

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
A61N 5/06
A1 (11) International Publication Number: WO 99/64109
(43) International Publication Date: 16 December 1999 (16.12.99)

(21) International Application Number: PCT/US99/12986

(22) International Filing Date:

9 June 1999 (09.06.99)

(30) Priority Data:

09/095,323

10 June 1998 (10.06.98)

US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application

Filed on

09/095,323 (CON) 10 June 1998 (10.06.98)

(71) Applicant (for all designated States except US): BRONCUS TECHNOLOGIES, INC. [US/US]; Building A, Suite 8, 1400 N. Shoreline Boulevard, Mountain View, CA 94043 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): LAUFER, Michael, D. [US/US]; 1259 El Camino Real #221, Menlo Park, CA 94025 (US).

(74) Agent: KREBS, Robert, E.; Burns, Doane, Swecker & Mathis, L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SMOOTH MUSCLE TREATMENT APPARATUS AND METHOD

(57) Abstract

A device, and method for treating bodily conduits involves the application of radiant energy to the smooth muscle tissue of the conduit walls (12) to prevent the smooth muscle tissue from replicating. The irradiation treatment of the smooth muscle tissue causes a reduction in the amount of smooth muscle tissue over time which increases the inner diameter of the body conduit for improved fluid flow, and prevents smooth muscle spasms. The treatment is particularly useful in the lungs for treatment of asthma to prevent broncho-spasms, increase the airway diameter for improved air exchange, and reduce mucus secretions in the lungs.

MO 49/64/04

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	· SK	Slovakia
AΤ	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU -	Australia	GA	Gabon	LV	Latvia	SZ	Swaziłand
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	•	Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	11.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	LS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		-
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

-1-

SMOOTH MUSCLE TREATMENT APPARATUS AND METHOD

BACKGROUND OF THE INVENTION

5

10

15

20

25

Field of the Invention

The invention relates to a method and apparatus for treating smooth muscle in the walls of body conduits, and more particularly, the invention relates to a method for treating medical conditions by reducing the bulk of smooth muscle surrounding a body conduit with radiant energy treatment of the smooth muscle.

Brief Description of the Related Art

Asthma is a disease which involves heightened reactivity of the tracheobronchial tree to numerous stimuli causing contraction of smooth muscle surrounding the airways of the lungs. The hyperreactivity of the airways can result from abnormal tissue reactions in the airways, which may be immunologically induced, or from a biochemical or neurohumoral imbalance of other normally functioning responses. In a healthy patient, the smooth muscle surrounding the airways contracts, such as when the patient coughs, to increase the localized airflow through the airways and expel inhaled particles which enter the lungs. In a patient with asthma, the airways are hyperreactive. With these hyperreactive airways a very small amount of pollen, allergen, or other material in the air will stimulate a large amount of smooth muscle contraction or spasm. This repeated contraction of the smooth muscles exercises the muscle causing the muscle to hypertrophy and become larger. Because the tissue surrounding the smooth muscle is relatively rigid, the hypertrophied smooth muscle expands into

-2-

the airways shrinking the inner diameter of the airways for passage of air. For example, a healthy person has smooth muscle thicknesses surrounding the airways of about 0.01 mm while the smooth muscle thickness in an asthma patient may enlarge to up to about 2 or 3 mm. Correspondingly, the inner diameter of the airways may be reduced from about 2 to 3 mm for a healthy person to about 0.5 mm or less for an asthma patient. This narrowing of the airways causes the whistling or wheezing sound associated with asthma.

5

10 -

15

20

25

Asthma is also characterized by the excessive secretion of mucus by glands lining the airways. The disease is currently treated by inhalation of bronchodilating drugs to enlarge the airways and atropine and similar compounds to reduce mucus secretion. Bronchodilating drugs are typically beta agonists which react with beta receptors in the smooth muscle causing the smooth muscle to relax opening the airways. However, if the smooth muscle is already hypertrophied and enlarged the bronchodilating drugs which cause the muscle to relax do little to increase the airway inner diameter.

