These are a few of the notebooks from Google's online Machine Learning course. See the <u>full</u> course website for more.

- Intro to Pandas DataFrame
- Intro to RAPIDS cuDF to accelerate pandas
- <u>Linear regression with tf.keras using synthetic data</u>

Using Accelerated Hardware

- TensorFlow with GPUs
- TensorFlow with TPUs

Featured examples

- <u>Retraining an Image Classifier</u>: Build a Keras model on top of a pre-trained image classifier to distinguish flowers.
- <u>Text Classification</u>: Classify IMDB movie reviews as either *positive* or *negative*.
- <u>Style Transfer</u>: Use deep learning to transfer style between images.
- <u>Multilingual Universal Sentence Encoder Q&A</u>: Use a machine learning model to answer questions from the SQuAD dataset.
- <u>Video Interpolation</u>: Predict what happened in a video between the first and the last frame.

→		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	5	5.4	3.9	1.7	0.4	Iris-setosa
	6	4.6	3.4	1.4	0.3	Iris-setosa
	7	5.0	3.4	1.5	0.2	Iris-setosa
	8	4.4	2.9	1.4	0.2	Iris-setosa
	9	4.9	3.1	1.5	0.1	Iris-setosa
	10	5.4	3.7	1.5	0.2	Iris-setosa
	11	4.8	3.4	1.6	0.2	Iris-setosa
	12	4.8	3.0	1.4	0.1	Iris-setosa
	13	4.3	3.0	1.1	0.1	Iris-setosa

4.0

4.4

1.2

1.5

0.2 Iris-setosa

0.4 Iris-setosa

iris_flower_file.info()

14

15

5.8

5.7

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 150 entries, 0 to 149
 Data columns (total 5 columns):
 # Column Non-Null Count Dtype

0 sepal_length 150 non-null float64 150 non-null sepal_width float64 1 2 petal_length 150 non-null float64 petal_width 150 non-null float64 3 species 150 non-null object 4

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

iris_flower_file.describe()

→		sepal_length	sepal_width	petal_length	petal_width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.054000	3.758667	1.198667
	std	0.828066	0.433594	1.764420	0.763161
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

iris_flower_file.isnull().sum()

→		0
	sepal_length	0
	sepal_width	0
	petal_length	0
	petal_width	0
	species	0

dtype: int64

iris_flower_file.describe()

-		_
-	۸	-
-	-	

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

iris_flower_file['sepal_length'].hist()

iris_flower_file['sepal_width'].hist()

iris_flower_file['petal_length'].hist()

iris_flower_file['petal_width'].hist()


```
colors=['red','Black','teal']

species=['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']

for i in range(3):
    x=iris_flower_file[iris_flower_file['species']==species[i]]
    plt.scatter(x['sepal_length'],x['sepal_width'],c=colors[i],label=species[i])
plt.xlabel("Sepal Length")
plt.ylabel("Sepal Width")
plt.legend()
```



```
for i in range(3):
    x=iris_flower_file[iris_flower_file['species']==species[i]]
    plt.scatter(x['petal_length'],x['petal_width'],c=colors[i],label=species[i])
plt.xlabel("Petal Length")
plt.ylabel("Petal Width")
plt.legend()
```

<matplotlib.legend.Legend at 0x7b81c2f22990>


```
for i in range(3):
    x=iris_flower_file[iris_flower_file['species']==species[i]]
    plt.scatter(x['sepal_length'],x['petal_length'],c=colors[i],label=species[i])
plt.xlabel("Sepal Length")
plt.ylabel("Petal Length")
plt.legend()
```

<matplotlib.legend.Legend at 0x7b81c2daa990>


```
for i in range(3):
    x=iris_flower_file[iris_flower_file['species']==species[i]]
    plt.scatter(x['sepal_width'],x['petal_width'],c=colors[i],label=species[i])
plt.xlabel("Sepal Width")
plt.ylabel("Petal Width")
plt.legend()
```


<Axes: >

le=LabelEncoder()
iris_flower_file['species']=le.fit_transform(iris_flower_file['species'])
iris_flower_file.head(16)

<u> </u>						_
→		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
	5	5.4	3.9	1.7	0.4	0
	6	4.6	3.4	1.4	0.3	0
	7	5.0	3.4	1.5	0.2	0
	8	4.4	2.9	1.4	0.2	0
	9	4.9	3.1	1.5	0.1	0
	10	5.4	3.7	1.5	0.2	0
	11	4.8	3.4	1.6	0.2	0
	12	4.8	3.0	1.4	0.1	0
	13	4.3	3.0	1.1	0.1	0
	14	5.8	4.0	1.2	0.2	0
	15	5.7	4.4	1.5	0.4	0

```
x=iris_flower_file.drop(columns='species')
y=iris_flower_file['species']
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
LR=LogisticRegression()
LR.fit(x_train,y_train)
```


DT=DecisionTreeClassifier()
DT.fit(x_train,y_train)
LR_accuracy=LR.score(x_test,y_test)*100
KNN_accuracy=KNN.score(x_test,y_test)*100
DT_accuracy=DT.score(x_test,y_test)*100
print(f"Accuracy by using Logistic Regression: {LR_accuracy}%")
print(f"Accuracy by using K Nearest Neighbors Algorithm: {KNN_accuracy}%")
print(f"Accuracy by using Decision Tree Classifier: {DT_accuracy}%")

Accuracy by using Logistic Regression: 100.0%

Accuracy by using K Nearest Neighbors Algorithm: 95.555555555556%

Accuracy by using Decision Tree Classifier: 97 7777777777777