

PCT/GB 00/02898

INVESTOR IN PEOPLE	
REC'D	27 SEP 2000
The Patent Office	WIPO
Concept House	PCT
Cardiff Road	
Newport	
South Wales	
NP10 8QQ	

TK

**PRIORITY 10/031948
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

GB00/02898 EU ✓

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 24 AUG 2000

This Page Blank (uspto)

Patents Form 1/77
Patents Act 1977
(Rule 16)

28JUL99 E465199-1 002917
P01/7700 0.00 - 9917610.9

Request for grant of a patent

The Patent Office
Cardiff Road
Newport
Gwent NP9 1RH

1. Your reference
5314301/IM

2. Patent Application Number
9917610.9

3. Full name, address and postcode of the or of each applicant (*underline all surnames*)

Cambridge Consultants Limited
Science Park
Milton Road
Cambridge CB4 4DW

27 JUL 1999

Patents ADP number (*if known*)

361618001

If the applicant is a corporate body, give the
country/state of its incorporation

Country: UNITED KINGDOM
State: UNITED KINGDOM

4. Title of the invention
IMPROVEMENTS IN OR RELATING TO SPECTROMETERS

5. Name of agent
Beresford & Co

"Address for Service" in the United Kingdom
to which all correspondence should be sent

2/5 Warwick Court
High Holborn
London WC1R 5DJ

Patents ADP number

1826001

6. Priority details

Country Priority application number Date of filing

please enter priority details

Patents Form 1/77

7. If this application is divided or otherwise derived from an earlier UK application give details

Number of earlier of application

Date of filing

****insert filing date****

8. Is a statement of inventorship and or right to grant of a patent required in support of this request?

YES

9. Enter the number of sheets for any of the following items you are filing with this form.

Continuation sheets of this form

Description

15

Claim(s)

6

Abstract

1

Drawing(s)

15

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and
right to grant of a patent (Patents form 7/77)

1

Request for preliminary examination
and search (Patents Form 9/77)

1

Request for Substantive Examination
(Patents Form 10/77)

Any other documents,
(please specify)

11. I/We request the grant of a patent on the basis of this application

Signature

BERESFORD & Co

Date 27 July 1999

12. Name and daytime telephone number of
person to contact in the United Kingdom

IAN MACKENZIE

Tel: 0171-831-2290

5

IMPROVEMENTS IN OR RELATING TO SPECTROMETERS

10

The present invention concerns interferometers and is particularly concerned with Fourier transform spectrometers. Fourier transform spectroscopy is a well known technique for obtaining the spectra of weak extended sources. It offers throughput and multiplex advantages which can give rise to superior signal-to-noise performance when compared to other methods.

15

As a result there has been an increasing demand for Fourier transform spectrometers over a wide range of applications including industrial, medical, environmental and consumer applications.

20

Accordingly there has been a trend of simplifying and ruggedising spectrometer instrumentation to enable it to be used in an extended range of applications. There is however a trade-off between performance and cost associated which tends to limit the range of applications of emerging products.

25

The present invention is particularly concerned with

5 providing an extremely simple and robust component for a
spectrometer.

In one aspect the invention provides a two component
optical block in which light to be analysed is internally
10 reflected and combined to produce an interference fringe
pattern which can be measured to provide a spectral
analysis of the light.

In order that the invention may be more readily
15 understood embodiments thereof, and of the prior art,
will now be described by way of example and with
reference to the accompanying drawings in which:

Figure 1 is a schematic view of a known Michelson
20 interferometer;

Figures 2A and 2B show respectively a fringe
function and a spectrum;

25 Figure 3 is a schematic diagram of another known

5 form of interferometer;

Figure 4 shows the basic component of an optical
block in accordance with a first embodiment of the
present invention;

10

Figure 5 is similar to Figure 4;

Figure 6A and 6B shows steps in the manufacture of
the optical block of Figure 5;

15

Figure 7 is an illustration of a second embodiment
of an optical block in accordance with the present
invention;

20

Figure 8 is similar to Figure 7;

Figure 9 is similar to Figure 8 but has certain
dimensions exaggerated in the interest of clarity;

25

Figure 10 is a diagram showing another embodiment of

5 an optical block;

Figure 11 is a diagram illustrating a particular
practical realisation of an embodiment of an optical
block in accordance with the present invention;

10

Figure 12 is a diagram showing another practical
implementation of an optical block in accordance with the
present invention;

15

Figure 13 is a diagram illustrating a third
practical implementation of an optical block in
accordance with the present invention;

20

Figure 14 is a diagram of spectrometer according to
the present invention; and

Figure 15 shows two spectral waveforms.

