МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Университет ИТМО

Факультет систем управления и робототехники

ОТЧЁТ

по лабораторной работе №6, вариант - 2 Линейные системы автоматического управления

по теме: КРИТЕРИЙ НАЙКВИСТА И СИСТЕМЫ С ЗАПАЗДЫВАНИЕМ

Студент:

Группа R3336 Поляков A.A.

Предподаватель:

к.т.н., доцент Пашенко А.В.

СОДЕРЖАНИЕ

1	ГОДОГРАФ НАЙКВИСТА						
	1.1	Система первая					
		1.1.1	Передаточная функция	4			
		1.1.2	Карты полюсов	6			
		1.1.3	Годограф Найквиста	7			
		1.1.4	Переходные характеристики	8			
		1.1.5	Логарифмический критерий Найквиста	9			
	1.2	Система вторая 1					
		1.2.1	Передаточная функция	10			
		1.2.2	Карты полюсов	10			
		1.2.3	Годограф Найквиста	11			
		1.2.4	Переходные характеристики	12			
		1.2.5	Логарифмический критерий Найквиста	13			
	1.3	Систе	ма третья	13			
		1.3.1	Передаточная функция	14			
		1.3.2	Карты полюсов	14			
		1.3.3	Годограф Найквиста	15			
		1.3.4	Переходные характеристики	16			
		1.3.5	Логарифмический критерий Найквиста	17			
2	КОЗ	КОЭФФИЦИЕНТ УСИЛЕНИЯ 1					
	2.1	Перед	Передаточная функция W_1				
		2.1.1	Частотные характеристики	21			
		2.1.2	Переходные функции	23			
	2.2	Перед	даточная функция W_2	24			
		2.2.1	Частотные характеристики	29			
		2.2.2	Переходные функции	31			
3	ЗАГ	ЗАПАЗДЫВАНИЕ					
	3.1	Перед	даточная функция W_3	34			
		3.1.1	Частотные характеристики	38			
		3.1.2	Переходные функции	39			

	3.2	Передаточная функция W_4		
		3.2.1	Частотные характеристики	45
		3.2.2	Переходные функции	47
4	ОБЩИЕ ВЫВОДЫ			

1 ГОДОГРАФ НАЙКВИСТА

Параметры для объектов:

$$p = 1,$$
 $q = 4,$ $n = 4,$ $m = 1$

Нам нужно придумать три объекта пятого порядка, который будет иметь p вещественных полюсов передаточных функций и q - комплексносопряжённых. Но у каждого из объектов будет своё соотношение неустойчивых полюсов у замкнутой и разомкнутой системы.

1.1 Система первая

1.1.1 Передаточная функция

Выпишем передаточную функцию для разомкнутой системы 5-го порядка в общем виде:

$$W_{open}(s) = \frac{s^5 + b_4 s^4 + b_3 s^3 + b_2 s^2 + b_1 s + b_0}{s^5 + a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$

В замкнутом виде она несколько изменится:

$$W_{closed}(s) = \frac{1}{1+W} = \frac{s^5 + a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0}{2s^5 + (a_4 + b_4)s^4 + (a_3 + b_3)s^3 + (a_2 + b_2)s^2 + (a_1 + b_1)s + (a_0 + b_0)}$$

В нашем случае мы пока можем записать только передаточную функцию с интересующими нас полюсами:

$$W_{open}(s) = \frac{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4)(s - \lambda_5)}{(s - \gamma)(s - z_1)(s - \overline{z}_1)(s - z_2)(s - \overline{z}_2)}$$

Пару комплексных корней мы перепишем несколько иначе, раскрыв их как $z_i = a_i + jb_i$:

$$W_{open}(s) = \frac{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4)(s - \lambda_5)}{(s - \gamma)((s - \alpha_1)^2 + \beta_1^2)((s - \alpha_2)^2 + \beta_2^2)}$$

По условию моего варианта система в разомкнутом виде должна иметь 1 вещественный и 4 комплексно-сопряжённых полюса. В разомкнутом виде у нас должно быть 4 неустойчивых полюса.

А значит, $\gamma < 0$, $\alpha_{1,2} > 0$, чтобы выполнить это условие.

