Statistique en Grande Dimension et Apprentissage - TD 3

Ce TD a pour but d'illustrer le chapitre 3 principalement sur la régression linéaire pénalisée.

Exercice 1 (Quelques propriétés standards sur le modèle linéaire classique). On considère le modèle $\mathbf{Y} = \mathbf{X}\theta^* + \varepsilon$ avec $\mathbf{Y} \in \mathbb{R}^n$, \mathbf{X} matrice $n \times p$, $\theta \in \mathbb{R}^p$ et $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_p)$. et $F(\theta) = \frac{1}{2n} ||\mathbf{Y} - \mathbf{X}\theta||^2$. On suppose que $X^T X$ est inversible.

- 1. Retrouvez l'expression de $\hat{\theta} = \operatorname{Argmin}_{\theta} F(\theta)$.
- 2. Montrez que $\hat{\theta} = \theta^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \varepsilon$. En déduire la loi de $\hat{\theta} \theta^*$.
- 3. Quel résultat retrouve-t-on lorsque $\mathbf{X} = (1, \dots, 1)^T$?
- 4. On considère le modèle $Y=\theta_0+\sum_{i=1}^p\theta_iX_i+\varepsilon$. A l'aide du théorème de Cochran, montrez que

$$\frac{SCR}{\sigma^2} \sim \chi^2(n-p-1)$$

Sous l'hypothèse $(H_0) := \theta_1 = \ldots = \theta_p = 0$, montrez que

$$\frac{SCM}{\sigma^2} \sim \chi^2(p).$$

En déduire que dans ce cas,

$$\frac{SCT}{\sigma^2} \sim \chi^2(n-1).$$

Exercice 2 (soft-shrinkage). Le but de cet exercice est de comprendre l'expression de $\hat{\theta}^{LASSO}$ à partir de l'étude du cas unidimensionnel. On pose pour tout $\theta \in \mathbb{R}$,

$$\phi(\theta) = \frac{1}{2N} \sum_{i=1}^{n} (y_i - z_i \theta)^2 + \lambda |\theta|.$$

où y_i, z_i sont des réels et $\lambda > 0$. On fait également l'hypothèse que $\frac{1}{N} \sum_{i=1}^n z_i^2 = 1$.

- 1. Calculez la dérivée de $\theta \mapsto \phi(\theta)$ (sur \mathbb{R}^*).
- 2. Montrez que ϕ est strictement convexe (Indication : une fonction de classe \mathcal{C}^2 sur \mathbb{R}^* , continue sur \mathbb{R} de dérivée seconde strictement positive sur \mathbb{R}^* est strictement convexe).
- 3. Montrer sans calcul que ϕ a au moins un minimum. Pourquoi ce minimum est-il unique (illustrer par un dessin)? On note $\hat{\theta}$ ce minimum dans la suite.
- 4. Etablir le tableau de variations de $\theta \mapsto \phi(\theta)$ lorsque $\frac{\langle \mathbf{z}, \mathbf{y} \rangle}{N} > \lambda$. En déduire $\hat{\theta}$ dans ce cas.

5. Montrez que

$$\hat{\theta} = \begin{cases} \frac{\langle \mathbf{z}, \mathbf{y} \rangle}{N} - \lambda & \text{si } \frac{\langle \mathbf{z}, \mathbf{y} \rangle}{N} > \lambda \\ 0 & \text{si } \frac{|\langle \mathbf{z}, \mathbf{y} \rangle|}{N} < \lambda, \\ \frac{\langle \mathbf{z}, \mathbf{y} \rangle}{N} + \lambda & \text{si } \frac{\langle \mathbf{z}, \mathbf{y} \rangle}{N} < -\lambda. \end{cases}$$

6. En déduire que

$$\hat{ heta} = \mathcal{S}_{\lambda} \left(rac{\langle \mathbf{z}, \mathbf{y}
angle}{N}
ight)$$

οù

$$S_{\lambda}(x) = \operatorname{sgn}(x)(|x| - \lambda)_{+}.$$

 \mathcal{S}_{λ} est appelé l'opérateur de seuillage doux (soft-thesholding operator).

