# Generic Programming With Dependent Types: II Generic Haskell in Agda

Stephanie Weirich

University of Pennsylvania

March 24-26, 2010 - SSGIP



# Generic-Haskell style generic programming in Agda

Dependently-typed languages are expressive enough to *embed* generic-haskell style genericity.

#### Goals for this part:

- Foundations of Generic Haskell, in a framework that is easy to explore variations
- Examples of dependently-typed programming used for metaprogramming, including typeful representations and tagless interpreters.

Can we make a generic version of these functions?

```
\begin{array}{lll} \text{eq-nat} & : \ \mathbb{N} \to \mathbb{N} \to \mathsf{Bool} \\ \text{eq-bool} & : \ \mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool} \\ \text{eq-list} & : \ \forall \ \{\mathsf{A}\} \to (\mathsf{A} \to \mathsf{A} \to \mathsf{Bool}) \\ & \to \mathsf{List} \ \mathsf{A} \to \mathsf{List} \ \mathsf{A} \to \mathsf{Bool} \\ \text{eq-choice} & : \ \forall \ \{\mathsf{A}\ \mathsf{B}\} \to (\mathsf{A} \to \mathsf{A} \to \mathsf{Bool}) \\ & \to (\mathsf{B} \to \mathsf{B} \to \mathsf{Bool}) \\ & \to \mathsf{Choice} \ \mathsf{A} \ \mathsf{B} \to \mathsf{Choice} \ \mathsf{A} \ \mathsf{B} \to \mathsf{Bool} \end{array}
```

where

```
Choice : Set \rightarrow Set \rightarrow Set Choice = \lambda A B \rightarrow (A \times B) \uplus A \uplus B \uplus T
```

#### What about these?

#### What about these?

#### or these

```
arb-nat : №
arb-bool : Bool
```

 $\text{arb-list} \qquad : \ \forall \ \{A\,\} \to A \to \mathsf{List} \ A$ 

 $arb\text{-choice}\ :\ \forall\ \{A\ B\} \to A \to B \to Choice\ A\ B$ 

or these

```
\begin{array}{ll} \text{map-list} & : \ \forall \ \{A_1 \ A\} \rightarrow (A_1 \rightarrow A_2) \\ & \rightarrow \text{List} \ A_1 \rightarrow \text{List} \ A_2 \\ \text{map-choice} & : \ \forall \ \{A_1 \ A_2 \ B_1 \ B_2\} \rightarrow (A_1 \rightarrow A_2) \rightarrow (B_2 \rightarrow B_2) \\ & \rightarrow \text{Choice} \ A_1 \ B_1 \rightarrow \text{Choice} \ A_2 \ B_2 \end{array}
```

# Recall: "universes" for generic programming

• Start with a "code" for types:

```
data Type : Set where
  nat : Type
  bool : Type
  pair : Type → Type → Type
```

Define an "interpretation" as an Agda type

Then define generic op by "interpreting" as Agda function

# Today's discussion

We'll do the same thing, except for more types.

### Today's discussion

We'll do the same thing, except for more types. By representing all types structurally, we can define functions that are generic in the structure of types.

# Today's discussion

We'll do the same thing, except for more types. By representing all types structurally, we can define functions that are generic in the structure of types.

#### Generic Haskell Universe

Types are described by the simply-typed lambda calculus, using type constants  $\top$ ,  $\uplus$ ,  $\times$  and recursion.

#### Structural types

Must make recursion explicit in type definitions. Recursive type definitions are a good way to make the Agda type checker diverge. No fun!

```
data \mu: (Set \rightarrow Set) \rightarrow Set where
roll: \forall \{A\} \rightarrow A (\mu A) \rightarrow \mu A
unroll: \forall \{A\} \rightarrow \mu A \rightarrow A (\mu A)
unroll (roll x) = x
```

### Structural types

Must make recursion explicit in type definitions. Recursive type definitions are a good way to make the Agda type checker diverge. No fun!

```
data \mu: (Set \rightarrow Set) \rightarrow Set where roll: \forall \{A\} \rightarrow A (\mu A) \rightarrow \mu A unroll: \forall \{A\} \rightarrow \mu A \rightarrow A (\mu A) unroll (roll x) = x
```

Recursive sum-of-product types:

$$\begin{array}{lll} \mathsf{Bool} &= \top \uplus \top \\ \mathsf{Maybe} &= \lambda \: \mathsf{A} \to \top \uplus \: \mathsf{A} \\ \mathsf{Choice} &= \lambda \: \mathsf{A} \to \lambda \: \mathsf{B} \to (\mathsf{A} \times \mathsf{B}) \uplus \: \mathsf{A} \uplus \: \mathsf{B} \uplus \top \\ \mathbb{N} &= \mu \: (\lambda \: \mathsf{A} \to \top \uplus \: \mathsf{A}) \\ \mathsf{List} &= \lambda \: \mathsf{A} \to \mu \: (\lambda \: \mathsf{B} \to \top \uplus \: \mathsf{A} \times \mathsf{B}) \end{array}$$

# Example of structural type definition

#### Structural definition of lists

```
List : Set \rightarrow Set

List A = \mu (\lambda B \rightarrow \top \uplus (A \times B))

nil : \forall {A} \rightarrow List A

nil = roll (inj<sub>1</sub> tt)

_:_ : \forall {A} \rightarrow A \rightarrow List A \rightarrow List A

x : xs = roll (inj<sub>2</sub> (x,xs))

example-list : List Bool

example-list = true : false : nil
```

#### Universe is Structure

#### Generic Haskell Universe

Types are described by the simply-typed lambda calculus, using type constants  $\top$ ,  $\uplus$ ,  $\times$  and recursion.

