Lista 4

Arruti, Sergio, Jesús

Ej 48. Sea $F \in Mod(R)$ un R-módulo libre con base X y $f: X \to N$ una función, con $N \in Mod(R)$. Entonces $\exists ! \ \overline{f}: F \to N \in Mod(R)$ tal que $\overline{f}|_X = f$.

 $\begin{array}{l} \textit{Demostraci\'on}. \ \ \text{Dado que } X \text{ es base de } F \text{ se tiene que } F = \bigoplus_{x \in X} Rx \text{ y as\'acada } a \in F \text{ se descompone de forma \'unica en } \sum_{x \in X} Rx \text{ como } a = \sum_{x \in X_a} r_x x, \\ \text{con } X_a \subseteq X \text{ finito y } r_x \in R; \text{ por lo tanto la aplicaci\'on} \end{array}$

$$\overline{f}: F \to N$$

$$a \mapsto \sum_{x \in X_a} r_x f(x)$$

es una función bien definida. Sean $r \in R$ y $m,n \in F$, con $\sum_{x \in X_m} r_x x$, $\sum_{x \in X_n} s_x x, \; X' := X_m \cup X_n \; y$

$$r_x = 0$$
, si $x \in X' \setminus X_m$,
 $s_x = 0$, si $x \in X' \setminus X_n$, (*)

entonces, por la unicidad de la descomposición en $\sum_{x\in X}Rx$, la descomposición de ra+b es $\sum_{x\in X'}(rr_x+s_x)x$. Así

$$\overline{f}(ra+b) = \sum_{x \in X'} (rr_x + s_x) f(x)$$

$$= \sum_{x \in X'} (rr_x) f(x) + \sum_{x \in X'} s_x f(x)$$

$$= r \sum_{x \in X_m} r_x f(x) + \sum_{x \in X_n} s_x f(x), \qquad (*)$$

$$= r \overline{f}(a) + \overline{f}(b).$$

$$\Longrightarrow \overline{f}: F \to N \in Mod(R).$$

Sea $x \in X,$ entonces la descomposición de x en $\sum_{x \in X} Rx$ es $1_R x,$ con lo

cual

$$\overline{f}(x) = \sum_{x \in \{x\}} 1_R f(x)$$
$$= f(x).$$
$$\implies \overline{f}|_X = f.$$

Finalmente, sea $g: F \to N$ un morfismo de R-módulos tal que $g|_X = f$ y $a \in F$. Se tiene lo siguiente:

$$g(a) = g\left(\sum_{x \in X_a} r_x x\right)$$

$$= \sum_{x \in X_a} r_x g(x)$$

$$= \sum_{x \in X_a} r_x f(x)$$

$$= \overline{f}(x).$$

$$\Longrightarrow g = \overline{f}.$$

Ej 49. Sean $M \in Mod(R)$ y $X \subseteq M$. Considere el morfismo de R-módulos $\overline{\varepsilon}_{X,M}: F(X) \longrightarrow M$, dado por $\overline{\varepsilon}_{X,M}\left(\{t_x\}_{x \in X}\right) = \Sigma_{x \in X}t_xx$. Note que la composición $X \xrightarrow{\varepsilon_x} F(X) \xrightarrow{\overline{\varepsilon}_{X,M}} M$ coincide con la inclusión $X \subseteq M$. Pruebe que:

- a) $im(\overline{\varepsilon}_{X,M}) = \langle x \rangle_R$
- b) $M = \langle x \rangle_R \Leftrightarrow \overline{\varepsilon}_{X,M}$ es un epimorfismo.
- c) X es R-linealmente independiente $\Leftrightarrow \overline{\varepsilon}_{X,M}$ es un monomorfismo.
- d) X es una R-base $\Leftrightarrow \overline{\varepsilon}_{X,M}$ es un isomorfismo.

 $\begin{array}{ll} \textit{Demostraci\'on.} \ \ \overline{\text{a}} \ \ \text{Primero, como} \ \langle x \rangle_R \ \text{es un subm\'odulo de } M, \ \text{se tiene} \\ \text{que } \textit{im} \ (\overline{\varepsilon}_{X,M}) \subseteq \langle x \rangle_R. \ \text{Por otro lado, sea} \ m \in \langle x \rangle_R. \ \text{Entonces} \ m \ \text{tiene} \\ \text{una descomposici\'on} \ m = \Sigma_{x \in X} t_x x, \ \text{donde} \ t_x \in F(X). \ \text{En consecuencia,} \\ \overline{\varepsilon}_{X,M} \ \big(\{t_x\}_{x \in X}\big) = \Sigma_{x \in X} t_x x = m. \ \therefore \ \textit{im} \ (\overline{\varepsilon}_{X,M}) = \langle x \rangle_R \end{array}$

(b) Este inciso se deduce del anterior. $M=\langle x\rangle_R\Leftrightarrow M=im\left(\overline{\varepsilon}_{X,M}\right)\Leftrightarrow \overline{\varepsilon}_{X,M}$ es un epimorfismo.

(c) \Rightarrow Suponga que $\{t_x\}_{x\in X} \in Ker(\bar{\varepsilon}_{X,M})$. De modo que $\Sigma_{x\in X}t_xx = \bar{\varepsilon}_{X,M}(\{t_x\}_{x\in X}) = 0$. Dado que X es R-linealmente independiente, para

cada $x \in X$, $t_x = 0$. Por tanto, $Ker(\overline{\varepsilon}_{X,M}) = 0$. $\therefore \overline{\varepsilon}_{X,M}$ es monomorfismo.

 \Leftarrow) Sean $x_1,...,x_n \in X$ y $r_{x_1},...r_{x_n} \in R$ tales que $\sum_{k=1}^n r_{x_k} x_k = 0$. $\overline{\text{Completamos}}$ a un elemento de F(X) como $r_x = 0$, con $x \notin \{x_1, ..., x_n\}$. Con lo cual tenemos que:

$$\overline{\varepsilon}_{X,M} \left(\{ r_x \}_{x \in X} \right) = \sum_{x \in X} r_x x$$

$$= \sum_{k=1}^n r_{x_k} x_k$$

$$= 0$$

Entonces $\{r\} xX \in Ker(\overline{\varepsilon}_{X,M}) = 0$. Por tanto, $r_{x_1} = ... = r_{x_n} = 0$. $\therefore X$ es R-linealmente independiente.

(d) Este resultado se concluye de los anteriores. En efecto,

 $\overline{\varepsilon}_{X,M}$ es un isomorfismo $\Leftrightarrow \overline{\varepsilon}_{X,M}$ es un epimorfismo y monomorfismo $\Leftrightarrow M = im(\overline{\varepsilon}_{X,M}) \ y \ X \ es \ R - l.i.$

 $\Leftrightarrow X \ es \ una \ R-base.$

Ej 50. Sean $f: B \to C$ en Mod(R) y $g: B \longrightarrow B$ tales que fg = f. Pruebe que: $g: f \longrightarrow f$ es un isomorfismo en Mod(R)/C si y sólo si $g: B \longrightarrow B$ es un isomorismo en Mod(R).

