## LISTA DE TAREFAS PENDENTES

# ÁLGEBRA

José Antônio O. Freitas

Curso de Verão DMA - UFV 2015

Notas de Aula¹

¹⊕⊕⊛⊚ Este texto está licenciado sob uma Licença Creative Commons Atribuição-NãoComercialCompartilhaIgual 3.0 Brasil http://creativecommons.org/licenses/by-nc-sa/3.0/br/deed.pt\_BR.

| Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the "License"). You may not use this file except in compliance with the License. You may obtain a copy of the License at <a href="http://creativecommons.org/licenses/by-nc/3.0">http://creativecommons.org/licenses/by-nc/3.0</a> . Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "As IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## **SUMÁRIO**

| 1  | Grupos           |                                       |    |  |
|----|------------------|---------------------------------------|----|--|
|    | 1.1              | Definição e Propriedades              | 5  |  |
|    | 1.2              | Subgrupos                             | 9  |  |
|    | 1.3              | Teorema de Lagrange                   | 12 |  |
|    | 1.4              | Subgrupos Normais e Grupos Quocientes | 16 |  |
|    | 1.5              | Homomorfismo de Grupos                | 19 |  |
|    | 1.6              | Classes de Conjugação                 | 26 |  |
|    | 1.7              | Grupos Cíclicos                       | 29 |  |
|    | 1.8              | Grupos de Permutações                 | 31 |  |
|    | 1.9              | Teoremas de Sylow                     | 43 |  |
|    | 1.10             | Grupos Solúvies                       | 51 |  |
|    | 1.11             | Grupos Nilpotentes                    | 58 |  |
| Bi | Bibliografia     |                                       |    |  |
| Ín | Índice Remissivo |                                       |    |  |

SUMÁRIO 4

## **CAPÍTULO 1**

## **GRUPOS**

Texto introdutório\_\_\_\_\_

Motivação sobre grupos.

## 1.1 Definição e Propriedades

**Definição 1.1.** Um grupo G é um conjunto não vazio munido com uma operação binária \* tal que

- (i) Para todo x, y,  $z \in G$ : (x \* y) \* z = x \* (y \* z), isto  $\acute{e}$ , a operação  $* \acute{e}$  associativa.
- (ii) Existe  $e \in G$  tal que x \* e = e \* x = x para todo  $x \in G$ . Tal elemento E é chamado de **elemento neutro** ou **unidade**.
- (iii) Para cada  $x \in G$ , existe  $y \in G$  tal que x \* y = y \* x = e. O elemento y é chamado de **inverso** de x e é denotado por  $y = x^{-1}$ .

Denotamos um grupo G, cuja operação binária é \*, por (G,\*). Quando \* é a soma, dizemos que (G,\*) é um grupo aditivo. Se \* é a multiplicação, dizemos que (G,\*) é um grupo multiplicativo. Caso não haja possibilidade de confusão em relação à operação do grupo, diremos simplesmente que G é um grupo.

**Observação 1.1.1.** Para simplificar a notação vamos escrever x \* y = xy para x e y elementos de um grupo (G, \*).

**Definição 1.2.** *Um grupo* (G, \*) *é chamado de grupo comutativo ou abeliano quando a operação \* <i>é comutativa, ou seja,* x \* y = y \* x *para todo*  $x, y \in G$ .

**Exemplos 1.1.1.** (1) *Grupos aditivos:*  $\mathbb{Z}$ ,  $\mathbb{Q}$ ,  $\mathbb{R}$ ,  $\mathbb{C}$ .

- (2)  $(M_n(K), +)$  é um grupo abeliano;
- (3)  $(GL_n(K), \cdot)$ , onde K é um corpo e  $GL_n(K)$  denota as matrizes invertíveis com entradas em K.  $GL_n(K)$  não é um grupo abeliano.
- (4) Seja X um conjunto não vazio. Denote por  $S_X = \{\sigma : X \to X \mid \sigma \text{ \'e uma bijeção}\}$ . O conjunto  $S_X$  com a composição de funções  $\acute{e}$  um grupo. No caso em que  $X = \{1, 2, ..., n\}$ , obtemos  $S_n = \{(1), (12), (13), (23), (123), ..., (123 \cdots n)\}$  o grupo das permutações em n elementos. Em geral,  $S_X$  não  $\acute{e}$  abeliano.
- (5) Para qualquer inteiro n seja

$$\mu_n = \{ \zeta^k : 0 \le k \le n \}$$

onde  $\zeta = e^{2\pi i/n} = \cos(2\pi/n) + i\sin(2\pi/n)$ . Então  $\mu_n$  é um grupo abeliano multiplicativo.

(6) Seja X um conjunto. Se U e V são subconjuntos de X defina

$$U - V = \{x \in U \mid x \notin V\}.$$

O grupo Boleano  $\mathcal{B}(X)$  é a família de todos os subconjuntos de X munido da adição simétrica A+B onde

$$A + B = (A - B) \cup (B - A).$$

Assim  $\mathcal{B}(X)$  é um grupo comutativo, o elemento neutro e  $\emptyset$  e  $A^{-1} = A$  pois  $A + A = \emptyset$ .

**Lema 1.1.1.** *Seja* (*G*,\*) *um grupo*.

(i) Vale a lei do cancelamento: se x \* a = x \* b ou a \* x = b \* x, então a = b.

Figura 1.1: A soma A + B é representada pela área em azul:



- (ii) O elemento neutro é único.
- (iii) Existe um único inverso para cada  $x \in G$ .
- (iv) Para todos  $x, y \in G$  temos  $(x * y)^{-1} = y^{-1} * x^{-1}$ . Por indução,  $x_1, x_2, \dots x_{n-1}, x_n \in G$  $(x_1 * x_2 * \dots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \dots * x_2^{-1} * x_1^{-1}.$
- (v) Para todo  $x \in G, (x^{-1})^{-1} = x$ .

**Definição 1.3.** Se G é um grupo e se  $a \in G$ , defina as **potências**  $a^n$ , para  $n \ge 1$ , como sendo

$$a^1 = a \quad e \quad a^{n+1} = a^n a.$$

Definimos  $a^0 = 1$  e se n é um inteiro positivo, definimos

$$a^{-n} = (a^{-1})^n$$
.

**Lema 1.1.2.** *Se* G *é um grupo e* a,  $b \in G$ , *então*  $(ab)^{-1} = b^{-1}a^{-1}$ .

**Lema 1.1.3.** Sejam G um grupo,  $a, b \in G$  e  $m, n \ge 1$ . Então

$$a^{m+n} = a^m a^n$$

$$(a^m)^n = a^{mn}.$$

Figura 1.2: A associatividade é representada pela área em azul:



**Proposição 1.1.1.** *Sejam G um grupo, a, b*  $\in$  *G e m, n*  $\in$   $\mathbb{Z}$ .

- (i) Se a e b comutam, então  $(ab)^n = a^n b^n$ .
- (ii)  $(a^m)^n = a^{mn}$
- (iii)  $a^{m}a^{n} = a^{m+n}$

**Definição 1.4.** Seja G um grupo e  $a \in G$ . Se  $a^k = 1$  para algum  $k \ge 1$ , então o menor expoente  $k \ge 1$  é chamado de **ordem** de a. Se não existe tal potência, dizemos que a tem **ordem infinita**.

**Teorema 1.1.** Se  $a \in G$  é um elemento de ordem n, então  $a^m = 1$  se, e somente se,  $n \mid m$ .

**Prova:** Suponha que  $a^m = 1$ . Assim pelo Algorítmo da Divisão de Euclides, existem inteiros q e r tais que

$$a^m = a^{nq+r}$$

onde  $0 \le r \le n$ . Assim

$$a^r = a^m a^{-nq} = 1.$$

Se r > 0, obtemos uma contradição com a ordem de a. Logo r = 0 e portanto n|m. Agora, se n|m, então

$$a^{m} = a^{nq} = 1$$

como queríamos.

**Proposição 1.1.2.** *Se* G é um grupo finito, então todo  $x \in G$  tem ordem finita.

**Prova:** Seja  $x \in G$ . Considere o conjunto  $\{1, x, x^2, ..., x^n, ...\}$ . Como G é finito, existem inteiros m > n tais que  $x^m = x^n$ , isto é,  $x^{m-n} = 1$ . Portanto x tem ordem finita.

### 1.2 Subgrupos

**Definição 1.5.** Seja  $(G, \cdot)$ . Um conjunto não vazio H de G é um **subgrupo**, que denotaremos por  $H \le G$ , quando com a operação de G, o conjunto H é um grupo, isto é, quando as condições seguintes são satisfeitas:

- (i)  $h_1h_2 \in H$  para todos  $h_1, h_2 \in H$ ;
- (*ii*)  $1 \in H$ ;
- (iii) Se  $x \in H$ , então  $x^{-1} \in H$ .

**Proposição 1.2.1.** Um subconjunto H de um grupo G é um subgrupo se, e somente se, H é não vazio e para quaisquer x,  $y \in H$  temos  $xy^{-1} \in H$ .

**Prova:** A ida é imediata. Agora, suponha que H não é vazio e que  $xy^{-1} \in H$  para todos x,  $y \in H$ . Assim tomando  $x \in H$  temos  $1 = xx^{-1} \in H$ . Se  $y \in H$ , então  $y^{-1} = 1y^{-1} \in H$  e finalmente se x e  $y \in H$ , então  $xy = x(y^{-1})^{-1} \in H$ . Portanto H é um subgrupo de G.

**Exemplos 1.2.1.** (1) Se G é um grupo, então {1} e G são subgrupos de G chamados de **trivias**.

- (2)  $(2\mathbb{Z}, +)$  é um subgrupo de  $(\mathbb{Z}, +)$ . De maneira geral, se n é um inteiro qualquer, então  $(n\mathbb{Z}, +)$  é um subgrupo de  $(\mathbb{Z}, +)$ .
- (3) O conjunto  $V = \{(1), (12)(34), (13)(24), (14)(23)\}$  é um subgrupo de  $S_4$ .
- (4) Seja G um grupo qualquer. COnsidere o subconjunto

$$Z(G) = \{x \in G \mid xg = gx \ para \ todo \ g \in G\}.$$

Mostre que  $Z(G) \leq G$ . Este subgrupo Z(G) é chamado de **centro** de G. O grupo G é abeliano se, e só se, Z(G) = G.

**Proposição 1.2.2.** *Um conjunto não vazio de um grupo finito G é um subgrupo de G se, e somente se, H é fechado, isto é, se dados a e b*  $\in$  *H, então ab*  $\in$  *H. Em particular, um subconjunto não vazio de S<sub>n</sub> é um subgrupo se, e somente se, é fechado.* 

**Prova:** A ida é imediata. Para a volta, como G é finito todos os seus elementos têm ordem finita. Dado  $x \in H$ , então existe um inteiro n tal que  $x^n = 1$ . Assim  $1 \in H$ , pois H é fechado. Além disso,  $x^{-1} = x^{n-1} \in H$ . Finalmente, se x e  $y \in H$ , então  $xy^{-1} = xy^{m-1} \in H$ , onde m é um inteiro tal que  $y^m = 1$ . Portanto H é um subgrupo de G.

- **Observações 1.2.1.** (1) A Proposição 1.2.2 pode falhar se G for um grupo infinito. Por exemplo, seja  $G = \mathbb{Z}$  o grupo aditivo dos inteiros. O conjunto  $H = \mathbb{N}$  é fechado, mas não é um subgrupo de  $\mathbb{Z}$ .
  - (2) Para Galois, 1830, um grupo era simplesmente um conjunto fechado H de  $S_n$ . Foi A. Cayley, em 1854 o primeiro a definir um grupo abstrato mencionando explicitamente a associatividade, o inverso e elemento neutro.

Vamos fixar algumas notações: se H e K são subconjuntos de um grupo G (em particular, se H e K são subgrupos de G) definimos

$$HK = \{hk \mid h \in H \ k \in K\}$$
  
 $H^{-1} = \{h^{-1} \mid h \in H\}.$ 

Em geral HK não é um subgrupo de G, mesmo quando H e K o são. (Apresente alguns exemplos!)

Dado um subconjunto não vazio *S* de *G*, denotamos

$$\langle S \rangle = \{a_1 \dots a_n \mid n \in \mathbb{N}, a_i \in S \text{ ou } a_i \in S^{-1}\}.$$

Quando o conjunto S for finito, digamos  $S = \{a_1, \dots, a_n\}$  escreveremos

$$\langle \{a_1,\ldots,a_n\}\rangle = \langle a_1,\ldots,a_n\rangle.$$

Quando  $g \in G$  escrevemos

$$\langle g \rangle = \{\dots, g^{-2}, g^{-1}, 1, g, g^2, \dots\} = \{g^t \mid t \in \mathbb{Z}\}.$$

**Proposição 1.2.3.** Sejam G um grupo e S um subconjunto não vazio de G. Então o conjunto  $\langle S \rangle$  é um subgrupo de G.

**Prova:** Como  $S \neq \emptyset$ , então  $1 \in \langle S \rangle$ . Dados  $x, y \in S$  temos

$$x = a_1 a_2 \dots a_m$$

$$y = b_1 b_2 \dots b_n$$

com  $a_i, b_j \in S$  ou  $a_i, b_j \in S^{-1}$  para todo i e todo j. Logo  $y^{-1} = b_n^{-1} \dots b_2^{-1} b_1^{-1}$  para todo j, daí  $xy^{-1} = a_1 \dots a_m b_n^{-1} \dots b_2^{-1} b_1^{-1} \in \langle S \rangle$ .

Portanto  $\langle S \rangle$  é um subgrupo de G.

**Definição 1.6.** Sejam G um grupo e S um subconjunto não vazio de G. Então  $\langle S \rangle$  é chamado de subgrupo gerado por S.

 $\Diamond$ 

**Definição 1.7.** Um grupo é **cíclico** quando ele pode ser gerado por um elemnto, isto é, quando  $G = \langle g \rangle$  para algum  $g \in G$ .

**Definição 1.8.** A **ordem** de um grupo G é o número de elementos em G.

**Proposição 1.2.4.** Seja G um grupo finito e seja  $\alpha \in G$ . Então a ordem de  $\alpha$  é igual ao número de elementos em  $\langle \alpha \rangle$ , isto é,

$$|\alpha| = |\langle \alpha \rangle|$$
.

**Prova:** Como G é finito, existe um menor inteiro  $k \ge 1$  tal que  $1, \alpha, \alpha^2, \ldots, \alpha^{k-1}$  são todos as potências distintas de  $\alpha$ , enquanto que em  $1, \alpha, \alpha^2, \ldots, \alpha^{k-1}, \alpha^k$  temos repetições de potências. Daí  $\alpha^k = \alpha^i$  para algum  $0 \le i \le k-1$ . Se  $i \ge 1$ , então  $\alpha^{k-i} = 1$ , o que contradiz a escolha de k. Logo  $a^k = a^0 = 1$  e assim k é a ordem de  $\alpha$ .

Agora seja  $H=\{1,\alpha,\alpha^2,\ldots,\alpha^{k-1}\}$ . Então |H|=k. Seja  $\alpha^i\in\langle\alpha\rangle$ , com  $i\in\mathbb{Z}$ . Pelo Algorítmo da Divisão de Euclides, existem  $q,r\in\mathbb{Z}$  tais que i=qk+r, com  $0\le r< k$ . Assim  $\alpha^i=\alpha^{qk}\alpha^r=\alpha^r\in H$ , isto é,  $\langle\alpha\rangle\subseteq H$ . Como  $H\subseteq\langle\alpha\rangle$  pela definição de H, então  $H=\langle\alpha\rangle$ . Portanto,

$$|\alpha| = |\langle \alpha \rangle|$$

como queríamos.

**Teorema 1.2.** Se  $G = \langle a \rangle$  é um grupo cíclico de ordem n, então  $a^k$  é um gerador de G se, e somente se, mdc(k, n) = 1.

**Prova:** Se  $a^k$  é um gerador de G, então  $a = a^{kt}$  para algum  $t \in \mathbb{Z}$ . Daí  $a^{kt-1} = 1$  e então pelo Teorema 1.1, n|(kt-1), isto é, nu = kt-1 para algum  $u \in \mathbb{Z}$ . Logo, mdc(k,n) = 1.

Agora, se mdc(k, n) = 1, então existem  $p, q \in \mathbb{Z}$  tais que kp + nq = 1. Daí

$$a = a^{kp+nq} = a^{nq}(a^k)^p = (a^k)^p$$

e então  $G = \langle a \rangle$ .

**Definição 1.9.** O subgrupo  $\langle \{xyx^{-1}y^{-1} \mid x, y \in G\} \rangle$  é o **subgrupo dos comutadores** do grupo G. Ele será denotado por G'. Note que G é abeliano se, e somente se,  $G' = \{1\}$ .

## 1.3 Teorema de Lagrange

Sejam G um grupo e H um subgrupo de G. Sobre G defina a relação  $\sim_E$  da seguinte maneira

$$y \sim_E x$$
 se, e somente se, exite  $h \in H$  tal que  $y = xh$ .

É imediato verificar que  $\sim_E$  é uma relação de equivalência. Dado  $x \in G$  a classe de equivalência de x é o conjunto

$$xH = \{y \in G \mid y \sim_E x\} = \{xh \mid h \in H\}$$

que chamaremos de **classe lateral à esquerda** de H em G. Quando não houver chance de confusão, diremos simplesmente classe lateral de x à esquerda. Observe que  $y \in xH$  se, e só se, yH = xH.

Analogamente, podemos definir a seguinte relação de equivalência:

$$y \sim_D x$$
 se, e somente se, exite  $h \in H$  tal que  $y = hx$ .

Obtemos assim as classes laterais à direita de H em G. A classe lateral de x à direita é dada por

$$Hx=\{y\in G\mid y\sim_D x\}=\{hx\mid h\in H\}.$$

**Definição 1.10.** Dado um grupo G e H um subgrupo de G, o conjunto das classes laterais à esquerda de H em G é denotado por

$$\left(\frac{G}{H}\right)_E = \{xH \mid x \in G\}.$$

Analogamente, definimos

$$\left(\frac{G}{H}\right)_D = \{Hy \mid y \in G\}.$$

**Definição 1.11.** A cardinalidade do conjunto das classes laterais à esquerda,  $(G/H)_E$ , é o **índice** de H em G e será denotado por [G:H].

**Observação 1.3.1.** O índice de H em G também é a cardinalidade do conjunto das classes laterais à direita de H em G. De fato, é imediato verificar que a aplicação

$$\varphi: \left(\frac{G}{H}\right)_E \to \left(\frac{G}{H}\right)_D$$
$$xH \mapsto Hx^{-1}$$

está bem definida e é uma bijeção.

**Proposição 1.3.1.** Todas as classes laterais de H em G têm a mesma cardinalidade, igual à cardinalidade de H.

**Prova:** Basta verificar que a aplicação

$$\varphi: H \to \left(\frac{G}{H}\right)_E$$
$$x \mapsto xH$$

é uma bijeção. ♦

Teorema 1.3 (Teorema de Lagrange). Sejam G um grupo finito e H um subgrupo de G. Então

$$|G| = |H|[G:H],$$

em particular, a ordem e o índice de H dividem a ordem de G.

 $\Diamond$ 

 $\Diamond$ 

 $\Diamond$ 

**Prova:** Seja  $\{a_1H, a_2H, \dots, a_tH\}$  a família de todas as classes laterais distintas de H em G. Então

$$G = a_1 H \cup a_2 H \cup \cdots \cup a_t H$$

e assim

$$|G| = |a_1H| + |a_2H| + \cdots + |a_tH|.$$

Mas,  $|H| = |a_iH|$  para todo i = 1, ..., t, onde t = [G:H]. Portanto

$$|G| = |H|[G:H]$$

como queríamos.

