

Licence 1ère année, 2012-2013, MATHÉMATIQUES ET CALCUL 1 (MC1)

Feuille de TD n° 4: Dérivabilité d'une fonction numérique

Les assertions suivantes sont-elles vraies ou fausses ? Démontrer chaque assertion correcte et Exercice 1 donner un contre-exemple pour chaque assertion fausse.

- (1) Une fonction continue en x_0 est dérivable en x_0 .
- (2) Une fonction dérivable en x_0 est continue en x_0 .
- (3) Une fonction dérivable sur un intervalle I a une dérivée continue sur I.
- (4) Si deux fonctions ont leurs dérivées égales sur un intervalle ouvert, alors elles sont égales sur cet intervalle.
- (5) Si les nombres dérivés d'une fonction à gauche et à droite existent en un point, alors la fonction est dérivable en ce point.
- (6) Si une fonction paire est dérivable, alors sa dérive est impaire.

Calculer $f'(x_0)$ en utilisant la définition du nombre dérivé dans chacun des cas suivants : Exercice 2

(1)
$$f(x) = \sqrt{2+x}$$

(2)
$$f(x) = x^3 + 3a$$

(1)
$$f(x) = \sqrt{2+x}$$
 (2) $f(x) = x^3 + 3x$ (3) $f(x) = \frac{x}{x+1}$.

Exercice 3 Calculer, lorsqu'elle est définie, la dérivée des fonctions suivantes :

$$(1) f(x) = \sin(\cos x)$$

$$(2) f(x) = \exp(2x \ln(x))$$

(1)
$$f(x) = \sin(\cos x)$$

(3) $f(x) = \sqrt{1 + x^2 + 2x^4}$
(5) $f(x) = \tan(\sqrt{1 - x^2})$

(4)
$$f(x) = \frac{x + \ln(x)}{x - \ln(x)}$$

(5)
$$f(x) = \tan(\sqrt{1-x^2})$$

(4)
$$f(x) = \frac{x + \ln(x)}{x - \ln(x)}$$

(6) $f(x) = \frac{\exp(\frac{1}{x}) - 1}{\exp(\frac{1}{x}) + 1}$

(7)
$$f(x) = (1+x)^{x^2}$$

Exercice 4 Soit $n \in \mathbb{N}^*$. Pour tout $x \in \mathbb{R}$, on pose $P_n(x) = 1 + x + x^2 + \cdots + x^n$.

- (1) Pour tout $x \neq 1$, donner une expression de $P_n(x)$ sous forme de fraction rationnelle.
- (2) En déduire une expression sous forme de fraction rationnelle de la somme $S_n(x) = 1 + 2x + 3x^2 + \cdots + 3x$ nx^{n-1} pour tout $x \neq 1$.

Exercice 5 Calculer la dérivée *n*-ième des fonctions suivantes :

- $(1) f(x) = \sin(x),$
- (2) $f(x) = x^k \text{ pour } k \in \mathbb{N},$ (3) $f(x) = \frac{1}{\sqrt{x}},$ (4) $f(x) = \frac{\exp(x)}{x}.$

Exercice 6

(1) Déterminer si l'application suivante est dérivable sur

$$f(x) = \left\{ \begin{array}{ccc} (x-1)^2 & \text{si} & x \leqslant -1, \\ -4x & \text{si} & x > -1. \end{array} \right.$$

(2) Déterminer les réels a et b pour que l'application suivante soit dérivable sur \mathbb{R} :

$$f(x) = \begin{cases} x^2 - x + 1 & \text{si} \quad x \geqslant 2, \\ (ax + b)^2 & \text{si} \quad x < 2. \end{cases}$$

Soit $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie par $f(x) = x^2 \sin(\frac{1}{x})$ pour tout $x \neq 0$. Montrer que f est prolongeable par continuité en 0. On note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} , mais que f' n'est pas continue en 0.

