

midterm1

ECE 466 Midterm 1

Name: SY dNey JONNSON PID: AS2905298

February 21, 2022

- Don't forget to write your name.

Open textbook.

- Read carefully and write legibly. For the problems with partial credit, show your work.
- · For those of you who are remotely solving the exam:
 - You can solve your exam in a-4 sheets or on your tablet.
 - You need to send a scanned pdf or image until 11:45 AM, Tuesday 22nd, to sofuoglu@msu.edu. Otherwise, your exam will not be accepted. - Make sure your answers are legible from pdf or scanned image.
- 1. No partial points for the following.

at a sampling rate of $F_s = 100$ Hz. What are two possible values of Ω ?

(b) [5 Points] The sequence $x[n] = \cos(\frac{\pi}{2}n)$ was obtained by sampling an analog signal $x(t) = \cos(\Omega t)$

2TT. Q = 4K $\frac{100 \text{ Hz}}{4} = \frac{25 \text{ Hz}}{2}$ $\Omega = \frac{17}{4}$ $\frac{100 \text{ Hz}}{4} = \frac{25 \text{ Hz}}{2}$ $\Omega = \frac{17}{4}$ $\frac{100 \text{ Hz}}{4} = \frac{25 \text{ Hz}}{4}$ $\Omega = \frac{17}{4}$ Ω not wa? (c) [5 Points] What is the ideal sampling frequency of x(t) = u(t)?

(d) [5 Points] The causal sequence $x[n] = \{3, 1\}$ is input to a system with impulse response h[n], V(0) = Sproducing the zero-state response $y[n] = \{\underline{6}, -1, 2, 1\}$. Determine h[n].

1

h(n)=32,0, +Ran out +Ran out +In (e) The impulse response of a DT (Discrete Time)-LTI system is given by $h[n] = A(0.7)^n u[n]$. Suppose $x[n] = B\cos(0.2\pi n)u[n]$ is input to the system. Which of the following could be the output signal y[n] = h[n] * x[n]?

- i. $K_1(0.7)^n \cos(0.2\pi n + \theta)u[n]$. (ii) $K_1(0.14)^n u[n] + K_1 \cos(0.14\pi n\theta) u[n]$. iii. $K_1(0.7)^n u[n] + K_2 \cos(0.2\pi n + \theta) u[n]$. iv. $K_1(0.7)^n u[-n] + K_2 \cos(0.2\pi n + \theta)u[n]$.
- $\frac{1}{15}y[n-2] + x[n]$ with y[-1] = 1, y[-2] = -1. (a) [6] Find the impulse response h[n]. (b) [4] Determine if the system is (1) FIR or IIR, and (2) stable.

2. [30 Points] Consider a causal LTI system described by the difference equation $y[n] = \frac{2}{15}y[n-1] +$

- (c) [8] Find the zero state response for x[n] = u[n]. (Decide on particular response's K first.) (d) [8] Find the zero input response.
- (e) [4] Find the total response for x[n] = u[n]. Identify the steady state and transient responses.

WFIR,

2

Extra page for Question 2

3. [30 points] A causal LTI system has a system function $H(z) = \frac{1+z^{-1}}{1-\frac{3}{5}z^{-1}+\frac{2}{25}z^{-2}}$.

(a) [5] Determine the difference equation that this system function describes.

3

- (f) [8] Find the input signal x[n] that will produce the output $y[n] = 2\left(\frac{2}{5}\right)^n u[n] \left(\frac{1}{5}\right)^n u[n]$. by yain is 2 0) ROC = 2) 3/5 2)=

(b) [2] What is the gain of the system?

(d) [5] Determine the region of convergence (ROC).

(c) [5] Plot the pole-zero map.

(e) [5] Is the system stable? Why?

121) 315 e) yes system is stable a) n 2/5 y [n]

4

Extra page for Question 3