Übungsblatt 06 Elias Gestrich

Aufgabe 6.1:

(a)

$$\sigma = \begin{pmatrix} 1 & 3 & 6 & 9 \end{pmatrix} \begin{pmatrix} 2 & 8 \end{pmatrix} \begin{pmatrix} 4 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 9 \end{pmatrix} \begin{pmatrix} 1 & 6 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 8 \end{pmatrix} \begin{pmatrix} 4 & 7 \end{pmatrix}$$

Also

$$sign(\sigma) = -1$$

(b) Zu zeigen $(\sigma\tau)(\alpha) = (\tau\sigma)(\alpha)$ für alle $\alpha \in \mathbb{N}_n$: Für $\sigma(\alpha) \neq \alpha$, gilt $\tau(\alpha) = \alpha$ und $\sigma(\sigma(\alpha)) \neq \sigma(\alpha)$, also $\tau(\sigma(\alpha)) = \sigma(\alpha)$, daraus folgt:

$$\sigma(\tau(\alpha)) = \sigma(\alpha) = \tau(\sigma(\alpha))$$

Sei $\sigma(\alpha) = \alpha$, zum Widerspruch

$$\sigma(\tau(\alpha)) \neq \tau(\sigma(\alpha)) = \tau(\alpha)$$

Daraus folgt aber $\tau(\tau(\alpha)) = \tau(\alpha)$, also auch $\tau(\alpha) = \alpha$, also $\alpha = \sigma(\alpha) = \sigma(\tau(\alpha)) \neq \tau(\alpha) = \alpha$ was ein Widerspuch ist, also muss $\sigma(\tau(\alpha)) = \tau(\sigma(\alpha))$ was zu beweisen war.

- (c) Mithilfe vollständiger Induktion:
 - **I.A.** Für m=1 gilt τ und α_1 sind genau dann disjunkt, wenn τ und α_1 disjunkt sind.
 - **I.V.** $\tau, \alpha_1, \ldots, \alpha_m \in S_n$ mit $\alpha_1, \ldots, \alpha_m$ paarweise disjunkt so, dass $\alpha_1 \cdots \alpha_m$ und τ genau dann disjunkt, wenn für alle $1 \leq i \leq m$ die Permutationenen τ und α_i disjunkt sind.
 - **I.S.** Zu zeigen, wenn $\alpha_1, \ldots, \alpha_{m+1}$ paarweise disjunkt, dann ist $\alpha_1 \cdots \alpha_{m+1}$ und τ genau dann disjunkt, wenn für alle $1 \leq i \leq m+1$ die Permutationen τ und α_i disjunkt sind.

Beh. τ und $\alpha_1 \cdots \alpha_{m+1}$ genau dann disjunkt, wenn τ und $\alpha_1 \cdots \alpha_m$ disjunkt und τ und α_{m+1} disjunkt.

Aus der I.V. folgt, dass $\alpha_1 \cdots \alpha_m$ und α_{m+1} disjunkt.

Sei $\alpha_1 \cdots \alpha_{m+1}$ und τ disjunkt, zu zeigen für all $1 \leq i \leq m+1$ sind τ und α_I disjunkt. Zum Widerspruch: $\exists \alpha \in \mathbb{N}_n, 1 \leq i \leq m+1 : \tau(\alpha) \neq \alpha \neq \alpha_i$. Also

$$\prod_{j\neq i}\alpha_j$$

disjunkt zu α_i aus I.V., also $\alpha_1 \cdots \alpha_{m+1} = \alpha_i \prod_{j \neq i} \alpha_j$, also $\alpha_1 \cdots \alpha_{m+1}(\alpha) = \alpha_i(\alpha) \neq \alpha$, also sind $\alpha_1 \cdots \alpha_{m+1}$ und τ nicht disjunkt, was ein Widerspruch ist.

Seien für alle $1 \leq i \leq m+1$ die Permutationen τ und α_i disjunkt, zu zeigen $\alpha_1 \cdots \alpha_{m+1}$ und τ sind disjunkt.

Zum Widerspruch: τ nicht disjunkt $\alpha_1 \cdots \alpha_{m+1}$, also existiert ein $\alpha \in \mathbb{N}_n$ so, dass $\tau(\alpha) \neq \alpha \neq \alpha_1 \cdots \alpha_{m+1}(\alpha)$, also existiert ein $1 \leq i \leq m+1$ mit $\alpha_i(\alpha) \neq \alpha \neq \tau$, was im Widerspruch zur Annahme steht.

