High-frequency trading in a limit order book

MARCO AVELLANEDA and SASHA STOIKOV*

1 Trading Order Book Dynamics

1.1 Basics of Trading Order Book (TOB)

- Buyers/Sellers express their intent to trade by submitting bids/asks
- These are Limit Orders (LO) with a price P and size N
- Buy LO (P, N) states willingness to buy N shares at a price $\leq P$
- Sell LO (P,N) states willingness to sell N shares at a price $\geq P$
- Trading Order Book aggregates order sizes for each unique price
- So we can represent with two sorted lists of (Price, Size) pairs

$$\begin{array}{l} \text{Bids: } \left[\left(P_i^{(b)}, N_i^{(b)} \right) \mid 1 \leq i \leq m \right], P_i^{(b)} > P_j^{(b)} \text{ for } i < j \\ \text{Asks: } \left[\left(P_i^{(a)}, N_i^{(a)} \right) \mid 1 \leq i \leq n \right], P_i^{(a)} < P_j^{(a)} \text{ for } i < j \end{array}$$

- We call $P_1^{(b)}$ as simply Bid, $P_1^{(a)}$ as $Ask, \frac{P_1^{(a)} + P_1^{(b)}}{2}$ as Mid
- We call $P_1^{(a)} P_1^{(b)}$ as Spread, $P_n^{(a)} P_m^{(b)}$ as Market Depth
- A Market Order (MO) states intent to buy/sell N shares at the best possible price(s) available on the TOB at the time of MO submission

Trading Order Book (TOB) Activity

• A new Sell LO (P, N) potentially removes best bid prices on the TOB Removal:

$$\left[\left(P_i^{(b)}, \min \left(N_i^{(b)}, \max \left(0, N - \sum_{j=1}^{i-1} N_j^{(b)} \right) \right) \right) \mid \left(i : P_i^{(b)} \ge P \right) \right]$$

• After this removal, it adds the following to the asks side of the TOB

$$\left(P, \max\left(0, N - \sum_{i: P_i^{(b)} \ge P} N_i^{(b)}\right)\right)$$

- A new Buy MO operates analogously (on the other side of the TOB)
- ullet A Sell Market Order N will remove the best bid prices on the TOB Removal:

$$\left[\left(P_i^{(b)}, \min\left(N_i^{(b)}, \max\left(0, N - \sum_{j=1}^{i-1} N_j^{(b)} \right) \right) \right) \mid 1 \le i \le m \right]$$

- A new Buy MO operates analogously (on the other side of the TOB)
- A Sell Market Order N will remove the best bid prices on the TOB Removal:

$$\left[\left(P_i^{(b)}, \min\left(N_i^{(b)}, \max\left(0, N - \sum_{j=1}^{i-1} N_j^{(b)} \right) \right) \right) \mid 1 \le i \le m \right]$$

ullet A Buy Market Order N will remove the best ask prices on the TOB

$$\text{Removal: } \left[\left(P_i^{(a)}, \min \left(N_i^{(a)}, \max \left(0, N - \sum_{i=1}^{i-1} N_j^{(a)} \right) \right) \right) \mid 1 \leq i \leq n \right]$$

2 Notation for Optimal Market-Making Problem

TOB Dynamics and Market-Making

- · Modeling TOB Dynamics involves predicting arrival of MOs and LOs
- Market-makers are liquidity providers (providers of Buy and Sell LOs)
- Other market participants are typically diquidity takers (MOs)
- But there are also other market participants that trade with LOs
- Complex interplay between market-makers & other mkt participants
- Hence, TOB Dynamics tend to be quite complex
- We view the TOB from the perspective of a single market-maker who aims to gain with Buy/Sell LOs of appropriate width/size
- By anticipating TOB Dynamics & dynamically adjusting Buy/Sell LOs
- · Goal is to maximize Utility of Gains at the end of a suitable horizon
- If Buy/Sell LOs are too narrow, more frequent but small gains
- If Buy/Sell LOs are too wide, less frequent but large gains
- Market-maker also needs to manage potential unfavorable inventory (long or short) buildup and consequent unfavorable liquidation

Notation for Optimal Market-Making Problem

- We simplify the setting for ease of exposition
- Assume finite time steps indexed by $t = 0, 1, \dots, T$
- Denote $W_t \in \mathbb{R}$ as Market-maker's trading PnL at time t
- Denote $I_t \in \mathbb{Z}$ as Market-maker's inventory of shares at time t $(I_0 = 0)$
- $S_t \in \mathbb{R}^+$ is the TOB Mid Price at time t (assume stochastic process)
- + $P_t^{(b)} \in \mathbb{R}^+, N_t^{(b)} \in \mathbb{Z}^+$ are market maker's Bid Price, Bid Size at time t

