Session 1: Introduction to DBMS

What does DBMS stand for?

- a) Data Base Management System ⋄
- b) Data Batch Management System
- c) Database Machine Structure
- d) Data Building Memory Software

Which of the following is not a function of DBMS?

- a) Data storage management
- b) Data manipulation
- c) Data backup

The main goal of a DBMS is:

- a) Data processing
- c) Increase complexity
- d) Formatting

DBMS allows users to:

- a) Delete data
- b) Insert data
- c) Update data
- d) All of the above

 ✓

The component responsible for data storage management is:

- a) DDL compiler
- c) Query processor
- d) DML compiler

Which level of data abstraction describes what data is stored in the database?

- a) View level
- b) Logical level

 ✓
- c) Physical level
- d) External level

Which is not a component of DBMS?

- a) Query processor
- b) DDL interpreter
- c) Compiler

 ✓
- d) File manager

Which one of the following is a type of DBMS?

- a) Hierarchical
- b) Network
- c) Relational
- d) All of the above \varnothing

The language used to define the structure of a database is:
a) DML
b) DDL ≪ c) DCL
d) SQL
Which operation is not supported by relational algebra? a) Selection b) Insertion c) Projection d) Union
The DBMS acts as an interface between:
a) Data and file b) Application and database of
b) Application and database <c) Software and hardware
d) None of the above
The term "data redundancy" refers to: a) Multiple data entries b) Loss of data c) Organized data d) None
Which of the following is a property of a good DBMS?
 a) High redundancy b) Low scalability c) Data consistency d) No backup
b) Low scalability c) Data consistency ✓
 b) Low scalability c) Data consistency d) No backup The relational model was introduced by: a) Charles Bachman
b) Low scalability c) Data consistency d) No backup The relational model was introduced by: a) Charles Bachman b) Edgar F. Codd v
 b) Low scalability c) Data consistency d) No backup The relational model was introduced by: a) Charles Bachman
b) Low scalability c) Data consistency d) No backup The relational model was introduced by: a) Charles Bachman b) Edgar F. Codd c) IBM
b) Low scalability c) Data consistency d) No backup The relational model was introduced by: a) Charles Bachman b) Edgar F. Codd c) IBM d) Oracle Data integrity in DBMS refers to: a) Security b) Consistency and accuracy c) Sharing d) Modeling The data dictionary stores:
b) Low scalability c) Data consistency d) No backup The relational model was introduced by: a) Charles Bachman b) Edgar F. Codd c) IBM d) Oracle Data integrity in DBMS refers to: a) Security b) Consistency and accuracy c) Sharing d) Modeling The data dictionary stores: a) The actual data
b) Low scalability c) Data consistency d) No backup The relational model was introduced by: a) Charles Bachman b) Edgar F. Codd c) IBM d) Oracle Data integrity in DBMS refers to: a) Security b) Consistency and accuracy c) Sharing d) Modeling The data dictionary stores:

Which of the following is a DML command? a) SELECT b) CREATE c) DROP d) GRANT
Data independence is: a) Application changes when data changes b) Application does not change when data storage changes c) Application and data tightly coupled d) None
Logical data independence is the ability to: a) Modify physical schema b) Modify logical schema without affecting applications
The schema defines the physical storage structure. a) Conceptual b) Internal c) External d) Logical
Which of the following ensures data consistency? a) DDL b) ACID properties c) DML d) DBA
Which of the following is not a valid key in DBMS? a) Primary key b) Foreign key c) Alternate key d) Complex key ✓
What does ACID stand for? a) Atomicity, Consistency, Isolation, Durability b) Access, Control, Indexing, Durability c) Authentication, Control, Identification, Data
Which language is used for accessing data in DBMS? a) DML b) DDL c) DCL d) TCL
What is a database instance?

a) Entire database

b) Snapshot of data at a particular moment ⋄ c) A key d) None Data abstraction in DBMS helps to: a) Hide irrelevant details ♥ b) Increase redundancy c) Improve performance d) Enforce security A database is: a) Collection of files b) Collection of interrelated data ⋄ c) Set of programs d) Collection of tables only Which of the following is true about DBMS? a) DBMS can handle complex queries ⋄ b) DBMS cannot enforce constraints c) DBMS always stores data on tape d) DBMS is not scalable The process of designing database structure is known as: a) Normalization c) Compilation d) Optimization Database security refers to: a) Backing up data b) Protecting data from unauthorized access ⋄ c) Encrypting data only d) None In a DBMS, views are used for: a) Data modification b) Providing security

✓ c) Storing physical data d) Designing schemas

Which component handles query execution?

- b) Compiler
- c) DDL compiler
- d) DCL processor

The external schema is also called:

- a) Logical view
- b) User view ≪

- c) Internal view d) Conceptual view
 - Which is a disadvantage of file processing system over DBMS?
- b) More security
- c) Easy to access
- d) Data consistency

Which tool is used to manage DBMS?

- a) Operating System
- b) DBMS software ⊗
- c) Antivirus
- d) Compiler

A relation is a:

- a) Table ∜
- b) File
- c) Record
- d) View

Which key is used to uniquely identify rows?

- a) Foreign key
- b) Composite key
- c) Primary key

 ✓
- d) Candidate key

Which term refers to correctness of data?

- a) Data security
- c) Data independence
- d) Data model

A foreign key:

- a) Uniquely identifies tuples
- b) References primary key in another table \checkmark
- c) Cannot be null
- d) Must be unique

Which of the following is not a DBMS?

- a) Oracle
- b) MySQL
- c) PostgreSQL
- d) HTML ⊗

Which of the following is not a data model?

- a) Hierarchical
- b) Network

c) Tabular ♥ d) Relational
Which model uses parent-child relationships? a) Relational b) Network c) Hierarchical d) Object
Entity-relationship model is: a) High-level data model b) Low-level model c) Physical model d) None
What is schema? a) Snapshot of database b) Overall logical structure of database c) Set of tables d) None
Who is responsible for authorizing access to database? a) Developer b) DBA
Which one is true for DBMS? a) Always stored on cloud b) Designed for concurrent access c) Cannot handle backup d) Cannot handle transactions
Redundancy leads to: a) Faster processing b) Inconsistency c) Consistency d) Better security
Tuple in DBMS refers to: a) Column b) Table c) Row d) File
Attribute in DBMS is: a) Row b) Column ✓

- c) Table
- d) Relationship

DCL stands for:

- a) Data Control Language ⋞∕
- b) Data Column Language
- c) Database Constraint Level
- d) Data Column Logic

Topic: Areas where DBMS are Used

- 1. Which of the following sectors commonly uses DBMS technology?
 - a) Banking
 - b) Airlines
 - c) Education
 - d) All of the above

 ✓
- 2. In banking, DBMS is primarily used for:
 - a) Drawing cheques
 - b) Storing customer data and transactions ⋄
 - c) Counting currency
 - d) Running advertisements
- 3. A library information system uses DBMS to manage:
 - a) Books inventory
 - b) Member records
 - c) Book issuing/returning
 - d) All of the above

 ✓
- 4. Which component of a hospital system would benefit most from DBMS?
 - a) Cafeteria
 - b) Patient records

 ✓
 - c) Parking management
 - d) Hospital construction
- 5. DBMS is useful in airlines for:
 - a) Engine maintenance
 - b) Ticket reservations and flight schedules ⋄
 - c) Baggage handling
 - d) Aircraft painting
- 6. Which of the following is **not** a real-world application of DBMS?
 - a) Word processing ♥
 - b) E-commerce
 - c) Payroll systems
 - d) Railway reservations
- 7. In e-commerce, DBMS is used to manage:
 - a) Product catalogs

	b) Customer orders c) Payment records d) All of the above ✓
8.	Which industry uses DBMS for managing supply chain and inventory? a) Manufacturing b) Education c) Transportation d) Agriculture
9.	CRM systems rely on DBMS to: a) Track customer interactions b) Develop advertisements c) Perform marketing interviews d) Manage suppliers
10.	A university database typically stores information about: a) Students b) Faculty c) Courses d) All of the above ✓
11.	Railway reservation systems use DBMS for: a) Announcements b) Cleaning schedules c) Ticket bookings and seat availability d) Refreshments
12.	In telecom, DBMS helps in: a) Laying cables b) Storing call records c) Installing SIMs d) Selling phones
13.	Retail chains use DBMS for: a) Customer management b) Billing systems c) Product inventory d) All of the above ✓
14.	Which function of DBMS is crucial in online exam systems? a) Security and result generation b) Drawing question papers c) Printing certificates d) Verifying attendance
15.	Police departments use DBMS to store:

a) Criminal records ♥

b) Road maps

- c) Parking slots
- d) Traffic signs
- 16. What type of database is commonly used in mobile apps?
 - a) Cloud database

 ✓
 - b) Paper-based log
 - c) Excel sheets
 - d) USB drive
- 17. Banking systems use which kind of database mostly?
 - a) Hierarchical
 - b) Relational

 ✓
 - c) Graph
 - d) Network
- 18. Which organization needs DBMS for managing passport records?
 - a) Ministry of External Affairs ⋞
 - b) Indian Railways
 - c) Election Commission
 - d) BSNL
- 19. Social media platforms use DBMS to:
 - a) Create memes

 - c) Generate content
 - d) Design logos
- 20. What kind of database is typically used in scientific research?
 - a) Multimedia DB
 - b) Object-oriented DB

 ✓
 - c) Hierarchical DB
 - d) OLAP

Topic: Introduction to RDBMS

- 1. What does RDBMS stand for?
 - a) Relational DataBase Management System ♥
 - b) Real-time Database Management System
 - c) Remote Database Management System
 - d) Rational Database Management Server
- 2. RDBMS is based on which model?
 - a) Object-oriented
 - b) Relational model

 ✓
 - c) Network model
 - d) Hierarchical model

3.	Who introduced the relational model? a) Charles Babbage b) Edgar F. Codd c) Bill Gates d) Charles Bachman
4.	A table in RDBMS is also called a: a) Tuple b) Attribute c) Relation d) File
5.	A row in a table is called a: a) Field b) Tuple c) Attribute d) Relation
6.	A column in a table is called an: a) Record b) Attribute c) Entity d) Tuple
7.	Which of the following uniquely identifies a row in a table? a) Foreign key b) Primary key c) Composite key d) Super key
8.	Which of the following can act as a primary key? a) Name b) Email (if unique) c) Address d) Age
9.	The relationship between tables is established using: a) Primary key b) Candidate key c) Foreign key d) Unique key
10	 Which of the following is not a property of RDBMS? a) Data is stored in tables b) Supports indexing c) Uses tree structure d) Supports SQL

 a) Unique identifier in its own table b) Field that refers to primary key of another table c) Redundant field d) None 	
 12. What does SQL stand for? a) Standard Query Language b) Structured Query Language < c) Sequential Query Language d) None 	
 13. Which SQL clause is used to filter records? a) ORDER BY b) GROUP BY c) WHERE d) HAVING 	
 14. Which SQL command is used to retrieve data? a) GET b) SELECT c) RETRIEVE d) ACCESS 	
 15. Which command is used to remove all rows from a table? a) DELETE b) DROP c) TRUNCATE d) CLEAR 	
 16. Which command is used to remove the structure of a table? a) DELETE b) DROP c) TRUNCATE d) REMOVE 	
 17. Which SQL statement is used to create a new table? a) ADD TABLE b) NEW TABLE c) CREATE TABLE d) MAKE TABLE 	
 18. Which clause is used to sort the result set? a) SORT b) ORDER BY c) GROUP BY d) FILTER 	

11. What is a foreign key?

	a) CREATE b) SELECT c) DROP d) ALTER
20.	a) SELECT b) INSERT c) UPDATE d) CREATE
21.	 Which one is not a valid constraint in RDBMS? a) NOT NULL b) UNIQUE c) INTEGER d) CHECK
22.	a) Allows duplicate values b) Prevents null values c) Enforces relationships d) Allows indexing
23.	The UNIQUE constraint ensures: a) Values must be numeric b) All values are different c) All values are the same d) All values are NULL
24.	 A composite key is: a) A single primary key b) A combination of fields to uniquely identify a row c) A duplicate key d) None
25.	a) Oracle b) MySQL c) SQL Server d) All of the above wow
26.	a) Which clause groups rows with same values? a) WHERE b) ORDER BY c) GROUP BY d) HAVING

19. Which of the following is a DML statement?

28.	Referential integrity ensures: a) Correct data types b) Valid references between tables c) No nulls d) Query speed
29.	Which join returns only matching rows from both tables? a) INNER JOIN b) LEFT JOIN c) RIGHT JOIN d) FULL JOIN
30.	Which join returns all rows from the left table and matching rows from right? a) INNER b) LEFT JOIN c) RIGHT JOIN d) SELF JOIN
31.	What does the term "normalization" refer to in RDBMS? a) Data filtering b) Organizing data to reduce redundancy c) Sorting d) Indexing
32.	RDBMS helps in: a) Managing data relationships b) Installing OS c) System design d) None
33.	Which operation is used to rename a relation in relational algebra? a) SELECT b) PROJECT c) RENAME d) UNION
34.	Which SQL keyword is used to update existing data? a) CHANGE b) MODIFY c) UPDATE d) EDIT

27. Which clause is used with GROUP BY to filter grouped data?

 35. Which of the following returns the total number of rows? a) COUNT(*) b) SUM() c) LENGTH() d) TOTAL()
 36. What does the DISTINCT keyword do? a) Removes NULL values b) Removes duplicate records c) Replaces values d) Filters text fields
 37. A relation in RDBMS should not have: a) Duplicate tuples b) Attributes c) Foreign keys d) NULL values
 38. Which is not an advantage of RDBMS? a) Data consistency b) Data redundancy c) Data sharing d) Integrity constraints
 39. Which component of RDBMS interprets and processes SQL? a) Index manager b) Query processor c) Lock manager d) File manager
 40. Which of these is an aggregate function in SQL? a) LENGTH() b) SUM() c) CONCAT() d) UPPER()
41. Which function is used to find max value? a) HIGHEST() b) MAX() c) LARGEST() d) GREATEST()
42. What is the default sorting order in SQL? a) Descending

b) Randomc) Ascending <d) No order

c)]	TOP LIMIT ∜ MAX
a) Ab) Ac) 1	hat is a candidate key? A primary key selected randomly Any key that can be a primary key
a) \$b) \$c) \$	hich of the following is not a relational operation? Selection Projection Normalization Join
a) 5b) 6c) 6	hat is the result of Cartesian Product? Subset of both tables Set of matching tuples All possible combinations of rows Filtered tuples
a) 1b) 1c) 0	hich command removes a record from table permanently? REMOVE DELETE CLEAR ERASE
a) 0b) 1c) 1	hich one is used for transaction control in SQL? COMMIT SELECT INSERT CREATE
a)]b) (c)]	DBMS that supports the relational model is called: Flat DBMS OODBMS RDBMS HDBMS
a) 1b) 1c) 1	hich of the following ensures atomicity in transactions? Primary key ACID

43. Which clause limits the number of rows returned?

a) FIRST

Topic: Codd's 12 Rules for a Relational Database

- 1. Who proposed the 12 rules of a relational database system?
 a) Charles Bachman
 b) Edgar F. Codd

 ✓
 - c) Donald Chamberlin
 - d) James Gosling
- 2. What is the primary purpose of Codd's 12 rules?
 - a) Improve programming logic
 - b) Define what a true RDBMS should support ⋄
 - c) Create hierarchical databases
 - d) Enhance file systems
- 3. Rule 1 (Information Rule) states:
 - a) All information must be stored in XML

 - c) All data must be encrypted
 - d) Data should be accessible only via applications
- 4. In Rule 2 (Guaranteed Access Rule), access to data must be possible via:
 - a) APIs
 - b) Command-line tools
 - c) Primary key
 - d) Table name, column name, and primary key ∜
- 5. Rule 3 refers to:
 - a) Systematic treatment of null values ♥
 - b) Ensuring data redundancy
 - c) Primary key enforcement
 - d) Use of indexing
- 6. Nulls in a relational database should represent:
 - a) Missing value
 - b) Inapplicable value
 - c) Both ≪
 - d) None
- 7. Rule 4 (Dynamic Online Catalog):
 - a) Catalog must be accessible to DBA only
 - b) Catalog must be stored as base tables ⋄
 - c) Catalog must be offline
 - d) Catalog should not be accessible
- 8. What is Rule 5 about?
 - a) Powerful query language ♥
 - b) Authentication
 - c) Table joins
 - d) Data mining

9.	The query language mentioned in Rule 5 must support: a) Definition, manipulation, and constraints b) Encryption c) UI features d) Scheduling
10.	Rule 6 focuses on: a) Data independence b) Indexing c) Views d) Trigger handling
11.	What is physical data independence? a) Changing hardware b) Changing physical storage without affecting applications c) Changing user interface d) Changing SQL queries
12.	Logical data independence allows changes in: a) Internal schema b) Physical schema c) Logical schema without affecting applications d) External schema
13.	Rule 7 is about: a) Integrity independence b) Backup c) Scalability d) Speed
14.	Integrity constraints should be: a) Enforced by front-end b) Stored and managed within DBMS c) Managed manually d) Ignored
15.	What does Rule 8 (View Updating Rule) state? a) Views should never be updated b) Views should be updatable as base tables ✓

c) Views must be read-onlyd) Views must be encrypted

a) Logical consistency

c) Multi-table supportd) Primary key generation

16. Rule 9 is about:

 17. Rule 10 focuses on: a) Distribution b) Logical data storage c) Logical data independence d) Physical data independence
 18. Rule 11 is known as: a) Comprehensive data sublanguage rule b) Referential integrity rule c) Tuple consistency rule d) Relational enforcement rule
 19. Rule 12 is about: a) Security control b) Non-subversion rule c) Query optimization d) Storage engines
 20. The Non-subversion Rule ensures: a) No hacking is possible b) Low-level access cannot bypass integrity rules c) Indexes are hidden d) Constraints are ignored in backup
21. Rule 0 is: a) Unofficial rule b) Foundation rule c) Never used d) Deprecated
 22. Rule 0 says: a) System must support SQL b) System must be open-source c) System must qualify as relational if it supports all 12 rules d) System must have GUI
23. How many rules must a system follow to be a "true" RDBMS, according to Codd? a) At least 5 b) 10 c) All 13 (including Rule 0) d) Only 12
 24. Which rule ensures a centralized system catalog? a) Rule 2 b) Rule 4 ♥ c) Rule 5 d) Rule 9

 a) Keys b) Constraints c) Data independence d) Joins
 26. Which of the following ensures that data integrity is enforced by DBMS and not application? a) Rule 6 b) Rule 7 c) Rule 11 d) Rule 9
 27. Rule 11 requires: a) Multiple languages for DB interaction b) One comprehensive language c) No language d) Front-end scripting
 28. Rule 5 ensures that a query language should allow: a) Only data retrieval b) Retrieval and storage c) Retrieval, manipulation, and constraint enforcement d) None
29. Rule 9 requires that: a) Low-level record access must be used b) All manipulations must be possible at table level c) Index must be used d) Logs must be generated
 30. Why is the Non-subversion Rule important? a) For performance b) To enforce integrity through all interfaces c) To reduce load d) To support legacy apps
 31. Which rule addresses the update capability of views? a) Rule 8 b) Rule 5 c) Rule 7 d) Rule 11
32. Rule 1 ensures that: a) No data duplication b) All data is stored in relational format c) Data is indexed d) Keys are auto-generated

