Inference & Representation

DS-GA 1005, Fall 2023 Lecture 1, Course Overview

Logistics

- Office Hours, Wed 12:00-13:00, 60 5th Ave Room 600
- TA: Aiqing Li, Office Hours TBA
- Web resources
 - Notion: Lecture notes, schedule, syllabus
 - Brightspace: HW upload, grades
 - Ed Discussion: Q&A
- Grading: 30% Homework (4 assignments), 30% mid-term, 40% final project

Probabilistic Models: Toy Example

- Consider a medical diagnosis system
- Each patient fills out a questionnaire with symptoms:

coughing
$$\textcircled{\ \ }$$
 , chest pains $\textcircled{\ \ \ \ }$, muscle aches $\textcircled{\ \ \ \ \ }$, fever $\textcircled{\ \ \ \ }$, ...
$$X_1 \qquad X_2 \qquad X_3 \qquad X_4 \qquad X_N \in \{0,1\}^N$$

Then there are possible conditions:

asthma, seasonal flu, covid-19,...

$$X_{N+1}$$

$$X_{N+2}$$

$$X_{N+3}$$

$$X_{N+1}$$
 X_{N+2} X_{N+3} $X_{N+M} \in \{0,1\}^M$

. Denote
$$d=M+N$$
 and define $\mathscr{F}=\left\{f\colon \mathbb{H}_d\to [0,1]\mid \Sigma_{\mathbf{x}\in\mathbb{H}_d}f(\mathbf{x})=1\right\}$

Probabilistic Inference: Toy Example

•
$$\mathscr{F}=\left\{f\colon \mathbb{H}_d \to [0,1] \mid \Sigma_{\mathbf{x}\in\mathbb{H}_d} f(\mathbf{x})=1\right\}$$
 is the set of **all** possible probability distributions over $\mathbb{H}_d=\{0,1\}^d$

- Diagnosis example: $f(\mathbf{x})$ is the probability of observing a patient with certain symptoms and conditions
- We will explore several questions about learning and using such models

Statistical Questions

- How to define useful models in \mathscr{F} ?
- How to estimate (learn) models from data?
 - Given a sample $\{\mathbf x_i\}_{i=1}^m$, how do we estimate $P(X_1,\dots,X_d)$?
- What can we say about estimation error of a model as a function of the sample size? (sample complexity)
- What can we do with these models once they are trained? (inference)
 - E.g. can we retrieve $P(Asthma = 1 \mid X_1 = x_1, ..., X_N = x_n)$?

Computational Questions

- Algorithms for estimating model parameters (learning)
 - Given a sample $\{\mathbf{x}_i\}_{i=1}^m$, what are computationally efficient algorithms for estimating $P(X_1, ..., X_d)$?
- Algorithms for querying probabilistic models (inference)
 - How to compute $P(Asthma = 1 | X_1 = x_1, ..., X_N = x_n)$?

The Curse of Dimensionality

- The space ${\mathcal F}$ of all possible distributions has 2^d-1 free parameters
- Statistical question: How can we estimate the correct distribution $P \in \mathcal{F}$ from a dataset $\{\mathbf{x}_i\}_{i=1}^m$ sampled i.i.d from P?
 - **Example:** consider a "brute-force" approach of estimating all parameters of a multinomial model over \mathbb{H}_d
 - *Multinomial model:* denoting $K=2^d$, we have to estimate the parameters $\boldsymbol{\theta}=[\theta_1,...,\theta_K]$, which must satisfy $\theta_i\in[0,1]\ \forall j\in[K]$ and $\Sigma_{i=1}^K\theta_i=1$

Estimating Multinomial Model with Maximum Likelihood

- Input: dataset $D = \{\mathbf{x}_i\}_{i=1}^m$ sampled i.i.d from P
- Output: model $f_{\hat{\theta}} \in \mathcal{F}$ where $f_{\hat{\theta}}(\mathbf{y}_j) := \hat{\theta}_j \approx \theta_j^* := P(\mathbf{x} = \mathbf{y}_j)$
 - We enumerate $\mathbb{H}_d = \{\mathbf{y}_1, ..., \mathbf{y}_K\}$ (where $K = 2^d$)
- Estimate using MLE: $\hat{\theta}_j = m^{-1} \Sigma_{i=1}^m \mathbf{1}[\mathbf{x}_i = \mathbf{y}_j]$
- Question: How large does m need to be?