- $P_t^{(a)} \in \mathbb{R}^+, N_t^{(a)} \in \mathbb{Z}^+$ are market-maker's Ask Price, Ask Size at time t
- · Assume market-maker can add or remove bids/asks costlessly
- Denote $\delta_t^{(b)} = S_t P_t^{(b)}$ as Bid Spread, $\delta_t^{(a)} = P_t^{(a)} S_t$ as Ask Spread
- Random $\operatorname{var} X_t^{(b)} \in \mathbb{Z}_{\geq 0}$ denotes bid-shares "hit" up to time t
- $\text{- Random var } X_t^{(a)} \in \mathbb{Z}_{\geq 0} \text{ denotes ask-shares "lifted" up to time } t \ W_{t+1} = W_t + P_t^{(a)} \cdot \left(X_{t+1}^{(a)} X_t^{(a)}\right) P_t^{(b)} \cdot \left(X_{t+1}^{(b)} X_t^{(a)}\right), \\ I_t = X_t^{(b)} X_t^{(a)}$
- Goal to maximize $\mathbb{E}\left[U\left(W_T+I_T\cdot S_T\right)\right]$ for appropriate concave $U(\cdot)$

3 Derivation of Avellaneda-Stoikov Analytical Solution

3.1 Avellaneda-Stoikov Continuous Time Formulation

- · Adapt our discrete-time notation to their continuous-time setting
- $X_t^{(b)}, X_t^{(a)}$ are Poisson processes with hit/lift-rate means $\lambda_t^{(b)}, \lambda_t^{(a)}$

$$dX_t^{(b)} \sim \text{Poisson}\left(\lambda_t^{(b)} \cdot dt\right), dX_t^{(a)} \sim \text{Poisson}\left(\lambda_t^{(a)} \cdot dt\right)$$

$$\lambda_t^{(b)} = f^{(b)}\left(\delta_t^{(b)}\right), \lambda_t^{(a)} = f^{(a)}\left(\delta_t^{(a)}\right) \text{ for decreasing functions } f^{(b)}, f^{(a)}$$

$$dW_t = P_t^{(a)} \cdot dX_t^{(a)} - P_t^{(b)} \cdot dX_t^{(b)}, I_t = X_t^{(b)} - X_t^{(a)}$$
 (note: $I_0 = 0$)

- Since infinitesimal Poisson random variables $dX_t^{(b)}$ (shares hit in time dt) and $dX_t^{(a)}$ (shares lifted in time dt) are Bernoulli (shares hit/lifted in time dt are 0 or 1), $N_t^{(b)}$ and $N_t^{(a)}$ can be assumed to be 1
- This simplifies the Action at time t to be just the pair: $\left(\delta_t^{(b)}, \delta_t^{(a)}\right)$
- TOB Mid Price Dynamics: $dS_t = \sigma \cdot dz_t$ (scaled brownian motion)
- Utility function $U(x) = -e^{-\gamma x}$ where $\gamma > 0$ is coeff. of risk-aversion

3.2 Hamilton-Jacobi-Bellman (HJB) Equation

• We denote the Optimal Value function as $V^*(t, S_t, W_t, l_t)$

$$V^{*}(t, S_{t}, W_{t}, I_{t}) = \max_{\delta_{t}^{(b)}, \delta_{t}^{(a)}} \mathbb{E}\left[-e^{-\gamma \cdot (W_{T} + l_{t} \cdot S_{T})}\right]$$

• $V^*(t, S_t, W_t, I_t)$ satisfies a recursive formulation for $0 \le t < t_1 < T$:

$$V^{*}\left(t, S_{t}, W_{t}, I_{t}\right) = \max_{\delta_{t}^{(b)}, \delta_{t}^{(a)}} \mathbb{E}\left[V^{*}\left(t_{1}, S_{t_{1}}, W_{t_{1}}, l_{t_{1}}\right)\right]$$

• Rewriting in stochastic differential form, we have the HJB Equation

$$\max_{\delta_{t}^{(b)}, \delta_{t}^{(a)}} \mathbb{E} \left[dV^{*} \left(t, S_{t}, W_{t}, I_{t} \right) \right] = 0 \text{ for } t < T$$

$$V^{*} \left(T, S_{T}, W_{T}, I_{T} \right) = -e^{-\gamma \cdot (W_{T} + I_{T} \cdot S_{T})}$$

