

Predikátová logika

Jindřich Matuška

Faculty of Informatics, Masaryk University

24. října 2024

Čas na odpovědníky

Obsah

Syntax

Sémantika

Normální formy

Obsah

Syntax

Sémantika

Normální formy

Syntax výrokové logiky

- Abeceda
 - Výrokové proměnné $\mathcal{P} = \{p, q, r, \ldots\}$
 - Logické spojky \neg , \lor , \land , \Longrightarrow , \Longleftrightarrow , ...
 - Pomocné symboly závorek (,)

Syntax predikátové logiky

Abeceda

- Symboly pro proměnné $\mathcal{V} = \{x, y, z, \ldots\}$
- Funkční symboly f, q, h, ...
- Predikátové symboly P, Q, R, \dots
- Logické spojky \neg , \lor , \land , \Longrightarrow , \Longleftrightarrow , ...
- Pomocné symboly závorek (,) a kvantifikátorů ∀,∃

Syntax predikátové logiky

Abeceda

- Symboly pro proměnné $\mathcal{V} = \{x, y, z, \ldots\}$
- Funkční symboly f, q, h, ...
- Predikátové symboly *P*, *Q*, *R*, . . .
- Logické spojky \neg , \lor , \land , \Longrightarrow , \Longleftrightarrow , ...
- Pomocné symboly závorek (,) a kvantifikátorů ∀,∃

Term

- Něco co můžeme vložit do predikátu
- Symboly pro proměnné \mathcal{V}
- Pro každý n-ární funkční symbol f a termy t_1, \ldots, t_n , $f(t_1, \ldots, t_n)$ je term
- Jazyk predikátové logiky L
 - Množina funkčních a predikátových symbolů

- Formule predikátové logiky
 - Pro každý n-ární predikátový symbol a termy t_1, \ldots, t_n , $P(t_1, \ldots, t_n)$ je (atomická) formule
 - Jsou-li φ, ψ formule, pak jsou formule i $\neg(\varphi), (\varphi) \lor (\psi), (\varphi) \land (\psi), (\varphi) \implies (\psi), (\varphi) \iff (\psi), \dots$
 - Jsou-li t_1 a t_2 temy, pak $t_1 = t_2$ je formule
 - Je-li φ formule a x proměnná, pak $\exists x(\varphi)$ a $\forall x(\varphi)$ jsou formule
 - lacktriangle Množinu formulí výrokové logiky značíme ${\mathcal F}$

Výskyt proměnné

Výskyt proměnné x ve formuli φ je

- $v\'{a}zan\'{y}$, existuje-li podformule φ , ozn. ψ , která obsahuje tento výskyt a začíná $\exists x$ nebo $\forall x$
- volný v opačném případě

Formule, která nemá žádný volný výskyt proměnné se nazývá uzavřená nebo též sentence

Ve formuli

$$\varphi \equiv 2 \mid x \Rightarrow \exists y (y \cdot 2 = x \vee \sin(x + y) > 1)$$

kde všechny symboly mají obvyklý (matematický) význam, identifikujte (vč. arity, pokud to dává smysl) všechny

- a) proměnné (vč. jejich výskytů),
- b) funkční a predikátové symboly.
- c) termy,
- d) logické spojky,
- e) atomické formule,

U funkčních a predikátových symbolů určete i jejich aritu.

Uvažujte jazyk $\mathcal L$ predikátové logiky obsahující funkční a predikátové symboly zadané následující tabulkou:

symbol	typ	arita
f	funkční	3
d	funkční	0
Р	predikátový	1
Q	predikátový	2

Rozhodněte, která z následujících slov jsou **termy** a **formule** jazyka \mathcal{L} :

a) Q(d,d),

e) y = x,

b) z,

f) $\forall x(Q(d,d)=x)$,

c) f(f(d)),

- g) $\forall y(f(f(x,y,z),d,d))$,
- d) f(d, f(d, d, d), d),
- h) $\forall x (Q(f(f(d, d, d), y, z), f(z, d, y)) \lor P(f(d, z, x))).$

Obsah

Syntax

Sémantika

Normální formy

Sémantika predikátové logiky

- Interpretace I
 - \blacksquare neprázdné univerzum (doména) \mathcal{D}_I
 - n-ární relace $I(P) \subseteq \mathcal{D}_{I}^{n}$ pro každý n-ární predikátový symbol P
 - Zobrazení $I(f): \mathcal{D}_I^n \to \mathcal{D}_I$ pro každý *n*-ární funkční symbol *f*
- Valuace příslušící I
 - Zobrazení $V: \mathcal{V} \rightarrow \mathcal{D}_I$
 - Přiřazuje proměnným prvky univerza
- Hodnota termu t v interpretaci / a valuaci V
 - Prvek $|t|_{I,V} \in \mathcal{D}_I$
 - $|t|_{UV} = V(x)$ pro pokud je t proměnná
 - $|t|_{I,V} = I(f)(|t_1|_{I,V}, \dots, |t_n|_{I,V})$ pokud $t = f(t_1, \dots, t_n)$

$$\forall x((P(x,y) \lor P(f(x),g(x,y))) \implies Q(x,x,y))$$

Sémantika predikátové logiky 2

Formule φ je pravdivá v interpretaci I a valuaci V, značeno $\models_I^V \varphi$, právě když platí jedna z možností

