

Notes: These are rough notes for the Math 1113

Precalculus course at the University of Georgia

Precalculus

University of Georgia, Spring 2021

D. Zack Garza

D. Zack Garza University of Georgia dzackgarza@gmail.com

Last updated: 2021-04-18

Table of Contents

Contents

Ta	Table of Contents	2
1	I Preface	3
2	2 Unit 1: Functions	3
3	3 Unit 2: Exponential and Logarithmic Functions	5
4	1 Unit 3: Trigonometric Functions	5
	4.1 General Notes	5
	4.2 Common Mistakes	 5
	4.3 Basic Trigonometric Functions	5
	4.4 Proportionality Relationships	6
	4.5 Trigonometric Functions as Ratios	7
	4.6 Polar Coordinates	8
	4.7 Special Angles	9
	4.8 Reference Angles and the Flipping Method	10
	4.9 Identities Using Pythagoras	10
	4.10 Even/Odd Properties	11
	4.11 Wave Function	12
	4.12 Inverse Functions	15
	4.13 Simplifying Identities	22
	4.14 Double/Half-Angle Identities	23
	4.15 Bonus: Complex Exponentials	26
To	ToDos	26
D	Definitions	27
TI	Theorems	28
E>	Exercises	29
Fi	Figures	30

Table of Contents

1 | Preface

2 | Unit 1: Functions

Theorem 2.0.1 (The Pythagorean Theorem).

If a, b are the legs of a right triangle with hypotenuse c, there is a relation

$$a^2 + b^2 = c^2$$
.

Theorem 2.0.2 (The Distance Formula).

If $p = (x_1, y_1)$ and $q = (x_2, y_2)$ are points in the Cartesian plane, then there is a **distance** function

 $d: \{ \text{Pairs of points } (p,q) \} \to \mathbb{R}$

$$(p,q) \mapsto d(p,q) := \sqrt{(x_2 - x_1)^2 + (y_2 - y_q)^2}.$$

Law of cosines

Definition 2.0.3 (Linear Functions)

A function $f: \mathbb{R} \to \mathbb{R}$ is **linear** if and only if f has a formula of the following form:

$$f(x) = \alpha x + \beta$$

$$\alpha, \beta \in \mathbb{R}$$
.

Definition 2.0.4 (Intercepts)

Given a function $f : \mathbb{R} \to \mathbb{R}$, an x-intercept of f is a point $(x_0, 0)$ on the graph of f, so $f(x_0) = 0$. Equivalently, it is a point on the intersection of the graph and the x-axis.

A y-intercept of f is a point $(0, y_0)$ on the graph of f, so $f(0) = y_0$. Equivalently, it is a point on the intersection of the graph and the y-axis.

Definition 2.0.5 (Relation)

A **relation** on two sets X and Y is a set of ordered pairs $(x, y) \in X \times Y$, so R can be described as a set:

$$R = \{(x_0, y_0), (x_1, y_2), \cdots\}.$$

The **domain** of the relation is the set of all $x \in X$ that occur in the first slot of these pairs, and the **range** is the set of all $y \in Y$ that occur in the second slot.

Definition 2.0.6 (Function)

A relation R is a function if it satisfies the following deterministic property: for every $x_0 \in$

Preface 3

dom(R), there is exactly one pair of the form $(x_0, y_0) \in R$.

Remark 2.0.7: This says we can think of X as "inputs" and Y as "output", and a function is a way to unambiguously assign inputs to outputs. It can be useful to think of functions like programs: if I send in an x, what y should the program return to me? If I run this program today, tomorrow, and 100 years from now, sending in the same x every time, we might want it to give the same output every time, which is the *deterministic* property: I can *determine* a single unique output if I know what the input is. If my program tells me that 2+2=4 today but 2+2=5 tomorrow, who knows what it will return in 100 years! We can't "determine" it.

Slogan 2.0.8

For domains and ranges:

- Domains: the set of meaningful inputs that the function "knows" how to handle.
- Ranges: the set of attainable outputs that we can expect.