25. Rule 6 and Rule 10 both deal with:

a b c	Logical data independence protects against changes in: a) UI b) Applications due to logical schema change c) System files d) Hardware
a b c	Which rule promotes minimal dependence on physical storage? a) Rule 6 b) Rule 10 C) Rule 11 b) Rule 12
a b c	Rule 4 emphasizes that: a) Only admins can access metadata b) Catalog should be accessible via standard language c) Catalog is locked d) Catalog cannot be queried
a b c	Rule 7 separates: a) User roles b) Integrity from application c) Data from queries d) Keys from indexes
a b c	Which rule emphasizes logical access to data? a) Rule 2 b) Rule 1 c) Rule 5 d) Rule 12
a b c	The "Systematic treatment of nulls" includes: a) Supporting NULL in calculations b) Eliminating NULLs c) Ignoring NULLs d) Treating NULL as 0
a b c	Which rule ensures that data retrieval should not need physical pointers? a) Rule 10 b) Rule 3 c) Rule 2 d) Rule 6
a b c	Views are derived from: a) Stored procedures b) Base tables ∀ Triggers d) Constraints

 41. Rule 9 states that manipulations must be possible via: a) Stored procedures b) High-level language
 42. Rule 12 helps in preventing: a) System crashes b) Security loopholes c) Constraint use d) Redundancy
 43. Rule 11 implies that one language must support: a) Only data definition b) Data definition, manipulation, and constraint c) Reporting only d) Formatting
 44. Which rule is about comprehensive sub-language? a) Rule 11 b) Rule 6 c) Rule 8 d) Rule 2
 45. Which rule is often violated in non-relational DBMS? a) Rule 4 b) Rule 1 c) Rule 3 d) Rule 6
 46. Rule 0 is: a) Optional b) Prerequisite c) Deprecated d) Replaced
 47. What does Rule 5 ensure? a) UI functionality b) Powerful query capabilities c) Backup processes d) Foreign key support
 48. Rule 8 states that views should be: a) Derived from stored procedures b) Automatically created c) Updatable d) Hidden

 49. Rule 3 allows NULLs for: a) Key fields b) Missing or inapplicable values <√
a) Key fields
c) Foreign key only
d) Views
50. Why are Codd's rules still important?
a) For designing front-end apps
b) They define the foundation of true RDBMS \checkmark
c) They enforce performance
d) They replace SQL

Topic: Need for Normalization

- 1. What is the main goal of normalization in DBMS?
 - a) Increase redundancy
 - b) Improve performance
 - c) Eliminate data redundancy ⊗
 - d) Merge tables
- 2. Normalization helps in:
 - a) Data loss
 - b) Data duplication

 - d) Data corruption
- 3. Normalization improves:
 - a) Data redundancy
 - b) Data security

 - d) Indexing
- 4. Which of the following is NOT a benefit of normalization?
 - a) Reduced redundancy

 - c) Easier maintenance
 - d) Better organization
- 5. Normalization is a:
 - a) One-time process

 - c) Data entry step
 - d) Reporting task
- 6. First Normal Form (1NF) removes:
 - a) Transitive dependencies

	b) Partial dependencies c) Multivalued attributes d) Redundant data
7.	In 1NF, each cell of a table must: a) Contain a primary key b) Be null c) Contain only atomic values d) Contain multiple values
8.	Second Normal Form (2NF) deals with: a) Transitive dependencies b) Partial dependencies c) Functional dependencies d) Primary keys
9.	A table in 2NF must: a) Be in 1NF b) Have a foreign key c) Have no key d) Be indexed
10.	Partial dependency occurs when: a) A non-key depends on whole key b) A non-key depends on part of composite key c) A key depends on another key d) A key depends on non-key
11.	Third Normal Form (3NF) removes: a) Partial dependencies b) Composite keys c) Transitive dependencies d) Foreign keys
12.	Transitive dependency involves: a) $A \rightarrow B$ and $B \rightarrow C$ implies $A \rightarrow C \not oldsymbol{ }$ b) $A \rightarrow B$ implies $B \rightarrow A$ c) $B \rightarrow A$ and $A \rightarrow B$ d) A depends on C only
13.	Which of the following normal forms is considered ideal for practical use? a) 1NF b) 2NF c) 3NF d) 6NF
14.	BCNF is a stricter version of: a) 1NF b) 2NF

۵)	3NF ∜
) 4NF
a) b) c)	CNF deals with: Atomicity Anomalies Functional dependencies Multivalued dependencies
a) b) c)	What is a normal form? A way to format reports A set of rules to organize tables A data visualization method A form in the UI
a) b) c)	/hat kind of anomalies does normalization remove? Insert Update Delete All of the above ✓
a) b) c)	nsertion anomaly is: Data lost while deleting Cannot insert data due to missing fields Duplicate insertion Unauthorized insertion
a) b) c)	pdate anomaly leads to: Consistency Redundancy Conflicting data Faster retrieval
a) b) c)	eletion anomaly causes: Incomplete deletion Loss of useful data Excessive logging Index corruption
a) b)	Thich is the lowest normal form? ONF ONF ONF ONF

22. A table that is not normalized is in:

a) 1NF

d) 3NF

b) Unstructured form

	c) 0NF <
3.	d) NULI What is
	a) Break
	b) Introdc) Creati

23. What is denormalization?

- a) Breaking tables
- b) Introducing redundancy intentionally ⋄
- c) Creating more keys
- d) Backing up data

24. Why is denormalization sometimes used?

- a) To make data unstructured
- b) To speed up retrieval

 ✓
- c) To enforce constraints
- d) To reduce inconsistency

25. Which form handles multivalued dependencies?

- a) 2NF
- b) 3NF
- c) 4NF ≪
- d) 5NF

26. Which of the following is the correct order of normalization?

- a) $1NF \rightarrow 2NF \rightarrow 3NF \rightarrow BCNF \varnothing$
- b) $2NF \rightarrow 1NF \rightarrow 3NF$
- c) $3NF \rightarrow 2NF \rightarrow BCNF$
- d) BCNF \rightarrow 1NF \rightarrow 2NF

27. 1NF ensures that:

- a) Attributes are atomic ♥
- b) No partial dependency
- c) Referential integrity
- d) No foreign keys

28. 2NF ensures that:

- a) Data is sorted
- b) Table is in 1NF and no partial dependency

 ✓
- c) No transitive dependency
- d) Data is indexed

29. 3NF ensures that:

- a) Table is in 2NF and no transitive dependency

 ✓
- b) Primary keys exist
- c) Foreign keys are used
- d) Tables are large

30. BCNF ensures:

- a) One-to-many relationships

	c) Referential integrity d) Multivalued dependency
31.	5NF is also known as: a) Project-join normal form b) Composite normal form c) Advanced 3NF d) Functional dependency form
32.	Which normal form handles join dependencies? a) 3NF b) 4NF c) 5NF
33.	A relation in BCNF must also be in: a) 1NF b) 2NF c) 3NF d) All of the above ✓
34.	Normalization is applied during: a) Testing b) Physical design c) Logical database design d) Implementation
35.	Which is the result of not using normalization? a) Better performance b) Anomalies c) Optimized queries d) High security
36.	Which type of dependency does BCNF resolve? a) Functional dependency b) Multivalued dependency c) Transitive dependency d) Composite dependency
37.	What is a candidate key? a) A key that uniquely identifies tuples b) A backup key c) A non-unique field d) A partial key
38.	What is a determinant? a) A type of foreign key

b) An attribute on which others depend

✓

39.	4NF removes: a) Multivalued dependency b) Transitive dependency c) Functional dependency d) Partial dependency
40.	5NF aims to: a) Merge unrelated data b) Reduce redundancy due to join dependency c) Increase redundancy d) Normalize NULL values
41.	Which is considered the strictest normal form? a) 3NF b) BCNF c) 5NF d) 1NF
42.	What does a violation of 1NF indicate? a) Duplicate keys b) Non-atomic values c) Null keys d) Table with no fields
43.	Which key helps in ensuring no partial dependency? a) Foreign key b) Candidate key c) Primary key d) Alternate key
44.	Which anomaly is eliminated first through normalization? a) Insertion anomaly b) Deletion anomaly c) Update anomaly d) All of them
45.	Which normal form is least often implemented in real-world systems? a) 2NF b) 3NF c) 5NF d) 1NF
46.	In what situation might denormalization be preferred? a) When data integrity is needed b) When query performance is more important

c) A calculated column d) A redundant field

- c) When anomalies are needed
 d) When table size must increase
 47. Composite key is:
 a) A key that combines multiple attributes <
 b) A foreign key
 - c) A single column key
 - d) None
- 48. Decomposition in normalization is:

 - b) Deleting rows
 - c) Duplicating rows
 - d) Combining columns
- 49. Functional dependency is a condition where:
 - a) One attribute uniquely determines another \checkmark
 - b) Two tables are equal
 - c) Keys are swapped
 - d) Columns are indexed
- 50. Which dependency is resolved by 3NF?
 - a) Multivalued
 - b) Transitive

 ✓
 - c) Join
 - d) Redundancy

Topic: Data Models (Conceptual, Logical, Physical)

- 1. Which of the following is **not** a type of data model?
 - a) Conceptual
 - b) Logical
 - c) Philosophical &
 - d) Physical
- 2. The **conceptual data model** is primarily concerned with:
 - a) Implementation
 - b) Business requirements

 ✓
 - c) Indexing
 - d) Normalization
- 3. The **logical data model** focuses on:
 - a) Storage structure
 - b) Hardware configuration
 - c) Data entities, attributes, and relationships &
 - d) Operating systems
- 4. The physical data model deals with:
 - a) End-user queries

	b) Storage and performance c) Data abstractiond) Data types only
5.	In which model are tables, columns, and relationships designed logically? a) Physical b) Logical c) Conceptual d) Procedural
6.	What is the main goal of a conceptual model? a) Show how data will be stored b) Show how data is used in business c) Determine file paths d) Optimize performance
7.	What does the logical model remove that exists in the conceptual model? a) Relationships b) User views c) Redundancy d) Keys
8.	Which of the following is the most abstract data model? a) Physical b) Logical c) Conceptual d) Relational
9.	The process of converting a conceptual model into a logical one is called: a) Normalization b) Transformation
10.	A physical model defines: a) Tables and views b) Business rules c) How data is stored on disk d) Logical relationships
11.	Data types and constraints are specified in: a) Conceptual model b) Logical model c) Physical model d) Business model
12.	Primary keys and foreign keys are typically introduced in: a) Conceptual b) Logical ✓

c) Physical d) None
 13. Indexes and partitions are examples of: a) Logical components b) Conceptual entities c) Physical database objects d) Views
 14. In which model are entities and relationships the main components? a) Physical b) Logical c) Conceptual d) Tabular
 15. Which model is used for DBA and developers during implementation? a) Physical b) Conceptual c) Logical d) Object-Oriented
 16. The logical data model is derived from: a) Physical model b) Conceptual model c) ER Diagram d) Normalization
 17. Data abstraction increases from: a) Physical → Conceptual b) Conceptual → Logical c) Physical → Logical → Conceptual d) Logical → Physical → Conceptual
 18. A foreign key relationship is first introduced in which model? a) Conceptual b) Logical c) Physical d) Not in any model
 19. Which model contains technical metadata like file size, location, and performance settings? a) Logical b) Conceptual c) Physical d) Object-based
20. Which of the following is a feature of conceptual model?a) Indexesb) Cardinality <√

d) Block size
 21. A developer working on DB performance would focus on: a) Logical model b) Conceptual model c) Physical model d) Abstract model
 22. Which model represents real-world entities and their relationships? a) Physical b) Logical c) Conceptual d) None
 23. The term "schema" is mostly associated with which model? a) Physical b) Logical c) Conceptual d) ERD
 24. Which layer includes storage-level details such as RAID, tablespaces, or filegroups? a) Physical b) Logical c) Conceptual d) None
25. Business analysts work mostly with: a) Logical model b) Conceptual model c) Physical model d) Programming
 26. Data integrity constraints are applied first in: a) Conceptual b) Logical c) Physical d) ERD
 27. Physical model adds: a) Keys and constraints b) Tables and fields c) Indexing and storage options d) Data relationships
28. Conceptual model is technology-independent a) True ✓

c) File systems

b) False

a) SQL b) ER diagram c) DDL d) XML
31. Logical design leads to: a) ER Diagram b) Normalized tables c) Tablespace d) Index
32. Which model supports normalization rules? a) Physical b) Conceptual c) Logical d) External
 33. Unique and Not Null constraints are part of: a) Conceptual model b) Logical model c) ER model d) File System
 34. Physical model contains: a) Relationship names b) Attribute names c) Disk block size and file organization d) ER symbols
 35. The transition order of models is: a) Conceptual → Logical → Physical ♥ b) Physical → Logical → Conceptual c) Logical → Physical → Conceptual d) Logical → Conceptual → Physical
 36. Which model is closest to how the database is actually implemented? a) Conceptual b) Logical c) Physical d) Object-Oriented

29. Which of the following describes a **logical independence**?

30. The main tool for designing conceptual model is:

c) Removing constraintsd) Adding hardware

b) Logical c) Physicald) ERD
 39. Logical model is independent of: a) Storage structures b) Entities c) Data types d) Relationships
 40. Conceptual model represents: a) Physical constraints b) Application logic c) Abstract structure of data d) SQL commands
 41. A logical ER model includes: a) Table normalization b) Physical partitions c) Disk info d) Buffer sizes
 42. Data normalization occurs in: a) Physical design b) Logical model c) Conceptual model d) Application layer
 43. Foreign keys are part of: a) Conceptual model b) Logical and physical model c) Business design d) Reports
 44. Constraints such as check constraints and default values appear in: a) Conceptual model b) Physical model c) ERD d) Logical only

37. Developers often use **DDL** (**Data Definition Language**) in:

38. Which of the following represents a **field-level description** of data?

d) None

a) Conceptual

45	 a) Physical model b) Logical model c) Conceptual model
46	 b. Which model acts as a bridge between business and technical teams? a) Logical b) Conceptual c) Physical d) Internal
47	7. Entity names and attributes are first listed in the: a) Logical model b) Conceptual model c) Physical model d) Relational model
48	 Business decisions Performance tuning Normalized relational structure ♥ Disk allocation
49	 Which model focuses on data structures and relationships without considering implementation? a) Conceptual b) Logical
50	 a) Poor performance b) Lack of storage details c) Too technical d) No relationships
Topic	: Database Design & Entity-Relationship Diagram (ERD)
⊘ Da	atabase Design
1.	What is the first step in database design? a) Coding b) Logical modeling c) Requirement analysis d) ERD creation

2. Which of the following is the **correct order** of database design?

a) Physical → Conceptual → Logical
 b) Conceptual → Logical → Physical

	d) Conceptual → Physical → Logical
3.	A good database design eliminates: a) Joins b) Primary keys c) Redundancy d) Indexes
4.	What does a poor database design lead to? a) Faster queries b) Better normalization c) Data anomalies d) Lower cost
5.	Which normal form is usually sufficient in most database design cases? a) 1NF b) 2NF c) 3NF d) 5NF
6.	Logical database design is concerned with: a) Storage engine b) File systems c) Structure of tables and relationships d) Disk size
7.	Physical database design focuses on: a) Attributes b) Data relationships c) Performance and storage d) UI requirements
8.	Database design helps achieve: a) Data inconsistency b) Data redundancy c) Data integrity d) Data confusion
9.	What is the purpose of normalization in database design? a) Add redundancy b) Remove relationships c) Organize data and reduce redundancy d) Speed up queries
10.	Which tool is primarily used during conceptual database design ? a) SQL

c) Logical \rightarrow Conceptual \rightarrow Physical

b) ER Diagram ⋞∕

- c) Excel
- d) Flowchart

⊘ Entity-Relationship Diagram (ERD)

- 11. What does ERD stand for?
 - a) Entity Record Design
 - b) Entity-Relationship Diagram ⋞
 - c) External Relation Data
 - d) Entity Row Diagram
- 12. In ER diagrams, **entities** are usually represented by:
 - a) Ovals
 - b) Diamonds

 - d) Triangles
- 13. Attributes in ER diagrams are represented by:
 - a) Rectangles

 - c) Lines
 - d) Triangles
- 14. A **relationship** between entities is represented by:
 - a) Ellipse

 - c) Rectangle
 - d) Arrow
- 15. A weak entity is represented by:
 - a) Bold rectangle
 - b) Double rectangle ∜
 - c) Dashed rectangle
 - d) Curved ellipse
- 16. The key attribute is underlined in:
 - a) ERD ≪
 - b) SQL
 - c) Relational model
 - d) Physical schema
- 17. Composite attributes can be:
 - a) Broken down into simpler attributes ⋄
 - b) Ignored
 - c) Only used in physical model
 - d) Same as multivalued attributes

19	 a) One-to-one b) Many-to-one c) One-to-many d) Many-to-many d) Many-to-many
20	 a) A single table b) A linking table c) Deletion d) Merge of entities
21	 In ER diagrams, total participation is represented by: a) Solid line b) Dashed line c) Double line d) Arrow
22	 a) Composite b) Multivalued c) Simple
23	a) SQL queries b) Foreign key c) Other stored attributes d) Indexes
24	 In ER diagrams, derived attributes are represented by: a) Dashed ellipse b) Solid line c) Rectangle d) Circle
25	 a) 1:1 b) 1:N c) N:N d) M:0 <

18. A multivalued attribute is represented by:

a) Single ellipseb) Double ellipse <

c) Rectangled) Dashed line

	a) Optional b) Not needed c) Mandatory d) Always foreign
27.	Generalization is the process of: a) Combining entities into a supertype b) Creating new attributes c) Eliminating foreign keys d) Removing relationships
28.	Specialization is the process of: a) Breaking down entity into sub-entities b) Combining weak entities c) Merging rows d) Joining attributes
29.	Aggregation is used when: a) Entities have weak keys b) A relationship has attributes c) Attributes need joining d) A derived attribute exists
30.	Which of the following is used to connect attribute to entity ? a) Diamond b) Ellipse c) Line d) Arrow
31.	Weak entities must always have: a) No key b) Foreign key c) Partial key and identifying relationship d) Composite key
32.	An identifying relationship connects: a) Entity and attribute b) Strong entity and weak entity c) Entity and derived attribute d) Foreign key and entity
33.	Each attribute in an entity set must have a: a) Data type b) Relationship c) Trigger d) Subtype

26. In a strong entity set, the **primary key** is:

	 a) Entity b) Attribute c) Relationship d) File system ✓
36.	The ER model is used for: a) Data entry b) Conceptual database design c) Performance tuning d) Query processing
37.	An attribute that uniquely identifies an entity is: a) Foreign key b) Candidate key c) Multivalued key d) Derived key
38.	 Which is not a valid attribute type in ERD? a) Simple b) Composite c) Weak
39.	Which tool is commonly used to create ER diagrams? a) MS Word b) Lucidchart / Draw.io c) Adobe Illustrator d) MS Excel
40.	 Relationship multiplicity refers to: a) Number of tables b) Number of relationships c) Number of entity instances involved d) Primary key usage
41.	 Which rule defines how many times an entity participates in a relationship? a) Generalization b) Participation constraint

