ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Лабораторная работа 3.7.1 **Скин-эффект в полом цилиндре**

Цель работы: исследование проникновения переменного магнитного поля в медный полый цилиндр.

Оборудование: генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

Теоретические сведения: В работе изучается скин-эффект в длинном тонкостенном медном цилиндре, помещённом внутрь соленоида.

Скин-эффект – эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды.

Пусть цилиндр достаточно длинный, так что в нём можно пренебречь краевыми эффектами. В этом приближении магнитное поле \boldsymbol{H} всюду направлено по оси системы z, а вихревое электрическое поле \boldsymbol{E} будет всюду перпендикулярно радиусу, то есть линии поля образуют соосные окружности. Все величины будем считать колеблющимися по гармоническому закону с некоторой частотой ω , задаваемой частотой колебания тока в соленоиде. Тогда для ненулевых компонент поля можно записать

$$H_z = H(r)e^{i\omega t}, \quad H_\varphi = E(r)e^{i\omega t},$$

где H(r) и E(r) – комплексные амплитуды колебаний соответствующих полей, зависящие

Рис. 1: Электрическое и магнитное в тонкостенном цилиндре

только от расстояния r до оси системы. Заметим, что на границе цилиндра должны быть непрерывны касательные к поверхности компоненты как \pmb{H} , так и \pmb{E} , поэтому функции H(r) и E(r) непрерывны во всей исследуемой области.

Пусть длинный полый цилиндр имеет радиус a и толщину стенки $h \ll a$. Последнее условие позволяет для описания поля внутри стенки ограничиться одномерным приближением. При этом для полного решения задачи необходимо вычислить и распределение поля внутри цилиндра.

Поскольку внутри цилиндра ток отсутствует, магнитное поле там является однородным: $H_z(r,t) = H_1 e^{i\omega t}$, где $H_1 = const$ – амплитуда поля на внутренней поверхности цилиндра. Для нахождения вихревого электрического поля воспользуемся законом электромагнитной индукции:

$$E_{\varphi} \cdot 2\pi r = -\mu_0 \pi r^2 \cdot \frac{dH_z}{dt} \rightarrow E(r) = -\frac{1}{2}\mu_0 r \cdot i\omega H_1$$

Отсюда получим связь амплитуд колебаний электрического и магнитного полей на внутренней (r=a) границе цилиндра:

$$E_1 = -\frac{1}{2}\mu_0 a \cdot i\omega H_1 \tag{1}$$

Соотношение (1) используем далее как дополнительное граничное условие для задачи о распределении поля внутри стенки.

Поместим начало отсчёта на внешнюю поверхность цилиндра и направим ось x к оси системы, и, пренебрегая токами смещения (квазистационарное приближение), запишем дифференциальное уравнение для комплексной амплитуды магнитного поля:

$$\nabla^2 H = -\sigma rot E = \sigma \mu \mu_0 \frac{\partial H}{\partial t} = i\omega \sigma \mu_0 H$$

Учитывая, что для меди $\mu \approx 1$, получаем

$$\frac{d^2H}{dx^2} = i\omega\sigma\mu_0H\tag{2}$$

Граничные условия для (2) задаются в виде

$$H(0) = H_0, \quad H(h) = H_1$$
 (3)

Здесь H_0 — амплитуда колебаний магнитного поля на внешней границе цилиндра. Её значение определяется только током в обмотке соленоида. Поля H_0 и H_1 не являются независимыми — они связаны через решение уравнений поля вне проводника (соотношение (1)).

