

NOME MODULO	Analisi rumore in acqua
APPLICAZIONE	Valutazione degli impatti acustici in ambiente acquatico
MODELLO	Formula basata sul modello di R. E. Francois and G. R. Garrison
DESCRIZIONE	Il modulo "analisi del rumore in acqua" si basa sulla combinazione di 2 formule: la prima relativa all'abbattimento sonoro basato dalla singola distanza dalla sorgente, mentre il secondo basato su meccanismi di assorbimento oceanico del rumore relativi alla viscosità dell'acqua marina e su fenomeni di assorbimento chimico. In particolare è stata usata una formula semplificata pubblicata da Ainslie, M. A., & McColm, J. G. nel 1998, basata sul modello di R. E. Francois and G. R. Garrison pubblicato nel 1982. La formula semplificata di Ainslie e McColm prende in considerazione la componente di assorbimento chimico dell'acido borico, del solfato di magnesio e del carbonato di magnesio. L'assorbimento sono in acqua di mare è dipendente dalla frequenza sonora: a frequenza superiori a 100kHz il contributo maggiore è dato dalla componente fisica legata alla viscosità, mentre a frequenze inferiori è maggiormente significativo l'assorbimento chimico. La magnitudo dell'assorbimento è legato ad una serie di parametri fisici quali il pH, la temperatura, la salinità e la pressione (derivata dalla profondità).
	Le formule utilizzate nel modulo sono le seguenti:
	$R_{db} = S_{db} - TL$
	TL = $20\log R - \alpha$ $\alpha = 0.0106 \frac{f_1 f^2}{f^2 + f_1^2} e^{(pH-8)/0.56} + 0.52 \left(1 + \frac{T}{43}\right) \left(\frac{S}{35}\right) \frac{f_2 f^2}{f^2 + f_2^2} e^{-\frac{Z}{6}} + 0.00049 f^2 e^{-(T727 + Z/17)}$
	$f_1 = 0.78\sqrt{S/35}e^{-T/26}$ assorbimento acido borico
	$f_2 = 42e^{T/17}$ assorbimento magnesio
	Dove: Rdb = decibel del ricevente

Sdb=decibel della sorgente

TL= total loss, abbattimento sonoro complessivo 20logR=componente di assorbimento geometrico R=distanza del ricevente al sorgente

 α = componente di assorbimento chimico-fisico

pH= coefficiente di acidità

S= salinità (ppm)

T= temperatura (C°)

Z= profondità (km)

Anslie e McColm affermano che la formula presenta accettabili livelli di accuratezza se si rispettano le seguenti condizioni oceografiche:

$$-6 < T < 35 \, \text{C}^{\circ}$$

$$5 < S < 50 \text{ ppm}$$

$$0 < z < 7 \text{ km}$$

BIBLIOGRAFIA

Ainslie, M. A., & McColm, J. G. (1998). A simplified formula for viscous and chemical absorption in sea water. The Journal of the Acoustical Society of America, 103(3), 1671-1672

Francois, R. E., & Garrison, G. R. (1982). Sound absorption based on ocean measurements: Part I: Pure water and magnesium sulfate contributions. The Journal of the Acoustical Society of America, 72(3), 896-907.

Francois, R. E., & Garrison, G. R. (1982). Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. The Journal of the Acoustical Society of America, 72(6), 1879-1890.

DATA INPUT

- Vettoriale sorgente: shapefile puntuale delle sorgenti di emissione. Lo shapefile deve contenere un campo di tipo float denominato "level" che deve contenere la potenza di emissione sonora in dB
- Vettoriale confine: shapefile poligonale dell'area su cui effettuare l'analisi
- Frequenza: inserire il valore della frequenza sonorain kHz (senza unità di misura es. 400 e non 400 kHz)
- Profondità: inserire la profondità della sorgente sonora in km (senza unità di misura es. 2 e non 2 km)
- Salinità: inserire il valore di salinità medio in ppm (senza unità di

misura es. 12 e non 12 ppm)

- Acidità: valore relativo
- Temperatura: temperatura media dell'acqua in C° (senza unità di misura es. 20 e non 20 °C)
- Output file: nome del file contenente la mappa raster del livello sonoro, ad esempio risultatomodello1.tif (se non indicata il file sarà denominato outputmodel.tif e sarà salvato nella directory di lavoro)
- Working folder: percorso della cartella dove verranno salvata gli
 eventuali file temporanei necessari per l'analisi (se non specificata i
 file verranno salvati nella directory di lavoro.

N.B.: Se non si specifica la directory di lavoro o il percorso dei file di uscita questi verranno salvati nel percorso corrispondente alla cartella plugin/envifate/tools (il percorso potrebbe variare a seconda del sistema operativo utilizzato.