Exercice 3 (Coordinate Descent). Pour rappel, la descente coordonnées par coordonnées est un algorithme de recherche de $\hat{\theta}_{\lambda}$ basé sur le principe de minimiser successivement la fonction L de l'exercice précédent sur une seule des variables. Plus précisément, considérons la fonction L définie par :

$$L(\theta) = \frac{1}{2N} \|\mathbf{y} - \mathbf{X}\theta\|_2^2 + \lambda \|\theta\|_1.$$

Remarque : Selon les exercices, le coefficient devant $\|\mathbf{y} - \mathbf{X}\theta\|_2^2$ peut changer (1, 1/(2N), 1/N). Notez que quitte à changer la valeur de λ , les problèmes de minimisation restent équivalents.

1. On note $\theta^{-j} = (\theta_1, \dots, \theta_{j-1}, \theta_{j+1}, \dots, \theta_p)$. Pour un tel vecteur, on note $L_j^{\theta^{-j}}$ l'application de \mathbb{R} dans \mathbb{R} définie par : $L_j^{\theta^{-j}}(\beta) = L(\theta_1, \dots, \theta_{j-1}, \beta, \theta_{j+1}, \dots, \theta_p)$. Montrer que

$$L_j^{\theta^{-j}}(\beta) = \frac{1}{2N} \sum_{i=1}^{N} (r_i^{(j)} - z_i^{(j)} \beta)^2 + \lambda \sum_{k \neq j} |\theta_k| + \lambda |\beta|$$

où $r_i^{(j)}$ et $z_i^{(j)},\,i=1,\ldots,n$ désignent des réels que l'on explicitera.

2. Quitte à normaliser la matrice $\mathbf{X} = (x_{ij})_{i,j}$, on fait l'hypothèse que $\frac{1}{N} \sum_{j=1}^{N} x_{i,j}^2 = 1$ pour tout $i \in \{1, \dots, n\}$. A l'aide de l'exercice précédent, montrez que la fonction $L_j^{\theta^{-j}}$ atteint son minimum en

$$\hat{\beta} = \mathcal{S}_{\lambda} \left(\frac{1}{N} \langle \mathbf{x}_j, \mathbf{r}^{(j)} \rangle \right)$$

où $\mathbf{r}^{(j)} = (r_1^{(j)}, \dots, r_n^{(j)})^T$ et \mathbf{x}_j désigne la j-ième colonne de la matrice \mathbf{X} .

L'algorithme de descente coordonnées par coordonnées fonctionne alors de la manière suivante. On initialise θ . On pose $\theta^{(0)} = 0$ par exemple. On considère alors la fonction

$$\beta \mapsto L_1^{(\theta^{(0)})^{-1}}(\beta)$$

dont on calcule le minimum $\hat{\beta}$ (Il se trouve qu'il est explicite!!). On définit alors $\theta^{(1)}$ par $\theta_1^{(1)} = \hat{\beta}$ et pour tout $j \neq 1$, $\theta_j^{(1)} = \theta_j^{(0)}$. A l'étape $j \leq p$, on dispose d'un $\theta^{(j)}$ et on reproduit le même schéma en figeant les variables différentes de j et en cherchant le minimum de $j \mapsto L_j^{(\theta^{(j)})^{-j}}$. Une fois les p variables passées, on recommence avec la première. . . .

- 3. Montrez que la suite $(L(\theta^{(n)}))_n$ est décroissante.
- 4. Montrez que $(\theta^{(n)})$ admet une sous-suite convergente vers $\theta^{(\infty)} \in \mathbb{R}^p$.
- 5. Pourriez-vous expliquer sans le démontrer que $\theta^{(\infty)}$ est nécessairement un minimum?
- 6. En déduire que $L(\theta^{(n)})$ converge vers $\min_{\theta} L(\theta)$.

Exercice 4. 1. Retrouvez la formule de $\hat{\theta}^{Ridge}$.

