1 Section 1

Focus: INTERIOR-POINT METHODS

JEAN KOUAGOU ARIEL KEMOGNE BLESSING BASSEY GEDEON MUHAWENAYO

AFRICAN MASTERS FOR MACHINE LEARNING

13 12 2019

SECTION 1

Introduction

An interior point method is a linear or nonlinear programming method that achieves optimization by going through the middle of the solid defined by the problem rather than around its surface.

Figure: Simplex versus interior point method

INEQUALITY CONSTRAINED MINIMIZATION

Inequality constrained minimization

minimize
$$f_{\rm O}(x)$$
 subject to $f_{i}(x) \leq {\rm O}, \quad i=1,\ldots,m$ $Ax=b$

- \blacksquare f_i convex, twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with rank A = p
- \blacksquare we assume p^* is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with $\tilde{x} \in \text{dom} f_0, f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, A\tilde{x} = b$ hence, strong duality holds and dual optimum is attained

LOGARITHMIC BARRIER

Approximation with the indicator function

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where $I_{-}(u) = 0$ if $u \le 0, I_{-}(u) = \infty$ otherwise.

Approximation via logarithmic barrier

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

LOGARITHMIC BARRIER FUNCTION

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \text{dom } \phi = \{x | f_1(x) < 0, \dots, f_m(x) < 0\}$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$\nabla \phi(\mathbf{x}) = \sum_{i=1}^{m} \frac{1}{-f_i(\mathbf{x})} \nabla f_i(\mathbf{x})$$

$$\nabla^2 \phi(\mathbf{x}) = \sum_{i=1}^{m} \frac{1}{f_i(\mathbf{x})^2} \nabla f_i(\mathbf{x}) \nabla f_i(\mathbf{x})^{\mathsf{T}} + \sum_{i=1}^{m} \frac{1}{-f_i(\mathbf{x})} \nabla^2 f_i(\mathbf{x})$$

CENTRAL PATH

• for
$$t>$$
 0, define $x^*(t)$ as the solution of minimize $tf_0(x)+\phi(x)$ subject to $Ax=b$

(for now, assume $x^*(t)$ exists and is unique for each t > 0)

• central path is $\{x^*(t)|t>0\}$

DUAL POINTS ON CENTRAL PATH

 $x = x^*(t)$ if there exists a w such that

$$t\nabla f_{0}(x) + \sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) + A^{\mathsf{T}} w = 0, \quad Ax = b$$

• therefore, $x^*(t)$ minimizes the Lagrangian

$$L(x, \lambda^{*}(t), \nu^{*}(t)) = f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*}(t) f_{i}(x) + \nu^{*}(t)^{T} (Ax - b)$$
 (1)

where we define $\lambda_i^*(t) = 1/\left(-tf_i(x^*(t))\right)$ and $\nu^*(t) = w/t$

DUAL POINTS ON CENTRAL PATH

$$\mathbf{x} = \mathbf{x}^{\star}(t), \lambda = \lambda^{\star}(t), \nu = \nu^{\star}(t)$$
 satisfy

- 1. primal constraints: $f_i(x) \le 0, i = 1, \dots, m, Ax = b$
- 2. dual constraints: $\lambda \succeq 0$
- 3. approximate slackness: $-\lambda_i f_i(x) = 1/t, i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_{\mathsf{O}}(\mathsf{X}) + \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(\mathsf{X}) + \mathsf{A}^{\mathsf{T}} \nu = \mathsf{O}$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Barrier Method

given strictly feasible $\mathbf{x},\mathbf{t}:=\mathbf{t^{(0)}}>\mathbf{0},\mu>\mathbf{1},\; \mathrm{tolerance}\;\epsilon>\mathbf{0}$ repeat

