

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000319370 A

(43) Date of publication of application: 21.11.00

(51) Int. CI

C08G 63/82 D01F 6/62

(21) Application number: 11132839

(22) Date of filing: 13.05.99

(71) Applicant:

TEIJIN LTD

(72) Inventor:

YAMAMOTO TOMOYOSHI

(54) PRODUCTION OF POLYESTER

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a polyester having satisfactory color tone, capable of manifesting an excellent heat stability in molten state, having improved moldability by carrying out a polycondensation reaction of ethylene glycol ester and/or their low polymer in the presence of a specific catalyst.

SOLUTION: This polyester is obtained by polycondensating (A) ethylene glycol ester of a divalent aromatic carboxylic acid and/or their low polymer in the presence of a catalyst (B) a reaction product of a titanium compound obtained by previously reacting (i) a compound of formula I (R is a C³2 alkyl) and a polyvalent aromatic carboxylic acid (acid anhydride) of formula II (n is 2-4) and (ii) a phosphorus compound of formula III (R is H or a C³1 alkyl; n is 0-3) in a molar ratio of 1/1-1/5. The preferable amount of the component B is 10-40 mmol% in terms of titanium atom based on whole acid components composing the polyester.

COPYRIGHT: (C)2000,JPO

TI (OR) 4

I

Π

(RO) 1-4 P (=O) (OCH1 CH2) 1 -OH

Ш

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-319370 (P2000-319370A)

(43)公開日 平成12年11月21日(2000.11.21)

 (51) Int.Cl.7
 酸別記号
 FI
 デーマコート*(参考)

 C 0 8 G
 63/82
 C 0 8 G
 63/82
 4 J 0 2 9

 D 0 1 F
 6/62
 3 0 6 E
 4 L 0 3 5

審査請求 未請求 請求項の数2 OL (全 6 頁)

弁理士 白井 重隆

(21)出願番号 特願平11-132839 (71)出願人 000003001 帝人株式会社 大阪府大阪市中央区南本町1丁目6番7号 (72)発明者 山本 智義 愛媛県松山市北吉田町77番地 帝人株式会社 社松山事業所内 (74)代理人 100085224

最終頁に続く

(54) 【発明の名称】 ポリエステルの製造方法

(57)【要約】

【課題】 良好な色調を有し、溶融熱安定性に優れ、かつ成形性が改善されたポリエステルの製造方法を提供すること。

【解決手段】 二官能性芳香族カルボン酸のエチレングリコールエステルおよび/またはその低重合体を触媒の存在下重縮合反応させてポリエステルを製造するに際し、該触媒として特定のチタン化合物とリン化合物をモル比1/1~1/5であらかじめ反応させて得られる反応生成物を使用する。

【特許請求の範囲】

【請求項1】 二官能性芳香族カルボン酸のエチレングリコールエステルおよび/またはその低重合体を触媒の存在下に重縮合反応させてポリエステルを製造するに際し、この触媒として、下記一般式(I)で表される化合物(I)と下記一般式(II)で表される芳香族多価カルボン酸またはその無水物(II)とをあらかじめ反応させたチタン化合物と、下記一般式(III)で表されるリン化合物(III)とをモル比1/1~1/5であらかじめ反応させて得られる反応生成物を使用することを特徴とするポリエステルの製造方法。

T i (OR) 4 · · · · · (I)

(式中、Rは炭素数2以上のアルキル基を示す。) 【化1】

(式中、nは2~4の整数を表す。) (RO)₃₋₁ P (=O) (OCH₂ CH₃)₁ -OH ・・・・・ (III)

(式中、Rは水素原子または炭素数1以上のアルキル基、nは0~3の整数を示す。)

【請求項2】 上記反応生成物の添加量が、ポリエステルを構成する全酸成分を基準として、チタン原子換算で10~40mmol%である請求項1記載のポリエステルの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、良好な色調を有し、溶融熱安定性に優れ、かつ、成形性が改善されたポリエステルの製造方法に関する。

[0002]

