

Documentazione di Sistema Esperto "Med"

Università degli Studi di Bari—Corso di Informatica

Insegnamento: Ingegneria della Conoscenza e dei Sistemi Esperti

Docente: Chiar.mo Prof. Nicola Fanizzi

Studente: Vittorio Calabrese—matr. 555662

Posta elettronica: vitcal78@gmail.com teams: v.calabrese3@studenti.uniba.it

cell. 389/9208776

Sommario

Richiamo teorico	2
Sintesi del Sistema Esperto proposto	
BASE DI CONOSCENZA SISTEMA MED	3
Reti Bayesiane – breve richiamo teorico	3
Composizione Belief Network	3
Composizione regole terapie	3
Anagrafica paziente ed "osservazioni"	4
Sintesi delle responsabilità del modulo della base di conoscenza	4
Diagramma UML della base e descrizioni classi	4
AGENTE inferenziale "MED"	6
Sintesi delle responsabilità del modulo agente	6
Diagramma di sequenza dell'agente inferenziale	6
Diagramma UML modulo agente e descrizioni classi	7
Test del Sistema	8
Installazione	. 9

Sistema esperto

Richiamo teorico

Per sistema esperto si intende un sistema software in grado di gestire conoscenza su un determinato dominio, e di risponderne a seconda delle richieste dell'utilizzatore, dell'ambiente circostante e della mutabilità della conoscenza stessa.

Il sistema esperto pertanto propone un ragionamento, lo giustifica e lo corregge, onde poter migliorare non solo la conoscenza di dominio, ma anche "apprendere", per poter rispondere in maniere più efficiente ed efficace.

L'architettura di un sistema esperto consta pertanto:

- di una base di conoscenza strutturata, ove le informazioni sono tra loro collegate opportunamente, e permettono una forma di rappresentazione e descrizione del mondo da modellare.
- Di un *motore inferenziale* che "naviga" la conoscenza, onde poter studiare, strutturare e dedurre nuova conoscenza da aggiungere al sistema.

La descrizione di cui sopra è semplificativa, e pone le basi per un'ulteriore definizione sistemi di conoscenza distribuiti, dove le basi di conoscenza condividono tra di loro informazioni mediante relazioni, ed i sistemi sono costituiti da più agenti che vi interagiscono.

Sintesi del Sistema Esperto proposto

Scopo di questo manuale è pertanto quello di descrivere in maniera strutturata il sistema esperto "*Med*", come piccolo sistema che studia conoscenza su determinate patologie, sulla loro sintomatologia, sulla diagnostica, e tramite inferenza, proporre terapie.

Segue nel prossimo paragrafo la descrizione della base di conoscenza

BASE DI CONOSCENZA SISTEMA MED

Reti Bayesiane – breve richiamo teorico

Una Belief Network o Rete Bayesiana è una rappresentazione del dominio di conoscenza tramite variabili aleatorie, disposte su un grafo aciclico orientato, stante a definirne una relazione causale tra i nodi.

Il sistema "MED" si propone di studiare una determinata patologia, secondo dei nessi causali, tra patologia/sintomi e patologia/esami diagnostici. Al proporsi di un'osservazione diretta quale sintomo o risposta diagnostica, la funzione di probabilità dei nodi della rete si modifica.

La base di conoscenza costruita, è arricchita di una sezione comprendente le terapie da suggerire a seconda delle patologie eventualmente riscontrate.

In questo paragrafo vedremo come il sistema "MED", compone la base di conoscenza, mentre nel paragrafo successivo ne studieremo l'aspetto inferenziale.

Composizione Belief Network

Il sistema "MED" carica la Belief Network direttamente da file formato JSON, alimentando un dizionario di categorizzazione della singola variabile/nodo ed i suoi valori di dominio.

Il nodo può essere di tre tipologie : patologia, sintomo, esame.

Da tale dizionario viene costruita poi la rete secondo le seguenti modalità di gestione del singolo nodo:

- Connessione di arco orientato dal genitore verso il nodo figlio, in modo da creare il legame causale tra i due.
- Viene alimentata una *Tabella di Probabilità Condizionata*, che ha come risultato, il valore della funzione di probabilità di verificarsi dell'evento, dato l'evento del nodo genitore, <u>osservato</u>.

Composizione regole terapie

La base di conoscenza contiene inoltre un insieme di regole che vengono iterate e lette dall'agente inferenziale per proporre una terapia, a seconda delle credenze della rete.

Ci sono due tipi di regole, suddivise per logica:

1. Quelle di tipo propositivo, che propongono una terapia specifica se un determinato stato della rete supera un valore soglia; e.g.

"antipiretico ←P(febbre=moderata)>=40%"

2. Quelle di gestione di collisione tra singole terapie: nell'incertezza, non è possibile prescrivere due terapie che collidano e la cui combinazione sia nociva per il paziente. Nella base viene pertanto impostata una sezione per la gestione delle contraddizioni. Es. Se la terapia t2 prevale per importanza e priorità su t1, allora:

"(TERAPIE_APPL=TERAPIA_APPL\ $\{t1\}$) \leftarrow (false \leftarrow t1 & t2)"

Anagrafica paziente ed "osservazioni"

La base di conoscenza riporta inoltre la casistica per paziente, a seconda delle osservazioni avute, quali sintomi ed eventuali esiti di esami diagnostici già effettuati.

