Projeto de cabeamento estruturado da empresa D.H.U Contabilidade e Assessoria LTDA

Thiago Mitsuo Yamada

Universidade Tecnológica Federal do Paraná - Câmpus Cornélio Procópio

objetivo do projeto será a criação de uma estrutura completamente nova de cabeamento estruturado para a empresa D.H.U Contabilidade e Assessoria LTDA. Essa nova estrutura será composta por diversos computadores, além de servidores de aplicação e backup. Todos os computadores serão interligados a um domínio, controlados pelo Active Directory, oferecido pelo sistema operacional Windows Server. Os usuários serão vinculados a este controlador de domínio e possuirão acesso a um terminal service. O projeto abrange todo o levantamento de planta física, elaboração da planta logica, levantamento dos equipamentos de informática e o orçamento da implantação.

2 de abril de 2019

Lista de figuras

1	Planta Física do prédio.
2	Diagrama de rede.
3	Diagrama da distribuição física de rede
4	Rack de telecomunicações
5	Rack de equipamentos
6	Nomenclatura da identificação dos cabos
7	Cronograma para a execução do projeto
8	Valores em DB para referência nos testes
List	a de tabelas
1	Organizacoes envolvidas
2	Equipamentos Passivos de Rede
3	Identificação de cada cabo de rede.
4	Identificação de cada cabo de rede.
5	Servicos prestados
6	Orcamento-Equipamentos Passivos de Rede

Sumário

1	Introdução 1.1 Benefícios	4 4
2	Estado atual	4
3	Requisitos	4
4	Usuários e Aplicativos 4.1 Usuários	5 5
5	Estrutura predial existente	5
6	Planta Lógica - Elementos estruturados 6.1 Estado atual	6 6 9 9
7	Implantação	11
8	Plano de certificação	13
9	Plano de manutenção 9.1 Plano de expansão	13 14
10	Risco	14
11	Orçamento	14
12	Recomendações	16
13	Referências hibliográficas	16

1 Introdução

A empresa atualmente está transitando para uma nova instalação, com estrutura predial mais moderna, atendendo aos requisitos para o projeto de cabeamento estruturado. Na estrutura atual, a empresa não possui nenhum sistema de cabeamento estruturado, e com o aumento no quadro de funcionários, a rede tornou-se instável, com muitos problemas de conexão e baixa velocidade.

O quadro de funcionários conta com 8 funcionários, divididos nas áreas de pessoa física, pessoa jurídica, gerência e arquivo morto. Os equipamentos de TI são constituídos em 9 computadores, 1 roteador, 1 switch e 2 impressoras.

O escopo do projeto constitui a instalação física de toda a parte do cabeamento e equipamentos de TI, além de sua configuração, documentação completa, testes funcionais e a realização da certificação.

A expansão prevista da empresa não será maior que 30 computadores.

1.1 Benefícios

Os benefícios com a introdução de uma estrutura de cabeamento estruturado resultará em maior estabilidade para a rede, além da facilidade na manutenção, segurança para os funcionários e clientes, a possibilidade da execução de aplicativos de forma remota e o aumento do desempenho das atividades da empresa.

1.2 Organizações Envolvidas

As organizações envolvidas no projeto de cabeamento estruturado são apresentadas na tabela 1 abaixo:

Organizacao Envolvida	Area Responsavel
Equipe 1	Desenvolvimento do projeto e comunicacao com o cliente
Equipe 2	Passagem de cabos e crimpagem de conectores
Equipe 3	Montagem de racks, servidores, switches e patch panels
Equipe 4	Montagem de Eletrocalhas, tomadas de rede e
Equipe 4	identificacao do cabeamento
Equipe 5	Certificacao da rede
Equipe 6 - Empresa Contratada	Configuração de servidores, micros e impressoras
Equipe 7 - Construtora	Responsavel pela construcao do predio comercial

Tabela 1: Organizacoes envolvidas.

2 Estado atual

Atualmente o estado da rede é composta por uma pequena estrutura, constituindo de 1 roteador, 9 computadores, 1 switch, 2 impressoras e os cabos cat5 para a conexão entre os equipamentos de TI.

As principais reclamações dos funcionários baseiam-se nos problemas quanto a estabilidade da conexão. Muitos dos aplicativos utilizados sofrem com a queda da conexão e dessa forma gerando transtornos para a finalização dos serviços. Além disso a manutenção é dificultada por não possuir uma estrutura organizada.

