

CH32V20x_30x Datasheet

FOR CH32V203/303/305/307/208xx V2.1

Overview

The CH32Vx series are industrial-grade general-purpose microcontrollers based on Qingke 32-bit RISC-V architecture. All CH32Vx series are equipped with a hardware stack area and fast interrupt entry, which greatly improves the interrupt response speed on the basis of standard RISC-V. CH32V208x is integrated with V4C core, adding memory protection function, and reducing the hardware division cycle at the same time. CH32V303/305/307 is integrated with V4F core, adding single-precision floating-point instruction set, expanding hardware stack area, and having higher computing performance. Product resources: the clock speed can be 144MHz, independent GPIO power supply. It has up to 8 extended USARTs/UARTs, 4 motor timers, and it provides a 32-bit general-purpose timer. The CH32Vx contains USB2.0 high-speed interface (480Mbps) and built-in PHY transceiver. Its Ethernet MAC upgrades to Gigabit and is integrated with 10M-PHY module. It also supports BLE5.3 and so on.

Features

• Core:

- Qingke 32-bit RISC-V core, support multiple instruction set
- Fast programmable interrupt controller + hardware interrupt stack
- Branch prediction, conflict handling
- Single cycle multiplication, hardware division, hardware FPU
- 144MHz clock speed

Memory:

- Max 128KB volatile memory SRAM
- 480KB CodeFlash (zero wait application area + non-zero wait data area)
- 28KB BootLoader
- 128B non-volatile system configuration memory
- 128B user-defined memory

Power management and low-power mode:

- System power supply V_{DD}: 3.3V (rated)
- Independent power supply for GPIO unit $V_{\rm IO}$: 3.3V (rated)
- Low-power mode: sleep, stop, standby
- V_{BAT} independently powers RTC and backup register

Clock & Reset

- Built-in factory-calibrated 8MHz RC oscillator
- Built-in 40 KHz RC oscillator
- Built-in PLL, optional CPU clock up to 144MHz
- External support 3~25MHz high-speed oscillator
- External support 32.768 KHz low-speed oscillator
- Power on/down reset, programmable voltage detector

- Real-time clock (RTC): 32-bit independent
 RTC timer
- 2 groups of 18-channel general purpose

DMA controllers

- 18 channels, support ring buffer
- Support

TIMx/ADC/DAC/USART/I2C/SPI/I2S/SDIO

• 4 groups of OPAs and comparators:

connected with ADC and TIMx

- 12-bit DAC × 2
- 12-bit ADC × 2
- Analog input range: V_{SSA}~V_{DDA}
- 16 external signals + 2 internal signals
- On-chip temperature sensor
- Dual ADC conversion mode

16-channels TouchKey detection

Timers

- 4 16-bit advanced-control timers, with dead zone control and emergency brake; can offer PWM complementary output for motor control
- 3 16-bit general-purpose timers, provide input capture/output comparison/PWM/pulse counting/incremental encoder input
- Single 32-bit or 16-bit general-purpose timer
- 2 basic timers
- 2 watchdog timers (independent watchdog and window watchdog)
- SysTick: 64-bit counter

• Communication interfaces:

- 8 × USART interfaces (including 5 UARTs)
- 2 × I²C interfaces (support SMBus/PMBus)
- 3 × SPI interfaces (SPI2, SPI3 for I²S2, I²S3)
- USB2.0 full-speed device interface (full-speed and low-speed)
- USB2.0 full-speed host/device interface
- USB2.0 full-speed OTG interface
- USB2.0 high-speed host/device interface (built-in PHY)
- 2 CAN interfaces (2.0B active)
- SDIO host interface (MMC, SD/SDIO, CE-ATA)
- FSMC memory interface

- Digital video port (DVP)
- Gigabit Ethernet controller MAC, 10M PHY transceiver
- Bluetooth Low Energy (BLE) 5.3

Fast GPIO port

- 80 GPIO ports, with 16 external interrupts
- Security features: CRC unit, 96-bit unique chip ID
- **Debug mode:** serial 2-wire debug interface
- Package: LQFP or QFN

CH32V20x 30x Datasheet 1 http://wch.cn

Chapter 1 Series product description

CH32Vx series products are industrial-grade general-purpose enhanced MCUs based on 32-bit RISC-V instruction set and architecture. Its products are divided by function resources into categories such as general purpose, connectivity, and wireless communication. They are extended to each other in terms of package types, peripheral resources and quantities, pin numbers, and device characteristics, but they are compatible with each other in software, functions, and hardware pin configurations. The product iterations and rapid applications provide freedom and convenience for users in product development.

For the features of this series of products, please refer to the datasheet "CH32V20x 30xDS0".

For the peripheral function description, usage and register configuration, please refer to "CH32FV2x V3xRM".

The data manuals and reference manuals can be downloaded on the official website of WCH: http://www.wch.cn/

Information about the RISC-V instruction set architecture can be downloaded from: https://riscv.org/

This datasheet is the datasheet of CH32V20x and CH32V30x series.

Table 1-1 Series overview

Low-and-me	dium-density	High-density	general-purpose	Connectivity	Interconnectivity	Wireless device
general-purpos	e device (V203)	devic	e (V303)	device (V305)	device (V307)	(V208)
Qingk	e V4B		Qing	gke V4F		Qingke V4C
32K Flash	64K Flash	128K Flash	256K Flash	128K Flash	256K Flash	128K Flash
10K SRAM	20K SRAM	32K SRAM	64K SRAM	32K SRAM	64K SRAM	64K SRAM
2*ADC(TKey) ADTM 2*GPTM 2*USART SPI I2C USBD USBHD CAN RTC 2*WDG 2*OPA	2*ADC(TKey) ADTM 3*GPTM 4*USART 2*SPI 2*I2C USBD USBHD CAN RTC 2*WDG 2*OPA	2*ADC(TKey) 2*DAC ADTM 3*GPTM 3*USART 2*SPI 2*I2C USBHD CAN RTC 2*WDG 4*OPA	2*ADC(TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*USART/UART 3*SPI(2*I2S) 2*I2C USBHD CAN RTC 2*WDG 4*OPA TRNG SDIO FSMC	2*ADC(TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 5*USART/UART 3*SPI(2*I2S) 2*I2C USB-OTG USBHS(+PHY) 2*CAN RTC 2*WDG 4*OPA TRNG SDIO	2*ADC(TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*USART/UART 3*SPI(2*I2S) 2*I2C USB-OTG USBHS(+PHY) 2*CAN RTC 2*WDG 4*OPA TRNG SDIO FSMC DVP ETH-1000MAC 10M-PHY	ADC(TKey) ADTM 3*GPTM GPTM (32) 4*USART/UART 2*SPI 2*I2C USBD USBHD CAN RTC 2*WDG 2*OPA ETH-10M(+PHY) BLE5.3

Note: The number or functions of some peripherals of the same type of product may be restricted by the package. Please confirm the package when selecting.

Abbreviations

ADTM: Advanced Timer

GPTM: General Purpose Timer GPTM (32): 32-bit General

Purpose Timer

BCTM: Basic Timer

TKey: Touch Key

OPA: Operational Amplifier,

Comparator

TRNG: True Random Number

Generator

USBD: Universal Serial Bus

Full-speed Device

USBHD: Universal Serial Bus

Full-speed Host/Device

High-speed Host/Device

USBHS: Universal Serial Bus

Table 1-2 Overview of Cores

Feature Core	Instruction Set	Hardware Stack Level	Interrupt Nesting Level	Number of Fast Interrupt Channels	Integer Division Period	Vector table mode	Extended instruction	Memory protection
V4B	IMAC	2	2	4	9	Address or instruction	Support	No
V4C	IMAC	2	2	4	5	Address or instruction	Support	Standard
V4F	IMAFC	3	8	4	5	Address or instruction	Support	Standard

Chapter 2 Specification

The CH32Vx series is a 32-bit RISC MCU based on the RISC-V instruction set architecture (ISA), with a clock speed of 144MHz, and built-in high-speed memory. It has multiple buses working synchronously, and provides a wealth of peripheral functions and enhanced I/O ports. This series of products has built-in 2 12-bit ADC modules, 2 12-bit DAC modules, multiple timers, multi-channel capacitance touch key detection (TKey) and other functions. It

also contains standard and dedicated communication interfaces: I²C, I²S, SPI, USART, SDIO, CAN controller, USB2.0 full-speed host/device controller, USB2.0 high-speed host/device controller (built-in PHY transceiver), digital image interface, Gigabit Ethernet controller, Bluetooth Low Energy (BLE), etc..

