Package 'RBMRB'

March 3, 2017

Type Package

Title BMRB Data Access and Visualization

Version 2.0.4
Date 2017-03-03
Author Kumaran Baskaran
Maintainer Kumaran Baskaran <kbaskaran@bmrb.wisc.edu></kbaskaran@bmrb.wisc.edu>
Description The Biological Magnetic Resonance Data Bank (BMRB, http://www.bmrb.wisc.edu/) collects, annotates, archives, and disseminates (worldwide in the public domain) the important spectral and quantitative data derived from NMR(Nuclear Magnetic Resonance) spectroscopic investigations of biological macromolecules and metabolites. This package provides an interface to BMRB database for easy data access and includes a minimal set of data visualization functions. Users are encouraged to make their own data visualizations using BMRB data.
Depends $R(>=3.3.0)$
License GPL-2
<pre>URL https://github.com/uwbmrb/RBMRB, https://github.com/kumar-physics/RBMRB</pre>
LazyData TRUE
RoxygenNote 5.0.1
Imports data.table(>= 1.9.6), httr(>= 1.2.1), rjson(>= 0.2.15), ggplot2(>= 2.1.0), plotly(>= 4.5.2), stats
NeedsCompilation no
R topics documented:
chemical_shift_corr chemical_shift_hist chemical_shift_hists chemical_shift_hists convert_cs_to_c13hsqc convert_cs_to_n15hsqc convert_cs_to_tocsy
1

2 chemical_shift_corr

Index		14
	TOCSY	12
	makeRandomString	
	HSQC_15N	1
	HSQC_13C	10
	filter_residue	10
	fetch_res_chemical_shifts	9
	fetch_entry_chemical_shifts	8
	fetch_atom_chemical_shifts	1
	export_star_data	

chemical_shift_corr

Chemical shift correlation between any two atoms from a single residue

Description

Plots the correlated chemical shift distribution of any two atoms in a single residue for the 20 standard amino acids from BMRB database. By default it will generate interactive graphics using plotly library

Usage

```
chemical_shift_corr(atom1, atom2, res = NA, type = "c",
  interactive = TRUE)
```

Arguments

atom1	atom name in NMR-STAR nomenclature like CA,CB2
atom2	atom name in NMR_STAR nomenclature like HA,HB2
res	residue name like ALA.GLY (optional by default includes

residue name like ALA,GLY (optional by default includes all possible amino

'c' for contour plot and 's' for scatter plot default 'c'.scatter plot will be slow type

and heavy for large data set

TRUE/FALSE default=TRUE interactive

Value

plot object

See Also

```
fetch_atom_chemical_shifts
```

```
plt<-chemical_shift_corr('HE21','HE22')</pre>
#plots the chemical shift distribution between HE21 and HE22
```

chemical_shift_hist 3

chemical_shift_hist Plots chemical shift distribution

Description

Plots the histogram (or) density of chemical shift distribution of a given amino acid (or) nucleic acid from BMRB database. Optionally particular atom can be specified in the parameter

Usage

```
chemical_shift_hist(res = "*", atm = "*", type = "count", bw = 0.1,
  cutoff = 8, interactive = TRUE)
```

Arguments

res	residue name in NMR-STAR atom nomenclature ; Example: ALA,GLY ; default '*' (includes everything)
atm	atom name in NMR-STAR nomenclautre ; Example : $CA,HB2$ default '*' (includes all atoms)
type	count; other than count will assume density plot
bw	binwith for histogram; default value 0.1ppm
cutoff	values not with in the cutoff time standard deviation from both sides of the mean will be excluded from the plot; default value 8
interactive	TRUE/FALSE default TRUE

Value

R plot object

See Also

fetch_res_chemical_shifts,filter_residue and chemical_shift_corr

```
#plt<-chemical_shift_hist('ALA')
#plots the histogram of all atoms of ALA
#plt<-chemical_shift_hist('GLY',type='density')
#plots the density plot</pre>
```

