Devoir maison n°9: Fonction du Boulanger

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier
1E1

Problème 1 -

1)

Si
$$x \in \left[0, \frac{1}{2}\right]$$
, $f(x) = 2x$ donc
$$0 \le x \le \frac{1}{2}$$

$$\Leftrightarrow 0 \le 2x \le 1$$

$$\Leftrightarrow f\left(\left[0, \frac{1}{2}\right]\right) = [0, 1]$$

Si
$$x\in\]\frac{1}{2},1],\,f(x)=2(1-x)$$
 donc
$$\frac{1}{2}< x\leq 1$$

$$\Leftrightarrow 0\leq 1-x<\frac{1}{2}$$

$$\Leftrightarrow 0\leq 2(1-x)<1$$

$$\Leftrightarrow f(]\frac{1}{2},1])=[0,1[$$

Donc nous avons bien f([0,1]) = [0,1]

Représentation graphique de f sur [0,1]

2) La fonction suite repose naturellement sur de la récursivité. Nous allons donc la programmer dans un language qui supporte de manière optimale les fonctions récursives.

Voici suite a pen Haskell.

f x

$$\mid 0 \le x \quad \&\& \quad x \le 1 / 2 = 2 * x$$

 $\mid 1 / 2 \le x \quad \&\& \quad x \le 1 = 2 * (1 - x)$


```
suite a 1 = a
suite a p = suite (a ++ [f (last a)]) (p-1)
```