The rated working voltage of the product is 3.3V, and the working temperature range is $-40^{\circ}C \sim 85^{\circ}C$ in industrial grade. It supports a variety of power-saving operating modes to meet the product's low-power application requirements.

Various models in the series are different in terms of resource allocation, number of peripherals, peripheral functions, etc., and can be selected as needed.

Available in LQFP48/QFN48/LQFP64M/LQFP100 packages. CH32Vx series can be widely used in motor drive and application control, medical and handheld devices, PC game peripherals, GPS platforms, programmable controllers, inverters, printers, scanners, alarm systems, video intercoms, heating, ventilation and air conditioning systems, etc.

2.1 Model comparison

Table 2-1 CH32V low-and-medium-density general-purpose products resource allocation

	Part No.			C	CH32V203x						
Differences		F6	G6	K6	K8	С6	C8	RB			
Pin	count	20	28	32	32	48	48	64			
Flash (1	bytes) (1)	32K	32K	32K	64K	32K	64K	128K ⁽²⁾			
SRAM	(bytes)	10K	10K	10K	20K	10K	20K	64K			
GPIO p	ort count	16	24	26	26	37	37	51			
	Advanced control (16 bits)	1 ⁽³⁾	1 ⁽³⁾	1	1	1	1	1			
Timer	General purpose (16 bits)	2 ⁽³⁾	2 ⁽³⁾	2	3	2	3	3			
	Watchdog	2 (WWDG + IWDG)									
	SysTick (64 bits)		supported								
R'	ТС				supported						
	channel@unit unt)	9@2	10@2	10@2	10@2	10@2	10@2	16@1			
0	PA	1	2	2	2	2	2	2			

	USAI	RT/UART	1	2	2	2	2	4	4					
		SPI	1	1	1	1	1	2	2					
			1 1		1	1	1		_					
Communication	I2C		0	1	1	1	1	2	2					
interfaces	CAN			1										
interfaces	USB	USBD	1	1	1	1	1	1	1					
	(FS)	USBHD		- 1 1										
	Et	hernet			-				10M					
CPU clo	ck spe	eed	Max: 144MHz											
Rated	voltag	e	3.3V											
Operating	Operating temperature				Industrial-	-grade: -40°	C~85°C							
Daalzaga			TSSOP20	QFN28	IOI	FP32	LQFP48	LQFP/	LQFP64M					
Package			133OP20	QFIN28	LQI	T32	LQrP48	QFN48	LQFP04IVI					

- Note: 1. Flash bytes represent zero wait run area R_{0WAIT} . For the V203 series, non-zero wait area is (224K- R_{0WAIT}).
- 2. The 303 series with 128K FLASH and 64K SRAM supports user select word to be configured as one of the following combinations: (128K FLASH+64K SRAM), (144K FLASH+48K SRAM), and (160K FLASH+32K SRAM).
- 3. In actual application, please confirm the pinouts of the selected device first before using the functions involving pin signals such as PWM and capture in the timer. Devices in some packages may not have the corresponding function pins and such functions cannot be used.

Table 2-2 CH32V high-density general-purpose/connectivity/interconnectivity products resource allocation

	Part No.		СНЗ	2V303x		CH32	V305	CH32V307			
Differences		СВ	RB	RC	VC	FB	RB	RC	WC	VC	
Pin	count	48	64	64	100	20	64	64	68	100	
Flash (bytes) (1)	128K	128K	256K ⁽²⁾	256K ⁽²	128K	128K	256K ⁽²⁾	256K ⁽²	256K ⁽²	
SRAM	I (bytes)	32K	32K	64K	64K	32K	32K	64K ⁽²	64K ⁽²	64K ⁽²	
GPIO p	ort count	37	51	51	80	17	51	51	54	80	
GPIO po	wer supply	Shar	ed	_	endent ly V _{IO}	Shared	In	dependen	t supply '	$V_{\rm IO}$	
	Advanced control (16 bits)	1	1	4	4	4(3)	4	4	4	4	
Timer	General purpose (16 bits)	3	3	4	4	4 ⁽³⁾	4	4	4	4	
	Basic (16 bits)	-	-	2	2	2	2	2	2	2	
	Watchdog				2 (W	WDG + 1	WDG)				
	SysTick (24 bits)	supported									
R	TC					supporte	d				
ADC (channel@	10@2	16@2	16@2	16@2	1@2	16@2	16@2	16@2	16@2		
DAC	2	2	2	2	1	2	2	2	2		
О	PA	4	4	4	4	-	4	4	4	4	

TF	RNG		-	-	1	1	1	1	1	1	1
	USAF	RT/UART	3	3	8	8	2	5	8	8	8
		SPI	2	2	3	3	1	3	3	3	3
	I2S		-	-	2	2	1	2	2	2	2
		I2C	2	2	2	2	2	2	2	2	2
	(CAN	1	1	1	1	1	2	2	2	2
Communication	S	SDIO	-	-	1	1	-	1	1	1	1
interfaces	USB	USBD					=				
	(FS)	USBHD	1	1	1	1	-	1	1	1	1
	USB(I	HS+PHY)	- 1 1						1	1	1
	Et	hernet		- 1G MAC+10M							
	I	DVP					-				1
	F	SMC		-		1	-				1
CPU clo	ock spe	eed				N	Max: 144N	ſНz			
Rated	Rated voltage						3.3V				
Operating	rature				Industria	al-grade: -	40°C~85	°C			
Pac	Package			LQF	FP64M	LQFP100	TSSOP20	LQFP64 M	LQFP64 M	QFN68	LQFP100

- Note: 1. Flash bytes represent zero wait run area R_{0WAIT} . For the V303/V305/V307 series, non-zero wait area is (480K- R_{0WAIT}).
- 2. The products with 256K FLASH+64K SRAM support user select word to be configured as one of several combinations of (192K FLASH+128K SRAM), (224K FLASH+96K SRAM), (256K FLASH+64K SRAM), (288K FLASH+32K SRAM).
- 3. In actual application, please confirm the pinouts of the selected device first before using the functions involving pin signals such as PWM and capture in the timer. Devices in some packages may not have the corresponding function pins and such functions cannot be used.

Table 2-3 CH32V wireless products resource allocation

	Part No.		CH32V	V208			
Differences		GB	СВ	RB	WB		
Pi	n count	28	48	64	68		
Flash	n (bytes) (1)	128K ⁽²⁾	128K ⁽²⁾	128K ⁽²⁾	128K ⁽²⁾		
SRA	M (bytes)	64K ⁽²⁾	64K ⁽²⁾	64K ⁽²⁾	64K ⁽²⁾		
GPIC	port count	21	37	49	53		
GPIO p	ower supply		Independent $V_{\rm IO}$				
	Advanced control (16 bits)	1	1	1	1		
Timor	General purpose (16 bits)	3	3	3	3		
Timer	Timer General purpose (32 bits)		1	1	1		
	Watchdog	2	2	2	2		
	SysTick (24 bits)	supported					
	RTC	supported					

ADC/TKey (ch	annel@ u	nit count)	8@1	16@1	16@1	16@1		
(OPA		1	2	2	2		
	USART	T/UART	2	4	4	4		
	SPI		1	2	2	2		
	I2C		1	2	2	2		
Communication	CA	AN	1	1	1	1		
interfaces	USB	USBD	1	1	1	1		
	(FS)	USBHD	1	1	1	1		
	Ethe	ernet	10M	-	10M			
	BLE	E 5.3		suppo	orted			
CPU c	lock speed	ł	Max: 144MHz					
Rated	d voltage		3.3V					
Operating	g temperat	ure	Industrial-grade: -40°C~85°C					
Pa	ckage		QFN28	QFN48	LQFP64M	QFN68		

Note: 1. Flash bytes represent zero wait run area R_{0WAIT} . For the V208 series, non-zero wait area is $(480K-R_{0WAIT})$.

2.2 System architecture

The microcontroller is based on the RISC-V instruction set architecture (ISA) in which the core, arbitration unit, DMA module, SRAM storage and other parts are interacted through multiple sets of buses. A general-purpose DMA controller is integrated in the chip to reduce the burden on the CPU and improve access efficiency. The application of a multi-level clock management mechanism reduces the operating power consumption of peripherals. At the same time, it has a data protection mechanism and measures such as automatic clock switching protection to increase system stability. The following figure is a block diagram of the overall internal structure of the series of products.

