ANALISIS NUMERICO EXAMEN 3

ALEXIS ADRIAN CARRILLO MEDINA (316733780)

1. Estabilidad Numérica

1.1. Sea $A\in M_{n\times n}$ no singular, $\vec{b}\neq\vec{0}\in\mathbb{R}$ tales que $A\vec{x}=\vec{b}$. Considere las respectivas perturbaciones $\hat{x}=\vec{x}+\delta\vec{x}$ y $\hat{A}=A+\delta A$ tales que $\hat{A}\hat{x}=\vec{b}$. Demostrar que

$$\frac{||\delta \vec{x}||}{||\hat{x}||} \le \kappa(A) \frac{||\delta A||}{||A||}$$

Notemos que lo siguiente se cumple

$$\hat{A}\hat{x} = \vec{b} = (A + \delta A)\hat{x} = \vec{b} \Rightarrow A\hat{x} + \delta A\hat{x} = \vec{b}$$
$$\Rightarrow A(x + \delta x) + \delta A\hat{x} = \vec{b} \Rightarrow Ax + A\delta x + \delta A\hat{x} = \vec{b}$$

Como Ax = b, entonces

$$Ax + A\delta x + \delta A\hat{x} = \vec{b} \Rightarrow A\delta x + \delta A\hat{x} = 0$$
$$A\delta x = -\delta A\hat{x}$$

Puesto que A es no singular, entonces existe su inversa y por lo tanto

$$\delta x = A^{-1}(-\delta A\hat{x})$$

$$\Rightarrow ||\delta x|| = ||A^{-1}\delta A\hat{x}||$$

y por una propiedad de la norma tenemos que

$$||\delta x|| \le ||A^{-1}|| ||\delta A|| ||\hat{x}|| \Rightarrow \frac{||\delta x||}{||\hat{x}||} \le ||A^{-1}|| ||\delta A||$$

Pero tenemos que $\kappa(A) = ||A^{-1}||||A||,$ entonces

$$\frac{||\delta \vec{x}||}{||\hat{x}||} \le \kappa(A) \frac{||\delta A||}{||A||}$$

2. Mínimos cuadrados

2.1. Los siguientes datos (reales) corresponden al comportamiento del peso frente al dolar del inicio del año, al mes de Mayo del año en 2017

2.1.1. Emplea el gradiente igualado a cero para expresar el sistema de ecuaciones normales de la table 1 en la forma Ax=b

Redefinamos la tabla

Entonces tenemos los siguientes puntos, dados por la tabla

$$(1, 20.73), (2, 20.77), (3, 19.90), (4, 18.73)$$

Ahora buscamos los valores α, β que mejor aproximen el siguiente sistema

$$sistema = \begin{cases} \alpha + 1\beta &= 20.73 \\ \alpha + 2\beta &= 20.77 \\ \alpha + 3\beta &= 19.90 \\ \alpha + 4\beta &= 18.73 \end{cases}$$

Para ello calculemos la función de costos

$$F(\alpha, \beta) = [\alpha + 1\beta - 20.73]^2 + [\alpha + 2\beta - 20.77]^2 + [\alpha + 3\beta - 19.90]^2 + [\alpha + 4\beta - 18.73]^2$$
$$= 4\alpha^2 + 20\alpha\beta + -160.26\alpha + 30\beta^2 - 393.78\beta + 1607.95$$

Entonces, igualando el gradiente a 0 tenemos

$$\nabla F(\alpha, \beta) = 0$$

$$\Rightarrow \frac{\partial F(\alpha, \beta)}{\partial \alpha} = 0 \quad \frac{\partial F(\alpha, \beta)}{\partial \beta} = 0$$

$$\frac{\partial F(\alpha, \beta)}{\partial \alpha} = 8\alpha + 20\beta - 160.26$$

$$\frac{\partial F(\alpha, \beta)}{\partial \beta} = 60\beta + 20\alpha - 393.78$$

Por lo tanto tenemos el siguiente sistema de ecuaciones normales

$$ecuaciones normales = \begin{cases} 8\alpha + 20\beta - 160.26 &= 0\\ 20\alpha + 60\beta - 393.78 &= 0 \end{cases}$$

Escrito de la forma Ax = b se ve como

$$\begin{pmatrix} 8 & 20 & -160.26 \\ 20 & 60 & -393.78 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \alpha = 21.75 \quad \beta = -0.687$$

2.2. Ecuaciones normales

2.2.1. Utiliza el teorema de las ecuaciones normales visto en clase, para expresar el sistema de ecuaciones normales en la forma Ax=b

Usando el teorema tenemos que el sistema de ecuaciones estará dado por

$$A^T A x = A^T \vec{b}$$

En este caso

$$\begin{bmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 20.73 \\ 20.77 \\ 19.90 \\ 18.73 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 80.13 \\ 196.89 \end{pmatrix}$$

