Lecture 6: Population-Based Association Analysis

Key Goals of Association Analysis

- Test associations between each locus and the interested trait
- Understand the biological function of these associated loci (Challenging)

Association Analysis

- Dichotomous traits (i.e., Case-control studies)
- Quantitative traits (i.e., height, BMI, Age-to-onset)
- **Population-based association analysis**: study unrelated individuals (not relatives).

Trace transmissions of phenotype over generations is no longer possible. Thus the association study must rely on the **correlations** of current phenotype with current marker alleles.

Such a correlation exists when one or more groups of cases share a relatively recent common ancestor (share a mutated allele) at a causal locus.

- Linkage Disequilibrium (LD) is the non-random association of alleles at different loci in a given population..
- Nearby markers are likely to be correlated, why?
- Origin of LD?

- Consider the history of two neighboring single nucleotide polymorphism (SNP)
- SNPs exist today arose through ancient mutation events...

One SNP arose first and then the other ...

• Recombination generates new arrangements for the ancestral alleles

- Chromosomes are mosaics
- Extent and conservation of mosaic pieces depends on
 - Recombination rate
 - Mutation rate
 - Population size
 - Natural selection

Combinations of alleles at very close markers reflect ancestral haplotypes

Δ^2 (also called r^2)

$$\Delta^2 = \frac{D_{AB}^2}{p_A (1 - p_A) p_B (1 - p_B)}$$
$$= \frac{\chi^2}{2n}$$

- Ranges between 0 and 1
 - 1 when the two markers provide identical information
 - · 0 when they are in perfect equilibrium
- Expected value is 1/2n

Genotype data for multiple samples from a population

- SNP1: x1 = (0, 1, 2, 1, 0, 0, ...)
- SNP2: x2 = (1, 1, 2, 0, 0, 0, ...)
- r² = (correlation(x1, x2))²
- Raw r² from CHR22

Dawson et al, Nature, 2002

Linkage Disequilibrium in Three Regions

Abecasis et al, Am J Hum Genet, 2001

Comparing Populations ...

LD extends further in CEPH and the Han/Japanese than in the Yoruba

International HapMap Consortium, Nature, 2005

Why LD is Important for Association Studies?

SNPs in strong LD with disease variant are good proxies for disease variant

Balding, 2006

- If testing (unobservable) disease variant for association would yield chi-squared statistic X², testing variant in LD yields r²X²
- Model LD among multiple markers in joint tests to improve power

Candidate polymorphism (rs12255372)

Focus on an individual polymorphism that is a disease susceptibility locus, or in LD with the disease susceptibility locus.

Candidate gene (TCF7L2 for Type 2 Diabetes)

Typing/sequencing a genetic region around the candidate gene (often designed to include coding sequence and flanking regions, and perhaps including splice or regulatory sites).

The gene can be a positional candidate from prior linkage analysis.

Fine mapping

The candidate region might have been identified by linkage analysis and contain perhaps 5–50 genes, 1-10 Mb length, hundreds or thousands of SNPs.

Genome-wide Association Studies (GWAS)

 $\geq 0.5M$ well-chosen SNP markers throughout the genome (often imputed to higher resolution with $\sim 10M$ SNPs), or $\geq 10M$ SNPs from whole genome sequencing data. Without prior knowledge

Use standard epidemiological designs for studying the relationship between general risk factors and disease.

Case-Control Study

Ascertain subjects on the basis of dichotomous disease outcome

- informative
- efficient
- low cost
- selection bias, recall bias
- cannot estimate disease prevalence

Cohort Study

Follow subjects over time for development of disease and/or risk factors

- no selection and recall bias
- reliable pre-disease exposure information
- a full range of diseases and traits
- many years of follow-up

Standard contingency table based methods:

- Chi-square or likelihood ratio test
- Large-sample Z-test comparing two proportions
- Fisher's exact test

Frequently-used tests:

- 1. Genotypic Association test (2-df test)
- 2. Genotypic Association test with dominant/recessive disease models
- 3. Allelic Association test
- 4. Cochran-Armitage tend test
- 5. Logistic regression

- Compare genotype frequencies in cases and controls in a 2×3 table
- Not assuming any specific disease model

	AA	Aa	aa	Total
Case	n_{10}	n_{11}	n_{12}	$n_{1.}$
Control	n_{00}	n_{01}	n_{02}	$n_{0.}$
Total	<i>n</i> .0	<i>n</i> _{.1}	<i>n</i> .2	n

