

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математических методов прогнозирования

Никишин Евгений Сергеевич

Методы выделения сообществ в социальных графах

КУРСОВАЯ РАБОТА

Научный руководитель:

д.ф-м.н., профессор А.Г. Дьяконов

Образец титульного брал отсюда

Москва, 2016

version 0.06

Содержание

1	Вве	дение (неполное)	
	1.1	Модулярность	
		биение на непересекающиеся сообщества	
2	Разбиение на непересекающиеся сообщества		
	2.1	Edge betweenness	
	2.2	Label propagation	
	2.3	FastGreedy	
	2.4	WalkTrap	
	2.5	Infomap	
	2.6	Leading Eigenvector	
	2.7	MultiLevel	

1 Введение (неполное)

1.1 Модулярность

$$Q = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{d_i d_j}{2m} \right) \delta(C_i, C_j)$$

Testtest [2, 5, 3, 4, 1]

2 Разбиение на непересекающиеся сообщества

2.1 Edge betweenness

Для каждой пары вершин связного графа можно вычислить кратчайший путь, их соединяющий. Будем считать, что каждый такой путь имеет вес, равный 1/N, где N — число возможных кратчайших путей между выбранной парой вершин. Если такие веса посчитать для всех пар вершин, то каждому ребру можно поставить в соответствие значение Edge betweenness — сумму весов путей, прошедших через это ребро.

Для ясности приведём следующую иллюстрацию:

Рис. 1: Граф, для ребёр которого посчитаны значения Edge betweenness

В данном графе хочется выделить два сообщества: с вершинами 1-5 и 6-10. Граница же будет проходить через ребро, имеющее максимальный вес, 25. На этой идее и основывается алгоритм: поэтапно удаляем ребра с наибольшим весом, а оставшиеся компоненты связности объявляем сообществами.

Собственно, сам алгоритм:

- 1. Инициализировать веса
- 2. Удалить ребро с наибольшим весом
- 3. Пересчитать веса для ребёр
- 4. Сообществами считаются все компоненты связности
- 5. Посчитать функционал модулярности (о нём будет сказано ранее)
- 6. Повторять с шаги 2-6, пока есть рёбра

На каждой итерации процесса получается некое разбиение вершин. Последовательность таких разбиений, имеющая вид дерева, в листьях которого находятся сообщества с одной вершиной, а в корне — большое сообщество, содержащее все вершины, называется дендрограммой. Результатом работы алгоритма является ярус дендрограммы (т.е. разбиение), имеющий максимальную модулярность.

Из необходимости каждый раз пересчитывать веса следует главный минус: вычислительная сложность в худшем случае составляет $O(m^2n)$, где m — количество ребёр, n — количество вершин. Эксперименты показывают, что пересчитывать обычно приходится только веса для рёбер, которые были в одной компоненте связности, что несколько уменьшает сложность, однако зачастую этого оказывается недостаточно.

2.2 Label propagation

Допустим, что большинство соседей какой-либо вершины принадлежат одному сообществу. Тогда, с высокой вероятностью, ему также будет принадлежать выбранная вершина. На этом предположении и строится алгоритм Label propagation: каждая вершина в графе определяется в то сообщество, которому принадлежит большинство его соседей. Если же таких сообществ несколько, то выбирается случайно одно из них. Пример:

Рис. 2: Демонстрация работы алгоритма для полного графа

В начальный момент времени всем вершинам ставится в соответствие отдельное сообщество. Затем происходят перераспределения сообществ. Из-за случайности

важно на каждой итерации изменять порядок обхода вершин. Алгоритм заканчивает работу, когда нечего изменять: все вершины относятся к тем сообществам, что и большинство их соседей. Авторы также советуют запускать несколько раз алгоритм и выбирать наилучшее из результирующих разбиений, либо пересекать их. Главное достоинство данного алгоритма, в противовес предыдущему, — почти линейная сложность. Однако на зашумленных графах зачастую происходит объединение всех вершин в одно сообщество.

