Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа ядерных технологий Направление – Ядерные физика и технологии Отделение ядерно-топливного цикла

КУРСОВОЙ ПРОЕКТ

по дисциплине «Междисциплинарный проект» на тему «Расчет основных параметров изотопного обмена в разделительном каскаде при стационарном режиме его работы» Вариант 6

Исполнитель:		
Проверил:		

СОДЕРЖАНИЕ

1.	Теоретическая часть		3
	1.1.	Основные определения и соотношения	3
	1.2.	Принципиальная схема работы колонны или каскада колонн	4
2.	Мет	одика проведения расчетов	5
3.	Пра	ктическая часть	7
	3.1.	Исходные данные для расчета	7
	3.2.	Расчет изменения изотопной концентрации по каскаду в	
		стационарном режиме	7
Сп	исок	использованных источников	18

ЦЕЛЬ РАБОТЫ: провести расчет изменения концентрации ⁷Li по колоннам каскада в режимах без отбора и с отбором при заданных параметрах его работы.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. Основные определения и соотношения

Одним из наиболее эффективных промышленных методов разделения изотопов лёгких элементов (водорода, лития, бора, углерода и др.) является физико-химический метод изотопного обмена. Важной особенностью физико-химических методов является обратимость элементарного акта разделения и двухфазность рабочей системы.

Наиболее удобной рабочей двухфазной системой считается система жидкость — газ. Процесс разделения изотопов при этом проводят в разделительных колоннах, при непрерывном противоточном движении потоков жидкой (L) и газовой (G) фаз. Поскольку значения констант равновесия, летучестей и т. д. для различных изотопнозамещенных форм различно, то возникает изотопный эффект, приводящий к изменению содержания данного изотопа в разных фазах. Вследствие этого эффекта, характеризуемого величиной коэффициента разделения α , содержание изотопа в фазе L, покидающей некоторое сечение колонны II будет отличаться от содержания этого же изотопа в фазе G, покидающей сечение I:

$$\alpha = \frac{c_2(1 - c_1)}{c_1(1 - c_2)} \tag{1}$$

где c_1, c_2 — мольные доли целевого изотопа в равновесных фазах.

Уравнение, описывающее обогащение в каскаде из элементов второго рода, при условии, что α для всех элементов одинаково, а коэффициент обогащения $\varepsilon=(\alpha-1)<<1$ и поток отбора P<<L имеет вид:

$$\frac{dc}{dn} = \varepsilon c(1-c) - \frac{P}{L}(c_P - c) \tag{2}$$

где c_P – концентрация отбора.

1.2. Принципиальная схема работы колонны или каскада колонн

Разделительные колонны различаются по виду, особенностям строения и работы. На рисунке 1 приведена схема работы колонны.

Рисунок 1 — Схема процесса разделения изотопов Обозначения: c_P , c_F , c_W — концентрации отбора, питания, отвала; P, F, W — потоки отбора, питания, отвала

Разделяемая бинарная смесь изотопов подаётся в среднюю часть колонны (рисунок 1), в которой осуществляется противоточное движение фаз. Проходя последовательно ряд разделительных элементов, одна из фаз обогащается лёгким изотопом, а другая — тяжёлым. На концах колонны имеются специальные аппараты, которые предназначены для создания противоточного движения фаз путём перевода смеси изотопов из одной фазы в другую.

В стационарном режиме работы колонны справедливы следующие соотношения материального баланса:

$$Fc_F = Pc_P + Wc_W \tag{3}$$

$$F = P + W (4)$$

В ряде случаев при большой высоте колонны и, исходя из различных практических особенностей организации разделительного процесса, колонну разбивают на несколько, образующие каскад колонн.

2. МЕТОДИКА ПРОВЕДЕНИЯ РАСЧЕТОВ

Расчет параметров работы каскада колонн в режимах без отбора и с отбором проводится в следующей последовательности.

