Floating Point

Chapter 2 of B&O

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2 $\sum_{k=0}^{n} b_k \cdot 2^k$
- Represents rational number:

Frac. Binary Number Examples

Value

Representation

$$5^{3}/_{4}$$
 101.11_{2} $2^{7}/_{8}$ 10.111_{2} 0.111111_{2}

Observations

- Divide by 2 by shifting right
- -Multiply by 2 by shifting left
- -Numbers of form $0.1111111..._2$ just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$

Representable Numbers

Limitation

- -Can only exactly represent numbers of the form $x/2^k$
- Other numbers have repeating bit representations

Value	Representation
1/3	$0.01010101[01]{2}$
1/5	$0.001100110011[0011]{2}$
1/10	0.0001100110011[0011]2

IEEE Floating Point

IEEE Standard 754

Integers - Unsigned and 2's complement

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by Numerical Concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Floating Point Representation

Numerical Form

mantisa-fractional

—1^s M 2^E

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding

- -MSB is sign bit
- −exp field encodes E
- -frac field encodes M

Floating Point Precisions

Encoding

s exp frac

- -MSB is sign bit
- −exp field encodes E
- -frac field encodes M
- Sizes
 - -Single precision: 8 exp bits, 23 frac bits
 - 32 bits total
 - -Double precision: 11 exp bits, 52 frac bits
 - 64 bits total

"Normalized" Numeric Values

- Condition
 - $\exp \neq 000...0$ and $\exp \neq 111...1$
- Exponent coded as biased value
 - E = Exp Bias
 - Exp: unsigned value denoted by exp
 - Bias : Bias value
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
 - in general: Bias = 2^{e-1} 1, where e is number of exponent bits
- Significand coded with implied leading 1
 - $M = 1.xxx...x_2$
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

If you wanted to raise some matisa by -1 then it would be E = 126 Subtracting from the bias does not change the range

Normalized Encoding Example

Value

```
- Float F = 15213.0;

15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}
```

Significand

```
- M = 1.1101101101_2

- frac = 1101101101101000000000_2
```

Exponent

```
Step 1: covert to 2's scientific notation
Step 2: you get an E
Step 3: You have your bias
Step 4: Get exponent and represent that in binary
```

 $- Exp = 140 = 10001100_2$

Floating Point Representation:

140: 100 0110 0

Denormalized Values

Condition

 $- \exp = 000...0$

Value

- Exponent value E = -Bias + 1
- Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac

Cases

- exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
- $\exp = 000...0$, frac $\neq 000...0$
 - Numbers very close to 0.0
 - "Gradual underflow"

01.11 x 2^-129 0.00111 x 2^-126 Frac 001110.... Exp 0....0

Special Values

- Condition
 - $\exp = 111...1$
- Cases
 - $\exp = 111...1$, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = \infty$
 - $-\exp = 111...1$, frac $\neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty-\infty$

Floating Point Real Number Encodings

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same General Form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

7	6 3	2 0
S	exp	frac

Values Related to the Exponent

Exp	exp	E	2 ^E	
0	0000	-6	1/64	(denorms)
1	0001	-6	1/64	
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a		(inf, NaN)

Dynamic Range

COLUMN TO THE REAL PROPERTY OF THE PARTY OF	S	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	$1/8*1/64 = 1/512 \leftarrow closest to zero$
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers	•••				
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 ← largest denorm
					8/8*1/64 = 8/512 ← smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	•••				
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	$15/8*1/2 = 15/16 \leftarrow \text{closest to 1 below}$
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	$9/8*1 = 9/8 \leftarrow \text{closest to 1 above}$
	0	0111	010	0	10/8*1 = 10/8
	•••				
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 ← largest norm
••••••	0	1111	000	n/a	inf

Distribution of Values

- 6-bit IEEE-like format
 - -e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