An additional disadvantage of the inhaled asthma drugs is that these drugs must be used repeatedly and regularly. Even with regular used of asthma drugs, patients frequently require hospitalization for more intensive therapy and sometimes die from sever bronchospasms and mucus plugging.

Accordingly, it would be desirable to provide an asthma treatment which enlarges the airways and reduces mucus plugging without the need for repetitive drug treatments.

In addition to the airways of the lungs, other body conduits such as the esophagus, ureter, urethra, and coronary arteries, are also subject to periodic spasms which cause hypertrophy of the smooth muscle around these body conduits reducing the inner diameter of the conduits.

-3-

SUMMARY OF THE INVENTION

5

10

15

20

25

The present invention relates to a device and method for treating bodily conduits by application of radiant energy to the smooth muscle tissue of the conduit walls to prevent the smooth muscle tissue from replicating. The treatment of the smooth muscle tissue causes a reduction in the amount of smooth muscle tissue over time which increases the inner diameter of the body conduit and prevents smooth muscle spasms.

In accordance with one aspect of the present invention, an apparatus for the treatment of walls of airways in a patient's lungs includes an elongated body configured to be inserted into the airways a patient's lungs, the device having a proximal end and a distal end, a light transmitting fiber extending from the proximal end to the distal end of the elongated body for transmitting light into the patient's lungs, and a source of light for delivering light to the elongated body in an intensity which, when applied to the walls of an airway causes a change in the smooth muscle tissue which prevents the smooth muscle tissue from replicating. A connector on the distal end of the elongated body connects the elongated body to the source of light. A light directing member positioned at a distal end of the elongated device diffuses or redirects the light from the light transmitting fiber in a substantially radial pattern from the distal end of the elongated device.

In accordance with an additional aspect of the present invention, a method of treating asthma to control bronchospasms includes irradiating the walls of an airway in a lung in a wavelength and intensity which causes a change in smooth muscle tissue cells and prevents the smooth muscle tissue cells from replicating, and controlling bronchospasms by reduction or elimination of smooth muscle tissue.

In accordance with a further aspect of the invention, a method of treating respiratory conditions to control mucus plugging includes irradiating the walls of an airway in a lung in a wavelength and intensity which causes a change in mucus

-4-

gland cells and prevents the mucus gland cells from replicating, and preventing mucus plugging by reduction or elimination of mucus glands.

In accordance with another aspect of the present invention, a method of treating an esophagus, an ureter, or an urethra to control spasms includes irradiating the walls of a conduit to cause a change in smooth muscle cells and prevent the smooth muscle cells from replicating.

The present invention provides advantages of a treatment for asthma or other enlargement or spasm of the smooth muscle by irradiation. The treatment enlarges airways, reduces or eliminates mucus plugging, and reduces or eliminates bronchospasm.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

25

The invention will now be described in greater detail with reference to the preferred embodiments illustrated in the accompanying drawings, in which like elements bear like reference numerals, and wherein:

- FIG. 1 is a side cross sectional view of a body conduit and an apparatus for treating the body conduit;
- FIG. 2 is a schematic side view of lungs being treated with the treatment device;
- FIG. 3 is a side cross sectional view of a distal end of a first embodiment of a treatment device according to the present invention;
 - FIG. 4 is a side cross sectional view of a distal end of a second embodiment of a treatment device according to the present invention;
 - FIG. 5 is a side cross sectional view of a distal end of a third embodiment of a treatment device according to the present invention;
 - FIG. 6 is a side cross sectional view of a fourth embodiment of a treatment device according to the present invention;
 - FIG. 7 is a cross sectional view of an airway in a healthy patient; and
 - FIG. 8 is a cross sectional view of an airway in an asthma patient.

-5-

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 illustrates a light delivery device 10 for the delivery of light to the walls 12 of a body conduit. The light delivery device 10 includes an outer catheter or sheath 16 surrounding a light transmitting fiber 18. A light directing member 20 is positioned at a distal end of the light delivery device 10 for directing the light to the conduit walls. Although the present invention will be described in detail with respect to the treatment of airways in the lungs, it should be understood that the present invention may also be used for treatment of other body conduits.

