

CS65K Robotics

Modelling, Planning and Control

Chapter 5: Sensors and Actuators

LECTURE 10: SENSORS AND ACTUATORS

DR. ERIC CHOU

IEEE SENIOR MEMBER

Objectives

- Move forward from Manipulator to sensor and actuators.
- •The model of a servomotor with power amplifier is derived
- •Velocity control (v) vs torque control(ω) of the electric drive system are presented
- •The effects of mechanical transmission are analyzed
- •The general scheme for control of an electric drive system is introduced

Objectives

- •The motion control problem for robot manipulators is formulated
- •The two techniques for joint space control are introduced
- The dynamic model is cast in a suitable form for decentralized control

Overview

SECTION 1

Logical Units for A Robot

Sensors

SECTION 2

Sensor

Image Processing

Type	Input	Output	Examples
Low Level Process	Image	Image	Noise removal, image sharpening
Mid-Level Process	Image	Attributes	Object recognition, Segmentation
High Level Process	Attributes	Understanding	Scene understanding, autonomous navigation

Image Vision

Voice recognition

Purpose of Sensors

- •To give robot information about itself. (Joint angle, connection status)
- •To give robot information about the environment.

Actuators

SECTION 3

Actuators

Transducers

Physical Properties

Temperature
Location
Color
Humidity
PH value
Speed
Displacement

Electrical Properties

Voltage, Currents, Resistance, Luminance

Transducers

Electromagnetic wave

Electronic Signal

Transducer

End Effectors

 In <u>robotics</u>, an end effectors are the device or tool that's connected to the end of a robot arm end enables the robot arm to perform specific task

Usually end effectors are custom engineered

End-to-End Model

SECTION 4

End-to-End Robot Model

End-to-End DSP Robot Model

End-to-End Smart Robot Model

Model of Electric Drive System

Model of Electric Drive System

From a modelling viewpoint, a permanent-magnet DC motor and a brushless DC motor provided with the commutation module and position sensor can be described by the same differential equations

Electric servomotor with amplifier

•Electric balance
$$V_a = (R_a + sL_a)I_a + V_a$$

$$V_a = (R_a + sL_a)I_a + V_g$$

$$V_g = k_v \Omega_m$$

•Mechanical balance
$$C_m = (sI_m + F_m)\Omega_m + C_l$$

$$C_m = k_t I_a$$

Power amplifier

$$\frac{V_a}{V_c} = \frac{G_v}{1 + sT_v}$$

Possibility of armature current feedback

Block scheme of an electric drive

Velocity-Controlled Generator

The choice of the regulator $C_i(s)$ of the current loop allows a velocity-controlled or torque-controlled behaviour for the electric drive, depending on the values attained by the loop gain

•
$$k_i = 0$$

•
$$F_m \ll \frac{k_v k_t}{R_a}$$

$$\Omega_{m} = \frac{\frac{1}{k_{v}}}{1 + s \frac{R_{a}I_{m}}{k_{v}k_{t}}} G_{v}V_{c}' - \frac{\frac{R_{a}}{k_{v}k_{t}}}{1 + s \frac{R_{a}I_{m}}{k_{v}k_{t}}} C_{l}$$

At steady state

$$\omega_m \approx \frac{G_v}{k_v} v_c'$$

Block scheme of an electric drive as a velocity-controlled generator

Current Protection

 Setting a protection can be solved by introducing a current limit that is not performed by a saturation on the control signal but it exploits a current feedback with a dead-zone nonlinearity on the feedback path

Block scheme of an electric drive with nonlinear current feedback

Torque-Controlled Generator

- Kk_i ≫ R_a
- $k_v\Omega/Kk_i\approx 0$

$$\Omega_m = \frac{\frac{k_t}{k_i F_m}}{1 + s \frac{I_m}{F_m}} V_c' - \frac{\frac{1}{F_m}}{1 + s \frac{I_m}{F_m}} C_l$$

