SILIGURI INSTITUTE OF TECHNOLOGY LABORATORY ASSIGNMENTS

Algorithm LAB (PCC-CS494)

Computer Science & Engineering B. Tech. 2ND Year Second Semester

Session: 2020-21

Day 1:

- a) WAP to implement **LINEAR SEARCH** iterative as well as recursive method. Estimate the running time complexity for both the cases.
- b) WAP to implement **BINARY SEARCH** iterative as well as recursive method. Estimate the running time complexity for both the cases.

Day 2:

- a) WAP to implement **QUICK** sort using Divide and Conquer Strategy. Estimate the running time for different pivots.
- b) WAP to implement **MERGE** sort using Divide and Conquer Strategy. Estimate the running time.

Day 3:

- a) WAP to implement **HEAP** sort. Estimate the running time.
- b) WAP to implement **COUNTING** sort. Estimate the running time.

Day 4:

- a) WAP to solve **TOWERS-OF-HANOI** problem using recursion. Estimate the running time.
- b) Write two recursive programs to compute X^n , where both X & n are integers, one computes it in O(n) time & other in $O(\log(n))$ time.
- c) WAP to find out nth **FIBONACCI** number using recursion and calculate the running time complexity.

Day 5:

a) WAP to **multiply a chain of matrices optimally** using iterative version of Dynamic Programming approach. Check your program for the sequence of 4 matrices <M1,M2,M3,M4> whose sequence of dimensions is <10,20,50,1,100>.

Day 6:

a) WAP to find the **Shortest path** between all the pairs of vertices of a given Graph, i.e. to implement **Floyd's algorithm**. Run your program on a graph whose length matrix representation is as follows:

0	7	5	8
8	0	7	6
8	8	0	8
4	1	11	0

Day 7:

- a) WAP to solve **4-Queens** Problem using Backtracking approach.
- b) WAP to solve **Graph Coloring** problem using Backtracking approach.

Day 8:

- a) WAP to find the **MST** of a given graph using **Prim's algorithm**. Check your program on a Graph whose length matrix is given as follows.
- b) WAP to find the **MST** of a given graph using **Kruskal's algorithm**. Check your program on a Graph whose length matrix is given as follows.

-	1	∞	4	8	∞	8
1	-	2	6	4	8	8
8	2	-	8	5	6	8
4	6	8	-	3	8	4
∞	4	5	3	-	8	7
8	8	6	8	8	-	3
8	8	8	4	7	3	-

Day 9:

a) WAP to implement **BFS** and **DFS** on a given graph where the graph is represented as an adjacency list form.

Day 10:

a) WAP to implement Knuth-Morris-Prat (KMP) algorithm for pattern matching.