# Predicting Apartment Rentals in Riyadh Using Linear Regression



## Outline:

| 01 | <br>Introduction |
|----|------------------|
| 02 | <br>Data         |
| 03 | <br>Correlation  |
| 04 | <br>Result       |
| 05 | <br>Prediction   |
| 06 | <br>Conclusion   |

## Introduction

#### •Problem:

 Many of apartments owners struggle to set the optimal price for rent due to their lack of experience in rent prices.

#### •Solution :

• In this project, we will develop a linear regression model to predict apartment rent prices according to their characteristics. Which will help the owners to determine the best price.





### Data:



We have used Web Scrapping to collect our data and the source was Aqar site and Wekipedia

#### **Data Columns:**

PRICE- BED - BATH - LIVING - AGE - IMAGES - FLOOR - TARGET-FURNISHED - KITCHEN - ANNEXE - PARKING - ELEVATOR - AC

# Data cleaning & engineering

#### Before Data cleaning & engineering

Number of rows = 6978

- Remove empty values
- Remove redundancy
- Remove the outlier values in the (Price) and (BED) columns
- Convert the variable type to numeric
- Add a column with the name (Amanat)
- Add a column with the name (Regions)

After Data cleaning & engineering

Number of rows = 5146

#### **Correlation:**



| Resul | 4 |
|-------|---|
| UC201 | l |

| Result |                                                                            |                                                               |                                                               |                                                              |
|--------|----------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
|        |                                                                            | Linear Regression                                             | Ridge Regression                                              | Polynomial Regression                                        |
| X1 =   | <ul><li>All features</li><li>Using Amanat<br/>(Baladiat)</li></ul>         | Train R^2 = 0.71<br>Validation R^2 = 0.71<br>Test R^2 = 0.72  | Train R^2 = 0.71<br>Validation R^2 = 0.71<br>Test R^2 = 0.72  | Train R^2 = 0.83<br>Validation R^2 = 0.76<br>Test R^2 = 0.78 |
| X2=    | <ul><li> All features</li><li> Using Neighborhoods</li></ul>               | Train R^2 = 0.83<br>Validation R^2 = -4.0<br>Test R^2 = -4.2  | Train R^2 = 0.83<br>Validation R^2 = -4.0<br>Test R^2 = -4.2  | Train R^2 = 0.91<br>Validation R^2 = -900<br>Test R^2 = -800 |
| X3=    | <ul><li> All features</li><li> Using Regions</li></ul>                     | Train R^2 = 0.70<br>Validation R^2 = 0.70<br>Test R^2 = 0.71  | Train R^2 = 0.70<br>Validation R^2 = 0.70<br>Test R^2 = 0.71  | Train R^2 = 0.78<br>Validation R^2 = 0.75<br>Test R^2 = 0.76 |
| X4=    | <ul><li>Scaled features</li><li>Log10 Price</li><li>Using Amanat</li></ul> | Train R^2 = 0.784<br>Validation R^2 = 0.78<br>Test R^2 = 0.77 | Train R^2 = 0.785<br>Validation R^2 = 0.78<br>Test R^2 = 0.71 | Train R^2 = 0.82<br>Validation R^2 = -111<br>Test R^2 = -087 |

# Prediction:

|   | Actual Price | LinearRegressionModel | LinearRegressionScaledLog10 | PolynomialRegression |
|---|--------------|-----------------------|-----------------------------|----------------------|
| 0 | 20,000       | 20,809                | 21,193                      | 24,478               |
| 1 | 60,000       | 48,129                | 48,993                      | 54,305               |
| 2 | 20,000       | 12,224                | 11,997                      | 14,990               |
| 3 | 22,000       | 16,347                | 16,278                      | 11,240               |
| 4 | 35,000       | 23,744                | 23,309                      | 29,736               |



## Conclusion

•After the results of the model appeared, and the comparison between the results of each model, we concluded that the best model is the model with the highest R^2.

We seek to improve the accuracy of the model in the future by adding additional features such as the average income of the population in each neighborhood or the number of residents in each neighborhood, which helps us in developing the project and determining the rental prices of apartments based on specifications

