# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.



JP11031724







# THERMOCHUCK AND CIRCUIT BOARD INSPECTING DEVICE

Patent Number:

JP11031724

Publication date:

1999-02-02

Inventor(s):

YASUDA KATSUO

Applicant(s)::

MICRONICS JAPAN CO LTD

Requested Patent:

F JP11031724

Application Number: JP19970185153 19970710

Priority Number(s):

IPC Classification:

H01L21/66; G01R31/00; G02F1/13

EC Classification:

Equivalents:

#### Abstract

PROBLEM TO BE SOLVED: To attain uniform temperature adjustment of an IC water, and accurate measurement of small currents and quick positioning of a probe. SOLUTION: A thermochuck 4 is constituted of a chuck top 12 for supporting an IC wafer 13, a guard plate 20 having electrical conductivity and thermal conductivity which is formed so that the chuck top 12 can be surrounded, an insulating member 22 which electrically interrupts between the guard plate 20 and the chuck top 12 for transferring heat, and a thermo-module 25 which is allowed to abut to one side face of the guard plate 20 for supplying heat to the chuck top 12. In this case, the insulating member 22 and the thermo-module 25 are constituted of small pieces 22A and 25A, and the surface area is made smaller than that of the objective face of the heat transfer of the guard plate 20, so that the insulation resistance can be maintained high, the dielectric constant can be maintained low, and heat resistance can be maintained small. A purge board 5 is constituted of a transparent board member having electrical conductivity.

Data supplied from the esp@cenet database - I2



#### (19)日本国特許庁 (JP)

## (12) 公開特許公報(A)

## (11)特許出願公開番号

# 特開平11-31724

(43)公開日 平成11年(1999)2月2日

| (51) Int.Cl. 8 | 識別記号 | F I           |     |
|----------------|------|---------------|-----|
| H 0 1 L 21/66  |      | H01L 21/66    | Н   |
| G01R 31/00     |      | G 0 1 R 31/00 |     |
| G 0 2 F 1/13   | 101  | G 0 2 F 1/13  | 101 |

|                         |                    | 審查請求    | 未請求 請求項の数7 OL (全 10 頁)                |  |
|-------------------------|--------------------|---------|---------------------------------------|--|
| (21)出願番号                | <b>特膜平9-185153</b> | (71)出願人 | 000153018<br>株式会社日本マイクロニクス            |  |
| (22)出顧日 平成9年(1997)7月10日 |                    |         | 東京都武蔵野市吉祥寺本町2丁目6番8号                   |  |
|                         |                    | (72)発明者 |                                       |  |
|                         |                    |         | 東京都武蔵野市吉祥寺本町2丁目6番8号<br>株式会社日本マイクロニクス内 |  |
|                         |                    | (74)代理人 | 弁理士 工藤 宜幸                             |  |
|                         |                    |         |                                       |  |

## (54) 【発明の名称】 サーモチャック及び回路板検査装置

#### (57)【要約】

【課題】 ICウエハ13のむらのない温度調整、微少電流の正確な測定、探針の迅速な位置決めを可能にする。

【解決手段】 I Cウエハ13を支持するチャックトップ12と、このチャックトップ12を囲繞して設けられ、導電性及び熱伝導性を有するガードプレート20と、このガードプレート20とチャックトップ12との間で電気的に遮断して熱を伝達する絶縁部材22と、ガードプレート20の一側面に当接されてチャックトップ12に熱を供給するサーモモジュール25を存するサーモチャック4である。絶縁部材22及びサーモモジュール25を小片22A、25Aで構成して、ガードプレート20等の熱伝達対象面よりその表面積を小さくして、絶縁抵抗を高く、誘電率を低く、熱抵抗を小さく維持した。パージ板5は、導電性を有する透明板材で構成した。



#### 【特許請求の範囲】

【請求項1】 回路板を支持するチャックトップと、このチャックトップをその一側から囲繞して設けられ、導電性及び熱伝導性を有するガードプレートと、このガードプレートと前記チャックトップとの間に設けられ、これらの間を電気的に遮断した状態で熱を伝達する絶縁部材と、前記ガードプレートの一側面に当接され、このガードプレート及び前記絶縁部材を介してチャックトップに熱を供給するサーモモジュールとを有するサーモチャックにおいて、

前記絶縁部材が、直接に当接される前記ガードプレート 及びチャックトップの熱伝達対象面よりその表面積を小 さくするように形成されたことを特徴とするサーモチャ ック。

【請求項2】 請求項1に記載のサーモチャックにおいて、

前記絶縁部材が、貫通孔を設けて構成されたことを特徴とするサーモチャック。

【請求項3】 請求項1に記載のサーモチャックにおいて.

前記絶縁部材が、複数個配設された小片から構成されたことを特徴とするサーモチャック。

【請求項4】 請求項3に記載のサーモチャックにおいて、

前記サーモモジュールが、前記ガードプレートの一側面 に複数個当接して設けられると共に、前記絶縁部材が、前記サーモモジュールとほぼ同様の大きさに形成されて サーモモジュールと整合する位置に設けられたことを特徴とするサーモチャック。

【請求項5】 請求項3又は4に記載のサーモチャック において、

前記ガードプレートが前記絶縁部材の配設位置で貫通孔 を有し、この絶縁部材と前記サーモモジュールが直接に 接触されることを特徴とするサーモチャック。

【請求項6】 回路板を支持すると共にこの回路板を加熱又は冷却して検査を行うサーモチャックと、このサーモチャックの上側面を覆って検査対象の回路板及びその周囲を同電位に維持するパージ板とを有する回路板検査装置において、

前記パージ板が、導電性を有する透明板材で構成されたことを特徴とする回路板検査装置。

【請求項7】 請求項6に記載の回路板検査装置において、

前記サーモチャックが、請求項1乃至5のいずれかに記 載のサーモチャックによって構成されたことを特徴とす る回路板検査装置。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ICウエハや液晶 板等のように、薄板の表面に回路を構成した回路板の回 路の特性試験を行う際に用いるサーモチャック及び回路 板検査装置に関し、特に大型の回路板の検査に用いて好 適なサーモチャック及び回路板検査装置に関する。 【0002】

【従来の技術】近年、ICや液晶装置等は、多様な用途に用いられるようになっている。この結果、ICや液晶装置等がおかれる環境も、常温状態だけでなく、高温、低温状態に晒されることもある。このため、ICや液晶装置等に対して、常温状態と共に高低温環境下でも特性試験を行う必要性が生じてきた。この常温状態と共に高低温環境下で特性試験を行うために用いるのが回路板検査装置である。

【0003】さらに、製造技術の向上により、ICウエハや液晶板等の回路板も年々大型化してきている。この大型化した回路板を検査する回路板検査装置のサーモチャックとしては、図2から図4に示すような構成のものが知られている。

【0004】図2中のサーモチャック61は、上側載置面62Aに回路板63を支持するチャックトップ62と、このチャックトップ62をその下側から囲繞して設けられたガードプレート64と、このガードプレート64と前記チャックトップ62との間に設けられた絶縁板65と、前記ガードプレート64の下側面に当接され、このガードプレート64及び前記絶縁板65を介してチャックトップ62に高温又は低温の熱を供給して上側載置面62A上の回路板63を加熱又は冷却するサーモモジュール66と、このサーモモジュール66の下側面に当接して設けられ、熱を吸収して外部に排出するクーリングプレート67とを有して構成されている。

【0005】絶縁板65は、図3に示すように、チャックトップ62とほぼ同じ径の円盤状に形成されている。 【0006】そして、サーモモジュール66からチャックトップ62側へ供給される高温又は低温の熱は一旦、ガードプレート64に伝わり、このガードプレート64に広がる。さらに、絶縁板65に伝わってこの絶縁板65で広がり、チャックトップ62の全域を設定温度に加熱又は冷却する。

【0007】一方、前記サーモチャック61の上方には、上側載置面62Aに面してパージ板(図示せず)が設けられている。このパージ板は、例えば鉄板等の導電性のある板材で構成されている。さらに、チャックトップ62及びガードプレート64も導電性を有する材料で構成されると共に、これらパージ板、チャックトップ62及びガードプレート64が互いに電気的に接続されて、同電位に維持されている。そして、同電位に維持されたチャックトップ62の上側載置面62Aに支持された回路板63に対して、設定温度での導通試験によって微少電流が測定される。

#### [0008]

【発明が解決しようとする課題】ところが、前記構成の

従来装置のように回路板が大型化すると、それに伴って 絶縁板65も大型化して表面積が大きくなるため、次の ような問題がある。

【0009】単位面積あたりの絶縁抵抗が同じ場合、絶縁板65の表面積が大きくなる分だけ絶縁抵抗が低下する。同様に、誘電率が高くなる。この結果、微少電流の正確な測定に支障をきたしてしまう。

【0010】また、絶縁板65が大型化すると、熱抵抗が大きくなり、サーモモジュール66からの熱がチャックトップ62側へ伝わりにくくなる。即ち、温度レスポンスが低下してしまう。この結果、チャックトップ62の上側載置面62Aに載置された回路板63を設定温度まで加熱又は冷却するのに時間がかかってしまう。

【0011】さらに、チャックトップ62の上側載置面62Aの面積が広くなると、温度分布特性が悪化する。即ち、上側載置面62Aの面積が広くなると、その上側載置面62Aからの放熱又は吸熱する熱量も多くなるが、この放熱又は吸熱する熱量を考慮した上で、上側載置面62Aの全域を均一に加熱又は冷却するには、サーモモジュール66からの一定量の熱が直接的にかつ速やかにチャックトップ62まで伝達される必要がある。しかし、前述したように、絶縁板65は熱抵抗が大きく、温度レスポンスが低いので、設定量の熱がスムーズに伝達されず、上側載置面62Aの温度分布特性が悪化してしまう。

【0012】また、パージ板は鉄板等で構成されているため、パージ板で覆われた回路板63の表面を視覚的に認識することができない。このため、パージ板で覆われた回路板63の任意の地位を予め特定して、探針の位置合わせをすることが難しい。

【0013】本発明はこのような問題点に鑑みてなされたもので、回路板の大型化に伴う前記諸問題を解消したサーモチャック及び回路板検査装置を提供することを目的とする。

#### [0014]

【課題を解決するための手段】第1の発明に係るサーモチャックは、回路板を支持するチャックトップと、このチャックトップをその一側から囲繞して設けられ、導電性及び熱伝導性を有するガードプレートと、このガードプレートと前記チャックトップとの間に設けられ、これらの間を電気的に遮断した状態で熱を伝達する絶縁部材と、前記ガードプレートの一側面に当接され、このガードプレート及び前記絶縁部材を介してチャックトップに熱を供給するサーモモジュールとを有するサーモチャックにおいて、前記絶縁部材が、直接に当接される前記ガードプレート及びチャックトップの熱伝達対象面よりその表面積を小さくするように形成されたことを特徴とする。

【0015】前記構成により、絶縁部材をその表面積を 小さくして形成されたので、この絶縁部材の絶縁抵抗を 高く維持し、誘電率を低く抑えることができる。この結果、微少電流を正確に測定することができる。

【0016】さらに、熱抵抗が小さく抑えられて、温度 レスポンスが高く維持される。これにより、回路板の温 度分布特性が向上し、回路板を設定温度に均一に加熱又 は冷却することができる。

【0017】第2の発明に係るサーモチャックは、前記 絶縁部材が、貫通孔を設けて構成されたことを特徴とす る。

【0018】貫通孔を設けることにより、前記第1の発明と同様に、絶縁部材の表面積が小さくなる。

【0019】第3の発明に係るサーモチャックは、前記 絶縁部材が、複数個配設された小片から構成されたこと を特徴とする。

【0020】複数の小片で構成することにより、前記第 1の発明と同様に、絶縁部材の表面積が小さくなる。

【0021】第4の発明に係るサーモチャックは、前記サーモモジュールが、前記ガードプレートの一側面に複数個当接して設けられると共に、前記絶縁部材が、前記サーモモジュールとほぼ同様の大きさに形成されてサーモモジュールと整合する位置に設けられたことを特徴とする。

【0022】前記構成により、サーモモジュールからの 熱は、絶縁部材を介してチャックトップに伝わる。絶縁 部材は、サーモモジュールとほぼ同じ大きさに形成され ているので、サーモモジュールからの熱は、直接的に絶 縁部材に伝達され、他に広がらずにチャックトップに伝 達される。

【0023】第5の発明に係るサーモチャックは、前記ガードプレートが前記絶縁部材の配設位置で貫通孔を有し、この絶縁部材と前記サーモモジュールが直接に接触されることを特徴とする。

【0024】この構成により、サーモモジュールからの 熱は、ガードプレートを介さずに直接絶縁部材に伝達さ れ、他に広がらずにチャックトップに伝達される。

【0025】第6の発明に係る回路板検査装置は、回路板を支持すると共にこの回路板を加熱又は冷却して検査を行うサーモチャックと、このサーモチャックの上側面を覆って検査対象の回路板及びその周囲を同電位に維持するパージ板とを有する回路板検査装置において、前記パージ板が、導電性を有する透明板材で構成されたことを特徴とする。

【0026】パージ板を透明板材で構成することで、チャックトップに支持された回路板の上側にパージ板が配設された状態で、パージ板の上側から回路板を視覚的に認識することができる。これにより、パージ板の上側から回路板の任意の位置を視覚的に特定して速やかに探針を位置合わせすることができる。

【0027】第7の発明に係る回路板検査装置は、前記 サーモチャックが、前記第1乃至第5の発明のいずれか に記載のサーモチャックによって構成されたことを特徴とする。

【0028】これにより、検査対象の回路板を効率的に加熱又は冷却することができると共に、回路板と探針との位置合わせを速やかに行うことができる。さらに、検査対象の回路板及びその周囲を同電位に維持でき、正確な微少電流の検査が可能になる。

#### [0029]

【発明の実施の形態】以下、本発明に係る回路板検査装置について、添付図面を参照しながら説明する。図1は本実施形態に係る回路板検査装置1のサーモチャック4及びパージ板5を示す横断面図、図5は回路板検査装置1を示す概略構成図、図6はサーモチャック4を示す平面図、図7はサーモチャック4の要部を示す概略側面図、図8はガードプレート20に取り付けられた絶縁部材22を示す平面図、図9はガードプレート20に取り付けられたサーモモジュール25を示す裏面図である。【0030】この回路板検査装置1は、図5に示すように主に、ベース2と、XY0Zステージ3と、サーモチャック4と、パージ板5と、ベースプレート6と、探針7と、マニピュレータ8と、シールドカバー9とから概略構成されている。

【0031】ベース2は、 $XY\theta Z$ ステージ3等を支持する基台である。 $XY\theta Z$ ステージ3はベース2上に設置されている。 $ZOXY\theta Z$ ステージ3は、その上側に設置されたサーモチャック4を前後左右上下方向に移動させると共に回転させるものである。

【0032】サーモチャック4は、チャックホルダ11を介して $XY\theta Z$ ステージ3の上側面に固定されている。このサーモチャック4は、 $XY\theta Z$ ステージ3によって前後左右上下方向へ移動されると共に回転されて、探針7の先端に対して正確に位置合わせされるようになっている。