#### Universe is Structure

#### Generic Haskell Universe

Types are described by the simply-typed lambda calculus, using type constants  $\top$ ,  $\uplus$ ,  $\times$  and recursion.

#### Plan:

- Repesent 'universe' as datatype for STLC + constants + recursion.
- Define interpretation of this universe as Agda types
- Define type-generic functions as interpretations of this universe as Agda terms with dependent types.

### Representing STLC

First, we define datatypes for kinds and type constants:

```
data Kind : Set where

\star : Kind

\Rightarrow : Kind \rightarrow Kind \rightarrow Kind
```

data Const: Kind  $\rightarrow$  Set where

Unit : Const ⋆

Sum : Const  $(\star \Rightarrow \star \Rightarrow \star)$ Prod : Const  $(\star \Rightarrow \star \Rightarrow \star)$ 

Note that the constants are indexed by their kinds.

# Simply-typed lambda calculus

Represent variables with deBrujin indices.

Variables are indexed by their kind and context.

```
\begin{array}{l} \textbf{data} \ V \ : \ \mathsf{Kind} \to \mathsf{Ctx} \to \mathsf{Set} \ \textbf{where} \\ \mathsf{VZ} \ : \ \forall \ \{\Gamma \ k\} \to \mathsf{V} \ k \ (\mathsf{k} :: \Gamma) \\ \mathsf{VS} \ : \ \forall \ \{\Gamma \ k' \ k\} \to \mathsf{V} \ k \ \Gamma \to \mathsf{V} \ k \ (\mathsf{k}' :: \Gamma) \end{array}
```

# Simply-typed lambda calculus

```
\begin{array}{l} \text{data Typ} : \mathsf{Ctx} \to \mathsf{Kind} \to \mathsf{Set \ where} \\ \mathsf{Var} : \forall \left\{ \Gamma \, k \right\} \to \mathsf{V} \ k \ \Gamma \to \mathsf{Typ} \ \Gamma \ k \\ \mathsf{Lam} : \forall \left\{ \Gamma \, k_1 \, k_2 \right\} \to \mathsf{Typ} \ (k_1 :: \Gamma) \ k_2 \\ \to \mathsf{Typ} \ \Gamma \ (k_1 \Rightarrow k_2) \\ \mathsf{App} : \forall \left\{ \Gamma \, k_1 \, k_2 \right\} \to \mathsf{Typ} \ \Gamma \ (k_1 \Rightarrow k_2) \to \mathsf{Typ} \ \Gamma \ k_1 \\ \to \mathsf{Typ} \ \Gamma \ k_2 \\ \mathsf{Con} : \forall \left\{ \Gamma \, k \right\} \to \mathsf{Const} \ k \to \mathsf{Typ} \ \Gamma \ k \\ \mathsf{Mu} : \forall \left\{ \Gamma \right\} \to \mathsf{Typ} \ \Gamma \ (\star \Rightarrow \star) \to \mathsf{Typ} \ \Gamma \ \star \\ \end{array}
```

Note: closed types type check in the empty environment.

Ty: Kind 
$$\rightarrow$$
 Set  
Ty k = Typ  $\llbracket k \rrbracket$ 



### Interpreting kinds and constants

A simple recursive function interprets Kinds as Agda "kinds".

### Interpreting kinds and constants

A simple recursive function interprets Kinds as Agda "kinds".

We need to know the kind of a constructor to know the type of its interpretation.

```
\begin{array}{lll} \text{interp-c} & : \; \forall \; \{k\} \rightarrow \mathsf{Const} \; k \rightarrow \llbracket \; k \; \rrbracket \\ \text{interp-c} \; \mathsf{Unit} \; = \; \top & -\text{has kind Set} \\ \text{interp-c} \; \mathsf{Sum} \; = \; \_ \biguplus \quad -\text{has kind Set} \rightarrow \mathsf{Set} \rightarrow \mathsf{Set} \\ \text{interp-c} \; \mathsf{Prod} \; = \; \_ \times \_ \end{array}
```

# Interpreting codes as types

Environment stores the interpretation of free variables, indexed by the context.

# Interpreting codes as types

Interpretation of codes is a 'tagless' lambda-calculus interpreter.

# Interpreting codes as types

Interpretation of codes is a 'tagless' lambda-calculus interpreter.

Special notation for closed types.

## Example

Recall the structural type List

$$\begin{array}{l} \mathsf{List} \; : \; \mathsf{Set} \to \mathsf{Set} \\ \mathsf{List} \; = \; \lambda \; \mathsf{A} \to \mu \; \big( \lambda \; \mathsf{B} \to \top \; \uplus \; \big( \mathsf{A} \times \mathsf{B} \big) \big) \end{array}$$

#### Example

Recall the structural type List

```
List : Set \rightarrow Set
List = \lambda A \rightarrow \mu (\lambda B \rightarrow \top \uplus (A \times B))
```

Represent with the following code:

```
 \begin{array}{ll} \mathsf{list} \,:\, \mathsf{Ty} \, (\star \Rightarrow \star) \\ \mathsf{list} \,=\, \\ \mathsf{Lam} \, \big( \mathsf{Mu} \, \big( \mathsf{Lam} \\ & \big( \mathsf{App} \, (\mathsf{App} \, (\mathsf{Con} \, \mathsf{Sum}) \, (\mathsf{Con} \, \, \mathsf{Unit}) \big) \\ & \big( \mathsf{App} \, (\mathsf{App} \, (\mathsf{Con} \, \mathsf{Prod}) \, (\mathsf{Var} \, (\mathsf{VS} \, \mathsf{VZ}))) \, (\mathsf{Var} \, \mathsf{VZ}))))) \\ \end{array}
```

The Agda type checker can see that [ list ] normalizes to List, so it considers these two types equal.