Demostración. $g: f \longrightarrow f$ es un isomorfismo en Mod(R)/C

 $\iff \exists g^{-1} \colon f \longrightarrow f \text{ tal que } g^{-1}g = 1_f \text{ y } gg^{-1} = 1_f$ $\iff \exists g^{-1} \colon f \longrightarrow f \text{ tal que } g^{-1}g = Id_B \text{ y } gg^{-1} = Id_B$ $\iff \exists g^{-1} \in \text{Hom}_R(B, B) \text{ tal que } g^{-1}g = Id_B, gg^{-1} = Id_B \text{y } f = fg^{-1}$ $\iff g \colon B \longrightarrow B \text{ es isomorfismo en } Mod(R) \text{ tal que } fg = f.$

Ej 51. Sea $C \in Mod\left(Mod\left(R\right)\right)$ y ~ una relación en $Obj\left(Mod\left(R\right)\middle/C\right)$ dada por

$$f \sim f' \iff Hom(f, f') \neq \emptyset \neq Hom(f', f).$$

Entonces \sim es un relación de equivalencia en $Obj\left(Mod\left(R\right) _{C}\right) .$

Demostración. Reflexividad Sea $f: A \to C \in Obj(Mod(R)/C)$. Notemos que $Id_A \in Hom_R(A, A)$ y $f \circ Id_A = f$, así $Id_a \in Hom(f, f)$ y por lo tanto $Hom(f, f) \neq \emptyset$.

Simetría

$$f \sim f' \iff Hom(f, f') \neq \varnothing \neq Hom(f', f)$$

$$\iff Hom(f', f) \neq \varnothing \neq Hom(f, f')$$

$$\iff f' \sim f.$$

Transitividad Sean $f: A \to C, g: A' \to C, h: B \to C \in Obj (Mod(R)/C)$ tales que $f \sim g$ y $g \sim h$. De la definición de \sim se sigue que $\exists p \in Hom_R(A, A'), q \in Hom_R(A', A), p' \in Hom_R(A', B), q' \in Hom_R(B, A')$ tales que

$$gp = f$$

$$fq = g.$$
(*)

$$hp' = g$$

$$gq' = h.$$
(**)

Así $p'p \in Hom_R(A, B), qq' \in Hom_R(B, A)$ y

$$h(p'p) = f$$
$$f(qq') = h,$$
$$\therefore f \sim h.$$

Ej 52. Sean $\psi: B' \longrightarrow B$ un isomorfismo y $f: B \longrightarrow C$ es Mod(R). Pruebe que: Si f es minimal a derecha, entonces $f \circ \psi: B' \longrightarrow C$ es minimal a derecha.

Demostración. Sea $g: f \circ \psi \longrightarrow f \circ \psi$ un morfismo en Mod(R)/C. Entonces, por el **ejercicio 50.**, $g: B' \longrightarrow B'$ es un homomorfismo en Mod(R). Más aún, $\psi \circ g: B' \longrightarrow B$ también es un homomorfismo. Dado que f es minimal a derecha, se tiene que $\psi \circ g$ es un isomorfismo en Mod(R). En virtud de que ψ es un isomorfismo, $g: B' \longrightarrow B'$ es un isomorfismo en Mod(R). Aplicando el **ejercicio 50.**, se tiene que $g: f \circ \psi \longrightarrow f \circ \psi$ es un isomorfismo. $f \circ \psi$ es minimal a derecha.

Ej 53. Sean $M \xrightarrow{f} N \xrightarrow{f'} M$ en Mod(R) tal que $ff' = 1_N$. Pruebe que $M = Ker(f) \oplus Im(f')$.

Demostración. Como $ff'=1_N$, entonces Ker(f')=0 y Im(f)=N, es decir, f' es monomorfismo, f es epimorfismo y $Im(f')+Ker(f)\leq M$. Si $x\in Im(f')\cap Ker(f)$ entonces existe $y\in N$ tal que f'(y)=x y además f(x)=0 entonces $0=f(x)=ff'(y)=1_N(y)$ por lo que x=0 y así $Im(f)\cap Ker(f)=0$.

Si
$$x \in M$$
 entoces $f(x - f'f(x)) = f(x) - f(x) = 0$, y
 $x = (x - f'f(x)) + f'f(x) \in Ker(f) + Im(f')$.

Definición 1. Decimos que una sucesión exacta en $Mod\left(R\right),\,\eta,$

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0 .$$

se escinde, o bien que se parte, si f es un split-mono y g es un split-epi.

- **Ej 54.** Sea η : $0 \longrightarrow M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \longrightarrow 0$ exacta en Mod(R). Las siguientes condiciones son equivalentes
 - a) η se escinde,
 - b) f es un split-mono,
 - c) g es un split epi
 - d) Im(f) = Ker(g) y Im(f) es un sumando directo de M.

Demostración. La demostración se realizará siguiendo el siguiente esquema:

 $a) \implies b$) y $a) \implies c$) se siguen en forma inmediata de la definición de sucesión exacta que se escinde.

En adelante, sean N := Im(f) y N' := Ker(g).

 $b) \implies d$ N = N' se sigue del hecho de que η es una sucesión exacta. Sean i la inclusión de N en M, $\alpha: M \to M_1$ un morfismo de R-módulos tal que $\alpha f = Id_{M_1}$ (cuya existencia se tiene garantizada dado que f es un split-mono) y la función

$$\gamma:M\rightarrow N$$

$$m\mapsto f\alpha\left(m\right) .$$

 γ es un morfismo de R-módulos pues f y α lo son, y más aún si $f\left(a\right)\in N$ se satisface que

$$\gamma i (f (a)) = f (\alpha f (a))$$
$$= f (a).$$

 $\Longrightarrow \gamma i = Id_N,$

 $\Longrightarrow i: N \to M$ es un split-mono.

 $\implies N$ es un sumando directo de M. Teorema 1.12.5b)

 $c) \implies d$ Sean π el epimorfismo canónico de M sobre N', $\beta: M_2 \to M$ un morfismo de R-módulos tal que $g\beta = Id_{M_2}$ y la aplicación

$$\delta: N' \to M$$

$$m + N' \mapsto \beta g(m).$$

Afirmamos que δ es una función bien definida. En efecto: sean $m' \in m + N'$, así

$$m - m' \in N'$$

$$\implies g(m - m') = 0$$

$$\implies g(m) = g(m')$$

$$\implies hg(m) = hg(m').$$

Más aún, δ es un morfismo de R-módulos pues h y glo son, y si $m \in M$ entonces

$$\pi\delta\left(m+N'\right) = \beta g\left(m\right) + N',$$

con

$$g(\beta g(m) - m) = g\beta(g(m)) - g(m)$$

$$= g(m) - g(m)$$

$$= 0.$$

$$\implies \beta g(m) - m \in N'$$

$$\implies \beta g(m) + N' = m + N'$$

$$\implies \pi \delta(m + N') = m + N'.$$

$$\implies \pi \delta = Id_{N'},$$

con lo cual π es un split-epi. Así, por el Teorema 1.12.5c) y dado que N=N' por ser η exacta, se tiene lo deseado.

