1. Lasso with Gaussian design

Consider a regression problem where one observes $y \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times p}$ in the model $y = X\beta^* + \varepsilon$ where X has iid N(0,1) entries and ε is a deterministic error vector with

$$\|\varepsilon\|^2 = n.$$

The vector $\beta^* \in \mathbb{R}^p$ is unknown and k-sparse, in the sense that it has k nonzero entries. We consider the Lasso estimator

$$\hat{\beta} = \operatorname{argmin}_{b \in \mathbb{R}^p} \|Xb - y\|^2 + \lambda \sqrt{n} \|b\|_1$$

where $\|\cdot\|_1$ is the ℓ_1 -norm and $\|\cdot\|$ the Euclidean norm.

You may use without proof the following properties of standard normal vectors $z \sim N(0, I_p)$: the ℓ_{∞} norm defined as $||z||_{\infty} = \max_{j=1,\dots,p} |z_j|$ satisfies

$$\mathbb{E}[\|z\|_{\infty}] \le \sqrt{2\log(2p)},$$

$$\mathbb{P}(\|z\|_{\infty} > \sqrt{2\log p}) \le 1/\sqrt{\pi\log p}.$$

We assume that the sparsity k of β^* times $\log p$ is small compared to n in the sense that

(A)
$$\sqrt{n-1} - \sqrt{n}/2 \ge \sqrt{2\log p} + 4\sqrt{2k\log(2p)}$$
.

- **Q1**. Given that ε is deterministic with $\|\varepsilon\|^2 = n$ and X has iid N(0,1) entries, prove $z = n^{-1/2}X^T\varepsilon$ has distribution $N(0,I_p)$.
- **Q2**. Noting that the objective function at $\hat{\beta}$ is smaller than the objective function at β^* , show that

$$||X(\hat{\beta} - \beta^{\star})||^2 \le 2\varepsilon^T X(\hat{\beta} - \beta^{\star}) + \sqrt{n}\lambda(||\beta^{\star}||_1 - ||\hat{\beta}||_1)$$

where $\|\cdot\|$ is the Euclidean norm.

Q3. Prove that in an event of probability at least $1 - 1/\sqrt{\pi \log p}$, for $\lambda = 4\sqrt{2 \log p}$ we have

$$n^{-1/2} \|X(\hat{\beta} - \beta^*)\|^2 < (\lambda/2) \|\hat{\beta} - \beta^*\|_1 + \lambda(\|\beta^*\|_1 - \|\hat{\beta}\|_1).$$

From now on, we use the tuning parameter value $\lambda = 4\sqrt{2 \log p}$.

Q4. In the event of the previous question, show that the vector $\hat{\beta} - \beta^*$ belongs to the set K defined as $K = \{u \in \mathbb{R}^p : \sum_{j \in S^c} |u_j| \le 3 \sum_{i \in S} |u_i| \}$ where $S = \{j = 1, ..., p : \beta_j^* \neq 0\}$ is the support of β^* .

- **Q5**. Prove that $||u||_1 \le 4\sqrt{k}||u||$ for any $u \in K$.
- **Q6**. In the event of the three previous questions, show that

$$n^{-1/2} \|X(\hat{\beta} - \beta^*)\|^2 \le (3\lambda/2)4\sqrt{k} \|\hat{\beta} - \beta^*\|.$$

Q7. We would like to bound from above $\|\hat{\beta} - \beta^*\|_2$ by $\|X(\hat{\beta} - \beta^*)\|/\sqrt{n}$ up to a multiplicative constant. To this end, we appeal to the following version of Gordon's theorem that you can use without proof: With probability at least 1 - 1/p,

$$\inf_{u \in T} \|Xu\| \ge \sqrt{n-1} - w(T) - \sqrt{2\log p}$$

where $T = K \cap \{u \in \mathbb{R}^p : ||u|| = 1\}$ and $w(T) = \mathbb{E}[\sup_{u \in T} z^T u]$ where $z \sim N(0, I_p)$. Using the bound provided on $\mathbb{E}[||z||_{\infty}]$, prove that $w(T) \leq 4\sqrt{k}\sqrt{2\log(2p)}$.

- **Q8**. In the event of Gordon's theorem from the previous question and using assumption (A), show that $\forall v \in K : ||Xv|| \ge \sqrt{n}||v||/2$.
- **Q9**. Given two events E_1 and E_2 with $\mathbb{P}(E_1) \geq 1 1/p$ and $\mathbb{P}(E_2) \geq 1 1/\sqrt{\pi \log p}$, provide a lower bound on the probability of the intersection $\mathbb{P}(E_1 \cap E_2)$.
- Q10. Explain how to combine the previous questions to prove that under condition (A), the Lasso satisfies the error bounds

$$||X(\hat{\beta} - \beta^*)|| \le 2(3\lambda/2)4\sqrt{k}$$
 and $||\hat{\beta} - \beta^*|| \le 4(3\lambda/2)4\sqrt{k/n}$ in an event of probability close to 1 when p is large.

- **Q11.** How does this bound on $||X(\hat{\beta} \beta^*)||$ compare with $||X(\hat{\alpha} \beta^*)||$ for $\hat{\alpha} = (X^T X)^{\dagger} X^T y$ if p > n and $k \log p \ll n$?
- Q12. (Bonus). Prove $\mathbb{P}(Z > t) \leq e^{-t^2/2}/(t\sqrt{2\pi})$ for $Z \sim N(0, 1)$ and $\mathbb{P}(\|z\|_{\infty} > \sqrt{2\log p}) \leq 1/\sqrt{\pi \log p}$ for $z \sim N(0, I_p)$.
- **Q13**. (Bonus 2). Prove $\mathbb{E}[e^{tZ}] = e^{t^2/2}$ for $Z \sim N(0,1)$. For $z \sim N(0,I_p)$, deduce $\mathbb{E}[e^{t||z||_{\infty}}] \leq 2pe^{t^2/2}$ and taking $t = \sqrt{2\log(2p)}$ prove that $\mathbb{E}[||z||_{\infty}] \leq \sqrt{2\log(2p)}$.

1