

Advanced Data Science

Lecture 6: Generalised Linear Models

Carl Henrik Ek - che29@cam.ac.uk

22nd of November, 2021

http://carlhenrik.com

What is Machine Learning

What does Machine Learning do?

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}$$

Statistical Learning Theory?

- PAC Learning provides an useful foundation for abstracting learning
 - we need a lot more data than we think
 - there is no such thing as a universal learner
- We are doing a lot better in practice than we should

The Gap

Access enormous inductive bias in what data to acquire

The Gap

Access enormous inductive bias in what data to acquire

Assess human bias in what questions will probably be asked

The Gap

Access enormous inductive bias in what data to acquire

Assess human bias in what questions will probably be asked

Address "it is just curve fitting"

Requirements for Data Science

Generalised Linear Models

Formalism

 $\mathbf{x} \in \mathcal{X}$ explanatory variable $y \in \mathcal{Y}$ response variable Task explain the response by the explanatory variables

Linear Regression [Bishop, 2006]

$$y_i = \sum_{j=1}^d \beta_j x_{ij} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2).$$

Linear Regression Prediction

$$\mathbb{E}[y_i \mid \mathbf{x}_i] = \mathbb{E}\left[\sum_{j=1}^d \beta_j x_{ij} + \epsilon\right]$$

Linear Regression Prediction

$$\mathbb{E}[y_i \mid \mathbf{x}_i] = \mathbb{E}\left[\sum_{j=1}^d \beta_j x_{ij} + \epsilon\right]$$
$$= \mathbb{E}\left[\sum_{j=1}^d \beta_j x_{ij}\right] + \mathbb{E}[\epsilon]$$

Linear Regression Prediction

$$\mathbb{E}[y_i \mid \mathbf{x}_i] = \mathbb{E}\left[\sum_{j=1}^d \beta_j x_{ij} + \epsilon\right]$$
$$= \mathbb{E}\left[\sum_{j=1}^d \beta_j x_{ij}\right] + \mathbb{E}[\epsilon]$$
$$= \sum_{j=1}^d \beta_j x_{ij} + 0.$$

$$y_i = \sum_{j=1}^d \beta_j x_{ij} + \epsilon,$$

$$y_i = \sum_{j=1}^{d} \beta_j x_{ij} + \epsilon,$$
$$y_i + \epsilon = \sum_{j=1}^{d} \beta_j x_{ij},$$

$$y_i = \sum_{j=1}^d \beta_j x_{ij} + \epsilon,$$
$$y_i + \epsilon = \sum_{j=1}^d \beta_j x_{ij},$$
$$\hat{y}_i = \sum_{j=1}^d \beta_j x_{ij},$$

$$y_i = \sum_{j=1}^d \beta_j x_{ij} + \epsilon,$$

$$y_i + \epsilon = \sum_{j=1}^d \beta_j x_{ij},$$

$$\hat{y}_i = \sum_{j=1}^d \beta_j x_{ij},$$

$$\hat{y}_i \sim \mathcal{N}(y_i, \sigma^2) = \mathcal{N}\left(\sum_{j=1}^d \beta_j x_{ij}, \sigma^2\right),$$

Generalised Linear Models [McCullagh et al., 1989]

$$g(\mathbb{E}[y_i \mid \mathbf{x}_i]) = \sum_{j=1}^d \beta_j x_{ij},$$

 $g(\cdot)$ link function $y \sim \mathcal{D} \ \ \text{Exponential Dispersion Family}$ $\sum_{j=1}^d \beta_j x_{ij} \ \ \text{Linear predictor}$

Generalised Linear Models [McCullagh et al., 1989]

$$\mathbb{E}[y_i \mid \mathbf{x}_i] = g^{-1}(\sum_{j=1}^d \beta_j x_{ij}),$$

- The inverse of the *link* maps the linear predictor to the first moment of the response
- Linear regression the link is identity

https://towardsdatascience.com/
glms-part-iii-deep-neural-networks-as-recursive-generalized-linear-URL

Generalised Linear Models [McCullagh et al., 1989]

$$\mathbb{E}[y_i \mid \mathbf{x}_i] = g^{-1}(\sum_{j=1}^d \beta_j x_{ij}),$$

- The inverse of the *link* maps the linear predictor to the first moment of the response
- Linear regression the link is identity
- Looks an awful lot like a neural network¹

¹https://towardsdatascience.com/ glms-part-iii-deep-neural-networks-as-recursive-generalized-linear-URL

Transformation vs GLM

$$\log(y_i) = \sum_{j=1}^{d} \beta_j x_{ij} + \epsilon_i$$
$$\epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

$$\log(y_i) = \sum_{j=1}^{d} \beta_j x_{ij}$$
$$y_i \sim \mathcal{N}(0, \sigma^2)$$

Exponential Dispersion Family ²

$$f(y; \theta, \phi) = e^{\frac{\theta y - b(\theta)}{a(\phi)} + c(y, \phi)},$$

 θ location parameter

 ϕ scale parameter

i.i.d. we will assume that the data is drawn i.i.d.

