Tree-based Methods

Sanjay Arora Al Center of Excellence Red Hat Ulrich Drepper
Al Center of Excellence
Red Hat

Why Decision Trees

- One of the most widely used ML algorithms
- Easy and fast to train
- Minimal data preprocessing required
- Can handle both real-valued and categorical variables
- Variants (random forests and boosted decision trees) can be extremely performant

Problem Definition: Classification

Given features: x_1, x_2, \ldots, x_n

Predict class or label, y = 0 or 1

Problem Definition: Classification

Given features: x_1, x_2, \ldots, x_n

Predict class or label, y = 0 or 1

Will discuss regression later

Decision Tree

Series of if-else statements on features that distinguish between two classes

Decision Tree

Series of if-else statements on features that distinguish between two classes

Some we code up all the time!

Decision Tree

Series of if-else statements on features that distinguish between two classes

Something we code up all the time!

But now the expressions are learned!

Is it possible to separate red and green dots with a sequence of if-else statements on x and y?

$$X[0] = x$$
$$X[1] = y$$

Starting Point:

Given n features: x_1, \ldots, x_n

Given labels: y

Question:

What feature x_i should be choose to make a split on?

For given feature, what value should we make the split on?

Starting Point:

Given n features: x_1, \ldots, x_n

Given labels: y

Question:

What feature x_i should be choose to make a split on?

For given feature, what value should we make the split on?

How about?:

Loop over features and all possible values to split on Pick one that maximizes "purity" of categories after the split

Not useful! Still stuck with original data

No information gained. Still 50-50% split

Is this any good? Yes!! Learned a rule to separate green and red

Split: Some function of p_{red} and p_{green} to maximize

Toss a coin N times

Result: Get N_1 heads and N_2 tails

How do we describe the **state** of the system?

Toss a coin N times

Result: Get N_1 heads and N_2 tails

How do we describe the **state** of the system?

Macrostate: N_1 heads and N_2 tails

Toss a coin N times

Result: Get N_1 heads and N_2 tails

How do we describe the **state** of the system?

Macrostate: N_1 heads and N_2 tails

Microstate: Exact sequence of heads and tails

H T H H ...

Toss a coin N times

Result: Get N_1 heads and N_2 tails

How do we describe the **state** of the system?

Relevant details

Macrostate: N_1 heads and N_2 tails

Microstate: Exact sequence of heads and tails

HTHH...

Define Multiplicity: Ω

Number of microstates corresponding to macrostate

How many detailed states correspond to one less detailed state

Coin Toss Experiment: N_1 heads and N_2 tails

$$\Omega = \binom{N_1 + N_2}{N_1} = \frac{(N_1 + N_2)!}{N_1!N_2!}$$

$$\Omega = \binom{N_1 + N_2}{N_1} = \frac{(N_1 + N_2)!}{N_1!N_2!}$$

Stirling's approximation: $N! \approx N^N e^{-N}$ for large N

$$N! \approx N^N e^{-N}$$

$$\Omega \approx \frac{(N_1 + N_2)^{N_1 + N_2} e^{-N_1 - N_2}}{N_1^{N_1} e^{-N_1} N_2^{N_2} e^{-N_2}}$$

$$\Omega \approx \frac{(N_1 + N_2)^{N_1}}{N_1^{N_1}} \frac{(N_1 + N_2)^{N_2}}{N_2^{N_2}}$$

$$\Omega \approx \frac{(N_1 + N_2)^{N_1}}{N_1^{N_1}} \frac{(N_1 + N_2)^{N_2}}{N_2^{N_2}}$$

Define:
$$p_1 = \frac{N_1}{N_1 + N_2} \qquad p_2 = \frac{N_2}{N_1 + N_2}$$

$$\Omega = p_1^{-N_1} p_2^{-N_2} = p_1^{-p_1 N} p_2^{-p_2 N} = (p_1^{-p_1} p_2^{-p_2})^N$$

$$\Omega = (p_1^{-p_1} p_2^{-p_2})^N$$

Define **Entropy**:

$$S = \log \Omega = N \log (p_1^{-p_1} p_2^{-p_2})$$
$$= -N(p_1 \log p_1 + p_2 \log p_2)$$

