Задачи по Эконометрике временных рядов

Н.В. Артамонов

7 апреля 2024 г.

Содержание

1	Работа с рядами в Python. Визуализация	1
2	ACF & PACF	5
3	Стационарные ряды. Модель ARMA 3.1 Модель ARMA с константой	5 6 8
4	Модель ARIMA	8
5	Модель (*)ARCH	14
A	Библиотеки Python	16
1	Работа с рядами в Python. Визуализаци	Я
	1. Из БД FRED загрузите квартальные данные по ВВП США с 1 по н.в. (ряд gdp)	990
	1. Задайте квартальный временной индекс	
	2. Визуализируйте ряд gdp	
	3. Визуализируйте ряд $\log(gdp)$	
	4. Визуализируйте ряд $\Delta \log(gdp)$	

- 5. Визуализируйте ряд $\Delta^2 \log(gdp)$
- 6. Постройте гистограммы для $\log(gdp)$, $\Delta \log(gdp)$, $\Delta^2 \log(gdp)$
- 7. Постройте диаграмму рассеяние $\log(gdp_t)$ vs $\log(gdp_{t-1})$
- 8. Постройте диаграмму рассеяние $\Delta \log(gdp_t)$ vs $\Delta \log(gdp_{t-1})$
- 9. вычислите $\operatorname{corr}(\log(gdp_t), \log(gdp_{t-1}))$ и тестируйте его значимость (формально!)
- 10. вычислите $\operatorname{corr}(\Delta \log(gdp_t), \Delta \log(gdp_{t-1}))$ и тестируйте его значимость (формально!)
- #2. Из БД FRED загрузите **месячные** данные по М2 США с 1990-01-01 по н.в. (ряд m2)
 - 1. Задайте месячный временной индекс
 - 2. Визуализируйте ряд m2
 - 3. Визуализируйте ряд $\log(m2)$
 - 4. Визуализируйте ряд $\Delta \log(m2)$
 - 5. Визуализируйте ряд $\Delta^2 \log(m2)$
 - 6. Постройте гистограммы для $\log(m2), \Delta \log(m2), \Delta^2 \log(m2)$
 - 7. Постройте диаграмму рассеяние $\log(m2_t)$ vs $\log(m2_{t-1})$
 - 8. Постройте диаграмму рассеяние $\Delta \log(m2_t)$ vs $\Delta \log(m2_{t-1})$
 - 9. вычислите $\operatorname{corr}(\log(m2_t), \log(m2_{t-1}))$ и тестируйте его значимость (формально!)
 - 10. вычислите $\operatorname{corr}(\Delta \log(m2_t), \Delta \log(m2_{t-1}))$ и тестируйте его значимость (формально!)
- #3. Из БД FRED загрузите **недельные** данные по М2 США с 1990-01-01 по н.в.
 - 1. агрегируйте их в квартальные наблюдения (через усреднение)

- 2. задайте квартальный временной индекс
- 3. визуализируйте полученные наблюдения
- #4. Из БД FRED загрузите месячные данные краткосрочной (3-х мес, rate1) и долгосрочной (10-ти лет., rate2)) ставкам для США с 1990-01-01 по н.в. как многомерный временной ряд rates.
 - 1. Задайте месячный временной индекс
 - 2. Визуализируйте ряд *rates* двумя способами
 - раздельные графики
 - общий график (два ряда на одном графике)
 - 3. Визуализируйте ряд $\Delta \log(rates)$ двумя способами
 - 4. Визуализируйте ряд $\Delta^2 \log(rates)$ двумя способами
 - 5. Постройте гистограммы для $rates, \Delta rates, \Delta^2 rates$ двумя способами
 - 6. Постройте диаграмму рассеяние rate1 vs rate2
 - 7. Постройте диаграмму рассеяние $\Delta rate1$ vs $\Delta rate2$
 - 8. вычислите corr(rate1, rate2) и проверьте его значимость (формально!)
 - 9. вычислите $\mathrm{corr}(\Delta rate1, \Delta rate2)$ и проверьте его значимость (формально!)
- #5. Из БД FRED загрузите месячные данные по США
 - краткосрочная (3-х мес) ставка
 - долгосрочная (10-ти лет) ставка
 - логарифм денежной массы М2
- с 2000-01-01 по н.в. как многомерный временной ряд
 - 1. задайте месячный временной индекс