To (roughly) quantify this we need a target error $\mathbb{E}_{D\sim P^m} \frac{\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^*\|^2}{\|\boldsymbol{\theta}^*\|^2} \leq \varepsilon$

The Curse of Dimensionality

$$\hat{\theta}_j = m^{-1} \sum_{i=1}^m \mathbf{1}[\mathbf{x}_i = \mathbf{y}_j] \qquad \text{Define RVs } z_j = \mathbf{1}[\mathbf{x} = \mathbf{y}_j] \quad \forall \mathbf{y}_j \in \mathbb{H}_d$$

$$z_j \sim \text{Ber}(\theta_j^*) \Rightarrow \mathbb{E}_P[z_j] = \theta_j^*, \text{Var}(z_j) = \theta_j^*(1 - \theta_j^*)$$

Let us calculate the expected distance:

$$\mathbb{E}_{D \sim P^m}[\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|^2] = \mathbb{E}_{D \sim P^m} \sum_j (\hat{\theta}_j - \theta_j^*)^2 = \sum_j \mathbb{E}(\hat{\theta}_j - \theta_j^*)^2 = \sum_j \operatorname{Var}(\hat{\theta}_j) = \sum_j m^{-1}\theta_j^* (1 - \theta_j^*)$$

$$\mathbb{E}[\hat{\theta}] = \boldsymbol{\theta}^*$$

Then expected error is:

$$\mathbb{E}_{D \sim P^m} \left[\frac{\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|^2}{\|\boldsymbol{\theta}^*\|^2} \right] = \frac{\sum_j \theta_j^* - \|\boldsymbol{\theta}^*\|^2}{m\|\boldsymbol{\theta}^*\|^2} = m^{-1} \left(\|\boldsymbol{\theta}^*\|^{-2} - 1 \right) \approx m^{-1} K = m^{-1} 2^d$$

$$\sum_j \theta_j^* = 1 \qquad \qquad \|\boldsymbol{\theta}^*\| \approx K^{-1/2} \text{ for "generic" } \boldsymbol{\theta}^*$$

The Curse of Dimensionality

$$\mathbb{E}_{D \sim P^m} \left[\frac{\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|^2}{\|\boldsymbol{\theta}^*\|^2} \right] \approx m^{-1} 2^d$$

Conclusion:

- The multinomial model is "cursed by dimension"
- To work in high dimensions, simplifying assumptions must be made
- How can we incorporate structure into probabilistic models?

Structure in Probabilistic Models

Example: we wish to estimate P(Illness, Cough, Fatigue) := P(I, C, F)

- Illness $\in \{Asthma, Flu, ...\}$, Cough $\in \{0,1\}$, Fatigue $\in \{0,1\}$
- Chain rule: $P(I, C, F) = P(I)P(C \mid I)P(F \mid C, I)$
- Assumption: if we know the type of illness, then coughing and fever are independent

$$P(I, C, F) = P(I)P(C \mid I)P(F \mid I)$$

• Consequence: fewer parameters to estimate

Structure in Probabilistic Models

More generally, if we have d variables X_1, \ldots, X_d

- Chain rule: $P(X_1, ..., X_d) = P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_1, X_2)...P(X_d \mid X_1, ..., X_{d-1})$
- Still suffers from the curse of dimensionality
- But what if we can drop some of the conditioning variables?
 - Corresponds to conditional independence relationships $X_i \perp \!\!\! \perp X_j \mid X_k$
- *Example*: Markov process $X_1, ..., X_T$, such that $X_{t+1} \perp \!\!\! \perp X_1, ... X_{t-1} \mid X_t$. Future is independent of past, given the present

Probabilistic Graphical Models

- Conditional independence relations can be encoded by graphs
- Random Variable ~ Vertex in graph
- Edges ~ factorization of joint distribution

 Probabilistic graphical models formalize this and leverage graph-theoretic algorithms for the purpose on inference and learning

Birdseye View of Course

- We will study 3 major families of distributions
 - Mixture models / Latent variable models
 - Gibbs distributions
 - Implicit models

Mixture Models / Latent Variables Models

Mixture models / Latent variable models

$$\mathbf{x} \in \mathbb{R}^d \qquad p(\mathbf{x}) = \int_{\Omega} p_{\theta}(\mathbf{x} \mid z) p_{\beta}(z) dz$$

