

Time Series Analysis Assignment 2

AUTHORS

Ghassen Lassoued - s196609

March 26, 2020

Report 1 Contents

Contents

1	Question 2.1	1
2	Question 2.2	8
3	Question 2.3	11
4	Code	2 4
\mathbf{Li}	ist of Figures]

1 Question 2.1

Let the process X_t be given by:

$$X_t - 0.8X_{t-1} = \epsilon_t + 0.4\epsilon_{t-1} - 0.3\epsilon_{t-2} \tag{1}$$

which can also be written as

$$\phi(B)X_t = \theta(B)\epsilon_t \tag{2}$$

where ϵ_t is a white noise process with $\sigma = 0.4$ That gives : p= 1 and q= 2. It can be concluded then that X_t is an ARMA(p = 1, q = 2) process.

1)
$$\phi(z^{-1}) = 1 - 0.8z^{-1} = 0 \text{ gives } z = 0.8 < 1$$
 (3)

roots of $\phi(z^{-1}) = 0$ lie within the unit circle so the process is stationary

$$\theta(z^{-1}) = 1 + 0.4z^{-1} - 0.3z - 2 = 0 \tag{4}$$

After multiplying the equation with z^2 we get a second order polynomial which roots are [0.3830952, 0.7830952]. The roots are calculated in R . roots of $\theta(z^{-1})=0$ lie within the unit circle so the process is invertible

Hean Walk	4.5	
YF E[XF]	= E[2 + 0, 4 2 - 1 - 0, 3 2 - 2 + 0, 8 X]	
and Xt-	- E - 1 0, 4 6 - 0, 3 6 + 0, 8 X	
	2	
given:	E is hineair E is white horic ; its mean value - >	
V	E is white horic : its mean value - >	
=	E[xt] = 0 . Mean Value.	
Selons	older moment: Autocovariance function:	
UM 14 ()		(5.96)
(A))	0 (1) + 0, 7 (0) = 0, 0, AD 0 (1) = (0, - 4, 0) 0 = 1	2 of
Same Cature: X	$\begin{array}{lll} \gamma_{\text{tx}}(0) &= \theta_0 \zeta_{\text{t}}^2 \tilde{\sigma}_{\text{t}}^2, \theta_0 = 1 \\ \gamma_{\text{tx}}(0) &= \theta_0 \zeta_{\text{tx}}^2 \tilde{\sigma}_{\text{tx}}^2, \theta_0 = 1 \\ \gamma_{\text{tx}}(0) &= \theta_0 \zeta_{\text{tx}}^2 \tilde{\sigma}_{\text{tx}}^2, \theta_0 = 1 \\ \gamma_{\text{tx}}(0) &= (\theta_0 - \phi_0) \zeta_{\text{tx}}^2 = 0_{166} \tilde{\sigma}_{\text{tx}}^2 \\ \gamma_{\text{tx}}(0) &= (\theta_0 - \phi_0) \zeta_{\text{tx}}^2 = 0_{166} \tilde{\sigma}_{\text{tx}}^2 \\ \gamma_{\text{tx}}(0) &= (\theta_0 - \phi_0) \zeta_{\text{tx}}^2 = 0_{166} \tilde{\sigma}_{\text{tx}}^2 \\ \gamma_{\text{tx}}(0) &= (\theta_0 - \phi_0) \zeta_{\text{tx}}^2 = 0_{166} \tilde{\sigma}_{\text{tx}}^2 = 0_{166} \tilde{\sigma}_{\text{tx}}^2$	
ONNA	(5.101) and (5.99) from p126 / 127:	
29=2 10)	(1) -0,81(0) = 0,47,y (0) -0,30,y (1/	
	$\frac{1(1) - 0.84(3) = 0.47(4)(0) - 0.36(4)(1)}{(3) - 0.86(2) = 0}$	
2(5)=4(-8) (5.93)	6(0) 0, 36(1) = 0 76, (0) + 0,4.7, (1) - 0,37, (2))
take th	6(0) $0,76(1) = 0.80(1) + 0.4.0 = 0.30$ (2) 8(1) = 0.88(1-1) = 0.30 (8) e Ast line and 4th line of (8)	
C	71 08	
0,0014	10184(0) = 0184(V) = 201 (0) + 014 264 (V) -01	37 (2)
(410)	-0.86(0) +1(1) = 0.4 1/2 (0) -0.3 1/4 (1) -0.1 6(1) = 0.4 20.4 2 -0.3 x 1/2 x 0.4 2 -0.3 x 0.66 x 0.4 2 = 0.1 6(1) = 0.4 2 + 0.4 x 1/2 x 0.4 2 - 0.3 x 0.66 x 0.4 2 = 0.1	20812
0,8	70(A) = 0,4 2 + 0,4 x	

