## CUSTOMER CHURN

Statistical analysis and model on factors influencing customer churn on an example Kaggle bank dataset.



## THE PROJECT

Choosing the dataset and defining project steps.

## Customer Churn

What is Customer Churn?

Why is it important?

How does it affect the banking industry?





#### The Problem:

A bank manager is concerned with customers leaving their credit card services.

#### The Case:

- Which features have greater impact on churn?
- Can we predict which customers will churn?
- How can the bank prevent churn?







```
['CLIENTNUM',
 'Attrition Flag',
 'Customer Age',
 'Gender',
 'Dependent count',
 'Education Level',
 'Marital Status',
 'Income Category',
 'Card Category',
 'Months on book',
 'Total Relationship Count',
                                                 column
 'Months Inactive 12 mon',
 'Contacts Count 12 mon',
 'Credit Limit',
                                                  names
 'Total Revolving Bal',
 'Avg Open To Buy',
 'Total Amt Chng Q4 Q1',
 'Total Trans Amt',
 'Total Trans Ct',
 'Total Ct Chng Q4 Q1',
 'Avg Utilization Ratio',
 'Naive Bayes Classifier Attrition Flag Card Category
12 mon 1',
 'Naive Bayes Classifier Attrition Flag Card Category
12 mon 2']
```



| Feature                  | Description                                  |  |
|--------------------------|----------------------------------------------|--|
| Clientnum                | Unique identifier for customers              |  |
| Attrition_Flag           | If the account is closed equals 1 else 0     |  |
| Card_Category            | Type of Card (Blue, Silver, Gold, Platinum)  |  |
| Months_on_book           | Months on book (Time of Relationship)        |  |
| Total_Relationship_Count | Total no. of products held by the customer   |  |
| Months_Inactive_12_mon   | No. of months inactive in the last 12 months |  |
| Contacts_Count_12_mon    | No. of Contacts in the last 12 months        |  |
| Credit_Limit             | Credit Limit on the Credit Card              |  |
| Total_Revolving_Bal      | Total Revolving Balance on the Credit Card   |  |
| Avg_Open_To_Buy          | Average of last 12 months                    |  |
| Total_Amt_Chng_Q4_Q1     | Change in Transaction Amount (Q4 over Q1)    |  |
| Total_Trans_Amt          | Total Transaction Amount (Last 12 months)    |  |
| Total_Trans_Ct           | Total Transaction Count (Last 12 months)     |  |
| Total_Ct_Chng_Q4_Q1      | Change in Transaction Count (Q4 over Q1)     |  |
| Avg_Utilization_Ratio    | Average Card Utilization Ratio               |  |



#### Attrition\_Flag Customer\_Age Gender Dependent count Education Level Marital Status Income Category Card Category Months on book Total Relationship Count Months\_Inactive\_12\_mon Contacts\_Count\_12\_mon Credit Limit Total\_Revolving\_Bal Avg\_Open\_To\_Buy Total\_Amt\_Chng\_Q4\_Q1 Total\_Trans\_Amt Total\_Trans\_Ct Total Ct Chng Q4 Q1 Avg Utilization Ratio Naive Bayes Classifier Attrition Fl

dtype: int64

## 0 null valuesin each feature



CLIENTNUM 10127 non-null int64 1 Attrition Flag 10127 non-null object 2 Customer Age 10127 non-null int64 Gender 10127 non-null object Dependent count 10127 non-null int64 5 Education Level 10127 non-null object Marital Status 10127 non-null object 7 Income Category 10127 non-null object 8 Card Category 10127 non-null object 9 Months on book 10127 non-null int64 10 Total\_Relationship\_Count 10127 non-null int64 11 Months Inactive 12 mon 10127 non-null int64 12 Contacts Count 12 mon 10127 non-null int64 13 Credit Limit 10127 non-null float64 14 Total\_Revolving\_Bal 10127 non-null int64 15 Avg\_Open\_To\_Buy 10127 non-null float64 16 Total\_Amt\_Chng\_Q4\_Q1 10127 non-null float64 17 Total\_Trans\_Amt 10127 non-null int64 18 Total Trans Ct 10127 non-null int64 19 Total\_Ct\_Chng\_Q4\_Q1 10127 non-null float64 20 Avg\_Utilization\_Ratio 10127 non-null float64 21 Naive\_Bayes\_Classifier\_Attrition\_Flag\_Card\_Category\_ ive\_12\_mon\_1 10127 non-null float64 22 Naive\_Bayes\_Classifier\_Attrition\_Flag\_Card\_Category\_ ive\_12\_mon\_2 10127 non-null float64 dtypes: float64(7), int64(10,, object(6)

