Data Mining

CS57300 Purdue University

March 27, 2018

Recap last class

- So far we have seen how to:
 - Test a hypothesis in batches (A/B testing)
 - Test multiple hypotheses (Paul the Octopus-style)

The New York Times Daily Dilemma

- Select 50% users to see headline A
 - Titanic Sinks
- Select 50% users to see headline B
 - Ship Sinks Killing Thousands

- Do people click more on headline A or B?
- If A much better than B we could do better...
- We refer to decision A or B as choosing an arm

Truth is...

- Sometimes we don't only want to find whether hypothesis A is better than hypothesis B
- We really want to use the best-looking hypothesis at any point in time
- Deciding if H_0 : A = B or H_1 : A = B is irrelevant

Real-world Problem

Web in perpetual state of feature testing

Goal:

Acquire just enough information about suboptimal arms to ensure they are suboptimal

 $X_k^{(i)} = \begin{cases} 1 & \text{, if } k\text{-th user seeing headline } i \text{ clicks} \\ 0 & \text{, otherwise} \end{cases}$

(arm A) Titanic Sinks

$$X_k^{(1)} = \begin{cases} 1 & \text{reward} \\ 1 & \text{with probability } p_1 \\ 0 & \text{otherwise} \end{cases}$$

(arm B) Ship Sinks Killing Thousands

$$X_k^{(2)} = \begin{cases} 1 & \text{, with probability } p_2 \\ 0 & \text{, otherwise} \end{cases}$$

Multi-armed Bandits

Multi-armed Bandit Dynamics

$$X_k^{(1)} = \begin{cases} 1 & \text{, with probability } p_1 \\ 0 & \text{, otherwise} \end{cases}$$

k-th time arm A is played

 π_t is the t-th played arm

- Each time
 choose arm *i*∈{1,2}
- Goal: Maximize total expected reward

$$R_T = \sum_{t=1}^{T} X_{n_{\pi_t}(t)}^{(\pi_t)},$$

where
$$n_i(t) = \sum_{h=1}^{t} \mathbf{1} \{ \pi_h = i \}$$

Problem Characteristics

- Exploration-exploitation trade-off
 - Play arm with highest (empirical) average reward so far?
 - Play arms just to get a better estimate of expected reward?
- Classical model that dates back multiple decades [Thompson '33, Wald '47, Arrow et al. '49, Robbins '50, ..., Gittins & Jones '72, ...]

Formal Bandit Definition

- $K \ge 2 \text{ arms}$
- Pulling n_i times arm i produces rewards $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ with (unknown) joint distribution $f(x_1, \ldots, x_{n_i} | \theta_i), \theta_i \in \Theta$
- At time $t \ge n_i(t)$ we know $X_1^{(i)}, \dots, X_{n_i(t)}^{(i)}$, where $n_i(t)$ is the number of pulls of arm i at time t.
- Many formulations assume $X_1^{(i)}, \ldots, X_{n_i(t)}^{(i)}$ form a Markov chain Markov chain: $P[X_k^{(i)}|X_{k-1}^{(i)},X_{k-2}^{(i)},\ldots]=P[X_k^{(i)}|X_{k-1}^{(i)}]$
- Most applications assume i.i.d. draws $P[X_k^{(i)}|X_{k-1}^{(i)},\ldots]=P[X_k^{(i)}]$

Assumptions (can be easily violated in practice)

- (A1) only one arm is operated each time
- (A2) rewards in unused arms remain frozen
- (A3) arms are independent
- (A4) frozen arms contribute no reward

I.i.d. Stochastic Bandit Definition

- Assumption: Conditional Independence $(P[X_k^{(i)}|X_{k-1}^{(i)},\ldots,\theta_i]=P[X_k^{(i)}|\theta_i])$
- $K \ge 2 \text{ arms}$
- Pulling n_i times arm i produces rewards $X_1^{(i)}, \ldots, X_{n_i(t)}^{(i)}$ i.i.d. with distribution $f(x|\theta_i), \theta_i \in \Theta$
- At time $t \geq n_i(t)$ we know $X_1^{(i)}, \dots, X_{n_i(t)}^{(i)}$

Relies on a model $f(x|\theta_i), \theta_i \in \Theta$.

Depending on model can be more general than i.i.d. and Markov assumption.

