Package 'causalverse'

September 10, 2023

```
Type Package
Date 2023-08-16
Title Causality in Clarity
Version 0.0.0.9000
Maintainer The package maintainer <mikenguyen.contact@gmail.com>
Description Causal Verse: An R toolkit expediting causal research & analysis. Streamlines com-
      plex methodologies, empowering users to unveil causal relationships with precision. Your go-
      to for insightful causality exploration..
License GPL-3 | file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Suggests knitr,
      rmarkdown,
      testthat (>= 3.0.0)
Config/testthat/edition 3
Imports ggplot2 (>= 3.4.2),
      ggthemes (>= 4.2.4),
      tidyverse (>= 2.0.0),
      lubridate (>= 1.9.2),
      rio (>= 0.5.29),
      xtable (>= 1.8.4),
      dplyr (>= 1.1.1),
      tidyr (>= 1.3.0),
      scales (>= 1.2.1),
      gridExtra (\geq 2.3),
      systemfit (>= 1.1.30),
      Hotelling (>= 1.0.8),
      MatchIt (>= 4.5.4),
      rlang (>= 1.1.1),
      fixest (>= 0.11.1),
      stats (>= 4.2.3),
      PanelMatch (>= 2.0.1)
```

VignetteBuilder knitr

2 ama_export_fig

R topics documented:

	ama_export_fig	2
	ama_export_tab	3
	ama_labs	
	ama_scale_color	4
	ama_scale_fill	5
	ama_theme	6
	balance_scatter_custom	7
	plot_coef_par_trends	
	plot_covariate_balance_pretrend	10
	plot_density_by_treatment	11
	plot_PanelEstimate	12
	plot_par_trends	13
	plot_treat_time	15
Index		17

ama_export_fig

Function to export a figure with custom settings

Description

This function exports a ggplot2 figure to a given path. It exports both an archived version with the current date and a current version without a date. The function supports exporting to PDF and JPG formats.

Usage

```
ama_export_fig(figure, filename, filepath, width = 7, height = 7)
```

Arguments

figure	A ggplot2 object.
filename	A character string specifying the filename without the extension.
filepath	A character string specifying the directory to save the file.
width	The width of the image in inches (default is 7 inches).
height	The height of the image in inches (default is 7 inches).

```
## Not run:
test_plot <- ggplot(mpg, aes(x=displ, y=hwy)) + geom_point() # Create a ggplot2 plot
filename <- "sample_plot" # Define a filename
filepath <- tempdir() # Define a path using a temporary directory
ama_export_fig(test_plot, filename, filepath) # Call the ama_export_fig function
## End(Not run)</pre>
```

ama_export_tab 3

ama_export_tab	Function to export a table with AMA style

Description

This function exports the provided table in both Excel(.xlsx) and LaTeX(.tex) formats. The table is archived with the current date in the filename for the Excel version, while the LaTeX version is saved with just the specified filename.

Usage

```
ama_export_tab(table, filename, filepath, caption = NULL)
```

Arguments

table A data frame or matrix.

filename A character string specifying the filename without the extension.

filepath A character string specifying the directory to save the file.

caption A character string specifying the caption for the table.

Examples

```
## Not run:
data(mtcars) # Load the mtcars dataset
ama_export_tab(mtcars[1:5, 1:5], "sample_table", tempdir(), "Sample Caption for mtcars")
## End(Not run)

ama_labs

Custom Label Formatting for ggplot2: American Marketing Association Style
```

Description

This function provides custom label formatting for ggplot2 based on the guidelines set by the American Marketing Association.

```
ama_labs(
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  x = NULL,
  y = NULL,
  fill = NULL,
  color = NULL,
  ...
)
```

4 ama_scale_color

Arguments

title	Plot title.
subtitle	Plot subtitle.
caption	Plot caption.
x	X-axis label.
у	Y-axis label.
fill	Fill legend title.
color	Color legend title.
	Additional arguments to be passed to ggplot2::labs().

