Chapter 7 Nombres entiers, itérations

7.1 Nombres entiers

Exercice 7.1 (***)

Soit A une partie de \mathbb{N}^* possédant les trois propriétés suivantes:

- $1 \in A$.
- $\forall n \in \mathbb{N}^*, n \in A \implies 2n \in A$.
- $\forall n \in \mathbb{N}^{\star}, n+1 \in A \implies n \in A$.

Démontrer que $A = \mathbb{N}^*$.

Exercice 7.2 (**)

Pour $n \in \mathbb{N}$ on considère la propriété suivante :

$$P_n: 2^n > n^2$$

- 1. Pour quelles valeurs de n l'implication $P_n \Longrightarrow P_{n+1}$ est-elle vraie ?
- **2.** Pour quelles valeurs de n la propriété P_n est-elle vraie ?

Exercice 7.3 (*)

Soit (u_n) une suite réelle à valeurs positives et a > 0. On suppose

$$\forall n \in \mathbb{N}, u_{n+1} \leq au_n$$
.

Montrer que pour tout $n \in \mathbb{N}$, on a

$$u_n \leq a^n u_0$$
.

Exercice 7.4 (*)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite de nombres réels définie par $u_0=0$ et pour tout n positif, $u_{n+1}=\sqrt{3u_n+4}$. Montrer que la suite est majorée par 4.

Exercice 7.5 (**)

Montrer que pour tout $n \in \mathbb{N}$, la somme des n premiers entiers positifs impairs est toujours le carré d'un entier.

Exercice 7.6 (**)

Montrer: $\forall u \in \mathbb{R}, \forall n \in \mathbb{N}, |\sin(nu)| \le n |\sin(u)|$.

Exercice 7.7 (**)

1. Soit $a \in \mathbb{R}_+$. Montrer que pour tout $n \in \mathbb{N}$, on a

$$(1+a)^n \ge 1 + na + \frac{n(n-1)}{2}a^2.$$

2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=\frac{3n}{3^n}$. Montrer que pour tout $n\in\mathbb{N}$, on a

$$0 \le u_n \le \frac{3n}{2n^2 + 1}.$$

88

Exercice 7.8 (**)

Soit $a \in]0, \pi/2[$, et définissons une suite réelle par $u_0 = 2\cos(a)$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{2 + u_n}$. Montrer que pour tout $n \in \mathbb{N}$, on a $u_n = 2\cos\left(\frac{a}{2^n}\right)$.

Exercice 7.9 (**)

Démontrer par récurrence les propositions suivantes.

- **1.** Pour tout $n \in \mathbb{N}$, $3^{n+2}2^{2n+1} + 5^{2n+1}2^{n+2}$ est un multiple de 19.
- **2.** Pour tout $n \in \mathbb{N}$, $2^{4n} 1$ est un multiple de 15.
- **3.** Pour tout $n \in \mathbb{N}$, $3^{2n} 2^n$ est un multiple de 7.
- **4.** Pour tout $n \in \mathbb{N}$, $11^{n+1} 10n 11$ est multiple de 100.
- 5. Pour tout $n \in \mathbb{N}$. $3 \cdot 5^{2n+1} + 2^{3n+1}$ est multiple de 17.

Exercice 7.10 (*)

Démontrer par récurrence les assertions suivantes.

- 1. $\forall n \in \mathbb{N}, n < 2^n$.
- 2. $\forall n \in \mathbb{N}^*, n! < n^n$.

Exercice 7.11 (*)

Démontrer par récurrence que, pour tout naturel n, $9^n - 1$ est multiple de 8.

Exercice 7.12 (***)

Soit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ tel que $\alpha + \frac{1}{\alpha} \in \mathbb{Q}$. Montrer

$$\forall n \in \mathbb{N}, \alpha^n + \frac{1}{\alpha^n} \in \mathbb{Q}.$$

Exercice 7.16 (****)

Un tournoi de badminton aquatique regroupe n équipes. Chacune des n équipes rencontre une fois les n-1 autres. Il n'y a pas de match nul. Montrer que l'on peut classer les n équipes de telle sorte que l'équipe 1 ait battu l'équipe 2, l'équipe 2 est battu l'équipe $3, \ldots, 1$ 'équipe n-1 ait battu l'équipe n.

Exercice 7.17 (**)

Soit (u_n) la suite donnée par $u_0 = 2$, $u_1 = 3$ et

$$\forall n \in \mathbb{N}, u_{n+2} = 3u_{n+1} - 2u_n.$$

Montrer par récurrence que pour tout $n \in \mathbb{N}$, on a $u_n = 2^n + 1$.

