1. 数塔问题

(tower.pas/c/cpp)

【问题描述】

相信大家都写过数字三角形问题,题目很简单求最大化一个三角形数塔从上往下走的路径和。走的规则是:(i,j)号点只能走向(i+1,j)或者(i+1,j+1)。如下图是一个数塔,映射到该数塔上行走的规则为:从左上角的点开始,向下走或向右下走直到最底层结束。

路径最大和是 1+8+5+4+4 = 22, 1+8+5+3+5 = 22 或者 1+8+0+8+5 = 22。

小 S 觉得这个问题 so easy。于是他提高了点难度,他每次 ban 掉一个点(即规定哪个点不能经过),然后询问你不走该点的最大路径和。

当然他上一个询问被 ban 掉的点过一个询问会恢复(即每次他在原图的基础上 ban 掉一个点,而不是永久化的修改)。

【输入】

第一行包括两个正整数, N, M, 分别表示数塔的高和询问次数。

以下N行,第i行包括用空格隔开的i-1个数,描述一个高为N的数塔。

而后 M 行,每行包括两个数 X,Y,表示第 X 行第 Y 列的数塔上的点被小 S ban 掉,无法通行。

(由于读入数据较大, c 或 c++请使用较为快速的读入方式)

【输出】

M 行每行包括一个非负整数,表示在原图的基础上 ban 掉一个点后的最大路径和,如果被ban 掉后不存在任意一条路径,则输出-1。

【输入输出样例1】

tower.in	tower.out
5 3	17
1	22
3 8	-1
2 5 0	
1 4 3 8	
1 4 2 5 0	
2 2	
5 4	
1 1	

【样例解释】

第一次是

1

3 X

250

1438

14250

1+3+5+4+4=17 或者 1+3+5+3+5=17

第二次:

1

38

250

1438

142X0

1+8+5+4+4=22

第三次: 你们都懂的! 无法通行, -1!

【数据范围】

所有测试数据范围和特点如下: ↩

对于所有数据,数塔中的数 X 的大小满足 $0 \le X \le 10^6$

⊕ + 1			
测试点编号₽	N⇔	M₄J	特殊约定₽
1₽		- 0	₽
2₽		≤ 3₽	₽
3₽	≤ 5₽	- 105	₽
4₽		≤ 10 ⁵ ¢	47
5₽			满足点(i,j)上的数=i * j ₽
6₽	< 50	- 103	47
7₽	≤ 50₽	≤ 10 ³ ¢	₽
80			₽
9₽	≤ 300₽		数塔中所有数相等。
10₽		104	47
11₽		≤ 10 ⁴ ¢	₽
12₽			47
13₽			满足点(i,j)上的数=i − j _↩
14₽			满足点(i,j)上的数=i * j↓
15₽		≤ 3 * 10 ⁵ ,	数塔中所有数相等。
16₽	< 1000a		₽
17₽	≤ 1000₽		₽
18₽			满足点 (ij) 上的数=i - j₽
19₽		≤ 5 * 10 ⁵ ₽	₽
20₽			₽

 \neg

2. 噪音

(noise.pas/c/cpp)

【问题描述】

FJ有M个牛棚,编号1至M,刚开始所有牛棚都是空的。

FJ 有 N 头牛,编号 1 至 N ,这 N 头牛按照编号从小到大依次排队走进牛棚,每一天只有一头奶牛走进牛棚。第 i 头奶牛选择走进第 p[i] 个牛棚。

由于奶牛是群体动物,所以每当一头奶牛 x 进入牛棚 y 之后,牛棚 y 里的所有奶牛们都会 喊一声"欢迎欢迎,热烈欢迎",由于声音很大,所以产生噪音,产生噪音的大小等于该牛棚里所有奶牛(包括刚进去的奶牛 x 在内)的数量。

FJ 很讨厌噪音, 所以 FJ 决定最多可以使用 K 次"清空"操作,每次"清空"操作就是选择一个牛棚,把该牛棚里所有奶牛都清理出去,那些奶牛永远消失。"清空"操作只能在噪音产生后执行。

现在的问题是: FJ 应该选择如何执行"清空"操作,才能使得所有奶牛进入牛棚后所产生的噪音总和最小?

