КОНТРОЛЬНАЯ РАБОТА 15.05.11

1. На рисунке показано положение электрона и позитрона в некоторый момент. Расстояние между линиями сетки a = 0.01 мм. Определите минимальное расстояние между частицами при дальнейшем движении. За какое время это расстояние увеличится от минимального до максимального? Рассмотрите два случая ($v_0 = 600 \text{ м/c}$): а) $v_1 = 4v_0$, $v_2 = 3v_0$; б) $v_1 = 3v_0$, $v_2 = 4v_0$.

- **2.** Конденсатор емкостью $C_1 = 5$ мкФ зарядили до напряжения $U_1 = 8$ В, а конденсатор емкостью $C_2 = 10$ мкФ до напряжения $U_2 = 12$ В. Конденсаторы соединили с резисторами, сопротивления которых $R_1 = 9$ кОм и $R_2 = 30$ кОм, и разомкнутыми ключами (см. рисунок). Какое количество теплоты выделится в каждом из резисторов после одновременного замыкания обоих ключей?
- **3.** Металлическая бусинка может скользить без трения по тонкой горизонтальной диэлектрической спице AB в электрическом поле двух закрепленных точечных зарядов +q и -q (см. рисунок). При каких значениях угла α в точке O, находящейся посредине между зарядами, возможно устойчивое равновесие бусинки?
- **4.** В деловых кругах города X, находящегося на широте α , стало доподлинно известно, что Земля таки круглая и вокруг нее летают спутники связи. Родилась замечательная идея: запустить такой спутник, чтобы он назло конкурентам висел постоянно над городом X! Доводы разных ботаников о дороговизне этой затеи были с негодованием отметены. Предложите, по крайней мере, такую траекторию указанного спутника, которая потребует минимального непрерывного расхода дорогостоящего топлива. Сравните расход топлива при $\alpha_1 = 30^\circ$ и $\alpha_2 = 60^\circ$.
- **5.** Три одинаковых маленьких шарика массой m с зарядами q попарно соединены нитями длиной l и находятся в равновесии в далеком космосе. Одну нить пережгли. Определите ускорение среднего шарика сразу после этого.