BÀI TẬP CÓ LỜI GIẢI – PHẦN 1 **MÔN KỸ THUẬT SỐ**

Bộ môn Điện tử Đại Học Bách Khoa TP.HCM

Câu 1

Cho 3 số A, B, và C trong hệ thống số co số r, có các giá trị: A=35, B=62, C=141. Hãy xác định giá trị \cos số r, nếu ta có A+B=C.

Định nghĩa giá trị: A = 3r + 5, B = 6r + 2, $C = r^2 + 4r + 1$

$$A + B = C \implies (3r + 5) + (6r + 2) = r^2 + 4r + 1$$

→
$$PT b\hat{a}c 2$$
: $r^2 - 5r - 6 = 0$

$$\rightarrow r = 6$$
 $v \dot{a} r = -1 (lo \dot{a} i)$

<u>Hệ thống cơ số 6:</u> tuy nhiên kết quả cũng không hợp lý vì B = 62: không phải số cơ số 6

<u>Câu 2</u> Sử dụng tiên đề và định lý:

a. Chứng minh đẳng thức: $\overline{A} \overline{B} + \overline{A} C + B \overline{C} + A \overline{B} \overline{C} = \overline{A} \overline{C}$

VT:
$$\overline{A}\,\overline{B} + \overline{A}\,C + B\,\overline{C} + A\,\overline{B}\,\overline{C} = \overline{B}\,(\overline{A} + A\,\overline{C}) + \overline{A}\,C + B\,\overline{C}$$

$$= \overline{B}\,(\overline{A} + \overline{C}) + \overline{A}\,C + B\,\overline{C} \qquad ; \quad x + \overline{x}\,y = x + y$$

$$= \overline{A}\,\overline{B} + \overline{B}\,\overline{C} + \overline{A}\,C + B\,\overline{C}$$

$$= \overline{A}\,\overline{B} + \overline{A}\,C + \overline{C}\,(B + \overline{B})$$

$$= \overline{A}\,\overline{B} + \overline{A}\,C + \overline{C}$$

$$= \overline{A}\,\overline{B} + \overline{A}\,C + \overline{C}$$

$$= \overline{A}\,\overline{B} + \overline{A}\,C + \overline{C}$$

$$= \overline{A}\,(B + 1) + \overline{C}$$

$$= \overline{A}\,C \qquad ; \quad VP$$

b. Cho $\mathbf{A} \mathbf{B} = \mathbf{0}$ và $\mathbf{A} + \mathbf{B} = \mathbf{1}$, chứng minh đẳng thức $\mathbf{A} \mathbf{C} + \overline{\mathbf{A}} \mathbf{B} + \mathbf{B} \mathbf{C} = \mathbf{B} + \mathbf{C}$

VT:
$$A C + \overline{A}B + B C = (A + B)C + \overline{A}B$$
;
$$A + B = 1$$
$$= C + \overline{A}B$$
$$= C + \overline{A}B + AB$$
;
$$A B = 0$$
$$= C + (\overline{A} + A)B$$
$$= B + C$$
: VP

Câu 3

a. Cho hàm F(A, B, C) có sơ đồ logic như hình vẽ. Xác định biểu thức của hàm F(A, B, C).

Chứng minh F có thể thực hiện chỉ bằng 1 cổng logic duy nhất.

$$F = (\overline{\overline{A} + B) \, \overline{C}} \oplus \overline{B \, \overline{C}} = ((\overline{A} + B) \, \overline{C}) \, (B \, \overline{C}) + ((\overline{\overline{A} + B}) \, \overline{C}) \, (\overline{B} \, \overline{C})$$

$$= (\overline{A} + B) \, B \, \overline{C} + ((\overline{A} + B) + C) \, (\overline{B} + C)$$

$$= \overline{A} \, B \, \overline{C} + B \, \overline{C} + (A \, \overline{B} + C) \, (\overline{B} + C)$$

$$= B \, \overline{C} \, (\overline{A} + 1) + A \, \overline{B} + \overline{B} \, C + A \, \overline{B} \, C + C$$

$$= B \, \overline{C} + A \, \overline{B} + C \, (\overline{B} + A \, \overline{B} + 1)$$

$$= A \, \overline{B} + B \, \overline{C} + C = A \, \overline{B} + B + C = A + B + C \quad : C \, \delta \, ng \, OR$$

b. Cho 3 hàm F(A, B, C), G(A, B, C), và H(A, B, C) có quan hệ logic với nhau: $F = G \oplus \overline{H}$ Với hàm $F(A, B, C) = \prod (0, 2, 5)$ và $G(A, B, C) = \sum (0, 1, 5, 7)$.

Hãy xác định dạng \sum hoặc \prod của hàm H(A, B, C) (1,0 điểm)

$$\rightarrow$$
 $H(A, B, C) = \sum (1, 2, 7) = \prod (0, 3, 4, 5, 6)$

Câu 4 Rút gon các hàm sau bằng bìa Karnaugh (chú thích các liên kết)

a. **F1** (**W**, **X**, **Y**, **Z**) = \sum (**3**, **4**, **11**, **12**) theo dạng P.O.S (tích các tổng)

$$F1 = (X + Y)(\overline{X} + \overline{Z})(\overline{Y} + Z)$$

Hoặc
$$F1 = (X + Z)(Y + \overline{Z})(\overline{X} + \overline{Y})$$

b. F2 (A, B, C, D, E) = \sum (1, 3, 5, 6, 7, 8, 12, 17, 18, 19, 21, 22, 24) + d (2, 9, 10, 11, 13, 16, 23, 28, 29)

$$F2 = B \overline{D} \overline{E} + \overline{B} D + \overline{B} E$$

c. Thực hiện hàm F2 đã rút gọn ở câu b chỉ bằng IC Decoder 74138 và 1 cổng logic

$$F2 (B, D, E) = B \overline{D} \overline{E} + \overline{B} D + \overline{B} E$$
$$= \Sigma (1, 2, 3, 4)$$

<u>Câu 5</u>

Chỉ sử dụng 3 bộ $MUX 4 \rightarrow 1$, hãy thực hiện bộ $MUX 10 \rightarrow 1$ có bảng hoạt động:

A	В	$\boldsymbol{\mathcal{C}}$	D	F	A	В	$\boldsymbol{\mathcal{C}}$	D	F
0	0	0	0	IN0	0	1	0	1	IN5
0	0	0	1	IN1	0	1	1	0	IN6
0	0	1	0	IN2	0	1	1	1	IN7
0	0	1	1	IN3	1	0	0	0	IN8
0	1	0	0	IN4	1	0	0	1	IN9

Sắp xếp lại bảng hoạt động:

A	D	B	C	F
0	0	0	0	IN0
0	0	0	1	IN2
0	0	1	0	IN4
_0	0	1_1_	1_	<i>IN6</i>
0	1	0	0	IN1
0	1	0	1	IN3
0	1	1	0	IN5
0	1	1.	1	_ <i>IN</i> 7
1_	0_	0	_0 _	<i>IN8</i>
1	1	0	0	IN9

Ngõ vào IN8 và IN9 được chọn chỉ phụ thuộc vào A và D

Câu 6

Một hàng ghế gồm 4 chiếc ghế được xếp theo sơ đồ như hình vẽ:

G4

Nếu chiếc ghế có người ngồi thì Gi = 1, ngược lại nếu còn trống thì bằng Gi = 0 (i = 1, 2, 3, 4). Hàm F(G1, G2, G3, G4) có giá trị I chỉ khi có ít nhất 2 ghế kề nhau còn trống trong hàng. Hãy thực hiện hàm F chỉ bằng các $cổng\ NOR\ 2\ ng\~o\ vào$.

Lập bảng hoạt động: *G3* **G4** 0 1 1 1 0 1 1 0 1 0 0 **G1**-0 0 0