^{2.} The 208 series with 128K FLASH+64K SRAM support user select word to be configured as one of several combinations of (128K FLASH+64K SRAM), (144K FLASH+48K SRAM), and (160K FLASH+32K SRAM).

Figure 2-1 System block diagram

2.3 Memory map

Figure 2-2 Memory address map

2.4 Clock tree

Four groups of clock sources are introduced into the system: internal high-frequency RC oscillator (HSI), internal low-frequency RC oscillator (LSI), external high-frequency oscillator (HSE), and external low-frequency oscillator (LSE). Among them, the low-frequency clock source provides the clock reference for RTC and independent watchdog. The high-frequency clock source is directly or indirectly multiplied by the PLL and output as the system clock (SYSCLK). The system clock is then provided by each prescaler to provide the AHB domain, APB1 domain, APB2 domain peripheral control clock and sampling or output clock. Some modules need to be directly provided by the PLL clock.

Figure 2-3 CH32V305/307 clock tree block diagram

Figure 2-4 CH32V303/203 clock tree block diagram

- Note: 1. When using USB, the CPU clock speed must be 48MHz or 96MHz or 144MHz. When system wakes up from stop mode or standby mode, the system will automatically select HSI as the system clock frequency.
- 2. For the CH32V2030RBT6, the external crystal or clock (HSE) is 32M, and no load capacitor is needed when using the external crystal as it is built in.

Figure 2-5 CH32V208 clock tree block diagram

Note: 1. When using USB, the CPU clock speed must be 48MHz or 96MHz or 144MHz. When the system wakes up from stop mode or standby mode, the system will automatically select HSI as the system clock frequency. If USB and ETH both are enabled, configure PLLCKR=SYSCLK to be 240M.

2. For the CH32V208, the external crystal or clock (HSE) is 32M, and no load capacitor is needed when using the external crystal as it is built in.

2.5 Functional description

2.5.1 RISC-V4B/4C/4F processor

The product is designed based on the RISC-V organization specification for cores V4B, V4C, V4F. V4B and V4C support the RISC-V instruction set IMAC subset, and V4F supports the RISC-V instruction set IMAFC subset, which increases the single-precision floating-point operation. The processor internals are managed in a modular way and contain a Fast Programmable Interrupt Controller (FPIC), memory protection, branch prediction mode, extended instruction support and other units. The external multiple sets of buses are connected with the external unit modules to implement the interaction between the external function modules and the core. Externally, the processor has multiple sets of buses connected to peripherals for interaction.

The processor can be flexibly applied in different scenarios, such as small-area low-power embedded scenarios, high-performance application operating system scenarios, etc., due to its minimal instruction set, multiple working modes, and modular customization extensions.

- Support machine and user privilege mode
- Fast Programmable Interrupt Controller (FPIC)
- Multi-level hardware interrupt stack
- Serial 2-wire debugging interface
- Standard memory protection design
- Static or dynamic branch prediction, efficient jump, conflict detection
- Custom extended instructions

2.5.2 On-chip memory and boot mode

Up to 128K bytes of built-in SRAM area, used to store data, data will be lost after power failure. The specific capacity depends on the corresponding chip model.

Up to 480K bytes of built-in program Flash memory (Code FLASH), used for user application and constant data storage, including zero wait program run area and non-zero wait area. The specific size depends on the corresponding chip model.

Built-in 28K byte system memory (System FLASH), used for system boot program storage (manufacturer curing boot loader).

128 bytes are used for system non-volatile configuration word storage, and 128 bytes are used for user selection word storage.

At startup, one of 3 boot modes can be selected through the boot pins (BOOT0 and BOOT1):

- Boot from program flash
- Boot from system memory
- Boot from internal SRAM

The bootloader is stored in the system memory, and the contents of the program Flash can be reprogrammed through the USART1 and USB interface.

2.5.3 Power supply scheme

- $V_{DD} = 2.4 \sim 3.6 \text{V}$: Power supply for some I/O pins and internal voltage regulator.
- V_{IO} = 2.4~3.6V: It supplies power to most of the I/O pins and the Ethernet module, which determines
 the pin output high voltage amplitude. Normal work during operation, the V_{IO} voltage cannot be higher
 than the V_{DD} voltage.

- V_{DDA} = 2.4~3.6V: It supplies power to the analog part of the high-frequency RC oscillator, ADC, temperature sensor, DAC and PLL. The V_{DDA} voltage must be the same as the V_{IO} voltage (If V_{DD} is powered down and V_{IO} is live, Then V_{DDA} must be live and consistent with VIO). When using ADC, V_{DDA} must not be less than 2.4V.
- $V_{BAT} = 1.8 \sim 3.6 \text{V}$: When V_{DD} is turned off, (through the internal power switch) independently powers the RTC, external low-frequency oscillator and backup registers. (Pay attention to V_{BAT} power supply)

2.5.4 Power supply monitor

This product integrates a power-on reset (POR)/power-down reset (PDR) circuit, which is always in working condition to ensure that the system is in supply. It works when the power exceeds 2.4V; when V_{DD} is lower than the set threshold ($V_{POR/PDR}$), the device is placed in the reset state without using an external reset circuit.

In addition, the system is equipped with a programmable voltage monitor (PVD), which needs to be turned on by software to compare the voltage of V_{DD} power supply with the set threshold V_{PVD}

Turn on the corresponding edge interrupt of PVD, and you can receive interrupt notification when V_{DD} drops to the PVD threshold or rises to the PVD threshold. Refer to Chapter 4 for the values of $V_{POR/PDR}$ and V_{PVD} .

2.5.5 Voltage regulator

After reset, the regulator is automatically turned on, and there are 3 operation modes according to the application mode.

- ON mode: normal operation, providing stable core power.
- Low-power mode: When the CPU enters Stop mode, the regulator can be selected to run with low power consumption.
- OFF mode: When the CPU enters Standby mode, it automatically switches the regulator to this mode, the voltage regulator output is in high impedance, and the core power.

The voltage regulator is always ON after reset. It is OFF in Standby mode, and the regulator output is in high impedance.

2.5.6 Low-power mode

The system supports 3 low-power modes, which can be selected for low power consumption, short start-up time and multiple wake-up events to achieve the best balance.

Sleep mode

In sleep mode, only the CPU clock is stopped, but all peripheral clocks are powered normally and the peripherals are in a working state. This mode is the shallowest Low power mode, but it is the fastest mode to wake-up the system.

Exit condition: any interrupt or wake-up event.

Stop mode

In this mode, the FLASH enters low power mode, and the PLL, HSI RC oscillator and HSE crystal oscillator are turned off. In the case of keeping the contents of SRAM and registers not lost, the stop mode can achieve the lowest power consumption.

Exit conditions: any external interrupt/event (EXTI signal), external reset signal on NRST,

IWDG reset, among which EXTI signal includes one of 16 external I/O ports, PVD output, RTC alarm clock, Ethernet wake-up signal or USB wake-up signal.

Standby mode

In this mode, the main LDO of the system is turned off, the low-power LDO supplies power to the wake-up circuit, all other digital circuits are powered off, and the FLASH is powered off. The system wakes up from standby mode will generate a reset, and SBF (PWR_CSR) will be set at the same time. After waking up, check the SBF status to know the low-power mode before waking up. SBF is cleared by the CSBF (PWR_CR) bit. In the standby mode, the contents of 32KB of SRAM can be kept (depending on the planning and configuration before going to bed), and the contents of the backup registers are kept.

Exit conditions: any external interrupt/event (EXTI signal), external reset signal on NRST, IWDG reset, a rising edge on the WKUP pin, where EXTI signal includes one of 16 external I/O ports, RTC alarm clock, Ethernet Wake-up signal, USB.

2.5.7 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit uses a fixed polynomial generator to generate a CRC code from a 32-bit data word. In many applications, CRC-based technology is used to verify the consistency of data transmission or storage. Within the scope of the EN/IEC 60335-1 standard, a means of detecting flash errors is provided. The CRC calculation unit can be used to calculate the signature of the software in real time and compare it with the signature generated when the software is linked and generated.

