Ab Initio Methods for Protein Structure Prediction

CS882 Presentation, by Shuai C., Li

Motivation

- homology modeling
 - No knowledge about the physical nature of the protein folding and stability.
- ab-initio methods can
 - augment fold-recognition and homology (refinement, large loops, side chains).
- it can ease experimental structure determination.
- It can find new folds

Ab Initio Methods

- Ab initio: "From the beginning".
- Assumption
 - All the information about the structure of a protein is contained in its sequence of amino acids.
 - The structure that a (globular) protein folds into is the structure with the lowest free energy.
 - The native structure is contained in the search space
- Finding native-like conformations require
 - A scoring function (potential).
 - A search strategy.

ab-initio protein structure prediction

Optimization problem

- Define some initial model.
- Define a function mapping structures to numerical values (the lower the better).
- Solve the computational problem of finding the global minimum.

Simulation of the actual folding process

- Build an accurate initial model (including energy and forces).
- Accurately simulate the dynamics of the system.
- The native structure will emerge.
- No hope due to large search space

Energy Minimization (Theory)

- Treat Protein molecule as a set of balls (with mass) connected by rigid rods and springs
- Rods and springs have empirically determined force constants
- Allows one to treat atomic-scale motions in proteins as classical physics problems

Standard Energy Function

$$\begin{split} \textbf{E} &= \ \, \textbf{K}_{r}(\textbf{r}_{i} - \textbf{r}_{j})^{2} \, + \\ & \quad \, \textbf{K}_{\theta}(\theta_{i} - \theta_{j})^{2} \, + \\ & \quad \, \textbf{K}_{\phi}(1 \text{--} \text{cos}(\textbf{n} \phi_{j}))^{2} \, + \\ & \quad \, \textbf{q}_{i} \textbf{q}_{j} / 4 \pi \epsilon \textbf{r}_{ij} \, + \\ & \quad \, \textbf{A}_{ij} / \textbf{r}^{6} \, - \, \textbf{B}_{ij} / \textbf{r}^{12} \, + \\ & \quad \, \textbf{C}_{ii} / \textbf{r}^{10} \, - \, \textbf{D}_{ii} / \textbf{r}^{12} \end{split}$$

Bond length
Bond bending
Bond torsion
Coulomb
van der Waals
H-bond

Energy Terms

$$K_r(r_i - r_j)^2$$

$$K_{\theta}(\theta_i - \theta_j)^2$$

$$K_{\phi}(1-\cos(n\phi_{i}))^{2}$$

Stretching

Bending

Torsional

Energy Terms

$$q_i q_j / 4\pi \epsilon r_{ij}$$

$$A_{ij}/r^6 - B_{ij}/r^{12}$$

$$A_{ij}/r^6 - B_{ij}/r^{12}$$
 $C_{ij}/r^{10} - D_{ij}/r^{12}$

Coulomb

van der Waals

H-bond

Reduced complexity models

- No side chains
 - sometimes no main chain atoms either
 - Or represent the side chain with C_β
- Reduced degrees of freedom
- On-or off-lattice
- Generally have an environment -based score and a knowledge-based residue-residue interaction term
- Sometimes used as first step to prune the enormous conformational space, then resolution is increased for later fine-tuning

A Simple 2D Lattice

Lattice Folding

Lattice Algorithm

- Build a "n x m" matrix (a 2D array)
- Choose an arbitrary point as your N terminal residue (start residue)
- Add or subtract "1" from the x or y position of the start residue
- Check to see if the new point (residue) is off the lattice or is already occupied
- Evaluate the energy
- Go to step 3) and repeat until done

Lattice Energy Algorithm

- Red = hydrophobic, Blue = hydrophilic
- If Red is near empty space E = E+1
- If Blue is near empty space E = E-1
- If Red is near another Red E = E-1
- If Blue is near another Blue E = E+0
- If Blue is near Red E = E+0