• 6-bit IEEE-like format

- -e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Interesting Numbers

Description	exp	frac	
7ero	00 00	00 00	

Smallest +Denorm 00...00 00...01

- Single $\approx 1.4 \text{ X } 10^{-45}$

- Double ≈ 4.9 X 10^{-324}

Largest Denormalized 00...00 11...11

- Single ≈ 1.18 X 10^{-38}

- Double ≈ 2.2 X 10^{-308}

Smallest Pos. Normalized 00...01 00...00

Just larger than largest denormalized

One 01...11 00...00

Largest Normalized 11...10 11...11

- Single ≈ 3.4×10^{38}

- Double ≈ 1.8 X 10^{308}

Num Val

0.0

2- {23,52} X 2- {126,1022}

 $(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$

1.0 X 2^{-{126,1022}}

1.0

 $(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

Special Properties of Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations

- Conceptual View
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
- Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
-Zero	\$1	\$1	\$1	\$2	-\$1
-Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
-Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
-Nearest Even (default	\$1	\$2	\$2	\$2	-\$2

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

Closer Look at Round-To-Even

- Default Rounding Mode
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under- estimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- -"Even" when least significant bit is 0
- -Half way when bits to right of rounding position = $100..._2$

Examples

-Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
$2^{3}/_{32}$	10.000112	10.002	(<1/2—down)	2
$2^{3}/_{16}$	10.001102	10.01 ₂	(>1/2—up)	2 1/4
$2^{7}/_{8}$	10.111002	11.002	(1/2—up)	3
$2^{5}/_{8}$	10.10100 ₂	10.102	(1/2—down)	2 1/2

FP Multiplication

Operands

$$(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}$$

Exact Result

```
(-1)^{s} M 2^{E}
```

- Sign s: s1 ^ s2

Significand M: M1 * M2

- Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

FP Addition

Operands

$$(-1)^{s1}$$
 M1 2^{E1} $(-1)^{s2}$ M2 2^{E2}

- Assume E1 > E2

Exact Result

 $(-1)^{s} M 2^{E}$

- Sign s, significand M:
 - Result of signed align & add
- Exponent E: E1

 $2e^5 + 4.3e^-6 = you$ have to align them and then do the addition. You need to shift them so they are the same order of amgnitude.

E1-E2 •

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Integers
 - Closed under addition? YES
 - But may generate infinity or NaN
 - Commutative? YES
 - Associative? NO
 - Overflow and inexactness of rounding
 - 0 is additive identity? YES
 - Every element has additive inverse ALMOST
 - Except for infinities & NaNs
- Monotonicity
 - $-a \ge b \Rightarrow a+c \ge b+c$? ALMOST
 - Except for infinities & NaNs

Math. Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication? YES
 - But may generate infinity or NaN
 - Multiplication Commutative? YES
 - Multiplication is Associative? NO
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity? YES
 - Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
- Monotonicity
 - $-a \ge b \& c \ge 0 \implies a *c \ge b *c?$ ALMOST
 - Except for infinities & NaNs

Floating Point in C

C Guarantees Two Levels

float single precision

double double precision

Conversions

- Casting between int, float, and double changes numeric values
- Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 - Generally saturates to TMin or TMax
- int to double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int to float
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
• x == (int)(float) x
• x == (int) (double) x
f == (float) (double) f
• d == (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```

Answers to Floating Point Puzzles

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NAN

```
• x == (int)(float) x
```

•
$$x == (int) (double) x$$

•
$$f == -(-f)$$
;

•
$$2/3 == 2/3.0$$

•
$$d < 0.0 \Rightarrow ((d*2) < 0.0)$$

•
$$d > f \Rightarrow -f > -d$$

•
$$d * d >= 0.0$$

•
$$(d+f)-d == f$$

No: 24 bit significand

Yes: 53 bit significand

Yes: increases precision

No: loses precision

Yes: Just change sign bit

No: 2/3 == 0

Yes!

Yes!

Yes!

No: Not associative

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth \$500 million
- Why
 - Computed horizontal velocity as floating point number
 - Converted to 16-bit integer
 - Worked OK for Ariane 4
 - Overflowed for Ariane 5
 - Used same software

Summary

- IEEE Floating Point Has Clear Mathematical Properties
 - Represents numbers of form $M \times 2^{E}$
 - Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
 - Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers