Simulation of Proof Systems

Bachelor's Thesis

Nils Wisiol

Lehrstuhl für Informatik IV Institut für Informatik Julius-Maximilians-Universität Würzburg

04. Juni 2012

Outline

Preliminaries

Languages with Optimal Proof Systems

Languages without Optimal Proof Systems

Consequences

Literature

A \mathcal{FP} -function h is called *proof system* for a language L, if $f(\Sigma^*) = L$. If h(w) = x holds, we call w a h-proof for x.

Let h and h' be proof systems for a language L, and let p be a polynomial and a let f be a function such that for all h'-proofs w it holds that

$$h(f(w)) = h'(w),$$

where $|f(w)| \le p(|w|)$ holds. In this case, we say h simulates the proof system h'.

A \mathcal{FP} -function h is called *proof system* for a language L, if $f(\Sigma^*) = L$. If h(w) = x holds, we call w a h-proof for x.

Let h and h' be proof systems for a language L, and let p be a polynomial and a let f be a function such that for all h'-proofs w it holds that

$$h(f(w)) = h'(w),$$

where $|f(w)| \le p(|w|)$ holds. In this case, we say h simulates the proof system h'.

A \mathcal{FP} -function h is called *proof system* for a language L, if $f(\Sigma^*) = L$. If h(w) = x holds, we call w a h-proof for x.

Let h and h' be proof systems for a language L, and let p be a polynomial and a let f be a function such that for all h'-proofs w it holds that

$$h(f(w)) = h'(w),$$

where $|f(w)| \le p(|w|)$ holds. In this case, we say h simulates the proof system h'.

A \mathcal{FP} -function h is called *proof system* for a language L, if $f(\Sigma^*) = L$. If h(w) = x holds, we call w a h-proof for x.

Let h and h' be proof systems for a language L, and let p be a polynomial and a let f be a function such that for all h'-proofs w it holds that

$$h(f(w)) = h'(w),$$

where $|f(w)| \le p(|w|)$ holds. In this case, we say h simulates the proof system h'.

A \mathcal{FP} -function h is called *proof system* for a language L, if $f(\Sigma^*) = L$. If h(w) = x holds, we call w a h-proof for x.

Let h and h' be proof systems for a language L, and let p be a polynomial and a let f be a function such that for all h'-proofs w it holds that

$$h(f(w))=h'(w),$$

where $|f(w)| \le p(|w|)$ holds. In this case, we say h simulates the proof system h'.

A \mathcal{FP} -function h is called *proof system* for a language L, if $f(\Sigma^*) = L$. If h(w) = x holds, we call w a h-proof for x.

Let h and h' be proof systems for a language L, and let p be a polynomial and a let f be a function such that for all h'-proofs w it holds that

$$h(f(w))=h'(w),$$

where $|f(w)| \le p(|w|)$ holds. In this case, we say h simulates the proof system h'.

A \mathcal{FP} -function h is called *proof system* for a language L, if $f(\Sigma^*) = L$. If h(w) = x holds, we call w a h-proof for x.

Let h and h' be proof systems for a language L, and let p be a polynomial and a let f be a function such that for all h'-proofs w it holds that

$$h(f(w))=h'(w),$$

where $|f(w)| \le p(|w|)$ holds. In this case, we say h simulates the proof system h'.

A \mathcal{FP} -function h is called *proof system* for a language L, if $f(\Sigma^*) = L$. If h(w) = x holds, we call w a h-proof for x.

Let h and h' be proof systems for a language L, and let p be a polynomial and a let f be a function such that for all h'-proofs w it holds that

$$h(f(w)) = h'(w),$$

where $|f(w)| \le p(|w|)$ holds. In this case, we say h simulates the proof system h'.

A \mathcal{FP} -function h is called *proof system* for a language L, if $f(\Sigma^*) = L$. If h(w) = x holds, we call w a h-proof for x.

Let h and h' be proof systems for a language L, and let p be a polynomial and a let f be a function such that for all h'-proofs w it holds that

$$h(f(w)) = h'(w),$$

where $|f(w)| \le p(|w|)$ holds. In this case, we say h simulates the proof system h'.

- P ⊆ OPT: L∈ P has a proof system f: choose f: Σ* → L with f(x) = x if x ∈ L, otherwise f is undefined. For any other proof system g of L, g itself translates g-proofs into h-proofs in polynomial time.
- ▶ NP ⊆ OPT: For any $L \in$ NP, there is a nondet. TM that accepts L in poly. time. Let $f(\langle x,i\rangle)$ be the function defined by

$$f(\langle x,i\rangle) = \begin{cases} x & \text{if } M \text{ accepts } x \text{ on the } i\text{-th path,} \\ \bot & \text{otherwise.} \end{cases}$$