【従来の技術】二官能性カルボン酸を酸成分とし、エチ レングリコールをグリコール成分とするポリエステル、 特にポリエチレンテレフタレートおよびポリエチレンナ フタレートは、その機械的、物理的、化学的性能が優れ ているため、繊維、フィルム、その他の成形物に広く利 用されている。上記ポリエステル、例えば、ポリエチレ ンテレフタレートは、通常、テレフタル酸とエチレング リコールとを直接エステル化反応させるか、テレフタル 酸ジメチルのごときテレフタル酸の低級アルキルエステ ルとエチレングリコールとをエステル交換反応させる か、またはテレフタル酸とエチレンオキサイドとを反応 させるかして、テレフタル酸のグリコールエステルおよ び/またはその低重合体を生成させ、次いでこのテレフ タル酸のグリコールエステルおよび/またはその低重合 体を重合触媒の存在下で減圧加熱して所定の重合度にな るまで重縮合反応させることによって製造されている。 この重縮合反応では、使用する触媒の種類によっては、

反応速度および得られるポリエステルの品質が大きく左右される。

【0003】従来、ポリエチレンテレフタレートの重縮 合触媒として、アンチモン化合物が、優れた重縮合触媒 性能を有し、色調の良好なポリエステルが得られるなど の理由から、最も広く使用されている。しかしながら、 アンチモン化合物を触媒として使用した場合、得られる ポリエステルを長時間にわたって紡糸すると、口金孔周 辺に異物(以下「口金異物」と称す)が付着堆積し、溶 10 融ポリマー流れの曲がり現象(ベンディング)が発生 し、これが原因となって、紡糸、延伸工程で毛羽や断糸 などを発生するといった成形性の問題がある。一方、ア ンチモン化合物以外の触媒として、チタンテトラブトキ シド (TBT) のようなチタン化合物が知られており、 該チタン化合物を使用した場合、得られるポリエステル は、上記のような成形性の問題は発生しないものの、ポ リエステル自身が黄色く着色し、溶融熱安定性も悪いと いった問題がある。

【0004】上記課題のうち、着色の問題を改善するため、特公昭48-2229号公報には水酸化チタンを使用する方法が示されており、また特公昭47-26597号公報にはαーチタン酸を使用することが示されている。しかしながら、前者の方法では水酸化チタンの粉末化が容易でなく、一方、後者の方法ではαーチタン酸が変質し易いなど、その保存、取り扱いが容易でなく、いずれも工業的に採用するには適当な方法ではない。また、特公昭59-46258号公報には、チタンテトラブトキシドとトリメリット酸とを反応させた生成物を用する方法が示されている。確かに、この方法によれば、色調は良くなり、さらに溶融熱安定性もある程度は向上しているが、両者ともまだ十分なものではなく、さらなる改善が望まれている。

[0005]

30

【発明が解決しようとする課題】本発明は、上記従来技術を背景になされたもので、その目的は、良好な色調を有し、溶融熱安定性に優れ、かつ、成形性が改善されたポリエステルの製造方法を提供することにある。

[0006]

【課題を解決するための手段】本発明は、二官能性芳香族カルボン酸のエチレングリコールエステルおよび/またはその低重合体を触媒の存在下に重縮合反応させてポリエステルを製造するに際し、この触媒として、下記一般式(I)で表される芳香族多価カルボン酸またはその無水物(I)(以下「化合物(II)」ともいう)とをあらかじめ反応させたチタン化合物と、下記一般式(III)で表されるリン化合物(III)とをモル比1/1~1/5であらかじめ反応させて得られる反応生成物を使用することを特徴とするポリエステルの製造方法に関する。

50 T i (OR) 4 · · · · · (I)

(式中、Rは炭素数2以上のアルキル基を示す。) [0007]

【化2】

【0008】 (式中、nは2~4の整数を表す。) $(RO)_{3-n} P (=O) (OCH_2 CH_2)_n -OH$ · · · · · (III)

(式中、Rは水素原子または炭素数1以上のアルキル 基、nは0~3の整数を示す。)

