UCI - Stats 67 Fall 2019

\mathbf{Review}

Question	point esti-	point parameter of interesti-	expected value of variance of the samtises are standard error the sampling distribution	variance of the sampling distribution	standard error	confidence interval
single proportion	\hat{p}	d	d	$\frac{p(1-p)}{n}$	$\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$	$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
difference of two $\hat{p}_1 - \hat{p}_2$ $p_1 - p_2$ proportion	$\hat{p}_1 - \hat{p}_2$	$p_1 - p_2$	$p_1 - p_2$	$\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}$	$\sqrt{\hat{p}_1(1-\hat{p}_1) + \hat{p}_2(1-\hat{p}_2) \over n_1} \begin{vmatrix} \hat{p}_1 \\ \hat{p}_1 \end{vmatrix} $	$z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$
single mean (dependent samples, paired data)	x	μ	μ	$\frac{\sigma^2}{n}$	\sqrt{n}	$\bar{x} \pm t_{df}^* \frac{s}{\sqrt{n}}$
difference of two $\bar{x}_1 - \bar{x}_2$ $\mu_1 - \mu_2$ means	$ar{x}_1 - ar{x}_2$	$\mu_1 - \mu_2$	$\mu_1 - \mu_2$	$\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$ (\bar{x}_1 - \bar{x}_2) \pm t_{df}^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} $

UCI - Stats 67 Fall 2019

y = mx + b

y = b0

Notation

Residuals

Correlation

Guess the correlation game

R code for fitting a regression line Ordinary Least Squares Regression

Interpretation R^2

Multiple regression with indicator variable

significance

Model comparison

broom