Section 4.5 – Diagonalization

When \vec{x} is an eigenvector, multiplication by \vec{A} is just multiplication by a single number: $A\vec{x} = \lambda \vec{x}$. The matrix \vec{A} turns into a diagonal matrix \vec{A} when we use the eigenvectors property.

Diagonalization

Suppose the *n* by *n* matrix *A* has *n* linearly independent eigenvectors $\vec{x}_1, ..., \vec{x}_n$. Put them into the column of an *eigenvector matrix P*. Then $P^{-1}AP$ is the eigenvalue matrix *A*:

$$P^{-1}AP = \Lambda = D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Example

The projection matrix $A = \begin{pmatrix} .5 & .5 \\ .5 & .5 \end{pmatrix}$ has $\lambda_{1,2} = 0$ and 1

Solution

For
$$\lambda_1 = 0 \implies \left(A - \lambda_1 I\right) V_1 = 0$$

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \frac{1}{2} x + \frac{1}{2} y = 0$$

$$\frac{x = -y}{2}$$
Therefore, $V_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
For $\lambda_2 = 1 \implies \left(A - \lambda_2 I\right) V_2 = 0$

$$\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \frac{1}{2} x + \frac{1}{2} y = 0$$

$$\frac{x = y}{2}$$
Therefore, $V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

The eigenvectors are: (-1, 1) & (1, 1) that are the value of P.

$$P = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$P^{-1} = -\frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} .5 & .5 \\ .5 & .5 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$P^{-1} \qquad A \qquad P \qquad = D$$

Definition

A square matrix A is called *diagonalizable* if there is an invertible matrix P such that $P^{-1}AP$ is diagonal; the matrix P is said to *diagonalize* A.

Theorem

Independent x from different λ - Eigenvectors $\vec{x}_1, ..., \vec{x}_n$ that correspond to distinct (all different) eigenvalues are linearly independent. An n by n matrix that has n different eigenvalues (no repeated λ 's) must be diagonalizable.

Proof

Suppose
$$c_1 \vec{x}_1 + c_2 \vec{x}_2 = 0$$
 (1)

$$\begin{pmatrix} c_1 \vec{x}_1 & c_2 \vec{x}_2 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = 0$$

$$c_1 \lambda_1 \vec{x}_1 + c_2 \lambda_2 \vec{x}_2 = 0 \quad (2)$$

Multiply (1) by λ_2 , that implies to

$$c_1 \lambda_2 \vec{x}_1 + c_2 \lambda_2 \vec{x}_2 = 0$$
 (3)

$$(2)-(3)$$

$$\begin{split} c_1 \lambda_1 \vec{x}_1 + c_2 \lambda_2 \vec{x}_2 - \left(c_1 \lambda_2 \vec{x}_1 + c_2 \lambda_2 \vec{x}_2 \right) &= 0 \\ c_1 \lambda_1 \vec{x}_1 + c_2 \lambda_2 \vec{x}_2 - c_1 \lambda_2 \vec{x}_1 - c_2 \lambda_2 \vec{x}_2 &= 0 \\ c_1 \lambda_1 \vec{x}_1 - c_1 \lambda_2 \vec{x}_1 &= 0 \\ c_1 \left(\lambda_1 - \lambda_2 \right) \vec{x}_1 &= 0 \end{split}$$

Since $\vec{x}_i \neq 0$ and λ 's are different $\lambda_1 - \lambda_2 \neq 0$, we forced $\underline{c_1} = 0$

Similarly; Multiply (1) by λ_1 , that implies to $c_1 \lambda_1 \vec{x}_1 + c_2 \lambda_1 \vec{x}_2 = 0$ (4)

$$(2)-(4)$$

$$\begin{split} c_1\lambda_1\vec{x}_1 + c_2\lambda_2\vec{x}_2 - c_1\lambda_1\vec{x}_1 - c_2\lambda_1\vec{x}_2 &= 0 \\ c_2\left(\lambda_2 - \lambda_1\right)\vec{x}_2 &= 0 \quad \Rightarrow \quad c_2 &= 0 \mid \end{split}$$

Therefore, \vec{x}_1 and \vec{x}_2 must be independent.

Theorem

If $\vec{v}_1, ..., \vec{v}_n$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, ..., \lambda_n$, then $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ is linearly independent set.