- P ⊆ OPT: L ∈ P has a proof system f: choose f: Σ* → L with f(x) = x if x ∈ L, otherwise f is undefined. For any other proof system g of L, g itself translates g-proofs into h-proofs in polynomial time.
- ▶ NP ⊆ OPT: For any $L \in$ NP, there is a nondet. TM that accepts L in poly. time. Let $f(\langle x, i \rangle)$ be the function defined by

$$f(\langle x,i \rangle) = egin{cases} x & ext{if } M ext{ accepts } x ext{ on the } i ext{-th path,} \ oxedsymbol{oxedsymbol{oxedsymbol{x}}} \ & ext{otherwise.} \end{cases}$$

- ▶ P ⊆ OPT: $L \in P$ has a proof system f: choose $f: \Sigma^* \to L$ with f(x) = x if $x \in L$, otherwise f is undefined. For any other proof system g of L, g itself translates g-proofs into h-proofs in polynomial time.
- ▶ NP ⊆ OPT: For any $L \in$ NP, there is a nondet. TM that accepts L in poly. time. Let $f(\langle x,i\rangle)$ be the function defined by

$$f(\langle x,i \rangle) = egin{cases} x & ext{if } M ext{ accepts } x ext{ on the } i ext{-th path,} \ & ext{ therewise.} \end{cases}$$

- ▶ P ⊆ OPT: $L \in P$ has a proof system f: choose $f : \Sigma^* \to L$ with f(x) = x if $x \in L$, otherwise f is undefined. For any other proof system g of L, g itself translates g-proofs into h-proofs in polynomial time.
- ▶ NP ⊆ OPT: For any $L \in \mathbb{NP}$, there is a nondet. TM that accepts L in poly. time. Let $f(\langle x, i \rangle)$ be the function defined by

$$f(\langle x,i\rangle) = \begin{cases} x & \text{if } M \text{ accepts } x \text{ on the } i\text{-th path,} \\ \bot & \text{otherwise.} \end{cases}$$

- ▶ P ⊆ OPT: $L \in P$ has a proof system f: choose $f : \Sigma^* \to L$ with f(x) = x if $x \in L$, otherwise f is undefined. For any other proof system g of L, g itself translates g-proofs into h-proofs in polynomial time.
- ▶ NP ⊆ OPT: For any $L \in \mathbb{NP}$, there is a nondet. TM that accepts L in poly. time. Let $f(\langle x, i \rangle)$ be the function defined by

$$f(\langle x, i \rangle) = \begin{cases} x & \text{if } M \text{ accepts } x \text{ on the } i\text{-th path,} \\ \bot & \text{otherwise.} \end{cases}$$

- ▶ P ⊆ OPT: $L \in P$ has a proof system f: choose $f : \Sigma^* \to L$ with f(x) = x if $x \in L$, otherwise f is undefined. For any other proof system g of L, g itself translates g-proofs into h-proofs in polynomial time.
- ▶ NP ⊆ OPT: For any $L \in \text{NP}$, there is a nondet. TM that accepts L in poly. time. Let $f(\langle x,i\rangle)$ be the function defined by

$$f(\langle x, i \rangle) = \begin{cases} x & \text{if } M \text{ accepts } x \text{ on the } i\text{-th path,} \\ \bot & \text{otherwise.} \end{cases}$$

- ▶ P ⊆ OPT: $L \in P$ has a proof system f: choose $f : \Sigma^* \to L$ with f(x) = x if $x \in L$, otherwise f is undefined. For any other proof system g of L, g itself translates g-proofs into h-proofs in polynomial time.
- ▶ NP \subseteq OPT: For any $L \in$ NP, there is a nondet. TM that accepts L in poly. time. Let $f(\langle x,i\rangle)$ be the function defined by

$$f(\langle x,i\rangle) = egin{cases} x & ext{if } M ext{ accepts } x ext{ on the } i ext{-th path}, \\ ot & ext{otherwise}. \end{cases}$$

- ▶ P ⊆ OPT: $L \in P$ has a proof system f: choose $f : \Sigma^* \to L$ with f(x) = x if $x \in L$, otherwise f is undefined. For any other proof system g of L, g itself translates g-proofs into h-proofs in polynomial time.
- ▶ NP ⊆ OPT: For any $L \in$ NP, there is a nondet. TM that accepts L in poly. time. Let $f(\langle x, i \rangle)$ be the function defined by

$$f(\langle x,i\rangle) = egin{cases} x & ext{if } M ext{ accepts } x ext{ on the } i ext{-th path}, \\ ot & ext{otherwise}. \end{cases}$$

- ▶ P ⊆ OPT: $L \in P$ has a proof system f: choose $f : \Sigma^* \to L$ with f(x) = x if $x \in L$, otherwise f is undefined. For any other proof system g of L, g itself translates g-proofs into h-proofs in polynomial time.
- ▶ NP ⊆ OPT: For any $L \in$ NP, there is a nondet. TM that accepts L in poly. time. Let $f(\langle x, i \rangle)$ be the function defined by

$$f(\langle x, i \rangle) = \begin{cases} x & \text{if } M \text{ accepts } x \text{ on the } i\text{-th path,} \\ \bot & \text{otherwise.} \end{cases}$$

Theorem

There exists a language $L \in co\text{-NTIME}(2^n)$, that does not possess an optimal proof system.