Entropy per coin

$$S = -(p_1 \log p_1 + p_2 \log p_2) \quad p_1 + p_2 = 1$$

Generalize to any **discrete** distribution:

Random variables takes N values - a_1, \ldots, a_N with probabilities - p_1, \ldots, p_N

$$p_1 + \ldots + p_N = 1$$

$$S \equiv -\sum_{i=1}^{N} p_i \log p_i \qquad p_1 + \ldots + p_N = 1$$

or **continuous** distribution:

$$S \equiv -\int p(x)\log p(x)dx \int p(x)dx = 1$$

$$S = -(p_1 \log p_1 + p_2 \log p_2)$$

$$p_1 = \frac{6}{12} \qquad p_2 = \frac{6}{12}$$

$$S = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = \log 2 \neq 0$$

$$S = -(p_1 \log p_1 + p_2 \log p_2)$$

$$p_1 = \frac{6}{6} \qquad p_2 = \frac{0}{6}$$

$$S = -1\log 1 - 0\log 0 = 0$$
 Pure sample

$$S = -(p_1 \log p_1 + p_2 \log p_2)$$

$$p_1 = \frac{6}{6} \qquad p_2 = \frac{0}{6}$$

$$S = -1\log 1 - 0\log 0 = 0 - \text{Pure sample}$$

Starting Point:

Given n features: x_1, \ldots, x_n

Given labels: y

Question:

What feature x_i should be choose to make a split on?

For given feature, what value should we make the split on?

How about?:

Loop over features and all possible values to split on

Pick one that maximizes "purity" of categories after the split

One possible choice for "purity": Entropy

Smaller entropy = purer

Minimize:

$$\frac{n_{left}}{n_{total}}S_{left} + \frac{n_{right}}{n_{total}}S_{right}$$

Minimize:
$$\frac{n_{left}}{n_{total}}S_{left} + \frac{n_{right}}{n_{total}}S_{right}$$

Repeat until:

End up with pure samples in each node

OR

Reach some maximum depth/number of levels of tree

OR

Reduction in cost is small enough

OR

Have too few samples in node

Training

Alternatively, minimize:

$$\frac{n_{left}}{n_{total}}G_{left} + \frac{n_{right}}{n_{total}}G_{right}$$

Gini
$$G_{node} = p_1(1-p_1) + p_2(1-p_2)$$

$$\frac{1}{2} \text{ for even split}$$
Repeat until:
$$p_1 = \frac{1}{2} p_2 = \frac{1}{2}$$

End up with pure samples in each node

OR

Reach some maximum depth/number of levels of tree etc.

Training

Pick rows

Loop over features:

Loop over distinct values/cuts:

Compute entropy/gini/variance if split on this feature and cut Pick feature and cut minimizing metric

Decision Trees: Advantages

Minimal pre-processing required - no normalization for example

No assumptions about distribution of data

Simple to interpret - if not too deep

Can discover interactions between features automatically

Run fast

Decision Trees: Disadvantages

Use "horizontal" and "vertical" lines to learn decision boundaries

Result in over-complex trees

Can easily overfit data

Unstable: small changes in data can lead to very different trees

Cannot extrapolate

Easy to Use

```
#Decision Tree Classifier
from sklearn import tree

model = tree.DecisionTreeClassifier()
model.fit(features, labels) #train the model

model.predict(test_features) #make predictions
#See documentation for other functions
```


Recall digits dataset

Let's use decision trees to identify the digit 3 (label = 1) from other digits (label = 0)

C_i	pred = 0	pred = 1
label = 0	$0 \rightarrow 0$	$0 \rightarrow 1$
label = 1	$1 \to 0$	$1 \rightarrow 1$