Remark 2.0.9: To determine a domain:

- 1. Naively hope it is *all* of \mathbb{R} .
- 2. Throw out "problematic" points.
- 3. Draw a number line and write out what you are left with in interval notation.

Example 2.0.10(?): Define

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{1}{x}.$$

Then $dom(f) = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ and $range(f) = \mathbb{R}$.

Example 2.0.11(?): Define

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sqrt{x}.$$

Then $dom(f) = \mathbb{R} \setminus (-\infty, 0) = [0, \infty)$ and $range(f) = [0, \infty)$.

3 | Unit 2: Exponential and Logarithmic Functions

4 Unit 3: Trigonometric Functions

4.1 General Notes

 \sim

- $\bullet\,$ In this section, always draw a picture! Virtually 100% of the time.
 - In particular, a unit circle should almost always show up.
- Use exact ratios wherever possible.
- There are too many details and formulas to just memorize in this unit: focus on the **processes**.

\sim 4.2 Common Mistakes \sim

Some facts to remember:

Sin/cos/etc as ratios

• $\sin^{-1}(\theta) \neq 1/\sin(\theta)$. Mnemonic: reciprocals of trigonometric functions already have a better name, here $\csc(\theta)$.

\sim 4.3 Basic Trigonometric Functions \sim

4.4 Proportionality Relationships ~

Remark 4.4.2: In geometric terms, an angle in radians in the ratio of the arc length $s(\theta, R)$ to the radius R, so

$$\theta_R = \frac{s(\theta, R)}{R}.$$

$\textbf{Definition 4.4.3} \ (\textbf{Coterminal Angles})$

If θ is an abstract angle, we will say $\theta + k \operatorname{rev} \simeq \theta$ for any integer $k \in \mathbb{Z}$. Any such angle is said to be **coterminal** to θ .

Remark 4.4.4: In radians:

$$\theta_R \simeq \theta_R + k \cdot 2\pi$$

$$k \in \mathbb{Z}$$
.

In degrees:

$$\theta_D \simeq \theta_D + k \cdot 360^{\circ}$$

$$k \in \mathbb{Z}$$
.

Proposition 4.4.5 (Degrees are related to radians).

tode

$$\frac{\theta}{1 \, \mathrm{rev}} = \frac{\theta_R}{2\pi \, \mathrm{rad}} = \frac{\theta_D}{360^{\circ}}.$$

Proposition 4.4.6 (Arc length and sector area are related to radians).

todo

$$\frac{\theta}{1 \text{ rev}} = \frac{s(R, \theta)}{2\pi R} = \frac{A(R, \theta)}{\pi R^2}.$$

This implies that

$$A(R,\theta) = \frac{R^2\theta}{2}$$
$$s(R,\theta) = R\theta.$$

4.5 Trigonometric Functions as Ratios

Definition 4.5.1 (?)

There are 6 trigonometric functions defined by the following ratios:

soh-cah-toa, cho-sha-cao

Function	Domain	Range
\sin	$\mathbb R$	[-1, 1]
cos	\mathbb{R}	[-1, 1]
tan	$\mathbb{R} \setminus \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \cdots \right\}$ $\mathbb{R} \setminus \{0, \pm \pi, \pm 2\pi, \cdots \}$?
csc	$\mathbb{R}\setminus\{0,\pm\pi,\pm2\pi,\cdots\}$?

sec
$$\mathbb{R} \setminus \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \cdots \right\}$$
? cot $\mathbb{R} \setminus \{0, \pm \pi, \pm 2\pi, \cdots\}$?

Proposition 4.5.2 (Domains of trigonometric functions).

4.6 Polar Coordinates

Definition 4.6.1 (Unit Circle)

The unit circle is defined as

$$S^1 := \left\{ \mathbf{p} = (x, y) \in \mathbb{R}^2 \mid d(\mathbf{p}, \mathbf{0}) = 1 \right\} = \left\{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \right\},$$

the set of all points in the plane that are distance exactly 1 from the origin.

Theorem 4.6.2 (Polar Coordinates).