## Kind-indexed types

The kind of a type determines the type of a generic function.

#### Kind-indexed types

The kind of a type determines the type of a generic function.

$$\begin{array}{l} \_\langle \_\rangle\_ \ : \ (\mathsf{Set} \to \mathsf{Set}) \to (\mathsf{k} \ : \ \mathsf{Kind}) \to \llbracket \ \mathsf{k} \ \rrbracket \to \mathsf{Set} \\ \mathsf{b} \ \langle \ \mathsf{k} \ \rangle \ \mathsf{t} \ = \ \mathsf{b} \ \mathsf{t} \\ \mathsf{b} \ \langle \ \mathsf{k} 1 \Rightarrow \mathsf{k} 2 \ \rangle \ \mathsf{t} \ = \ \forall \ \{\mathsf{A}\} \to \mathsf{b} \ \langle \ \mathsf{k} 1 \ \rangle \ \mathsf{A} \to \mathsf{b} \ \langle \ \mathsf{k} 2 \ \rangle \ (\mathsf{t} \ \mathsf{A}) \end{array}$$

### Kind-indexed types

The kind of a type determines the type of a generic function.

$$\begin{array}{l} \_\langle \_ \rangle \_ \ : \ (\mathsf{Set} \to \mathsf{Set}) \to (\mathsf{k} \ : \ \mathsf{Kind}) \to \llbracket \ \mathsf{k} \ \rrbracket \to \mathsf{Set} \\ \mathsf{b} \ \langle \ \star \ \rangle \ \mathsf{t} \ = \ \mathsf{b} \ \mathsf{t} \\ \mathsf{b} \ \langle \ \mathsf{k1} \Rightarrow \mathsf{k2} \ \rangle \ \mathsf{t} \ = \ \forall \ \{\mathsf{A}\} \to \mathsf{b} \ \langle \ \mathsf{k1} \ \rangle \ \mathsf{A} \to \mathsf{b} \ \langle \ \mathsf{k2} \ \rangle \ (\mathsf{t} \ \mathsf{A}) \end{array}$$

Equality example

```
Eq : Set \rightarrow Set

Eq A = A \rightarrow A \rightarrow Bool

eq-bool : Eq \langle \star \rangle Bool

-- Bool \rightarrow Bool \rightarrow Bool

eq-list : Eq \langle \star \Rightarrow \star \rangle List

-- \forall A \rightarrow (A \rightarrow A \rightarrow Bool) \rightarrow (List A \rightarrow List A \rightarrow Bool)

eq-choice : Eq \langle \star \Rightarrow \star \Rightarrow \star \rangle Choice

-- \forall A B \rightarrow (A \rightarrow A \rightarrow Bool) \rightarrow (B \rightarrow B \rightarrow Bool)

-- \rightarrow (Choice A B \rightarrow Choice A B \rightarrow Bool)
```

# Defining generic functions

A generic function is an interpretation of the Typ universe as an Agda term with a kind-indexed type.

#### Generic equality

$$\mathsf{geq} \: : \: \forall \: \big\{ k \big\} \to \big( t \: : \: \mathsf{Ty} \: k \big) \to \mathsf{Eq} \: \big\langle \: k \: \big\rangle \: \big\lfloor \: t \: \big\rfloor$$

# Defining generic functions

A generic function is an interpretation of the Typ universe as an Agda term with a kind-indexed type.

# Generic equality

$$\mathsf{geq} \,:\, \forall \; \{k\} \to (t \,:\, \mathsf{Ty}\; k) \to \mathsf{Eq}\; \langle \; k \; \rangle \; [\; t \; ]$$

... however, because of  $\lambda$ , must generalize to types with free variables.

#### **Variables**

Variables are interpreted with an environment.

```
data VarEnv (b : Set \rightarrow Set) : Ctx \rightarrow Set where

[] : VarEnv b []

_::_ : {k : Kind} {Γ : Ctx} {a : [[k]]}

\rightarrow b \langle k \rangle a

\rightarrow VarEnv b \Gamma

\rightarrow VarEnv b (k :: \Gamma)
```

What is the type of the lookup function?

```
\begin{array}{l} \text{vLookup} \ : \ \forall \ \{\Gamma \ k\} \ \{b \ : \ \mathsf{Set} \to \mathsf{Set}\} \\ \to (v \ : \ \mathsf{V} \ k \ \Gamma) \to (ve \ : \ \mathsf{VarEnv} \ b \ \Gamma) \\ \to b \ \langle \ k \ \rangle \ ? \\ \text{vLookup} \ \mathsf{VZ} \qquad (v :: ve) \ = \ v \\ \text{vLookup} \ (\mathsf{VS} \ x) \ (v :: ve) \ = \ v \mathsf{Lookup} \ x \ ve \end{array}
```

