IMS

MATHS

BOOK-11

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pd

*MATRICES

MSTTOLE FOR INSTITUTE SCHEEN
MENTIONE FOR INSTITUTE FOR INSTITUTE FOR INSTITUTE SCHEEN
MENTIONE FOR INSTITUTE SCHEEN
MODE 09999197625

A matrix is a rectangular array of numbers (real or complex)

The numbers are called the elements of the matrix or entiries of the matrix.

Matrices are represented by the brackets

or [].

(3)

0

€

0

(3)

.

(6) ... (9) n columns then the matrix is said to be of type or order or

Ex = If
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & -2 & 5 \end{bmatrix}$$
 then the order of A is 2×3 .

A matrix A is said to be a square matrix if the number of rows in A is equal to the number of columns in A.

Note: (1) An nxn square matrix is Called a square matrix of type n.

(2) If A is a square matrix then the diagrical in A from the first element of the first sow to the last element of the last row is Called the Principal diagonal of A. Fr: A = \begin{pmatrix} 2 & 3 4 \\ 5 & 7 \\ 8 & 1 \\ 1 & 1

a rectangular matrix if the number of rows in A is not equal to the number of columns in A:

Note: A is called a rectangular matrix if A is not a square matrix.

a zero matrix if every element of A is equal to zero.

An mxn zero matrix is denoted, by Omxn or O.

$$\mathsf{Ex} := \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Det A natoix A is said to be a row matrix if A Contains only one row.

Ex:-[23 24], [23 24 25].

A Square matrix A is said to be an involutory matrix if A=I.

Ex: If A = \begin{pmatrix} 1 0 \ 0 \end{pmatrix} -then A^2=I

If
$$A = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
 then $A^2 = I$
If $A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$ then $A^2 = I$

> Nilpotent Matoix :-

A square matrix A is said to be a nilpotent matrix if $\exists \alpha + \forall e$ integer n such that $\exists n' = 0$. If n' is the least the integer such that $A^n = 0$, then n' is called the index of the nilpotent matrix A.

Ex: Show that $A = \begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \end{bmatrix}$ is $\begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \end{bmatrix}$ is

a nilpotent matrix.

$$\frac{8x(s)}{s} := A^2 = A \cdot A$$

$$= \begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix} \begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

. A 18 a nilpotent matrix of index 2.

Let $A = [aij]_{n \times n}$. The Sum of the elements of A lying along the principal diagonal is called the trace of A.

It is denoted by tr A.

i.e. if $A = \begin{bmatrix} \alpha_{ij} \end{bmatrix}$ then $\sum_{n \neq n} \alpha_{ii} = \alpha_{ij} + \alpha_{ij}$

Properties

If A and B are two square matrices of order n and λ be a scalar then

- 1 to (AA) = Xto A.
- 2 to (A+B) = trA +trB
- 3. 4r(AB) = 4r(BA)

- Transpose of Motorix.:-

Let $A = [aij]_{m\times n}$. Then the matrix $[aji]_{n\times m}$ obtained from A by Changing its voices into columns and columns into voices is called the transpose of A and

Note: 1. If A is nown matrix then

AT is nown matrix.

is denoted by AT or A.

É

િ

6

6

E

•

ps://upscpdf.co

ᅠ	i .	
9	2: (i,i) th entry	of $A^T = (i.j)^{th}$
6	entry of A.	ati
⊕	三: 以A = 1-5	D -then
19	1	3×5

$$A^{T} = \begin{bmatrix} 3 & -5 & \sqrt{2} \\ 2+i & 0 & 1 \end{bmatrix}_{2\times3}$$

$$(A^{\dagger})^T = A$$
 and $(A^{\dagger})^T = -A^T$

$$2. (A+B)^T = A^T + B^T -$$

3.
$$(A-B)^T = \Lambda^T - \hat{B}^T$$

4.
$$(KA)^T = KA^T$$
 where K is any

A square matrix A = [aij] is said

to be symmetric if AT=A.

i.e.
$$[a_{ji}] = [a_{ij}]$$
.

Ez: (1) Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$$
 then $A^{T} = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$ matrix.

(a) Let
$$A = \begin{cases} a & h & g \\ h & b & g \end{cases}$$
 then $A^T = A$.

A square matrix A=[aij] is sold to be skew symmetric. If fit= i-e. [aji] =[-ajj].

Ex: Let
$$A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & \neg c & 0 \end{bmatrix}$$
 then

Note in the diagonal elements a skew Symmetric modern must Z000.

The down the diagonal and above to SEXAMINATION of a Symmetric matrix must be equal.

(3). A zero matrix is both Symmetric as well as skew-symmetric.

* Some Properties of Finmeton & skeep Symmetric matrices:

-y If A is symmetric matrix tr KA Is also Symmetric matrix.

$$A^{\mathsf{T}} = A - - \mathbb{O}$$

· KA is also Syrametric Matrix. Now Similarly It A is Skew Symmetry (AB+BA) = (AB) + (BA) T(-(A+B)) matriz then KA is also skew-Symmetric matrix.

Tf A,B are symmetric then AHB is also symmetric. Sol'n: Since A, B are symmetric

 $A^T = A & B^T = B$

Now (-AHB) = AT + BT

= A+B (+mm (D)

.. A+B is Symmetric matrix.

Il AIB are Skew Symmetore then AHB is also skew symmetric

Bin: Since ALB are skew ymmetsig

 $A^{T} = A \quad A \quad B^{T} = -B$ Now (A+B) = AT +BT

- (A+B)

... At B 1s. a skew symmetric.

> If A and B are Symmetric matrices, show that AB+BA is Symmetric and AB-BA is skew-Symmetric.

Since A & B are Symmetric .. AT = A & BT = B.

have

= etal + elat ((G)= stat

= BA + AB

= -AB+BA (: A+B = B+A)

.. AB+BA ig Symmetric.

Similarly AB-BA is also stew-Symmetric.

If A and B are symmetoic matrices, then show that ABis symmetric if and only if A and B Commute i.e. AB = BA.

Proof: Given that ALB are Symmetric.

 $A^{\mathsf{T}} = A \quad \& \quad B^{\mathsf{T}} = B \quad --- \bigcirc$

Now Suppose that AB=BA To prove that AB is symmetric. we have.

> (AB) T = BTAT - = BA = AB (-AB=BA).

. AB is symmetric.

Now Conversely suppose that AB is a symmetric matrix.

TO Prove that AB=BA we have AB = (AB) T ('AB is

= BA (: BT=A,ALA

C

0

0

200000	
	-> If A be any matrix,
,	then Prove that AAT and ATA
•	are both Symmetric matrices.
:	ibi's: Let A be any matrix.
	toe have $(AAT)^T = (A^T)^T \cdot A^T$
• •	T_{AA}
	= AAT Is Symmetric.
	we had (ATA)T=(AT)(AT)T
	=ATA
	.' ATA is symmetric.
·	Amp Show that the matrix BTAB
	is symmetric (Or) skew -
	Symmetric according as A is
	Symmetric (Or) Skew symmetric
	<u>set</u> :- <u>Cosdi)</u> Let Abe a symmetric matrix
	then AT =A -O
	Now we have
	(BT AR)T T T CTOR

Sum of matria. Mob: 05599197625 (B, 4B) = BLUL (BL)1. $(H^{T}(rA).)$ · Pis (by (b) = BTAB . BTAB is symmetric. Caserii) :- Let A be a skew-Symmetric matrix. $A^T = -A$ we have (BTAB) = BTAT (BT)T

= BT (-A)B ("AT=A) = - (BTAB). Skew- Symmetric. BTAB is Square matri Smp show that expressible as the uniquely symmetric and skew-Symmetric matrices. Let A be any square Then A = 1/2 A + 1/2 A = 12A+12A+12AT-12AT = 1/2 - (A+AT)+1/2 (A-A7 = (P+Q) (Lay). ACTION P= 12 (TA+AT) & Q = 1/2 (A-AT) PT = [/2 (A + AT)] T = 1/2 (AT + (AT) T) = 1/2 (AT+A) = 1/2 (A +AT) C'A+B=B symmetric. $QT = \left[\frac{1}{2} \left(A - A^T \right) \right]^T$ = 1/2 (AT - (AT)T) =-1/2 (A-AT) = -Q Skew- Symmetrix. A to the dum of a symmetric

(3)

Then

Now

matria Q ie. PtQ.

Now to Prove uniqueness i.e.

Los want to prove that the

representation (D) of A is unique.

Before Possible let A=R+S be another

suppresentation, where R is Symmetric &

S is 8 Kew-Symmetric

Since Ris Symmetric & Sis skeep.

$$R^T = R$$
, $g^T = -s$.

Now
$$A^T = (R+S)^T = \overline{R}^T + S^T$$

from 1 49 we have

$$R = \frac{1}{2} (A + A^T) = P &$$

as the sum of a symmetric and Skew-symmetric matrix

integral powers of a symmetric matrix is symmetric

matrix of order no Then AT=A

Now Am = A - A - - A upto in times

Now (AM) = (A. A. Auphonime)

= (ATAT - -- ATupto m times) = (A.A. - - A upto m times)

. Am is "also a Symmetric motor

Donpl show that, the odd integral powers of a skew -symmetric matrix are skew symmetric while the even integral powers are symmetric.

Symmetric Then AT = -A.

Now let in be a tre integer.

we have

Am = (A.A.A -- A who m times)

Now (Am) = (A.A -- - Auptomitimes)

= AT. AT - - - AT upto m times

(

6

(3)

(

(3)

0

0

0

= (-A)(-A) - (-A) upto in times $= (-1)^m A^m$ $= -H^m \text{ is odd or even}$ $= (A^m)^T = -A^m.$

If m is an even the integer then $(A^m)^T = A^m$.

If m is symmetric.

The Pf U and V are two symmetric matrices, show that UVU is also symmetric. Is UV symmetric always? Explain and illustrate by an example.

solin - Since U & V are symmetrices matrices

$$U^{T} = U \quad \& \quad V^{T} = V.$$

Now we have (UVU) = UVU

.. UVU is dymmetric.

Since U & v are dymmetric

. UV is symmetric iff UV=VO.

If UV + VU then UV is not gummetric.

Ex: Let
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$
then $AB = \begin{bmatrix} 8 \\ 13 \\ 11 \\ 18 \end{bmatrix}$.

Now $(AB)^T = B^TA^T$ = BA $= AB (: AB \neq BA)$

.. AB is not symmetric.

Let A be a square matrix,

Prove that

(i) A HATE STOCKERS Symmetric mal

$$(``(A+B)^T = A^T + B^T$$

$$= AT+A$$
 (:'(AT)T)
 $= A+AT$ (:'A+B=B+E

: A+AT is Symmetric.

$$= \frac{T(B-A)^{T}}{(TA-A)^{T}} = \frac{T(TA-A)}{(TB-TA)}$$

$$= \frac{T(B-TA)}{(B-T(TA)^{T})} = A^{T}A = \frac{T(A-A)}{(B-TA)^{T}}$$

A-AT is skew-symmetric

Ć

https://upscpdf.com

ા

3

0

0

Hatrix:-0 * Conjugate Definition - The matrix obtained from any given motain A on replacing its elements by the Corresponding Conjugate Complex numbers is called the Conjugate of A and is denoted by A. i.e. If A = [ajj] min then $\bar{A} = [\bar{a}_{ij}]_{mxn}$. Ex! Let - A = \ 1 Hi \ then all the elements of A are purely real then A = A. - Properties of Conjugate :-Let A and B be the Conjugate of A and B then (i) $(\overline{A}) = A$ (ii) $(\overline{A+B}) = \overline{A} + \overline{B}$ (ii) (KA) = KA where K is any Complex number. civ, (AB) = AB, A&B are Conformable for multiplication.

Transposed

Consugate (or) Transposed

Consugate of matrix:

The transpose of the Consugate of a matrix is is writed transpose conjugate at A and is denoted by AO or AK.

i.e. AB = (A)T

Ex: - A = [2 Hi O] then BE I-i O.

Note! It is also Possible

that (A)'=(AT).

Properties of transpose Consugate Consugates of As and B then

Conjugates of As and B then

i present AD TO AS and B then

iii, (A+B)D = AD + BD, A&B are o

the Same order.

(iii) (KA)0 - KAO, where k is any complex number

(iv) (-ABLO = BOA) -ALB are -Conformable to multiplia

A square matrix A is said to be -a Hermitian matrix if the transpose of the Conjugate matrix is equal to the matrix itself i.e. $A^0 = A$.

principal diagonal must be all real rupbers: i.e. $\overline{a}_{ii} = a_{ii}$.

Hermitian matrices

-> & Skew - Hermitian Matrix:

A squre matrix A is soud to

beingkew- Hermitian if A0=A.

Note: The elements on the purely imaginary number or zero.

are skew- Hermitian matrices.

Jest Some Properties of Hermitian

& Skew - Hermitian, matrices: -

That iA is skew Hermitian.

Sol'n: - Since A is Hermitian

$$A \theta = A$$

we have (iA) $\theta = \overline{1} A \theta (\overline{1} (KA) \theta = \overline{K} A \theta)$

$$= -(iA^{\Theta})$$

i A is skew Hermitian.

matrix, then show that it is

Hermitian.

soin - Since Acis Skew - Hermitian.

we have (1A)0= TA0

= -! (-4) (..46 --4)

= iA

 $Ai = \theta(Ai)$:

5 iA is Hermitian.

Skew Hermitian then At Bis also Hermitian or Skew-Hermitian.

Solo-(1) Given that - A&B are

Hermitian.

$$\therefore A^{\Theta} = A^{-} : B^{\Theta} = B$$

we have (A+B) = A0 + B0

= (A+B)

. A+B is Hermitian.

ii, similarly it can be easily

done.

ittps://upscpdf.co

ttps://upscpdf.co

8 8

8

0

(3)

8

Ð

3

•
> 3f A and B are two nxn
matrices then show that
(i) $(C^{A}A)^{A} = (A^{1})$ (ii) $(CA)^{0} = -(A^{0})$
(iii) $(A-B)^{1} = A^{1} - B^{1}$ (iv) $(A-B)^{\theta} = A^{\theta} - B^{\theta}$
<u>sal'n</u> - we have (-A) = [(-1)A]
=(-1)&' -
=

$$(A-B)' = \{A+(-B)\}' = A'+(-B)'$$

$$= A'-B'.$$

(iv)
$$(A-B)^{\theta} = \{A+(-B)\}^{\theta}$$

 $= A\theta + (-B)^{\theta}$
 $= A\theta - B\theta$

7 If A&B are Hermitianthen .. AAO is Hermitian. show that AB+BA is Hermitian AB-BA is skew Hermitian. sol'n - Given that A&B are Hermitian.

ii, Now we have (-AB-BA)=(AB)-(Bf = 80A0 - A0RO 2 BA - AB = - (AB-BA)

. AB-BA is Hermitian.

If A be any Iguaire matrix th Prove that A+AO, AAO, ADA are all Hermitian and A-AP is skewe Hermitian.

Sol'n - Given, that Als any Augure matrix.

i, we have (A+AD) = AD+(AO)1

· A+AB Is Hermitian.

. di, we have
$$(AAB)^{\theta} = (AB)^{\theta}A^{\theta}$$

$$= AA^{\theta}$$

iii) we have
$$(-AOA)^{\Theta} = A^{\Theta}(AO)^{\Theta}$$
$$= A^{\Theta}A$$

· ADA is Hermitian.

: A-AB is Stew - Hermitian.

thermitian or skew Hermitian according as A is Hermitian (or)

Solin - Core(i)

Since A is Hermitian

.. A8 =A.

Now WE have (BOAB) = BOAD(BO

 $= g_{\theta} A B$

BOAB & Hermitian.

Cosdil - Since A is skew-Hermitian

we have (80,AB)0= 80,AB(80)0

= BB(-A)B

=-(B@AB)

BOAB is stew-Hermitlan.

Prove that every square matrix

A is uniquely expressed as the

Sum of a Hermitian and askar

Hermitian matrix.

Sol's - Since A is any square matrix.

A+A0 is Hermitian and

A-A0 is skew-Hermitian.

1/2 (A+AO) is thermitian &

Now we have

A is skew - Hermitian.

Now To Prove uniqueness.

i.e. we want to Brove that the representation (1) of it is unique.

If possible let A=R+S be another representation, where R is Hermitian & S is skew -

where P is Hermitian &

Now since R is Hermitian & s is skew- Hermitian.

 $R^{\theta}=R$, $S^{\theta}=-s$.

Hermitian.

Now $A^{\theta} = (R+s)^{\theta}$ $= R^{\theta} + s^{\theta}$ = R' + s and also $- \mathcal{O}$ $+ = R + s - \mathcal{O}$

from @ & B we have

.'. A+A⁰ = R+3+R-3 = &R

and $A - A\theta = R + s - (R - s)$

 $\Rightarrow \mathcal{R} = \frac{1}{2}(A + A\theta) \stackrel{!}{=} P \text{ and}$ $S = \frac{1}{2}(A - A\theta) = 8$

⇒ The representation on ① of A as the sum of a symmetric and skew-Symmetric matrix is unique

Prove that A is Hermitian

(er) 8Kew - Hermitian according as A

is Hermitian or Skew - Hermitian.

3017 - Case(i) Given that A is

Hermitian.

6

Ģ.

6

Č

િ

https://upscpdf.com

<u> </u>	
③	
3	→ ^θ = A
8	TO Prove A is Hermitian.
9	Now we have
3)	
. ❷ •	$(\bar{A})^{\otimes} = [(\bar{A})]$
0	$= A^{1} \cdot (\cdot \cdot (\overline{A}) = A)$
0	i · · · · · ·
(3)	$= (A^{\Theta})'$ (: A is Hermitian $\Rightarrow A = A^{\Theta}$).
3	
8	$= ((\bar{A})')' (\because A^{\theta} = (\bar{A})')$
-⊜	= 1, Amount of a
©	•
6	A is Hermitton:
•	ii, Given that A & Skew-
•	
0	Hermitian.
•	$\lambda A^{\Theta} = -A$
	we have $(\overline{A})^{\theta} = [(\overline{A})]^{\theta}$
€	
	". = A"
_6	$=(-A\theta)^{1}$
6	(: A0=A)
8	r
1	= -[(\vec{A})']
6	$=$ $-\overline{A}$
•	
. 😂	A is also skew-Hermitian.
•	show that every square
	matrix A can be uniquely
-⊜	expressed as P+ia.
•	where P&Q are Hermitian
6	. where YXX are tremitten.

soln: Let P=1/2 (-A-+AD) and Q = 1 (A-A0) Then PtiQ = 1/2 (Ath) +12 (Ath) = 1/2 (A+40) + 1/2 (A-AB ... = 12A +13A - PHIQ = A COY) A = PHIQ. (Now use prove that PAQ are Hermitian. po = (1/2 (A + AD)) = 1/2 (A+AD) INSTITUTE FOR LASSIFOS EXAMINATION

NEW YORLD TO THE FOR LASSIFOS EX Metro cossos 197825 Noticossos 197825 I's Hermitian. Now $Q^{\theta} = \begin{bmatrix} \lambda_i & (A - A^{\theta}) \end{bmatrix}^{\theta}$ = (To) (A-A0)0 $= \frac{-1}{2i} \left[-(A - A\theta) \right]$ $= \frac{1}{8i} \left(A - A^{0} \right)$...Q⁰ = Q ---. Q is Hermitian we have expressed A in the

form P+iQ.

Where P&Q are Hermitian.
Now we prove that the expression (1) is unique.

Let us Suppose that A=Rtis

where Rands are Hermitian.

Since R&s are Hermitian

... R⁰=R &130=s.

Note 1 AD = (R418) 10 3 11

 $= R^0 + (is)^0$

 $\frac{-R + is\theta = R - is}{Also}$ Also A = R + is = R - is

from @ LO we have

 $A + A^0 = (R + is) + (R - is)$

= 2R

 $(si-R) = (R+is) = \theta_{A-A}$

= રાંડ

 \Rightarrow $\frac{1}{2}(A+A\theta)=R$ and $\frac{1}{2}(A-A\theta)=S$

 \Rightarrow R=P and S=Q.

. The expression 1 for A is unique.

If AB = A and BA = B then

B'A' = A! and A'B' = B' and hence

Prove that Al and Bl are

id empotent.

 $\frac{80t^{\prime 2}}{2}$ - Since $-AB=A \Rightarrow (AB)^{\prime}=A!$

⇒ B'A' = A'

and since $BA = B \Rightarrow (BA)^1 = \beta^1$

 $\Rightarrow \forall_i \beta_i = \beta_i$

Now we prove that A! 13.

idempotent.

we have (Al) -AI. AI

= A' (B'A')

2(4,81)4,

((A) 3/+1) = (B'A' ('A'B'=B')

A 13 Idempotent.

Now we provide that Blisidempolint

we have (B1) = B|B1

= B1 (A1B11)

=(B"A1)B'

= A18 (:B'A1=A)

 $= \beta^1 \quad (::A'B'=\beta')$

B' is idempotent_

				•
	9		Determ	í
	3			<u>-</u>
	0	• .	Definition:	
	•		To every square matrix, we	
	9		Cusociatz a unique number Called	
	9		·	
-	•	- · -	the determinant of matrix.	
	•		Tan aiz aiz am	ĺ
	0	٠	$a_{21} a_{22} a_{33} - a_{1n}$	ŀ
	8		. (1
	₿		200	ĺ
	0		any anz anz ann	l
,	€	.	is any square matrix of order	I
	0			
	•	.	in the determinant of Ais	
	•		denoted by IAI or detA or Δ .	
	6		i.e. a11 .a12 a13 a111	
			$a_{1} = a_{11} = a_{12} = a_{13} = -a_{17}$	Ke was
	•			***************************************
	9	.	ani ana anaann	
	9	· [The numbers a_{11} , a_{12} , are the	
	6	- {	elements of the determinant.	
	(8	- [
	Ø		Note: (1) In determinant, number of	
	9		sows must be equal to number of	
	0	-	Coftumins.	
	©	G	?) The determinants has a value.	
	•	(3) Determinants are cured for judging	
	. 0		the investibility of square matrices.	
	. 6	Ć4	1). Determinants - are also used to solve	1
	9		the System of linear equations.	:
	8		in class and	_
	- O	[*] *	x:- (7), [3-3], 3-4-8, are	_
•	ß		10 9 2	

INSTITUTE OF MATHEMATICAL SCIENCES! INSTITUTE FOR IASAFOS EXAMINATION. dants NEW DELHI-110009 MOD:09999197625 of order 1,2,3 the -determinants respectively. - The determinant of 1x1 matri _[a] is defined to be a. + Determinant of order 2: If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then the number ad-bc is called the determinant. All It is denoted by IAI. i.e. $|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc$. Cofactors: Minor - It aij is an element which is in the ith tow and just Tela Square matrix A; the the determinant of the matrix the ith rowa obtained by deleting ith Column of A is called minor o A. It is denoted by Mij . $H_{11} = minor of a_{11} = \begin{vmatrix} a_{21} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$

cofactor: It is is an element which is in the ith raw and ith column of a square matrix A, then the product of (=1) it and the minor of air is called Cofactor- of air.

It is denoted by Air.

Note: If
$$A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \end{bmatrix}$$
 then $\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & -\alpha_{22} & \alpha_{23} \end{bmatrix}$

$$A_{II} = \text{Coffactor of } \alpha_{II} = (-1)^{|A|} M_{II}$$

$$= +1 \begin{vmatrix} \alpha_{12} & \alpha_{23} \\ \alpha_{31} & \alpha_{33} \end{vmatrix}$$

$$= \alpha_{22}\alpha_{33} - \alpha_{32}\alpha_{33}$$

$$A_{12} = \text{Cofactor of } Q_{12} = (-1)^{H_2} M_{12}$$

$$= -1 \begin{vmatrix} Q_{21} & Q_{23} \\ Q_{31} & Q_{33} \end{vmatrix}$$

$$= -(a_{21}a_{33} - a_{31}a_{23})$$

$$\Delta = \frac{3}{\sum_{j=1}^{3} (-1)^{i+j}} \alpha_{ij}^{i} M_{ij}^{i} = \sum_{j=1}^{3} \alpha_{ij}^{i} A_{ij}^{i}.$$

$$= \alpha_{i_1} + \alpha_{i_2} + \alpha_{i_3} + \alpha_$$

i.e.
$$\Delta = \alpha_{11} A_{11} + \alpha_{12} A_{12} + \alpha_{13} A_{13}$$
,

$$\Delta = \alpha_{21} A_{21} + \alpha_{22} A_{22} + \alpha_{23} A_{23}$$
(ROW)

$$\Delta = \alpha_{31} A_{31} + \alpha_{32} A_{32} + \alpha_{33} A_{33}$$

$$\Delta = \sum_{i=1}^{3} (-1)^{i+j} \Omega_{ij}^{i} M_{ij}^{i} = \sum_{i=1}^{3} \alpha_{ij}^{i} A_{ij}^{i}$$

$$= \alpha_{ij}^{i} - A_{ij}^{i} + \Omega_{2j}^{i} A_{2j} + \Omega_{3j}^{i} A_{3j}^{i}$$

1.e.
$$\Delta = \alpha_{11}A_{11} + \alpha_{21}A_{21} + \alpha_{31}A_{31}$$

$$\Delta = \alpha_{12}A_{12} + \alpha_{12}A_{21} + \alpha_{32}A_{32}$$

$$\Delta = a_{13} A_{13} + a_{23} A_{23} + a_{33} a_{33}$$
(Column)

Note!— The determinant of a square matrix A is equal to the Sum of the products of the elements of a row (or Column) of A with their Corresponding Coefactors.

Problem Y Find the value of the determinant of the matrix.

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & 0 & d \end{bmatrix}$$

$$\begin{array}{c} 301^{\circ} : - & \text{we have } 1A1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d \\ 0 & 0 & 0 & d \end{bmatrix}$$

$$= \begin{array}{c|c} a & b & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & d \end{array}$$

$$= ab \begin{vmatrix} c & 0 \\ 0 & d \end{vmatrix}$$

é

É

÷

É

É

W W

Note: (1) The value of the determina
of diagonal matrix is equal to
the product of the elements lying along its principal cliagonal.
(2) Let In be a unit matoix of
order is then [In] =1. The Value of the determinant
of a wait motors is always equal

of the matrix $A = \begin{bmatrix} a & h & g & f \\ 0 & b & c & e \\ 0 & 0 & 0 & l \end{bmatrix}$

 $|A| = \begin{vmatrix} a & b & 3 & 4 \\ 0 & b & c & e \\ 0 & 0 & d & k \\ 0 & 0 & 0 & k \end{vmatrix}$ $= a \begin{vmatrix} b & c & e \\ 0 & d & k \\ 0 & 0 & k \end{vmatrix}$

= ab (dl-0) = abdl

Mote: (1) The value of the determinant of an apper triangular matrix (i.e. in which all the elements below the principal diagonal are zero) is equal to the product of the elements along the principal diagonal.

(3) The value of the determinant of a lower triangular matrix is equal to the product of the elements calong the principal chapper

A Properties of Determinants:

The value of a determinant does

not change "bohen rous and columns

are interpressional.

 $\begin{vmatrix} a_{11} & a_{12} & -a_{10} \\ a_{21} & a_{22} & -a_{20} \\ - & - & -a_{20} \\ - & - & -a_{20} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} - a_{10} \\ a_{12} & a_{22} - a_{10} \\ - & + & + & -a_{20} \\ - & - & -a_{20} \end{vmatrix}$

 \rightarrow If A be an n-rowed square matrix. then |A| = |AT|.

of a determinant are interchanged,

then the many three of the determinant is multiplied and the multiplied and the determinant is multiplied.

(or one column) of a determinant are multiplied by the same number k, then the value of the new determinant is k times the value of the fiver determinant.

i.e. $\begin{vmatrix} ka_1 & b_1 & c_1 \\ ka_2 & b_2 & c_2 \\ ka_3 & b_3 & c_3 \end{vmatrix} = k \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

> If A be an n-rowed square matrix, and K be any Scalar then $|k_{A}| = \kappa^{n} |A|$

$$|Ka_{11}| |Ka_{12}| |Ka_{13}| |Ka_$$

$$= K \cdot k \cdot \cdot \cdot \cdot k \cdot (n \operatorname{times}) \left(\frac{a_{11} \cdot a_{12} - \cdot \cdot a_{1n}}{a_{11} \cdot a_{12} - \cdot \cdot a_{2n}} \right)$$

= kn|A1.

? If two rows (or columns) of a determinant are identical, then the value of the determinant is zero. a, by co

TIM and eterminant, the sum of the product of the elements of any row (column) with the Cofactors of the Corresponding elements of any other row (column) is zero.

$$E2 - \Delta = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 5 & 4 \\ 6 & 7 & 8 \end{vmatrix} = 1 (40 - 28) - 2 (-24) + 3(-30)$$

$$\Delta = \begin{bmatrix} a_1 & b_2 & c_2 \\ a_2 & b_2 & c_2 \end{bmatrix}$$
 be a determinant $a_3 - b_3 & c_3 \end{bmatrix}$ of order 3.

Let AI, Bi, Cieta be the Cofactors of the elements a, b,, c, etc in A. Then we have a, A, + b, B, + C, C, = 1 a1A2+61B2+C1C2=0 a, A3 + 6, B3+ C, G = 0 .. a2 A2 + b2 B2+C2-A azA, + bzB, + CzG=0etc. Let A be a square matria of ordern' then ishow that (1), (AO) = TAI (A) = [A] soin: - Let A = [aij] mxn then we have A = [aij] nxn we have IA = | aij = | aij = | A)

ii, we have $A^{\theta} = (A^{1})$

-> show that the determinant of a Hermitian matrix is always a real number.

sol'n :- Let A be a Hermitian matsiz.

we know that if Z is a. Complex number duch that Z=Z then Z 18 real.

É

0	$A = \overline{A}$
8	
•	· Al is a real number.
	· · · · · · · · · · · · · · · · · · ·
9 -	Y strow that the value of the
9	· determinant of a skew-symmetric
0	matorie of odd order is always
é	tello a tradicional de la compania del compania de la compania del compania de la compania del compania del la compania del compania de
8 /	
()	sollo - Let A = 1 Q1 - h 15 1 h 1
0	g f o
e	
e e	a skew - symmetric matrix of
0	order 3.
(a)	Then (A) = 0 th = g"
	h 0-4
6 6 6 6 6	Then $ A = \begin{vmatrix} 0 - h - g \\ h & 0 - f \\ g & f & 0 \end{vmatrix}$
•	
	=(-1)3 0 h 9
6	-g-f o
6	= - 0 -h -g By By interchage
-	= - ho-+ By
	8 f 0 interchange
8	1

.. |A1 = - |A| ⇒ 2|A|=0

Conformable for multiplication then

[AB] = [A] |B].

II A B are square matrices

> 1A1=0

A, B are Square matrices order in Such that IABI: then prove that IA = 0 or B1=0 2013 - since [AB]=0 ⇒ [A][B]=0 Adjoint Matrix The transpare of the motorx obtained by replacing the element of a square indivix A by the " Corresponding Cofactors is called + adjoint matrix of A. It is denoted by AdjA or adjA. Note: (1) Can an an If A = | a21 a22 a23 then a31 a32 a33 AdiA = the rows & (2) If

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \text{ then Adj } A = \begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{bmatrix}$$

The A to any n-rowed square matrix then (adjA)A=A (adjA)=(A)I

Can ap
$$a_{13}$$
 - a_{1n}

Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} - -a_{2n} \\ a_{21} & a_{21} & a_{13} - -a_{2n} \end{bmatrix}$
 $\begin{bmatrix} a_{11} & a_{12} & a_{13} - -a_{2n} \\ a_{11} & a_{12} & a_{13} - -a_{nn} \end{bmatrix}_{nx}$

	An.	£21	A ₃₁ A _{n1}
adjA =	θ^{15}	Azz	A32 An2
•			
	-	_	;-:
	Am	Aan	A3n Ann

Now we have

$$(adjA)A = \begin{bmatrix} A_{11} & A_{21} - A_{11} \\ A_{12} & A_{21} - A_{12} \\ A_{13} & A_{21} - A_{13} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} - a_{13} \\ a_{21} & a_{22} - a_{23} \\ a_{22} & a_{23} - a_{23} \\ a_{21} & a_{22} - a_{23} \\ a_{22} & a_{23} - a_{23} \\ a_{23} & a_{23} - a_{23} \\ a_{23$$

The Girs the element in the matrix

$$A_{11}a_{ij} + A_{2}i^{a}_{2j} + A_{3}i^{a}_{2j} + A_{7}i^{a}_{7}$$

$$= (A), if_{i=j}$$

$$= 0 if_{i\neq j}.$$

$$\Rightarrow (ad_{1}A)A = \begin{cases} |A| & 0 & 0 & 0 \\ 0 & |A| & 0 & -0 & 0 \end{cases}$$

$$\begin{bmatrix} 0 & 0 & 0 & --- & | & 0 \\ 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & --- & | & --- & | & --- \\ 0 & 0 & 0 & 0 & --- \\ 0 & 0 & 0 & 0 & --- \\ 0 & 0 & 0 & 0 & --- \\ 0 & 0 & 0 & 0 & --- \\ 0 & 0 & 0 & 0 & --- \\ 0 & 0 & 0 & 0 & --- \\ 0 & 0 & 0 & 0 & --- \\ 0 & 0 & 0 & 0 & --- \\ 0 & 0 & 0 & 0 & --- \\ 0 & 0 & 0 & 0 & --- \\ 0 & 0 & 0 & 0$$

Similarly A(adiA) = |A|In

$$\therefore (adj A) A = A (adj A) = |A| I_n.$$

$$A\left(\frac{1}{|A|}(adjA)\right) = \left(\frac{1}{|A|}(adjA)\right)A = I$$

Let A be any square Matrix.

Let A be any square matrix

if there exists a square matrix

B such that AB = BA = I Then the

matrix B is called inverse of A.

Note:—(1) For AB, BA to be both

defined and equal, it is necessary

that A: and B are both square

matrices of Same order.

(3) A rectangular matrices Cannot have inverse

Every square matrix Cannot .

A matrix is said to be inverse.

Pmp Every Investible motoix has

solh - let A be an invertible motion let Band C be two inverses of A.

Then AB = BA = I (1) and AC = CA = I (2)

Now we have C = BI.

= B(A()(By®)

=(BA) C (By a ssociation property)

= IC (ByO)

= C

3 =. C

A has unique threase

s://upscpdf.com

3

(

0

<

•

6

8

Note: -(1) 29 A is an investible inverse is denoted matria then its by A-1.

$$AA^{-1} = A^{-1}A = I$$
.

- (2) since, I.I=I, we have I=I. ite the inverse of a unit matrix is itself.
- (3) Since A-A = AA-1=I ⇒(A-1)=A.
- 14). If A is invertible matrix and A = B then $A^{-1} = B^{-1}$.

Condition for a square matrix A to be Non-ringular if AT +0. possess the inverse is that 1/1/20.

N.C.: Let A be a square matrix Let B be the inverse of A. Then AB=I

1A1+0 Let

- To Prove the matrix A possess the inverse.
- we know that

$$= A \left(\frac{1}{1 + 1} \operatorname{ad}_{i} A \right) = \left(\frac{1}{1 + 1} \operatorname{ad}_{i} A \right) A \leftarrow$$

- ⇒ Bis the Inverse of A.
- => -A has -the inverse.

Note: If (A1 +0 then A-1 = 1A1 (adjA)

ightarrow A square matrine A is said to $\mathcal L$ Singular if (A)=0.

The necessary and sufficient -> A square matrix A is said to

HNSTITUTE FOR USIFOS EXEMINATION HNSTITUTE FOR USIFOS EXEMINATION WOD: 09993197625 MOD: 09993197625

$$A = \begin{bmatrix} -1 & 8 & -5 \\ 1 & -6 & 3 \\ -1 & 2 & -1 \end{bmatrix} = B \left(\frac{30}{4} \right)$$

Now adj A = BT
$$= \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 2 & 3 \end{bmatrix}$$

Now
$$A^{-1} = \frac{adj A}{(A)}$$

$$= -\frac{b}{2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -1/2 & -1/2 & 1/2 \\ -1/4 & 3 & -1/2 \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$$

$$AA^{-1} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 8 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -1/4 & 3 & -1 \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$$

$$=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathfrak{I}_3$$

the inverse of the motoix

$$S = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 and show that

SAS-1 is a diagonal matorix

$$\frac{301'''}{301'''} - |3| = 0(-1) - 1(-1)' + 1(1)'$$

$$= 1 + 1 = 2$$

Confactors matrix of
$$S = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

Now
$$\overline{s}^{\dagger} = \frac{\text{adjs}}{|s|} = \frac{1}{2} \begin{bmatrix} -1 & 1_0 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

$$SAS^{-1} = \begin{bmatrix} 0 & a & a \\ b & 0 & b \\ C & c & 0 \end{bmatrix} \times \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} \partial a & 0 & 0 \\ 0 & \partial b & 6 \\ 0 & 0 & \partial c \end{bmatrix} = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}.$$

•	
	Proposition AB be two n-rowed
®	non-singular matrices, then
⊗	AB: is also non-singular and
9	(AG)-1 = 3-A-1.
0	Proof - Let A&B be two
©	- · · · · · · · · · · · · · · · · · · ·
, (3	n-sowed non-singular matorices.
0	: IA] +0. IB] +0. /
	Now we have [AB] = 1A1 (Bt
	_
© .	⇒ [AB] #Ó (`` [Al‡O, lel ‡O)
•	: AB is non-singular.
•	AB trai inverse.
e	: AB is investible.
	Let us define a matoix c by
;** ©	
6	-the relation $C = B^{-1}A^{-1}$.
8	Phen ((AB) = (BIAI) (AB)
6	= B(A-A)B
8	= 8 IB = 8 B=I
8	
•	Also (AB) (BTA-1)
•	: = A(BB+)A+
•	= AIA-1
0	·
6	= AA-1 = ?
9	$\mathcal{L} = O(BA) = (BA)O$
	c = gd A-1 is the inverse of AB
9	→ If A be an nxn non-Singalar
0 -	matrix then $(AT)^{-1}=(A^{-1})^T$
8	follow sings 1A1+0

```
NOW [AT] = 1A1 = 0.
                                                 : AT is non-singular.
                      We know that AAT = ATA=I
              \therefore (AA^{-1})^T = (A^{-1}A)^T = \mathfrak{I}^T
\Rightarrow (A^{-1})^T A^T = A^T (A^{-1})^T = I.
      (A^{-1})^T is the inverse of A^T.
                                       : (AT)-1 = (A-1)T.
             atrix there (A-1)0=(AB)=1
3010:- since A is non-singular mat
 INSTITUTE FOR IAS/IF OS EXAMENTALISMOS INSTITUTE FOR IAS/IF OS EXAMENTALISMOS EXA
       We Know that AA-1 = A-1 A = I.
                    ⇒ (AA-1) = (ATA) = 20
              \Rightarrow (A^{-1})^{\theta} A^{\theta} = A^{\theta} (A^{-1})^{\theta} = \hat{I} (\hat{I}^{\theta})^{\theta} = \hat{I} (\hat{I}^{\theta})^{\theta
              \Rightarrow (AT)^{\theta} is the inverse of
                                         :(AB)- = (A-1)B
   Note! - If A is a square matrix
                                                                adjAT = (adjA) T.
                               y If A is a symmetric matrix
              then show that adjA is symmetri.
     soln - Since A is symmetote.
              Now we have (adiA)^T = adiA^T
                                                                                                                                                                                                                                          =adja (:'A =
```

 \rightarrow If the non-singular matrix A is Symmetric then A^{-1} is also Symmetric.

soin: Since A is non-singular.

· A-l exists

and A iso symmetric.

AT =A .

Now we have (A-1) T= (AT)-1

= A-1 (AT=A

· A-1 is Symmetric.

Show that if A is a non-Singular matrix then det(AT)=(detAT) Sol'n: Since A is non-Singularie.(A)+D. A-1 exists.

- - A-A = AA-1 = T

Now we have

 $A^{-1}A = I \Rightarrow \overline{A^{-1}A} = \overline{I}$

= 1A-1/A1 = 1

→ |A-1| = | HI

⇒ |A-1 = |A|-1

 \Rightarrow det(A-1)=(detA)!

The matrices A& B-IAB have the same determinant, A and B being both Square matrices.

Sol'n: Since B is non-singular. $|B| \neq 0.$ Now we have $|B^{-1}AB| = |B^{-1}|A|B|$ $= |B^{-1}|B|A1$

= 1.1A1 : [8] A8] = [A1]

_={I|{A||-

matrix then Prove that adjA = 1A17-1

Sol's: - we have A(adjA)= IAI. In

 $\Rightarrow |A(adjA)| = |A|.In|$

⇒ |A| |adj A| = |A| |Zn|

> |A| |adj A| = |A|". 1 (: |KA|=K|A)

 $\Rightarrow |adjA| = |A|^{m-1} + |A| \neq 0$

Note: - (1). From the above example if (A = 0) then |adjA| = 0.

(2) From the above example.

if Halto then ladjal to.

i.e. if A is non-singular then adjA

is non-singular.

THA is a non-singular

matrix then show that

adj (adjA) = 1A/2-A.

sot's: Since A is non-singular.

: (Al to and A exists.

we know that A(adjA)=|A|In

<u>c</u> _

6

(

https://upscpdf.com

Taking adja in place of AinD. we get (adjA) (adj (adjA)) = ladjA) In ⇒ (adjA) (adi (adiA))=1A|1-1n - (:- lod; A) = (A) n-1) Poe-multiplying bothsides by A, we get (A (adsA)) (ads (adsA)) = (A) \Rightarrow (AH In) [adj (adj A)] = [A1, n-1 A [Al In adj (adjA)] = [A Since A + torqs: 09999 $adj(adjA) = |A|^{n-2}$ >21 A &B are two non-singular of the same type then matrices (adjAB) = (adjB) (adjA). solin : Since 1A1 = 0, 181 = 0 : 1AB =0. Know that (AB) (adj(AB))=|AB| I: = (adj (AB)) (AB) Now (AB) (adj B adjA) = A (Badj B) adj A (By matrix associative property) . = A (IBII) adjA = 1B1 (AI)adjA = (B) (AOdj A)

= |B| (|A| I)

= (B1|A|I) = (B1|BI)I = (BB|I) = (BB)(adi(BB))(ByO) $\Rightarrow [adi(Badi) = adi(BB)]$

* Orthogonal	and	Unitary	Matri
-> orthogonal			
A matsix	21 14-	Said	to be
orthogonal i	f AT	$A = \hat{I}$.	
Note: 21 A	s an	orthogo	nal mo

Note: If A is an orthogonal matrix
then ATA = I.

$$\Rightarrow$$
 $|A|^r = 1$

· A-1 exists.

. A is invertible.

and
$$A^TA = \hat{I} \Rightarrow A^T = A^{-1}$$

.. A is orthogonal iff $A^{T}A = T = AA^{T}$ i.e. iff $A^{T} = A^{-1}$.

-> Unitary matrix :-

A matrix A is Said to be unitary matrix 14^{-} $A \Theta_{A} = I$.

Note: If A is - Unitary then $A^{\Theta}A = I$ $\Rightarrow |A^{\Theta}A| = |\Omega|$

$$\Rightarrow |AT = 1| (1 = x + iy)$$

$$= |A| = |A| =$$

.'. A-1 exists.

: A ls invertible.

$$\begin{array}{c} A = \theta_A \\ \Rightarrow \\ \hline A = \theta_A \\ \Rightarrow \\ \hline A = 0 \end{array}$$

.. A is unitary \$\Rightarrow A^0A = I = AA0

i.e.
$$\Leftrightarrow A^0 = A^{-1}$$

Some Properties of orthogonal

orthogonal matrices then AB&BA are also orthogonal matrices.

soin: Since AliB are offhogonal.

 $\therefore A^{T}A = I = AA^{T} & B^{T}B = I = BB^{T}$

since A&B are n-voiced square matrices.

... AB is also n-rowed square matrix.

$$(AB)^{\mathsf{T}}(AB) = (BA)^{\mathsf{T}}(AB) \quad \text{wow}$$

= BT (ATA)B (By associative Prop.)

= BT (In)B (By(I))

$$= B^{T}(I_{n}B)$$

.. AB is orthogonal.

Similarly we can Prove BAis

(

3

to 1 to 10 to the parameters are	the Application of the Control of th
②	Į.
.	If A.B be n-rowed unitary
•	matrices then AB and BA are
8	also unitary matrices.
9	20 - Since A&B are unitary
(3)	matrices
9	: AAB = I = ABA & BBB = I = BBB
€	
	and since A,B are n-rowed square
0	matrices.
•	AB is also n-sowed square matrix
•	Now we have
•	$(AB)^{\theta}(BA) = (B^{\theta}A^{\theta})AB$
•	ļ ;
•	= 80 (40 4) B
•	= 80 (2B) (BJ (D)
B	= 888 -
8	= 7 (840)
9	AB is unitary.
- 🥷	Similarly we can Prove BA is also
0	unitary.
6 7	→ A real matrix is unitary ⇔ it is
	Orthogon 1
8	sol's - Let A be a real matrix then
8	
©	$- A^{\Theta} = (\overline{A})^{1} = A^{1} - \overline{O}$
•	Since A is unitary.
•	40A = I
0	⇒ A'A = ? (-by O)
0	→ A is Orthogonal.
8	Conversely - Suppose that A is
Ø	orthogonal.

```
-ABA = I (BYO)
              A) is unitary.
            P is orthogonal then PTa
      Piare also ortogonal.
             Pis orthogonal
             we have
     MDM
             Tq T(Tq)
                          = PPT.
                          = I (PHO)
             is oithogonal.
             (p-1)T (p-1) = (pT) -1 p-1
                                    (By 1)
               is unitary.
         P is unitary then \overline{P}, P^{1}, P^{0}
  and P are also unitary.
                 P is unitary.
Sol's - Since
    P^{\theta}P = I = PP^{\theta} - O
(1) NOW We have (P)^{\theta}P = (\overline{P})
                             =[P^{\dagger}]\bar{p}
                             = (PB) P=(PB)
                             = <u>T</u> (640
                             = I.
```

https://upscpdf.com

on one commence execution in the constant of 	wore opeate antips.xxxme/upsc_pdf/	1
(ii) $(p')^{\theta} p' = [(\overline{p'})]^{!} p'$	-> show that if A is Hermitian	,
	and Pis unitary then P-IAP.	
$= \left[\left(\overline{p} \right)^{1} \right]^{1} P^{1} = \left[P \right]$	P is Hermitian	6
$= \left[p p \theta \right]^{1} \left(: (AB)^{T} \right]$	= BTAT) Soint Ais Hermitian	
	. A = A	•
= I	and P.1's unitary	€ :
pT is unitary.	$P^{\Theta} P = I \Rightarrow P^{\Theta} = P - C$) .€
	Moro we have	€ :
Liii, we have $(p\theta)^{\theta}p^{\theta}=pp\theta$	= I PARTON OB ST. POAD (PT) O	
(iv) $(p-1)^{\theta}(p-1) = (p\theta)^{-1}p^{-1}$	= powe(po) (by (b)	()
= (Pp0)-1		
7. (P)	po fip (eyl)	· Sitesian
P is unitary.	= P AP (By D)	(Septiminal
	: PTAP & Hermitian.	4
A real skew - symmetric A so	atisfies	6
the relation AP+I=0 where	3- 5-	(
is the identity matrix. show	GIAC .	(
A is Oithogonal.		€
sol'n Griven that A is rec	oc)	i i
Skew Symmetric matoria.		6
AT = -A - O		€.
Also given AT+I=0		· Constitution
$\Rightarrow A^r = rI -$		
Now we have AAT = AC	•	6-
(By (C)))	W W
=-(-I		and the first of the constant
= 7	②)	.6
A is orthogonal		•
A is orthogonal.	AN .	E Comment
		16
		* Table and the same of the sa
		tps://t.me/upsc_po
t.me/upsc_pdf h	ttps://upscpdf.com ht	tps://t.me/upsc_pd
	•	

	Join Telegram for More Upd
8	o Matrix
•	& Submatoin of Matrix:
@	*:
8	Suppose A is any matrix
•	then a matoix obtained by
•	leaving some rows and columns
•	from A is called a Submatrix
©	· · · · · · · · · · · · · · · · · · ·
0	Note: The matrix A litseff is a
8	Note: The meant
❸ .	Submatoria of A because interes
8	obtained from A by leaving
Ø	no gous or Columns.
8	
	Minors of a Matrix:
\$	Let A be an mxn matrix
⊗	then the determinant of every
®	Square Submatrix of A is called
₩	
6	a minor of the matrix A.
©	i.e. If we leave m-prows
•	and n-P Columns from A
	then the square Submatrix of
8	
6	A of order P
	The determinant of this

Submatrix is called

minor of A.

Speare

One row-from A then we get squa Submatrix of A of order 3.

8 1 8 | 1 9 1 | 2 5 2 etc

are 3-towed minors of A.

of Mators -

A number of is said to be rank

a matrix and

(i) there exists at least one minor of order of the matrix of which is no

The Each minding of sorter (+1) of the minute remaining services (+1) of the maintenance remaining the services of the maintenance remaining to the maintenance of the services of the service

Note: - (1) the rank of matrix A is an highest non-zero minor of order of the matrix A.

- (a) Rank of A is denoted by P(A) and is unique.
- (3) Every matrix will have a rank.
- (4) If A is a matrix of order mxn, then e(A) <-m orn (smaller of the tu
- (5) If ((A) =n then every minor of order n+1, n+2 etc is o
- (6) A is a square matrix order $n \times n$ $1 + 0 \Leftrightarrow \ell(A) = n$.
- (1) P(In) = n.
- (8) A is a matrix of order mxn.

 If every 15th Oxder minor (K<m, k.)

 13 zero then (A) < K.

- (9) A is a matrix of order $m \times n$. If there is a minor of order K(K < m, K < n) which is not zero then $\ell(A) \ge K$.
- (ib). It is null nation then P(A)=0.

 Since the rank of every non-Zero

 matrix is ≥1, we agree to assign

 the rank, Zero, to every null matrix.

Elementary operations (or)

Elementary transformations of
a matrix:

- 1) Interchange of the ith and jth rows: $R_i \leftrightarrow R_j$ or R_{ij} .
- 2) Meultiplying the its row by a non-Zero Scalar K: R: -> KR; or Ri(K).
- 3) Adding to the ith row k times: the jth row: $R_i \rightarrow R_i + KR_j$. (or) $R_{ij}(K)$.

The Corresponding column transformations axe respectively.

Ci \(ci \) \(

Echelon Matrix —

A matrix A is said to be in echelon form iff the number of Zeros preceding the non-zero elements of a rows marenes row

by row. The elements of the last row or rows may be all zeros.

(OR)

A matrix A is said to be in chelon form if

(i) The number of Zens before

the first non-zero element

in a row is less than the numbers, of sech Zeros in the next row

(ii) The elements of the last row

or rows may be all zero.

Note - (1) the first non-zero elements in the rows of an echelon matrix A are called distinguished elements of A.

$$\begin{bmatrix} -3 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

15 0-7 03 15 000 4 are echelon matrices

(R) Triangular matrix is also Called Cchelon form

Row Reduced Echelon Matrix:

-An echelon matrix is Called
a row reduced echelon matrix
or row Canonical form iff
the distinguished elements are

6

3

			-					
each equ	equal		to 1 and are the					
only non-zero elements in their								
respective columns.								
	1	3	ر	1				
Ex:-	0	· O	l	2	ัเร	Q10ω		
	Ó	O.	0	ס	-			

reduced echelon matrix.

Note: - The rank of a matrix in Echelon form is equal to the number of non-zero rows of the matrix.

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

clearly which is In echelon form

Tank A = the number of non
Zero rows of A = 2.

Note: - (1) The rank of the transpose of a modern is equal to the rank of the original matrix

1.e. P(A) = P(AT).

(2): The Fank of a matrix everyelement of which is unity is 1.

The A is a non-zero column
and B is a non-zero; row
matrix then show that P(AB)=1

$$\frac{\text{solin}}{\text{--}} - \text{Let} \quad A = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m+1} \end{bmatrix} \quad \text{mx}$$

$$B = \begin{bmatrix} b_{11} & b_{12} & b_{13} - \cdots & b_{1n} \end{bmatrix}_{1 \times n}$$

then

Since A&B are non-zero matrice

AB is also non-zero matrix.

The matrix AB will have atteast one non-zero element obtained by multiplying; terresponding non-zero elements.

All the two- sowed minors of AB is obviously two

Cut AB SECULOMBER MAN MATERIAL MATERIAL

Ex: Let
$$A = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$
; $B = \begin{bmatrix} -4 \\ 5 \end{bmatrix}$

Then
$$-AB = \begin{bmatrix} -8 & 10 & 12 \\ -4 & 5 & 6 \\ -12 & 15 & 18 \end{bmatrix}$$

Here all two-rowed minors are Obviously Zero.

But AB is non-zero matrix.

$$\rightarrow 34 \quad U = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ find th}$$

Values of U-and U2.

Soib - clearly U is in echelon form

The number of non-zero rows in echelon form = 3.

$$No\omega \quad U^{2} = 0.0$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

which is in echelon from

the number of Mon-zero volus in

0

0

() ()

* Partitioning of Matrices:

A matrix may be subdivided into Sub-matrices by drawing lines Parallel to its rows and Columns.

so that the elements contained Tin tectangular blocks are the Submatrix elements of the given matrix. This is called partitioning of matrices:

A matorix may be partitioned in many ways and it will be Partitioned depending on a situation One useful Partitioning is given

Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 14 & 5 & 6 \\ 6 & 7 & 8 & 10 & 11 & 12 \\ 0 & 8 & 2 & 13 & 1 & 2 \\ 4 & 5 & 1 & 1 & 3 & 0 & 0 \\ 2 & 4 & 5 & 1 & 1 & 3 & 1 & 2 \end{bmatrix}$$
 And therefore $A_{31} A_{32}$ therefore $A_{32} A$

where A11, A12, A21, A22, A31, A32 are the Submatrices of orders 2x3, dx3, 1x3, 1x3, dx3, dx3 respectively.

- one more useful representation of a matrix products is given below

Let
$$A = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$
 where each of $\begin{bmatrix} R_2 \\ R_3 \end{bmatrix}$

R, R2 --- Rim is a matrix of order Ixn. for I Row Vectors of A. and B=[C1.C2 - -- Cp] Ixp where ea of Ci, Cz, - - Cp is a matrix of order nxl (or) column vectors of B.

then
$$AB = \begin{bmatrix} R_1C_1 & R_2C_2 & --- & R_1C_P \\ R_2C_1 & R_2C_2 & --- & C_2C_P \\ --- & --- & --- \\ R_{mC_1} & R_{mC_2} & --- & C_{mC_P} \end{bmatrix}_{m \times 1}$$

where Ric, Rilz. -- Rmcp are all matrices each of order 1x1.

* Matrices Partitioned identical for addition :-

of the minute amenical sound for institute FOR IASHFOS EXAMINATION
INSTITUTE FOR IASHFOS EXAMINATION
THE HEY BENEFIT HOUSE
THE MODE OF THE MODE OF A and Bij of B are of the same order then we say that the matrices are identically partitioned.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ \hline 9 & 10 & 11 & 12 \end{bmatrix}$$
 and

$$8 = \begin{bmatrix} 6 & -1 & -21 - 3 \\ -4 & -6 & -6 \end{bmatrix} - 7$$

$$= \begin{bmatrix} -8 & -9 & -10 \end{bmatrix} - 11$$

then ALB are identically galitionec

and
$$A = \begin{bmatrix} A_{11} - A_{12} \\ A_{21} & A_{22} \end{bmatrix}_{\mathcal{A} \times \mathcal{D}} \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}_{\mathcal{X}^{1}}$$

$$A+B = \begin{bmatrix} A_{11}+B_{11} & A_{12}+B_{12} \\ A_{21}+B_{21} & A_{22}+B_{22} \end{bmatrix} \xrightarrow{\text{Problems}} \xrightarrow{\text{Tif}} P, Q \text{ are non-singular}$$

$$A+B = \begin{bmatrix} A_{11}+B_{11} & A_{12}+B_{12} \\ A_{21}+B_{21} & A_{22}+B_{22} \\ A_{22}+B_{22} \end{bmatrix} \xrightarrow{\text{Problems}} \xrightarrow{\text{Tif}} P, Q \text{ are non-singular}$$

Matrices Cartitioned Conformally

for multiplication:

Let A=[aij] mxn and B=[bij]nxn then AB exists.