 $d) \implies a$ Verificaremos primeramente que f es un split-mono. Se tiene que $\exists J \in \mathcal{L}(M)$ tal que $M = N \oplus J$, con lo cual para cada $m \in M \exists !$ $n_m \in N$ y $j_m \in J$ tales que $m = n_m + j_m$. Lo anterior en conjunto al hecho de que f es en partícular inyectiva, por ser η exacta, garantiza que

$$\forall m \in M \exists ! \ a_m \in M_1, j_m \in J \text{ tales que } m = f(a_m) + j_m.$$
 (*)

Así

$$\varphi: M \to M_1$$
$$m \mapsto a_m$$

es una función bien definida. Afirmamos que φ es un morfismo de R-módulos. En efecto, sean $r\in R,\,z,w\in M,$ tales que $z=f\left(a_{z}\right)+j_{z}$ y

 $w = f(a_w) + j_w$, entonces

$$rz + w = r (f (a_z) + j_z) + f (a_w) + j_w$$

= $f (ra_z + a_w) + rj_z + j_w$.

Aplicando el hecho de que J es un submódulo de M y (*) a lo anterior se sigue que

$$\varphi(rz + w) = ra_z + a_w$$
$$= rf(z) + f(w).$$

Finalmente notemos que, si $a\in M_1,\, \varphi f\left(a\right)=\varphi\left(f\left(a\right)+0\right)=a,$ así que $\varphi f=Id_{M_1}$

 $\therefore f$ es un split-mono.

Por otro lado, como N = N', se tiene que $M = N' \oplus J$ y así

$$Ker(g|_{J}) = Ker(g) \cap J$$

= $N' \cap J = \langle 0 \rangle_{P}$,

y como g es sobre

$$M_2 = g(M)$$

$$= g(\{g(a+b) \mid a \in Ker(g), b \in J\})$$

$$= g(\{g(b) \mid b \in J\})$$

$$= g(J)$$

$$= g|_J(J),$$

$$\implies g|_J: J \to M_2 \text{ es un isomorfismo.}$$

Por lo anterior $\exists h \in Hom_R(M_2, J)$ tal que $h g|_J = Id_J$ y $g|_J h = Id_{M_2}$, con lo cual Im(h) = J. Así $gh = g|_J h$ y por lo tanto g es un split-epi.

Ej 55. Sea $\eta:\ 0 \longrightarrow M_1 \stackrel{f_1}{\longrightarrow} M \stackrel{g_2}{\longrightarrow} M_2 \longrightarrow 0$ una sucesión en Mod(R). Pruebe que las siguientes condiciones son equivalentes

- a) η es una sucesión que se parte.
- b) Existe una sucesión $0 \longrightarrow M_2 \xrightarrow{f_2} M \xrightarrow{g_1} M_1 \longrightarrow 0$ en Mod(R) tal que $g_1f_1 = 1_{M_1}, g_2f_2 = 1_{M_2}, g_2f_1 = g_1f_2 = 0$ y $g_1f_1 + g_2f_2 = 1_M$.
- c) Existe un isomorfismo $h:M_1\times M_2\longrightarrow M$ tal que el siguiente diagrama conmuta

$$0 \longrightarrow M_1 \xrightarrow{i_1} M_1 \times M_2 \xrightarrow{\pi_2} M_2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow h \qquad \qquad \downarrow$$

$$0 \longrightarrow M_1 \xrightarrow{f_1} M \xrightarrow{g_2} M_2 \longrightarrow 0$$

Demostración. (a) \Rightarrow c) Dado que η es una sucesión que se parte, existe un morfismo de R-módulos, $f_2: M_2 \longrightarrow M$, tal que $g_2f_2 = 1_{M_2}$. Luego, g_2, f_2 inducen un isomorfismo $h: M_1 \times M_2 \longrightarrow M$. En efecto, definimos h como el morfismo $h(m_1, m_2) = f_1(m_1) + f_2(m_2)$.

En primer lugar, veremos que h es un monomorfismo. En este sentido, sea $(m_1, m_2) \in Ker(h)$, entonces $0 = h(m_1, m_2) = f_1(m_1) + f_2(m_2)$. En consecuencia, $f_2(m_2) = -f_1(m_1) \in Im(f_1) = Ker(g_2)$. Así,

$$m_2 = g_2 f_2 (m_2) = 0$$

Por consiguiente, $f_1(m_1) = h(m_1, m_2) = 0$. Dado que f_1 es mono, $m_1 = 0$. Por lo que h es mono.

Ahora, h es epi. Sea $m \in M$. Entonces

$$g_2(m - f_2g_2(m)) = g_2(m) - g_2(m) = 0$$

De esta forma, $m - f_2g_2(m) \in Im(f_1)$. Ésto aunado a la exactitud de η garantiza la existencia de un elemento $x \in M_1$ tal que $f_1(x) = m - f_2g_2(m)$, con lo cual,

$$h(x, g_2(m)) = f_1(x) + f_2(g_2(m))$$

- m

Una vez demostrado que h es un isomorfismo, podemos proceder a mostrar que el diagrama presentado anteriormente conmuta bajo este isomorfismo. Primero, note que para $m \in M_1$ se tiene que

$$hi_1(m) = h(m, 0)$$

= $f_1(m)$
= $f_1 1_{M_1}(m)$

Por el otro lado, dado $(m_1, m_2) \in M_1 \times M_2$, se satisface que

$$g_{2}h(m_{1}, m_{2}) = g_{2}(f_{1}(m_{1}) + f_{2}(m_{2}))$$

$$= g_{2}f_{1}(m_{1}) + g_{2}f_{2}(m_{2})$$

$$= 0 + m_{2}$$

$$= m_{2}$$

$$= 1_{M_{2}}\pi_{2}(m_{1}, m_{2})$$

se parte. Definimos $f_2:M_2\longrightarrow M$ como $f_2=hi_2,$ y $g_1:M\longrightarrow M_1$ como $g_1=\pi_1h^{-1}.$

Luego, se satisfacen las siguientes igualdades

$$\begin{split} g_1f_1 &= g_1hi_1 = \pi_1h^{-1}hi_1 = \pi_1i_1 = 1_{M_1} \\ g_2f_2 &= g_2hi_2 = \pi_2i_2 = 1_{M_2} \\ g_1f_2 &= g_1hi_2 = \pi_1h^{-1}hi_2 = \pi_1i_2 = 0 \\ g_2f_1 &= g_2hi_1 = \pi_2h^{-1}hi_1 = \pi_2i_1 = 0 \\ g_1f_1 + g_2f_2 &= 1_{M_1} + 1_{M_2} = 1_{M_1 \times M_2} = 1_M \end{split}$$

 $b) \Rightarrow a$ Por hipótesis, existe un morfismo de R-módulos $f_2: M_2 \longrightarrow M$ tal que $g_2f_2=1_{M_2}$. Por tanto, η es una sucesión que se parte.

