Лекция. Колебания и волны

Задачи: Дать понятие механическим колебаниям и волнам. Познакомить с особенностями звуковых волн. Дать понятие электромагнитные колебаниям и волнам. Дать понятие световым волнам. Развить представления о природе света, законах отражения и преломления света.

Механические колебания и волны

Колебательным процессом (колебанием) называется такое изменение состояния системы, при котором значения параметров состояния последовательно отклоняются то в одну, то в другую сторону от некоторого значения.

Свободные колебания - это колебания, которые совершаются под действием внутренних сил, пропорциональных смещению и направленных к положению равновесия. Они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему.

Гармоническими называются колебания, при которых величины, описывающие систему, изменяются по закону синуса или косинуса. Этими величинами могут быть: координата точки, энергия, напряжённость электрического поля, индукция магнитного поля, скорость и т.д.

Уравнение гармонических колебаний:

$$x = x$$
 $\sin (\omega t + \phi_s)$

где x - значение изменяющейся величины в данный момент времени, x_m - амплитуда колебаний, - циклическая частота, 0 - начальная фаза.

Амплитуда колебаний - это модуль максимального отклонения изменяющейся величина от положения равновесия.

Частота - это число колебаний за единицу времени (обычно за секунду). В системе СИ частота измеряется в герцах (Гц).

Циклическая частота - это число колебаний за 2 секунд. В системе СИ циклическая частота измеряется в c^{-1} .

Период колебаний Т - это время, за которое совершается одно полное колебание. В системе СИ период измеряется в секундах (с).

Связь периода, частоты и циклической частоты колебаний

$$\omega = 2\pi v = \frac{2\pi}{T}$$

$$T = \frac{1}{r}$$

Значение выражения (t + 0), стоящего под знаком косинуса или синуса в уравнении гармонических колебаний и определяющего при постоянной амплитуде состояние колебательной системы в данный момент времени, называется фазой колебаний. Фаза колебаний в системе СИ измеряется в радианах (рад).

Сила, действующая на колеблющуюся материальную точку

$$F = -m\omega^2 x = -kx$$

Полная энергия материальной точки, совершающей гармонические колебания

$$W = \frac{m\omega^2 \times \frac{2}{n}}{2}$$

Математическим маятником называется материальная точка, подвешенная на длинной, невесомой и нерастяжимой нити. При выведении из положения равновесия такая система совершает колебания под действием силы тяжести.

Период колебаний математического маятника равен

$$T = 2\kappa \sqrt{\frac{T}{g}}$$

где 1 -длина математического маятника, g - ускорение свободного падения.

Период колебаний пружинного маятника:

$$T = 2\kappa \sqrt{\frac{m}{k}}$$

где m - масса маятника, k - коэффициент упругости пружины.

Автоколебания - это незатухающие колебания, существующие за счёт постоянного источника энергии, который периодически включается и выключается самой колебательной системой в нужные моменты времени для пополнения запаса энергии.

Резонанс - это явление резкого возрастания амплитуды вынужденных колебаний, когда частота внешних периодических воздействий совпадает с частотой собственных колебаний колебательной системы.

Волна - это процесс распространения колебаний в материальной среде.

Фронт волны - это поверхность, которая отделяет область пространства, уже вовлечённую в волновой процесс, от области пространства, в которой колебания ещё не возникли.

Волновой поверхностью называется геометрическое место точек, колеблющихся в одинаковой фазе.

Волны называют поперечными, если колебания в них происходят перпендикулярно направлению распространения волны.

Волны называют продольными, если колебания в них происходят вдоль направления их распространения.

Поперечные волны распространяются только в твёрдых телах и вдоль границ раздела сред с различными физическими свойствами, например, на границе между водой и воздухом (на поверхности воды), т.к. за механизм их возникновения ответственна деформация сдвига, которая возможна только в твёрдых телах или на границе раздела сред, обладающей упругими свойствами. Примером поперечных волн могут служить электромагнитные волны, волны на поверхности воды.

Продольные волны могут существовать в любых средах, т.к. за механизм их возникновения ответственна деформация растяжения-сжатия, которая может возникать в любых средах. Примером продольных волн могут служить звуковые волны в воздухе.

Расстояние, на которое распространяется волна за один период называется длиной волны. Или другое определение: кратчайшее расстояние между точками, колеблющимися в одинаковой фазе, называется длиной волны.

$$\lambda = vT = \frac{v}{}$$

- Длина [нм]
- Частота [Гц]
- Амплитуда [дБ]
- Период колебания [нс]

Волны, частота которых лежит в диапазоне от 16 Гц до 20 кГц, называются звуковыми или акустическими.

