บทที่ 4 ผลการดำเนินงานวิจัย

จากการดำเนินงานวิจัยการคัดเลือกปัจจัยสำคัญที่ส่งผลต่อระดับเศรษฐกิจครัวเรือนด้วย วิธีการทำเหมืองข้อมูลโดยจะวิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Gain Ratio เมื่อทราบปัจจัยที่สำคัญ แล้วจะนำไปเปรียบเทียบระหว่าง All Feature ซึ่งเป็นข้อมูลที่ไม่ได้ผ่านเทคนิคใด ๆ นำมา เปรียบเทียบระหว่าง ผลลัพธ์ปัจจัยสำคัญที่ได้มาจากเทคนิค Gain Ratio ด้วยเทคนิค Decision Tree จะทำการแบ่งข้อมูลสัดส่วนร้อยละ 60:40, 70:30, และ 80:20 ของข้อมูลจำนวน 1,751 ระเบียน (ครัวเรือน) จำนวน 17 ปัจจัย ด้วยโปรแกรมโปรแกรม RapidMiner Studio และทำการแบ่งสัดส่วน ทดสอบประสิทธิ์ ภาพด้วยวิธี 5-Fold Cross Validation และวิธี 10-Fold Cross Validation จากนั้นประเมินประสิทธิภาพด้วยค่าค่าความถูกต้อง (Accuracy) ค่าความแม่นยำ (Precision: P) ค่า ความระลึก (Recall: R) ค่าถ่วงดุล (F-Measure) และค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ย (Root Mean Squared Error: RMSE) ดังนี้

4.1 ผลการสร้างตัวแบบ Decision Tree กับข้อมูล All Feature

ทดลองการแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation และ วิธี 10-Fold Cross Validation โดยการทดลองตัวแบบแต่ละการทดลองทั้งหมด 10 ครั้ง การแบ่ง ข้อมูลตามค่าสัดส่วนร้อยละ 60:40, 70:30 และ 80:20 เพื่อใช้ในการวัดประสิทธิภาพ มีรายละเอียด ดังนี้

4.1.1 ผลการทดลองสร้างตัวแบบกับการแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 60:40

การสร้างตัวแบบกับชุดข้อมูล All Feature ด้วยเทคนิค Decision Tree โดย จะมีการทดลองการสร้างตัวแบบจำนวน 10 ครั้ง แล้วหาค่าเฉลี่ยของแต่ละเทคนิคด้วยการแบ่งข้อมูล สัดส่วนร้อยละ 60:40 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation และ วิธี 10-Fold Cross Validation ค่า Maximal Depth 10 แสดงผลดังตารางที่ 4.1 และตารางที่ 4.2

ตารางที่ 4.1 ผลการทดสอบ All Feature กับการแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 60:40 และแบ่ง สัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จำนวน (ครั้ง)	ประสิทธิภาพ					
	Accuracy	Precision	Recall	F-Measure	RMSE	
1	99.00	99.18	98.81	98.99	0.088	
2	99.00	99.18	98.81	98.99	0.088	
3	99.00	99.18	98.81	98.99	0.088	
4	99.00	99.18	98.81	98.99	0.088	
5	99.00	99.18	98.81	98.99	0.088	
6	99.00	99.18	98.81	98.99	0.088	
7	99.00	99.18	98.81	98.99	0.088	
8	99.00	99.18	98.81	98.99	0.088	
9	99.00	99.18	98.81	98.99	0.088	
10	99.00	99.18	98.81	98.99	0.088	
เฉลี่ย	99.00	99.18	98.81	98.99	0.088	

ภาพที่ 4.1 แสดงแผนภาพ All Feature วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 60:40 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี
5-Fold Cross Validation

จากภาพที่ 4.1 เมื่อนำแผนภาพ All Feature วิเคราะห์ปัจจัยที่ สำคัญด้วยเทคนิค Decision Tree ที่ได้นี้ไปใช้งานจะเริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 4 กฎ ดังนี้

- 1) IF AverageInY >0.409 THEN High income
- 2) IF AverageInY ≤0.409 AND Working ≥3.500 THEN

Low econ lv

3) IF AverageInY ${\le}0.409$ AND Working ${\le}3.500$ AND Working ${>}2.500$ THEN High econ lv

4) IF AverageInY ≤ 0.409 AND Working ≤ 3.500 AND Working ≤ 0.500 THEN Middle econ ly

ตารางที่ 4.2 ผลการทดสอบ All Feature การแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 60:40 และแบ่ง สัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จำนวน (ครั้ง)	ประสิทธิภาพ					
	Accuracy	Precision	Recall	F-Measure	RMSE	
1	99.00	99.18	98.81	98.99	0.088	
2	99.00	99.18	98.81	98.99	0.088	
3	99.00	99.18	98.81	98.99	0.088	
4	99.00	99.18	98.81	98.99	0.088	
5	99.00	99.18	98.81	98.99	0.088	
6	99.00	99.18	98.81	98.99	0.088	
7	99.00	99.18	98.81	98.99	0.088	
8	99.00	99.18	98.81	98.99	0.088	
9	99.00	99.18	98.81	98.99	0.088	
10	99.00	99.18	98.81	98.99	0.088	
เฉลี่ย	99.00	99.18	98.81	98.99	0.088	

ภาพที่ 4.2 แสดงแผนภาพ All Feature วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 60:40 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี

10-Fold Cross Validation

จากภาพที่ 4.2 เมื่อนำแผนภาพ All Feature วิเคราะห์ปัจจัยที่ สำคัญด้วยเทคนิค Decision Tree ที่ได้นี้ไปใช้งานจะเริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 4 กฎ ดังนี้

- 1) IF AverageInY >0.409 THEN High income
- 2) IF AveragelnY ≤0.409 AND Working ≥3.500 THEN

Low econ lv

3) IF AverageInY $\leq\!0.409$ AND Working $\leq\!3.500$ AND Working >2.500 THEN High econ lv

4) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working \leq 0.500 THEN Middle econ ly

4.1.2 ผลการทดลองสร้างตัวแบบกับการแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 70:30

การสร้างตัวแบบกับชุดข้อมูล All Feature ด้วยเทคนิค Decision Tree โดย จะมีการทดลองการสร้างตัวแบบจำนวน 10 ครั้ง แล้วหาค่าเฉลี่ยของแต่ละเทคนิค ด้วยการแบ่งข้อมูล สัดส่วนร้อยละ 70:30 และ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation และ วิธี 10-Fold Cross Validation ค่า Maximal Depth 10 แสดงผลดังตารางที่ 4.3 และตารางที่ 4.4

ตารางที่ 4.3 ผลการทดสอบ All Feature การแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 70:30 และแบ่ง สัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จำนวน (ครั้ง)					
	Accuracy	Precision	Recall	F-Measure	RMSE
1	98.86	99.03	98.61	98.82	0.092
2	98.86	99.03	98.61	98.82	0.092
3	98.86	99.03	98.61	98.82	0.092
4	98.86	99.03	98.61	98.82	0.092
5	98.86	99.03	98.61	98.82	0.092
6	98.86	99.03	98.61	98.82	0.092
7	98.86	99.03	98.61	98.82	0.092
8	98.86	99.03	98.61	98.82	0.092
9	98.86	99.03	98.61	98.82	0.092
10	98.86	99.03	98.61	98.82	0.092
เฉลี่ย	98.86	99.03	98.61	98.82	0.092

ภาพที่ 4.3 แสดงแผนภาพ All Feature วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การ แบ่งข้อมูลตามค่าสัดส่วนร้อยละ 70:30 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จากภาพที่ 4.3 เมื่อนำแผนภาพ All Feature วิเคราะห์ปัจจัยที่ สำคัญด้วยเทคนิค Decision Tree ที่ได้นี้ไปใช้งานจะเริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 4 กฎ ดังนี้

- 1) IF AverageInY >0.409 THEN High income
- 2) IF AveragelnY ≤0.409 AND Working ≥3.500 THEN

Low econ lv

3) IF AverageInY $\leq\!0.409$ AND Working $\leq\!3.500$ AND Working >2.500 THEN High econ lv

4) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working \leq 0.500 THEN Middle econ ly

ตารางที่ 4.4 ผลการทดสอบ All Feature การแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 70:30 และแบ่ง สัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จำนวน (ครั้ง)	ประสิทธิภาพ					
	Accuracy	Precision	Recall	F-Measure	RMSE	
1	98.86	99.03	98.61	98.82	0.092	
2	98.86	99.03	98.61	98.82	0.092	
3	98.86	99.03	98.61	98.82	0.092	
4	98.86	99.03	98.61	98.82	0.092	
5	98.86	99.03	98.61	98.82	0.092	
6	98.86	99.03	98.61	98.82	0.092	
7	98.86	99.03	98.61	98.82	0.092	
8	98.86	99.03	98.61	98.82	0.092	
9	98.86	99.03	98.61	98.82	0.092	
10	98.86	99.03	98.61	98.82	0.092	
เฉลี่ย	98.86	99.03	98.61	98.82	0.092	

ภาพที่ 4.4 แสดงแผนภาพ All Feature วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การ แบ่งข้อมูลตามค่าสัดส่วนร้อยละ 70:30 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จากภาพที่ 4.4 เมื่อนำแผนภาพ All Feature วิเคราะห์ปัจจัยที่ สำคัญด้วยเทคนิค Decision Tree ที่ได้นี้ไปใช้งานจะเริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 4 กฎ ดังนี้

- 1) IF AverageInY >0.409 THEN High income
- 2) IF AverageInY ≤0.409 AND Working ≥3.500 THEN

Low econ ly

3) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working >2.500 THEN High econ ly

4) IF AveragelnY ≤0.409 AND Working ≤3.500 AND

Working ≤0.500 THEN Middle econ lv

4.1.3 ผลการทดลองสร้างตัวแบบกับการแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 80:20

การสร้างตัวแบบกับชุดข้อมูล All Feature ด้วยเทคนิค Decision Tree โดย จะมีการทดลองการสร้างตัวแบบจำนวน 10 ครั้ง แล้วหาค่าเฉลี่ยของแต่ละเทคนิคด้วยการแบ่งข้อมูล สัดส่วนร้อยละ 80:20 และ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation และ วิธี 10-Fold Cross Validation ค่า Maximal Depth 10 แสดงผลดังตารางที่ 4.5 และตารางที่ 4.6

