What will happen to this patient? Predictive text mining in a specialist cancer hospital

Tom Liptrot
The Christie NHS Foundation Trust, Manchester

Structured data

Unstructured data

Prediction using regression

 $Y = \beta X + \varepsilon$

If Y is

continuous binary categorical time to event time series Etc...

Use

linear regression logistic regression multinomial logit cox model ARIMA, GARCH

If X is

continuous categorical is very 'wide' Etc...

Use

use as is / transform dummy encoding regularisation

text??

Prediction using regression

 $Y = \beta X + \varepsilon$

If Y is

continuous binary categorical time to event time series Etc...

Use

linear regression logistic regression multinomial logit cox model ARIMA, GARCH

If X is

continuous categorical is very 'wide' Etc...

Use

use as is / transform dummy encoding regularisation

text??

Text to X – bag of words

- 1. "The dog barked"
- 2. "The cat meowed"
- 3. "The cat and dog ran"

the	dog	barked	cat	meowed	and	ran
1	1	1	0	0	0	0
1	0	0	1	1	0	0
1	1	0	1	0	1	1

Bag of words - problem

- 1. Cancer was progressing now in remission
- 2. Cancer was in remission now progressing

cancer	was	progressing	now	in	remission
1	1	1	1	1	1
1	1	1	1	1	1

N-grams

"Cancer was progressing now in remission"

2-grams

Cancer was, was progressing, progressing now, now in, in remission

3-grams

Cancer was progressing, was progressing now, progressing now in, now in remission

Skip N-grams

"The cat and dog ran"

1-skip 2-grams

The * and

Cat * dog

And * ran

2-skip 2-grams

The * * dog

Cat * * ran

Steps in R

- 1.Import text
- 2.Clean text
- 3. Count n-grams
- 4. Make matrix
- 5. Fit model
- 6.Make predictions

Making a term document matrix in R

```
library(tm) #load the tm package
corpus 1 <- Corpus (VectorSource(txt)) #creates a 'corpus' from a character</pre>
vector
corpus 1 <- tm map(corpus 1, content transformer(tolower))</pre>
corpus 1 <- tm map(corpus 1, removeWords, stopwords("english"))</pre>
corpus 1 <- tm map(corpus 1, removePunctuation)</pre>
corpus 1 <- tm map(corpus 1, stemDocument)</pre>
corpus 1 <- tm map(corpus 1, stripWhitespace)</pre>
tdm <- TermDocumentMatrix(corpus 1)</pre>
Library (Rweka)
four gram tokeniser <- function(x, n) {</pre>
         RWeka:::NGramTokenizer(x, RWeka:::Weka control(min = 1, max = 4))
tdm 4gram <- TermDocumentMatrix(corpus 1,
                  control = list(tokenize = four gram tokeniser)))
```


The Elastic Net – glmnet package

 $\hat{\beta} = \underset{\beta}{\operatorname{argmin}} (\|y - X\beta\|^2 + \lambda_2 \|\beta\|^2 + \lambda_1 \|\beta\|_1)$

```
library(glmnet)
#convert term-document-matrix to a sparseMatrix
X = \text{sparseMatrix}(\text{tdm } 4\text{gram}), \text{ tdm } 4\text{gram}, x = \text{tdm } 4\text{gram})
#function fits a one-v-all logistic regression
fit fun = function(i, y, x) {
         #y is a factor variable
         #x is a term-document matrix
         #select one level
         lev = levels(y)[i]
         #make x and y variables
         y i = y == lev
         glm i \leftarrow cv.glmnet(x = x, y = y i, family= "binomial")
         glm i
out <- alply(1:nlevels(y), 1, fit fun, x = x, y = y)
```


Automatic tokenisation – textreg package

Fast Logistic Regression for Text Categorization with Variable-Length N-grams

Georgiana Ifrim
Max-Planck Institute for
Informatics
Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany
ifrim@mpi-inf.mpg.de

Gökhan Bakır Google Switzerland GmbH Freigutstrasse 12 Zürich, Switzerland ghb@google.com Gerhard Weikum
Max-Planck Institute for
Informatics
Stuhlsatzenhausweg 85
66123 Saarbrücken, Germany
weikum@mpi-inf.mpg.de

ABSTRACT

A common representation used in text categorization is the bag of words model (aka. unigram model). Learning with this particular representation involves typically some preprocessing, e.g. stopwords-removal, stemming. This results in *one* explicit tokenization of the corpus. In this work, we introduce a logistic regression approach where learning involves automatic tokenization. This allows us to weaken the a-priori required knowledge about the corpus and results in a tokenization with variable-length (word or character) n-grams as basic tokens. We accomplish this by solving logistic regression using gradient ascent in the space of all n-grams. We show that this can be done very efficiently using

1. INTRODUCTION

The standard bag of words representation is widely used in text categorization as an explicit tokenization of the training text, before employing learning algorithms. Typically, some language dependent pre-processing is employed, such as stop words removal or stemming. Furthermore, a feature selection step [32] is often crucial for computational efficiency and generalization. Such feature-engineering often requires detailed knowledge about the language of the text to be categorized. In practice, this results in a lot of tuning of the classifiers in order to find the right unigram features.

However, there are important text classification tasks for which the initial unigram bag-of-words representation does

Implementation notes

- You need lots of memory
- I used AWS with 64GB RAM and rewrote much of the tm package
- Store processed text in a local database for repeated analysis
- data.table / dplyr for pre-processing
- Save incremental results/ matrices with saveRDS

EXAMPLE 1: Mining for structured data

Patient survival has improved by around 10%

135,000 Sets of notes

Would take around

80

years to manually process

EXAMPLE 2: Predictions about individuals

Predicting survival

'Works'

"WORKS shop assistant 3 days week"

"WORKS civil servant job centre"

"WORKS waitress"

"WORKS shop assistant"

"WORKS part time librarian"

"WORKS office manager"

'Unfortunately'

"UNFORTUNATELY her mri scan confirmed"

"UNFORTUNATELY high risk breast carcinoma"

"UNFORTUNATELY unable cure cancer"

"UNFORTUNATELY confirmed malignant deposit"

"UNFORTUNATELY wound leaking fluid"

Predicting emergency admissions

RECOGNISE • RESUSCITATE • REFER

Unstructured text can be used to make predictions

This can be done in R

Makes huge amount of data useable

Thanks

Tom.liptrot@christie.nhs.uk