Information Retrieval

Retrieval Models III: Pagerank, other models

Qianni Zhang

Retrieval Models III: Pagerank, others

Roadmap of the next two lectures:

- Pagerank
- Set based model
- Fuzzy set model
- Extended boolean model
- Generalised vector space

Introduction

- The heart of Google's searching software is PageRank™, a system for ranking web pages developed by Larry Page and Sergey Brin at Stanford University
- Essentially, Google interprets a link from page ν to page u as a vote, by page ν, for page u.
- BUT these votes doesn't weigh the same, because Google also analyzes the page that casts the vote.

 The authority of a page is the sum of the authorities of the pages that reference the page.

Introduction

PR page rank reflecting its "authority", which can be used to rank pages

u, v two pages

U set of pages

 $N(\nu)$ number of outgoing links in page ν

d a damping factor which can be set between 0 and 1

$$PR(u) \coloneqq (1-d) + d \cdot \sum_{v \to U} \frac{PR(v)}{N(v)}$$

- the summation is over the set of pages ν that have a link to page u
- the page rank of page u is recursively defined by the page rank of those pages which link to page u

The size of each face is proportional to the total size of the other faces which are pointing to it.

The Random Surfer Model

- Page rank is considered as a model of user behaviour, where a surfer clicks on links at random with no regard towards content.
- The random surfer visits a web page with a certain probability which derives from the page's page rank
- The probability that the random surfer clicks on one link is solely given by the number of links on that page.
- One page's page rank is divided by the number of links on the page.

The Random Surfer Model

- So, the probability for the random surfer reaching one page is the sum of probabilities for the random surfer following links to this page.
- This probability is reduced by the damping factor d.
- The justification within the Random Surfer Model, therefore, is that
 - the surfer does not click on an infinite number of links,
 - but gets bored sometimes and jumps to another page at random.

The damping factor d

- The probability for the random surfer not stopping to click on links is given by the damping factor d,
 - depends on probability
 - set between 0 and 1
- The higher d is, the more likely will the random surfer keep clicking links.
- Since the surfer jumps to another page at random after he stops clicking links, the probability therefore is implemented as a constant (1-d) into the algorithm.

The damping factor d

- Regardless of inbound links, the probability for the random surfer jumping to a page is always (1-d)
- so a page has always a minimum page rank
- The extend of page rank benefit for a page by another page linking to it is reduced.

An example

- A small web consisting of three pages A, B and C
- Page A links to the pages B and C, page B links to page C and page C links to page A
- The damping factor *d* is usually set to 0.85, but to keep the calculation simple we set it to 0.5.
 - PR(A) = 0.5 + 0.5 PR(C)
 - PR(B) = 0.5 + 0.5 (PR(A) / 2)
 - PR(C) = 0.5 + 0.5 (PR(A) / 2 + PR(B))

We get the following page rank values for the single pages.

- PR(A) = 1.07692308
- PR(B) = 0.76923077
- PR(C) = 1.15384615

The sum of all pages' PR is 3, equals the total number of web pages.

В

The iterative computation of page rank

- For the simple three-page example it is easy to solve the according equation system to determine page rank values.
- In practice, the web consists of billions of documents and it is not possible to find a solution by inspection.
- Google search engine uses an approximating, iterative computation of page rank values.
 - Each page is assigned an initial starting value
 - The page rank of all pages are calculated in several computation circles based on the equations determined by the page rank algorithm.
- The iterative calculation shall again be illustrated by the threepage example, whereby each page is assigned a starting page rank value of 1.

The iterative computation of page rank - example

Iteration	PR(A)	PR(B)	PR(C)
1teration 0 1 2 3 4 5 6 7 8	1	1	1
	1	0.75	1.125
	1.0625	0.765625	1.1484375
	1.07421875	0.76855469	1.15283203
	1.07641602	0.76910400	1.15365601
	1.07682800	0.76920700	1.15381050
	1.07690525	0.76922631	1.15383947
	1.07691973	0.76922993	1.15384490
	1.07692245	0.76923061	1.15384592
9	1.07692296	0.76923074	1.15384611
_	1.07692296	0.76923074	1.15384611
	1.07692305	0.76923076	1.15384615
11	1.07692307	0.76923077	1.15384615
12	1.07692308	0.76923077	1.15384615

Implementation - Dangling Links

- Links that point to any page with no outgoing links
- Most are pages that have not been downloaded yet
- Affect the model since it is not clear where their weight should be distributed
- Do not affect the ranking of any other page directly
- Can be simply removed before page rank calculation and added back afterwards

Implementation

- Convert each URL into a unique integer and store each hyperlink in a database using the integer IDs to identify pages
- Sort the link structure by ID
- Remove all the dangling links from the database
- Make an initial assignment of ranks and start iteration
 - Choosing a good initial assignment can speed up the page rank
- Adding the dangling links back.