Value

Modified labels for a ggplot2 plot.

Examples

```
## Not run:
library(ggplot2)
ggplot(mtcars, aes(mpg, wt)) + geom_point() +
ama_labs(title = "Sample Plot") +
ama_theme()
## End(Not run)
```

Description

This function provides a custom color scale for ggplot2 plots based on the guidelines set by the American Marketing Association.

Usage

```
ama_scale_color(
  use_color = FALSE,
  palette_name = "OkabeIto",
  grayscale_limits = c(0.2, 0.8)
)
```

Arguments

```
use_color Logical. If TRUE, uses color, otherwise uses grayscale.

palette_name Character. Name of the color palette to use.

grayscale_limits
```

Numeric vector. Limits for the grayscale gradient.

ama_scale_fill 5

Value

A color scale for a ggplot2 plot.

Examples

```
## Not run:
library(ggplot2)
ggplot(mtcars, aes(mpg, wt, color = gear)) + geom_point(size = 4) + ama_scale_color()
## End(Not run)
```

ama_scale_fill

Custom Fill Scale for ggplot2: American Marketing Association Style

Description

This function provides a custom fill scale for ggplot2 plots based on the guidelines set by the American Marketing Association.

Usage

```
ama_scale_fill(
  use_color = FALSE,
  palette_name = "OkabeIto",
  grayscale_limits = c(0.2, 0.8)
)
```

Arguments

```
use_color Logical. If TRUE, uses color, otherwise uses grayscale.

palette_name Character. Name of the color palette to use.

grayscale_limits
```

Numeric vector. Limits for the grayscale gradient.

Value

A fill scale for a ggplot2 plot.

```
## Not run:
library(ggplot2)
ggplot(mtcars, aes(mpg, wt, fill = gear)) +
geom_point(shape = 21, size = 4) +
ama_scale_fill()
## End(Not run)
```

6 ama_theme

ama_theme

Custom Theme for ggplot2: American Marketing Association Style

Description

This function provides a custom theme for ggplot2 following the guidelines set by the American Marketing Association.

Usage

```
ama_theme(
  base_size = 16,
  base_family = "sans",
  title_size = ggplot2::rel(1.2),
  axis_title_size = ggplot2::rel(1.2),
  legend_title_size = ggplot2::rel(0.6),
  legend_text_size = ggplot2::rel(0.6),
  axis_text_size = ggplot2::rel(1),
  ...
)
```

Arguments

```
base_size Base font size.

base_family Font family. Use "sans" for Arial and "serif" for Times New Roman.

title_size Title font size as a relative value.

axis_title_size Axis title font size as a relative value.

legend_title_size Legend title font size as a relative value.

legend_text_size Legend text font size as a relative value.

axis_text_size Axis text font size as a relative value.

Additional theme elements to be passed to ggplot2::theme().
```

Value

A ggplot2 theme.

```
## Not run:
library(ggplot2)
# Using Arial font
ggplot(mtcars, aes(mpg, wt)) + geom_point() + ama_theme()
# Using Times New Roman font
ggplot(mtcars, aes(mpg, wt)) + geom_point() + ama_theme(base_family = "serif")
## End(Not run)
```

balance_scatter_custom 7

```
balance_scatter_custom
```

Custom function to visualize the balance between treatment and control groups

Description

Custom function to visualize the balance between treatment and control groups

Usage

```
balance_scatter_custom(
  matched_set_list,
  set.names = NULL,
  show.legend = TRUE,
  legend.title = "Type",
  legend.position = "right",
  xlim = c(0, 0.8),
  ylim = c(0, 0.8),
  main = "Standardized Mean Difference of Covariates",
  pchs = NULL,
  dot.size = NULL,
  covariates,
  data,
  x.axis.label = "Before Refinement",
  y.axis.label = "After Refinement",
  theme_use = causalverse::ama_theme(),
)
```

Arguments

```
{\tt matched\_set\_list}
```

List of matched sets

set.names Vector of names for matched sets. Defaults to NULL.

