C++11 BLWS (Appendix)

- 1. Major Topics Not Covered
- 2. Installing Boost
- 3. Online Compile Services

The above topics will only be covered shortly if there is special request.

Major Topics Not Covered

- 1. C compatibility
- 2. I18n and L18n
- 3. Complex Numbers
- 4. Global Numeric Functions
- 5. Valarray
- 6. Allocators

This section is provided to be filled with optional print-outs from the Boost Documentation.

C compatibility

It is usually easy to access libraries written in C from C++.

The other way round can be much harder!

The first step when trying to make a large C code base available in C++ should be the necessary clean-up so that the code compiles with both, a C and a C++ compiler.

I18n and L18n

Internationalisation and Localisation quickly turn into a huge topic, but with respect to learning C++ - it is a more peripheral aspect of the language and library.

> For the relation to standard library functions see: http://en.cppreference.com/w/cpp/locale

Besides detailed control over formatting of numeric data also message catalogues are supported.*

Note that there are (still) no such things like standard message catalogues*

Also note with respect to character set conversion support is very basic and for heavily working with text-oriented applications to support foreign languages often the ICU Library is among the recommended solutions.

^{*:} Similar to what is available with GNU gettext or POSIX catgets.

Complex Numbers

Complex Numbers are available in C++ via the std::complex-template. Implementations need (only) to support specialisations for float, double, and long double.

For more information see: http://en.cppreference.com/w/cpp/numeric/complex

Common Mathematical Functions

The <cmath> header covers many standard numeric functions, *sine* and cosine among them as well as rounding and truncating conversions and more.

> For more information see: http://en.cppreference.com/w/cpp/numeric/math

Valarray

The std::valarray template was introduced in C++98 to support operations on array storage that models the mathematical of a vector. It did not gain too much (widespread) use, maybe due to the fact that there are some other popular alternatives freely available.

For more information see: http://en.cppreference.com/w/cpp/numeric/valarray

Allocators

Allocators are not exactly a class (in the meaning of something put into a library and providing a certain service) but rather a customization point for the standard library containers.

For more information see: http://en.cppreference.com/w/cpp/concept/Allocator

Installing Boost

- 1. How to get Boost
- 2. Extracting Subsets
- 3. Configuring Boost

This section is provided to be filled with optional print-outs from the Boost Documentation.

How to get Boost

There are several ways to get Boost or parts of it:

For getting **all of** Boost start at http://www.boost.org/users/download/

- in pre-compiled form
 - for MS-Windows (look it up here)
 - for (various) Linux Variants (try locate it with your package manager)
- as source code (to build yourself)
 - for MS-Windows follow instructions here
 - o for "Unix-like" Systems (of course including Linux) follow instructions here

Extracting Subsets

As many Boost (Sub-) Libraries are "Header File Only" it can may sense to just copy the header(s) you need and store them in a directory that then gets added to the compiler search path for #include-d files.

> The major obstacle in this case are dependencies that some parts of Boost may have to other parts.

The task gets easier with the BCP utility:

- It is most easily used to simply extract header files and their dependencies.
- Besides that it can also extract source code and build tools.*

For more information see: http://www.boost.org/doc/... .../libs/release/tools/bcp/doc/html/index.html

^{*:} When applied to parts of Boost that aren't "Header File Only".

Configuring Boost

For the parts of boost that needs building (and for some header files that are systematically created) there are build options for fine-grained control of

- what is built and
- how it is built

More detailed instructions are provided in the "Getting Started" sections for Unix Variants and MicroSoft-Windows.

Online Compile Services

- 1. Coliru (Compile Link Run)
- 2. run code
- 3. Coding Ground
- 4. codepad
- 5. ideone
- 6. Webcompiler visual c++
- 7. Interactive Compile C++
- 8. Cloud9 IDE

Coliru - http://coliru.stacked-crooked.com/

Compilers / Libraries

• GCC: 6.2.0 (and many older versions too) • Clang: 3.8.0 (and some older versions too)

• Boost: 1.61

User Interface

- Text area with syntax highlighting
- Command line to specify compile command*

Persistence / Collaboration

• Persistent links for sharing code

Special Features

^{*: (}Static) standard input is possible via here-script.

run code - http://rextester.com/runcode

Compilers / Libraries

• GCC: 4.9.3 • Clang: 3.7.1

• Microsoft: 19.00.23506

• Boost: 1.54

User Interface

Text area with syntax highlighting and choice of editor

• Prepared compile commands to select from drop-down menu

Persistence / Collaboration

• "Wall" to share code, Links for distribution

Coding Ground https://www.tutorialspoint.com/compile_cpp_online.php

Compilers / Libraries

• GCC: 5.3.1 • Clang: no Microsoft no • Boost: no

User Interface

• Like a "Mini IDE"

Persistence / Collaboration

• Short URL can be created to distribute

codepad - http://codepad.org/

Compilers / Libraries

• GCC: ? • Clang: ? • Microsoft: ? • Boost: ?

User Interface

• Not intuitive of buggy (cannot modify code after first submit)

Persistence / Collaboration

TBD

ideone - http://ideone.com/

Compilers / Libraries

• GCC: 5.1 • Clang: ? • Microsoft: ? • Boost: 1.55

User Interface

• Single file in textarea window with syntax highlighting

Persistence / Collaboration

• TBD

visual C++ - http://webcompiler.cloudapp.net/

Compilers / Libraries

• Microsoft: 19.10.24631.0

• Boost: ?

User Interface

- Single file in textarea window with syntax highlighting
- Compile flags can be added
- No interactive or prepared input, but command line arguments

Persistence / Collaboration

TBD

Special Features

Automatically forwarded from prior *Visual C++ @ rise4fun from Microsoft*.

(CC) BY-SA: Dipl.-Ing. Martin W eitzel im Auftrag von MicroConsult Training & Consult ing GmbH MICROCONSULT

Compiler Explorer - http://gcc.godbolt.org/

Compilers / Libraries

- \bullet Rich set of compilers/versions GCC based, Clang based, ICC, \dots
- Targeting different hardware architectures Intel, ARM, ...
- Command line options can be specified freely ...

User Interface

- One window shows source, the other one assembler output.
- Correspondence between C++ and assembler source may optionaly be elucidated through colorizing.

Persistence / Collaboration

• Local Browser Store

Special Features

Does **not** compile to run an executable but to show assembler code!

(CC) BY-SA: Dipl.-Ing. Martin W eitzel im Auftrag von MicroConsult Training & Consult ing GmbH MICROCONSULT

Cloud9 IDE - https://c9.io/

Compilers / Libraries

• TBD

User Interface

• TBD

Persistence / Collaboration

• TBD

Special Features

Not just an online compiler but a complete cloud-based IDE.