If a vector \mathbf{v} has at an angle of θ in radians and has length R, the corresponding point \mathbf{p} at the end of \mathbf{v} is given by

$$\mathbf{p} = [x, y] = [R\cos(\theta), R\sin(\theta)].$$

Conversely, if (x, y) are known, then the corresponding R and θ are given by

$$[R, \theta] = \left[\sqrt{x^2 + y^2}, \arctan\left(\frac{y}{x}\right)\right].$$

Corollary 4.6.3 (Polar Coordinates on S^1).

If R = 1, so **v** is on the unit circle S^1 , then

$$[x, y] = [\cos(\theta), \sin(\theta)].$$

Remark 4.6.4: This is a very important fact! The x, y coordinates on the unit circle *literally* corresponding to cosines and sines of subtended angles will be used frequently.

Slogan 4.6.5

Cosines are like x coordinates, sines are like y coordinates.

Example 4.6.6(?): Given $\theta_R = 4\pi/3$, what is the corresponding point on the unit circle S^1 ?

⚠ Warning 4.6.7

Note that $\sin(\theta), \cos(\theta)$ work for any θ at all. However, $\cos(\theta) = 0$ sometimes, so $\tan(\theta) := \sin(\theta)/\cos(\theta)$ will on occasion be problematic. Similar story for the other functions.

4.6 Polar Coordinates 8

4.7 Special Angles

For reference: the unit circle.

Remark 4.7.1: Idea: we want to partition the circle simultaneously

- Into 8 pieces, so we increment by $2\pi/8 = \pi/4$
- Into 12 pieces, so we increment by $2\pi/12 = \pi/6$.

Proposition 4.7.2 (Trick to memorize special angles).

Table of special angles, increasing/decreasing

4.7 Special Angles

4.8 Reference Angles and the Flipping Method

Definition 4.8.1 (Reference Angle)

Given a vector at of length R and angle θ , the **reference angle** θ_{Ref} is the acute angle in the triangle formed by dropping a perpendicular to the nearest horizontal axis.

Proposition 4.8.2(?).

Reference angles for each quadrant:

 $\begin{array}{ll} \text{Quadrant II:} & \theta + \theta_{\text{Ref}} = \pi \\ \text{Quadrant III:} & \pi + \theta_{\text{Ref}} = \theta \\ \text{Quadrant IV:} & \theta + \theta_{\text{Ref}} = 2\pi. \end{array}$

Example 4.8.3(?): Given $\sin(\theta) = 7/25$, what are the five remaining trigonometric functions of θ ?

Method:

- 1. Draw a picture! Embed θ into a right triangle.
- 2. Find the missing side using the Pythagorean theorem.
- 3. Use definition of trigonometric functions are ratios.

Remark 4.8.4: Note that you can not necessarily find the angle θ here, but we didn't need it. If we *did* want θ , we would need an inverse function to free the argument:

$$\sin(\theta) = 7/25$$

$$\implies \arcsin(\sin(\theta)) = \arcsin(7/25)$$

$$\implies \theta = \arcsin(7/25)$$

4.9 Identities Using Pythagoras

Proposition 4.9.1(?).

$$(\sin(\theta))^2 + (\cos(\theta))^2 = 1$$
$$1 + (\cot(\theta))^2 = (\csc(\theta))^2$$
$$(\tan(\theta))^2 + 1 = (\sec(\theta))^2.$$

Proof (?).

Derive first from Pythagorean theorem in S^1 . Obtain the second by dividing through by $(\sin(\theta))^2$. Obtain the third by dividing through by $(\cos(\theta))^2$.

4.10 Even/Odd Properties

~

Question 4.10.1

Thinking of $cos(\theta)$ as a function of θ , is it

- Even?
- Odd?
- Neither?

Remark 4.10.2: Why do we care? The Fundamental Theorem of Calculus.

Figure 2: image_2021-04-18-22-39-08

Proposition 4.10.3 (?).

- $f(\theta) := \cos(\theta)$ is an even function.
- $g(\theta) := \sin(\theta)$ is an odd function.

Proof (?).

Plot vectors for θ , $-\theta$ on S^1 and flip over the x-axis.

