Relatório: Otimização por Colônia de Formigas (ACO) para o Problema do Caixeiro Viajante - Berlin52

Autor: Manus Al

Data: 28 de junho de 2025

Problema: Traveling Salesman Problem (TSP) - Berlin52

Resumo Executivo

Este relatório apresenta a implementação e análise de resultados do algoritmo de Otimização por Colônia de Formigas (Ant Colony Optimization - ACO) aplicado ao problema clássico do Caixeiro Viajante utilizando o conjunto de dados Berlin52. O algoritmo foi desenvolvido em Python e executado com configurações otimizadas para encontrar o menor caminho que conecta todas as 52 cidades de Berlim, retornando ao ponto de origem.

Os resultados obtidos demonstram a eficácia do ACO na resolução de problemas de otimização combinatória complexos. O algoritmo convergiu para uma solução com distância total de **7659.25 unidades**, representando uma melhoria de **42.68**% em relação à solução inicial aleatória. A execução foi concluída em aproximadamente 29 segundos, utilizando 50 formigas artificiais ao longo de 500 iterações.

1. Introdução

O Problema do Caixeiro Viajante (Traveling Salesman Problem - TSP) é um dos problemas de otimização combinatória mais estudados na ciência da computação e pesquisa operacional. Classificado como NP-difícil, o TSP consiste em encontrar o menor caminho que visita todas as cidades de um conjunto exatamente uma vez e retorna à cidade de origem. A complexidade computacional cresce exponencialmente

com o número de cidades, tornando impraticável a busca exaustiva para instâncias com mais de algumas dezenas de cidades.

O conjunto de dados Berlin52 representa um benchmark clássico na literatura de TSP, contendo as coordenadas de 52 localizações em Berlim, Alemanha. Este problema foi originalmente proposto por Grötschel e tem sido amplamente utilizado para avaliar a performance de algoritmos de otimização. Com 52 cidades, o espaço de busca contém aproximadamente 1.55×10^{67} possíveis soluções, demonstrando a necessidade de algoritmos heurísticos eficientes.

A Otimização por Colônia de Formigas (Ant Colony Optimization - ACO) é uma metaheurística inspirada no comportamento de formigas reais na busca por alimento. Desenvolvida por Marco Dorigo em 1992, esta técnica baseia-se na capacidade das formigas de encontrar caminhos ótimos através da deposição e seguimento de rastros de feromônios. No contexto computacional, formigas artificiais constroem soluções de forma probabilística, utilizando informações heurísticas locais e feromônios globais acumulados por soluções anteriores.

2. Fundamentação Teórica

2.1 Algoritmo de Otimização por Colônia de Formigas

O ACO opera através de um processo iterativo onde múltiplas formigas artificiais constroem soluções para o problema de otimização. Cada formiga toma decisões probabilísticas baseadas em dois componentes principais: a informação heurística local (visibilidade) e a informação de feromônio global (experiência coletiva).

A probabilidade de uma formiga k escolher a cidade j a partir da cidade i é dada pela fórmula:

```
P(i,j) = [\tau(i,j)^{\alpha} \times \eta(i,j)^{\beta}] / \Sigma[\tau(i,l)^{\alpha} \times \eta(i,l)^{\beta}]
```

Onde: - $\tau(i,j)$ representa a concentração de feromônio na aresta entre as cidades i e j - $\eta(i,j)$ é a informação heurística, tipicamente o inverso da distância entre i e j - α controla a influência relativa do feromônio - β controla a influência relativa da informação heurística - A somatória é calculada sobre todas as cidades l ainda não visitadas

2.2 Atualização de Feromônios

O mecanismo de atualização de feromônios é fundamental para o sucesso do algoritmo. Após todas as formigas completarem suas soluções, os feromônios são atualizados em duas etapas:

Evaporação: Simula a evaporação natural dos feromônios, evitando convergência prematura:

```
\tau(i,j) = (1 - \rho) \times \tau(i,j)
```

Deposição: Formigas depositam feromônios proporcionalmente à qualidade de suas soluções:

```
\tau(i,j) = \tau(i,j) + \Sigma(Q / L_k)
```

Onde ρ é a taxa de evaporação, Q é uma constante de deposição, e L_k é o comprimento da solução da formiga k.

