Predicting Hotel Cancellations with Machine Learning using Amazon SageMaker

Michael Grogan

Machine Learning Consultant @ MGCodesandStats michael-grogan.com

Why are hotel cancellations a problem?

- Inefficient allocation of rooms and other resources
- Customers who would follow through with bookings cannot do so due to lack of capacity
- Indication that hotels are targeting their services to the wrong groups of customers

How does machine learning help solve this issue?

- Allows for identification of factors that could lead a customer to cancel
- Time series forecasts can provide insights as to fluctuations in cancellation frequency
- Offers hotel businesses the opportunity to rethink their target markets

Original Authors

• Antonio, Almeida, Nunes (2016): <u>Using Data Science to Predict Hotel</u> Booking Cancellations.

 This presentation will describe alternative machine learning models that I have conducted on these datasets.

 Notebooks and datasets available at: https://github.com/MGCodesandStats.

Data Architecture

Designing a machine learning model is only one component of an ML project.

Under what environment will the model be run? Cloud? Locally?

What are the relative advantages and disadvantages of each?

Amazon SageMaker: Some Advantages

Easier to coordinate
Python versions
across users

Ability to modify computing resources as needed to run models

No need for upfront investment

Running and maintaining a data center becomes unnecessary

Sample workflow on Amazon SageMaker

Add repository from GitHub or AWS CodeCommit

Select instance type, e.g. t2.medium, t2.large...

Create notebook instance and generate ML solution in the cloud

Add repository from GitHub or AWS CodeCommit

Select instance type, e.g. t2.medium, t2.large

Create notebook instance and generate ML solution in the cloud

```
Out[23]: array([0.25961538, 0.39423077, 0.26442308, 0.35576923, 0.64423077,
                0.29807692, 0.82692308, 0.52403846, 0.37019231, 0.88461538,
                0.00961538, 0.38461538, 0.14423077, 0.14903846, 0.19230769,
                0.23557692, 0.01923077, 0.54326923, 0.04807692, 0.11057692,
                        , 0.13942308, 0.10096154, 0.125 , 0.
                          , 0.00480769, 0.20673077, 0.77884615, 0.09134615,
                0.57211538, 0.35576923, 0.16346154, 0.24519231, 0.5
                0.24519231, 0.31730769, 0.40384615, 0.49038462, 1.
                0.3125 , 0.62019231, 0.61057692, 0.32692308, 0.40865385,
                0.30288462, 0.46153846, 0.29326923, 0.31730769, 0.29326923,
                0.50480769, 0.50961538, 0.40384615, 0.52884615, 0.64903846,
                0.62980769, 0.5 , 0.44230769, 0.51442308, 0.25480769,
                0.55288462, 0.47115385, 0.5 , 0.34134615, 0.80769231,
                0.57692308, 0.46634615, 0.26923077, 0.12019231, 0.21634615,
                0.28846154, 0.20673077, 0.10576923, 0.33653846])
In [24]: # reshape input to be [samples, time steps, features]
         X train = np.reshape(X train, (X train.shape[0], 1, X train.shape[1]))
         X val = np.reshape(X val, (X val.shape[0], 1, X val.shape[1]))
         # Generate LSTM network
         model = tf.keras.Sequential()
         model.add(LSTM(4, input shape=(1, previous)))
         model.add(Dense(1))
         model.compile(loss='mean squared error', optimizer='adam')
         model.fit(X train, Y train, epochs=20, batch size=1, verbose=2)
```

Pricing Samples: On-Demand ML Notebook Instances (Standard)

US East (N. Virginia)

Pricing Samples: On-Demand ML Notebook Instances (Accelerated Computing)

Accelerated Computing - Current Generation	
ml.p3.2xlarge	\$4.284
ml.p3.8xlarge	\$17.136
ml.p3.16xlarge	\$34.272
ml.g4dn.xlarge	\$0.736
ml.g4dn.2xlarge	\$1.053
ml.g4dn.4xlarge	\$1.686
ml.g4dn.8xlarge	\$3.046
ml.g4dn.12xlarge	\$5.477
ml.g4dn.16xlarge	\$6.093

Three components

Identifying important customer features

ExtraTreesClassifier

Classifying potential customers in terms of cancellation risk

• SVM, XGBoost

Forecasting fluctuations in hotel cancellation frequency

• ARIMA, LSTM

Question

What do you think is the most important Python library in a machine learning project?

Answer

pandas

Most of the machine learning process... is not machine learning

You may have data – but it is not the data you want

What we have is a classification set:

What we want is a time series:

IsCanceled	LeadTime	ArrivalDateYear	ArrivalDateMonth	ArrivalDateWeekNumber	ArrivalDateDayOfMonth
0	6	0	5	26	0
1	88	0	5	26	0
1	65	0	5	26	0
1	92	0	5	26	0
1	100	0	5	26	1
1	79	0	5	26	1
0	3	0	5	26	1
1	63	0	5	26	1
1	62	0	5	26	1
1	62	0	5	26	1
0	43	0	5	26	2

201527	41.0
201528	48.0
201529	87.0
201530	74.0
201531	101.0
201532	68.0
201533	96.0
201534	69.0
201535	88.0
201536	148.0
201537	76.0
201538	186.0
201539	123.0

Data Manipulation with pandas

1. Merge year and week number

```
In [6]: from pandas import DataFrame
        df = DataFrame(c, columns= ['ArrivalDateYear', 'ArrivalDateWeekNumber'])
        df
Out[6]:
               ArrivalDateYear | ArrivalDateWeekNumber
               2015
                                                                   df1 = df['ArrivalDateYear'].map(str) + df['ArrivalDateWeekNumber'].map(str)
               2015
                                                                   print (df1)
                                                                   df1=pd.DataFrame(df1)
               2015
               2015
                                                                            201527
                                                                            201527
               2015
                                                                            201527
               2015
                                                                            201527
                                                                            201527
                                                                            201527
                                                                            201527
                                                                            201527
```

