Abelian Categories

Robert

April 11 2024

Table of Contents

Motivation

Definitions

Chain complexes and exact sequences

Properties of Abelian categories

Transformations between Abelian categories

Diagram lemmas

Freyd-Mitchell Embedding Theorem

Homological Algebra

Traditionally, we do homological algebra within categories such as \mathbf{Ab} and \mathbf{Mod}_R (this means left R-modules). Abelian categories are a generalization of what makes these categories so nice to do homological algebra in.

Definition

A category C is called *additive* if

- 1. C(a, b) is an abelian group, where composition distributes over addition.
- 2. There is an object that is both initial and terminal. We call this the *zero object*.
- 3. C has binary products (and thus finite ones)

Definition

A category A is called *abelian* if

- 1. It is an additive category.
- 2. Every morphism has a kernel and a cokernel
- 3. Every monomorphism is a kernel, every epimorphism is a cokernel

The kernel of f is defined to be the equalizer of f and 0. The zero morphism $0:A\to B$ is obtained by taking the composition $A\to 0\to B$.

Category of abelian groups.

- Category of abelian groups.
- Category of left R-modules.

- Category of abelian groups.
- Category of left R-modules.
- The category of chain complexes on an abelian category.

- Category of abelian groups.
- Category of left R-modules.
- The category of chain complexes on an abelian category.
- ► LCA is unfortunately not abelian.

Chain complexes

Definition

Let $\mathcal A$ be an abelian category. A *chain complex* in $\mathcal A$ is a sequence of objects $(\mathcal C_n)$ and a sequence of morphisms (∂_n) where $\partial_n:\mathcal C_n\to\mathcal C_{n-1}$ and it has the property that $\partial_{n+1}\circ\partial_n=0$

We denote this as (C_n, ∂) .

Category of chain complexes

Chain complexes from an abelian category \mathcal{A} form the objects in the category of chain complexes on \mathcal{A} . The morphisms in this category are sequences of morphisms (f_n) such that squares commute like so

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots$$

$$\downarrow^{f_{n+1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n-1}}$$

$$\cdots \longrightarrow C'_{n+1} \longrightarrow C'_n \longrightarrow C'_{n-1} \longrightarrow \cdots$$

and we write $(C_n, \partial) \rightarrow (C'_n, \partial')$.

Exact sequences

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots$$

We say that a sequence (C_n, ∂) is exact at C_n if im $\partial_{n+1} = \ker \partial_n$. The image of a morphism $f : A \to B$ is defined to be $\ker(\operatorname{coker} f)$.

Short exact sequences

A short exact sequence is a sequence of the form

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

which is exact at A, B, C.

 $ightharpoonup \mathcal{A}$ is abelian if and only if \mathcal{A}^{op} is.

- $ightharpoonup \mathcal{A}$ is abelian if and only if \mathcal{A}^{op} is.
- ▶ Given any morphism f, we can factor it like f = me where m is monic and e is epic.

- $ightharpoonup \mathcal{A}$ is abelian if and only if \mathcal{A}^{op} is.
- ▶ Given any morphism f, we can factor it like f = me where m is monic and e is epic.
- ▶ If f is both epi and monic, it is an isomorphism. Compare this with the category of abelian groups, and R-Mod.

- $ightharpoonup \mathcal{A}$ is abelian if and only if \mathcal{A}^{op} is.
- ▶ Given any morphism f, we can factor it like f = me where m is monic and e is epic.
- ▶ If *f* is both epi and monic, it is an isomorphism. Compare this with the category of abelian groups, and *R*-Mod.
- ▶ Given a short exact sequence $0 \to A \to B \to C \to 0$, if $f: A \to B$ and $g: B \to C$ then we have f monic and g epi.

Exact functors

Definition

A functor F is *left-exact* if the sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C$ being exact implies that the sequence $0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C)$ is exact. A functor being *right-exact* is defined similarly.

Exact functors

Definition

A functor F is *left-exact* if the sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C$ being exact implies that the sequence $0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C)$ is exact. A functor being *right-exact* is defined similarly.

A functor that is both left and right exact is called exact.

Exact functors

Definition

A functor F is *left-exact* if the sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C$ being exact implies that the sequence

 $0 \longrightarrow F(A) \longrightarrow F(B) \longrightarrow F(C)$ is exact. A functor being *right-exact* is defined similarly.

A functor that is both left and right exact is called exact. There are many equivalent definitions of exact functor.

Examples of exact functors

► Any equivalence of categories is exact.

Examples of exact functors

- Any equivalence of categories is exact.
- ► The covariant hom functor into abelian groups is left-exact. The contravariant one is right-exact.

Diagram lemmas

- ► Five lemma
- ► Snake lemma

Definition

Given $x,y\in_m a$, define $x\sim y$ if and only if there are epis u,v such that xu=yv.

Definition

Given $x, y \in_m a$, define $x \sim y$ if and only if there are epis u, v such that xu = yv.

The symbol \in_m is chosen purposefully for intuition.

Abelian categories are intuitive

Theorem

Let \in_m denote membership in an abelian category.

- 1. $f: a \to b$ is monic if and only if for all $x \in_m a$, $fx \sim 0$ implies that $x \sim 0$;
- 2. $f: a \to b$ is monic if and only if for all $x, x' \in_m a$, $fx \sim fx'$ implies $x \sim x'$;
- 3. $g: b \to c$ is epi if and only if for every $z \in_m c$ there exists a $y \in_m b$ such that $gy \sim z$;
- 4. $h: r \to s$ is zero if and only if for all $x \in_m r$, $hx \sim 0$;
- 5. A sequence $a \xrightarrow{f} b \xrightarrow{g} c$ is exact at b iff gf = 0 and for every $y \in_m b$ such that $gy \sim 0$ there exists $x \in_m a$ so that $fx \sim y$;
- 6. Given $g: b \to c$ and $x, y \in_m b$ with $gx \sim gy$, there is some $z \in_m b$ such that $gz \sim 0$; and if any $f: b \to d$ is such that $fx \sim 0$ then we have $fy \sim fz$, additionally, if $h: b \to a$ is such that $hy \sim 0$ we have $hx \sim -hz$.

Five Lemma

Lemma (Five lemma)

Suppose the rows are exact, and f_1 , f_2 , f_4 , f_5 are isomorphisms. Then f_3 is an isomorphism.

Freyd-Mitchell

Theorem (Freyd-Mitchell Embedding Theorem)

Let \mathcal{A} be a small Abelian category. Then there is a ring with unity R and a functor $F: \mathcal{A} \to \mathbf{Mod}_R$ (left R-module category) such that F is full, faithful and exact.

Snake lemma with Freyd-Mitchell

