Weekly Report 02/15/2015

Jingyu Deng

This Week

 Adjust weights by using stochastic gradient descent.

Stochastic Gradient Descent

- Let z=(x,y) be the data input/output pair
- Let loss(ŷ,y) be the loss function
 - In our model, we use least squares function
- Let f_w(x) be the function parameterized by a weight vector w
- We seek the function $f_w(x)$ that minimizes $loss(f_w(x),y)$ on the sample

Stochastic Gradient Descent

- At first, let $w_0 = [1/n, 1/n, ...]$ where n is the number of trees
- For each sample $z_t = (x_t, y_t)$ in the new coming data, update weights vector:
 - $W_{t+1} = W_t a \nabla_w loss(f_w(x_t), y_t)$
 - $W_{t+1} = W_t + 2a (y_t f_w(x_t)) [g(x_t) \cdot W_t]$
 - g(x_t) is the vector consisting of outputs from each tree

Functions

- update(X, y, alpha)
 - X is the data input
 - y is the data output
 - alpha is the constant learning rate
 - this function iterates each data point and adjusts the weight vector by stochastic gradient descent method.

Next Step

Test the synthetical data