Advanced Mixed Integer Programming Formulation Techniques

Nonlinear MIP Formulations

Joey Huchette and Juan Pablo Vielma

Massachusetts Institute of Technology

Spring School of the International Symposium on Combinatorial Optimization (ISCO 2018)

Marrakesh, Morocco, April, 2018

(Nonlinear) Mixed Integer Programming (MIP)

$$\min f(x)$$

s.t.

$$x \in C$$

$$x_i \in \mathbb{Z} \quad i \in I$$

Mostly convex f and C.

"Convex" Nonlinear MIP Problem

$$\max g(x) + h(y)$$
s.t.

$$f_i(x, y) \le b \quad \forall i \in [k]$$

$$x \in \mathbb{Z}^n$$

$$y \in \mathbb{R}^m$$

 $g, h \text{ and } f_i \text{ convex}$

Only non-convexities are due to integrality

15.083J: Lecture 1 2 / 19

MI Second Order Cone Programming (MISOCP)

$$\max c \cdot x + h \cdot y$$
s.t.

$$||D^{i}x + E^{i}y||_{2} \le f^{i} \cdot x + g^{i} \cdot y + c_{0}^{i} \quad \forall i \in \{1, \dots, k\}$$
$$Ax + By \le b$$

15.083J: Lecture 1 3 / 19

Second Order Conic or Conic Quadratic Problems

- Problems using Euclidean norm:
 - e.g. Portfolio Optimization Problems

$$\max \quad \bar{a}x$$

$$s.t.$$

$$\|Q^{1/2}x\|_{2} \leq \sigma$$

$$\sum_{j=1}^{n} x_{j} = 1, \quad x \in \mathbb{R}^{n}_{+}$$

$$x_{j} \leq z_{j} \quad \forall j \in [n]$$

$$\sum_{j=1}^{n} z_{j} \leq K, \quad z \in \{0, 1\}^{n}$$

- \bar{a} expected returns.
- $Q^{1/2}$ square root of covariance matrix.
- K maximum number of assets.
- σ maximum risk.

Conic Quadratic or Second Order Cone

$$||D^{i}x + E^{i}y||_{2} \le f^{i} \cdot x + g^{i} \cdot y + c_{0}^{i} \quad \forall i \in \{1, \dots, k\}$$

Or linear inequalities +

$$- \sum_{i=1}^{m-1} y_i^2 \le y_m^2, \quad y_m \ge 0$$

15.083J: Lecture 2 5 / 19

Mixed Integer Conic Programming

- K
 - Convex cone = closed under sum and scaling
 - Closed (usually pointed and maybe more)

$$P: \min c'x$$

s.t.

$$oldsymbol{b} - oldsymbol{A} oldsymbol{x} \in \mathcal{K}^c \qquad oldsymbol{x} \in \mathcal{K}^v$$

$$x_i \in \mathbb{Z} \quad \forall x \in I$$

Conic Duality

• Cone dual to \mathcal{K}

$$- \mathcal{K}^* = \{ \boldsymbol{y} \in \mathbb{R}^n : \boldsymbol{x}' \boldsymbol{y} \ge 0, \ \forall \boldsymbol{x} \in \mathcal{K} \}$$

$$- \mathcal{K} = \mathcal{K}_1 \times \cdots \times \mathcal{K}_K \qquad \mathcal{K}^* = \mathcal{K}_1^* \times \cdots \times \mathcal{K}_K^*$$

$$P: \min \quad c'x \quad D: \max \quad -b'y$$

s.t. s.t.

$$oldsymbol{b} - oldsymbol{A} oldsymbol{x} \in \mathcal{K}^c \qquad oldsymbol{x} \in \mathcal{K}^v \qquad oldsymbol{c} + oldsymbol{A}' oldsymbol{y} \in \mathcal{K}^{v*} \qquad oldsymbol{y} \in \mathcal{K}^{c*}$$

Some Standard Cones

Free and zero cones: :Free = \mathbb{R}^n , :Zero = $\{\mathbf{0}\}$ Orthant cones: :NonNeg = \mathbb{R}^n_+ , :NonPos = \mathbb{R}^n_- Second-order (Lorentz) cone :SOC $= \{(t, v) \in \mathbb{R} \times \mathbb{R}^{n-1} : ||v||_2 \le t\}$ Rotated second-order cone: SOCRotated $= \{(w, t, v) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{n-2} : ||v||_2^2 < 2tw, t > 0, w > 0\}$ Positive semidefinite cone :SDP = $\{V \in \mathbb{S}^n : V \succeq \mathbf{0}\}$ Exponential cone : ExpPrimal $= \operatorname{cl}\{(r, s, t) \in \mathbb{R}^3 : s > 0, s \exp(r/s) \le t\}$ Dual exponential cone : ExpDual $= cl\{(u, v, w) \in \mathbb{R}^3 : u < 0, w \ge 0, v \ge -u \log(-u/w) + u\}$

