Math 453

Selected Solutions to Assignment 11

Problem 1: Let R be a ring. Show that the following hold in R:

- (1) If $a \in R$, then $0 \cdot a = 0$.
- (2) For all $a \in R$, $(-1) \cdot a = -a$.
- (3) The multiplicative identity 1 is unique.

Solution: Let $a \in R$.

(1) By the definition of additive inverse and the distributive property, respectively, we have

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0.$$

By the additive cancellation property, therefore, we have $0 = a \cdot 0$, as desired.

(2) By part (1) and the definition of additive inverse, respectively, we have

$$0 = 0 \cdot a = (-1+1) \cdot a = (-1) \cdot a + 1 \cdot a$$

By the definition of additive inverse, therefore, we have $(-1) \cdot a = -(1 \cdot a)$, which by definition of multiplicative identity gives us $(-1) \cdot a = -a$, as desired.

(3) Suppose 1 and e are multiplicative identities on R. By definition of multiplicative identity, we have $1 \cdot e = 1$ and $1 \cdot e = e$, so 1 = e. Hence, the multiplicative identity on R is unique.

Problem 2: Show that a finite integral domain is a field.

Solution: Let R be a finite integral domain, and let $a \in R$ be a nonzero element. Define $f_a: R \to R$ by $f_a(r) = ar$ for each $r \in R$. (Note that we are simply defining f_a as a set function without any additional structure; indeed, f_a is **not** a ring homomorphism – why not?) Suppose $f_a(x) = f_a(y)$ for some $x, y \in R$, so ax = ay, so ax - ay = 0, so a(x - y) = 0. Since R is an integral domain and $a \neq 0$, we thus have x - y = 0, so x = y. Hence, f_a is injective. Since R is finite, f_a is surjective; in particular, $1 = f_a(s)$ for some $s \in R$, so as = 1. Thus, a is a unit, so R is a field.

Problem 7: Let R be a ring. Show that there is exactly one ring homomorphism $\phi: \mathbb{Z} \to R$.

Solution: Let R be a ring, and let $\phi : \mathbb{Z} \to R$ be a ring homomorphism. Let $a \in \mathbb{Z}$. If a = 0, then by definition of ring homomorphism, we have

 $\phi(a) = 0_R$, where 0_R is the additive identity on R. If a > 0, then $a = \sum_{i=1}^{|a|} 1$, so again by definition of ring homomorphism

$$\phi(a) = \phi\left(\sum_{i=1}^{|a|} 1\right) = \sum_{i=1}^{|a|} \phi(1) = \sum_{i=1}^{|a|} 1_R,$$

where 1_R is the multiplicative identity on R. Similarly, if a<0, we have $a=-\sum_{i=1}^{|a|}1,$ so

$$\phi(a) = \phi\left(-\sum_{i=1}^{|a|} 1\right) = \sum_{i=1}^{|a|} -\phi(1) = \sum_{i=1}^{|a|} -1_R$$

Hence, the action of ϕ on R is uniquely determined.