ile  
725 730 735

Gln Glu Asp Lys Val Pro Arg Glu Arg Ala Val Leu Ser Gly Leu Arg  
740 745 750

His Phe Thr Glu Tyr Arg Ile Asp Ile His Ala Cys Asn His Ala Ala  
755 760 765

His Thr Val Gly Cys Ser Ala Ala Thr Phe Val Phe Ala Arg Thr Met  
770 775 780

Pro His Arg Glu Ala Asp Gly Ile Pro Gly Lys Val Ala Trp Glu Ala  
785 790 795 800

Ser Ser Lys Asn Ser Val Leu Leu Arg Trp Leu Glu Pro Pro Asp Pro  
805 810 815

Asn Gly Leu Ile Leu Lys Tyr Glu Ile Lys Tyr Arg Arg Leu Gly Glu  
820 825 830

Glu Ala Thr Val Leu Cys Val Ser Arg Leu Arg Tyr Ala Lys Phe Gly  
835 840 845

Gly Val His Leu Ala Leu Leu Pro Pro Gly Asn Tyr Ser Ala Arg Val  
850 855 860

Arg Ala Thr Ser Leu Ala Gly Asn Gly Ser Trp Thr Asp Ser Val Ala  
865 870 875 880

Phe Tyr Ile Leu Gly Pro Glu Glu Asp Ala Gly Gly Leu His  
885 890 895

<210> 14

<211> 68

<212> DNA

<213> Artificial sequence

<220>

<223> Unknown Organism

<400> 14

gacgtcgacg atgacgataa ggaacaaaaa ctcatctcag aagaggatct gaattagaat

60

tcgacgtc

68

<210> 15

<211> 18

<212> PRT

<213> Homo sapiens

<400> 15

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Val | Asp | Asp | Asp | Asp | Lys | Glu | Gln | Lys | Leu | Ile | Ser | Glu | Glu | Asp |
| 1   |     |     |     |     | 5   |     |     |     | 10  |     |     |     |     | 15  |     |

Leu Asn