⑥ Proportionnalité

Objectifs

- Reconnaître un tableau de proportionnalité.
- Savoir compléter un tableau de proportionnalité.
- Calculer un taux de pourcentage.
- Appliquer un pourcentage
- Utiliser une échelle.
- Utiliser un ratio

I. Tableau de proportionnalité

Définitions

- Un tableau a deux lignes est un **tableau de proportionnalité** si on peut calculer les nombres de la deuxième lignes sont obtenues en multipliant ceux de la première **par un même nombre**.
- Ce nombre est le coefficient de proportionnalité.

Méthode:

Pour identifier une situation de proportionnalité, on calcule les quotients des nombres de la seconde ligne par ceux de la première ligne. Il y a proportionnalité si c'est toujours le même.

Exemple:

Ce tableau présente le prix de différentes masses de cerises :

Masse de cerises (en kg)	0,5	1	2	5	
Prix (en €)	1,35	2,70	5,40	13,50	× 2,70

 $1,\!35 \div 0,\!5 = 2,\!70 \div 1 = 5,\!40 \div 2 = 13,\!50 \div 5 = 2,\!70,$ ce tableau est un tableau de proportionnalité.

Le coefficient de proportionnalité est 2,70.

II. Compléter un tableau de proportionnalité

Méthode:

On veut remplir le tableau de proportionnalité suivant :

emps (h)	4	6	10
Distance parcourue(km)	10		

1) Avec le coefficient de proportionnalité

On calcule le coefficient : $10 \div 4 = 2,5$.

Donc $6 \times 2, 5 = 15$.

Temps (h)	4	6	×2.5
Distance parcourue(km)	10	15	*

2) En utilisant les propriétés de la proportionnalité

Propriété

Dans un tableau de proportionnalité, on peut :

- multiplier/diviser une colonne par un nombre;
- ajouter/soustraire des colonnes entre elles.

On parcourt 10 km en 4 heures et 15 en 6 heures.

Donc en 10 heures on parcourt 25 km (10 + 15).

emps (h)	4	6	10
Distance parcourue(km)	10	15	25

3) Par passage à l'unité

En 4 heures, nous parcourons 10 km.

En 1 heure, nous parcourrons donc $10 \div 4 = 2.5$ km.

En 6 heures, nous parcourrons $2.5 \times 6 = 15$ km.

:4 ×6				
Temps (h)	4	1	6	10
Distance parcourue (km)	10	2,5	15	

III. Pourcentages

Définition

Un pourcentage traduit une situation de proportionnalité.

Un pourcentage est une proportion exprimée sur un total de 100 (de dénominateur égal à 100).

Exemple:

«Dans une confiture, il y a 60 % de fruits»

- La masse de fruits est proportionnelle à la masse totale de confiture.
- \Rightarrow Il y a 60g de fruits pour 100g de confiture.

1) Appliquer un pourcentage

Propriété

P est un nombre positif.

Pour calculer P% d'une quantité, on multiplie cette quantité par $\frac{P}{100}$.

Exemple:

Calculer 20% de 50 revient à multiplier 50 par $\frac{20}{100}$:

$$50 \times \frac{20}{100} = 50 \times 0.2 = 10$$

20% de 50 vaut 10.

2) Calculer un taux de pourcentage

Exemple:

Dans un collège, il y a 800 élèves et 200 sont externes. Quel est le pourcentage d'externes?

3

Nombre d'externes	200	P
Nombre d'élèves	800	100

Ce tableau est un tableau de proportionnalité.

Pour passer de 800 à 100 je divise par 8 (800 \div 100 = 8).

Calcul de $P: 200 \div 8 = 25$.

Il y a 25% d'élèves externes.

IV. Notion d'échelle

Définition

- Sur un plan à **l'échelle**, les longueurs sur le plan sont proportionnelles aux longueurs dans la réalité.
- L'échelle d'un plan est est le quotient de la longueur sur le plan par la longueur réelle correspondante, lorsque ces longueurs sont exprimées dans la même unité.

Exemples:

- a) Un plan est à l'échelle 1/2000. Cela signifie que 1 cm sur le plan représente 20 m (2000 cm) dans la réalité. Les longueurs du plan sont 2000 fois plus petites que les longueurs réelles.
- **b)** Un schéma est à l'échelle 50. Cela signifie que 1 cm sur le schéma représente 0,02 cm dans la réalité. Les longueurs du plan sont 50 fois plus grandes que les longueurs réelles.
- ${m c}$) Sur une carte, 3 cm représentent 12 km dans la réalité. Quelle est l'échelle de la carte?

12 km = 1200000 cm.

$$\frac{3}{1\,200\,000} = \frac{1}{400\,000}$$

L'échelle de cette carte est 1/400000.

Remarque

— Une échelle n'a pas d'unité.