Exam Questions/Data Analysis for Risk and Security Management *Prof. Dr. Dirk Drechsler*

#2 (Total 45 Points)

(1)

t	y_t	$\widehat{oldsymbol{y}}_{oldsymbol{t}}$	$e_t = y_t - \widehat{y}_t$	e_t^2
1	933	788,95	144,05	20751,71
2	826	838,49	-12,49	156,02
3	748	888,04	-140,04	19610,18
4	908	937,58	-29,58	875,08
5	983	987,13	-4,13	17,03
6	1009	1036,67	-27,67	765,78
7	1101	1086,22	14,78	218,50
8	1149	1135,76	13,24	175,20
9	1207	1185,31	21,69	470,50
10	1255	1234,85	20,15	405,84

$$\hat{y}_1 = 739,40 + 49,55 * 1 = 788,95$$

(2)

$$e_t^z = \frac{e_t}{\sqrt{\frac{1}{n-1} * \sum_{t=1}^{n} e_t^2}}$$

$$\sqrt{\frac{1}{n-1} * \sum_{t=1}^{n} e_t^2} = \sqrt{\frac{1}{10-1} * 43445,85} = 69,48$$

t	e_t^z	t	e_t^z
1	144,05/69,48 = 2,07	6	-0,40
2	-0,18	7	0,21
3	-2,02	8	0,19
4	-0,43	9	0,31
5	-0,06	10	0,29

(3)

$$d = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$

t	$(e_t - e_{t-1})^2$		
1			
2	$(-12,49 - 144,05)^2 = 24506,48$		
3	16267,84		
4	12200,21		
5	647,93		
6	554,39		
7	1802,39		
8	2,39		
9	71,48		
10	2,39		
Σ	56055,50		

$$d = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2} = \frac{56055,50}{43445,85} = 1,29$$

Durbin-Watson Test: positive autocorrelation

 H_0 : The error terms are **not positively autocorrelated**

versus the alternative hypothesis

 H_1 : The error terms are **positively autocorrelated**

$$d_{I,\alpha} \le d \le d_{II,\alpha} \iff 0.879 \le 1.29 \le 1.320$$

The test is inconclusive.

<u>Durbin-Watson Test:</u> negative autocorrelation

 H_0 : The error terms are **not negatively autocorrelated**

versus the alternative hypothesis

 H_a : The error terms are **negatively autocorrelated**

$$(4-d) = (4-1,29) = 2,71$$

$$(4-d) > d_{U,\alpha} \iff 2,71 > 1,32$$

We do not reject H_0 .