• IP addresses and host names

• DNS architecture

• DNS requests/replies

DNS process

The Domain Name System

Lecture given by Emmanuel Lochin

ISAE-SUPAERO

Original slides from A. Carzaniga (Univ. Lugano) $\sf Extended/modified$ by E. Lochin (ISAE-SUPAERO) with author permission

Textbook Chap. #2 Section 2.5

Lecture given by Emmanuel Lochin The Domain Name System ISAE-SUPAERO 1/17 Lecture given by Emmanuel Lochin The Domain Name System ISAE-SUPAERO 2/17 End Systems End Systems

Internet applications involve end system communication

Internet applications involve end system communication

Lecture given by Emmanuel Lochin	The Domain Name System	ISAE-SUPAERO	3/17	Lecture given by Emmanuel Lochin	The Domain Name System	ISAE-SUPAERO	3/17
End Systems				End Systems			

Internet applications involve end system communication

Internet applications involve end system communication

How does one end system address another end system?

Lecture given by Emmanuel Lochin The Domain Name System ISAE-SUPAERO 3/17 Lecture given by Emmanuel Lochin The Domain Name System ISAE-SUPAERO 3/17

IP Addresses

Host Names

- An end system is identified and addressed by its IP address
 - ▶ 32 bits (4 bytes) in IPv4
 - ► e.g., 192.93.254.254
 - ▶ 128 bits (16 bytes) in IPv6
 - ► e.g., fe80 : :211 :43ff :fecd :30f5/64
- Advantages
 - ▶ computers (e.g., routers) are good at processing bits
 - especially in small packs of a size that is a power of two
- Disadvantages
 - ► not practical for use by **people**
 - ► i.e., not mnemonic
 - ► e.g., "look it up on 64.233.183.104!"

- Goal : help the human users of the Internet
 - ▶ human-readable, mnemonic addresses, aliases
- Solution : domain name system (DNS)
 - ► host names
 - ► e.g., www.google.com
- $\bullet\,$ Primary function of the domain name system

 $name \rightarrow IP \ address$

maps a name to an $\ensuremath{\mathsf{IP}}$ address

mmanuel Jochin The Domain Name System ISAE-SUPAERO 4/17 Lecture given by Emmanuel Jochin The Domain Name System ISAE-SUPAERO 5/1

Host Names Host Names

- E.g., www.disc.isae.fr
- Hierarchical name space
- Top-level domain

- E.g., www.disc.isae.fr
- Hierarchical name space
- Top-level domain

Lecture given by Emmanuel Lochii

The Domain Name System

ISAE-SUPAERO

Lecture given by Emmanuel Loch

The Domain Name System

ISAE SUIDAEDO 6 / 17

Host Names

- E.g., www.disc.isae.fr
- Hierarchical name space
- Top-level domain

- **Host Names**
 - E.g., www.disc.isae.fr
 - Hierarchical name space
 - Top-level domain, ...

Lecture given by Emmanuel Lochin

The Domain Name System

ISAE-SUPAERO

6 / 17

Lecture given by Emmanuel Lochin

Architecture of DNS

The Domain Name System

ISAE-SUPAERO 6 / 17

Host Names

• E.g. www.disc.isae.fr

- Hierarchical name space
- Top-level domain, ...

- Hierarchical architecture that mirrors the hierarchical structure of the namespace
 - .com .edu .fr
 DNS servers DNS servers

 .switch.fr .isae.fr
 DNS server DNS server

 disc.isae.fr
 DNS server

Lecture given by Emmanuel Lochin

The Domain Name System

ISAE-SUPAERO

ecture given by Emmanuel Lochi

How DNS Works

The Domain Name System

SAE-SUPAERO 7 / 17

DNS Architecture

- Root servers: 13 "root" DNS servers know where the top-level servers are (labeled A through M)
 - ► see http://www.root-servers.org
- Top-level domain servers: each one is associated with a top-level domain (e.g., .com, .edu, .fr, .org, .tv)
- Authoritative servers: for each domain, there is an authoritative DNS server that holds the map of publicly-accessible hosts within that domain
- Most root "servers" as well as servers at lower levels are themselves implemented by a distributed set of machines