Recall confusion matrix

	pred = non-3	pred = 3
label = non-3	11052	251
label = 3	241	1056

Accuracy =
$$\frac{(0 \to 0) + (1 \to 1)}{(0 \to 0) + (1 \to 1) + (0 \to 1) + (1 \to 0)} = 96.1\%$$

C_i	pred = 0	pred = 1
label = 0	$0 \to 0$	$0 \rightarrow 1$
label = 1	$1 \to 0$	$1 \rightarrow 1$

Recall confusion matrix

	pred = non-3	pred = 3
label = non-3	11052	251
label = 3	241	1056

Sensitivity/Recall =
$$\frac{(1 \to 1)}{(1 \to 1) + (1 \to 0)} = 81.4\%$$

C_i	pred = 0	pred = 1
label = 0	$0 \to 0$	$0 \rightarrow 1$
label = 1	$1 \to 0$	$1 \rightarrow 1$

Recall confusion matrix

	pred = non-3	pred = 3
label = non-3	11052	251
label = 3	241	1056

Specificity =
$$\frac{(0 \to 0)}{(0 \to 0) + (0 \to 1)} = 97.8\%$$

Recall

Simple to interpret - if not too deep

Decision Trees: Modifications

What if features are continuous not discrete?

Sort values for feature i

Try splitting at each value in training dataset

Decision Trees: Modifications

Regression problems:

Minimize:
$$\frac{n_{left}}{n_{total}}\sigma_{left}^2 + \frac{n_{right}}{n_{total}}\sigma_{right}^2$$

$$\sigma_{L/R}^2 = \text{variance of numbers in node after split} \\ = \sum_{i=1}^{N_{L/R}} \underbrace{ (y_i - c_{L/R})^2}_{\text{Number of examples in left/right node}}^{\text{Mean of values}}_{\text{in left/right node}}_{\text{in left/right node}}^{\text{Number of examples}}_{\text{in left/right node}}$$

Value of ith example

Decision Trees: Pruning

Trees overfit easily!!!

Decision Trees: Pruning

Trees overfit easily!!!

One possible solution:

Grow a full tree

Starting from the leaves, remove splits that don't result in large increases in entropy

Ensembles of Trees

What if had many trees and average results?

This gives a huge improvement in practice

What if had many trees and average results?

This gives a huge improvement in practice

Intuition:

Each tree performs well on a subset of data

Trees vote or average to give overall prediction

Consider n random variables: X_1, \ldots, X_n independent and identically distributed

$$\operatorname{mean}(X_i) \equiv \mu \qquad \operatorname{var}(X_i) \equiv \sigma^2$$

$$\operatorname{mean}\left(\frac{X_1 + \ldots + X_n}{n}\right) = \frac{\operatorname{mean}(X_1) + \ldots + \operatorname{mean}(X_n)}{n} = \frac{n\mu}{n} = \boxed{\mu}$$

$$\operatorname{var}\left(\frac{X_1 + \ldots + X_n}{n}\right) = \operatorname{var}\left(\frac{1}{n}\Sigma_i X_i\right) = \frac{1}{n^2} \Sigma_i \operatorname{var}(X_i) = \left|\frac{\sigma^2}{n}\right|$$

Run n decision trees on overlapping subsets of dataset

Bagging

Average results from all n trees

If trees independent:

Averaging should give:
$$\mu \pm \frac{\sigma}{\sqrt{n}}$$

$$\to \mu \text{ as } n \to \infty$$

Run n decision trees on overlapping subsets of dataset

Bagging

Average results from all n trees

If trees independent:

Averaging should give: $\left| \mu \pm \frac{\sigma}{\sqrt{n}} \right|$

$$\mu \pm \frac{\sigma}{\sqrt{n}}$$

$$\to \mu \text{ as } n \to \infty$$

What if trees not independent? (More precisely: errors from trees are uncorrelated)