ตารางที่ 4.5 ผลการทดสอบ All Feature การแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 80:20 และ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จำนวน (ครั้ง)	ประสิทธิภาพ					
	Accuracy	Precision	Recall	F-Measure	RMSE	
1	99.43	99.28	99.39	99.33	0.075	
2	99.43	99.28	99.39	99.33	0.075	
3	99.43	99.28	99.39	99.33	0.075	
4	99.43	99.28	99.39	99.33	0.075	
5	99.43	99.28	99.39	99.33	0.075	
6	99.43	99.28	99.39	99.33	0.075	
7	99.43	99.28	99.39	99.33	0.075	
8	99.43	99.28	99.39	99.33	0.075	
9	99.43	99.28	99.39	99.33	0.075	
10	99.43	99.28	99.39	99.33	0.075	
เฉลี่ย	99.43	99.28	99.39	99.33	0.075	

ภาพที่ 4.5 แสดงแผนภาพ All Feature วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การ แบ่งข้อมูลตามค่าสัดส่วนร้อยละ 80:20 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จากภาพที่ 4.5 เมื่อนำแผนภาพ All Feature วิเคราะห์ปัจจัยที่ สำคัญด้วยเทคนิค Decision Tree ที่ได้นี้ไปใช้งานจะเริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 5 กฎ ดังนี้

- 1) IF AverageInY >0.409 THEN High income
- 2) IF AverageInY ≤0.409 AND Working ≥3.500 THEN

Low econ lv

3) IF AverageInY ≤0.409 AND Working ≤3.500 AND

Working >2.500 AND Old ≤2.500 THEN Middle econ lv

4) IF AverageInY ≤0.409 AND Working ≤3.500 AND

Working >2.500 AND Old ≤2.500 THEN High income

5) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working >2.500 THEN Middle econ lv

ตารางที่ 4.6 ผลการทดสอบ All Feature การแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 80:20 และแบ่ง สัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จำนวน (ครั้ง)	ประสิทธิภาพ					
	Accuracy	Precision	Recall	F-Measure	RMSE	
1	99.43	99.28	99.39	99.33	0.075	
2	99.43	99.28	99.39	99.33	0.075	
3	99.43	99.28	99.39	99.33	0.075	
4	99.43	99.28	99.39	99.33	0.075	
5	99.43	99.28	99.39	99.33	0.075	
6	99.43	99.28	99.39	99.33	0.075	
7	99.43	99.28	99.39	99.33	0.075	
8	99.43	99.28	99.39	99.33	0.075	
9	99.43	99.28	99.39	99.33	0.075	
10	99.43	99.28	99.39	99.33	0.075	
เฉลี่ย	99.43	99.28	99.39	99.33	0.075	

ภาพที่ 4.6 แสดงแผนภาพ All Feature วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การ แบ่งข้อมูลตามค่าสัดส่วนร้อยละ 80:20 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จากภาพที่ 4.6 เมื่อนำแผนภาพ All Feature วิเคราะห์ปัจจัยที่ สำคัญด้วยเทคนิค Decision Tree ที่ได้นี้ไปใช้งานจะเริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 5 กฎ ดังนี้

- 1) IF AverageInY >0.409 THEN High income
- 2) IF AverageInY ≤0.409 AND Working ≥3.500 THEN

Low econ lv

3) IF AverageInY ≤0.409 AND Working ≤3.500 AND

Working >2.500 AND Old ≤2.500 THEN Middle econ lv

4) IF AverageInY ≤0.409 AND Working ≤3.500 AND

Working >2.500 AND Old ≤2.500 THEN High income

5) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working >2.500 THEN Middle econ lv

4.1.4 ผลการเปรียบเทียบการสร้างตัวแบบกับชุดข้อมูล All Feature

ผลการเปรียบเทียบเฉลี่ยสุดท้ายของ All Feature ด้วยเทคนิค Decision Tree การแบ่งข้อมูลสัดส่วนร้อยละ 60:40, 70:30, และ 80:20 และ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วย

วิธี 5-Fold Cross Validation และ วิธี 10-Fold Cross Validation ค่า Maximal Depth 10 จากนั้น ประเมินประสิทธิภาพด้วยค่าค่าความถูกต้อง ค่าความแม่นยำ ค่าความระลึก ค่าถ่วงดุล และค่ารากที่ สองของค่าความคลาดเคลื่อนเฉลี่ย ดังนี้

ตารางที่ 4.7 เปรียบเทียบค่าเฉลี่ยร้อยละของผลการทดลอง All Feature ด้วยเทคนิค Decision Tree แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

เปอร์เซ็นต์	ประสิทธิภาพ					
	Accuracy	Precision	Recall	F-Measure	RMSE	
60:40	99.00	99.18	98.81	98.99	0.088	
70:30	98.86	99.03	98.61	98.82	0.092	
80:20	99.43	99.28	99.39	99.33	0.075	

จากตารางที่ 4.7 นำผลการประเมินประสิทธิภาพของการวิเคราะห์ ปัจจัยด้วยค่าความถูกต้อง ค่าความแม่นยำ ค่าความระลึก ค่าถ่วงดุล และค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ย แสดงให้เห็นว่า ของผลการทดลอง All Feature ด้วยเทคนิค Decision Tree การ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation เท่ากับข้อมูลสัดส่วนร้อยละ 80:20 ค่าความถูกต้อง 99.43% ค่าความแม่นยำ 99.28% ค่าความระลึก 99.39% ค่าถ่วงดุล 99.33% และค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ยน้อยที่สุด 0.075 ดังแสดงในภาพที่ 4.7

