$S = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - \frac{1}{2} r_{\frac{1}{3}} (\partial_{\beta}\mathcal{A}_{i\ \theta}^{\ \theta} \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta} + \partial_{i}\mathcal{A}_{\beta\ \theta}^{\ \theta} \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta} +$ $\partial_{\alpha}\mathcal{R}^{\alpha\beta_{i}}\partial_{\theta}\mathcal{R}_{\beta_{i}}^{}-2\,\partial_{\alpha}^{i}\mathcal{R}_{\alpha}^{\phantom{\alpha\beta_{i}}}\partial_{\theta}\mathcal{R}_{\beta_{i}}^{}+\partial_{\alpha}\mathcal{R}^{\alpha\beta_{i}}\partial_{\theta}\mathcal{R}_{\alpha_{i}}^{}-2\,\partial_{\alpha}^{i}\mathcal{R}_{\alpha_{i}}^{\phantom{\alpha\beta_{i}}}\partial_{\theta}\mathcal{R}_{\alpha_{i}}^{}+8\,\partial_{\beta}\mathcal{R}_{\alpha_{i}}^{\phantom{\alpha\beta_{i}}}\partial_{\theta}\mathcal{R}^{\alpha\beta_{i}})+\\$ $r_{\frac{1}{5}}(\partial_{i}\mathcal{A}_{\theta \kappa}^{\kappa}\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha_{i}}-\partial_{\theta}\mathcal{A}_{\kappa}^{\kappa}\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha_{i}}-(\partial_{\alpha}\mathcal{A}_{\alpha}^{\alpha_{i}\theta}-2\partial^{\theta}\mathcal{A}_{\alpha}^{\alpha_{i}})(\partial_{\kappa}\mathcal{A}_{\kappa}^{\kappa}-\partial_{\kappa}\mathcal{A}_{\theta \kappa}^{\kappa})))[t, x, y, z]dzdydxdt$

${}^{0^{+}}\mathcal{H}^{\parallel \ 0^{+}}f^{\parallel \ 0^{+}}f^{\perp} \quad {}^{0}\mathcal{H}^{\parallel}$ 0.⁺ A∥ + 0

Wave operator

PSALTer results panel

^{0,+} σ^{||} † 0

0

0

 $0.^{+}\tau^{\parallel} + 0 0 0$

 $0^+\tau^{\perp} + 0 \quad 0 \quad 0$

0.01 + 0.00

						~	~	~				
-		$^{1^+}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{1}{k^2 (2r.+r.)}$	0	0	0	0	0	0			
		$1.^+\sigma^{\perp}$ $\uparrow^{\alpha\beta}$	0	0	0	0	0	0	0			
		$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	0	0	0	0			
		$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	$\frac{2}{k^2 (r_1 + 2r_1)}$	0	0	0			
		$^{1}\sigma^{\perp}\dagger^{\alpha}$	0	0	0	0	0	0	0			
		$1^{-}\tau^{\parallel}$ † $^{\alpha}$	0	0	0	0	0	0	0			
		$\frac{1}{2}\tau^{\perp} + \alpha$	0	0	0	0	0	0	0	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	2. ⁺ τ αβ	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
									$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$-\frac{2}{3 k^2 r_{\cdot 3}}$	0	0
									$^{2.}^{+}\tau^{\parallel}$ $\dagger^{\alpha\beta}$	0	0	0
									$e^{-\sigma^{\parallel}}$	0	0	0
Source constraints												

Spin-parity form	Covariant form	Multiplicities
<u>0</u> -σ == 0	True	1
$0.^{+}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$0^+_{\cdot}\tau^{\parallel}==0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
$0^+ \sigma^{\parallel} == 0$	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} == 0$	1
$\frac{1}{1}\tau^{\perp}^{\alpha}=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
$1 \tau^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}==0$	3
$1^+_{\cdot \tau} \parallel^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau (\Delta + \mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau (\Delta + \mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau (\Delta + \mathcal{K})^{\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau (\Delta + \mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau (\Delta + \mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau (\Delta + \mathcal{K})^{\beta\alpha}$	3
$1^+_{\cdot}\sigma^{\perp}{}^{\alpha\beta}=0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$2^{-}\sigma^{\parallel^{\alpha\beta\chi}}=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}{}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta \alpha \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \alpha \delta} +$	5
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta \alpha \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{ \delta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{ \delta} = 0$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}{}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} +$	
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\delta}^{\epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{\delta}$	
$2^+_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi\beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi}$	

29

Massive spectrum

Total expected gauge generators:

(No particles)

Massless spectrum

residue: $\begin{bmatrix} 2 \\ \end{bmatrix}$ 3

Pole residue:	-— + r. 3	$\frac{2r.+r.}{3}$	$\frac{1}{r_1+2r_2} > 0$	J
Polarisations:	2			_

Unitarity conditions

 $(r_{3} < 0 \&\& (r_{5} < -\frac{r_{3}}{2} || r_{5} > -2 r_{3})) || (r_{3} > 0 \&\& -2 r_{3} < r_{5} < -\frac{r_{3}}{2})$