INTRODUCTION TO FOURIER ANALYSIS

CARSON JAMES

Contents

1.	The Fourier Transform on \mathbb{R}^n	2
1.1.	. Schwartz Space	2
1.2.	. The Convolution	2
1.3.	. The Fourier Transform on $L^1(\mathbb{R}^n)$	2

1. The Fourier Transform on \mathbb{R}^n

1.1. Schwartz Space.

Definition 1.1.1. Let $f \in C^{\infty}(\mathbb{R}^n)$ and $\alpha, \beta \in \mathbb{N}_0^n$. We define

$$||f||_{\alpha,\beta} = \sup_{x \in \mathbb{R}^n} |(1+x^{\beta})\partial^{\alpha} f(x)|$$

We define Schwartz space, denoted \mathcal{S} , by

$$S = \{ f \in C^{\infty}(\mathbb{R}^n) : \text{ for each } \alpha, \beta \in \mathbb{N}_0^n, \|f\|_{\alpha,\beta} < \infty \}$$

1.2. The Convolution.

1.3. The Fourier Transform on $L^1(\mathbb{R}^n)$.

Definition 1.3.1. Let $f \in L^1(\mathbb{R}^n)$. We define the **Fourier transform of** f, denoted $\hat{f}: \mathbb{R}^n \to \mathbb{C}$ by

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x)e^{-i}$$