WuS - Lecture Notes Week 7

Ruben Schenk, ruben.schenk@inf.ethz.ch

June 23, 2022

0.0.1 Randverteilung

Unter Kenntnis der Verteilung von $X_1, ..., X_n$ kann man die Verteilung der einzelnen X_i separat ermitteln. In diesem Zusammenhang wird die Verteilung von X_i als i-te **Randverteilung** bezeichnet.

Satz: Seien $X_1, ..., X_n$ diskrete Z.V. mit gemeinsamer Verteilung $p = (p(x_1, ..., x_n))_{x_i \in W_1, ..., x_m \in W_n}$. Für jedes i gilt:

$$\forall z \in W_i \quad \mathbb{P}[X_i = z] = \sum_{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n} p(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n).$$

0.0.2 Unabhängigkeit

Satz: Seien $X_1,...,X_n$ diskrete Zufallsvariablen mit gemeinsamer Verteilung $p=(p(x_1,...,x_n))_{x_1\in W_1,...,x_n\in W_n}$. Die folgenden Aussagen sind äquivalent:

- 1. $X_1, ..., X_n$ sind unabhängig.
- 2. $p(x_1, ..., x_n) = \mathbb{P}[X_1 = x_1] \cdots \mathbb{P}[X_n = x_n]$ für jedes $x_1 \in W_1, ..., x_n \in W_n$.

0.1 Stetige Gemeinsame Verteilung

0.1.1 Definition

Def: Sei $n \ge 1$. Wir sagen, dass die Z.V. $X_1, ..., X_n : \Omega \to \mathbb{R}$ eine **stetige gemeinsame Verteilung** besitzen, falls eine Abbildung $f : \mathbb{R}^n \to \mathbb{R}_+$ existiert, sodass

$$\mathbb{P}[X_1 \le a_1, ..., X_n \le a_n] = \int_{-\infty}^{a_1} \cdots \int_{-\infty}^{a_n} f(x_1, ..., x_n) \, dx_n ... dx_1$$

für jedes $a_1, ..., a_n \in \mathbb{R}$ gilt. Obige Abbildung f nennen wir gerade **gemeinsame Dichte von** $(X_1, ..., X_n)$.

Satz: Sei f die gemeinsame Dichte der Zufallsvariablen $(X_1, ..., X_n)$. Dann gilt

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, ..., x_n) dx_n ... dx_1 = 1.$$

Intuition: Nehmen wir zum Beispiel zwei Z.V. X, Y. Intuitiv beschreibt f(x, y) dxdy die Wahrscheinlichkeit, dass ein Zufallspunkt (X, Y) in einem Rechteck $[x, x + dx] \times [y, y + dy]$ liegt.

0.1.2 Erwartungswert unter Abbildungen

Satz: Sei $\phi : \mathbb{R}^n \to \mathbb{R}$ eine Abbildung. Falls $x_1, ..., X_n$ eine gemeinsame Dichte f besitzen, dann lässt sich der Erwartungswert der Z.V. $Z = \phi(X_1, ..., X_n)$ mittels

$$\mathbb{E}[Z] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \phi(x_1, ..., x_n) \cdot f(x_1, ..., x_n) dx_1 ... dx_n,$$

berechnen (solange das Integral wohldefiniert ist).

Beispiel: Betrachten wir das Paar (X, Y) analog zum obigen Beispiel. Falls wir die Funktion $\phi(x, y) = \mathbb{1}_{(x, y) \in R}$ betrachten, gilt für jedes Rechteck $R = (a, a') \times (b, b') \subseteq [0, 1]^2$:

$$\mathbb{P}[(X,\,Y)\in R] = \mathbb{E}[\phi(X,\,Y)] = \int_a^{a'} \int_b^{b'} dx dy = (a'-a)(b'-b) = \mathrm{Flaeche}(R).$$

0.1.3 Randverteilungen

Falls X.Y eine gemeinsame Dichte $f_{X,Y}$ besitzt, dann gilt

$$\mathbb{P}[X \le a] = \mathbb{P}[X \in [-\infty, a], Y \in [-\infty, \infty]]$$
$$= \int_{-\infty}^{a} \left(\int_{-\infty}^{\infty} f(x, y) \, dy \right) dx.$$

Somit is X stetig mit folgender Dichte:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy.$$

Analog ist Y stetig mit folgender Dichte:

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx.$$

Bemerkung: Folgende Implikationen gelten:

X, Y diskrete Z.V. $\iff X, Y$ gemeinsame diskrete Z.V.

X, Y gemeinsam stetig $\implies X$ stetig und Y stetig.

Beispiel: Schauen wir uns die Gleichverteilung eines Punktes auf einem Quadrat an. Unter gemeinsamer Dichte $f_{X,Y}(x, y) = \mathbb{1}_{0 \le x,y \le 1}$ hat X folgende Dichte:

$$f_X(x) = \int_0^1 \mathbb{1}_{0 \le x \le 1} \mathbb{1}_{0 \le y \le 1} dy = \mathbb{1}_{0 \le x \le 1}.$$

Analog ist $f_Y(y) = \mathbb{1}_{0 \le y \le 1}$. Somit sind sowohl X als auch Y gleichverteilte Zufallsvariablen auf [0, 1] $(\mathcal{U} \sim [0, 1])$.

0.1.4 Unabhängigkeit stetiger Zufallsvariablen

Theorem: Seien $X_1, ..., X_n$ Z.V. mit Dichten $f_1, ..., f_n$. Dann sind folgende Aussagen äquivalent:

- 1. $X_1, ..., X_n$ sind unabhängig,
- 2. $X_1, ..., X_n$ sind insgesamt stetig mit gemeinsamer Dichte.

$$f(x_1, ..., x_n) = f_1(x_1) \cdots f_n(x_n)$$

Bemerkung: Somit sind zwei unabhängige stetige Z.V. automatisch gemeinsam stetig.