2.3 Características do Berlin52

O conjunto Berlin52 apresenta características específicas que influenciam a aplicação do ACO:

- **Distribuição espacial:** As 52 cidades estão distribuídas de forma irregular no plano cartesiano, com coordenadas variando de (25, 5) a (1740, 1175)
- **Distâncias euclidianas:** O problema utiliza distâncias euclidianas bidimensionais, calculadas pela fórmula padrão
- **Solução ótima conhecida:** A literatura reporta que a solução ótima para Berlin52 tem comprimento aproximado de 7542 unidades
- Densidade de conexões: Todas as cidades estão conectadas a todas as outras, caracterizando um grafo completo

3. Metodologia

3.1 Implementação do Algoritmo

A implementação do ACO foi desenvolvida em Python 3.11, utilizando as bibliotecas NumPy para operações matriciais eficientes e Matplotlib para visualização dos resultados. A arquitetura do código foi estruturada em uma classe principal ACO_TSP que encapsula todos os componentes do algoritmo.

Estruturas de Dados Principais: - Matriz de distâncias: Array bidimensional 52×52 contendo distâncias euclidianas entre todas as cidades - Matriz de feromônios: Array bidimensional 52×52 inicializado com valores pequenos (0.1) - Matriz heurística: Inverso das distâncias, fornecendo informação local sobre atratividade das conexões

Processo de Construção de Soluções: Cada formiga inicia sua jornada em uma cidade aleatória e constrói uma solução completa seguindo o processo:

- Seleção probabilística: A próxima cidade é escolhida usando a regra de transição probabilística do ACO
- 2. **Atualização da lista tabu:** Cidades visitadas são removidas das opções disponíveis
- 3. Cálculo de custos: A distância total é computada ao final do percurso

Mecanismo de Seleção por Roleta: A implementação utiliza o método de seleção por roleta para escolha probabilística das próximas cidades. Este método garante que cidades com maior probabilidade tenham maior chance de seleção, mantendo ainda a possibilidade de exploração de alternativas menos prováveis.

3.2 Configuração de Parâmetros

A configuração dos parâmetros do ACO foi baseada em valores amplamente utilizados na literatura e ajustados empiricamente para o problema Berlin52:

Parâmetro	Valor	Descrição
Número de formigas (m)	50	Quantidade de formigas artificiais por iteração
Número de iterações	500	Total de ciclos de construção e atualização
Alpha (α)	1.0	Peso da influência do feromônio
Beta (β)	2.0	Peso da informação heurística
Rho (ρ)	0.1	Taxa de evaporação do feromônio
Q	100.0	Constante de deposição de feromônio

Justificativa dos Parâmetros:

O valor de α = 1.0 proporciona influência moderada do feromônio, permitindo que a experiência coletiva guie a busca sem dominar completamente as decisões. O β = 2.0 enfatiza a importância da informação heurística local, favorecendo conexões mais curtas. A taxa de evaporação ρ = 0.1 é conservadora, mantendo informações históricas por períodos mais longos e evitando convergência prematura.

O número de formigas (50) foi escolhido para balancear exploração do espaço de busca com eficiência computacional. Valores muito baixos podem resultar em exploração insuficiente, enquanto valores muito altos aumentam o custo computacional sem benefícios proporcionais.

3.3 Critérios de Parada e Avaliação

O algoritmo utiliza um critério de parada fixo baseado no número de iterações (500). Este valor foi determinado através de análise empírica, observando que a convergência típica ocorre entre 200-300 iterações para este problema específico.

Métricas de Avaliação: - Distância da melhor solução encontrada - Histórico de convergência ao longo das iterações - Tempo de execução total - Percentual de melhoria em relação à solução inicial - Qualidade da solução em relação ao ótimo conhecido

3.4 Estrutura de Dados e Otimizações

A implementação incorpora várias otimizações para melhorar a eficiência computacional:

Pré-computação de Distâncias: Todas as distâncias euclidianas são calculadas uma única vez no início e armazenadas em matriz, evitando recálculos repetitivos durante a execução.

Operações Vetorizadas: Utilização de operações NumPy para atualização de feromônios e cálculos probabilísticos, aproveitando otimizações de baixo nível.

Gestão de Memória: Estruturas de dados são reutilizadas entre iterações, minimizando alocações desnecessárias de memória.

Validação de Soluções: Verificação automática da validade das soluções construídas, garantindo que todas as cidades sejam visitadas exatamente uma vez.

4. Resultados e Análise

4.1 Resultados Quantitativos

A execução do algoritmo ACO no problema Berlin52 produziu os seguintes resultados principais:

Métrica	Valor
Melhor distância encontrada	7659.25 unidades
Distância inicial (primeira iteração)	13361.65 unidades
Melhoria percentual	42.68%
Tempo de execução	29.38 segundos
Iteração da melhor solução	250
Gap em relação ao ótimo conhecido	~1.55%

Sequência do Melhor Caminho Encontrado: O caminho ótimo identificado pelo ACO conecta as cidades na seguinte ordem: $23 \rightarrow 20 \rightarrow 50 \rightarrow 16 \rightarrow 46 \rightarrow 44 \rightarrow 34 \rightarrow 35 \rightarrow 36$

$$\rightarrow 39 \rightarrow 40 \rightarrow 37 \rightarrow 38 \rightarrow 48 \rightarrow 24 \rightarrow 5 \rightarrow 15 \rightarrow 6 \rightarrow 4 \rightarrow 25 \rightarrow 12 \rightarrow 28 \rightarrow 27 \rightarrow 26 \rightarrow 47$$

$$\rightarrow 14 \rightarrow 13 \rightarrow 52 \rightarrow 11 \rightarrow 51 \rightarrow 33 \rightarrow 43 \rightarrow 10 \rightarrow 9 \rightarrow 8 \rightarrow 41 \rightarrow 19 \rightarrow 45 \rightarrow 32 \rightarrow 49 \rightarrow 1$$

$$\rightarrow 22 \rightarrow 31 \rightarrow 18 \rightarrow 3 \rightarrow 17 \rightarrow 21 \rightarrow 42 \rightarrow 7 \rightarrow 2 \rightarrow 30 \rightarrow 29 \rightarrow 23.$$

4.2 Análise de Convergência

O gráfico de convergência revela características importantes do comportamento do algoritmo ACO:

Fase de Exploração Inicial (Iterações 1-80): O algoritmo demonstra rápida melhoria nas primeiras iterações, com a distância total diminuindo drasticamente de aproximadamente 13.400 para cerca de 8.200 unidades. Esta fase caracteriza-se pela exploração ativa do espaço de busca, com as formigas descobrindo regiões promissoras.

Fase de Intensificação (Iterações 80-250): Observa-se uma convergência mais gradual, com melhorias incrementais que levam à descoberta da melhor solução na iteração 250. Durante este período, o algoritmo refina soluções existentes através do acúmulo de feromônios em arestas de alta qualidade.

Fase de Estabilização (Iterações 250-500): Após a iteração 250, o algoritmo mantém a melhor solução encontrada, indicando convergência efetiva. A ausência de melhorias adicionais sugere que o algoritmo explorou adequadamente o espaço de busca local.

Taxa de Convergência: A melhoria de 42.68% demonstra a eficácia do ACO em escapar de soluções iniciais de baixa qualidade. A convergência em aproximadamente 250 iterações (50% do total) indica eficiência computacional adequada.

4.3 Análise Espacial da Solução

A visualização espacial da solução encontrada revela padrões interessantes na estrutura do caminho ótimo:

Distribuição Geográfica: O caminho demonstra uma estratégia eficiente de visitação que minimiza cruzamentos desnecessários. A solução apresenta uma estrutura aproximadamente circular, visitando clusters de cidades próximas antes de se mover para regiões distantes.

Análise de Clusters: O algoritmo identificou naturalmente agrupamentos de cidades e os visitou de forma sequencial. Observa-se que cidades geograficamente próximas tendem a ser visitadas em sequência, reduzindo a distância total percorrida.

Evitação de Cruzamentos: A solução apresenta poucos cruzamentos de arestas, característica desejável em soluções de TSP de alta qualidade. Cruzamentos desnecessários geralmente indicam oportunidades de melhoria através de operações de 2-opt.

Pontos Extremos: O algoritmo tratou adequadamente cidades isoladas ou em posições extremas do mapa, integrando-as ao caminho de forma eficiente sem criar desvios excessivos.

4.4 Comparação com Benchmarks

A solução encontrada (7659.25) apresenta qualidade competitiva quando comparada com resultados reportados na literatura:

• Ótimo conhecido: ~7542 unidades

• Gap de otimalidade: 1.55%

• Qualidade relativa: 98.45% do ótimo

Este resultado posiciona a implementação ACO desenvolvida entre as soluções de alta qualidade para o Berlin52, demonstrando a eficácia da configuração de parâmetros e implementação utilizada.

4.5 Análise de Performance Computacional

Eficiência Temporal: O tempo de execução de 29.38 segundos para 500 iterações com 50 formigas demonstra eficiência computacional adequada. Considerando que cada iteração processa 50 soluções completas, o algoritmo avalia aproximadamente 25.000 soluções candidatas.

Escalabilidade: A complexidade temporal O(n²) por formiga por iteração é aceitável para problemas de tamanho médio como o Berlin52. Para instâncias maiores, otimizações adicionais como listas de candidatos ou paralelização poderiam ser implementadas.

Utilização de Recursos: O algoritmo demonstra uso eficiente de memória, mantendo estruturas de dados compactas e reutilizando alocações entre iterações.

5. Discussão

5.1 Eficácia do Algoritmo ACO

Os resultados obtidos confirmam a eficácia do algoritmo ACO para resolver o problema do Caixeiro Viajante em instâncias de tamanho médio. A melhoria de 42.68% em relação à solução inicial e o gap de apenas 1.55% em relação ao ótimo conhecido demonstram que a implementação conseguiu equilibrar adequadamente exploração e explotação do espaço de busca.

A convergência observada na iteração 250 sugere que o algoritmo encontrou uma região promissora do espaço de busca e concentrou seus esforços na refinação local. Este comportamento é característico de meta-heurísticas bem ajustadas, onde a fase inicial de exploração é seguida por intensificação em regiões de alta qualidade.

5.2 Influência dos Parâmetros

A configuração de parâmetros utilizada mostrou-se efetiva para o problema Berlin52. O valor β = 2.0 (influência heurística) superior ao α = 1.0 (influência do feromônio) favoreceu a utilização de informação local, importante nas fases iniciais quando os rastros de feromônio ainda não estão bem estabelecidos.

A taxa de evaporação ρ = 0.1 permitiu manutenção adequada da memória histórica sem causar estagnação prematura. Valores mais altos de ρ poderiam resultar em perda excessiva de informação, enquanto valores menores poderiam levar à convergência prematura.

5.3 Características da Solução Encontrada

A análise espacial da solução revela que o ACO desenvolveu uma estratégia inteligente de visitação. A tendência de agrupar cidades próximas e minimizar cruzamentos indica que o algoritmo capturou princípios fundamentais de otimização geométrica em problemas TSP.

A estrutura aproximadamente circular da solução é típica de soluções de alta qualidade em TSP euclidiano, onde a minimização da distância total naturalmente leva a configurações que evitam desvios desnecessários.

5.4 Comparação com Outras Meta-heurísticas

Embora este estudo tenha focado exclusivamente no ACO, é importante contextualizar os resultados em relação a outras abordagens:

- Algoritmos Genéticos: Tipicamente produzem resultados similares para Berlin52, com gaps de 1-3% em relação ao ótimo
- **Simulated Annealing:** Pode alcançar soluções ligeiramente melhores com tempo de execução comparável
- Busca Tabu: Frequentemente encontra soluções de qualidade similar com convergência mais rápida

O ACO demonstra competitividade adequada neste contexto, especialmente considerando sua capacidade de paralelização natural e robustez em diferentes tipos de problemas.

6. Limitações e Trabalhos Futuros

6.1 Limitações da Implementação Atual

Configuração de Parâmetros: A configuração utilizada foi baseada em valores padrão da literatura e ajustes empíricos limitados. Uma otimização sistemática dos parâmetros através de técnicas como grid search ou algoritmos evolutivos poderia melhorar os resultados.

Critério de Parada: O uso de número fixo de iterações pode ser ineficiente. Critérios adaptativos baseados na estagnação da melhor solução ou convergência da população poderiam reduzir o tempo computacional.

Estruturas de Vizinhança: A implementação atual não incorpora operadores de busca local como 2-opt ou 3-opt, que poderiam refinar as soluções encontradas pelas formigas.

Diversidade da População: Não foram implementados mecanismos explícitos para manutenção da diversidade, como reinicialização de feromônios ou múltiplas colônias.

6.2 Propostas de Melhoria

ACO Híbrido: Integração com algoritmos de busca local para refinamento das soluções construídas pelas formigas. A aplicação de 2-opt nas melhores soluções de cada iteração poderia reduzir significativamente o gap de otimalidade.