Let: A be partitioned in any way that the partitioning lines drawn parallel to the rows of Bare in the same relative Position as the partitioning lines drawn parallel to the columns of A.

The motoices A&B partitioned => PM+ON=I => PM = I (:'0is in the above manner are said to be conformably partitioned for multiplication.

$$A = \begin{cases} 1 & 2 & 3 & | 4 & 5 \\ 6 & 7 & 8 & | 9 & | 10 \\ 11 & | 12 & | 13 & | 14 & | 15 \\ -1 & -2 & -3 & | -4 & -5 \end{cases}$$

$$B = \begin{cases} 0 & | -1 & | -2 & | -3 & | -4 \\ -5 & | -6 & | -7 & | -8 & | -9 \\ -15 & | -16 & | -17 & | -18 & | -19 \\ 20 & | -21 & | -22 & | -23 & | -24 & | 5 \times 5 \end{cases}$$

Then
$$A := \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B := \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$$

$$Alto \quad Q : s \quad Non-siv$$

$$\vdots \quad S := Q^{-1}$$

$$B := \begin{bmatrix} P^{-1} & O \\ O & Q^{-1} \end{bmatrix}$$

$$A = \begin{bmatrix} P & O \\ O & Q \end{bmatrix} = then \quad A^{-1} = \begin{bmatrix} P^{-1} & O \\ O & Q^{-1} \end{bmatrix}$$

Let the inverse of $A = \begin{bmatrix} P \\ O \end{bmatrix}$

Partitioned Conformably to premultiplication be denoted by B=MR

Then

$$AB = \begin{bmatrix} P & O \\ O & Q \end{bmatrix} \begin{bmatrix} M & R \\ N & S \end{bmatrix} = \begin{bmatrix} \widehat{\mathbf{T}} & O \\ O & \widehat{\mathbf{I}} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} PM+ON & PR+OS \\ OM+QN & OR+QS \end{bmatrix} = \begin{bmatrix} I & O \\ O & I \end{bmatrix}$$

PR+OS=O => PR=O

$$O = NO \implies O = NO + MO$$

$$OR + QS = I \implies QS = I$$

Now since Pis non-singular and. PR=0.

P is non-singulaxand PM=I

$$M = p^{-1}$$

Similarly Q is Non- Singular & BN=0

Q is Non-singular & Qs=I

$$\beta = \begin{bmatrix} P^{-1} & 0 \\ 0 & Q^{-1} \end{bmatrix}$$

0

Join Telegram for More Update:
Find the inverse of [AB]
where B,C are non-singular.
solio - let the inverse of
$M = \begin{bmatrix} A & B \\ C & O \end{bmatrix}$ Partitioned
Conformably to Pre-multiplication
by M, be denoted by $A = \begin{bmatrix} P & R \\ R & S \end{bmatrix}$
then $MA = \begin{bmatrix} A & B \\ C & \overline{O} \end{bmatrix} \begin{bmatrix} P & R \\ Q & S \end{bmatrix} = \begin{bmatrix} \overline{O} & \overline{O} \\ \overline{O} & \overline{S} \end{bmatrix}$
⇒ AP+BQ =I
AR 1 BS = 0 - 3
CP = 0 - 3
CR = I (A)
Since C is non-Singular & CP=0
k CR=1.
P=0 & R=C
Now from (), AO +BQ = I
⇒ BQ = 1.
Since B is non-singular.
[Q = B-1]
② = Bs = -AR
\Rightarrow $B'(BS) = -B'(AR)$ (: 1BHo)
$\Rightarrow (B_1B)a = -(B_1U)C_1(:E:C)$

$$|M| = A$$

$$\Rightarrow \begin{bmatrix} A & B \\ C & O \end{bmatrix}^{-1} = \begin{bmatrix} P & R \\ Q & S \end{bmatrix}$$

$$= \begin{bmatrix} O & C^{-1} \\ B^{-1} & B^{-1} & C \end{bmatrix}$$

$$= \begin{bmatrix} O & C^{-1} \\ B^{-1} & B^{-1} & C \end{bmatrix}$$

$$= \begin{bmatrix} O & C^{-1} \\ B^{-1} & B^{-1} & C \end{bmatrix}$$

$$= \begin{bmatrix} O & C^{-1} \\ B^{-1} & B^{-1} & C \end{bmatrix}$$

$$= \begin{bmatrix} A & B & C \\ O & C \end{bmatrix}^{-1} + \begin{bmatrix} A^{-1} & -A & B^{-1} \\ A^{-1} & A^{-1} & A \end{bmatrix}$$

$$= \begin{bmatrix} A & B & C \\ O & C \end{bmatrix}^{-1} + \begin{bmatrix} A^{-1} & -A & B^{-1} \\ A^{-1} & A & B^{-1} \\ O & C \end{bmatrix}^{-1} + \begin{bmatrix} A & B^{-1} & A^{-1} & A^{-1} & A^{-1} \\ O & B^{-1} & C \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} A & B & C \\ O & B & C \\ O & C \end{bmatrix}^{-1} + \begin{bmatrix} A & B^{-1} & A^{-1} & A^{-1} & A^{-1} & A^{-1} \\ O & B^{-1} & C \\ O & C \end{bmatrix}^{-1} + \begin{bmatrix} A & B^{-1} & A^{-1} & A^{$$

-0 0

❸.

.

Since C is non-singular & CR=0, (v=0)

CX=I

$$\Theta = BQ = O - \Theta$$

Since B is non-singular & BQ=0.

$$\widehat{\mathbb{D}} = \widehat{B}^{1}(B\omega) = -\widehat{B}^{1}(FC^{-1}) (\cdot B^{1} + 0)$$

$$\Rightarrow \widehat{\omega} = -\widehat{B}^{1}FC^{-1}$$

$$\Rightarrow As = -HS^{-1}$$

$$\Rightarrow S = -A^{-1}HS^{-1} (:IA| \neq 0)$$

of
$$\begin{bmatrix} A_1 & 0 \\ A_2 & 0 \end{bmatrix}$$
; $\begin{bmatrix} A_1 & B_1 \\ 0 & 0 \end{bmatrix}$ is at most σ :

A, being an oxo order matrix.

$$301$$
 :- (1). Let $M = \begin{bmatrix} A_1 & 0 \\ A_2 & 0 \end{bmatrix}$

Since A, is an oxy order matrix. The matrix A2 has T Columns.

Now every (T+1) - rowed square.

Submatrix of the Matrix M has at least one column of Zeros.

All mirrors of order (T+1) of the matrix M are Zero.

EX:-
$$\begin{pmatrix}
1 & 2 & 0 \\
3 & 2 & 0 \\
3 & 4 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
3 & 4 & 0 \\
5 & 6 & 0 \\
5 & 0 & 0
\end{pmatrix}$$
H=
$$\begin{pmatrix}
A_1 & 0 \\
A_2 & 0 \\
A_3 & 0
\end{pmatrix}$$

Since A, is an 2x2 order matoir.

.. The matrix A2 has 2 Columns

Now every (2+1)-Dowed Square
Submatrix of the matrix M has

attent one Column of zero.

.: All minors of order (2+1) of the matrix M are Zero.

(i) Let
$$M = \begin{bmatrix} A_1 & B_1 \\ 0 & 0 \end{bmatrix}$$

Since A, is an TXT Square

matrix.

Now every (ot1) rowed square submatrix of the matrix M has at

0

•

Zeros. least one row of .. All minors of order (o+1) of the matoix M are Zero.

:. ((M)€x.

Ex - Let
$$M = \begin{cases} 12 & 356 \\ 32 & 460 \\ \hline 00 & 000 \end{cases}$$

$$\Rightarrow M = \begin{bmatrix} A_1 & B_1 \\ 0 & 0 \end{bmatrix}$$

that the rank of a matrix does not after on affining any number of additional rows or columns of: Zeros.

soin - Let A be a matrix of rank 'd'.

Let M be the matrix Obtained from the matrix A by affining some additional rows and Columns of Zeros.

Let
$$M = \begin{bmatrix} A & O \\ O & O \end{bmatrix}$$

Now every (+1)- rowed minor of the matrix H is either a minor of the matrix A or it will have at least one row (or) one column of Zeros.

Since benk of A is a. Every (8+1) - rowed minor of the 2) EI(K) => E-matoix obtained by

matria A (if there is any) is eque to zero,

: Enerth (0+1) - Lomed wiver of fr matriz M is equal to zero.

Since the matrix A has atleast one minor of order's not equal to 70,00°

... At least one r-rowed minor of the modiff is not equal to zero " ((M) = Q.

* Elementary Matrices <u>Definition</u> - A matrix abtained from a unit matrix by a single elementar transformation is called an elemente matrix or E-matrix.

NSTITUTE FOR HASH 110009

NEW DELHI-110009

are the Motor 157625 matrices obtained from Is by Subjecting it to the elementary operations CI (+) (3) $R_2 \rightarrow 4R_2$, $R_1 \rightarrow R_1 + 2R_2$ respective we shall use the following Symbol. to denote the elementry matrices c different types:

1) Eij will denote the E-matrix obtained by interchanging it and its tows or its and jth columns in I.

element of : every column with k 'nI.

- 3). Eij(K) => Elementary matrix Obtained by multiplying every element of ith row with k and then adding them to the Corresponding > 5. | Et (4) = 1 elements of its row in I.
- 4) Ei(k) > E-matrix obtained by multiplying every element of its Column with K and then adding them to the Corresponding elements of its column in I.
 - Properties of Elementary Matrices :-
- -> 1. Every elementary matrix is a square matrix.

$$+3.$$
 |Ei(K)] = K where K ± 0

$$(|E|(k) = k|\Sigma| = k(0) = k).$$

$$E_{i}(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \end{bmatrix} + b_{in}$$

$$E_{i}(k) = k |I_{3}|$$

$$= K(1) = K.$$

$$\Rightarrow 4' \quad \text{Eij}(K) = 1$$

$$= 1 - \text{Let } I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ then } 0$$

-> 6. Every chementary matrix is non-singular (j. e 1= =0).

* Lemma:

Every Elementary 1000 transformation of a product C=AB be effected by subjecting the pre-factor A to the Same now Operation.

Proof - Let A and B be mxn and myp matrices then AB is a matrix of order mxp.

Now let
$$A = \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_{m} \end{bmatrix}$$
 $B = \begin{bmatrix} C_1 & C_2 & \cdots & C_p \end{bmatrix}$

where R., Rz -- Rm denote the row vectors of the matrix A. and C1, (2, C3....Cp. denote the Column vectors of the matrix B.

8

(2)

8

8

€

$AB = \begin{bmatrix} R_1 \\ R_2 \\ R_m \end{bmatrix} \begin{bmatrix} C_1 & C_2 & \cdots & C_p \end{bmatrix}$ $\begin{bmatrix} R_1C_1 & R_2C_2 & \cdots & R_pC_p \\ R_2C_1 & R_2C_2 & \cdots & R_pC_p \end{bmatrix}$ $\begin{bmatrix} R_mC_1 & R_mC_2 & \cdots & R_mC_p \end{bmatrix}$

More if σ denotes any elementary $(\sigma A)B = \sigma (AB)$.

Ex: $-2f \sigma$ denotes the elementary row - transformation $R_1 \leftrightarrow R_2$ then $(\sigma A)B = \sigma (AB)$.

Theorem: - Every Elementary row transformation of a matrix can be obtained by pre-multiplication with the corresponding elementary matrix.

proof: Let A be an mxn matrix and let I'm be a unit matrix.

Nove A = ImA

Now let σ be any elementary row transformation to be performed on A. Then $\sigma A = \sigma \left(I_m A \right)$

$$= o - (I_n)A$$

where E is the elementary matrix Corresponding to the row operation

Ex - Let
$$A = \begin{cases} 1 + 2 \\ 2 + 1 \end{cases}$$

E-row transformation

A $\Rightarrow C$

R. EA=B

Now the E-transformation

R. $\Rightarrow R_1 + 2R_2$ transforms A int B
 $\Rightarrow R_1 + 2R_2$ transforms A int B

Now Apply the same rowtransformation $R_1 \rightarrow R_1 + 2R_2$ to the unit matrix I_3 i.e. $I_3 = \begin{bmatrix} 7 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

$$\therefore E = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$N_{0} = A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 2 \\ 2 & 7 & 1 \\ 3 & 8 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 7 & 20 & 10 \\ 2 & 7 & 1 \\ 3 & 8 & 47 \end{bmatrix} = B$$

Lemma (Limited Fine Volume of Factor B to the Same Column operation.

transformation then \$7(0-B)=0 (AB)

transformation of a matrix Can be obtained by past-multiplication

Corresponding elementary with the Matrix.

$$\underline{\underline{sq'n}} - A = AI_n$$

Pt ois any Column transformation

then
$$\sigma(A) = \sigma(AIn)$$

$$= A(\sigma In)$$

Proverses of Elementary

Matrices:

Ein Ein

Let the given matrix Eij be the elementary matrix thained by interchanging the its and its nows of a unit matrix.

. If we interchange the it's & it's of Eij then we get the unit matrix I I I But we know that every clonentry sow transformation of a matrix can be obtained by fre-multiplying with E- Column transformation. corresponding elementary matrix.

.. (Eij) (Eij) = I $\Rightarrow \ E_{ii} = E_{ii}$

Ein is its own inverse. Similarly we can show that

Eij = Eij by the Elementary Column transformation.

Theorem: [E;(K)] = E; (1) where k+0 Proof - The given matrix Ei(K) is the elementary mators obtained by meeltiplying it sow by K of a unit matrix.

If we again multiply the its on of "E"(k) by then we get a unit matoix. (FILK) == 1.1 But we know that every E-row transformation of a matrix can Obtained by pre-multiplication with corresponding dementary mulais

Now Pre-multiplying the matrix E(K) with the elementary matrix E(K)

 $E_i\left(\frac{1}{K}\right)$ $E_i(K) = I$

: [Ei(k)] = Ei(k): K+0

we can show that Similarly

[Ei(K)] = Ei (K) by the

 $+\int E_{ij}(K)$ = $E_{ij}(-K)$ where

<u>Proof</u> - Let the given matrix Ei(K) is the elementary matrix obtained by multiplying element of its rowby K

	1
	and adding to the Corresponding
٠.	element of ith row of a unit
٠	matrix.
	If we again multiply every elemen
	of 1th sow by (K) and adding to
	the Corresponding elements of its our
	of Eij (K) then we get a smith
	matriz.
	we know that every elementary
	dow - transformation of a madrix
	Can be obtained by ipre -
	multiplying with corresponding
	elementary matrix.
	Now pre - multiplying the
	matrix Eij (K) with the elementary
	motor Eij(-k).
	· Fig(K) (Eig (-k) = 2
	· [Eij(K)] = Eij (-K); K#0
.],	Similarly we can show this by
	any alumn transformation.
- 1	vote: -(1) The inverse of an
Ι.	elementy matrix is also non-singular
- 6) The inverse any elementary is
	also an elementary matrix.

Theorem Elementary transformations don rank of matriz. change the The rank of a matrix is invariant if the matrix is subjected to elementary: transformations. Probef: Let A be a matrix of mank Horam Mile. C(A) 28 Let - B be the matrix obtained from the E-transformati the minors of order 8+1 will be Zero. Let thoi be any (8+1)-rowed minor of A. and (Bo) be any (o+1)-rowed minor of B having the same Position as IAol. Now (ardi): Interchange the ithe rows of amatria doesnot Change the matolx Let Rict Rj be on A. Then 1Aol will be one of the -Pollowing three types. 1) (Ao) will remain carchanged. of its rows will be 2) Two intercharged.

interchanged with a row not belong to 1A01-

.. Now in a) |Bo1=0, (Ao)=0.

in (2) |Bo|=-|A0|=-0.

= 0 and

in (3) [80] will be equal in magnitude to some other minor of order (37-11) ref. A.

∴ (Bo) =0

of a are zero.

 $\ell(B) \le \delta \Rightarrow \ell(B) \le \overline{\ell(A)}$ Again we can obtain A from B
by $R_i \longleftrightarrow R_j$ and we can prove
that $\ell(A) \le \ell(B)$

: ((B) = (B)

Change the rank of the matrix.

Let R: KR: be performed on A then [Ao] will be One of the following two types:

(1) [Ao] will remain unchanged.

(2) All the elements of one of the rows will be multiplied

Now in (1), $|B_0| = |A_0| = 0$ and in (2), $|B_0| = |A_0| = |B_0| = |B_0| = |B_0|$

: All the minors of order (8+1) of B will be Zero.

 $e(8) \le \delta \Rightarrow e(18) \le e(18)$.

Again we can obtain Afrom B

by $R_i \longrightarrow \frac{1}{K} R_i$ and we can

prove that

· (A)= (B)

(B) S < (B)

Case in Adding to the its row k times the jth sow i.e. Ri Tritik;

Let Ri Tritike;

Let Ri RitkRi be performed on A then (Ao) will be on of the following three types.

(1) (Ao) will remain unchanged

(2) The elements of one row of lAo! will have addition of K.

times the Corresponding elements of another row of lAo!.

(A) will have addition of ktimes

the Corresponding elements not

to IAol.

belonging

(

ૄ

	1
ব	eorem the pre-multiplication or
	post-multiplication by an
: -	elementary matrix and as Such by
	any series of elementary matrices,
_	do not Charge the rank of matrix.
	proof - Let A be a given matrix.
	Let - E be the elementary matrix
-	which is pre-multiply by A.
1.	If I be the now operation"
	Corresponding to the desirediting !
	matrix E then EA = XA.
	But hA does not change the rank
	4.
	$\therefore \ell(EA) = \ell(A).$
	let E1, E2, E3 En be n'
	elementary matrices, which are to
	Pre-multiply the matrix A.
	Let 1, 12 In be row
	operations corresponding to the
	elementary matrices E, EzEn
	respectively.
	then En En-1 Ez . E1 . A = In In-1
	1:h; A
	But $\lambda_n \cdot \lambda_{n-1} \cdot \cdot \cdot \cdot \lambda_2 \cdot \lambda_1 \cdot A$ do not
	Change the rank of A.

Now In ① $|B_0| = |A_0| = 0$ and $|B_0| = |A_0| = 0$ another $(b+1)^{th}$ order minor of A. $|B_0| = 0 + k(0)$ = 0All the (b+1) - b owld minors $|B_0| = 0 + k(0)$ = 0All the (b+1) - b owld minors $|B_0| = 0 + k(0)$ $|B_0| = 0 +$

By the Cases (i) in & (iii) & (iii) we conclude that elementary now transformations on a matrix donot change the rank of the matrix. Similarly we prove that elementary column transformations on a matrix donot change the rank.

Elementary transformations on a matrix of the matrix.

Reduction to Normal form Theory

(08) first Cananical form of

Every ron-zero matrix can be that

reduced to one of the

following form Ir,

The

 $\begin{bmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0}_{r,0} \end{bmatrix}$, $\begin{bmatrix} \mathbf{I}_r & \mathbf{0} \end{bmatrix}$, $\begin{bmatrix} \mathbf{I}_r \\ \mathbf{0} \end{bmatrix}$ by a

Etantformations, where I is the unit matrix of order or. Called its normal form and or is Called the rank of the matrix.

Note: - (1) Not every matrix A

Can be reduced to normal-firm
by row (Column) transformations
alone.

Ex - 0 10 Cannot Changed to 0 0 0 normal form by

and [101] Cannot be changed 500] to normal form by Column transformation.

Theorems— Ωf A be an mxn matricel ph Q Such that $PAQ = \begin{bmatrix} \Gamma & 0 \\ 0 & 0 \end{bmatrix}$.

Proof - Griven that $C(A) = \delta$ The matrix A can be transformed to normal form [3, 0] by say

3 number of elementary rowtransformations and say to number of elementary Column
transformations.

We know that every elementary

we know that every elementary row (column) transformation on A is aquivalent to pre (post) — multiplication of A by a suitable elementary matrix.

matrices.

P₁, P₂, e - P₃ as Pre-factors and

Q₁, Q₂, - - Q₄ as post-factors of

A Such that

Now there exist elementary

Ps. Ps. P.A. Q. Qz. Qt = [It 0]

o 0]

we know that each elementary

matrix is a non-singular matrix and the product of non-singular matrices is also non-singular

Let (Ps. Ps-1 Pa. Pi) = P and
$(\theta_1, \theta_2, \dots, \theta_t) = \emptyset$
. P&Q are non-Singular.

Dremit Every Non-Singular matoix is a product of elementary matorices. proof: - elet A be a non-singular matrix of order nxn.

1.1A1 \$0.

· ·· (A)=<u>ν··</u>

reduced to the i It can be form In by a finite number of theorem the tank of a matrix does no elementary row or column transformations. we know that every elementary

roid (column) transformation on A is equivalent to Pre (Post) muttiplication of A by a suitable elem entary mat six

there exist, says $N_0\omega$ elementary matrices P1, P2 -- P5-1, B as Pre-factors and 't' elementary matrices Q, Q== Q+ ai Post factors of A such that

 $(P_S \cdot P_{S-1}, P_2 \cdot P_i) + (\theta_i, Q_1 - Q_t) = I_m$

since P, P2, -- P3 & Q, At, -Qt are

non-lingular matrices. i Ri Ri - Bid Qi, Qi - Qt are exis Also these inverse matrices are. elementary matrices.

Now pre-multiplying Successively by Pg, Ps-1 - P2, Pi and past multiply successively Q+, Q+, -- Q2, Q1 - +0 1 we get.

A = P1 - P2 - P3 - P6 - In Q+ Q+ --

 $= p_{3}^{-1} \cdot p_{2}^{-1} - \cdots p_{3}^{-1} \cdot Q_{1}^{-1} \cdot Q_{1-1}^{-1} - \cdots Q_{2}^{-1} \cdot Q_{1}^{-1}$ = product of elementary matrices.

Change by The Remains recent place tion or INSTITUTE FOR I

Singular matoix.

Soil - Let A be a given matrix and P.be a non-singular matri Such that PA is possible. we know that the non-singula matoix P Can be expressed as a product of elementary matolices. Let P = P. P2 -- Ps where P1, P2 - P3 are elementary matrices. :. PA = P1.P2 --- 18-1. 8 A i.e. A is Pre-multiplied by Selement

ie. Pre-multiplication of A by S elementary matorices is equivalent

matrices.

to s elementary row operations on A.

But elementary row Operations on A donot Change the rank of A.

$$(A) = (A)$$

Similarly if Q is a non-singular matora such that Aid is possible.

then we can prove that

((AQ) = (LA)

Exz E34(-1). E2(-2). E12 for an elementary matrix of order 4.

 $= \underbrace{\mathsf{t}_{23} \cdot \mathsf{E}_{34}(-1) \mathsf{E}_{2}(-1)}_{ \ \ 0 \ \ 0 \ \ 0} \underbrace{\begin{array}{c} 0 \ \ 1 \ \ 0 \ \ 0 \\ 0 \ \ 0 \ \ 0 \end{array}}_{ \ \ 0 \ \ 0 \ \ 0 \ \ 1}$

$$= E_{23} E_{34}(-1) \begin{bmatrix} c & 1 & 0 & 0 \\ -\lambda & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ c & c & 0 & 1 \end{bmatrix}$$

$$= E_{33} \begin{bmatrix} 0 & 1 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

-> Compute the following matrix $E_{23}(-1) \cdot E_{21} = E_{24} = E_{3}(2)$ for an elementary matrix of order 4.

Sol'n - Consider

= E23(4) 0 0 0 1 1 0 0 0 0 1 0 0

$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

. E23(-1) E31 E24 E3(2)

$$\begin{bmatrix}
0 & 0 & 10 \\
-1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 2 & 0 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

0		5 3 14 17 (2010)
③		Reduce the material 0 1 -2 1 30
8	j	[1-120]
②		into Echelon form and hence-find $R_2 \longrightarrow R_2 + 2R_1$, $R_3 \longrightarrow R_3 - R_1$
•		$R_2 \longrightarrow R_2 + 2R_1$ its rank.
		$\frac{501'^{5}}{0} - A = \begin{bmatrix} 53 & 14 & 4 \\ 0 & 1 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 8 & 5 & 0 \end{bmatrix}$
a		0121 ~ 0850
	. :	1-1 8 0 -2 1-8
8	_	$R_5^{*} \rightarrow 505$
0	- 4	5 3. W. 147
•		\sim 0 1 2 1 \sim 0 2 \sim 0 1 2 1 \sim 0 1 2 \sim
8		5-5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		~ 0 8 5 0
8	•	$R_5 \rightarrow R_5 - R_1$ 0 -2 1 -8
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
9		
\$		O -8 -4 -47 O -8
		NEW DELT 37425
&	-	$R_3 \longrightarrow R_3 + 8R_2$ $c_2 \longleftrightarrow c_3$
f		
•		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
9		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
© An	. •	ig o
8		This is in echelon form and R3 - 1 R3-5 R2
6		u of non-zero rowis (1000)
	-	is 3. [0 0 18 40]
		$(c_3 - c_3 + 2c_2) c_4 - c_4 + 2c_2$
0	.	F1 3 100 C
6		-> Reduce the matrix A= -2 4 30
6		1028 0018 40
: 6		to Cariovical torm and findits
° ⊗		Chormal)
8	·	rank.
1	٠., ٠	

Find the ranks of A, B, AB,
A+B & BA where

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}, B = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$$

to normal form and find their

(1)
$$A = \begin{bmatrix} 1 & -1 & 3 & 6 \\ 1 & 3 & -3 & -4 \\ 5 & 3 & 3 & 11 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 1 & 3 & 0 & 3 \\ 1 & -2 & -3 & -3 \\ 1 & -1 & 2 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 2 & -3 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 0 & 4 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

Find two non-singular matrices P&Q such that PAQ is in the normal form i.e. $PFQ = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix}$ where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$

Also find the rank of the -

$$\Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & -2 \\ 0 & -2 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 0 & 0 \\
 0 & -2 & -2 \\
 \hline
 0 & -2 & -2
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 \\
 -1 & 1 & 0 \\
 \hline
 -3 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & -1 & -1 \\
 0 & 1 & 0 \\
 \hline
 6 & 0 & 1
 \end{bmatrix}$$

٦	Join Telegram for More Update:
## ## ## ## ## ## ## ## ## ## ## ## ##	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 2 & 0 \end{bmatrix} \xrightarrow{1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{1} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 2 & 1 \end{bmatrix}$
8 8	$PAQ = \begin{bmatrix} I_2 & 0 \\ 0 & 0 \end{bmatrix}$
6 6 6 6	where $P = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 7 & 0 \\ 1 & 5 & 7 \end{bmatrix}$, $Q = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 7 \\ 0 & 0 & 1 \end{bmatrix}$
8 8 8 8 8 8 8 8 9	And Q(A)=2. Note: - P& Q are not unique. > Obtain non-Singular matrices
6 6 6	PkQ Such that PAQ is of the form $\begin{bmatrix} Ir & 0 \\ 0 & 0 \end{bmatrix}$ where $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$.
8	P. Q Such that
8	$PAQ = \begin{bmatrix} 9r & 0 \\ 0 & 0 \end{bmatrix}$ where $A = \begin{bmatrix} 5 & 1 & 4 & -2 \\ 1 & -4 & 11 & -19 \end{bmatrix}$
9	P Express [1 3 3] as a product [1 3 4] as a product [1 3 4]
8 8	Sol'n - Given that $ \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \end{bmatrix} $

$$R_{21}(-1)$$
 i.e. $R_2 \longrightarrow R_2 - R_1$
 $R_{31}(-1)$
 $\sim \begin{bmatrix} 1 & 3 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $C_{21}(-2)$, $C_{31}(-3)$
 $\sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = T_3$
 $c_{31}(-1) = 3$
 $c_{31}(-1) = 3$

A = a product of Elementary $= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 \rightarrow Express the motorix $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}$

as a product of Elementary matrices.