Тогда естественным образом выразится ПФ для замкнунтой системы:

$$W_{closed}(s) = \frac{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4)(s - \lambda_5)}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4)(s - \lambda_5) + (s - \gamma)((s - \alpha_1)^2 + \beta_1^2)((s - \alpha_2)^2 + \beta_2^2)}$$

В разомкнутом виде у нас должен быть 1 неустойчивый полюс. Здесь уже явно не наложишь ограничения на параметры, поэтому придётся раскрывать скобки и расписывать...

Надо придумать такой способ перевода между коэффициентами полинома 5-й степени и его корнями, для этого просто распишем полином в общем виде:

$$(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4)(s - \lambda_5) = s^5$$

$$+(-\lambda_1 - \lambda_2 - \lambda_3 - \lambda_4 - \lambda_5)s^4$$

$$+(\lambda_1\lambda_4 + \lambda_1\lambda_3 + \lambda_2\lambda_3 + \lambda_2\lambda_4 + \lambda_1\lambda_2 + \lambda_3\lambda_5 + \lambda_4\lambda_5 + \lambda_1\lambda_5 + \lambda_2\lambda_5 + \lambda_3\lambda_4)s^3$$

$$+(\lambda_1\lambda_3\lambda_4 + \lambda_2\lambda_3\lambda_4 + \lambda_1\lambda_2\lambda_3 + \lambda_1\lambda_2\lambda_4 + \lambda_3\lambda_4\lambda_5$$

$$+\lambda_1\lambda_4\lambda_5 + \lambda_1\lambda_3\lambda_5 + \lambda_2\lambda_3\lambda_5 + \lambda_2\lambda_4\lambda_5 + \lambda_1\lambda_2\lambda_5)s^2$$

$$+(\lambda_1\lambda_2\lambda_3\lambda_4 + \lambda_1\lambda_2\lambda_4\lambda_5 + \lambda_1\lambda_2\lambda_3\lambda_5 + \lambda_2\lambda_3\lambda_4\lambda_5)s$$

$$+\lambda_1\lambda_2\lambda_3\lambda_4\lambda_5$$

Конечно, проще это будет воспринимать как вектор коэффициентов, иными словами:

$$\begin{pmatrix} -(\lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} + \lambda_{5}) \\ \lambda_{1}\lambda_{4} + \lambda_{1}\lambda_{3} + \lambda_{2}\lambda_{3} + \lambda_{2}\lambda_{4} + \lambda_{1}\lambda_{2} + \lambda_{3}\lambda_{5} + \lambda_{4}\lambda_{5} + \lambda_{1}\lambda_{5} + \lambda_{2}\lambda_{5} + \lambda_{3}\lambda_{4} \\ +\lambda_{1}\lambda_{3}\lambda_{4} + \lambda_{2}\lambda_{3}\lambda_{4} + \lambda_{1}\lambda_{2}\lambda_{3} + \lambda_{1}\lambda_{2}\lambda_{4} + \lambda_{3}\lambda_{4}\lambda_{5} + \lambda_{1}\lambda_{4}\lambda_{5} + \lambda_{1}\lambda_{3}\lambda_{5} + \lambda_{2}\lambda_{3}\lambda_{5} + \lambda_{2}\lambda_{4}\lambda_{5} + \lambda_{1}\lambda_{2}\lambda_{5} \\ \lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4} + \lambda_{1}\lambda_{2}\lambda_{4}\lambda_{5} + \lambda_{1}\lambda_{2}\lambda_{3}\lambda_{5} + \lambda_{2}\lambda_{3}\lambda_{4}\lambda_{5} \\ \lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4} + \lambda_{1}\lambda_{2}\lambda_{4}\lambda_{5} + \lambda_{1}\lambda_{2}\lambda_{3}\lambda_{5} + \lambda_{2}\lambda_{3}\lambda_{4}\lambda_{5} \end{pmatrix}$$