#### **Variables**

Variables are interpreted with an environment.

```
data VarEnv (b : Set \rightarrow Set) : Ctx \rightarrow Set where

[] : VarEnv b []

_::_ : {k : Kind} {\Gamma : Ctx} {a : [k]}

\rightarrow b \langle k \rangle a

\rightarrow VarEnv b \Gamma

\rightarrow VarEnv b (k :: \Gamma)
```

What is the type of the lookup function?

```
vLookup : \forall \{\Gamma k\} \{b : Set \rightarrow Set\}

\rightarrow (v : V k \Gamma) \rightarrow (ve : VarEnv b \Gamma)

\rightarrow b \langle k \rangle (sLookup v (toEnv ve))

vLookup VZ (v :: ve) = v

vLookup (VS x) (v :: ve) = vLookup x ve
```

Aux function to Env converts a VarEnv to an Env.

### Another interpreter

```
\begin{array}{ll} \mathsf{Eq} \; : \; \mathsf{Set} \to \mathsf{Set} \\ \mathsf{Eq} \; \mathsf{A} \; = \; \mathsf{A} \to \mathsf{A} \to \mathsf{Bool} \end{array}
```

```
\begin{array}{l} \text{geq-open} : \left\{\Gamma: \mathsf{Ctx}\right\} \left\{k: \mathsf{Kind}\right\} \\ \to \left(\mathsf{ve} : \mathsf{VarEnv} \ \mathsf{Eq} \ \Gamma\right) \\ \to \left(t: \mathsf{Typ} \ \Gamma \ \mathsf{k}\right) \to \mathsf{Eq} \ \left\langle \ \mathsf{k} \ \right\rangle \ (\mathsf{interp} \ \mathsf{t} \ (\mathsf{toEnv} \ \mathsf{ve})) \\ \text{geq-open} \ \mathsf{ve} \ (\mathsf{Var} \ \mathsf{v}) &= \mathsf{vLookup} \ \mathsf{v} \ \mathsf{ve} \\ \text{geq-open} \ \mathsf{ve} \ (\mathsf{Lam} \ \mathsf{t}) &= \lambda \ \mathsf{y} \to \mathsf{geq-open} \ (\mathsf{y} :: \mathsf{ve}) \ \mathsf{t} \\ \text{geq-open} \ \mathsf{ve} \ (\mathsf{App} \ \mathsf{t} \ \mathsf{t} \ \mathsf{t} \ \mathsf{2}) &= \left(\mathsf{geq-open} \ \mathsf{ve} \ \mathsf{t} \right) \left(\mathsf{geq-open} \ \mathsf{ve} \ \mathsf{t} \ \mathsf{2}\right) \\ \text{geq-open} \ \mathsf{ve} \ (\mathsf{Mu} \ \mathsf{t}) &= \lambda \ \mathsf{x} \ \mathsf{y} \to \mathsf{geq-open} \ \mathsf{ve} \ (\mathsf{App} \ \mathsf{t} \ (\mathsf{Mu} \ \mathsf{t})) \ (\mathsf{unroll} \ \mathsf{x}) \ (\mathsf{unroll} \ \mathsf{y}) \\ \text{geq-open} \ \mathsf{ve} \ (\mathsf{Con} \ \mathsf{c}) &= \mathsf{geq-c} \ \mathsf{c} \end{array}
```

### Interpretation of constants

```
geq-sum : \forall \{A\} \rightarrow (A \rightarrow A \rightarrow Bool)
               \rightarrow \forall \{B\} \rightarrow (B \rightarrow B \rightarrow Bool)
               \rightarrow (A \uplus B) \rightarrow (A \uplus B) \rightarrow Bool
geq-sum ra rb (inj_1 x_1)(inj_1 x_2) = ra x_1 x_2
geq-sum ra rb (inj_2 x_1) (inj_2 x_2) = rb x_1 x_2
geq-sum _ = = false
geq-prod : \forall \{A\} \rightarrow (A \rightarrow A \rightarrow Bool)
               \rightarrow \forall \{B\} \rightarrow (B \rightarrow B \rightarrow Bool)
               \rightarrow (A \times B) \rightarrow (A \times B) \rightarrow Bool
geq-prod ra rb (x_1,x_2)(y_1,y_2) = ra x_1 y_1 \wedge rb x_2 y_2
```

```
geq-c : \{k : Kind\} \rightarrow (c : Const k) \rightarrow Eq \langle k \rangle [Con c]
geq-c Unit = \lambda t1 t2 \rightarrow true
geq-c Sum = geq-sum
geq-c Prod = geq-prod
```

#### Constants

Only the interpretation of constants and the rolling/unrolling in the Mu case changes with each generic function.

#### Constants

Only the interpretation of constants and the rolling/unrolling in the Mu case changes with each generic function.

### Interpretation of constants

```
ConstEnv : (Set \rightarrow Set) \rightarrow Set
ConstEnv b = \forall \{k\} \rightarrow (c : Const k) \rightarrow b \langle k \rangle \mid Con c \mid
```

#### Constants

Only the interpretation of constants and the rolling/unrolling in the Mu case changes with each generic function.