- Linear combination of templates $p(\mathbf{x} \mid z)$
- Example: Gaussian Mixture Model,

$$p(\mathbf{x}) = \sum_{j=1}^{k} \alpha_j p(\mathbf{x} \mid z = j) \text{ and } p(\mathbf{x} \mid z = j) = \mathcal{N}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

Mixture Models / Latent Variables Models

• Example: Gaussian Mixture Model,

$$p(\mathbf{x}) = \sum_{j=1}^{\kappa} \alpha_j p(\mathbf{x} \mid z = j) \text{ and } p(\mathbf{x} \mid z = j) = \mathcal{N}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

• Parameters of the model: $\left\{\alpha_1,\ldots,\alpha_K,\mu_1,\ldots,\mu_K,\mathbf{\Sigma_1},\ldots,\mathbf{\Sigma}_k\right\}$

Gibbs Distributions

Gibbs or "Energy Based" models are distributions of the form

$$p(\mathbf{x}) = \frac{1}{Z} \exp\{-H(\mathbf{x})\}$$

- $H: \mathbb{R}^d \to \mathbb{R}$ is the energy function, Z is the partition function of $Z = \int \exp\{H(\mathbf{x})\}d\mathbf{x}$
- Gibbs/Boltzmann distributions originate in statistical physics
 - ullet H is modeling interactions between variables (cores. to undirected graphs)
 - Attractive statistical properties (exponential families), but computationally challenging to use (e.g. computing Z).

Implicit Models

- Implicit, or transport-based models specify the *transformation* from some variable $z \in \Omega$, of known distribution, to the variable of interest $x \in \mathcal{X}$
 - e.g. $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I}_{d_z})$ and $\mathbf{x} \in \mathbb{R}^d$ are images
 - $\mathbf{z} \sim \mu_0$; $\mathbf{x} = \phi(\mathbf{z}), \phi: \Omega \to \mathcal{X}$
 - Examples: in normalizing flows ϕ is a diffeomorphism, but ϕ can also be unstructured (e.g. GANs use neural nets for ϕ)

Diffusion Models

• Mix of Gibbs dist. and implicit models where ϕ is a "diffusion process"

Birdseye View of Course

Main questions we will study

- Computational aspects of learning and inference in these families of models
 - Emphasis: high-dimensional regime
- Computational and statistical tradeoffs
 - Focus on foundations and theory!
- Two basic problems: learning and inference

Learning Probabilistic Models

- Learning means fitting the parameters of a probabilistic model to data
- Example: When learning a Gaussian Mixture Model, a model $p_{m{ heta}}$ is specified by
 - Means $\mu_1, ..., \mu_k \in \mathbb{R}^d$
 - Covariance matrices $\Sigma_1, ..., \Sigma_K \in \mathbb{R}^{d \times d}$ (symmetric, positive semi-definite)
 - $\textbf{Mixture weights } \pmb{\alpha} \in \Delta^K \ (\alpha_j \geq 0, \, \Sigma_{j=1}^K \alpha_j = 1) \\ \pmb{\theta} = \left(\pmb{\alpha}, \, \{\pmb{\mu}_j, \pmb{\Sigma}_j\}_{j=1}^K \right) \text{ and } p_{\pmb{\theta}}(\mathbf{x}) = \sum_{i=1}^K \alpha_j q(\mathbf{x}; \pmb{\mu}_j, \pmb{\Sigma}_j)$
- Given a sample $\{x_i\}_{i=1}^m$, how do we find θ that best explains the data?

Learning Probabilistic Models

- Learning means fitting the parameters of a probabilistic model to data
- Example: When learning a Gaussian Mixture Model, a model $p_{ heta}$ is specified by

$$\boldsymbol{\theta} = \left(\boldsymbol{\alpha}, \{\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j\}_{j=1}^K\right)$$
 and $p(\mathbf{x}; \boldsymbol{\theta}) = \sum_{j=1}^K \alpha_j q(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$

- Given a sample $\{x_i\}_{i=1}^m$, how do we find θ that best explains the data?
 - "Classic" solution is to use Maximum Likelihood Estimation (MLE):

$$\max_{\boldsymbol{\theta}} \frac{1}{m} \sum_{i=1}^{m} \log p(\mathbf{x}_i; \boldsymbol{\theta})$$

• Given a model of the joint distribution $P(X_1, ..., X_d)$, answer a query about a subset of the variables

•
$$P(X_1, X_2 \mid X_3 = x_3, ..., X_d = x_d)$$

- $\max_{x_1, x_2} P(X_1 = x_1, X_2 = x_2 \mid X_3 = x_3, \dots, X_d = x_d)$
- Example: Recall our P(Illness, Cough, Fever) := P(I, C, F) model. Assume **we know** the values of all joint probabilities P(I = k, C = c, F = f), for $k \in [K], c \in \{0,1\}, f \in \{0,1\}$.