**Corolário 1.3.1.** *Sejam G um grupo finito e*  $\alpha \in G$ *. Então a ordem de*  $\alpha$  *divide a ordem de G.* 

**Prova:** Segue da Proposição 1.2.4 pois  $|\alpha| = |\langle \alpha \rangle|$ .

**Corolário 1.3.2.** *Seja G um grupo. Se K*  $\leq$  *H*  $\leq$  *G com K*  $\leq$  *G e H*  $\leq$  *G, então* 

$$\frac{G/K}{H/K} \cong \frac{G}{H}$$
.

**Prova:** A prova é deixada para o leitor.

**Corolário 1.3.3.** Se G é um grupo finito, então  $a^{|G|} = 1$  para todo  $a \in G$ .

**Prova:** Se *a* possui ordem, então pelo Corolário 1.3.1, devemos ter |G| = dm para algum  $m \ge 1$ . Logo  $a^{|G|} = a^{dm} = 1$ .

**Corolário 1.3.4.** Se p é um número primo, então todo grupo G de ordem p é cíclico.

**Prova:** Se  $a \in G$ ,  $a \ne 1$ , então a tem ordem d > 1, o que é impossível. Logo  $G = \langle a \rangle$ .

**Proposição 1.3.2.** Seja G um grupo abeliano.

- (i) Se  $a, b \in G$  são dois elementos de ordem finita tais que  $mdc\{|a|, |b|\} = 1$ , então |ab| = |a||b|.
- (ii) Se  $r := \sup\{|g| : g \in G\}$  é finito, então |x| divide r para cada  $x \in G$ .

#### Prova:

(i) Sejam |a| = m, |b| = n e z = |ab|. Como a e b comutam, temos  $(ab)^{mn} = (a^m)^n (b^n)^m = 1$ . Logo z é um divisor de mn. Agora,  $(ab)^z = 1$ , daí  $a^z = b^{-z} \in \langle a \rangle \cap \langle b \rangle$ . Mas mdc(m, n) = 1, logo  $\langle a \rangle \cap \langle b \rangle = \{1\}$ . Então  $a^z = b^z = 1$  e portanto z é um múltiplo de m e de n. Como m e n são relativamente primos, z é um múltiplo de mn. Portanto, z = mn como queríamos.

(ii) Inicialmente vamos provas a seguinte afirmação:

"Se  $a, b \in G$  são dois elementos de ordem finita, então existe  $c \in G$  tal que  $|c| = mmc\{|a|,|b|\}$ ."

Sejam m = |a| e n = |b|. Se mdc(m, n) = 1, então pelo item anterior podemos tomar c = ab. Se  $mdc(m, n) \neq 1$ , escreva

$$m = p_1^{\alpha_1} \cdots p_k^{\alpha_k} p_{k+1}^{\alpha_{k+1}} \cdots p_t^{\alpha_t}$$
$$m = p_1^{\beta_1} \cdots p_k^{\beta_k} p_{k+1}^{\beta_{k+1}} \cdots p_t^{\beta_t}$$

onde  $0 \le \alpha_i < \beta_i$  para i = 1, ..., k,  $\alpha_j \ge \beta_j \ge 0$  para j = k + 1, ..., t e os primos  $p_i$  são todos distintos.

Considere os elementos

$$a_1 = a^{p_1^{\alpha_1} \dots p_k^{\alpha_k}}$$
$$b_1 = b^{p_{k+1}^{\beta_{k+1}} \dots p_i^{\beta_t}}.$$

Assim

$$|a_1| = p_{k+1}^{\alpha_{k+1}} \cdots p_t^{\alpha_t}$$
$$|b_1| = p_1^{\beta_1} \cdots p_k^{\beta_k}.$$

e então  $mdc\{|a_1|,|b_1|\}=1$  e pelo item anterior basta tomar  $c=a_1b_1$ . Logo a afirmação está provada.

Para provar o item b), suponha que  $r := \sup\{|g| \mid g \in G\}$  é finito e tome  $y \in G$  tal que |y| = r. Suponha que existe  $x \in G$  tal que |x| não divide |y|. Assim  $s = mdc\{|x|, |y|\} > r$  e pela afirmação anterior existe  $x \in \langle x, y \rangle \subseteq G$  tal que |c| = s > r, o que contradiz a definição de r.

**Proposição 1.3.3.** Seja G um grupo e sejam K < H < G. Então

$$[G:K] = [G:H][H:K].$$

## 1.4 Subgrupos Normais e Grupos Quocientes

Sejam *G* um grupo e *H* um subgrupo de *G*. Considere o conjunto das classes laterais à esquerda de *H* em *G*:

$$\left(\frac{G}{H}\right) = \{xh \mid x \in G\}.$$

Queremos definir uma operação em G/H de modo que este conjunto se torne um grupo. O meio natural de fazer isso é definindo

$$(xH) \cdot (yH) = (xy)H \tag{1.1}$$

onde x,  $y \in G$ . Como uma mesma classe lateral possui vários representantes distintos, precisamos garantir que esta operação está bem definida, isto é, se escolhermos outros representantes das classes xH e yH o resultado não se altera. Para isso sejam x,  $y \in G$  e h,  $k \in H$ . Então x e xh são representantes da mesma classe xH, y e yH são representantes da mesma classe yH. Assim precisamos ter

$$xyH = xhykH,$$

para todos x,  $y \in G$  e para todos y,  $k \in H$ . Isto é, devemos ter

$$y^{-1}x^{-1}xyH = y^{-1}x^{-1}xhykH$$
$$H = y^{-1}hyH$$

para todo  $y \in G$  e  $h \in H$ . Portanto a operação (1.1) está bem definida em G/H se, e somente se,

$$y^{-1}hy \in H$$

para todo  $y \in G$  e todo  $h \in H$ .

 $\Diamond$ 

**Proposição 1.4.1.** Seja H um subgrupo de um grupo G. As afirmações seguintes são equivalentes:

(i) a operação (1.1) está bem definida;

- (ii)  $g^{-1}Hg \subseteq H$ , para todo  $g \in G$ ;
- (iii)  $g^{-1}Hg = H$ , para todo  $g \in G$ ;
- (iv) gH = Hg, para todo  $g \in G$ .

**Prova:**  $(i) \Leftrightarrow (ii)$  Já foi feito.

- $(iii) \Leftrightarrow (iv)$  Imediato.
- $(iii) \Rightarrow (ii)$  Imediato.
- $(ii) \Rightarrow (ii)$  Suponha que  $gHG^{-1} \subseteq H$  para todo  $g \in G$ . Sejam  $h \in H$  e  $g \in G$ . Temos

$$h = g^{-1}(ghg^{-1})g \in g^{-1}(gHg^{-1})g \subseteq g^{-1}Hg,$$

 $\Diamond$ 

como queríamos.

**Definição 1.12.** Um subgrupo H é um **subgrupo normal** de G, e escrevemos H extstyle G, se ele satisfaz as afirmações equivalentes da Proposição 1.4.1. Neste caso, como as classes laterais à esquerda de H são iguais às classes laterais à direita de H, vamos chamá-las simplesmente de **classes laterais** de H.

**Exemplos 1.4.1.** (1)  $\{1\}$  e G são subgrupos normais de G.

- (2)  $Z(G) \subseteq G$ . Mais geralmente, se  $H \subseteq Z(G)$ , então  $H \subseteq G$ .
- (3)  $G' = \{xyx^{-1}y^{-1} \mid x, y \in G\}$  é um subgrupo normal de G.
- (4) Se [G:H] = 2, então  $H \leq G$ .
- (5) Se G é abeliano, então todo subgrupo de G é normal.

**Teorema 1.4.** Seja G um grupo e seja H um subgrupo normal de G. Então o conjunto das classes laterais, com o operação induzida de G, é um grupo.

**Definição 1.13.** Sejam G um grupo e H um subgrupo normal de G. O grupo de suas classes laterais, com a operação induzida de G,  $\acute{e}$  chamado de **grupo quociente** de G por H e será denotado por  $\frac{G}{H}$  ou G/H.

**Proposição 1.4.2.** Se G é um grupo finito tal que para todo  $g \in G$ ,  $g^2 = 1$ , então  $|G| = 2^k$  para algum  $k \in \mathbb{N}$ .

**Prova:** Como  $g^2 = 1$ , para todo  $g \in G$ , então G é abeliano e assim todos os seus subgrupos são normais.

Se |G|=1, nada há a fazer. Suponha então que o resultado seja válido para todo grupo G de ordem menor que |G|=n>1. Tome  $g\in G$ ,  $g\neq 1$ . Sabemos que  $g^2=1$ , assim  $H=\langle g\rangle=\{1,g\}$  e H é normal em G. Considere o grupo  $(G/H,\cdot)$ . Um vez que  $x^2=1$ , então  $(xH)^2=x^2H=H$ , isto é, para todo  $xH\in G/H$ , vale que  $(xH)^2=\bar{1}$ . Além disso,

$$\left| \frac{G}{H} \right| = [G:H] = \frac{n}{2} < n.$$

Logo pela hipótese de indução,  $|G/H|=2^{k-1}=n/2$ . Portanto,  $|G|=n=(n/2)2=2^k$ , como queríamos.

**Proposição 1.4.3.** Se G é um grupo com |G| = 2p, p primo impar, então

$$G = \{1, a, b, b^2, \dots, b^{p-1}, ab, ab^2, \dots, ab^{p-1}\}\$$

onde |a| = 2,  $|b| = p e ab = b^i a com i = 1 ou i = p - 1$ .

**Prova:** Como |G| = 2p, que é par, existe  $a \in G$ ,  $a \ne 1$  tal que  $a^2 = 1$ , isto é,  $a = a^{-1}$ . Agora, pela Proposição 1.4.2, existe  $c \in G$  tal que |c| = p ou |c| = 2p. Se |c| = 2p, então  $|c^2| = p$ . Logo existe  $b \in G$  tal que |b| = p. Seja  $H = \langle b \rangle$ . Como [G : H] = 2, então  $H \le G$ . Assim para  $a \in G$  e  $b \in H$  temos  $aba^{-1} \in H$ . Consequentemente, existe  $1 \le i \le p-1$  tal que  $aba^{-1} = b^i$ . É fácil verificar que  $(aba^{-1})^n = b^{ni}$  para todo n. Então como |a| = 2

$$b^{i^2} = (aba^{-1})^i = ab^i a^{-1} = b,$$

ou seja,  $b^{i^2} - 1 = 1$ . Mas |b| = p, daí  $p|(i^2 - 1)$ . Logo p|(i - 1) ou p|(i + 1). Como  $1 \le i \le p - 1$ , então i = 1 ou i = p - 1.

Agora, [G:H]=2, então  $G=H\cup aH$  pois |a|=2, |b|=p e p é um primo ímpar. Portanto,

$$G = \{1, a, b, b^2, \dots, b^{p-1}, ab, ab^2, \dots, ab^{p-1}\}\$$

onde  $ab = b^i a$  com i = 1 ou i = p - 1.

**Observação 1.4.1.** No caso em que i = 1, obtemos um grupo abeliano cíclico de ordem 2p. E no caso em que i = p - 1, temos um grupo não abeliano chamado **grupo dihedral** de ordem 2p.

**Notação 1.13.1.** *No caso geral, o grupo G da Proposição 1.4.3 será denotado por* 

$$D_{2n} = \langle a, b \mid a^2 = b^n = 1, ab = b^{n-1}a \rangle = \{1, a, b, \dots, b^{n-1}, ab, \dots, ab^{n-1}\}.$$
 (1.2)

 $\Diamond$ 

 $\Diamond$ 

E é chamado de **grupo dihedral** de ordem 2n. Em alguns casos, utiliza-se também a notação  $D_n$  para o grupo (1.2)

**Proposição 1.4.4.** Sejam G um grupo e G' seu subgrupo dos comutadores. Então,

- (i) G/G' é abeliano.
- (ii) G' é o menor subgrupo normal de G com esta propriedade, isto é, se  $H ext{ } ext{$

**Proposição 1.4.5.** Sejam G um grupo e Z(G) seu centro. Se o quociente G/Z(G) é cíclico, então G = Z(G). Em particular, o índice de Z(G) em G nunca é igual a um número primo.

**Prova:** Seja  $\overline{z}$  um gerador de G/Z(G). Dado  $g \in G$ , existe  $i \in \mathbb{Z}$  tal que  $\overline{g} = \overline{z}^i$ . Logo  $g = z^i h$  para algum  $h \in Z(G)$ . Sejam  $g_1, g_2 \in G$ , com  $g_1 = z^i h_1$  e  $g_2 = z^j h_2$ , para alguns  $i, j \in \mathbb{Z}$  e  $h_1$ ,  $h_2 \in H$ . Assim

$$g_1g_2 = z^i h_1 z^j h_2 = z^{i+j} h_1 h_2 = z^j h_2 z^i h_1 = g_2 g_1.$$

Portanto G é abeliano, isto é, G = Z(G)

### 1.5 Homomorfismo de Grupos

**Definição 1.14.** Se  $(G, \cdot)$  e (H, \*) são grupos, então a aplicação  $\phi : G \to H$  é um **homomorfismo** de grupos se

$$\phi(x \cdot y) = \phi(x) * \phi(y) \tag{1.3}$$

para todos  $x, y \in G$ . Se  $\phi$  também é uma bijeção, então  $\phi$  é chamada de um **isomorfismo**. Os grupos G e H são chamados de **isomorfos** e escrevemos  $G \cong H$ , se existe um isomorfismo  $\phi: G \to H$ .

**Exemplos 1.5.1.** (1)  $Id: G \to G$  tal que Id(g) = g é o homomorfismo identidade.

- (2)  $e: G \to H$  tal que  $e(g) = 1_H$  é o homomorfismo **trivial**.
- (3) Seja  $n \in \mathbb{Z}$  fixo. Então  $\phi_n : (\mathbb{Z}, +) \to (\mathbb{Z}, +)$  tal que  $\phi_n(z) = nz$  é um homomorfismo. De modo geral, se G é um grupo abeliano, então  $\phi_n : (G, \cdot) \to (G, \cdot)$  tal que  $\phi_n(g) = g^n$  é um homomorfismo.
- (4) Seja  $H \subseteq G$ , então  $\pi : G \to G/H$  tal que  $\pi(g) = gH$  é um homomorfismo chamado de **projeção canônica**.
- (5) Seja  $g \in G$  fixo. Então  $\phi_g : G \to G$  tal que  $\phi_g(x) = gxg^{-1}$  é um isomorfismo.

**Lema 1.5.1.** *Seja*  $\phi$  :  $G \rightarrow H$  *um homomorfismo de grupos.* 

- (i)  $\phi(1_G) = 1_H$
- (ii)  $\phi(g^{-1}) = (\phi(g))^{-1}$
- (iii)  $\phi(g^n) = (\phi(g))^n$  para todo  $n \in \mathbb{Z}$ .

Prova: Exercício.

**Lema 1.5.2.** *Sejam G e H grupos e*  $\phi$  :  $G \rightarrow H$  *um homomorfismo. Então:* 

- (i) O conjunto  $\ker \phi = \{x \in G \mid \phi(x) = 1_H\}$  é um subgrupo normal de G chamado de **núcleo** ou **kernel** de  $\phi$ .
- (ii) O conjunto  $\text{Im } \phi = \{y \in H \mid y = \phi(x) \text{ para algum } x \in G\}$  é um subgrupo de H chamado de imagem de  $\phi$ .
- (iii) Sejam  $\phi: (G, \cdot) \to (H, *) \ e \ \psi: (H, *) \to (G, \times)$  dois homomorfismos de grupos. Então a composição  $\psi \circ \phi: (G, \cdot) \to (G, \times)$  é um homomorfismo.

**Prova:** Exercício. ♦

**Lema 1.5.3.** *Seja*  $\phi$  :  $G \rightarrow H$  *um homomorfismo de grupos.* 

- (i) Se  $P \le G$ , então  $\phi(P) \le H$  e  $\phi^{-1}(\phi(P)) = P \ker \phi$ .
- (ii) Se  $R \le H$ , então  $\phi^{-1}(R)$  é um subgrupo de G contendo  $\ker \phi$  e  $\phi(\phi^{-1}(R)) = R \cap \operatorname{Im} \phi$ .

#### Prova:

(i) A prova de que  $\phi(P)$  é um subgrupo de H é deixada para o leitor. Provemos que  $\phi^{-1}(\phi(P)) = P \ker \phi$ . Seja  $xk \in P$ . Temos

$$\phi(xk) = \phi(x)\phi(k) = \phi(x) \in \phi(P)$$

daí  $P \ker \phi \subseteq \phi^{-1}(\phi(P))$ . Agora, seja  $y \in \phi^{-1}(\phi(P))$ . Por definição,  $\phi(y) \in \phi(P)$  e assim existe  $x \in P$  tal que  $\phi(x) = \phi(y)$ . Isto é,  $\phi(x^{-1}y) = 1_H$ , donde  $x^{-1}y \in \ker \phi$ . Logo  $y = x(x^{-1}y) \in P \ker \phi$ . Portanto,  $\phi^{-1}\phi(P) = P \ker \phi$ .

(ii) Como  $R \le H$ , então  $1_H \in R$  e como  $\phi(x) = 1_H$  para todo  $x \in \ker \phi$ , então  $\ker \phi \subseteq \phi^{-1}(R)$ . Fica a cargo do leitor provar que  $\phi^{-1}(R)$  é um subgrupo de G. Provemos que  $\phi(\phi^{-1}(R)) = R \cap \operatorname{Im} \phi$ .

A inclusão  $\phi(\phi^{-1}(R)) \subseteq R \cap \operatorname{Im} \phi$  é imediata. Agora, seja  $y \in R \cap \operatorname{Im} \phi$ . Assim existe  $x \in G$  tal que  $\phi(x) = y$ . Mas  $y \in R$ , daí  $x \in \phi^{-1}(R)$  e então  $y = \phi(x) \in \phi(\phi^{-1}(R))$ . Portanto,  $\phi(\phi^{-1}(R)) = R \cap \operatorname{Im} \phi$ .

 $\Diamond$ 

**Exemplos 1.5.2.** (1) O grupo dihedral  $D_6$  é dado por

$$D_6 = \langle a, b \mid a^2 = b^3 = 1, ab = b^2 a \rangle.$$

Agora,  $S_3 = \{id, \alpha, \beta, \beta^2, \alpha\beta, \alpha\beta^2\}$  onde

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}.$$

*A aplicação*  $\phi: S_3 \rightarrow D_6$  tal que

$$\phi(id) = 1$$

$$\phi(\alpha) = a$$

$$\phi(\beta) = b$$

$$\phi(\alpha\beta) = ab$$

$$\phi(\alpha\beta^2) = ab^2$$

*é um homomorfismo bijetor. Portanto*  $S_3 \cong D_6$ .

(2) Seja  $G = \langle a \rangle = \{\dots, a^{-1}, 1, a, a^2, \dots\}$  um grupo cíclico infinito. É fácil verificar que  $\phi$ :  $(\mathbb{Z}, +) \to (G, \cdot)$  dada por  $\phi(t) = a^t$  é um isomorfismo. Portanto  $\mathbb{Z} \cong G$ .

**Teorema 1.5** (Teorema do Isomorfismo). *Seja*  $\phi$  :  $(G, \cdot) \rightarrow (H, *)$  *um homomorfismo de grupos.* 

(i) A função

$$\overline{\phi}: \frac{G}{\ker \phi} \to \phi(G)$$

$$a \ker \phi \mapsto \phi(a)$$

é um isomorfismo.

(ii) As seguintes funções

$$\{subgrupos\ de\ G\ que\ contêm\ \ker \phi\}\longleftrightarrow \{subgrupos\ de\ \phi(G)\}$$

$$P \qquad \stackrel{\psi}{\longmapsto} \phi(P)$$
$$\phi^{-1}(R) \qquad \stackrel{\sigma}{\longleftarrow} R$$

são bijeções, inversas uma da outra. Além disso, estas bijeções levam subgrupos normais em subgrupos normais, isto é,

- (a) Se  $P \leq G$ , então  $\phi(P) \leq \phi(G)$ .
- (b) Se  $R \leq \phi(G)$ , então  $\phi^{-1}(R) \leq G$ .

