1+1d Adjoint QCD and non-invertible topological lines

Kantaro Ohmori (Simons Center for Geometry and Physics)

based on WIP with

Zohar Komargodski, Konstantinos Roumpedakis, Sahand Seifnashri

@ Zoominar hosted by Rutgers NHETC

Introduction and summary

• 1+1d Adj. QCD was studied extensively in '90s:

```
[Kutasov '93][Boorstein, Kutasov '94],[Kutasov, Schwimmer '95],
[Gross, Klebanov, Matytsin, Smilga '95], [Gross, Klebanov, Hashimoto '98]...
```

- When massless, claimed to be in **deconfined** phase, although fermion cannot screen a probe in fundamental representation.
- [Cherman, Jacobson, Tanizaki, Unsal '19] revisited the problem.
- ullet They analyzed symmetry (incl. one-form) and its anomaly. Concluded it is in confined (or partially deconfined) phase when $N\geq 3$.
- Symmetry is not enough. Non-invertible topological line accounts for deconfinement.
- First (non-topological) gauge theory example of non-invertible top. op.

1+1d massless Adjoint QCD

- 1+1d gauge theory with $G=\mathrm{SU}(N)$ with massless Majorana fermions $(\psi_L^{iar{j}},\psi_R^{iar{j}})$ ($\sum_i\psi_{L,R}^{iar{i}}=0$)
- $ullet \; \mathcal{L} = \mathrm{Tr} \left(-rac{1}{4g^2} F^2 + \mathrm{i} \psi_L \partial \psi_L + \mathrm{i} \psi_R ar{\partial} \psi_R + j_L A_z + j_R A_{ar{z}}
 ight)$
- $ullet j_{L,R}^{iar{j}} = \sum_k \psi_{L,R}^{iar{k}} \psi_{L,R}^{k,ar{j}}$
- Symmetry: $\mathbb{Z}_2^C imes \mathbb{Z}_2^\chi imes \mathbb{Z}_2^F$ ($imes \mathbb{Z}_N^{(1)}$: one-form (a.k.a. center) symmetry)
- c=0: gapped

Quartic couplings

- Two independent classically marginal couplings preserving all the symmetry
- $egin{aligned} ullet \mathcal{L}_q &= c_1 \mathcal{O}_1 + c_2 \mathcal{O}_2 \ \mathcal{O}_1 &= \mathrm{Tr}(\psi_+ \psi_+ \psi_- \psi_-) = \mathrm{Tr} j_L j_R, \ \mathcal{O}_2 &= ig((\mathrm{Tr}(\psi_+ \psi_-))^2 rac{2}{N} \mathrm{Tr}(\psi_+ \psi_+ \psi_-)ig) \end{aligned}$
- ullet In the N^2-1 free fermion theory, ${\cal O}_2$ is a sum of $SU(N)_N$ primaries
- Fusion rule : $\langle {\cal O}_2(0)\, j_L(z_1) j_L(z_2) \cdots j_R(w_1) j_R(w_2) \cdots
 angle = 0$
- No Feynman diagram that can generate ${\cal O}_2$ with $j_L A_z + j_R A_{ar z}$ and ${\cal O}_1$ coupling in adj QCD!

Protection by non-invertible line

- What protects \mathcal{O}_2 from radiative generation?
- There is **no symmetry** that \mathcal{O}_2 violates.
- We claim that non-invertible top. lines protects it.
- The same set of lines also explains deconfinement.
- Parameter space:

• We expect that \mathcal{O}_2 def. breaks all the non-invertible lines and thus leads us to the picture of [Cherman, Jacobson, Tanizaki, Unsal '19] but have not succeeded to proof.

Symmetry and top. op.s

• Symmetry $G\Longrightarrow$ Topological codim.-1 op $U(g)[\Sigma]$ for $g\in G$ For $e^{\mathrm{i}lpha}\in\mathrm{U}(1),U(e^{\mathrm{i}lpha})[\Sigma]=e^{\mathrm{i}lpha\int_\Sigma J_\mu\mathrm{d}S^\mu}$

$$\begin{array}{c} (3) (2) \\ \times \overline{4} \\ = \\ \times \end{array}$$

- $U(g)[\Sigma]$ is invertible: $U(g)[\Sigma]U(g^{-1})[\Sigma]=\mathbf{1}$
- "Higher-form" symmetry invertible top. op. with higher codimension.
 [Gaiotto, Kapustin, Seiberg, Willett '14]
- Not all topological operators have its inverse: non-invertible top. op.s.