- 2. Визуализируйте многомерный ряд
- 3. Визуализируйте первую и вторую разность
- 4. Вычислите корреляционную матрицу для исходного ряда и визуализируйте её
- 5. Вычислите корреляционную матрицу для дифференцированного ряда и визуализируйте её
- #6. Из finance.yahoo.com загрузите данные с 2005-01-01 по 2023-12-31 по $\rm S\&P500$
 - 1. Сформируйте месячный временной ряд из цены закрытия на последний день каждого месяца
 - 2. Задайте для него месячный временной индекс
 - 3. Визуализируйте ряд
 - 4. Визуализируйте первую и вторую логарифмические разности
- #7. Из finance.yahoo.com загрузите данные с 2005-01-01 по 2023-12-31 по ценам закрытия S&P500, Apple, Google
 - 1. Сформируйте многомерный ряд из цен закрытия на последний день каждого месяца
 - 2. Визуализируйте многомерный ряд
 - 3. Визуализируйте первую и вторую логарифмические разности
 - 4. Вычислите корреляционную матрицу для исходного ряда и визуализируйте её
 - 5. Вычислите корреляционную матрицу для лог-разности ряда и визуализируйте её

2 ACF & PACF

Во всех задачах по умолчанию уровень значимости 5%.

- #1. Рассмотрим квартальные ряды
 - x: первая разность логарифма ВВП США с 1990 Q1 по н.в.
 - *у*: вторая разность логарифма ВВП США с 1990 Q1 по н.в.

Для них

- 1. Постройте график ряда, АСГ и РАСГ для каждого ряда
- 2. Значимы ли $r(3), r_{part}(3)$?
- #2. Рассмотрим месячные ряды
 - х: первая разность 3-х месячной ставки США с 2000-01 по н.в.
 - y: вторая разность 3-х месячной ставки США с 2000-01 по н.в.

Для них

- 1. Постройте график ряда, АСГ и РАСГ для каждого ряда
- 2. Значимы ли $r(4), r_{part}(4)$?
- #3. Рассмотрим месячные ряды
 - *x*: первая разность логарифма S&P500 с 2000-01 по н.в.
 - *y*: вторая разность логарифма S&P500 с 2000-01 по н.в.

Для них

- 1. Постройте график ряда, АСF и РАСF для каждого ряда
- 2. Значимы ли $r(5), r_{part}(5)$?

3 Стационарные ряды. Модель ARMA

Во всех задачах по умолчанию уровень значимости 5%.

3.1 Модель ARMA с константой

- #1. Пусть y_t логарифмическая доходность US GDP (квартальные данные) с 1990 по н.в.
 - 1. Подгоните модель ARMA(1,1)
 - 2. Подгоните «оптимальную» модель ARMA и проведите её диагностику
 - 3. Постройте прогноз на 10 периодов
- #2. Пусть y_t логарифмическая доходность US M2 (месячные данные) с 1990 по н.в.
 - 1. Подгоните модели

MA(2) AR(2) ARMA(1,1)

и проведите их диагностику

- 2. Подгоните «оптимальную» модель ARMA и проведите её диагностику
- 3. Постройте прогноз на 10 периодов
- #3. Пусть y_t логарифмическая доходность US M2 (недельные данные) с 1995 по н.в.
 - 1. Подгоните модели

 $ARMA(2,1) \hspace{1cm} ARMA(1,2) \hspace{1cm} ARMA(2,2)$

и проведите их диагностику

- 2. Подгоните «оптимальную» модель ARMA и проведите её диагностику
- 3. Постройте прогноз на 10 периодов
- #4. Пусть y_t первая разность of 10-летней ставки (treasury securities with constant maturity) (квартальные данные) с 1990 по н.в.

1. Подгоните модели

$$ARMA(1,1) \qquad ARMA(2,1) \qquad ARMA(1,2) \qquad ARMA(2,2)$$
и проведите их диагностику

- 2. Подгоните «оптимальную» модель ARMA и проведите её диагностику
- 3. Постройте прогноз на 10 периодов
- #5. Пусть y_t первая разность of 10-летней ставки (treasury securities with constant maturity) (месячные данные) с 1990 по н.в.
 - 1. Подгоните модели

$$ARMA(1,1) \qquad ARMA(2,1) \qquad ARMA(1,2) \qquad ARMA(2,2)$$
и проведите их диагностику

- 2. Подгоните «оптимальную» модель ARMA и проведите её диагностику
- 3. Постройте прогноз на 10 периодов
- #6. Ряд y_t первая разность 3-месячной ставки (treasury bill, **квартальные** данные) с 1990 по н.в.
 - 1. Подгоните модели

$$ARMA(2,1) \qquad \qquad ARMA(1,2) \qquad \qquad ARMA(2,2)$$
и проведите их диагностику

