

Causal Data Science

Lecture 4:0 Solutions to last lecture quizzes

Lecturer: Sara Magliacane

1 Multiple choice 0.5 points

What is the sequence of nodes (2,4,6)?

- A directed path
- A path, but not directed
- O Not a path

3 Multiple choice 0.5 points

What is the sequence of nodes (2,3,4,3)?

- O Not a path
- A directed path
- A path, but not directed

2 Multiple choice 0.5 points

What is the sequence of nodes (6,5,1)?

- Not a path
- A directed path
- A path but not directed

4 Multiple choice 0.5 points

What is the sequence of node (1,4,6,5)?

- A path, but not directed
- A directed path
- Not a path

6 Multiple answer 0.5 points
Which nodes are the parents of node 4? (select all that apply)
✓ 1
_ 2
3
4
✓ 6
8 Multiple answer 0.5 points
Which nodes are the descendants of node 6? (select all that apply)
1
2
✓ 3
✓ 4
✓ 5
✓ 6

Mu	tiple answer 0.5 points	
Whic	h nodes are the children of node 6? (select all that apply)	
	1	
	2	
	3	
$[\checkmark]$	4	
$[\checkmark]$	5	
	6	
Mul	tiple answer 0.5 points	
Whic	nodes are the ancestors of node 2? (select all that apply) I	
_	1	
$[\checkmark]$	2	
	3	
$[\checkmark]$	4	
$[\checkmark]$	5	

10

Multiple choice 1 point

Which nodes are the descendants of nodes 3 and 4? (select all that apply) HINT: in our definition nodes are their own descendants

- 1,2,3,4,5
- 3,4
- 1,2,3,4,5,6
- 3,4,5

Exercise 2 in Canvas: d-separation

- A path between i and j is blocked by $A \subseteq V \setminus \{i,j\}$ at least one condition holds, otherwise it is active
 - There is a non-collider on the path that is in A, or
 - There is a *collider* k on the path, but $k \notin \mathbf{A}$ and $\mathrm{Desc}(k) \cap \mathbf{A} = \emptyset$
- Nodes i and j are d-separated by $\mathbf{A} \subseteq \mathbf{V} \setminus \{i,j\}$ if all paths between i,j are blocked by \mathbf{A}
 - We denote d-separation as $i \perp j \mid A$
- Otherwise we say they are d-connected, $i \perp j \mid A$

Exercise 2 in Canvas: d-separation

Exercise 2 in Canvas: d-separation