show. legend Boolean to determine if legend should be shown. Defaults to TRUE.

legend.title Legend title. Defaults to "Type".

legend.position

Position of legend. Defaults to "right".

xlim Vector defining x-axis limits. Defaults to c(0, 0.8). ylim Vector defining y-axis limits. Defaults to c(0, 0.8).

main Main title for the plot. Defaults to "Standardized Mean Difference of Covari-

ates".

pchs Plot characters. Defaults to NULL.

dot.size Size of dots in the scatter plot. Defaults to NULL.

covariates Covariates for calculating balance.
data Dataset for balance calculation.

```
    x.axis.label
    y.axis.label
    y-axis label. Defaults to "Before Refinement".
    y-axis label. Defaults to "After Refinement".
    Custom theme that follows ggplots2. Defaults to causalverse::ama_theme().
    Additional arguments passed to the labs() function
```

Value

ggplot object

```
## Not run:
library(PanelMatch)
# Maha 4-year lag, up to 5 matches
PM.results.maha.4lag.5m <- PanelMatch::PanelMatch(
   lag = 4,
   time.id = "year",
   unit.id = "wbcode2",
   treatment = "dem",
   refinement.method = "mahalanobis",
   data = PanelMatch::dem,
   match.missing = TRUE,
   covs.formula = \sim I(lag(tradewb, 1:4)) + I(lag(y, 1:4)),
   size.match = 5,
   qoi = "att",
   outcome.var = "y",
   lead = 0:4,
   forbid.treatment.reversal = FALSE,
   use.diagonal.variance.matrix = TRUE
)
# Maha 4-year lag, up to 10 matches
PM.results.maha.4lag.10m <- PanelMatch::PanelMatch(
   lag = 4,
   time.id = "year",
   unit.id = "wbcode2",
   treatment = "dem",
   refinement.method = "mahalanobis",
   data = PanelMatch::dem,
   match.missing = TRUE,
   covs.formula = \sim I(lag(tradewb, 1:4)) + I(lag(y, 1:4)),
   size.match = 10,
   qoi = "att",
   outcome.var = "y",
   lead = 0:4,
   forbid.treatment.reversal = FALSE,
   use.diagonal.variance.matrix = TRUE
)
# Using the function
balance_scatter_custom(
   matched_set_list = list(PM.results.maha.4lag.5m$att, PM.results.maha.4lag.10m$att),
   set.names = c("Maha 4 Lag 5 Matches", "Maha 4 Lag 10 Matches"),
   data = dem,
   covariates = c("y", "tradewb")
)
```

plot_coef_par_trends 9

```
## End(Not run)
```

Description

This function generates coefplots or iplots based on fixest outputs, allowing the user to visualize interaction coefficients with ease.

Usage

```
plot_coef_par_trends(
   data,
   dependent_vars,
   time_var,
   unit_treatment_status,
   unit_id_var,
   plot_type = "coefplot",
   combined_plot = TRUE,
   legend_position = "bottomleft",
   legend_title = "Legend Title",
   legend_args = list(),
   plot_args = list()
)
```

Arguments

data Data frame containing the data to be used in the model. dependent_vars Named list of dependent variables to model and their respective labels. time_var Name of the time variable in the data. $unit_treatment_status$ Name of the treatment status variable. unit_id_var Name of the unit identification variable. Type of plot to generate. Either "coefplot" or "iplot". plot_type combined_plot Logical indicating whether to combine plots for all dependent variables. legend_position Position of the legend on the plot. legend_title Title for the legend. legend_args List of additional arguments to customize the legend. List of additional arguments to customize the plot. plot_args

Value

A plot visualizing interaction coefficients.

