Contextual Bandit News Recommender System

Angad U20220011

Overview

This project implements a **contextual bandit–based news recommendation** pipeline combined with **user classification**. Specifically:

- 1. We classify users into one of three categories: User1, User2, and User3.
- 2. We run **three** contextual bandit algorithms:
 - o Epsilon-Greedy
 - o UCB
 - o SoftMax
- 3. We recommend the **best news category** (one of Entertainment, Education, Tech, or Crime) based on the **estimated expected reward** for that user's context.
- 4. We show **hyperparameter experiments** to analyze how different $\epsilon \in \text{CCC}$, and TTT values affect performance.

Data and Preprocessing

• User Datasets:

```
o train_users.csv
o test_users.csv
Each has columns:
['user_id','age','income','clicks','purchase_amount','label']
```

News Articles:

```
o news_articles.csv
Columns:
['link','headline','category','short_description','authors','date
']
```

User Labels

- Original user labels: User1, User2, User3.
- We convert them to numeric $\{0,1,2\}$ to serve as **contexts** for the bandit.

News Categories

- The dataset had many categories (Politics, Wellness, Entertainment, etc.).
- We filter down to four: Entertainment (0), Education (1), Tech (2), Crime (3).

Implementation

Classification Model

We train a DecisionTreeClassifier (max_depth=5, random_state=42) to predict User1, User2, User3 from features: [age, income, clicks, purchase amount].

Classification Accuracy on test_users.csv:

[Classification] Decision Tree Accuracy: 33.05%

The classification report:

	precision	recall	f1-score	support
User1	0.32	0.26	0.29	672
User2	0.34	0.51	0.41	679
User3	0.33	0.21	0.26	649
accuracy			0.33	2000
-	0 22	0 22		
macro avg	0.33	0.33	0.32	2000
weighted avg	0.33	0.33	0.32	2000

Observation: The model does relatively better on User2 than on User1 or User3. This suggests we may need more features or more data to distinguish user classes effectively. Overall accuracy ~33%, near random for 3-class classification.

Contextual Bandits

We define **3 contexts** (0=User1,1=User2,2=User3) and **4 arms** (0=Entertainment,1=Education,2=Tech,3=Crime). We have a **sampler** that yields rewards for each (context, arm)

Algorithms

1. Epsilon-Greedy

- We pick a random arm with probability $\epsilon \cdot \text{psilon}\epsilon$, else pick the max Q-value arm.
- o Trained for 10,000 steps per context.

2. **UCB**

- We pick the arm with the highest UCB index
- o Also trained for 10,000 steps per context.

3. SoftMax

- We pick arms according to a softmax distribution based on Q-values
- o Trained for 10,000 steps per context.

Results & Discussion

Single Hyperparameter Setting

We first tested:

- **Epsilon-Greedy** (ϵ =0.1)
- **UCB** (C=1)
- **SoftMax** (T=1.0)

Final Average Rewards:

Algorithm	Context=0 (User1)	Context=1 (User2)	Context=2 (User3)	Overall Avg
Epsilon-Greedy (ε=0.1)	7.10	4.43	5.51	5.68
UCB (C=1)	7.98	4.99	5.99	6.32
SoftMax (T=1.0)	7.99	4.83	5.83	6.22

Observations:

- UCB and SoftMax yield slightly higher overall average rewards (~6.3 vs. 6.2).
- Context=0 (User1) consistently gets the highest average reward among the three contexts. User2 gets the lowest.

Hyperparameter Comparisons

We further tested:

- **Epsilon-Greedy** with $\epsilon \in \{0.1, 0.5, 0.7\}$
- **UCB** with $C \in \{1,2,3\}$
- **SoftMax** with $T \in \{0.5, 1.0, 2.0\}$

Below are some **sample final average rewards** (Overall context average):

Epsilon-Greedy ϵ =0.1 ϵ =0.5 ϵ =0.7 Overall Reward 5.697 3.184 1.934

UCB C=1 C=2 C=3

Overall 6.333 6.328 6.327

SoftMax T=0.5 T=1.0 T=2.0

Overall 6.189 6.231 5.729

Observations:

- **Epsilon-Greedy**: As ϵ increases from $0.1 \rightarrow 0.5 \rightarrow 0.7$, the overall reward decreases. High random exploration drastically lowers performance.
- UCB: The overall reward hovers ~ 6.33 for $C \in \{1,2,3\}$ Little difference among these.
- **SoftMax**: T=1.0 yields the best result (~6.23). A **very high** temperature (2.0) causes more exploration, leading to a drop in reward (~5.73).

Learned Q-Values

At the end of training, we also printed the **final Q-values** for each context and arm (the bandit's estimate of expected reward). For instance, with Epsilon-Greedy ϵ =0.1:

```
[Final Q-Values (Expected Rewards) for Epsilon-Greedy, Hyperparam=0.1]
Context=0:
    Arm=0 (Entertainment) ~ Q=0.995
    Arm=1 (Education) ~ Q=8.000
    ...
Context=1:
    Arm=0 (Entertainment) ~ Q=-7.040
    Arm=1 (Education) ~ Q=4.996
    ...
Context=2:
```

We see that, for **Context=0**, Education is assigned a Q-value near 8.0, suggesting the bandit believes that category yields the highest expected reward for **User1**.

Example Recommendation

```
We tested a new user with features [age=29, income=29862, clicks=91, purchase_amount=270.91].
```

The system recommended:

```
[Recommendations for new user]:
   -egreedy: Category=Education, Headline=Talk, Read and Sing to Kids to
Close the Word Gap
   -ucb: Category=Education, Headline=The End of Reading in America and
Other Related Matters
   -softmax: Category=Education, Headline=Education and Philanthropy
```

So all three policies (with their final Q-values) suggest **Education** for this user.

Conclusions

- With ~33% accuracy across 3 labels, the user classification is almost random. There is certain misclassification taking place across all categories
- **UCB** and **SoftMax** typically yield the highest overall average rewards (~6.2–6.3).
- **Epsilon-Greedy** is best at ϵ =0.1 (overall ~5.7) but significantly worse at higher ϵ . Higher exploration rates were giving better results initially but went down in the long term.
- This matches expectations: too much random exploration leads to suboptimal performance.
- Context=0 (User1) yields the highest rewards, indicating the reward sampler's distribution is more favorable for that user type.
- User2 often ends up with the lowest average reward.
- We see that certain ϵ , C, and T values matter. For instance, ϵ =0.1is better than 0.5 or 0.7 for Epsilon-Greedy; T=1.0 is best overall for SoftMax.

Instructions to Run & Replicate

- 1. **Clone** or **Download** the code from this repository.
- 2. Install required packages, including the sampler wheel:

```
pip install -r requirements.txt
# If needed:
pip install /path/to/sampler-1.0-py3-none-any.whl
```

3. Place Data

- o Make sure train_users.csv, test_users.csv, and news_articles.csv are in the correct folder
- 4. Run open the notebook (Bandit Assignment.ipynb) and run all cells.