

Il modello di Ising

Simulazione di Materia Condensata e Biosistemi

Filippo Negrini (Matricola: 47127A)

Table of Contents

1 Introduzione

► Introduzione

- ▶ Metodi numeric
- Simulazioni modello di Ising 1E
- Simulazioni modello di Ising 1E
- Conclusioni
- Backup modello di Ising 1D
- Backup modello di Ising 2D

Hamiltoniana

1 Introduzione

$$H = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j - h \sum_i \sigma_i$$

- Interazione fra primi vicini
- Accoppiamento con un campo esterno

 ${\sf Modello\ di\ Ising\ 1D\ con\ condizioni\ periodiche.}$

Modello di Ising 1D

1 Introduzione

- Teoria di campo medio
- \diamond Sistema presenta una transizione di fase a $T_c
 eq 0$

$$m = \tanh \left[\beta \left(h + J n_{nn} m\right)\right]$$

- Soluzione analitica
- \diamond Sistema disordinato per ogni $T \neq 0$ a campo esterno nullo

$$m\,=\,\frac{\sinh{(\beta h)}}{\sqrt{e^{-4\beta J}\,+\,\sinh^2{(\beta h)}}}$$

Modello di Ising 2D

1 Introduzione

- \diamond Soluzione analitica per $h \neq 0$
- \diamond Sistema presenta una transizione di fase a $T_c
 eq 0$

$$m\left(eta,\,h=0
ight) \,=\, egin{dcases} \left[1\,-\,rac{1}{\sinh^4\left(2eta J
ight)}
ight]^rac{1}{8} & T\,<\,T_c \ 0 & T\,>\,T_c \end{cases}$$

Table of Contents

2 Metodi numerici

- ▶ Introduzion
- ► Metodi numerici
- Simulazioni modello di Ising 1E
- Simulazioni modello di Ising 1D
- Conclusioni
- Backup modello di Ising 1D
- ▶ Backup modello di Ising 2E

Metropolis vs Wolff

2 Metodi numerici

Metropolis

⋄ Tentata inversione di un singolo spin

$$\diamond A(\nu | \mu) = \min \left[1, e^{-\beta(E_{\nu} - E_{\mu})}\right]$$

 \diamond Ottimo per $T \ll T_c$ oppure $T \gg T_c$

Wolff

Algoritmo di clustering

$$\diamond P_{add} = 1 - \exp(-2\beta J)$$

 \diamond Ottimo per $T \simeq T_c$

Termalizzazione

2 Metodi numerici

Termalizzazione: 3000 spin, T = 0.5

- Giungere all'equilibrio termodinamico
- Attenzione a stati metastabili
- Dipendenza dalla condizione iniziale

Termalizzazione per modello di Ising 1D.

Auto-correlazione

2 Metodi numerici

Autocorrelazione m: N = 500, T = 2.0

Autocorrelazione per modello di Ising 2D.

Definizione

$$\chi(t) = \frac{\langle m(t')m(t'+t)\rangle_{t'} - \langle m\rangle^2}{\sigma_m^2}$$

$$\diamond \chi(t) \propto e^{-t/t_c}$$

 Indipendenza statistica fra configurazioni

$$\diamond n_{max} = \frac{t_{max}}{2t_c}$$

Data-blocking

2 Metodi numerici

Dimensione blocco: N = 500, T = 2.0

Analisi per dimensione blocchi nel caso di un modello di Ising 2D.

- Dati raggruppati in blocchi
- $\diamond~$ Errore satura quando raggiunta l_{lim}

Table of Contents

- ▶ Introduzione
- Metodi numeric
- ► Simulazioni modello di Ising 1D
- ► Simulazioni modello di Ising 1D
- ▶ Conclusioni
- ▶ Backup modello di Ising 1D
- ▶ Backup modello di Ising 2D

Caratterizzazione

3 Simulazioni modello di Ising 1D

Termalizzazione

- \diamond Maggiore T, minore t_{ter}
- $\diamond t_{ter}^{max} \simeq 600 \text{ sweeps}$

Auto-correlazione

- \diamond Maggiore T, minore t_c
- $\diamond t_c^{max} \simeq 500 \, \mathrm{sweeps}$

Blocchi

- \diamond Maggiore T, minore l_{blk}
- $\diamond~l_{blk}^{max} \simeq~1000~{
 m sweeps}$