 Hierarchical architecture that mirrors the hierarchical structure of the namespace

root

How DNS Works **How DNS Works**

• Hierarchical architecture that mirrors the hierarchical structure of the namespace

• Hierarchical architecture that mirrors the hierarchical structure of the namespace

How DNS Works

How DNS Works

• Hierarchical architecture that mirrors the hierarchical structure of the

• Hierarchical architecture that mirrors the hierarchical structure of the

The Domain Name System

ISAE-SUPAERO

Lecture given by Emmanuel Lochin

The Domain Name System

How DNS Works

How DNS Works

• Hierarchical architecture that mirrors the hierarchical structure of the namespace

• Hierarchical architecture that mirrors the hierarchical structure of the namespace

Lecture given by Emmanuel Loch

How DNS Works

How DNS Works

• Hierarchical architecture that mirrors the hierarchical structure of the namespace

• Hierarchical architecture that mirrors the hierarchical structure of the namespace

How DNS Works How DNS Works

Lecture given by Emmanuel Lochin The Domain Name System ISAE-SUPAERO 10 / 17 Lecture given by Emmanuel Lochin The Domain Name System ISAE-SUPAERO 10 / 17

application

www.disc.isae.fr?

isae.fr

DNS server

disc.isae.fr

DNS server

.isae.fr

DNS server

disc.isae.fr

DNS server

application

www.disc.isae.fr?

• A client/server can request a recursive query

- A lot of messages just to figure out where to connect to!
 - ► DNS can indeed be a major bottleneck for some applications (typically, the Web)
 - ▶ it is also to a large extent a critical point of failure

DNS Caching DNS Features

- Caching is clearly very important, as it can dramatically
 - ► improve the performance of DNS
 - ► reduce the load on the DNS infrastructure
- How does caching work in DNS?
- Same as always
 - \blacktriangleright a DNS server may cache a reply (i.e., the mapping) for a name n
 - ▶ if the server receives a subsequent request for n, it may respond directly with the cached address, even though the server is not the authoritative server for that domain

- DNS is essentially a "directory service" database
- The database contains resource records (RRs)

name	value	type	ttl
www.disc.isae.fr	192.93.254.254	Α	
research.disc.isae.fr	192.93.254.253	Α	

- Name and value have the intuitive meaning
- What about **type**?

Lecture given by Emmanuel Lochin The Domain Name System ISAE-SUPAERO 12/17 Lecture given by Emmanuel Lochin The Domain Name System ISAE-SUPAERO 13/17

DNS Query Types

DNS Query Types (2)

- **A** this is the main mapping $host_name \to address$, so name is a host name and value is its (IP) address
- NS this is a query for a name server, so **name** is a domain name and **value** is the **authoritative name server** for that domain. For example,

name	value	type	ttl
isae.fr	ns.isae.fr	NS	

CNAME this is a query for a canonical name. The canonical name is the "primary" name of a host. A host may have one or more mnemonic aliases. For example,

name	value	type	ttl
www.google.com	www.l.google.com	CNAME	

MX this is a query for the mail exchange server for a given domain, so name is a host or domain name and value is the name of the mail server that handles (incoming) mail for that host or domain. For example,

name	value	type	ttl
mail.isae.fr	spamfilter.renater.fr	MX	

... several other types

Lecture given by Emmanuel Lochin	The Domain Name System	ISAE-SUPAERO	14 / 17	Lecture given by Emmanuel Lochin	The Domain Name System	ISAE-SUPAERO	15 / 17
DNS Protocol				DNS Message Format			

- DNS is a connectionless protocol
- Runs on top of UDP (port 53)
- DNS has query and reply messages
 - since DNS is connectionless, queries and replies are linked by an identifier
- Both queries and replies have the same format
 - ► a DNS message can carry queries and answers

0	31			
identification	flags			
# of queries	# of answers RRs			
# of authority RRs	# of additional RRs			
questions				
answers				
authority				
additional information				

Lecture given by Emmanuel Lochin The Domain Name System ISAE-SUPAERO 16/17 Lecture given by Emmanuel Lochin The Domain Name System ISAE-SUPAERO 17/17