Resumo - Introdução a Teoria da Computação

Flávio Avad Briz

7 de novembro de $2012\,$

Sumário

1	Lin	Linguagens Regulares 2								
	1.1	Autômatos Finitos	3							
		1.1.1 Definição Formal	3							
		1.1.2 Linguagem de Máquina	3							
	1.2	Definição Formal de Computação	4							
		1.2.1 Linguagem Regular	4							
	1.3									
	1.4									
	1.5									
		1.5.1 Definição Formal de um AFN	5							
	1.6	Equivalência entre AFNs e AFDs	6							
		1.6.1 Exemplo de uma conversão de um AFD para um AFN	6							
	1.7	1								
	1.8	Expressões Regulares	7							
		1.8.1 Definição Formal de uma Expressão Regular	7							
		1.8.2 Equivalência com Autômatos Finitos	8							
		1.8.3 Definição Formal de um AFNG	10							
	1.9	Lema do bombeamento								
2	Linguagens livres-do-contexto 1									
	2.1	Gramáticas livres-do-contexto	12							
		2.1.1 Definição Formal de uma Gramática Livre-de-Contexto .	13							
		2.1.2 Projetando Gramáticas Livres-de-Contexto	13							
		2.1.3 Ambiguidade	14							
		2.1.4 Forma Normal de Chomsky	14							
	2.2	Autômato com Pilha	17							
		2.2.1 Definição Formal de um Autômato com Pilha	17							
	2.3	Equivalência com gramáticas livres-do-contexto	18							
	2.4	Lema do bombeamento para linguagens livres-de-contexto	20							
3	A t	ese de Church-Turing	21							
	3.1	1 Máquinas de Turing								

Capítulo 1

Linguagens Regulares

1.1 Autômatos Finitos

Figura 1.1: Exemplo de um diagrama de estado de um AFD chamado M_1

1.1.1 Definição Formal

Um autômato finito é uma 5-nupla $(Q, \Sigma, \delta, q_0, F)$ onde:

- 1. Q é um conjunto de estados finito;
- 2. Σ é um conjunto finito chamado de alfabeto;
- 3. $\delta:Q\otimes\Sigma\to Q$ é a função de transição
- 4. $q_0 \in Q$ é o estado inicial
- 5. $F \subseteq Q$ é o conjunto dos estados de aceitação

Exemplo: Descrição formal de $M_1 = (Q, \Sigma, \delta, q_0, F)$ onde

- 1. $Q = \{q1, q2, q3\};$
- **2.** $\Sigma = \{0, 1\};$
- 3. $\delta: Q \otimes \Sigma \to Q$

- **4.** $q_0 = \{q1\};$
- **5.** $F = \{q2\};$

1.1.2 Linguagem de Máquina

Seja A o conjunto de todas as cadeias que a máquina M dizemos que A é a **linguagem da máquina** M, formalmente L(M)=A.

Quer dizer que M reconhece/aceita A

1.2 Definição Formal de Computação

Seja $M = \{Q, \Sigma, \delta, q_0, F\}$ um autômato finito e suponha $w = w_1 w_2 w_3 ... w_n$ seja uma cadeia onde cada $w_i \in \Sigma$. Então M aceita w se existe uma sequência de estados $r_0, r_1, r_2, ..., r_n$ em Q com três condições:

- 1. $r_0 = q_0$;
- **2.** $\delta(r_i, w_{i+1}) = r_{i+1}$ para i = 1, 2, ..., n-1;
- 3. $r_i \in F$;

Dizemos que M reconhece a linguagem A se $A = \{w | M \ aceita \ w\}$

1.2.1 Linguagem Regular

Uma linguagem é chamada de uma *linguagem regular* se algum autômato finito a reconhece.

1.3 Projetando Autômatos Finitos

Desejamos contruir um autômato que reconheça a linguagem que consiste de todas as cadeias com um número ímpar de 1, supondo que o alfabeto seja $\{0,1\}$ e os estados possíveis $Q = \{qPar, qImpar\}$.

1. Primeiramente desenhe os estados

Figura 1.2: Os dois estados.

2. Em seguida desenhe as transições de estado.

Figura 1.3: Transições dizendo como as possibilidades se rearranjam

3. Adicione o estado inicial e de aceitação.

1.4 As Operações Regulares

Sejam A e B linguagens. Definimos as operações de **união**,**concatenação** e **estrela** da seguinte forma.

Figura 1.4: Estados inicial e de aceitação adicionados

- União: $A \cup B = \{x | x \in A \text{ ou } x \in B\};$
- Concatenação: $A \circ B = \{xy | x \in A \in y \in B\};$
- Estrela: $A^* = \{x_1 x_2 ... x_k | k \ge 0 \text{ e cada } x_i \in A\};$

As operações união e concatenação são binárias, já a operação estrela é unária.

Na operação estrela não podemos esquecer que ε está sempre presente.

1.5 Não-Determinismo

Em uma máquina $n\tilde{a}o$ -determinística podem existir várias escolhas para o próximo estado em qualquer ponto.

Autômatos finitos não-determinísticos são uma genarização de determinísticos, portanto todo AFD também é um AFN.

A computação de um AFN consiste em gerar diversas cópias da máquina quando existir uma transição não-determinística, e verificar se em algumas dessas máquinas chega à algum estado de aceitação. Em caso de positivo de alguma dessas máquinas o último estado seja o de aceitação, então a cadeia é reconhecida pelo AFN.

1.5.1 Definição Formal de um AFN

Um autômato finito não-determinístico é uma 5-nupla $(Q, \Sigma, \delta, q_0, F)$ onde:

- 1. Q é um conjunto de estados finito;
- 2. Σ é um conjunto finito chamado de alfabeto;
- **3.** P(Q) é a coleção de todos os subconjuntos de Q, chamado de **conjunto** das partes;
- 4. $\delta: Q \otimes \Sigma \to P(Q)$ é a função de transição
- 5. $q_0 \in Q$ é o estado inicial
- 6. $F \subseteq Q$ é o conjunto dos estados de aceitação

Figura 1.5: Diagrama de estados de N_1

Exemplo: Autômato N_1

Descrição formal de $N_1 = (Q, \Sigma, \delta, q_0, F)$ onde

1.
$$Q = \{q1, q2, q3, q4\};$$

2.
$$\Sigma = \{0, 1\};$$

3.
$$\delta: Q \otimes \Sigma \to P(Q)$$

	0	1	ε
q1	{q1}	$\{q1,q2\}$	Ø
q2	$\{q3\}$	Ø	$\{q3\}$
q3	Ø	$\{q4\}$	Ø
q3	$\{q4\}$	$\{q4\}$	Ø

4.
$$q_0 = \{q1\};$$

5.
$$F = \{q4\};$$

1.6 Equivalência entre AFNs e AFDs

Todo autômato finito **não-determinístico** tem um autômato finito **determinístico** equivalente.

Corolário 1 Uma linguagem é regular se e somente se um AFN a reconhece.

1.6.1 Exemplo de uma conversão de um AFD para um $_{ m AFN}$

Vamos tentar encontrar um AFD ${\cal D}$ equivalente ao AFN a seguir:

Figura 1.6: Estados inicial e de aceitação adicionados

1. Primeiramente determinamos os estados de D, que vão ser iguais a Q=P(1,2,3), portanto:

$$\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

2. Determinamos os estados inicial e de aceitação. O estado inicial é igual ao próprio estado inicial do AFD, mais os outros estados atingíveis a partir dele por ε , ou seja $q_0=1,3$.

Os estados de aceitação possíveis são aqueles que contêm o estado de aceitação do AFN, portanto $F = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$

3. Adicionamos as transições. Para fazer isso precisamos analizar quais transições ocorerriam para cada estado separadamente e depois realizamos a união desses resultados, por exemplo no caso do estado 1,2,3 recebesse a, o estado resultando seria $\delta'(1,2,3,a) = \delta(1,a) \bigcup \delta(2,a)\delta(3,a) = \emptyset \bigcup \{2,3\} \bigcup \{1\} = \{1,2,3\}$

	a	b	ε
Ø	Ø	Ø	
{1}	Ø	$\{2\}$	
$\{2\}$	$\{2,3\}$	$\{3\}$	
$\{3\}$	$\{1,3\}$	Ø	Ø
$\{1,\!2\}$	$\{2,3\}$	$\{2,3\}$	
$\{1,3\}$	$\{1,3\}$		
$\{2,\!3\}$	$\{1,2,3\}$	$\{3\}$	
$\{1,2,3\}$	$\{1,2,3\}$	$\{2,3\}$	

1.7 Fecho sob as Operações Regulares

A classe das linguagem regulares é fechada sobre qualquer operação regular.