Prova:

(i) Inicialmente precisamos verificar que  $\overline{\phi}$  está bem definida. Para isso sejam  $a_1 \ker \phi = a_2 \ker \phi$ . Assim  $a_1 = a_2 k$ , onde  $k \in \ker \phi$ . Então

$$\phi(a_1) = \phi(a_2k) = \phi(a_2),$$

logo  $\overline{\phi}(a_1 \ker \phi) = \overline{\phi}(a_2 \ker \phi)$  e então  $\overline{\phi}$  está bem definida. Além disso, da definição de  $\overline{\phi}$  vemos que esta aplicação é sobrejetora.

Agora, sejam  $a_1 \ker \phi$ ,  $a_2 \ker \phi \in \ker \phi$ . Então

$$\overline{\phi}((a_1 \ker \phi)(a_2 \ker \phi)) = \overline{\phi}((a_1 a_2) \ker \phi) = \phi(a_1 a_2) = \phi(a_1)\phi(a_2) = \overline{\phi}(a_1 \ker \phi)\overline{\phi}(a_2 \ker \phi)$$

e daí  $\overline{\phi}$  é um homomorfismo. Finalmente, se  $a \ker \phi \in \ker \overline{\phi}$  então

$$\overline{\phi}(a \ker \phi) = \overline{\phi}(1_G \ker \phi)$$

daí  $\phi(g) = \phi(1_G) = 1_H$ , ou seja,  $g \in \ker \phi$ . Portanto  $\ker \overline{\phi} = \{\ker \phi\}$  e então  $\overline{\phi}$  é injetora. Portanto  $\overline{\phi}$  é um isomorfismo de grupos. Logo

$$\frac{G}{\ker \phi} \cong \phi(G).$$

(ii) Pelo Lema 1.5.3 sabemos que  $\phi^{-1}(\phi(P)) = P \ker \phi$  para todo  $P \leq G$  e que  $\phi(\phi^{-1}(R)) = R \cap \phi(G)$  para todo  $R \leq H$ . Assim se  $\ker \phi \subseteq P$ , então  $\phi^{-1}(\phi(P)) = P$  e se  $R \leq \phi(G)$ , então  $\phi(\phi^{-1}(R)) = R$ . Logo as funções  $\psi$  e  $\sigma$  são inversas uma da outra, isto é, são bijeções.

Agora falta provar os demais itens:

(a) Sejam  $a \in \phi(P)$  e  $b \in \phi(G)$ . Então existem  $x \in P$  e  $y \in G$  tais que  $\phi(x) = a$  e  $\phi(y) = b$ . Queremos mostrar que  $b^{-1}ab \in \phi(P)$ . De fato,

$$b^{-1}ab = \phi(y^{-1})\phi(x)\phi(y) = \phi(y^{-1}xy) \in \phi(P)$$

pois  $P \subseteq G$ . Portanto,  $\phi(P) \subseteq \phi(G)$ .

(b) Dados  $a \in G$  e  $x \in \phi^{-1}(R)$ , queremos mostrar que  $a^{-1}xa \in \phi^{-1}(R)$ . Temos

$$\phi(a^{-1}xa) = \phi(a)^{-1}\phi(x)\phi(a) \in R$$

pois  $R \le \phi(G)$ . Logo  $a^{-1}xa \in \phi^{-1}(R)$ , isto é,  $\phi^{-1}(R) \le G$ , como queríamos.

 $\Diamond$ 

**Corolário 1.5.1.** Seja  $\phi: G \to H$  um homomorfismo de grupos e seja  $K \leq G$ . Então a função

$$\psi: \frac{K}{K \cap \ker \phi} \to \phi(K)$$
$$a(K \cap \ker \phi) \mapsto \phi(a)$$

é um isomorfismo.

**Prova:** Considere o hommorfismo  $\phi$  restrito a K;

$$\psi := \phi|_K : K \to H$$
$$h \mapsto \phi(h).$$

É imediato verificar que  $\psi(K) = \phi(K)$  e que ker  $\psi = \ker \phi$ . Logo pelo Teorema do Isomorfismo, Teorema 1.5, temos  $K/\ker \psi \cong \psi(K)$ , isto é,

$$\frac{K}{K \cap \ker \phi} \cong \phi(K).$$

 $\Diamond$ 

**Corolário 1.5.2.** Seja H um subgrupo normal de G. Então a função

 $\{subgrupos\ (normais)\ de\ G\ que\ contêm\ H\}\longleftrightarrow \{subgrupos\ (normais)\ de\ G/H\}.$ 

é uma bijeção.

**Prova:** É fácil verificar que  $\phi: G \to G/H$  dada por  $\phi(a) = aH$  é um homomorfismo sobrejetivo. Aplicando a segunda parte do Teorema do Isomorfismo, Teorema 1.5, obtemos o resultado.

**Teorema 1.6** (Teorema da Representação). Seja G um grupo e H um subgrupo de G tal que [G:H]=n. Então existe  $N\subseteq H$ , com  $N \unlhd G$  tal que G/N  $\acute{e}$  um grupo isomorfo a um subgrupo de  $S_n$ . Mais ainda, N  $\acute{e}$  o "maior" subgrupo normal de G que está contido em H.

**Prova:** Seja  $S = G/H = \{Hx_1, ..., Hx_n\}$  e  $\mathcal{P}(S)$  o grupo das permutações do conjunto S. É claro que  $\mathcal{P}(S) \cong S_n$ .

Considere a seguinte aplicação

$$\psi: G \to \mathcal{P}(S)$$
$$a \mapsto \psi_a$$

onde  $\psi_a: S \to S$  é tal que  $\psi_a(Hx_i) = Hx_ia^{-1}$ .

Inicialmente para  $a \in G$  temos  $\psi_a(Hx_i) = \psi_a(Hx_j)$  se, e só se,  $Hx_ia^{-1} = Hx_ja^{-1}$ . Isto é,  $Hx_i = Hx_j$ , logo  $\psi_a$  é injetora. Como |S| = n, então  $\psi_a$  é sobrejetiva e daí  $\psi_a \in \mathcal{P}(S)$ . Logo  $\psi_a \in \mathcal{P}(S)$  para todo  $a \in G$ .

Verifiquemos agora que  $\psi$  é um homomorfismo de grupos. Dados  $a, b \in G$  queremos mostrar que  $\psi(ab) = \psi(a)\psi(b)$ . Mas  $\psi(ab) = \psi_{ab}$ . Seja  $Hx_i \in S$ . Temos

$$\psi_{ab}(Hx_i) = Hx_i(ab)^{-1} = (Hx_ib^{-1})a^{-1} = \psi_a(\psi_b(Hx_i)) = (\psi_a \circ \psi_b)(Hx_i).$$

Portanto  $\psi$  é um homomorfismo de grupos.

Agora,

$$\ker \psi = \{a \in G \mid \psi(a) = Id_S\} = \{a \in G \mid Hx_ia^{-1} = Hx_i, i = 1, \dots, n\}.$$

Daí  $a \in \ker \psi$  se, e só se,  $Hx_ia^{-1} = Hx_i$  para todo i = 1, ..., n. Mas isso ocorre se, e só se,  $Hx_i = Hx_ia$  para todo i = 1, ..., n. Logo  $a \in \ker \psi$  se, e só se,  $H = Hx_iax_i^{-1}$  para todo i = 1, ..., n. Daí  $a \in \ker \psi$  se, e só se,  $x_iax_i^{-1} \in H$  para todo i = 1, ..., n e então  $a \in \ker \psi$  se, e só se,  $a \in x_i^{-1}Hx_i$  para todo i = 1, ..., n. Mas  $G = Hx_1 \cup \cdots \cup Hx_n$ , uma união disjunta e como  $(hx_i)^{-1}H(hx_i) = x_i^{-1}Hx_i$  para todo  $h \in H$ , então  $a \in \ker \psi$  se, e só se,  $a \in x^{-1}Hx$  para todo  $x \in G$ . Ou seja,  $a \in \ker \psi$  se, e somente se,  $a \in \cap_{x \in G}(x^{-1}Hx)$ . Portanto  $\ker \psi = \cap_{x \in G}(x^{-1}Hx)$ .

Seja  $N=\ker \psi$ . Então  $N \unlhd G$  e  $N \subseteq H$ . Agora, seja  $L \unlhd G$  tal que  $L \subseteq H$ . Então  $x^{-1}Lx=L\subseteq x^{-1}Hx$  para todo  $x\in G$ . Assim,  $L\subseteq N=\cap_{x\in G}(x^{-1}Hx)$ . Portanto N é o "maior" subgrupo normal de G contido em H.

Finalmente pelo Teorema do Isomorfismo, Teorema 1.5, temos

$$\frac{G}{\ker \psi} = \frac{G}{N} \cong \psi(G) \leq \mathcal{P}(S) \cong S_n,$$

como queríamos.

 $\Diamond$ 

 $\Diamond$ 

**Corolário 1.5.3** (Teorema de Cayley). Se G é um grupo de ordem n, então G é isomorfo a um subgrupo de  $S_n$ .

**Prova:** Basta tomar  $H = \{1\}$  no Teorema da Representação, Teorema 1.6.

## 1.6 Classes de Conjugação

Seja G um grupo. Dados x,  $y \in G$  defina

 $x \sim_G y$  se, e somente se, existe  $a \in G$  tal que  $y = a^{-1}xa$ .

**Proposição 1.6.1.** Seja G um grupo. A relação  $\sim_G$  define uma relação de equivalência em G.

Prova: A prova é deixada para o leitor.

**Definição 1.15.** Se  $x \sim_G y$ , dizemos que x e y são elementos **conjugados** em G.

Denote  $a^{-1}xa = x^a$ , onde  $x \in G$ . As seguintes propriedades são válidas:

- (1)  $x^{1_G} = x$  para todo  $x \in G$ .
- (2) Se  $y = x^a$ , então  $x = y^{a^{-1}}$  para todos x, y e  $a \in G$ .
- (3)  $(x^a)^b = x^{ab}$  para todos x,  $a \in b \in G$ .

A classe de equivalência de *x* é dada por

$$C_x = \{y \in G \mid x \sim_G y\} = \{x^a \mid a \in G\}$$

e é chamada de **classe de conjugação** de *x* em *G*.

Se G é um grupo finito e existem n classes de conjugação com representantes  $x_1$ ,  $x_2$ , ...,  $x_n$  então

$$G = C_{x_1} \cup C_{x_2} \cup \cdots \cup C_{x_n}$$

uma união disjunta. Assim

$$|G| = |C_{x_1}| + |C_{x_2}| + \cdots + |C_{x_n}|.$$

Observe que  $C_x = \{x\}$  se, e somente se,  $x \in Z(G)$  e daí a equação anterior pode ser escrita como

$$|G| = |Z(G)| + \sum_{x \notin Z(G)} |C_x|.$$
 (1.4)

 $\Diamond$ 

A equação (1.4) é chamada de **equação de classes**.

**Proposição 1.6.2.** Seja G um grupo e  $x \in G$ . Então o conjunto  $C_G(x) = \{a \in G \mid ax = xa\}$   $\acute{e}$  um subgrupo de G.

**Prova:** A cargo do leitor.

**Proposição 1.6.3.** *Seja G um grupo finito e x*  $\in$  *G. Então* 

$$[G:C_G(x)]=|C_x|.$$

Em particular,  $|C_x|$  é um divisor de |G| para todo  $x \in G$ .

**Prova:** Sejam  $H = C_G(x)$  e  $G/H = \{Ha \mid a \in G\}$  o conjunto de todas as classes laterais à direita de H em G. Pelo Teorema de Lagrange, Teorema 1.3, |G| = [G:H]|H|. Agora, considere a aplicação

$$\phi: \frac{G}{H} \to C_x$$

$$Ha \mapsto x^a$$
.

Claramente  $\phi$  é sobrejetora. Sejam Ha,  $Hb \in G/H$  tais que  $\phi(Ha) = \phi(Hb)$ . Daí  $x^a = x^b$  e então  $x^{ab^{-1}} = 1$ , isto é,  $ab^{-1} \in C_G(x) = H$  e portanto Ha = Hb. Logo  $\phi$  é injetiva. Assim

$$|C_x| = [G:C_G(x)]$$

como queríamos.

**Definição 1.16.** Seja p um número primo e G um grupo. Se  $|G| = p^n$ ,  $n \in \mathbb{N}$ , dizemos que G é um p-grupo.

**Exemplos 1.6.1.** (1) Os grupos  $D_8$ ,  $\mathbb{Z}_8$ ,  $\mathbb{Z}_4 \times \mathbb{Z}_2$  e  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$  são 2-grupos de ordem  $2^3$ .

(2) O grupo  $(\mathbb{Z}_{p^n}, \otimes)$  é um p-grupo de ordem  $p^n$ .

(3)  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots$  é um 2-grupo infinito.

**Observação 1.6.1.** Pelo Teorema de Lagrange, Teorema 1.3, todo subgrupo de um p-grupo também é um p-grupo.

**Teorema 1.7.** *Se* G *é um* p-*grupo* e  $|G| = <math>p^n > 1$ , *então*  $|Z(G)| = p^m > 1$ .

**Prova:** Pela Equação de classes, (1.4), obtemos

$$|Z(G)| = |G| - \sum_{x \notin Z(G)} |C_x|.$$

Mas para todo  $x \notin Z(G)$ , temos  $|C_x| > 1$  e como  $|C_x|$  divide |G|, então  $|C_x| = p^{\alpha_x}$  para todo  $x \notin Z(G)$ . Como  $|G| = p^n > 1$ , então devemos ter  $|Z(G)| = p^m > 1$ .

**Corolário 1.6.1.** *Se p é um número primo e*  $|G| = p^2$ , *então G é um grupo abeliano.* 

**Teorema 1.8** (Teorema de Cauchy). Seja p um divisor primo da ordem de um grupo finito G. Então existe  $a \in G$  tal que |a| = p.

**Prova:** Vamos usar indução sobre a ordem de G. Se |G| = 1, nada há a fazer. Vamos supor que o teorema é válido para todo grupo H tal que  $1 \le |H| < |G|$ . Temos três casos para analizar.

Caso 1: G é cíclico.

Seja  $G = \langle x \rangle$  e seja p um divisor primo de |G|. Neste caso  $|x| = p^{\alpha k}$ , onde  $\alpha \ge 1$ . Tome  $a = x^{p^{\alpha - 1}k}$ . Então  $a^p = 1$  e nenhum outra potência r de a menor que p é tal que  $a^r = 1$ . Portanto |a| = p como queríamos.

Caso 2: G é abeliano e não cíclico.

Seja p um divisor primo de |G| e seja  $x \in G$ ,  $x \ne 1$ . Se p divide |x| então pelo *Caso 1*, existe  $a \in \langle x \rangle$  tal que |a| = p e assim o teorema está provado.

Suponha então que p não divide |x|. Seja  $N = \langle x \rangle$ . Como G é abeliano, então L = G/N é um grupo tal que p divide |L| = [G:N]. Mas  $1 \le |L| < |G|$ , assim pela hipótese de indução existe  $\overline{b} \in L$  tal que  $\overline{b} \ne \overline{1}$  e  $|\overline{b}| = p$ . Assim  $b \notin N$  e  $b^p \in N$ . Seja |N| = r, então  $(b^p)^r = 1$  e portanto p divide |b|. Logo pelo  $Caso\ 1$ , existe  $a \in \langle b \rangle$  tal que |a| = p e então o teorema está provado.

Caso 3: G não abeliano

Neste caso  $Z(G) \neq G$ . Se p divide |Z(G)|, então basta usar o *Caso* 2. Assim suponha que p não divide |Z(G)|. Temos

$$|G| = |Z(G)| + \sum_{x \notin Z(G)} [G : C_G(x)].$$

Como p divide |G| então existe  $x \notin Z(G)$  tal que p não divide  $[G:C_G(x)]$ . Portanto p divide |H| onde  $H=C_G(x) \neq G$ . Como  $1 \leq |H| < |G|$ , então pela hipótese de indução, existe  $a \in H$  tal que |a|=p.

Portanto o teorema está provado.

 $\Diamond$ 

## 1.7 Grupos Cíclicos

**Proposição 1.7.1.** (i) Se  $H \subseteq \mathbb{Z}$ , então H é um subgrupo de  $(\mathbb{Z}, +)$  se, e somente se,  $H = n\mathbb{Z}$  para algum  $n \in \mathbb{N}$ .

(ii)  $n\mathbb{Z} \subseteq m\mathbb{Z}$  se, e somente se, m|n. Neste caso temos  $[m\mathbb{Z} : n\mathbb{Z}] = \frac{n}{m}$ .

#### Prova:

(i) Se  $H = n\mathbb{Z}$ , com  $n \in \mathbb{N}$ , então é fácil verificar que  $H \leq \mathbb{Z}$ .

Agora seja  $H \le \mathbb{Z}$ ,  $H \ne \{0\}$ . Tome  $n = \min\{x \in H \mid x > 0\}$ . Como  $n \in H$  e como  $H \le \mathbb{Z}$ , então  $n\mathbb{Z} \subseteq H$ . Dado  $a \in H$ , existem q e  $r \in \mathbb{Z}$  tais que a = qn + r com  $0 \le r < n$ . Mas  $a, n \in H$  daí  $r \in H$  e então pela minimalidade de n devemos ter r = 0. Logo  $a \in n\mathbb{Z}$  e portanto  $H = n\mathbb{Z}$ .

(ii) É imediato verificar que  $n\mathbb{Z} \subseteq m\mathbb{Z}$  se, e somente se, m|n. Suponha que  $n\mathbb{Z} \le m\mathbb{Z} \le \mathbb{Z}$ . Assim pelo Corolário 1.3.2 temos

$$\frac{\mathbb{Z}/n\mathbb{Z}}{m\mathbb{Z}/n\mathbb{Z}} \cong \frac{\mathbb{Z}}{m\mathbb{Z}},$$

daí

$$\left|\frac{\mathbb{Z}/n\mathbb{Z}}{m\mathbb{Z}/n\mathbb{Z}}\right| = \left|\frac{\mathbb{Z}}{m\mathbb{Z}}\right|.$$

Então

$$\frac{n}{[m\mathbb{Z}:n\mathbb{Z}]}=m$$

e portanto  $[m\mathbb{Z} : n\mathbb{Z}] = \frac{n}{m}$ , como queríamos.

 $\Diamond$ 

**Proposição 1.7.2.** *Seja*  $G = \langle a \rangle = \{\dots, a^{-1}, 1, a, a^2, \dots\}$  *um grupo cíclico de ordem infinita. Então:* 

- (i) A função  $\phi: (\mathbb{Z}, +) \to (G, \cdot)$  dada por  $\phi(t) = a^t$  é um isomorfismo.
- (ii) O elemento  $a^r$  gera G se, e somente se, r = -1 ou r = 1.

### Prova: Prova:

- (i) É fácil verificar que  $\phi$  definida desse jeito é um isomorfismo.
- (ii) Como  $\phi$  é um isomorfismo, então  $a^r$  gera G se, e somente se, r gera  $\mathbb{Z}$ . Mas os únicos geradores de  $\mathbb{Z}$  são r=-1 ou r=1.

 $\Diamond$ 

**Proposição 1.7.3.** Seja  $G = \langle a \rangle = \{1, a, ..., a^{n-1}\}$  um grupo cíclico de ordem finita igual a n. Então:

- (i) A função  $\overline{\phi}: (\mathbb{Z}/n\mathbb{Z}, +) \to (G, \cdot)$  dada por  $\phi(\overline{t}) = a^t$  é um isomorfismo.
- (ii) O elemento  $a^r$  gera G se, e somente se, mdc(m, n) = 1.