[0009]

【発明の実施の形態】本発明で使用する二官能性芳香族 カルボン酸のエチレングリコールエステルおよび/また その低重合体における二官能性芳香族カルボン酸として は、例えば、テレフタル酸、イソフタル酸、ナフタレン ジカルボン酸、ジフェニルジカルボン酸、ジフェニルス ルホンジカルボン酸、ジフェニルメタンジカルボン酸、 ジフェニルエーテルジカルボン酸、ジフェノキシエタン ジカルボン酸、β-ヒドロキシエトキシ安息香酸などが 挙げられ、特にテレフタル酸、ナフタレンジカルボン酸 が好ましい。

【0010】上記の二官能性芳香族カルボン酸のエチレ ングリコールエステルおよび/またはその低重合体は、 いかなる方法によって製造されたものであってもよい。 通常、二官能性芳香族カルボン酸またはそのエステル形 成性誘導体と、エチレングリコールまたはそのエステル 形成性誘導体とを、加熱反応させることによって製造さ れる。例えば、ポリエチレンテレフタレートの原料であ るテレフタル酸のエチレングリコールエステルおよび/ またはその低重合体について説明すると、テレフタル酸 とエチレングリコールとを直接エステル化反応させる か、テレフタル酸の低級アルキルエステルとエチレング リコールとをエステル交換反応させるか、またはテレフ タル酸にエチレンオキサイドを付加反応させる方法が一 般に採用される。

【0011】なお、上記の二官能性芳香族カルボン酸の エチレングリコールエステルおよび/またはその低重合 体には、本発明の効果が実質的に損なわれない範囲内 で、具体的には、全酸成分を基準として10モル%以 下、好ましくは5モル%以下の範囲で共重合可能な他成 分が含まれていてもよい。好ましく用いられる他成分と しては、酸成分として、例えば、アジピン酸、セバシン 酸、1,4-シクロヘキサンジカルボン酸などの脂肪 族、脂環族の二官能性ジカルボン酸など、グリコール成 分として、例えば、C3以上のアルキレングリコール、 1, 4-シクロヘキサンジメタノール、ネオペンチルグ リコール、ビスフェノールA、ビスフェノールSの如き キシアルキレングリコールなど、ヒドロキシカルボン酸 として、例えば、β-ヒドロキシエトキシ安息香酸、p ーオキシ安息香酸などが挙げられる。

【0012】本発明では、前述の二官能性芳香族カルボ ン酸のエチレングリコールエステルおよび/またはその 低重合体を、触媒の存在下で重縮合反応させてポリエス テルとする。重縮合反応の際には、上記触媒として上記 一般式(I)で表される化合物(I)と上記一般式(I 1) で表される化合物(11) とをあらかじめ反応させた 10 チタン化合物と、上記一般式 (111)で表される特定の構 造を有するリン化合物 (III)とをモル比1/1~1/5 であらかじめ反応させて得られる反応生成物を用いるこ とが肝要であり、これにより良好な色調を有し、同時に 溶融熱安定性にも優れたポリエステルを製造することが できる。

【0013】化合物(I)である、アルキル基の炭素数 が2以上のチタンアルコキサイドとしては、例えば、チ タンテトラブトキシド、チタンテトライソプロポキシ ド、チタンテトラプロポキシド、チタンテトラエトキシ ドなどのチタンテトラアルコキシドや、オクタアルキル トリチタネート、ヘキサアルキルジチタネートなどを挙 げることができ、なかでも上記のチタンテトラアルコキ シドが好ましく、特にチタンテトラブトキシド(TB T) が好ましい。