4 chemical_shift_hists

chemical_shift_hists Plots chemical shift distribution for a list of atoms

Description

Plots the histogram (or) density of chemical shift distribution of a given list of atoms. Atoms from different residues cam be specified as "residue-atom". Exammple "ALA-CA", "GLN-HE21", "GLN-HE*"

Usage

```
chemical_shift_hists(atm = NA, type = "count", bw = 0.1, cutoff = 8,
  interactive = TRUE)
```

Arguments

atm list Example: c("ALA-CA","GLY-CA")

type count; other than count will assume density plot

bw binwith for histogram; default value 0.1ppm

cutoff values not with in the cutoff time standard deviation from both sides of the mean

will be excluded from the plot;default value 8

interactive TRUE/FALSE default TRUE

Value

R plot object

See Also

```
fetch_res_chemical_shifts,filter_residue and chemical_shift_corr
```

```
#plt<-chemical_shift_hists(c('ALA-C*'))
#plots the histogram of all atoms of ALA
#plt<-chemical_shift_hists(c("GLY-H*","ALA-HA"),type='density')
#plots the density plot</pre>
```

convert_cs_to_c13hsqc

convert_cs_to_c13hsqc Reformats chemical shift dataframe for easy plotting

Description

Reformats the output dataframe from fetch_entry_chemical_shifts into a simple dataframe that contains proton and carbon chemical shifts in two columns. This will be helpful to plot 1H-13C HSQC(Hetronuclear Single Quantum Coherence) spectrum

Usage

```
convert_cs_to_c13hsqc(csdf)
```

Arguments

csdf

chemical shift data frame from fetch_entry_chemical_shifts

Value

R data frame that contains proton and carbon chemical shifts in two columns for each residue

See Also

```
convert_cs_to_n15hsqc and convert_cs_to_tocsy
```

Examples

```
df<-fetch_entry_chemical_shifts(15060)
# Downloads data from BMRB
hsqc<-convert_cs_to_c13hsqc(df)
# Reformats for easy plotting</pre>
```

convert_cs_to_n15hsqc Reformats chemical shift dataframe for easy plotting

Description

Reformats the output dataframe from fetch_entry_chemical_shifts into a simple dataframe that contains algorithmically combined proton and nitrogen chemical shifts in two columns. This will be helpful to plot 1H-15N HSQC(Hetronuclear Single Quantum Coherence) spectrum.

Usage

```
convert_cs_to_n15hsqc(csdf)
```

6 convert_cs_to_tocsy

Arguments

csdf

Chemical shift data frame from fetch_entry_chemical_shifts

Value

R data frame that contains proton and nitrogen chemical shifts in two columns for each residue

See Also

```
convert_cs_to_c13hsqc and convert_cs_to_tocsy
```

Examples

```
df<-fetch_entry_chemical_shifts(15060)
#Downloads the chemical shift data from BMRB
hsqc<-convert_cs_to_n15hsqc(df)
#Reformats for easy plotting</pre>
```

convert_cs_to_tocsy

Reformats chemical shift dataframe for easy plotting

Description

Reformats the output dataframe from fetch_entry_chemical_shifts into a simple dataframe that contains algorithmically combined proton shifts in two columns. This will be helpful to plot TOCSY(TOtal Correlation SpectroscpY) spectrum

Usage

```
convert_cs_to_tocsy(csdf)
```

Arguments

csdf

chemical shift data frame from fetch_entry_chemical_shifts

Value

R data frame that contains all possible combinations of proton chemical shifts in two columns

See Also

```
convert_cs_to_c13hsqc and convert_cs_to_n15hsqc
```

```
df<-fetch_entry_chemical_shifts(15060)
# Downloads data from BMRB
tocsy<-convert_cs_to_tocsy(df)
# Reformats for easy plotting</pre>
```

export_star_data 7

export_star_data

Exports NMR-STAR file to BMRB API server

Description

Exports NMR-STAR file to BMRB API server, so that local data can be visualized using RBMRB library. This function will return a tocken, which can be used to access the data through RBMRB package. The tocken will expire after 7 days