#### Prova:

(i) Da Proposição 1.7.3 obtemos que  $\phi$  de  $\mathbb{Z}$  em G dada por  $\phi(r)=a^r$  é sobrejetora. Além disso,  $\ker \phi=n\mathbb{Z}$ . Logo

$$\frac{\mathbb{Z}}{\ker \phi} = \frac{\mathbb{Z}}{n\mathbb{Z}} \cong G.$$

(ii) Como  $\overline{\phi}$  é um isomorfismo, então  $a^m$  gera G se, e somente se, m gera  $\mathbb{Z}/n\mathbb{Z}$ . O que ocorre se, e somente se, mdc(m,n)=1.

 $\Diamond$ 

**Proposição 1.7.4.**  $G = \langle a \rangle = \{1, a, \dots, a^{n-1}\}$  um grupo cíclico de ordem finita igual a n. Então:

- (i) Se  $H \leq G$ , então H é cíclico. Mais ainda,  $H = \langle a^m \rangle$  onde m é o menor inteiro positivo tal que  $a^m \in H$ . O subgrupo H tem ordem igual a  $\frac{n}{m}$ .
- (ii) Se d é um divisor de n, então existe um único subgrupo H de G com ordem igual a a. Mais ainda,  $H = \langle a^{\frac{n}{d}} \rangle$ .

#### Prova:

- (i) Seja m o menor inteiro positivo  $a^m \in H$ . Daí  $\langle a^m \rangle \subseteq H$ . Agora, seja  $a^\alpha \in H$ . Então existem  $q, r \in \mathbb{Z}$  tais que  $\alpha = mq + r \operatorname{com} 0 \le r < m$ . Daí  $a^\alpha = a^{mq}a^r$ . Como  $a^\alpha$ ,  $a^m \in H$  e  $H \le G$ , então  $a^r \in H$ . Logo r = 0, devido à minimalidade de m. Portanto  $H = \langle a^m \rangle$ . Agora,  $(a^m)^{n/m} = 1$ . Seja k < n/m tal que  $(a^m)^k = 1$ . Logo n|mk, mas mk < n, logo k = 0. Portanto  $|a^m| = \frac{n}{m}$ .
- (ii) Seja d um divisor de n. Pelo item anterior, o grupo  $H = \langle a^{n/d} \rangle$  tem ordem d. Vamos provar que H é único. Seja K um subgrupo de G de ordem d. Novamente pelo item anterior,  $K = \langle a^m \rangle$  tal que  $|K| = \frac{n}{m} = d$ . Assim  $m = \frac{n}{d}$  e daí  $K = \langle a^{n/d} \rangle = H$ , como queríamos.

 $\Diamond$ 

## 1.8 Grupos de Permutações

**Definição 1.17.** *Um permutação*  $\alpha \in S_n$  *é denominada um r-ciclo* se existem elementos distintos  $a_1, \ldots, a_r \in \{1, \ldots, n\}$  tais que

$$\alpha(a_1) = a_2$$

$$\alpha(a_2) = a_3$$

$$\vdots$$

$$\alpha(a_{r-1}) = a_r$$

$$\alpha(a_r) = a_1$$

e tais que  $\alpha(j) = j$  para todo  $j \in \{1, ..., n\} \setminus \{a_1, ..., a_r\}$ . Tal r-ciclo será denotado por  $(a_1 a_2 \cdots a_r)$ . O número r é chamado o **comprimento** do ciclo. Se r = 2, então chamamos os 2-ciclos de **transposições**. O único 1-ciclo é a identidade, que denotaremos por (1).

#### **Exemplos 1.8.1.** *Em S*<sub>5</sub>:

- A permutação  $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$  é um 5-ciclo denotado por  $\alpha = (12345)$ . Também podemos escrever  $\alpha = (23451)$  ou  $\alpha = (34512)$  ou  $\alpha = (45123)$ .
- A permutação  $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 3 & 5 \end{pmatrix}$  é um 3-ciclo denotado por  $\alpha = (143)$ . Também podemos escrever  $\alpha = (431)$  ou  $\alpha = (314)$ .
- A permutação  $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix}$  é um 2-ciclo denotado por  $\alpha = (24)$  ou  $\alpha = (42)$ .
- A permutação  $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$  não é um r-ciclo qualquer que seja r. Mas podemos escrever  $\alpha = (135)(24)$  ou  $\alpha = (24)(135)$ .

**Definição 1.18.** Seja  $\alpha \in S_n$  um r-ciclo e seja  $\beta \in S_n$  um s-ciclo. As permutações  $\alpha$  e  $\beta$  são disjuntas se nenhum elemento de  $\{1, \ldots, n\}$  é movido por ambas, isto é, para todo  $a \in \{1, \ldots, n\}$  temos  $\alpha(a) = a$  ou  $\beta(a) = a$ .

**Exemplos 1.8.2.** Em  $S_5$  os ciclos (134) e (25) são disjuntos, enquanto que (135) e (25) não são disjuntas.

**Lema 1.8.1.** Sejam  $\alpha$ ,  $\beta \in S_n$ . Se  $\alpha$  e  $\beta$  são permutações disjuntas então  $\alpha\beta = \beta\alpha$ .

**Prova:** É suficiente mostrar que  $(\alpha\beta)(i) = (\beta\alpha)(i)$  para todo i = 1, ..., n. Se  $\beta$  move i, digamos  $\beta(i) = j \neq i$ , então  $\beta$  também move j. Caso contrário teríamos  $\beta(i) = j = \beta(j)$ , o que contradiz o fato de que  $\beta$  é injetora. Como  $\alpha$  e  $\beta$  são disjuntas, então  $\alpha(i) = i$  e  $\alpha(j) = j$ . Daí  $(\alpha\beta)(i) = \alpha(j) = j = \beta(i) = (\beta\alpha)(i)$ . De modo análogo, mostra-se que se  $\alpha$  move i, então  $(\alpha\beta)(i) = (\beta\alpha)(i)$ . Se  $\alpha$  e  $\beta$  fixam i, então  $(\alpha\beta)(i) = \alpha(i) = i = \beta(i) = (\beta\alpha)(i)$ . Portanto  $\alpha\beta = \beta\alpha$ .

**Lema 1.8.2.** *Se*  $\alpha \in S_n$  *é um* r-*ciclo, então*  $|\alpha| = r$ .

**Prova:** Seja  $\alpha = (a_1 a_2 \dots a_r)$ . Mostra-se, por indução em k, que  $\alpha^k(a_j) = a_{j+k}$ , onde  $j + k \equiv l \pmod{r}$  se j + k > r. Assim

$$\alpha^r(a_k) = a_{k+r} = a_k$$

para todo  $k=1,\ldots,r$ . Portanto  $|\alpha|$  divide r. Agora, se  $|\alpha|=l< r$ , então  $\alpha^l=(1)$  e daí  $\alpha^l(i_k)=i_k$  para todo  $k=1,\ldots,r$ . Mas,

$$\alpha^l(a_1) = a_{l+1} \neq a_1$$

pois  $\alpha$  é um *r*-ciclo. Portanto  $|\alpha| = r$ .

**Proposição 1.8.1.** Seja  $\alpha \in S_n$ ,  $\alpha \neq (1)$ . Então a permutação  $\alpha$  é igual a um produto de ciclos disjuntos de comprimento  $\geq 2$ . Mais ainda, tal decomposição é única a menos da ordem dos fatores.

 $\Diamond$ 

**Prova:** Como  $\alpha \neq (1)$ , então existe  $i_1 \in \{1, \ldots, n\}$  tal que  $\alpha(i_1) \neq i_1$ . Considere a sequência  $i_1, \alpha(i_1), \alpha^2(i_1), \ldots$ . Então existe um menor inteiro positivo  $r_1, 2 \leq r_1 \leq n$  tal que  $i_1, \alpha(i_1), \ldots, \alpha^{r_1-1}(i_1)$  são elementos distintos e  $\alpha^{r_1}(i_1) \in \{i_1, \alpha(i_1), \ldots, \alpha^{r_1-1}(i_1)\}$ . Se  $\alpha^{r_1}(i_1) = \alpha^j(i_1)$ , com  $j \neq 0$  então  $\alpha^{r_1-j}(i_1) = i_1$ , o que contradiz a escolha de  $r_1$ . Daí  $\alpha^{r_1}(i_1) = i_1$ . Assim a restrição de  $\alpha$  ao conjunto  $\{i_1, \alpha(i_1), \ldots, \alpha^{r_1-1}(i_1)\}$  é tal que

$$\alpha|_{\{i_1,\alpha(i_1),\dots,\alpha^{r_1-1}(i_1)\}} = (i_1\alpha(i_1)\dots\alpha^{r_1-1}(i_1)).$$

Denote este  $r_1$ -ciclo por  $\sigma_1 = (i_1 \alpha(i_1) \dots \alpha^{r_1-1}(i_1)).$ 

Se a restrição de  $\alpha$  ao complementar de  $\{i_1, \alpha(i_1), \ldots, \alpha^{r_1-1}(i_1)\}$  é a identidade, então  $\alpha = \sigma_1$ . Caso contrário, tome  $i_2 \in \{1, 2, \ldots, n\} \setminus \{i_1, \alpha(i_1), \ldots, \alpha^{r_1-1}(i_1)\}$  tal que  $\alpha(i_2) \neq i_2$ . De modo análogo ao caso anterior, existe  $r_2 \geq 2$  tal que

$$\alpha|_{\{i_2,\alpha(i_2),\ldots,\alpha^{r_2-1}(i_2)\}}=(i_2\alpha(i_2)\ldots\alpha^{r_2-1}(i_2)).$$

Denote este  $r_2$ -ciclo por  $\sigma_2 = (i_2 \alpha(i_2) \dots \alpha^{r_2-1}(i_2))$ . Note que  $\sigma_1$  e  $\sigma_2$  são disjuntas.

Se a restrição de  $\alpha$  ao complementar de  $\{i_1, \alpha(i_1), \ldots, \alpha^{r_1-1}(i_1), i_2, \alpha(i_2), \ldots, \alpha^{r_2-1}(i_2)\}$  é a identidade, então  $\alpha = \sigma_1 \sigma_2$ . Caso contrário, tome  $i_3 \in \{1, 2, \ldots, n\} \setminus \{i_1, \alpha(i_1), \ldots, \alpha^{r_1-1}(i_1), i_2, \alpha(i_2), \ldots, \alpha^{r_2-1}(i_2)\}$  tal que  $\alpha(i_3) \neq i_3$  e repita o processo anterior. Claramente depois de um

número finito de etapas este processo irá terminar e obteremos que  $\alpha = \sigma_1 \sigma_2 \cdots \sigma_t$ , onde  $\sigma_1, \ldots, \sigma_t$  são ciclos disjuntos de comprimento  $\geq 2$ .

Suponha agora que também temos  $\alpha = \tau_1 \tau_2 \cdots \tau_l$  com  $\tau_1, \tau_2, \ldots, \tau_l$  ciclos disjuntos de comprimento  $\geq 2$ . Temos  $\tau_1 \cdots \tau_l(i_1) = \alpha(i_1) \neq i_1$  e como os  $\tau_i$ 's são disjuntos, então existe um único  $\tau_j$  tal que  $\tau_j(i_1) = \alpha(i_1)$ . Mas os ciclos  $\tau_i$ 's comutam, assim podemos supor que j=1 e então  $\tau_1(i_1) = \alpha(i_1)$ . Mostremos que  $\tau_1 = \sigma_1$ . O ciclo  $\tau_1$  não pode fixar  $\alpha(i_1)$ , isto é,  $\tau_1(\alpha(i_1)) \neq \alpha(i_1)$  pois  $\tau_1(i_1) = \alpha(i_1) \neq i_1$ . Como os  $\tau_j$ 's são ciclos disjuntos, então  $\tau_j(\alpha(i_1)) = \alpha(i_1)$  para  $j \geq 2$ . Assim  $\tau_1(\alpha(i_1)) = \alpha^2(i_1)$  e daí  $\tau_1(\alpha^k(i_1)) = \alpha^{k+1}(i_1)$  para todo  $k \geq 0$ . Logo  $\tau_1 = \sigma_1$ . Aplicando o mesmo raciocínio com  $i_2$  obtemos que  $\tau_2 = \sigma_2$ . Continuando com o procedimento obtemos que t = l e que a menos da ordem  $\sigma_j = \tau_j$  para cada j = 1, ..., t.

**Proposição 1.8.2.** (i) Todo elemento de  $S_n$  pode ser escrito como um produto de transposições, isto é,  $S_n = \langle transposições \rangle$ .

(ii) 
$$S_n = \langle (12), (13), \ldots, (1n) \rangle$$
.

(iii) 
$$S_n = \langle (12), (23), \dots, (n-1n) \rangle$$
.

#### Prova:

(i) Inicialmente temos (1) = (12)(12)  $\in$  ⟨transposições⟩. Agora, pela Proposição 1.8.1, dada uma permutação  $\alpha \in S_n$ , é suficiente mostrar que cada r-ciclo de  $\alpha$  pode ser escrito como um produto de transposições. Assim se ( $a_1a_2\cdots a_r$ ) é um r-ciclo de  $\alpha$ , então podemos escrever

$$(a_1a_2\cdots a_r)=(a_1a_r)(a_1a_{r-1})\cdots (a_1a_3)(a_1a_2).$$

Donde obtemos o resultado desejado.

(ii) Pela parte (a), basta mostrar que toda transposição (ij) pertence a  $\langle (12), (13), \dots, (1n) \rangle$ . De fato

$$(ij) = (1i)(1j)(1i)$$

para  $i \neq j$ , como queríamos.

(iii) Para todo inteiro  $r \ge 2$ , temos

$$(1i + 1) = (1i)(ii + 1)(1i),$$

assim o subgrupo  $\langle (12), (23), \dots, (n-1n) \rangle$  contém  $\langle (1i), \text{ para cada } i=2, \dots, n.$  Logo pelo item (b),  $S_n = \langle (12), (23), \dots, (n-1n) \rangle$ , como queríamos.

 $\Diamond$ 

**Observações 1.8.1.** (1) Um elemento  $\alpha \in S_n$  pode ser escrito como um produto de transposições disjuntas se, e somente se, sua ordem for igual a 2.

(2) A decomposição de  $\alpha \in S_n$  em um produto de transposições não é única. Por exemplo:

(a) para 
$$\alpha = (123) \in S_4$$
 temos:  $\alpha = (13)(12) = (23)(13) = (13)(42)(12)(14)$ ,

(b) para 
$$\alpha = (24) \in S_4$$
 temos:  $\alpha = (24) = (13)(12)(13)(34)(23)$ .

Apesar da decomposição não ser única, existe um invariante nessa decomposição que é a paridade do número de transposições que aparecem em  $\alpha$ .

**Teorema 1.9.** Seja  $\alpha \in S_n$ . Se  $\alpha = \sigma_1 \cdots \sigma_r = \tau_1 \cdots \tau_l$ , onde  $\sigma_i$  e  $\tau_i$  são transposições para todo  $i = 1, \ldots, r$  e  $j = 1, \ldots, l$  então  $r \equiv l \pmod 2$ .

**Prova:** Inicialmente note que toda transposição tem ordem 2, daí podemos escrever

$$(1) = \alpha \alpha^{-1} = \sigma_1 \cdots \sigma_r \tau_l \cdots \tau_1.$$

Assim é suficiente mostrar que a identidade só pode ser escrita como um número par de transposições. Assim r + l é par e então teremos  $r \equiv l \pmod{2}$ .

Suponha então que

$$(1) = (a_k b_k) \cdots (a_2 b_2)(a_1 b_1) \tag{1.5}$$

onde  $k \ge 1$  e suponha que  $a_i \ne b_i$  para todo i. Provemos que k é par. Como  $a_i \ne b_i$ , então k > 1. Assim  $k \ge 2$  e faremos a prova por indução em k. Suponha então que em qualquer produto de transposições que seja a identidade e que contenha menos do que k transposições, ocorra uma quantidade par de transposições.

Considere um produto da forma (1.5). Alguma transposição ( $a_ib_i$ ) para  $i=2,\ldots,k$  deve mover  $a_1$ , caso contrário não obteríamos a identidade. Assim podemos supor que  $a_1=a_j$  para algum j>1. Agora,

$$(ab)(cd) = (cd)(ab)$$

$$(ac)(bc) = (bc)(ab).$$

Assim podemos mudar a ordem das transposições  $(a_ib_i)$  em (1.5), sem mudar sua quantidade, e supor que  $a_2 = a_1$ . Se  $b_1 = b_2$ , então  $(a_1b_1)(a_2b_2) = (1)$  em (1.5) e obtemos um produto de k-2 transposições dando a identidade. Daí pela hipótese de indução k-2 é par e logo k é par.

Se  $b_1 \neq b_2$ , então  $(a_1b_1)(a_1b_2) = (a_1b_2)(b_1b_2)$  e daí podemos reescrever (1.5) como

$$(1) = (a_k b_k) \cdots (a_3 b_3)(a_1 b_1)(b_1 b_2) \tag{1.6}$$

onde somente os dois primeiros fatores de (1.5) foram alterados. Note que o número de transposições que podem mover  $a_1$  foi reduzida em 1. Repita o argumento com (1.6). Assim existe  $a_j$ , com  $j \geq 3$ , tal que  $a_j = a_1$ . Com isso ou reduzimos o número de transposições em (1.6) e aí usamos a hipótese de indução ou então reescrevemos (1.6) sem mudar o número total de transposições, mas reduzindo em 1 o número de transposições que movem  $a_1$ . Continuando com este processo, chegaremos na situação em que as duas primeiras transposições se cancelam, caso contrário somente a primeira transposição de (1.5) moveria  $a_1$  e portanto não seria a identidade. Chegando nesse instante a hipótese de indução garante que k é par.

**Definição 1.19.** Seja  $\alpha \in S_n$ . Escreva  $\alpha = \tau_1 \cdots \tau_r$  onde  $\tau_i$  é uma transposição para cada i = 1, ..., r. Então o número  $(-1)^r$  é chamado de **sinal** de  $\alpha$  e denotamos

$$sgn(\alpha) = (-1)^{\alpha} = (-1)^{r}.$$
 (1.7)

Permutações com sinal 1 são chamadas de pares e aquelas com sinal -1 são chamada de ímpares.

**Exemplos 1.8.3.** (1) Seja  $\alpha$ ,  $\beta \in S_n$  onde  $\alpha = (123)$   $e \beta = (24)$ . Então

$$sgn(\alpha) = 1$$

$$sgn(\beta) = -1.$$

(2) Qualquer transposição em  $S_n$  tem sinal -1.

- (3) sgn(1) = 1
- (4) Se  $\alpha$  é um r-ciclo, então  $\operatorname{sgn}(\alpha) = (-1)^{r-1}$ . (Exercício!)

**Proposição 1.8.3.** *Para*  $\alpha$ ,  $\beta \in S_n$  *temos* 

$$sgn(\alpha\beta) = sgn(\alpha)sgn(\beta).$$

**Prova:** Se  $\alpha$  é um produto de k transposições e  $\beta$  é um produto de l transposições, então  $\alpha\beta$  pode ser escrita como um produto de k+l transposições. Logo

$$\operatorname{sgn}(\alpha\beta) = (-1)^{r+l} = (-1)^r (-1)^l = \operatorname{sgn}(\alpha)\operatorname{sgn}(\beta),$$

como queríamos.

**Corolário 1.8.1.** *Inversão e conjugação de uma permutação não altera seu sinal.* 

**Prova:** Seja  $\alpha \in S_n$ . Assim  $\alpha \alpha^{-1} = (1)$  e daí  $sgn(\alpha \alpha^{-1}) = sgn(1) = 1$ . Por outro lado,  $sgn(\alpha \alpha^{-1}) = sgn(\alpha)sgn(\alpha^{-1})$ . Portanto  $sgn(\alpha) = sgn(\alpha^{-1})$ , como queríamos.