2.5.8 Fast programmable interrupt controller (FPIC)

The product has a built-in Fast Programmable Interrupt Controller (FPIC), which supports up to 255 interrupt vectors, and provides flexible interrupt management functions with minimal interrupt latency. The current product manages 8 core private interrupts and 88 peripheral interrupt management, and other interrupt sources are reserved. FPIC registers can be accessed in user and machine privileged modes.

- 88+3 individual maskable interrupts
- a non-maskable interrupt NMI
- Support hardware interrupt stack (HPE) without instruction overhead
- 4-channel vector table free interrupts (VTF)
- Support vector table mode of address or instruction module
- Configurable interrupt nesting depth, up to 8 levels
- Support interrupt tail-chaining

2.5.9 External interrupt/event controller (EXTI)

The external interrupt/event controller contains a total of 19 edge detectors for generating interrupt/event requests. Each interrupt line can independently configure its trigger event (rising edge or falling edge or both edges), and can be individually masked; the suspend register maintains all interrupt request states. EXTI can detect that the pulse width is smaller than the clock period of the internal APB2. Up to 80 general-purpose I/O ports can be connected to 16 external interrupt lines.

2.5.10 General DMA controller

The system has built-in 2 groups of general-purpose DMA controllers, manages 18 channels in total, and flexibly handles high-speed data transmission from memory to memory, peripherals to memory, and memory to peripherals, and supports ring buffer mode. Each channel has a dedicated hardware DMA request logic to support one or more peripherals' access requests to the memory. The access priority, transfer length, source address and destination address of the transfer can be configured.

The main peripherals used by DMA include: general/advanced/basic timers TIMx, ADC, DAC, I2S, USART, I2C, SPI, and SDIO.

Note: DMA1, DMA2 and CPU access the system SRAM after arbitration by the arbiter.

2.5.11 Clock and Boot

The system clock source HSI is turned on by default. After the clock is not configured or reset, the internal 8MHz RC oscillator is used as the default CPU clock, and then an external 3~25MHz clock or PLL clock can be additionally selected. When the clock security mode is turned on, if the HSE is used as the system clock (directly or indirectly), the system clock will automatically switch to the internal RC oscillator when the external clock is detected to be invalid, and the HSE and PLL will be automatically turned off at the same time; In power consumption mode, the system will automatically switch to the internal RC oscillator after waking up. If the clock interrupt is enabled, the software can receive the corresponding interrupt.

Multiple prescalers are used to configure the frequency of AHB. The high-speed APB (APB2) and low-speed APB (APB1) regions provide peripheral clocks with a maximum frequency of 144MHz. Refer to the clock tree block diagram in Figure 2-3. The clock source of the I²S unit is another dedicated PLL (PLL3), so that the I²S master clock can generate all standard sampling frequencies between 8 kHz and 192 kHz.

2.5.12 Real time clock (RTC) and backup registers

The RTC and the backup register are in the backup power supply area inside the system. When V_{DD} is valid, it is powered by V_{DD} , and when V_{DD} is invalid, the internal power is automatically switched to the V_{BAT} pin.

The RTC real-time clock is a set of 32-bit programmable counters, and the time base supports 20-bit prescaler for measurement in a longer period of time. The clock reference source is a high-speed external clock divided by 128 (HSE/128), external crystal low-frequency oscillator (LSE) or internal low-power RC oscillator (LSI). The LSE also has a backup power supply area, so when the LSE is selected as the RTC time base, the RTC setting and time can remain unchanged after the system resets or wakes up from standby mode.

The backup register contains up to 42 16-bit registers, which can be used to store 84 bytes of user application data. This data can continue to be maintained after wake-up from standby, or system reset or power reset. When the intrusion detection function is turned on, once the intrusion detection signal is valid, all contents in the backup register will be cleared.

2.5.13 Analog-to-digital converter (ADC) and touch key capacitance detection (TKey)

The product is embedded with 2 12-bit analog/digital converters (ADC), sharing up to 16 external channels and 2 internal channels for sampling. The programmable channel sampling time can realize single, continuous, scanning or discontinuous conversion. And supports dual ADC conversion mode. The analog watchdog function is provided to allow very precise monitoring of one or more selected channels for monitoring the signal voltage of the channel. It supports external event trigger conversion, the trigger source includes the internal signal and external pin of the on-chip timer; it also supports the use of DMA operations.

ADC internal channel sampling includes 1 channel of built-in temperature sensor sampling and 1 channel of internal reference power sampling. The temperature sensor generates a voltage that varies linearly with temperature. The temperature sensor is internally connected to the IN16 input channel, which is used to convert the output of the sensor to a digital value.

The capacitance touch key detection unit provides up to 16 detection channels, multiplexing the external channels of the ADC module. The detection result is converted and output by the ADC module, and the state of the touch key is recognized by the user software.

2.5.14 Digital-to-analog converter (DAC)

The product is embedded with 2 12-bit voltage output digital/analog converters (DAC), converts 2 digital signals into 2 analog voltage signals and outputs them, supports dual DAC channel independent or synchronous conversion, supports external event trigger conversion, trigger sources include Internal signals and external pins of the on-chip timer (EXTI line 9). Triangular wave and noise generation can be realized. It supports the use of DMA operations.

2.5.15 Timer and watchdog

The timers in the system include advanced timers, general timers, basic timers, watchdog timers, and system time base timers. The number of timers included in different products in the series is different, please refer to Table 2-2 for details.

Table 2-2 Timer comparison

Tim	ner	Resolution	Count Type	Time Base	DMA	Function
Advanced control timer	TIM1 TIM8 TIM9 TIM10	16 bits	Up Down Up/down	APB2 time domain 16-bit divider	Supported	PWM complementary output, single pulse output Input capture Output compare Timer count
General purpose timer	TIM2 TIM3 TIM4 TIM5 ⁽¹⁾	16 bits 16/32 bits	Up Down Up/down	APB1 time domain 16-bit divider	Supported	Input capture Output compare Timer count
Basic timer	TIM6 TIM7	16 bits	Up	APB1 time domain 16-bit divider	Supported	Timing count
Window v	vatchdog	7 bits	Down	APB1 time domain 4 types of frequency division	Not supported	Timing Reset the system (normal work)
Independent watchdog		[*] 1 12 bits		APB1 time domain 7 types of frequency division	Not supported	Timing Reset the system (normal work + low-power work)
SysTick	Timer	64 bits	Up/down	SYSCLK or SYSCLK/8	Not supported	Timing

Note 1: TIM5 in CH32V208 (wireless type) is a 32-bit general-purpose timer.

Advanced control timer

The advanced control timer is a 16-bit auto-loading up/down counter with a 16-bit programmable prescaler. In addition to the complete general-purpose timer function, it can be regarded as a three-phase PWM generator distributed to 6 channels, with a complementary PWM output function with dead zone insertion, allowing the timer to be updated after a specified number of counter cycles to repeat Counting cycle, braking

function, etc. Many functions of the advanced control timer are the same as the general timer, and the internal structure is also the same. Therefore, the advanced control timer can cooperate with other TIM timers through the timer link function to provide synchronization or event link functions.

General purpose timer

The general timer is a 16-bit or 32-bit auto-loading up/down counter with a programmable 16-bit prescaler and 4 independent channels. Each channel supports input capture, output comparison, and PWM generation and single pulse mode output. It can also work with advanced control timers through the timer link function to provide synchronization or event link functions. In debug mode, the counter can be frozen while the PWM outputs are disabled, thereby cutting off the switches controlled by these outputs. Any general-purpose timer can be used to generate PWM output. Each timer has an independent DMA request mechanism. These timers can also process signals from incremental encoders, as well as digital outputs from 1 to 3 Hall sensors.

Basic timer

The basic timer is a 16-bit auto-load counter that supports a 16-bit programmable prescaler. Digital-to-analog conversion (DAC) can provide a clock and trigger the synchronization circuit of the DAC. The basic timers are independent of each other and do not share any resources with each other.

Independent watchdog

The independent watchdog is a configurable 12-bit down counter that supports 7 frequency division factors. The clock is provided by an internal independent 40 kHz RC oscillator (LSI); because the LSI is independent of the main clock, it can run in stop and standby modes. IWDG is outside the main program and can work completely independently. Therefore, it is used to reset the entire system when a problem occurs, or as a free timer to provide timeout management for the application. It can be configured as software or hardware to start the watchdog through the option byte. In debug mode, the counter can be frozen.

Window Watchdog

The window watchdog is a 7-bit down counter and can be set to free-running. It can be used to reset the entire system when a problem occurs. It is driven by the main clock and has an early warning interrupt function; in the debug mode, the counter can be frozen.