Usage

```
export_star_data(filename)
```

Arguments

filename

filename with correct path

Value

Temporary tocken to access the file

See Also

```
fetch_atom_chemical_shifts, fetch_entry_chemical_shifts fetch_res_chemical_shifts
```

Examples

```
# ent_id <- export_star_data('/nmrdata/hpr.str')
# Exports hpr.str file to BMRB API server and gets a temporary tocken</pre>
```

```
fetch_atom_chemical_shifts
```

Fetchs atom specific NMR chemical shift data from BMRB database

Description

Downloads the full list of chemical shifts from BMRB macromolecular/metabolomics database for a given atom

Usage

```
fetch_atom_chemical_shifts(atom, db = "macromolecules")
```

Arguments

atom atom name in NMR-STAR atom nomenclature; Example: CA,CB2

db macromolecules, metabolomics (optional, by default will fetch from macro-

molecules database)

Value

R data frame that contains full chemical shift list for a given atom

See Also

fetch_entry_chemical_shifts,fetch_res_chemical_shifts,filter_residue and chemical_shift_corr

Examples

```
df<-fetch_atom_chemical_shifts('CG2', 'macromolecules')
# Downloads CB2 chemical shifts from macromolecules database at BMRB
df<-fetch_atom_chemical_shifts('C1', 'metabolomics')
# Downloads C1 chemical shifts from metabolomics database at BMRB</pre>
```

fetch_entry_chemical_shifts

Fetchs entry specific NMR chemical shift data from BMRB database

Description

Downloads NMR chemical shift data from BMRB database for a given Entry ID or list of Entry IDs

Usage

```
fetch_entry_chemical_shifts(BMRBidlist)
```

Arguments

BMRB idlist sinlge BMRB ID (or) list of BMRB IDs in csv format For metabolomics entries

entry id should have 'bmse' prefix example: c('bmse000034','bmse000035','bmse000036')

Value

R data frame that contains Atom_chem_shift data for a given list of entries

See Also

```
fetch_atom_chemical_shifts and fetch_res_chemical_shifts
```

Examples

```
df<-fetch_entry_chemical_shifts(15060)
# Downloads NMR chemical shifts of a single entry from BMRB
df<-fetch_entry_chemical_shifts(c(17074,17076,17077))
# Downloads NMR chemical shifts of multiple entries from BMRB
df<-fetch_entry_chemical_shifts(c('bmse000034','bmse000035','bmse000036'))
# Downloads data from BMRB metabolomics database</pre>
```

fetch_res_chemical_shifts

Fetchs residue specific NMR chemical shift data from BMRB database

Description

Downloads the full list of chemical shifts from BMRB macromolecular database for a given amino acid (or) nucleic acid. Optionally particular atom can be specified in the parameter

Usage

```
fetch_res_chemical_shifts(res = "*", atm = "*")
```

Arguments

res	residue name in NMR-STAR atom nomenclature ; Example: ALA,GLY ; default '*' (includes everything)
atm	atom name in NMR-STAR nomenclautre; Example :CA,HB2; default * (includes all atoms)

Value

R data frame that contains full chemical shift list for a given atom

See Also

```
fetch_atom_chemical_shifts,filter_residue and chemical_shift_hist
```

```
#df<-fetch_res_chemical_shifts('GLY')
# Downloads chemical shift data of all atoms of GLY
#df<-fetch_res_chemical_shifts('ALA','CA')
# Downloads C alpha chemical shifts of ALA from macromolecules database at BMRB</pre>
```

10 HSQC_13C

filter_residue

Filter for standard 20 amino acids

Description

Filters out non standard amino acids using Comp_ID. The data frame should contain three letter anio acid code in COMP_ID column.

Usage

```
filter_residue(df)
```

Arguments

df

data frame with amino acid information in Comp_ID column

Value

R data frame that contains information from only standard 20 amino acids.

