When ViT Outperform ResNets

without Pre-training or Strong Data Augmentations

Докладчик: Константин Матвеев Рецензент: Никита Андреев Исследователь: Александра Сендерович Хакер: Сергей Петрович

План:

- 1. ViT: преимущества и проблемы
- 2. Оптимизатор SAM
- 3. Результаты ViT-SAM
- 4. Свойства ViT-SAM

Vision Transformer

Проблема ViT

Ему нужно либо много данных,

Проблема ViT

Ему нужно либо много данных,

либо сложные аугментации

Pre-training	Fine-tuning	Rand-Augment	AutoAug	Mixup	CutMix	Erasing	Stoch. Depth	Repeated Aug.	Dropout	Exp. Moving Avg.
adamw	adamw	✓	X	✓	✓	✓	✓	✓	X	X

Проблема ViT

- Функция потерь "острая"
- Из-за этого нужно или очень много данных, или сильные аугментации
- Высокая чувствительность к гиперпараметрам и инициализации

План:

1. ViT: преимущества и проблемы

2. Оптимизатор SAM

- 3. Результаты ViT-SAM
- 4. Свойства ViT-SAM

- Хотим искусственно сгладить функцию потерь
- Для этого будем вместо задачи

$$\min_{w} L_{train}(w)$$

решать задачу

$$\min_{w} \max_{\|\epsilon\|_{2} \le \rho} L_{train}(w + \epsilon),$$

• Решаем

$$\min_{w} \max_{\|\epsilon\|_2 \le \rho} L_{train}(w + \epsilon),$$

• Решаем $\min_{w} \max_{\|\epsilon\|_2 \le \rho} L_{train}(w+\epsilon),$

• На текущем шаге $\epsilon^\star = rg \max_{\|\epsilon\|_2 <
ho} L_{train}(w+\epsilon)$

• Решаем

$$\min_{w} \max_{\|\epsilon\|_{2} < \rho} L_{train}(w + \epsilon),$$

• На текущем шаге $\epsilon^* = \arg \max_{\|\epsilon\|_2 < \rho} L_{train}(w + \epsilon)$

• Сложно; вычисляем приближение первого порядка

$$\hat{\epsilon}(w) = \underset{\|\epsilon\|_{2} \leq \rho}{\arg \max} L_{train}(w) + \epsilon^{T} \nabla_{w} L_{train}(w)$$
$$= \rho \nabla_{w} L_{train}(w) / \|\nabla_{w} L_{train}(w)\|_{2}$$

Решаем

$$\min_{w} \max_{\|\epsilon\|_{2} \le \rho} L_{train}(w + \epsilon),$$

На текущем шаге
$$\epsilon^{\star} = \arg \max_{\|\epsilon\|_2 < \rho} L_{train}(w + \epsilon)$$

Сложно; вычисляем приближение первого порядка

$$\hat{\epsilon}(w) = \underset{\|\epsilon\|_{2} \le \rho}{\arg \max} L_{train}(w) + \epsilon^{T} \nabla_{w} L_{train}(w)$$
$$= \rho \nabla_{w} L_{train}(w) / \|\nabla_{w} L_{train}(w)\|_{2}$$

Шаг по

$$\nabla_w L_{train}(w)|_{w+\hat{\epsilon}(w)}$$

План:

- 1. ViT: преимущества и проблемы
- 2. Оптимизатор SAM
- 3. Результаты ViT-SAM
- 4. Свойства ViT-SAM

- Острота лосса на порядок уменьшается
- SAM улучшает качество top-1 accuracy на ImageNet по всем моделям
- ViT превосходит ResNet и на обычной, и на corrupted выборке

	ResNet-152	ResNet-152- SAM	ViT-B/16	ViT-B/16- SAM	Mixer-B/16	Mixer-B/16- SAM	
#Params	60)M		7M	59M		
NTK κ †	280	01.6	420	05.3	144	-68.0	
Hessian λ_{max}	179.8	179.8 42.0 738		20.9	1644.4	22.5	
ImageNet (%)	78.5	79.3	74.6	79.9	66.4	77.4	
ImageNet-C (%)	50.0	52.2	46.6	56.5	33.8	48.8	

- Острота лосса на порядок уменьшается
- SAM улучшает качество top-1 accuracy на ImageNet по всем моделям
- ViT превосходит ResNet и на обычной, и на corrupted выборке

	ResNet-152	ResNet-152- SAM	ViT-B/16	ViT-B/16- SAM	Mixer-B/16	Mixer-B/16- SAM	
#Params	60)M	87	7 M	59M		
NTK κ †	280	01.6	420	05.3	14468.0		
Hessian λ_{max}	179.8 42.0		738.8	20.9	1644.4	22.5	
ImageNet (%)	78.5	79.3	74.6	79.9	66.4	77.4	
ImageNet-C (%)	50.0	52.2	46.6	56.5	33.8	48.8	

- Острота лосса на порядок уменьшается
- SAM улучшает качество top-1 accuracy на ImageNet по всем моделям
- ViT превосходит ResNet и на обычной, и на corrupted выборке

