

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1955

Initial elastic and frictional behavior of metal interfaces.

Williamson, Leslie J.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/14264

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

INITIAL ELASTIC AND FRICTIONAL BEHAVIOR OF METAL INTERFACES

Leslie J. Williamson

Library
U. S. Naval P. Agraduate School
Monterey, California

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Cambridge 39, Massachusetts

May 23, 1955

Secretary of the Faculty
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

Dear Sir:

In accordance with the regulations of the Faculty,
I submit herewith a thesis entitled "Initial Elastic
and Frictional Behavior of Metal Interfaces," in partial
fulfillment of the requirements for the degree of Master
of Science (without specification).

Respectfully yours,

Leslie J. Williamson Lieutenant, U.S. Coast Guard

DANSESSEE OF STREET, ST. SEASONSEE

100 LES 4001

There's air to proving the proving the province of the provinc

DOOR MAN

In converse with the requirement of the feather. I seeked thereof district a street of the feather in related the related to vertical terms of the seeked to refer to the seeked to related to remain of the seeked to related of the seeked to related to related in the seeked to related to

Sample of Lally Spaces.

Lantenant, C.S. Const Const

INITIAL ELASTIC AND FRICTIONAL BEHAVIOR OF METAL INTERFACES

by

LESLIE J. WILLIAMSON
Lieutenant, U.S. Coast Guard
B.S., U.S. Coast Guard Academy
(1945)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (without specification)

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY (1955)

Signature	of	Auth		artn	ent	of	Nava	1 Ar	chi	tec	tur	e a	and
				Mar	ine	Eng	inee	ring	, Me	ау	23,	19	955
Certified	by	• • • •	• • • •	• • • •	• • •	• • • •	• • • •		sis				
Accepted &													

W626

BESTERN BEARTED AND PRACTICALLY IN MARKED BY

W.

bionessent O. Post Chart Chart

THE TO THE LATE AND ALTERNATION OF THE SAME OF THE SAM

जीरे दें

TOGICANDER TO STUTIES ESTEROSEDOT

lor of the local state of the lo	30	Mana Nege
	, igd	
		d had yeard

INITIAL PLASTIC AND FRICTIONAL BEHAVIOR OF METAL INTERFACES

Ċ

Leslie J. Williamson Lieutenant, U.S. Coast Guard

Submitted to the Department of Naval Architecture and Marine Engineering on May 23, 1955, in partial fulfillment of the requirements for the degree of Master of Science

ABSTRACT

The object of this thesis is to investigate the reported existence of abnormal elastic effects in metal interfaces. In conjunction with this work, the initial frictional behavior at the metal interfaces was observed.

The method of investigation selected employed hollow cylindrical specimens composed of two mating parts placed end on end. The experimental apparatus utilized a combination of optical and mechanical means of measuring small angles of twist in the specimen. Various metals were tested under different conditions of normal load and surface finish.

Excellent conformity between observed values of twist and those predicted by elastic theory was achieved. The experimental results did not show any indication of excessive elastic angles of twist.

Investigation of the initial frictional behavior of the metal interfaces indicated that the value of the friction coefficient increased with incremental changes in the observed slip until the range of normally expected values was attained. In this range the curve flattened out and free sliding resulted.

In view of the results of this investigation, it is believed that the reported abnormal elastic conditions were the result of inaccuracies in the experimental method, and that further investigation along this line is not warranted.

Thesis Supervisor: Brandon G. Rightmire

Title: Associate Professor

ما ي دان

THE PERSONS TRANSPORT OF THE PARTY OF THE PA

Market C. Williams

intractions local to simple of an armitister that the sensitivity of t

APRILATED

Assessed and admittanced of all absents aids to remine and annexation of the security and allegate also also also expensive restrated farefactor Intital add when the other materials and the security in the security in the security and the security in the security and the security in the security and the securit

AND STATES OF THE PARTY OF THE

Print to Lawler Services assessed alterrates dealloads on the printer of the contract of the printer of the pri

-th subjects and to make and said balled and to appropriate large against a subject and to appropriate large against the subject and said to appropriate large against the subject and appropriate large against the subject and the subject against the subject and the subject against again aga

-nd at #1 , meddings/spread and Do mitmade and Do mare at and the series and paid thereat and series and series the state of the series and and the state of the series and and an additional tenth and series and an additional lands are a series and a series are a series and a series and a series are a se

ACKNOWLEDGMENT

To Professor Brandon G. Rightmire, who kindly consented to supervise this thesis, I wish to express my sincere appreciation of his helpful suggestions and encouragement during the course of the research.

I wish also to thank the members of the Lubrication Laboratory for their co-operation.

Finally, to Bertha Hornby, who typed the thesis, go my thanks for her careful work.

THE RESIDENCE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO ADDRESS OF THE PERSON NAMED IN COLUMN TO ADDRE

The sequences the factor of lightning, and the state of the state of the sequences of the s

Trinding on the single on the set of the state of the sta

TABLE OF CONTENTS

		Page
ABSTRACT		1
ACKNOWLE	DGMENT	11
I.	INTRODUCTION	1
II.	PROCEDURE	3
III.	RESULTS	10
IV.	DISCUSSION OF RESULTS	27
v.	conclusions	31
	APPENDIX A	33
	APPENDIX B	36
	APPENDIX C	78
	APPENDIX D	81
	APPENDIX E	84
	DEFINITION OF SYMBOLS	106
	BIBLIOGRAPHY	107

CONTRACTOR AND ADDRESS OF

STATE		
1	- La La Caración de Company de Caración de	DISTANT
Ш		TANK TOTAL
2	alenavane process and the control of	-3
A	ALLEGE CALCULATION OF THE PARTY	-22
E.I.	ALLEGATION OF THE PARTY OF THE	,113
7E	DESCRIPTION OF RESIDENCE ASSESSMENTS.	-72
ii	ALTERNATION OF THE PERSON NAMED IN COLUMN 1	191
i.e	ARTERIOR DE L'ANTIDO DE LA CONTRACTOR DE L'ANTIDO DE L	
10	ACCOUNTS OF THE PARTY OF THE PA	
MY:	ARREST PROPERTY AND ADDRESS OF TAXABLE	
Ja .	APPRILITATION OF THE PROPERTY OF THE PARTY O	
10	ANALYSIS CONTRACTOR OF THE PARTY OF THE PART	
Aux	THE PARTY OF PERSONS ASSESSED TO SERVICE THE	
VOL	PROPERTY AND PERSONS ASSESSED.	

I. INTRODUCTION

In a thesis, (1) Goyle and Stromberg reported the existence of abnormal elastic effects in metal interfaces. As a result of their work, they concluded that the asperities in steel interfaces contribute materially to the elastic twist. The elastic twist due to an interface appeared to decrease with increase in normal stress for a given value of maximum tangential stress. They also found that the effect of surface finish was affected by normal stress, in that a transition range existed for normal stress. This transition range separated the regions where elastic twist increased or decreased with the degree of surface finish. This appears to be a virgin investigation of elastic effects in metal interfaces, as a survey of the literature failed to disclose any previous work along this line.

Tomlinson, Thorpe, and Gough, (2) in a paper on fretting corrosion, reported that surfaces in contact under normal and tangential stresses have a comparatively high degree of tangential elasticity. "The surfaces appeared to yield under tangential stress in an elastic manner by an amount which may be many times greater than the smallest slip it is hoped to detect." This made their problem of measuring slip extremely difficult. In the second phase of this investigation, this problem was encountered where the displacements measured were of the same order of magnitude as the depth of the asperities

In a sheats, (1) payer and represent the bitchesse of characters of characters of characters and characters are repertitor in what the sheat result in their seast and their seast and the sheat results to the character that the starts and the characters and the starts are the starts to the characters and the starts are the starts to the starts and the starts are the starts and the starts are the starts and the starts are the starts are the starts are the starts and the starts are the starts and the starts are the starts are the starts and the starts are the starts and the starts are the starts and the starts are the starts are the starts and the starts are the starts and the starts are th

restricted on require to company to content under morant and secretary statement to company to the content under morant and secretary statement to company of the statement to company of the statement of the secretary statement secretary statement of the statement secretary statement secretary statement secretary statement and secretary statement secretary statement secretary statement secretary statement secretary statement secretary statement secretary secr

in the metal interfaces. The first objective of this investigation was the development of a test apparatus and an experimental procedure of sufficient sensitivity and accuracy so
that the existing discrepancies between calculated theoretical
and observed values of elastic twist would be eliminated or
rationalized. Various methods of measuring elastic twist in
a specimen were considered, as discussed in Appendix A.

The second phase of this work was a by-product of the original investigation. After extensive examination of the elastic effects at metal interfaces under various conditions of load and surface finish, it was decided that a study of the frictional behavior would be both interesting and valuable.

The time and the separation of a first organization of the timestall and the state of the state

and to endergraph a new case and to another sail Lastyles and the anti-construction of the sail to anti-construction and the anti-construction and a

II. PROCEDURE

The test apparatus used in this work is illustrated in Figures I, II, and III.

The tubular specimens tested were machined from the following materials: (1) AISI C-1018, cold-finished, open-hearth, low-carbon steel; (2) AISI A-4140, heat-treated, stress-relieved, medium-carbon alloy steel; (3) hard-drawn, electrolytic, tough pitch copper rod; (4) 25 Aluminum.

The specimens were reamed out to an inside diameter of 0.191"; then turned down to 0.236" outside diameter. The test specimens were cut into two halves, each one inch long.

A single two-inch specimen was made for each material, and used as a control specimen. The observed deflections of the control specimen (\$\psi_0\$) were compared with the computed deflections (\$\psi_0\$) as predicted by elastic theory, thus providing a check of the accuracy of the test runs. The effect of the interface could be determined by a comparison of control-specimen runs with test-specimen results.

mounted as shown in Figure III. The contact surfaces were lapped to the desired finish with emery polishing paper of varying degrees of roughness. The specimen was clamped in a vee-type block during the polishing process, to insure that the test surfaces were ground perpendicular to the specimen axis. The specimens were carefully cleaned both before and after the

no bedressant in their said in the state of the little tent in the state of the sta

The total continues to the continue to the second for the tear religion of the tear of the continues of the

To reproduce the season of the season.

The Verser and Lover believe of the tast operate and sections are negatived as being a section of the section o

polishing process. (Reagent acetone was used as cleaning solvent.)

Two double-ended indicator arms were used, one on either side of the interface. Each arm was constructed with two 12" lengths of Type 321 stainless-steel tubing having 1/8" outside diameter and 0.005" wall thickness. The indicator arms were fastened to the specimen by a collar, as shown in Figure III. The cone-pointed set screws were used to obtain a knife-edge line from which the twist was transmitted. The pin-point indentations produced on the specimen by the set screws permitted length "L" to be accurately picked off the specimen with draftmen's dividers.

The alignment jig shown in Figure III was used to insure that the face of the indicator-arm collar, hence the plane of the set screws, was perpendicular to the axis of the specimen.

The lower half of the specimen rests on a machined and polished steel plate. For initial tests on the steel specimens a machined steel block was used, as shown in Figure I (1). The remainder of the specimens were mounted on the machined steel block shown in Figure III. This block has a securing collar which permits clamping of the bottom end of the specimen.

After a final cleaning of the two contact surfaces, the upper half of the specimen was placed on the lower pertion, and the weight rod then run up through the annulus of the specimen.

The weight release (screw jack) permits the weight pan support rod to be run up and down as desired.

palantin of hear one meadant respect to minister (valories)

THE AND THE SECRETARY AND THE REPORT OF THE PROPERTY OF THE SECRETARY OF T

To make the same and the relation recommendation of the same the date of the same and the date of the same and the same an

reliefed wheel plate. For relain to the about speciment a state about speciment a state about a respect to state a state at the state and the state and the state at the state

The threaded upper end of the rod was then screwed into a circular disc, separated from the top of the specimen by a ball thrust bearing as illustrated in Figure III. This bearing was used to isolate the specimen from any torsional vibration or movement of the normal load weight pan.

The sight edges are pictured in Figure I (2) and
Figure III. The two sight edges were polished with 4/0 paper
so that a clean, sharp sighting surface was obtained. Alignment of the two sight edges could be obtained by loosening
either one or both of the clamp screws, and moving the edges
into position as desired. The upper arm sight edge strip was
cut wider than that on the lower arm. The distance from this
edge to the center of the indicator-arm collar was measured
accurately (12.33"), giving length "R". With the microscope
focused sharply on this edge, the other sight edge strip was
brought into focus by bending it slightly.

The torque arm was aligned so that the silk threads
transmitting the forces from the torque weight pans are perpendicular to the lever in both herizontal and vertical planes.
The pulleys were adjusted in both vertical and horizontal
planes by moving pulley clamps on the support rods, as shown
in Figure II. When alignment of the torque system was obtained,
the torque arm and pulley support clamps were locked in place
with their set screws.

The desired normal load was placed on the weight pan and then applied to the specimen by cranking down the weight release.

The zero reading of the indicator arms was then recorded.

with percent and not not not not be never and rette entered one of the antie of anniones and to not not mert annioned about relevant a -unit also lets and ment at leaf industrial at golden recognition --walks annioned use out machines all arabets of hear ore goland spicion lengt lawns and to rest to annion or and

The office of the two signs above to the contract of the contr

The forget the per seat to be beauty of the period and p

has may delate the arrange and the property of purchases and or believe and one and contained and contained and the cont

By adding equal weights to the two weight pans, a known torque was applied to the specimen and the resulting twist was measured on the optical micrometer. After each reading the torque was removed and the zero reading recorded.

After measuring the distance "L" between pin-point indentations in the specimen, these pits were marked so that they could be distinguished from marks made in the succeeding test. THE RESIDENCE OF ANY REPORTS OF THE PRODUCTION OF ARREST OF THE PRODUCT OF ARREST OF THE PRODUCT OF ARREST OF THE PRODUCT OF ARREST OF A

named delegants neverted the school and province with a section of the state of the

FIGURE IL. PLAN VIEW OF TEST APPARATUS

Note: NOT TO SCALE

.. J.W. 23 May, 1955

ATAMENT ATTE

The sensite of this investigation are shown in Figures IV to Elizabeth

 $S_{\tau} = Max. tangental stress$ psi Twist (min. arc) FIGURE SPECIMEN norma stress 19130 psi 23 May 1955

Torque (gm. in.)

 S_{r} Max. tangental stress psi FIGURE Iwist(minutes of arc) 4.00 3.50 3.00 SPECIMEN 2.00 STEEL C-1018 Surface finish poper 5360 psi 7640 psi 1.50 o Run 3. o Run 4. 10940 psi 3130 psi + Run 5 3130 1.00 6450 psi ARun 6 23 May 1955 200 400 800 1000 1200 1400 600

Q Torque (gram inches)

ŧ

Max. tangental stress S, psi 800 1400 1600 1800 FIGURE VIL 4.50 Twist vs Maximum Tangental Stress & Torque 3.50 calc. values 3.00 Twist (min. arc) 2.50 2.00 SPECIMEN

Q Torque (gm. in.)

400

C-1018

ARun 1 ⊙Run 2

+ Run 3

ERUn 4

150

100

Surface finish

L.J.W.

1000

800

STEEL

4/n poper

normal stress 7640 psi

May 23, 1955

1200

10940psi

14350 psi

16450 psi

1400

S, = Max tangental stress psi 808 404 606 2020 FIGURE IX. 450 Twist vs Maximum Tangental Stres & Torque 3.50 3.00 Twist (min. arc) 2.50 2.00 Surface finish as machined S. = 8700 psi. S - 12470 ps Sn = 14950 psi Sn = 18740 psi 1.00 23 May 1955 Torque (gm. in) a

IV. DISCUSSION OF RESULTS

A. Initial Elastic Behavior of Metal Interfaces

Figures IV and XII compare observed deflections of the control specimens with computed deflections as predicted by elastic theory. All points plotted for the two steel control specimens are within the elastic range, as the test runs were terminated at the first indication of possible permanent deformation.

The values of shear modulus selected for the C-1018 and A-4140 steels were, respectively, 12 x 10⁶ and 11.9 x 10⁶ psi. Marks (6) gives the range of shear modulus values for all steels, excepting 18-8 stainless, as 11.0 to 11.9 x 10⁶ psi. The computed angle of twist varies inversely with the value of shear modulus. Therefore it can be seen that, with the values of shear modulus selected, the computed deflections will be the minimum expected. As the observed values of twist agree with the minimum computed values, the possibility of excessive elastic twist in the control specimen is eliminated.

The shear modulus values for copper (hard-drawn tough pitch) and 28 Aluminum were given in the Handbook as 6.0 and 3.7×10^6 psi, respectively.

Figures V to VIII show the results of tests conducted with C-1018 steel specimens having various surface finishes and normal loads. Due to the close agreement between observed and

DESCRIPTION OF THE PERSON OF T

AND PERSON LABOUR IN

Pigner in the continue of the first description and the continue of the contin

The willian of name wouldness collision of the third of the collision of t

The same modules where the mapper for the ball of the party of the same of the

AND ADDRESS REPORT TO ARREST TALL OUR VIEW OF Y SPECIAL PROPERTY AND ADDRESS TO ADDRESS THE PROPERTY AND ADDRESS AND ADDRESS ADDRESS AND ADDRESS ADDRESS AND ADDRESS ADDRESS ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS AND ADDRESS A

computed values of deflection for the control specimens, the observed angles of twist are compared with their corresponding theoretical value in this work.

The consistent agreement between test results for specimens with and without interfaces indicates that the interface has very little, if any, effect on the elastic twist.

All test runs with non-ferrous specimens were performed with the lower end of the specimen locked against movement. These test runs extended past the point at which the indicator failed to return to the initial position. The "B" plot of Figure XIII gives the observed values of residual twist recorded for the non-ferrous control specimen runs shown on Figure XII. Hard-drawn electrolytic tough pitch copper has a yield strength of 40,000 psi with 0.5% extension under load. Three successive runs on the copper control specimen show this effect clearly. The recorded values of deformation decreased with each run. Plot "A" of this figure shows the residual twist recorded for similar runs conducted on specimens with a No.1 surface finish. The effects contributed by the metal interface can easily be obtained by subtraction of the plotted values for any two corresponding tests. The point at which slip occurs on the copper specimen is easily noted, as the residual twist value increased sharply at that point.

Figures X and XI compare observed and calculated values of deflection for various test runs on copper and A-4140 steel specimens. These tests further substantiate the results recorded previously for C-1018 steel. Test runs using copper,

the thousand the title are employed and the test property and the test of the

-Drawn the address agent number of the contract of the state and agent a

Description of the Street Street Street Street Street Street Street Street Street should be been analysis of the best of the state of the s understand has double by Juley and June Labelitz come yand wrong fulles at return to the initial presiden. The sur plant of -we didn't disting to wanter however add named like wought the name of the late of the contract of the late of th Page 2 122 Structure of the Sand Structure of Sand Structure Sand news redain settantes that with the commenter brake a wade ministry, Denistry tapper add no news mylesponer, result the maid elected by measure and areas off the property and and comply specially had been been party being property -longs no behavious core rathers so't believes fried factions THE RESIDENCE APPROPRIES AND ADDRESS OF PERSONS ASSESSED. to militarables of Spinister of Spinister of Spinas are minimaled Labor only Annual off Andrew Statement our one one wealer harpedy off as parties officer of eachiers appear and we every offic dubbs for the respined today reduce Consequent singular to heat poly;

Indian And Annual And Developed Spaces In how I make the Annual Company and the Annual Company of the Company o

C-1018 steel, or A-4140 steel under various conditions of normal loading and with different degrees of surface finish failed to indicate any material contribution by the interface to elastic twist.

