

Exercice 1 - Mouvement RT *

B2-14

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm. De plus :

- G₁ = B désigne le centre d'inertie de 1, on note m₁ la masse de 1;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un vérin électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un moteur électrique positionné entre **1** et **2** permet d'actionner le solide **2**.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir 4.

Exercice 2 - Mouvement RT *

C2-08

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$

Indications:

1.
$$\{\mathscr{D}(2/0)\} = \left\{ \begin{array}{l} \ddot{\lambda}(t)\overrightarrow{i_0} + R\left(\ddot{\theta}\overrightarrow{j_2} - \dot{\theta}^2\overrightarrow{i_2}\right) \\ C_1\ddot{\theta}\overrightarrow{k_1} + R\left(-\sin\theta\ddot{\lambda}(t)\overrightarrow{k_0} + R\ddot{\theta}\overrightarrow{k_2}\right) \end{array} \right\}_B$$

2. $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0} = m_1\ddot{\lambda}(t) + m_2\left(\ddot{\lambda}(t) - R\left(\ddot{\theta}\sin\theta(t) + \dot{\theta}^2\cos\theta\right)\right)$.

Corrigé voir 5.

Exercice 3 - Mouvement RT *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$; • $G_2 = C$ désigne le centre d'inertie de 2, on note m_2
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_0}$.

Un vérin électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un moteur électrique positionné entre **1** et **2** permet d'actionner le solide **2**.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Par ailleurs,

L'objectif est d'obtenir les lois de mouvement.

Question 1 Appliquer le théorème du moment dynamique au solide **2** au point B en projection sur $\overrightarrow{k_0}$.

Question 2 Appliquer le théorème de la résultante dynamique à l'ensemble 1+2 en projection sur $\overrightarrow{i_0}$

Indications:

- 1. $C_m m_2 g R \cos \theta(t) = C_1 \ddot{\theta} + R \left(-\sin \theta \ddot{\lambda}(t) + R \ddot{\theta} \right);$
- 2. $F_{\text{ver}} = m_1 \ddot{\lambda}(t) + m_2 (\ddot{\lambda}(t) R(\ddot{\theta}\sin\theta(t) + \dot{\theta}^2\cos\theta))$.

Corrigé voir 6.

2

Exercice 4 - Mouvement RT *

B2-14

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 . Ce mécanisme présente deux degrés de liberté indépendants : $\lambda(t)$ et $\theta(t)$. Il est donc nécessaire d'écrire, dans le meilleur des cas, deux équations :

- une équation traduisant la mobilité de 2 par rapport à 1, soit TMD appliqué à 2 en B en projection sur $\overrightarrow{k_0}$;
- une équation traduisant la mobilité de 2+1 par rapport à 0, soit TRD appliqué à 1+2 en projection sur $\overrightarrow{i_0}$.
- On isole 2.
 - **BAME**:
 - actions de la liaison pivot $\{\mathcal{T}(1 \rightarrow 2)\}$;
 - action du moteur $\{\mathcal{T}(\text{mot} \rightarrow 2)\}$;
 - action de la pesanteur $\{\mathcal{T}(pes \rightarrow 2)\}$.

- **Théorème :** on applique le théorème du moment dynamique en B au solide $\mathbf{2}$ en projection sur $\overrightarrow{k_0}: C_{\text{mot}} + \overline{\mathscr{M}(B, \text{pes} \to 2)} \cdot \overrightarrow{k_0} = \overline{\mathscr{S}(B, 2/0)} \cdot \overrightarrow{k_0}$.
- Calcul de la composante dynamique : considérons le cas où la matrice d'inertie est donnée en C. On a donc $\overrightarrow{\delta(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(C,2/0)} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[I_C(2) \overrightarrow{\Omega(2/0)} \right]_{\mathcal{R}_0}$. De plus, $\overrightarrow{\delta(B,2/0)} = \overrightarrow{\delta(C,2/0)} + \overrightarrow{BC} \wedge \overrightarrow{R_d(2/0)}$ et $\overrightarrow{R_d(2/0)} = m_2 \overrightarrow{\Gamma(C \in 2/0)}$.
- On isole 1+2.
 - BAME:
 - actions de la liaison glissière $\{\mathcal{T}(0 \to 1)\}$;
 - action de la pesanteur $\{\mathcal{T}(pes \rightarrow 1)\}$;
 - action de la pesanteur $\{\mathcal{T}(pes \rightarrow 2)\}$;
 - action du vérin $\{\mathcal{T}(\text{ver} \rightarrow 1)\}$;.

