天津医科大学理论课教案首页

(共3页、第1页)

课程名称:系统生物学 课程内容/章节:基因组学(测序技术简介)/第2章

授课对象: 生物医学工程与技术学院 2013 级生信班 (本) **听课人数:** 28

授课方式: 理论讲授 学时数: 2 教材版本: 系统生物学、第1版

教学目的与要求(分掌握、熟悉、了解、自学四个层次):

• 掌握 Sanger 测序、Illumina/Solexa 测序的主要原理和基本步骤,外显子组测序的实验流程和分析过程。

- 熟悉化学测序法、Roche/454 测序、ABI/SOLiD 测序的主要原理和基本步骤。
- 了解 tSMS、SMRT、FRET、Nanopore 等第三代测序技术。
- 自学第三代测序技术的主要原理和基本步骤。

授课内容及学时分配:

- (5') 引言与导入:介绍测序的基本概念,总结三代测序技术的发展历程。
- (10') 第一代测序技术:介绍第一代测序技术,讲解化学测序法和 Sanger 测序法的主要原理。
- (40') 第二代测序技术:介绍第二代测序技术,讲解 Roche/454、Illumina/Solexa、ABI/SOLiD 三种测序技术的主要原理和基本步骤,介绍 Ion Torrent 测序技术,对第二代测序技术进行比较与总结。
- (20') 第三代测序技术:介绍第三代测序技术,讲解tSMS、SMRT、FRET、Nanopore、TEM等技术的主要原理,对第三代测序技术进行比较与总结。
- (10') 测序技术比较:对三代测序技术进行总结,从通量、读长、准确性、优缺点等方面对常见的测序技术进行比较。
- (10') 外显子组测序: 简单介绍 exome、WES、WGS 等概念,讲解外显子组测序的实验步骤和生物信息学分析流程。
- (5') 总结与答疑: 总结授课内容中的知识点与技能, 解答学生疑问。

教学重点、难点及解决策略:

- 重点: Illumina/Solexa 测序技术的原理和步骤,各种测序技术的优缺点,外显子组测序的分析流程。
- 难点: Illmunia/Solexa 测序技术的原理和步骤。
- 解决策略:通过实例讲解和比较类比帮助学生理解、记忆,播放动画视频帮助学生直观理解复杂原理。

专业外语词汇或术语:

DNA 测序 (DNA sequencing)

边连接边测序(sequencing by ligation)

焦磷酸测序 (pyrosequencing)

外显子组测序 (whole exome sequencing,

乳液 PCR (emulsion PCR, emPCR)

WES)

桥式扩增 (bridge amplification)

边合成边测序(sequencing by synthesis, SBS)

基因组测序(while genome sequencing, WGS)

辅助教学情况:

- 多媒体: 主要测序技术的原理和过程, 测序技术的发展和比较。
- 板书: 外显子组测序的分析流程。

复习思考题:

- 阐述 Sanger 测序的主要原理。
- 列举第二代测序技术的常见技术。
- 阐述 Illumina/Solexa 测序技术的主要原理。
- 列举第三代测序技术的常见技术。
- 比较三代测序技术中常见的常见技术。
- 总结外显子组测序的分析流程。

参考资料:

• 维基百科等网络资源。

主任签字: 年 月 日 教务处制

天津医科大学理论课教案续页

(共3页、第2页)

一、 引言与导入 (5分钟)

- 1. 基本概念
 - DNA 测序: 分析 ACGT 的排列方式
 - RNA 测学: RNA ⇒ cDNA ⇒ DNA 测序
- 2. 测序历史
 - 历史发展: 第一代 ⇒ 第二代 ⇒ 第三代
 - 第一代测序: 毛细管电泳测序
 - 第二代测序: 高通量测序
 - 第三代测序: 单分子测序
- 二、 第一代测序技术 (10分钟)
 - 1. 化学测序法: 化学变性
 - 1977, Gilbert & Maxam
 - 化学测序法 (Maxam-Gilbert 法)
 - 2. Sanger 测序法: ddNTP, "黄金标准"
 - 1975, Sanger & Coulson
 - · Sanger 测序法 (双脱氧链终止法)
- 三、 第二代测序技术 (40 分钟)
 - 1. Roche/454
 - 扩增: 乳液 PCR
 - 测序: 焦磷酸测序
 - 2. 【重点、难点】Illumina/Solexa (动画演示、详细讲解)
 - 扩增: 桥式扩增
 - 测序: 边合成边测序
 - 3. ABI/SOLiD
 - 扩增: 乳液 PCR
 - 测序: 边连接边测序
 - 4. 离子半导体测序
 - 5. 【重点】第二代测序技术比较

Roche 454 Illumina ·Short fragments Long fragments ·Low throughput ·High throughput •Expensive ·Cheap ·Poly nts errors •GC bias ·De novo sequencing Resequencing ·Amplicon sequencing ·De novo sequencing Metagenomics ·ChipSeq •RNASea ·RNASea ·MethylSeq

•Short fragments •High throughput

SOLID

- •Cheap
- Color-space
- Resequencing
- •ChipSeq
- ·RNASeq
- •MethylSeq

天津医科大 学理论课教案续页

(共3页、第3页)

四、 第三代测序技术(20分钟)

$b = 1/4 \times 11/1 \times 11/1$	/					3. 9. 8	13				
1. tSMS	测序 方法	代表仪器平台	测 序 原 理	分析方法	定量属性						
1. (3)(13)					通量	读长	测序 时间	准确性	优势	劣势	应用场景
2. SMRT	一代测序	ABI/LIFE3730 ABI/LIFE3500	Sanger 双 脱 氧 终 止法	毛细管电泳, 荧光检测	0.2Mb	400-900bp	1.6h	>99%	读长 准确度 仪器运转成本	通量 每个碱基的 测序成本	常规测序 各种确认性质测序
3. FRET											引物步查 配合二代测序检测 复杂基因组
4. Nanopore		Illumina Hiseq Illumina Genome	边合成							仪器成本 仪器运转成	二次测序 突变位点分析
5. TEM	二代 测序	Analyer Life Solid	边测序, 可 逆 终 止法	文库制备,桥 式 PCR	400Mb -1.8T	50-300bp	2h-3 d	>99%	通量 每个碱基成本	本 读长 样本制备要	变异分析染色体免疫共沉淀
6. 第三代测序技术比较		Roche/454 GS 系列							读长	求	RNA 测序
重点】测序技术比较(10	三代 测序	PACB PacBio RS Oxford Nanopore	单分子合成测	无需 PCR,直接转移到测点共长测点	0.2-30 Gb	>1000bp	2h	<90%	运行时间 样本制备要求	通量 仪器成本 在 确 府	微生物测序 复杂基因组

序芯片测序

Whole exome capture/

五、 【重点】测序技术比较(10 分钟)

外显子组测序 (10分钟) 六、

1. 基本概念

• exome: genome \Rightarrow 1%, 30Mb

• WES: exome ⇒ sequencing

• WGS: genome ⇒ sequencing

2. 【重点】流程:实验+分析

七、 总结与答疑 (5分钟)

1. 知识点

• 测序技术:第一代,第二代,第三代 Hybridize

• Sanger 测序: 原理与过程

• Illumina/Solexa 测序: 原理与过程

• 测序技术比较: 优缺点

• 外显子组测序: 实验与分析流程

2. 技能

• 外显子组测序: 数据分析

准确度

Computational pipeline