Local PIDs

Jiang-Hua Lu

The University of Hong Kong

Algebra II, HKU

Monday Jan 27, 2028

Outline

In this file: §1.5.2

1 Localization and local PIDs.

$$\frac{1}{|-\frac{1}{2}|} = |+\frac{1}{2} + \frac{2}{2} + \cdots$$

Example. Consider the ring

$$F[[x]] = \left\{ \sum_{n=0}^{\infty} a_n x^n : a_0, a_1, \ldots \in F \right\}$$

of formal power series in \boldsymbol{x} with coefficients in a field $\boldsymbol{F}.$

f[x]

FITXII

Main properties of F[[x]]:

• F(x) is a very special PID: every ideal is of the form

$$I_n = x^n F(x)$$

for some integer $n \ge 0$;

• $\mathfrak{m} = x F[x]$ is the unique maximal ideal.

$$f(x) = \sum_{N=N}^{\infty} a_N x^N h(x), \quad h(x) \in F(x)^X$$
Thus
$$f(x) = a_N x^N h(x), \quad h(x) \in F(x)^X$$
Thus
$$f(x) = \frac{1}{a_N x^N} h(x)^{-1}$$

$$\Rightarrow f(x) = \frac{1}{x^N} f(x), \quad \text{where } f(x) \in F(x)$$
suppose you have a ring of functions. All functions that vanishes at a single point forms a maximal ideal, so geometrically, maximal ideals are points.

Localize means there is only one point in this space.

 $F((x)) \stackrel{\text{def}}{=} \text{The fraction field of } F((x))$ $= \begin{cases} \frac{f(x)}{f(x)} : f(x) \neq 0 \end{cases}$ $= \begin{cases} \frac{f(x)}{f(x)} : f(x) \neq 0 \end{cases}$

For gire FIIXII, gix) +0, write

<u>Definition</u> A non-zero commutative ring R is said to be local if it has a unique maximal ideal.

Let R^{\times} be the set of all units of R.

<u>Lemma</u>: A non-zero commutative ring R is local if and only if $R \setminus R^{\times}$ is an ideal, in which case $R \setminus R^{\times}$ is the unique maximal ideal of R.

Proof.

- Assume first that R is local and let \mathfrak{m} be its unique maximal ideal.
- As $\mathfrak{m} \neq R$ by definition, \mathfrak{m} does not contain any unit, so $\mathfrak{m} \subset R \backslash R^{\times}$.
- Conversely, let $a \in R \backslash R^{\times}$ be arbitrary.
- So $\mathfrak{m}' = \mathfrak{m}$, thus $a \in \mathfrak{m}$. Hence $\mathfrak{m} = R \backslash R^{\times}$.

<u>Lemma</u>: For integral domain R not a field, the following are equivalent:

- R is a local PID; $\chi^{0} = \chi^{0} = \chi^{0} = \chi^{0}$
- there exists a non-unit $x \in R$ such that every non-zero element $a \in R$ is of the form $a = x^n u$ for some $n \in \mathbb{N}$ and some unit u in R.

 Proof Clearly (2) implies (1).
- Proof Clearly (2) implies (1).

 Assume that R is a local PID with maximal ideal m.

 Then $T = x^n R$
 - Then m = xR for some non-unit x ∈ R. Let a ∈ R\{0}.
 If a is a unit, a = x⁰a. Assume a is not a unit.
 - Then $a \in \mathfrak{m}$, so $a = xa_1$ for some $a_1 \in R$. If a_1 is a unit, we are done.
 - Otherwise, $a_1 = xa_2$ for some $a_2 \in R$, so $a = x^2a_2$.
 - If a_2 is a unit, we are done. Otherwise, continue.
 - The sequence $a_1R \subset a_2R \subset a_3R \subset \cdots$ must stabilize. So $a=x^nu$ for some n>0 and $u\in R^{\times}$.

Question: What are examples of local Q.E.D. ?

More examples of local PIDs.

- a prime number p, let (a, b) = 1 $\mathbb{Z}_{(p)} = \{a/b \in \mathbb{Q} : a, b \in \mathbb{Z}, b \neq 0, p \nmid b\} = \{p \mid 0\}$ Example. For a prime number p, let
 - Being a sub-ring of \mathbb{Q} , $\mathbb{Z}_{(p)}$ is an integral domain;
 - Every non-zero $r \in \mathbb{Z}_{(p)}$ is uniquely of form

$$r=p^n\frac{a}{b}$$

with $a, b \in \mathbb{Z} \setminus \{0\}$ and $p \nmid a$ and $p \nmid b$, so $\frac{a}{b}$ is a unit in $\mathbb{Z}_{(p)}$. • Thus $\mathbb{Z}_{(p)}$ is a local PID with unique maximal ideal $p\mathbb{Z}_{(p)}$.

- Fre Exercise: Zeps = Q[[x]] Auswer: No bijeckur as Erp) is countable 6/14

Example: Let K be a field and let

$$K[x]_{(x)} = \{f/g: \ f, \ g \in K[x], \ g(0) \neq 0\} \subset K(x).$$

- $K[x]_{(x)}$, a sub-ring of K(x) = Frac(K[x]), is an integral domain;
- Every non-zero element in $K[x]_{(x)}$ is of the form

$$\phi = x^n \frac{f}{g}$$

where $f,g \in K[x]$ and $f(0) \neq 0$, $g(0) \neq 0$, so $\frac{f}{g}$ is a unit in $K[x]_{(x)}$.

