Shape uncertainty quantification with compactly supported basis functions

Wouter van Harten

w.vanharten@math.ru.nl Joint work with L. Scarabosio

Institute for Mathematics, Astrophysics, and Particle Physics (IMAPP)
Radboud University Nijmegen

12 Nov. 2024

Geometric uncertainties

In applications, one encounters geometric uncertainties:

Sannomiya, Diss. ETHZ 18747

Babuška et al. (1999)

serc.carleton.edu

bir.org.uk

Effects?

Quantifying the effects

- Evaluate model repeatedly
 - Pick realizations $y \in Y$
 - Expensive solves
- Polynomial approximation
 - Expensive Off-line setup
 - Cheap On-line evaluation

How can we efficiently find a polynomial approximation for $y \mapsto u(y)$?

Quantifying the effects

- Evaluate model repeatedly
 - Pick realizations $y \in Y$
 - Expensive solves
- Polynomial approximation
 - Expensive Off-line setup
 - Cheap *On-line* evaluations

How can we efficiently find a polynomial approximation for $y \mapsto u(y)$?

Model Problem

We consider the Laplacian on a parametrized domain:

$$\begin{cases} -\nabla \cdot (a\nabla u) = f & \text{in } D(\boldsymbol{y}), \\ u = 0 & \text{on } \partial D(\boldsymbol{y}), \\ \text{for every } \boldsymbol{y} \in Y, \end{cases} \tag{1}$$

for
$$f \in L^2(D_H), a \in L^\infty(D_H)$$
,

where

$$\begin{split} D(\boldsymbol{y}) &:= \{ \boldsymbol{x} \in \mathbb{R}^2 : |\boldsymbol{x}| \leq r(\theta(\boldsymbol{x}); \boldsymbol{y}) \} \subset D_H, \\ \text{and affine radius expansion} \\ r(\theta; \boldsymbol{y}) &= r_0(\theta) + \sum_{j>0} \psi_j(\theta) y_j, \end{split}$$

with

$$\mathbf{y} = (y_1, y_2, \cdots) \in [-1, 1]^{\mathbb{N}}.$$

4 / 26

Mapping approach

Simple PDE on difficult domain \leadsto Difficult PDE on simple domain

Mapping Φ can, for example, be a radial rescaling

$$\Phi(\hat{\boldsymbol{x}};\boldsymbol{y}) = \begin{bmatrix} \cos(\theta(\hat{\boldsymbol{x}})) \\ \sin(\theta(\hat{\boldsymbol{x}})) \end{bmatrix} r(\theta(\hat{\boldsymbol{x}}),\boldsymbol{y}) \frac{|\hat{\boldsymbol{x}}|}{r_0(\theta(\hat{\boldsymbol{x}}))}$$

Wouter van Harten CWI Workshop Shape UQ for elliptic PDE

Mapping approach

$$\int_{D(\boldsymbol{y})} a \nabla u(\boldsymbol{y}) \cdot \nabla v \, d\boldsymbol{x} = \int_{D(\boldsymbol{y})} f \cdot v \, d\boldsymbol{x}$$

Transforms to the parametrized elliptic variational formulation

$$\int_{\hat{D}} \underbrace{\mathbf{D}_{x} \Phi^{-1} \mathbf{D}_{x} \Phi^{-T} \det(\mathbf{D}_{x} \Phi) a \circ \Psi}_{\hat{A}(\mathbf{y})} \hat{\nabla} \hat{u}(\mathbf{y}) \cdot \hat{\nabla} \hat{v} \, d\hat{\mathbf{x}} = \int_{\hat{D}} \underbrace{\det(\mathbf{D}_{x} \Phi) f \circ \Psi}_{\hat{f}(\mathbf{y})} \cdot \hat{v} \, d\hat{\mathbf{x}}$$

6 / 26

Polynomial approximation

We have

$$\int_{\hat{D}} \hat{A}(\boldsymbol{y}) \hat{\nabla} \hat{u}(\boldsymbol{y}) \cdot \hat{\nabla} \hat{v} \, d\hat{\boldsymbol{x}} = \int_{\hat{D}} \hat{f}(\boldsymbol{y}) \cdot \hat{v} \, d\hat{\boldsymbol{x}}.$$