3 Requisitos

Os requisitos do projeto são:

1- Possibilidade de expansão da rede para compra de novos equipamentos;

- 2- Serviço de controle de usuários;
- 3- Bloqueio de acesso a sites com conteúdo inapropriado;
- 4- Serviço de segurança das informações trafegadas na rede;
- 5- Serviço de cópia de segurança dos dados utilizados;
- 6- Serviço de acesso remoto para uso de aplicativos.

4 Usuários e Aplicativos

A situação atual da empresa consiste no quadro de 8 funcionários, todos com computadores individuais. A estimativa com à mudança de prédio, é contratar até 4 funcionários para as novas necessidades. Além disso, para uma demanda futura, a empresa prevê à contratação de estagiários para compor o quadro de funcionários. Considerando a evolução prevista, o projeto prevê a instalação de no máximo 60 pontos de rede, além da compra de 3 servidores, 4 switches, 4 patch panels, 4 computadores, 2 roteadores wifi e 1 impressora, para a atual mudança de prédio.

4.1 Usuários

Os perfis de usuário são compostos por 8 funcionários, divididos em dois para o escritório de gerência, um para o arquivo morto, dois para o escritório de pessoa física e mais dois no de pessoa jurídica.

4.2 Aplicativos

Os aplicativos utilizados pelo escritório com uso intenso são:

- Pacote Office da Microsoft, principalmente o Excel e o pacote LibreOffice, utilizando o aplicativo Calc.
- Aplicativos destinados a declaração para Receita Federal, Receita Estadual, Municipais e para declarações trabalhistas.

Os demais aplicativos utilizados pelo escritório são de uso tradicional, como navegadores de internet.

5 Estrutura predial existente

A nova estrutura predial é apresentado na figura 1 abaixo. O prédio apresenta uma área total de 261.9 metros quadrados, possuindo as seguintes divisões na estrutura: sala de telecomunicações, com 10.5 metros quadrados; sala de equipamentos, com 18.6 metros quadrados; escritório de gerência, com 38.25 metros quadrados; escritório de pessoa física, com 51 metros quadrados; escritório de pessoa jurídica, com 59.5 metros quadrados; arquivo morto, com 34 metros quadrados e a recepção, com 24.25 metros quadrados. Todas as salas serão interligadas através do corredor, iniciando a partir da recepção, possuindo 25.8 metros quadrados de área.

O projeto abrange uma estrutura que disponibilizará eletrodutos para o alojamento dos cabos de rede através das paredes e os compartimentos para os pontos de rede. Além disso, a estrutura predial utiliza teto falso entre a laje, facilitando o uso de eletrocalhas para a distribuição do cabeamento de rede.

As distancias entre os pontos de rede podem variar entre 1 a 3 metros de distância.

Figura 1: Planta Física do prédio.

6 Planta Lógica - Elementos estruturados

6.1 Estado atual

O estado atual da rede encontra-se composta por 9 computadores, 1 switch de 100 megabits, 1 roteador e o cabeamento utilizando cabos cat5. Os equipamentos como switch e roteador estão alocados em um mini rack fixado na parede do escritório. Como não foi utilizado calhas ou eletrodutos, os cabos foram distribuídos de forma aleatória de acordo com a posição de cada computador, percorrendo desde eletrodutos compartilhados com fios de energia elétrica ou espalhados pelo piso do escritório.

Com a mudança de prédio, apenas os equipamentos como computadores e as impressoras serão aproveitados no novo projeto de cabeamento estruturado, os demais itens, como os cabos, serão descartados, pela necessidade de utilizar equipamentos mais modernos.

6.2 Topologia

A sala de TI, no qual é divida em sala de telecomunicações e em sala de equipamentos, localizam-se todos os dispositivos como modem, switches, patch panels, servidores e os racks. A recepção de internet, ilustrado no diagrama da figura 2 será realizada pelo modem e em seguida para um servidor, no qual contém os serviços de proxy, dhcp, dns e active directory. Logo após, a próxima conexão será com o switch 1 ou central, este por usa vez será responsável pela conexão aos servidores de aplicação e backup, além dos switches posteriores, compondo uma topologia de rede em formato estrela. Os demais switches realizarão as conexões dos computadores situados em cada sala do prédio:

- Switch 2: é encarregado da conexão dos computadores e impressora do escritório de gerência;
- Switch 3: é encarregado da conexão dos computadores, impressora e roteador sem fio do escritório de pessoa física;
- Switch 4: é encarregado da conexão dos computadores, impressora, roteador sem fio do escritório de pessoa jurídica, além do mais, da sala de arquivo morto e a recepção.