Theorem

If an $n \times n$ matrix A has n distinct eigenvalues, then the following are equivalent:

- a) A is diagonalizable
- b) A has n linearly independent eigenvectors.

Example

Given the Markov matrix $A = \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix}$

Solution

$$|A - \lambda I| = \begin{vmatrix} .8 - \lambda & .3 \\ .2 & .7 - \lambda \end{vmatrix}$$
$$= (.8 - \lambda)(.7 - \lambda) - .06$$
$$= \lambda^2 - 1.5\lambda + .56 - .06$$
$$= \lambda^2 - 1.5\lambda + .5 = 0$$

The eigenvalues are: $\lambda_1 = 1$, $\lambda_2 = .5$

For
$$\lambda_1 = 1$$
, we have: $(A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -.2 & .3 \\ .2 & -.3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow -.2x + .3y = 0$$

$$\Rightarrow 2x = 3y$$

Therefore, the eigenvector $V_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

For $\lambda_2 = .5$, we have: $(A - \lambda_2 I)V_2 = 0$

$$\begin{pmatrix} .3 & .3 \\ .2 & .2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow .3x + .3y = 0$$

$$\Rightarrow x = -y$$

Therefore, the eigenvector $V_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

The eigenvector matrix is given by:

$$P = \begin{pmatrix} 3 & 1 \\ 2 & -1 \end{pmatrix}$$

$$P^{-1} = -\frac{1}{5} \begin{pmatrix} -1 & -1 \\ -2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{2}{5} & -\frac{3}{5} \end{pmatrix}$$

$$P \qquad P^{-1}$$

$$\begin{pmatrix} 3 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{2}{5} & -\frac{3}{5} \end{pmatrix} = \begin{pmatrix} 3 & \frac{1}{2} \\ 2 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{2}{5} & -\frac{3}{5} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{8}{10} & \frac{3}{10} \\ \frac{2}{10} & \frac{7}{10} \end{pmatrix}$$

$$= \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix}$$

$$A$$

Eigenvalues of AB and A + B

An eigenvalue of \boldsymbol{A} times an eigenvalue of \boldsymbol{B} usually does not give an eigenvalue of $\boldsymbol{A}\boldsymbol{B}$.

$$\lambda_A \lambda_B \neq \lambda_{AB}$$

Commuting matrices share eigenvectors: Suppose A and B can be diagonalized. They share the eigenvector matrix P if and only if AB = BA.

Matrix Powers A^k

$$A^{2} = PDP^{-1}PDP^{-1}$$
$$= PD^{2}P^{-1}$$
$$A^{k} = (PDP^{-1})\cdots(PDP^{-1})$$

$$A^{k} = (PDP^{-1})\cdots(PDP^{-1})$$
$$= PD^{k}P^{-1}$$

The eigenvector matrix for A^k is still S, and the eigenvalue matrix is A^k . The eigenvectors don't change, and the eigenvalues are taken to the k^{th} power. When A is diagonalized, $A^k \vec{u}_0$ is easy.

Here are steps (taken from Fibonacci):

- 1. Find the eigenvalues of A and look for n independent eigenvectors.
- **2.** Write \vec{u}_0 as a combination $c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$ of the eigenvectors.
- **3.** Multiply each eigenvector \vec{v}_i by $(\lambda_i)^k$. Then

$$\begin{split} \vec{u}_k &= A_k \vec{u}_0 \\ &= c_1 \left(\lambda_1 \right)^k \vec{v}_1 + \dots + c_n \left(\lambda_n \right)^k \vec{v}_n \end{split}$$

Example

Compute
$$A^k$$
 where $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 \\ 0 & 2 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(2 - \lambda) = 0$$

The eigenvalues are: $\lambda_{1,2} = 1, 2$

For
$$\lambda_1 = 1 \implies \left(A - \lambda_1 I \right) V_1 = 0$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \underbrace{y = 0}$$

$$\Rightarrow V_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

For
$$\lambda_2 = 2 \implies \left(A - \lambda_2 I\right) V_2 = 0$$

$$\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \frac{x = y}{1}$$

$$\implies V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

The eigenvector matrix is given by:

$$P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$P^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \implies D^k = \begin{pmatrix} 1^k & 0 \\ 0 & 2^k \end{pmatrix}$$

$$A^{k} = PD^{k}P^{-1}$$

$$= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2^{k} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2^{k} \\ 0 & 2^{k} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2^{k} - 1 \\ 0 & 2^{k} \end{pmatrix}$$

Similar Matrices

Definition

If A and B are square matrices, then we say that **B** is **similar** to A if there exists an invertible matrix P such that $B = P^{-1}AP$ or $A = PBP^{-1}$

Similar matrices B and $M^{-1}AM$ have the same eigenvalues. If \vec{x} is an eigenvector of A then $M^{-1}\vec{x}$ is an eigenvector of $B = M^{-1}AM$.

Proof

Since
$$B = M^{-1}AM \Rightarrow A = MBM^{-1}$$

Suppose
$$A\vec{x} = \lambda \vec{x}$$
:

$$MBM^{-1}\vec{x} = \lambda \vec{x}$$

$$BM^{-1}\vec{x} = \lambda M^{-1}\vec{x}$$

The eigenvalue of B is the same λ . The eigenvector is now $M^{-1}x$

Example

The projection
$$A = \begin{bmatrix} .5 & .5 \\ .5 & .5 \end{bmatrix}$$
 is similar to $D = P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

Choose
$$M = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$
; the similar matrix $M^{-1}AM$ is $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

Also choose
$$M = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
; the similar matrix $M^{-1}AM$ is $\begin{bmatrix} .5 & -.5 \\ -.5 & .5 \end{bmatrix}$

These matrices $M^{-1}AM$ all have the same eigenvalues 1 and 0.

Every 2 by 2 matrix with those eigenvalues is similar to A.

The eigenvectors change with M.

Example

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 is similar to every matrix $B = \begin{bmatrix} cd & d^2 \\ -c^2 & -cd \end{bmatrix}$ except $B = 0$.

58

These matrices B all have zero determinant (like A). They all have rank one (like A). Their trace is cd - cd = 0.

Their eigenvalues are 0 and 0 (like A).

Choose
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with $ad - cd = 1$ and $B = M^{-1}AM$

Connections between similar matrices A and B:

Not Changed	Changed
Eigenvalues	Eigenvectors
Trace and determinant	Nullspace
Rank	Column space
Number of independent	Row space
eigenvectors	Left nullspace
Jordan form	Singular values

Example

Jordan matrix J has triple eigenvalues 5, 5, 5. Its only eigenvectors are multiples of (1, 0, 0). Algebraic multiplicity 3, geometric multiplicity 1:

If
$$J = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{bmatrix}$$
 then $J - 5I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ has rank 2.

Every similar matrix $B = M^{-1}JM$ has the same triple eigenvalues 5, 5, 5. Also B - 5I must have the same rank 2. Its nullspace has dimension 3 - 2 = 1. So each similar matrix B also has only one independent eigenvector.

The transpose matrix J^T has the same eigenvalues 5, 5, 5, and $J^T - 5I$ has the same rank 2. **Jordan's theory says that** J^T **is similar to J**. The matrix that produces the similarity happens to be the reserve identity M:

$$J^{T} = M^{-1}JM \quad is \quad \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

There is one line of eigenvectors $(x_1, 0, 0)$ for J and another line $(0, 0, x_3)$ for J^T .

Fibonacci Numbers

Every new Fibonacci number is the sum of the two previous F's.

The **sequence** 0, 1, 1, 2, 3, 5, 8, 13, comes from
$$F_{k+2} = F_{k+1} + F_k$$

Problem

Find the Fibonacci number F_{100}

We can apply the rule one step at a time, or just use Linear algebra.

Let consider the matrix equation: $u_{k+1} = Au_k$. Fibonacci rule gave us a two-step rule for scalars.

Let
$$\vec{u}_k = \begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}$$
, the rule $\begin{pmatrix} F_{k+2} = F_{k+1} + F_k \\ F_{k+1} = F_{k+1} \end{pmatrix}$ becomes $\vec{u}_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \vec{u}_k$.

