CS 7265 BIG DATA ANALYTICS

DECISION TREES

Mingon Kang, Ph.D.
Computer Science, Kennesaw State University

^{*} Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington

Terminology

Features

- An individual measurable property of a phenomenon being observed
- The number of features or distinct traits that can be used to describe each item in a quantitative manner
- May have implicit/explicit patterns to describe a phenomenon

Samples

- Items to process (classify or cluster)
- Can be a document, a picture, a sound, a video, or a patient

Terminology

- Feature vector
 - An N-dimensional vector of numerical features that represent some objects
 - A sample consists of feature vectors
- Feature extraction (feature selection)
 - Preparation of feature vector
 - Transforms the data in the high-dimensional space to a space of fewer dimensions

Data in Machine Learning

 $\square x_i$: input vector, independent variable

$$oldsymbol{x}_i = \left[egin{array}{c} x_{i,1} \ x_{i,2} \ dots \ x_{i,n} \end{array}
ight], \quad x_{i,j} \in \mathbb{R}$$

- □ y: response variable, dependent variable
 - $y \in \{-1, 1\}$ or $\{0, 1\}$: binary classification
 - $y \in \mathbb{Z}$: multi-label classification
 - $y \in \mathbb{R}$: regression
 - lacktriangle Predict a label when having observed some new χ

Types of Variable

- □ Categorical variable: discrete or qualitative variables
 - Nominal:
 - Have two or more categories, but which do not have an intrinsic order
 - Dichotomous
 - Nominal variable which have only two categories or levels.
 - Ordinal
 - Have two or more categories, which can be ordered or ranked.
- Continuous variable

Mathematical Notation

- Matrix: uppercase bold Roman letter, X
- Vector: lower case bold Roman letter, X
- Scalar: lowercase letter
- Transpose of a matrix or vector: superscript T or '
- □ E.g.
 - \blacksquare Row vector: $(x_1, x_2, ..., x_N)$
 - □ Corresponding column vector: $\mathbf{x} = (x_1, x_2, ..., x_N)^T$
 - lacksquare Matrix: $\mathbf{X} = \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_p}\}$

Supervised learning

Data: $D = \{d_1, d_2, ..., d_n\}$ a set of n samples where $d_i = \langle x_i, y_i \rangle$ x_i is a input vector and y_i is a desired output

Objective: learning the mapping $f: X \to y$ subject to $y_i \approx f(x_i)$ for all i = 1,...,n

Regression: y is continuous

Classification: y is discrete

Decision Tree

- A decision tree is a natural and simple way of inducing following kind of rules.
 - If (Age is x) and (income is y) and (family size is z) and (credit card spending is p) then he will accept the loan
- It is powerful and perhaps most widely used modeling technique of all
- Decision trees classify instances by sorting them down the tree from the root to some leaf node, which provides the classification of the instance

Example of a Decision Tree

Training data

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Decision Tree Induction

Decision Tree Model

Refund: Categorical

Marital Status: Categorical

Taxable Income: continuous

Cheat: Class

Example of a Decision Tree

When we have new data (test data)

	Marital Status		Cheat	─────────────────────────────────────
No	Married	80K	?	·

Deduction from the Decision Tree we obtained from training data

Decision Tree Induction

- Large search space
 - Finding the global optimal decision tree is computationally infeasible.

- Efficient feasible algorithm
 - Not optimal, but approximate
 - Greedy strategy
 - Grow the tree by making locally optimal decisions in selecting attributes.

Decision Tree Induction

- Decision Tree Algorithms:
 - Hunt's algorithm (one of the earliest)
 - CART
 - □ ID3, C4.5
 - SLIQ, SPRINT

Hunt's algorithm

- Most decision tree induction algorithms are based on Hunt's algorithm
- Let D_t be the set of training data and y be class labels, $y = \{y_1, y_2, ..., y_c\}$
 - lacksquare If $m{D_t}$ contains data that belong to y_k , its decision tree consists of leaf node labeled as y_k
 - lacksquare If $oldsymbol{D}_t$ is an empty set, the decision tree is a leaf node of default class
 - lacktriangleright If $m{D_t}$ contains data that belong to more than one classes, perform "attribute test" to split the data into smaller and more homogenous subsets

Example of Hunt's algorithm

Tree Induction

- Greedy strategy
 - Split the data based on the attribute test that locally optimizes certain criterion

- Determine how to split the data
 - How to specify the attribute test condition?
 - How to determine the best split?
 - 2-way split vs Multi-way split
- Determine when to stop splitting

Splitting on Nominal Attributes

- Multi-way split
 - Use a many partitions as distinct values

- Binary split
 - Divides values into two subsets. Need to optimize

Splitting on Ordinal Attributes

- Multi-way split
 - Use a many partitions as distinct values

- Binary split
 - Divides values into two subsets

However, how about this partition?

