

aws Cloud Finance Onboarding (CFO)

CLOUD FINANCE ONBOARDING (CFO): MODULE 2

Cloud Cost Optimization

AGENDA

- AWS Pricing
- Optimize Cloud Rate
- Optimize Cloud Usage
- Implementing Optimizations

AWS Pricing

AWS allows you to reduce waste and manage resource supply to demand

What are the key drivers of your Cloud spend?

Key Cost Drivers: Usage

Process

Charged per hour, second or 1 ms

Charged from launch until stoppage or termination

Amazon EC2 Linux (per second)
AWS Lambda (per nearest ms)

Store

Typically charged per GB

Amazon S3 (per GB)
Amazon EBS (per GB)

Move

Typically charged per GB

Data Egress (per GB)
Amazon CloudFront (per GB)

aws Key Cost Drivers: Rate

On-Demand

Pay only for what you use

Pay your resources utilization with complete flexibility

Commitment based

Pay less when you commit / reserve

Make a commitment and receive a significant discount (between 12% to over 50% savings)

Volume based

Pay less by using more

Realize volume-based discounts and realize important savings as your usage increases

Spot

Pay less by using spare capacity

Spare Amazon EC2 capacity at savings of up to 90% off On-Demand prices

aws AWS service pricing pages

Every AWS service has a pricing page

aws AWS Pricing Calculator

A web-based planning tool that you can use to create estimates for your AWS use cases

- View transparent pricing / calculations
- Use groups for hierarchical estimates
- Share your estimates (URL)
- Export your estimates (CSV, PDF)

AWS Pricing Calculator

Estimate the cost for your architecture solution.

Configure a cost estimate that fits your unique business or personal needs with AWS products and services.

How it works

https://calculator.aws/#/

To reduce cost, there are ultimately <u>two levers</u>

Optimize Cloud Rate Pay less for what you use

Why are commitment-based purchase options important?

Commitment-based purchase options are a fundamental AWS pricing model construct

- A flexible pricing model that can help you reduce your bill by up to 72% compared to On-Demand prices, in exchange for a one- or three-year hourly spend commitment.
- Improve unit economics of steady state cloud workloads
- Reduce costs of compute, database, analytics, and media services
- Require no changes to deployed cloud resources

Commitment-based Purchases: RI & SP

Reserved Instances

- Commit to consistent amount of usage in the form of specific quantity and types of a resource
 - (15 instances of db.m4.2xlarge MySQL Amazon RDS per hour)
- ✓ Standard' and 'Convertible' Reserved Instances
- Amazon RDS, Amazon Redshift, ElastiCache and OpenSearch

Savings Plans

- Commit to a consistent amount of usage in the form of an hourly monetary spend
 - (\$10 per hour)
- ✓ 'Compute' and 'EC2 Instance'
 Savings Plans
- ✓ Compute services like Amazon EC2, AWS Lambda, AWS Fargate, and even Amazon SageMaker

aws Commitment-based Purchases: Options

Commitment-based Purchases: Payback

m5.xlarge Savings Plans

Commitment-based Purchases: Management

Commitment-based Purchases: Strategy

Expand your Savings Plans footprint progressively as usage increases

One large SP creates a create risk of overcommitment

Figure 1: Unexpected and severe drop in actual usage goes below commitment level mid-term, resulting in waste due to over-commitment.

Consider a mix of 1 and 3-year plans with multiple expiration dates

Figure 2: When Savings Plan 3 expires at the start of Q3, it is replaced with a much smaller Savings Plan 7, and when Savings Plan 4 expires at the start of Q4, no Savings Plan is purchased to replace it. As a result, over-commitment is reduced.

Commitment-based Purchases: Ownership

Ownership models

- Centralized
 - Single person/team
 - Independent teams
- Decentralized
 - Each team/product/business unit
- Hybrid
 - Centralized ownership, inputs from teams

aws Amazon EC2 Spot

Amazon EC2 Spot Instances let organizations take advantage of spare Amazon EC2 capacity in the AWS Cloud

Spot infrastructure

Same as On-Demand

Up to 90% off

Spot pricing

Smooth, infrequent changes no spikes, more predictable

Interruptions

Only happens when Amazon EC2 needs capacity (with 2 min window)

Diversify

Choose different instance types, size and Availability Zone in a single fleet

Spot is ideal for fault-tolerant workloads

Containers

Web services

Big data

Machine Learning

CI/CD

HPC

Batch

Combining Purchase Options

Optimize Cloud Usage Use only what you need

Usage optimization activities where Finance is part of the mechanism

- Decommission resources
- Evaluate cost when selecting services and resources (rightsizing & modernization)
- Plan for data transfer
- Manage resource supply to meet demand (elasticity)

AWS allows you to reduce waste and manage resource supply to demand

Resource Decommissioning

Find unused resources with AWS Trusted Advisor

- Idle Amazon EC2 and Amazon Relational Database Service instances
- Underutilized Amazon Elastic Block Store volumes
- Idle load balancers
- Unassociated Elastic IP addresses
- Underutilized Amazon Redshift clusters

aws Resource Rightsizing (1/2)

Resource Rightsizing (2/2)

- Selecting the best fitted resource for your workload needs
- Most commonly based on CPU, RAM, storage, and network needs
- Doing this before/during migration or iteratively over a cloud-based workloads lifetime

Previous Generation

AWS resource types that have modern versions available for consumption

Modern generation

Most recent AWS resource types

Reduced pricing

Better price to performance ratio

Data Transfer Management

How @awscloud data transfer gets billed. Simple, right?

1:02 PM · Sep 12, 2019 · Tweetbot for Mac

Inbound traffic is typically free –
outbound is not. Some (but not all)
internal traffic is **free**.

Direct outbound data starts at \$.09/GB for less than 10TB, and discounts with volume. First 1GB is free.

Region-to-region traffic is \$.02/GB when it exits a region for indicated services except between us-east-1 and us-east-2, where it's \$.01/GB. Even data wants to get out of Ohio.

Outbound CloudFront prices are highly variable by geography and regional edge cache and start at \$.085/GB in US/Canada.

Internal traffic via public or elastic IPs incurs additional fees in both directions.

Cross-AZ EC2 traffic within a region costs half as much as region-to-region! ELB-EC2 traffic is **free** except outbound crossing AZs.

Elastic Load Balancing: Classic and
Network LB is priced per GB. Application
LB costs are in LCUs, not \$/GB.

Traffic via Managed NAT Gateway – regardless of destination – costs an additional \$.045/GB on top of other transfer, including internal transfer (S3, Kinesis, etc.).

Inspired by Open Guide to AWS's data transfer diagram github.com/open-guides/og-aws

Implementing Optimizations

An iterative combination of tactical and strategic

Establish Ownership

Which accounts / resources / shared costs belong to a user / business unit / customer

Define Rules

How often FinOps / Finance / Tech will meet and for what purpose

What type of resources are tech teams allowed to use

How do we purchase and use commitmentbased discounts

What if a user goes over budget

Set Expectations

How much cost is a user / business unit / customer expected to generate next month

How do we keep track of these expected costs

Measure CFM Progress and Business Success

How much of our bill has a defined owner

How well are we covered with commitment-based discounts

How is our cost per transaction tracking

Drive Efficiency

What resources can be rightsized

Can we track demand more closely and reduce waste

Can we increase our commitments to improve our rates

aws Where to start

Customer's degree of maturity

- ✓ Start with conservative Savings Plans purchases (~30% resource coverage)
- Manually decommission idle resources (EC2 instances, EBS volumes)
- Schedule non-critical environment resources based on working hours

- Increase the frequency of commitments evaluation and purchasing
- Start evaluating the usage of complementary purchase options, such as 'Spot' compute
- Document potential savings (cost avoidance) of cost optimisation initiatives by developing 'minibusiness cases'
- Develop a more automated purchasing/management process for SP/RI (Metrics-Driven Cost Optimisation)
- Suggest Engineering to consider more advanced cloud native architectures, such as 'Auto Scaling', 'Serverless', 'Containers'

Considering TCO Impact vs. Complexity

Implementation Complexity

aws What great looks like

Leveraging efficiency to meet business agility needs

aws To be a bit more pragmatic ...

The nine ways

Use only what you need

- **Stop paying for underutilized Amazon EC2 and Amazon RDS** instances
- **Stop paying for underutilized Network and Storage** resources
- **Finetune your Amazon Redshift clusters**
- Finetune your serverless resources: **AWS Lambda and Amazon DynamoDB**

Pay less for what you use

- **Enable Amazon S3 Intelligent-Tiering**
- **Enable Amazon EC2 Spot Instances**
- **Modernize your resources:** Amazon EC2, Amazon RDS, and Amazon EBS
- 8 **Use Compute Savings Plans**
- **Use Reserved Instances**

Who is responsible for what (personas)

- ---
- Define optimization targets
- ✓ Approve/endorse commitment based purchases

FinOps Persona

- Deliver and centralise reports in a timely manner and identify optimization opportunities
- ✓ Set a cadence/meetings with Tech and Finance together to discuss optimisation opportunities
- Lead the prioritization and agree on delivery with the teams
- Ensure that Finance/Procurement is aware of commitments and that internal process/policies are followed
- ✓ Challenge Tech / IT

- ✓ Assess technical feasibility of optimisation recommendations
- Implement prioritized technical optimisations
- Advise on expected minimum volumes when discussing commitment based purchases
- ✓ Document all optimization activities (e.g. what has been assessed and the reason for non implementation if any)
- ✓ Consider cost-aware architectures when designing solutions (e.g. spot, serverless, auto scaling, latest generation EC2, RDS, EBS)

Thank you