Point méthode : le raisonnement par récurrence

Delhomme Fabien

Table des matières

- 1 Comment reconnaitre ?
- 2 Comment le rédiger ?

1 Comment reconnaitre?

On a besoin d'un raisonnement par récurrence dès que l'on a une propriété que l'on doit prouver pour tout $n \in \mathbb{N}$. Par exemple, ce genre de raisonnement ne marche pas du tout pour une propriété portant sur $x \in \mathbb{R}$.

2 Comment le rédiger ?

Il faut bien proprement montrer la propriété que l'on veut démontrer. Imaginons que l'on veuille montrer que pour tout $n \in \mathbb{N}$ $\{0\}$, on a l'égalité suivante :

$$\sum_{1}^{n} k = \frac{n(n+1)}{2}$$

Alors, on identifie la propriété au premier rang qu'il faut démontrer. Ici la propriété porte sur n, donc le premier rang, et le rang n=1 (puisque pour n=0, la somme n'est pas définie). Donc, pour le rang n=1, il faut montrer que

$$\sum 1^n k = \frac{1*2}{2}$$

. Ce qui est bien le cas!

Donc on écrit

Montrons par récurrence sur n, un entier naturel non nul la propriété

$$P(n) = \sum_{1}^{n} k = \frac{n(n+1)}{2}$$

Initialisation:

La propriété est vraie au rang n=1. Donc l'initialisation est vérifiée.

Ensuite, il faut vérifier que $P(n) \Longrightarrow P(n+1)$ pour tout n non nul ici. C'est la propriété d'hérédité. Attention, la rédaction est très importante et délicate pour ce point particulier! Toute la magie de la récurrence a lieu ici! Le plus souvent, il faut partir de la propriété au rang n+1, puis développer, et tomber sur la propriété P(n) qui est donc vraie, et conclure!

 $H\'{e}r\'{e}dit\'{e}$:

Soit n un entier naturel non nul. Supposons alors que P(n) est vérifiée, et montrons alors que P(n+1) est vraie.

On calcule:

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1)$$

Or, puisque P(n) est vérifiée :

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Donc

$$\sum_{k=1}^{n+1} k = \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)\left(\frac{n}{2} + 1\right)$$
$$\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2}$$

Donc, P(n+1) est vraie.

On peut maintenant	conclure:
Conclusion:	
La propriété $P(n)$ es	t donc démontrée, pour tout entier naturel n non nul
Et pouf, plein de poi	nts au bac!