Lesson 11: Introduction to Second-Order Linear Differential Equations

Francisco Blanco-Silva

University of South Carolina

WHAT DO WE KNOW?

 The concepts of differential equation and initial value problem

$$F(x, y, y', \dots, y^{(n)}) = 0$$

- The concept of order of a differential equation.
- The concepts of general solution, particular solution and singular solution.
- ► Slope fields
- Approximations to solutions via Euler's Method and Improved Euler's Method

- ► First-Order Differential Equations
 - Separable equationsHomogeneous First-Order
 - Equations
 - ► Linear First-Order Equations
 - ▶ Bernoulli Equations
 - ► General Substitution Methods
 - Exact Equations
- Second-Order Differential Equations
 - ► Reducible Equations

DEFINITIONS AND BASIC RESULTS

Definition

A second-order differential equation is said to be linear if it can be written in the form

$$y'' + p(x)y' + q(x)y = f(x). (1)$$

DEFINITIONS AND BASIC RESULTS

Definition

A second-order differential equation is said to be linear if it can be written in the form

$$y'' + p(x)y' + q(x)y = f(x). (1)$$

In discussing this equation and trying to solve it, we will restrict ourselves to intervals in which the functions p(x), q(x) and f(x) are countinuous.

DEFINITIONS AND BASIC RESULTS

Definition

A second-order differential equation is said to be linear if it can be written in the form

$$y'' + p(x)y' + q(x)y = f(x). (1)$$

In discussing this equation and trying to solve it, we will restrict ourselves to intervals in which the functions p(x), q(x) and f(x) are countinuous.

Definition

The corresponding initial value problem consists of the differential equation (1) together with a pair of initial conditions

$$y(x_0) = y_0$$
 $y'(x_0) = y'_0$

DEFINITIONS AND BASIC RESULTS

Definition

A second-order linear equation is said to be homogeneous if the term f(x) in (1) is zero for all x:

$$y'' + p(x)y' + q(x)y = 0$$

Otherwise, we say that the equation is non-homogeneous.

DEFINITIONS AND BASIC RESULTS

Definition

A second-order linear equation is said to be homogeneous if the term f(x) in (1) is zero for all x:

$$y'' + p(x)y' + q(x)y = 0$$

Otherwise, we say that the equation is non-homogeneous.

We have already seen one example of homogeneous equation:

$$y'' = -y$$

Note that we can write this equation in the form (1), with $p(x) \equiv 0$, $q(x) \equiv 1$ and $f(x) \equiv 0$.

DEFINITIONS AND BASIC RESULTS

Theorem (The Principle of Superposition)

If y_1 and y_2 are two solutions of the differential equation (1), then the linear combination $Ay_1 + By_2$ is also a solution, for any values of the constants C_1 and C_2 .

We have also seen this principle in action. For the equation y'' = -y, we discovered that two possible solutions are $y_1 = \cos x$ and $y_2 = \sin x$. By superposition, we find many other solutions in the form

$$y = A\cos x + B\sin x$$

for any choice of constants *A* and *B*.

DEFINITIONS AND BASIC RESULTS

Theorem (The Principle of Superposition)

If y_1 and y_2 are two solutions of the differential equation (1), then the linear combination $Ay_1 + By_2$ is also a solution, for any values of the constants C_1 and C_2 .

We have also seen this principle in action. For the equation y'' = -y, we discovered that two possible solutions are $y_1 = \cos x$ and $y_2 = \sin x$. By superposition, we find many other solutions in the form

$$y = A\cos x + B\sin x$$

for any choice of constants *A* and *B*.

But, how do we know that there are no other posible solutions?

