UNAVCO SAR TRAINING:

INSAR PROCESSING AND TIME-SERIES ANALYSIS FOR GEOPHYSICAL APPLICATIONS: INSAR SCIENTIFIC COMPUTING ENVIRONMENT (ISCE), ARIA TOOLS, AND MINTPY

Contributors:

Franz J Meyer¹⁾, P. Rosen²⁾, D. Bekaert²⁾, A. Donnellan²⁾, S. Hensley²⁾, H. Fattahi²⁾, G. Funning³⁾, H. Davis⁴⁾, B. Minchew⁵⁾

¹⁾University of Alaska Fairbanks, Fairbanks | ²⁾Jet Propulsion Laboratory | ³⁾UC Riverside | ⁴⁾TLC Inc. | ⁵⁾ Massachusetts Institute of Technology

Short Introduction to OpenSARLab

The UNAVCO InSAR Course OpenSARLab Environment

URL: https://unavco2022.asf.alaska.edu/

- OpenSARLab is a pre-installed and fully cloudbased processing environment
- It can be used from any internet-enabled device with a web browser
- Sits next to the ASF archive in the Amazon Web Services (AWS) cloud → does not require data download to a local machine
- Broadly installed to support most python-based notebook development
- Contains all notebooks and software needed for this course

 Click on "Sign up" and create an account using the email address used when registering for the UNAVCO class

Concept of the UNAVCO InSAR Course OpenSARLab Environment

UNIVERSITY OF ALASKA

Web Address: https://unavco2022.asf.alaska.edu/

Working Within the UNAVCO OpenSARLab

Account Creation & Login

UNIVERSITY OF ALASKA

- 1. In your web browser, navigate to: https://unavco2022.asf.alaska.edu/
- 2. Click on "Sign in"

3. First time user: Click on "Sign up"

4. Fill in the signup form and submit [please use the email address associated with your UNAVCO InSAR course registration]

Select the UNAVCO Server Once You are Logged In

Working Within the UNAVCO OpenSARLab

Features within the Notebook Lab

Need Help?

Working Within the OpenSARLab

Navigate to the Notebooks Relevant for this Training

• To find the Jupyter notebooks related to this UNAVCO SAR training, navigate to:

Geo-SInC/UNAVCO2022

All training materials for this course are public and available at

https://github.com/parosen/Geo-SInC

Benefits of the Notebook-based OpenSARLab

Jupyter Notebooks

Jupyter Notebook benefits:

- Mix code with instructions and explanations
- Mix synthetic data for demonstration with real data for use in science and applications
- Easily expand existing code
- Vanilla entry to python programming
- Fully reproducible processing performance and processing results
- Heavy processing in the cloud → only download what you need

Have your own notebooks or notebooks from other authors? The lab is installed with a broad set of python tools → most notebooks should run out of the box

Benefits of the Notebook-based OpenSARLab

• Improved User Experience:

- Users have full access to sophisticated SAR data processing and analysis tools without need to install and maintain
- Existing Notebooks supporting SAR instruction, research and a range of applications
- Decently-sized compute environment without need for local processing hardware
- No data downloads (data remain in AWS) → lightning-speed performance; no need for local storage

• Low Cost Implementation and Accelerated Research:

- Instead of downloading data, processing in the cloud → cheaper than download and local processing
- Slow data download replaced by near immediate processing capabilities

• Easily Extendable Collaboration Platform:

- Easy sharing of notebooks and easy extension via Github
- Consistent notebook development both in format and functionality

The UNAVCO Cloud-based OpenSARLab:

https://unavco2022.asf.alaska.edu/

 Explore Environmental Signatures in Deep SAR data stacks

Example: Madre de Dios, Peru

