

AD-A093 921

NAVAL WEAPONS SUPPORT CENTER CRANE IN
FLEET RELIABILITY ASSESSMENT PROGRAM. VOLUME 2A. EQUIPMENT REPO--ETC(U)

F/G 17/7

SEP 79

NL

UNCLASSIFIED

1 OF 1
AUG 1979

9 FINAL REPORT

LEVEL III

VOLUME 2A

Approved for public
release; distribution
unlimited

11 Sep '71

AD A093921

12 2041
10 Fleet Reliability Assessment
Program. Volume 2A.

EQUIPMENT REPORT
CATCC-DAIR.

NAVAL WEAPONS SUPPORT CENTER
CRANE, INDIANA

Published by the direction of Commander Naval Electronics Systems Command

SEPTEMBER 1979

401512

80716011

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Final Report Volume 2A Fleet Reliability Assessment Program - Equipment Report CATCC DAIR		5. TYPE OF REPORT & PERIOD COVERED Reliability
7. AUTHOR(s) NAVAL WEAPONS SUPPORT CENTER		6. PERFORMING ORG. REPORT NUMBER Work & August 1, 1979 NAVC391WKE 7002
9. PERFORMING ORGANIZATION NAME AND ADDRESS NAVAL WEAPONS CENTER C.O. NAVAL WEAPONS SUPPORT CENTER CRANE INDIANA 47522		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS WU
11. CONTROLLING OFFICE NAME AND ADDRESS NAVAL ELECTRONIC SYSTEMS COMMAND WASHINGTON D.C., Code 4702		12. REPORT DATE Sept 1979
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 98
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Reliability, Maintenance, Fleet operation, Carrier Air Traffic Control		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The report contains a reliability assessment of data reported from three carriers. Data was collected over approximately a nine month period on the total fleet. Data includes information about lectures, The calculated R(t) is 0.61 for hours 1100 hrs of operation.		

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared by or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-sponsored RDT/E," AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents.")

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & 15a. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in 15 the highest classification of the report. If appropriate, enter in 15a the declassification/downgrading schedule of the report, using the abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200.1-R.

Block 16. Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report). Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . . . Translation of (or by) . . . Presented at conference of . . . To be published in . . .

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.

LIST OF EFFECTIVE PAGES

Insert latest changed pages; dispose of superceded pages in accordance with applicable regulations.

NOTE: On a changed page, the portion of the text affected by the latest change is indicated by a vertical line (or other change symbol) in the outer margin of the page. Changes to illustrations are indicated by miniature pointing hands. Changes to wiring diagrams are indicated by shaded areas.

Total number of pages in this Volume is 104 consisting of the following:

<u>PAGE NO.</u>	<u>*CHANGE NO.</u>
Title	0
A	0
i to iv	0
1 to 98	0

* Zero in this column indicates an original page.

DEPARTMENT OF THE NAVY
NAVAL ELECTRONICS SYSTEMS COMMAND

PREPARED UNDER THE DIRECTION OF

William S. Wallace Jr.
W. WALLACE
RELIABILITY ENGINEERING BRANCH

REVIEWED BY

M.W. Robbins Jr.
M.W. ROBBINS, Jr.
SYSTEMS EFFECTIVENESS DIVISION

APPROVED BY

L.R. Von Perbandt
L.R. VON PERBANDT
CAPTAIN, USN
DEP CDR LOGISTICS DIRECTORATE

RECORD OF CHANGES

CHANGE NO.	DATE	TITLE OR BRIEF DESCRIPTION	ENTERED BY

VOLUME 2A CATCC-DAIR

EQUIPMENT REPORT

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
I RESULTS	1
1-1 RESULTS SUMMARY	1
1-1.1 SUMMARY OF HARDWARE PROBLEMS	
1-1.2 SOFTWARE PROBLEMS	
1-1.3 RECOMMENDATIONS	
II SYSTEM DESCRIPTION	4
2-1 GENERAL	4
2-2 MISSION	4
2-3 EQUIPMENT DESCRIPTION	4
III SPECIFICATIONS	6
3-1 RELIABILITY	6
3-2 MAINTAINABILITY	6
IV PROBLEMS	7
4-1 ADDITIONAL HARDWARE PROBLEMS	7
4-2 SOFTWARE PROBLEMS	7
V CORRECTIVE ACTIONS	8
5-1 HARDWARE CORRECTIVE ACTIONS	8
5-2 SOFTWARE CORRECTIVE ACTIONS	8
VI EQUIPMENT RELIABILITY MODEL	9
VII ANALYSES	13
7-1 SOFTWARE ANALYSIS	13
7-2 HARDWARE ANALYSIS	13

Subsection(1) CATCC-DAIR All Data	14
Subsection(2) CATCC-DAIR All Data Except INDEPENDENCE	27
Subsection(3) CATCC-DAIR EQUIPMENT RELIABILITY DATA	50
Subsection(4) CATCC-DAIR PARTS REPLACEMENT	75

LIST OF ILLUSTRATIONS

<u>Figure</u>	<u>Title</u>	<u>Page</u>
6-1a	SYSTEM/WRA-Level Reliability Block Diagram for CATCC-DAIR AN/TPX-42A(V) 8	10
6-1b	CATCC-DAIR SYSTEM Block Diagram (Continued)	11
6-1c	CATCC-DAIR SYSTEM Block Diagram (Continued)	12

LIST OF TABLES

<u>Table</u>	<u>Title</u>	<u>Page</u>
1-1	DATA SUMMARY FOR CATCC-DAIR	2
1-2	SUMMARY OF WRA AND O-LEVEL ASSEMBLIES FAILING	3

VOLUME 2 CATCC-DAIR EQUIPMENT REPORT

SECTION I - RESULTS

1-1 RESULTS SUMMARY

Between August 1978 and May 1979 FRAP collected data on the AN/TPX-42A(V)8 CATCC-DAIR systems installed aboard the USS INDEPENDENCE, USS KITTY HAWK, and the USS RANGER. The results of the analysis of the data are summarized in Table 1-1.

1-1.1 SUMMARY OF HARDWARE PROBLEMS

Most of the failures (7 out of 11) occurred in WRA 19, the Control Group PPI Console, OD-146, of which 5 are used in the CATCC-DAIR system. Most of these failures (3 out of 7) were O-level 19002, the Deflection Amplifier. Table 1-2 summarizes the WRA and O-levels reported as failed. Identification WRA and O-levels are as follows:

WRA 11	Signal Processor CN-1506
WRA 13	A-D Converter CV-3477
WRA 16	Cartridge Mag Tape Unit AN/USH-26(v)
WRA 18	Alphanumeric Digital Display AN/USQ-69
WRA 19	Indicator Control Group OD-146
19002	Deflection Amplifier
19003	Interface and Logic
19009	Video Amplifier
19016	Panel (Right Side)

[O-level 099 indicates the O-level failed could not be identified from the available information]

1-1.2 SOFTWARE PROBLEMS

CATCC-DAIR is currently recovering from very severe problems with the software used in the Tracking and Display computer. The software in use during the FRAP study period is an interim release which will be replaced by a "fourth generation" software package currently under development.

1-1.3 RECOMMENDATIONS

- a. It is recommended that FCPs and retrofits be developed to improve the reliability performance of the Control Group Console, OD-146, with emphasis on the Deflection Amplifier and Power Supply.
- b. It is recommended that the "Human Engineered" keyboards be replaced with standard typewriter or teletype style keyboards.
- c. It is also recommended that consideration be given to converting the AN/UYK-20(V) to use Concurrent Pascal, a new high-level programming language.
- d. It is recommended that the feasibility of converting CATCC-DAIR software to Pascal be investigated.

LEGEND

1. All Data = All Collected Data (Failures/Maintenance Actions) **
2. EQUIP = EQUIPMENT **
3. PARTS = PARTS REPLACEMENT **
4. EXP = EXPONENTIAL
5. LN = LOGNORMAL

TABLE 1-1. DATA SUMMARY FOR CATCC-DAIR.

PARAMETER	All Data	EQUIP	PARTS
OPERATIONAL			
Calendar Hours	11,616	11,616	11,616
Operating Hours	5073	5073	5073
Duty Cycle	0.437	0.437	0.437
Sample Size	2*	2*	2*
RELIABILITY			
Number of Failures	12	10	9
Time Between Failures-Mean	661	971	1304
Time Between Failures-Median	111	126	111
Distribution	WEIBULL	WEIBULL	WEIBULL
MAINTAINABILITY			
Total Repair Time	126	110	110
Number of Repairs	7	6	8
Time to Repair-Mean	18	18.3	17.5
Time to Repair-Median	5.3	4.4	4.6
Distribution	LN	LN	LN
Total Down Time	1132	772	783
Repairs (or Maint. Act.)	7	6	8
Down Time-Mean	162	129	102
Down Time-Median	112	89	46
Distribution	EXP	EXP	WEIBULL
AVAILABILITY			
Inherent	0.9734	0.9815	0.9868
Observed-Mean	---	0.525	---
Observed-Median	---	0.577	---
Effective	0.9996	---	---

*CATCC-DAIR SUMMARY Does Not Include USS INDEPENDENCE Data.

** Reference Volume 1, Paragraph 3-4, and Volume 2A, Paragraph 7-2

NOTE: All Time Units Are in Hours

TABLE 1-2. SUMMARY OF WRA AND O-LEVEL
ASSEMBLIES FAILING

WRA	O-LEVEL	DESCRIPTION (NAME)	NUMBER OF FAILURES REPORTED			
			by 4790/2K	by CRSREPT	in WRA	in O-LEVEL
11	099	SIG. PROC. CN-1506/TPX	—	1	1	1
13	087	R/D CONVTR CV-4377/TPX	—	—	—	—
16	099	POWER SUPPLY	—	—	/1	1
18	003	HAC TAPE DRY AN/USH-26	—	—	—	—
19	002	DISPLAY AN/USQ-89	—	1	1	1
	008	CRT DRIVER ELECTRONICS	1	—	1	1
	009	CONTROL GROUP OD-1146	6	1/	7	—
	016	DEFLECTION AMPLIFIER	/3	—	3	—
	022	INTERFACE AND LOGIC	/1	—	1	—
	029	VIDEO AMPLIFIER	/1	—	1	—
	099	PANEL (RIGHT SIDE)	/1	—	1	—
		TOTAL	9	/2	11	11

SECTION II - SYSTEM DESCRIPTION

2-1 GENERAL

The Carrier Air Traffic Control Center Direct Altitude and Identity Readout (CATCC-DAIR) System consists of a programmable Interrogator Set AN/TPX-42A(V)8 in which the hardwired Indicator Data Processor of the AN/TPX-42A(V)5 has been replaced by an electronic digital mini-computer, the AN/UYK-20(V). To enhance reliability, a second AN/UYK-20(V) may be installed in a parallel redundant scheme. All systems in the FRAP study were so configured.

CATCC-DAIR provides five consoles consisting of OD-58/T Plan Position Indicators (PPI) modified to display alphanumeric information. To each of these has been added a keyboard to allow control of the AN/UYK-20(V) Tracking and Display Processor (TDP) Computer, and an Indicator Control box. One console, designated the supervisory position, has an additional System Control box attached. The TDP Computer(s) are normally located remotely from the consoles and are rack mounted with the radar video processor and other such ancillary and interface equipment as required to interface to the NTDS and ACLS systems and the shipboard radars.

The older AN/TPX-42A(V)5 is installed at Navy and Marine Corps air stations. The (V)8 version, CATCC-DAIR, is essentially the (V)5 system hardware with minor changes (primarily to the power supplies) to allow operation from ship's power and to provide interface into existing ship's radar and data system. The TDP computer with its software provides the operational features that distinguish the (V)8 version from the less capable (V)5 system.

2-2 MISSION

CATCC-DAIR is used to identify and coordinate aircraft operating within a fifty mile radius of the aircraft carrier on which it is installed. In addition to a conventional radar display, CATCC-DAIR provides altitude and identity readouts on all transponder equipped aircraft, both civilian and military, in that 50 mile radius. In addition a number of software features are provided to support flight operations. CATCC-DAIR is normally operational at all times while the ship is underway. This system is essential to the safety and combat readiness of the ship on which it is installed.

2-3 EQUIPMENT DESCRIPTION

The CATCC-DAIR system is a shipboard configuration of the AN/TPX-42A(V)5 currently used at all Naval and Marine Air Station RATCCs (Radar Air Traffic Control Centers). Though similar in appearance, CATCC-DAIR uses a programmable TDP(Tracking and Display Processor), which replaces the hardwired indicator data processor in the AN/TPX-42A(V)5. The TDP consists of (a) two AN/UYK-20 data processing sets, (b) a keyboard for communications with the computers, (c) an OD-58/T indicator modified for display of alphanumeric data, (d) a radar video processor, (e)

various ancillary computer equipment, and (f) the required interface hardware that will permit the system to function and be compatible with shipboard radars, and interface with NTDS (Naval Tactical Data System) and ACLS (Automatic Carrier Landing System).

The system is designed for dual-channel processing (one channel active and the other in hot standby), and has the capability to switch channels, if a failure occurs, without loss of data or interruption to operations. The CATCC-DAIR system consists of the following major units:

a. Data Processing Group OL-201

(1) [WRA 10] Interference Blanker MX-8757/UPX. Eliminates non-synchronous signals, sometimes referred to as "fruit", and sends "defruited" video to the signal processor.

(2) [WRA 13] Analog-to-Digital Converter CV-3477. Accepts single speed synchro (antenna shaft) inputs and outputs two signals, the ARP (Azimuth Reference Pulse) and the ACP (Azimuth Change Pulse). Three units provide ACP/ARPs for two radars, with the extra unit on standby.

(3) [WRA 11] Signal Processor CN-1506. Re-formats the video and mode tags received from either the AN/UPX-233 or the AN/UPX-27 into video and mode sensitive triggers.

(4) Video Signal Processor CP-1310. Generates a signal report message, one per antenna scan, for each transponder equipped aircraft within a selected range. After it is properly formatted, the output message is transmitted to the data processor shortly after the beam of the antenna has passed the position of the aircraft. An extra CP-1310 is provided for dual-channel capability.

(5) Radar Target Data Processor CP-1319. Detects the primary radar normal video, triggers, and azimuth data and develops a signal digital report for each aircraft on each antenna scan. The radar target data processor transfers the messages to the tracking display processor.

b. Conversion-Switching Group OU-131

(1) [WRA 15] Signal Data Converter CV-3476. Has dual channels "A" and "B", one active and one in hot standby, which transfer data between the AN/UYK-20(V) data processing set, keyset control, ACLS, NTDS, CP-1319 and ADD (Alphanumeric Digital Display) utilizing the relay switching assembly. Acts as the AN/UYK-20(V) device controller for video signal processors data, the analog-to-digital converter ACP data and PEM (Position Encoding Module) lines.

(2) [WRA 14] Data Processing Set AN/UYK-20(V). A programmable mini-computer used as the display processor. Two AN/UYK-20(V)s are installed for dual channel capability.

(3) [WRA 17] Data Signal Switching Unit SA-2164. Interconnects the Keyset Central, ACLS, NTDS, Operator Consoles, CP-1319, and AN/UYK-20(V) data processing sets when switching to the standby channel.

(4) [WRA 16] CMTU (Cartridge Magnetic Tape Unit) AN/USH-26(V). Provides for data storage and program loading. Interfaces with the AN/UYK-20(V) data processing sets. It is a self-contained tape storage system consisting of tape drives, power supplies, and a built-in maintenance test panel.

c. [WRA 19] Indicator Control Group OD-146 (5 used in CATCC-DAIR). A modified AN/TPX-42A(V)5 OD-58/T Indicator Group with the following additions:

(1) Keyboard Controller KY-844. Accepts user inputs from a "Human Engineered" keyboard or a joystick style analog positioner and formats them for the AN/UYK-20(V) data processing sets.

(2) Indicator Control C-10330. Provides for selection of interrogation modes, visual system status indication, and display of symbology and alphanumerics. Audio and visual alarms are provided for detected emergency, lost communication, and hijack beacon returns.

(4) Indicator Set Control C-10329 (One only, placed on the console designated as the Supervisor's Console). Provides for range selection of radar and gives visual indication of the type of radar in use, alarm conditions, and channel in use.

(5) Interrogator Set AN/UPX-23 or AN/UPX-27. Challenges Mark XII IFF/SIF (Identification Friend or Foe/Selective Identification Feature) transponder sets and re-structures the replies into video signals for decoders and indicators.

d. Ancillary Equipment

(1) [WRA 18] Alphanumeric Digital Display (ADD) AN/USQ-69. A computer terminal located in the equipment spaces (near the TDP) to assist technicians in maintenance actions.

SECTION III - SPECIFICATIONS

The specification for the AN/TPX-42A(V)8 is ELEX-I-198 dated 21 October 1974. The following specification requirements were taken from this document.

3-1 RELIABILITY

CATCC-DAIR is specified to have a greater than 700 hour equipment MTBF (Θ_{MTBF} as defined by MIL-STD-781) per paragraph 3.5.11.1 of ELEX-I-198.

3-2 MAINTAINABILITY

CATCC-DAIR is specified to have an average repair time of not more than 0.75 hours and shall have a maximum repair time not greater than 1.5 hours at the 90% confidence limit per paragraph 3.5.12.1 of ELEX-I-198. The AN/UYK-20(V) is maintained by replacement of printed circuit cards,

most of which are throw-aways (the memory arrays being an exception). The TDP computer has its own diagnostic routines to aid fault isolation. The remainder of the system is maintained by piece-part replacement on-site. Since the users have access to a sophisticated electronics repair shop on board, no intermediate level or depot level maintenance is defined.

SECTION IV - PROBLEMS

4-1 ADDITIONAL HARDWARE PROBLEMS

An operational problem has been identified concerning the modified OD-58 console. Strong negative comment has been received from the Fleet about the "Human Engineered" keyboard used. This keyboard starts with "A" in the upper left corner and proceeds across in "ABC" order. The keys are so placed that touch typing is impossible. Whereas any teletype machine or typewriter can serve as a training aid for a typewriter style keyboard (in fact, many people can already touch type), the CATCC DAIR operators can practice only on a system keyboard.

There is also the safety aspect to be considered. The Federal Aviation Administration has standardized on the "ABC" style keyboards for use in civilian air traffic control centers. The situation there bears little resemblance to the operational profile of a Fleet carrier air traffic control center (CATCC). For one thing, civilians do not have to deal with hostile intruders into their air space. For another, civilian air traffic is required to have both an alternate destination and sufficient fuel on board to get there. CATCC traffic has no alternative to carrier landing except ditching at sea. Plus, CATCC aircraft may arrive back from a mission with battle damage and be very low on fuel. These factors make it mandatory that the human-machine interface on CATCC DAIR be as natural, rapid and error free as possible. Fleet users feel the "ABC" style keyboard obstructs this rapid interchange because operators must "hunt and peck" to use it.

A related problem outside the FRAP study scope is reported here without comment or recommendation: Several reports have been received from Fleet users concerning the intercom system used with CATCC DAIR. The additional coordination necessary to compensate for the interim software's problems reportedly has overloaded the intercom system. One report also observed that the system did not withstand shipboard wear and tear well.

4-2 SOFTWARE PROBLEMS

CATCC DAIR has been roundly criticized for its software problems. Practically everything new in the AN/TPX-42A(V)8 is software or software related (like the AN/UYK-20(V)) so software problems should have been expected. To be sure, the Fleet did not like the marginally acceptable interim software. It is an unpleasant fact of life that, at this stage in the software art, a hardware design is more likely to shakedown and work correctly quicker than a software design of similar complexity. After comparison with similar software efforts, one must conclude that CATCC DAIR's software development is notable neither for its success

nor its lack of success. In short, it reflects the common industrial experience with software.

This is not to indicate that such experiences are not frustrating, costly and thoroughly unpleasant. Both Industry and the Department of Defense (DOD) are painfully aware of the cost of software problems in terms of dollars lost and schedules slipped. Even with the contractual muscle of DOD and a three billion dollar yearly volume, DOD has not succeeded in lowering the average error rate for delivered and tested software below one error in every 300 statements. In other words, a computer running unlooped code would run less than one second without encountering a mistake.

The situation is so serious that both DOD and Industrial software developers are actively seeking solutions. DOD has announced a "Software Quality Initiative" to be launched this summer from the Under Secretary of Defense level. Both Industry and DOD are preparing to alter the way the software art is practiced in America.

SECTION V - CORRECTIVE ACTIONS

5-1 HARDWARE CORRECTIVE ACTIONS

It is recommended that the "Human Engineered" keyboard used on CATCC DAIR be replaced by a standard typewriter or teletype style keyboard. The joystick function has been successfully replaced in many microcomputer applications by the arrowed keys on a standard ASCII keyboard. However, Fleet comments on the joystick have been mixed and retaining it may have some merit.

5-2 SOFTWARE CORRECTIVE ACTIONS

Followup discussions with the USS KITTY HAWK indicate that effective solutions to CATCC DAIR's software problems are being found. It is reported that these are being integrated into the Release IV software package, which should solve most Release III problems.

It is recommended that consideration be given to converting the AN/JYK-20(V) to run Pascal, either by obtaining a Pascal compiler or altering the microrrogramming or both. It is further recommended that the feasibility of converting CATCC DAIR software to Pascal be investigated. Published industrial cost comparisons indicate that the cost savings in maintainability will be significant. Further, a DOD wide shift to Pascal appears to be certain. Being among the first to shift to Pascal could well counter some of the criticism leveled at this developmental effort.

It is noted that AIL has enlisted the aid of Boeing Computer Services in the CATCC DAIR effort. Boeing is a licensee of UCSD Pascal. It is likely that Pascal is being used in developing Release IV and source code in that language may be obtainable via a contractual modification at modest cost. In any case, Sperry Univac has also shifted its minicomputer operations to Pascal as a cost control measure. It is likely that their inhouse support tools for the AN/JYK-20(V) will be

likewise converted to Pascal and that a Pascal compiler for the AN/UYK-20(V) already exists at Sperry.

It is recommended that NAVELEX assume the initiative in the creation of a software problem reporting system comparable to that already in existence for hardware. It is probable that the most effective way to do this would be as an extension of the existing 3-M system. Since NAVELEX has a vital need for software problem information, an active role in creating the mechanism to obtain that information does not seem inappropriate.

SECTION VI - EQUIPMENT RELIABILITY MODEL

System reliability is defined as the probability of performing a specified function or mission under specified conditions for a specified time. Reliability models are word statements or block diagrams which represent the requirements for mission success. The FRAP equipment models are used to determine the achieved operational reliability and to assess the effect of ECPs and other corrective action upon system reliability. Maintenance Action Reports are compared against the model to determine if a reported failure results in a system failure, or if not a failure, then the degree of system degradation. In addition, the model is used in determining logistic support requirements.

Maintenance of Naval shipboard equipment is accomplished by replacement or repair of components at Organizational (O), Intermediate (I), or Depot (D) repair levels. Ships Maintenance and Material Management (3-M) normally collects organizational level repair data but not intermediate or depot level repair data. Using 3-M field data requires that the lowest components of the model be the lowest level reported by 3-M, i.e., the O-level replaceable component. This O-level component can be a piece-part, printed circuit board, major assembly, or whatever is planned for the O-level maintenance concept.

The CATCC-DAIR system reliability model is represented in Figure 6-1a through Figure 6-1c. The model illustrates the redundant features of the system and the alternate modes of operation.

FIGURE 6-1a
SYSTEM/WRA-Level Block Diagram
for CATCC-DAIR (AN/TPX-42A(V)8)

FIGURE 6-1b
CATCC-DAIR SYSTEM Block Diagram (Continued)

FIGURE 8-10
CRTCC-DAIR SYSTEM Block Diagram (Continued)

SECTION VII - ANALYSIS

7-1 SOFTWARE ANALYSIS

No mechanism exists for the collection of software reliability information. The existing 2 Kilo mechanism does not cover software and despite specifically asking for software problem data, no 2K forms on software were received. This necessitated visits by FRAP personnel to Fleet platforms during the study period, something FRAP would like to avoid since it compromises FRAP's commitment to minimal intrusion into Fleet operations. Even so, the information obtained is subjective in nature and does not lend itself to numerical analysis.

Only a few general observations are possible. At the beginning of the FRAP study, software problems were very severe. As the study progressed, the situation improved. The last contact with the USS KITTYHAWK was in marked contrast to earlier discussions. It was clear that they were pleased with the capabilities CATCC DAIR gave them and that they were eagerly awaiting the delivery of the "Vector Map" upgrade to the TDP software package.

7-2 HARDWARE ANALYSIS

The data analysis for CATCC-DAIR is presented in 4 sub-sections, follows:

(1) All Data. All of the collected data from the participating platforms is selected for analysis. The reliability analysis is conducted on all failures or maintenance actions without consideration of system capability loss. No maintainability or availability analysis is performed.

(2) All Data, except USS INDEPENDENCE. All of the collected data from the USS RANGER and the USS KITTYHAWK is selected for analysis. A maintainability analysis is performed using active repair time as reported on the 2K form.

(3) Equipment Analysis. Data from the USS RANGER and the USS KITTYHAWK is selected to meet the condition of a hardware or a software failure. The reliability analysis is conducted on this data set. The maintainability analysis uses repair time as reported on the 2K form. The availability analysis uses equipment reliability and repair time in hours.

(4) Parts Replacement. Data from the USS RANGER and the USS KITTYHAWK is selected to meet the condition of requiring a parts replacement. The reliability analysis is performed on this data set. A maintainability analysis is performed using ships force repair man-hours from the 2K form.

SUB-SECTION (1)
CATCC-DAIR
ALL DATA

SYSTEM	SHIPNAME	DATE	FLEET RELIABILITY ASSESSMENT DATA				DUTY	WRA
			ETM	FAILURE TYPE	OPERATE	FAILURE TIME		
CATCC DAIR	INDEPENDENCE	8206	1458.	INITIAL	0.	0.	0.000	0
CATCC DAIR	INDEPENDENCE	8303	3840.	CENSORED	2382.	2382.	1.023	0
CATCC DAIR	INDEPENDENCE	8334	3858.	CENSORED	2400.	2400.	.781	0
CATCC DAIR	INDEPENDENCE	9001	3902.	CENSORED	2444.	2444.	.636	0
CATCC DAIR	INDEPENDENCE	9031	3902.	CENSORED	2444.	2444.	.536	0
CATCC DAIR	INDEPENDENCE	9062	4366.	CENSORED	2908.	2908.	.548	0
CATCC DAIR	INDEPENDENCE	9091	4778.	FAILURE	3320.	3320.	.553	0
NO INITIAL RECORD-FIRST RECORD USED								
CATCC DAIR	KITTY HAWK	8288	2650.	FAILURE	0.	0.	0.000	14
CATCC DAIR	KITTY HAWK	8321	2658.	INITIAL	0.	0.	0.000	0
CATCC DAIR	KITTY HAWK	8321	2686.	FAILURE	28.	28.	0.000	19
CATCC DAIR	KITTY HAWK	8321	2688.	FAILURE	30.	2.	0.000	11
CATCC DAIR	KITTY HAWK	8348	2794.	FAILURE	136.	106.	.210	18
CATCC DAIR	KITTY HAWK	9010	3104.	FAILURE	446.	310.	.344	0
CATCC DAIR	KITTY HAWK	9011	3125.	FAILURE	467.	21.	.354	0
CATCC DAIR	KITTY HAWK	9029	3293.	FAILURE	635.	168.	.362	16
CATCC DAIR	KITTY HAWK	9135	4085.	FINAL	1427.	792.	.332	0
CATCC DAIR	RANGER	8164	1904.	INITIAL	0.	0.	0.000	0
CATCC DAIR	RANGER	8256	2455.	CENSORED	551.	551.	.250	0
CATCC DAIR	RANGER	8278	2702.	CENSORED	798.	798.	.292	0
CATCC DAIR	RANGER	8307	3386.	FAILURE	1482.	1482.	.432	19
CATCC DAIR	RANGER	8334	4163.	CENSORED	2259.	777.	.554	0
CATCC DAIR	RANGER	8363	4519.	CENSORED	2615.	1133.	.548	0
CATCC DAIR	RANGER	9049	5035.	FAILURE	3131.	1649.	.522	19
CATCC DAIR	RANGER	9058	5230.	FAILURE	3326.	195.	.535	19
CATCC DAIR	RANGER	9074	5514.	FAILURE	3610.	284.	.547	19
CATCC DAIR	RANGER	9080	5514.	FAILURE	3610.	0.	.535	19
CATCC DAIR	RANGFR	9104	5550.	FAILURE	3646.	36.	.498	2

RELIABILITY
CATCC DAIRSYSTEM LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED	SURVIVORS	WEIBULL	EXPONENTIAL
100.	0.	1.	1.	14.	.004	.000
100.	2.0	1.	1.	13.	.003	.003
100.	21.0	1.	1.	12.	.106	.106
100.	28.0	1.	1.	11.	.263	.263
98.	36.0	1.	1.	10.	.422	.422
100.	106.0	1.	1.	9.	.333	.333
100.	168.0	1.	1.	8.	.054	.054
100.	195.0	1.	1.	7.	.151	.151
100.	244.0	1.	1.	6.	.467	.467
100.	310.0	1.	1.	5.	.229	.229
100.	792.0	1.	1.	4.	.522	.522
100.	1482.0	1.	1.	3.	.544	.544
100.	1649.0	1.	1.	2.	.602	.602
100.	3320.0	1.	1.	1.	.616	.616

EQUIPMENT OPERATING HOURS (0.H.) = 8393.0 CALENDAR HOURS (C.H.) = 17616.0 DUTY CYCLE (0.H./C.H.) = .476

NUMBER OF FAILURES = 13. OBSERVED FAILURE RATE/0.H. = .15489E-02

16 RATIO OF 4.461 EXCEEDS THE CRITICAL VALUE FOR TEST OF EXPONENTIAL

THE WEIBULL PARAMETERS ARE ALPHA = .837230E-01 BETA = .424563E+00

FOR THE ASSUMED DISTRIBUTION

EST. MEAN = 979.263. EST. MEDIAN = 150.000. 90 PER CENT LCL FOR MEAN = 0.000. 90 PER CENT UCL FOR MEAN = 2034.941

90 PER CENT LCL FOR BETA = .345781E+00 90 PER CENT UCL FOR BETA = .503345E+00

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

CUMULATIVE OBSERVED POSSIBILITY DISTRIBUTION VERSUS THEORETICAL
GENBULL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

RELIABILITY

CATCC DAIR WRA II LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED
100.	30.0	1.	1.
	1397.0		
	3320.0		
	3646.0		

EQUIPMENT OPERATING HOURS (O.H.) = 8393.0 CALENDAR HOURS (C.H.) = 17616.0 DUTY CYCLE (O.H./C.H.) = .476
NUMBER OF FAILURES = 1. OBSERVED FAILURE RATE/O.H. = .11915E-03

LESS THAN FOUR FAILURES THE EXPONENTIAL DISTRIBUTION IS ASSUMED
FOR THE ASSUMED DISTRIBUTION

EST. MEAN = 8393.000. EST. MEDIAN = 5817.584. 90 PER CENT LCL FOR MEAN = 2157.7. 90 PER CENT UCL FOR MEAN = 79660.213
90 PERCENT UCL 79660.21 IS GREATER THAN 11655.00 HOURS, THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

RELIABILITY

CATCC DAIR WRA 16 LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED
100.	635.0	1.	1.
	792.0		
	3320.0		
	3646.0		

EQUIPMENT OPERATING HOURS (O.H.) = 8393.0 CALENDAR HOURS (C.H.) = 17616.0 DUTY CYCLE (O.H./C.H.) = .476

NUMBER OF FAILURES = 1. OBSERVED FAILURE RATE/O.H. = .11915E-03

LESS THAN FOUR FAILURES THE EXPONENTIAL DISTRIBUTION IS ASSUMED
FOR THE ASSUMED DISTRIBUTION

EST. MEAN = 8393.000. EST. MEDIAN = 5817.586. 90 PER CENT LCL FOR MEAN = 2157.7. 90 PER CENT UCL FOR MEAN = 79660.213
90 PERCENT UCL 79660.21 IS GREATER THAN 2880.00 HOURS. THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

RELIABILITY

CATCC DATA WRA 18 LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED
100.	136.0	1.	1.
	1291.0		
	3320.0		
	3646.0		

$$\text{EQUIPMENT OPERATING HOURS (0.H.)} = 8393.0 \quad \text{CALENDAR HOURS(C.C.H.)} = 17616.0 \quad \text{DUTY CYCLE (0.H./C.H.)} = .476$$

NUMBER OF FAILURES = 1. OBSERVED FAILURE RATE/0.H. = .11915E-03

LESS THAN FOUR FAILURES THE EXPONENTIAL DISTRIBUTION IS ASSUMED

FOR THE ASSUMED DISTRIBUTION

EST. MEAN = A393.000. EST. MEDIAN = 5817.584. 90 PER CENT LCL FOR MEAN = 2157.7. 90 PER CENT UCL FOR MEAN = 79660.213
 90 PER CENT UCL 79660.21 IS GREATER THAN 5000.00 HOURS, THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

RELIABILITY
CATCC DAIR WRA 19 LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED	SURVIVORS	NPD	EXPONENTIAL	WEIBULL
100.	0	1.	1.	9.	.100	.000	.012
100.	28.0	1.	1.	6.	.200	.023	.276
98.	36.0	1.	1.	7.	.300	.030	.295
100.	195.0	1.	1.	6.	.400	.150	.454
100.	284.0	1.	1.	5.	.500	.211	.495
100.	1399.0	1.	1.	3.	.625	.709	.688
100.	1482.0	1.	1.	2.	.750	.767	.701
100.	1649.0	1.	1.	1.			
	3320.0						

EQUIPMENT OPERATING HOURS (O.H.) = 8393.0 CALENDAR HOURS(C.H.) = 17616.0 DUTY CYCLE (O.H./C.H.) = .476
NUMBER OF FAILURES = 7. OBSERVED FAILURE RATE/O.H. = .83403E-03

ORATIO OF 4.641 EXCEEDS THE CRITICAL VALUE FOR TEST OF EXPONENTIAL

THE WEIBULL PARAMETERS ARE ALPHA = .10999E+00 BETA = .323302E+00
FOR THE ASSUMED DISTRIBUTION

EST. MEAN = 6231.390. EST. MEDIAN = 326.471. 90 PER CENT LCL FOR MEAN = 0.000, 90 PER CENT UCL FOR MEAN = 22319.055
90 PER CENT LCL FOR BETA = .211893E+00 90 PER CENT UCL FOR BETA = .434872E+00

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
WEIBULL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

RELIABILITY
CATCC DAIR 0-LEVEL SUMMARY

WRA	0-LEVEL BLOCK NO.	0-LEVEL NOMENCLATURE	NUMBER FAILURES	LOWER 90 CONF LIM		MEAN	UPPER 90 CONF LIM	SPEC MTBF	OBSERVED FAILURE TIMES LOW	OBSERVED FAILURE TIMES HIGH	RELIAB PROBLEM
				1.	1.						
11	99		1.	2157.74	8393.00	79660.21	1000000.00	30.00	30.00	YES	
16	99		1.	2157.74	8393.00	79660.21	1000000.00	635.00	635.00	YES	
18	3	CRT DRIVER ELECTRONICS	1.	2157.74	8393.00	79660.21	22769.00	136.00	136.00	NO	
19	2	DEFLECTION AMPLIFIER	3.	1256.29	2797.67	7615.70	92808.00	1482.00	3646.00	YES	
19	8	INTERFACE AND LOGIC	1.	2157.74	8393.00	79660.21	23702.00	3610.00	3610.00	NO	
19	9	VIDEO AMPLIFIER	1.	2157.74	8393.00	79660.21	54885.00	3131.00	3131.00	NO	
19	16	PANEL (RIGHT SIDE)	1.	2157.74	8393.00	79660.21	24499.00	3326.00	3326.00	NO	

R E L I A B I L I T Y

2K SUMMARY FOR CATCC DAIRPROBLEM AREAS

WRA	0-L	0-L	0-L	WHAT HAPPENED
JCN 33610F010740	19	2	0	ANOTHER AMP FAILURE/SEE 1131/EK
33610E100780	19	2	0	
33610E100789	19	2	0	EMT REPORTED AS 55054/EK

SUB-SECTION (2)

CATCC-DAIR

ALL DATA

EXCEPT INDEPENDENCE

SYSTEM	SH/NAME	DATE	FIN	FAILURE	ASSESSMENT	DATA	OPERATE	FAILURE	TIME	DUTY	WRA	OL1	OL2	OL3
CATCC DAIR	KITTY Hawk	6-28-88	2650*	FAILURE	U.	0.	0.	0.	0.	0.000	14	39	0	0
CATCC DAIR	KITTY Hawk	6-32-88	2658*	INITIAL	0.	0.	0.	0.	0.	0.000	0	0	0	0
CATCC DAIR	KITTY Hawk	7-32-88	2646*	FAILURE	28*	28*	28*	0.	0.	0.000	19	0	0	0
CATCC DAIR	KITTY Hawk	8-32-88	2648*	FAILURE	30*	2*	0.	0.	0.	0.000	11	99	0	0
CATCC DAIR	KITTY Hawk	8-34-88	2794*	FAILURE	136*	106*	106*	0.	0.	0.000	18	3	0	0
CATCC DAIR	KITTY Hawk	9-10-88	3164*	FAILURE	446*	310*	310*	0.	0.	0.000	0	0	0	0
CATCC DAIR	KITTY Hawk	9-11-88	3125*	FAILURE	457*	21*	21*	0.	0.	0.000	0	0	0	0
CATCC DAIR	KITTY Hawk	9-12-88	3293*	FAILURE	635*	168*	168*	0.	0.	0.000	16	99	0	0
CATCC DAIR	KITTY Hawk	9-13-88	4085*	FINAL	1427*	792*	792*	0.	0.	0.000	0	332	0	0
CATCC DAIR	RANGER	9-16-88	1904*	INITIAL	0.	0.	0.	0.	0.	0.000	0	0	0	0
CATCC DAIR	RANGER	8-25-88	2455*	CENSORED	551*	551*	551*	0.	0.	0.000	0	250	0	0
CATCC DAIR	RANGER	8-27-88	2702*	CENSORED	798*	798*	798*	0.	0.	0.000	0	292	0	0
CATCC DAIR	RANGER	8-30-88	3386*	FAILURE	1482*	1482*	1482*	0.	0.	0.000	19	2	0	0
CATCC DAIR	RANGER	8-33-88	4163*	CENSORED	2259*	777*	777*	0.	0.	0.000	0	554	0	0
CATCC DAIR	RANGER	8-36-88	6363	CENSORED	2615*	1133*	1133*	0.	0.	0.000	0	548	0	0
CATCC DAIR	RANGER	9-04-88	5035*	FAILURE	3131*	1649*	1649*	0.	0.	0.000	19	9	0	0
CATCC DAIR	RANGER	9-05-88	5230*	FAILURE	3326*	195*	195*	0.	0.	0.000	16	535	0	0
CATCC DAIR	RANGER	9-07-88	5514*	FAILURE	3610*	284*	284*	0.	0.	0.000	19	547	0	0
CATCC DAIR	RANGER	9-08-88	5514*	FAILURE	3610*	0*	0*	0.	0.	0.000	19	535	0	0
CATCC DAIR	RANGER	9-10-88	5550*	FAILURE	3646*	36*	36*	0.	0.	0.000	19	2	0	0

R F I A B I L I T Y
CATCC HAIRSYSTEM LEVEL

REMAINING SYS. CAP.	TIME TO FAIL.	FAILURES	NO. CENSORED	SURVIVORS	WEIBULL	EXPONENTIAL
100.	.0	1.	1.	13.	.000	.004
100.	2.0	1.	1.	12.	.005	.115
100.	21.0	1.	1.	11.	.048	.289
100.	24.0	1.	1.	10.	.214	.320
100.	36.0	1.	1.	9.	.286	.350
98.	106.0	1.	1.	8.	.357	.498
100.	148.0	1.	1.	7.	.429	.570
100.	145.0	1.	1.	6.	.500	.593
100.	224.0	1.	1.	5.	.571	.630
100.	310.0	1.	1.	4.	.643	.654
100.	742.0	1.	1.	3.	.714	.668
100.	1492.0	1.	1.	2.	.810	.887
100.	1645.0	1.	1.	1.	.905	.898

EQUIPMENT OPERATING HOURS (O.H.) = 5073.0 CALENDAR HOURS(C.H.) = 11616.0 DUTY CYCLE (O.H./C.H.) = .437

NUMBER OF FAILURES = 12. OBSERVED FAILURE RATE/O.H. = .23655E-02

ORATIO OF 3.793 EXCEEDS THE CRITICAL VALUE FOR TEST OF EXPONENTIAL

THE WEIBULL PARAMETERS ARE ALPHA = .902120E-01 BETA = .436198E+00

FOR THE ASSUMED DISTRIBUTION

EST. MEAN = .61.361. EST. MEDIAN = 110.870. 90 PER CENT LCL FOR MEAN = 0.000, 90 PER CENT UCL FOR MEAN = 1377.394

90 PER CENT LCL FOR HFTA = .348075E+00 90 PER CENT UCL FOR HFTA = .524321E+00

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
WEIBULL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

REF. LIABILITY
CATCC DAIR WPA 1) LEVEL

OPERATING HOURS	NUMBER TO FAIL	FAILURES	NO. OF FAILURES
SYS. CAP. 100.	30.0	1.	1.
	1397.0		
	1665.0		

NUMBER OF FAILURES = 1.
NUMBER OF FAILURES = 1. OBSERVED FAILURE RATE/0.H. = •19712E-03
LESS THAN FIVE FAILURES THE EXPONENTIAL DISTRIBUTION IS ASSUMED
FOR THE ASSUMED DISTRIBUTION
EST. MEAN = 5073.00. EST. 95% LCL FOR MEAN = 3516.336. 90 PER CENT LCL FOR MEAN = 1304.2. 90 PER CENT UCL FOR MEAN = 48149.203
40 PERCENT UCL 48149.203 IS GREATER THAN 11655.00 HOURS. THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

R E I L A I T I Y

CATCC DATA WRA 1K LEVEL

REMAINING SYS. CAP.	TIME 100.	FAILURES	NO. REFUSION
100.	475.0	752.0	1.
	752.0	1.	
	1.		

EQUIPMENT OPERATING HOURS (0.H.) = 5073.0 CALFWAP HOURS (C.H.) = 11614.0 DUTY CYCLE (0.H./C.H.) = .437

NUMBER OF FAILURES = 1. OBSERVED FAILURE RATE/0.H. = .19712E-03

LSSS THAT FOLLOW FAILURE FAILURE DISTRIBUTION IS ASSUMED

FOR THE ASSUMED DISTRIBUTION

FST. MEAN = 5073.000. FST. MEDIAN = 3516.336. 90 PER CENT LCL FOR MEAN = 1304.2. 90 PER CENT UCL FOR MEAN = 48149.203
AN OFFICIAL UCI VALUE IS GREATER THAN 2480.00 HOURS. THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

RELIABILITY

CATCC DATA WRA 1A LFVFL

REMAINING SYS. CAP.	1ST F. 135.0	NO. FAILURES	NO. TESTS
100.	135.0	1.	1.
	125.0	1.	1.
	115.0	1.	1.
	105.0	1.	1.

FAILURE RATE (1/HOUR) = 0.073.0 CALC. VARIOUS HOURS (C.M.) = 1165.0 DUTY CYCLE (O.H./C.M.) = .437

NUMBER OF FAILURES = 1. OBSERVED FAILURE RATE/0.073 = .19712E-03

LESS THAN FIVE FAILURES THE EXPONENTIAL DISTRIBUTION IS ASSUMED

FOR THE ASSUMED DISTRIBUTION,

EST. MEAN = .5073.000. EST. MEDIAN = .5016.336. 40 PER CENT LCL FOR MEAN = 1304.2. 40 PER CENT UCL FOR MEAN = 48149.203

90 PERCENT UCL = 1444.0 IS GREATER THAN 5000.00 HOURS. THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

MATERIALITY

CATCC DATA WRA 14 LEVEL

MFAN14.6 SYS. CAP.	114. T14.11	NO. FAILURES	NO. CENSORED	NO. SURVIVORS	NPD	EXPONENTIAL	WEIBULL
100.	0.	1.	1.	4.	.111	.000	.009
100.	24.4	1.	1.	7.	.222	.038	.309
94.	37.1	1.	1.	6.	.333	.068	.333
109.	1.77.11	1.	1.	5.	.444	.236	.523
100.	244.6	1.	1.	4.	.556	.324	.572
100.	1329.6	1.	1.	?	.704	.871	.784
100.	142.0	1.	1.	?	.852	.957	.797
100.	164.6	1.	1.	1.			

EQUIPMENT OPERATING HOURS (H.H.S.) = 5073.0 CALIFNDAR HOURS(C.H.s) = 11616.0 DUTY CYCLE (O.H./C.H.s) = .437
 NUMBER OF FAILURES = 7. NO. SURVIVING FAILURES MAF/0.0 = .13794F-02
 RATIO OF 90.43 CEFER'S INT. CRITICAL VALUE FOR TEST OF EXPONENTIAL
 THE WEIBULL MEAN AND ALPHA = .112102E+00 MAF = .358215E+00
 FOR THE ASSUMED DISTRIBUTION
 EST. MEAN = 2000.429. EST. MEDIAN = 171.429. 90 PER CENT LCL FOR MFAN = 0.000. 90 PER CENT UCL FOR MEAN = 6529.923
 90 PER CENT LCL FOR RETA = .241342E+00 90 PER CENT UCL FOR RETA = .475088E+00

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION TIME FAILURE

CUMULATIVE PROBABILITY DISTRIBUTION VERUS TIME TO FAILURE
FOR BULL-SEAL

RELIABILITY
DATA - LEVEL SUMMARY

ITEM	LEVEL	BLOCK NO.	NAME/CHARACTER	NUMBER OF FAILURES	LOWER 90% CONF LIM		UPPER 90% CONF LIM		SPEC MTBF	OBSERVED FAILURE TIMES	RELIA PROBLEM
					LOW	HIGH	LOW	HIGH			
11	90			1.	1304.21	5073.01	48149.20	1000000.00	30.00	30.00	YES
16	90			1.	1304.21	5073.01	48149.20	1000000.00	635.00	635.00	YES
18	3	CAT DIVIDE ELECTRICALS		1.	1304.21	5073.01	48149.20	22769.00	136.00	136.00	NO
19	2	SPLITTING INTERFACE		3.	759.34	1691.01	4603.18	92000.00	1482.00	3646.00	YES
19	4	INTERFACE WITH LOGIC		1.	1304.21	5073.01	48149.20	23702.00	3610.00	3610.00	NO
19	9	VIDE0 AMPLIFIER		1.	1304.21	5073.01	48149.20	5485.00	3131.00	3131.00	YES
19	16	PANEL (INTERIOR SIDE)		1.	1304.21	5073.01	48149.20	24499.00	3326.00	3326.00	NO

FAMILIARITY

SUMMARY F-TIP LATCC DATA PROBLEM AREAS

	W-A	U-L	U-L	O-L	WHAT HAPPENED
JG	19	-	0	0	
31005011749	19	9	0	0	
34619E01074	19	2	0	0	ANOTHER AMP FAILURE/SEE 1131/EK
32610510074	19	2	0	0	
34619E10074	19	2	0	0	EMT REPORTED AS 55054/EK

FLFFT MAINTAINABILITY ASSESSMENT DATA

SYS/T/FN	SUPPLY AMF	DISCOVERD	COMPL	REPAIR TIME	DOWN TIME
CATCC DAIR	KITTY HAWK	8248	8248	0.	0.
CATCC DAIR	KITTY HAWK	8321	8321	0.	0.
CATCC DAIR	KITTY HAWK	NO REPAIR TIME FOR THE ABOVE RECORD			
CATCC DAIR	KITTY HAWK	8321	8321	0.	0.
CATCC DAIR	KITTY HAWK	NO REPAIR TIME FOR THE ABOVE RECORD			
CATCC DAIR	KITTY HAWK	8348	8348	0.	0.
CATCC DAIR	KITTY HAWK	NO REPAIR TIME FOR THE ABOVE RECORD			
CATCC DAIR	KITTY HAWK	9010	9010	0.	0.
CATCC DAIR	KITTY HAWK	NO REPAIR TIME FOR THE ABOVE RECORD			
CATCC DAIR	KITTY HAWK	9011	9026	16.	360.
CATCC DAIR	KITTY HAWK	9020	9029	0.	0.
CATCC DAIR	RANGFR	NO REPAIR TIME FOR THE ABOVE RECORD			
CATCC DAIR	RANGFR	H307	A314	96.	168.
CATCC DAIR	RANGFR	9049	9053	5.	96.
CATCC DAIR	RANGFR	9058	9058	4.	4.
CATCC DAIR	RANGFR	9074	9075	1.	24.
CATCC DAIR	RANGFR	9080	9097	2.	168.
CATCC DAIR	RANGFR	9104	9117	2.	312.

Maintainability (Repair Time)
CATCC Dair System Level

REPAIR TIME*	FREQUENCY	CUM FREQUANCY	NPF	LOGNORMAL	WEIBULL
1.0	1.	1.0		.140	.054
2.0	2.	3.0		.263	.193
4.0	1.	4.0		.500	.282
5.0	1.	5.0		.625	.401
16.0	1.	6.0		.750	.446
96.0	1.	7.0		.875	.707

TOTAL REPAIR HOURS = 126.0 NUMBER OF REPAIRS = 7. OBSERVED REPAIR RATE/HR = .5556E-01

DISTRIBUTION DETERMINATION

MEAN OF LN#S = 1.47 STD DEV OF LN#S = 1.55

K-S CRITICAL VALUE (.10. 7.) = .276 MAX DIFF CALC = .219 IS LESS THAN THE CRITICAL VALUE

THEFORE THE LOGNORMAL DISTRIBUTION IS ASSUMED

FST MEAN = 18.00 FST MEDIAN = 5.37 90 PER CENT LCL ON MEDIAN = 2.30 90 PER CENT UCL ON MEDIAN = 12.39

SPFCIFIED MTTR = 2.00 HOURS LOWER CONF LIM 2.30 IS GREATER THAN MTTR, THUS A MAINTAINABILITY PROBLEM EXISTS

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
NORMAL DISTRIBUTION FOR TIME TO REPAIR

CATCC DAIR

Maintainability (Down Time)

CATCC DATA SYSTEM LEVEL

DOWN TIME	FREQUENCY	CUM FREQUENCY		
6.0	1.	1.0		
7.4	1.	2.0		
9.6	0.	2.0		
16.0	1.	3.0		
16.0	0.	3.0		
31.2	2.	5.0		
31.2	1.	6.0		
36.0	1.	7.0		
36.0	0.	7.0		
TOTAL DOWN TIME (TOT) = 113.0	NUMBER OF REPAIRS (NR) = 7.	0.897	0.897	0.897

DISTRIBUTION DETERMINATION

MEAN OF LN(S) = 4.43 STD DEV OF LN(S) = 1.62

K-S CRITICAL VALUE (10. 7.) = .276 MAX DIFF CALC = .291 IS GREATER THAN THF CRITICAL VALUE
 THEREFORE THF LOGNORMAL DISTRIBUTION CANNOT BE ASSUMED
 Q.RATIO OF 1.340 DOES NOT EXCEED THE CRITICAL VALUE FOR TEST OF EXPONENTIAL
 THEREFORE THF EXPONENTIAL DISTRIBUTION IS ASSUMED

FST MEAN = 161.71 FST MEDIAN = 112.09 90 PER CENT LCL ON MEAN = 107.48 90 PER CENT UCL ON MEAN = 290.65

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
LONGITUDINAL PROBABILITY DISTRIBUTION FOR DURN TIME

CATCC DAIR

MDT 161.7
MEDIAN 83.9
DURN TIME (HOURS)

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION FOR DOWNTIME

CATCC DATA

MDT 161.7
MEDIAN 112.1
350 400
350 400
DOWNTIME (HOURS)

MAINTAINABILITY (REPAIR TIME)

CATCC DATA WRA 19 LEVEL

REPAIR TIME	FREQUENCY	CIM FREQUENCY	NPF	LOGNORMAL	EXPONENTIAL	WEIBULL
1.0	1.	1.0	.143	.177	.053	.231
2.0	2.	2.0	.429	.110	.103	.325
4.0	4.	4.0	.571	.474	.444	.196
5.0	1.	5.0	.714	.529	.239	.487
96.0	1.	6.0	.857	.972	.995	.975

TOTAL REPAIR HOURS = 110.0 NUMBER OF REPAIRS = 6. OBSERVED REPAIR RATE/HR = .5455F-01

DISTRIBUTION DETERMINATION

MEAN OF LN#S = 1.49 STD DEV OF LN#S = 1.61

K-S CRITICAL VALUE (.10. 6.) = .294 MAX DIFF CALC = .258 IS LESS THAN THE CRITICAL VALUE

THEREFORE THE LOGNORMAL DISTRIBUTION IS ASSUMED

EST MFTAN = 19.13 FST MFTAN = 4.44 90 PER CENT LCL ON MEDIAN = 1.68 90 PER CENT UCL ON MEDIAN = 11.72

SPECIFIED MFTB = 2.00 HOURS LOWER CONF LIM 1.68 IS LESS THAN MFTB. THIS THE EQUIPMENT MEETS THE SPECIFICATIONS

CUMULATIVE PROBABILITY DISTRIBUTION VERSUS THEORETICAL
TIME TO REPAIR

MAINTAINABILITY (REPAIR TIME)

CATCC FAIR 0-LEVEL SUMMARY

WRA	0-LFVFL BLOCK No.	0-LFVFL NATURE	NUMBER OF REPAIRS				SPFC MTTR	OBSERVED REPAIR TIMES			MAINT PROBLEMS
			LOWER 90 CONF LIM	UPPER 90 CONF LIM	CONF LIM	MEAN		LOW	HIGH	MEAN	
19	2	DEFLECTION AMPLIFIER	3.	.40	.44.00	2.0	1.0	33.00	96.0	NO	
19	8	INTERFACE AND LOGIC	1.	NO CONF LIMITS		2.0	2.0	2.00	2.0		
19	9	VIFU AMPLIFIERS	1.	NO CONF LIMITS		2.0	5.0	5.00	5.0		
19	16	PANEL (RIGHT SIDE)	1.	NO CONF LIMITS		2.0	4.0	0.00	4.0		

MAINTAINABILITY (REPAIR TIME)

2K SUMMARY FOR CATCC DATA PROBLEM AREAS

WDA	O-L	O-L	O-L	WHAT HAPPENED
-----	-----	-----	-----	---------------

JCN

SUB-SECTION (3)
CATCC-DAIR
EQUIPMENT
RELIABILITY
DATA

SYSTEM	SHIPNAME	FLEET RELIABILITY ASSESSMENT DATA					
		FTM	FAILURE TYPE	OPERATE	FAILURE TIME	DUTY	WRA
CATCC DAIR	KITTY HAWK	8288	2650.	FAILURE	0.	.000	14
CATCC DAIR	KITTY HAWK	8321	2658.	INITIAL	0.	.000	0
CATCC DAIR	KITTY HAWK	8321	2686.	FAILURE	28.	.000	0
CATCC DAIR	KITTY HAWK	8321	2688.	FAILURE	30.	.000	19
CATCC DAIR	KITTY HAWK	8348	2794.	FAILURE	136.	.210	99
CATCC DAIR	KITTY HAWK	9010	3104.	CENSORED	446.	.344	3
CATCC DAIR	KITTY HAWK	9011	3125.	CENSORED	467.	.331.	0
CATCC DAIR	KITTY HAWK	9029	3293.	FAILURE	635.	.354	0
CATCC DAIR	KITTY HAWK	9135	4085.	FINAL	699.	.362	0
CATCC DAIR	RANGER	8164	1904.	INITIAL	1427.	.332	0
CATCC DAIR	RANGER	8256	2455.	CENSORED	792.	0.	0
CATCC DAIR	RANGER	8278	2702.	CENSORED	551.	.250	0
CATCC DAIR	RANGER	8307	3386.	FAILURE	798.	.292	0
CATCC DAIR	RANGER	8334	4163.	CENSORED	1482.	.432	19
CATCC DAIR	RANGER	8363	4519.	CENSORED	2259.	.777.	2
CATCC DAIR	RANGER	9049	5035.	FAILURE	2615.	.1133.	0
CATCC DAIR	RANGER	9058	5230.	FAILURE	3131.	.1649.	0
CATCC DAIR	RANGER	9074	5514.	FAILURE	3326.	.522	9
CATCC DAIR	RANGER	9080	5514.	FAILURE	3610.	.535	19
CATCC DAIR	RANGER	9104	5550.	FAILURE	3646.	.498	16

RELIABILITY
CATCC DAIRSYSTEM LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED	NO. SURVIVORS	NPD	EXPONENTIAL	WEIBULL
100.	.0	1.	1.	11.	.083	*.000	*.006
100.	2.0	1.	1.	10.	.167	*.004	*.123
100.	28.0	1.	1.	9.	.250	*.054	*.317
98.	36.0	1.	1.	8.	.333	*.069	*.344
100.	106.0	1.	1.	7.	.417	*.189	*.480
100.	195.0	1.	1.	6.	.500	*.500	*.567
100.	284.0	1.	1.	5.	.583	*.429	*.623
100.	499.0	1.	1.	4.	.667	*.626	*.706
100.	792.0	1.	1.	1.			
100.	1482.0	1.	1.	1.	.778	*.946	*.851
100.	1649.0	1.	1.	1.	.889	*.961	*.863

EQUIPMENT OPERATING HOURS (O.H.) = 5073.0 CALENDAR HOURS(C.H.) = 11616.0 DUTY CYCLE (O.H./C.H.) = .437

NUMBER OF FAILURES = 10. OBSERVED FAILURE RATE/O.H. = .19712E-02

QUOTIO OF 4.399 EXCEEDS THE CRITICAL VALUE FOR TEST OF EXPONENTIAL

THE WEIBULL PARAMETERS ARE ALPHA = .989034E-01 BETA = .403053E+00

FOR THE ASSUMED DISTRIBUTION

EST. MEAN = 971.268, EST. MEDIAN = 126.364, 90 PER CENT LCL FOR MEAN = 0.000, 90 PER CENT UCL FOR MEAN = 2291.286

90 PER CENT LCL FOR BETA = .308808E+00 90 PER CENT UCL FOR BETA = .501298E+00

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

CATCC DAIR

MTBF 507.3
MEDIAN 351.6
1500 1750 2000
OPERATING HOURS

CUMULATIVE OBSERVED DENSITY DISTRIBUTION VERSUS THEORETICAL
RESULTANT PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

MTBF 971.3
MEDIAN 126.4
250 500 750 1000 1250 1500 1750 2000
OPERATING HOURS

RELIABILITY

CATCC DAIR WRA 11 LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED
100.	30.0	1.	1.
	1397.0		
	3645.0		

EQUIPMENT OPERATING HOURS (O.H.) = 5073.0 CALENDAR HOURS(C.H.) =, 11616.0 DUTY CYCLE (O.H./C.H.) = .437

NUMBER OF FAILURES = 1. OBSERVED FAILURE RATE/O.H. = .19712E-03

LESS THAN FOUR FAILURES THE EXPONENTIAL DISTRIBUTION IS ASSUMED

FOR THE ASSUMED DISTRIBUTION

EST. MEAN = 5073.000, EST. MEDIAN = 3516.336, 90 PER CENT LCL FOR MEAN = 1304.2, 90 PER CENT UCL FOR MEAN = 48149.203
90 PERCENT UCL 48149.20 IS GREATER THAN 11655.00 HOURS, THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

RELIABILITY

CATCC DAIR WRA 16 LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED
100.	635.0	1.	1.
	792.0		
	3646.0	1.	1.

$$\text{EQUIPMENT OPERATING HOURS (O.H.)} = 5073.0 \quad \text{CALENDAR HOURS(C.H.)} = 11616.0 \quad \text{DUTY CYCLE (O.H./C.H.)} = .437$$

$$\text{NUMBER OF FAILURES} = 1. \quad \text{OBSERVED FAILURE RATE/O.H.} = .19712E-03$$

LESS THAN FOUR FAILURES THE EXPONENTIAL DISTRIBUTION IS ASSUMED

FOR THE ASSUMED DISTRIBUTION

$$\text{EST. MEAN} = 5073.000. \quad \text{EST. MEDIAN} = 3516.336. \quad 90 \text{ PER CENT LCL FOR MEAN} = 1304.2. \quad 90 \text{ PER CENT UCL FOR MEAN} = 48149.203$$

90 PERCENT UCL 48149.20 IS GREATER THAN 2880.00 HOURS. THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

RELIABILITY

CATCC DAIR WRA 18 LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED
100.	136.0	1.	
	1291.0		1.
	3646.0		1.

$$\text{EQUIPMENT OPERATING HOURS (O.H.)} = 5073.0 \quad \text{CALENDAR HOURS(C.H.)} = 11616.0 \quad \text{DUTY CYCLE (O.H./C.H.)} = .437$$

NUMBER OF FAILURES = 1. OBSERVED FAILURE RATE/O.H. = .19712E-03

LESS THAN FOUR FAILURES THE EXPONENTIAL DISTRIBUTION IS ASSUMED

FOR THE ASSUMED DISTRIBUTION

EST. MEAN = 5073.000. EST. MEDIAN = 3516.336. 90 PER CENT LCL FOR MEAN = 1304.2. 90 PER CENT UCL FOR MEAN = 48149.203
 90 PERCENT UCL 48149.20 IS GREATER THAN 5000.00 HOURS. THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

RELIABILITY

CATCC DAIR WRA 19 LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED	SURVIVORS	NPD	EXPONENTIAL	WEIBULL
100. 0	0.	1.	8.	8.	.111	.000	.009
100. 28.0	28.0	1.	7.	7.	.222	.038	.309
98. 36.0	36.0	1.	6.	6.	.333	.048	.333
100. 195.0	195.0	1.	5.	5.	.444	.068	.523
100. 284.0	284.0	1.	4.	4.	.556	.086	.572
100. 1399.0	1399.0	1.	1.	1.	.667	.104	.784
100. 1482.0	1482.0	1.	2.	1.	.652	.097	.797
100. 1649.0	1649.0	1.	1.	1.	.634	.091	.817

EQUIPMENT OPERATING HOURS (0.H.) = 5073.0 CALENDAR HOURS(C.H.) = 11616.0 DUTY CYCLE (0.H./C.H.) = .437

NUMBER OF FAILURES = 7. OBSERVED FAILURE RATE/0.H. = .1379E-02

RATIO OF 3.883 EXCEEDS THE CRITICAL VALUE FOR TEST OF EXPONENTIAL

THE WEIBULL PARAMETERS ARE ALPHA = .112102E+00 BETA = .358215E+00

FOR THE ASSUMED DISTRIBUTION

EST. MEAN = 2090.828, EST. MEDIAN = 171.429, 90 PER CENT LCL FOR MEAN = 0.000, 90 PER CENT UCL FOR MEAN = 6529.923

90 PER CENT LCL FOR BETA = .241342E+00 90 PER CENT UCL FOR BETA = .475098E+00

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
WEIBULL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

RELIABILITY
CATCC DATA O-LEVEL SUMMARY

MRA	O-LEVEL BLOCK NO.	O-LEVEL NOMENCLATURE	NUMBER FAILURES	LOWER 90 CONF LIM		MEAN	UPPER 90 CONF LIM	SPEC MTBF	OBSERVED FAILURE TIMES LOW	OBSERVED FAILURE TIMES HIGH	RELIAB PROBLEM
11	99		1.	1304.21	5073.00	48149.20	1000000.00	30.00	30.00	30.00	YES
16	99		1.	1304.21	5073.00	48149.20	1000000.00	635.00	635.00	635.00	YES
18	3	CRT DRIVER ELECTRONICS	1.	1304.21	5073.00	48149.20	22769.00	136.00	136.00	136.00	NO
19	2	DEFLECTION AMPLIFIER	3.	759.34	1691.00	4603.18	92808.00	1482.00	1482.00	3646.00	YES
19	8	INTERFACE AND LOGIC	1.	1304.21	5073.00	48149.20	23702.00	3610.00	3610.00	3610.00	NO
19	9	VIDEO AMPLIFIER	1.	1304.21	5073.00	48149.20	54885.00	3131.00	3131.00	3131.00	YES
19	16	PANEL (RIGHT SIDE)	1.	1304.21	5073.00	48149.20	24499.00	3326.00	3326.00	3326.00	NO

RELIABILITY

2K SUMMARY FOR CATCC DAIRPROBLEM AREAS

JCN	WRA	0-L	0-L	0-L	WHAT HAPPENED
33610F010740	19	2	0	0	
33610E010763	19	9	0	0	
33610F100780	19	2	0	0	ANOTHER AMP FAILURE/SEE 1131/EK
33610E100789	19	2	0	0	EMT REPORTED AS 55054/EK

FLFET MAINTAINABILITY ASSESSMENT DATA

SYSTEM	SHIPNAME	DISCOVERD	CWPL	RPAIR TIME	DWN TIME
CATCC DAIR	KITTY HAWK	A2AA	A2BA	0.	0.
CATCC DAIR	KITTY HAWK	A321	A321	0.	0.
CATCC DAIR	KITTY HAWK	NO REPAIR	TIME FOR THE AROVE RECORD		
CATCC DAIR	KITTY HAWK	A321	A321	0.	0.
CATCC DAIR	KITTY HAWK	NO REPAIR	TIME FOR THE AROVE RECORD		
CATCC DAIR	KITTY HAWK	A348	A348	0.	0.
CATCC DAIR	KITTY HAWK	NO REPAIR	TIME FOR THE AROVE RECORD		
CATCC DAIR	KITTY HAWK	9029	9029	0.	0.
CATCC DAIR	RANGER	8307	A314	96.	168.
CATCC DAIR	RANGER	9049	9053	5.	96.
CATCC DAIR	RANGER	9054	9058	4.	4.
CATCC DAIR	RANGER	9074	9075	1.	24.
CATCC DAIR	RANGER	9080	9087	2.	168.
CATCC DAIR	RANGER	9104	9117	2.	312.

MAINTAINABILITY (REPAIR TIME)

CATCC DATA SYSTEM LEVEL

REPAIR TIME*	FREQUENCY	CUM FREQUENCY	NPF	LOGNORMAL	EXPONENTIAL	WEIBULL
1.0	1.	1.0	.143	.177	.053	.231
2.0	2.	3.0	.429	.310	.103	.325
4.0	1.	4.0	.571	.474	.196	.444
5.0	1.	5.0	.714	.529	.239	.487
96.0	1.	6.0	.857	.972	.995	.975

TOTAL REPAIR HOURS = 110.0 NUMBER OF REPAIRS = 6. OBSERVED REPAIR RATE/HR = .5455F-01

DISTRIBUTION DETERMINATION

MEAN OF LNHS = 1.46 STD DEV OF LNHS = 1.61

K-S CRITICAL VALUE (.10, 6.) = .264 MAX DIFF CALC = .258 IS LESS THAN THE CRITICAL VALUE
THEREFORE THE LOGNORMAL DISTRIBUTION IS ASSUMEDEST MEAN = 14.73 FST MEDIAN = 4.44 90 PER CENT LCL ON MEDIAN = 1.68 90 PER CENT UCL ON MEDIAN = 11.72
SPECIFIED MTTR = 2.00 HOURS LOWER CONF LIM 1.68 IS LESS THAN MTTR. THUS THE EQUIPMENT MEETS THE SPECIFICATIONS

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
LOGNORMAL PROBABILITY DISTRIBUTION FOR TIME TO REPAIR

MAINTAINABILITY (DOWN TIME)

CATCC DAIR SYSTEM LEVEL					
DOWN TIME.	FREQUENCY	CUM FREQUENCY	NPF	LOGNORMAL	EXPONENTIAL
4.0	1.	1.0	.163	.042	.031
24.0	1.	2.0	.286	.267	.179
96.0	1.	3.0	.429	.592	.526
168.0	2.	5.0	.714	.719	.730
312.0	1.	6.0	.857	.831	.908
TOTAL DOWN TIME (TDT) = 772.0	NUMBER OF REPAIRS (NRI) = 6.	OBSERVED DOWN TIME/REPAIR (TDT/NR) = 128.67			

DISTRIBUTION DETERMINATION

MEAN OF $\ln(S)$ = 4.19 STD DEV OF $\ln(S)$ = 1.62

K-S CRITICAL VALUE (1.10) 6.1 = .294 MAX DIFF CALC = .306 IS GREATER THAN THE CRITICAL VALUE

THEREFORE THE LOGNORMAL DISTRIBUTION CANNOT BE ASSUMED

ORATIO OF 3.366 DOES NOT EXCEED THE CRITICAL VALUE FOR TEST OF EXPONENTIAL

THEREFORE THE EXPONENTIAL DISTRIBUTION IS ASSUMED

EST MEAN = 128.67 FST MEDIAN = 89.18 90 PER CENT LCL ON MEAN = 83.24 90 PER CENT UCL ON MEAN = 244.93

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
LOGNORMAL PROBABILITY DISTRIBUTION FOR DOWN TIME

CATCC DAIR

MDT 128.7
MEDIAN 65.8
DOWN TIME (HOURS)

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION FOR DOWN TIME

MAINTAINABILITY (REPAIR TIME)

CATCC DAIR WRA 19 LEVEL

REPAIR TIME*	FREQUENCY	CUM FREQUENCY	NPF	LOGNORMAL	EXPONENTIAL	WEIBULL
1.0	1*	1.0	.143	.177	.053	.231
2.0	2*	3.0	.429	.310	.103	.325
4.0	1*	4.0	.571	.474	.196	.444
5.0	1*	5.0	.714	.529	.239	.487
96.0	1*	6.0	.857	.972	.995	.975
TOTAL REPAIR HOURS = 110.0	NUMBER OF REPAIRS = 6.	OBSERVED REPAIR RATE/HR = .5455F-01				

DISTRIBUTION DETERMINATION

MEAN OF LN(S) = 1.49 STD DEV OF LN(S) = 1.61

K-S CRITICAL VALUE (1n. 6.) = .294 MAX DIFF CALC = .258 IS LESS THAN THE CRITICAL VALUE
THEREFORE THE LOGNORMAL DISTRIBUTION IS ASSUMEDFST MEAN = 19.33 FST MEDIAN = 4.44 90 PER CENT LCL ON MEDIAN = 1.68 90 PER CENT UCL ON MEDIAN = 11.72
SPECIFIED MTTR = 2.00 HOURS LOWER CONF LIM 1.68 IS LESS THAN MTTR, THUS THE EQUIPMENT MEETS THE SPECIFICATIONS

CUMULATIVE OBSERVED PROBABILITY DISTRIBUTION VERSUS THEORETICAL
LOGNORMAL PROBABILITY DISTRIBUTION FOR TIME TO REPAIR

MAINTAINABILITY (REPAIR TIME)

CATCC DAIR O-LEVEL SUMMARY

WPA	O-LEVEL BLOCK NO.	O-LEVEL FUNCTION	NUMBER REPAIRS	LOWER 90 CONF LIM		UPPER 90 CONF LIM		SPFC MTTR	OBSERVED REPAIR TIMES		MAINT PROBLEM
				90	CONF LIM	90	CONF LIM		MEAN	HIGH	
19	2	DEFLECTION AMPLIFIER	3.	.40	84.00	2.0	1.0	33.00	96.0	NO	
19	8	INTERFACE AND LOGIC	1.	NO CONF LIMITS		2.0	2.0	2.00	2.0		
19	9	VIDEO AMPLIFIER	1.	NO CONF LIMITS		2.0	5.0	5.00	5.0		
19	16	PANFL (RIGHT STNF)	1.	NO CONF LIMITS		2.0	4.0	0.00	4.0		

Maintainability (Repair Time)

2K SUMMARY FOR CATCC DAIR PROBLEM AREAS

WRA	O-L	O-L	O-L	WHAT HAPPENED
-----	-----	-----	-----	---------------

J.C.

RMA SUMMARY CATCC DATA EQUIP. RELIABILITY SYSTEM LEVEL

TTF DISTRIBUTION IS WEIBULL WITH ALPHA = .09890 AND BETA = .40500 MFAN = 971.27

CT DISTRIBUTION IS EXPONENTIAL WITH MEAN = 12A.67

LT DISTRIBUTION IS LOGNORMAL WITH MEAN OF LNS = 1.49000 AND STANDARD DEVIATION OF LNS = 1.61000

TRANSIENT AVAILABILITY = MTBF / (MTBF + MTTR)

MFAN TIME TO FAILURE = 971.27

MEAN OF DAWN TIME = 14.0A

INHERENT AVAILABILITY = .9857

DERIVED AVAILABILITY (SIMULATION OF RATINGS TTF / (TTF + DT))

90 PERCENT ICL ON INDIVIDUALS = .0017

90 PERCENT UCL ON INDIVIDUALS = .9793

MEAN = .5245

MEDIAN = .5773

SUB-SECTION (4)

CATCC-DAIR

PARTS

REPLACEMENT

SYSTEM	TEST NAME	DATE	FLEET RELIABILITY ASSESSMENT DATA			DUTY	WRA	OL 1	OL 2	OL 3
			Failure Type	Operate Failure	Time					
CATCC DAIR	KITTY HAWK	2650.	FAILURE	0.	0.	0.000	14.	39	0	0
CATCC DAIR	KITTY HAWK	2658.	INITIAL	0.	0.	0.000	0	0	0	0
CATCC DAIR	KITTY HAWK	2696.	FAILURE	28.	28.	0.000	19	0	0	0
CATCC DAIR	KITTY HAWK	2698.	FAILURE	30.	2.	0.000	11	99	0	0
CATCC DAIR	KITTY HAWK	2794.	FAILURE	136.	106.	*210	18	3	0	0
CATCC DAIR	KITTY HAWK	4010.	CENSORED	446.	310.	.364	0	0	0	0
CATCC DAIR	KITTY HAWK	4011.	CENSORED	467.	331.	.354	0	0	0	0
CATCC DAIR	KITTY HAWK	9029.	CENSORED	635.	499.	.362	16	99	0	0
CATCC DAIR	KITTY HAWK	9135.	FINAL	1427.	1291.	.332	0	0	0	0
CATCC DAIR	RANGE FK	4164.	INITIAL	0.	0.	0.000	0	0	0	0
CATCC DAIR	RANGE FK	4256.	CENSORED	551.	551.	.250	0	0	0	0
CATCC DAIR	RANGE FK	8274.	CENSORED	793.	798.	.292	0	0	0	0
CATCC DAIR	RANGE FK	8307.	FAILURE	1482.	1482.	.432	19	2	0	0
CATCC DAIR	RANGE FK	8334.	CENSORED	2259.	777.	.554	0	0	0	0
CATCC DAIR	RANGE FK	8363.	CENSORED	2615.	1133.	.548	0	0	0	0
CATCC DAIR	RANGE FK	9049.	FAILURE	3131.	1649.	.522	19	9	0	0
CATCC DAIR	RANGE FK	9056.	FAILURE	3326.	1195.	.535	19	16	0	0
CATCC DAIR	RANGE FK	9074.	FAILURE	3610.	284.	.547	19	2	0	0
CATCC DAIR	RANGE FK	9080.	FAILURE	3610.	0.	.535	19	8	0	0
CATCC DAIR	RANGE FK	9104.	FAILURE	3646.	36.	.498	19	2	0	0

RELIABILITY
CATC DATA SYSTEM LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	NO. CENSORED	SURVIVORS	NPD	WEIBULL
100.	.00	1.	10.		.091	.010
100.	2.0	1.		9.	.182	.004
100.	28.0	1.		8.	.273	.347
98.	36.0	1.		7.	.364	.373
100.	106.0	1.		6.	.455	.171
100.	195.0	1.		5.	.545	.499
100.	294.0	1.		4.	.636	.578
100.	1291.0	1.		1.	.758	.628
100.	1442.0	1.		1.	.828	.835
100.	1644.0	1.		1.	.879	.846

EQUIPMENT OPERATING HOURS (U.H.) = 5073.0 CALENDAR HOURS(C.H.) = 11616.0 DUTY CYCLE (O.H./C.H.) = .437

NUMBER OF FAILURES = 4. OBSERVED FAILURE RATE/O.H. = .17741E-02

RATIO OF 6.226 EXCEEDS THE CRITICAL VALUE FOR TEST OF EXPONENTIAL

THE WEIBULL PARAMETERS ARE ALPHA = .127400E+00 BETA = .362814E+00

FOR THE ASSUMED DISTRIBUTION

EST. MEAN = 1304.031. EST. MEDIAN = 111.000. 90 PER CENT LCL FOR MEAN = 0.000. 90 PER CENT UCL FOR MEAN = 3591.256

90 PER CENT LCL FOR BETA = .261647E+00 90 PER CENT UCL FOR BETA = .463980E+00

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

CATCC DAIR

MTBF 563.7
MEDIAN 390.7
250 500 750 1000 1250 1500 1750 2000
OPERATING HOURS

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
WEIBULL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

RELIABILITY
 CATCC DAIR WRA II LEVEL
 REMAINING
 SYS. CAP. TIME TO FAIL NO.
 100. 30.0 FAILURES
 1. 1397.0 CENSORED
 1.
 3646.0 1.
 EQUIPMENT OPERATING HOURS (O.H.) = 5073.0 CALENDAR HOURS (C.H.) = 11616.0 DUTY CYCLE (O.H./C.H.) = .437

NUMBER OF FAILURES = 1. OBSERVED FAILURE RATE/O.H. = .19712E-03
 LESS THAN FOUR FAILURES THE EXPONENTIAL DISTRIBUTION IS ASSUMED
 FOR THE ASSUMED DISTRIBUTION
 EST. MEAN = 5073.00n. EST. MEDIAN = 3516.336, 90 PER CENT LCL FOR MEAN = 1304.2, 90 PER CENT UCL FOR MEAN = 48149.203
 90 PERCENT UCL 48149.20 IS GREATER THAN 11655.00 HOURS, THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

RELIABILITY
CATCC DAIR WRA 18 LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	FAILURES	NO.	CENSORED
100.	136.0	1.		
	1291.0		1.	
	3646.0		1.	

EQUIPMENT OPERATING HOURS (O.H.) = 5073.0 CALENDAR HOURS (C.H.) = 11616.0 DUTY CYCLE (O.H./C.H.) = .437

NUMBER OF FAILURES = 1. OBSERVED FAILURE RATE/O.H. = .19712E-03

LESS THAN FOUR FAILURES THE EXPONENTIAL DISTRIBUTION IS ASSUMED

FOR THE ASSUMED DISTRIBUTION

EST. MEAN = 5073.000, EST. MEDIAN = 3516.336, 90 PER CENT LCL FOR MEAN = 1304.2, 90 PER CENT UCL FOR MEAN = 48149.203
90 PERCENT UCL 48149.20 IS GREATER THAN 5000.00 HOURS, THEREFORE THE EQUIPMENT MEETS THE SPECIFICATIONS

RELIABILITY
CATCC DAIR WRA 19 LEVEL

REMAINING SYS. CAP.	TIME TO FAIL	NO. FAILURES	CENSORED	SURVIVORS	NPD	EXPONENTIAL	WEIBULL
100.	.0	1.		8.	.111	.000	.009
100.	28.0	1.		7.	.222	.038	.309
98.	36.0	1.		6.	.333	.046	.333
100.	195.0	1.		5.	.444	.236	.523
100.	284.0	1.		4.	.556	.324	.572
100.	1399.0	1.					
100.	1442.0	1.		2.	.704	.871	.784
100.	1649.0	1.		1.	.852	.897	.797

EQUIPMENT OPERATING HOURS (O.H.) = 5073.0 CALENDAR HOURS (C.H.) = 11616.0 DUTY CYCLE (O.H./C.H.) = .437

NUMBER OF FAILURES = 7. OBSERVED FAILURE RATE/O.H. = .13799E-02

RATIO OF 3.883 EXCEEDS THE CRITICAL VALUE FOR TEST OF EXPONENTIAL

THE WEIBULL PARAMETERS ARE ALPHA = .112102E+00 BETA = .358215E+00
FOR THE ASSUMED DISTRIBUTION
EST. MEAN = 2090.828. EST. MEDIAN = 171.429. 90 PER CENT LCL FOR MEAN = 0.000, 90 PER CENT UCL FOR MEAN = 6529.923
90 PER CENT LCL FOR BETA = .241362E+00 90 PER CENT UCL FOR BETA = .475088E+00

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
WEIBULL PROBABILITY DISTRIBUTION FOR TIME TO FAILURE

RELIABILITY

CATCC DAIK O-LEVEL SUMMARY

WRA	O-LEVEL BLOCK NO.	O-LEVEL NOMENCLATURE	NUMBER FAILURES	LOWER 90 CONF LIM		MEAN	UPPER 90 CONF LIM	SPEC MTBF	OBSERVED FAILURE TIMES LOW	OBSERVED FAILURE TIMES HIGH	RELIAB PROBLEM
				1.	1.304.21						
11	99		1.	1.304.21	5073.00	48149.20	1000000.00	30.00	30.00	30.00	YES
18	3	CRT DRIVER ELECTRONICS	1.	1.304.21	5073.00	48149.20	22769.00	136.00	136.00	136.00	NO
19	2	DEFLECTION AMPLIFIER	3.	759.34	1691.00	4603.18	92808.00	1482.00	3646.00	3646.00	YES
19	8	INTERFACE AND LOGIC	1.	1.304.21	5073.00	48149.20	23702.00	3610.00	3610.00	3610.00	NO
19	9	VIDEO AMPLIFIER	1.	1.304.21	5073.00	48149.20	54885.00	3131.00	3131.00	3131.00	YES
19	16	PANEL (RIGHT SIDE)	1.	1.304.21	5073.00	48149.20	24494.00	3326.00	3326.00	3326.00	NO

RELIABILITY

2K SUMMARY FOR CATCC DAIK PROBLEM AREAS

JCN	*RA	O-L	O-L	O-L	WHAT HAPPENED
-----	-----	-----	-----	-----	---------------

FLEET MAINTAINABILITY ASSESSMENT DATA

SYSTEM	SHIPNAME	DISCOVERED	COMPL	REPAIR TIME	DOWN TIME
CATCC DAIK	KITTY HAWK	8288	8288	0.	0.
CATCC DAIK	KITTY HAWK	8321	8321	6.	6.
CATCC DAIK	KITTY HAWK	8321	8321	1.	1.
CATCC DAIK	KITTY HAWK	8348	8348	0.	0.
CATCC DAIK	DAIGEK	NU REPAIR TIME	FOR TIME ABOVE RECORD		
	RANGER	8307	8314	110.	168.
CATCC DAIK	RANGER	9049	9053	10.	96.
CATCC DAIK	RANGER	9058	9058	6.	8.
CATCC DAIK	RANGER	9074	9075	1.	24.
CATCC DAIK	RANGER	9080	9087	2.	168.
CATCC DAIK	RANGER	9104	9117	2.	312.

MAINTAINABILITY (REPAIR TIME)

CATCC DAIR SYSTEM LEVEL

REPAIR TIME*	FREQUENCY	CUM FREQUENCY	NPF	LOGNORMAL	WEIBULL
1.0	2.	2.0	.222	.163	.219
2.0	2.	4.0	.444	.296	.312
6.0	1.	5.0	.556	.566	.516
6.0	1.	6.0	.667	.637	.576
16.0	1.	7.0	.778	.689	.627
16.0	1.	8.0	.889	.979	.998

TOTAL REPAIR HOURS = 140.0 NUMBER OF REPAIRS = 8. OBSERVED REPAIR RATE/HR = .5714E-01

DISTRIBUTION DETERMINATION

MEAN OF LN#S = 1.53 STD DEV OF LN#S = 1.56

K-S CRITICAL VALUE (.10. d.) = .261 MAX DIFF CALC = .201 IS LESS THAN THE CRITICAL VALUE

THEFORE THE LOGNORMAL DISTRIBUTION IS ASSUMEU

EST MEAN = 17.56 EST MEDIAN = 4.63 90 PER CENT LCL ON MEDIAN = 2.12 90 PER CENT UCL ON MEDIAN = 2.12 SPECIFIED MTTR = 2.00 HOURS LOWER CONF LIM 2.12 IS GREATER THAN MTTR, THUS A MAINTAINABILITY PROBLEM EXISTS

AD-A093 921

NAVAL WEAPONS SUPPORT CENTER CRANE IN
FLEET RELIABILITY ASSESSMENT PROGRAM. VOLUME 2A. EQUIPMENT REPO--ETC(U)

SEP 79

F/G 17/7

NL

UNCLASSIFIED

TOP
2132

END
DATE
FILED
2-84
DTIC

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
LOGNORMAL PROBABILITY DISTRIBUTION FOR TIME TO REPAIR

Maintainability (Down Time)
CAICC DAIR SYSTEM LEVEL

DOWN TIME,	FREQUENCY	CUM FREQUENCY	NPF	LOGNORMAL	WEIBULL
1.0	1.	1.0	.11	.044	.010
6.0	1.	2.0	.222	.206	.059
6.0	1.	3.0	.333	.249	.164
24.0	1.	4.0	.444	.078	.196
96.0	1.	5.0	.556	.446	.466
168.0	2.	7.0	.718	.709	.686
312.0	1.	8.0	.889	.796	.815
TOTAL DOWN TIME (TOT) = 783.0	NUMBER OF REPAIRS (NRI) = 8.	OBSERVED DOWN TIME/REPAIR (TOT/NRI) = .9788			.923

DISTRIBUTION DETERMINATION

MEAN OF LN#S = 3.45 SD USE OF LN#S = 2.03

K-S CRITICAL VALUE (.10, 8.) = .261

MAX DIFF CALC = .264 IS GREATER THAN THE CRITICAL VALUE

THEFORE THE LOGNORMAL DISTRIBUTION CANNOT BE ASSUMED

RATIO OF 9.064 EXCEEDS THE CRITICAL VALUE FOR TEST OF EXPONENTIAL

THEFORE THE EXPONENTIAL DISTRIBUTION CANNOT BE ASSUMED

WEIBULL DISTRIBUTION ASSUMED. ESTIMATED PARAMETERS ARE ALPHA = .53028E-01 BETA = .67239E+00
 EST MEDIAN = 46.066 EST MEAN = 101.636 90 PER CENT LCL ON MEAN = 23.727 90 PER CENT UCL ON MEAN = 179.545
 90 PER CENT LCL FOR BETA = .462323E+00 90 PER CENT UCL FOR BETA = .8824544E+00

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
LOGNORMAL PROBABILITY DISTRIBUTION FOR DOWN TIME

CATCC DAIR

MDT 97.9

MEDIAN 31.5

0 50 100 150 200 250 300 350 400
DOWN TIME (HOURS)

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
EXPONENTIAL PROBABILITY DISTRIBUTION FOR DOWN TIME

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
WEIBULL PROBABILITY DISTRIBUTION FOR DOWN TIME

Maintainability (Repair Time)

CATCC DAIR WRA II LEVEL

- LESS THAN FOUR DISTINCT REPAIR TIMES
- THEREFORE THE LOGNORMAL DISTRIBUTION IS ASSUMED
- ONLY ONE DISTINCT REPAIR TIME -- NO CONFIDENCE LIMITS

Maintainability (Repair Time)

CATCC DAIR WRA 19 LEVEL

REPAIR TIME,	FREQUENCY	CUM FREQUENCY	NMF	LOGNORMAL	EXPONENTIAL	WEIBULL
1.0	1.	1.0	.125	.129	.049	.187
2.0	2.	3.0	.375	.247	.096	.273
6.0	1.	4.0	.500	.510	.261	.469
8.0	1.	5.0	.625	.584	.332	.531
10.0	1.	6.0	.750	.639	.396	.581
110.0	1.	7.0	.875	.971	.996	.980

TOTAL REPAIR HOURS = 139.0 NUMBER OF REPAIRS = 7. OBSERVED REPAIR RATE/HR = .5036E-01

DISTRIBUTION DETERMINATION

MEAN OF LNHS = 1.75 STD DEV OF LNHS = 1.05

K-S CRITICAL VALUE (-1.0 + 1.) = .276 MAX DIFF CALC = .221 IS LESS THAN THE CRITICAL VALUE

THEFORE THE LOGNORMAL DISTRIBUTION IS ASSUMED

EST MEAN = 14.86 EST MEDIAN = 3.76 90 PER CENT LCL ON MEDIAN = 2.48 90 PER CENT UCL ON MEDIAN = 13.40
SPECIFIED MTTR = 2.00 HOURS LOWER CONF LIM 2.48 IS GREATER THAN MTTR, THUS A MAINTAINABILITY PROBLEM EXISTS

CUMULATIVE OBSERVED DISTRIBUTION VERSUS THEORETICAL
LOGNORMAL PROBABILITY DISTRIBUTION FOR TIME TO REPAIR

Maintainability (Repair Time)
CAICC DAIN O-LEVEL SUMMARY

WRA	O-LEVEL BLOCK NO.	O-LEVEL NOMENCLATURE	NUMBER REPAIRS	OBSERVED REPAIR TIMES			MAINT PROBLEM
				LOWER 90 CONF LIM	UPPER 90 CONF LIM	SPEC MTTR	
11	99		1.	NO CONF LIMITS	2.0	1.0	1.00 1.0
19	2	DEFLECTION AMPLIFIER	1.	*36	95.67	2.0	1.0 37.67 110.0 NO
19	6	INTERFACE AND LOGIC	1.	NO CONF LIMITS	2.0	2.0	2.00 2.0
19	9	VIDEO AMPLIFIER	1.	NO CONF LIMITS	2.0	10.0	10.00 10.0
19	16	PANEL (RIGHT SIDE)	1.	NO CONF LIMITS	2.0	0.0	0.00 8.0

MAINTAINABILITY (REPAIR TIME)
 &K SUMMARY FOR CATCC DAIK PROBLEM AREAS

WKA	O-L	O-L	O-L	WHAT HAPPENED
JCN 33630E02M125	19	0	0	/EK
33610E010740	19	2	0	*
33610E010763	19	9	0	
33610E010777	19	16	0	/EK
33610E10U0780	19	2	0	ANOTHER AMP FAILURE/SEE 1131/EK
33610E10U0784	19	8	0	ETM REPORTED AS 45014/CORRECTED/EK
33610E10U784	19	2	0	ETM REPORTED AS 55054/EK

