SVD using CUDA and MPI

Jeremy Bonnell
Adam Hartvigsen
CS4230
December 2012

SVD(Singular Value Decomposition)

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix, with many useful applications in signal processing and statistics.

Example

Jacobi Rotation

- In numerical linear algebra, a Jacobi rotation is a rotation, Qkℓ, of a 2-dimensional linear subspace of an ndimensional inner product space, chosen to zero a symmetric pair of off-diagonal entries of an n×n real symmetric matrix
- It is the core operation in the Jacobi eigenvalue algorithm, which is numerically stable and well-suited to implementation on parallel processors.

Optimization

MPI overhead preventing speed up

CUDA data causing us issues with optimiation

Platforms

CHPC for MPI implementation

CADE for CUDA implementation

Execution Time

Discussion

Extremely difficult to run both on same platform

CHPC doesn't have the GPUs needed for CUDA

CADE lacks processors for MPI

References

http://en.wikipedia.org/wiki/Singular_value_decomposition

http://en.wikipedia.org/wiki/Jacobi_rotation