1.8 Expressões Regulares

Assim como na aritimética podemos montar expressões utilizando os operandores de soma(+) e mutiplicação (\mathbf{x}) , também podemos montar expressões regulares utilizando operações regulares.

A criação de operações regulares consiste em criar uma equivvalência entre a expressão e o conjunto representado por ela. O alfabeto $\Sigma=\{0,1\}$ poderia ser escrito como $0\bigcup 1$

1.8.1 Definição Formal de uma Expressão Regular

 ${\cal R}$ é uma expressão regular se ${\cal R}$ for:

- 1. a para algum $a \in \Sigma$,
- **2.** ε,
- **3.** Ø,
- **4.** $(R_1 \bigcup R_2)$ onde R_1 e R_2 são expressões regulares,
- **5.** $(R_1 \circ R_2)$ onde R_1 e R_2 são expressões regulares,
- **6.** (R_1^*) onde R_1 é uma expressão regular,

As espressões regulares ε e Ø são **DIFERENTES**, ε representa uma linguagem contendo somente a cadeia vazia ε e Ø representa uma linguagem que não contém nenhuma cadeia.

Exemplos:

- 1. $0*10* = \{w | w \text{ contém um único } 1\}$
- 2. $\Sigma^*1\Sigma^*=\{w|w \text{ tem pelo menos um símbolo } 1\}$
- 3. $\Sigma^*001\Sigma^* = \{w|w \text{ tem pelo menos uma cadeia } 001 \text{ como subcadeia}\}$
- **4.** $1^*(01^*)^* = \{w \mid \text{todo } 0 \text{ em } w \text{ \'e seguido por pelo menos um símbolo } 1\}$
- 5. $\Sigma\Sigma^* = \{w|w \text{ \'e uma cadeia de comprimento par}\}$
- **6.** $\Sigma\Sigma\Sigma^* = \{w|w \text{ \'e uma cadeia de comprimento m\'ultiplo de 3}\}$

1.8.2 Equivalência com Autômatos Finitos

Qualquer expressão regular pode ser reconhecida por um autômato finito que reconhece a linguagem regular e vice-versa.

Teorema 1 Uma linguagem é regular se e somente se alguma expressão regular reconhece ela.

Prova Conversão de R em um AFN, considerando os seis casos da definição: 1. R=a para algum a em Σ . Então $L(R)=\{a\}$ e o seguinte AFN reconhece L(R):

2. $R = \varepsilon$. Então $L(R) = {\varepsilon}$ e o seguinte AFN reconhece L(R):

3. $R = \emptyset$. Então $L(R) = \emptyset$ e o seguinte AFN reconhece L(R):

4. $R = R_1 \bigcup R_2$ **5.** $R = R_1 \circ R_2$ **6.** $R = R_1^*$

Exemplo: $(ab \cup Ja)^*$

Lema 1 Se uma linguagem é regular, então ela é descrita por uma expressão regular.

Prova Dividimos esse procedimento em duas partes, usando um novo tipo de autômato finito chamado autômato finito não-determinístico generalizado, AFNG. Primeiro, mostramos como converter AFDs em AFNGs, e depois AFNGs em expressões regulares.

Por conveniência, requeremos que os AFNGs tenham sempre um formato especial que atenda às seguintes condições:

- O estado inicial tem setas de transição saindo para todos os outros estados, mas nenhuma seta chegando de qualquer outro estado.
- Existe apenas um estado de aceitação, e ele tem setas chegando de todos os outros estados, mas nenhuma seta saindo para qualquer outro estado. Além disso, o estado de aceitação não é o mesmo que o estado inicial.

