

Chapter 10

Digital Modulation

(Part 2 of 2)

- Coherent BPSK system requires complex hardware to generate the receiver local carrier for coherent detection.
- DPSK uses non-coherent detection.

Coherent BPSK system

Transmitter

The binary data is contained in the difference between the phase angles of two successive signaling elements.

Transmitter

The binary data is contained in the difference between the phase angles of two successive signaling elements.

Transmitter

The binary data is contained in the difference between the phase angles of two successive signaling elements.

Transmitter

$$s(t) = \begin{cases} s_2(t) = V\cos\omega_c t & 0 < t < T_b; & d_k = 1; \\ s_1(t) = -V\cos\omega_c t & 0 < t < T_b; & d_k = 0; \end{cases}$$

Transmitter

$$s(t) = \begin{cases} s_2(t) = V\cos\omega_c t & 0 < t < T_b; & d_k = 1; \\ s_1(t) = -V\cos\omega_c t & 0 < t < T_b; & d_k = 0; \end{cases}$$

Differential encoding

Bit Time	0	1	2	3	4	5	6	7
Input sequence, b _k		1	1	0	1	0	0	0
Encoded sequence, d _k	1*	1 ~						
Phase of transmitted s(t)	0	0_						

Truth table for ex-NOR						
Inpu	ıts	output				
1	1	1				
0	0	1				
1	0	0				
0	1	0				

Differential encoding

Bit Time	0	1	2	3	4	5	6	7
Input sequence, b _k		1	1	0	1	0	0	0
Encoded sequence, d _k	1*	1	1,00					
Phase of transmitted s(t)	0	0	0					

Truth table for ex-NOR						
Input	s o	utput				
1 1		1				
0 ()	1				
1 (0				
0 1		0				

SP Singapo Polytech

10.5 Differential Phase-Shift Keying (DPSK)

Differential encoding

Bit Time	0	1	2	3	4	5	6	7
Input sequence, b _k		1	1	0	1	0	0	0
Encoded sequence, d _k	1*	1	1	0.				
Phase of transmitted s(t)	0	0	0	π				

Truth table for ex-NOR					
Inp	uts	output			
1	1	1			
0	0	1			
1	0	0			
0	1	0			

SP Singapore Polytechnic

10.5 Differential Phase-Shift Keying (DPSK)

Differential encoding

Bit Time	0	1	2	3	4	5	6	7
Input sequence, b _k		1	1	0	1	0	0	0
Encoded sequence, d _k	1*	1	1	0	0 🗸			
Phase of transmitted s(t)	0	0	0	π	$\pi_{\scriptscriptstyle{\nwarrow}}$			

Truth table for ex-NOR					
Inputs		output			
1	1	1			
0	0	1			
1	0	0			
0	1	0			

Differential encoding

Bit Time	0	1	2	3	4	5	6	7
Input sequence, b _k		1	1	0	1	0	0	0
Encoded sequence, d _k	1*	1	1	0	0	1,		
Phase of transmitted s(t)	0	0	0	π	π	0_		

Official (Closed), Non-sensitive

Truth table for ex-NOR					
Inp	uts	output			
1	1	1			
0	0	1			
1	0	0			
0	1	0			

SP Singapore Polytechnic

10.5 Differential Phase-Shift Keying (DPSK)

Differential encoding

Bit Time	0	1	2	3	4	5	6	7
Input sequence, b _k		1	1	0	1	0	0	0
Encoded sequence, d _k	1*	1	1	0	0	1	0	1
Phase of transmitted s(t)	0	0	0	π	π	0	π	0

Truth table for ex-NOR						
Inp	uts	output				
1	1	1				
0	0	1				
1	0	0				
0	1	0				

$$r(t) = s(t) \times s(t-T_b) = \begin{cases} V^2 \cos^2 \omega_c t & \text{if } s(t) = s(t-T_b) \end{cases}$$

$$r(t) = s(t) \times s(t-T_b) = \begin{cases} V^2 \cos^2 \omega_c t & \text{if } s(t) = s(t-T_b) \\ -V^2 \cos^2 \omega_c t & \text{if } s(t) \neq s(t-T_b) \end{cases}$$

• When $r(t) = V^2 \cos^2 \omega_c t$, after integration and dump,

$$y(Tb) = k \int_0^{T_b} V^2 \cos^2 \omega_c t \, dt = k V^2 \int_0^{T_b} \left(\frac{1}{2} + \frac{\cos 2 \omega_c t}{2}\right) dt$$

$$= k V^2 \int_0^{T_b} \left(\frac{1}{2}\right) dt + k V^2 \int_0^{T_b} \left(\frac{\cos 2 \omega_c t}{2}\right) dt \qquad \Rightarrow \cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

 $=\frac{kV^2T_b}{2}$

Assume ideal case: whole cycles within 1 bit.

When r(t) = - V² cos² ω_ct, after integration and dump,

$$y(Tb) = k \int_{0}^{T_b} -V^2 \cos^2 \omega_{c} t \, dt = -kV^2 \int_{0}^{T_b} \left(\frac{1}{2} + \frac{\cos 2 \omega_{c} t}{2 \text{ using }} \cot 2 \theta \right) dt$$

$$= -kV^2 \int_{0}^{T_b} \left(\frac{1}{2} \right) dt - kV^2 \int_{0}^{T_b} \left(\frac{\cos 2 \omega_{c} t}{2} \right) dt \qquad \Rightarrow \cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

$$= -\frac{kV^2T_b}{2}$$

Assume ideal case: whole cycles within 1 bit.

- Threshold level is therefore set at 0 V (middle value).
- **Decision rule:** If the correlator output is positive, decode $b_k = 1$.
 - If the correlator output is negative, decode $b_k = 0$.

Differential decoding

Bit Time	0	1	2	3	4	5	6	7
Bit sequence sent		1	1	0	1	0	0	0
Phase of received s(t)	0	0	0	π	π	0	π	0
Correlator output (sampled value), y(T _b)		+ *	+ 🗸	_/	+ -		- 1	
Output bit sequence recovered		1	1	0	1	0	0	0

The probability of bit error for a DPSK system is found to be

$$P_e = \frac{1}{2} \exp(\frac{-V^2 T_b}{2\eta}) = \frac{1}{2} e^{-\left(\frac{V^2 T_b}{2\eta}\right)}$$

- Disadvantages of DPSK are:
 - For a given transmitted power, the DPSK system will give a higher error rate when compared with the coherent BPSK system.
 - Asynchronous transmission is not possible as the system need to be locked on a specific signalling speed.
 - An error will propagate to the adjacent bit. Hence higher error rate than coherent BPSK.

Example 10.1

Figure E10.1 shows the block diagram of a DPSK transmitter. The binary input is in unipolar NRZ format of amplitude 2V volt, at a bit rate of 1200 b/s. The carrier is $\sin \omega_c t$ where $\omega_c t = 4800\pi$ rad/s. Assume that the input is a long series of ...10101010... . Sketch the waveforms at points A to D as indicated in Figure E10.1 for a 1010 frame. Assume distortion-less transmission path. Also assume that the encoder output is binary 1 prior to the 1010 frame.

Solution:

$$\omega_c = 2\pi f_c = 4800 \pi \text{ rad/s}$$
 $2f_c = 4800 \implies f_c = 2400 \text{ Hz} \implies \text{Carrier Period } T_c = \frac{1}{2400} \text{ sec}$

"A" has unipolar format; bit rate r_b = 1200 b/s $T_b = \frac{1}{1200}$ sec

$$T_b = \frac{1}{1200} \sec \theta$$

One bit duration
$$T_b = \frac{1}{r_b} = \frac{1}{1200} = 2T_c$$
 two carrier periods

Limitation of binary modulation techniques - require high transmission bandwidth.

Each bit is transmitted individually

- One way of improving bandwidth utilisation use quadrature multiplexing e.g. quadrature phase shift keying (QPSK).
- In QPSK, two bits are lumped together to form a symbol.
 - There are four distinct symbols corresponding to the two-bit sequences 00, 01, 10 and 11.
 - A symbol is transmitted as a carrier with an initial phase angle of four possible values.

The four possible phase angles are the four equally spaced angles.

e.g.

$$s_i(t) = \begin{cases} A\cos(2\pi f_c t + \phi_i) & 0 \le t \le T_s \\ 0 & \textit{for} \text{"00"} \\ 90^\circ & \textit{for} \text{"01"} \\ 180^\circ & \textit{for} \text{"10"} \\ 270^\circ & \textit{for} \text{"11"} \end{cases}$$

$$\text{where T}_s \left(\mathsf{T}_s = 2\mathsf{T}_b\right) \text{ is the symbol duration.}$$

Each symbol is a carrier that takes on one of the four equally spaced initial phase angles. e.g.

$$s_{i}(t) = \begin{cases} A\cos(2\pi f_{c}t + \phi_{i}) & 0 \leq t \leq T_{s} \\ 0 & for "00" \\ 90^{\circ} & for "01" \\ 180^{\circ} & for "10" \\ 270^{\circ} & for "11" \end{cases}$$
where T_s is the symbol duration.

Each symbol is a carrier that takes on one of the four equally spaced initial phase angles. e.g.

$$s_{i}(t) = \begin{cases} A\cos(2\pi f_{c}t + \phi_{i}) & 0 \leq t \leq T_{s} \\ 0 & for "00" \\ 90^{\circ} & for "01" \\ 180^{\circ} & for "10" \\ 270^{\circ} & for "11" \end{cases}$$

where T_s is the symbol duration.