More Complex Lattices

3D Lattices

Really Complex 3D Lattices

J. Skolnick

Lattice Methods

Advantages

- Easiest and quickest way to build a polypeptide
- More complex lattices allow reasonably accurate representation

<u>Disadvantages</u>

- At best, only an approximation to the real thing
- Does not allow accurate constructs
- Complex lattices are as "costly" as the real thing

Non-Lattice Models

Simplified Chain Representation

Spherical Coordinates

Assembly of sub-structural units

Structure Prediction with Rosetta

- Select fragments consistent with local sequence preferences
- Assemble fragments into models with native-like global properties
- Identify the best model from the population of decoys

- Model each candidate local structure as a node
- If two consecutive local structure are compatible, an edge joins them

- Model each candidate local structure as a node
- If two consecutive local structure are compatible, an edge joins them
- Add a source s and sink t to the graph

- Each path from s to t forms a candidate structure
 - At least one of the s-t paths is native-like structure
 - A good search strategy should pick up this path with less time consuming
 - A good model should reduce the search space

Build the Fragment Library-Rosetta

Extract possible local structures from PDB

Generate the Fragment Library

- Select PDB template
 - Select Sequence Families
 - Each Family has a single known structure (family)
 - Has no more than 25% sequence identity between any two sequence
- Clustering the fragments
 - Generate all the fragments from the selected families

Find Local Structures

- Given a subsequence, a local structure to be identified
 - Represent each subsequence with a vector
 - $V=\{v_1, v_2, ..., v_k\}$
 - eg: V as a 20*l matrix, with the (i, j)-th entry represent the frequency of amino acid j occurs at position j
 - Represent each substructure with a vector
 - $V'=\{v_1', v_2', ..., v_k'\}$
 - eg: V as a 20*l matrix, with the (i, j)-th entry represent the frequency of amino acid j occurs at position j
 - Rank the structure according to:

 - This implies that the entries of the vectors are independent.

Rosetta Fragment Libraries

- 25-200 fragments for each 3 and 9 residue sequence window
- Selected from database of known structures
 - > 2.5Å resolution
 - < 50% sequence identity
- Ranked by sequence similarity and similarity of predicted and known secondary structure

Search Strategy

- Reduce the Search Space
- Design Better Search Strategies

Scoring Function

- Ideal energy function
 - Has a clear minimum in the native structure.
 - Has a clear path towards the minimum.
 - Global optimization algorithm should find the native structure.

Rosetta Potential Function

- Derived from Bayesian treatment of residue distributions in known protein structures
- Reduced representation of protein used; one centroid per sidechain
- Potential Terms:
 environment (solvation)
 pairwise interactions
 (electostatics)
 strand pairing
 radius of gyration
 Cβ density
 steric overlap

Decoy Discrimination: Identifying the Best Structure

- 1000-100,000 short simulations to generate a population of 'decoys'
- Filter population to correct systematic biases
- Fullatom potential functions to select the deepest energy minimum
- Cluster analysis to select the broadest minimum
- Structure-structure matches to database of known structures

The Rosetta Scoring Function

P(structure|sequence) ∝ P(sequence|structure) × P(structure)

Sequence dependent:

- hydrophobic burial
- residue pair interaction

Sequence independent:

- helix-strand packing
- strand-strand packing
- sheet configurations
- vdW interactions

The Sequence Dependent Term

$$\begin{split} &P(aa_1,\ldots,aa_n|X) = \\ &\prod_i P(aa_i|X) \times \\ &\prod_{i < j} \frac{P(aa_i,aa_j|X)}{P(aa_i|X)P(aa_j|X)} \times \\ &\prod_{i < j} \frac{P(aa_i,aa_j,aa_k|X)}{P(aa_i,aa_j,aa_k|X)P(aa_i|X)P(aa_j|X)P(aa_k|X)} \times \\ &\prod_{i < j < k} \frac{P(aa_i,aa_j,aa_k|X)P(aa_i,aa_k|X)P(aa_j,aa_k|X)}{P(aa_i,aa_j|X)P(aa_i,aa_k|X)P(aa_j,aa_k|X)} \times \\ &\dots \end{split}$$

