Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Лабораторна робота №7

Тема: Синтез мікропрограмного (керуючого) автомата у вигляді автомата Мура

Роботу виконав студент 3 курсу мережевий адміністратор Цибульський Роман Олександрович Мета роботи: Провести структурний синтез керуючого автомата Мура.

Лабораторне завдання

1. Згідно вашого варіанту, розробіть функціональну схему керуючого автомата, що:

Номер варіанту $6248 = 1\ 1000\ 0110\ 1000,\ 00\ 0110\ 1000$ за умовою

Н6	H7	Н8	H9	H10	Завдання	
1	1	0	0	0	знаходить максимальний та	
					мінімальний елемент масиву	
					А(n,n,n) та міняє їх місцями	

Функціональну схему керуючих частин автомата синтезувати на елементах:

h1	h10	Логічні елементи
0	0	І, АБО, НЕ

Як елемент пам'яті, використайте:

h5	H4	Тип тригера
0	1	T

1.1. Змістовна схема алгоритму

1.2. Таблиця кодування вершин

Код	Зміст	Примітка
Y1	i = 0	ініціалізація лічильника
11	1 – 0	виміру і масиву arr[i][j][k]
Y2	$A_{\text{max}} = -10^{10}$	ініціалізація значення
12	$A_{\text{max}} = -10$	максимального елементу
Y3	$A_{\text{min}}=10^{10}$	ініціалізація значення
13	$A_{\min} - 10$	мінімального елементу
Y4	imax=0	ініціалізація індексу
14	IIIIax—0	максимального елементу виміру і
Y5	jmax=0	ініціалізація індексу
13	Jillax=0	максимального елементу виміру ј
Y6	kmax=0	ініціалізація індексу
10	KIIIaX-U	максимального елементу виміру k
Y7	imin=0	ініціалізація індексу
1 /	IIIIII—U	мінімального елементу виміру і
Y8	jmin=0	ініціалізація індексу
10	JIIIII-U	мінімального елементу виміру ј
Y9	kmin=0	ініціалізація індексу
19	KIIIIII—U	мінімального елементу виміру k
Y10		завантаження до відповідного регістру
110	n	розрядність виміру k масиву arr[i][j][k]
Y11	***	завантаження до відповідного регістру
111	m	розрядність виміру ј масиву arr[i][j][k]
Y12		завантаження до відповідного регістру
112	p	розрядність виміру і масиву arr[i][j][k]
V12	;_0	ініціалізація лічильника
Y13	j =0	виміру ј масиву arr[i][j][k]
Y14	1,_0	ініціалізація лічильника
114	k=0	виміру k масиву arr[i][j][k]
V15	V CSICSICIA	завантаження до відповідного регістру
Y15	A[i][j][k]	значення елемента масиву А
Y16	imax=i	переініціалізація індексу
110	IIIIax—I	максимального елементу виміру і
Y17	imov-i	ініціалізація індексу
11/	jmax=j	максимального елементу виміру ј
Y18	kmax=k	ініціалізація індексу
110	KIIIAX—K	максимального елементу виміру k
Y19	V = V (3)(3)(1/2)	Перевизначення максимального
117	$A_{\text{max}} = A[i][j][k]$	елементу на поточний
Y20	imin=i	ініціалізація індексу
1 20	1111111—1	мінімального елементу виміру і
Y21	::. :	ініціалізація індексу
1 4 1	jmin=j	мінімального елементу виміру ј
Y22	kmin=k	ініціалізація індексу

		мінімального елементу виміру k			
Y23	$A_{\min} = A[i][j][k]$	Перевизначення мінімального елементу			
123		на поточний			
Y24	k=k+1	перехід до дослідження			
1 27	K—K + 1	наступного елемента виміру k			
Y25	j=j+1	перехід до дослідження			
123	J—J+1	наступного елемента виміру ј			
Y26	i=i+1	перехід до дослідження			
120	1-1+1	наступного елемента виміру і			
Y27	A[imax][jmax][kmax] =	Заміна найменшого значення на			
127	Amin	найбільше			
Y28	A[imax][jmax][kmax] =	Заміна найбільшого значення на			
120	Amin	найменше			
Y29	A[i][j][k] Out	Виведення зміненого масиву			
		умовна вершина: так – розмір вхідного			
X1	n+m+p>0	масиву додатній, ні – перевизначення			
		розміру масива			
		умовна вершина: так – дослідження			
X2	i <p< td=""><td colspan="3">чергового елемента масиву А виміру і,</td></p<>	чергового елемента масиву А виміру і,			
		ні – всі елементи масиву А досліджені			
		умовна вершина: так – дослідження			
X3	$j \ll m$	чергового елемента масиву А виміру ј,			
		ні – всі елементи масиву А досліджені			
		умовна вершина: так – дослідження			
X4	$k \le n$	чергового елемента масиву A виміру k,			
		ні – всі елементи масиву А досліджені			
		умовна вершина: так – елемент масиву			
X5	A[i][j][k]>Amax	більше за максимальний, ні – елемент			
		менше			
		умовна вершина: так – елемент масиву			
X6	A[i][j][k] <amin< td=""><td>менше за мінімальний, ні – елемент</td></amin<>	менше за мінімальний, ні – елемент			
		більше			