- 2. Подгоните «оптимальную» модель ARMA и проведите диагностику
- 3. Постройте прогноз на 10 периодов
- #7. Ряд y_t первая разность 3-месячной ставки (treasury bill, **месячные** данные) с 1990 по н.в.
 - 1. Подгоните модели

$$ARMA(2,1)$$
 $ARMA(1,2)$ $ARMA(2,2)$

- и проведите их диагностику
- 2. Подгоните «оптимальную» модель ARMA и проведите диагностику
- 3. Постройте прогноз на 10 периодов

3.2 Модель ARMA с трендом

- #1. Пусть y_t логарифм US GDP (квартальные данные) с 1990 по н.в.
 - 1. Подгоните модель ARMA(1,1) с трендом и проведите её диагностику
 - 2. Подгоните «оптимальную» модель ARMA с трендом и проведите её диагностику
 - 3. Постройте прогноз на 10 периодов
- #2. Пусть y_t логарифм US M2 (месячные данные) с 1990 по н.в.
 - 1. Подгоните модели

$$MA(2)$$
 $AR(2)$ $ARMA(1,1)$

с трендом и проведите их диагностику

- 2. Подгоните «оптимальную» модель ARMA и проведите её диагностику
- 3. Постройте прогноз на 10 периодов

4 Модель ARIMA

- #1. Пусть y_t логарифм US GDP (**квартальные данные**) с 1995 по н.в.
 - 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/trend	спецификация
$\overline{\text{ARIMA}(1,0,1)}$	+	$y_t = \alpha_0 + \alpha_1 t + \phi y_{t-1} + u_t + \theta u_{t-1}$
ARIMA(1,1,0)	+	$\Delta y_t = \alpha_0 + \phi \Delta y_{t-1} + u_t + \theta u_{t-1}$
ARIMA(1,1,1)	_	$\Delta y_t = \phi \Delta y_{t-1} + u_t + \theta u_{t-1}$
ARIMA(1,2,0)	-	$\Delta^2 y_t = \phi \Delta^2 y_{t-1} + u_t$

и постройте прогноз на 10 периодов. Значим ли снос/тренд?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов
- #2. Пусть y_t логарифм US M2 (месячные данные) с 1995 по н.в.
 - 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/trend
$\overline{\text{ARIMA}(2,0,2)}$	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	_
ARIMA(1,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/тренд?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов
- #3. Пусть y_t логарифм US M2 (**недельные данные**) с 1995 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/trend
$\overline{\text{ARIMA}(3,0,2)}$	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	_
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/тренд?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов
- #4. Пусть y_t 10-летняя ставка (treasury securities with constant maturity месячные данные) с 2000 по н.в.
 - 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/const
$\overline{\text{ARIMA}(2,0,2)}$	-
ARIMA(2,0,2)	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	-
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/const?

(b) Проведите диагностику каждой модели.

- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов
- #5. Пусть y_t 10-летняя ставка (treasury securities with constant maturity) (дневные данные) с 2010 по н.в.
 - 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	m drift/const
$\overline{\text{ARIMA}(3,0,2)}$	-
ARIMA(3,0,2)	+
ARIMA(3,1,0)	+
ARIMA(3,1,1)	-
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли choc/const?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов

#6. Пусть y_t — 3-месячная ставки (treasury bill, **месячные данные**) с 2000 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	m drift/const
$\overline{\text{ARIMA}(2,0,2)}$	-
ARIMA(2,0,2)	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	-
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/const?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов
- #7. Пусть y_t 3-месячная ставки (treasury bill, **дневные данные**) с 2010 по н.в.
 - 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/const
$\overline{\text{ARIMA}(3,0,2)}$	-
ARIMA(3,0,2)	+
ARIMA(3,1,0)	+
ARIMA(3,1,1)	_
ARIMA(2,2,0)	-

и постройте прогноз на 10 периодов. Значим ли снос/const?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику
 - (с) Постройте прогноз на 10 периодов

#8. Пусть y_t – логарифм S&P500 (дневные данные) с 2010 по н.в.

- 1. Подгонка модели заданного порядка
 - (а) Подгоните модели

Модель	drift/const
$\overline{\text{ARIMA}(2,0,2)}$	-
ARIMA(2,0,2)	+
ARIMA(2,1,0)	+
ARIMA(2,1,1)	_
ARIMA(2,2,0)	_

и постройте прогноз на 10 периодов. Значим ли choc/const?