		2
which gives	the system:	
	0,8 (6(1)) = (0,0064)	
{ -0131(0)	0187(1) = 0,20512	10
-> \6(0) - 01 8[0,0064 + 0,178/0/] = 0,20512	
\(\frac{1}{2}\)	00512 -0,647(0) = 0,20512	
\d(\alpha\) = \(\begin{align*}	0,64] = 0,20512 +0,00512	
1(2) = 6(3) = 0	$0, 4 \mp 36$ Autolovariane function $0, 584$ $0, 30, (0) + 0, 85(1) = 0, 33088$ $0, 85(2) = 0, 254704$ $0, 85(2-1) + 0, 8 = 0, 33088$	M
A ((ording to by the auto)	page 99 of the book, the second moment is a swariante function => Sotthere is no need to called	iven
	calculated as: (R) = $\frac{\gamma(R)}{\delta(0)}$	
(10) = 1 (11) = 0 (12) = 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 ((k.
	, , , , , , , , , , , , , , , , , , ,	7

Figure 1: 10 realizations of the process

The plot of the 10 realizations reveales that they behave in a similar way. They all have ups and downs i.e there is no long term trend. That enhances the fact that they are stationary.

ACF for realisations

Figure 2: ACF of 10 realizations

ACF stands for autocorrelation function. In the plot above, a 95% confidence interval is given by $\pm 2/\sqrt{N} = 0.14142$ It is represented by the dashed line. The values of the autocorrelation function is not significant. It can be seen that after $\log(q-p) = \log(1)$, the autocorrolation functions are damped exponentially according to the table 6.1 p155. That is the behaviour expected from an ARMA model and also the AR part in ARMA model. It is hard to see the sine behaviour before lag7. Regarding the MA part, it takes about 10 lags for all the realizations autocorrelation functions to be insignificant and to be equal to 0. Remark:

- -The root of the MA part is 0.7830952 which is close to 1. This root has a relation with the process being invertible. The question is does it explain the time 10 lags?
- -The autocorrelation functions of the 10 realizations are behaving in the same way agreeing with the process being stationary.

PACF for realisationsF

Figure 3: PACF of 10 realizations

PACF stands for partial autocorrelation function. The confidence interval is built in the same manner as before. The plot above shows that the partial autocorrelation functions of the 10 realizations are changing sign as expected and that they are decreasing exponentially after lag1. According to table 6.1 p 155, this behaviour is obtained when p-q=1 corresponding to ARMA(2,1) process which is not the process in this case. That makes it hard to say which process is it from seeing this plot.

The partial autocorrelation functions of the 10 realizations are behaving in the same way agreeing with the process being stationary

6)

Figure 4: Variance of the process in 10 realizations

The variances of the process in the 10 realizations are:

The values of the 10 realizations are close. Analitically, the variance is $\gamma(0) = 0.584$ which is close to the mean of the 10 realizations 0,498714. This agrees with the idea of ergodicity.

7) R gives estimated ACF and PACF. They are called sample autocorrelation function and sample partial autocorrelation function. The idea here is to compare them with the theoretical plot.

As said in 6) above, the numerical variances calculated are close to the theoretical variance. Regarding the ACF, the plot below includes the analytical ACF calculated in the last 3 lines of page 3 (the second manuscript page)

ACF for realizations

Figure 5: ACF of 10 realizations + Theoretical ACF

Lag

The estimated ACF for the 10 realizations follows the theoritical ACF in the behaviour :the way of decreasing towards 0 and the corresponding number of lags. However, there are some differences because they do not fit exactly the same.

2 Question 2.2

The quarterly number of sales of apartments in the capital region of Denmark has been modelled. Based on historical data the following model has been identified where ϵ_t is a white-noise process with variance $\sigma_{\epsilon}^2 = 0.36936$:

$$(1 - 0.99B + 0.2B^{2})(1 - 0.62B^{4})(Y_{t} - \mu) = \epsilon_{t}$$
(5)

First of all, it always good to plot the data. Then the process should be verified whether it is invertible and stationary.

photo

The process $_t=Y_t$ - μ is said to follow a multiplicative (p=2,d=0,q=0)*(P=1,D=0,Q=0) seasonal model.

