Continuité/Dérivation

Jérémy Meynier

Exercice 1

Déterminer les $f: \mathbb{R} \to \mathbb{R}$ continues en 0 tel que $\forall x \in \mathbb{R}, f(2x) = f(x)$

Exercice 2

Trouver les fonctions f continues sur $\mathbb{R}/\forall (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y)

Exercice 3

Existe t'il des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues tel que $\forall x \in \mathbb{R}, f(-f(x)) = x$

Exercice 4

Soient $f,g:[a,b]\to\mathbb{R}$ continues et tel que $\forall x\in[a,b],\,f(x)< g(x)$. Montrer qu'il existe α tel que $\forall x\in[a,b],\,f(x)\leq g(x)-\alpha$

Exercice 5

Soit
$$f \in C^0([0,1],\mathbb{R})$$
, et $(x_1,\cdots,x_n) \in [0,1]^n$. Montrer qu'il existe $c \in [0,1]$ tel que $f(c) = \frac{f(x_1) + \cdots + f(x_n)}{n}$