The Sequence Dependent Term

 $P(\text{sequence}|\text{structure}) \approx P_{\text{env}} \times P_{\text{pair}}$

$$\begin{split} \mathsf{P}_{\mathsf{env}} &= \prod_{i} \mathsf{P}(\mathsf{aa}_i | \mathsf{E}_i) \\ \mathsf{P}_{\mathsf{pair}} &= \prod_{i < j} \frac{\mathsf{P}(\mathsf{aa}_i, \mathsf{aa}_j | \mathsf{E}_i, \mathsf{E}_j, \mathsf{r}_{ij})}{\mathsf{P}(\mathsf{aa}_i | \mathsf{E}_i, \mathsf{r}_{ij}) \mathsf{P}(\mathsf{aa}_j | \mathsf{E}_j, \mathsf{r}_{ij})} \end{split}$$

The Sequence Independent Term

 $P(\phi, \theta | r, sep) \times P(hb | r, sep) \times P(\sigma | r, sep) \times P(r | sep)$

vector representation

The Model

$$\mathsf{P}(\mathsf{structure}) = \mathsf{P}_{\mathsf{A}}^{w_{\mathsf{A}}} \mathsf{P}_{\mathsf{B}}^{w_{\mathsf{B}}} \mathsf{P}_{\mathsf{C}}^{w_{\mathsf{C}}}, \quad w_{\mathsf{X}} > 0.$$

- log P(structure|sequence) ∞
- log P(sequence|structure) log P(structure)

$$\begin{split} \mathsf{g}(\mathsf{rmsd}) &= w_{\mathsf{protein}} + w_{\mathsf{HS}} \log \mathsf{P}_{\mathsf{HS}} + w_{\mathsf{SS}} \log \mathsf{P}_{\mathsf{SS}} + w_{\mathsf{VdW}} \, \mathsf{VdW} \, + \\ & w_{\mathsf{sheet}} \log \mathsf{P}_{\mathsf{sheet}} + w_{\mathsf{seq}} \, \left(\log \mathsf{P}_{\mathsf{env}} + \log \mathsf{P}_{\mathsf{pair}} \right) \end{split}$$

Search Strategy

- Requirement
 - Identify the native structure easily
 - Filter out those non-native ones
 - Eliminate the non-native candidates as early as possible
 - Jumping out from the local minimum
 - No repetitions
 - **.** . . .
- Search Strategies
 - Taboo search, simulated annealing, genetic algorithms, multi-agent, ...

ROSETTA search algorithm Monte Carlo/Simulated Annealing

- Structures are assembled from fragments by:
 - Begin with a fully extended chain
 - Randomly replace the conformation of one 9 residue segment with the conformation of one of its neighbors in the library
 - Evaluate the move: Accept or reject based on an energy function
 - Make another random move, tabu list is built to forbidden some local minimums
 - After a prescribed number of cycles, switch to 3-residue fragment moves

A Filter for Bad β-Sheets

Many decoys do not have proper sheets. Filtering those out seems to enhance the rmsd distribution in the decoy set. Bad features we see in decoys include:

- No strands,
- Single strands,
- Too many neighbors,
- Single strand in sheets,
- Bad dot-product,
- False sheet type (barrel),

ROSETTA Obstacles & Enhancements

- generate lots of unrealistic decoys
 - Filter based on contact order
 - quality of β-sheets
 - poor packing
- large search space
 - Bias fragment picking by predicted secondary structure, faster computational algorithms
- low confidence in the result
 - Fold many homologs of the target, cluster the answers, report the cluster with highest occupancy

Our Works

- Build Fragment Libraries (on the way)
 - More comprehensive library
 - Better method to pick up local structures
- More accurate energy functions to identify native structures (on the way, joint work with Xin, Gao, and Dongbo, Bu)
 - Systematic ways to build a promising energy function
- Better search strategies
 - Just have some initial ideas.