Outlier detection and treatment

✓ What Are Outliers?

An outlier is a data point that lies far outside the normal range of values in a dataset. For example:

Example 1: Student Scores

Student Math Score

Student Math Score

- A 85
- B 88
- C 91
- D 87
- E **20** (▲ Outlier)

☑ Most students scored around 85–91,but Student E got 20, which is very far from the others.⋄So 20 is an outlier.

✓ Why Are Outliers Important?

Reason Explanation ⚠ Biases the Mean Outliers can shift the average drastically ☒ Affects Model Accuracy Many ML models (like Linear Regression) are sensitive ✓ Sometimes Insightful Can reveal fraud, system failures, or rare cases

3)Visualize the Data

sns.boxplot(x=df['Salary'])

plt.title("Boxplot of Salary")

plt.show()

Explanation:

The box represents the middle 50% of the data.

Dots outside the "whiskers" are outliers.

As you can see:

The box shows the middle 50% of salaries (around 25k-29k).

The dots to the far right (60,000 and 100,000) are outliers — values much higher than the rest.

✓ Detect Outliers Using the IQR Method

We use the IQR method to define what's "too far" from the normal range.

25% of the data falls below this value.

75% of the data falls below this value.

Q1 = df['Salary'].quantile(0.25)

Q3 = df['Salary'].quantile(0.75)

IQR = Q3 - Q1

 $lower_bound = Q1 - 1.5 * IQR$

upper_bound = Q3 + 1.5 * IQR

outliers = df[(df['Salary'] < lower_bound) | (df['Salary'] > upper_bound)]

print(outliers)

Lower Bound: 937

Upper Bound: 1437

	Sa	Salary	
	0	1000	
	1	1100	
	2	1150	
	3	1200	
	4	1300	
	5	20000	
Output:			
	S	Galary	
	5	20000	
✓ Choose a Treatment Method			
		✓ Remove the Outlier	
		Python	
		Copy code	
		df_removed = df[(df['Salary'] >= lower_bound) & (df['Salary'] <= upper_bound)]	
		<pre>print(df_removed)</pre>	
		☐ Use this when:	
		It represents <5% of the data	

```
✓ Cap the Outlier (Winsorize)
python
Copy code
df_capped = df.copy()
df_capped['Salary'] = df_capped['Salary'].clip(lower=lower_bound,
upper=upper_bound)
print(df_capped)
output
5 1437
☐ Use this when:
You want to keep all data but reduce the effect of outliers
You want to prevent the model from overfitting(*) to extreme values
The outliers are valid but too extreme
Don't cap if:
 If you're analyzing true extremes (e.g., VIP users, fraud)
Replace the Outlier with Median
□ When:
The outlier is likely an error or noise
You're working with skewed data (median works better than mean).
You want consistent scaling or normalization
Data is small
```

```
python
Copy code
median_salary = df['Salary'].median() # 1200
df_replaced = df.copy()
df_replaced.loc[(df['Salary'] > upper_bound) | (df['Salary'] < lower_bound), 'Salary'] = median_salary
print(df_replaced)</pre>
```

Summary

Step Description

Step 1: Understand Data See the values and know what the data means

Step 2: Visualize Use boxplot to spot obvious outliers

Step 3: Detect Use IQR

Step 4: Treat Remove / Cap / Replace