Goal

Regret

$$R_t = \max_{j^*=1,\dots,K} \sum_{h=1}^t X_{n_{j^*}(h)}^{(j^*)} - \sum_{h=1}^t X_{n_{\pi_h}(h)}^{(\pi_h)},$$

where π is the sequence of arm choices (or way to choose arms [policy]), $n_{\pi_h}(h)$ is the number of times we pull arm π_h at time h.

We can seek to minimize average regret

Future actions depend on past actions. Policy takes into consideration past values

or minimized regret with high probability

$$P[R_t \ge \epsilon] \le \delta$$

Regret Growth with i.i.d. Rewards

- Standard deviation of empirical $\sum_{k=1}^{n_i} X_k^{(i)}$ grows like \sqrt{t}
- Thus, at best $E[R_t] \propto \sqrt{t}$
- Rather, we minimize over π w.r.t. best policy (Pseudo-regret)

$$\bar{R}_t = \max_{i^{\star}=1,...,K} E\left[\sum_{h=1}^{n} (X_{n_{i^{\star}}(h)}^{(i^{\star})}) - \sum_{h=1}^{n} (X_{n_{\pi_h}(h)}^{(\pi_h)})\right]$$
 Optimal policy Chosen policy

Reward Definitions

- Mean reward $\mu_i = E[X_1^{(i)}]$
- Highest reward $\mu^* = \max_{i^*=1,...,K} \mu_i$
- Reward gap: $\Delta_i = \mu^* \mu_i$

Lower Bound on Expected Pseudo-Regret

• Recall

$$\bar{R}_{t} = \max_{i^{\star}=1,\dots,K} E\left[\sum_{h=1}^{t} X_{n_{i^{\star}}(h)}^{(i^{\star})} - \sum_{h=1}^{t} X_{n_{\pi_{h}}(h)}^{(\pi_{h})}\right]$$

$$= t \max_{i^{\star}=1,\dots,K} \mu_{i^{\star}} - E\left[\sum_{h=1}^{t} X_{n_{\pi_{h}}(h)}^{(\pi_{h})}\right]$$

$$= t \max_{i^{\star}=1,\dots,K} - \sum_{k=1}^{K} E\left[n_{k}(t)\Delta_{k}\right]$$

• Asymptotically (Theorem 2, Lai & Robbins, 1985)

$$E[n_i(t)] \geqslant \frac{\log t}{D_{\mathrm{KL}}(f(x|\theta_i), f(x|\theta_{i^\star}))},$$

where $D_{\rm KL}$ is the KL divergence metric.

*The KL-divergence of two distributions can be thought of as a measure of

© 2016 Bruno Ribeiro

their statistical distinguishability

Playing Strategies

Pure Exploration

- Algorithm for K arms
 - Play i with probability 1/K
- Pure exploration does not work well

Play-the-winner (Pure Exploitation)

- Algorithm
 - Let arm i be the arm with the maximum average reward at step t
 - Play i
- Play-the-winner does not work well

ε-greedy

- Assume rewards in [0,1]
- ε-greedy: at time t
 - with probability 1-ε_t play the best arm so far
 - with probability ε_t play random arm
- Theoretical guarantee (Auer, Cesa-Bianchi, Fischer 2002)
 - $\Delta = \min_{i:\Delta_i>0} \Delta_i$ and let $\epsilon_t = \min\left(\frac{12}{\Delta^2 t}, 1\right)$
 - If $t \ge \frac{12}{\Delta^2}$, the probability of choosing a suboptimal arm i is bounded by $\frac{C}{\Delta^2 t}$ for some constant C > 0
 - Then we have a logarithmic regret as $E[n_i(t)] \leq \frac{C}{\Delta^2} \log t$ and $R_t \leq \sum_{i:\Delta_i>0} \frac{C\Delta_i}{\Delta^2} \log t$
 - In practice we use larger values for Δ than the minimum reward gap (too conservative)

Problems of ε-greedy

- For K > 2 arms we play suboptimal arms with same probability
- Very sensitive to high variance rewards
- Real-world performance worst than next algorithm (UCB1)

Detour (Confidence Intervals)

Confidence Intervals

Confidence Interval: An interval of values computed from the observations, that covers the true value with X% probability.

Interpretation example: We are 95% confident that the true average will be in the interval

Computing Confidence Intervals

A simple way to compute confidence intervals is to assume observations come from a Normal distribution.

In a Normal distribution, we know that 95% of the observations are within about 2 standard errors* of the true average.

*empirical standard deviation of the empirical average (average of samples)

Origin of the 2:

In a Normal distribution (actually, t-distribution) 95% of the data will be between +/- 1.96 standard deviations.

Back to Bandits

Optimism in Face of Uncertainty (UCB)

- Using a probabilistic argument we can provide an upper bound of the expected reward for arm i=1,...,K with a given level of confidence
- Strategy: play arm with largest upper bound
- Algorithm known as Upper Confidence Bound 1 (UCB1)

Using the Chernoff-Hoeffding Theorem

Let X_1, \ldots, X_{n_i} be i.i.d. rewards from arm i with distribution bounded in [0, 1], then for any $\epsilon \in (0, 1)$

$$P\left[\sum_{k=1}^{n_i} X_k \le \frac{n_i}{n_i} E[X_1] - \epsilon\right] \le \exp\left(-\frac{2\epsilon^2}{n_i}\right)$$

- UCB1 algorithm
 - t total plays
 - Let $\epsilon = \sqrt{2n_i(t)\log t}$
 - Gives algorithm:

Why?
$$P\left[\frac{1}{n_i(t)}\sum_{k=1}^{n_i(t)}X_k + \sqrt{\frac{2\log t}{n_i(t)}} \le E[X_1]\right] \le t^{-4}$$

$$t) \log t$$

Gives algorithm:
$$\frac{1}{n_i(t)}\sum_{k=1}^{n_i(t)}X_k + \sqrt{\frac{2\log t}{n_i(t)}}$$
• Play arm i with largest $\frac{1}{n_i(t)}$

UCB 1 Regret Bound

Each sub-optimal arm i is pulled on average at most

$$E[n_i(t)] \le \frac{8\log t}{\Delta_i^2} + \frac{\pi^2}{3}$$

times.

Note that the MAB lower bound is O(log t)

Improving Bound → Smaller Regret

- Use Empirical Bernstein's inequality
- Play arm i at time t if i has the maximim

$$\frac{1}{n_i(t)} \sum_{h=1}^{n_i(t)} X_h^{(i)} + \sqrt{\frac{2 \log t \operatorname{var}(X_1^{(i)}, \dots, X_{n_i(t)}^{(i)})}{n_i(t)} + \frac{8 \log t}{3n_i(t)}}$$

UCB for High-variance Distributions

Bubeck et al. gives more details on these "robust" versions of UCB.

S. Bubeck, N. Cesa-Bianchi, and G. Lugosi, "Bandits with heavy tail," Arxiv preprint arXiv:1209.1727, 2012.

Optimal Solution?

- Optimal solutions via stochastic dynamic programming
 - Gittins index
- Suffer from Incomplete Learning (Brezzi and Lai 2000, Kumar and Varaiya 1986)
 - Playing the wrong arm forever with non-zero probability
 - One more reason to be warry of average rewards
- Only applicable to infinite horizon & complex to compute
- Poor performance on real-world problems

Extra

Bayesian Bandits

- Thompson sampling
 - Strategy: select arm i according to posterior probability

$$P[\mu_i = \mu^* | X_1^{(i)}, \dots, X_{n_i}^{(i)}]$$

- Can be used in complex problems (dependent priors, complex actions, dependent rewards)
- Great real-world performance
- Great regret bounds

Bernoulli Bandits

- Let $\mu_i \in (0,1)$
- Reward of arm i = 1, ..., K at step k is $X_k^{(i)} \sim \text{Bernoulli}(\mu_i)$

Thompson Sampling (1933)

• Strategy:

- Uniform prior $\mu_i \sim U(0,1)$
- Play arm i at time t as to maximize posterior $P[\mu_i = \mu^* | X_1^{(i)}, \dots, X_{n_i(t)}^{(i)}]$

Bernoulli rewards + Beta priors

 $Y_t|I_t \sim \text{Bernoulli}(\mu_{I_t})$

Prior: Beta distribution

$$P[\mu_i | \alpha, \beta] = \frac{\mu_i^{\alpha - 1} (1 - \mu_i)^{\beta - 1}}{\int_0^1 p^{\alpha - 1} (1 - p)^{\beta - 1} dp}$$

Posterior $\mu_i \sim \text{Beta}(\alpha + \sum_{k=1}^t Y_k \mathbf{1}\{I_k = i\}, \beta + \sum_{k=1}^t (1 - Y_k) \mathbf{1}\{I_k = i\})$

Beta distribution PDF 5

Thompson Algorithm (for Bernoulli rewards)

Prior arm $i: \mu_i \sim \text{Beta}(\alpha, \beta)$

 $S_i = 0$; $F_i = 0$ // no. successes and failures of arm i

- 1. $\forall i, \text{ draw } \hat{\mu}_i \sim \text{Beta}(S_i + \alpha, F_i + \beta)$
- 2. Choose arm $I_t = \arg \max_i \hat{\mu}_i$ and get reward Y_t
- 3. $S_{I_t} = S_{I_t} + Y_t$
- 4. $F_{I_t} = F_{I_t} + (1 Y_t)$

TS: Bernoulli Reward Regret

Theorem (Agrawal and Goyal, 2012)

For all μ_1, \ldots, μ_K there is a constant C such that $\forall \epsilon > 0$,

$$\bar{R}_t \le (1+\epsilon) \sum_{i:\Delta_i > 0} \frac{\Delta_i \log t}{D_{\mathrm{KL}}(\mu_i, \mu^*)} + \frac{Ck}{\epsilon^2}$$

Proof idea

 Posterior gets concentrated as more samples are obtained

Some Shortcomings of MAB

- Facebook & Linkedin use two-sample hypothesis tests instead of MAB. Why?
- More generally, which MAB assumptions often does not hold in real-life applications?

Assumptions most violated in practice

(A2) rewards in arms not used remain froze Recommendation influence users

(A3) arms are independent

Users are influenced by what they see and by each other

Advanced Topic

(Contextual Bandits)

Contextual Bandits

- Bandits with side information
- We know reader subscribes to magazine
- Headline A may be more successful in this subpopulation
 - Titanic Sinks
- Headline B better for general population
 - Ship Sinks Killing Thousands

THE WEATHER.

Uncettled Tweeday: Wednesday,
fair, cooler; moderate apatherly
winds, becoming variable.

EFFer toll wanter expert ton Pain III.

TITANIC SINKS FOUR HOURS AFTER HITTING ICEBERG; 866 RESCUED BY CARPATHIA, PROBABLY 1250 PERISH; ISMAY SAFE, MRS. ASTOR MAYBE, NOTED NAMES MISSING

Col. Astor and Bride Isidor Straus and Wife, and Maj. Butt Aboard. "RULE OF SEA" FOLLOWEL

Women and Children Put Over in Lifeboats and Are Supposed to be Safe on Carpathia.

Vincent Aster Calls at White Star Office for News of His Father and Leaves Weeping.

Manager of the Line Insisted Titanio Was Unsinkable Even After She Had Gone Down. HEAD OF THE LINE ABOARD

J. Bruce lemay Making First Trip be Gigaetis Ship That Was to Surpasa All Others.

The admission that the Titanis, the Miggest steamship in the world, had

to the Bottom at 2:20 A. M.

Except to Pick Up the Few H

WOMEN AND CHILDREN FIRST Cunarder Carpathia Rushing to New York with the

SEA SEARCH FOR OTHERS
The California Stands By on
Chance of Picking Up Other
Boats or Rafts.

OLYMPIC SENDS THE NEWS
Only Ship to Flash Wireless Measages to Shore After the

Contextual Bandits: Problem Formulation

- Consider a hash (random function) with deterministic projection $h:\{0,1\}^n \to \mathbb{R}^m$
- At each play:
 - 1. Observe features $X_t \in \mathcal{X}$
 - 2. Choose arm $i_t \in \{1, \ldots, K\}$

Learned from observations (e.g. recursive least squares)

3. In theory we will get reward $Y_t = f(h(x_t, z_{i_t})|\theta) + \epsilon_t$ some useful assumptions about f

User features

Headline features (context)

- $f(x|\theta) = \theta^{T}x$ (linear bandit)
- $f(x|\theta) = g(\theta^{T}x)$ (generalized linear bandit)

Contextual Bandits (linear model)

First we build model

$$\begin{bmatrix} y_1 \\ \vdots \\ y_t \end{bmatrix} = \begin{bmatrix} h(x_1^{\mathsf{T}}, z_1^{\mathsf{T}}) \\ \vdots \\ h(x_t^{\mathsf{T}}, z_t^{\mathsf{T}}) \end{bmatrix} \theta + \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_t \end{bmatrix}$$

We can estimate $\hat{\theta}_t$ using a regularized least-squares estimate of θ at time t

$$\hat{\theta}_t = (\lambda I + \mathbf{X}_t^{\mathsf{T}} \mathbf{X}_t)^{-1} \mathbf{X}_t^{\mathsf{T}} \vec{Y}_t,$$

$$\lambda > 0$$

Thompson Sampling for Linear Contextual Bandits 1/2

Assume noise is Gaussian

$$\epsilon_t \sim N(0, \sigma^2)$$

and that θ has prior

$$\theta \sim N(0, \kappa^2 I)$$

The posterior distribution of θ is given by

$$p(\theta|\mathbf{X}_t, \vec{Y}_t) = N(\hat{\theta}_t, \Sigma_t)$$

where

$$\Sigma_t = \lambda I + \mathbf{X}_t^{\mathsf{T}} \mathbf{X}_t,$$

where
$$\lambda = \frac{\sigma^2}{\kappa^2}$$
.

Thompson Sampling for Linear Contextual Bandits 2/2

Thompson Sampling heuristic:

$$\tilde{\theta}_t \sim N(\hat{\theta}_t, \Sigma_t)$$

and obtain best arm

$$i^* = \underset{i \in \{1, \dots, K\}}{\operatorname{arg \, max}} h(x_{t+1}, z_i) \tilde{\theta}_t$$

The above draws each context ∝ posterior probability of being optimal

From [Russo, Van Roy 2014] pseudo-regret is

$$\bar{R}_t = \tilde{O}(d\sqrt{t})$$

PS: \tilde{O} ignores logarithmic factors

Example

Effectiveness of ad may depend on consumer

This week we ask you to help Wikipedia. To protect our independence, we'll never run ads. We're sustained by donations averaging about \$15. Only a tiny portion of our readers give. If everyone reading this right now gave \$3, our fundraiser would be done within an hour. That's right, the price of a cup of coffee is all we need. We're a small non-profit with costs of a top website: servers, staff and programs. Wikipedia is something special. It is like a library or a public park where we can all go to learn. If Wikipedia is useful to you, please take one minute to keep it online and growing. Thank you.

Response Prediction for Display Advertising

- Example:
 - Chapelle et al. (2012)
- The features used:
 - Ω_{t+1} set of sparse binary entries
 - Concatenate categorical features of user with features of all bandits (ad, headline)
 - Use hash function h() maps from categorical space to lower dimensional \mathbb{R}^m space

Algorithm for Display Advertising

Goal: maximize the number of clicks or conversions

Model: Logistic regression

$$P[Y_t = 1 | x_t, z_{I_t}, \theta] = \frac{1}{1 + \exp(-\theta^T h(x_t, z_{I_t}))}$$

Response prediction based on training set $\Omega'_t = \{(x_k, z_{I_k}, y_k)\}_{k=1,...,t}$

$$\hat{\theta} = \underset{\alpha \in \mathbb{R}^m}{\arg\min} \frac{\lambda}{2} \|\alpha\|^2 + \sum_{k=1}^t \log(1 + \exp(-y_k \alpha^{\mathsf{T}} h(x_k, z_{I_k})))$$

Display Ads (cont)

If prior $\theta \sim N(0, \frac{1}{\beta}I)$, the posterior $P[\theta|D]$ has no closed form expression but we can use the Laplace approximation of the integral

$$P[\theta|D] = N(\hat{\theta}, \operatorname{diag}(q_i)^{-1})$$

where

$$q_i = \sum_{j=1}^t w_{j,i}^2 p_j (1 - p_j)$$
 with $p_j = (1 + \exp(-\hat{\theta}^T h(x_j, z_{I_j})))^{-1}$

and
$$w_j = h(x_j, z_{I_j})$$

Using Thompson Sampling Algorithm for Ad Display

- 1. A new user arrives at time t+1
- 2. Form the set $\Omega_{t+1} = \{(x_t, z_i) : i \in \{1, \dots, K\}\}$ of context corresponding to the different items that can be recommended to user
- 3. Sample vector from the current (approximate) posterior

$$\tilde{\theta}_t \sim N(\hat{\theta}, \operatorname{diag}(q_i)^{-1})$$

4. Choose the context (x_t, z_i) that maximizes probability of positive response according to

$$i = \underset{i=1,...,K}{\operatorname{arg \, max}} \frac{1}{1 + \exp(-\tilde{\theta}_t^{\mathsf{T}} h(x_t, z_i))}$$

5. Recommend item and get response Y_{t+1}