Ej 56. Sean $f: A \longrightarrow B$ y $g: B \longrightarrow B$ en Mod(R) tal que gf = f. Prueba que

$$g: f \xrightarrow{\sim} f$$
 en $Mod(R) \setminus A \iff g: B \xrightarrow{\sim} B$ en $Mod(R)$.

$$\begin{array}{ll} \textit{Demostración.} & g \colon f \stackrel{\sim}{\longrightarrow} f \ \text{ en } Mod(R) \backslash A \\ \iff \exists g^{-1} \colon f \longrightarrow f \ \text{tal que } g^{-1}g = 1_f \ \text{y } gg^{-1} = 1_f \\ \iff \exists g^{-1} \colon f \longrightarrow f \ \text{tal que } g^{-1}g = Id_B \ \text{y } gg^{-1} = Id_B \\ \iff \exists g^{-1} \in \operatorname{Hom}_R(B,B) \ \text{tal que } g^{-1}g = Id_B, \ gg^{-1} = Id_B \ \text{y } f = g^{-1}f \\ \iff g \colon B \longrightarrow B \ \text{ es isomorfismo en } Mod(R) \ \text{tal que } gf = f. \end{array}$$

Ej 57. Sea \sim una relación en $Obj(Mod(R) \setminus A)$ dada por

$$f \sim f' \iff Hom(f, f') \neq \emptyset \neq Hom(f', f)$$
.

Entonces \sim es un relación de equivalencia en $Obj (Mod(R) \setminus A)$.

Demostración. La simetría de \sim se sigue inmediatamente de su definición, mientras que la reflexividad se sigue del hecho de que si $f:A\to B\in Obj\left(Mod\left(R\right)\setminus A\right)$ entonces $Id_B\in Hom_R\left(B,B\right)$ y $Id_Bf=f$. Así resta verificar que \sim es transitiva.

Sean $f: A \to B, g: A \to B', h: A \to C \in Obj(Mod(R) \setminus C)$ tales que $f \sim g$ y $g \sim h$, por lo tanto $\exists p \in Hom_R(B, B'), q \in Hom_R(B', B), p' \in Hom_R(B', C), q' \in Hom_R(C, B')$ tales que

$$pf = g$$
$$qg = f,$$
$$p'g = h$$
$$q'h = g.$$

Así $p'p \in Hom_R(B,C), qq' \in Hom_R(C,B)$ y

$$(p'p) f = h$$

 $(qq') h = f,$
 $\therefore f \sim h.$

Ej 58. Sean $\varphi_i: A_i \longrightarrow B_i$, con i = 1, 2, minimales a derecha en Mod(R). Pruebe que $\varphi_1 \coprod \varphi_2: A_1 \coprod A_2 \longrightarrow B_1 \coprod B_2$ es minimal a derecha.

Demostración. Sea $\psi: \varphi_1 \coprod \varphi_2 \longrightarrow \varphi_1 \coprod \varphi_2$. Entonces ψ es de la forma $\psi = \psi_1 \coprod \psi_2$, con $\psi_i: A_i \longrightarrow B_i$, i = 1, 2. En efecto, si denotamos por $\eta_i: A_1 \coprod A_2 \longrightarrow B_i$, i = 1, 2, a la proyección canónica, entonces $\psi = \eta_1 \psi \coprod \eta_2 \psi$.

Suponga, así, que $\psi = \psi_1 \coprod \psi_2$. Luego, $\psi_i \in Hom(\varphi_i, \varphi_i)$, con i = 1, 2. Por la minimalidad a derecha de cada φ_1 , se satisface que ψ_1 y ψ_2 son isomorfismos. Por lo que ψ es un isomorfismo.

$$\therefore \varphi_1 \coprod \varphi_2$$
 es minimal a derecha.

Ej 59. Sean $F: A \longrightarrow B$ un funtor contravariante aditivo entre categorías preaditivas. Pruebe que si F es fiel y pleno, entonces $F: End_{\mathcal{A}}(A) \longrightarrow End_{\mathcal{B}}(F(A))^{op}$ es isomorfismo de anillos.

Demostración. Como F es funtor contravariante aditivo, entonces es un morfismo de grupos abelianos. Considerando la composición, tenemos que $End_{\mathcal{A}}(A)$ y $End_{\mathcal{B}}(F(A))$ son anillos, así $End_{\mathcal{A}}(F(A))^{op}$ es anillo.

Por definición de funtor contravariate para cada $f,g\in End_{\mathcal{A}}(A)$ se tiene que

$$F(f \circ q) = F(q) \circ F(f)$$
 y $F(1_A) = 1_{F(A)}$ $\forall A \in Obj(A)$.

Entonces F es morfismo de anillos entre $End_{\mathcal{A}}(A)$ y $End_{\mathcal{B}}(F(A))^{op}$, y como F es fiel y pleno, la correspondencia debe ser biyectiva, es decir, F es un isomorfismo de anillos.

- **Ej 60.** Sea \mathcal{A} una categoría preaditiva y $A \in \mathcal{A}$. Entonces
 - a) La correspondencia Hom-covariante $Hom_{\mathcal{A}}(A,-): \mathcal{A} \to Ab$ es un funtor covariante aditivo.
 - b) La correspondencia Hom-contravariante $Hom_{\mathcal{A}}(-,A)\mathcal{A} \to Ab$ es un funtor contravariante aditivo.

Demostración. a) $Hom_{\mathcal{A}}(A,-)$ está dado por la siguiente correspondencia

$$\mathcal{A} \xrightarrow{Hom_{\mathcal{A}}(A,-)} Ab$$

$$B \xrightarrow{f} C \longmapsto Hom_{\mathcal{A}}(A,B) \xrightarrow{Ff} Hom_{\mathcal{A}}(A,C)$$

con

$$Ff: Hom_{\mathcal{A}}(A, B) \to Hom_{\mathcal{A}}(A, C)$$

 $\alpha \mapsto f\alpha.$

Notemos que $f \in Hom_{\mathcal{A}}(B,C)$, $\alpha \in Hom_{\mathcal{A}}(A,B)$, de lo cual se sigue que $f\alpha \in Hom_{\mathcal{A}}(A,C)$ y por lo tanto Ff está bien definida. Por otro lado como \mathcal{A} es preaditiva entonces $Hom_{\mathcal{A}}(A,B)$ y $Hom_{\mathcal{A}}(A,C)$ son grupos abelianos aditivos. Finalmente si $\alpha,\beta \in Hom_{\mathcal{A}}(A,B)$ como la composición de morfismos en $Hom(\mathcal{A})$ es \mathbb{Z} -bilineal, entonces

$$\begin{split} Ff\left(\alpha+\beta\right) &= f\left(\alpha+\beta\right) \\ &= f\alpha + f\beta \\ &= Ff(\alpha) + Ff(\beta), \\ &\Longrightarrow Ff \text{ es un morfismo de grupos abelianos.} \end{split}$$