- 1. Let $f_1, f_2, ...$ be an enumeration of all polynomial time functions
- 2. $L_i = 0^i 10^*$ Let L'_i be the language of all strings L_i without any "short" f_i -proof $L = |\cdot|, L'_i \in \text{co-NTIME}(2^n)$
- 3. We will show that for *L*-proof-systems f_i it holds $L'_i = L_i$. As a consequence, there are only long f_i -proofs for $L'_i \subset L$
- This will contradict to the assumption, that f_i is an optimal proof system for L.

- 1. Let $f_1, f_2, ...$ be an enumeration of all polynomial time functions
- 2. $L_i = 0^i 10^*$ Let L'_i be the language of all strings L_i without any "short" f_i -proof $L = \bigcup_i L'_i \in \text{co-NTIME}(2^n)$
- 3. We will show that for *L*-proof-systems f_i it holds $L'_i = L_i$. As a consequence, there are only long f_i -proofs for $L'_i \subset L$
- 4. This will contradict to the assumption, that f_i is an optimal proof system for L.

- 1. Let $f_1, f_2, ...$ be an enumeration of all polynomial time functions
- 2. $L_i = 0^i 10^*$ Let L'_i be the language of all strings L_i without any "short" f_i -proof
- 3. We will show that for *L*-proof-systems f_i it holds $L'_i = L_i$. As a consequence, there are only long f_i -proofs for $L'_i \subset L$
- 4. This will contradict to the assumption, that f_i is an optimal proof system for L.

- 1. Let $f_1, f_2, ...$ be an enumeration of all polynomial time functions
- 2. $L_i = 0^i 10^*$ Let L_i' be the language of all strings L_i without any "short" f_i -proof $L = \bigcup_i L_i' \in \text{co-NTIME}(2^n)$
 - 3. We will show that for *L*-proof-systems f_i it holds $L'_i = L_i$. As a consequence, there are only long f_i -proofs for $L'_i \subset L$
- 4. This will contradict to the assumption, that f_i is an optimal proof system for L.

- 1. Let $f_1, f_2, ...$ be an enumeration of all polynomial time functions
- 2. $L_i = 0^i 10^*$ Let L_i' be the language of all strings L_i without any "short" f_i -proof $L = \bigcup_i L_i' \in \text{co-NTIME}(2^n)$
- 3. We will show that for *L*-proof-systems f_i it holds $L'_i = L_i$. As a consequence, there are only long f_i -proofs for $L'_i \subset L$
- 4. This will contradict to the assumption, that f_i is an optimal proof system for L.

- 1. Let $f_1, f_2, ...$ be an enumeration of all polynomial time functions
- 2. $L_i = 0^i 10^*$ Let L'_i be the language of all strings L_i without any "short" f_i -proof $L = \bigcup_i L'_i \in \text{co-NTIME}(2^n)$
- 3. We will show that for *L*-proof-systems f_i it holds $L'_i = L_i$. As a consequence, there are only long f_i -proofs for $L'_i \subset L$
- 4. This will contradict to the assumption, that f_i is an optimal proof system for L.

- ightharpoonup Gödel: $M_1, M_2, ...$
- ▶ We define $M'_1, M'_2, ...$ as the M_i with a clock that stops the calculation after $n^i + i$ steps
- ▶ Let f_i the function calculated by M_i
- ▶ As for unbounded i, the runtime $n^i + i$ is unbounded, we obtain all \mathcal{FP} functions

Kurt Gödel 1906 – 1978

- ► Gödel: *M*₁, *M*₂, ...
- ▶ We define $M'_1, M'_2, ...$ as the M_i with a clock that stops the calculation after $n^i + i$ steps
- Let f_i the function calculated by M_i
- ▶ As for unbounded i, the runtime $n^i + i$ is unbounded, we obtain all \mathcal{FP} functions

Kurt Gödel 1906 – 1978

- ▶ Gödel: $M_1, M_2, ...$
- ▶ We define $M'_1, M'_2, ...$ as the M_i with a clock that stops the calculation after $n^i + i$ steps
- Let f_i the function calculated by M_i
- As for unbounded i, the runtime $n^i + i$ is unbounded, we obtain all \mathcal{FP} functions

Kurt Gödel 1906 – 1978

- ► Gödel: *M*₁, *M*₂, ...
- ▶ We define $M'_1, M'_2, ...$ as the M_i with a clock that stops the calculation after $n^i + i$ steps
- Let f_i the function calculated by M_i
- As for unbounded i, the runtime $n^i + i$ is unbounded, we obtain all \mathcal{FP} functions

