Compléments sur la dérivation

Exercice 1 Dériver les fonctions suivantes, en précisant leur domaine de définition et de dérivation.

$$f_{1}: x \mapsto 5x^{3} + 2x^{2} - 3x + 1$$

$$f_{2}: x \mapsto 8x^{7} + \frac{4}{x^{2}}$$

$$f_{3}: x \mapsto 2x^{4} + e^{3x - 1}$$

$$f_{5}: x \mapsto (1 - 6x^{2})e^{3x + 2}$$

$$f_{6}: x \mapsto \frac{e^{x}}{x}$$

$$f_{7}: x \mapsto \frac{x^{2} + 3x + 1}{x - 5}$$

$$f_{8}: x \mapsto \frac{x + e^{3}}{e^{x}}$$

- **Exercice 2** On considère la fonction $f: x \mapsto x^3 + 3x^2 45x + 21$.
 - 1. f est dérivable pour tout $x \in \mathbb{R}$. Que vaut f'(x)?
 - 2. Construire le tableau de signes de f' et en déduire le tableau de variations de f.
- Exercice 3 On considère la fonction f définie pour tout réel x par $f(x) = \frac{10x+4}{5x^2+1}$
 - 1. Justifier que f est dérivable sur \mathbb{R} . Exprimer f'(x) pour tout réel x.
 - **2**. Construire le tableau de variations de f sur \mathbb{R}
- Exercice 4 Pour tout réel $x \ne -1$, on pose $f(x) = \frac{e^x}{1+x}$
 - 1. Justifier que f est dérivable sur $]-\infty;-1[$ et sur $]-1;+\infty[$ et que pour tout réel x dans ces intervalles

$$f'(x) = \frac{x e^x}{(1+x)^2}.$$

- 2. Étudier le signe de f'(x) et en déduire le tableau de variations de f.
- Exercice 5 On considère la suite (u_n) définie par $u_0 = 0, 1$ et pour tout entier naturel n, $u_{n+1} = 2u_n e^{-u_n}$.
 - 1. Déterminer le sens de variations de la fonction f définie pour tout réel $x \in [0;1]$ par $f(x) = 2xe^{-x}$.
 - 2. Montrer par récurrence que pour tout entier naturel n, on a $0 \le u_n \le u_{n+1} \le 1$.
- **Exercice 6** À l'aide d'une étude de fonction, montrer que pour tout réel x, on a $e^x \ge 1 + x$
- **Exercice 7** Pour tout réel x, on pose $f(x) = x^2 + 1$, g(x) = 3x + 2 et h(x) = 2 x. Donner une expression de $(f \circ g)(x)$, $(g \circ f)(x)$, $(h \circ g)(x)$ et $(f \circ g \circ h)(x)$.
- Exercice 8 Exprimer chacune des fonctions suivantes comme la composition de deux fonctions « usuelles ». On ne se souciera pas des domaines de définition.

$$f_1: x \mapsto e^{1+x^2}$$
 $f_2: x \mapsto (3x+8)^7$ $f_3: x \mapsto \sqrt{1+e^x}$

- **Exercice 9** Soit f une fonction définie sur un ensemble E. On dit que f est une involution de E si pour tout $x \in E$, $(f \circ f)(x) = x$.
 - 1. Montrer que la fonction $x \mapsto \frac{1}{x}$ est une involution de \mathbb{R}^* .
 - 2. Soit a un réel. Montrer que la fonction $x \mapsto a x$ est une involution de \mathbb{R} .
 - 3. Soit a et b deux réels, avec $b \neq 0$. Montrer que la fonction $x \mapsto \frac{b}{x-a} + a$ est une involution de $\mathbb{R} \setminus \{a\}$.
- Exercice 10 Dériver les fonctions suivantes, dérivables sur l'intervalle donné.

$$f_1: x \mapsto (3x+2)^2$$
, sur \mathbb{R} $f_2: x \mapsto (6x^2+3x+4)^3$, sur \mathbb{R} $f_3: x \mapsto e^{\sqrt{x}}$, sur $]0; +\infty[$ $f_4: x \mapsto \sqrt{2x^2-5x+7}$, sur \mathbb{R} $f_5: x \mapsto \frac{1}{(3x+6)^2}$, sur $]-2; +\infty[$ $f_6: x \mapsto e^{x+\frac{1}{x}}$, sur $]-\infty; 0[$