34. What does a **dashed line** from entity to relationship signify?

35. Which of the following is not a component of ERD?

a) Derived attribute

d) Generalization

b) Partial participation ∜c) Multivalued attribute

а) С b) Г c) S	ich attribute is not stored but can be calculated? Composite Derived imple Multivalued
a) Ab) Rc) P	ak entities do not have: Attributes Aelationship rimary key Participation
a) Ab) Cc) C	al participation means: all instances must participate in the relationship Only some participate Only keys participate Hone participate
a) A b) C c) D	eritance in ERD is a result of: Aggregation Generalization/Specialization Occomposition Veak entity
a) Sb) Nc) D	ich is not a type of attribute in ERD? imple Multivalued Derived Triggered ♥
a) Fb) Pc) E	andidate key can become a: oreign key rimary key Oerived key Composite key
a) Cb) Pc) N	Jundant data is avoided in ERD by: Generalization Cartial dependency Multivalued attributes Derived fields
a) A b) P	key difference between weak and strong entities is: Attribute count Presence of primary key Attribute type

d) Data type

50.	. A ternary relationship involves: a) 2 entities b) 1 entity c) 3 entities d) No entities	
Topic:	Data Flow Diagrams (DFD)	
1.	What does DFD stand for? a) Data File Design b) Data Flow Diagram c) Document Flow Diagram d) Data Form Design	
2.	What is the primary use of a DFD? a) Describe database schema b) Represent flow of data in a system c) Create ER models d) Define software classes	
3.	Which of the following is not a component of a DFD? a) Process b) Data Flow c) Decision Box d) Data Store	
4.	A data store in DFD is represented by: a) Oval b) Rectangle c) Open-ended rectangle d) Diamond	
5.	An external entity is represented by: a) Rectangle b) Arrow c) Circle	

d) Square

a) Arrow

6. Which shape is used to represent a **process** in DFD?

b) Circle or rounded rectangle &

	c) Processes d) Entities
8.	What does a level-0 DFD represent? a) Detailed system b) Top-level system overview c) Programming logic d) Database schema
9.	A level-0 DFD is also known as: a) Logical DFD b) Physical DFD c) Context Diagram d) Flowchart
10.	Which DFD shows in-depth details of the processes? a) Level-0 b) Level-1 c) Context diagram d) Block diagram
11.	In DFD, data flows are represented by: a) Solid circles b) Arrows c) Dashed lines d) Ovals
12.	The arrow in a DFD denotes: a) Process b) Data Flow c) Decision d) Relation
13.	A DFD that includes technical details like hardware is called: a) Logical DFD b) Physical DFD c) Context diagram d) ERD
14.	A logical DFD focuses on: a) What happens in the system b) How it is implemented

c) Diamondd) Double ellipse

b) Data flow

7. A DFD does not include:a) Control flow <

	c) Which hardware is used
	d) Where the system is hosted
15.	Which DFD shows how the system will be implemented?
	a) Logical
	b) Physical ≪
	c) Context
	d) None
16.	A process in DFD must have:
	a) Only input
	b) Only output
	c) At least one input and one output V

1

- c) At least one input and one output ⋄
- d) No input or output

17. What is the rule for **naming a process** in DFD?

- b) Noun only
- c) Noun-verb
- d) Abbreviation

18. External entities must be:

- a) Part of the internal system
- b) Connected only to data stores
- c) Outside the system boundary ⋄
- d) Inside only for level-1

19. Data stores are typically named with:

- a) Verbs
- b) Adjectives
- d) Code

20. A DFD helps in:

- a) Writing code
- b) Optimizing SQL
- c) Understanding system functionality ⋄
- d) Building hardware

21. Data must always flow between:

- a) Process and data flow
- b) Two processes
- c) Process and external entity or store \checkmark
- d) Data stores directly

22. In a DFD, data should not flow:

- a) From process to store
- b) From process to entity

c) Directly between stores ∜ d) From process to process
 23. A DFD is NOT used for: a) System analysis b) Database design c) Communication d) Documentation
 24. Which DFD level provides functional decomposition of processes? a) Level-0 b) Level-1 c) Physical d) Context
 25. A DFD does NOT show: a) Data sources b) Data destinations c) System hardware d) Data transformations
 26. What is balancing in DFDs? a) Ensuring same number of entities b) Keeping data flow names consistent c) Drawing symmetric diagrams d) Maintaining shapes
 27. Which of the following is an example of a data store? a) Customer b) Inventory c) Print Invoice d) Online Order
28. Which component is used for transformation of data ? a) Process b) Data store c) Data flow d) External entity
 29. The context diagram has how many processes? a) 2 b) 3 c) 1 d) Unlimited
30. Who mainly uses DFDs during development?a) Graphic designersb) Front-end developers

	c) System analysts d) QA engineers
31.	Which type of DFD focuses on business view of a system? a) Logical b) Physical c) Context d) All of them
32.	In a DFD, loops : a) Are mandatory b) Must be avoided c) Improve clarity d) Are allowed only in context diagram
33.	Which DFD level is used to add sub-processes ? a) Level-1 b) Level-0 c) Physical d) Logical
34.	Processes in DFD should be numbered to: a) Show hierarchy b) Optimize data flow c) Replace labels d) Group entities
35.	A DFD should not show : a) Storage mechanisms b) External inputs c) System functionality d) Data outputs
36.	Which symbol represents data movement in DFD? a) Arrow b) Square c) Line d) Dashed circle
37.	What does DFD not help with? a) System behavior b) Code structure c) User interaction d) Data input/output
38.	In DFDs, system boundaries are established using: a) Circles b) Rectangles

	d) Arrows
39.	One benefit of DFDs is: a) Shows database schema b) Reduces coding time c) Simplifies complex processes d) Generates source code
1 0.	Which is NOT a correct pairing? a) Process – Circle b) Data Store – Open-ended rectangle c) Data Flow – Dashed line d) External Entity – Rectangle
4 1.	Arrows in DFD should always be: a) Labeled b) Curved c) Unidirectional d) Dotted
12.	What is a common mistake in DFDs? a) Showing multiple processes b) Missing labels on flows c) Including too many stores d) Drawing external entities
13.	Which of the following must be avoided in DFDs? a) Direct store-to-store data flow b) Store-to-process flow c) Process-to-process flow d) Entity-to-process flow
14.	The highest abstraction level in DFD is: a) Level-1 b) Level-0 c) Level-2 d) Context flow
15.	A process that doesn't change the data is called a: a) Valid process b) Blackhole c) Store d) Loop
1 6.	DFD diagrams use: a) Unified Modeling Language b) Structured design techniques ✓

c) Boxes enclosing the entire diagram \checkmark

	c) Object-oriented symbols d) HTML flow
47.	A process that sends data but receives nothing is: a) Loop b) Source c) Spontaneous generation d) Sink
48.	A process with no output is called: a) Spontaneous generation b) Black hole c) Data loop d) External trigger
49.	DFD helps in designing: a) Physical schema b) System architecture c) Web UI d) NoSQL documents
50.	A sink in DFD is: a) A type of process b) An output-only entity c) Input-only process d) Bi-directional flow
	nlization – Part 1: 1NF and 2NF Normal Form (1NF)

Norr

≪ 1s

- 1. What is the main requirement for a table to be in 1st Normal Form?
 - a) No transitive dependency

 - c) Composite keys
 - d) No null values
- 2. Which of the following violates 1NF?
 - a) Repeating groups \checkmark
 - b) Unique rows
 - c) Primary keys
 - d) Foreign keys
- 3. A relation is in 1NF if:
 - a) It has a primary key

 - c) It has foreign keys
 - d) It is free of nulls

	c) Foreign keys d) Candidate keys
5.	The first normal form eliminates: a) Redundant data b) Composite keys c) Repeating groups d) Foreign keys
6.	Which of the following is an example of non-atomic value ? a) "123 Main St" b) "Red, Blue" c) 42 d) "YES"
7.	The rule of atomicity means: a) No foreign keys b) No duplicates c) Each field should contain indivisible values d) Use of primary key
8.	In 1NF, columns must: a) Be indexed b) Have foreign keys c) Store only single values d) Store unique values only
9.	What is a common mistake when designing a table not in 1NF? a) Including derived attributes b) Allowing multiple values in a single field c) Defining primary key d) Using normalization
10.	 What is the main benefit of applying 1NF? a) Fast querying b) Removal of redundancy c) Ensures atomic values d) Avoids foreign key usage
2nc	l Normal Form (2NF)
11.	A relation is in 2NF if: a) It is in 1NF and has no partial dependency b) It is in 3NF

4. Which of the following would cause a table to **not be in 1NF**?

a) NULL values

 \checkmark

b) Multivalued attributes ♥

- c) It has foreign keys d) It has no nulls 12. 2NF applies only to:
 - a) Relations with a single primary key

 - c) Relations with foreign keys
 - d) Normalized tables
- 13. Which of the following causes a violation of 2NF?
 - a) Transitive dependency
 - b) Composite keys
 - c) Partial dependency

 ✓
 - d) Redundant keys
- 14. Partial dependency occurs when:
 - a) A non-prime attribute depends on part of a composite key

 ✓
 - b) A key depends on a non-key
 - c) A foreign key is null
 - d) A relation has a candidate key
- 15. Which of the following is **not eliminated** in 2NF?
 - a) Transitive dependency ♥
 - b) Partial dependency
 - c) Repeating groups
 - d) Multivalued attributes
- 16. A relation in 1NF but **not** in 2NF will have:
 - a) Transitive dependency
 - b) Composite keys
 - c) Partial dependency

 ✓
 - d) No primary key
- 17. A table is in 2NF if:
 - a) It is in 1NF and each non-prime attribute depends on the whole key \checkmark
 - b) It is in 1NF and has unique rows
 - c) It has no foreign key
 - d) It is in BCNF
- 18. A prime attribute is:
 - a) Derived
 - b) Part of a foreign key
 - c) Part of any candidate key \ll
 - d) A nullable field
- 19. The **goal of 2NF** is to eliminate:
 - a) Composite keys
 - b) Redundant foreign keys

d) A 20. To c a) R b) A c) R	Partial dependencies Atomicity convert from 1NF to 2NF, we must: Remove transitive dependencies Add surrogate keys Remove partial dependencies Normalize foreign keys
⊘ 1NF & :	2NF Conceptual & Practical Scenarios
21. Wh	ich of the following tables violates 1NF?
OrderID P	ProductNames
101 "	Pen, Pencil"
a) No b) Yes ∜	
a) C b) E c) N	at is the correct step to bring the above table to 1NF? Combine rows Break ProductNames into separate rows Normalize to 3NF Add foreign key
a) Nb) Ic) I	able with OrderID and ProductName where each OrderID has only one ProductName is: Not in 1NF n 1NF n 2NF n 3NF
24. Cor	nsider this table:
RollNo Su	bject Instructor
101 Ma	ath Mr. A
101 Sci	ience Mr. B
This table i a) Not in 11 b) In 1NF s c) In 2NF d) In 3NF	NF

a) In 2NF

b) Not in 2NF ≪

d) Not normalized
 9. Which of the following is an example of partial dependency? a) StudentID, CourseCode → Grade; CourseName depends only on CourseCode ♥ b) A → B, B → C c) A → B, C → D d) No dependency at all
 0. What is the best strategy to eliminate partial dependency? a) Remove multivalued fields b) Split relation into smaller ones ♥ c) Merge columns d) Add primary keys
rue/False and Fill-in-the-Blank Style
rue/False and Fill-in-the-Blank Style 1. 1NF allows multivalued attributes. ★ False ♥
1. 1NF allows multivalued attributes.
 1. 1NF allows multivalued attributes. ★ False 2. 2NF removes partial dependencies.
 1. 1NF allows multivalued attributes. X False 2. 2NF removes partial dependencies. ✓ True ✓ 3. If a table is in 2NF, it is also in 1NF.

c) In 1NF d) In 3NF

a) Partial keyb) Foreign key

c) Full primary key d) Derived attribute

a) Merging tablesb) Splitting tables <

c) Adding keysd) Indexing

27. Converting to 2NF typically requires:

26. In 2NF, each **non-key attribute** must depend on:

•	36. Full functional dependency is a requirement for: → 2NF ✓
•	37. Composite keys often introduce: → Partial dependencies ✓
•	38. Splitting a table to remove non-atomic values results in: → 1NF ✓
•	39. Partial dependency can lead to: → Redundancy ✓
4	40. The process of removing repeating groups is associated with: → 1NF ✓
IJ N	More Conceptual
4	 41. 1NF → 2NF deals with: a) Multivalued to atomic b) Partial to full dependencies c) Foreign key optimization d) Transitive removal
4	42. The data integrity rule strengthened by 2NF is: a) Domain b) Entity c) Referential d) Functional ✓
4	43. Which field causes partial dependency in:
	ndentID CourseID Instructor Grade ructor depends only on CourseID
	a) Grade b) Instructor c) StudentID d) CourseID
4	44. Full functional dependency means: a) One field determines the rest

45. 2NF helps in eliminating which anomaly?

c) Foreign key relationshipd) Composite attributes

a) Insertb) Update

	A relation is in 3NF if:
	Normal Form (3NF)
Norma	alization – Part 2: 3NF, BCNF, and 4NF
	b) Data retrieval c) Logical consistency d) Query speed
50.	Ensuring full functional dependency improves: a) Data duplication
49.	Which field type often leads to violating 1NF? a) Numeric b) Text c) Multivalued d) Boolean
48.	What happens if you ignore 2NF? a) No problem b) Storage savings c) Anomalies during updates d) Better performance
47.	In 1NF, if every column is atomic but has partial dependency, then: a) It is in 2NF b) Not in 2NF c) In 3NF d) Unnormalized
46.	Which anomaly results from storing repeated group data? a) Update b) Insert c) Delete d) None
	c) Delete d) All of the above ∜

- b) It is in 2NF and has no foreign keys
- c) All attributes are atomic
- d) It has a candidate key
- 2. What is **transitive dependency**?
 - a) $A \to B$ and $B \to C$ implies $A \to C \ensuremath{\not{e}}$
 - b) $A \rightarrow C$ and $A \rightarrow B$ implies $B \rightarrow C$
 - c) $A \rightarrow A$
 - d) $B \rightarrow A$ and $A \rightarrow C$

3.	Which of the following violates 3NF ? a) A non-prime attribute depending on another non-prime attribute b) Partial dependency c) Composite keys d) Atomic values
4.	Which anomaly is commonly avoided by 3NF? a) Deadlocks b) Transitive updates c) Redundant primary keys d) Cross joins
5.	Transitive dependencies occur when: a) $A \rightarrow B$ and $B \rightarrow C \varnothing$ b) $A \rightarrow A$ c) $A \rightarrow B$ and $B \not \subset A$ d) $A \rightarrow C$
6.	3NF removes: a) Only partial dependencies b) Only multivalued dependencies c) Transitive dependencies d) All attributes
7.	Which of the following is a valid transitive dependency ? a) StudentID → DeptID, DeptID → DeptName b) RollNo → Marks c) Name → Name d) Email → RollNo
8.	Transitive dependency must involve: a) Prime attributes b) Foreign keys c) Non-prime attributes d) Derived attributes
9.	What is the main goal of 3NF? a) Avoid null values b) Remove foreign keys c) Eliminate transitive dependencies d) Use surrogate keys
10	. To move from 2NF to 3NF, we:

a) Remove partial dependencies

c) Normalize primary key

d) De-normalize

b) Remove transitive dependencies \mathscr{C}

BCNF (Boyce-Codd Normal Form) 11. A relation is in BCNF if:

- a) It is in 3NF and every determinant is a candidate key

 ✓
- b) It is in 2NF only
- c) It has no primary key
- d) It avoids redundancy
- 12. BCNF is a stricter version of:
 - a) 1NF
 - b) 2NF
 - c) 3NF ≪
 - d) 4NF
- 13. Which of the following must be a candidate key in BCNF?
 - a) Every foreign key

 - c) All non-prime attributes
 - d) All multivalued fields
- 14. In 3NF, a determinant that is not a candidate key is:
 - a) Allowed
 - b) Violation of BCNF ⊗
 - c) Transitive
 - d) Composite
- 15. Which situation causes a **3NF table to violate BCNF**?
 - a) A candidate key has partial dependency
 - b) Non-prime attribute determines a key
 - c) Non-candidate key determines another attribute ♥
 - d) Duplicate values
- 16. Which form guarantees **no redundancy due to functional dependencies**?
 - a) 2NF
 - b) 3NF
 - c) BCNF ≪
 - d) 1NF
- 17. A table with overlapping candidate keys might violate:
 - a) 3NF
 - b) BCNF ≪
 - c) 2NF
 - d) 4NF
- 18. Every relation in BCNF is also in:
 - a) 1NF
 - b) 2NF
 - c) 3NF
 - d) All of the above

 ✓

a) One attribute uniquely determines two unrelated attributes

✓

b) Two attributes determine a key

26. To remove multivalued dependencies, we:

a) Decompose the relation into multiple tables ⋄

c) A key is foreignd) Derived fields exist

b) Normalize to 2NF

c) Use joins
d) Add primary keys
27. Multivalued dependencies occur when:
a) One entity relates to multiple unrelated values ✓
b) Two values are in a 1:1 relation
c) Transitive dependencies exist
d) Foreign keys are missing

- 28. Which is true about 4NF?
 - a) Handles redundancy due to transitive dependency
 - b) It's the same as BCNF
 - c) Eliminates multivalued dependencies

 ✓
 - d) Allows partial dependency
- 29. A relation in BCNF but **not in 4NF** may have:
 - a) Partial dependency
 - b) Transitive dependency

 - d) Circular references
- 30. When multiple independent multivalued facts exist for one key, it's best to:
 - a) Keep in one table

 - c) Use denormalization
 - d) Store as arrays

♥ Conceptual & Scenario-Based

- 31. A table with **Student** $\rightarrow \rightarrow$ **Hobby** and **Student** $\rightarrow \rightarrow$ **Language** indicates:
 - a) 2NF
 - b) BCNF
 - c) Violation of 4NF ≪
 - d) Functional dependency
- 32. If a non-prime attribute determines another, it violates:
 - a) 1NF
 - b) 3NF ≪
 - c) BCNF
 - d) 4NF
- 33. Which is more powerful BCNF or 3NF?
 - a) 3NF
 - b) BCNF ≪
 - c) They are equal
 - d) Depends on context

	ne/False and Fill-in-the-Blanks . 3NF removes transitive dependencies. ✓ True
40	 Which of the following violates 4NF but not BCNF? a) Transitive dependency b) Functional dependency c) Multivalued dependency d) Primary key duplication
	 Why might BCNF not be sufficient in some cases? a) It allows multivalued dependencies b) It allows repeating groups c) It allows composite keys d) It allows NULLs
38.	. Which is not a multivalued dependency? a) $A \rightarrow \rightarrow B$ b) $A \rightarrow \rightarrow C$ c) $A \rightarrow B \varnothing$ d) $A \rightarrow \rightarrow D$
37.	 If A →→ B and A →→ C and B ⊥ C, then the relation is: a) In BCNF b) In 3NF c) Not in 4NF d) d) De-normalized
36.	 BCNF ensures: a) No transitive dependencies b) All determinants are super keys c) No foreign keys d) No joins
35.	 What is a drawback of reaching 4NF? a) Better speed b) Data redundancy c) Too many joins d) Bigger tables
34.	 Which comes first in normalization sequence? a) BCNF b) 3NF c) 4NF d) 5NF

42. BCNF removes partial and transitive dependencies. **X** False (only determinant constraints)

- 43. 4NF is concerned with multivalued dependencies.

 ✓ True
- 44. BCNF ensures all determinants are candidate keys.

 ✓ True
- 45. Every 3NF relation is also in BCNF. X False
- 46. Functional dependency A \rightarrow B is transitive if B \rightarrow C also exists. \checkmark True
- 47. 4NF is stricter than BCNF.