The genotype/codominant test: D – disease status; G – genotype

$$H_0$$
: $Pr(D = 1|Geno = AA) = Pr(D = 1|Geno = Aa) = Pr(D = 1|Geno = aa)$

 H_1 : At least one inequality holds

The standard 2 df Pearson χ^2 test of independence for a 2×3 table is:

$$X_G^2 = \sum_{i=0,1} \sum_{j=0,1,2} (O_{ij} - E_{ij})^2 / E_{ij} \sim \chi^2, df = 2$$

- $-O_{ij} = n_{ij}$: observed count in the cell
- $-E_{ij} = n_{i.}n_{.j}/n$: expected count under independence: $np_{D=i}p_{G=j} = n(n_{i.}/n)(n_{.j}/n)$

- TCF7L2 for Type 2 Diabetes in Finns
- SNP rs12255372 has alleles T and G

	GG	GT	TT	Total
Case	661	255	20	936
Control	724	354	50	1128
Total	1385	609	70	2064

$$X_G^2 = (661 - 628.08)^2 / 628.08 + \dots \approx 14.08 \sim \chi^2, df = 2$$

$$p = .0009$$

Pr(Geno|D)

	GG	GT	TT	Total
Case	0.71	0.27	0.02	1.0
Control	0.64	0.31	0.05	1.0

Pr(D|Geno)

	GG	GT	TT	Total
Case	0.48	0.42	0.29	0.45
Control	0.52	0.58	0.71	0.55

- Compare frequencies of AA or Aa with aa in cases and controls in a 2×2 table
- Assume dominant or recessive Mendelian disease model
- More powerful than genotype test if the disease model is true

With dominant disease model:

	AA or Aa	aa	Total
Case	$n_{10} + n_{11}$	n_{12}	$n_{1.}$
Control	$n_{00} + n_{01}$	n_{02}	$n_{0.}$
Total	$n_{.0} + n_{.1}$	<i>n</i> _{.2}	n

$$H_0: \Pr(D = 1|AA) = \Pr(D = 1|Aa) = \Pr(D = 1|aa)$$

$$H_1$$
: $Pr(D = 1|AA \text{ or }Aa) \neq Pr(D = 1|aa)$

The standard 1 df Pearson χ^2 test of independence for a 2×2 table is:

$$X_D^2 = \sum_{i=0,1} \sum_{j=0,1} (O_{ij} - E_{ij})^2 / E_{ij} \sim \chi^2, df = 1$$

How to obtain E_{ij} ?

- TCF7L2 for Type 2 Diabetes in Finns
- SNP rs12255372 has alleles T and G
- Allele T is dominant to G

	GG	GT+TT	Total
Case	661	255+20=275	936
Control	724	354+50=404	1128
Total	1385	609+70=679	2064

$$X_D^2 \approx 9.60 \sim \chi^2, df = 1$$

$$p = .0019$$

- Compare frequencies of alleles A and a in cases and controls in a 2×2 table
- **Assume additive disease model**: the risk associated with the heterozygote genotype is intermediate between the two homozygotes. (mostly used model)
- Assume HWE: allele frequencies in a population will remain constant from generation to generation, with random mating and in the absence of other evolutionary influences (selection, mutation, genetic drift)
- The allele test is the most powerful test for additive model.

	Α	a	Total
Case	$n_{1A} = 2n_{10} + n_{11}$	$n_{1a} = n_{11} + 2n_{12}$	$2n_{1.}$
Control	$n_{0A} = 2n_{00} + n_{01}$	$n_{0a} = n_{01} + 2n_{02}$	$2n_{0.}$
	$n_{.A} = 2n_{.0} + n_{.1}$		

The allele test:

$$H_0: \Pr(A|D = 1) = \Pr(A|D = 0)$$

The standard 1 df Pearson χ^2 test of independence for a 2×2 table is:

$$X_L^2 = \sum_{i=0,1} \sum_{j=0,1} (O_{ij} - E_{ij})^2 / E_{ij} \sim \chi^2, df = 1$$

It can also be derived as a test of the difference in allelic frequencies. Let

$$\bar{p}_{\text{Case}} \equiv \Pr(A|D=1) = n_{1A}/2n_{1.}$$

$$\bar{p}_{\text{Control}} \equiv \Pr(\mathsf{A}|D=0) = n_{0A}/2n_{0.}$$

$$\bar{p} \equiv \Pr(\mathsf{A}) = n_A/2n$$

Under H_0 ,

$$E(\bar{p}_{\text{Case}} - \bar{p}_{\text{Control}}) = 0$$

Under HWE,

$$\widehat{\text{Var}}(\bar{p}_{\text{Case}} - \bar{p}_{\text{Control}}) = \bar{p}(1 - \bar{p}) \left(\frac{1}{2n_{0.}} + \frac{1}{2n_{1.}} \right) = \bar{p}(1 - \bar{p}) \frac{n}{2n_{0.}n_{1.}}$$

