МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №1

з дисципліни

«Дискретна математика»

Виконав:

студент групи КН-112

Калітовський Роман

Викладач:

Мельникова Н.І.

ЛАБОРАТОРНА РОБОТА № 1

Тема: моделювання основних логічних операцій

Мета роботи: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Варіант № 6

Завдання 1

- 1. Формалізувати речення. Якщо завтра буде холодно та рукав буде полагоджений, я одягну тепле пальто; якщо завтра буде холодно, а рукав не буде полагоджений, отже, я не одягну тепле пальто.
 - а завтра буде холодно.
 - е рукав буде полагоджений.
 - 0 я одягну тепле пальто.

$$(a \land e) \rightarrow o;$$

$$(\bar{a} \vee \bar{e}) \rightarrow \bar{o};$$

2. Побудувати таблицю істинності для висловлювань:

$$(x \rightarrow (y \rightarrow z)) \rightarrow ((x \land y) \rightarrow z);$$

X	y	Z	$y \rightarrow z$	x∧y	$x \rightarrow (y \rightarrow z)$	$(x \land y) \rightarrow z$	$(x \rightarrow (y \rightarrow z)) \rightarrow ((x \land y) \rightarrow z)$
0	0	0	1	0	1	1	1
0	0	1	1	0	1	1	1
0	1	0	0	0	1	1	1
0	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1
1	0	1	1	0	1	1	1
1	1	0	0	1	0	0	1
1	1	1	1	1	1	1	1

3. Побудовою таблиць істинності вияснити, чи висловлювання ϵ тавтологією або протиріччям:

$$((p \land q) \rightarrow (q \leftrightarrow r)) \rightarrow (\vdash (p \lor r));$$

p	Q	r	pvd	q⇔r	$p \lor r$	$\vdash(p \lor r)$	$(p \land q) \rightarrow (q \leftrightarrow r)$	$((p \land q) \rightarrow (q \leftrightarrow r)) \rightarrow (\neg (p \lor r))$
0	0	0	0	1	0	1	1	1
0	0	1	0	0	1	0	1	0
0	1	0	0	0	0	1	1	1
0	1	1	0	1	1	0	1	0
1	0	0	0	1	1	0	1	0
1	0	1	0	0	1	0	1	0
1	1	0	1	0	1	0	0	1
1	1	1	1	1	1	0	1	0

Висновок: висловлювання не ϵ ані тавтологією ані протиріччям, воно нейтральне.

4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи ϵ тавтологією висловлювання:

$$((p\rightarrow q)\land (q\rightarrow q))\rightarrow p;$$

Доведення будемо будувати від протилежного:

Припустимо що вираз $((p \rightarrow q) \land (q \rightarrow q)) \rightarrow p$ не тавтологія,

це означає, що хочаб раз висловлювання набуває значення False.

Тоді нехай
$$((p \rightarrow q) \land (q \rightarrow q)) \rightarrow p = False.$$

При операції імплікації, висловлювання набуває значення False лише у випадку, коли перша логічна операція = True, а друга False.

Тоді нехай $(p \rightarrow q) \land (q \rightarrow q) = \text{True}$, а p = False.

Замінимо всі значення р на False.

$$(False \rightarrow q) \land (q \rightarrow q) = True$$

При операції кон'юнкції, висловлювання набуває значення True лише коли обидва логічні вирази = True. Отже:

(False
$$\rightarrow$$
q) = True.

$$(q \rightarrow q) = True.$$

При операції імплікації, висловлювання набуває значення False лише у випадку, коли перша логічна операція = True, а друга False.

Тому твердження (False \rightarrow q) = True правдиве.

У твердженні $(q \rightarrow q) = True$, обидва логічні вирази набувають однакових значень (або True або False), тому ситуація коли перша логічна операція = True, а друга False неможлива.

Отже твердження $(q \rightarrow q) = \text{True}$ правдиве.

Висновок: так як ми довели, що висловлювання може набувати значень False, можна стверджувати що це не тавтологія.

5. Довести, що формули еквівалентні:

$$p \rightarrow (q \land r) \text{ Ta } p \lor (q \oplus r).$$

Доведення будемо будувати від протилежного:

За правилом усунення імплікації, перетворимо $p \rightarrow (q \land r)$

на
$$\vdash$$
р \lor ($q \land r$).

Тепер маємо 2 твердження $\vdash p \lor (q \land r)$ та $p \lor (q \oplus r)$.

Допустимо що формули не еквівалентні.

Так як в першій формулі маємо атом p, а в другій його заперечення, якийсь з них обов'язково набуде значення True. А так як в обох формулах основна логічна операція це диз'юнкція, якась з формул обов'язково набуде значення True. Тому щоб формули були не еквівалентні, твердження $(q \land r)$ та $(q \oplus r)$ повинні одночасно набути значення False, тоді незалежно від значення p, формули будуть не еквівалентними.

Тому нехай (q∧r) = False

та
$$(q \oplus r) = False$$

Для того, щоб ці два вирази одночасно набули значення False, значення q та r повинні = False.

Якщо значення q та r = False, то твердження $(q \land r)$ та $(q \oplus r)$ = False.

Тоді незалежно від значення p, одне з тверджень $\neg p \lor (q \land r)$ та $p \lor (q \oplus r)$ набуде значення True a інше False, отже робимо висновок, що вони не еквівалентні.

Завдання 2

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступниї формули:

$$(x{\rightarrow}\;(y{\rightarrow}z))\rightarrow((x{\wedge}y)\rightarrow z0;$$

Код програми на мові С++:

```
#include <iostream>
using namespace std;
int main()
\{ int x,y,z; 
  cout << "Enter x, y and z \n";
  do
 \{ cout << "x = "; cin >> x; \}
 \} while(x<0||x>1);
  do
 { cout<<"y = "; cin >> y;
 } while(y<0||y>1);
 do
 \{ cout << "z = "; cin >> z; 
 while(z<0||z>1);
  if((x\&\&y\&\&!z)||(!x||!y||z))
     {
       cout<<"True";</pre>
     } else
     cout<<"False";</pre>
     } }
```

Скріншоти коду та роботи програми:

```
#include <iostream>
         using namespace std;
 4
 5
         int main()
     □ {
 7
             int x,y,z;//отолошуемо змінні.
 8
             cout<<"Enter x, y and z \n";//Виволимо на екран повіломлення "Enter x, y and z ". do{cout<<"x = "; cin >> x;}while(x<0||x>1);//Просимо користувача ввести значення пля x, do{cout<<"y = "; cin >> y;}while(y<0||y>1);//поки користувач не введе 1 або 0.
9
10
11
               do{cout << "z = "; cin >> z;} while (z<0 | |z>1);
12
13
               if((x \epsilon \epsilon y \epsilon \epsilon! z) || (!x||!y||z)) // Якшо вираз істинний, виводимо значення True.
14
                           cout<<"True";
15
16
17
               else //Якщо вираз хибний, виводимо значення False.
18
                    cout<<"False";</pre>
       }
21
22
```

```
Enter x, y and z
x = 1
y = 0
z = 2
z = 1
True
Process returned 0 (0x0) execution time : 9.817 s
Press any key to continue.
```

Висновок: під час виконання лабораторної роботи я ознайомився на практиці із основними поняттями математичної логіки, навчився будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїв методи доведень.