DEFINITIONS AND BASIC RESULTS

Definition

Given two functions y_1 and y_2 , we define their Wronskian as the determinant

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y'_1 y_2$$

For example, if $y_1 = \cos x$ and $y_2 = \sin x$, we have, $y_1' = -\sin x$, $y_2' = \cos x$, and therefore,

$$W(\cos x, \sin x) = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = \cos^2 x + \sin^2 x = 1$$

DEFINITIONS AND BASIC RESULTS

Definition

Given two functions y_1 and y_2 , we define their Wronskian as the determinant

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y'_1 y_2$$

For example, if $y_1 = \cos x$ and $y_2 = \sin x$, we have, $y_1' = -\sin x$, $y_2' = \cos x$, and therefore,

$$W(\cos x, \sin x) = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = \cos^2 x + \sin^2 x = 1$$

Theorem

Suppose that y_1 and y_2 are two solutions of the differential equation (1). Then the family of solutions $Ay_1 + By_2$ with arbitrary coefficients A and B includes every solution, if and only if there is a point x_0 for which the Wronskian of y_1 and y_2 is not zero.

DEFINITIONS AND BASIC RESULTS

In the example y'' = -y, we have just discovered that any solution can be written in the form $y = A \cos x + B \sin x$.

DEFINITIONS AND BASIC RESULTS

In the example y'' = -y, we have just discovered that any solution can be written in the form $y = A \cos x + B \sin x$.

Theorem

Consider the initial value problem

$$y'' + p(x)y' + q(x)y = f(x),$$
 $y(x_0) = y_0,$ $y'(x_0) = y'_0,$

where the functions p, q and f are continuous on an open interval I = (a, b) that contains the point x_0 . Then there is exactly one solution y = y(x) of this problem, and the solution exists throughout the interval I.

DEFINITIONS AND BASIC RESULTS

In the example y'' = -y, we have just discovered that any solution can be written in the form $y = A \cos x + B \sin x$.

Theorem

Consider the initial value problem

$$y'' + p(x)y' + q(x)y = f(x),$$
 $y(x_0) = y_0,$ $y'(x_0) = y'_0,$

where the functions p, q and f are continuous on an open interval I = (a, b) that contains the point x_0 . Then there is exactly one solution y = y(x) of this problem, and the solution exists throughout the interval I.

In the case of our running example, it is

$$y' = -A\sin x + B\cos x$$

For the initial conditions y(0) = 1, y'(0) = 2, we have then:

$$\begin{cases} y(0) = A\cos 0 + B\sin 0 \\ y'(0) = -A\sin 0 + B\cos 0 \end{cases}$$

DEFINITIONS AND BASIC RESULTS

In the example y'' = -y, we have just discovered that any solution can be written in the form $y = A \cos x + B \sin x$.

Theorem

Consider the initial value problem

$$y'' + p(x)y' + q(x)y = f(x),$$
 $y(x_0) = y_0,$ $y'(x_0) = y'_0,$

where the functions p, q and f are continuous on an open interval I = (a, b) that contains the point x_0 . Then there is exactly one solution y = y(x) of this problem, and the solution exists throughout the interval I.

In the case of our running example, it is

$$y' = -A\sin x + B\cos x$$

For the initial conditions y(0) = 1, y'(0) = 2, we have then:

$$\begin{cases} y(0) = A\cos 0 + B\sin 0 \\ y'(0) = -A\sin 0 + B\cos 0 \end{cases} \begin{cases} A = 1 \\ B = 2 \end{cases}$$

DEFINITIONS AND BASIC RESULTS

In the example y'' = -y, we have just discovered that any solution can be written in the form $y = A \cos x + B \sin x$.

Theorem

Consider the initial value problem

$$y'' + p(x)y' + q(x)y = f(x),$$
 $y(x_0) = y_0,$ $y'(x_0) = y'_0,$

where the functions p, q and f are continuous on an open interval I = (a, b) that contains the point x_0 . Then there is exactly one solution y = y(x) of this problem, and the solution exists throughout the interval I.

In the case of our running example, it is

$$y' = -A\sin x + B\cos x$$

For the initial conditions y(0) = 1, y'(0) = 2, we have then:

$$\begin{cases} y(0) = A\cos 0 + B\sin 0 \\ y'(0) = -A\sin 0 + B\cos 0 \end{cases} \begin{cases} A = 1 \\ B = 2 \end{cases} y = \cos x + 2\sin x$$

EXAMPLES

$$2x^2y'' + 3xy' - y = 0,$$

- Write it in the form of equation (1), and identify p, q and f.
- ► Verify that the functions $y_1 = x^{1/2}$ and $y_2 = x^{-1}$ are both solutions.
- ► Infere the form of all solutions for this equation.
- ► Solve the initial value problem with initial conditions y(1) = 0, y'(1) = 1.

