

MITx 6.86x

### Machine Learning with Python-From Linear Models to Deep Learning

**Discussion** Course <u>Progress</u> <u>Dates</u> **Resources** 

Course / Unit 0. Brief Prerequisite Reviews, Homework 0, and Project 0 / Homework 1

< Previous 9 of 15 ~

## 9. Gradients and Optimization

 $\square$  Bookmark this page

Homework0 due Feb 8, 2023 08:59 -03 Completed

#### Multivariable Calculus Review: Gradient

1.0/1 point (graded)

Let

denote a **differentiable** function. The **gradient** of f is the vector-valued function

Consider

$$f(\theta) = \theta_1^2 + \theta_2^2$$
.

Here, heta has dimension 2. Compute the gradient  $\nabla f$ . (Enter your answer as a vector, e.g., type [2,x] for the vector  $\begin{pmatrix} 2 \\ x \end{pmatrix}$ . Note the square by separators. Enter **theta\_i** for  $heta_i$ . )

$$abla_{ heta}f( heta)=$$
 [2\*theta\_1, 2\*theta\_2]

? STANDARD NOTATION

| f have a global maximum, or global minimum, or neither?  global maximum  neither  t each point in the -plane, decreases in the direction  Submit You have used 2 of 2 attempts  tradient ascent/descent methods are typical tools for maximizing/minimizing function where and . Our goal is to naximize/minimize the value of while keeping fixed. | line                                                                            |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|
| f have a global maximum, or global minimum, or neither?  global maximum  neither  t each point in the -plane, decreases in the direction  Submit You have used 2 of 2 attempts  tradient ascent/descent methods are typical tools for maximizing/minimizing function where and . Our goal is to naximize/minimize the value of while keeping fixed. |                                                                                 |      |
| f have a global maximum, or global minimum, or neither?  global maximum  neither  t each point in the -plane, decreases in the direction  Submit You have used 2 of 2 attempts  tradient ascent/descent methods are typical tools for maximizing/minimizing function where and . Our goal is to naximize/minimize the value of while keeping fixed. |                                                                                 |      |
| global minimum  neither  t each point in the -plane, decreases in the direction  Submit You have used 2 of 2 attempts  radient ascent/descent methods are typical tools for maximizing/minimizing function where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                           | 3                                                                               | to   |
| ● neither  **  It each point in the -plane, decreases in the direction  ●  Submit You have used 2 of 2 attempts  Fradient ascent/descent methods are typical tools for maximizing/minimizing function where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                                | global maximum                                                                  |      |
| teach point in the -plane, decreases in the direction  Submit You have used 2 of 2 attempts  Fradient ascent/descent methods are typical tools for maximizing/minimizing function where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                                                    | global minimum                                                                  |      |
| st each point in the -plane, decreases in the direction  Submit You have used 2 of 2 attempts  Fradient ascent/descent methods are typical tools for maximizing/minimizing function where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                                                  | neither                                                                         |      |
| Submit You have used 2 of 2 attempts  Fradient ascent/descent methods are typical tools for maximizing/minimizing function where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                                                                                                           | ×                                                                               |      |
| Fradient ascent/descent methods are typical tools for maximizing/minimizing fund where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                                                                                                                                                     | At each point in the -plane, decreases in the directi                           | on o |
| Fradient ascent/descent methods are typical tools for maximizing/minimizing fund where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                                                                                                                                                     | 0                                                                               |      |
| Fradient ascent/descent methods are typical tools for maximizing/minimizing fund where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                                                                                                                                                     |                                                                                 |      |
| Fradient ascent/descent methods are typical tools for maximizing/minimizing fund where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                                                                                                                                                     | <b>✓</b>                                                                        |      |
| Fradient ascent/descent methods are typical tools for maximizing/minimizing fund where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                                                                                                                                                     |                                                                                 |      |
| where and . Our goal is to naximize/minimize the value of while keeping fixed.                                                                                                                                                                                                                                                                      | Submit You have used 2 of 2 attempts                                            |      |
| naximize/minimize the value of while keeping fixed.                                                                                                                                                                                                                                                                                                 | Gradient ascent/descent methods are typical tools for maximizing/minimizing for | unct |
|                                                                                                                                                                                                                                                                                                                                                     | 3                                                                               | ; to |
| Compute the Gradient                                                                                                                                                                                                                                                                                                                                | maximize/minimize the value of while keeping fixed.                             |      |
|                                                                                                                                                                                                                                                                                                                                                     | Compute the Gradient                                                            |      |
| '1 point (graded)                                                                                                                                                                                                                                                                                                                                   | 1/1 point (graded)                                                              |      |

https://learning.edx.org/course/course-v

Homework 0 | Unit 0. Brief Prerequisite Reviews, Homework 0, and Project 0 | Machine Learning w...

new error message Couldn't execute jailed code: stdout: b", stderr: b" with status code: -9

i want ans of question guys... i try from 5-6 hr...i didnt get any ans...so plz help me

Review material

I haven't seen this kind of calculus before... I got them right from intuition on other calculus but is there a tex

- in the last problem, ' is not a derivative!
- Is the first question, (gradient) complete? I honestly think the question is incomplete. Without knowing the dimensions of angle theta, it becomes hard

# Legal

Terms of Service & Honor Code

**Privacy Policy** 

**Accessibility Policy** 

**Trademark Policy** 

Sitemap

**Cookie Policy** 

Do Not Sell My Personal Information

## **Connect**

Blog

**Contact Us** 

Help Center

Security

Media Kit