B. Initial Frictional Behavior of Metal Interfaces

Figure XIV compares the results of a similar test run conducted on four different metals. Comparing the results of the two steel specimens, it is seen that deformation occurred first in the C-1018 steel. This is attributed to yield in the asperities in the metal interface. C-1018 steel, with a yield strength of 48,000 psi as compared with 131,000 psi for the A-4140, would be expected to yield first. It should be noted that the deformation observed here is of the order of 0.000005 cm. The C-1018 curve crosses the A-4140 line at an apparent slip value of 0.00006 cm. This shows that sliding effects are now predominant, as the A-4140 steel with its smaller coefficient of friction slides more easily than the C-1018 steel.

Deformation in the two non-ferrous specimens commenced at fairly low values of tangential stress. It is interesting to note that the aluminum slid freely, and the copper curve rose sharply, at the same value of $\theta_{\rm R}$ at which the two steel curves crossed. Again it appears that, up to this point, deformation was primarily due to yield in the material, while subsequent failure of the interfacial bonds permitted friction effects to predominate.

to make the contract bears the contract of the

Delivery Designation of the Personal Pe

Plants in the different to the resident of a similar test and the state of the stat

At pulse enter the first parties and property fractions and extremely and extremely for extremely for extremely for the extremely for the

Figures XV to XIX indicate that the value of the frietion coefficient increases with small increments of slip until the normally expected value is attained, at which point the curve flattens out and free sliding results.

The curves plotted in Figures XVI, XVII, and XIX are all fairly smooth, giving no indication of a transition from interfacial deformation to true slip. The plots on Figures XV and XVIII, in contrast, show prominent breaks and discontinuities in the region below 0.00005 cm of apparent slip. The apparent slip in these cases may be due to slip, deformation of the metal, or combinations of both effects. An accurate evaluation of slip with this apparatus is therefore impossible due to the problem of separating the true slip from the deformations produced by yield effects in the asperities in the metal interfaces.

In evaluating these results, some information on the accuracy of the readings is in order. A discussion of the accuracy of the apparatus follows in Appendix A, Betails of Procedure.

 $\theta_R = \pm 1.80 \times 10^{-7}$ centimeters $\phi_A = \pm 0.00229$ minutes of are THE PARTY AND THE RESTREE AND PARTY AND RESIDENCE OF THE OWNERS.

THE PARTY AND THE PA

The courter and the city, typ, the property of the courter and the courter and

-so one and the additionable of another the published of the published of

NAME OF ADDRESS OF THE PARTY OF

V. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions - Elastic Behavior

- 1. The metal interface does not contribute materially to elastic twist.
- Elastic deflections of a metal specimen with an interface agree with values computed by elastic theory for a continuous specimen.
- 3. The deflections predicted by elastic theory are obtained regardless of metal, surface finish, or normal stress selected. (Normal loads applied were selected so that resulting normal stresses were safely below critical range which would cause buckling or compressive failure of the column.)
- 4. The predicted elastic deflections are obtained in non-ferrous metals even though extension of the metal under load resulted in small concurrent permanent deformations.

B. Conclusions - Frictional Behavior

- 1. The value of the coefficient of friction was initially low for extremely small values of slip at the interface.
- 2. The value of the coefficient increased with small increments of slip up to the normally expected value at which point free sliding resulted.

THE PARTY AND PROPERTY OF THE PARTY OF THE P

THE STREET, ST

- glisterine oresteniuse for uses sentreret (armenist us.
- an drive mentions thing a to mention planning the statement of the statement with retire specialists of the statement of the
- an include entend to tentimed medicals of the selection and the contract of the selection o
 - AND THE SUPERIOR OF THE STATE O

Dr. Complexions - Calmilloud Samering

- Les lies wellow of the sourcestant of redoctor on allegation of the particular description of the source of the so
- Almos Main increased includitions and to order and it. Services and an or older to determine the service and an order to delege the seller

3. An exact assessment of the increments of slip at the interface was impossible with this experimental technique, due to small amounts of deformation contributed by yield in the asperities in the metal interface. Notwithstanding this factor, the trend indicated that the coefficient of friction starts from zero for zero values of slip and applied stress, and increases with small increments of slip until the normal value is reached.

C. Recommendations

Due to the consistency of the results, both quantitatively and qualitatively, further investigation of metal interfaces for abnormal elastic twist is not recommended.

This apparatus was not designed for investigation of frictional behavior in the slow speed range; therefore modifications of the equipment are deemed necessary prior to any further investigations of the stick slip phenomena with this basic experimental arrangement.

In the second of the interest of the interest of the experincided to be such in the continue of the experextraction contributed by picts in the experision
in the mast interfere, and the secondary this
interface of interfere, according the configuration
of interests them case for more such as a

librariant of them that the more for more able soil
interestant of them and interests of the soil soil
interestant of the mast the normal value in
interestant of the mark the normal value in

DANKERSON STATE OF

Letter by well-party and rate to recollar and an area of the character of the contract of the character of the character of the compact of the character of the

The style alphables in the alley appeal ranges of therefore made. I therefore made at the same are as a second range with the same are a second range wit

APPENDIX A

DETAILS OF PROCEDURE

A EXCEPTE

SEPRESONS TO SELECTED .

DETAILS OF PROCEDURE

In the redesign of the test apparatus, various schemes for measuring angular twist of the specimen were considered. Selection of an optical lever in lieu of the metal indicator arms of the original apparatus was rejected due to the length of light beam required. This would require excessive floor space for the apparatus or would involve the use of a complex prism system. Distribution of the equipment over a large floor space would present a problem in isolating the apparatus from vibrations imparted by the building structure. Another source of error would be encountered in the resolution of the light image on the measuring scale.

The possibility of utilizing inferometry was investigated. Measurement of exceedingly small angles of twist could be obtained by this means, but the cost and complexity of the apparatus required for this work were greater than warranted.

It was decided that a sufficient increase in the sensitivity of the system could be obtained by use of better materials, measuring equipment, and refinements in the experimental method.

The original apparatus utilized an apparatus having an indicator arm length of 7.5" and an optical vernier in which one scale unit represented 0.001 inch of indicator movement.

Estimating the movement of one indicator arm to ± 0.1 scale unit, the resulting accuracy with two arms would be ± 0.2 scale unit.

DESCRIPTION OF STREET

In the reducing applies to the applicate provided, provided, provided to the contracting contributed of the application of an expected application to the action of the ac

-de not blove faint to medical the self to the land of the selection of the self-de not blove faint to medical total for the total ordered and the selection of the selection and the selection and the selection of the selectio

-disin not not weathered described as described as deleted and the printing and the printing and the printing and deleted and the printing deleted and the printing and deleted and del

Order of reteres to be the fact to be described in a serious of the state of the serious and t

AND AN OPEN SERVICE OF AN ADDRESS OF A PARTICULAR OF A PARTICIAL AND ADDRESS OF A PARTICIAL AND ADDRESS OF A PARTICIAL ADDRESS OF A PARTI

 $\psi_0 = \frac{\psi_s}{R} \times \frac{180}{\pi} \times 60 = \text{observed twist in minutes of arc.}$ Therefore accuracy of the original apparatus was

$$\psi_0 = \pm \frac{0.0002}{7.5} \times 3440 = \pm 0.092$$
 minutes of arc.

By the use of a microscope equipped with a 10 x objective and an optical micrometer, the accuracy was increased considerably. The use of the light-weight but rigid tubular indicator arms permitted increasing the value of R to 12.328".

cter stage showed that one micrometer drum unit represented 0.00004101 inch of indicator movement. Estimating the micrometer readings to \$ 0.1 drum unit would result in an accuracy in observed deflections of \$ 0.2 drum units. Therefore, accuracy of the present apparatus is

$$\psi_0 = \pm \frac{0.000008202}{12.33} \times 3440 = \pm 0.002290$$
 minutes of arc

The value of apparent slip (θ_R) measured with this apparatus is computed as follows: For the C-1018 steel specimen with the outside diameter of 0.2365" and inside diameter of 0.191", the mean radius (r_m) of the specimen is 0.1069".

Therefore

$$\frac{\theta_{R}}{r_{m}} = \pm \frac{0.000008202}{12.33}$$
 $\theta_{R} = \pm 7.10 \times 10^{-8} \text{ inches}$
 $\theta_{R} = \pm 1.80 \times 10^{-7} \text{ centimeters}$

that is neglected at the sequences where $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

nes nell'entre distallation and he tolerant applicable

new his schools down in a part of part of the latest and the lates

And opposition is the secondary opposite to the secondary of the secondary opposite the sec

The property of the property or the property of the state of the state

win to make the contract of a country of the contract of the c

The value of supersyst file the first state of the sales and the sales and s

Clare Corn

Managana : . It

CHOICE TOLE TAP I A 19Th

APPENDIX B

SUMMARY OF DATA AND GALCULATIONS

SECURISATION OF ADVE OF SECURISA

ψ_c = 0.00364 Q_A min.arc. ψ_o = 0.01144 ψ_s min.arc.

Es = 12 x 106 psi

77.3 x L x QA

Material: c-1016 Steel

Fig. 150 1b. Fig. 1b. $r_{\rm N} = 150$ 1b. $r_{\rm N} = 190.7$ 1.0156" $r_{\rm N} = 0.01945$ $r_{\rm N} = 0.0194$	Control Specimen:				Run No.1	Run No.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(Without Interface)				F. = 150 1b.	F. = 190.7 1b.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D = 0.2365"					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0				S _N = 9850 psi	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		d d	S	O	0	0
$D_1^{T} = 0.001798$ $= \frac{E}{4}(D_0^2 - D_1^2) = 0.01526$ $= \frac{E}{4} = \frac{E}{0.01526}$ $= \frac{E}{4} = \frac{E}{0.01526}$ $= \frac{1.05}{1.121} \times 10^{-2}$ $= 1.121 \times 10^{-2}$ $= 1.475 \times Q_A$ $= 1.475 \times$	1 - 0.01945	150	221.5	0.547	0.504	0.504
$= \frac{\pi}{4} (D_0^2 - D_1^2) = 0.01526 \qquad 450 \qquad 665 \qquad 1.640 \qquad 1.590 \qquad 1.590 \qquad 886 \qquad 2.185 \qquad 2.165 \qquad 2.165 \qquad 2.733 \qquad 2.735 \qquad 2.265 \qquad 2.830 \qquad 2.800 \qquad 2.80$. D4 = 0.001798	300	443	1.093	1.053	1.018
$\frac{4^{\circ} \circ 1^{\circ}}{A} = \frac{1}{0.01526} \text{ ps1}$ $= \frac{F_{N}}{A} = \frac{1}{0.01526} \text{ ps1}$ $= 1.121 \times 10^{-2} \frac{D_{0}}{D_{0}^{4} - D_{1}^{4}} \times \frac{Q_{A}}{1050} \frac{1050}{1770} \frac{1856}{4.370} = \frac{2.185}{2.735} \frac{2.165}{2.735}$ $= 1.475 \times \frac{Q_{A}}{A} \text{ ps1}$	$= \pi(n^2 - n^2) = 0.01526$	450	665	1.640	1.590	1.635
= $\frac{1}{A} = \frac{1}{0.01526}$ ps1 750 1107 2.733 2.735 2.735 = 1.121 x 10 ⁻² $\frac{D_0}{D_0}$ x Q_A 1050 1350 3.830 3.800 = 1.475 x Q_A ps1 1200 1770 4.370	4 C C C C C C C C C C C C C C C C C C C	9009	988	2.185	2.165	2.250
= $1.121 \times 10^{-2} \frac{D_0}{D_4 - D_1^4} \times Q_A$ 1050 1330 3.280 3.830 3.800 = $1.475 \times Q_A$ psi	N = N = N = N = N = N = N = N = N = N =	750	1107	2.733	2.735	2.776
1.121 x 10 $\frac{1}{D_0^4}$ x $\frac{Q_A}{D_1}$ 1050 1550 3.830 3.800 1.475 x $\frac{Q_A}{D_0}$ ps1			1330	3.280	3.265	3.380
1 1200 1770 4.370	1.121 x 10_~		1550	3.830	3.800	1
= 1.475 x 0A psi	0		1770	4.370	3	8
	= 1.475 x QA psi					

Was araisty of aquistal

10 m 150

4

I'm a TT = TO bell

The state of the s						
1000	13	7650	4.330	9		1 1
-	2039	1720	3,630	2.800		3
	900	1330	585.E			3.550
The state of the	off	7103	5.437	7.004		35.5
	0000	089	5 .145	241.5		2
+ 2(0 - 07) + 0.01 526	450	2 3	2.660	7-264		1,435
14	200	t	3-108	2.033		•
М	Tèc	- · L	0. 17TA	102.G		\$000°C
TOTAL DISTRICT	70	3	0,	0,0		0
- 1-5025fa				of a dead	} •	TH = \$3300 to 1
- 0-13192-				320	01,	" = 160 S IP
Teacher Toward and the season				See See		Lot Bert

SAPOLITY 0-1078 Breez

			Run No.3	Fun No.4	Aun No.5
			FN = 225.4 1b.	FN = 74.91 1b.	FN = 111.9 1b.
			1sd 00871 = NS	s _N = 4910 psi	S _N = 7350 ps1
O'	S. T.	9	9	-	**
150	221.5	0.547	0.539	0.457	0.515
300	647	1.093	1.098	1.155	1.109
450	699	1.640	1.670	1	1.647
009	988	2.185	2.210	8 8	2.240
750	1107	2.733	2.820		
006	1330	3.280	3.345		
1050	1550	3.830	3.920		
1200	1770	4.370	087.7		

2 to 200

	. 1
	of their a te
1 1 2 2 2 2	The service for
27.57.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 2	Che mairt ser
anagent.	
Banatark.	
· · · · · · · · · · · · · · · · · · ·	

Material: C-1018 Steel			S	SPECIMIN NO.2	SPECIMEN NO.3	1 NO.3
Surface Finish:				Run No.1	Run No. 1	Run No.2
			24	= 251.2 1b.	FR = 200.3 lb.	F _N = 251.2 1b.
Material: C-1018 Steel			es es	= 16450 psi	SN = 13130 pst	SN = 16450 psi
ce Fin	o*	S	D	9	0	0
No.1 Emery Paper	120	177	0.435	0.355	0.435	0.413
D ₀ = 0.2365"	540	354	0.8695	0.687	0.918	678.0
D ₁ = 0.191"	360	532	1.304	1.180	1.410	1.260
L = 1.0078"	087	710	1.740	3.662	1.925	1.650
D2- D2 = 0.01945	600	988	2.177	2.145	2.315	2.100
7 7 7	720	1065	2.608	2.600	2.760	2.590
0 1 - 0.001 78	840	1243	3.043	3.050	8 8	3.074
$\Lambda = \frac{\pi}{4} (b^2 - b^2) = 0.01526 \text{ in}^2$	006	1330	3.260	3.234	đ t	8 8
- F	096	1420	3.480	3-440	8 8	8
	1080	1595	3.910	3.920	8	8
≪	1200	1770	4.350	007-7	1	007.7
Sr = 1.121 x 10 ⁻² D ² x Q _A	1320	1950	4.780	026-7	9	8 8
$S_T = 1.475 \times Q_A$ psi 77.3 x L x G.						
D4) ×						
ψ _e = 0.00362 C _A min.are.						
ψ = 0.01144 ψ min.arc.						

A - a a bidden / ers-lat

- (10 - 10) × 0 - 4

" a d'aller I' aprille.

1 Y 3	1 3	3 - F	1	THE PART OF THE PA
		, ,		Tans and
200	2117	27.5900 27.772		ALL SALES OF THE S
g (3.250	2*0*2 2*7*2		
23	100	1 2 m	5853	
0.857 0.857	0000 0000	150	8868	4

Real State of Lake Steel

Run No.3

F_N = 201.29 1b.
F_N = 41.3 kg
S_N = 13200 ps1
s_n = 928 kg/cm²

0.3065 0.1960 0.2326 0.2940 0.2083 0.2206 0.2450 0.2575 0.2695 0.2820 0.3310 0.3432 0.3186 0.3560 36.20 × 10-6 45.20 50.60 63.30 87.50 112.0 113.0 141.0 229.5 244.0 288.5 232.4 0.940 3.095 1.432 2.945 3.660 0.459 0.573 0.641 0.802 1.420 1.787 2.910 273.5 293.0 311.0 211.5 224.0 236.5 248.7 261.2 298.5 323.0 361.0 199.0 348.5 2520 2760 2880 1920 2040 2160 2280 2400 2640 3000 3120 3240 3360 3480 0.0859 0.0368 0670.0 0.0613 0.0736 0.0982 0.1103 0.1225 0.1350 0.1470 0.1593 0.1715 0.0245 0.1840 4.50 × 10-6 6.31 15.38 16.25 18.06 25.30 27.12 14.42 27.12 28.00

0.195

99.9

0.183

0.080

62.3

600 720 840 960 1080 1200 1320 1560

6.67

87.5

54.9

360

0.229

137.0

0.321

149.4

0.355

1800

1680

THE STREET

FERREST LESS .

760

-
-

THE REAL PROPERTY OF THE PARTY OF THE PARTY

173.0 173.0 173.0 173.0 173.0

FEEFERFEEFEEFE

BELLENGER HERE

STATE OF THE PARTY OF THE PARTY

SPECIMEN NO.3 (continued)

Run No.4

F_N = 168.16 1b.

 $F_{\rm H} = 76.4 \, {\rm kg}$

S_N = 11020 psi

 $s_n = 775 \text{ kg/cm}^2$

CA	PR	OR		ı
240	May 100 403		nuto .	0.0293
360	Mark 1969 1968	00 00°	1000	0.0440
480	wn 800 wn	- ~	***	0.0587
600			-	0.0734
720	0.023	1.81 x	10-6	0.0880
840	0.057	4.50	23	0.1026
960	0.092	7.25	TS.	0.1172
1080	0.080	6.31	82	0.1320
1200	0.080	6.31	88	0.1466
1320	0.344	27.12	92	0.1613
1440	0.344	27.12	88	0.1760
1560	0.321	25.30	83	0.1906
1680	0.470	37.08	88	0.2050
1800	0.665	52.45	96	0.2200
1920	0.768	60.60	6)	0.2345
2040	0.894	70.50	83	0.2492
2160	1.625	128.0	8	0.2640
2280	2.450	193.2	11	0.2785
2400	40 00 00	en en	and A	0.2935

Lavarifect to be successed.