У ↓
 мплитуда колебаний магнитного поля на ице цилиндра. Её значение определяется
 в обмотке соленоида. Поля H₀ и H₁ не Рис. 2: Поле в стенке цилиндра

Ищем решение (2) в виде

$$H(x) = Ae^{\alpha x} + Be^{\alpha - x} \tag{4}$$

 \boldsymbol{H}_1

где A, B — определяемые из граничных условий константы,

$$\alpha = \sqrt{i\omega\sigma\mu_0} = \frac{1+i}{\delta} = \frac{\sqrt{2}}{\delta}e^{i\pi/4}$$

 $\delta = \sqrt{2/\omega\sigma\mu\mu_0}$ – глубина скин-слоя (расстояние, на котором амплитуда поля спадает в е раз). Первое условие (3) даёт $A+B=H_0$, что позволяет исключить A из (4):

$$H(x) = H_0 e^{-\alpha x} + 2Bsh(\alpha x)$$

Вторую константу найдём из закона Ампера и условия (1). В одномерном случае

$$E(h) = \frac{1}{\sigma} \frac{dH}{dx} \bigg|_{h} = \frac{\alpha}{\sigma} \bigg(-H_0 e^{-\alpha h} + 2Bch(\alpha h) \bigg)$$

Исключив константу B, получим после преобразований связь между H_0 и H_1 :

$$H_1 = \frac{H_0}{ch(\alpha h) + \frac{1}{2}\alpha ash(\alpha h)} \tag{5}$$

Рассмотрим предельные случаи (5).

1. При малых частотах толщина скин-слоя превосходит толщину цилиндра $\delta\gg h$, тогда $|\alpha h|\ll 1$, поэтому $ch(\alpha h)\approx 1$, $sh(\alpha h)\approx \alpha h$ и

$$H_1 \approx \frac{H_0}{1 + i\frac{ah}{\delta^2}} \tag{6}$$

Величина ah/δ^2 в общем случае не мала, поскольку при $h \ll a$ возможна ситуация $h \ll \delta \ll a$. Отношение модулей амплитуд здесь будет равно

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \frac{1}{4}(ah\sigma\mu_0\omega)^2}} \tag{7}$$

При этом колебания H_1 отстают по фазе от H_0 на угол ψ , определяемый равенством $\tan(\psi) = \frac{ah}{\delta^2}$ 2. При достаточно больших частотах толщина скин-слоя станет меньше толщины стенки: $\delta \ll h$. Тогда $|\alpha h| \gg 1$ и $|\alpha a| \gg 1$, также $sh(\alpha h) \approx ch(\alpha h) \approx \frac{1}{2}e^{\alpha h}$. Тогда выражение (5) переходит в

$$\frac{H_1}{H_0} = \frac{2\sqrt{2}\delta}{a}e^{-\frac{h}{\delta}}e^{-i\left(\frac{\pi}{4} + \frac{h}{\delta}\right)} \tag{8}$$

Как видно из формулы (8), в этом пределе поле внутри цилиндра по модулю в $\frac{2\sqrt{2}\delta}{a}e^{-h/\delta}$ раз меньше, чем снаружи, и, кроме того, запаздывает по фазе на

$$\psi = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}}\tag{9}$$

Экспериментальная установка:

Рис. 3: Экспериментальная установка для изучения скин-эффекта

Схема экспериментальной установки для исследования проникновения переменного магнитного поля в медный полый цилиндр изображена на рис. 3. Переменное магнитное поле создаётся с помощью соленоида, намотанного на полый цилиндрический каркас 1 из поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический экран 2. Для измерения магнитного поля внутри экрана используется измерительная катушка 3. Действующее значение переменного тока в цепи соленоида измеряется амперметром A, а действующее значение напряжения на измерительной катушке измеряет вольтметр V. Для измерения сдвига фаз между током в цепи соленоида и напряжением на

измерительной катушке используется двухканальный осциллограф. На вход одного канала подаётся напряжение с резистора R, которое пропорционально току, а на вход второго канала — напряжение с измерительной катушки.