【输入】

第一行,N、M、K。

接下来有N行,每行一个整数,第i行是p[i]。

【输出】

一个整数,最小的噪音总和。

【输入输出样例1】

noise.in	noise.out
5 1 2	7
1	
1	
1	
1	
1	

样例解释 1:

第1头奶牛进入牛棚且产生噪音后,"清空"牛棚。第3头奶牛进入牛棚且产生噪音后,再次"清空"牛棚。5头奶牛产生的噪音依次是:1,1,2,1,2。如果没有"清空"操作,5头奶牛产生的噪音依次是:1,2,3,4,5。

【输入输出样例2】

noise.in	noise.out
11 2 3	18
1	
2	
1	
2	
1	
2	

1	
2	
1	
2	
1	

样例解释 2:

第 3 头奶牛进入牛棚 1 且产生噪音后,"清空"牛棚 1。第 7 头奶牛进入牛棚 1 且产生噪音后,"清空"牛棚 1。

第6头奶牛进入牛棚2且产生噪音后,"清空"牛棚2。

【数据范围】

对于 40%的数据, M=1。

对于 60%的数据, 1<=N <= 1000。

对于 80%的数据, 1<=N <= 50000。

对于 100%数据, 1<=N <= 1000000, 1<=M<=100, 1<=K<= 500。

3. market

(market.pas/c/cpp)

【问题描述】

在比特镇一共有n家商店,编号依次为1到n。每家商店只会卖一种物品,其中第i家商店的物品单价为 c_i ,价值为 v_i ,且该商店开张的时间为 t_i 。

Byteasar 计划进行 m 次购物,其中第 i 次购物的时间为 T_i ,预算为 M_i 。每次购物的时候,Byteasar 会在每家商店购买最多一件物品,当然他也可以选择什么都不买。如果购物的时间早于商店开张的时间,那么显然他无法在这家商店进行购物。

现在 Byteasar 想知道,对于每个计划,他最多能购入总价值多少的物品。请写一个程序,帮助 Byteasar 合理安排购物计划。

注意:每次所花金额不得超过预算,预算也不一定要花完,同时预算不能留给其它计划使用。

【输入】

第一行包含两个正整数 n, m,表示商店的总数和计划购物的次数。

接下来 n 行,每行三个正整数 c_i, v_i, t_i ,分别表示每家商店的单价、价值以及开张时间。接下来 m 行,每行两个正整数 T_i, M_i ,分别表示每个购物计划的时间和预算。

【输出】

输出 m 行,每行一个整数,对于每个计划输出最大可能的价值和

【输入输出样例1】

market.in	market.out
5 2	10
5 5 4	12
1 3 1	
3 4 3	
6 2 2	
4 3 2	
3 8	
5 9	

第一个计划可以在商店 2,3,5 各购买一件物品,总花费为 1+3+4=8,总价值为 3+4+3=10。第二个计划可以在商店 1,2,3 各购买一件物品,总花费为 5+1+3=9,总价值为 5+3+4=12。

【数据范围】

对于 100% 的数据, $1 \le t_i, T_i \le n$.

测试点编号	n	m	c_i, M_i	v_i	t_i, T_i
1	= 10	= 5	≤ 10	≤ 10	≤ 1 0
2	= 20	= 10	≤ 100	≤ 100	≤ 20
3	= 100	= 1	≤ 100	≤ 100	=1
4	= 200	= 1	≤ 200	≤ 200	=1
5	= 150	= 100000	≤ 150	≤ 150	≤ 150
6	= 300	= 100000	≤ 300	≤ 300	≤ 300
7	= 20	=100000	$\leq 10^{9}$	≤ 300	≤ 20
8	= 200	=100000	$\leq 10^{9}$	≤ 200	≤ 200
9	= 300	=100000	$\leq 10^{9}$	≤ 300	≤ 300
10	= 300	=100000	$\leq 10^{9}$	≤ 300	≤ 300

4. Value

(value.pas/c/cpp)

