NYCU DL Lab4

Conditional VAE for Video

Prediction

313552049 鄭博涵

A. Derivate conditional VAE formula

в. Introduction

In lab4, 我們需要使用一個 VAE-based model 來去實作一個 conditional video prediction. 為了提升模型的性能, 我嘗試了各種 training strategy 和 adjust hyperparameter, 以下部分將詳細介紹實現的具體過程以及對結果的分析

c. Implementation details

 How do you write your training/testing protocol

Training protocol:

VAE_model.forward:

在這邊, 首先將當前幀, 上一幀輸入, 標籤輸入 加到幀 Decoder 中, 作為高斯預測器的輸入, 然後從高斯預測器中取得 潛在變數 z, 以及 mu, logvar, 再將上一幀, 當前標籤和潛在變數輸入至 Decoder_Fusion, 最後透過 Generator 產出下一個的預測幀 Training_stage:

```
def training_stage(self):
    pans = []
    self.train()
    emma_psnr = 0
    for i.m.range(self.args.num_epoch): # 施州於mpoch版
    train_loader = self.train_gatatloader() # 万面企業
    adapt_Teacherforcing = (random.random() < self.tfr) # random.random(): 用來生成 (0.0, 1.0) 整理冷的学数数

    train_loader = self.train_gatatloader() # 万面企業
    adapt_Teacherforcing = (random.random() < self.tfr) # random.random(): 用來生成 (0.0, 1.0) 整理冷的学数数

    train_loase = 0

    for (imp, labet) in (pbnr = todmitrain_loader, ncols=150)): # 温度線的光度放影150字元
    imp = imp_to(self.args.device)
    labet = labet.to(self.args.device)
    loase = self.training_ome_step(imp, labet), adapt_Teacherforcing)
    train_loase = self.training_ome_step(imp, labet), adapt_Teacherforcing)
    if self.train_loase = self.training_ome_step(imp, labet), adapt_Teacherforcing)
    if self.train_loase = self.train_loase(reforcing) 0M, (ifif), beta (i.27)**.format(self.tfr, beta), # 知過過度的
        self.todm_bar("train [Teacherforcing) 0M, (ifif), beta (i.27)**.format(self.tfr, beta), # 知過過度的
        self.todm_bar("train [Teacherforcing) 0M, (ifif), beta (i.27)**.format(self.tfr, beta), # 知過過度的
        self.todm_bar("train [Teacherforcing) 0M, (ifif), beta (i.27)**.format(self.tfr, beta), # 知過應的
        self.todm_bar("train [Teacherforcing) 0MF, (ifif), beta (i.27)**.format(self.tfr, beta), # 即過度的
        self.todm_bar("train [Teacherforcing) 0MF, (ifif), beta (i.27)**.format(self.tfr, beta), # 即過度的
        self.todm_bar("train [Teacherforcing) 0MF, (ifif), beta (i.27)**.format(self.tfr, beta), # 即過度的
        self.todm_bar("train [Teacherforcing) 0MF, (ifif), beta (i.27)**.format(self.tfr, beta), # 即過度的
        self.todm_bar("train [Teacherforcing) 0MF, (ifif), beta (i.27)**.format(self.tfr, beta), # 即過度的
        self.todm_bar("train [Teacherforcing) 0MF, (ifif), beta (i.27)**.format(self.tfr, beta), # 即過度的
        self.todm_bar("train [Teacherforcing) 0MF, (ifif), beta (i.27)**.format(self.tfr, beta), # 即過度的
        self.todm_bar("train [Teacherforcing) 0MF, (ifif), b
```

在一個 epoch 裡, 首先先讀 train_data, 並決定是否要採用
TeacherForcing, 之後設定進度條並計算 loss, 根據是否採用
TeacherForcing, 分別在進度條中顯示相關資訊, 在每個 epoch 結束之後, 計算 val_loss 跟 PSNR, 並定期保存 model 的
checkpoint, 將各個數據紀錄到 Tensorboard, 最後將 scheduler,
tfr, kl_annealing 更新

Testing protocol:

```
""" 跟trainer那邊的forward差不多 """

def forward(self, img, label):
    # TODO
    img_features = self.frame_transformation(img)
    label_features = self.label_transformation(label)
    z, mu, logvar = self.Gaussian_Predictor(img_features, label_features)

z = torch.randn(z.size()).to(self.args.device) # 打亂z
    decoder_output = self.Decoder_Fusion(img_features, label_features, z)
    pred = self.Generator(decoder_output)
    return pred
```

```
def main(args):
    set_seed(0)
    os.makedirs(args.save_root, exist_ok=True)
    model = Test_model(args).to(args.device)
    model.load_checkpoint()
    model.eval_val()
```

```
""" 使seed固定,以便在demo時跟上傳kaggle的結果一樣 """

def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
```

值得一提的是, 這邊有設 seed, 以便在 demo 時跟上傳 kaggle 的結果是一樣的,

2. How do you implement reparameterization tricks

```
def reparameterize(self, mu, logvar): # 重參數化, mu: 均值, logvar: log variance
std = torch.exp(logvar / 2) # 開根號
eplison = torch.rand_like(std) # 生成與標準差形狀相同的隨機數據
return mu + eplison * std
```

透過 logvar 開根號來取得標準差 std

然後生成與 std 相同形狀的標準正態分佈隨機噪聲 epsilon

最終返回 mu + epsilon * std, 這是一個以 mu 為均值、std 為標準差的高斯分佈中抽樣得到的潛在變數

通過這種方式生成的隨機變數 z 能夠保持梯度信息,使得我們可以 使用標準的反向傳播來優化 VAE

How do you set your teacher forcing strategy

```
def teacher_forcing_ratio_update(self): # 用在training_stage那邊
# TODO
if self.current_epoch >= self.tfr_sde: # tfr_sde: The epoch that teacher forcing ratio start to decay
self.tfr -= self.tfr_d_step # tfr_d_step: tfr減少的比例
self.tfr = max(0.0, self.tfr) # 不能少於0
```

When 當前 epoch >= tfr_sde 時, 便開始減少 sfr, sfr_d_step 則 是一個 epoch 要減少多少的 sfr

4. How do you set your kl annealing ratio

```
""" beta 會在多個國際內設 start 刻 stop 總性證如,然後在每個國際結束的重量

這樣的國文學與有助於在個國與機程中中都像econstruct Loss and KL Divergence """

class kl_anneal_type = args.
self.kl_anneal_type = args. kl_anneal_type
self.kl_anneal_type = args. kl_anneal_type
self.kl_anneal_type = args. kl_anneal_type
self.kl_anneal_type = args. kl_anneal_type
self.kl_anneal_type = "Kyclical":
self.current_epoch = current_epoch
n_cycle, ratio = self.kl_anneal_tyle, self.kl_anneal_ratio

if self.kl_anneal_type == "Kyclical":
self.peta_ist = self.frange_cycle_linear(n_ister=args.num_epoch, n_cycle=n_cycle, ratio=ratio)
self.peta = torch.tensor(self.beta_list(0)) # 初始在個(0) (第一個元素), 之他pdate测, beta 實際假理器
elif self.kl_anneal_type == "Monotonic":
self.peta_ist = self.frange_tycle_linear(n_ister=args.num_epoch, n_cycle=n_cycle, ratio=ratio)
self.peta = torch.tensor(self.beta_list(0))

elif self.kl_anneal_type == "Windle":
n_cycle, ratio = sone, None
self.peta_list = sone, None
self.peta_list = sone, None
self.peta_list = sone
self.peta_list = sone
self.peta_ist = sone
self.peta = torch.tensor(0.0)

def update(self):
self.keta_anneal_type == "None" or self.kl_anneal_type == "Full_KL":
n_cycle, ratio = sone, None
self.peta = torch.tensor(self.beta_listlself.current_epoch))
self.current_epoch == 1

def get_beta(self):
self.current_epoch == 1

def get_beta(self):
self.current_epoch == 1
```

```
""" 參數解釋:
   n_iter: 總epoch數
   start: 每個循環的起始值
   end: 每個循環的結束值
   n_cycle: 循環次數
   ratio: 每個循環中線性增長部分所佔的比例
def frange_cycle_linear(self, n_iter, start=0.0, end=1.0, n_cycle=1, ratio=1):
   # TODO
   L = np.ones(n_iter)
                        # n_iter = num_epoch, 初始化一個長度為n_iter的數組, 值皆為1
   period = n_iter / n_cycle
   step = (end - start) / (period * ratio)
   for c in range(n_cycle):
       v, i = start, 0
       while i <= period * ratio and int(i + c * period) < n_iter:</pre>
          L[int(i + c * period)] = v
          v += step
```

