Grundlagen der Robotik

2. Sensoren

Prof. Sven Behnke

Letzte Vorlesung

- Industrie-Roboter
- Neue Einsatzbereiche

- Asimov: Roboter-Gesetze
- Trends in der Robotik-Forschung
- Bestandteile von Robotern
 - Sensoren
 - Aktuatoren
 - Steuerung

Ultraschall-Abstandssensoren

Funktionsprinzip

- Akustischer Ping wird erzeugt (> 20 kHz)
- Reflektion durch Objekte
- Laufzeit ermöglicht bei bekannter Schallgeschwindigkeit Berechnung der Entfernung

Anwendungen:

- Abstandsmessung
- Hindernisvermeidung (kurze Reichweite)
- Kartierung der Umgebung (lange Reichweite)

Eigenschaften:

- Ausbreitungsgeschwindigkeit hängt vom Medium ab
- Temperaturabhängigkeit (Luft bei 0°C 330 m/s; bei 20°C 343 m/sec; bei 40°C 355 m/s) => Kalibrierung!
- Schallwellen können auch im Objekt propagiert und vom Sender weg reflektiert werden
- Maximale und minimale Messdistanz

Ultraschall Detektionskegel

Ultraschall-Eigenschaften

- Echo ist umso besser, je größer die dem Sensor zugewandte Oberfläche ist
- Große, raue Objekte werden gut erkannt (Unebenheiten sind größer als die Wellenlänge)
- Auch optisch transparente Materialien können erkannt werden, z.B. Fenster (Vorteil gegenüber optischer Hinderniserkennung)
- Kleine Objekte reflektieren zu geringe Anteile des Signals
- Objekte mit glatten Oberflächen können das Signal in viele Richtungen streuen und daher unsichtbar sein
- Je kleiner die Wellenlänge (je höher die Frequenz) desto besser werden glatte Objekte erkannt

Problem: Kurzsichtigkeit

- Bei diagonalem
 Auftreffen auf eine
 Fläche entstehen
 unterschiedliche
 Laufzeiten
- Da kürzeste Laufzeit gemessen wird, erscheinen diagonale Flächen näher als sie im Zentrum sind
- Je breiter der Schallkegel, desto größer der mögliche Fehler

Problem: Virtuelle Hindernisse

 Mehrere kleine Hindernisse werden als ein großes Hindernis wahrgenommen

Je breiter der Schallkegel, desto größer müssen Lücken zwischen Hindernissen sein, um diese einzeln messen zu können

Problem: Totalreflektion

 Bei ungünstigem Auftreffwinkel wird der Schall weg vom Sensor reflektiert

Problem: Mehrfachreflektion

- Schallwellen werden nicht direkt, sondern zunächst weg vom Sensor und dann wieder zu ihm hin reflektiert
- Hindernisse erscheinen weiter weg als sie tatsächlich sind

IR-Abstandssensoren

- IR-Lichtstrahl wird reflektiert
- Triangulation der Entfernung
- Nicht-Lineare Kennlinie, verschiedene Messbereiche
- Anwendung: Sanitäranlagen

Laser-Scanner

- Prinzip: rotierender Spiegel, Laufzeitmessung
- 270° Sichtbereich, 0.5° Winkelauflösung
- 30m Messbereich, 5cm Genauigkeit, 10-150Hz
- Anwendungen: Sicherheitsabschaltung, Lokalisierung, Kartierung

Rotierende Laserscanner

- 64 Strahlen, 10Hz Rotation, 26.8°FoV
- 1.3M Messungen/s

Beispiel:

- Omnidirektionale Höhenbilder
- Bordsteindetektion
 [Stückler, Schulz, Behnke 2008]

Rotation eines 2D Laserscanners

- 30 m omnidirektional
- Bis zu 2 Hz
- 40,000 Messungen/s
- Bis zu drei Echos

[Schadler, Stückler, Behnke: SSRR 2013]

Rotation eines 3D-Laserscanners

- Velodyne Puck VLP-16
 - 360×30° Sichtfeld statisch
 - 300.000 3D-Punkte/s
 - 100 m Reichweite
 - Kugelförmiger Sichtbereich

