复习.

- 总体 $X \sim F_{\theta}, \theta \in \Theta$.
- \not \not \not \not $\vec{X} = (X_1, \cdots, X_n),$
- 样本(值) $\vec{x} = (x_1, \dots, x_n)$.
- 目标: 用统计量 $T(X_1, \dots, X_n)$ 作为 θ (或 $g(\theta)$) 的估计.
- 最大似然估计(ML估计): $L(\theta) = \prod_{i=1}^{n} p_{\theta}(x_i) \; \Phi \cap \Phi + \hat{\theta} \cdot \hat{\theta}.$

§7.2 矩估计

总体 $X \sim F_{\theta}$. 目标: 给出 θ 的估计值 $\hat{\theta}$.

思想: 样本矩= 真实矩. 支撑: LLN.

• 总体矩: $m_k(\theta) = EX^k$, 参数的函数. 样本矩: $a_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ 或 $\frac{1}{n} \sum_{i=1}^n x_i^k$, 数据的函数(统计量). 令:

$$m_k(\hat{\theta}) = a_k, \quad k = 1, \dots r.$$

(其中r是使得方程组有唯一解的最小整数),唯一解 $\hat{\theta}$ 称为 θ 的矩估计.

▶ 习题一、11(续). N 条鱼中有80条有标记,100条中4条有标记.估计N.

$$n=1$$
, 总体矩 $m_1=m_1(N)=100*\frac{80}{N}$, 样本矩 $a_1=4$. 求解 $m_1(\hat{N})=a_1$, 得 $\hat{N}=2000$.

例1.1(续) 飞机最大飞行速度 $X \sim N(\mu, \sigma^2)$,数据 x_1, \dots, x_{15} .估计 μ, σ^2 .

- 两个参数,则用前两阶矩:
- 总体矩: $m_1 = \mu$, $m_2 = \sigma^2 + \mu^2$. 样本矩: $a_1 = \bar{x}$, $a_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$.
- 求解

$$\begin{cases} m_1 = \bar{x}, \\ m_2 = \frac{1}{n} \sum_{i=1}^n x_i^2, \end{cases} \quad \text{III} \begin{cases} \hat{\mu} = \bar{x}, \\ \widehat{\sigma^2} + \hat{\mu}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2. \end{cases}$$

解得
$$\hat{\mu} = \bar{x}$$
, $\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$.

• 定义2.1. 若待估量 $g(\theta) = \phi(m_1, \dots, m_k)$ (不一定是参数本身). 定义 $g(\theta)$ 的矩估计为 $\widehat{g(\theta)} := \phi(a_1, \dots, a_k)$.

§7.3 估计的无偏性

- 样本均值 $\hat{\mu} = \bar{X} = \frac{1}{n}(X_1 + \dots + X_n).$ $E_{\theta}\hat{\mu} = \frac{1}{n}(E_{\theta}X_1 + \dots + E_{\theta}X_n) = \mu, 无偏.$
- 样本方差 $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$.
 - $\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu)^2 = \frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2 + (\mu-\bar{x})^2$.
 - $\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2=\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2-(\mu-\bar{X})^2$.
 - $E_{\theta}\widehat{\sigma^2} = \operatorname{var}(X_1) \operatorname{var}(\bar{X}) = \sigma^2 \frac{1}{n}\sigma^2 = \frac{n-1}{n}\sigma^2$.
 - 估小了: $Y_i = X_i \bar{X}$, $\forall i$ 不独立, 一个约束条件 $\sum_i Y_i = 0$.
- $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ 是 σ^2 的无偏估计. (定理3.1) 有些书称 S^2 为样本方差.

例1.4+2.4. $X \sim U[0, \theta]$, 数据 x_1, \dots, x_n . 求 θ 的最大似然估计 $\hat{\theta}_1$ 与矩估计 $\hat{\theta}_2$.

