IRE 216: Sensor Technology Sessional

Section A: General Information

1. Course Title Sensor Technology Sessional

2. Type of Course
3. Credit Hour
4. Pre-requisite Course(s)
N/A

Section B: Course Details

1. Course Content Practical Classes based on the Topics Covered in IRE 216.

2. Course Objectives

- To provide practical knowledge of sensor technology, features and characteristics of a sensor
- Select the right sensor for a given application/project.

3. Knowledge required:

4. Course Outcomes

CO	CO Statement	Corresponding	Domains and	Delivery	Assessment
No.		PO(s)*	Taxonomy	Method(s)	Tool(s)
			Level(s)**	and	
				Activity(-	
				ies)	
1	Attain efficient project	PO 9, PO 10,	C2, C3, A4,	Lecture,	Continuous
	management, leadership,	PO 11, PO 12	P7	Slides,	Assessment,
	problem solving,			online	Mid-term
	communication and			resources	Evaluation
	documentation skills				(Project +
	documentation skins				Experiment),
					Quiz, Lab
					Report,
					Presentation,
					Assignment,
					Final
					Examination
					(Project +
					Experiment)
2	Develop projects that have	PO 1, PO 2, PO	C6	Lecture,	Continuous
	practical importance	3, PO5		Slides,	Assessment,
				online	Mid-term
				resources	Evaluation
					(Project +
					Experiment),
					Quiz, Lab
					Report,
					Presentation,
					Assignment,
					Final
					Examination

				(Project + Experiment)
--	--	--	--	------------------------

^{*}Technology required for the transition from Sonal Bangla to Digital Bangladesh and Smart Bangladesh

5. Mapping of Knowledge Profile, Complex Engineering Problem Solving and Complex Engineering Activities

CO s	K 1	K 2	K 3	K 4	K 5	K 7	K 8	P 1	P 2	P 3	P 4	P 5	P 6	P 7	A 1	A 2	A 3	A 4	A 5
1					√		√	√							√		✓		
2						√							√			✓			

6. Lecture Plan

Week	Experiment Name	Course Outcome
1	LCD character display with Arduino	CO1
2	Sonar Sensor interfacing with arduino and display the output to LCD Project Assignment with proposal	CO1, CO2
3	Gas/Smoke Sensor interfacing it with Arduino	CO1, CO2
4	Temperature and humidity measurement with the am2301 humidity sensor (DHT21/ DHT22) and display it on the LCD monitor	CO1, CO2
5	Interfacing PIR motion sensor with Arduino	CO1, CO2
6	MID Term Evaluation based on LAB experiments	
7	MID Term Evaluation based on Project Progress	
8	Control three different LEDs based on the range of the flame	CO1, CO2
9	Monitor the Heart Rate using Heartbeat Sensor and Arduino	CO1, CO2
10	Interfacing soil moisture sensor and rain sensor with arduino	CO1, CO2
11	Level Measurement using proximity sensor	CO1, CO2
12	DC motor speed control using PWM	CO1, CO2
13	Final Evaluation based on LAB experiments	
14	Final Evaluation based on completed Project	

7. Assessment Strategy

- Class Attendance: Class attendance will be recorded in every class.
- Continuous Assessment: Continuous assessment of any of the activities such as class participation, quizzes, assignment, presentation, etc. The scheme of the continuous assessment for the course will be declared on the first day of classes.
- Mid-term Examination: A comprehensive mid-term evaluation will be held.
- Final Examination: A comprehensive final examination will be held in the last week of the term.

8. Distribution of Marks

•	Class Attendance	10%
•	Continuous Assessment	30%
•	Mid-term Evaluation (Project + Experiment)	24%
•	Final Examination (Project + Experiment)	36%
•	Total	100%

- **9. Textbook** No textbook is required. Handouts are adopted from the following books and will be posted on the Web
 - Micromachined Transducers Sourcebook 1st Edition by Gregory T. Kovacs

10. Reference Book None N/A