Figura 2: Diagrama de rede.

A figura 3 a seguir demonstra à distribuição física da rede pela estrutura do prédio. A conexão entre a rede externa e a interna é realizada por meio da entrada da edificação(facilidades de entrada), utilizando um armário de telecomunicações para abrigar os cabos da concessionária de internet, localizados na sala de telecomunicações.

O cabeamento será todo realizado em cabos UTP categoria 6. Os switches serão todos conectados por patch cords aos patch panels, implementados em um rack. Para à conexão com as áreas de trabalhos da empresa, o projeto prevê à aplicação do sistema de cabeamento horizontal, este por sua vez, responsável pela ligação entre o patch panel e o ponto de telecomunicação específico, que no total somam 57 tomadas de rede, de acordo com o projeto estrutural do prédio.

Figura 3: Diagrama da distribuição física de rede.

A sala de telecomunicações abrigará um rack para alojar os switches, os patch panels e o modem de internet na seguinte configuração da figura 4.

Figura 4: Rack de telecomunicações.

A sala de equipamentos abrigará um rack para alojar o servidor de proxy, juntamente com os serviços de dhcp, dns e active directory. Bem como, os servidores de aplicação e backup, apresentados na configuração da figura 5.

Figura 5: Rack de equipamentos.

6.3 Encaminhamento

O encaminhamento dos cabos será por eletrocalhas e eletrodutos, a eletrocalha fará à distribuição dos cabos pelas salas do prédio, iniciando-se desde a sala de telecomunicações, deslocando por aberturas entre as paredes dos cômodos, percorrendo através de um teto falso até a sala de recepção.

A eletrocalha será instalada próxima a parede que contém as janelas, os eletrodutos verticais, instalados dentro das paredes, serão responsáveis pela conexão até o pequeno quadro de distribuição embutido na parede e este por sua vez será conectado aos eletrodutos horizontais, percorrendo os cabos para seus respectivos pontos de telecomunicações na sala.

6.4 Memorial descritivo

A tabela 2 abaixo relaciona todos os equipamentos necessários para a nova rede, a marca, o modelo e a quantidade de ambos.

Tabela 2: Equipamentos Passivos de Rede

Equipamentos Passivos de Rede					
Equipamento	Marca Modelo		Quantidade		
Cabo UTP CAT6	Furukawa	Caixa 305M	6		
Patch Cords CAT6	Furukawa	Cabo 1M	80		
Conector RJ-45	Furukawa	Macho CAT6 Pacote 50 Pecas	3		
Modulo Tomada para Rede	Fame	RJ-45 CAT6 1 peca 8 vias	60		
Eletrocalhas	InfraEletrocalhas	150x100mm - Perfuradas 3M	9		
Eletrocalhas Curva Vertical	InfraEletrocalhas	Ext. 90 - 150x100mm	1		
Suporte Omega	InfraEletrocalhas	150 x 100 mm	18		
Patch Panels	Furukawa	CAT6 24 posicoes GIGALAN	3		
Rack Aberto 24U	Nacional Racks	$19 - 1,27M \times 0,67M$	1		
Rack Coluna Padrao 24U	Nacional Racks	19 - 1,27M x 0,60M	1		

6.5 Identificação dos cabos

Para criar a identificação dos cabos de rede, foi utilizado a seguinte nomenclatura, demonstrada na figura 6.

	Identificação do cabeamento				
Switch 1					
	5 x CSU 4P				
	01 01 a 05				
Switch 2					
	12 x CSU 4P				
	02 01 a 12				
Switch 3					
	12 x CSU 4P				
	03 01 a 12				
Switch 4					
	13 x CSU 4P				
	04 01 a 13				
	11 x CSU 4P				
	05 01 a 11				
	4 x CSU 4P				
	05 01 a 04				

Figura 6: Nomenclatura da identificação dos cabos.

No switch 1, a linha "5 x CSU 4P" significa que a quantidade de cabos é 5, o cabo é secundário do tipo UTP e conta com 4 pares no fio. A linha "01 01 a 05" exibe qual área do prédio será instalado o cabeamento, no caso 01 e quais pontos de telecomunicações serão atendidos, no qual serão de 01 a 05. As demais nomenclaturas seguem a mesma lógica para a identificação do cabeamento por cada sala do prédio.

Além de identificação dos cabos por área do prédio, a nomenclatura de cada cabo em seu respectivo ponto de telecomunicações é dada pelas tabelas 3 e 4 abaixo.

