# SSRAA compare homing from tow and control - chum samon Neets Bay

Bobby Hsu, Lorna Wilson, Sara Miller 2025-04-25

## **Table of contents**

| Objective                                  | 2        |
|--------------------------------------------|----------|
| Data                                       | 2        |
| Method #1: $\chi^2$ Test Net versus Tender | <b>3</b> |
| Results #1 $p$ -values                     |          |
| Method #2: Binomial regression model       | 4        |
| Results #2: Binomial regression model      | 5        |
| Appendix                                   | 6        |
| $\chi^2$ Test: Net versus Control          | 6<br>6   |
| p-values                                   |          |

## **Objective**

To increase the marine survival of Neets Bay chum salmon by reducing predation pressure of out-migrating fry, while not negatively impacting the homing behavior, fry were transported outside of Neets Bay for release. There were three release strategies (tender, net, control). The control group was released from saltwater pens at the head of Neets Bay, adjacent to the hatchery. Evaluation of homing by release group was based on salmon harvested in the terminal areas (Neets Bay hatchery rack, common property commercial and cost recovery in terminal areas) and non-terminal areas (fisheries and areas outside of Neets Bay), and the otolith recovery mark (distinguishes release strategy). Details of the study can be found in Frost et al. 2021.

The objective of the following analysis is to assess the effects of release strategy (towed net pens, tender, control) on the fish homing behavior of Neets Bay hatchery chum salmon. If the ratio of otolith recoveries for the transport groups (net, tender) in the two sample locations (terminal, non-terminal) compared is significantly different (p<0.05) compared to the ratio observed for the control group, then the transport release strategy may affect homing behavior.

#### **Data**

Table 1: Neets Bay chum salmon data

| Year | Group                | Terminal return | Non-terminal return | Total |
|------|----------------------|-----------------|---------------------|-------|
| 2023 | control              | 327             | 205                 | 532   |
| 2023 | $\operatorname{net}$ | 258             | 178                 | 436   |
| 2023 | tender               | 338             | 239                 | 577   |
| 2024 | control              | 320             | 200                 | 520   |
| 2024 | $\operatorname{net}$ | 250             | 170                 | 420   |
| 2024 | tender               | 330             | 230                 | 560   |



- (a) Neets Bay chum salmon data, 2023.
- (b) Neets Bay chum salmon data, 2024.

Figure 1: Neets Bay chum salmon data.

## Method #1: $\chi^2$ Test

## Net versus Tender

Table 2: Chi-Squared observed counts, 2023

|                       | net        | tender     |
|-----------------------|------------|------------|
| terminal non-terminal | 258<br>178 | 338<br>239 |

Table 3: Chi-Squared expected counts, 2023

| net    | tender |
|--------|--------|
| 256.52 | 339.48 |
| 179.48 | 237.52 |
|        | 256.52 |

Table 4: Chi-squared observed counts, 2024

|                       | net        | tender     |
|-----------------------|------------|------------|
| terminal non-terminal | 250<br>170 | 330<br>230 |

Table 5: Chi-squared expected counts, 2024

|              | net    | tender |
|--------------|--------|--------|
| terminal     | 248.57 | 331.43 |
| non-terminal | 171.43 | 228.57 |

## Results #1

#### *p*-values

2023 2024 0.902 0.900

#### Combined *p*-value with Fisher's method

```
chisq = 0.4178937 with df = 4 p = 0.9809859
```

## Method #2: Binomial regression model

A binomial model with proportions for recoveries in terminal areas and recoveries in non-terminal areas as the response variable and release method as the explanatory variable. Group is a fixed effect and year is included as a random intercept term accounting for variation across different years. Intercept is removed.

|                     | Random Effects Model |
|---------------------|----------------------|
| groupcontrol        | 0.416*               |
|                     | (0.164)              |
| groupnet            | $0.330^{*}$          |
|                     | (0.164)              |
| grouptender         | -0.054               |
| -                   | (0.164)              |
| SD (Intercept year) | 0.268                |
| Num.Obs.            | 9                    |
| R2 Marg.            | 0.374                |
| R2 Cond.            | 0.948                |
| AIC                 | 353.2                |
| BIC                 | 354.0                |
| ICC                 | 0.9                  |
| RMSE                | 0.13                 |

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

Standard errors shown in parenthesis.

## Results #2: Binomial regression model

```
effect term estimate std.error statistic p.value conf.low
1 fixed groupcontrol 0.41594608 0.1636427 2.5417937 0.01102852 0.5237851
2 fixed groupnet 0.32979875 0.1638533 2.0127685 0.04413899 0.5021630
3 fixed grouptender -0.05360356 0.1637670 -0.3273159 0.74342896 0.4074345
conf.high probability
1 0.6762694 0.6025128
2 0.6572235 0.5817104
3 0.5664481 0.4866023
```

```
SE df asymp.LCL asymp.UCL z.ratio p.value
contrast
                estimate
                                    -0.0911
                                                0.263
                                                       1.139 0.4898
control - net
                 0.0861 0.0756 Inf
control - tender
                 0.4695 0.0746 Inf
                                     0.2946
                                                0.644
                                                       6.292 <.0001
                 0.3834 0.0750 Inf
                                     0.2077
                                                0.559
                                                       5.114 < .0001
net - tender
```

Results are given on the log odds ratio (not the response) scale.

Confidence level used: 0.95

Conf-level adjustment: tukey method for comparing a family of 3 estimates P value adjustment: tukey method for comparing a family of 3 estimates

## **Appendix**

## $\chi^2$ Test: Net versus Control

Table 6: Chi-squared observed counts, 2023

|              | control | net |
|--------------|---------|-----|
| terminal     | 327     | 258 |
| non-terminal | 205     | 178 |

Table 7: Chi-squared expected counts, 2023

|                       | control          | net              |
|-----------------------|------------------|------------------|
| terminal non-terminal | 321.51<br>210.49 | 263.49<br>172.51 |

Table 8: Chi-squared observed counts, 2024

|                       | control    | net        |
|-----------------------|------------|------------|
| terminal non-terminal | 150<br>200 | 550<br>170 |

Table 9: Chi-squared expected counts, 2024

|              | control | net    |
|--------------|---------|--------|
| terminal     | 228.97  | 471.03 |
| non-terminal | 121.03  | 248.97 |

#### p-values

2023 2024 0.49 <0.001

#### Combined p-value with Fisher's method

chisq = 16.62846 with df = 4 p = 0.002282033

## $\chi^2$ Test: Tender versus Control

Table 10: Chi-squared observed counts, 2023

|                       | control    | tender     |
|-----------------------|------------|------------|
| terminal non-terminal | 327<br>205 | 338<br>239 |

Table 11: Chi-squared expected counts, 2023

|              | control | tender |
|--------------|---------|--------|
| terminal     | 319.01  | 345.99 |
| non-terminal | 212.99  | 231.01 |

Table 12: Chi-squared observed counts, 2024

|              | control | tender |
|--------------|---------|--------|
| terminal     | 150     | 227    |
| non-terminal | 200     | 230    |

Table 13: Chi-squared expected counts, 2024

|              | control | tender |
|--------------|---------|--------|
| terminal     | 163.51  | 213.49 |
| non-terminal | 186.49  | 243.51 |
|              |         |        |

#### p-values

2023 2024 0.347 0.058

#### Combined p-value with Fisher's method

chisq = 7.810605 with df = 4 p = 0.09876758