Midterm	TT
materiii	11

70 - 115

July 24, 2019

Name: _____

Student ID#:

Problem 1:[20 points]

Using <u>superposition</u>, find the voltage across X_L as indicated in Figure 1. [Phase angle for all sources is $\angle 0^o$]

E1 On and I2 Off VL1=

Figure 1

Midterm II	70 - 115	July 24, 2019	
Name:	Student ID#	:	
	Dr	. Mishal AlSharidah	2

Name: _____

Student ID#:

Problem 2: [20 Points]

Using nodal general approach, find $I_x = \frac{V_B - V_A}{Z_C}$ from Figure 2.

Figure 2

Midterm II	70 - 115	July 24, 2	2019
Name:	Studer	nt ID#:	
		Dr. Mishal AlSharidah	4

	- · •		
-N	lid:	term	ш

70 - 115

July 24, 2019

7A T	
Name:	
mame.	_

Student ID#: _____

Problem 3: [20 points]

Find the <u>Thevenin</u> equivalent circuit of Figure 3. [Phase angle for all sources is $\angle 0^o$]

Figure 3

Midterm II	70 - 11	5	July 24, 2019	
Name:	S	tudent ID#:		-
		Dr. Misha	l AlSharidah	6

	Midterm	IJ
Name		

70 - 115

July 24, 2019

Name: _____

Student ID#:

Problem 4: [20 points]

Find the **Norton** equivalent circuit of Figure

4 from the point of view of V_o .

[Phase angle for all sources is $\angle 0^o$]

Figure 4

Midterm II	70 - 115	July 24, 2019	
Name:	Student ID#:		
	Dr.	Mishal AlSharidah	

Name:

Student ID#: _____

Problem 5: [20 points]

Using <u>mesh general approach</u>, find the voltage across R_2 in Figure 5.

«Note the polarity across R_2 »

[Phase angle for all sources is $\angle 0^o$]

Figure 5

Name: Stud	lent ID#:
	Dr. Mishal AlSharidah 10