Tabela 3: Identificação de cada cabo de rede.

Switch	Id. Cabo	Switch	Id. Cabo
Switch 1	CSU0101	Switch 2	CSU0201
	CSU0102		CSU0202
	CSU0103		CSU0203
	CSU0104		CSU0204
	CSU0105		CSU0205
			CSU0206
			CSU0207
			CSU0208
			CSU0209
			CSU0210
			CSU0211
			CSU0212

A identificação no caso de "CSU0101", corresponde a cabo de rede secundário, do tipo UTP, da sala 01 do prédio e o ponto de telecomunicações 01. As demais identificações seguem a mesma lógica, diferenciando as salas e os pontos de telecomunicações.

Tabela 4: Identificação de cada cabo de rede.

Switch	Id. Cabo	Switch	Id. Cabo	Id. Cabo	Id. Cabo
Switch 3	CSU0301	Switch 4	CSU0401	CSU0501	CSU0601
	CSU0302		CSU0402	CSU0502	CSU0602
	CSU0303		CSU0403	CSU0503	CSU0603
	CSU0304		CSU0404	CSU0504	CSU0604
	CSU0305		CSU0405	CSU0505	
	CSU0306		CSU0406	CSU0506	
	CSU0307		CSU0407	CSU0507	
	CSU0308		CSU0408	CSU0508	
	CSU0309		CSU0409	CSU0509	
	CSU0310		CSU0410	CSU0510	
	CSU0311		CSU0411	CSU0511	
	CSU0312		CSU0412		
			CSU0413		

7 Implantação

Para uma implantação organizada da rede, o cronograma da figura abaixo apresentará todas as etapas e a duração para a execução do projeto.

Figura 7: Cronograma para a execução do projeto.

8 Plano de certificação

Para a rede ser totalmente certificada, os canais e links serão testados eletricamente para atender a norma TIA-568-C.2. Os testes para o cabeamento metálico serão realizados com um aparelho certificador de rede. Os testes serão:

- Continuidade e sequência;
- Comprimento;
- Atenuação;
- NEXT Paradiafonia Near End CrossTalk:
- PSNEXT Soma da paradiafonia Power Sum NEXT;
- ELFEXT Telediafonia Equal Level Far End CrossTalk;
- PSELFEXT Somatória da telediafonia Power Sum ELFEXT;
- Perda de retorno;
- Retardo do grupo ou tempo de atraso;
- Dispersão de atraso.

A certificação será realizada após o término dos serviços prestados pela empresa contratada, dessa maneria a estrutura da rede estará completa, próximo do que seria em operação real. Para uso de parâmetro, a figura 8 abaixo indica os valores corretos para cada teste.

	Limites elétricos para canais e links em cada categoria					
	Catego	ria 5	Categor	ia 5e	Catego	oria 6
teste	Link Per.	Canal	Link Per.	Canal	Link Per.	Canal
Atenuação (dB)	21,6	24,0	21,0	24,0	30,7	36,0
NEXT(dB)	27,1	29,3	32,3	30,1	35,3	33,1
PSNEXT(dB)	-	-	29,3	27,1	32,7	30,2
ELFEXT(dB)	17,0	17,0	18,6	17,4	16,2	15,3
PSELFEXT(dB)	14,4	14,4	15,6	14,4	13,2	12,3
Perda de retorno(dB)	10,1	8,0	12,1	10,0	10,0	8,0
Atraso (ns)	518	555	498	555	498	555
Dispersão de atraso (ns)	45	50	44	50	44	50
Frequência de teste	100 Mhz		100 l	Mhz	250	Mhz

Figura 8: Valores em DB para referência nos testes.

O relatório da certificação será composto pelos testes de cada item apresentado, de maneira à apresentar a aprovação ou não do cabeamento estruturado e as correções necessárias para o correto funcionamento da rede.

9 Plano de manutenção

A empresa cliente optou por não contratar as revisões periódicas na estrutura, somente a necessidade de atendimento para eventuais problemas na rede e o contrato com a empresa contratante para o gerenciamento de servidores, computadores e impressoras.

9.1 Plano de expansão

A empresa apresentou nenhum plano para a expansão da estrutura de rede.

10 Risco

Os riscos do projeto que podem afetar a estrutura são:

- Perda de dados: podem ocorrer por algum desligamento não programado dos servidores;
- Incêndio em data center: por alguma falha elétrica poderá acarretar em inicio de chamas na sala de TI:
- Colaboradores não autorizados: por acesso não definido de usuários podem comprometer a segurança dos dados.

