MIE1512 Data Analytics

Graph Analytics

Big Graphs

Natural to model relationships as graphs

Big Graphs

Natural to model relationships as graphs

It is a challenge to

query and analyze large graphs

due to **variety** and **volume**

DBpedia describes ~315 million people, places, etc.

Twitter has ~2 billion follower edges between people.

Motivation to Summarize Large Graphs

- Well Known Problem
 - Compute the *bisimilar contraction* (a summary) of a labelled graph.
- Practical Applications
 - Data Management: exploration and query optimization for semi-structured/XML/RDF data. Motivation to summarize large graphs for exploration and query optimization.
- Construction Implementations Exploiting Parallelism
 - Message Passing Interface, Map-Reduce
 - Scalable Graph Systems with a Vertex-centric Model

Background: Bisimulation Contractions

- Two nodes v, v' are FWBW bisimilar (written v ≈ v'):
 - (FW) if (v, w) is an edge with label I, then there is an outgoing edge (v', w') with label I, and $w \approx w'$; and
 - (BW) if (w, v) is an edge with label I, then there is an incoming edge (w', v') with label I, and $w \approx w'$.
- A summary has blocks and block edges
 - Each block has an extent that groups all bisimilar nodes; this leads to a summary containing the fewest possible blocks and is commonly referred to as a contraction.
 - A singleton block contains exactly 1 node in its extent, i.e.,
 the node is not bisimilar to any other node.

Query Optimization Using Summaries

A *navigational query* returns only the query's endpoints.

EXAMPLE: Find actors who appear in movies without country information; additionally, the director of those movies should also be the producer of a movie with country information.

Query Optimization Using Summaries

Like in the example below, in many real-world is. datasets, the *majority* of blocks are **singletons**. **EXAMPL** ountry movies v addition movies s Even if a summary has mostly singletons, it can Actor a movie still improve query evaluation performance (many blocks are large!). Actor block bc:831d47a85 Stanley Director block Kubrick Nicholson bc:05e36522d :director rdfs:label bc:extentContains rdfs:label bc:extentContains rdf:type :producer :actor :producer Country block dir:8487 :director :country→ :director_ bc:5653 iuk movie:2014 bc:extentContains rdf:type :country Movie block :actor bc:061abd6c Director Class block Actor block :Director bc:extentContains :actor bc:78232bh bc:dgd326jab :director actor:45772 -bc:extentContainsrdfs:label rdftype rdf:type :actor Joe Turkel :actor .bc:extentContains dir:15437 Movie block Director block -rdfs:label→ Paths of Glory: movie:38125 bc:05678dd6c bc:9ki4lq2m -bc:extentContains :director dir:10810 bc:extentContains The Hunger :related :director _rdfs:label movie:10559 Games :director bc:extehtContains The Hunger Movie block :related:related Games: Catching bc:ak6ort4i rdfs:label Week 6 bc:extentContains

Summary Construction State of the Art

- Naïve algorithm by [Kanellakis, Smolka'90]
- MPI implementation by [Blom,Orzan'02] processes unstable blocks
 - A block is unstable if a node in that block has an edge to a block that was split
- Map-Reduce implementations
 - Address block size (and reducer load) skew
 [Lange,Fletcher,Bra,Hidders,Wu'13]
 - (HP,HL) Reduce MR tasks per iteration from 3 to 2
 [Schatzle,Neu,Lausen,PrzyjacielZablocki'13]

Summary Construction State of the Art

- Naïve algorithm by [Kanellakis, Smolka'90]
- MPI implementation by [Blom,Orzan'02] processes unstable blocks

All exhibit similar per-iteration times.

Empirical observation: 10-30 iterations are needed.

- Map-Reduce implementations
 - Address block size (and reducer load) skew
 [Lange, Fletcher, Bra, Hidders, Wu'13]
 - (HP,HL) Reduce MR tasks per iteration from 3 to 2
 [Schatzle,Neu,Lausen,PrzyjacielZablocki'13]

Bisimilarity in MR

From [Schatzle, Neu, Lausen, Przyjaciel Zablocki' 13]

Map

Algorithm 4: update job - **map**(key, value)

```
input: key: byte offset in input file, can be ignored value: a quad (s, p, o, ID^k(o))
```

- $(s, p, o, ID^k(o)) \leftarrow \text{parseQuad}(value)$
- $_{2} \text{ emit}((s,0), (s,p,o,ID^{k}(o)))$
- з $\operatorname{emit}((o,1), (s, p, o, ID^k(o)))$

Reduce

Algorithm 5: update job - **reduce**(key, values)

```
input : key: composite key (node s, sortOrder)
              values: a list of quads [(s, p, o, ID^k(o))]
1 sig^{k+1}(s) \leftarrow \{ \}
 2 while value in values \land key.sortOrder = 0 do
(s, p, o, ID^k(o)) \leftarrow \text{parseQuad}(value)
 sig^{k+1}(s) \leftarrow sig^{k+1}(s) \cup \{(p, ID^k(o))\}
5 end
\epsilon // new signature of s complete
7 ID^{k+1}(s) \leftarrow hash(sig^{k+1}(s))
s while value in values \land key.sortOrder = 1 do
   (x, p, s, ID^k(s)) \leftarrow \text{parseQuad}(value)
      emit("graph", (x, p, s, ID^{k+1}(s)))
11 end
12 // generate separate node ID list for counter job
13 emit("node IDs", s, ID^{k+1}(s))
```

MR Iteration Workflow

Efficient Summary Construction

Joint work with Shahan Khatchadourian, Valeria Fiona, Giuseppe Pirro

- Vertex-centric construction of bisimulation summaries using the GraphChi [Kyrola, Blelloch, Guestrin'12] parallel graph processing framework
 - Similar model to other vertex-centric scalable graph analytics tools (Pregel, Giraph, Hama, GraphLab, PowerGraph, GraphX)
- A novel and very effective singleton optimization that drastically reduces per-iteration times after only a few iterations
- Experimental validation
 - Significantly outperforms Hadoop state of the art
 - Validation of summary construction times comparable to dataset load and summary write
 - Fast construction of different summaries

GraphChi Processing Model

- Support for Bulk Synchronous Parallel model [Valiant'90]
 - Nodes execute an Update method in parallel that compute a new block identifier using previous iteration values as input.

```
parallel foreach v \in V_G do V-Update(v) end
```

 GraphChi is effective at processing large graphs because it loads outgoing edges of nodes into main-memory then streams their incoming edges from disk.

Used by singleton optimization to disable singletons

- Support for *scheduling* disable vertex v
 - Common in graph algorithms, e.g., BFS.
 - GraphChi skips loading disabled nodes from disk.

GraphChi Platform on Multicore+Disk

Node V-Update function

Iteration 1

 $block_1(1) = hash(sort(\{(a,block_0(2))\}))$

 $block_1(2) = hash(sort(\{(b,block_0(4))\}))$

 $block_1(3) = hash(sort(\{(b,block_0(5))\}))$

Node V-Update function

Iteration 2

 $block_2(2)=hash(sort(\{(b,block_1(4))\}))$ $block_2(3)=hash(sort(\{(b,block_1(5))\}))$ $block_2(4)=hash(sort(\{(c,block_1(6))\}))$ $block_2(5)=hash(sort(\{(c,block_1(7))\}))$

Stability ≠ Singleton

Stability and Singleton do not reduce to the other.

- Non-singleton blocks that are Stable
- Singleton blocks that are Unstable

k=3

Key empirical observation:

Most blocks are singleton and stable
and singleton is cheaper to check.

Bisimilar Contraction Singleton (B) variation

```
L1. foreach v \in V_G do block_0(v) = '0' end // initialize
      count_{old} \leftarrow 1, count_{new} \leftarrow 0, k \leftarrow 0
L3. while count_{old} \neq count_{new} do
L4.
        parallel foreach v \in V_G do V-Update(v) end
L5. count_{old} \leftarrow count_{new}
L6. count_{new} \leftarrow |\{block_{k+1}(v) \mid v \in V_G\}|
L7. k \leftarrow k+1
L8. end
L9. V_S \leftarrow \{block_k(v) \mid v \in V_G\},
      E_S \leftarrow \{(block_k(v), block_k(v')) \mid (v, v') \in E_G\}
                          Method: V-Update(v)
                          V1. fwsig(v) = \{(+m(v, v'), block_k(v')) \mid (v, v') \in \}
                                E_G, m(v, v') \in M
                          V2. bwsig(v) = \{(-m(v', v), block_k(v')) \mid (v', v) \in
                                E_G, m(v', v) \in M
                          V3. block_{k+1}(v) =
                                hash(sort(block_k(v) \cup fwsig(v) \cup bwsig(v)))
```


Bisimilar Contraction Singleton (S) variation

```
L1. foreach v \in V_G do block_0(v) = '0' end // initialize
L2. count_{old} \leftarrow 1, count_{new} \leftarrow 0, k \leftarrow 0
L3. while count_{old} \neq count_{new} do
L4'. parallel foreach v \in V_G do V-Update-Singleton(v)
L5. count_{old} \leftarrow count_{new}
L6. count_{new} \leftarrow |\{block_{k+1}(v) \mid v \in V_G\}|
L7. k \leftarrow k+1
L8, end
L9. V_S \leftarrow \{block_k(v) \mid v \in V_G\},
     E_S \leftarrow \{(block_k(v), block_k(v')) \mid (v, v') \in E_G\}
                              Method: V-Update-Singleton(v)
                              S1. if |\{v' \mid v' \in block_k(v)\}| > 1 then do
                              S2. V-Update(v)
                              S3. else do
                              S4. disable vertex v
                              S5. end
```

Experimental Validation Datasets

- LinkedMDB [Hassanzadeh, Consens'09] (Imdb) describes movies and related entities using 222 edge labels
- DBpedia (dbp) describes real-world entities such as people and places using 1,393 edge labels
- Twitter has unlabeled edges to describe follower relationships amongst its users

FW Summaries - GraphChi vs. Hadoop

For LinkedMDB

- (HP) Pseudo-distributed is over **2x faster** than (HL) Local mode.
- S is **8x faster** than HP.

For **DBPedia**

- S is around *6x faster* than HP and *3x faster* than B.
- HP is more than **7x faster** than HL.
- HL requires \sim 10 hours per iteration (vs. 10-30 mins).

Summary	N	E	В	\mathbf{S}	$_{ m HL}$	HP
lmdb	85,714	999,934	4.2	4.0	73	32
dbp	13,429,903	229,490,296	941	331	5,832*	1,972

* time for first 10 iterations

FW Summaries Experimental Results

LinkedMDR

Millions of blocks and singletons per iteration

FWBW Construction vs Load plus Write

- S variation is ~3x, 4x, and 5x faster than the B variation for LinkedMDB, DBpedia, and Twitter, respectively.
- Time taken to compute dbp's FWBW summary using the S variation is over 50% faster than the time to load the dataset graph plus write the summary.

Summary	N	E	Load	В	\mathbf{S}	Write
lmdb	844,877	4,311,098	0.12	8.6	2.8	0.75
dbp	32,274,111	278,182,230	107	775	187	207
Twitter	48,332,025	1,945,307,755		3,118	632	

FWBW Summaries Experimental Results

(b) Millions of singletons and non-singletons per iteration

Twitter FWBW summary construction

Full and Selective FWBW Summaries

Selective summaries, that summarize a subset of a dataset's predicates, are almost *2x faster* to compute than the full summary. The S variation constructs the d13 summary over *2x faster* than the instance load plus summary write.

Summary	Load	В	S	Write
dbp	107	775	187	207
d30	160	611	125	125
d13	131	411	95	95

Selective summaries can improve query performance more than a full summary.

Selective Summaries Experimental Results

Selective summaries can require different iterations.

Remarks

Large bisimulation summaries can be *constructed efficiently* using scalable graph analytics platforms (with big improvements thanks to a novel *singleton optimization*)

Full and selective summaries can *improve query performance* – we developed a system to achieve this on existing (unmodified) SPARQL processors using query translations

An Overview of S+EPPs

[CFKP'15] Consens M. P., Fionda V., Khatchadourian S., Pirrò G. S+EPPs: Construct and Explore Bisimulation Summaries, plus Optimize Navigational Queries; all on Existing SPARQL Systems, PVLDB 2015