THEORETICAL PART:

Models of population growth

The population growth is described by exponential law:

$$P(t) = P_0 a^t,$$

where P(t) is the size of population at time t, P_0 is an initial population (population at time t = 0), a is the growth rate of the population.

Models of Radioactive Decay

The radioactive decay is modeled by

$$A(t) = A_0 a^t,$$

where A(t) represents the amount of a given substance at time t, A_0 is the amount at time t = 0, and a is a number between 0 and 1.

Compound Interest and the Number e

Formula: Compound Interest Formula

An investment of P dollars, compounded n times per year at an annual interest rate of r, has a value after t years of

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}.$$

Definition (The number e):

The number *e* is defined as the value of $\left(1 + \frac{1}{m}\right)^m$ as $m \to \infty$.

$$e \approx 2.718281$$

Formula: Continuous Compounding Formula

An investment of P dollars, compounded continuously at an annual interest rate of r, has a value after t years of

$$A(t) = Pe^{rt}.$$

Definition:

Exponential regression can be used to fit an exponential curve to points that we suspect exhibit exponential behaviour.

The graph of the function

$$f(x) = ab^x$$

models the given data well.

Definition:

Logistic curves are a family of curves based on exponential functions that are designed to model behaviour often seen in biology, ecology, population studies, etc.

A logistic function can be written in the form:

$$f(x) = \frac{c}{1 + ae^{-bx}},$$

where a, b, c are positive constants.

Logistic regression is the process of using an algorithm to fit a logistic curve to a given collection of data.

PRACTICAL PART:

- 1. A biologist is culturing bacteria in a Petri dish. She begins with 1000 bacteria, and supplies sufficient food so that for the first five hours the bacteria population grows exponentially, doubling every hour.
 - (a) Find a function that models the population growth of this bacteria culture.
 - (b) Determine when the population reaches 16 000 bacteria.
 - (c) Calculate the population two and half hours after the scientists begins.

(a)
$$P(t) = P_0 a^t$$
 $P_0 = 1000$
 $P(1) = 2000$
 $2000 = 1000 \cdot a^t$
 $a = 2$
 $P(t) = 1000 \cdot 2^t$
 $t \text{ (hours)}$

(6)	16 000 = 1	000.24			
	16 = 2t				
	24 = 2	t			
N (t=4 how	wows		10-0	
Nt.	t= 4 hour	S We	e have	16 000	bacteria,
(c)			2.5		
	P(2.5) = 1	.000 - 2	,	5657	baeteria

2. Determine the base a so that the function $A(t) = A_0 a^t$ accurately describes the decay of carbon-14 as a function of t years.

For
$$t = 5730$$
 years we have that
$$A(5730) = A_0 a^{5730} = A_0$$

$$a^{5730} = \frac{1}{2}$$

$$a = \left(\frac{1}{2}\right)^{1/5730} \approx 0.9999$$
Thus,
$$A(t) = A_0 \cdot (0.9999)^t$$

3. Sandy invests \$10 000 in a savings account earning 4.5% annual interest compounded quarterly. What is the value of her investment after three and a half years?

$$A(t) = P(1 + F_0)^{nt}$$
 $P = 10000
 $t = 3.5$ years

 $r = 0.045$
 $h = 4$

Thus,

 $A(t) = 10000 (1 + 0.045)^{1/3.5}$
 $\approx 11695.52

4. If Sandy has the option of investing her \$10 000 in a continuously compounded account earning 4.5% annual interest, what will be the value of her account in three and a half years?

$$A(t) = P e^{rt}$$
 $P = 10000
 $r = 0.045$
 $t = 3.5$ years

 $A(t) = 10000$
 $e^{0.045 \cdot 3.5}$
 $A(t) = 10000$