- 1. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b
- 2. Update. $x := x^*(t)$
- 3. Stopping criterion. quit if $m/t < \epsilon$
- 4. Increase $t.t := \mu t$
- Terminates with $f_0(x) p^* \le \epsilon f_0(x^*(t)) p^* \le m/t$
- centering usually done using Newton's method, starting at current x
- lacktriangle choice of μ involves a trade-off: μ means fewer outer iterations
- more inner (Newton) iterations; typical values: $\mu = 10 20$ several heuristics for choice of $t^{(0)}$

Barrier Method

given strictly feasible $\mathbf{x},\mathbf{t}:=\mathbf{t^{(0)}}>\mathbf{0},\mu>\mathbf{1},\; \mathrm{tolerance}\;\epsilon>\mathbf{0}$ repeat

- 1. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b
- 2. Update. $x := x^*(t)$
- 3. Stopping criterion. quit if $m/t < \epsilon$
- 4. Increase $t.t := \mu t$
- Terminates with $f_0(x) p^* \le \epsilon f_0(x^*(t)) p^* \le m/t$
- centering usually done using Newton's method, starting at current x
- lacktriangle choice of μ involves a trade-off: μ means fewer outer iterations
- more inner (Newton) iterations; typical values: $\mu = 10 20$ several heuristics for choice of $t^{(0)}$

CONVERGENCE ANALYSIS

number of outer (centering) iterations: exactly

$$\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

plus the initial centering step (to compute $x^*(t^{(0)})$)

CONVERGENCE ANALYSIS

number of outer (centering) iterations: exactly

$$\left\lceil \frac{\log \left(m / \left(\epsilon t^{(0)} \right) \right)}{\log \mu} \right\rceil$$

plus the initial centering step (to compute $x^*(t^{(0)})$)

Feasibility and phase I methods feasibility problem: find x such that $f_i(x) \le 0$, i = 1, ..., m, Ax = b

(2)

Typesetting and Math

The packages inputenc and FiraSans^{1,2} are used to properly set the main fonts.

This theme provides styling commands to typeset *emphasized*, **alerted**, **bold**, example text, ...

FiraSans also provides support for mathematical symbols:

$$e^{i\pi} + 1 = 0.$$

https://fonts.google.com/specimen/Fira+Sans

²http://mozilla.github.io/Fira/

SECTION 2

BLOCKS

These blocks are part of 1 slide, to be displayed consecutively.

Block

Text.

4

BLOCKS

These blocks are part of 1 slide, to be displayed consecutively.

Block

Text.

Alert block

Alert text.

.

BLOCKS

These blocks are part of 1 slide, to be displayed consecutively.

Block

Text.

Alert block

Alert text.

Example block

Example text.

COLUMNS

This text appears in the left column and wraps neatly with a margin between columns.

Placeholder

Image

5 7

LISTS

Items:

- Item 1
 - ► Subitem 1.1
 - ► Subitem 1.2
- Item 2
- Item 3

Enumerations:

- 1. First
- 2. Second
 - 2.1 Sub-first
 - 2.2 Sub-second
- 3. Third

Descriptions:

First Yes.

Second No.

TABLE

Discipline	Avg. Salary
Engineering	\$66,521
Computer Sciences	\$60,005
Mathematics and Sciences	\$61,867
Business	\$56,720
Humanities & Social Sciences	\$56,669
Agriculture and Natural Resources	\$53,565
Communications	\$51,448
Average for All Disciplines	\$58,114

Table: Table caption

Thanks for using **Focus**!

REFERENCES

DONALD E. KNUTH.

COMPUTER PROGRAMMING AS AN ART.

COMMUN. ACM, pages 667–673, 1974.

DONALD E. KNUTH.

Two notes on notation.

Amer. Math. Monthly, 99:403–422, 1992.

LESLIE LAMPORT.

LATEX: A DOCUMENT PREPARATION SYSTEM.

Pearson Education India, 1994.

BACKUP SLIDE

This is a backup slide, useful to include additional materials to answer questions from the audience.

The package appendix number beamer is used to refrain from numbering appendix slides.