Por todo lo anterior $Hom_{\mathcal{A}}(A,-)$ es una correspondencia bien definida. Afirmamos que $Hom_{\mathcal{A}}(A,-)$ es un funtor covariante. En efecto, sean

$$f, g \in Hom_{\mathcal{A}}(B, C),$$

 $\eta \in Hom_{Ab}(Z, Hom_{\mathcal{A}}(A, B)),$
 $\mu \in Hom_{Ab}(Hom_{\mathcal{A}}(A, B), Z).$

Asi si $z \in \mathbb{Z}$, entonces

$$Hom_{\mathcal{A}}(A, -) (Id_{B}) \eta(z) = FId_{B} (\eta(z))$$

$$= Id_{B} \eta(z)$$

$$= \eta(z), \qquad \eta(z) \in Hom_{\mathcal{A}}(A, B)$$

$$\Longrightarrow Hom_{\mathcal{A}}(A, -) (Id_{B}) = \eta.$$

Por su parte

$$\mu Hom_{\mathcal{A}}(A, -) (Id_B) (\alpha) = \mu (FId_B(\alpha))$$

$$= \mu (Id_B\alpha) Id_B\eta (z)$$

$$= \mu (\alpha), \qquad \alpha \in Hom_{\mathcal{A}}(A, B)$$

$$\implies \mu Hom_{\mathcal{A}}(A, -) (Id_B) = \mu.$$

$$\therefore Hom_{\mathcal{A}}(A, -) (Id_B) = Id_{Hom_{\mathcal{A}}(A, B)} = Id_{Hom_{\mathcal{A}}(A, -)(B)}$$

Por su parte

$$\begin{split} Hom_{\mathcal{A}}\left(A,-\right)\left(gf\right)\left(\alpha\right) &= \left(Fgf\right)\left(\alpha\right) \\ &= gf\left(\alpha\right) = g\left(f\alpha\right) \\ &= Fg\left(Ff(\alpha)\right), \qquad f\alpha \in Hom_{\mathcal{A}}\left(A,C\right) \\ &= FgFf\left(\alpha\right) \end{split}$$

$$\therefore Hom_{\mathcal{A}}(A,-)(gf) = Hom_{\mathcal{A}}(A,-)(g)Hom_{\mathcal{A}}(A,-)(f).$$

Con lo cual se ha verificado que $Hom_{\mathcal{A}}(A, -)$ es un funtor covariante. Finalmente, dado que la composición en $Hom(\mathcal{A})$ es \mathbb{Z} -bilineal se tiene que

$$Hom_{\mathcal{A}}(A, -) (f + g) (\alpha) = F (f + g) (\alpha)$$

$$= (f + g) \alpha = f\alpha + g\alpha$$

$$= Ff (\alpha) + Fg (\alpha)$$

$$\implies Hom_{\mathcal{A}}(A, -) (f + g) = Hom_{\mathcal{A}}(A, -) (f) + Hom_{\mathcal{A}}(A, -) (g)$$

De modo que

$$Hom_{\mathcal{A}}(A,-): Hom_{\mathcal{A}}(B,C) \to Hom_{\mathcal{A}}(Hom_{\mathcal{A}}(A,B), Hom_{\mathcal{A}}(A,C))$$

es un morfismo de grupos abelianos. Con lo cual, dado que Ab es una categoría preaditiva (esto ya que la composición de morfismos de grupos abelianos es \mathbb{Z} -bilineal), se tiene que $Hom_{\mathcal{A}}(A,-)$ es un funtor aditivo. La demostración de b) se realiza en forma análoga.

Ej 61. Sea $X \in {}_R Mod_S$. Pruebe que:

- a) $Hom_R(-,X): Mod(R) \longrightarrow Mod(S^{op})$ es un funtor contravariante aditivo.
- b) Para $\{M_i\}_{i=1}^n$ en Mod(R) se tiene que

$$Hom_{R}\left(\prod_{i=1}^{n}M_{i},_{R}X_{S}\right)=\prod_{i=1}^{n}Hom_{R}\left(_{R}M_{i},_{R}X_{S}\right)$$

en $Mod(S^{op})$

Demostración. (a) Primeramente, ya sabemos que $Hom_R(-,X)$ es un funtor contravariante. Entonces bastará probar que éste es aditivo.

Sean
$$M, N \in Mod(R)$$
. Veremos que $\varphi = Hom_R(-, X)$, con

$$\varphi: Hom_R(M, N) \longrightarrow Hom_{S^{op}}(Hom_R(N, X), Hom_R(M, X)),$$

es un isomorfismo.

Sea $f \in Hom_R(M, N)$. Entonces $\varphi(f) Hom_{S^{op}}(Hom_R(N, X), Hom_R(M, X))$ es el morfismo $\varphi(f)(g) = g \circ f$. De esta manera, φ es un morfismo. En efecto, sean $f, g \in Hom_R(M, N), r \in R$ y $h \in Hom_R(N, X)$, entonces

$$\varphi(f+rg)(h) = (f+rg) \circ h$$

$$= f \circ h + (rg) \circ h$$

$$= f \circ h + r(g \circ h)$$

$$= \varphi(f)(h) + r\varphi(g)(h)$$

$$= (\varphi(f) + r\varphi(g))(h)$$

Por tanto, φ es morfismo. $\therefore Hom_R(-,X)$ es aditivo.

(b) Definimos
$$\rho: Hom_R\left(\coprod_{i=1}^n M_{i,R}X_S\right) \longrightarrow \coprod_{i=1}^n Hom_R\left({}_RM_{i,R}X_S\right)$$
 como $\rho\left(\varphi\right) = \left(\varphi\iota_i\right)_{i=1}^n$.

Veamos que ρ es un morfismo en $Mod(S^{op})$. Para dicho fin, considere $\varphi, \psi \in Hom_R\left(\coprod_{i=1}^n M_i, {}_RX_S\right)$ y $s \in S$.

$$\begin{split} \rho\left(\varphi + \psi s\right) &= \left(\left(\varphi + \psi s\right)\iota_{i}\right)_{i=1}^{n} \\ &= \left(\varphi\iota_{i}\right)_{i=1}^{n} + \left(\left(\psi s\right)\iota_{i}\right)_{i=1}^{n} \\ &= \left(\varphi\iota_{i}\right)_{i=1}^{n} + \left(\psi\iota_{i}\right)_{i=1}^{n} s \\ &= \rho\left(\varphi\right) + \rho\left(\psi\right) s \end{split}$$

Por otro lado, ρ es un inyectivo. En efecto, si $\rho(\varphi) = 0$, entonces se tiene que $(\varphi \iota_i)_{i=1}^n = 0$. Luego, $\varphi = 0$. Por tanto $Ker(\rho) = 0$.

