IC Design Flows

- The MOS Transistor
- Analog and Circuit Design
- Digital Logic Families
- Productivity Gap
- Digital Design Flows

CMOS Circuit Styles

- Static complementary CMOS except during switching, output connected to either V_{DD} or GND via a lowresistance path
 - high noise margins
 - full rail to rail swing
 - V_{OH} and V_{OI} are at V_{DD} and GND, respectively
 - low output impedance, high input impedance
 - no steady state path between V_{DD} and GND (no static power consumption)
 - delay a function of load capacitance and transistor resistance
 - comparable rise and fall times (under the appropriate transistor sizing conditions)
- Dynamic CMOS relies on temporary storage of signal values on the capacitance of high-impedance circuit nodes
 - simpler, faster gates, cycle has pre-charge and evaluation phases
 - increased sensitivity to noise

Static Inverter Behavior

- Steady-state parameters of a gate static behavior tell how robust a circuit is with respect to both variations in the manufacturing process and to noise disturbances.
- Digital circuits perform operations on Boolean variables
 x ∈ {0,1}
- A logical variable is associated with a nominal voltage level for each logic state

$$1 \Leftrightarrow V_{OH} \text{ and } 0 \Leftrightarrow V_{OL}$$

$$V(x)$$
 $V_{OH} = ! (V_{OL})$ $V_{OL} = ! (V_{OH})$

Difference between V_{OH} and V_{OL} is the logic or signal swing V_{SW}

DC Operation Voltage Transfer Characteristics (VTC)

 Plot of output voltage as a function of the input voltage

VLSI Design, Fall 2021

Amr Wassal

Mapping Logic Levels to the Voltage Domain

□ The regions of acceptable high and low voltages are delimited by V_{IH} and V_{IL} that represent the points on the VTC curve where the gain = -1

Noise Margins

□ For robust circuits, want the "0" and "1" intervals to be a s large as possible

The Regenerative Property

□ The VTC must have a transient region with a gain greater than 1 (in absolute value) bordered by two valid zones where the gain is smaller than 1. Such a gate has two stable operating points.

The Regenerative Property

 A gate with regenerative property ensures that a disturbed signal converges back to a nominal voltage level

Noise Immunity

- Noise margin expresses the ability of a circuit to overpower a noise source
 - noise sources: supply noise, cross talk, interference, offset
- Absolute noise margin values are deceptive
 - a floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage)
- Noise immunity expresses the ability of the system to process and transmit information correctly in the presence of noise
- For good noise immunity, the signal swing (i.e., the difference between V_{OH} and V_{OL}) and the noise margin have to be large enough to overpower the impact of fixed sources of noise

VLSI Design, Fall 2021

Noise in Digital Integrated Circuits

Directivity

- A gate must be unidirectional: changes in an output level should not appear at any unchanging input of the same circuit
 - In real circuits, full directivity is an illusion (e.g., due to capacitive coupling between inputs and outputs)
- Key metrics: output impedance of the driver and input impedance of the receiver
 - ideally, the output impedance of the driver should be zero and
 - input impedance of the receiver should be infinity

Fan-In and Fan-Out

- □ Fan-out number of load gates connected to the output of the driving gate
 - gates with large fan-out are slower

- □ Fan-in the number of inputs to the gate
 - gates with large fan-in are bigger and slower

The Ideal Inverter

- The ideal gate should have
 - infinite gain in the transition region
 - a gate threshold located in the middle of the logic swing
 - high and low noise margins equal to half the swing
 - input and output impedances of infinity and zero, resp.

Delay Definitions

Modeling Propagation Delay

Model circuit as first-order RC network

$$v_{out}(t) = (1 - e^{-t/\tau})V$$

where $\tau = RC$

Time to reach 50% point is
$$t = ln(2) \tau = 0.69 \tau$$

Time to reach 90% point is
$$t = ln(9) \tau = 2.2 \tau$$

225

■ Matches the delay of an inverter gate

Power and Energy Dissipation

- Power consumption: how much energy is consumed per operation and how much heat the circuit dissipates
 - supply line sizing (determined by peak power)

$$P_{peak} = V_{dd}i_{peak}$$

battery lifetime (determined by average power dissipation)

$$p(t) = v(t)i(t) = V_{dd}i(t)$$

$$P_{avg} = 1/T \int p(t) dt = V_{dd}/T \int i_{dd}(t) dt$$

- packaging and cooling requirements
- Two important components: static and dynamic

$$\begin{vmatrix} f_{0\rightarrow1} = P_{0\rightarrow1} * f_{clock} \end{vmatrix}$$

$$P \text{ (watts)} = C_L V_{dd}^2 f_{0\rightarrow1} + t_{sc} V_{dd} I_{peak} f_{0\rightarrow1} + V_{dd} I_{leakage}$$

Power and Energy Dissipation

- Propagation delay and the power consumption of a gate are related
- Propagation delay is (mostly) determined by the speed at which a given amount of energy can be stored on the gate capacitors
 - the faster the energy transfer (higher power dissipation) the faster the gate
- For a given technology and gate topology, the product of the power consumption and the propagation delay is a constant
 - Power-delay product (PDP) energy consumed by the gate per switching event = P_{av} × t_p
- An ideal gate is one that is fast and consumes little energy, so the ultimate quality metric is
 - Energy-delay product (EDP) = E × t_p = power × delay ²