Page 2

AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior listing of claims in the application.

1. (Currently amended) A compound of structural formula I:

$$\begin{array}{c|c}
X & O & R^2 \\
\hline
Me & & & \\
N & & & \\
R^3 & & & \\
N & & \\
N & & \\
N & & & \\
N$$

a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:

n is 0, 1, or 2;

a and b are each independently chosen from a double bond and a single bond;

X and Y are each independently chosen from hydrogen, halogen, hydroxy, C₁₋₄ alkoxy, hydroxymethyl, and C₁₋₃ alkyl, wherein said alkoxy and alkyl are each optionally substituted with one to seven fluorine atoms; or

- X and Y, together with the carbon atom to which they are attached, can optionally form a C₃₋₆ cycloalkyl group;
- R¹ is chosen from carbonyl(C₁₋₃ alkyl), hydroxy, C₁₋₄ alkoxy, halogen, hydroxymethyl, (C₀₋₆ alkyl)₂amino, and C₁₋₃ alkyl, wherein said alkoxy and alkyl are each optionally substituted with one to seven fluorine atoms;
- R^4 is chosen from halogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_n$ -phenyl, and $(CH_2)_n$ -naphthyl; and
- wherein R⁴ is optionally substituted with one or more substituents each independently chosen from cyano, carboxy, halogen, hydroxy, oxo, C₁₋₄ alkoxy, and C₁₋₄ alkylthio;
- R² is hydrogen or C₁₋₄ alkyl, wherein said C₁₋₄ alkyl is optionally substituted with one or more substituents independently selected from halogen, hydroxy, C₁₋₄ alkoxy, and C₁₋₄ alkylamino;

R³ is selected from

Page 3

(CH₂)_n-heteroaryl, wherein said heteroaryl is optionally substituted with one or more substituents independently chosen from R⁵;

wherein any methylene (CH₂) carbon atom in (CH₂)_n is optionally substituted with one or more groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl optionally substituted with one or more halogen moieties; or two substituents when on the same methylene (CH₂) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;

R⁵ is chosen from: hydrogen, halogen, (carbonyl)₀₋₁C₁₋₁₀ alkyl, (carbonyl)₀₋₁C₂₋₁₀ alkenyl, (carbonyl)₀₋₁C₂₋₁₀ alkynyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁,

C3_8 heterocycloalkyl C0_10 alkyl(carbonyl)0_1, heterocycloalkyl,

C₁₋₄acylamino C₀₋₁₀ alkyl, C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

 C_{0-10} alkylamino C_{0-10} alkylaminocarbonyl, di- $(C_{1-10}$ alkyl)amino C_{0-10} alkyl, aryl C_{0-10} alkylamino C_{0-10} alkyl, (aryl C_{0-10} alkyl)2amino C_{0-10} alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

(C3-8 cycloalkyl C0-10 alkyl)2amino C0-10 alkyl,

(C₃₋₈ heterocyclyl C₀₋₁₀ alkyl)₂amino C₀₋₁₀ alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonylamino,

(C₁₋₁₀ alkyl)₂aminocarbonylamino, (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonylamino,

C₀₋₁₀ alkyl aminocarbonylamino, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonylamino,

 $(C_{1-10} \ alkyl)_2 aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C_{1-10} \ alkyl)_{1-2} aminocarbonyl \ C_{0-10} \ alkyl, (aryl \ C$

 C_{0-10} alkyl aminocarbonyl C_{0-10} alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl,

C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl,

aryl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, (C₁₋₁₀ alkyl)₂aminocarbonyl,

(aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonyl, C₁₋₁₀ alkoxy (carbonyl)₀₋₁C₀₋₁₀ alkyl,

C₀₋₁₀ alkyl carbonylamino(C₀₋₁₀ alkyl), C₀₋₁₀ alkoxy carbonylamino(C₀₋₁₀ alkyl), carboxy C₀₋₁₀ alkylamino, carboxy C₀₋₁₀ alkyl, carboxy C₃₋₈ cycloalkyl, C₁₋₁₀ alkoxy,

