Practice Problems

Type – I (Non-homogeneous)

1. Test for consistency the following set of equations and obtain the solution if consistent.

(i)
$$3x + 3y + 2z = 1 x + 2y = 4 10y + 3z = -2 2x - 3y - z = 5$$

(ii)
$$2x - y - z = 2$$

 $x + 2y + z = 2$
 $4x - 7y - 5z = 2$.

$$2x_1 + 2x_2 = -11$$
 (iii) $6x_1 + 20x_2 - 6x_3 = -3$ $6x_2 - 18x_3 = -1$

$$x - 2y + 3t = 0$$
(iv)
$$2x + y + z + t = -4$$
$$4x - 3y + z + 7t = 8$$

$$5x_1 - 3x_2 - 7x_3 + x_4 = 10$$
 (vi)
$$-x_1 + 2x_2 + 6x_3 - 3x_4 = -3$$

$$x_1 + x_2 + 4x_3 - 5x_4 = 0.$$

$$2x_1 - x_2 + x_3 = 4$$

$$3x_1 - x_2 + x_3 = 6$$

$$4x_1 - x_2 + 2x_3 = 7$$

$$-x_1 + x_2 - x_3 = 9$$

$$2x - y + 3z = 9$$

$$x + 2y = 1$$
(viii)
$$-3x + 2y = -2$$

$$-x + 6y = 0$$

(ix)
$$x + y + z = 6$$

 $x - y + z = 2$

$$x + y + 4z = 6$$
(x) $3x + 2y - 2z = 9$
 $5x + y + 2z = 13$

(xi)
$$\begin{array}{c} x_1 + x_2 + x_3 = 4 \\ 2x_1 + 5x_2 - 2x_3 = 3 \end{array}$$

$$2x_1 - 3x_2 + 7x_3 = 5$$

2. Show that the system $3x_1 + x_2 - 3x_3 = 13$ is inconsistent. $2x_1 + 19x_2 - 47x_3 = 32$

$$2x - y + 3z = 2$$

- 3. Investigate for what values of a and b the simultaneous equations x + y + 2z = 2 5x - y + az = b
 - will have (i) no solution: (ii) a unique solution: (iii) an infinite number of solutions.

$$x + y + z = 6$$

- 4. Investigate for what values of λ and μ the simultaneous equations x+2y+3z=10 $x+2y+\lambda z=\mu$
 - will have (i) no solution: (ii) a unique solution: (iii) an infinite number of solutions.

$$x + y + 4z = 1$$

- 5. Find the values of λ for which the system of equations x+2y-2z=1 $\lambda x+y+z=1$
 - will have (i) a unique solutions (ii) no solution

$$x_1 + 2x_2 + x_3 = 3$$

- **6.** Find values of λ for which the set of equations $x_1+x_2+x_3=\lambda$ are consistent and solve $3x_1+x_2+3x_3=\lambda^2$ equations for those values.
- 7. For what value of λ the equations $x+y+z=1, x+2y+4z=\lambda, x+4y+10z=\lambda^2$ have a solution and solve them completely in each case.

10.

$$-2x + y + z = a$$

Show that the system of equation x - 2y + z = b have no solution unless a + b + c = 0, in 8. x + y - 2z = c

which case they have infinitely many solutions. Find these solutions when a = 1, b = 1, c = -2.

Type – II (homogeneous, linear dependence)

9. Find (trivial or non-trivial) solutions of the following linear equations.

(ii)
$$x_1 + 2x_2 + 3x_3 + x_4 = 0 x_1 + x_2 - x_3 - x_4 = 0 3x_1 - x_2 + 2x_3 + 3x_4 = 0$$

$$\begin{aligned} x_1 - 2x_2 + x_3 &= 0 \\ \textbf{(iii)} & x_1 - 2x_2 - x_3 &= 0 \\ 2x_1 - 4x_2 - 5x_3 &= 0 \end{aligned}$$

$$2x_1 + 3x_2 - x_3 + x_4 = 0$$
(iv)
$$3x_1 + 2x_2 - 2x_3 + 2x_4 = 0$$

$$5x_1 - 4x_3 + 4x_4 = 0$$

$$x_1 - 2x_2 + x_3 = 0$$
 Find the solution of the system given by
$$x_1 - 2x_2 - x_3 = 0$$

$$2x_1 - 4x_2 - 5x_3 = 0$$

Also find the relation between column vectors of coefficient matrix.

$$x_1 - 2x_2 - x_3 = 0$$

$$-2x_1 + 4x_2 + 2x_3 = 0$$

$$-3x_1 - x_2 + 7x_3 = 0$$

Solve the following system of linear equation $\begin{array}{c} 2x_1 & \dots & 3 \\ -3x_1 - x_2 + 7x_3 = 0 \end{array}$ 11. $4x_1 + 3x_2 + 6x_3 = 0$

$$2x - 3y + 4z = 0$$

- Find k if the system 3x + 4y + 6z = 0 has non trivial solution 12. 4x + 5y + kz = 0
- If the following system has non trivial solutions, prove that a + b + c = 0 or a = b = c, Where 13. ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0. Find the non – trivial solution when the condition is satisfied.
- Show that the rows of the matrix $\begin{bmatrix} 1 & 0 & 2 & 1 \\ 3 & 1 & 2 & 1 \\ 4 & 6 & 2 & -4 \end{bmatrix}$ are linearly dependent and find the

relationship between them.

15. Are the following vectors linearly dependent? If so find the relation between them.

(i)
$$X_1 = [1 \ 1 \ 1 \ 3], X_2 = [1 \ 2 \ 3 \ 4], X_3 = [2 \ 3 \ 4 \ 9]$$

(ii)
$$X_1 = \begin{bmatrix} 2 & 3 & 4 - 2 \end{bmatrix}, X_2 = \begin{bmatrix} -1 - 2 - 2 & 1 \end{bmatrix}, X_3 = \begin{bmatrix} 1 & 1 & 2 - 1 \end{bmatrix}$$

(iii)
$$X_1 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}, X_2 = \begin{bmatrix} 2 & 1 & 4 \end{bmatrix}, X_3 = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}, X_4 = \begin{bmatrix} 1 & 8 & -3 \end{bmatrix}$$

(iv)
$$X_1 = [1 - 1 \ 1], X_2 = [2 \ 1 \ 1], X_3 = [3 \ 0 \ 2]$$

(v)
$$X_1 = [1 \ 2 \ 3], X_2 = [2 - 2 \ 6]$$

(vi)
$$X_1 = \begin{bmatrix} 3 & 1 - 4 \end{bmatrix}, X_2 = \begin{bmatrix} 2 & 2 - 3 \end{bmatrix}, X_3 = \begin{bmatrix} 0 - 4 & 1 \end{bmatrix}$$

(vii)
$$X_1 = \begin{bmatrix} 1 & 1 & 1 & 3 \end{bmatrix}, X_2 = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}, X_3 = \begin{bmatrix} 2 & 3 & 4 & 7 \end{bmatrix}$$

(viii)
$$X_1 = [1 \ 1 - 1 \ 1], X_2 = [1 - 1 \ 2 - 1], X_3 = [3 \ 1 \ 0 \ 1]$$

(ix)
$$X_1 = [1 - 120], X_2 = [2111], X_3 = [3 - 12 - 1], X_4 = [3031]$$