ภาพที่ 4.7 แผนภูมิเปรียบเทียบค่าเฉลี่ยร้อยละของผลการทดลอง All Feature ด้วยเทคนิค Decision Tree การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

ภาพที่ 4.8 แผนภูมิเปรียบเทียบค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ยผลการทดลอง All Feature การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จากภาพที่ 4.8 แสดงผลการเปรียบเทียบค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ย เมื่อทำการเรียนรู้และทำการทดสอบ แบ่งข้อมูลสัดส่วนร้อยละ 80:20 ได้ค่ารากที่ สองของค่าความคลาดเคลื่อนเฉลี่ยน้อยที่สุดเท่ากับ 0.075

ตารางที่ 4.8 เปรียบเทียบค่าเฉลี่ยร้อยละของผลการทดลอง All Feature ด้วยเทคนิค Decision Tree แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

เปอร์เซ็นต์	ประสิทธิภาพ					
	Accuracy	Precision	Recall	F-Measure	RMSE	
60:40	99.00	99.18	98.81	98.99	0.088	
70:30	98.86	99.03	98.61	98.82	0.092	
80:20	99.43	99.28	99.39	99.33	0.075	

จากตารางที่ 4.8 นำผลการประเมินประสิทธิภาพของการวิเคราะห์ ปัจจัยด้วยค่าความถูกต้อง ค่าความแม่นยำ ค่าความระลึก ค่าถ่วงดุล และค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ย แสดงให้เห็นว่า ของผลการทดลอง All Feature ด้วยเทคนิค Decision Tree การ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation ที่เหมาะสมที่สุดเท่ากับการแบ่ง ข้อมูลสัดส่วนร้อยละ 80:20 ค่าความถูกต้อง 99.43% ค่าความแม่นยำ 99.28% ค่าความระลึก 99.39% ค่าถ่วงดุล 99.33% และค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ยน้อยที่สุด 0.075 ดังแสดงในภาพที่ 4.9

ภาพที่ 4.9 แผนภูมิเปรียบเทียบค่าเฉลี่ยร้อยละของผลการทดลอง All Feature ด้วยเทคนิค Decision Tree การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี

10-Fold Cross Validation

ภาพที่ 4.10 แผนภูมิเปรียบเทียบค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ย All Feature กับข้อมูล สัดส่วนร้อยละและแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จากภาพที่ 4.10 แสดงผลการเปรียบเทียบค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ย เมื่อทำการเรียนรู้และทำการทดสอบ ด้วยการแบ่งข้อมูลสัดส่วนร้อยละ 80:20 ได้ ค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ยน้อยที่สุดเท่ากับ 0.075

4.2 ผลของการสร้างตัวแบบ Decision Tree กับข้อมูลจาก Gain Ratio 4.2.1 ผลการทดลองสร้างตัวแบบกับการแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 60:40

การสร้างตัวแบบกับชุดข้อมูล Gain Ratio ด้วยเทคนิค Decision Tree โดยจะ มีการทดลองการสร้างตัวแบบจำนวน 10 ครั้ง แล้วหาค่าเฉลี่ยของแต่ละเทคนิคด้วยการแบ่งข้อมูล สัดส่วนร้อยละ 60:40 และ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation และ 10-Fold Cross Validation ค่า Maximal Depth 10 แสดงผลดังตารางที่ 4.9 และตารางที่ 4.10

ตารางที่ 4.9 ผลการทดสอบ ปัจจัยที่สำคัญด้วยเทคนิค Gain Ratio การแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 60:40 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จำนวน (ครั้ง)	ประสิทธิภาพ					
	Accuracy	Precision	Recall	F-Measure	RMSE	
1	99.62	99.63	99.71	99.67	0.062	
2	99.62	99.63	99.71	99.67	0.062	
3	99.62	99.63	99.71	99.67	0.062	
4	99.62	99.63	99.71	99.67	0.062	
5	99.62	99.63	99.71	99.67	0.062	
6	99.62	99.63	99.71	99.67	0.062	
7	99.62	99.63	99.71	99.67	0.062	
8	99.62	99.63	99.71	99.67	0.062	
9	99.62	99.63	99.71	99.67	0.062	
10	99.62	99.63	99.71	99.67	0.062	
เฉลี่ย	99.62	99.63	99.71	99.67	0.062	

ภาพที่ 4.11 แสดงแผนภาพ Gain Ratio วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 60:40 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี
5-Fold Cross Validation

จากภาพที่ 4.11 เมื่อนำแผนภาพ Decision Tree ที่ได้นี้ไปใช้งานจะ เริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 7 กฎ ดังนี้ 1) IF AverageInY >0.409 THEN High income

2) IF AverageInY ≤0.409 AND Working ≥3.500 THEN

Low econ lv

3) IF AveragelnY \leq 0.409 AND Working \leq 3.500 AND Working >2.500 THEN High econ lv

4) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND

Working ≤2.500 AND Old >0.500 THEN Middle econ lv

5) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND

Working \leq 2.500 AND Old \leq 0.500 AND Education >0.500 AND >1.500 THEN Middle econ ly

6) IF AverageInY ≤0.409 AND Working ≤3.500 AND

Working \leq 2.500 AND Old \leq 0.500 AND Education >0.500 AND \leq 1.500 THEN High econ ly