Exercice 7.18 (**)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite de nombres réels définie par $u_0=1, u_1=2$ et pour tout n positif,

$$u_{n+2} = 5u_{n+1} - 6u_n.$$

Calculer u_n en fonction de n.

Exercice 7.19 (***)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_0 = 7, u_1 = -\frac{1}{10}, \text{ et } \forall n \in \mathbb{N}, u_{n+2} = \frac{1}{10}u_{n+1} + \frac{1}{5}u_n.$$

Montrer par récurrence : $\forall n \in \mathbb{N}, |u_n| \leq 7 \cdot \left(\frac{1}{2}\right)^n$.

Exercice 7.20 (***)

On définit une suite (F_n) par $F_0 = 0$, $F_1 = 1$ et

$$\forall n \in \mathbb{N}, F_{n+2} = F_{n+1} + F_n$$

- **1.** Calculer F_n pour $1 \le n \le 10$.
- 2. Montrer que l'équation $x^2 = x + 1$ admet une unique solution positive a que l'on calculera.
- **3.** Montrer que pour tout $n \ge 2$, on a

$$a^{n-3} < F_n < a^{n-2}$$
.

Exercice 7.21 (**)

On considère la suite $(v_n)_{n\in\mathbb{N}}$ définie par

$$v_0=1, \quad v_1=3, \quad \text{ et } \quad \forall n \in \mathbb{N}, v_{n+2}=4v_{n+1}-4v_n.$$

Montrer que pour tout $n \in \mathbb{N}$, on a $v_n = 2^n \left(1 + \frac{n}{2}\right)$.

Exercice 7.22 (***)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite de nombres réels définie par $u_0=1, u_1=1$ et pour tout n positif,

$$u_{n+2} = u_{n+1} + \frac{2}{n+2}u_n.$$

Montrer:

$$\forall n \in \mathbb{N}^*, 1 \leq u_n \leq n^2.$$

Exercice 7.23 (***)

Montrer par récurrence que tout entier $n \ge 1$ peut s'écrire comme somme de puissances de 2 toutes distinctes.

Exercice 7.24 (***)

Montrer que pour tout entier $n \in \mathbb{N}^*$, il existe $p, q \in \mathbb{N}$ tels que $n = 2^p (2q + 1)$.

7.2 Suites définies par une relation de récurrence

Exercice 7.25 (*)

Soit une suite géométrique (u_n) . Déterminer les éléments caractéristiques (premier terme u_0 et raison q) de la suite (u_n) à partir des données suivantes.

1.
$$u_6 = 96$$
 et $q = 2$;

3.
$$u_3 = 40$$
 et $u_7 = 640$.

2.
$$u_1 = 72$$
 et $u_4 = -8/3$;

Exercice 7.27 (**)

La suite $(a_n)_{n\in\mathbb{N}}$ est définie par $a_0=4$ et

$$\forall n \in \mathbb{N}, a_{n+1} = \frac{3a_n + 2}{a_n + 4}.$$

1. Montrer que la suite $(b_n)_{n\in\mathbb{N}}$ définie, pour tout $n\in\mathbb{N}$, par

$$b_n = \frac{a_n - 1}{a_n + 2}$$

est une suite géométrique.

- **2.** Calculer b_n pour tout $n \in \mathbb{N}$.
- **3.** En déduire une expression de a_n en fonction de n.

Exercice 7.28 (**)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite de nombres réels définie par $u_0=0$ et pour tout n positif, $u_{n+1}=2u_n+1$. Calculer u_n en fonction de n.

Exercice 7.30 (**)

Soit $p_0 = 10000$ une population initiale de lapins. On suppose que le taux de reproduciton annuel est de 3 par couple (tous les individus se reproduisent et font partie d'un unique couple). De plus, à la fin de chaque année, la population est diminuée par la vente d'une quantité fixe de 1000 individus. Déterminer la population au bout de 50 ans.

Exercice 7.31 (***)

Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par

$$x_0 = 4$$
 et $x_{n+1} = \frac{2x_n^2 - 3}{x_n + 2}$.

1. Montrer : $\forall n \in \mathbb{N}, x_n > 3$.

2. Montrer: $\forall n \in \mathbb{N}, x_{n+1} - 3 > \frac{3}{2}(x_n - 3).$

3. Montrer: $\forall n \in \mathbb{N}, x_n \geqslant \left(\frac{3}{2}\right)^n + 3$.

4. La suite $(x_n)_{n\in\mathbb{N}}$ est-elle convergente ?

7.3 Entiers relatifs

Exercice 7.33 (**)

Sachant que l'on a $96842 = 256 \times 375 + 842$, déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des nombres 256 et 375.

7.4 Les nombres rationnels