【0033】このサーモチャック4の具体的な構成は、 図1及び図6に示すようになっている。図中の12は、 薄板状の回路板としてのICウエハ13が載置される載 置面12Aを有するチャックトップである。このチャッ クトップ12は、検査工程においては、パージ板5と一 定間隔をおいて配設され、これらチャックトップ12と パージ板5との間に、保温空間Aが構成される。この保 温空間Aは、チャックトップ12の載置面12Aに載置 されたICウエハ13を設定温度に保つための空間であ る。チャックトップ12は薄型円盤状に形成され、その 載置面12Aには、同心円上の3つの円環状溝14(図 3参照)が形成されている。これらの円環状溝14は縦 溝15で互いにつながり、さらに載置面12A中央の吸 引口16につながっている。この吸引口16は、外部の バキューム装置 (図示せず) に接続され、各円環状溝1 4内を真空引きして載置面12Aに載置されたICウエ ハ13を支持するようになっている。吸引口16は、チ ャックトップ12の固定用穴を兼ねている。この吸引口16にチャック止めねじ17が挿入され、サーモチャック4全体の中心軸であるセンターシャフト18に螺合して固定されている。これらチャック止めねじ17及びセンターシャフト18は、真空引きのための通路を確保するために、中空構造となっている。

【0034】チャックトップ12は導電性を有すると共 に熱伝導性にも優れ、かつ熱膨張係数の小さい材料で構 成されている。導電性を備えるのは、載置面12Aに1 Cウエハ13を載置した状態で、ICウエハ13を開た 後述のガードプレート20及びパージ板5と共にチャッ クトップ12をICウエハ13と同電位にするためであ る。これらを同電位にすることで、ICウエハ13の回 路を流れる微少電流を正確に測定することができる。熱 伝導性を備えるのは、載置面12Aに載置されたICウ エハ13を均一に加熱又は冷却するために、チャックト ップ12自体を均一に加熱又は冷却する必要があるため である。さらに、熱膨張係数を小さく抑えるのは、載置 面12Aに吸着支持したICウエハ13の膨張による損 傷及び探針7の位置ずれを防ぐためである。このチャッ クトップ12を構成する材料としては、例えばアルミニ ウム合金が用いられる。

【0035】さらに、チャックトップ12の周縁部には座ぐり面12Bが設けられ、セミリジットケーブル19の心線19Aがねじ固定されて電気的に接続されている。このセミリジットケーブル19は、探針7を用いて特性試験を行う測定器(図示せず)に接続され、チャックトップ12とガードプレート20とパージ板5とが同電位に保たれている。チャックトップ12の内部には、その周縁から中心部まで細穴12Cが設けられ、外部から温度センサSが挿入されている。

【0036】図中の20はチャックトップ12を下側から囲繞して収納支持するガードプレートである。このガードプレート20は、チャックトップ12を十分な隙間を空けて収容し得るチャックトップ収納凹部21を有して、薄型円盤状でかつ皿状に形成されている。チャックトップ収納凹部21には、絶縁部材22を介してチャックトップ12が収納されている。なお、ガードプレート20の周縁の環状の立ち上げ壁部20Aの上端部は、上方に向けて内側へ傾斜したテーパ面20Bが設けられている。このテーパ面20Bは、後述する外気排除気体吹き出し口Hの一部を構成する。

【0037】ガードプレート20を構成する材料は、導電性を有すると共に熱伝導性にも優れた材料で構成されている。導電性を備えるのは、前記チャックトップ12及びパージ板5と共にICウエハ13と同電位にするためである。熱伝導性を備えるのは、載置面12Aに載置されたICウエハ13を均一に加熱又は冷却するためである。即ち、サーモモジュール25からの熱を絶縁部材22に直接的にかつ迅速に伝達して、チャックトップ1

2を速やかに加熱形は冷却するためである。このため、ガードプレート20は薄く形成され、ガードプレート20を上下から挟む絶縁部材22とサーモモジュール25との間で熱が直接的に伝達されるようになっている。【0038】また、ガードプレート20の立ち上げ壁部20Aには、セミリジットケーブル19の外部導体19Bがケーブルクランプ23によって固定され、外部導体19Bとガードプレート20とが電気的に接続されている。さらに、外部導体19Bはシールド線24(図5参照)によってパージ板5にも電気的に接続されている。これにより、セミリジットケーブル19で、チャックトップ12、ガードプレート20及びパージ板5が全て測