1. Рассчитывается значение коэффициента разделения для заданной температуры по формуле (5):

$$\alpha = 1 + \frac{4755}{T^2} - \frac{0,803}{T},\tag{5}$$

где T - температура, К.

2. По формуле (6) рассчитывается коэффициент обогащения:

$$\varepsilon = \alpha - 1 \tag{6}$$

3. Определяется минимальное число теоретических тарелок в обогатительной и регенеративной частях:

$$n_{\text{обог}} = \frac{1}{\varepsilon} \ln \frac{c_P(1 - c_F)}{c_F(1 - c_P)},\tag{7}$$

$$n_{\text{per}} = \frac{1}{\varepsilon} \ln \frac{c_F (1 - c_W)}{c_W (1 - c_F)},\tag{8}$$

где c_P, c_W, c_F - концентрации отбора, отвала и питания.

4. По формуле (9) вычисляется число теоретических тарелок:

$$n = 2(n_{\text{ofor}} + n_{\text{per}}) \tag{9}$$

5. Определяется количество колонн:

$$n_{\text{KOII}}^{all} = \frac{n}{N},\tag{10}$$

где N - количество теоретических тарелок в одной колонне.

6. Рассчитывается изменение концентрации целевого изотопа в

безотбоном режиме (P = 0) по колоннам каскада с помощью формулы (11):

$$c_1(n_{\text{кол}}) = \frac{\frac{c_W}{1 - c_W} e^{\varepsilon N n_{\text{кол}}}}{1 + \frac{c_W}{1 - c_W} e^{\varepsilon N n_{\text{кол}}}}$$
(11)

7. Определяется величина начального потока при работе каскада с заданным отбором по формуле (12):

$$L_{\text{\tiny Haq}} = kP \frac{c_P - c_F}{\varepsilon c_F (1 - c_F)},\tag{12}$$

где P - поток отбора, моль/ч; k - коэффициент для сшивки каскада по концентрации отвала. В первом приближении k=2, далее в зависимости от полученной концентрации отвала вычисляется по формуле $k=2\pm0,0001i$ (i - цикл итерации).

8. Рассчитывается средний поток для каждой колонны по формуле (13):

$$L(n_{\text{кол}}) = \frac{1}{2} L_{\text{нач}} (1 - r)^{Nn_{\text{кол}}} \cdot (1 + (1 - r)^{-N}), \tag{13}$$

где r - доля сокращения потока на одной теоретической тарелке.

9. Рассчитывается изменение концентрации целевого изотопа в режиме с отбором по колоннам каскада по формуле (14):

$$c_2(n_{\text{кол}}) = \frac{x_1 + \frac{x_1 - c_P}{c_P - x_2} e^{Nn_{\text{кол}}\varepsilon(x_1 - x_2)} x_2}{1 + \frac{x_1 - c_P}{c_P - x_2} e^{Nn_{\text{кол}}\varepsilon(x_1 - x_2)}}$$
(14)

где
$$x_{1,2}=rac{1}{2}(1+rac{P}{Larepsilon})\pm\sqrt{rac{1}{4}(1+rac{P}{Larepsilon})^2-rac{P}{Larepsilon}c_P}.$$

10. Определяются величины потоков питания F и отвала W в каскаде для режима с отбором из системы уравнений (15):

$$\begin{cases}
Fc_F = Pc_P + Wc_W \\
F = P + W
\end{cases}$$
(15)

11. Строятся графики изменения концентрации целевого изотопа в режимах без отбора и с отбором по колоннам каскада.

3. ПРАКТИЧЕСКАЯ ЧАСТЬ

3.1. Исходные данные для расчета

Концентрация отбора $c_P = 0.995$;

Концентрация питания $c_F = 0.925$;

Концентрация отвала $c_W = 0.9$;

Температура $T=15~^{o}C;$ Поток отбора $P=150~\frac{\mathrm{K}\Gamma}{\mathrm{год}};$

Доля сокращения потока на одной ТТ r=0.5 %;

Количество ТТ в одной колонне N=20.