Every step multiplies by $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, after 100 steps we reach $\vec{u}_{100} = \begin{pmatrix} F_{101} \\ F_{100} \end{pmatrix}$

$$\vec{u}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \vec{u}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \vec{u}_3 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \quad \dots \quad \vec{u}_{100} = \begin{pmatrix} F_{101} \\ F_{100} \end{pmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{vmatrix}$$
$$= -\lambda (1 - \lambda) - 1$$
$$= \lambda^2 - \lambda - 1$$

The characteristic equation is $\lambda^2 - \lambda - 1 = 0$ and the solutions are

$$\lambda_1 = \frac{1+\sqrt{5}}{2} \approx 1.618$$
 and $\lambda_2 = \frac{1-\sqrt{5}}{2} \approx -.618$

For
$$\lambda_1 \implies (A - \lambda_1 I) \vec{v}_1 = 0$$

$$\begin{pmatrix} 1 - \lambda_1 & 1 \\ 1 & -\lambda_1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow x_1 - \lambda_1 y_1 = 0$$

$$x_1 = \lambda_1 y_1$$

$$\Rightarrow \vec{v}_1 = \begin{pmatrix} \lambda_1 \\ 1 \end{pmatrix}$$

For
$$\lambda_2 \implies (A - \lambda_2 I) \vec{v}_2 = 0$$

$$\begin{pmatrix}
1 - \lambda_2 & 1 \\
1 & -\lambda_2
\end{pmatrix}
\begin{pmatrix}
x_1 \\
y_1
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix} \rightarrow x_1 - \lambda_2 y_1 = 0$$

$$\underline{x_1 = \lambda_2 y_1}$$

$$\Rightarrow \vec{v}_2 = \begin{pmatrix}
\lambda_2 \\
1
\end{pmatrix}$$

The eigenvector matrix is given by:

$$S = \begin{pmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{pmatrix}$$

The combination of these eigenvectors that give $\vec{u}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\lambda_1 - \lambda_2} \begin{pmatrix} \lambda_1 \\ 1 \end{pmatrix} - \begin{pmatrix} \lambda_2 \\ 1 \end{pmatrix}$$

$$= \frac{\vec{v}_1 - \vec{v}_2}{\lambda_1 - \lambda_2}$$

$$\vec{u}_{100} = \frac{\left(\lambda_1\right)^{100} \vec{v}_1 - \left(\lambda_2\right)^{100} \vec{v}_2}{\lambda_1 - \lambda_2}$$

$$\begin{split} F_{100} &= \frac{1}{\lambda_1 - \lambda_2} \left[\left(\lambda_1 \right)^{100} - \left(\lambda_2 \right)^{100} \right] \\ &= \frac{1}{\frac{1 + \sqrt{5}}{2} - \frac{1 + \sqrt{5}}{2}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{100} - \left(\frac{1 + \sqrt{5}}{2} \right)^{100} \right] \\ &\approx 2.54 \times 10^{20} \end{split}$$

The Jordan Form

For every A, we want to choose M so that $M^{-1}AM$ is as nearly diagonal as possible. When A has a full set of n eigenvectors, they go into the columns of M. Then M = P. The matrix $P^{-1}AP$ is diagonal.

If A has s independent eigenvectors, it is similar to a matrix J that has s Jordan blocks on its diagonal. There is a matrix M such that

$$M^{-1}AM = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_s \end{bmatrix} = J$$

Each block in J has one eigenvalue λ_i , one eigenvector, and 1's above the diagonal:

$$\boldsymbol{J}_i = \begin{bmatrix} \boldsymbol{\lambda}_i & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \boldsymbol{\lambda}_i \end{bmatrix}$$

A is similar to B if they share the same Jordan form J – not otherwise.

Exercises Section 4.5 – Diagonalization

- 1. The Lucas numbers are like Fibonacci numbers except they start with L_1 = 1 and L_2 = 3. Following the rule $L_{k+2} = L_{k+1} + L_k$. The next Lucas numbers are 4, 7, 11, 18. Show that the Lucas number $L_{100} = \lambda_1^{100} + \lambda_2^{100}$.
- **2.** Find all eigenvector matrices S that diagonalize A (rank 1) to give $S^{-1}AS = \Lambda$:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

What is A^n ? Which matrices B commute with A (so that AB = BA)

(3-6) Determine whether the matrix is diagonalizable

$$3. \quad \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$

$$4. \quad \begin{bmatrix} -3 & 2 \\ -2 & 1 \end{bmatrix}$$

5.
$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{bmatrix}$$

6.
$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

(7 – 26) Determine if the matrices are diagonalizable. If so, find a matrix P that diagonalizes A and determine $P^{-1}AP$.