3 columns to drop

6 categorical features

14 numerical features



#### Top 5 Rows with Example Columns

| Attrition_Flag    | Customer_Age | Gender | Dependent_count | Education_Level | Marital_Status | Income_Category   |
|-------------------|--------------|--------|-----------------|-----------------|----------------|-------------------|
| Existing Customer | 51           | М      | 4               | Unknown         | Married        | \$120K +          |
| Existing Customer | 49           | М      | 4               | Uneducated      | Single         | 80 <i>K</i> -120K |
| Attrited Customer | 48           | М      | 2               | Graduate        | Married        | 60 <i>K</i> -80K  |
| Existing Customer | 51           | М      | 4               | Uneducated      | Single         | 80 <i>K</i> -120K |
| Existing Customer | 51           | М      | 4               | Graduate        | Single         | \$120K +          |

#### .describe() with Example Columns

|       | CLIENTNUM    | Customer_Age | Dependent_count | Months_on_book          | Total_Relationship_Count | Months_Inactive_12_mon | Contacts_Count_12_mon |
|-------|--------------|--------------|-----------------|-------------------------|--------------------------|------------------------|-----------------------|
| count | 1.012700e+04 | 10127.000000 | 10127.000000    | 10127.000000            | 10127.000000             | 10127.000000           | 10127.000000          |
| mean  | 7.391776e+08 | 46.325960    | 2.346203        | 35.928409               | 3.812580                 | 2.341167               | 2.455317              |
| std   | 3.690378e+07 | 8.016814     | 1.298908        | 7.986416                | 1.554408                 | 1.010622               | 1.106225              |
| min   | 7.080821e+08 | 26.000000    | 0.000000        | 13.000000               | 1.000000                 | 0.000000               | 0.000000              |
| 25%   | 7.130368e+08 | 41.000000    | 1.000000        | 3 <mark>1.000000</mark> | 3.000000                 | 2.000000               | 2.000000              |
| 50%   | 7.179264e+08 | 46.000000    | 2.000000        | 36.000000               | 4.000000                 | 2.000000               | 2.000000              |
| 75%   | 7.731435e+08 | 52.000000    | 3.000000        | 40.000000               | 5.000000                 | 3.000000               | 3.000000              |
| max   | 8.283431e+08 | 73.000000    | 5.000000        | 56.000000               | 6.000000                 | 6.000000               | 6.000000              |



```
At Types of Categorical Features: own

Existing Customer M Blue Uneducated

Attrited Customer Binary Silver Graduate

Existing Customer M Blue Uneducated

Existing Customer M Blue Graduate

Existing Customer M Blue Graduate

Ordinal Income_Category

Married

$80K - $120K + Married

$80K - $80K Single

$120K + Single

Single
```

## OUR PROCESS



# CASE STUDY DATASET



Exploratory analysis.

## Triangle Correlation Heatmap



There are **4%** more existing **female customers** than **male customers**, yet **14%** more of the attrited customers are **female**.



## Unlike male customers, almost 90% of female customers have less than \$10K of credit limit.



## Every additional customer contact increases the likelihood to churn by **12%**.



## There is close to a **25%** drop in the average transaction amount for **attrited platinum card customers**.



## Customers with **less than 3** relationships are almost **2 times more likely** to churn.



# **30 out of 100** customers are likely to churn if their revolving balance is **below \$1K**.



## People at the extremes of **average utilization ratio** have higher percentages of **attrition rate**.



# CASE STUDY DATASET



Data preprocessing and model building.

3 Types of Categorical
Features
♣ Binary Encoding
♣ Ordinal Encoding
♣ Encoding with Dummies



```
def enc_bin(df):
    '''the enc_bin function accepts a pandas dataframe and replaces
    categorical values with binary values'''
    cols = list(df.columns.values)

if 'Gender' in cols:
    df['Gender'] = df['Gender'].replace({'F':1, 'M':0})

else:
    None

if 'Attrition_Flag' in cols:
    df['Attrition_Flag'] = df['Attrition_Flag'].replace({
        'Existing Customer':1, 'Attrited Customer':0})

else:
    None

return df
```





```
def enc dum(df):
    '''the enc dum function accepts a pandas dataframe and creates
   dummy feature values for categorical features'''
    cols = list(df.columns.values)
   if 'Education Level' in cols:
        df = pd.get dummies(df, columns = ["Education Level"],
                            prefix = ["EDU LVL "], drop first = True)
   else:
       None
   if 'Marital Status' in cols:
        df = pd.get dummies(df, columns = ["Marital Status"],
                            prefix = ["MAR ST "], drop_first = True)
    else:
       None
   if 'Income Category' in cols:
        df = pd.get dummies(df, columns = ["Income_Category"],
                            prefix = ["INC CAT "], drop first = True)
   else:
       None
    return df
```