7) IF AverageInY ≤0.409 AND Working ≤3.500 AND

Working ≤2.500 AND Old ≤0.500 AND Education ≤0.500 THEN Middle econ lv

ตารางที่ 4.10 ผลการทดสอบ ปัจจัยที่สำคัญด้วยเทคนิค Gain Ratio การแบ่งข้อมูลตามค่า สัดส่วนร้อยละ 60:40 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จำนวน (ครั้ง)			ประสิทธิภาพ		
	Accuracy	Precision	Recall	F-Measure	RMSE
1	99.52	99.45	99.61	99.53	0.069
2	99.52	99.45	99.61	99.53	0.069
3	99.52	99.45	99.61	99.53	0.069
4	99.52	99.45	99.61	99.53	0.069
5	99.52	99.45	99.61	99.53	0.069
6	99.52	99.45	99.61	99.53	0.069
7	99.52	99.45	99.61	99.53	0.069
8	99.52	99.45	99.61	99.53	0.069
9	99.52	99.45	99.61	99.53	0.069
10	99.52	99.45	99.61	99.53	0.069
เฉลี่ย	99.52	99.45	99.61	99.53	0.069

ภาพที่ 4.12 แสดงแผนภาพ Gain Ratio วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การ แบ่งข้อมูลตามค่าสัดส่วนร้อยละ 60:40 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จากภาพที่ 4.12 เมื่อนำแผนภาพ Decision Tree ที่ได้นี้ไปใช้งานจะ เริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 7 กฎ ดังนี้

- 1) IF AverageInY >0.409 THEN High income
- 2) IF AverageInY ≤0.409 AND Working ≥3.500 THEN

Low econ lv

3) IF AverageInY $\leq\!0.409$ AND Working $\leq\!3.500$ AND Working >2.500 THEN High econ lv

4) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working \leq 2.500 AND Old > 0.500 THEN Middle econ ly

5) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working \leq 2.500 AND Old \leq 0.500 AND Education > 0.500 AND > 1.500 THEN Middle econ ly

6) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working \leq 2.500 AND Old \leq 0.500 AND Education > 0.500 AND \leq 1.500 THEN High econ ly

7) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working \leq 2.500 AND Old \leq 0.500 AND Education \leq 0.500 THEN Middle econ ly

4.2.2 ผลการทดลองสร้างตัวแบบกับการแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 70:30

การสร้างตัวแบบกับชุดข้อมูล Gain Ratio ด้วยเทคนิค Decision Tree โดยจะ มีการทดลองการสร้างตัวแบบจำนวน 10 ครั้ง แล้วหาค่าเฉลี่ยของแต่ละเทคนิคด้วยการแบ่งข้อมูล สัดส่วนร้อยละ 70:30 และ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation และ 10-Fold Cross Validation ค่า Maximal Depth 10 แสดงผลดังตารางที่ 4.11 และตารางที่ 4.12

ตารางที่ 4.11 ผลการทดสอบ ปัจจัยที่สำคัญด้วยเทคนิค Gain Ratio การแบ่งข้อมูลตามค่าสัดส่วน ร้อยละ 70:30 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จำนวน (ครั้ง)	ประสิทธิภาพ					
	Accuracy	Precision	Recall	F-Measure	RMSE	
1	99.43	99.53	99.49	99.51	0.067	
2	99.43	99.53	99.49	99.51	0.067	
3	99.43	99.53	99.49	99.51	0.067	
4	99.43	99.53	99.49	99.51	0.067	
5	99.43	99.53	99.49	99.51	0.067	
6	99.43	99.53	99.49	99.51	0.067	
7	99.43	99.53	99.49	99.51	0.067	
8	99.43	99.53	99.49	99.51	0.067	
9	99.43	99.53	99.49	99.51	0.067	
10	99.43	99.53	99.49	99.51	0.067	
เฉลี่ย	99.43	99.53	99.49	99.51	0.067	

ภาพที่ 4.13 แสดงแผนภาพ Gain Ratio วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การแบ่ง ข้อมูลตามค่าสัดส่วนร้อยละ 70:30 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จากภาพที่ 4.13 เมื่อนำแผนภาพ Decision Tree ที่ได้นี้ไปใช้งานจะ เริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 7 กฎ ดังนี้

1) IF AveragelnY >0.409 THEN High income

2) IF AverageInY ≤0.409 AND Working ≥3.500 THEN

Low econ lv

lν

3) IF AverageInY $\leq\!0.409$ AND Working $\leq\!3.500$ AND Working >2.500 THEN High econ lv

4) IF AverageInY ≤0.409 AND Working ≤3.500 AND

Working \leq 2.500 AND Old >0.500 THEN Middle econ lv

5) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working \leq 2.500 AND Old \leq 0.500 AND Education > 0.500 AND > 1.500 THEN Middle econ

6) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working \leq 2.500 AND Old \leq 0.500 AND Education > 0.500 AND \leq 1.500 THEN High econ ly

