RESEARCH

Additional File to the Article 'A Systematic Comparison of Recurrent Event Models for Application to Composite Endpoints'

Ann-Kathrin Ozga^{1,2*}, Meinhard Kieser² and Geraldine Rauch^{2,3}

Full list of author information is available at the end of the article

Implementation in R

To illustrate how the analysis of recurrent event data with the models of Andersen and Gill [1], Prentice, Williams, and Peterson [2], and Wei, Lin, and Weissfeld [3] can be performed by application of the statistical software R, we will provide the corresponding program code for a small exemplary data set named *DataRec*:

Individual 1 belongs to group 1, experiences three non-fatal events at months 2, 3, 5, and is censored at month 8; individual 2 is in group 1, experiences no event and is censored at month 10: individual 3 belongs to group 2, experiences events at months 1 and 6 and is censored at months 10. We assume a common study start for each individual at time point 0.

Implementation of the Anderson-Gill model

The required data frame for the Anderson-Gill model [1] is given in Table 1.

Table 1 Data frame for AG model

ID	group	start	stop	status
1	1	0	2	1
1	1	2	3	1
1	1	3	5	1
1	1	5	8	0
2	1	0	10	0
3	2	0	1	1
3	2	1	6	1
3	2	6	10	0

Data frame as required for the Andersen-Gill model; ID: patient ID, group: treatment group; start: study entry time/previous event time; stop: event/censoring times; status: event indicator

The R code to apply the Andersen-Gill model to the data set DataRec is given as

 $coxph(Surv(start, stop, status) \sim group + cluster(ID), data = DataRec)$

Thereby, the coxph function of the survival package [4] is used and cluster(ID) requests robust standard errors for the parameter estimates to account for individual patient heterogeneity.

^{*}Correspondence: a.ozga@uke.de

1 Insititue of Medical Biometry
and Epidemiology, University
Medical Center
Hamburg-Eppendorf,
Martinistraße 52, 20246 Hamburg,

Ozga et al. Page 2 of 5

Implementation of the Prentice-Williams-Peterson models

The stratified model from Prentice, Williams, and Peterson [2] based on the total time scale can be applied using the data frame as displayed in Table 2.

Table 2 Data frame for the PWP total time approach

ID	group	start	stop	status	enum
1	1	0	2	1	1
1	1	2	3	1	2
1	1	3	5	1	3
1	1	5	8	0	4
2	1	0	10	0	1
3	2	0	1	1	1
3	2	1	6	1	2
3	2	6	10	0	3

Data frame as required for the Prentice-Williams-Peterson total time model; ID: patient ID, group: treatment group; start: study entry time/previous event time; stop: event/censoring times; status: event indicator; enum: indicator for the stratum

The corresponding R code is given as

 $coxph(Surv(start, stop, status) \sim group + cluster(ID) + strata(enum), data = DataRec)$

The stratified model from Prentice, Williams, and Peterson [2] based on the gap time scale can be applied using the data frame as displayed in Table 3.

Table 3 Data frame for the PWP gap time approach

ID	group	start	stop	status	enum
1	1	0	2	1	1
1	1	0	1	1	2
1	1	0	2	1	3
1	1	0	3	0	4
2	1	0	10	0	1
3	2	0	1	1	1
3	2	0	5	1	2
3	2	0	4	0	3

Data frame as required for the Prentice-Williams-Peterson gap time model; ID: patient ID, group: treatment group; start: study entry time/previous event time; stop: event/censoring times; status: event indicator; enum: indicator for the stratum

The corresponding R code is given as

 $coxph(Surv(start, stop, status) \sim group + cluster(ID) + strata(enum), data = DataRec)$

Implementation of the Wei-Lin-Weissfeld model

The stratified model from Wei, Lin, and Weissfeld [3] can be applied using the data frame as displayed in Table 4.