Consider n random variables: X_1, \ldots, X_n **NOT** independent but identically distributed

$$mean(X_i) \equiv \mu$$
 $var(X_i) \equiv \sigma^2$

Pairwise correlations: $\mathbb{E}(X_i X_j) - \mathbb{E}X_i \mathbb{E}X_j \equiv \rho \sigma^2, i \neq j$

$$\operatorname{mean}\left(\frac{X_1 + \ldots + X_n}{n}\right) = \frac{\operatorname{mean}(X_1) + \ldots + \operatorname{mean}(X_n)}{n} = \frac{n\mu}{n} = \boxed{\mu}$$

$$\operatorname{var}\left(\frac{X_1 + \ldots + X_n}{n}\right) = \left|\frac{(1-\rho)\sigma^2}{n} + \rho\sigma^2\right|$$

Run n decision trees on overlapping subsets of dataset

Bagging

Average results from all n trees

If trees not independent:

Averaging should give:
$$\mu \pm \left(\frac{(1-\rho)\sigma^2}{n} + \rho\sigma^2\right)$$
$$\rightarrow \mu \pm \rho\sigma^2 \text{ as } n \to \infty$$

Correlated trees will always have variance in the average results

$$\operatorname{var}(\frac{X_1 + \dots + X_n}{n}) = \frac{(1 - \rho)\sigma^2}{n} + \rho\sigma^2$$
$$\to \mu \pm \rho\sigma^2 \text{ as } n \to \infty$$

Even with many trees, have variance because of correlations

Solution: Reduce correlations between trees

Train M trees

Recall training loop for a decision tree:

Pick rows

Loop over features:

Loop over distinct values/cuts:

Compute entropy/gini/variance if split on this feature and cut Pick feature and cut minimizing metric

Train M trees

Recall training loop for a decision tree:

Pick rows

Loop over features:

Loop over distinct values/cuts:

Compute entropy/gini/variance if split on this feature and cut Pick feature and cut minimizing metric

Train M trees

Recall training loop for a decision tree:

Pick rows

Loop over features:

Loop over distinct values/cuts:

Compute entropy/gini/variance if split on this feature and cut Pick feature and cut minimizing metric

Train M trees

Option 1: Each tree trains on fraction p_s of rows

Option 2: Each tree trains on fraction p_f of features/columns

Option 3: Each **node** only looks at a fraction p_n of features

Option 4: Each node only looks at a fraction p_e of features and cuts

Train M trees

Option 1: Each tree trains on fraction p_s of rows

Pasting

Train M trees

Option 2: Each tree trains on fraction p_f of features/columns

Random subspaces

Train M trees

Option 1: Each tree trains on fraction p_s of rows

Option 2: Each tree trains on fraction p_f of features/columns

Random patches

Train M trees

Option 1: Each tree trains on fraction p_s of rows bootstrapping (coming later)

Option 3: Each **node** only looks at a fraction p_n of features

Random Forest (used heavily)

Train M trees

Option 4: Each node only looks at a fraction p_e of features and cuts

Extra (Extremely Randomized) Tree

Sampling Data

Make each tree look at a subset of the data

Boostrapping

N rows in data

Each tree draws N rows by random sampling with replacement

Some rows won't get picked

Some rows will get picked multiple times

Sampling Data

Boostrapping

N rows in data

Each tree draws N rows by random sampling with replacement

Each tree still trains on N rows

Rows not seen by tree form a validation dataset

These are called **Out-of-bag or OOB** samples

Performance of tree can be evaluated on the OOB data

Sampling Data

Boostrapping

Generally used in statistics to estimate variance in measurements

Bagging

sklearn.ensemble.BaggingClassifier

class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0)

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html

Random Forest Example

Random Forest: Digits Example

Recall digits dataset

Let's use a random forest to identify the digit 3 (label = 1) from other digits (label = 0)

Using 100 trees in forest - no fine tuning of parameters

Random Forest: Digits Example

Decision Tree

	pred = non-3	pred = 3
label = non-3	11052	251
label = 3	241	1056

Random Forest

	pred = non-3	pred = 3
label = non-3	11320	5
label = 3	241	1034

Accuracy = 96.1%

Sensitivity/Recall = 81.4%

Specificity = 97.8%

type I error = 2.2%

type II error = 18.6%

Accuracy = 98.0%

Sensitivity/Recall = 81.1%

Specificity = 99.9%

type I error = 0.0%

type II error = 18.9%

Further Topics

What we didn't cover

Boosting

Interpretation (but see practical session)

Variable Importance

Treeinterpreter - Deltas

Partial Dependence Plots

Questions?

