Mathematical Notes on Manifolds in Physics

Niklas Zorbach¹ and Marco Knipfer^{1, 2}

June 3, 2019

orem ipsum dolor sit amet, consectetur adipiscing elit. Fusce maximus nisi ligula. Morbi laoreet ex ligula, vitae lobortis purus mattis vel. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Donec ac metus ut turpis mollis placerat et nec enim. Duis tristique nibh maximus faucibus facilisis. Praesent in consequat leo. Maecenas condimentum ex rhoncus, elementum diam vel, malesuada ante.

1 Manifolds

1.1 Topology

This chapter is basically taken from (Schuller, 2015) with our remarks to it.

We start with a set M which is supposed to be the space where physics happens. The weakest structure we need in order to talk about continuity (of curves or fields) is called a topology.

Definition 1.1 (Power set \mathcal{P}) The set of all subsets of M.

Definition 1.2 (Topology)

A Topology \mathcal{O} is a subset $\mathcal{O} \subseteq \mathcal{P}(M)$ satisfying:

1.
$$\emptyset \in \mathcal{O}, M \in \mathcal{O},$$

2.
$$U \in \mathcal{O}, \quad V \in \mathcal{O} \Rightarrow U \cap V \in \mathcal{O}$$

3.
$$U_{\alpha} \in \mathcal{O}, \quad \alpha \in A \Rightarrow \left(\bigcup_{\alpha \in A} U_{\alpha}\right) \in \mathcal{O}$$

Every set has the *chaotic topology*

$$\mathcal{O}_{\text{chaotic}} := \{\emptyset, M\} , \qquad (1)$$

and the discrete topology

$$\mathcal{O}_{\text{discrete}} := \mathcal{P}(M),$$
 (2)

which are both useless.

The special case $M = \mathbb{R}^d = \mathbb{R} \times \cdots \times \mathbb{R}$ has a standard topology for which we need the definition of a soft ball.

Definition 1.3 (Soft Ball in \mathbb{R}^d)

$$B_r(p) := \left\{ (q_1, \dots, q_d) | \sum_{i=1}^d (p_i - p_i) < r \right\},$$
 (3)

with $r \in \mathbb{R}^+$, $p \in \mathbb{R}^d$. Note: This does not need a norm or vector space structure on \mathbb{R}^d .

Definition 1.4 ($\mathcal{O}_{\text{standard}}$ on \mathbb{R}^d)

$$U \in \mathcal{O}_{\text{standard}} : \Leftrightarrow \forall p \in U : \exists r \in \mathbb{R}^+ : B_r(p) \subseteq U$$

Some terminology: Let M be a set with a topology $\mathcal{O} =:$ set of open sets. We call $(M, \mathcal{O} \text{ a topological space})$ and:

¹ Institute for Theoretical Physics, Goethe-University Frankfurt, Germany

² Institute for Physics and Astronomy, The University of Alabama, USA

Figure 1: The set U is in the standard topology, V not.

- $U \in \mathcal{O} \Leftrightarrow : \operatorname{call} U \subseteq M$ an open set
- $M \setminus A \in \mathcal{O} \Leftrightarrow : \operatorname{call} U \subseteq M$ a closed set

Note: The empty set is open and closed. If a set is open we cannot directly follow that it is not closed or vise versa. For $M = \{1,2\}$ and $\mathcal{O}_M = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$ the set $\{2\}$ is open and closed.

1.2 Continuous Maps

A map

$$f: M \to N$$
, (5)

takes every point from the domain M (a set) to the target N (a set). If one point $p \in N$ is not reached, the map is not *surjective*. If a point is hit twice, the map is not *injective*. A map that is injective and surjective is called *surjective*.

Definition 1.5 (Preimage)

$$f: M \to N \supseteq V$$

$$\operatorname{preim}_f(V) := \{ m \in M \mid f(f) \in V \} \qquad \textbf{(6)}$$

Definition 1.6 (Continuity)

 (M, \mathcal{O}_M) and (N, \mathcal{O}_N) topological spaces. Then a map $f: M \to N$ is called *continuous with respect* to \mathcal{O}_M and \mathcal{O}_N if

$$\forall V \in \mathcal{O}_N : \operatorname{preim}_f(V) \in \mathcal{O}_M.$$
 (7)

"A map is open iff the preimages of all open sets are open sets."