Searching

- Two search engines:
 - Title-based search engine
 - Full text search engine
- Title-based search engine
 - Searches only the "Titles"
 - Finds all the web pages whose titles contain all the query words
 - Sorts the results by page rank
 - Very simple and cheap to implement
 - Title match ensures high precision, and page rank ensures high quality
- Full text search engine
 - Examines all the words in every stored document and also performs page rank (Rank Merging)
 - More precise but more complicated

Summary

- Page rank is a global ranking of all web pages based on their locations in the web graph structure
- Page rank uses information which is external to the web pages backlinks
- Backlinks from important pages are more significant than backlinks from average pages
- The structure of the web graph is very useful for information retrieval tasks.

Set Theoretic Models

- The Boolean model imposes a binary criterion for deciding relevance
- The question of how to extend the Boolean model to accommodate partial matching, i.e., a ranking for the documents retrieved has attracted considerable attention in the past
- We now discuss three alternative set theoretic models:
 - Set-Based Model
 - Extended Boolean Model
 - Fuzzy Set Model

Set-based models

- Combines set theory with a vectorial ranking
- The fundamental idea is to use mutual dependencies among index terms to improve results
- Term dependencies are captured through termsets, which are sets of correlated terms
- The approach, which leads to improved results with various collections, constitutes the first IR model that effectively took advantage of term dependence with general collections

- Termset is a concept used in place of the index terms
 - A termset $S_i = \{k_a, k_b, ..., k_n\}$ is a subset of the terms in the collection
 - If all index terms in S_i occur in a document d_j then we say that the termset S_i occurs in d_j
- There are 2^t termsets that might occur in the documents of a collection, where t is the vocabulary size
 - However, most combinations of terms have no semantic meaning
 - Thus, the actual number of termsets in a collection is far smaller than 2^t

- Let t be the number of terms of the collection
 - Then, the set $V_S = \{S_1, S_2, ..., S_{2^n t}\}$ is the vocabulary-set of the collection
- To illustrate, consider the document collection below

• Define k_a = to k_d = be k_g = I k_j = think k_m = let k_b = do k_e = or k_h = am k_k = therefore k_n = it k_c = is k_f = not k_i = what k_l = da

• Further, let the letters a...n refer to the index terms $k_a...k_n$, respectively

- Consider the query q as "to do be it", i.e. $q = \{k_a, k_b, k_d, k_n\}$
- For this query, the vocabulary-set is as below

Termset	Set of Terms	Documents
S_a	{a}	$\{d_1, d_2\}$
S_b	{b}	$\{d_1, d_3, d_4\}$
S_d	$\{d\}$	$\{d_1, d_2, d_3, d_4\}$
S_n	$\{n\}$	$\{d_4\}$
S_{ab}	$\{a,b\}$	$\{d_1\}$
S_{ad}	$\{a,d\}$	$\{d_1, d_2\}$
S_{bd}	$\{b,d\}$	$\{d_1, d_3, d_4\}$
S_{bn}	$\{b, n\}$	$\{d_4\}$
S_{abd}	$\{a,b,d\}$	$\{d_1\}$
S_{bdn}	$\{b,d,n\}$	$\{d_4\}$

Notice that there are 10 termsets that occur in our collection, out of the maximum of 16 termsets that can be formed with the terms in q

- At query processing time, only the termsets generated by the query need to be considered
 - A termset composed of *n* terms is called an *n*-termset
 - Let N_i be the number of documents in which S_i occurs
- An *n*-termset S_i is said to be frequent if the number of documents S_i appears in is greater than or equal to a given threshold
 - This implies that an n-termset is frequent if and only if all of its (n 1)-termsets are also frequent
 - Frequent termsets can be used to reduce the number of termsets to consider with long queries

- Let the threshold on the frequency of termsets be 2
- To compute all frequent termsets for the query
- $q = \{k_{a'}, k_{b'}, k_{c'}, k_{n}\}$ ("to do be it")
 - Compute the frequent 1-termsets and their inverted lists:

	• $S_a = \{d_1, d_2\}$	Termset	Set of Terms	Documents
	• $S_b = \{d_1, d_3, d_4\}$	S_a	{a}	$\{d_1, d_2\}$
	• $S_d = \{d_1, d_2, d_3, d_4\}$	S_{b}	{b}	$\{d_1, d_3, d_4\}$
2.	Combine the inverted lists to	S_d	$\{d\}$	$\{d_1, d_2, d_3, d_4\}$
	compute frequent 2-termsets:	S_n	$\{n\}$	$\{d_4\}$
	compute frequent 2-termsets.	$S_{m{a}m{b}}$	$\{a,b\}$	$\{d_1\}$
	• $S_{ad} = \{d_1, d_2\}$	S_{ad}	$\{a,d\}$	$\{d_1, d_2\}$
	• $S_{bd} = \{d_1, d_3, d_4\}$	S_{bd}	$\{b,d\}$	$\{d_1, d_3, d_4\}$
3.	Since there are no frequent	S_{bn}	$\{b,n\}$	$\{d_4\}$
	3-termsets, stop	S_{abd}	$\{a,b,d\}$	$\{d_1\}$
	/ I	S_{bdn}	$\{b,d,n\}$	$\{d_4\}$

- Notice that there are only 5 frequent termsets in our collection
- Inverted lists for frequent n-termsets can be computed by starting with the inverted lists of frequent 1-termsets
 - Thus, the only indices required are the standard inverted lists used by any IR system
- This is reasonably fast for short queries up to 4-5 terms

Ranking Computation

- The ranking computation is based on the Vector Space Model
- Using termsets instead of index terms
- Given a query q, specified as a set of index terms, let
 - $\{S_1, S_2,...\}$ be the set of termsets originated from q
 - N_i be the number of documents in which termset S_i occurs
 - N be the total number of documents in the collection
 - $F_{i,j}$ be the frequency of termsets S_i in document d_j , $F_{i,j} \neq 0$
- For each pair $[S_i, d_j]$, in which S_i occurs in d_j , we can compute a weight $W_{i,i}$, given by

$$W_{i,j} = (1 + \log F_{i,j}) \log(1 + \frac{N}{N_i}), \text{ if } F_{i,j} \neq 0$$

- For termsets that are not in the document, $W_{i,j} = 0$
- We also compute a $W_{i,q}$ value for each pair $[S_i, q]$

Ranking Computation

The weights of interest considering the query $q = \{k_a, k_b, k_d, k_n\}$ and the document d_3 are (assuming minimum threshold frequency of 1)

Termset	Weight		
\mathcal{S}_{a}	$W_{a,3}$	0	
\mathcal{S}_b	$W_{b,3}$	(1+log3)*log(1+4/3)=0.544	
\mathcal{S}_d	$W_{d,3}$	(1+log2)*log(1+4/4)=0.39	
\mathcal{S}_n	$W_{n,3}$	0	
\mathcal{S}_{ab}	$W_{ab,3}$	0	
\mathcal{S}_{ad}	$W_{ad,3}$	0	
\mathcal{S}_{bd}	$W_{bd,3}$	(1+log2)*log(1+4/3)=0.4784	
\mathcal{S}_{bn}	$W_{bn,3}$	0	
\mathcal{S}_{abd}	$W_{abd,3}$	0	
S_{bdn}	$W_{bdn,3}$	0	

Slide 27

Ranking Computation

A document d_j and a query q are represented as vectors in a 2^t dimensional space of termsets

$$\vec{d}_j = (\mathcal{W}_{1,j}, \mathcal{W}_{2,j}, \dots, \mathcal{W}_{2^t,j})$$

$$\vec{q} = (\mathcal{W}_{1,q}, \mathcal{W}_{2,q}, \dots, \mathcal{W}_{2^t,q})$$

 The rank of d_j to the query q is computed using the similarity function as in the vector space model

$$sim(d_j, q) = \frac{\vec{d_j} \bullet \vec{q}}{|\vec{d_j}| \times |\vec{q}|} = \frac{\sum_{S_i} \mathcal{W}_{i,j} \times \mathcal{W}_{i,q}}{|\vec{d_j}| \times |\vec{q}|}$$

- Normalisation needed to avoid counter-intuitive results
- Ranking of documents is done based on sim(d_i, q)