计算方法上机实习四

实习内容四 病态线性方程组的求解

1、上机实习二中的行星轨道 $b_0 + b_1 x + b_2 y + b_3 x y + b_4 y^2 = x^2$ 最小二乘拟合问题,

表 1:

X	•	1.02	0.95	0.87	0.77	0.67	0.56	0.44	0.30	0.16	0.01
y	'	0.39	0.32	0.27	0.22	0.18	0.15	0.13	0.12	0.13	0.15

表 2:

Δx	-0.0029	0.0007	-0.0082	-0.0038	-0.0041
Δy	-0.0033	0.0043	0.0006	0.0020	0.0044
Δx	0.0026	-0.0001	-0.0058	-0.0005	-0.0034
Δy	0.0009	0.0028	0.0034	0.0059	0.0024

- 1) 首先,只用表 1 的 10 个点来拟合轨道,并计算方程组系数矩阵的条件数,其次,假如 x 和 y 包含扰动 Δx 和 Δy (表 2),对新的 x 和 y 重新拟合轨道;(要求:最小二乘法求解方程组时用 LU(主元)分解法)
- 2) 将1) 拟合得到的两条轨道画在同一张图上,比较差异,并讨论扰动对轨道差异的影响。
- 2、以希尔伯托矩阵为系数的线性方程组,其真解为 $(1, 1, ..., 1)^T$,体会病态方程组求解的稳定性问题。

$$H_n = \begin{pmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\ \vdots & \vdots & & \\ \frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1} \end{pmatrix}$$

- 1) 给出条件数随矩阵的维数 n 增大的变化曲线; 若分别取 n=6, n=8, n=10, n=15, 用迭代法解方程组(*Jacobi* 迭代和 *Gauss-Seidel* 二选一, 根据收敛条件判断), 比较求解结果与真解;
- 2) 讨论用迭代法求解病态方程组时,是否与直接法存在相同的问题?如果存在差异,如何理解造成这种差异的原因。

3、实习要求及实习报告

要求按以上过程完成实习内容,完成实习报告。实习报告包括:分析报告(包括图形),编程流程图,源代码,运行结果(屏幕截图)。