• Com exceção dos estados inicial e de aceitação, uma seta sai de cada estado para todos os outros e também de cada estado para ele mesmo.

Figura 1.7: AFNG com um estado a menos

1.8.3 Definição Formal de um AFNG

Um autômato finito não-determinístico generalizado é uma 5-nupla $(Q, \Sigma, \delta, q_{inicio}, q_{aceita})$ onde:

- 1. Q é um conjunto de estados finito;
- **2.** Σ é um conjunto finito chamado de **alfabeto**;
- 3. $\delta: (Q \{q_{aceita}\}) \otimes (Q \{q_{inicio}\}) \to R$ é a função de transição
- 4. $q_{inicio} \in Q$ é o estado inicial
- 5. $q_{aceita}Q$ é o estado de aceitação

1.9 Lema do bombeamento

 ${\bf Implementar...}$

Capítulo 2

Linguagens livres-do-contexto

É uma maneira muito mais poderosa de descrever linguagens, sendo primeiramente utilizadas no estudo de linguagens humanas.

Uma aplicação importante de gramáticas livres-do-contexto ocorre na especificação e compilação de linguagens de programação.

A colecao de linguagens associadas com gramáticas livres-do-contexto são denominadas linguagens livres-do-contexto. São denominadas as máquinas que reconhecem linguagens livres-do-contexto de autômatos-com-pilha.

2.1 Gramáticas livres-do-contexto

Exemplo de uma gramáticas livres-do-contexto chamada G_1 :

 $A \to 0A1$ $A \to B$

 $B \to \#$

A mesma gramática pode ser abreviada e representada por:

 $\begin{array}{c} A \rightarrow 0A1|B \\ B \rightarrow \# \end{array}$

Uma gramática consiste de *regras de substituição* , ou *produções* . Cada regra é representada por uma linha da gramática, os símbolos em letra maiúscula são chamados de *variáveis* , e os *terminais* são análogos ao alfabeto de entrada e são geralmente representados por letras minúsculas.

A variável inicial é representada pelo primeiro símbolo da primeira regra. Portanto a gramática G_1 é representada pelas variáveis A e B, onde A é a variável inicial e possui terminais 0,1 e #.

Como usar a gramática:

- 1. Escreva a variável inicial.
- 2. Encontre uma variável e substitual ela pelo lado direito da regra.
- 3. Repita o processo 2 até que não reste nenhuma variável.

A sequência de substituições é chamada de $\mbox{\it derivação}$. Um exemplo de uma possível derivação 000#111 em G_1 é

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$$

Uma forma de representar mais visualmente a derivação é através da $\it \acute{arvore}$ $\it sintática$

O conjunto de todas as cadeias geradas a partir da variável inicial é chamada de *linguagem de uma gramática* $(L(G_i))$.

A liguagem da gramática G_1 é $\{0^n \# 1^n | n > 0\}$.

Toda linguagem gerada por alguma gramática livre-de-contexto é chamada de $\it linguagem~livre-de-contexto~\rm (LLC).$

Figura 2.1: Arvore sintática para 000#111 na gramática G_1

2.1.1 Definição Formal de uma Gramática Livre-de-Contexto

Uma gramática livre-de-contexto (GLC) é uma 4-upla (V,Σ,R,S) onde:

- 1. V é um conjunto finito denonimado de as variáveis;
- 2. Σ é um conjunto finito, disjunto de V, denonimado de os **terminais**;
- 3. R é um conjunto finito de **regras**, com cada regra sendo uma variável e uma cadeia de variáveis e terminais;
- 4. $S \in V$ é a variável inicial;

Se u, v e w são cadeias de variáveis e terminais, e $A \to w$ é uma regra da gramática, dizemos que uAv **origina** uwv, escrito $uAv \to uwv$. Digamos que u **deriva** v, escrito $u \stackrel{*}{\Rightarrow} v$, se u = v ou se uma sequencia u_1, u_2, \ldots, u_k existe para $k \ge 0$ e

$$u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k$$

A linguagem da gramática é $\{w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w\}$.

