Exercices d'oraux banque PT 2025 - Mathématiques

Table des matières

1	Mines Télécom	1
2	Maths I	4
3	Maths II	7
4	Questions de cours	10

1 Mines Télécom

exercice 1:

On définit le produit scalaire sur $\mathcal{M}_2(\mathbb{R})$ par, pour tout $M, N \in \mathcal{M}_2(\mathbb{R})$,

$$\langle M, N \rangle = \operatorname{Tr} \left(M^{\top} N \right)$$

On pose
$$F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, (a, b) \in \mathbb{R}^2 \right\}$$
.

- 1. Déterminer une base orthonormée de F^{\perp} .
- 2. Déterminer le projeté de $J=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur F^{\perp} .
- 3. Déterminer la distance de J à F.

exercice 2:

On considère les deux fonctions f et g définies par, pour tout $x,y\in\mathbb{R}: f(x,y)=x^2+y^2+xy+1$ et $g(x,y)=x^2+y^2+2xy+2$.

- 1. Déterminer les points critiques de f et g.
- 2. En repérant le début d'un carré, déterminer la nature des extrema locaux de f.
- 3. En utilisant deux droites, déterminer la nature des extrema locaux de g.

exercice 3:

On pose, pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, $I_n = \int_0^{\pi} \sin^{2n}(t) dt$ et $F(x) = \int_0^{\pi} \cos(x \sin(t)) dt$.

- 1. Exprimer I_n en fonction de I_{n-1} .
- 2. Exprimer I_n en fonction de n (et de factorielles).

- 3. Montrer que $f_t: x \mapsto \cos(x\sin(t))$ est développable en série entière en 0 et donner son développement en série entière
- 4. En utilisant d'intégration terme à terme, donner un développement en série entière en 0 de F.

exercice 4:

- 1. Diagonaliser $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
- 2. La matrice $B_a=\begin{pmatrix}1+a&1&1\\1&1+a&1\\1&1&1+a\end{pmatrix}$ est-elle diagonalisable? Si oui, la diagonaliser.

exercice 5:

Déterminer le rayon de courbure, les centres de courbure et tracer la courbe paramétrée définie par :

$$\begin{cases} x(t) &= t \\ y(t) &= \ln(\cos(t)) \end{cases}$$

exercice 6:

Déterminer, pour $\alpha \in \mathbb{R}_+^*$, la nature de $\sum_{n \in \mathbb{N}^*} \ln \left(1 + \frac{(-1)^n}{n^{\alpha}} \right)$.

exercice 7:

Soit $(a, b) \in \mathbb{R}^2$, $n \in \mathbb{N}^*$. On pose, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $u(M) = aM + bM^{\top}$.

- 1. Montrer que u est un endomorphisme.
- 2. Montrer que u est diagonalisable et donner ses valeurs propres.
- 1. Calculer tr(u) et det(u).

exercice 8:

Soit $n \in \mathbb{N}^*$ $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$. Discuter de la diagonalisabilité de $M = XY^{\top}$.

exercice 9:

1. Soit $a, b, c \in \mathbb{R}$. Trouver a, b et c tels que, pour tout $t \in \mathbb{R} \setminus \{-1, 0, 1\}$, on ait :

$$\frac{2}{t(t^2-1)} = \frac{a}{t} + \frac{b}{t-1} + \frac{c}{t+1}$$

2

2. Résoudre $t(t^2 - 1)x' + 2x = \frac{t}{t^2 - 1}$.

exercice 10:

On pose $A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$ et pour tout $M \in \mathcal{M}_2(\mathbb{R}), f(M) = AM$.

1. L'application f est-elle un endomorphisme?

- 2. Déterminer les dimensions de Ker(f) et Im(f).
- 3. Est-ce que f est diagonalisable?

exercice 11:

On considère l'équation différentielle :

(E):
$$2x(x-1)y'' + (x+1)y' - y = 0$$

- 1. Déterminer les solutions polynomiales de (E).
- 2. On suppose que $x \mapsto x^{\alpha}$ est une solution de (E). Déterminer α .
- 3. Résoudre complètement (E).

exercice 12:

Déterminer les plans tangents à $S: x^2 - 3y^2 + z^2 = 1$ passant par A(1,0,1) (on se place dans un espace euclidien . . .)

exercice 13:

On considère l'équation différentielle :

(E):
$$(x^2 + x)y'' + (3x - 1)y' + y = 0$$

- 1. Déterminer les solutions développables en série entière de (E).
- 2. Déterminer les solutions de (E) qui s'écrivent sous la forme $y(x) = \frac{z(x)}{1+x}$.

