

11/29/99
JC715 U.S. PTO

A
PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Docket No: 29473/10458

PATENT APPLICATION TRANSMITTAL UNDER 37 C.F.R. 1.53

Box Patent Application
Assistant Commissioner for Patents
Washington, D.C. 20231

11/29/99
JC530 U.S. PTO
09/451180

Sir:

Transmitted herewith for filing is the patent application of

Inventors: Wilfried FISCHER and Petra HUBER

Title: TRANSDERMAL SYSTEM FOR DELIVERING CLONIDINE (English translation
of "TRANSDERMALSYSTEME ZUR ABGABE VON CLONIDIN" in German)

1. Type of Application

- This is a new application for a
 - utility patent.
 - design patent.

2. Application Papers Enclosed

- 1 Title Page
- 13 Pages of Specification (excluding Claims, Abstract, Drawings & Sequence Listing)
- 3 Pages of Claims
- 1 Page of Abstract

CERTIFICATION UNDER 37 CFR 1.10

I hereby certify that this Patent Application Transmittal and the documents referred to as enclosed therewith are being deposited with the United States Postal Service on November 29, 1999, in an envelope addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231 utilizing the "Express Mail Post Office to Addressee" service of the United States Postal Service under Mailing Label No. EM099777552US.

Richard Zimmermann

3. Declaration or Oath

- Enclosed
 - Executed by (check all applicable boxes)
 - Inventor(s)
 - Legal representative of inventor(s)
(37 CFR 1.42 or 1.43)
 - Joint inventor or person showing a proprietary interest on behalf of inventor who refused to sign or cannot be reached
 - The petition required by 37 CFR 1.47 and the statement required by 37 CFR 1.47 are enclosed. See Item 5D below for fee.
 - Not enclosed - the undersigned attorney or agent is authorized to file this application on behalf of the applicants. An executed declaration will follow.

4. Additional Papers Enclosed

- Preliminary Amendment
- Information Disclosure Statement
- Declaration of Biological Deposit
- Computer readable copy of sequence listing containing nucleotide and/or amino acid sequence
- Microfiche computer program
- Verified statement(s) claiming small entity status under 37 CFR 1.9 and 1.27
- Associate Power of Attorney
- Verified translation of a non-English patent application
- An assignment of the invention
- Return receipt postcard
- Other

5. Priority Applications Under 35 USC 119

Certified copies of applications from which priority under 35 USC 119 is claimed are listed below and

- are attached.
- will follow.

COUNTRY	APPLICATION NO.	FILED

6. Filing Fee Calculation (37 CFR 1.16)

A. Utility Application

CLAIMS AS FILED - INCLUDING PRELIMINARY AMENDMENT (IF ANY)						
			SMALL ENTITY		OTHER THAN A SMALL ENTITY	
	NO. FILED	NO. EXTRA	RATE	Fee	RATE	Fee
BASIC FEE				\$380.00		\$760.00
TOTAL	1 -20	= 0	X 9 =	\$	X 18 =	
INDEP.	1 - 3	= 0	X 39 =	\$	X 78 =	
<input type="checkbox"/> First Presentation of Multiple Dependent Claim			+ 130 =	\$	+ 260 =	
Filing Fee:				\$	OR	\$760.00

B. Design Application (\$155.00/\$310.00) Filing Fee: \$ _____

C. Plant Application (\$240.00/\$480.00) Filing Fee: \$ _____

D. Other Fees

Recording Assignment [Fee -- \$40.00 per assignment] \$ _____

Petition fee for filing by other than all the inventors or person on behalf of the inventor where inventor refused to sign or cannot be reached [Fee -- \$130.00] \$ _____

Other \$ _____

Total Fees Enclosed \$760.00

7. Method of Payment of Fees

- Enclosed check in the amount of: \$760.00
- Charge Deposit Account No. 13-2855 in the amount of: \$_____
A copy of this Transmittal is enclosed.
- Not enclosed

8. Deposit Account and Refund Authorization

The Commissioner is hereby authorized to charge any deficiency in the amount enclosed or any additional fees which may be required during the pendency of this application under 37 CFR 1.16 or 37 CFR 1.17 or under other applicable rules (except payment of issue fees), to Deposit Account No. 13-2855. A copy of this Transmittal is enclosed.