Ozga et al. Page 3 of 5

Table 4 Data frame for the WLW model

ID	group	start	stop	status	enum
1	1	0	2	1	1
1	1	2	3	1	2
1	1	3	5	1	3
2	1	0	10	0	1
2	1	0	10	0	2
2	1	0	10	0	3
3	2	0	1	1	1
3	2	1	6	1	2
3	2	6	10	0	3

Data frame as required for the Wei-Lin-Weissfeld model; ID: patient ID, group: treatment group; start: study entry time/previous event time; stop: event/censoring times; status: event indicator; enum: indicator for the stratum

The corresponding R code is given as

 $coxph(Surv(start, stop, status) \sim group + cluster(ID) + strata(enum), data = DataRec)$

Bayesian Information Criterion for all simulated scenarios concerning the results in Table 2 of the Manuscript

In Table 5 the mean Bayesian Information Criterion [5] over 5000 simulations per scenario is given for all simulated situations listed in Table 2 of the main manuscript.

Table 5 Simulation Results: BIC

	Simulation parameters							
Sc.	$\lambda_0^{MI}(t, t_{prev})$	$\lambda_0^D(t, t_{prev})$	$exp(\beta^{MI}(t_{prev}))$	$exp(\beta^D(t_{prev}))$	\overline{BIC}_{AG}	\overline{BIC}_{PWP1}	\overline{BIC}_{PWP2}	\overline{BIC}_{WLW}
1a	0.25	0.25	0.5	0.5	727.93	659.21	700.38	727.73
1b	0.25	0.25	0.5	0.7	726.73	658.45	699.75	727.29
1c	0.25	0.25	0.7	0.5	831.11	750.06	797.12	828.85
1d	0.25	0.25	0.7	1.5	820.95	743.27	791.23	823.88
1e	0.25	0.25	1.5	0.7	1206.35	1061.61	1128.26	1184.12
$\overline{2}a$	$0.\overline{25} \cdot 1/\sqrt{t_{prev}}$	$0.25 \cdot 1/\sqrt{t_{prev}}$	0.5	0.5	685.26	637.10	675.74	687.64
2b	$0.25 \cdot 1/\sqrt{t_{prev}}$	$0.25 \cdot 1/\sqrt{t_{prev}}$	0.5	0.7	684.30	636.52	675.30	687.41
2c	$0.25 \cdot 1/\sqrt{t_{prev}}$	$0.25 \cdot 1/\sqrt{t_{prev}}$	0.7	0.5	784.87	725.59	770.12	785.65
2d	$0.25 \cdot 1/\sqrt{t_{prev}}$	$0.25 \cdot 1/\sqrt{t_{prev}}$	0.7	1.5	776.49	720.20	765.71	782.26
2e	$0.25 \cdot 1/\sqrt{t_{prev}}$	$0.25 \cdot 1/\sqrt{t_{prev}}$	1.5	0.7	1133.92	1016.61	1087.30	1120.17
$\bar{3}a^{-}$	$t^{0.3}$	-t0:3	0.5	0.5	2232.49	1809.78	1983.16	2121.24
3b	$t^{0.3}$	$t^{0.3}$	0.5	0.7	2200.92	1788.45	1961.25	2100.93
3c	$t^{0.3}$	$t^{0.3}$	0.7	0.5	2550.04	2050.49	2253.46	2404.13
3d	$t^{0.3}$	$t^{0.3}$	0.7	1.5	2342.49	1906.77	2106.54	2260.55
3e	$t^{0.3}$	$t^{0.3}$	1.5	0.7	3549.93	2672.83	3037.22	3243.98
3f	$1.5t^{0.3}$	$t^{0.3}$	0.5	0.5	3231.42	2443.76	2755.38	2948.67
$\overline{4}a^{-}$	0.25	0.25	$\overline{0.5exp}(\overline{0.05ln}(\overline{0.5}) \cdot \overline{t_{prev}})$	$0.5exp(0.05ln(0.5) \cdot t_{prev})$	723.04	656.17	696.99	722.93
4b	0.25	0.25	$0.5exp(0.05ln(0.5) \cdot t_{prev})$	$0.7exp(0.05ln(0.5) \cdot t_{prev})$	721.99	655.51	696.46	722.63
4c	0.25	0.25	$0.7exp(0.05ln(0.7) \cdot t_{prev})$	$0.5exp(0.05ln(0.5) \cdot t_{prev})$	827.15	747.72	794.42	824.96
4d	0.25	0.25	$0.7exp(0.05ln(0.7) \cdot t_{prev})$	$1.5exp(0.05ln(0.5) \cdot t_{prev})$	817.47	741.24	788.97	820.49
4e	0.25	0.25	$1.5exp(0.05ln(1.5) \cdot t_{prev})$	$0.7exp(0.05ln(0.5) \cdot t_{prev})$	1218.22	1062.07	1136.19	1195.38
$\overline{5}a$	0.25	0.25	$-0.5exp(-0.05ln(0.5) \cdot t_{prev})$	$0.5exp(-0.05ln(0.5) \cdot t_{prev})$	734.93	663.46	705.21	734.66
5b	0.25	0.25	$0.5exp(-0.05ln(0.5) \cdot t_{prev})$	$0.7exp(-0.05ln(0.5) \cdot t_{prev})$	733.53	662.60	704.40	734.02
5c	0.25	0.25	$0.7exp(-0.05ln(0.7) \cdot t_{prev})$	$0.5exp(-0.05ln(0.5) \cdot t_{prev})$	835.39	752.59	80.08	833.07
5d	0.25	0.25	$0.7exp(-0.05ln(0.7) \cdot t_{prev})$	$1.5exp(-0.05ln(0.5) \cdot t_{prev})$	824.90	745.59	793.81	827.73
5e	0.25	0.25	$1.5exp(-0.05ln(1.5) \cdot t_{prev})$	$0.7exp(-0.05ln(0.5) \cdot t_{prev})$	1195.39	1048.44	1120.97	1173.75
5f	0.25	0.25	$0.5exp(-0.5ln(0.5) \cdot t_{prev})$	$0.5exp(-0.5ln(0.5) \cdot t_{prev})$	808.66	699.74	757.05	809.83