exercice 14:

$$\begin{cases} x(u,\theta) &= e^{-u}\cos(\theta) \\ y(u,\theta) &= e^{-u}\sin(\theta) \\ z(u,\theta) &= \int_0^u \sqrt{1 - e^{-2t}} \,\mathrm{d}\, t \end{cases}$$

- 1. Soit $\theta \in \mathbb{R}$ fixé. Montrer que C_{θ} : $(x(u,\theta),y(u,\theta),z(u,\theta))$ est une courbe plane. Dans quel plan est-elle contenue?
- 2. Soit $u \in \mathbb{R}$. On pose $\Gamma_u : \theta \mapsto (x(u,\theta),y(u,\theta),z(u,\theta))$. Quel est le type de courbe? Donner son équation.
- 3. Trouver le point d'intersection des tangentes telles qu'elles soient orthogonales.

exercice 15:

Soit $n \in \mathbb{N}^*$. Une urne contient 2n boules numérotées de 1 à 2n. On tire n boules.

- 1. Combien existe-t-il de façons de tirer n boules?
- 2. Soit $k \in [1, 2n]$. Quelle est la probabilité de ne pas tirer la boule numérotée k?
- 2. Soit $k_1, k_2 \in [1, 2n]$ avec $k_1 \neq k_2$. Quelle est la probabilité de ne pas tirer les boules numérotées k_1 et k_2 ?

2 Maths I

exercice 1:

Soit $n \in \mathbb{N}^*$. On pose Q un polynôme tel que $\deg(Q) \leq n$. On définit alors f_Q sur $E = \mathbb{R}_n[X]$ par :

$$\forall P \in E, \quad f_Q(P) = (PQ)^{(n)}$$

- 1. Montrer que f_Q est un endomorphisme de E.
- 2. Donner une condition nécessaire et suffisante sur Q pour que f_Q soit un automorphisme.
- 3. Donner une condition nécessaire et suffisante sur Q pour que f_Q soit diagonalisable. Donner $\mathrm{Im}(f_Q)$ et $\mathrm{Ker}(f_Q)$.
- 4. Soit n=2. Donner les sous-espaces propres de f_Q pour :
- a) Q = X 1
- b) $Q = X^2 + X + 1$

exercice 2:

On considère la série $\sum_{n\geq 1} \left(\frac{1}{n} - \frac{1}{n+x}\right)$.

1. Montrer que pour $x \ge 0$, cette série converge.

On pose, pour tout $x \in \mathbb{R}_+$, $S(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right)$.

- 2. Montrer que S est dérivable sur \mathbb{R}_+ et que pour tout $x \in \mathbb{R}_+$, $S'(x) = \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$.
- 3. Calcular $\int_{1}^{+\infty} \left(\frac{1}{t} \frac{1}{t+x} \right) dt$.

exercice 3 : s Soit β la courbe paramétrée définie par, pour $a \in \mathbb{R}_+$:

$$\beta: \begin{cases} x(t) &= a(t - \cos(t)) \\ y(t) &= a(1 - \sin(t)) \end{cases}, \quad t \in]0, 2\pi[$$

- 1. Calculer la longueur de la courbe.
- 2. On cherche à trouver les courbes Γ qui vérifient les conditions suivantes : il existe une droite \mathcal{D} et une abscisse curviligne s telles que quel que soit $M \in \Gamma$, l'image de M par la translation de vecteur $-\frac{S}{2}\overrightarrow{T}$ appartient à la droite \mathcal{D} .
- a) Ceci est-il vrai pour β et $\mathcal{D}: y = ax$? Si oui, quelle est l'origine de s?

exercice 4:

Soit S une surface définie par z = f(x, y), avec f de classe \mathcal{C}^1 sur \mathbb{R} .

- 1. Déterminer le vecteur normal à S.
- 2. Montrer que si la normale à S en M_0 est parallèle à (Oz) ou coupe (Oz), alors on a la relation

$$y_0 \frac{\partial f}{\partial x}(x_0, y_0) - x_0 \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

(A stuce : trouver une relation entre $\overrightarrow{OM_0}, \ \overrightarrow{n} \ \text{et} \ \overrightarrow{k}.)$

- 3. Soit $g = f(r\cos(\theta), r\sin(\theta))$. Déterminer les dérivées partielles de g.
- 4. Montrer que S est une surface de révolution si la normale à S est parallèle à (Oz) ou sécante à (Oz).

exercice 5:

Soit $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. On suppose que $\operatorname{rg}(A) = 1$. Montrer qu'il existe $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $A = XY^{\top}$.
- 2. Qu'en est-il de la réciproque?