С помощью вольтметра V измеряется действующее значение ЭДС индукции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле $H_1e^{i\omega t}$. Комплексная амплитуда ЭДС индукции в измерительной катушке равна

$$U = -SN \frac{dB_1(t)}{dt} = -i\omega \mu_0 SN H_1 e^{i\omega t}$$

где SN — произведение площади витка на число витков измерительной катушки. Показания вольтметра, измеряющего это напряжение:

$$U = \frac{SN\omega}{\sqrt{2}}\mu_0|H_1|$$

Видно, что модуль амплитуды магнитного поля внутри экрана $|H_1|$ пропорционален U и обратно пропорционален частоте сигнала ν . При этом поле вне экрана $|H_0|$ пропорционально току I в цепи соленоида, измеряемому амперметром A, следовательно,

$$\frac{|H_1|}{|H_0|} = const \cdot \frac{U}{\nu I}$$

Неизвестная константа может быть определена по измерениям при малых частотах $\nu \to 0$, когда согласно (6) $|H_1|/|H_0| \to 1$

В установке в качестве экрана используется медная труба промышленного производства. Технология изготовления труб оказывает заметное влияние на электропроводимость. Из-за наличия примесей проводимость меди нашей трубы отличается от табличного значения. Для определения σ нашего экрана предлагается использовать частотную зависимость (9) фазового сдвига между магнитными полями внутри и вне экрана при высоких частотах. В области больших частот зависимость $\psi(\sqrt{\omega})$ аппроксимируется прямой, проходящей через точку $\psi(0) = \pi/4$. По наклону этой прямой можно вычислить проводимость материала экрана.

Заметим, что на схеме, изображённой на рис. 3, на входной канал II осциллографа подаётся сигнал с измерительной катушки, который пропорционален не полю внутри экрана, а его производной по времени, а это означает, что появляется дополнительный сдвиг по фазе на $\pi/2$. Поэтому измеренный по экрану осциллографа сдвиг по фазе между двумя синусоидами будет на $\pi/2$ больше фазового сдвига между магнитными полями вне и внутри экрана.

Обработка данных: Параметры установки: h=1,5 мм, a=45 мм. Прежде всего, приняв проводимость меди для оценки равной $\sigma \sim 5 \cdot 10^7$ См/м рассчитаем частоту, при которой толщина скин-слоя будет равна толщине стенок экрана, то есть $h=\delta$.

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu_0}} = h$$

Отсюда получаем $\nu_h \approx 2253,3$ Гц.

Сначала снимем зависимость $\xi = U/\nu I$ от частоты ν в области низких частот – от $\sim 0.01\nu_h$ до $0.1\nu_h$. Данные представлены в таблице ниже.

Таблица 1: Вольт-амперная характеристика при низких частотах

ν , Гц	I, мА	U, mB	ν, Гц	I, мА	U, mB
20	480,64	132,8	120	419,0	564,9
30	477,55	195,7	130	413,15	586,4
40	472,65	254,9	140	407,71	605,2
50	466,45	309,5	150	402,70	621,7
60	459,80	359,5	160	398,03	636,3
70	452,81	404,6	170	393,71	649,0
80	445,65	445,0	180	389,73	660,2
90	438,59	480,8	190	386,06	670,0
100	431,72	512,5	200	382,65	678,7
110	425,18	540,4			

По этим данным построим график зависимости $1/\xi^2 = f(\nu^2)$.

$$k = (187.97 \pm 0.23) \cdot 10^{-3} A^2/B^2, \quad \varepsilon_k = 0.12\%$$

$$b = 5205,90 \pm 2,85 \ A^2 \cdot \Gamma \Pi^2 / B^2, \quad \varepsilon_b = 0.05\%$$

Тогда коэффициент пропорциональности между ξ и коэффициентом ослабления магнитного поля $|H_1|$ / $|H_0|$ будет выражаться через b следующим образом:

$$1/\xi^2 o b$$
 при $u o 0$ $\xi o rac{1}{\sqrt{b}}$ и $rac{|H_1|}{|H_0|} o 1$ при $u o 0$

Отсюда получаем

$$\xi_0 = \frac{1}{\sqrt{b}}, \quad \varepsilon_{\xi_0} = \frac{1}{2}\varepsilon_b$$

$$\xi_0 = 13.85 \cdot 10^{-3} \ B/(\Gamma \mathbf{u} \cdot A), \quad \varepsilon_{\xi_0} = 0.025\%$$