	-31			
		1 Just 1		
V-	100			
FFEDD . D				
COAL-II	-			
Steller W.	-	- 1	5.30	
40,000				1654
pint.	STOL .	BGL	ESEVE	
Hogs.#			TIDLE	
stires				
BILLY B		41,	010.	
Alaz-E		ara.	MARKE	
E101.0				
heys.o		SEATT.	AARah	1, 1933
04250		25,25	DESIGN	
120 LA		20.5°C	274.00	0116
5535-P			200	
SACTOR		11.01	SATUR	0,544
LOUIL D			401.0	
BARRATT		NAME !	2550.0	2923
SOFTE A		V-234	BANK	PARK
Shirts I	rjan	4.4		5020

					44	0.0762	0.1144	0.1522	0.1905	0.2280	0.2660							
Man good	= 64.8 lb.	29.4 kg	4250 ps1	299 kg/cm ²	8	8 8	4.50 × 10-6	14.42 B	17.20 m	28.60 m	8 8					•	,	
HT I	II Fig.	11 22 54	11 02 03	II S	***	1 1	0.057	0.183	0.218	3.630	8 8							
					O.	540	360	780	009	720	840							
					64	0.042	0.063	0.084	0.105	0.126	0.147	0.168	0.189	0.210	0.231	0.252	0.273	0.294
0.5	117.41 16:	3 Kg	10 psi	kg/cm2	8	13.56 × 10-6	14.42 "	11.74 #	21.67 "	17.20 "	25.30 *	26.20 **	26.20 **	37.08 "	52.50 "	67.80 "	93.70 "	8 8
nun no. 2	11 = 11 d	F 53.3	SH = 7700	8 = 542	# P	0.172 13	0.183 14	0.149 11	0.275 21	0.218 17	0.321 25	0.332 26	0.332 26	0.470 37	0.665 52	0.860 67	1.250 98	2 2
					Ğ	240	360	087	23	720	073	096	1080	1200	1320	1440	1560	1680

```
Service Into the Service of Servi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Title fer
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  N. S. STI'S TO'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    生 ないのの
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         $100 DOL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  The state of the s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SETTING.
                 A POLICE OF THE PARTY OF THE PA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STATE OF STATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Annual law
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  The Traction
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              司是
                                                                                                                                                                                                                                                                                                                                                                       1418
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            THEFT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1,6150
- FREELESSEEEE
                                  BREER HERREN
```

THE PERSON NAMED IN

Material: C-1018 Steel				Run No.1	Run No.2	Run No. 3
Surface Finish: 2/0 paper				FN = 81.75 1b.	FN = 116.3 1b.	FN = 167 1b.
D = 0.2365"				S _H = 5360 ps1	18d 079L = NS	Isd 07601 = NS
D ₁ = 0.191"	of.	E4 0)	9	**	\$	9
L = 1.0078"	120	177	0.4345	0.619	0.389	277.0
	240	354	0.8695	1.317	0.953	0.825
0 - 1 = 0.01945	300	443	1.090	8 8	1.304	9 8
D4 - D4 = 0.001798	360	532	1.304	8	8	1.237
(750	620	1.520	3 3	8 8	3 8 0
$A = \frac{\pi}{4} (D^2 - D_1^2) = 0.01526 \text{ in}^2$	087	710	1.740	8	8	1.674
Sec.	009	988	2.177	9 9	8 8	2.200
S _N = 0.01526 per	720	1065	2.608	8 8	8 3	2.650
	840	1243	3.040	8	3 8	3.200
27 - 1.472 X 4 ps1	006	1330	3.260	8 8	8 8	80 90
	096	1420	3.470	8 8	\$ 8 9	\$ 1 6
x (70	1020	1505	3.690	1 1	8	3 d 8
ri o	1080	1595	3.910	9 9	8 9	\$ \$
\$ = 0.00362 Q min.arc.	1140	1,680	4.130	8	8 8	9 9 0
1	1200	1770	4.350	8	8	1 1
o - 0.01144 % min.erc.	1320	1950	4.775	1 1	1 1 3	i i

		Trible Control	7 . 8		O's real line
	1111	9	1000		T1871
1111			1 1 99	94.419	- 100 P
17 10 10 10 10 10 10 10 10 10 10 10 10 10	17.75 17.75 17.75 17.75 17.75			No. of	
1213	2155	285	HEA		
1000	2616		SEE	£ 1%	
P - country of several	And the state of t		\$-42 many		Section appropriate the section opens

SPECIMEN NO.4 (continued)

Run No.6	FN = 251.2 lb.	S _N = 16450 psi	9	0.378	0.860	8 8	1.225	1 1 2	1.706	2.130	2.590	3.050	1 1 1	3.525	1 1	4.000	1 1	4.340	4.765	
Run No.5	FN = 200.3 lb.	S _N = 13130 ps1	0	0.367	0.780	8 8	1.204	i t	1.660	2.061	2.400	2.956	\$ 8 8	3.370	8 8	3.850	3 3 8	4.275	1 1	
Run No.4	F _N = 200.3 lb.	S _N = 13130 ps1	0	0.526	0.814	0.953	40 agr	1.306	1 1	2.085	2.520	\$ \$	3.130	0 0 5	3.670	\$ 2 \$	4.260	1 1	8 8	
			9	0.4345	0.8695	1.090	1.304	1.520	1.740	2.177	2.608	3.040	3.260	3.470	3.690	3.910	4.130	4.350	4.775	
			S E	177	354	443	532	620	710	988	1065	1243	1330	1420	1505	1595	1680	1770	1950	
			O'A	120	240	300	360	420	087	009	720	840	006	096	1020	1080	1140	1200	1320	

Success they (neapported)

6 10 1	0,42,40	× ×	0.000 2	X X	3,350	1	3.050	11.300	T-300		X 8	225.1	1 1	0,000	B475.0	*	and adversaries that	1 to 121 or 120 or 120	Aug sag-
***	4.244		0.840		085		8,492	2.406	2,400,1	2.500	-	1,100	****	0,700	100,0	0,0	per appearing		Tiolini,
1	+ : .	4.240	1	3.690					2.003		1.36		0.403.0	VEN-10	0.000	0_	The Didted on the	1,000 a 1000 the	1.00 000
- SUS-Y	4-190	4.230	3.020	3.660	31740	2002-6	3.040	2.408	1-7.54	7.370	1.4200	1000 E	T-680		5-1273				
1820	3.6.60	21110	2585	1950	PPESO	1320	2382	3005	14.00	320		200	224	257	244				
risen	riton	27.27	Toyou	rear	040	Sign.	270	980		710	STE			8	0.00				

Material: C-1018 Steel

Surface Finish: 4/0 paper

D = 0.2365"

0.191#

1.0078"

 $D_1^2 = 0.01945$. 000 $D_1^4 = 0.001798$

0.01526 in2 13

F.N 0.01526 ps1 S

1.475 x QA psi ST

0.00362 CA 9

0.01144 \$

Run No.2 Run No.1

= 167 1b. Eq. = 116.3 1b. H

= 10940 ps1 S = 7640 ps1

S

0.446

0.378 1 1

0.836

0.8695

354 443 532 799 710 886 1065 1105 1243 1330 1420 1550 1595 1770

240

300

221

120 150 1.090

076.0

1 1 1

1.237

1.443

1.750 . .

1.627 1.740

1.304

360 720 087 009 720

1.912 2.300 2.656

2.177 2.608

2.154

2.610 1 1

3.120

3.040 3.260 3.470

2.714

750 073

3.208

3.640

3.676

4.420

3.910 4.350

3.800

096

1050 1080 1200 1320

006

4-775

288.4

1990

\$	1	2	054-4	3 1	376.6		3.208	3	2.650	2,300	(0.00 mil.	3 8	Tritty,		0.920	9	04440	3.	na Tooks les	EV = 793 70"	8.42 WE
* * *	3 3	1 1		N 4 4	016.E	* 5 4	3.150	* 10 1	2,620	101-10	J-750	1	1.234	1 7 7	0.03 m	\$	0.338	ď,	The Soyn ber	AT C TTP-3 IP-	Lang. April
4-105	C-17-3	5-280	3-320	2*800	3-440	3.180	5.040	257.0	8.608	5.7.5	7-170	7.627	7.30%	X-000-X	0.4695	0.5.3	0.1313	S.			
2690	2690	STAME .	2500	3350	3730	T730	FIRE	TTOS	1003	688	370	ASIA	222	644	337	TES	133	17 17			
0390	TED.	RDB	060	080	appa	990	870	320	200	pod	100	150	200	300	615	330	1730	# C			

Jan 10.01.0 - 10

" - 0-0125g ros

T = T-cohys

" = 0.767.

N. - 65 - 0.001577

The Table of the Table

1 = 0.000 cm cl

" - aretisty of

45.

Industrial Colors States

Will be her appropriate

4° = 0'5562.

SPECIMEN NO. 5 (continued)

F _N = 251.2 lb.	0	1 67 0		1.040	1 1	1.615	1 1	2.185	00 00 00	2.760	1 1	3.332	1 1	3.800	1 1	4.500	1 1	5.020
$F_N = 200.2 \text{ lb.}$ $S_N = 14350 \text{ ps.}$	9	0.344	0.847	8 8	1.340	8 8	1.730	2.185	2.635	1 1	3.080	8 8	3.550	8 8	4.020	4.465	4.930	1 1
	9	0.4345	0.8695	1.090	1.304	1.627	1.740	2.177	2.608	2.714	3.040	3.260	3.470	3.800	3.910	4.350	4.775	4.885
	S.	177	354	443	532	799	710	988	1065	1105	1243	1330	1420	1550	1595	1770	1950	1990
,	O d	120	240	300	360	450	780	009	720	750	840	006	096	1050	1080	1200	1320	1350

1911 1191

TANK BOOK

5,00,0	11.11.11	2,300	11 11 11 11 11 11 11 11 11 11 11 11 11	James J.		27,500	5.1 Y	87410	* * * *	1,000	1	2010	400	1,220	1. 1. 1.	6776		4	off - rerio mr	
	0.00	TTRE	7-940	124	31,590		3.000.	200,		O1 5-103	- Like	2021	036.1	200	2000	444	20.514		par heart . by	To 2002 250
11.000	4.012	17330	F-STA	178002	- STATE	0.00	1,040		22,100	21744	2.740	1.959	1.20	1.041	2048-0	0.543	d'rara	4.0		
THEFT	TAR.	7,540	T-2005.	1000	Tresa	21/30		1100	TOP2	386	370	1	5333	000	300c	2000	134			
			Tong	2492	310	200		380	0.50	00%	1000	190	3 6 6	3000	80.00	Die.				

SPECIMEN NO.5

Run No.5

 $F_N = 168.16 \text{ lb.}$

 $F_{N} = 76.4 \text{ kg}$

S_N = 11020 psi

 $s_n = 775 \text{ kg/cm}^2$

QA	s t	ψ_R	O _R		f
240	24.9	600 000 000	00x 00x	-	0.0293
360	37.4		900 000	-	0.0440
480	49.9	Ollo Mile One	900 GHz	-	0.0587
600	62.3	900 400 FM		-	0.0734
720	74.9	W W 00			0.0880
840	87.5		900 900	-	0.1026
960	99.9	0.069	5.44 ×	10-6	0.1172
1080	112.0	0.069	5.44	93	0.1320
1200	124.3	0.114	8.98	62	0.1466
1320	137.0	0.151	11.90	14	0.1613
1440	149.4	0.218	17.16	B ?	0.1760
1560	161.6	0.264	20.80	66	0.1906
1680	174.3	0.447	35.25	ŧ	0.2050
1800	186.6	0.734	57.80	Ħ	0.2200

RAFF AMERICA

Last, mil.

Par Idente in.

SE ANT S A

in will a my

Served art. ...

- 6	-			735
	-		Sept.	03.0
	*		6167	
	-			504
13.			15-17	557
			1.77	E52
God -	2642	000.00	Acre	
1.0	55.55	160.0	BULLL	0074
	MP-E	all.o	EAUL	STORE .
+	00411	0.153	0.781	BEEL
100		BEELD .	LUESL	ther
1.0		parent.	Walle	1330
		Value	22143	
4	05-72	APPLA	9-895	-6983
	*****	17.16 + 10°05 27.16 + 27.16 27.16 + 20.05 27.16 + 20.05	00.000 00.00	Taylor Arrest Control of the control

SPECIMEN NO.5 (continued)

					Great .	920.0	0.114	0.152	0.191	0.228	0.266	0.305					
	م		eri	CE 5		9-01	=	=	=	=	z	~					
Run No. 7	= 64.78 1b.	= 29.4 kg	H	= 299 kg/cm	0 8	14.42 x	14.45	32.50	57.80	57.80	09.09	138.2					
	225 (Pa)		S	a es	**************************************	0.183	0.183	0.412	0.734	0.734	0.768	1.752					
					o ^e	540	360	780	009	720	840	096					
					\$-4	1 1	0.042	0.063	780.0	0.105	0.126	0.147	0.168	0.189	0.210	0.231	0.252
						1	10-6	z	*	E	=	=	2	z	2	=	
Run No.6	117.41 1b.	= 53.3 kg	770 ps1	542 kg/cm ²	0 8	f I	2.68 x	3.63	17.20	14.42	28.90	0.458 36.10 "	61.50	84.70	109.80	139.80	1
Ru	II N	11	II N	II G	\$ X	2 3	0.034	970.0	0.218	0.183	0.367	0.458	0.780	1.075	1.396	1.775	1 1
					O. A.	540	360	087	009	720	840	096	1080	1200	1320	1440	1560

		1.303	0.000	-	-		370.0						
		10975	0 00.00		10,00	24.00	e e e e e e e e e e e e e e e e e e e		a stok will con	Tel: 0024 =	1 日間日 日	1 m 40 like 200	5,11,20
		i-				360	2						
0.1375 0.1323	0.750	orres derria	3.2		1.00.	0.000	9	64					
\$	and the same	20174	28.40	· ·	- 7	21.89 × 70	1		Arts office,	Ago bir	0.0		Buth and
1 - 2	000.0	02P.0	- 2	0.31	0.010		1	6	1	3		10	B
27 Caro	7.780 1.700	Young	0.0	050	1000	DAK	0.25	No					

Material: A-4140 Steel

Control Specimen

(without interface)

0.2315"

0.191"

= 0.9063"

 $D_1^2 = 0.01711$

 $- D_1^4 = 0.001542$

11

FW 0.01342 psi

1.121 x 10-2 E S

77.3 x L x

0.00382 CA

psi = 11.9 x 10⁶ (m)

0.01144 \$

 $\frac{\pi}{4} (D_0^2 - D_1^2) = 0.01342 \text{ fm}^2$

1.684 QA psi

Run No.1

= 18700 psi = 251.2 1b. Z

0.493

0.458

202.3

120 240

0.916

405

360

1.410 0.952

2.315 1.845

1.830

810 1010

780 009 720 840 096 1080

1.374

2.808

2.290

1213 1416 1620 1820

3.736 3.323

3.205

Run No.2

4.160

4.125

rsd 00671 = = 200.2 lb

0.596

1.065

1.592

2.200

2.740

3.320

3.440

006

21.200	94740	8.000	345-2	2.00.2	1004	0	Tec 17850 247		Disk. Said	0.42-2			000	2014	T-978	T-170	14.95K	27450		and States but		Long Hall
0,440	2.466	2,290	3.430	2555.6	0.343	C				4.153		3.306	57,370	2.290	1,830	1001	0.370	73	0.			
Table	7580	MANUE	788	300	225.0	70				7830	2000	31410	ISTS	TOTA	D.C.E.	2. 50.5	403	2008-3	3			
Store.	900	060	1/10		180	*				Tomo	DAG		020	000	1000	300	275	130	K			
	An account of		1 = 11.0 = 300 max	after avenue of	,	(3/2 1/2) = 7	The Sales	20 To 10 10 10 10 10 10 10 10 10 10 10 10 10	ST - T-151 - 15			" " Y 40 " - 0 " 1 - 0 - 573 " 5 TW.	(N)	122000	-		C = 0.4000+				A LONG TO THE PARTY OF THE PART	Market 1-424D Spent

Material: A-4140 Steel

As machined (lathe) Surface Finish

$$D_1 = 0.191$$
"

$$A = 0.01342 \text{ In}^2$$

 $S_N = \frac{F_N}{A} = \frac{F_N}{0.01342} \text{ psi}$

<C

1.121 x
$$10^{-2}$$
 $\frac{D_0}{D_0^4}$ x Q_A

1]

(S)

$$\psi_{\rm c} = \frac{77.3 \times L \times Q_{\rm b}}{(D_{\rm c}^4 - D_{\rm i}^4) \times E_{\rm s}}$$

1.684 x CA ps1

11

5

0.436 0.895

202

120 240 300 360

505

707

1.410

1.490

1 1

2.140 2.720

1.937 2.510

-

2.546

TOSO 1472 1170 10 TITL 100 1472 1170 10 TITL 100 1701 1700 10 TITL 100 1700 10 TITL		ŧ
TONO 1475 11000 JUNE 1275 11000 VENO 1077 11000 VENO 1077 11147 JUNE 1270 11147 JUNE 1		e 4
7000 1472 11700 350 1215 21624 500 200 200 2140 350 200 200 11446 370 200 200 11446 370 200 200 11446 370 200 200 11446		ŭ)
7000 147 1000 147 1000 147 1000 147 147 147 147 147 147 147 147 147 147		
7000 1272 11000 2000 1273 11000 4000 1		1
2000 TETT 3:05.0 A STORY		
150 Tells 100 100 1000 1000 1000 1000 1000 100	1.0	
700 70111 2-277 720 800 7-363 200 800 7-363 300 800 7-363 300 800 7-363 300 800 7-363 300 800 7-363	1	9,
7.00 5.000 1.00 1.369 5.000 5.000 1.	8,510	,
200 500 7-563 200 800 7-530 300 800 7-530 300 500 7-500 300 500 7-500 300 7-500 30	1.534	
200 800 7*37u 300 800 7/37u 370 700 7/200 7 3/4 9/4 19/4		
200 200 11.44 300 200 100 100 100 100 100 100 100 100 1	1.430	
STO TOT TOOL TIONS TON SON OFFICE STORY OF THE STORY OF		2.5
TTS 2008 0-2100		·n
Total San	Fa-C Fac-	
	E-0	
	= 4100 Per + 1 = Tr	Trefat Det
	ENT - 1 - 101 E- 101	10.
00 - 078 272	1	- Katha

I L Z Z Sup.

STATEST STATES STATES

Serfess Philips

In Harmy

" to tuston"

				•	Run No.3	Run No.4
					= 200.2 lb.	F _N = 251.2 lb.
				S. S.	= 14950 psi	s _N = 18740 psi
	C)	S	9		0	0
	120	202	0.510	211.5	0.435	0.482
7	540	707	1.020		1 1	8 8
	300	505	1.274		1.237	1.363
	360	909	1.530		1 1	8 8
	750	206	1.785		1.753	1.850
	087	808	2.040		8	3 3
	009	1010	2.546	12	2.450	2.418
	720	1212	3.057		3.092	8 8
	006	1515	3.820		4.075	3.940
	1020	1718	4.340		1 1 1	4.550

THE PERSONS IN

12 - 12 - 20 - 24

Carda same

Theory ...