Dans toute la suite, on suppose que rg(A) = 1.

- 3. Montrer que $A^2 = \text{Tr}(A)A$.
- 4. Déterminer une expression de A^k pour $k \in \mathbb{N}^*$.
- 5. À quelle condition nécessaire et suffisante a-t-on $A^n = 0$? (condition sur la trace)
- 6. À quelle condition nécessaire et suffisante A est-elle diagonalisable?

exercice 6:

Soit $A \in \mathbb{R}$, et f une fonction continue et décroissance sur $[A, +\infty[$.

1. Soit $p \in \mathbb{N}^*$ et $N \in \mathbb{N}^*$ avec $N \leq p$. Montrer que :

$$\int_A^{\frac{(p+1)A}{N}} f(t) \, \mathrm{d} \, t \leq \frac{1}{N} \, \sum_N^p f\left(\frac{nA}{N}\right) \leq \int_A^{\frac{pA}{N}} f(t) \, \mathrm{d} \, t + f\left(\frac{A}{N}\right)$$

2. Montrer que $\sum_{n=N}^{+\infty} f\left(\frac{nA}{N}\right)$ converge.

exercice 7:

On note $(u_n)_{n\in\mathbb{N}}$ une suite de premier terme $u_0=1$ et telle que pour tout $n\in\mathbb{N}$, $u_{n+1}=\frac{2n+2}{2n+5}u_n$.

- 1. On définit $(v_n)_{n\in\mathbb{N}}$ une suite de terme général $v_n=\frac{(n+1)^{\alpha}}{n^{\alpha}}\times\frac{u_{n+1}}{u_n}$ avec $\alpha\in\mathbb{R}_+^*$. Déterminer un α_0 tel que la série $\sum_{n\in\mathbb{N}}\ln(v_n)$ converge.
- 2. Montrer qu'il existe $C \in \mathbb{R}_+^*$ tel que $u_n \underset{n \to +\infty}{\sim} \frac{C}{n^{\frac{3}{2}}}$.

exercice 8:

On définit, pour $n \in \mathbb{N}$ le polynôme T_n par $T_n : x \mapsto \cos(n \arccos(x))$. Soit $n \in \mathbb{N}$.

- 1. Avec la formule de Moivre, déterminer le degré et le coefficient dominant de T_n .
- 2. Calculer T_0, T_1, T_2, T_3 .

3. Discuter de la parité de T_n .

4. Déterminer T_{n+1} en fonction de T_n et T_{n-1} .

exercice 9:

Soit
$$f: x \mapsto \frac{1}{\sqrt{1-x^2}}$$
.

1. a) Déterminer $\mathcal{D}_{f'}$ le domaine de définition de la dérivée de f et calculer f'.

b) Montrer que f est solution d'une équation différentielle.

2. a) On pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$. Déterminer une relation entre a_{n+1} et a_{n-1} .

b) En déduire le développement en série entière de f.

exercice 10:

Soient U, V deux variables aléatoires indépendantes suivant une loi binomiale de paramètres $\left(2, \frac{1}{2}\right)$. On pose $S = (U-1)^2 + (V-1)^2$.

1. a) Montrer que $S \sim \mathcal{B}\left(2, \frac{1}{2}\right)$.

b) Calculer $\sigma(S^2)$.

2. On pose T = (U - 1)(V - 1) + 1.

a) Calculer E(S(T-1)).

b) Donner la loi de S.

exercice 11:

Soir Z une variable aléatoire, m son espérance, σ^2 sa variance.

1. a) Majorer $P(|Z - m| \ge \varepsilon)$.

b) On a maintenant m = 1, $\sigma = \sqrt{2}$. Que dire de P(-2 < Z < 4)?

2. On a une pièce équilibrée. Soit N la variable aléatoire qui compte le nombre de piles tant que ça fait pile. Le jeu s'arrête dès que ça fait face.

a) Soit $n \in \mathbb{N}$. Donner P(N = n).

b) Quelle est la probabilité que le jeu ne s'arrête jamais?