3.3 Converting HJB to a Partial Dierential Equation

- Change to V^* (t, S_t, W_t, l_t) is comprised of 3 components:
 - Due to pure movement in time t
 - Due to randomness in TOB Mid-Price S_t
 - Due to randomness in hitting/lifting the Bid/Ask
- With this, we can expand dV^* (t, S_t, W_t, l_t) and rewrite HJB as:

$$\begin{split} \max_{\delta_t^{(b)}, \delta_t^{(a)}} & \{ \frac{\partial V^*}{\partial t} dt + \mathbb{E} \left[\sigma \frac{\partial V^*}{\partial S_t} dz_t + \frac{\sigma^2}{2} \frac{\partial^2 V^*}{\partial S_t^2} \left(dz_t \right)^2 \right] \\ & + \lambda_t^{(b)} \cdot dt \cdot V^* \left(t, S_t, W_t - S_t + \delta_t^{(b)}, I_t + 1 \right) \\ & + \lambda_t^{(a)} \cdot dt \cdot V^* \left(t, S_t, W_t + S_t + \delta_t^{(a)}, I_t - 1 \right) \\ & + \left(1 - \lambda_t^{(b)} \cdot dt - \lambda_t^{(a)} \cdot dt \right) \cdot V^* \left(t, S_t, W_t, I_t \right) \\ & - V^* \left(t, S_t, W_t, I_t \right) \} = 0 \end{split}$$

- We can simplify this equation with a few observations:
 - $\mathbb{E} \left[dz_t \right] = 0$

$$- \mathbb{E}\left[\left(dz_t \right)^2 \right] = dt$$

- Organize the terms involving $\lambda_t^{(b)}$ and $\lambda_t^{(a)}$ better with some algebra
- Divide throughout by dt

$$\max_{\delta_{t}^{(b)}, \delta_{t}^{(a)}} \left\{ \frac{\partial V^{*}}{\partial t} + \frac{\sigma^{2}}{2} \frac{\partial^{2} V^{*}}{\partial S_{t}^{2}} + \lambda_{t}^{(b)} \cdot \left(V^{*} \left(t, S_{t}, W_{t} - S_{t} + \delta_{t}^{(b)}, I_{t} + 1 \right) - V^{*} \left(t, S_{t}, W_{t}, I_{t} \right) \right) + \lambda_{t}^{(a)} \cdot \left(V^{*} \left(t, S_{t}, W_{t} + S_{t} + \delta_{t}^{(a)}, I_{t} - 1 \right) - V^{*} \left(t, S_{t}, W_{t}, I_{t} \right) \right) \right\} = 0$$

 $\bullet \ \ \text{Next, note that} \ \lambda_t^{(b)} = f^{(b)}\left(\delta_t^{(b)}\right) \ \text{and} \ \lambda_t^{(a)} = f^{(a)}\left(\delta_t^{(a)}\right) \text{, and apply the max only on the relevant terms}$

$$\frac{\partial V^*}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2 V^*}{\partial S_t^2} + \max_{\delta_t^{(b)}} \left\{ f^{(b)} \left(\delta_t^{(b)} \right) \cdot \left(V^* \left(t, S_t, W_t - S_t + \delta_t^{(b)}, l_t + 1 \right) - V^* \left(t, S_t, W_t, I_t \right) \right) \right\} + \max_{\delta_t^{(a)}} \left\{ f^{(a)} \left(\delta_t^{(a)} \right) \cdot \left(V^* \left(t, S_t, W_t + S_t + \delta_t^{(a)}, I_t - 1 \right) - V^* \left(t, S_t, W_t, I_t \right) \right) \right\} = 0$$

• This combines with the boundary condition:

$$V^*(T, S_T, W_T, I_T) = -e^{-\gamma \cdot (W_T + I_T \cdot S_T)}$$

• We make an "educated guess" for the structure of $V^*(t, S_t, W_t, I_t)$

$$V^*(t, S_t, W_t, I_t) = -e^{-\gamma(W_t + \theta(t, S_t, I_t))}$$
(1)

and reduce the problem to a PDE in terms of $\theta(t, S_t, l_t)$

• Substituting this into the above PDE for $V^*(t, S_t, W_t, I_t)$ gives:

$$\begin{split} &\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) \\ &+ \max_{\delta_t^{(b)}} \left\{ \frac{f^{(b)} \left(\delta_t^{(b)} \right)}{\gamma} \cdot \left(1 - e^{-\gamma \left(\delta_t^{(b)} - S_t + \theta(t, S_t, l_t + 1) - \theta(t, S_t, I_t) \right)} \right) \right\} \\ &+ \max_{\delta_t^{(a)}} \frac{f^{(a)} \left(\delta_t^{(a)} \right)}{\gamma} \cdot \left(1 - e^{-\gamma \left(\delta_t^{(a)} + S_t + \theta(t, S_t, I_t - 1) - \theta(t, S_t, I_t) \right)} \right) \right\} = 0 \end{split}$$