Также в знаменателе есть и второе слагаемое, которое также можно расписать в общем виде и разбить на вектор, состоящий из параметров $(\gamma, \alpha_1, \beta_1, \alpha_2, \beta_2)$, но делать мы этого не будем, а проще выберем конкретные значения, чтобы много не нагромождать формул:

$$(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4)(s - \lambda_5) + (s - \gamma)((s - \alpha_1)^2 + \beta_1^2)((s - \alpha_2)^2 + \beta_2^2)$$
$$(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4)(s - \lambda_5) + (s + 5)((s - 3)^2 + 4)((s - 4)^2 + 9)$$
$$(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4)(s - \lambda_5) + s^5 - 9s^4 + 16s^3 + 176s^2 - 945s + 1625$$

Дело за малым - суммируем два вектора коэффиентов: $\overline{\lambda} + \overline{\delta}$, запишем то в кратком виде, чтобы не переусердствовать с формулами:

$$2s^5 - 9\overline{\lambda}_1 s^4 + 16\overline{\lambda}_2 s^3 + 176\overline{\lambda}_3 s^2 - 945\overline{\lambda}_4 s + 1625\overline{\lambda}_5$$

Теперь надо подобрать такие λ_i , чтобы у числителя был 1 неустойчивый полюс. Чтобы облегчить поиск такой системы, я приравнял $\lambda_1=\lambda_2=\lambda_3=-1$, и настраивал уже только $\lambda_{4,5}$. С помощью *matlab* получил, при:

$$\lambda_4 = -1, \qquad \lambda_5 = 10$$

Следующее уравнение в числителе:

$$2s^5 - \frac{42}{5}s^4 - \frac{1521}{50}s^3 - \frac{2993}{50}s^2 - \frac{1041}{25}s - \frac{9}{5}$$

Будет иметь следующие корни:

$$x_1 = -1,$$
 $x_2 \approx -0.05,$ $x_{3,4} \approx -0.9 \pm 1.4j,$ $x_5 \approx 7$

Всё сходится, тогда финально получим следующие две $\Pi\Phi$, подставив все значения:

$$W_{open}(s) = \frac{s^5 - 6s^4 - 34s^3 - 56s^2 - 39s - 10}{s^5 - \frac{12}{5}s^4 + \frac{179}{50}s^3 - \frac{193}{50}s^2 - \frac{66}{25}s + \frac{41}{5}}$$

$$W_{closed}(s) = \frac{s^5 - 6s^4 - 34s^3 - 56s^2 - 39s - 10}{2s^5 - \frac{42}{5}s^4 - \frac{1521}{50}s^3 - \frac{2993}{50}s^2 - \frac{1041}{25}s - \frac{9}{5}}$$

Для следующих систем мы сразу будем начинать с готовых ПФ, потому что алгоритм их производства будет аналогичным, за исключением выбора начальных корней.

1.1.2 Карты полюсов

Рисунок 1 — Карты полюсов для системы

1.1.3 Годограф Найквиста

Рисунок 2 — Годограф Найквиста для системы

Годограф Найквиста охватывает внутрь себя точку (-1, 0) и делает вокруг неё три оборота против часовой стрелки. По критерию Найквиста это значит, что у замкнутой системы количество неустойчивых полюсов станет на три меньше, чем у разомкнутой (было 4, станет 4-3=1 неустойчивых полюсов). Именно такой результат мы в итоге и получили.

1.1.4 Переходные характеристики

Рисунок 3 — Сравнение - переходные характеристики

По переходным функциям можем сделать вывод, что системы, как разомкнутая, так и замкнутая неустойчивые.

1.1.5 Логарифмический критерий Найквиста

Построим ЛАФЧХ для аналитики:

Рисунок 4 — ЛАФЧХ для системы

Из графика делаем вывод, что система является неустойчивой по логарифмическому критерию Найквиста, мы стартуем из значения -540° , что является критическим отрезком, значит мы считаем переход за $+\frac{1}{2}$, далее на отметке ЛФЧХ в -180° у нас будет положительных переход +1, но для устойчивости нам нужно, чтобы разность между переходами была равна $\frac{r}{2}=\frac{4}{2}=2$, у нас будет 1.5-0=1.5, этого недостаточно. Уточню, что r - количество правых корней для разомкнутой системы.

1.2 Система вторая

Данная система должна иметь 0 неустойчивых полюсов у разомкнутой системы и 1 у замкнутой. Значит годограф Найквиста должен сделать один оборот по часовой стрелке вокруг (-1,0).

