第四章 关系模型

串讲归纳

4.0 前言

有必要说明,这一章极为重要,一方面考点多,另一方面也是时至今日依旧最流行的数据库 ——关系型数据库。

其次,这一章主要介绍SQL查询的理论基础:关系代数运算。所以以题目、具体实例来深入学习练习最佳。

4.1 关系操作

关系数据结构主要是介绍关系中的各种名词概念,在第二章我们已经介绍过,如果仍不清楚,本章习题中依旧有解释。

如上图,常见的关系操作包括:查询和更新操作。更新则又包括删除、插入、修改。

关系数据库语言包括关系运算和SQL。关系运算包括关系代数【过程化查询语言】与关系 演算【非过程化查询语言】,其中关系演算又分为元组关系演算和域关系演算两种。

而为了方便快捷地进行查询,我们使用结构化查询语言SQL进行数据操作处理,关系运算更多地是作为理论支撑。

4.2 关系完整性约束

实体完整性和参照完整性被称为关系的两个不变性,系统自动支持;用户定义的完整性当然结合用户所处领域自定义语义约束。

4.2.1 实体完整性约束

主要内容:每个元组都应唯一且可区分

如何确保? 通过主键取值约束。

具体内容: 若K为关系R的主键,则K不能去空值; 若主键K为复合键,任一属性不能取空值; K不能重复。

4.2.2 参照完整性约束

主要内容:实体集之间关系的约束

如何确保? 通过删除、插入规则。

具体解释: 部门表与员工表两个关系, 若删除一个部门, 先要把员工表中该部门下所有员工删除, 若插入一个新部门的员工, 先要将新部门插入到部门表。

4.2.3 用户定义完整性约束

具体内容: 用户对数据的特殊语义要求

通常通过**其它约束**实现:非空约束、唯一约束、自增长约束、默认值约束、检查约束。

其中,检查约束:即指定某一属性的取值范围,如年龄大于18。

4.3 关系运算

这部分就是关系代数运算部分,看着很难,但其实都是简单的集合运算(关系作为集合)。 所以直接从例子入手,容易理解,但是要熟练掌握还需要不断练习做题、回顾。

- (1) (E₁); 关系
- (2) $\sigma_p(E_1)$; 选择
- (3) Π_{A1,A2,...,Aν}(E₁); 投影
- (4) E₁ U E₂; 交
- (5) $E_1 E_2$; 差
- (6) E₁ × E₂; 笛卡尔积
- (7) $\rho_{S(A_1,A_2,...,A_n)}(E_1)$; 重命名

- (8) $E_1 \cap E_2$; 并
- (9) E₁ ⋈_p E₂; 连接
- (10) $E_1 \div E_2$; 除
- (11) δ(E₁); 去重
- (12) $\Pi_{F_1,F_2,...,F_k}(E_1)$; 广义的投影
- (13) $G_{F_1(A_1),F_2(A_2),...,F_k(A_k)}(E_1)$; 聚集
- (14) $G_1,G_2,...,G_l$ $G_{F_1(A_1),F_2(A_2),...,F_k(A_k)}(E_1)$ 。分组聚集

一、基本关系代数运算

1. 选择(Selection)

示例

• 假设有一个"学生(学号,姓名,年龄,性别)"关系表:

学号	姓名	年龄	性别
1001	张三	20	男
1002	李四	22	女
1003	王五	20	男

• 选择年龄大于 20 岁的学生,关系代数表达式为 $\sigma_{\text{年龄}>20}$ (学生)

结果为:

学号	姓名	年龄	性别	
1002	李四	22	女	

2. 投影(Projection)

• 示例

• 对于上述"学生"关系表,若只想获取学生的学号和姓名,关系代数表达式为**π**学号,姓名(学生)

结果为:

学号	姓名
1001	张三
1002	李四
1003	王五

3. 并(Union)

- 示例
- 假设有"参加社团 A 的学生(学号,姓名)"关系表 A 和"参加社团 B 的学生(学号,姓名)"关系表 B:
 - 表 A:

学号	姓名
1001	张三
1003	王五

• 表 B:

学号	姓名
1001	张三
1004	孙六

• 计算 A 和 B 的并,关系代数表达式为 $A \cup B$ 结果为:

学号	姓名	
1001	张三	
1003	王五	
1004	孙六	

4. 差(Difference)

• 示例

• 使用上面的表 A 和表 B,计算 A - B,关系代数表达式为 A — B 结果为:

学号	姓名
1003	王五

- 5. 笛卡尔积(Cartesian Product)
 - 示例
- 假设有"课程(课程号,课程名)"关系表和"教师(教师号,教师姓名)"关系表:
 - 课程表:

课程号	课程名
C1	数据库
C2	操作系统

• 教师表:

教师号	教师姓名
T1	赵老师
T2	钱老师

• 计算这两个表的笛卡尔积,关系代数表达式为"课程×教师", 结果为:

课程号	课程名	教师号	教师姓名
C1	数据库	T1	赵老师
C1	数据库	T2	钱老师
C2	操作系统	T1	赵老师
C2	操作系统	T2	钱老师

6. 重命名(Rename)

- 示例
- 假设有一个"员工(员工号,姓名,部门)"关系表,若要将其重命名为"职员",可以用重命名操作,在不同的表示方法中有不同符号,假设用 ρ职员(员工号,姓名,部门)(员工)表示职员的员工号、姓名、部门。

二、附加关系代数运算

1. 交(Intersection)

- 示例
- 使用前面的表 A 和表 B, 计算 A 和 B 的交,关系代数表达式为 $A\cap B$

结果为:

学号	姓名
1001	张三

2. 连接(Join)

- 等值连接示例
 - 假设有"学生选课(学号,课程号,成绩)"关系表和"课程 (课程号,课程名,学分)"关系表:
 - 学生选课表:

学号	课程号	成绩
1001	C1	80
1002	C2	70

• 课程表:

课程号	课程名	学分
C1	数据库	3
C2	操作系统	4

● 以课程号为连接条件进行等值连接,关系代数表达式为 '学生选课\\\\"学生选课、课程号=课程、课程号课程 结果为:

学号	学生选课。课程号	成绩	课程名	学分
1001	C1	80	数据库	3
1002	C2	70	操作系统	4

- 自然连接示例
 - 对于上述"学生选课"和"课程"关系表进行自然连接,结果为:

学号	课程号	成绩	课程名	学分
1001	C1	80	数据库	3

学号	课程号	成绩	课程名	学分
1002	C2	70	操作系统	4

3. 赋值(Assignment)

- 示例
- 设关系 R 为 "学生(学号,姓名,年龄)",计算年龄大于 20 岁的学生,可先将选择操作的结果赋给一个临时关系变量 S,如 $S \leftarrow \sigma_{\text{年龄}>20}$ (学生)。

4. 除(Division)

- 示例
- 假设有"学生选课(学生,课程)"关系表 R 和"必修课(课程)"关系表 S:
 - R:

学生	课程
甲	语文
甲	数学
甲	英语
乙	语文
Z	数学

• S:

课程			
语文			
数学			

计算R÷S

结果为选了所有必修课的学生名单,即:

学生			
甲			
乙			

三、扩展关系代数运算

1. 去重 (Distinct)

- 示例
- 假设有一个"成绩(学号,课程号,分数)"关系表:

学号	课程号	分数
1001	C1	80
1001	C1	80
1002	C2	70

• 使用去重操作,在 SQL 中用 "SELECT DISTINCT" 实现,结果为:

学号	课程号	分数
1001	C1	80
1002	C2	70

2. 广义投影(Generalized Projection)

- 示例

结果(假设)为:

学号	姓名	新年龄
1001	张三	21
1002	李四	23
1003	王五.	21

3. 聚集(Aggregation)

- 示例
- 对于上述"成绩"关系表,计算所有学生成绩的平均分, $\gamma_{AVG(分数)}$ (成 绩)

结果(假设平均分为75)为:

AVG (分数)

4. 分组(Grouping)

- 示例
- 假设有"销售(销售员,产品,销售额)"关系表:

销售员	产品	销售额
A	P1	1000
A	P2	1500
В	P1	800

按销售员分组计算销售额总和, γ_{销售员,SUM}(销售额)(销售)
 结果为:

销售员	SUM (销售额)
A	2500
В	800

5.排序(Sorting)

- 示例
- 对于上述"学生"关系表,按年龄从小到大排序, τ_{年龄}(学生)
 结果为:

学号	姓名	年龄	性别
1001	张三	20	男
1003	王五	20	男
1002	李四	22	女

Important

关系代数中,传统的集合运算【并,差,交和笛卡尔积】是从行的角度进行的,而专门的关系运算【选择、投影、连接、除运算】是从列的角度进行的。

关系代数的五个基本操作是【并、差、笛卡尔积、选择和投影】。

题库讲解

- 1【单选题】根据参照完整性规则,对于基本关系R中的每个元组在外码上的值必须是()
- A、基本关系S中某个元组的主码值 B、A或C C、空值 D、A和B

我的答案: B

♀ Tip

举个例子,有"学生(学号,姓名,班级编号)"和"班级(班级编号,班级名称)"两个关系。"学生"关系中的"班级编号"是外码,参照"班级"关系中的"班级编号"(主码)。如果一个新入学的学生还没有分配班级,那么该学生记录中的"班级编号"外码就可以为空值。当为学生分配了班级后,"学生"关系中的"班级编号"外码的值必须是"班级"关系中已经存在的某个"班级编号"的值。