Kurt Gödel 1906 – 1978

- ► Gödel: *M*₁, *M*₂, ...
- ▶ We define $M'_1, M'_2, ...$ as the M_i with a clock that stops the calculation after $n^i + i$ steps
- Let f_i the function calculated by M_i
- ▶ As for unbounded i, the runtime $n^i + i$ is unbounded, we obtain all \mathcal{FP} functions

Kurt Gödel 1906 – 1978

Construction of L

- $L_i = 0^i 10^*$
- ▶ take $x \in L'_i$, that do not have f_i -proofs

$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

union

$$L = \bigcup_{i>0} L_i'$$

Construction of L

- $L_i = 0^i 10^*$
- ▶ take $x \in L'_i$, that do not have f_i -proofs

$$L_i' = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

▶ union

$$L = \bigcup_{i>0} L_i^i$$

Construction of L

- $L_i = 0^i 10^*$
- ▶ take $x \in L'_i$, that do not have f_i -proofs

$$L_i' = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

union

$$L = \bigcup_{i>0} L'_i$$

L is member of co-NTIME(2^n)

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- ▶ claim: $\bigcap_{i>0} \overline{L_i'} \in \mathsf{NTIME}(2^n)$

$$\overline{L'_i} = \{ x \in \Sigma^* : x \notin L_i \lor \left(\exists_{y \in \Sigma^*} \left(|y|^{2i} \le 2^{|x|} \right) \land \left(f_i(y) = x \right) \right) \}$$

Let x be an arbitrary string.

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- $ightharpoonup x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in NTIME(2^n)$

$$\overline{L'_i} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$

Let x be an arbitrary string.

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- ▶ $x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$

ightharpoonup claim: $\bigcap_{i>0} \overline{L_i'} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x))\}$$

Let x be an arbitrary string.

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- $\blacktriangleright \ x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .

ightharpoonup claim: $\bigcap_{i>0} L'_i \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$

Let x be an arbitrary string.

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- $\blacktriangleright \ x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in NTIME(2^n)$

$$\overline{L'_i} = \{ x \in \Sigma^* : x \notin L_i \lor \left(\exists_{y \in \Sigma^*} \left(|y|^{2i} \le 2^{|x|} \right) \land \left(f_i(y) = x \right) \right) \}$$

- Let x be an arbitrary string.
 - ▶ Check, if x is member of any L_i : if not, then $x \in L$
 - ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
 - ▶ $x \in \overline{L'_j}$ for any $j \neq i$
 - ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{x \in \Sigma^* : x \notin L_i \lor \left(\exists_{y \in \Sigma^*} \left(|y|^{2i} \le 2^{|x|}\right) \land \left(f_i(y) = x\right)\right)\}$$

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- ▶ $x \in L'_j$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L_i'} \in NTIME(2^n)$

$$\overline{L_i'} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$
 Let x be an arbitrary string.

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- ▶ $x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{ x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} (|y|^{2i} \le 2^{|x|}) \land (f_i(y) = x)) \}$$
 Let x be an arbitrary string.

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- $\blacktriangleright x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L'_i} = \{x \in \Sigma^* : \mathbf{x} \notin \underline{L_i} \lor \left(\exists_{y \in \Sigma^*} \left(|y|^{2i} \le 2^{|x|}\right) \land \left(f_i(y) = x\right)\right)\}$$

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor \left(\exists_{y \in \Sigma^*} \left(|y|^{2i} \le 2^{|x|}\right) \land \left(f_i(y) = x\right)\right)\}$$

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- $\triangleright x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor \left(\exists_{y \in \Sigma^*} \left(|y|^{2i} \le 2^{|x|}\right) \land \left(f_i(y) = x\right)\right)\}$$

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- ▶ $x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{x \in \Sigma^* : x \notin L_i \lor \left(\exists_{y \in \Sigma^*} \left(|y|^{2i} \le 2^{|x|}\right) \land \left(f_i(y) = x\right)\right)\}$$

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- ▶ $x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{x \in \Sigma^* : x \notin L_i \lor \left(\exists_{y \in \Sigma^*} \left(|y|^{2i} \le 2^{|x|}\right) \land \left(f_i(y) = x\right)\right)\}$$

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- ▶ $x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{x \in \Sigma^* : x \notin L_i \lor \left(\exists_{y \in \Sigma^*} \left(|y|^{2i} \le 2^{|x|}\right) \land \left(f_i(y) = x\right)\right)\}$$

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- ▶ $x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

- ▶ As $L \in \text{co-NTIME}(2^n) \Leftrightarrow \overline{L} \in \text{NTIME}(2^n)$, we will analyze the complexity of \overline{L} .
- $\overline{L} = \overline{\bigcup_{i>0} L'_i} = \bigcap_{i>0} \overline{L'_i}$
- ▶ claim: $\bigcap_{i>0} \overline{L'_i} \in \mathsf{NTIME}(2^n)$

$$\overline{L_i'} = \{x \in \Sigma^* : x \notin L_i \lor \left(\exists_{y \in \Sigma^*} \left(|y|^{2i} \le 2^{|x|}\right) \land \left(f_i(y) = x\right)\right)\}$$

