Data preprocessing

Why preprocessing?

- 1. Real world data are generally
 - Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - Noisy: containing errors or outliers
 - Inconsistent: containing discrepancies in codes or names
- 2. Tasks in data preprocessing
 - Data cleaning: fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies.
 - o Data integration: using multiple databases, data cubes, or files.
 - Data transformation: normalization and aggregation.
 - Data reduction: reducing the volume but producing the same or similar analytical results.
 - Data discretization: part of data reduction, replacing numerical attributes with nominal ones.

Data cleaning

- 1. Fill in missing values (attribute or class value):
 - Ignore the tuple: usually done when class label is missing.
 - Use the attribute mean (or majority nominal value) to fill in the missing value.
 - Use the attribute mean (or majority nominal value) for all samples belonging to the same class.
 - Predict the missing value by using a learning algorithm: consider the attribute with the
 missing value as a dependent (class) variable and run a learning algorithm (usually Bayes
 or decision tree) to predict the missing value.
- 2. Identify outliers and smooth out noisy data:
 - Binning
 - Sort the attribute values and partition them into bins (see "Unsupervised discretization" below);
 - Then smooth by bin means, bin median, or bin boundaries.
 - Clustering: group values in clusters and then detect and remove outliers (automatic or manual)
 - Regression: smooth by fitting the data into regression functions.
- 3. Correct inconsistent data: use domain knowledge or expert decision.

Data transformation

- 1. Normalization:
 - Scaling attribute values to fall within a specified range.
 - Example: to transform V in [min, max] to V' in [0,1], apply V'=(V-Min)/(Max-Min)
 - \circ Scaling by using mean and standard deviation (useful when min and max are unknown or when there are outliers): V'=(V-Mean)/StDev
- 2. Aggregation: moving up in the concept hierarchy on numeric attributes.
- 3. Generalization: moving up in the concept hierarchy on nominal attributes.
- 4. Attribute construction: replacing or adding new attributes inferred by existing attributes.

Data reduction

- 1. Reducing the number of attributes
 - Data cube aggregation: applying roll-up, slice or dice operations.
 - Removing irrelevant attributes: attribute selection (filtering and wrapper methods), searching the attribute space (see Lecture 5: Attribute-oriented analysis).
 - Principle component analysis (numeric attributes only): searching for a lower dimensional space that can best represent the data..
- 2. Reducing the number of attribute values
 - Binning (histograms): reducing the number of attributes by grouping them into intervals (bins).
 - Clustering: grouping values in clusters.
 - Aggregation or generalization
- 3. Reducing the number of tuples
 - Sampling

Discretization and generating concept hierarchies

- 1. Unsupervised discretization class variable is not used.
 - Equal-interval (equiwidth) binning: split the whole range of numbers in intervals with equal size.
 - Equal-frequency (equidepth) binning: use intervals containing equal number of values.
- 2. Supervised discretization uses the values of the class variable.
 - Using class boundaries. Three steps:
 - Sort values.
 - Place breakpoints between values belonging to different classes.
 - If too many intervals, merge intervals with equal or similar class distributions.
 - Entropy (information)-based discretization. Example:
 - Information in a class distribution:
 - Denote a set of five values occurring in tuples belonging to two classes (+ and -) as [+,+,+,-,-]

- That is, the first 3 belong to "+" tuples and the last 2 to "-" tuples
- Then, Info([+,+,+,-,-]) = -(3/5)*log(3/5)-(2/5)*log(2/5) (logs are base 2)
- 3/5 and 2/5 are relative frequencies (probabilities)
- Ignoring the order of the values, we can use the following notation: [3,2] meaning 3 values from one class and 2 from the other.
- Then, Info([3,2]) = -(3/5)*log(3/5)-(2/5)*log(2/5)
- Information in a split (2/5 and 3/5 are weight coefficients):
 - Info([+,+],[+,-,-]) = (2/5)*Info([+,+]) + (3/5)*Info([+,-,-])
 - Or, Info([2,0],[1,2]) = (2/5)*Info([2,0]) + (3/5)*Info([1,2])
- Method:
 - Sort the values;
 - Calculate information in all possible splits;
 - Choose the split that minimizes information;
 - Do not include breakpoints between values belonging to the same class (this will increase information);
 - Apply the same to the resulting intervals until some stopping criterion is satisfied.
- 3. Generating concept hierarchies: recursively applying partitioning or discretization methods.