Analiza I

Adisa Bolić, abolic@pmf.unsa.ba

Vj. br. 2. Princip matematičke indukcije

Peanovi aksiomi i aksiom matematičke indukcije

Princip matematičke indukcije: Neka je $n_0 \in \mathbb{N}$. Pretpostavimo da je dat niz iskaza $P(n_0)$, $P(n_0 + 1)$, $P(n_0 + 2)$, ... Da bi dokazali da je svaki od ovih iskaza tačan možemo koristiti princip matematičke indukcije:

- 1° Baza indukcije: dokažemo da je $P(n_0)$ tačan iskaz
- 2° Pretpostavka indukcije: pretpostavimo da je iskaz P(n) tačan za neki prirodan broj $n \geq n_0$.
- 3° Korak indukcije: dokažemo da iz tačnosti iskaza P(n) slijedi tačnost iskaza P(n+1) za svaki prirodan broj $n \geq n_0$
- 4° Zaključak: na osnovu PMI (principa matematičke indukcije) zaključujemo da je P(n) tačan iskaz za sve prirodne brojeve $n \ge n_0$.

Po potrebi, možemo u koraku 2° pretpostaviti da su $P(n_0), \dots, P(n)$ tačni iskazi za neko $n \geq n_0$.

[1] Matematičkom indukcijom dokazati:

a)
$$1^2 + 2^2 + \cdots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

b)
$$\sum_{k=1}^{n} k^3 = (1+2+\cdots+n)^2$$

[2] Matematičkom indukcijom dokazati:

a)
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} \ge \sqrt{k}$$
 za svako $k \in \mathbb{N}$

b)
$$\sqrt[n+1]{n+1} < \sqrt[n]{n}$$
 za $n \ge 3 \in \mathbb{N}$

[3] Dokazati Bernoullijevu nejednakost

$$(1+x_1)(1+x_2)\dots(1+x_n) \ge 1+x_1+x_2+\dots+x_n$$

za svako $n \in \mathbb{N}$, pri čemu su x_1, x_2, \dots, x_n realni brojevi istog znaka veći od -1.

- ullet Specijalni slučaj Bernoullijeve nejednakosti za $x_1=x_2=\cdots=x_n$
- [4] Matematičkom indukcijom dokazati da vrijedi

$$\sin(x) + \sin(2x) + \dots + \sin(nx) = \frac{\sin\left(\frac{nx}{2}\right)\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

za sve $n \in \mathbb{N}$ i sve $x \in \mathbb{R} \setminus \{2k\pi | k \in \mathbb{Z}\}.$

[5] Koristeći se formulom

$$arctg(\alpha) + arctg(\beta) = arctg\left(\frac{\alpha + \beta}{1 - \alpha\beta}\right)$$

i principom matematičke indukcije, naći sumu

$$S_n = arctg\left(\frac{1}{2}\right) + arctg\left(\frac{1}{8}\right) + \dots + arctg\left(\frac{1}{2n^2}\right)$$

Za samostalan rad

- [1] Matematičkom indukcijom dokazati:
 - a) $1 + 2 + \dots + n = \frac{n(n+1)}{2}$
 - b) $\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$
- [2] Matematičkom indukcijom dokazati da vrijedi

$$\cos(x) + \cos(2x) + \dots \cos(nx) = \frac{\sin\left(\frac{nx}{2}\right)\cos\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

za sve $n \in \mathbb{N}$ i sve $x \in \mathbb{R} \setminus \{2k\pi | k \in \mathbb{Z}\}.$