

Departamento de Ciencias de la Computación y Tecnologías de Información Universidad del Bío-Bío Sede Chillán

Bases de Datos Normalización de Esquemas

Ma Angélica Caro Gutiérrez

http://www.face.ubiobio.cl/~mcaro/

mcaro@ubiobio.cl

Normalización

- Introducción al refinamiento de esquemas
 - Dependencias Funcionales (DFs)
 - Razonamiento sobre DFs
 - Dependencias Multivaluadas, de Proyección y Unión

Estructuración de la Información:

- Diseño de la BD -> Esquema Relacional
- El diseño busca establecer la mejor manera de organizar la información.

Aspectos que caracterizan un diseño

- Creativo
- Basado en la experiencia (conocimiento previo)
- Se aprende haciendo
- Importante seguir un cierto método de trabajo

Estructuración de la Información:

- PRINCIPIOS BÁSICOS de cualquier diseño
- Ley del mínimo esfuerzo
 - Lo bueno, si es breve, dos veces bueno.
 - Entre dos opciones correctas, elegir la más simple.
- Factor de Escala
 - La dificultad crece de forma exponencial al crecer el tamaño.
 - Metáfora del edificio: construir un cerco, un muro, una casa, un edificio de 3 pisos, una torre.

Objetivos de la estructuración:

Evitar redundancias

- Duplicidad: repetición de un mismo dato.
- Redundancia: duplicidad innecesaria.
- Fuente de inconsistencias al poder tener varios valores diferentes para un mismo dato.
- Dificultan las consultas y actualizaciones.

Evitar valores desconocidos (nulos).

- Difíciles de manejar por las personas.
- Producen paradojas lógicas en los computadores.

Facilitar el manejo de los datos.

Futuras consultas y modificaciones.

Problemas de un mal diseño, ejemplo:

- Resumiendo, algunos problemas que se pueden presentar por un mal diseño:
 - Incapacidad de almacenar ciertos hechos
 - Redundancias, i.e., posibilidad de incoherencias
 - Ambigüedades
 - Pérdida de información
 - Pérdida de dependencias funcionales, i.e., de ciertas restricciones de integridad (interdependencias entre los datos).
 - Aparición en la BD de estados no válidos en el mundo real.

- La teoría de la normalización
 - Consiste en obtener esquemas relacionales que cumplan unas determinadas condiciones, y se centra en lo que se conoce como <u>formas normales</u>.
 - Existen 5 formas normales: 1FN, 2FN, 3FN (Codd) y FNBC, 4FN y 5FN (Fagin).
 - Se basa en ciertas restricciones definidas sobre los atributos de una relación, las cuales se conocen como <u>dependencias</u>:
 - 1FN, 2FN, 3FN y FNBC -> dependencias funcionales
 - 4FN -> dependencias multivaluadas
 - 5FN -> dependencias de proyección-combinación

Primera forma normal (1FN)

- Es una restricción inherente al modelo relacional
- Prohíbe los atributos multivaluados, compuestos o combinaciones
- El Dominio de un atributo debe incluir sólo valores atómicos

Primera forma normal (1FN): Ejemplo

NO	MBRED	NUMEROD	NSS_JEFED	LOCALIZACIONES	No
Inv	estigación	5	333445555	{ Bellaire, Sugarland, Houston}	está
Adı	ministración	4	987654321	{ Stafford}	en
Dir	ección	1	88665555	{ Houston}	1FN

NOMBRED	NUMEROD	NSS_JEFED	LOCALIZACIONES			
Investigación	5	333445555	Bellaire		Si	
Investigación	5	333445555	Sugarland		está	0 0
Investigación	5	333445555	Houston		en	
Administración	4	987654321	Stafford		1FN	
Dirección	1	88665555	Houston			

Segunda forma normal (2FN)

- Está en 1FN
- Todos los atributos que no forman parte de alguna clave candidata dependen completamente de la clave (y no de parte de la clave)

Segunda forma normal (2FN): Ejemplo

- Sea el esquema:
 - PRESTAMOS(numSocio, nombreSocio, codLibro, fechaPrestamo, editorial, país)

- claves candidatas:
 - (numSocio, codLibro)
 - (nombreSocio, codLibro)
- Solución (2FN)
 - PRESTAMO1(numSocio, nombreSocio, codLibro, fechaPrestamo)
 - LIBROS(codLibro, editorial, país)

Tercera forma normal (3FN)

- Está en 2FN
- Todo atributo que no pertenece a alguna clave candidata depende de la clave y sólo de la clave candidata y no de otros atributos.