7.
$$A = \begin{pmatrix} -14 & 12 \\ -20 & 17 \end{pmatrix}$$

$$\mathbf{8.} \qquad A = \begin{pmatrix} 1 & 0 \\ 6 & -1 \end{pmatrix}$$

$$9. \qquad A = \begin{pmatrix} 3 & 2 \\ 0 & 3 \end{pmatrix}$$

10.
$$A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$$

$$11. \quad A = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$$

12.
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 2 \end{pmatrix}$$

13.
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

14.
$$A = \begin{pmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{pmatrix}$$

15.
$$A = \begin{pmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

16.
$$A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$

$$\mathbf{17.} \quad A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 5 & -2 \\ 1 & 3 & 1 \end{pmatrix}$$

18.
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{pmatrix}$$

19.
$$A = \begin{pmatrix} 2 & -2 & -2 \\ 3 & -3 & -2 \\ 2 & -2 & -2 \end{pmatrix}$$

$$\mathbf{20.} \quad A = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

$$\mathbf{21.} \quad A = \begin{pmatrix} 3 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

22.
$$A = \begin{pmatrix} 19 & -9 & -6 \\ 25 & -11 & -9 \\ 17 & -9 & -4 \end{pmatrix}$$

$$\mathbf{23.} \quad A = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$\mathbf{24.} \quad A = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 5 & -5 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

25.
$$A = \begin{pmatrix} 5 & -3 & 0 & 9 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\mathbf{26.} \quad A = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{pmatrix}$$

27. The 4 by 4 triangular Pascal matrix P_L and its inverse (alternating diagonals) are

$$P_{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{bmatrix} \quad and \quad P_{L}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

Check that P_L and P_L^{-1} have the same eigenvalues. Find a diagonal matrix D with alternating signs that gives $P_L^{-1} = D^{-1}P_LD$, so P_L is similar to P_L^{-1} . Show that P_LD with columns of alternating signs is its own inverse.

Since P_L and P_L^{-1} are similar they have the same Jordan form J. Find J by checking the number of independent eigenvectors of P_L with $\lambda = 1$.

28. These Jordan matrices have eigenvalues 0, 0, 0, 0. They have two eigenvectors (one from each block). But the block sizes don't match and they are not similar:

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad and \quad K = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{pmatrix}$$

For any matrix M compare JM with MK. If they are equal show that M is not invertible. Then $M^{-1}JM = K$ is Impossible; J is not similar to K.

- **29.** If x is in the nullspace of A show that $M^{-1}x$ is in the nullspace of $M^{-1}AM$. The nullspaces of A and $M^{-1}AM$ have the same (vectors) (basis) (dimension)
- **30.** Prove that A^T is always similar to A (λ 's are the same):
 - a) For one Jordan block J_i , find M_i so that $M_i^{-1}J_iM_i = J_i^T$.
 - b) For any J with blocks J_i , build M_0 from blocks so that $M_0^{-1}JM_0 = J^T$.
 - c) For any $A = MJM^{-1}$: Show that A^T is similar to J^T and so to J and so to A.
- **31.** Why are these statements all true?
 - a) If A is similar to B then A^2 is similar to B^2 .
 - b) A^2 and B^2 can be similar when A and B are not similar.
 - c) $\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$ is similar to $\begin{pmatrix} 3 & 1 \\ 0 & 4 \end{pmatrix}$
 - d) $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ is not similar to $\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$
 - e) If we exchange rows 1 and 2 of A, and then exchange columns 1 and 2 the eigenvalues stay the same. In this case M=?
- **32.** If an $n \times n$ matrix A has all eigenvalues $\lambda = 0$ prove that A^n is the zero matrix.
- **33.** If A is similar to A^{-1} , must all the eigenvalues equal to 1 or -1?.
- (34-42) Determine whether the *two matrices* are similar matrices

34.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 0 \\ 3 & -2 \end{pmatrix}$

36.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

35.
$$A = \begin{pmatrix} 4 & -1 \\ 2 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 4 & 1 \\ 2 & 4 \end{pmatrix}$

37.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$

40.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 5 \\ 0 & 7 & 6 \end{pmatrix}$

38.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 $B = \begin{pmatrix} 4 & 0 & 0 \\ 7 & 1 & 0 \\ 8 & 9 & 6 \end{pmatrix}$

41.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ 0 & 5 & 6 \end{pmatrix}$

39.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 $B = \begin{pmatrix} 4 & 7 & 0 \\ 0 & 1 & 0 \\ 8 & 9 & 6 \end{pmatrix}$

