

CONTENIDOS

INTEGRALES TRIGONOMÉTRICAS

MÉTODO DE SUSTITUCIÓN TRIGONOMÉTRICA

LOGROS ESPERADOS

- ✓ Resuelve problemas de contexto intra y extra matemático usando método de integración por partes y sustitución trigonométrica.
- ✓ Resuelve problemas de contexto intra y extra matemático aplicando integrales trigonométricas.
- ✓ Resuelve problemas de contexto intra y extra matemático usando método de sustitución trigonométrica.

SABERES PREVIOS

Antes de iniciar el estudio, es recomendable tener bien asentados los conceptos básicos asociados a:

- ✓ Modelamiento de funciones.
- ✓ Identidades trigonométricas.
- ✓ Antiderivadas.
- ✓ Reglas de básicas de integración.

SABERES PREVIOS

Resuelva los siguientes ejercicios en su cuaderno, luego compare las soluciones con sus compañeros.

- ¿La primitiva de una función es única? Justifique
 ¿Qué relación habrá entre dos primitivas distintas, si las hubiera, de la misma función?
- 2. Calcule la integral indefinida de la función constante definida por f(x) = 0.
- 3. Calcule:

a.
$$\int (x^3 + 2x^2 - 6) dx$$
 b. $\int (sen x - x^{-3}) dx$

c.
$$\int \sqrt[3]{x+1} \, dx$$
 d.
$$\int e^{-3x+1} \, dx$$

_

REFLEXIONE

Si se quiere calcular la integral indefinida $\int (x+2)dx$ ¿ Qué método de integración usaría? Resuelva la integral.

Ahora, si al integrando le multiplicamos por el factor $\sqrt{x^2-2x+5}$ se tiene la integral: $\int (x+2)\sqrt{x^2-2x+5}dx$

- ¿Será suficiente usar el método de cambio de variable para calcular dicha integral?
- ¿Existirá algún otro método de integración que permita calcular la integral?

INTEGRALES TRIGONOMÉTRICAS

INTEGRALES DE LA FORMA $\int \operatorname{sen}^m(u) \cos^n(u) du$

Caso 1

Si m es un entero positivo impar y n cualquier número real, se factoriza dentro del integrando $\operatorname{sen} udu$ y $\operatorname{sen}^{m-1}(u)$ se transforma en términos de $\cos u$.

Calcule la siguiente integral

$$\int sen^3x(\sqrt[3]{\cos x})^4dx$$

INTEGRALES DE LA FORMA $\int \operatorname{sen}^m(u) \cos^n(u) du$

Caso 2

Si n es un entero positivo impar y m cualquier número real, se factoriza dentro del integrando $\cos u du$ y $\cos^{n-1}(u)$ se transforma en términos de $\sin u$.

$$\int sen^{3/5}(3x)\cos^5(3x)dx$$

INTEGRALES DE LA FORMA $\int \operatorname{sen}^m(u) \cos^n(u) du$

Caso 3

Si m y n son enteros positivos pares, se usan las identidades:

$$sen^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \text{ y } \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

 sen^2xcos^2xdx

INTEGRALES DE LA FORMA $\int tan^m(u)sec^n(u)du$ y $\int cot^m(u)csc^n(u)du$

Caso 1 Si m es un entero positivo impar y n cualquier número real, se factoriza dentro del integrando secutanudu (o cscucotudu) y las tangentes (cotangentes) restantes se transforman a secantes (o cosecantes)

Si n es un entero positivo par y m cualquier número real, se factoriza dentro del integrando $\sec^2 u du$ (o $\csc^2 u du$) y las secantes (o cosecantes) restantes se transforman en tangentes (o cotangentes)

Identidades a usar

$$1 + tan^{2}\alpha = sec^{2}\alpha \qquad 1 + cot^{2}\alpha = csc^{2}\alpha$$

Calcule la siguientes integrales

a)
$$\int tan^2(x)sec^4(x)dx$$

b)
$$\int tan^3(x)sec^3(x)dx$$

EJEMPLO 5 Calcule la siguiente inte

Calcule la siguiente integral:

$$I = \int \frac{\tan^3 x}{(\sec x)^{\frac{4}{3}}} \, dx$$

Resolución:

Paso 1. Primero la expresión dada a integrar se descompone convenientemente.

$$I = \int (tan^3x)(secx)^{-\frac{4}{3}}dx = \int (tan^2x)(secx)^{-\frac{7}{3}}.secx.tanxdx$$

Paso 3.
$$I = \int (sec^2x - 1)(secx)^{-\frac{7}{3}}d(secx)$$

Paso 4.
$$I = \int (secx)^{-\frac{1}{3}} d(secx) - \int (secx)^{-\frac{7}{3}} d(secx) + C$$

Paso 5. Finanalmente
$$I = \frac{3}{2}(secx)^{\frac{2}{3}} + \frac{3}{4}(secx)^{-\frac{4}{3}} + C$$

Determine la integral

$$I = \int sec^4(ax)\sqrt{tan(ax)}dx$$

Resolución:

Paso 1. Primero la expresión dada a integrar se descompone convenientemente.

$$I = \int sec^{2}(ax)\sqrt{tan(ax)}sec^{2}(ax)dx$$

Paso 2. Tomando
$$u = \sqrt{tan(ax)}$$
 $\rightarrow u^2 = tan(ax)$
 $2udu = asec^2(ax)dx$

Paso 3.
$$I = \frac{1}{a} \int (u^4 + 1)(2u^2) du = \frac{1}{a} \int (2u^6 + 2u^2) du = \frac{2}{a} \left(\frac{u^7}{7} + \frac{u^3}{3}\right) + c$$

Paso 4. Finalmente
$$I = \frac{2}{a} \left(\frac{\sqrt{\tan(ax)}^7}{7} + \frac{\sqrt{\tan(ax)}^3}{3} \right) + C$$
.