- Tercera forma normal (3FN): Ejemplo
 - PRESTAMO1(numSocio, nombreSocio, codLibro, (22) fechaPrestamo)

LIBROS(codLibro, editorial, país)

No está en 3FN, ya que país depende de editorial

Solución en 3FN:

- LIBROS1(codLibro, editorial)
- EDITORIALES(editorial, país)

Forma normal de Boyce y Codd (FNBC)

- Una relación está en FNBC si y sólo si cada atributo depende de una clave candidata.
- La FNBC es una redefinición más estricta de la 3FN.
- Sólo pueden existir dependencias entre cada atributo no clave y una clave candidata.

Forma normal de Boyce y Codd (FNBC)

- Ejemplo:
 - PRESTAMO1(numSocio, nombreSocio, codLibro, fechaPrestamo)
 - No está en FNBC ya que se presenta la anomalía que numSocio y nombreSocio se repiten innecesariamente por cada libro, y además existe dependencia entre ellas.
- Solución en 3FN:
- SOCIOS(numSocio, nombreSocio)
- PRESTAMO2(numSocio, codLibro, fechaPrestamo)

Forma normal de Boyce y Codd (FNBC)

- De esta forma la relación:
 - PRESTAMOS(numSocio, nombreSocio, codLibro, fechaPrestamo, editorial, país)
- se descompone en las relaciones en FNBC:
 - LIBROS1(codLibro, editorial)
 - EDITORIALES(editorial, país)
 - SOCIOS(numSocio, nombreSocio)
 - PRESTAMOS2(numSocio, codLibro, fechaPrestamo)

Noción intuitiva de las Formas Normales

Unidad 6: Normalización

Introducción al refinamiento de esquemas

- Dependencias Funcionales (DFs)
 - Razonamiento sobre DFs
 - Dependencias Multivaluadas, de Proyección y Unión

Dependencias Funcionales (DFs)

- Las dependencias constituyen una parte importante de la semántica del "negocio" y deben ser incluidas en los esquemas de relación.
- Así, un esquema de una relación será:
 - R(A,DEP)
 - donde A es el conjunto de atributos y DEP es el conjunto de todo tipo de dependencias que existen entre los atributos.
- Primero estudiaremos las dependencias funcionales (dfs), es decir: R(A,DF).

Definiendo dependencia funcional

- Las dfs son un tipo especial de dependencias, el más extendido, y está relacionado con las tres primeras formas normales.
- Sea el esquema R definido sobre el conjunto de atributos A y sean X e Y subconjuntos de A llamados descriptores. Se dice que Y depende funcionalmente de X o que X determina o implica a Y lo que se denota por:

$$X \rightarrow Y$$

si y, sólo si, cada valor de X tiene asociado en todo momento un único valor de Y.

Definiendo dependencia funcional

- Ejemplo:
 - codLibro → titulo
 - numSocio → nombre, domicilio, telefono
 - (codLibro, numSocio) → fechaPrestamo, fechaDev
 - ¿Otros ejemplos?

Definiendo dependencia funcional

- Una dependencia funcional (DF) es una restricción de integridad que generaliza el concepto de clave.
- Sea R el esquema de una relación y sean X, Y conjuntos no vacíos de atributos de R. Se dice que una instancia r de R satisface la DF X → Y si para cada par de tuplas t₁ y t₂ en r se cumple:

Si
$$t_1.X = t_2.X$$
, entonces $t_1.Y = t_2.Y$

donde t₁.X es la proyección de los atributos X en la tupla t₁

Definiendo dependencia funcional

- En otras palabras, X → Y indica básicamente que si dos tuplas de r coinciden en el valor de los atributos de X, también deben coincidir en el valor de los atributos de Y.
- Ejemplo: La siguiente relación satisface la DF AB → C:
- Si se inserta la tupla $\langle a_1, b_1, c_2, d_1 \rangle$ a r , entonces r no satisface la DF.
- Las dos primeras tuplas muestran que las DF no son lo mismo que las restricciones de claves: es evidente que AB no es clave de la relación

Definiendo dependencia funcional

■ Ejercicio: Dada la relación que satisface la DF AB → C:

Α	В	С	D
a ₁	<i>b</i> ₁	<i>c</i> ₁	d_1
a ₁	b_1	C ₁	d_2
a ₁	b_2	<i>C</i> ₂	d_1
a 2	<i>b</i> ₁	<i>C</i> 3	<i>d</i> ₁

- Dar un ejemplo de una tupla que satisfaga AB → C
- ¿Se cumple la DF A → B? ¿Porqué?
- De un ejemplo de otra DF que se cumpla en r.