Agora, se  $\beta = \pi^{-1} \alpha \pi$  para algum  $\pi \in S_n$ , então

$$sgn(\beta) = sgn(\pi^{-1}\alpha\pi) = sgn(\pi^{-1})sgn(\alpha)sgn(\pi) = sgn(\alpha).$$

 $\Diamond$ 

 $\Diamond$ 

**Corolário 1.8.2.** *O conjunto* 

$$A_n = \{ \alpha \in S_n \mid \operatorname{sgn}(\alpha) = 1 \}$$

 $\acute{e}$  um subgrupo de  $S_n$  chamado de **grupo** alternado.

**Prova:** Como sgn(1) = 1, então  $(1) \in A_n$ . Agora, dados  $\alpha$ ,  $\beta \in A_n$ , então  $sgn(\alpha\beta) = sgn(\alpha)sgn(\beta) = 1$ . Logo  $\alpha$ ,  $\beta \in A_n$ . Como  $sgn(\alpha) = sgn(\alpha^{-1})$ , então  $\alpha^{-1} \in A_n$  para todo  $\alpha \in A_n$ . Portanto  $A_n$  é um subgrupo de  $S_n$ .

**Exemplos 1.8.4.** (1)  $Em S_2 temos A_2 = \{(1)\}.$ 

(2)  $Em S_3 = \{(1), (12), (13), (23), (123), (132)\} temos A_3 = \{(1), (123), (132)\}.$ 

- (3)  $Em S_n temos A_4 = \{(1), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)\}.$
- (4) Para  $n \ge 4$  (123), (124)  $\in A_n$ . Assim  $A_n$  não é abeliano.

**Proposição 1.8.4.** *Para*  $n \ge 2$ ,  $|A_n| = \frac{n!}{2}$ .

**Prova:** A aplicação sgn :  $S_n \to C_2 = \{-1, 1\}$ , onde  $C_2$  é um grupo multiplicativo, é um homomorfismo. É fácil ver que ker sgn =  $A_n$  e daí  $|A_n| = \frac{n!}{2}$ .

**Definição 1.20.** Seja  $n \ge 2$ . Se  $\alpha \in S_n$  e se  $\alpha = (a_{11} \dots a_{1r_1}) \cdots (a_{t1} \dots a_{tr_t})$  é a sua decomposição em ciclos disjuntos com  $r_1 \le r_2 \le \cdots \le r_t$ , dizemos que  $r_1, \dots, r_t$  é o **tipo de decomposição** de  $\alpha$ .

**Exemplo 1.8.1.** As permutações  $\alpha = (45)(67)(123)$  e  $\beta = (15)(36)(247)$  têm o mesmo tipo de decomposição, a saber 2, 2, 3.

**Lema 1.8.3.** Seja  $n \ge 2$ . Dada uma permutação  $\rho \in S_n$ , seja  $\rho = (a_{11} \dots a_{1r_1}) \cdots (a_{t1} \dots a_{tr_t})$  sua decomposição em ciclos disjuntos.

(i) Se  $\sigma \in S_n$ , então a permutação  $\sigma \rho \sigma^{-1}$  tem a seguinte decomposição em ciclos disjuntos

$$\sigma\rho\sigma^{-1}=(\sigma(a_{11})\ldots\sigma(a_{1r_1}))\cdots(\sigma(a_{t1})\ldots\sigma(a_{tr_t})).$$

Em particular, as permutações  $\rho$  e  $\sigma \rho \sigma^{-1}$  têm o mesmo tipo de decomposição.

- (ii) Reciprocamente, se  $\rho$ ,  $\beta \in S_n$  são permutações com o mesmo tipo de decomposição, então existe  $\sigma \in S_n$  tal que  $\beta = \sigma \rho \sigma^{-1}$ .
- (iii) Se as permutações  $\rho$ ,  $\beta \in S_n$  têm o mesmo tipo de decomposição e se a permutação  $\rho$  deixa pelo menos duas letras fixas, então existe  $\mu \in A_n$  tal que  $\beta = \mu \rho \mu^{-1}$ .

#### Prova:

(i) Seja  $\tau = (a_1 \dots a_r)$  um r-ciclo qualquer. Queremos mostrar que  $\sigma \tau \sigma^{-1} = (\sigma(a_1) \dots \sigma(a_r))$ . Para isso, vamos mostrar que

$$\sigma\tau\sigma^{-1}|_{\{\sigma(a_1),\ldots,\sigma(a_r)\}}=(\sigma(a_1)\ldots\sigma(a_r)).$$

De fato, para  $j \in \{1, \dots, r-1\}$  temos

$$\sigma\tau\sigma^{-1}(\sigma(a_{j}))=\sigma\tau(\sigma^{-1}(\sigma(a_{j})))=\sigma\tau(a_{j})=\sigma(a_{j+1})$$

e para j = r

$$\sigma \tau \sigma^{-1}(\sigma(a_r)) = \sigma \tau(\sigma^{-1}(\sigma(a_r))) = \sigma \tau(a_r) = \sigma(a_1).$$

Além disso, se  $b \notin \{\sigma(a_1), \ldots, \sigma(a_r)\}$ , então  $\sigma^{-1}(b) \notin \{a_1, \ldots, a_r\}$ . Daí  $\tau \sigma^{-1}(b) = \sigma^{-1}(b)$  e assim

$$\sigma\tau\sigma^{-1}(b) = \sigma(\tau(\sigma^{-1}(b))) = \sigma\sigma^{-1}(b) = b.$$

Portanto,  $\sigma \tau \sigma^{-1} = (\sigma(a_1) \dots \sigma(a_r)).$ 

Agora, se  $\rho = (a_{11} ... a_{1r_1}) ... (a_{t1} ... a_{tr_t})$ , então

$$\sigma \rho \sigma^{-1} = \sigma(a_{11} \dots a_{1r_1}) \sigma^{-1} \sigma(a_{21} \dots a_{2r_2}) \sigma^{-1} \cdots \sigma(a_{t1} \dots a_{tr_t}) \sigma^{-1}$$
$$= (\sigma(a_{11}) \dots \sigma(a_{1r_1})) (\sigma(a_{21}) \dots \sigma(a_{2r_2})) \cdots (\sigma(a_{t1}) \dots \sigma(a_{tr_t})).$$

Mais ainda, para todo  $i, j \in \{1, ..., t\}$  com  $i \neq j$ , como  $\{a_{i1}, ..., a_{ir_i}\} \cap \{a_{j1}, ..., a_{jr_j}\} = \emptyset$  então  $\{\sigma(a_{i1}), ..., \sigma(a_{ir_i})\} \cap \{\sigma(a_{i1}), ..., \sigma(a_{jr_j})\} = \emptyset$ . Portanto os ciclos obtidos em  $\sigma \rho \sigma^{-1}$  são disjuntos.

(ii) Seja  $\beta = (b_{11} \dots b_{1r_1}) \dots (b_{t1} \dots b_{tr_t})$  a decomposição em ciclos disjuntos de  $\beta$ . Tome

$$\{c_1,\ldots,c_k\} = \{1,\ldots,n\} \setminus \bigcup_{i=1}^t \{a_{i1},\ldots,a_{ir_i}\}$$
$$\{d_1,\ldots,d_k\} = \{1,\ldots,n\} \setminus \bigcup_{i=1}^t \{b_{i1},\ldots,b_{ir_i}\}.$$

Tome  $\sigma \in S_n$  dada por

$$\sigma := \begin{pmatrix} a_{11} & \cdots & a_{1r_1} & \cdots & a_{t1} & \cdots & a_{tr_t} & c_1 & \cdots & c_k \\ b_{11} & \cdots & b_{1r_1} & \cdots & b_{t1} & \cdots & b_{tr_t} & d_1 & \cdots & d_k \end{pmatrix}.$$

Aplicando a parte (a), é imediato verificar que  $\sigma\rho\sigma^{-1}=\beta$ . Observe que para cada ordenação do conjunto  $c_1,\ldots,c_k$  obtemos uma permutação diferente que funciona.

(iii) Pela parte (b), existe  $\sigma \in S_n$  tal que  $\beta = \sigma \rho \sigma^{-1}$ . Usando as mesmas notações de (b), como  $\rho$  fixa pelo menos duas letras, então  $k \ge 2$ . Tomando

$$\mu \coloneqq \begin{cases} \sigma, & \text{se } \sigma \in A_n \\ \sigma(c_1c_2), & \text{se } \sigma \notin A_n \end{cases}.$$

o resultado segue.

 $\Diamond$ 

**Proposição 1.8.5.** *Seja n*  $\geq$  3. *Então A*<sub>n</sub> =  $\langle \{3\text{-}ciclos\} \rangle$ .

**Prova:** Se (ijk) é um 3-ciclo qualquer, então como (ijk) = (ik)(ij) temos  $(ijk) \in A_n$ . Logo  $\langle \{3\text{-ciclos}\} \rangle \subseteq A_n$ . Agora, seja  $\tau \in A_n$ . Assim  $\tau = \sigma_1 \sigma_2 \cdots \sigma_m$  com  $\sigma_i$  transposição para i = 1, ..., m e m par. Logo se mostrarmos que  $\sigma_i \sigma_j$  é um 3-ciclo, então  $\tau$  será um produto de 3-ciclos. Para simplificar a notação, sejam  $\alpha$  e  $\beta$  duas transposições. Se  $\alpha$  e  $\beta$  são disjuntas, digamos  $\alpha = (ij)$  e  $\beta = (kl)$ , então

$$\alpha\beta = (ij)(kl) = [(ij)(ki)][(ki)(kl)] = (ikj)(ikl)$$

e assim  $\alpha\beta$  é um produto de dois 3-ciclos. Se  $\alpha$  e  $\beta$  não são disjuntas, digamos  $\alpha = (ij)$  e  $\beta = (jk)$ , então  $\alpha\beta = (ij)(jk) = (ijk)$  é um 3-ciclo. Logo  $\alpha\beta$  é sempre um produto de 3-ciclos se  $\alpha$  e  $\beta$  são transposições. Logo o mesmo ocorre com  $\tau$  e daí  $\tau \in \langle \{3\text{-ciclos}\} \rangle$ . Portanto,  $A_n = \langle \{3\text{-ciclos}\} \rangle$ .

**Definição 1.21.** *Um grupo G é chamado de simples* se {1} *e G são seus únicos subgrupos normais.* 

**Teorema 1.10.** *Seja* n = 3 *ou*  $n \ge 5$ *. Então o grupo alternado*  $A_n$  *é um grupo simples.* 

**Prova:** O grupo  $A_3$  tem ordem 3 e portanto é simples.

Sejam  $n \ge 5$  e  $H \ne \{1\}$  um subgrupo normal de  $A_n$ . Queremos mostrar que  $H = A_n$ . Pela Proposição 1.8.5 é suficiente mostrar que H contém todos os 3-ciclos.

Suponha que H contenha um 3-ciclo (abc). Como  $n \ge 5$ , então  $\rho = (abc)$  fixa pelo menos duas letras e daí pelo Lema 1.8.3 para todo 3-ciclo (ijk), existe  $\sigma \in A_n$  tal que (ijk) =  $\sigma(abc)\sigma^{-1}$ . Mas  $H \le A_n$ , logo (ijk)  $\in H$ . Portanto  $H = A_n$ .

Vamos mostrar agora que H sempre contém um 3-ciclo. Como  $H \neq \{1\}$ , então existe  $\sigma \in H$ ,  $\sigma \neq \{1\}$ . Denote  $m = |\sigma| > 1$ . Seja p um divisor primo de m. Assim  $\tau = \sigma^{m/p} \in H$  é tal que  $|\tau| = p$ . Escreva  $\tau = \rho_1 \cdots \rho_l$ , onde  $\rho_i \cap \rho_j = \emptyset$  para todo  $i \neq j$ . Sabemos que  $p = |\sigma| = \text{m.m.c}\{|\rho_1|, \ldots, |\rho_l|\}$ . Portanto,  $\rho_i$  é um p-ciclo para  $i = 1, \ldots, l$ .

$$1^{o}$$
 *Caso:*  $p = 2$ 

Neste caso todos os  $\rho_i$ 's são transposições e l é um inteiro par pois  $\tau \in H \subseteq A_n$ . Assim  $l \ge 2$  e denotando  $\rho_1 = (ab), \, \rho_2 = (cd), \, \text{temos } \tau = (ab)(cd)\rho_3 \cdots \rho_l$ . Agora como um 3-ciclo é

um produto de duas transposições com um elemento em comum, precisamos encontrar em H um produto da forma (ik)(ij). Para fazer isso, primeiro vamos mostrar que se (ab) e (cd) forem transposições disjuntas, então  $(ac)(bd) \in H$ . Como (ab) e (cd) são disjuntos, sabemos que para  $\sigma = (abc)$  temos  $\sigma(ab)(cd)\sigma^{-1} = (\sigma(a)\sigma(b))(\sigma(c)\sigma(d))$ . Assim

$$\sigma(ab)(cd)\sigma^{-1} = (bc)(ad).$$

Como  $\sigma = (abc)$  e  $\rho_i$ , com  $i \ge 3$ , são disjuntos (pois caso contrário teríamos em  $\tau$  um r-ciclo com  $r \ge 2$ ), eles comutam. Logo

$$\sigma \tau \sigma^{-1} = (abc)(ab)(cd)\rho_3 \dots \rho_l(abc)^{-1} = (ad)(bc)\rho_l(abc)^{-1} = (ad)(bc)\rho_3 \dots \rho_l \in H$$

pois  $\tau \in H \subseteq A_n$  e  $(abc) \in A_n$ . Mas  $\tau^{-1} \in H$ , daí

$$\sigma \tau \sigma^{-1} \tau^{-1} = (ad)(bc)\rho_3 \dots \rho_1 \rho_1^{-1} \dots \rho_3^{-1}(bc)(ad) = (ad)(bc)(cd)(ab) = (ac)(bd) \in H$$

como queríamos.

Agora tomando  $K \neq a, b, c, d$ , o que é possível pois  $n \ge 5$ , temos

$$(akc)(ac)(bd)(akc)^{-1} = (ak)(bd) \in H,$$

pois  $(ac)(bd) \in H \le A_n$  e  $(akc) \in A_n$ . Portanto  $(ac)(bd)(ak)(bd) = (ac)(ak)(bd)(bd) = (akc) \in H$  e com isso  $H = A_n$ .

 $2^{o}$  *Caso:* p = 3

Se l=1, então  $\tau=\rho_1$  é um 3-ciclo em H e acabou.

Se  $l \ge 1$ , denote  $\rho_1 = (abc)$  e  $\rho_2 = (def)$ . Então  $\tau = (abc)(def)\rho_3 \dots \rho_l$ . Como por hipótese todos os  $\rho_i$ 's são disjuntos, então a, b, c, d, e e f não aparecem nos outros 3-ciclos  $\rho_3, \dots$ ,  $\rho_l$ . Assim o 3-ciclo (bcd) é disjunto de  $\rho_3, \dots$ ,  $\rho_l$  e com isso comuta com todos eles. Logo

$$(bcd)\tau(bcd)^{-1}=(bcd)(abc)(def)\rho_3\dots\rho_l(bcd)^{-1}=(acd)(bef)\rho_3\dots\rho_l\in H$$

e como  $\tau^{-1} \in H$  então

Logo H contém um 5-ciclo e assim em particular um elemento de ordem 5. Daí basta provar o caso p > 3.

 $\Diamond$ 

 $3^{o}$  Caso: p > 3

Seja  $\rho_1 = (a_1 a_2 a_3 a_4 \dots a_p \text{ e } \tau = (a_1 a_2 a_3 a_4 \dots a_p) \rho_2 \dots \rho_l$ . Novamente, por hipótese, todos os  $\rho_i$ 's são disjuntos e assim  $a_1, a_2, a_3, a_4, \dots, a_p$  não aparecem em  $\rho_2, \dots, \rho_l$ . Logo o 3-ciclo  $(a_1 a_2 a_3)$  é disjunto de  $\rho_2, \dots, \rho_l$  e então comuta com eles. Daí

$$(a_1a_2a_3)\tau(a_1a_2a_3)^{-1}=(a_2a_3a_1a_4\dots a_v)\rho_2\dots\rho_l\in H$$

e com isso

$$(a_1a_2a_3)\tau(a_1a_2a_3)^{-1}\tau^{-1}=(a_2a_3a_1a_4\ldots a_p)(a_1a_2a_3a_4\ldots a_p)^{-1}\in H.$$

Mas  $(a_1a_2a_3a_4...a_p)^{-1} = (a_1a_pa_{p-1}...a_4a_3a_2)$  e com isso

$$(a_2a_3a_1a_4...a_p)(a_1a_pa_{p-1}...a_4a_3a_2) = (a_1a_2a_4) \in H.$$

Logo  $H = A_n$ , provando assim que  $A_n$  é simples se n = 3 ou  $n \ge 5$ .

**Teorema 1.11.** Seja  $K = \{(1), (12)(34), (13)(24), (14)(23)\}$ . Então  $K \leq S_n$ , chamado de grupo de Klein pois todos os seus elementos têm ordem 2. Mais ainda,  $\{(1)\}$ , K e  $A_4$  são os únicos subgrupos normais de  $A_4$ .

**Prova:** É imediato verificar que  $K \le S_4$ . Provemos então que  $K \le S_4$ . Como os elementos de  $S_4$  podem ser escritos como produtos de ciclos disjuntos, então  $A_4 = \{3\text{-ciclos}\} \cup K$ . Daí o único sugrupo de ordem 4 em  $A_4$  é K. Logo  $K \le S_4$ .

Agora seja  $H \neq \{(1)\}$  um subgrupo normal em  $A_4$ . Se H contém um 3-ciclo, digamos (123), então (132) =  $(123)^{-1} \in H$ . ASSIM (124) =  $(324)(132)(324)^{-1} \in H$  pois  $H \leq A_4$ . Mas  $A_4 = \langle (123), (124) \rangle$  e com isso  $H = A_4$ .

Se H não contém nenhum 3-ciclo, então ele deve conter um elemento diferente de (1), digamos (12)(34). Assim (13)(24) =  $(234)(12)(34)(234)^{-1} \in H$  e  $(14)(23) = (12)(34)(13)(24) \in H$ . Portanto H = K e o resultado está provado.

**Corolário 1.8.3.** (i) Seja n = 3 ou  $n \ge 5$ . Então os grupos  $\{(1)\}$ ,  $A_n$  e  $S_n$  são os únicos subgrupos normais de  $S_n$ . Em particular, o grupo alternado  $A_n$  é o único subgrupo normal de  $S_n$  de índice 2.

(ii) Sejam n = 4 e K o grupo de Klein. Então  $\{(1)\}$ , K,  $A_4$  e  $S_4$  são os únicos subgrupos normais de  $S_4$ . Em particular, o grupo alternado  $A_4$  é o único subgrupo de  $S_4$  de índice 2.

**Corolário 1.8.4.** *Seja n*  $\geq$  5. *Então* 

(i) 
$$(S_n)' = A_n, (A_n)' = A_n;$$

(ii) 
$$Z(S_n) = \{(1)\}, Z(A_n) = \{(1)\};$$

(iii) 
$$I(S_n) \cong S_n$$
,  $I(A_n) \cong A_n$ .

## 1.9 Teoremas de Sylow

**Definição 1.22.** Sejam G um grupo, C um conjunto e  $\mathcal{P}(C)$  o grupo de permutações de C. Uma representação de G no grupo de permutações de C é um homomorfismo  $\rho: G \to \mathcal{P}(C)$ . Dizemos também que G opera sobre o conjunto C.