### Interpretation of constants

```
ConstEnv : (Set \rightarrow Set) \rightarrow Set
ConstEnv b = \forall \{k\} \rightarrow (c : Const k) \rightarrow b \langle k \rangle [Con c]
```

#### Conversion for Mu case

```
MuGen: (Set \rightarrow Set) \rightarrow Set
MuGen b = \forall {A} \rightarrow b (A (\mu A)) \rightarrow b (\mu A)
```

## Generic polytypic interpreter

```
gen-open: \{b: Set \rightarrow Set\} \{\Gamma: Ctx\} \{k: Kind\} \rightarrow ConstEnv \ b \rightarrow (ve: VarEnv \ b \ \Gamma) \rightarrow MuGen \ b \rightarrow (t: Typ \ \Gamma \ k) \rightarrow b \ \langle \ k \ \rangle \ (interp \ t \ (to Env \ ve))
gen-open ce ve d (Var \ v) = vLookup \ v \ ve
gen-open ce ve d (Lam \ t) = \lambda \ y \rightarrow gen-open \ ce \ (y::ve) \ d \ t
gen-open ce ve d (App \ t1 \ t2) = (gen-open \ ce \ ve \ d \ t1) \ (gen-open \ ce \ ve \ d \ t2)
gen-open ce ve d (Con \ c) = ce \ c
gen-open ce ve d (Mu \ t) = d \ (gen-open \ ce \ ve \ d \ (App \ t \ (Mu \ t)))
```

## Generic polytypic interpreter

```
gen-open : \{b : Set \rightarrow Set\} \{\Gamma : Ctx\} \{k : Kind\}
  \rightarrow ConstEnv b \rightarrow (ve : VarEnv b \Gamma) \rightarrow MuGen b
  \rightarrow (t : Typ \Gamma k) \rightarrow b \langle k \rangle (interp t (toEnv ve))
gen-open ce ve d (Var v) = vLookup v ve
gen-open ce ve d (Lam t) = \lambda y \rightarrow gen-open ce (y :: ve) d t
gen-open ce ve d (App t1 t2) =
  (gen-open ce ve d t1) (gen-open ce ve d t2)
gen-open ce ve d (Con c) = ce c
gen-open ce ve d (Mu t)
  d (gen-open ce ve d (App t (Mu t)))
```

### Specialized to closed types

```
\begin{array}{l} \text{gen} \; : \; \{b \; : \; \mathsf{Set} \to \mathsf{Set}\} \; \{k \; : \; \mathsf{Kind}\} \to \mathsf{ConstEnv} \; b \to \mathsf{MuGen} \; b \\ \to (\mathsf{t} \; : \; \mathsf{Ty} \; k) \to \mathsf{b} \; \langle \; k \; \rangle \; \lfloor \; \mathsf{t} \; \rfloor \\ \text{gen} \; \mathsf{c} \; \mathsf{b} \; \mathsf{t} \; = \; \mathsf{gen\text{-}open} \; \mathsf{c} \; [] \; \mathsf{b} \; \mathsf{t} \end{array}
```

### Equality example

```
\begin{array}{l} \mathsf{geq} \ : \ \{\mathsf{k} \ : \ \mathsf{Kind}\} \to (\mathsf{t} \ : \ \mathsf{Ty} \ \mathsf{k}) \to \mathsf{Eq} \ \langle \ \mathsf{k} \ \rangle \ \lfloor \ \mathsf{t} \ \rfloor \\ \mathsf{geq} \ = \ \mathsf{gen} \ \mathsf{geq\text{-}c} \ \mathsf{eb} \ \mathsf{where} \\ \mathsf{eb} \ : \ \forall \ \{\mathsf{A}\} \to \mathsf{Eq} \ (\mathsf{A} \ (\mu \ \mathsf{A})) \to \mathsf{Eq} \ (\mu \ \mathsf{A}) \\ \mathsf{eb} \ \mathsf{f} \ = \ \lambda \, \mathsf{x} \, \mathsf{y} \to \mathsf{f} \ (\mathsf{unroll} \ \mathsf{x}) \ (\mathsf{unroll} \ \mathsf{y}) \end{array}
```

```
eq-list : List Nat \rightarrow List Nat \rightarrow Bool eq-list = geq (App list nat)
```

### Count example

```
Count: Set \rightarrow Set
Count A = A \rightarrow N
gcount : \{k : Kind\} \rightarrow (t : Ty k) \rightarrow Count \langle k \rangle \mid t \mid
gcount = gen ee eb where
    ee : ConstEnv Count
   ee Unit = \lambda t \rightarrow 0
   ee Sum = g where
       g: \forall \{A\} \rightarrow \_ \rightarrow \forall \{B\} \rightarrow \_ \rightarrow (A \uplus B) \rightarrow \mathbb{N}
       g \operatorname{rarb} (\operatorname{inj}_1 x) = \operatorname{ra} x
       g \operatorname{rarb} (\operatorname{inj}_2 x) = \operatorname{rb} x
   ee Prod = g where
       g: \forall \{A\} \rightarrow \_ \rightarrow \forall \{B\} \rightarrow \_ \rightarrow (A \times B) \rightarrow \mathbb{N}
       g ra rb (x_1,x_2) = ra x_1 + rb x_2
    eb: MuGen Count
   eb f = \lambda x \rightarrow f (unroll x)
```