1.4. Відмічена ГСА

1.5. Граф-схема переходів

1.6. Прямая таблиця переходів-виходів автомата Мура

Початковий стан	Ү (вихідний сигнал,	Стан переходу	Х (умова	
sm	що виробляється	sk	переходу)	
	при переході)			
S0	-	S1	Clk	
S1	Y1,Y2,Y3,Y4,	S2	Clk	
	Y5,Y6,Y7,Y8,Y9			
S2	Y10	S 3	Clk	
S3	Y11	S4	Clk	
S4	Y12	S2	<u>X1</u>	
		S5	X1X2	
		S13	$X1\overline{X2}$	
S5	Y13	S6	X3	
		S12	<u>X3</u>	
S6	Y14	S7	X4	
		S11	<u>X4</u>	
S7	Y15	S8	X5	
		S9	X 5X6	
		S10	<u> </u>	
S8	Y16,Y17,Y18,Y19	S9	X6	
		S10	<u>X6</u>	
S9	Y20,Y21,Y22,Y23	S10	Clk	
S10	Y24	S7	X4	
		S11	<u>X4</u>	
S11	Y25	S6	X3	
		S12	X 3	
S12	Y26	S5	X2	
		S13	<u>X2</u>	
S13	Y27	S14	Clk	
S14	Y28	S15	Clk	
S15	Y29	S0	Clk	

1.7. Зворотня таблиця переходів-виходів автомата Мура

Початковий стан	Ү (вихідний сигнал,	Стан переходу	Х (умова
sm	що виробляється	sk	переходу)
	при переході)		
S0	Y1,Y2,Y3,Y4,	S1	Clk
	Y5,Y6,Y7,Y8,Y9		
S 1	Y10	S2	Clk
S4			<u>X1</u>
S2	Y11	S3	Clk
S3	Y12	S4	Clk
S4	Y13	S5	X1X2
S12			X2
S5	Y14	S6	X3
S11			
S10	Y15	S7	X4
S6	_		
S7	Y16,Y17,Y18,Y19	S8	X5
S7	Y20,Y21,Y22,Y23	S 9	X 5X6
S8			X6
S7	Y24	S10	<u>X5</u> X6
S8			<u>X6</u>
S 9			Clk
S6	Y25	S11	$\overline{X4}$
S10			
S5	Y26	S12	X 3
S11			
S4	Y27	S13	$X1\overline{X2}$
S12			<u>X2</u>
S13	Y28	S14	Clk
S14	Y29	S15	Clk
S15	Y29	S0	Clk

$$M = 16$$

 $m = [log 2 M[=]log 2 16[= 4]$

Q4	0	1	1	0
Q4 Q3	0	0	1	1
Q1Q2				
00	S 0	S1	S2	S 3
01	S13	S15	S14	S4
11	S12	S 9	S10	S5
10	S 11	S 8	S 7	S 6

S0 - 0000

S1 - 0001

S2 - 0011

S3 - 0010

S4 - 0110

S5 - 1110

S6 - 1010

S7 - 1011

S8 - 1001

S9 - 1101

S10 - 1111

S11 - 1000

S12 - 1100

S13 - 0100

S14 - 0111

S15 - 0101

Початковий	K(sm)	Ү (вихідний	Стан	K(sk)	Х (умова	Ф3
стан sm		сигнал, що	переходу		переходу)	
		виробляється при	sk			
		переході)				
S0	0000	Y1,Y2,Y3,Y4,	S1	0001	Clk	T4
		Y5,Y6,Y7,Y8,Y9				
S1	0001	Y10	S2	0011	Clk	T3
S4	0110				<u>X1</u>	T2,T4
S2	0011	Y11	S 3	0010	Clk	T4
S3	0010	Y12	S4	0110	Clk	T2
S4	0110	Y13	S5	1110	X1X2	T1
S12	1100				X2	Т3
S5	1110	Y14	S6	1010	Х3	T2
S11	1000					Т3
S10	1111	Y15	S7	1011	X4	T2
S6	1010					T4
S7	1011	Y16,Y17,Y18,Y19	S8	1001	X5	Т3
S7	1011	Y20,Y21,Y22,Y23	S9	1101	X 5X6	T2,T3
S8	1001				X6	T2
S7	1011	Y24	S10	1111	<u>X5</u> X6	T2
S8	1001				<u>X6</u>	T2,T3
S9	1101				Clk	Т3

