

Overview

S.Lan

Basic Concepts

Matrix

Positive Definite

Matrices

Square-Root Matrix

Random Vectors

Lecture 2 Matrix Algebra

Shiwei Lan¹

¹School of Mathematical and Statistical Sciences Arizona State University

STP533 Multivariate Analysis Spring 2025

Table of Contents

Overview

S.Lan

Basic Concepts

Matrix

Special Matric

Positive Definite Matrices Square-Root Matrix

Random Vector

Basic Concepts
 Vector
 Matrix

2 Special Matrices Positive Definite Matrices Square-Root Matrix

Random Vectors and Matrices

Basic Concepts Vector

Special Matrice

Positive Definite Matrices Square-Root Matrix

Random Vector

• A vector **x** is an array of *n* numbers x_1, x_2, \dots, x_n , i.e.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad or \quad \mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

- A scaler factor of vector **x** is $c\mathbf{x} = [cx_1, cx_2, \cdots, cx_n]^T$.
- Two vectors \mathbf{x}, \mathbf{y} can be added $\mathbf{x} + \mathbf{y} = [x_1 + y_1, x_2 + y_2, \cdots, x_n + y_n]^T$.
- The *length* of a vector **x** is defined as $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$.
- We have $||c\mathbf{x}||_2 = |c|||\mathbf{x}||_2$.

Overview

S.Lan

Basic Concepts

Vector Matrix

Special Matrice

Positive Definite Matrices Square-Root Matrix

Random Vector

Figure 2.4 The angle θ between $\mathbf{x}' = [x_1, x_2]$ and $\mathbf{y}' = [y_1, y_2]$.

Basic Concepts Vector

Positive Definite
Matrices

Random Vectors

• The inner product of two vectors **x** and **y** is defined as

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$$

- The angle between two vectors \mathbf{x} and \mathbf{y} is defined as $\theta = \cos^{-1}\left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2\|\mathbf{y}\|_2}\right)$.
- When the angle $\theta=\pi/2$, i.e. $\langle {\bf x},{\bf y}\rangle=0$, we say ${\bf x}$ and ${\bf y}$ are perpendicular, denoted as ${\bf x}\perp {\bf y}$.
- A set of vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$ is said to be *linearly dependent* if there exist constants c_1, c_2, \dots, c_p not all zero, such that

$$\sum_{i=1}^n c_i \mathbf{x}_i = 0$$

Vectors

Overview

S.Lan

Basic Concepts
Vector

Special Matrice
Positive Definite
Matrices
Square-Root Matrix

Random Vector

- What does linearly independence imply? Algebraically? Geometrically?
- The *projection* of a vector **x** onto another vector **y** is defined as

$$P_{\mathbf{y}}\mathbf{x} = \langle \mathbf{x}, \mathbf{y}^* \rangle \mathbf{y}^* = \left\langle \mathbf{x}, \frac{\mathbf{y}}{\|\mathbf{y}\|} \right
angle \frac{\mathbf{y}}{\|\mathbf{y}\|} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y}$$

• Given a set of vectors $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p$, what is Gram–Schmidt process?

• What is it good for?

Cauchy-Schwarz Inequality

S.Lan

Vector

Theorem

Let **x** and **y** be two $p \times 1$ vectors. Then

$$\langle \mathbf{x}, \mathbf{y} \rangle \leq \|\mathbf{x}\| \|\mathbf{y}\|$$

with equality if and only if $\mathbf{x} = c\mathbf{y}$ for some constant c.

Matrix

Overview

S.Lan

Basic Concepts

Matrix

Special Matrice:
Positive Definite
Matrices
Square-Root Matrix

Random Vector

• A matrix, X, is any rectangle array of numbers with n rows and p columns

$$\mathbf{X} = [x_{ij}]_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1j} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2j} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ x_{i1} & x_{i2} & \cdots & x_{ij} & \cdots & x_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nj} & \cdots & x_{np} \end{bmatrix}$$

- The *transpose* of **X** is an array by swapping rows and columns, denoted as $\mathbf{X}^T = [x_{ii}]_{p \times n}$.
- When n = p, **X** is a *square* matrix. Further **X** is *symmetric* if $\mathbf{X}^T = \mathbf{X}$.
- Diagonal matrix $\operatorname{diag}(\mathbf{x}) = [x_i \delta_{ij}]_{n \times n}$. Identity matrix $\mathbf{I} = [\delta_{ij}]_{n \times n}$.