EXAMPLES

$$2x^2y'' + 3xy' - y = 0,$$

- Write it in the form of equation (1), and identify p, q and f.
- ► Verify that the functions $y_1 = x^{1/2}$ and $y_2 = x^{-1}$ are both solutions.
- ► Infere the form of all solutions for this equation.
- ► Solve the initial value problem with initial conditions y(1) = 0, y'(1) = 1.

$$y'' + \frac{3}{2}x^{-1}y' - \frac{1}{2}x^{-2}y = 0,$$
 $p(x) = \frac{3}{2}x^{-1}, q(x) = -\frac{1}{2}x^{-2}, f(x) = 0$

EXAMPLES

Given the second-order linear differential equation

$$2x^2y'' + 3xy' - y = 0,$$

- ▶ Write it in the form of equation (1), and identify p, q and f.
- ► Verify that the functions $y_1 = x^{1/2}$ and $y_2 = x^{-1}$ are both solutions.
- ► Infere the form of all solutions for this equation.
- ► Solve the initial value problem with initial conditions y(1) = 0, y'(1) = 1.

►
$$y'' + \frac{3}{2}x^{-1}y' - \frac{1}{2}x^{-2}y = 0$$
, $p(x) = \frac{3}{2}x^{-1}$, $q(x) = -\frac{1}{2}x^{-2}$, $f(x) = 0$

 $y_1 = x^{1/2}, y_1' = \frac{1}{2}x^{-1/2}, y_1'' = -\frac{1}{4}x^{-3/2}$; therefore,

$$2x^{2}y_{1}'' + 3xy_{1}' - y_{1} = 2x^{2}\left(-\frac{1}{4}x^{-3/2}\right) + 3x\left(\frac{1}{2}x^{-1/2}\right) - x^{1/2} = 0$$

$$y_2 = x^{-1}, y_2' = -x^{-2}, y_2'' = 2x^{-3}$$
; therefore,

$$2x^{2}y_{2}'' + 3xy_{2}' - y_{2} = 2x^{2}(2x^{-3}) + 3x(-x^{-2}) - x^{-1} = 0$$

EXAMPLES

Given the second-order linear differential equation

$$2x^2y'' + 3xy' - y = 0,$$

- \blacktriangleright Write it in the form of equation (1), and identify p, q and f.
- ► Verify that the functions $y_1 = x^{1/2}$ and $y_2 = x^{-1}$ are both solutions.
- \blacktriangleright Infere the form of all solutions for this equation in the interval (0,2).
- ► Solve the initial value problem with initial conditions y(1) = 0, y'(1) = 1.
- ► Let's compute the Wronksian

$$W(x^{1/2}, x^{-1}) = \begin{vmatrix} x^{1/2} & x^{-1} \\ \frac{1}{2}x^{-1/2} & -x^{-2} \end{vmatrix}$$
$$= x^{1/2} (-x^{-2}) - x^{-1} (\frac{1}{2}x^{-1/2})$$
$$= -x^{-3/2} - \frac{1}{2}x^{-3/2} = -\frac{3}{2}x^{-3/2}$$

Note how $W(x^{1/2}, x^{-1}) = -\frac{3}{2}x^{-3/2} \neq 0$ for all values $x \in (0, 2)$. All the solutions are then of the form $y = Ax^{1/2} + Bx^{-1}$.