2.1.2 Projetando Gramáticas Livres-de-Contexto

• 1. Muitas LLCs pode ser consideradas como a união de outras LLCs mais simples, portanto para gerar uma GLC para um LLC é aconselhável dividir o problema em partes menores e combinar as regras obtidas para os LLCs mais simples em um nova regra $S \Rightarrow S_1|S_2|\ldots|S_n$, onde as variáveis S_i são as variáveis iniciais para as gramáticas individuais.

Exemplo: Obtenha a gramática para $\{0^n 1^n | n \ge 0\} \cup \{1^n 0^n | n \ge 0\}$

— Primeiramente obtemos a gramática de $\{0^n1^n|n\geq 0\}$

$$S_1 \to 0S_11|\varepsilon$$

– Depois obtemos a gramática de $\{1^n0^n|n\geq 0\}$

$$S_2 \to 1S_20|\varepsilon$$

– Para unir as duas gramáticas basta utilizar $S \to S_1 | S_2$, a gramática final fica:

$$S \to S_1 | S_2$$

$$S_1 \to 0 S_1 1 | \varepsilon$$

$$S_2 \to 1 S_2 0 | \varepsilon$$

• 2. Caso a linguagem seja regular, pode ser construído primeiramente o AFD e convertê-lo em um GLC da seguinte maneira:

Crie uma variável R_i para cada estado q_i ;

Adicione a regra $R_i \to aR_j$, se $\delta(q_i, a) = q_j$;

Adicione a regra $R_i \to \varepsilon$ se q_i for um estado de aceitação;

Faça R_0 a variável inicial do GLC se q_0 do estado inicial do AFD;

- 3. No caso em que a linguagem apresentar subcadeias ligadas, de forma que uma máquina que reconheça essa linguagem teria de armazenar uma quantidade ilimitada de informação sobre cada uma das subcadeias como ocorre em {0ⁿ1ⁿ|n ≥ 0}, onde o número de 0s tem q ser igual ao número de 1s. Voce pode construir uma GLC para lidar com essa situação usando uma regra da forma R → uRv, que gera cadeias nas quais a parte contendo os u's corresponde a parte contendo os v's.
- 4. No caso mais complexo as cadeias podem conter certas estruturas que aparecem recursivamente como parte de outras(ou da mesma) estrutura.
 Para resolver o problema colocamos o símbolo da variável que gera a estrutura na regra, a onde pode ocorrer recursão.

2.1.3 Ambiguidade

Ocorre quando uma cadeia pode ter mais de uma árvore sintática. Se uma gramática gera a mesma cadeia de várias maneiras diferentes, dizemos a que a cadeia é derivada ambiguamente nessa gramatica. Se uma gramática gera alguma cadeia ambiguamente dizemos que a gramática e ambíqua.

Para verificar se existe ambiguidade é analizada a **derivação mais a esquerda**, se a cada passo a variável remanescente for igual à que deve ser substituída, pode existir ambiguidade.

Definição 1 Uma cadeia w é derivada ambiguamente na gramática livre-docontexto G se ela tem duas ou mais derivações mais a esquerda diferentes. A gramática G é ambigua se ela gera alguma cadeia ambiguamente.

Para uma gramática ambígua podem existir outras gramáticas não ambíguas que geram a mesma linguagem.

Algumas LLCs podem ser geradas somente por gramáticas ambíguas, essas são chamadas de **inerentemente ambíguas**.

2.1.4 Forma Normal de Chomsky

Uma gramática livre-do-contexto está na **forma normal de Chomsky** se toda regra é da forma:

$$A \to BC$$

 $A \to a$

Onde a e qualquer terminal e A, B e C são quaisquer variáeis exceto que B e C não podem ser a variável inicial. Adicionalmente, permitimos a regra $S \to \varepsilon$, onde S e a variável inicial.

Teorema 2 Qualquer linguagem livre-do-contexto é gerada por uma gramática livre-do-contexto na forma normal de Chomsky.

Ideia da Prova: Primeiramente adicionamos uma nova variável inicial, em seguida eliminamos todas as **regras** ε da forma $A \to \varepsilon$, depois são eliminadas as **regras unitárias** da forma $A \to B$ e finalmente convertemos as regras remanescentes de forma apropriada.