C1-10alkyloxy C0-10alkyl, C1-10 alkylcarbonyloxy, C0-10alkyl carbonylC0-10alkoxy,

 C_{3-8} heterocyclyl C_{0-10} alkylcarbonyloxy, C_{3-8} cycloalkyl C_{0-10} alkylcarbonyloxy,

aryl C₀₋₁₀ alkylcarbonyloxy, C₁₋₁₀ alkylcarbonyloxy amino,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylcarbonyloxy amino,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylcarbonyloxy amino, aryl C₀₋₁₀ alkylcarbonyloxy amino,

(C₁₋₁₀ alkyl)₂aminocarbonyloxy, (aryl C₀₋₁₀ alkyl)₁₋₂aminocarbonyloxy,

(C₃₋₈ heterocyclyl C₀₋₁₀ alkyl)₁₋₂ aminocarbonyloxy,

Page 4

(C₃₋₈ cycloalkyl C₀₋₁₀alkyl)₁₋₂aminocarbonyloxy, hydroxy (carbonyl)₀₋₁C₀₋₁₀alkyl, hydroxycarbonylC₀₋₁₀alkyl, hydroxycarbonylC₀₋₁₀alkyloxy, C₁₋₁₀ alkylthio, C₁₋₁₀ alkylsulfinyl, aryl C₀₋₁₀ alkylsulfinyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylsulfinyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylsulfinyl, C₁₋₁₀ alkylsulfonyl, aryl C₀₋₁₀ alkylsulfonyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylsulfonyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylsulfonyl, C₁₋₁₀ alkylsulfonylamino, aryl C₁₋₁₀ alkylsulfonylamino, C₃₋₈ cycloalkyl C₁₋₁₀ alkylsulfonylamino, cyano, nitro, perfluoroC₁₋₆alkyl, and perfluoroC₁₋₆alkoxy;

wherein R⁵ is optionally substituted with one or more groups chosen from: OH, (C₁-6)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, NO₂, trifluoromethoxy, trifluoroethoxy, -O_b(C₁₋₁₀)perfluoroalkyl, and NH₂; and

R6-is halogen, hydroxy, C₁₋₄-alkoxy, CONII₂, and C₁₋₄-alkylamino, wherein R6-is optionally substituted with one or more groups chosen from: OH, (C₁-6)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆-alkyl, NO₂, trifluoromethoxy, trifluoroethoxy, O₆(C₁₋₁₀)perfluoroalkyl, NH₂, and O₆(C₁₋₁₀)alkyl optionally substituted with one or more halogen-moieties.

2. - 4.(Cancelled)

- 5. (Currently amended) The compound of Claim 2 Claim 1, wherein in R³, said heteroaryl is chosen from azabenzimidazole, acridinyl, carbazolyl, cinnolinyl, benzimidazolyl, benzofuranyl, benzothiophenyl, benzoxazolyl, benzothiazolyl, benzodihydrofuranyl, 1,3-benzodioxolyl, 2,3-dihydro-1,4-benzodioxinyl, indolyl, quinolyl, quinoxalinyl, isoquinolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyriolyl, pyridyl, pyrimidyl, pyrazinyl, piridazinyl, tetrahydroquinolinyl, thiadiazolyl, oxadiazolyl, triazolyl, imidizopyridinyl, tetrazolyl, and indanyl; wherein said R³ is optionally substituted with one or more substituents independently chosen from R⁵.
- 6. (Original) The compound of Claim 5, wherein said heteroaryl is chosen from azabenzimidazole, benzimidazolyl, benzofuranyl, benzothiophenyl, benzoxazolyl, benzothiazolyl, benzodihydrofuranyl, 1,3-benzodioxolyl, 2,3-dihydro-1,4-benzodioxinyl, indolyl, quinolyl, quinoxalinyl, isoquinolyl, thienyl, imidazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyridyl, pyridyl, pyridyl, pyridyl, pyridyl, piridazinyl, tetrahydroquinolinyl, thiadiazolyl, triazolyl, imidizopyridinyl, and tetrazolyl; wherein said R³ is optionally substituted with one or more substituents independently chosen from R⁵.