Ahora, sea $(\varphi_i)_{i=1}^n \in \coprod_{i=1}^n Hom_R(_RM_i,_RX_S)$. Entonces cada φ_i es un morfismo $\varphi_i: M_i \longrightarrow X$. Así, por la propiedad universal del coproducto, existe $\varphi: \coprod_{i=1}^n M_i \longrightarrow X$ tal que $\varphi\iota_i = \varphi_i$. De esta manera, $\rho(\varphi) = (\varphi_i)_{i=1}^n$. Por tanto, ρ es un isomorfismo.

$$\therefore Hom_R\left(\prod_{i=1}^n M_i, {_RX_S}\right) = \prod_{i=1}^n Hom_R\left({_RM_i, {_RX_S}}\right) \qquad \Box$$

Lemma*

(Anderson, Fuller) 16.6

El funtor $\operatorname{Hom}_R(M,Y)$ es exacto izquierdo. En particular si U es un Rmódulo, entonces para cada sucesión exacta $0 \longrightarrow K \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} N \longrightarrow 0$ en $\operatorname{Mod}(R)$ las sucesiones $0 \longrightarrow \operatorname{Hom}_R(U,K) \stackrel{f_*}{\longrightarrow} \operatorname{Hom}_R(U,M) \stackrel{g_*}{\longrightarrow} \operatorname{Hom}_R(U,N) \longrightarrow 0$ y $0 \longrightarrow \operatorname{Hom}_R(M,X) \stackrel{g^*}{\longrightarrow} \operatorname{Hom}_R(M,Y) \stackrel{f^*}{\longrightarrow} \operatorname{Hom}_R(M,Z) \longrightarrow 0$ son exactas

Ej 62. Para $M \in Mod(R)$ pruebe que las siguientes condiciones son equivalentes:

- a) M es proyectivo.
- b) Toda sucesión exacta $0 \longrightarrow X \longrightarrow Y \longrightarrow M \longrightarrow 0$ en Mod(R) se escinde.
- c) M es isomorfo a un sumando directo de R-módulos libre.
- d) Para toda sucesión exacta $0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0$ en Mod(R), se tiene que $0 \longrightarrow \operatorname{Hom}_R(M,X) \xrightarrow{f_*} \operatorname{Hom}_R(M,Y) \xrightarrow{g_*} \operatorname{Hom}_R(M,Z) \longrightarrow 0$ es exacta en $Mod(\mathbb{Z})$, donde $f_* = \operatorname{Hom}_R(M,f)$ y $g_* = \operatorname{Hom}_R(M,g)$.

 $Demostraci\'on. \ a \Rightarrow b$

Sea M proyectivo y $0 \longrightarrow X \longrightarrow Y \longrightarrow M \longrightarrow 0$ una sucesión exacta en Mod(R). Como $Y \stackrel{h}{\longrightarrow} M$ es epi, entonces el morfismo $I_M \colon M \longrightarrow M$ se puede factorizar a través de h, es decir, existe $g \colon M \longrightarrow Y$ tal que $Id_M = hg$. Por lo tanto h es split-epi y por el ejercicio 54 la sucesión se escinde. $b \mapsto c$

Sea $F = \bigoplus_{y \in M} Ry$ el módulo libre generado por los elementos de M, enton-

ces existe un epimorfismo $g: F \longrightarrow M$, por lo que

$$0 \longrightarrow Ker(g) \stackrel{i}{\longrightarrow} F \stackrel{g}{\longrightarrow} M \longrightarrow 0 \ \text{ es exacta con } i \text{ la inclusión}.$$

Por hipótesis esta sucesión exacta se escinde, por lo tanto $M \oplus Ker(g) = F$, es decir, M es un sumando directo de un módulo libre.

$$c) \Rightarrow a$$

 $\overline{\text{Suponga}}$ mos que tenemos el siguiente diagrama con g epi:

$$X \xrightarrow{g} Y \longrightarrow 0$$

$$\downarrow h \\ \downarrow h$$

$$M$$

Por c) sabemos que existe F,K módulos tales que $M \oplus K = F$ con F un módulo libre. Ahora, como todo módulo libre es proyectivo y considerando a $\pi\colon F \longrightarrow M$, se tiene que existe $f\colon F \longrightarrow X$ tal que $h\pi = fg$, así $h\pi i = gfi$ con i la inclusión de M en F, por lo que $h = g \circ f_0$ con

$$\begin{array}{c}
f_0 \colon M \longrightarrow X \\
\hline
(a) \iff d)
\end{array}$$

 $\begin{array}{c} f_0\colon M\longrightarrow X.\\ \hline (a)\iff d)\\ \hline \text{Por el lema}^* \text{ la condición d) se cumple si y sólo si por cada epimorfismo} \end{array}$ $Y \xrightarrow{f} Z \xrightarrow{g} 0$ la sucesión $\operatorname{Hom}_{R}(M,Y) \xrightarrow{f_{*}} \operatorname{Hom}_{R}(M,Z) \longrightarrow 0$ es exacta. Pero f_* es epi si y sólo si por cada $\gamma \in \operatorname{Hom}_R(M, \mathbb{Z})$ existe un $\hat{\gamma} \in \operatorname{Hom}_R(U, M)$ tal que $\gamma = f_*(\hat{\gamma}) = f\hat{\gamma}$.

Ej 63. Sea $\{M_i\}_{i\in I}$ en Mod(R). Entonces $\coprod_{i\in I}M_i$ es proyectivo si y sólo si \forall $i\in I$ M_i es proyectivo.

> Demostraci'on. Sea C un coproducto para $\{M_i\}_{i\in I}$ por medio de las funciones $\{\mu_i\}_{i\in I}$. \Longrightarrow Sean $f:X\to Y$ un epimorfismo en Mod(R) y, para cada $i \in I$, $g_i \in \overline{Hom_R(M_i, Y)}$. Por la propiedad universal del coproducto $\exists ! \ g: C \to Y \ \text{tal que}, \forall \ i \in I, g\mu_i = g_i.$ Dado que C es proyectivo entonces $\exists h: C \to X \text{ en } Mod(R) \text{ tal que } fh = g, \text{ con lo cual si } h_i := h\mu_i \text{ entonces}$

$$fh_i = f(h\mu_i)$$

 $= (fh) \mu_i$
 $= g\mu_i$
 $= g_i$.
 $\implies g_i$ se factoriza a través de f , $\forall i \in I$.
 $\therefore M_i$ es proyectivo, $\forall i \in I$.

← Verifcaremos primeramente los siguientes resultados:

Lema 1. Sean $\{X_i\}_{i\in I}$, $\{Y_i\}_{i\in I}$ y $\{Z_i\}_{i\in I}$ familias en Mod(R) tales que $\forall i \in I$

$$0 \longrightarrow X_i \xrightarrow{f_i} Y_i \xrightarrow{g_i} Z_i \longrightarrow 0 \tag{L1A}$$

es una sucesión exacta. Entonces $\exists f, g \in Hom(Mod(R))$ tales que

$$0 \longrightarrow \prod_{i \in I} X_i \xrightarrow{f} \prod_{i \in I} Y_i \xrightarrow{g} \prod_{i \in I} Z_i \longrightarrow 0$$
 (L1B)

es una sucesión exacta. Los productos que aparecen en la expresión anterior son aquellos cuyos elementos son i-adas.