Sintesi delle responsabilità del modulo della base di conoscenza

- 1. Gestire l'anagrafica dei pazienti
- 2. Gestire la casistica dei pazienti
- 3. Costruire la rete Bayesiana
- 4. Porre le regole per impartire i piani terapeutici

Diagramma UML della base e descrizioni classi

Classe	Base	
Descrizione	Gestione della base di conoscenza	
Proprietà	Var	Dizionario contenente le variabili della BN, la tipologia, il dominio e la tabella probabilità condizionata.
	Elenco_terapie	Dizionario contenente le regole per le terapie
	Collisioni	Dizionario contenente regole che stabiliscono contraddizioni tra terapie
	Patients	Dizionario anagrafico contenente pazienti ed osservazioni
	Bn	Belief Network
Metodi	_init_	Metodo di inizializzazione che carica la rete da file JSON

Classe	Prob		
Descrizione	Classe tablella probabili	Classe tablella probabilità condizionata	
Proprietà	var	Variabile a cui assegnare la probabilitytable	
	pars	Variabili/nodo genitori	
	cpt	Tabella probabilità condizionate	
Metodi	init	Metodo di inizializzazione	
	cond_dist	Ritorna un dizionario di	
		distribuzione di probabilità del	
		nodo, dati i genitori	
	cond_prob	Ritorna la probabilità	
		condizionata del valore di	
		dominio della variabile-nodo,	
		dati i genitori	

Classe	Belief_network	
Descrizione	Classe belief Network	
Metodi	_init_	Metodo di inizializzazione che istanzia la rete, con le variabili e le ProbabilityTable date

Classe	Variable		
Descrizione	Classe che modella le vai	Classe che modella le variabili della BN.	
Proprietà	Name	Nome della variabile	
	Size	Dimensione del dominio	
	Domain	Dominio della variabile	
	Val_to_index	Dizionario dal valore di dominio	
		ad un un intero	
Metodi	init	Metodo di inizializzazione che	
		carica la rete da file JSON	

AGENTE inferenziale "MED"

Sintesi delle responsabilità del modulo agente

L'agente inferenziale è stato modellato con una classe separata, dotata di metodo inferenziale.

- 1. Tale metodo itera le regole della base di conoscenza
- 2. Gestisce la casistica della rete interrogando l'anagrafica pazienti
- 3. Interroga le regole per le terapie ricavata dalla base di conoscenza
- 4. Fa inferenza sulla rete
- 5. Impartisce il piano terapeutico.
- 6. Rimodula il piano terapeutico in base alla compatibilità delle terapie.

Diagramma di sequenza dell'agente inferenziale

Classe	Ag	Agente	
Descrizione	Classe agente	Classe agente	
Metodi	_init_(filename,osservazioni)	Metodo di inizializzazione che istanzia l'agente.	
	Infer()	Metodo che inferenzia sulla base e propone le terapie	

Classe	GibbsSampling		
Descrizione	Classe che fa inferenza sulla Belief	Classe che fa inferenza sulla Belief Network mediante campionamento	
	di Gibbs		
Metodi	_init_(filename,osservazioni)	Metodo di inizializzazione	
	query(self, qvar, obs={})	Metodo che inferenzia sulla	
		base, restituendo la probabilità	
		di uno stato, date le	
		osservazioni.	

Test del Sistema

Il sistema presenta un menu principale ove selezionare una casistica

Selezionata la casistica, il sistema elabora e risponde con le osservazioni dei nodi interessanti le terapie.

```
True False True 0.7
True True False 0.2
True True True 0.8

infarto['False', 'True'] dolore_braccio['False', 'True'] f25
False False 0.8
False False 0.2
True True 0.8

Nome paziente:Pippo

osservato sintomo dolore al petto True
Studio probabilità patologia infarto del miocardio
{'False': 0.707, 'True': 0.293}
Studio probabilità patologia angina pectoris
{'False': 0.392, 'True': 0.608}
Studio probabilità sintomo dolore al petto
{'False': 0.0, 'True': 1.0}

Terapie suggerite:{'vasodilatatori', 'ossigeno', 'antinfiammatori'}
Premere un tasto per continuare . . .
```

Installazione

- Per l'installazione e l'esecuzione del sistema MED è necessario disporre di Python versione 3.7.8 e di GIT
- Creare l'ambiente virtuale MED mediante l'istruzione *python -m venv med*
- Attivare l'ambiente creato, entrando nella sotto-cartella *scripts*, e lanciare il comando *activate.bat.*
- Scaricare mediante GIT il repository https://github.com/vitcal78/MED.git
- Installare le librerie richieste al funzionamento, mediante l'istruzione *pip3 install -r requirements.txt*
- Lanciare *go.bat*