Organometallic Chemistry

Organic Chemistry

 more or less covalent bonds

 rigid element environments

 fixed oxidation states

Chemistry of Carbon (O, S, Se, N etc.) Chemistry of all elements (metals)

Direct M-C bond

- more covalent (less ionic)
- often less symmetric than coordination compounds

Inorganic Chemistry

- primarily ionic M-X bonds, dative M-L bonds
- variable and often fluxional environments
- variable oxidation states

Importance

- Easy access to C-C bond
- Catalysis
- Small molecule activation
- New industry
- Around 2000 research article
- Six Nobel Prizes

Edward Frankland

Innocent Ligands: In a metal complex, if the ligands whose oxidation state is clearly known, Eg: O²⁻, Cl⁻

Non-innocent ligands: In a metal complex, if the ligands whose oxidation state is not known, Eg: NO,

☐ The 18 Electron Rule

- 18 electrons in the outer shell (s, p and d orbitals) is an indication of stability.
- Compounds that can attain 18 electrons within the bonding orbitals show increased stability.
- **Statement:** Thermodynamically stable transition metal organometallic compounds are formed when total valence electrons (that is the number of valance electrons of the metal plus the number of electrons from each ligand) equals to 18.

\Box Hapticity (η^x) ?

- It is the number of ligand atoms simultaneously bound to a metal center.
- Examples: $η^1$ Monohapto; $η^3$ trihapto; $η^5$ pentahapto etc.
- Example: If all the five carbon atoms of a cyclopentadienyl moiety are equidistant from a metal atom, we term it as η^5 -cyclopentadienyl

Ligand contribution to Electron Count

craft andimination	Neutral atom electron count
Terminal ligands	
Carbonyl (M—CO)	2
Thiocarbonyl (M—CS)	2
Phosphine (M—PR ₃)	2
Amine (M—NR ₃)	2
Dinitrogen (M—N≡N)	2
Dihydrogen M— H	. 2
Alkene M—	2
Alkyne* M — ∥ C	2
Isocyanide (M—CNR)	2
Nitrosyl, bent (M — N)	1
Nitrosyl, linear (M—N≡O)	3
Halogen (M—X)	1
Hydrogen (M—H)	1
Alkyl (M—R)	1
$\begin{array}{c} 0\\ \\ \text{Acyl} \ (M-C-R) \end{array}$	I .
Aryl (M—Ph)	1
Amide (M—NR ₂)	1
Phosphide (M—PR ₂)	1
Alkoxide (M—OR)	1
Thiolate (M—SR)	1
Carbene = alkylidene $(M = CR_2)$	2
Carbyne = alkylidyne (M≡CR)	3

towns retricted	Neutral atom electron count
η^{1} -Allyl M — CH ₂	1
η³-Allyl M	3
η^3 -Enyl M \subset	3
η^1 -Cyclopentadienyl M	1
η^5 -Cyclopentadienyl	5
M	
η^6 -Benzene	6
M	
η^7 -Cycloheptatrienyl	7
M	
η ⁸ -Cyclooctatetraenyl	8
M	
Bridging ligands	
Carbonyl [M—(CO)—M]	2
Halogen (M—X—M)	3
C	
Alkyne M — III — M	4
Hydrogen (M—H—M)	1
Alkyl [M—(CR ₃)—M]	2
Amide [M—(NR ₂)—M]	3
Phosphide [M—(PR ₂)—M]	3
Alkoxide [M—(OR)—M]	3

Methods of counting: Neutral atom method & Oxidation state method

Ligand			Ligand	Neutral	Oxidation state		
	atom	Electron contribution	Formal charge		atom	Electron contribution	Formal charge
Carbonyl (M-CO)	2	2	0	Halogen (M–X)	1	2	-1
Phosphine (M-PR ₃)	2	2	0	Alkyl (M–R)	1	2	-1
Amine (M–NR ₃)	2	2	0	Aryl (M–Ar)	1	2	-1
Amide (M–NR ₂)	1	2	-1	acyl (M-C(O)-R	1	2	-1
Hydrogen (M–H)	1	2	-1	η ¹ -cyclopentadienyl	1	2	-1
Alkene (sidewise) η ² -	2	2	0	η¹-allyl	1	2	-1
Alkyne (sidewise) η ² -	2	2	0	η ³ -allyl	3	4	-1
η^2 - C_{60}	2	2	0	η ⁵ -cyclopentadienyl	5	6	-1
Nitrosyl bent	1	2	-1	η ⁶ -benzene	6	6	0
Nitrosyl linear	3	2	+1	η ⁷ -cycloheptatrienyl	7	6	+1
Carbene (M=CR ₂)	2	4	-2	Carbyne (M≡CR)	3	6	_3
Alkoxide (M-OR)	1	2	-1	Thiolate (M–SR)	1	2	-1
μ-CO (M-(CO)-M)	2	2	0	μ-Н	1	2	-1
μ-alkyne	4	4	0	μ-X (M-X-M) X = halogen	3	4	-1
μ-alkyl	1	2	-1	μ-amido (M–(NR ₂)–M	3	4	-1
μ-phosphido (M-(PR ₂)-M	3	4	-1	μ-alkoxide (M–(OR)–M	3	4	-1

Counting electrons in complexes

Counting electrons in complexes						
Example 1: [Cr(CO) ₆] Cr 6.CO	6 e ⁻ 6×2 e ⁻ = 12 e ⁻ Total= 18 e ⁻	Example 2: [Fe(CO) ₅] Fe 5.CO	8 e ⁻ 5×2 e ⁻ = 10 e ⁻ Total= 18 e ⁻			
Example 3: [CIMn(CO) ₅] Mn Cl 5.CO	7 e ⁻ 1 e ⁻ 5×2 e ⁻ = 10 e ⁻ Total= 18 e ⁻	Example 4: [Re(CO) ₅ (PF ₃)] ⁺ Re PF ₃ 5.CO + Charge	7 e ⁻ 2 e ⁻ 5×2 e ⁻ = 10 e ⁻ -1 e ⁻ Total= 18 e ⁻			
Example 5: [Mn(CO) ₅] ⁻ Mn - Charge 5.CO	7 e ⁻ 1 e ⁻ 5×2 e ⁻ = 10 e ⁻ Total= 18 e ⁻	Example 6: [Co(CO) ₄] ⁻ Re - Charge 4.CO	9 e ⁻ 1 e ⁻ 4×2 e ⁻ = 8 e ⁻ Total= 18 e ⁻			
Example 7: [Rh ₂ (CO) ₄ Cl ₂] 2.Rh 2.Cl (bridging) 4.CO	18 e ⁻ 2×3 e ⁻ = 6 e ⁻ 4×2 e ⁻ = 8 e ⁻ Total= 32 e ⁻ Or 16 e ⁻ / Rh					