【问题描述】

给定 n 个物品,每个物品的价值为 v_i ,代价为 w_i 。

可以以任意的顺序选择任意数量的物品,但在选择编号为i的物品后,剩下物品的价值都会减少 w_i 。要求最大化选择商品的价值之和。

【输入】

第一行包含两个整数 n。

之后 n 行每行包含两个整数 v_i, w_i 。

【输出】

共一行包含一个整数,表示价值之和的最大值。

【输入输出样例1】

value.in	value.out
5	27
8 2	
10 7	
5 1	
11 8	
13 3	

【数据范围】

对于 40% 的数据: $n \leq 8$ 。

对于 100% 的数据: $n \le 5000$, $v_i, w_i \le 10^5$ 。

5. 奶牛大聚会

(gather.pas/c/cpp)

【问题描述】

Bessie 正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。 当然,她会选择最方便的地点来举办这次集会。

每个奶牛居住在 N (1<=N<=100,000) 个农场中的一个,这些农场由 N-1 条道路连接,并且从任意一个农场都能够到达另外一个农场。道路 i 连接农场 A_i 和 B_i (1 <= A_i <=N; 1 <= B_i <= N),长度为 L_i (1 <= L_i <= 1,000)。集会可以在 N 个

农场中的任意一个举行。另外,每个牛棚中居住者 C_i(0 <= C_i <= 1,000) 只奶牛。

在选择集会的地点的时候,Bessie 希望最大化方便的程度 (也就是最小化不方便程度)。比如选择第 x 个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场 i 到达农场 x 的距离是 20,那么总路程就是 C_i*20)。帮助

Bessie 找出最方便的地点来举行大集会。

考虑一个由五个农场组成的国家,分别由长度各异的道路连接起来。在所有农场中,3号和4号没有奶牛居住。

Bessie 可以在五个农场中的任意一个举办集会,下面就是在每个位置举办集会的不方便值的统计表。

集会地点			不方	便程	度 .	
	В1	В2	В3	В4	В5	Total
1	0	3	0	0	14	17
2	3	0	0	0	16	19
3	1	2	0	0	12	15
4	4	5	0	0	6	15
5	7	8	Ο	Ω	0	15

如果 Bessie 在农场 1 举办集会,那么每个农场各自的不方便值分别是

农场 1 0 -- 到达不需要时间!

农场 2 3 -- 总的距离是 2+1=3 x 1 奶牛 = 3

农场 3 0 -- 没奶牛!

农场 4 0 -- 没奶牛!

农场 5 14 -- 总的距离是 3+3+1=7 x 2 奶牛 = 14

因此,总的不方便值是17。

最小的不方便值是15,当在3号,4号或者5号农场举办集会的时候。

【输入】

- * 第一行: 一个整数 N
- * 第二到 N+1 行: 第 i+1 行有一个整数 C_i
- * 第 N+2 行到 2*N 行,第 i+N+1 行为 3 个整数: A_i,B_i 和 L_i。

【输出】

* 第一行: 一个值,表示最小的不方便值。

【输入输出样例1】

gather.in	gather.out
5	15
1	
1	
0	
0	
2	
1 3 1	
2 3 2	
3 4 3	
4 5 3	

6. Array

(array.pas/c/cpp)

【问题描述】

在炽热的核熔炉中,居住着一位少女,名为灵乌路空。

据说,从来没有人敢踏入过那个熔炉,因为人们畏缩于空所持有的力量——核能。 核焰,可融真金。

每次核融的时候,空都会选取一些原子,排成一列。然后,她会将原子序列分成一些段,并将每段进行一次核融。

一个原子有两个属性:质子数和中子数。

每一段需要满足以下条件:

- 1、同种元素会发生相互排斥,因此,同一段中不能存在两个质子数相同的原子。
- 2、核融时,空需要对一段原子加以防护,防护罩的数值等于这段中最大的中子数。换句话说,如果这段原子的中子数最大为 x,那么空需要付出 x 的代价建立防护罩。求核融整个原子序列的最小代价和。

【输入】

第一行一个正整数 N,表示原子的个数。

接下来N行,每行两个正整数pi和ni,表示第i个原子的质子数和中子数。

【输出】

输出一行一个整数,表示最小代价和。

【输入输出样例1】

array.in	array.out
5	26
3 11	
2 13	
1 12	
2 9	
3 13	

【数据范围】

对于 20%的数据, 1<=n<=100

对于 40%的数据, 1<=n<=1000

对于 100%的数据, 1<=n<=10^5, 1<=pi<=n, 1<=ni<=2*10^4