Page 5

7. (Previously amended) The compound of Claim 1, wherein R¹ is C₁₋₃ alkyl optionally substituted with one to seven fluorine atoms.

- 8. (Previously amended) The compound of Claim 7, wherein R¹ is methyl.
- 9. (Original) The compound of Claim 1, wherein R⁴ is chosen halogen, C₁₋₆ alkyl, and (CH₂)_n-phenyl, wherein R⁴ is optionally substituted with one or more substituents each independently chosen from cyano, carboxy, halogen, hydroxy, oxo, C₁₋₄ alkoxy, and C₁₋₄ alkylthio.
- 10. (Original) The compound of Claim 9, wherein R⁴ is chosen from halogen and C₁₋₆ alkyl, optionally substituted with one or more substituents each independently chosen from cyano, carboxy, halogen, hydroxy, oxo, C₁₋₄ alkoxy, and C₁₋₄ alkylthio.
 - 11. (Original) The compound of Claim 10, wherein R⁴ is CH₃.

12. - 13. (Cancelled)

14. (Original) The compound of Claim 1, wherein R⁵ is chosen from: hydrogen, halogen, (carbonyl)₀₋₁C₁₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁, C₃₋₈ heterocycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁, C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl carbonylamino, C₀₋₁₀ alkyl aminocarbonylamino, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonylamino, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl carbonyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, aryl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, (C₁₋₁₀ alkyl) aminocarbonyl,

C₁₋₁₀ alkoxy (carbonyl)₀₋₁C₀₋₁₀ alkyl, C₀₋₁₀ alkyl carbonylamino(C₀₋₁₀ alkyl), C₀₋₁₀ alkoxy carbonylamino(C₀₋₁₀ alkyl), carboxy C₀₋₁₀ alkylamino, carboxy C₀₋₁₀ alkyl, carboxy C₃₋₈ cycloalkyl, C₁₋₁₀ alkoxy, hydroxy (carbonyl)₀₋₁C₀₋₁₀alkyl, C₀₋₁₀alkyl carbonylC₀₋₁₀alkoxy, hydroxycarbonylC₀₋₁₀alkyloxy, cyano, nitro, perfluoroC₁₋₆alkyl, and perfluoroC₁₋₆alkoxy; wherein R⁵ is optionally substituted with one or more groups chosen from: OH,

Page 6

 (C_{1-6}) alkoxy, halogen, CO_2H , CN, $O(C=O)C_1-C_6$ alkyl, NO_2 , trifluoromethoxy, trifluoroethoxy, $O_b(C_{1-10})$ perfluoroalkyl, and NH_2 .

15. (Original) The compound of Claim 14, wherein R² is chosen from hydrogen and C₁₋₄ alkyl, optionally substituted with one or more substituents independently selected from halogen, hydroxy, C₁₋₄ alkoxy, and C₁₋₄ alkylamino.

16. (Previously amended) A compound selected from:

 $N-[3-(trifluoromethyl)pyridin-2-yl]-4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;$

N-(5-cyanopyrid-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;

N-[6-(trifluoromethyl)pyridin-2-yl] -4-methyl-6-methyl-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;

N-[3-cyano-pyridin-2-yl] -4-methyl-6-methyl-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;

N-(3-methyl-benzimidazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(5-nitro-benzimidazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;

N-(4-chloro-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;

N-(6-methyl-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(6-methoxy-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(5,6-dimethyl-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(4-methyl-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(5-fluoropyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(5-cyclopropyl-1,3,4-thiadiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(2-methyl-3-bromo-pyrid-4-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N,N-methyl(pyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(5-methylpyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-[5-(trifluoromethyl)pyridin-2-yl] -4-methyl-6-methyl-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;

N-(5-chloropyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;

N-(1,3-pyrimid-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;

N-(1,3-pyrazin-4-yl) -4-methyl-6-methyl-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;

N-(benzimidazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(2-methyl-pyrid-4-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;

N-(pyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;

Page 7

```
N-(pyridin-3-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(pyridin-4-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-[(3-carboxamido)-pyridin-6-yl] -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(6-cyanopyridin-3-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(6-methylpyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(6-aminopyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-[(6-trifluoromethyl)-pyrid-3-yl] -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(6-ethylpyridin-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(6-fluoro-1,3-benzothiazol-2-yl) -4-methyl-6-methyl-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(2-ethylpyridin-4-yl) -4-methyl-6-methyl-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(2-ethylpyridin-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(2-\text{methyl-pyrid-4-yl}) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(pyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(pyridin-3-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(pyridin-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(6-cyanopyridin-3-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(6-methylpyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(6-aminopyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -[(6-trifluoromethyl)-pyrid-3-yl] -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(2-chloro-pyrid-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(5-fluoro-pyrid-3-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(6-ethylpyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-(5-cyclopropyl-1,3,4-thiadiazol-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-
        acetamide:
N -(2-methyl-3-bromo-pyrid-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N, N-methyl(pyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(5-methylpyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-[5-(trifluoromethyl)pyridin-2-yl]-4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(5-chloropyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N-(1,3-pyrimid-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(1,3-pyrazin-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -(5-fluoropyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
N -(benzimidazol-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N -[(5-carboxyl)-pyrid-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
N-[(4-carboxyl)phenyl]-4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
```

Page 8

```
N -[(4-carboxyl-3-chloro)phenyl] -4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;
```

- N-[2-chloro(4-methoxycarbonyl)phenyl]-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N-(1,3-pyrimid-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -[5-(ethoxycarbonyl) -1,3-thiazol-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N -[4-(trifluoromethyl)-5-(ethoxycarbonyl) -1,3-thiazol-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N -[4-hydroxy-5-(ethoxycarbonyl) -1,3-pyrimid-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N-(6-methylpyridin-2-yl)-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N-[(4-carboxamido)phenyl] -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N-(2-methyl-pyrid-4-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide;
- N-(pyridin-3-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -(4,6-dimethylpyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -(benzimidazol-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -(6-methylpyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -(6-cyanopyridin-3-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -(5-fluoropyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N -(5-chloropyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- N-[5-(trifluoromethyl)pyridin-2-yl] -4-methyl-6-chloro-3-oxo-4-aza-5 α -androst-5-en-17 β -acetamide;
- $N [(5-carboxyl)-pyrid-2-yl] 4-methyl-6-chloro-3-oxo-4-aza-5\alpha-androst-5-en-17\beta-acetamide;$
- N-[(5-cyclopropyl-1.3,4-thiadiazol-2-yl] 6,6-ethylene-3-oxo-4-aza-5 α -androst-17 β -acetamide;
- N-[4,6-dimethyl-pyridin-2-yl] 6,6-ethylene-3-oxo-4-aza-5 α -androst-17 β -acetamide;
- N-(benzimidazol-2-yl) 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-[5-cyano-pyridin-2-yl] 6,6-ethylene-3-oxo-4-aza-5 α -androst-17 β -acetamide;
- N-(1,3-pyrimid-4-yl) 6,6-ethylene-3-oxo-4-aza-5\alpha-androst-17\beta-acetamide;
- N-[3-methyl-pyridin-2-yl] 6.6-ethylene-3-oxo-4-aza-5\alpha-androst-17\beta-acetamide;
- N-[(5-carboxamido)pyrid2-I] -- 6,6-ethylene-3-oxo-4-aza-5 α -androst-17 β -acetamide;
- N-(isoquinolin-3-yl) 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- N-[6-(trifluoromethyl)pyridin-2-yl]- 6,6-ethylene-3-oxo-4-aza-5α-androst-17β-acetamide;
- $N-(4-azabenzimidazol-2-yl) 6,6-ethylene-3-oxo-4-aza-5\alpha-androst-17\beta-acetamide;$
- N-(1H-imidazo[4,5-b] pyridin-2-yl) -4-methyl-6-chloro-3-oxo-4-aza-5α-androst-5-en-17β-acetamide; or a pharmaceutically acceptable salt thereof.