	ResNet-152	ResNet-152- SAM	V1T_R/16		Mixer-B/16	Mixer-B/16- SAM	
#Params	60)M	87	7M	59M		
NTK κ †	280	01.6	420	05.3	14468.0		
Hessian λ_{max}	179.8	42.0	738.8	738.8 20.9		22.5	
ImageNet (%)	78.5 79.3		74.6	79.9	66.4	77.4	
ImageNet-C (%)	50.0	52.2	46.6	56.5	33.8	48.8	

TLDR: SAM улучшает все модели всех размеров на всех датасетах

Model	#params	rams Throughput (img/sec/core) ImageNet		Real	V2	ImageNet-R	ImageNet-C				
ResNet											
ResNet-50-SAM	25M	2161	76.7 (+0.7)	83.1 (+0.7)	64.6 (+1.0)	23.3 (+1.1)	46.5 (+1.9)				
ResNet-101-SAM	44M	1334	78.6 (+0.8)	84.8 (+0.9)	66.7 (+1.4)	25.9 (+1.5)	51.3 (+2.8)				
ResNet-152-SAM	60M	935	79.3 (+0.8)	84.9 (+0.7)	67.3 (+1.0)	25.7 (+0.4)	52.2 (+2.2)				
ResNet-50x2-SAM	98M	891	79.6 (+1.5)	85.3 (+1.6)	67.5 (+1.7)	26.0 (+2.9)	50.7 (+3.9)				
ResNet-101x2-SAM	173M	519	80.9 (+2.4)	86.4 (+2.4)	69.1 (+2.8)	27.8 (+3.2)	54.0 (+4.7)				
ResNet-152x2-SAM	236M	356	81.1 (+1.8)	86.4 (+1.9)	69.6 (+2.3)	28.1 (+2.8)	55.0 (+4.2)				
Vision Transformer											
ViT-S/32-SAM	23M	6888	70.5 (+2.1)	77.5 (+2.3)	56.9 (+2.6)	21.4 (+2.4)	46.2 (+2.9)				
ViT-S/16-SAM	22M	2043	78.1 (+3.7)	84.1 (+3.7)	65.6 (+3.9)	24.7 (+4.7)	53.0 (+6.5)				
ViT-S/14-SAM	22M	1234	78.8 (+4.0)	84.8 (+4.5)	67.2 (+5.2)	24.4 (+4.7)	54.2 (+7.0)				
ViT-S/8-SAM	22M	333	81.3 (+5.3)	86.7 (+5.5)	70.4 (+6.2)	25.3 (+6.1)	55.6 (+8.5)				
ViT-B/32-SAM	88M	2805	73.6 (+4.1)	80.3 (+5.1)	60.0 (+4.7)	24.0 (+4.1)	50.7 (+6.7)				
ViT-B/16-SAM	87M	863	79.9 (+5.3)	85.2 (+5.4)	67.5 (+6.2)	26.4 (+6.3)	56.5 (+9.9)				
	9×		MLP-Mi	xer							
Mixer-S/32-SAM	19M	11401	66.7 (+2.8)	73.8 (+3.5)	52.4 (+2.9)	18.6 (+2.7)	39.3 (+4.1)				
Mixer-S/16-SAM	18M	4005	72.9 (+4.1)	79.8 (+4.7)	58.9 (+4.1)	20.1 (+4.2)	42.0 (+6.4)				
Mixer-S/8-SAM	20M	1498	75.9 (+5.7)	82.5 (+6.3)	62.3 (+6.2)	20.5 (+5.1)	42.4 (+7.8)				
Mixer-B/32-SAM	60M	4209	72.4 (+9.9)	79.0 (+10.9)	58.0 (+10.4)	22.8 (+8.2)	46.2 (12.4)				
Mixer-B/16-SAM	59M	1390	77.4 (+11.0)	83.5 (+11.4)	63.9 (+13.1)	24.7 (+10.2)	48.8 (+15.0)				
Mixer-B/8-SAM	64M	466	79.0 (+10.4)	84.4 (+10.1)	65.5 (+11.6)	23.5 (+9.2)	48.9 (+16.9)				

Качество с SAM vs сильные аугментации

- SAM лучше аугментаций (AUG)
- Для ViT особенно заметно на меньших размерах
- Помогает их объединять, но не всегда

Dataset	#Images	ResNet-152			ViT-B/16				Mixer-B/16				
Dataset	ntaset #Images	Vanilla	SAM	AUG	SAM + AUG	Vanilla	SAM	AUG	SAM + AUG	Vanilla	SAM	AUG	SAM + AUG
ImageNet	1,281,167	78.5	79.3	78.8	78.9	74.6	79.9	79.6	81.5	66.4	77.4	76.5	78.1
i1k (1/2) i1k (1/4) i1k (1/10)	640,583 320,291 128,116	74.2 68.0 54.6	75.6 70.3 57.1	75.1 70.2 59.2	75.5 70.6 59.5	64.9 52.4 32.8	75.4 66.8 46.1	73.1 63.2 38.5	75.8 65.6 45.7	53.9 37.2 21.0	71.0 62.8 43.5	70.4 61.0 43.0	73.1 65.8 51.0

