Hindi Vidya Prachar Samiti's RAMNIRANJAN JHUNJHUNWALA COLLEGE OF ARTS ,SCIENCE AND COMMERCE (EMPOWERED AUTONOMOUS)

Data Analysis and Visualization

Name: Vaibhavi Shailesh Takale

Roll no: 10332

Class: Msc. Data Science and Artificial Intelligence Part I (SEM – 1)

HINDI VIDYA PRACHAR SAMITI'S

RAMNIRANJAN JHUNJHUNWALA COLLEGE

GHATKOPAR (WEST) MUMBAI 400086

CERTIFICATE

DEPARTMENT OF DATA SCIENCE AND ARTIFICIAL INTELLIGENCE

This is to certify of <u>Vaibhavi Shailesh Takale</u> of Msc. Data Science and Artificial Intelligence, Roll no: **10332**, has successfully completed the practical of Data **Analysis and Visualization** during the Academic Year 2025-2026.

Date:

Prof - In - Charge

(Prof. Shweta Ma'am)	External Examiner

INDEX

2. S	Show Basic Visualization in Python	15/07/2025			
2. S		15/07/2025			
3. C	Show Basic Visualization in R.	16/07/2025			
	Connecting to Data and preparing data for visualization in Tableau	18/07/2025			
4. U	Use Data aggregation and statistical functions in Tableau.	30/07/2025			
5. S	Show Data Visualization using Tableau.	01/08/2025			
6. U	Use dashboards of Tableau.	09/08/2025			
7. S	Show Data Visualization using PowerBi.	11/08/2025			
8. S	Show Data Visualization using DataWrapper.	21/08/2025			
9. S	Show Data Visualization using Gnatt Chart.	25/08/2025			
10. S	Show Data Visualization using Zoho.	27/08/2025			
11. P	Publish visualised data on Cloud in PowerBi	30/08/2025			

Practical no. 1 Show Basic Visualization in Python.

Aim: To perform data visualization on the dataset car_sale.csv using different Python libraries such as Pandas, Matplotlib, Seaborn, Bokeh, and Plotly.

Implementation:

• Import libraries

```
import pandas as pd

# reading the database
data = pd.read_csv("car_sale.csv")

# printing the top 10 rows
display(data.head(10))
```

Output:

Nar	nufacturer	Model	Sales_in_thousands	year_resale_value	Vehicle_type	Price_in_thousands	Engine_size	Horsepower	Wheelbase	Width	Length	Curb_weight	Fuel_capacity	Fuel_efficiency
0	Acura	Integra	16.919	16.360	Passenger	21.50	1.8	140.0	101.2	67.3	172.4	2 639	13.2	28.0
1	Acura	TL	39.384	19.875	Passenger	28.40	3.2	225.0	108.1	70.3	192.9	3.517	17.2	25.0
2	Acura	CL	14.114	18.225	Passenger	NaN	3.2	225.0	106.9	70.6	192.0	3.470	172	26.0
3	Acura	RL	8.588	29.725	Passenger	42.00	3.5	210.0	114.6	71.4	196.6	3.850	18.0	22.0
4	Audi	A4	20.397	22.255	Passenger	23.99	1.8	150.0	102.6	68.2	178.0	2.998	16.4	27.0
5	Audi	A6	18.780	23.555	Passenger	33.95	2.8	200.0	108.7	76.1	192.0	3.561	18.5	22.0
6	Audi	A8	1.380	39.000	Passenger	62.00	4.2	310.0	113.0	74.0	198.2	3.902	23.7	21,0
7	BMW	323	19,747	NaN	Passenger	26.99	2,5	170.0	107.3	68.4	176,0	3.179	16,6	26.0
8	BMW	32%	9.231	28.675	Passenger	33.40	2.8	193.0	107.3	68.5	176.0	3.197	16.6	24.0
9	BMW	528	17.527	36.125	Passenger	38.90	2.8	193.0	111.4	70.9	188.0	3.472	18.5	25.0

Scatter

```
import pandas as pd
import matplotlib.pyplot as plt

# reading the database
data = pd.read_csv("car_sale.csv")

# Scatter plot with Price vs Resale Value
plt.scatter(data['Price_in_thousands'], data['__year_resale_value'])

# Adding Title to the Plot
plt.title("scatter Plot")

# Setting the X and Y labels
plt.xlabel('Price in Thousands')
plt.ylabel('Resale Value (Year)')

plt.show()
```

Output:

• Line chart

```
import pandas as pd
import matplotlib.pyplot as plt

# reading the database
data = pd.read_csv("car_sale.csv")

# Line plot with Sales and Horsepower
plt.plot(data['Sales_in_thousands'])
plt.plot(data['Horsepower'])

# Adding Title to the Plot
plt.title("Line Plot")

# Setting the X and Y labels
plt.xlabel('Index')
plt.ylabel('Values')

plt.show()
```

Output:

• Seaborn Histplot

```
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

# reading the database
data = pd.read_csv("car_sale.csv")

# Histogram of Price grouped by Vehicle Type
sns.histplot(x='Price_in_thousands', data=data, kde=True, hue='Vehicle_type')
plt.show()
```

Output:

Boken line

```
from bokeh.plotting import figure, output_file, show
import pandas as pd

graph = figure(title = "Bokeh Line Chart")

data = pd.read_csv("car_sale.csv")

# plotting the graph (Sales vs Resale Value)
graph.line(data['Sales_in_thousands'], data['__year_resale_value'])

show(graph)
```

Output:

Bokeh vbar

Output:

Bokeh custom line

Output:

• Plotly Line Chart

```
import plotly.express as px
df = pd.read_csv("car_sale.csv")
fig = px.line(df, y="Fuel_efficiency", line_dash='Vehicle_type', color='Vehicle_type')
fig.show()
```

Output:

• Plotly multiple

output:

Practical no. 2 Show Basic Visualization in R.

Aim: To perform basic data visualization in **R programming language** using functions like plot(), hist(), and barplot() for better understanding of data distribution and relationships.

Source Code:-

```
>barplot(airquality$Ozone,main='Ozone Concentreation air',xlab="ozonelevels",horiz=TRUE)
>barplot(airquality$Ozone,main='Ozone Concentreation air',xlab="ozonelevels",horiz=FALSE)
>hist(airquality$Temp,main = "Ozone Concentreation
air",xlab="Temperature(Fahrenheit)",xlim=c(50,125),col="yellow",freq=TRUE)
>boxplot(airquality$Wind,main="AVG wind speed",xlab="Miles per
hrs",ylab="wind",col='yellow',border = 'red',horizontal = TRUE,notch = TRUE)
>data<-matrix(rnorm(25,0,5),nrow=5,ncol=5)
colnames(data)<-paste0("col",1:5)
row.names(data)<-paste0("row",1:5)
heatmap(data)
>mycolors<-colorRampPalette(c("violet","cyan"))
heatmap(data,col=mycolors(100))
```

Output:-

> barplot(airquality\$Ozone,main='Ozone Concentreation air',xlab="ozonelevels",horiz=TRUE)

> barplot(airquality\$Ozone,main='Ozone Concentreation air',xlab="ozonelevels",horiz=FALSE)

> hist(airquality\$Temp,main = "Ozone Concentreation air",xlab="Temperature(Fahrenheit)",xlim=c(50,125),col="yellow",freq=TRUE)

> boxplot(airquality\$Wind,main="AVG wind speed",xlab="Miles per hrs",ylab="wind",col='yellow',border = 'red',horizontal = TRUE,notch = TRUE)

AVG wind speed

- > data<-matrix(rnorm(25,0,5),nrow=5,ncol=5)
- > colnames(data)<-paste0("col",1:5)
- > row.names(data)<-paste0("row",1:5)
- > heatmap(data)

>mycolors<-colorRampPalette(c("violet","cyan"))

heatmap(data,col=mycolors(100))

Practical no. 3 Connecting to Data and preparing data for visualization in Tableau

Aim: To connect Tableau to different data sources (CSV, Excel, Database) and perform **data cleaning and preparation** for visualization.

Steps:

1. Open Tableau Desktop / Tableau Public – Start a new project.

DASHBOARD

Practical no 4. Use Data aggregation and statistical functions in Tableau

Aim: To apply **aggregation functions (SUM, AVG, COUNT)** and statistical functions (MIN, MAX, MEDIAN) in Tableau for meaningful data analysis.

Practical no 5. Show Data Visualization using Tableau

Aim: To create **interactive data visualizations** such as bar charts, line charts, scatter plots, and pie charts using Tableau.

Practical no 6. Use dashboards of Tableau

Aim: To design and implement **dashboards** in Tableau for combining multiple visualizations and presenting insights effectively.

DASHBOARD OF COVID-19(2020-2022)

Practical no 7. Show Data Visualization using Power BI

Aim: To perform **data visualization** using Microsoft Power BI and generate interactive reports from a given dataset.

Practical No 8. Show Data Visualization using DataWrapper

Aim: To use **DataWrapper** for creating quick, interactive charts, maps, and tables and publishing them online.

Practical no 9. Show Data Visualization using Gantt Chart

Aim: To visualize **project scheduling and task timelines** using a Gantt Chart for project management.

• Excel sheet:

• Code:

```
import matplotlib.pyplot as plt
import pandas as pd
# Your dataset
tasks = [
    ("Requirement", "2025-09-01", 5),
    ("Design", "2025-09-06", 4),
    ("Development", "2025-09-10", 10),
    ("Testing", "2025-09-20", 5),
    ("Deployment", "2025-09-25", 3),
1
# Create DataFrame
df = pd.DataFrame(tasks, columns=["Task", "Start_Date", "Duration"])
# Convert Start Date to datetime
df["Start_Date"] = pd.to_datetime(df["Start_Date"])
# Calculate End Date
df["End_Date"] = df["Start_Date"] + pd.to_timedelta(df["Duration"], unit="D")
# Plot Gantt Chart
fig, ax = plt.subplots(figsize=(10,6))
for i, row in df.iterrows():
    ax.barh(row["Task"], row["Duration"], left=row["Start_Date"], height=0.5)
# Labels and formatting
ax.set_xlabel("Timeline")
ax.set_ylabel("Tasks")
ax.set_title("Project Schedule - Gantt Chart")
ax.grid(axis="x", linestyle="--", alpha=0.7)
plt.tight_layout()
plt.show()
                                                                       What can I help you build?
```

Output:

Practical no 10. Show Data Visualization using Zoho Analytics

Aim: To create **visual reports and dashboards** using Zoho Analytics by connecting to datasets and applying visualization tools.

BAR CHART

WORLD MAP

• LINE CHART

• PIE CHART

INTERACTIVE DASHBOARD Premium Trial -14 days left Q 🗊 🖟 🔞 🔞 Home Workspace-1 ⊕ Bar using Country wi... × Chocolate Sale (Map using Country ... X Chocolate Sale ☆ ② 🏥 Save : + 🖯 Ask Zia Share Themes 🛕 🖟 🔞 Edit Design Explorer Bar using Country with Amount Line using Date with Amount and Boxes Shipped 88 / Product / Legend \$80,000 50% Dark Bites 7 Total Amount 1200000 Amount, Boxes Shipped 70% Dark Bites Total Boxes Shipp... G \$60,000 85% Dank Bars Reports 99% Dark & Pure 800000 \$40,000 After Nines \$20,000 Data Almond Choco 400000 +16 more_ 0 Ask Zia lue Fri Mon ⊞ WeekDay of Date v Country v More Data Pie using Product with Amount Map using Country with Amount 0 Product Ask Zia Smooth Sliky Salty \$349,692.00 50% Dark Bites \$341,712.00 ⊞ White Choc \$329,147.00 More Peanut Butter Cubes \$324,842.00 Eclairs . \$312,445.00 79% Dark & Pure \$299,796.00 + 16 more_

Practical no .11 Publish visualised data on Cloud in PowerBi

Aim: To publish interactive data visualizations created in Power BI Desktop to the cloud (Power BI Service) using an Azure/AWS-hosted Power BI AMI.

• Create visualization in power Bi desktop

• Publish to Power BI Service (Cloud)

• Share & Manage Cloud Reports