Non-invertible topological lines

• Top. lines have **fusion rule**:

$$\frac{1}{|a|} = \frac{1}{|a|} \frac{$$

- Data of lines and topological junctions = Fusion category (e.g. Verlinde lines)
- Should be regarded as **generalization of symmetry**, as they shares key features with symmetry (+anomaly): gauging, **RG flow invariance**.

[Brunner, Carqueville, Plencner '14], [Bhardwaj, Tachikawa, '17], [Chang, Lin, Shao, Wang, Yin, '18]

- E.g. Tricritical ($c=\frac{7}{10}$) Ising + $\sigma'_{\frac{7}{16},\frac{7}{16}}$ relevant perturbation preserves W line with fusion $W^2=1+W\implies$ asymmetric 2 vacua [Chang, Lin, Shao, Wang, Yin, '18]
- Massless Adj. QCD is another example.

Outline

- ullet Charge q massless Schwinger model
- Non-abelian bosonization
- Non-invertible lines and confinement in 1+1d massless adj. QCD

Charge q massless Schwinger model

- 1+1d ${
 m U}(1)$ gauge theory with charge q massless Dirac fermion Ψ_q , $\Psi_q o e^{{
 m i} q lpha} \Psi_q$
- ullet (Ordinary) Symmetry: $\mathbb{Z}_2^C imes \mathbb{Z}_q^\chi$
- ullet $\mathbb{Z}_q\subset \mathrm{U}(1)$ acts trivially on $\Psi_q\colon \mathbb{Z}_q^{(1)}$ one-form (a.k.a. center) symmetry
- ullet Wilson line $W_p=e^{2\pi \mathrm{i} p\oint A}$: worldline of heavy probe with charge p
- ullet W_q is screened by Ψ_q and deconfined.
- ullet How about W_p when $p
 eq 0 \mod q$?

One-form symmetry in 1+1d and "Universe"

- The electric field $rac{1}{e^2}F_{01}$ (classically in $\mathbb Z$) fluctuates because of Ψ_q , but jumps only by q.
- ullet $U_k=e^{rac{2\pi {
 m i}k}{qe^2}F_{01}}$ is $\mathbb{Z}_q\subset {
 m U}(1)$ valued **topological** local (codim-2) operator
- ullet Interpreted as the **symmetry operator** for $\mathbb{Z}_q^{(1)}$
- ullet Clustering energy eigenstates (on $\mathbb R$) diagonalizes U_k : $U_k|p
 angle=e^{rac{2\pi \mathrm{i}kp}{q}}|p
 angle$
- Even on S^1 , $|p_1
 angle$ and $|p_2
 angle$ does not mix if $p_1
 eq p_2 \mod q$: $\langle p_1|U_1U(t)|p_2
 angle_{S^1} = e^{rac{2\pi \mathrm{i} p_1}{q}}\langle p_1|U(t)|p_2
 angle_{S^1} = e^{rac{2\pi \mathrm{i} p_2}{q}}\langle p_1|U(t)|p_2
 angle_{S^1}$
- ullet No domain wall between $|p_1
 angle$ and $|p_2
 angle$ with **finite tension**
- Separated sectors even on compact space: "universe"

"Universe" and (de)confinement

• Wilson line (worldline of infinitely heave partible) separates "universes":

$$U_k W_p = e^{rac{2\pi \mathrm{i} k p}{q}} W_p U_k$$

- Wilson loop contains another "universe" in it:
- $egin{array}{ll} ullet E_p
 eq E_{p+1} &\Longrightarrow ext{ area law, confinement} \ E_p = E_{p+1} &\Longrightarrow ext{ perimeter law, deconfinement} \end{array}$

Abelian bosonization

- A way to study the charge q Schwinger model is the bosonization: Dirac fermion $\Psi \Longleftrightarrow \phi$, where ϕ : periodic scalar (set to be 2π)
- $oldsymbol{\Phi} oldsymbol{\mathcal{O}}_{n,w}=e^{in\phi+iw\phi} \ \Delta=n^2+rac{1}{4}w^2, S=nw, Q=wq, \Psi_q=\mathcal{O}_{rac{1}{2},1}$
- To be precise, the duality is valid only after the spin-structure is summed in the fermion side.
- ullet In the Schwinger model the spin-structure sum is a part of U(1) gauge group
- ullet The dual description is: $rac{1}{8\pi}(\partial\phi)^2-rac{1}{4e^2}F^2+rac{q}{2\pi}\phi F$
- $ullet \ \mathbb{Z}_q^\chi: \phi o \phi + rac{2\pi k}{q} ext{ for } k \in \mathbb{Z}_q^\chi.$
- Naively, IR limit seems equivalent to $e o\infty$. If true, theory is BF theory (G/G TQFT with $G=U(1)_q$) describing q vacua \implies deconfined.
- UV reason?

