

presentation in a possible appeal. Accordingly, upon entry of this response Applicant respectfully requests reconsideration of the above-referenced application.

PENDING CLAIMS

- 1 1. A method for performing motion estimation comprising:
 - 2 receiving a stream of data comprising one or more bidirectionally interpolated frames (B-frame) and a plurality of anchor frames; and
 - 4 unidirectionally predicting content of each B-frame from a temporally closest anchor frame.
- 1
- 1 2. The method of claim 1, wherein the content of the B-frames is unidirectionally predicted from the content of the temporally closest anchor frame and one or more motion vectors.
- 1
- 1 3. The method of claim 2, wherein the one or more motion vectors represent an activity measure of the temporally closest anchor frame.
- 1
- 1 4. The method of claim 3, wherein the motion vector is determined by a sum of absolute differences in activity within the temporally closest anchor frame.
- 1
- 1 5. The method of claim 1, wherein the temporally closest anchor frame selected to unidirectionally predict the content of the B-frame may either precede or supersede the B-frame.

1 6. The method of claim 1, wherein the plurality of anchor frames and B-frames contain
2 progressive video content.

1

1 7. The method of claim 1, wherein the plurality of anchor frames and B-frames contain
2 interlaced video content.

1

1 8. An apparatus comprising:

2 a motion estimation circuit to receive one or more bidirectionally interpolated frames (B-
3 frame) and a plurality of anchor frames, and to unidirectionally predict content of each of the
4 plurality of B-frames from a select anchor frame.

1

1 9. The apparatus of claim 8, wherein the motion estimation circuit predicts the content for
2 each B-frame from a temporally closest anchor frame.

1

1 10. The apparatus of claim 8, wherein the motion estimation circuit generates a motion vector
2 based, at least in part, on the selected anchor frame.

1

1 11. The apparatus of claim 10, wherein the motion vector represents an activity measure of
2 the anchor frame.

1

1 12. The apparatus of claim 10, wherein the motion estimation circuit generates the motion
2 vector from a sum of absolute differences in activity within the anchor frame.

1

1 13. The apparatus of claim 10, wherein the motion estimation circuit unidirectionally predicts
2 the content of B-frames from a temporally closest anchor frame and one or more motion vectors
3 generated therefrom.

1

1 14. The apparatus of claim 13, wherein the motion estimation circuit generates the one or
2 more motion vectors from a sum of absolute differences in activity within the temporally closest
3 anchor frame.

1

1 15. The apparatus of claim 8, wherein the motion estimation circuit utilizes either a preceding
2 or superseding anchor frame to predict B-frame content, depending on which is temporally closer
3 to the B-frame.

1

1 16. A storage medium comprising a plurality of executable instructions which, when
2 executed, cause an executing processor to implement a motion estimation function to
3 unidirectionally predict content of each of a plurality of received bidirectionally interpolated
4 frames (B-frames) from a select anchor frame.

1

1 17. The storage medium of claim 16, wherein the motion estimation function utilizes either a
2 preceding or superseding anchor frame to predict B-frame content, depending on which is
3 temporally closer to the B-frame.

1