7) IF AverageInY ≤0.409 AND Working ≤3.500 AND

Working ≤2.500 AND Old ≤0.500 AND Education ≤0.500 THEN Middle econ lv

ตารางที่ 4.12 ผลการทดสอบ ปัจจัยที่สำคัญด้วยเทคนิค Gain Ratio การแบ่งข้อมูลตามค่าสัดส่วน ร้อยละ 70:30 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จำนวน (ครั้ง)	ประสิทธิภาพ						
	Accuracy	Precision	Recall	F-Measure	RMSE		
1	99.51	99.61	99.55	99.58	0.062		
2	99.51	99.61	99.55	99.58	0.062		
3	99.51	99.61	99.55	99.58	0.062		
4	99.51	99.61	99.55	99.58	0.062		
5	99.51	99.61	99.55	99.58	0.062		
6	99.51	99.61	99.55	99.58	0.062		
7	99.51	99.61	99.55	99.58	0.062		
8	99.51	99.61	99.55	99.58	0.062		
9	99.51	99.61	99.55	99.58	0.062		
10	99.51	99.61	99.55	99.58	0.062		
เฉลี่ย	99.51	99.61	99.55	99.58	0.062		

ภาพที่ 4.14 แสดงแผนภาพ Gain Ratio วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 70:30 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี

10-Fold Cross Validation

จากภาพที่ 4.14 เมื่อนำแผนภาพ Decision Tree ที่ได้นี้ไปใช้งานจะ เริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 7 กฎ ดังนี้

- 1) IF AverageInY >0.409 THEN High income
- 2) IF AverageInY ≤0.409 AND Working ≥3.500 THEN Low

econ lv

3) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working >2.500 THEN High econ lv

4) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working \leq 2.500 AND Old > 0.500 THEN Middle econ ly

5) IF AverageInY \leq 0.409 AND Working \leq 3.500 AND Working \leq 2.500 AND Old \leq 0.500 AND Education > 0.500 AND > 1.500 THEN Middle econ ly

6) IF AverageInY \le 0.409 AND Working \le 3.500 AND Working \le 2.500 AND Old \le 0.500 AND Education > 0.500 AND \le 1.500 THEN High econ ly 7) IF AverageInY \le 0.409 AND Working \le 3.500 AND Working \le 2.500 AND Old \le 0.500 AND Education \le 0.500 THEN Middle econ ly

4.2.3 ผลการทดลองสร้างตัวแบบกับการแบ่งข้อมูลตามค่าสัดส่วนร้อยละ 80:20

การสร้างตัวแบบกับชุดข้อมูล Gain Ratio ด้วยเทคนิค Decision Tree โดยจะ มีการทดลองการสร้างตัวแบบจำนวน 10 ครั้ง แล้วหาค่าเฉลี่ยของแต่ละเทคนิคด้วยการแบ่งข้อมูล สัดส่วนร้อยละ 80:20 และ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation และ 10-Fold Cross Validation ค่า Maximal Depth 10 แสดงผลดังตารางที่ 4.13 และตารางที่ 4.14

ตารางที่ 4.13 ผลการทดสอบ ปัจจัยที่สำคัญด้วยเทคนิค Gain Ratio กับข้อมูลารแบ่ง 80:20 และ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จำนวน (ครั้ง)	ประสิทธิภาพ				
	Accuracy	Precision	Recall	F-Measure	RMSE
1	99.50	99.62	99.46	99.54	0.068
2	99.50	99.62	99.46	99.54	0.068
3	99.50	99.62	99.46	99.54	0.068
4	99.50	99.62	99.46	99.54	0.068
5	99.50	99.62	99.46	99.54	0.068
6	99.50	99.62	99.46	99.54	0.068
7	99.50	99.62	99.46	99.54	0.068
8	99.50	99.62	99.46	99.54	0.068
9	99.50	99.62	99.46	99.54	0.068
10	99.50	99.62	99.46	99.54	0.068
เฉลี่ย	99.50	99.62	99.46	99.54	0.068

ภาพที่ 4.15 แสดงแผนภาพ Gain Ratio วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การ แบ่งข้อมูลตามค่าสัดส่วนร้อยละ 80:20 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จากภาพที่ 4.15 เมื่อนำแผนภาพ Decision Tree ที่ได้นี้ไปใช้งานจะ เริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 8 กฎ ดังนี้

- 1) IF AverageInY >0.409 THEN High econ lv
- 2) IF AverageInY ≤0.409 AND Working >3.500 THEN Low

econ lv

3) IF AverageInY ≤0.409 AND Working >3.500 AND

Working ≤3.500 Working >2.500 AND Old >2.500 THEN Middle econ lv

4) IF AverageInY ≤0.409 AND Working >3.500 AND

Working ≤3.500 Working >2.500 AND Old ≤ 2.500 THEN High econ lv

5) IF AveragelnY ≤0.409 AND Working >3.500 AND

Working ≤3.500 Working ≤2.500 AND Old >0.500 THEN Middle econ lv

6) IF AverageInY ≤0.409 AND Working >3.500 AND

Working \leq 3.500 Working \leq 2.500 AND Old \leq 0.500 AND Education >0.500 AND Education >1.500 THEN Middle econ ly

7) IF AverageInY ≤0.409 AND Working >3.500 AND

Working ≤3.500 Working ≤2.500 AND Old ≤0.500 AND Education >0.500 AND Education ≤1.500 THEN High econ ly

8) IF AverageInY ≤0.409 AND Working >3.500 AND

Working \leq 3.500 Working \leq 2.500 AND Old \leq 0.500 AND Education \leq 0.500 THEN Middle econ ly