10

15

20

5

The light delivery device 10 and method according to the present invention provide a more permanent treatment for asthma than the currently used bronchodilating drugs and drugs for reducing mucus secretion. In asthma patients, the cross sectional diameter of the airways are reduced due to bulking of the smooth muscle surrounding the airways. FIG. 7 illustrates an airway 50 of a healthy individual. The airway is surrounded by smooth muscle tissue 52 which is capable of contracting to shrink the diameter of the airway. A plurality of mucus glands 54 are positioned around the airway 50 and secrete mucus into the airway. FIG. 8 illustrates an airway 60 in an asthma patient in which the smooth muscle 62 has hypertrophied increasing the thickness of the smooth muscle and reducing the inner diameter of the airway. The light delivery device 10 of the present invention is used to debulk or reduce the volume of smooth muscle 62 surrounding the airway 60 of an asthma patient and increase the airway diameter for improved air exchange.

25

The light delivery device 10 is used to irradiate the smooth muscle surrounding the airways causing the DNA of the smooth muscle cells to become cross linked. The treated smooth muscle cells with cross linked DNA are incapable of replicating. Accordingly, over time, as the smooth muscle cells die, the total thickness of smooth muscle decreases because of the inability of the cells to replicate. The programed cell death causing a reduction in the volume of tissue

-6-

is called apoptosis. This treatment does not cause an immediate effect but causes shrinking of the smooth muscle and opening of the airway over time and substantially prevents regrowth. The irradiation by the light delivery device 10 of the walls of the airway also causes a cross linking of the DNA of the mucus gland cells preventing them from replicating and reducing mucus plugging over time.

5

10

15

20

25

As shown in FIG. 2, the light delivery device 10 is an elongated device such as a catheter containing a fiber optic. The light delivery device 10 is connected by a conventional optical connection to a light source 22. The treatment of an airway with the light delivery device 10 involves placing a visualization system such as an endoscope or bronchoscope into the airways. The light delivery device 10 is then inserted through or next to the bronchoscope or endoscope while visualizing the airways. The light delivery device 10 which has been positioned with a distal end within an airway to be treated is energized so that radiant energy is emitted in a generally radially direction from a distal end of the light delivery device. The distal end of the light delivery device 10 is moved through the airway in a uniform painting like motion to expose the entire length of an airway to be treated to the light. The light delivery device 10 may be passed along the airway one or more times to achieve adequate treatment. The painting like motion used to exposed the entire length of an airway to the light may be performed by moving the entire light delivery device from the proximal end either manually or by motor.

The light used may be coherent or incoherent light in the range of infrared, visible, or ultraviolet. The light source 22 may be any known source, such as a UV laser source. Preferably the light is ultraviolet light having a wavelength of about 240-280 nm or visible light in the red visible range. The intensity of the light may vary depending on the application. The light intensity should be bright enough to penetrate any mucus present in the airway and penetrate the smooth muscle cells and mucus gland cells to cause cross linking of the cell DNA. The

-7-

light intensity may vary depending on the wavelength used, the application, the thickness of the smooth muscle, and other factors.

5

10

15

20

25

FIGS. 3 - 6 illustrate different exemplary embodiments of the distal tip of the light delivery device 10 for irradiating the airway walls. In FIG. 3, the sheath 16 includes a plurality of windows 24 which allow the light which has been redirected by the light directing member 20 to pass substantially radially out of the sheath. The light directing member 20 is fitted into the distal end of the sheath 16. The light directing member 20 is a parabolic diffusing mirror having a reflective surface 26 which is substantially parabolic in cross section. The light passes from the light source along the light transmitting fiber 18 and is reflected by the reflective surface 26 of the light directing member 20 through the windows 24. The windows 24 are preferably a plurality of light transmitting sections spaced around the distal end of the sheath. The windows 24 may be open bores extending through the sheath 16. Alternatively, the windows 24 may be formed of a transparent material which allows the light to pass out of the sheath 16.