• The boundary condition is:

$$\theta\left(T, S_T, I_T\right) = I_T \cdot S_T$$

3.4 Indifference Bid/Ask Price

- It turns out that $\theta(t, S_t, I_t + 1) \theta(t, S_t, I_t)$ and $\theta(t, S_t, I_t) \theta(t, S_t, I_t 1)$ are equal to financially meaningful quantities known as Indifference Bid and Ask Prices
- Indifference Bid Price $Q^{(b)}(t, S_t, I_t)$ is defined as:

$$V^*\left(t, S_t, W_t - Q^{(b)}(t, S_t, I_t), I_t + 1\right) = V^*\left(t, S_t, W_t, I_t\right)$$
(2)

- $Q^{(b)}(t, S_t, l_t)$ is the price to buy a share with guarantee of immediate purchase that results in Optimum Expected Utility being unchanged
- Likewise, Indifference Ask Price $Q^{(a)}(t, S_t, I_t)$ is defined as:

$$V^* \left(t, S_t, W_t + Q^{(a)} \left(t, S_t, I_t \right), I_t - 1 \right) = V^* \left(t, S_t, W_t, I_t \right)$$
(3)

- $Q^{(a)}(t, S_t, l_t)$ is the price to sell a share with guarantee of immediate sale that results in Optimum Expected Utility being unchanged
- We abbreviate $Q^{(b)}\left(t,S_{t},I_{t}\right)$ as $Q_{t}^{(b)}$ and $Q^{(a)}\left(t,S_{t},I_{t}\right)$ as $Q_{t}^{(a)}$

Indifference Bid/Ask Price in the PDE for θ

• Express $V^*\left(t,S_t,W_t-Q_t^{(b)},l_t+1\right)=V^*\left(t,S_t,W_t,I_t\right)$ in terms of θ :

$$-e^{-\gamma \left(W_{t}-Q_{t}^{(b)}+\theta(t,S_{t},l_{t}+1)\right)} = -e^{-\gamma \left(W_{t}+\theta(t,S_{t},I_{t})\right)}$$

$$\Rightarrow Q_{t}^{(b)} = \theta\left(t,S_{t},l_{t}+1\right) - \theta\left(t,S_{t},l_{t}\right)$$
(4)

• Likewise for $Q_t^{(a)}$, we get:

$$Q_t^{(a)} = \theta(t, S_t, I_t) - \theta(t, S_t, I_t - 1)$$
(5)

• Using equations (4) and (5), bring $Q_t^{(b)}$ and $Q_t^{(a)}$ in the PDE for θ

$$\begin{split} \frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \max_{\delta_t^{(b)}} g \left(\delta_t^{(b)} \right) + \max_{\delta_t^{(a)}} h \left(\delta_t^{(b)} \right) = 0 \\ \text{where } g \left(\delta_t^{(b)} \right) = \frac{f^{(b)} \left(\delta_t^{(b)} \right)}{\gamma} \cdot \left(1 - e^{-\gamma \left(\delta_t^{(b)} - S_t + Q_t^{(b)} \right)} \right) \\ \text{and } h \left(\delta_t^{(a)} \right) = \frac{f^{(a)} \left(\delta_t^{(a)} \right)}{\gamma} \cdot \left(1 - e^{-\gamma \left(\delta_t^{(a)} + S_t - Q_t^{(a)} \right)} \right) \end{split}$$

3.5 Optimal Bid Spread and Optimal Ask Spread

• To maximize $g\left(\delta_t^{(b)}\right)$, differentiate g with respect to $\delta_t^{(b)}$ and set to 0

$$e^{-\gamma \left(\delta_{t}^{(b)^{*}} - S_{t} + Q_{t}^{(b)}\right)} \cdot \left(\gamma \cdot f^{(b)}\left(\delta_{t}^{(b)^{*}}\right) - \frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}\left(\delta_{t}^{(b)^{*}}\right)\right) + \frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}\left(\delta_{t}^{(b)^{*}}\right) = 0$$

$$\Rightarrow \delta_{t}^{(b)^{*}} = S_{t} - Q_{t}^{(b)} + \frac{1}{\gamma} \cdot \ln\left(1 - \gamma \cdot \frac{f^{(b)}\left(\delta_{t}^{(b)^{*}}\right)}{\frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}\left(\delta_{t}^{(b)^{*}}\right)}\right)$$
(6)