#### **Dummies Encoding Example**

```
0 Married
1 Single
2 Married
3 Single
4 Single
Name: Marital_Status, dtype: object
```

|   | MAR_STMarried | MAR_STSingle | MAR_STUnknown |
|---|---------------|--------------|---------------|
| 0 | 1             | 0            | 0             |
| 1 | 0             | 1            | 0             |
| 2 | 1             | 0            | 0             |
| 3 | 0             | 1            | 0             |
| 4 | 0             | 1            | 0             |

10127 rows

23 columns

31 columns

O duplicate or null rows

0 duplicate or null rows

# Training the Models



```
# build model #1: logistic regression
model_1 = LogisticRegression()
model_1.fit(train_X, train_y)
y_pred_1 = model_1.predict(test_X)
# build model #2: decision tree
model_2 = DecisionTreeClassifier(random_state=100)
model_2.fit(train_X, train_y)
y_pred_2 = model_2.predict(test_X)
# build model #3: random forest
model_3=RandomForestClassifier(random_state=100)
model_3.fit(train_X, train_y)
y_pred_3 = model_3.predict(test_X)
```

## Evaluating Model Results

```
# show accuracy score, confusion matrix, and recall & precision scores
# for model 1
print("\n Evaluation Metrics for model 1 \n")
print("Accuracy Score:", "{:.2%}".format(accuracy score(test y, y pred 1)))
print("Confusion Matrix:\n", confusion_matrix(test_y, y_pred_1))
print("Recall Score:", "{:.2%}".format(recall score(test y, y pred 1)))
print("Precision Score:", "{:.2%}".format(precision_score(test_y, y_pred_1)))
# for model 2
print("\n Evaluation metrics for model 2 \n")
print("Accuracy Score:", "{:.2%}".format(accuracy score(test y, y pred 2)))
print("Confusion Matrix:\n", confusion_matrix(test_y, y_pred_2))
print("Recall Score:", "{:.2%}".format(recall_score(test_y, y_pred_2)))
print("Precision Score:", "{:.2%}".format(precision_score(test_y, y_pred_2)))
# for model 3
print("\n valuation metrics for model_3 \n")
print("Accuracy Score:", "{:.2%}".format(accuracy_score(test_y, y_pred_3)))
print("Confusion Matrix:\n", confusion_matrix(test_y, y_pred_3))
print("Recall Score:", "{:.2%}".format(recall score(test y, y pred 3)))
print("Precision Score:", "{:.2%}".format(precision_score(test_y, y_pred_3)))
```

```
Evaluation Metrics for model 1
Accuracy Score: 89.88%
Confusion Matrix:
[[ 199 152]
 [ 53 1622]]
Recall Score: 96.84%
Precision Score: 91.43%
Evaluation metrics for model 2
Accuracy Score: 93.58%
Confusion Matrix:
 [[ 277 74]
 [ 56 1619]]
Recall Score: 96.66%
Precision Score: 95.63%
valuation metrics for model 3
Accuracy Score: 95.56%
Confusion Matrix:
 [[ 282 69]
  21 1654]]
Recall Score: 98.75%
```

Precision Score: 96.00%

# INSIGHTS FROM THE MODEL

Results from statistical model.

## These **5 features** below show the highest level of importance with **Random Forest Regression**.



# **30 out of 100** customers are likely to churn if their revolving balance is **below \$1K**.



## There are no attrited customers that have made more than 100 transactions.



# RECOMMENDATIONS

Findings after analyzing the dataset and evaluating the statistical model.

#### Increase customer engagement and experience by:

1. Offering rewards and incentives.

2. Providing tailored products and services.

3. Developing an omnichannel approach.



### REFERENCES

- \* Kaggle Database <a href="https://www.kaggle.com/sakshigoyal7/credit-card-customers">https://www.kaggle.com/sakshigoyal7/credit-card-customers</a>
- Winning New Business in Construction By Terry Gillen (2005), p89. Published by Gower Publishing Ltd. ISBN 0566086158. Extracted on 07/2021 from <a href="https://www.linkedin.com/pulse/what-cost-customer-acquisition-vs-retention-ian-kingwill/">https://www.linkedin.com/pulse/what-cost-customer-acquisition-vs-retention-ian-kingwill/</a>
- Pandas Documentation: <a href="https://pandas.pydata.org/docs/">https://pandas.pydata.org/docs/</a>
- Numpy Documentation: <a href="https://numpy.org/doc/stable/reference/">https://numpy.org/doc/stable/reference/</a>
- SciKit Documentation: <a href="https://scikit-learn.org/stable/user\_guide.html">https://scikit-learn.org/stable/user\_guide.html</a>
- Matplotlib Documentation: <a href="https://matplotlib.org/stable/contents.html">https://matplotlib.org/stable/contents.html</a>
- SciPy Documentation: <a href="https://docs.scipy.org/doc/scipy/reference/">https://docs.scipy.org/doc/scipy/reference/</a>