

A Continual Learning Benchmark for Vision-and-Language Tasks

<u>Tejas Srinivasan</u>, Ting-Yun Chang, Leticia Pinto-Alva, Georgios Chochlakis, Mohammad Rostami, Jesse Thomason

Multimodal Agents that can be Deployed

Responses/actions by reasoning over inputs from multiple modalities

Visual QA + Dialog

Image/Scene Classification

Knowledgebased QA

Paradigms of VL Deployment: Single-Task Finetuning

Need to store a copy of the model for each task!

Paradigms of VL Deployment: Multi-Task Learning

Static; cannot learn new tasks that it encounters!

Paradigms of VL Deployment: Continual Learning

Dynamic, continually evolving paradigm Unexplored in multimodal domain!

Challenges of Multimodal Continual Learning Deployment

Challenges of Multimodal Continual Learning Deployment

Not guaranteed to have all modalities when encountering new tasks!

CLiMB: The Continual Learning in Multimodality Benchmark

Phase II. Downstream Low-Shot Transfer

CLIMB

Evaluation

CL Algorithms

Continual Learning Models

Multimodal and Unimodal Tasks

I. Multimodal and Unimodal Tasks

Vision-and-Language Tasks	 Visual Question Answering (VQAv2) Natural Language Visual Reasoning (NLVR2) Visual Entailment (SNLI-VE) Visual Commonsense Reasoning (VCR)
Language-Only Tasks	 IMDb, SST-2 Sentiment Classification HellaSwag CommonsenseQA Physical Interaction QA (PIQA)
Vision-Only Tasks	 ImageNet-1K Image Classification iNaturalist2019 Image Classification Places365 Image Classification MS-COCO Object Detection

CLiMB can be easily extended to include new multimodal and unimodal tasks!

II. Continual Learning Models

III. Continual Learning Algorithms

Currently, CLiMB supports 6 different Continual Learning algorithms:

- Sequential Fine-tuning: Fine-tune full encoder and task-specific layers
- Frozen Encoder: Train only task-specific layers
- **Frozen Bottom-K:** Fine-tune only top encoder layers and task layers
 - We set K=9
- Experience Replay (ER)
- Elastic Weight Consolidation (EWC)
- Adapters

Experience Replay

Elastic Weight Consolidation

Adapters

Insert new task-specific parameters into Transformer layers

- Transformer parameters kept frozen - no forgetting!
- Fewer learnable parameters, faster to train
- Comparable performance as full model fine-tuning
- No cross-task knowledge transfer

IV. Evaluation

100

Upstream Evaluation I: Upstream Knowledge Transfer

With Continual Learning Algorithm *A*:

0

Without Continual Learning:

Score S_{PT}^i

$$\mathbb{T}_{UK}(i) = \frac{S_{\mathcal{A}}^i - S_{PT}^i}{S_{PT}^i - S_{R}^i}$$

Upstream Evaluation II: Forgetting Transfer

$$\mathbb{T}_F(j \leftarrow i) = \frac{S_{\mathcal{A}}^j - S_{\mathcal{A}}^{j \leftarrow i}}{S_{\mathcal{A}}^j - S_{\mathcal{A}}^j}$$

Downstream Evaluation: Low-Shot Transfer

Task i

With Continual Learning Algorithm A:

Without Continual Learning:

Experiments I: Upstream Continual Learning

- 4 V+L Tasks, ordered VQA → NLVR2 → SNLI-VE → VCR
- ViLT-based continual learning model
- 6 different Continual Learning algorithms

Results I: Upstream Continual Learning

<u>Upstream Knowledge Transfer:</u> How does Continual Learning affect model's ability to learn newly arriving tasks?

Alg \mathcal{A}	Params	Task 1	Task 2	Task 3	Task 4
	Trained	VQAv2	NLVR2	SNLI-VE	VCR
Direct FT	100%	[67.70]	[73.07]	[76.31]	[61.31]

- More continual learning hurts ability to learn new tasks
- Adapters do not show negative transfer, comparable to full model fine-tuning

Results I: Upstream Continual Learning

Forgetting: How does learning new tasks affect model's performance on already-learned tasks?

- More fine-tuned params== more forgetting
- ER > EWC
- Adapters >>>>
- Forgetting more severe after VCR

Effect of Continual Learning Task Order

Transfer Low-Shot Transfer to Unseen V+L Tasks

- Low-Shot transfer is always negative
- Unsurprising CL also hurts model transfer with full training data

Transfer Low-Shot Transfer to **Vision-Only Tasks**

Language prompt: "This is an image."

- ViLT achieves good low-shot performance on vision tasks
- CL hurts low-shot transfer
- NLVR2 and VCR have more negative effect

TransferLow-Shot Transfer to
Language-Only Tasks

Adapting ViLT for NLP tasks:

- Use "average" MS-COCO image for in-distribution visual input
- Extend language position embeddings
- ViLT-BERT: Replace language input embeddings with BERT representations

TransferLow-Shot Transfer to
Language-Only Tasks

- Upstream CL helps! Sometimes
- ViLT sees negligible differences
- CL helps ViLT-BERT with SST2
- VCR hurts SST2
- CL hurts multi-choice tasks

Conclusions

- We propose CLiMB, a benchmark to study CL in multimodal settings.
- CLiMB is an extensible community tool for studying tasks, model architectures, and CL algorithms.
- Existing Continual Learning methods fail at:
 - generalizing well to sequences of multimodal tasks
 - Enabling low-shot adaptation to multi/unimodal tasks
- Adapters are most effective at preserving pre-trained model knowledge and forgetting mitigating
- There is a need for new research into Continual Learning strategies for this challenging multimodal setting.

Future Directions

- Adapters that share knowledge across tasks
- Multimodal Adapters
- Studying multimodal distribution shifts
- Building a task-agnostic modeling framework:
 - Sequence-to-sequence task formulations
 - Integrating generalist models into CLiMB
 - Embodied navigation, task completion

Acknowledgements

Ting-Yun Chang

Leticia Pinto Alva

Georgios Chochlakis

Mohammad Rostami Jesse Thomason 🧦

Thank You!!

https://github.com/GLAMOR-USC/CLiMB