- To maximize $g\left(\delta_t^{(a)}\right)$, differentiate g with respect to $\delta_t^{(a)}$ and set to 0

$$e^{-\gamma \left(\delta_{t}^{(a)^{*}} + S_{t} - Q_{t}^{(a)}\right)} \cdot \left(\gamma \cdot f^{(a)}\left(\delta_{t}^{(a)^{*}}\right) - \frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}}\left(\delta_{t}^{(a)^{*}}\right)\right) + \frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}}\left(\delta_{t}^{(a)^{*}}\right) = 0$$

$$\Rightarrow \delta_{t}^{(a)^{*}} = Q_{t}^{(a)} - S_{t} + \frac{1}{\gamma} \cdot \ln\left(1 - \gamma \cdot \frac{f^{(a)}\left(\delta_{t}^{(a)^{*}}\right)}{\frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}}\left(\delta_{t}^{(a)^{*}}\right)}\right)$$
(7)

• (6) and (7) are implicit equations for $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$ respectively

Solving for θ and for Optimal Bid/Ask Spreads

• Let us write the PDE in terms of the Optimal Bid and Ask Spreads

$$\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right)
+ \frac{f^{(b)} \left(\delta_t^{(b)^*} \right)}{\gamma} \cdot \left(1 - e^{-\gamma \left(\delta_t^{(b)^*} - S_t + \theta(t, S_t, I_{t+1}) - \theta(t, S_t, I_t) \right)} \right)
+ \frac{f^{(a)} \left(\delta_t^{(a)^*} \right)}{\gamma} \cdot \left(1 - e^{-\gamma \left(\delta_t^{(a)^*} + S_t + \theta(t, S_t, I_{t-1}) - \theta(t, S_t, I_t) \right)} \right) = 0$$
(8)

- with boundary condition $\theta\left(T,S_{T},I_{T}\right)=I_{T}\cdot S_{T}$
- First we solve PDE (8) for θ in terms of $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$
- In general, this would be a numerical PDE solution
- Using (4) and (5), we have $Q_t^{(b)}$ and $Q_t^{(a)}$ in terms of $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$
- Substitute above-obtained $Q_t^{(b)}$ and $Q_t^{(a)}$ in equations (6) and (7)
- Solve implicit equations for $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$ (in general, numerically)

Building Intuition

- Define Indifference Mid Price $Q_t^{(m)} = \frac{Q_t^{(b)} + Q_t^{(a)}}{2}$
- To develop intuition for Indifference Prices, consider a simple case where the market-maker doesn't supply any bids or asks

$$V^*\left(t, S_t, W_t, l_t\right) = \mathbb{E}\left[-e^{-\gamma(W_t + l_t \cdot S_T)}\right]$$

• Combining this with the diffusion $dS_t = \sigma \cdot dz_t$, we get:

$$V^*\left(t, S_t, W_t, I_t\right) = -e^{-\gamma \left(W_t + l_t \cdot S_t - \frac{\gamma \cdot l_t^2 \cdot \sigma^2(T - t)}{2}\right)}$$

• Combining this with equations (2) and (3), we get:

$$Q_t^{(b)} = S_t - (2I_t + 1) \frac{\gamma \sigma^2(T - t)}{2}, Q_t^{(a)} = S_t - (2I_t - 1) \frac{\gamma \sigma^2(T - t)}{2}$$

$$Q_t^{(m)} = S_t - I_t \gamma \sigma^2(T - t), Q_t^{(a)} - Q_t^{(b)} = \gamma \sigma^2(T - t)$$

- These results for the simple case of no-market-making serve as approximations for our problem of optimal market-making
- Think of $Q_t^{(m)}$ as inventory-risk-adjusted mid-price (adjustment to S_t)
- If market-maker is long inventory $(I_t > 0)$, $Q_t^{(m)} < S_t$ indicating inclination to sell than buy, and if market-maker is short inventory, $Q_t^{(m)} > S_t$ indicating inclination to buy than sell
- Armed with this intuition, we come back to optimal market-making, observing from eqns (6) and (7) : $P_t^{(b)^*} < Q_t^{(b)} < Q_t^{(m)} < Q_t^{(a)} < P_t^{(a)^*}$
- Think of $\left[P_t^{(b)^*}, P_t^{(a)^*}\right]$ as "centered" at $Q_t^{(m)}$ (rather than at S_t), i.e., $\left[P_t^{(b)^*}, P_t^{(a)^*}\right]$ will (together) move up/down in tandem with $Q_t^{(m)}$ moving up/down (as a function of inventory position I_t)