Используя коэффициент наклона графика, рассчитаем первым способом удельную проводимость меди. Из (7) получаем

$$\frac{|H_0|^2}{|H_1|^2} = 1 + \frac{1}{4} (ah\sigma\mu_0 2\pi\nu)^2 = \frac{\xi_0^2}{\xi^2} = \frac{1}{\xi^2 b} = 1 + \frac{k}{b}\nu^2$$
$$\sigma = \frac{1}{ah\mu_0 \pi} \sqrt{\frac{k}{b}} \approx 2,25 \cdot 10^7 \text{ Cm/m}$$

Полученное значение отличается почти в два раза от значения, которое было взято для оценки частоты, при которой толщина скин-слоя равна толщине стенок экрана.

Далее рассчитаем эту же величину вторым способом, для этого снимем зависимость сдвига фаз между H_0 и H_1 при малых частотах (диапазон $\sim 0.05\nu_h$ до $\sim 0.5\nu_h$). Данные, без учёта дополнительного сдвига на $\pi/2$, представлены в таблице ниже.

ν, Гц	ψ/π	U, MB	I, MA	ν, Гц	ψ/π	U, мВ	<i>I</i> , мА
100	17 / 51	513,1	432,04	400	3 / 25	737,9	344,62
120	13 / 42	564,7	418,18	500	1 / 13	737,5	334,91
140	5 / 18	604,6	406,26	600	3 / 42	730,1	326,51
160	8 / 31	635,6	396,50	700	1 / 18	719,0	318,52
180	7 / 28	659,7	388,03	800	1 / 31	705,5	310,63
200	1 / 5	679,3	383,04	900	0	690,3	302,64
300	5 / 34	725,5	357,88				

Таблица 2: Сдвиг фаз при малых частотах

По значениям из таблицы построим график зависимости $\tan(\psi + \pi/2)$ от частоты ν . При частотах, близких к $0.5\nu_h$, становится затруднительным точно определить сдвиг фаз, поэтому, как видно из графика, последняя точка сильно отклоняется от прямой, поэтому при аппроксимации этой зависимости прямой она не будет учтена.

$$|k| = (8.31 \pm 0.29) \cdot 10^{-3} \ \Gamma \text{m}^{-1}, \quad \varepsilon_k = 3.53\%$$

 $b = (380.09 \pm 58.67) \cdot 10^{-3}, \quad \varepsilon_b = 15.44\%$

При малых частотах сдвиг фаз связан с частотой соотношением

$$\tan(\varphi) = \frac{ah}{\delta^2} = \frac{ah\omega\sigma\mu_0}{2} = \pi\mu_0 ah\sigma\nu$$

Получаем, что

$$\sigma = \frac{k}{\pi \mu_0 a h}, \quad \varepsilon_\sigma = \varepsilon_k$$

$$\sigma = (3.11 \pm 0.11) \cdot 10^7 \text{ Cm/m}, \quad \varepsilon_\sigma = 3.53\%$$

Значение, полученное вторым способом, уже ближе к теоретическому, но все ещё достаточно сильно отличается от него.

Рассчитаем удельную проводимость третьим способом. Для этого исследуем зависимость сдвига фаз от частоты при больших частотах генератора (диапазон от $\sim \nu_h$ до $\sim 15\nu_h$). Данные представлены в таблице ниже.

Таблица 3: Сдвиг фаз при больших частотах

ν, Гц	ψ/π	U, mB	I, мА	ν , Гц	ψ/π	U, mB	I, мА
2000	2 / 25	503,8	220,61	18500	17 / 27	49,8	23,95
3500	4 / 29	332,5	148,39	20000	17 / 25	46,4	20,77
5000	1 / 5	237,2	108,82	21500	16 / 23	43,7	17,89
6500	5 / 19	179,0	84,90	23000	16 / 22	41,3	15,25
8000	5 / 16	140,7	69,07	24500	15 / 20	39,1	12,80
9500	10 / 26	113,9	57,66	26000	14 / 19	37,3	10,51
11000	10 / 23	94,4	49,03	27500	29 / 37	35,7	8,36
12500	1 / 2	79,4	41,69	29000	28 / 35	34,9	6,38
14000	19 / 36	68,6	36,18	30500	26 / 33	33,8	4,54
15500	9 / 16	60,5	31,52	32000	28 / 31	33,1	2,96
17000	9 / 15	54,8	27,50	33500	1	33,0	2,38