4. - Ergins W

Service of the

12 x 34104 x 12

A. - 0-10344 A.

202

10000

N. S. P.

The Water of

E JAY 35-

Coall and

2	576.5		DE		1.550	0	4	0	•	0.0	The grante of T	1 = 231 ex 184.
\$ 6	6.00.7	3.098-	1000-50	1 1	, , , , , , , , , , , , , , , , , , ,	2.1	F-33A	100	0.433	40	The reals tay	" = \$05° = 10°
030.4	3.020	3000	3.66.2	5.070	7.5.	000	125.2	3.050	012.0	- 0.9		
1.629	TRIE	A - C - A	O to	808	507	200	7	TOT	500K	100		
3.080	202	1.5.5	-000	2004	120	360	3000	OVO.	130	100		

Material: A-4140 Steel

Surface Finish: No.1 emery paper

$$p_0^2 - p_1^2 = 0.0177$$

 $p_0^4 - p_1^4 = 0.001542$

$$s_N = \frac{N}{0.01342} \text{ psi}$$
 $s_T = 1.684 \times c_A \text{ psi}$

			Fu = 116.3 lb.	F _H = 167 1b.
			s _M = 8700 psi	s _N = 12470 psi
O.A.	e s	9	9	9
150	252.5	0.637	0.618	0.676
300	505	1.274	1.270	1.330
720	758	1.910	1.890	1.923
009	1010	2.546	2.576	2.550
750	1262	3.185	3.260	3.170
006	1515	3.820	1 2	1 1
1050	1770	4.460	1 1 1	1 1

6
4
2
17
L
8
2

	- 2	4
	7	£.
711		20
201		2
100	1.2	
4	- 9	
	- 8	3
	pr-17	9
	•	ы
×4.		22

-81	
3	
9	
-0.	-5
10	81
Fig.	>
1	У
0,0	L

the party of your day days - ---

0 .

3.380 2.236 2.336 5.336 6.938

7.000 Nºººººº
5.000 Nºººººº
1200 Nººººº
1200 Nºººº
120 Nººº
120 Nººº
120 Nºº
120 Nºº
120 Nºº
120 Nºº
120 Nºº
120 Nº
120 N

2242

4 A

- 4201 Sport

3" = 3' 01373 tor

2 of 24620'0 = 1

6 = 0.00tz? 6

+ - 0-03347 1

- 16 1 1 P

Land Sept

Run No.4	$F_{\rm N} = 251.2$ lb.	S _N = 18740 ps1	9	0.585	1.144	1.846	2.510	3.290	3.900	4.510
Run No.3	F _W = 200.2 lb.	S _N = 14950 ps1		0.551	1.250	2.042	2.520	3.164	3.890	3 3
			9	0.637	1.274	1.910	2.546	3.185	3.820	4.460
			ಬ	252.5	505	758	1010	1262	1515	1770
			O'A	150	300	720	9009	750	006	050

6+320	1,160	37.240	•	1,	1.1.1	0,065	5	The states lay .	6	1.01.0
	0,000	*	0,7300	STOTAL STATE	2			The state ing	1 - 100'S 2P'	CANTER ST.
PATPE	0.000	3.03	grave	DIE.	21337	. 0	0			
1,540	11112	1202	2400	750	202	1.50.5				
		100			00	052				

SPECIMEN NO.8

Run No.7

 $F_N = 201.29 \text{ lb.}$

 $F_{N} = 91.3 \text{ kg}$

S_N = 15000 psi

 $s_n = 1053 \text{ kg/cm}^2$

$Q_{\mathbf{A}}$	^S t	P R	$\boldsymbol{\Theta}_{\mathrm{R}}$		£
120	14.2	GEN 100 GEN	985 4	D 400	0.0124
240	28.4	2007 1000 1000	400h 4	m» (m)	0.0299
360	42.6	000 mm 000	499 4	m etc	0.0373
480	56.8	sinds may take	4000 4	in one	0.0597
600	71.0	400 400 400	486 4	ne days	0.0621
720	85.3	data state time	ano e	To 400	0.0746
840	99.5	600 WH 600	600 6		0.0870
960	113.5	0.011	0.86	x 10 ⁻⁶	0.0995
1080	127.7	0.046	3.59	#1	0.1119
1200	142.0	0.057	4.45	Ħ	0.1242
1320	156.2	0.092	7.18	19	0.1367
1440	170.4	0.092	7.18	83	0.1490
1560	184.5	0.138	10.75	tt	0.1615
1680	198.7	0.252	19.65	99	0.1740
1800	213.0	0.412	32.15	Ħ	0.1864
1920	227.0	0.803	62.60	98	0.1990
2040	241.0	0.859	67.00	10	0.2113
2160	256.0	1.512	118.0	11	0.2240
2280	270.0	2.660	207.4	11	0.2360
2400	284.0				0.2485

SAME RESIDENCE.

San Ben

Par children's

AL FACE - AT

Jay 80082 11 gh -

1 m/m 1201 - 40

		10	L
		TALE	93.0
		20,62	455
		N. CA	11/12
		34,8	DSS
	000		000
			022
1			089
			THEFT
			1200
			1350
		,	
	•		1366
TO MOURE	115,62		OHAL
35,410	5.12.		PORT
1 80,40	Edato		MAT
10,00	162,514	N.CIVE.	
A DURINE			DALK
4 4-777		07-042	8455
22.27		07345	7944
	**************************************	**************************************	

	was	Run No. 8					Run No.9		
	\$1000 \$2000 \$2000	= 165.16 1b.	, p.			(24,	= 117.41 lb.	1b.	
	785 (day	= 76.4 kg				SEA SEA	= 53.3 kg		
		= 12540 ps1	44			70	= 8760 ps1	**	
		= 883 kg/cm ²	N H			S II	= 616 kg/cm ²	6 E 2	
A	*	9		e _m	O ⁴	***	9		જ્ન
120	1	1 1	1	0.0149	120	1 1	1		0.0213
540	1 1	1 1	1	0.0298	240	1	1	1	0.0426
360	1 1	1 1	1	0.0446	360	0.138	10.75 × 10-6	10-6	0,0640
087	8 8	1		0.0595	087	0.252	19.67	22	0.0852
009	0.114	8.80	x 10-6	0.0745	9009	0.653	20.90	Que Que	0.1066
720	0.401	31.25	8	7680.0	720	1.042	81.30	3	0.1280
840	0.481	37.50	R	0.1042	078	1.820	141.8	*	0.1492
960	0.905	70.60	2	0.1190	096	3.240	252.5	\$3	0.1705
1080	726.0	76.00	×	0.1340	1080	1 1	1	1	0.1916
1200	0.940	73.35	=	0.1487					
1320	1.132	88.30	æ	0.1636					
1440	1.317	102.6	2	0.1786					
1560	1.545	120.5	E:	0.1935					
1680	2.395	186.6	81	0.2085					
1800	2.575	200.8	und des	0.2232					
1920	2.740	214.0	E	0.2380					
2040	3.045	237.5	*	0.2530					
2160	2.440	424.0	*	0.2680					
2280	1 2 9	1		0.2830					

```
ENGLISHED.
                                                                                                                                                                                                           AND STATE IN
                                                                                                                                                                                                                                                                                                                                                                                                         Salah Billion
                                                                                                                                                                                                                                                                                                                                                                                                                             Wante of the state of the state
                                                                                                                                                                                           (EFFFFF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Character of the supposed
" - TPP" 11 20"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Mary
1111
RESELEKER KAMEN ESEKKA
```

SPECIMEN NO.8 (continued)

Run No.10

 $F_{N} = 64.78 \text{ lb.}$

 $F_N = 29.4 \text{ kg}$

S_N = 4835 psi

 $s_n = 340 \text{ kg/cm}^2$

QA	ψ_R	$o_{_{ m R}}$	Î
120	000 000 000	60 m 10	0.0386
240	0.172	13.40×10^{-6}	0.0773
360	0.836	65.20 "	0.1160
480	8.850	690.0 N	0.1545
600			0.1930

December of Law School

plant or

and the street man

125.5165.77

AND STORE --

Server san it as

Material: A-4140 Steel

9.0	
177	
10	
april	
Si	
april	
124	See
	40
0	De
0	103
0	PA
God	
Fi	0
3	1
63	O
- 0	

$$p_0^2 - p_1^2 = 0.01711$$

$$h = 0.01342 \text{ in}^2$$

			Run No.1	Kun No.2
			F _N = 116.3 1b.	F _W = 167 lb.
			S _N = 8700 ps1	SN = 12470 psi
CF	S	9	0	0
150	252.5	0.637	0.607	0.425
300	505	1.274	1.306	1.240
450	758	1.910	2.027	1.800
009	1010	2.546	2.635	2.363
750	1262	3.185	9 5 5	2.910
006	1515	3.820	8 8	3.650
050	1770	097.7	1 1 2	4.410

1104	000	8		of a rotal let	V > 504 TD-	
	107	19.	77300	17 - apple Del	-0 1-100-1 FP	Sept. Spirit
100		100	50.4			
2	0 0 1		000			
1980	14					

A STATE OF

TO ANDRESS OF

こうないない こう

Tanka - .

THE STREET, IN

Sont - sonter

S-S-STILL

7. m 7100384

she lesses No or of piets.

Description of the present

Run No.4	FM = 251.2 lb.	S _N = 18740 ps1	9	0.768	1.240	2.009	2.560	3.155	1 1 1	
Run No.3	FN = 200.2 1b.	S _N = 14950 ps1	9	0.551	1.390	1.893	2.480	3.020	3.760	1 1
			O	0.637	1.274	1.910	2.546	3.185	3.820	097.7
			E v	252.5	505	758	1010	1262	1515	1770
			O. A.	150	300	450	009	750	006	050

									200	
í	200	2.1.55			Shrift	- mirdate	-	of a TEATO	of a carry	
		Port	2010		b	0.50	100	THE PHING SPT.		tre-per
		200-6	37879	a shrik	4	700				
7,445	1,001	THE	3000		allie	194.5				
	ä	1250		1002						

Material: 28 Aluminum				633		Signature of the state of the s	C 2
1							
Control Specimen:				H M M	116.3 1b.	11 120	67 15.
64				S _N = 76	7640 ps1	S = 10	10940 ps1
0	Q**	S	9	29-	24 ->-	9	12 m
ord	30	44.3	0.343	0.321	1 1	0.252	0.069
L = 0.9844"	09	88	0.685	0.687	8	0.573	0.057
2 = 0.01014	06	132.8	1.028	1.100	0.218	1.144	970.0
	120	177	1.370	1.362	0.218	1	8 8
p4 - p4 = 0.001798	150	221.5	1.714	1.740	0.344	1.545	0.241
0	160	265.5	2.056	2.072	0.298	\$	8 8
$A = \frac{1}{4} \left(\frac{10^{2}}{10^{2}} - \frac{10^{2}}{10^{2}} \right) = 0.01526$	210	310	2.400	2.415	0.367	2.530	0.344
Gen Gen	540	354	2.740	2.865	6.447	8 8	1 1
0.0	270	398	3.085	3.108	0.458	3.115	0.355
	300	443	3.430	3.390	0.482	8	8
ST = 1.121 x 10 - 24 n4 x 04	330	187	3.770	3.700	0.402	3.850	0.401
	360	531	4.110	4.125	0.505	f f	1 1
ST = 1.475 x 0, ps.	750	620	4.810	8	8	4.500	0.607
ψ _c = (E ⁴ _c - D ⁴ _t) x E x C _k E _s = 3.7 x 10 ⁶ ps1 ψ _c = 0.01145 x C _k			Residual Fr	Twist. Sight e falled on remore specime	Sight edges on falled to retur on removal of tresidual twist specimen after	ght edges on indicator ar lled to return to zero in removal of torque. \$\psi\$ idual twist remaining in acimen after removal of t	torgree to to torgree to to torgree to to torgree to to torgree to to torgree
)

to administ on precise of the constraint of the principle of the policy			TOTAGE SETTOT	BAR BAR	THESE BREAK		2,530 0,111		Trans outs		Tritt 0.0te	Page HRAD	STATE U'OP	A	THE SHOOL OF THE	U = 314.7F	Sales and
The party of the p	-		print.		0-120		2,210	01500	0-100		0.254	4 4 4	5	2	9-90r	12 /101	The Land
93301	1	10-252-	32,900	27386	37270	25 land	11.77.5	3-035	Taged	308-2	7*100	V LL	6-10-7	4	of a same	No more	-
	٠.	-	0		3 Marie	STATO	S-7.00	es e	1.77-1	7.300	1.000	13,4,0	215.0	4,			
	6	100	200	17.2		V		2.845	STATE OF	V		,	16-2				
	4100	0.00	000	2000	Sec.	DA.	j-v-s	380	Tree	255	300		0				
			ちっぱん				and contract of										Mediani

0.995

1680 1800

0.252

450

1 1

0.965

SPECIMEN NO.11

Copper Material:

Run No.1	FN = 200 1b.
Control Specimen: (without interface)	2000 C

0.2368"

$$D_0^2 - D_1^2 = 0.01959$$
 $D_0^4 - D_1^4 = 0.001814$

$$A = \frac{\pi}{4} (D^2 - D^2) = 0.01537$$

$$S_{\rm N} = \frac{r_{\rm N}}{0.01537} \text{ psi}$$

$$c = \frac{(b_0^4 - b_1^4) \times E_8}{(b_0^4 - b_1^4) \times E_8}$$

= 0.01144 \$

$$\frac{2}{0} - \frac{1}{0} = 0.01$$

0.050

120

SN = 13020 psi

16270 ps1

S

13020 psi

= 200 lb.

Page

= 250 lb.

FN

Run No.3

Run No.2

0.050 0.092 0.000 0.103

240 360

970-0

09 06 120 150 180 210 240 270 300 330 360 390 420

0.040

0.550

0.434

0.332

0.216

0.160

0.780

0.650 998.0

132.

06

9

0.217

0.050

009 720 840

480

0.080

0.040

0.974 1.052 1.340 1.580 1.763 1.980

090.0

0,161

1.300 1.515 1.730 1.950 2.165 2.380 2.596 2.813 3.030 3.245

264

180 210 240

308 352

1.082

220 176

120

0.320

0.310 0.286

096 1080

690.0

0.252

0.321

366 077

270 300 330

0.320

1 1

0.458 0.573 0.652 0.812

1200

0.172

0.454

2.185 2.415

107.0

787 527 572 619

360

390 420 450

1320 1440 1560

1 1

0.092

0.454

2.610 2.840

0.504

0.550 0.642

2.986

3.220

099

$$N = \frac{F_N}{0.01537} \text{ psi}$$

$$s_T = 1.121 \times 10^{-2} \frac{1}{0^4}$$

$$= \frac{77.3 \times L \times}{(D_0^4 - D_1^4) \times}$$

11

									Ö
- n. 00453 C									
To the F	620	O'COLOT	5.672	05/01 *	0.162	001	1	1600	
0		off's	100	50	2	1200	70	00.1	200.0
l-en	0000	0.50			20	380	1	1390	0.843
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No.		92.	50	0.123	360	0.393	riva	120.0
3	3 7	Tak	.00	F	6- 707		4 1 1	1380	702
For the highest of	300	0,1		15	0.457	300	ò	3800	
	C	200	70	7.45	5.2.5	3300	1	700	0.38.0
To a land of the l	2 /	2355	-3	e b	0.37	0.6.5	0.000	page	0.110
/r 	015				0.32.0	STO	1	270	0.320
	1000			7-	19.1	780	0.030	927	4
O	0/2	0	0			220	1	000	GTT03
The state of the s	030	170	0	10	010-0	3220	6.090	440	060-0
in the state of th	30		100		0	900	1	000	٥
	00	80		02.0	0.010	900	031.0	340	6
	, =	1	-STE	8	å	2	1 4 7	NII.	0.090
(A)	10	3		0	N.	2		Pe-	4
11 日 山 北京記事				P. 37	70	2 . 7	280 0050	ST = TE	Lag 080
= 0.5101s				47 × 500	- a.E. 6	5 W W 2	· 67 00		.df 60
				011/2	E	N.	17.00	one o	

BESTERNA NO.TT

PAPELTETT CENDES

SPECIMEN NO.12

Run No.1

 $F_N = 31.86 \text{ lb.}$

F_N = 14.4 kg

S_N = 2375 psi

 $s_n = 167 \text{ kg/cm}^2$

QA	St	ψ_{R}	θ_{R}	Î
120	14.2			0.0785
240	28.4	0.046	3.59 x 10 ⁻⁶	0.1570
360	42.6	0.149	11.60 "	0.2358
480	56.8	0.825	64.40 "	0.3140
600	71.0			0.3930
720	85.3			
840	99.5			
960	113.5			
1080	127.7			
1200	142.0			
1320	156.2			
1440	170.4			
1560	184.5			
1680	198.7			
1800	213.0			

Material: A-4140 Steel Surface Finish: 4/0 paper

: 3

148.10 JE HAZE - I 70 = 24 of 20 American market mark THE REPORT SIL Eall 6805-1 5-85 1.57 = 20° DVEL.O 260 8-5% Dist BALL D. \$25.5v 563 8-62 DATE 168,0 DATE . 175 0.15 0.5930 OUT E.41 630 3000 1000 E. C.L. TAVAL Sibble. TABLE DILL ALUTE I 232.4 SALIS Y. SYA DWSS DWILL

Laterial: A-4140 Reel Surface Finish: 4/0 Lager

					€	0.0213	0.0426	0,0640	0.0862	0,1066	0.1280	0.1492	0.1705	0.1916	0.2130	0,2340	0.2555	0.2768	0.2980	0.3190
Run No.3	117.41 1b.	53.3 kg	8760 psi	616 kg/cm ²	82 ©	8 8	8 8	0.86 x 10-6	3.59 n	14.34 "	51.90 "	53.65 **	* 00.89	82.20 "	89.30	133.0 "	163.3 "	238.6 "	\$89.0 *	1 1 1
Rom		11	S S	13	*	1 1	8	0.011	970.0	0.184	0.665	0.688	0.872	1.053	1.144	1.707	2.096	3.060	7.550	t t
					ď	120	240	360	027	009	720	840	096	1080	1200	1320	1440	1560	1680	1800
					% -1	0.0469	0.0938	0.1406	0.1875	0.2344	0.2814	0.3280								
Run No.2	F = 53.8 lb.	24.2 Kg	3980 ps1	280 kg/cm ²	al O	8.89 × 10-6	14.34 "	25.05 "	67.15 "	201.3 "	240.6 "	8 8								
Rui	18 202 fa.,	11	II Z	ll ss	end end	0.114	0.184	0.321	0.860	2.580	3.085	8 8								
					C)y	120	240	360	087	009	720	078								

addisa	project.			OLULIA	arcost.	P.1678		araths.	10-32 Hz	printing.	N. compa	guide-8	2-4-5g	1000	4						
	700.00 m	Sime .	1 K-1007	PEDING .		. 00.00	10,44	N. 186.01	37500 4	1 12-L	2,00	of the Physics		2000		(10 m)/m2	State Per	20.00	Traint list	Table 1	
-	N. S. S.	21990	Tribby.		Service S	1-057	Series of	0.3580	2,110		or Mil	00-191	1000		1		100	2			
descri		Fayed	THE					Series .		N.	T.	360									
								212380	Schart.	0.237F	Central	D'STRE	SCHOOL ST.	N-OWN							
								*****	NUMBER OF	See Colonia						a new interes.	and in comme days	Of service of	N. aper re-		
								- 1		2000	0.000			are in		-		0		-	

DAMESER.