INTEGRALES DE PRODUCTOS SENO-COSENO CON DIFERENTES ÁNGULOS

Identidades a usar:

$$\operatorname{sen}(mx)\operatorname{sen}(nx) = \frac{1}{2}\left[\cos((m-n)x) - \cos((m+n)x)\right]$$

$$\operatorname{sen}(mx)\cos(nx) = \frac{1}{2}\left[\operatorname{sen}((m-n)x) + \operatorname{sen}((m+n)x)\right]$$

$$\cos(mx)\cos(nx) = \frac{1}{2}\left[\cos((m-n)x) + \cos((m+n)x)\right]$$

Determine las siguientes integrales

$$a) \int \cos(4x) \cos(9x) \, dx$$

$$b) \int \cos(6-2x) \sin(4x) \ dx$$

Determine la integral

$$I = \int sen(3x)sen(7x)\cos(4x)dx$$

MÉTODO DE SUSTITUCIÓN TRIGONOMÉTRICA

CAMBIOS TRIGONOMÉTRICOS

Radical que contiene la función integrando	Sustitución o cambio de variable	Triángulo rectángulo a usar
$\sqrt{a^2-u^2}$, $a>0$	$u = a \operatorname{sen} \theta$ $du = a \cos \theta d\theta$	$\frac{a}{\sqrt{a^2-u^2}}$
$\sqrt{a^2+u^2}$, $a>0$	$u = a \tan \theta$ $du = a \sec^2 \theta d\theta$	1 2 + u ²
$\sqrt{u^2-a^2}$, $a>0$	$u = a \sec \theta$ $du = a \sec \theta \tan \theta d\theta$	$\frac{u}{a}$

Determine las siguientes integrales

a)
$$\int \frac{1}{\sqrt{x^2 + 25}} dx$$
 b) $\int \frac{1}{\sqrt{x^2 - 36}} dx$ c) $\int \frac{1}{\sqrt{16 - x^2}} dx$

$$b) \int \frac{1}{\sqrt{x^2 - 36}} dx$$

$$C) \int \frac{1}{\sqrt{16-x^2}} dx$$

Calcule la siguiente integral

$$I = \int \frac{x^2}{(4 - x^2)^{5/2}} dx$$

Resolución:

Paso 1:
$$I = \int \frac{x^2}{(\sqrt{4-x^2})^5} dx$$

 $x = 2sen\theta$
 $dx = 2cos\theta d\theta$

Paso 2. Luego reemplazando

$$I = \int \frac{(4sen^2\theta)2.\cos\theta d\theta}{(\sqrt{4 - 4sen^2\theta})^5} = \frac{1}{4} \int \frac{sen^2\theta.\cos\theta d\theta}{\cos^5\theta}$$

Paso 3. Luego
$$I = \frac{1}{4} \int \frac{sen^2\theta}{cos^4\theta} d\theta = \frac{1}{4} \int \frac{sen^2\theta}{cos^2\theta} \left(\frac{1}{cos^2\theta}\right) d\theta$$

Paso 4.
$$I = \frac{1}{4} \int \tan^2 \theta \cdot \sec^2 \theta \, d\theta = \frac{1}{4} \int (\tan \theta)^2 \, d(\tan \theta)$$

$$=\frac{1}{4}\left(\frac{\tan^3\theta}{3}\right)+C=\frac{\tan^3\theta}{12}+C$$

Paso 5. Finalmente se regresa a la variable original *x*, donde se tiene:

$$I = \frac{1}{12} \left(\frac{x}{\sqrt{4 - x^2}} \right)^3 + C$$

Calcule las siguientes integrales

a)
$$\int \frac{dx}{x\sqrt{25-4x^2}}$$
, $x\epsilon \left] -\frac{5}{2}; \frac{5}{2} \right[$

b)
$$\int \frac{dx}{x^3\sqrt{x^2-a^2}}$$
, $a>0$

c)
$$\int \frac{x+2}{(-x^2+2x+3)^{\frac{3}{2}}} dx$$

d)
$$\int \frac{e^x}{\sqrt{1-4e^{2x}}} dx$$

CONCLUSIONES

En las integrales cuyo integrando involucran funciones trigonométricas se debe tener presente las distintas identidades trigonométricas.

Si el integrando contiene alguno de los siguientes radicales $\sqrt{a^2-u^2}$, $\sqrt{a^2+u^2}$ o $\sqrt{u^2-a^2}$ ($para\ a>0$) use el cambio trigonométrico $u=a sen \theta$, $u=a tan \theta$ o $u=a sec \theta$, respectivamente.

REFERENCIAS

[1] Larson, R. y Edward, B. (2011) Cálculo. 9ª ed. México, D.F.: McGraw-Hill.

[2] Stewart, J. (2010) Cálculo de una variable conceptos y contextos. 4ª ed. México. Cengage

[3] Larson, R. y Edward, B. (2010) Cálculo 2: de varias variables. 9ª ed. México: McGraw-Hill

[4] Thomas, G. B. (2006) Cálculo una variable. 11ª ed. México: Pearson

[5] Kong, Maynard (2004). Cálculo diferencial. Lima: Pontificia Universidad Católica del Perú.

