

MULTI-CUT REBAR(15)

Advisor: Prof. K.C.Chang

Presenters: You-Ran Nai

Etabs 2018 Hinge

主筋			主筋長度		腰筋	箍筋		箍筋長度					
	左	中	右	左	中	右		左	中	右	左	中	右
上層第一	7-#8	3-#8	7-#8	190	330	190		2#4@15	#4@12	2#4@15	177.5	355	177.5
上層第二	2-#8	0	2-#8										
下層第二	0	2-#8	0										
下層第一	6-#8	7-#8	6-#8	110	490	110							
上層第一	8-#8	3-#8	8-#8	210	290	210		2#4@15	#4@10	2#4@15	177.5	355	177.5
上層第二	2-#8	0	2-#8										
下層第二	0	2-#8	0										
下層第一	6-#8	7-#8	6-#8	120	470	120							
上層第一	8-#8	3-#8	8-#8	200	310	200		2#4@15	#4@10	2#4@15	177.5	355	177.5
上層第二	2-#8	0	2-#8										
下層第二	0	2-#8	0										
下層第一	6-#8	7-#8	6-#8	120	470	120							

▼ X 「對 3-D View ▼ X

Column Hinge

Frame Design

多種數值模型

鋼筋切斷點最佳化

非線性驗證

Frame Design

FEMA P695 buildings

可以與 FEMA P695 的 分析結果相互對照 不熟悉 需要花時間

用於參考

Buildings in real world

反應真實世界的複雜 情況 已經有模型

用於效益評估

Buildings Design by own

客製化需求 熟悉的規範

用於效益評估與驗證

6m

FEMA P695 Weird

Longer Period

梁深=60 < 梁寬=80

Building Design ID	Number of Stories	Fundamental Period (sec)	規範週期	
1020	20	2.63	1.88	1.40
1021	20	2.36	1.88	1.25
1015	12	2.13	1.29	1.66
1018	12	2.09	1.29	1.62
2068	12	2.09	1.29	1.62
1013	12	2.01	1.29	1.56
2055	12	2.01	1.29	1.56
2056	12	2.01	1.29	1.56
1019	12	2	1.29	1.55
2060	12	2	1.29	1.55
2009	12	1.99	1.29	1.55
2012	12	1.99	1.29	1.55
2029	12	1.99	1.29	1.55
2030	12	1.99	1.29	1.55
2013	12	1.97	1.29	1.53
2014	12	1.97	1.29	1.53
2021	12	1.97	1.29	1.53
2033	12	1.97	1.29	1.53
1017	12	1.92	1.29	1.49
1012	8	1.8	0.95	1.89
1022	8	1.8	0.95	1.89
1011	8	1.71	0.95	1.79
1024	8	1.71	0.95	1.79
2066	8	1.71	0.95	1.79
1023	8	1.57	0.95	1.65
2065	8	1.57	0.95	1.65
1008	4	0.94	0.57	1.64
2022	4	0.91	0.57	1.59
2025	4	0.87	0.57	1.52
2034	4	0.87	0.57	1.52
1010	4	0.86	0.57	1.50
2005	4	0.86	0.57	1.50

Seismic Load

Moment Diagram

Gravity Load

SOP

結構設計變數						
反應譜	樓層數	跨距				
影響疊加的彎矩圖	考慮高模態	影響最佳化效果				
地震力較大	4	6m				
地震力較小	12	9m				
	20	12m				

尋找適用於做多點斷筋的情況 以節省用鋼量多者進行非線性驗證 非線性驗證

Thesis Outline

- 1. 緒論
- 2. 文獻回顧
- 3. 鋼筋切斷點之最佳化
- 4. 結構數值模型建立
- 5. 鋼筋切斷點最佳化之效益評估
- 6. 非線性分析驗證結果
- 7. 結論與建議

2. 文獻回顧

- 1. 前言
- 2. 混凝土結構設計規範
 - 1. 撓曲鋼筋
 - 2. 剪力鋼筋
 - 3. 鋼筋之伸展
 - 4. 耐震設計之特別規定
- 3. 非線性靜力分析方法
 - 1. FEMA-NSP ATC-40 性能最大地表加速度
 - 2. 考慮高模態非線性靜力分析方法
 - 1. MPA
 - 2. MMC
- 4. 非線性動力分析方法
 - 1. 耐震設計規範非線性動力分析方法
 - 1. 地震歷時
 - 2. 正規化地震歷時的方法
 - 3. 調整地震歷時與反應譜擬合
- 5. 增量動力分析方法
 - 1. 增量動力分析法(IDA)
 - 2. CMR 指數、崩塌破壞曲線和 ACMR 指數
- 6. 小結

Thesis Outline

- 1. 緒論
- 2. 文獻回顧
 - 1. 混凝土結構設計規範
 - 2. 非線性靜力分析方法
 - 3. 非線性動力分析方法
 - 4. 增量動力分析方法
- 3. 鋼筋切斷點之最佳化
 - 1. 彎矩鋼筋切斷點探討
 - 2. 剪力鋼筋切斷點探討
- 4. 結構數值模型建立
- 5. 鋼筋切斷點最佳化之效益評估
- 6. 非線性分析驗證結果
- 7. 結論與建議

- 3. 鋼筋切斷點之最佳化
 - 1. 彎矩鋼筋切斷點探討
 - 1. 精算方法
 - 1. 三點
 - 2. 多點 (五點)
 - 2. 簡化方法 (三點)
 - 2. 剪力鋼筋切斷點探討
 - 1. 三點
- 4. 結構模型建立
 - 1. 設計反應譜
 - 2. 設計構架
 - 1. 構架相關設計假設與參數
 - 2. 結構模型建立
 - 3. 斷面資訊
- 5. 鋼筋切斷點最佳化之評估效益
 - 1. 彎矩鋼筋切斷點
 - 1. 節省之材料成本
 - 2. 增加之施工成本
 - 1. 五點斷筋減少的用剛量與施工成本的平衡
 - 2. 剪力鋼筋切斷點
 - 1. 節省之材料成本

Thesis Outline

- 1. 緒論
- 2. 文獻回顧
 - 1. 混凝土結構設計規範
 - 2. 非線性靜力分析方法
 - 3. 非線性動力分析方法
 - 4. 增量動力分析方法
- 3. 鋼筋切斷點之最佳化
 - 1. 彎矩鋼筋切斷點探討
 - 2. 剪力鋼筋切斷點探討
- 4. 結構數值模型建立
- 5. 鋼筋切斷點最佳化之效益評估
- 6. 非線性分析驗證結果
 - 1. 非線性靜力分析結果
 - 2. 非線性動力分析結果
 - 3. 增量動力分析結果
- 7. 結論與建議

- 6. 非線性分析驗證結果
 - 1. 前言
 - 2. 非線性靜力分析結果
 - 1. FEMA-NSP ATC-40 性能最大地表加速度
 - 2. 考慮高模態
 - 1. MPA
 - 2. MMC
 - 3. 非線性動力分析結果
 - 4. 增量動力分析結果
 - 1. IDA 曲線
 - 2. CMR、ACMR 指數
 - 5. 小結
- 7. 結論與建議
 - 1. 結論
 - 2. 建議
 - 1. 1-D cut
 - 2. 更進一步的成本評估

Roadmap

結構設計變數						
反應譜	樓層數	跨距				
影響疊加的彎矩圖	考慮高模態	影響最佳化效果				
地震力較大	4	6m				
地震力較小	12	9m				
	20	12m				

尋找適用於做多點斷筋的情況 以節省用鋼量多者進行非線性驗證 → 非線性驗證