Hence,

$$Z_L = 2 \sqrt{n_0 n_1} (\bar{p}_{\text{Case}} - \bar{p}_{\text{Control}}) / \sqrt{2n\bar{p}(1-\bar{p})} \sim N(0,1)$$

- TCF7L2 for Type 2 Diabetes in Finns
- SNP rs12255372 has alleles T and G

	G	Т	Total
Case	1577	295	1872
Control	1802	454	2256
Total	3379	749	4128

$$X_L^2 \approx 13.13 \sim \chi^2, \ df = 1$$

$$p = .0003$$

$$Z_L = 3.63$$

$$p = .0003$$

Define X as the number of A allele in an individual and compare the means of X in the case and control groups:

	AA	Aa	aa	Total	$ar{p}_{\cdot}$	$ar{X}_{\cdot}$
Case	n_{10}	n_{11}	n_{12}	$n_{1.}$	$\bar{p}_{\text{Case}} = (2n_{10} + n_{11})/2n_{1.}$	$\bar{X}_{\mathrm{Case}} = 2\bar{p}_{\mathrm{Case}}$
Control	n_{00}	n_{01}	n_{02}	$n_{0.}$	$\bar{p}_{\text{Control}} = (2n_{00} + n_{01})/2n_{0.}$	$\bar{X}_{\text{Control}} = 2\bar{p}_{\text{Control}}$
Total	<i>n</i> _{.0}	<i>n</i> _{.1}	<i>n</i> _{.2}	n	$\bar{p} = (2n_{.0} + n_{.1})/2n$	$\bar{X} = 2\bar{p}$

Under H_0 : E(X|Case) = E(X|Control),

$$E(\bar{X}_{Case} - \bar{X}_{Control}) = 0$$

$$Var(\bar{X}_{Case} - \bar{X}_{Control}) = Var(X) \left(\frac{1}{n_{0.}} + \frac{1}{n_{1.}}\right)$$

in which Var(X) can be estimated, without assuming HWE, by

$$\widehat{\text{Var}}(X) = \frac{4n_{.0} + n_{.1}}{n} - \bar{X}^2$$
 (Why?)

Hence,

$$Z_T = (\bar{X}_{\text{Case}} - \bar{X}_{\text{Control}}) / \sqrt{\frac{4n_{.0} + n_{.1} - n\bar{X}^2}{n_{0.}n_{1.}}} \sim N(0, 1)$$

$$Z_T^2 = Z_L^2 \frac{2\bar{p}(1-\bar{p})}{(4n_{.0} + n_{.1} - n\bar{X}^2)/n}$$

Commonality:

- Same null hypothesis: H_0 : $p_{\text{Case}} = p_{\text{Control}}$
- Both tests use the $\bar{p}_{\text{Case}} \bar{p}_{\text{Control}}$ (in the numerator)
- Assume additive disease model

Difference: how the variance of the estimated allele frequencies is calculated.

- Allele test requires that HWE holds under H₀
- Trend test does not require HWE under H₀

Cochran-Armitage Trend Test vs. Allele Test (continued) — 26/36 —

Sasieni(1997) showed:

- Allele test has inflated type I error if HWE fails
- Trend test is robust to violation of HWE
- The two tests are asymptotically equivalent if HWE holds

Observations:

- Power for trend and allele tests are similar even for small samples
- For complex diseases, it is rare to see departure from HWE
- Trend test is generally preferred for being robust with similar computation cost

- TCF7L2 for Type 2 Diabetes in Finns
- SNP rs12255372 has alleles T and G

	GG	GT	TT	Total
Case	661	255	20	936
Control	724	354	50	1128
Total	1385	609	70	2064

$$Z_T^2 = 13.04 \sim \chi^2, df = 1$$

$$p = .0003$$

Test	X^2	df	p-value
Genotype	14.08	2	.0009
Dominant	9.60	1	.0019
Allele (Additive)	13.13	1	.0003
Trend (Additive)	13.04	1	.0003

	Exposed (E)	Not Exposed (\bar{E})
Case (D)	a	b
Control (\bar{D})	\boldsymbol{c}	d

Odds ratio:

$$OR = \frac{P(D|E)/P(\bar{D}|E)}{P(D|\bar{E})/P(\bar{D}|\bar{E})}$$
$$= \frac{P(E|D)/P(\bar{E}|D)}{P(E|\bar{D})/P(\bar{E}|\bar{D})}$$
$$= ad/bc$$

- Exposed = carry certain genotype
- Counts pertain to individuals, not alleles.