Please refund any overpayment to Marshall, O'Toole, Gerstein, Murray & Borun at the address below.

Please direct all future communications to James P. Zeller, at the address below.

Respectfully submitted,

MARSHALL, O'TOOLE, GERSTEIN,
MURRAY & BORUN
6300 Sears Tower
233 South Wacker Drive
Chicago, Illinois 60606-6402
(312) 474-6300
(312) 474-0448 (Telefacsimile)

By:

James P. Zeller
Reg. No. 28,491

November 29, 1999

PATENT

IN THE UNITED STATES PATENT
AND TRADEMARK OFFICE

Applicant:)	"EXPRESS MAIL" mailing
)	label No. EM099777552US.
Fischer et al.)	Date of Deposit: November
)	29, 1999
Serial No.: To be)	I hereby certify that this
assigned)	paper (or fee) is being
)	deposited with the United
Filed: Herewith)	States Postal Service
(November 29, 1999))	"EXPRESS MAIL POST OFFICE
)	TO ADDRESSEE" service
For: TRANSDERMALSYSTEME)	under 37 CFR §1.10 on the
ZUR ABGABE VON)	date indicated above and
CLONIDIN)	is addressed to:
)	Assistant Commissioner for
(TRANSDERMAL SYSTEM)	Patents, Washington, D.C.
FOR DELIVERING)	
CLONIDINE))	20231
)	
Group Art Unit: To be)	
assigned)	
)	
Examiner: To be assigned)	

Richard Zimmermann

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents
Washington, DC 20231

Sir:

Please amend this application as follows.

IN THE CLAIMS:

Please cancel claims 2-15, without prejudice.

REMARKS

By the foregoing, the number of claims has been reduced to minimize the filing fee. The filing fee for this application is based on the claims as amended above.

Respectfully submitted,

MARSHALL, O'TOOLE, GERSTEIN,
MURRAY & BORUN

November 29, 1999

By

James P. Zeller
Reg. No. 28,491

6300 Sears Tower
233 South Wacker Drive
Chicago, Illinois 60606-6402
(312) 474-6300

SEARCHED INDEXED SERIALIZED FILED

JOINT INVENTORS

"EXPRESS MAIL" mailing label No.
EM099777552US.

Date of Deposit: November 29, 1999

I hereby certify that this paper (or fee) is being deposited with the United States Postal Service "EXPRESS MAIL POST OFFICE TO ADDRESSEE" service under 37 CFR §1.10 on the date indicated above and is addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231

Richard Zimmermann

APPLICATION FOR UNITED STATES LETTERS PATENT

S P E C I F I C A T I O N

TO ALL WHOM IT MAY CONCERN:

**Be it known that we, Wilfried FISCHER, a citizen of Germany,
residing at Frankfurter Ring 193a, D-80807 München, Germany, and Petra
HUBER, a citizen of Germany, residing at Frankfurter Ring 193a, D-80807
München, Germany, have invented a new and useful
TRANSDERMALSYSTEME ZUR ABGABE VON CLONIDIN (TRANSDERMAL
SYSTEM FOR DELIVERING CLONIDINE), of which the following is a
specification.**

Transdermalsysteme zur Abgabe von Clonidin

Die Erfindung betrifft wirkstoffhaltige Transdermalsysteme (im folgenden auch Matrixpflaster oder einfach Pflaster genannt) zur Abgabe von Clonidin und ihre Verwendung zur Behandlung von Hypertonie, Migräne, Angstzuständen, hyperkinetischen Verhaltensstörungen, Entzugserscheinungen bei Alkohol- oder Drogenentzug und menopausalen Symptomen.

Wirkstoffhaltige Transdermalsysteme ("Pflaster") sind dem Fachmann auf dem Gebiet der pharmazeutischen Technologie seit ca. 20 Jahren bekannt. Im wesentlichen werden zwei große technische Systeme unterschieden: Matrix- und Reservoirsysteme. Die Erfindung betrifft nur Matrixsysteme, bei denen medizinische Wirkstoffe direkt in eine halbfeste Matrix aus Polymeren eingebettet werden.

Clonidin ist ein Antisympathotonikum mit Imidazolin-Struktur. Es weist Affinität zu α_1 - und stärker - zu prä- und post-synaptischen α_2 -Adrenozeptoren auf und senkt den peripheren Sympathikustonus. Clonidin bewirkt in erster Linie eine Blutdrucksenkung aufgrund absinkenden Herzzeitvolumens und - bei längerer Medikation - durch Verminderung des peripheren Gefäßwiderstandes. Zugleich vermindert es die Renin-Aus-

schüttung mit einer Abnahme von Angiotensin II im Blutplasma unter Freisetzung von Aldosteron aus der Nebennierenrinde.

Clonidin wird z. B. bei folgenden Indikationen eingesetzt:

- 5
- Hypertonie
 - Migräne
 - Angstzuständen
 - hyperkinetischen Verhaltensstörungen
 - 10 - Entzugserscheinungen bei Alkohol- oder Drogenentzug
 - menopausalen Symptomen

Clonidin-Hydrochlorid existiert als mesomerische Komponente. Der chemische Name ist 2-(2,6-Dichlorophenylamino)-2-imidazolin-Hydrochlorid. Molekülformel: $C_9H_9Cl_2N_3 \cdot HCl$, Molekularmasse: 266.56

Es sind verschiedene Transdermalsysteme, die Clonidin enthalten, entwickelt worden. So beschreibt das US-Patent 4,559,222 vom 17. Dezember 1985 ein mehrschichtiges Transdermalsystem, in dem Clonidin-Base in Mineralöl zusammen mit kolloidalem Siliciumdioxid in einer ersten Schicht in einem Polyisobutylenklebstoff enthalten ist. Auf diese Schicht wird eine mikroporöse Membrane aufgebracht, auf die wiederum eine Klebstoffschicht aufgebracht wird. Diese Klebstoffschicht wird auf die Haut geklebt. Das Transdermalsystem ist auf der Seite der wirkstoffhaltigen Schicht mit einer für Clonidin undurchlässigen Folie abgedeckt. Nachteile dieses Systems sind die bekannte schlechte Hautverträglichkeit von Polyisobutylenklebstoffen, das komplizierte und teure Herstellungsverfahren durch die vielen benötigten Schichten und die prinzipiell auftretende physikalische Instabilität des Systems, da

die mit der Haut in Kontakt tretende Schicht sich im Lauf der Lagerung mit Clonidin sättigt, wodurch sich das Freisetzungerverhalten des Systems verändert, d.h. ein länger gelagertes System setzt nach dem Aufkleben auf die Haut den Wirkstoff aus der Kontaktschicht schneller frei als durch die mikroporöse Membrane nachgeliefert werden kann. Ein weiterer Nachteil ist die schlechte Klebkraft des Systems. Da das Transdermalsystem sieben Tage lang getragen werden soll, muß der Hersteller ein wirkstofffreies Pflaster mitliefern, das über das eigentliche Clonidin enthaltende System zur zuverlässigen Fixierung geklebt werden muß. Die erhöht weiterhin die Kosten sowie den Aufwand des Anwenders.

Das US-Patent 5,762,952 vom 9. Juni 1998 beschreibt ein verbessertes System, bestehend aus einem selbstvernetzenden Acrylatklebstoff, in den z. B. Clonidin zusammen mit bei höheren Temperaturen flüchtigen Hilfssstoffen wie Lösemitteln oder Resorptionsförderern eingearbeitet wird. Die Vernetzung ist notwendig, um die Konsistenz der Klebstoffmasse zu erhöhen, die durch den Zusatz hoher Mengen flüssiger Komponenten wie Lösemittel oder Resorptionsförderer stark soweit vermindert wird, daß keine kohärente Klebstoffschicht mehr entsteht. Nachteile dieser Erfindung sind zum einen die Verwendung toxischer Vernetzer sowie potentiell hautirritierender Lösemittel und Resorptionsförderer.

Das US-Patent 5,958,446 beschreibt eine Erfindung, nach der ein Gemisch aus selbstklebenden Acrylaten und Polyisobutylen oder Silikonen einen höheren Fluß durch die Haut ergibt als bei alleiniger Verwendung der Polymeren. Das Patent beansprucht zwar die Verwendung von Clonidin als Wirkstoff, führt jedoch kein Beispiel dazu aus. Der Nachteil der beschriebenen

Erfindung liegt darin, daß die Kombination zweier Polymerer in der überwiegenden Anzahl der beschriebenen Beispiele (z. B. mit 17 β -Estradiol, Norethisteronacetat, Pilocarpin, sämtlich Substanzen, die gut durch die Haut penetrieren) unter 5 Anwendung von Resorptionsförderern wie Lecithin oder Propylenglycol hergestellt wurde, um einen ausreichenden Fluß zu erhalten. Das heißt, die Verwendung der im Patent beschriebenen Gemische aus Polymeren allein reicht nicht aus, um Transdermalsysteme mit ausreichender Wirkung herzustellen.

10 Die Aufgabe der vorliegenden Erfindung liegt nun darin, ein Transdermalsystem zur Abgabe von Clonidin zur Verfügung zu stellen, das sehr kostengünstig produziert werden kann, sehr hautschonend ist, für die Patienten einfach anzuwenden ist, 15 keine zusätzliche Fixierhilfe benötigt, zwischen 100 und 300 μ g Clonidin pro Tag durch die Haut freigibt und keine toxischen Vernetzer oder Lösemittel/Resorptionsförderer enthält

20 Erfindungsgemäß wird diese Aufgabe mit einem Transdermal- system zur Abgabe von Clonidin gemäß Patentanspruch 1 gelöst.

Die Erfindung betrifft somit Transdermalsysteme zur Abgabe von Clonidin, die dadurch gekennzeichnet sind, daß sie eine Clonidin enthaltende Haftkleberschicht auf Basis eines 2- 25 Ethylhexylacrylat-Vinylacetat-Copolymers aufweisen.

Die Erfindung betrifft ferner die Verwendung dieser Transdermalsysteme zur Behandlung von Hypertonie, Migräne, Angstzuständen, hyperkinetischen Verhaltensstörungen, Entzugsscheinungen bei Alkohol- oder Drogenentzug und menopausalen 30 Symptomen gemäß Patentanspruch 15.

Die Erfindung beruht auf dem überraschenden Befund, daß ein druckempfindlicher Haftkleber auf Acrylatbasis, der ausschließlich aus den Monomeren 2-Ethylhexylacrylat und Vinylacetat besteht, alle oben genannten Anforderungen erfüllt:

- 5 Clonidin-Base ist in ausreichender Konzentration in dem getrockneten Klebstoff löslich und das chemische Potential von Clonidin in dem getrockneten Kleber ist ohne Zumischung weiterer Komponenten hoch genug, um über sieben Tag einen ausreichenden Wirkstoff-Fluß durch intakte Haut aufrecht zu erhalten. Der Klebstoff benötigt keinen Vernetzer, um eine optimale Konsistenz zusammen mit dem darin gelösten Clonidin zu ergeben. Die Klebkraft ist so hoch, daß eine ausgezeichnete Klebkraft über sieben Tage ohne wesentliche Hautirritationen erreicht wird. Die Verwendung von zusätzlichen Fixierhilfen
-
- 10 15 ist überflüssig.

Weitere vorteilhafte und bevorzugte Ausführungsformen sind Gegenstand der Unteransprüche.

- 20 Eine vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß die Haftkleberschicht Clonidin im Konzentrationsbereich von 0,1 bis 20 Gew.-% aufweist.

- 25 Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß die Haftkleberschicht Clonidin im Konzentrationsbereich von 2 bis 10 Gew.-% aufweist.

- 30 Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß neben dem Clonidin und dem 2-Ethylhexylacrylat-Vinylacetat-Copolymer ferner Füllmittel und/oder Hautschutzstoffe und/oder Klebrigmacher in der Haftkleberschicht enthalten sind.

Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß die Clonidin enthaltende Haftkleberschicht eine Schicht eines flächigen selbstklebenden Pflasters mit mehrschichtigem Aufbau bildet.

Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß das Pflaster neben der Clonidin enthaltenden Haftkleberschicht eine Abdeckung und auf der gegenüberliegenden Seite einen die Haftkleberschicht temporär abdeckenden und abziehbaren Träger aufweist.

Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß die Abdeckung aus Kunststofffolie, Kunststoffschaum, Gewebe oder Vlies besteht.

Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß der Träger aus Kunststofffolie, Papier oder einem Laminat daraus besteht.

Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß der Träger silikonisiert ist.

Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß es sich bei der Kunststofffolie um Polyester-, Polyethylen- oder Polypropylen-Folie handelt.

Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß die trockene Haftkleberschicht ein Flächengewicht von 20 bis 150 g/m² hat.

Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß die trockene Haftkleberschicht ein Flächengewicht von 50 bis 120 g/m² hat.

5 Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß die Abgaberate 10 bis 1000 µg Clonidin pro Tag beträgt.

10 Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daß die Abgaberate 50 bis 500 µg Clonidin pro Tag beträgt.

15 Im folgenden wird die Erfindung ohne Beschränkung detaillierter beschrieben.

Die Herstellung von Clonidin-Pflastern wird auf herkömmlichen Maschinen, die dem Fachmann bekannt sind, vorgenommen.

20 Clonidin-Base wird in einem geeigneten, leicht flüchtigen Lösungsmittel, z. B. Ethylacetat, Ethanol oder Isopropanol, gelöst oder dispergiert. Die Lösung/Dispersion wird mit einer Lösung des oben beschriebenen druckempfindlichen Haftklebers in einem geeigneten Gefäß gemischt. Fakultativ, aber nicht zwingend notwendig, können übliche Stoffe wie Füllmittel, Hautschutzstoffe, Klebrigmacher o. ä. zugesetzt werden. Das Gemisch aus Clonidin und dem Acrylat und ggf. weiteren Stoffen wird in einer üblichen Beschichtungsmaschine auf ein Substrat bzw. einen Träger, z. B. aus silikonisierten Kunststofffolien, silikonisiertem Papier o. ä., aufgetragen und in einem nachfolgenden Trockner vom Lösemittel befreit. Nach dem Verlassen des Trockners wird die nun getrocknete und selbstklebende Wirkstoff/Klebstoffmatrix mit einer weiteren Schicht, die z.

B. eine Kunststofffolie, ein Vlies, ein Kunststoffschaum, ein Gewebe o. ä. sein kann, zur Abdeckung kaschiert.

In einem weiteren Verarbeitungsschritt werden in einer dem 5 Fachmann bekannten Schneide- oder Stanzvorrichtung die gewünschten Transdermalsysteme mit definierter Form und Größe ausgeschnitten oder gestanzt. Die fertigen Systeme werden zum Schutz in Beutel oder ähnliche Verpackungen eingebracht.

10 Typischerweise enthalten die Systeme Clonidin im Konzentrationsbereich von 0,1 bis 20 %, bevorzugt im Bereich von 2 bis 10 %. Das Flächengewicht der getrockneten Haftkleberschicht (Matrix) liegt üblicherweise im Bereich von 20 bis 150 g/m², bevorzugt im Bereich von 50 bis 120 g/m². Die Abgaberate 15 liegt im Bereich von 10 bis 1000 µg Clonidin pro Tag, bevorzugt im Bereich von 50 bis 500 µg pro Tag.

Zur Charakterisierung der Transdermalsysteme im Hinblick auf ihre Wirkstoffabgabe werden im wesentlichen zwei Methoden an- 20 gewendet:

1. In-vitro-Hautpermeationsuntersuchungen
2. In-vitro-Freisetzunguntersuchungen nach gültigen Phar- 25 makopönen

Hauptpermeationsuntersuchungen werden häufig an isolierter Haut von Nacktmäusen durchgeführt. Dabei wird ein Pflasterstück auf die Oberseite der Haut geklebt und in einer Diffusionszelle montiert. Eine Pufferlösung (Akzeptor) tritt dabei 30 mit der Unterseite der Haut in Kontakt und es wird die zeit-abhängige Konzentrationsänderung im Akzeptormedium gemessen.

Die Ergebnisse, die mit den erfindungsgemäßen Zubereitungen erhalten wurden, sind in den folgenden Beispielen aufgeführt.

Die In-vitro-Freisetzunguntersuchungen werden in Glasgefäßen
5 ausgeführt, die nach den Bestimmungen der Pharmakopöen aufgebaut sind. In einem zylindrischen 1-Liter-Gefäß mit rundem Boden wird das Pflaster auf einer Siebplatte so befestigt,
daß die Klebeschicht nach oben weist. Die Siebplatte wird auf
den Boden des Gefäßes gebracht und das Gefäß mit Wasser gefüllt,
10 worauf mit einem definierten Rührer zum Konzentrationsausgleich gerührt wird. Hierbei wird ebenfalls die zeitabhängige Konzentration in dem Medium, in das die Freisetzung erfolgt, gemessen. Die Ereignisse dieser Untersuchungen sind
in den Beispielen aufgeführt.

15 Der Unterschied zwischen diesen Methoden besteht darin, daß die Freisetzunguntersuchungen nur das Freisetzungsverhalten des Wirkstoffes aus dem Pflaster berücksichtigen, was jedoch in der Regel nicht mit der biologischen Wirkung korreliert.

20 Das Hautpermeationsmodell berücksichtigt dagegen zusätzlich zur notwendigen Freisetzung die Verteilung des Wirkstoffes in die Haut und die Diffusion durch die Haut. Hiermit sind in der Regel Korrelationen mit der biologischen Wirkung möglich.

25 Die folgenden Beispiele veranschaulichen die Erfindung ohne sie zu beschränken.

Vergleichsbeispiel 1

30 Ein handelsübliches Clonidin-Pflaster, Catapres® TTS, mit folgender Charakteristik:

Gehalt Clonidin: 5 mg

Fläche: 7 cm²

Zusammensetzung (qualitativ):

5 Mineralöl
Polyisobutylen
kolloidales Siliciumdioxid
mikroporöse Polypropylenmembran

10 wurde entsprechend dem Europäischen Arzneibuch einer In-vitro-Dissolutionsuntersuchung unterzogen. Die Ergebnisse sind in Tabelle 1 dargestellt.

15 Ergänzend wurde das In-vitro-Hautpermeationsverhalten mit einem Mäusehautmodell untersucht.

Durchführung:

Ein 1,5 cm² großes Stück Haut von weiblichen Nacktmäusen, das von Unterhautgewebe befreit wurde, wird auf die genau 1 cm² große Öffnung einer automatisierten Diffusionszelle gelegt, mit einem ca. 1,5 cm² großen Stück des Clonidin-Pflasters beklebt und mit einer Andruckvorrichtung auf der Zelle abgedichtet. Dann wird die Zelle mit 25 ml einer physiologischen HEPES-Pufferlösung gefüllt und auf 34° C temperiert. Zu definierten Zeitpunkten werden aus der Pufferlösung Proben gezogen und der Wirkstoffgehalt in ihnen durch Hochdruckflüssigchromatographie bestimmt.

Nach diesem Verfahren wurden alle unten beschriebenen Pflaster untersucht.

Die Ergebnisse sind in Tabelle 2 dargestellt.

Vergleichsbeispiel 2

Zum Vergleich wurde ein Clonidin-Pflaster unter Verwendung
5 eines selbstvernetzenden Acrylatklebers ohne hinzugefügte Re-
sorptionsförderer hergestellt. Das System hatte folgende Cha-
rakteristik:

Gehalt Clonidin: 5,25 mg
10 Fläche: 7 cm²

Zusammensetzung:

Acrylatkleber Duro-Tak 87-2052	64,75 mg
silikonisierte Polyester-Folie FL2200075 1S**	7 cm ²
15 Polyester-Folie Hostaphan MN 19 MED***	7 cm ²

Der Duro-Tak-Haftkleber wird bei niedriger Temperatur durch den Zusatz von Aluminiumacetylacetonat selbstvernetzend.

20 * National Starch & Chemical, NL-Zutphen
** Rexam, NL-Apeldoorn
*** Mitsubishi Polyester Foils, D-Frankfurt

Herstellung:

25 Clonidin wird in Ethylacetat gelöst. Die Lösung wird einer ausreichenden Menge der handelsüblichen Klebstofflösung zugegeben und mit einem Rührer homogenisiert. Die homogene Lösung wird dann mit einem Ziehrakel auf einen Bogen einer silikonisierten Polyesterfolie (ca. 75 µm) mit definierter Schichtdicke ausgestrichen. Der Bogen wird anschließend zur Trocknung und Vernetzung 30 min bei 50°C in einem Trockenschrank getrocknet. Danach wird eine ca. 19 µm dicke Polyesterfolie auf

die klebende Schicht aufkaschiert. Aus dem fertigen Laminat werden mittels einer Handstanze 7 cm² große Pflaster ausgestanzt.

5 Hautpermeation:

s. Vergleichsbeispiel 1

Die Ergebnisse sind in Tabelle 2 dargestellt.

10 Beispiel

Ein erfindungsgemäßes Clonidin-Pflaster hat folgende Charakteristik:

15 Gehalt Clonidin: 5,25 mg

Fläche: 7 cm²

Zusammensetzung:

Acrylatkleber Duro-Tak 87-4098 64,75 mg

20 silikonisierte Polyester-Folie FL200075 1S** 7 cm²

Polyester-Folie Hostaphan MN 19 MED*** 7 cm²

Herstellung:

s. Vergleichsbeispiel 2

25

In-vitro-Freisetzung:

s. Vergleichsbeispiel 1

Die Ergebnisse sind in Tabelle 1 dargestellt.

30

Hautpermeation:

s. Vergleichsbeispiel 1

Die Ergebnisse sind in Tabelle 2 dargestellt.

Tabelle 1: In-vitro-Freisetzung Clonidin-Transdermalsystem
 5 (Matrixpflaster)

Zeit (Stunden)	Vergl. Bsp. 1	Beispiel 1	
		Freisetzung Clonidin (%)	
10 2	10,44	9,96	
4	11,82	13,92	
24	20,95	19,76	

15 Tabelle 2: In-vitro-Hautpermeation Clonidin-Transdermalsystem
 (Matrixpflaster)

Zeit (Stunden)	Vergl. Bsp. 1	Vergl. Bsp. 2	Beispiel	
			Permeation Clonidin ($\mu\text{g}/\text{cm}^2$)	
20 3	24		24,5	
6	56		54	
9	80,5		86	
14	113,5	23,32	128,5	
25 19	139	46,94	165,5	
24	163,5	55,84	186	
32		82,68		
36	233,5		229	
40		105,37		
30 48	305,5		259,5	