Скорость звука в воздухе порядка 340 м/с. Она изменяется в зависимости от температуры, плотности, влажности, атмосферного давления. Чем выше плотность среды, тем больше скорость звука. Например, в твёрдых телах она составляет тысячи м/с.

Громкость звука зависит от амплитуды колебаний частиц в волне. Чем больше амплитуда колебаний, тем выше громкость звука.

Высота тона зависит от частоты. Чем выше частота, тем выше тон.

Принцип суперпозиции волн: при распространении в среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частиц среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.

Когерентность - согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

Когерентные волны - это волны одинаковой частоты, разность фаз которых в процессе распространения остается постоянной во времени.

Интерференция волн - сложение когерентных волн, при котором в разных точках пространства получается устойчивая картина усиления или ослабления амплитуды результирующей волны.

Условия интерференционных максимумов:

разность хода волн равна чётному числу длин полуволн или целому числу длин волн.

$$\Delta r = 2k \frac{\lambda}{2} = k\lambda$$

где r - разность хода волн, - длина волны, k = 0,1,2,...

Условия интерференционных минимумов: разность хода волн равна нечётному числу длин полуволн.

$$\Delta r = (2k + 1)\frac{\lambda}{2}$$

где r - разность хода волн, - длина волны, k = 0,1,2,...

Инфразвук - волны с частотами меньше 16 Гц.

Ультразвук - волны с частотами больше 20 кГц.

Ультразвук - механические колебания, находящиеся выше области частот, слышимых человеческим ухом (обычно $20~\mathrm{k}\Gamma$ ц). Ультразвуковые колебания перемещаются в форме волны, подобно распространению света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвук требует упругую среду такую как газ, жидкость или твердое тело.

Электромагнитные колебания - взаимосвязанные колебания электрического и магнитного полей.

Электромагнитные колебания появляются в различных электрических цепях. При этом колеблются величина заряда, напряжение, сила тока, напряженность электрического поля, индукция магнитного поля и другие электродинамические величины.

Электромагнитные колебания описываются теми же законами, что и механические, хотя физическая природа этих колебаний совершенно различна.

Электрические колебания - частный случай электромагнитных, когда рассматривают колебания только электрических величин. В этом случае говорят о переменных токе, напряжении, мощности и т.д.

КОЛЕБАТЕЛЬНЫЙ КОНТУР

Колебательный контур - электрическая цепь, состоящая из последовательно соединенных конденсатора емкостью C, катушки индуктивностью L и резистора сопротивлением R.

Возьмем заряженный конденсатор и замкнем его через катушку. Заряды начнут двигаться с одной пластины на другую, потечет электрический ток, причем он будет нарастать постепенно. И только к тому моменту, когда конденсатор будет разряжен, ток достигнет своего максимального значения. При этом заряды будут продолжать двигаться, конденсатор будет заряжаться — всё как с маятником (груз проскакивает положение равновесия и движется по инерции). Как только конденсатор начнет заряжаться, возникнет сила, направленная на уменьшение электрического тока. Но ток в катушке не уменьшается мгновенно, поэтому, пока ток уменьшится до нуля, конденсатор успеет зарядиться. Получили снова исходные условия: заряженный конденсатор, замкнутый через катушку, поэтому процесс будет повторяться.

Электромагнитные возмущения (в том числе и колебательные) могут распространяться со временем. Причем если механические волны — это изменения параметров вещества, то электромагнитные — это изменение параметров поля, поэтому для распространения электромагнитных волн вещество не нужно.

Радиоволны, видимый свет, инфракрасное и ультрафиолетовое излучения – их все можно описать как электромагнитные волны разных частот.

Передача энергии. Электромагнитная волна, как и механическая, сопровождается переносом энергии. Передача энергии через излучение — один из видов теплопередачи. Этот вид теплопередачи осуществляется как раз с помощью электромагнитных волн

Как и механические, электромагнитные волны удобно использовать для передачи информации. Они распространяются на большие расстояния, проникают сквозь препятствия.

Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой (или, как говорили ранее, нулевой массой покоя).

Преломлением света называется изменение направления распространения света (световых лучей) при прохождении через границу раздела двух различных прозрачных сред.

Свет создаётся во многих физических процессах, в которых участвуют заряженные частицы. Наиболее важным является тепловое излучение, имеющее непрерывный спектр с максимумом, положение которого определяется температурой источника. В частности, излучение Солнца близко к тепловому излучению абсолютно чёрного тела, нагретого до примерно 6000 К, причём около 40 % солнечного излучения лежит в видимом диапазоне, а максимум распределения мощности по спектру находится вблизи 550 нм (зелёный цвет). Другие процессы, являющиеся источниками света: