Simple essence of AD

Artur Ezequiel Nelson

Universidade do Minho

29 de Maio

Index

Relembrar

Conceitos base

Categorias e funtores

Dedução de instâncias

RAD e FAD generalizados

Demonstração prática

Relembrar

Documento estudado: "The simple essence of automatic differentiation"([Elliott 2018][2])

Objetivo: Estudo e implementação de um algoritmo AD genérico

Definição de \mathcal{D} e conversão em \mathcal{D}^+

 \mathcal{D} - aproximação linear de uma função

Definição

Seja $f :: a \rightarrow b$ uma função onde a e b são espaços vetoriais sobre um corpo comum. A primeira definição de derivada é:

$$\mathcal{D}::(\mathbf{a}\to\mathbf{b})\to(\mathbf{a}\to(\mathbf{a}\multimap\mathbf{b}))$$

 \mathcal{D}^+ - versão de D com composição eficiente

$$\mathcal{D}^{+}::(a\rightarrow b)\rightarrow(a\rightarrow(b\times(a\multimap b)))$$

$$\mathcal{D}^{+}fa=(fa,\mathcal{D}fa)$$

Teoremas

Teorema 1

Sejam $f :: a \to b \in g :: b \to c$ duas funções. A derivada da composição $f \in g$ é:

$$\mathcal{D}(g \circ f) a = \mathcal{D}g(f a) \circ \mathcal{D}f a$$

Teorema 2

Sejam $f :: a \rightarrow b$ e $g :: b \rightarrow c$ duas funções. A regra de "cross" é a seguinte:

$$\mathcal{D}(f \times g)(a, b) = \mathcal{D}f \ a \times \mathcal{D}g \ b$$

Teorema 3

Para todas as funções lineares f, $\mathcal{D} f$ a = f.

Corolários associados a \mathcal{D}^+

Corolário 1.1

$$\mathcal{D}^+ (g \circ f) \ a = \text{let} \ \{(b, f') = \mathcal{D}^+ \ f \ a; (c, g') = \mathcal{D}^+ \ g \ b\}$$
$$\text{in} \ (c, g' \circ f')$$

Corolário 2.1

$$\mathcal{D}^{+}$$
 $(f \times g)$ $(a,b) =$ **let** $\{(c,f') = \mathcal{D}^{+} f a; (d,g') = \mathcal{D}^{+} g b\}$ **in** $((c,d),f' \times g')$

Corolário 3.1

Para todas as funções lineares f, $\mathcal{D}^+ f = \lambda a \rightarrow (f a, f)$.

Objetivo

Criar uma implementação de \mathcal{D}^+ através da transcrição dos seus corolários para teoria de categorias de modo a obter um algoritmo generalizado para AD.

Categorias e funtores

Categoria: conjunto de objetos e morfismos com duas operações base(id e composição) e 2 regras:

- $id \circ f = f \circ id = f$
- $f \circ (g \circ h) = (f \circ g) \circ h$

Funtor: mapeia uma categoria noutra, preservando a estrutura

- Dado um objeto $t \in \mathcal{U}$ existe um objeto correspondente F t $\in \mathcal{V}$
- Dado um morfismo m :: $a \to b \in \mathcal{U}$ existe um morfismo correspondente F m :: F $a \to F$ b $\in \mathcal{V}$
- F id $(\in \mathcal{U})$ = id $(\in \mathcal{V})$
- $F(f \circ g) = Ff \circ Fg$

Categorias e funtores

Categoria: conjunto de objetos e morfismos com duas operações base(id e composição) e 2 regras:

- $id \circ f = f \circ id = f$
- $f \circ (g \circ h) = (f \circ g) \circ h$

Funtor: mapeia uma categoria noutra, preservando a estrutura

- Dado um objeto $t \in \mathcal{U}$ existe um objeto correspondente F $t \in \mathcal{V}$
- Dado um morfismo m :: a \rightarrow b \in $\mathcal U$ existe um morfismo correspondente F m :: F a \rightarrow F b \in $\mathcal V$
- F id $(\in \mathcal{U})$ = id $(\in \mathcal{V})$
- $F(f \circ g) = Ff \circ Fg$

Adaptação de definições

Definição de tipo \mathcal{D}

newtype
$$\mathcal{D}$$
 a b = \mathcal{D} $(a \rightarrow b \times (a \multimap b))$

Definição de $\hat{\mathcal{D}}$

$$\hat{\mathcal{D}}$$
 :: $(\mathbf{a} \to \mathbf{b}) \to \mathcal{D}$ \mathbf{a} \mathbf{b} $\hat{\mathcal{D}}$ $\mathbf{f} = \mathcal{D} (\mathcal{D}^+ \mathbf{f})$

Definição de $\hat{\mathcal{D}}$ para funções lineares

linearD ::
$$(a \rightarrow b) \rightarrow \mathcal{D}$$
 a b linearD $f = \mathcal{D} (\lambda a \rightarrow (f \ a, f))$

Passos para obter a instância a partir da definição do funtor

- Passo 1 Assumir que $\hat{\mathcal{D}}$ é funtor de uma instância de \mathcal{D} a determinar
- Passo 2 Substituir pelo que determinamos nos corolários
- Passo 3 Generalizar condições se necessário para obtermos instância

Exemplo para categorias

Passo 1 $id = \hat{\mathcal{D}} id = \mathcal{D} (\mathcal{D}^+ id)$

 $\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f = \hat{\mathcal{D}} (g \circ f) = \mathcal{D} (\mathcal{D}^+ (g \circ f))$

Passo 2

$$id = \mathcal{D} (\lambda a \rightarrow (id \ a, id))$$

 $\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f = \mathcal{D} (\lambda a \rightarrow \mathbf{let} \{(b, f') = \mathcal{D}^+ f \ a; (c, g') = \mathcal{D}^+ g \ b\} \mathbf{in} (c, g' \circ f'))$

Passo 3

Para a nossa instância a primeira equação que determinamos serve como definição da identidade.

Para definir a composição generalizamos a condição:

$$\mathcal{D} g \circ \mathcal{D} f = \mathcal{D} (\lambda a \rightarrow \text{let } \{(b, f') = f \ a; (c, g') = g \ b \} \text{ in } (c, g' \circ f'))$$

Exemplo para categorias

Passo 1

$$id = \hat{\mathcal{D}} id = \mathcal{D} (\mathcal{D}^+ id)$$

 $\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f = \hat{\mathcal{D}} (g \circ f) = \mathcal{D} (\mathcal{D}^+ (g \circ f))$

Passo 2

$$egin{aligned} id &= \mathcal{D} \ (\lambda a
ightarrow (id \ a, id)) \ \hat{\mathcal{D}} \ g \circ \hat{\mathcal{D}} \ f &= \mathcal{D} \ (\lambda a
ightarrow \mathbf{let} \ \{(b, f') = \mathcal{D}^+ \ f \ a; (c, g') = \mathcal{D}^+ \ g \ b\} \ \mathbf{in} \ (c, g' \circ f')) \end{aligned}$$

Passo 3

Para a nossa instância a primeira equação que determinamos serve como definição da identidade.

Para definir a composição generalizamos a condição:

$$\mathcal{D} g \circ \mathcal{D} f = \mathcal{D} (\lambda a \rightarrow \text{let } \{(b, f') = f \ a; (c, g') = g \ b \} \text{ in } (c, g' \circ f'))$$

Exemplo para categorias

Passo 1

$$id = \hat{\mathcal{D}} id = \mathcal{D} (\mathcal{D}^+ id)$$

 $\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f = \hat{\mathcal{D}} (g \circ f) = \mathcal{D} (\mathcal{D}^+ (g \circ f))$

Passo 2

$$egin{aligned} id &= \mathcal{D} \ (\lambda a
ightarrow (id \ a, id)) \ \hat{\mathcal{D}} \ g \circ \hat{\mathcal{D}} \ f &= \mathcal{D} \ (\lambda a
ightarrow \mathbf{let} \ \{(b, f') = \mathcal{D}^+ \ f \ a; (c, g') = \mathcal{D}^+ \ g \ b\} \ \mathbf{in} \ (c, g' \circ f')) \end{aligned}$$

Passo 3

Para a nossa instância a primeira equação que determinamos serve como definição da identidade.

Para definir a composição generalizamos a condição:

$$\mathcal{D} \ g \circ \mathcal{D} \ f = \mathcal{D} \ (\lambda a \rightarrow \text{let } \{(b, f') = f \ a; (c, g') = g \ b\} \ \text{in} \ (c, g' \circ f'))$$

Definição da classe de categoria

class Category k where

$$(\circ) :: (b \, {}^{\backprime} k {}^{\backprime} c) \rightarrow (a \, {}^{\backprime} k {}^{\backprime} b) \rightarrow (a \, {}^{\backprime} k {}^{\backprime} c)$$

Instância deduzida para a categoria

instance $Category \mathcal{D}$ where

$$\mathcal{D} g \circ \mathcal{D} f =$$

$$\mathcal{D}\left(\lambda a \rightarrow \text{let }\{(b,f')=f \text{ } a;(c,g')=g \text{ } b\} \text{ in } (c,g'\circ f')\right)$$

Definição da classe de categoria monoidal

class Category
$$k \Rightarrow$$
 Monoidal k where $(\times) :: (a \cdot k' \cdot c) \rightarrow (b \cdot k' \cdot d) \rightarrow ((a \times b) \cdot k' \cdot (c \times d))$

Instância deduzida para a categoria monoidal

instance Monoidal
$$\mathcal{D}$$
 where $\mathcal{D} f \times \mathcal{D} g = \mathcal{D} (\lambda(a,b) \rightarrow \text{let } \{(c,f') = f \ a; (d,g') = g \ b\}$ in $((c,d),f' \times g'))$