**Exemplos 1.9.1.** 1. Sejam G um grupo. Denote por  $G_0$  o conjunto formado pelos elementos de G, sem a operação de grupo. Defina  $C = G_0$  e seja

$$I: G \to \mathcal{P}(G_0)$$
  
 $g \mapsto I_g: G_0 \to G_0$   
 $a \mapsto gag^{-1}.$ 

É imediato verificar que I é um homomorfismo de grupos, logo uma representação de G no grupo de permutações do conjunto  $G_0$ .

2. Seja G um grupo e seja H um subgrupo normal de G. Considere a aplicação

$$I: G \to \mathcal{P}(H_0)$$
  
 $g \mapsto I_g: H_0 \to H_0$   
 $a \mapsto gag^{-1}$ .

é uma representação do grupo G no grupo das permutações do conjunto  $H_0$ .

3. Seja G um grupo e seja  $C = \{H \mid H \leq G\}$ . A aplicação

$$I: G \to \mathcal{P}(C)$$
  
 $a \mapsto I_a: C \to C$   
 $a \mapsto aHa^{-1}$ .

Sejam G um grupo, C um conjunto e  $\rho:G\to \mathcal{P}(C)$  uma representação de G. Sobre o conjunto G definimos uma relação de equivalência dada por: para todos  $x,y\in C$ 

$$x \sim y$$
 se, e somente se, existe  $g \in G$  tal que  $\rho(g)(x) = y$ 

onde  $\rho(g) \in \mathcal{P}(C)$ .

**Definição 1.23.** *Seja*  $x \in C$ . *A órbita de* x *é o conjunto* 

$$orb(x) := \{ y \in C \mid y \sim x \} = \{ \rho(a)(x) \mid a \in G \}.$$

O **estabilizador** de x é o conjunto de elementos de G que deixam o elemento x fixo, isto é,

$$E(x) := \{ a \in G \mid \rho(a)(x) = x \}.$$

É imediato verificar que o estabilizador E(x) é um subgrupo de G.

**Teorema 1.12.** Seja  $\rho: G \to \mathcal{P}(C)$  uma representação do grupo G no grupo de permutações do conjunto C. Seja  $x \in G$ . Então a aplicação  $\psi$  dada por

$$\psi : \operatorname{orb}(x) \to \{Classes\ laterais\ \grave{a}\ esquerda\ de\ E(X)\ em\ G\}$$
 (1.8)

$$\rho(a)(x) \mapsto aE(x) \tag{1.9}$$

é uma bijeção. Em particular, no caso de G ser um grupo finito, temos |orb(x)| = [G : E(x)] e que |orb(x)| divide |G|.

**Definição 1.24.** *Dado um subgrupo H de um grupo G, o conjunto* 

$$N_G(H) = \{a \in G \mid aHa^{-1} = H\}$$

é chamado de normalizador de H em G.

**Proposição 1.9.1.** Seja H um subgrupo de um grupo G. Então  $N_G(H)$  é um subgrupo de G e  $H ext{ } e$ 

**Lema 1.9.1.** *No caso da representação* 

$$I: G \to \mathcal{P}(C)$$
  
 $a \mapsto I_a: C \to C$   
 $a \mapsto aHa^{-1}$ .

onde G é um grupo e  $C = \{H \mid H \leq G\}$  temos

 $|\{conjugados\ de\ H\ em\ G\}|=[G:N_G(H)].$ 

 $\Diamond$ 

**Prova:** Basta aplicar o Teorema 1.12.

**Teorema 1.13** (1º Teorema de Sylow). *Seja G um grupo finito tal que*  $|G| = p^m b$ , onde p é primo e m.d.c  $\{p, b\} = 1$ . Então, para cada i,  $0 \le i \le m$ , existe um subgrupo H de G tal que  $|H| = p^i$ .

**Prova:** A demonstração será por indução sobre a ordem de *G*.

Se |G| = 1, então nada há a fazer. Assim, suponha que |G| > 1 e que o teorema seja válido para todo grupo de ordem menor que a ordem de G. Seja p o primo que aparece no enunciado do teorema. Considere o centro, Z(G), de G. Temos duas possibilidades para o primo p.

 $1^{\circ}$  *Caso:*  $p \mid |Z(G)|$ 

Neste caso, pelo Teorema de Cauchy, existe  $g \in Z(G)$ ,  $g \ne 1$  tal que |g| = p. Seja  $N = \langle g \rangle$ , assim como  $N \le Z(G)$  e Z(G) é característico em G, segue que  $N \le G$ . Logo G/N é um grupo e  $|G/N| = p^{m-1}b < |G|$  e daí pela hipótese de indução, para cada t,  $0 \le t \le m-1$ , existe  $\overline{S}$  subgrupo de G/N tal que  $|\overline{S}| = p^t$ . Agora, considere o homomorfismo

$$f: G \to G/N$$
$$g \mapsto Ng$$

Temos que  $f^{-1}(\overline{S})$  é um subgrupo de G tal que  $\ker(f) \subset f^{-1}(\overline{S})$ . Inicialmente temos  $\ker(f) = N$  pois como f(g) = Ng, se tomarmos  $g \in N$  teremos Ng = N. Agora dado

 $g \in \ker(f)$ , f(g) = Ng = N e como  $\overline{S}$  é um subgrupo de G/N temos que  $N \in \overline{S}$  e assim  $f(g) \in \overline{S}$  e consequentemente  $g \in f^{-1}(\overline{S})$ , ou seja,  $\ker(f) \subset f^{-1}(\overline{S})$ . Daí

$$|f^{-1}(\overline{S})| = |N||\overline{S}| = p^{t+1},$$

e assim para cada n,  $0 \le n \le m$ , existe H subgrupo de G tal que  $|H| = p^n$ .

 $2^{\circ}$  Caso:  $p \nmid |Z(G)|$ 

Neste caso, sejam  $G^* = G - Z(G)$  e  $S_{G^*}$  o conjunto de todas as bijeções de  $G^*$  em  $G^*$  ( $S_{G^*}$  é um grupo com a operação de composição de funções). Considere a aplicação

$$\phi: G \to S_{G^*}$$
 
$$g \mapsto \phi_g: G^* \to G^*$$
 
$$x \mapsto x^g = gxg^{-1}$$

Inicialmente temos que  $\phi$  está bem definida. De fato, seja  $y \notin Z(G)$ , então  $y^x \notin Z(G)$ , pois caso contrário teríamos  $y^x \in Z(G)$  e com isso  $(y^x)^{x^{-1}} \in Z(G)$ . Finalmente,  $(y^x)^{x^{-1}} = x^{-1}(xyx^{-1})x = y \notin Z(G)$ . Mais ainda,  $\phi$  é um homomorfismo de grupos, pois se  $g, h \in G$ , então

$$\phi_{gh}(x) = x^{gh} = (gh)x(gh)^{-1} = (gh)x(h^{-1}g^{-1}) = g(hxh^{-1})g^{-1}$$
$$= g(\phi_h(x))g^{-1} = \phi_g(\phi_h(x)) = (\phi_g\phi_h)(x).$$

Logo  $\phi_{gh} = \phi_g \phi_h$  e assim  $\phi$  é uma representação de G em  $S_{G^*}$ .

Agora, observando que  $\phi_g(x) = gxg^{-1} = y \in G^*$ , denote por  $\operatorname{orb}_{\phi}(x)$  a classe de equivalência de x em  $G^*$ . Temos

$$orb_{\phi}(x) = \{y \in G^* : y \sim x\} = \{y \in G^* : \phi_g(x) = y, \text{ para algum } g \in G\}$$

e assim

$$G^* = \bigcup \operatorname{orb}_{\phi}(x)$$

e segue também que  $|G^*| = \sum |\operatorname{orb}_{\phi}(x)|$ .

Pela Proposição 1.6.3, temos

$$|\operatorname{orb}_{\phi}(x)| = |G:C_x|,$$

onde

$$C_x = \{g \in G : \phi_g(x) = x\} = \{g \in G : gxg^{-1} = x\}$$
$$= \{g \in G : gx = xg\} = C_G(x)$$

e daí  $|\operatorname{orb}_{\phi}(x)| = |G:C_G(x)|$ .

Como  $G^* = G - Z(G)$  temos que  $|G^*| = |G| - |Z(G)|$  e como  $p \mid |G|$  e  $p \nmid |Z(G)|$ , então  $p \nmid |G^*|$ . Por outro lado,  $|G^*| = \sum |G| : C_G(x)|$  e assim existe  $x \in G^*$  tal que  $p \nmid |G| : C_G(x)|$ . Como  $x \in G^*$ , então  $x \notin Z(G)$  e assim  $C_G(x)$  é um subgrupo próprio de G, ou seja,  $|C_G(x)| < |G|$  e daí pela hipótese de indução  $C_G(x)$  possui um subgrupo de ordem  $p^n$  para cada  $p^n \mid |C_G(x)|$  e consequentemente o mesmo ocorre em G.

**Corolário 1.9.1.** Seja G um grupo finito e seja p um número primo. Seja  $p^m$  a maior potência de p que divide |G|. Então existe um subgrupo de G de ordem  $p^m$ .

**Definição 1.25.** Sejam G um grupo finito tal que  $|G| = p^m b$ , onde p é primo e m.d.c  $\{p, b\} = 1p$ . Os subgrupos de G que têm ordem  $p^m$  são chamados de p-subgrupos de Sylow de G.

**Lema 1.9.2.** Sejam G um grupo finito e p um número primo. Sejam H um p-subgrupo de Sylow de G e K um p-subgrupo qualquer de G. Então  $K \cap N_G(H) = K \cap H$ .

**Prova:** Suponhamos que  $K \cap H \subsetneq K \cap N_G(H)$  e seja  $x \in K \cap N_G(H) \setminus H$ . O elemento x tem ordem igual a uma potência de p pois  $x \in K$  e por hipótese K é um p-grupo de G. Como  $x \in N_G(H)$ , então  $\langle x \rangle$  é um subgrupo de  $N_G(H)$ . Mas  $H \unlhd N_G(H)$  e daí  $\langle x \rangle H$  é um subgrupo de  $N_G(H)$  e portanto um subgrupo de G. Além disso, sabemos que

$$|\langle x \rangle H| = \frac{|\langle x \rangle||H|}{|\langle x \rangle \cap H|},$$

onde  $|\langle x \rangle|$  e |H| são potências de p e  $|\langle x \rangle \cap H| < |\langle x \rangle|$  pois  $x \notin H$ . Logo,  $\langle x \rangle H$  é um p-subgrupo de G de ordem maior que |H|, o que é um absurdo pois G é um G value of G of

**Teorema 1.14** (2º Teorema de Sylow). Seja G um grupo finito, p um número primo e seja  $n_p$  o número de p-subgrupos de Sylow de G. Então:

- (i) Todos os p-subgrupos de Sylow de G são conjugados entre si. Em particular, um p-subgrupo de Sylow S de G é normal em G se, e somente se, S é o único p-subgrupo de Sylow de G.
- (ii) Se K é um p-subgrupo de G, então existe um p-subgrupo de Sylow S de G tal que  $K \subseteq S$ .
- (iii) Se S é um p-subgrupo de Sylow de G, então  $n_p = [G: N_G(S)]$ .

#### Prova:

Seja S um p-subgrupo de Sylow qualquer de G. Considere o conjunto  $C = \{aSa^{-1} \mid a \in G\}$ . Por definição o conjunto C é a órbita de S na representação por conjugação  $I: G \to \mathcal{P}(D)$  onde  $D = \{H \leq G\}$ . Portanto pelo Teorema 1.12

$$|C| = [G : N_G(S)].$$

Para os itens (i) e (ii) basta mostrar que se H é um p-subgrupo qualquer de G, então H está contido num conjugado de S em G.

Assim, considere a seguinte representação de *P*:

$$I: P \to \mathcal{P}(C)$$
  
 $g \mapsto I_g: C \to C$   
 $gSg^{-1} \mapsto agSg^{-1}a^{-1}.$ 

Sejam  $O_1, \ldots, O_k$  as órbitas distintas desta representação e para cada  $O_i$  escolha um representante  $S_i = g_i S g_i^{-1}$  dentro de  $O_i$ . Temos

$$|C| = \sum_{i=1}^{k} |O_i| \tag{1.10}$$

e além disso, pelo Teorema 1.12 temos  $|O_i| = [P : E(S_i)] = [P : P \cap N_G(S_i)]$  e pelo Lema 1.9.2 temos  $[P : P \cap N_G(S_i)] = [P : P \cap S_i]$ . Portanto obtemos

$$|C| = \sum_{i=1}^{k} [P : P \cap S_i]. \tag{1.11}$$

Assim de (1.10) e (1.11) encontramos

$$[G:N_G(S)] = \sum_{i=1}^{k} [P:P \cap S_i].$$
 (1.12)

Cada parcela  $[P:P\cap S_i]$  é igual a 1 ou a um múltiplo de p, pois P é um p-grupo. Por outro lado, o primo p não divide [G:S] pois S é um p-subgrupo de Sylow e daí não divide  $[G:N_G(S)]$ . Consequentemete existe um j tal que p não divide  $[P:P\cap S_j]$ , ou seja, tal que  $[P:P\cap S_j]=1$  e portanto tal que  $P\subseteq S_j$ .

Agora, pelo item (i) temos {p-subgrupos de Sylow} = {conjugados de S}. Logo  $n_p$  = [ $G: N_G(S)$ ]. Assim provamos o item (iii).

**Teorema 1.15** (3° Teorema de Sylow). *Sejam p um número primo e G um grupo finito de ordem*  $|G| = p^m b$ , com m.d.c  $\{p, b\} = 1$ . *Seja n*<sub>p</sub> o número de p-subgrupos de Sylow de G. Então

$$\begin{cases}
n_p \mid b \\
n_p \equiv 1 \pmod{p}
\end{cases} .$$

**Prova:** Seja S um p-subgrupo de Sylow de G. É imediato que  $[G:N_G(S)]$  divide [G:S]=b. Agora, considere a expressão (1.12) obtida na demonstração do Teorema 1.14. Tomando P=S temos

$$[G:N_G(S)] = \sum_{i=1}^k [S:S\cap S_i]$$

onde  $S_1, \ldots, S_k$  são representantes das distintas órbitas  $O_1, \ldots, O_k$  da seguinte representação

$$I: S \to \mathcal{P}(C)$$

onde C é o conjunto dos p-subgrupos de Sylow de G. Fazendo  $S_1 = S$  obtemos

$$[G:N_G(S)] = [S:S\cap S] + \sum_{i=2}^k [S:S\cap S_i] \equiv 1 \pmod{p}.$$

 $\Diamond$ 

Assim o resultado segue.

**Proposição 1.9.2.** Sejam H um p-subgrupo de Sylow de um grupo finito G e  $K \leq G$ . Se  $H \subseteq K$ , então  $K = N_G(K)$ .

**Prova:** Seja  $x \in N_G(K)$ . Como  $H \subseteq K \le N_G(K)$ , segue que  $xHx^{-1} \subseteq K$ . Mas  $H \in xHx^{-1}$  são p-subgrupos de Sylow de K, daí existe  $y \in H$  tal que  $xHx^{-1} = yHy^{-1}$ . Assim  $y^{-1}x \in N_G(H) \subseteq K$ . Ou seja,  $x \in K$  e portanto  $N_G(H) = H$ .

 $\Diamond$ 

**Corolário 1.9.2.** Seja H um p-subgrupo de Sylow de um grupo finito G. Então  $N_G(N_G(H)) = N_G(H)$ .

**Prova:** Basta tomar  $K = N_G(H)$  na proposição anterior.

**Exemplos 1.9.2.** (1) Se |G| = 6, então  $n_2 = 1$  ou  $n_2 = 3$ . Sem outras informações sobre G não é possível determinar o valor de  $n_2$ .

(2) Seja G um grupo de ordem 380. Então  $|G| = 2^2 \cdot 5 \cdot 19$ . Assim em G, existem subgrupos de ordem 2, 4, 5, e 19. Para o caso do subgrupo de ordem 5 pelo Terceiro Teorema de Sylow, Teorema 1.15, temos  $n_5 \equiv 1 \pmod{5}$  e  $n_5 \mid 2^2 \cdot 19$ . Logo  $n_5 = 1$  ou  $n_5 = 76$ . De modo análogo, obtemos  $n_{19} = 1$  ou  $n_{19} = 20$ . Sejam H,  $K \leq G$  tais que |H| = 5 e |K| = 19.

Se  $n_5 = 76$ , então G possui  $76 \times 4 = 304$  elementos de ordem 5, pois a interseção de dois subgrupos distintos de G com ordem 5 é trivial. E se  $n_{19} = 20$ , então existem  $20 \times 18 = 360$  elementos de ordem 19, o que é impossível pois |G| = 380. Portanto,  $n_5 = 1$  ou  $n_{19} = 1$  e daí H ou K é normal em G. Considere então o subgrupo HK de G de ordem  $5 \cdot 19$ , pois  $H \cap K = \{1\}$ . Aplicando o Terceiro Teorema de Sylow ao grupo HK, existem um único subgrupo de ordem 5, que é obrigatoriamente H e somente um subgrupo de ordem 19, que é K. Assim  $H \subseteq HK$  e  $K \subseteq HK$ . Daí  $HK \subseteq N_G(H)$  e com isso  $n_5 = [G:N_G(H)] \subseteq [G:HK] = 2^2$ .  $Mas n_5 = 1$  ou  $n_5 = 76$ . Logo  $n_5 = 1$ . Analogamente,  $HK \subseteq N_G(K)$  e dái  $n_{19} = 1$  pois  $n_{19} = [G:N_G(K)] \subseteq [G:HK] = 2^2$ .

Portanto G não é simples.

(3) Todo grupo de ordem 159 é cíclico.

De fato, seja G um grupo de ordem 159. Assim como  $|G| = 3 \cdot 53$ , então existem subgrupos H,  $K \leq G$  tais que |H| = 3 e |K| = 53. Além disso, sejam  $n_3$  e  $n_{53}$  o número de 5-subgrupos de Sylow e de 53-subgrupos de Sylow de G. Então

$$n_3 \mid 53, n_3 \equiv 1 \pmod{3}$$
  
 $n_{59} \mid 3, n_{53} \equiv 1 \pmod{53}$ .

Logo  $n_3 = 1$  e  $n_{53} = 1$ . Daí  $H \subseteq G$  e  $K \subseteq G$ . Com isso HK é um subgrupo de G de ordem  $3 \cdot 53$  pois  $H \cap K = \{1\}$ . Então G = HK. Finalmente, tomando x gerador de H e y gerador de K é fácil mostrar que  $G = \langle xy \rangle$ , como queríamos.

(4) Seja G um grupo de ordem  $56 = 2^3 \cdot 7$ . Então G possui um subgrupo normal de ordem 7 ou um subgrupo normal de ordem 8.

De fato, seja n<sub>7</sub> o número de 7-subgrupos de Sylow de G. Então

$$n_7 \mid 8$$

$$n_7 \equiv 1 \pmod{7}.$$

Daí  $n_7 = 1$  ou  $n_7 = 8$ . Se  $n_7 = 1$ , então este 7-subgrupo de Sylow é normal em G.

Se  $n_7 = 8$ , então se  $K_1$  e  $K_2$  são dois 7-subgrupos de Sylow de G e distintos, então  $K_1 \cap K_2 = \{1\}$ . Logo existem  $8 \times 6 = 48$  elementos distintos de ordem 7. Como |G| = 56 e G possui um subgrupo H tal que |H| = 8, então estes 8 elementos restantes devem pertencer a H pois nenhum elemento de ordem 7 pode pertencer a H. Portanto H é único, ou seja,  $H \subseteq G$ . Ou seja, G possui um subgrupo normal de ordem G.

(5) Seja G um grupo tal que |G| = p(p + 2), onde p e p + 2 são primos, chamados de primos gêmeos. Então G é cíclico.