先判斷現在是屬於哪種 KL_annealing 模式,再設定其對應的 cycle, ratio, 並利用取得 beta_list 的第一個元素,來獲取我們當前 epoch 對應的 beta 值

D. Analysis & Discussion

1. Plot Teacher forcing ratio

a. Analysis & compare with the loss curve 其中皆採用 Full_KL 方式(beta 皆為 1).

Case 1: tfr = 0.75, tfr_sde = 6, tfr_d_step = 0.2

參數說明: tfr 是起始的 TeacherForcing ratio, tfr_sde 表示說 第幾個 epoch 開始衰減 tfr, tfr_d_step 則是一個 epoch 裡要 衰減多少 tfr

Case 2: tfr = 1, tfr_sde = 5, tfr_d_step = 0.1

Case 3: tfr = 0

Tfr = 0 的狀況下加上 Full_KL 策略是模型表現最好的一個,在 train 時的 PSNR 來到 29.多, val loss 大概在 0.8 左右,我覺得這 表示 model 在完全不依賴真實數據作為下一步輸入的情況下仍 然能夠很好地生成和預測

Plot the loss curve while training with different

settings. Analyze the difference between them

2.1: With KL annealing (Monotonic)

以下皆使用 lr = 0.001, scheduler = StepLR, optim = Adamax,

左邊為 beta 值, 右邊為 loss 圖

KL_annealing 參數為: Ratio: 0.5, cycle: 1

表示說在整個 training 過程中, 一開始 beta 值會從 0 開始, 並線性增長, 當 train 到一半時 beta 值會到 end (也就是 beta=1), 而後半部的 training 階段, beta 皆保持 1

而從圖表中可看出 beta 值大概在 0.2 時會不穩定, 之後 train loss 便緩緩降低

2.2: With KL annealing (Cyclical)

KL_annealing 參數為: Ratio:1, cycle: 3

cycle = 3 表示在 training 中 beta 會經歷 3 個週期

而我 train 了 15 個 epoch, 所以一個週期就是 5 個 epoch, 在週期裡面線性增長, 而每當一個週期結束時, beta 值會重置為零, 讓模型重新適應 KL 散度的影響, 表現跟 Full_KL 差不多, 然後圖中可發現beta 值在 0.2 時, train loss 會突然變很高, 之後又下降到約 0.001

比 Monotonic 的 train loss 還低, 效果也比 Monotonic 好一點 (PSNR and val loss)

2.3: Without KL annealing

beta = 0 (None):

在 PSNR 上表現最差,因為其完全忽略了 KL Divergence,但 train loss 較不會有忽然的高點存在的情況,應該是因為 beta 固定的關係,有比較嚴重的 overfitting

beta = 1 (Full_KL):

表現比 Cyclical 還好一些,是四種 KL_annealing 策略裡面最高的

2.4: Compare 四種 KL_annealing

Train loss:

PSNR:

所以由圖表得知: Full-KL 在我程式碼中 train 起來是效果最好的, Cyclical 跟 Monotonic 居於中間, 而 beta 皆為 0 時是最差的, 由 此可知 model 只關注重構,忽略了潛在表示的學習, 通常效果會較差, 而 KL 散度對學習數據的潛在分佈是至關重要的,而單純依賴 重構損失不足以讓模型獲得理想的結果

Plot the PSNR-per frame diagram in validation dataset

使用 Full-KL (beta 皆為 1), TeacherForcingRatio = 0, optimizer = Adamax 的方式 產出最好的 PSNR

4. Other training strategy analysis (Bonus)

由於在這次 training 中 overfitting 相當嚴重,

所以我嘗試了數據增強, dropout, 但不料都沒效果, 而且 loss 還很容易變成 nan, 後來將 optimizer 改成 Adamax 才得到比較好的效果, 之後又調整了 tfr, KL_annealing 等策略, 最後成功將 overffiting 的影響降低