Análise do Impacto dos Duelistas no Valorant VCT 2023 usando K-Means

Luiz Felipe De Oliveira Barbosa Nunes (RA 255403)

Resumo

Este trabalho apresenta uma análise do desempenho dos jogadores no Valorant VCT 2023, aplicando o algoritmo K-means com um foco detalhado na classe Duelista. Valorant, o aclamado jogo de tiro em primeira pessoa da Riot Games, coloca equipes de cinco em combates táticos com objetivos claros. O objetivo da análise é avaliar se a classe Duelista, com suas habilidades de combate especializadas, exerce uma influência mais determinante nas partidas do que as outras classes.

1 Introdução

Valorant é organizado em partidas onde a equipe atacante tenta plantar e defender uma bomba, chamada Spike, até sua detonação para ganhar pontos. Enquanto isso, a equipe defensora tenta desarmar a Spike ou eliminar todos os adversários para também ganhar pontos. As partidas são jogadas em um formato de "melhor de 24 rodadas", onde a equipe que primeiro alcançar 13 vitórias é declarada vencedora.

No Valorant, os jogadores são categorizados em quatro classes: Duelistas, Controladores, Sentinelas e Iniciadores, cada uma com habilidades distintas que definem suas funções estratégicas no jogo. Os Duelistas, especializados em combate direto, são fundamentais para iniciar confrontos, penetrar defesas adversárias e realizar eliminações críticas.

O banco de dados usado neste estudo foi adquirido do site Kaggle, que oferece um vasto conjunto de métricas de desempenho dos jogadores no campeonato Valorant VCT 2023. O conjunto de dados está disponível no seguinte endereço: https://www.kaggle.com/datasets/vkay616/valorant-vct-2023-player-performance, incluindo variáveis importantes como Rating, KD (relação Kill/Death), e Kills.Max (número máximo de eliminações em uma partida), entre outras. Além disso, foi adicionada uma coluna de "Funções" ao banco de dados, que categoriza a função de cada jogador no jogo.

Este estudo tem como objetivo principal empregar o método K-means para analisar a performance dos jogadores no Valorant VCT 2023, com atenção especial aos Duelistas.

2 Materiais e Métodos 2

Procurei determinar se os Duelistas, de acordo com suas habilidades ofensivas, realmente têm o maior impacto nas partidas em comparação com outras classes. Variáveis-chave como Rating, ACS (Average Combat Score) e KD serão exploradas para identificar padrões e perfis de impacto dos jogadores. A análise foi realizada utilizando a linguagem de programação R.

2 Materiais e Métodos

O objetivo principal do algoritmo K-Means é particionar um conjunto de dados $\mathbf{X} = \{x_1, \dots, x_N\}$, onde cada x_n é um vetor em \mathbb{R}^d , em M clusters $C = \{C_1, \dots, C_M\}$. Cada cluster C_k é identificado pelo seu centroide \mathbf{m}_k , que é o ponto médio de todos os pontos atribuídos a C_k . O objetivo é minimizar a variância interna dos clusters, que é dada pela soma das distâncias quadradas dentro de cada cluster:

$$E(\mathbf{m}_1,\ldots,\mathbf{m}_M) = \sum_{k=1}^M \sum_{\mathbf{x}_i \in C_k} \|\mathbf{x}_i - \mathbf{m}_k\|^2,$$

onde $\|\mathbf{x}_i - \mathbf{m}_k\|$ denota a distância euclidiana entre o ponto \mathbf{x}_i e o centroide \mathbf{m}_k .

Para implementar o K-Means e analisar os clusters de desempenho dos jogadores, segui estes passos:

- 1. Análise de PCA: Realizei uma análise de componentes principais (PCA) para identificar as variáveis mais significativas, facilitando a redução da dimensionalidade.
- 2. Método do Cotovelo: Utilizei o método do cotovelo para determinar o número ótimo de clusters k.
- 3. Inicialização dos centroides: Selecionei k pontos iniciais como centroides, os k primeiros pontos de dados.
- 4. Cálculo das distâncias: Calculei a distância de cada ponto de dados a todos os k centroides para definir o cluster ao qual cada ponto pertence.
- 5. Atribuição dos clusters: Associei cada ponto \mathbf{x}_i ao cluster cujo centroide \mathbf{m}_k é o mais próximo.
- 6. Atualização dos centroides: Atualizei o centroide de cada cluster \mathbf{m}_k para ser o centro geométrico de todos os pontos atribuídos a C_k , calculado por:

$$\mathbf{m}_k = \frac{1}{|C_k|} \sum_{\mathbf{x}_i \in C_k} \mathbf{x}_i,$$

onde $|C_k|$ é o número de pontos no cluster C_k .

- 7. Gráfico de Distribuição: Gerei gráficos de distribuição dos clusters em duas dimensões após a aplicação do PCA, para visualizar como os clusters são organizados no espaço reduzido.
- 8. Gráfico de Silhuetas: Produzi gráficos de silhuetas para avaliar a qualidade da clusterização, onde cada silhueta mede o quão similar um ponto é aos pontos do seu próprio cluster comparado a pontos de clusters vizinhos.
- 9. Construção de Tabelas: Compilei tabelas para sumarizar as estatísticas chave, incluindo a média das métricas de desempenho e a frequência das funções dos jogadores em cada cluster.

