

目录

ONE 模型实现

Statsmodels、置信区间、假设检验

TWO 预测结果的置信区间

自信的预测

THREE 参数的置信区间

正确理解置信区间的含义

模型实现

Statsmodels

生产记事本

日期	玩偶个数	成本	第几天
04/01	10	7.7	1
04/02	10	9.87	2
04/03	11	10.87	3
04/04	12	12.18	4
04/05	13	11.43	5
04/06	14	13.36	6
04/07	15	15.15	7
04/08	16	16.73	8
04/09	17	17.4	9

x y

$$y = x + \varepsilon$$

25

模型实现

统计分析结果

模型假设:

$$y_i = ax_i + b + \varepsilon_i$$

- · a的真实值等于1
- · b的真实值等于0

模型实现

假设检验

模型假设:

$$y_i = ax_i + b + \varepsilon_i$$

- · a的真实值等于1
- · b的真实值等于0

这行代码表示,检验的假设为:x变量 的系数等于O (即a=0);并非x=0 P-value小于0.05。拒绝a=0 # 用f test检测x对应的系数a是否显著 这个假设,即a是显著的 print res.f_test("x=0") <F test: F=array([[460.4584822]]),\p=2.8484654145e-14,\df_denom=18, df_num=1> P-value大于0.05。不能拒绝b=0 这个假设,即b是不显著的 # 用f test检测常量b是否显著 print res.f_test("const=0") <F test: F=array([[1.03355794]]), p=0.322795640083, df_denom=18, df_num=1> # 用f test检测a=1, b=0同时成立的显著性 print res.f_test(["x=1", "const=0"])_ <F test: F=array([[0.99654631]]), rp=0.388626797606, df_denom=18, df_num=2> P-value大于0.05。不能拒绝b=0, a=1 这个两个假设同时成立

预测结果的置信区间

自信的预测

模型的预测公式:

参数的置信区间

正确理解置信区间的含义

红色竖线表示不包含1的95%置信区间蓝色竖线表示包含1的95%置信区间

THANK YOU