The following equilibrium equation for a typical weak base, B, is used to derive the generalized expression for K_b , the base dissociation constant.

$$\begin{split} \mathbf{B}(aq) + \mathbf{H}_2\mathbf{O}(l) & \Longleftrightarrow \mathbf{B}\mathbf{H}^+(aq) + \mathbf{O}\mathbf{H}^-(aq) \\ K_b &= \frac{[\mathbf{B}\mathbf{H}^+][\mathbf{O}\mathbf{H}^-]}{[\mathbf{B}]} \end{split}$$

The hydrolysis reaction between water and the cation, BH⁺, produced by the dissociation of the weak base, B, is represented by the general equilibrium equation that follows.

$$BH^+(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + B(aq)$$

In the forward reaction, the cation BH⁺ donates a proton to the water molecule to form the hydronium ion and the weak base, B. The extent of $\rm H_3O^+$ ion formation and the position of the equilibrium depend on the relative strength of the cation, BH⁺. The lower the K_b value of B, the stronger the donation of protons that BH⁺ will have compared with $\rm H_3O^+$, and the greater the production of $\rm H_3O^+$ ions will be. Therefore, the weaker the base, the stronger its conjugate acid will be.

Ammonium chloride, NH₄Cl, dissociates in water to produce NH₄⁺ ions, Cl⁻ ions, and an acidic solution. Chloride ions are the conjugate base of a strong acid, HCl, so they show no noticeable tendency to hydrolyze in aqueous solution. Ammonium ions, however, are the conjugate acid of a weak base, NH₃. Ammonium ions donate protons to water molecules. Equilibrium is established with an increased [H₃O⁺], so the pH is *lower* than 7.

FIGURE 11 At point *I* on the titration curve, only acetic acid is present. The pH depends on the weak acid alone. At *2* there is a mixture of CH₃COOH and CH₃COO⁻. Adding NaOH changes the pH slowly. At point *3* all acid has been converted to CH₃COO⁻. This hydrolyzes to produce a slightly basic solution. At *4* the pH is due to the excess OH⁻ that has been added.