Prova:

- 1. Adicionamos uma nova variável inicial S_0 e a regra $S_0 \to S$, onde S era a variável inicial original.
- 2. Remoção das regras ε , onde as variáveis A, que não sejam a variável inicial. Para cada regra que contenha A do lado direito, adicionamos uma nova regra com essa ocorrência apagada, por exemplo para $R \to uAv$ adicionaríamos:

$$R \to uv$$

No caso $R \to uAvAw$ adicionaríamos:

 $R \to uvw$

 $R \rightarrow uAvw$

 $R \to uvAw$

Caso a regra seja $R \to A$ adicionamos:

 $R \to \varepsilon$, somente no caso de não tenha sido removido anteriormente.

- 3. Remoção das regras unitárias. Removemos $A \to B$, então sempre que existir um $B \to u$, adicionamos $A \to u$ a menos que tenha sido uma regra unitária removida anteriormente.
- 4. Substituir cada regra $A \to u_1 u_2 \dots u_k$, onde $k \geq 3$ e cada u_i é uma variável ou símbolo terminal com as regras $A \to u_1 A_1, A \to u_2 A_2, \dots, A \to u_k A_k$. Os $A_i's$ são novas variáveis.

Se k=2, substituir qualquer u_i por uma nova variável U_i e adicionar a regra $U_i \to u_i$.

Exemplo: A GLC original G a ser transformada para a forma normal $\acute{\text{e}}$:

 $S \to ASA|aB$

 $A\to B|S|\varepsilon$

 $B \to b|\varepsilon$

Todas as mudanças de adição de novos símbolos realizadas estão em **azul** e a variáveis ou terminal à serem removidas em cinza.

• 1. Adicionamos primeiramente a nova variável inicial S_0 :

$$\begin{aligned} \mathbf{S_0} &\to \mathbf{S} \\ S &\to ASA|aB \\ A &\to B|S \\ B &\to b|\varepsilon \end{aligned}$$

• 2. Agora é necessário remover as regras ε com destaque em cinza, nesse caso a variável a ser analizada é B :

$$\begin{split} S_0 &\to S \\ S &\to ASA|aB|\mathbf{a} \\ A &\to B|S|\varepsilon \\ B &\to b|\varepsilon \\ \\ S_0 &\to S \\ S &\to ASA|aB|a|\mathbf{AS}|\mathbf{SA}|\mathbf{S} \\ A &\to B|S|\varepsilon \\ B &\to b \end{split}$$

ullet 3. Removendo as regras unitárias (somente B e S nesse caso) temos:

$$S o ASA|aB|a|AS|SA|S$$

 $A o B|S|ASA|aB|a|AS|SA$
 $B o b$
 $S_0 o ASA|aB|a|AS|SA$
 $S o ASA|aB|a|AS|SA$
 $A o B|b|ASA|aB|a|AS|SA$
 $B o b$

 $S_0 \to \mathbf{S}|\mathbf{A}\mathbf{S}\mathbf{A}|\mathbf{a}\mathbf{B}|\mathbf{a}|\mathbf{A}\mathbf{S}|\mathbf{S}\mathbf{A}$

• 4. Converter regras remanescentes substituindo AS por A_1 e AS por A_1 e a por U

$$S_0 \rightarrow S|\mathbf{A_1}A|\mathbf{U}B|a|AS|SA$$

$$S \rightarrow \mathbf{A_1}A|\mathbf{U}B|a|AS|SA$$

$$A \rightarrow b|\mathbf{A_1}A|\mathbf{U}B|a|AS|SA$$

$$B \rightarrow b$$

$$\mathbf{A_1} \rightarrow \mathbf{AS}$$

$$\mathbf{U} \rightarrow \mathbf{a}$$

2.2 Autômato com Pilha

São como AFDs, mas com um componente extra chamado **pilha**. Um autômato com pilha :

- Reconhecer algumas linguagens não-regulares.
- É equivalente a gramáticas de livre-contexto.
- determinístico e não-determinístico não são equivalentes em poder.
- não-determinístico pode reconhecer certas linguagens que o determinístico não pode.