Splitting on Continuous Attributes

- Discretization
 - Convert continuous to an ordinal categorical attribute
- Binary Decision
 - \square Split into two, (A < v) or (A >= v)
 - Consider all possible splits and finds the best cut

Splitting on Continuous Attributes

Binary split

Multi-way split

How to determine the best split?

- Find nodes with homogeneous class distribution
- Measure of node impurity

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

How to measure of node impurity?

- □ Gini Index
 - Most commonly used to measure inequality of income or wealth.
 - A value between zero and one, where one expresses maximal inequality
- Entropy
 - Information Theory
- Misclassification error

GINI Index

□ Gini index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^2$$

p(j|t) is a conditional probability, but can be measured by the relative frequency of class j at node t)

- Minimum (0) when all data belong to one class only
 - Imply most interesting information
- Maximum (1) when all data are equally distributed among all classes

C1	0
C2	6
Gini=	000

C1	1
C2	5
Gini=	n 278

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini=	0.500

Splitting based on GINI

- Used in CART, SLIQ, SPRINT
- When a node p is split into k partitions, the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

 n_i = number of data at child i, n= number of data at node p.

GINI on Binary attributes

- Splits into two partitions
- Effect of Weighting partitions:
 - Larger and Purer partitions are sought for

	Parent
C1	6
C2	6
Gini	= 0.500

Gini(N1)

$$= 1 - (5/7)^2 - (2/7)^2$$

= 0.408

Gini(N2)

$$= 1 - (1/5)^2 - (4/5)^2$$

= 0.32

	N1	N2
C1	5	1
C2	2	4
Gin	i=0.3	71

Gini(Children)

= 7/12 * 0.408 +

5/12 * 0.32

= 0.371

GINI on Categorical Attributes

- □ For each distinct value, count for each class
- Use the count matrix to make decision

Multi-way split

	(CarType										
	Family Sports Luxur											
C1	1	8	1									
C2	3	0	7									
Gini	0.163											

Two-way split (find best partition of values)

	CarType								
	{Sports, Luxury}	(Family)							
C1	9	1							
C2	7	3							
Gini	0.468								

	CarType									
	{Sports}	{Family, Luxury}								
C1	8	2								
C2	0	10								
Gini	0.167									

GINI on Continuous Attributes

- Use binary decisions based on one value
- Several Choices for the splitting value
- A count matrix for each splitting value
 - \square Counts in each of the partitions, A<v and A >= v
- Compute its Gini index each

GINI on Continuous Attributes

- Sort the attribute
- Linearly scan these values and compute gini index
- Choose the split cut that has the least gini index

	Cheat	ا	No		No	•	N	0	Ye	s	Ye	s	Ye	s	N	0	N	o	N	0		No		
•		Taxable Income																						
Sorted Values		60 70		70	75		5	85		90)	9	95 1		00 1		20 12		25 2		220	220		
Split Positions	_	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	′2	23	0	
		٧	^	<=	^	<=	^	<=	^	٧	^	<=	>	<=	^	<=	^	<=	>	<=	^	<=	>	
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0	
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0	
	Gini	0.4	20	0.4	00	0.3	75	0.343		343 0.4		0.4	0.400		0.300		0.343		0.375		0.400		0.420	

Entropy

- Adapted from a thermodynamic system
- Measure of <u>molecular disorder</u> within a macroscopic system
- Entropy is zero when a outcome is certain.

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

Computations are similar to the GINI index

Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

C1	2
C2	4

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Splitting based on Information Gain

Information Gain:

Expected reduction in entropy caused by partitioning

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Entropy(p): entropy at parent node p

- First term: entropy of the original collection
- Second term: expected value of the entropy after S is partitioned using attribute *i*

Splitting based on Information Gain

- Choose the split so that maximize gain
- Used in ID3
- Drawback: tends to splits that result in large number of partitions, each being small but pure.

Splitting based on information theory

- □ Gain Ratio
- $\Box GainRATIO_{split} = \frac{GAIN_{Split}}{SplitINFO}$
- $\square SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$
- Adjusts information gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized
- □ Used in C4.5

Splitting based on Classification Error

Classification error at a node t:

- $\square Error(t) = 1 max_i P(i|t)$
- Measures misclassification error at a node
 - Maximum when records are equally distributed among all classes
 - Minimum when all data belong to one class.

Splitting based on Classification Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Stopping criteria for tree induction

- Stop expanding a node when all data belong to the same class
- Stop expanding a node when all data have same (or similar) attribute values

Decision Tree

- Advantage:
 - Inexpensive to construct
 - Extremely fast at classifying new data
 - Easy to interpret the decision process
- □ Issues in Decision Tree
 - Overfitting problem
 - Training data with missing values

C4.5

- Simple depth-first construction
- Information Gain for splitting criteria
- Sorts continuous attributes at each node

 J. Ross Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning), 1st Edition, 1992, ISBN: 1558602380