FIG. 4 illustrates an alternative embodiment of the light delivery device in which the light directing member 20 has a conical shaped reflective surface 32. This conical shaped reflective surface may be formed at any desired angle which directs the light transmitted by the light transmitting fiber 18 radially out of the sheath 16. The use of a conical reflective surface 32 creates a light delivery pattern in which the light rays are directed in a generally coherent radial pattern which is at a generally fixed angle with respect to a longitudinal axis of the light delivery device. In contrast, the light delivery device of FIG. 3 with the parabolic reflective surface 26 directs light in a diverging radial pattern which will illuminate a larger area of the airway walls.

FIG. 5 illustrates a further alternative embodiment of the invention in which the light directing member 20 is a substantially conical member including concave reflective surfaces 36. These concave reflective surfaces 36 direct the light which passes in a generally parallel arrangement through the light

-8-

transmitting fiber 18 out of the sheath 16 in a converging or crossing pattern. In addition, in the embodiment of FIG. 5, the windows have been replaced by a transparent tip 38 of the sheath 16.

The light directing members 20 having a reflective surface as illustrated in FIGS. 3-5 may be formed in any of the known manners, such as by coating a molded member with a reflective coating, such as aluminum.

5

10

15

20

25

As an alternative to the reflective light directing members of FIGS. 3 - 5, a diffusing lens 42, such as a Teflon lens, may be positioned at the end of the light transmitting fiber 18 as illustrated schematically in FIG. 6. The diffusing lens 42 may direct the light from the light transmitting fiber 18 in a generally conical pattern as shown in FIG. 6. Alternatively, the diffusing lens 42 may direct the light in a more radially oriented pattern with the light rays being prevented from exiting the lens in a direction substantially parallel with the longitudinal axis of the light transmitting fiber 18 by a reflective or blocking member. In the embodiment of FIG. 6, the sheath 16 surrounding the light transmitting fiber 18 and the diffusing lens 42 may be eliminated entirely and the lens may be affixed directly to the end of the fiber.

According to one alternative embodiment of the invention, the light delivery device 10 can be used in conjunction with photo activatable substances such as those known as psoralens. These light activatable compounds, when activated, enhance the ability of visible light to cross link the DNA in the smooth muscle tissue and mucus glands. The psoralens may by injected intravenously. The light delivered by the light delivery device 10 is matched to the absorption spectrum of the chosen psoralens such that the light exposure activates the compound. When such light activatable substances are employed, a lower light intensity may be used achieve cross linking of the DNA than the light intensity required to achieve cross linking without the light activatable compounds.

The cross linking of the smooth muscle and mucus gland DNA according to the present invention will reduce or eliminate the smooth muscle and the

-9-

secreting glands such as mucus glands from the area of the airway which is treated by preventing the treated cells from replicating. This light treatment provides improved long term relief from asthma symptoms for some asthma sufferers. However, over time, some amount of smooth muscle or mucus gland cells which were not affected by an initial light treatment may regenerate and treatment may have to be repeated after a period of time such as one or more months or years.

5

10

15

20

Although the present treatment has been described for use in debulking enlarged smooth muscle tissue to open up the airways, it may also be used for eliminating smooth muscle altogether. The elimination of the smooth muscle tissue prevents the hyperreactive airways of an asthma patient from contracting or spasming, completely eliminating this asthma symptom.

The light delivery device 10 may also be used for treatment of other conditions by reducing the volume of smooth muscle tissue surrounding other body conduits. For example, the treatment system may be used for reducing smooth muscle and spasms of the esophagus of patients with achalasia or esophageal spasm, in coronary arteries of patients with Printzmetal's angina variant, for ureteral spasm, for urethral spasm, and irritable bowel disorders.

While the invention has been described in detail with reference to the preferred embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made and equivalents employed, without departing from the present invention.