【0014】また、上記化合物(I)(チタンアルコキ

サイド)と反応させる上記化合物 (11) としては、例え ば、フタル酸、トリメリット酸、トリメシン酸、ヘミメ リット酸、ピロメリット酸およびこれらの無水物が挙げ られ、なかでもトリメリット酸が好ましく用いられる。 【0015】化合物(I)であるチタンアルコキサイド 化合物と上記化合物(II)とを反応させる場合には、溶 媒に、化合物(II)の一部または全部を溶解し、これに 化合物(I) (チタンアルコキサイド化合物)を滴下 し、0℃~200℃の温度で30分以上反応させればよ い。この際の反応圧力は特に制限はなく、常圧で充分で ある。この際、使用する触媒としては、化合物(II)の 一部または全部を溶解し得るものであれば任意に使用で

きるが、特にエタノール、エチレングリコール、ベンゼ

ン、キシレンなどが好ましい。

【0016】この反応における化合物(I)(チタンア ルコキサイド化合物)と化合物(II)とのモル比は広い 範囲をとることができるが、化合物(I) (チタンアル コキサイド化合物)があまりに多いと、得られるチタン 化合物から調製される反応生成物を触媒として製造され たポリエステルの色調が悪化したり、軟化点が低下した りする傾向がある。一方、化合物(I)(チタンアルコ キサイド化合物)があまりに少なくなると、得られるチ タン化合物から調製される反応生成物を触媒とした重縮 合反応が進みにくくなる傾向がある。したがって、化合 脂肪族、脂環族、芳香族のジオール化合物およびポリオ 50 物 (I) (チタンアルコキサイド化合物) 1 モルに対し

30

40

.5

て、化合物(II)を0.5~2.5モル、好ましくは1.0~2.0モルの割合で反応させるのが望ましい。このようにして得られる芳香族多価カルボン酸チタンであるチタン化合物は、そのまま使用しても、アセトンなどによって再結精製して使用してもよい。

【0017】本発明においては、上記化合物(I)と化合物(II)とをあらかじめ反応させて得られるチタン化合物と、さらに上記一般式(III)で表されるリン化合物(III)との反応生成物を触媒として使用する。

【0018】上記一般式 (III)で表されるリン化合物 (III)は、下記一般式 (IV) で表されるリン化合物 (IV) をエチレングリコールと共に加熱反応させ、生成するアルコールを系外に除去することによって得られる。 (RO) 3 P=O ・・・・・ (IV)

(式中、Rは、水素原子または炭素数1以上のアルキル 基を示す。)

【0019】以上に説明したチタン化合物と上記一般式 (III)で表されるリン化合物 (III)とを溶媒中で反応させることにより、本発明の反応生成物が得られる。溶媒については、どちらの化合物をも溶解することができる溶媒であれば特に限定されないが、目的とするポリエステルのグリコール成分の溶液中で反応させることが望ましい。また、この反応の際、チタン化合物/リン化合物 (III)のモル比は1/1~1/5、好ましくは1/1.5~1/4.5、さらに好ましくは1/2~1/4の範囲である。モル比が1/1を超えると、本発明の色相と耐熱性向上効果が小さくなる。一方、1/5未満では、重合反応が充分に進行し難くなる傾向がある。該チタン化合物とリン化合物 (III)との反応は、通常の条件下で反応を行うことができるが、80℃以上で30分以上加熱する条件が、反応が確実に進むために好ましい。

【0020】本発明において、ポリエステルを製造する際の、触媒として添加される上記反応生成物の添加時期は、二官能性芳香族カルボン酸のエチレングリコールエステルおよび/またはその低重合体の重縮合反応が開始する初期の段階までであれば任意の段階でよい。また、その際の上記反応生成物(触媒)の添加量は、ポリエステルを構成する全酸成分に対して、チタン原子換算で10~40mmo1%、好ましくは15~30mmo1%の範囲が好ましい。10mmo1%未満であると、充分な重縮合反応速度が得られず、一方、40mmo1%を超えると、それ以上の色調改善効果が発現せずロスとなるだけである。また、上記反応生成物(触媒)の添加方法は、従来公知の任意の方法を採用することができる。

【0021】なお、必要に応じてトリメチルホスフェートなどの安定剤を任意の段階で加えてもよく、酸化防止剤、紫外線吸収剤、難燃剤、蛍光増白剤、艶消剤、着色剤、消泡剤その他の添加剤などを配合してもよい。