- (b) Проведите диагностику каждой модели.
- (с) Проведите кросс-валидацию каждой модели. Какая предпочтительней?
- 2. Примените тесты единичного корня и найдите порядок интегрирования для y_t .
- 3. Подгонка «оптимальной модели»
 - (a) Подгоните «оптимальную» модель ARIMA
 - (b) проведите её диагностику

- (с) Постройте прогноз на 10 периодов
- #9. Запишите спецификации следующих моделей
 - 1. ARIMA(0,1,1) без сноса и со сносом
 - 2. ARIMA(0,1,2) без сноса и со сносом
 - 3. ARIMA(1,1,0) без сноса и со сносом
 - 4. ARIMA(2,1,0) без сноса и со сносом
 - 5. ARIMA(0,2,0) без сноса и со сносом
 - 6. ARIMA(1,2,0) без сноса и со сносом
 - 7. ARIMA(0,2,1) без сноса и со сносом

5 Модель (*)ARCH

#1. Пусть y_t – лог-доходность US M2 (недельные данные) с 1995 по н.в.

1. Подгоните модели AR-GARCH(p,o,q)

Модель	λ
$\overline{AR(1)}$ - $\overline{GARCH(1,0,1)}$	2
AR(1)- $GARCH(1,0,1)$	1
AR(2)- $GARCH(1,0,1)$	2
AR(2)- $GARCH(1,0,1)$	1

и постройте прогноз на 10 периодов для раде и его волатильности.

- 2. Сравните модели по информационным критериям. Какая предпочтительней?
- 3. Проведите кросс-валидацию моделей. Какая предпочтительней?
- #2. Пусть y_t 3-месячная ставки (treasury bill, **дневные данные**) с 2010 по н.в.
 - 1. Подгоните модели AR-GARCH(p,o,q)

Модель	λ
$\overline{AR(1)\text{-}GARCH(1,0,1)}$	2
AR(1)- $GARCH(1,0,1)$	1
AR(2)- $GARCH(1,0,1)$	2
AR(2)- $GARCH(1,0,1)$	1

и постройте прогноз на 10 периодов для раде и его волатильности.

- 2. Сравните модели по информационным критериям. Какая предпочтительней?
- 3. Проведите кросс-валидацию моделей. Какая предпочтительней?
- #3. Пусть y_t 0-летняя ставка (treasury securities with constant maturity, дневные данные) с 2010 по н.в.
 - 1. Подгоните модели AR-GARCH(p,o,q)

Модель	λ
AR(1)- $GARCH(1,0,1)$	2
AR(1)- $GARCH(1,0,1)$	1
AR(2)- $GARCH(1,0,1)$	2
AR(2)- $GARCH(1,0,1)$	1

и постройте прогноз на 10 периодов для раде и его волатильности.

- 2. Сравните модели по информационным критериям. Какая предпочтительней?
- 3. Проведите кросс-валидацию моделей. Какая предпочтительней?
- #4. Пусть y_t лог-доходность S&P500 (дневные данные) с 2010 по н.в.
 - 1. Подгоните модели

Модель	λ
AR(1)- $GARCH(1,0,1)$	2
AR(1)- $GARCH(1,0,1)$	1
AR(1)- $GARCH(1,1,1)$	2
AR(1)- $GARCH(1,1,1)$	1

и постройте прогноз на 10 периодов для раде и его волатильности.

- 2. Сравните модели по информационным критериям. Какая предпочтительней?
- 3. Проведите кросс-валидацию моделей. Какая предпочтительней?

А Библиотеки Python

Библиотека	Описание
pandas	Табличные данные
	(кросс-секции, панели, временные ряды)
numpy	Работа с массивами, преобразование данных
yfinance	Загрузка данных с finance.yahoo.com
pandas-datareader	Загрузка данных из внешних БД
	(FRED, finance.yahoo.com etc)
statsmodels	Регрессионный анализ,
	базовые модели временных рядов
arch	Тесты и модели временных рядов
pmdarima	ARIMA-модель
scikit-learn	Методы машинного обучения
sktime	анализ временных рядов и ML
scipy.stats	Статистические методы (распределения и др)
seaborn	Визуализация статистических данных
matplotlib	Визуализация данных
plotly	Визуализация данных

Таблица 1: Основные библиотеки Python для анализа временных рядов