Note: If a map is not surjective there are sets with preimage \emptyset , thus we need to have \emptyset in \mathcal{O} , otherwise only surjective maps could be continuous.

Note: The inverse of a continuous function does not need to be continuous.

Definition 1.7 (Composition of maps) For f and g

$$f: M \to N, \quad g: N \to P,$$

we define the composition as

$$g \circ f : M \to P$$

$$m \mapsto (g \circ f)(m) := g(f(m))$$
(8)

Theorem 1.8 (Composition of continuos maps) For f, g continuos also $g \circ f$ is continuous (if spaces match).

Definition 1.9 (Subset topology, Inherited topology)

A set M with topology \mathcal{O}_M . Given any subset $S \subseteq M$ we can construct the inherited topology $\mathcal{O}|_S \subseteq \mathcal{P}(S)$

$$\mathcal{O}|_{S} := \{ U \cap S \mid U \in \mathcal{O}M \} . \tag{9}$$

Note: For $S \subseteq M$, if f is continuous then $f|_S$ is also continuous if $\mathcal{O}|_S$ is chosen. This is for example important if you are on a trajectory γ through \mathbb{R}^n and measure the temperature $T|_{\mathcal{O}}$.

Definition 1.10 (Topological manifold)

A topological space $(\mathcal{M}, \mathcal{O})$ is called a *d-dimensional topological manifold* if

$$\forall p \in \mathcal{M} : \exists U \in \mathcal{O}, \ p \in U : \exists x : U \to x(U) \subseteq \mathbb{R}^d,$$
(10)

with the following properties (wrt. \mathcal{O}_{std} on \mathbb{R}^d):

- 1. x intervitble: $x^{-1}: x(U) \to U$,
- 2. x continuous,
- 3. x^{-1} continuous.

"Invertible, in both directions continuous map to \mathbb{R}^n ."

Note: Thus in the above definition x(U) is also open (from the definition of continuity).

Terminology: • (U, x) is a chart of \mathcal{M}, \mathcal{O} ,

- $\mathcal{A} = \{(U_{(\alpha)}, x_{(\alpha)} | \alpha \in A\} \text{ is an } \text{atlas of } (\mathcal{M}, \mathcal{O}) \text{ if } \bigcup_{\alpha \in A} U_{(\alpha)} \text{ covers the whole manifold } \mathcal{M},$
- $x: U \to x(U) \subseteq \mathbb{R}^d$ is a chart map $x(p) = (x^1(p), \dots, x^d(p))$, where the component maps $x^i: U \to \mathbb{R}$ are called *coordinate maps*,
- $p \in U$, then $x^1(p)$ is the first coordinate of the point p wrt. the chosen chart (U, x).

Note: The choice of the chart (choice of coordinates) has nothing to do with the physics. Physics is chart independent. \mathcal{M} is "the real world".

1.3 Chart Transition Maps

Given (U, x) and (V, y) charts, on $U \cup V$ one can transition from one chart to the other by (see figure 2)

$$y \circ x^{-1} : \mathbb{R}^d \supseteq x(U \cap V) \to y(U \cap V) \subseteq \mathbb{R}^d$$
, (11)

which is called the chart transition map.

Note: As a physicist one talks about a "change in coordinates".

Bibliography

Drawing manifolds in tikz (n.d.). https://tex.stackexchange.com/questions/382762/drawing-manifolds-in-tikz. Accessed: 02 Jun 2019 10:42:19 CEST.

Schuller, Frederic (Feb. 2015). International Winter School on Gravity and Light 2015. https://www.youtube.com/watch?v=7G4SqIboeig&list=PLFeEvEPtX_OS6vxxiiNPrJbLu9aK1UVC_.

Figure 2: Visualization of chart transition maps. "How to glue together the charts of an atlas." Plot modified from (Drawing manifolds in tikz n.d.)