EXAMPLES

$$2x^2y'' + 3xy' - y = 0,$$

- ▶ Write it in the form of equation (1), and identify p, q and f.
- ► Verify that the functions $y_1 = x^{1/2}$ and $y_2 = x^{-1}$ are both solutions.
- ▶ Infere the form of all solutions for this equation in the interval (0,2).
- ► Solve the initial value problem with initial conditions y(1) = 0, y'(1) = 1.
- ► We have so far $y = Ax^{1/2} + Bx^{-1}$, and $y' = \frac{A}{2}x^{-1/2} Bx^{-2}$. Let us solve the system

$$\begin{cases} 0 = y(1) = A + B \\ 1 = y'(1) = \frac{A}{2} - B \end{cases}$$

EXAMPLES

$$2x^2y'' + 3xy' - y = 0,$$

- ▶ Write it in the form of equation (1), and identify p, q and f.
- ► Verify that the functions $y_1 = x^{1/2}$ and $y_2 = x^{-1}$ are both solutions.
- ▶ Infere the form of all solutions for this equation in the interval (0,2).
- ► Solve the initial value problem with initial conditions y(1) = 0, y'(1) = 1.
- ► We have so far $y = Ax^{1/2} + Bx^{-1}$, and $y' = \frac{A}{2}x^{-1/2} Bx^{-2}$. Let us solve the system

$$\begin{cases} 0 = y(1) = A + B \\ 1 = y'(1) = \frac{A}{2} - B \end{cases} \begin{cases} A = \frac{2}{3} \\ B = -\frac{2}{3} \end{cases}$$

EXAMPLES

$$2x^2y'' + 3xy' - y = 0,$$

- ▶ Write it in the form of equation (1), and identify p, q and f.
- ► Verify that the functions $y_1 = x^{1/2}$ and $y_2 = x^{-1}$ are both solutions.
- ▶ Infere the form of all solutions for this equation in the interval (0,2).
- ► Solve the initial value problem with initial conditions y(1) = 0, y'(1) = 1.
- ► We have so far $y = Ax^{1/2} + Bx^{-1}$, and $y' = \frac{A}{2}x^{-1/2} Bx^{-2}$. Let us solve the system

$$\begin{cases} 0 = y(1) = A + B \\ 1 = y'(1) = \frac{A}{2} - B \end{cases} \qquad \begin{cases} A = \frac{2}{3} \\ B = -\frac{2}{3} \end{cases} \qquad y = \frac{2}{3}x^{1/2} - \frac{2}{3}x^{-1}$$

EXAMPLES

$$y^{\prime\prime} - 3y^{\prime} + 2y = 0$$

- ► Show that $y_1 = e^x$ and $y_2 = e^{2x}$ are both solutions.
- ▶ Solve the initial value problem with initial conditions y(0) = 1, y'(0) = 0.

EXAMPLES

$$y'' - 3y' + 2y = 0$$

- ▶ Show that $y_1 = e^x$ and $y_2 = e^{2x}$ are both solutions.
- ▶ Solve the initial value problem with initial conditions y(0) = 1, y'(0) = 0.

•
$$y_1 = y_1' = y_1'' = e^x$$
; therefore

$$y_1'' - 3y_1' + 2y_1 = e^x - 3e^x + 2e^x = 0$$

$$y_2 = e^{2x}$$
, $y_2' = 2e^{2x}$ and $y_2'' = 4e^{2x}$; therefore,

$$y_2'' - 3y_2' + 2y_2 = 4e^{2x} - 3(2e^{2x}) + 2(e^{2x}) = 0$$

EXAMPLES

Given the second-order linear differential equation

$$y^{\prime\prime} - 3y^{\prime} + 2y = 0$$

- ► Show that $y_1 = e^x$ and $y_2 = e^{2x}$ are both solutions.
- ▶ Solve the initial value problem with initial conditions y(0) = 1, y'(0) = 0.
- ▶ Note that

$$W(e^{x}, e^{2x}) = \begin{vmatrix} e^{x} & e^{2x} \\ e^{x} & 2e^{2x} \end{vmatrix} = e^{x}(2e^{2x}) - e^{2x}e^{x} = e^{3x}$$

Since e^{3x} is never zero, we can say with confidence that the solutions to the differential equation have the form

$$y = Ae^x + Be^{2x}$$

We need to find the coefficients *A*, *B* that solve the initial value problem:

$$\begin{cases} 1 = y(0) = A + B \\ 0 = y'(0) = A + 2B \end{cases} \begin{cases} A = 2 \\ B = -1 \end{cases} y = 2e^{x} - e^{2x}$$