3 Maths II

exercice 1:

Soit $I = \left[-\frac{\pi}{2}, \, \frac{\pi}{2} \right]$ et f la fonction définie par :

$$f: I \longrightarrow \mathbb{R}$$

 $x \longmapsto x \ln(5 + \sin(x))$

6

- 1. Démontrer que f est de classe \mathcal{C}^{∞} sur I.
- 2. Encadrer $h(x) = \ln(5 + \sin(x))$ et $g(x) = \frac{1}{5 + \sin(x)}$. En déduire le signe de f' et ses variations.
- 3. Montrer que f réalise une bijection de I sur J un segment à déterminer.
- 4. Déterminer un développement limité à l'ordre 4 en 0 de f.
- 5. Déterminer f^{-1} .

exercice 2:

Soit $f: \Omega \to \mathbb{R}$ avec $\Omega = \{(x, y) \in \mathbb{R}^2; x > |y|\}$ de classe \mathcal{C}^1 , et :

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(r,t) \longmapsto f(r \cosh(t), r \sinh(t))$

- 1. Montrer que g est définie et est de classe \mathcal{C}^1 sur \mathbb{R}^2 .
- 2. Exprimer les dérivées partielles de g en fonction de celles de f.
- 3. Trouver toutes les fonctions de classe C^2 qui vérifient

$$x\frac{\partial f}{\partial y} + y\frac{\partial f}{\partial x} = \frac{\sqrt{x^2 - y^2}}{x + \sqrt{x^2 - y^2}}$$

exercice 3:

On définit, pour $x \in \mathbb{R}_+^*$, $F(x) = -\int_x^{+\infty} \frac{\arctan(t)}{t^2} dt$.

- 1. a) Montrer que l'intégrale converge.
- b) Montrer que F est dérivable et déterminer sa dérivée.
- 2. On pose l'équation différentielle $(E): xy' y = \arctan(x)$. Exprimer les solutions de (E) en fonction de F.
- 3. Déterminer la décomposition en éléments simples de $G(X) = \frac{1}{X(X^2 + 1)}$.
- 4. Montrer que $F(x) = -\frac{1}{x}\arctan(x) + \ln(x) \frac{1}{2}\ln(x^{1} + 1)$.
- 5. (E) admet-elle des solutions sur \mathbb{R}_+ ?

exercice 4:

Soit $\alpha \in \mathbb{R}$. On considère l'équation

$$z^{2} + (1 + \alpha)(1 + i)\alpha z = i\alpha^{2}(1 + \alpha^{2})$$

- 1. Déterminer les racines z_1 et z_2 en fonction de α .
- 2. Tracer les courbes décrites par M_1 et M_2 , d'affixes respectifs z_1 et z_2 , dans le plan complexe en faisant varier α .

3. Que représente la courbe tracée par I, le milieu du segment $[M_1M_2]$ pour α variant sur \mathbb{R} ?

exercice 5:

On considère un quiz avec des questions. Pour chaque question, il y a une probabilité p_n de succès. On pose $r_n = \prod p_k$. On note X la variable aléatoire comptant le nombre de succès avant le premier échec.

- 1. Donner le loi de X. Calculer $\sum_{n\in\mathbb{N}}P(X=n)$.
- 2. Justifier que X admet une espérance finie si et seulement si $\sum_{n\in\mathbb{N}} r_n$ converge. Calculer E(X) dans ce
- 3. Dire si X admet une espérance finie, si oui la calculer et interpréter :

a)
$$p_n = \frac{1}{2}$$

b)
$$p_n = \frac{1}{n}$$

b)
$$p_n = \frac{1}{n}$$
 c) $p_n = 1 - \frac{1}{n+1}$

4. Dans le cas où E(X) existe, dire si V(X) existe, et si oui donner V(X).

exercice 6:

On définit un plan $S: x^2 + y^2 - z^2 = 1$.

- 1. Déterminer l'intersection de S par un plan parallèle à (Oxy). En déduire qu'aucune droite de S n'est parallèle à (Oxy).
- 2. Montrer qu'une droite \mathcal{D} n'est pas parallèle à (Oxy) si et seulement si elle est décrite par le système $\int x = az + b$ = cz + d
- 3. Montrer qu'une droite \mathcal{D} est incluse dans \mathcal{S} si et seulement si elle est décrite par le système $\begin{cases} x = az + b \\ y = cz + d \end{cases}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ étant orthogonale.
- 4. Soit $M_0(x_0, y_0, z_0)$. Montrer qu'il existe exactement deux droites incluses dans S passant par M_0 .

exercice 7:

- 1. Soit la série $f(x) = \sum_{k=0}^{+\infty} kx^k$.
- a) Donner l'ensemble de définition \mathcal{D}_f .
- b) Trouver la (les) solution de f(x) = 1.
- 2. Soit $n \in \mathbb{N}^*$ et $f(x) = \sum_{k=1}^n kx^k$.
- a) Montrer que l'équation $f_n(x) = 1$ admet une unique solution α_n sur [0, 1]. Trouver α_1 et α_2 .
- b) Trouver la limite de α_n quand n tend vers $+\infty$.
- C) On note $\lim_{n\to+\infty} \alpha_n = \ell$. Déduire ℓ de la question 1.

exercice 8:

On pose
$$M = \begin{pmatrix} 0 & 0 & -\gamma \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$$
.