25

Referring now to Figure 1 this shows the
conventional form of an instrument based on a Michelson

interferometer. In this arrangement the interference fringe field formed due to the superposition of the light field U_1 and U_2 reflected respectively from the mirrors M_1 and M_2 via the beam splitter B is incident on a light sensitive detector P . The aperture of this detector is made considerably smaller than the fringe spacing in the plane of detection. The output of this detector thereby defines the interference fringe intensity distribution generated as the mirror M_2 is translated. In Fourier transform spectroscopy this translation is arranged to occur over a distance $\pm D$ about the point where the path length in the translated arm of the interferometer l_2 , matches that of the other arm, l_1 . Figure 2 shows the form of the fringe envelope observed under these conditions where $i(\tau)$ is photo current of the detector P as a function of the mirror displacement $\pm D$. Note that $i(\tau)$ is proportional to the interference fringe pattern

$$I_{12} = I_1 + I_2 \times 2\sqrt{I_1 I_2} \gamma(\tau) \frac{4\pi D}{\lambda} \quad (1)$$

5 where

I_1 = intensity of interfering beam U_1

I_2 = intensity of interfering beam U_2

$\gamma(\tau)$ = coherence function of source

τ = D/C

10 λ = wavelength at light

c = speed of light

$\gamma(\tau)$ is equal to the correlation of the two beams of light with a relative delay time $\tau = D/c$ i.e.

$$\gamma(\tau) = f(t)f^*(t + \tau) / |f(t)|^2 \quad (2)$$

15 Where

$f(t)$ = defines interfering waveform as function of time, t.

By the Wiener-Khinchin theory, the Fourier transform of $\gamma(\tau)$ is equivalent to the spectral intensity $I(\omega)$.

20 Hence the Fourier transform of the fringe function generated in the specific way described provides a measure of the spectral distribution of the input light field as is shown schematically in Figure 2. It may be shown that the resolution of this type of spectrometer is

5 given by

$$\left(\frac{\delta\lambda}{\lambda} \right)_{\min} = \frac{\lambda}{2D_{\max}} \quad (3)$$

where D_{\max} = maximum amplitude of mirror displacement

Hence a value of $D = 100\mu\text{m}$ will generate a wavelength resolution of under 1nm for $\lambda = 500\text{nm}$.

10 In practice the translation mechanism has to be extremely precise in order to minimise variations in the fringe spacing and vibration across the detector since such variations also cause a modulation of the fringe envelope and introduce errors in the resultant spectrum.

15 This problem is usually minimized by the use of corner cube reflectors but nonetheless these are expensive the instrument still requires a precision positional encoder to define the transform time scale (D/c).

Moving parts can be eliminated by using the
20 arrangement shown in Figure 3 in which the mirror M_2 is rotated by an angle ε about an axis co-incident with the zero-order fringe. A distributed fringe field is then observed which is imaged in the plane of a pixellated detector array DA by the lens L. The fringe field

5 envelope is then defined by the spatially scanned output
of the detector array and is equivalent of that shown in
Figure 2 but does not require the translation of a
mirror.

Various configurations of interferometer are
10 described in the prior art which are aimed at simplifying
and ruggedising the extended fringe field interferometer
described above. These include the use of a
polarising/birefringent elements to reduce the system to
a common path interferometer and a common path, contra
15 propagating three element Sagnac configuration.

Referring now to Figure 4 of the drawings this shows
an optical block which comprises two optical elements 1
and 2 which may be fabricated from conventional good
quality optical materials such as BK7 glass. The term
20 optical block is used to define the optical components in
which the interference fringe field is actually
generated.

The optical block shown in Figure 4 has a common
central element BS/C which acts as a beam splitter and
25 combiner and is placed between reflectors R₁ and R₂. The

5 planes of R_2 , BS/C and R_1 are nominally parallel and R_1 and R_2 separated by a distance of respectively S_1 and S_2 from BS/C. An input beam U_1 of diameter a_i is incident
at angle θ to the surface normal of BS/C such that adjacent beams incident on R_1 and R_2 do not overlap. This
10 requires that $\theta > \sin^{-1}2S_{1,2}/a_i$. Under these conditions it can be seen that two beam interference will occur between various combinations of beam propagating through and exiting from the R_1 , R_2 , BS/C structure (e.g. at d and f).

In the embodiment shown in Figure 4 the interfering
15 beams are reflected once from the outer reflectors. The input beam is split at BS/C into the reflected and transmitted components U_r , U_t respectively. These are in turn reflected from R_1 and R_2 and recombine at B/SC. The interferogram described by equation 1 is generated by arranging for the faces R_1 and R_2 to be inclined at a total angle ε with respect to one another. This is more clearly shown in Figure 5 whilst ensuring that the zero order fringe for which $S_1=S_2$ is nominally at the centre of the fringe field. The fringes will localise i.e. have
20 maximum contrast in the plane which the interfering beams
25

5 intersect as shown in Figure 5. In practice a lens is used to form an image of the localised fringe field in the plane of the detector array.

A preferred embodiment of this interferometer may be fabricated from a single wedge cut into two wedges along 10 the wedge section as shown in Figure 6. One wedge is then rotated in its plane by 180°C about the cut orientation and its lower face cemented to that of the other prism to form the monolithic element or optical block shown. An input beam 3, output lens 4 and sensor 15 array 5 are also shown. In order to maximise the optical throughput the reflection coefficients of R_1 and R_2 should be as near 1.0 as possible and transmission (t) of reflection (r) coefficients of BS/C should both be equal to 0.5. The sensor array may be any suitable pixellated 20 semiconductor array such as a CCD array.

A key objective in fabrication is to maintain repeatability of fringe geometry. In the above configuration this will depend upon the extent to which the wedge alignment and attachment process causes 25 variations of the orientation of R_1 and R_2 relative to

5 the reference wedge angle $\varepsilon/2$. Sensitivity to alignment
tolerance is relaxed relative to for interferometric
precision required in the latter case when the number of
reflections at R_1 and R_2 is extended from 1 to 2 as shown
in Figure 7. Under these conditions the interfering
beams are common to R_1 and R_2 and relative misorientation
of the latter do not therefore effect the fringe spacing.
10

An angular separation between the interfering beams
in this dual reflection geometry is formed either by
tilting one or a combination of the section of each
15 reflector upon which an individual beam is incident. If
the sections A,B,C,D of the reflectors shown in Figure 8
delineate the regions over which there is no overlap of
the incident beams they therefore define the sections
that may be tilted relative to one another.

20 Figures 9 and 10 show respectively the arrangement
in which section A and sections A&B are tilted. Here it
will be noted that the only requirement when two sections
are tilted is that the tilts be in an opposite sense so
that the angular displacement created by the first is not
25 compensated by the second. The position of the zero

5 order fringe will also be a function of the relative tilt
of the two reflectors since this will define the point
for which the path lengths of the two interfering beams
are equal. In the case of Figure 9 (A tilted only) the
zero fringe will occur at the extreme edge of the
10 interference field. This position will shift towards the
centre as B is tilted in the opposite sense (Figure 10)
and will be at the centre of the fringe field when the
tilts of the two mirrors are equal. Note that a lateral
shift of the dual angle reflector relative to the flat
15 provides a means of fine tuning the position of the zero
order fringe.

For one class of preferred configuration the tilts
are confined to the R_1 element so that the BS/C and R_2
functions may be combined on a single optical flat with
20 parallel faces. Figure 11 illustrates how the optical
block is formed by such an optical flat located on an
element M which incorporate the symmetrically tilted
reflector R_1 . In practice M could be a precision moulded
component and the optical block assembled by inserting
25 the flat F in the pre-moulded location. This procedure

5 is compatible with low cost components and manufacture
since as has been noted above, this configuration of the
optical block is not dependent on the precision location
of R_1 with respect to R_2 .

