Экзамен АиП C Sharp

C#

1. С#. Платформа .NET. Процесс выполнения программы.

.NET - это кроссплатформенный фреймворк от компании Microsoft, ранее известная как .NET Framework, когда она ещё была ориентированно только на OC Windows. Она поддерживает множество языков, главный из которых **C#**, разработанный специально для неё.

Для выполнения кода в .NET служит **CLR** (Common Language Runtime, общеязыковая исполняющая среда). Она выполняет **CIL** (Common Intermediate Language, байт-код) - специальный промежуточный язык, который представляет собой "высокоуровневый ассемблер" виртуальной машины .NET. В него компилируются программы, написанные на .NET совместимых языках. При выполнение программы происходит преобразование CIL кода в машинный код, так называемая **Just-In-Time** (**JIT**) компиляция. Производительность повышается за счёт того, что во время выполнения компилируется лишь часть кода, к которой происходит обращение.

2. С#. Структура программы. Пространство имен. Сборка.

Структура программы

Базовая структура программы на языке C# включает в себя главный класс и статическую функцию Main, принимающую в качестве параметра массив аргументов командной строки:

```
using System;
namespace program
{
    class Program
    {
        public static void Main(string[] argc)
          {
          }
     }
}
```

В новых версия появилась поддержка операторов верхнего уровня, что позволяет писать код программы не в функции Main, а сразу в файле, главный класс и функция Main тогда создаются автоматически.

Также каждый проект включает файл проекта с расширением **.csproj**, который содержит описание свойств проекта.

Пространства имён

Пространства имён (в примере выше - program) используются для объединения кода в логические блоки и предотвращения конфликтов имён. Пространство имён объявляется с помощью специального ключевого слова и последующего блока кода: namespace <umas> { ... }. Обращаться к членам пространства имён можно с помощью оператора точки: в примере выше полное имя функции Main будет program. Program. Main . Чтобы не обращаться к объектам по полному имени, можно подключить пространство имён с помощью директивы using . В примере выше так подключается пространство

имён System. Пространства имён допускают вложенность. Можно объявить пространство имён для всего файла, добавив в начале: namespace <имя>;, оно применится к нему целиком.

Сборка

В результате компиляции приложения создаётся файл exe или dll (в зависимости от выбранных настроек), который называется сборкой приложения. Сборка является базовой структурной единицей в .NET, на уровне которой проходит контроль версий, развертывание и конфигурация приложения. Каждая сборка включает в себя манифест, метаданные типов, код приложения и ресурсы. Атрибуты сборки, такие как версия, название, автор и прочая информация о продукте, содержатся в специальном файле AssemblyInfo.cs.

3. С#. Типы данных. Различия типов-значений и типов-ссылок.

Базовые типы в языке С#:

- bool хранит значение true или false, представлен системным типом System. Boolean
- byte хранит целое число от 0 до 255, системный тип System. Byte
- sbyte знаковый байт, целое число от -128 до 127, системный тип System.SByte
- short знаковое целое число от -32768 до 32767, занимает 2 байта, системный тип System. Int16
- ushort беззнаковое целое число от 0 до 65535, 2 байта, системный тип System. UInt16
- **int** знаковое целое число от -2147483648 до 2147483647, занимает 4 байта, системный тип System. Int32, тип по умолчанию для численных литералов
- uint беззнаковое целое число от 0 до 4294967295, занимает 4 байта, системный тип -System. UInt32
- **long** знаковое целое число от –9223372036854775808 до 9223372036854775807, 8 байт, системный тип System.Int64
- **ulong** беззнаковое целое число от 0 до 18446744073709551615, 8 байт, системный тип System. UInt64
- **float** число с плавающей точкой от $-3.4\cdot 10^{38}$ до $3.4\cdot 10^{38}$, 4 байта, системный тип System. Single
- **double** число с плавающей точкой от $\pm 5.0 \cdot 10^{324}$ до $\pm 1.7 \cdot 10^{308}$, 8 байт, системный тип System. Double
- **decimal** десятичное дробное число, без десятичной запятой имеет значение от $\pm 1.0 \cdot 10^{-28}$ до $\pm 7.9228 \cdot 10^{28}$, 16 байт, системный тип System. Decimal
- **char** одиночный символ в кодировке Unicode, 2 байта, системный тип System.Char, тип по умолчанию для символьных литералов
- **string** набор символов Unicode, системный тип System. String, тип по умолчанию для строковых литералов
- **object** может хранить значения любого типа данных, занимает 4 байта на 32-разрядной системе и 8 на 64-разрядной, системный тип System.Object, являющийся базовым для всех других типов и классов .NET.

