

TMSCA MIDDLE SCHOOL MATHEMATICS

TEST#4 ©

NOVEMBER 7, 2020

GENERAL DIRECTIONS

- 1. About this test:
 - A. You will be given 40 minutes to take this test.
 - B. There are 50 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading on Scantrons and Chatsworth cards.
- 3. If you are using a Chatsworth or Scantron card, please follow the specific instructions given at your particular meet.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators **MAY NOT** be used on this test.
- 8. All problems answered correctly are worth **FIVE** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- A. 233
- B. 213
- C. 223
- D. 243
- E. 203

- A. 1,110
- B. 1,100
- C. 1,108.1
- D. 1,111
- E. 1,120

$$3.34 \times 1.5 \times 2 =$$

- A. 1,020
- B. 51
- C. 102.2
- D. 1,200
- E. 102

4.
$$4,872 \div 0.06 =$$
 _____ (nearest thousand)

- A. 80,000
- B. 82,000
- C. 81,000
- D. 81,200
- E. 81,210

5. What is 70% of 440?

- A. 312
- B. 306
- C. 318
- D. 328
- E. 308

6. If
$$A = 2^3 \cdot 3^2 \cdot 13$$
, how many positive integral divisors does A have?

- A. 36
- B. 8

C. 18

- D. 24
- E. 16

7. What is the perimeter of the shape below? Let $\pi = 3$.

- A. 72 meters
- B. 54 meters
- C. 66 meters
- D. 78 meters
- E. 90 meters

8. Evaluate
$$a^2 - b^2$$
 for $a = 19$ and $b = -12$.

- A. 217
- B. 62
- C. 505
- D. 385
- E. -106

9. 196 minutes =

- A. 2 hours 18 minutes B. 3 hours 18 minutes C. 3 hours 16 minutes D. 2 hours 56 minutes E. 3 hours 56 minutes
- $10.\frac{1}{2}(6m-8n)+11m-4n$ is equivalent to which of the following?

A.
$$\frac{17}{2}m - 6n$$

B.
$$14m - 8n$$
 C. $14m - 4n$

C.
$$14m - 4m$$

D.
$$14m - 12m$$

D.
$$14m - 12n$$
 E. $\frac{17}{2}m - 4n$

- A. 2,628
- B. 2,618
- C. 268
- D. 248
- E. 258

- A. 1,260
- B. 630
- C. 210
- D. 320
- E. 420

- A. $\sqrt{31}$
- B. $\sqrt{841}$
- $C. \pi$

- D. $-\sqrt{2}$
- E. $\sqrt[3]{9}$

- A. 25
- B. 32
- C. 17
- D. 22
- E. 20

15. What is the complement of an angle measuring 83.6°?

- A. 96.4°
- B. 176.4°
- C. 106.4°
- D. 7.4°
- E. 6.4°

16. When a number, w, is subtracted from 18 and the difference is divided by w, the final result is 2. What is the value of $-2w^2$?

- A. -32
- B. -100
- C. -128
- D. -72
- E. -50

17. The additive inverse of -24 is equal to one-third of a number, n. What is the value of n?

- A. -8
- B. -72
- C. 8

- D. 12
- E. 72

18. How may diagonals can be drawn from one vertex of a regular dodecagon?

- A. 24
- B. 54
- C. 6

- D. 12
- E. 9

19. How may terms are in the sequence 18, 31, 44, 57, ..., 161, 174, and 187?

- A. 12
- B. 14
- C. 16
- D. 18

E. 15

20. How may subsets can be found using the set of numbers {13, 22, 14, 21}?

- A. 12
- B. 10
- C. 16
- D 8

E. 4

21. If $x \boxminus y = 2x^2 - y$, then what is the value of $-1 \boxminus (3 \boxminus 4)$?

- A. -8
- B. 6

- C. 14
- D. -6
- E. -12

22. Last year, the local fish population was 160. This year, after a severe drought, the fish population dropped to 112. What was the percent decrease in the fish population?

- A. 24%
- B. 42%
- C. 36%
- D. 28%
- E. 30%

23. Which inequality is true?

- A. $\frac{3}{8} < \frac{1}{4}$
- B. $\frac{2}{5} > \frac{3}{7}$
- C. $\frac{5}{8} > \frac{3}{4}$
- D. $\frac{3}{5} > \frac{4}{7}$
- E. $\frac{5}{9} < \frac{3}{8}$

24. Simplify: $|6 - 10| - 2^3$

- A. -4
- B. -8
- C. -12
- D. 8

E. 16

25. What is the remainder when 76,288 is divided by 9?

A. 6

B. 5

C. 4

D. 3

E. 2

26. Which of the following graphs represents a function?

B.

