MÉTODOS NÚMERICOS CAPÍTULO 1 – O ERRO EM ANÁLISE NÚMERICA

MÉTODOS NUMÉRICOS – PARA QUÊ?

- Recorre à computação para solucionar problemas, operando com precisão finita e num curto espaço de tempo!
- Isto conduz a erros de arredondamento que s\u00e3o acumulados ao longo de processos de c\u00e1lculo complexo,
 originando perdas de precis\u00e3o inesperadas.
- Estes erros devem ser quantificados e minimizados.

O DESAFIO DOS MÉTODOS NÚMERICOS É ESTIMAR O ERRO SEM CONHECIMENTO DO VALOR ABSOLUTO

- Por exemplo, no cálculo iterativo, a atual aproximação é calculada com base na aproximação anterior, e o cálculo é repetido sucessivamente até obter melhores aproximações.
- Normalmente, estabelece-se um critério de paragem assegurando que o erro é inferior a um valor pré-estabelecido.

REPRESENTAÇÃO DE NÚMEROS NUMA MÁQUINA

O problema do senhor I.N.Génuo

Fez uma aplicação bancária, entregando inicialmente (e-1)€! No 1° ano o seu capital será multiplicado por 1 e subtraído 1€ para despesas... No 2° ano o capital é multiplicado por 2 e subtraído 1€ para despesas... Assim continuará até aos 25 anos!

Desafio:

- Resolver o problema com recurso ao excel, variando o número de casas decimais (<u>alterar precisão</u>)
- Resolver o problema com recurso a outras ferramentas (Octave, Python, Maxima, C++, JAVA, etc)

Desafio:

Resolver o problema com recurso ao excel, variando o número de casas decimais (<u>alterar precisão</u>)

Excel > Ficheiro > Opções > Avançadas > Definir precisão como apresentada

Ao calcular este livro:	XI Livro1	•	
✓ Atualizar ligações a d □ Definir precisão com □ Utina interna de da ✓ Guardar valores das l	no apresentada atas <u>1</u> 904		
Geral	<u>gaşəes er</u> terinas		

Desafio:

Resolver com recurso a outras ferramentas (Octave, Python, C++,etc)

REPRESENTAÇÃO DE NÚMEROS NUMA MÁQUINA

O problema do senhor I.N.Génuo

Supondo que o resultado correto seria -2.242x10⁹ lsto foi calculado com dupla precisão dos programas de código!

	Excel 5 casas decimais	Excel 10 casas decimais	Excel 14 casas decimais
Valor	-2.84E+19	6.35E+14	7.39E+10
Erro absoluto	2.84E+19	-6.35E+14	-7.61E+10
Erro relativo	-1.27E+10	2.83E+05	3.39E+01

Erro absoluto = e(x) = x(exacto) - x(aproximado)

Erro relativo = r(x) = e(x)/x(exacto)

REPRESENTAÇÃO DE NÚMEROS NUMA MÁQUINA

Transformação de expressões

Exemplo

$$(x+1)^{1/2} - x^{1/2}$$

Quando o x é pequeno não há problema em utilizar esta expressão, no entanto quando este é grande é conveniente transformar a expressão!

Neste caso multiplicamos pelo conjugado

$$[(x+1)^{1/2} - x^{1/2}] \times \frac{[(x+1)^{1/2} + x^{1/2}]}{[(x+1)^{1/2} + x^{1/2}]} = \frac{1}{(x+1)^{1/2} + x^{1/2}}$$

- 1 Representar as duas expressões no mesmo plot;
- 2 Representar a subtração entre as duas expressões;


```
import math
x=0; x1=0; x2=0; y1=0; y2=0; y3=0;
while x<20:
  x+=1;
y=math.exp(x);
while x1<20:
  x1+=0.1;
y1=math.exp(x1);
while x2<20:
  \times 2 + = 1/(2);
y2=math.exp(x2);
print(x,y)
print(x1,y1)
print(x2,y2)
```