$$Q_{t}^{(m)} - P_{t}^{(b)^{*}} = \frac{Q_{t}^{(a)} - Q_{t}^{(b)}}{2} + \frac{1}{\gamma} \cdot \ln \left(1 - \gamma \cdot \frac{f^{(b)} \left(\delta_{t}^{(b)^{*}} \right)}{\frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}} \left(\delta_{t}^{(b)^{*}} \right)} \right)$$

$$P_{t}^{(a)^{*}} - Q_{t}^{(m)} = \frac{Q_{t}^{(a)} - Q_{t}^{(b)}}{2} + \frac{1}{\gamma} \cdot \ln \left(1 - \gamma \cdot \frac{f^{(a)} \left(\delta_{t}^{(a)^{*}} \right)}{\frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}} \left(\delta_{t}^{(a)^{*}} \right)} \right)$$

$$(9,10)$$

3.6 Simple Functional Form for Hitting/Lifting Rate Means

- The PDE for θ and the implicit equations for $\delta_t^{(b)^*}, \delta_t^{(a)^*}$ are messy
- We make some assumptions, simplify, derive analytical approximations
- First we assume a fairly standard functional form for $f^{(b)}$ and $f^{(a)}$

$$f^{(b)}(\delta) = f^{(a)}(\delta) = c \cdot e^{-k \cdot \delta}$$

• This reduces equations (6) and (7) to:

$$\delta_t^{(b)^*} = S_t - Q_t^{(b)} + \frac{1}{\gamma} \ln\left(1 + \frac{\gamma}{k}\right)
\delta_t^{(a)^*} = Q_t^{(a)} - S_t + \frac{1}{\gamma} \ln\left(1 + \frac{\gamma}{k}\right)$$
(11,12)

 $\Rightarrow {P_t^{(b)}}^* and {P_t^{(a)}}^*$ are equidistant from $Q_t^{(m)}$

• Substituting these simplified $\delta_t^{(b)^*}, \delta_t^{(a)^*}$ in (8) reduces the PDE to:

$$\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \frac{c}{k+\gamma} \left(e^{-k \cdot \delta_t^{(b)^*}} + e^{-k \cdot \delta_t^{(a)^*}} \right) = 0$$
 (13)

• with boundary condition $\theta\left(T,S_{T},I_{T}\right)=I_{T}\cdot S_{T}$

3.7 Simplifying the PDE with Approximations

- Note that this PDE (13) involves $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$
- $\bullet \ \ \text{However, equations } (11), (12), (4), (5) \ \text{enable expressing} \ \delta_t^{(b)^*} \ \text{and} \ \delta_t^{(a)^*} \ \text{in terms of} \ \theta \left(t, S_t, I_t 1\right), \theta \left(t, S_t, I_t\right), \theta \left(t, S_t, I_t + 1\right)$
- This would give us a PDE just in terms of θ
- Solving that PDE for θ would not only give us $V^*(t, S_t, W_t, l_t)$ but also $\delta_t^{(b)^*}$ and $\delta_t^{(a)^*}$ (using equations (11), (12), (4), (5))
- To solve the PDE, we need to make a couple of approximations
- First we make a linear approx for $e^{-k\cdot \delta_t^{(b)}^*}$ and $e^{-k\cdot \delta_t^{(a)}^*}$ in PDE (13):

$$\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \frac{c}{k + \gamma} \left(1 - k \cdot \delta_t^{(b)^*} + 1 - k \cdot \delta_t^{(a)^*} \right) = 0 \tag{14}$$

• Equations (11), (12), (4), (5) tell us that:

$$\delta_{t}^{\left(b\right)^{*}} + \delta_{t}^{\left(a\right)^{*}} = \frac{2}{\gamma} \ln\left(1 + \frac{\gamma}{k}\right) + 2\theta\left(t, S_{t}, I_{t}\right) - \theta\left(t, S_{t}, I_{t} + 1\right) - \theta\left(t, S_{t}, I_{t} - 1\right)$$