Definição da classe de categoria cartesiana

class Monoidal $k \Rightarrow Cartesian \ k$ where $exl :: (a, b) 'k' \ a$ $exr :: (a, b) 'k' \ b$ dup :: a 'k' (a, a)

Instância deduzida para a categoria cartesiana

instance Cartesian D where
 exl = linearD exl
 exr = linearD exr
 dup = linearD dup

Definição da classe de categoria cocartesiana

class Category $k \Rightarrow Cocartesian k$ where

inl :: a 'k' (a, b) inr :: b 'k' (a, b) jam :: (a, a) 'k' a

Dedução de (\rightarrow^+)

 Queremos uma categoria que os seus objetos tenham adição e seja capaz de multiplicar por constantes (scaling).

Definição da classe de categoria cocartesiana

class Category $k \Rightarrow$ Cocartesian k where inl :: $a \cdot k'$ (a, b) inr :: $b \cdot k'$ (a, b) jam :: $(a, a) \cdot k'$ a

Dedução de (\rightarrow^+)

 Queremos uma categoria que os seus objetos tenham adição e seja capaz de multiplicar por constantes (scaling).

Instância deduzida para AD genérico

Dedução de D_k

- Queremos ter um D_k tal que seja o D mas com uma categoria de genérica, pois nunca fizemos nada de específico com a -∞.
- Queremos definir também as operações usuais nesta categoria, como a soma, multiplicação, sin, cos, etc.

Generalizando RAD e FAD

Obter RAD e FAD de algoritmo AD genérico: forçar a direção da composição de morfismos

Conversão da escrita de morfismos $f :: a \cdot k' \cdot b \Rightarrow (\circ f) :: (b \cdot k' \cdot r) \rightarrow (a \cdot k' \cdot r)$ para r objeto de categoria k.

Definição de novo tipo

newtype
$$Cont_k^r$$
 a b = $Cont$ $((b 'k' r) \rightarrow (a 'k' r))$

Funtor derivado dele

```
cont :: Category k \Rightarrow (a'k'b) \rightarrow Cont_k^r a b cont f = Cont(\circ f)
```


Generalizando RAD e FAD

Obter RAD e FAD de algoritmo AD genérico: forçar a direção da composição de morfismos

Conversão da escrita de morfismos

 $f :: a \cdot k \cdot b \Rightarrow (\circ f) :: (b \cdot k \cdot r) \rightarrow (a \cdot k \cdot r)$ para r objeto de categoria k.

Definição de novo tipo

newtype
$$Cont_k^r$$
 a b = $Cont$ $((b 'k' r) \rightarrow (a 'k' r))$

Funtor derivado dele

cont :: Category
$$k \Rightarrow (a'k'b) \rightarrow Cont_k^r$$
 a b cont $f = Cont(\circ f)$

Generalizando RAD e FAD

Obter RAD e FAD de algoritmo AD genérico: forçar a direção da composição de morfismos

Conversão da escrita de morfismos

 $f :: a \cdot k \cdot b \Rightarrow (\circ f) :: (b \cdot k \cdot r) \rightarrow (a \cdot k \cdot r)$ para r objeto de categoria k.

Definição de novo tipo

newtype
$$Cont_k^r$$
 a b = $Cont$ $((b 'k' r) \rightarrow (a 'k' r))$

Funtor derivado dele

cont :: Category
$$k \Rightarrow (a \cdot k \cdot b) \rightarrow Cont_k^r$$
 a b cont $f = Cont(\circ f)$

Instância deduzida para RAD genérico

```
instance Category k \Rightarrow Category Cont_{k}^{r} where
  id = Cont id
   Cont g \circ Cont f = Cont (f \circ g)
instance Monoidal k \Rightarrow Monoidal Cont<sub>k</sub> where
   Conf f \times Cont g = Cont (join \circ (f \times g) \circ unjoin)
instance Cartesian k \Rightarrow Cartesian Cont_{k}^{r} where
  exl = Cont (join \circ inl); exr = Cont (join \circ inr)
  dup = Cont (jam \circ unjoin)
instance Cocartesian k \Rightarrow Cocartesian Cont_k^r where
  inl = Cont (exl \circ unjoin); inr = Cont (exr \circ unjoin)
  jam = Cont (join \circ dup)
instance Scalable k a \Rightarrow Scalable Cont_k^r a where
   scale s = Cont (scale s)
```

Demonstração prática

Demonstração prática Link do projeto git: [LEI 2019] [1]

Projeto LEI.

https://github.com/Ezequiel-Moreira/LEI_ 2019_Uminho.

Accessed: 2019-05-28.

ELLIOTT, C.

The simple essence of automatic differentiation.

Proc. ACM Program. Lang. 2, ICFP (July 2018), 70:1–70:29.