Uitwerkingen voor "Integratietechnieken: Substitutieregel"

Dr. ir. D.A.M.P. Blom 22 mei 2025

$$\int x^4 \sin(x^5 + 3) \, dx$$

We gebruiken substitutie op basis van de binnenfunctie die in de sinus staat:

$$u = x^5 + 3$$
 \Rightarrow $du = 5x^4 dx$ \Rightarrow $\frac{1}{5}du = x^4 dx$

Substitueren in de integraal geeft ons:

$$\int x^4 \sin(x^5 + 3) dx = \int \frac{1}{5} \sin(u) du$$

$$= -\frac{1}{5} \cos(u) + C$$

$$= -\frac{1}{5} \cos(x^5 + 3) + C$$

$$\int \frac{x}{1+x^2} \, dx$$

We gebruiken substitutie op basis van de noemer (merk op dat de afgeleide van $1 + x^2$ gelijk is aan 2x, oftewel 2 keer de teller):

$$u = 1 + x^2$$
 \Rightarrow $du = 2x dx$ \Rightarrow $\frac{1}{2}du = x dx$

Substitueren in de integraal geeft ons:

$$\int \frac{x}{1+x^2} dx = \int \frac{x dx}{1+x^2}$$

$$= \int \frac{\frac{1}{2} du}{u}$$

$$= \frac{1}{2} \int \frac{1}{u} du$$

$$= \frac{1}{2} \ln|u| + C$$

$$= \frac{1}{2} \ln|1+x^2| + C$$

3.
$$\int \frac{1}{x \ln(x)} dx$$

Deze integraal is al iets lastiger. Merk echter op dat de afgeleide van $\ln(x)$ gelijk is aan $\frac{1}{x}$. Gebruik nu de volgende substitutie:

$$u = \ln(x) \quad \Rightarrow \quad du = \frac{1}{x} dx$$

Substitueren in de integraal geeft ons:

$$\int \frac{1}{x \ln(x)} dx = \int \frac{1}{\ln(x)} \cdot \frac{1}{x} dx$$
$$= \int \frac{1}{u} du$$
$$= \ln|u| + C$$
$$= \ln|\ln(x)| + C$$

4.
$$\int x\sqrt{1+x^2}\,dx$$

We substitueren opnieuw $u = 1 + x^2$, omdat de afgeleide van $1 + x^2$ gelijk is aan 2x, oftewel 2 keer de x die buiten de wortel staat:

$$u = 1 + x^2$$
 \Rightarrow $du = 2x dx$ \Rightarrow $\frac{1}{2}du = x dx$

Substitueren in de integraal geeft ons:

$$\int x\sqrt{1+x^2} \, dx = \int \frac{1}{2}\sqrt{u} \, du$$

$$= \int \frac{1}{2}u^{\frac{1}{2}} \, du$$

$$= \frac{1}{2} \cdot \frac{2}{3}u^{3/2} + C$$

$$= \frac{1}{3}u\sqrt{u} + C$$

$$= \frac{1}{3}(1+x^2)\sqrt{1+x^2} + C$$

5.
$$\int x^3 \sqrt{1+x^2} \, dx$$

Dit is de lastigste integraal, omdat de x^3 buiten de wortel niet lijkt op de afgeleide van $1+x^2$. De truc in dit geval is om $x^3\sqrt{1+x^2}$ te lezen als $x\cdot x^2\cdot \sqrt{1+x^2}$. In dit geval is x te relateren aan $\frac{1}{2}$ keer de afgeleide van $1+x^2$, en x^2 is gelijk aan $(1+x^2)-1$.

We gebruiken de substitutie

$$u = 1 + x^2$$
 \Rightarrow $du = 2x dx$ \Rightarrow $\frac{1}{2}du = x dx$

Aangezien geldt dat $u=1+x^2$, kunnen we x^2 herschrijven als $x^2=u-1$. Dit geeft ons:

$$\int x^3 \sqrt{1+x^2} \, dx = \int x \cdot x^2 \sqrt{1+x^2} \, dx$$

$$= \int \frac{1}{2} (u-1)\sqrt{u} \, du$$

$$= \int (\frac{1}{2}u\sqrt{u} - \frac{1}{2}\sqrt{u}) \, du$$

$$= \int (\frac{1}{2}u^{3/2} - \frac{1}{2}u^{1/2}) \, du$$

$$= \frac{1}{2} \cdot \frac{2}{5}u^{5/2} - \frac{1}{2} \cdot \frac{2}{3}u^{3/2} + C$$

$$= \frac{1}{5}u^2 \sqrt{u} - \frac{1}{3}u\sqrt{u} + C$$

$$= \frac{1}{5}(1+x^2)^2 \sqrt{1+x^2} - \frac{1}{3}(1+x^2)\sqrt{1+x^2} + C$$