### Count example

Count shows why it is important to make the type parameters explicit in the representation.

```
\begin{array}{ll} \text{gsize} \ : \ (\texttt{t} \ : \ \mathsf{Ty} \ (\star \Rightarrow \star)) \to \forall \ \{\texttt{A}\} \to \lfloor \ \texttt{t} \ \rfloor \ \texttt{A} \to \mathbb{N} \\ \text{gsize} \ \texttt{t} \ = \ \mathsf{gcount} \ \texttt{t} \ (\lambda \ \mathsf{x} \to 1) \end{array}
```

```
\begin{array}{ll} \mathsf{gsum} \ : \ (\mathsf{t} \ : \ \mathsf{Ty} \ (\star \Rightarrow \star)) \to \lfloor \ \mathsf{t} \ \rfloor \ \mathbb{N} \to \mathbb{N} \\ \mathsf{gsum} \ \mathsf{t} \ = \ \mathsf{gcount} \ \mathsf{t} \ (\lambda \ \mathsf{x} \to \mathsf{x}) \end{array}
```

### Count example

Count shows why it is important to make the type parameters explicit in the representation.

```
gsize : (t : Ty (\star \Rightarrow \star)) \rightarrow \forall \{A\} \rightarrow |t| A \rightarrow \mathbb{N}
gsize t = gcount t (\lambda x \rightarrow 1)
gsum: (t : Ty (\star \Rightarrow \star)) \rightarrow |t| \mathbb{N} \rightarrow \mathbb{N}
gsum t = gcount t (\lambda x \rightarrow x)
exlist2 : List N
exlist2 = 1:2:3:nil
```

gsize list exlist $2 \equiv 3$  gsum list exlist $2 \equiv 6$ 

# What about map?

```
\begin{array}{l} \text{map-list} \ : \ \forall \ \{ A_1 \ A_2 \} \rightarrow (A_1 \rightarrow A_2) \\ \qquad \rightarrow \text{List } A_1 \rightarrow \text{List } A_2 \\ \text{map-maybe} \ : \ \forall \ \{ A_1 \ A_2 \} \rightarrow (A_1 \rightarrow A_2) \\ \qquad \rightarrow \text{Maybe } A_1 \rightarrow \text{Maybe } A_2 \\ \text{map-choice} \qquad : \ \forall \ \{ A_1 \ A_2 \ B_1 \ B_2 \} \rightarrow (A_1 \rightarrow A_2) \rightarrow (B_2 \rightarrow B_2) \\ \qquad \rightarrow \text{Choice } A_1 \ B_1 \rightarrow \text{Choice } A_2 \ B_2 \end{array}
```

#### Want something like:

$$\begin{array}{l} \mathsf{Map} \; \langle \; \star \; \rangle \; \mathsf{T} \; = \; \mathsf{T} \to \mathsf{T} \\ \mathsf{Map} \; \langle \; \star \; \Rightarrow \; \star \; \rangle \; \mathsf{T} \; = \; \forall \; \{\mathsf{A} \; \mathsf{B}\} \to (\mathsf{A} \to \mathsf{B}) \to (\mathsf{T} \; \mathsf{A} \to \mathsf{T} \; \mathsf{B}) \\ \mathsf{Map} \; \langle \; \star \; \Rightarrow \; \star \; \Rightarrow \; \star \; \rangle \; \mathsf{T} \; = \; \forall \; \{\mathsf{A}_1 \; \mathsf{B}_1 \; \mathsf{A}_2 \; \mathsf{B}_2\} \\ \to \; (\mathsf{A}_1 \to \mathsf{B}_1) \to (\mathsf{A}_2 \to \mathsf{B}_2) \to (\mathsf{T} \; \mathsf{A}_1 \; \mathsf{A}_2 \to \mathsf{T} \; \mathsf{B}_1 \; \mathsf{B}_2) \end{array}$$

Can't define Map as a kind-indexed type.

## Arities in Kind-indexed types

Solution is an 'arity-2' kind-indexed type:

$$\begin{array}{l} \_\langle \_\rangle_2 \ : \ (\mathsf{Set} \to \mathsf{Set} \to \mathsf{Set}) \to (\mathsf{k} \ : \ \mathsf{Kind}) \to \llbracket \ \mathsf{k} \ \rrbracket \to \llbracket \ \mathsf{k} \ \rrbracket \to \mathsf{Set} \\ \mathsf{b} \ \langle \ \star \ \rangle_2 \ = \ \lambda \ \mathsf{t}_1 \ \mathsf{t}_2 \to \mathsf{b} \ \mathsf{t}_1 \ \mathsf{t}_2 \\ \mathsf{b} \ \langle \ \mathsf{k}_1 \Rightarrow \mathsf{k}_2 \ \rangle_2 \ = \ \lambda \ \mathsf{t}_1 \ \mathsf{t}_2 \to \forall \ \{ \mathsf{a}_1 \ \mathsf{a}_2 \} \to \\ (\mathsf{b} \ \langle \ \mathsf{k}_1 \ \rangle_2) \ \mathsf{a}_1 \ \mathsf{a}_2 \to (\mathsf{b} \ \langle \ \mathsf{k}_2 \ \rangle_2) \ (\mathsf{t}_1 \ \mathsf{a}_1) \ (\mathsf{t}_2 \ \mathsf{a}_2) \end{array}$$

$$\begin{array}{ll} \mathsf{Map} \; : \; \mathsf{Set} \to \mathsf{Set} \to \mathsf{Set} \\ \mathsf{Map} \; \mathsf{A} \; \mathsf{B} \; = \; \mathsf{A} \to \mathsf{B} \end{array}$$

$$gmap \,:\, \forall \, \{k\} \rightarrow (t \,:\, Ty \,k) \rightarrow Map \,\langle \, k \,\rangle_2 \,\lfloor \, t \,\rfloor \,\lfloor \, t \,\rfloor$$