定器に接続され、同電位に保たれている。

【0039】絶縁部材22は、チャックトップ12とガ ードプレート20との間に介装されている。この絶縁部 材22は、絶縁性を有すると共に熱伝導性を有し、チャ ックトップ12とガードプレート20との間で、電気的 に絶縁した状態で熱だけを伝達するようになっている。 絶縁部材22の材料としてはボロンナイトライドが用い られる。絶縁部材22の具体的な構成は、図7及び図8 に示すように、長方体状の小片22Aを多数個配設して 構成されている。多数の小片22Aで構成したのは、チ ャックトップ12とガードプレート20にそれぞれ当接 する表面積を小さくするためである。この表面積(絶縁 部材22全体の体積)を小さくするのは、絶縁抵抗を高 く、誘電率を低く、熱抵抗を小さく維持するためであ る。絶縁抵抗を高く、誘電率を低く維持することによ り、チャックトップ12とパージ板5とガードプレート 20とチャックトップ12に支持された I Cウエハ13 とが互いに同電位に維持される。これにより、微少電流 の正確な測定が可能となる。また、熱抵抗を小さく維持 することにより、サーモモジュール25からの熱を迅速 に伝達して高い温度レスポンスが可能になる。この小片 22Aの大きさ、個数及び配設位置はサーモモジュール 25と整合するように設定されている。なお、熱抵抗が 小さくて高い温度レスポンスが可能になるのは、次の理 由による。サーモモジュール25がチャックトップ12 を設定温度に加熱する場合、ガードプレート20及び絶 縁部材22を媒介しているため、これらガードプレート 20及び絶縁部材22も設定温度近傍に加熱する必要が ある。このとき、ガードプレート20及び絶縁部材22 の体積が小さければ、これらを設定温度まで加熱するた めに必要な熱量は少なくて済む。そして、サーモモジュ ール25から発生する熱量が一定の場合、ガードプレー ト20及び絶縁部材22を設定温度に加熱する熱量を小 さく抑えられる分だけ早くチャックトップ12を設定温 度に加熱することができる。これにより、熱抵抗が小さ く、高い温度レスポンスが可能になる。このため、絶縁 部材22の表面積である絶縁部材22全体の体積を小さ くすると共に、ガードプレート20を薄く形成してい

る。

【0040】図中の25はサーモモジュールである。このサーモモジュール25は複数の小片25Aから構成され、ガードプレート20の下側面に密着して設けられている。この小片25Aは、図7及び図9に示すように、長方体状に形成されている。各小片25Aは、熱交換器によって構成され、その一側面の熱を他側面に伝達するようになっている。小片25Aは具体的には、前記絶縁部材22の小片22Aと整合するようになっている。即ち、サーモモジュール25の小片25Aと絶縁部材22の小片22Aとは、図7から図8に示すように、同じ大きさ及び個数で、ガードプレート20を挟んで互いに整合する位置に設けられている。

【0041】図中の26はクーリングプレートである。このクーリングプレート26は、サーモモジュール25の下側面に密着して設けられ、この下側面を冷却するようになっている。クーリングプレート26は内部が空洞になっており、その空洞に外部から冷媒用供給管27を介して冷媒が通されている。この冷媒は、外部の冷却装置(図示せず)から供給される。そして、ガードプレート20とサーモモジュール25とクーリングプレート26とはねじ28によって互いに密着して固定されている。

【0042】ガードプレート20とサーモモジュール25とクーリングプレート26との外周には、これらを囲続するように、サーモモジュールカバー29が取り付けられている。このサーモモジュールカバー29は、クーリングプレート26の外周に嵌合した状態で、ねじ30で固定されている。

【0043】この構成により、サーモモジュール25の下側面の熱がクーリングプレート26内の冷媒に伝達し外部に排出されて、サーモモジュール25の上側面が冷やされ、このサーモモジュール25と一体的に固定されたチャックトップ12、絶縁部材22及びガードプレート20が冷やされる。これによって、チャックトップ12の載置面12Aに載置されたICウエハ13が設定温度まで冷やされるようになっている。このとき、設定温度は、温度センサSで検出した現在温度を基にサーモモジュール25等が制御されて、正確に調整される。

【0044】クーリングプレート26の下側には、スペーサ31を介して断熱板32がねじ33で固定されている。このスペーサ31は、等間隔に3個以上配設されて断熱板32を安定してクーリングプレート26に固定していると共に、クーリングプレート26と断熱板32との間に環状空間34を形成している。断熱板32の内部には、パージエアー用細穴32Aと真空引き用細穴32Bが設けられ、パージエアー用細穴32Aが内側パージエアー供給管35を介してパージエアー供給装置(図示

せず)に、真空引き用細穴32Bがバキューム管36を介して真空ボンプ(図示せず)にそれぞれ接続されている。さらに、パージエアー用細穴32Aの内側端は、断熱板32の上側の環状空間34に開口して互いに連通され、パージエアーを供給するようになっている。なお、パージエアーとしては、乾燥させて湿気を除去した乾燥空気を用いる。また、湿気を含まない窒素ガス等の他の気体を用いることもある。

【0045】断熱板32の周縁の上側には、円筒状のイ ンサイドリング38が取り付けられている。インサイド リング38の下端には、内側に縮径してフランジ部39 が形成され、この部分がねじ40によって断熱板32に 固定されている。このインサイドリング38は、前記ガ ードプレート20とサーモモジュール25とクーリング プレート26とをその外周から覆って、これらとの間に 円筒状の内側パージエアー供給空間41を構成してい る。インサイドリング38の上端部には、その断面形状 が逆三角形状の整流部材38Aが設けられている。この 整流部材38Aは、外気排除気体吹き出し口H(後述す る内側パージエアー吹き出し口41A及び外側パージエ アー吹き出し口52Aによって構成される)から吹き出 された気体の一部を外側(載置面12Aの外周縁側)に 流して保温空間A内に外気が流入するのを防ぐ部材であ る。この整流部材38Aの両側には、上方へ向けて両側 へ広がるテーパ面38B,38Cが形成されている。そ して、一方のテーパ面38Bとガードプレート20のテ ーパ面20Bとで、内側パージエアー供給空間41の内 側パージエアー吹き出し口41Aが構成されている。こ の内側パージエアー吹き出し口41Aは、載置面12A に支持された I Cウエハ13をその周縁から囲むように 円環状に開口して形成された外気排除気体吹き出し口H の内側部分を構成する。内側パージエアー吹き出し口4 1Aは、内側に傾斜させて構成されることで、保温空間 Aにパージエアーを送風してその内部に充満させ、その 後パージ板5の探針挿入孔5Aから外部に流出させて、 ICウエハ13の周囲から外気を排除するようになって いる。

