Tema 5 - El espacio euclídeo $(\mathbb{R}^n, \|\cdot\|_2)$

- 1. El producto interior [1], \cdot , y la norma euclídea, $\|\cdot\|_2$, en \mathbb{R}^n . [Lay, pág 330-333]
 - Sean $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ y (x_1, x_2, \dots, x_n) e (y_1, y_2, \dots, y_n) sus coordenadas en la base canónica.
 - a) $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$. [Si \mathbf{x} e \mathbf{y} son vectores fila, $\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \times \mathbf{y}^t$]
 - $b) \|\mathbf{x}\|_2 = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \quad \text{[Por sencillez, escribiremos } \|\mathbf{x}\| \text{ en vez de } \|\mathbf{x}\|_2 \text{]}.$
 - c) Distancia: $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||$.
- 2. Las propiedades del producto interior y de la norma euclídea.
 - a) Bilinealidad del producto interior. [Lay, pág 331]
 - b) La desigualdad de Cauchy-Swartz. [Apuntes de clase]
 - c) Las propiedades de la norma y de la distancia. [Apuntes de clase]
 - d) Teorema del coseno Si $\theta = \not\preceq (\mathbf{x}, \mathbf{y})$, entonces $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| \, ||\mathbf{y}|| \cos \theta$. [Lay, pág 335–336] Corolario $\mathbf{x} \perp \mathbf{y}$ si y sólo si $\mathbf{x} \cdot \mathbf{y} = 0$ y $\mathbf{x} ||\mathbf{y}|$ si y sólo si $||\mathbf{x} \cdot \mathbf{y}|| = ||\mathbf{x}|| \, ||\mathbf{y}||$.
 - e) Proyección de un vector sobre otro. [Lay, pág 340]
 - f) El teorema de Pitágoras y la identidad del paralelogramo. [Apuntes de clase]
 - g) (*) Producto escalar y cambios de base. [Apuntes de clase]
- 3. Ortogonalidad. [LAY pág. 334-339 y 345-358]
 - a) Subespacio ortogonal a un conjunto de vectores. [Apuntes de clase y LAY pág. 337 prob 30]
 - b) Lema $\{\mathbf{v}_1,\,\mathbf{v}_2,\,\cdots,\mathbf{v}_p\}^{\perp}=\left\langle\,\mathbf{v}_1,\,\mathbf{v}_2,\,\cdots,\mathbf{v}_p\,
 ight\rangle^{\perp}$. [LAY pág. 337 prob 29]
 - c) Teorema Para toda matriz A se verifica que $\operatorname{filas}(A)^{\perp} = \operatorname{nulo}(A)$. [LAY pág. 335]
 - d) Conjuntos ortogonales. Independencia lineal de un conjunto ortogonal. Bases ortogonales.
 - e) Bases ortonormales: coordenadas de un vector respecto de una base ortonormal.
 - f) Matrices ortogonales.
- 4. El teorema de la proyección. [Apuntes de clase y LAY pág. 350-352]
 - a) Teorema de la proyección Sean H un subespacio de \mathbb{R}^n y $\mathfrak{B}_H = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\}$ una base ortonormal de H. Definimos la proyección sobre H, $\mathsf{P}_H : \mathbb{R}^n \longmapsto \mathbb{R}^n$ por

$$\mathsf{P}_H(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{x} \cdot \mathbf{u}_2)\mathbf{u}_2 + \cdots + (\mathbf{x} \cdot \mathbf{u}_p)\mathbf{u}_p$$

- (1) P_H es lineal, $\mathrm{Im}(\mathsf{P}_H) = H \ y \ \mathsf{P}_H^2 = \mathsf{P}_H.$
- (2) Para todo $\mathbf{x} \in \mathbb{R}^n$, se verifica que $\mathbf{x} \mathsf{P}_H(\mathbf{x}) \in H^{\perp}$.
- $(3) \ker(\mathsf{P}_H) = H^{\perp}.$
- (4) $Si \ \mathbf{x} \in \mathbb{R}^n$, $\mathbf{u} \in H \ y \ \mathbf{u} \neq \mathsf{P}_H(\mathbf{x})$, entonces $\|\mathbf{x} \mathbf{u}\| > \|\mathbf{x} \mathsf{P}_H(\mathbf{x})\|$.
- (5) $P_H(\mathbf{x})$ no depende de la base \mathfrak{B}_H elegida.

Corolario - Si H es un subespacio de \mathbb{R}^n , se cumple que $H \oplus H^{\perp} = \mathbb{R}^n$.

- b) El proceso de Gram-Schmidt. [LAY pág. 354-356]
- 5. El problema de la "mejor" aproximación: mínimos cuadrados. [LAY pág. 360–373]
 - a) Las ecuaciones normales para la solución aproximada de la ecuación incompatible $A \mathbf{x} = \mathbf{b}$.
 - b) Ajuste de funciones por el método de los mínimos cuadrados.
 - (1) Rectas de regresión.
 - (2) Ajuste polinomial.
 - (3) Otros modelos funcionales.

 $^{^{[1]}}$ En muchos textos se le denomina $producto\ escalar\ y$ también $producto\ punto.$