-10-

Claims:

5

10

15

20

1. An apparatus for the treatment of walls of airways in a patient's lungs, the apparatus comprising:

an elongated body configured to be inserted into the airways of a patient's lungs, the device having a proximal end and a distal end;

a light transmitting fiber extending from the proximal end to the distal end of the elongated body for transmitting light into the patient's lungs;

a source of light for delivering light to the elongated body in an intensity which, when applied to the walls of the airway causes a change in smooth muscle tissue which prevents the smooth muscle tissue from replicating;

a connector on the distal end of the elongated body for connecting the elongated body to the source of light; and

a light directing member positioned at a distal end of the elongated device for diffusing or redirecting the light from the light transmitting fiber in a substantially radial pattern from the distal end of the elongated device.

- 2. The apparatus of Claim 1, wherein the source of light delivers light having a wavelength of about 240 nm to about 280 nm.
- 3. The apparatus of Claim 1, wherein the source of light delivers light in the red visible range.
- 4. The apparatus of Claim 1, wherein the source of light delivers light having a wavelength and intensity which, when applied to the walls of the airway crosslinks DNA in smooth muscle cells surrounding the airway and prevents the smooth muscle cells from replicating.

-11-

5. The apparatus of Claim 1, wherein the source of light delivers light having a wavelength and intensity which, when applied to the walls of an airway crosslinks DNA in mucus gland cells surrounding the airway and prevents the mucus gland cells from replicating.

5

- 6. The apparatus of Claim 1, wherein light directing member includes a substantially conical reflective surface which redirects light from the light transmitting fiber in a direction away from a longitudinal axis of the fiber.
- 7. The apparatus of Claim 6, wherein the reflective surface is concave in cross section.
 - 8. The apparatus of Claim 6, wherein the reflective surface is substantially planar in cross section.

15

- 9. The apparatus of Claim 6, wherein the reflective surface is substantially parabolic in cross section.
- 10. The apparatus of Claim 1, wherein the light directing member20 includes a diffusing lens which directs light from the transmitting fiber in a direction away from a longitudinal axis of the fiber.
 - 11. The apparatus of Claim 1, wherein the light transmitting fiber is surrounded by a sheath for delivery to the airway.

25

12. The apparatus of Claim 11, wherein the sheath includes a distal end section which is transparent.

-12-

= 13. The apparatus of Claim 11, wherein the sheath includes a distal section having a plurality of transparent windows to allow the light which has been redirected by the light directing member to exit the sheath.

14. An apparatus for the treatment of walls of an esophagus, the apparatus comprising:

5

10

15

25

an elongated body configured to be inserted into the esophagus, the device having a proximal end and a distal end;

a light transmitting fiber extending from the proximal end to the distal end of the elongated body for transmitting light into the esophagus;

a source of light for delivering light to the elongated body in an intensity which, when applied to the walls of the esophagus causes a change in smooth muscle tissue which prevents the smooth muscle tissue from replicating;

a connector on the distal end of the elongated body for connecting the elongated body to the source of light; and

a light directing member positioned at a distal end of the elongated device for diffusing or redirecting the light from the light transmitting fiber in a substantially radial pattern from the distal end of the elongated device.

20 15. An apparatus for treatment of walls of a ureter or urethra, the apparatus comprising:

an elongated body configured to be inserted into the ureter or urethra, the device having a proximal end and a distal end;

a light transmitting fiber extending from the proximal end to the distal end of the elongated body for transmitting light into the ureter or urethra;

a source of light for delivering light to the elongated body in an intensity which, when applied to the walls of the ureter or urethra causes a change in smooth muscle tissue which prevents the smooth muscle tissue from replicating;

-13-

a connector on the distal end of the elongated body for connecting the elongated body to the source of light; and

a light directing member positioned at a distal end of the elongated device for diffusing or redirecting the light from the light transmitting fiber in a substantially radial pattern from the distal end of the elongated device.

16. A method of treating asthma to control bronchospasms, the method comprising:

irradiating the walls of an airway in a lung in a wavelength and intensity which causes a change in smooth muscle tissue cells and prevents the smooth muscle tissue cells from replicating; and

5

5

controlling bronchospasms by reduction or elimination of smooth muscle tissue.

