IN THE CLAIM

There is no amendment to the claims.

1	1. (Original)	A method for allowing a device to be removably attached to a computer
2	system	while maintaining the system integrity, comprising the steps of:
3	·	configuring a bridge between the device and the computer system; wherein
4		while in an attached state
5		if recognizing that the device has been removed from the
6		bridge, then the bridge transitioning into a cleanup
7		state, then a removed state;
8		while in the cleanup state, performing the ordered steps of
9		the bridge sending a first signal to the computer system;
10		in response to the first signal, the computer system sending
11		a second signal to the bridge; and
12		in response to the second signal, the bridge sending a third
13		signal to the computer system to indicate that the
14		bridge has been removed from the computer system;
15		removing the device from the bridge is performed without giving
16		prior notice to the bridge, nor the computer system;
17		the attached state indicating that the device has been attached to the
18		computer system; and
19		the removed state indicating that the device has been removed from
20		the computer system.

1	2. (Original)	The method of Claim 1 wherein the bridge using a first protocol to	
2	communicate with the computer system, and using a second protocol to		
3	comm	unicate with the device.	
1	3. (Original)	The method of Claim 2 wherein the first protocol or the second protocol is:	
2		a protocol complying with the SCSI standard;	
3		a protocol complying with the IDE standard;	
4		a protocol complying with the fibre channel standard;	
5		a protocol complying with the IEEE 1394 standard; or	
6		a protocol complying with the USB standard.	
1	4. (Original)	The method of Claim 2 wherein the bridge includes a processing unit and	
2	memo	ry to convert commands of the first protocol and the second protocol.	
		·	
1	5.(Original)	The method of Claim 2 wherein the first protocol is the same as the	
2	second	i protocol.	
1	6. (Original)	The method of Claim 1 wherein, while in the cleanup state, if the bridge	
2	receiv	es a processing command, then the bridge sends a fourth signal to the	
3	comp	nter system indicating that the bridge cannot process the command.	
1	7. (Original)	The method of Claim 6 wherein, while in the cleanup state, the bridge	
2	further sends a fifth signal to the computer system indicating that the command		
3	has be	en terminated.	

1	8. (Original) The method of Claim 7 wherein, while in the cleanup state, the computer
2	system, upon receiving the fourth or the fifth signal from the bridge, provides a
3	sixth signal to indicate that the command cannot be processed.
1	9. (Original) The method of Claim 1 further comprising the step of providing a buffer
2	between the device and the bridge for protecting the bridge from disruption signals
3	from the device.
1	10. (Original) The method of Claim 1 further comprising the step of providing a buffer
2	between the device and the bridge wherein the buffer prevents the signals passing
3	from the device to the bridge.
1	11. (Original) The method of Claim 10 wherein the bridge transitioning to the cleanup
2	state upon recognizing that the bridge cannot communicate with the device via the
3	buffer.
1	12. (Original) The method of Claim 1 wherein:
2	the bridge recognizes that the device has been removed from the bridge
3	based on a signal asserted at a control pin of the bridge; and
4	the signal changes when the control pin of the bridge is engaged to or
5	disengaged from a control pin of the device.
1	13.(Original) A system for allowing a device to be removably attached to a computer
2	system while maintaining the system integrity, comprising:
3	a bridge interfacing between the device and the computer system;
4	wherein

5	while in an attached state
6	if recognizing that the device has been removed from the
7	bridge, then the bridge transitioning into a cleanup
8	state, then a removed state;
9	while in the cleanup state
10	the bridge sending a first signal to the computer system;
11	in response to the first signal, the computer system sending
12	a second signal to the bridge; and
13	in response to the second signal, the bridge sending a third
14	signal to the computer system to indicate that the
15	bridge has been removed from the computer system
16	removing the device from the bridge is performed without giving
17	prior notice to the bridge, nor the computer system;
18	the attached state indicating that the device has been attached to the
19	computer system; and
20	the removed state indicating that the device has been removed from
21	the computer system.
1	14. (Original) The system of Claim 13 wherein the bridge using a first protocol to
2	communicate with the computer system, and using a second protocol to
3	communicate with the device.
1	15. (Original) The system of Claim 14 wherein the first protocol or the second protocol
2	is:
3	a protocol complying with the SCSI standard;
4	a protocol complying with the IDE standard;

5	a protocol complying with the fibre channel standard;
6	a protocol complying with the IEEE 1394 standard; or
7	a protocol complying with the USB standard.
1	16. (Original) The system of Claim 13 wherein the bridge includes a processing unit and
2	memory to convert commands of the first protocol and the second protocol.
1	17. (Original) The system of Claim 13 wherein the first protocol is the same as the
2	second protocol.
1	18. (Original) The system of Claim 13 wherein, while in the cleanup state, if the bridge
2	receives a processing command, then the bridge sends a fourth signal to the
3	computer system indicating that the bridge cannot process the command.
1	19.(Original) The system of Claim 18 wherein, while in the cleanup state, the bridge
2	further sends a fifth signal to the computer system indicating that the command
3	has been terminated.
1	20.(Original) The system of Claim 19 wherein, while in the cleanup state, the computer
2	system, upon receiving the fourth or the fifth signal from the bridge, provides a
3	sixth signal to indicate that the command cannot be processed.
1	21. (Original) The system of Claim 13 further comprising a buffer between the device
2	and the bridge for protecting the bridge from disruption signals from the device.

1	22. (Original) The system of Claim 13 further comprising a buffer between the device
2	and the bridge wherein the buffer prevents the signals passing from the device to
3	the bridge.
1	23. The system of Claim 22 wherein the bridge transitions to the cleanup state upon
2	recognizing that the bridge cannot communicate with the device via the buffer.
1	24. (Original) The system of Claim 13 wherein:
2	the bridge recognizes that the device has been removed from the bridge
3	based on a signal asserted at a control pin of the bridge; and
4	the signal changes when the control pin of the bridge is engaged to or
5	disengaged from a control pin of the device.
1	25. (Original) A method for hot removing a device from a system, comprising the steps
2	of:
3	configuring a bridge between the device and the system; and
4	configuring a buffer between the device and the bridge for protecting the
5	bridge from signals from the device; wherein
6	while in an attached state
7	if recognizing that the device has been removed from the
8	bridge, then the bridge transitioning into a cleanup
9	state, then a removed state;
10	while in the cleanup state,
11	the bridge sending a first signal to the system;
12	in response to the first signal, the system sending a second
13	signal to the bridge; and

HP PDNO 10002635-2 Serial number 10/664,696

14	in response to the second signal, the bridge sending a third
15	signal to the system to indicate that the bridge has
16	been removed from the system.