1.2.1 Передаточная функция

$$W_{open}(s) = \frac{s^5 - 15s^4 - 91s^3 - 173s^2 - 138s - 40}{s^5 - \frac{22}{5}s^4 + \frac{519}{50}s^3 + \frac{891}{50}s^2 + \frac{476}{25}s + \frac{41}{5}}$$

$$W_{closed}(s) = \frac{s^5 - 15s^4 - 91s^3 - 173s^2 - 138s - 40}{2s^5 - \frac{53}{5}s^4 - \frac{4031}{50}s^3 - \frac{7759}{50}s^2 - \frac{2974}{25}s - \frac{159}{5}}$$

1.2.2 Карты полюсов

(а) Разомкнутая система

(б) Замкнутая система

Рисунок 5 — Карты полюсов для системы

1.2.3 Годограф Найквиста

Рисунок 6 — Годограф Найквиста для системы

Годограф Найквиста охватывает внутрь себя точку (-1, 0) и делает вокруг неё один оборот по часовой стрелке. По критерию Найквиста это значит, что у замкнутой системы количество неустойчивых полюсов станет на один больше, чем у разомкнутой(было 0, станет 0+1=1 неустойчивых полюсов).

Именно такой результат мы в итоге и получили.

1.2.4 Переходные характеристики

Рисунок 7 — Сравнение - переходные характеристики

По переходным функциям можем сделать вывод, что разомкнутая система была устойчивой, но замкнутая уже потеряла устойчивость из-за годографа...

1.2.5 Логарифмический критерий Найквиста

Построим ЛАФЧХ для аналитики:

Рисунок 8 — ЛАФЧХ для системы

Из графика делаем вывод, что система является неустойчивой по логарифмическому критерию Найквиста, мы стартуем из значения 180° , что является критическим отрезком, значит мы считаем переход за $+\frac{1}{2}$, далее на отметке ЛФЧХ в 180° у нас будет отрицательный переход -1, но для устойчивости нам нужно, чтобы разность между переходами была равна $\frac{r}{2}=\frac{0}{2}=0$, у нас будет $\frac{1}{2}-1=-0.5$, этого недостаточно.

1.3 Система третья

Данная система должна иметь 4 неустойчивых полюсов у разомкнутой системы и 0 у замкнутой. Значит годограф Найквиста должен сделать 4 оборота против часовой стрелке вокруг (-1,0).

1.3.1 Передаточная функция

$$W_{open}(s) = \frac{s^5 + 35s^4 + 159s^3 + 277s^2 + 212s + 60}{s^5 - \frac{12}{5}s^4 + \frac{179}{50}s^3 - \frac{193}{50}s^2 - \frac{66}{25}s + \frac{41}{5}}$$

$$W_{closed}(s) = \frac{s^5 + 35s^4 + 159s^3 + 277s^2 + 212s + 60}{2s^5 + \frac{163}{5}s^4 + \frac{8129}{50}s^3 + \frac{13657}{50}s^2 + \frac{5234}{25}s + \frac{341}{5}}$$

1.3.2 Карты полюсов

(а) Разомкнутая система

(б) Замкнутая система

Рисунок 9 — Карты полюсов для системы

1.3.3 Годограф Найквиста

Рисунок 10 — Годограф Найквиста для системы

Годограф Найквиста охватывает внутри себя точку (-1, 0) и делает вокруг неё 4 оборота против часовой стрелки. По критерию Найквиста это значит, что у замкнутой системы количество неустойчивых полюсов станет на четыре меньше, чем у разомкнутой(было 4, станет 4-4=0 неустойчивых полюсов).

Именно такой результат мы в итоге и получили.

1.3.4 Переходные характеристики

Рисунок 11 — Сравнение - переходные характеристики

По переходным функциям можем сделать вывод, что разомкнутая система была неустойчивой, но замкнутая уже приобрела устойчивость из-за годографа.