 ✓ True
- 48. 3NF ensures foreign keys. X False
- 49. Multivalued dependency means one attribute determines unrelated sets.

 ✓ True
- 50. BCNF still allows transitive dependencies. X False

Normalization – Part 3: Denormalization

V Definition and Concepts

- 1. What is denormalization?
 - a) Normalization beyond 4NF
 - b) Reverting normalized tables into a more redundant structure \checkmark
 - c) Removing foreign keys
 - d) Merging primary keys
- 2. Denormalization is typically done to:
 - a) Decrease redundancy
 - b) Optimize read performance

 ✓
 - c) Avoid primary keys
 - d) Improve write performance
- 3. Which of the following is a **consequence of denormalization**?
 - a) Less redundancy
 - b) Higher normalization
 - c) Data redundancy

 ✓
 - d) More normalization
- 4. Denormalization can improve:
 - a) Write speed

 - c) Storage usage
 - d) Data independence
- 5. Which of the following is **not a reason to denormalize**?
 - a) Improve reporting speed
 - b) Improve performance
 - c) Enforce strict integrity \varnothing
 - d) Reduce complex joins

What is a typical trade-off when denormalizing?
a) Data consistency vs performance
b) Indexes vs keys
c) Queries vs UI
d) Redundancy vs deletion
Denormalization increases:
a) Data consistency
b) Update anomalies ♥
c) Data integrity

- 8. Denormalization is often used in:
 - a) OLTP systems

d) Referential security

- c) File systems
- d) Blockchains
- 9. Denormalization should be used:
 - a) Always
 - b) Never

 - d) After backup
- 10. Which of these is a risk of denormalization?
 - a) More CPU usage
 - b) Higher join time
 - c) Data anomalies

 ✓
 - d) Reduced performance

♥ Scenarios and Use Cases

- 11. Which of the following is a valid reason to denormalize a database?
 - a) To improve referential integrity
 - b) To reduce disk usage

 - d) To ensure 3NF compliance
- 12. In a denormalized structure, joins are:
 - a) More frequent

 - c) More efficient
 - d) Needed always
- 13. One denormalization technique is:
 - a) Using composite keys
 - b) Splitting tables

- c) Combining tables d) Replacing primary keys
- 14. Which anomaly is most likely after denormalization?
 - a) Transitive
 - b) Insertion
 - c) Update

 ✓
 - d) Normalization
- 15. A denormalized table may store:
 - a) Derived attributes ♥
 - b) Constraints
 - c) Only primary keys
 - d) Only foreign keys
- 16. Reporting applications prefer:
 - a) 1NF
 - b) Fully normalized schema

 - d) Indexed schema
- 17. What should be considered before denormalizing?
 - a) Storage size
 - b) Query frequency

 ✓
 - c) User count
 - d) UI design
- 18. Redundant data may cause:
 - a) Insert anomaly

 - c) Delete anomaly
 - d) Key violation
- 19. Denormalization is preferred when:

 - b) Database is normalized
 - c) Data is small
 - d) Joins are fast
- 20. In a normalized database, which issue is **reduced**?

 - b) Read speed
 - c) Foreign key usage
 - d) Table count

21. Denormalization can increase: a) Write efficiency b) Read complexity c) Storage requirement ⋄ d) Functional dependency 22. Denormalization often leads to: a) Reduced indexing c) More nulls d) Fewer attributes 23. Which of the following is most often **duplicated** after denormalization? a) Primary keys b) Foreign keys c) Non-key data ≪ d) NULLs 24. To denormalize, developers may: a) Split tables c) Normalize again d) Remove primary keys 25. Denormalization helps avoid: a) Indexing c) Functional dependencies d) Surrogate keys 26. What is the major **downside** of denormalization? a) Faster inserts b) Easier constraints

c) Redundant data d) Better memory

d) Table splitting

c) Data migrationd) File processing

c) Normal form promotion

28. Denormalization is common in:

a) Online Transaction Processingb) Online Analytical Processing <

- 29. Denormalized data can impact:

 - b) Aggregation
 - c) Metadata
 - d) Authentication
- 30. When denormalizing, you must:
 - a) Add more keys
 - b) Remove all dependencies

 - d) Normalize to 3NF

♥ Fill-in-the-Blanks / True/False

- 31. Denormalization may violate normalization rules.

 ✓ True
- 33. Denormalization improves data security. X False

- 36. Denormalization ensures data accuracy. X False
- 37. Denormalized tables may contain duplicate information. \checkmark True
- 38. The biggest benefit of denormalization is performance improvement. $\mathscr O$ True
- 39. Denormalization is best for OLTP systems. **X** False
- 40. Join operations reduce in denormalized databases.

 ✓ True

$\ensuremath{\mathscr{Q}}$ Comparisons and Theoretical

- 41. Denormalization is better than normalization when:
 - a) Transaction speed matters
 - b) Analysis/reporting is the main focus ♥
 - c) Data volume is small
 - d) Relationships are weak
- 42. What is lost during denormalization?
 - a) Functional dependency

 - c) Joins
 - d) Constraints
- 43. Normalization is preferred when:
 - a) Query speed is low

b) Write integrity is high c) Users are less d) Size is big
Denormalized data often results in: a) Null-free schema b) Query optimization c) Single table design d) Normalized indexes
Which is NOT a denormalization method? a) Column duplication b) Derived column addition c) Relation merging d) Splitting relations ✓
When joining denormalized tables, you typically: a) Avoid joins b) Use foreign keys c) Use indexes d) Normalize first
Which is the primary concern in denormalized DBs? a) Aggregation b) Data duplication c) Schema size d) Disk format
A good reason to denormalize is when: a) Table count exceeds limit b) Reporting slows down due to joins c) Joins are optimized d) All data is indexed
To maintain accuracy in denormalized DBs, you must: a) Use views b) Use triggers c) Denormalize more d) Add NULLs
Denormalization often violates which normal form? a) 1NF b) 2NF c) 3NF d) 5NF

1.	Which of the following is a DDL command? a) SELECT b) INSERT c) CREATE d) UPDATE
2.	DDL is used to: a) Control user access b) Define and modify database structure c) Manipulate data d) Query data
3.	Which command is used to create a new table? a) NEW b) CREATE c) ADD d) MAKE
4.	Which command removes the entire table from the database? a) DELETE b) ERASE c) DROP d) REMOVE
5.	What does the ALTER command do? a) Adds new records b) Modifies table structure c) Removes indexes d) Rolls back changes
6.	Which DDL command is used to remove only the data , not the table structure? a) TRUNCATE b) DELETE c) DROP d) REMOVE
7.	Which DDL command is irreversible ? a) DELETE b) TRUNCATE c) DROP d) UPDATE
8.	The keyword used to change a column's data type is: a) RENAME b) CHANGE c) MODIFY d) SET

9.	Which statement is correct about TRUNCATE? a) It is slower than DELETE b) It removes table c) It resets auto-increment d) It uses WHERE clause
10.	Which command can rename a table ? a) CHANGE b) UPDATE c) ALTER TABLE RENAME TO d) MODIFY
11.	DDL statements are: a) Auto-committed b) Rollback-compatible c) Savepoint based d) Used for reports
12.	Which clause is used with CREATE to add a constraint? a) WITH b) LIMIT c) CONSTRAINT d) BIND
13.	A foreign key is created using: a) ADD COLUMN b) ALTER c) CONSTRAINT FOREIGN KEY d) SET RELATION
14.	Can DDL be used to create indexes? a) No b) Yes c) Only via triggers d) Only by admin
15.	What does DROP DATABASE do? a) Deletes all data b) Deletes one table c) Deletes the entire database d) Deletes schema

- 16. Which DDL statement adds a column to a table?

 - b) MODIFY TABLE
 - c) INSERT COLUMN
 - d) UPDATE TABLE

b) DROP c) INSERT ∜ d) ALTER
 18. Which command is used to create a new index? a) MAKE INDEX b) CREATE INDEX c) ADD INDEX d) FORM INDEX
19. DDL changes can be undone using ROLLBACK. ★ False ♥
 20. The CREATE TABLE command is used to: a) Add new row b) Create new table c) Change table name d) Join tables
 21. Which of the following is not a valid DDL command? a) ALTER b) DELETE c) DROP d) CREATE
22. Which DDL command removes all rows but keeps table structure? a) DELETE b) TRUNCATE c) REMOVE d) DROP
 23. Which statement is TRUE about DROP and TRUNCATE? a) Both remove data and structure b) DROP removes structure, TRUNCATE retains c) Both are reversible d) Both are DML
 24. Which command adds a constraint to an existing column? a) ADD KEY b) ALTER TABLE ADD CONSTRAINT c) INSERT CONSTRAINT d) DEFINE
25. DDL stands for: → Data Definition Language ✓

17. Which of the following does NOT belong to DDL?

a) CREATE

26.	A table created without constraints: a) Is not allowed b) Is valid but not safe c) Fails on run d) Cannot be queried
27.	What happens if a DROP is issued on a table with dependencies? a) It drops only the data b) It errors out unless CASCADE is used c) It renames the table d) It truncates the table
28.	ALTER TABLE can be used to: a) Modify rows b) Add/modify columns c) Filter data d) Merge tables
29.	What is the purpose of the COMMENT clause in DDL? a) To write logs b) To document tables/columns c) To export schema d) To join tables
30.	Which of the following is auto-committed ? a) DML b) DDL c) DCL d) TCL
31.	Adding constraints during creation is done via: a) KEY b) CONSTRAINT keyword c) MODIFY d) TRIGGER
32.	What does the CASCADE option do in DROP? a) Adds a cascade join b) Drops dependent objects too c) Prevents drop d) Restores data
33.	DDL is processed by the: a) Parser b) DDL compiler ✓

	CREATE DATABASE is a: a) DML b) DCL c) DDL d) TCL Which of the following is stored in system catalog? a) DML logs b) DDL metadata c) Transactions d) Joins
✓ PAI	RT B: DML – Data Manipulation Language
36.	Which of the following is a DML command? a) CREATE b) INSERT c) DROP d) GRANT
37.	DML is used to: a) Define schema b) Control access c) Manipulate data d) Lock tables
38.	Which command is used to remove specific rows? a) TRUNCATE b) DROP c) DELETE d) ERASE
39.	Which command is used to change data in a table? a) ALTER b) UPDATE c) SET d) CREATE
40.	INSERT adds: a) A column b) A row c) A table d) A constraint
41.	DELETE without a WHERE clause: a) Deletes structure

b) Deletes all rows \checkmark

c) Fails d) Deletes table
 42. Which command is used to modify data? a) CHANGE b) MODIFY c) UPDATE d) TRUNCATE
 43. Can you rollback an UPDATE? a) Yes b) No c) Only if committed d) Only for new rows
44. INSERT INTO requires: a) WHERE b) SET c) VALUES d) TRIGGER
45. Which is not a DML ? a) UPDATE b) SELECT c) CREATE d) DELETE
 46. Which clause is required with DELETE to avoid full table deletion? a) SET b) CHECK c) WHERE d) HAVING
47. INSERT can be done using: a) VALUES b) GROUP BY c) JOIN d) ALTER
 48. Which command retrieves data from the table? a) INSERT b) SELECT
49. INSERT INTO SELECT is used to:

a) Export data

b) Add rows from one table to another ∜

c) Modify schema d) Drop rows
50. DML commands are: a) Auto-committed b) Reversible c) Compiled d) Encrypted
 51. Which command adds multiple records in one go? a) ADD b) INSERT ALL c) COMMIT d) APPEND
52. UPDATE with missing WHERE clause affects: a) One row b) Only NULLs c) All rows d) Foreign keys
53. DELETE is faster than TRUNCATE. ★ False ♦
54. DML is part of: a) Data Control b) Data Retrieval c) Data Processing d) Data Modeling
55. DELETE is a: a) DCL b) TCL c) DML d) DDL
56. Can INSERT fail? a) No b) Yes, due to constraints c) Only on unique key d) Only on empty tables
57. DML statements can be controlled using:

a) GRANT

c) RENAME d) FORMAT

b) COMMIT and ROLLBACK \mathscr{D}

	 a) Table structure b) Column names c) Column values d) Indexes
59.	SELECT statements are: a) DML b) DCL c) DDL d) TCL
60.	SELECT INTO creates: a) Temporary copy b) Constraint c) Schema d) New user
61.	DML commands impact: a) Schema b) Permissions c) Data
PAI	RT C: DCL – Data Control Language
	RT C: DCL – Data Control Language Which of the following is a DCL command? a) CREATE b) GRANT c) DELETE d) ALTER
71.	Which of the following is a DCL command? a) CREATE b) GRANT c) DELETE
71.	Which of the following is a DCL command? a) CREATE b) GRANT c) DELETE d) ALTER DCL is used to: a) Define schema b) Manage transactions c) Control access to data ✓

58. UPDATE can change:

b) Provide privileges ⋞∕

 a) Public b) DBA or owner c) Foreign key d) Guest
 77. Which of these privileges can be granted? a) CREATE b) SELECT c) DELETE d) All of the above
78. GRANT SELECT ON table TO user; — This means: a) User can update data b) User can read table c) User owns table d) User is admin
79. DCL mainly affects: a) Schema b) Permissions c) Structure d) Memory
80. Can DCL control DML access? a) No b) Yes c) Only for DELETE d) Only for INSERT
81. Which privilege allows deletion of rows? a) SELECT b) DELETE c) GRANT d) MODIFY
82. Which DCL command disables a previously granted privilege? → REVOKE ✓

c) Alter tabled) Insert values

75. REVOKE removes: a) Constraints

c) User access

✓

76. Who can issue GRANT command?

b) Data

d) Tables

83. To give a user ability to pass rights to others, use: → GRANT WITH GRANT OPTION ✓
84. GRANT command can be used for: a) Adding constraints b) Giving query rights c) Creating backups d) Schema migration
85. Privileges are stored in: a) Index b) User tables c) System catalog d) Data pages
86. DCL commands apply at: a) Application level b) Schema level c) Database level d) File level
87. REVOKE SELECT ON employee FROM user1; a) Removes SELECT privilege b) Deletes table c) Drops database d) None
88. Which of these are not DCL? a) GRANT b) REVOKE c) ALTER d) None
89. DCL is often executed by: a) Public b) Users c) Admin or DBA d) Developers
90. What happens after REVOKE? a) User is deleted b) Access is revoked c) Data is deleted d) Table is dropped

Session 5 & 6: (Functions, Grouping, Set Operators)

♥ PART A: Inbuilt SQL Functions

1.	Which of the following is an aggregate function ? a) UPPER b) COUNT c) TRIM d) ROUND
2.	Which function returns the number of rows in a result set? a) SUM b) COUNT c) LENGTH d) MAX
3.	The function AVG() is used to: a) Count all rows b) Find total c) Return average value d) Group data
4.	Which function returns the highest value ? a) MAX b) HIGH c) GREATEST d) BIG
5.	What does MIN(Salary) return? a) Maximum salary b) Count of minimum c) Minimum salary d) Median
6.	LENGTH('Sarang') returns: a) 5 b) 6 c) 7 d) Error
7.	Which function removes spaces from both ends of a string? a) REMOVE b) TRIM c) STRIP d) CUT
8.	LOWER('HELLO') gives: a) hello b) HELLO c) Hello d) Error

	Which function converts text to uppercase?
	a) CAPS
	b) UPPER ∜ c) TO_UPPER
	d) FORMAT
	Which function returns the current system date ?
	a) NOW()
	b) GETDATE() ∜ c) CURRENT
	d) DATE()
	d) DATE()
	The ROUND(123.456, 2) returns:
	a) 123.45
	b) 123.46
	c) 123.44 d) 124
	Which function finds the absolute value?
	a) CEIL
	b) ABS ∜
	c) POS d) SIGN
	Which returns the remainder of division?
	a) MOD ✓
	b) DIV c) REM
	d) SPLIT
	The CONCAT('CDAC', 'Pune') returns:
	a) CDAC Pune
	b) CDACPune ♥ c) PuneCDAC
	d) Error
	To extract year from a date:
	a) YEAR(date_column) ∜ b) GETYEAR
	c) EXTRACTYEAR
	d) PARSE(YEAR)
_	Which function adds months to a date? a) ADDDATE
	b) ADD MONTHS ✓
	c) NEWDATE
	d) DATEPLUS

 17. SYSDATE function returns: a) Current system time b) Static date c) User-defined date d) Next date
 18. Which of these is not an aggregate function? a) COUNT b) MAX c) SUM d) LENGTH ✓
 19. What will LENGTH(NULL) return? a) 0 b) NULL c) Error d) -1
 20. Which function replaces characters? a) REPLACE b) SUBSTR c) TRIM d) ALTER
 21. Which function gives the first characters of a string? a) MID b) SUBSTR c) HEAD d) FIRST
 22. Which of these is a numeric function? a) SUM b) REPLACE c) TRIM d) UPPER
23. Which of the following returns a NULL when NULL is passed? a) COUNT(*) b) COUNT(column) c) MAX d) MIN
24. Which function returns current timestamp? a) NOW() b) TIME() c) CURRENT d) SYSTEM()

25. NVL(Salary, 0) is used to: a) Return NULL b) Replace NULL with 0 c) Remove 0s d) Add NULL
26. What does INSTR('banana', 'a') return? a) 2 b) 1 c) 3 d) 4
 27. Which function finds position of a substring? a) LOCATE b) SEARCH c) INDEX d) POSITION
28. Which returns the difference in months between two dates ? a) DATE_DIFF b) MONTHS_BETWEEN c) DATEDIFF d) INTERVAL
29. What does CEIL(10.2) return? a) 10 b) 11 c) 9 d) 0
30. FLOOR(10.9) returns: a) 10 b) 11 c) 0 d) 9
31. POWER(2,3) returns: a) 6 b) 8 c) 9 d) Error
32. SIGN(-5) returns: a) 0 b) -1 c) 1 d) 5

33. ROUND(123.999, 0) returns:	33
a) 123	
b) 124 ♥/ c) 122	
d) Error	
34. What is the output of TRIM(' Hello ')? a) Hello ∜ b) ' Hello ' c) 'Hello ' d) ' Hello'	34.
35. SUBSTR('CDAC', 2, 2) returns: a) CD b) DA c) AC d) C	35.
36. In SUBSTR('abcdef', 3), result is: a) abc b) cdef c) def d) ab	36
37. REPLACE('banana', 'a', 'o') = ? a) bonono b) banana c) banona d) bonana	37.
38. LENGTH(") returns: a) 0 b) NULL c) 1 d) Error	38.
 39. Which function pads a string to the right? a) RPAD b) LPAD c) ADDPAD d) FILL 	39
40. NVL(NULL, 'default') returns: a) default b) NULL c) 0 d) "	40

♥ PART B: GROUP BY & HAVING Clause

- 41. GROUP BY is used to:
 - a) Filter rows
 - b) Sort rows
 - c) Group rows based on column

 ✓
 - d) Join rows
- 42. HAVING is used with:
 - a) SELECT

 - c) ORDER BY
 - d) WHERE
- 43. WHERE filters:
 - a) Groups

 - c) Aggregates
 - d) Results
- 44. HAVING filters:
 - a) Individual rows

 - c) Columns
 - d) Joins
- 45. Which clause comes after GROUP BY?
 - a) WHERE

 - c) SELECT
 - d) JOIN
- 46. GROUP BY must be used when:
 - a) Aggregates are involved ∜
 - b) Filtering rows
 - c) Selecting specific values
 - d) Inserting data
- 47. Can we use HAVING without GROUP BY?
 - a) Yes ∜
 - b) No
 - c) Only with subqueries
 - d) Only in MySQL
- 48. Which clause is evaluated **first**?
 - a) HAVING
 - b) GROUP BY
 - c) WHERE ≪
 - d) SELECT

→ SELECT col	COUNT(*) FROM table	GROUP BY col; ≪	
50. Can we use alia a) Yes b) No c) Only in subq d) Only with Ol	ueries		
51. GROUP BY con a) Tables b) Rows with sa c) Columns d) Functions			
52. Which is invalid a) GROUP BY b) GROUP BY c) GROUP BY d) GROUP BY	column uggregate ∜		
a) Employees ir b) All employee c) Highest paid d) List of depart	s employee	ROUP BY dept; shows:	
a) Only groups b) Only unique c) All groups d) Groups with	vith >1 row shown ∜ rows		
55. GROUP BY alle	ws aggregation.		
56. HAVING is app X False ✓	lied before GROUP BY.		
57. WHERE cannot	use aggregate functions.		
58. HAVING can us	e aggregate functions.		