2.2.1 Definição Formal de um Autômato com Pilha

Um autômato com pilha e uma 6-upla $(Q, \Sigma, \Gamma, \delta, q_0, F)$, onde $(Q, \Sigma, \Gamma, \delta, q_0 \in F)$ são todos conjuntos finitos, e:

- 1. Q é o conjunto de estados;
- 2. Σ é o alfabeto de entrada;
- 3. Γ é o alfabeto de pilha;
- 4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow P(Q \times \Gamma_{\varepsilon})$ é a função de transição;
- 5. $q_0 \in Q$ é o estado inicial;
- 6. $F \subseteq Q$ é o conjunto de estados de aceitação;

Um autômato com pilha $M=(Q,\Sigma,\varGamma,\delta,q_0,F)$ satisfaz as seguintes suposições:

- 1. $r_0 = q_0$ e $s_0 = \varepsilon$. Essa condição significa que M inicia apropriadamente, no estado inicial e com uma pilha vazia.
- 2. Para $i=0,\ldots,m-1$ temos $(r_i+1,b)\in\delta(r_i,w_{i+1},a)$, onde $s_i=at$ e $s_{i+1}=bt$ para algum $a,b\in\Gamma_\varepsilon$ e $t\in\Gamma^*$. Essa condicao afirma que M se
- 3. $r_m \in F$. Essa condição afirma que um estado de aceitacao ocorre ao final da entrada.

Exemplo: O que se segue e a descricao formal do AP que reconhece a linguagem $0^n 1^n | n \ge 0$. Suponha que M_1 seja $(Q, \Sigma, \Gamma, \delta, q_1, F)$, onde:

- $Q = \{q_1, q_2, q_3, q_4\}$
- $\Sigma = \{0, 1\}$
- $\Gamma = \{0, \$\}$
- $F = \{q_1, q_4\}$
- δ é dado pela tabela:

Input Pilha	t:	0		1			ε			
Pilha	: [0	\$	arepsilon	0	\$	ε	0	\$	ε
q_1										$\{(q_2,\$)\}$
q_2				$\{(q_2,0)\}$	$\{(q_3,\varepsilon)\}$					
q_3					$\{(q_3,\varepsilon)\}$				$\{(q_4,\varepsilon)\}$	
q_4										

 M_1 também pode ser representado por um diagrama de estados, e sua pilha é representada da seguinte maneira: " $a, b \to c$ " significa que ao ler um símbolo a da entrada, pode ser substituído no topo da pilha b por um símbolo c.

Figura 2.2: Diagrama de estados para o AP M_1 que reconhece $\{0^n 1^n | n \ge 0\}$

2.3 Equivalência com gramáticas livres-do-contexto

Teorema 3 Uma linguagem é livre do contexto se e somente se algum autômato com pilha a reconhece.

Lema 2 (converter GLC em um AP equivalente) Se uma linguagem é livre do contexto, então algum autômato com pilha a reconhece.

Ideia da prova Sabemos que existe para a LLC uma GLC, G que a gera. Mostramos como converter G em um autômato a pilha equivalente AP. É um pouco difícil de imaginar o funcionamento do autômato, mas criando ele de forma não-determinística, fico muito mais fácil, pois sempre que empilhamos, desempilhamos em seguida na transição não-determinística.

Prova Na construção do autômato $P=(Q,\Sigma,\Gamma,\delta,q_1,F)$, utilizamos a seguinte notação de transição $(r,u)\in\delta(q,a,s)$ para dizer que quando q é o estado atual, a próximo símbolo a ser lido, s o símbolo no topo da pilha, que irá ocorrer uma transição para o estado r e uma substituíção de s por u (pode conter mais de uma váriavel ou terminal, para abreviação) no topo da pilha.

Os estados de P são $\{q_{inicio}, q_{loop}, q_{aceita}\} \bigcup E$, onde E são os estados que precisamos implementar as abreviações. O estado inicial é q_{inicio} , e o único estado de aceitação é q_{aceita} .

A funcao de transição é definida da seguinte forma.