План:

- 1. ViT: преимущества и проблемы
- 2. Оптимизатор SAM
- 3. Результаты ViT-SAM
- 4. Свойства ViT-SAM

Свойства моделей с SAM: разреженность

Модели разреженнее, особенно на начальных слоях (< 10% ненулевых нейронов)
 => Можно прунить

Свойства моделей с SAM: интерпретируемость

- Attention-маски классификационного токена ViT более интерпретируемы с SAM

Свойства моделей с SAM: вклад SAM

- Чем меньше обучающая выборка, тем больше вклад SAM в качество

Итого

- ViT и MLP-Mixer тяжело обучать из-за остроты функции потерь
- SAM сглаживает лосс и улучшает скоры
- ViT-SAM побеждает ResNet на ImageNet без сильных аугментаций
- Модели после SAM более разреженные и интерпретируемы

Рецензия

Сильные стороны

- Статья не очень сложная, хорошо читается
- Авторы используют SAM и объясняют почему именно он подходит для улучшения обучения моделей
- Также в статье есть теоретический обзор SAM
- Статья больше про эксперименты, поэтому их проведено большое количество, все грамотно описано, понятные таблицы
- Есть ablation study, где рассказано про contrastive learning, adversarial learning, а также изменение размера выборки и поведение моделей с SAM в этих контекстах

Слабые стороны

- В статье не предлагается ничего принципиально нового существующий метод SAM применяется для двух архитектур, однако эксперименты по применению и есть суть статьи
- В самой статье нет результатов для больших модификаций моделей (например ViT-L, ResNet-152х4) однако авторы объясняют это ограничением ресурсов.

Основная критика на openreview - отсутствие теоретической новизны статьи Оценки 8, 6, 5

Воспроизводимость

Авторы выложили чекпоинты на гитхаб, проблем с воспроизведением результатов исходя из статьи быть не должно.

Оценка по критериям НИПСа: 8

Уверенность: 4

Исследование

Публикация

- ICLR 2022 Spotlight
- 1 версия 3 июня 2021 года, 2 версия 11 октября 2021 года (на конфу)
- Оценки рецензентов: 5, 6, 8, 8
- После этого добавили немного экспериментов
- Далее была поставлена ещё одна 8

Авторы

Xiangning Chen, стажёр в Google, PhD в UCLA

Cho-Jui Hsieh, доцент, глава научной группы в UCLA

Boqing Gong, исследователь из Google

Авторы. Первый автор, Xiangning Chen

- Стажировка в Google Research, AutoML Team
- PhD в University of California, Los Angeles
- Все статьи с начала PhD в соавторстве со вторым автором
- Статьи по теме:
 - 2 статьи про ViTs отозвал с ICLR 2022 из-за плохих оценок:
 - Can Vision Transformers Perform Convolution?
 - Sharpness-Aware Minimization in Large-Batch Training: Training Vision Transformer In Minutes
 - о В 2020 году статья про Neural Architecture Search со сглаживанием лосса

Статьи не по теме:

- Ещё 2 статьи принято на ICLR 2022: распределённое adversarial обучение, AutoML
- Paнee статьи по NAS + 1 статья про adversarial аугментации для компьютерного зрения в соавторстве со 2 и 3 автором

Авторы

- Второй автор, Cho-Jui Hsieh:
 - о Доцент, глава UCLA Computational Machine Learning Group
 - Группа занимается adversarial robustness, model compression
 - Последний или предпоследний автор публикаций своей группы
 - Научный руководитель первого автора
 - В статье использовался оптимизатор LAMB из его статьи 2020 года
- Третий автор, Boqing Gong:
 - Исследователь из Google Research
 - Занимается компьютерным зрением, adversarial robustness
 - о Много публикаций последним или предпоследним автором

Ссылки

4 основных идеи:

- Vision Transformer (Dosovitsky, 2020)
- MLP Mixer (Tolstikhin, 2021)
- Sharpness-Aware Minimization (Foret, 2021)
- ResNet (He, 2015)
- 1 нестандартная метрика: NTK condition number из (Xiao, 2020)

Цитирования

- SemanticScholar: 26 цитирований, из них 17 в обзоре литературы
- В основном оптимизируют ViT и сравниваются:
 - Bootstrapping ViTs: Towards Liberating Vision Transformers from Pre-training
- Продолжение применяют SAM к текстовым трансформерам:
 - Sharpness-Aware Minimization Improves Language Model Generalization
 - "Encouraged by wins in the vision domain, we ask whether SAM can deliver similar gains in the language domain"

Дальнейшие исследования и приложения

- Прунинг, сжатие Vision Transformers
 - В статье говорилось, что при обучении с SAM мало ненулевых активаций
- Эксперименты с corrupted labels, как в статье про mixup
 - Corrupted labels в обучающем наборе данных есть неправильные таргеты
- Сделать многофункциональный трансформер
 - Работающий с картинками, текстом, звуком