LING 506 - TOPICS IN COMPUTATIONAL LINGUISTICS

Introductory Machine Learning

Yan Tang

Department of Linguistics, UIUC

Week 13

Last week...

- Polynomial regression
 - Adds new features by including powers of each raw feature

- Learning curve
 - Underfitting and overfitting
 - Trade-off between bias (simple model) and variance (complex model)

Last week...

Ridge Regression

$$C = MSE(c) + \frac{\alpha}{2} \sum_{i=1}^{n} c_i^2$$

Lasso Regression

$$C = MSE(c) + \alpha \sum_{i=1}^{n} |c_i|$$

Elastic Net

$$C = MSE(c) + r\alpha \sum_{i=1}^{n} |c_i| + (1 - r) \frac{\alpha}{2} \sum_{i=1}^{n} c_i^2$$

Parametric vs Non-parametric regression

- Parametric regression models
 - Assumes a relation that can be specified using a formula, e.g. $y = c_0 \cdot x_0 + c_1 \cdot x_1 + ... + c_N \cdot x_N$
 - Fixed number of model parameters (Not hyperparameters!)
 - Easy to interpret
 - e.g. linear regression and logistic regression

 Creating a model with minimum prediction error can be difficult if there are several predictors

Parametric vs Non-parametric regression

- Non-parametric regression models
 - Do not fit the regression model based on a given formula
 - Can provide more accurate prediction but are difficult to interpret
 - Tend to be overfitting
 - e.g. SVMs, Decision Trees and Gaussian Process Regression
- The primary purpose of the model: predicting the response for unknown observations

SVM Regression

 Support Vector Classification can be extended to solve regression problems

Fitting a model only depends on a subset of the training data

 The objective resembles the opposition of that for classification problems

SVM Regression

- Hyperparameter E: the greater the value, the larger the margin
 - Opposite to the C for classification

SVM Regression

- Linear SVM Regression model is ϵ -insensitive
 - Adding more training samples within the margin does not father change the model's behaviour
- Given training data (X_i, y_i) , the objective function:

$$\min \frac{1}{2} ||c||^2 + C \sum_{i=1}^{N} (\xi_i + \xi_i^*)$$

LING 506 - Introductory Machine Learning

Decision-Tree Regression

Determination of variable X[i] and criterion t_{χ}^{i}

CART cost function for regression:

$$C(X[i], t_x^i) = \frac{m_{left}}{M} MSE_{left} + \frac{m_{right}}{M} MSE_{right}$$

$$MSE = \frac{1}{m} \sum_{n=1}^{m} (\bar{y} - y_n)^2$$

 m_{left} , m_{right} : number of observations in the left/right branch \bar{y} : the mean value of responses in a branch

Decision-Tree Regression

Decision-Tree Regression

For regression problems
 Decision Trees are
 prone to overfitting

 Hyperparameters need to be regularised reduce computational resource consumption

Gaussian Process Regression

 Gaussian Process Regression (GPR) is another non-parametric regression technique

 GPR models optionally return the standard deviation and prediction confidence intervals

 GPR allows different kernels to be specified

Gaussian Process Regression

Gaussian Process Regression

- The disadvantages of Gaussian processes
 - They are not sparse, i.e., they use the whole samples information to perform predictions
 - They lose efficiency in high dimensional spaces when the number of features goes large - low scalability!
- Extensions:
 - Deep Gaussian Process
 - Spare Gaussian Process

Stepwise Linear Regression

- Stepwise linear regression: a method of regressing multiple variables while simultaneously removing those that are less important
 - Resembles sequential feature reduction and feature elimination
 - Using t- or F-statistics of the estimated coefficients as criteria for removing or adding variables/features
 - Assumptions: normally-distributed data, uncorrelated variables

$$y = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3$$

$$y = c_0 + c_1 (x_1)^2 + c_2 (x_2)^2 + c_3 (x_3)^2$$

$$y = c_0 + c_1 x_1 + c_2 x_2 + c_3 (x_3)^3$$

$$y = c_0 + c_1 (x_1)^2 + c_2 x_1 x_2 + c_3 (x_2)^2 + c_4 (x_4)^2 + c_5 x_1 x_4$$

Stepwise Linear Regression

- Stepwise linear regression is highly controversial!
 - + More control over variables
 - Efficient for fining-tuning a linear model by adding or reducing variables
 - Models may be oversimplified; underfitting
 - Tests are biased on the same data: overfitting
 - Difficult to interpret its reason of feature selection
- Alternatives:
 - LASSO
 - Least Angle Regression (LAR)

Data preparation for linear regressors

- Encode categorical data
 - ML algorithms like numbers

- Linear assumption
 - The basic assumption on the data

- Remove noise / outliers
 - Linear regression is sensitive to outliers

Data preparation for linear regressors

- Remove collinearity
 - Highly-correlated features could lead to overfitting
- The effect of a normal distribution
 - Better predictions on normally-distributed data

- Rescale features
 - Most algorithms except features in comparable spaces for efficiency, consistence and accuracy