In [1]: import pandas as pd
 import numpy as np
 from matplotlib import pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Ridge,ElasticNet
 from sklearn.model_selection import train_test_split

Out[2]:	date		date		BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10	PM25	PXY	SO_2	тсн
	0	2007- 12-01 01:00:00	NaN	2.86	NaN	NaN	NaN	282.200012	1054.000000	NaN	4.030000	156.199997	97.43	NaN	64.519997	NaN		
	1	2007- 12-01 01:00:00	NaN	1.82	NaN	NaN	NaN	86.419998	354.600006	NaN	3.260000	80.809998	NaN	NaN	35.419998	NaN		
	2	2007- 12-01 01:00:00	NaN	1.47	NaN	NaN	NaN	94.639999	319.000000	NaN	5.310000	53.099998	NaN	NaN	19.080000	NaN		
	3	2007- 12-01 01:00:00	NaN	1.64	NaN	NaN	NaN	127.900002	476.700012	NaN	4.500000	105.300003	NaN	NaN	17.670000	NaN		
	4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106.500000	15.90	3.56	40.230000	1.94 2		
	225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999	6.760000	5.14	1.00	7.420000	1.44		
	225116	2007- 03-01 00:00:00	NaN	0.16	NaN	NaN	NaN	46.820000	51.480000	NaN	22.150000	5.700000	NaN	NaN	7.130000	NaN		
	225117	2007- 03-01 00:00:00	0.24	NaN	0.20	NaN	0.09	51.259998	66.809998	NaN	18.540001	13.010000	6.95	NaN	8.740000	1.30		
	225118	2007- 03-01 00:00:00	0.11	NaN	1.00	NaN	0.05	24.240000	36.930000	NaN	NaN	6.610000	NaN	NaN	9.890000	1.29		
	225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000	10.260000	7.08	1.23	9.890000	1.32		

225120 rows × 17 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 225120 entries, 0 to 225119 Data columns (total 17 columns): Dtype Column Non-Null Count ---------0 date 225120 non-null object 68885 non-null float64 1 BEN 206748 non-null float64 2 CO 68883 non-null float64 3 EBE MXY 4 26061 non-null float64 NMHC float64 5 86883 non-null 6 NO_2 223985 non-null float64 7 NOx 223972 non-null float64 8 OXY float64 26062 non-null 0 3 9 211850 non-null float64 10 PM10 222588 non-null float64 PM25 11 68870 non-null float64

16 station 225120 non-null int64 dtypes: float64(15), int64(1), object(1)

26062 non-null

87026 non-null

68845 non-null

224372 non-null float64

float64

float64

float64

memory usage: 29.2+ MB

PXY

13 SO 2

14 TCH

15 TOL

12

In [4]: df1=df.dropna()
df1

0	u	t	۲4	ाः	
			ь.	4.1	

:	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PM25	PXY	SO_2	TCF
4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49 52.68999		106.500000	15.900000	3.56	40.230000	1.94
21	2007- 12-01 01:00:00	1.98	0.31	2.56	6.06	0.35	76.059998	208.899994	1.70	1.000000	37.799999	25.580000	1.78	11.310000	1.5₄
25	2007- 12-01 01:00:00	2.82	1.42	3.15	7.02	0.49	123.099998	402.399994	2.60	7.160000	70.809998	37.009998	2.67	25.670000	1.84
30	2007- 12-01 02:00:00	4.65	1.89	4.41	8.21	0.65	151.000000	622.700012	3.55	58.080002	117.099998	17.049999	3.57	36.459999	2.23
47	2007- 12-01 02:00:00	1.97	0.30	2.15	5.08	0.33	78.760002	189.800003	1.62	1.000000	34.740002	24.730000	1.59	10.500000	1.50
225073	2007- 02-28 23:00:00	2.12	0.47	2.51	4.99	0.05	43.560001	83.889999	2.57	13.090000	21.860001	9.380000	2.32	21.780001	1.28
225094	2007- 02-28 23:00:00	0.87	0.45	1.19	2.66	0.13	40.000000	61.959999	1.79	20.440001	15.070000	9.220000	1.66	10.310000	1.30
225098	2007- 03-01 00:00:00	0.95	0.41	1.55	3.11	0.05	36.090000	63.349998	1.74	17.160000	9.210000	5.100000	1.45	20.690001	1.28
225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999	6.760000	5.140000	1.00	7.420000	1.44
225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000	10.260000	7.080000	1.23	9.890000	1.32

25443 rows × 17 columns

```
In [5]: df1=df1.drop(["date"],axis=1)
```

In [6]: sns.heatmap(df1.corr())

