MODELING WITH BINARY VARIABLES

Class 3 – October 1, 2025

Context

• You have several projects available A, B, ...,

You choose which projects to fund

A=1 if and only if project A is funded

If you fund A, you should also fund E

- What are the feasible values for A, E?
 - Recall that A, E are binary
 - We want: if A=1, must have E=1
- How about: **A** ≤ **E**
 - If A=1, the only option is E=1
 - If A=0, can set any value for E

ALL OPTIONS:

- Remember! "If you fund A, then you should fund B": A ≤ B
- Q: "If you do **not** fund **A**, then you should fund **B**"
 - Add a constraint: $1 A \le B$
 - "Not selecting A" is same as 1 A = 1, so this is just like Q5!

Logical Implications with Binary Variables

- Q. If you fund project A, then you should fund projects E and H.
 - Same as: "If you fund A, then fund E" and "If you fund A, then fund H"
 - A <= E, A <= H
 - Also possible to do this with one constraint: A <= (E+H)/2
 - Q. Why not $A \leq E+H$?
- Q. If you fund anything from A/B/C, then also fund H.
 - Same as: "If you fund A, then fund H" and "If you fund B, then fund H", ...
 - A <= H, B <= H, C <= H
 - Also possible to do this with one constraint: (A+B+C)/3 <= H
 - Q. Why not $A + B + C \le H$?

General Recipe for Defining Indicators

$$Y = 1$$
 if and only if $a_1 X_1 + ... + a_n X_n + b \ge 0$

- Y is a binary decision variable, X_1 , ..., X_n are continuous or discrete decisions
- a_1 , ..., a_n , b are parameters/data
- The first implication:

(1): If
$$Y = 1$$
 then $a_1 X_1 + ... + a_n X_n + b \ge 0$

This is equivalent to the following linear constraint:

$$a_1 X_1 + ... + a_n X_n + b \ge m \cdot (1 - Y)$$

- In practice, 'm' is the smallest value that $a_1 X_1 + ... + a_n X_n + b$ can take
- Understand why this works. No need to remember the constraint!

General Recipe for Defining Indicators

$$Y = 1$$
 if and only if $a_1 X_1 + ... + a_n X_n + b \ge 0$

- Y is a binary decision variable, X_1 , ..., X_n are continuous or discrete decisions
- a₁, ..., a_n, b are parameters/data
- The first implication:

(1): If
$$Y = 1$$
 then $a_1 X_1 + ... + a_n X_n + b \ge 0$

In practice, you can directly implement (1) in Gurobi with:
 model.addGenConstrIndicator(Y, True, a₁ X₁ + ... + a_n X_n+ b ≥ 0)

Syntax: model.addGenConstrIndicator(Y, boolean value, implied (in)equality)

- **Y** = a Gurobi binary variable
- **boolean value** = True or False
- implied (in)equality = linear relationship that should hold when Y = boolean value

This implements **one** direction: "If Y=boolean value, then implied (in)equality" https://www.gurobi.com/documentation/current/refman/py_model_agc_indicator.html

General Recipe for Defining Indicators

$$Y = 1$$
 if and only if $a_1 X_1 + ... + a_n X_n + b \ge 0$

- Y is a binary decision variable, X_1 , ..., X_n are continuous or discrete decisions
- a_1 , ..., a_n , b are parameters/data
- The second implication:

(2) If
$$Y = 0$$
 then $a_1 X_1 + ... + a_n X_n + b < 0$

• Because we cannot have **strict** inequality < **0**, instead we implement:

If
$$Y = 0$$
 then $a_1 X_1 + ... + a_n X_n + b \le -\epsilon$

- If $X_1,...,X_n$ are integer, reformulation can be made exact. Otherwise, take ' ϵ ' as a small tolerance (e.g., 0.00001).
- Implemented with: $a_1 X_1 + ... + a_n X_n + b + \epsilon \le (M + \epsilon) Y$
 - In practice, 'M' is the largest value that $a_1 X_1 + ... + a_n X_n + b$ can take

Recap

$$Y = 1$$
 if and only if $a_1 X_1 + ... + a_n X_n + b \ge 0$

Y is a binary decision variable, X_1 , ..., X_n are continuous or discrete decisions a_1 , ..., a_n , b are parameters/data

(1): If
$$Y = 1$$
 then $a_1 X_1 + ... + a_n X_n + b \ge 0$

(2): If
$$Y = 0$$
 then $a_1 X_1 + ... + a_n X_n + b < 0$

Implemented with linear constraints:

(1)
$$a_1 X_1 + ... + a_n X_n + b \ge m \cdot (1 - Y)$$

(2)
$$a_1 X_1 + ... + a_n X_n + b + \epsilon \le (M + \epsilon) Y$$
 ($\epsilon = 1$ if $X_1, ..., X_n$ integer)

In Gurobi:

- (1) model.addGenConstrIndicator(Y, True, $a_1 X_1 + ... + a_n X_n + b \ge 0$)
- (2) model.addGenConstrIndicator(Y, False, $a_1 X_1 + ... + a_n X_n + b \le -\varepsilon$)

"Cheat-Sheet"

X and Y are decisions; a, b are parameters/data; a X denotes any linear expression in X

- 1. (X,Y bin) "If X = 1 then Y = 1" \rightarrow add constraint: $X \le Y$
- 2. (X,Y bin) "If X = 1 then Y = 1, and vice-versa" \rightarrow add constraint: X = Y
- 3. (Y bin) "If Y = 1 then $a \times x + b \ge 0$ " \rightarrow add constraint: $a \times x + b \ge m \cdot (1-Y)$
 - 'm' is the *smallest* value a X + b can take
- 4. (Y bin) "If Y = 1 then $a X \ge b$ " \rightarrow add constraint: $a X b \ge m \cdot (1-Y)$
 - 'm' is the *smallest* value (a X b) can take
- 5. (Y bin) "If Y = 1 then $a X \le b$ " \rightarrow add constraint: $a X b \le M \cdot (1-Y)$
 - 'M' is the *largest* value (a X b) can take
- 6. (Y bin) "If Y = 1 then $a X + b \le 0$ " \Rightarrow add constraint: $a X + b \le M \cdot (1-Y)$
 - 'M' is *largest* value (a X + b) can take
- 7. (Y bin) "If Y = 1 then aX + b > 0" \rightarrow CAN'T DO > 0.
 - Instead, do "If Y = 1 then a $X + b \ge \varepsilon$ " for a very small number $\varepsilon > 0$
 - To implement, add the constraint: $aX + b \varepsilon \ge (m \varepsilon)(1-Y)$, where 'm' is the smallest value (aX + b) can take
- 8. If you need "If Y = 0 then ...", replace Y in the constraint with 1-Y
- 9. If you need "If $a \times b \le 0$ then Y = 1", replace this with "If Y = 0, then $a \times b > 0$ "
- 10. (Y bin) Need "X * Y" \rightarrow add new variable Z ("= X * Y") and constraints:

$$Z \leq M \cdot Y$$

$$Z \ge m \cdot Y$$

$$Z \leq X - m \cdot (1 - Y)$$

$$Z \ge X - M \cdot (1 - Y)$$

m/M are smallest/largest value that X can take

3-6 are all "the same"!
Use whichever you like!