- ▶ Check, if x is member of any L_i : if not, then $x \in \overline{L}$
- ▶ Otherwise, choose i^* such that $x \in L_{i^*}$
- ▶ $x \in \overline{L'_j}$ for any $j \neq i$
- ▶ for any y such that $|y|^{2i} \le 2^{|x|}$: calculate $f_{i^*}(y)$. If and only if there is a y such that $f_{i^*}(y) = x$, then $x \in \overline{L}$.

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

and $\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \land f_i(y) = x)\}$

- ightharpoonup any proof system of L is one of the f_i
- ▶ claim: for any $f_i(\Sigma^*) = L$ it holds $L_i = L'_i$
- \blacktriangleright let f_i be a proof system for L
- ▶ assume there is a $x = 0^i 1z \in L_i$ that is not a member of L'_i
- ▶ then, there is a y such that $y^{2i} \le 2^{|x|}$ and $f_i(y) = x$
- ▶ Hence, y is a f_i -proof for x. It follows that $x \in L$, and therefore $x \in L'_i$. This is a contradiction.

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

and $\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \land f_i(y) = x)\}$

- any proof system of L is one of the f_i
- ▶ claim: for any $f_i(\Sigma^*) = L$ it holds $L_i = L'_i$
- \blacktriangleright let f_i be a proof system for L
- ▶ assume there is a $x = 0^i 1z \in L_i$ that is not a member of L'_i
- ▶ then, there is a y such that $y^{2i} \le 2^{|x|}$ and $f_i(y) = x$
- ▶ Hence, y is a f_i -proof for x. It follows that $x \in L$, and therefore $x \in L'_i$. This is a contradiction.

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

and $\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \land f_i(y) = x)\}$

- any proof system of L is one of the f_i
- ▶ claim: for any $f_i(\Sigma^*) = L$ it holds $L_i = L'_i$
- \blacktriangleright let f_i be a proof system for L
- ▶ assume there is a $x = 0^i 1z \in L_i$ that is not a member of L'_i
- ▶ then, there is a y such that $y^{2i} \le 2^{|x|}$ and $f_i(y) = x$
- ▶ Hence, y is a f_i -proof for x. It follows that $x \in L$, and therefore $x \in L'_i$. This is a contradiction.

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

and $\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \land f_i(y) = x)\}$

- any proof system of L is one of the f_i
- ▶ claim: for any $f_i(\Sigma^*) = L$ it holds $L_i = L'_i$
- \blacktriangleright let f_i be a proof system for L
- ▶ assume there is a $x = 0^i 1z \in L_i$ that is not a member of L'_i
- ▶ then, there is a y such that $y^{2i} \le 2^{|x|}$ and $f_i(y) = x$
- ▶ Hence, y is a f_i -proof for x. It follows that $x \in L$, and therefore $x \in L'_i$. This is a contradiction.

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

and $\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \land f_i(y) = x)\}$

- any proof system of L is one of the f_i
- ▶ claim: for any $f_i(\Sigma^*) = L$ it holds $L_i = L'_i$
- \blacktriangleright let f_i be a proof system for L
- ▶ assume there is a $x = 0^i 1z \in L_i$ that is not a member of L'_i
- ▶ then, there is a y such that $y^{2i} \le 2^{|x|}$ and $f_i(y) = x$
- ▶ Hence, y is a f_i -proof for x. It follows that $x \in L$, and therefore $x \in L'_i$. This is a contradiction.

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$
 and $\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \land f_i(y) = x)\}$

- any proof system of L is one of the f_i
- ▶ claim: for any $f_i(\Sigma^*) = L$ it holds $L_i = L'_i$
- \blacktriangleright let f_i be a proof system for L
- ▶ assume there is a $x = 0^i 1z \in L_i$ that is not a member of L'_i
- ▶ then, there is a y such that $y^{2i} \le 2^{|x|}$ and $f_i(y) = x$
- ▶ Hence, y is a f_i -proof for x. It follows that $x \in L$, and therefore $x \in L'_i$. This is a contradiction.

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

and $\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \land f_i(y) = x)\}$

- any proof system of L is one of the f_i
- ▶ claim: for any $f_i(\Sigma^*) = L$ it holds $L_i = L'_i$
- \blacktriangleright let f_i be a proof system for L
- ▶ assume there is a $x = 0^i 1z \in L_i$ that is not a member of L'_i
- ▶ then, there is a y such that $y^{2i} \le 2^{|x|}$ and $f_i(y) = x$
- ▶ Hence, y is a f_i -proof for x. It follows that $x \in L$, and therefore $x \in L'_i$. This is a contradiction.