【0046】断熱板32の下側には、チャックベース43が取り付けられている。このチャックベース43の上側面の中央部には、円盤状に隆起して形成された支持用台部43Aが断熱板32の下側面に直接に当接され、その周囲に円環状の環状空間44が形成されている。断熱板32とチャックベース43とは、等間隔に配設されたねじ45で互いに固定されている。このねじ45にはスペーサ46が介装され、このスペーサ46で環状空間44が確保されている。チャックベース43の内部にはパージエアー用細穴43Bが設けられ、外側パージエアー供給管47を介してパージエアー供給装置(図示せず)に接続されている。パージエアー用細穴43Bの内側端部は環状空間

44に開口して連通されており、パージエアー供給装置から環状空間44にパージエアーが供給される。

【0047】チャックベース43の周縁には、上方に向 けて円筒状のアウトサイドリング48が取り付けられて いる。このアウトサイドリング48の下端には、固定用 爪49が等間隔に複数設けられ、チャックベース43の 下側周縁部に設けられた固定用切欠き50に嵌合し、ね じ51で固定されている。このアウトサイドリング48 は、断熱板32及びインサイドリング38をその外周か ら覆って、その間に円筒状の外側パージェアー供給空間 52を構成している。アウトサイドリング48の上端部 には、上方に向けて外側に傾斜させたテーパ面48Aが 設けられている。そして、このテーパ面48Aと整流部 材38Aの他方のテーパ面38Cとで、外側パージエア ー供給空間52の外側パージエアー吹き出し口52Aが 外側に向けて構成されている。この外側パージエア一吹 き出し口52Aは、前記内側パージエアー供給空間41 の内側パージエアー吹き出し口41Aをその外側から囲 むように設けられ、外側に向けてパージエアーを吹き出 すことで、保温空間Aと外気との間を遮断して保温空間 Aに外気が流入するのを防ぐエアカーテンとして機能す るようになっている。

【0048】この外側パージエアー吹き出し口52Aは、載置面12Aに支持されたICウエハ13をその周縁から囲むように環状に開口して形成された外気排除気体吹き出し口Hの外側部分を構成する。

【0049】図5中のベースプレート6は、ベース2側に固定された状態で、サーモチャック4の上側に配設される支持基板である。このベースプレート6の中央部には、サーモチャック4側へ延びる探針7が通される探針導入口6Aが設けられている。

【0050】パージ板5は、パージ板ホルグ54を介してベースプレート6の下側に、サーモチャック4に面した状態で取り付けられている。これにより、サーモチャック4のチャックトップ12の載置面12Aとパージ板5とで保温空間Aを形成している。このパージ板5のほぼ中央には、ICウエハ13に向けて探針7を挿入する探針挿入孔5Aが設けられている。

【0051】さらに、このパージ板5は、上側からIC ウエハ13の全体を視覚的に認識できるように、透明の 材料で構成されている。即ち、パージ板5は、透明でか つ導電性を有する材料で形成されている。このパージ板 5の材料としては、耐熱性を有する透明の合成樹脂やガ ラス等の基板にITO膜を施したものや、金網等の導電 性部材を挟み込んだ前記透明の合成樹脂等が用いられ る

【0052】ベースプレート6の上側面には、探針導入口6Aの部分が開口したリングプレート55が一体的に取り付けられている。このリングプレート55は、鉄板によって構成され、マグネットが吸着できるようになっ

ている。

【0053】探針7は、同軸針によって構成されている。探針7の基端部は、同軸ケーブル56を介して測定器(図示せず)に接続されている。この探針7はマニピュレータ8に支持されている。マニピュレータ8は、探針7を支持した状態で、マグネット57によって任意の位置でリングプレート55に取り付けられるようになっている。

【0054】XYのZステージ3の上に設けられた前記サーモチャック4、パージ板5、ベースプレート6、探針7やマニピュレータ8等は、シールドカバー9には、配管用の貫通穴(図示せず)が設けられ、セミリジットケーブル19、冷媒用供給管27、内側パージエアー供給管35、バキューム管36及び外側パージエアー供給管47は、この貫通穴を介して、シールドカバー9内のサーモチャック4とシールドカバー9の外側にある各装置とを接続して設けられている。

【0055】[回路板検査方法]次に、前記構成の回路 板検査装置1を用いて回路板検査方法を説明する。

【0056】ICウエハ13に対する低温環境下での特性試験は、次のようにして行う。

【0057】サーモチャック4は、XYのZステージ3によってパージ板5からある程度離れた位置に移動されている。この状態で、サーモチャック4のチャックトップ12に自動又は手動でICウエハ13を載置する。チャックトップ12の載置面12Aの円環状溝14等は、チャック止めねじ17、センターシャフト18、真空引き用細穴32B及びバキューム管36を介して真空ポンプによって真空引きされ、ICウエハ13は載置面12Aに吸着される。