3.8 Asymptotic Expansion of θ in I_t

• With this expression for $\delta_t^{(b)^*} + \delta_t^{(a)^*}$, PDE (14) takes the form:

$$\frac{\partial \theta}{\partial t} + \frac{\sigma^2}{2} \left(\frac{\partial^2 \theta}{\partial S_t^2} - \gamma \left(\frac{\partial \theta}{\partial S_t} \right)^2 \right) + \frac{c}{k+\gamma} \left(2 - \frac{2k}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right) - k \left(2\theta \left(t, S_t, I_t \right) - \theta \left(t, S_t, I_t + 1 \right) - \theta \left(t, S_t, I_t - 1 \right) \right) \right) = 0$$
(15)

• To solve PDE (15), we consider this asymptotic expansion of θ in I_t :

$$\theta\left(t, S_{t}, I_{t}\right) = \sum_{n=0}^{\infty} \frac{l_{t}^{n}}{n!} \cdot \theta^{(n)}\left(t, S_{t}\right)$$

- So we need to determine the functions $\theta^{(n)}(t, S_t)$ for all $n = 0, 1, 2, \dots$
- For tractability, we approximate this expansion to the first 3 terms:

$$\theta(t, S_t, I_t) \approx \theta^{(0)}(t, S_t) + I_t \cdot \theta^{(1)}(t, S_t) + \frac{I_t^2}{2} \cdot \theta^{(2)}(t, S_t)$$

3.9 Approximation of θ in I_t

- We note that the Optimal Value Function V^* can depend on S_t only through the current Value of the Inventory (i.e., through $I_t \cdot S_t$), i.e., it cannot depend on S_t in any other way
- This means $V^*(t, S_t, W_t, 0) = -e^{-\gamma \left(W_t + \theta^{(0)}(t, S_t)\right)}$ is independent of S_t
- This means $\theta^{(0)}(t, S_t)$ is independent of S_t
- So, we can write it as simply $\theta^{(0)}(t)$, meaning $\frac{\partial \theta^{(0)}}{\partial S_t}$ and $\frac{\partial^2 \theta^{(0)}}{\partial S_t^2}$ are 0
- Therefore, we can write the approximate expansion for $\theta(t, S_t, I_t)$ as:

$$\theta(t, S_t, I_t) = \theta^{(0)}(t) + I_t \cdot \theta^{(1)}(t, S_t) + \frac{I_t^2}{2} \cdot \theta^{(2)}(t, S_t)$$
(16)

3.10 Solving the PDE

• Substitute this approximation (16) for $\theta(t, S_t, I_t)$ in PDE (15)

$$\begin{split} &\frac{\partial \theta^{(0)}}{\partial t} + I_t \frac{\partial \theta^{(1)}}{\partial t} + \frac{l_t^2}{2} \frac{\partial \theta^{(2)}}{\partial t} + \frac{\sigma^2}{2} \left(I_t \frac{\partial^2 \theta^{(1)}}{\partial S_t^2} + \frac{l_t^2}{2} \frac{\partial^2 \theta^{(2)}}{\partial S_t^2} \right) \\ &- \frac{\gamma \sigma^2}{2} \left(I_t \frac{\partial \theta^{(1)}}{\partial S_t} + \frac{l_t^2}{2} \frac{\partial \theta^{(2)}}{\partial S_t} \right)^2 + \frac{c}{k+\gamma} \left(2 - \frac{2k}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right) + k \cdot \theta^{(2)} \right) = 0 \end{split}$$

• with boundary condition:

$$\theta^{(0)}(T) + I_T \cdot \theta^{(1)}(T, S_T) + \frac{I_T^2}{2} \cdot \theta^{(2)}(T, S_T) = I_T \cdot S_T$$
(17)

- We will separately collect terms involving specific powers of I_t , each yielding a separate PDE:
 - Terms devoid of I_t (i.e., I_t^0)
 - Terms involving I_t (i.e., I_t^1)
 - Terms involving I_t^2
- We start by collecting terms involving I_t

$$\frac{\partial \theta^{(1)}}{\partial t} + \frac{\sigma^2}{2} \cdot \frac{\partial^2 \theta^{(1)}}{\partial S_t^2} = 0 \text{ with boundary condition } \theta^{(1)}\left(T, S_T\right) = S_T$$

• The solution to this PDE is:

$$\theta^{(1)}\left(t, S_{t}\right) = S_{t} \tag{18}$$

• Next, we collect terms involving l_t^2

$$\frac{\partial \theta^{(2)}}{\partial t} + \frac{\sigma^2}{2} \cdot \frac{\partial^2 \theta^{(2)}}{\partial S_t^2} - \gamma \sigma^2 \cdot \left(\frac{\partial \theta^{(1)}}{\partial S_t}\right)^2 = 0 \text{ with boundary } \theta^{(2)}\left(T, S_T\right) = 0$$