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions.

Award-winning support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

- in linkedin.com/company/red-hat
- youtube.com/user/ RedHatVideos
- facebook.com/redhatinc
- twitter.com/RedHat

Problem Definition: Classification

Given features: x_1, x_2, \ldots, x_n

Predict class or label, y = 0 or 1

Problem Definition: Classification

Given features: x_1, x_2, \ldots, x_n

Predict class or label, $y = \emptyset$ or 1 -1for convenience

Boosting

Another way of combining various trees (or any estimators)

to build powerful models

Different from bagging!

AdaBoost: First Look at Boosting

What if want predictor to be of form:

$$F(x) = \operatorname{sgn}(\sum_{m=1}^{M} \beta_m F_m(x))$$

Weighted sum of m predictors

AdaBoost: First Look at Boosting

For any supervised learning algorithm, we have a cost function:

$$C(w_0, w_1, \dots, w_n) = \sum_{i=1}^{M} C_i(w_0, w_1, \dots, w_n)$$

Assumption: every example **independently** and **equally** contributes to cost

Weigh examples wrongly classified by Learner 1 more and feed to Learner 2

Output =
$$\sum_{i=1}^{N_{iter}} \alpha^{(i)} y^{(i)}(x)$$

Weighing over all classifiers depending on each classifier's accuracy = trust factor

Start:

$$C^{(1)}(w_0, w_1, \dots, w_n) = \sum_{i=1}^{M} \beta_i^{(1)} C_i(w_0, w_1, \dots, w_n)$$
$$\beta_i^{(1)} = \frac{1}{M}$$

First classifier - each example with equal weight

Error with weights:

% of total weight incorrectly predicted

Define:
$$e^{\alpha^{(1)}} \equiv \frac{1-\epsilon^{(1)}}{\epsilon^{(1)}}$$
 % of weights predicted correctly % of weights predicted incorrectly

100% accurate model
$$\rightarrow \epsilon^{(1)} = 0 \rightarrow e^{\alpha^{(1)}} = \infty \rightarrow \alpha^{(1)} = \infty$$
50% accurate model $\rightarrow \epsilon^{(1)} = 0.50 \rightarrow e^{\alpha^{(1)}} = 1 \rightarrow \alpha^{(1)} = 0$
0% accurate model $\rightarrow \epsilon^{(1)} = 1 \rightarrow e^{\alpha^{(1)}} = 0 \rightarrow \alpha^{(1)} = -\infty$

Update weights:

$$\beta_i^{(2)} = \beta_i^{(1)}$$
 if example *i* correctly predicted

$$\beta_i^{(2)} = \beta_i^{(1)} e^{\alpha^{(1)}}$$
 if example *i* incorrectly predicted

$$\frac{1 - \epsilon^{(1)}}{\epsilon^{(1)}}$$

General algorithm: Learner $m \to Learner m+1$

Minimize:
$$C^{(m)}(w_0, w_1, \dots, w_n) = \sum_{i=1}^M \beta_i^{(m)} C_i(w_0, w_1, \dots, w_n)$$

Compute:
$$\epsilon^{(m)} = \frac{\sum_{i \in \text{Incorrect}} \beta_i^{(m)}}{\sum_{i=1}^M \beta_i^{(m)}} \qquad e^{\alpha^{(m)}} \equiv \frac{1 - \epsilon^{(m)}}{\epsilon^{(m)}}$$

Update:
$$\beta_i^{(m+1)} = \beta_i^{(m)}$$
 if example i correctly classified

$$\beta_i^{(m+1)} = \beta_i^{(m)} e^{\alpha^{(m)}}$$
 if example i incorrectly classified