2.2.2. Verifica que ambas solución tengan la misma solución \boldsymbol{x}

Usando la matriz anterior, podemos llegara que

$$\hat{x}_1 = 21.75 \quad \hat{x}_2 = -0.687$$

Solución que coincide con la presentada por el método del gradiente

2.3. Recta que minimiza la función de costos

2.3.1. Encuentre la recta que mejor se ajusta a estos datos

Teníamos que $\alpha=21.75$ y $\beta=-0.687$ Entonces, la recta que mejor se ajusta a los datos es

$$y = 21.75 - 0.687x$$

La cual se ve como

2.3.2. Trata de dar una estimación al precio del dolar para los meses de Mayo y Junio del mismo año.

Simplemente sustituimos en la recta encontrada anteriormente y obtenemos que : P.D.Mayo= 18.315\$ y P.D.Junio=17.628\$

3. Interpolación

3.1. Calcule el polinomio interpolador empleando el método de Lagrange y de Newton de los siguientes datos, interpola en 8.4 y verifica tus interpoladores

Calculemos el interpolador de Lagrange Calculemos ${\cal L}_0$

$$L_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_2)} = \frac{(x - 8.3)(x - 8.6)(x - 8.7)}{(8.1 - 8.3)(8.1 - 8.6)(8.1 - 8.7)} = \frac{x^3 - 25.6x^2 + 218.41x - 621.006}{-0.06}$$

Calculemos L_1

$$L_1(x) = \frac{(x-8.1)(x-8.6)(x-8.7)}{(8.3-8.1)(8.3-8.6)(8.3-8.7)} = \frac{x^3 - 25.4x^2 + 214.95x - 606.042}{0.024}$$

Calculemos L_2

$$L_2(x) = \frac{(x-8.1)(x-8.3)(x-8.7)}{(8.6-8.1)(8.6-8.3)(8.6-8.7)} = \frac{x^3 - 25.1x^2 + 209.91x - 584.901}{-0.015}$$

Por ultimo calculemos L_3

$$L_2(x) = \frac{(x-8.1)(x-8.3)(x-8.6)}{(8.7-8.1)(8.7-8.3)(8.7-8.6)} = \frac{x^3 - 25x^2 + 208.27x - 578.178}{0.024}$$

Por lo tanto, el polinomio interpolador de lagrange es

$$P_4(x) = L_0(x)16.99410 + L_1(x)17.56492 + L_2(x)18.50515 + L_3(x)18.82091$$

Veamos que en efecto coincide, para ello solo falta ver que $L_i(x_i)=1$ y cero para las demás Tenemos que

$$L_0(8.1) = \frac{(8.1)^3 - 25.6(8.1)^2 + 218.41(8.1) - 621.006}{-0.06} = \frac{-0.06}{-0.06} = 1$$

$$L_1(8.1) = \frac{(8.1)^3 - 25.4(8.1)^2 + 214.95(8.1) - 606.042}{0.024} = \frac{0}{0.024} = 0$$

$$L_2(8.1) = \frac{(8.1)^3 - 25.1(8.1)^2 + 209.91(8.1) - 584.901}{-0.015} = \frac{0}{-0.015} = 0$$

$$L_3(8.1) = \frac{(8.1)^3 - 25(8.1)^2 + 208.27(8.1) - 578.178}{0.024} = \frac{0}{0.024} = 0$$

$$L_0(8.3) = \frac{(8.3)^3 - 25.6(8.3)^2 + 218.41(8.3) - 621.006}{-0.06} = \frac{0}{-0.06} = 0$$
$$L_1(8.3) = \frac{(8.3)^3 - 25.4(8.3)^2 + 214.95(8.3) - 606.042}{0.024} = \frac{0.024}{0.024} = 1$$

$$L_2(8.3) = \frac{(8.3)^3 - 25.1(8.3)^2 + 209.91(8.3) - 584.901}{-0.015} = \frac{0}{-0.015} = 0$$
$$L_3(8.3) = \frac{(8.3)^3 - 25(8.3)^2 + 208.27(8.3) - 578.178}{0.024} = \frac{0}{0.024} = 0$$

$$L_0(8.6) = \frac{(8.6)^3 - 25.6(8.6)^2 + 218.41(8.6) - 621.006}{-0.06} = \frac{0}{-0.06} = 0$$

$$L_1(8.6) = \frac{(8.6)^3 - 25.4(8.6)^2 + 214.95(8.6) - 606.042}{0.024} = \frac{0}{0.024} = 0$$

$$L_2(8.6) = \frac{(8.6)^3 - 25.1(8.6)^2 + 209.91(8.6) - 584.901}{-0.015} = \frac{-0.015}{-0.015} = 1$$

$$L_3(8.6) = \frac{(8.6)^3 - 25(8.6)^2 + 208.27(8.6) - 578.178}{0.024} = \frac{0}{0.024} = 0$$

$$L_0(8.7) = \frac{(8.7)^3 - 25.6(8.7)^2 + 218.41(8.7) - 621.006}{-0.06} = \frac{0}{-0.06} = 0$$

$$L_1(8.7) = \frac{(8.7)^3 - 25.4(8.7)^2 + 214.95(8.7) - 606.042}{0.024} = \frac{0}{0.024} = 0$$

$$L_2(8.7) = \frac{(8.7)^3 - 25.1(8.7)^2 + 209.91(8.7) - 584.901}{-0.015} = \frac{0}{-0.015} = 0$$

$$L_3(8.7) = \frac{(8.7)^3 - 25(8.7)^2 + 208.27(8.7) - 578.178}{0.024} = \frac{0.024}{0.024} = 1$$

