FACTORING ENRICHMENT

Math 10 · Mr. Merrick · October 22, 2025

1. Factor completely over the real numbers: $x^4 + 1$. Complete a "disguised" square and apply a difference of squares:

$$x^4 + 1 = (x^2 + 1)^2 - (\sqrt{2}x)^2 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1).$$

Each quadratic has discriminant $\Delta = 2 - 4 < 0$, so there are no real linear factors.

2. Factor completely over the real numbers: $x^4 + 4$. Note: This is a special case of the Sophie Germain identity, named for Sophie Germain. Add and subtract $4x^2$ to form a difference of squares:

$$x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - (2x)^2 = (x^2 - 2x + 2)(x^2 + 2x + 2).$$

(General form: $a^4 + 4b^4 = (a^2 - 2ab + 2b^2)(a^2 + 2ab + 2b^2)$.)

3. Factor completely over the real numbers: $x^8 - 1$. Apply successive differences of squares and use the factorization of $x^4 + 1$:

$$x^{8} - 1 = (x^{4} - 1)(x^{4} + 1) = (x^{2} - 1)(x^{2} + 1)(x^{4} + 1)$$

$$= (x-1)(x+1)(x^2+1)(x^2-\sqrt{2}x+1)(x^2+\sqrt{2}x+1).$$

4. Factor completely over the real numbers: $x^6 - 64$.

Let $u=x^2$. Then $x^6-64=u^3-4^3=(u-4)(u^2+4u+16)$. Substitute back and factor each factor over

$$x^{6} - 64 = (x^{2} - 4)(x^{4} + 4x^{2} + 16) = (x - 2)(x + 2)((x^{2} + 4)^{2} - (2x)^{2})$$
$$= (x - 2)(x + 2)(x^{2} - 2x + 4)(x^{2} + 2x + 4).$$

5. Factor completely over the real numbers: $x^{12} - y^{12}$.

Use difference of squares, cubes, and then real quadratic factors:

$$x^{12} - y^{12} = (x^6 - y^6)(x^6 + y^6) = (x^3 - y^3)(x^3 + y^3)(x^2 + y^2)(x^4 - x^2y^2 + y^4)$$
$$= (x - y)(x^2 + xy + y^2)(x + y)(x^2 - xy + y^2)(x^2 + y^2)(x^4 - x^2y^2 + y^4).$$

Over \mathbb{R} , the last quartic splits further:

$$x^4 - x^2y^2 + y^4 = (x^2 + \sqrt{3}xy + y^2)(x^2 - \sqrt{3}xy + y^2).$$

Final result:

$$(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)(x^2+y^2)(x^2+\sqrt{3}xy+y^2)(x^2-\sqrt{3}xy+y^2).$$

- 6. Determine whether each polynomial factors over the real numbers. If so, factor completely.

 - (a) $x^4 5x^2 + 4$ (b) $x^4 + 4x^2 + 4$ (c) $x^4 + 4x^2 + 5$ (a) Let $u = x^2$: $u^2 5u + 4 = (u 1)(u 4)$. Hence $(x^2 1)(x^2 4) = (x 1)(x + 1)(x 2)(x + 2)$. (b) Perfect square: $x^4 + 4x^2 + 4 = (x^2 + 2)^2$.

 - (c) Suppose $(x^2 + ax + b)(x^2 ax + b) = x^4 + (2b a^2)x^2 + b^2$. Match coefficients: $2b a^2 = 4$, $b^2 = 5$. Taking $b = \sqrt{5}$ gives $a^2 = 2\sqrt{5} 4 > 0$, so

$$x^4 + 4x^2 + 5 = (x^2 + \sqrt{2\sqrt{5} - 4} x + \sqrt{5})(x^2 - \sqrt{2\sqrt{5} - 4} x + \sqrt{5}).$$

Over \mathbb{Q} this is irreducible, but over \mathbb{R} it splits into these quadratics.