# Semestrální práce TQS

Jakub Dokulil, 215768

2021

#### Zadání

Jáma konečné hloubky - první tři stavy a jejich hustoty pravděpodobnosti  $(E < V_0)$ .

- 1. Zdrojový kód programu .py s komentáři a odpovídajícím porozumění problematice (budu se ptát osobně nebo prostřednictvím microsoft teams).
- 2. 2 stránkový dokument ve formátu .pdf (včetně zdroje latex nebo word)
  - (a) První 1/3 první strany nástin zadání problému.
  - (b) Druhá 1/3 první strany analytický Hamiltonián a náznak tvaru maticového Hamiltoniánu.
  - (c) Třetí 1/3 první strany co mne na řešení zaujalo (úlohy a přístupu).
  - (d) Druhá strana dva nejvíce ilustrativní a popsané grafy, které byly získány řešením úlohy (které nejlépe znázorňují řešení).
- 3. Video v případě časových vývojů, které nejlépe vystihuje řešení (formát .avi).

## Pravoúhlá potenciálová jáma

Při řešení byl použit postup podle článku Garcia, R., Zozulya, A., Stickney, J. (2007). *MATLAB codes for teaching quantum physics: Part 1.* URL: http://arxiv.org/pdf/0704.1622.pdf, kód byl implementován v programovacím jazyce Julia s použitím balíků LinearAlgebra a Trapz. Taktéž byl výpočet implementován vy jazyce Python s využitím knihovny NumPy.

### Jáma s pravoúhlým potenciálem.

Obecně lze zapsat stacionární Schrödingerovu rovnici ve tvaru

$$\hat{H} |\Psi\rangle = E |\Psi\rangle$$
.

Rozepsáním operátoru Hamiltoniálnu  $\hat{H}$  dostáváme rovnici.

$$-i\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\Psi(x) + V(x) = E\Psi(x)$$



Obrázek 1: Potenciálová jáma.

Pravoúhlý potenciál lze vyjádřit například pomocí Heavisideovy funkce h(x)

$$h(x) = \begin{cases} 0 & x < 0 \\ 0.5 & x = 0 \\ 1 & x > 1 \end{cases}$$

Potenciál pravoúhlé jámy šířky L a konečné hloubky d lze tedy vyjádřit jako

$$V(x; d, L) = -d \left[ h \left( x + \frac{L}{2} \right) - h \left( x + \frac{L}{2} \right) \right]$$

Graf potenciálu lze vidět na obrázku 1.

### Implementace

Výpečet je prováděn na prostoru se součadnicí x rodělenou na N dílků. Proto je Hamiltonián reprezentován čtvercovou maticí  $N \times N$  působící na N-rozměrný vektor  $|\Psi\rangle$ .

Laplaceův operátor je reprezentován maticí

$$\Delta = \frac{1}{(\mathrm{d}x)^2} \begin{pmatrix} -2 & 1 & 0 & \dots & 0\\ 1 & -2 & 1 & \dots & 0\\ 0 & 1 & -2 & \ddots & \vdots\\ \vdots & \vdots & \ddots & \ddots & 1\\ 0 & 0 & \dots & 1 & -2 \end{pmatrix}$$

a celý Hamiltonián následně vypadá

$$\hat{H} = \frac{\hbar^2}{2m} \frac{1}{(\mathrm{d}x)^2} \begin{pmatrix} -2 & 1 & 0 & \dots & 0\\ 1 & -2 & 1 & \dots & 0\\ 0 & 1 & -2 & \ddots & \vdots\\ \vdots & \vdots & \ddots & \ddots & 1\\ 0 & 0 & \dots & 1 & -2 \end{pmatrix} + \mathrm{diag}(V(x))$$

Řešení rovnice se redukuje na hledání vlastních hodnot a hlastních vektorů matice Hamiltoniánu.



Obrázek 2: Výsledek výpočtu pro jámu šířky d=1,7 a hloubky L=80. Vykreslené první tři stavy a příslušné hustoty pravděpodobnosti. Vykresleno pomocí knihovny Makie.

## Co mne na řešení zaujalo?

Na řešení mne zaujalo, jak jednoduše proveditelné je. V podstatě jediné o co jde, je sestrojit matici a najít její vlastní čísla a vlastní vektory. Toto může velmi usnadnit řešení komplikovanějších úloh.

Výpočet byl implementován zároveň v Pythonu s užitím knihoven NumPy a v Julii. Pro porovnání byl proveden výpočet stejné jámy s N=6000 v Pythonu a v Julii s využitím 32 a 64 bitových proměnných. Volba N je volena tak, aby výpočet trval lehce přes minutu. Při řešení na notebooku vyšla nejrychleji Julia s 64 bitovou reprezentací. Ukázalo se, že kompilovaná Julie je rychlejší než Pythonovské knihovny a to zhruba dvakrát. To, že 64 bitový reprezentace je rychlejší, je pravděpodobně způsobeno procesorem, který je taktéž 64 bitový.

## Výsledky výpočtu

Výsledky Lze visdět na obrázku 2, kde jsou vykresleny první tři stavy. Při provední výpočtu pro mělčí jámu (d = 15) lze vidět prosakování mimo jámu zvláště u vyšších energiových stavů. Výsledek lze vidět na obrázku 3.



Obrázek 3: Výsledek výpočtu pro jámu šířky d=1,7 a hloubky L=20. Vykreslené první tři stavy a příslušné hustoty pravděpodobnosti. Vykresleno pomocí knihovny Makie.