[0022]

【実施例】以下、実施例で本発明を具体的に説明する

が、本発明はこの実施例に限定されるものではない。なお、実施例中の部および%は、特別な記載がない限り重量部および重量%を表し、また各測定値は下記の方法にしたがった。

【0023】(1) チタン含量

反応によって得られた反応生成物(触媒)中のチタン 康は、リガク社製蛍光 X 線測定装置 3 2 7 0 で測定した。

(2)固有粘度

の ポリマーの固有粘度は、35℃のオルソクロロフェノール溶液で測定した値から求めた。単位は、d1/gである。

(3) 色調(L値およびb値)

得られたポリマーをブレート状に成形し、140℃、2時間乾燥結晶化処理後、ブレート表面の色調をハンター型色差計を用いて測定し、ハンターのL値およびb値を得た。L値は明度を示し数値が大きいほど明度が高いことを示し、b値はその値が大きいほど黄色の度合いが大きいことを示す。

【0024】(4)溶融熱安定性(主鎖切断数)ポリエステルペレットを外形10mm×内径8mm×長さ250mmのガラス試験管に入れ、窒素雰囲気下で290℃のバス中に15分間浸漬し、試験前後の固有粘度差より、ポリエステルポリマー1トンあたりのポリエステル主鎖の切断数(当量)を求めた。主鎖切断数(eq./ton)は下記式より求められる。

主鎖切断成数 $(eq. /ton) = \{[IV_1 / (3.07 \times 10^{-4})]^{-1.30} - [IV_0 / (3.07 \times 10^{-4})]^{-1.30} + \times 10^{-6}$

(ただし、I Vo は290℃熱処理前の固有粘度、I V 1 は290℃熱処理後の固有粘度を示す。)

【0025】(5)成形性(紡糸口金異物高さ)成形性の指標として、得られたポリエステルをチップとなし、これを290℃で溶融し、孔径0.15mm ø、孔数12個の紡糸口金から吐出し、600m/分で2日間紡糸し、口金異物の高さを測定した。この高さが大きいほど、成形性が悪いことを示す。

【0026】参考例1 (触媒の調製)

エチレングリコール2.5 部に無水トリメリット酸0.8 部を溶解したのち、チタンテトラプトキシド(TBT)0.7 部(無水トリメリット酸に対して1/2モル)を滴下し、空気中常圧下80℃に保持して60分間反応熟成させた。その後、常温に冷却し、アセトン15部を加え、析出物をNo.5 ろ紙でろ過し、100℃で2時間乾燥させた。チタン含有量は11.5%であった。また、エチレングリコール42部にトリメチルホスフェート14部を溶解し、160℃で150分反応させた。このエチレングリコール溶液56部にさらにエチレングリコール90部を加えたのち、上記チタン化合物1504部を溶解させ、120℃で30分間攪拌し、反応生成

30

7

物 (触媒) の白色スラリーを得た。このスラリーのチタン含量は1.0%であった。

【0027】 実施例1 (ポリエステルの製造)

テレフタル酸ジメチル194部、エチレングリコール124部および酢酸マンガン4水塩0.06部を精留塔付き反応層に入れ、常法に従ってエステル交換反応を行い、理論量のメタノールを留出させた。次いで、テレフタル酸のグリコールエステルおよび/またはその低重な合性を精留塔付き重縮合用フラスコへ入れ、重縮合触媒として上記参考例1で調製した触媒スラリー0.95部(テレフタル酸ジメチルに対して、チタン原子換算で20mmo1%)を加え、温度285℃、常圧で30分、さらに30mmHgの減圧下で15分反応を進行反応で、でのち、系内を徐々に減圧にし、撹拌下110分間反応でせた。最終内温は285℃、最終内圧は0.37mmHgであり、得られたポリエチレンテレーの色調および溶融熱安定性を表1に示す。