Now, we write a polynomial (Taylor) expansion

$$\hat{u}(\boldsymbol{y}) = \sum_{\mu \in \mathcal{F}} t_{\mu} \boldsymbol{y}^{\mu}$$

with

$$\begin{split} \mathcal{F} &= \{ \mu = \in \mathbb{N}_0^{\mathbb{N}}, \operatorname{supp}(\mu) < \infty \} \\ \boldsymbol{y}^{\mu} &= \Pi_{j=1}^{\operatorname{supp}(\mu)} y_j^{\mu_j} \end{split}$$

with t_{μ} given by

$$t_{\mu} = \frac{1}{\mu!} \frac{\partial^{|\mu|}}{\partial \boldsymbol{y}^{\mu}} \hat{u}(\boldsymbol{y}).$$

Wouter van Harten

CWI Workshop

Shape UQ for elliptic PDE

Polynomial approximation

$$\hat{u}(\boldsymbol{y}) = \sum_{\nu \in \mathcal{F}} t_{\mu} \boldsymbol{y}^{\mu}$$

with t_{μ} given by

$$t_{\mu} = \frac{1}{\mu!} \frac{\partial^{|\mu|}}{\partial \boldsymbol{y}^{\mu}} u(\boldsymbol{y}).$$

The variational formulation for t_{μ} is

$$\int_{\hat{D}} \hat{\nabla} t_{\mu} \cdot \hat{\nabla} \hat{v} \, d\hat{x} = -\sum_{\nu < \mu} \frac{1}{(\mu - \nu)!} \int_{\hat{D}} \partial^{\mu - \nu} \hat{A}(0) \hat{\nabla} t_{\nu} \cdot \hat{\nabla} \hat{v} \, d\hat{x}$$
$$+ \int_{\hat{D}} \partial^{\mu} \hat{f}(0) v \, d\hat{x}.$$

How fast can a polynomial approximation for $y \mapsto \hat{u}(y)$ converge?

Previous results

Theorem (**Hiptmair et al., 2018**) (p < 1/2)

If
$$(\|\psi_j'\|_{\infty})_{j\in\mathbb{N}}\in\ell^p(\mathbb{N})$$
, we have that $\|t_{\nu}\|_{H^1_0}$ decays with rate $s=\frac{1}{p}-1$

Note: Similar results in [Castrillón-Candás et al., Harbrecht et al.]

Example (Sinusoidal basis)

If we take a sinusoidal basis $\psi_j(\theta) \sim j^{-\alpha} \sin(j\theta)$, we would expect a decay rate of $\alpha - 1$.

Example (Wavelet basis)

Layered wavelets $\psi_j(\theta)$; scaled such that $\|\psi_j\|_{\infty} \sim 2^{-\alpha l(j)}$ Decay rate $\alpha-1$ as well.

Wouter van Harten CWI Workshop Shape UQ for elliptic PDE

Previous results

Theorem (**Hiptmair et al., 2018**) (p < 1/2)

If
$$(\|\psi_j'\|_{\infty})_{j\in\mathbb{N}}\in\ell^p(\mathbb{N})$$
, we have that $\|t_{\nu}\|_{H^1_0}$ decays with rate $s=\frac{1}{p}-1$

Note: Similar results in [Castrillón-Candás et al., Harbrecht et al.]

Example (Sinusoidal basis)

If we take a sinusoidal basis $\psi_j(\theta) \sim j^{-\alpha} \sin(j\theta)$, we would expect a decay rate of $\alpha - 1$.

Example (Wavelet basis)

Layered wavelets $\psi_j(\theta)$; scaled such that $\|\psi_j\|_{\infty} \sim 2^{-\alpha l(j)}$ Decay rate $\alpha-1$ as well.

Wouter van Harten CWI Workshop Shape UQ for elliptic PDE

Previous results

Theorem (**Hiptmair et al., 2018**) (p < 1/2)

If
$$(\|\psi_j'\|_{\infty})_{j\in\mathbb{N}}\in\ell^p(\mathbb{N})$$
, we have that $\|t_{\nu}\|_{H^1_0}$ decays with rate $s=\frac{1}{p}-1$

Note: Similar results in [Castrillón-Candás et al., Harbrecht et al.]

Example (Sinusoidal basis)

If we take a sinusoidal basis $\psi_j(\theta) \sim j^{-\alpha} \sin(j\theta)$, we would expect a decay rate of $\alpha - 1$.

Example (Wavelet basis)

Layered wavelets $\psi_j(\theta)$; scaled such that $\|\psi_j\|_{\infty} \sim 2^{-\alpha l(j)}$. Decay rate $\alpha-1$ as well.

Wouter van Harten CWI Workshop Shape UQ for elliptic PDE

Localized supports

Example (Wavelet basis)

Layered wavelets $\psi_j(\theta)$; scaled such that $\|\psi_j\|_{\infty} \sim 2^{-\alpha l(j)}$. Decay rate $\alpha-1$ as well.

 $\|\cdot\|_{\infty}$ does not represent the 'size' accurately.

Intuitively, the $\|\cdot\|_{\infty}$ -bound is a restrictive convergence result.

Wavelets

Example (Wavelet basis)

We take a basis with layered wavelets $\psi_j(\theta)$; each layer consisting of double the number of wavelets with half the support. Decay rate $\alpha-1$ as well.

 $\|\cdot\|_{\infty}$ does not represent the 'size' accurately.

 \downarrow

Intuitively, the $\|\cdot\|_{\infty}$ -bound is a restrictive convergence result.

Motivated by [Bachmayr et al., 2017] we close this gap:

- Finding a pointwise bound instead of $\|\cdot\|_{\infty}$ bound
- Supported by numerical evidence

Note: For generic mapping, closely related to [Diss. ETHZ Zech, 2018]

General result

Assumption

The transformation $\Phi(\hat{x}; y)$ is such that, for an affine boundary expansion we have an affine mapping expansion:

$$\Phi(\hat{\boldsymbol{x}};\boldsymbol{y}) = \hat{\boldsymbol{x}} + \sum_{j \geq 1} y_j \Phi_j(\hat{\boldsymbol{x}}).$$

Theorem – informal (van Harten, Scarabosio '23)

If there exists $(\rho_j)_{j\in\mathbb{N}}$, $\rho_j > 1$, $(\rho_j^{-1})_{j\in\mathbb{N}} \in \ell^q(\mathcal{F})$ and the series $\sum_{j\geq 1} \rho_j \left[\|\Phi_j\|(\hat{x}) + \|\operatorname{D}_x\Phi_j\|_{2,2}(\hat{x})\right] < K_T$ for all $\hat{x}\in\hat{D}$,

then the Taylor coefficients $\|t_{\mu}\|_{H_0^1(\hat{D})}$ converge with rate $\frac{1}{p}=\frac{1}{q}-\frac{1}{2}$.

General result

Assumption

The transformation $\Phi(\hat{x}; y)$ is such that, for an affine boundary expansion we have an affine mapping expansion:

$$\Phi(\hat{\boldsymbol{x}};\boldsymbol{y}) = \hat{\boldsymbol{x}} + \sum_{j>1} y_j \Phi_j(\hat{\boldsymbol{x}}).$$

Theorem - informal (van Harten, Scarabosio '23)

If there exists $(\rho_j)_{j\in\mathbb{N}}$, $\rho_j > 1$, $(\rho_j^{-1})_{j\in\mathbb{N}} \in \ell^q(\mathcal{F})$ and the series $\sum_{j\geq 1} \rho_j \left[\|\Phi_j\|(\hat{x}) + \|\operatorname{D}_x \Phi_j\|_{2,2}(\hat{x}) \right] < K_T \text{ for all } \hat{x} \in \hat{D},$

then the Taylor coefficients $\|t_{\mu}\|_{H_0^1(\hat{D})}$ converge with rate $\frac{1}{p} = \frac{1}{q} - \frac{1}{2}$.

General result

Theorem – informal (van Harten, Scarabosio '23)

If there exists $(\rho_j)_{j\in\mathbb{N}}$, $\rho_j > 1$, $(\rho_j^{-1})_{j\in\mathbb{N}} \in \ell^q(\mathcal{F})$ and the series $\sum_{j\geq 1} \rho_j \left[\|\Phi_j\|(\hat{\boldsymbol{x}}) + \|\operatorname{D}_{\boldsymbol{x}}\Phi_j\|_{2,2}(\hat{\boldsymbol{x}}) \right] < K_T \text{ for all } \hat{\boldsymbol{x}} \in \hat{D},$

then the Taylor coefficients $\|t_{\mu}\|_{H^1_0(\hat{D})}$ converge with rate $\frac{1}{p}=\frac{1}{q}-\frac{1}{2}.$

Example (Wavelet basis)

Layered wavelets $\psi_i(\theta)$; scaled such that $\|\phi_i\|_{\infty} \sim 2^{-\alpha l(j)}$.

