KOLT PythonBasic Operators & Branching

Ahmet Uysal

Monday 25th February, 2019

1. Recap

Agenda

- 1. Recap
- 2. Basic Operators
- 3. Branching

Comments

```
# Single line comments start with a '#'
"""
Multiline comments can be written between
three "s and are often used as function
and module comments.
"""
print('Hello, stranger!')
```

Python will basically ignore comments, they are purely written **for humans**!

Variables

Туре	Explanation	Examples
int	represent integers	3, 4, 17, -10
float	represent real numbers	3.0, 1.11, -109.123123
bool	represent boolean truth values	True, False
str	A sequence of characters.	'Hello', ", '3'
NoneType	special and has one value, None	None

- How to create a variable? variable_name = value
- How about types? use type()
- Can a variable change type? Yes! Just assing a new value with any type.
- What if we if want to convert a value between types, i.e, '2'→ 2

Casting

1. Recap

0000

- int('2') \rightarrow 2
- Any possible reasons for casting? -taking user input -reading numbers from a file?
- Can we cast every value to every type? NO! try int ('hello')

Console I/O(Input/Output)

print(*args, sep=' ', end='\n')

- Can take arbitrary number of arguments
- Separates elements with space by default
- Adds newline character '\n' to end by default

input([prompt])

- Prints the prompt to Console
- Program is paused until user enters something
- returns an str object!

Truthy & Falsy Values

Last week, we tried to cast some values to bool, let's look at them in detail.

Truthy & Falsy Values

Last week, we tried to cast some values to bool, let's look at them in detail.

```
# 'Falsy' values
bool(None) # => False
bool(False) # => False
bool(0) # => False
bool(0.0) # => False
bool('') # => False
# Empty data structures
bool([]) # => False
```


Truthy & Falsy Values

Last week, we tried to cast some values to bool, let's look at them in detail.

```
# 'Falsy' values
bool(None) # => False
bool(False) # => False
bool(0) # => False
bool(0.0) # => False
bool(''') # => False
# Empty data structures
bool([]) # => False
```

```
# Everything else is 'truthy'
bool(-100000) # => True
bool('False') # => True
bool(3.14) # => True
bool(int) # => True
# Nonempty data structures
bool([1, 'a', []]) # => True
bool([False]) # => True
```

How to represent logical operations in Python? (and, or, not)

Α	В	A or B	A and B	not A
True	True	True	True	False
True	False	True	False	False
False	True	True	False	True
False	False	False	False	True

How to represent logical operations in Python? (and, or, not)

Α	В	A or B	A and B	not A
True	True	True	True	False
True	False	True	False	False
False	True	True	False	True
False	False	False	False	True

and

How to represent logical operations in Python? (and, or, not)

Α	В	A or B	A and B	not A
True	True	True	True	False
True	False	True	False	False
False	True	True	False	True
False	False	False	False	True

- and
- or

How to represent logical operations in Python? (and, or, not)

Α	В	A or B	A and B	not A
True	True	True	True	False
True	False	True	False	False
False	True	True	False	True
False	False	False	False	True

- and
- or
- not

How to represent logical operations in Python? (and, or, not)

Α	В	A or B	A and B	not A
True	True	True	True	False
True	False	True	False	False
False	True	True	False	True
False	False	False	False	True

True or False and False \Rightarrow

- and
- or
- not

How to represent logical operations in Python? (and, or, not)

Α	В	A or B	A and B	not A
True	True	True	True	False
True	False	True	False	False
False	True	True	False	True
False	False	False	False	True

True or False and False ⇒ **True**

- and
- or
- not

How to represent logical operations in Python? (and, or, not)

Α	В	A or B	A and B	not A
True	True	True	True	False
True	False	True	False	False
False	True	True	False	True
False	False	False	False	True

True or False and False ⇒ **True**

and

WHY?

- or
- not

Operator Precedence

Logical operators are evaluated in this order:

- **1.** not
- **2.** and
- **3.** or

You can override this order with parentheses

Operator Precedence

Logical operators are evaluated in this order:

- **1.** not
- **2.** and
- **3.** or

You can override this order with parentheses

(True or False) and False \Rightarrow

Operator Precedence

Logical operators are evaluated in this order:

- **1.** not
- **2.** and
- **3.** or

You can override this order with parentheses

(True or False) and False \Rightarrow **False**

x: Any boolean value

True or $X \Rightarrow$

x: Any boolean value

True or $X \Rightarrow True$

x: Any boolean value

True or $X \Rightarrow True$

False and $X \Rightarrow$

x: Any boolean value

True or $X \Rightarrow True$

False and $X \Rightarrow False$

x: Any boolean value

True or $X \Rightarrow True$

False and $X \Rightarrow False$

Python is smart enough to take advantage of this!

x: Any boolean value

True or $X \Rightarrow \mathbf{True}$

False and $X \Rightarrow False$

Python is smart enough to take advantage of this!

```
1/0 # => ZeroDivisionError
True or 1/0 # => True
False and 1/0 # => False
1/0 or True # => ZeroDivisionError
1/0 and False # => ZeroDivisionError
```


These operations are applicable on Numeric types: int and float

• +: Addition

- +: Addition
- -: Subtraction

- +: Addition
- -: Subtraction
- *: Multiplication

- +: Addition
- -: Subtraction
- *: Multiplication
- /: Division

- +: Addition
- -: Subtraction
- *: Multiplication
- /: Division
- //: Floor(integer) Division

- +: Addition
- -: Subtraction
- *: Multiplication
- /: Division
- //: Floor(integer) Division
- %: Modulo

- +: Addition
- -: Subtraction
- *: Multiplication
- /: Division
- //: Floor(integer) Division
- %: Modulo
- **: Power

Branching

```
if <condition>:
    <expression>
    <expression>
elif <condition>:
    <expression>
    <expression>
else:
    <expression>
    <expression>
```

- <condition> has a bool value (True or False)
- Which expressions will be evaluated in which conditions?