According to the definition (5.22) p132 and according to the A2 sales.txt document that has

4 observations each year, the time series described has s=4. Hence it is called the quarterly sales. The process can be written:

$$\phi(B)\Phi(B^4)(Z_t) = \epsilon_t \tag{6}$$

The process is stationary because d=D=0 according to p132 of the book. It is invertible because q=0.

The prediction is obtained by the following lines using p137:

Let t be the current number of observations i.e t = 20. The task is to predict the next two steps meaning calculating \hat{Y}_{t+1} and \hat{Y}_{t+2} . For now the predictions will be made on \hat{Z}_{t+1} and \hat{Z}_{t+2} As know, the best predictor is :

$$\hat{Z}_{t+k|t} = E[Z_{t+k}|Z_t, Z_{t-1}, \dots] \tag{7}$$

The formula (6) can be expanded:

$$(1 - 0.62B^4 - 0.99B + 0.6138B^5 + 0.22B^2 - 0.1364B^6)Z_t = \epsilon_t \tag{8}$$

which can be written as:

$$Z_t = 0.99Z_{t-1} - 0.22Z_{t-2} + 0.62Z_{t-4} - 0.6138Z_{t-5} + 0.1364Z_{t-6} + \epsilon_t \tag{9}$$

Using (7), the assumption that ϵ_t is white noise which gives

$$E[\epsilon_t | Z_t, Z_{t-1}, Z_{t-2}...] = 0 (10)$$

and that the observations are known, so they are just constants, it can be concluded that:

$$\hat{Z}_{t+1|t} = 0.99Z_t - 0.22Z_{t-1} + 0.62Z_{t-3} - 0.6138Z_{t-4} + 0.1364Z_{t-5}$$
(11)

$$\hat{Z}_{21|20} = 0.99Z_{20} - 0.22Z_{19} + 0.62Z_{17} - 0.6138Z_{16} + 0.1364Z_{15}$$
(12)

And:

$$\hat{Z}_{t+2|t} = 0.99\hat{Z}_{t+1|t} - 0.22Z_t + 0.62Z_{t-2} - 0.6138Z_{t-3} + 0.1364Z_{t-4}$$
(13)

$$\hat{Z}_{22|20} = 0.99\hat{Z}_{21|20} - 0.22Z_{20} + 0.62Z_{18} - 0.6138Z_{17} + 0.1364Z_{16}$$
(14)

The goal is Y_t so:

$$\hat{Y}_{21|20} = \hat{Z}_{21|20} + \mu = 2096,963 \tag{15}$$

$$\hat{Y}_{22|20} = \hat{Z}_{22|20} + \mu = 2159,353 \tag{16}$$

The confidence interval can be found using p137,(5.149),(5.151) and remark 5.5 p138:

$$e_{t+k|t} = Y_{t+k} - \hat{Y}_{t+k|t} \tag{17}$$

$$\hat{Y}_{t+k|t} \pm u_{\alpha/2} \sqrt{\text{Variance}(e_{t+k|t})}$$
(18)

where $u_{\alpha/2}$ is the $\alpha/2$ quantile in the standard normal distribution. According to (5.151),

For k=1, $\psi_0 = 1$

$$variance((e_{t+1|t}) = \sigma_{\epsilon}^{2}(1)$$
(19)

For k=2, $\psi_0=1$, $\psi_1=0.99$ ie

$$variance((e_{t+2|t}) = \sigma_{\epsilon}^2 (1 + 0.99^2)$$
 (20)

Finally with choosing $\alpha = 0.05$ giving 95% confidence interval :

$$\hat{Y}_{t+1|t} \pm u_{\alpha/2} \sqrt{\text{Variance}(e_{t+1|t})} = 2096.963 \pm 389.5746 \tag{21}$$

$$\hat{Y}_{t+2|t} \pm u_{\alpha/2} \sqrt{\text{Variance}(e_{t+2|t})} = 2159.35 \pm 548.1939$$
 (22)

(23)

where (t+1) correspond to 2019Q1 and (t+2) to 2019Q2 Due to high $\sigma_{epsilon}$ the confidence interval are large and they get larger when predicting further steps as explained in (5.151).