【0028】実施例2~5、比較例1~4

チタン化合物とリン化合物 (III)の反応において、触媒 20 調製の際のチタン化合物/リン化合物 (III)のモル比および/または触媒添加量を表1記載のごとく変更した以外は、実施例1と同様に実験を行なった。結果を表1に示す。

【0029】実施例6

テレフタル酸166部とエチレングリコール75部を常法に従いエステル化反応を行った。次いで、エステル化反応で得られた生成物を精留塔付き重縮合用フラスコへ入れ、重縮合触媒として上記参考例1で調製した触媒スラリー0.95部(テレフタル酸ジメチルに対して、チ 30タン原子換算で20mmo1%)を加え、温度285℃、常圧で30分、更に30mmHgの減圧下で15分反応を進行させたのち、系内を徐々に減圧にし、撹袢下

110分間反応させた。最終内温は285 \mathbb{C} 、最終内圧は0.37 mm H g であり、得られたポリエチレンテレフタレートの固有粘度は0.640 であった。結果を表1に示す。

【0030】比較例5

触媒としてTBTのみを用い、該触媒の添加量をテレフタル酸ジメチルに対してチタン原子換算で20mmol%となるよう触媒スラリーの濃度および添加量を調整した以外は、実施例1と同様に実験を行なった。結果を表101に示す。

【0031】参考例2(比較例6用触媒の調製)トリメリット酸0.80部をエタノールに溶解したのち、TBTを0.64部を滴下し、空気中常圧の下80℃で保持して60分間熱成反応させた。反応熱成後、常温に冷却し、アセトン15部を加え、沈殿をろ取した。この触媒である析出物のチタン含量は、12%であった。

【0032】比較例6

触媒として、上記参考例2により調製したTBTとトリメリット酸との反応生成物を用い、該触媒(スラリー)の添加量をテレフタル酸ジメチルに対してチタン原子換算で20mmo1%となるようスラリーの濃度および添加量を調整した以外は、実施例1と同様に実験を行なった。結果を表1に示す。

【0033】比較例7

触媒として三酸化アンチモンを用い、該触媒の添加量を テレフタル酸ジメチルに対して三酸化アンチモン濃度と して27mmo1%となるよう触媒(スラリー)の濃度 および添加量を調整した以外は、実施例1と同様に実験 を行った。結果を表1に示す。

[0034]

【表1】

9	1		l				10
	 <u>触媒</u>		生成ポリマー特性				
1	 モル比	 添加量	 固有粘度	 色調		 主鎖 切	 口金異
	チタン化合 物 <i>ノ</i> リン化		 -	 L	—— Ъ	断数 (eq./	物高さ
	合物(III)		(dl/g)			ton)	(μm)
- -	 1/3	 20	0.640	 79	— -2.0	 3.0	
実 2	1/1.5	20	0.640	79	-1.9	3.4	7
施 3	1/4.5	20	0.641	79	-2.3	2.7	6
例 4	1/3	10	0.639	79	-2.2	2.3	6
5	1/3	30	0.639	78	-1.9	3.6	7
6	1/3	20	0.640	80	-2.0	3.0	8
- -	I						
1	1/0.5	20	0.640	76	2.5	5.7	9
2	1/5.5	20	反応進まず				
比 3	1/3	5	反応進まず				
較 4	1/3	45	0.640	76	2.3	5.0	9
例 5	-	20	0.640	75	2.2	5.8	5
6	I –	20	0.640	77	2.5	5.2	8
7	-	27	0.639	76	-2.1	3.5	49
- -			l ————				

[0035]

【発明の効果】本発明の方法によれば、色調に優れ、かつ溶融熱安定性に優れたポリエステルを製造することが

でき、さらに得られたポリエステルは長時間紡糸しても 口金異物の発生量が非常に少なく、成形性に優れている という効果をも奏するものである。

フロントページの続き

F ターム(参考) 4J029 AA03 AB05 AC01 AC02 AC04 AD10 BA03 CB05A CB06A CB10A CB12A CC05A CF08 CF15 DB11 ED07A HA01 HB01 HD01 JB171 JC581 JC591 JF321 KB04 KE03 4L035 GG02 HH10 JJ11 JJ15 JJ25 【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第3部門第3区分