SysTick Timer

This is a 64-bit optional increment or decrement counter that comes with the core controller. It is used to generate SYSTICK anomalies (exception number: 15). It can be dedicated to the real-time operating system (RTOS) to provide a "heartbeat" tick for the system, or it can be used as a standard 64-bit counter. It has an automatic reload function and a programmable clock source.

2.5.16 Communication interface

2.5.16.1 Universal Synchronous/Asynchronous Receiver Transmitter (USART)

The product provides 3 groups of Universal Synchronous/Asynchronous Receiver Transmitters (USART1, USART2, USART3), and 5 groups of Universal Asynchronous Receiver Transmitters (UART4, UART5, UART6, UART7, UART8). It supports full-duplex asynchronous communication, synchronous one-way communication and half-duplex single-wire communication. It also supports LIN (Local Interconnect Network), compatible with ISO7816 smart card protocol and IrDA SIR ENDEC transmission codec specification, and modem (CTS/RTS hardware flow control) operation. It also allows multi-processor communication. It uses a fractional baud rate generator system and supports DMA operation continuous

communication.

2.5.16.2 Serial Peripheral Interface (SPI)

Up to 3 groups of serial peripherals interface (SPI) provide master or slave operation, dynamic switching. Support multi-master mode, full-duplex or half-duplex synchronous transmission, support basic SD card and MMC mode. Programmable clock polarity and phase, data bit width provides 8 or 16-bit selection, reliable communication hardware CRC generation/check, and supports DMA operation continuous communication.

2.5.16.3 I2S (audio) port

The highest 2 standard I²S interfaces (multiplexed with SPI2 and SPI3) work in master or slave mode. The software can be configured as a 16/32-bit data packet transmission frame, supports audio sampling frequencies from 8kHz to 192kHz, and supports 4 audio standards. In master mode, its master clock can be output to an external DAC or CODEC (decoder) at a fixed 256 times audio sampling frequency, and supports DMA.

2.5.16.4 I2C bus

Up to 2 I²C bus interfaces can work in multi-master mode or slave mode, perform all I²C Bus specific timing, protocol, arbitration, etc. It supports both standard and fast speed, and is compatible with SMBus 2.0.

The I²C interface provides 7-bit or 10-bit addressing, and supports dual slave addressing in 7-bit slave mode. It integrates built-in hardware CRC generator/checker. It also supports DMA operation and supports SMBus bus version 2.0 / PMBus bus.

2.5.16.5 Controller Area Network (CAN)

The CAN interface is compatible with specifications 2.0A and 2.0B (active), the baud rate is up to 1Mbits/s, and it supports time-triggered communication. It can receive and send standard frames with 11-bit identifiers, as well as extended frames with 29-bit identifiers. It has 3 sending mailboxes and 2 3-level deep receiving FIFOs.

Products with 2 CAN controllers share 28 configurable filters and 512 bytes of SRAM memory resources.

With 1 set of CAN controller products, there are only 14 configurable filters, and share a dedicated 512-byte SRAM memory with the USBD module for data transmission and reception. When USBD and CAN are used at the same time, in order to prevent access to SRAM conflicts, USBD can only use the lower 384 bytes.

2.5.16.6 Universal Serial Bus device (USBD)

The product is embedded with a USB2.0 full-speed controller, which complies with the USB2.0 Fullspeed standard. USBD provides 16 configurable USB device endpoints, supports low-speed devices and full-speed devices, supports control/batch/synchronization/interrupt transmission, double buffer mechanism, USB suspend/resume operations, and has standby/wake-up functions. The USB dedicated 48MHz clock is directly generated by the internal main PLL frequency division.

2.5.16.7 Universal Serial Bus USB2.0 full-speed Host/Device controller (USBHD)

The USB2.0 full-speed host controller and device controller (USBHD) follow the USB2.0 Fullspeed standard. It provides 16 configurable USB device endpoints and a set of host endpoints. Support control/batch/synchronization/interrupt transmission, double buffer mechanism, USB bus suspend/resume operation, and provide standby/wake-up functions. The 48MHz clock dedicated to the USBHD module is

directly generated by the internal main PLL frequency division (the PLL must be 144MHz or 96MHz or 48MHz).

2.5.16.8 Universal Serial Bus USB2.0 full-speed OTG (OTG-FS)

OTG_FS is a dual-role USB controller that supports the functions of the host side and the device side, and is compatible with the On-The-Go Supplement to the USB2.0 specification. At the same time, the controller can also be configured as a controller that only supports host-side or device-side functions, and is compatible with the USB2.0 full-speed specification. The controller uses a 48MHz clock derived from the PLL frequency division. The main features include:

- Support (the physical layer of the OTG_FS controller) USB On-The-Go Supplement, defined as an
 optional item OTG protocol in the Revision1.3 specification
- Configure USB full-speed host, USB full-speed/low-speed device, USB dual-role device through software
- Provide power saving function
- Support control transmission, batch transmission, interrupt transmission, real-time/synchronous transmission
- Provide bus reset, suspend, wake up and resume functions

2.5.16.9 Universal serial bus USB2.0 high-speed host/device controller (USBHS)

The USB2.0 high-speed controller has the dual roles of a host controller and a device controller, and has an embedded USB-PHY transceiver unit. When used as a host controller, it can support low-speed, full-speed, and high-speed USB devices. When used as a device controller, it can be flexibly set to low-speed, full-speed or high-speed mode to adapt to various applications. The main features include:

- Support for USB 2.0, USB 1.1, USB 1.0 protocol specifications
- Support for control transmission, batch transmission, interrupt transmission, real-time/synchronous transmission
- bus reset, suspend, wake up and resume functions
- Support for high-speed HUB
- 8 groups of upper and lower transmission channels in device mode, and support the configuration of 16 endpoint numbers
- Except for device endpoint 0, all other endpoints support data packets up to 1024 bytes, and double buffering can be used

2.5.16.10 Digital video port (DVP)

DVP (Digital Video Port) is used to connect the camera module to receive the image data stream. It provides 8/10/12bit parallel interface communication. It supports image data organized in original line and frame formats, such as YUV, RGB, etc., and also supports compressed image data streams such as JPEG format. When receiving, it mainly relies on VSYNC and HSYNC signal synchronization. It also supports image cropping.

2.5.16.11 SDIO host controller

The SDIO host interface provides operation interfaces for multimedia cards (MMC), SD memory cards, SDIO cards, and CE-ATA devices. It supports 3 different data bus modes: 1-bit (default), 4-bit and 8-bit. In 8-bit mode, the interface can make the data transfer rate up to 48MHz. This interface is fully compatible with Multimedia Card System Specification 4.2 (forward compatible), SD I/O Card Specification 2.0, SD Memory Card Specification 2.0, and CE-ATA Digital Protocol Specification 1.1.

2.5.16.12 Flexible static memory controller (FSMC)

The FSMC interface mainly provides a synchronous or asynchronous memory interface, and supports devices such as SRAM, PSRAM, NOR, and NAND. The internal AHB transmission signal is converted into a suitable external communication protocol, allowing continuous access to 8/16/32-bit data. And the sampling delay time can be flexibly configured to meet the timing of different devices.

In addition, FSMC can also be used for most graphics LCD controller interfaces. It supports Intel 8080 and Motorola 6800 modes, making it easy to build a simple graphics application environment or a high-performance solution for dedicated acceleration controllers.

2.5.16.13 Gigabit Ethernet controller (MAC, +10M PHY)

The product provides a Gigabit Ethernet Media Access Controller (MAC) that meets the IEEE 802.3-2002 standard, which acts as the data link layer. Its Link supports up to 1Gbps, and provides MII/RMII/RGMII interfaces to connect to external PHY (Gigabit /100M/speed self-adaptive, built-in 10M PHY transceiver). The application is combined with TCP/IP protocol stack interface to realize the development of network products. The main features include:

- Complying with IEEE.802.3 standard
- RGMII, RMII, MII interface, connect external Ethernet PHY transceiver
- Support for full-duplex operation, support 10/100/1000Mbps data transmission rate
- The hardware automatically completes IPv4 and IPv6 packet integrity check, IP/ICMP/UDP/TCP packet check and computer frame length filling
- Multiple MAC address filtering modes
- SMI configuring and managing external PHY

2.5.17 General-purpose input and output (GPIO)

The system provides 5 groups of GPIO ports with a total of 80 GPIO pins. Each pin can be configured by software as output (push-pull or open-drain), input (with or without pull-up or pull-down) or multiplexed peripheral function port. Most GPIO pins are shared with digital or analog multiplexed peripherals. Except for ports with analog input functions, all GPIO pins have high current passing capabilities. A locking mechanism is provided to freeze the IO configuration to avoid accidental writing to the I/O register.

Most of the IO pins in the system are provided by V_{IO} . Changing the V_{IO} power supply will change the high value of the IO pin output level to adapt to the external communication interface level. Please refer to the pin description for specific pins.

2.5.18 True random number generator (TRNG)

The product is integrated with a true random number generator, which provides a 32-bit true random number through the internal analog circuit.

2.5.19 Operational amplifier/comparator (OPA)

The product has built-in 4 groups of operational amplifiers/comparators, and the internal selection is linked to the ADC and TIMx peripherals. Its input and output can be selected by changing the configuration to select multiple channels. It supports to amplify the external analog small signal and send it to the ADC to realize the small signal ADC conversion. It can also complete the signal comparator function. The comparison result is output by GPIO or directly connected to the input channel of TIMx.

2.5.20 Serial debug interface (SDI)

The core comes with a serial 2-wire debug interface, including SWDIO and SWCLK pins. After the system is powered on or reset, the debug interface pin function is enabled by default.

Chapter 3 Pinouts and pin definitions

3.1 Pinouts

3.1.1 Interconnectivity device V307

CH32V307WCU6

CH32V307RCT6

3.1.2 Connectivity device V305

3.1.3 High-density general-purpose device V303

CH32V303VCT6

3.1.4 Low-and-medium-density general-purpose device V203

CH32V203CxU6

CH32V203KxT6

CH32V203G6U6

98 PA13/SWDIO PA12/USB1DP PA10/PA11/USB1DP PA9 VDD VSS PB1/ADC9 _0 VSS BOOTO/PB8 OSC_IN/PD0 OSC_OUT/PD1 NRST VDDA PA0/WKUP/ADC0 PA1/ADC1 1 2 3 4 5 6 7 PA2/ADC2 PA3/ADC3 PA4/ADC4 PA5/ADC5 PA6/ADC6 PA7/ADC7 PB0/ADC8

8 6 0 1 2 1 4

CH32V203F6P6

3.1.5 Wireless device V208

CH32V208WBU6

CH32V208GBU6

CH32V208RBT6

CH32V208CBU6

3.2 Pin definitions

Table 3-1 CH32V303_305_307xx pin definitions

Note: The pin function in the table below refer to all functions and do not involve specific model(s). There are differences in peripheral resources between different models. Please confirm whether this function is available according to the particular model's resource table before viewing this table.

		in No		, 10 11	ne particular moa		ource .	uere egere vi		
TSSOP20	LQFP48	LQFP64M	OFN68	LQFP100	Pin name	Pin type	I/O voltage level	Main function (After reset)	Default alternate function	Remapping function
-	ı	1	1	1	PE2	I/O	FT	PE2	FSMC_A23	TIM10_BKIN_2
-	-	-	-	2	PE3	I/O	FT	PE3	FSMC_A19	TIM10_CH1N_2
-	1	-	-	3	PE4	I/O	FT	PE4	FSMC_A20	TIM10_CH2N_2
-	ı	-	-	4	PE5	I/O	FT	PE5	FSMC_A21	TIM10_CH3N_2
-	ı	1	1	5	PE6	I/O	FT	PE5	FSMC_A22	
-	1	1	1	6	V_{BAT}	P	ı	V_{BAT}		
-	2	2	2	7	PC13- TAMPER-RTC ⁽²⁾	I/O	ı	PC13 ⁽³⁾	TAMPER-RTC	TIM8_CH4_1
-	3	3	3	8	PC14- OSC32_IN ⁽²⁾	I/O/A	-	PC14 ⁽³⁾	OSC32_IN	TIM9_CH4_1
-	4	4	4	9	PC15- OSC32_OUT ⁽²⁾	I/O/A	ı	PC15 ⁽³⁾	OSC32_OUT	TIM10_CH4_1
18	ı	1	1	10	$V_{\mathrm{SS_5}}$	P	1	V_{SS_5}		
14	-	-	-	11	V_{DD_5}	P	-	$V_{DD_{_5}}$		
19	5	5	5	12	OSC_IN	I/A	-	OSC_IN		PD0 ⁽⁴⁾
20	6	6	6	13	OSC_OUT	O/A	-	OSC_OUT		PD1 ⁽⁴⁾
1	7	7	7	14	NRST	I	-	NRST		
-	-	8	8	15	PC0	I/O/A	-	PC0	ADC_IN10 TIM9_CH1N UART6_TX ETH_RGMII_RXC	
-	-	9	9	16	PC1	I/O/A	-	PC1	ADC_IN11 TIM9_CH2N UART6_RX ETH_MII_MDC ETH_RMII_MDC ETH_RMII_MDC	
-	-	10	10	17	PC2	I/O/A	-	PC2	ADC_IN12 TIM9_CH3N UART7_TX OPA3_CH1N ETH_MII_TXD2 ETH_RGMII_RXD0	

_					T			T		
									ADC_IN13	
									TIM10_CH3	
		11	11	10	DC2	1/0/4		DC2	UART7_RX	
	-	11	11	18	PC3	I/O/A	-	PC3	OPA4_CH1N	
									ETH_MII_TX_CLK	
									ETH_RGMII_RXD1	
-	8	12	12	19	V_{SSA}	P	-	V_{SSA}		
-	-	-	-	20	V _{REF} -	P	ı	V _{REF} -		
-	-	-	ı	21	$V_{\text{REF+}}$	P	ı	V_{REF^+}		
-	9	13	13	22	V_{DDA}	P	ı	V_{DDA}		
									WKUP	
									USART2_CTS	
									ADC IN0	
									TIM2_CH1_ETR	
_	10	14	14	23	PA0-WKUP	I/O/A	_	PA0	TIM5_CH1	TIM2_CH1_ETR_2
	10			23	1110 ((1101	10111		1110	TIM8_ETR	TIM8_ETR_1
									_	
									OPA4_OUT0	
									ETH_MII_CRS_WKUP	
									ETH_RGMII_RXD2	
									USART2_RTS	
									ADC_IN1	
									TIM5_CH2	
		1.5	1.5	2.4	D. 1	1/0/4		D. 1	TIM2_CH2	TIM2_CH2_2
2	11	15	15	24	PA1	I/O/A	-	PA1	OPA3_OUT0	TIM9_BKIN_1
									ETH_MII_RX_CLK	
									ETH_RMII_REF_CLK	
									ETH RGMII RXD3	
									USART2_TX	
									_	
									TIM5_CH3	
									ADC_IN2	TD 12 CH2 1
									TIM2_CH3	TIM2_CH3_1
-	12	16	16	25	PA2	I/O/A	-	PA2	TIM9_CH1_ETR	TIM9_CH1_ETR
									OPA2_OUT0	_1
									ETH_MII_MDIO	
									ETH_RMII_MDIO	
									ETH_RGMII_GTXC	
-	-	-	17	-	V_{IO_4}	P	-	V_{SS_4}		
									USART2_RX	
									TIM5_CH4	
									ADC_IN3	
						-,-			TIM2_CH4	TIM2_CH4_1
-	13	17	19	26	PA3	I/O/A	-	PA3	TIM9_CH2	TIM9_CH2_1
									OPA1_OUT0	- _ ·
									ETH_MII_COL	
									ETH_RGMII_TXEN	