Patentansprüche

1. Transdermalsystem zur Abgabe von Clonidin, dadurch gekennzeichnet, daß es eine Clonidin enthaltende Haftkleberschicht auf Basis eines 2-Ethylhexylacrylat-Vinylacetat-Copolymers aufweist.
5
2. Transdermalsystem nach Anspruch 1, dadurch gekennzeichnet, daß die Haftkleberschicht Clonidin im Konzentrationsbereich von 0,1 bis 20 Gew.-% aufweist.
10
3. Transdermalsystem nach Anspruch 2, dadurch gekennzeichnet, daß die Haftkleberschicht Clonidin im Konzentrationsbereich von 2 bis 10 Gew.-% aufweist.
15
4. Transdermalsystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß neben dem Clonidin und dem 2-Ethylhexylacrylat-Vinylacetat-Copolymer ferner Füllmittel und/oder Hautschutzstoffe und/oder Klebrigmacher in der Haftkleberschicht enthalten sind.
20
5. Transdermalsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Clonidin enthaltende Haftkleberschicht eine Schicht eines flächigen selbstklebenden Pflasters mit mehrschichtigem Aufbau bildet.
25
6. Transdermalsystem nach Anspruch 5, dadurch gekennzeichnet, daß das Pflaster neben der Clonidin enthaltenden Haftkleberschicht eine Abdeckung und auf der gegenüberliegenden Seite einen die Haftkleber-
30

schicht temporär abdeckenden und abziehbaren Träger aufweist.

7. Transdermalsystem nach Anspruch 6, dadurch gekennzeichnet,
daß die Abdeckung aus Kunststoffolie, Kunststoffschaum, Gewebe oder Vlies besteht.

8. Transdermalsystem nach Anspruch 6, dadurch gekennzeichnet,
daß der Träger aus Kunststoffolie, Papier oder einem Laminat daraus besteht.

9. Transdermalsystem nach Anspruch 8, dadurch gekennzeichnet,
daß der Träger silikonisiert ist.

10. 10. Transdermalsystem nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß es sich bei der Kunststoffolie um Polyester-, Polyethylen- oder Polypropylen-Folie handelt.

11. Transdermalsystem nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, daß die trockene Haftkleberschicht ein Flächengewicht von 20 bis 150 g/m² hat.

12. Transdermalsystem nach Anspruch 11, dadurch gekennzeichnet, daß die trockene Haftkleberschicht ein Flächengewicht von 50 bis 120 g/m² hat.

13. Transdermalsystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Abgaberate 10 bis 1000 µg Clonidin pro Tag beträgt.

14. Transdermalsystem nach Anspruch 13, dadurch gekennzeichnet, daß die Abgaberate 50 bis 500 µg Clonidin pro Tag beträgt.
- 5 15. Verwendung eines Transdermalsystems nach einem der vorherigen Ansprüche zur Behandlung von Hypertonie, Migräne, Angstzuständen, hyperkinetischen Verhaltensstörungen, Entzugserscheinungen bei Alkohol- oder Drogenentzug und menopausalen Symptomen.

Zusammenfassung

Die Erfindung betrifft Transdermalsysteme zur Abgabe von Clonidin, die dadurch gekennzeichnet sind, daß das Clonidin sich in einer Haftkleberschicht auf Basis eines 2-Ethylhexylacrylat-Vinylacetat-Copolymers befindet, sowie deren Verwendung zur Behandlung von Hypertonie, Migräne, Angstzuständen, hyperkinetischen Verhaltensstörungen, Entzugserscheinungen bei Alkohol- oder Drogenentzug und menopausalen Symptomen.