3 Resultados e Discussão

Em primeiro lugar, foi feita a análise de PCA. Esses foram os resultados dos testes:

Tabela 1: Importância dos componentes principais da PCA.

Componente	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15	PC16
Desvio Padrão	2.8712	1.9339	1.5219	0.91984	0.79903	0.61312	0.55211	0.45562	0.33985	0.24867	0.24188	0.18969	0.17259	0.1234	0.07722	0.05892
Proporção da Variância	0.4849	0.2200	0.1363	0.04977	0.03756	0.02211	0.01793	0.01221	0.00679	0.00364	0.00344	0.00212	0.00175	0.0009	0.00035	0.0002
Proporção Cumulativa	0.4849	0.7049	0.8412	0.89095	0.9285	0.95062	0.96855	0.98076	0.98755	0.99119	0.99463	0.99675	0.9985	0.9994	0.99975	0.99995

Figura 1: Scree plot da análise de PCA mostrando a porcentagem de variância explicada por cada componente.

A Tabela 1 mostra que a primeira componente principal (PC1) é responsável por 48,49% da variância. As componentes PC2 e PC3 contribuem com 22% e 13,63%, respectivamente, acumulando aproximadamente 84,12% da variância total nas três primeiras componentes. Essa concentração de informações também é evidenciada pelo Gráfico de Scree (Figura 1).

Figura 2: Biplot do PCA indicando a relação entre as variáveis e os componentes principais.

No Biplot do PCA (Figura 2), a direção das setas indica a correlação entre variáveis e componentes principais, e seu comprimento reflete a magnitude da influência.

Selecionei 'Rating', 'KD' (Kill/Death ratio) e 'ACS' (Average Combat Score) para o K-means com base em sua forte correlação com os componentes principais — PC1, PC2 e PC3. Estas métricas capturam o desempenho geral do jogador, a eficiência em combate e a contribuição em ações de jogo.

Em seguida, realizei a análise do Método de Elbow ("Método do Cotovelo"):

Figura 3: Método do Cotovelo para K-Means, mostrando o WSS por número de clusters.

Com base no gráfico acima, observei que o ponto de inflexão ocorre em três clusters. Este ponto representa o equilíbrio onde há uma diminuição significativa na soma dos quadrados internos (WSS), indicando que a adição de mais clusters não levaria a melhorias significativas na variância explicada, e evitando o sobreajuste.

Por fim, segue a análise dos clusters:

Figura 4: Visualizações complementares dos resultados da PCA e análise de cluster.

Tabela 2: Médias dos clusters para as variáveis de desempenho.

Cluster	Rating	KD	ACS
1	1.08	1.14	223.52
2	0.73	0.70	147.36
3	0.96	0.93	187.21

Tabela 3: Frequência das funções no Cluster 1.

Função	n
Controlador	1
Duelista	13
Iniciador	7
Sentinela	9

Tabela 4: Frequência das funções no Cluster 2.

Função	n
Controlador	11
Duelista	0
Iniciador	2
Sentinela	2

Conclusão

A partir dos testes realizados, pude constatar que:

• A análise revelou que o **Cluster 1**, predominante de Duelistas (Tabela 3), apresenta as maiores médias em Rating (1.08), KD (1.14) e ACS (223.52), como mostra a

Referências 6

Tabela 2. Este cluster não só supera os outros significativamente em desempenho, mas também valida a importância dos Duelistas.

- Os Clusters 2 e 3, que incluíam Controladores, Sentinelas e Iniciadores, mostraram desempenho inferior ou mediano. Especificamente, o Cluster 2, que teve a ausência de Duelistas, registrou as menores médias de desempenho, destacando a influência limitada das outras classes nas métricas chave comparadas aos Duelistas.
- O método do Cotovelo (Figura 3) confirmou que a utilização de três clusters era ideal para este conjunto de dados. A distinção adequada entre os clusters foi evidenciada pelo valor médio da silhueta (0.44) (Gráfico 4b).

Portanto, conclui-se que os Duelistas desempenham um papel vital nas partidas de Valorant, exibindo um impacto significativamente maior do que as outras classes. Esta influência é claramente refletida nos altos índices de desempenho do Cluster 1, o que os caracteriza como os agentes mais decisivos.

Referências

- [1] Universidade Estadual de Campinas. Notas de Aula de ME921, G. Ludwig. Disponível em: https://moodle.ggte.unicamp.br/pluginfile.php/3926125/mod_resource/content/1/aula06.pdf.
- [2] Goyal, Samarth. Agent Role Recommender System Valorant. Medium, 2020. Disponível em: https://medium.com/@goyalsamarth/agent-role-recommender-system-valorant-1bfd66569a2.
- [3] Likas, A., Vlassis, N., & Verbeek, J. J. The global k-means clustering algorithm. Pattern Recognition, 2003. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0031320302000602.
- [4] Norouzi, Mohammad, et al. *Cartesian K-Means*. CVPR, 2013. Disponível em: https://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Norouzi_Cartesian K-Means 2013 CVPR paper.pdf.