Demostración. Sean

$$f: \prod_{i \in I} X_i \to \prod_{i \in I} Y_i$$
$$(x_i)_{i \in I} \mapsto (f(x_i))_{i \in I}$$

У

$$g: \prod_{i \in I} Y_i \to \prod_{i \in I} Z_i$$
$$(y_i)_{i \in I} \mapsto (g(y_i))_{i \in I}.$$

 $f \in Hom\left(Mod(R)\right)$ pues $\forall i \in I \ f_i \in Hom\left(Mod(R)\right)$, similarmente se tiene que g es un morfismo de R-módulos.

f es inyectiva Sea $(x_i)_{i\in I} \in Ker(f)$, entonces $\forall i \in I$ $f_i(x_i) = 0$ y por lo tanto $\forall i \in I$ $x_i = 0$, pues $\{f_i\}_{i\in I}$ es una familia de monomorfismos en Mod(R).

g es sobre Sea $(z_i)_{i\in I} \in \coprod_{i\in I} Z_i$. Como $\{g_i\}_{i\in I}$ es una familia de epimorfismos en Mod(R), entonces $\forall i\in I \exists y_i \in Y_i$ tal que $g_i(y_i) = z_i$ y por lo

tanto $g\left((y_i)_{i\in I}\right)=(z_i)_{i\in I}$. $\boxed{Im(f)=Ker(g)}$ Sea $(x_i)_{i\in I}\in\coprod_{i\in I}X_i$. Dado que (L1A) es exacta se tiene que $\forall\ i\in I\ Im(f_i)=Ker(g_i)$ y que, en partícular, $g_if_i=0$. Así

$$gf((x_i)_{i \in I}) = (g_i f_i(x_i))_{i \in I}$$

$$= 0.$$

$$\implies gf = 0$$

$$\implies Im(f) \subseteq Ker(q).$$

Por su parte, si $(y_i)_{i\in I} \in Ker(g)$, entonces $\forall i \in I \ y_i \in Ker(g_i) = Im(f_i)$, con lo cual para cada $i \in I \ \exists \ x_i \in X_i \ \text{tal que} \ y_i = f_i(x_i)$. De modo que $(y_i)_{i\in I} = f\left((x_i)_{i\in I}\right)$, y por lo tanto $Ker(g) \subseteq Im(f)$. Por todo lo anterior (L1B) es exacta.

Lema 2. Sean $\{A_i\}_{i=1}^3$, $\{B_i\}_{i=1}^3$ en Mod(R) tales que $\forall i \ in[1,3] \ A_i \simeq B_i$

$$0 \longrightarrow A_1 \stackrel{f}{\longrightarrow} A_2 \stackrel{g}{\longrightarrow} A_3 \longrightarrow 0 \tag{L2A}$$

una sucesión exacta. Entonces $\exists \overline{f}, \overline{g} \in Hom(Mod(R))$ tales que

$$0 \longrightarrow B_1 \stackrel{\overline{f}}{\longrightarrow} B_2 \stackrel{\overline{g}}{\longrightarrow} B_3 \longrightarrow 0 \tag{L2B}$$

es una sucesión exacta.

Demostración. Sean $\varphi_i: A_i \to B_i$ isomorfismo $\forall i \in [1,3], \overline{f} := \varphi_2 f \varphi_1^{-1}$ y $\overline{g} := \varphi_3 g \varphi_2^{-1}$. Dado que f, φ_1 y φ_2 son monomorfismos en Mod(R), entonces \overline{f} lo es; análogamente \overline{g} es un epimorfismo puesto que φ_2 , g y φ_3 lo son.

Notemos que

$$\overline{g}\overline{f} = \varphi_3 g \varphi_2^{-1} \varphi_2 f \varphi_1^{-1}$$

$$= \varphi_3 g f \varphi_1^{-1}$$

$$= \varphi_3 0 \varphi_1^{-1}$$

$$= 0,$$

$$\implies Im(\overline{f}) \subseteq Ker(\overline{g}).$$

Por su parte, si $v \in Ker(\overline{g})$ se tiene que

$$0 = \overline{g}(v) = \varphi_3 \left(g\varphi_2^{-1}(v)\right)$$

$$\implies g\left(\varphi_2^{-1}(v)\right) = 0, \qquad \varphi_3 \text{ es inyectiva}$$

$$\implies \varphi_2^{-1}(v) \in Ker(g) = Im(f).$$

Con lo cual $\exists u \in B_1$ tal que $\varphi_2^{-1}(v) = f(u)$, y así

$$v = \varphi_2 f(u)$$

$$= \varphi_2 f \varphi_1^{-1} (\varphi_1(u))$$

$$= \overline{f} (\overline{u}), \qquad \overline{u} := \varphi_1(u)$$

$$\implies Ker (\overline{g}) \subseteq Im (\overline{f}).$$

$$\therefore (L2B) \text{ es exacta.}$$

Lema 3. Sean $M, N \in Mod(R)$ tales que M es proyectivo y $M \simeq N$. Entonces N es proyectivo.

Demostración. Sean $\varphi: M \to N$ un isomorfismo en Mod(R), $f: X \to Y$ un epimorfismo en Mod(R) y $g \in Hom_R(N,Y)$. Como $g\varphi \in Hom_R(M,Y)$ y M es proyectivo, entonces $\exists \ h \in Hom_R(M,X)$ tal que $fh = g\varphi$, luego $f\left(h\varphi^{-1}\right) = g$, con lo cual g se factoriza a través de f. Por lo tanto N es proyectivo.

Ahora, sean $\coprod_{i \in I} M_i$ el coproducto para $\{M_i\}_{i \in I}$ cuyos elementos son i-

adas de soporte finito, $0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$ una sucesión exacta en Mod(R) y, para cada $i \in I$, $F_i := Hom_R(M_i, -)$ funtor covariante definido como en el Ej. 60. Por el Ej. 62 d) $\forall i \in I$ se tiene que

$$0 \longrightarrow F_i(X) \xrightarrow{F_i(f)} F_i(Y) \xrightarrow{F_i(g)} F_i(Z) \longrightarrow 0$$

es una sucesión exacta en $Mod(\mathbb{Z})$ y así, por el Lema 1,

$$0 \longrightarrow \prod_{i \in I} F_i(X) \longrightarrow \prod_{i \in I} F_i(Y) \longrightarrow \prod_{i \in I} F_i(Z) \longrightarrow 0$$

es una sucesión exacta. Se tiene que

$$\prod_{i \in I} F_i(X) = \prod_{i \in I} Hom_R(M_i, X)$$

$$\simeq Hom_R\left(\prod_{i \in I} M_i, X\right).$$
 Ej. 32

Similarmente se encuentra que

$$\prod_{i \in I} F_i(Y) \simeq Hom_R \left(\prod_{i \in I} M_i, Y \right),$$
$$\prod_{i \in I} F_i(Z) \simeq Hom_R \left(\prod_{i \in I} M_i, Z \right).$$

Con lo cual, por el Lema 2,

$$0 \longrightarrow Hom_{R}\left(\coprod_{i \in I} M_{i}, X\right) \longrightarrow Hom_{R}\left(\coprod_{i \in I} M_{i}, Y\right) \longrightarrow Hom_{R}\left(\coprod_{i \in I} M_{i}, Z\right) \longrightarrow 0$$

es una sucesión exacta y así, nuevamente por el Ej. 62 d), $\coprod_{i \in I} M_i$ es un módulo proyectivo. Finalmente como $C \simeq \coprod_{i \in I} M_i$ en Mod(R), por el Lema 3, se sigue que C es proyectivo y así se tiene lo deseado.

