Feuille 2 – Démonstrations (Récurrence, Contraposée, Absurde)

Méthode: Les démonstrations

- La démonstration directe : très souvent la plus simple, on prouve par exemple que $A \Rightarrow B$
- La démonstration par contraposée : on montre $\neg B \Rightarrow \neg A$, ce qui montre $A \Rightarrow B$
- La démonstration par l'absurde : On suppose $\neg A$, et on montre que c'est absurde (que cela contredit une des hypothèses de départ), et qu'on a donc nécessairement A vraie.
- La démonstration par récurrence simple : Exclusivement dans les entiers naturels. Trois étapes :
 - Initialisation : on prouve que P(n) est vraie au premier rang n (souvent n=0 ou 1)
 - Hypothèse : on suppose P(n) vraie pour un certain n (ne pas oublier l'ensemble de n)
 - Hérédité : on prouve que $P(n) \Rightarrow P(n+1)$
- La récurrence forte : même principe que la récurrence simple, mais au lieu de montrer $P(n) \Rightarrow P(n+1)$, on prouve que si $\forall k \leq n, P(n)$ est vraie, alors P(n+1) est vraie.

Rappels de cours :

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$
 Pour $q \neq 1, \forall n \in \mathbb{N}, \sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$

Exercice 1 : Prouver les deux résultats ci-dessus par récurrence.

Exercice 2: Pour $a \in \mathbb{N}$, prouver que si a^2 n'est pas divisible par 3, alors a n'est pas divisible par 3.

Exercice 3:

- 1) Prouver que $\sqrt{2} \notin \mathbb{Q}$. (On admettra que pour tout $p \in \mathbb{Z}$, si p^2 est pair, alors p est pair)
- 2) Soit $a, b \in \mathbb{Q}$, montrer que $a + b\sqrt{2} = 0 \Leftrightarrow (a, b) = (0,0)$
- 3) Soit $m, n, p, q \in \mathbb{Q}$, montrer que $m + n\sqrt{2} = p + q\sqrt{2} \Leftrightarrow (m = p)$ et (n = q)

Exercice 4 : (Inégalité de Bernoulli)

Montrer par récurrence que $\forall x \in]-1; +\infty[, \forall n \in \mathbb{N}^*, (1+x)^n \geq 1+nx$ (Indice : on pourra s'aider du fait que $(1+nx)(1+x)=1+(n+1)x+nx^2$)

Exercice 5 : (Récurrence double)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_0=2,u_1=3$ et pour tout $n\in\mathbb{N},u_{n+2}+3u_{n+1}-2u_n$. Montrer que $\forall n\in\mathbb{N},u_n=1+2^n$.

Exercice 6 : Soit
$$(v_n)_{n\in\mathbb{N}}$$
 une suite définie par $v_0=0$ et $\forall n\in\mathbb{N}, v_{n+1}=\frac{1}{2-v_n}$.

Trouver une écriture explicite de v_n . (On pourra calculer les premières valeurs de v_n pour en déduire une conjecture, et ensuite démontrer cette conjecture).

Exercice 7: Soit $x, y \in \mathbb{R}_+$, montrer que $\frac{x}{1+y} = \frac{y}{1+x} \Longrightarrow x = y$ (penser au raisonnement par l'absurde).

Exercice 8 : (Corollaire du théorème fondamental de l'arithmétique)

Soit $n \in \mathbb{N}^*$, montrer que si n n'est pas premier, alors n admet un diviseur inférieur ou égal à \sqrt{n} . (On pourra raisonner par l'absurde).

Exercice 9 : Montrer par récurrence que
$$\forall n \in \mathbb{N}^*, S_n \coloneqq \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$$

Exercice 10 : (Difficile) Soit $n \ge 1$.

Montrer que
$$\sum_{k=n+1}^{2n-1} \ln\left(\sin\left(\frac{k\pi}{2n}\right)\right) = \sum_{k=1}^{n-1} \ln\left(\sin\left(\frac{k\pi}{2n}\right)\right)$$

<u>Indice</u>: on posera j = 2n - k et on pourra se servir de l'identité $\sin(\pi - x) = \sin(x)$.