Lecture 9 Absolute Convergence of Improper Integrals

Dr. Mahesha Narayana

Intended Learning Outcomes

At the end of this lecture, student will be able to:

- Illustrate absolute convergence
- Analyse and test the convergence of improper integrals

Topics

- Convergent and divergent
- Graphical explanation of convergence
- Absolute convergence of improper integrals

Definition of Convergent and Divergent

 If the limit defining the improper integral is a finite number, the integral is said to converge. Otherwise the integral is said to diverge.

Example:
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = 1$$
 is convergent.

Example:
$$\int_{1}^{\infty} \frac{1}{x} dx = +\infty$$
 is divergent.

Graphical Explanation of Convergence

$$f(x) = \frac{1}{x} - ----(A)$$

$$f(x) = \frac{1}{x^2} - - - (B)$$

- Notice that the improper integral of the function f(x) in example (B) is converged, while that of the function f(x) in example (A) is diverged.
- In geometric terms, this says that the area to the right of x = 1 under the curve $y = 1/x^2$ is finite, while the corresponding area under the curve y = 1/x is infinite. The reason for the difference is that, as x increases, approaches zero more quickly than does (see Figure).

Absolute Convergence of Improper Integrals

- Since most of the tests of convergence for improper integrals are only valid for positive functions, it is legitimate to wonder what happens to improper integrals involving non positive functions.
- So consider a function f(x) (not necessarily positive) defined on [a,b]
- It is easy to see that both functions f(x) and |f(x)| will exhibit the same kind of improper behavior.

Natural Conclusion

- The improper integral $\int_a^b f(x) dx$ is said to be absolutely convergent if $\int_a^b |f(x)| dx$ is convergent
- If the integral $\int_a^b |f(x)| dx$ is convergent, then the integral $\int_a^b f(x) dx$ is also convergent.

Caution!!

 We have to be careful the converse is not true. Indeed, the improper integral

$$\int_{0}^{+\infty} \frac{\sin(x)}{x} dx$$

is convergent while the improper integral

$$\int_{0}^{+\infty} \frac{|\sin(x)|}{|x|}$$

is divergent.

Example 1

• Show that the improper integral $\int_{-\infty}^{\infty} \frac{\sin x}{1+x^2} dx$ converges.

Solution: We consider the absolute convergence of the given integral,

we have
$$\left| \int_{-\infty}^{\infty} \frac{\sin x}{1+x^2} dx \right| \le \int_{-\infty}^{\infty} \left| \frac{\sin x}{1+x^2} \right| dx$$

$$\lim_{a \to \infty} \int_{-a}^{c} \left| \frac{\sin x}{1+x^2} \right| dx + \lim_{b \to \infty} \int_{c}^{b} \left| \frac{\sin x}{1+x^2} \right| dx = I_1 + I_2$$

Now
$$I_1 = \lim_{a \to \infty} \int_{-a}^{c} \left| \frac{\sin x}{1 + x^2} \right| dx \le \int_{a}^{c} \frac{1}{1 + x^2} dx = \lim_{a \to \infty} \left[\tan^{-1} c - \tan^{-1} a \right]$$
$$= \tan^{-1} c + \frac{\pi}{2}$$

Example 1(Cont.)

$$I_{2} = \lim_{b \to \infty} \int_{c}^{b} \left| \frac{\sin x}{1 + x^{2}} \right| dx \le \lim_{b \to \infty} \int_{c}^{b} \frac{dx}{1 + x^{2}}$$
$$= \lim_{b \to \infty} \left[\tan^{-1} b - \tan^{-1} c \right] = \frac{\pi}{2} - \tan^{-1} c$$

Hence $|I_1| = I_1 + I_2 \le \pi$. Therefore the given integral converges

Example 2

• Show that $\int_{1}^{\infty} \frac{\cos x}{\sqrt{(1+x^3)}} dx$ is absolutely convergent

Solution: Let
$$f(x) = \frac{\cos x}{\sqrt{(1+x^3)}}$$
 $x \ge 1$ then

$$|f(x)| = \left| \frac{\cos x}{\sqrt{(1+x^3)}} \right| < \frac{1}{x^{\frac{3}{2}}} , x \ge 1$$

The integral $\int_{1}^{\infty} \frac{dx}{x^{\frac{3}{2}}}$ is convergent, since $p = \frac{3}{2} > 1$

Hence by comparison test the given integral is convergent

Absolutely and Conditionally convergent

- An improper integral of f is absolutely convergent (or converges absolutely) if the improper integral of |f| also converges.
- If an improper integral converges but does not converge absolutely, it is said to converge conditionally.

Summary

- An improper integral of f is absolutely convergent (or converges absolutely) if the improper integral of |f| also converges.
- If an improper integral converges but does not converge absolutely, it is said to converge conditionally.