2.3 FastGreedy

Алгоритм заключается в жадной оптимизации модулярности. Как и в прошлом методе, в каждой вершине графа инициализируется отдельное сообщество, а затем объединяются пары сообществ, приводящие к максимальному увеличению модулярности. При этом объединяются только инцидентные пары вершин, так как, в противном случае, модулярность не может увеличиться [во введении необходимо будет объяснить смысл модулярности, чтобы этот факт не вызывал вопросов].

Результатом работы алгоритма будет ярус дендрограммы, на котором модулярность максимальна.

Метод является вычислительно нетрудоёмким $(O(m \log n))$, легко применим к большим графам и, несмотря на жадность, зачастую неплохо справляется с задачей.

2.4 WalkTrap

Допустим, на вершинах графа задана такая метрика, что между двумя вершинами из разных сообществ расстояние велико, а из одного — мало. Тогда выделение сообществ можно рассматривать как задачу кластеризации вершин. Попытаемся ввести такую метрику, используя случайные блуждания. Объект может переместиться из вершины i в вершину j с вероятностью $P_{ij} = \frac{A_{ij}}{d_i}$, где A — матрица смежности, d_i — степень i. То есть на каждом шаге равновероятно выбирается "сосед" вершины i. Таким образом определяется матрица переходов P случайного блуждания. Она примечательна тем, что её степени являются вероятностями перехода из одной вершины в другую за соответствующее число шагов: вероятность перехода из i в j за t шагов равна $(P^t)_{ij}$. Также следует отметить, что $P = D^{-1}A$, где D — матрица со степенями вершин на диагонали. Используя этот аппарат можно ввести желаемую метрику на вершинах:

$$r_{ij} = \sqrt{\sum_{k=1}^{n} \frac{(P_{ik}^{t} - P_{jk}^{t})^{2}}{d(k)}} = \|D^{-\frac{1}{2}} P_{i\bullet}^{t} - D^{-\frac{1}{2}} P_{j\bullet}^{t}\|,$$

где $P_{i\bullet}^t$ — вектор из вероятностей перехода за t шагов из вершины i во все другие. Вообще говоря, метрика зависит от t, авторы советуют брать $3 \le t \le 8$.

Естественным образом расстояние между вершинами обобщается на расстояние между сообществами:

$$r_{1C_2} = \left\| D^{-\frac{1}{2}} P_{C_1 \bullet}^t - D^{-\frac{1}{2}} P_{C_2 \bullet}^t \right\| = \sqrt{\sum_{k=1}^n \frac{(P_{C_1 k}^t - P_{C_2 k}^t)^2}{d(k)}},$$

где

$$P_{Cj}^t = \frac{1}{|C|} \sum_{i \in C} P_{ij}^t$$

Теперь, когда задана метрика, можно попытаться выделить кластеры в графе. Начальное разбиение — по одной вершине в каждом кластере $\mathcal{P}_1 = \{\{v\}, v \in V\}$. Также для всех пар инцидентных вершин считается расстояние. Далее для каждого k.

- 1. Выбрать C_1 и C_2 из \mathcal{P}_k согласно некоторому метрическому критерию.
- 2. Объединить два сообщества в новое $C_3 = C_1 \cup C_2$ и обновить разбиение $\mathcal{P}_{k+1} = (\mathcal{P}_k \setminus \{C_1, C_2\}) \cup C_3$.
- 3. Обновить расстояния между инцидентными сообществами.

После n-1 шага получается дендрограмма разбиений, а $\mathcal{P}_n = \{V\}$. Таким образом, остался неясным только критерий выбора пар сообществ на шаге 1. Будем выбирать пару сообществ, минимизирующих приращение среднего квадратов расстояний между каждой вершиной и их сообществом при объединении сообществ. Т.е.

$$\Delta\sigma(C_1, C_2) = \frac{1}{n} \left(\sum_{i \in C_3} r_{iC_3}^2 - \sum_{i \in C_1} r_{iC_1}^2 - \sum_{i \in C_2} r_{iC_2}^2 \right) \to \min_{C_1, C_2}$$

Теперь осталось только получить результат, выбрав разбиение, на котором достигает максимума модулярность.