A2_sales and 2 steps predictions

Figure 6: A2_sales and 2 steps predictions with confidence intervals

3 Question 2.3

1) The following ARMA(2,0) is given:

$$\phi(B)X_t = \epsilon_t \tag{24}$$

$$(1 - 1.5B + \phi_2 B^2) X_t = \epsilon_t \tag{25}$$

Multiplying the equation by z^2

$$\phi(z^{-1}) = 0 \equiv 1 + 1.5z + \phi_2 z^2 = 0 \tag{26}$$

For ϕ_2 =0.52 : roots = [-0,5438447+0i ; 0,9561553-0i] which are real and <1 the process is then stationary

For ϕ_2 =0.98 : roots = [-0,75+0,6461424i ; -0,75-0,6461424i] giving a norm = 0,9899495 <1 the process is then stationary

2) There are 4 processes:

Process 1: $\phi_2 = 0.52$, $\sigma = 0.1$

Process 2: ϕ_2 =0.52 , σ =5

Process 3: $\phi_2 = 0.98$, $\sigma = 0.1$

Process 4: $\phi_2=0.98$, $\sigma=5$

To estimate parameters, the function arima() in R is used. This function uses the maximum likelihood ML method by default.

set.seed(123) was used in R in order to generate the same realizations.

The red line indicated the 95% quantiles (which are the 2.5% and the 97.5% quantiles)

Figure 7: Process 1

Figure 8: Process 2

Figure 9: Process 3

Figure 10: Process 4

- 3) When ϕ_2 varies, the distribution of the estimated ϕ_2 varies.
- 4) It seems that the different values of the noise σ does not affect the distribution of ϕ_2
- 3-4)One way to validate more the conclusion above is trying to fit the distribution of ϕ_2 by the normal distribution and conclude the same results as before.

Using the library "MASS" in R, the estimated ϕ_2 were fitted to a normal distribution. The results given by this library are not perfect as seen in the plots but prove the same point discussed.

$$Process1: \quad \hat{\phi}_2 \sim \mathcal{N}(0.52, 0.0023)$$
 (27)

$$Process2: \hat{\phi}_2 \sim \mathcal{N}(0.52, 0.002)$$
 (28)

Process3:
$$\hat{\phi}_2 \sim \mathcal{N}(0.97, 0.0, 00019)$$
 (29)

$$Process4: \quad \hat{\phi}_2 \sim \mathcal{N}(0.97, 0.00012)$$
 (30)

This proves that σ does not affect the variance/distribution of the estimated ϕ_2 since the variances in process1 and process2 is very close and yet these processes have different σ (same for process3 and process4).

This also proves that ϕ_2 affect the variance/distribution of the estimated ϕ_2 because when ϕ_2 varies from a process to another, the distribution and the variance change.

To run the code in this section, the last part in the code should be executed in order to have the green normal curves.

Figure 11: Process 1

Figure 12: Process 2

Figure 13: Process 3

Figure 14: Process 4

Process 1 September 1 1,35 1,40 1,45 1,50 1,55 1,60

Figure 15: Process 1

estimated phi1

Figure 16: Process 2

It can be seen that from these two plots, which differ by the variance, that the variance in the simulations is not important.

Process 3 201 o true values 1,44 1,46 1,48 1,50 1,52 1,54 estimated phi1

Figure 17: Process 3

270, true values 1,44 1,46 1,48 1,50 1,52 1,54 estimated phi1

Process 4

Figure 18: Process 4

It can be seen that from these two plots, which differ by the variance, that the variance in the simulations is not important.

The estimated values of ϕ_1 and ϕ_2 are close to the real values.

One can ask how are ϕ_1 and ϕ_2 correlated after seeing these plots. Using the correlation function " cor() " and the covariance function " cov() " in R. The variance is calculated using "var()":

- -Process1: $cor(\phi_1,\phi_2) = .0.98365$ and $cov(\phi_1,\phi_2) = 0.002272615$ and $var(\phi_1) = 0.002297662$ and $var(\phi_2) = 0.002323189$
- -Process2: $cor(\phi_1,\phi_2) = 0.9777678$ and $cov(\phi_1,\phi_2) = 0.001920491$ and $var(\phi_1) = 0.001954405$ and $var(\phi_2) = 0.001973961$

This also proves that the variance of the noise has no importance in the simulations since the correlations and covariances of process1 and process2 are close.

