Department of Mathematics & Statistics

MTH-102A Ordinary Differential Equations

Assignment II

1. \star Solve the following separable equations

(i) $y' = \frac{1+y^2}{1+x^2}$

(ii)
$$\sqrt{1-x^2} y' + \sqrt{1-y^2} = 0$$
.

2. \star Solve the following non-linear equations by converting them in to a separable equation. (i) $xy'-y=\sqrt{x^2+y^2}$ (ii) $(x-\sqrt{xy})y'=y$ (iii) $y'+\frac{2}{x}y=\frac{3x^2y^2+6xy+2}{x^2(2xy+3)}$.

(iii)
$$y' + \frac{2}{x}y = \frac{3x^2y^2 + 6xy + 2}{x^2(2xy + 3)}$$

3. * Solve the following initial value problems and find the maximal interval on which the

(i)
$$x^2y' = y^2 + xy - x^2$$
 with $y(1) = 2$
 (ii) $y' = -2x(y^2 - 3y + 2)$ with $y(0) = 3$.

4. \star Show that the equations

(i) $(4x^3y^3 + 3x^2) + (3x^4y^2 + 6y^2)y' = 0$ and (ii) $(ye^{xy} \tan x + e^{xy} \sec^2 x) + (xe^{xy} \tan x)y' = 0$. are exact and solve them.

5. ★Find an integrating factor of

(a) $(2xy^3 - 2x^3y^3 - 4xy^2 + 2x) + (3x^2y^2 + 4y)y' = 0$.

(b) $2xy^3 + (3x^2y^2 + x^2y^3 + 1)y' = 0$ and

(c) $(3xy + 6y^2) + (2x^2 + 9xy)y' = 0$.

and solve them.

6. * Solve the initial value problem $y' + 2xy = -e^{-x^2} \left(\frac{3x + 2ye^{x^2}}{2x + 3ye^{x^2}} \right)$ with y(0) = -1.

7. * Find the Picard iterates of y' = y with y(0) = 1.

8. * Find the first three Picard iterates of $y' = 1 + y^3$ with y(1) = 1.

9. Solve the equation $y' = \frac{ax + by + h}{cx + dy + k}$ where a, b, c, d, h and k are constants.

10. Show that the separable equation $-y + (x + x^6)y' = 0$ can be converted to an exact equation by multiplying with an integrating factor.

11. Let $a, b, c, d \in \mathbb{R}$ be such that $ad - bc \neq 0$ and $m, n \in \mathbb{R}$. Show that the equation $(ax^my + by^{n+1}) + (cx^{m+1} + dxy^n)y' = 0$ has an integrating factor of the form $x^{\alpha}y^{\beta}$.

12. Construct the first two Picard iterates of $y' = (x^2 + y^2)$ with y(0) = 1.

13. Construct the Picard iterates of y' = 2t(y+1) with y(0) = 0 and show that $y(t) \to e^{t^2} - 1$.

14. Show that the solution y of $y' = x^2 + e^{-y^2}$ with y(0) = 0 exists for $0 \le x \le \frac{1}{2}$ and $|y(x)| \le 1$ for $0 \le x \le \frac{1}{2}$.

15. Show that $W := \{y : \mathbb{R} \to \mathbb{R} : y \text{ is a solution of } y' + py = 0\}$ is a vector space; here $p : \mathbb{R} \to \mathbb{R}$ is a continuous function. What is the dimension of W?

16. Solve the given Bernoulli equations.

(i) $7xy^6y' - 2y^7 = -x^2$ (ii) $x^2y' + 2y = 2e^{\frac{1}{x}}y^{\frac{1}{2}}$.

(ii)
$$x^2y' + 2y = 2e^{\frac{1}{x}}y^{\frac{1}{2}}$$

17. Miscellaneous Problems. Solve the following equations.

(i) $y' + \frac{t}{1+x^2}y = 1 - \frac{x^3}{1+x^4}y$ (ii) y' = k(a-y)(b-y) where a, b > 0

(ii)
$$y' = k(a - y)(b - y)$$
 where a, b > 0

(iii) $y' = -y\sqrt{x}\sin x$.