## Arities in Kind-indexed types

Solution is an 'arity-2' kind-indexed type:

$$\begin{array}{l} \_\langle\_\rangle_2 \ : \ (\mathsf{Set} \to \mathsf{Set} \to \mathsf{Set}) \to (\mathsf{k} \ : \ \mathsf{Kind}) \to \llbracket \ \mathsf{k} \ \rrbracket \to \llbracket \ \mathsf{k} \ \rrbracket \to \mathsf{Set} \\ \mathsf{b} \ \langle \ \star \ \rangle_2 \ = \ \lambda \ \mathsf{t}_1 \ \mathsf{t}_2 \to \mathsf{b} \ \mathsf{t}_1 \ \mathsf{t}_2 \\ \mathsf{b} \ \langle \ \mathsf{k}_1 \Rightarrow \mathsf{k}_2 \ \rangle_2 \ = \ \lambda \ \mathsf{t}_1 \ \mathsf{t}_2 \to \forall \ \{\mathsf{a}_1 \ \mathsf{a}_2\} \to \\ (\mathsf{b} \ \langle \ \mathsf{k}_1 \ \rangle_2) \ \mathsf{a}_1 \ \mathsf{a}_2 \to (\mathsf{b} \ \langle \ \mathsf{k}_2 \ \rangle_2) \ (\mathsf{t}_1 \ \mathsf{a}_1) \ (\mathsf{t}_2 \ \mathsf{a}_2) \end{array}$$

$$\begin{array}{lll} \mathsf{Map} \; : \; \mathsf{Set} \to \mathsf{Set} \to \mathsf{Set} \\ \mathsf{Map} \; \mathsf{A} \; \mathsf{B} \; = \; \mathsf{A} \to \mathsf{B} \end{array}$$

$$gmap \,:\, \forall \, \{k\} \rightarrow (t \,:\, Ty \,k) \rightarrow Map \, \langle \, k \, \rangle_2 \, \lfloor \, t \, \rfloor \, \lfloor \, t \, \rfloor$$

To make a general framework, need to define  $ConstEnv_2$ ,  $VarEnv_2$ ,  $gen-open_2$ ,  $gen_2$ , etc.

# Or, arbitrary-arity kind indexed type

$$\begin{array}{l} \_\langle\_\rangle\_ : \{n: \mathbb{N}\} \to (\text{Vec Set } n \to \text{Set}) \to (k: \text{Kind}) \\ \to \text{Vec} \, [\![\![k]\!]\!] \, n \to \text{Set} \\ b \ \langle \ \star \ \rangle \, v \qquad = b \ v \\ b \ \langle \ k1 \Rightarrow k2 \ \rangle \, v \ = \ \{a: \text{Vec} \, [\![\![\![k1]\!]\!] \, -\} \\ b \ \langle \ k1 \ \rangle \, a \to b \ \langle \ k2 \ \rangle \, (v \circledast a) \end{array}$$

(Recall:  $v \circledast a$  applies vector of functions to vector of arguments pointwise.)

# Or, arbitrary-arity kind indexed type

$$\begin{array}{l} \_\langle\_\rangle\_ : \{\mathsf{n} : \mathbb{N}\} \to (\mathsf{Vec} \ \mathsf{Set} \ \mathsf{n} \to \mathsf{Set}) \to (\mathsf{k} : \mathsf{Kind}) \\ \to \mathsf{Vec} \ \llbracket \ \mathsf{k} \ \rrbracket \ \mathsf{n} \to \mathsf{Set} \\ \mathsf{b} \ \langle \ \star \ \rangle \ \mathsf{v} &= \ \mathsf{b} \ \mathsf{v} \\ \mathsf{b} \ \langle \ \mathsf{k} \ \mathsf{1} \Rightarrow \mathsf{k} \ \mathsf{2} \ \rangle \ \mathsf{v} &= \ \{\mathsf{a} : \ \mathsf{Vec} \ \llbracket \ \mathsf{k} \ \rrbracket \ \_\} \to \\ \mathsf{b} \ \langle \ \mathsf{k} \ \mathsf{1} \ \rangle \ \mathsf{a} \to \mathsf{b} \ \langle \ \mathsf{k} \ \mathsf{2} \ \rangle \ (\mathsf{v} \ \circledast \ \mathsf{a}) \end{array}$$

(Recall:  $v \otimes a$  applies vector of functions to vector of arguments pointwise.)

Single framework for all arities of generic functions.

# Or, arbitrary-arity kind indexed type

$$\begin{array}{l} \_\langle\_\rangle\_ : \{\mathsf{n} : \mathbb{N}\} \to (\mathsf{Vec} \ \mathsf{Set} \ \mathsf{n} \to \mathsf{Set}) \to (\mathsf{k} : \ \mathsf{Kind}) \\ \to \mathsf{Vec} \ \llbracket \ \mathsf{k} \ \rrbracket \ \mathsf{n} \to \mathsf{Set} \\ \mathsf{b} \ \langle \ \star \ \rangle \ \mathsf{v} &= \ \mathsf{b} \ \mathsf{v} \\ \mathsf{b} \ \langle \ \mathsf{k} 1 \Rightarrow \mathsf{k} 2 \ \rangle \ \mathsf{v} &= \ \{\mathsf{a} : \ \mathsf{Vec} \ \llbracket \ \mathsf{k} 1 \ \rrbracket \ \_\} \to \\ \mathsf{b} \ \langle \ \mathsf{k} 1 \ \rangle \ \mathsf{a} \to \mathsf{b} \ \langle \ \mathsf{k} 2 \ \rangle \ (\mathsf{v} \ \circledast \ \mathsf{a}) \end{array}$$

(Recall:  $v \otimes a$  applies vector of functions to vector of arguments pointwise.)