- -Process3: $cor(\phi_1,\phi_2)=0.7901635$ and $cov(\phi_1,\phi_2)=0.0001450862$ and $var(\phi_1)=0.0001767456$ and $var(\phi_2)=0.0001907524$
- -Process4: $cor(\phi_1,\phi_2)=0.7532301$ and $cov(\phi_1,\phi_2)=8.837276e-05$ and $var(\phi_1)=0.0001092191$ and $var(\phi_2)=0.0001260326$

This also proves that the variance of the noise has no importance in the simulations since the correlations and covariances of process3 and process4 are close.

It can also be seen from variances values and the histograms above that the variance of the estimated ϕ_1 and ϕ_2 increases when the correlation between them increases.

Since in the beginning, it is said that the process is stationary, one can hope that the for the estimated values of ϕ_2 and ϕ_2 all the 4 processes are stationary. This needs to be verified using like before the roots of $\phi(z^{-1})$ However, just by typing "norm_roots_process1" or the process wanted, many solutions has roots > 1, saying that that realization of process for the process is not stationary.

4 Code

```
1
   rm(list=ls())
2
3
   #Question2
4
      ##1)
5
      polyroot(c(-0.3,0.4,1))
6
   ##2)see the report
   ##3)
   ###The phi_i parameters in the 'arima' function in R are positive on the
      right hand side of the equal sign
   ###so we implement 0.8 and not (-0.8) in AR part
10
   N < -200
11
   set.seed(123)
12
   sim = replicate(10, arima.sim(list(order = c(1,0,2), ar = c(0.8), ma = c
      (0.4, -0.3), n = 200, sd = 0.4)
   matplot(sim, type = "l", ylab="X_t", xlab="t")
14
15
   simulation_acf = sapply(split(sim,col(sim)), function(ts) acf(ts,plot=FALSE)
16
      $acf)
   x_seq = seq(from = 0, to=length(simulation_acf[,1])-1, by = 1)
17
   matplot(x_seq, simulation_acf, type="l",ylab="ACF", xlab="Lag", main = "ACF
      for realizations")
   axis(1, at=x_seq)
19
   abline(2/sqrt(N), 0, lwd=1, lty=2)
20
   abline(-2/sqrt(N),0, lwd=1, lty=2)
21
22
   ##5)
23
```

```
simulation_pacf = sapply(split(sim,col(sim)), function(ts) pacf(ts,plot=
24
       FALSE) $acf)
   x_{seq}^2 = seq(from = 0, to=length(simulation_pacf[,1]), by = 1)
25
   matplot(simulation_pacf, type="l",ylab="PACF", xlab="Lag", main = "PACF for
26
        realizations")
   axis(1,at=x_seq_2)
27
   abline(2/sqrt(N),0, lwd=1, lty=2)
28
   abline(-2/sqrt(N), 0, lwd=1, lty=2)
29
   ##6)
30
   #sim_var = sapply(split(sim,col(sim)), function(ts) var(ts))
31
   sim_acof = sapply(split(sim,col(sim)), function(ts) acf(ts,plot=F, type="
       covariance") $acf)
   plot(sim_acof[1,],ylab="Variance[[M(FFF,D)]]", xlab = "Realization w ")
33
   ##7)
34
   ### Theoritical ACF autocorrelation function ###
35
   rho_0<- 1
36
   rho_1<- 0.81096
37
   rho_2<- 0.56657
38
   rho_list <- 3:23
39
   rho<- c(rep(0,length(x_seq)) )</pre>
40
   for (i in rho_list)
41
42
     rho[i+1] \leftarrow (0.8)^{(i-2)} * rho_2 # rho[i] here = rho[i-1] in manuscript
43
44
45
   rho[1]<-rho_0
   rho[2]<-rho_1
46
   rho[3] < -rho_2
47
48
   matplot(x_seq, simulation_acf, type="l",ylab="ACF", xlab="Lag", main = "ACF")
49
       for realizations")
   axis(1, at=x_seq)
50
   abline(2/sqrt(N), 0, lwd=1, lty=2)
51
   abline(-2/sqrt(N), 0, lwd=1, lty=2)
52
   abline(0,0, lwd=1, lty=1)
53
   lines(x_seq,rho, type="l",lty=1, col="black")
54
   points(x_seq,rho, cex=0.8 , col="black")
55
   legend("topright", legend=c("Analytical ACF"), col=c("black"), pch=c(1), pt
