Chapitre VI

Réponse fréquentielle des systèmes à temps continu

VI.1 Définition

Considérons un système linéaire d'ordre quelconque avec une entrée et une sortie. Si l'entrée est sinusoïdale $e(t) = E_0 \sin(\omega t)$, la propriété linéaire du système fait que la sortie sera également une sinusoïde, de même pulsation que l'entrée. On aura: $s(t) = S_0 \sin(\omega t + \varphi)$.

Dans une analyse harmonique d'un système, on va faire le lien entre la fonction de transfert et la réponse de ce système à une sinusoïde. Cette réponse sera caractérisée par deux paramètres :

$$Gain = \frac{S_0}{E_0}$$
 ; $dephasage = \varphi$

Ces deux paramètres dépendent de la pulsation ω de l'entrée.

Soit :
$$G(p) = \frac{S(p)}{E(p)}$$

On appelle réponse harmonique du système la fonction $G(p = j\omega)$.

La connaissance de $G(j\omega)$ permet donc de déduire le comportement fréquentiel du système.

La réponse harmonique $G(j\omega)$ étant un nombre complexe fonction d'une variable complexe ; on l'illustre le plus souvent par des diagrammes mettant en correspondance le module $|G(j\omega)|$ et l'argument $\varphi(j\omega) = \text{Arg}(G(j\omega))$.

Le gain en décibels correspond à $G_{dB}(\omega) = 20 \log |G(j\omega)|$

Exemple

Soit la fonction suivante :

$$G(p) = \frac{1}{p+2}$$

Calculer la fonction de transfert dans le domaine fréquentiel.

La fonction de transfert est : $G(j\omega) = \frac{1}{2+j\omega}$

$$G(j\omega) = \frac{1}{2+j\omega} \times \frac{2-j\omega}{2-j\omega} = \frac{2-j\omega}{4+\omega^2}$$

$$G(j\omega) = \frac{2}{4+\omega^2} - j\frac{\omega}{4+\omega^2}$$

L'amplitude est :

$$|G(j\omega)| = \sqrt{\left(\frac{2}{4+\omega^2}\right)^2 + \left(\frac{\omega}{4+\omega^2}\right)^2}$$

La phase:

$$\varphi = -\arctan\left(\frac{\omega}{2}\right)$$

VI.2 Diagrammes de BODE

Le diagramme de Bode est constitué de deux courbes. La première donne le module de $G(j\omega)$ en décibels (dB), dans un plan semi logarithmique :

$$G_{dB}(\omega) = 20log_{10}|G(j\omega)|$$

La seconde donne l'argument de $G(j\omega)$, généralement exprimé en degrés (deg), quand la pulsation ω varie :

$$\varphi(j\omega) = \text{Arg}(G(j\omega))$$

On utilise traditionnellement les termes gain et de phase, plutôt que les termes module et argument.

VI.2.1 Système de premier ordre

La fonction de transfert d'un système de premier ordre s'écrit sous la forme :

$$G(p) = \frac{K}{1 + \tau p}$$

En posant $p = j\omega$, G(p) devient :

$$G(j\omega) = \frac{K}{1+j\tau\omega} = \frac{K}{1+j\frac{\omega}{\omega_0}}$$
 avec $\omega_0 = \frac{1}{\tau}$

On définit la pulsation réduite $u = \frac{\omega}{\omega_0}$ on obtient : $G(ju) = \frac{K}{1+ju}$

• Module de G(ju)

$$|G(ju)| = \frac{K}{\sqrt{1 + u^2}}$$

$$G_{dB} = 20 \log K - 20 \log \sqrt{1 + u^2}$$

• Argument de G(ju)

$$\varphi = -\arctan(u)$$

Comportement asymptotique

Si
$$u \ll 1$$
 \Rightarrow $|G(u)| = K$ \Rightarrow $G_{dB} = 20 \log(K)$, $\varphi = 0$
Si $u \gg 1$ \Rightarrow $|G(u)| = \frac{K}{u}$ \Rightarrow $G_{dB} = 20 \log(K) - 20 \log u$, $\varphi = -\arg(ju) = -\frac{\pi}{2}$

Si
$$u = 1$$
 \Rightarrow $|G(u)| = \frac{K}{1+j}$ \Rightarrow $G_{dB} = 20 \log(K) - 20 \log \sqrt{2} = 20 \log(K) - 3dB$,
 $\varphi = \arg\left(\frac{1}{1+j}\right) = -\arg(1+j) = -\frac{\pi}{4}$

La représentation asymptotique de Bode en amplitude est donc composée de deux asymptotes :

- Si ω tend vers 0 le gain tend vers une asymptote horizontale d'équation $G_{dB} = 20 \log(K)$.
- Si ω est de multiplicité par 10, le gain chute de 20 dB; on dit qu'on a une asymptote de pente -20 $dB/d\acute{e}cade$ notée (-1).