Measure of Association Strength: Odds Ratio (continued) — 30/36 —

Genotype Model (\bar{E} =aa)

	AA	Aa	aa
Case	n_{10}	n_{11}	n_{12}
Control	n_{00}	n_{01}	n_{02}

$$OR_{het} = (n_{11}n_{02})/(n_{01}n_{12})$$

 $OR_{hom} = (n_{10}n_{02})/(n_{00}n_{12})$

Dominant Model (\bar{E} =aa)

	AA or Aa	aa
Case	$n_{10} + n_{11}$	n_{12}
Control	$n_{00} + n_{01}$	n_{02}

$$OR_D = [(n_{10} + n_{11})n_{02}]/[(n_{00} + n_{01})n_{12}]$$

Allele Model (\bar{E} =a)

	Α	a
Case	$2n_{10} + n_{11}$	$n_{11} + 2n_{12}$
Control	$2n_{00} + n_{01}$	$n_{01} + 2n_{02}$

$$OR_L = [(2n_{10} + n_{11})(n_{01} + 2n_{02})]/[(2n_{00} + n_{01})(n_{11} + 2n_{12})]$$

Trend Model estimate *OR* by maximum likelihood

 OR_T : logistic regression

- TCF7L2 for Type 2 Diabetes in Finns
- SNP rs12255372 has alleles T and G

Comparison	OR	
GT vs. GG	$OR_{het} = 1.27$	
TT vs. GG	$OR_{hom} = 2.28$	
T- vs. GG	$OR_D = 1.34$	
Allele T vs. G	$OR_L = 1.35$	
Trend	$OR_T = 1.36$	

In large samples and when OR is estimated from the contingent table, $log(\widehat{OR})$ is approximately normally distributed, with estimated variance

$$\widehat{\text{Var}}[\log(OR)] \approx \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d},$$

where a, b, c, d are the cells contributing to the estimation of OR.

A $(1 - \alpha)100$ th confidence interval for the population OR:

$$\exp^{\log(\widehat{OR})\pm z_{(1-\alpha/2)}} \sqrt{\widehat{\operatorname{Var}}[\log(OR)]}$$

where $z_{(1-\alpha/2)}$ is the $(1-\alpha/2)100$ th percentile of the standard normal.

- -Y = dichotomous phenotype
- -X = a coding for the genotype

Genotype	Codominant	Dominant	Recessive	Additive
AA	$X = (0, 1)^{\mathrm{T}}$	X = 1	X = 1	X = 2
Aa	$X = (1,0)^{\mathrm{T}}$	X = 1	X = 0	X = 1
aa	$X = (0,0)^{\mathrm{T}}$	X = 0	X = 0	X = 0

Assume a logistic regression model:

$$\log \left[\frac{\Pr(Y = 1|X)}{\Pr(Y = 0|X)} \right] = \beta_0 + \alpha C + \beta_1 X$$

where β_0 is the intercept, α is the coefficient for covariates C, and β_1 is the genetic effect-size (i.e., log(Odds-Ratio)).

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

- Likelihood ratio test of logistic regression ≈ chi-square tests for appropriate contingency tables.
- The estimated coefficients = log of the corresponding odds ratios.
- For the additive model, the trend test \approx likelihood ratio test from logistic regression with additive coding for X.
- Because the logistic regression operate on variables defined for individuals, not chromosomes, there is no underlying assumption about HWE.

Extension to other phenotypes:

- The phenotype *Y* can be a count or a continuous outcome.
- The generalized linear model is given by

$$g[E(Y|X)] = \beta_0 + \alpha C + \beta_1 X$$

where g(.) is a link function.

$$H_0: \beta_1 = 0$$

$$H_a: \beta_1 \neq 0$$

Hypothesis underlying association studies in this lecture:

Common-Disease Common-Variant (CDCV)

- Single-variant association studies are powerful only for common causal variants (MAF > 5%)
- Common diseases tend to be late-onset (e.g., Type 2 Diabetes, Alzheimer's disease)
 - ⇒ Selection pressure is expected to be weak on late-onset diseases and on variants that contribute only a small risk
 - ⇒ Causal variants tend to become common in the population