Examples

```
## Not run:
library(fixest)
data("base_did")
# Sample call to the function:
plot_coef_par_trends(
  data = base_did,
  dependent_vars = c(y = "Outcome 1", x1 = "Outcome 2"),
  time_var = "period",
  unit_treatment_status = "treat",
  unit_id_var = "id",
  plot_type = "coefplot",
  combined_plot = TRUE,
  plot_args = list(main = "Interaction coefficients Plot"),
  legend_title = "Metrics",
  legend_position = "bottomleft"
)
plot_coef_par_trends(
  data = base_did,
  dependent_vars = c(y = "Outcome 1", x1 = "Outcome 2"),
  time_var = "period",
  unit_treatment_status = "treat",
  unit_id_var = "id",
  plot_type = "coefplot",
  combined_plot = FALSE
## End(Not run)
```

plot_covariate_balance_pretrend

Plot Covariate Balance Over Pre-Treatment Period

Description

This function visualizes the covariate balance over the pre-treatment period. It's particularly designed for outputs from methods like PanelMatch.

```
plot_covariate_balance_pretrend(
  balance_data,
  y_limits = c(-1, 1),
  theme_use = causalverse::ama_theme(),
  xlab = "Time to Treatment",
  ylab = "Balance (in SD unit)",
  main_title = "Covariate Balance Over Pre-Treatment Period",
  legend_title = "Covariate",
  show_legend = TRUE,
  ...
)
```

Arguments

balance_data A matrix containing the covariate balance data over the pre-treatment period. y_limits A numeric vector of length 2 defining the y-axis limits. A ggplot2 theme. By default, it uses causalverse::ama_theme(). theme_use A string indicating the label for the x-axis. xlab ylab A string indicating the label for the y-axis. A string for the main title of the plot. main_title legend_title A string for the legend title. show_legend A logical; if TRUE, the legend is displayed, otherwise, it's hidden. Additional arguments passed to the ggplot labs.

Value

A ggplot2 object.

Examples

```
## Not run:
  balance_data_sample <- matrix(rnorm(20), nrow = 5)
  plot_covariate_balance_pretrend(balance_data_sample)
## End(Not run)</pre>
```

```
plot_density_by_treatment

Plot Density by Treatment
```

Description

This function creates a list of ggplot density plots for specified variables by treatment groups.

```
plot_density_by_treatment(
   data,
   var_map,
   treatment_var,
   show_legend = TRUE,
   theme_use = ggplot2::theme_minimal(),
   ...
)
```

12 plot_PanelEstimate

Arguments

A data frame containing the variables to plot and a treatment variable.

Var_map

A named list mapping the column names in the data to display names for plotting.

treatment_var

A named vector where the name is the treatment column in the data and the value is the legend title.

show_legend

A logical value indicating whether to show the legend. Defaults to TRUE.

theme_use

ggplot2 theme. Defaults to ggplot2::theme_minimal().

Additional arguments to be passed to geom_density.

Value

A list of ggplot objects for each variable in var_map.

Examples

plot_PanelEstimate

Plot Estimated Effects of Treatment Over Time

Description

This function takes an object (result of PanelEstimate or similar) and plots its estimates over time.

```
plot_PanelEstimate(
   pe.object,
   ylab = "Estimated Effect of Treatment",
   xlab = "Time Since Treatment",
   main = "Estimated Effects of Treatment Over Time",
   ylim = NULL,
   theme_use = causalverse::ama_theme(),
   ...
)
```

plot_par_trends 13

Arguments

pe.object The object with the estimation results.

ylab The y-axis label.

xlab The x-axis label.

main The main title for the plot.

ylim The limits for the y-axis.

theme_use The theme to use for the plot. Defaults to causalverse::ama_theme().

... Additional parameters to pass to labs() function.

Value

A ggplot object with the desired plot.