59. GROUP BY can be used without aggregate.

PART C: Set Operators

- 61. Which operator combines results from 2 queries and removes duplicates?
 a) UNION

 ✓
 - b) INTERSECT
 - c) JOIN
 - d) UNION ALL
- 62. Which retains duplicates?
 - a) UNION
 - b) UNION ALL ⊗
 - c) INTERSECT
 - d) MINUS
- 63. INTERSECT returns:
 - a) All rows

 - c) Only duplicates
 - d) Errors
- 64. MINUS returns:
 - a) Common rows
 - b) Unique rows from second
 - c) Rows in first but not second

 ✓
 - d) Nulls
- 65. Which operator is **faster**?
 - a) UNION
 - b) UNION ALL ≪
 - c) INTERSECT
 - d) JOIN
- 66. All set operations require:
 - a) Same data

 - c) Primary keys
 - d) Unique values
- 67. Which operator is not in SQL?
 - a) UNION
 - b) INTERSECT
 - c) MINUS
- 68. UNION returns:
 - a) Rows in either query \checkmark
 - b) Rows in both

c) Subquery results d) Error
69. INTERSECT is supported in: a) MySQL b) Oracle c) HTML d) MongoDB
70. MINUS is supported in: a) Oracle b) MySQL c) MongoDB d) SQLite
 71. Which operator gives symmetric difference? a) UNION b) UNION ALL minus INTERSECT c) INTERSECT d) JOIN
72. UNION requires: a) Equal columns b) Same table c) Same keys d) Same rows
73. In SELECT * FROM A UNION ALL SELECT * FROM B, duplicates are: a) Removed b) Retained c) Grouped d) Renamed
 74. Set operators cannot be used with: a) WHERE b) ORDER BY inside subqueries c) SELECT d) DISTINCT
 75. ORDER BY in UNION queries should be: a) In both queries b) In last query c) At top d) Not used

76. UNION removes:

b) Duplicates ⊗

a) Keys

	c) Joins d) Tables
77	. INTERSECT results in: a) Duplicates b) NULLs c) Common values d) Distinct keys
78	. UNION is a: a) Join b) Set operator c) Subquery d) Constraint
79	 Set operations do not support: a) Sorting b) NULLs c) Columns with different names d d) Joins
80	. UNION and INTERSECT are: a) DML b) DDL c) Set operations d) Constraints
Sessio	n - 7
LIK	KE, DISTINCT, ORDER BY
1.	What does the LIKE operator do? a) Filters exact values b) Matches patterns using wildcards c) Joins two tables d) Orders records
2.	Which wildcard is used in SQL for a single character match? a) % b) * c) _ ≪ d)?
3.	Which wildcard is used to match any sequence of characters ? a) _ b) % c) # d) *

4.	SELECT * FROM emp WHERE name LIKE 'A%' returns: a) Names ending with A b) Names starting with A c) Names containing A d) Only name = A
5.	What does LIKE '_a%' mean? a) Begins with a b) 2nd letter is 'a' c) Ends with a d) Contains 'a' anywhere
6.	DISTINCT keyword is used to: a) Sort results b) Eliminate duplicates c) Join tables d) Group records
7.	SELECT DISTINCT dept FROM emp; returns: a) All rows b) Rows without NULL c) Unique departments d) Count of depts
8.	Which of the following removes duplicate rows in a query result? a) WHERE b) HAVING c) DISTINCT d) UNIQUE
9.	ORDER BY is used to: a) Group rows b) Filter rows c) Sort rows d) Join tables
10.	ORDER BY salary DESC will: a) Show salary in ascending b) Show salary in descending c) Random order d) Error
11.	By default, ORDER BY sorts in: a) Descending

b) Random

c) Ascending d) Alphabetical

- 13. The BETWEEN operator checks for:
 - a) Exact match

 - c) Pattern match
 - d) Join condition
- 14. SELECT * FROM emp WHERE salary BETWEEN 30000 AND 50000 returns:
 - a) Salaries > 50000
 - b) Salaries < 30000
 - c) Salaries between and including 30000 & 50000 ♥
 - d) None
- 15. BETWEEN is inclusive or exclusive?
 - \rightarrow Inclusive \checkmark
- 16. The AND operator is used to:
 - a) Add rows
 - b) Join tables
 - c) Combine conditions where both must be true ⋄
 - d) Compare strings
- 17. The OR operator results in TRUE if:
 - a) All conditions are false
 - b) At least one condition is true ♥
 - c) None match
 - d) All must match
- 18. Which of the following is **true** for AND?
 - a) Returns true if either is true
 - b) Returns false if both are true
 - c) Returns true only if both are true ♥
 - d) Always true
- 19. Expression: salary > 30000 AND dept = 'HR' filters:
 - a) Salary < 30k
 - b) HR only
 - c) Both salary and department match ⋄
 - d) None

- 20. WHERE age >= 18 OR city = 'Mumbai' includes:
 - a) Only age > 18
 - b) Only Mumbai residents
 - c) Either of the two ∜
 - d) Only both

IS NULL / IS NOT NULL

- 21. IS NULL is used to:
 - a) Check for blank string
 - b) Check for unknown value

 ✓
 - c) Check for zero
 - d) Compare
- 22. Which is correct to check if address is not given?
 - a) WHERE address = NULL
 - b) WHERE address != NULL
 - c) WHERE address IS NULL

 ✓
 - d) WHERE address = 'NULL'
- 23. NULL means:
 - a) 0
 - b) Empty string
 - c) Unknown or missing value

 ✓
 - d) Error
- 24. What does IS NOT NULL do?
 - a) Returns rows with NULL
 - b) Returns rows without NULL

 ✓
 - c) Removes all NULLs
 - d) Replaces NULL with 0
- 25. Which of these is invalid for NULL checks?
 - a) IS NULL
 - b) IS NOT NULL
 - c) = NULL \checkmark
 - d) ISNULL()
- 26. Which is used to check multiple NULL values in a table?
 - a) IN NULL
 - b) HAVING NULL
 - c) WHERE col IS NULL ⊗
 - d) WHERE col = NULL

- 27. The IN operator is used to:
 a) Join tables
 b) Match a value against a list ♥
 c) Remove duplicates
 d) Create views
- 28. WHERE city IN ('Mumbai', 'Pune') returns:
 - a) All rows
 - b) Rows only from Mumbai
 - c) Rows from Mumbai or Pune &
 - d) No rows
- 29. IN clause is a shortcut for:
 - a) LIKE
 - b) OR ⋞∕
 - c) NOT
 - d) JOIN
- 30. NOT IN excludes:
 - a) NULLs
 - b) The listed values \checkmark
 - c) All values
 - d) Duplicates
- 31. WHERE dept IN ('HR', 'Admin') is same as:
 - a) dept = 'HR'
 - b) dept = 'HR' AND dept = 'Admin'
 - c) dept = 'HR' OR dept = 'Admin' ≪
 - d) dept != 'Sales'
- 32. Which is true about IN clause?
 - a) Slower than multiple ORs
 - b) Matches a value from a list

 ✓
 - c) Used in DDL
 - d) Invalid in MySQL

Combined Conceptuals

- 33. SELECT * FROM emp WHERE city NOT IN ('Delhi', 'Pune') means:
 - a) Include Delhi & Pune
 - b) Exclude Delhi & Pune ⋞
 - c) Only Delhi
 - d) Only Pune
- 34. The query: SELECT DISTINCT city FROM emp ORDER BY city DESC returns:
 - a) Duplicate cities
 - b) Random order

- c) Sorted, unique cities ⋞
- d) All cities
- 35. Which is correct syntax?
 - a) WHERE age BETWEEN 20 OR 30
 - b) WHERE age BETWEEN (20,30)
 - c) WHERE age BETWEEN 20 AND 30 ≪
 - d) WHERE age = BETWEEN 20 AND 30
- 36. SELECT name FROM emp WHERE name LIKE '%a' returns names:
 - a) Starting with a
 - b) Containing a

 - d) Only equal to a
- 37. SELECT * FROM emp WHERE name IS NULL OR city = 'Mumbai' means:
 - a) Only NULL names
 - b) Only Mumbai
 - c) Either NULL names or city = Mumbai ❖
 - d) Both must match
- 38. WHERE age NOT BETWEEN 25 AND 40 includes:
 - a) Only ages 25-40
 - b) Ages less than 25 or greater than 40
 - c) 25 and 40 only
 - d) NULLs
- 39. What is the result of SELECT COUNT(DISTINCT dept)?
 - a) Total rows
 - b) Duplicate rows
 - c) Unique department count

 ✓
 - d) Error
- 40. WHERE salary IS NULL AND city IN ('Pune', 'Delhi') filters:
 - a) All cities
 - b) Cities not Pune or Delhi
 - c) Rows with NULL salary and Pune/Delhi ≪
 - d) Only NULL cities

Part B: Relational Algebra

SECTION 1: Basics of Relational Algebra

- 1. Relational algebra is:
 - a) A procedural query language ⋞∕
 - b) A non-procedural query language
 - c) A high-level language
 - d) Not related to SQL

2.	The result of a relational algebra operation is always: a) A number b) A string c) A relation (table) d) A set of indexes
3.	Which of the following is a fundamental operation in relational algebra? a) JOIN b) INTERSECT c) SELECTION d) GROUP BY
4.	Relational algebra operations are: a) Set-based b) Tuple-based c) Recursive d) Sequential
5.	Which symbol represents selection ? a) π b) σ c) U d) −
6.	Which symbol represents projection ? a) $\pi \ll$ b) σ c) U d) \times
7.	Which of the following is not a set operation in relational algebra? a) UNION b) INTERSECT c) SELECTION d) DIFFERENCE
8.	What does the term "arity" mean in relational algebra? a) Number of rows b) Number of columns c) Size of relation d) Number of tuples
9.	What is a relation in relational algebra? a) A record b) A function c) A table d) A field

10.	Relational algebra forms the theoretical base for: a) HTML b) SQL c) JSON d) C++
SEC	TION 2: Selection (σ)
11.	Selection operation is used to: a) Choose columns b) Filter rows c) Sort data d) Combine relations
12.	Symbol used for selection: $\rightarrow \sigma \ensuremath{{\otimes}}$
13.	 σ(condition)(R) means: a) Select columns b) Select rows satisfying condition c) Group rows d) Join tables
14.	Which is a valid selection example? a) σ Salary > 50000 (Employee) b) π Salary > 50000 (Employee) c) U Salary (Employee) d) × Salary
15.	Result of selection operation: a) Subset of rows b) Subset of columns c) Joins d) Cartesian product
16.	 σ Dept = 'HR' (Employee) returns: a) All columns from HR dept b) Only dept column c) Only HR employees' names

d) Grouped data

a) Unary operation b) Binary operation

17. Selection is a:

c) Ternaryd) Composite

18. Can selection use AND / OR in condition? → Yes ✓	
 19. Which is incorrect for selection? a) σ Age > 30 (Person) b) σ Name LIKE 'S%' (Person) c) σ Person (Age > 30) d) σ Age = 25 (Student) 	
 20. Selection cannot: a) Remove rows b) Filter rows c) Change column order d) Be combined 	
SECTION 3: Projection (π)	
 21. Projection retrieves: a) Rows b) Specific columns c) Indexes d) Keys 	
 22. π(Salary, Dept)(Employee) returns: a) All rows b) Only Salary and Dept columns	
 23. Projection is a: a) Unary operation b) Binary c) Set operation d) Function 	
 24. Projection removes: a) Duplicate columns b) Duplicate tuples c) NULLs d) Indexes 	
25. π(Dept, Salary)(Employee) removes: a) Columns	

b) Duplicates ⊗

c) Keys d) All rows

	a) Filtering rows b) Filtering columns c) Updating schema d) Creating triggers
27	. Can projection be applied on multiple attributes? → Yes ✓
28	 π(*) in relational algebra means: a) All columns b) All rows c) No selection d) Aggregation
29	 Which is an invalid projection? a) π Name, Age (Student) b) π Salary(Employee) c) π (Student, Marks) d) π Student (Marks) <√
30	 Projection on empty table gives: a) Error b) Empty relation
SEC	CTION 4: Set Operations – Union, Intersect, Minus
31	 Which symbol represents union? a) U b) ∩ c) - d) σ
32	 The result of R U S includes: a) All records from R and S ♥ b) Only common c) Only R d) Only S
33	 Which symbol is used for intersection? a) U b) ∩ ♥ c) - d) ⊕

26. Projection operation helps in:

34.	R ∩ S returns: a) All records from both b) Records present in both All and a Company Records Provided Rec
	c) All records from R d) All except NULLs
35.	The symbol for set difference is: a) \otimes b) \cap c) $- \varnothing$ d) \div
36.	R − S gives: a) Only records in S b) Records in R not in S c) Intersection d) Projection
37.	For set operations to work, two relations must have: a) Same name b) Same attributes and data types c) Same keys d) Same number of rows
38.	Which of the following is not a set operation? a) UNION b) DIFFERENCE c) INTERSECT d) JOIN ✓
39.	Union removes: a) Duplicates b) NULLs c) Columns d) Rows
40.	Which one retains only distinct tuples? a) UNION b) UNION ALL c) CROSS JOIN d) OUTER JOIN
41.	The operation R ∪ R returns: a) Empty b) R c) NULL d) Error

a) Same number of rowsb) Same schema
43. R ∩ Ø results in: a) Ø ♥ b) R c) NULL d) Error
44. R − ∅ gives: a) ∅ b) R ∜ c) NULL d) ERROR
45. ∅ − R = ? a) ∅ ∜ b) R c) NULL d) ERROR
 46. The result of (R U S) - T is: a) Common in R, S and T b) R and S but not in T c) Only T d) S and T
 47. The associative law holds true for: a) SELECTION b) PROJECTION c) UNION d) DIVISION
48. Which law: $R \cup (S \cup T) = (R \cup S) \cup T$ \rightarrow Associative Law \mathscr{C}
49. Which is distributive: a) $\sigma(\text{condition})(R \cup S) = \sigma(\text{condition})(R) \cup \sigma(\text{condition})(S) \otimes$ b) $\pi(R \cup S) = \pi(R) \cap \pi(S)$ c) $\sigma(R) - \sigma(S) = \emptyset$ d) None
50. Which of the following is commutative ? a) R ∪ S b) R − S

42. What is required for intersection?

- c) $R \div S$
- d) JOIN with ON

51. Which of the following is **not commutative**?

- a) UNION
- b) INTERSECT
- d) SELECTION

52. Which operation is **symmetric**?

- a) R U S
- b) $R \cap S$
- c) $(R S) \cup (S R)$
- d)R S

53. INTERSECT returns:

- a) NULLs
- c) Only R
- d) All

54. Union compatible relations must have:

- a) Same size
- c) Same indexes
- d) Keys

55. If R and S are disjoint, $R \cap S = ?$

- a) R
- b) S
- c) Ø
- d) NULL

56. Difference operator output is:

- a) Union
- b) Subset ≪
- c) Projection
- d) Cartesian

57. Selection and projection can be combined as:

- a) π Salary (σ Dept = 'IT' (Employee)) \emptyset
- b) $\sigma \pi$ (Employee)
- c) π (Employee) σ
- d) $\sigma(\pi(\text{Employee}))$

58.
$$R \cap (R - S) = ?$$

- a) R
- b) S

- c) $R S \varnothing$ $d) \varnothing$ 59. R − (R \cap S) = ? a) R U S

 - b) $R S \varnothing$
 - c) S R
 - d) Ø
- 60. R \cap (S T) = ?
 - a) Common in R and S but not in T ⋄
 - b) All
 - c) S only
 - d) NULL

Session 8 & 9 - Part A: SQL & Aggregate Functions

SQL Functions Overview

- 1. Which of the following is a **single-row function** in SQL?
 - a) COUNT
 - b) SUM

 - d) AVG
- 2. SQL functions can be classified into:
 - a) System and User-defined
 - b) Scalar and Aggregate

 ✓
 - c) Static and Dynamic
 - d) Constant and Variable
- 3. Which function is used to convert text to uppercase?
 - a) TOCHAR
 - b) LOWER

 - d) CONCAT
- 4. What does the LENGTH() function return?
 - a) Number of words

 - c) Data type
 - d) Byte size
- 5. CONCAT('CDAC', 'CCE') gives:
 - a) CDAC
 - b) CCE

- c) CDAC CCE a) DATA
- 6. SUBSTR('DATABASE', 5, 3) returns:
 - b) BASE
 - c) ABA ≪
 - d) TAB
- 7. Which function returns the current system date?

 - b) SYSDATE
 - c) NOW()
 - d) CURRENT DATE
- 8. What is the output of ROUND(25.678, 1)?
 - a) 25.67
 - b) 25.6
 - c) 25.7 ≪
 - d) 25
- 9. The TRIM() function is used to:
 - a) Remove rows
 - b) Convert text

 - d) Round numbers
- 10. Which function finds the position of a character in a string?
 - a) POSITION

 ✓
 - b) LOCATE
 - c) INDEX
 - d) CHARPOS

Aggregate Functions

- 11. Which of these is **not** an aggregate function?
 - a) COUNT
 - b) MAX
 - c) LENGTH

 ✓
 - d) SUM
- 12. COUNT(*) counts:
 - a) Only non-null values
 - b) Only primary keys
 - c) All rows ∜
 - d) Only numbers

 13. AVG() is used to calculate: a) Total sum b) Mean value c) Count of rows d) Maximum
 14. What does MIN() return? a) Minimum of numbers b) Row with least characters c) Number of rows d) 0
 15. What is the result of MAX(SALARY)? a) Smallest salary b) Total salary c) Largest salary d) Null
 16. Which of the following returns total of a numeric column? a) SUM b) TOTAL c) ADD d) COUNT
17. COUNT(column_name) excludes: a) Zero b) Duplicates c) NULLs d) Strings
 18. Which returns only non-duplicate counts? a) COUNT(*) b) COUNT(ALL) c) COUNT(DISTINCT col) d) COUNT(NULL)
 19. You can use aggregate functions in: a) SELECT b) WHERE c) ORDER BY d) CREATE
 20. SELECT SUM(price) FROM products returns: a) Row count b) NULLs c) Total price d) Average price

Advanced Use and Behavior

21. What is returned by COUNT(NULL)? a) 1 b) 0 c) NULL d) Error
 22. Aggregate functions ignore NULLs by default? a) No b) Yes c) Only SUM d) Only COUNT
 23. Can we use more than one aggregate function in a single query? a) No b) Yes c) Only SUM and COUNT d) Only when grouped
24. Which query finds average salary in EMPLOYEES table? a) SELECT AVG(SALARY) FROM EMPLOYEES; b) SELECT AVERAGE(SALARY) c) SELECT SUM(SALARY)/COUNT(SALARY) d) SELECT MIN(SALARY)
 25. If a column has only NULLs, AVG(col) returns: a) 0 b) NULL c) 1 d) Error
26. Aggregate functions can be used with: a) INSERT b) DELETE c) SELECT d) UPDATE
27. Can aggregate functions be used without GROUP BY? → Yes ♥
 28. Aggregate functions apply to: a) Rows b) Columns only c) Joins d) Triggers
29. What will MAX('Apple', 'Banana') return in SQL? a) Apple

Use with DISTINCT, WHERE, and Formatting

- 31. What does SUM(DISTINCT Salary) do?
 - a) Sums duplicates

 - c) Ignores NULL
 - d) Errors
- 32. Which of the following is valid?
 - a) WHERE SUM(SALARY) > 50000
 - b) SELECT SUM(SALARY) WHERE DEPT = 'HR'
 - c) SELECT SUM(SALARY) FROM EMP WHERE DEPT = 'HR'; ⋞
 - d) None
- 33. Which of the following returns number of departments?
 - a) COUNT(*)
 - b) COUNT(ALL dept)

 - d) SUM(dept)
- 34. Can aggregate functions be used in ORDER BY clause?

