

Python for Good

PyCon China 2022

ARM 芯片的 Python + AI 算力优化

主讲人: 朱宏林 - 阿里云程序语言与编译器团队

- 当今开发者们大量使用 Python 语言编写的 AI 程序。过去这些程序总跑在 GPU 或者 x86 架构的 CPU 上。然而综合考虑到功耗、成本、性能等因素,云厂商们开始建设 ARM 架构的服务平台,如何整合 Python + AI 的相关软件并使其在该平台上发挥最高的性能成为了工程师们关注的焦点。
- 矩阵乘法是深度学习计算的重要组成部分,我们利用 ARM 架构新提供的矩阵扩展对 bf16 类型的 矩阵乘法计算进行优化,该优化将纯矩阵乘法的运算速度提升3倍以上,对深度学习推理任务性能 提升明显。目前,该成果已经被集成进 OpenBLAS 和 PyTorch 中。
- 本次演讲,将向大家介绍我们在倚天 710 ARM 芯片上开展的 Python + AI 优化工作,以及在 ARM 云平台上部署 Python + AI 任务的最佳实践。

深度学习

Python for Good >>>> PyCon China 2022

- 广泛使用的深度学习框架
 - TensorFlow、PyTorch
- 结合硬件(ARM 服务端芯片)
 - 倚天 710
 - AWS graviton
- 矩阵乘法
 - 为什么矩阵乘法是深度学习的核心
 - Conv、Linear、Transformers

来源: Why GEMM is at the heart of deep learning, Pete Warden

Convolution

Python for Good>>>>> PyCon China 2022

- AlexNet 模型推理各个层计算比例
 - 86.1%
 - 2.6%

来源: Learning Semantic Image Representations at a Large Scale, Yangqing Jia

Convolution

- ResNet-50
- PyTorch Profiler

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Call
aten::conv2d	0.11%	276.000us	93.66%	228.600ms	4.313ms	5
aten::batch_norm	0.09%	209.000us	2.27%	5.536ms	104.453us	5
aten::max_pool2d	0.01%	25.000us	1.86%	4.551ms	4.551ms	
aten::relu_	0.11%	276.000us	0.82%	1.992ms	40.653us	4
aten::linear	0.01%	29.000us	0.65%	1.584ms	1.584ms	
aten::add_	0.61%	1.499ms	0.61%	1.499ms	93.688us	1
aten::adaptive_avg_pool2d	0.01%	15.000us	0.09%	228.000us	228.000us	
aten::flatten	0.01%	24.000us	0.01%	33.000us	33.000us	

Transformers

- GPT-2
- PyTorch Profiler

Name	Self CPU %	Self CPU	CPU total %	CPU total	CPU time avg	# of Ca	
aten::addmm	53.55%	262.582ms	54.01%	264.826ms	204.341us	1	
aten::matmul	0.72%	3.549ms	29.43%	144.309ms	213.791us		
aten::linear	0.02%	112.000us	24.54%	120.329ms	4.457ms		
aten::multinomial	0.13%	654.000us	4.23%	20.746ms	768.370us		
aten::tanh	2.97%	14.544ms	2.97%	14.544ms	44.889us		
aten::cat	1.61%	7.902ms	1.67%	8.170ms	12.050us		
aten::mul	1.05%	5.172ms	1.43%	6.997ms	4.984us	1	
aten::topk	1.00%	4.892ms	1.00%	4.892ms	181.185us		
aten::layer_norm	0.17%	823.000us	0.97%	4.748ms	7.034us		
aten::softmax	0.11%	515.000us	0.90%	4.404ms	12.547us		

GEMM

- General Matrix Multiplication: $C = \alpha AB + \beta C$
 - MNK 级别的时间复杂度
 - 深度学习卷积运算量很大(例如尺寸256 x 1152 x 192 ≈ 5700万)
 - GEMM 通过优化内存局部性和向量指令,比朴素实现快 10 倍以上


```
for (int i = 0; i < M; i++) {
    for (int j = 0; j < N; j++) {
        C(i, j) = 0;
        for (int p = 0; p < K; p++) {
            C(i, j) += A(i, p) * B(j, p);
        }
    }
}</pre>
```

