Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

TUTORIAL SESSION 19:

Chomsky Hierarchy and Halting Problem

Concept Building

Chomsky Hierarchy

The Chomsky hierarchy is a classification of formal grammars that describes the relationship between different types of languages and the computational power required to recognize them. It consists of four levels, each corresponding to a different class of languages and types of automata:

1. Type 0: Unrestricted Grammars

- Definition: These grammars have no restrictions on their production rules. They can generate recursively enumerable languages.
- o **Equivalent Automaton**: Turing Machines (TMs).
- **Example**: Any language that can be recognized by a Turing machine, such as the set of all strings over the alphabet {0, 1}.

2. Type 1: Context-Sensitive Grammars

- o **Definition**: These grammars have production rules of the form $\alpha A\beta \rightarrow \alpha w\beta$, where A is a non-terminal, and w is a string of terminals and non-terminals. The length of w must be greater than or equal to that of $\alpha A\beta$.
- o **Equivalent Automaton**: Linear Bounded Automata (LBA).
- **Example**: The language $\{a^nb^nc^n \mid n \ge 1\}$.

3. Type 2: Context-Free Grammars

- ο **Definition**: These grammars have production rules of the form $A \rightarrow \alpha A \rightarrow \alpha$, where AA is a single non-terminal and αα is a string of terminals and non-terminals.
- o **Equivalent Automaton**: Pushdown Automata (PDA).
- o **Example**: The language $\{a^nb^n \mid n \ge 0\}$.

4. Type 3: Regular Grammars

- o **Definition**: These grammars have production rules of the form $A \rightarrow aB$ or $A \rightarrow a$, where A and B are non-terminals and aa is a terminal.
- o **Equivalent Automaton**: Finite Automata (FA).
- **Example**: The language $\{a^* \mid n \ge 0\}$.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		210
Course Code(s)	22CS2002A	Page 210 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

The hierarchy is structured such that each level is a superset of the levels below it. For example, all regular languages (Type 3) are also context-free (Type 2), context-sensitive (Type 1), and recursively enumerable (Type 0). This hierarchy helps in understanding the computational complexity and capabilities of different types of languages and the machines that recognize them.

Halting Problem

The Halting Problem is a fundamental concept in computability theory that addresses the question of whether a given Turing machine will halt (i.e., finish its computation) on a given input or will run indefinitely.

- **Definition**: The Halting Problem can be formally stated as follows: Given a Turing machine MM and an input string ww, determine whether MM halts when run with input ww.
- **Undecidability**: Alan Turing proved that there is no general algorithm that can solve the Halting Problem for all possible Turing machines and inputs. This means that it is impossible to construct a Turing machine (or any computational model) that can correctly determine whether any arbitrary Turing machine will halt on a given input.
- **Implications**: The undecidability of the Halting Problem has profound implications for computer science:
 - It establishes limits on what can be computed algorithmically.
 - o It shows that certain problems cannot be solved by any algorithm, regardless of how powerful the machine is.
 - It leads to a deeper understanding of the boundaries between decidable and undecidable problems in computational theory.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		211
Course Code(s)	22CS2002A	Page 211 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

Pre-Tutorial (To be completed by student before attending tutorial session)

1. Give an example of a language that is context-free but not regular.

Solution:

$$L = \{a^n b^n \mid n \ge 0\}$$

This is context-free but not regular, as it fails the pumping lemma.

2. Is the language $L = \{a^i b^j c^k \mid i \neq j, j \neq k\}$ regular? If no, find the type of this language. Solution:

The language $L = \{a^i b^j c^k \mid i \neq j, j \neq k\}$ is not regular but context-free. Regular languages can't handle such dependencies.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		212
Course Code(s)	22CS2002A	Page 212 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

IN-TUTORIAL (To be carried out in presence of faculty in classroom)

1. Consider a Turing machine that can determine whether another Turing machine halts on a given input. If such a machine exists, what can be the implications?

Solution:

If such a machine existed, it would contradict **Turing's Halting Theorem**, proving that the Halting Problem is undecidable.

2. Give a problem that is equivalent to halting problem.

Solution:

The **Post Correspondence Problem (PCP)** is equivalent to the Halting Problem and is undecidable.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		213
Course Code(s)	22CS2002A	Page 213 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

3. Describes the relationship between the Halting Problem and recursive functions.

Solution:

- The Halting Problem shows no recursive function can decide halting for all inputs.
- It proves that not all recursive functions are decidable.
- Some recursive functions are decidable, but halting is undecidable in general.
- 4. If we can create a Turing machine that solves the Halting Problem for a specific class of programs, what can we conclude?

- The class of programs is decidable.
- The Halting Problem is solvable for that class.
- The class has restricted behavior allowing decidability.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		214
Course Code(s)	22CS2002A	Page 214 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

Post-Tutorial (To be carried out by student after attending tutorial session)

1. Compare and contrast Type 1 and Type 2 languages in terms of their generative grammars and recognizers.

- Type 1 (Context-Sensitive): Generated by context-sensitive grammars, recognized by linear-bounded automata.
- Type 2 (Context-Free): Generated by context-free grammars, recognized by pushdown automata.
- Comparison: Type 1 is more powerful, with more complex recognition requirements than Type 2.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		215
Course Code(s)	22CS2002A	Page 215 of 261

2. Illustrate the relationship between the Chomsky Hierarchy and computational complexity.

- Type 3 (Regular): Recognized by finite automata, efficient (linear time).
- 2. **Type 2 (Context-Free):** Recognized by pushdown automata, polynomial time.
- 3. **Type 1 (Context-Sensitive):**Recognized by linear-bounded automata, more complex.
- 4. **Type 0 (Recursively Enumerable):**Recognized by Turing machines, undecidable.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		216
Course Code(s)	22CS2002A	Page 215 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

3. How does the concept of language containment within the Chomsky Hierarchy help in understanding the capabilities of different computational models?

- Containment: Higher levels (e.g., Type
 0) contain lower levels (e.g., Type 3).
- Computational Power: More complex models (Turing machines) recognize more languages.
- Limitations: Simpler models (finite automata, PDAs) handle fewer, simpler languages.
- Understanding Models: Shows the relationship between language complexity and model capabilities.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		217
Course Code(s)	22CS2002A	Page 216 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

Viva - Questions

1. Explain the characteristics of context-free grammars (CFGs) and the types of languages they generate.

Solution:

Context-free grammars generate **context- free languages**, with production rules of the $form A \rightarrow \gamma$.

2. How do regular languages relate to context-free languages in the Chomsky hierarchy?

Solution:

Regular languages are a subset of contextfree languages, with simpler rules and less computational power.

(For Evaluator's use only)

Comment of the Evaluator (if Any)	Evaluator's Observation	
	Marks Secured: out of <u>50</u>	
	Full Name of the Evaluator:	
	Signature of the Evaluator Date of	
	Evaluation:	

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		218
Course Code(s)	22CS2002A	Page 217 of 261