Reg. No.: ___

Amrita Vishwa Vidyapeetham Amrita School of Engineering, Bengaluru B.Tech. Mid Term Exam – Oct. 2023

Electrical and Electronics Engineering First Semester(CSE A, B, C)

3EEE104 Introduction to Electrical and Electronics Engineering

Time: Two hours

Maximum marks: 50

со	Course Outcomes
COI	Ability to understand the basic electric and magnetic circuits.
CO2	Ability to analyse DC and AC circuits.
CO3	Ability to understand the basic principles of pn junctions and transistors.
CO4	Ability to analyse basic transistor and opamp based circuits

Answer all questions

Find the equivalent resistance RAB using network reduction method from [5] CO1 Fig. 1.

Fig. 1

A flux of 0.6mWb is created by a current of 12A flowing through a 120 turn coil. Calculate the inductance of the coil corresponding to the complete reversal of the current in 0.02s. Also find magnitude of the	[5]	CO1 BTL2
induced emf. Three capacitors A, B and C are connected in series across a 200V DC supply. The potential difference across them are 40V, 70V and 90V respectively. If the capacitance of the capacitor B is 70µF f, find the values of the capacitance of the capacitor A and capacitance of the capacitor C.	[5]	CO1 BTL3
Draw the schematic representations of ideal and practical independent voltage source. For the circuit shown in Fig. 2, calculate the current through 6Ω resistor and total current.	[4] [6]	CO1 BTL1 CO2 BTL3

Fig. 2

Find the currents through all the resistors of the circuit shown in Fig. 3, [10] using mesh analysis.

Find the power dissipated through all the resistors shown in Fig. 4 using nodal analysis.

Find the equivalent capacitance from the circuit shown in Fig. 5.

[5] CO1 BTL3

Fig. 5

Course Outcome / Bloom's Taxonomy Level (BTL) Mark Distribution Table

СО	Marks	BTL	Marks
CO1	24	BTL 1	· 04
CO2	26	BTL 2	05
CO3		BTL 3	41
CO4			d ,======