Aufgabe 6.2:

- (a) Beweis durch vollständige Induktion:
 - **I.A.** $|S_1| = |\{(1)\}| = 1 = 1!$
 - I.V. $|S_n| = n!$
 - **I.S.** Beh. $|S_{n+1}| = (n+1)!$. Beh. $S_{n+1} = \{ \sigma (i \ n+1) : \sigma \in S_n \text{ und } i \in \mathbb{N}_{n+1} \}$, wobei $(n+1 \ n+1) := (1)$ sein soll.
 - "C": Sei $\tau \in S_{n+1}$ zu zeigen, es gibt ein $\sigma \in S_n$ und ein $i \in \mathbb{N}_{n+1}$ mit $\tau = \sigma$ $(i \quad n+1)$. Wähle σ mit $\sigma(\alpha) := \tau(\alpha)$ für $\alpha \in \mathbb{N}_{n+1}$ mit $\alpha \neq \tau^{-1}(n+1)$ und $\alpha \neq n+1$. Sei $\sigma(\tau^{-1}(n+1)) := \tau(n+1)$ und $\sigma(n+1) = n+1$, und wähle $i := \tau^{-1}(\alpha)$ so, dass $\sigma \in S_n$ ist und $\tau(\alpha) = \sigma(\alpha) = \sigma(\alpha)$ $(i \quad n+1)$ (α) für $i \neq \alpha \neq n+1$ und $\tau(n+1) = \sigma(i) = \sigma(i \quad n+1)$ (n+1) und $\tau(i) = n+1 = \sigma(n+1) = \sigma(i \quad n+1)$ (i), also $\tau = \sigma(i \quad n+1)$.
 - "": Sei $\sigma \in S_n$ und $1 \le i \le n+1$, also $(i \quad n+1) \in S_{n+1}$, also $\sigma(i \quad n+1) \in S_{n+1}$ was zu zeigen war.
 - Beh. $\forall \sigma, \tau \in S_n, i, j \in \mathbb{N}_{n+1} : \sigma(i \quad n+1) = \tau(j \quad n+1) \implies \sigma = \tau \land i = j$ Bew. durch Kontraposition $(\sigma \neq \tau \lor i \neq j \implies \sigma(i \quad n+1) \neq \tau(j \quad n+1))$:
 - " $\sigma \neq \tau$ ": "i = j": Es existiert $\alpha \in \mathbb{N}_n$ so, dass $\sigma(\alpha) \neq \tau(\alpha)$ für $\alpha \neq i$ gilt $\sigma(i + n + 1)(\alpha) = \sigma(\alpha) \neq \tau(\alpha) = \tau(j + n + 1)$, für $\alpha = i$ gilt $\sigma(i + n + 1)(n + 1) = \sigma(i) = \sigma(\alpha) \neq \tau(\alpha) = \tau(i) = \tau(j + n + 1)(n + 1)$, was zu zeigen war
 - " $i \neq j$ und $i \neq n+1$ ": Es existiert $\alpha \in \mathbb{N}_n$ mit $\sigma(\alpha) \neq \tau(\alpha)$, für $i \neq \alpha \neq j$ gilt $\sigma(i + 1)(\alpha) = \tau(\alpha) = \tau(j + 1)(i)$ für $i = \alpha$ gilt: $\sigma(i + 1)(\alpha) = \sigma(n+1) = n+1 = \tau(n+1) \neq \tau(j) = \tau(j + 1)(n+1) \neq \tau(j + 1)(\alpha)$
 - " $\sigma = \tau$ ": Damit $\sigma \neq \tau \lor i \neq j$ gilt, muss also $i \neq j$ gelten: $\sigma(i \quad n+1)(n+1) = \sigma(i) \neq \sigma(j) = \tau(j) = \tau(j \quad n+1)(n+1)$ was zu zeigen war

Somit gilt $|S_{n+1}| = |S_n| \cdot (n+1)$.

(b) Zu zeigen $(i_1 \ i_2 \ \dots \ i_m)$ $(i_m \ i_{m-1} \ \dots \ i_1) = (1)$. Sei hierfür $\alpha \in \mathbb{N}_n$ gegeben mit $\alpha \neq i_j$ für alle $1 \leq j \leq m$, sodass gilt: $(i_1 \ i_2 \ \dots \ i_m)$ $(i_m \ i_{m-1} \ \dots \ i_1)$ $(\alpha) = \alpha$. Sei nun $\alpha \in \mathbb{N}_n$ mit $\alpha = i_j$ für ein $1 \leq j \leq m$, so dass (i_1, i_2, \dots, i_m) $(i_m, i_{m-1}, \dots, i_1)$ $(\alpha) = (i_1, i_2, \dots, i_m)$ $(i_{j-1}) = i_j$, was zu zeigen war.