Each symbol is a carrier that takes on one of the four equally spaced initial phase angles. e.g.

$$s_{i}(t) = \begin{cases} A\cos(2\pi f_{c}t + \phi_{i}) & 0 \le t \le T_{s} \\ 0 & for "00" \\ 90^{\circ} for "01" \\ 180^{\circ} for "10" \\ 270^{\circ} for "11" \end{cases}$$

where T_s is the symbol duration.

■ The QPSK waveform of a bit stream of 01111000 generated by a QPSK modulator (LSB at the right most). Note: LSB is transmitted first.

$$s_{i}(t) = \begin{cases} A\cos(2\pi f_{c}t + \phi_{i}) & 0 \le t \le T_{s} \\ \phi_{i} = \begin{cases} 0 & for "00" \\ 90^{\circ} & for "01" \\ 180^{\circ} & for "10" \\ 270^{\circ} & for "11" \end{cases}$$

10.6 Quadrature Phase Shift Keying(QPSK)

The probability of bit error for a QPSK system is given by

$$P_e = \frac{1}{2} erfc \left(\sqrt{\frac{V^2 T_b}{2\eta}} \right)$$
 Same P_e as in BPSK

- QPSK has the same probability of bit error as that of BPSK.
 But the bandwidth required by OPSK is half of that is required by BPSK.
- QPSK is the preferred system if smaller channel bandwidth is desired.

In MPSK, the initial phase angle of the carrier takes on one of M possible values:

$$S_i(t) = A \cos(2\pi f_c t + \phi_i)$$
 $\phi_i = 360i/M$, where i = 0, 1, ..., M-1.

During each symbol interval T_s, one of M possible symbols is sent.

$$s_i(t) = A\cos\left(2\pi f_c t + \frac{360i}{M}\right)$$
 $i = 0,1,...,M-1$

QPSK is an example of MPSK with M = 4.

10.7 M-ary PSK (MPSK)

- In MPSK, as M is increased, bandwidth efficiency is improved.
 - Trade-off is increase in transmitted power or an increase in P_e.
- Among MPSK, QPSK offers the best trade-off between power and bandwidth requirements. Thus, QPSK is the first to be widely used in practice.
- For M > 8,
 - Higher transmitted power is required.
 - More complex equipment is required.

10.8 Quadrature Amplitude Modulation (QAM)

- Channel bandwidth utilisation can be improved further by the hybrid use of amplitude and phase modulation.
- A common form of this hybrid scheme is QAM. The principle of QAM is illustrated using 16-QAM.
- In 16-QAM there are 16 possible symbols, each representing a 4-bit data.

10.8 Quadrature Amplitude Modulation (QAM)

A possible way to represent these 16 symbols is by a constellation diagram shown.

The constellation uses three different amplitudes, two with four phases and one with

eight phases.

Used in 9600 bits/s modems

10.9 Comparison of digital modulation systems

- Choice of digital modulation methods depends on
 - error performance,
 - bandwidth efficiency (in bps/Hz)
 - equipment complexity.

8-QAM DPSK BPSK/ QPSK/ 4-QAM Increasing P_e 8-PSK 16-QAM

10.9 Comparison of digital modulation systems

Bandwidth Comparison

10.9 Comparison of digital modulation systems

Equipment Complexity Comparison

Cable Data Modem

- Modern CATV systems provides a high-speed internet connection via a cable modem distributing the TV and data signals from the CATV head end to the neighbourhood of customer.
- The signals are converted from light to RF signal and transmitted to individual home via coaxial cable.

Operate up to 800 MHz

Cable Data Modem

- The cable modem, usually connected to a PC or in-house data network via an Ethernet line, demodulates the downlink data and modulates the uplink data:
 - The downlink is usually around 3 Mega bits/s
 - The uplink speed is around 500 kbits/s.

Cable Data Modem

A single downlink 6 Mega hertz-wide channel can support a combined downstream data rate:

27 Mbits/s if 64 QAM is used.

36 Mbits/s if 256 QAM is used.

Cable Data Modem

One uplink channel supports a combined data rate:

10 Mbits/s if QPSK is used

30 Mbits/s if 16QAM is used

Cable Modem Standards

Component	Downstream	Upstream
Carrier frequency range	50 - 750 MHz	5 – 42 MHz
Channel bandwidth	6 MHz	6 MHz or 2 MHz
Modulation	64-QAM or 256-QAM	QPSK or 16-QAM
Composite data rate	27 Mb/s or 36 Mb/s	10 – 30 Mb/s
Subscriber data rate	1.5 – 6 Mb/s	256 kb/s – 1.5 Mb/s
Coding	Block code (Reed Solomon)	Block code (RS)
Encryption	DES	DES

Digital Radio
 Microwave radio links using multilevel QAM.

Digital Communications by satellite
 QPSK is often used.

End

CHAPTER 10

(Part 2 of 2)