ตารางที่ 4.14 ผลการทดสอบ ปัจจัยที่สำคัญด้วยเทคนิค Gain Ratio การแบ่งข้อมูลตามค่าสัดส่วน ร้อยละ 80:20 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จำนวน (ครั้ง)	ประสิทธิภาพ				
	Accuracy	Precision	Recall	F-Measure	RMSE
1	99.50	99.62	99.46	99.54	0.070
2	99.50	99.62	99.46	99.54	0.070
3	99.50	99.62	99.46	99.54	0.070
4	99.50	99.62	99.46	99.54	0.070
5	99.50	99.62	99.46	99.54	0.070
6	99.50	99.62	99.46	99.54	0.070
7	99.50	99.62	99.46	99.54	0.070
8	99.50	99.62	99.46	99.54	0.070
9	99.50	99.62	99.46	99.54	0.070
10	99.50	99.62	99.46	99.54	0.070
เฉลี่ย	99.50	99.62	99.46	99.54	0.070

ภาพที่ 4.16 แสดงแผนภาพ Gain Ratio วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Decision Tree การ แบ่งข้อมูลตามค่าสัดส่วนร้อยละ 80:20 และแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จากภาพที่ 4.16 เมื่อนำแผนภาพ Decision Tree ที่ได้นี้ไปใช้งานจะ เริ่มพิจารณาจากโหนดบนสุด (Root Node) ก่อน สามารถเขียนเป็นกฎต้นไม้ได้ 8 กฎ ดังนี้

- 1) IF AverageInY >0.409 THEN High econ lv
- 2) IF AverageInY ≤0.409 AND Working >3.500 THEN Low

econ lv

3) IF AverageInY \leq 0.409 AND Working > 3.500 AND Working \leq 3.500 Working \geq 2.500 AND Old \geq 2.500 THEN Middle econ ly

4) IF AverageInY \leq 0.409 AND Working > 3.500 AND Working \leq 3.500 Working \geq 2.500 AND Old \leq 2.500 THEN High econ ly

5) IF AverageInY \leq 0.409 AND Working > 3.500 AND Working \leq 3.500 Working \leq 2.500 AND Old > 0.500 THEN Middle econ ly

6) IF AverageInY ≤0.409 AND Working >3.500 AND Working ≤3.500 Working ≤2.500 AND Old ≤0.500 AND Education >0.500 AND Education >1.500 THEN Middle econ ly

7) IF AverageInY \le 0.409 AND Working > 3.500 AND Working \le 3.500 Working \le 2.500 AND Old \le 0.500 AND Education > 0.500 AND Education \le 1.500 THEN High econ ly

8) IF AverageInY \le 0.409 AND Working > 3.500 AND Working \le 3.500 Working \le 2.500 AND Old \le 0.500 AND Education \le 0.500 THEN Middle econ ly

4.2.4 ผลการเปรียบเทียบการสร้างตัวแบบกับชุดข้อมูล Gain Ratio

ผลการเปรียบเทียบเฉลี่ยสุดท้ายของ Gain Ratio ด้วยเทคนิค Decision Tree การแบ่งข้อมูลสัดส่วนร้อยละ 60:40, 70:30, และ 80:20 และ แบ่งสัดส่วนทดสอบประสิทธิ์ภาพ ด้วยวิธี 5-Fold Cross Validation และ 10-Fold Cross Validation จากนั้นประเมินประสิทธิภาพ ด้วยค่าค่าความถูกต้อง ค่าความแม่นยำ ค่าความระลึก ค่าถ่วงดุล และค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ย ดังนี้

ตารางที่ 4.15 เปรียบเทียบค่าเฉลี่ยร้อยละของผลการทดลอง ปัจจัยที่สำคัญของเทคนิค Gain Ratio ด้วยเทคนิค Decision Tree และทำการแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

เปอร์เซ็นต์	ประสิทธิภาพ				
	Accuracy	Precision	Recall	F-Measure	RMSE
60:40	99.62	99.63	99.71	99.67	0.062
70:30	99.43	99.53	99.49	99.51	0.067
80:20	99.50	99.62	99.46	99.54	0.068

จากตารางที่ 4.15 นำผลการประเมินประสิทธิภาพของการวิเคราะห์ ปัจจัยด้วยค่าความถูกต้อง ค่าความแม่นยำ ค่าความระลึก ค่าถ่วงดุล และค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ย แสดงให้เห็นว่า ผลการทดลองปัจจัยที่สำคัญของเทคนิค Gain Ratio ด้วยเทคนิค Decision Tree การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation เท่ากับ ข้อมูลสัดส่วนร้อยละ 60:40 ค่าความถูกต้อง 99.62% ค่าความแม่นยำเท่ากับ 99.69% ค่าความระลึก เท่ากับ 99.71% ค่าถ่วงดุลเท่ากับ 99.67% และค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ยน้อยที่สุด เท่ากับ 0.062

ภาพที่ 4.17 แผนภูมิเปรียบเทียบค่าเฉลี่ยร้อยละของผลการทดลอง Gain Ratio
ด้วยเทคนิคDecision Tree การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

ภาพที่ 4.18 แผนภูมิเปรียบเทียบค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ยกับข้อมูลการแบ่งแบบ เปอร์เซ็นต์ Gain Ratio Feature Selection การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 5-Fold Cross Validation