Page 9

19. (Previously amended) A pharmaceutical composition comprising a compound of any one of Claims 1 or a salt or stereoisomer thereof and a pharmaceutically acceptable carrier.

20. (Previously amended) A composition of Claim 19, further comprising an active ingredient selected from: an estrogen or an estrogen derivative, alone or in combination with a progestin or progestin derivative, a bisphosphonate, an antiestrogen or a selective estrogen receptor modulator, an ανβ3 integrin receptor antagonist, a cathepsin K inhibitor, an HMG-CoA reductase inhibitor, an osteoclast vacuolar ATPase inhibitor, an antagonist of VEGF binding to osteoclast receptors, an activator of peroxisome proliferator-activated receptor γ, calcitonin, a calcium receptor antagonist, parathyroid hormone or analog thereof, a growth hormone secretagogue, human growth hormone, insulin-like growth factor, a p38 protein kinase inhibitor, bone morphogenetic protein, an inhibitor of BMP antagonism, a prostaglandin derivative, vitamin D or vitamin D derivative, vitamin K or vitamin K derivative, ipriflavone, fluoride salts, dietary calcium supplements, and osteoprotegerin.

21. (Previously amended) A composition of Claim 20 wherein said bisphosphonate is alendronate.

22. to 31. (Cancelled)

32. (New) A compound of structural formula I:

a pharmaceutically acceptable salt or a stereoisomer thereof, wherein: n is 0, 1, or 2;

Page 10

a and b are each independently chosen from a double bond and a single bond;

- X and Y are each independently chosen from hydrogen, halogen, hydroxy, C₁₋₄ alkoxy, hydroxymethyl, and C₁₋₃ alkyl, wherein said alkoxy and alkyl are each optionally substituted with one to seven fluorine atoms; or
- X and Y, together with the carbon atom to which they are attached, can optionally form a C₃₋₆ cycloalkyl group;
- R¹ is chosen from carbonyl(C₁₋₃ alkyl), hydroxy, C₁₋₄ alkoxy, halogen, hydroxymethyl, (C₀₋₆ alkyl)₂amino, and C₁₋₃ alkyl, wherein said alkoxy and alkyl are each optionally substituted with one to seven fluorine atoms;
- R⁴ is chosen from halogen, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, (CH₂)_n-phenyl, and (CH₂)_n-naphthyl; and
- wherein R⁴ is substituted with one or more substituents each independently chosen from cyano, carboxy, halogen, hydroxy, oxo, C₁₋₄ alkoxy, and C₁₋₄ alkylthio;
- R² is hydrogen or C₁₋₄ alkyl, wherein said C₁₋₄ alkyl is substituted with one or more substituents independently selected from halogen, hydroxy, C₁₋₄ alkoxy, and C₁₋₄ alkylamino;
- R³ is selected from
 - (CH₂)_n-heteroaryl, wherein said heteroaryl is optionally substituted with one or more substituents independently chosen from R⁵;
- wherein any methylene (CH₂) carbon atom in (CH₂)_n is optionally substituted with one or more groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl optionally substituted with one or more halogen moieties; or two substituents when on the same methylene (CH₂) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;
- R⁵ is chosen from: hydrogen, halogen, (carbonyl)₀₋₁C₁₋₁₀ alkyl, (carbonyl)₀₋₁C₂₋₁₀ alkenyl, (carbonyl)₀₋₁C₂₋₁₀ alkynyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁,

C3_8 heterocycloalkyl C0_10 alkyl(carbonyl)0_1, heterocycloalkyl,

C₁-4acylamino C₀₋₁₀ alkyl, C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

 C_{0-10} alkylamino C_{0-10} alkylaminocarbonyl, di- $(C_{1-10}$ alkyl)amino C_{0-10} alkyl, aryl C_{0-10} alkylamino C_{0-10} alkyl, (aryl C_{0-10} alkyl)2amino C_{0-10} alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