       .bg =c("black") ,lty=1, cex=0.8)
57
   #0uestion2
58
       A2 = read.table("/home/ghassen97/Desktop/S8/time series analysis/assignment/
59
       assignment 2/A2_sales.txt", header = TRUE)
```

```
plot(A2$Sales, ylab="Sales", xlab='time', main="A2_sales", type = "l")
60
   points(A2$Sales, cex = .5, col = "dark blue")
61
62
63
   #predicting 2 steps ahead:#
   mu=2092
64
65
   Z= A2$Sales — mu # variable change
66
67
   Z[21] \leftarrow 0.99*Z[t-1]-0.22*Z[t-2]+0.62*Z[t-4]-0.6138*Z[t-5]+0.1364*Z[t-6]
68
   t=22
69
   Z[22] \leftarrow 0.99*Z[t-1]-0.22*Z[t-2]+0.62*Z[t-4]-0.6138*Z[t-5]+0.1364*Z[t-6]
70
71
   Y = Z + mu
72
   plot(Y[1:20], type = 'l', xlim = c(1,25), ylab = 'time', main = 'A2_sales and
73
        2 steps predictions',col="blue")
   points(A2$Sales, col = "dark blue")
74
   points(21, Y[21], col = 'red')
75
   points(22, Y[22], col = 'red')
76
   legend("topright", legend=c("observations", "predictions"), col=c("blue", "
77
       red"),pch=c(1,1), pt.bg =c("blue", "red") ,lty=1, cex=0.7)
78
   #Confidence intervals#
79
   k<− 1
80
   alpha<-0.05
81
82
   sigma_e < -sgrt(39508)
   half_interval_t1 = qt(1—alpha/2, df=Inf ) * sigma_e*sqrt(1)
83
   half_interval_t2 = qt(1-alpha/2, df=Inf) * sigma_e*sqrt(1+0.99^2)
84
   plot(Y[1:20], type = 'l', xlim = c(1,25), xlab='time', ylab = 'Sales', ylim=c
85
       (1500,3000) , main = 'A2_sales and 2 steps predictions',col="blue")
   points(A2$Sales, col = "dark blue")
86
   points(21, Y[21], col = 'red')
87
   points(21, Y[21]+half_interval_t1 , col="green" )
88
   points(21, Y[21]—half_interval_t1 , col="green" )
89
   points(22, Y[22], col = 'red')
90
   points(22, Y[22]+half_interval_t2 , col="green" )
91
   points(22, Y[22]—half_interval_t2 , col="green" )
92
   legend("bottom", legend=c("observations", "predictions", "confidence interval
       "), col=c("blue", "red", "green"), pch=c(1,1,1), pt.bq =c("blue", "red", "
       green"), lty=1, cex=0.7)
94
   #Question
95
       ##1)
96
```

```
phi2_1<- 0.52
97
     phi2_2<- 0.98
98
     roots_1 \leftarrow polyroot(c(phi2_1, 1.5, 1))
99
100
     norm_roots_1<- Mod(roots_1)
     roots_2 \leftarrow polyroot(c(phi2_2, 1.5, 1))
101
     norm_roots_2<- Mod(roots_2)</pre>
102
     ##2)
103
     ###process1###
104
     set.seed(123)
105
     phi2_ind<-2
106
     break1 \leftarrow seq(0.35, 0.65, length.out = 30) # to have same number of bids,
107
        and adjust x_axis
108
     sim1 \leftarrow replicate(100, arima.sim(list(order = c(2,0,0), ar = c(-1.5, -0.52))
109
         , n = 300, sd = 0.1)
     sim1_arima_process1 <- sapply(split(sim1,col(sim1)), function(ts) arima(ts,</pre>
110
        order = c(2,0,0))$coef)*(-1)
111
     sim1_arima <- sim1_arima_process1[phi2_ind,]</pre>
     sim1_arima_histogram<-hist(sim1_arima,breaks=break1,plot=FALSE)</pre>
112
     plot(sim1_arima_histogram, xlab='estimated phi2', ylab='density', ylim = c
113
        (0,20), main="Process 1")
114
     p1<-quantile(sim1_arima,0.975)</pre>
115
     p2<-quantile(sim1_arima,0.025)</pre>
116
117
     abline(v=p1, col='red')
118
     abline(v=p2,col='red')
119
120
     curve(dnorm(x, mean=0.52061432, sd=0.04795787), add = TRUE, col=3, lwd=3)
121
122
123
124
     ###process2###
     break2<-break1
125
126
     sim2 \leftarrow replicate(100, arima.sim(list(order = c(2,0,0), ar = c(-1.5, -0.52))