Bounding $\|\phi_j\|(\hat{x}) + \|\operatorname{D}_x\Phi_j\|_{2,2}(\hat{x})$ pointwise \leadsto Decay rate $\alpha - \frac{1}{2}$

13 / 26

Mollfier mapping

Mapping Φ can, for example, be a *linear mollifier*

$$\Phi(\hat{\boldsymbol{x}};\boldsymbol{y}) = \hat{\boldsymbol{x}} + \chi(\hat{\boldsymbol{x}}) \left(r(\theta_{\hat{\boldsymbol{x}}},\boldsymbol{y}) - r_0(\theta_{\hat{\boldsymbol{x}}}) \right) \frac{\hat{\boldsymbol{x}}}{\|\hat{\boldsymbol{x}}\|}$$

- explicit transformation
- radial dependence on boundary values
- only as smooth as the wavelet $\psi_i(\theta)$

Hence, we can estimate the convergence of $(\|D_x\Phi_i\|_{2,2}(\hat{x}))_{i\geq 1}$.

Wouter van Harten CWI Workshop

Single-wavelet domain - Mollifier mapping

Exaggerated single-wavelet effect on domain.

Clear locality properties of Φ_i

Logarithm of $\| \operatorname{D}_x \Phi_j \|_{2,2}(\hat{\boldsymbol{x}})$

Single-wavelet domain - Mollifier mapping

Exaggerated single-wavelet effect on domain.

Clear locality properties of Φ_i

Logarithm of $\|D_x\Phi_j\|_{2,2}(\hat{\boldsymbol{x}})$

Conclusion – Mollifier mapping

Then, we have, on the boundary

$$\begin{split} & \sum_{j \geq 1} \| \operatorname{D}_x \Phi_j \|_{2,2}(\hat{\boldsymbol{x}}) \\ & = \sum_{\text{all layers}} \sum_{\substack{\text{single layer} \\ \text{Locality properties of Wavelets}}} \| \operatorname{D}_x \Phi_j \|_{2,2}(\hat{\boldsymbol{x}}) \end{split}$$

$$\leq \sum_{\text{all layers}} C_1 2^{-\alpha l}.$$

- provable convergence properties.
 - Academic example

Conclusion – Mollifier mapping

Then, we have, on the boundary

$$\begin{split} &\sum_{j\geq 1} \|\operatorname{D}_x \Phi_j\|_{2,2}(\hat{\boldsymbol{x}}) \\ &= \sum_{\text{all layers}} \sum_{\substack{\text{single layer} \\ \text{Locality properties of Wavelets}}} \|\operatorname{D}_x \Phi_j\|_{2,2}(\hat{\boldsymbol{x}}) \end{split}$$

$$\leq \sum_{\text{all layers}} C_1 2^{-\alpha l}.$$

- provable convergence properties.
 - Academic example

PDE based mapping

Define mapping through Laplace equation

$$\begin{cases} \Delta \Phi = 0 & \text{in } D \\ \Phi = r_0 + \sum_{j>1} \psi_j y_j & \text{on } \partial D \end{cases}$$

with partial transformations

$$\begin{cases} \Delta \Phi_j = 0 & \text{in } D \\ \Phi_j = \psi_j & \text{on } \partial D \end{cases}$$

Logarithm of $\|D_x\Phi_j\|_{2,2}(\hat{x})$ for Harmonic mapping.

- Smoother transformation \implies better convergence properties
- Difficult to bound $\|D_x\Phi_j\|_{2,2}(\hat{x}) \implies$ difficult to prove rigorously

PDE based mapping

Define mapping through Laplace equation

$$\begin{cases} \Delta \Phi = 0 & \text{in } D \\ \Phi = r_0 + \sum_{j>1} \psi_j y_j & \text{on } \partial D \end{cases}$$

with partial transformations

$$\begin{cases} \Delta \Phi_j = 0 & \text{in } D \\ \Phi_j = \psi_j & \text{on } \partial D \end{cases}$$

Logarithm of $\|D_x\Phi_j\|_{2,2}(\hat{x})$ for Harmonic mapping.