Out[6]: <Axes: >


```
In [7]: plt.plot(df1["EBE"],df1["NMHC"],"o")
Out[7]: [<matplotlib.lines.Line2D at 0x7fd5495b9150>]
```



```
In [8]: data=df[["EBE","NMHC"]]
In [9]: x=df1.drop(["EBE"],axis=1)
    y=df1["EBE"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [10]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[10]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [11]: prediction=li.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[11]: <matplotlib.collections.PathCollection at 0x7fd5437eb850>


```
In [12]: lis=li.score(x_test,y_test)
In [13]: df1["TCH"].value counts()
Out[13]: 1.34
                  1130
                  1067
         1.33
         1.35
                 1037
         1.36
                  1002
         1.32
                   991
                  . . .
         3.03
                     1
         4.07
                     1
         3.70
                     1
         2.52
                     1
         0.58
                     1
         Name: TCH, Length: 250, dtype: int64
In [14]: df1.loc[df1["TCH"]<1.40,"TCH"]=1</pre>
         df1.loc[df1["TCH"]>1.40,"TCH"]=2
         df1["TCH"].value counts()
Out[14]: 1.0
                14025
         2.0
                11418
         Name: TCH, dtype: int64
```

Lasso

```
In [15]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[15]: Lasso(alpha=5)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [16]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[16]: <matplotlib.collections.PathCollection at 0x7fd543867dc0>


```
In [17]: las=la.score(x_test,y_test)
```

Ridge

```
In [18]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[18]: Ridge(alpha=1)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [19]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[19]: <matplotlib.collections.PathCollection at 0x7fd54384bee0>


```
In [20]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [21]: en=ElasticNet()
    en.fit(x_train,y_train)
```

Out[21]: ElasticNet()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [22]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[22]: <matplotlib.collections.PathCollection at 0x7fd5313f3010>


```
In [23]: ens=en.score(x_test,y_test)
```

In [24]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.9031092096516402

Out[24]: 0.8640132513733083

Logistic

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with noviewer.org.

```
In [28]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[28]: <matplotlib.collections.PathCollection at 0x7fd5314f5a50>


```
In [29]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [30]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
```

```
g1={"TCH":{"Low":1.0,"High":2.0}}
In [31]:
         df1=df1.replace(g1)
In [32]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x train,x test,y train,y test=train test split(x,y,test size=0.3)
In [33]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[33]: RandomForestClassifier()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [34]: parameter={
              'max_depth':[1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n estimators':[10,20,30,40,50]
         grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accuracy")
In [35]:
         grid search.fit(x train,y train)
Out[35]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param grid={'max depth': [1, 2, 4, 5, 6],
                                    'min samples leaf': [5, 10, 15, 20, 25],
                                    'n estimators': [10, 20, 30, 40, 50]},
                        scoring='accuracy')
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [36]: rfcs=grid search.best score
```

```
In [37]: rfc best=grid search.best estimator
In [38]: from sklearn.tree import plot tree
                      plt.figure(figsize=(80,40))
                     plot_tree(rfc_best.estimators_[5],feature names=x.columns,class names=['Yes',"No"],filled=True)
Out[38]: [Text(0.5206473214285714, 0.9285714285714286, '0 3 <= 18.185\ngini = 0.493\nsamples = 11219\nvalue = [994</pre>
                      6, 7864\nclass = Yes'),
                        Text(0.26674107142857145, 0.7857142857142857, 'NMHC <= 0.225 \ngini = 0.27 \nsamples = 3787 \nvalue = [972, 1972]
                      5075\nclass = No'),
                       Text(0.140625, 0.6428571428571429, 'NO 2 <= 91.22\ngini = 0.496\nsamples = 1005\nvalue = [740, 878]\ncla
                      ss = No'),
                        Text(0.07142857142857142, 0.5, 'station <= 28079015.0\ngini = 0.5\nsamples = 844\nvalue = [701, 670]\ncl
                      ass = Yes'),
                        Text(0.03571428571, 0.35714285714285715, 'NO 2 <= 76.305\ngini = 0.377\nsamples = 395\nvalue = [46
                      5, 157]\nclass = Yes'),
                        Text(0.017857142857142856, 0.21428571428571427, 'NOx <= 182.4\ngini = 0.332\nsamples = 306\nvalue = [39]
                      4, 105]\nclass = Yes'),
                        Text(0.008928571428571428, 0.07142857142857142, 'gini = 0.314\nsamples = 294\nvalue = [387, 94]\nclass = (387, 94)\nclass = (
                      Yes'),
                        Text(0.026785714285714284, 0.07142857142857142, 'gini = 0.475\nsamples = 12\nvalue = [7, 11]\nclass = N
                      o'),
                        Text(0.05357142857142857, 0.21428571428571427, 'PM10 <= 44.9\ngini = 0.488\nsamples = 89\nvalue = [71, 5]
                      21\nclass = Yes'),
                        Text(0.044642857142857144, 0.07142857142857142, 'gini = 0.428\nsamples = 66\nvalue = [60, 27]\nclass = Y
```

```
In [39]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.903105908273488 Lasso: 0.49881871289711766 Ridge: 0.9031092096516402 ElasticNet: 0.8369295468530789 Logistic: 0.5470981265557447 Random Forest: 0.8717012914093206

Best Model is Random Forest

In [40]: df2=pd.read_csv("/Users/bhoomish/Downloads/FP1_air/csvs_per_year/csvs_per_year/madrid_2008.csv")
df2

Out[40]:		date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10	PM25	PXY	SO_2	тсн	TOL	_
	0	2008- 06-01 01:00:00	NaN	0.47	NaN	NaN	NaN	83.089996	120.699997	NaN	16.990000	16.889999	10.40	NaN	8.98	NaN	NaN	2
	1	2008- 06-01 01:00:00	NaN	0.59	NaN	NaN	NaN	94.820000	130.399994	NaN	17.469999	19.040001	NaN	NaN	5.85	NaN	NaN	2
	2	2008- 06-01 01:00:00	NaN	0.55	NaN	NaN	NaN	75.919998	104.599998	NaN	13.470000	20.270000	NaN	NaN	6.95	NaN	NaN	2
	3	2008- 06-01 01:00:00	NaN	0.36	NaN	NaN	NaN	61.029999	66.559998	NaN	23.110001	10.850000	NaN	NaN	5.96	NaN	NaN	2
	4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160000	21.90	1.43	10.92	1.53	6.67	2
	226387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5.450000	5.15	1.86	9.68	1.23	2.05	2
	226388	2008- 11-01 00:00:00	NaN	0.30	NaN	NaN	NaN	41.880001	48.500000	NaN	35.830002	15.020000	NaN	NaN	8.90	NaN	NaN	2
	226389	2008- 11-01 00:00:00	0.25	NaN	0.56	NaN	0.11	83.610001	102.199997	NaN	14.130000	17.540001	13.91	NaN	7.00	1.56	0.60	2
	226390	2008- 11-01 00:00:00	0.54	NaN	2.70	NaN	0.18	70.639999	81.860001	NaN	NaN	11.910000	NaN	NaN	8.02	1.57	2.97	2
	226391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12.690000	11.42	1.98	8.74	1.43	4.15	2

226392 rows × 17 columns

In [41]: df2.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 226392 entries, 0 to 226391 Data columns (total 17 columns):

Ducu	COTAMILIS	(COCAT T) COTAMINS	<i>,</i> •						
#	Column	Non-Null Count	Dtype						
0	date	226392 non-null	object						
1	BEN	67047 non-null	float64						
2	CO	208109 non-null	float64						
3	EBE	67044 non-null	float64						
4	MXY	25867 non-null	float64						
5	NMHC	85079 non-null	float64						
6	NO_2	225315 non-null	float64						
7	NOx	225311 non-null	float64						
8	OXY	25878 non-null	float64						
9	0_3	215716 non-null	float64						
10	PM10	220179 non-null	float64						
11	PM25	67833 non-null	float64						
12	PXY	25877 non-null	float64						
13	SO_2	225405 non-null	float64						
14	TCH	85107 non-null	float64						
15	TOL	66940 non-null	float64						
16	station	226392 non-null	int64						
dtype	es: float	64(15), int64(1),	object(1)						
memor	memory usage: 29.4+ MB								

memory usage: 29.4+ MB

In [42]: df3=df2.dropna()
df3

Out-	Γ/1つ ¹	١.
out	[42]	•

:	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PM25	PXY	SO_2	тсн	то
4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37.160000	21.900000	1.43	10.92	1.53	6.6
21	2008- 06-01 01:00:00	0.32	0.37	1.00	0.39	0.33	21.580000	22.180000	1.00	35.770000	7.900000	6.140000	1.00	5.39	1.41	0.9
25	2008- 06-01 01:00:00	0.73	0.39	1.04	1.70	0.18	64.839996	86.709999	1.31	23.379999	14.760000	9.840000	1.22	6.82	1.37	2.8
30	2008- 06-01 02:00:00	1.95	0.51	1.98	3.77	0.24	79.750000	143.399994	2.03	18.090000	31.139999	18.410000	1.81	8.97	1.46	8.5
47	2008- 06-01 02:00:00	0.36	0.39	0.39	0.50	0.34	26.790001	27.389999	1.00	33.029999	7.620000	6.250000	0.38	5.59	1.42	1.1
226362	2008- 10-31 23:00:00	0.47	0.35	0.65	1.00	0.33	22.480000	25.020000	1.00	33.509998	10.200000	7.680000	1.84	9.47	1.26	2.4
226366	2008- 10-31 23:00:00	0.92	0.46	1.21	2.75	0.19	78.440002	106.199997	1.70	18.320000	14.140000	10.590000	1.98	9.66	1.44	4.7
226371	2008- 11-01 00:00:00	1.83	0.53	2.22	4.51	0.17	93.260002	158.399994	2.38	18.770000	20.750000	18.620001	2.10	12.27	1.42	9.1
226387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5.450000	5.150000	1.86	9.68	1.23	2.0
226391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12.690000	11.420000	1.98	8.74	1.43	4.1

25631 rows × 17 columns

