Polynômes irréductibles dans $\mathbb{Q}[X]$

Dans tout ce problème $\mathbb{Q}[X]$ (respectivement $\mathbb{Z}[X]$) désigne l'ensemble des polynômes à une indéterminée, à coefficients dans \mathbb{Q} (respectivement \mathbb{Z}). Ces ensembles sont des anneaux commutatifs pour les lois + et \times usuelles sur les polynômes.

Un polynôme Φ de $\mathbb{Q}[X]$ (respectivement $\mathbb{Z}[X]$) est dit irréductible sur \mathbb{Q} (respectivement \mathbb{Z}) s'il n'est ni constant, ni de la forme $\Phi = PQ$ avec P, Q dans $\mathbb{Q}[X]$ (respectivement $\mathbb{Z}[X]$) et $\deg(P) \geqslant 1$, $\deg(Q) \geqslant 1$.

Partie I: Exemples.

- 1. Montrer que les polynômes $X^2 X 1$ et $X^3 X 1$ sont irréductibles sur \mathbb{Z} .
- 2. Soit $n \in \mathbb{N}^*$ et a_1, \ldots, a_n des entiers relatifs deux à deux distincts. Définissons Φ par

$$\Phi = (X - a_1) \dots (X - a_n) - 1$$

On remarque que $\Phi \in \mathbb{Z}[X]$. Le but de la question est de montrer qu'il est irréductible sur \mathbb{Z} . Supposons qu'il existe P et Q dans $\mathbb{Z}[X]$ de degré supérieur ou égal à 1 et vérifiant $\Phi = PQ$.

- (a) Montrer que a_1, \ldots, a_n sont des racines de P + Q.
- (b) En déduire que $\Phi = -P^2$.
- (c) Conclure.
- 3. Soit n un entier naturel impair et soient a_1, \ldots, a_n des entiers relatifs deux à deux distincts. Montrer que $(X - a_1) \dots (X - a_n) + 1$ est irréductible dans \mathbb{Z} .

Partie II: Lemme de Gauss.

Soit $P = \sum_{k=0}^{n} a_k X^k$ un polynôme non nul de $\mathbb{Z}[X]$. On définit le contenu de P, noté c(P) par

$$c(P) = \operatorname{pgcd}(a_0, \dots, a_n)$$

Le polynôme P est dit primitif si c(P) = 1. Soient P et Q dans $\mathbb{Z}[X]$.

4. On suppose dans cette question que
$$P$$
 et Q sont primitifs.
Notons $P = \sum_{k=0}^{n} a_k X^k$, $Q = \sum_{k=0}^{m} b_k X^k$ et $PQ = \sum_{k=0}^{r} c_k X^k$.

Soit p un nombre premier.

- (a) Montrer qu'il existe un plus petit entier $k \in [0, n]$ tel que p ne divise pas a_k . Notons le k_0 . Notons, de même, k_1 le plus petit entier $k \in [0, m]$ tel que p ne divise pas b_k .
- (b) Montrer que p ne divise pas $c_{k_0+k_1}$
- (c) En déduire que c(PQ) = 1.
- 5. Montrer que c(PQ) = c(P)c(Q) (lemme de Gauss).

Partie III: Critère d'Eisenstein.

- 6. Soit $\Phi \in \mathbb{Z}[X]$ pour lequel il existe des polynômes P et Q de degré supérieur ou égal à 1 et à coefficients rationnels tels que $\Phi = PQ$. Montrer qu'il existe deux polynômes P_0 et Q_0 de $\mathbb{Z}[X]$ proportionnels respectivement à P et Q et tels que $\Phi = P_0Q_0$.
- 7. Soit $\Phi \in \mathbb{Z}[X]$. Montrer que Φ est irréductible sur \mathbb{Q} si et seulement si il est irréductible sur \mathbb{Z} .
- 8. Soit $\Phi = \sum_{k=0}^{n} a_k X^k$ un polynôme non constant de $\mathbb{Z}[X]$. On suppose qu'il existe un nombre premier p tel que :
 - p ne divise pas a_n
 - p divise a_i pour $i \in \{0, \ldots, n-1\}$
 - p^2 ne divise pas a_0

Montrer que Φ est irréductible sur \mathbb{Q} .

Polynômes irréductibles dans $\mathbb{Q}[X]$

Partie I: Exemples.

1. Supposons qu'il existe a, b, a', b' dans \mathbb{Z} tels que

$$P_1 = X^2 - X - 1 = (aX + b)(a'X + b')$$

Alors, aa' = 1 et bb' = 1 d'où $a = \pm 1$ et $b = \pm 1$. Le polynôme P_1 devrait donc admettre 1 ou -1 comme racine en contradiction avec $P_1(-1) = 1$ et $P_1(1) = -1$. On en déduit que P_1 est irréductible. Supposons qu'il existe a, b, a', b', c' dans \mathbb{Z} tels que

$$P_2 = X^3 - X - 1 = (aX + b)(a'X^2 + b'X + c')$$

(le polynôme $a'X^2 + b'X + c'$ étant éventuellement réductible sur \mathbb{Z}). Alors aa' = 1 et bc' = 1 puis $a = \pm 1$ et $b = \pm 1$, et 1 ou -1 serait racine de P_2 en contradiction avec $P_2(-1) = -1$ et $P_2(1) = -1$. On en déduit que P_2 est irréductible.

- 2. (a) Pour k entre 1 et n, $\Phi(a_k) = P(a_k)Q(a_k) = -1$ d'où $P(a_k) = -Q(a_k) = \pm 1$. On en déduit que $P(a_k) + Q(a_k) = 0$. Les a_k , sont donc des racines de P + Q.
 - (b) On sait que $\deg(\Phi) = n$ et, par hypothèse, $\deg(P) \ge 1$ et $\deg(Q) \ge 1$. D'où $\deg(P) \le n-1$ et $\deg(Q) \le n-1$, ainsi P+Q est de degré inférieur ou égal à n-1 tout en admettant au moins n racines. Il est donc nul d'où Q = -P et $\Phi = -P^2$.
 - (c) Pour tout $x \in \mathbb{R}$, $\Phi(x) = -(P(x))^2 \leq 0$. Or $\lim_{+\infty} \Phi = +\infty$. C'est absurde, le polynôme Φ étant non constant, il est donc irréductible sur \mathbb{Z} .
- 3. Supposons que $\Phi_2 = (X a_1) \dots (X a_n) + 1$ soit réductible sur \mathbb{Z} .

Ce polynôme étant non constant il s'écrit donc $\Phi_2 = PQ$ avec P et Q dans $\mathbb{Z}[X]$ et de degré supérieur ou égal à 1. On en déduit que P et Q sont de degré inférieur ou égal à n-1.

Comme dans la question précédente, on a, pour k entre 1 et n,

$$\Phi(a_k) = P(a_k)Q(a_k) = 1 \Rightarrow P(a_k) = Q(a_k) = \pm 1$$

On en déduit que $P(a_k) - Q(a_k) = 0$. Les a_k sont donc des racines de P - Q qui est de degré au plus n - 1. C'est donc le polynôme nul, d'où $\Phi = P^2$.

On peut alors écrire

$$\prod_{k=1}^{n} (X - a_k) = P^2 - 1 = (P - 1)(P + 1)$$

Comme P n'est pas constant, $\deg(P-1) = \deg(P+1) = \deg(P)$. On devrait alors avoir $n = \deg(P^2-1) = 2 \deg P$ en contradiction avec n impair. On en déduit que le polynôme $(X - a_1) \dots (X - a_n) + 1$ est irréductible sur \mathbb{Z} .

Partie II: Lemme de Gauss.

- 4. (a) Le polynôme P est primitif, donc p ne divise pas le pgcd de (a_0, \ldots, a_n) . Il existe donc un entier $k \in \{0, \ldots, n\}$ tel que p ne divise pas a_k . L'ensemble des k entiers entre 0 et n tels que p ne divise pas a_k est une partie non vide de \mathbb{N} , elle admet un plus petit élément.
 - (b) Notons k_0 le plus petit des k tels que p ne divise pas a_k et k_1 le plus petit des k tels que p ne divise pas b_k . Considérons le terme de degré $k_0 + k_1$ dans le produit.

$$c_{k_0+k_1} = \sum_{k=0}^{k_0-1} a_k b_{k_0+k_1-k} + a_{k_0} k_{k_1} + \sum_{k=k_0+1}^{k_0+k_1} a_k b_{k_0+k_1-k}$$

Pour $0 \le k \le k_0 - 1$, p ne divise pas a_k par définition de k_0 . Donc p divise la somme de gauche.

Pour $k_0 + 1 \le k \le k_0 + k_1$, on a $k_0 + k_1 - k < k_1$, donc p divise b_k par définition de k_1 . On en déduit que p divise la somme de droite.

Or p ne divise pas a_{k_0} et p ne divise pas b_{k_1} . Comme il est premier, il ne divise pas leur produit. On en déduit que p ne divise pas $c_{k_0+k_1}$.

Polynômes irréductibles dans $\mathbb{Q}[X]$

- (c) Le contenu c(PQ) est un entier naturel qui n'admet aucun diviseur premier. Il est donc égal à 1.
- 5. Soient P et Q dans $\mathbb{Z}[X]$. Notons a_0, \dots, a_n les coefficients de P. On peut factoriser le contenu c(P) dans ces coefficients, soit

$$\forall k \in \{0, \dots, n\}, a_k = c(P)a'_k \quad \text{et } P_1 = \sum_{k=0}^n a'_k X^k$$

avec les a_k' dans \mathbb{Z} et pgcd $(a_0',\ldots,a_n')=1$. Alors $P=c(P)P_1$ avec $P_1\in\mathbb{Z}[X]$ polynôme primitif.

De même $Q = c(Q)Q_1$ avec $Q_1 \in \mathbb{Z}[X]$ polynôme primitif.

Par homogénéité du pgcd, $c(PQ) = c(P)c(Q)c(P_1Q_1)$, d'où, par la question précédente, c(PQ) = c(P)c(Q).

Partie III: Critère d'Eisenstein.

- 6. Notons a (respectivement b) le ppcm des dénominateurs des coefficients de P (respectivement Q) écrits sous forme de fractions irréductibles. Alors $P_1 = aP \in \mathbb{Z}[X]$, $Q_1 = bQ \in \mathbb{Z}[X]$ et $ab\Phi = P_1Q_1$. Par le lemme de Gauss $ab|c(ab\Phi) = c(P_1)c(Q_1)$. Soit m l'entier relatif tel que $c(P_1)c(Q_1) = abm$. Introduisons P_2 et Q_2 les polynômes primitifs de $\mathbb{Z}[X]$ tels que $P_1 = c(P_1)P_2$ et $Q_1 = c(Q_1)Q_2$. Alors $\Phi = P_0Q_0$ en prenant $P_0 = mP_2$ et $Q_0 = Q_2$.
- 7. Le sens direct est évident. Le sens réciproque est conséquence de la question précédente.
- 8. D'après la question précédente, il suffit de montrer que Φ est irréductible sur \mathbb{Z} . Supposons le contraire. Φ n'étant pas constant, Φ s'écrit donc $\Phi = PQ$ avec P, Q dans $\mathbb{Z}[X]$ et $m = \deg(P) \geqslant 1$, $r = \deg(Q) \geqslant 1$.

Notons $P = \sum_{k=0}^{m} b_k X^k$ et $Q = \sum_{k=0}^{r} c_k X^k$.

On peut remarquer que $a_n \neq 0$ car par hypothèse $p \not| a_n$. D'où $n = \deg(\Phi)$ et n = m + r.

Par hypothèse $p|a_0 = b_0c_0$ et $p^2 \not|a_0 = b_0c_0$, donc p divise un et un seul des facteurs. On peut supposer que $p|b_0$. Notons k le plus petit entier de $\{1,\ldots,m\}$ tel que $p \not|b_k$. Un tel entier existe bien car $p \not|a_n = b_mc_r$, donc $p \not|b_m$. Alors $a_k = b_kc_0 + \sum_{i=1}^k b_{k-i}c_i$. On sait que $k \leq m$ et $r \geq 1$ donc k < n = m + r donc $p|a_k$.

Or $p|\sum_{i=1}^k b_{k-i}c_i$ par définition de k et $p \not|b_k$ et $p \not|c_0$. C'est absurde, donc Φ est irréductible sur \mathbb{Z} , et donc sur \mathbb{Q} .