Aufgabe 6.3:

Sei $\sigma \in S_n$ gegeben, und seien $\alpha_1, \ldots, \alpha_k \in S_n$ paarweise disjunkte Zyklen mit $\sigma = \alpha_1 \cdots \alpha_k$ und $\beta_1, \ldots, \beta_l \in S_n$ paarweise disjunkte Zyklen mit $\sigma = \beta_1 \cdots \beta_l$, Œ $k \leq l$ Da α_1 ein Zyklus gilt es existieren $a_1, \ldots, a_m \in S_n$, die paarweise verschieden sind, für die gilt $(a_1 \ a_2 \ \ldots \ a_m) = \alpha_1$ da $\alpha_1, \ldots, \alpha_k$ paarweise disjunkt gilt für $1 < i \leq k, 1 \leq j \leq m$, dass $\alpha_i(a_j) = a_j$, also auch $\sigma(\alpha) = \alpha_1\alpha_2 \cdots \alpha_k(a_j) = \alpha_1(a_j) \neq a_j$, da β_1, \ldots, β_l paarweise disjunkt, sind sie nach 6.1 (b) kommutativ, also Œ gilt $\beta_1(a_j) \neq a_j$, also für $1 < i \leq k$ gilt $\beta_i(a_j) = a_j$, also

$$\alpha_1(a_j) = \alpha_1 \cdots \alpha_k(a_j) = \sigma(a_j) = \beta_1 \cdots \beta_k(a_j) = \beta_1(a_j)$$

Also $(a_1 \ a_2 \ \dots \ a_m) = \beta_1$. Führe dies für $\alpha_2, \dots, \alpha_k$ weiter, so dass, $\beta_i = \alpha_i$ für $1 \le i \le k$ Daraus folgt

$$\alpha_1 \cdots \alpha_k = \beta_1 \cdots \beta_k \beta_{k+1} \cdots \beta_l$$
$$(1) = \beta_{k+1} \cdots \beta_l$$

Beh. k = l (sodass $\beta_{k+1} \cdots \beta_l = (1)$), zum Widerspruch: k < l, Dann existiert $\alpha \in \mathbb{N}_n$ so, dass $\beta_{k+1}(\alpha) \neq \alpha$, da $\beta_{k+1}, \ldots, \beta_l$ paarweise disjunkte Zyklen, gilt $\beta_i(\alpha) = \alpha$ für $k+1 < i \leq l$, also $\beta_{k+1} \cdots \beta_l(\alpha) = \beta_{k+1}(\alpha) \neq \alpha = (1)(\alpha)$, was ein Widerspruch ist.

Aufgabe 6.4:

Für ein Zyklus $\sigma \in S_n$ gilt, dass a_1, \ldots, a_m existieren mit $\sigma = \begin{pmatrix} a_1 & \ldots & a_m \end{pmatrix}$, hierfür gilt $m \leq n$ und

$$(a_1 \ldots a_m)^m (a_i) = (a_1 \ldots a_m)^i (a_m) = (a_1 \ldots a_m)^{i-1} (a_1) = a_i$$

und insbesondere für $\alpha \neq a_i$ für alle $1 \leq i \leq m$: $(a_1 \ldots a_m)^m (\alpha) = \alpha$. Also gilt:

$$\sigma^{n!} = (\sigma^m)^{\prod_{i \neq m} i} = \mathrm{id}^{\prod_{i \neq m} i} = \mathrm{id}$$

Da sich alle $\tau \in S_n$ durch Produkt paarweise disjunkter Zyklen τ_1, \ldots, τ_l darstellen lässt, gilt:

$$\tau^{n!} = (\tau_1 \cdots \tau_l)^{n!}$$

$$= \underbrace{(\tau_1 \cdots \tau_l) \cdots (\tau_1 \cdots \tau_l)}_{n! - \text{mal}}$$

$$= \underbrace{\tau_1 (\tau_2 \cdots \tau_l) \cdots \tau_1 (\tau_2 \cdots \tau_l)}_{n! - \text{mal}}$$

$$\stackrel{6.1(b) \& (c)}{=} \underbrace{\tau_1 \cdots \tau_1}_{n! - \text{mal}} (\tau_2 \cdots \tau_l)^{n!} = \cdots$$

$$= \tau_1^{n!} \tau_2^{n!} \cdots \tau_l^{n!}$$

$$= \text{id} \cdot \text{id} \cdots \text{id}$$

$$= \text{id}$$