GEMM

Python for Good

>>>> PyCon China 2022

• 优化 GEMM

• 内存布局:矩阵分块;重排

• 向量化指令: AVX、NEON

GEMM 例子

Python for Good

>>>> PyCon China 2022

• 优化 GEMM

- 内存布局:矩阵分块;重排
- 向量化指令: AVX、NEON


```
for (int j = 0; j < N; j++) {
    for (int i = 0; i < M; i += 4) {
        C(i+0, j) = 0;
        C(i+1, j) = 0;
        C(i+2, j) = 0;
        C(i+3, j) = 0;
        for (int p = 0; p < K; p++) {
              C(i+0, j) += A(i+0, p) * B(j, p);
              C(i+1, j) += A(i+1, p) * B(j, p);
              C(i+2, j) += A(i+2, p) * B(j, p);
              C(i+3, j) += A(i+3, p) * B(j, p);
        }
    }
}</pre>
```

```
for (int j = 0; j < N; j++) {
    for (int i = 0; i < M; i += 4) {
        vc <- 0, 0, 0, 0
        for (int p = 0; p < K; p++) {
            va <- A(i+0, p), A(i+0, p), A(i+0, p), A(i+0, p)
            vb <- B(j, p) ...
            vc += va * vb
        }
        vc -> C(i, j), C(i+1, j), C(i+2, j), C(i+3, j)
}
```

GEMM 例子

• 优化 GEMM

- 内存布局:矩阵分块;重
- 向量化指令:AVX、NEO

原始算法

Python for Good

>>>> PyCon China 2022


```
= 0; j < N; j++) {
t i = 0; i < M; i += 4) {
<- 0, 0, 0, 0
  (int p = 0; p < K; p++) {
  va <- A(i+0, p), A(i+0, p), A(i+0, p), A(i+0, p)
  vb <- B(j, p) ...
  vc += va * vb
-> C(i, j), C(i+1, j), C(i+2, j), C(i+3, j)
```

向量化

GEMM

Python for Good

>>>> PyCon China 2022

• 优化 GEMM

• 内存布局:矩阵分块;重排

向量化指令: AVX、NEON

• 硬件加速

- Nvidia Volta 架构引入 tensor core
- Intel AMX, Advanced Matrix Extension
- ARM SME, Scalable Matrix Extension
- CPU 存在优势场景,但当前尚没有可大规模使用 AMX 和 SME 实例

BF16 数据类型

- BF16 (Brain Floating Point , bfloat16)
 - Google Brain 团队
 - float32、float16、bfloat16 (FP32、FP16、BF16)
- 特点
 - 表示范围和 FP32 一致
 - 转换便利
 - 节省存储空间
 - 硬件指令支持

ARMv8.6 bf16 扩展

Python for Good>>>>> PyCon China 2022

• bf16 扩展

- ARMv8.6
- 矩阵乘法指令 BFMMLA
- 类型转换指令 BFCVT

BFMMLA

- 128 bit 向量寄存器
- 单指令完成 (2x4) * (4x2)
- 16 mul + 16 add

深度学习推理加速

- BF16 gemm 实现
 - ARM Compute Library
 - OpenBLAS
- TensorFlow
 - oneDNN + ACL
 - DNNL_DEFAULT_FPMATH_MODE=BF16
- PyTorch
 - OpenBLAS
 - oneDNN + ACL
 - torch.set_float32_fast_math_mode("BF16")

深度学习推理加速

Python for Good>>>> PyCon China 2022

- BF16 gemm 实现
 - ARM Compute Library
 - OpenBLAS
- TensorFlow
 - oneDNN + ACL
 - DNNL_DEFAULT_FPMATH_MODE=BF16
- PyTorch
 - OpenBLAS
 - oneDNN + ACL
 - torch.set_float32_fast_math_mode("BF16")

```
1 # 假设 resnet.py 包含用户写的模型推理的代码
2 DNNL_DEFAULT_FPMATH_MODE=BF16 python3 resnet.py
1 import torch
2 # ...
```

在模型执行前设置fast math mode

...

...