5.30

720 780 840 960

4.750 5.210 5.710 6.215

4.670 5.100 5.520 5.950 6.800

987 1076 1167 1257 1436

720 720 840 960

SPECIMEN NO.13

Material: Copper

Jurface Finish: No.1 Paper	aper			Kun 160-2	Aun Bo. 3	Lun No. 1	
D = 0.2359**				F. = 201.3 1b.	1 251 16.	FM = 168.2 lb.	2 15.
D ₁ = 0.191"				SN = 13360 ps1	S _N = 16700 psi	S _N = 11170 psi	De pes
L = 1.000"	of the second	\$3 6-1	9		*	o⁴	0
ور مرا	60	05	0.424	0.298	09	09	0.515
SM = 0.01505 PS1	120	180	0.850	0.780	120 0.619	120	0.858
11	180	269	1.273	1.270	180	180	1.328
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	240	359	1.700	1.730	240 1.087	540	1.730
\$ = 0.00708 × CA	300	677	2.125	2.180	300	300	1
9	360	539	2.550	2.670	360 2.520		
E = 6.0 × 10 pst	750	629	2.970	2.920	420		
\$ = 0.01144 \$	087	719	3.400	3.380	480 3.345		
	240	808	3.820	3.840	075		
	009	006	4.250	4.350	600 4.330		

				100		-		
	OAD	13.20	V 1000					
	BUL	1273	3,050	Vento.		6,290		
	2000	Trea	3-4mg	S-liro	760	***		
	3200	TOWN	•	0424	0.50	No.		
		Ann	4-940	41.080	000	-		
	500	300	4550	+-350	500	44200		
	240	Sept.	1-680	3.240	250	544		
No andrew of	YEAR	923	11400	24340	480	3.743		
	730	Page .	97.846	27,000	052			
2 - 4.0 × 100 mm	200	608	064.46	0.010	380	2,4230		
A STANSON OF STREET	2000	teriti	4	0,120		,	2000	1
	SWG	280	1070	0.52.0	370	j –		2,4230
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	294.0	200	115.12	00/242	000	411	180	7*250
6463360	120	2000	n/s/c	047-0	190	0.976	1110	芸芸
The second second	00	90	D-PSY		0	100		10.40
8	1	7.	5	4			h	5
				THE PARTY OF		feates ber	P-m	Tak Ser
1 = 0'mins				,	6	THE TAN	10-7	100 x 19-
The parties about	m Ne			Section .			N.	Lucian

STATE STATE OF STREET

marable Seiter

SPECIMEN NG.13

Run No.1

F_N = 168.16 1b.

F_N = 76.4 kg

S_N = 11170 psi

 $s_n = 785 \text{ kg/cm}^2$

QA	8 t	ΨR	θ	R	f
60	6.3	940 en qu	Spin Spin	-	0.0074
120	12.6	0.080	6.34 x	10-6	0.0147
180	18.9	0.103	8.15	85	0.0220
240	25.2	0.114	9.04	19	0.0294
300	31.5	ton dry ton	440 ton	100	0.0367

Run No.5

F_N = 117.41 1b.

F_N = 53.3 kg

S_N = 7800 psi

 $s_n = 548 \text{ kg/cm}^2$

QA	ϕ_R	OR		Î
120			4944	0.0211
240	0.023	1.81 x	10-6	0.0421
360	0.126	9.95	11	0.0632
480	0.149	11.76	85	0.0842
600	0.183	14.45	89	0.1052
720	0.298	23.50	21	0.1264
840	400 000 000		-	0.1475

ALCOHOL: NAME OF

THE RESIDENCE

THE PART NAMED IN

Jan Will make

MALIE BUT HILL

- Explicated

ALL LEWIS - T

SA XATE - UX

AND SHITT - I'V

Subject to a popular

THE PART OF THE PA

RTAE-R

$F_{N} = 201.29 \text{ lb.}$ $F_{N} = 13360 \text{ ps.}1$ $S_{N} = 1372 \text{ kg.}/cm^{2}$		omsg	Run No.2				Annual B	Run No.3	
$F_{N} = 91.3 \text{ kg}$ $S_{N} = 13360 \text{ ps.1}$ $S_{N} = 13400 \text{ ps.1}$ $S_{N} = 1172 \text{ kg/cm}^{2}$ $S_{$		225		•			E4	251	
$s_{N} = 13360 \text{ psi}$ $s_{D} = 939 \text{ kg/cm}^{2}$ ψ_{R} f		123	91					= 114.0 kg	
$s_{n} = 939 \text{ kg/cm}^{2}$ v_{R}		223					5		
ψ _R f ψ _R			939	N _e	٧		82		
0.0123	o d	- H	0		44	~*	2	Ø.	4-1
0.149 11.76 x 10^6 0.0184 360 0.114 9.00 x 10^6 0.069 5.42 " 0.0246 480 0.046 3.62 " 0.149 11.76 " 0.0308 600 0.183 14.45 " 0.137 10.85 " 0.0369 720 0.435 34.40 " 0.275 22.60 " 0.0649 960 0.286 22.60 " 0.0645 0.458 36.20 " 0.0676 0.435 34.40 " 0.0860 0.446 35.22 " 0.0860	09	1 2 2	1		0.00615	120	1	1 1	8600.0
0.149 11.76 x 10 ⁻⁶ 0.0184 360 0.114 9.00 x 10 ⁻⁶ 0.069 5.42 " 0.0246 480 0.046 3.62 " 0.149 11.76 " 0.0308 600 0.183 14.45 " 0.309 24.40 " 0.0430 840 0.435 34.40 " 0.0491 960	120	1 1	1		0.0123	240	1 1	t t	0.0197
0.069 5.42 " 0.0246 480 0.046 3.62 " 0.149 11.76 " 0.0308 600 0.183 14.45 " 0.137 10.85 " 0.0430 840 0.618 48.80 " 0.275 21.72 " 0.0491 960 0.286 22.60 " 0.0553 0.367 29.00 " 0.0615 0.458 36.20 " 0.0676 0.458 34.40 " 0.0860 0.446 35.22 " 0.0860	180	0.149	11.76 x 3	9-0-	0.0184	360	0.114	9.00 x 10-6	0.0295
0.149 11.76 " 0.0308 600 0.183 14.45 " 0.137 10.85 " 0.0369 720 0.435 34.40 " 0.275 24.40 " 0.0430 840 0.618 48.80 " 0.286 22.60 " 0.0553	240	690.0	5.42		0.0246	780	970.0	3.62 "	0.0394
0.137 10.85 " 0.0369 720 0.435 34.40 " 0.0430 840 0.618 48.80 " 0.275 21.72 " 0.0491 960	300	0.149	11.76		0.0308	009	0.183	14-45 m	0.0493
0.309 24.40 " 0.0430 840 0.618 48.80 " 0.275 21.72 " 0.0491 960 0.286 22.60 " 0.0553 0.367 29.00 " 0.0615 0.458 36.20 " 0.0676 0.435 34.40 " 0.0800 0.0860 0.446 35.22 " 0.0860	360	0.137	10.85		0.0369	720	0.435	34.40 "	0.0640
0.275 21.72 " 0.0491 960 0.286 22.60 " 0.0553 0.367 29.00 " 0.0615 0.458 36.20 " 0.0676 0.435 34.40 " 0.0800 0.446 35.22 " 0.0860	420	0.309	24.40		0.0430	078	0.618	48.80	0.0690
0.286 22.60 " 0.367 29.00 " 0.458 36.20 " 0.435 34.40 " 0.446 35.22 "	780	0.275	21.72 "		1670.0	096	1	1 1	1
0.367 29.00 " 0.458 36.20 " 0.435 34.40 " 0.446 35.22 "	240	0.286	22.60 "		0.0553				
0.458 36.20 " 0.435 34.40 " 0.446 35.22 "	009	0.367	29.00		0.0615				
0.435 34.40 " 0.435 34.40 " 0.446 35.22 "	099	0.458	36.20	da.	0.0676				
0.435 34.40 "	720	0.435	34.40	ter.	0.0737				
0.446 35.22 "	780	0.435	34.40		0.0800				
1 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t	840	977.0	35.22		0.0860				
	096	8	8		1 1				

The Paris

See See

								CTVOHO.	E-060	III. DALINI	D'ALLIN		0-0164	3,0091				
									- GLAS	- St-14	- 20,0	N. 40 C. T. Bay			Course of	Tel State Pri	•	[" = 302 th"
							0.00	PARTY.	04893	0.181		10.5			S.	-		
								Ma	250			200						
	SCHOOL ST	000000	SCALE.	0.00%	0.0017	202640	the light	\$1000V	School of	1 6 1 2 6	200.	State of	PREST					
				×											Miles			N. 7311
	100	201.00		0	9160		31,00	14.00	2007	2002	1	20.00					2	
× 1		016310	PTD) 7	1.424	Month of			41.504	o	Derries 3			7.00					

0.1720

1 1

1 1

1680

					Qui	0.0123	0.0246	0.0369	0.0491	0.0615	0.0737	0.0860	0.0983	0.1105	0.1228	0.1350	0.1473	0.1596
	16.		***	e e		,	x 10-6	2	33	Œ	23	×	te		#	21	E.	400 600
Run No.7	201.29 16.	91.3 kg	13360 ps1	939 kg/em ²	9,22	8 9	0.90 x	7.24	13.56	11.76	17.15	25.30	36.10	38.90	43.30	65.10	167.0	222.4
	14 124 124	II Stat	es es	H A	::: 	2 2	0.011	0.092	0.172	0.149	0.218	0.321	857.0	0.493	0.550	0.825	2.120	2.820
					G G	120	240	360	037	009	720	840	096	1080	1200	1320	1440	1560
					6 4	6.0147	0.0294	0.0441	0.0588	0.0735	0.0882	0.1028	0.1175	0.1320	0.1470			
	10.	5-D	180	kg/cm ²		1	7.24 × 10-6	5		600 900	23	22	\$	12	1			
Run No.6	168.16 1b.	76.4 kg	11170 ps1	785	0	\$ \$	7.24 3	6.33	4.52	7.24	15.35	38.00	57.00	73.30	6			
ref.	11 702 614	H SEE FRAN	el So	11	E	8	0.092	0.080	0.057	0.092	0.195	0.481	0.722	0.929				
					o ^a	120	240	360	087	009	720	078	096	1080	1200			

O'TABLE	N-Tible	073753	942230	Statut.	0.4403	ornelity.	Bronspill .	Depart of	0.spids	streets.		O'STATE	0.0102						
	Mark or	1Y2/10 +	V2-50 ×	V3*50		Nerth S.	33 900 ×	24753	District S.	,	Just 1	17-10 1 10 -c	1		- See (200 200	STREET SHEET	M-2-M	AND WARREST	- Sustans
	1,1000		0-1003	055-8	17.000		P-3m2	Thurs.	1270	135	Pales	p* 0rt	100		i.	*	**	N.	
3000		277.0	all the	1204					100		34								
				Printer	27,1950	CHIE	0-1201				S-HARES	P'mate.	P-ESTA PA						
					- M-70 -	TA-200" .	HURD .					ATHT S. TO.	BEE		- 400 TO See .	TITLE INT	20.3 10	A S ISBIROTES	- Marchael
				1000		67,463	0.08							1		è			
				375cs					NO.	790				1					

Material: Copper

Surface Finish: 2/o Paper

$$S_N = \frac{F_N}{0.01505}$$
 psi
 $S_T = 1.495 \times Q_A$ psi

7.650

$$\psi_{\rm e}$$
 $\psi_{\rm o}$ 0.837 120 0.756 1.700 1.740 2.715 360 2.510 3.400 3.910 480 3.480 4.250 5.320 600 4.500 5.950 6.800

FN = 117.4 16.

FN = 64.8 1b.

Run No.2

Run No.1

		and the	DET. 4. 927	008-3 000	084-C 08A	790 -2-320	200 1.500	-TSQ 0*489		THE ASSOC TOT	115.7.19.	Sept and	
				B- 350	p. Specific	2.77.2	1.370	70.0	7.0	2 5 7200 fee	A STATE STATE	Land Age	
20,000	- Parker	arana a	71500	10241.4	- Table	2.550	2-100	0.830	W				
TORS TITT	-480 re30	40 133	300	5	780 374	00			10				
													The same
		- 0'0fft' 0"		1 1.0 2 No 110	The second of the		2 2 - 400 E E FF 193		Thoughout but	- F-S00-	- 0-F0T-	- 1-1789 m	

SIGNITION NOTTY

Bulletiers Sphins

SERVICE PRODUCT CAN Grieb

n = 10.5789,0

SFECIMEN NO.14 (continued)

			Run No.3	Run Ko.4	40.0	Run	Run Bo. 5
			r = 168.2 lb.	F = 20	201.3 lb.	II II	231.68 16.
			S _M = 11170 psi	S _N = 13	13360 psi	11 12 12	15400 psi
O'	C\3 €→	÷	***	of	4	G ⁴⁵	*
120	180	0.850	0.733	120	0.780	120	0.882
240	359	1.700	1.525	240	1.696	240	1.294
360	539	2.550	2.350	360	2.570	360	2.610
780	719	3.400	3.080	087	3.475	087	3.540
9009	006	4.250	070.7	9009	4.290	009	4.380
720	1076	5.100	076-77	720	5.360	720	5.333
078	1257	5.950	5.740	078	6.310	048	6.230
096	1436	6.800	6.720	096	7.230	096	7.250
1080	1614	7.650	8 8 8	330	- odoos	8 9	1 1 1

DESCRIPTION NAMED AND POST OF PERSONS

-	4 W	fro the	1 1	ALM:
Service Barre	S to I		10 m 37	The street last
4	4	0,0	'n.	4
Shiled	3900	0.750	27	0*423
1,396	270	7.090	255	12
213.E	240	968.	380	47330.
3.50	1,80	27743		37000
200.1	102	Trabe -		- Grades
2-203	desd	2002	620	Trains
•	070	0.730	0.00	3.740
275	040	2,230		- Grans

在在祖祖 8年祖祖祖

Run No.1

 $F_N = 64.78 \text{ lb.}$

F_N = 29.4 kg

S_N = 4300 psi

 $s_n = 302 \text{ kg/cm}^2$

QA.	St	V _R	OR		£
120	12.6		com 446	-	0.0382
240	25.2	0.183	14.46 x	10-6	0.0763
360	37.8	0.298	23.50	{}	0.1144
480	50.5	0.505	39.88	98	0.1526
600	63.1	3.310	261.5	11	0.1910
720	75.6		100 100	400	0.2290
840	28.4				
960	101.0				
1080	113.6				
1200	126.1				
1320	138.9				
1440	151.2				
1560	164.0				
1680	176.6				
1800	189.0				
1920	201.5				
2040	214.2				
2160	226.8				
2280	239.5				
2400	252.0				
2520	264.0				

JAMES BY

	471. 591			
	Salar			
T				
	1-2-		3452	- HEE
S. ATTONIO	Maria Water	Villati	N-A-F	
440.0			Ave.	
	- 20,370	\$100,10	2112	
0.78160	7.6143	ATTLE.		
	444	200	75.0	0.17
			5-35	
			H-DAY.	
			ALLE	
			E-142	100
			2-YES	
			151,0	
				1984
			41,072	
			10.153.2	0091
			No. of Contract of	
			Rat XI	
				0055
				0021

0.1910

.

1 1

1560

	G-4	0.0147	0.0294	0.0441	0.0588	0.0735	0.0882	0.1028	0.1175	0.1320	0.1470	0.1616	0.1764
= 166.16 lb. = 764 kg = 11170 ps1 = 785 kg/cm ²	0	1 1	1 1	1 0	1 1	9-01 x 05.7	11.76 "	13.56 "	19.00 #	28.00 "	30.78 "	33.24 "	57.90 a
		1 1	1 1	1 1	8 8	0.057	0.149	0.172	0.241	0.355	0.390	0.424	0.734
	o ^s	120	240	360	037	9009	720	078	096	1080	1200	1320	1440
	64	0.0211	0.0421	0.0632	0.0842	0.1052	0.1264	0.1475	0.1683	0.1893	0.2100		
· · · · · · · · · · · · · · · · · · ·			× 10-6	*	2	*	~	33	2:	2	1		
F _N = 117.41 1b. F _N = 53.3 kg S _N = 7800 psi	0	1	4.50 × 1	14.50	29.80	51.50	81.50	112.0	294.3	790.0			
	# P		0.057						3.370	10.000	1 1		
	a a	120	240	360	087	009	720	078	096	1080	1200		

0-3500	perpise.	0.27670	P-375/8	OCUL-O	S. Links	N-TONE	0.1	1575.0	No. of Lot	- Grantz	20.00	STREET,	4	
	- 997.79	37-35	Strike .	- 70.75	10.01	11-55		V-80 = 10.	-	1		Ž,	in .	AND THINGS, THINGS MAY MAY AND THE TAY THE
ė ė	0.424	U.TSK		183	DASA3	04730	9-216	56000	2.	-		1	317	1715
37500	MTG	2390	17500	Dated	060	040	050	20,00			202			
			despress of	C. Eshi	SHIP STATE	5-7753	Thek.o	0-1000	or parts	D-DV72	orotta	0.0023		
				ables a	of Sales	111.0	+ -05-26	18.50	Sh'sh .	211-20 .	4:30 × 70		160	4 5 2 8 8
			* 5 %	227.000	57.13s	Print	77.005	(183.0	0-238	Part I	560.0			5.00 S
			7100		100	gua.	100	680	dis	200	270			

(Samples) Alver September

		Nun No.4				ž!	Kun No.5		
	11 225 Sec.	201.29 1	16.			II Se,	231.68 lb	°	
	11	91.3 kg				II M	105.0 kg		
	co is	13360 ps	લ્લ			H MA	15400 ps1	and.	
	ii G	939 kg/c	N			II e e	1080 kg/cm	2	
C)	7	0		4-4	্ৰে		9		\$-4
120	8 8	8	1	0.0123	120	1 1	8	1	0.0107
540	731.0	14.50	x 10-6	0.0246	240	0.160	12.62 x	9-01	0.0214
360	0.264	20.40	2	0.0369	360	0.321	25.30	TK TK	0.0320
087	0.435	34.40	2	1670.0	087	0.424	33.42	2	0.0427
009	0.550	43.40	2	0.0615	9009	0.493	38.90	2	0.0535
720	0.723	57.00	8	0.0737	720	0.619	78.80	8	0.0640
840	692.0	09.09	=======================================	0.0860	840	0.756	59.65	2	8740.0
096	906.0	71.50	24	0.0983	096	726.0	76.80	×	0.0855
1080	1.007	79.60	22	0.1105	1080	0.962	75.90	2	0.0962
1200	1.087	85.80	=	0.1228	1200	1.100	87.00	day Stad	0.1069
1320	1.363	107.5	C	0.1350	1320	1.340	105.6	2	0.1175
1440	1.546	121.8	35	0.1473	1440	1.350	106.4		0.1280
1560	2.040	161.0	z	0.1596	1560	1.593	125.6	*	0.1390
1680	2.222	175.0	gr.	0.1720	1680	1.775	140.0	ts	0.1495
1800	2.500	197.0	E	0.1845	1800	1.890	149.0	est de	0.1600
1920	2.960	233.5	H	9961-0	1920	2.060	162.5	\$4+ \$40	0.1708
2040	8 8	8	1	0.2090	2040	2.325	163.5	2	0.1815
					2160	2.690	212.0	dia dia	0.1920
					2280	2.990	236.0	E	0.2030
					2400	3.350	264.0	==	0.2135
					2420	The state of the s			V 101 V

applica a		N. J.			1 01100						0.000	ą.		4.00.0	* 0.0fes	setting .	TO-0 =1-042F	2010.		-			
120.0	12/12/	1004	TVEST	21/8-10	24042	PAGE I	1997	7007	84200	74.10	10.07	Spring	111790	1017-00	23-13	023.00	PATER A			TORRE PETU	109-6 18	27 20-120	Carrie and
0.990	1404E	1,000	27,099	T-mbg	NAME OF	21913	2533	STORE.	3-300	Waters.	10.34F	0.250	27.016	00781	3 V		o-file	X		100	4		100
		20VPS0			ONLE	right	275		2300	reson	Otho	100	olle	1000	Year	2000	140	000					
		a-solva	0.2566	0.7172	- 9	072200	100	etthin.			0.50000	9	000000	21280	F	Artifet.	P. EGS P	100					
		***	2015	81.0			WIN.	0.50	garted a	20.00	2	P	23,100	03-60	0.11.0	-	T-186.R	1	7	- 5	36 E41	13	
		1	2,910	100	- 34	8	18	1.000	1	27.00	0.00	12	U.S.			ě		N	4			-	
			100	13		- 3			Tront	Young		846	700		1		-	180					

SPECIMEN NO.15

Run No.1

 $F_N = 201.29$ lb.