- Théorème : on applique le théorème de la résultante dynamique à l'ensemble 1+2 en projection sur $\overrightarrow{i_0}$: $\overrightarrow{R(\text{ver} \to 1)} \cdot \overrightarrow{i_0} = \overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$.
- Calcul de la composante dynamique : $\overrightarrow{R_d(1+2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(2/0)} = m_1 \overrightarrow{\Gamma(G_1 \in 1/0)} + m_2 \overrightarrow{\Gamma(G_2 \in 2/0)}$. Exercice 5 Mouvement RT \star

C2-08

Question 1 *Exprimer le torseur dynamique* $\{\mathcal{D}(2/0)\}$ *en B*.

Expression de la résultante dynamique $\overrightarrow{R_d(2/0)} = m_2 \overrightarrow{\Gamma(G_2 \in 2/0)} = m_2 \frac{\mathrm{d}^2}{\mathrm{d}\,t^2} \left[\overrightarrow{AC}\right]_{\mathscr{R}_0} \frac{\mathrm{d}^2}{\mathrm{d}\,t^2} \left[\overrightarrow{AC}\right]_{\mathscr{R}_0} = \frac{\mathrm{d}^2}{\mathrm{d}\,t^2} \left[\overrightarrow{AC}\right]_{\mathscr{R}_0} + \frac{\mathrm{d}^2}{\mathrm{d}\,t^2} \left[\overrightarrow{i_0}\right]_{\mathscr{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \frac{\mathrm{d}^2}{\mathrm{d}\,t^2} \left[\overrightarrow{i_0}\right]_{\mathscr{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\dot{\theta} \ \overrightarrow{j_2}\right]_{\mathscr{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \left(\ddot{\theta} \ \overrightarrow{j_2} - \dot{\theta}^2 \ \overrightarrow{i_2}\right).$ Méthode 1 : Calcul en $G_2 = C$ puis déplacement du torseur dynamique

- Calcul du moment cinétique en $G_2: G_2 = C$ est le centre de gravité donc $\overrightarrow{\sigma(C,2/0)} = I_C(2) \dot{\theta} \overrightarrow{k_0} = C_1 \dot{\theta} \overrightarrow{k_1}$.
- Calcul du moment dynamique en $G_2: G_2 = C$ est le centre de gravité donc $\overrightarrow{\delta(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(C,2/0)} \right]_{\infty} = 0$
- Calcul du moment dynamique en $B: \overrightarrow{\delta(B,2/0)} = \overrightarrow{\delta(C,2/0)} + \overrightarrow{BC} \wedge \overrightarrow{R_d(2/0)} = C_1 \overrightarrow{\theta} \overrightarrow{k_1} + R \overrightarrow{i_2} \wedge (\ddot{\lambda}(t) \overrightarrow{i_0} + R (\ddot{\theta} \overrightarrow{j_2} \dot{\theta}^2 \overrightarrow{i_2}))$ $=C_1 \overrightarrow{\theta} \overrightarrow{k_1} + R \left(-\sin\theta \overrightarrow{\lambda}(t) \overrightarrow{k_0} + R \overrightarrow{\theta} \overrightarrow{k_2}\right)$

Au final, on a donc $\{\mathscr{D}(2/0)\}=\left\{\begin{array}{c} m_2\left(\ddot{\lambda}(t)\overrightarrow{i_0}+R\left(\ddot{\theta}\overrightarrow{j_2}-\dot{\theta}^2\overrightarrow{i_2}\right)\right)\\ C_1\ddot{\theta}\overrightarrow{k_1}+R\left(-\sin\theta\ddot{\lambda}(t)\overrightarrow{k_0}+R\ddot{\theta}\overrightarrow{k_2}\right)\end{array}\right\}_R$

