AMENDMENTS TO THE CLAIMS

- (currently amended) A process for producing a polymer of ethylene containing from 0.1 to 99 % by mol of one or more derived units at least one derived unit of alpha-olefins of formula CH₂=CHZ, wherein Z is a C₂-C₂₀ alkyl radical, and optionally from 0 to 5% by mol polyene, comprising contacting, under polymerization conditions, ethylene, one or more alpha-olefinsat least one alph-olefin and optionally said polyene, in the presence of a catalyst system obtainable obtained by contacting:
 - a) a metallocene compound of formula (I):

$$R^3$$
 R^3
 R^3
 R^3
 R^3
 R^4
 R^3
 R^3
 R^2
 R^5
 R^5
 R^6
 X
 X
 X
 X
 X
 X
 X

wherein

M is zirconium, hafnium or titanium;

X, equal to or different from each other, is a hydrogen atom, a halogen atom, [[a]]an R, OR, OR'O, OSO₂CF₃, OCOR, SR, NR₂ or PR₂ group, wherein R is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl, or C₇-C₂₀-arylalkyl radical, optionally containing one or more heteroatomsat least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements; and the R' substituent is a divalent group selected from C₁-C₄₀-alkylidene, C₆-C₄₀-arylidene, C₇-C₄₀-alkylarylidene or C₇-C₄₀-arylalkylidene radicals; two X can join to form a C₄-C₄₀ dienyl ligand;

R¹ is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl, or C₇-C₂₀-arylalkyl radical, optionally containing one or more

heteroatoms at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

 R^2 , R^3 , R^4 and R^5 , equal to or different from each other, are hydrogen atoms, halogen atoms or linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radicals, optionally containing one or more heteroatoms at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

 R^6 is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing one or more heteroatoms at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements:

L is a divalent bridging group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, or C_7 - C_{20} arylalkylidene radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, or a silylidene radical containing up to 5 silicon atoms;

T is a divalent radical of formula (II) or (III):

wherein

the atom marked with the symbol * is linked to the atom marked with the same symbol in the compound of formula (I);

R³-and R⁴-have the meaning previously-described;

 R^8 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally

containing one or more heteroatoms at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

 R^9 , equal to or different from each other, is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing one or more heteroatoms at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements; and b) an alumoxane or a compound eapable of formingthat forms an alkyl metallocene cation.

- 2. (original) The process according to claim 1 wherein the catalyst system further comprises an organo aluminum compound.
- 3. (currently amended) The process according to claim 1 wherein in the compound of formula (I)[[:]].
 - X is a halogen atom, [[a]]an R, OR'O or OR group, wherein R and R' are defined as in elam-1; R¹ is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; R² is a hydrogen atom; R³ is a hydrogen atom or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical optionally containing one or moreat least one halogen atom; R⁴ is a hydrogen atom or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; R⁶ is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; L is Si(CH₃)₂, SiPh₂, SiPhMe, SiMe(SiMe₃), CH₂, (CH₂)₂, (CH₂)₃, C(CH₃)₂, C(Ph)₂ or C(CH₃)(Ph); R⁸ is hydrogen or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; and R⁹ is hydrogen or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical.
- 4. (currently amended) The process according to claim 1 wherein the metallocene compound has formula (IV) or (V):

$$R^3$$
 R^3
 R^3
 R^4
 R^3
 R^2
 R^5
 R^4
 R^3
 R^4

wherein R¹, R², R⁵, R⁶, L, M and X have the meaning reported in claim 1 or 3;

 R^3 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radical, optionally containing one or moreat least one halogen atom; R^4 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radical.

- 5. (original) The process according to claim 4 wherein, in the compounds of formula (IV) and (V), R³ is a hydrogen atom or a group -C(R⁷)₃, wherein R⁷, equal to or different from each other, is a linear or branched, saturated or unsaturated C₁-C₈-alkyl radical; and R⁴ is hydrogen or a group -C(R⁷)₃.
- 6. (currently amended) The process according to any of claims 1 to 5claim 1 wherein, in the compounds of formulas formula (I), (IV) and (V), R³ and R⁴ are hydrogen atoms.
- 7. (currently amended) The process according to any of claims 1 to 5claim 1 wherein, in the compounds of formulas formula (I), (IV) and (V), when R³ is an hydrogen atom, R⁴ is [[or]] a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical, optionally containing one or moreat least one halogen atom; or when R³ is a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical optionally containing one or moreat least one halogen atom, R⁴ is an hydrogen atom.
- 8. (currently amended) The process according to any-of claims 1 to 7claim 1 wherein the catalyst system is supported on an inert carrier.

- 9. (currently amended) The process according to claim 8 wherein the eatalyst system is supported oninert carrier is a polyolefin.
- 10. (currently amended) The process according to any of claims 1 to 9claim 1 wherein the process is carried out in gas phase.
- 11. (currently amended) The process according to any of claims 1 to 11claim 1 wherein the alpha-olefin is 1-pentene, 1-hexene or 1-octene.
- 12. (new) The process according to claim 4 wherein, in the compounds of formulas (IV) and (V), R³ and R⁴ are hydrogen atoms.
- 13. (new) The process according to claim 4 wherein, in the compounds of formulas (IV) and (V), when R³ is an hydrogen atom, R⁴ is a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical, optionally containing at least one halogen atom; or when R³ is a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical optionally containing at least one halogen atom, R⁴ is an hydrogen atom.