At steady state

$$c_m pprox rac{k_t}{k_i} \left(v_c' - rac{k_v}{G_v} \omega_m
ight)$$

Block scheme of an electric drive as a torque-controlled generator

Electric Drive Transfer Function

Relationship between the control input and the actuator position output

$$M(s) = \frac{k_m}{s(1+sT_m)}$$

$$M(s) = \frac{k_m}{s(1+sT_m)}$$
• Velocity-controlled generator $k_m = \frac{1}{k_v}$ $T_m = \frac{R_a I_m}{k_v k_t}$
• Torque-controlled generator $k_m = \frac{k_t}{k_i F_m}$ $T_m = \frac{I_m}{F_m}$

Without current feedback, the system has a better rejection of disturbance torques in terms of both equivalent gain
$$R_a/k_vk_t\ll 1/F_m$$
 and time response $R_aI_m/k_vk_t\ll I_m/F_m$

Transmission Effect

SECTION 1

Transmission Effects

Ideal kinematic pair (no backlash) connecting the rotation axis of the servomotor with the axis of the corresponding joint

- •The inertia moment and the viscous friction coefficient of the load are reflected at the motor axis with a reduction of a factor $1/k_r^2$
- •The reaction torque is reduced by a factor $1/k_r$

$$c_{m} = I_{m}\dot{\omega}_{m} + F_{m}\omega_{m} + fr_{m}$$

$$fr = I\dot{\omega} + F\omega + c_{l}$$

$$\downarrow k_{r} = \frac{r}{r_{m}}$$

$$c_{m} = I_{eq}\dot{\omega}_{m} + F_{eq}\omega_{m} + \frac{c_{l}}{k_{r}}$$

$$I_{eq} = \left(I_{m} + \frac{I}{k_{r}^{2}}\right) \qquad F_{eq} = \left(F_{m} + \frac{F}{k_{r}^{2}}\right)$$

$$k_{r} \gg 1$$

Schematic representation of a mechanical gear

Example

Pendulum actuated via mechanical gear

$$c_m = I_m \dot{\omega}_m + F_m \omega_m + f r_m$$
 $fr = I \dot{\omega} + F \omega + m g \ell \sin \vartheta$

$$\downarrow \downarrow$$

$$c_m = I_{eq} \dot{\omega}_m + F_{eq} \omega_m + \left(\frac{m g \ell}{k_r}\right) \sin \left(\frac{\vartheta_m}{k_r}\right)$$

•For an *N*-link manipulator the nonlinear couplings between the motors of the various links will be reduced by the presence of transmissions with large reduction ratios

Pendulum actuated via mechanical gear

Position Control

SECTION 1

Position Control

General scheme of electric drive control

Velocity-controlled generator

$$\frac{R_a}{k_v k_t} \ll \frac{1}{F_m}$$

Reduction of disturbance effects on the output \implies PI control action $k_m=rac{1}{k_n}$ $T_m=rac{R_aI_m}{k_vk_t}$

ullet K_P and T_P to be keenly chosen so as to ensure stability of feedback control system and obtain a good dynamic behavior

General block scheme of electric drive control

Block scheme of position feedback control

Position and Velocity Feedback

Improvement of transient response \implies Include local feedback loop based on angular velocity measurement (tachometer feedback)

- •The PI control with parameters K_V and T_V is retained in the internal velocity loop so as to cancel the effects of disturbance on the position ϑ_m at steady state
- •The presence of two feedback loops is expected to lead to further reduction of disturbance during transients

Block scheme of position and velocity feedback control

The Motion Control Problem

Joint space control

- •First stage: inverse kinematics to transform motion requirements from the operational space into the corresponding motion in the joint space
- Second stage: a joint space control scheme is designed to allow tracking of the reference motion
- •Operational space variables are controlled open-loop: prone to structure uncertainty (construction tolerance, lack of calibration, gear, backlash, elasticity) or imprecision in the knowledge of the end-effector pose relative to an object to manipulate

Operational space control

- •Inverse kinematics embedded in the feedback control loop (greater algorithmic complexity)
- Direct action in the operational space
- Operational space variables typically measured through direct kinematics from measured joint space variables

