Programozáselmélet - minta 2. ZH

1.
$$A=(x:\mathbb{Z}^n, max:\mathbb{Z})$$
 (42 pont)
$$B=(x':\mathbb{Z}^n)$$

$$Q=(x=x'\wedge n\geqslant 1)$$

$$R=(Q\wedge (\forall k\in [1..n]\colon x[k]\leqslant max)\wedge (\exists j\in [1..n]\colon max=x[j])$$
)

Bizonyíts
d be hogy a fentebb specifikált feladatot megoldja a következ
ő ${\cal S}$ program.

<u>S</u>	
i, max := 2, x[1]	
$i \neq n+1$	
$x[i] > max$ $x[i] \leqslant max$	
max, i := x[i], i + 1 $i := i + 1$	

A program segédváltozója: $i:\mathbb{N}$

$$Q'=(Q\wedge i=2\wedge max=x[1])$$
 a szekvencia közbülső állítása. $P=(Q\wedge i\in [2..n+1]\wedge (\forall k\in [1..i-1]\colon x[k]\leqslant max)\wedge (\exists j\in [1..i-1]\colon max=x[j])$ a ciklus invariánsa.

t = n - i + 1 a ciklus termináló függvénye.

Az x tömböt 1-től a hosszáig (n) indexeljük.

2. Adott a következő feladat:

```
A = (x:\mathbb{Z}) B = (x':\mathbb{Z}) Q = (x = x' \land x = 0)
```

R = (x = 1)

Bizonyítsd be hogy az alábbi program megoldja a megadott feladatot.

parbegin $S_1 \parallel S_2$ parend

$$S_1$$
:
$$\{x=0 \lor x=1\}$$
 await $x=1$ then SKIP ta $\{x=1\}$

$$S_2$$
:
 $\{x = 0\}$
 $x := 1$
 $\{x = 1\}$

3. $A = (i:\mathbb{N}, n:\mathbb{N}).$ (6 pont)

$$S = (i := 1; DO(i \neq n, IF(2 \mid i \land i \leq 12 : i := i + 1, 2 \nmid i \lor (2 \mid i \land 12 \leq i < 20) : i := i + 3)))$$

Rajzold fel az S program struktogramját és határozd meg mit rendel az $\{i:2,n:12\}$ és az $\{i:1,n:13\}$ állapotokhoz.

(12 pont)