Corollary 4.10.4(?).

- $\cos(t)$, $\sec(t)$ are even.
- $\sin(t)$, $\csc(t)$, $\tan(t)$, $\cot(t)$ are odd.

4.11 Wave Function

Remark 4.11.1: Motivation: let a vector run around the unit circle, where we think of θ as a time parameter. What are its x and y coordinates? What happens if we plot x(t) in a new θ plane?

Definition 4.11.2 (Standard Form of a Wave Function)

The standard form of a wave function is given by

$$f(t) := A\cos(\omega(t-\varphi)) + \delta,$$

where

- A is the amplitude,
- ω is the **frequency**,
- φ is the **phase shift**, and
- δ is the **vertical shift**.
- $P := 2\pi/\omega$ is the **period**, so f(t + kP) = f(t) for all $k \in \mathbb{Z}$.

Insert plot

Remark 4.11.3: Note that this is nothing more than a usual cosine wave, just translated/dilated in the x direction and the y direction.

⚠ Warning 4.11.4

Don't memorize equations like $y = \sin(Bt + C)$ and e.g. the phase shift if $\varphi = -C/B$. Instead, use a process: always put your equation in standard form, then you can just read off the parameters. For example:

$$f(t) = \cos(Bt + C)$$

$$= \cos(B(t + \frac{C}{B}))$$

$$= \cos(\omega(t - \varphi))$$

$$\implies B = \omega, \varphi = -\frac{C}{B}.$$

4.11 Wave Function 12

Example 4.11.5(?): Put the following wave in standard form:

$$f(t) := 4\cos(3t+2)$$
.

Example 4.11.6(?): Put the following wave in standard form:

$$f(t) := \alpha \cos(\beta t + \gamma).$$

Proposition 4.11.7(?).

How to plot the graph of a wave equation:

- 1. Put in standard form.
- 2. Read off the parameters to build a rectangular box of width P and height 2|A| about the line $y = \delta$.
- 3. Break the box into 4 pieces using the key points $t = \varphi + \frac{k}{4}P$ for k = 0, 1, 2, 3, 4.

Example 4.11.8 (*Plotting*): Plot the following function in the t plane:

$$f(t) = 2\cos\left(5t - \frac{\pi}{2}\right) + 7.$$

Example 4.11.9(?): Plot the following:

$$f(t) = -2\sin(3t - 7).$$

Proposition 4.11.10 (Determining the equation of a sine wave).

Given a picture of a graph of a sine wave,

- 1. Draw a horizontal line cutting the wave in half. This will be δ .
- 2. Measure the distance from this midline to a peak. This will be |A|.
- 3. Restrict to one full period, starting either at a peak (if you want to match cos(t)) or a zero (if you want to match sin(t)). Pick the period starting as close as possible to the y-axis.
- 4. Measure the period P and reverse-engineer it to get ω : $P = 2\pi/\omega \implies \omega = 2\pi/P$.
- 5. Measure the distance from the starting point to the y-axis: this is φ .

Example 4.11.11(?): Determine the equation of the following wave function:

4.11 Wave Function 13

Figure 3: $image_2021-04-18-20-51-34$

Solution:

$$f(t) = 2\sin\left(4t + \frac{\pi}{6}\right).$$

Remark 4.11.12: Note that we can graph other trigonometric functions: they get pretty wild though.

4.11 Wave Function 14

• Tangent:

4.12 Inverse Functions

Remark 4.12.1: Motivation: we want a way to solve equations where the unknown θ is stuck in the argument of a trigonometric function. For example, for $\sin : \mathbb{R}_A \to \mathbb{R}_B$, this would be some function $f : \mathbb{R}_B \to \mathbb{R}_A$ such that

$$f(\sin(\theta)) = id(\theta) = \theta$$

$$\sin(f(y)) = \mathrm{id}(y) = y.$$

Figure 4: $image_2021-04-18-22-24-55$

Note that we only ever have to define f on range(sin), since we're only ever sending outputs of f in as the inputs of sin. So we need range(sin) \subset dom(f), noting that range(sin) = [-1,1]:

Similarly, we need range $(f) \subset dom(sin)$.