1.3.5 Логарифмический критерий Найквиста

Построим ЛАФЧХ для аналитики:

Рисунок 12 — ЛАФЧХ для системы

Из графика делаем вывод, что система является устойчивой по логарифмическому критерию Найквиста, мы стартуем из значения -720° , далее на отметке ЛФЧХ в -540° и -180° у нас будет два положительных перехода +2, но для устойчивости нам нужно, чтобы разность между переходами была равна $\frac{r}{2}=\frac{4}{2}=2$, у нас будет 2-0=2, этого вполне достаточно.

2 КОЭФФИЦИЕНТ УСИЛЕНИЯ

В соответствии с моим вариантом:

$$i = j = 2,$$
 $W_1(s) = \frac{s-2}{s^2 + 6s + 5},$ $W_2(s) = \frac{-9s^3 + 16s^2 - 6s}{10s^3 + 12s^2 + 5s + 1}$

Необходимо добавить к каждой функции коэффициент усиления k>0.

2.1 Передаточная функция W_1

Для
$$k=1$$
:

$$W_1(s) = \frac{1(s-2)}{s^2 + 6s + 5},$$

Рассчитаем полюса: $\lambda_{1,2}=\{-5,-1\}$, значит разомкнутая система будет устойчива.

Построим для неё годографы, с разными k:

Рисунок 13 — Годограф Найквиста для разомкнутой системы, k=1

Выходит, что коэффициент k влияет на кривую годографа, расширяя её вдоль мнимой оси и влево по оси действительной части, в конце концов доходя критической точки (-1,0).

Годограф делает обороты по часовой стрелки, а значит когда он дойдёт до критической точки, то замкнутая система приобретёт дополнительный

Рисунок 14 — Годограф Найквиста для разомкнутой системы, k=2

Рисунок 15 — Годограф Найквиста для разомкнутой системы, k=3

несточивый полюс, когда коэффиент будет примерно k>2.5 (критерий Найквиста). Петля внутри не перемешается левее нуля при любом k, а значит мы максимум получим только один неустойчивый полюс, при k>2.5.

Теперь проверим по критерию Гурвица это предположение:

$$W_{1,closed} = \frac{W_1}{1 + W_1} = \frac{k(s-2)}{s^2 + (6+k)s + (5-2k)}$$

Рисунок 16 — Годограф Найквиста для разомкнутой системы, k=6

$$\begin{cases} 6+k>0 \\ 5-2k>0 \end{cases} \rightarrow \begin{cases} k>-6 \\ 2.5>k \end{cases}$$

Но отрицательные значения мы не рассматриваем, поэтому по критерию Гурвица система будет асимптотически устойчива при 0 < k < 2.5, так как до этого значения годограф не захватывает точку (-1,0), а значит не добавляет дополнительный полюс.

2.1.1 Частотные характеристики

Построим ФЧХ,АЧХ для нашей системы при k=1, не имеет смысла строить для других k, ибо они лишь будут масштабировать АЧХ, фазовые сдвиги при этом будут оставаться теми же.

Рисунок 17 — АЧХ для разомкнутой системы, k=1

Рисунок 18 — ФЧХ для разомкнутой системы, k=1

График ФЧХ начинается со сдвига в 180° , и как этой частоте ω_{crit} у нас будет располагаться ближайшая точка от годографа к критической. А значит

амплитуда для этой частоты:

$$\frac{1}{A_3} = A(\omega_{crit}) = 0.4$$

$$A_3 = \frac{1}{0.4} = 2.5$$

Значит, получается, что запас амплитуды равен критическому значению коэффициента $k_{crit}.$

2.1.2 Переходные функции

Рисунок 19 — Переходная функция для замкнутой системы, k=1

Рисунок 20 — Переходная функция для замкнутой системы, k=2

Можно заметить, что при значениях k < 2.5 - замкнутая система действительно устойчива, а при k > 2.5 - неустойчивая уже. Разомкнутая система при любом k будет оставаться устойчивой, потому что не имеет ни одного правого корня.

Рисунок 21 — Переходная функция для замкнутой системы, k=3

Рисунок 22 — Переходная функция для замкнутой системы, k=6

2.2 Передаточная функция W_2

Для
$$k=1$$
:

$$W_2(s) = \frac{-9s^3 + 16s^2 - 6s}{10s^3 + 12s^2 + 5s + 1}$$

Рассчитаем полюса: $\lambda_{1,2,3} \approx \{-0.68, -0.26 \pm 0.28j\}$, значит разомкнутая система будет устойчива.

