ZILFIMIAN

EM/DT (Q11L12) 65% (13/20)

✓ 1. With the increase of k, the decision boundary will be

- A simplified
- B more complex
- (c) I do not know
- (D) unchanged

✓ 2. Which of these algorithms can be used to fill the missing values

- (A) KNN for regression
- (B) KNN for classification
- **c** both
- D I do not know

✓ 3. Decision Tree Decision Boundaries

- (A) are a step-wise constant function
- (B) I do not know
- (c) continuous function
- are axis-parallel rectangles

× 4. Root Node has

- (A) no incoming edges and zero or more outgoing edges
- B one incoming edge and two or more outgoing edges
- (c) one incoming edge and no outgoing edges
- D I do not know

✓ 5. Pruning the tree means

- A Simplify the tree
- B Split the tree's nodes
- C Merge the tree's nodes
- D I do not know

Anna Page 1 of 4

/	6.	Gini index equals to
	A	1 - sum (pi^2)
	B	1 + sum (pi^2)
	(c)	sum(pi * log(pi))
		-sum(pi * log(pi))
	E	I do not know
/	7.	Entropy starts with 0
	(A)	True
	В	False
	(C)	I do not know
/	8.	Overall impurity measure can be obtained by
	A	a weighted average of individual rectangles
	B	majority voting
	(C)	I do not know
	9.	At each stage, we choose the split with
•	A	the lowest Gini index
	B	the lowest Chi-square value
		the highest entropy
		I do not know
/	10.	We can perform the Decision Trees in r using
	A	rpart()
	(B)	decisiontree()
	C	destree()
	D	reg.tree()
	E	I do not know
/	11.	minsplit in R means
	A	the minimum number of observations that must exist in a node in order for a split to be attempted
	B	the minimum number of observations in any terminal node
	(c)	the minimum number of splits
		I do not know

Anna Page 2 of 4

	12.	Bagging is a technique used to reduce
	A	the variance of our predictions
	(B)	the bias of our predictions
	(c)	both
	D	I do not know
×	13.	Bootstrap aggregation allows sampling
	(A)	with replacement
	B	without replacement
	C	I do not know
	D	both
×	14.	How can Ensemble methods be constructed?
	(A)	By manipulating the training set
	B	By manipulating the input features
	C	By manipulating the class labels
	D	By manipulating the learning algorithm
	(E)	All of them
	(F)	None
	G	I do not know
×	15.	Repeatedly sampling observations are taken
	(A)	from general population
	B	original sample data set
	C	I do not know
	D	None
×	16.	Random Forest differs from bagging
	(A)	by a random sample of m predictors
	В	by bootstrapped training samples
	C	by adaptive sampling
		I do not know

Anna Page 3 of 4

X	17.	Boosting differs from bagging
	A	by a random sample of m predictors
	B	by bootstrapped training samples
	C	by adaptive sampling
	D	I do not know
×	18.	Averaging many highly correlated quantities
	A	lead to as large of a reduction in variance
	B	does not lead to as large of a reduction in variance
	$\overline{(c)}$	lead to as large of a reduction in bias
	D	I do not know
/	19.	We can perform a Random forest in R using the function
	A	randomForest()
	B	rf()
	(c)	randomF()
		boot()
	E	I do not know
/	20.	Random Forest works
	A	for classification
	B	for regression
	C	both
		I do not know

Anna Page 4 of 4