В С# возможна неявная типизация с использованием ключевого слова var (аналог auto в С++):

```
// можно писать так:

var hello = "hello world";

var a = 1;

var b = 12.345;

var c = "a";
```

```
// но так нельзя!
var n = null;
```

Все типы данных подразделяются на типы-значения и типы-ссылки в зависимости от того, как для них происходит организация памяти. Память подразделяется на стек и кучу.

- Объекты типов-значений размещаются в стеке, по адресу непосредственно хранится само значение переменной или параметра функции. К таким типам относятся все целочисленные типы, типы чисел с плавающей запятой, типы decimal, bool, char, перечисления enum и структуры struct
- Объекты ссылочных типов хранятся в куче, в стеке на них хранится лишь ссылка. Ссылочными типами являются object, string, все классы, интерфейсы и делегаты.

Процесс копирования разных типов различается: типы-значения копируются по значению, а для типовссылок копируется лишь ссылка на объект, то есть 2 ссылки начинают указывать на одну и ту же область в памяти. Это также относится к более сложным ситуациям, когда структура содержит поле с типом класса и при копировании этой структуры, получится, что все поля с типами-значениями скопировались по значению, а это поле класса по ссылке, то есть 2 разных объекта будут иметь поля с ссылкой на один и тот же объект. Таким образом, ссылки работают как указатели и дают те же возможности.

Стоит учитывать, что при передаче объекта класса в функцию через параметры, передаётся копия ссылки на исходный объект, то есть функция получает к нему доступ и может изменить его поля. При этом функция не может изменить сам объект, так как передана лишь копия ссылки. Чтобы это сделать, нужно использовать ключевое слово ref, тогда станет возможно, например, создание нового другого объекта и сохранение его по исходной ссылке.

- 4. С#. Литералы. Примеры. Переменные. Примеры. Область действия переменной.
- 5. C#. Выражения. Преобразование типов при выполнении операций. Примеры.
- 6. С#. Ввод-вывод консольного приложения. Примеры.
- 7. С#. Исключения. Примеры.
- 8. С#. Объявление классов и их компонентов. Примеры.
- 9. С#. Спецификации доступа классов, структур и их компонентов.
- 10. С#. Конструкторы классов. Примеры.
- 11. С#. Поля: константные, объекта, класса, только для чтения. Примеры.
- 12. С#. Методы: конструкторы объектов, статические, деструкторы. Примеры.
- 13. С#. Методы: объектов, классов. Примеры.
- 14. С#. Параметры методов. Передача параметров по значению и по ссылке. Выходные параметры. Примеры.

- 15. С#. Одномерные массивы с элементами типов-значений и ссылочных типов. Примеры объявления.
- 16. C#. Оператор foreach. Примеры применения для массивов разных типов.
- 17. С#. Массивы прямоугольные и ступенчатые. Различие. Примеры
- 18. C#. Строка String. Примеры создания и использования.
- 19. С#. Регулярные выражения. Примеры.
- 20. С#. Структуры. Примеры.
- 21. С#. Наследование. Пример.
- 22. С#. Полиморфное наследование. Абстрактные классы. Пример.
- 23. С#. Композиция и агрегация. Пример.
- 24. С#. Интерфейсы. Пример.
- 25. С#. Свойства. Пример.