Introduction à la technologie des thermostats

les plans, dessins, photos et caractéristiques repris dans les pages techniques sont communiqués sans engagement et peuvent être modifiés sans préavis

Lorsqu'un thermostat coupe une charge inductive, une force électromotrice relativement grande (Force contre-électromotrice) est générée dans le circuit provoquant une surtension et un pic de courant transitoires. Plus cette force est importante, plus elle détériore les contacts

Surtentions transitoires:

La quantité de courant électrique qui circule à travers le contact influe directement sur la vie du contact. Les surtensions transitoires sont des paramètres critiques auxquels doit résister le contact lorsqu'elles se produisent dans des circuits inductifs. Elles produisent une d'onde de surtension qui a généralement une largeur d'impulsion de 20 à 50 µs. L'impulsion de surtension est définie par son intensité et sa largeur. La largeur nominale est le temps mesuré à partir du début de l'impulsion jusqu'au moment où l'intensité est descendue à 50% de la valeur maximale. La courbe ci-dessus montre une surtension transitoire de.8/20µs

Courants induits par les moteurs :

Lors du démarrage, un moteur peut avoir un courant d'appel 600% supérieur à son courant nominal. Par exemple, un moteur avec un courant nominale de 3 ampères peut requérir jusqu'à 18 ampères ou plus lors du démarrage. En outre, en cas de déconnexion, un moteur agit comme un générateur de tension car il ralentit jusqu'à l'arrêt. En fonction du moteur, il peut réinjecter dans le circuit une tension bien supérieure à la tension de ligne nominale. Ces tensions apparaissant sur les contacts peuvent provoquer un arc destructeur amenant une défaillance précoce du contact

Courants induits par les lampes à incandescence:

Les lampes à incandescence, à filament de tungstène, peuvent, lors de l'allumage à froid, provoquer une surintensité de 10 à 15 fois la valeur nominale

Courants inductifs induits par les transformateurs:

Lorsque l'alimentation est coupée dans le circuit d'un transformateur, son noyau peut contenir un magnétisme rémanent. Si le courant est rétabli lorsque la tension est de la même polarité que celle de l'aimantation rémanente, le noyau peut passer en saturation au cours de la première moitié du cycle de puissance. En conséquence, l'inductance sera minime et un courant d'appel pouvant aller jusqu'à 1,000% peut survenir pendant quelques cycles jusqu'à ce que le noyau ne soit plus saturé. Comme pour les moteurs, lorsque l'alimentation d'un transformateur est coupée, le transformateur produira une force contre électromotrice pouvant initier un un arc destructeur entre les contacts.

Charges capacitives de ligne:

Cela se produit quand un thermostat est situé à une distance considérable de la charge à commuter. Au moment où le contact se ferme, la capacité du câble se charge avant que le courant circule. Au niveau des contacts, cet effet peut être comparé à un court-circuit, augmentant l'intensité bien au-delà de ce que peut supporter le contact.