General scheme of joint space control

General scheme of operational space control

Joint Space Control

SECTION 1

Joint Space Control

Dynamic model

$$m{B}(m{q})\ddot{m{q}} + m{C}(m{q},\dot{m{q}})\dot{m{q}} + m{F}_v\dot{m{q}} + m{g}(m{q}) = m{ au}$$

Control
$$\equiv$$
 Find $oldsymbol{ au}$: $oldsymbol{q}(t) = oldsymbol{q}_d(t)$

- ullet Mechanical transmissions $oldsymbol{K}_r oldsymbol{q} = oldsymbol{q}_m \qquad oldsymbol{ au}_m = oldsymbol{K}_r^{-1} oldsymbol{ au}$
- Electric drives

$$egin{align} oldsymbol{K}_r^{-1} oldsymbol{ au} &= oldsymbol{K}_t oldsymbol{\imath}_a \ oldsymbol{v}_a &= oldsymbol{R}_a oldsymbol{\imath}_a + oldsymbol{K}_v \dot{oldsymbol{q}}_m \ oldsymbol{v}_a &= oldsymbol{G}_v oldsymbol{v}_c \end{aligned}$$

Velocity-Controlled Manipulator

• Dynamic model of manipulator and drives $B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F\dot{q} + g(q) = u$

$$egin{aligned} m{B}(m{q})\ddot{m{q}} + m{C}(m{q},\dot{m{q}})\dot{m{q}} + m{F}\dot{m{q}} + m{g}(m{q}) &= m{u} \ m{F} &= m{F}_v + m{K}_rm{K}_tm{R}_a^{-1}m{K}_vm{K}_r \ m{u} &= m{K}_rm{K}_tm{R}_a^{-1}m{G}_vm{v}_c \ m{K}_rm{K}_tm{R}_a^{-1}m{G}_vm{v}_c &= m{ au} + m{K}_rm{K}_tm{R}_a^{-1}m{K}_vm{K}_r\dot{m{q}} \ m{\psi} \ m{ au} &= m{K}_rm{K}_tm{R}_a^{-1}(m{G}_vm{v}_c - m{K}_vm{K}_r\dot{m{q}}) \gg 1 \end{aligned}$$

- K_{T} with elements
- R_n with small elements (high-efficieency servomotors)
- **7** not too large

Decentralized control

$$G_v v_c \approx K_v K_r \dot{q}$$

Block scheme of the manipulator and drives system as a voltage-controlled system

Torque-Controlled Manipulator

•Reduction of sensitivity to parametric variations of $m{K_t}, m{K_v}, m{R_a}$

$$i_a = G_i v_c$$

Decentralized control

$$au = u = K_r K_t G_i v_c$$

Block scheme of the manipulator and drives system as a torque-controlled system

Decentralized Control

Dynamic model at motor side

$$\boldsymbol{K}_r^{-1}\boldsymbol{B}(q)\boldsymbol{K}_r^{-1}\ddot{q}_m + \boldsymbol{K}_r^{-1}\boldsymbol{C}(q,\dot{q})\boldsymbol{K}_r^{-1}\dot{q}_m + \boldsymbol{K}_r^{-1}\boldsymbol{F}_v\boldsymbol{K}_r^{-1} + \boldsymbol{K}_r^{-1}\boldsymbol{g}(q) = \boldsymbol{\tau}_m$$

Average inertias

$$m{B}(m{q}) = ar{m{B}} + \Delta m{B}(m{q}) \ m{K}_r^{-1} ar{m{B}} m{K}_r^{-1} \ddot{m{q}}_m + m{F}_m \dot{m{q}}_m + m{d} = m{ au}_m$$

Viscous friction

$$\boldsymbol{F}_m = \boldsymbol{K}_r^{-1} \boldsymbol{F}_v \boldsymbol{K}_r^{-1}$$

Disturbance

$$m{d} = m{K}_r^{-1} \Delta m{B}(m{q}) m{K}_r^{-1} \ddot{m{q}}_m + m{K}_r^{-1} m{C}(m{q}, \dot{m{q}}) m{K}_r^{-1} \dot{m{q}}_m + m{K}_r^{-1} m{g}(m{q})$$