127
         n = 300, sd = 5)
     sim2_arima_process2 <- sapply(split(sim2,col(sim2)), function(ts) arima(ts,</pre>
128
        order = c(2,0,0))$coef)*(-1)
     sim2_arima <- sim2_arima_process2[phi2_ind,]</pre>
129
130
     sim2_arima_histogram<-hist(sim2_arima,breaks=break2,plot=FALSE)</pre>
131
     plot(sim2_arima_histogram, xlab='estimated phi2', ylab='density', ylim = c
132
        (0,20),main="Process 2")
     p2_1<-quantile(sim2_arima,0.975)
133
```

```
p2_2<-quantile(sim2_arima,0.025)</pre>
134
     abline(v=p2_1, col='red')
135
     abline(v=p2_2,col='red')
136
137
     curve(dnorm(x, mean=0.522379960, sd=0.044206581), add = TRUE, col=3, lwd=3)
138
139
140
     ###process 3####
141
     break3 = seq(0.9, 1.02, length.out = 30)
142
143
     sim3 \leftarrow replicate(100, arima.sim(list(order = c(2,0,0), ar = c(-1.5, -0.98))
144
        , n = 300, sd = 0.1)
     sim3_arima_process3 <- sapply(split(sim3,col(sim3)), function(ts) arima(ts,</pre>
145
        order = c(2,0,0))$coef)*(-1)
     sim3_arima <- sim3_arima_process3[phi2_ind,] # phi2</pre>
146
147
     sim3_arima_histogram<-hist(sim3_arima,breaks = break3,plot=FALSE)</pre>
148
     plot(sim3_arima_histogram, xlab='estimated phi2', ylab='density', ylim = c
149
        (0,25), main="Process 3")
     p3_1<-quantile(sim3_arima,0.975)
150
     p3_2<-quantile(sim3_arima,0.025)
151
     abline(v=p3_1, col='red')
152
     abline(v=p3_2,col='red')
153
154
     curve(dnorm(x, mean=0.974997395, sd=0.013742083), add = TRUE, col=3, lwd=3)
155
156
157
     ###process 4####
158
     break4<-break3
159
     sim4 \leftarrow replicate(100, arima.sim(list(order = c(2,0,0), ar = c(-1.5, -0.98))
160
        , n = 300, sd = 5))
161
     sim4_arima_process4 <- sapply(split(sim4,col(sim4)), function(ts) arima(ts,</pre>
        order = c(2,0,0))$coef)*(-1)
     sim4_arima <- sim4_arima_process4[phi2_ind,] # phi2</pre>
162
163
     sim4_arima_histogram<-hist(sim4_arima,breaks = break4,plot=FALSE)</pre>
164
     plot(sim4_arima_histogram, xlab='estimated phi2', ylab='density', ylim = c
165
        (0,25), main="Process 4")
     p4_1<-quantile(sim4_arima,0.975)
166
     p4_2<-quantile(sim4_arima,0.025)
167
     abline(v=p4_1, col='red')
168
     abline(v=p4_2,col='red')
169
170
     curve(dnorm(x, mean=0.976334331, sd=0.011170152), add = TRUE, col=3, lwd=3)
171
```

```
172
173
     #3) #4) see report
174
175
     #5)
     ### Process 1 ###
176
     phi1_1_hat<-sim1_arima_process1[1,]</pre>
177
     phi2_1_hat<-sim1_arima_process1[2,]</pre>
178
     plot(phi1_1_hat,phi2_1_hat,ylim=c(0.35,0.65), xlim=c(1.35, 1.63), xlab="
179
        estimated phi1", ylab = "estimated phi2", main='Process 1')
     points(1.5, 0.52, col="blue") #true value
180
     legend("topleft", legend=c("true values"), col=c("blue"), pch=c(1), pt.bg =
181
        c("blue"), cex=0.8)
182
     cov1<-cov(phi1_1_hat,phi2_1_hat,use = "everything",method = "pearson")</pre>
183
     cor1<-cor(phi1_1_hat,phi2_1_hat,use = "everything",method = "pearson")</pre>
184
185
     var(phi1_1_hat)
186
     var(phi2_1_hat)
187
188
     ### checking stationarity for all phi1 and phi2 ###
189
     roots_process1 <- polyroot(c(phi2_1_hat, phi1_1_hat , 1))</pre>
190
     norm_roots_process1<- Mod(roots_process1)</pre>
191
192
193
194
     ### Process 2 ###
     phi1_2_hat<-sim2_arima_process2[1,]</pre>