- 17. The method of Claim 16, wherein the light applied to the walls of the airway has a wavelength of about 240 nm to about 280 nm.
 - 18. The method of Claim 16, wherein the light applied to the walls of the airway is in the red visible range.
- 15 19. The method of Claim 16, wherein the light is applied to the walls by moving a light delivery device along the airway.
 - 20. A method of treating respiratory conditions to control mucus plugging, the method comprising:

irradiating the walls of an airway in a lung in a wavelength and intensity which causes a change in mucus gland cells and prevents the mucus gland cells from replicating; and

-14-

preventing mucus plugging by reduction or elimination of mucus glands.

- 21. The method of Claim 20, wherein the light applied to the walls of the airway has a wavelength of about 240 nm to about 280 nm.
- The method of Claim 20, wherein the light applied to the walls ofthe airway is in the red visible range.
 - 23. The method of Claim 20, wherein the light is applied to the walls by moving a light delivery device along the airway.
- 10 24. A method of treating an esophagus to reduce achalasia or esophageal spasm, the method comprising:

irradiating the walls of an esophagus in a wavelength and intensity which causes a change in smooth muscle cells and prevents the smooth muscle cells from replicating; and

preventing spasms of the smooth muscle tissue by elimination or reduction of the smooth muscle tissue.

20

- 25. The method of Claim 24, wherein the light applied to the walls of the esophagus has a wavelength of about 240 nm to about 280 nm.
- 26. The method of Claim 24, wherein the light applied to the walls of the esophagus is in the red visible range.
- 27. A method of treating an ureter or an urethra to control spasms, the method comprising:

-15-

irradiating the walls of an ureter or an urethra in a wavelength and intensity which causes a change in smooth muscle cells and prevents the smooth muscle cells from replicating; and

preventing spasms of smooth muscle tissue by elimination or reduction of the smooth muscle tissue.

5

5

- 28. The method of Claim 27, wherein the light applied to the walls of the ureter or urethra has a wavelength of about 240 nm to about 280 nm.
- 29. The method of Claim 27, wherein the light applied to the walls of the ureter or urethra is in the red visible range.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

3/4

FIG._9

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.

	PCT/USS	99/12986							
A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :A61N 5/06 US CL :606/7, 18; 607/89 According to International Patent Classification (IPC) or to both national classification and IPC									
B. FIELDS SEARCHED									
Minimum documentation searched (classification system followed by classification symbols)									
U.S.: 606/3, 7, 10, 14-18; 607/88, 89, 92									
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)									
C. DOCUMENTS CONSIDERED TO BE RELEVANT									
Category* Citation of document, with indication, where	s Relevant to claim No.								
X US 5,019,075 A (SPEARS et al.) 2	US 5,019,075 A (SPEARS et al.) 28 May 1991, entire document.								
	,	6-10, 13, 16, 18- 20, 22-24, 26, 27, 29							
X US 5,053,033 A (CLARKE) 01 Oc	US 5,053,033 A (CLARKE) 01 October 1991, entire document.								
Y	4	6-10, 12, 13, 16, 17, 19-21, 23-25, 27, 28							
	•								
Further documents are listed in the continuation of Box C. See patent family annex.									
 Special categories of cited documents: A document defining the general state of the art which is not consider. 	date and not in conflict with	r the international filing date or priority the application but cited to understand lying the invantion							
to be of particular relevance "E" earlier document published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which	considered novel or cannot be	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken slone							
cited to establish the publication date of another citation or oth special reason (as specified)	er "Y" document of particular relev.	*Y* document of particular relevance; the claimed invention cannot be							
"O" document referring to an oral disclosure, use, exhibition or oth means	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art								
"P" document published prior to the international filing date but later the the priority date claimed									
Date of the actual completion of the international search 27 AUGUST 1999	Date of mailing of the international search report SEP 1999								
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Audionized officer Audionized officer									
Washington, D.C. 20231 Facsimile No. (703) 305-3230	Telephone No. (703) 308[-22	DAVID M. SHAY							
	1 ciching 120. (103) 308[-22								