

Vilnius universitetas

Matematikos ir informatikos fakultetas

Duomenų mokslo ir skaitmeninių technologijų institutas

Matematiniai dalykai

prof. dr. Olga Kurasova Olga.Kurasova@mif.vu.lt

Skaliaras, vektorius, matrica

- Skaliaras skaičius, įprastai priklausantis realiųjų skaičių erdvei, $x \in \mathbb{R}$.
- **Vektorius** tai skaičių rinkinys, $X \in \mathbb{R}^n$, kurio *i*-tasis elementas žymimas x_i :

$$X = [x_1, x_2, ..., x_n].$$

• Matrica – tai dvimatis masyvas $A \in \mathbb{R}^{m \times n}$, kurio *i*-tosios eilutės ir *j*-tojo stulpelio elementas žymimas a_{ij} :

$$A = \begin{bmatrix} a_{11} & a_{22} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

• Įprastai kintamieji **skaičiai** žymimi pasvirusia mažąja raide (x, y, z, a, ...); **vektoriai** ir **matricos** žymimi arba didžiąja raide (X, Y, Z, A, ...), arba pastorinta mažąja $(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{a}, ...)$).

Transponuota matrica

• Sukeitus matricos eilutes ir stulpelius, gaunama transponuota matrica, kuri žymima A^{T} :

$$A = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}.$$

Tenzoriai

- Vektoriai apibendrina skaliarus, matricos apibendrina vektorius, o tenzoriai apibendrina matricas.
- Tenzoriai tai daugiamačiai masyvai (matricos).
- Pavyzdyje pateiktas trijų dimensijų tenzorius:

$$T = \begin{bmatrix} [1\ 3] & [2\ 5] & [1\ 6] \\ [3\ 5] & [7\ 8] & [0\ 3] \end{bmatrix}.$$

 Vektoriai yra pirmos eilės tenzoriai, matricos – antros eilės tenzoriai.

Skaliarinė sandauga

• Dviejų vektorių $X, Y \in \mathbb{R}^n$ skaliarinė sandauga (dot product) apskaičiuojama taip:

$$X^{\mathrm{T}} Y = \sum_{i=1}^{n} x_i y_i ,$$

čia

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, X^{\mathrm{T}} = [x_1, x_2, \dots, x_n].$$

Išvestinės

- Tarkime turime **funkcij**a $f: \mathbb{R} \to \mathbb{R}$.
- Jos išvestinė apibrėžiama taip:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- Jei tokia riba egzistuoja, t. y. egzistuoja f'(a), sakoma, kad funkcija f yra **diferencijuojama** taške a.
- Jei turime y = f(x), šie reiškiniai yra **ekvivalentiški**:

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x).$$

Išvestinės geometrinė prasmė

Dalinės išvestinės

- Tarkime turime n kintamųjų **funkciją** $y = f(x_1, x_2, ..., x_n)$.
- y dalinė išvestinė nuo x_i užrašoma:

$$\frac{\partial y}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, ..., x_{i-1}, x_i + h, x_{i+1}, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{h}.$$

• Skaičiuojant $\frac{\partial y}{\partial x_i}$, imama $x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n$ kaip konstantos.

Dalinės išvestinės (pavyzdys)

• Apskaičiuokime funkcijos $y = f(x_1, x_2) = x_1^2 + x_2$ dalines išvestines:

- $\frac{\partial y}{\partial x_1} = 2x_1$ (x_2 laikoma **konstanta**, kurios išvestinė lygi 0);
- $\frac{\partial y}{\partial x_2} = 1$ (x_1 laikoma **konstanta**, kurios išvestinė lygi 0).

Gradientas

- Tarkime turime n kintamųjų **funkciją** $f: \mathbb{R}^n \to \mathbb{R}$. Jos įvestis yra n-matis vektorius $X = (x_1, x_2, ..., x_n)^T$, o išvestis – skaliaras.
- Gradientą sudaro dalinės išvestinės:

$$\nabla f(X) = \left[\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n} \right]^{\mathrm{T}}.$$

• **Antigradientas** yra priešingos krypties vektorius, $-\nabla f(X)$.

- 1. Paimamas **pradinis taškas** x_0 , (t = 0).
- 2. Skaičiuojamas **naujas taškas**: $x_{t+1} = x_t \eta \nabla f(x_t)$.
- Jei nėra tenkinama algoritmo sustojimo sąlyga, atliekamas antras žingsnis.
- Čia η yra parametras, įtakojantis optimizavimo žingsnį, dar vadinamas **mokymo greičiu** (*learning rate*).
- $-\nabla f(x_t)$ yra antigradientas. Optimizavimo metu "judama" antigradiento kryptimis, t. y. funkcijos mažėjimo kryptimi.

$$x_0 = 10,$$
 $x_{t+1} = x_t - \eta \nabla f(x_t)$
 $\eta = 0, 2$

Randamas minimumas

atlikus 10 žingsnių

$$x_0 = 10,$$
 $x_{t+1} = x_t - \eta \nabla f(x_t)$
 $\eta = 0,05$

$$x_0 = 10,$$
 $x_{t+1} = x_t - \eta \nabla f(x_t)$
 $\eta = 1, 1$

$$f(x) = x^2$$
, $\nabla f(x) = f'(x) = 2x$

Procesas diverguoja