3.2. Расчет изменения изотопной концентрации по каскаду в стационарном режиме

Поток отбора переведен из кг/год в молн

$$P = 150 \frac{\text{кг}}{\text{год}} = \frac{150 \frac{\text{кг}}{\text{год}}}{M} = \frac{150 \cdot \frac{1}{365 \cdot 24} \frac{\text{кг}}{\text{ч}}}{(7c_P + 6(1 - c_P)) \cdot 10^{-3} \frac{\text{кг}}{\text{моги}}} \approx 2,44793 \frac{\text{моль}}{\text{ч}}$$

Рассчитано значение коэффициента разделения по формуле (16):

$$\alpha = 1 + \frac{4755}{T^2} - \frac{0,803}{T} \tag{16}$$

$$\alpha = 1 + \frac{4755}{(273 + 15)^2} - \frac{0,803}{273 + 15} \approx 1,05454$$

Рассчитано значение коэффициента обогащения по формуле (17):

$$\varepsilon = \alpha - 1 \tag{17}$$

$$\varepsilon = 1,05454 - 1 = 0,05454$$

По формуле (18) определено число теоретических тарелок:

$$n = 2 \cdot (n_{\text{ofor}} + n_{\text{per}}) \tag{18}$$

где
$$n_{\text{обог}} = \frac{1}{\varepsilon} \ln \frac{c_P(1-c_F)}{c_F(1-c_P)}, n_{\text{per}} = \frac{1}{\varepsilon} \ln \frac{c_F(1-c_W)}{c_W(1-c_F)}$$

$$n_{\text{обог}} = \frac{1}{0,05454} \ln \frac{0,995 \cdot (1-0,925)}{0,925 \cdot (1-0,995)} \approx 51$$

$$n_{\text{per}} = \frac{1}{0,05454} \ln \frac{0,925 \cdot (1-0,9)}{0,9 \cdot (1-0,925)} \approx 6$$

$$n = 2 \cdot (51+6) = 114$$

Количество колонн:

$$n_{\text{кол}}^{all} = \frac{n}{N} = \frac{114}{20} \approx 6$$

Рассчитано изменение концентрации целевого изотопа в безотборном режиме по колоннам каскада с помощью формулы (19):

$$c_{1}(n_{\text{NOT}}) = \frac{\frac{c_{W}}{1 - c_{W}} e^{\varepsilon N n_{\text{NOT}}}}{1 + \frac{c_{W}}{1 - c_{W}} e^{\varepsilon N n_{\text{NOT}}}}$$

$$c_{1}(0) = \frac{\frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 0}}{1 + \frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 1}} \approx 0.9$$

$$c_{1}(1) = \frac{\frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 1}}{1 + \frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 1}} \approx 0.96402$$

$$c_{1}(2) = \frac{\frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 2}}{1 + \frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 2}} \approx 0.98762$$

$$c_{1}(3) = \frac{\frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 3}}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 3}} \approx 0.9958$$

$$c_{1}(4) = \frac{\frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 4}}{1 + \frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 4}} \approx 0.99859$$

$$c_{1}(5) = \frac{\frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 5}}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 5}} \approx 0.99952$$

$$c_{1}(6) = \frac{\frac{0.9}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 5}}{1 - 0.9} e^{0.05454 \cdot 20 \cdot 6}} \approx 0.99984$$

Определена величина начального потока при работе каскада с заданным

отбором по формуле (20):

$$L_{\text{\tiny Ha\tiny Ha\tiny H}} = kP \frac{c_P - c_F}{\varepsilon c_F (1 - c_F)},\tag{20}$$