- 1. Montrer que M a une unique valeur propre réelle λ et qu'elle est comprise entre 1 et 2.
- 2. Soit σ une autre valeur propre de M différente de λ . Calculer $\lambda \left|\sigma\right|^2$.
- 3. Montrer que (I_3, M, M^2) est libre dans $\mathcal{M}_2(\mathbb{R})$ et trouver une relation entre M^3 , I_3 et M.
- 4. Déterminer les réels α, β tels que, pour tout $n \in \mathbb{N}^*$, $M^{n+3} = \alpha M^{n+1} + \beta M^n$.
- 5. On pose $u_n = \text{Tr}(M^n)$ pour $n \in \mathbb{N}$. Déterminer une relation de récurrence pour u_n .

exercice 9:

On s'intéresse à la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante : pour tout $n\in\mathbb{N}$, $u_{n+1}=\frac{\pi}{2}\sin(u_n)$. Soit $n\in\mathbb{N}$.

- 1. Montrer que pour tout $u_0 \in \mathbb{R}, u_n \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Que se passe-t-il si $u_0 = 0$?
- 2. Montrer que si $u_0 \in \left]0, \frac{\pi}{2}\right]$, alors $u_n \in \left]0, \frac{\pi}{2}\right]$.
- 3. Montrer si $u_0 \in \left]0, \frac{\pi}{2}\right]$, alors $(u_n)_{n \in \mathbb{N}}$ converge.
- 4. Montrer que pour tout $u_0 \in \mathbb{R}$, $u_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}$.
- 5. On pose $v_n = \ell u_n$. Donner la nature de la série $\sum_{n \in \mathbb{N}} v_n$.

exercice 10:

Soit F un sous-espace vectoriel défini par : $\begin{cases} x_1 + x_2 + x_3 + x_4 &= 0 \\ x_1 - x_2 + x_3 - x_4 &= 0 \end{cases}$

- 1. Déterminer la matrice dans la base canonique de la projection orthogonale sur F.
- 2. Déterminer la matrice dans la base canonique de la projection orthogonale sur F^{\perp} .
- 3. On pose X = (1, 2, 3, 4). Déterminer la distance de X à F.

exercice 11:

Soit a, b > 0. On a deux courbes paramétrées (\mathcal{E}) : $\begin{cases} x(t) &= a\cos(t) \\ y(t) &= b\sin(t) \end{cases}$ et (\mathcal{E}') : $\begin{cases} x(t) &= 2a\cos(t) \\ y(t) &= 2b\sin(t) \end{cases}$.

Soit M(t) et M(t') deux points supposés distincts $de(\mathcal{E})$. Quelles conditions sur t et t' a-t-on pour que les tangentes à \mathcal{E} aux points M(t) et M(t') se coupent en un point qui appartient à \mathcal{E}' ?

4 Questions de cours

1. Développement en série entière de l'exponentielle. Théorème de dérivabilité d'un développement en série entière. Montrer que la dérivée du développement en série entière de exp vaut bien exp.

9

2. Tous les moyens disponibles pour montrer qu'une matrice est diagonalisable.

- 3. Inégalité de Bienaymé-Tchebychev. Dans quel cas est-ce intéressant (loi faible des grand nombres)?
- 4. Tout sur la loi géométrique. Est-il plus probable que le premier succès soit pair ou impair?
- 5. Énoncer le théorème des valeurs intermédiaires et le théorème des accroissements finis. Soit $f:[0,1]\to [0,1]$ continue. Montrer que f admet un point fixe.
- 6. Tout sur la loi de Poisson.
- 7. Tout sur les coniques.
- 8. Théorème de Pythagore généralisé et démonstration.
- 9. Définition de l'espérance d'une variable aléatoire discrète. Toutes les propriétés de l'espérances. Définition de la variance. Toutes les propriétés de la variance. Démonstration de la linéarité de l'espérance.
- 10. Définition de produit scalaire. Expliquer chaque propriété. Définition de la norme, inégalité de Cauchy-Schwarz.
- 11. Théorème de comparaison série-intégrale. Application sur la série de terme général $\frac{1}{n \ln^2(n)}$.
- 12. Critère de d'Alembert pour les séries numériques et entières. Exemple de séries convergeantes et divergeantes pour le cas $\ell=1$.