Построим для неё годографы, с разными k:

Рисунок 23 — Годограф Найквиста для разомкнутой системы, k=1

Рисунок 24 — Годограф Найквиста для разомкнутой системы, k=3

Рисунок 25 — Годограф Найквиста для разомкнутой системы, k=10

Рисунок 26 — Годограф Найквиста для разомкнутой системы, k=0.2

Рисунок 27 — Годограф Найквиста для разомкнутой системы, k=0.6

Рисунок 28 — Годограф Найквиста для разомкнутой системы, k=0.9

Выходит, что коэффициент k влияет на кривую годографа, расширяя её вдоль мнимой и вещественной оси. Уже при при 0.9 < k < 1 мы начинаем получать 4 оборота по часовой стрелке, а значит +4 неустойчивых полюса для замкнутой системы, это диапазон k мы далее уточним при аналитике. При бОльших k > 1 мы получаем +3 дополнительных нейстойчивых полюса для замкнутой системы, а при k < 0.9 - наша критическая точка и вовсе покидает годограф, он прилично сжимается.

В итоге мы получили три диапазона для k, которые надо уточнить и проверить. Чтобы узнать k_{crit} , посмотрим на критерий Гурвица:

$$W_{1,closed} = \frac{W_1}{1 + W_1} = \frac{k(-9s^3 + 16s^2 - 6s)}{(10 - 9k)s^3 + (12 + 16k)s^2 + (5 - 6k)s + 1}$$

Получим следующую систему:

$$\begin{cases} 10 - 9k > 0 \\ 12 + 16k > 0 \\ 5 - 6k > 0 \\ (12 + 16k)(5 - 6k) > (10 - 9k) \end{cases} \rightarrow -0.64 < k < 0.815$$

Но отрицательные значения мы не рассматриваем, поэтому по критерию Гурвица система будет асимптотически устойчива при 0 < k < 0.815, так как до этого значения годограф не захватывает точку (-1,0), а значит не добавляет дополнительные неустойчивые полюса.

2.2.1 Частотные характеристики

Построим ФЧХ,АЧХ для нашей системы при k=1, не имеет смысла строить для других k, ибо они лишь будут масштабировать АЧХ, фазовые сдвиги при этом будут оставаться теми же.

Рисунок 29 — АЧХ для разомкнутой системы, k=1

Рисунок 30 — ФЧХ для разомкнутой системы, k=1

График ФЧХ начинается со сдвига в 630° и снижается до 180° асимптотическим образом. Значит в 180° мы никогда не попадём, поэтому ищем другой критический отрезок, у нас здесь остаётся только 540° .

Однако стоит заранее остановить наш порыв найти запас по амплитуде, поскольку его нельзя определить для системы, которая уже при k=1 в замкнутом виде неустойчива. Поэтому с помощью частотных характеристик нам нельзя определить диапазон коэффицциента Π -регулятора k.

Тогда с помощью allmargin получим список критических коэффициентов П-регулятора:

$$k_{max1} \approx 0.8156, \qquad k_{max2} \approx 1.1111$$

Мы уже нашли через критерий Гурвицца k_{max1} , а вместе со вторым коэффииентом мы теперь можем обозначить диапазоны для k:

- 1. $k \in (0.00; 0.815)$ замкнутая система будет иметь 0 неустойчивых полюсов.
- 2. $k \in (0.815; 1.1111)$ замкнутая система будет иметь 4 неустойчивый полюса (изначально система была устойчива).
- 3. $k \in (1.1111; +\infty)$ замкнутая система будет иметь 3 неустойчивый полюса (изначально система была устойчива).