Por lo tanto, el polinomio de Lagrange es correcto. Ahora interpolemos en 8.4

$$L_0(8.4) = \frac{(8.4)^3 - 25.6(8.4)^2 + 218.41(8.4) - 621.006}{-0.06} = \frac{0.006}{-0.06} = -0.1$$

$$L_1(8.4) = \frac{(8.4)^3 - 25.4(8.4)^2 + 214.95(8.4) - 606.042}{0.024} = \frac{0.018}{0.024} = 0.75$$

$$L_2(8.4) = \frac{(8.4)^3 - 25.1(8.4)^2 + 209.91(8.4) - 584.901}{-0.015} = \frac{-0.009}{-0.015} = 0.6$$

$$L_3(8.4) = \frac{(8.4)^3 - 25(8.4)^2 + 208.27(8.4) - 578.178}{0.024} = \frac{-0.006}{0.024} = -0.25$$

Entonces el polinomio es

$$P_4(8.4) = -0.1 \cdot 16.94410 + 0.75 \cdot 17.56492 + 0.6 \cdot 18.50515 - 0.25 \cdot 18.82091 = 17.8771425$$

2021-1 Análisis numérico

Calculemos ahora el polinomio de Newton, para ello calculamos las diferencias divididas

i	x	f(x)	D_0	D_1	D_2
0	8.1	16.94410	$\frac{17.56492 - 16.94410}{x_1 - x_0} = 3.1041$	$\frac{3.1341 - 3.1041}{x_2 - x_0} = 0.06$	$\frac{0.05875 - 0.06}{x_3 - x_0} = -0.002083$
1	8.3	17.56492	$\frac{\frac{18.50515 - 17.56492}{x_2 - x_1}}{x_2 - x_1} = 3.1341$	$\frac{3.1576 - 3.1341}{x_3 - x_1} = 0.05875$	
2	8.6	18.50515	$\frac{18.82091 - 18.50515}{x_3 - x_2} = 3.1576$		
3	8.7	18.82091			

Por lo que el polinomio es

$$P_4(x) = 16.94410 + 3.1041(x - 8.1) + 0.06(x - 8.1)(x - 8.3) - 0.002083...(x - 8.1)(x - 8.3)(x - 8.6)$$

Ahora, comprobemos el polinomio

$$P_4(8.1) = 16.94410$$

$$P_4(8.3) = 16.94410 + 3.1041(8.3 - 8.1) = 16.94410 + 0.62082 = 17.56492$$

$$P_4(8.6) = 16.94410 + 3.1041(8.6 - 8.1) + 0.06(8.6 - 8.1)(8.6 - 8.3) = 18.50515$$

$$P_4(8.7) = 16.94410 + 3.1041(8.7 - 8.1) + 0.06(8.7 - 8.1)(8.7 - 8.3) - 0.002083...(8.7 - 8.1)(8.7 - 8.3)(8.7 - 8.6)$$

$$= 18.82091$$

Por lo que el polinomio de Newton es valido. Ahora, interpolemos $8.4\,$

$$P_4(8.4) = 16.94410 + 3.1041(8.4 - 8.1) + 0.06(8.4 - 8.1)(8.7 - 8.3) - 0.002083...(8.4 - 8.1)(8.4 - 8.3)(8.4 - 8.6)$$
$$= 17.8771424999999$$

Que coincide con el polinomio interpolador de Lagrange

4. Fenómeno de Runge

4.1. Explica con tus palabras que entiendes del fenómeno de Runge y muestra un ejemplo

El fenómeno de Runge es una manifestación del hecho que no siempre se da que

$$\lim_{n \to \infty} ||f(x) - P_n(x)|| = 0$$

Esto sucedo porque existen ciertas funciones (Posteriormente daremos un ejemplo) las cuales no decaen "suficientementerápido para que el polinomio converja a la función y esto a la hora de realizar una interpolación causa errores. En otras palabras, el fenómeno de Runge es un contraejemplo a la hipótesis de que toda función converge a su polinomio interpolador.

Ahora, demos el ejemplo

Consideremos la función

$$\frac{1}{1+25x^2}$$

Veamos su gráfica

Y consideremos el polinomio de Newton de orden 7

$$P_7(x) = 0.00159744 + 0.00276785(x+5) + 0.00644817(x+5)(x+2) + 0.09200816(x+2)(x+5)(x+1)$$
$$-0.09466955(x+2)(x+5)(x+1)x + 0.04752487(x+2)(x+5)(x+1)x(x-1)$$
$$-0.00950497(x+2)(x+5)(x+1)x(x-1)(x-2)$$

Veamos su gráfica

Como vemos la gráfica del polinomio presenta ciertas curvaturas y no converge como tal a la función original