Teoretický úvod

Koherentním optickým procesorem budeme zde rozumět takový systém optických prvků, který umožňuje studovat šíření světla a tvorbu optického obrazu z hlediska optické Fourierovy transformace. Zároveň nám poskytuje možnost výsledné zobrazení (geometrický obraz) ovlivnit vhodnou filtrací prostorových frekvencí Fourierova obrazu.

K přípravě a samotnému provedení úlohy je tedy třeba si ujasnit vztah mezi geometrickým pohledem na optické zobrazování a optickou Fourierovou transformací. Zákony tvorby optického obrazu v rámci geometrické optiky jsou shrnuty v kap. 2 části I. Základy Fourierovské optiky a matematické základy Fourierovy tranformace jsou obsahem odst. 4.10 téže části.

Obr. 4.7–1 Experimentální uspořádání koherentního optického procesoru

Experimentální uspořádání

Uspořádání koherentního optického procesoru je na obr. 4.7-1. Zdrojem koherentního světla je He-Ne laser o výkonu 5 mW a vlnové délce λ=543 nm. Čočky Č₁ a Č₂ tvoří optickou soustavu, která rozšiřuje průměr laserového svazku a přitom minimalizuje jeho divergenci. Předmět, který chceme zobrazit, se umístí na vstup systému do roviny P₁, tj. do předmětové ohniskové roviny čočky Č. Předmět je osvětlen prakticky rovnoběžným svazkem světla. Čočka Č provádí Fourierovu transformaci předmětu. Fourierovo spektrum se objeví v obrazové ohniskové rovině čočky Č, tj. v rovině P₂. Do této roviny se proto umísťují příslušné filtry na mikrometrický posuv xyz. Za rovinu P₂ lze umístit zrcadlo Z₃, které odkloní svazek a umožňuje pomocí teleskopu složeného z čoček Č₆, Č₅ zobrazit v rovině P₄ zvětšený obraz Fourierova spektra. Čočka Č₃ je umístěna tak aby provedla další Fourierovu transformaci Fourierovského spektra v rovině P₂. V obrazové ohniskové rovině čočky Č₃ vzniká tedy obraz předmětu (popř. modifikovaný filtrací v rovině P2) zmenšený v poměru ohniskových vzdáleností $f(\tilde{C}_3)/f(\tilde{C}) = 2/5$ (jak se lze přesvědčit použitím rovnic pro kombinaci dvou projektivních zobrazení). Protože však chceme pozorovat detaily obrazu, přidáme čočku Č₄. Ta společně s čočkou Č₃ představuje optickou soustavu, která při vhodně zvoleném optickém intervalu vytvoří v rovině P3 převrácený zvětšený obraz předmětu (případně modifikovaný filtrací), umístěného na vstupu koherentního procesoru.