 - b) No
 - c) Only COUNT
 - d) Only on text
- 35. What is the use of ROUND(SUM(price), 2)?
 - a) Rounds individual rows
 - b) Rounds total price to 2 decimal places ⋄
 - c) Removes NULL
 - d) Trims string
- 36. Aggregate functions always return:
 - a) Single value

 ✓
 - b) Multiple rows
 - c) Table
 - d) String

37.	Which clause is used with aggregate functions for grouping? a) ORDER BY b) HAVING c) GROUP BY d) JOIN
38.	Can aggregate functions be nested? a) No b) Yes c) Only COUNT d) Only in subqueries
39.	SELECT SUM(salary) + COUNT(salary) is: a) Invalid b) Valid c) Returns string d) Returns NULL
40.	SELECT COUNT(*) FROM emp WHERE dept IS NULL returns: a) Employees with NULL dept b) Total emp c) NULL d) Error
Part B	: GROUP BY and HAVING Clause
GR	OUP BY Clause Basics
1.	GROUP BY is used to: a) Filter rows b) Combine columns c) Group rows based on a column d) Sort output
2.	Which clause must be used with GROUP BY for filtering groups? a) WHERE b) ORDER BY c) HAVING d) DISTINCT
3.	What does the query do? SELECT dept, COUNT(*) FROM emp GROUP BY dept; a) Lists all employees b) Lists all departments c) Shows number of employees in each department d) Shows average salary
4.	You can use GROUP BY with: a) DDL

	b) DML c) SELECT ∜ d) ALTER
5.	GROUP BY always comes: a) Before WHERE b) After ORDER BY c) After WHERE and before HAVING d) First in query
6.	GROUP BY must contain: a) Only aggregate columns b) All non-aggregated selected columns c) Only keys d) Only WHERE clause
7.	Which is correct? a) SELECT name, COUNT() FROM emp GROUP BY dept; b) SELECT dept, COUNT() FROM emp GROUP BY dept; c) SELECT COUNT(*) GROUP BY dept FROM emp; d) GROUP BY emp SELECT dept;
8.	GROUP BY can be used with: a) INSERT b) DELETE c) SELECT d) CREATE

 \rightarrow Yes \varnothing

10. GROUP BY dept, role means:

b) Group by dept then role ⋞

12. Grouping without aggregate function is:

a) Group by either

d) Group by sum

11. GROUP BY groups: b) Columns c) Tables d) Keys

> a) Useless b) Invalid
>
>
>
> ✓ c) Allowed

d) Same as SELECT

c) Group by dept only

9. Can we use multiple columns in GROUP BY?

 13. GROUP BY output returns: a) One row b) Summary per group c) All rows d) Nulls only
 14. GROUP BY always works on: a) Keys b) Aggregate functions c) Strings d) Triggers
 15. GROUP BY is valid in which clause? a) HAVING b) WHERE c) SELECT d) INSERT
 16. A column in SELECT without aggregate must be: a) In HAVING b) In ORDER BY c) In GROUP BY d) In WHERE
 17. SELECT dept FROM emp GROUP BY dept shows: a) Distinct dept b) Duplicates c) Count d) Dept names only
18. Can GROUP BY be used without WHERE clause? → Yes ✓
 19. Can we use GROUP BY on expressions? a) No b) Yes c) Only on columns d) Only strings
 20. GROUP BY can group: a) All columns b) Any selected column c) Only numeric d) None

21	. HAVING clause filters: a) Before GROUP BY b) After WHERE c) After GROUP BY d) In ORDER BY
22	a) No b) Yes b)
23	 HAVING vs WHERE – which works on aggregated data? → HAVING
24	 Example: SELECT dept, COUNT(*) FROM emp GROUP BY dept HAVING COUNT(*) > 2; What does it return? a) Departments with any count b) Depts with >2 employees < c) All depts d) None
25	 b. WHERE filters rows, HAVING filters: a) Columns b) Aggregated groups c) Tables d) NULLs
26	 a) SELECT > HAVING > GROUP BY b) GROUP BY > SELECT > HAVING c) SELECT > FROM > WHERE > GROUP BY > HAVING d) HAVING > WHERE
27	 Can HAVING use aggregate functions? → Yes
28	8. HAVING can be used with COUNT, AVG, SUM etc? → Yes ✓
29	 Can you use HAVING without WHERE? → Yes
30	 HAVING filters data after aggregation? → Yes
31	 Which is valid HAVING clause? a) HAVING salary = NULL b) HAVING COUNT(salary) > 5 ♥ c) HAVING name

d) HAVING ORDER BY

32.	You cannot use HAVING to filter: a) Groups b) Aggregates c) Individual rows d) Multiple columns
33.	Can HAVING include logical operators like AND, OR? → Yes ✓
34.	Is this valid? HAVING AVG(salary) $>= 30000$ AND COUNT(*) < 5 \rightarrow Yes \varnothing
35.	Which returns only departments with >10 staff and salary > 25K? a) WHERE salary > 25000 AND COUNT() > 10 b) HAVING salary > 25000 c) GROUP BY dept HAVING COUNT() > 10 AND AVG(salary) > 25000 d) None
36.	HAVING can be used with: a) INSERT b) DELETE c) SELECT d) UPDATE
37.	You can combine WHERE and HAVING in same query? → Yes ✓
38.	HAVING can filter on: a) Non-aggregated data b) Aggregated data c) All rows d) SELECTed columns only
39.	Can we use GROUP BY and HAVING without SELECT? a) No b) Yes
40.	HAVING cannot be used to: a) Filter grouped data b) Use COUNT c) Replace WHERE d) Apply AND

Advanced Combinations and Use-Cases

- 41. Which returns highest total salary per dept?
 - a) SELECT MAX(salary) GROUP BY dept

	 b) SELECT dept, MAX(salary) FROM emp GROUP BY dept
42.	What's wrong with: SELECT name, COUNT(*) FROM emp GROUP BY dept a) Missing HAVING b) name is not grouped or aggregated c) Wrong function d) Nothing
43.	HAVING COUNT(*) > 1 filters: a) Unique records b) Groups with more than 1 row c) NULL rows d) Joins
44.	Can we group by result of expression like YEAR(date)? \rightarrow Yes \varnothing
45.	GROUP BY 1 means: a) Group by column index 1 b) Group by value 1 c) Error d) Constant grouping
46.	What is the purpose of GROUP BY with HAVING COUNT(*) = 1? a) Filter groups with duplicates b) Select unique entries c) Count NULLs d) None
47.	GROUP BY col1 HAVING col2 > 5 is: a) Valid only if col2 is aggregated b) Always valid c) Invalid d) None
48.	Which returns count of employees per city? a) SELECT city FROM emp b) SELECT city, COUNT(*) FROM emp GROUP BY city c) GROUP BY city d) COUNT(emp)
49.	Which returns average marks for students scoring > 50?

b) SELECT AVG(marks) FROM students WHERE marks > 50 \checkmark

a) WHERE marks > 50 AVG(marks)

c) GROUP BY marks HAVING > 50

d) HAVING marks > 50

50. Which is equivalent to: SELECT dept, SUM(salary) FROM emp GROUP BY dept HAVING SUM(salary) > 50000 a) GROUP BY salary b) WHERE SUM(salary) > 50000 c) Filter departments with total salary > 50k d) Count NULLs
51. Can GROUP BY be used without aggregate? → No ✓
52. Can HAVING be used to restrict rows before grouping? → No ✓
 53. GROUP BY with ORDER BY helps in: a) Filtering b) Sorting grouped output c) Joining d) Removing duplicates
54. GROUP BY on multiple columns groups by: a) Either b) Both in order c) Primary key d) Aggregates
55. GROUP BY city ORDER BY COUNT(*) DESC is valid? → Yes ✓
56. HAVING MAX(salary) > 60000 filters: a) Before grouping b) Groups with max salary over 60K c) All rows d) Error
 57. Which clause runs first? a) SELECT b) HAVING c) WHERE d) ORDER BY
58. HAVING SUM(price) BETWEEN 500 AND 1000 is: a) Invalid b) Valid c) Syntax error d) None
59. Can HAVING use aliases from SELECT? a) Yes

b) No ⊗

CopyEdit
SELECT category, COUNT(*)
FROM products
GROUP BY category
HAVING COUNT(*) >= 5;
a) Products list b) Categories with at least 5 products ≪ c) Prices d) Null

60. What's the output of this?

sql

Session 10 & 11: Subqueries, Joins & Subquery Joins

Part A: Subqueries

- 1. A subquery is:
 - a) A query inside a table
 - b) A query inside a function
 - c) A query inside another query \checkmark
 - d) A function inside a query
- 2. A subquery is also known as:

 - b) Multiple query
 - c) Joins query
 - d) Foreign query
- 3. Subqueries are enclosed in:
 - a) Braces
 - b) Square brackets

	c) Parentheses d) Quotes
4.	Subqueries can be used in: a) SELECT b) FROM c) WHERE d) All of the above ✓
5.	Which of the following is NOT a type of subquery? a) Scalar b) Multi-row c) Aggregate d) Temporary ✓
6.	A scalar subquery returns: a) Many rows b) Only one column c) Only one row and one column d) No result
7.	Which clause commonly uses subqueries? a) WHERE b) ORDER c) UPDATE d) INSERT
8.	What is true about correlated subqueries? a) They run independently b) They reference outer query c) They always return one row d) They cannot be nested
9.	Subqueries cannot be used in: a) WHERE b) HAVING c) ORDER BY d) None ✓
10	 a) = b) > c) IN d) BETWEEN
11	 Which keyword is used to test for existence in a subquery? a) EXISTS b) HAVING

c) IN d) JOIN
 12. Subqueries can be used in: a) DELETE b) INSERT c) SELECT d) All ✓
 13. A subquery that refers to the outer query is: a) Inline b) Nested c) Correlated d) Joined
 14. Subquery used in FROM clause is called: a) Table alias b) Inline view c) Derived table d) Cartesian view
 15. The result of a subquery can be compared using: a) = b) > c) IN d) All <
 16. What will happen if subquery returns multiple rows in a scalar context? a) Success b) Error c) Warning d) Partial result
 17. A correlated subquery: a) Executes once b) Executes multiple times c) Runs independently d) Is not valid
 18. What is required for correlated subqueries? a) Primary key b) Column from outer query c) Joins d) Views

19. Which clause does not accept subquery?

a) FROM

b) ORDER BY

c) VALUES d) All accept ≪
 20. Which of these operators are often used with subqueries? a) IN b) ANY c) EXISTS d) All <
 21. Subquery in SELECT clause is usually: a) Scalar b) Aggregate c) Temporary d) Correlated
 22. Can subqueries be nested more than 1 level? a) Yes b) No c) Only 1 level d) Only if JOIN used
 23. In correlated subquery: a) Inner query executes once b) Outer query uses inner result c) Inner query depends on outer d) Both are independent
 24. A subquery returning a single value is: a) Scalar b) Tuple c) Row d) Boolean
 25. Which returns TRUE if subquery returns rows? a) IN b) ANY c) EXISTS d) ALL
 26. What does NOT EXISTS mean? a) At least one match b) No rows returned c) Joins tables d) Partial match

27. What does ALL do in a subquery comparison?

a) Compares with oneb) Compares with all <

	c) Counts all d) Ignores NULL
28.	Can subquery be used in an UPDATE? → Yes ✓
29.	What will > ANY (SELECT score FROM test) return? a) Value > max b) Value > any one c) Value < any d) Value = one
30.	What does > ALL mean in subquery? a) Greater than max b) Less than all c) Less than min d) Equal to max
31.	Which clause is best for filtering based on subquery? a) FROM b) WHERE c) ORDER d) JOIN
32.	Which type of subquery is faster? a) Correlated b) Non-correlated c) Nested d) Inline
33.	A subquery in INSERT is used to: a) Filter b) Insert result of SELECT c) Remove rows d) None
34.	Subquery in DELETE statement is used to: a) Add data b) Return values c) Remove conditionally d) Create schema
35.	A SELECT subquery must return: a) Table b) Record c) Value d) Column name

- 36. Which query uses subquery correctly?

 a) SELECT * FROM emp WHERE salary = SELECT MAX(salary) FROM emp;
 b) SELECT * FROM emp WHERE salary = (SELECT MAX(salary) FROM emp);

 c) SELECT MAX FROM emp;
 d) SELECT WHERE MAX(salary)

 37. Can subquery return NLILL?
- 37. Can subquery return NULL?
 - \rightarrow Yes \ll
- 38. What happens if subquery returns NULL?
 - a) TRUE
 - b) FALSE

 - d) ERROR
- 39. Subquery with aggregation returns:
 - a) Multiple rows
 - b) Table
 - c) Single value

 ✓
 - d) Join
- 40. Subquery syntax error is most likely due to:
 - a) Brackets

 ✓
 - b) Column
 - c) Table
 - d) NULL

Part B: Joins & Subquery Joins

Types of Joins

- 41. A JOIN clause is used to:
 - a) Separate tables
 - b) Combine rows from two or more tables ⋄
 - c) Create tables
 - d) Truncate tables
- 42. A JOIN based on equality condition is:
 - a) Cross join
 - b) Natural join
 - c) Equi Join

 ✓
 - d) Self Join
- 43. INNER JOIN returns:
 - a) All rows

	c) All from left tabled) Unmatched rows only
44.	OUTER JOIN returns: a) Only matched b) Matched and unmatched c) Only unmatched d) Nothing
45	LEFT OUTER IOIN retu

ırns:

ımatched 父

45. LEFT OUTER JOIN returns:

- a) All from right
- b) Only matches
- c) All from left

 ✓
- d) Both unmatched

46. RIGHT OUTER JOIN returns:

- b) All from left
- c) Only matched
- d) Full result

47. FULL OUTER JOIN returns:

- a) Matched rows
- b) Unmatched rows
- c) All rows from both

 ✓
- d) Duplicates

48. NATURAL JOIN uses:

- a) Explicit condition
- b) Common column names

 ✓
- c) PK only
- d) Foreign key only

49. CROSS JOIN produces:

- a) Only common rows
- b) Cartesian product

 ✓
- c) Left rows
- d) Joined nulls

50. Which join may return more rows than both tables?

- a) INNER
- c) LEFT
- d) RIGHT

51. Which JOIN shows NULLs from unmatched right rows?

- a) LEFT
- b) RIGHT ⋞∕

c) INNER d) NATURAL
52. Which JOIN includes all from left and matching right? → LEFT JOIN ✓
 53. Self JOIN is: a) JOIN on same table b) Cross join c) Between 3 tables d) Illegal
 54. JOIN is generally performed using: a) SELECT b) INSERT c) DELETE d) UPDATE
 55. To join 3 tables, we use: a) 1 JOIN b) 2 JOINs c) 3 JOINs d) Subquery
 56. Which is correct syntax for INNER JOIN? a) SELECT * FROM A JOIN B; b) SELECT * FROM A, B; c) SELECT * FROM A INNER JOIN B ON A.id = B.id; d) SELECT JOIN
 57. NATURAL JOIN works only if: a) Same datatype b) Same column names c) All rows match d) One row
58. FULL JOIN returns NULLs when: a) Rows match b) No match exists c) Always d) None
 59. Equi join is: a) Same as INNER JOIN b) Same as OUTER c) NOT a JOIN d) CROSS JOIN

60. CROSS JOIN is same as: a) INNER b) FULL c) Cartesian d) NATURAL
 61. Subquery JOIN means: a) JOIN inside subquery b) Subquery without SELECT c) CROSS join d) INSERT
 62. A subquery in JOIN helps when: a) You need filtered table b) JOIN fails c) SELECT fails d) DELETE
63. Subquery JOIN is useful when: a) Need aggregation b) Need group only c) Column rename d) To remove JOIN
64. Can JOINs be nested inside subqueries? → Yes ✓
65. Can we JOIN result of a subquery with another table? → Yes ✓
 66. Which is true about JOIN vs Subquery: a) JOINs are faster b) Subqueries always better c) Both same d) JOINs can't filter
67. JOIN vs Subquery—Subquery is preferred when: a) Simpler filtering b) Need all rows c) Memory issue d) None
68. What is true about performance?

a) JOINs always fast
b) Subqueries always fast
c) Subqueries avoid duplicates
d) JOINs can't use indexes

a) Specify join condition with same column name ∜ b) Filter rows c) Create alias d) Sort output 70. Can JOINs be used without ON? a) Yes with NATURAL ∜ b) Never c) Only with WHERE d) None 71. Join that requires matching key: a) INNER ∜ b) FULL c) LEFT d) NATURAL 72. CROSS JOIN with WHERE makes it: a) INNER JOIN ∜ b) SELF JOIN c) NATURAL JOIN d) FULL JOIN 73. To compare JOIN and Subquery performance: a) Check plan ∜ b) Count rows c) Sort output d) Use WHERE 74. Subquery in JOIN must return: a) Only 1 row b) Table ∜ c) NULL d) Column 75. JOINs help: a) Merge data from tables ∜ b) Create table c) Remove table		
a) Yes with NATURAL ∜ b) Never c) Only with WHERE d) None 71. Join that requires matching key: a) INNER ∜ b) FULL c) LEFT d) NATURAL 72. CROSS JOIN with WHERE makes it: a) INNER JOIN ∜ b) SELF JOIN c) NATURAL JOIN d) FULL JOIN 73. To compare JOIN and Subquery performance: a) Check plan ∜ b) Count rows c) Sort output d) Use WHERE 74. Subquery in JOIN must return: a) Only 1 row b) Table ∜ c) NULL d) Column 75. JOINs help: a) Merge data from tables ∜ b) Create table	69.	 a) Specify join condition with same column name b) Filter rows c) Create alias
a) INNER ♥ b) FULL c) LEFT d) NATURAL 72. CROSS JOIN with WHERE makes it: a) INNER JOIN ♥ b) SELF JOIN c) NATURAL JOIN d) FULL JOIN 73. To compare JOIN and Subquery performance: a) Check plan ♥ b) Count rows c) Sort output d) Use WHERE 74. Subquery in JOIN must return: a) Only 1 row b) Table ♥ c) NULL d) Column 75. JOINs help: a) Merge data from tables ♥ b) Create table	70.	a) Yes with NATURAL b) Never c) Only with WHERE
a) INNER JOIN ∜ b) SELF JOIN c) NATURAL JOIN d) FULL JOIN 73. To compare JOIN and Subquery performance: a) Check plan ∜ b) Count rows c) Sort output d) Use WHERE 74. Subquery in JOIN must return: a) Only 1 row b) Table ∜ c) NULL d) Column 75. JOINs help: a) Merge data from tables ∜ b) Create table	71.	a) INNER b) FULL c) LEFT
a) Check plan ∜ b) Count rows c) Sort output d) Use WHERE 74. Subquery in JOIN must return: a) Only 1 row b) Table ∜ c) NULL d) Column 75. JOINs help: a) Merge data from tables ∜ b) Create table	72.	a) INNER JOIN b) SELF JOIN c) NATURAL JOIN
a) Only 1 row b) Table ∜ c) NULL d) Column 75. JOINs help: a) Merge data from tables ∜ b) Create table	73.	 a) Check plan b) Count rows c) Sort output
a) Merge data from tables b) Create table	74.	a) Only 1 row b) Table c) NULL
d) Copy rows	75.	 a) Merge data from tables b) Create table c) Remove table