(C₃₋₈ cycloalkyl C₀₋₁₀ alkyl)₂amino C₀₋₁₀ alkyl,

(C3_8 heterocyclyl C0_10 alkyl)2amino C0_10 alkyl,

C3_8 cycloalkyl C0_10 alkyl aminocarbonylamino,

(C₁₋₁₀ alkyl)₂ aminocarbonylamino, (aryl C₁₋₁₀ alkyl)₁₋₂ aminocarbonylamino,

Page 11

C₀₋₁₀ alkyl aminocarbonylamino, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonylamino,

(C₁₋₁₀ alkyl)₂aminocarbonyl C₀₋₁₀ alkyl, (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonyl C₀₋₁₀ alkyl,

C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl,

C3-8 heterocyclyl C0-10 alkyl aminocarbonyl C0-10 alkyl,

aryl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, (C₁₋₁₀ alkyl)₂aminocarbonyl,

(aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonyl, C₁₋₁₀ alkoxy (carbonyl)₀₋₁C₀₋₁₀ alkyl,

C₀₋₁₀ alkyl carbonylamino(C₀₋₁₀ alkyl), C₀₋₁₀ alkoxy carbonylamino(C₀₋₁₀ alkyl), carboxy C₀₋₁₀ alkylamino, carboxy C₀₋₁₀ alkyl, carboxy C₃₋₈ cycloalkyl, C₁₋₁₀ alkoxy,

C1-10alkyloxy C0-10alkyl, C1-10 alkylcarbonyloxy, C0-10alkyl carbonylC0-10alkoxy,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylcarbonyloxy, C₃₋₈ cycloalkyl C₀₋₁₀ alkylcarbonyloxy,

aryl C0-10 alkylcarbonyloxy, C1-10 alkylcarbonyloxy amino,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylcarbonyloxy amino,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylcarbonyloxy amino, aryl C₀₋₁₀ alkylcarbonyloxy amino,

(C₁₋₁₀ alkyl)₂aminocarbonyloxy, (aryl C₀₋₁₀ alkyl)₁₋₂aminocarbonyloxy,

(C3-8 heterocyclyl C0-10 alkyl)1-2aminocarbonyloxy,

(C₃₋₈ cycloalkyl C₀₋₁₀alkyl)₁₋₂aminocarbonyloxy, hydroxy (carbonyl)₀₋₁C₀₋₁₀alkyl, hydroxycarbonylC₀₋₁₀alkoxy, hydroxycarbonylC₀₋₁₀alkyloxy, C₁₋₁₀ alkylthio,

C₁₋₁₀ alkylsulfinyl, aryl C₀₋₁₀ alkylsulfinyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylsulfinyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylsulfinyl, C₁₋₁₀ alkylsulfonyl, aryl C₀₋₁₀ alkylsulfonyl,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylsulfonyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylsulfonyl,

C₁₋₁₀ alkylsulfonylamino, aryl C₁₋₁₀ alkylsulfonylamino,

C₃₋₈ heterocyclyl C₁₋₁₀ alkylsulfonylamino, C₃₋₈ cycloalkyl C₁₋₁₀ alkylsulfonylamino, cyano, nitro, perfluoroC₁₋₆alkyl, and perfluoroC₁₋₆alkoxy;

- wherein R⁵ is optionally substituted with one or more groups chosen from: OH, (C₁-6)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, NO₂, trifluoromethoxy, trifluoroethoxy, -O_b(C₁₋₁₀)perfluoroalkyl, and NH₂; and
- R6 is halogen, hydroxy, C₁₋₄ alkoxy, CONH₂, and C₁₋₄ alkylamino, wherein R6 is optionally substituted with one or more groups chosen from: OH, (C₁₋₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, NO₂, trifluoromethoxy, trifluoroethoxy, -O₆(C₁₋₁₀)perfluoroalkyl, NH₂, and -O₆(C₁₋₁₀)alkyl optionally substituted with one or more halogen moieties.
- 33. (New) The compound of Claim 32, wherein in R³, said heteroaryl is chosen from azabenzimidazole, acridinyl, carbazolyl, cinnolinyl, benzimidazolyl, benzofuranyl,

Page 12

benzothiophenyl, benzoxazolyl, benzothiazolyl, benzodihydrofuranyl, 1,3-benzodioxolyl, 2,3-dihydro-1,4-benzodioxinyl, indolyl, quinoxyl, quinoxylinyl, isoquinolyl, furanyl, thienyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidyl, pyrazinyl, piridazinyl, tetrahydroquinolinyl, thiadiazolyl, oxadiazolyl, triazolyl, imidizopyridinyl, tetrazolyl, and indanyl; wherein said \mathbb{R}^3 is optionally substituted with one or more substituents independently chosen from \mathbb{R}^5 .