*-Equivalence of Matrices:

Let A be an mxn and

B be an mxn matrices. If B is

Obtained from A by finite number
of elementary transformations of

A then A is Called Equivalent
to B and is denoted by ANB.

Note:— The relation N defined

between two matrices Called

Equivalence matrices.

the following three properties of the relation is in the set M of all mxn matrices are obvious

- 1. Reflexivity: If AEM then ANA
- 2. Symmetry: If A,BEM such that ANB then BNA.
 - Transitivity: If AIBIC EM Suchthat ANB and BNC then ANC.

of all mxn matrices is equivalence relation.

Row Equivalence:

A matrix A is said to be tow equivalence to B if B is obtained from A by a finite. purposer of E pow transformations of A 'and is Henoted by ABB.

Column Equivalence:

A matrix A is said to be column equivalent to B if Bis. obtained from A by a finite number of E-column transformations of A and is denoted by ASB.

Proof: Since AMB i.e. ASB or ASB

· Bis obtained from A by a finite number of elementary transformations of A.

we know that E-transformations do not change the rank of the motiv

. If N-B. then-

((A) = e(B)

er je ji de a toda amatu.	
© .	
⊘	Note: If A&B are equivalent
8	then there exist
(3)	non-Singular matrices P& Q
6	non-singular
8	Such that B=PAQ.
8 —	> If A and B are same
6	order and C(A) = C(B) then A~8
@	order and con man
6	Soil'n + Let A & B be tion mxn
0	matrices of the same rank's
0	1 1
⊚	then A~ [Ir 0] and B~ [Ir 0]
•	1 4~ [0 0] ~ H
•	By the Symmetry of the
8	
8	equivalence relation
0	$\mathcal{B} \sim \begin{bmatrix} \mathcal{I}_{x} & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \mathcal{I}_{x} & 0 \\ 0 & 0 \end{bmatrix} \sim \mathcal{B}$
9	[0 0] [0 0]
8	Now by the transitivity of the
8	
•	equivalence relation
0	$A \sim \begin{bmatrix} Ir & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 3r & 0 \\ 0 & 0 \end{bmatrix} \sim 0$.
©	[0 0] [0 0]
•	
8	→ A~B.
•	> To the matrix A = 1 2 1
6	-102
€	equivalent to I3.
0	Sol'n :- Given that A3 = [12 1]
•	- GIVEN 3 - 1 0 2
6	Norwick and a later Nation
9	Now (A) =1(-2) + 1(-6-1) + 2(4)
8	= +2 -7 +8 =-1:
©	+ 1

```
27
                (IA) = 3.
  But P(53) =3
                 are same order.
  and e(A) = e(I3)
         . A~I3.
            Griven matrices are
                               are of differe
     ets. Institute of Mathematical Sympology
INSTITUTE FOR IASAFOS EXAMINATION
NEW DELY 119309
New 17705-09999 17522 quivalent.
to a matrix 8 by only row
transformations and obtain the rank
 A by inspection of B
```

$$R_{1} \rightarrow \frac{1}{2}R_{1},$$

$$\sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 3 \\ 3 & 0 & 1 \end{bmatrix}$$

$$R_{3} \rightarrow R_{3} - 3R_{3}$$

$$\sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 3 \\ 0 & -6 & 1 \end{bmatrix}$$

$$R_{2} \rightarrow \frac{1}{2}R_{2}$$

$$\sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & -6 & 1 \end{bmatrix}$$

$$R_{1} \rightarrow R_{1} - 2R_{1}$$

$$\begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 3/2 \\ 0 & -6 & 1 \end{pmatrix}$$

$$R_{3} \rightarrow R_{3} + 6R_{2}$$

$$\sim \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 3/2 \\ 0 & 0 & 10 \end{bmatrix}$$

$$R_{3} \rightarrow \frac{1}{10}R_{3} \qquad R_{2} \rightarrow \frac{1}{2}R_{3}$$

$$\sim \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = R_{3}$$

$$\begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = R_{3}$$

$$\begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = R_{3}$$

$$\begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = R_{3}$$

obtain an equivalent modaix

for -the given matrix

$$A = \begin{bmatrix} 6 & 1 & 3 & 8 \\ h & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & h & 12 & 15 \end{bmatrix}$$
 its rank.

$$301'0 - A = \begin{bmatrix} 6 & 1 & 3 & 8 \\ h & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{bmatrix}$$

$$C_1 \leftrightarrow C_2$$

$$C_1 \leftrightarrow C_2$$

$$C_1 \leftrightarrow C_2$$

$$C_1 \leftrightarrow C_2$$

$$C_2 \rightarrow C_2 - 6C_1, C_3 \rightarrow C_3 - 3C_1$$

$$C_4 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_4 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_4 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_2 \rightarrow C_4 - 8C_1$$

$$C_4 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_2 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_2 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_2 \rightarrow C_4 - 8C_1$$

$$C_4 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_2 \rightarrow C_4 - 8C_1$$

$$C_4 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_2 \rightarrow C_4 - 8C_1$$

$$C_4 \rightarrow C_4 - 8C_1$$

$$C_4 \rightarrow C_4 - 8C_1$$

$$C_1 \rightarrow C_4 - 8C_1$$

$$C_4 \rightarrow$$

· C4	•	₇ C	ų –	(2
	0 0	0	D	0
~	0	١.	0	0
	0	1	0	0
	0	. l	O	0
ų				0

٨

*6*3

0

0

0

(3)

€)

0

()

0

(3)

€

6

€

$$\sim \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} = 8 \text{ (say)}$$

$$\ell(A) = 2 = \ell(B)$$

Imp Theorem:

If A be an mxn matrix of rank's then there exists a non-singular matrix P such that $PA = \begin{bmatrix} G \\ O \end{bmatrix}$, where G is an TXN matrix of rank 's' and O is a zero-matrix of order TXN.

Proof - Given that Ais an men matria of rank is

of the state of t

we know that every non-singular where matrix Car be expressed as nank of

a pradeut of elementary matrices. of order (m-T) ×n.

Now let $Q = Q_1 \cdot Q_2 \cdot \cdot \cdot Q_t$ where $Q_1 \cdot Q_2 \cdot \cdot \cdot Q_t$ are elementary matrix. $Q_1 \cdot Q_2 \cdot \cdot \cdot Q_t = Q_1 \cdot Q_2 \cdot \cdot \cdot Q_t = \begin{bmatrix} I_1 & 0 \\ 0 & 0 \end{bmatrix}$

Now every elementary column transformation of a matrix is equivalent to post - multiplication with the corresponding elementary matrix I

Clearly no column transformation can change the last (m-o) row:

a matrix [Ir o] in (2)

Now pode The Titon (m-8) tows is ze Now pode The Titon () Successive by intermetical screens with ATION -1 -1 -0 NEW 1921 197625 we have PA = 21 0 0 0 0 0 0 0 0 0 0

$$\Rightarrow PA = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$

where G is of order oxn and o is of order (m-2) xn: Since elementary operations do not

Charge the rank.

in There exists a non-singular matrix P duch that PA = [6] where G is an oxn and is of mank of and 0 is a zero matri.

of order (m-t) xn.

Ex: - Suppose PAQ = $\begin{bmatrix} T_2 & 0 \\ 0 & D \end{bmatrix}$ is obtained from $\int_{3x} \frac{1}{3}A_{3x4} f_{4x4} = A_{3x4}$ $\Rightarrow PA = \begin{bmatrix} T_2 & 0 \\ 0 & D \end{bmatrix} Q_2 - Q_1^{-1} \text{ where}$

 $Q_{0}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

 $= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

= [G] where G is of order extended or is of order (3-2) x4.

((3,_) = = = (G).

Theorem:—

If A be an mxn matrix of

rank's then there excists a

non-singular matrix a such that

AB = [H 0] where H is a matrix

of order mxn and of rank's

and o is a zero matrix of order

mx (n-8).

Proof - Given that A is an mxn matrix of rank r Now = non-singular matrices

P&Q Such that PAQ = [? 0]

We know that every non shows

we know that every non-singular matrix can be expressed as a product of elementary matrices.

thence let P=B:Ps-q -- Ps.P, where P., Ps. - B are elementary matrices.

Now every elementary row transformation of a matrix is equivalent to pre-multiplication with corresponding elementary matrix clearly no row-operation can change the last (n-r) columns of a matrix [3r 0] in (2).

Now pre - multiplying @ Successively by elementracy matrices Ps., Ps., -- B., P2-1, P., we have

 $AQ = P_1 P_1 P_3 P_3 - \dots P_s \begin{bmatrix} T_r & 0 \\ 0 & 0 \end{bmatrix}$

AQ = [HO]

where H is of order mxo and ois a tero matrix of order mx(n-v).

ŧ.

ŧ.

6

6

	30m relegialmon wore opuate
	discourant and the second of t
0	
	Since E - transformations do not
0	Change the rank.
•	18(Ir) = x = e(H)
•	: I a non-singular matria Q
•	1 · · · · · · · · · · · · · · · · · · ·
•	Such that AR = [H 0].
8	cohere His an max matria of
0	rank & and . O is a tero - matrix
6	of order mx (n-v).
0	
•	* Rank of a Produit of
•	
©	Matrices: -
€	Theorem: - The rank of a product
•	
6	of two matrices cannot exceed
•	the rank of either matrix.
9	(Or)
8	If A,B are matrices conformable
6	for multiplication, then (IAB) SC(M)
2	and ((AB)≤ ((B).
. ea	Proof: Let A&B be two matrices
6 8	
0	of orders mxn and nxposespectively
•	Let ((A) = 5, ((B) = 52 and
8	P(AB) =8.
•	we know that I a non-singular
9	
6	matrix P ouch that
9	PA= G, where Gis of

Now by post-multiplying both : ((PAB) = ((AB) =). .. rank of the matrix G 8=8. since the matrix Gr has only or mon-zero rows. B Cannot have impre than in non-zero rows. : Rank of the matrix o B & S ,. → o < 8, i.e. P(AB) < P(A). (i.e. A is the -O. Pre-factor). tagain ((TAB) = [C(AB)] NEW DELHI-110009 Mob: 09393127885 ((AB) < P(F = 6(8) (...6(8)=6(8) s.¹ €x⁵ . i.e. C(AB) ≤ ((B) -.. from () & () we have (AB) ≤ ((A) and (AB) ≤ ((B).

Imp Working Rule for finding the inverse of a non-singular by E-row transformation. Let Anxo be a non-Singular mator then A=InA Now we go on applying E-row transformations only to the matrix A and pre-factor In of the product In A till we reach the result In = BA. then B is the inverse of A Problems Find the inverse of the matrix given below using E-row operations only: A = I3À

 $R_1 \longrightarrow R_1 + R_3$ R3 - R2- R2

$$A^{-1} = B = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

Now
$$I_3 A^{-1} = (BA) A^{-1}$$

$$\Rightarrow A^{-1} = B(AA^{-1}) - BI_3$$

(

© 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A-1.=B
3-11
-15 6-5
5 -2 2
9
Reduce the matrix
$A = \begin{bmatrix} 0 & 1 & 3 \\ 2 & 4 & 0 \end{bmatrix} $ to I_3 by
E-vow transformations only.
₩
compate the inverses of
matrices.
© 1.70 1 227 1-1-3347
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 3 3 3] [-1 1 0 1]
using elementary operations.
Find the value of a for
which the matrix 0 1 x
8
invertible and find its inverse.
6 (012)
Solvie Let H = 1 a p
(x 0 1)
then A= I3A
$\begin{array}{c c} & & & & & & & & & & & & \\ \hline & & & & & &$
[0 0 1]

Ry
$$\leftrightarrow$$
 Rz

$$R_{1} \leftarrow \Rightarrow R_{2}$$

$$R_{1} \rightarrow R_{1} - \alpha R_{2}$$

$$R_{1} \rightarrow R_{1} - \alpha R_{2}$$

$$R_{2} \rightarrow R_{3} - \alpha R_{1}$$

$$R_{3} \rightarrow R_{3} - \alpha R_{1}$$

$$R_{3} \rightarrow R_{3} - \alpha R_{1}$$

$$R_{4} \rightarrow R_{2} \rightarrow R_{3} - \alpha R_{1}$$

$$R_{5} \rightarrow R_{2} - \alpha R_{2}$$

$$R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5}$$

$$R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5}$$

$$R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5}$$

$$R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5}$$

$$R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5}$$

$$R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5}$$

$$R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5}$$

$$R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5} \rightarrow R_{5}$$

$$R_{5} \rightarrow R_{5} \rightarrow R_{5}$$

and express A as a product of Etementary matrices. Reduce A^{-1} Sol's - $A = \begin{bmatrix} 1 & 1 & 0 \\ 4 & 3 - 5 \\ 1 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & -5 \\ 0 & 0 & 5 \end{bmatrix}$

$$\begin{array}{c} P_{23}(1) \\ \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \\ R_{2}(1) \\ R_{2}(1) \\ R_{3}(1) \\ R_{3$$

	$A_{1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & $	
	$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0$	_
		-
{} [-1),	0 10 -4 1-0	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
ı.) <u>,</u>	[(00 ks) 00 1 (00 1 (00 1 kg) 0 1)	· · · · · · · · · · · · · · · · · · ·
).	(100) (1	
<u>์</u>	$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & V_S \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -4 & 1 & 1 \\ -5 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix}$	t t
	5 (1 0 0) (-1+ 1 1) 0 0 15 (-1 -1 1) -1 0 1	-
	_ <u></u>	ę.
(2)	- 5 -1 -1 - L O L	€
		€-
-4)		ŧ
		€
)		€ .
		•
1.		€

* Row space of a Matrix
Let A = [aij] be an mxn matrix then
[au a12 am]
az, azz azn
A = -2
am, am, amn mx

R= (a21, a22 -- ais), +---Rm=(am, am, --- amn) and Dinamenton of Trowspace of A= each of these being an intuple maintinum number of Lil over a field F, Is a member of The linearspan of these vectors i.e. L ({ R, R, -- Rm }) is a subspace of Fi and is called. rowspace of A. the Vectors and is denoted by rowsp(A)

Column Vectors

i.e. L ({C1, C2, --- (n)}) is a

subspace of Fn and li called

the Column space of A.

where c1 = (a11, a21, -- am1) $C_2 = (a_{12}, a_{22}, --a_{m_2})$ (n= (a,n,a,n, --amn) and is denoted by colsp(A). i.e. col sp(A) = span(C, 1621--- Cr. Note: - (1). column space of A is the same as the row space of AT. i-e. colsp(A) = TOWSP(AT). The rows of A are R=(a11, a2, -a1n) (2) Author non-zero rows of an Chilon matria are LI: rocos of A. the victorspace Fn (or vn(f)). . = mannympumber of LI rou = number of 19105- zero 1001 a an echelon matrix of A. KROW and Column rank of Mate

There rectors are Called row = Let A = [aij] mxn then the dimension of the row space of A is called the row rank of A and the dimension of the column space of Ais Called i.e. row sp(A) = span (R1, R2, -Rm) the column rank of A. Similarly the space Spanned by the Find the coleims of rank of the matriz.

sol'n:- we	know that Column of
	A is same as row rank
of AT	[143-1-4]

$$A^{T} = \begin{bmatrix} 1 & 4 & 3 & -1 & -4 \\ 1 & 3 & 1 & -2 & -3 \\ 1 & 2 & -1 & -3 & -2 \\ 2 & 3 & -4 & -7 & -3 \end{bmatrix}$$

which is in echelon form.

The number of non-zero rows of
this echelon form is 2.

Column rank of A = 2.

Mote! -1. The row rank of A is the runber of non-zero rows in echelon matrix of A

2. The row rank and the Column rank of a matrix are equal.

2			
©		Set-	<u>-</u> √ 31
<u> </u>		Linear E	equations 49 Million William
<u> </u>			MEB 3 8 8 9 9 7 7 7 5
(A)		Now we shall discuss the	-> Any set of Values of
8		nature of solutions of a system of	Tx,, x, xn which simedtaneous
.@		non-homogeneous linear Equations	the state Constitute
8			Catled, a solution of the
ම ක		Now Consider the System	System 1. when the yetter of
0		of m non-homogeneous linear	
©		Equations in in unknowns	equations has one of
•	:·· ·	_ *	solutions, the equations are said
⊜		1, 12, 13, 1-1-10.	to be Consistent.
8		a1121 + a12 72+ a1323+ a1172n= 31	otherwise_ they are said to
•		a2171+ a22 72 + a23 x3+ + a2n xn = b2	
0			be in Consistent.
		ang + anz = + anz = + - + ann = bin	The matrix
. 😝			$\begin{bmatrix} A_1 B_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \end{bmatrix}$
0		The System O Can be expressed	$\begin{bmatrix} A_1 B_1 \end{bmatrix} = \begin{bmatrix} a_{21} & a_{22} & a_{23} & & a_{21} \\ a_{22} & a_{23} & & a_{21} \end{bmatrix} $
8		as the matrix equation $AX = B$	am, am, am, amo bog
0			mx(n)+
8	_	where $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & - & - & a_{10} \\ a_{12} & a_{13} & - & - & a_{10} \end{bmatrix}$	is called the augmented matrix of the
0		where $A = \begin{bmatrix} a_1 & a_2 & a_3a_{2n} \end{bmatrix}$	given system of equations V.
0			
8		an, an, am, am	tox Condition for Consistency:
0	~ .	mxn	theorem - the equation AR = B 18
9		$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	
8		$X = \begin{bmatrix} X^T \\ 1 \end{bmatrix}$ $B = \begin{bmatrix} P^T \\ P^T \end{bmatrix}$	Consistent i.e. Possesses Solution
@			iff the two matrices AR[A B]
•		Jun 1	are of the Same rank.
•		*************************************	proof - we write
•	' 7	The motifix A is called the	A = [6, 62.63 (86+46+2 60]
•). 	Coefficient mateix	mxx
6)		

Ci, By--- Gn are matrices each of order mx1. system Ax=B is equivalent -to

 $\Rightarrow 3_1C_1 + 3_2C_2 + 3_3C_3 + - - + 3_nC_n = B -$ Let ((A) = 8 then A has & Linear Independent Columns, without loss of generality. let the first r columns of A be LI. I.e. the first o columns Ci.C' --- Cr form L.2 set. i- Each of the remaining: n-8 Ocherms is a linear Combination the first o Columns C, C2--Cr

Michessay Gordition: Let Ax = B be consistent Then I n Scalars (real symbolis) Ky, Kz, Kg--- Kn Such that

K, G + K2 C2+--+ KnCn=B-Let $e(A) = \delta$

Since each of the (n-1) .. The system Ax=B kas a solution Columns Crt1, Crt2, Crt3--- (n) ... The system is consistent. is a linear Combination of the

first r Columni Ci, (2, --- Cc. . from @, we have .. Bis also a linear Combination of C1, C2 --- C8. : The maximum number of linearly independent columns of [A B] is alsor. : e(AlB) + 8 ie e(A) = e(A|B). Sufficient Condition: Let e(A) = e(A|B)=r. then the maximum number of linearly independent columns of [AIB] is ord its columns C1.C2 -- Cr. .. B is a linear Combination of C1 , C2 , --- Cr. Now _ 3 scalars Pr, Pz, -- Pr +00, B+ -- +pcn =B -- 3/6

Such that Pici +Pz Cz+ -+ Picz=B i.e. P.C. + P.C.+ --- + Porco + OCont

Now comparing OLO, we get $\alpha_1 = P_1$, $\alpha_2 = P_2$, - -- $\alpha_8 = P_6$, $\alpha_{64} = 0$ xr+2=0- --- xn =0.

9

(2)

0

0

0

0

0

0

0

0

(2)

9

€

(Z

Ø

0

٩

0

0

€

(2)

(3)

0

0

0

€

€

Note: - Let AX = B and CX = D be two linear systems; each of m equations in n' unknowns.

[A|B] & [IC|D] of these systems are row equivalent then both linear systems have exactly the:

Some solutions.

If one system has no solution then the other system has no solution.

2000th

If A is a non-singular matrix of order not then the linear system AX=B in n' unperowns

has a unique solution.

Proof - Since A is a non-Singular natrix

1. 净样的

= + ((A) = 1 & ((A(B) = n

: (AA) = (A16)

AX = B is consistent.

and it has a solution.

Also A-1 exists. ("(A1+0)

A-T (AX) = A-18

> IX = A-18

 $\Rightarrow \begin{array}{c} \times = A^{-1}B \end{array} \text{ is a solution a}$ Ax = B $Pf \quad Possible \quad \text{let} \quad x_1 & x_2 & \text{be two}$ $Solutions \quad \begin{array}{c} \text{of } Ax = B \\ \\ Ax_1 = B & Ax_2 = B \end{array}$ $\Rightarrow Ax_1 = Ax_2$

 $\Rightarrow A^{-1}(AX_1) = A^{-1}(AX_2)$

= $\begin{bmatrix} X_1 = X_2 \end{bmatrix}$

: The solution $X = A^{-1}B$ of AX = B is unique.

the solutions Equation

AX = B = minimizer marginalist scentist

NEW DELIN-110009

INSTITUTE FOR MENH-110009

NEW 09999197625

A is of the type mxn i.e. we have mequations in in withowns.

- write the augmented matrix [AIB] and reduce it to an echelon form by applying only

Elementary - roto operations on it.

This echelon form will enable us to

Know the ranks of the augmented

matrix [AIB] and the Coefficient

matrix A. Then the following Cases

will arise.

Case(i): If C(A) = e (A/B) =

number of unknowns.

then the given system of equations is consistent and has unique solution.

Case (ii): If e(A) = e(A|B) < thenumber of enknowns then the
given system of equations is
Consistent and has infinite solutions

Case(iii): If $e(A) \neq e(A|B)$ then the given system is not consistent and has no solution.

Problems

2+4+2=6, 2+2y+3Z=14, 2+44+7=80 are Consistent an

attent 7 = 30 are consistent and solve them.

the matrix form of the

The augmented matrix.

$$[A|B] = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 14 \\ 1 & 4 & 4 & 80 \end{bmatrix}$$

$$\sim \begin{cases} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 8 \\ 0 & 3 & 6 & 24 \end{cases}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_3 \longrightarrow R_3 = 3R_2$$

1. which is in echelon form.
.: ℓ(A]B)=2 & ℓ(A)=2.

.. ((A B) = ((A) = 2 < the number

of three anknown variables 2, y, z

.. The given System of equations,

and has infinite number of

Now write the matrix equation, with echelon-form.

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \\ 0 \end{bmatrix}$$

Now taking where this arbitrary Company

$$D = 2 = 6 - t - 8 + 3t$$

$$\Rightarrow 2 = t - 2$$

: x=t-2, y= 8-at and ==t

0

0

3

0

9

· .								
wh	iere	t is	arb	itiar	J	Const	iant.	-
et Co	nstili the	te g	the ven	gan Sys	eval tem	3 c	dubio	n
	A	ply .	the	-to	e s t .	of.	rank	ł
وبمو	mine	of	H)	éf	o Uo	wing	egud	ĻΌ
are	Co	rsiste	ot.		-			

$$2x-y+3z=8$$

$$-x+2y+z=4, 3x+y-4z, =0 and$$
if Consistent, find the Complete.
Solution.

$$Ax = \begin{bmatrix} 2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & -4 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 7 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 0 \end{bmatrix} = 8$$

INSTITUTE OF MATRIMINAL SERVEST INSTITUTE FOR IASTED EXAMPLATION NEW ORD 19760032 Mod. 10999197625

$$\begin{bmatrix} -1 & 2 & 1 \\ 0 & 8 & 5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 16 \\ 2 \end{bmatrix}$$

$$-7 + 8y + 2 = 4$$

$$3y + 5z = 16$$

$$\begin{array}{c} 3y = 16 - 5(2) \\ = 6 \\ \hline y = 2 \quad \text{and } \boxed{x = 2} \end{array}$$

$$x = 2$$
, $y = 2$, $z = 2$

Solve the following system of linear equations. $x_1 - 2x_2 - 3x_3 + 4x_4 = -1$ $-x_1 + 3x_2 + 5x_3 - 5x_4 - 2x_5 = 0$ $2x_1 + x_2 - 2x_3 + 3x_4 - 4x_5 = 17$

2004: Verify whether the following System of equations are consistent.

X +3Z =5

-23 +54-Z-D

-2x +5y-Z =0 -x + 4y+Z =4.

-> show that the equations.

2x+4x+2=-3.3x+4=2==-2, 2x+4x+7z=7 are not consistent.

equation of the system is

 $AX = \begin{bmatrix} x & 1 & 1 \\ 3 & 1 & -2 \\ 2 & 4 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix} = B$

.. ((A(B) =3- & ((H) =2 .. ((A(B) + (A)

.. The given system of equations (

-r show that the equations

3x - y + 2z = 1

27-2y +37 = 2

x-y+z=-1 are Consistent, and solve them.

of I and pe the equations.

x+2y+2=6, 2+2y+3z=10

(i) no salution ciù a unique solution

(ii) infinitely many solutions.

sol'n: write the matrix equation of the given system.

The augmented matrix

[AB] = 1 1 1 16 1 2 3 10 1 2 2 1 10

			10200155
99-99	en e		
	⊗	l	į ·
	6	· ingrioup	ωı
	•	$R_3 \rightarrow R_3 - R_2$	9;
	9	300 1 1 1 6 A	
	<i>€</i>	0 1 2 1 4	Αx
_	<u> </u>	0 0 x-31 x-10	
	· ·	If \=3 & \pu = 10 then	7
	8	1	۲.
	6	(AlB) = 3 & (A) = 2	L-A
	.	(A) + ((A)A)	-
		The given equations have no	~ '
	&	Solutions.	
	8 –	If $\lambda \neq 3$ and μ =any value	^
		then e(A B) = e(A) = 3 = the	
	•		
	•	number of unknown variables.	•
	° ©	The equations are consistent.	
	©	and have unique solution.	~
4	.	If has and has then	
•	8	$\ell(A B) = \ell(A) = 2 < \text{the number}$	-
•	6 -	of unknown variables.	
-	9	The given equations are	-
•	•	Consistent and have infinite saturious	
•	⑤		
	9 3	For what Values of the	
	©	gazameter 1 will the following	•
	&	equations fail to have unique	
	•	Solutions. 3x-y+2=1, 2x+4+2=2	cl
	8	x+24-1=-1	
	8	for the equations have any	TF
	0		٠.

3**\$** the matrix equation of the 29 motsp2. iven augmented 21+++0 then 1 + e(A |B) = e(A) =3 = the number of unknown variables

	given		-	
and	has unio	que "	i-lubos	on.
T	アンニー	7/2 tr	ופט',	
. 6	(A(B) :	= 3 &	C (A)=2
· . <u>·</u>	P(A)	B) #e	(A)	·

.. the given is inconsistent and has no solution:

Imp for what values of λ the equations 2+3+2=1. $4+3y+4z=\lambda$ $3+4y+10z=\lambda^2$

have a solution and solve them completely in each case

Discuss for all values of λ , the system of aquations $\alpha + y + x = 6$, $\alpha + 2y - 2z = 6$. 2x + 2y - 2z = 6. 2x + y + z = 6, as regards.

Cristence and nature of solutions.

Sol's - Noto, write the makerx

$$AX = \begin{bmatrix} 1 & 1 & 4 \\ 1 & 2 & -\lambda \\ \lambda & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} = B$$

$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 6 \\ 0 & 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 & 6 \end{bmatrix}$$

indoine ...

the given official of equation will have orique solution.

Iff coefficient metrix is nonsingular matrix.

1. 1. 4

1. 0 1-6 +0.

 $\Rightarrow 1-4\lambda+6-6\lambda\neq0$ $\Rightarrow \lambda \neq 1/10$

If $\lambda = 7/10$ then the equation (

becomes.