最大似然估计:

- 似然函数 $L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} 1_{0 \leq x_i \leq \theta}$.
- 其最大值点 $\hat{\theta}_1$ 需使得 $0 \le x_i \le \hat{\theta}_1, \forall i$ 都成立,即 $\hat{\theta}_1 \ge \max_i x_i$.
- 进一步, $\hat{\theta}_1$ 使得 $\frac{1}{\theta^n}$ 达到最大, 即 $\hat{\theta}_1$ 尽量小, 故 $\hat{\theta}_1 = \max_i x_i$.
- 分析 $\hat{\theta}_1 = \max_i X_i$:
 - 缺点: $\hat{\theta}_1 = \max_i X_i < \theta$, 故 $E_{\theta}\hat{\theta}_1 < \theta$, 估小了!
 - 进一步计算:

$$E_{\theta}\hat{\theta}_{1} = E_{\theta} \max_{i} X_{i} = \int_{0}^{\theta} P(\max_{1 \leq i \leq n} X_{i} > x) dx$$
$$= \int_{0}^{\theta} (1 - P(\max_{1 \leq i \leq n} X_{i} \leq x)) dx$$
$$= \theta - \int_{0}^{\theta} (\frac{1}{\theta}x)^{n} dx = (1 - \frac{1}{n+1})\theta.$$

矩估计:

- 总体矩 $m_1(\theta) = \frac{1}{2}\theta$, 样本矩 \bar{x} .
- 求解 $m_1(\hat{\theta}_2) = \bar{x}$, $\mathcal{H}(\hat{\theta}_2) = 2\bar{x}$.
- 分析 $\hat{\theta}_2 = 2\bar{X}$:
 - $E_{\theta}\hat{\theta}_2 = 2E_{\theta}\bar{X} = 2E_{\theta}X_1 = 2 \times \frac{1}{2}\theta = \theta$, \mathcal{T} .
 - 缺点: 有可能 $2\bar{x} < \max_i x_i$, 明显不合理.
- 不能单纯追求无偏性.

§7.4 无偏估计的优良性

假设 $\hat{\theta}_1$, $\hat{\theta}_2$ 都是 θ 的无偏估计, 即 $E_{\theta}\hat{\theta}_1 = E_{\theta}\hat{\theta}_2 = \theta$. 若 $var_{\theta}(\hat{\theta}_1) \leq var_{\theta}(\hat{\theta}_2)$, 则认为 $\hat{\theta}_1$ 更好.

例. $X \sim \text{Exp}(\lambda)$. 样本 X_1, \dots, X_n . 估计 $\theta = \frac{1}{\lambda} = EX$.

- 最大似然估计与矩估计: $\hat{\theta}_1 = \bar{X}$.
- $\bullet \ \diamondsuit \hat{\theta}_2 = n \min_{1 \le i \le n} X_i.$
 - 理由: $\min_{1 \le i \le n} X_i \sim \operatorname{Exp}(n\lambda)$, (第七章, 例4.8) $\hat{\theta}_2 \sim \operatorname{Exp}(\lambda)$, 因为

$$P(\hat{\theta}_2 > x) = P(\min_{1 \le i \le n} X_i > \frac{1}{n}x)^n = e^{n \times (-\lambda \frac{1}{n}x)}.$$

$$E_{\theta}\hat{\theta}_2 = \frac{1}{\lambda} = \theta$$
. Ξ _{\text{\tilde{\text{\teil}}}}}}}} \end{\text{\texitile}}}}}}}}} \encomes} \end{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilin}}}}}}} \end{\text{\tilin{\text{\tilie}}}}}}}}} \encomes} \end{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilie}}}}}}}} \encomes}} \encomes} \encomes}} \end{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}}}}}}}}} \encotes} \end{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{

• $\operatorname{var}_{\theta}(\hat{\theta}_{1}) = \frac{1}{n}\operatorname{var}(X) = \frac{1}{n}\frac{1}{\lambda^{2}} = \frac{1}{n}\theta^{2}.$ $\operatorname{var}_{\theta}(\hat{\theta}_{2}) = \frac{1}{\lambda^{2}} = \theta^{2}.$ $\text{th}, \ \hat{\theta}_{1} \text{ th}\hat{\theta}_{2} \text{ tf}.$

(一致)最小方差无偏估计

(Uniformly Minimum Variance Unbiased Estimator, UMVUE):

假设 $T = T(X_1, \dots, X_2)$ 是 θ 的无偏估计,且对于 θ 的任意无偏估 计 $\tilde{T} = \tilde{T}(X_1, \dots, X_n)$ 都有 $\operatorname{var}_{\theta}(T) \leq \operatorname{var}_{\theta}(\tilde{T}), \quad \forall \theta \in \Theta.$

则称 $T = T(X_1, \dots, X_2)$ 是 θ 的(一致)最小方差无偏估计.