执行模型

pred = model(x)

torch.set_float32_fast_math_mode("BF16")

深度学习推理加速

Python for Good

>>>> PyCon China 2022

- BF16 gemm 实现
 - ARM Compute Library
 - OpenBLAS
- TensorFlow
 - oneDNN + ACL
 - DNNL_DEFAULT_FPMATH_MODE=BF16
- PyTorch
 - OpenBLAS
 - oneDNN + ACL
 - torch.set_float32_fast_math_mode("BF1

6.75	ldr	q19, [x1, #32]
1.53	ldp	q25, q24, [x0, #96]
1.79	ldr	q23, [x0, #128]
0.32	fmla	v22.4s, v25.4s, v19.s[0]
0.21	fmla	v17.4s, v25.4s, v19.s[1]
0.34	fmla	v20.4s, v25.4s, v19.s[2]
	fmla	v21.4s, v25.4s, v19.s[3]
0.17	fmla	v18.4s, v24.4s, v19.s[0]
0.23	fmla	v16.4s, v24.4s, v19.s[1]
0.01	fmla	v7.4s, v24.4s, v19.s[2]

5.67	hfmm] a v2 15 v0 2h v1 2h
	bfmmla v8.4s, v0.8h, v4.8h
0.01	bfmmla v14.4s, v1.8h, v4.8h
0.38	bfmmla ∨11.4s, ∨0.8h, ∨5.8h
0.44	bfmmla ∨17.4s, ∨1.8h, ∨5.8h
0.57	ldr q6, [x20]
3.33	bfmmla v20.4s, v2.8h, v4.8h
0.05	bfmmla v23.4s, v2.8h, v5.8h
0.34	ldr q7, [x20, #16]
1.72	bfmmla v26.4s, v3.8h, v4.8h
0.02	bfmmla v29.4s, v3.8h, v5.8h

性能测试

- OpenBLAS 矩阵乘法测试
 - 阿里云 ECS g8y (倚天 710)单线程 FP32 vs BF16
 - MNK: 2000, 2000, 2000
- GFLOPS
 - 每秒浮点数计算次数,G(十亿次)
 - 2MNK / Times

性能测试

- 平台
 - 阿里云 ECS g8y vs g7 (Ice Lake)
 - 8vCPUs
- TensorFlow 推理测试
 - ResNet-50
 - batch size 32
- PyTorch 推理测试
 - Mask R-CNN
 - 每张图像耗时

最佳实践

Python for Good >>>>> PyCon China 2022

TensorFlow

- Official (latest)
 - pip install tensorflow == 2.10.1 或者 == 2.11.0
- 阿里云
 - Docker 镜像
 - accc-registry.cn-hangzhou.cr.aliyuncs.com/tensorflow/tensorflow
 - Tag: latest

PyTorch

- Official (latest)
 - pip install torch==1.13.0
- 阿里云
 - Docker 镜像
 - accc-registry.cn-hangzhou.cr.aliyuncs.com/pytorch/pytorch
 - Tag: torch_openblas, torch_openblas_modelzoo

Python for Good>>>>> PyCon China 2022

• 拉取镜像

 docker pull accc-registry.cnhangzhou.cr.aliyuncs.com/pytorch/pytorch:torch1.13.0_openblas_modelzoo

• 启动容器

docker run -d --name torch_bm -ti accc-registry.cn hangzhou.cr.aliyuncs.com/pytorch/pytorch:torch1.13.0_openblas_modelzoo

Python for Good>>>> PyCon China 2022

- 测试 ResNet-50 推理性能
 - docker exec -ti torch_bm bash -c "cd /tmp/resnet50 && python3 performance.py"
 - docker exec -ti torch_bm bash -c "cd /tmp/resnet50 && python3 performance.py --bf16"

[root@iZ2ze27s0knu0qd946v8mmZ ~]# docker exec -ti torch_bm bash -c "cd /tmp/resnet50 && python3 performance.py" /usr/local/lib/python3.10/dist-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: warn(f"Failed to load image Python extension: {e}")

首次执行会下载预训练模型

Downloading: "https://download.pytorch.org/models/resnet50-11ad3fa6.pth" to /root/.cache/torch/hub/checkpoints/resnet50-11ad3fa6.pth

