## Chapter 8

## Gaussian Elimination, LU-Factorization, Cholesky Factorization, Reduced Row Echelon Form

In this chapter we assume that all vector spaces are over the field  $\mathbb{R}$ . All results that do not rely on the ordering on  $\mathbb{R}$  or on taking square roots hold for arbitrary fields.

## 8.1 Motivating Example: Curve Interpolation

Curve interpolation is a problem that arises frequently in computer graphics and in robotics (path planning). There are many ways of tackling this problem and in this section we will describe a solution using *cubic splines*. Such splines consist of cubic Bézier curves. They are often used because they are cheap to implement and give more flexibility than quadratic Bézier curves.

A cubic Bézier curve C(t) (in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ ) is specified by a list of four control points  $(b_0, b_1, b_2, b_3)$  and is given parametrically by the equation

$$C(t) = (1-t)^3 b_0 + 3(1-t)^2 t b_1 + 3(1-t)t^2 b_2 + t^3 b_3.$$

Clearly,  $C(0) = b_0$ ,  $C(1) = b_3$ , and for  $t \in [0, 1]$ , the point C(t) belongs to the convex hull of the control points  $b_0, b_1, b_2, b_3$ . The polynomials

$$(1-t)^3$$
,  $3(1-t)^2t$ ,  $3(1-t)t^2$ ,  $t^3$ 

are the Bernstein polynomials of degree 3.

Typically, we are only interested in the curve segment corresponding to the values of t in the interval [0, 1]. Still, the placement of the control points drastically affects the shape of the curve segment, which can even have a self-intersection; See Figures 8.1, 8.2, 8.3 illustrating various configurations.