Ej 64. Sea $M \in Mod(R)$. Pruebe que:

M es proyectivo y f.g. \Leftrightarrow existe $n\in\mathbb{N}$ tal que M es isomorfo a un sumando directo de $_RR^n.$

 $\begin{array}{ll} \textit{Demostraci\'on.} & \Longrightarrow) \text{ Puesto que } M \text{ es f.g., existe } n \in \mathbb{N} \text{ tal que la siguiente sucesi\'on en } Mod\left(R\right) & 0 & \longrightarrow Ker(f) & \longrightarrow R^n & \stackrel{f}{\longrightarrow} M & \longrightarrow 0 \text{ es exacta. \'Esta a su vez se parte, toda vez que } M \text{ es proyectivo.} \\ \therefore M \text{ es sumando directo de } R^n. \end{array}$

 \Leftarrow) Suponga que ${}_RR^n \simeq M \oplus K$. Entonces M es f.g., y la sucesión en $Mod(R) \ 0 \longrightarrow K \longrightarrow R^n \longrightarrow M \longrightarrow 0$ se parte. $\therefore M$ es proyectivo y f.g.

Ej 65. Para $M \in Mod(R)$, pruebe que las siguientes condiciones son equivalentes.

- a) M es inyectivo.
- b) Toda sucesión exacta $0 \longrightarrow M \longrightarrow X \longrightarrow Y \longrightarrow 0$ en Mod(R)se escinde.
- c) Para toda sucesión exacta $0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$ en Mod(R), se tiene que $0 \longrightarrow \operatorname{Hom}_{R}(Z, M) \xrightarrow{g^{*}} \operatorname{Hom}_{R}(Y, M) \xrightarrow{f^{*}} \operatorname{Hom}_{R}(X, M) \longrightarrow 0$ es exacta en $Mod(\mathbb{Z})$, donde $f^* = \operatorname{Hom}_R(f, M)$ y $g^* = \operatorname{Hom}_R(g, M)$.

 $Demostraci\'on. \ \boxed{a) \Rightarrow} b) \ \boxed{}$

Sea $0 \longrightarrow M \xrightarrow{f} X \longrightarrow Y \longrightarrow 0$ exacta en Mod(R). Como f es mono, entonces, considerando $I_M: M \longrightarrow M$, tenemos que existe $h: M \longrightarrow Y$ tal que I_M se factoriza de f, es decir, $I_M = hf$ por lo tanto $0 \longrightarrow M \stackrel{f}{\longrightarrow} X \longrightarrow Y \longrightarrow 0$ es split-mono y por el ejercicio 54 se escinde.

 $b) \Rightarrow a)$

 $\overline{\operatorname{Sean}\ X,Y}\ R\text{-m\'odulos}\ y\ f\colon X\longrightarrow Y$ mono. Si $h\in\operatorname{Hom}_R(X,Y)$ tenemos el siguiente diagrama $0 \xrightarrow{\hspace*{1cm}} X \xrightarrow{\hspace*{1cm} f \hspace*{1cm}} Y$

que se extiende a un pushout

$$0 \longrightarrow X \xrightarrow{f} Y$$

$$\downarrow h \qquad \qquad \downarrow h'$$

$$M \xrightarrow{f'} D$$

donde $D=(X\oplus Y_{W}),\ W=\{(fa-ga):a\in R\},\quad h'(b)=(0,b)+W$ y g'(c) = (c, 0) + W.

Así f' es mono. Por hipótesis existe un morfismo $\beta \colon D \longrightarrow M$ con $\beta f' =$ 1_M . Definamos $g = \beta h'$ entonces $g: Y \longrightarrow M$ y $gf = \beta h'f = \beta f'h = h$, por lo que M es inyectivo.

 $a) \iff c$

Como $\operatorname{Hom}_R(\cdot, M)$ es contravariante exacto izquierdo, es suficiente mostrar que M es inyectivo si y sólo si $\operatorname{Hom}_R(\cdot, M)$ convierte monomorfismos en epimorfismos:

Si $\alpha: A \longrightarrow B$ es mono, entonces $\alpha^*: \operatorname{Hom}_R(B, M) \longrightarrow \operatorname{Hom}_R(A, M)$ es epi si y sólo si para cada $f \in \operatorname{Hom}_R(A, M)$ existe $g \in \operatorname{Hom}_R(B, M)$ tal que $\alpha^*(g) = f$, y esto pasa si y sólo si para cada $f \in \text{Hom}_R(A, M)$ existe $g \in \operatorname{Hom}_R(B, M)$ tal que $g\alpha = f$, es decir, M es inyectivo.

Ej 66. Sea $\{M_i\}_{i\in I}$ en Mod(R). Entonces $\prod_{i\in I}M_i$ es inyectivo si y sólo si, $\forall i\in I$, M_i es inyectivo.

 $\begin{array}{l} Demostración. \text{ La demostración es análoga a lo realizado en el Ej. 63: se emplea la propiedad universal del producto para verificar la necesidad, mientras que los lemas 1 y 2 probados en el Ej. 63, en conjunto a que <math display="block">\forall \ H \in Mod(R) \text{ se tiene que } \prod_{i \in I} Hom_R\left(H, M_i\right) \simeq Hom_R\left(H, \prod_{i \in I} M_i\right) \text{ (ver Ej. 35), y el siguiente resultado verifican la suficiencia ()cuya desmotración es análoga a aquella del Lema 3 del Ej. 63)} \end{array}$

Lema 4. Sean $M,N\in Mod(R)$ tales que M es inyectivo y $M\simeq N.$ Entonces N es inyectivo.

 \mathbf{Ej} 67. Sea R un anillo no trivial. Pruebe que:

R es semisimple y conmutativo $\Leftrightarrow R \simeq \bigvee_{i=1}^{t} K_i$ como anillos, donde K_i es un campo $\forall i \in [1, t]$

Demostración. \Leftarrow) Dado que cada K_i es un campo y $R \simeq \underset{i=1}{\overset{t}{\times}} K_i$, se satisface que R es semisimple y conmutativo.

 \Rightarrow) En virtud del teorema de **Wedderburn-Artin**, R es isomorfo a \times $Mat_{n_i \times n_i}(D_i)$, con $n_i \in \mathbb{N}$ y D_i un anillo con división. Ahora, por la conmutatividad de R, la única posibilidad es que $n_i = 1$ y D_i sea conmutativo, para $i \in [1, t]$.

$$\therefore R \simeq \underset{i=1}{\overset{t}{\times}} K_i, \text{ con } K_i \text{ un campo}, \forall i \in [1, t]$$