42.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 5 & 1 \\ 3 & 1 & 5 \end{pmatrix}$

- **43.** Prove that two similar matrices have the same determinant. Explain geometrically why this is reasonable.
- **44.** Prove that two similar matrices have the same characteristic polynomial and thus the same eigenvalues. Explain geometrically why this is reasonable.
- **45.** Suppose that *A* is a matrix. Suppose that the linear transformation associated to *A* has two linearly independent eigenvectors. Prove that *A* is similar to a diagonal matrix.
- **46.** Prove that if A is a 2×2 matrix that has two distinct eigenvalues, then A is similar to a diagonal matrix.
- 47. Suppose that the characteristic polynomial of a matrix has a double root. Is it true that the matrix has two linearly independent eigenvectors? Consider the example $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Is it true that matrices with equal characteristic polynomial are necessarily similar?
- **48.** Show that the given matrix is not diagonalizable. $\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$
- **49.** Determine if the given matrix is diagonalizable. If, so, find matrices S and $\Lambda(D)$ such that the given matrix equals $S\Lambda S^{-1}$

$$a) \qquad \begin{bmatrix} 3 & 3 \\ 4 & 2 \end{bmatrix}$$

$$b) \quad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & -1 \end{bmatrix}$$

50. A is a 5×5 matrix with *two* eigenvalues. One eigenspace is *three*—dimensional, and the other eigenspace is *two*—dimensional. Is A diagonalizable? Why?

- **51.** A is a 3×3 matrix with *two* eigenvalues. Each eigenspace is *one*—dimensional. Is A diagonalizable? Why?
- **52.** A is a 4×4 matrix with *three* eigenvalues. One eigenspace is *one*—dimensional, and one of the other eigenspace is *two*—dimensional. Is it possible that A is *not* diagonalizable? Justify your answer?
- 53. A is a 7×7 matrix with *three* eigenvalues. One eigenspace is *two*-dimensional, and one of the other eigenspace is *three*-dimensional. Is it possible that A is *not* diagonalizable? Justify your answer?
- **54.** Show that if A is diagonalizable and invertible, then so is A^{-1} .
- **55.** Show that if A has n linearly independent eigenvectors, then so does A^T .
- **56.** A factorization $A = PDP^{-1}$ is not unique. Demonstrate this for the matrix $A = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}$ with $D_1 = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}$, find a matrix P_1 such that $A = P_1D_1P_1^{-1}$.
- 57. Construct a nonzero 2×2 matrix that is invertible but not diagonalizable.
- **58.** Construct a nonzero 2×2 matrix that is diagonalizable but not invertible.
- **59.** What are the matrices that are similar to themselves only?
- **60.** For any scalars a, b, and c, show that

$$A = \begin{pmatrix} b & c & a \\ c & a & b \\ a & b & c \end{pmatrix}, \quad B = \begin{pmatrix} c & a & b \\ a & b & c \\ b & c & a \end{pmatrix}, \quad C = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$$

are similar.

Moreover, if BC = CB, then A has two zero eigenvalues.

(61-64) For positive integer $k \ge 2$, compute

61.
$$\begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}^k$$

62.
$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}^k$$

$$\mathbf{63.} \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^{k}$$

64.
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^k$$

- **65.** Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Show that A^k is similar to A fro every positive integer k. It is true more generally for any matrix with all eigenvalues equal to 1.
- **66.** Can a matrix be similar to two different diagonal matrices?
- **67.** Prove that if A is diagonalizable, then A^T is diagonalizable.
- **68.** Prove that if the eigenvalues of a diagonalizable matrix A are all ± 1 , then the matrix is equal to its inverse.
- **69.** Prove that if A is diagonalizable with n real eigenvalues λ_1 , λ_2 , ..., λ_n , then $|A| = \lambda_1 \cdot \lambda_2 \cdot \dots \cdot \lambda_n$
- **70.** If x is a real number, then we can define e^x by the series

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

In similar way, If X is a square matrix, then we can define e^X by the series

$$e^X = I + X + \frac{1}{2!}X^2 + \frac{1}{3!}X^3 + \frac{1}{4!}X^4 + \cdots$$

Evaluate e^X , where X is the indicated square matrix.

a)
$$X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$c) \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$b) \quad X = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

$$d) \quad X = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$