【0058】次いで、XY&Zステージ3によってサーモチャック4が移動され、載置面12Aに支持されたICウエハ13がマニピュレータ8に支持された探針7の先端まで移動される。このとき、パージ板5は透明であるため、このパージ板5の上側からICウエハ13の目的位置が視覚的に特定できる。この視覚的に特定した位置と探針7の先端位置とを速やかに合わせる。XY&Zステージ3は、最終的に探針7の先端をICウエハ13表面の特定位置に接触させるための微調整をして探針7をICウエハ13に接触させる。このとき、載置面12Aとパージ板5とで保温空間Aが形成されている。

【0059】一方、サーモチャック4には、低温環境を作るために冷媒が供給されている。冷媒は、クーリングプレート26内を循環してこのクーリングプレート26を冷やす。また、サーモモジュール25には、その上側面が冷却される方向に電流が流される。これにより、サーモモジュール25の上側面に接合された薄いガードプレート20を介して、絶縁部材22が直接的に冷却される。この絶縁部材22の各小片22Aは、サーモモジュ

ール25からの熱を、他に広がることなく直接的にかつ 速やかにチャックトップ12に伝達し、このチャックト ップ12を急速に冷却する。これにより、チャックトッ プ12の全体が冷却され、次第に均一な設定温度にな る。

【0060】この冷却に伴ってサーモモジュール25の下側面が加熱するが、この熱は、クーリングプレート26で冷やされる。この結果、ガードプレート20、絶縁部材22及びチャックトップ12の熱がサーモモジュール25及びクーリングプレート26を介して冷媒に伝わり、効率的に外部に排除される。そして、載置面12Aに支持されたICウエハ13が冷やされる。このICウエハ13の温度は、温度センサSの検出値に基づいて正確に制御される。このとき、外気と保温空間Aとはパージ板5で熱的に遮断されている。さらに、内側パージエアーはクーリングプレート26に接してから保温空間Aに供給されるので、保温空間Aに充満したパージエアーは、ある程度低温に維持される。これにより、ICウエハ13の温度を正確に制御することができる。

【0061】また、保温空間Aにはパージエアーが供給 されている。具体的には、パージエアー供給装置が稼動 されて、パージエアーが、内側パージエアー供給管35 及びパージェアー用細穴32Aを介して環状空間34に 供給されている。パージエアーは、この環状空間34内 で、周囲に広がって、円筒状の内側パージエアー供給空 間41全体に供給され、内側パージエアー吹き出し口4 1 Aの全域から保温空間Aの中心に向けて吹き出され る。これにより、パージエアーは、保温空間A内に充満 してパージ板5の探針挿入孔5Aから外部に流出する。 【0062】また、パージエアー供給装置からのパージ エアーは、外側パージエアー供給管47及びパージエア ー用細穴43Bを介して環状空間44にも供給されてい る。この環状空間44に供給されたパージエアーは、そ の内部で周囲に広がって、円筒状の外側パージエアー供 給空間52全体に供給され、外側パージエアー吹き出し 口52Aの全域から、前記内側パージェアーと逆方向の 外側に向けて吹き出される。これにより、外側パージエ アーは、チャックトップ12とパージ板5との隙間から 外部に流出し、保温空間Aと外気との間を遮断して保温 空間Aに外気が流入するのを防いでいる。即ち、エアカ ーテンとして機能している。このエアカーテンの機能に よって I C ウエハ 1 3 の 周囲から 湿気を含む 外気が排除 され、ICウエハ13の表面や探針7の先端で結露する のを防止している。

【0063】また、絶縁部材22を小片22Aで構成して絶縁抵抗を高く維持し、誘電率を低く抑えるので、チャックトップ12とガードプレート20との間を確実に絶縁する。さらに、ICウエハ13が直接に載置されるチャックトップ12と、これらを上下から覆うパージ板5及びガードプレート20とを、セミリジットケーブル

19によって測定器側に全て接続するので、これらと測定対象であるICウエハ13とを正確に同電位に維持することができる。この結果、ICウエハ13内での微少電流を正確に測定することができる。

【0064】さらに、絶縁部材22の熱抵抗を小さく抑えて、温度レスポンスを高く維持したので、チャックトップ12全体が迅速に加熱又は冷却されて温度分布特性が向上し、チャックトップ12の載置面12Aに支持されたICウエハ13を設定温度に均一に加熱又は冷却することができる。

【0065】以上の状態で、探針7及び測定器によって 1fAオーダの微小電流を測定して、特性試験を行う。 【0066】また、ICウエハ13に対する高温環境下 での特性試験は、次のようにして行う。

【0067】I Cウエハ13をチャックトップ12の載置面12Aに載置して、サーモチャック4を探針7の先端位置に合わせて移動させる準備段階は前記低温環境下での特性試験の場合と同様である。

【0068】次に、サーモモジュール25に、前記の場合と逆方向に電流を流す。このとき、冷媒のクーリングプレート26への供給は行わない。なお、外部からの熱を、冷媒を介してクーリングプレート26からサーモモジュール25の下側面に伝達するようにしてもよい。

【0069】これにより、サーモモジュール25の上側面に接しているガードプレート20、絶縁部材22及びチャックトップ12が、前述した冷却と同様の熱伝達作用で加熱される。また、必要に応じてパージエアーが供給される。