76. Can ON clause use expressions?

- a) Yes ∜
- b) No
- c) Only keys
- d) Only INNER

77. JOIN with GROUP BY is: a) Not allowed b) Common c) Only for INNER d) Invalid 78. CROSS JOIN is mostly used in: a) Small tables b) Views only c) Delete d) Keys

- 79. Can JOIN be used with aliases?
 - \rightarrow Yes \otimes
- 80. Which JOIN returns only common records?
 - \rightarrow INNER JOIN \ll

Session 12: Views, Indexes & Temporary Tables

Section 1: Views

- 1. A **view** in SQL is:
 - a) A stored procedure
 - b) A physical table
 - c) A virtual table

 ✓
 - d) A trigger
- 2. Views are created using:
 - a) CREATE TABLE
 - b) CREATE INDEX
 - c) CREATE VIEW ⊗
 - d) ALTER VIEW
- 3. A view is based on:
 - a) Stored procedures
 - b) Other views
 - c) One or more base tables

 ✓
 - d) Sequences
- 4. A view that is based on a single table without any functions is:
 - a) Complex view

 - c) Joined view
 - d) Materialized view
- 5. A complex view involves:
 - a) One table

6.	Which of the following is NOT a valid type of view? a) Simple view b) Complex view c) Real view d) Inline view
7.	Views are: a) Stored physically b) Recomputed every time c) Faster than tables d) Stored with indexes
8.	The main use of a view is to: a) Store data b) Simplify queries c) Create sequences d) Maintain tables
9.	Which command removes a view? a) DELETE VIEW b) TRUNCATE VIEW c) DROP VIEW d) REMOVE VIEW
10.	Which view supports INSERT and DELETE operations? a) Simple b) Complex c) Indexed d) Nested
11.	Can we update a complex view directly? a) Yes b) No c) Always d) Depends on DBMS
12.	Which of the following is TRUE about views? a) Views can't be queried b) Views are stored procedures c) Views provide security d) Views use triggers
13.	Which clause can be used to restrict update on view? a) NO UPDATE b) WITH READ ONLY ✓

b) Join, group, or functions \mathscr{D}

c) Only insert d) Indexes

	c) NOT NULL d) RESTRICT
14.	What is an inline view? a) Temporary view inside FROM clause b) Permanent table c) View from system table d) Function-based view
15.	What is the result of selecting from a view? a) Permanent table b) Live data from base table c) Static copy d) Stored values
16.	Can you use GROUP BY in a view? → Yes ✓
17.	Can a view contain JOINs? → Yes ✓
18.	A view helps in: a) Data deletion b) Data hiding and abstraction
19.	Updating a view is only possible when: a) It's complex b) It has aggregation c) It is based on a single table d) It has indexes
20.	Can a view be nested (view on a view)? $\rightarrow \text{Yes} \varnothing$
21.	What happens if you delete a view? a) Deletes data b) Deletes table c) Deletes only view definition d) Deletes schema
22.	Materialized view is: a) A virtual table b) A stored snapshot of data c) Not updatable d) Always faster
23.	Views provide a level of:

a) Backup

 26. What is true about view updates? a) Always allowed b) Allowed for simple views c) Required for complex d) Never allowed 	
27. A view does NOT: a) Occupy space b) Improve security c) Store data d) Access multiple tables	
 28. What clause is used to change a view? a) ALTER VIEW b) MODIFY VIEW c) CHANGE VIEW d) UPDATE VIEW 	
 29. Views can reduce: a) Execution b) Storage c) Query complexity d) Primary key 	
30. A read-only view is defined with: → WITH READ ONLY ✓	
31. Can a view have ORDER BY? a) Yes, in query b) No c) Only in MySQL d) Only for functions	
32. Which of the following can be used inside a view?a) Aggregate function b) Insert	

24. Which of the following is not allowed in a simple view?

25. Can a view include a WHERE clause?

b) Abstraction c) Formattingd) Optimization

a) SELECT *b) JOIN

c) WHEREd) ORDER BY

 \rightarrow Yes \lozenge

c) Delete d) Truncate
 33. A view becomes invalid when: a) Table is dropped b) Table is updated c) Query is optimized d) Index is added
 34. Views can be used to: a) Backup database b) Replace primary keys c) Provide logical subset of data d) Create foreign keys
 35. Inline views are used primarily: a) Outside subqueries b) Within SELECT c) Inside FROM clause d) For DML
36. Complex views include: a) Simple SELECT b) Join, aggregate, group c) INSERTs d) Constraints
37. Can a view restrict column access? → Yes ✓
38. Using SELECT * FROM view_name; will: a) Create table b) Query base table c) Modify schema d) Execute triggers
 39. Which of the following can a view NOT contain? a) Subquery b) GROUP BY c) JOIN d) DML <
40. What happens when base table changes? a) View breaks

b) View updates automatically \mathscr{C}

c) View duplicates

d) Nothing

 41. What is an index in SQL? a) Table b) Data structure to speed up retrieval c) Trigger d) View
 42. An index improves: a) INSERT speed b) DELETE speed c) SELECT performance d) Storage
 43. Indexes are created on: a) Tables b) Views c) Procedures d) Sequences
 44. Indexes reduce the time for: a) Searching b) Inserting c) Dropping tables d) Altering schema
45. An index is similar to: a) A key b) A search pointer c) A foreign key d) A join
 46. Primary key automatically creates: a) Unique key b) Index
47. Which command is used to create index?a) MAKE INDEXb) CREATE INDEX <

a) Bitmap

c) NEW INDEX d) INDEX CREATE

48. What type of index is created by default?

c) Reverse d) Text
 49. A unique index: a) Allows duplicates b) Does not allow NULLs c) Enforces uniqueness d) Is a view
 50. Which index supports non-unique values? a) Unique b) Bitmap
 51. Composite index is created on: a) One column b) Two or more columns c) Temporary table d) View
 52. Indexes occupy: a) No memory b) Some additional disk space c) Constant space d) NULL
 53. Downsides of indexes include: a) Higher insert/update time b) Slower select c) Poor joins d) Less readable
54. Clustered index stores: a) Duplicates

55. Non-clustered index stores:

b) Pointers to actual data ♥

c) NULLs

d) Table copies

a) Data inline

56. To drop an index:

a) DELETE INDEXb) REMOVE INDEX

c) Nullsd) Views

	c) DROP INDEX ∜ d) TRUNCATE INDEX
57.	Unique index is used when: a) Speed neededb) Data is repeatedc) Data must be unique
58.	Bitmap indexes are best for:

a) Large text

a) Insert

a) CHARb) DATE

d) All ≪

d) DML

a) Table sizeb) Index typec) Query pattern

d) All ∜

a) WHEREb) JOIN

c) GROUP BY d) INSERT ⊗

b) JOIN plan

c) VARCHAR

a) Sorting only

c) High cardinalityd) Stored procedures

60. Indexes can be created on:

61. Composite indexes can improve:

62. What affects index performance?

63. Indexes do NOT help with:

64. To see performance of indexes: a) Query EXPLAIN plan ⋄

b) Single-column queriesc) Multi-column queries <

b) Low cardinality data ∜

59. Indexing a foreign key column helps:

71.	a) Integer b) Text search c) Boolean d) PK
70	a) Select, join b) Create c) Drop d) Backup
69.	. Can we index expression-based columns? → Yes ✓
68	a) Table has 100 rows b) Table has millions of rows c) Views used d) Keys disabled
67.	a) SELECT b) INSERT c) DELETE d) DROP
66	a) 1 index b) 2 indexes c) Many indexes d) No index
65	 Which index is best for columns with many duplicate values? a) Unique b) Hash c) Bitmap
	c) SHOW ALL d) TEST INDEX

81. Temporary tables are created using:

a) CREATE TEMPORARY TABLE \ll

c) NEW TABLE d) TEMP TABLE
82. Temporary tables are used for:a) Storing data permanentlyb) Backupc) Intermediate results d) Views
 83. Temporary tables are stored: a) On disk b) In memory c) Permanently d) In logs
 84. Scope of temporary table is: a) Session b) Global c) Forever d) Public
 85. Temporary table is dropped: a) By DROP only b) Automatically when session ends c) After reboot d) Manually
 86. Temporary tables help reduce: a) Network traffic b) Storage c) Indexes d) Functions
87. Can indexes be created on temporary tables? → Yes ✓
 88. Which statement is true? a) Temp tables visible to all users b) They persist in DB c) They vanish after session d) They are faster than views
89. Can you use DML on temp tables? → Yes ✓
90. A global temporary table differs by:

a) Available to all sessions $\mathscr O$

b) Faster

b) CREATE TABLE

91.	Can we use JOINs on temp tables? \rightarrow Yes \varnothing
92.	Temporary tables can be used in: a) Subqueries b) Views c) Procedures d) All ✓
93.	Data in temporary table is: a) Permanent b) Stored in session c) Saved to disk d) Read-only
94.	Can you SELECT from a temp table? $\rightarrow \text{Yes} $
95.	Temporary table name is: a) Global b) Local c) Public d) Auto-generated
96.	Can you drop a temp table? $\rightarrow \text{Yes} \varnothing$
97.	Best use of temp tables: a) Join simplification b) Views c) Triggers d) Indexing
98.	Which helps in debugging queries? a) Stored procs b) Views c) Temp tables d) Primary key
99.	Temporary tables are useful for: a) Audit logging b) Intermediate storage c) PK definition d) Dropping schema
100	Dropping a temp table manually: a) DROP TEMP

c) Hiddend) Encrypted

- b) DELETE TABLE
- c) DROP TABLE table name

 ✓
- d) REMOVE TEMP

Session 13: Stored Procedures, Benefits & Parameters (IN, OUT, INOUT)

Section 1: Introduction to Stored Procedures

- 1. A stored procedure is:
 - a) A type of view

 - c) A trigger
 - d) A user
- 2. Stored procedures are stored in:
 - a) Application layer
 - b) Client machine
 - c) Database server

 ✓
 - d) Memory only
- 3. The main purpose of stored procedures is to:
 - a) Replace tables
 - b) Automate database tasks ∜
 - c) Define keys
 - d) Backup data
- 4. Stored procedures are written in:
 - a) HTML
 - b) PL/SQL, T-SQL, or procedural SQL ⊗
 - c) JSON
 - d) DCL
- 5. Which command is used to create a stored procedure?
 - a) CREATE FUNCTION
 - b) CREATE PROC or CREATE PROCEDURE

 ✓
 - c) CREATE TRIGGER
 - d) CREATE JOB
- 6. Stored procedures support which type of SQL statements?
 - a) DML only
 - b) DDL only

 - d) SELECT only
- 7. A stored procedure must begin with:
 - a) TRIGGER

	c) SELECT statement d) WHERE clause
8.	Stored procedures can return: a) Multiple rows b) Scalar values c) Output parameters d) All of the above ✓
9.	Stored procedures are precompiled to: a) Consume more resources b) Increase execution speed c) Generate triggers d) Modify schema
10.	A stored procedure can be executed by: a) SELECT b) EXEC or CALL c) INSERT d) GRANT
11.	Which of the following is NOT a valid advantage of stored procedures? a) Code reuse b) Enhanced security c) Portability between all RDBMS d) Centralized logic
12.	Which RDBMS supports stored procedures? a) MySQL b) Oracle c) SQL Server d) All of the above ✓
13.	Which is NOT a characteristic of stored procedures? a) Reusable b) Precompiled c) Temporary d) Modular
14.	A stored procedure helps minimize: a) Network traffic b) Table creation c) Disk I/O

d) Index lookup

b) A column

15. A procedure can be nested within:

a) Another procedure \checkmark

	c) A trigger d) A view
10	6. Can stored procedures contain loops and conditions? → Yes ✓
17	7. Which is faster: a) Dynamic SQL b) Stored procedure c) View d) Function
18	8. Stored procedures reduce: a) Application logic b) Execution cost c) Code redundancy d) All ✓
19	 9. Stored procedure differs from a function by: a) Function must return value b) Procedure must return value c) Function can't take arguments d) Procedure has no logic
20	 a) RETURN b) END c) EXIT d) BREAK
2	 1. Stored procedures improve security by: a) Hiding schema logic b) Granting all access c) Avoiding constraints d) Skipping login
22	2. In SQL Server, procedure creation ends with: a) / b) GO c); d) \$
23	 3. You can prevent changes to a procedure using: a) LOCK b) ENCRYPTION

 24. A stored procedure can be invoked from: a) Application code b) Trigger c) Another procedure d) All ✓ 	
 25. Recursive procedures are: a) Not allowed b) Allowed in Oracle c) Allowed in many DBMS d) Only for triggers 	
 26. Which clause allows altering a stored procedure? a) MODIFY PROCEDURE b) ALTER PROCEDURE c) CHANGE d) CREATE OR REPLACE 	
 27. Stored procedure parameters must be declared: a) Inside SELECT b) In parentheses c) Outside procedure d) Inside table 	
28. A stored procedure can handle exceptions using: a) TRY-CATCH b) LIMIT c) SKIP d) REJECT	
 29. Which of these is not used inside a procedure? a) DECLARE b) SET c) GOTO d) IF 	
 30. What will happen if you DROP a procedure? a) Its code remains b) Procedure is deleted c) Table is dropped d) Data is lost 	
 31. What is the default mode of parameters in procedures? a) IN b) OUT c) INOUT d) CONSTANT 	

 32. Procedures are stored in: a) File system b) Database dictionary
 33. Best use case for a procedure is: a) View creation b) One-time insert c) Repetitive task d) Granting access
34. Can a procedure call another procedure? → Yes ✓
 35. Which keyword is used to start a procedure block? a) BEGIN b) START c) OPEN d) INIT
36. The opposite of CREATE PROCEDURE is: a) REMOVE b) DROP PROCEDURE c) DELETE d) ERASE
37. Procedures can reduce: a) I/O b) CPU c) Round trips between application and database d) All
38. A stored procedure can accept how many parameters? a) Max 3 b) 10 c) Unlimited d) None
 39. Stored procedures can be tested using: a) SELECT b) EXECUTE c) GRANT d) INSERT
40. Procedures differ from functions because functions:a) Return values <b) Are stored

- c) Use BEGIN-END
- d) Accept INOUT

a) Define keysb) Pass values c) Drop views

d) None

Section 2: Procedure Parameters (IN, OUT, INOUT)

41. Parameters in stored procedures are used to:

2 1: C	How many types of parameters exist in procedures? a) 1 b) 2 c) 3 d) 4
2 1: C	N parameter is used to: a) Pass values into procedure b) Get value out c) Clear data d) Loop rows
2 1: C	OUT parameter is used to: a) Insert data b) Pass value back to caller € c) Accept user input d) Log errors
a t	NOUT parameter is used to: a) Only input b) Only output c) Input and output d) None
a t	Default parameter mode in most databases is: a) OUT b) IN C) INOUT d) STATIC
	Can procedures have no parameters? → Yes &
	Which parameter mode is NOT supported by functions? a) IN

b) OUT ∜ c) INOUT ∜ d) All above
 49. IN parameter values are: a) Writable b) Read-only < c) Persistent d) Auto-stored
 50. OUT parameters must be: a) Passed null b) Set within procedure c) Not used d) Static
 51. INOUT parameters must be: a) Ignored b) Reset c) Initialized and returned d) None
 52. What happens if OUT param not set? a) Returns NULL b) Procedure fails c) Returns 0 d) Value copied from IN
 53. IN parameters can be: a) Constants b) Expressions c) NULL d) All <
 54. INOUT can be used when: a) Input only b) Return only c) Both input and output needed d) Never
55. How do you set OUT parameter value?a) RETURNb) SET out_var = value <c) SELECT

- 56. Which is true about OUT parameters?
 - a) Must be passed before execution
 - b) Are initialized outside

d) UPDATE

d) Are passed by value
 57. INOUT parameters behave like: a) Shared variables b) Cursors c) Constants d) Indexes
58. You can pass NULL to: a) OUT b) IN c) INOUT d) ALL
 59. Which mode is mandatory in procedure? a) IN b) OUT c) INOUT d) None
60. OUT parameter values are returned to: a) Table b) Client c) Trigger d) Server
61. Declaring a parameter requires: a) Name b) Mode (IN/OUT/INOUT) c) Datatype d) All √
62. IN parameters can be used in: a) WHERE clause b) GROUP BY c) TRIGGER d) PRIMARY KEY
 63. What happens if IN param is missing? a) Error b) NULL passed c) Default value used d) Skipped
64. Which param type needs initialization before use?a) INb) OUT Ø

c) Are set inside procedure \checkmark

d) ALL
 65. OUT param without SET will return: a) Default b) NULL c) IN value d) 0
 66. INOUT requires: a) IN value b) SET in procedure c) Both d) None
 67. What happens if INOUT is not declared? a) Error b) Implicit OUT c) Null d) IN assumed
68. OUT and INOUT help in: a) Returning values b) Joins c) Functions d) Views
 69. Parameter names must: a) Match column b) Be unique c) Be integers d) Be static
 70. You can use how many parameters in a procedure? a) 5 b) 10 c) Unlimited d) None
 71. Procedure param data types must match: a) View b) Table c) Variable assigned d) Procedure name
72. OUT parameters allow:a) Inputb) Output <

c) INOUT

c) Triggers d) Loops
73. OUT parameters can return: a) Single value < b) Tables c) Keys d) NULL only
 74. INOUT is useful in: a) Logging b) Reusable logic c) Triggers d) Indexing
75. Can parameters be declared with default values? → Yes ✓
 76. Which clause sets parameter values on call? a) EXEC/EXECUTE with values b) INSERT c) TRIGGER d) CURSOR
 77. INOUT example usage: a) Increase counter b) Print c) Log d) Drop schema
 78. DECLARE keyword is used for: a) Param in procedure b) Index c) View d) Column
79. OUT parameters are visible after: a) CREATE b) EXEC c) INSERT d) TRIGGER
 80. Param values in EXEC must match: a) Order b) Name c) Column d) Table

