Analyzing Car Expenses Based on Receipts

This notebook goes through some interesting stats about how much it has cost us to own a car. Since purchasing the car, I have been saving receipts from all car-related expenses. There are periods where other people have borrowed the car and fueled it up without saving the receipt, so consider this a lower bound on the expenses.

Table of Contents:

- Overview: Where Did the Money Go?
- Parking: What's Space Worth Anyways?
 - Seasonality in Parking
 - Who Do We Pay for Parking?
- Gas Prices: Fuelling my Pain!
 - Gas Prices over Time
 - What's the Final Price Tag for Fuel Consumption?
 - Buy Low, Wait High?
 - To the Cheapest Gas Station Please!

```
In [1]: # Packages
    from pathlib import Path
    import os
    import pandas as pd
    import numpy as np
    from datetime import datetime

import plotly.io as pio
    import plotly.express as px
    import plotly.graph_objects as go
    from plotly.subplots import make_subplots

#pio.renderers.default = "svg"  ## for showing plotly graphs when uploading notebook to
```

```
In [2]: ## Setting CWD
    cwd = os.getcwd()
    root = Path(cwd).parents[0]
    datadir = str(Path(root)) + str('/data')
    outputdir = str(Path(root)) + str('/figures')
    print("Root: " + str(root))
```

Root: /Users/madeaa/Dropbox/IFN/Programming/Python projects/analyzing car expenses

```
In [3]: infile = datadir + "/raw_data.xlsx"

df = pd.read_excel(infile, sheet_name='Blad1')

df_bränsle = pd.read_excel(infile, sheet_name='bränsle')

df_bränsle_snittpriser = pd.read_excel(infile, sheet_name='bränsle_snittpriser')
```

```
In [4]: df = df.append(df_bränsle[['Datum','Utgift']], ignore_index=True) ## Appending rele
    df['Kategori'].replace(np.nan, 'Bränsle', inplace=True) ## Fixing Category
```

Where Did the Money Go?

Let's break up the total costs of the car by the category.

Expenses by Category

In the figure above, we see that the greatest expenses was purchasing the car. This is followed by paying for fuel and insurance.

Parking: What's Space Worth Anyways?

How much have we paid for parking, in total? Let's take a look!

Parking: Cumulative Expenses over Time


```
In [8]: print(f"Between the {df_parkering.Datum.min().strftime('%d %B %Y')} and {df_parkering.Da

Between the 01 July 2016 and 16 September 2022, 433 parking occasions have cost us a tot al of 17481.130000000023 SEK.
```

Seasonality in Parking

What does the daily parking price tag look like?

Daily Parking Expenses

How has my average spending on parking changed over time?

Parking Expenses by Year

Who Do We Pay for Parking?

Let's break down the parking data by parking firm.

The winner is: Easypark!

Gas Prices: Fuelling my Pain!

In second place in terms of expenses, after paying for the actual car, was paying for fuel. Let's explore the fuel receipts!

Gas Prices over Time


```
In [14]: print(f"The figure above shows that fuel prices have been as low as {df_bränsle.Pris.min}

The figure above shows that fuel prices have been as low as 11.89 SEK and reached a maxi mum of 23.73 SEK.

The latest price is 19.48 SEK.
```

How good am I at fueling from price-worthy gas stations? Let's compare the prices from my fuel receipts with average daily prices of fuel in Sweden!

```
In [15]: fig = make_subplots()

# Add traces
fig.add_trace(
    go.Scatter(x=df_bränsle['Datum'], y=df_bränsle['Pris'], name="Price Per Receipt")
)

fig.add_trace(
    go.Scatter(x=df_bränsle_snittpriser['Datum'], y=df_bränsle_snittpriser['E95'], name=
)

# Add figure title
fig.update_layout(
    title_text="Price Per Fuel Receipt vs Average Daily Price"
)

# Set x-axis title
fig.update_xaxes(title_text="Date")

# Set y-axes titles
fig.update_yaxes(title_text="Price (SEK)")
```

```
fig.show()

outfile = outputdir + "/9_price_per_fuel_receipt_vs_average_daily_price.png"
fig.write_image(outfile)
```

Price Per Fuel Receipt vs Average Daily Price

The price at which I fuel the car seems to be consistently equal to or less than the average price of fuel. Not too bad!

What's the Final Price Tag for Fuel Consumption?

```
In [16]: df_bränsle['Utgift_cumulative'] = df_bränsle.loc[::-1, 'Utgift'].cumsum()[::-1]
    df_bränsle['L_cumulative'] = df_bränsle.loc[::-1, 'L'].cumsum()[::-1]

fig = make_subplots(specs=[[{"secondary_y": True}]])

# Add traces
fig.add_trace(
    go.Scatter(x=df_bränsle['Datum'], y=df_bränsle['Utgift_cumulative'], name="Cumulative secondary_y=False,
)

fig.add_trace(
    go.Scatter(x=df_bränsle['Datum'], y=df_bränsle['L_cumulative'], name="Cumulative Vole secondary_y=True,
)

# Add figure title
fig.update_layout(
    title_text="Cumulative Fuel Expenses and Volume"
```

```
# Set x-axis title
fig.update_xaxes(title_text="Date")

# Set y-axes titles
fig.update_yaxes(title_text="Total Expenses (SEK)", secondary_y=False)
fig.update_yaxes(title_text="Total Volume (L)", secondary_y=True)

fig.show()

outfile = outputdir + "/10_cumulative_fuel_expenses_and_volume.png"
fig.write_image(outfile)
```

Cumulative Fuel Expenses and Volume


```
In [17]: print(f"The final price tag is{df_bränsle.Utgift_cumulative.head(1).mean(): .2f} SEK, fo

The final price tag is 62946.81 SEK, for a total of 4085.39 litres of fuel.

That is equivalent to around 102.13 full tanks.
```

Buy Low, Wait High?