$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & -6 \\ 0 & \frac{3}{10} & \frac{16}{10} \end{bmatrix} \begin{bmatrix} 7^{1} \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ \frac{18}{10} \end{bmatrix}$$

 $\begin{bmatrix} 1 & i & 1 \\ 0 & i & -6 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$

showing that the equations

re inconsistent.

	-	
•	٠.	1
(3)		
•		* Cramer's Rule of solving
(9		a system of n non-
€		
0		homogeneous linear equations
0		in n' waknowns:
8		
0		Let the given system be
8		a, +a, +2, +2, +a, 3, ++a, n, = 6,
•		a, a, +a,2,a,+a,3,a,++a,a,a, =02
•		
•		ana + an 2+ an 2st + ann 2n=bn
9		المالية
8	:	Let an .a12 ain -
0	:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\Delta = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \neq 0$
8	•	an, an, ann
0		
0		let A11, A1x, A13, etc denote
0		the cofactors of an, a12, 913
®		in A then multiplying by the
8		
③		fiven equations respectively by
©		an age , ay an An and
8		acting -
•		ļ.
0		we obtairs,
•		7. (a,A,+a, A21+a31A81+ - +an,An,)
•		+12(0)+73(0) 7+7m(0)=6,A1+6.01
•		+63-A31+
•	 	- bnAn

二 スノムニム, where Δ_1 is the determinant obtained by replacing the elements in the first column of A by the elements b1, b2, ----bn. Similarly X2 D = A2 $a_n \Delta = \Delta_n$. where Ai is the determinant obtained by replacing the its colum in Δ by the elements by by -- by If △≠O, then $\alpha_1 = \frac{\Delta_1}{\Delta}, \ \alpha_2 = \frac{\Delta_2}{\Delta} = -\alpha_n = \frac{\Delta_n}{\Delta}.$ This method of solving n nonhomogeneous linear equations in in' un knowns is called Cramers Mote: If A=0, Cramer's rate of solving is not tapplicable. emblems: - solve the equations 2+ y+ 7 =6; 7-4+2 = 2 2x - y+37 =9

st's - 1 By Cramer's Rule: the given system of 3 nonhomogeneous linear equations

Set
$$y + z = 6$$
 $x - y + z = 2$
 $3x - y + 3z = 9$

Let $\Delta = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & -1 & 3 \end{bmatrix}$

By Cramers Rule

 $A^{-1} = \begin{bmatrix} 1 & adj A \\ -2 & -1 & 2 \\ -1 & 1 & 0 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} -2 & -1 & 2 \\ -1 & 1 & 0 \\ -1 & 3 & -2 \end{bmatrix}$

Now $Ax = B \Rightarrow x = A^{-1}B$
 $A^{-1} = \begin{bmatrix} -2 & -1 & 2 \\ -1 & 1 & 0 \\ -1 & 3 & -2 \end{bmatrix}$

Now $Ax = B \Rightarrow x = A^{-1}B$
 $A^{-1} = \begin{bmatrix} -2 & -1 & 2 \\ -1 & 1 & 0 \\ -1 & 3 & -2 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} -2 & -1 & 2 \\ -1 & 1 & 0 \\ -2 & -1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 7 \\ -2 & -1 \end{bmatrix}$

Now $Ax = B \Rightarrow x = A^{-1}B$
 $A^{-1} = \begin{bmatrix} -2 & -1 & 2 \\ -1 & 1 & 0 \\ -2 & -1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 7 \\ -2 & -1 \end{bmatrix}$
 $A^{-1} = \begin{bmatrix} -2 & -1 & 2 \\ -2 & -1 & 2 \\ -2 & -1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 7 \\ -2 & -1 \end{bmatrix}$

The given System can be expressed at $Ax = B$
 $Ax = B$

Label 3 Ax = B

 $Ax = B$

Label 4 Ax = B

 $Ax = B$

Label 5 Ax = B

 $Ax = B$
 $Ax = B$

Label 6 Ax = B

 $Ax = B$
 $Ax = B$

Label 7 Ax = B

 $Ax = B$

Label 8 Ax = B

 $Ax = B$
 $Ax = B$

Label 9 Ax = B

 $Ax = B$
 $Ax = B$
 $Ax = B$

Label 9 Ax = B

 $Ax = B$

Label 9 Ax = B

 $Ax = B$

Label 1 Ax = B

 $Ax = B$

Label 1 Ax = B

 $Ax = B$

Label 9 Ax = B

 $Ax = B$

Label 9 Ax = B

 $Ax = B$

Label 1 Ax = B

 $Ax = B$

Label 2 Ax = B

 $Ax = B$

Label 2 Ax = B

 $Ax = B$

Label 3 Ax = B

 $Ax = B$

Label 4 Ax = B

 $Ax = B$

Label 5 Ax = B

 $Ax = B$

Label 6 Ax = B

 $Ax = B$

Label 1 Ax = B

 $Ax = B$

Label 2 Ax = B

 $Ax = B$

Label 3 Ax = B

 $Ax = B$

Label 4 Ax = B

 $Ax = B$

Label 5 Ax = B

 $Ax = B$

Label 6 Ax = B

 $Ax = B$

Label 1 Ax = B

 $Ax = B$

Label 2 Ax = B

 $Ax = B$

Label 3 Ax = B

 $Ax = B$

Label 4 Ax = B

 $Ax = B$

Label 5 Ax = B

 $Ax = B$

Label 5 Ax = B

 $Ax = B$

Label 6 Ax = B

 $Ax = B$

Label 1 Ax = B

 $Ax = B$

Label 2 Ax = B

 $Ax = B$

Label 3 Ax = B

 $Ax = B$

Label 4 Ax = B

 $Ax = B$

Label 5 Ax = B

 $Ax = B$

Label 6 Ax = B

0	
0	
•	$R_3 \rightarrow R_3 R_2$
•	[11][9] [6]
⊜_	⇒ 0 -2 0 d = -4
(3)	[[3] [3]
8	→ 2+y+==6
6	$\frac{1}{2} = \frac{1}{4}$
0	₹ =3
8	
0	= from (1) [==3], [9=2], [x=1]
0	
€ _	Pinp solve the equations
	- Ax + 2y - 2z = 1
8	4x + 2xy- = =2
•	6x + 6y + 12 = 3 Considering
•	speciative the case when $\lambda=2$.
•	30118 - write the matrix
0	
8	equation of the given system.
9	$AX = \begin{bmatrix} A & 2 & -2 \\ 4 & & 2 & -1 \end{bmatrix} \begin{bmatrix} 7 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 7 \\ 4 \end{bmatrix}$
8	7 0 7 2 = B
8	(2)
0	The given system of equations
0	wift that a unique solution
	\hat{\alpha} \tag{\chi}
8	
•	mon-Singular.
6	1 2 -2 - '
•	ie. 4 22 -1 70
a —	(6 · 6 · λ)

-	34
	$\Rightarrow (\lambda-2)(\lambda^2+2\lambda+15)\neq 0$.
\h_2	Now the only the real root of
* .	the equation $(\lambda-2)(\lambda^2+2\lambda+15)=0$
	is 1=2
	If $\lambda \neq 2$ then the given
	system of equations will have
	a unique solution. given by
	1 2 0-2
ĺ	2 21 -1 4 2 -1
	$x = \frac{18.6 \text{ A}}{16.3 \text{ A}}$
	$\lambda = -2$ $\lambda = -2$
	4 21 -1 H 21 -1
	INSTITUTE OF MINISTRA SCRICES INSTITUTE FOR
	Mdp. 039991
	6 6 3
	7 = -
-	λ 2 -2 4 9λ -1
:	4 9x -1 6 6 x
÷.	In Care 1 =2
٠ د د	2 2 -2
,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Fe 6 5 1151 F 7
	$R_2 \rightarrow R_2^{-2}R_1$
	R3 - R3 - 3R3
	$\Rightarrow \begin{bmatrix} 2 & 2 & -2 \\ 0 & 0 & 3 \\ 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
<u>بر</u>	2 [0 0 8] [2] [0]
	22+24-22=1
	y.d· 3₹ =0 8₹ =0
. 1	

HATCHE CONTRACTION IN THE PROPERTY OF THE PROP

$$\frac{1-2C}{2}$$

∴ . ३x = 1-2c

the general solution of the given system.

Investigate for what values Equations. of a, b the +24+37 =4.

7 +3/1+ 42 = 5, 2 +34 + az =6 have

no solution (i) a unique solution زی infinite number of Solutions no cij

Completely the equations 2×+34 +==9,

7 +34 +3Z=6,

* Homogeneous Equations: Let a1171 + a1272 + -- + a1n2n=0 a2171+ a22x2+ -- + a2n2n=0 am, x, + am2 12+ -- + amn x n=0 19=4, 7=0 Constitute be a system of m homogeneous equations in in unknowns 7,172then the system (1) can be expressed as the matrix equation AX =0. Q11 Q11 -- - - Q10 where A = | a21 a12 -- - ain

the matrix A is called the Coefficient matrix. 1,0 Now = x = 0 + 12=0 - 10 m = 0.1

in to mortulate a is to sent of the This colution is called the trivial solution Ax=0.

- Also the tolvial solution is Called the Zero Solution and any other solution is alled nontrivial solution (i-e-non-zero solution 0

0

0

8

: A N=0 is always-consistent. The Ax =0 is a homogeneous System and x,, x2 are two Sulions of 1 then the solution set of 1) is a subspace of Vale), vectorpale of n-tupples over F. sol'n - Given that x, & x, are two Solutions of Ax=0 -0 - -- Ax = 6 & Ax = 0 -Now for K, , KzEF we have K, (Ax,) = 0 & K2 (AX2)=0 $\Rightarrow A(K_1 \times_1) = 0$ and. A(K1 /21) = 0 - \Rightarrow A[$\kappa_1 \times_1 + \kappa_2 \times_2$]=0 .. K, x, + K, X2 is also a solution of Ax =0. : The solution set of AX =0 12 a subspace of unif) InD the number of LI Solutions of the linear system Ax =0 is no, or being the rank of the material Amxn Proof - Let [a1 a12- ... an au au -. and X = am, ami

Since the rank of the Coefficient

matria A is 8.

38 T L.I Columns. It has without toss of generality we can suppose that the first or columns from the left of the matrix A an Let A = C1 C2 C3--- Cx Cx+1--- Cn where C1, C2, -- In are the column vectors of the matrix A each of their an m-vectors. .. The equation Ax=0 becomes of the vectors Sin Ce each Citi, Citz, --- Cn is a linear Combination of the vectors C1, C2 -- Cr we have Crt1 = K11 C, + K12 C2+ -- + K16 C71 CHI = K21 C1+ K22 G2+ -- + K2x C7 G, = KP, C, + KP, C2+---+ KP, C8

Comparing \bigcirc & \bigcirc we get $\begin{array}{c}
K_{12} \\
K_{12} \\
K_{13} \\
-1 \\
0
\end{array}$ $\begin{array}{c}
K_{21} \\
K_{22} \\
K_{33} \\
-1 \\
0
\end{array}$ $\begin{array}{c}
K_{13} \\
K_{14} \\
K_{15} \\
-1 \\
0
\end{array}$ $\begin{array}{c}
K_{15} \\
K_{15} \\
-1 \\
0
\end{array}$ $\begin{array}{c}
K_{15} \\
K_{15} \\
-1 \\
0
\end{array}$ $\begin{array}{c}
K_{15} \\
K_{15} \\
-1 \\
0
\end{array}$

as n-r solutions of Ax = 0.

Now we show that these (n-r).

Solutions form a L.I system.

Let $K_1 \times_1 + K_2 \times_2 + \cdots + K_{n-r} \times_{n-r} = 0$ for some $K_3 \cdot \in F$.

Then equating $(G+1)^{th}$, $(F+2)^{th}$, $(F+3)^{th}$, entries of columns on the two sides

 $-k_1 = 0$, $-k_2 = 0$, $- - - k_{n-1} = 0$.

K,=1 = -- + + Kn-r =0

of (f), we get,

It follows that of, $x_2 - x_n$ of form a (n-r) linearly independent solutions.

Earther we show that every solution of AX = 0 is some suitable linear Combination of these (n-x) solutions. Let x, with Components x_1, x_2, \dots, x_n be a solution of 0

Consider the vector

Since 5 is a linear Combination

D is also a solution of Ax=0. €

Bt i's quite obvious that the €

last (n-1) Components of Daré

all zero's. i.e.

$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} + \alpha_{\delta+1}$	(K ₁₁ K ₁₂ + X K ₁₃ -1 O	K ₂₁ K ₁₂ K ₂₇ O -1 -0 O	KP KP 1

1+7+++ K11+7+2+++++++2η Kρ,

12+7+++ K11+7+2+2++--+7η Kρ,

2x+xo+(k(x+----+xn(0) ----+xn(0)

0+0+0+-----+0

a:

❸

0

❸:

(3)

(2)

0

❷ .

() 9

9

8

9

0

0

8

0

0

Let the first & components (entries) be Y, 142, Y3--- Yo. such a vector with Components (entries) Y, 1 Y2 1 Y3 - -- Y5,0,0,0-- 0 is also solution of Ax =0. · from O, yic, +42 G+ -- + year+ ocx+1+0(x+2 +--- HOCn = 0. => 4,C, +42C2+. -+-+ 4rCr=0 But C1, C2, --- Cr are LI ·. 4 =0 , 4 =0 , --- 4x =0. . from (5) => X = (-128+1) X1+ (-12+2) X2+ --- + (-an) Xn-8. Solution x is a linear Combination of the (vi-1) linearly independent solutions x1, x2 - - - xn-r. of a is the rank of A. .. The set of solutions $\{x_1, x_2, \dots, x_{n-s}\}$ forms a basis the rectorspace of all solutions

Of the system of equations AX=0.

* Working rule for finding the solution of the equation-AX=0: Let AX =0 be a given system of m homogeneous equations in n variables then the Coefficien A loothe type mxn. matrix - Reduce the Coefficient matora A to echelon form by applying elementry row transformatio only. This echelon form will help as to know the rank of the matrix A. - Let That System the system. PRINCE FOR IASHFOS EXAMINATION OF THE PRINCE PURPOSITION Solutions. NEW DETECTION SOLUTIONS. NOD: 69999197625 and ((A) < min {m,n}. then the following cases will arise. Case(i): Pf_P(A) = o=n (conknowns? then the system has no =n-n=0

L.I Solution:

ie It has no t.I solution and the only solution of Ax=0 is trivial solution x1=x2=--: 1,0 (i.e. the zero solution).

Note: A set Containing 2010 Vector is always L.D.

Cosecuta If PCA) = renem (or) raman. then the system AX=0 In the process of reducing the matrix A to echelon form, (m-s) equations will be eliminated.

therefore—the given system of m' equations will be replaced by an equivalent system of s' equations in n' unknown variables

Express the values of some & centrowns interms of remaining (n-8) unknown variables. These (n-8) unknowns (an be given any aribitrastly chosen values.

In this Case the System has withinkly many solutions which whom a vector space of

3x -34 +2 -36 =0 -4x +4 -32 -36 =0

soft - Now write the matrix

equation of given system is $Ax = \begin{bmatrix} 1 & -3 & 2 \\ 2 & -1 & 2 & -3 \\ 3 & -2 & 1 & -4 \\ -1 & 1 & -3 & 1 \end{bmatrix} \quad \omega \quad \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 0.$

The Cofficient matrix

 $A = \begin{bmatrix} 2 & -3 & 2 \\ 2 & -1 & 2 & -3 \\ 3 & -2 & 1 & -4 \\ -4 & 1 & -3 & 1 \end{bmatrix}$ $R_2 \rightarrow R_2 - 2R_3$ $R_3 \rightarrow R_3 - 3R_3$

					$R_{\bullet} \longrightarrow R_{\bullet} - R_{\bullet}$
i	1	ł	-з	2	$\mathbb{R}_{i_1} \longrightarrow \mathbb{R}_{i_2}$
	0	\mathcal{C}	-2	2	
	0	0	2	-1	
	Ó	0	O	7/5	•
				-	,

: clearly which is in echelon-form

$$e(A) = 4$$

= the number of four unknowns.

.. The given System of Equations has the Zero Solution.

- solve completely the dystem of

sodh :- write the matrix equation

AX =0 where

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14 \end{bmatrix}, \quad \begin{cases} \alpha \\ y \\ \overline{z} \end{cases} \quad 0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

clearly which Is in echelon form

.. C(A) = 2 < the number of three cunknown. Variables.

.. The given system of equation.

.. The given system of equations will have n-r=3-2=1 LI solutions Now we take the arbitrary was to n-r=3-2=1. Variable.

and the remaining 2 variables will be expressed interms of these Again we write matrix equation in echelon form is

$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & -7 & 8 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Let = K1 then (1) = Y = 8/7 K1

where K_1 is and $C = [x = -104k_1]$

The general solution of (D&@) is

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -10/4k_1 \\ 8/4k_1 \end{bmatrix}$$

⊕

. The general solution of AX = 0 is given by

Therefore the solution [-10|7] is L.I.

of the solution space s' of the linear equations.

of the given system is -Ax=0.

$$X = \begin{bmatrix} x \\ z \\ z \\ z \\ 0 \end{bmatrix} \quad Q = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Now $A = \begin{bmatrix} 1 & 2 & -2 & 2 & -1 \\ 1 & 2 & -1 & 3 & -1 \\ 2 & 4 & -7 & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & -2 & 2 & -1 \\ 0 & 0 & 1 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} \beta_3 \rightarrow \beta_3 + 3\beta_3 \\ +3\beta_3 \rightarrow \beta_3 + 3\beta_3 \\ -2\beta_3 \rightarrow \beta_3 \rightarrow \beta_3 + \beta_3 \\ -2\beta_3 \rightarrow \beta_3 \rightarrow \beta_3 + \beta_3 \\ -2\beta_3 \rightarrow \beta_3 \rightarrow \beta_3 + \beta_3 \\ -2\beta_3 \rightarrow \beta_3 \rightarrow \beta_3 \rightarrow \beta_3 \rightarrow \beta_3 \\ -2\beta_3 \rightarrow \beta_3 \rightarrow \beta_3 \rightarrow \beta_3 \rightarrow \beta_3 \\ -2\beta_3 \rightarrow \beta_3 \rightarrow \beta_3$$

.. which is in echelon form.

! ((A) = 2 < then number of

Live unknown variables.

.. The given : System has non-zero ... Solution.

.. The given System will have

1 n-1=5-2 =3 LI Solutions

the damension of the

. Islution space 8=3

Now we take the arbitrary

values to -n-r=5-2 => 3 Variables.

and the remaining st variables will be expressed interms these.

Now we write the matrix

equation in echelon form is

$$\begin{bmatrix} 1 & 2 & -2 & 2 & -1 \\ 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

3	., .	
3	٠.٠	
)	. ,	⇒ 7+2y-22+2w-t=0
3		. 7 +W-t =0
3	·.	(3)
3	٠.	Let t=K, w= K.
} }		where Kirk, are arbitrary Constants
Э		
. ~	5	- then $\mathfrak{Q} = \mathbb{Z} = \mathbb{K}_1 - \mathbb{K}_2$
9	. :	Let Y= k3 then \$= = 1 + 2 kg = 2 (K-k)
9		where ky arbitrary "+2K2-K1=0
9	,	Constants.
9		$\Rightarrow 2 + 2k_3 - 3k_1 + 4k_2 = 0$
9	٠.	$\Rightarrow 7 = 3k_1 - 4k_2 - 2k_3$
9	. t o	
a		. The general solution of
	, ' : •	D & Ø 2
0		[x] [3K, =AK_2-2K3] [3K, -4K2-2K3]
0		y K3 OK, + OK, + K3
(3)		E K,-k2 = K,-k2+0k2
0	۹.	\$ K _L 9K ₁ + K ₁ + 0K ₃
6	٠.	1 - (+0k2 +0k)
8	•	
	-	3 -4 -2 -
•	• •	= K, 1 + K2 -1 + K3 0 -
(2)	•	=K, 1 +K, -1 +K3 0 -
·		[1] [0] -
(3) °		where is is an

arbitrary Constants.

. Solutions

.. The set of solutions {-(3,0,1,0,1), (-4,0,-1,1,0), (-21,0,0,0) -form a basis of the solution space is af the given system of equations. completely the system H.W solve of equations 2+y+2=0. 2x-y-3==0, 3x-5y+42=0, 7+ 17y+42=0. - Find a basis of the solution spore w of the system of equalities Mob. 09999197625 3x+6y -82+78+5=0--> Prove that a necessary and sufficient condition that values, not all zero may be assigned to'n' variables 2,, 22, 23, 24, -so that n' homogeneous equations a; x, +ai, x, +ai, x,+--+ai, x, =0; (i=1,2-- n) : hold simultaneously, is that the determinant of the Coefficient matoix vanishes. soin: - the coefficient matrix is A = [aij] nxn and the given System is Ax =0. Now the given system has non-zero Solution 144 n-8>0 where

1-6.	144 .8511
ì.e.	iff e(A) < m
i.e.	iff . A is singul
i.e.	iff A is singul iff A =0.

of A for which the following

System of equations has a non
Zero solution is 6.

7+29+37= 2x, 3x+y+27=2y,

which the water equation is Ax = 0

colorer :

$$A = \begin{bmatrix} 3 & 1 & 2 & 2 & 3 & 4 \\ 5 & 3 & 1 & 1 & 3 & 4 & 4 \\ 5 & 3 & 1 & 3 & 4 & 1 & 3 \\ 2 & 3 & 4 & 1 & 3 & 4 & 4 \\ 2 & 3 & 4 & 1 & 3 & 4 \\ 2$$

the coefficient matrix A is and the number of termount is also is

Now the given starm AX =0
has, nont throught starting

iff -3-00 where v= (A)

1.e 14 8 × 3

(11) 1 - 9 701,

i.e. iff
$$\begin{vmatrix} 6-\lambda & 2 & 3 \\ 6-\lambda & 1-\lambda & 2 \\ 6-\lambda & 3 & 1-\lambda \end{vmatrix} = 0$$

i.e. iff $(6-\lambda) \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1-\lambda & 2 \\ 1 & 3 & 1-\lambda \end{vmatrix} = 0$

i.e. iff $(6-\lambda)$, $0 - 1-\lambda - 1$ $0 + 1 - 2-\lambda$ 0 = 0.

1.e. iff (6-1) (1+1) (2+1)+1]=0.1 1.e. iff (6-1) (12+3+3)=0.1 1.e. iff \(\lambda - \lambda \) \(\lambda 2 + 3\lambda + 3 \) = 0.1

i.e. iff $\lambda = 6$, $\lambda = \frac{-3 \pm \sqrt{-3}}{221}$

the only real value of he for which the given system has a non-trivial solutionis

Set-VI 2 Introduction -Let A=[aij] nxn be a given n-rowed square matrix be a column vector Let X = Now Consider the equation a Scaldruth And where I is It is obvious that the zero vector X=0 is a solution of 1) for any Value of λ . + If I denotes the unit matrix the characteristic matrix of A of order n, then the equation 1 may be written as $\Rightarrow (A-\lambda I) X = 0$ equation @ represents The matrix the following system of. shomogeneous equations in n unknowns: $(\alpha_{i1}-\lambda)x$, $+\alpha_{i2}x_2+\cdots+\alpha_{im}x_m=0$ anx1+(a12-1)214 --- +a2n 20 = 0

aniz + anz + - - + (anz) xn=0

The Coefficient matrix of the equations (3) is A-II, the nacessary and sufficient Condition for equations 3 to possess a non-zero solution (x=0) is that the Coefficient matrix A-XI should be of rank less than the number of lenknowns M. T. alex govern white withis non-zero solution exists iff the mostoin A-AI is singular i.e. 49 A-M1=0. -> Let_ A = [aij] nxn, be, any n-rowed Square matrix and I an inderminate. the matrix A-XI is called

- the determinant A-AI = an, Onz - ann

where I is the unit matria

order n.

which is an ordinary polynomial in). of degree in is called the Characteristic polymomial of A. - The equation (A-XI)=0 is called the characteristic equation of A. and the roots of this equation are Called the characteristic roots (or) Characteristic Values (or) eigen Values

J ohn R	elegram for Moire Update := https://t.me/upsc_pdf:	
(or) latent roots (or) prope	er opots of and the matrix A-XI is	
the matrix A.	singular:	
- The Set of the eig	gen values : The matrix equation	(
of A is Called the spect	rum of A (A-X3) X = 0 10050617 O	
- Y If his a Characteristic	Noot of non-zero solution.	
the matrix A, then IA-1		0r.x
and the matrix A-17-18	singular Such that (A-XI)X =0	
· I a nong Zero Vector;	\times Such that	
$(A-\lambda I) = 0 \text{ (or) } Ax$	= xx (Conversely Suppose that t	here
(.H-X1)X -0 ()	exists a non-zero victo	
* Characteristic Vect	tors :- Such that Ax = Xx	
The - lise a character	1.0 (A-XI) x = (
of an nx'n matrix A.		ion (
non-Zero vector x such		. I
Ax = 1x is called a ch	aractenistic a non-Zero solution.	6
vedor (or) eigen vedor: 9	f A The Coefficient matrix	
Corresponding to the Chi	aractenistic A-27 is singular	
opotak.	i.e. A11 =0	
- Le Certain, relations.	blu is a characteristic root	of 6
Characteristic roots	the matrix A:	
Characteristic vector	17: The orem : The X W. Our	1
Latingaglot me	eristic characteristic vector offitam	of fax
) 11	activities to the	
soot of a matrix A iff.	they	
non-zero vector x sud	KX is also a characteristic.	
prose Luprose X la a chi	a a corresponding.	to
	on description of the latest and the	S Comments
root of the matrix A	Nalue 2. Here Kis a:	&
A-AI =0	non-Zero Scalar.	Section 1
		and the first
		Differ the state of the state o
	:	
· ·	-	y production of the control of the c
tps://t.me/upsc_pdf	https://upscpdf.com	https://t.me/upsc_pd
	•	

8	
Ø	
.	proof Suppose & is a characteristic
8	Vector of A corresponding to the
0	Characteristic value 1.
8	Then x \$0 and AX = 2x
€	If K is a non-zero scalar then
3	
0	Now we have
©	fire in the second of the seco
0	$A(\kappa x) = K(Ax)$
8	= K (\lambda \text{\lambda})
@	=λ(kx) (from (D)
0	$A(Kx)=\lambda(Kx)$
8	
0	l
(3)	$= \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \right) \right)$
②	. Kx is a characterstic vector of
0	A Corresponding to the Characteristic.
0	Value X.
0	Corresponding to a characteristic
0	Value 1, there Corresponds more
8	than one Characteristic Vectors.
•	
©	Theorem :-
8	If x is a characteristic vector of
6	
•	
ي سرست	Correspond to more than one
• •	Characteristic Value of A:
@ ~	Proof - Let x be a characteristic
.	-vector of a matrix A Coresponding
%	to two Characteristic Values
. 0	怀 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

2003, Linear Independence Of Characteristic vectors Coursepording to distinct characteristic roots? . The characteristic 'Vectors Corresponding to distinct and haracteristic moets of a language area area which are any instruteormanning Exemin independent NSTTUTE FOR INSTRUSE NEW DELMI-1:0005 NEW DELMI-1:0005 Nob: 09999 197625 Mob: 09999 197625 Proof: Let X,, X2, X3, -- xm be the Characteristic Vectors of a matrix A corresponding to distinct characteristic Values $\lambda_1, \lambda_2, -- \sim \lambda_m$ Then $Ax_i = \lambda_i x_i^*$; i = 1, 2, ---mTo frove that & the vectors . X1, X2 -- Xm are linearly independent. If the vectors x, x2 -- xm are linearly dependent. then we can choose or (15x<m) Such that X, , x2, -- - Xr are LI and x, , x2 - - xx, x off are LD. . We can choose the Scalars K1, K2, --- k771 not all Zeros

Such that

 $k_{1}x_{1}+k_{2}x_{2}+\cdots+k_{r}x_{r}+k_{r+1}x_{s+1}=0$ $\Rightarrow A(k_{1}x_{1}+k_{2}x_{2}+\cdots+k_{g}x_{g}+k_{s+1}x_{s+1})=A(0)$ $\Rightarrow k_{1}(Ax_{1})+k_{2}(Ax_{2})+\cdots+k_{g}(Ax_{r})+$ $k_{3}x_{1}(Ax_{s+1})=0$

 $\Rightarrow \xi_{1}(\lambda_{1} \times_{1}) + \xi_{2}(\lambda_{2} \times_{2}) + \cdots + \xi_{5}(\lambda_{7} A_{8}) +$

K, (1, -1, +1) x, + -- K, (1, -1, +1) x, =0

Since $\lambda_1, \lambda_2, \dots - \lambda_7$ are L.I and $\lambda_1, \lambda_2, \dots \lambda_8, \lambda_{7+1}$ are distinct $K_1 = 0, K_2 = 0, \dots K_8 = 0$.

putting $K_1 = 0$, K_2 , $--K_5 = 0$ in 2we get $K_{5+1}X_{5+1} = 0$ $\Rightarrow K_{5+1} = 0 (: X_{5+1} \neq 0)$

from \emptyset , $\kappa_1 = 0$, $\kappa_2 = 0$, $\kappa_3 = 0$, $\kappa_{3+1} = 0$. which is Contradiction to our

assumption that the scalars

Kinking - kg, krill are not all zeros

Our assumption that X1,1×2--×m

are L.D.Is wrong.