81.	Can you use SELECT to return OUT param value? \rightarrow Yes \swarrow
82.	Which keyword returns OUT param in MySQL CLI? a) SELECT var b) SHOW c) UPDATE d) RETURN
83.	SET @var = value assigns: a) Param value b) Index c) View d) Key
84.	Can param be array? a) Not in standard SQL b) Always c) Required d) Default
85.	Output param can be: a) Number b) Text c) Date d) All ✓
86.	What should be used to modify OUT param? a) SET b) RETURN c) CREATE d) GOTO
87.	Can INOUT param be NULL? \rightarrow Yes \varnothing
88.	Order of parameter declaration is: a) OUT, IN b) IN, OUT, INOUT c) ANY d) Not required
89.	Which param must be initialized before use? a) OUT b) IN c) INOUT d) All

9	 0. OUT param helps simulate: a) RETURN statement b) JOIN c) View d) Table
9	 1. INOUT helps update: a) Columns b) Memory value c) Keys d) Schema
9	 2. INOUT must be passed as: a) Constant b) Variable
9	3. OUT param stores result: a) After EXEC b) Before EXEC c) At runtime d) Always NULL
9	 4. INOUT acts like: a) Combined IN & OUT ♥ b) Loop c) Trigger d) Cursor
9	 5. OUT parameter must be: a) Passed NULL b) Returned by value c) Dropped d) Created first
9	 6. OUT parameters help when function: a) Can't return multiple values b) Has return c) Skips logic

d) Uses cursor

a) Same value \checkmark

b) Tablec) Keyd) View

97. INOUT can store and modify:

- 98. Which type returns value implicitly? a) IN b) OUT c) INOUT d) Function

 ✓ 99. Can you use SELECT INTO OUT param? \rightarrow Yes \triangleleft 100. Best practice for OUT parameters is: a) Set once

 ✓ b) Always NULL c) Skip check d) Avoid values Session 14 - NoSQL Databases **Section 1: Introduction to NoSQL** 1. What does NoSQL stand for? a) No Structured Query Language ♥ b) Not Only SQL c) Non-standard SQL d) Not SQL at all 2. NoSQL databases are primarily designed for: a) Structured data only b) Fixed-schema models c) Unstructured and semi-structured data ♥ d) Stored procedures 3. One of the primary reasons for adopting NoSQL is: a) Low security b) Fixed schemas d) Slow transactions 4. NoSQL databases emerged due to limitations in: a) XML
 - d) Operating systems

c) Programming languages

- 5. Which of the following is true about NoSQL?
 - a) It always uses SQL
 - b) It stores only relational data
 - c) It is schema-less

 ✓
 - d) It enforces ACID strictly

	 a) Simple desktop apps b) Mobile games c) Big Data and real-time web apps d) Compilers
7.	Which one of the following is a NoSQL database? a) Oracle b) MongoDB c) MySQL d) SQL Server
8.	NoSQL is commonly used in: a) Banking systems b) Small-scale static websites c) Social media platforms d) Payroll software
9.	Which of the following is a benefit of NoSQL? a) Strong schema enforcement b) Vertical scaling only c) High flexibility in data modeling d) Slow performance
10.	In NoSQL, data is typically stored in: a) Tables and rows b) Files c) Collections and documents d) Keys and triggers
11.	Which feature is not associated with NoSQL? a) Horizontal scalability b) Schema-less design c) Table joins d) High performance
12.	Which term is often associated with NoSQL databases? a) Joins b) Big Data
13.	NoSQL was mainly built to support: a) Relational data b) Consistency over availability c) Distributed and scalable architectures d) Stored functions

6. NoSQL is best suited for:

	. Which is a document-based NoSQL DB?
Sec	etion 2: NoSQL Database Types
20	 a) NoSQL databases are mostly: a) Normalized b) Table-oriented c) Non-relational d) Constraint-heavy
19	 a) RDBMS b) Views c) NoSQL Document databases d) Keys only
18	a) Monolithic b) Client-server c) Microservices d) Desktop apps
17	 7. The NoSQL movement started around: a) 1980 b) 1998 c) 2009 d) 2015
16	 a) Basically Available, Soft state, Eventually consistent ♥ b) Basic Attributes Structured Encoding c) Basic Array Stored Elements d) Base-level SQL
15	a) ACID b) BASE c) CORS d) CRUD
14	a) NoSQL only b) SQL only c) Indexes d) Normalization

a) MySQL

	b) MongoDB c) Neo4j d) Cassandra
22.	A key-value store stores data as: a) JSON b) Tables c) Keys and associated values d) Columns
23.	Redis is an example of a: a) Columnar DB b) Key-value store c) Document DB d) RDBMS
24.	Which NoSQL type is optimized for relationships? a) Key-Value b) Document c) Graph d) Column
25.	Columnar NoSQL databases store: a) Data in documents b) Data in columns c) Data in tables d) Keys only
26.	Which of the following is a column-based NoSQL DB? a) Oracle b) CouchDB c) Cassandra d) MongoDB
27.	Neo4j is a: a) Column DB b) Key-Value c) Graph database d) Relational database
28.	Which type of NoSQL DB works best for social networks? a) Document b) Key-Value c) Graph d) Column
29.	Which database is best suited for storing documents in JSON? a) PostgreSQL b) MongoDB ✓

d) SQL Server
 30. A graph database contains: a) Rows b) Columns c) Nodes and Edges d) Keys
31. The most flexible NoSQL model is: a) Key-Value b) Graph c) Document d) RDBMS
32. CouchDB is a: a) Key-Value DB b) Document store c) Columnar DB d) Graph DB
 33. The best NoSQL type for analytics is: a) Key-Value b) Column-oriented c) Graph d) Document
 34. What is stored in a key-value store? a) Documents b) Binary trees c) Keys with associated values d) Tables
 35. Which NoSQL type does not support querying deeply nested data well? a) Document b) Key-Value c) Graph d) Columnar
36. A document store stores data in: a) Tables b) XML c) JSON/BSON d) CSV
37. Columnar DBs are best suited for: a) Data warehouses ✓

b) Graph processing

- c) Transactions d) Key-value updates
- 38. Which is the oldest NoSQL model?
 - a) Key-Value ≪
 - b) Graph
 - c) Document
 - d) Column
- 39. Graph DBs are used heavily in:
 - a) E-commerce

 - c) Retail
 - d) Banking
- 40. Which type allows indexing of individual fields within a document?
 - a) Columnar

 - c) Graph
 - d) Key-Value

Section 3: Features of NoSQL

- 41. A common feature of NoSQL DBs is:
 - a) Schema rigidity
 - b) Join support
 - c) Horizontal scalability

 ✓
 - d) Stored procedures
- 42. NoSQL databases often use:
 - a) Normalization
 - b) Indexes

 - d) ER modeling
- 43. NoSQL databases support:
 - a) Consistency over everything
 - b) Distributed data ≪
 - c) Local storage only
 - d) Fixed schemas
- 44. Data in NoSQL is:
 - a) Normalized
 - b) Always structured
 - c) Often semi-structured

 ✓
 - d) Table-based

	 a) Schema flexibility b) Rich relationships via JOINs c) High performance d) Easy sharding
46.	a) Master-slave b) Distributed c) Client-server d) Threaded
47.	a) ACID b) CAP Theorem c) ISO d) Locking
48.	a) Handling unstructured data b) Easy scaling c) Fixed schema enforcement d) Real-time performance
49.	 What kind of scaling is typical of NoSQL systems? a) Vertical b) Horizontal
50.	 NoSQL generally uses what type of consistency? a) Strong b) Eventual
51.	 One key benefit of NoSQL is: a) Tight coupling b) Ease of complex joins c) High performance for Big Data d) Lack of security
52.	 NoSQL excels in handling: a) Fixed schemas b) Table relationships c) Complex joins d) Rapidly changing data

45. Which of the following is NOT a NoSQL DB feature?

a) JSb) Cc) X	EQL DBs often support: SON/BSON data SON/B
a) Nb) Vc) S	rding refers to: formalizing data fertical scaling plitting data across multiple servers €aching indexes
a) Job) Rc) G	ilability in NoSQL is ensured through: OINs eplication rouping fiew merging
a) Rb) Lc) T	QL performance is better in: elational data arge volume and low latency operations able sorting fulti-table queries
a) Sb) Dc) F	QL is less prone to: calability issues ata corruption lexibility ocument usage
a) Rb) Sc) B	at makes NoSQL flexible? igid typing chema-less nature inary indexes able partitioning
a) Rb) Nc) M	ich database can grow across nodes easily? DBMS loSQL IySQL Dracle
a) Nb) Lc) T	QL supports high: formalization ocking hroughput dedundancy

61. Structured data is stored in:

 a) Images b) Tables c) Text documents d) Binary files
 62. Semi-structured data is usually in: a) JSON, XML b) Tables c) Images d) Spreadsheets
63. Unstructured data includes: a) CSV b) Images and videos c) XML d) SQL
64. Structured data has: a) No fixed format b) Partial tags c) Predefined schema d) Loose data
65. Examples of structured data: a) Video logs b) SQL databases c) JSON documents d) PDF
 66. Semi-structured data supports: a) Strong data types b) Partial structure
67. Examples of unstructured data: a) Emails, chat logs ✓

- 68. Which is not a characteristic of structured data?
 - a) Rigid schema

b) Excelc) Tablesd) XML

b) SQL compatibility

- c) Complex joins
- 69. Structured data is easier to:
 - a) Parse ≪
 - b) Compress
 - c) Embed
 - d) Encode
- 70. Semi-structured data is common in:
 - a) Relational DB

 - c) Triggers
 - d) Graph DB

Section 5: RDBMS vs NoSQL

- 71. RDBMS use:
 - a) Schema-less models

 - c) JSON
 - d) Unstructured data
- 72. NoSQL supports:
 - a) Tables
 - b) Flexible data models ♥
 - c) Primary-foreign keys
 - d) Only numbers
- 73. RDBMS use:
 - a) ACID ⊗
 - b) BASE
 - c) Document model
 - d) CAP
- 74. NoSQL favors:
 - a) ACID
 - b) BASE ≪
 - c) Full consistency
 - d) Transactions
- 75. RDBMS are best for:
 - a) Social media

 - c) Unstructured data
 - d) IoT

76. NoSQL is preferred in: a) Banking b) Data warehouse c) Real-time analytics ✓ d) Core ERP 77. RDBMS is better for:

- - a) Flexible schema

 - c) JSON
 - d) Eventual consistency
- 78. RDBMS scaling is mostly:
 - a) Horizontal
 - b) Vertical

 ✓
 - c) Schema-based
 - d) Client-based
- 79. NoSQL is known for:
 - a) Inflexibility
 - b) Auto-normalization
 - c) Scalability and flexibility

 ✓
 - d) Low availability
- 80. RDBMS supports:
 - a) JSON

 - c) Keys only
 - d) No foreign keys
- 81. NoSQL databases rarely support:

 - b) Indexes
 - c) Documents
 - d) Keys
- 82. In RDBMS, normalization is:
 - a) Optional

 - c) Never used
 - d) Deprecated
- 83. In NoSQL, normalization is:
 - a) Standard

 - c) Required
 - d) Enforced

84. RDBMS follows which design? a) Denormalized b) Entity-relationship ✓ c) Columnar d) Key-value 85. Which is true? a) RDBMS has high flexibility b) NoSQL is ideal for changing schemas ⋄ c) SQL stores files d) NoSQL can't handle JSON 86. RDBMS requires: b) Dynamic keys c) JSON structure d) Loose typing 87. NoSQL does not require: a) Queries c) Index d) Data 88. NoSQL shines when: a) Data size is fixed b) Schema is strict c) Data volume is huge ≪ d) Joins are needed 89. RDBMS relationships are enforced using: a) JSON c) Keys only d) Replication 90. NoSQL databases use what for relation-like logic? a) Joins c) Cursors d) Sequences 91. NoSQL sacrifices consistency for: a) Availability and partition tolerance ⋄

b) Redundancyc) Indexing

d) Normalization

92. RDBMS scales by: a) Splitting tables c) Sharding d) Indexing 93. NoSQL scales by: a) Adding joins b) Foreign keys

- - c) Adding more nodes

 ✓
 - d) Locking
- 94. RDBMS are best when:
 - a) Schema is not fixed
 - b) Data is large

 - d) Eventual consistency is OK
- 95. NoSQL works well when:
 - a) You need SQL
 - b) Data model is rigid

 - d) You need triggers
- 96. RDBMSs are:
 - a) Inherently distributed

 - c) Document-based
 - d) Event-driven
- 97. NoSQL supports:
 - a) Triggers
 - b) Tables
 - c) Flexible data models ♥
 - d) Constraints
- 98. NoSQL avoids:
 - a) Transactions

 - c) JSON
 - d) Documents
- 99. RDBMS ensures data integrity via:
 - a) JSON
 - b) Joins
 - c) Constraints and keys ∜
 - d) Arrays

- 100. Which is true?
 - a) NoSQL is best for strict schema
 - b) RDBMS scales horizontally
 - c) RDBMS supports ACID, NoSQL supports BASE ≪
 - d) SQL uses JSON natively

Session 15 – MongoDB

Section 1: Introduction to MongoDB & Its Benefits

- 1. MongoDB is a:
 - a) Relational database
 - b) Graph database
 - c) Document-oriented NoSQL database ⋄
 - d) Key-value store
- 2. MongoDB stores data in:
 - a) Tables

 - c) Columns
 - d) Trees
- 3. MongoDB documents are stored in:
 - a) Databases
 - b) Fields

 - d) Rows
- 4. One major benefit of MongoDB is:
 - a) Fixed schemas
 - b) ACID transaction support only

 - d) Data redundancy
- 5. Which of the following is a file format used by MongoDB?
 - a) XML
 - b) BSON ⊗
 - c) CSV
 - d) SQL
- 6. MongoDB is best suited for:
 - a) Heavy joins
 - b) Unstructured and semi-structured data ♥
 - c) High transaction banking
 - d) Flat data
- 7. MongoDB supports horizontal scaling via:
 - a) Clustering

8. MongoDB was dea) Googleb) Microsoftc) MongoDB Incd) Oracle	
9. One key advantaga) Triggersb) Data joinsc) Schema-less ded) Foreign key sup	_
10. MongoDB storesa) Arraysb) Tablesc) JSON-like doctd) CSV	
11. Which of the followarda) Vertical scalingb) High latencyc) Real-time analyd) Slow performance	rtics ♥
12. In MongoDB, dataa) Normalizationb) Embedding docc) Indexingd) Subqueries	a redundancy is minimized by:
13. MongoDB excelsa) Handling staticb) Handling dynamc) Table joinsd) Stored procedu	data mic data ∜
14. MongoDB supporta) Columnarb) Binaryc) Document	ts which kind of storage?
15. MongoDB is writt a) Java b) Python	en in:

b) Joins

c) Sharding ♥
d) Indexing

- c) C++ ∜ d) SQL
- 16. MongoDB is available on:
 - a) Windows only
 - b) Linux only

 - d) Android only
- 17. MongoDB Atlas is:
 - a) Local version

 - c) Compass alternative
 - d) A visualization tool
- 18. MongoDB allows:
 - a) Storing documents without schema ⋄
 - b) Mandatory schema definitions
 - c) Only SQL-like operations
 - d) Stored procedures
- 19. MongoDB is NOT ideal for:
 - a) Real-time analytics
 - b) Social media apps
 - c) Banking applications

 ✓
 - d) Content management systems
- 20. MongoDB handles large volumes of:
 - a) Structured data
 - b) Binary trees
 - c) Unstructured data

 ✓
 - d) Static XML

Section 2: Features of MongoDB

- 21. MongoDB supports:
 - a) Tables
 - b) Document embedding ♥
 - c) Primary-foreign keys
 - d) Triggers
- 22. A key feature of MongoDB is:
 - a) Foreign keys
 - b) Strong normalization
 - c) Indexing \checkmark
 - d) Composite primary keys

 a) Binary JSON b) Base Schema Object Notation c) Binary SQL d) Big Structured Object Notation
 24. MongoDB supports high availability via: a) Clustering b) Replication c) Caching d) Normalization
 25. MongoDB collections are analogous to: a) Rows b) Tables c) Indexes d) Fields
 26. Which of the following is a data type in MongoDB? a) float b) int c) ObjectId d) date-time
27. MongoDB supports dynamic: a) Indexes b) Schemas c) Tables d) Triggers
28. Which command shows all databases? a) SHOW DATABASES b) LIST c) DB LIST d) DB.INFO()
 29. MongoDB stores each record as a: a) Document b) Cell c) Table d) View
 30. Which of the following features improves read speed? a) Triggers b) Indexes ♥ c) Views d) Constraints

23. BSON stands for:

 32. In MongoDB, arrays can be: a) Nested within documents b) Used as keys c) Primary keys d) External
 33. Which ensures data integrity in MongoDB? a) Transactions b) Triggers c) Functions d) Keys
 34. MongoDB supports ACID transactions from: a) Version 2 b) Version 3.2 c) Version 4.0 d) Version 6.0
 35. Which is NOT a MongoDB feature? a) Joins b) Sharding c) Indexing d) Replication
 36. MongoDB provides: a) Strong joins b) Built-in horizontal scalability c) Table locking d) Fixed schemas
 37. MongoDB allows: a) Field-level encryption b) Key-based joins c) NULL-only fields d) Schema triggers
38. To access a Mongo shell, the command is: a) mongo b) mongodb c) connect-db d) mongo-shell

31. MongoDB Compass is used for:

c) GUI-based database management ⋞∕

b) Schema enforcement

a) Coding

d) Replication

a) Shards	
b) Replica sets ✓	
c) Views	
d) Functions	
Section 3: MongoDB Interface, Compass, Documents & Collections	
41. The MongoDB shell is a: a) GUI b) CLI c) IDE d) Dashboard	
42. MongoDB Compass is: a) Code editor b) Visual GUI for MongoDB c) Authentication manager d) Indexing tool	
43. A MongoDB document resembles: a) A spreadsheet b) A table c) A JSON object d) An XML file	
 44. Which of the following is a valid document format? a) CSV b) BSON	
 45. A collection contains: a) Tables b) Arrays c) Documents	
46. A document in MongoDB is stored as: a) Key-value pairs ✓	

39. MongoDB stores "_id" field as:

40. MongoDB handles failover via:

a) Textb) Integerc) ObjectId

d) Date

	a) Primary keyb) Unique ObjectId in _id c) Name fieldd) Tag
49.	Mongo shell can be exited using: a) stop b) exit c) quit() d) db.exit
50.	You can create a new database in Mongo by using: a) CREATE DATABASE b) USE dbname c) NEW DB d) MAKE DATABASE
51.	Compass allows you to: a) Write HTML b) View documents visually c) Backup databases d) Trigger events
52.	The default port for MongoDB is: a) 27017 b) 3306 c) 1433 d) 1521
53.	MongoDB collection names: a) Are case-sensitive b) Must be uppercase c) Must be lowercase d) Require _ only
54.	Which field is created automatically in every document? a) name b) id

b) Fixed fieldsc) CSV rowsd) XML nodes

a) Fieldsb) Databasesc) Tables <d) Files

47. MongoDB collections are similar to:

48. Each MongoDB document must have a:

c) _id ∜ d) key
55. Can you have nested fields in MongoDB? → Yes ✓
 56. Collections in MongoDB are: a) Pre-defined b) Automatically created c) Manually defined only d) Table-based
 57. Which tool provides visual stats in MongoDB? a) CLI b) MongoDB Atlas c) Compass d) Mongoose
58. Which shell command shows current DB? a) show() b) db c) getDB() d) current()
 59. Mongo shell data format: a) BSON b) JavaScript c) SQL d) YAML
60. Can MongoDB documents have different structures in the same collection? → Yes ✓