Cones not supported by conic solvers include the power cone for $\alpha \in (0,1)$: $\{(r,s,t) \in \mathbb{R}^3 : |t| \le r^{\alpha}s^{1-\alpha}, r \ge 0, s \ge 0\}$

Also Nonlinear Mixed Integer Programming (MIP)

 Example: Find minimum volume ellipsoid that contains 90% of data points

Minimum Volume Ellipsoid = SDP

Nonlinear MIP B&B Algorithms

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.
- Lifted LP B&B
 - Extended or Lifted relaxation.
 - Static relaxation
 - Mimic NLP B&B.
 - Dynamic relaxation
 - Standard LP B&B

$$\max \sum_{i=1}^{n} c_i x_i$$

$$s.t. \quad Ax + Dz \le b,$$

$$g_i(x) \le 0, \ i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

LP v/s NLP B&B for CPLEX v11 for n = 20 and 30

Results from V., Ahmed and Nemhauser 2008.

Dynamic Lifted LP for Separable Problems

Motivating example from Hijazi et al. '14

$$F^{n} := \left\{ x \in \mathbb{R}^{n} : \sum_{i=1}^{n} \left(x_{i} - \frac{1}{2} \right)^{2} \le \frac{n-1}{4} \right\} \underset{\text{0.5}}{\text{0.5}}$$

Externide de la formalia a to a respectives a^n cuts.

$$\left(x_i - \frac{1}{2}\right)^2 \le z_i \qquad \forall i \in [n]$$

$$\sum_{i=1}^n z_i \le \frac{n-1}{4}$$

 $B^n \cap \mathbb{Z}^n = \emptyset$ with only 2n cuts

on extended formulation.

Lifted or Extended Approximations

- Projection = multiply constraints.
- V., A. and N. 2008:
 - Extremely accurate, but static and complex approximation by Ben-Tal and Nemirovski
- V., Dunning, Huchette and Lubin 2016: Simple, dynamic and good approximation:

$$||y||_{2} \leq y_{0} \longrightarrow \sum_{i=1}^{n} z_{i} \leq z_{i} \cdot y_{0} \quad \forall i \in [n]$$

CPLEX v12.6 for n = 20, 30, 40, 50 and 60

Gurobi v5.6.3 for n = 20, 30, 40, 50 and 60

All Major Solvers Now Implement Lifted LP

First Talks:

- SIAM Optimization (SIOPT), May 2014 ≈ two weeks coding.
- IBM Thomas J. Watson Research Center, December 2014.
- Paper in arxive, May 28, 2015.

Two weeks!

- **CPLEX** v12.6.2, June 12, 2015.
- GUROBI v6.5, October 2015.
- FICO v8.0, May 2016.
- SCIP 1 v4.0, March 2017.

However... We Can Sill Beat CPLEX!

solver Pajarito

 Lubin, Yamangil, Bent and V. '16 and Coey, Lubin and V. '17.

	termination status counts				
solver	conv	wrong	not conv	limit	time(s)
SCIP	78	1	0	41	43.36
CPLEX	96	3	5	16	14.30
Paj-iter	96	1	0	23	38.70
Paj-MSD	101	0	0	19	18.12

Flexible Architecture Thanks to Julia-Opt Stack

- Fastest Open Source MISOCP Solver!
- Pajarito can also solve MISDPs and MI-"EXP"

Nonlinear Mixed <u>0-1</u> Integer Formulations

Modeling Finite Alternatives = Unions of Convex Sets

$$x \in \bigcup_{i=1}^n C_i \subseteq \mathbb{R}^d$$

Extended and Non-Extended Formulations for $\bigcup_{i=1}^{n} C_i$

$$\bigcup_{i=1}^{n} C_i$$

$$C_i = \left\{ x \in \mathbb{R}^d : f_i(x) \le 0 \right\}$$

Extended

Non-Extended

$$\tilde{f}_{i}(x^{i}, y_{i}) \leq 0 \qquad \forall i \in [n]$$

$$\sum_{i=1}^{n} x^{i} = x$$

$$\sum_{i=1}^{n} y_{i} = 1$$

$$y \in \{0, 1\}^{n}$$

$$x, x^{i} \in \mathbb{R}^{d} \qquad \forall i \in [n]$$

$$\int_{i=1}^{n} (x) \leq M_i (1 - y_i) \quad \forall i \in [n]$$

$$\sum_{i=1}^{n} y_i = 1$$

$$y \in \{0, 1\}^n$$

$$x \in \mathbb{R}^d \quad \forall i \in [n]$$

Strong, but large

Small, but weak?

