Probabilités 1 - CC1 - Lundi 27 septembre 2021 - Éléments de correction

Exercice 1. Les questions sont indépendantes.

- 1. Donner la définition d'une probabilité.
- 2. Donner la définition d'une variable aléatoire.
- 3. On considère une suite $(A_n)_{n\geq 1}$ d'événements dans un espace de probabilités (Ω, \mathcal{F}, P) telle que pour tout $n\geq 1$ $P(A_n)=0$. Montrer que $\cup_{n\geq 1}A_n$ est un événement négligeable.

Correction Les question 1 et 2 sont du cours. La troisième aussi : comme l'union est dénombrable

$$P(\cup_{n\geq 1} A_n) \leq \sum_{n>1} P(A_n) = 0.$$

Exercice 2. On considère une première urne contenant n billes rouges numérotées de 1 à n et une seconde urne contenant p billes bleues numérotées de 1 à p. On suppose que $n \ge p$. On tire une boule dans chaque urne.

- 1. Proposer un espace probabilisé pour modéliser cette expérience.
- 2. Donner une écriture mathématique de l'événement $A: \ll$ la boule rouge a un numéro inférieur ou égal à la boule bleue \gg .
- 3. Calculer la probabilité de A.

Correction

- 1. On peut considérer $\Omega = \{1, \dots, n\} \times \{1, \dots, p\}$, $\mathcal{F} = \mathcal{P}(\Omega)$ et P la probabilité uniforme sur Ω . Comme $Card(\Omega) = np$, on en déduit P(B) = Card(B)/(np) pour toute partie $B \subset \Omega$.
- 2. L'événement correspondant est

$$A = \{(\omega_1, \omega_2) \in \Omega, \ \omega_1 < \omega_2\}.$$

3. On remarque tout d'abord qu'il n'y a aucun couple dans A tel que $\omega_1 > p$. Si $k \le p$, il y a p - (k - 1) couples dans A tels que $\omega_1 = k$. On en déduit que $Card(A) = \sum_{k=1}^{p} (p - k + 1) = \sum_{k=1}^{p} k = \frac{p(p+1)}{2}$. Et on obtient donc $P(A) = \frac{p(p+1)}{2np} = \frac{p+1}{2n}$

Exercice 3. On considère (Ω, \mathcal{F}, P) un espace probabilisé. Les questions sont indépendantes.

- 1. Soit $(A_n)_{n\geq 1}$ une suite d'événements de $\mathcal F$ deux à deux disjoints. Montrer que la suite $(\mathrm P(A_n))_{n\geq 1}$ converge vers 0.
- 2. Soit A, B et C trois événements de \mathcal{F} . Montrer que

$$P(A\Delta C) < P(A\Delta B) + P(B\Delta C)$$
.

On rappelle que $A\Delta B = (A \cup B) \setminus (A \cap B)$.

3. L'ensemble $\{A \subset \mathbb{N}, A \text{ fini ou } A^c \text{ fini}\}\$ forme-t-il une tribu sur \mathbb{N} ?

Correction

1. D'après la définition d'une probabilité

$$P(\bigcup_{n\geq 1} A_n) = \sum_{n\geq 1} P(A_n).$$

On en déduit que la série de terme général $(P(A_n))$ est convergente et donc que la suite $(P(A_n))_{n\geq 1}$ tend vers 0.

2. On vérifie tout d'abord que $A\Delta C \subset (A\Delta B) \cup (B\Delta C)$. Soit $x \in A \setminus C$. Si $x \in B^c$ alors $x \in A\Delta B$ et si $x \in B$ alors $x \in B\Delta C$. Et on raisonne de la même façon si $x \in C \setminus A$. On en déduit

$$P(A\Delta C) \le P((A\Delta B) \cup (B\Delta C)) \le P(A\Delta B) + P(B\Delta C).$$

3. Pour tout $n \geq 1$, $\{2n\}$ est une partie finie donc appartient à \mathcal{G} . Or $\cup_{n\geq 1}\{2n\} = \{2n, n \geq 1\}$ n'est pas dans \mathcal{G} puisqu'il n'est pas fini et son complémentaire non plus. On en déduit que \mathcal{G} n'est pas une tribu puisqu'elle n'est pas stable par union dénombrable.