Self CPU time total: 559.006ms

STAGE:2022-12-16 03:32:27 9:9 ActivityProfilerController [root@iZ2ze27s0knu0qd946v8mmZ ~]# docker exec -ti torch_bm bash -c "cd /tmp/resnet50 && python3 performance.py --bf16" |
STAGE:2022-12-16 03:32:28 9:9 ActivityProfilerController /usr/local/lib/python3.10/dist-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension:

			warn(T raited to toad illage ryth	ion extension.	ies)				
Name	Self CPU %	Sel†S1	TAGE:2022-12-16 03:39:37 30:30 Ac	tivityProfiler	Controller.cpp	:294] Complete	d Stage: Warm	Up	
aten::conv2d	0.04%	S1ء 392.	TAGE:2022-12-16 03:39:38 30:30 Ac	tivityProfiler:	Controller.cpp	:300] Complete	d Stage: Colle	ection	
aten::convolution	0.06%	664.(Name	Self CPU %	Solf CDII	CPU total %	CPU total	CPU time avg	# of Calls
aten::_convolution	0.07%	760.0	Name	Self CPU %	SELT CPU	CPU LULAL %	CPU LULAL	CPU LIME avg	# UT CALLS
aten::thnn_conv2d aten::_slow_conv2d_forward	0.03% 90.25%	364.(955.:	aten::conv2d	0.07%	398.000us	82.34%	460.282ms	8.685ms	53
aten:stow_conv2u_rorward aten::batch_norm	90.25% 0.04%	390.(aten::convolution	0.12%	647.000us	82.27%	459.884ms	8.677ms	53
aten::_batch_norm_impl_index	0.08%	879.0	aten::_convolution	0.14%	770.000us	82.15%	459.237ms	8.665ms	53
aten::native_batch_norm	3.99%	42.2	aten::thnn_conv2d	0.06%	337.000us	82.01%	458.467ms	8.650ms	53
aten::max_pool2d	0.02%	221.0	aten::_slow_conv2d_forward	81.65%	456.408ms	81.95%	458.130ms	8.644ms	53
aten::max_pool2d_with_indices	1.81%	19.1	aten::batch_norm	0.06%	336.000us	7.98%	44.581ms	841.151us	53
Self CPU time total: 1.058s			aten::_batch_norm_impl_index	0.15%	866.000us	7.91%	44.245ms	834.811us	53
		aten::native_batch_norm	7.51%	41.994ms	7.70%	43.039ms	812.057us	53	
			aten::max_pool2d	0.03%	189.000us	3.45%	19.280ms	19.280ms	1
· · · · · · · · · · · · · · · · · · ·	分出执行耗时		aten::max_pool2d_with_indices	3.42%	19.091ms	3.42% 	19.091ms	19.091ms	1

Python for Good>>>> PyCon China 2022

- 测试 Mask R-CNN 推理性能
 - docker exec -ti torch_bm bash -c "cd /tmp/maskrcnn && python3 performance.py"
 - docker exec -ti torch_bm bash -c "cd /tmp/maskrcnn && python3 performance.py --bf16"

```
inference: 1.9125633239746094 s
inference: 1.861675500869751 s
inference: 1.8602280616760254 s
inference: 1.8563194274902344 s
inference: 1.86903715133667 s
inference: 1.8603780269622803 s
best inference time: 1.8563
```


inference: 1.237515926361084 s
inference: 1.2208869457244873 s
inference: 1.243666648864746 s
inference: 1.231743574142456 s
inference: 1.2250795364379883 s
inference: 1.2179841995239258 s
best inference time: 1.2180

- 验证 Mask R-CNN 预测结果
 - docker exec -ti torch_bm bash -c "cd /tmp/maskrcnn && python3 validate.py"
 - docker exec -ti torch_bm bash -c "cd /tmp/maskrcnn && python3 validate.py --bf16"

Python for Good

>>>> PyCon China 2022

- 测试 Mask R-CNN 推理性能
 - docker exec -ti torch_bm bash -c "cd /tmp/maskrcnn && python3 performance.py"

预测结果, 左图FP32, 右图BF16, 提升性能的同时不影响模型预测结果

Python for Good

Pycon China 2022

Thanks!

感谢观看