Examples

plot_par_trends

Plot Parallel Trends

Description

Plots parallel trends for given metrics.

```
plot_par_trends(
  data,
  metrics_and_names,
  treatment_status_var,
  time_var,
  conf_level = 0.95,
  non_negative = FALSE,
  display_CI = TRUE,
```

14 plot_par_trends

```
output_format = "plot",
smoothing_method = NULL,
title_prefix = "Parallel Trends for",
theme_use = causalverse::ama_theme()
)
```

Arguments

data A data frame containing the data to plot. metrics_and_names A named list of metrics to plot. treatment_status_var The variable indicating treatment status. time_var The variable indicating time. conf_level Confidence level for confidence intervals (default is 0.95). Logical; if TRUE, sets negative lower confidence bounds to 0. non_negative display_CI Logical; if TRUE, displays confidence intervals. Format of the output; "plot" returns a list of ggplots, "data.frame" returns a data output_format frame. smoothing_method Method to use for smoothing; NULL means no smoothing. A character string specifying the prefix for the plot title (default is "Parallel title_prefix Trends for"). theme_use Custom theme that follows ggplots2

Value

A list of ggplot objects or a data frame.

```
## Not run:
library(tidyverse)
data <- expand.grid(entity = 1:100, time = 1:10) %>%
  dplyr::arrange(entity, time) %>%
  dplyr::mutate(
    treatment = ifelse(entity <= 50, "Treated", "Control"),</pre>
    outcome1 = 0.5 * time + rnorm(n(), 0, 2) + ifelse(treatment == "Treated", 0, 0),
    outcome2 = 3 + 0.3 * time + rnorm(n(), 0, 1) + ifelse(treatment == "Treated", 0, 2)
  )
results <- plot_par_trends(
  data = data,
  metrics_and_names = list(outcome1 = "Outcome 1", outcome2 = "Outcome 2"),
  treatment_status_var = "treatment",
  time_var = list(time = "Time"),
  smoothing_method = "loess"
library(gridExtra)
gridExtra::grid.arrange(grobs = results, ncol = 1)
## End(Not run)
```

plot_treat_time 15

plot_treat_time

Plot number of treated units over time or return a dataframe.

period.

Description

Plot number of treated units over time or return a dataframe.

Usage

```
plot_treat_time(
  data,
  time_var,
  unit_treat,
  outlier_method = "iqr",
  show_legend = FALSE,
  theme_use = causalverse::ama_theme(),
  legend_title = "Point Type",
legend_labels = c("Regular", "Outlier"),
  regular_size = 3,
  outlier_size = 5,
  regular_color = "black",
  outlier_color = "red",
  regular_shape = 16,
  outlier_shape = 17,
  title = "Random Time Assignment",
  xlab = "Time",
  ylab = "Number of Treated Units",
  output = "plot",
)
```

Arguments

data	Dataframe containing data.
time_var	Time variable for aggregating the number of treated units.
unit_treat	Variable indicating if the unit was treated in a specific time
$outlier_method$	Method for outlier detection ("iqr" or "z-score").
show_legend	Logical indicating whether to show legend.
theme_use	ggplot2 theme to use.
legend_title	Title for legend.
legend_labels	Labels for regular and outlier points.
regular_size	Size of regular points.
outlier_size	Size of outlier points.
regular_color	Color of regular points.
outlier_color	Color of outlier points.
regular_shape	Shape of regular points.
outlier_shape	Shape of outlier points.

plot_treat_time

```
title Plot title.

xlab X-axis label.

ylab Y-axis label.

output Type of output ("plot" or "dataframe").

... Additional arguments to pass to ggplot2::labs.
```

Value

ggplot2 object or dataframe.

```
# Example usage:
## Not run:
data <- data.frame(time = c(1,1,2,2,3,3), treat = c(0,1,1,1,0,0))
plot_treat_time(data, time_var = time, unit_treat = treat)
plot_treat_time(data, time_var = time, unit_treat = treat, output = "dataframe")
## End(Not run)</pre>
```

Index

```
ama_export_fig, 2
ama_export_tab, 3
ama_labs, 3
ama_scale_color, 4
ama_scale_fill, 5
ama_theme, 6

balance_scatter_custom, 7

plot_coef_par_trends, 9
plot_covariate_balance_pretrend, 10
plot_density_by_treatment, 11
plot_PanelEstimate, 12
plot_par_trends, 13
plot_treat_time, 15
```