Endomorphic metalanguage and abstract planning for real-time intent recognition

Antoine Gréa

Lyon 2

1 Introduction

A what?

- Dependent people need help!
 - Not annoying the person
 - Can't see everything they are doing
- How to help without asking?
 - Guessing the intent somehow

Intent recognition

Observed behavior → Goal

Using action sequences: **Plans**

2 Intent Recognition

2.1 Logic Approach

Lattice Based: ✓ Fast computations X Exponential growth

[@BOUCHARD_2006]

2.2 Stochastic Approach

- And/Or and decision tree:
 - Accurate and efficient
 - X Handmade plan library and tree

[@avraнamı 2006]

2.3 Grammatical Approach

Valued Grammar: ✓ Versatile
X Slow refresh rate (~40s)

2.4 Invert Planning

- Theory of Mind:
 - ✓ Flexible
 - **X** More complex

The easier the plan, the more likely the goal

Intent recognition

[@ramirez_2008]

- Existing
- Contributions

Plan

- 1 Intent Recognition
- 2 Knowledge Representation
- **3** General Planning
- 4 Flexible Online Planning
- 5 Perspectives
- **6** Conclusion

How to Know

- Abstraction
 - How to **refer** to something
- Formalization
 - How to talk about something
- Interpretation
 - How to **know** about something

Issues Expressing Knowledge

- Abstraction
 - Incomplete information
- Formalization
 - Informal bases
- Interpretation
 - Non defined terms

SELF

Example of Modal Logic

4 General Planning

Classical Planning

- Domain
 - Fluents
 - Formula over objects
 - States
 - Properties of the world
 - Formula over fluents
 - Actions
 - Precondition
 - **Effects**

- Problem
 - Initial state
 - Goal state
- Plan (solution)
 - Action sequence
 - Order
 - Total
 - **Partial**

Example

Having some tea, aren't we?

Existing Frameworks

1 Introduction | 2 Intent Recognition | 3 Knowledge Representation | 4 General Planning | 5 Flexible Online Planning | 6 Conclusion

Planning Formalism Revisited

- States
 - And/Or trees of Fluents
 - Verifying
 - Applying
- Actions
 - Precondition, Effects
 - Constraints
 - Cost, Duration, Probability
 - Methods

- Search Space
 - Starting point
 - Iterator
 - Solution predicate

General Planning Algorithm

Shortest Path Algorithm

 Instances for Classical **Approaches**

- State-transition
- Plan space
- Case based
- Probabilistic
- Hierarchical

COLOR Framework

5 Flexible Online Planning

Planning Phases

- Phases dependent on
 - Available information
 - Timing constraints
 - Planning paradigm

Plan Space Planning

Hierarchical Task Networks

- Based on tasks
- Decomposition
- Vary in complexity

Plan Repair Prototype

- Partial Order Planner (POP)
- Operator dependency graph
- Negative refinements
- Alternatives & Orphans

thity Heuristics

Abstract Planning

- HTN + POP planning
- Partial Resolution
 - An abstract solution at every level of abstraction
- Search by level
 - Expansion after completion :

HEART

Results

• TODO

6 Conclusion

Contributions & Results

SELF Improvement

Planning Colorized

Fixing Planning Domains

Toward Intent Recognition

Thanks for listening!

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE.