Lecture 15
Path finding using dynamic programming

EECS-214

All points shortest-path

 Dijkstra's algorithm is cool, but what if you need to do a lot of route finding in the same graph?

Memoizing

- One thing you could do is to save the shortest paths as you compute them
 - E.g. in a hash table
- Then reuse the saved path if you have to solve the same problem again
- This is called memoizing
 - Or sometimes caching (although that usually means something a little different)

```
ShortestPath(a, b)
  if (a/b already in table)
    return table[a, b]
  else
    path = dijkstra(a, b)
    table[a, b] = path
    return path
```

Can we do better?

- This saves us recomputing the same path twice
- But we still have to run Dijkstra's algorithm V^2 times to compute all paths
- That's $O\left(\left(V^3 + EV^2\right)\log V\right)$ time, which is a lot if V is large

Shortest paths contain other shortest paths

- The shortest path from A to B
 - Has to start with A
 - Go through some (possibly empty) set of intermediate nodes
 - And end with B
- If C is some intermediate node on the shortest path, then the path is just:
 - The shortest path from A to C
 - Followed by the shortest path from C to B

Paths within paths

- So in finding the shortest path from A to B,
 - We're implicitly finding the shortest paths from A to C and C to B
 - We're re-solving the same problems repeatedly

 We'd like some way of memoizing this work so we don't have to resolve the same problems

Restating what we already said

- For any nodes A, B, and C
- Either
 - The shortest path from A to B is
 - The shortest path from A to C
 - Followed by the shortest path from C to B
 - Or the shortest path from A to B doesn't go through C

And restating it again...

ShortestPath(A,B) =

- ShortestPathNotUsingC(A,C) followed by ShortestPathNotUsingC(C,B)
- Or ShortestPathNotUsingC(A,B)
- Whichever is shorter

(where "not using C" means "not using C as an intermediate node")

Why do we care?

- We just described
 - The shortest path between two points
 - In terms of shortest paths not using some other node (C)

- We can recurse
 - Describe shortest paths not using C
 - In terms of shortest paths not using C or D (for some D)

Why do we care?

- We can recurse:
 - Describe shortest paths not using C
 - In terms of shortest paths not using C or D (for some D)
- And we keep recursing
 - Until we describe paths in terms of shortest paths not using any intermediate nodes
- They're just edges (easy to compute)

The Floyd-Warshall Algorithm

Assume the vertices are numbered

- Define D(i, j, k) (i.e. "distance") to be
 - The length of the shortest path
 - From node i to node j
 - Using only nodes 0 through k
- We just compute the length here
 - It's easy to extend the algorithm to recover the actual path

The Floyd-Warshall Algorithm

Then

$$D(i,j,k) = \begin{cases} edgecost(i,j), & k = 0 \\ min \begin{bmatrix} D(i,j,k-1) \\ D(i,k,k-1) + D(k,j,k-1) \end{bmatrix}, \text{ otherwise} \end{cases}$$

 This might not look like an algorithm, but it's easy to turn into one

The Floyd-Warshall Algorithm (bad version)

```
Distance(i, j)
 return D(i, j, V) // V = number of nodes in graph = highest node number
D(i, j, k) {
 if (k=0) {
   if there's an edge between i and j
     return edgeCost[i, j]
   else
     return infinity
 } else {
   direct = D(i, j, k-1)
   indirect = D(i, k, k-1)+D(k, j, k-1)
   return min(direct, indirect)
```

uhhh....

weren't we supposed to trying to memoize this computation?

The Floyd-Warshall Algorithm (bad memoized version)

```
float[] distances = new float[V, V, V]; // 3D array indexed by vertex number
D(i, j, k) {
 if distances[i, j, k] has an entry
   return distances[i, j, k]
 if (k=0) {
   if there's an edge between i and i
     answer = edgeCost[i, j]
   else
     answer = infinity
 } else {
   direct = D(i, j, k-1)
   indirect = D(i, k, k-1)+D(k, j, k-1)
   answer = min(direct, indirect)
 distances[i, j, k] = answer
 return answer
```

uhhh....

weren't we supposed to trying to compute all paths at once?

And now the cleverness...

- We compute all the different D(i, j, k) values
- But we only care about the ones where k=V
 - i.e. where k is the number of vertices
 - i.e. where we're allowed to use all the vertices

 Once we compute all the values for k, we don't care about the k-1 values

The real Floyd-Warshall algorithm

- Compute D(i, j, 0) for all i, j
- Compute D(i, j, 1) for all i, j
 - Throw away the D(i, j, 0) values
- Compute D(i, j, 2) for all i, j
 - Throw away the D(i, j, 1) values

• • •

- Compute D(i, j, V) for all i, j
 - Throw everything else away

The real Floyd-Warshall algorithm

```
ComputeAllDistances() {
 D = new V \times V array initialized to \infty
 for each vertex v, D[v, v] = 0
 for each edge e=(u,v), D[u,v] = weight(e)
 for each vertex k
   for each vertex j
      for each vertex i
        D[i, j] = min(D[i,j], D[i,k]+D[k,j])
 return D
```

The real Floyd-Warshall algorithm

```
ComputeAllDistances() {
 D = new V \times V array initialized to \infty
 for each vertex v, D[v, v] = 0
 for each edge e=(u,v), D[u,v] = weight(e)
 for each vertex k
   for each vertex j
     for each vertex i
        D[i, j] = min(D[i,j], D[i,k]+D[k,j])
 return D
                     Just O(V^3)!
```

Dynamic programming

- Dynamic programming is the technique of
 - Optimizing algorithms
 - By avoiding re-solving subproblems
 - By storing and reusing the results of subproblems
- Can be as simple as just memozing a recursion
 - Sometimes called top-down dynamic programming
 - Main problem → subproblems
- But it can also involve cleverly rearranging the subproblems so it doesn't even look like a recursion anymore
 - Subproblems → main problem(s)
 - Like Floyd-Warshall
 - Called bottom-up dynamic programming

Classic algorithm design techniques

Divide and conquer

- Solve problem using subproblems
- Example: binary search

Dynamic programming

- Store and reuse solutions to subproblems
- Example: Floyd-Warshall

Randomization

- Avoid unlikely worst-case behavior
- Example: randomized quicksort

Amortized analysis (next)

- Provide good bounds on efficiency of sequences of calls
- Even if individual calls might be slow

Probabilistic methods

Very likely produce the right answer

Greedy optimization

 Globally optimal set of choices from locally optimal individual choices

Approximation

Answers that are provably close to optimal