จากภาพที่ 4.18 แสดงผลการเปรียบเทียบค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ย เมื่อทำการเรียนรู้และทำการทดสอบ กับข้อมูลสัดส่วนร้อยละ 60:40 ได้ค่ารากที่ สองของค่าความคลาดเคลื่อนเฉลี่ยน้อยที่สุดเท่ากับ 0.062

ตารางที่ 4.16 เปรียบเทียบค่าเฉลี่ยร้อยละของผลการทดลอง ปัจจัยที่สำคัญของเทคนิค Gain Ratio ด้วยเทคนิค Decision Tree การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

เปอร์เซ็นต์	ประสิทธิภาพ				
	Accuracy	Precision	Recall	F-Measure	RMSE
60:40	99.52	99.45	99.61	99.53	0.069
70:30	99.51	99.61	99.55	99.58	0.062
80:20	99.50	99.62	99.46	99.54	0.070

จากตารางที่ 4.16 นำผลการประเมินประสิทธิภาพของการพยากรณ์ ด้วยค่าความถูกต้อง ค่าความแม่นยำ ค่าความระลึก ค่าถ่วงดุล และค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ย แสดงให้เห็นว่า ผลการทดลองปัจจัยที่สำคัญของเทคนิค Gain Ratio ด้วยเทคนิค Decision Tree การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation เท่ากับ ข้อมูลสัดส่วนร้อยละ 70:30 ค่าความถูกต้อง 99.51% ค่าความแม่นยำเท่ากับ 99.61% ค่าความระลึก เท่ากับ 99.55% ค่าถ่วงดุลเท่ากับ 99.58% และค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ยน้อยที่สุด เท่ากับ 0.062 ดังแสดงในภาพที่ 4.19

ภาพที่ 4.19 แผนภูมิเปรียบเทียบค่าเฉลี่ยร้อยละของผลการทดลอง Gain Ratio ด้วยเทคนิค Decision Tree การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

ภาพที่ 4.20 แผนภูมิเปรียบเทียบค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ยกับข้อมูลการแบ่งแบบ เปอร์เซ็นต์ Gain Ratio Feature Selection การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation

จากภาพที่ 4.20 แสดงผลการเปรียบเทียบค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ยกับข้อมูล Gain Ratio การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation พบว่าผลของการแบ่งข้อมูลสัดส่วนร้อยละ 70:30 ได้ค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ยน้อยที่สุดเท่ากับ 0.062

4.3 ผลการเปรียบเทียบประสิทธิภาพการสร้างตัวแบบ

ตารางที่ 4.17 ผลการเปรียบเทียบค่าประเมินประสิทธิภาพ

	ประสิทธิภาพ				
	Accuracy	Precision	Recall	F-Measure	RMSE
All Feature	99.43	99.28	99.39	99.33	0.075
Gain Ratio					
Feature	99.51	99.61	99.55	99.58	0.062
Selection					

จากการทดลองในงานวิจัยนี้ทำการเปรียบเทียบในการวิเคราะห์ ปัจจัยที่สำคัญของข้อมูลเศรษฐกิจครัวเรือน โดยมีการแบ่งข้อมูลสัดส่วนร้อยละ 60:40, 70:30, 80:20 โดย All Feature, Gain Ratio ผลการเปรียบเทียบในการวิเคราะห์ปัจจัยที่สำคัญ พบว่าผลลัพธ์ที่ได้ จากวิธีการวิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Gain Ratio ด้วยการแบ่งข้อมูลสัดส่วนร้อยละ 70:30 การแบ่งสัดส่วนทดสอบประสิทธิ์ภาพด้วยวิธี 10-Fold Cross Validation ได้ให้ค่าประสิทธิภาพความ ถูกต้องที่เหมาะสมที่สุดเท่ากับ 99.51% ผลการทดสอบประสิทธิภาพโดยใช้ค่าความแม่นยำอยู่ที่ 99.61% ค่าความระลึกอยู่ที่ 99.55% และค่าถ่วงดุลอยู่ที่ 99.58% พบว่าผลลัพธ์ที่ได้จากวิธีการ วิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Gain Ratio ให้ประสิทธิภาพในการวิเคราะห์ปัจจัยดีกว่า ดังแสดง ในภาพที่ 4.21

ภาพที่ 4.21 แผนภูมิเปรียบเทียบประสิทธิภาพ

นอกจากนี้ เมื่อทำการเปรียบเทียบค่ารากที่สองของค่าความ คลาดเคลื่อนเฉลี่ย พบว่า เทคนิค Gain Ratio ให้ค่าความคลาดเคลื่อนน้อยที่สุดเท่ากับ 0.062 ดัง แสดงในภาพที่ 4.22

ภาพที่ 4.22 แผนภูมิเปรียบเทียบค่ารากที่สองของค่าความคลาดเคลื่อนเฉลี่ย

ดังนั้นการวิเคราะห์ปัจจัยสำคัญที่เหมาะสมที่สุดของข้อมูลเศรษฐกิจ ครัวเรือน คือ การวิเคราะห์ปัจจัยที่สำคัญด้วยเทคนิค Gain Ratio เนื่องจากให้ประสิทธิภาพค่าความ ถูกต้อง และค่าความแม่นยำ ค่าความระลึก ค่าถ่วงดุลที่เหมาะสมที่สุด และค่าความคลาดเคลื่อนน้อย ที่สุด