• Thus $K[x]_{(x)}$ is a local PID with the unique maximal ideal $xK[x]_{(x)}$.

More generally:

Lemma

Let R be any UFD with fraction field F, and let $p \in R$ be a prime element. The sub-ring

$$R_{(p)} \stackrel{\mathrm{def}}{=} \left\{ p^n \frac{a}{b}: \ n \in \mathbb{N}, \, a, b \in R, b \neq 0, \, p \nmid a, \, p \nmid b \right\}$$

of F is a local PID with unique maximal ideal $pR_{(p)}$.

Localization: Let
$$R$$
 be any commutative ring.

$$\frac{d}{dt} = \frac{1}{dt}$$

<u>Definition.</u> A subset D of $R \setminus \{0\}$ is said to be multiplicatively closed if $1 \in D$ and if $ab \in D$ for all $a, b \in D$.

Lemma-Definition. Let $D \subset R \setminus \{0\}$ be multiplicatively closed.

ullet One has the equivalence relation on R imes D defined by

$$(r_1,d_1)\sim (r_2,d_2)$$
 if $d(r_1d_2-r_2d_1)=0$ for some $d\in D$.

• Denote by $\frac{r}{d}$ the equivalence class of (r, d). The set $D^{-1}R$ of all equivalence classes in $R \times D$ is a ring with the operations

$$\frac{r_1}{d_1} + \frac{r_1}{d_1} = \frac{r_1d_2 + r_2d_1}{d_1d_2}, \qquad \frac{r_1}{d_1} \cdot \frac{r_1}{d_1} = \frac{r_1r_2}{d_1d_2}, \qquad (r_1, d_1), (r_2, d_2) \in R \times D.$$

- The map $R \longrightarrow D^{-1}R, r \longmapsto \frac{r}{1}$, is a ring homomorphism, which is injective if D has no zero divisor.
- The ring $D^{-1}R$ is called called the localization of R at D.

Example. Let R be integral domain and F its fractions field.

 \bullet For any multiplicatively closed $D \subset R \backslash \{0\},$ one has injective ring homomorphism

$$\phi: D^{-1}R \longrightarrow F, \frac{r}{d} \longmapsto \frac{r}{d}.$$

- Image of ϕ is the sub-ring of F generated by $D^{-1} = \{d^{-1} : d \in D\}$ and R.
- As a sub-ring of F, the localization $D^{-1}R$ is also an integral domain.

Question: How to understand ideals of $D^{-1}R$?

10 / 14

Digression on extensions and contractions of ideals

This part

<u>Definition.</u> Let R and Q be any commutative rings and let $\phi: R \to Q$ be a ring homomorphism.

• For any ideal I of R, the ideal $\phi(I)Q$ of Q is called the extension of I to Q by ϕ , and we write \hat{g} ,对于交换环, \hat{g} ,phi(\hat{g}),是以后就是理想

$$I^e = \phi(I) Q \subset Q;$$

2 For any ideal J of Q, the ideal $\phi^{-1}(J)$ of R is called the contraction of J in R by ϕ , and we write

$$J^c = \phi^{-1}(J) \subset R.$$

3 Note that when R is a sub-ring of Q and $\phi: R \to Q$ is the inclusion. have $J^c = J \cap R$.

Lemma. Let R be any commutative ring and $D \subset R \setminus \{0\}$ multiplicatively closed. Consider extension and contractions of ideals by

$$\phi:\ R\longrightarrow D^{-1}R.\ f\left(f\left(J\right)\right)\subseteq J.$$
 • For any ideal J of $D^{-1}R$, we have
$$J=(J^c)^e.$$
 with eq if is my

Consequently, every ideal of $D^{-1}R$ is the extension of some ideal of R: Distinct ideals of $D^{-1}R$ have distinct contractions in R:

• For any ideal I of R, we have $(1^e)^c = (0^{-1} \bot)$ $(I^e)^c = \{r \in R : dr \in I \text{ for some } d \in D\}.$

Moreover, $I^e = D^{-1}R$ if and only if $I \cap D \neq \emptyset$.

 Extension and contraction give a bijection between prime ideals I of R such that $I \cap D = \emptyset$ and prime ideals of $D^{-1}R$.

Most impotant example: localization at prime ideals

Lemma-Definition: Let R be an commutative ring and $P \subset R$ a prime

ideal. Then $D = R \setminus P \subset R \setminus \{0\}$ is multiplicatively closed, and the localization $D^{-1}R$ is called the localization of R at P and is denoted as R_P .

Lemma. Let R be an commutative ring and $P \subset R$ a prime ideal. Then by extension and contraction of ideals by

$$R \longrightarrow R_P, \quad r \longmapsto \frac{r}{1},$$

one has bijections

 $\{\text{prime ideals of } R_P\} \longleftrightarrow \{\text{prime ideals } I \subset R \text{ such that} I \subset P\}.$

INP = Ø

Remarks:

- Localization of a UFD at an arbitrary prime ideal is not necessarily a PID;
- Localization of a Dedekind domain at any prime ideal is a local PID.
- A local PID that is not a field is also called a Discrete Valuation Ring (D.V.R.).