【0070】均一に加熱されたチャックトップ12は、その載置面12Aに載置されたICウエハ13を加熱する。このときICウエハ13の周囲では、載置面12Aとパージ板5とで保温空間Aが形成されていると共にパージ板5が断熱板で構成されているので、チャックトップ12からICウエハ13に伝わった熱は、保温空間A内に効率的に蓄えられ、ICウエハ13を設定温度に効率的に加熱する。

【0071】以上の状態で、探針7及び測定器によって1fAオーダの微小電流を測定して、特性試験を行う。【0072】[効果]以上のように、絶縁部材22を各小片22Aから構成して、絶縁抵抗を高く維持し、誘電率を低く抑えるので、チャックトップ12とガードプレート20との間を確実に絶縁することができる。さらに、ICウエハ13が直接に載置されるチャックトップ12と、これらを上下から覆うパージ板5及びガードプレート20とを、セミリジットケーブル19によって測定器側に全て接続して、これらと測定対象であるICウエハ13とを正確に同電位に維持することができる。この結果、ICウエハ13内での微少電流を正確に測定することができるようになる。

【0073】さらに、絶縁部材22の熱抵抗を小さく抑

えて、温度レスポンスを高く維持したので、チャックトップ12全体が迅速に加熱又は冷却されて温度分布特性が向上し、チャックトップ12の載置面12Aに支持されたICウエハ13を設定温度に均一に加熱又は冷却することができるようになる。

#### 【0074】[変形例]

(1) 前記実施形態では、絶縁部材22の各小片22 A及びサーモモジュール25の各小片25Aを前後左右に配列してサーモチャック4を構成したが、図10に示すように、各小片22A,25Aを放射状に配列してもよい。この場合も、前記同様の作用、効果を奏することができる。

【0075】(2) 前記実施形態では、サーモモジュール25を複数の小片25Aから構成したが、図11に示すように円形状に形成してもよい。この場合、円形状のサーモモジュール58はガードプレート20の全面を加熱して、絶縁部材22の全ての小片22Aを加熱する。これによっても、前記同様の作用、効果を奏することができる。

【0076】(3) 前記実施形態では、ガードプレート20を平板状に板材で構成したが、絶縁部材22の各小片22Aが嵌合し得る程度の貫通孔を、各小片22Aと同じ数だけこれらが整合する位置に設けて、絶縁部材22の各小片22Aとサーモモジュール25の各小片25Aとを直接に当接するようにしてもよい。これにより、ガードプレート20を一切加熱する必要がなくなり、サーモモジュール25からの熱をより効率的にチャックトップ12側へ伝達することができる。

【0077】(4) 前記実施形態では、絶縁部材22を複数の小片22Aから構成したが、平板状の絶縁部材に多数の貫通孔を設けて、直接に当接されるガードプレート20及びチャックトップ12の熱伝達対象面(絶縁部材22を円盤状に形成した場合に当接して熱を伝達する対象面)よりその表面積を小さくするように形成してもよい。この場合も、同様の作用、効果を奏することができる。

#### [0078]

【発明の効果】以上、詳述したように本発明によれば、 次のような効果を奏する。

【0079】絶縁部材を、直接に当接されるガードプレート及びチャックトップの熱伝達対象面よりその表面積を小さくするように形成したので、この絶縁部材の絶縁抵抗を高く維持し、誘電率を低く抑えることができる。これにより、チャックトップとガードプレートとの間を確実に絶縁することができ、チャックトップとパージ板とガードプレートと測定対象である回路板とを正確に同電位に維持することができる。この結果、回路板の微少電流を正確に測定することができるようになる。

【0080】さらに、絶縁部材の熱抵抗を小さく抑えて、温度レスポンスを高く維持したので、チャックトッ

プ全体が迅速に加熱又は冷却されて温度分布特性が向上 し、チャックトップに支持された回路板を設定温度に、 迅速にかつ均一に加熱又は冷却することができるように なる。

#### 【図面の簡単な説明】

【図1】本発明に係るサーモチャック及びパージ板を示す横断面図である。

【図2】従来のサーモチャックの要部を示す概略側面図である。

【図3】従来のサーモチャックのガードプレートに取り付けられた絶縁部材を示す平面図である。

【図4】従来のサーモチャックのガードプレートに取り付けられたサーモモジュールを示す裏面図である。

【図5】本発明に係る回路板検査装置を示す概略構成図である。

【図6】本発明に係るサーモチャックを示す平面図である。

【図7】本発明に係るサーモチャックの要部を示す概略 側面図である。

【図8】本発明に係るサーモチャックのガードプレート に取り付けられた絶縁部材を示す平面図である。

【図9】本発明に係るサーモチャックのガードプレート に取り付けられたサーモモジュールを示す裏面図である。

【図10】本発明に係るサーモチャックの第1変形例を示す概略平面図である。

【図11】本発明に係るサーモチャックの第2変形例を示す概略平面図である。

#### 【符号の説明】

1:回路板検査装置、4:サーモチャック、5:パージ板、12:チャックトップ、13:ICウエハ、20:ガードプレート、22: 絶縁部材、22A:小片、25:サーモモジュール、25A:小片。

| (図1) | (図2) | (U2) | (U2)





k