Les deux asymptotes se croisent pour $\omega = \omega_0 = \frac{1}{\tau}$, cette fréquence est appelée fréquence de cassure ou coupure.

Figure VI.1 : Diagramme de Bode d'un système de premier ordre.

VI.2.2 Système de deuxième ordre

La fonction de transfert d'un système de deuxième ordre s'écrit sous la forme :

$$G(j\omega) = \frac{K}{1 + \frac{2\xi}{\omega_0}p + \left(\frac{p}{\omega_0}\right)^2}$$

En posant $p = j\omega$, G(p) devient :

$$G(j\omega) = \frac{K}{1 + 2\xi j \frac{\omega}{\omega_0} + \left(j \frac{\omega}{\omega_0}\right)^2}$$

On définit la pulsation réduite $=\frac{\omega}{\omega_0}$, on obtient $: G(u) = \frac{K}{1-u^2+2\xi ju}$

Avec:

$$\begin{cases} G_{dB}(u) = 20 \log(|G(u)|) \\ \varphi = \arg(G(u)) \end{cases} \text{ avec } \begin{cases} |G(u)| = \frac{K}{\sqrt{[1-u^2]^2 + 4\xi^2 u^2}} \\ \arg[G(u)] = -\arctan\left[\frac{2\xi u}{1-u^2}\right] \end{cases}$$

Comportement asymptotique

Si
$$u \ll 1 \Rightarrow |g(u)| \approx K \Rightarrow G_{dB} = 20 \log(K), \ \varphi \to 0$$

Si $u \gg 1 \Rightarrow |g(u)| \approx \frac{K}{u^2} \Rightarrow G_{dB} = 20 \log(K) - 40 \log u, \ \varphi \to -\pi$

Le diagramme de gain possède alors deux asymptotes : l'une horizontale en $20\log(K)$ de pente nulle et la seconde de pente $40 \text{ dB/décade passant par le point } (20\log(K), \omega_0)$. Le déphasage maximal vaut quant à lui -180° .

Figure VI.2: Diagramme de Bode d'un système de deuxième ordre.

VI.3 Diagramme de Nyquist

Le diagramme de Nyquist est lieu de $G(j\omega)$ dans le plan complexe, lorsque ω varie de $-\infty$ à $+\infty$. Ce diagramme est orienté selon les ω croissants. Il représente dans le plan complexe la partie imaginaire en fonction de la partie réelle et qui évolue en fonction de ω . En pratique, il suffit de tracer $G(j\omega)$ pour les seules variables positives de ω puis de compléter par symétrie par rapport à l'axe des réels.

VI.3.1 Systèmes de premier ordre

La fonction de transfert d'un système de premier ordre s'écrit sous la forme :

$$G(j\omega) = \frac{K}{1 + \tau p}$$

Dans le plan complexe, $G(j\omega)$ s'écrit :

$$G(j\omega) = \frac{K}{1 + j\tau\omega} = \frac{K(1 - j\tau\omega)}{1 + (\tau\omega)^2} = Re(\omega) + jIm(\omega)$$

Où:

$$\begin{cases} Re(\omega) = \frac{K}{1 + (\tau\omega)^2} \\ Im(\omega) = \frac{-\tau\omega K}{1 + (\tau\omega)^2} \end{cases}$$

ω	0	+∞
Re	K	0
Im	0	0

Il reste à tracer Re et Im, On peut montrer que cette courbe est un cercle. En effet :

$$\left(Re - \frac{K}{2}\right)^2 + Im^2 = \left(\frac{K}{2}\right)^2$$

Le lieu de Nyquist d'un système du premier ordre est un demi-cercle de centre $\left(0, \frac{K}{2}\right)$ et de rayon $\frac{K}{2}$.

Figure VI.3: Diagramme de Nyquist de 1^{ére} ordre.

VI.3.2 Systèmes de second ordre

La fonction de transfert d'un système de deuxième ordre s'écrit sous la forme :

$$G(j\omega) = \frac{K}{1 + \frac{2\xi}{\omega_0}p + \left(\frac{p}{\omega_0}\right)^2}$$

En posant $p = j\omega$, G(p) devient :

$$G(j\omega) = \frac{K}{1 + 2\xi j \frac{\omega}{\omega_0} + \left(j \frac{\omega}{\omega_0}\right)^2}$$

On définit la pulsation réduite $=\frac{\omega}{\omega_0}$, on obtient :

$$G(u) = \frac{K}{1 - u^2 + 2\xi ju} = \frac{K(1 - u^2)}{(1 - u^2)^2 + 4\xi^2 u^2} - j\frac{2K\xi u}{(1 - u^2)^2 + 4\xi^2 u^2} = Re(\omega) + jIm(\omega)$$

и	0	+∞
Re	K	0
Im	0	0

Figure VI.4 : Diagramme de Nyquist de 2^{éme} ordre.