北京邮电大学 2017-2018 学年第一学期 计算机学院

"Operating Systems" Test (1)

	Class
	Fill in blanks (10 points 注:要求填入英文答案,中文答案扣 0.5 分)
1)	When a computer is powered on, the procedure of starting the computer by
	loading the OS kernel is known as booting the system.
2)	The operating systems that allow users to use computers in interactive manners
	are called the time sparred operating systems.
3)	A software-generated interrupt caused either by an error or by specific requests
	from user programs that an operating-system service be performed is called a
	- trap.
4)	For n concurrent processes that mutual exclusively use some resources, the code
	segmentations, in which the processes access the resources, are called <u>Ortical</u>
	Section W
5)	To protect the OS and all other programs and their data from any malfunctioning
	program, hardware protection is needed. Two separate modes of CPU operations,
	that is the mode and the user mode, are provided.
6)	The data structure in kernel space used by OS to describe and manage processes
	is called PCB.
7)	The scheduler selects one among the processes that are ready to
	execute and allocates the CPU to it.
	process
	1

8) Real-time splitting are computers and/or software systems that react to
external events in limited time intervals before the events become obsolete.
9) There are two common models of process communications, i.e.
message-passing and monory shared the shared memory shared memory
10) The scheduling criteria include throughput, turnaround time, waiting time, and response time.
waiting time, and response time.
Choices (21 points)
1. 以下陈述中,正确的是
I. Android 是一种广泛应用于智能手机和平板电脑的操作系统; II. Unix 操作系统的一些发行版本可以支持大型主机和服务器; IV. Windows 和 Linux 操作系统属于开源操作系统; IV. 在 Windows 操作系统中,通过任务管理器可以查看系统内并非执行的进程信息,如 CPU 占用率、进程内线程数目、内存占用情况等。
A. I, II and IV B. II and III C. III and IV D. II, III and IV
2. Among the following comments, only are correct.
In a system, the state of a process can migrate from waiting to running. II. PCB contains the process state, the program counter, CPU registers and user data is
III. In a system with the operating system supporting kernel-level threads, the thread is the basic unit for CPU scheduling, and the process is the basic unit for resources allocation.
IV. For several threads created by one process, they can share the files opened in the
A I and II B III and IV C. I and IV D.II and III
3. Which of the following is true about process's execute time, turnaround time,
waiting time and response time

weiting time

(10: 5)
8. 23. 下列选项中,操作系统提供给应用程序的接口是
A.系统调用 B.中断 C. 库函数 D. 原语
9. 24. 下列选项中, 导致创建新进程的操作是
I. 用户成功登陆 IL. 设备分配 III. 启动程序执行
A. 仅 I, II B. 仅 II, III C. 仅 I, III D. 仅 I, II, III
10. 25. 设与某资源相关联的信号量初值为 3, 当前值为 1。若 M 表示该资源的
可用个数,N表示等待资源的进程数,则M,N分别是
A. 0,1 B. 1, 0 C. 1, 2 D. 2, 0
(11: 3)
11. 23. 下列选项中,满足短任务优先且不会发生饥饿现象的调度算法
是
A. 先来先服务 B. 高响应比优先
C. 时间片轮转法 D. 非抢占式短任务优先
12. 24. 下列选项中,在用户态执行的是
A. 命令解释程序 B. 缺页处理程序
C. 进程调度程序 D. 时钟中断处理程序
13. 25. 在支持多线程的系统中,进程 P 创建的若干个线程不能共享的
A. 进程 P 的代码段 B. 进程 P 中打开的文件
C. 进程 P 的全局变量 D. 进程 P 中某线程的栈指针

(12: 4)

14. 28. 若 1 一个用户进程通过 read 系统调用读取一个磁盘文件中的数据,则关

于此过程的叙述中,正确的是
1. 若该文件不在内存,则该进程进入睡眠等待状态
II. 请求 read 系统调用会导致 CPU 从用户态切换到核心态
TH. Read 系统调用的参数应包含文件的名称
A. 仅 I、II B. 仅 I、III C. 仅 II、III D. I、II、III
15. 30. 若某单处理器多进程系统中有多个就绪态进程,则下列关于处理机(CPU)
调度的叙述中错误的是
A. 在进程结束时能进行处理机调度
B. 创建新进程后能进行处理机调度
C. 在进程处于临界区时不能进行处理机调度
D. 在系统调用完成并返回用户态时能进行处理机调度
16.31. 下列关于进程和线程的叙述中, 正确的是
A. 不管系统是否支持线程, 进程都是系统资源分配的基本单位
B. 线程是资源分配的基本单位,进程是调度的基本单位
C. 系统级线程和用户级线程的切换都需要内核的支持
D. 同一进程中的各个线程拥有各自不一的地址空间
(13:)
17. 28. 下列选项中, 能导致用户进程从用户态切换到内核态的操作
是
I. 整数除零 H. sin()函数调用 III. read 系统调用
A. 仅 I、II B. 仅 I、III C. 仅 II、III D. I、II、III
18. 29. 计算机开机后,操作系统最终被加载到
A. BIOS B. ROM C. EPROM D. RAM
(14: 3)

三、 简答(10 points)

1. (5 points) 设系统缓冲区和用户工作区均采用单缓冲区,从外设读入1个数据块到系统缓冲区的时间为100,从系统缓冲区读入1个数据块到用户工作区的时间为5,对用户工作区中的1个数据进行分析的时间为90(如下图所示),进程从外设读入并分析2个数据块的最短时间是多少,为什么?

- 2. (5 points) 在标准的 Reader-Writer 同步互斥问题中,采用:
- 1) 内核空间中的写互斥二元信号量 wrt;
- 2) 用户空间中的读者计数变量 readcount;
- 3) 内核空间中控制对 readcount 进行互斥访问的二元互斥信号量 mutex
 - ,实现读者-写者、写者-写者间对共享数据的互斥访问。

是否可以将 readcount 和 mutex 整合为 1 个定义在内核空间中、同时具有计数 和 同 步 / 互 斥 双 重 功 能 的 多 元 计 数 信 号 量 (counting semaphore) readcount_semaphore, 从而只采用 2 个信号量

- 1) 二元信号量 wrt
- 2) 多元计数信号量 readcount_semaphore,

实现 Reader-Writer 同步互斥问题,为什么? (2+3 points)

学、不能,因为对德对计数信号查断利断时,不能新到"=="未判断起动客,因此依然需要一个mutex 打到 readount。

四、(30 points)在 1 个在双 CPU 系统中(不支持超线程 HT), 3 个并发进程的执行序列(CPU burst, I/O burst)如下:

 P_1 : computing, 80ms \rightarrow I/O operation, 100ms \rightarrow computing, 40ms

P₂: computing, 180ms → I/O operation, 70ms → computing, 20ms

P₃: computing, 130ms → I/O operation, 50ms → computing, 50ms 假设: 在这 3 个进程中, P₁、P₂的 I/O 操作均为打印机输出操作, 且只有 1 台打印机; P₃的 I/O 操作为磁盘访问操作; 3 个进程的 CPU burst 可以任意分配到 2 个 CPU 上执行。

若不考虑调度和切换时间,合理地安排这 3 个进程的执行步骤,使得系统总吞吐量(throughput)最大。

要求:

1. 利用甘特图描述这 3 个进程在 2 个 CPU 上执行轨迹;

- 五、(29 points)考虑扩展的生产者-消费者问题。假设有限缓冲区容量为 M,存在四类并发进程: 生产者进程{Producer},消费者进程{consumer},后续,进程{P₃}和{P₄},每类进程均有多个。4 类进程的工作流程为:
- 1. 生产者进程每次向空缓冲区单元写入1个数据项:
- 3. 第三类进程 P3 收到来自消费者进程的通知信息后,开始工作;
- 4. 第四类进程 P4 收到来自消费者进程的通知信息后,开始工作; 在生产者、消费者访问缓冲区时,允许1个生产者、1个消费者同时进入临界段中访问缓冲区,但不允许多个生产者、多个消费者同时进入缓冲区访问。

用信号量 wait、signal 机制实现 1) 生产者-消费者之间互斥地访问缓冲区,2)消费者进程与第三类、第四类进程间的同步。 要求:

1) 定义正确的信号量和变量,给出其初值,并解释其含义和作用;

Semaphore mutex mutex nutex nute

othory Sempohore muteX3主1, muteX421; 11用升到世程度、P4151日设计区 Int aunt: HOTEXBURE 2) 描述四类进程的工作流程 部 Consumer producer des wait (emity); do { wait (full); wait (muter); Wait (mutexi); 南省中区的数据, 南侵 中心写影话: STATE OF THE AND I Signal (mutex), signal (empty), signal (full). Wort (mitex_caint), @woit (mutex_junt) Count++; SHEET SHEET), 1 Signal (mutar-count) 3 while (TRUE); 所知的这个为 自通知化 if (count > 0 88 (ount /6 = 20) Styncol (mutex3), /*利的经济的通知经》/else 计[count >0 && (count \$1 == 0) dos wait (mutex3); Signal (mutex4), Signal (mutex-count) 收到100g, P3世分74年, 3 while CTRUE); Signal (mutex 3); 3 while (TRUE); P4: dof wait (muter4); 收到信息,个中野了工作。 3 Signal (mittex4); While (TRUE);