Question 2 Déterminer $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$ On a $\overrightarrow{R_d(1+2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(2/0)} = m_1 \ddot{\lambda}(t) \overrightarrow{i_0} + m_2 \left(\ddot{\lambda}(t) \overrightarrow{i_0} + R \left(\ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2} \right) \right)$. On projette alors sur $\overrightarrow{i_0}$, $\overrightarrow{R_d(1+2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(1/0)} = \overrightarrow{R_d$ $\overrightarrow{i_0} = m_1 \ddot{\lambda}(t) + m_2 \big(\ddot{\lambda}(t) - R \big(\ddot{\theta} \sin \theta(t) + \dot{\theta}^2 \cos \theta \big) \big).$

Exercice 6 - Mouvement RT *

C2-09 Pas de corrigé pour cet exercice.

L'objectif est d'obtenir les lois de mouvement.

Question 1 Appliquer le théorème du moment dynamique au solide 2 au point B en projection sur $\overrightarrow{k_0}$.

- On isole 2.
- BAME:
 - actions de la liaison pivot $\{\mathcal{T}(1 \rightarrow 2)\}$;
 - action de la pesanteur $\{\mathcal{T}(\text{pes} \to 2)\}\$. On a $\overline{\mathcal{M}(B, 2 \to 0)} \cdot \overrightarrow{k_0} = \overline{\mathcal{M}(G_2, 2 \to 0)} \cdot \overrightarrow{k_0} + \left(\overline{BG_2} \wedge \left(-m_2 g \overrightarrow{j_0}\right)\right) \cdot \overrightarrow{k_0}$ $= \left(R \overrightarrow{i_2} \wedge \left(-m_2 g \overrightarrow{j_0} \right) \right) \cdot \overrightarrow{k_0} = -m_2 g R \overrightarrow{i_0} \cdot \overrightarrow{i_2} = -m_2 g R \cos \theta(t).$
- Théorème : on applique le théorème du moment dynamique en B au solide $\mathbf 2$ en projection sur $\overrightarrow{k_0}$: C_m + $\overrightarrow{\mathcal{M}}(B, \text{pes} \to 2) \cdot \overrightarrow{k_0} = \overrightarrow{\delta}(B, 2/0) \cdot \overrightarrow{k_0}$. On a $\overrightarrow{\delta}(B, 2/0) \cdot \overrightarrow{k_0} = \left(C_1 \overrightarrow{\theta} \overrightarrow{k_1} + R\left(-\sin\theta \ddot{\lambda}(t) \overrightarrow{k_0} + R \ddot{\theta} \overrightarrow{k_2}\right)\right) \cdot \overrightarrow{k_0} = C_1 \ddot{\theta} + C_2 \overrightarrow{k_0} = C_1 \overrightarrow{\theta} + C_2 \overrightarrow{k_0} = C_2 \overrightarrow{\theta} + C_2 \overrightarrow{k_0} = C_2 \overrightarrow{\theta} + C_2 \overrightarrow{k_0} = C_2 \overrightarrow{\theta} + C_2 \overrightarrow{\theta} = C_2 \overrightarrow$ $R(-\sin\theta\ddot{\lambda}(t)+R\ddot{\theta})$. Au final, $C_m-m_2gR\cos\theta(t)=C_1\ddot{\theta}+R(-\sin\theta\ddot{\lambda}(t)+R\ddot{\theta})$.

Question 2 Appliquer le théorème de la résultante dynamique à l'ensemble 1+2 en projection sur $\overrightarrow{i_0}$

- On isole 1+2.
- BAME:
 - actions de la liaison glissière $\{\mathcal{T}(0 \to 1)\}$;
 - action de la pesanteur $\{\mathcal{T}(pes \rightarrow 1)\}$;
 - action de la pesanteur $\{\mathcal{T}(pes \rightarrow 2)\}$;
 - action du vérin {𝒯 (ver → 1)}.
- Théorème : on applique le théorème de la résultante dynamique à l'ensemble 1+2 en projection sur $\overrightarrow{i_0}$: $\overrightarrow{R(\text{ver} \to 1)} \cdot \overrightarrow{i_0} = \overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$. Au final, $F_{\text{ver}} = m_1 \ddot{\lambda}(t) + m_2 (\ddot{\lambda}(t) - R(\ddot{\theta} \sin \theta(t) + \dot{\theta}^2 \cos \theta))$.