-	_	18	-	27	V_{SS_4}	P	-	$V_{\mathrm{SS_4}}$		
_	-	19	-	28	V_{DD_4}	P	-	V _{DD 4}		
-	14	20	20	29	PA4	I/O/A	-	PA4	SPI1_NSS USART2_CK ADC_IN4 DAC_OUT1 TIM9_CH3 DVP_HSYNC	SPI3_NSS I2S3_WS TIM9_CH3_1
2	15	21	21	30	PA5	I/O/A	1	PA5	SPI1_SCK ADC_IN5 DAC_OUT2 OPA2_CH1N DVP_VSYNC	TIM10_CH1N_1 USART1_CTS_2 USART1_CK_3
-	16	22	22	31	PA6	I/O/A		PA6	SPI1_MISO TIM8_BKIN ADC_IN6 TIM3_CH1 OPA1_CH1N DVP_PCLK	TIM1_BKIN_1 USART1_TX_3 UART7_TX_1 TIM10_CH2N_1
-	17	23	23	32	PA7	I/O/A	_	PA7	SPI1_MOSI TIM8_CH1N ADC_IN7 TIM3_CH2 OPA2_CH1P ETH_MII_RX_DV ETH_RMII_CRS_DV ETH_RGMII_TXD0	TIM1_CH1N_1 USART1_RX_3 UART7_RX_1 TIM10_CH3N_1
-	1	24	24	33	PC4	I/O/A	-	PC4	ADC_IN14 TIM9_CH4 UART8_TX OPA4_CH1P ETH_MII_RXD0 ETH_RMII_RXD0 ETH_RGMII_TXD1	USART1_CTS_3
-	-	25	25	34	PC5	I/O/A	-	PC5	ADC_IN15 TIM9_BKIN UART8_RX OPA3_CH1P ETH_MII_RXD1 ETH_RMII_RXD1 ETH_RGMII_TXD2	USART1_RTS_3
-	18	26	26	35	РВ0	I/O/A	-	PB0	ADC_IN8 TIM3_CH3 TIM8_CH2N OPA1_CH1P	TIM1_CH2N_1 TIM3_CH3_2 TIM9_CH1N_1 UART4_TX_1

									ETH MILDVD2	
									ETH_MII_RXD2	
									ETH_RGMII_TXD3	
									ADC_IN9	
									TIM3_CH4	TIM1_CH3N_1
l _	19	27	27	36	PB1	I/O/A	_	PB1	TIM8_CH3N	TIM3_CH4_2
					121	2 0/11		121	OPA4_CH0N	TIM9_CH2N_1
									ETH_MII_RXD3	UART4_RX_1
									ETH_RGMII_125IN	
	20	28	28	37	PB2 ⁽⁵⁾	I/O	FT	PB2	OPA3 CH0N	TIM9_CH3N_1
	20	20	20	37	1 52	1/0		BOOT1 ⁽⁵⁾	01713_011011	
			_	38	PE7	I/O/A	FT	PE7	FSMC_D4	TIM1_ETR_3
_	-	-	-	30	FE/	I/O/A	1 1	TE/	OPA3_OUT1	THVII_ETK_5
				39	PE8	I/O/A	FT	PE8	FSMC_D5	TIM1_CH1N_3
-	•	-	-	39	PE8	I/O/A	ГΙ	PE8	OPA4_OUT1	UART5_TX_2
				40	DE0	1/0	EТ	DEO	EGMC DC	TIM1_CH1_3
-	•	-	-	40	PE9	I/O	FT	PE9	FSMC_D6	UART5_RX_2
				4.1	DE10	1/0	DÆ	DE 10	EGING DE	TIM1_CH2N_3
-	•	-	-	41	PE10	I/O	FT	PE10	FSMC_D7	UART6_TX_2
				40	DE11	1/0	DÆ	DE11	EGING DO	TIM1_CH2_3
-	-	-	-	42	PE11	I/O	FT	PE11	FSMC_D8	UART6_RX_2
				40	DE10	7/0	- DOT	DE10	EGILC DO	TIM1_CH3N_3
-	-	-	-	43	PE12	I/O	FT	PE12	FSMC_D9	UART7_TX_2
				4.4	DE12	T/O	ræ.	DE12	ECMC D10	TIM1_CH3_3
-	-	-	-	44	PE13	I/O	FT	PE13	FSMC_D10	UART7_RX_2
				1.5	DE14	I/O/A	r.r.	DE 1.4	FSMC_D11	TIM1_CH4_3
-	•	-	-	45	PE14	I/O/A	FT	PE14	OPA2_OUT1	UART8_TX_2
				4.6	DE1.5	1/0/4	DT	DE 1.5	FSMC_D12	TIM1_BKIN_3
-	-	-	-	46	PE15	I/O/A	FT	PE15	OPA1_OUT1	UART8_RX_2
									I2C2_SCL	
	2.1	20	20		DD 10	T/0/4	Ear	DD10	USART3_TX	TIM2_CH3_2
3	21	29	29	47	PB10	I/O/A	FT	PB10	OPA2_CH0N	TIM2_CH3_3
									ETH_MII_RX_ER	TIM10_BKIN_1
									I2C2_SDA	
									USART3_RX	TIM2_CH4_2
4	22	30	30	48	PB11	I/O/A	FT	PB11	OPA1 CH0N	TIM2_CH4_3
					-		-	_	ETH_MII_TX_EN	TIM10_ETR_1
									ETH RMII TX EN	-
-	23	31	18	49	$V_{\mathrm{SS_1}}$	P		V_{SS_1}		
-	-	32	31	50	$V_{\rm IO_1}$	P		V _{IO_1}		
-	24	-	-	-	V _{DD_IO_1}	P		$V_{DD_IO_1}$		
-	-	-	32	-	V_{DD_1}	P		$V_{DD \ 1}$		
									SPI2_NSS	
5	25	33	35	51	PB12	I/O/A	FT	PB12	I2S2_WS	
							_		I2C2_SMBA	
Ь				<u> </u>		1				

						1			I	I
									USART3_CK	
									TIM1_BKIN	
									OPA4_CH0P	
									CAN2_RX	
									ETH_MII_TXD0	
									ETH_RMII_TXD0	
									SPI2_SCK	
									I2S2_CK	
									USART3_CTS	
	26	2.4	26	50	DD 12	I/O/A	ET	DD 12	TIM1_CH1N	LICADES CEC 1
6	26	34	36	52	PB13	I/O/A	FT	PB13	OPA3_CH0P	USART3_CTS_1
									CAN2_TX	
									ETH_MII_TXD1	
									ETH_RMII_TXD1	
									SPI2 MISO	
_		2.5			DD1	1/0/:	FÆ	PD 1 1	TIM1_CH2N	LIGARES SES
7	27	35	37	53	PB14	I/O/A	FT	PB14	USART3_RTS	USART3_RTS_1
									OPA2_CH0P	
									SPI2_MOSI	
									I2S2_SD	
8	28	36	38	54	PB15	I/O/A	FT	PB15	TIM1_CH3N	USART1_TX_2
									OPA1_CH0P	
									_	USART3_TX_3
										TIM9_CH1N_2
_	_	-	33	55	PD8	I/O	FT	PD8	FSMC_D13	ETH_MII_RX_DV
									_	ETH_RMII_CRS
										DV
										USART3_RX_3
										TIM9_CH1_ETR_2
-	-	-	34	56	PD9	I/O	FT	PD9	FSMC_D14	ETH_MII_RXD0
										ETH_RMII_RXD0
						-				
										USART3_CK_3
-	-	-	-	57	PD10	I/O	FT	PD10	FSMC_D15	TIM9_CH2N_2
									_	ETH_MII_RXD1
										ETH_RMII_RXD1
					DE:	1/0	Dæ	DD 11	DOMES 116	USART3_CTS_3
-	-	-	-	58	PD11	I/O	FT	PD11	FSMC_A16	TIM9_CH2_2
										ETH_MII_RXD2
										TIM4_CH1_1
-	-	-	- -	. 59	9 PD12	I/O	FT	PD12	FSMC_A17	TIM9_CH3N_2
										USART3_RTS_3
						<u> </u>				ETH_MII_RXD3
-	-	-	-	60	PD13	I/O	FT	PD13	FSMC_A18	TIM4_CH2_1
										TIM9_CH3_2