Matrices

Overview

S.Lan

Basic Concepts
Vector
Matrix

Positive Definite Matrices Square-Root Matrix

Random Vecto and Matrices

- The linear combination of matrices, **A** and **B**: $a\mathbf{A} + b\mathbf{B} = [aa_{ij} + bb_{ij}].$
- Two matrices $\mathbf{A}_{n \times k}$ and $\mathbf{B}_{k \times p}$ need to be size compatible to multiply

$$\mathbf{C} = [c_{ij}] = \mathbf{A}\mathbf{B} = \left[\sum_{\ell=1}^k \mathsf{a}_{i\ell} b_{\ell j}
ight]_{n imes p}, \quad c_{ij} = \sum_{\ell=1}^k \mathsf{a}_{i\ell} b_{\ell j}$$

- In general AB exists does not imply BA exists.
- If AB = BA = I, then we say B is the *inverse* of square matrix A, denoted as $B = A^{-1}$.
- A special case for square matrix is $\mathbf{Q}^{-1} = \mathbf{Q}^T$, i.e. $\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = \mathbf{I}$.
- We define *trace* of matrix **A** to be $tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$. We have $tr(\mathbf{AB}) = tr(\mathbf{BA})$ whenever the matrix multiplication holds.

Eigen-decomposition: eigen

S.Lan

c Concept

Vector Matrix

Matrices
Square-Root Matrix

Random Vector and Matrices • A square matrix $\mathbf{A}_{n \times n}$ is said to have an eigenvalue λ with corresponding eigenvector \mathbf{v} if

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}, \quad \textit{usually } \|\mathbf{v}\|_2 = 1.$$

• If we organize eigenvectors as $\mathbf{P} = [\mathbf{v}_1, \cdots, \mathbf{v}_n]$ and eigenvalues $\boldsymbol{\lambda} = [\lambda_1, \cdots, \lambda_n]^T$. Then we have the eigendecomposition (a.k.a. spectral decomposition)

$$\mathbf{A} = \mathbf{P} \wedge \mathbf{P}^{-1}, \quad \Lambda = \operatorname{diag}(\boldsymbol{\lambda})$$

Example 2.9 (Verifying eigenvalues and eigenvectors) Let

$$\mathbf{A} = \begin{bmatrix} \mathbf{1} & -\mathbf{5} \\ -\mathbf{5} & \mathbf{1} \end{bmatrix}$$

Then, since

$$\begin{bmatrix} 1 & -5 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = 6 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

 $\lambda_1 = 6$ is an eigenvalue, and

$$\mathbf{e_1} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

is its corresponding normalized eigenvector. You may wish to show that a second eigenvalue—eigenvector pair is $\lambda_2 = -4$, $\mathbf{e}'_2 = [1/\sqrt{2}, 1/\sqrt{2}]$.

Table of Contents

S.Lan

Matrix

Matrices

Special Matrices Positive Definite Matrices Square-Root Matrix

Positive Definite Matrices (PSD)

Overview

S.Lan

Basic Concept Vector

Special Matrice

Matrices

Square-Root Matri

Random Vector

• Many probability densities, e.g. normal, in multivariate analysis involve *quadric form* defined with a square matrix **A**

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i,j=1}^n x_i a_{ij} x_j$$

- The statistic distance is a quadratic form with $\mathbf{A} = \operatorname{diag}(\mathbf{s}^{-2})$.
- A symmetric matrix **A** is said to be *nonnegative* is $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for any $\mathbf{x} \in \mathbb{R}^n$, denoted as $\mathbf{A} \geq 0$.
- If particularly $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ holds for any $\mathbf{x} \neq 0$, then we say \mathbf{A} is *positive* definite (PSD), denoted as $\mathbf{A} > 0$.
- Consider the spectral decomposition $\mathbf{A} = \mathbf{P}\Lambda\mathbf{P}^T$. **A** is PSD if and only if all eigenvalues are positive, i.e. $\Lambda > 0$.

Positive Definite Matrices (PSD)

Overview

S.Lan

Basic Concepts
Vector

Special Matrice
Positive Definite

Matrices
Square-Root Matrix

Random Vecto

Example 2.11 (A positive definite matrix and quadratic form) Show that the matrix for the following quadratic form is positive definite:

$$3x_1^2 + 2x_2^2 - 2\sqrt{2}x_1x_2$$

To illustrate the general approach, we first write the quadratic form in matrix notation as

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{x}' \mathbf{A} \mathbf{x}$$

By Definition 2A.30, the eigenvalues of **A** are the solutions of the equation $|\mathbf{A} - \lambda \mathbf{I}| = 0$, or $(3 - \lambda)(2 - \lambda) - 2 = 0$. The solutions are $\lambda_1 = 4$ and $\lambda_2 = 1$. Using the spectral decomposition in (2-16), we can write

$$\begin{array}{lll} \mathbf{A} &= \lambda_1 \mathbf{e}_1 & \mathbf{e}_1' & + \ \lambda_2 \mathbf{e}_2 & \mathbf{e}_2' \\ (2 \times 1)(1 \times 2) & (2 \times 1)(1 \times 2) \end{array}$$

$$= \mathbf{4} \mathbf{e}_1 & \mathbf{e}_1' & + \mathbf{e}_2 & \mathbf{e}_2' \\ (2 \times 1)(1 \times 2) & (2 \times 1)(1 \times 2) \end{array}$$

where e_1 and e_2 are the normalized and orthogonal eigenvectors associated with the eigenvalues $\lambda_1 = 4$ and $\lambda_2 = 1$, respectively. Because 4 and 1 are scalars, premultiplication and postmultiplication of **A** by \mathbf{x}' and \mathbf{x} , respectively, where $\mathbf{x}' = [x_1, x_2]$ is any nonzero vector, give

$$\frac{\mathbf{x}'}{\mathbf{A}} \frac{\mathbf{A}}{(1\times2)(2\times2)(2\times1)} = \frac{4\mathbf{x}'}{(1\times2)(2\times1)(1\times2)(2\times1)} + \frac{\mathbf{x}'}{(1\times2)(2\times1)(1\times2)(2\times1)} + \frac{\mathbf{g}_2'}{(1\times2)(2\times1)(1\times2)(2\times1)} \\
 = 4y_1^2 + y_2^2 \ge 0$$

with

$$y_1 = \mathbf{x}' \mathbf{e}_1 = \mathbf{e}_1' \mathbf{x}$$
 and $y_2 = \mathbf{x}' \mathbf{e}_2 = \mathbf{e}_2' \mathbf{x}$

Weighted Distance

Overview

S.Lan

Basic Concept Vector

Matrix

Special Matrice
Positive Definite

Matrices

Random Vecto

Figure 2.6 Points a constant distance c from the origin $(p = 2, 1 \le \lambda_1 < \lambda_2)$.

Square-Root Matrix

Overview

S.Lan

Basic Concepts
Vector

Special Matrice

Positive Definite

Matrices

Square-Root Matrix

Random Vector

• Consider the spectral decomposition for ${f A}>0$

$$\mathbf{A} = \mathbf{P} \wedge \mathbf{P}^T$$
, $\mathbf{P} \mathbf{P}^T = \mathbf{P}^T \mathbf{P} = \mathbf{I}$, $\Lambda = \operatorname{diag}(\{\lambda_\ell\})$, $\lambda_\ell > 0$

- Then we have $\mathbf{A}^k = \mathbf{P} \Lambda^k \mathbf{P}^T$ for $k \in \mathbb{Z}$ with $\Lambda^k = \operatorname{diag}(\{\lambda_\ell^k\})$.
- We define square-root matrix of A as

$$\mathbf{A}^{\frac{1}{2}} = \mathbf{P} \Lambda^{\frac{1}{2}} \mathbf{P}^{T}$$

- What is $(\mathbf{A}^{\frac{1}{2}})^T$? $(\mathbf{A}^{\frac{1}{2}})^{-1}$?
- Cholesky decomposition $\mathbf{A} = \mathbf{L} \mathbf{L}^T$.