X₁, X₂, X₃ ---- X_m are L.I.

to distinct characteristic roots of A are LI.

-> show that the characteristic roots of any diagonal matrix are same as its elements in the diagonal.

solis: Let A-diag(d, de, de, de --- dn) then

Its characteristic equation

(A-XI) =0

i.e. $\begin{vmatrix} d_1 - \lambda & 0 & 0 - - - - 0 \\ 0 & d_2 - \lambda & 0 - - - - 0 \\ 0 & 0 & d_3 - \lambda - - - 0 \\ - & - & - - 0 \\ - & - & - - 0 \end{vmatrix} = 0$

 $\Rightarrow (d_1 \rightarrow \lambda) (d_2 \rightarrow \lambda) - - - (d_1 \rightarrow \lambda) = 0$ $\Rightarrow \lambda = d_1, d_2, - - - d_1 = 0$

the elements in the diagonal of A are its characteristic roots

Prove that the characteristic

are just the diagonal elements of the matrix.

3					
.	Let 1	a _n .	912	- am	-
₿	A =	0	022	- a _{2n}	be the
9	godt.	 . i_	ĩ. -	[.O. C	
0		0	Ö	Onya	<u> </u>
		-			

tricingular matrix

Its Characteristic equation is

$$(A-\lambda I) = 0.$$

$$\Leftrightarrow$$
 $(a_{11}-\lambda)(a_{22}-\lambda)-\cdots(a_{nn}-\lambda)=0$

 $\Rightarrow \lambda = a_{11}, a_{22}, --a_{nn}$

: The diagonal elements of A

are the Characteristic voots of A.

- r Prove that the square

matrices A & AT have the same

Characteristic Values -

and If I is any scalar then

$$(A-\lambda I)^{T} = A^{T} - \lambda I^{T}$$

$$= A^{T} - \lambda I$$

(e.) is a characteristic value of,

A ⇔ λ is a characteristic value of

pot of a matrix iff the matrix

is singular.

sol's - 0 is a characteristic root of A

⇒ λ=0 satisfies the equalton (A-λz)=0.

O=HPO-AJ)

AI =0

A To Singular.

O & is a distributed state of color of constitution

707 - Single Mobi 000000 812

3. At tetalt one characteristic root of every singular matrix is zero.

→ If \(\lambda\) is a characteristic root of

the matrix A, show that k+1 is

a characteristic root of the matrix A+KI.

soin. Let I be a characteristic not

of the matrix A and x be -

a corresponding Characteristic Vector.

Then $Ax = \lambda x$ — ①

Now (A+KI)X = AX + K(IX)

= Xx+Kx (by 10)

 $=(\lambda+K)X$

Since X \$0, 24 K is a characteristic root of the matrix A+KI and X is

a Corresponding characteristic vector. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the Characteristic values of n-rowed Square matrix n then show that - Kil, Kl2, Kl3 - - - Kln are the characteristic values of KA. Sol'n - Let K # 0. Now KA-(LK)I = K(A-LI) = Kn [A-1] $\Rightarrow |xA-(k\lambda)I|=0 \text{ iff } |A-\lambda I|=0$ i.e. Kh is a charateristic value of KA. iff is a characteristic value of

 $x : K\lambda_1, K\lambda_2, --K\lambda_n$ are the Characteristic values of KA iff. 11, 12 -- In are the characteristic Value of A.

is the Ali, de, . . . An are the Characteristic roots of a n-rowed Square matrix A and K is a scaper, show that the Characteristic roots of A-KI are 1/2-K, 12-K, --- hi-k. 801'n - Since λ, , λ2 - - - λη are the daracteristic roots of the n-rowed square matrix A.

· 1, 12 --- In are the n roots of

· A-XI =0 which is a nth degree equation $(\lambda_1 - \lambda) (\lambda_2 - \lambda) - (\lambda_n - \lambda) = 0$ The characteristic equation of A-KI is (A-KI)-XI =0 i.e. | A - (K+X)] =0 · i from (). [1, -(K+A)] [2, -(K+A)] - [2, -(K+A)] ⇒[(\1-K)-\][(\1-K)-\] - -= $-\left[\left(\lambda_{n}-\kappa\right)-\lambda\right]=0.$ $\Rightarrow \lambda = (\lambda_1 - \kappa), (\lambda_2 - \kappa), -\frac{1}{2} - (\lambda_n - \kappa),$ which are the Characteristic

roots of (A-KI).

If the Characteristic roots of a n-rowed Square matrix A are 1, 12, --- In then prove that the characteristic sol'n - Let I be the roots of A and x be a Corresponding Characteristic Vector of A: Then Ax = \x

 $\Rightarrow A(Ax) = A(\lambda x)$ $A^{\gamma} x = \lambda (A^{\gamma})$ $A^{\mu}X = \lambda (\lambda x) (\cdot Ax = \lambda x)$ $A^{\nu}X = \lambda^{\nu}X$:. 12 is a characteristic moot

of the matrix A2. Corresponding to the Characteristic Vector X of A2. hisher are the characteristic roots of A. then lili, --- in are

the - characteristic roots of A?

→ If the matrix A is non-@ Singular, then show that the lifen Values of A T are the of the eigen. Values of A.

Soi's - Since A is non- singular i. A-l exists.

let I be an eigen value of A and x be corresponding eigen vector of A.

then
$$Ax = \lambda x$$

 $\Rightarrow A^{-1}(Ax) = A^{-1}(\lambda x)$
 $\Rightarrow x = \lambda (A^{-1}x)$

$$\Rightarrow e^{-1}x = \frac{1}{X}x$$

2ί (†, o ∓ λ ::) non-singular) is an edgen value, i.e. clac and A have the

and x is a corresponding eigen vector .

Converse :-

Let k be an eigen value of A-1.

A is non-singular. => A is non-singular and $(A^{-1})^{-1} = A$

:. It is an eigen value of A.

.. each eigen value of A-1 is the reciprocal of A.

The INSTITUTE FOR MASTERS SEXAMINATION TO THE INSTITUTE FOR MASTERS OF A-1 are nothing but the receprocals of the eigen values of A.

impy show that the two matrices A, C'Ac have the same Characteristic roots.

Sol ? - Let B= E'Ac then

$$B-\lambda I = \overline{c}' A c - \lambda I$$
$$= \overline{c}' A c - \overline{c}' \lambda T c$$
$$= \overline{c}' (A - \lambda I) c$$

$$|S-\lambda I| = |C|(A-\lambda I)C|$$

$$= |c^{-1}| |A-\lambda I| |c|$$

$$= |A-\lambda I| (|c| = \frac{1}{|c|})$$

Same Characteristic equations.
i.e. A and CTAC have the same
Characteristic roots.

a Hermitian matrix are real.

proof - Suppose. A is a Hermitian matrix.

A is a characteristic root of A and x is a Corresponding eigen Vector then $Ax = \lambda x$

Now pre-multiplying, both sides

$$x^{\theta}Ax = \lambda x^{\theta}x$$
 \longrightarrow (2)

Pating the Conjugate transpose of both sides of D = we get $(x^0 A \times)^0 = (\lambda \times^0 \times)^0$

$$\theta(\theta_X)\theta_X\overline{\Lambda} = \theta(\theta_X)\theta_A\theta_X \Leftrightarrow A\theta(X\theta_X)\theta_A$$

$$\Rightarrow x \theta_{A} \theta_{x} = \bar{\chi} x \theta_{x}$$

(' '(x⁰)⁰; x)

$$\Rightarrow x^{\theta} A x = \overline{\lambda}_{x} \theta x \quad (:A^{\theta} = A$$

— ③ became Ais Hermitian) From O & D, we have

 $\lambda x^{\theta} x = \overline{\lambda} x^{\theta} x$

 $\Rightarrow (\lambda - \overline{\lambda}) \times \theta \times = 0 - \overline{\theta}$

But x ≠0

 $x^0x \neq 0$

 $\Theta = \lambda = \overline{\lambda} = 0$

 $\Rightarrow \lambda = \overline{\lambda}$

: X is real. (" ====

... Zis real)

-> Prove that the Characteristic

roots of a real symmetric

matrix are all real.

soln: - Let A be a real symmetric

Consider $n\theta = (\overline{h})^T$

= AT ("the elements of the are all real"

= A (by @) :

: A0 = A

⇒ A is a Hermitian matrix.

we know that the characteristic roots of a Hermitian matrix are

real.

: the characteristic roots of A are

all real:

i.e. the characteristic roots of

a real symmetric matrix are

all real.

> Prove that the eigen values (characteristic roots) of a skiw-Herizzitian matrix are either purely imaginary (or) Zero. soin: Let A be a skew-Hermitian matrix, $A_0 = -A - - 0$ Consider (iA) = iA a Hermitian matrix. Let i be an Characteristic root of .. I a non-Zero Column matrix X duch that $Ax = \lambda x$. $\Rightarrow i(Ax) = i(\lambda x)$ ⇒ (ia)x ≟(iλ)x => it is an eigen value of iA, which is Hermitian matrix. we know that the roots Hermitian matrix are real. is a real root of iA. € >> \ is either purely imaginary(oi)

of a real . skew - symmetric

materix are either parely

imaginary (or) zero.

sot's: Lot A be a skew-symmetric matrix. : AT = -A -Consider AD = (A)T - AT (: the elements of =-A (byO) real) → A is a skew-Helmitian matrix. we know that the Characteristic roots of a skew - termitian matrix =-i (-A)[: i=-ie are either purely imaginary (ar) zero. . The Characteristic roots of A are i.e. INDIGUTE FOR DEMONSTRATION FOOTS OF a real skew oggammetric mutain are either purely imaginary (b) zem--> Prove that the eigen value (Characteristic roots) of a unitary... matrix are of unit modules. solo - Let A be an unitary matria : AOA = I -Let I be a characteristic root of A. i = a non-zero Column matrix. i.e. Characteristic Vector X Such that $Ax = \lambda x - Q$ Taking: Conjugate transpose on the sides, we get Prove that the eigen values $(\forall x)_{\theta} = (\forall x)_{\theta}$ $\Rightarrow x^{\theta} A^{\theta} = \overline{\lambda} x^{\theta} - \overline{3}$ from @ & @ we have

$$\Rightarrow x_{\theta}x = |y|_{x}(x_{\theta}x)$$

$$\Rightarrow (1-|\lambda|^2)(x^{\theta}x)=0$$

$$\Rightarrow$$
 1- $|\lambda|^2 = 0 \cdot (x \neq 0 \Rightarrow x^{\theta}x \neq 0)$

$$\Rightarrow |\lambda|^{\nu} = 1$$

--- Prove that the eigen Value of an orthogonal matrix are of unit modulus.

80km; we know that if the elements of a unitary matrix A are all real, then A is said to be an orthogonal matrix and the eigen values of a unitary matrix are of unit modulus.

Eigen values, of one orthogonal. matrix adoubt the unit modules.

> A real matrix is unitary wit is orthogonal. lot " r - A be a real matrix then $A\theta = (\overline{A})^T$

since A is unitary. $\Leftrightarrow A^0A = 1 \Leftrightarrow A^TA = 1$.

A's oxthogonal.

i Determine the characteristic mosts of the matrix

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & -1 \\ 2 & -1 & 0 \end{bmatrix}$$

Soin: The characteristic matrix of

$$= \begin{bmatrix} 0-\lambda & 1 & 2 \\ 1 & 0-\lambda & -1 \\ 2 & -1 & 0-\lambda \end{bmatrix}$$

The Characteristic polynomial of

$$A = \begin{bmatrix} A - \lambda I \end{bmatrix}_{-\lambda}$$

$$= \begin{bmatrix} -\lambda & 1 & 2 \\ 1 & -\lambda & -1 \\ 2 & -1 & -\lambda \end{bmatrix} = -\lambda^{3} + 6\lambda - 4$$

.. The characteristic equation of A is |A-λI|=0

miliothe characteristic tooks of A me

-> Prove that ±1 can be the only eigen Values of an Orthogonal matrix

soin: we know that the eigen values of an othogonal matrix are of unit modules.

Also it are the only real numbers of unit modulus.

: the only real numbers. which can be the characteristic roots (or) eigen values of an orthogonal matoir. 0 > If A is - both real symmetric and orthogonal, Prove that all its 0 eigen values are 11 or -1. 0 Soln: - If A is a real Symmetric matria, then all its eigen values are real. -If A is orthogonal then all its eigen Values must be of unit modulur. Now of 1 are the only real numbers of unit modulus. . If A is both real symmetric and orthogonal then all its eigen Values are +1 or > Find the characteristic roots of the 2-rowed orthogonal matrix Coso -sino and verify that they unit modules. show that the acots of the equestion

where a, b, c, f, g, h 'are real numbers. -> If LEC is an eigen value of a square matrix A, then prove that $\overline{\lambda}$ is an eigen value of A^{θ} and Conversely, Or) Prove that eigen values of AD are the Constigutes of eigen Value of A. soin - wig aknow that it is an eigen Value of a Square matrix A iff [A-A] =0. i.e. iff [A-AI] =0. [(A-AI) =0 (: IPI = [P]) (10 NATITUTE FOR IAS/IFOS EXAMINATION (10 NATITUTE FOR IAS/IFOS EXAMIN i.e. if | AD_] = 0 i.l. iff & is an eigen value of A. Construction of Matrices Congodino Inf suppose is an n-rowed real skew-symmetric matrix and I is the unit matrix of Order n. Then Show that (i) I-S is non-singular. A = (I+3) (I-5) is orthogonal. (II) $(2+\mp)'(2-\mp) = A \quad (iii)$ (iv) SI x is a characteristic vector of

042

h b+x

9 f (+2

=0 are real

S Corresponding to the Characteristic root &, then X is also Characteristic vector of A and (1+1) is the Corresponding Characteristic solor- (1) since Sis areal skew-Symmetric matrix. . The Charaderistic roots of s are either pure imaginary (or) Zero . The roots of the equation (-S-XI) =0 are pure imaginary (or) Zero. · 1 is not a root of the equation 15-AZ = 0. · · S-I +0 (S-I) is non-singular. - I-s is non-singular. let. A= (I+c) (I-5) 1, then AT = [(I+5) (I-5)]] T(2+I) (I+J)

 $\mathbb{I}(z+z)^{-1} \mathbb{I}(z-z) = \mathbb{I}(z-z)$

2 I 13

Since (2-55) = 27-57.

Sics Skew - Symmetric STz=s)

and (I+5) = I-3 $(2-\overline{1})^{H}(2+\overline{1}) = T_{A}$ (1+1) $[(2-I)^{T}(2+I)] = ATA \omega O N$ =(1+5)-1(1+5)(1-5)(1-5) (:(1-5)(1+5)=(1+5)(1-5))= I.I = I. . A is orthogonal. (iii) Since (I+S)(I-S) = (I-S)(I+S)Pre -multiplying throughout by (I-S) and past-muliplying throughout by (2-s) we get, (2-5) (1-5) = (2-5) (1-5) Ac'(1-5) (1+5) $SX = \lambda X$ $\Rightarrow x + Sx = x + \lambda x$

Fire multiplying (2) throughout by (I-s), we get $(I-s)^{-1} (I-s) \times = (I-\lambda) (I-s)^{-1} \times$

$$\Rightarrow x = (1-\lambda)(1-s)^{-1}x$$

$$\Rightarrow (7-s)^{-1} \times = (1-\lambda)^{-1} \times -(3)$$

Now her-multiplying (1) throughout

$$\times \left[(2-1)^{-1}(\lambda+1) \right] = \times \left[(2+1)^{-1}(2-1) \right] =$$

. X is a characteristic Vector

and $(1+\lambda)(1-\lambda)^{-1}$ is the

Corresponding characteristic root.

matrix then show that (I+S) is

non-singular and (I-S) (I+S) is

orthogonal.

> If. A is an Orthogonal matrix.

with the property that -1 is not

a characteristic root, then A is

expressible as (I+s) (I-s) for some

Suitable real skew-symmetric

matrix S.

SOI'? '- Given that A = (I+C) (I-s)

Abst-multiplying both sides of (1 by (I-s), we get

Since I is not a characteristic root of A

i.e. 1 A+ 11 +0

i.e. Ati is non-singular.

.. Pre-multiplying bothsides of Dby

(A+I), we get

Since A is a recommendation of the property of

. We can easily show that is

is a skew - symmetric matrix

Now we have

$$S^{T} = \left[\left(A + I \right)^{-1} \left(A - I \right) \right]^{T}$$

$$= (A-I)^T \left[(A+I)^{-1} \right]^T$$

$$= (A^{\mathsf{T}} - \mathsf{I}) \left[A^{\mathsf{T}} + \mathsf{I} \right]^{-1}$$

Since (AT+I) (AT-I)=(AT-I) (AT+I)

Pre-malliplying throughout by (AT+I)

and Post multiplying throughout

by $(A^T + I)^{-1}$, we get $A^T + I)^{-1}(A^T + I)(A^T - I)(A^T + \Omega)^{-1} = (A^T + I)^{-1}$ $(A^T - I)(A^T + I)^{-1}(A^T + I)^{-1}$ $\Rightarrow (A^T - I)(A^T + I)^{-1} = (A^T + I)^{-1}(A^T - I)$

from (f), we get $S^{T} = (A^{T} - I) (A^{T} + I)^{-1}$ $= (A^{T} + A^{T}A) (A^{T} - A^{T}A)$ (: A is orthogonal $\Rightarrow A^{T}A = I$)

 $= \left(\begin{array}{c} A^{T} & \left(\begin{array}{c} A + E \end{array} \right) \right)^{-1} \left(A - E \right)^{-1} \\ = \left(\begin{array}{c} A + A \end{array} \right)^{-1} \left(A - E \right)^{-1} \\ = \left(\begin{array}{c} A + A \end{array} \right)^{-1} \left(A - E \right)^{-1} \\ = \left(\begin{array}{c} A + A \end{array} \right)^{-1} \left(\begin{array}{c} A - E \end{array} \right) \\ = \left(\begin{array}{c} A + E \end{array} \right)^{-1} \left(\begin{array}{c} A - E \end{array} \right) \\ = \left(\begin{array}{c} A + E \end{array} \right)^{-1} \left(\begin{array}{c} A - E \end{array} \right) \\ = \left(\begin{array}{c} A + E \end{array} \right)^{-1} \left(\begin{array}{c} A - E \end{array} \right)$

· Sis a skew - symmetric matrix

Of A is an orthogonal matrix with the property that -1 Isnot a characteristic toot, then A is expressible as (P-s) (Its) for Some Suitable skew-symmetric matrix.

2005

If S is a skew-Hermitein matrix, show that the matrices

(2-S) and (2+S) are both non
Singular

Also show that A = (1+s)(7-s) is a unitary matrix.

Soft - Given that S is a skew.

Hermitian matrix.

∴ se =-s — ①

We know that the eigen values of a skew-Hermitian matrix s' are either purely imaginary (or) zero. Neither 1 nor -1 is a root of the equation $|s-\lambda I| = 0$.

 \Rightarrow $|s-I| \neq 0$ and $|s+I| \neq 0$.

→ 12-3/+0 and 12+3/+0

 $(: (-A) \neq 0 \Rightarrow |A| \neq 0).$

Singular matrices:

Now given that A=(1+5')(1-5)

Consider AB = (I+s) (I-s)

 $= \left[\left(\mathbf{I} - \mathbf{S} \right)^{-1} \right]^{\theta} \left(\mathbf{I} + \mathbf{S}^{\theta} \right)$ $= \left[\left(\mathbf{I} - \mathbf{S} \right)^{\theta} \right]^{-1} \left(\mathbf{I}^{\theta} + \mathbf{S}^{\theta} \right)$

 $= \left(\frac{1}{2} \theta_{-s} \theta \right)^{-1} \left(\frac{1}{2} - s \right)$ $\left(\frac{1}{2} \theta \right)^{-1} \left(\frac{1}{2} - s \right)$

=(I+5) (2-5)(by(1))=

200	Life and the same
ᅠ.	$(I+s)^{T}(I-s)(I+s)(I-s)^{T}$
8	1. 7
9	$= (I+S)^{-1}(I+S)(I-S)^{-1}$
8	[(1-s) (1+s) = (1+s) (1-s)]
0	
@	= 9.1
(8)	$\int_{\mathbb{R}^{n}} z = \mathbf{T} \cdot \mathbf{r}_{n} \cdot \mathbf{r}_{n} \cdot \mathbf{r}_{n} \cdot \mathbf{r}_{n} \cdot \mathbf{r}_{n}$
③	APA = I
8	: A is a unitary matrix
8	
0	A can , by a scitable choice of
8	skew - Hermilian matrix 3 be
0 0	
•	compressed as $A = (1+s)(1+s)^{-1}$
•	provided that , -1 is not a
8	Characteristic spot of A.
É	-> If H is a Hermittan matrix
•	show that $A = (1+iH)^{-1}(I-iH)$ is
6	a unitary matrix. Also show that
E	$A = (3-in)(3+in)^{-1}$
8	Further show that if I is an
	eigen value of t_1 , then $\frac{(1-i\lambda)}{(1+i\lambda)}$ is
	an ligen value of A.
-	sol'n - since His a Hermitian
Į	matrix.
Į e	∴ H0=H —①
	we know that the characteristic
	roots of H are real

i nor -i is a toot of the 1. Weither equation | H-XI = 0. -> 111-121 t-0 and [H+12] +0 => (H-iI) is non-singular and (H+iI) is non-singular. → (iH+7)& (iH-I) are also non-(2+i4) & (2-i4) also non-(1) Griven that A=(I+H) (1-1H) Consider A9 = (2+iH) (2-iH) $= (\mathfrak{I} - \mathfrak{j} H)^{\theta} ((\mathfrak{I} + \mathfrak{j} H)^{-1})^{\theta}$ = (I - (-i)H) (I + (-i)H)= (I+iH) (I-iH)-1 AOA = (ItiH) (I-iH) (I+iH) (I-iH) = (ItiH) (ItiH) (I-IH) (I-IH) (:(I+iH) (I-iH) = (I-in) (I+in)) $\vec{\Gamma}$, $\vec{\Gamma}$ a unitary matrix. (Hi+1)(Hi-E)=Adi, To Shoic Since (2-in) (I+(H)=(I+iH) (I-iH)

and post-multiplying throughout by (I+H), we get

(Itin) (I -in) (Itin) (Itin) = (Itin)

(1-11) (1-11) (1-11)

 $\Rightarrow (2+i+)^{-1}(2-i+) = (2-i+)(2+i+)^{-1}$

= (2-iH) (2+iH)-1

iii, duppose t is an eigen value of H and x is the corresponding eigen vector of H. then

 $A = \lambda x$

X/i.= 水料 <==

→ (2+iH)x =(1+iX)x

Similarly (I-iH) x = (1-iL)x

Pre-multiplying @ throughout by (Itin) we get

(I+14)= (I+14)x = (I+1X)(I+14) x

 $\Rightarrow x = (1+i\lambda)(2+i\mu)^T x$

 $\Rightarrow (1+i\lambda)^{-1}x = (2+iH)^{-1}x$

= (1+1H) x = (1+12) x - 0

Now pre-multiplying 6 throughout by (2+114)-1 we get X-(HI+I) (XI-I) = X(HI-I)-(HI+I

Pre-meeltiplying throughout by (I+iH) = (I-iH) x = (1-ix) (1+ix)x (410) .. X is a characteristic vector of A = (3+1H) (1-1H) and (1-12) (1+12) is the Corresponding characteristic root

2003 If His any Hermitian matrix, then

2) (Ti+H) (Ti-H)=(II-H) (Ti+H)=A unitary and every unitary matrix can be thus expressed provided, -1, is not a characteristic motof A.

I find the eigen roots and corresponding eigen vectors afthe matrix A = 1

solo The Characteristic motors

$$= \begin{bmatrix} 1-\lambda & 4 \\ 3 & 2-\lambda \end{bmatrix}$$

The characteristic phynomial of A = A - XI

9	$= (1-\lambda)(2-\lambda)-12$
•	$= 2-3\lambda + \lambda^{2} - 12$
9	$=\lambda^2-3\lambda^{-10}$
0	$=(\lambda+2)(\lambda-5)$
6	

∂}₁::

The characteristic equation of A

is [A-AI] = 0 $\Rightarrow (\lambda+2)(\lambda-5) = 0$ $\Rightarrow (\lambda+2)(\lambda-5) = 0$

.. The required eigen roots of A are 12,5.

To find the eigen vectors

associated with -2!

liet $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be the eigen vector of A corresponding to the eigen

$$(A - (-2)I)X = 0$$

$$\Rightarrow \begin{bmatrix} 1+2 & 4 \\ 3 & 3+2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Value -2 then

$$\begin{vmatrix}
3 & 4 \\
3 & 4
\end{vmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
3 & 4 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

clearly the Coefficient is in echelon form

The rank of the Coefficient

There is 2-1=1 L.I eigen

vector of A Corresponding to

eigen root -2.

Now from O,

32, +42 =0
bet 72=6 where k is a non-zero

$$x_1 = -\frac{1}{3}k$$

$$x_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3}k \\ k \end{bmatrix}$$

$$= k \begin{bmatrix} -\frac{1}{3}k \\ k \end{bmatrix}$$

parametes.

Here X, = [-4/3] is L.I eigen vectors of A Corresponding to eigen value -2 and the lister mathematical transfer vectors of A Contestination of the contestination of the contestination of the cigen value.

-2 is given by KX1.

To find the eigen vectors

associated with 5!Let $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be an eigen

Vector of A Corresponding to the eigen value 5 then

$$(A-51)X = 0.$$

$$\Rightarrow \begin{bmatrix} 1-5 & 4 \\ 3 & 2-5 \end{bmatrix} X = 0$$

$$\Rightarrow \begin{bmatrix} -4 & 4 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -4 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$R_2 \rightarrow k_3 R$$

$$\Rightarrow \begin{bmatrix} -4 & 4 \\ 4 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad R_2 \to \underline{4R},$$

$$\Rightarrow \begin{bmatrix} -4 & 4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{\mathcal{R}} R_2 + R_1$$

Clearly the Coefficient matrix is in echelon form.

.. The rank of the Coefficient matrix =1.

There is 2-1=1 L.I eigenvector of A Corresponding to eigenvalue 5.

