1. $G = \langle a \rangle$ 是 6 阶循环群, 给出 G 的一切生成元和 G 的所有子群.

证明. 设 $g = a^k$, g 是生成元则 k 和 6 互素, 那么 k = 1 or 5, 故生成元为 a 或者 a^5 设子群为 $\langle a^m \rangle$, 其为子群则 m 是 6 的因子, 故 m 的可能取值为 1, 2, 3, 6. 子群共有四个.

Theorem 0.1 (生成元的个数). 有限循环群的生成元的个数为 $\varphi(n)$ 其中 n 是 G 的阶, φ 是欧拉函数.

Theorem 0.2 (循环群的子群). 循环群的子群必定为循环群.

Theorem 0.3 (子群的阶数). 对于有限群 G, 由 Lagerange 定理, 有, 子群的阶数必定为 |G| 的因子.

2. $M = \{1, 2, 3, 4\}, H = \{\tau, \sigma\}, \text{ where }$

$$r = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 4 \end{pmatrix} \qquad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 3 \end{pmatrix}$$

H 关于变换的乘法是否做成有单位元的半群?是否做成群?

证明. 可以验证:

$$\begin{cases} \sigma\tau = \sigma \\ \tau\sigma = \sigma \\ \sigma\sigma = \sigma \\ \tau\tau = \tau \end{cases}$$

于是 H 关于变换的乘法封闭,且变换的合成自然满足结合律,且 τ 是单位元,于是 H 是幺半群. 但不是群,因为 σ 没有逆元,这是说, τ 或者 σ 都不满足其乘以 σ 为单位元 τ .

纯水题. 参见课本变换群例 2.