AUA CS108, Statistics, Fall 2020 Lecture 20

Michael Poghosyan

12 Oct 2020

Contents

► Convergence Types of R.V. Sequences

Convergence in Probability

Definition: We will say that $X_n \to X$ in **Probability**, and we will write $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$, if

for any
$$\varepsilon > 0$$
, $\mathbb{P}(|X_n - X| \ge \varepsilon) \to 0$, when $n \to \infty$.

Convergence in Probability

Definition: We will say that $X_n \to X$ in **Probability**, and we will write $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$, if

$$\text{ for any } \varepsilon>0, \ \ \mathbb{P}\Big(|X_n-X|\geq \varepsilon\Big)\to 0, \qquad \text{ when } \quad n\to\infty.$$

Equivalently, we can write

$$X_n \stackrel{\mathbb{P}}{\longrightarrow} X$$
 iff $\mathbb{P} \Big(|X_n - X| < \varepsilon \Big) \to 1$ for any $\varepsilon > 0$.

Convergence in the Mean Square Sence

Definition: We will say that $X_n \to X$ in the Quadratic Mean Sense or in L^2 (or in the Mean Square Sense), and we will write $X_n \xrightarrow{L^2} X$ or $X_n \xrightarrow{qm} X$, if

$$MSE(X_n, X) = \mathbb{E}((X_n - X)^2) \to 0, \quad \text{when} \quad n \to \infty.$$

Convergence in the Mean Square Sence

Definition: We will say that $X_n \to X$ in the Quadratic Mean Sense or in L^2 (or in the Mean Square Sense), and we will write $X_n \xrightarrow{L^2} X$ or $X_n \xrightarrow{qm} X$, if

$$MSE(X_n, X) = \mathbb{E}((X_n - X)^2) \to 0, \quad \text{when} \quad n \to \infty.$$

Here $MSE(X_n, X)$ is the Mean Square Error (of the approximation of X by X_n).

Now we assume that X_n and X are arbitrary r.v.'s, not necessarily defined on the same probability space, and $F_{X_n}(x)$ and $F_X(x)$ are their CDF's, respectively.

Now we assume that X_n and X are arbitrary r.v.'s, not necessarily defined on the same probability space, and $F_{X_n}(x)$ and $F_X(x)$ are their CDF's, respectively.

Definition: We will say that $X_n \to X$ in **Distribution (or in Law)**, and we will write $X_n \stackrel{D}{\longrightarrow} X$, if

 $F_{X_n}(x) o F_X(x)$ as $n o \infty$ at any point of continuity x of $F_X(x)$.

Now we assume that X_n and X are arbitrary r.v.'s, not necessarily defined on the same probability space, and $F_{X_n}(x)$ and $F_X(x)$ are their CDF's, respectively.

Definition: We will say that $X_n \to X$ in **Distribution (or in Law)**, and we will write $X_n \stackrel{D}{\longrightarrow} X$, if

$$F_{X_n}(x) \to F_X(x)$$
 as $n \to \infty$ at any point of continuity x of $F_X(x)$.

Remark: This is equivalent to saying that for (almost) any subsets $A \subset \mathbb{R}$

$$\mathbb{P}(X_n \in A) \to \mathbb{P}(X \in A).$$

Remark on the notation: Usually, in the case of the Convergence in Distribution, we write the Distribution as the limit, e.g., we write

$$X_n \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

instead of writing $X_n \stackrel{D}{\longrightarrow} X$, $X \in \mathcal{N}(0,1)$.

Cauchy Principle for a.e, \mathbb{P} and L^2 Convergence

Now, for checking the convergence of a sequence of r.v. X_n , we can use the following Theorem (Cauchy Principle):

Theorem:

If $X_n - X_m \to 0$ a.e. when $m, n \to +\infty$, then there exists a r.v. X such that $X_n \to X$ a.e.;

Cauchy Principle for a.e, \mathbb{P} and L^2 Convergence

Now, for checking the convergence of a sequence of r.v. X_n , we can use the following Theorem (Cauchy Principle):

Theorem:

- ▶ If $X_n X_m \to 0$ a.e. when $m, n \to +\infty$, then there exists a r.v. X such that $X_n \to X$ a.e.;
- ▶ If for any $\varepsilon > 0$, $\mathbb{P}(|X_n X_m| \ge \varepsilon) \to 0$ when $m, n \to +\infty$, then there exists a r.v. X such that $X_n \stackrel{\mathbb{P}}{\to} X$;

Cauchy Principle for a.e, \mathbb{P} and L^2 Convergence

Now, for checking the convergence of a sequence of r.v. X_n , we can use the following Theorem (Cauchy Principle):

Theorem:

- ▶ If $X_n X_m \to 0$ a.e. when $m, n \to +\infty$, then there exists a r.v. X such that $X_n \to X$ a.e.;
- ▶ If for any $\varepsilon > 0$, $\mathbb{P}(|X_n X_m| \ge \varepsilon) \to 0$ when $m, n \to +\infty$, then there exists a r.v. X such that $X_n \stackrel{\mathbb{P}}{\to} X$;
- ▶ If $\mathbb{E}((X_n X_m)^2) \to 0$ when $m, n \to +\infty$, then there exists a r.v. X such that $X_n \xrightarrow{L^2} X$.

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

 $X_n \sim$

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

 $X_n \sim Bernoulli(0.5)$.

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

$$X_n \sim Bernoulli(0.5)$$
.

▶ Is X_n convergent in the sense of Distributions?

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

$$X_n \sim Bernoulli(0.5)$$
.

- ▶ Is X_n convergent in the sense of Distributions?
- ls X_n convergent in the Probability sense?

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

$$X_n \sim Bernoulli(0.5)$$
.

- ▶ Is X_n convergent in the sense of Distributions?
- ightharpoonup Is X_n convergent in the Probability sense?
- ▶ Is X_n convergent in the MS sense?

Example: We have a sequence of infinitely many (independent) tosses of a fair coin, and let X_n be the result of the n-th trial (Head = 1, Tail = 0). So the Distribution of X_n is

$$X_n \sim Bernoulli(0.5)$$
.

- ▶ Is X_n convergent in the sense of Distributions?
- ls X_n convergent in the Probability sense?
- ▶ Is X_n convergent in the MS sense?
- ls X_n convergent in the a.s. sense?