Part A: Basic Concept

Problem 1

Simplify the following expression and express your answer in the form of a + bi.

(a)
$$i^5 - i^7 + i^{10}$$

(b)
$$\frac{1-i}{2+2i}$$

(c)
$$(2+i)^2(3-i)$$

(b)
$$\frac{1-i}{3+2i}$$

(d) $(1-3i)^{-1}$

Problem 2

Let z = a + bi be a complex numbers satisfying $\frac{1}{z} = 1 + 3i$. Find the value of z.

Problem 3

Express the following complex numbers in the Polar and Euler form. Write down the modulus and principal argument of each of the complex numbers.

(a)
$$z_1 = 3 - 3i$$

(b)
$$z_2 = \sqrt{6} + \sqrt{2}i$$

(c)
$$z_3 = -2i$$

(d)
$$z_4 = -4 - \sqrt{48}i$$

(e)
$$z_5 = -1 + 5i$$

(f)
$$z_6 = 5 - 8i$$

$$(c)$$
 $z_5 - i\pi$

(1)
$$Z_6 = 5 - 8l$$

$$z_7 = ie^{\overline{4}}$$

(h)
$$z_8 = -2e^{\frac{i\hbar}{3}}$$

(i)
$$z_9 = e^{\frac{i\pi}{5}} + e^{-i\pi}$$

(d)
$$z_4 = -4 - \sqrt{48}i$$

(f) $z_6 = 5 - 8i$
(h) $z_8 = -2e^{\frac{i\pi}{3}}$
(j) $z_{10} = 1 - e^{\frac{i\pi}{4}}$

Problem 4

Express the following complex number in the Euler form and polar form. Here, $0 < \theta < \frac{\pi}{2}$.

(a)
$$-\cos\theta - i\sin\theta$$

(b)
$$-\sin\theta + i\cos\theta$$

(c)
$$1 - \sin \theta + i \cos \theta$$

(d)
$$1 + \cos \theta - i \sin \theta$$

Problem 5

Simplify the following expression using suitable methods. Express your answer in the Polar form or Euler form.

(a)
$$z_1 = \frac{1 + \sqrt{3}i}{2 - 2i}$$

(b)
$$z_2 = (1+i)^{-5}$$

(c)
$$z_3 = \left(\frac{(1-i)(\sqrt{3}+i)}{2i}\right)^{12}$$
 (e) $z_5 = \sqrt{\frac{4+4i}{(-2+\sqrt{12}i)^3}}$

(d)
$$z_4 = \sqrt[6]{-\sqrt{48+4i}}$$

(e)
$$z_5 = \sqrt{\frac{4+4i}{(-2+\sqrt{12}i)^3}}$$

(f)
$$z_6 = (-2 - 2i)^{\frac{3}{4}}$$

(g)
$$z_7 = (\sin \theta - i \cos \theta)^5$$

(h)
$$z_8 = \sqrt[4]{1 + e^{\frac{i\pi}{4}}}$$

(Hint: For (g) and (h), you need to express the complex number inside the bracket in the polar form first. The techniques used in Problem 3(g)-(j) and Problem 4 will be useful.)

Problem 6

Show that for any $0 < \theta < \frac{\pi}{2}$, we have

$$\left(\frac{1+i\tan\theta}{1-i\tan\theta}\right)^5 = \frac{1+i\tan 5\theta}{1-i\tan 5\theta}.$$

(Hint: Note that $\tan \theta = \frac{\sin \theta}{\cos \theta}$).

Problem 7 (A bit harder)

Let z be a complex number with |z| = 1 and $z \neq \pm 1$.

- (a) Show that the complex number $z_0 = \frac{1+z}{1-z}$ is purely imaginary. (i.e. $z_0 = bi$ for some real number b.) (Hint: You may consider the polar form of z: $z = r(\cos \theta + i \sin \theta)$. What can you say about the value of r?)
- (b) Using the similar technique, show that if $\theta \neq k\pi$, (k is an integer) then $z_1 = \frac{1+\bar{z}}{1-\bar{z}}$ is also purely imaginary.

Problem 8

Let z = 1 + 3i be a complex number, compute the following

(b)
$$(z + 3\bar{z})^2$$

(c)
$$\sqrt[4]{z-z}$$

Problem 9

Using the fact that $z + \bar{z} = 2\text{Re}(z)$ and $z - \bar{z} = 2\text{Im}(z)i$, where Re(z) and Im(z) represent the real part and imaginary part of z respectively, evaluate

$$\operatorname{Re}\left(\frac{z-1}{z+1}\right)$$
 and $\operatorname{Im}\left(\frac{z-1}{z+1}\right)$,

where z is the complex number with |z| = 1. Express your answer in terms of Re(z) and Im(z) if necessary.

Problem 10

Let z_1 and z_2 be two complex numbers, show that

$$|z_1 + z_2|^2 - |z_1 - z_2|^2 = 4\operatorname{Re}(z_1\bar{z}_2).$$

(\odot Hint: $|z|^2 = z\bar{z}$.)

Application of Complex Number

Problem 11

Solve the following equations

(a)
$$z^6 = -3 + \sqrt{3}i$$

(b)
$$(1-z)^7 + (1+z)^7 = 0$$

(c)
$$z^{10} - 5z^5 - 6 = 0$$

(d)
$$z^8 - 2\sqrt{3}z^4 + 4 = 0$$

(d)
$$z^8 - 2\sqrt{3}z^4 + 4 = 0$$

(e) $\frac{z^5}{1 + z^5} = \sqrt{3}i$.

Problem 12

Solve the equation $z^4 - 8z^3 + 27z^2 - 50z + 50 = 0$ given that 3 + i is one of the root.

2 -

Problem 13

- (a) By considering the expression $(\cos \theta + i \sin \theta)^5$, show that $\cos 5\theta = 16 \cos^5 \theta 20 \cos^3 \theta + 5 \cos \theta$.
- (b) Using similar techniques as in (a), show that $\sin 3\theta = 3\sin \theta 4\sin^3 \theta.$

Problem 14

- (a) Let $z=\cos\theta+i\sin\theta$ be a complex number. By considering the expression $\left(z-\frac{1}{z}\right)^5$ and using the fact that $z^n-\frac{1}{z^n}=2i\sin n\theta$, show that $\sin^5\theta=\frac{1}{16}(\sin 5\theta-5\sin 3\theta+10\sin\theta)$.
- (b) By considering the expression $\left(z-\frac{1}{z}\right)^3\left(z+\frac{1}{z}\right)^4$ and using the fact that $z^n-\frac{1}{z^n}=2i\sin n\theta$ and $z^n+\frac{1}{z^n}=2\cos n\theta$, show that $\sin^3\theta\cos^4\theta=-\frac{1}{64}(\sin 7\theta+\sin 5\theta-3\sin 3\theta-3\sin \theta).$
- (c) Hence, compute the integral $\int_0^{\frac{\pi}{2}} \sin^3 \theta \cos^4 \theta \ d\theta$.