Figura 2.3: Exemplo da transição $\delta(q, a, s) = \{(r, u)\}$

- 1. Começamos inicializando a pilha para conter os símbolos \$ e S, portanto temos inicialmente $\delta(q_{inicio}, \varepsilon, \varepsilon) = \{(q_{loop}, S\$)\}.$
- **2.a** No caso de contermos no topo da pilha uma variável A por exemplo, adicionamos a transição $\delta(q_{loop}, \varepsilon, A) = \{\delta(q_{loop}, w) | \text{ onde } A \to w \text{ \'e} \text{ uma regra de } R.\}.$
- 2.b No caso de contermos no topo da pilha um símbolo terminal a por exemplo, adicionamos a transição $\delta(q_{loop}, \varepsilon, a) = {\delta(q_{loop}, \varepsilon)}.$
- 2.c No caso de contermos no topo da pilha o símbolo \$ que serve de marcador para indicar que a pilha está vazia, adicionamos $\delta(q_{loop}, \varepsilon, \$) = \{\delta(q_{aceita}, \varepsilon)\}.$

Figura 2.4: Exemplo da transição $\delta(q, a, s) = \{(r, u)\}$

Lema 3 (converter GLC em um AP equivalente) Se um autômato com pilha reconhece alguma linguagem, então ela é livre-do-contexto.

Ideia da prova Substituir o intervalo entre um empilhamento (no estado p) e um desempilhamento (no estado q), em que seja respeitada a condição de que a pilha deve ser a mesma em ambos os estados considerados, por uma váriavel (A_{pq}) . Tentamos dessa maneira gerar todas as cadeias de uma gramática G a partir de um autômato à pilha P.

Os casos que podem ocorrer sobre a leitura de uma cadeia x são que ou o símbolo empilhado seja o mesmo a ser desempilhado no final, ou não. Obrigatoriamente a pilha inicia e termina vazia. Caso ocorra de o símbolo desempilhado no estado final q seja o mesmo empilhado no início p, adicionamos a regra $A_{pq} \rightarrow aA_{rs}b$, onde a é a entrada lida no primeiro movimento, b a entrada lida no último movimento, r é o estado seguinte a p, e s o estado anterior a q. No caso de o símbolo desempilhado seja diferente do empilhado inicialmente adicionamos a regra $A_{pq} \rightarrow A_{pr}A_{rq}$.

Prova Sendo $P=(Q,\Sigma,\Gamma,\delta,q_0,\{q_{aceita}\})$, vamos construir G. A váriavel inicial de G é $A_{q_{inicio}q_{aceita}}$ e suas regras são:

- Para cada $p,q,r,s\in Q,\,t\in\Gamma$ e $a,b\in\Sigma_{\varepsilon}$ se $\delta(p,a,\varepsilon)=\{(r,t)\}$ e $\delta(q,b,t)=\{(q,\varepsilon)\}$, adicionar a regra $A_{pq}\to aA_{rs}b$ em G.
- Para cada $p,q,r \in Q$, adicionar a regra $A_{pq} \to A_{pr}A_{rs}$ em G.
- Para cada $p \in Q$, adicionar a regra $A_{pp} \to \varepsilon$ em G.

2.4 Lema do bombeamento para linguagens livresde-contexto

Se A é uma linguagem livre-de-contexto, então existe um número p (comprimento do bombeamento) onde, se s é uma cadeia qualquer em A de comprimento pelo menos p, s pode ser dividido em cinco partes s=uvxyz satisfazendo as condições:

- paca cada $i \ge 0, uv^i xy^i z \in A$,
- |vy| > 0,
- $|vxy| \le p$,

Capítulo 3

A tese de Church-Turing

3.1 Máquinas de Turing

Uma máquina de Turing pode fazer tudo o que um computador real pode fazer. O modelo da máquina de Turing usa uma fita infinita como sua memória ilimitada. Ela tem uma cabeça de fita que pode ler e escrever símbolos e mover-se sobre a fita. Inicialmente, a fita contem apenas a cadeia de entrada e está em branco em todo o restante. A máquina continua a computar até que ela decida produzir uma saída. As saídas aceite e rejeite são obtidas entrando em estados designados de aceitação e de rejeição. Se não entrar num estado de aceitação ou de rejeição, ela continuará a computar para sempre.