- Given a model of the joint distribution $P(X_1, ..., X_d)$, answer a query about a subset of the variables
- Example: Recall our P(Illness, Cough, Fatigue) := P(I, C, F)s model. Assume **we know** the values of all joint probabilities P(I = k, C = c, F = f), for $k \in [K], c \in \{0,1\}, f \in \{0,1\}$.
 - How do we calculate $P(I \mid C = 1)$? Easy: $P(I \mid C = 1) = \frac{P(I, C = 1)}{P(C = 1)} = \frac{\sum_{f \in \{0,1\}} P(I, C = 1, f = f)}{\sum_{f,c \in \{0,1\}^2} P(I, C = c, f = f)}$
 - But what if we have d other symptoms and not only F? summing 4 numbers

summing 2 numbers

- Example: Assume we know the values of all joint probabilities $P(I = k, C = c, S = \mathbf{s})$, for $k \in [K], c \in \{0,1\}, \mathbf{s} \in \{0,1\}^d$.
 - How do we calculate $P(I \mid C = 1)$?
 - $S = \{ \text{Fever, Muscle Pain}, \dots \}$

-summing 2^d numbers

$$P(I \mid C = 1) = \frac{P(I, C = 1)}{P(C = 1)} = \frac{\sum_{\mathbf{s} \in \{0, 1\}^d} P(I, C = 1, S = \mathbf{s})}{\sum_{\mathbf{s} \in \{0, 1\}^d, c \in \{0, 1\}} P(I, C = c, S = \mathbf{s})}$$

• When and how can we avoid the exponential blowup? summing 2^{d+1} numbers

- Example 2: Stochastic block models
 - Probabilistic models that generate random graphs
- Z_1, Z_2, \ldots, Z_d variables for each node in the graph, stands for membership in a community (a.k.a "block")
- Edges, $E = \{E_{ij}\}_{(i,j) \in [d] \times [d]}$, also binary variables such that

$$P(E_{ij} = 1) = \begin{cases} p & Z_i = Z_j \\ q & Z_i \neq Z_j \end{cases}$$

- $Z_1, Z_2, ..., Z_d$ variables for each node in the graph, stands for membership in a community (a.k.a "block")
- Edges, $E = \{E_{ij}\}_{(i,j)\in[d]\times[d]}$, also binary variables such that

$$P(E_{ij} = 1) = \begin{cases} p & Z_i = Z_j \\ q & Z_i \neq Z_j \end{cases}$$

• Inference problem: calculate

$$P(Z_i \mid E = \mathbf{e}) \quad \forall i \in [d]$$

- $Z_1, Z_2, ..., Z_d$ variables for each node in the graph, stands for membership in a community (a.k.a "block")
- Edges, $E = \{E_{ij}\}_{(i,j) \in [d] \times [d]}$, also binary variables such that

$$P(E_{ij} = 1) = \begin{cases} p & Z_i = Z_j \\ q & Z_i \neq Z_j \end{cases}$$

• Inference problem: calculate

$$P(Z_i \mid E = \mathbf{e}) \quad \forall i \in [d]$$

Solution Approaches for Learning and Inference

- Variational Inference: Relies on connection between learning/inference and optimization
- Sampling-Based Methods: Relies on the concentration of empirical estimates (Law of Large Numbers, Central Limit Theorem etc.)
 - Elementary example: assume we would like to compute $\theta = \mathbb{E}_{x \sim q} \left[f(\mathbf{x}) \right]$
 - Monte-Carlo estimator: given data $\left\{\mathbf{x}_i\right\}_{i=1}^L$ sampled i.i.d from q, estimate

$$\hat{\theta} = \frac{1}{L} \sum_{l=1}^{L} f(x_l)$$

Course Plan

- Gaussian Estimation (lecture 2)
- Probabilistic Graphical Models (lectures 3-4)
- Variational Inference + Intro to Causality (lectures 5-7)
- Midterm
- Sampling-based Methods (lectures 8-10)
- Optimal Transport and Implicit Models (lecture 11)
- Score-based Models, Diffusion Models (lecture 12)