CMPE 322/327 - Theory of Computation Week 5: State Minimization & Myhill-Nerode Relations

Burak Ekici

March 21-25, 2022

1/32

A Quick Recap ●○○○ State Minimization

Myhill-Nerode Relations

Outline

- 1 A Quick Recap
- 2 State Minimization
- **3** Myhill-Nerode Relations

Definition

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\mathbf{\mathcal{E}}$ $\mathbf{\mathcal{O}}$ $\alpha + \beta$ α^* $\alpha\beta$

Theorem

finite automata, patterns, and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ **1** A is regular

 \iff 2 $A = L(\alpha)$ for some pattern α

 \iff 3 $A = L(\alpha)$ for some regular expression α

Proof.

 $2 \implies 1 \quad \text{induction on } \alpha$

 $\mathbf{0} \implies \mathbf{0}$

3/32

A Quick Recap ○○●○ State Minimization

Myhill-Nerode Relations

Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof.

- DFA $M = (Q, \Gamma, \delta, s, F)$
- homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(L(M)) = L(M')$ for DFA $M' = (Q, \Sigma, \delta', s, F)$ with $\delta'(q, a) := \widehat{\delta}(q, h(a))$

 $\beta' + \gamma'$

 $\beta'\gamma'$

 $(\beta')^*$

Theorem

regular sets are effectively closed under homomorphic image and preimage

Proof.

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$\begin{array}{lll} \mathbf{a'} & = & h(\mathbf{a}) & \text{for } \mathbf{a} \in \Sigma & (\beta + \gamma)' \\ \boldsymbol{\varepsilon'} & = & \boldsymbol{\varepsilon} & (\beta \gamma)' \\ \boldsymbol{\varnothing'} & = & \boldsymbol{\varnothing} & (\beta^*)' \end{array}$$

5/32

A Quick Recap

State Minimization
•00000000000

Myhill-Nerode Relations

Outline

- 1 A Quick Recap
- 2 State Minimization
- 3 Myhill-Nerode Relations

7/32

A Quick Recap

State Minimization

Myhill-Nerode Relations

Definitions

DFA $M = (Q, \Sigma, \delta, s, F)$

- state p is inaccessible if $\hat{\delta}(s, x) \neq p$ for all $x \in \Sigma^*$
- states p and q are distinguishable if

 $\exists x \in \Sigma^*, (\widehat{\delta}(p, x) \in F \land \widehat{\delta}(q, x) \notin F) \lor (\widehat{\delta}(p, x) \notin F \land \widehat{\delta}(q, x) \in F)$

Minimization Algorithm

DFA $M = (Q, \Sigma, \delta, s, F)$

- remove inaccessible states
- ② for every two different states, determine whether they are distinguishable (marking)
- **©** collapse indistinguishable states

Marking Algorithm

given DFA $M = (Q, \Sigma, \delta, s, F)$ without inaccessible states

- 1 tabulate all unordered pairs $\{p, q\}$ with $p, q \in Q$, initially unmarked
- 2 mark $\{p, q\}$ if $p \in F$ and $q \notin F$ or vice versa
- led repeat until no change:

mark $\{p, q\}$ if $\{\delta(p, a), \delta(q, a)\}$ is marked for some $a \in \Sigma$

Notation

 $p \approx q \iff$ states p and q are indistinguishable

Lemma

 $p \approx q \iff \{p, q\} \text{ is unmarked}$

11/32

A Quick Recap

State Minimization

Myhill-Nerode Relations

Example

1

√ 3

√ √ √ 4 √ √ √ 5

/ / / / / 6

final/non-final states are distinguishable

2 $\{2,6\} \xrightarrow{a} \{4,6\} \quad \{3,6\} \xrightarrow{a} \{5,6\}$

(a) $\{1,4\} \xrightarrow{a} \{2,6\}$ $\{1,5\} \xrightarrow{a} \{2,6\}$

Definition

states p and q of DFA $M = (Q, \Sigma, \delta, s, F)$ are indistinguishable $(p \approx q)$ if

$$\forall x \in \Sigma^*, \widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F$$

Lemma

 \approx is equivalence relation on Q

- - (reflexivity)
- § $\forall p, q, r \in Q$ $p \approx q \land q \approx r \implies p \approx r$ (transitivity)

Notation

 $[p]_{\approx} := \{q \in Q \mid p \approx q\}$ denotes equivalence class of p

13/32

A Quick Recap

State Minimization

Myhill-Nerode Relations

Definition (Collapsing Indistinguishable States)

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

- $Q' := \{ [p]_{\approx} \mid p \in Q \}$
- $\delta'([p]_{\approx}, a) := [\delta(p, a)]_{\approx}$

well defined: $p \approx q \implies \delta(p, a) \approx \delta(q, a)$

- S' := [S]_≈
- $F' := \{ [p]_{\approx} \mid p \in F \}$

Lemma

for all $p \in Q$

Theorem

 $L(M/\approx) = L(M)$

Proof.

 $\begin{array}{ccc} x \in L(M/\approx) & \iff & \widehat{\delta'}([s]_{\approx}, x) \in F' \\ & \iff & [\widehat{\delta}(s, x)]_{\approx} \in F' \\ & \iff & \widehat{\delta}(s, x) \in F \\ & \iff & x \in L(M) \end{array}$

15/32

A Quick Recap

State Minimization

Myhill-Nerode Relations

Question

is M/\approx minimum-state DFA for L(M)?

Lemma

 M/\approx cannot be collapsed further

Proof.

$$\begin{split} [p]_{\approx} \approx [q]_{\approx} &\iff & \forall x \in \Sigma^* & (\widehat{\delta'}([p]_{\approx}, x) \in F' &\iff & \widehat{\delta'}([q]_{\approx}, x) \in F') \\ &\iff & \forall x \in \Sigma^* & ([\widehat{\delta}(p, x)]_{\approx} \in F' &\iff & [\widehat{\delta}(q, x)]_{\approx} \in F') \\ &\iff & \forall x \in \Sigma^* & (\widehat{\delta}(p, x) \in F &\iff & \widehat{\delta}(q, x) \in F) \\ &\iff & \forall x \in \Sigma^* & p \approx q \\ &\iff & \forall x \in \Sigma^* & [p]_{\approx} = [q]_{\approx} \end{split}$$

A Quick Recap

State Minimization

Myhill-Nerode Relations

•00000000000000

Outline

- 1 A Quick Recap
- 2 State Minimization
- 3 Myhill-Nerode Relations

 A Quick Recap
 State Minimization
 Myhill-Nerode Relations

 ○○○
 ○○○○○○○○○○
 ○●○○○○○○○○○○○

Definition

Myhill-Nerode relation \equiv for $L \subseteq \Sigma^*$ is an equivalence relation that

• is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv y \implies \forall a \in \Sigma$ $xa \equiv ya$

• refines L: $\forall x, y \in \Sigma^* \quad x \equiv y \implies \text{ either } x, y \in L \text{ or } x, y \notin L$

• is of finite index: ≡ has finitely many equivalence classes

19/32

A Quick Recap

State Minimization

Myhill-Nerode Relations

Definition

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_{\mathsf{M}} y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemma

• \equiv_M is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies \forall a \in \Sigma$ $xa \equiv_M ya$

• \equiv_M refines L(M): $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies$ either $x, y \in L(M)$ or $x, y \notin L(M)$

• \equiv_M is of finite index: \equiv_M has finitely many equivalence classes

Corollary

 \equiv_M is Myhill-Nerode relation for L(M)

A Quick Recap

State Minimization

Myhill-Nerode Relations

Definition

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

- $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$
- $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$

well-defined: $x \equiv y \implies xa \equiv ya$

- $s := [\varepsilon]_{\equiv}$
- $F := \{ [x]_{\equiv} \mid x \in L \}$

Lemma

 $\widehat{\delta}([x]_{\equiv}, y) = [xy]_{\equiv} \text{ for all } y \in \Sigma^*$

 $2x \in L \iff [x]_{\equiv} \in F$

for all $x \in \Sigma^*$

Theorem

 $L(M_{\equiv}) = L$

Proof.

$$x \in L(M_{\equiv}) \qquad \Longleftrightarrow \qquad \widehat{\delta}([\varepsilon]_{\equiv}, x) \in F$$

$$\Longleftrightarrow \qquad [x]_{\equiv} \in F$$

$$\Longleftrightarrow \qquad x \in L$$

Corollary

if L admits Myhill-Nerode relation then L is regular

25/32

A Quick Recap

State Minimization

Myhill-Nerode Relations

Theorem

two mappings (for $L \subseteq \Sigma^*$)

- $D \mapsto \equiv_D$ from DFAs for L to Myhill-Nerode relations for L
- $\approx \mapsto M_{\approx}$ from Myhill-Nerode relations for L to DFAs for L

are each others inverse (up to isomorphism of automata):

- $M_{(\equiv_D)} \simeq D$ \forall DFA D without inaccessible states
- $\equiv_{(M_{\approx})} = \approx$ \forall Myhill-Nerode relation \approx

A Quick Recap

State Minimization

Myhill-Nerode Relations

Definition

for any set $L \subseteq \Sigma^*$, equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff \forall z \in \Sigma^*, (xz \in L \iff yz \in L)$$

Lemma

for any set $L \subseteq \Sigma^*$, \equiv_L is coarsest right congruent refinement of L:

if \sim is right congruent equivalence relation refining L then

$$\forall x,y \in \Sigma^*, \ x \sim y \implies x \equiv_L y$$

 \equiv_L has fewest equivalence classes

Theorem (Myhill-Nerode)

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill-Nerode relation
- \equiv_L is of finite index

Corollary

for every regular set L, $M_{(\equiv_L)}$ is minimum-state DFA for L

Theorem

for every DFA M, $M/\approx \simeq M_{\equiv_I}$

29/32

A Quick Recap

State Minimization

Myhill-Nerode Relations

Example

① $A := \{a^n b^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \not\in A)$$

② $B := \{a^{2^n} \mid n \ge 0\}$ is not regular because \equiv_B has infinitely many equivalence classes

$$i < j \implies a^{2^i} \not\equiv_B a^{2^i} \quad (a^{2^i} a^{2^i} = a^{2^{i+1}} \in B \text{ and } a^{2^i} a^{2^i} \notin B)$$

③ $C := \{a^{n!} \mid n \ge 0\}$ is not regular because \equiv_C has infinitely many equivalence classes

$$i < j \implies a^{i!} \not\equiv_C a^{j!} \quad (a^{i!}a^{i!i} = a^{(i+1)!} \in C \text{ and } a^{j!}a^{i!i} \notin C)$$

State Minimization A Quick Recap Myhill-Nerode Relations 0000 00000000000 00000000000000

Example

 $\Phi D := \{a^p \mid p \text{ is prime}\}\$ is not regular because \equiv_D has infinitely many equivalence classes

i < j and i, j are primes $\implies a^i \not\equiv_D a^j$

- suppose $a^i \equiv_D a^j$ and let k = j i• $a^i \equiv_D a^j = a^i a^k \equiv_D a^j a^k \equiv_D a^j a^k a^k = a^j a^{2k} \equiv_D \cdots \equiv_D a^j a^{jk} = a^{j(k+1)}$ $a^i \in D$ and $a^{j(k+1)} \notin D$
- \equiv_D does not refine D

31/32

A Quick Recap 0000

State Minimization 00000000000 Myhill-Nerode Relations 0000000000000

Thanks! & Questions?