RESEARCH DAYS - NOVEMBER 2020

Continuously learning complex tasks via symbolic analysis

Presented by Ali Younes, Ecole Polytechnique, ENSTA

Continual Learning

• The Continual learning problem is defined as the ability to incrementally learn and expand the knowledge by gaining new skills and expertise.

• A system of a mobile robot pushing object to goals could represent a continual learning

problem.

Hierarchical continual Learning

- The robot dissect the task into simpler tasks, and build a hierarchy of skills to solve the task.
- In the first part of the task, the robot use the hierarchy:

Hierarchical continual Learning

- The robot dissect the task into simpler tasks, and build a hierarchy of skills to solve the task.
- In the second part of the task, the robot has to extend the hierarchy:

Planning in hierarchical learning

• Each skill has a forward and an inverse model.

Planning in hierarchical learning

• Inverse models from various skills are used for planning over the hierarchy.

Using symbolic analysis

- Current hierarchical learning approaches struggles with data-efficiency as the hierarchy grows (for complex tasks).
- We propose using set-based methods (e.g. abstract interpretation) as a way to reduce the number of training samples.
- Inferring over sets is more efficient than inferring over points in the common sense, but we may need special abstract domains for NN with ReLU activation functions.

Using symbolic analysis

 New planning is needed for set-based methods as well, in which controllable regions would be the output of the inverse model. This leads to an improved planning over the conventional method.

Objectives and Challenges

- A life-long learning algorithm, uses symbolic analysis for efficient hierarchical learning.
- Novel abstract domains (for abstract interpretation); exploring the trade-offs between precision and computational cost.
- Novel algorithms for efficient planning in goal oriented hierarchical structures.
- Experiments in simulation, and with real-world robots (mobile robots, manipulators), gradually increasing the complexity of the environment.