Now from ①,

$$-47, +49, =0$$
 $-2, +3, =0$

Where K is non-zero parameter.

$$\therefore \mathbf{x} = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \end{bmatrix} = \mathbf{k} \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix}$$

Here $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is L.I eigen-Mechan

and the Set of all eigen vectors of A Corresponding to the eigen.
Value 5 is given by KX2.
Where K is non-zero parameter.

and the eigen vectors of the

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix}$$

Soi'n: - The Characteristic matoix

$$=\begin{bmatrix} 3-\lambda & 1 & 1 \\ 2 & 4-\lambda & 2 \\ 1 & 1 & 3-\lambda \end{bmatrix}$$

The Characteristic Polynomial = [A-l]

=
$$(3-\lambda)[(4-\lambda)(3-\lambda)-2]-1[6-2\lambda-2]+$$

$$= (3-\lambda) \left[12-7\lambda+\lambda^2-2 \right] - 4+2\lambda+\lambda-2$$

$$= (3-\lambda)\left[\lambda^2 - 7\lambda + 10\right] + 3\lambda - 6.$$

$$= 3\lambda^{2} - 21\lambda + 30 - \lambda^{3} + 7\lambda^{2} - 10\lambda + 3\lambda - 6$$

$$= -\lambda^{3} + 10\lambda^{2} - 28\lambda + 24$$

the characteristic equation of A is

$$\Rightarrow (\lambda - 2)^{2} (\lambda - 6) = 0$$

$$\Rightarrow \lambda = 42,6$$

To find the eigen Vectors associated with 2:

Let
$$\ddot{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 be an eigen vector

of A corresponding to the eigenvalue 2 then (A-2I)X=0.

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \beta_3 \rightarrow \beta_3 - \beta_4 \\ 0 \\ 0 \end{bmatrix}$$

clearly the Coefficient matrix

is in echelon form.

The rank of coefficient materix=1

there is 3-1-2 L.I eigen veitous

Corresponding to 1=2.

Let 2:= 1, 3= K2

where k_1 , k_2 are parameters and not both zero dimultaneously. then $a_1 = -(k_1 + k_2)$

$$\therefore \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -K_1 - K_2 \\ 1K_1 + 0K_2 \\ 0K_1 + 1K_2 \end{bmatrix}$$

$$= K_1 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + K_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Here $\overline{X}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $X_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ are LI.

eigen vectors of A corresponding to

and the set of eigen vectors

of A Connectific Kings EXMINITION eigen

NSTITUTE FOR KINGS EXMINITION

NEW DELIVITIONS

Value 2 is Medium by Kir, +Kix;

where K_1, K_2 are parameters and both zero simultaneously.

Similarly we can easily find the eigen vectors Corresponding to the eigen value $\lambda = 6$.

H.W. Determine the Characteristic ecots and the Corresponding

Characteristic Vectors of the matrix

* Matric Polynomial:

An expression of the form

F(x) = Ao+A₁x + A₂x + - + A_mx^m,

where Ao, A, A₂, - Am are

matrices each of order nxn over

a fleld F, is Called a matrix

Polynomial of degree m, provided

Am +0.

The Symbol x is Called intereminate

the matrices themselves are

matric polynomials of zero degree

Two matric polynomials are

equal lift the coefficients of like

powers of x are equal.

Addition and Hultiplication

Let Gazi = Ao+A, x + Ax + --- + --- + --- x + Ax + --- + --- + --- x + Ax + --- + --

#(x) = Bo+B1x +B2x+-+B1x+-+B1x

> we define: - if m>k then

G(x) + H(x) =

(A0+B0) + (A1+B1) x+--+ (AK+BK) x + + K+1 x K+1 + AK+2 + --+ Amam.

-if m<k then

 $G(x) + H(x) = (A_0 + B_0) + (A_1 + B_1)x + (A_2 + B_2)x + (A_2 +$

Note:-(1). The degree of the product of two matric polynomials is less than or equal to the

+(A0B2+A1B1+A2B0)1---11/B2 xtm

Sum of their degrees.

Imp
(3) Every square matrix over

a field F whose elements are

Ordinary polynomials in x over F,

Can essentially be impressed as

a matrix polynomial in x of

degree m, where m is the index

of the highest power of x

Occurring in any element of

Ex: - Let

the matrix.

 $A = \begin{bmatrix} 1 + 2x + 3x^2 & x^2 & 6 + 4x \\ 1 + 2x^3 & 3 - 4x^2 & 1 - 2x + 4x^3 \\ 2 - 3x + 2x^3 & 5 & 6x^2 + 4x \end{bmatrix}$

3510130,39		
0		1 · · · · 3 · · · · 3 · · · · · 3 ·
1	- Him	$= (-1)^{n} \left[\lambda^{n} + \alpha_{1} \lambda^{n-1} + \alpha_{2} \lambda^{n-2} + \cdots + \alpha_{n} \right]$
6	1+24+30+002 0+02+2+023 6-44+02+02	
8	A = 1+92+02+23 3+02-42+023 1-22+02+423	where a,, a2 - anef
9	2-32-102°+22° 5+02+02+02° 0+42+62+02°	the Characteristic equation of Ais
8		[A- \] = 0
8	10,6,20-4 3100 000	1 i.e. 27 + Q12 2 1 + -1 - +
- O	250 -30 -2 2+0-10 2+ 104-	$a_{n-1}\lambda + a_n = 0$
. 8	To continue to	Now we prove that
6	which is a matrix polynomial of	An+a, An-1 +a, An-1++a, A+a, I=0
6	degrée 8	Since all the elements of A-XI
9	the Cayley-Hamilton Theorem	are at most of first digree in
ام		A, all the elements of adj (A-XI)
	Statement: Every Equare matria	are polynemical bnewhols states of degree (n-1)
•	staisfies its Characteristic equation	(or) less NEW DELHI-110009 Mob. 09999197625
8	Proof !- Let	(: elements of adj(A-XI) are Cofactors
	$\begin{cases} a_{11} & a_{12} - a_{1n} \\ a_{21} & a_{22} - a_{2n} \\ A = \begin{cases} 1 & 0 0 \\ 0 & 1 0 \end{cases}$	of the elements of (A-AI.))
- 6	$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$ $A_{1} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$	· adj (A-AI) can be written as
•	$\frac{1}{n}$	a matrix polynomials in a of degree
	then the Characteristic mounts of Ais	le de la companya de
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	$A-\lambda I = a_{11} a_{12} - a_{21}$	tet adj $(H-\lambda I) = B_0\lambda + B_1\lambda'' + \cdots + B_{n-1}\lambda^{l} + B_{n-1}$. where B_0 , B_1 , B_2 $\cdots = B_{n-1}$ are square matrices of order n .
;	•	where Bo, B, B2 Bn-1 are square
	$a_{n_1} a_{n_2} a_{n_n} - \lambda$	matrices of order n. — O

the characteristic polynomial of

A is $|A-\lambda I|$ $|a_{11}-\lambda|$ $|a_{12}-a_{13}-a_{14}|$

 $A-\lambda I) adj (A-\lambda I) = |A-\lambda I|I$ - (-AadjA = |A|I) $\Rightarrow (A-\lambda I) (B_0 x^{n-1} + B_1 x^{n-2} + \cdots + B_{n-2} x^{n-2} + \cdots + B_{n-1}).$

$$= \text{CI}^n \left[\chi^n + \alpha_1 \chi^{n-1} + \cdots + \alpha_n \right] \widehat{I}$$

$$\left(\text{by } \widehat{I} \otimes \widehat{I} \right)$$

Companing (oefficients of like powers of λ , we obtain.

$$-B^{o} = (-1)_{JJ}$$
I

$$AB_0-B_1 = (-1)^n \alpha_1 I$$

$$-A_{B_{n-1}} = (-1)^n a_n I.$$

Pre-multiplying the above equations. Successively by A^n , A^{n-1} -- I and adding, we obtain

$$0 = (-1)^n \left[A^n + a_1 A^{n-1} + a_2 A^{n-2} + - - + a_n I \right]$$

Note: If, A is a nan-singular motion.

then |A| #0.

Also
$$fAl = (-1)^n \alpha_n^{-1}$$

 $a_n \neq 0$

Now Pre-modifying & by A, we get

A A+a_A A+ a_A A-2+-- +a_n_A +a_n_I=0

$$\Rightarrow a_{n} A^{n-1} + a_{1} A^{n-2} + a_{2} A^{n-3} + \cdots + a_{n-1} I + a_{n} I I = 0$$

$$\Rightarrow a_{n} A^{n-1} = - \left[A^{n-1} + a_{1} A^{n-2} + \cdots + a_{n-1} I I \right] 0$$

doob > state - cayley - Hamiltion
theorem and using it, -find the
inverse of [13]

solh: - statement Every square matria Satisfies its Characteristic equation

Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
, $T = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$

The Characteristic matrix of Ais

$$(A-\lambda I) = \begin{bmatrix} 1-\lambda & 3 \\ 2 & 4-\lambda \end{bmatrix}$$

the characteristic polynomial of A is [A-XI]

$$= \begin{vmatrix} 1 & \lambda & 3 \\ 2 & \lambda & \lambda \end{vmatrix}$$

The characteristic equation of A is

The given matrix A satisfies the characteristic equation.

Now multiplying O by A-1, we get

Ansit =
$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Ansit = $\begin{bmatrix} -1 & 3 \\ 2 & -1 \end{bmatrix}$

Find the characteristic equation

of the matrix

A = $\begin{bmatrix} -1 & 2 \\ -1 & 2 \end{bmatrix}$ and verify that

it is satisfied by A and hence

Obtain A-1.

Obtain A-1.

The characteristic matrix of Ais

A- λ I. = $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \end{bmatrix}$

The characteristic polynomial of

A is $\begin{bmatrix} A-\lambda & -1 & 1 \\ -1 & 2-\lambda & -1 \end{bmatrix}$

characteristic equation of

A is
$$|A-\lambda I| = 0$$

i.e. $-\lambda^3 + 6\lambda^2 - 9\lambda + 19 = 0$
 $\Rightarrow \lambda^3 - 6\lambda^2 + 9\lambda - 19 = 0$

By the capter Hamilton theorem

 $A^3 - 6A^2 + 9A - 14I = 0$

Now we verify that

 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A^2 + 9A - 14I = 0$
 $A^3 - 6A + 9A - 14I = 0$
 $A^3 - 6A + 9A - 14A - 14A$

$$\begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

from
$$\bigcirc$$
 ,
$$A^{-1} = V_{4} \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

Hamilton - theorem. (i.e. Verification of (-H theorem.)

-> find the characteristic roots of the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and verify Caylog - Hamilton theorem for this matrix find the inverse of the matrix A and also express

2004 And the characteristic paynamial of the matrix $A = \begin{bmatrix} 1 & 1 \\ -3 & 3 \end{bmatrix}$

A5-4A4-7A3 +11A-A-11DI

find A! and A6

on Use Cayley - Hamilton theorem, to find the inverse of the following matrix.

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

that for every integer n>3, An = An-2 + A2- I, Hence determine A50.

Sol 1 - 24 n=3 then

Since A'= A.A

$$= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Now A 3 = AT. A

$$= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Nogo A-+A2

$$=\begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

0

Now -for
$$n = K+1$$
;
 $A^{K+1} = A \cdot A^{K}$
 $= A \cdot \left[A^{K-2} + A^{2} - I \right]$
 $= A^{K-1} + A^{3} - A$
 $= A^{K-1} + A + A^{2} - I - A$
 $= A^{K-1} + A^{2} - I$

Similarly
$$A^{12} = 6A^{2} - 4I$$

(i.e. $A^{12} = \frac{12}{2}A^{2} - (\frac{12}{2} - 1)I$)

$$\left(i.e. A^{50} = \frac{50}{2} A^2 - \left(\frac{50}{2} - 1\right) I\right)$$

$$A^{50} = 25 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} - 24 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

		. 		- VII_	·		
٠.	724	SIAS		45 - Sec.		the state of the	
	THIS THUTE OF MATHEMATING	SEXAMINATIONALEMY					
٠.	Mob: 099991	110009 3	er granding			XXIII S	
	27	IVI A	THE	VIAI	ICS	By K. VEN	IKANNA

similarity of Matrices

Defo:

Let A and B be two square matrices of order n. Then B is said to be similar to A.

iff I nan invertible matrix C such that

Ex:-
Let
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & -3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 and $C = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$

. Cis non-singular.

cis an invertible matrix

Now
$$C' = \frac{adj'}{1.c!}$$

$$\frac{1}{1.c!} = \frac{1.c!}{1.c!} = \frac{1.c!$$

$$= \begin{bmatrix} 4 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Now
$$B = \overline{C} A C$$

$$\begin{bmatrix}
7 & -3 & -3 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{bmatrix}$$

$$= \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 17 & 16 \\ 5 & 18 & 16 \\ 5 & 17 & 17 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 14 & 13 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Bis similar to A.

Similarity of matrices is an empalence selection in the set of all nxn matrices.

proof: Let A and B be two square matrices

-- of order n. Then B is similar to A if

I an nxn invertible matrix c such that

B = C AC or A = CBC.

(i) Reflexivity:

het A be an non matrix then I an non invertible matrix I such that A=IAI

A is similar to itself.

: similarity of matrices is reflexing.

(i) Symmetry

A is similar to B $\Rightarrow A = CBC$ $\Rightarrow CAC = B$

 $\Rightarrow (z^{\dagger}) \wedge (z^{\dagger}) = B$

Bis similar to A. C. Cis invertible

· Similarity of matrices is symmetrics

	6	USTITUTE OF HARD SHEET SCHOOLS TO THE POST OF THE POST	
	9 6	STITUTE FOR IN-SIGNS EXAMINED THE PROPERTY OF	
•	8	(ii) Pransitivity:	
	•	Let A.B. and C be three square ma	trices
	6	of order nxn such that A is similar	to B
ž	8	and Bis similar to C.	
	•	I invertible non matrices P, Q such	That I
	8	A = PBP and B = QCQ	
	9	$\Rightarrow A = P(QCQ^{-1})P^{-1}$	
<u>ب</u>	©	$\Rightarrow A = (PQ) c(Q^{\dagger} P^{-1})$	
		= (PQ) C (PQ) (P.Q are in	,vertille
		⇒ A is similar to C ⇒ PB is al	er ble
	S	: Similarity of matrices is transitive	•
 - -	5	"Similarity of matorices is an equiv	alence.
	•	relation.	
•	•	Note: III. If A is Similar to B then B is s	amilar
		to A and we lay that A and B are	2
#		Similar Rane) Cale
- Carrier		[2]. If A and B are similar and B and	
- ساگىسە	•	Similar then A and c are similar.	- f - P
- Exercise	•	Similar matrices have the take det	. 1.
THE PERSON	0	Profi let A and B be similar matrices.	7.71
STANKER	0	Then $ \exists $ an invortible matrix $ p $ such $ B = p A p $	1,,,,,
Secondary.	•		
SCHOOL STREET			
Biblish			*
			,
	https://t.me/upsc_pdf	https://upscpdf.com	https://t.m

HARRICA THE STATE OF THE STATE

```
=> IRI = | PAPI
          = 1p 11A11P1
            1 P 1 P 1 A)
         =- [P P] [A]
              (I) A
      = IAI
     : 18 = [A].
2000 Similar matorices have the same characteristic
   polynomial and hence the lame Characteristic
       let A and B be Cinital matiques
      Then I an invertible matrix p such that
            G = P^{-1}A_{1}P_{1}
      I \zeta - \gamma A^{\dagger} q = I \zeta - g ...
               = PAR-APP
               = PAP-PAP
             = PAP-PACP)
               = PAP-P(ZI)P
               = F'(A-2I)P
     1B-AIL = [ P (A-AI) P
            = |P| [A-AI] [P]
              = 1A-2I1 1P R)
             = |A-AI|
```

A and B have the came characteristic polynomial and hence same characteristic

· · [B-]] = [A-] I

	attendent.	
٠.	G	THE STATE OF THE PROPERTY OF T
	6	DISTRUCE CERTIFICATION AS AND ASSESSMENT AS A STATE OF THE PROPERTY OF THE PRO
	•	INSTITUTE FOR IASHFOS EXAM WILDON CONTROL OF THE CO
	0	MATHEMATICS BY K VENKANNA
	•	By K. VENKANNA The person with 8 jet of teaching cap.
	6	En:
	€	The similar matrices $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 5 & 1 \end{bmatrix}$
	₽	and B = 0 1 2 2
	e	have the same characters
	A	0 0 1
	<u> </u>	sol?: The Characteristic equ of A is $ A-hI =0$
	8	$\Rightarrow \begin{vmatrix} 2-\lambda & 2 \end{vmatrix}$
		1 3-7 1 = 0
_	-	
	a	$\Rightarrow \lambda = 1, 1, 5$
	•	NOW the Characteristic equation of B is
	•	
	•	$ R-\lambda I = 0$
		⇒ S-y 14 13 ≥ 0
		0 (-2 0)
	S	
	6	3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 =
	. A	The similar matrices A&B have the
		Same Characteristic roots.
	<u> </u>	te: If two matrices (of same order)
,	a	have same chaqueteristic spots then it is
		not necessary that they are similar.
		0: [2 2 1] 2 - [2 1 -1]
	a	$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & -1 \\ -3 & -2 & 3 \end{bmatrix}$
		2 2 3
. 1		have the same Characteristic roots but
	•	

and the second of the passess of the second second

```
If x is a Chalacteristic vector of A
    corresponding to the characteristic root & then
    p'x is a characteristic vector of B corresponding
         Characteristic root 2 when B=plAp.
  proof: If is a characteristic root of A and is
       cornesponding Characteristic vector then
                                       Ax = \lambda x \leftarrow (i)
          Since B= PAP
            >> B(px)=(pAp)(px)
                    = P^{1}A(PP^{-1}) \times
                     = PAX
                     = \vec{P}^{\dagger} \lambda x \quad (\cdot \wedge x = \lambda x)
                    = \vec{p}(x\lambda)
                     = ( P(x) X
                    = \lambda(p' \times)
        B(P^{\prime}) = \lambda(P^{\prime})
         PX is a characteristic victor of B
        Corresponding to the Characteristic root is
If the matrix A is similar to a diagonal
  matrix D, then the diagonal elements of D
    are the Characteristic roots of A.
proof: Since A and D are similar.
        . They have the same Characteristic roots.
      But the Characteristic roots of diagonal
```

0		
	TAS	ĺ
£)	THE THEORY OF THE PROPERTY OF	l
0	SECULATION ASSESSED ACADEMY	ĺ
6	MATHEMATICS BY K VENKANNA	١
8	By K VENKANNA The paran with 8 year of twelling as	l
0		ļ
6	matrix D'are its diagonal elements.	ŀ
-	7	l
0	Hence the chalacteristic roots of A age	l
0	the diagonal elements of D.	
	The diagonal action	
€9		
0		
6 3	Diagonalizable matrix:	
. •	in the state of th	
⊜	If a matrix A is Similar to a	
•	dragonal matrix then A is said to be	
(2)	diagonal matrix then 17.13 2000	
	diagonalizable	
	a je dingonalizable it	
•	i.e., a matrix A is diagonalizable if	
· •	there exists no invertible masses	
63	PAP = D where Dix déagonal montoix.	
3	PAP=D where DM	
•	Also pis said to diagonalize A or transform	•
0	Also pir said to diagonalize	
	A to a diagonal form.	٠.
-	7 10 10 10	
(2)		
3	- Theorem An n-rowed Equale matrix is	
ക	on noticesses	
	diagonalizable iff the matrix passesses	
(3)	Tent Characteristic vectors	•
0	n' linearly independent characteristic vectors.	-
8	course matrix A	-
	profes Suppose au n-rowed equare matrix A	
€	10 11000000112010100	
•	il diagonalizable.	
· 🔞	Then sile limited to the diagonal matrix	
_	$D = \operatorname{dia}\left[\lambda_1, \lambda_2, \dots, \lambda_n\right]$	
8		
9	an nxn invertible matrix $p = [x_1 x_2 \cdots x_n]$	
A	6 A 0 - 5	
~	Such that PAP=D.	
€		

$\Rightarrow AP = PD$
$\Rightarrow A[x_1,x_2,,x_n] = [x_1,x_2,,x_n] dia[\lambda_1,\lambda_2,,\lambda_n]$
$\Rightarrow (A \times_1, A \times_2 \dots A \times_n) = [\lambda_1 \times_1 \lambda_2 \times_2 \dots \lambda_n \times_n]$
$\Rightarrow A \times_1 = \lambda_1 \times_1; A \times_2 = \lambda_2 \times_2, A \times_n = \frac{\lambda_1}{\lambda_1}$
> X, X2, xn gre characterietic vectors
of A corresponding to 1,12, in spaning
Since the matrix pis non-singular matrix
- Its Coloumn vectors X1, x2,
A possesses in LI characteristic vectors.
Conversely Suppose that A possession of LI.
100 to 31 X X2 . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Let & & Be The correct
Roots then AX,= N,X,, Mx, =12,2,2,
Let P= Lx1, x2, xn and
Thun $AP = A[X_1X_2, \times n]$ $= [AP_1, AX_2, AP_n]$
$= \left[\lambda_1 x_1, \lambda_2 x_2, \lambda_{} \lambda_n x_n\right]$
$= \left[x_1, x_2, \dots, x_n \right] d^{n} \left[\lambda_1, \lambda_2, \dots, \lambda_n \right]$
= PD
AP = PD
PAP = PPD
=> PAP=D A is similar to a diagonal matrix D.
or A is diagonalizable.

Ę

€3	De Callegrafia Cala Cala Cala Cala Cala Cala Cala Ca
	THE TOTAL SALES OF THE SALES OF
	MENTONE FOR ASSESSE VAN ACROST OF THE PROPERTY
•	MINITOTE HORIAGE OF EXAMINER REPORT OF THE PROPERTY OF THE PRO
	MATHEMATICS By K. VENKANNA
(9)	IVIA ITILIVIA I UD By K. VENKANNA The person with 8 jers of cocking city.
9	
A .	Note: En the proof of the above theorem we
•	
6	Shows that if A is diagonalizable and P
æ	than Pap = D
•	diagonalizes A, then PAP = D.
8 /	λ, ο ο ο
Ø	0.200
•	00280
•	
A	
₩	0000
. 😝	
e	iff the jth coloumn of pix an eigenvector of
	A corresponding to the elgen value A; of A.
a	
e	(j=1,2, n). The diagonal elements of D
-	are the eigen values of A and they occur
·	in the lame order as is the order of their
3	corresponding elgen vectors in the coloumn vectors
øs.	of P.
9	
3	(EX: The matrix A = 2 2 1 has Characteristic
a 6 ¹	
	mods 5, 1, 1 with Corresponding chalacteristic.
€	about 5, 1, with corresponding
•	evectors (1,1,1), (2,-1,0), (1,0,-1) respectively.
(a)	
	gol: Taking p= 1
•	V 1[.0]
6	
	we: have =1 1/12/17
	$p = \frac{1}{6} \left(\frac{1}{1 - 2} \right)$
•	12-9
A	0 70 7 17 (12 17
	and pAP = 1 (2) 11-10
•	4 7 1 1 0 -1
8	
	· · · · · · · · · · · · · · · · · · ·
	4 2 5-10
8	· · · · · · · · · · · · · · · · · · ·

$$= \frac{1}{4} \begin{bmatrix} 20 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = D$$

A is similar to the diagonal watrix

D=dia(S,1,1).

Note: Grery square matrix is not similar to a diagonal matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ 2 & 2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$$

The chalacteristic equation of Ail $|A-\lambda I| = 0$

$$\Rightarrow \begin{vmatrix} 2-\lambda & -1 & 1 \\ 2 & 2-\lambda & -1 \\ 1 & 2 & -1-\lambda \end{vmatrix} = 0$$

カニリリー

. The characteristic roots of A are 1,1,1,

The Chalacteristic vector X of A corresponding to

$$(A - \lambda I) \times = 0$$

$$\Rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 2 & -2 \end{bmatrix} \begin{bmatrix} 24 \\ 21 \\ 32 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ R_1 \rightarrow R_2 - 2R_1 \\ R_3 \rightarrow R_3 - R_1$$

$$\Rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & 3 & -3 \\ 0 & 3 & -3 \end{bmatrix} \begin{bmatrix} 24 \\ 3_3 \\ 2_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & 3 & -3 \end{bmatrix} \begin{bmatrix} 24 \\ -3 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

echelon form

3		No control of the con
	e de de la companya d	IAS
9		D. Vinteriee Vigit Delli 2 coll-109999197625, 09999329711
∌:		A CONTROL OF THE PROPERTY OF T
3	1,5	NEW DELH-110029 MATHEMATICS By K VENKANNA Mobi 09999197625 MATHEMATICS
· " :	<u> </u>	The person with 8 yes of teaching cap.
9		e(A) = 2
Э.		
3		there is 3-2=1 LL eigen vectors.
3		and x1 x2 + x3 = 0
9		
)		$3a_{\nu}-3a_{3}=0$
. 4		0
8		$\Rightarrow x_1 - x_2 + x_3 = 0$
0		72-73 =0
8		→ X ₁ > 0
9		Let g=k, Kisanbitrary constant
(3)		then n=k .
•		
.		$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ k \\ k \end{bmatrix}$
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0		[x ₃
0		$= K \int_{0}^{0} = K \times I$
a		= K) = K
0		
· .		Here x = 0 in I we dor corresponding
9		The state of the s
	1	1 - to characteristic root?
(3)	-	Sal 1 Li Chaeaeteristic
		The matrix A has only 1 LI Characteristic
(9)		a de consequent of not all
8		velto, a le not thuilar to
0	•	the square matrix A. is not thuilar to
		diagonal matrix.
8		matrix
€ :		Note: 1. If the eigen values of an non matrix
0		If the it is always similar
		are all distinct then it is always similar
•		to a diagonal since
❸.		2. Two non matrices with the same set of
8		and all
		n distinct eigen values are similar.

https://upscpdf.com

Join Telegram for More Spotate: https://t.me/upsc_pdf
+> Prove that the matrices [-10 6.3] [0-6-16]
-26 16 8 and 0 17 45/
are similar. [-10 6.3] and [0 -6-16]
(Sol": The Character Atte aguation of A is IA- 21 =0
$\Rightarrow -10-7 \ 6 \ 3 = 0$
=> =0
- 26 16-2 8. 16 -10 -5-2
$\Rightarrow \lambda = 0, -1, 2$
The Characteristic roots of A are 0,-1,2
a least of the character
NOW the Characteristic equation of B is B-JI=0
0 4-7 45 =0
0 -6 -16-7
$\Rightarrow \lambda = 0, -1, 2.$
the characteristic roots of B are
D 000 5000
A-and D-10-38-36
Show that the matrices $A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -10 & -3t & -3t \\ 4 & 14 & 13 \end{bmatrix}$ are similar if $P = \begin{bmatrix} 7 & 3 & 3 \\ -1 & 0 & 1 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 3 & 3 \\ -1 & 4 & 3 \end{bmatrix}$
are simples of D= (7-3-3) 11 3 37
are limited of p= 7-3-3 and p= (133) -101 and p= (133) 134
-1 is the second of the sec
Soly St Bis civilar to A then PAPEB
JOH PAD = (7-8-3) [1-1-0] [13 3
-1 1 0 2 3 4 1 6 4 3
1-101
$= \begin{bmatrix} 4 - 8 - 6 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$
1 2 1 4 3
(-io -38 -36)
4 14 13
Sign of the Control o

IAS
(INSTRUCTION AND TENNESS SECOND AND THE SECOND AND
Mob: 09999197625 MATHEMATICS By K. VENKANNA The person with 1 jin of local largery.
problems:
Show that the rank of every matrix similar
to A is the same -as that of A.
Solo: Let B be a matrix similar to A.
: I a non-singular matrix p such that
B = P A P
b. K. T the rank of a matrix does not Change
on multiplication by a non-singular modrix.
$e(\bar{\rho} AP) = e(A)$
i-e, ecb) = eca).
Let A and B be n-rowed Equare matrices and A be non-singular. Show that the matrices
and A & non-singular such
AB and BA have the same eigen values.
goly: we have ACBA) A = AB.
- DA il finilal to AB.
- But the similar matrices have the
Als and BA have the same eigen indue.
> If U be a unitary matrix such that
UAU = diag[\lambda, \lambda_2, \lambda_n]. Show that
2, 2, In are the eigen values of 11
2 Let diag [], \m] = D
Since V is unitary.

$$U^{\theta} = U^{\theta}$$

$$\Rightarrow U^{\theta} A U = D$$

⇒ JAU = D

.. A is similar to the diagonal matrix D. But the similar matrices have the same eigen values and eigen values of Dase " its diagonal dements.

i. 2, h, --- in are the eigen values of A.