Extended Formulations: Perspective "v/s" Cones

e.g. Ceria and Soares '99

$$C_{i} = \left\{ x \in \mathbb{R}^{d} : f_{i}(x) \leq 0 \right\}$$

$$\tilde{f}(x,y) = \begin{cases} yf(x/y) & \text{if } y > 0 \\ \lim_{\alpha \downarrow 0} \alpha f(x' - x + x/\alpha) & \text{if } y = 0 \\ +\infty & \text{if } y < 0 \end{cases}$$

$$\tilde{f}_i(x^i, y_i) \leq 0 \qquad \forall i \in [n]$$

$$\sum_{i=1}^n x^i = x$$

$$\sum_{i=1}^n y_i = 1$$

$$y \in \{0, 1\}^n$$

$$x, x^i \in \mathbb{R}^d \qquad \forall i \in [n]$$

e.g. Ben-tal and Nemirovski '01, Helton and Nie '09

$$C_i = \left\{ x \in \mathbb{R}^d : \frac{\exists u \in \mathbb{R}^{p_i} \text{ s.t.}}{A^i x + D^i u - b \in K^i} \right\}$$

 K^i closed convex cone

$$A^{i}x^{i} + D^{i}u^{i} - by_{i} \in K^{i} \qquad \forall i \in [n]$$

$$\sum_{i=1}^{n} x^{i} = x$$

$$\sum_{i=1}^{n} y_{i} = 1$$

$$y \in \{0, 1\}^{n}$$

$$x, x^{i} \in \mathbb{R}^{d} \qquad \forall i \in [n]$$

$$u^{i} \in \mathbb{R}^{p_{i}} \qquad \forall i \in [n]$$

 Both formulations are ideal (extreme points of continuous relaxation satisfy integrality constraints)

Cones Can Mitigate Unintended Numerical Issues

• Let $C_i = \left\{ x \in \mathbb{R}^2 : f_i \left(x \right) \leq 0 \right\}$ where $f_i(x) = x_1^2 - x_2 - 1$

$$\tilde{f}_{i}(x,y) = \begin{cases} y(x_{1}/y)^{2} - x_{2} - y & \text{if } y > 0 \\ -x_{2} & \text{if } y = x_{1} = 0 \\ +\infty & \text{if } o.w. \end{cases}$$

Conic (SOCP) representation

$$C_{i} = \left\{ x \in \mathbb{R}^{2} : \sqrt{x_{2}^{2} + 4x_{1}^{2}} \leq 2 + x_{2} \right\}$$

$$\sqrt{(x_{2}^{i})^{2} + 4(x_{1}^{i})^{2}} \leq 2y_{i} + x_{2}$$

Very Stable and Fast Conic Solvers

- Matrices grow quadratically so you can easily run out of memory.
- If it fits in memory you can probably solve relaxation

And then the MIP

Advanced Convex MINLP Formulations

A Classical Strong Formulation for $\bigcup_{i=1}^{k} C_i$

$$\bigcup_{i=1}^k C_i$$

$$C_i = \left\{ x \in \mathbb{R}^n : A^i x \leq_i b^i \right\}, \quad C_i^{\infty} = C_j^{\infty}$$

$$A^i x^i \leq_i b^i z_i, \quad \forall i \in [k]$$

$$\sum_{i=1}^{k} x^i = x,$$

$$\sum_{i=1}^{k} z_i = 1, \quad z \in \{0, 1\}^k$$

$$x, \mathbf{x}^i \in \mathbb{R}^n, \quad \forall i \in [k]$$

 $A^i x^i \leq_i b^i z_i, \quad \forall i \in [k]$ • Auxiliary continuous variables are copies of original variables

$$-y = (x^i)_{i=1}^k$$

- "Ideal" Formulation Strength:
 - Extreme points of continuous relaxation satisfy integrality constraints on z
 - Variable copies crucial here, but slow down computations (usually worse than Big-M)
- Balas, Jeroslow and Lowe (Polyhedral), Ben-tal, Nemirovski, Helton, Nie (Conic)

Generic Geometric Formulation = Gauge Functions

- For C such that $\mathbf{0} \in \operatorname{int}(C)$ let: $\gamma_C(x) := \inf\{\lambda > 0 : x \in \lambda C\}$ epi $(\gamma_C) =$
- If $b^i \in \text{int}(C_i)$ then ideal formulation:

Non-Extended and Big-M Formulations

• Gauge Big-M = no copies x^i of original variables:

$$\gamma_{C^{i}-\{b^{i}\}}\left(x-\sum_{j=1}^{n}y_{j}\overline{M}^{i,j}\right) \leq \sum_{j=1}^{n}y_{j}\underline{M}^{i,j} \quad \forall i \in [n]$$

$$\sum_{i=1}^{n}y_{i} = 1$$

$$y \in \{0,1\}^{n}$$

- Can be stronger than standard big-M (e.g. $C_i = \{x \in \mathbb{R}^n : \|x\|_2 \le r_i\}$ or $C_i = \{x \in \mathbb{R}^n : \|x\|_2^2 \le r_i^2\}$)
- But may not be ideal
- What about ideal non-extended formulations?

Simple Non-Extended Ideal Formulation

Unions of (nearly) Homothetic Closed Convex Sets:

$$C_i = \lambda_i C + b^i + C_{\infty}$$

$$\gamma_{C} \left(x - \sum_{i=1}^{n} y_{i} b^{i} \right) \leq \sum_{i=1}^{n} \lambda_{i} y_{i}$$
$$\sum_{i=1}^{n} y_{i} = 1, \ y \in \{0, 1\}^{n}$$

Unary Encoding, Minkowski Sum and Cayley Trick

Faces of Cayley Embedding

Two types of facets (or faces):

$$-P_1 \times \{0\} \equiv y_i \ge 0$$

$$-\operatorname{conv}\left(\left(F_1\times 0\right)\cup \left(F_2\times 1\right)\right)$$

 F_i proper face of P_i

- Not all combinations of faces
- Which ones are valid?

Valid Combinations = Common Normals

Characterization Extends to Closed Convex Sets

Sticking Homothetic Formulations Together

Sufficient Conditions For Ideal Formulation

May Need to "Find" Homothetic Constraints

$$x_1^2 \le x_2 \le 1$$

 C_2

$$[-1,1] \times 0$$

$$C_1 + (\mathbb{R}_+ \times \{0\}):$$

$$(\max\{x_1, 0\})^2 \le x_2 \le 1$$

Existing Small Ideal Formulations (Isotone Sets)

• Studied by Hijazi et al. '12 and Bonami et al. '15 (n=1, 2):

$$- C_i = \{x \in \mathbb{R}^d : l^i \le x \le u^i, \quad f_i(x) \le 0\}$$

• $f_i(x)$ component-wise monotonous (i=1,2 opposite).

Ideal Formulation

$$y_1 l^1 + y_2 l^2 \le x \le y_1 u^1 + y_2 u^2$$

$$f_J^i(x, y) \le 0 \qquad \forall J \subseteq [d], i \in [2]$$

$$y_1 + y_2 = 1$$

$$y_i \in \{0, 1\} \qquad i \in [2]$$

Generalization and Simplification

- More than 2 sets (with general "opposite condition").
- Generalization of the monotone/isotone condition (beyond affine transformation)
- Significantly smaller formulation: One non-linear constraint per set.

$$y_{1}l^{1} + y_{2}l^{2} \leq x \leq y_{1}u^{1} + y_{2}u^{2}$$

$$f_{J}^{i}(x,y) \leq 0 \qquad \forall J \subseteq [d], i \in [2]$$

$$y_{1} + y_{2} = 1$$

$$y_{i} \in \{0,1\} \qquad i \in [2]$$

$$\hat{f}^{i}(x,y) \leq 0 \quad \forall i \in [2]$$

Details of Size Reduction

$$C_i = \{x \in \mathbb{R}^d : l^i \le x \le u^i, \quad f_i(x) \le 0\}$$

 $G_i = \{x \in \mathbb{R}^d : f_i(x) \le 0\}$

Original formulation:

$$\gamma_{G_i}([x]_J) \le y_i, \forall J \subseteq [d] \quad ([x]_J)_j := \begin{cases} x_j & j \in J \\ 0 & o.w. \end{cases}$$

Smaller formulation:

$$\gamma_{G_i}\left(\left[x\right]^+\right) \le y_i \qquad \left(\left[x\right]^+\right)_j := \max\{x_j, 0\}$$

max can cause representability issues.

Algebraic Representation Issues

$$x_1^2 \le x_2 \le 1$$

 C_2

$$[-1, 1] \times 0$$

$$C_1 + (\mathbb{R}_+ \times \{0\}) : (\max\{x_1, 0\})^2 \le x_2 \le 1$$

- Non-basic semi-algebraic set contained in formulation.
- Finite polynomial inequalities requires max or auxiliary vars.