De fato, seja q = p + 2. Assim  $n_q \mid p \ e \ n_q \equiv 1 \pmod{q}$ . Logo  $n_q = 1$ . Portanto seja  $H \leq G$  tal que |H| = q. Então  $H \leq G$ .

Agora  $n_p \mid q e n_p \equiv 1 \pmod{q}$ . Daí  $n_p = 1 e K \unlhd G$ , onde |K| = p. Além disso,  $H \cap K = \{1\} e$  HK é um subgrupo de G de ordem p(p+2). Portanto  $G \cong H \times K$ . Mas  $H \cong \mathbb{Z}_{p+2} e K \cong \mathbb{Z}_p$ . Portanto  $G \cong \mathbb{Z}_p \times \mathbb{Z}_{p+2} \cong \mathbb{Z}_{p(p+2)}$  é um grupo cíclico.

## 1.10 Grupos Solúvies

O conceito de grupos solúveis foi introduzido por E. Galois quando estudava o problema de resolver equações algébricas por meio de radicais.

**Definição 1.26.** *Um grupo G é chamado de solúvel se contém uma cadeia de subgrupos* 

$$\{1\} = G_0 \subseteq G_1 \subseteq \dots \subseteq G_n = G \tag{1.13}$$

tal que cada  $G_{i-1}$  é normal em  $G_i$  e o grupo quociente  $G_i/G_{i-1}$ ,  $1 \le i \le n$ , é abeliano. Uma cadeia de G com esta propriedade chama-se uma **série subnormal abeliana** de G e os quocientes respectivos, chamam-se os **fatores** da série.

**Exemplos 1.10.1.** (1) Todo grupo abeliano é solúvel.

- (2) O grupo  $S_3$  é solúvel. De fato, em  $S_3$  tomando  $\sigma = (123)$  e  $H = \langle \sigma \rangle$ , então |G/H| = 2. Logo  $H \leq S_3$  e G/H é abeliano. Como H é cíclico, então H é abeliano e com isso a cadeia  $\{1\} \subseteq H \subseteq S_3$  é uma série subnormal abeliana para  $S_3$ .
- (3) O grupo  $S_4$  é solúvel. De fato, uma série subnormal abeliana para  $S_4$  é dada por  $\{1\} \subseteq K \subseteq A_4 \subseteq S_4$ , onde K é o grupo de Klein.
- (4) Para  $n \ge 5$ ,  $S_n$  e  $A_n$  não são solúveis.
- (5) O grupo dihedral  $D_{2n}$  é solúvel. Basta tomar a série  $\{1\} \subseteq H \subseteq D_{2n}$ , onde H é o subgrupo gerado por b, tal que |b| = n.

**Proposição 1.10.1.** *Todo p-grupo finito é solúvel.* 

**Prova:** Suponha que G é um grupo com  $|G|=p^n$ , com  $n\geq 1$ . Queremos encontrar série subnormal

$$\{1\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_t = G$$

tal que  $G_{i-1} \leq G_i$  e  $G_i/G_{i-1}$  é abeliano para  $1 \leq i \leq n$ .

Na verdade, vamos mostar que é possível encontrar uma cadeia de subgrupos normais de *G* tais que

$$\{1\} = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_t = G$$

tal que cada quociente  $H_{i+1}/H_i$  é de ordem p e está contido no centro de  $G/H_i$ ,  $1 \le i \le t-1$ . Vamos mostrar tal fato por indução em n. Se n=1, nada há a fazer. Suponha então que a afirmação é válida para todo grupo de ordem  $p^{n-1}$  e seja G um grupo de ordem  $p^n$ . Comom  $|G|=p^n>1$ , então  $Z(G)\neq\{1\}$ . Seja  $x\in Z(G)$ ,  $x\neq 1$  tal que |x|=p. Denote por  $K=\langle x\rangle$ . Considere  $\pi:G\to G/K$  a projeção canônica. Denote por  $\overline{G}=G/K$ . Assim  $|\overline{G}|=p^{n-1}$  e aplicando a hipótese de indução, existe uma cadeia de subgrupos normais de  $\overline{G}$ 

$$\{\overline{1}\}=\overline{K_1}\subseteq\overline{K_2}\subseteq\cdots\subseteq\overline{K_t}=\overline{G}$$

tal que  $\overline{K_{i+1}}/\overline{K_i}$  tem ordem p e está contido no centro de  $\overline{G}/\overline{K_i}$ ,  $1 \le i \le t-1$ . Agora do Teorema dos Isomorfismos, todo subgrupo normal de  $\overline{G}$  é da forma  $\overline{K_i} = K_i/K$ , onde  $K_i$  é um subgrupo normal de G que contém K. Também do Teorema dos Isomorfismos temos

$$\frac{\overline{K_{i+1}}}{\overline{K_i}} = \frac{\frac{K_{i+1}}{K}}{\frac{K_i}{K}} \cong \frac{K_{i+1}}{K_i}.$$

Logo  $K_{i+1}/K_i$  tem ordem p e está contido no centro de  $G/K_i$ ,  $1 \le i \le t - 1$ . Logo

$$\{1\} = K_0 \subseteq K_1 = \langle x \rangle \subseteq K_2 \subseteq \cdots \subseteq K_t = G$$

é uma cadeia normal de G cujos quocientes têm ordem p como queríamos. Portanto G é solúvel.  $\diamond$ 

**Definição 1.27.** (i) Dados um grupo G e dois elementos x,  $y \in G$  o **comutador** de x e y é o elemento

$$[x, y] = x^{-1}y^{-1}xy \in G.$$

*Mais geralmente, um comutador de comprimento*  $n \ge 2$  é definido indutivamente por

$$[x_1,\ldots,x_n] = [[x_1,\ldots,x_{n-1}],x_n],$$

onde  $x_i \in G$  para  $i = 1, \ldots, n$ .

(ii) Dados dois subconjuntos H e K de um grupo G, denotamos por [H, K] o subgrupo de G gerado por

$$[H,K] = \langle \{[x,y] = x^{-1}y^{-1}xy \mid x \in H, y \in K\} \rangle.$$

Em particular o grupo G' = [G, G] é chamado de **subgrupo comutador** ou **subgrupo derivado de** G. Indutivamente podemos definir uma sequeência de subgrupos de G da forma:

$$G^{(0)} = G$$

$$G^{(1)} = [G^{(0)}, G^{(0)}] = [G, G] = G'$$

$$\vdots$$

$$G^{(n)} = [G^{(n-1)}, G^{(n-1)}].$$

(iii) O subgrupo  $G^{(n)}$  definido anteriormente é chamado de n-ésimo grupo derivado de G e a sequência

$$G = G^{(0)} \supseteq G^{(1)} \supseteq \cdots \supseteq G^{(n)} \supseteq \cdots$$

chama-se sequência derivada de G.

**Lema 1.10.1.** Sejam G e H grupos e  $\phi$  :  $G \to H$  um homomorfismo de grupos. Dados  $x, y \in G$  temos  $\phi([x,y]) = [\phi(x), \phi(y)]$ .

Prova: De fato

$$\phi([x,y]) = \phi(x^{-1}y^{-1}xy) = \phi(x^{-1})\phi(y^{-1})\phi(x)\phi(y) = [\phi(x),\phi(y)].$$

 $\Diamond$ 

**Definição 1.28.** *Um subgrupo H de um grupo G é chamado de subgrupo característico* se  $\phi(H) = H$  para todo automorfismo  $\phi : G \to G$ . Denotamos tal fato por H car G.

**Observação 1.10.1.** Como  $\phi_a: G \to G$  dada por  $\phi_a(x) = a^{-1}xa$  é um automorfismo de G, então todo subgrupo característico de G é em particular normal em G.

**Proposição 1.10.2.** Seja H um subgrupo de um grupo G. Se H é característico em G, então H' também é característico em G. Em particular,  $G^{(i)}$  é característico em G para todo  $i \in \mathbb{N}$ .

**Prova:** Como  $H' = \langle \{x^{-1}y^{-1}xy \mid x, y \in H\} \rangle$ , basta mostrar que  $\phi([x, y]) \in H'$  para todo  $\phi : G \to G$  automorfismo.

Inicialmente temos  $\phi([x, y]) = [\phi(x), \phi(y)]$  e como H car G  $\phi(x)$ ,  $\phi(y) \in H$ . Daí  $\phi([x, y]) \in H'$ . Portanto  $\phi(H') = H'$ , ou seja, H' é característico em G.

Agora como  $G^{(i)} = [G^{(i-1)}, G^{(i-1)}]$ ,  $\log \phi(G^{(n)}) = [\phi(G^{(n-1)}), \phi(G^{(n-1)})]$ . Assim por indução segue que  $G^{(i)}$  é característico em G para todo  $i \ge 1$ .

**Teorema 1.16.** *Um grupo G é solúvel se, e somente se, sua série derivada termina, isto é, se existe um inteiro positivo n tal que G^{(n)} = \{1\}.* 

**Prova:** Se existe n tal que  $G^{(n)} = \{1\}$ , então temos a série

$$G = G^{(0)} \supseteq G^{(1)} \supseteq G^{(2)} \supseteq \cdots \supseteq G^{(n)} = \{1\}.$$
 (1.14)

Inicialmente cada  $G^{(i)}$  é normal em G pois é característico em G. Logo  $G^{(i)}$  é normal em  $G^{(i-1)}$  para  $1 \le i \le n$ . Agora,  $G^{(i)} = [G^{(i-1)}, G^{(i-1)}] = (G^{(i-1)})'$  e assim  $G^{(i-1)}/G^{(i)}$  é abeliano para  $1 \le i \le n$ . Portanto a série (1.14) é uma série subnormal abeliana para G, ou seja, G é solúvel.

Agora suponha que G é solúvel. Assim existe uma série subnormal abeliana

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_n = \{1\}$$

onde  $G_{i+1}$  é normal em  $G_i$  e  $G_i/G_{i+1}$  é abeliano,  $1 \le i \le t$ . Vamos mostrar por indução em i que  $G^{(i)} \le G_i$ . Como  $G^{(0)} = G = G_0$ , a base da indução é verdadeira. Suponha então que  $G^{(i)} \le G_i$ . Como  $G_i/G_{i+1}$  é abeliano e  $G_{i+1} \le G_i$ , então  $(G_i)' \le G_{i+1}$ . Mas pela hipótese de indução,  $G^{(i)} \le G_i$  daí

$$G^{(i+1)} = (G^{(i)})' \le (G_i)' \le G_{i+1}$$

como queríamos. Em particular,  $G^{(n)} \le G_n = \{1\}$ , isto é,  $G^{(n)} = \{1\}$ . Portanto a série derivada termina.

**Proposição 1.10.3.** *Todo quociente de um grupo solúvel é solúvel.* 

Prova: Seja

$$\{1\} = G_t \le G_{t-1} \le \cdots \le G_2 \le G_1 \le G_0 = G$$

uma série subnormal abeliana para G. Seja  $N \subseteq G$ . Assim  $NG_i$  é um subgrupo de G para i = 1, ..., t e com isso obtemos uma série de subgrupos

$$\{1\} \le N = NG_t \le \dots \le NG_2 \le NG_1 \le NG_0 = G. \tag{1.15}$$

Mostremos que tal série é subnormal. Primeiro, como  $NG_{i+1} \leq G$ , então  $(NG_{i+1})(NG_{i+1}) = NG_{i+1}$ . Mais ainda,  $NG_{i+1}N \leq (NG_{i+1})(NG_{i+1})$ , daí

$$(ng_i)^{-1}(NG_{i+1})(ng_i) = g^{-1}(n^{-1}NG_{i+1}n)g_i \le g_i^{-1}NG_{i+1}Ng_i \le g_i^{-1}(NG_{i+1})g_i.$$

Agora,  $N \le G$ , logo  $g_i^{-1}N = Ng^{-1}$  e então

$$(ng_i)^{-1}(NG_{i+1})(ng_i) \le g_i^{-1}NG_{i+1}g_i = Ng_i^{-1}G_{i+1}g_i.$$

 $\Diamond$ 

Mas  $G_{i+1} \leq G_i$  e com isso  $Ng_i^{-1}G_{i+1}g_i \leq NG_{i+1}$ . Portanto  $(ng_i)^{-1}(NG_{i+1})(ng_i) \leq NG_{i+1}$ , isto é,  $NG_{i+1} \leq NG_i$  para  $0 \leq i \leq t$ .

Como consequência do Teorema dos Isomorfismos temos

$$\frac{G_i}{G_i \cap (NG_{i+1})} \cong \frac{(NG_{i+1})G_i}{NG_{i+1}} = \frac{NG_i}{NG_{i+1}}$$

pois  $G_{i+1}G_i = G_i$ . Como  $G_{i+1} \unlhd (G_i \cap NG_i)$ , então novamente pelo Teorema dos Isomorfismos a função  $G/G_{i+1} \to G_i/(G_i \cap NG_{i+1})$  é sobrejetora. Logo o homomorfismo  $G_i/G_{i+1} \to NG_i/NG_{i+1}$  é sobrejetor. Como  $G_i/G_{i+1}$  é abeliano, então  $NG_i/NG_{i+1}$  é abeliano. Portanto a série

$$\{\overline{1}\}=\frac{NG_t}{N}\leq \frac{NG_{t-1}}{N}\leq \cdots \leq \frac{NG_1}{N}\leq \frac{NG_0}{N}=\frac{G}{N}$$

é uma série subnormal abeliana para G/N, ou seja, G/N é solúvel.

**Proposição 1.10.4.** *Todo subgrupo H de um grupo solúvel G é solúvel.* 

**Prova:** Como *G* é solúvel, existe

$$\{1\} = G_t < G_{t-1} < \cdots < G_2 < G_1 < G_0 = G$$

uma série subnormal abeliana. Seja H um subgrupo de G e considere a série

$$\{1\} = H \cap G_t \le H \cap G_{t-1} \le \dots \le H \cap G_2 \le H \cap G_1 \le H \cap G_0 = H. \tag{1.16}$$

Se  $h_{i+1} \in H \cap G_{i+1}$  e  $g_i \in H \cap G_i$ , então  $g_i^{-1}h_{i+1}g_i \in H$  e também  $g_i^{-1}h_{i+1}g_i \in G_{i+1}$  pois  $G_{i+1} \leq G_i$ . Daí  $g_i^{-1}h_{i+1}g_i \in H \cap G_{i+1}$ , isto é,  $H \cap G_{i+1} \leq H \cap G_i$ . Além disso,

$$\frac{H \cap G_i}{H \cap G_{i+1}} = \frac{H \cap G_i}{(H \cap G_i) \cap G_{i+1}} \cong \frac{G_{i+1}(H \cap G_i)}{G_{i+1}} \leq \frac{G_i}{G_{i+1}}$$

e como  $G_i/G_{i+1}$  é abeliano, então  $(H \cap G_i)/(H \cap G_{i+1})$  é abeliano. Portanto (1.16) é uma série subnormal abeliana para H, ou seja, H é solúvel.

**Proposição 1.10.5.** Seja H um subgrupo normal de um grupo G. Se ambos H e G/H são solúveis, então G é solúvel.

**Prova:** Como G/H e H são solúveis, existem séries subnormais abelianas

$$\{\overline{1}\} = \overline{K_0} \le \overline{K_1} \le \dots \le \overline{K_m} = G/H$$

$$\{1\} = P_0 \le P_1 \le \dots \le P_n = H.$$

Assim existem subgrupos  $K_i \leq G$  tais que  $\overline{K_i} = K_i/H$ ,  $K_i \supseteq H$  e  $K_i \trianglelefteq K_{i+1}$ . Mais ainda

$$\frac{\overline{K_{i+1}}}{\overline{K_i}} \cong \frac{K_{i+1}}{K_i}$$

e daí  $K_{i+1}/K_i$  é abeliano. Logo

$$\{1\} = P_0 \le P_1 \le \dots \le P_{n-1} \le P_n = H = K_0 \le K_1 \le \dots \le K_m = G$$

 $\Diamond$ 

 $\Diamond$ 

é uma série subnormal abeliana para G. Portanto, G é solúvel.

**Corolário 1.10.1.** *Se H e K são grupos solúveis, então H*  $\times$  *K é solúvel.* 

**Prova:** Como  $(H \times K)/H \cong K$ , o resultado segue da proposição anterior.

**Proposição 1.10.6.** *Um grupo solúvel finito G contém uma série subnormal abeliana cujos fatores são todos cíclicos de ordem prima.* 

**Prova:** A demonstração será por indução na ordem de G. Se |G| = 1, não há nada a fazer. Suponha então que |G| = n > 1 e que o resultado vale para todo grupo solúvel de ordem menor que n. Se |G| = p, com p primo então o resultado é verdadeiro. Assim suponha que a ordem de G não é um primo. Como G é solúvel, existe  $H \le G$ . Como |H| e |G/H| são menores que n, segue pela hipótese de indução que existem séries subnormais abelianas com fatores cíclicos

$$\{1\} = H_0 \le H_1 \le \cdots \le H_m = H$$

$$\{\overline{1}\} = \overline{P_0} \le \overline{P_1} \le \cdots \le \overline{P_n} = G/H.$$

Logo existem  $P_i \le G$ ,  $H \subseteq P_i$ ,  $P_i \le P_{i+1}$ , i = 0, ..., n-1. Como

$$\frac{\overline{P_{i+1}}}{\overline{P_i}} = \frac{\frac{P_{i+1}}{H}}{\frac{P_i}{H}} \cong \frac{P_{i+1}}{P_i}$$

e então

$$\{1\} = H_0 \le H_1 \le \dots \le H_m = H = P_0 \le P_1 \le \dots \le P_m = G$$

é uma série subnormal para *G* onde os quocientes são cíclicos de ordem prima.

No início do secúlo passado W. Burnside provou, usando representações de grupos que:

**Teorema 1.17** (Teorema de Burnside). *Todo grupo finito cuja ordem é divisível no máximo por dois primos é solúvel.* 

Burnside também conjeturou que: "Todo grupo de ordem ímpar é solúvel". Em um trabalho de mais de 200 páginas, W. Feit e J. Thompson provaram tal conjetura.

**Teorema 1.18** (W. Feit & J. Thompson). *Todo grupo de ordem prima é solúvel.* 

## 1.11 Grupos Nilpotentes

**Definição 1.29.** Um grupo G é chamado de **nilpotente** se existe uma série de subgrupos

$$\{1\} = G_0 \le G_1 \le \dots \le G_{n-1} \le G_n = G \tag{1.17}$$

tal que cada subgrupo  $G_{i-1}$  é normal em G e cada quociente  $G_i/G_{i-1} \subseteq Z(G/G_{i-1})$  para  $1 \le i \le n$ .

Uma série de subgrupos de um grupo G satisfazendo as propriedades de (1.17) é chamada de uma série central de G. O menor n tal que a série (1.17) é central é chamado de classe de nilpotência de G.

Observe que da definição de nilpotência temos

$$\frac{G_1}{G_0} = G_1 \subseteq Z(G/G_0) = Z(G).$$

Se  $G_1 = \{1\}$ , então  $G_2 \subseteq Z(G)$  e sucessivamente. Como a série central (1.17) termina, então todo grupo nilpotente tem centro não trivial. Além disso, todo grupo nilpotente é solúvel.

**Exemplo 1.11.1.** (1) Todo grupo abeliano é nilpotente.

(2) Já mostramos que todo p-grupo finito G possui uma série

$$\{1\} = G_0 \le G_1 \le \cdots \le G_n = G$$

tal que  $G_i \leq G$  e  $G_i/G_{i-1} \subseteq Z(G/G_{i-1})$ . Logo todo p-grupo finito é nilpotente.

(3) Sabemos que  $S_3$  é solúvel. No entanto  $Z(S_3) = \{1\}$  e assim  $S_3$  não é nilpotente.