где k=1,5762 - коэффициент для сшивки каскада по концентрации отвала. $L_{\text{нач}}=1,5762\cdot 2,44793\cdot \frac{0,995-0,925}{0,05454\cdot 0,925\cdot (1-0,925)}\approx 71,38279\, \frac{\text{моль}}{\text{ч}}$ Сокращение потока L по колоннам каскада:

$$L_{\text{вых}}(n_{\text{кол}}) = L_{\text{нач}}(1-r)^{Nn_{\text{кол}}}, n_{\text{кол}} = 1, 2..n_{\text{кол}}^{all}$$

$$L_{\text{вх}}(n_{\text{кол}}) = L_{\text{нач}}(1-r)^{Nn_{\text{кол}}}, n_{\text{кол}} = 0, 1, 2..n_{\text{кол}}^{all} - 1$$

$$L_{\text{вх}}(n_{\text{кол}}) = L_{\text{нач}}(1-r)^{N(n_{\text{кол}}-1)}, n_{\text{кол}} = 1, 2..n_{\text{кол}}^{all}$$

$$(21)$$

Рассчитан средний поток для каждой колонны:

$$L_{\rm cp}(n_{\rm kol}) = \frac{L_{\rm bbx}(n_{\rm kol}) + L_{\rm bx}(n_{\rm kol})}{2}, n_{\rm kol} = 1, 2..n_{\rm kol}^{all}$$

$$L_{\rm cp}(n_{\rm kol}) = \frac{L_{\rm Haq}(1-r)^{Nn_{\rm kol}} + L_{\rm Haq}(1-r)^{N(n_{\rm kol}-1)}}{2}, n_{\rm kol} = 1, 2..n_{\rm kol}^{all}$$

$$L_{\rm cp}(n_{\rm kol}) = \frac{L_{\rm Haq}(1-r)^{Nn_{\rm kol}} + L_{\rm Haq}(1-r)^{Nn_{\rm kol}} \cdot (1-r)^{-N}}{2}, n_{\rm kol} = 1, 2..n_{\rm kol}^{all}$$

$$L_{\rm cp}(n_{\rm kol}) = \frac{L_{\rm Haq}(1-r)^{Nn_{\rm kol}} \cdot (1+(1-r)^{-N})}{2}, n_{\rm kol} = 1, 2..n_{\rm kol}^{all}$$

$$L_{\rm cp}(n_{\rm kol}) = \frac{1}{2}L_{\rm Haq}(1-r)^{Nn_{\rm kol}} \cdot (1+(1-r)^{-N}), n_{\rm kol} = 1, 2..n_{\rm kol}^{all}$$

$$L_{\rm cp}(0) = \frac{1}{2} \cdot 71, 38279 \cdot (1-0, 5/100)^{20\cdot0} \cdot (1+(1-0, 5/100)^{-20}) \approx$$

$$\approx 67, 97821 \frac{\text{Mooth}}{\text{q}}$$

$$L_{\rm cp}(1) = \frac{1}{2} \cdot 71, 38279 \cdot (1-0, 5/100)^{20\cdot1} \cdot (1+(1-0, 5/100)^{-20}) \approx$$

$$\approx 61, 4938 \frac{\text{Mooth}}{\text{q}}$$

$$L_{\rm cp}(2) = \frac{1}{2} \cdot 71, 38279 \cdot (1-0, 5/100)^{20\cdot2} \cdot (1+(1-0, 5/100)^{-20}) \approx$$

 $\approx 55,62793 \frac{\text{моль}}{\text{ч}}$

$$\begin{split} L_{\rm cp}(3) &= \frac{1}{2} \cdot 71,38279 \cdot (1-0,5/100)^{20\cdot 3} \cdot (1+(1-0,5/100)^{-20}) \approx \\ &\approx 50,32161 \, \frac{\text{моль}}{\text{ч}} \\ L_{\rm cp}(4) &= \frac{1}{2} \cdot 71,38279 \cdot (1-0,5/100)^{20\cdot 4} \cdot (1+(1-0,5/100)^{-20}) \approx \\ &\approx 45,52146 \, \frac{\text{моль}}{\text{ч}} \\ L_{\rm cp}(5) &= \frac{1}{2} \cdot 71,38279 \cdot (1-0,5/100)^{20\cdot 5} \cdot (1+(1-0,5/100)^{-20}) \approx \\ &\approx 41,17919 \, \frac{\text{моль}}{\text{ч}} \\ L_{\rm cp}(6) &= \frac{1}{2} \cdot 71,38279 \cdot (1-0,5/100)^{20\cdot 6} \cdot (1+(1-0,5/100)^{-20}) \approx \\ &\approx 37,25112 \, \frac{\text{моль}}{\text{ч}} \end{split}$$

