

Universidade Federal da Fronteira Sul Curso de Ciência da Computação Informática Básica

Máquina de Turing

Luciano L. Caimi Icaimi@uffs.edu.br

Chapecó, Brasil

Introdução

Alan Turing

- ★ 23 de Junho de 1912 □7 de Junho de 1954
- Considerado o "pai" da computação
- Contribuições:

Máquina de Turing e a tese de Church-Turing

Colossus (Enigma)

Teste de Turing

Introdução

Decidibilidade

 o termo decidível se refere a um problema de decisão, ou seja, a questão da existência de um método efetivo para determinar a pertinência em um conjunto de fórmulas

Problemas decidíveis

 um sistema lógico fixo é decidível se existe um algoritmo eficiente para determinar se fórmulas arbitrárias pertencem a ela

Problemas indecidíveis

Não existe algoritmo

Computabilidade

Os algoritmos conhecidos são demasiado dispendiosos Simplificação; heurísticas

Introdução

Decidibilidade

David Hilbert (início do séc. XX)

 Há alguma maneira de determinar se qualquer fórmula da lógica de predicados de primeira ordem, aplicada aos inteiros, é verdadeira?

Kurt Gödel (1931)

 Teorema da incompletude: construiu uma fórmula que não pode ser provada nem refutada

Alan Turing (1936)

Máquina de Turing: modelo de qualquer computação possível

Hipótese de Church (tese de Church-Turing, não demonstrável)

 Todos os modelos gerais de computação são equivalentes às funções parciais recursivas e às máquinas de Turing (mesmo os computadores atuais)

- Fita de comprimento infinito dividida em células
 - Cada célula pode conter um símbolo (alfabeto finito)
- Controle finito
 - Número finito de estados
- Entrada
 - Cadeia finita constituída por símbolos do alfabeto de entrada
- Cabeça da fita
 - Sempre posicionada em uma célula
 - No início, está na célula mais à esquerda da entrada

- Baseado no estado atual e no valor lido realiza o movimento
- Movimento ou passo da máquina

Função do estado e do símbolo a ser lido pela cabeça

- 1. Mudança de estado pode permanecer no mesmo
- 2. Escrita de um símbolo na célula onde está a cabeça pode ser o mesmo
- Deslocamento da cabeça uma célula à esquerda ou à direita

- Máquina de Turing (TM) M= (Q, Σ, Γ, δ, q₀, B, F)
- Q: conjunto finito de estados de controle
- Σ: conjunto finito de símbolos de entrada
- r: conjunto finito de símbolos da fita
- δ : função de transição (q, X) = (p,Y,D)
 - q é um estado, X um símbolo da fita
 - p é o novo estado, em Q;
 - Y é o símbolo que substitui X;
 - D é L ou R, esquerda ou direita, direção em que a cabeça se move depois da substituição
 - q₀: estado inicial
 - B: branco, símbolo que preenche a fita, exceto as células com a entrada
 - F: conjunto de estados de aceitação ou finais

Exemplo: Implementação de uma máquina de Turing que verifica se um número binário é par ou não.

Um número binário, quando par, tem seu bit menos significativo igual a 0, e quando ímpar igual a 1.

Á máquina percorre a fita até encontrar um simbolo em branco "⊔", então basta ela voltar uma posição e verificar a paridade. Se for 0 ela retorna q_ok, se for 1 ela retorna q_fim. Segue o conjunto de estados (Q) e as funções de transições da máquina (δ) (programa da máquina):

```
Q = {q_inicio, q_teste, q_ok, q_fim}

\Sigma = \{0, 1, \sqcup\}

q_0 = q_inicio

F = {q ok, q fim}
```


q_inicio (#1)

(q, s)	$\delta(s,q)$
(q_inicio, 0)	(0, q_inicio, ->)
(q_inicio, 1)	(1, q_inicio, ->)
(q_inicio, ⊔)	(⊔, q_teste, <-)

q_teste (#2)

	$\delta(s, q)$
(q_teste, 0)	(0, q_ok, -)
(q_teste, 1)	(1, q_fim, -)
(q_teste, ∐)	don't care

q_inicio (#1)

(q, s)	$\delta(s,q)$
(q_inicio, 0)	(0, q_inicio, ->)
(q_inicio, 1)	(1, q_inicio, ->)
(q_inicio, ∐)	(∐, q_teste, <-)

q_teste (#2)

	$\delta(s,q)$
(q_teste, 0)	(0, q_ok, -)
(q_teste, 1)	(1, q_fim, -)
(q_teste, ⊔)	don't care

https://turingmachinesimulator.com/shared/snzvukpgzb

Representações:

Exercício:

Implementar uma MT que verifica a paridade de um número.

A paridade impar é quando o número de '1's presentes no numero é impar. A paridade é par quando a quantidade de '1's presentes no numero é par. Considere o espaço(⊔) a indicação do fim do número.

Quando encontrar o espaço a MT deve escrever na fita a palavra PAR ou a palavra IMPAR conforme a paridade verificada

Apresente o conjunto de estados (Q), o alfabeto (Σ), as funções de transições (δ), o estado inicial (q_0) e os estados finais (F)

Exercício para entregar 1:

Implementação de uma Máquina de Turing para verificar um padrão de caracteres em uma fita. O exercício consiste em encontrar o padrão: "aab" em uma fita de caracteres aleatórios.

A máquina começa no estado q_inicio e deve percorrer a fita a direita até que encontre o padrão definido e então retornar q_ok ou até encontrar o fim da fita.

```
Q = {q_inicio, q_ok, .....}

\Sigma = {a, b, \square}

q_0 = q_inicio

F = {q_ok, q_nao}
```

Apresente: (a) o conjunto de estados completo (Q); (b) as funções de transições (δ) e; (c) o diagrama de transisão de estados (d) o link para a solução no simulador (https://turingmachinesimulator.com) para o problema acima.

Exercício para entregar 2:

Implementação de uma máquina de Turing para copiar a primeira sequência de caracteres "a"s encontrada na fita. A entrada está armazenada no lado direito do cabeçote e a cópia da sequência é feita no lado esquerdo. A máquina percorre a fita até encontrar um caractere "a" e então inicia a cópia dos caracteres "a" encontrados em sequência. Após o fim da cópia a máquina vai para o estado q_ok, se a máquina não encontrar nenhum caractere "a" ela vai para o estado q_fim.

```
Q = {q_ok, q_fim, .....}

\Sigma = {a, b, \sqcup, ...}

q_0 = ?

F = {q ok}
```

Apresente: (a) o conjunto de estados completo (Q); (b) as funções de transições (δ) e; (c) o diagrama de transisão de estados (d) o link para a solução no simulador (https://turingmachinesimulator.com) para o problema acima. 15