Álgebra I. Examen parcial 3 (repetido) Universidad de El Salvador, 03/07/2019

Ejercicio 1 (2 puntos). Demuestre que $H := \{a \in GL_n(\mathbb{R}) \mid \det a = \pm 1\}$ es un subgrupo normal de $GL_n(\mathbb{R})$ y $GL_n(\mathbb{R})/H \cong \mathbb{R}_{>0}$.

Ejercicio 2 (2 puntos). Sean G un grupo y $H \subseteq G$ un subgrupo. Demuestre que las siguientes condiciones son equivalentes:

- a) *H* es normal;
- b) para cualesquiera $g_1, g_2 \in G$ se cumple

$$g_1g_2 \in H \Longrightarrow g_1^2g_2^2 \in H$$
.

Ejercicio 3 (2 puntos). Sean G un grupo y $H \subset G$ un subgrupo de índice 2. Demuestre que para todo $g \in G$ se tiene $g^2 \in H$.

Ejercicio 4 (2 puntos). Consideremos el grupo diédrico $D_4 = \{id, r, r^2, r^3, f, rf, r^2f, r^3f\}$.

a) Encuentre las clases de conjugación en D_4 ; es decir, las clases de equivalencia respecto a la relación

$$g \sim h \iff g = khk^{-1}$$
 para algún $k \in G$.

b) Encuentre todos los subgrupos normales de D_4 . (Sugerencia: recuerde que un subgrupo normal es una unión de clases de conjugación.)

Ejercicio 5 (2 puntos). Consideremos el grupo aditivo \mathbb{Q} y el grupo multiplicativo $\mathbb{Q}_{>0}$.

- a) Demuestre que para todo $x \in \mathbb{Q}$ existe $y \in \mathbb{Q}$ tal que y + y = x, pero existe $\alpha \in \mathbb{Q}_{>0}$ tal que $\beta^2 \neq \alpha$ para ningún $\beta \in \mathbb{Q}_{>0}$.
- b) Usando la parte a), demuestre que no puede haber un isomorfismo

$$\phi: \mathbb{Q} \to \mathbb{Q}_{>0}$$
.

(Considere $\alpha \in \mathbb{Q}_{>0}$ y el elemento correspondiente $\phi^{-1}(\alpha) \in \mathbb{Q}$.)