Dado um grupo G defina

$$\gamma_1(G) = G$$

$$\gamma_2(G) = G'$$

$$\gamma_3(G) = [\gamma_2(G), G] = [G', G]$$

$$\vdots$$

$$\gamma_i(G) = [\gamma_{i-1}(G), G].$$

Note que  $\gamma_1 \supseteq \gamma_2(G) \supseteq \gamma_3(G) \supseteq \cdots \supseteq \gamma_i(G) \supseteq \cdots$ . Agora, como  $Z(G) \trianglelefteq G$ , seja  $\pi: G \to G/Z(G)$  a projeção canônica. Como

$$Z\left(\frac{G}{Z(G)}\right) \trianglelefteq \frac{G}{Z(G)}$$

então

$$\pi^{-1}\left(Z\left(\frac{G}{Z(G)}\right)\right) \trianglelefteq G.$$

Defina

$$Z_0(G) = \{1\}$$

$$Z_1(G) = Z(G)$$

$$Z_i(G) = \pi_i^{-1} \left( Z\left(\frac{G}{Z_{i-1}(G)}\right) \right)$$

para i > 1, onde  $\pi_i : G \to G/Z_{i-1}(G)$ . Assim  $Z_i(G) \unlhd G$  para todo i. O subgrupo  $Z_i$  é chamado de i-ésimo centro de G.

As sequências

$$\{1\} = Z_0(G) \subseteq Z_1(G) \subseteq Z_2(G) \subseteq \dots \subseteq Z_n(G) \subseteq \dots$$
 (1.18)

$$G = \gamma_1(G) \supseteq \gamma_2(G) \supseteq \gamma_3(G) \supseteq \cdots \supseteq \gamma_n(G) \supseteq \cdots$$
 (1.19)

são chamadas de **série central superior (ou ascendente)** e **série central inferior (ou descendente)** de *G*, respectivamente. Claramente estas séries são centrais.

**Lema 1.11.1.** (i) Se  $H \le G$ , então  $\gamma_i(H) \le \gamma_i(G)$  para todo i.

- (ii) Se  $\phi: G \to K$  é um homomorfismo sobrejetor, então  $\phi(\gamma_i(G)) = \gamma_i(K)$  para todo i.
- (iii)  $\gamma_i(G)$  é um subgrupo característico de G para todo i.

#### Prova:

(i) Indução em i. Primeiro  $\gamma_1(H) = H \le G = \gamma_1(G)$ . Suponha que  $\gamma_i(H) \le \gamma_i(G)$ , assim

$$\gamma_{i+1}(H) = [\gamma_i(H), H] \le [\gamma_i(G), G] = \gamma_i(G),$$

como queríamos.

(ii) Indução em i. Inicialmente  $\phi(\gamma_1(G)) = \phi(G) = K = \gamma_1(K)$ . Suponha então que  $\phi(\gamma_i(G)) = \gamma_i(K)$ . Dados  $x \in \gamma_i(G)$  e  $y \in G$  temos

$$\phi([x,y])=[\phi(x),\phi(y)]\in [\phi(\gamma_i(G)),\phi(G)]=[\gamma_i(K),K]=\gamma_{i+1}(K).$$

Daí  $\phi(\gamma_{i+1}(G)) = \phi([\gamma_i(G), G]) \le \gamma_{i+1}(K)$ . Por outro lado, se  $a \in \gamma_i(K)$  e  $b \in K$ , então existem  $x \in \gamma_i(G)$  e  $y \in G$  tais que  $\phi(x) = a$  e  $\phi(y) = b$ . Assim

$$[a,b] = [\phi(x),\phi(y)] = \phi([x,y]) \in \phi([\gamma_i(G),G]) = \phi(\gamma_{i+1}(G))$$

e então  $\gamma_{i+1}(K) = [\gamma_i(K), K] \le \phi(\gamma_{i+1}(G))$ . Portanto  $\phi(\gamma_{i+1}(G)) = \gamma_{i+1}(K)$ , como queríamos.

(iii) Se  $\phi$  é um automorfismo G, então  $\phi$  é sobrejetor e pelo item anterior  $\phi(\gamma_i(G)) = \gamma_i(G)$ , ou seja,  $\gamma_i(G)$  é característico em G.

 $\Diamond$ 

### **Lema 1.11.2.** *Seja*

$$\{1\} = A_0 \subseteq A_1 \subseteq \cdots \subseteq A_n \subseteq \cdots$$

uma série central para um grupo G, isto é,  $A_{i-1} \leq G$  e  $A_i/A_{i-1} \subseteq Z(G/A_{i-1})$  para todo i. Então  $A_i \subseteq Z_i(G)$  para todo i.

**Prova:** Vamos usar indução em i. Se i=1, nada há a fazer. Suponha que  $A_i \subseteq Z_i(G)$ . Dado  $x \in A_{i+1}$  e  $y \in G$ , como  $A_{i+1}/A_i \subseteq Z(G/A_i)$  temos

$$(xA_i)(yA_i) = (yA_i)(xA_i)$$

ou seja,  $xyA_i = yxA_i$  e daí  $x^{-1}y^{-1}xyA_i = A_i$ , isto é,  $x^{-1}y^{-1}xy \in A_i \subseteq Z_i(G)$  por hipótese. Logo  $xZ_i(G)$  e  $yZ_i(G)$  comutam para todo  $y \in G$ . Então  $xZ_i(G) \in Z(G/Z_i(G))$  e com isso

$$x \in \pi^{-1}\left(Z\left(\frac{G}{Z_i(G)}\right)\right) = Z_{i-1}(G),$$

 $\Diamond$ 

como queríamos.

**Lema 1.11.3.** *Seja* 

$$\{1\} = A_0 \subseteq A_1 \subseteq \cdots \subseteq A_n = G$$

uma série central para um grupo G. Então  $\gamma_i(G) \subseteq A_{n-i+1}$  para todo i.

**Prova:** Se i=1 o resultado é imediato. Suponha, por indução, que  $\gamma_i(G) \subseteq A_{n-i+1}$ . Como  $A_{n-i+1}/A_{n-i} \subseteq Z(G/A_{n-i})$  dado  $x \in \gamma_i(G)$  temos  $xA_{n-i} \in Z(G/A_{n-i})$  e daí  $xA_{n-i}$  comuta com  $yA_{n-i}$  para todo  $y \in G$ . Assim

$$(xA_{n-i})(yA_{n-i}) = (yA_{n-i})(xA_{n-i}),$$

ou seja,  $[x, y] \in A_{n-i}$ . Com isso  $[\gamma_i(G), G] \subseteq A_{n-i}$ . Logo

$$\gamma_{i+1}(G) = [\gamma_i(G), G] \subseteq [A_{n-i+1}, G] \subseteq A_{n-i}$$

como queríamos.

**Teorema 1.19.** *Seja G um grupo. São equivalentes:* 

- (i) G é nilpotente.
- (ii) Existe um inteiro positivo m tal que  $Z_m(G) = G$ .
- (iii) Existe um inteiro positivo n tal que  $\gamma_n(G) = \{1\}.$

**Prova:** Primeiro provaremos que  $(i) \Rightarrow (ii)$  e que  $(i) \Rightarrow (iii)$ . Para isso, suponha que G é nilpotente. Assin existe uma série central

$$\{1\} = G_0 \le G_1 \le \cdots \le G_n = G$$

para G. Do Lema 1.11.2 temos  $G_i \subseteq Z_i(G)$  para todo i. Logo  $Z_n(G) = G$ . Agora do Lema 1.11.3 temos  $\gamma_i(G) \subseteq G_{n-i+1}$  para todo i, donde obtemos  $\gamma_{n+1}(G) \subseteq G_{n-(n+1)+1} = G_0 = G$  como queríamos. Mais ainda, mostramos que a série central superior e inferior tem o mesmo comprimento.

É imediato verificar que (ii)  $\Rightarrow$  (i). Mostremos então que (iii)  $\Rightarrow$  (i). Se  $\gamma_m(G) = \{1\}$  para algum m então

$$G = \gamma_1(G) \supseteq \gamma_2(G) \supseteq \cdots \supseteq \gamma_m(G) = \{1\}$$

é uma série central para G. De fato, como  $\gamma_i(G)$  é característico em G, então  $\gamma_i(G) \leq G$  para todo i. Agora, dado  $x \in \gamma_i(G)$  e  $y \in G$ , então  $[x,y] \in \gamma_i(G)$  e daí  $x\gamma_i(G)$  e  $y\gamma_i(G)$  comutam. Logo  $\gamma_i(G)/\gamma_{i-1}(G) \leq Z(G/\gamma_i(G))$  para todo i. Portanto G é solúvel.

**Proposição 1.11.1.** *Todo p-grupo finito é nilpotente.* 

**Prova:** Seja G um p-grupo finito. Então  $Z(G) \neq \{1\}$ . Como todo quociente de G é também um p-grupo, então  $Z_{i-1}(G) \subsetneq Z_i(G)$  para todo i. Como G é finito, existe n tal que  $Z_n(G) = G$ , logo G é nilpotente.

**Lema 1.11.4.** Subgrupos e imagens homomorficas de grupos nilpotentes são também nilpotentes. Em particular quociente de grupos nilpotentes também é nilpotente.

**Prova:** Seja G um grupo nilpotente e  $H \leq G$ . Como G é nilpotente, existe n tal que  $\gamma_n(G) = \{1\}$ . É imediato mostrar que  $\gamma_i(H) \leq \gamma_i(G)$  para todo i. Logo  $\gamma_n(H) \leq \gamma_i(G) = \{1\}$  e com isso H é nilpotente.

Agora seja  $\phi: G \to H$  um homomorfismo. Por indução mostra-se que  $\phi(\gamma_i(G)) = \gamma_i(\phi(G))$  para todo i. Daí  $\gamma_n(\phi(G)) = \phi(\gamma_n(G)) = \phi(\{1\}) = \{1\}$  e com isso  $\phi(G)$  é nilpotente.  $\diamond$ 

Considere o grupo  $S_3$ . Sabemos que  $S_3$  não é nilpotente. Agora  $A_3$  é nilpotente pois é abeliano. Além disso,  $S_3/A_3$  também é nilpotente por ser abeliano. Portanto, em geral se  $H \subseteq G$  é tal que H e G/H são nilpotentes, não implica que G é nilpotente.

**Proposição 1.11.2.** *Produto direto finito de grupos nilpotentes é nilpotente.* 

**Prova:** Sejam  $H_i$   $i=1,\ldots,r$  grupos nilpotentes. Logo existem  $n_i$  tais que  $\gamma_{n_i}(H_i)=\{1\}$  para todo  $i=1,\ldots,r$ . Seja  $G=H_1\times\cdots\times H_r$ . Por indução, é fácil mostrar que  $\gamma_j(G)=\gamma_j(H_1)\times\cdots\times\gamma_j(H_r)$  para todo j. Tomando  $n=\text{m.m.c}\{n_1,\ldots,n_r\}$  temos  $\gamma_n(G)=\{1\}$ . Logo G é nilpotente.

**Proposição 1.11.3.** Seja  $H \neq \{1\}$  um subgrupo normal de um grupo nilpotente G. Então  $H \cap Z(G) \neq \{1\}$ .

**Prova:** Como G é nilpotente, existe  $n \in \mathbb{N}$  tal que  $G = Z_n(G)$ . Seja i o menor índice tal que  $H \cap Z_i(G) \neq \{1\}$ . Dado  $x \in H \cap Z_i(G)$  e  $y \in G$ , então  $[x, y] = x^{-1}y^{-1}xy \in H$  pois  $H \subseteq G$  e  $x^{-1}y^{-1}xy \in Z_{i-1}(G)$ . Daí  $[H \cap Z_i(G), G] \subseteq H \cap Z_{i-1}(G) = \{1\}$  e então  $H \cap Z_i(G) \subseteq H \cap Z_i(G)$ . Portanto  $H \cap Z(G) \neq \{1\}$ .

**Proposição 1.11.4.** Seja H um subgrupo próprio de um grupo nilpotente G. Então  $H \subseteq N_G(H)$ .

**Prova:** Como G é nilpotente, existe  $n \in \mathbb{N}$  tal que

$$G = \gamma_1(G) \supseteq \gamma_2(G) \supseteq \cdots \supseteq \gamma_n(G) = \{1\}.$$

Então  $\gamma_n(G) \le H$  mas  $\gamma_1(G)$  não é subgrupo de H. Seja i o menor inteiro positivo tal que  $\gamma_i(G) \le H$  e  $\gamma_{i-1}(G)$  não é subgrupo de H. Agora

$$[\gamma_{i-1}(G),H] \leq [\gamma_{i-1}(G),G] = \gamma_i(G) \leq H$$

e assim para  $x \in \gamma_{i-1}(G)$  e  $y \in H$  temos  $[x, y^{-1}] = x^{-1}yxy^{-1} \in H$ . Mas  $y \in H$ , daí  $x^{-1}yx \in H$  para  $x \in \gamma_{i-1}(G)$  e  $y \in H$ . Ou seja,  $x^{-1}Hx = H$  para todo  $x \in \gamma_{i-1}(G)$  e então  $\gamma_{i-1}(G) \leq N_G(H)$ . Como  $\gamma_{i-1}(G) \neq H$ , então  $N_G(H) \neq H$ .

- **Definição 1.30.** (i) Um subgrupo próprio M de um grupo G é chamado de **maximal** se não existe subgrupo  $H \le G$  tal que  $M \subsetneq H \subsetneq G$ .
  - (ii) Dizemos que um grupo G tem a **propriedade do normalizador** de todo subgrupo próprio de G está contido propriamente em seu normalizador.

 $\Diamond$ 

(iii) Um subgrupo H de um grupo G é chamado de **subnormal** se existe uma cadeia de subgrupos

$$H = H_0 \le H_1 \le \cdots \le H_n = G$$

tal que  $H_{i-1} \leq H_i$  para  $1 \leq i \leq n$ .

**Lema 1.11.5.** Seja G um grupo nilpotente finito. Então todo subgrupo de G é subnormal.

**Prova:** Seja  $H \le G$ . Defina  $H_0 = H$  e indutivamente  $H_n = N_G(H_{n-1})$ . Da Proposição 1.11.4 segue que se  $H_{n-1} \ne G$ , então  $|H_{n-1}| < |H_n|$ . Como G é finito, existe i tal que  $H_i = G$ . Assim a cadeia

$$H = H_0 \le H_1 \le \cdots \le H_i = G$$

é tal que  $H_{j-1}$   $ext{ ≤ } H_j$  para j = 1, ..., n. Logo H é subnormal.

**Teorema 1.20.** Seja G um grupo finito. Então as seguintes condições são equivalentes:

- (i) G é nilpotente.
- (ii) G tem a propriedade do normalizador.
- (iii) Todo subgrupo de Sylow de G é normal.
- (iv) G é o produto direto de seus subgrupos de Sylow.
- (v) Todo subgrupo de G é subnormal.
- (vi) Todo subgrupo maximal de G é normal.

**Prova:** Vamos mostrar primeiro que  $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i)$ .

- (i)  $\Rightarrow$  (ii) Feito na Proposição 1.11.4.
- (ii) ⇒ (iii) Sejam K um p-subgrupo de Sylow de G e H = N<sub>G</sub>(K). Se K ≠ G, então por (ii),
   H ⊊ N<sub>G</sub>(H). Mas pelo Corolário 1.9.2 temos N<sub>G</sub>(N<sub>G</sub>(K)) = N<sub>G</sub>(K) = H. Logo H = G e assim K ≤ G.

(iii) ⇒ (iv) Como todo subgrupo de Sylow de G é normal, então se H<sub>1</sub>, ..., H<sub>t</sub> são todos os subgrupos de Sylow de G para primos distintos, então H<sub>1</sub>...H<sub>t</sub> é um subgrupo de G de ordem igual a |G| e tal que H<sub>i</sub> ∩ (H<sub>1</sub>...H<sub>i-1</sub>H<sub>i+1</sub>...H<sub>t</sub>) = {1}. Logo G ≅ H<sub>1</sub> × ··· H<sub>t</sub>, como queríamos.

•  $(iv) \Rightarrow (i)$  Como cada  $H_i$  é um p-grupo, então cada  $H_i$  é nilpotente, logo da Proposição 1.11.2 segue que G é nilpotente.

*Mostremos agora que*  $(i) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (i)$ .

- $(i) \Rightarrow (v)$  Feito no Lema 1.11.5.
- $(v) \Rightarrow (vi)$  Seja H um subgrupo maximal de G. Sabemos que H é subnormal. Daí  $H \subseteq M \unlhd G$ , o que contraria o fato de H ser maximal. Logo  $H \unlhd G$ .
- (vi) ⇒ (i) Para isso vamos mostrar que todo p-subgrupo de Sylow de G é normal e daí como
   (iii) ⇒ (i) teremos o resultado desejado.

Seja H um p-subgrupo de Sylow de G. Se  $N_G(H)$  é um subgrupo próprio de G, então  $N_G(H) \subseteq M \subsetneq G$  onde M é um subgrupo maximal de G. Assim M é normal em G. Agora seja  $x \in G$ . Como  $H \subseteq M \trianglelefteq G$ , então  $x^{-1}Hx \subseteq M$ . Mas H e  $x^{-1}Hx$  são p-subgrupos de Sylow, logo existe  $y \in M$  tal que  $x^{-1}Hx = y^{-1}Hy$  e daí  $yx^{-1}Hxy^{-1} = H$ , ou seja,  $yx^{-1} \in M$ . Com isso  $x \in M$  e portanto M = G, o que é uma contradição. Portanto  $N_G(H) = G$ , ou seja,  $H \trianglelefteq G$  como queríamos.

 $\Diamond$ 

**Corolário 1.11.1.** Seja G um grupo nilpotente finito. Então  $G \cong S(p_1) \times \cdots \times S(p_r)$ , onde  $p_1, \ldots, p_r$  são os primos distintos que divivem a ordem de G e  $S(p_i)$  é o  $p_i$ -subgrupo de Sylow de G para  $1 \le i \le r$ .

## **BIBLIOGRAFIA**

- [1] Garcia, A.; Lequain, Y., Elementos de Álgebra, Impa, 2010.
- [2] Gonçalves, A, *Introdução à Álgebra*, Projeto Euclides, Impa, 2006.
- [3] Lang, S., Algebra, Boston: Addison-Wesley, 1984.
- [4] Newman, M., *Integral Matrices*, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 45, Academic Press; 1st edition 1972.

BIBLIOGRAFIA 68

# ÍNDICE REMISSIVO

| Classe de Conjugação, <mark>26</mark> | Simples, 40              |
|---------------------------------------|--------------------------|
| Elementes                             | Solúvel, 52              |
| Elementos  Conjugados, 26             | Triviais, 9              |
| Equação de Classes, <mark>27</mark>   | Homomorfismo, 19         |
| Grupo Alternado, 37                   | Imagem, 20               |
| Grupos, 5                             | Isomorfismo, 20          |
| <i>p</i> -grupos, 27                  | Projeção Canônica, 20    |
| índice, 13                            | Homorfismo               |
| Abelianos, 6                          | Kernel, 20               |
| Associatividade, 5                    | Ordem                    |
| Centro, 9                             | de elemento, 8           |
| classe lateral à direita, 12          | de elemento, o           |
| classe lateral à esquerda, 12         | Permutações              |
| Cíclicos, 11                          | <i>r</i> -ciclo, 32      |
| Dihedral, 19                          | Ímpares, 36              |
| Elemento neutro, 5                    | disjuntas, 32            |
| Inverso, 5                            | Pares, 36                |
| Ordem, 11                             | Sinal, 36                |
| Potências de um elemento, 7           | Tipo de decomposição, 38 |
| Quociente, 18                         | transposições, 32        |
|                                       |                          |

ÍNDICE REMISSIVO 70

```
Série
Subnormal Abeliana, 52
Subgrupos, 9
dos comutadores, 12
gerados por um conjunto, 11
```