17 / 26

- ullet Smoother transformation \Longrightarrow better convergence properties
- Difficult to bound $\|D_x\Phi_j\|_{2,2}(\hat{x}) \implies$ difficult to prove rigorously

$$\log(\|\operatorname{D}_x\Phi_j\|_{2,2}(\hat{m{x}}))$$

Harmonic mapping mapping

 $\log(\|\operatorname{D}_x\Phi_j\|_{2,2}(\hat{\boldsymbol{x}}))$ Mollifier mapping

18 / 26

$$\log(\|D_x\Phi_j\|_{2,2}(\hat{\boldsymbol{x}}))$$

Harmonic mapping

- 'By eye' similar summability properites hold
- No locality of $\|D_x\Phi_j\|_{2,2}(\hat{x})$
- Different approach required

19 / 26

$$\log(\|\operatorname{D}_x\Phi_j\|_{2,2}(\hat{m{x}}))$$

Harmonic mapping

- 'By eye' similar summability properites hold
- No locality of $\|D_x\Phi_i\|_{2,2}(\hat{x})$

19 / 26

$$\log(\|\operatorname{D}_x\Phi_j\|_{2,2}(\hat{m{x}}))$$

Harmonic mapping

- 'By eye' similar summability properites hold
- No locality of $\|D_x\Phi_i\|_{2,2}(\hat{x})$
- Different approach required

Wouter van Harten

CWI Workshop

Summability Harmonic mapping

Alternative approach for Harmonic mapping:

Use the **maximum principle** for weakly subharmonic functions to move to the boundary on the unit disk D, we solve

$$\begin{cases} \Delta \Phi_j = 0 & \text{in } D \\ \Phi_j = \psi_j & \text{on } \partial D \end{cases}$$

by separation of variables to obtain, at the boundary of D,

$$\| D_x \Phi_j \|_{2,2}^2 = (\psi_j'^2 + \mathcal{H}(\psi_j')^2)^{\frac{1}{2}} = |\psi_j' + \mathcal{H}(\psi_j')i| = A(\psi_j')$$

where $\mathcal H$ is the Hilbert transform (DtN), such that $A(\psi_j')$ denotes the Analytic envelope of ψ_i' .

Wouter van Harten CWI Workshop Shape UQ for elliptic PDE

Conclusion – Harmonic mapping

Then, we have, at the boundary

$$\begin{split} & \sum_{j \geq 1} \| \operatorname{D}_x \Phi_j \|_{2,2}(\hat{\boldsymbol{x}}) \\ &= \sum_{\text{all layers}} \underbrace{\sum_{\text{single layer}} A \left(\Phi_j \|_{2,2}(\hat{\boldsymbol{x}}) \right)}_{\text{Locality properties}} \\ &\leq \sum_{\text{all layers}} C_2 2^{-\alpha l}. \end{split}$$

provable convergence properties.

Numerical results ($\alpha = 3$)

Coefficients calculated using Alternating Greedy Algorithm in Python, with Dolfinx, Gmsh, and PETSc.

 $\vartheta=5\%$ Max shape variation mesh size to resolve Φ

22 / 26

Mollifier (M) Harmonic (H) Fourier (F) Wavelet (W)

Effect persists for different α

Spatial convergence, Wavelet expansion

	h=4		h=2		h = 1		h = 1/2
ϑ	М	Н	М	Н	М	Н	Н
4%	2.512	2.376	2.457	2.629	2.409	2.867	2.944
8%	2.341	2.496	2.320	2.729	2.408	2.858	2.877
16%	2.431	2.491	2.421	2.629	2.376	2.700	2.720
32%	2.200	2.369	2.194	2.489	2.193	2.507	2.507

Rate degenerates for larger shape variations.

For fine meshes, harmonic extension outperforms theoretical rate.

Rates for harmonic mapping more sensitive to mesh size.

Wouter van Harten CWI Workshop Shape UQ for elliptic PDE

Remarks and conclusion

- Main result is more general than shape; extension to 'nice' A(y), f(y).
- Compactness of supports not required, *localization* is enough.
- Different surrogates potentially benefit.

Take home message:

Localized supports improve convergence rate of polynomial expansion.

Thank you for your attention!

W. van Harten, L. Scarabosio, *Exploiting locality in sparse polynomial approximation of parametric elliptic PDEs and application to parameterized domains.* arXiv:2308.06188.