Рассчитано изменение концентрации целевого изотопа по колоннам по уравнению (24):

$$c_2(n_{\text{KOJI}}) = \frac{x_1 + \frac{x_1 - c_P}{c_P - x_2} e^{Nn_{\text{KOJI}}\varepsilon(x_1 - x_2)} x_2}{1 + \frac{x_1 - c_P}{c_P - x_2} e^{Nn_{\text{KOJI}}\varepsilon(x_1 - x_2)}}$$
(24)

где
$$x_{1,2}=\frac{1}{2}(1+\frac{P}{L\varepsilon})\pm\sqrt{\frac{1}{4}(1+\frac{P}{L\varepsilon})^2-\frac{P}{L\varepsilon}c_P}.$$

$$x_{1,2}(0)=\frac{1}{2}(1+\frac{2,44793}{67,97821\cdot0,05454})\pm$$

$$\pm\sqrt{\frac{1}{4}(1+\frac{2,44793}{67,97821\cdot0,05454})^2-\frac{2,44793}{67,97821\cdot0,05454}\cdot0,995}\approx\begin{bmatrix}1,00945\\0,65081\end{bmatrix}$$

$$c_2(0) = \frac{1,00945 + \frac{1,00945 - 0,995}{0,995 - 0,65081}e^{20\cdot 0\cdot 0,05454\cdot (1,00945 - 0,65081)} \cdot 0,65081}{1 + \frac{1,00945 - 0,995}{0,995 - 0,65081}e^{20\cdot 0\cdot 0,05454(1,00945 - 0,65081)}} \approx$$

 $\approx 0,90002$

$$x_{1,2}(1) = \frac{1}{2}(1 + \frac{2,44793}{61,4938 \cdot 0,05454}) \pm$$

$$\pm\sqrt{\frac{1}{4}(1+\frac{2,44793}{61,4938\cdot0,05454})^2-\frac{2,44793}{61,4938\cdot0,05454}\cdot0,995}\approx\begin{bmatrix}1,0129\\0,71699\end{bmatrix}$$

$$c_2(1) = \frac{1,0129 + \frac{1,0129 - 0,995}{0,995 - 0,71699} e^{20 \cdot 1 \cdot 0,05454 \cdot (1,0129 - 0,71699) \cdot 0,71699}}{1 + \frac{1,0129 - 0,995}{0,995 - 0,71699} e^{20 \cdot 1 \cdot 0,05454 \cdot (1,0129 - 0,71699)}} \approx$$

 ≈ 0.94061

$$x_{1,2}(2) = \frac{1}{2}(1 + \frac{2,44793}{55,62793 \cdot 0,05454}) \pm$$

$$\pm\sqrt{\frac{1}{4}(1+\frac{2,44793}{55,62793\cdot0,05454})^2-\frac{2,44793}{55,62793\cdot0,05454}\cdot0,995}\approx\begin{bmatrix}1,01901\\0,78784\end{bmatrix}$$

$$c_2(2) = \frac{1,01901 + \frac{1,01901 - 0,995}{0,995 - 0,78784}e^{20 \cdot 2 \cdot 0,05454 \cdot (1,01901 - 0,78784) \cdot 0,78784}}{1 + \frac{1,01901 - 0,995}{0,995 - 0,78784}e^{20 \cdot 2 \cdot 0,05454 (1,01901 - 0,78784)}} \approx$$

 ≈ 0.96326

$$x_{1,2}(3) = \frac{1}{2}(1 + \frac{2,44793}{50,32161 \cdot 0,05454}) \pm$$

$$\pm\sqrt{\frac{1}{4}(1+\frac{2,44793}{50,32161\cdot0,05454})^2-\frac{2,44793}{50,32161\cdot0,05454}\cdot0,995}\approx\begin{bmatrix}1,03187\\0,86006\end{bmatrix}$$

$$c_2(3) = \frac{1,03187 + \frac{1,03187 - 0,995}{0,995 - 0,86006} e^{20 \cdot 3 \cdot 0,05454 \cdot (1,03187 - 0,86006)} \cdot 0,86006}{1 + \frac{1,03187 - 0,995}{0,995 - 0,86006} e^{20 \cdot 3 \cdot 0,05454(1,03187 - 0,86006)}} \approx$$

 ≈ 0.9762

$$x_{1,2}(4) = \frac{1}{2}(1 + \frac{2,44793}{45,52146 \cdot 0,05454}) \pm$$

$$\pm\sqrt{\frac{1}{4}(1+\frac{2,44793}{45,52146\cdot0,05454})^2-\frac{2,44793}{45,52146\cdot0,05454}\cdot0,995}\approx\begin{bmatrix}1,06356\\0,92243\end{bmatrix}$$

$$c_2(4) = \frac{1,06356 + \frac{1,06356 - 0,995}{0,995 - 0,92243}e^{20\cdot 4\cdot 0,05454\cdot (1,06356 - 0,92243)\cdot 0,92243}}{1 + \frac{1,06356 - 0,995}{0,995 - 0,92243}e^{20\cdot 4\cdot 0,05454(1,06356 - 0,92243)}} \approx$$

$$x_{1,2}(5) = \frac{1}{2} \left(1 + \frac{2,44793}{41,17919 \cdot 0,05454}\right) \pm \frac{1}{41,17919 \cdot 0,05454} \pm \sqrt{\frac{1}{4} \left(1 + \frac{2,44793}{41,17919 \cdot 0,05454}\right)^2 - \frac{2,44793}{41,17919 \cdot 0,05454} \cdot 0,995} \approx \begin{bmatrix} 1,13142 \\ 0,95853 \end{bmatrix}$$

$$c_2(5) = \frac{1,13142 + \frac{1,13142 - 0,995}{0,995 - 0,95853}}{1 + \frac{1,13142 - 0,995}{0,995 - 0,95853}} e^{20 \cdot 5 \cdot 0,05454 \cdot (1,13142 - 0,95853)} \cdot 0,95853} \approx 1 + \frac{1,13142 - 0,995}{0,995 - 0,95853} e^{20 \cdot 5 \cdot 0,05454 \cdot (1,13142 - 0,95853)} \approx 0,98987$$

$$x_{1,2}(6) = \frac{1}{2}(1 + \frac{2,44793}{37,25112 \cdot 0,05454}) \pm$$

$$\pm\sqrt{\frac{1}{4}(1+\frac{2,44793}{37,25112\cdot0,05454})^2-\frac{2,44793}{37,25112\cdot0,05454}\cdot0,995}\approx\begin{bmatrix}1,23097\\0,97392\end{bmatrix}$$

$$c_2(6) = \frac{1,23097 + \frac{1,23097 - 0,995}{0,995 - 0,97392} e^{20 \cdot 6 \cdot 0,05454 \cdot (1,23097 - 0,97392) \cdot 0,97392}{1 + \frac{1,23097 - 0,995}{0,995 - 0,97392} e^{20 \cdot 6 \cdot 0,05454 (1,23097 - 0,97392)} \approx$$

 $\approx 0,995$

В таблицах 1 и 2 приведены результаты расчета изменения концентрации по колоннам каскада в режимах без отбора и с отбором.