See Also

```
fetch_atom_chemical_shifts
```

Examples

```
df<-filter_residue(fetch_atom_chemical_shifts("CG2"))
#Downloads all CG2 chemical shifts and removes non standard amino acids</pre>
```

HSQC_13C

Simulates H1-C13 HSQC spectra for a given entry or list of entries from BMRB

Description

Simulates H1-C13 HSQC(Hetronuclear Single Quantum Coherence) spectra directly from BMRB database. By default it will generate interactive graphics using plotly library

Usage

```
HSQC_13C(idlist, type = "scatter", interactive = TRUE)
```

Arguments

idlist list of bmrb ids in csv

type scatter/line default=scatter

interactive TRUE/FALSE default=TRUE

HSQC_15N 11

Value

R plot object

See Also

```
HSQC_15N and TOCSY
```

Examples

```
\label{eq:plot_hsqc-HSQC_13C(c(17074,17076,17077))} $$\#Simulates C13-HSQC spectra form the given list of entries $$plot_hsqc<-HSQC_13C(c(17074,17076,17077),'line')$$ $$\#Simulates C13-HSQC and connects the peaks with same sequence number $$plot_hsqc<-HSQC_13C(c(17074,17076,17077),interactive=FALSE)$$ $$\#Example for non interactive plot$
```

HSQC_15N

Simulates H1-N15 HSQC spectra for a given entry or list of entries from BMRB

Description

Simulates H1-N15 HSQC(Hetronuclear Single Quantum Coherence) spectra directly from BMRB database. Default plot type will be 'scatter'.Peaks from different spectra(entries) can be connected based on residue numbers by specifying plot type as 'line'. By default it will generate interactive graphics using plotly library

Usage

```
HSQC_15N(idlist, type = "scatter", interactive = TRUE)
```

Arguments

idlist list of bmrb ids in csv

type scatter/line default=scatter

interactive TRUE/FALSE default=TRUE

Value

R plot object

See Also

```
HSQC_13C and TOCSY
```

TOCSY TOCSY

Examples

```
\label{eq:plot_hsqc<-HSQC_15N(c(17074,17076,17077))} $$\#simulates N15-HSQC spectra for the given 3 entreis $$plot_hsqc<-HSQC_15N(18857,'line')$$ $\#simulates the N15-HSQC spectra from many chemical shift lists from a single entry $$plot_hsqc<-HSQC_15N(c(17074,17076,17077),interactive=FALSE)$$ $\#example for non interactive plots
```

makeRandomString

Generates random string of fixed length(for internal use in RBMRB)

Description

Local files may not have Entry_ID, in that case random Entry_ID is assigned using this function. It is an internal function used only by RBMRB package

Usage

```
makeRandomString()
```

TOCSY

Simulates TOCSY spectra for a given entry or a list of entries from BMRB

Description

Simulates TOCSY(TOtal Correlation SpectroscopY) spectra directly from BMRB database. By default it will generate interactive graphics using plotly library

Usage

```
TOCSY(idlist, interactive = TRUE)
```

Arguments

idlist list of bmrb ids c(17074,17076,17077)

interactive TRUE/FALSE default=TRUE

Value

plot object

See Also

```
HSQC_15N and HSQC_13C
```

TOCSY 13

Examples

plot_tocsy<-TOCSY(c(17074,17076,17077))
#Simulates TOCSY spectra for the given 3 entries
plot_tocsy<-TOCSY(c(17074,17076,17077),interactive=FALSE)
Example to disable interactive plot feature</pre>

Index

```
chemical_shift_corr, 2, 3, 4, 8
chemical_shift_hist, 3, 9
chemical_shift_hists, 4
convert_cs_to_c13hsqc, 5, 6
convert_cs_to_n15hsqc, 5, 5, 6
convert_cs_to_tocsy, 5, 6, 6
export_star_data, 7
fetch_atom_chemical_shifts, 2, 7, 7, 8-10
fetch_entry_chemical_shifts, 5-8, 8
fetch_res_chemical_shifts, 3, 4, 7, 8, 9
filter_residue, 3, 4, 8, 9, 10

HSQC_13C, 10, 11, 12
HSQC_15N, 11, 11, 12
makeRandomString, 12

TOCSY, 11, 12
```