Audio source separation with magnitude priors: the BEADS model

Antoine Liutkus 1 , Christian Rohlfing 2 , Antoine Deleforge 3

- ¹ Zenith team, Inria, University of Montpellier, France
- ² RWTH, Aachen University, Germany
- ³ Inria Rennes Bretagne Atlantique, France

Context

Separation of complex random variables

The source separation problem

For each Time-Frequency bin, the mixture is the sum of sources $x = \sum_{i} s_{i}$

The source separation problem

For each Time-Frequency bin, the mixture is the sum of sources $x = \sum_{i} s_{i}$

Typical separation pipeline

In this talk

- Filtering from magnitude estimates $b_j>0$ to separated signals $s_j\in\mathbb{C}$
- ullet Tractable model for **complex variables** s_j with (approximately) known magnitude b_j

In the paper

- The multichannel case
- Evaluation for audio coding

⇒ Highest probability mass on 0

- ⇒ Aligned estimated sources, magnitudes inconsistent with prior
- ⇒ Uncertainty independent of the mixture

- ⇒ Still estimating aligned sources rather than complying with the magnitude prior
- ⇒ No tractable uncertainty

An ideal model

The donut-shaped distribution

Objective

What do we want of a probabilistic model for a complex random variable with (approximately) known magnitude?

Objective

What do we want of a probabilistic model for a complex random variable with (approximately) known magnitude?

Objective

What do we want of a probabilistic model for a complex random variable with (approximately) known magnitude?

The Donut distribution for modeling the sources

- \Rightarrow No model for the sum of donut variables
- \Rightarrow No easy way for separation: $\mathbb{P}\left[s\mid x\right]$ non tractable

BEADS Bayesian Expansion to Approximate the Donut Shape

Sources distribution as a Gaussian Mixture Model: $P\left[s_{j}\right] = \sum_{c} \pi[c] \mathcal{N}\left(s_{j} \mid b_{j}\omega^{c}, \sigma_{j}\right)$

BEADS Bayesian Expansion to Approximate the Donut Shape

Sources distribution as a Gaussian Mixture Model: $P\left[s_{j}\right] = \sum_{c} \pi[c] \mathcal{N}\left(s_{j} \mid b_{j}\omega^{c}, \sigma_{j}\right)$

BEADS Bayesian Expansion to Approximate the Donut Shape

Sources distribution as a Gaussian Mixture Model: $P\left[s_{j}\right] = \sum_{c} \pi[c] \mathcal{N}\left(s_{j} \mid b_{j}\omega^{c}, \sigma_{j}\right)$

BEADS Bayesian Expansion to Approximate the Donut Shape

Sources distribution as a Gaussian Mixture Model: $P\left[s_{j}\right] = \sum_{c} \pi[c] \mathcal{N}\left(s_{j} \mid b_{j}\omega^{c}, \sigma_{j}\right)$

BEADS Bayesian Expansion to Approximate the Donut Shape

Sources distribution as a Gaussian Mixture Model: $P\left[s_{j}\right] = \sum_{c} \pi[c] \mathcal{N}\left(s_{j} \mid b_{j}\omega^{c}, \sigma_{j}\right)$

Summing beads random variables

BEADS model for the sources ⇒ Gaussian Mixture Model for the mixture

Summing beads random variables

BEADS model for the sources ⇒ Gaussian Mixture Model for the mixture

Summing beads random variables

BEADS model for the sources ⇒ Gaussian Mixture Model for the mixture

The sources are estimated through Bayes theorem as $s \mid x = \sum_c \pi(c \mid x) \mathcal{N}(s \mid \mu_{c|x}, \sigma_{|x})$

The sources are estimated through Bayes theorem as $s \mid x = \sum_{c} \pi(c \mid x) \mathcal{N}(s \mid \mu_{c|x}, \sigma_{|x})$

- ⇒ Posterior is tractable, estimates consistent with the magnitude prior
- ⇒ Uncertainty is mix-dependent

The sources are estimated through Bayes theorem as $s \mid x = \sum_{c} \pi(c \mid x) \mathcal{N}(s \mid \mu_{c|x}, \sigma_{|x})$

- ⇒ Posterior is tractable, estimates consistent with the magnitude prior
- ⇒ Uncertainty is mix-dependent

The sources are estimated through Bayes theorem as $s \mid x = \sum_{c} \pi(c \mid x) \mathcal{N}(s \mid \mu_{c|x}, \sigma_{|x})$

- ⇒ Posterior is tractable, estimates consistent with the magnitude prior
- ⇒ Uncertainty is mix-dependent

Conclusion: The beads model

Core advantages

- Complex random variables with approximately known magnitudes
- Sums of beads sources is a GMM
- Separation is easy as GMM inference

To go further

- Generalizes easily to multichannel
- Shared variances for the beads ⇒ computational savings

Source code for this presentation

https://github.com/aliutkus/beads-presentation