If A and B are non-lingulal matrices of order or, Show that the matrices AR and RA

-ave sprilar

son: Since. A 18 non - singular.

.. Al exists.

we have A (AB) A = BA

. AB and BA are similar moderces.

7. A and B are two non matrices with the came set of n' distinct eigen values. Show that there exist two matrices P and & Cone of tremis non singular) such that A=PQ, B=QP.

BOID Since A and B have the same set of 'n' distinct eigen values.

: They are similar.

· I a non-singular matrix p such that PAP = B - 0

Let PA = Q then

DE QP=B

\rightarrow	Prove that . A	is similar to a diagonal
		AT's gimilar to A.

het A be finilar to a diagonal matrix D Then I a non-singular matrix p such the PAP = D

$$PAP = D$$

$$\Rightarrow A = PPP^{-1}$$

$$\Rightarrow A^{T} = (PDP^{T})^{T}$$

$$= (P^{T})^{T}D^{T}P^{T}$$

$$= (P^{T})^{T}D^{$$

$$-A^{\mathsf{T}} = (p^{\mathsf{T}})^{\mathsf{T}} D p^{\mathsf{T}}.$$

AT is similar to D.

⇒ Dis similar to AT.

finally A is similar to D and Dis

similar to AT.

=> A is similar to AT

Algebraic and Greometoic multiplicity of a Characteristic root

If his a characteristic root of order of the Characteristic equation (A-AIT=0. then t is called the algebraic multiplicity of λ_i .

If S is the number of linearly Endependent Characteristic vectors corresponding to the characteristic value 1, then Six called the geometric multiplicity of in

: :-	The state of the s		
	Here the number of linearly Endependent		
	solutions of $(A-\lambda, I) \times = 0$ will be s and		•
	[· · · · · · · · · · · · · · · · · · ·		(g) &
	$\ell(A-A, I) = n-S$		(S)
	(x) (a) for the matrix On, xero is the		6
	Characteristic root	30	. 6
	(2) For the matrix In, unity is the Characterist		É
	(2) For the matrix In, unity is the characterist root of algebraic multiplicity in.		6
	Note: []. The geometric multiplicity of a	• •	. €
٠	Note: []. The geometric exceed its	l .	(g) / x
	1 acollection		
1	algebraic multiple		Ę
	[2]. A Equare matrix is similar to a		É
	10 matrix (IT 10° /)		. (
Section 2			. (
- Andrews	roots is equal to its algebraic multiplice	Ü	· (
ON-DIES AND A			· 6
1	Problems: > Show that $A = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \end{bmatrix}$ is similar to a diago	مجا	دې.
	> Show that $A = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \end{bmatrix}$ is similar to a diago		Ę
	matrix. Also find the transforming matrix and	::	£9.
	matrix. Also find the	٦.	٤
			.6
:	show that the Characteristic vectors of A=1332		
	show that the Characteria Hence find a are linearly independent Hence find a		, . 1320
	diagonal. matrix similar to A.		8
	diagonal matrice equation of A is		Ę
	A-11/20		6
	J 4-12-1=0		ξ •
	5 3-X 2		W.
			Œ.
			Ğ.

	Join Telegram for N
0	⇒ λ=
2	The
0	
0	. Since the
9	distinct.
6	A is
8	Since the
	elgen valu
6	: there
⊗	independen
(to each ei
(a)	
•	$- Let \times = \begin{cases} x_1 \\ x_2 \end{cases}$
6	
8	Corves.p
€	: Character
\(\rightarrow	to the char
9	(A-1I) >
•	C
	$\Rightarrow \begin{vmatrix} 3 & 2 & -2 \\ -5 & 2 & 2 \end{vmatrix}$
6	-2 4 0
8	[0 0 -2 7
-0	$\Rightarrow \begin{cases} 3 & 2 & -2 \\ 0 & 16 & -4 \end{cases}$
 53	

⇒ >=1,5,2
The Characteristic roots of the characteristic
Since the eigen values of the matrix A are all
distinct. A is similar to a diagonal matrix.
Since the algebraic multiplicity of each
elgen value of A is 4. there will be one and only one linearly
independent eigen vertor of A corresponding
to each eigen value is
Let $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ be the characteristic vector
Corresponding to a characteristic value
: Characteristic vector of A corresponding
to the characteristic value I is given by
to the crown
(A-1I) = 0
$\Rightarrow \begin{bmatrix} 3 & 2 & -2 \\ -5 & 2 & 2 \\ -2 & 4 & 0 \end{bmatrix} \begin{bmatrix} 24 \\ 32 \\ 33 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
$\begin{bmatrix} -2 & 4 & 0 \end{bmatrix} \begin{bmatrix} 32 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$
K2 -73821014
$= \begin{cases} 3 & 2 & -2 \\ 0 & 16 & -4 \\ 0 & 16 & -4 \end{cases} \begin{bmatrix} 24 \\ 31 \\ 33 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} R_3 \rightarrow 2R_3 + 2R_1 \\ 0 \\ 0 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} 3 & 2 & -2 \\ 0 & 16 & -4 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 2y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
o o o l. 32 Los in echelon
Clearly the coop in
· C(A)=2 There equations have 3-2=1 lenearly independe
There produces to

SIDE CONTROL C

make the company of t	
" we have	
$3x_1 + 2x_2 - 1x_3 = 0$	
$16\pi_2 - 4\pi_3 = 0 \Rightarrow 4\pi_2 - \pi_3 = 0$	Ę
⇒ x ₃ =472.	6
Take 22=1. then 23=4.	
	€-
and 32, +2(1)-2(4)-0	(-
⇒ 37, -6 =0	
⇒ 2u = 2	
$x_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is a Characteristic vector	(
4 1 of A corresponding to	-
Charaeteristic value 1 of A.	
Also the characteristic vector x of A correspon	ling
to the characteri(He value 2 is given by	· 豐 · · · · · · · · · · · · · · · · · ·
$(A-2I) \times = 0$	
[2 2 -2 7 [2] [00]	- (
$\Rightarrow -5 2- 32- 0 $	(
$\Rightarrow \begin{bmatrix} 2 & 2 & -2 \\ -5 & 1 & 2 \\ -2 & 4 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 \\ 0 \end{bmatrix}$ $R_2 \rightarrow 2R_2 + 5R_1$	•
2 - R-+ R.	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	į .
0 6 -3 2 10	(
\(\rightarrow\rightarrow\frac{\circe\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\frac{\rightarrow\fr	•
$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1 & \vdots & 0 \\ \lambda_2 & \vdots & 0 \end{pmatrix} \stackrel{R_2 \rightarrow \frac{1}{3}R_3}{R_3}$	į.
$ \begin{array}{c cccc} & 1 & 1 & -1 \\ \hline 0 & 2 & -1 \\ \hline 0 & 2 & -1 \end{array} $ $ \begin{array}{c cccc} & 2 & 3 \\ \hline 0 & 3 \\ \hline \end{array} $ $ \begin{array}{c ccccc} & R_3 \rightarrow \frac{1}{3}R_3 \\ \hline 0 & 0 \end{array} $	نو
(1) 1 -17(2,7 (0) R3-2 R3+R2	

sepdf.com

So	the	equa	tions	have	3-2	= 1	LI.	ماه	ىلتەر	5
we	ha	ve 7,	1.3-	73 = 0	: .			•		
	-			$\chi_2 = 0$		$\chi_2 =$	221.			×

Take
$$x_3 = 2$$
 then $x_2 = 1$
and $x_1 = 1$

$$\begin{pmatrix}
A - 5T. \end{pmatrix} X = 0$$

$$\Rightarrow \begin{pmatrix}
-1 & 2 & -2 \\
-5 & -2 & 2 \\
-2 & 4 & -4
\end{pmatrix}
\begin{pmatrix}
\lambda_1 \\
\lambda_2 \\
\lambda_3
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}$$

Let
$$P = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$

$$-= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

The transforming matrix
$$p = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
 and diagonal matrix $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$
Note: By actual multiplication we can verify $p^TAp = D$.

Show that the matrix $A = \begin{bmatrix} -9.4 & 4 \\ -8.3 & 4 \\ -16.8 & 7 \end{bmatrix}$ is

diagonalizable. [-16 & 7]
Also find the diagonal form and adlagonalizing
natria p.

Solly: The characteristic equation of A is $|A-\lambda I|=0$ $\Rightarrow |-q-\lambda + H| = 0$

$$\Rightarrow \begin{vmatrix} -9-\lambda & 4 & 4 \\ -8 & 3-\lambda & 4 \\ -16 & 8 & 7-\lambda \end{vmatrix} = 0$$

$$G \rightarrow G$$

$$\Rightarrow \begin{vmatrix} -1-\lambda & 4 & 4 \\ -1-\lambda & 3-\lambda & 4 \\ -1-\lambda & 8 & 7-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (-1-2) \begin{vmatrix} 1 & 4 & 4 \\ 1 & 3-2 & 4 \\ 1 & 8 & 7-2 \end{vmatrix} = 0$$

$$R_1 \rightarrow R_2 \rightarrow R_2 \rightarrow R_1$$

$$R_2 \rightarrow R_3 \rightarrow R_3 \rightarrow R_3 \rightarrow R_4$$

$$\Rightarrow (1+\lambda) \begin{vmatrix} 1 & 4 & 4 \\ 0 & -1 - \lambda & 0 \\ 0 & 4 & -3 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (1+\lambda) (1+\lambda) (3-\lambda) = 0$$

$\Rightarrow \lambda = -1, -1, 3$

The characteristic roots of A are -1, -1,3

The eigen vectors x of A corresponding to the characteristic root -1 are given by

$$A - (-1)I X = 0$$

$$\Rightarrow \begin{bmatrix} -8 & 4 & 4 \\ -8 & 4 & 4 \\ -16 & 8 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

-The rank of the coefficient matrix = 1 if the equations have 3-1=2 LI solutions.

: we have
$$-8x_1+4x_2+4x_3=0$$

Let
$$x_2 = k_1$$
 and $x_3 = k_2$; k_1, k_2 are albitrary constitutions.

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} \frac{k_1 + k_2}{2} \\ \frac{k_1 + k_2}{2} \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{K_1}{2} + \frac{K_2}{2} \end{bmatrix}$$

$$= k_1 \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} x_2 \\ 0 \\ 1 \end{bmatrix}$$

Here
$$N_1 = \begin{bmatrix} y_2 \\ i \end{bmatrix}$$
 & $N_2 = \begin{bmatrix} y_1 \\ i \end{bmatrix}$ are Li vectors of A corresponding to characteristic root -1.

€

. The geometric multiplicity of eigen value is equal to its algebraic multiplicitys Now the eigen vectors x of A corresponding to the eigen value 3 are given by (A-3I) X=0 $\Rightarrow \begin{bmatrix} -12 & 4 & 4 \\ -8 & 0 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ -16 & 8 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ ~ \\ \begin{align*} & 4 & -4 & 0 \\ -8 & 0 & 4 \\ -46 & 8 & 4 \end{align*} \begin{align*} & 2 & 0 \\ 2 & 0 & \\ -16 & 8 & 4 \end{align*} \end{align*} $\begin{bmatrix} 4 & -4 & 0 \\ 0 & -8 & 4 \end{bmatrix} \begin{bmatrix} 24 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} R_3 \longrightarrow R_3 + 4R_4$ 0 -8 4 0 m = 0 The rank of the coefficient motoix = 2 :- The equiations have 3-2=1 LI solution we have 42, -42 =0 and 232 = 33 Take 93=2 is an eigen vector of A corresponding to the eigen value 3. The geometric multiplicity of eigen value 3 is I and its algebraic multiplicity is also to

Since the geometric multiplicity of each eigen value of A is equal to its alabatic multip : A & similar to diagonal motifice. : A is diagonalizable motivit.

$$= \begin{bmatrix} \frac{1}{1} & \frac{1}{2} \\ \frac{1}{0} & \frac{1}{2} \end{bmatrix}$$

The Coloumns of p are Li eigen vectors of A corvesponding to the eigenvalues

The matrix p will transform A to diagon -1,-1,3 respectively. form Dis given by the relation PAP= D.

The transforming matrix $p = \int_{\lambda}^{\infty} h_{2}$

s. Show that the medrix

similar to a diagonal matrix. Also fluid the transforming matrix and

diagonal motoriz.

Show that the following matrices are not gruitar to dragonal matrices:

(i)
$$\begin{bmatrix} 2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 2 & -1 & 1 \\ 2 & 2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$

is not similar to a diagonal

Orthogonal vectors:

Inner product space:

Let V(F) be a vector space, where f is the field of real numbers or the field of complex numbers. An inner product on v is a function f: VXV -> F such that

- (i) f(x, B) = f(B, d) where f(B, d) is the conjugate of the complex number fix, a).
- (i) f(x,x)>0 for x +0 and f(x,x) = 0 for x = 0
- (m) f(ax+bp, r) = a f(a, r) + bf(p, r)

where & B, Y, O EV and a,b,0 EF.

The vector space V(F), in which an inner produ 'f' defined as above, is called inner product space and is denoted by (V,f).

Note: En practice f(a, B) where is EV is denoted by (diB) or (diB) or (d/B) Here after we use (XIB) for f(d,B)

f(x,B) = (x,B), the above three conditions of the inner product are written as follows.

- (1) (4,13) = (B,4)
- (ii) (x,x) >0 for of \$\ifti and (x,x) = 0 for \$\ift = 0\$
- $(ad+b\beta,r) = a(d_1r)+b(\beta,r)$. Čűs
- -> If V(f) is an inverproduct space and f is the field of real numbers then V(F) is called Euclidean space.
- > 2f VCF) is an inner product space and Fisthe field of complex numbers then V(f) is called unitary space.

Some important observations:

- (1) For off and $\overline{0} \in V \Rightarrow (\overline{0}, \overline{0}) = 0$
- (2) for act and x,YEV \Rightarrow (ax, y) = a(x, y)
- for $\alpha, \beta, T \in V \Rightarrow (\alpha + \beta, T) = (\alpha, T) + (\beta, T)$
- H) for $0, \beta \in V \Rightarrow (\bar{0}, \beta) = (0\alpha, \beta) = 0(\alpha, \beta) = 0$

problems

> If d= (a1, a2, a3), B=(b1, b2, b3) are elements of

a vector space 183 - then prove that

(18) aist a bit 90 by defines an inner prode

(ησι.)

(α,β) = a,b, + a,b, + a,b,

= b,a, + b, a, + b, a, + b, a, + a, a, a, a, a, b, b, b, b)

bia, + b2a2 + b3 93.

$$= (\beta, \alpha) = (\beta, \alpha)$$

(y) (a) = a, a, + a29= = a, a3

If d=(a1, a2, a3) = (a0,0)

then atteast one of a, az, az is not zero.

&f d= (a, a, a,) = (0,0,0)

then $a_1 = a_2 = a_3 = 0$.

:. (d,d) = aitay+a3

(iii) for a, b = iR and d, B, r = iR3.

=> ax+bB = a(a1,92,03)+b(b1,b2,b3)

= (a91, a92, a93) + (66, 662, 662) = (aa, 4bb,, aa+bb2, ag2+bb3)

(ax+613, r) = (aa, + bb) (1+(aq_+bb2) (2+(aq3+bb)) (3.

THE THE PROPERTY OF THE PROPER

THE PROPERTY OF THE PROPERTY O

= aa, c, + bb, c, + aa, c, + bb, 6, + aa, c, + bb
= (a a, G+ a a2 (2+a a3 (3)+(bb, G+bb) (2+bb)
$= a(a_1c_1 + a_2(2+a_3(3) + b(b_1c_1 + b_2c_2 + b_3c_3)$
$= a(\alpha, r) + b(\beta, r) -$
The product (x, B) = a, b, +a, b, +a, b,
inner product on R3.
inner product on R. IR3 is an Enner product space with the
-
Note[] The inner product of delp is (alled the (a, B) = a, b, + a, b, + a, b, is called the
this Is called the standard
B= (b, b2, b)
two vectors of the vectors
(x, B) = a, b, + a, b, + + anbin la
the standard inner product
[3]. If d=(a1,a2, an) and f=(b,b2bn)
1 1 10 0000
When I'll the free "
then (d, B) = a, b, + 92 b2+ + + + + + + + + + + + + + + + +
Et is called standard inver product on vices.
t trop vectors:
Let X and Y be two complex n-vectors
such that $x = \begin{bmatrix} x_1 \\ y \end{bmatrix}$ e) $x = \begin{bmatrix} y_1 \\ y \end{bmatrix}$

Then the inner product of x & y denoted by (x, y) is defined as

$$(x, Y) = \overline{x_1} y_1 + \overline{x_2} y_2 + \cdots + \overline{x_n} y_n$$

$$= x^{\theta} y$$

$$= \left[\overline{x_1}, \overline{x_2}, - \cdots \overline{x_n} \right]$$

$$= x^{\theta} y$$

$$= \left[\overline{x_1}, \overline{x_2}, - \cdots \overline{x_n} \right]$$

$$= x^{\theta} y$$

$$= \left[x_1 + x_2 + \cdots + x_n \right]$$

$$= x^{\theta} y$$

$$= \left[x_1 + x_2 + \cdots + x_n \right]$$

$$= x^{\theta} y$$

$$= \left[x_1 + x_2 + \cdots + x_n \right]$$

$$= x^{\theta} y$$

$$= \left[x_1 + x_2 + \cdots + x_n \right]$$

$$= x^{\theta} y$$

$$= \left[x_1 + x_2 + \cdots + x_n \right]$$

$$= x^{\theta} y$$

$$= \left[x_1 + x_2 + \cdots + x_n \right]$$

$$= x^{\theta} y$$

$$= \left[x_1 + x_2 + \cdots + x_n \right]$$

$$= x^{\theta} y$$

$$= \left[x_1 + x_2 + \cdots + x_n \right]$$

$$= x^{\theta} y$$

$$= \left[x_1 + x_2 + \cdots + x_n \right]$$

$$= x^{\theta} y$$

$$= \left[x_1 + x_2 + \cdots + x_n \right]$$

$$= x^{\theta} y$$

= 2141+ 2242+ -- + 2n4n

> If x and y are real n-vectors written as coloumn vectors then their innerproduct of deflued as

 $(x, y) = x^T Y = 3_1 y_1 + 3_2 y_2 + \cdots + 3_n y_n.$

If x and y are complex n-vectors written as row rectors then

$$(x, y) = x y^{\frac{1}{2}} + 3x \sqrt{2} + \cdots + 3n \sqrt{3}n$$

Norm ox length of a rector:

Let x be a complex n-vector. The norm (or length) of x dended by 11x11 is defined as the tre square root of (x,x). i.e, Norm or length of x = ||x||

i.e, Norm or length of
$$x = ||x||$$

= $\sqrt{(x_i x)}$
= $\sqrt{x^{\theta} x}$

0 0

```
Unit vector:

If ||x||=1 then x is called a unit vector and it said to be normalized.

A unit vector is sometimes also called a normal vector.

A normalize x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}

||x|| = \sqrt{(x_1 x_1)}
= \sqrt{x_1 x_2}
```

which is the required unit vector.

Orthogonal vectors:

Let x and y be two complex n-vectors

then x is said to be orthogonal to y

if (x,y)=0

i.e, x⁰y=0

€

Orthogonally Similar matrices: Let A and B be square matrices of order n. Then B is said to be orthogonally singles to A if I an orthogonal matrix P such the B= PAP. It A and B are orthogonally similar, then they are similar also. + Every real symmetric matrix is orthogonally similar to a diagonal matrix with seal dements. A real Symmetric matrix of order 'n' has n mutually orthogonal real eigen vectors Any two eigen vectors corresponding to two distinct eigen values of real symmetric matrix are orthogonal. folh: Let X1, X2 be two eigen vectors corresponding to two distinct eigen values , , , , 2 of real Symmetric matrix Here 2, 22 are real and x1 x2 are real vectors. MOD $\lambda_1 x_2 x_1 = x_2 (\lambda_1 x_1)_{-1}$ = x2 (AX1) (by (1)) $=(X_{\lambda}^{T}A)X_{1}$ $=(X_{\lambda}^{T}A^{T})X_{\lambda}$ $= (A \times_2)^T \times_1$

= $(\lambda_2 \times_2)^T \times_1$ (by 0)

 $(\lambda_1 - \lambda_2) \times_2^T \times_1 = 0$

 $\Rightarrow x_2^{7} x_1 = 0 \quad (\lambda_1 & \lambda_2 \text{ are distinct})$ $\Rightarrow \lambda_1 - \lambda_2 \neq 0$ $- x_1 & x_2 \text{ are orthogonal}$

r If λ occurs enactly primes as an eigen.

value of a real symmetric matrix A then

A has p but not more than p mutually

orthogonal real eigen nectors corresponding

working rule for othogonal reduction of a real symmetric matrix:

- Suppose A is a real symmetric matrix.
- First we find the Characteristic roots of A.

If his characteristic root of A having pas its algebraic multiplicity then we shall able to find an ortsonormal set of p. characteristic vectors of A corresponding to this characteristic root-

we should repeat this process for each characteristic most of A.

- Since the Characteristic vectors corresponding to two distinct characteristic roots of a lead symmetric matrix are mutually orthogonal. Symmetric matrix are mutually orthogonal benefore, the n Characteristic vectors found in this manner constitute an orthonormal set.

The matrix P, having as its coloumns the members of the orthonormal set obtained above, is orthogonal and is such that PAP=D (Diagonal metric

$$\begin{array}{c} \Rightarrow \begin{bmatrix} -13 & 2 & 3 \\ 2 & -10 & 6 \\ 3 & 6 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{array}{c} 11 & 16 & -11 \\ 2 & -10 & 6 \\ 3 & 6 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{array}{c} 2 & -10 & 6 \\ 3 & 6 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{array}{c} 2 & -10 & 6 \\ 3 & 6 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{array}{c} 2 & -10 & 6 \\ 3 & 6 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ x_4 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \\ x_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_5 \\ x$$

Since the Characteristic vectors corresponding to the two distinct characteristic roots of the Real symmetric matrix are mutually orthogone NOW let us normalize the vectors X1, X2 and X3 for this:

$$||x_1|| = ||S||$$

$$||x_2|| = ||T_0|| \text{ and } ||x_3|| = ||T_0|| + ||T_0|| +$$

$$\dot{x}_{1} = \frac{x_{1}}{\sqrt{5}} = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \\
= \begin{bmatrix} -2\sqrt{5} \\ \sqrt{5} \end{bmatrix} \\
\dot{x}_{2} = \frac{x_{2}}{\sqrt{10}} = \frac{1}{\sqrt{10}} \begin{bmatrix} -3 \\ 0 \end{bmatrix} = \begin{bmatrix} -3/\sqrt{5} \\ 0 \end{bmatrix} \\
\dot{x}_{1} = \frac{1}{\sqrt{5}} \begin{bmatrix} -3 \\ 0 \end{bmatrix} = \begin{bmatrix} -3/\sqrt{5} \\ 0 \end{bmatrix}$$

$$x_{2} = \frac{\lambda_{2}}{\sqrt{10}} = \frac{\lambda_{2}}{\sqrt{10}} = \frac{\lambda_{2}}{\sqrt{10}}$$

$$x_{3} = \frac{\lambda_{2}}{\sqrt{10}} = \frac{\lambda_{3}}{\sqrt{10}} = \frac{\lambda_{4}}{\sqrt{10}}$$

and
$$\hat{X}_3 = \frac{X_2}{\sqrt{14}/3}$$

$$= \frac{3}{\sqrt{14}} \times_3 = \frac{3}{\sqrt{14}} \begin{bmatrix} y_3 \\ 2/3 \\ 1 \end{bmatrix} = \begin{bmatrix} y_{11} \\ 2/\sqrt{14} \\ 3/\sqrt{14} \end{bmatrix}$$

Let
$$P = \begin{bmatrix} \hat{x}_1 & \hat{x}_2 & \hat{x}_3 \end{bmatrix}$$

$$= \begin{bmatrix} -4\sqrt{5} & -4\sqrt{50} & 2\sqrt{514} \\ \sqrt{15} & 0 & 2\sqrt{514} \\ 0 & \sqrt{50} & 3\sqrt{514} \end{bmatrix}$$

which is the required orthogonal matrix

$$p^{T}p = I$$
and pis non-singular-
$$p^{T} = p^{T}$$

$$\Rightarrow A = PDP^{T}$$

$$\Rightarrow A = PDP^{T$$

Unitarily Similar matrices:

Jhen B-is hald to be unitarily similar to A if I a unitary matrix p such that B=PAP.

If A and B are unitarily similar, then they are similar also.

> Every Hermitian matrix is unitabily Similar to a diagonal matrix

orthogonal eigen vectors in the complex vectorspace Vn.

-> Any two eigen vectors corresponding to two distinct eigen values of a Hernitian motorix are orthogonal.

> If I occurs exactly p times as an eigenval of Hermitian matrix A then A has p but not more than P mutually elgen rectors corresponding to A.

Problem:

Determine the diagonal matrix unitarily similar to the Hernittan matrix A= 2

obtaining also the transformation matorix.

Sol": Given Hernitian motrix A= 2

Now the characteristic equation of A

is
$$|A-\lambda I| = 0$$

$$\Rightarrow |2-\lambda \quad |-2i| = 0$$

$$|+2i \quad -2-\lambda|$$

>> x2-9=0

 $\Rightarrow \lambda = -3,3$

.. The Characteristic mosts of A one -3,3,

The algebraic multiplicity of characteristic

root -3 is

: There will be one 12 eiges rector.

The Characteristic vector X corresponding to

this eigen value is (A-(-3)I)X=0.

$$\Rightarrow \begin{bmatrix} 5 & 1-2i \\ 1+2i & 1 \end{bmatrix} \begin{bmatrix} 3 \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Join Telegram for More Opdate: - https://t.me/upsc_pdf

$$\Rightarrow 5^{2} + (1-2i), y = 0$$
 $(1+2i)^{2} + y = 0$
 $\Rightarrow x = (-2i), y = -5$
 $x_{1} = \begin{bmatrix} 1-2i \\ -5 \end{bmatrix}$
Similarly Corresponding to $\lambda = 3$ the eigen vertor

 $x_{2} = \begin{bmatrix} 5 \\ 1+2i \end{bmatrix}$
 $x_{3} = \begin{bmatrix} 5 \\ 1+2i \end{bmatrix}$
 $x_{4} = \begin{bmatrix} 5 \\ 1+2i \end{bmatrix}$
 $x_{5} = \begin{bmatrix} 5 \\ 1+2i \end{bmatrix}$
 $x_{5} = \begin{bmatrix} 5 \\ 1+2i \end{bmatrix}$

.. X, and X2 are Characteristic vectors corresponding to Characteristic values -3, 3. Since the Characteristic vectors corresponding to the two distinct Characteristic roots of the Hernitian matrix are mutually orthogonal.

NOW let us normalize the vectors X, & N2: for this.

$$||x||| = \sqrt{|1-2i|^2 + |-5|^2} = \sqrt{5+25} = \sqrt{30}$$

$$\frac{1}{2} = \frac{1}{12} =$$

Let
$$P = \begin{bmatrix} \hat{x}_1 - \hat{x}_2 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1-2i}{130} & 5/130 \\ -5/130 & \frac{1+2i}{130} \end{bmatrix} = \begin{bmatrix} 1-2i \\ -5/130 & \frac{1+2i}{130} \end{bmatrix}$$
which is the required unitary maximum

Since pis unitary matrix. : pop = I.

> and P is non-singular. P0= P1

$$\vec{p} = \vec{p} = \frac{1}{\sqrt{30}} \begin{bmatrix} 1+2i & -5 \\ 5 & 1-2i \end{bmatrix}$$

since every	Hermitian ~	natrix is	unitavily.
	a diagonal		

$$\vec{P} AP = \begin{bmatrix} -3 & 0 \\ 0 & 3 \end{bmatrix} = \lambda (\alpha (-3,3) = D$$

-the Hermitian matrix [16]

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_p

Join Tologram for More Undate - https://t.ma/unsc..nd

https://upscpdf.com

Maria San San San Care and Anna San

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pdf

https://t.me/upsc_pdf https://upscpdf.com https://t.me/upsc_pd