Entity/Relationship Modelling

- E/R Modelling is used for conceptual design
 - Entities objects or items of interest
 - Attributes facts about, or properties of, an entity
 - Relationships links between entities

Example

 In a University database we might have entities for Students, Modules and Lecturers. Students might have attributes such as their ID, Name, and Course, and could have relationships with Modules (enrolment)

Entity/Relationship Diagrams

- E/R Models are often represented as E/R diagrams that
 - Give a conceptual view of the database
 - Are independent of the choice of DBMS

Entities

- Entities represent objects or things of interest
 - Physical things like students, lecturers, employees, products
 - More abstract things like modules, orders, courses, projects

- Entities have
 - A general type or class, such as Lecturer or Module
 - Instances of that particular type, such as Steve Mills, Natasha Alechina are instances of Lecturer
 - Attributes (such as name, email address)

Diagramming Entities

- In an E/R Diagram, an entity is usually drawn as a box with rounded corners
- The box is labelled with the name of the class of objects represented by that entity

Attributes

- Attributes are facts, aspects, properties, or details about an entity
 - Students have IDs, names, courses, addresses, ...
 - Modules have codes, titles, credit weights, levels, ...

- Attributes have
 - A name
 - An associated entity
 - Domains of possible values
 - Values from the domain for each instance of the entity they are belong to

Diagramming Attributes

- In an E/R Diagram attributes may be drawn as ovals
- Each attribute is linked to its entity by a line
- The name of the attribute is written in the oval

Relationships

- Relationships are an association between two or more entities
 - Each Student takes several Modules
 - Each Module is taught by a Lecturer
 - Each Employee works for a single Department

- Relationships have
 - A name
 - A set of entities that participate in them
 - A degree the number of entities that participate (most have degree 2)
 - A cardinality ratio

Cardinality Ratios

- Each entity in a relationship can participate in zero, one, or more than one instances of that relationship
- This leads to 3 types of relationship...

- One to one (1:1)
 - Each lecturer has a unique office
- One to many (1:M)
 - A lecturer may tutor many students, but each student has just one tutor
- Many to many (M:M)
 - Each student takes several modules, and each module is taken by several students

Diagramming Relationships

- Relationships are links between two entities
- The name is given in a diamond box
- The ends of the link show cardinality

Removing M:M Relationships

- Many to many relationships are difficult to represent
- We can split a many to many relationship into two one to many relationships
- An entity represents the M:M relationship

Making E/R Models

- To make an E/R model you need to identify
 - Enitities
 - Attributes
 - Relationships
 - Cardinality ratios
- from a description

- General guidelines
 - Since entities are things or objects they are often nouns in the description
 - Attributes are facts or properties, and so are often nouns also
 - Verbs often describe relationships between entities

Example

A university consists of a number of departments. Each department offers several courses. A number of modules make up each course. Students enrol in a particular course and take modules towards the completion of that course. Each module is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

Example - Entities

A university consists of a number of departments. Each department offers several courses. A number of modules make up each course. Students enrol in a particular course and take modules towards the completion of that course. Each module is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

Example - Relationships

 A university consists of a number of departments. Each department offers several courses. A number of modules make up each course. Students enrol in a particular course and take modules towards the completion of that course. Each module is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

Entities: Department, Course, Module, Lecturer, Student

Department

Course

Module

Lecturer

Student

Each department offers several courses

Lecturer

Student

A number of modules make up each courses

Lecturer

Student

Students enrol in a particular course

Students ... take modules

Lecturer

Each module is taught by a lecturer

a lecturer from the appropriate department

each lecturer tutors a group of students