```
In [43]: df3=df3.drop(["date"],axis=1)
```

In [44]: sns.heatmap(df3.corr())

Out[44]: <Axes: >


```
In [45]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

In [46]: li=LinearRegression() li.fit(x_train,y_train)

Out[46]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [47]: prediction=li.predict(x_test) plt.scatter(y_test,prediction)

In [48]: lis=li.score(x_test,y_test)

```
In [49]: df3["TCH"].value_counts()
Out[49]: 1.38
                  1274
                  1246
         1.37
                  1243
         1.36
         1.39
                  1242
         1.35
                  1209
                  . . .
                     1
         3.30
         2.95
                     1
         3.38
                     1
         2.51
                     1
         1.02
                     1
         Name: TCH, Length: 177, dtype: int64
In [50]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[50]: 2.0
                 12904
         1.0
                12727
         Name: TCH, dtype: int64
```

Lasso

```
In [51]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[51]: Lasso(alpha=5)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [52]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[52]: <matplotlib.collections.PathCollection at 0x7fd55143e290>

In [53]: las=la.score(x_test,y_test)

Ridge

```
In [54]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[54]: Ridge(alpha=1)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [55]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[55]: <matplotlib.collections.PathCollection at 0x7fd54457dea0>


```
In [56]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [57]: en=ElasticNet()
  en.fit(x_train,y_train)
```

Out[57]: ElasticNet()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [58]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[58]: <matplotlib.collections.PathCollection at 0x7fd5445fc940>


```
In [59]: ens=en.score(x_test,y_test)
```

In [60]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.6686325972014862

Out[60]: 0.6552401520013147

Logistic

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [64]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[64]: <matplotlib.collections.PathCollection at 0x7fd5449f6890>


```
In [65]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [66]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
```

```
g1={"TCH":{"Low":1.0,"High":2.0}}
In [67]:
         df3=df3.replace(g1)
In [68]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x train,x test,y train,y test=train test split(x,y,test size=0.3)
In [69]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[69]: RandomForestClassifier()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [70]: parameter={
              'max_depth':[1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n estimators':[10,20,30,40,50]
         grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accuracy")
In [71]:
         grid search.fit(x train,y train)
Out[71]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param grid={'max depth': [1, 2, 4, 5, 6],
                                    'min samples leaf': [5, 10, 15, 20, 25],
                                    'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [72]: rfcs=grid search.best score
```

```
In [73]: rfc best=grid search.best estimator
In [74]: from sklearn.tree import plot tree
        plt.figure(figsize=(80,40))
       plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',"No"],filled=True)
Out[74]: [Text(0.5114583333333333, 0.9285714285714286, 'TOL <= 4.835\ngini = 0.5\nsamples = 11347\nvalue = [8960,</pre>
        8981]\nclass = No'),
        7, 3809]\nclass = Yes'),
        1945\nclass = No'),
        Text(0.06666666666666667, 0.5, 'MXY <= 1.325\ngini = 0.474\nsamples = 1055\nvalue = [647, 1029]\nclass =
        No'),
        Text(0.03333333333333333, 0.35714285714285715, 'TOL <= 3.185\ngini = 0.499\nsamples = 516\nvalue = [437,
        410\nclass = Yes'),
        Text(0.016666666666666666, 0.21428571428571427, 'EBE <= 0.605\ngini = 0.496\nsamples = 451\nvalue = [40
        4, 335]\nclass = Yes'),
        Text(0.008333333333333333, 0.07142857142857142, 'gini = 0.497\nsamples = 229\nvalue = [176, 204]\nclass
        = No'),
        Text(0.025, 0.07142857142857142, 'gini = 0.463\nsamples = 222\nvalue = [228, 131]\nclass = Yes'),
        Text(0.05, 0.21428571428571427, 'NMHC <= 0.135\ngini = 0.424\nsamples = 65\nvalue = [33, 75]\nclass = N
        o'),
        Text(0.041666666666666666, 0.07142857142857142, 'gini = 0.43\nsamples = 12\nvalue = [11, 5]\nclass = Ye
        s'),
```

```
In [75]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.6686214896300879 Lasso: 0.4702435204100489 Ridge: 0.6686325972014862 ElasticNet: 0.5832313700304619 Logistic: 0.5042912873862159 Random Forest: 0.8318935211402727

Best model is Random Forest