195
     phi2_2_hat<-sim2_arima_process2[2,]</pre>
196
     plot(phi1_2_hat,phi2_2_hat,ylim=c(0.35,0.65), xlim=c(1.35, 1.63),xlab="
197
        estimated phi1", ylab = "estimated phi2", main='Process 2')
     points(1.5, 0.52, col="blue")
198
     legend("topleft", legend=c("true values"), col=c("blue"), pch=c(1), pt.bg =
199
        c("blue"), cex=0.8 )
200
     cov2<-cov(phi1_2_hat,phi2_2_hat,use = "everything",method = "pearson")</pre>
201
     cor2<-cor(phi1_2_hat,phi2_2_hat,use = "everything",method = "pearson")</pre>
202
203
     var(phi1_2_hat)
204
     var(phi2_2_hat)
205
     ### checking stationarity for all phi1 and phi2 ###
206
     roots_process2 <- polyroot(c(phi2_2_hat, phi1_2_hat , 1))</pre>
207
     norm_roots_process2<- Mod(roots_process2)</pre>
208
209
     ### Process 3 ###
210
     phi1_3_hat<-sim3_arima_process3[1,]</pre>
211
```

```
phi2_3_hat<-sim3_arima_process3[2,]</pre>
212
     plot(phi1_3_hat,phi2_3_hat,ylim=c(0.9,1.02), xlim=c(1.44, 1.54),xlab="
213
        estimated phi1", ylab = "estimated phi2", main='Process 3')
214
     points(1.5, 0.98, col="blue")
     legend("topleft", legend=c("true values"), col=c("blue"), pch=c(1), pt.bg =
215
        c("blue"), cex=0.8)
216
     cov3<-cov(phi1_3_hat,phi2_3_hat,use = "everything",method = "pearson")</pre>
217
     cor3<-cor(phi1_3_hat,phi2_3_hat,use = "everything",method = "pearson")</pre>
218
219
220
     var(phi1_3_hat)
     var(phi2_3_hat)
221
     ### checking stationarity for all phi1 and phi2 ###
222
     roots_process3 <- polyroot(c(phi2_3_hat, phi1_3_hat , 1))</pre>
223
     norm_roots_process3<- Mod(roots_process3)</pre>
224
225
     ### Process 4 ###
226
     phi1_4_hat<-sim4_arima_process4[1,]</pre>
227
     phi2_4_hat<-sim4_arima_process4[2,]</pre>
228
     plot(phi1_4_hat,phi2_4_hat,ylim=c(0.9,1.02), xlim=c(1.44, 1.54),xlab="
229
        estimated phi1", ylab = "estimated phi2", main='Process 4')
     points(1.5, 0.98, col="blue")
230
     legend("topleft", legend=c("true values"), col=c("blue"), pch=c(1), pt.bg =
231
        c("blue"), cex=0.8)
232
     cov4<-cov(phi1_4_hat,phi2_4_hat,use = "everything",method = "pearson")</pre>
233
     cor4<-cor(phi1_4_hat,phi2_4_hat,use = "everything",method = "pearson")</pre>
234
235
     var(phi1_4_hat)
236
     var(phi2_4_hat)
237
     ### checking stationarity for all phi1 and phi2 ###
238
239
     roots_process4 <- polyroot(c(phi2_4_hat, phi1_4_hat , 1))</pre>
     norm_roots_process4<- Mod(roots_process4)</pre>
240
241
242
     ### fitting histograms with normal distribution ### to be executed before
243
     ### the 4 lines like: curve(dnorm(x, mean=0.976334331, sd=0.011170152),add
244
        = TRUE, col=3, lwd=3)
245
     library("MASS")
246
     a4<-fitdistr(phi2_4_hat, "normal")
247
     a3<-fitdistr(phi2_3_hat, "normal")
248
     a2<-fitdistr(phi2_2_hat, "normal")
249
    al<-fitdistr(phi2_1_hat, "normal")
250
```

Report 1 List of Figures

List of Figures

1	10 realizations of the process
2	ACF of 10 realizations
3	PACF of 10 realizations
4	Variance of the process in 10 realizations
5	ACF of 10 realizations + Theoretical ACF
6	A2_sales and 2 steps predictions with confidence intervals
7	Process 1
8	Process 2
9	Process 3
10	Process 4
11	Process 1
12	Process 2
13	Process 3
14	Process 4
15	Process 1
16	Process 2
17	Process 3
18	Process A