LITERATURE SURVEY

S.NO	TITLE OF THE	METHODOLOGY	OBSERVATIONS	RESULTS	LIMITATIONS
	PAPER	USED		+ CONCLUSIONS	
1.	Phishing Website Detection Based on Machine Learning Algorithm (2020)	Analysed the features of the URL of the phishing website, used four machine learning algorithms for training.	Compares the similarity of snapshot of webpage with regular webpage	Similarity recommendatio nfor regular website corresponding to phishing website	Incase the number of features for each data point exceeds the number of training data samples , SVM will underperorm
2.	Detection of Phishing Emails using Machine Learning and Deep Learning (2022)	Machine learning and deep learning techniques on an imbalanced dataset	Proposed model is deployed through the web application FLASK PYTHON	Detect the email by giving information to the user about whether this email is genuine or fraudulent.	More potential for security risks, slower MVP development in most cases.
3.	Phishing Attacks Detection using Machine Learning Approach (2020)	Random forest and decision tree algorithms are used in dataset of phishing attacks	The attributes are analysed using principal component analysis (PCA)	A maximum accuracy of 97% was achieved through the random forest algorithm.	It needs a quality datasets. Noisy data and outliers have to be avoided.
4.	URL – based Phishing Websites Detection via Machine Learning (2021)	Neural networks and decision trees are employed to learn data patterns in websites URLs	System is evaluated on a recent phishing websites dataset using classification accuracy as a performance indicator	Decision trees models provide 97.40% classification accuracy on the almost balanced-class dataset.	Does not work well with high dimensionality as this will complicate the distance calculating process to calculate distance or each dimension.

	Г	Γ		T	
5.	A Systematic	The most	It is unique in	Helpful for the	The analysis of
	Literature Review	frequently used	the sense that	scientific	the presented
	on Phishing Email	NLP techniques	it relates works	community,	works revealed
	Detection Using	are found to be	to their openly	especially in the	that not much
	Natural Language	TF-IDF and word	available tools	field of NLP	work had been
	Processing	embeddings.	and resources.	application in	performed on
	Techniques	Furthermore,		cybersecurity	Arabic language
	(2022)	the most		problems	phishing emails
		commonly used			using NLP
		datasets for			techniques.
		benchmarking			Therefore, many
		phishing email			open issues are
		detection			associated with
		methods is the			Arabic phishing
		Nazario phishing			email detection.
		corpus			
6.		Analyses and	Supports the	The result	State-of-the-art
	Identification and	compare	purpose of	demonstrates	comparison is
	Analysis of	phishing website	identifying the	that Random	missing and
	Phishing Website	and legitimate	best phishing	Forest has the	achieved
	based on	by analyzing the	website	best	accuracy is not
	Machine Learning	data collected	detection	performance in	reported
	Methods (2022)	from open-	where Decision	phishing website	expicitly.
		source platforms	Tree and	detection	, ,
		and proposed a	Random Forest	compared to	
		method to	were trained,	Decision Tree.	
		detect fake sites	tested and		
		using Decision	achieved high		
		Tree and	number of		
		Random Forest	feature		
		approaches	importance		
		2-1-1-1-2-3-1-3-3	detection and		
			accuracy rate		
			accuracy rate		

7.	Feature Selection	Combined two	The best models	The best model	Assumption of
/.	for Machine	datasets with 30	built on all	on the 13	linearity
	Learning – Based	and 48 features	features using	features	between
	Phising Websites	which	the random	achieved an	dependent
	Detection (2021)	identified13	forest algorithm	accuracy of	variable and
	Detection (2021)	optimal features	scored lower on	0.937	independent
		for a more	the 30 features	0.557	variables is
		robust model	dataset, and		improper.
		10003t model	achieved better		improper.
			performance on		
			the 48 features		
			dataset		
8.	Towards the	List-based,	A hybrid	Efficiently	Sometimes,
	Detection of	machine	approach of	detect	the method
	Phishing Attacks	learning, visual	phishing attack	legitimate	can provide
	(2020)	similarity,	detection	websites easily	an inaccurate
	,	Heuristic-based		,	solution or
		approach are			judgment
		used			about how
					commonly
					things appear
9.		Data consisting	Accuracy of 8	The highest	Does not work
	Detecting Phishing	of 86 features	different ML	accuracy of 96.6	well with high
	Websites Using	and 11,430 total	algorithms are	using XG Boost .	dimensionalit
	Machine Learning	URLs, are trained	compared with		y as this will
	(2022)	with 8 ML	each other		complicate
		algorithms.			the distance
					calculating
					process to
					calculate
					distance or
					each
					dimension.

10.	Phishing Attacks	Two separate	The results also	Random Forest	This algorithm
	Detection using	datasets and	aimed to	(RF) algorithm	is not
	Machine Learning	highest	identify the best	achieved the	applicable for
	and Deep	correlated	features that	highest accuracy	applications in
	Learning Models	features are used	influence the	for both	classification
	(2022)	which comprised	model in	datasets.	issues.
		of a combination	identifying		
		of content-	phishing		
		based, URL	websites		
		lexical-based,			
		and domain-			
		based features			
		and then ML			
		models were			
		applied			
11.	Securellot	A Safe data	High efficiency,	Framework	Federated
	Environment :	sharing	and better	named as	learning
	Federated	architecture for	security,	SecurelloT is	requires
	Learning	various IIoT	according to	achieved 99.79%	frequent
	Empowered	devices using	numerical	accuracy by	communicatio
	Approach for	Federated	findings	detecting	n between
	Securing IIoT From	Learning is	generated by	attacks as a	nodes during
	Data Breach	proposed which	experimenting	binary	the learning
	(2022)	incorporates FL	deep learning	classification	process.
		into the edge	models	problem.	
		computing		•	
		consensus			
		process			
12.		A lightweight and	This application	The application	Using
	A lightweight and	proactive rule-	can detect the	shows the	proactive
	proactive rule-	based	zero-day and	precision level	strategies
	based incremental	incremental	spear phishing	higher than the	could be the
	construction	construction	attacks with a	previous model	potential risk
	approach to	approach to	detection rate of	developed and	of creating a
	detect phishing	detect any	89.12% and	other phishing	disruption
	scam	unknown	76.2%,	techniques.	where none
	(2022)	phishing URLs	respectively		previously
					was

13.	Detection of	Ascertain	Model is trained	Based on URL	Variable
	Malicious Cyber	malicious URLs is	to detect URL	behaviour and	selection is
	Fraud using	formulated on	behaviour and	attributes,the	not explicitly
	Machine Learning	RF,SVM,CNN,DN	attributes.	malicious URL is	mentioned
	Techniqures	Ν.		detected	and state-of-
	(2022)			efficiently	the-art
					comparison is
					missing.
14.	Phishing Websites	Uses URLs as a	Performance	Multilayer	Does not work
	Detection using	dataset	analysis of 8 ML	perceptron	well with
	Machine Learning	containing 6000	algorithms	algorithm got	large dataset
	with URL Analysis	URLs to detect	provides the	the highest	as calculating
	(2022)	phishing	accuracy which	accuracy of	distances
		websites.	is being	85.41%	between each
			compared		data instance
					would be very
					costly.
15.	_	The task to	With machine	The four	Does not work
	Survey on	execute the	learning,	classification	well with high
	Detection and	frameworks with	cybersecurity	models were	dimensionalit
	Prevention of	good efficiency,	systems can	discussed and	y as this will
	Phishing Websites	exactness, and	analyze patterns	analysed in term	complicate
	using Machine	cost-effectively is	and learn from	of the merits,	the distance
	Learning	done using the	them to assist	demerits and	calculating
	(2021)	four classification	prevent similar	performance	process to
		models are KNN,	attacks and		calculate
		Kernel-SVM,	answer changing		distance or
		Random Forest	behavior.		each
		Classifier and			dimension.
		Decision tree			