Calculer les limites suivantes : Exercice 8

(1)
$$\lim_{x \to 0} \frac{\exp(x) - 1}{x}$$

(3) $\lim_{x \to 2} \frac{\exp(x) - \exp(2)}{x^2 + x - 6}$

(2)
$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{x}$$

(3)
$$\lim_{x \to 2} \frac{\exp(x) - \exp(2)}{x^2 + x - 6}$$

(2)
$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{x}$$

(4) $\lim_{x \to -1} \frac{\sin(1 + x)}{x^2 - x - 2}$

Exercice 9 On considère l'application

$$\begin{array}{ccc} f:]-\frac{1}{3}, +\infty[& \longrightarrow &]\frac{2}{3}, +\infty[\\ x & \longmapsto & \frac{2x+1}{3x+1} \end{array}$$

- (1) Montrer que f est strictement décroissante.
- (2) Montrer que f réalise une bijection de $]-\frac{1}{3},+\infty[$ dans $]\frac{2}{3},+\infty[$. Déterminer sa réciproque, notée f^{-1} . (3) Calculer la dérivée de f^{-1} en utilisant la formule de la dérivée d'une fonction réciproque. Vérifier le résultat par le calcul direct de la dérivée de f^{-1} .

Exercice 10 Soit f la fonction définie sur \mathbb{R} par

$$f(x) = \begin{cases} 0 & \text{si} \quad x = 0, \\ \exp(-\frac{1}{x^2}) & \text{si} \quad x \neq 0. \end{cases}$$

- (1) Justifier que f est de classe \mathcal{C}^{∞} sur \mathbb{R}^*
- (2) Calculer l'expression des dérivées d'ordre 1, 2 et 3 de f sur \mathbb{R}^* .
- (3) Montrer que f est dérivable sur \mathbb{R} et préciser la valeur de f'(0).
- (4) Montrer par récurrence que pour tout $n \ge 1$ et tout $x \ne 0$, $f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} \exp(-\frac{1}{x^2})$ où P_n est un polynôme dont on précisera le degré et le coefficient dominant.
- (5) Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} et calculer $f^{(n)}(0)$ pour tout $n \in \mathbb{N}^*$.

Exercice 11 Soit g une fonction définie et deux fois dérivable sur l'intervalle [a, b] telle que g(a) = g(b) = 0. Soit $x_0 \in]a, b[$, et on pose $A = \frac{2g(x_0)}{(x_0 - a)(x_0 - b)}$. Montrer qu'il existe $\alpha \in]a, b[$ tel que $A = g''(\alpha)$. (Indication: on pourra étudier la fonction g_1 définie par $g_1(x) = g(x) - \frac{A}{2}(x-a)(x-b)$.)

Exercice 12 Montrer les encadrements suivants à l'aide du théorème des accroissements finis :

- $(1) \sin(x) \leqslant x \text{ pour } x \geqslant 0,$
- (2) $\frac{1-\exp(-x)}{x} < 1 \text{ si } x > 0.$

Exercice 13 Le but de l'exercice est d'étudier la bijection réciproque de la fonction tangente.

- (1) Montrer que la fonction $\tan :]-\frac{\pi}{2}, \frac{\pi}{2}[\to \mathbb{R}$ est dérivable et strictement croissante. Déterminer ses limites en $-\frac{\pi}{2}$ et $\frac{\pi}{2}$.
- (2) En déduire que tan réalise une bijection de $]-\frac{\pi}{2},\frac{\pi}{2}[$ dans \mathbb{R} . On note arctan sa bijection réciproque.
- (3) Calculer la dérivée de la fonction arctan.
- (4) Montrer que, pour tout x non nul,

$$\arctan(x) + \arctan(\frac{1}{x}) = \operatorname{sgn}(x)\frac{\pi}{2}$$

avec
$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}$$

Exercice 14 Soient x et y réels avec 0 < x < y.

(1) Montrer que

$$x < \frac{y - x}{\ln y - \ln x} < y.$$

(2) On considère la fonction f définie sur [0,1] par

$$\alpha \mapsto f(\alpha) = \ln(\alpha x + (1 - \alpha) y) - \alpha \ln x - (1 - \alpha) \ln y$$

De l'étude de f, déduire que pour tout α de]0,1[,

$$\alpha \ln x + (1 - \alpha) \ln y < \ln(\alpha x + (1 - \alpha) y).$$

Interprétation géométrique?

Exercice 15 Soit f une fonction définie sur a, b et valeurs réelles. Déterminer si les assertions suivantes sont vraies ou fausses:

- (1) Soit $x_0 \in]a, b[$ tel que $f'(x_0) = 0$, alors x_0 est un extremum local.
- (2) Si f admet un extremum local en x_0 , alors $f'(x_0) = 0$.

Soit f une fonction de classe C^n sur a, b s'annulant en n+1 points distincts. Montrer qu'il existe un point $x_0 \in]a,b[$ tel que $f^{(n)}(x_0)=0$. (Indication: on procédera par récurrence.)