36 - 226 Introduction to Statistical Inference

Homework assignment 9

Due: Wednesday, March 27, 2013

- Write your full name, the course number, and the homework number at the top of each page.
- STAPLE your entire assignment together with a staple.
- Write clearly. Electronic submission of homework assignments is not accepted.
- 1. Sometimes we can have more than one method of moments estimator for a parameter (often happens when the same parameter is part of multiple population moments).

Let Y_i be i.i.d. Gamma $(4,\beta)$ with $f_Y(y) = \frac{1}{6\beta^4}y^3e^{-\frac{y}{\beta}}$ where y > 0.

- (a) Find the MVUE using the Factorization Theorem and the Rao-Blackwell Theorem, and find the MLE. Verify that these are the same.
- (b) Find the Cramer-Rao Lower Bound for $f_Y(y)$. Verify that the MVUE and MLE achieve the bound.
- (c) Use the first two moments to find two different estimates for β using the method of moments.
- (d) Verify that the method of moments estimator based on the first moment is unbiased and achieves the CRLB.
- 2. Wackerly 10.4.
- 3. Read pages 279 282. Wackerly 5.119.
- 4. Professor Greenhouse will be covering material related to this problem. According to genetic theory, blood types MM, NM, and NN should occur in a very large population with probability θ^2 , $2\theta(1-\theta)$, and $(1-\theta)^2$, where θ is the unknown gene frequency. In other words the probability that a person randomly selected from the population is MM is $P(MM) = \theta^2$; is NM is $P(NM) = 2\theta(1-\theta)$; and is NN is $P(NN) = (1-\theta)^2$.

Suppose you select a random sample of size n from this population and f_1 have blood type MM, f_2 have blood type NM, and f_3 have blood type NN, where $n = f_1 + f_2 + f_3$.

- (a) Write down the likelihood function and the log-likelihood function for θ .
- (b) Find $\hat{\theta}$, the maximum likelihood estimator of θ . Also find the second derivative of the log-likelihood with respect to θ . Is $\hat{\theta}$ a maximum?
- (c) Show that the observed information is $i(\hat{\theta}) = \frac{2n}{\hat{\theta}(1-\hat{\theta})}$. Find $V(\hat{\theta})$.
- (d) What is the approximate probability distribution of $\hat{\theta}$?

Suppose a random sample of size n = 500 is taken from the population and each subject's blood type is determined. The result for the sample are given in the following table:

Blood type	MM	MN	NN	
Frequency	$f_1 = 125$	$f_2 = 225$	$f_3 = 150$	n = 500

- (e) Based on this sample, what are $\hat{\theta}$ and $V(\hat{\theta})$? Find a 95% large sample confidence interval for θ .
- (f) Based on your confidence interval in part (e), would you conclude that θ , the unknown gene frequency, is $\frac{1}{2}$? Explain.
- 5. Wackerly 9.98. Professor Greenhouse will be covering material related to this problem.
- 6. Read pages 483 484. Wackerly 9.100. Professor Greenhouse will be covering material related to this problem.