Numerikus módszerek 1.

2. ZÁRTHELYI

2019. december 10.

Programtervező informatikus Bsc szak

Gyak.vez. neve	Név
Gyak. ideje	Neptun kód

Pontszám _____

- **1.** (4 pont) Tegyük fel, hogy $0 \le \mathbf{A} \in \mathbb{R}^{n \times n}$ mátrixra a sorösszeg konstans. Vagyis $a_{ij} \ge 0$ és $\sum_{j=1}^{n} a_{ij} = c$ $(1 \le i, j \le n)$. Igazoljuk, hogy ekkor a spektrálsugárra $\rho(\mathbf{A}) = \|\mathbf{A}\|_{\infty}$.
- **2.** (12 pont) Tekintsük az $\mathbf{A} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & -1 \end{bmatrix}$ szimmetrikus mátrixot!
 - a) Számítsuk ki az A mátrix 1-es és 2-es kondíciószámát!
 - b) Igazoljuk, hogy $\operatorname{cond}_2(\mathbf{A}) < \operatorname{cond}_1(\mathbf{A})$?
- 3. (10 pont) Az $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$ $\cdot \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ lineáris egyenletrendszerre írjuk fel a Jacobi-iterációt!
 - a) Bizonyítsuk a konvergenciát!
 - b) Írjuk fel a hibabecslését!
 - c) Hány lépést kell tennünk a 10^{-3} pontosság eléréséhez, ha $\mathbf{x_0} = \mathbf{0}$?
- 4. (8 pont) Írjuk fel a 3. feladat lineáris egyenletrendszerére a Gauss–Seidel-iterációt!
 - a) Bizonyítsuk a konvergenciát!
 - b) Számítsuk ki $\mathbf{x_1}$ -et a koordinátás alakjában, ha $\mathbf{x_0} = [1, 2, 3]^T$!
 - c) Ebben az esetben a Jacobi vagy a G-S iteráció a gyorsabb? Válaszát indokolja!
- 5. (8 pont) Az $\begin{bmatrix} 3 & 1 & 0 \\ 1 & 4 & -1 \\ 0 & -1 & 3 \end{bmatrix} \cdot \mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ lineáris egyenletrendszerre írjuk fel a Richardson-iterációt!
 - a) Pontosan mely p paraméter értékekre konvergens?
 - b) Mi az optimális paraméter és mennyi ekkor a kontrakciós együttható?
- 6. (8 pont) Mi lesz a $\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ 2 & 3 & -1 \\ 4 & 1 & 4 \end{bmatrix}$ mátrix $J = \{(1,2), (2,3), (3,1)\}$ pozícióhalmazra illeszkedő részleges LU-felbontása? Határozzuk meg az \mathbf{L}, \mathbf{U} és \mathbf{Q} mátrixokat!