- $\mathbf{P} \varphi \equiv P(t_1,\ldots,t_n) \text{ a } (|t_1|_{I,V},\ldots,|t_n|_{I,V}) \in I(P)$
- $\varphi \equiv t_1 = t_2 \text{ a } |t_1|_{I,V} = |t_2|_{I,V}$
- ...Logické operátory ...
- $\varphi \equiv \forall x(\psi)$ a pro všechny prvky univerza $d \in \mathcal{D}$ platí $\models_{l}^{V'} \psi$, kde V' vznikla z V nahrazením obrazu x prvkem d
- $\varphi \equiv \exists x(\psi)$ a existuje prvek univerza $d \in \mathcal{D}$, pro který platí $\models_I^{V'} \psi$, kde V' vznikla z V nahrazením obrazu x prvkem d

Pojmy

- Formule φ pravdivá v interpretaci I, značíme $\models_I \varphi$, jestliže je pravdivá v interpretaci I pro libovolnou valuaci V.
- Formule φ logicky pravdivá (tautologie), značíme $\models \varphi$, jestliže je pravdivá v každé interpretaci.

Ukažte, že existenční kvantifikátor \exists lze v predikátové logice zavést jako syntaktickou zkratku, tj. ekvivalentními úpravami vyjádřete $\exists x \varphi$ bez použití symbolu \exists .

Příklad 6.2.2 b)

Nalezněte negace následujících formulí tak, aby se symboly – nacházely výhradně bezprostředně před predikátovými symboly.

$$\exists x ((P(x) \land Q(x)) \lor R(x))$$

Uvažte formuli $\varphi \equiv \forall x (P(x) \Rightarrow \exists y \neg Z(x,y))$. Pro každou z následujících interpretací rozhodněte, zda je v ní formule φ pravdivá.

a)
$$\mathcal{D}_I = \{0\}, I(P) = \emptyset, I(Z) = \emptyset$$

b)
$$\mathcal{D}_{I} = \mathbb{Z}$$
, $I(P) = \{1, 2, 3, ...\}$, $I(Z) = \mathbb{Z}^{2}$

c)
$$\mathcal{D}_{I} = \mathbb{Z}$$
, $I(P) = \{1, 2, 3, ...\}$, $I(Z) = \leq$

d)
$$\mathcal{D}_I = \{0\}, I(P) = \{0\}, I(Z) = id^1$$

¹Relace identity obsahuje dvojice identických prvků, id := $\{(x, y) \in \mathcal{D}_{\ell}^{2}; x = y\}$.

Rozhodněte, v jakých interpretacích jsou pravdivé následující formule:

a)
$$\forall x \exists y \exists z (((x = y) \lor (x = z)) \land (y \neq z))$$

b)
$$\forall x \forall y \forall z ((Q(x,y) \land Q(y,z)) \Rightarrow Q(x,z))$$

c)
$$\forall x(\neg Q(x,x) \land \exists yQ(x,y))$$

d)
$$\forall x(x \neq f(x) \land x = f(f(x)))$$

Uvažujte jazyk $\mathcal L$ predikátové logiky obsahující binární funkční symbol + a unární predikátový symbol K. Uvažujte interpretaci (realizaci) I jazyka $\mathcal L$, kde univerzum tvoří všechna celá čísla $\mathbb Z$, + se realizuje jako sčítání a K(x) jako "x je kladné". Nalezněte

- a) fomuli $\alpha(x)$, která je pravdivá v / právě v těch valuacích V, že V(x)=0,
- b) fomuli $\beta(x, y)$, která je pravdivá v I právě v těch valuacích V, že V(x) < V(y),
- c) fomuli $\gamma(x,y)$, která je pravdivá v / právě v těch valuacích V, že V(x) = -V(y),
- d) fomuli $\delta(x)$, která je pravdivá v / právě v těch valuacích V, že V(x)=1.

Při definování formulí se můžete odvolat na formule, které jste již zavedli v předchozích bodech.

Obsah

Syntax

Sémantika

Normální formy

Prenexová normální forma

Uzavřená formule φ se nachází v *prenexové normální formě (PNF)*, je-li tvaru

$$Q_1x_1\ldots Q_nx_n\psi$$
,

kde $Q_i \in \{\forall, \exists\}, x_1, \dots, x_n$ jsou proměnné a formule ψ je v konjunktivní normální formě (zejména tedy neobsahuje žádný kvantifikátor).

Uzavřená formule φ se nachází ve *Skolemově normální formě*, nachází-li se v prenexové normální formě a obsahuje pouze obecné kvantifikátory \forall .

Algoritmus převodu do PNF (a Skolemovy NF)

- I. Eliminujeme zbytečné kvantifikátory.
- II. Přejmenujeme proměnné tak, aby u každého kvantifikátoru byla jiná proměnná.
- III. Eliminujeme jiné spojky než ∨, ∧, ¬.
- IV. Přesuneme negaci až před samotné predikáty.
- V. Kvantifikátory přesuneme ven z jádra formule.
- VI. Jádro formule upravíme do KNF pomocí distributivních zákonů.
- VII. (Odstraníme existenční kvantifikátory zakódováním do předchozích všeobecně kvantifikovaných proměnných.)

Příklad 6.3.1 a)

Převeďte následující formule do prenexové normální formy a proveďte skolemizaci.

$$(\forall x \exists y Q(x,y) \lor \exists x \forall y P(x,y)) \land \neg \exists x \exists y \forall z R(x,y,z)$$