Mean Bayesian Information Criterion (BIC) over 5000 simulations for all corresponding simulated scenarios of Table 2 of the manuscript for the Andersen-Gill model (AG), the Prentice-Williams-Peterson total time model (PWP1), the Prentice-Williams-Peterson gap time model (PWP2), the Wei-Lin-Weissfeld model (WLW); $\lambda_0^{MI}(t,t_{prev})$ baseline hazard function for the recurrent event (myocaridal infarction); $\lambda_0^D(t,t_{prev})$ baseline hazard function for the fatal event (death); $exp(\beta^{MI}(t_{prev}))$ hazard ratio for the recurrent event (myocaridal infarction); $exp(\beta^D(t_{prev}))$ hazard ratio for the fatal event (death).

Ozga et al. Page 5 of 5

Author details

¹ Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany. ² Institute of Medical Biometry and Informatics, University Medical Center Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany. ³Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, 10117 Berlin, Germany.

References

- Andersen, P.K., Gill, R.D.: Cox's regression model for counting processes: A large sample study. The Annals of Statistics 10(4), 1100–1120 (1982)
- 2. Prentice, R.L., Williams, B.J., Peterson, A.V.: On the regression analysis of multivariate failure time data. Biometrika **68(2)**, 373–379 (1981)
- 3. Wei, L.J., Lin, D.Y., Weissfeld, L.: Analysis of multivariate incomplete failure time data by modeling marginal distributions. Biometrika **84(408)**, 1065–1073 (1989)
- Therneau, T.M.: Survival Package, Software R. (2017). Version 2.41-3, https://CRAN.R-project.org/package=survival
- 5. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)