Maximization of Quadratic Forms on Unit Sphere

Overview

S.Lan

Basic Concepts
Vector

Special Matrice
Positive Definite

Square-Root Matrix

Random Vectors

Theorem

Let $\mathbf{A}_{p \times p}$ be a PSD with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p > 0$ with associated normalized eigenvectors $\mathbf{v}_1, \cdots, \mathbf{v}_p$. Then

$$\max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \lambda_1, \quad \min_{\mathbf{x} \neq 0} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \lambda_p$$

Moreover,

$$\max_{\mathbf{x} \perp \mathbf{v}_1, \cdots, \mathbf{v}_k} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \lambda_{k+1}$$

Table of Contents

Verview

S.Lan

Basic Concepts

Vector

Special Matric

Matrices
Square-Root Matrix

Random Vectors

1 Basic Concepts Vector Matrix

2 Special Matrices Positive Definite Matrices Square-Root Matrix

8 Random Vectors and Matrices

Random Vectors and Matrices

Overview

S.Lan

Basic Concepts
Vector
Matrix

Special Matrice
Positive Definite
Matrices
Square-Root Matrix

Random Vector

• Random vectors and matrices have elements as random variables (r.v.).

• We define the *expectation* of random matrix **X** as $E[X] = [EX_{ii}]$ where

$$EX_{ij} = \begin{cases} \int x_{ij} f_{ij}(x_{ij}) dx_{ij}, & \text{if } X_{ij} \text{ is continuous } r.v. \text{ with pdf } f_{ij} \\ \sum x_{ij} p_{ij}(x_{ij}), & \text{if } X_{ij} \text{ is discrete } r.v. \text{ with pmf } f_{ij} \end{cases}$$

• Expectation is a linear operator. For constants c_1, \dots, c_k and random matrices $\mathbf{X}_1, \dots, \mathbf{X}_k$

$$\mathrm{E}\left[\sum_{\ell=1}^k c_\ell \mathbf{X}_\ell
ight] = \sum_{\ell=1}^k c_\ell \mathrm{E}[\mathbf{X}_\ell]$$

• For deterministic matrices A, B, E[AXB] = AE[X]B.

Mean Vectors and Covariance Matrices

Overview

S.Lan

Basic Concept Vector Matrix

Positive Definite Matrices Square-Root Matrix

Random Vector

- For random vector $\mathbf{X} = [X_1, \cdots, X_p]^T$, we can define the *mean* vector $\mathbf{E}\mathbf{X} = [\mathbf{E}X_1, \cdots, \mathbf{E}X_p]^T$, often denoted as μ .
- We also define the covariance matrix of X as (often denoted as Σ)

$$\operatorname{Cov}[\mathbf{X}] = \operatorname{Cov}[\mathbf{X}, \mathbf{X}] = [\operatorname{Cov}(X_i, X_j)] = [\operatorname{E}((X_i - \operatorname{E}X_i)(X_j - \operatorname{E}X_j))]$$

- Alternatively, we can write $Cov[X] = E[(X EX)(X EX)^T].$
- We say random variables X_i and X_j are statistically independent if the joint density is decomposable, i.e. $f_{ij}(x_i, x_i) = f_i(x_i) f_j(x_i)$.
- Consequently, we have $Cov(X_i, X_i) = 0$ if X_i and X_i are independent.
- How about the converse?
- Generally, we have $\operatorname{Cov}[\sum_{\ell=1}^k a_\ell \mathbf{X}_\ell, \sum_{\ell'=1}^k b_{\ell'} \mathbf{Y}_{\ell'}] = \sum_{\ell=1}^k \sum_{\ell'=1}^k a_\ell b_{\ell'} \operatorname{Cov}[\mathbf{X}_\ell, \mathbf{Y}_{\ell'}].$

Mean and Covariance

Overview

S.Lan

Basic Concepts
Vector

Special Matrices

Positive Definite

Matrices

Square-Root Matri

Random Vector and Matrices

Example 2.13 (Computing the covariance matrix) Find the covariance matrix for the two random variables X_1 and X_2 introduced in Example 2.12 when their joint probability function $p_{12}(x_1, x_2)$ is represented by the entries in the body of the following table:

x2			
x_1	О	1	$p_1(x_1)$
-1	.24	.06	.3
О	.24 .16	.14	.3
1	.40	.00	.4
$p_2(x_2)$.8	.2	1

Expectation of Random Quadratic Form

Overview

S.Lan

Basic Concepts Vector

Special Matrice

Positive Definite
Matrices

Square-Root Matri

Let $X \sim (\mu, \Sigma)$, i.e. $\mathrm{E}[X] = \mu$, $\mathrm{Cov}(X) = \Sigma$. Consider a symmetric matrix Λ and the corresponding random quadratic form $X^T \Lambda X$. What is its expectation $\mathrm{E}[X^T \Lambda X]$?