TABLE 1 Standard Reduction Potential	als	T.	
Half-cell reaction	Standard electrode potential, E ⁰ (in volts)	Half-cell reaction	Standard electrode potential, <i>E</i> ⁰ (in volts)
$F_2 + 2e^- \longleftrightarrow 2F^-$	+2.87	$Fe^{3+} + 3e^{-} \longrightarrow Fe$	-0.04
$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	+1.49	$Pb^{2+} + 2e^{-} \longrightarrow Pb$	-0.13
$Au^{3+} + 3e^- \longleftrightarrow Au$	+1.42	$\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$	-0.14
$Cl_2 + 2e^- \longrightarrow 2Cl^-$	+1.36	$Ni^{2+} + 2e^- \longrightarrow Ni$	-0.23
$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$	+1.33	$Co^{2+} + 2e^{-} \longleftrightarrow Co$	-0.28
$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$	+1.21	$Cd^{2+} + 2e^{-} \longrightarrow Cd$	-0.40
$Br_2 + 2e^- \longleftrightarrow 2Br^-$	+1.07	$Fe^{2+} + 2e^{-} \longrightarrow Fe$	-0.41
$Hg^{2+} + 2e^- \longleftrightarrow Hg$	+0.85	$S + 2e^- \longleftrightarrow S^{2-}$	-0.51
$Ag^+ + e^- \xrightarrow{\longleftarrow} Ag$	+0.80	$Cr^{3+} + 3e^{-} \longrightarrow Cr$	-0.74
$Hg_2^{2+} + 2e^- \longrightarrow 2Hg$	+0.80	$Zn^{2+} + 2e^{-} \longrightarrow Zn$	-0.76
$Fe^{3+} + e^{-} \longleftrightarrow Fe^{2+}$	+0.77	$Al^{3+} + 3e^- \longrightarrow Al$	-1.66
$MnO_4^- + e^- \longrightarrow MnO_4^{2-}$	+0.56	$Mg^{2+} + 2e^{-} \longrightarrow Mg$	-2.37
$I_2 + 2e^- \longleftrightarrow 2I^-$	+0.54	$Na^+ + e^- \longrightarrow Na$	-2.71
$Cu^{2+} + 2e^{-} \longleftrightarrow Cu$	+0.34	$Ca^{2+} + 2e^{-} \longrightarrow Ca$	-2.76
$Cu^{2+} + e^{-} \longleftrightarrow Cu^{+}$	+0.16	$Ba^{2+} + 2e^{-} \longrightarrow Ba$	-2.90
$S + 2H^{+}(aq) + 2e^{-} \longleftrightarrow H_{2}S(aq)$	+0.14	$K^+ + e^- \longrightarrow K$	-2.93
$2H^+(aq) + 2e^- \longleftrightarrow H_2$	0.00	$Li^+ + e^- \longleftrightarrow Li$	-3.04

The potential difference across the zinc/hydrogen cell is -0.76 V, so zinc is considered to have an electrode potential of -0.76. The negative number indicates that electrons flow from the zinc electrode, where zinc is oxidized, to the hydrogen electrode, where aqueous hydrogen ions are reduced.

A copper half-cell coupled with the standard hydrogen electrode gives a potential difference measurement of +0.34 V. This positive number indicates that $Cu^{2+}(aq)$ ions are more readily reduced than $H^{+}(aq)$ ions.

Standard electrode potentials can be used to predict if a redox reaction will occur spontaneously. A spontaneous reaction will have a positive value for E^{θ}_{cell} , which is calculated using the following equation.

$$E^{0}_{cell} = E^{0}_{cathode} - E^{0}_{anode}$$

The half-reaction that has the more negative standard reduction potential will be the anode. Oxidation occurs at the anode, so the anode half-cell reaction will be the reverse of the reduction reaction found in **Table 1.** For this reason, the total potential of a cell is calculated by *subtracting* the standard reduction potential for the reaction at the anode (E^0_{anode}) from the standard reduction potential for the reaction at the cathode $(E^0_{cathode})$.