CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516

Office hours T, Th 11:15-11:45 or by appointment

Recap

 In supervised learning, examples are a by an o . The "feature vector" representation creates a fixed size m_____ where the rows are _____ and the columns are _____. Features can be n____, c____, o____ or h_____. What is the "feature space"? In the binary classification problem, the annotation is . This is called the c __ l___. What is the "decision boundary"? In a decision tree, internal nodes are a____ t___ and leaves are c | . To classify a new examples we Tree induction works through r_____ p____. First we choose an a____ t____ if available. This creates d____ p___ from the data. We repeat until (1) or (2) happens.

Today

- Decision Tree Induction (Ch 3, Mitchell)
- Overfitting and overfitting control

Decision Tree Induction

- Given a set of examples, produce a decision tree
- Decision tree induction works using the idea of recursive partitioning
 - At each step, the algorithm will choose an attribute test
 - If no attribute looks good, return
 - The chosen test will partition the examples into disjoint partitions
 - The algorithm will then recursively call itself on each partition until
 - a partition only has data from one class (pure node) OR
 - it runs out of attributes

Choosing an Attribute

- Which attribute should we choose to test first?
 - Ideally, the one that is "most predictive" of the class label
 - i.e., the one that gives us the "most information" about what the label should be

 This idea is captured by the "(Shannon) entropy" of a random variable

Entropy of a Random Variable

• Suppose a random variable X has density p(x). Its (Shannon) "entropy" is defined by:

$$H(X) = E(-\log_2(p(X)))$$

$$= -\sum_{x} p(X = x) \log_2(p(X = x))$$

• Note: $0\log(0) = 0$.

Example

- Suppose X has two values, θ and θ , and pdf $p(\theta)=0.5, p(\theta)=0.5$
 - Then H(X)=?
- Suppose X has two values, θ and θ , and pdf $p(\theta)=0.99, p(\theta)=0.01$
 - Then H(X)=?

0.081

- Suppose X has two values, θ and θ , and pdf $p(\theta)=0.01, p(\theta)=0.99$
 - Then H(X)=?

Entropy of a Bernoulli r.v.

What is entropy?

Measure of "information content" in a distribution

- Suppose we wanted to describe an r.v. X with n values and distribution p(X=x)
 - Shortest lossless description takes $-log_2(p(x))$ bits for each x
 - So entropy is the expected length of the shortest lossless description of the r.v.

Claude Shannon 1948

What's the connection?

 Entropy measures the information content of a random variable

• Suppose we treat the class variable, Y, as a random variable and measure its entropy

• Then we measure its entropy after partitioning the examples with an attribute X

The Entropy Connection

• The difference will be a measure of the "information gained" about Y by partitioning the examples with X

 So if we can choose the attribute X that maximizes this "information gain", we have found what we needed

The class as a random variable

- Suppose at some point we have N training examples, of which pos are labeled "positive" and neg are labeled "negative" (pos+neg=N)
- We'll treat the class label as a Bernoulli r.v. Y that takes value 1 with prob. $p^+=pos/N$ and 0 with prob. $p^-=neg/N$
- Then $H(Y) = -p^+ log_2(p^+) p^- log_2(p^-)$

Information Gain

• IG(X)=reduction in entropy of the class label if the data is partitioned using X

• Suppose an attribute X takes two values 1 and 0. After partitioning, we get the quantities $p_{X=1}^+$, $p_{X=1}^-$, $p_{X=0}^+$ and $p_{X=0}^-$. Then,

Information Gain contd.

$$Y \mid X=0 \ (p^{+},p^{-})$$

$$H(Y \mid X=1) = -p^{+}_{X=1} \log_{2} p^{+}_{X=1} - p^{-}_{X=1} \log_{2} p^{-}_{X=1}$$

$$H(Y \mid X=0) = -p^{+}_{X=0} \log_{2} p^{+}_{X=0} - p^{-}_{X=0} \log_{2} p^{-}_{X=0}$$

$$H(Y \mid X) = p(X=1)H(Y \mid X=1) + p(X=0)H(Y \mid X=0)$$

$$IG(X) = H(Y) - H(Y \mid X)$$

Nominal Attributes

If X has v values:

$$H(Y \mid X = v) = -p_{X=v}^{+} \log_{2} p_{X=v}^{+} - p_{X=v}^{-} \log_{2} p_{X=v}^{-}$$

$$H(Y \mid X) = \sum_{v} p(X = v)H(Y \mid X = v)$$

$$IG(X) = H(Y) - H(Y \mid X)$$

A Problem

- If an attribute has a lot of values, IG prefers it (resulting partitions tend to be pure)
- E.g., consider an "Example-ID" attribute

• This memorizes the data, so has perfect IG score

Fix: GainRatio

 Normalize IG with entropy of the attribute's distribution (computed from training data)

$$GR(X) = \frac{IG(X)}{H(X)}$$

Continuous Attributes

- Cannot test for equality
- Consider all Boolean tests of the form $X \ge v$ (or $X \le v$)
 - Only values of interest are those v that separate adjacent training examples with different classes (why?)
- Note: In this case, the attribute cannot be removed, though the test ((attribute, value) tuple) can be