拓扑排序

吉林大学计算机学院 谷方明 fmgu2002@sina.com

学习目标

□掌握AOV网、拓扑排序等概念的定义。

□掌握拓扑排序的求解方法及相关分析。

问题背景

□ "工程"或任务

✓ 计划、施工过程、生产流程、程序流程等都可以看 作一个"工程"或任务。

□ "活动"

✓ 除了很小的工程外,一般都把工程分为若干个叫做 "活动"的子任务。

□活动之间一般会有先后关系

✓ 如果不违反限制完成所有活动,那么整个工程将顺利完成。

例:选课

- □ 计算机专业的学习可以看作一个工程;
- □每门课程的学习就是整个工程的一项活动;
- □ 其中有些课程要求先修课程,有些则不要求。 这样有的课程之间存在先后关系,有的课程可 以并行地学习。
- □任务:安排一种学习次序,学习完成所有课程, 并满足课程间的限制关系。

计算机专业必修课程

果程代号	课程名称	先修课程				
$\mathbf{C_0}$	高等数学	无			,	
$\mathbf{C_1}$	程序设计基础	无				
$\mathbf{C_2}$	离散数学	C_0,C_1	C_0	C ₇	C_8	C_6
$\mathbf{C_3}$	数据结构	C_2,C_4	Q	\rightarrow O-	→ O-	\rightarrow
$\mathbf{C_4}$	程序设计语言	$\mathbf{C_1}$	\mathbf{C}_{2}		→ ($\sqrt{C_3}$
\mathbf{C}_{5}	编译技术	C_3,C_4	•	7		
$\mathbf{C_6}$	操作系统	C_3,C_8	(\rightarrow	О —	- O
\mathbf{C}_{7}	普通物理	$\mathbf{C_0}$	C	1	$\mathbf{C_4}$	\mathbf{C}_{5}
$\mathbf{C_8}$	计算机原理	$\mathbf{C_7}$				

概念

- AOV网:用顶点表示活动,用有向边表示活动之间的先后关系,称这样的有向图为AOV网(Activity On Vertex Network)。
- 口拓扑序列: AOV网中的所有顶点的一个线性序列,要求: 如果存在有向边 $<V_i,V_j>$,那么在序列中 V_i 必位于 V_i 之前。
- □拓扑排序:构造AOV网的拓扑序列的过程称 作拓扑排序。

□ 一种可能的拓扑序列是: C0, C1, C2, C4, C3, C5, C7, C8, C6

构造方法

- ① 从网中选择一个入度为0的顶点输出;
- ② 从网中删除该顶点及其所有出边;

执行①②,直至所有顶点已输出,或网中剩 余顶点入度均不为**0**(网中存在回路)。

- □ C0, C1, C2, C4, C3, C5, C7, C8, C6
- □ C0, C1, C4, C2, C3, C5, C7, C8, C6
- □ C0, C1, C7, C2, C4, C3, C5, C8, C6

算法设计

- □图的存储: AOV网用邻接表的形式存储;
- □数组count[]: count[i]的值是顶点i的入度;
- □使用一个数据结构,存放入度为0的点
 - ✓ 线性表
 - ✓ 取用顺序无所谓; 栈或队列
- □如何处理删除(关键)?
 - ✓ 对于拓扑排序而言,减少入度即可

拓扑排序算法——原始版


```
算法TopoOrder()
/* 图的拓扑排序算法, n表示顶点数 */
T1[初始化]
  for( i = 1; i <= n; i ++) count[i] = 0;
  for(i = 1; i <= n; i ++ )
    for( p = Head[i].adjacent ; p ; p = p->link )
       count[ p->VerAdj ] ++;
 CREATESTACK(S); //用队列也可以
 for(i = 1; i <= n; i ++ )
   if( count[i] == 0 ) push(S, i); //入度为0的点入栈
```



```
T2[拓扑排序]
  for(i = 1; i \le n; i++){
     if (empty(S)) { cout<<"有回路! "; RETURN; }
                          //弹出栈顶i*
     pop(S, j).
                          //按要求处理 顶点 j
     cout<< j;
     for (p = Head[j]. adjacent; p; p = p \rightarrow link) {
        k = p \rightarrow VerAdj;
        count[k] --; // 顶点k的入度减1
        if (count[k] == 0) push(S, k);
```

运行示例

- □ count数组
- □堆栈S

原始版的改进

□观察到count数组中存0的位置已无用,恰好可以用这部分空间作为容器,节省空间。即用count数组模拟栈。

- □用入度为0的count[i]空间记录栈元素的下标;
- □用top始终记录栈顶元素的下标。
- □ 利用变量top和count数组元素的值来模拟堆 栈的压入和弹出。

模拟栈的状态

- □ 初始化: top = -1;
- □ 栈 空: top == -1
- □ 入栈: count[i] = top; top = i;
- □ 出栈: j = top; top = count[top];

拓扑排序算法


```
算法TopoOrder()
/* 图的拓扑排序算法, n表示顶点数 */
T1[初始化]
  for( i = 1; i <= n; i ++) count[i] = 0;
  for(i = 1; i <= n; i ++ )
    for( p = Head[i].adjacent ; p ; p = p->link )
       count[ p->VerAdj ] ++;
 for(i = 1; i <= n; i ++ )
    if( count[i] == 0 )
       count[i] = top, top = i;
```



```
T2[拓扑排序]
  for(i = 1; i \le n; i++){
     if (top == - 1) { cout<<"有回路! "; RETURN; }
     j = top, top = count[top]. /* 弹出栈顶i*/
     cout<< j; //按要求处理 顶点 j
     for (p= Head[j] . adjacent; p; p = p -> link) {
        k = p \rightarrow VerAdj;
        count[k] -- ;// 顶点k的入度减1
         if (count[k] == 0) count[k] = top, top = k;
```

相关定理

- □ 引理6.1: 设图G = (V, E)是有向无环图, $V(G) \neq Φ$, 则G中一定存在入度为零的顶点。
 - ✓ 有向无环图 (DAG): 非循环图
- □ 定理6.2 设G=(V, E)是有向无环图, V(G)={1, 2, ..., n}, e=|E(G)|. 则算法TopoOrder是正确的且算法的时间复杂性为 O(n+e).

正确性证明

- □正确性证明
 - ✓ 初始化T1时,栈不为空(引理6.1)
 - ✓ 出栈一个元素相当于删除一个顶点及其所有出边, T2时,若G不空,栈也不空。输出n个顶点结束
 - ✓ 设<v,w>是边,则 v 一定排在 w 之前。
- □时间效率分析
 - √ O(n+e)

拓扑序列的存在性

- □任意图的拓扑序列不一定存在。
 - ✓ 例如,存在回路的AOV网就无法找到拓扑序列。因为出现了有向环,则意味着某项活动以自己作为先决条件。
- □ 有向无环图 (DAG) 一定存在拓扑序列。

- □拓扑排序与环的关系
 - ✓ 有向图中,可拓扑排序等价于无环。

拓展: 拓扑序列计数

count =
$$(C(5,2)*1)*(C(3,3)*1)=10$$

计算:独立的块之间是乘法关系;块之内要枚举每种情况。