【発行日】平成15年6月20日(2003.6.20)

【公開番号】特開2000-319370 (P2000-319370A)

【公開日】平成12年11月21日(2000.11.21)

【年通号数】公開特許公報12-3194

【出願番号】特願平11-132839

【国際特許分類第7版】

C08G 63/82

D01F 6/62 306

[FI]

C08G 63/82

D01F 6/62 306 E

【手続補正書】

【提出日】平成15年3月11日(2003.3.1)

【手続補正1】

【補正対象費類名】明細費

【補正対象項目名】0015

【補正方法】変更

【補正内容】

【0015】化合物(I)であるチタンアルコキサイド化合物と上記化合物(II)とを反応させる場合には、溶媒に、化合物(II)の一部または全部を溶解し、これに化合物(I)(チタンアルコキサイド化合物)を滴下し、0℃~200℃の温度で30分以上反応させればよい。この際の反応圧力は特に制限はなく、常圧で充分である。この際、使用する溶媒としては、化合物(II)の一部または全部を溶解し得るものであれば任意に使用できるが、特にエタノール、エチレングリコール、ベンゼン、キシレンなどが好ましい。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0024

【補正方法】変更

【補正内容】

【0024】(4)溶融熱安定性(主鎖切断数)

ポリエステルペレットを外形10mm×内径8mm×長さ250mmのガラス試験管に入れ、窒素雰囲気下で290℃のバス中に15分間浸漬し、試験前後の固有粘度差より、ポリエステルポリマー1トンあたりのポリエステル主鎖の切断数(当量)を求めた。

主鎖切断数 (eq. / ton) は下記式より求められる。

主鎖<u>切断数</u> (e q. /ton) = | [IV1 / (3.07×10-4)] -1·30 - [IV0 / (3.07×10-4)] -1·30 | ×10-6 (ただし、IV0 は290℃ 熱処理前の固有粘度、IV1 は290℃熱処理後の固有

粘度を示す。)

【手続補正3】

【補正対象曹類名】明細曹

【補正対象項目名】 0 0 2 7

【補正方法】変更

【補正内容】

【0027】実施例1 (ポリエステルの製造)

テレフタル酸ジメチル194部、エチレングリコール124部および酢酸マンガン4水塩0.06部を精留塔付き反応層に入れ、常法に従ってエステル交換反応を行い、理論量のメタノールを留出させた。次いで、テレクタル酸のグリコールエステルおよび/またはその低触なのグリコールエステルおよび/またはその低触媒スラリー0.95部(テレフタル酸ジメチルに対して、チタン原子換算のとして上記参考例1で調製した触媒スラリー0.95部(テレフタル酸ジメチルに対して、チタン原子換算のとのmmo1%)を加え、温度285℃、常圧で30分、さらに30mmHgの減圧下で15分反応を進行させたのち、系内を徐々に減圧にし、撹拌下110分間反応でせた。最終内温は285℃、最終内圧は0.37mmHgであり、得られたポリエチレンテレフタレートの固有粘度は0.640であった。ポリマーの色調および溶融熱安定性を表1に示す。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0029

【補正方法】変更

【補正内容】

【0029】実施例6テレフタル酸166部とエチレングリコール75部を常法に従いエステル化反応を行った。次いで、エステル化反応で得られた生成物を精留塔付き重縮合用フラスコへ入れ、重縮合触媒として上記参考例1で調製した触媒スラリー0.95部(テレフタル酸ジメチルに対して、チタン原子換算で20mmo1%)を加え、温度285℃、常圧で30分、更に30m

mHgの減圧下で15分反応を進行させたのち、系内を徐々に減圧にし、<u>撹拌下</u>110分間反応させた。最終内温は285℃、最終内圧は0.37mmHgであり、得

られたポリエチレンテレフタレートの固有粘度は 0.6 4 0 であった。結果を表 1 に示す。