2. On admet les conditions de "stationnarité" : $\hat{\theta}_{\lambda}$ est minimum de $L(\theta) = \frac{1}{2} ||\mathbf{y} - \mathbf{X}\theta||^2 + \lambda ||\theta||_1$ si et seulement si il est solution du système :

$$\begin{cases} \mathbf{x}_{j}^{T}(\mathbf{y} - \mathbf{X}\theta) = \lambda \operatorname{sgn}(\theta_{j}) & \text{si } j \in J(\theta) \\ |\mathbf{x}_{j}^{T}(\mathbf{y} - \mathbf{X}\theta)| \leq \lambda & \text{sinon.} \end{cases}$$
 (1)

où $J(\theta)=\{j\in\{1,\ldots,p\},\theta_j\neq 0\}$. Montrez que dans le cas $\mathbf{X}^T\mathbf{X}=I_p,$ alors

$$\hat{\theta}_{\lambda}(j) = \operatorname{sgn}(\hat{\theta}_j)(|\theta_j| - \lambda)_+$$

où $\hat{\theta} = \hat{\theta}_0$, *i.e.* désigne la solution du système non pénalisé (bien définie dans ce cas).

3. On suppose que $\frac{\mathbf{X}^T\mathbf{X}}{n}=I_p^{-1}$ et que le modèle est de la forme $\mathbf{Y}=\mathbf{X}\theta^{\star}+\varepsilon$. Vérifiez que l'on peut écrire

$$(\hat{\theta}_{\lambda})(j) = \mathcal{S}_{\lambda}\left(\frac{\langle \mathbf{x}_{j}, \mathbf{y} \rangle}{n}\right) = \mathcal{S}_{\lambda}(\theta_{j}^{\star} + \frac{(\mathbf{X}^{T}\varepsilon)_{j}}{n}).$$

Exercice 5 (λ_{max}) . Dans cet exercice, on se pose la question suivante. Peut-on calculer la valeur de λ à partir de laquelle, le LASSO ne détecte aucune variable? On pose

$$L(\theta) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\theta\|^2 + \lambda \|\theta\|_1.$$

1. Montrez que

$$L(\theta) - L(0) = \frac{1}{2} \|\mathbf{X}\theta\|_2^2 - \langle \mathbf{y}, \mathbf{X}\theta \rangle + \lambda \|\theta\|_1.$$

2. Montrez que

$$\langle \mathbf{y}, \mathbf{X} \theta \rangle = \sum_{j=1}^{p} \theta_{j} \langle \mathbf{x}_{j}, \mathbf{y} \rangle.$$

3. On pose

$$\lambda_{max} = \max\{|\langle \mathbf{x}_j, \mathbf{y} \rangle|, j = 1 \dots, p\}.$$

Déduire de la question précédente que pour tout $\lambda > \lambda_{max}$, $L(\theta) - L(0) > 0$ pour tout $\theta \in \mathbb{R}^p$. Que vaut $\hat{\theta}_{\lambda}$ dans ce cas?

4. Supposons maintenant $\lambda < \lambda_{max}$. Montrez que dans ce cas, il existe $j \in \{1, \dots, p\}$ tel que $\theta_j \mapsto L(0, \dots, 0, \theta_j, 0, \dots, 0)$ n'atteint pas son minimum en 0. Déterminez-le. Conclure que

$$\lambda_{max} = \sup\{\lambda, \hat{\theta}_{\lambda} \neq 0\}.$$

5. Interprétation : que pensez-vous de la valeur de λ_{max} ? Cela vous semble-t-il naturel que le LASSO détecte d'abord la variable qui maximise $|\langle \mathbf{x}_i, \mathbf{y} \rangle|$?

^{1.} On omet souvent la division par n pour simplifier les notations mais elle est naturelle : pensez-par exemple au cas où $\mathbf{Y} = \theta^* + \varepsilon$ (Que vaut $\mathbf{X}^T \mathbf{X}$ dans ce cas?). Elle permet de faire apparaître la convergence vers θ^* .