HW2 sollas.

#1: Assume the contrary that $Jz \in Q$. Then $\exists a,b \in \mathbb{Z}(\{0\})$ st. $Jz = \frac{a}{b}$.

 $\Rightarrow a^2 = 2b^2 \Rightarrow a$ is even, a = 2a' for some $a' \in \mathcal{U}$.

⇒ 2a¹²= b² ⇒ b is even, b= 2b' for some b'∈ V.

→ Q12= 2112 → ...

By this argument, one can show that 2^N divides a and 6 for any $N \in \mathbb{N}$, which is impossible. Hence $Jz \notin Q$

#2: Prove by induction. The slatement is true for n=1.

Assume the statement is true for n, then

$$1^{3} + 2^{3} + \cdots + n^{3} + (n+1)^{3} = (1 + \cdots + n)^{2} + (n+1)^{3}$$

$$= \left(\frac{n(n+1)}{2}\right)^{2} + (n+1)^{3} = (n+1)^{2} \left(\frac{n^{2}}{4} + n + 1\right)$$

$$= \left(\frac{(n+1)(n+1)}{2}\right)^{2} = (1 + \cdots + n + (n+1))^{2}.$$

3: Prove by induction.

Cleim: |a11+a2| = |a1+1a2|:

By the definition of absolute value, we have: - |az| = az = |az|

 \Rightarrow - (|a|+|a2|) \leq $a_1+a_2 \leq$ |a|+|a2|

⇒ | a1+a2 | ≤ |a1 + |a2 |.

Hence the slatement is true for n=2.

Assume the slatement is true for n. then

 $|a_1+\cdots+a_n+a_{n+1}| \leq |a_1+\cdots+a_n|+|a_{n+1}| \quad (using h=2 case)$ $\leq |a_1|+\cdots+|a_n|+|a_{n+1}|.$

#4: See Ross, & 4.1~ 4.5.

- - No. eig. $S = \{z\}$ set of only one excal number. then $\sup S = z$, But $\forall z > 0$, there is no a $\in S$ so that z - z < a < z.

#6: Assume the contrary that x > y.

Let $\varepsilon = \frac{x - y}{2} > 0$, then $y + \varepsilon = y + \frac{x - y}{2} = \frac{x + y}{2} < x$.

contradicts with the assumption.

Hence X & y . D

#7: 1 is obviously on upper bound of A: 21-4 | nEN 3.

Suppose that 3 z < 1 sit. z is an upper bound of A.

Weather Let E= 1- z >0.

Then $2 \ge 1 - \frac{1}{n}$ $\forall n \in \mathbb{N}$ $\Rightarrow n \le \frac{1}{\epsilon}$ $\forall n \in \mathbb{N}$, which is impossible since N is not bounded above. \square

#8: It suffices to show that $\forall \xi \geqslant 0$, $\exists m, n \in \mathbb{Z}$ set. $0 < m + n \mathcal{I} \subseteq \mathcal{E}$. Choose on $N \in \mathbb{N}$ st. $N > \frac{1}{\mathcal{E}}$.

Consider the set $\{\{\mathcal{I}_{\mathcal{I}}\}, \{2\mathcal{I}_{\mathcal{I}}\}, --, \{(NH)\mathcal{I}_{\mathcal{I}}\}\}$. $\subset (0,1)$,

where $\{\alpha'\} := \alpha - \lfloor \alpha \rfloor$ is the fractional part of α .

By pigeon thole principle.
$$\exists a,b \in \{1,...,N+1\}$$
 set. $0 < \{aJz\} - \{bJz\} < \frac{1}{N} < \epsilon$.

Note that
$$\{aJi\}=aJ2-t1$$

 $\{bJi\}=bJi-t2$ for some integer $t1,t2\in\mathbb{Z}$.

Hence
$$0 < (a-b)\sqrt{z} - (2-b) < \varepsilon$$
 Z
 Z

#9: For n= 2Nd, we have

$$\alpha_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{8} + \dots + \frac{1}{2^{N-1}} + \dots + \frac{1}{2^{N}}$$

$$> 0 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + (\frac{1}{8} + \dots + \frac{1}{8}) + \dots + (\frac{1}{2^{N}} + \dots + \frac{1}{2^{N}}) = 1 + \frac{1}{2^{N}}$$

$$2^{N+1} \times \frac{1}{2^{N-1}}$$

→ (an) is not bounded, hence doesn't converge.

10:

- (a) ∀E70, ∃N70 st. |an-a| < € ∀n>N.
 - Hence (a_{2n}) and (a_{2n-1}) both converge, and where the Same limit as (a_n) .
- (b) No. eg (0,1,0,1,0,1,...).
- (C) The argument in (a) shows that any subsequence of a convergent sequence also converges, and converges to the Same limit.

Let $\lim_{n\to\infty} \alpha_{2n} = A$, $\lim_{n\to\infty} \alpha_{2n-1} = B$, $\lim_{n\to\infty} \alpha_{3n} = C$. Since (α_{6n}) is a subsequence of both (α_{2n}) and (α_{3n}) ,

we have $A = \lim_{n \to \infty} \alpha_{2n} = \lim_{n \to \infty} \alpha_{3n} = C$.

Also, (a_{6n-3}) is a subseque of both (a_{2n-1}) and (a_{3n}) , hence $B = \lim_{n \to \infty} a_{2n-1} = \lim_{n \to \infty} a_{6n-3} = \lim_{n \to \infty} a_{3n} = C$

=> A= C= B. lin a2n = lin aen-1 = A.

 $\forall \xi 70$, $\exists N_1 70$ st. $|a_{2n-1} - A| < \xi$ $\forall n > N_1$ $\exists N_2 70$ st. $|a_{2n-1} - A| < \xi$ $\forall n > N_2$.

Define $N=\max\{2N_1, 2N_2-1\}$, then we have $|\alpha_n-A|<\epsilon$ $\forall n>N$.

Hence (an) converges 0