 $F_N = 91.3 \text{ kg}$

s_N = 13360 psi

 $s_n = 939 \text{ kg/cm}^2$

QA	St	$\psi_{\mathbb{R}}$	$\Theta_{\mathcal{R}}$		f
120	12.6	mp (m) and		-	0.0123
240	25.2	400 400 WO		-	0.0246
360	37.8	0.069	5.42 x	: 10-6	0.0368
480	50.5	900s data 0140	400 400	-	0.0491
600	63.1	0.161	12.90	13	0.0614
720	75.6	0.011	0.90	te	0.0736
840	88.4	0.057	4.50	ti.	0.0860
960	101.0	0.034	2.68	11	0.0982
1080	113.6	0.069	5.42	11	0.1104
1200	126.1	0.126	9.95	0	0.1226
1320	138.9	0.252	19.90	61	0.1350
1440	151.2	0.355	28.00	98	0.1472
1560	164.0	0.458	36.20	14	0.1595
1680	176.6	0.653	51.55	ER	0.1716
1800	189.0	0.734	57.90	Ft.	0.1840

Material: Copper

Surface Finish: 4/0 paper

```
eg-mailing
                  - 201,29 lw.
                     WE END
                                    0.52
                                                10 to 5
Shine
                                   W.L.
                                                MAN
0-0388
                                    W. P.C
                                                160
                           P-00_0
EPAG . C
                                    E-00
EDGO_D
           . .
                  47.20
                           11,314
                                    2000
                                                now
4670.0
                 DV-7
                                    3,37
                                                507
0.00010
                 Beas
                           P20.0
                                    4.75
                                                DAR
ESPOND.
                 98.4
                           400.0
                                    SOLO.
                                                669
AGEE-0
                 SALE.
             -
                           $000 a
                                    Well LL
                                                1080
000110
                                                9054
            >
                 201.17
                          102.0
                                    LIBRI
0.25.0
            ٠
                 19.40
                           578.0
                                    RABLE
                                                LING
W1118
                 DD. EK
                           225.0
             *
                                    5,121
                                                DARK
GAST'D.
                 05.85
                           St.L.D.
                                    5.100
                                                DARL
0.1916
                 25.22
                           0.053
                                    A7A-F
                                                DRES
SULLEY OF
                           166.0
                                                GON'S
                                    0.031
```

Naterial: Cooper

urface Finish: 4/0 aper

					في	0.0211	0.0421	0.0632	0.0842	0.1052	0.1265	0.1475	0.1686							
finn 110.3	117.41 16.	53.3 kg	7800 ps1	548 kg/cm ²	0	8	8 9	8 8	1.81 x 10-6	9.95	11.76 "	18.09 "	1 1							
	H DE So.	11	II CO	II S		8	40	8 8	0.023	0.126	0.149	0.229	1							
					O ⁴	120	540	360	087	9009	720	078	096							
					4-4	0.0147	0.0294	0.0441	0.0588	0.0735	0.0882	0.1028	0.1175	0.1320	0.1470	0.1615	0.1762	0.1910	0.2060	0.2203
	10.	D.A.	***	cm2		,	9-01	=	1	olic opo	=======================================	E	go go	MA. Spine	Bor Bors	22	100 000	14	2.	1
Run No.2	168.16 16	76.4 kg	11170 psi	785 kg/cm ²	0	1	0.90 ×	1.81	1 1	06.0	2.68	2.68	5.42	8,15	15.30	17.20	18.09	24.40	48.85	
R	H Des	ii Ge,	II ON	II S	- Ph	1 1	0.011	0.023	8	0.011	0.034	0.034	0.069	0.103	0.194	0.218	0.229	0.309	0.619	\$ \$
					9	120	240	360	087	009	720	078	096	1080	1200	1320	1440	1560	1680	1800

		OUTEN OUTS	100,0	The same	ě.
		11,70	20.05 Trest # 200.00	11-	- and railors, - anno lar - anno lar - Trarri ra- - Trarri ra-
		0.00	de la	111	4 5 5 5
		100	0 0 0		
072740 072770 075770 075770	0*1412 0*1730 0*1730	0-7522 015001 010011	Agend Agend	Same of the same o	end in
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.20		1	8 1	MA TOPES TITLE DAT MOTOR PER THEN TOPES THEN TOPES
100 miles	0.57E	1000	P. S. C.	2,000	1 7 7 1 10

SPECIMEN NO.15 (continued)

Run No.4

 $F_N = 168.16 \text{ lb.}$

 $F_{\rm N} = 76.4 \, {\rm kg}$

S_N = 11170 ps1

 $s_n = 785 \text{ kg/cm}^2$

CA	\$R	$\theta_{ m R}$		f
120			***	0.0147
240	0.103	8.15 x	10-6	0.0294
360	0.149	11.76	19	0.0441
480	0.195	15.40	16	0.0588
600	0.344	27.15	21	0.0735
720	0.413	32.60	31	0.0882
840	0.768	60.65	n	0.1028
960	1.134	89.50	15	0.1175
1080		cos no	-	0.1320

TARREST RE-UR EMPERATION

Acres not

THE DATE OF THE THE

NAME OF PARTY

3		30		
Third-G	. 20		2-4	120
78.10*0	0-02	07 LEVE	0,103	245
EFFER		MAN AL	9.149	OVE
201010		115-20	Serve.	4004
£270.0		Chillien.	445.0	000
1880.0	- ×	0.84 11.	ELLIP	but.
manufa.	-	39105	MM740	04/6
1926.0		March	100.E	DAY
WINEW				www.h

SPECIMEN NO.15 (continued)

					Ç4	0.0382	0.0763	0.1144	0.1526	
				e v	٦	20-6	E	spru Kada	25	
Run 80.7	FN = 64.78 1b.	29.4 kg	4300 ps1	302 kg/cm ²	02	7.24 × 10-6	19.04	74.20	671.0	
En	N N N	II III	S	ii d	04 -\$9-	0.092	0.241	0.940	8.50	
					5	120	240	360	087	
					64	0.0211	0.0421	0.0632	0.0842	0.1052
	·a.			N	,	9-01	2	2	20	1
Run No.5	= 117.41 16.	53.3 Kg	7800 ps1	548 kg/cm ²	9	6.34 x.10-6	25.30	47.10	0.011	1
E. S.	il in	11	II Z	II sa	0.4	0.080	0.321	0.596	3.396	1 1
					0	120	240	360	087	009

	0-1250	9		2					
	0,110	0.24.0 Dags 0	4	5	all - yes retorn.	14 01/4 mg	1) = 30 thc	1 = pr 46 70°	P. off. and
			N.						
0-1022	0-0462	0.0012	9 15	48					
1	370"0 "	00.79	5+37 × 10 ×		San sellows	100 min	100	TOTAL SP	2-10-103
1	3,366	2	0.000			-		100	
8	100	100	N DE	- 20					

Children and the (sontheness)

SPECIMEN NO.16

Material: 2S Aluminum

Surface Finish: No. 1 Paper

Run No.1

 $F_N = 764 \text{ kg}$

 $s_n = 772 \text{ kg/cm}^2$

QA.	st	$\psi_{\mathbf{R}}$	Θ_{R}	f	Ψ0
12	1.24	0.458	30.10 x 10	-6 0.0015	0.183
30	3.11	0.138	10.87	0.0037	0.413
60	6.23	0.138	10.87 "	0.0073	0.836
90	9.33	0.275	21.65 "	0.0119	1.064
120	12.43	0.321	25.30 "	0.0147	1.443
150	15.55	0.424	33.40 "	0.0183	1.866
180	18.65	0.596	47.00 "	0.0220	2.085
210	21.80	0.699	55.10 "	0.0256	2.462
240	24.90	0.630	49.65	0.0293	2.820
270	28.00	0.722	57.00 "	0.0330	3.130
300	31.15	0.756	59.60 "	0.0367	3.450
330	34.25	0.814	64.15 "	0.0403	3.930
360	37.35	0.836	65.95 "	0.0440	4.220
390	40.50	0.956	75.40 "	0.0476	4.530
420	43.65	0.985	77.60 "	0.0514	4.810

AL-OR RECEDED.

STREET AND STREET A PARTY AND A PARTY OF

Lot and

7) = 704.30 0 = 772.30/00²

0	7		8	25	- 4	all a
282.72	E000-0	0) =	92.00	171.0	40.0	2.2
0.413	0.0007	3.	20.87	0.134	1648	30
868-0	EVEDIO	4	VE-02	ALL.O	£16 a. 0	0.0
11065	0.0119		22.45	278.0	66-53	00
253-1	F145.0	- 7	25-30	100,0	EARSE	120
1.800	ENIESP.	4	D)Ligh	MILLO	13.55	150
2.005	DETO.O.	il.	60.45	4.596	18.65	7.00
234.5	0.0030	5.	Street	1990.0	084.03	032
olars.	7000.0		40.00	016.0	06178	0.69
glf.t	U. 0330	7	00,01	137.0	.00.67	270
1.150	rara.n		40.00	6,756	32+25	300
509-E	0.0409		REALS	128-0	34,25	350
DEELA	0346-0		45.33	0.030	25,71	obe
6-530	201010		VE-ST	1.754	04.00	.005
Selled	1180.0		27.60	ENPOR	Alaka .	420

SPECIMEN NO.16 (continued)

Material: 2S Aluminum

Surface Finish: No. 1 Paper

Run No.2

 $F_{N} = 91.3 \text{ kg}$

 $s_n = 928 \text{ kg/cm}^2$

QA	st	ψ_R	$\theta_{ m R}$	f	40
12	1.24			0.0012	
30	3.11	est 600 400	680 600 600	0.0031	0.378
60	6.23	800 800 600		0.0061	0.596
90	9.33	0.114	9.00×10^{-6}	0.0092	1.030
120	12.43	0.138	10.87 "	0.0123	1.283
150	15.55	0.183	14.42 "	0.0153	1.640
180	18.65	0.138	10.87	0.0184	1.970
210	21.80	0.206	16.24 "	0.0214	2.220
240	24.90	0.252	19.86 "	0.0245	2.625
270	28.00	0.283	22.30 "	0.0276	2.980
300	31.15	0.367	28.90 "	0.0307	3.240
330	34.25				

(headfeel) draw amilena

TOTAL TO THE TOTAL CONTROL

ELON DEP - NT

20	4	- D.	KY.	100	18
	9230.0	n = '+'	A +2+	· ·	22
BTE-01	10,0031	220 11	2 2 4	21.0	60.
071.00	1800-0		400	Elical	0.9
21.030	200010 4	0.00 m 10	211-0	1.5.1	100
(22.12	01013	* \$8.00	W.238	22.55	250
TUA PET	digita.b	26,42	CRIA	55.55	150
3:470	4840.8	10.47	0.130	13:05	500
051.2	ALKO, D	- 10100	365.0	0011	0.18
200.0	0,000	- 66.01	E\$5.0	07.15	DYA
486.6	Diggree of	* 35.25	315.0	30.6K	280
015-0.	Totale	1 20,150	V-36.0	Shift	390
				ESTATE	330

APPENDIX C
SAMPLE CALCULATIONS

PARTICIPAL STREET

SAMPLE CALCULATIONS

Calculated angle of twist of specimen without $\text{interface} = \psi_{o}$

$$\psi = \frac{T_A L}{E_a J} \text{ radians} \tag{1}$$

$$J = \frac{\pi(D_0^4 - D_1^4)}{32} \tag{2}$$

$$\psi_{\mathbf{c}} = \frac{180}{\pi} \times 60 \times \psi \tag{3}$$

$$T_A = 2.205 \times 10^{-3} Q_A$$
 (4)

Substituting (2), (3), and (4) in (1) gives

$$\psi_{e} = \frac{77.3 \times Q_{A} \times L}{(D_{o}^{4} - D_{1}^{4}) \times E_{s}} \text{ Min.arc.}$$
 (5)

Maximum tangential stress = S_T.

$$S_{T} = \frac{16 T_{A} D_{o}}{\pi (D_{o}^{4} - D_{1}^{4})} \tag{6}$$

Substituting (4) in (6) gives

$$S_T = 1.121 \times 10^{-2} \frac{D_o}{D_o^4 - D_i^4} \times Q \text{ psi}$$
 (7)

Observed angle of twist of specimen = ψ_0 .

With 10 x objective calibration with micrometer stage shows one drum unit of optical micrometer represents 0.00004101" on indicator.

DESCRIPTION OF STREET

resulting maximum to rated to edges independed at wearhouse

(1) modden
$$\frac{x_1x_2}{x_2x_3} = \phi$$

$$\frac{1^{2}_{0}x - \frac{1}{2}xyy}{2z} = x$$

$$\gamma_{\mu} = \frac{3422}{3} \times 66 \times 6$$

markstance (2), (2), and (4) as the plane

$$h^{0} = \frac{(a_{1}^{0} - a_{2}^{0}) \times x^{0}}{(a_{2}^{0} - a_{2}^{0}) \times x^{0}} \times x^{0} \times x^{0}}$$
(8)

Making biographia curves - by-

weeks [4] of [5] possession

$$(2) \qquad \qquad (3) \qquad (4) = \frac{1}{2} (1 - \frac{1}{2}) \qquad (4) = 2 (1 + \frac{1}{2}) = \frac{1}{2} (1 - \frac{1}{2})$$

to story on the state of the state of the particular of the state of t

shows yet on the sold religion to the state of the state

 ψ_g drum units = 0.00004101 x ψ_g inches on indicator.

$$\psi_0 = \frac{\psi_S}{R}$$
 radiane x $\frac{180}{\pi}$ degrees x 60 $\frac{min.}{degree}$.

$$\psi_0 = \frac{\psi_8(0.00004101)}{12.33} \times 3440$$

$$\psi_0 = 0.01144 \, \psi_8$$
 (8)

Coefficient of friction = f.

$$T = \frac{1}{3} f \times F_{N} \frac{(D_{0}^{3} - D_{1}^{3})}{(D_{0}^{2} - D_{1}^{2})}$$
 (9)

T = torque of friction about axis of shaft.
Substituting (4) in (9) gives

$$f = \frac{Q_A}{F_N} \times 6.615 \times 10^{-3} \times \frac{(D_0^2 - D_1^2)}{(D_0^3 - D_1^3)}$$

a down nath a principality a 4 leader on initiators

- netter of a meeting that a scatter of a po-

THAT I CLUMPSON OF A PARTY

TENS TO SELECT THE PARTY OF THE

Conffigure of friction = f.

(10) (\frac{1}{2} a - \frac{1}{2} a) = \frac{1}{2} a - \frac{1

. Flats to stee stools unlight to assess ". F

nowing (e) at (a) national

(30-30) - bac - 100 - 1

APPENDIX D

SUPPLEMENTARY DISCUSSION

N SERVICEA

THE RESERVOIR STREET, STREET,

SUPPLEMENTARY DISCUSSION

In the discussion of results, it was suggested that yield effects in the metal of the interfaces contributed to the small initial deformations. An examination of one of the test runs for this effect is therefore in order.

Referring to Figure XIV, let us examine the stress situation in the C-1018 steel specimen for one of the initial deformations.

The maximum combined shearing stress in a cylinder loaded in this manner is given as follows: $(S_8)_{\rm max} = \sqrt{\frac{1}{4}(S_N)^2 + (S_T)^2}$ For S_N and S_T values, respectively, of 13200 and 1420 psi, the $(S_8)_{\rm max}$ is equal to 6750 psi.

Maximum shear theory states that yielding will occur when (5) max equals the maximum shearing stress at yield point obtained from a tension test. The maximum shearing stress at yield point is one half yield stress for a tensile specimen.

Ryerson Steel Specifications for G-1018 steel give a yield value of 48000 psi.

Therefore maximum shear stress at yield point equals 24000 psi. The calculated stress for the specimen is well below this value; therefore yield will not occur in the bulk metal.

The normal stress value used in computing the combined shear stress was determined by using the cross-section area of the specimen, which at the interface is the apparent area of

STATUTE OF THE PERSON.

not bedied between the and a construction of the angle and age of the first and the angle of the first and the angle of the age of t

-dr. section of catains no set , NY, negation of garacter.

Lithial bit is not for our for our ditti-in Libitar.

-measurements.

The matter angles and the following of the epithoder lander is the pith angles of the $(u_0)^2 = (u_0)^2$ (ap) 2 (or u_0 and u_0 are an expected and u_0 and u_0 and u_0 are an expected and u_0 and u_0 and u_0 are an expected and u_0 and u_0 and u_0 are an expected and u_0 and u_0 and u_0 are an expected an expected an expected and u_0 are an expected an expected an expected and u_0 are an expected an expe

node notes Ally published that national matter all public one of the public of the pub

A MANUAL STATE OF LEGGE DAILS AND C-100E ALLES AND A MANUAL AND ASSESSED AS

ALMOST PALOS ALBERT TO SERVED THE SERVED AND ALSO SERVED TO A SERVED THE SERV

The series and the property of the state of the delete and and a series of the series and the se

contact. The real area of contact is less than this value due to the asperities in the metal of the interface.

Bowden and Tabor (4) give the following relation for real area of contact:

$$A_r = \frac{P}{P_m}$$

P = mean pressure over area of contact

Pm = C x Syield

C has a value of 3 for material and surface finish used here.

P = 144000 psi for this case.

Areal = 0.0014 in2, which is considerably less than the apparent value of 0.0153 in2.

This would give a maximum combined shear stress in the contact surface considerably in excess of that required to initiate yield in the metal.

It is thus apparent that the streams at the contact surface are more than sufficient to insure yield in the aspertities in the metal interface. For very small values of deformation, the yield effects may thus be the sole contributing factor.

Now consider the stress values for the specimen under conditions encountered just prior to the advent of free sliding to S_N and S_T of 13200 and 4960 psi. The $(S_S)_{\rm max}$ value is 8260 psi. Thus it is apparent that yield in the bulk material of the specimen does not occur, and all but the smallest displacements are due to slip between the two contact surfaces.

sading after much exel at duestice to seek them off aguation day to the exceptions in the secul of the interferen-

ness and nesteries parabled the user "Almedel has unlook arantan in arantan in aran

and the second s

facilities to have note expressing also will

Ariant analyses has introduce not 5 to solar a and

the state of the state of the state of

well graveful over at make , "at all the or panel "al (tiles to sales increma off said

Philipping and all parely makes building southern a self-black add? artified or benigner sold to seemen of pideralities wetters status out at higher.

symptom and the somewhat add won't descripte such all 17 named and all bloky cornel of sectol'that could see our control biller in the metal interfere. You wary can't values at of religi select the girls effects my thus not are unit assertioning

value analysis all not reader hardly off posteros sale smiller seek he receive mir at marun test herefungen excitibres to the call by all little out with pair . The Carlotte to the out of ARREST MAN AND AND AND AND PARTY THAT PROPERTY AND AND AND ADDRESS -ack realizing all our Lie has aware you seed controve add to . Describe duction out our manufact gills at out our of constants

APPENDIK E

ORIGINAL DATA

84.

A TIPETAL

ATRIC LARGEST

The second secon

the second secon

SPECIMEN NO.1

Material: C-1018 Steel

Control Specimen (without interface)

Run No.5	F. = 111.9 1b.	-\$**	4.5	26	344	196	ŧ .				
you unu	FN = 74.9 1b.	903	40	101	8 8						
Kun No.3	FR = 225.4 lb.	a	64	96	146	193	9 3	292	342	391	8 8
Run No.2	F _N = 190.7 1b.	93 -9-	77	68	143	197	243	296	8		
Run Ro. 1	FN = 150 lb.	Ø	44	92	139	189	239	205	200	8	
		O V	150	300	450	9009	750	006	1050	1200	1350

TARGETHA BOTT

Santon berger of the santon

	Ceres	STATES AND STREET, STREET, TOLINGS	CONTROL BENCHMA		
100 001	had bed	Ton. and	-	died o	
AT 5. TET 2 TO	LE = 25" 2 TP	I'm solver me	N - 3501 370-	20 to 750 TF	
*	to .	*	4,	5	100
7.5	69	P	t	2	g.
2	TOT		T.	8	290
200	0	200	27.2	178	1300
250		193	294	210	500
		¥ .	Q.	915	270
		15	396		100
		Tal.	ê		3198
		297			2118
		21			30390

Material: C-1018 Steel

Material: C-1018 Steel

Surface Finish: As machined (lathe)

Paper	Run No. 3	F = 201.2
Surface Finish: No.1 Paper	Run No.2	F. = 251.2 1b.
	Run No.1	F. = 200.3 1b.
nish: d (lathe)	Run No.1	= 251.2 16.

	40°	30	70	50	56	20	82	97	124	125	156	254	257	270	319	
201.29 15.	O.	1800	1920	2040	2160	2280	2400	2520	2640	2760	2880	3000	3120	3240	3360	
204	2	1	1	1	3 8	1 2	50	7	1	17	16	18	20	28	30	
ice.	0	120	240	360	087	9009	720	078	006	096	1080	1200	1320	1440	1560	
251.2 16.	W	36	71	110	144	183.5	226	268	8							
11	0	120	540	360	087	009	720	078	906							
FN = 200.3 lb.	n P	36	0	123	168	203	241	3 8								
2004	of of	120	540	360	087	009	720	078	006							
FM = 251.2 1b.	**	31	09	103	145	187	227	266	282	300	342	384	433	478		
	4	120	540	360	087	009	720	078	006	096	1080	1200	1320	1440		

3480

31

5
В.
_

													-	-	>					
1989 1989			E	43 E3+		2410	Store			2280	STEE	SATIS	Take.		200	Socie	2550	STATE	2360	
1986 1986		*		100 m	i,	1	ì	1		t	P	4	ì	17.0	N.	H	000	K	3.0	
# 1	D-TOTA LABOR	100 100					200	380	130	0000	1150	NA.	900	dol	25000	CROP		TAKE	37360	
	121 E-200	(man)	(Least	10 E 10 E	-	36	10		111	170.12	121	262								
	STATAS DE	out 2 silve			ho.	000	a.ta	282		000	1000	OLLO	loc							
				è																
			Carry Carry	2001	5			G)	101	000	242	1								
						000	ota	2000	Prince	1000	650	oka	- Accor							
2222222222	Petrality define and	(and (Lin blow)				华				1018			1100	3/00	No.	101	1,13	N/A		
Elisasasasasas 1	Separation .	AT SOUTH		24.	-	270	o.Lo	Budg	1700	649	700		Novi	909	7090	3200	Tilted	2770		

AFEER SEERSEE

SPECIMEN NO.3 (continued)

9.6	.78 lb.	# B	8 9	;	20	16	19	317	1													
Run No.6	FN = 64.78	0	120	240	360	087	009	720	840													
No.5	117.41 16.	**************************************	ů ů	75	16	13	54	19	28	29	29	77	58	75	109	\$						
Run No. 5	FN = 11	~ ×	120	240	360	087	009	720	078	096	1080	1200	1320	1440	1560	1680						
7.0N	= 168.16 1b.	1 2 3 3	1	8 8	3 0		1	N	5	භ	2	7	30	30	53	41	\$0	67	78	142	214	8
Run No.4	FN = 168	ď	120	240	360	087	009	720	078	096	1080	1200	1320	1440	1560	1680	1800	1920	2040	2160	2280	2400
2 (cont.)	Run No.3 (cont.) FN = 201.29 1b.	25 25 25	64	124	125	156	254	257	270	319	8											
Run No.	= 20	O. C.	2520	2640	2760	2880	3000	3120	3240	3360	3480											

																					2	
													Ą.	87.4		27	~	1	5	2	er 44 79	0.00
													0,00	1000	5000	100	plac	340	3	40	S. A.	Contract of
						ś	200	100	500	42	200	- 95	200	2.4	- 6.5	C	5,0	'n	6	Ę,	Tree.	- 2,05,300
						2000	2350	2770	1730	7500	370.00	- page	MTG	920	202	OLD O	380	- STD	OZL	16	TANKET SE	The same
I	3774	2.62	20	2.0	200	}~	338	100	- 02	7	17	01	PM.	-	ī	8	1	-	1	N. W.	-10 28-	hand
21,00	00858	-	2070	7850	12000	STERED.	1300	reto	73.50	1200	Tono	- page			000	245	360	910	120	150	h = 100' TO	Sec. 20.00
											-	324	230	120	224	0.02	200	402-	30	6,0	Parameter 10	(/ann) (
											2500			lites	2000	2000	5,6706	Surfe	2720	*20	200	100.00

Material: C-1018 Steel

Surface Finish: 2/o Paper

9.0	2 16.																1	8	8
Run 110.6	F = 251.2	\$C	33	75	4 2	107	1	149	186	226	266	ě	308	i	349	1	379	917	1
Run No.5	FN = 200.3 1b.	90	32	89	å	105	ı	145	180	218	258	1	294	8 8	336	i	373	413	1 1
Run No.4	FN = 200.3 1b.	80 	949	77	83	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	114	9	182	220	8 1	273	8	320	ŧ	372	1 1		
Run No.3	F _N = 167 1b.		39	72	ê	108	3	146	192	231	279	1 1		0					
Run No.2	FR = 116.3 1b.	- 	34	83	3 1	114	8 8												
Run No.1	F _N = 81.75 1b.	\$2	54	115	8														
		O.	120	240	300	360	420	780	009	720	840	006	096	1020	1080	1140	1200	1320	1440

61 1 2 1 4 1 4 4 4 2 1

E3 | 8 | 8 | 8 | 8 | 8 | 8

18:8:8:5

1398618

e transfer é-mys celes

substantia deserve a color.

SHOULD'S LIGHT SAY MANER

100.00 24 ---L = 10013 3P (N - 394 18" STATE OF THE PARTY OF - 150.3 30. Coll To

THE PARTY

T Oak

1

De 22 10

911

1-2-0

SPECIMEN NO.5

Material: C-1018 Steel

Surface Finish: 4/o paper

Rur	No.1	Run N	0.2	Run	No.3	Run	No.4
F _N =	116.3 lb.	$F_N = 1$.67 lb.	$F_N = 2$.00.2 1ъ.	$F_N = 3$	251.2 1b.
QA	ψs	QA	\$ 8	QA	ψs	QA	ψs
120	33	120	39	120	30	120	em em
150	cop that	150	-	150	-	150	43
240	73	240	82	240	74	240	
300	one one	300	tipo tem	300	460.000	300	91
360	108	360	126	360	117	360	
420	app riso	420		420	-	420	
450	Section States	450		450		450	141
480	153	480	167	480	151	480	
600	188	600	201	600	191	600	190
720	228	720	232	720	230	720	
750	eten 490	750	-	750	-	750	241
840	318	840	280	840	269	840	
900	ean 1000	900	90 00	900	on to	900	291
960	400,40-	960	321	960	310	960	om on
		1020	1000 1700	1020	can day	1020	Olean COURT
		1050	sittle filters	1050	00 00	1050	332
		1080	385	1080	351	1080	000 1000
		1140	100 100	1140	ago teo	1140	-
				1200	390	1200	393
				1320	430	1320	49 49
				1350	spin see	1350	438
						1440	
						1500	492
						1560	open deat

guote ment civin

TARREST T-102 PARENT NAMED

de ST.	nes	List	LNE	Eval	_not	Lot	ART.
.dr z.181	100	WE THE	S S AT	.45 701	2 32	188 E1823	" all
4	- 10	146	12-	100	AF !	100	AP
	Oal	30	Dili		120	73	ULI
60	150	-	130	-	139	ept op	1.50
en =	240	27	0.12	62	0.4.0	73	DAT
29	300	-	200		000	-	200
-	nec	252	nit	ALL	Okt -	- 0.E	360
00.00	420	1000	955	gr.	420	(with	3.20
111	4.0	r01.000	430	60n	180	N	730
-	093.	25%	0.64	3.67	017	23.1	SHA
091	009	191	2000	TOR	009	1.8.0	noy
	CRY	0(3	0.07	236	0.27	844	002
234	DEV	-	950	-	000	100	DET
-	DAG	969	07.6		048	0.00	03.8
100	000	Local	1.005	rich Ser	008	Ga .	006
100	0.68	01.0	0.66	392	034.		049
	5001	1000	1010	100	3,030		
252	2.050	-	1050	494	3050		
and.	DROT	160	080.0	605	1080		
	DALL	197-	SALE	per	DALL		
292	GOSL	000	3200				
No.	OSSL	OFA	1900				
1864	DECK	-	1350				
	DAAL						
907	1500						
	2503						

SPECIMEN NO.5 (continued)

	Run No.5	Run No.6	Run No.7
	$F_{N} = 168.2 \text{ lb.}$	$F_{N} = 117.41 \text{ lb.}$	$F_N = 64.78 \text{ lb.}$
QA	ΨsR	ψsR	Ψ ₅ R
120	04 00	ns +w	en en
150		with tight	400
240	en en	~ -	16
300	400 400	na 00	400 400
360	en en	3	\ 16
420		64 GE	400
450		600 600	con 400
480		4	36
600	en en	19	64
720	400 000	16	67
750	an an	400 400	ess 4m
840	404 409	32	153
900	caso man	sko so	Q60 40%
960	6	40	
1020	Qual Auto	en en	
1050		en vo	
1080	6	68	
1140			
1200	10	94	
1320	15	122	
1350		008 0 96	
1440	19	155	
1500			
1560	23		
1680	39		
1800	64		

		8 V 100			
L'on one		<u>), </u>		0.00 020	
30.40 = 0	1 -43	Wille,	1 .44	1 = 160.	
Est.		748		50	20
		e		en =	0.9%
5.00		~~~		Pho	150
Ar.		6.0		- •	DAR
14141					300
12 /		1		N -0	260
					120
20				- 4	057
36		2			7112
44		97			.cua
P.A.				99	720
200				8.4	027
133		12.5		ens 9	20,000
200					006
3.5				2 -	016
		574			TORG
					1001
		100		8	0001
				0.0	1140
		100		1.0	0000
		10			1310
		let			
		č.			1350
		ζ,		0.1	2440
		-		~ ~	0000
				43.	1500
				W	0001
				20	1900

SPECIMEN NO.6

Material: A-4140 Steel Control Specimen (without interface)

	Run No.1	Run No.2
	$F_N = 251.2 \text{ lb.}$	$F_N = 200.2 \text{ lb.}$
QA	$\psi_{_{\mathbf{S}}}$	ψs
120	43	
150		52
240	83	
300		93
360	123	
450		139
480	161	on 100
600	202	192
720	245	***
750		239
840	290	ma em
900		290
960	326	400 000
1020		
1080	363	
1200	400	

.di

SLOW RESIDENCE

Deats Cara-A sinisated (spokeska) smedshe) testesqui firemon

A.pl.on	Level and	
5.005 =		
37		.0
0.		
0.00	67	011
20	SE 60	0.01
400 00*	C S	00.8
10	suo.	006
	123	0.06
139	44	052
40.00	151	084
200	305	000
Pop 9	145	920
229	rea .	750
-	000	078
005	ade year	0.00
solt of th	C _h	000
	en esp	0.202
	363	1080
	600	22.00

Material: A-4140 Steel

Surface Finish: As machined

	Run No.1	hun No.2	Run 10.3	Kun No.4
	FR = 116.3 lb.	FN = 167 1b.	FN = 200.2 lb.	FN = 251.2 1b.
o [*]	83 	80 - 3-	n P	93
120	32	38	38	75
150	1 2	ŧ	2 8	51
240	14	78	8	8
300	1	1	108	119
360	123	130	*	1
450	8 8	\$ 1	8 8	8 8
087	169	187	*	3 8
600	219	236	214	211
720	ì	294	270	1
750	*	1	8	1
078	;	1	1	1
006	0.00 mg	8 8	356	344
096	*	1	3	8
1020				397

795

PARCENCE NO. 5

Destable of the transfer of the

z	150		1		bood		1		3718		- 22	y.	-	C LARS NATIO	Andre med
2	286	1.	1	2,10	- 12E	8			707	6	es.	200	10000	AR = 59013 19"	See See 5
9 8	1	1	1	SAM	Total I	175.4	E.	1001	1	148	1	- 11		1 = 100 TP"	Stalland
1	1	II.	1	8 8	57.9		ï	120	1	547		40.00		A Tries ID.	Total and

SPECIMEN NO.8

Naterial: A-4140 Steel Surface Finish: No.1 Paper

Wun No.4	F _N = 251.2 lb.	-2	1	109	191	219	287	340	393
itun No.3	FN = 200.2 1b.	Ø	87	109	178	220	276	339	*
hun 160.2	FN = 167 lb.		65	116	168	223	277	* 5	
Run No.1	FR = 116.3 lb.	n D	54	111	165	241	787	8 0	
		S	150	300	450	009	750	006	050

2.6

, A

Total Local Linearity south Aspen Desking Petro parent

Sports 2707 846 3 -San San S = 719"2 10"

Dist. Int.

A

Harry

TARRET

1 日 日 日 日 日 日 日 日 日 日

18484

SPECIMEN NO.8 (continued)

برط	Aire	
	To be	

	Run No.5	Run No.6		Run No.7
	F _N = 200 lb.	$F_N = 167 \text{ lb.}$		$F_{N} = 201.29 \text{ lb.}$
QA	ψ	ψ _s	Q _A	Ψ́s
150	59	49	120	•••
300	111	122	240	00 GD
450	160	186	360	colo cos
600	220	219	480	00 00
750	no de	280	600	(00) (00)
900		mate data	720	99.99
			840	49.00
			960	1
			1080	4
			1200	5
			1320	8
			1440	8
			1560	12
			1680	22
			1800	36
			1920	70
			2040	75
			2160	132
			2280	232
			2400	69, 690

District Sing Number of

Yank mill		0.001_000	- 1-01 mm	
ALC WELDER THE		78 = 167 18,	W1 000 H gt	
2	LP.		25	è
	061		- 65	250
-	10.0	102	222	500
-	745	3.00		585
164	oka	215	220	098
-	0.00	200	Con.	058
-	000	100		000
140	OAR			
1	056			
4	1080			
*	0000			
10	0551			
5.6	2252			
8.0	1582			
96	0.000			
-69	103.02			
167	0443			
138	0.025			
920	0855			
and a	24.00			

SPECIMEN NO.8 (continued)

Run No.8	Run Ro.9	Run No.10				
F _B = 168.16 lb.	F _N = 117.41 1b.	$F_N = 64.78 \text{ lb.}$				
♥sR	*sR	₩sR				
ugo dro	700 GH	end spin				
one vice	167 000	15				
100 400	12	73				
ap 600	22	772				
10	57	obje cab				
35	91					
42	159					
79	283					
85	Map days					
82						
99						
115						
135						
209						
225						
239						
266						
475						
an au						
	F _N = 168.16 1b. **sR 10 35 42 79 85 82 99 115 135 209 225 239 266 475	F _H = 168.16 1b. F _N = 117.41 1b. \$\psi_{SR}\$ \$\psi_				

(heart/net) first Entrance

-	dist.m	E.	PLOT DES	Battleton.	
102.1	17.420 =	18 W	t thirtt = 17	4 × 201, 24 26	
	11.7		No. of	100	20
	-			1960	220
	1.5			Hell II.	0.6%
100	173		62	-0.1	DAT
	277		22 111	2011	DEL
	1000		3.7	O.E.	1000
			1/2	35	10007
			1.50	4.2	91/4
			283	118	989
				85	2080
				58	1200
				0.0	1340
				212	2.62.0
				333	2560
				005	0862
				689	LECO
				012	7680
				255	2040
				7.75	2250
				400	0800

Material: 25 Aluminum

Control Specimen: without interface

%0°3	200 16.	9	å	2	\$	freely	8 2	8	1	56	* *	29	8 8	97	2 1
Nun No.3	it pre	-33- 83	ł	53	1	101	1	8 83	1	229	1	274	8	337	8
0	16 1b.	-33-	40	KA .	8 0	4	8 2	27	8 1	9	4	31	2 0	35	100 N
Fun No.2	11	₩ - 19-	S	50	\$	100	1	500	1	221	*	272	1 1	336	363
Run No.1	116 15.	02 61	1	*	19	19	30	26	32	39	70	42	5	77	\$ 8
an an	11 (24)	9	20	09	96	119	152	181	211	250	271	296	323	360	1
		OF	30	9	06	120	150	180	210	240	270	300	330	360	420

WARNETSTER SEPTOR

Printerly 30 theorem.