S6	1010	Y25	S11	1000	$\overline{X4}$	Т3
S10	1111					T2,T3,T4
S5	1110	Y26	S12	1100	X 3	Т3
S11	1000					T2
S4	0110	Y27	S13	0100	$X1\overline{X2}$	Т3
S12	1100				<u>X2</u>	T1
S13	0100	Y28	S14	0111	Clk	T3T4
S14	0111	Y29	S15	0101	Clk	Т3
S15	0101	-	S0	0000	Clk	T2T4

$$T1 = S4X1X2 + S12\overline{X2}$$

$$T2 = S4\overline{X1} + S3 + S5X3 + S7\overline{X5} + S8 + S10 + S11\overline{X3} + S15$$

$$T3 = S1 + S12X2 + S11X3 + S7X5 + S7\overline{X5}X6 + S8\overline{X6} + S9 + S10\overline{X4} + S5\overline{X3} + S4X1\overline{X2} + S13 + S14$$

$$T4 = S0 + S4\overline{X1} + S2 + S6X4 + S10\overline{X4} + S13 + S15$$

$$Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9 = S1$$

Y10 = S2

Y11 = S3

Y12 = S4

Y13 = S5

Y14 = S6

Y15 = S7

Y16,Y17,Y18,Y19 = S8

Y20, Y21, Y22, Y23 = S9

Y24 = S10

Y25 = S11

Y26 = S12

Y27 = S13

Y28 = S14

Y29 = S15

2. Промоделюйте отриману функціональну схему керуючого автомата у Proteus. Переконайтесь у правильності її роботи.

Частина функціональної схема автомата Мура, що складається з комірок пам'яті (JK тригери у режимі робити Т тригера), дешифратор (74145) та кодування умовних вершин

Частини функціональної схема автомата Мура, що складається з комбінаційної схеми визначення функцій виходів та комбінаційної схеми визначення функцій переходів.

3. Виведіть відповідні графіки для вхідних та вихідних сигналів, що будуть в повній мірі описувати роботу розробленого Вами автомату.

Висновок: в даній лабораторній роботі провела структурний синтез керуючого автомата Мура, а також зібрала його схему в Proteus і перевірила коректність її роботи.

Контрольні питання:

- 1. Дайте визначення цифрового автомату. пристрій, що характеризується набором внутрішніх станів в яке він потрапить під дією команд закладеної в нього програми. Перехід автомата з одного стану в інший здійснюється в певний момент часу.
- 2. З яких етапів складається структурний синтез цифрового автомата Мура? Етапи проектування
 - Побудова змістовної схеми алгоритму.

- Побудова блок-схеми закодованого мікроалгоритму.
- Побудова граф-схеми переходів автомата Мура.
- Побудова таблиць переходів-виходів автомата Мура.
- Кодування станів автомата.
- Побудова структурної таблиці переходів-виходів
- автомата Мура.
- Визначення системи рівнянь переходів.
- Визначення системи рівнянь виходів.
- Побудова функціональної схеми автомата.
- 3. Чим відрізняється автомат Мілі від автомата Мура?

Автомати Мілі та Мура відрізняються законами функціонування автомата

Для Мілі це рівняння:

```
\mathbf{a}(\mathbf{t+1}) = \delta(\mathbf{a}(\mathbf{t}), \mathbf{z}(\mathbf{t}));
\mathbf{w}(\mathbf{t}) = \lambda(\mathbf{a}(\mathbf{t}), \mathbf{z}(\mathbf{t})),
\mathbf{t} = 0,1,2,...
Для Мура:
```

- $a(t+1)=\delta(a(t), z(t));$
- $w(t) = \lambda(a(t)),$
- t = 0,1,2,...

Тобто множина вихідних значень у автомата Мілі від множини вхідних значень, а у автомата Мура ні.

4. RS-тригер ϵ автоматом Мура?

Так, бо вихідні значення залежать тільки від стану автомата.

5. Навіщо використано дешифратор в схемі на рис. 7.7? Для кодування всіх станів автомата.