

Impact of soil erosion on C cycling and energy and water balance

Adrian Chappell 25 June, 2014; CABLE meeting

Conclusion

Soil organic carbon erosion

- Preferential removal of fine, C- and nutrient-rich material
- Globally dominated by water erosion
- Omitted by C cycling used in land surface models

Under-estimate SOC flux

- Globally 0.4-1.3 PgC y⁻¹ (4-14% of GCA, 2012)
- Between global regions 40-88 TgC y⁻¹ (2-78% of GCA, 2012)

SOC erosion spatially and temporally variable

- Within and between global regions
- Land use change: clearing native vegetation (1), ploughing and grazing (2) and 'conservation' agriculture (3)

Erosion feedback dynamics

 Change C cycling drivers and energy and water budget: soil albedo, soil temperature, soil moisture and soil hydraulics.

Global SOC erosion by water

	Min – max* water erosion (t ha ⁻¹ y ⁻¹)	SOC erosion (tC ha ⁻¹ y ⁻¹)	Water eroded area (ha x 10 ⁶)#	Total SOC erosion (TgC y ⁻¹)	Global Carbon Atlas C flux (2012 TgC y ⁻¹)	Difference (%)
Africa	3.7 – 12.9	0.08 - 0.26	1000	78.0 - 255.6	331	23.6 – 77.3
Asia	4.3 – 16.6	0.09 - 0.32	1550	138.2 - 503.5	4420	3.1 – 11.4
S. America	5.7 – 22.1	0.12 - 0.43	510	59.9 – 217.4	316	19.0 – 68.8
N. America	4.4 – 12.3	0.09 - 0.24	430	39.7 – 105.0	1664	2.4 – 6.3
Europe	6.7 – 13.4	0.14 - 0.27	300	41.0 – 79.5	1618	2.5 – 4.9
Oceania	1.7 –9.5	0.04 - 0.19	460	17.5 – 87.9	112	15.6 – 78.4
Global	4.1 – 15.2	0.09 - 0.30	4250	369.0 – 1269.6	9106	4.1 – 13.9

^{*}Minima and maxima water erosion estimates for these regions were taken from Doetterl et al. (2012) and from Lal's (2003) collation of sediment yield estimates, respectively. #Estimates of land area affected by water and tillage erosion were taken from Doetterl et al.

(2012).

SOC erosion omitted process

Direct effect minimal
e.g. 1 Gt C yr⁻¹ ~ 'disturbance'

- Interactive effect may be substantial change to drivers:
 - Preferential removal of fine, C-rich and nutrient-rich material
 - Soil albedo, soil temperature, soil moisture, soil hydraulics
 - C:N ratio

Thank you

CSIRO Land and Water/ Sustainable Agriculture Flagship

Adrian Chappell Principal Research Scientist

- t +61 2 6246 5925
- e adrian.chappell@csiro.au
- w http://www.csiro.au/en/Organisation-Structure/Divisions/Land-and-Water/AdrianChappell.aspx

LAND AND WATER/SUSTAINABLE AGRICULTURE FLAGSHIP

www.csiro.au

