1. Solution:

Let a is the number of quarters, b is the number of dimes, c is the number of nickels, d is the number of pennies. This problem is equivalent to given n, make a + b + c + d is smallest such that 25a + 10b + 5c + d = n. We can simply do this:

- (a) Let $n \mod 25 = n_1$, the remainder is n_1 , which means $n_1 = 25a_0 + n_1$, where $0 \le n_1 < 25$.
- (b) Let $n_1 \mod 10 = n_2$, the remainder is n_2 , which means $n_1 = 10b_0 + n_2$, where $0 \le n_2 < 10$
- (c) Let $n_2 \mod 5 = n_3$, the remainder is n_3 , which means $n_2 = 5c_0 + n_3$, where $0 \le n_2 < 5$
- (d) Let $d_0 = n_3$.

Pseudocode:

GREEDY CHANGE(n)

$$n1 = n \% 25$$

 $a0 = (n - n1) / 25$
 $n2 = n1 \% 10$
 $b0 = (n1 - n2) / 10$
 $n3 = n2 \% 5$
 $c0 = (n2 - n3) / 5$

d0 = n3

return a0, b0, c0, d0

The a_0 , b_0 , c_0 , d_0 will be the value that satisfies the requirement of this problem, now we prove the correctness of this greedy algorithm:

(1) Optimal Substructure:

When we want to find a, b, c, d that satisfies 25a + 10b + 5c + d = n, we try every possible combination of n + n = n. If we find the optimal solution for n and n, we can find the optimal solution for n. In our greedy algorithm, every step we make our $n' = tk_0$, where t is 25, 10, 5 or 1 and k_0 is a_0 , b_0 , c_0 or d_0 we discussed above. n'' = n - n', in every step, n = n, n_1 , n_2 or n_3 . As we can see, the optimal solution for sum up to n is the combination of the optimal solution for sum up to n and n. So, this problem has optimal substructure property.

(2) Greedy Choice Property:

We prove this from button to up:

i. For any
$$n_2 = 5c + d$$
, the optimal solution must be to make $c = c_0$. If not, which means $c < c_0$, WLOG we can assume $c = c_0 - 1$, now, $d = d_0 + 5$. So,

 $d+c=d_0+5+c_0-1=d_0+c_0+4>c_0+d_0$. So, in the part (c) above, problem satisfies greedy choice property.

- ii. For any $n_1 = 10b + n_2$, the optimal solution must be to make $b = b_0$. If not, which means $b < b_0$, WLOG we can assume $b = b_0 1$, now, $c = c_0 + 2$, $d = d_0$. So, $b + d + c = b_0 1 + c_0 + 2 + d_0 = b_0 + c_0 + d_0 + 1 > b_0 + c_0 + d_0$. So, in the part (b) above, problem satisfies greedy choice property.
- iii. For any $n=25a+n_1$, the optimal solution must be to make $a=a_0$. If not, which means $a< a_0$, WLOG we can assume $a=a_0-1$, now, $b=b_0+2$ $c=c_0+1$, $d=d_0$. So, $a+b+d+c=a_0-1+b_0+2+c_0+1+d_0=a_0+b_0+c_0+d_0+2>a_0+b_0+c_0+d_0$. So, in the part (a) above, problem satisfies greedy choice property.

So, we have proved greedy choice property and optimal substructure for this problem, every step is a safe greedy choice, so our algorithm will work. The running time will O(1) because we only need 4 steps to find a, b, c and d.

2. 38.

$$a:1$$
 $b:2$ $z:2$ $c:3$ $y:3$ $x:4$

$$2:2$$
 3 $C:3$ $y:3$ $x:4$

$$2 \times 3 + 2 \times 3 + 2 \times 4 + 3 \times 2 + 4 \times | + 4 \times 2$$

= 38

- 1. {C, D}
- 2. {A, E}
- 3. {A, C}
- 4. {A, B}