

EXPLORING STATE-OF-THE-ART TOOLS FOR EMOTION DETECTION

A Comparative Analysis of Single and Multi-Modal Technologies with a Prototype Implementation

Table of Contents

- 1. Motivation
- 2. Background / Theoretical Foundations
- 3. Research Methodology & Literature Approach
- 4. Evaluation Criteria for Tool Comparison
- 5. Overview of Comparative Results
- 6. Prototype Implementation with LibreFace
- 7. Discussion & Critical Reflection
- 8. Conclusion

05.02.25

Motivation

Valuable for applications in mental health, safety, education and entertainment

05.02.25

Systematically review and compare emotion detection tools/models

Demonstration via prototype

Theoretical Background Facial Action Coding System (FACS)

Ekman in collaboration with Friesen (1978)

System to describe any visible facial movement

Identify and encode basic building blocks of facial expression

AU	FACS name	Prediction
AU1	Inner brow raiser	R
AU2	Outer brow raiser	R
AU4	Brow lowerer	R
AU5	Upper lid raiser	R
AU6	Cheek raiser	R
AU7	Lid tightener	D
AU9	Nose wrinkler	R
AU10	Upper lip raiser	D
AU12	Lip corner puller	R
AU14	Dimpler	D
AU15	Lip corner depressor	R
AU17	Chin raiser	R
AU20	Lip stretcher	R
AU23	Lip tightener	D
AU24	Lip pressor	D
AU25	Lips part	R
AU26	Jaw drop	R

Birol Arin / Julian Stricker

Theoretical Background Basic emotions according to Ekman (1992)

Emotions are universal, evolutionary adaptions for coping with life tasks (Ekman, 1992)

Basic emotions according to Ekman (1992) pictures from FER-2013 data set

Theoretical Background Basic emotions according to Ekman (1992)

sadness

fear

anger

disgust

surprise

neutral

Basic emotions according to Ekman (1992) pictures from FER-2013 data set

Theoretical Background Current State of Research - Emotion

Cultural norms influence emotion expression and interpretation (Jack et al., 2012; Hutto et al., 2018)

Emotions are dynamic, context-dependent and not static categories (Tracy and Randels, 2011; Jack et al., 2012)

05.02.25

Basic emotions still foundational in facial emotion recognition research

Theoretical Background Valence Arousal

Emotions can be represented in a two-dimensional space defined by **Valence** (Pleasure-Displeasure) and **Arousal** (Activation-Deactivation)

A **circumplex model** maps emotions in a circular structure based on valence and arousal

The model assumes valence and arousal are **independent**, but research suggests potential **interdependencies**

Theoretical Background Facial Expression Recognition (FER)

Computer vision task analyzing facial expression to identify emotions

- 1. Face detection
- 2. Feature extraction
- 3. Emotion classification

Research Methodology & Literature Approach

Databases & Sources

Primary searches conducted on Google Scholar, supplemented with arXiv, IEEE Xplore, ResearchGate and GitHub

"facial emotion recognition" AND ("CNN" OR "deep learning") AND ("open source" OR "real-time")

Inclusion Criteria

- Pre-2020: Focus on impact, citation count and peerreviewed status
- Post-2020: Emphasis on novelty, performance, and emerging architectures like transformers
- Approximately 46 articles and papers were selected to form a comprehensive basis for our tool evaluation

Evaluation Criteria for Tool Comparison

1. General Information

- Modalities
- Emotion models used
- Open-source status
- Primary use case

3. Performance Metrics

- Reported KPI
- Datasets used

5. Summary & Recommendations

- Key Strengths
- Key Limitations
- Recommendation

2. Technical Aspects

- Model architecture & framework
- Pre-trained models
- Input/Output types
- Real-time capability

4. Implementation & Ease of Use

- Setup complexity
- Programming language support
 - Integration
 - Documentation quality

Overview of Comparative Results (1/3)

General Information

Criteria	openSMILE	OpenFace	OpenFace 2.0	DeepFace	ResEmoteNet	LibreFace	Multi-Scale ViT	Emotion-LLaMA
Primary Modality	Audio	Image/Video	Image/Video	Image/Video	Image	Image/Video	Image/Video	Multimodal (Audio, Video, Text)
Emotion Model Used ₁	Ekman-Based ₂	Ekman-FACS 2	Ekman-FACS 2	Ekman-FACS 2	Ekman-Based 2	Ekman-FACS 2	Ekman-Based 2	Valence-Arousal, Ekman-Based 2
Open Source?	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Primary Use Case	Audio Feature Extraction; Paralinguistics	Real-time Facial Feature Analysis	Real-time Facial Feature Analysis	Face Verification & FER	FER	Real-time FER	High-Accuracy FER	Multimodal ER & Reasoning

Feature extraction tools enabling emotion recognition

Emotion recognition tools for direct classification

11

DLR x University of Cologne 05.02.25 Birol Arin / Julian Stricker

¹ indicates either the model integrated into the tool itself, or the model used in research applying the tool for emotion recognition

² Ekman FACS is a method for analyzing facial movements, while Ekman-Based refers to broader emotion recognition grounded in Ekman's basic emotion categories

Overview of Comparative Results (2/3)

Technical Aspects & Model Architecture

Criteria	openSMILE	OpenFace	OpenFace 2.0	DeepFace	ResEmoteNet	LibreFace	Multi-Scale ViT	Emotion- LLaMA
(Model) Architecture	Feature Extraction Pipeline (modular)	CLNF (instance of CLM) + CNN	CLNF (instance of CLM) + CNN	CNN (8 layers) + LCL, 3D face model	CNN + SENet + ResNets	ResNet-18, Swin Transformer, MAE	ViT + multi-scale processing + contrastive learning	LLaMA + emotion- specific encoders
Framework Used	C++	PyTorch	PyTorch	Tensorflow & Keras	PyTorch	PyTorch	MATLAB	PyTorch
Pre-Trained Models?	No; pre-defined feature sets	Yes	Yes	Yes	Yes	Yes	No	Yes
Input Data Type	Audio files	Image/Video	Image/Video	Image/Video	Image	Image/Video	Image	Video, Audio, Text
Output Data Type	Feature sets	Feature sets	Feature sets	Feature sets	Emotion Classification	Feature sets + Emotion Classification	Emotion Classification	Emotion Classification & Reasoning
Real-Time Capability	Yes	Yes	Yes	Yes	No	Yes	No	No

Performance Metrics

Criteria	openSMILE	OpenFace	OpenFace 2.0	DeepFace	ResEmoteNet	LibreFace	Multi-Scale ViT	Emotion-LLaMA
Reported KPI's (%)	EMO-DB: 83.97% Romanian: 74% IEMOCAP: 60.87%	Average concordance correlation coefficient (CCC) on DISFA: 0.70	Average concordance correlation coefficient (CCC) on DISFA: 0.73	FER+: 90.25%	FER-2013: 79,79 RAF-DB: 94,76 AffectNet: 72.93	Pearson Correlation Coefficient (PCC) Average of AU compared to other LibreFace 0.63, OpenFace2 0.59	FER-2013: 99.6% CK+: 99.7%	F1 score: 0.9036 on MER2023-SEMI UAR: 45.59%, WAR: 59.37% on DFEW
Datasets Used	EMO-DB IEMOCAP, MELD, Romanian EMO-DB	LFPW, Helen, Multi-PIE	LFPW, Helen	FER+, CK+, LFW, Youtube Faces	FER-2013, RAF-DB, AffectNet	EmotioNet, AffectNet, FFHQ, RAF-DB, DISFA	FER-2013; CK+	MER2023, MER2024, DFEW, EMER

DLR x University of Cologne 05.02.25 Birol Arin / Julian Stricker

Overview of Comparative Results (3/3)

Implementation & Ease of Use

Criteria	openSMILE	OpenFace	OpenFace 2.0	DeepFace	ResEmoteNet	LibreFace	Multi-Scale ViT	Emotion-LLaMA
Ease of Setup	Moderate	Fairly Easy	Easy	Fairly Easy	Fairly Easy	Easy	Complex	Complex
Programming Language Support	C++ native, Python integration	C++, C#, Python	C++, C#, Python	Python	Python	Python, C#	MATLAB	Python
Integration Support	ML-Tools (WEKA, SVM, Python libraries)	C++ or C+ based project	C++ or C+ based project	API, compatible with python libraries	Compatible with python libraries	Cross-platform support	No	Compatible with python- based pipelines
Documentation Quality	Comprehensive	Comprehensive	Comprehensive	Comprehensive	Comprehensive	Comprehensive	Basic	Comprehensive

Summary & Recommendation

Criteria	openSMILE	OpenFace	OpenFace 2.0	DeepFace	ResEmoteNet	LibreFace	Multi-Scale ViT	Emotion-LLaMA
Key Strength	Real-Time + batch Support, Open Source, feature library, modular & integrable	Open-source, real- time performance, comprehensive facial behaviour analysis	Open-source, real- time performance, comprehensive facial behavior analysis,	Open-source, real-time, pre-trained models	Open-source, efficient, effective	Open-source, efficient, effective, documentation, possible integrations	Superior accuracy	Integration of audio, visual, and text inputs; robust performance across diverse datasets
Key Limitations	Requires expertise for setup, relies on external classifiers for ER	Optimal results at least 100x100 px	Optimal results at least 100x100 px	Computationally heavy due to LCL	Complexity, no real- time support	As OpenSence component only available for Windows	Complexity, no real-time support	Complexity due to multimodality, no real-time support
Recommendation / Best for	Detailed Audio Analysis	Real-Time FA for Researchers and developers	Real-Time FA for Researchers and developers	Real-Time FA for Researchers and developers	Accuracy > Speed (academic application)	Real-Time Video ER	Accuracy > Speed (academic application)	Research and applications requiring nuanced emotion recognition and reasoning

DLR x University of Cologne 05.02.25 Birol Arin / Julian Stricker

Prototype Implementation with LibreFace

Easy setup and customizable

Cross-platform

Real-time

C# and Python

CPU only and **GPU** acceleration versions

AU + landmarks recognition and emotion classification

Birol Arin / Julian Stricker

Discussion & Critical Reflection

Strengths

- Broad Tool Selection: Evaluated single- and multimodal tools with diverse approaches (e.g., CNNs, Transformers, and hybrid models)
- Comprehensive Comparison: Developed a detailed table highlighting strengths, limitations, and real-time potential
- Practical Implementation: Balanced feasibility and technical complexity with LibreFace, showcasing real-time emotion detection in action

Challenges & Limitations

- Data Imbalance & Quality: Datasets often lack diversity (e.g., cultural differences) or have underrepresented emotional categories
- Computational Complexity: Real-time emotion detection remains resource-intensive, with significant hardware demands
- Ethical Concerns: Privacy, bias, and consent challenges are universal across tools but not central to this comparison
- Dynamic Research Landscape: Rapidly evolving field with constant influx of new tools and breakthroughs
- Balancing Scientific Validity vs. Trends: Struggled to align academic rigor with cutting-edge tools that lack extensive validation
- KPI Comparison Challenges: Variations in benchmarking methodologies, inconsistent experimental setups, and differences in how tools report performance metrics complicate meaningful comparisons

Conclusion

- Comprehensive Review: Explored state-of-theart tools and frameworks for emotion detection, focusing on their modalities, performance, and real-time capabilities
- Valence-Arousal & Ekman Models: Highlighted foundational theories (e.g. Valence-Arousal, Ekman FACS) and their integration into tools like OpenFace, DeepFace, and LibreFace
- Tool Evaluation: Compiled and compared eight tools across criteria like modality, technical features, emphasizing real-time use cases

- Prototype Implementation: Demonstrated realtime emotion classification using LibreFace, balancing feasibility with practical outcomes
- Future Research Directions:
 - New technologies (Vision Transformers, LLaMA)
 - Enhanced multimodal approaches

Birol Arin / Julian Stricker

Q&A

Scan the QR code to explore our GitHub repository and test LibreFace in action:

References

- Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208411068
- Ekman, P., & Friesen, W. V. (1978). Facial Action Coding System [Dataset]. https://doi.org/10.1037/t27734-000
- Hutto, D. D., Robertson, I., & Kirchhoff, M. D. (2018). A New, Better BET: Rescuing and Revising Basic Emotion Theory. *Frontiers in Psychology*, *9*, 1217. https://doi.org/10.3389/fpsyg.2018.01217
- Jack, R. E., Garrod, O. G. B., Yu, H., Caldara, R., & Schyns, P. G. (2012). Facial expressions of emotion are not culturally universal. *Proceedings of the National Academy of Sciences*, 109(19), 7241–7244.
 https://doi.org/10.1073/pnas.1200155109
- Tracy, J. L., & Randles, D. (2011). Four Models of Basic Emotions: A Review of Ekman and Cordaro, Izard, Levenson, and Panksepp and Watt. *Emotion Review*, 3(4), 397–405. https://doi.org/10.1177/1754073911410747