Remark 4.12.2: The setup: try swapping y and θ in the graph of $y = \sin(\theta)$:

Figure 5: image_2021-04-18-22-32-36

Note that the latter is a function (vertical line test) iff the former is injective (horizontal line test). So we take the largest branch where the inverse is a function:

Figure 6: $image_2021-04-18-22-33-27$

Back on our original graph, this looks like the following:

Figure 7: $image_2021-04-18-20-53-25$

Restricting, we get

- dom(arccos) := range(cos) = [-1, 1].
- range(arccos) := dom(cos) = $[0, \pi]$.

Remark 4.12.3: A similar analysis works for $sin(\theta)$:

Restricting, we get

- dom(arcsin) := range(sin) = [-1, 1].
- range(arcsin) := dom(sin) = $[-\pi/2, \pi/2]$.

Remark 4.12.4: This gives us a new tool to solve equations:

$$\vdots = \vdots$$

$$\implies \cos(x) = b$$

$$\implies \arccos(\cos(x)) = \arccos(b)$$

$$\implies x = \arccos(b),$$

but only if we know this makes sense based on domain/range issues.

Proposition 4.12.5 (Domains of inverse trigonometric functions).

Restrict domains in the following ways:

• sin: $[-\pi/2, \pi/2]$

• $\cos : [0, \pi]$

• $\tan : [-\pi/2, \pi/2]$

Function	Domain	Range
arcsin	[-1,1]	$[-\pi/2,\pi/2]$
arccos	[-1,1]	$[0,\pi]$
arctan	\mathbb{R}	$(-\pi/2,\pi/2)$
arccsc	$\mathbb{R}\setminus\{0,\pm\pi,\pm2\pi,\cdots\}$?
arcsec	$\mathbb{R}\setminus\left\{\pmrac{\pi}{2},\pmrac{3\pi}{2},\cdots ight\}$?
arccot	$\mathbb{R}\setminus\{0,\pm\pi,\pm2\pi,\cdots\}$?

Example 4.12.6(?): We have some exact values.

Sines should be in QI or QIV:

- $\arcsin(1/2) = \pi/6$
- $\arcsin(\sqrt{3}/2) = \pi/3$
- $\arcsin(-1/2) = -\pi/6$

Cosines should be in QI or QII:

- $\arccos(\sqrt{3}/2) = \pi/6$
- $\arccos(-\sqrt{2}/2) = 3\pi/4$
- $\arccos(1/2) = \pi/3$

Tangents should be in QI or QIV:

- $\arctan(\sqrt{3}/3) = \pi/6$
- $\arctan(0) = 0$
- $\arctan(1) = \pi/4$

⚠ Warning 4.12.7

Note that if f, g are an inverse pair, we have

$$f \circ g = \mathrm{id} \iff f(g(x)) = x, \quad g(f(x)) = x.$$

However, we have to be careful with domains for trigonometric functions:

- $\arcsin(\sin(x)) = x \iff x \in [-\pi/2, \pi/2]$ (restricted domain of sin)
- $\sin(\arcsin(x)) = x \iff x \in [-1, 1] \text{ (domain of arcsin)}$
- $\arccos(\cos(x)) = x \iff x \in [0, \pi]$ (restricted domain of cos)
- $\cos(\arccos(x)) = x \iff x \in [-1, 1] \text{ (domain of arccos)}$
- $\arctan(\tan(x)) = x \iff x \in [0]$ (restricted domain of tan)
- $tan(arctan(x)) = x \iff x \in \mathbb{R}$
 - Domain of arctan, then range is $[-\pi/2, \pi/2]$, which is in the domain of tan.

Remark 4.12.8: Most inverse trigonometric functions can *not* be exactly solved! We'll have to approximate by calculator if we want the actual angle. If we just want *other* trigonometric functions though, we can always embed in a triangle.