Single framework for all arities of generic functions. Also allows arity-generic, type-generic code. More next time.

• Problem: What about datatypes like List and Maybe?

- Problem: What about datatypes like List and Maybe?
- Can extend this solution to work with built-in datatypes with datatype isomorphisms.

- Problem: What about datatypes like List and Maybe?
- Can extend this solution to work with built-in datatypes with datatype isomorphisms.
- Problem: What about indexed datatypes like Vec?

- Problem: What about datatypes like List and Maybe?
- Can extend this solution to work with built-in datatypes with datatype isomorphisms.
- Problem: What about indexed datatypes like Vec?
- Structural types that depend on indices.

```
\begin{array}{lll} \mathsf{Vec'} \,:\, \mathbb{N} \,\to\, \mathsf{Set} \,\to\, \mathsf{Set} \\ \mathsf{Vec'} \;\mathsf{zero} &=\; \lambda \;\mathsf{A} \,\to\, \top \\ \mathsf{Vec'} \;(\mathsf{suc}\;\mathsf{n}) \,=\, \lambda \;\mathsf{A} \,\to\, \mathsf{A} \,\times\, \big(\mathsf{Vec'}\;\mathsf{n}\;\mathsf{A}\big) \end{array}
```

- Problem: What about datatypes like List and Maybe?
- Can extend this solution to work with built-in datatypes with datatype isomorphisms.
- Problem: What about indexed datatypes like Vec?
- Structural types that depend on indices.

```
\begin{array}{lll} \mathsf{Vec'} &: \mathbb{N} \to \mathsf{Set} \to \mathsf{Set} \\ \mathsf{Vec'} & \mathsf{zero} &= \lambda \; \mathsf{A} \to \top \\ \mathsf{Vec'} & (\mathsf{suc} \; \mathsf{n}) &= \lambda \; \mathsf{A} \to \; \mathsf{A} \times (\mathsf{Vec'} \; \mathsf{n} \; \mathsf{A}) \end{array}
```

 Problem: The types of some generic functions depend on what they are instantiated with.

- Problem: What about datatypes like List and Maybe?
- Can extend this solution to work with built-in datatypes with datatype isomorphisms.
- Problem: What about indexed datatypes like Vec?
- Structural types that depend on indices.

```
\begin{array}{lll} \mathsf{Vec'} : \mathbb{N} \to \mathsf{Set} \to \mathsf{Set} \\ \mathsf{Vec'} \ \mathsf{zero} &= \lambda \ \mathsf{A} \to \top \\ \mathsf{Vec'} \ (\mathsf{suc} \ \mathsf{n}) &= \lambda \ \mathsf{A} \to \ \mathsf{A} \times (\mathsf{Vec'} \ \mathsf{n} \ \mathsf{A}) \end{array}
```

- Problem: The types of some generic functions depend on what they are instantiated with.
- Change the type of b from Set  $\rightarrow$  Set to Ty  $\star \rightarrow$  Set.

 Problem: Not all generic functions make sense for all type constructors.

- Problem: Not all generic functions make sense for all type constructors.
- Can generalize over the constants to allow generic functions to pick the constants that they are valid for.

- Problem: Not all generic functions make sense for all type constructors.
- Can generalize over the constants to allow generic functions to pick the constants that they are valid for.
- Problem: what about Agda's termination checker?

- Problem: Not all generic functions make sense for all type constructors.
- Can generalize over the constants to allow generic functions to pick the constants that they are valid for.
- Problem: what about Agda's termination checker?
- Can use coinduction for recursive types, partiality monad for potentially divergent function(?)

- Problem: Not all generic functions make sense for all type constructors.
- Can generalize over the constants to allow generic functions to pick the constants that they are valid for.
- Problem: what about Agda's termination checker?
- Can use coinduction for recursive types, partiality monad for potentially divergent function(?)
- Problem: No easy way to use generic functions. Have to explicitly supply the universe.

- Problem: Not all generic functions make sense for all type constructors.
- Can generalize over the constants to allow generic functions to pick the constants that they are valid for.
- Problem: what about Agda's termination checker?
- Can use coinduction for recursive types, partiality monad for potentially divergent function(?)
- Problem: No easy way to use generic functions. Have to explicitly supply the universe.
- ???

#### References

- Ralf Hinze. Polytypic values possess polykinded types. Science of Computer Programming, 43(2-3):129-159, 2002. MPC Special Issue
- Thorsten Altenkirch and Conor McBride. Generic programming within dependently typed programming. In Proceedings of the IFIP TC2 Working Conference on Generic Programming, Dagstuhl, Germany, July 2003
- Wendy Verbruggen, Edsko de Vries, and Arthur Hughes. Polytypic programming in Coq. In WGP '08: Proceedings of the ACM SIGPLAN Workshop on Generic Programming, pages 49–60, New York, NY, USA, 2008. ACM