Magnetizzazione

Energia interna

Suscettività magnetica

Calore specifico

3 Simulazioni modello di Ising 1D

campo magnetico semplifica lo studio

Table of Contents

- ► Introduzione
- Metodi numeric
- Simulazioni modello di Ising 1D
- ► Simulazioni modello di Ising 1D
- ► Conclusion
- Backup modello di Ising 1D
- ▶ Backup modello di Ising 2D

Caratterizzazione con metropolis

4 Simulazioni modello di Ising 1D

Termalizzazione

- $\diamond~t_{ter}$ maggiori per $T \simeq T_c$
- $\diamond t_{ter}^{max} \simeq 500 \text{ sweeps}$

Auto-correlazione

- $\diamond~t_c$ maggiori per $T \simeq T_c$
- $\diamond t_c^{max} \simeq 400 \, \mathrm{sweeps}$

Blocchi

- $\diamond~l_{blk}$ maggiori per $T \simeq T_c$
- $\diamond~l_{blk}^{max} \simeq~1000~{
 m sweeps}$

Caratterizzazione con Wolff

4 Simulazioni modello di Ising 1D

Termalizzazione

Auto-correlazione

Blocchi

Magnetizzazione

4 Simulazioni modello di Ising 1D

- \diamond Magnetizzazione spontanea per $T < T_c$
- \diamond Transizione di fase a T_c

Ferromagnetico

Paramagnetico

Energia

- copro tutto il reticolo con due legami per spin
- \diamond picco del calore specifico a T_c

$$U = -NJ \coth{(2eta J)} \left\{ 1 + rac{2}{\pi} \left[2 anh^2 \left(2eta J
ight) - 1
ight] \int_0^{\pi/2} rac{d\phi}{\sqrt{1 - k^2 \sin^2{(\phi)}}}
ight\}$$

Table of Contents

5 Conclusioni

- ▶ Introduzione
- Metodi numerici
- ► Simulazioni modello di Ising 1D
- Simulazioni modello di Ising 1D
- **▶** Conclusioni
- Backup modello di Ising 1D
- ► Backup modello di Ising 2D

Grazie per l'attenzione

Table of Contents

- ► Introduzione
- Metodi numerici
- Simulazioni modello di Ising 1D
- Simulazioni modello di Ising 1D
- Conclusioni
- ► Backup modello di Ising 1D
- ► Backup modello di Ising 2[

Osservabili per N_s = 1000, h = 0.02

6 Backup modello di Ising 1D

Ising 1D: $N_s = 1000$, h = 0.02

Differenza dal valor vero per N_s = 1000, h = 0.02

6 Backup modello di Ising 1D

Ising 1D: $N_s = 1000$, h = 0.02

Osservabili per N_s = 3000, h = 0.02

6 Backup modello di Ising 1D

Ising 1D: $N_s = 3000$, h = 0.02

Differenza dal valor vero per N_s = 3000, h = 0.02

6 Backup modello di Ising 1D

Ising 1D: $N_s = 3000$, h = 0.02

Osservabili per N_s = 6000, h = 0.02

6 Backup modello di Ising 1D

Ising 1D: $N_s = 6000$, h = 0.02

Differenza dal valor vero per N_s = 6000, h = 0.02

6 Backup modello di Ising 1D

Ising 1D: $N_s = 6000$, h = 0.02

Osservabili per N_s = 10000, h = 0.02

6 Backup modello di Ising 1D

Ising 1D: $N_s = 10000$, h = 0.02

Differenza dal valor vero per N_s = 10000, h = 0.02

6 Backup modello di Ising 1D

Ising 1D: $N_s = 10000$, h = 0.02

Table of Contents

- ► Introduzione
- ▶ Metodi numeric
- Simulazioni modello di Ising 1D
- Simulazioni modello di Ising 1D
- ▶ Conclusioni
- ▶ Backup modello di Ising 1D
- ► Backup modello di Ising 2D

Osservabili per reticolo 100×100

Ising 2D: reticolo 100×100

Osservabili per reticolo 200×200

Ising 2D: reticolo 200 × 200

Osservabili per reticolo 300×300

7 Backup modello di Ising 2D

Ising 2D: reticolo 300 × 300

Osservabili per reticolo 400×400

Ising 2D: reticolo 400 × 400

Osservabili per reticolo 500×500

Ising 2D: reticolo 500 × 500

