Sprawozdanie – Laboratorium nr 10

Poszukiwanie minimum wartości funkcji metodą symulowanego wyżarzania

Mikołaj Marchewa, 25 maja 2020

1. Wstęp teoretyczny

Optymalizacja polega na poszukiwaniu ekstremum globalnego zadanej funkcji. W naszym przypadku poszukiwane będzie **minimum globalne**, czyli taką wartość funkcji (wielu zmiennych), dla której funkcja ta osiąga najmniejszą wartość w całej swojej dziedzinie, zgodnie z poniższą definicją:

$$\bigwedge_{x \in \mathbb{R}^n} f(x) \ge f(x_{min}),\tag{1}$$

gdzie x_{min} jest minimum globalnym.

Metoda Monte Carlo to opracowany przez Stanisława Ulama numeryczny sposób rozwiązywania procesów zbyt złożonych, by można było przewidzieć ich wynik z pomocą analitycznego podejścia. Metoda polega na wielokrotnym wykonywaniu obliczeń (opartych o losowe symulacje ze znanym rozkładem prawdopodobieństwa), i na ich podstawie, szacowaniu wyniku.

Metoda symulowanego wyżarzania to stochastyczna metoda (jedna z metod Monte Carlo), która z wykorzystaniem tzw. wędrowców, przeszukuje zadaną przestrzeń w celu odnalezienia jej minimum globalnego. Algorytm ten, po ustaleniu odpowiednich warunków początkowych:

- $T = T_{max}$,
- punkt startowy x_0 ,
- wartość funkcji w punkcie startowym $f(x_0)$,
- ilość kroków M, jaką wędrowiec ma wykonać,

w sposób iteracyjny powtarza kolejne czynności:

- 1. losowanie przemieszczenia wędrowca Δx ,
- 2. sprawdzenie czy po przesunięciu przemieszczeniu wartość funkcji w nowym punkcie jest mniejsza od poprzedniej:

$$f(x_i + \Delta x) < f(x_i), \tag{2}$$

jeśli warunek ten jest spełniony wówczas przesuwamy punkt w którym znajduje się wędrowiec. W przeciwnym przypadku wyznaczamy prawdopodobieństwo akceptacji gorszego położenia zgodnie ze wzorem:

$$P = \exp\left(-\frac{f(x_i + \Delta x) - f(x_i)}{T}\right),\tag{3}$$

oraz wyznaczamy liczbę pseudolosową X z przedziału (0,1). Jeśli spełniony jest warunek X < P, wówczas akceptujemy nowe, gorsze położenie i przechodzimy do kolejnego kroku.

3. Co określoną początkowo M liczbę iteracji zmniejszmy temperaturę, co efektywnie zmniejsza prawdopodobieństwo akceptacji położenia o wyższej funkcji kosztu.

2. Zadanie do wykonania

2.1 Opis problemu

Głównym zadaniem tych zajęć laboratoryjnych było odnalezienie minimum globalnego funkcji dwóch zmiennych wykorzystując uprzednio zaimplementowany algorytm wyżarzania ze zmienną temperaturą T. Wzór zadanej funkcji przedstawiono poniżej:

$$f(x,y) = \sin(x)\sin(y) - \exp\left(-\left(x + \frac{\pi}{2}\right)^2 - \left(y - \frac{\pi}{2}\right)^2\right).$$
 (4)

Symulację przeprowadzono dla N=200 wędrowców na płaszczyźnie $[-10,10] \times [-10,10]$. Położenie początkowe wędrowców $(x^{(0)},y^{(0)})=(5,5)$, zaś temperaturę wyznaczamy w kolejnych iteracjach co k=100 kroków błądzenia, zgodnie z wzorem:

$$T = \frac{10}{2^{it'}}\tag{5}$$

gdzie i_t to numer iteracji.

2.2 Wyniki

Wykres 1: Położenie wędrowców w iteracji $i_t=0$ Wykres 2: Położenie wędrowców w iteracji $i_t=7$

Wykres 3: Położenie wędrowców w iteracji $i_t=20\,$

Powyższe wykresy obrazują jak zmieniało się położenie wszystkich N=200 wędrowców w danych iteracjach. Początkowo widoczny jest znaczny "rozstrzał" położeń, a następnie w dalszych iteracjach stopniowe obniżanie się położenia, czyli wartości funkcji w punktach, w których znajdują się wędrowcy i skupianie się tych punktów w lokalnych bądź globalnym minimum funkcji na zadanej przestrzeni.

Wykres 4: Wartość funkcji f(x, y) dla wszystkich położeń pierwszego z wędrowców.

Wykres 4 obrazuje "burzliwą" drogę wędrowca z indeksem 0. Początkowo wahania wartości położenia w punkcie, w którym znajduje się wędrowiec, są znaczne, jednak w miarę obniżania się temperatury T i zwiększania liczby losowań, "wysokość" na której znajduje się wędrowiec ulega gwałtownemu obniżeniu i utrzymaniu się na stałym poziomie w okolicy wartości równej -1.

Dodatkowo wyznaczone zostało położenie punktu dla którego wartość funkcji, po zakończeniu działania algorytmu, była najmniejsza. Tak więc w punkcie (x,y)=(-1.57219,1.56859) wartość funkcji wyniosła f(x,y)=-1.99999. Świadczy to o poprawnym odnalezieniu szukanego punktu bliskiego minimum globalnemu funkcji na zadanym przedziale.

Wnioski

- Metoda symulowanego wyżarzania pozwoliła na poprawne odnalezienie minimum globalnego zadanej funkcji.
- Stopniowe zmniejszanie się temperatury T, powoduje dążenie prawdopodobieństwa P
 do zera, czyli prawdopodobieństwa przyjęcia gorszego położenia. Oznacza to, że
 wędrowiec wraz ze wzrostem temperatury może przyjmować jedynie coraz to niższe
 wartości położenia.
- Istotną rolę odegrała liczba wędrowców. Wykresy 1-3 obrazują, że wielu z wędrowców "zbłądziło" w czasie odszukiwania globalnego minimum i w związku z brakiem możliwości przyjęcia gorszego położenia wraz ze wzrostem temperatury, przyjęły one minima lokalne na zadanej przestrzeni.

- Próba zniwelowania powyższego problemu przyjmowania przez wędrowców minimów lokalnych, poprzez nieobniżanie temperatury, byłaby nieskutecznym rozwiązaniem. Skorelowanie temperatury i prawdopodobieństwa przyjmowania gorszego położenia, poskutkowałoby nieskończonym błądzeniem wędrowców, bez przybliżenia poszukiwanego wyniku.
- Dodatkowym atutem rozwiązywania problemu optymalizacji przy pomocy metody wyżarzania lub pochodnych metod metody Monte Carlo, jest prostota ich implementacji i zrozumienia. Należy jednak brać pod uwagę losowość działania tego typu algorytmów i ryzyko znalezienia lokalnego, a nie globalnego minimum funkcji.

4. Bibliografia

4.1 Wstęp teoretyczny napisany na podstawie wykładu dr hab. inż. Tomasza Chwieja - [link] http://home.agh.edu.pl/~chwiej/mn/minimalizacja 1819.pdf