²https://en.wikipedia.org/wiki/Exponential_dispersion_model

Gaussian

$$f(y; \mu, \sigma^2) = e^{\frac{\mu y - \frac{1}{2}\mu^2}{\sigma^2} - \frac{y^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)}$$

$$\bullet \ \theta = \mu$$

•
$$b(\theta) = \frac{1}{2}\mu^2$$

•
$$a(\phi) = \sigma^2$$

•
$$c(y,\phi) = \frac{y^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)$$

$$\mathbb{E}[y \mid \mathbf{x}] = \frac{\partial}{\partial \theta} b(\theta)$$

$$\mathbb{V}[y \mid \mathbf{x}] = a(\phi) \frac{\partial^2}{\partial \theta^2} b(\theta).$$

 Through a consistent parametrisation we can generalise the moment calculations

```
import statsmodels.api as sm

m = sm.GLM(y, x, sm.families.Gaussian(sm.families.links.log()))

m_r = m.fit()

y_p = m_r.get_prediction(x_p).summary_frame(alpha=0.05)['mean']
```

```
NegativeBinomial, Poisson, Tweedie

Link Functions CLogLog, LogLog, Log, Logit, NegativeBinomial,

Power, cauchy, identity, inverse_power,

inverse_squared, nbinom, probit
```

Families Binomial, Gamma, Gaussian, InverseGaussian,

Binomial Distribution

Binomial Regression

$$g(y_i) = \beta_0 + \beta_1 x_{i1}$$
$$y_i \sim \text{Binom}(n, p)$$

- \bullet y_i is a frequency or odds
- ullet need to pick a link function that limits to $y_i \in [0,1]$

Logit-Link

$$logit(y_i) = log\left(\frac{y_i}{1 - y_i}\right)$$

Sigmoid Function

$$\log it(y_i) = \log \left(\frac{y_i}{1 - y_i}\right) = \beta_0 + \beta_1 x_{i1}$$

$$\frac{y_i}{1 - y_i} = e^{\beta_0 + \beta_1 x_{i1}}$$

$$y_i(1 + e^{\beta_0 + \beta_1 x_{i1}}) = e^{\beta_0 + \beta_1 x_{i1}}$$

$$y_i = \frac{e^{\beta_0 + \beta_1 x_{i1}}}{1 + e^{\beta_0 + \beta_1 x_{i1}}}$$

$$= \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_{i1})}}$$

Binomial Data [Weisberg, 2005]

Current	Trials	Response	Proportion
0	70	0	0.00
1	70	9	0.129
2	70	21	0.300
3	70	47	0.671
4	70	60	0.857
5	70	63	0.900

Logistic Regression

sm.GLM(y, X, sm.families.Binomial(sm.families.links.logit()))

Poisson Distribution

- Arrival times
- Website visitors
- Job cue for server
- Failures of product

Poisson Distribution

Poisson
$$(y_i) = \frac{e^{\lambda} \lambda^y}{y!}$$

 $\mathbb{E}[y_i] = \lambda$

Poisson Regression

• Counts are positive so we need a positive link function

$$\log(\lambda_i) = \sum_{j=1}^d \beta_j x_{ij}$$

Poisson Regression

• Counts are positive so we need a positive link function

$$\log(\lambda_i) = \sum_{j=1}^d \beta_j x_{ij}$$

Leads to the following model

$$p(y_i \mid x_i) = \frac{e^{\lambda_i} \lambda_{i i}^y}{y_i!} = \frac{e^{\left(e^{\sum_{j=1}^d \beta_j x_{ij}}\right)} \left(e^{\sum_{j=1}^d \beta_j x_{ij}}\right)_i^y}{y_i!}$$

Poisson Data Brooklyn Bridge Data

Day	Day of Week	Month	High Temp	Low Temp	Percipitation	Cyclists
1.0	5.0	4.0	46.0	37.0	0.00	606.0
2.0	6.0	4.0	62.1	41.0	0.00	2021.0
3.0	0.0	4.0	63.0	50.0	0.03	2470.0
4.0	1.0	4.0	51.1	46.0	1.18	723.0
6.0	3.0	4.0	48.9	41.0	0.73	461.0
1	31	10	54	44	0.00	2727

Poisson Regression

sm.GLM(y, X, family=sm.families.Poisson()).fit()

Gamma Distribution

- Waiting times for Poisson events
- Variance and mean connected

Gamma Distribution

$$Gamma(y_i) = \frac{1}{\Gamma(\phi)\theta^{\phi}} y_i^{\phi - 1} e^{-\frac{y_i}{\theta}}$$

$$\mathbb{E}[y_i] = \phi\theta$$

$$\mathbb{V}[y_i] = \phi\theta^2$$

$$\mathbb{V}[y_i] = \phi \theta^2$$

Gamma Regression

Exponential Dispersion Gamma

$$Gamma(y_i) = e^{\frac{y_i \theta_i - \log(-\frac{1}{\theta_i})}{\phi} + \frac{1 - \phi}{\phi} \log(y_i) - \log(\Gamma(\phi^{-1}))}$$

• If you "derive" the canonical link function from the distribution it should be,

$$-\frac{1}{\theta} = \sum_{j=1}^{d} \beta_j x_{ij}$$

Gamma regression is most commonly used with log as the link

$$\log(\mathbb{E}[y_i \mid \mathbf{x}_i]) = \sum_{j=1}^d \beta_j x_{ij}$$

Gamma Regression

Model	Response Variable	Link	Explanatory Variable
Linear Regression	Normal	Identity	Continuous
Logistic Regression	Binomial	Logit	Mixed
Poisson Regression	Poisson	Log	Mixed
ANOVA	Normal	Identity	Categorical
ANCOVA	Normal	Identity	Mixed
Loglinear	Poisson	Log	Categorical
Multinomial response	Multinomial	Generalized Logit	Mixed

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmax}} \prod_{i=1}^{N} p(y_i \mid \boldsymbol{\beta}, \mathbf{x}_i)$$

- In general gradient descent on log-likelihood
- For specific models there are tailored inference schemes

Design Matrix

Design Matrix

$$\mathbf{X} = \left[egin{array}{ccc} x_0 & 1 \ x_1 & 1 \ dots & dots \ x_N & 1 \end{array}
ight]$$

Non-Linear Function

$$y = 0.2\sin(x) + \sin\left(\frac{x^2}{40}\right) + 0.05x$$

Design Matrix

$$\mathbf{X} = \begin{bmatrix} \sin(x_0) & \sin(\frac{x_0^2}{40}) & x_0 \\ \sin(x_1) & \sin(\frac{x_1^2}{40}) & x_1 \\ \vdots & \vdots & \vdots \\ \sin(x_N) & \sin(\frac{x_N^2}{40}) & x_N \end{bmatrix}$$

$$\boldsymbol{\beta} = [0.2155, 0.4956, 0.0482]$$

Over-parametrised matrix

$$\boldsymbol{\beta} = [0.1078, 0.4956, 0.0482, 0.1078]$$

Localised Basis Function

$$g\left(\mathbb{E}[y_i\mathbf{x}_i]\right) = \sum_{j=1}^N \beta_j \phi(\mathbf{x}_j, \mathbf{x}_i), \quad \phi(\mathbf{x}_j, \mathbf{x}_i) = e^{-\frac{(\mathbf{x}_i - \mathbf{x}_j)^T(\mathbf{x}_i - \mathbf{x}_j)}{\ell^2}}$$

Regularisation

Solution bias

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmax}} \prod_{i=1}^{N} p(y_i \mid \boldsymbol{\beta}, \mathbf{x}_i)$$

- Maximum Likelihood encodes no preference towards any solution
- Due to optimisation procedure we might get very different results

$$\hat{\boldsymbol{\beta}} = \operatorname*{argmax}_{\boldsymbol{\beta}} \prod_{i=1}^{N} p(y_i \mid \boldsymbol{\beta}, \mathbf{x}_i) + \lambda \left(\sum_{j=1}^{d} \beta_j^p \right)^{\frac{1}{p}}$$

- Introduce inductive bias towards specific solutions
- Normally done using a norm

Ridge vs Lasso

Code

m.fit_regularized(alpha=0.10,L1_wt=0.0)

- ullet L1_wt $0
 ightarrow \mathtt{Ridge}, 1
 ightarrow \mathtt{Lasso}$
- alpha the penalty

Summary

Response Variable Distribution How is your response variable distributed?

Response Variable Distribution How is your response variable distributed?

Link Function How is the scale parameter of the distribution related to the explanatory variables

Response Variable Distribution How is your response variable distributed?

Link Function How is the scale parameter of the distribution related to the explanatory variables

Design Matrix What is the features of the explanatory variables?

Response Variable Distribution How is your response variable distributed?

Link Function How is the scale parameter of the distribution related to the explanatory variables

Design Matrix What is the features of the explanatory variables?

Regulariser What is the "preferred" solution?

• Can you split up the data by some criterion?

- Can you split up the data by some criterion?
 - localised GLM

- Can you split up the data by some criterion?
 - localised GLM
- Can you remove the effect of one model from data and then retrain on residual?

- Can you split up the data by some criterion?
 - localised GLM
- Can you remove the effect of one model from data and then retrain on residual?
- You will not be able to find the "perfect" model, but show that you can reason about these models!!

eof

References

- Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.
- McCullagh, P. and J. A. Nelder (1989). *Generalized Linear Models*. London, UK: Chapman Hall / CRC: Chapman Hall / CRC.
- Weisberg, Sanford (2005). Applied Linear Regression. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., nil.