2.2.2 Переходные функции

Рисунок 31 — Переходная функция для замкнутой системы, k=1

Рисунок 32 — Переходная функция для замкнутой системы, k=3

Рисунок 33 — Переходная функция для замкнутой системы, k=10

Рисунок 34 — Переходная функция для замкнутой системы, k=0.6

Рисунок 35 — Переходная функция для замкнутой системы, k=0.2

Рисунок 36 — Переходная функция для замкнутой системы, k=0.9

Можно заметить, что при значениях 0 < k < 0.815 - замкнутая система действительно устойчива, а при k > 0.815 - неустойчивая уже, причём с разным количество неустойчивых полюсов. Разомкнутая система при любом k будет оставаться устойчивой, потому что не имеет ни одного правого корня.

3 ЗАПАЗДЫВАНИЕ

В соответствии с моим вариантом:

$$j = 2,$$
 $W_3(s) = \frac{7s+5}{s^2+4s},$ $W_4(s) = \frac{20s^2+1.6s+2}{10s^3-10s^2-0.1s+0.1}$

Необходимо добавить к каждой $\Pi\Phi$ звено чистого запаздывания $e^{-\tau s}$.

3.1 Передаточная функция W_3

Рассмотрим обновлённую ПФ:

$$W_3(s) = \frac{7s+5}{s^2+4s}e^{-\tau s}$$

Получаем её полюса: $\lambda_{1,2}=\{-4,0\}$, система имеет два устойчивых полюса. Построим для неё годографы, с разными τ :

Рисунок 37 — Годограф Найквиста для разомкнутой системы, $\tau=0$

Рисунок 38 — Годограф Найквиста для разомкнутой системы, $\tau=0.1$

Рисунок 39 — Годограф Найквиста для разомкнутой системы, $\tau=0.3$

Рисунок 40 — Годограф Найквиста для разомкнутой системы, $\tau=0.5$

Рисунок 41 — Годограф Найквиста для разомкнутой системы, $\tau=5$

По полученным графикам можно заметить, что замкнутая система будет устойчива примерно до $\tau < 0.4$, так как до $\tau < 0.3$ ещё всё хорошо и есть небольшой запас коэффицциента запаздывания. После же к системе прибавится два дополнительных неустойчивых полюсов, так как критическая точка попадёт внутрь годографа и мы получим два оборота по часовой стрелке.

Давайте ниже узнаем точно диапазон - вычислим его аналитически...

3.1.1 Частотные характеристики

Найдём критическое значение au.

Рисунок 42 — ЛАФЧХ, $\tau = 5.0$

С помощью команды allmargin получим информацию о критической точке на графике, её критическое значение и запас по фазе :

$$\tau_{crit} \approx 0.35, \qquad \phi_3 \approx 117^{\circ}$$

Теперь проверим аналитически, посчитаем au_{crit} , которые мы получили от matlab до:

$$\tau_{max} = \frac{\phi_3}{\omega_\phi}$$

, где ϕ_3 - запас по фазе, ω_ϕ - частота, соответствующая запасу по фазе. Эти два параметра мы можем найти для двух точек, если приблизим график достаточно точно, тогда получим:

$$\tau_{crit} = \frac{117.54\pi}{180 \cdot 5.8084} = 0.3537$$

Как можно заметить, аналитически посчитанные совпали с ответами от *allmargin*.

3.1.2 Переходные функции

Рисунок 43 — Переходная функция для замкнутой системы, $\tau=0$

Рисунок 44 — Переходная функция для замкнутой системы, $\tau=0.1$

Рисунок 45 — Переходная функция для замкнутой системы, $\tau=0.3$

Рисунок 46 — Переходная функция для замкнутой системы, $\tau=0.5$

Рисунок 47 — Переходная функция для замкнутой системы, $\tau=5$

По графикам можно заметить, что аналитические выкладки подтвердились - замкнутая система устойчива будет устойчива лишь при $\tau < 0.35$.

3.2 Передаточная функция W_4

Рассмотрим обновлённую ПФ:

$$W_4(s) = \frac{20s^2 + 1.6s + 2}{10s^3 - 10s^2 - 0.1s + 0.1}e^{-\tau s}$$

Получим её полюса: $\lambda_{1,2,3} \approx \{-0.23, 0.11 \pm 0.17j\}$, система имеет два неустойчивых и один устойчивых полюс.

