COURSEWORK

LECTURE An introduction to modelling and control of flexible and soft robots

QUESTION 1. Write the expression of the potential energy for a rigid-link model with n=4 elastic joints.

Marks 10%

Assume the following:

- the system is planar
- the stiffness k is the same for all joints, thus $K = diag\{k\}$
- the system is not subject to gravity (the potential energy V is only elastic)

QUESTION 2. Write the expression of the kinetic energy for a rigid-link model with n=4 elastic joints. Use Matlab Mupad for symbolic computation.

Marks 10%

Assume the following:

- all links have equal length l and equal mass m
- the mass of each link is concentrated in its midpoint

Hint: see Example 1 in the lecture notes.

*Bonus points: write the expression of the inertia matrix.

Marks 10%

QUESTION 3. Write the equations of motion of the system in Port-Hamiltonian form. Provide an explicit expression of $\nabla_q H$ and $\nabla_p H$. Use Matlab Mupad. Marks 10%

Assume the following:

• the damping matrix is diagonal with equal elements $R = diag\{b\}$

Hint: see Equation (1) in the lecture notes. When computing $\nabla_p H$, recall that $p = M\dot{q}$

QUESTION 4. Write the expression of the matrix G^{\perp} for n=4 and the corresponding potential-energy PDE. Use Matlab Mupad. Marks 10%

Hint: see Example 4 in the lecture notes. Note that different choices of G^{\perp} are possible. Verify that $G^{\perp}G=0$ and that $\mathrm{rank}\{G^{\perp}\}=n-1$.

QUESTION 5. Compute the solution of the potential-energy PDE for n=4. The solution should have a minimizer at $q=q^*$. Use Maple to solve the PDE and Matlab Mupad for verification.

Marks 10%

Assume the following:

• the kinetic-energy PDE is solved with $M_d=k_m M$ and J=0.

Hint: the Maple commands to solve the PDE for n=3 are:

- PDEs := $[diff(V_d(q_1, q_2, q_3), q_1) diff(V_d(q_1, q_2, q_3), q_2) = k(q_1 q_2)/k_m, diff(V_d(q_1, q_2, q_3), q_2) diff(V_d(q_1, q_2, q_3), q_3) = k(q_2 q_3)/k_m]$
- $V_d := pdsolve(PDEs)$
- $pdetest(V_d, PDEs)$

Note that the result of pdsolve includes a term $_F1(q_1+q_2+q_3+q_4)$, which can be freely chosen provided that it verifies the PDE. This should be chosen so that V_d has a minimizer at the position $q=q^*$. Verify that V_d solves the PDE using Matlab Mupad.

Hint: see Example 4 in the lecture notes and recall that $\theta = G^T q$ and $\theta^* = G^T q^*$.

QUESTION 6. Write the expression of the control law u for n=4 (use Matlab Mupad).

Assume the following:

• the damping injection is $D_1 = Gk_vG^T$, where $k_v > 0$ is a scalar

Hint: see Example 5 in the lecture notes.

Marks 10%

QUESTION 7*. Write the expression of the payload compensation term u^* (use Matlab Mupad). Marks 5%

Assume the following:

• the payload δ is constant and known (i.e. torque affecting all joints in the same way)

Hint: see Example 6 in the lecture notes.

*this is a bonus question.

QUESTION 8. Program a simulation in Matlab using the ODE command and verify that the controller from Question 6 achieves the regulation goal $q = q^*$. Marks 20%

Further instructions:

• Use the following parameters for the simulation:

$$l = 0.025, m = 4, k = 5, b = 0.01, q^* = \pi/6, k_p = 0.1, k_m = 5, k_v = 2.$$

• Write a Matlab function called "Topics_in_control_ode_n4.m" and call the function using the Matlab script "Topics_in_control_simulations.m" provided.

Hints: copy the expression of $\nabla_q H$, $\nabla_p H$, M, M^{-1} , and \dot{p} from Mupad into the Matlab function. Recall that $\dot{p} = M \ddot{q} + \dot{M} \dot{q}$ if the inertia matrix is not constant. Provide an explicit expression of M^{-1} in the Matlab function rather than using the command "inv(M)".

QUESTION 9*. Verify with a simulation in Matlab using the ODE command that the controller from Question 7 achieves the regulation goal $\theta=\theta^*$ in the presence of a known constant payload $\delta=0.1$.

TOTAL MARKS 100% (80% without bonus questions)

NOTE: marks are indicative and are provided as general guidance.

^{*}this is a bonus question.