[Droeschel et al., Robotics and Autonomous Systems 2017]

Time-of-Flight-Kameras

- Beispiel: Mesa SR4000
 - Messung der
 Phasenverschiebung
 modulierten Lichts
 - 176 (h) x 144 (v) QCIF
 - 43.6° x 34.6° Sichtbereich
 - 0.3 to 5.0 m, +/-1cmGenauigkeit
 - Bis zu 54 fps

Erkennung von Zeigegesten

Time-of-Flight-Kamera

- SoftKinetic DepthSense 325
- Geringer Mindestabstand 0.15–1.0 m
- 320 x 240 pixel, bis 60 Hz
- Weitwinklig 74° x 58°
- Preiswert

Time-of-Flight-Kameras

Microsoft Kinect V2

Farbbild 1080p 30 Hz

Tiefenbild 512 x 424, 30 Hz

FOV: 70 x 60

Distanz: 0,5-4,5 m

Infrarotbild 512 x 424 30 Hz

RADAR-Sensoren

- Beleuchten Szene mit Radiosignal 77 81 GHz
- Laufzeitmessung
- Geschwindigkeitsmessung durch Doppler-Effekt
- Bewegte Antennen oder Beam-Forming
- Funktionieren auch bei Rauch und Nebel
- Beispiel: Autonomics Radar
 - Bis 150m, 150° Sichtfeld, 0.3m Genauigkeit

Stereo-Kameras

- Bildaufnahme aus zwei Blickwinkeln
- Finden von Korrespondenzen
- Disparität lässt auf Tiefe schließen

Adept MobileRanger C3D

Helligkeit

Tiefe

Helligkeit Tiefe

PrimeSense-Tiefensensor mit strukturiertem Licht

- MS Kinect
- Asus Xtion

Farbbild

Tiefenbild

Audiosignal

- Tiefenbild
 - **320x240**
 - 30Hz
 - 1,2-3,5m
 - 57° x 43°
- "Light Coding"
 - Pseudozufälliges IR-Muster
 - Korrelation
 - Triangulation

[www.primesense.com]

Photoneo PhoXi 3D-Scanner

 Triangulation mit strukturiertem Licht im Infrarotbereich

- Auflösung: Bis zu 3,2 Millionen Punkte
- Messabstand: 87 215 cm, optimal: 124 cm
- Messzeit: 250 ms 2,7 s
- Abmessungen: 8 x 7 x 62 cm
- Abstand von Projektor und Kamera: 55 cm

550 mm

1082 mm

1644 mm

Photoneo point cloud

CCD/CMOS Farbkameras

- Farbfilter im Bayer-Muster
- Farbinterpolation erforderlich

Wahrnehmung der Spielsituation

Visuelle Objekterkennung

- Objektdetektion mit Laserscanner
- Abbildung in Bildebene
- Erkennung durch Farbe und Texturmerkmale (SURF)
- Objektverfolgung

Semantische Segmentierung

- 24 MPixelKamera
- RefineNet

[Lin et al. CVPR 2017]

ronze_wire_cup conf: 0.749401 sh_spring_soap conf: 0.811500 playing_cards conf: 0.813761 quarium_gravel conf: 0.891001 crayons conf: 0.422604 reynolds_wrap conf: 0.836467 paper_towels conf: 0.903645 white faceclath conf: 0.8952127 hand_weight conf: 0.9281197 ots_everywhere conf: 0.930464

mouse_traps conf: 0.921731

windex 'conf: 0.861246

q-tips_500

conf: 0.475015

conf: 0.831069

ice_cube_tray /conf: 0.976856

Thermalkameras

- Können Temperaturen messen
- Z.B. Langwellige Infrarot (LWIR)-Kamera FLIR Lepton
 - 160x120 @ 8.7 Hz

Thermalkameras

- Z.B. FLIR Boson 640
 - Langwelliges Infrarot,7,5 μm 13,5 μm
 - 640 x 512 pixel, 60Hz
- Detektion von Brandherden und Glutnestern

Brandhaus Dortmund

Flugroboter mit Thermalkamera

Messung der Positionsänderung durch Inkrementelle Encoder

Quadratur-Codierung

Zeigt Geschwindigkeit und Drehrichtung an

Absolut-Encoder

Gray-Code

Potentiometer

Magnet-Encoder

- Berührungslose Messung eines bewegten Magneten
- Funktionsprinzip: Hall-Effekt
- Linear und rotierend, absolute und inkrementelle Varianten

Beschleunigungssensoren

- Mikromechanisch hergestellt (MEMS)
- Testmasse federnd aufgehängt
- Auslenkung wird durch Kondensator oder piezoelektrischen Effekt bestimmt
- Kleine Sensoren mit bis zu drei Achsen

Drehratensensoren

- Ähnlich wie rotierendes Objekte benötigen auch vibrierende Objekte eine Kraft, um sie aus der Vibrationsebene zu bewegen (Corioliskraft)
- Mikromechanische Ausführungen mit bis zu drei Achsen

Temperaturmessung

- Thermoresistive Sensoren:
 - Metalle
 - Widerstand ändert sich mit der Temperatur
 - Häufig genutzt: Platin
 - Messbereich -200°C bis +500°C
 - Ausführung als Draht oder Metallfilm
 - Problem: Stromfluss erzeugt Wärme
 - Keramische Materialien
 - positiver (PTC, Kaltleiter) oder negativer (NTC, Heissleiter) Temperaturkoeffizient

- Thermoelektrische Sensoren:
 - Zwei verschiedene Metalle in Kontakt
 - Thermoelektrischer (Seebeck-) Effekt erzeugt Spannung proportional zur Temperatur am Kontakt

Künstliche Haut

- Erfassung von Position und Druckkraft
- Schutzfunktion (Polsterung, Schmutz, ...)
- Z.B. Matten aus Schaumstoff
 - Elektroden-Matrix
 - Kraftmessung durch Widerstandsänderung

Datenhandschuh

- Piezoresistives Gewebe
- 54 Zellen

[Büscher et al., Robotics and Autonomous Systems 2014]

Kapazitive Sensoren

 Änderung der Kapazität von Kondensatoren durch leitfähige Objekte, wie Finger

The Huggable (MIT)

- QTC Kraftsensoren
- Thermistoren
- Sensoren für elektrische Felder

Hex-O-Skin (TUM)

Sensorzelle mit lokaler Intelligenz

- Mehrere Modalitäten
 - Nähe
 - Beschleunigung
 - Normalkraft
 - Temperatur
- Sensornetzwerk

TakkTile Haptische Sensoren

Pressure

PreiswerteLuftdrucksensoren

Eingegossen in Silikon

3mm

5_mm

[Tenzer et al. RAM 2014]

http://www.takktile.com

Mikrofone und Hall-Sensoren

- Messung von
 Interaktionskräften und
 Vibrationen beim Streichen über Oberflächen
- Unterscheidung von rauen und glatten Oberflächen

[Pätzold et al. SMC 2023]

NASA ENose

 Widerstand verschiedener Polymer-Filme ändert sich unterschiedlich je nach Luftzusammensetzung

Übungsgruppen

Tutoren: Johannes Napp-Zinn, Tim Sinen, Jan Stettner

	Мо	Di	Mi	Do	Fr
8 (c.t.) - 10		Übung Sinen			
10 (c.t) - 12		Übung Stettner			
12 (c.t.) - 14	Übung Napp-Zinn				
14 (c.t) - 16	Übung Napp-Zinn	Übung Stettner		Vorlesung	
16 (c.t.) - 18		Übung Sinen			

- Anmeldung via TVS bis zum 19. Oktober <u>https://puma.cs.uni-bonn.de</u>
- Erste Übung am 23./24. Oktober
- Im Seminarraum IZ 0.011

Folien und Übungsaufgaben

www.ais.uni-bonn.de

Teaching

User: AIS

Pwd: Avatar

