

Inception Separable CNN for Retinal Disease Classification

Name: Eve

Student Number: 202018010304

Outline of Presentation

1 Introduction

4 Results

2 Background Review

5 Limitations and Challenges

3 Methodology

6 Conclusion

1

INTRODUCTION

- Aims
- Objectives

1 Introduction

-Aims

- Combine the Separable CNN with Inception model.
- Increase the accuracy of model for precise diagnosis of retinal disease.

Figure 1 Samples of retinal disease OCT images

Design a web application for the model.

1 Introduction

- Objectives

- Search and compare existing retinal disease classification models.
- Construct deep learning model based on separable CNN with Inception model.
- Optimize the model to improve accuracy.
- Compare the performance of different model with the proposed model using the same dataset.
- Present the graphic user interface (GUI) to the direct audience.

Background Review

Comparison of existing models proposed in different papers

Existing models proposed in different papers

Researchers	Year	Techniques	Accuracy
Meenu et al. [1]	2022	Depthwise separable CNN	93.5%
Kermany et al. [2]	2018	Inception V3	96.6%
Alqudah et al. [3]	2019	Novel Automatic CNN structure	95.3%
Rajagopalan et al. [4]	2021	Deep CNN framework	95.7%
Mahendran et al. [5]	2020	Decision tree classifier	92%
Najeeb et al. [6]	2018	Single layer CNN structure.	95.66%
Bhadra and Kar [7]	2020	Deep multi-layered CNN	96.5%
Intaraprasit et al. [8]	2023	MobileNetV2	99.8%

Table 1 Literature Review of different approach about retinal disease classification

3

Methodologies

• The proposed architecture of the project

3 Methodologies

Model Architecture

Figure 2 Model architecture

- Model Performance
- Model Explainability
- GUI Design

Hyper-parameter	value
Batch size	70
Learning rate	0.0001
Epoch	100

Table 2 Hyper-parameters setting

Evaluation metric	Result
Validation loss	0.057
Validation accuracy	91.9%
Precision (macro)	0.909
Recall (macro)	0.909
F1-Score	0.908

Table 3 Model performance

- Model Performance

Figure 4 Confusion matrix

Figure 3 Model accuracy and loss curve

Validation loss = 0.057 Validation accuracy = 91.9% Train loss = 0.159 Train accuracy = 94.6%

Figure 5 Model prediction

Figure 6 LIME explanation

- Model Explainability

Figure 7 LIME explanation table

- GUI Design

Figure 9 Learn more page of web app

Figure 11 Demonstration of web app

Limitations and Challenges

5 Limitations and Challenges

- Limited dataset: Insufficient image diversity.
- Enhancing model precision required.
- Inadequate data protection measures: Insufficient safeguarding of data.

Conclusion

6 Conclusion

- Model architecture: Combined Inception and separable CNN.
- Automation of disease identification: Reduces manual reliance.
- Model evaluation: Training accuracy 94.6%, validation accuracy 91.9%, validation loss 0.057.
- Superiority over other models: High accuracy compared to ResNet, MobileNetV2.

6 Conclusion

- Future Work

- Dataset improvement: Increase diversity, representativeness.
- Technique enhancement: Integrate new ML techniques.
- Parameter optimization: Further adjust for accuracy.
- Healthcare system integration: Combine real-time data.

Thanks for listening

Reference

- [1] S. Meenu Mohan and S. Aji, "A Fast Method for Retinal Disease Classification from OCT Images Using Depthwise Separable Convolution," in R. Raje, F. Hussain, and R. J. Kannan (eds.), Artificial Intelligence and Technologies, Lecture Notes in Electrical Engineering, vol. 806, Springer, Singapore, 2022, pp. 223-232, doi: 10.1007/978-981-16-6448-9_18.
- [2] D. S. Kermany et al., "Identifying medical diagnosis and treatable diseases by image based deep learning," in Cell, vol. 172, no. 5, pp. 1122-1131, 2018.
- [3] A. Alqudah, "A OCT-NET a convolutional network automated classification of multiclass retinal disease classification using SD-OCT images," in International federation for medical and biological engineering, 2019.
- [4] N. Rajagopalan, V. Narasimhan, S. Kunnavakkam Vinjimoor et al., "RETRACTED ARTICLE: Deep CNN framework for retinal disease diagnosis using optical coherence tomography images," in J Ambient Intell Human Comput, vol. 12, pp. 7569-7580, 2021, doi: 10.1007/s12652-020-02460-7.
- [5] G. Mahendran, M. Periyasamy, S. Murugeswari, and N. K. Devi, "Analysis on retinal diseases using machine learning algorithms," in Mater. Today, Proc., vol. 33, pp. 3102-3107, Jan. 2020.
- [6] S. Najeeb, N. Sharmile, M. S. Khan, I. Sahin, M. T. Islam and M. I. Hassan Bhuiyan, "Classification of Retinal Diseases from OCT scans using Convolutional Neural Networks," 2018 10th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 2018, pp. 465-468, doi: 10.1109/ICECE.2018.8636699.
- [7] R. Bhadra and S. Kar, "Retinal Disease Classification from Optical Coherence Tomographical Scans using Multilayered Convolution Neural Network," 2020 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 2020, pp. 212-216, doi: 10.1109/ASPCON49795.2020.9276708.
- [8] P. Intaraprasit, T. H. Bui and M. Phu Paing, "MobileNetV2-based Deep Learning for Retinal Disease Classification on a Mobile Application," 2023 15th Biomedical Engineering International Conference (BMEiCON), Tokyo, Japan, 2023, pp. 1-5, doi: 10.1109/BMEiCON60347.2023.10322079.