Example 4.12.9(?): Show the following:

- $\cos(\arcsin(24/26)) = 10/26$
 - Write $\theta = \arcsin(24/26)$, note θ is in $[-\pi/2, \pi/2] = \operatorname{range}(\arcsin)$.
- $\tan(\arccos(-10/26)) = 10/26$
 - Write $\theta = \arccos(-10/26)$, note θ is in $[0, \pi] = \operatorname{range}(\arccos)$

Exercise 4.12.10 (?)

Compute $\arcsin(3/5)$.

⚠ Warning 4.12.11

This is equal to $\sin^{-1}(3/5)$, which is *not* equal to $\frac{1}{\sin(3/5)}$! One way to remember this is that we have another name for reciprocals, here $\csc(3/5)$.

Solution:

$$\theta = \arcsin(3/5)$$

$$\implies \sin(\theta) = (3/5)$$

$$\implies \cdots?$$
roughly by injectivity

We are out of luck, since this isn't a special angle. So we can't find a numerical value of θ . We can find other trig functions of θ though:

Figure 8: image_2021-04-18-22-30-09

So for example, $\cos(\arcsin(3/5)) = 4/5$.

4.13 Simplifying Identities

Remark 4.13.1: The goal: reduce a complicated mess of trigonometric functions to something as simple as possible. We'll use a **boxing-up method**.

Exercise 4.13.2 (?) Simplify the following:

$$F(\theta) := \left(\frac{\sin(\theta)\cos(\theta)}{\cot(\theta)}\right)\cos(\theta)\csc(\theta).$$

Solution:

$$F = s\left(\frac{s}{c}\right).$$

Remark 4.13.3: On verifying identities: if you want to show $f(\theta) = g(\theta)$, start at one and arrive

at the other:

$$f(\theta) = \text{simplify } f$$

 $= \cdots$
 $= \cdots$
 $= \cdots$
 $= g(\theta)$

⚠Warning 4.13.4

If you end up with something like 1 = 1 or 0 = 0, this is hinting at a problem with your logic.

Remark 4.13.5: As an alternative, you can use the **transitivity of equality**: show that $f(\theta) = h(\theta)$ for some totally different function h, and then show $g(\theta) = h(\theta)$ as well.

Figure 9: image_2021-04-18-21-58-52

Example 4.13.6(?): Show the following identity:

$$\sin(-\theta) + \csc(\theta) = \cot(\theta)\cos(\theta)$$

by showing both sides are separately equal to $h(\theta) := \csc(\theta) - \sin(\theta)$.

4.14 Double/Half-Angle Identities

Remark 4.14.1: Sometimes we are interested in **superposition** of waves. Mathematically this is modeled by multiplying two wave functions together. We can sometimes rewrite these as a *single*

wave with a phase shift.

Proposition 4.14.2(?).

Identities:

$$\sin(\theta + \psi) = \sin(\theta)\cos(\psi) + \cos(\theta)\sin(\psi)$$
$$\cos(\theta + \psi) = \cos(\theta)\cos(\psi) + \sin(\theta)\sin(\psi).$$

Note that you can divide these to get

$$\tan(\theta + \psi) = \frac{\tan(\theta) + \tan(\psi)}{1 - \tan(\theta)\tan(\psi)},$$

and replace ψ with $-\psi$ and use even/odd properties to get formulas for $\sin(\theta - \psi), \cos(\theta - \psi)$

Slogan 4.14.3

Sines are friendly and cosines are clique-y!

Remark 4.14.4: The most interesting modifications of waves: superpositions and damped waves.

Figure 10: image_2021-04-18-22-06-08

Corollary 4.14.5 (Double angle identities).

Taking $\theta = \psi$ is the above identities yields

$$\sin(2\theta) = \sin(\theta)\cos(\theta) + \cos(\theta)\sin(\theta)$$
$$= 2\sin(\theta)\cos(\theta)$$

$$\cos(2\theta) = \cos(\theta)\cos(\theta) + \sin(\theta)\sin(\theta)$$
$$= \cos^2(\theta) - \sin^2(\theta).$$

⚠ Warning 4.14.6

The latter is not equal to 1! That would be $\cos^2(\theta) + \sin^2(\theta)$.

Remark 4.14.7: Why do we care? We had 16 special angles, this gives a lot more. For example,

$$\cos(\pi/12) = \cos(\pi/3 - \pi/4) = \cdots$$
 plug in.

By allowing increments of $\pi/12$, we have 24 total angles.

Corollary 4.14.8(?).

Starting from the following:

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

$$= \cos^2(\theta) - \left(1 - \cos^2(\theta)\right)$$

$$= 2\cos^2(\theta) - 1 \qquad \text{using } s^2 + c^2 = 1,$$

one can solve for

$$\cos^2(\theta) = \frac{1}{2} \left(1 + \cos(2\theta) \right).$$

Similarly

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

$$= (1 - \sin^2(\theta)) - \sin^2(\theta)$$

$$= 1 - 2\sin^2(\theta) \qquad \text{using } s^2 + c^2 = 1,$$

solving yields

$$\sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta)).$$

4 ToDos

4.15 Bonus: Complex Exponentials

Remark 4.15.2: We've worked with the *Cartesian plane* all semester. One powerful tool is replacing this with the *complex* plane. We formally define a new symbol i such that $i^2 = -1$, and replace the $\hat{\mathbf{y}}$ direction with the i direction – this amounts to replacing ordered pairs $(a, b) := a\hat{\mathbf{x}} + b\hat{\mathbf{y}}$ by a single number x + iy.

Proposition 4.15.3 (Euler's Identity).

$$e^{i\pi} = -1.$$

Remark 4.15.4: The way you read this: $e^{i\theta} \in S^1$ is a complex number (identified with a vector!), and the θ tells you what direction it points in radians. π radians is directly to the left!

ToDos

List of Todos

Law of cosines	3
Sin/cos/etc as ratios	5
What is a 1 radian?	6
todo	7
todo	7
soh-cah-toa, cho-sha-cao	7
Table of special angles, increasing/decreasing	9
Insert plot	19

Definitions

2.0.3	Definition – Linear Functions	3
2.0.4	Definition – Intercepts	3
2.0.5	Definition – Relation	3
2.0.6	Definition – Function	3
4.4.1	Definition – Radian	6
4.4.3	Definition – Coterminal Angles	6
4.5.1	Definition – ?	7
4.6.1	Definition – Unit Circle	8
4.8.1	Definition – Reference Angle	(
4.11.2	Definition – Standard Form of a Wave Function	2

Definitions 27

Theorems

2.0.1	Theorem – The Pythagorean Theorem	3
2.0.2	Theorem – The Distance Formula	3
4.4.5	Proposition – Degrees are related to radians	7
4.4.6	Proposition – Arc length and sector area are related to radians	7
4.5.2	Proposition – Domains of trigonometric functions	7
4.6.2	$\label{theorem-Polar Coordinates} Theorem-Polar Coordinates \qquad \dots $	8
4.7.2	Proposition – Trick to memorize special angles	9
4.8.2	Proposition - ?	0
4.9.1	Proposition - ?	0
4.10.3	Proposition - ?	1
4.11.7	Proposition - ?	3
4.11.10	Proposition – Determining the equation of a sine wave	3
4.12.5	Proposition – Domains of inverse trigonometric functions	0
4.14.2	Proposition - ?	4
4.15.3	Proposition – Euler's Identity	6

Theorems 28

Exercises

4.12.10	Exercise - ?																				21
4.13.2	Exercise-?																				22

Exercises 29

Figures

List of Figures

1	$image_2021-04-18-21-51-59$																	6
2	$image_2021-04-18-22-39-08$																	11
3	$image_2021-04-18-20-51-34$																	14
4	$image_2021-04-18-22-24-55$																	16
5	$image_2021-04-18-22-32-36$																	17
6	$image_2021-04-18-22-33-27$																	18
7	$image_2021-04-18-20-53-25$																	18
8	$image_2021-04-18-22-30-09$																	2 2
9	$image_2021-04-18-21-58-52$																	23
10	image_2021-04-18-22-06-08																	24

Figures 30