11 Orçamento

Os orçamentos serão divididos em dois, um para os serviços necessários para o cabeamento estruturado da empresa e um de equipamentos para a rede. As tabelas 5 e 6 apresentam os valores do orçamento.

Tabela 5: Servicos prestados

Servicos					
Mao de obra	Duracao-Horas	Custo/H	Total		
Cabeamento Estruturado	280	R\$ 150,00	R\$ 42000,00		
Contratacao Empresa 01	200	R\$ 90,00	R\$ 18000,00		
TOTAL SERVICOS	R\$ 60000,00				

Tabela 6: Orcamento-Equipamentos Passivos de Rede

Equipamentos para a rede					
Equipamento	Equipamento Marca Modelo Qtd Preco			Preco Un	Total
Cabo UTP CAT6	Furukawa	Caixa 305M	6	R\$ 1597,00	R\$ 9582,00
Patch Cords CAT6	Furukawa	Cabo 1M	80	R\$ 15,00	R\$ 1200,00
Conector RJ-45	Furukawa	Macho CAT6 Pacote 50 Pecas	3	R\$ 195,00	R\$ 585,00
Modulo Tomada para Rede	Fame	RJ-45 CAT6 1 peca 8 vias	60	R\$ 60,00	R\$ 3600,00
Eletrocalhas	InfraEletrocalhas	150x100mm - Perfuradas 3M	9	R\$ 73,95	R\$ 665,55
Eletrocalhas Curva Vertical	InfraEletrocalhas	Ext. 90- 150x100mm	1	R\$ 19,95	R\$ 19,95
Suporte Omega	InfraEletrocalhas	$150 \times 100 \text{mm}$	18	R\$ 5,25	R\$ 94,50
Patch Panels	Furukawa	CAT6 24 posicoes GIGALAN	4	R\$ 762,51	R\$ 3050,04
Rack Aberto 24U	Nacional Racks	$19 - 1,27M \times 0,67M$	1	R\$ 537,64	R\$ 537,64
Rack Coluna Padrao 24U	Nacional Racks	$19 - 1,27M \times 0,67M$	1	R\$ 361,89	R\$ 361,89
Switch	Dell	Networking X1026	4	R\$ 2199,00	R\$ 8796,00
Servidor	Dell	PowerEdge R230 — 1HD de 1TB — 8GB	3	R\$ 6199,00	R\$ 18597,00
Computador	Dell	Inspiron Small Desktop -Intel Core i5 - 8GB - W10 Home + Monitor 21,5 pol.	4	R\$ 4208,00	R\$ 16832,00
Roteador	TP-Link	AC1200 - Archer C50	2	R\$ 218,71	R\$ 437,42
Impressora	Brother	Laser Duplex WiFi - DCP-L2540DW	1	R\$ 1628,32	R\$ 1628,32
TOTAL EQUIPAM	ENTOS				R\$ 65.987,31

Apresentados os valores, a tabela 7 à seguir contém o orçamento total:

Tabela 7: Orcamento Total

Orcamento Total	Valor
Equipamentos para a rede	R\$ 65987,31
Servicos	R\$ 60000,00
TOTAL	R\$ 125987,31

12 Recomendações

Segue a lista abaixo com algumas recomendações para o correto funcionamento da estrutura de rede:

- Manter a sala de TI refrigerada;
- Uso de câmeras para a segurança da sala de TI;
- Agendamentos periódicos para a manutenção da rede e equipamentos de informática.

13 Referências bibliográficas

- [1] S. S. Caetano, "Aluno: _,"
- [2] J. M. S. PINHEIRO, "Topologias de redes de comunicação," Encontrado no site: http://www.projeto-deredes.com.br/artigos/artigo_topologias_de_rede.php&. Postado em, vol. 17, no. 07, 2006.
- [3] J. M. S. Pinheiro, "Curso de tecnologia em redes de computadores," Centro Universitario Geraldo Di Biase (UGB), Rio de Janeiro, Brasil.
- [4] J. Pinheiro, "Obtido de projeto de redes: http://www.projetoderedes.com.br/aulas/ugb_infraestrutura," UGB_aula1_Conceitos_de_Infraestrutura.pdf, 2010.
- [5] J. Ross, Cabeamento Estruturado. Julio Ross, 2007.
- [6] J. Costa, "Apostila de redes de computadores," São Paulo, 2010.