指数族分布: 分布密度(或分布列)为

$$p_{\theta}(x) = S(\theta)h(x) \exp\{\sum_{k=1}^{m} C_k(\theta)T_k(x)\}.$$

- θ 与x 分离. **例4.8**, **4.9**, **4.10**.
- 指数: $p_{\lambda}(x) = \lambda e^{-\lambda x} 1_{\{x>0\}} = \lambda 1_{\{x>0\}} e^{-\lambda x}$.
- 二项: $P_{n,p}(X = \mathbf{k}) = C_n^k p^k (1-p)^{n-k} =$ $C_n^k e^k \log p + (n-k) \log(1-p) = C_n^k e^{(\log p \log(1-p))\mathbf{k} + n \log(1-p)}$
- 泊松: $P_{\lambda}(X = k) = \frac{\lambda^{k}}{k!} e^{-\lambda} 1_{\{k \ge 0\}} = \frac{1}{k!} 1_{\{k \ge 0\}} e^{(\log \lambda)k \lambda}.$

<u>指数族分布特性</u>: 假设总体 $X \sim p_{\theta}(x), X_1, \cdots X_n$ 为X的样本,则 (X_1, \cdots, X_n) 的密度(或分布列)为

$$\prod_{i=1}^{n} p_{\theta}(x_i) = S^n(\theta) \prod_{i=1}^{n} h(x_i) \exp\{\sum_{k=1}^{m} C_k(\theta) \sum_{i=1}^{n} T_k(x_i)\}$$

假设总体X密度(或分布列)为

$$p_{\theta}(x) = S(\theta)h(x) \exp\{\sum_{k=1}^{m} C_k(\theta)T_k(x)\}.$$

定理(4.2+4.3). 若

- Θ \mathbb{R}^m 中有内点的集合.
- $(C_1, \dots C_m) : \Theta \to \mathbb{R}^m$ 一一对应, 连续.
- $C_k(\theta)$, $1 \le k \le m$, 线性无关; $T_k(x)$, $1 \le k \le m$, 线性无关. (例如, 当 $T_1(x) = x$, $T_2(x) = x^2$, $T_3(x) = x + x^2$ 时, 应化简为 $(C_1(\theta) + C_3(\theta))x + (C_2(\theta) + C_3(\theta))x^2$.)
- $\hat{\theta} = \phi(T_1(\vec{X}), \dots, T_m(\vec{X})) \ \exists \theta \ (\vec{\mathbf{u}}g(\theta)) \$ 的无偏估计.

则 $\hat{\theta}$ 是UMVUE.

注:
$$T_k(\vec{X}) := \sum_{i=1}^n T_k(X_i), \quad k = 1, \cdots, m,$$

例4.14. $X \sim N(\mu, \sigma^2)$.

- $\theta = (\mu, \sigma^2) = 4, m = 2.$
- $p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\mu^2}{2\sigma^2}} e^{-\frac{1}{2\sigma^2}x^2 + \frac{\mu}{\sigma^2}x}$. $C_1(\theta) = \frac{\mu}{\sigma^2}, C_2(\theta) = -\frac{1}{2\sigma^2}$ 线性无关. $T_1(x) = x, T_2(x) = x^2$ 线性无关.
- $T_1(\vec{X}) = \sum_{i=1}^n X_i = n\bar{X}, \ \text{IV} \frac{1}{n} T_1(X) = \bar{X}.$

$$T_2(\vec{X}) = \sum_{i=1}^n X_i^2 = \sum_{i=1}^n (X_i - \bar{X})^2 + n\bar{X}^2 = (n-1)S^2 + n\bar{X}^2.$$

即
$$\frac{1}{n}T_2(X) =$$
 样本方差 + 样本均值² = $\frac{n-1}{n}S^2 + \bar{X}^2$.
 $\phi(T_1(\vec{X}), T_2(\vec{X})) = \varphi(\bar{X}, S^2),$
(注: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$)

• 若 $\varphi(\bar{X}, S^2)$ 是 $\varphi(\mu, \sigma^2)$ 无偏估计, 则是UMVUE. 特别地, \bar{X} , S^2 分别是 μ , σ^2 的UMVUE.