- 34. (New) The compound of Claim 33, wherein said heteroaryl is chosen from azabenzimidazole, benzimidazolyl, benzofuranyl, benzothiophenyl, benzoxazolyl, benzothiazolyl, benzodihydrofuranyl, 1,3-benzodioxolyl, 2,3-dihydro-1,4-benzodioxinyl, indolyl, quinolyl, quinoxalinyl, isoquinolyl, thienyl, imidazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyrrolyl, pyridyl, pyrimidyl, pyrazinyl, piridazinyl, tetrahydroquinolinyl, thiadiazolyl, triazolyl, imidizopyridinyl, and tetrazolyl; wherein said R³ is optionally substituted with one or more substituents independently chosen from R⁵.
- 35. (New) The compound of Claim 32, wherein R¹ is C₁₋₃ alkyl optionally substituted with one to seven fluorine atoms.
 - 36. (New) The compound of Claim 35, wherein R¹ is methyl.
- 37. (New) The compound of Claim 32, wherein R⁴ is chosen halogen, C₁₋₆ alkyl, and (CH₂)_n-phenyl, wherein C₁₋₆ alkyl, and (CH₂)_n-phenyl is optionally substituted with one or more substituents each independently chosen from cyano, carboxy, halogen, hydroxy, oxo, C₁₋₄ alkoxy, and C₁₋₄ alkylthio.
- 38. (New) The compound of Claim 37, wherein R⁴ is chosen from halogen and C₁-6 alkyl, substituted with one or more substituents each independently chosen from cyano, carboxy, halogen, hydroxy, oxo, C₁-4 alkoxy, and C₁-4 alkylthio.
- 39. (New) The compound of Claim 32, wherein R⁵ is chosen from: hydrogen, halogen, (carbonyl)₀₋₁C₁₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁, C₃₋₈ heterocycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁, C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₀₋₁₀ alkylamino C₀₋₁₀ alkylamino C₀₋₁₀ alkylamino C₀₋₁₀ alkylamino C₀₋₁₀ alkylamino C₀₋₁₀ alkylamino C₀₋₁₀

Page 13

alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonylamino, C₀₋₁₀ alkyl aminocarbonylamino, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, aryl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, (C₁₋₁₀ alkyl)₂ aminocarbonyl,

 C_{1-10} alkoxy (carbonyl) $_{0-1}C_{0-10}$ alkyl, C_{0-10} alkyl carbonylamino(C_{0-10} alkyl), C_{0-10} alkoxy carbonylamino(C_{0-10} alkyl), carboxy C_{0-10} alkylamino, carboxy C_{0-10} alkyl, carboxy C_{3-8} cycloalkyl, C_{1-10} alkoxy, hydroxy (carbonyl) $_{0-1}C_{0-10}$ alkyl, C_{0-10} alkyl carbonyl C_{0-10} alkoxy, hydroxycarbonyl C_{0-10} alkyloxy, cyano, nitro, perfluoro C_{1-6} alkyl, and perfluoro C_{1-6} alkoxy, wherein R^5 is optionally substituted with one or more groups chosen from: OH, (C_{1-6}) alkoxy, halogen, CO_2H , CN, $O(C=O)C_1-C_6$ alkyl, NO_2 , trifluoromethoxy, trifluoroethoxy, $O_6(C_{1-10})$ perfluoroalkyl, and NH_2 .

40. (New) The compound of Claim 39, wherein R² is chosen from hydrogen and C₁-4 alkyl, optionally substituted with one or more substituents independently selected from halogen, hydroxy, C₁-4 alkoxy, and C₁-4 alkylamino.