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}$$

and $\overline{L'_i} = \{x \in \Sigma^* : x \notin L_i \lor (\exists_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \land f_i(y) = x)\}$

- any proof system of L is one of the f_i
- ▶ claim: for any $f_i(\Sigma^*) = L$ it holds $L_i = L'_i$
- \blacktriangleright let f_i be a proof system for L
- ▶ assume there is a $x = 0^i 1z \in L_i$ that is not a member of L'_i
- ▶ then, there is a y such that $y^{2i} \le 2^{|x|}$ and $f_i(y) = x$
- ▶ Hence, y is a f_i -proof for x. It follows that $x \in L$, and therefore $x \in L'_i$. This is a contradiction.

Recall $L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}.$

Let f_i be an optimal proof system for L

▶ Let g be defined by

$$g(bx) = \begin{cases} f_i(x) & (b = 0) \\ x & (b = 1 \text{ and } x = 0^j 10^* \in L_i = L_i') \end{cases}$$

- ▶ g is a proof system for L
- ▶ as f_i is optimal, there is a f^* , such that $f_i(f^*(x)) = g(x)$. f^* is polynomial bounded: $|f^*(x)| \le p(|x|)$
- for any x of L'_i , such that $p(|1x|)^{2i} \leq 2^{|x|}$.
- ▶ 1x is a g-proof for x: g(1x) = x
- For $y = f^*(1x)$ it holds $|y| = |f^*(1x)| < p(|1x|) < p(|1x|)^{2i} < 2^{|x|}$.
- ▶ By Definition of L_i' : $f_i(y) \neq x$, hence $y = f^*(1x)$ is no f_i -proof for x
 - This is a contradiction \square

Recall
$$L'_i = \{x \in L_i : \forall_{v \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}.$$

- \triangleright Let f_i be an optimal proof system for L
- ▶ Let g be defined by

$$g(bx) = \begin{cases} f_i(x) & (b = 0) \\ x & (b = 1 \text{ and } x = 0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g is a proof system for L
- ▶ as f_i is optimal, there is a f^* , such that $f_i(f^*(x)) = g(x)$. f^* is polynomial bounded: $|f^*(x)| \le p(|x|)$
- ▶ for any x of L'_i , such that $p(|1x|)^{2i} \leq 2^{|x|}$.
- ▶ 1x is a g-proof for x: g(1x) = x
- For $y = f^*(1x)$ it holds $|y| = |f^*(1x)| \le p(|1x|) \le p(|1x|)^{2i} \le 2^{|x|}$.
- ▶ By Definition of L_i' : $f_i(y) \neq x$, hence $y = f^*(1x)$ is no f_i -proof for x
 - This is a contradiction

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}.$$

- Let f_i be an optimal proof system for L
- ▶ Let g be defined by

$$g(bx) = \begin{cases} f_i(x) & (b = 0) \\ x & (b = 1 \text{ and } x = 0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g is a proof system for L
- ▶ as f_i is optimal, there is a f^* , such that $f_i(f^*(x)) = g(x)$. f^* is polynomial bounded: $|f^*(x)| \le p(|x|)$
- ▶ for any x of L'_i , such that $p(|1x|)^{2i} \leq 2^{|x|}$.
- ▶ 1x is a g-proof for x: g(1x) = x
- For $y = f^*(1x)$ it holds $|y| = |f^*(1x)| \le p(|1x|) \le p(|1x|)^{2i} \le 2^{|x|}$.
- ▶ By Definition of L_i' : $f_i(y) \neq x$, hence $y = f^*(1x)$ is no f_i -proof for x
 - ► This is a contradiction □

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}.$$

- \triangleright Let f_i be an optimal proof system for L
- ▶ Let *g* be defined by

$$g(bx) = \begin{cases} f_i(x) & (b = 0) \\ x & (b = 1 \text{ and } x = 0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g is a proof system for L
- ▶ as f_i is optimal, there is a f^* , such that $f_i(f^*(x)) = g(x)$. f^* is polynomial bounded: $|f^*(x)| \le p(|x|)$
- ▶ for any x of L'_i , such that $p(|1x|)^{2i} \leq 2^{|x|}$.
- ▶ 1x is a g-proof for x: g(1x) = x
- For $y = f^*(1x)$ it holds $|y| = |f^*(1x)| \le p(|1x|) \le p(|1x|)^{2i} \le 2^{|x|}$.
- ▶ By Definition of L_i' : $f_i(y) \neq x$, hence $y = f^*(1x)$ is no f_i -proof for x
 - ► This is a contradiction □

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}.$$

- \triangleright Let f_i be an optimal proof system for L
- ▶ Let *g* be defined by

$$g(bx) = \begin{cases} f_i(x) & (b = 0) \\ x & (b = 1 \text{ and } x = 0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g is a proof system for L
- ▶ as f_i is optimal, there is a f^* , such that $f_i(f^*(x)) = g(x)$. f^* is polynomial bounded: $|f^*(x)| \le p(|x|)$
- for any x of L'_i , such that $p(|1x|)^{2i} \le 2^{|x|}$.
- ▶ 1x is a g-proof for x: g(1x) = x
- For $y = f^*(1x)$ it holds $|y| = |f^*(1x)| \le p(|1x|) \le p(|1x|)^{2i} \le 2^{|x|}$.
- ▶ By Definition of L_i' : $f_i(y) \neq x$, hence $y = f^*(1x)$ is no f_i -proof for x
- ▶ This is a contradiction □

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}.$$

- \triangleright Let f_i be an optimal proof system for L
- ▶ Let *g* be defined by

$$g(bx) = \begin{cases} f_i(x) & (b = 0) \\ x & (b = 1 \text{ and } x = 0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g is a proof system for L
- ▶ as f_i is optimal, there is a f^* , such that $f_i(f^*(x)) = g(x)$. f^* is polynomial bounded: $|f^*(x)| \le p(|x|)$
- for any x of L'_i , such that $p(|1x|)^{2i} \leq 2^{|x|}$.
- ▶ 1x is a g-proof for x: g(1x) = x
- ► For $y = f^*(1x)$ it holds $|y| = |f^*(1x)| \le p(|1x|) \le p(|1x|)^{2i} \le 2^{|x|}$.
- ▶ By Definition of L_i' : $f_i(y) \neq x$, hence $y = f^*(1x)$ is no f_i -proof for x
- ▶ This is a contradiction □

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}.$$

- \triangleright Let f_i be an optimal proof system for L
- ▶ Let *g* be defined by

$$g(bx) = \begin{cases} f_i(x) & (b = 0) \\ x & (b = 1 \text{ and } x = 0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g is a proof system for L
- ▶ as f_i is optimal, there is a f^* , such that $f_i(f^*(x)) = g(x)$. f^* is polynomial bounded: $|f^*(x)| \le p(|x|)$
- for any x of L'_i , such that $p(|1x|)^{2i} \leq 2^{|x|}$.
- ▶ 1x is a g-proof for x: g(1x) = x
- For $y = f^*(1x)$ it holds $|y| = |f^*(1x)| \le p(|1x|) \le p(|1x|)^{2i} \le 2^{|x|}$.
- ▶ By Definition of L_i' : $f_i(y) \neq x$, hence $y = f^*(1x)$ is no f_i -proof for x
- ▶ This is a contradiction □

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}.$$

- \triangleright Let f_i be an optimal proof system for L
- ▶ Let *g* be defined by

$$g(bx) = \begin{cases} f_i(x) & (b = 0) \\ x & (b = 1 \text{ and } x = 0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g is a proof system for L
- ▶ as f_i is optimal, there is a f^* , such that $f_i(f^*(x)) = g(x)$. f^* is polynomial bounded: $|f^*(x)| \le p(|x|)$
- for any x of L'_i , such that $p(|1x|)^{2i} \leq 2^{|x|}$.
- ▶ 1x is a g-proof for x: g(1x) = x
- For $y = f^*(1x)$ it holds $|y| = |f^*(1x)| \le p(|1x|) \le p(|1x|)^{2i} \le 2^{|x|}$.
- ▶ By Definition of L_i' : $f_i(y) \neq x$, hence $y = f^*(1x)$ is no f_i -proof for x
- ► This is a contradiction □

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}.$$

- \triangleright Let f_i be an optimal proof system for L
- ▶ Let *g* be defined by

$$g(bx) = \begin{cases} f_i(x) & (b = 0) \\ x & (b = 1 \text{ and } x = 0^i 10^* \in L_i = L_i') \end{cases}$$

- ightharpoonup g is a proof system for L
- ▶ as f_i is optimal, there is a f^* , such that $f_i(f^*(x)) = g(x)$. f^* is polynomial bounded: $|f^*(x)| \le p(|x|)$
- for any x of L'_i , such that $p(|1x|)^{2i} \leq 2^{|x|}$.
- ▶ 1x is a g-proof for x: g(1x) = x
- For $y = f^*(1x)$ it holds $|y| = |f^*(1x)| \le p(|1x|) \le p(|1x|)^{2i} \le 2^{|x|}$.
- ▶ By Definition of L_i' : $f_i(y) \neq x$, hence $y = f^*(1x)$ is no f_i -proof for x
- ► This is a contradiction □

Recall
$$L'_i = \{x \in L_i : \forall_{y \in \Sigma^*} |y|^{2i} \le 2^{|x|} \implies f_i(y) \ne x\}.$$

- \triangleright Let f_i be an optimal proof system for L
- ▶ Let *g* be defined by

$$g(bx) = \begin{cases} f_i(x) & (b = 0) \\ x & (b = 1 \text{ and } x = 0^i 10^* \in L_i = L_i') \end{cases}$$

- ▶ g is a proof system for L
- ▶ as f_i is optimal, there is a f^* , such that $f_i(f^*(x)) = g(x)$. f^* is polynomial bounded: $|f^*(x)| \le p(|x|)$
- for any x of L'_i , such that $p(|1x|)^{2i} \leq 2^{|x|}$.
- ▶ 1x is a g-proof for x: g(1x) = x
- For $y = f^*(1x)$ it holds $|y| = |f^*(1x)| \le p(|1x|) \le p(|1x|)^{2i} \le 2^{|x|}$.
- ▶ By Definition of L_i' : $f_i(y) \neq x$, hence $y = f^*(1x)$ is no f_i -proof for x
- ► This is a contradiction □

What do we know about L?

Theorem

If $L \subseteq 0^*10^*$ has no optimal proof system, then there is a polynomial time equivalent $T \in TALLY$, that does not possess an optimal proof system.

Corollary

Let $u : \mathbb{N} \to \mathbb{N}$ be a strictly increasing polynomial time function. Then there is a language $L \in co\text{-NTIME}(2^n)$, that has no optimal proof system. Additionally, every length of a string in L is in the range of u.

Theorem

What do we know about L?

Theorem

If $L \subseteq 0^*10^*$ has no optimal proof system, then there is a polynomial time equivalent $T \in TALLY$, that does not possess an optimal proof system.

Corollary

Let $u : \mathbb{N} \to \mathbb{N}$ be a strictly increasing polynomial time function. Then there is a language $L \in co\text{-NTIME}(2^n)$, that has no optimal proof system. Additionally, every length of a string in L is in the range of u.

Theorem

What do we know about L?

Theorem

If $L \subseteq 0^*10^*$ has no optimal proof system, then there is a polynomial time equivalent $T \in TALLY$, that does not possess an optimal proof system.

Corollary

Let $u : \mathbb{N} \to \mathbb{N}$ be a strictly increasing polynomial time function. Then there is a language $L \in co\text{-NTIME}(2^n)$, that has no optimal proof system. Additionally, every length of a string in L is in the range of u.

Theorem

What do we know about L?

Theorem

If $L \subseteq 0^*10^*$ has no optimal proof system, then there is a polynomial time equivalent $T \in TALLY$, that does not possess an optimal proof system.

Corollary

Let $u: \mathbb{N} \to \mathbb{N}$ be a strictly increasing polynomial time function. Then there is a language $L \in \text{co-NTIME}(2^n)$, that has no optimal proof system. Additionally, every length of a string in L is in the range of u.

Theorem

What do we know about L?

Theorem

If $L \subseteq 0^*10^*$ has no optimal proof system, then there is a polynomial time equivalent $T \in TALLY$, that does not possess an optimal proof system.

Corollary

Let $u: \mathbb{N} \to \mathbb{N}$ be a strictly increasing polynomial time function. Then there is a language $L \in \text{co-NTIME}(2^n)$, that has no optimal proof system. Additionally, every length of a string in L is in the range of u.

Theorem

Literature I

- [AB09] Sanjeev Arora and Boaz Barak, Computational complexity: A modern approach, 1st ed., Cambridge University Press, New York, NY, USA, 2009.
- [Coo71] Stephen A. Cook, The complexity of theorem-proving procedures, Proceedings of the third annual ACM symposium on Theory of computing (New York, NY, USA), STOC '71, ACM, 1971, pp. 151–158.
- [CR79] Stephen A. Cook and Robert A. Reckhow, The relative efficiency of propositional proof systems, Journal of Symbolic Logic 44 (1979), 36–50.
- [For09] Lance Fortnow, *The status of the P versus NP problem*, Commun. ACM **52** (2009), no. 9, 78–86.

Literature II

- [KM00] Johannes Köbler and Jochen Messner, Is the standard proof system for SAT p-optimal?, Proceedings of the 20th Conference on Foundations of Software Technology and Theoretical Computer Science (London, UK, UK), FST TCS 2000, Springer-Verlag, 2000, pp. 361–372.
- [KMT03] Johannes Köbler, Jochen Messner, and Jacobo Torán, Optimal proof systems imply complete sets for promise classes, Inf. Comput. 184 (2003), no. 1, 71–92.
- [KP89] Jan Krajícek and Pavel Pudlák, *Propositional proof* systems, the consistency of first order theories and the complexity of computations, J. Symb. Log. **54** (1989), no. 3, 1063–1079.

Literature III

- [Mes99] Jochen Messner, On optimal algorithms and optimal proof systems, Proceedings of the 16th annual conference on Theoretical aspects of computer science (Berlin, Heidelberg), STACS'99, Springer-Verlag, 1999, pp. 541–550.
- [Pap94] Christos H. Papadimitriou, *Computational complexity*, Addison-Wesley, 1994.

Images Sources I

► Kurt Gödel: Wikipedia, de.wikipedia.org