$\mathbb{Z}_q^\chi imes \mathbb{Z}_q^{(1)}$ anomaly and deconfinement

• ${\mathcal O}_{0, \frac{1}{q}}$: defect operator at the edge of \mathbb{Z}_q^χ line L_1 in free boson, Q=1.

$${\cal O}_{n,w}(z){\cal O}(0)_{0,rac{1}{q}}=e^{rac{2\pi {
m i} n}{q}}{\cal O}_{n,w}(e^{2\pi {
m i}}z){\cal O}_{0,rac{1}{q}}(0)$$

ullet After gauging $\mathrm{U}(1)$, ${\mathcal O}_{0, {1\over q}}$ connects W_1 and L_1 :

•
$$U_kW_p=e^{rac{2\pi\mathrm{i}kp}{q}}W_pU_k\implies U_kL_p=e^{rac{2\pi\mathrm{i}kp}{q}}L_pU_k:\mathbb{Z}_q^\chi imes\mathbb{Z}_q^{(1)}$$
 anomaly

• L_1 is **topological**: $L_1|\psi
angle$ and $|\psi
angle$ have degenerate energy:

• Adj QCD has a smiliar story but requires to consider non-invertible top. lines.

Nonabelian bosonization

- ullet We would like to repeat a similar analysis for massless adjoint QCD with $\mathrm{SU}(N)$ gauge group.
- Dualize N^2-1 Maj. fermions while keeping the $\mathrm{SU}(N)$ symmetry manifest. \Longrightarrow Nonabelian bosonization [Witten '84]
- $n \, \psi$ (Maj.) $/(-1)^F \Longleftrightarrow \mathrm{Spin}(n)_1$ WZW model [Ji, Shao, Wen '19]
- $\mathrm{PSU}(N) \subset \mathrm{Spin}(N^2-1), \ \widehat{\mathfrak{su}}(N)_N \subset \widehat{\mathfrak{spin}}(N^2-1)_1$: conformal embedding $(c(\widehat{\mathfrak{su}}(N)_N) = c(\widehat{\mathfrak{spin}}(N^2-1)_1)$
- ullet (Adj. QCD with $g_{
 m YM} o \infty$) $/(-1)^F \Longleftrightarrow {
 m Spin}(N^2-1)_1/{
 m SU}(N)_N$ coset TQFT
- ullet "Gauge back" $(-1)^F$ by gauging $\mathbb{Z}_2^{
 m spinor}$ with ${
 m Arf}$ twist. [Thorngren '18],[Karch, Tong, Turner '19]
- Adj. QCD with $g_{\rm YM} o \infty \iff {
 m Spin}(N^2-1)_1/{
 m SU}(N)_N/_{{
 m Arf}}\mathbb{Z}_2^{
 m spinor}$ Precise version of bosonization prediction by [Kutasov '93],[Boorstein, Kutasov '94],

$$\mathrm{Spin}(N^2-1)_1/\mathrm{SU}(N)_N/_{\mathrm{Arf}}\mathbb{Z}_2^{\mathrm{spinor}}$$

- Spin-TQFT due to the Arf twist.
- ullet Coset counting $\Longrightarrow 2^{N-1}$ vacua. :[Kutasov '93] Most of them are not because of SSB
- All the N universes (due to $\mathbb{Z}_N^{(1)}$) are degenerate = **deconfined**.

- Naively IR limit = $g \to \infty$, as g is super-renormalizable. However it is not very clear whether the flow generate other terms in the strongly coupled regime.
- UV reason of deconfinement and exponentially many vacua?: Topological lines
- Constrain possible IR TQFTs

Fermions as $\mathfrak{su}(N)_N$ RCFT

- ullet N^2-1 Majorana fermions $\supset\widehat{\mathfrak{spin}}(N^2-1)_1\supset\widehat{\mathfrak{su}}(N)_N$
- Topological lines in adj QCD = $\mathfrak{su}(N)$ preserving top. lines in fermions
- $\mathfrak{su}(N)_N$ non-diagonal (spin-)RCFT
- $\psi_L^{iar{j}} \in V_{\mathbf{adj}} \otimes \overline{V}_0$, $\psi_R^{iar{j}} \in V_0 \otimes \overline{V}_{\mathbf{adj}}$, $\mathcal{H}_{\mathrm{NSNS}} = igoplus_{k,l} Z_{k,l} V_k \otimes \overline{V}_l$
- Non-diagonal RCFT = CS theory on a interval with surface op. insertion:

[Kapustin Saulina '10], [Fuchs, Schweigert, Valentino '12], [Carqueville, Runkel, Schaumann '17]

Verlinde lines in diagonal RCFT

- Diagonal RCFT = CS theory on a interval (S is trivial).
- ${\cal O}_{i,i}$: Line L_i bridging boundaries

$$ullet L_i\otimes L_j=igoplus_k N_{i,j}^k L_k$$

• Defect operator at the edge of L_i : $igoplus_{k,l} N_{i,k}^l V_k \otimes \overline{V}_l$:

$SU(N)_N$ preserving topological lines in ψ^{ij}

ullet Subset of topological lines : L_i^\pm defined by

$$L_{\lambda}^{+}: \Sigma_{2}^{\uparrow} \begin{vmatrix} SU(N), & CS \\ L_{\lambda} \end{vmatrix} \begin{vmatrix} L_{\lambda} \\ L_{\lambda} \end{vmatrix}$$

$$B \in \overline{B}$$

$$SU(N), CS$$

$$L_{\lambda}^{-} \begin{vmatrix} L_{\lambda} \\ L_{\lambda} \end{vmatrix}$$

$$B \in \overline{B}$$

ullet Defect operator at the edge of $L_i^+\colon igoplus_{k,l,m} N_{l,i}^k Z_{k,m} V_l \otimes \overline{V}_m$

ullet In particular, ${\cal O}_i \in V_i \otimes \overline{V}_0$ always exists.

Topological line - $\mathbb{Z}_N^{(1)}$ mixed anomaly

- $L^+_{
 m fnd}$ in free $\psi^{iar j}$ theory have the defect op. $\mathcal{O}_{
 m fnd,0}$, which is in ${
 m fnd}$ of ${
 m SU}(N)$.
- When gauging ${
 m SU}(N)$, ${\cal O}_{{
 m fnd},0}$ becomes a **line changing operator** between $W_{{
 m fnd}}$ and $L_{{
 m fnd}}^+$:

- ullet $\mathbb{Z}_N^{(1)}$ one-form sym. acts on Wilson line: $W_{
 m fnd}$ by $U_kW_{
 m fnd}=e^{rac{2\pi{
 m i}k}{N}}W_{
 m fnd}U_k$
- $ullet \ U_k L_{
 m fnd}^+ = e^{rac{2\pi {
 m i} k}{N}} L_{
 m fnd}^+ U_k$: "(non-invertible) top. line $\mathbb{Z}_N^{(1)}$ mixed anomaly"
- ullet |0
 angle and $L_{
 m fnd}|0
 angle$ are degenerate and in different universes: **Deconfinement**

IR TQFT?

- The IR TQFT fixed point should admit the whole set of $\mathrm{SU}(N)$ preserving top. lines in $\psi^{iar{j}}$ theory.
- A candidate is ${
 m Spin}(N^2-1)/SU(N)/_{{
 m Arf}}\mathbb{Z}_2$ (= CS theory on S^1 with S insertion). Other candidates?
- The full structure of the lines (fusion category) is complicated.
- ullet Classifying TQFTs that admit given a set of lines is not easy. (\cong classifying modular invariants of the chiral algebra ($\mathfrak{su}(N)_N$))
- ullet Analysing small N ($\sim 4,5$).

Summary and prospect

- 1+1d massless adj. QCD has many ($\mathcal{O}(2^N)$) topological line operators, most of which are non-invertible.
- Topological line is an interface between different "universes" due to "top. line $\mathbb{Z}_N^{(1)}$ mixed anomaly" \Longrightarrow deconfinement
- We expect non-invertible lines will be broken by the **double trace quartic** \mathcal{O}_2 \Longrightarrow confinement (of probe in fundamental rep)
- Higher dimensions?
 - Math? ("Fusion n-category?")[Douglas, Reutter '18]
 - o Concrete examples of non-invertible

 topological operators in higher dimensional

 non-topological QFT? Free theory? (Even in 1+1d, the full list of topological

operators in a general free theory is lacking)

Sym. P-torm sym.

= inv'ble Codin1

top. surface

Non-inv'ble Codin1

top. surface

(7?)

1d, the full list of topological