По данным из таблицы построим график зависимости $\psi + \pi/4 = f(\sqrt{\nu})$, с помощью него, используя формулу (9), найдём удельную проводимость третьим способом.

$$|k| = (20.14 \pm 0.16) \cdot 10^{-3} \text{ рад} \cdot \Gamma \Pi^{-1/2}, \quad \varepsilon_k = 0.79\%$$

Из (9) получаем

$$\varphi - \frac{\pi}{4} = h\sqrt{\frac{\omega\sigma\mu_0}{2}} = h\sqrt{\pi\sigma\mu_0} \cdot \sqrt{\nu}$$
$$\sigma = \frac{k^2}{\pi h^2\mu_0}, \quad \varepsilon_{\sigma} = 2\varepsilon_k$$
$$\sigma = (4.55 \pm 0.07) \cdot 10^7 \text{ Cm/m}, \quad \varepsilon_{\sigma} = 1.58\%$$

Третье значение удельной проводимости лучше соотносится с табличным, чем предыдущие два. Наконец, высчислим удельную проводимость четвёртым способом, измеряя индуктивность катушки при различных частотах.

$$\frac{L_{max} - L}{L - L_{min}} = (\pi a h \mu_0)^2 \sigma^2 \nu^2$$

$$\sigma = \frac{\sqrt{k}}{\pi a h \mu_0}, \quad \varepsilon_\sigma = \frac{1}{2} \varepsilon_k$$
(10)

Данные измерений представлены в табице ниже.

Таблица 4: Данные с *RCL*-метра

ν, Гц	L , Γ H	ν, Гц	L , Γ H
40	505,20	600	150,83
100	390,82	750	144,48
150	326,15	1000	138,13
200	278,34	1500	127,13
250	237,02	2000	125,46
300	212,0	2500	124,44
400	177,64	3500	124,74
500	159,75	4000	123,5

По данным из таблицы построим график зависимости $L(\nu)$, из него найдём наибольшую и наименьшую индуктивность.

Затем построим график зависимости (10), аппроксимируем его прямой, проходящей через начало координат, по углу наклона определим удельную проводимость.

$$L_{min} = 123.5 \ \Gamma_{\rm H}, \quad L_{max} = 505.2 \ \Gamma_{\rm H}$$

$$k = 5.81 \cdot 10^{-5} \ \Gamma \text{u}^{-2}, \quad \varepsilon_k = 4.3\%$$

Получаем

$$\sigma = (2.85 \pm 0.06) \cdot 10^7 \text{ Cm/m}, \quad \varepsilon_{\sigma} = 2.15\%$$

Запишем все значения удельной проводимости в таблицу и сравним их.

Таблица 5: Результаты измерений удельной проводимости материала

Способ	Табличное	В-А характеристика	arphi малые част.	φ большие част.	L
σ , 10^7 Cm/m	5,95	2,25	3,11	4,55	2,85
ε , %	-	0,12	3,53	1,58	2,15

Вывод: В данной работе было исследовано явление уменьшения амплитуды электромагнитного поля в стенке полого медного цилиндра по мере удаления от её края — скин-эффект. Четырьмя различными способами было получено значение удельной проводимости материала образца, после этого была построена теоретическая зависимость коэффициента ослабления поля от частоты для минимального и максимального значений проводимости. На этом же графике были построены экспериментальные точки, которые с отличной точностью легли на теоретическую зависимость при минимальном полученном значении проводимости $\sigma_{min} = 2,25 \cdot 10^7 \text{ Cm/m}$, и с небольшими отклонениями в области малых и средних частот легли на теоретическую кривую при максимальном полученном значении проводимости $\sigma_{max} = 4,55 \cdot 10^7 \text{ Cm/m}$.