10 Figure 11 also shows the additional components the
system consisting of an extended source S (which may in
practice consist at a large core optical fibre),
collimating/focussing input lens L_1 , output fringe and
field imaging element L_o and detector array A. These
elements will, in general, be required for all geometrics
15 at the interferometer.

20 Figure 12 shows an alternative way of manufacturing
the optical block in which the optical flat G is attached
directly to the dual angle prism H. This arrangement is
particularly robust and could, for example, be
manufactured from low expansion glass to enable operation
at elevated temperatures. Figure 12 shows the same basic
design in which all faces are mutually tilted. This
configuration could be manufactured by slicing and
rejoining a dual angle prism in accordance with the
25 principle indicated in Figure 7 for a single angle (i.e.

5 wedge) prism.

In order to maximise the optical throughput the outer reflection R_1 and R_2 should have a coefficient of reflectivity as near to unity as possible and the reflection (r) and transmission coefficients r, t at BS/C should be respectively .33 and .66. These coefficients should apply over the spectral range of operation.

Figure 14 shows schematically a typical practical implementation of the optical blocks just described in an interferometer. Here light from a source S is coupled to a region of test T via a beam-splitter B.

In this configuration T may be a sample for which it is required to measure the spectral reflectivity. Alternatively T may be a passive reflector and the spectral transmission of the medium between the light delivery element and T measured. In either case light is coupled into the interferometer I via the current lens L_i and imaged onto the detection array DA by the output lens L_o . In a preferred configuration all of the elements external to the interferometer may in practice be integrated with the structure at the optical block of the

5 interferometer by combining, for example, moulded light
guides and lenses with the reflective elements. The
output of the detection array can be Fourier transform
analysed in a well known manner by a suitable processor
PC for display or printing.

10 Figure 15 is an example of a preliminary
experimental result which shows the spectrum of the same
source measured using a calibrated spectrometer and that
obtained using a laboratory version of the dual
reflection spectrometer described above.

15 It will be appreciated that the optical blocks just
described are compatible with robust monolithic
fabrication of the two elements. With respect to the
current state of the art it therefore reduces cost by
eliminating the need for specialised components whilst
20 simplifying manufacture by virtue of the reduction in
component number.

5 CLAIMS:

1. An interferometric optical block having three planar nominally parallel surfaces with the two outer surfaces adapted to act as beam reflectors for internal light and the third surface in operation acting as a beam splitter 10 and beam combiner, the optical block having an input portion by means of which an input beam of light to be analysed can be input so as partially to pass through said third surface to be internally reflected by one of said outer reflectors; and partially to be reflected by 15 said third surface so as then to be internally reflected by the other of said outer reflectors whereby light internally reflected by said outer reflectors is combined at said third surface to produce an exit beam, and wherein said outer surfaces have an inclination with respect to one another so as to make a variation in path 20 lengths in the light forming the exit beam so as to generate an interference fringe field.

2. An optical block in accordance with claim 1 in which 25 the exit beam results from the interference of the beams

5 transmitted and reflected from the beam splitter/combiner
that have in operation each undergone a single reflection
at the outer reflectors.

10 3. An optical block in accordance with claims 1 or 2
which has been fabricated by cutting a single wedge
element parallel to the wedge section to create two
identical wedges and with one such wedge so cut rotated
180°, the lower face of said one wedge being secured to
the other wedge to form a monolithic element, the
15 adjacent faces of the wedges forming said third surface.

20 4. An optical block in accordance with claim 1 in which
the exit beam in operation results from the interference
of beams combined at the beam splitter/combiner which
have undergone two reflections at the outer reflectors.

25 5. An optical block in accordance with any preceding
claim in which the beam splitter/combiner and one
reflector are formed by an optical flat with parallel
faces and the other reflector is provided by a single

5 unit comprising the inclined mirror or mirrors and an
integral location for the optical flat.

6. An optical block in accordance with any one of claims
1 to 4 in which the beam splitter/combiner and one
10 reflector are formed by an optical flat with parallel
faces and the other reflector by a solid prism with one
plane face and an inclined second face, the block having
been assembled by attaching the plane fact of the solid
prism to the plane beam splitter/combiner face of the
15 optical flat.

7. An optical block in accordance with any one of claims
1 and 4 fabricated from two identical solid dual angle
prisms where the plane faces are attached to form the
beam splitter combiner and the outer identical and
20 mutually inclined faces form the reflectors.

8. An optical block in accordance with claim 7 in which
the prisms have been obtained by cutting in two a single
25 dual angle prism in a plane parallel to the dual angle

5 section.

9. An optical block according to any one of the preceding claims wherein in order to maximise optical throughput over the spectral range of operation said beam splitter/combiner and reflector surfaces are coated with a coating such that the reflectivity coefficient of the reflectors is approximately 1.0 and the transmission coefficient and reflection coefficient being respectively 0.5 and 0.5 for the single reflection configuration and 15 .66 and .33 for the dual reflection configuration.

10. An optical block in accordance with any preceding claim including a lightguide or optical fibre associated with said input portion.

20

11. An interferometer comprising an optical block as claimed in any one of the preceding claims, a light source for directing light to be interferometrically analysed to the input portion of said block so that the 25 light beams incident on the reflectors and the beam

5 splitter/combiner do not overlap, and a light sensor array for detecting the pattern of the fringe field, the
fringe field having a multiplicity of fringes about a
zero order fringe so that a Fourier transform of said fringe pattern corresponds to the spectral distribution
10 of the illumination source.

12. A spectrometer according to claim 11, comprising a lens system adapted to form an image of the optimum contrast fringe field as localised on a plane relative to the interferometer onto said sensor array, and wherein
15 said sensor array comprising is a pixellated semiconductor array.

13. A spectrometer according to claim 12 and including
20 electronic processor adapted to generate the Fourier transform of the electrical signal generated by said array so as to measure the spectral distribution of the input light.

25 14. A spectrometer according to any of claims 11 to 13

5 comprising means for coupling light to and from the
measurement zone, imaging light into interferometer and
imaging the fringe field light out of optical block onto
the detector array form an integral element of the
interferometer.

ABSTRACTIMPROVEMENTS IN OR RELATING TO SPECTROMETERS

The present invention concerns spectrometers which utilise an interferometric optical block having three planar nominally parallel surfaces with the two outer surfaces adapted to act as beam reflectors for internal light and the third surface in operation acting as a beam splitter and beam combiner, the optical block having an input portion by means of which an input beam of light to be analysed can be input so as partially to pass through said third surface to be internally reflected by one of said outer reflectors, and partially to be reflected by said third surface so as then to be internally reflected by the other of said outer reflectors whereby light internally reflected by said outer reflectors is combined at said third surface to produce an exit beam, and wherein said outer surfaces have an inclination with respect to one another so as to make a variation in path lengths in the light forming the exit beam so as to generate an interference fringe field.

1/15

F1 G1 UREF1

This Page Blank (uspto)

$J(\omega)$

$$\left(\omega = \frac{2\pi c}{\lambda} \right)$$

Spectrum

B

$i(x) \propto I_{12}$

A

$$\Rightarrow \left(x = \frac{\lambda}{c} \right)$$

Fringes function

Fourier
transform

FIGURE 2

This Page Blank (uspto)

3/15

[Fig 1 Gravels]

This Page Blank (uspto)

4/15

FIGURE 4

Setup

This Page Blank (uspto)

5/15

This Page Blank (uspto)

6/15

FIGURE 6

This Page Blank (uspto)

7/15

FIGURE 7

This Page Blank (uspto)

8/15

FIGURE 8

This Page Blank (uspto)

9/15

FIGURE 9

Scheme

This Page Blank (uspto)

10/15

E1 GUNS 10

This Page Blank (uspto)

This Page Blank (uspto)

12/15

FIGURE 12
SPARE

This Page Blank (uspto)

14/15

Figure 14
SOPA

This Page Blank (uspto)

15/15

ROYAL BLUE (FILTER ~~ODD~~)

SPARE

FIGURE 15

This Page Blank (uspto)