Tabla de integrales inmediatas	
Función	Primitiva
$[f(x)]^m f'(x), \ m \neq 1$	$\frac{[f(x)]^{m+1}}{m+1}$
$a^{f(x)} f'(x)$	$\frac{a^{f(x)}}{\ln(a)}$
$\cos[f(x)] f'(x)$	$\operatorname{sen}[f(x)]$
$\cot[f(x)] f'(x)$	$\ln \operatorname{sen}[f(x)] $
$\frac{f'(x)}{\operatorname{sen}^2[f(x)]}$	$-\cot[f(x)]$
$\frac{f'(x)}{1 + [f'(x)]^2}$	$-\operatorname{arctg}[f(x)]$
$\frac{f'(x)}{f(x)}$	$\ln f(x) $
$\operatorname{sen}[f(x)] f'(x)$	$-\cos[f(x)]$
$\operatorname{tg}[f(x)]f'(x)$	$-\ln \cos[f(x)] $
$\frac{f'(x)}{\cos^2[f(x)]}$	$\operatorname{tg}[f(x)]$
$\frac{f'(x)}{\sqrt{1-[f(x)]^2}}$	arcsen[f(x)]

Integrales trigonométricas

Cambio universal.
$$t = \operatorname{tg}\left(\frac{x}{2}\right), \, \mathrm{d}x = \frac{2}{1+t^2} \, \mathrm{d}t, \, \operatorname{sen}(x) = \frac{2t}{1+t^2}, \, \cos(x) = \frac{1-t^2}{1+t^2}$$

$$\int R[\operatorname{sen}(x)] \, \cos(x) \, \mathrm{d}x \, ; \, t = \operatorname{sen}(x), \, \mathrm{d}t = \cos(x) \, \mathrm{d}x$$

$$\int R[\cos(x)] \, \operatorname{sen}(x) \, \mathrm{d}x; \, t = \cos(x), \, \mathrm{d}t = -\operatorname{sen}(x) \, \mathrm{d}x$$

$$\int R(\operatorname{tg}(x)) \, \mathrm{d}x; \, t = \operatorname{tg}(x), \, x = \operatorname{arctg}(t), \, \mathrm{d}x = \frac{dt}{1+t^2}$$

$$\int R(\operatorname{sen}(x), \cos(x)) \, \mathrm{d}x$$

$$\operatorname{con}\,R(\cos(x),\operatorname{sen}(x))=\operatorname{sen}^m(x)\cdot\cos^n(x)$$

- (a) si algún exponente es impar, se realiza el cambio t = la otra función

(b) si
$$m, n$$
 son pares no negativos:
$$\sin^2(x) = \frac{1-\cos(2x)}{2} \ , \ \cos^2(x) = \frac{1+\cos(2x)}{2}$$

(c) si m, n son pares y alguno es negativo

$$t = \operatorname{tg}(x), \, \mathrm{d}x = \frac{1}{1+t^2} \, \mathrm{d}t, \, \operatorname{sen}^2(x) = \frac{t^2}{1+t^2} \, \mathrm{d}t \,,$$

 $\cos^2(x) = \frac{1}{1+t^2} \, \mathrm{d}t$

$$\int \cos(px) \cdot \cos(qx) \, dx, \int \sin(px) \cdot \sin(qx) \, dx,$$
$$\int \sin(px) \cdot \cos(qx) \, dx$$

$$\cos(px) \cdot \cos(qx) = \frac{\cos[(p+q)x] + \cos[(p-q)x]}{2}$$
$$\sin(px) \cdot \sin(qx) = \frac{-\cos[(p+q)x] + \cos[(p-q)x]}{2}$$
$$\sin(px) \cdot \sin(qx) = \frac{\sin[(p+q)x] + \sin[(p-q)x]}{2}$$

Integrales racionales: $\int \frac{P(x)}{Q(x)} dx$ se factoriza Q(x) y se escribe $\frac{P(x)}{Q(x)}$ como suma de fracciones simples.

$$\int \frac{1}{x-a} dx = \ln|x-a|$$

$$\int \frac{1}{(x-a)^p} dx = \frac{(x-a)^{-p+1}}{-p+1}, \ p \neq 1$$

$$\int \frac{Mx+N}{(x-a)^2 + b^2} dx = \frac{M}{2} |\ln|(x-a)^2 + b^2| + \frac{N+Ma}{b} \arctan\left(\frac{x-a}{b}\right)$$

Método de Hermite:
$$\int \frac{P(x)}{Q(x)} dx = \frac{Y(x)}{F(x)} + \int \frac{X(x)}{G(x)} dx$$

Siendo
$$F(x) = M.C.D.(Q(x), Q'(x)), G(x) = \frac{Q(x)}{F(x)}$$

Y(x) polinomio a determinar con grado $(Y) < \operatorname{grado}(F)$

X(x) polinomio a determinar con grado(X) < grado(G)

Integrales irracionales

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{m/n}, ..., \left(\frac{ax+b}{cx+d}\right)^{r/s}\right) dx$$

$$\operatorname{con} t^{k} = \frac{ax+b}{cx+d}, k = m.c.m.\{n, ..., s\}$$

$$\int R\left(x,\sqrt{x^2+a^2}\right) dx$$

$$x = a \operatorname{tg}(t), \sqrt{x^2+a^2} = \frac{a}{\cos(t)},$$

$$dx = \frac{a}{\cos^2(t)} dt$$

$$x = a \operatorname{cotg}(t), \sqrt{x^2+a^2} = \frac{a}{\sin(t)}$$

$$dx = \frac{-a}{\sin^2(t)} dt$$

$$x = a \operatorname{sec}(t), \sqrt{x^2-a^2} = a \operatorname{tg}(t),$$

$$dx = a \operatorname{tg}(t) \operatorname{sec}(t) dt$$

$$x = a \operatorname{cose}(t), \sqrt{x^2-a^2} = a \operatorname{cotg}(t),$$

$$dx = a \operatorname{tg}(t) \operatorname{cose}(t) dt$$

$$x = a \operatorname{cose}(t), \sqrt{x^2-a^2} = a \operatorname{cotg}(t),$$

$$dx = -a \operatorname{cotg}(t) \operatorname{cose}(t) dt$$

$$x = a \operatorname{sen}(t), \sqrt{a^2-x^2} = a \operatorname{cos}(t),$$

$$dx = a \operatorname{cos}(t), \sqrt{a^2-x^2} = a \operatorname{cos}(t),$$

$$dx = a \operatorname{cos}(t), \sqrt{a^2-x^2} = a \operatorname{sen}(t),$$

$$dx = -a \operatorname{sen}(t) dt$$

$$\int R\left(x,\sqrt{x^2+bx+c}\right) \, \mathrm{d}x$$

$$a > 0 \; ; \sqrt{x^2+bx+c} = \sqrt{a}x+t, \; x = \frac{t^2-c}{b-2\sqrt{a}t}$$

$$c > 0 ; \sqrt{x^2+bx+c} = xt+\sqrt{c}, \; x = \frac{2t\sqrt{c}-b}{a-t^2}$$
si $a < 0$ y α es una raíz de ax^2+bx+c se realiza el cambio:
$$\sqrt{x^2+bx+c} = (x-\alpha)t$$

Figura 1: Elipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Figura 3: Paraboloide hiperbólico $\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$

Figura 5: Cilindro elíptico $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Figura 2: Paraboloide elíptico $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$

Figura 4: Cono elíptico $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$

Figura 6: Cilindro parabólico $y=ax^2,\,a>0$