2.5 Infomap

TBA

2.6 Leading Eigenvector

Для начала небольшой экскурс по спектральным методам выделения сообществ. Допустим, для простоты, что всего в графе 2 группы. Тогда предлагается, согласно неформальному определению сообществ, что количество ребёр между этими группами, также называемое *cut size*, должно быть мало. Т.е.

$$R = \frac{1}{2} \sum_{\substack{i,j \text{ B} \\ \text{разных} \\ \text{rpymnax}}} A_{ij}$$

Чтобы получить более удобное представление вводится вектор индексов \mathbf{s} с n элементами.

$$s_i = \begin{cases} +1, & \text{если вершина } i \text{ принадлежит сообществу } 1 \\ -1, & \text{если вершина } i \text{ принадлежит сообществу } 2 \end{cases}$$

Тогда

$$\frac{1}{4}(1-s_is_j) = \begin{cases} 1, & \text{если вершины } i \text{ и } j \text{ принадлежат разным группам} \\ 0, & \text{если вершины } i \text{ и } j \text{ принадлежат одинаковым группам} \end{cases}$$

и величину *cut size* можно переписать в виде

$$R = \frac{1}{4} \sum_{ij} (1 - s_i s_j) A_{ij}$$

Используем следующую цепочку преобразований

$$\sum_{ij} A_{ij} = \sum_{i} d_i = \sum_{i} s_i^2 d_i = \sum_{ij} s_i s_j d_i \delta_{ij}$$

и перепишем cut size следующим образом:

$$R = \frac{1}{4} \sum_{ij} s_i s_j (k_i \delta_{ij} - A_{ij}) = \frac{1}{4} \mathbf{s}^T \mathbf{L} \mathbf{s}$$

где \mathbf{L} — матрица Лапласа.

$$L_{ij} = \begin{cases} d_i, & \text{если } i = j \\ -1, & \text{если } i \neq j \text{ и между } i \text{ и } j \text{ есть ребро} \\ 0, & \text{иначе} \end{cases}$$

Далее надо отметить несколько замечательных свойств матрицы Лапласа:

- 1. Матрица симметричная, а, значит, собственные векторы образуют ортонормированный базис
- 2. Все собственные значения матрицы неотрицательны
- 3. Сумма по любой строке или по любому столбцу равна 0
- 4. Из свойств 2 и 3 следует, что всегда будет нулевое собственное значение и соответствующий ему собственный вектор $(1,1,1,\dots)/\sqrt{n}$

Можно пойти дальше и ещё упростить запись $cut\ size$: если разложить $\mathbf{s}=\sum_{i=1}^n a_i\mathbf{v}_i$, где $a_i=\mathbf{v}_i^T\mathbf{s}$, то

$$R = \sum_{i} a_{i} \mathbf{v}_{i}^{T} \mathbf{L} \sum_{j} a_{j} \mathbf{v}_{j} = \sum_{ij} a_{i} a_{j} \lambda_{j} \delta_{ij} = \sum_{i} a_{i}^{2} \lambda_{i}$$

Таким образом, минимизацию R можно рассматривать как выбор a_i^2 , минимизирующих сумму. Как было отмечено, всегда существует собственный вектор из единиц. Если положить $\mathbf{s}=(1,1,1,\dots)$, то R становится равным нулю, что соответствует объединению всех вершин в одно сообщество. Такой тривиальный случай нас не интересует, поэтому рассматривается собственный вектор, соответствующий второму минимальному собственному значению. То есть мы будем подбирать вектор \mathbf{s} наиболее близким к $\mathbf{v}^{(2)}$. Учитывая ограничение, что значения \mathbf{s} могут быть только ± 1 , искомое \mathbf{s} принимает вид

$$s_i = \begin{cases} +1, & v_i^{(2)} \ge 0\\ -1, & v_i^{(2)} < 0 \end{cases}$$

Это и есть спектральный метод в простейшем виде.

