PBG 200A Notes

Sam Fleischer

November 28, 2016

• Genome sequencing

- physically break up the genome, clone them, order the clones, sequence each clone, made sense to everyone, but they only got 3% of the human genome after 10 years.
- or shotgun sequencing, which is break up into random pieces.

• Sequence assembly

- de novo assembly
 - * requires longer reads, greater depth, low polymorphism
- reference mapping
 - * must assume you already have a genome sequence (reference genome)
 - * use reference genome as a template
 - * allows shorter reads, lower depth, tolerates polymorphisms
- RNA to DNA mapping
 - * quantification of gene expression
 - * detection of splice junctions
 - * alternative splicing
- Genome sequencing (shotgun) basic ideas
 - high coverage (redundant)
 - if mean coverage is $1\times$, not going to happen since you need overlap. Even $10\times$ is not enough.
 - the higher the \times coverage, the greater the chances that every read will overlap with at last two other reads. For assembly to be contiguous, you need very high coverage ($30\times$, $50\times$, and higher).
 - The shorter the reads, the higher coverage you need. The shorter the reads, the shorter the overlap, the higher the coverage you need.
 - * the fundamental tradeoff: high coverage, short reads vs. low coverage, long reads
 - Eukaryotic genomes have repeates.. this is a problem. If the longest repeat is longer than the longest read, no way to get contiguous assembly. There are some repeats which are 12 kilobases long.

• Second-generation technology

- two steps
 - * assemble unambiguous reads into contigs that end at repeat boundaries
 - * combine contigs using bridging data
- a scaffold is a collection of contigs linked by mate pairs. Gaps can represent repeats or true missing data.
- You want long mate pairs
- de novo assembly
 - overlap consensus algorithms
 - * compares reads, finds overlaps (first finds identical seeds) and extends if possible
 - de Bruijn graph algorithms (VELVET, ASySS, SOAPdenovo)
 - * breaks up reads into shorter (every possible) k-mers.

- * every read gives an enormous database of k-mers.
- * connects reads which contain identical k-mers
- * collapses graphs into contigs
- scaffolding
 - * uses additional info from paired end and mate-pair libraries
 - * this is where a lot of mis-assembly happens.
 - * current tradeoff: contiguous vs. accurate.
- issues
 - * highly computationally intesive (not tractable for small k)
 - * sensitive to polymorphisms, errors, non-random fragmentation, non-uniform coverage, repeats
 - * polymorphisms are the biggest problems
 - \cdot slightly overcome this through inbreeding
- how good is the assembly (measure the quality)
 - N50
 - * 50% of the entire assembly is contained in contigs that are at least as long as N50. The higher the N50, the more contiguous the assembly.
 - it is possible that 80% of the genome is missing
 - it is also possible that the assembly yields a longer contig than the size of the genome!
 - how good do we need the sample to be?
 - * the difficulty and cost of genome assembly increases exponentially as we approach perfection.
 - · must decide what the goal is BEFORE you decide the technology for the job
- reference mapping
 - much much easier than de novo, but assumes we already have a reference assembly
 - used to study intra-specific polymorphisms
 - not used much now since it is expensive and not much better (if at all) than de novo. Still may be better in certain circumstances.
- combining data
 - hybrid strategy
 - * gets lots of short and some long reads
- whole genome amplification
 - processivity of up to 100kb
 - low error rates
- how to deal with high error rates
 - hybrid assembly
 - * use lots of short reads to correct long reads
 - * but use long reads to assembly
 - self-correcting assembly
 - * overlapping long reads correct each other
 - * PacBio is (basically) random error, so concensus will smooth out errors
 - additional tricks
 - * multiple pass reads of PacBio "barbells" (doesn't work that great in reality due to longevity of polymerase)
 - * 2D reads with Nanopore (double strand connected to itself via loop on one end)
- long read assembly approaches
 - hierarchical

- * long read high error to long read low error by using short read low error
- scaffolding/gap filing
- read threading
 - * graph structure resolves bubbles in scaffolding
- $\bullet\,$ example Drosophila serrata
 - Illumina
 - * reads and coverage 200×
 - PacBio
 - * reads and ocverage 63× (expensive for PacBio)
- Irys BioNano physical mapping
 - Get a visual fingerprint (light-based) to match up the molecules
- (from DNA to RNA) Transcriptome sequencing
 - RNA isolation
 - * what sample do you want and why?
 - mRNA purification and cDNA synthesis
 - normalization (if needed)
 - * nowadays sequencing is so cheap that we don't realy need this.. might as well just sequence the hell out of it.
 - non-stranded or strand-specific sequencing
 - * determine which strand is expressed
 - * avoid chimeric contigs from overlapping 3' UTRs.