Robot Motion Planning using genetic algorithm

BY

AKANKSHA BHARDWAJ

VINEELA MOSES

SHIVANI PAL

INTRODUCTION

The problem we are going to discuss here is the motion planning of AMR (Autonomous Mobile Robots) Robots in a static environment.

Motion planning is a problem in robotics for finding a collision free path which should be shortest, smoothest and optimal is other terms

Motion Planning

- Project has two parts : software and hardware
- We explore Evolutionary Computation for optimisation purpose.
- Implement a PID controller for cross track error minimisation and test on sample trajectories.
- Finally integrate both parts.

PROJECT GOALS

- Obtain collision free trajectories.
- Optimize the path between start and goal positions till Genetic algorithm converges.
- Implement a PID controller to minimize with crosstrack errors during motion.
- A smooth trajectory to address non-holonomic constraints like steering angle constraints

Genetic Algorithm

- A stochastic search technique, used to optimize an objective function over a known search space.
- We are using Real encoded GA. In general it's performance has been found better than binary enc x1 y1 x2 y2 x3 y3 x4 y4 x5 y5

Flow of GA

Population is initialized with random but feasible trajectories.

	Parameter	Values
	Population size	40
	Individual size	10
PARAMETER VALUES FOR GA	Crossover rate	0.8
	Mutation rate	0.1
	Tournament size	2
	Uniform mutation width	0.5
	Maximum generations	300
	Minimum generations Maximum steady generations	100 50

PLOT OF RASTRIGIN TEST FUNCTION

RESULT

x2 = 0.000001002786

OBJECTIVE FUNCTION

PL =
$$\sqrt{(x_S - x_1)^2 + (y_S - y_1)^2} + \sum_{i=1}^n \sqrt{(x_i - x_{i+1})^2 + (y_i - y_{i+1})^2} + \sqrt{(x_G - x_n)^2 + (y_G - y_n)^2}$$

F = PL + alpha * (points in obstacle)

A minimisation problem

$$x = (1 - T) * x1 + T * x2;$$

 $y = (1 - T) * y1 + T * y2;$
 $Map[x][y] = 1?$
(obstacle)

Start Goal

Map is converted into a grid

form where 1s denote obstacles and 0s empty space.

distance	sqrt((cx-px)2+(cy-py)2)/100	PIE
alpha	((atan2(py-cy,px-cx)*180/PI)-theta	Cro cal
Frx	cos(alpha*PI/180)*dist	
Fry	sin(alpha*PI/180)*dist	
F	(Frx*Frx)+(Fry*Fry)	
alphaf	atan2(Fry,Frx)*180/PI;	
Linear velocity	abs(F)*Lc	amig
Rotational velocity	alphaf*Rc;	

PID control and Cross track error calculation

The Development Kit

- AmigoBot a mobile robot with differential wheel drive
- ARIA Advanced Robot Interface for Applications (ARIA) is a C++ library (software development toolkit or SDK) for all MobileRobots
- MobileSim for simulating environments and MobileRobots
- SONARNL & Mapper3 sonar sensors are used for figuring the location using sensor data. And then into map.
- EO (Evolving Objects) an open source, ANSI-C++ library for genetic algorithm.

Scenario 1

Best Fitness Value

351.656

Last generation number 50

Scenario 2

Best Fitness Value

434.59

Last generation number 100

Scenario 3

Best Fitness Value

478.47

Last generation number 120

PLOT

NUMBER OF GENERATIONS Vs

FITNESS VALUES

For SCENARIO 3