Link Prediction Implementation

Link Prediction as binary classification

Positive labels = edges

negative labels = sample of node pairs wo edges

import touch
import touch. In as no
import touch. nn as no
import touch. nn. Runchional as F
import itertools
import numpy as no
import scipy. sparse as sp

dataset = dgl. data. Cora. Cora. Cora. Dataset () g = dataset [0]

load dataset

u, v = g. edges () eids = np. random. permutation (np. aronge (g. num _ edges ()))

test_size = int (len (eids) * 0.1))
train_size = g. num_edges () — test_size

test_pos_u, test_pos_v = u[eids[: test_size]], v[eids[: test_size]]

toin_pos_u, train_pos_v = u[eids[test_size:]], v[eids[test_size:]]

sparse natrix in coordinate format

find $[adj = sp. coo_matrix ((np.ones(len(u)), v.numpy(), v.numpy())))$ edges

adj_reg = 1- adj. toolense() - np.eye(g.num_nodes())

neg_u, neg_v = np. where (adj_neg != 0)

reg_eids = nprandom. choice (len (neg_u), g. num_edges())

test_neg_u, test_neg_v=neg_u [neg_eids[: test_size]],

neg_v [neg_eids[: test_size]]

train_neg_u, train_neg_v=neg_u [neg_eids[test_size:]],

neg_v [neg_eids[test_size:]]

We should remove "test edges" from the graph.

train _g = dgl. remove _ edges (g, eids [:test_size])

Build a graph neural network: Graph Sage from dgl. nn import SAGE Conv clase Graph SAGE (nn. Module):

def __init __ (self, in-feats, h-feats):

super (Graph SAGE, self). __init __ ()

self. Conv L = SAGEConv(in_feats, h-feats, 'mean')

self. Conv 2 = SAGEConv(h_feats, h-feats, 'mean')

def forward (self, g, in-feats):

h= self. Gonv1 (g, in-feats)

h= F. reln (h)

h= self. Conv2 (g, h)

return h

* For link prediction, we need to compute representations for pairs of nodes.

K in link prediction. Positive graph negative graph

train_pos_g = dgl. graph (train-pos_u, train-pos_v), num_nodes=g.num_nodes()) train_neg_g = dgl. graph (train-neg_u, train-neg_u), num_nodes = g. num_nodes ()) test-pos-g = dgl. graph (test-pos-u, test-pos-v), num_nodes = g. num_nodes ()) test_neg_g = dgl. graph (test-neg_u, test-neg_v), num_nodes = g. num_nodes ())

How to compute the node-pair repr? (1) import dgl. function as fin class Dot Predictor (nn. Module): def forward (seif, g, h): with g. local_supe(): g. nduta ['h'] = h Computing a new -> g. apply_edges (fn. u_dot_v ('h', 'h', 'score'))
noch feature of h' of src and dst texture 2) More complex than obt product:

class MLPPredictor (nn. Module):

def —init — (seif. h-feats):

super (). — init — ()

seif. wi = nn. Linear (h-feats = 2, h-feats)

seif. WL = nn. Linear (h-feats, 1)

Compute def apply-edges (Seif, edges):

a scalar

h = torch. Cat ([edges.src['h'], edges.dst['h']]

Szore

for each

edge return {'score': seif. w2 (F. relu (seif. w1 (h)))

. squeeze (1)?

def forward (self, g, h):

with g.lo Cal_scope():

g. ndata ['h'] = h

g. opply - edges (self. apply-edges)

return g. edata ['score']

Training Loop

model = Graph SAGE (train _ g. ndata ['feat']. shape [1], 16)

pred = DotPredictor ()

def get-loss (pos, neg):

scores = torch. cat ([pos, neg])

labels = torch. cat ([torch. ones (pos. shape [0]),

torch. zeros (neg. shape [0])])

return F. binary_cross_entropy_with_logits

return f. binary_cross_entropy_with_logits
(scores, lowels)

dut get-auc (pos, neg):

scores = torch. cat ([pos, neg]). numpy()
labels = torch. cat ([torch. ones (pos. shape[0]),
torch. zeros (neg. shape[0])).numpy()
return 6c_auc_Score (labels, scores)

opt = torch. o ptim. Adam (itertools. chain (model. parameters (),
pred. parameters ()),

er= 0.01)

all-logits=
$$[]$$

For e in epochs:

Corward step

from skleam. metrics import noc_ auc_score with torch no grad ():