Однако авторы отмечают, что хорошее разделение — не совсем то, через которое проходит наименьшее число вершин. Поэтому они предлагают разделять те места, где количество рёбер меньше, чем ожидалось, или, наоборот, объединять те вершины, у которых количество рёбер больше, чем ожидалось.

Q = (количество вершин внутри сообщества) - (ожидаемое количество вершин)

$$= \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{d_i d_j}{2m} \right) \delta(C_i, C_j) \to \max$$

Вот откуда берётся модулярность Используя $\delta(C_i, C_j) = \frac{1}{2}(s_i s_j + 1)$ перепишем

$$Q = \frac{1}{4m} \sum_{i,j} \left(A_{ij} - \frac{d_i d_j}{2m} \right) (s_i s_j + 1) = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s},$$

где ${\bf B}$, называемая матрицей модулярности, во многих смыслах похожа на матрицу Лапласа

$$B_{ij} = A_{ij} - \frac{d_i d_j}{2m}$$

 ${\rm M}$ именно настраивая вектор ${\rm s}$ на собственный вектор, соответствующий максимальному собственному значению, получается метод Leading Eigenvector.

$$s_i = \begin{cases} +1, & u_i^{(1)} \ge 0\\ -1, & u_i^{(1)} < 0 \end{cases}$$

Напомним, что будет относить к сообществу 1 те вершины, у которых соответствующее значение вектора $\mathbf s$ равно плюс единице, и к сообществу 2 иначе. Подобным образом граф разбивается на сообщества, пока увеличивается значение модулярности.

2.7 MultiLevel

Алгоритм основан на оптимизации модулярности. Как и в многих предыдущих методах, каждой вершине сначала ставится в соответствие по сообществу. Далее чередуются следующие этапы:

1. Первый этап

- Для каждой вершины перебираем её соседей
- Перемещаем в сообщество соседа, при котором модулярность увеличивается максимально
- Если перемещение в любое другое сообщество может только уменьшить модулярность, то вершина остаётся в своём сообществе
- Последовательно повторяем, пока какое-либо улучшение возможно

2. Второй этап

- Создать метаграф из сообществ-вершин. При этом рёбра будут иметь веса, равные сумме весов всех рёбер из одного сообщества в другое или внутри сообщества (т.е. будет взвешенная петля)
- Перейти на первый этап для нового графа

Алгоритм прекращает работу, когда на обоих этапах модулярность не поддаётся улучшению. Все исходные вершины, которые входят в финальную метавершину, принадлежат одному сообществу.

Несколько замечаний:

- На первом этапе вершина может рассматриваться несколько раз
- Порядок перебора не сильно влияет на точность, однако может существенно влиять на время работы алгоритма
- На практике оказывается достаточно 3-4 итераций

Для ясности приведём иллюстрацию общей схемы работы алгоритма

Рис. 3: Два прохода алгоритма. Для первого показаны оба этапа

2do: разобраться с русской кодировкой и правильным оформлением списка литературы

Список литературы

- [1] Clauset, A. Finding community structure in very large networks / Aaron Clauset, M. E. J. Newman, Cristopher Moore // Physical Review E. 2004. http://arxiv.org/abs/cond-mat/0408187.
- [2] Girvan, M. Community structure in social and biological networks / Michelle Girvan, M. E. J. Newman // Proceedings of the National Academy of Sciences. 2001. http://arxiv.org/abs/cond-mat/0112110.
- [3] igraph library. 2016. http://igraph.org/python/.
- [4] Raghavan, U. N. Near linear time algorithm to detect community structures in large-scale networks / Usha Nandini Raghavan, Reka Albert, Soundar Kumara // Physical Review E. 2007. http://arxiv.org/abs/0709.2938.
- [5] Slavnov, K. A. Social graph analysis. 2015. http://www.machinelearning.ru/wiki/images/6/60/2015_417_SlavnovKA.pdf.