Suplant distribute therefore by the

是是是是是是自己是自己不

SPECIMEN NO.11

Material: Copper

Control Specimen (without interface)

	Run	No.1	Run l	10.2		Aun No.3
	F _N =	20 lb.	F _N = 2	250 16.		$F_N = 200 \text{ lb.}$
QA	ψs	VsR	ψs	ΨsR	QA	♥aR
30	29	400 /00-	24	4	120	crots filter
60	48	4	00 40	COLUMN TO SERVICE SERV	240	5
90	68	14	61	7	360	5
120	85	4	eda war	Arman Water	480	8
150	92	6	100	4	600	10
180	117	14	Tipo Tipo	ARRIN (0-10)	720	19
210	138	28	137	(pag day	840	28
240	154	22	corp dam	silija Aliqui	960	27
270	173	28	170	15	1080	25
300	191	37	Agraps 50mbs	Appen Mins	1200	40
330	211	35	205	18	1320	50
360	228	37	Que quin	cusa dicina	1440	58
390	248	44	236	22	1560	71
420	261	48	490 670	elap fem	1680	87
450	281	56	into tino	40 40	1800	84

AL.OR REMESSES.

McLarbald Suppor

dislow: lorgadity;

Lot tot		Sale	t dat	Suit	nul	
# # # # 1 th.		150	200	100 201	242	
	1011	40	33	- 40	49	AD.
-	oki	1	AR	-	(F.C.	NO.
6	0.60	146	-	- b;	8.5.	03
0	096	R	12	-81	86.	00
3		200	-	- W	105	180
2.0	600	4	1.00	- A	20	150
91	0.57	166	148	- 34	715	LUID
80	DAM	della*	137	0.0	130	210
-37	0/0	ales.	175	530	ISA	045
25	1.080	15	170	22	173	- DES
Dá	1000	-	-	PL	101	500
50	1,300	N.L.	205	33	211	330
66	2440	-		77	252	300
10:	1560	2.0	Act	530	972	0.00
19	1680	14	19	104	Z)d	bish.
- A6	1800	100	pers. 19	46	265	1023

SPECIMEN NO.12

Waterial: A-4140 Steel

Surface Finish: 4/0 Paper

Run No.3 Run No.4	FR = 117.41 lb. FR = 168.2 lb.		3 8	53		105	å i	164		16 231		283	1	345 76	92	100	176	183	
Run No.2	53.38 16.	2	10	1	16	ł	ಜ	1	75	22.5	269	1							
	375 1b. Fi	-3-	59	*	7 116	8 1		* * * * * * * * * * * * * * * * * * * *		365	562	* * * * * * * * * * * * * * * * * * * *							
Run No. 1	F = 31.875	**	54	å	76	1	156	4	277	\$									
		o o	120	150	240	300	360	450	087	009	720	750	078	096	1080	1200	1320	1440	

ないない

1.00

245

新华村的村里的村里的村里的村里的村里的

8

WASCINGT NO.TS

parters trajent To belen

Acade man	Tage.	A STATE OF THE PARTY OF THE PAR	T. C.	Total .	Total .	THE STATE OF	
AT STATES 3.B	-42 24-d	ALL NO	-24 TO-	20 = 20	Total Co.T	11 = 37	
No. V	0.7	V di	OT 10		9,45		
1	3 0	8-	27.0		1	240	
CII / 1		22	1	1	-	2	
4		202	3.6	730	4	252	
-305		735			1	2	
1	وسرا	142	10	3.70	2	1.86	
100		79.6	ì	ſ.	1	3	
1	+	MA	75	265	14	202	
103	F.	250	353	200	-	1	
+	12	200	2009	161			
500 310	P	S.lo		T.			
		100					

SFECIMEN NO.12 (continued)

	Run	No.5	Run No.6	No.6	Run No.7	Run ko.8	80
	H DES	168.2 16.	11 Z	201.3 lb.	FR = 201.3 1b.	CY II	250 lb.
<u>ن</u> ا		87 97	3	24 83 -23	@ -@-	-53-	24 19
150	54	8	09	3	56	69	ł
300	113	3	119	8 8	ET 1	123	1
450	162	i	178	1 0	174	174	8 2
200	225	20	237	m	236	238	3 8
750	273	14	302	17	303	294	~
006	387	172	371	23	950	351	12
050	1	1	977	30	8 8	423	22

Material: Copper

ourface Finish: No.1 Paper

10.0% mun	FW = 64.78 1b.	(2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	8 0	1	8 8	er4	Q1. 400	67	de se						٠	
(1)	251 15.	# # # # # # # # # # # # # # # # # # #	8	3 2	9 2		0.0.00	10	3	ヤ		16		60	-	24
tun No.3	ii ii iii	-g-	8	24	8	50	1	220		500	0 8	378	-	463		975
N	201.3 15.		8 8		23	9	13	12	27	24	50	20	07	63	00	39
Run No.2	120.	-\$r	20	63	TTT	151	190	233	25.5	295	335	380	415	455	498	542
r-1		## ## ## ## ## ## ## ## ## ## ## ## ##	•	7	0	10	ė s									
Run No.1	FN = 168	40°	45	75	116	151	il di									
		o d	09	120	180	540	300	360	420	087	240	009	099	720	780	078

在1至1月1日1日1日1日 *****

10

853

医国家各名的名称 医自由性

SPECIMEN NO.13 (continued)

$R_{\rm H}$ $E_{\rm H}$ <		Run No.4	Run No.5	Hun No.6	Run No.7		Run No.7
ψ _{8R} ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω		FN = 64.78 1b.	117.4	N = 168.16	N = 201.29	fan	
1 120 2 8 240 49 11 7 8 360 13 5 15 480 16 8 840 42 28 840 42 28 840 63 40 960 81 44 1080 48 1200 72 1320 48 1260 48 1260 1680		## ## ## ## ## ## ## ## ## ## ## ## ##	al c	24 9	er en		तर्द छा
2 8 240 49 11 7 8 360 13 5 15 480 142 28 840 42 28 840 63 40 960 81 44 1080 1560 1680	120	H	1	ł	1 2	120	9 8
49 11 7 8 360 13 5 15 480 16 8 13 600 26 17 19 720 42 28 840 63 44 1080 81 44 1080 72 1320 184 1440 246 1560 1680	240	440 (10	R	రు	1 1	240	н
13 5 15 480 16 8 13 600 26 17 19 720 42 28 840 63 40 960 81 44 1080 48 1200 184 1440 186 1460 1680	360	67	11	~	60	360	0
16 8 13 600 26 17 19 720 42 28 840 63 40 960 81 44 1080 48 1200 120 120 246 1440 1680	087	3	13	S	15	087	15
26 17 19 720 42 28 840 63 40 960 81 44 1080 48 1200 72 1320 184 1440 246 1560 1680	009		16	90	13	009	100
42 28 840 63 40 960 81 44 1080 48 1200 120 1320 184 1440 246 1560	720		26	17	19	720	19
63 40 960 81 44 1080 48 1200 184 1440 246 1560 1680	078		400 MB	42	22	840	200
81 44 1080 48 1200 72 1320 184 1440 246 1560 1680	096			63	07	096	07
48 1200 72 1320 184 1440 246 1560 1680	1080			81	77	1080	43
72 1320 184 1440 246 1560 1680	1200			deals denot	877	1200	07
184 1440 246 1560 1680	1320				72	1320	72
246 1560	1440				184	1440	185
1680	1560				246	1560	972
	1680				i i	1680	100 mg

C-00 300 " " FTACS 25" L" - TO BE 32! . L" - 202" 23 28" 100 miles 1 = 90° 301 TE 1100

nspannet &

THE PART OF THE PA

1 品質品

1 * * * * * 1

121-1

SPECIMEN NO.14

Material: Copper

Surface Finish: 2/0 Paper

	Ruj	No.1	Ru	No.2	Run No.3				
	F _N =	64.8 lb.	F _N =	117.4 16.	F _N =	168.2 lb.			
QA	ψ _S	VeR	V _s	ψ _{sR}	V _S	♥ sR			
120	73	USB Villa	66	1000-1000	64	400 600			
240	152	16	136	5	133	40.00			
360	237	26	219	16	205				
480	341	44	304	33	269	-			
600	464	289	393	57	353	5			
720	age time	eye ditto	501	90	431	13			
840			521	124	501	15			
960			8649 7000	294	586	21			
1080				873	Man ages	31			
1200				ann-sun		34			
1320						37			
1440						64			
						100.00			

ADJOUR WHEEDSHIE

measured ingress

Terms C\2 Ideinia asabasc

East	Lint 1	Sand	L mate	Little	Love	
16.2 S.B.	re a	17.4 10.	14 = 2	ed I Was	0 = 5 T	
100		no ⁴	4	100	12	5 10
84	3.8	-	35	40.757	77	320
-	133	1	136	3.6	202	- DAT
200	203	3.6	22.V	62	525	085
1000	209	(0	400	3.6	242	ORA
.0	533	-376	tet	(0)5	303	0.00
2.5	1.50	0.0	502	w	w.	720
2.5	2008	187	188			DAR
LK.	586	APE	-			0.44
17.		873				2,000
AL		541				00153
75						3554
44						2440
-						

SPECIMEN NO.14 (continued)

	Run	80.4		Run	No.5
	F _N = 20	01.3 lb.		F _N = 2	31.68 lb.
QA	Ф ₁₃	Ψ _s R	QA	ψ _S	V _{sR}
120	68	one cab	120	77	400 400
240	148	16	240	113	14
360	224	23	360	228	28
480	303	38	480	309	37
600	374	48	600	383	43
720	468	63	720	465	54
840	550	67	840	543	66
960	630	79	960	633	85
1080	end den	88	1080	400.400	84
1200		95	1200		96
1320		119	1320		117
1440		135	1440		118
1560		178	1560		139
1680		194	1680		155
1800		218	1800		165
1920		258	1920		180
2040		4000 mins	2040		203
			2160		235
			2280		261
			2400		292
			2520		CO: 900

(Dissiblines) March Spinisters)

2.00	1007		- Aue	and.	
-012 Birt	15 - 27		41 CH	40-1	
	-	100	547		
	100	DEL	75	AL.	DAL
J.L.	ATTA	0.62	92	1245	032
10	850	260	ES-	4.6%	360
77	YOU	55%	28	tot	014
TA-	010	000	0.).	272	908
12.	463	027	'ta	107.	out
86	563	028	74	550	0.52
11		50.0	19	D2 K	-014
	-	THE	10	-	2000
140		0044	26		8200
VAA		MEL	11.59		2510
0.77		21,640	ELL		2640
4.59		1,550	57.5		DOEL
185		0881	ANG		2500
160		7,000	ALT		20015
280		1990	ALL		2500
202		9497	-		9607
tts		00.25			
145		DNIE			
191		0004			
- Auto-		ONE T			

Material: Copper

Surface Finish: 4/0 Paper

	Run	Hun No.1	Hun 10.2	Run No.3	Run Ro. L.	Gun No.5
	N II	201.3 1b.	FB = 168.2 lb.	FR = 117.4, 1b.	FR = 168.2 18.	FB = 117.4 1b.
G ^A	-3-	ac an	63	ii o	est on	72 20 20
120	70	8	20 00	8 8	1	7
240	143		p-d	9	0	60
360	207	9	CV	9 9	13	52
037	200	1	400 600	~	-	122
9009	365	77	रूनं		30	å
720	1	prof	M	~	36	
078		50	m	20	67	
096		3	9	that of the	66	
1080		9	6		90 000	
1200		=======================================	17			
1320		22	19			
1440		3	20			
1560		07	27			
1680		53	75			
1800		79	1			
1920		1 0				

50 %

```
-81 Try- To-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       17 14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Total Training
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2.5.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DAMAGAGE APPROPRIE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  " a spets sur-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            167
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Sand and
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      74
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      20P72 PP.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Ĕ,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   LAUR PRO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TARRE
Table Street Str
```

FASTERNA BOYTE

SPECIMEN NO.15 (continued)

Material: Copper

Surface Finish: 4/0 Paper

		O. A.	12	30	09
Run No.7	FM = 64.8 1b.	es R	80	21	CV
Run No.6	FN = 64.8 1b.	& SR	6	C3	33
		Q V	120	240	360

SPECIMEN NO.16

Material: 28 Aluminum

Surface Finish: No.1 Paper

Run No.2	201.3 16.	AS P	1 2	3 8	- 000	10	12	16	12	18	22	16	32	000			
Run	II Z	9	1	33	52	06	112	143	172	194	229	260	283	1			
Run No.1	168.2 1b.	4 S.R.	4	12	12	54	28	37	52	19	55	63	99	7.1	73	83	98
Run		9	16	36	73	93	126	163	182	215	546	273	301	343	368	395	420
		O.A.	12	30	09	06	120	150	180	210	540	270	300	330	360	390	750

741

1

009

SECOTE B ROLL

8	10
B ₁	8
100 T	2714
(60)	611
100	Link
5	0
302	-50

			3	22	7.0	S.	32	10	٦	3	i	Į,	1	T	0,10		200
			1	107	200	5535	10	173 to	and.		100	20	(19	1,		1	000
-	a	25	150	566	0.00	10	٦	0	2		No.	4	ń		12	-d1 5.86	10.00
450	395	3,62		FOR	1075	210	B	163	192	No.	62	45	30	10	10-	- 1	TOTAL .
750	73	790	(200	3770	220	27.0	100	26.5	750	90	NA.	7)	F	è		
										1	h.		10		14.5	-46 D.34 - 37	
											-		ie.	7	9 00	-31 3.43 %	101111

LOUNTH NO. 12 COUNTY OF

2 . CO

Territor State of A/O Server

DEFINITION OF SYMBOLS

```
area (square inches)
      inside diameter of specimen (inches)
      outside diameter of specimen (inches)
      modulus of elasticity (Youngs modulus) (1b./in2)
E = G = modulus of rigidity (shearing modulus) (lb/in2)
      force normal to interface (normal load on specimen)
        (pounds or kilograms)
      gage length or length along specimen between indicator
        arms (inches)
      applied torque (gram inches)
Q. =
      radius of indicator arm (inches)
R
      mean radius of specimen (inches)
      normal stress at interface (lb/in2)
Sw =
      normal stress at interface (kg/cm2)
      principal stress in specimen (1b/in2)
S ==
      combined shear stress in specimen (1b/in2)
S ==
      maximum tungential stress in interface due
Sm =
         to applied torque (lb/in2)
      maximum tangential stress in interface (kg/cm2)
TA
      torque applied to specimen (lb. inches)
      calculated angle of twist for specimen
         without interface (minutes of arc)
      observed angle of twist in specimen (minutes of arc)
$p =
      residual angle of twist in specimen (minutes of arc)
```

observed angle of twist in specimen (micrometer drum units)

residual angle of twist in specimen (micrometer drum units)

apparent slip at interface (centimeters)

AND THE PARTY OF PERSONS

```
(equipme thousand per-
                                                                     (audeal) assists to retently obtain
                                                                  (annual) are least to terrough ablatus
                                 ("milyes) (million agency) tribitents to estatem)
                           ("nt/si) (setupos telesacie) (spinites to colline o
                        Cores Hornel to Enteriors (sersed here in constant)
                                                                                                          (courtedly we shaped) ..
               sage langua or languh eleng speriess between haddeling
                                                                                                                                   (sedont) brut
                                                                                             (united area) oguyat lillegi
                                                                                (andres) was resulted to applied
                                                                            - (tadent) washning to nothly same
                                                                        natural streets to interfers (15/10")
                                                                       ("no \nd) woodystend for annual furnous
                                                                 retarding agence in appending (15/in')
                                                  "writing amend of warring their barrious
                                                 mention tingential street in interface dur-
                                                                                      I styll) served nations of
                                  I me'out asserted at severa Intercept contrast
                                                           torque southed to exections (1h- Inches)
                                                           seminary not dailed to since learninging (new to makenta) and trades finding
                  twee to return) sentence of bully to sign approprie
                    realisms to results of twice in specimen (also as of age)
the course of the terminal and the second of the second and the se
vertical capte of thirt to manetant interconstor mean talks
                                                     ignorest stire of interface locating-born
```

BIBLIOGRAPHY

- 1. A.J. Coyle and H.A. Stromberg, Jr., "Elastic Behavior of Metal Interfaces," M.I.T. Thesis, 1954.
- 2. G.A. Tomlinson, P.L. Thorpe, and J.H. Gough, "An Investigation of the Fretting Corrosion of Closely Fitting Surfaces," Institute of Mechanical Engineers, 1939.
- 3. S. Timoshenko and G.H. MacCullough, "Elements of Strength of Materials," D. Van Nostrand Company, Inc., New York, 1940.
- 4. F.P. Bowden and D. Tabor, "The Friction and Lubrication of Solids," Oxford at the Clarendon Press, 1950.
- 5. M.C. Shaw and E.F. Macks, "Analysis and Lubrication of Bearings," McGraw-Hill Book Company, Inc., New York, 1949.
- 6. J.M. Labberton and L.S. Marks, "Marine Engineers Handbook," McGraw-Hill Book Company, Inc., New York, 1945.
- 7. G. Herring and J.K. Galt, "Elastic and Plastic Properties of Very Small Metal Specimens," The Physical Review, Vol. 85, March 15, 1952, pp. 1060-1061.
- 8. K.J. Habell and Arthur Cox, "Engineering Optics,"
 Sir Isaac Pitman and Sons, Ltd., London, 1948.
- 9. J. Strong, "Procedures in Experimental Physics,"
 Prentice Hall, Inc., New York, 1943.

195/19801 - 19

- T. E. S. Correction of T. E. S. C. Constant Cons
- 2. U.s. To-lineon, I.i. Phores and J.H. Usuch, "in laveslinesism of the fraction Decreases of Clussic Tithing Ustrana," inclinate of Geobraigel Loginson, 1939.
- S. S. Fiscanda and U.S. Miccellough, "limmate of breakath of Wassinia," U. Vor Kontrack Commany, Ten., New Tork, 1910.
- L. F.P. Zowoln and H. Theor, "The Principal and Universitate of moline," Carord at the Cleropuon Press, 1950.
 - S. M.C. SMAR AND M.T. Proces "Analysis and Lauricetion of SMARLANGE." SECRET-FILL MOCK COMMANY, Inc., Not look, 25404
- 6. A.R. Lucessten and L.D. Hotte, "Varias Ingineers Handbook," Rucksa-alli Loux Company, Inc., New York, 1945.
- - 8. f.J. lebell and Arther Cox, "Kanthamarine Option," Sterland Steen and Sone, Mar., Lebius, 1918:

W626

Williamscn

Initial elastic and frictional behavior of metal interfaces.

TL 13

28992

Villiamson
Initial elastic and
frictional behavior of sotal
interfaces.

thesW626
Initial elastic and frictional behavior

3 2768 001 90108 5
DUDLEY KNOX LIBRARY