Таблица 1 — Изменение концентрации $^7{
m Li}$ по колоннам каскада для безотборного режима

$n_{ m koj}$	c_1
0	0,9
1	0,96402
2	0,98762
3	0,9958
4	0,99859
5	0,99952 0,99984
6	0,99984

Таблица 2 — Изменение концентрации $^7{\rm Li}$ по колоннам каскада для режима с отбором

$n_{ m ko \pi}$	c_1
0	0,90002
1	0,94061
2	0,96326
3	0,9762
4	0,98418
5	0,98987
6	0,995

Рисунок 2 — Изменение концентрации по колоннам каскада c_1 — без отбора, c_2 — с отбором

График изменения концентрации в режимах с отбором и без представлен на рисунке 2.

Определены величины потоков отвала и питания из уравнения материального баланса (25):

$$\begin{cases}
Fc_F = Pc_P + Wc_W \\
F = P + W
\end{cases}$$
(25)

В данной системе уравнений неизвестными являются потоки питания (F) и отвала (W).

$$\begin{cases} Pc_F + Wc_F = Pc_P + Wc_W \\ F = P + W \end{cases}$$

$$\begin{cases} W(c_F - c_W) = P(c_P - c_F) \\ F = P + W \end{cases}$$

$$\begin{cases} W = P \frac{c_P - c_F}{c_F - c_W} \\ F = P + W \end{cases}$$

$$W = P \frac{c_P - c_F}{c_F - c_W} \tag{26}$$

$$F = P + W (27)$$

$$W=2,44793\cdot\frac{0,995-0,925}{0,925-0,90002}\approx 6,85956\,\frac{\text{моль}}{\text{ч}}$$

$$F=2,44793+6,85956=9,30749\,\frac{\text{моль}}{\text{ч}}$$

Принципиальная схема получившегося каскада приведена на рисунке 3. Сплошными стрелками показано движение гидроксида лития, пунктиром – амальгамы.

Каскад состоит из шести колонн изотопного обмена с питанием на первой и двух узлов обращения потоков.

В узле обращения потоков 1 происходит реакция разложения амальгамы:

$$Li_n Hg + H_2 O \to LiOH + Hg + \frac{1}{2}H_2 \tag{28}$$

Образовавшийся гидроксид лития поступает в колонну изотопного

Рисунок 3 — Принципиальная схема каскада

обмена 1, где движется противотоком амальгаме.

В узле обращения потоков 2 протекает реакция:

$$LiOH + Hg \rightarrow Li_nHg + H_2O + \frac{1}{2}O_2$$
 (29)

Обращение проводят в электролизере с ртутным катодом [1]. Образовавшаяся в электролизере амальгама поступает в колонну изотопного обмена 6, где она движется противотоком к раствору.

Амальгама обогащается по легкому изотопу $^6{\rm Li}$, раствор лития — по тяжелому $^7{\rm Li}$.

выводы

- 1. Проведен расчет изменения концентрации ⁷Li по колоннам каскада в режимах без отбора и с отбором при заданных параметрах его работы для амальгамно-обменного способа. Построены график изменения концентрации ⁷Li в обоих режимах работы каскада и принципиальная схема полученного каскада.
- 2. Рассчитано, что для обеспечения целевой концентрации на выходе из каскада колонн в безотборном режиме необходимо минимально три колонны.
- 3. Показано, что в режиме без отбора концентрация по 7 Li на выходе из каскада колонн, состоящей из 6 обменных колонн, 0,99984.
- 4. Определено, что необходимо увеличить минимальный начальный поток в 1,5762 раз для сшивки каскада по концентрации отвала.
- 5. Установлено, что скорость изменения концентрации по колоннам каскада для режима без отбора больше, чем для режима с отбором.
- 6. Определены потоки питания $F=9,30749\,\mathrm{моль/ч}$ и отвала $W=6,85956\,\mathrm{моль/ч}.$

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Мышкин В.Ф. Научные и технологические основы разделения изотопов ряда легких элементов: учебное пособие / В.Ф. Мышкин, А.П. Вергун, А.В. Власов. — Томск: Изд-во Томского политехнического университета, 2008. — 162 с.