

Carlos Gustavo A. da Rocha

A camada de transporte da máquina de origem se comunica diretamente com a camada de transporte da máquina de destino, independente de todos os sistemas intermediários entre eles

Nos níveis físico, enlace e rede isto não é possível

•Modelo Internet TCP/IP

Modelo Internet TCP/IP

O modelo Internet TCP/IP padroniza dois protocolos de transporte

- TCP (Transmission Control Protocol)
- UDP (User Datagram Protocol)

TCP X UDP

- Diferenças: São antagônicos em relação a:
 - Complexidade
 - Conjunto de funcionalidades
 - Aplicações usuárias
- Semelhanças:
 - Multiplexação e demultiplexação de requisições e respostas das aplicações
 - Conceito de "porta"

TCP X UDP: Portas

• O "formato" de um segmento TCP ou UDP é mostrado a seguir

- Para que várias aplicações possam transmitir e receber dados simultaneamente elas utilizam "portas"
- Cada aplicação (ou instâncias dela) atendida pelo TCP ou UDP de uma máquina vai ser identificada, unicamente, pela quádrupla

IP-ORIGEM, PORTA-ORIGEM; IP-DESTINO, PORTA-DESTINO

- Cada identificador de porta possui 16 bits de comprimento, podendo variar de 0 a 65535
- Portas de origem e destino são selecionadas aleatoriamente para uso pelo TCP e UDP
 - Na prática, em servidores, portas utilizadas por aplicações "comuns" utilizam valores fixos

• Exemplo de aplicações e suas portas

• 22: SSH

• 25: SMTP

• 53: DNS

• 80: HTTP

• 443: HTTPS

- Estas portas também são chamadas de "portas baixas"
 - Normalmente estão abaixo de 1024
 - O controle da atribuição de portas é feita por uma instituição chamada de IANA

- UDP User Datagram Protocol
 - Definido na RFC 768
 - Oferece um serviço "best effort"
 - Faz-se o possível, mas não há nenhuma garantia
 - Não é orientado a conexão
 - Cada segmento UDP é tratado de forma totalmente independente

- UDP User Datagram Protocol
 - Formato do segmento

Tamanho, em bytes do segmento UDP, incluíndo cabeçalho

- UDP User Datagram Protocol
- Se uma aplicação usa UDP partes do fluxo de dados entre origem e destino (cliente e servidor) podem:
 - Ser perdidos
 - Chegarem fora de ordem
 - Chegarem com erros
- Todo o tratamento desta situações deve ser feito, se desejado, pela própria aplicação

UDP – User Datagram Protocol

- Utilizado por:
 - Aplicações onde o volume de dados trocado entre origem e destino é pequeno
 - DNS
 - Aplicações que não exigem alta confiabilidade
 - Transmissão de vídeo e áudio

•TCP – Transmission Control Protocol

- Definido nas RFC's: 793, 1122, 1323, 2018, 2581, ...
- Implementa um serviço
 - Orientado a conexão
 - Confiável
 - Com controle de erros
 - Com controle de fluxo

Nível de transporte

_____ 32 bits _____

ACK: confirmações

RST, SYN, FIN:
Abertura e
encerramento
de conexão

checksum

dados de aplicação (tamanho variável)

Utilizados para sequenciamento e confiabilidade

número de bytes receptor está pronto para aceitar

- TCP Estabelecimento de conexão
 - Antes que cliente e servidor possam se comunicar eles devem estabelecer uma conexão
 - O cliente realiza uma série de "preparações" como a escolha de uma porta de origem
 - O processo de abertura de conexão é chamado de Tree Way Handshake

• TCP – Estabelecimento de conexão

- Tree Way Handshake
 - 1. Cliente envia um segmento TCP para o servidor com o bit SYN habilitado (igual a "1")
 - 2.Servidor responde com outro segmento TCP para o cliente com os bits SYN e ACK habilitados
 - 3. Cliente responde com outro segmento TCP para o servidor com o bit ACK habilitado

EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

- TCP Encerramento de conexão
 - Quando deseja encerrar uma conexão o cliente ou servidor envia um segmento com os bits FIN e ACK habilitados
 - O outro deve responder com um ACK

- TCP Transferência de dados
 - -Números de sequência
 - Todos os segmentos TCP transmitidos possuem um número de sequência
 - Possibilitam a "remontagem" dos dados da mesma forma que transmitidos na origem
 - Apesar do nome ser "número de sequência" seu valor não é sequencial
 - São aplicados aos dados transmitidos, e não aos segmentos

- TCP Transferência de dados
 - Números de sequência
 - Suponha que um servidor irá enviar um arquivo de 4278 bytes para o cliente em pedaços de 800 bytes
 - Neste caso os números de sequência dos segmentos TCP serão: 0, 800, 1600, 2400, 3200 e 4000

- TCP Transferência de dados
 - -ACK's
 - Sempre que um servidor ou cliente recebe um segmento TCP ele envia um outro segmento com o bit ACK habilitado, confirmando a sua recepção
 - O número de reconhecimento é igual ao próximo byte que se deseja receber
 - Esta técnica é chamada de reconhecimento positivo
 - Se após um tempo limite o ACK correspondente não for recebido; o segmento é retransmitido

Camada de transporte INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA RIO GRANDE DO NORTE

SEQ =
$$100 \text{ (dados)}$$

SEQ = 130 (dados)
SEQ = 160 (dados)
NACK= 130

SEQ =
$$130$$
 (dados - retransmissão)

ACK=190

Retransmite o segmento perdido Este mecanismo faz com que o TCP ofereça um serviço de transmissão de dados confiável para as aplicações

- TCP Transferência de dados
 - Controle de fluxo e congestionamento
 - Utiliza-se de vários fatores para ajustar dinamicamente o volume de transmissão de segmentos:
 - -Tempo médio para o recebimento dos ACK's
 - –Quantidade de retransmissões

—...

- TCP Transferência de dados
 - Controle de fluxo e congestionamento
 - Este ajuste é feito de forma que origem e destino de uma conexão não fiquem
 - Nem ociosos
 - » "Esperando" por segmentos
 - Nem saturados
 - »Segmentos recebidos em excesso == descarte == retransmissão

• TCP – Transferência de dados

- Controle de fluxo e congestionamento: "TCP SlowStart"
 - Se inicia a conexão com um volume baixo de transmissões de segmento
 - Aumenta-se a quantidade de segmentos transmitidos gradualmente
 - Isto é feito até que o servidor, cliente ou a própria rede esteja próxima de uma situação de congestionamento

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA RIO GRANDE DO NORTE

Camada de transporte