• Noting that $\theta^{(1)}(t, S_t) = S_t$, we solve this PDE as:

$$\theta^{(2)}\left(t, S_{t}\right) = -\gamma \sigma^{2}(T - t) \tag{19}$$

• Finally, we collect the terms devoid of I_t

$$\frac{\partial \theta^{(0)}}{\partial t} + \frac{c}{k+\gamma} \left(2 - \frac{2k}{\gamma} \ln\left(1 + \frac{\gamma}{k}\right) + k \cdot \theta^{(2)}\right) = 0 \text{ with boundary } \theta^{(0)}(T) = 0$$

• Noting that $\theta^{(2)}\left(t,S_{t}
ight)=-\gamma\sigma^{2}(T-t),$ we solve as:

$$\theta^{(0)}(t) = \frac{c}{k+\gamma} \left(\left(2 - \frac{2k}{\gamma} \ln\left(1 + \frac{\gamma}{k}\right) \right) (T-t) - \frac{k\gamma\sigma^2}{2} (T-t)^2 \right)$$
 (20)

- This completes the PDE solution for $\theta\left(t,S_{t},l_{t}\right)$ and hence, for $V^{*}\left(t,S_{t},W_{t},l_{t}\right)$
- Lastly, we derive formulas for $Q_t^{(b)},Q_t^{(a)},Q_t^{(m)},\delta_t^{(b)^*},\delta_t^{(a)^*}$

3.11 Formulas for Prices and Spreads

• Using equations (4) and (5), we get:

$$Q_t^{(b)} = \theta^{(1)}(t, S_t) + (2I_t + 1) \cdot \theta^{(2)}(t, S_t) = S_t - (2I_t + 1) \frac{\gamma \sigma^2(T - t)}{2}$$

$$Q_t^{(a)} = \theta^{(1)}(t, S_t) + (2I_t - 1) \cdot \theta^{(2)}(t, S_t) = S_t - (2I_t - 1) \frac{\gamma \sigma^2(T - t)}{2}$$
(21,22)

• Using equations (11) and (12), we get:

$$\delta_t^{(b)^*} = \frac{(2I_t + 1)\gamma\sigma^2(T - t)}{2} + \frac{1}{\gamma}\ln\left(1 + \frac{\gamma}{k}\right)$$
 (23)

$$\delta_t^{(a)^*} = \frac{(1 - 2I_t)\gamma\sigma^2(T - t)}{2} + \frac{1}{\gamma}\ln\left(1 + \frac{\gamma}{k}\right)$$
 (24)

· Optimal Bid-Ask Spread

$$\delta_t^{(b)^*} + \delta_t^{(a)^*} = \gamma \sigma^2 (T - t) + \frac{2}{\gamma} \ln \left(1 + \frac{\gamma}{k} \right)$$
 (25)

Optimal "Mid"
$$Q_t^{(m)} = \frac{Q_t^{(b)} + Q_t^{(a)}}{2} = \frac{P_t^{(b)^*} + P_t^{(a)^*}}{2} = S_t - I_t \gamma \sigma^2 (T - t)$$
 (26)

4 Summary

- Think of $Q_t^{(m)}$ as inventory-risk-adjusted mid-price (adjustment to $\,S_t)\,$
- If market-maker is long inventory $(I_t > 0)$, $Q_t^{(m)} < S_t$ indicating inclination to sell than buy, and if market-maker is short inventory, $Q_t^{(m)} > S_t$ indicating inclination to buy than sell
- Think of $\left[P_t^{(b)^*}, P_t^{(a)^*}\right]$ as "centered" at $Q_t^{(m)}$ (rather than at S_t), i.e., $\left[P_t^{(b)^*}, P_t^{(a)^*}\right]$ will (together) move up/down in tandem with $Q_t^{(m)}$ moving up/down (as a function of inventory position I_t)
- Note from equation (25) that the Optimal Bid-Ask Spread $P_t^{(a)^*} P_t^{(b)^*}$ is independent of inventory I_t
- Useful view: $P_t^{(b)^*} < Q_t^{(b)} < Q_t^{(m)} < Q_t^{(a)} < P_t^{(a)^*}$, with these spreads:
 - Outer Spreads $P_t^{(a)^*}-Q_t^{(a)}=Q_t^{(b)}-P_t^{(b)^*}=\frac{1}{\gamma}\ln\left(1+\frac{\gamma}{k}\right)$
 - Inner Spreads $Q_t^{(a)} Q_t^{(m)} = Q_t^{(m)} Q_t^{(b)} = \frac{\gamma \sigma^2 (T-t)}{2}$