Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2018 CE3CO02 Water & Waste Water Engineering

Branch/Specialisation: CE Programme: B.Tech. **Maximum Marks: 60**

Duration: 3 Hrs.

		should be written in full inste	ad of only a, b, c or d.	ers (
Q.1	i.	Capacity of soil to absorb mo (a) Porosity (c) Infiltration Capacity	oisture is called as: (b) Permeability (d) None of these	1
	ii.	-	n in thousands. Q is fire demand in rmula: $Q=46040\sqrt{P(1-0.01\sqrt{P})}$ is der-writers	1
	iii.	Cast iron pipes are generally (a) Durability(c) Easiness in jointing	used in water lines because of: (b) Its longer life (d) All of these	1
	iv.		the source of water is at lower level t plant, water is generally supplied: (b) By pumping method (d) None of these	1
	V.	The chlorination of water ren (a) Hardness (b) Sediments	noves: (c) Bacteria (d) Suspended solids	1
	vi.	Cleaning of slow sand filter i (a) 4 to 8 days (c) 25 to 35 days	s normally done between: (b) 8 to 15 days (d) 60 to 90 days	1

P.T.O.

in elevation between the lowest water level is the sump & reservoir is 36 m .If the demand has to be supplied in 8 hours .Determine size of main and B.H.P of the pumps required.

	vii.	For the design of assumed as:	of sewers	in India. T	The % of	sewage d	ischarge is	1
		(a) 25-30% of w	ater sunnli	ed from w	ater works	2		
		(b) 75-80% of wa						
		(c) 100% of water						
		(d) None of these		mom wate	1 WOIKS			
	viii.	The minimum		mum dia	meter if	sewers	penerally	1
	V 1111.	adopted in the de			meter n	sewers, g	Scholary	•
		(a) 15 cm and 10	•	(b) 15 c	m and 300) cm		
		(c) 25 cm and 450		* *	e of these	, (111		
	ix.	The most commo				sal is:		1
		(a) Evaporation			-	face water		-
		(c) Rapid infiltrat	tion		v sand filti			
	х.	BODs represent		1 1			nd at a	1
		temperature of:	J		, ,			
		•) 20°c	(c) 30° c	(d)	None of t	hese	
Q.2	i.	What is fire dema	and?					2
	ii.	What are the reareduced?	asons of fa	ailures of	tube-well	and how	it can be	3
	iii.	Explain in detail yield?	the meth	ods of m	easuremen	nt of an o	pen well	5
OR	iv.	The following is	the popula	ation data	of a city,	available f	rom past	5
		census records. Determine the population of the city in 2011 by (a) arithmetical increase method (b) incremental increase method.						
		Years	1951	1961	1971	1981	1991	
		Population (P)	26800	41500	57500	68000	74100	
\circ	•	W714 - 1	1		4!14!			2
Q.3	i.							2
	ii.							8
		and explain the v neat sketch. ?	vorking of	rake and r	eservoir ii	itake struc	ture with	
OR	iii.	Water has to be	supplied t	o a town	with one l	akh popul	ations at	8
		the rate of 150 lit	/c/day from	m a river 2	000 m awa	ay. The di	fference	

		Assume, maximum demand as 1.5 times of average demand, f=0.0075, velocity in pipe 2.4 m/sec & efficiency of pump 80 %.	
Q.4	i.	Explain the various methods of disinfection in water for public water supply schemes.	3
	ii.	Explain working of slow sand gravity filter and rapid sand gravity filter with the help of neat sketch.	7
OR	iii.	Water has to purify for a town whose daily demand is 9×10^6 litres/day. Design a suitable sedimentation tank of the water work fitted with the mechanical sludge remover. Assume the velocity of flow in the sedimentation tank as 22 cm/min and detention period of 8 hours. Assume depth of water as 3.5 m.	7
Q.5	i. ii.	Describe conservancy system and water carriage system. What are the importance of sewer appurtenances and explain working of manhole and drop manhole with neat sketch?	4
OR	iii.	Write short notes on: (a) Methods of designing of sewer (b) Self cleansing velocity (c) Maintenance of sewer	6
Q.6	i.	Explain (a) Salf purification conscitu	4
	ii.	(a) Self purification capacity (b) Sewage sickness What are the methods of waste water disposal, Explain the land treatment in detail?	6
OR	iii.	Why the examination of sewage is necessary and how physical & chemical examination of sewage is done?	6

Marking Scheme

CE3CO02 Water & Waste Water Engineering

Q.1	i.	Capacity of soil to absorb moisture is called as: (c) Infiltration Capacity					
	ii.	If P is Population of a town in thousands. Q is fire demand in litters/min, the Empirical formula: $Q=46040\sqrt{P(1-0.01\sqrt{P})}$ is Suggested by: (c) National Board of fire under-writers	1				
	iii.	Cast iron pipes are generally used in water lines because of:	1				
		(d) All of these					
	iv.	When the reduced level of the source of water is at lower level than the R.L. of the treatment plant, water is generally supplied: (b) By pumping method	1				
	v.	The chlorination of water removes : (c) Bacteria	1				
	vi.	Cleaning of slow sand filter is normally done between: (d) 60 to 90 days					
	vii.	For the design of sewers in India. The % of sewage discharge is assumed as:					
	viii.	(b) 75-80% of water supplied from water works The minimum and maximum diameter if sewers, generally adopted in the designs, may be:	1				
	ix.	(b) 15 cm and 300 cm The most common method of waste water disposal is:	1				
	17.	(b) Dilution in surface water	1				
	х.	BODs represents 5 days biochemical oxygen demand at a temperature of: (b) 20°c	1				
Q.2	i.	Explanation fire demand	2				
	ii.	Reasons of failures of tube-well 2 marks	3				
		How it can be reduced 1 mark					
	iii.	Methods of measurement of an open well yield	5				
		For each method 2.5 marks (2.5 marks * 2)					
OR	iv.	For arithmetical increase method 2.5 marks	5				
		For incremental increase method 2.5 marks.					

Q.3	i.	For storage	1 mark	2
		Distribution reservoirs	1 mark	
	ii.	Selection criteria for the site of an intake structure	2 marks	8
		Working of lake and reservoir intake structure	4 marks	
		Neat Sketch	2 marks	
OR	iii.	For size of main comes 0.65 cm	5 marks	8
		For BHP if Ans comes 822 HP	3 marks	
Q.4	i.	For each methods of disinfection in water 1 mark		3
		(1 mark * 3)	
	ii.	For working of slow sand gravity filter	2.5 marks	7
		Rapid sand gravity filter	2.5 marks	
		Neat sketch.	2 marks	
OR	iii.	Capacity & length	3.5 marks	7
		Cross sectional area & width	3.5 marks	
Q.5	i.	Conservancy system	2 marks	4
		Water carriage system	2 marks	
	ii.	Importance of sewer appurtenances	1 mark	6
		Working of manhole	2.5 marks	
		Drop manhole with neat sketch	2.5 marks	
OR	iii.	(a) Methods of designing of sewer	2 marks	6
		(b) Self cleansing velocity	2 marks	
		(c) Maintenance of sewer	2 marks	
Q.6	i.	(a) Self purification capacity	2 marks	4
		(b) Sewage sickness	2 marks	
	ii.	Methods of waste water disposal	2 marks	6
		Explanation of the land treatment in detail	4 marks	
OR	iii.	Examination of sewage is necessary	2 marks	6
011		Physical & chemical examination of sewage	4 marks.	J
		injoined or originated or and the second	· IIIMIIIO	