Do I tend to buy more fuel when the prices are relatively low?

```
In [18]: fig = make_subplots(specs=[[{"secondary_y": True}]])

# Add traces
fig.add_trace(
    go.Scatter(x=df_bränsle['Datum'], y=df_bränsle['Pris'], name="price"),
    secondary_y=False,
)
```

```
fig.add_trace(
    go.Scatter(x=df_bränsle['Datum'], y=df_bränsle['L'], name="volume"),
    secondary_y=True,
)

# Add figure title
fig.update_layout(
    title_text="Price and Volume Per Fuel Receipt"
)

# Set x-axis title
fig.update_xaxes(title_text="Date")

# Set y-axes titles
fig.update_yaxes(title_text="Price", secondary_y=False)
fig.update_yaxes(title_text="Volume", secondary_y=True)

fig.show()

outfile = outputdir + "/11_price_and_volume_per_fuel_receipt.png"
fig.write_image(outfile)
```

Price and Volume Per Fuel Receipt

A quick visual inspection of price and volume data shows that there may be such a negative comovement until July 2018. Since then, which co-incides with me moving from Uppsala to Stockholm, there isn't a clear pattern. If anything, we fuel up more when prices are higher!

```
In [19]: print(f"In summary, between the {df_bränsle.Datum.min().strftime('%d of %B %Y')} and {df
print(f"- Recorded entries: {df_bränsle.Datum.count()}\n")
print(f"- Min. Price: {df_bränsle.Pris.min()} SEK")
```

```
print(f"- Avg. Price: {df bränsle.Pris.mean():.2f} SEK")
print(f"- Max. Price: {df bränsle.Pris.max()} SEK\n")
print(f"- Min. Fuel Litres: {df bränsle.L.min()} SEK")
print(f"- Avg. Fuel Litres: {df bränsle.L.mean():.2f} SEK")
print(f"- Max. Fuel Litres: {df bränsle.L.max()} SEK\n")
print(f"- Total Expenses: {df bränsle.Utgift cumulative.head(1).mean():.2f} SEK")
print(f"- Total Litres: {df bransle.L cumulative.head(1).mean():.2f} SEK\n")
print(f"- Nr Gas Station Chains: {df bränsle.Företag.nunique()}")
In summary, between the 30 of June 2016 and 13 of August 2022:
- Recorded entries: 128
- Min. Price: 11.89 SEK
- Avg. Price: 15.37 SEK
- Max. Price: 23.73 SEK
- Min. Fuel Litres: 11.0 SEK
- Avg. Fuel Litres: 31.92 SEK
- Max. Fuel Litres: 42.55 SEK
- Total Expenses: 62946.81 SEK
- Total Litres: 4085.39 SEK
- Nr Gas Station Chains: 5
```

To The Cheapest Gas Station, Please!

Which gas station chains do I usually fuel up at, and are they the cheapest?

```
In [20]: df_bränsle_grouped = pd.pivot_table(df_bränsle, values='Pris', index=['Datum'],columns='print(f"From the table below, we see that I usually fuel up at Ingo (a total of {df_brän print(f"On average, St1 has lower gas prices than the rest ({df_bränsle_grouped['St1'].dprint(f"However, I used to fuel at St1 when I lived in Uppsala, where fuel is generally df_bränsle_grouped.describe()
```

From the table below, we see that I usually fuel up at Ingo (a total of 84 times). On average, St1 has lower gas prices than the rest (14.27 SEK). However, I used to fuel at St1 when I lived in Uppsala, where fuel is generally cheaper.

Out[20]:	Företag	Circle K	Ingo	OKQ8	Shell	St1
	count	17.000000	84.000000	4.000000	2.000000	20.000000
	mean	16.600588	15.269762	17.270000	24.225000	14.270000
	std	3.510761	2.033701	3.291575	3.160767	2.196119
	min	13.070000	12.380000	13.770000	21.990000	11.890000
	25%	13.830000	13.777500	14.947500	23.107500	13.152500
	50%	15.880000	15.215000	17.190000	24.225000	13.710000
	75%	20.880000	15.917500	19.512500	25.342500	14.525000
	max	23.730000	22.830000	20.930000	26.460000	22.280000

Let's compare fuel prices from the gas station chains, based on my saved receipts.

```
In [21]: fig = go.Figure()
   for col in df_bränsle_grouped[['Circle K','Ingo','OKQ8','St1']].columns:
        fig.add trace(go.Scatter(x=df bränsle grouped.index, y=df bränsle grouped[col].value
```

Price per Gas Station Chain

There are many problems with trying to compare fuel prices from the gas chains based on my receipts. First, since I rarely fuel up from multiple gas Stations on the same day, we cannot compare the fuel prices. Second of all, it is not random where I fuel up the car. My favorite chain is Ingo, and I often drive past a couple of other gas stations (which sell fuel at a higher price) on my way there.

End