Data Manipulation with pandas

2. Merge dates and cancellation incidences

```
In [10]: df3=pd.concat([df1, df2], axis = 1)
         df3.columns = ['FullDate', 'IsCanceled']
In [11]: df3
         df3.sort values(['FullDate', 'IsCanceled'], ascending=True)
Out[11]:
                FullDate IsCanceled
                201527
                        0.0
                201527
                        0.0
                201527
                        0.0
          11
                201527
                        0.0
          12
                201527
                        0.0
                201527
                        0.0
          15
                201527
                        0.0
                201527
                        0.0
```

Data Manipulation with pandas

3. Sum weekly cancellations and order by date

```
In [12]: df4 = df3.groupby('FullDate').agg(sum)
         df4.sort values(['FullDate'], ascending=True)
Out[12]:
                   IsCanceled
          FullDate
                   97.0
          201527
          201528
                   153.0
          201529
                   228.0
          201530
                   321.0
          201531
                   159.0
          201532
                   308.0
          201533
                   428.0
          201534
                   191.0
          201535
                   212.0
```

Feature Selection – What Is Important?

 Of all the potential features, only a select few are important in classifying future bookings in terms of cancellation risk.

 ExtraTreesClassifier is used to rank features – the higher the score, the more important the feature – in most cases...

15	0.013381
20	0.017885
19	0.018724
9	0.033227
17	0.033918
1	0.040703
8	0.059414
21	0.061054
23	0.636264

Feature Selection – What Is Important?

- Top six features as identified by ExtraTreesClassifier and Forward and Backward Feature Selection Techniques:
- Lead time
- Country of origin
- Market segment
- Deposit type
- Customer type
- Required car parking spaces
- Arrival Date: Year
- Arrival Date: Month
- Arrival Date: Week Number
- Arrival Date: Day of Month
- Note that while Reservation Status was identified as the highest scoring feature, it is not included due to lack of theoretical validity i.e. the variable represents cancellations vs. non-cancellations which has the same meaning as the response variable. Including this feature will negatively skew model results.

Accuracy

90% is great. 100% means you've overlooked something.

Training accuracy

• Accuracy of the model in predicting other values in the training set (the dataset which was used to train the model in the first instance).

Validation accuracy

• Accuracy of the model in predicting a segment of the dataset which has been "split off" from the training set.

Test accuracy

• Accuracy of the model in predicting completely unseen data. This metric is typically seen as the litmus test to ensure a model's predictions are reliable.

Classification: Support Vector Machines

Building model on H1 dataset

Testing accuracy on H2 dataset

Classification Accuracy: Precision vs. Recall

Precision

• ((True Positive)/(True Positive + False Positive))

Recall

• ((True Positive)/(True Positive + False Negative))

SVM performance on test set

[[25217 21011] [8436 24666]] precision recall f1-score support 0 0.75 0.55 0.63 46228 0.75 33102 0.63 0.54 0.63 79330 accuracy 0.65 79330 0.63 0.64 macro avg 0.63 79330 0.66 0.63 weighted avg

XGBoost performance on test set

```
1926 44302]
      0 33102]]
               precision
                            recall
                                                 support
                                     f1-score
                               0.04
                                          0.08
                    1.00
                                                   46228
                                          0.60
                                                   33102
                    0.43
                               1.00
                                                   79330
                                          0.44
    accuracy
                                                   79330
                    0.71
                               0.52
                                          0.34
   macro avg
                                         0.30
                                                   79330
weighted avg
                    0.76
                               0.44
```

Two time series — what is the difference?

H1

H2

Findings

H1

Predicted vs. Actual Cancellations Per Week

Predictions
Actual

160

120

100

2

4

Number of weeks

H2

ARIMA performed better

LSTM performed better

ARIMA

Major tool used in time series analysis to attempt to forecast future values of a variable based on its present value.

- **p** = number of autoregressive terms
- **d** = differences to make series stationary
- q = moving average terms (or lags of the forecast errors)

LSTM (Long-Short Term Memory Network)

- Traditional neural networks are not particularly suitable for time series analysis.
- This is because neural networks do not account for the **sequential** (or step-wise) nature of time series.
- In this regard, a long-short term memory network (or **LSTM** model) must be used in order to examine long-term dependencies across the data.
- LSTMs are a type of recurrent neural network and work particularly well with volatile data.

Constructing an LSTM model

Choosing the time parameter

In this case, the cancellation value at time t is being predicted by the previous 5 values

Scaling data appropriately

MinMaxScaler
 used to scale
 data between 0
 and 1

Configure neural network

- Loss = MeanSquared Error
- Optimizer = adam
- Trained across 20 epochs – further iterations proved redundant

LSTM Results for H2 Dataset

"No Free Lunch" Theorem

Model Selection Considerations

Run a subset of the data across many models Identify the best-performing model

Run the full dataset on this model

Time Series Forecasting Accuracy Metrics

Metric	ARIMA	LSTM
MDA	0.86	0.8
RMSE	57.95	57.68
MFE	-12.72	-49.85

H1

Metric	ARIMA	LSTM
MDA	0.86	0.8
RMSE	274.08	112.58
MFE	156.33	48.94

H2

Conclusion

Data Manipulation is an integral part of an ML project

"No free lunch" – make sure the model is appropriate to the data

Pay attention to the workflow(s) being used and the relative advantages and disadvantages of each