Paralelização: Implementação de processamento paralelo para construção simultânea de soluções por múltiplas formigas, aproveitando arquiteturas multi-core modernas.

Adaptação Dinâmica: Desenvolvimento de mecanismos para ajuste automático de parâmetros durante a execução, baseado no progresso da busca e características da instância.

Múltiplas Colônias: Implementação de múltiplas colônias independentes com comunicação periódica, aumentando a diversidade e robustez do algoritmo.

6.3 Extensões para Problemas Relacionados

A implementação desenvolvida pode ser adaptada para variantes do TSP e problemas relacionados:

- TSP Assimétrico: Modificação para lidar com matrizes de distância não simétricas
- Multiple TSP: Extensão para múltiplos vendedores
- **Vehicle Routing Problem:** Adaptação para problemas de roteamento com restrições de capacidade
- TSP com Janelas de Tempo: Incorporação de restrições temporais

7. Conclusões

Este estudo demonstrou a aplicação bem-sucedida do algoritmo de Otimização por Colônia de Formigas ao problema clássico do Caixeiro Viajante utilizando o conjunto de dados Berlin52. Os resultados obtidos confirmam a eficácia desta meta-heurística para problemas de otimização combinatória de complexidade média.

7.1 Principais Contribuições

Implementação Robusta: Desenvolvimento de uma implementação completa e eficiente do ACO em Python, com estruturas de dados otimizadas e interface clara para análise de resultados.

Análise Detalhada: Condução de análise abrangente dos resultados, incluindo convergência temporal, qualidade da solução e características espaciais do caminho encontrado.

Documentação Completa: Produção de documentação técnica detalhada que pode servir como referência para implementações futuras e estudos comparativos.

7.2 Resultados Principais

- **Qualidade da Solução:** Gap de apenas 1.55% em relação ao ótimo conhecido, demonstrando alta qualidade da solução encontrada
- **Eficiência Computacional:** Convergência em tempo razoável (29 segundos) com recursos computacionais modestos
- Melhoria Significativa: Redução de 42.68% na distância total em relação à solução inicial aleatória

7.3 Implicações Práticas

Os resultados obtidos têm implicações importantes para aplicações práticas do ACO:

Problemas de Roteamento: A qualidade das soluções e eficiência computacional tornam o ACO viável para problemas reais de roteamento e logística.

Otimização Industrial: A robustez do algoritmo e facilidade de implementação facilitam sua aplicação em contextos industriais onde soluções de boa qualidade são mais importantes que otimalidade global.

Pesquisa e Desenvolvimento: A implementação serve como base sólida para desenvolvimento de variantes mais sofisticadas e estudos comparativos com outras meta-heurísticas.

7.4 Considerações Finais

O algoritmo ACO demonstrou ser uma ferramenta valiosa para resolução do TSP, combinando simplicidade conceitual com eficácia prática. A inspiração biológica do algoritmo não apenas facilita sua compreensão e implementação, mas também fornece insights sobre mecanismos de otimização coletiva que podem ser aplicados em diversos contextos.

A qualidade dos resultados obtidos para o Berlin52, combinada com a flexibilidade e extensibilidade da implementação, confirma o ACO como uma escolha sólida para problemas de otimização combinatória onde soluções de alta qualidade são requeridas em tempo computacional razoável.

Este trabalho contribui para o corpo de conhecimento sobre aplicações práticas do ACO e fornece uma base sólida para pesquisas futuras em otimização bio-inspirada e problemas de roteamento complexos.

Anexos

Anexo A: Configuração Completa dos Parâmetros

```
# Configuração utilizada na execução
aco_config = {
    'n_ants': 50,
    'n_iterations': 500,
    'alpha': 1.0,
    'beta': 2.0,
    'rho': 0.1,
    'Q': 100.0,
    'initial_pheromone': 0.1
}
```

Anexo B: Especificações do Ambiente de Execução

• Sistema Operacional: Ubuntu 22.04 LTS

• **Python:** Versão 3.11.0rc1

• **Bibliotecas:** NumPy 1.24+, Matplotlib 3.6+

• Hardware: Ambiente virtualizado com recursos padrão

• Tempo de Execução: 29.38 segundos

Anexo C: Coordenadas das Cidades Berlin52

As coordenadas completas das 52 cidades estão disponíveis no arquivo original berlin52.tsp, seguindo o formato padrão TSPLIB com distâncias euclidianas bidimensionais.