

Non-Deterministic Pinite Automata

(MFA)

* NFA is easy to design than DFA.

* FA is called NFA when those exist many paths for specific input from the surrent state to the next state.

* Every NFA is not DFA, but each NFA can be translated to DFA.

* NFA is defined in the same way as DFA but with the following two experceptions, it contains multiple next states, and it contains & transition.

Formal Definition of an NDFA

S: Q x 5 → 2 Q

(Here the power set of Q (20) has been taken because in case of NDFA from a state, transition can occur to any combination of a states)

$$\frac{\xi_g:}{\Sigma} = \frac{Q = \{a,b,c\}}{\Sigma}$$

90= 893

F = 8c3

	State	Triplet 0	Input 1	
-26 119	\$ 1085	_a,b	6	
	Ь		a,c	
	C	b,c	c	
		1.6.400		

-1	instic		•		
In	LALL	20	·	1	
110	WUXUC	ri 1	מחנד	riovi	
		months (months and it	and the same of the	and the state of the state of	- Nichten particular

$$S(a,0) = \{a,b\}$$

$$S(a,1) = \{b\}$$

$$S(b,0) = \{c\}$$

$$S(b,0) = \{c\}$$

$$S(b,1) = \{a,c\}$$

$$S(c,0) = \{b,c\}$$

$$S(c,1) = \{c\}$$

Representation:

