from google.colab import files
uploaded=files.upload()

Choose Files Mall_Customers (1).csv

• Mall_Customers (1).csv(text/csv) - 3981 bytes, last modified: 7/25/2025 - 100% done Saving Mall_Customers (1).csv to Mall_Customers (1).csv

Importing Libraries

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

Loading the dataset

df=pd.read_csv('Mall_Customers.csv')
df

_		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows × 5 columns

Next steps: Generate code with df

View recommended plots

New interactive sheet

✓ EDA

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64
Attended	1-1-CA/A\ -1-1		

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

df.isnull().sum().sum()

→ np.int64(0)

df.duplicated().sum()

→ np.int64(0)

What can I help you build?

→ Taking input data

X=df[['Annual Income (k\$)', 'Spending Score (1-100)']].values #Converting to 2D array

Choosing number of clusters

import scipy.cluster.hierarchy as sch
dendrogram = sch.dendrogram(sch.linkage(X,method='single'))

dendrogram = sch.dendrogram(sch.linkage(X,method='complete'))

dendrogram = sch.dendrogram(sch.linkage(X,method='average'))

dendrogram = sch.dendrogram(sch.linkage(X,method='ward'))


```
dendrogram = sch.dendrogram(sch.linkage(X, method = 'ward'))
plt.title('Dendrogram')
plt.xlabel('Customers')
plt.ylabel('Euclidean Distances')
plt.axhline(y=394, color='b', linestyle='--')
plt.axhline(y=265, color='b', linestyle='--')
plt.axhline(y=244, color='r', linestyle='--')
plt.axhline(y=115, color='r', linestyle='--')
plt.show() # find largest vertical distance we can make without crossing any other horizontal line
```


Training the model

from sklearn.cluster import AgglomerativeClustering

Agg_clu=AgglomerativeClustering(n_clusters=5,metric='euclidean',linkage='ward') Y=Agg_clu.fit_predict(X)

```
4, 3, 4, 3, 4, 3, 4, 3, 4,
                           3, 4,
                                 3, 4, 3,
                                           4, 3, 4, 3, 4, 3, 4, 1,
4, 1, 1, 1, 1, 1, 1, 1, 1,
                           1, 1,
                                     1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
                           1, 1, 1,
                                     1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
                           1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2,
1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2,
0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2]
```

Output=pd.DataFrame(Y,columns=['Clusterid']) Output

_			
→		Clusterid	=
	0	4	11.
	1	3	+/
	2	4	_
	3	3	
	4	4	
1	95	2	
1	96	0	
1	97	2	
1	98	0	
1	99	2	

200 rows × 1 columns

View recommended plots

_		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Clusterid
	0	1	Male	19	15	39	4
	1	2	Male	21	15	81	3
	2	3	Female	20	16	6	4
	3	4	Female	23	16	77	3
	4	5	Female	31	17	40	4
		•••					•••
	195	196	Female	35	120	79	2
	196	197	Female	45	126	28	0
	197	198	Male	32	126	74	2
	198	199	Male	32	137	18	0
	199	200	Male	30	137	83	2

200 rows × 6 columns

Vizualization

```
plt.scatter(X[:, 0], X[:, 1], c= Y, cmap = 'rainbow')
plt.title('Customer Groups')
plt.xlabel('Annual Income')
plt.ylabel('Spending Score')
plt.show()
```

