Device & Datapoint Onboarding

Sebastian Käbisch

Siemens-Volkswagen Energy Management Show Case (will be presented at HMI 2022 @IDTA_Booth)

How to get Communication / Datapoint Metadata of the Assets Today?

What kind of data do you serve?

What kind of functions do you have?

How can I access the data/function?

. . .

Example II / III

Manuel (Web): Siemens SENTRON PAC Energy Meter

Details for protocol binding:

- · Function Codes:
 - 0x03 → readHoldingRegisters
 - 0x04 → readInputRegisters
 - Port: 502
- Offset & No. Register (pro Datenpunkt verschieden)
- Byte Order: Big Endian
- Byte Länge: 4

Datapoint metadata:

- Name
- Type
- Unit
- Ranges
- lese-/schreibbar

Example III / III

Excel: PHOENIX CONTACT Energy Meter

CH	Dec	Hex	Count	Init	Divider	R/W	Datatype	Default	Name (DE)
H2	32768	8000	88	46					Messwerte
R	32768	8000	2	V	1	R	Fl32		Außenleiterspannung U12
R	32770	8002	2	V	1	R	Fl32		Außenleiterspannung U23
R	32772	8004	2	V	1	R	Fl32		Außenleiterspannung U31
R	32774	8006	2	V	1	R	FI32		Leiterspannung U1
R	32776	8008	2	V	1	R	Fl32		Leiterspannung U2
R	32778	800A	2	V	1	R	Fl32		Leiterspannung U3
R	32780	800C	2	Hz	1	R	FI32		Frequenz
R	32782	800E	2	Α	1	R	FI32		Strom I1
R	32784	8010	2	Α	1	R	FI32		Strom I2
R	32786	8012	2	Α	1	R	FI32		Strom I3
R	32788	8014	2	Α	1	R	FI32		Strom IN
R	32790	8016	2	w	1	R	Fl32		Gesamtwirkleistung
R	32792	8018	2	var	1	R	FI32		Gesamtblindleistung vektoriell

Problem Statement

- Vendors uses different sources or technologies to describe datapoint / communication metadata
 - Electronic device / interface descriptions (depends on industry sector and specific communication protocols)
 - PDF, Web pages, ...
 - Excel, CSV,...
 - ...
- In manuals, different vendors describe identical datapoints in a different way, e.g.,
- Datapoint naming:
- "Voltage L1-N" vs "Leiterspannung U1"
- Addressing:
 - offset vs hex
 - count vs number of registers
- Datatype system:
 - Float vs Fl32
- ...
- Typically, semantic context is missing such as known from
 - ECLASS IRDIs
 - semanticIDs (from AAS)
 - ...

Impact

- → If no electronic device / interface description exist, onboarding typically results to an expensive process
- e.g., SENTRON PAC offers up to 87 different datapoints
- c&p the metadata in engineering tools or application source code
- •
- → Risk of error proneness
 - wrong calculation or interpretation (e.g., offset vs hex)
 - number twister
 - •
- → Errors are usually detected late and are sometimes difficult to fix
 - Debugging is usually time-consuming and resource-intensive
 - ...