Построим для неё годографы, с разными τ :

Рисунок 48 — Годограф Найквиста для разомкнутой системы, $\tau=0$

Рисунок 49 — Годограф Найквиста для разомкнутой системы, $\tau=0.2$

Рисунок 50 — Годограф Найквиста для разомкнутой системы, $\tau=0.4$

Рисунок 51 — Годограф Найквиста для разомкнутой системы, $\tau=0.5$

Рисунок 52 — Годограф Найквиста для разомкнутой системы, $\tau=5$

Рисунок 53 — Годограф Найквиста для разомкнутой системы, $\tau=10$

По полученным графикам пока рано говорить об устойчивости в зависимости от задержки, потому что, например, примерно до $\tau < 0.3$ мы не получаем обороты, которые могут убрать нам неустойчивые полюса, а могут и прибавить, зависит от направления оборотов. После же, при $\tau > 0.3$ пока рано о чём-либо заявлять, количество и направления трудно установить, поэтому лучше рассмотреть логарифмический критерий Найквиста и аналитически установить диапазон для $\tau \dots$

3.2.1 Частотные характеристики

Попробуем найти критическое значение au.

Рисунок 54 — ЛАФЧХ, $\tau = 5.0$

Однако всё же с помощью функции *allmargin* мы можем получить критическое допустимое время запаздывания и запас по фазе для этих точек:

$$\tau_{crit1} = 15.2, \qquad \phi_{13} = -135^{\circ},$$

$$\tau_{crit2} = 0.3, \qquad \phi_{23} = 5.5^{\circ},$$

$$\tau_{crit3} = 0.59, \qquad \phi_{33} = 46^{\circ}$$

Как можно заметить, один из кандидатов на запас по фазе у нас отрицательный, поэтому его отбросим и сосредоточимся на двух оставшихся критических точках.

Давайте аналитически посчитаем au_{crit2}, au_{crit3} , которые мы получили от matlab до:

$$\tau_{max} = \frac{\phi_3}{\omega_\phi}$$

, где ϕ_3 - запас по фазе, ω_ϕ - частота, соответствующая запасу по фазе. Эти два параметра мы можем найти для двух точек, если приблизим график достаточно точно, тогда получим:

$$\tau_{crit2} = \frac{8.26\pi}{180 \cdot 0.4727} \approx 0.304, \qquad \tau_{crit3} = \frac{55.72\pi}{180 \cdot 1.6401} \approx 0.59$$

Получается, что замкнутая система устойчива будет устойчива в диапазоне между двумя критическими значениями, то есть: $\tau \in (0.304; 0.59)$. Как можно заметить, аналитически посчитанные совпали с ответами от *allmargin*. Проверим это на практике:

3.2.2 Переходные функции

Рисунок 55 — Переходная функция для замкнутой системы, $\tau=0$

Рисунок 56 — Переходная функция для замкнутой системы, $\tau=0.1$

Рисунок 57 — Переходная функция для замкнутой системы, $\tau=0.2$

Рисунок 58 — Переходная функция для замкнутой системы, $\tau=0.3$

Рисунок 59 — Переходная функция для замкнутой системы, $\tau = 0.4$

Рисунок 60 — Переходная функция для замкнутой системы, $\tau=0.5$

Рисунок 61 — Переходная функция для замкнутой системы, $\tau = 0.55$

Рисунок 62 — Переходная функция для замкнутой системы, $\tau = 0.7$

Рисунок 63 — Переходная функция для замкнутой системы, $\tau=5$

Рисунок 64 — Переходная функция для замкнутой системы, $\tau=10$

По графикам можно заметить, что аналитические выкладки подтвердились - замкнутая система устойчива будет устойчива при $\tau \in (0.304; 0.59)$.

4 ОБЩИЕ ВЫВОДЫ

В этой работе были рассмотрен критерий Найквиста и его логарифмическая версия. В первых двух заданиях ожидания о устойчивости системы исходя из аналитического анализа ее передаточных функций совпали с результатами, полученными с помощью критерия Найквиста и подтвердились моделированием.

В третьем задании мы проанализировали устойчивость системы с запаздыванием с помощью логарифмического критерия Найквиста. Все результаты совпали с ожиданиями.

Использовал связку *Live-script + Matlab*, там же можно взглянуть на графики и код, в репозитории можно найти исходники.