Flight Performance Analytics - Project Report

1. Introduction

Project Overview

Flight delays, cancellations, and customer complaints impact both passengers and airlines. This project leverages **Power BI** to analyze flight performance and provide **actionable insights** to improve airline efficiency and customer experience.

Objectives

- Monitor on-time performance, delays, cancellations, and complaints
- Identify top-performing airlines based on punctuality.
- Provide interactive visualizations for decision-making.

2. Data Preparation & Cleaning

Step 1: Data Explorer

- * Task: Import the dataset (CSV/Excel) into Power BI.
- Actions Taken:
- **❖** Used **Get Data** → Selected **CSV file** → Loaded into **Power Query**.
- Verified data using **Data View** to ensure correct structure.

Step 2 : Duplicate Buster

- * Task: Identify and remove duplicate rows.
- * Actions Taken:
- Applied Remove Duplicates on columns like Flight Number, Date,
 Airline.
- Verified uniqueness using Data Preview.

Step 4: Format Fixer

- ❖ Task: Standardize date formats and change the type of Arrival Time.
- Actions Taken:
- Converted date columns to Date/Time format to ensure proper sorting and filtering.

- Changed "Arrival Time" column from Text to Time format to improve time-based calculations and comparisons.
- Ensured consistency in categorical fields (e.g., Airline Names) by converting them to Proper Case.

Step 5: Data Transformer

- Task: Apply transformations using Conditional Columns on Flight Type.
- ❖ Actions Taken:
- Created a Conditional Column to classify flights based on their type:
 - \circ If Stops = 0 → "Direct Flight"
 - $_{\circ}$ If Stops = 1 \rightarrow "One-Stop Flight"
 - o If Stops > 1 → "Multi-Stop Flight"

• Used this column for filtering and visual analysis in Power BI to compare on-time performance and pricing trends for different flight types.

3. Data Modeling & Relationships

Step 6: Relationship Builder

- ❖ Task: Create relationships between tables for structured analysis
- Actions Taken:
- Established One-to-Many (1:N) relationships between:
 - o Flights Table (Flight ID) ← Airlines Table (Airline ID)
 - Flights Table (Airport ID) ← Airports Table (Airport ID)
- Verified correct cardinality in Model View.

4. Data Validation & Visualization

Step 7: Data Validator

- **Task:** Validate data consistency using visualizations.
- **Actions Taken:**

- Created Bar Charts to check delay distribution per airline.
- Used **Histograms** to verify normality of flight delays.
- Applied **Table View** to compare preprocessed vs. raw data.

5. Conclusion & Insights

- **❖ Top-performing airlines** maintained a **high on-time performance** rate.
- **Peak delay periods** occurred during **holiday seasons**.
- Certain airports consistently had more delays, indicating operational bottlenecks.
- Customer complaints correlated with higher delay rates for specific airlines.