27. 301₁₀ = _____ (base 9)

- A. 382
- B. 392
- C. 354
- D. 364
- E. 376

28. Mitchel ordered a pizza for he and his friends. He cut the pizza using a pizza cutter making 5 cuts. What is the maximum number of pieces into which the pizza can be cut?

- A. 10
- B. 12
- C. 14
- D. 16
- E. 20

29. If $\triangle ABC \sim \triangle XYZ$, which of the following proportions is true?

- A. $\frac{AB}{BC} = \frac{XY}{XZ}$
- B. $\frac{AB}{VV} = \frac{AC}{VZ}$ C. $\frac{AC}{VV} = \frac{BC}{VZ}$
- D. $\frac{BC}{AC} = \frac{XZ}{YZ}$
- E. $\frac{CA}{VZ} = \frac{CB}{ZX}$

30. A basic calculator can perform an arithmetic operation in 4×10^{-4} seconds. How many of the same operations can the basic calculator perform in one hour? Answer in scientific notation.

- A. 4×10^{36}
- B. 2.4×10^{-2}
- C. 9×10^{6}
- D. 2.4×10^{-1}
- E. 1.5×10^6

31. What is the slope of a line passing through the points (12, 18) and (-4, 6)?

- A. $\frac{3}{4}$
- B. ½
- C. 1½

E. 13/4

32. Which of the following ordered pairs represents the solution to the system of linear equations graphed below?

- A.(0,4)
- B.(1,0)
- C.(-2,0)
- D.(0,1)
- E.(-1,2)

- 33. $15^{\circ} C =$ __ $^{\circ} F$
- A. 47

C. 59

- D. 63
- E. 55

34. $\frac{1}{2}$ of $\frac{1}{3}$ of $\frac{1}{4}$ of 600 =

- A. 12.5
- B. 25
- C. 50
- D. 75
- E. 30

35. If the point (-2,7) is translated nine units left and ten units up, what are its new coordinates?

- A. (7, -3)
- B. (8, 16)
- C. (-11, 17)
- D. (-12, -2)
- E. (-18, 70)

36. If the interior angle of a regular polygon measures 120°, how many sides does the polygon have?

- A. 10
- B. 7

- E. 8

37. $\sqrt{120} =$

- A. $2\sqrt{60}$
- C. $2\sqrt{20}$
- D. $2\sqrt{30}$
- E. $4\sqrt{30}$

38. Vanessa can paint a mural on the side of a wall measuring 8 ft by 10 ft in 40 minutes. How long will it take Vanessa to paint a mural that measures 10 ft by 12 ft?

- A. 55 minutes
- B. 60 minutes
- C. 65 minutes
- D. 48 minutes
- E. 52 minutes

39. Find the midpoint of \overline{BC} , if B has coordinates (7, 33) and C has coordinates (-29, 45).

- A. (-11, 39)
- B. (-11, 6)
- C. (-22, 39)
- D. (-22, 78)
- E. (-11, -6)

Copyright © 2020 by TMSCA

40. What is the positive geometric mean of the numbers 36 and 4?

- A. 24
- B. 20
- C. 12
- D. 16
- E. 8

 $41.36_7 + 34_7 =$ (base 7) A. 101 B. 70

- C. 65

- D. 103
- D. 114

42. The radius of a circle is equal to the perimeter of the square below. If $\pi = 3$, what is the area of the circle?

A. 864 in²

A. $24n^{12}$

- B. 144 in²
- C. 384 in²
- D. 1,728 in²
- E. 768 in^2

43. Simplify:

- C. $24n^{17}$
- D. $48n^{12}$
- E. $48n^{20}$

44. Which of the following functions represents a direct variation.

- A. $y = x^2$
- B. y = |2x| 1
- C. y = 6x 1
- D. $y = 3^{x}$
- E. $y = -\frac{3}{8}x$

45. What is the y-intercept of the graph of the quadratic function $y = 5x^2 - 10x + 15$?

- A. 15
- B. 3

- C. -2
- D. $-\frac{1}{2}$
- E. 1/3

46. i^{111} is equivalent to which of the following?

- A. -i
- B. i

C.0

D. 1

E. -1

 $47.6\begin{bmatrix} -12 & -9 \\ 7 & -13 \end{bmatrix} = \underline{\hspace{1cm}}$

- $A. \begin{bmatrix} -6 & -3 \\ 13 & -7 \end{bmatrix} \qquad B. \begin{bmatrix} -18 & -54 \\ 42 & -78 \end{bmatrix} \qquad C. \begin{bmatrix} -18 & -15 \\ 13 & -19 \end{bmatrix} \qquad D. \begin{bmatrix} -72 & -54 \\ 42 & -78 \end{bmatrix} \qquad E. \begin{bmatrix} -72 & -54 \\ -42 & -78 \end{bmatrix}$

48. What is the value of 3^{x} , if $3^{x-1} = 8$?

- A. -3
- B. 24
- C. 6

D. $\frac{2}{3}$

E. $\frac{3}{8}$

49. What is the volume of the sphere? Let $\pi = 3$.

- A. 256 in³
- B. 64 in³
- C. 128 in³
- D. 16 in^3
- E. 32 in³

50. Using the set of numbers 7, -1, 8, 16, -5, -1, which inequality is true?

- A. median > mean
- B. mean < mode
- C. mode > median
- D. median < mean
- E. mean = mode

$2020-2021\ TMSCA$ Middle School Mathematics Test #4 Answer Key

1. C	18. E	35. C
2. A	19. B	36. D
3. E	20. C	37. D
4. C	21. E	38. B
5. E	22. E	39. A
6. D	23. D	40. C
7. D	24. A	41. D
8. A	25. C	42. E
9. C	26. D	43. B
10. B	27. D	44. E
11. C	28. D	45. A
12. C	29. B	46. A
13. B	30. C	47. D
14. A	31. A	48. B
15. E	32. E	49. E
16. D	33. C	50. D
17. E	34. B	

- 6. To find the number of positive integral divisors of a number, first find the prime factorization of that number. Once you have the prime factorization, add 1 to each exponent and then find the product of those numbers. We are given that $A = 2^3 \cdot 3^2 \cdot 13$, so the number of positive integral divisors of A is (3 + 1)(2 + 1)(1 + 1) = (4)(3)(2) = 24.
- 20. We are given the set $\{13, 22, 14, 21\}$, which has 4 elements within the set. The formula to find the number of subsets of a set is 2^n , where n is equal to the number of elements in the set. Therefore, with the given set having 4 elements, the number of subsets is equal to $2^4 = 16$.
- 30. Because there are 60 seconds in 1 minute and 60 minutes in 1 hour, there are $60 \times 60 = 3600$ seconds in 1 hour. Therefore, $3600 = 3.6 \times 10^3$, and so $\frac{3.6 \times 10^3}{4 \times 10^{-4}} = 9,000,000 = 9 \times 10^6$ operations that can be performed in one hour.
- 31. Given two points, (x_1, y_1) and (x_2, y_2) , the slope formula is $\frac{y_2 y_1}{x_2 x_1}$. We are given the points (12, 18) and (-4, 6), so the slope of the line passing though the points is equal to $\frac{6-18}{-4-12} = \frac{-12}{-16} = \frac{3}{4}$.
- 32. The solution to a graph of a system of linear functions is the point of intersection of the graphed lines. Therefore, the solution to the given system of linear functions is (-1, 2).
- 33. To change °C to °F, use the formula $F = \frac{9}{5}C + 32$. We are given $15^{\circ}C$, so substituting into our formula and we get $\frac{9}{5}(15) + 32 = 27 + 32 = 59^{\circ}F$.
- 36. The formula to find the interior angle of a regular polygon is equal to $\frac{180(n-2)}{n}$, where n is equal to the number of sides of the polygon. We are given an interior angle of 120° , so we can make the equation $\frac{180(n-2)}{n} = 120$. We can multiply both sides of the equation by n to get 180(n-2) = 120n. We can distribute next to get 180n 360 = 120n. Add 360 to both sides of the equation to get 180n = 120n + 360. Subtract 120n from both sides to get 60n = 360. Dividing by 60 to both sides and we get n = 6.
- 43. Using the exponent rules $a^m \cdot a^n = a^{m+n}$ and $(a^m)^n = a^{mn}$, $3n^3(4n^7)^2 = 3n^3(16n^{7(2)}) = 3n^3(16n^{14}) = 48n^{3+14} = 48n^{17}$.
- 46. Imaginary numbers follow the pattern $i^0 = 1$, $i^1 = i$, $i^2 = -1$, and $i^3 = -i$. So, dividing 111 by 4, we get a remainder of 3. Since $i^3 = -i$, $i^{111} = -i$.
- 48. Using the exponent rule, $\frac{a^m}{a^n} = a^{m-n}$, $3^{x-1} = \frac{3^x}{3^1}$. So, we now have the equation $\frac{3^x}{3^1} = 8$. To solve this, multiply both sides of the equation by 3. Therefore, $3\left(\frac{3^x}{3^1} = 8\right) = \frac{3(3^x)}{3^1} = 8(3)$, which gives us $3^x = 24$.