IoT attack classification

EMLET project

Sławomir Batruch

Introduction

- Aim study feasibility of ML solutions usage in network security
- CICIoT2023 big dataset of attack and benign IoT packet features
- Tech stack Scikit-learn, Imbalanced-learn, XGBoost, Pytorch, Matplotlib, Seaborn, Numpy, Pandas

Dataset

- Testbed a controlled environment of IoT devices with vulnerabilities, exposed to attackers
- Feature extraction chosen packet and flow characteristics extracted from .pcap files into .csv

Packet features

- Chosen and extracted by the dataset provider
- Protocol type (HTTP, DNS, ICMP, ...)
- TCP flag information (SYN, RST, FIN, ...)
- Flow characteristics (duration, rate, lengths, time deltas, counts)
- Packet labels correspond to different attack types and subtypes

Labels

- (D)DoS (Distributed) Denial of Service
 - ICMP, UDP, TCP, HTTP ... flooding
 - Fragmentation
 - Slow Loris
- Mirai botnet (GRE, UDP flooding)
- Spoofing (ARP, DNS)
- Reconnaissance
 - OS, Port, Vulnerability scan
 - Ping sweep
- Various web attacks (SQL injection, XSS, malware...)
- Benign (harmless) packets
- Total 34 classes, can be remapped to 8 or 2 classes (binary)
- Considerable imbalance due to nature of (D)DoS attacks

Label counts

ML algorithm evaluation

- 3 scenarios: 34 classes, 8 classes (remapped), 2 classes (binary)
- 4 chosen machine learning methods were evaluated:
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - eXtreme Gradient Boost
- Only 25% of the dataset was used due to the large size
- SMOTE + under-sampling vs. no preprocessing
- Other algorithms were tested, but are not analysed due to low scores (SGD, k-neighbors, ANN (torch))

ML algorithm evaluation – metrics

- Two modes of metrics were considered macro and weighted
- Accuracy rate of correct predictions
- Precision score to determine false positives susceptibility
- Recall score to determine false negatives susceptibility
- F1 harmonic mean of precision and recall
- Main evaluation metric is f1 score (macro), not accuracy
- Confusion matrix is analysed to see algorithm prediction trends

Results – 34 classes

34 CLASSES						
Metric type	√ Model	✓ Accuracy	~	Recall -	Precision 🔽	F1 🔻
MACRO	LogisticRegresion		0.801	0.587	0.482	0.487
WEIGHTED	LogisticRegresion		0.801	0.801	0.912	0.836
MACRO	Decision Tree		0.993	0.819	0.832	0.824
WEIGHTED	Decision Tree		0.993	0.993	0.993	0.993
MACRO	Random Forest		0.992	0.851	0.718	0.729
WEIGHTED	Random Forest		0.992	0.992	0.994	0.993
MACRO	eXtreme Gradient Boosting		0.992	0.794	0.726	0.740
WEIGHTED	eXtreme Gradient Boosting		0.992	0.992	0.993	0.993

34 CLASSES; PREPROCESSED							
Metric type	▼ Model	▼ Accuracy	Recall -	Precision 🔻 F	1 🔽		
MACRO	LogisticRegresion	0.78	8 0.505	0.559	0.496		
WEIGHTED	LogisticRegresion	0.78	0.788	0.828	0.798		
MACRO	Decision Tree	0.99	1 0.771	0.831	0.794		
WEIGHTED	Decision Tree	0.99	0.991	0.990	0.990		
MACRO	Random Forest	0.99	1 0.759	0.767	0.759		
WEIGHTED	Random Forest	0.99	0.991	0.991	0.991		
MACRO	eXtreme Gradient Boostin	ng 0.99	4 0.835	0.827	0.829		
WEIGHTED	eXtreme Gradient Boostin	ng 0.99	4 0.994	0.994	0.994		

Results – 8 classes

8 CLASSES						
Metric type	✓ Model	Accuracy 🔽	Recall 🔽	Precision 🔽 F	1 🔻	
MACRO	LogisticRegresion	0.831	0.758	0.512	0.540	
WEIGHTED	LogisticRegresion	0.831	0.831	0.952	0.878	
MACRO	Decision Tree	0.994	0.822	0.837	0.828	
WEIGHTED	Decision Tree	0.994	0.994	0.994	0.994	
MACRO	Random Forest	0.995	0.934	0.716	0.735	
WEIGHTED	Random Forest	0.995	0.995	0.996	0.995	
MACRO	eXtreme Gradient Boosting	0.995	0.838	0.730	0.752	
WEIGHTED	eXtreme Gradient Boosting	0.995	0.995	0.995	0.995	

8 CLASSES; PREPROCESSED							
Metric type ▼	Model	- Accuracy -	Recall -	Precision 🔽 F1	. v		
MACRO	LogisticRegresion	0.809	0.561	0.545	0.490		
WEIGHTED	LogisticRegresion	0.809	0.809	0.893	0.837		
MACRO	Decision Tree	0.994	0.780	0.840	0.803		
WEIGHTED	Decision Tree	0.994	0.994	0.993	0.993		
MACRO	Random Forest	0.994	0.819	0.780	0.784		
WEIGHTED	Random Forest	0.994	0.994	0.994	0.994		
MACRO	eXtreme Gradient Boosting	0.995	0.839	0.847	0.834		
WEIGHTED	eXtreme Gradient Boosting	0.995	0.995	0.995	0.995		

Results – 2 classes

2 CLASSES							
Metric type	▼ Model	Accuracy Recall	v	Precision 🔻	F1 🔻		
MACRO	LogisticRegresion	0.989	0.891	0.864	0.877		
WEIGHTED	LogisticRegresion	0.989	0.989	0.990	0.989		
MACRO	Decision Tree	0.996	0.956	0.957	0.956		
WEIGHTED	Decision Tree	0.996	0.996	0.996	0.996		
MACRO	Random Forest	0.997	0.965	0.971	0.968		
WEIGHTED	Random Forest	0.997	0.997	0.997	0.997		
MACRO	eXtreme Gradient Boostir	ng 0.997	0.959	0.973	0.966		
WEIGHTED	eXtreme Gradient Boostir	ng 0.997	0.997	0.997	0.997		

2 CLASSES; PREPROCESSED								
Metric type ▼	Model	Accuracy 🔽	Recall 🔽	Precision 🔽 i	1 ▼			
MACRO	LogisticRegresion	0.982	0.952	0.637	0.708			
WEIGHTED	LogisticRegresion	0.982	0.982	0.994	0.987			
MACRO	Decision Tree	0.995	0.957	0.939	0.948			
WEIGHTED	Decision Tree	0.995	0.995	0.995	0.995			
MACRO	Random Forest	0.996	0.976	0.938	0.957			
WEIGHTED	Random Forest	0.996	0.996	0.996	0.996			
MACRO	eXtreme Gradient Boosting	0.997	0.969	0.963	0.966			
WEIGHTED	eXtreme Gradient Boosting	0.997	0.997	0.997	0.997			

Example confusion matrix

Conclusions

- Decision tree and random forest manage relatively well even on an unbalanced data set
- After preprocessing dataset (under-sampling + SMOTE), the results are slightly better
- Classical ML algorithms performed better than ANN.
 - More complicated ANN design, hyperparameter tuning and further data preprocessing might be needed for ANN to compete with other solutions
- Overall, application of ML for packet analysis can be a good enhancement to existing systems

Thank you for your attention