2【单选题】建立学生表时,限定性别字段必须是男或女是实现数据的()。

A、以上都不是B、域完整性C、实体完整性D、参照完整性

我的答案: B 域即范围

3【单选题】有两个关系R(A,B,C)和S(B,C,D),将R和S进行自然连接,得到的结果包含()列

 $A \times 3B \times 6C5D \times *4$

我的答案: D

4【单选题】设关系R、S、W各有10个元组,那么这三个关系的笛卡尔积的元组个数是()。

A、1000B、30C、不确定D、10

我的答案: A

10 * 10 * 10

5【单选题】若一个关系有多个候选码,则选定其中一个为()

A、主属性B、主码C、全码D、主候选码

我的答案: B

6【单选题】关系运算中花费时间可能最长的运算是()。

A、笛卡儿积B、选择C、除D、投影

我的答案: A 遍历组合

7【单选题】有两个关系 R(A,B,C)和S(B,C,D),则R÷S结果的属性个数是()

A、2B、3C、1D、不一定

我的答案: C

8【单选题】从关系中挑选出指定的属性组成新关系的运算称为()

A、"连接"运算B、"投影"运算C、"选取"运算D、"交"运算

我的答案: B

9【单选题】已知关系课程表C,用关系代数查询"程军"老师所授课程的课程号(C#)和课程名(Cname),正确的是_。

C#	Cname	Cteacher
A01	数据库	张帆
A02	英语	程军
A03	操作系统	王昂
A04	Python	郑磊

- A、ΠC# and Cname (δCteacher="程军"(C))
- B、∏C#, Cname, Cteacher="程军"(C)
- C、∏C#and Cname andCteacher="程军"(C)
- D、∏C#, Cname (δCteacher="程军"(C))

我的答案: D 上面的符号应该是选择

10【单选题】在一个关系中不能相同的是

A、域B、分量C、属性D、记录

我的答案: D

11【单选题】若关系中的某一属性组的值能唯一的标识一个元组,而其子集不能,则称该属性组为()。

A、外码B、全码C、主码D、候选码

我的答案: D

☐ Important

再强调一遍吧, 必考点。

首先给出一个额外的定义辅助理解:超键是在关系模式中能够唯一标识元组的属性或属性组。

接下来给出选项的理解:一个关系中,可能有多个超健能够唯一标识元组,其中不含多余属性的超健就是候选码,从众多候选码中可以挑选一个作为主码,当只有所有属性组合在一起才能唯一标识元组时,这些属性叫全码。

- 12【单选题】对关系R进行投影运算后,得到关系S,则()
- A、关系R的元组数大于关系S的元组数B、关系R的元组数大于或等于关系S的元组数C、关系R的元组数等于关系S的元组数D、关系R的元组数小于或等于关系S的元组数

我的答案: B

- 13【单选题】从关系中挑选出指定的属性组成新关系的运算称为()。
- A、"交"运算B、"投影"运算C、"连接"运算D、"选取"运算

我的答案: B

14【单选题】设关系R与关系S具有相同的目数(或称度数),且相对应属性的值取自同一个域,则R-(R-S)等于__。

 $A \setminus SB \setminus R \cap SC \setminus S - RD \setminus R \cup S$

我的答案: B

- 15【单选题】下面关于关系数据库特点的描述,错误的是()
- A、由于关系数据库将数据存储在数据表中,数据操作的瓶颈出现在多张数据表的操作中,而且数据表越多这个问题越严重
- B、为了规范化数据、减少重复数据以及充分利用好存储空间,把数据按照最小关系表的形式进行存储
- C、采用表格的储存方式,数据以行和列的方式进行存储,要读取和查询都十分方便
- D、关系数据库采用非结构化查询语言来对数据库进行查询

我的答案: D 结构化查询语言——SOL

16【单选题】在关系R(R#,RN,S#)和S(S#,SN,SD)中,R的主键是R#,S的主键是S#,则S#在R中称为

A、外键B、主键C、候选键D、以上都不是

我的答案: A

17【单选题】下列不属于传统集合运算的是()

A、交B、笛卡尔积C、并D、连接

我的答案: D

Important

按照关系代数运算划分:

扩展的有: 去重、广义投影、聚集、分组、排序;

附加的有:交、连接、赋值、除;

基本的: 选择、投影、并、差、笛卡尔积、重命名。

按照集合运算划分: 传统的有交、并、差、笛卡尔积。

18【单选题】专门的关系运算包括选择,投影,连接,除运算等。其中从行的角度进行的运算是()

A、选择B、投影C、连接D、差

我的答案: A

☐ Important

从运算角度来讲:

行的角度:选择、去重、笛卡尔积、交、并

列的角度: 投影、连接、除运算等

19【单选题】如下列表所示,两个关系R1和R2,它们进行_运算后可以得到R3。

Α	В	С
1	1	x
С	2	у
D	3	у

В	E	M
1	m	i
2	n	j
1	m	k

Α	В	С	E	М
1	1	x	m	i
С	2	у	n	J
1	1	x	m	K

- A、R1⋈R2
- B, R1×R2
- C、R1∪R2
- D、R1∩R2

我的答案: A

20【单选题】自然连接是构成新关系的有效方法。一般情况下,当对关系R和S使用自然连接时,要求R和S含有一个或多个共有的()

A、行B、元组C、属性D、记录

我的答案: C 上一题就是

21【单选题】SQL语言通常称为()。

A、结构化控制语言B、结构化操纵语言C、结构化定义语言D、结构化查询语言

我的答案: D

22【单选题】在通常情况下,下面的关系中不可以作为关系数据库的关系是()。

A、R3(学生号,学生名,宿舍号)B、R1(学生号,学生名,性别)C、R4(学生号,学生名,简历)D、R2(学生号,学生名,班级号)

我的答案: C 简历???

23【单选题】关系代数的5种基本基本运算是()

A、并、差、交、选择、笛卡尔积B、并、差、选择、投影、笛卡尔积C、并、差、交、选择、投影D、并、差、选择、投影、自然连接

我的答案: B

24【单选题】下列传统的集合运算中是复合运算的是()(

A、交B、并C、差D、笛卡尔积

我的答案: A

[♀] Tip

复合运算指的是由多个基本运算组合而成的运算。

传统的中只有交运算等价于:

$$R \cap S = R - (R - S)$$

25【单选题】关系代数运算是以()为基础的运算。

A、代数运算B、集合运算C、关系运算D、谓词演算

我的答案: B

26【单选题】关系数据库的型也称为关系数据库模式,是对()的描述

A、关系数据库B、数据C、数据库D、数据库管理系统

我的答案: A

27【单选题】对关系R进行投影运算后,得到关系S,则()

A、关系R的元组数小于或等于关系S的元组数

B、[关系R的元组数大于关系S的元组数

C、关系R的元组数等于关系S的元组数

D、*关系R的元组数大于或等于关系S的元组数

我的答案: D

28【单选题】参加差运算的两个关系()

A、属性个数可以不相同B、属性个数必须相同C、一个关系包含另一个关系的属性D、属性名必须相同

我的答案: B

29【填空题】学生表如图所示,用关系代数查询所有在3系就读的且年龄小于21的学生的学号和姓名___ $\Pi_{S\#,Sname}(\sigma_{D\#="03"} \land Sage < 21(R))$ 。

S#	Sname	Ssex	Sage	D#	Sclass
98030101	张三	男	20	03	980301
98030102	张四	女	21	03	980301
98030103	张五	男	19	03	980301
98040201	王王	男	18	04	980402
98040202	主四	男	21	04	980402
98050104	孙六	女	19	05	980501

30.图片中的运算结果是()

teacher		
T#	Tname	Salary
001	起三	1200.00
002	起吗	1400.00
003	赵五	1000.00
004	赵六	1100.00

C#
001
001
002
002

Cname
数学
物理 .
化学

T #	TNAME	SALARY	C#	CNAME
001	赵三	1200.00	001	数学
002	赵四	1400.00	002	物理
004	赵六	1100.00	002	物理
null	null	null	003	化学

31.【填空题】已知关系: 学生(学号,姓名,性别,年龄),课程(课程号,课程名,学分),选课(课程号,学号,成绩)。表达"查询年龄未满20岁的学生姓名及年龄"的关系代数表达式是__

∏_{姓名,年龄}(*σ*_{年龄<20}(学生))

"学友"工作室出品

更多学科复习资料、竞赛学习等内容

欢迎关注华理"以学会友ing"公众号