Power Allocation and Relay Selection in Amplify-and-Forward Relaying

Prudhvi Porandla (110070039)

Guide: Prof. Prasanna Chaporkar

May 2, 2016

Overview

- Relaying Schemes
- Power Allocation
- Relay Selection
- Interdependence of above two
- Future Work

Partial Decode-and-Forward Relaying

Two Phases

Total transmission period is divided into phases: 1. Broadcast phase and 2. Multicast phase as shown in the figure below.

Figure: Two phases in PDF relaying.

Partial Decode-and-Forward Relaying

Transmit Signals

Source uses superposition coding and splits its information into a common part(U_s^b) and a private part(V_s^m)

The signals transmitted by source and relay are as follows:

Phase 1:
$$x_s^b = U_s^b$$
,
Phase 2: $x_r^m = U_s^m$,
 $x_s^m = U_s^m + V_s^m$

Two Slots

Figure: Two phases in AF relaying.

Received Signals

Signals received at relay, BS during the two slots:

First Slot:

$$Y_{sd} = \sqrt{P_s G_{sd}} X_s + n_{sd}$$

 $Y_{sr} = \sqrt{P_s G_{sr}} X_s + n_{sr}$

Received Signals

Signals received at relay, BS during the two slots:

First Slot:

$$Y_{sd} = \sqrt{P_s G_{sd}} X_s + n_{sd}$$

 $Y_{sr} = \sqrt{P_s G_{sr}} X_s + n_{sr}$

Second Slot:

$$Y_{rd} = \sqrt{P_r G_{rd}} X_{rd} + n_{rd}$$

Where
$$X_{rd} = \frac{Y_{sr}}{|Y_{sr}|}$$

Capacity

The rate/capacity of AF relaying scheme is given by

$$R = \frac{1}{2}w \log_2(1 + \Gamma_{sd} + \Gamma_{rd})$$
 where Γ represents SNR

Substituting Γ_{sd} and Γ_{rd} , we get

$$R = \frac{1}{2}w\log_2\left(1 + \frac{P_sG_{sd}}{\sigma^2} + \frac{P_sG_{sr}P_rG_{rd}}{\sigma^2(\sigma^2 + P_sG_{sr} + P_rG_{rd})}\right)$$

Single relay case

► Find the source power that maximises rate under given power constraints

Single relay case

► Find the source power that maximises rate under given power constraints

▶ Prove that rate is concave function of source power

Single relay case

► Find the source power that maximises rate under given power constraints

▶ Prove that rate is concave function of source power

Use Lagrange multiplier method to find optimal power

Multiple relays

Depends on the relay

Relay Selection

Many relay selection schemes. One of them:

Select relay k where

$$k = \arg\max_{i} \min_{i} \{G_{sr_i}, G_{r_id}\}$$

Relay Selection

Many relay selection schemes. One of them:

Select relay k where

$$k = \arg\max_{i} \min_{i} \{G_{sr_i}, G_{r_id}\}$$

A smoother version of the above would be

$$k = \arg\max_{i} \frac{G_{sr_i} G_{r_i d}}{G_{sr_i} + G_{r_i d}}$$

Relay Selection

Ideal Scheme

An ideal scheme should use SNR as the deciding parameter In our case Select relay k where

$$k = \arg \max_{i} \Gamma_{r_i d}$$

where
$$\Gamma_{rd}=rac{P_s\,G_{sr}\,P_r\,G_{rd}}{\sigma^2(\sigma^2+P_s\,G_{sr}+P_r\,G_{rd})}$$

Interdependence

Power allocation and relay selection are mutually dependent

Interdependence

Power allocation and relay selection are mutually dependent

Can different relays be optimal at different source powers?

consider two relays R_1 and R_2 and assume both use same constant relay power P_r . Γ_{rd} can be rewritten as

$$\Gamma(P_s) = \frac{P_s ab}{1 + P_s a + b}$$

where $a = \frac{G_{sr}}{\sigma^2}$ and $b = \frac{P_r G_{rd}}{\sigma^2}$

We want to know if at some power P_1 , R_1 is a better relay than R_2 i.e.,

$$\Gamma_1(P_1) > \Gamma_2(P_1)$$

then can R_2 be a better relay than R_1 for some other power P_2 ?

$$\Gamma_1(P_2) < \Gamma_2(P_2)$$

let us find the power at which both relays are equally good.

$$\Gamma_1(P_0) = \Gamma_2(P_0)$$

Solving the above equation, we get

$$P_0 = (1+b_1)(1+b_2)\frac{\frac{a_1b_1}{1+b_1} - \frac{a_2b_2}{1+b_2}}{a_1a_2(b_2-b_1)}$$

let us find the power at which both relays are equally good.

$$\Gamma_1(P_0) = \Gamma_2(P_0)$$

Solving the above equation, we get

$$P_0 = (1+b_1)(1+b_2)\frac{\frac{a_1b_1}{1+b_1} - \frac{a_2b_2}{1+b_2}}{a_1a_2(b_2-b_1)}$$

For $P_0 < 0$, one of the relays is the desired one irrespective of source power.

let us find the power at which both relays are equally good.

$$\Gamma_1(P_0) = \Gamma_2(P_0)$$

Solving the above equation, we get

$$P_0 = (1+b_1)(1+b_2)\frac{\frac{a_1b_1}{1+b_1} - \frac{a_2b_2}{1+b_2}}{a_1a_2(b_2-b_1)}$$

For $P_0 < 0$, one of the relays is the desired one irrespective of source power.

If $P_0 > 0$, then one of the relays gives more SNR at source powers $< P_0$ and the other relay at powers $> P_0$

Let us consider one of the cases in which $P_0 > 0$

$$\frac{a_1b_1}{1+b_1} > \frac{a_2b_2}{1+b_2}$$
 and $b_2 > b_1$

Assume $b_1, b_2 >> 1$

First inequality: $a_1 > a_2$.

What do these conditions mean? Source to relay channel is better for R_1 but relay to destination channel is stronger for R_2 . Hence at low source powers R_1 gives better SNR but for source power greater than P_0 , R_2 is a better relay than R_1 .

- $\frac{a_1b_1}{1+b_1}>\frac{a_2b_2}{1+b_2}$ and $b_2>b_1$ R_1 at source power less than P_0 and R_2 at power greater than P_0
- lacksquare $rac{a_1b_1}{1+b_1}<rac{a_2b_2}{1+b_2}$ and $b_2< b_1$ R_2 at source power $< P_0$ and R_1 at power $> P_0$
- ▶ $\frac{a_1b_1}{1+b_1} < \frac{a_2b_2}{1+b_2}$ and $b_2 > b_1$ R_2 is a better relay for all source powers
- lacksquare $rac{a_1b_1}{1+b_1}>rac{a_2b_2}{1+b_2}$ and $b_2< b_1$ R_1 is a better relay for all source powers

- Assume an initial source power
- Select the best relay at this power
- Solve the optimisation problem
- Check if the current relay is still the best
- If not, use the other relay

Future Work

Will the above method work?
Remains to be seen if the above solution converges

Future Work

▶ Will the above method work? Remains to be seen if the above solution converges

Power allocation at relay

Future Work

Will the above method work?
Remains to be seen if the above solution converges

Power allocation at relay

Extend it to the case where there are more than two relays