										TIMA CITA 1		
-	-	-	-	61	PD14	I/O	FT	PD14	FSMC_D0	TIM4_CH3_1		
										TIM9_BKIN_2		
-	-	-	-	62	PD15	I/O	FT	PD15	FSMC_D1	TIM4_CH4_1		
									I2C2 MCK	TIM9_CH4_2		
									I2S2_MCK			
9	-	37	39	63	PC6	I/O	FT	PC6	TIM8_CH1	TIM3_CH1_3		
									SDIO_D6			
									ETH_RXP			
							FT		I2S3_MCK			
10	_	38	40	64	PC7	I/O		PC7	TIM8_CH2	TIM3_CH2_3		
								,	SDIO_D7			
									ETH_RXN			
									TIM8_CH3			
11		39	41	65	PC8	I/O	FT	PC8	SDIO_D0	TIM3_CH3_3		
11	-	39	71	03	1 00	1/0	1.1	100	ETH_TXP	111V13_C113_3		
									DVP_D2			
									TIM8_CH4			
		40	40		PC9	I/O	FT	PC9	SDIO_D1	TIM3_CH4_3		
	-	40	42	66					ETH_TXN			
12									DVP D3			
									USART1_CK	USART1_CK_1		
	29	41	43	67	PA8	I/O	FT	PA8	TIM1 CH1	USART1_RX_2		
									MCO	TIM1_CH1_1		
						I/O	FT	PA9	USART1_TX			
	30								TIM1_CH2	USART1_RTS_2		
13		42	44	68	PA9				OTG_FS_VBUS	TIM1_CH2_1		
									DVP_D0			
									USART1_RX			
	31							PA10	TIM1_CH3	USART1_CK_2		
-		43	45	69	PA10	I/O	FT		OTG_FS_ID			
			ı						DVP_D1	TIM1_CH3_1		
									_			
			14 46	46	70						USART1_CTS USBDM	
	32	11				DA 11	I/O/A	FT	DA 11		USART1_CTS_1	
-		++			/0	PA11	I/O/A		PA11	CAN1_RX	TIM1_CH4_1	
										TIM1_CH4		
									OTG_FS_DM			
	33		5 47			I/O/A	FT		USART1_RTS			
				47 71					USBDP	LICADEL PEC		
-		45			PA12			PA12	CAN1_TX	USART1_RTS_1		
								17112	TIM1_ETR	TIM1_ETR_1		
									TIM10_CH1N			
									OTG_FS_DP			
13	34	46	48	72	PA13	I/O	FT	SWDIO	TIM10_CH2N	PA13		
	•									TIM8_CH1N_1		
-	-	-	-	73				unus	sed			

_	35	47	49	74	V_{SS_2}	P	-	V_{SS_2}		
-	36	48	50	75	$ ho_{DD_2}$	P	-	V_{DD_2}		
_	_	_	51	-	$V_{{ m IO}_2}$	P	_	$V_{{ m IO}_2}$		
15	37	49	52	76	PA14	I/O	FT	SWCLK	TIM10_CH3N	TIM8_CH2N_1 UART8_TX_1 PA14
-	38	50	53	77	PA15	I/O	FT	PA15	SPI3_NSS I2S3_WS	TIM2_CH1_ETR_1 TIM2_CH1_ETR_3 SPI1_NSS TIM8_CH3N_1 UART8_RX_1
-	-	51	54	78	PC10	I/O	FT	PC10	UART4_TX SDIO_D2 TIM10_ETR DVP_D8	USART3_TX_1 SPI3_SCK I2S3_CK
-	-	52	55	79	PC11	I/O	FT	PC11	UART4_RX SDIO_D3 TIM10_CH4 DVP_D4	USART3_RX_1 SPI3_MISO
-	-	53	56	80	PC12	I/O	FT	PC12	UART5_TX SDIO_CK TIM10_BKIN DVP_D9	USART3_CK_1 SPI3_MOSI I2S3_SD
-	ı	-	-	81	PD0	I/O/A	FT	PD0	FSMC_D2	CAN1_RX TIM10_ETR_2
-	ı	-	-	82	PD1	I/O/A	FT	PD1	FSMC_D3	CAN1_TX TIM10_CH1_2
-	1	54	57	83	PD2	I/O	FT	PD2	TIM3_ETR UART5_RX SDIO_CMD DVP_D11	TIM3_ETR_2 TIM3_ETR_3
-	-	-	-	84	PD3	I/O	FT	PD3	FSMC_CLK	USART2_CTS_1 TIM10_CH2_2
-	-	-	-	85	PD4	I/O	FT	PD4	FSMC_NOE	USART2_RTS_1
-	-	-	-	86	PD5	I/O	FT	PD5	FSMC_NWE	USART2_TX_1 TIM10_CH3_2
-	-	-	-	87	PD6	I/O	FT	PD6	FSMC_NWAIT DVP_D10	USART2_RX_1
-	-	-	-	88	PD7	I/O	FT	PD7	FSMC_NE1 FSMC_NCE2	USART2_CK_1 TIM10_CH4_2
-	39	55	58	89	PB3	I/O	FT	PB3	SPI3_SCK I2S3_CK	TIM2_CH2_1 TIM2_CH2_3 SPI1_SCK TIM10_CH1_1

				1 1			ı	1	1	
										TIM3_CH1_2
	40	56	59	90	PB4	I/O	EТ	DD/I	SDI3 MISO	SPI1_MISO
-	40	30	33	90	I D4	1/0	O FT PB4 SPI3_MISO		3113_W13O	UART5_TX_1
										TIM10_CH2_1
									I2C1_SMBA	TIM3_CH2_2
									SPI3_MOSI	SPI1_MOSI
-	41	57	60	91	PB5	I/O	FT	PB5	I2S3_SD	CAN2_RX
									ETH_MII_PPS_OUT	TIM10_CH3_1
									ETH_RMII_PPS_OUT	UART5_RX_1
									I2C1_SCL	
									TIM4_CH1	USART1_TX_1
16	42	58	61	92	PB6	I/O	FT	PB6	USBHD_DM	CAN2_TX
									DVP_D5	TIM8_CH1_1
									USBHS_DM	
									I2C1_SDA	
									FSMC_NADV	LICADTI DV 1
17	43	59	62	93	PB7	I/O	FT	PB7	TIM4_CH2	USART1_RX_1
									USBHD_DP	TIM8_CH2_1
									USBHS_DP	
-	44	60	63	94	BOOT0 ⁽⁵⁾	I	-	BOOT0 ⁽⁵⁾		
									TIM4_CH3	1201 001
									SDIO_D4	I2C1_SCL
-	45	61	64	95	PB8	I/O/A	FT	PB8	TIM10_CH1	CAN1_RX
									DVP_D6	UART6_TX_1
									ETH_MII_TXD3	TIM8_CH3_1
									TIM4_CH4	I2C1_SDA
	1.0	(2	<i>(</i> =	06	DD0	I/O/A	ET	DDO	SDIO_D5	CAN1_TX
-	46	62	65	96	PB9	I/O/A	FT	PB9	TIM10_CH2	UART6_RX_1
									DVP_D7	TIM8_BKIN_1
				0.7	DE?	1/0	DO	DE 0	EGIAG STRA	TIM4_ETR_1
-	-	-	66	97	PE0	I/O	FT	PE0	FSMC_NBL0	UART4_TX_2
-	-	-	-	98	PE1	I/O	FT	PE1	FSMC_NBL1	UART4_RX_2
-	47	63	-	99	V_{SS_3}	P	-	V _{SS_3}		
-	-	64	67	100	V _{IO_3}	P	-	V _{IO_3}		
-	-	-	68	-	V_{DD_3}	P	-	V_{DD_3}		
-										

Table 3-2 CH32V203xx pin definitions

Note: The pin function in the table below refer to all functions and do not involve specific model(s). There are differences in peripheral resources between different models. Please confirm whether this function is available according to the particular model's resource table before viewing this table.

		in No		10 11	e particular mod			dere segore	viewing this table.	
TSSOP20	QFN28	LQFP32	LQFP48/QFN48	LQFP64M	Pin name	Pin type	I/O voltage level	Main function (After reset)	Default alternate function	Remapping function
-	0	-	0	ı	V_{SS}	P	-	V_{SS}		
-	-	-	1	1	V_{BAT}	P	-	V_{BAT}		
-	1	ı	2	2	PC13- TAMPER-RTC ⁽²⁾	I/O	-	PC13 ⁽³⁾	TAMPER-RTC	
_	-	1	3	3	PC14- OSC32_IN ⁽²⁾	I/O/A	-	PC14 ⁽³⁾	OSC32_IN	
_	-	1	4	4	PC15- OSC32_OUT ⁽²⁾	I/O/A	-	PC15 ⁽³⁾	OSC32_OUT	
2	2	2	5	- 5	OSC_IN	I/A	-	OSC_IN		PD0 ⁽⁴⁾
3	3	3	6	-						PD1 ⁽⁴⁾
-	-	-	-	6	OSC_OUT	O/A	-	OSC_OUT		
4	4	4	7	7	NRST	I	-	NRST		
-	-	-	-	8	PC0	I/O/A	-	PC0	ADC_IN10	
-	-	-	-	9	PC1	I/O/A	-	PC1	ADC_IN11	
-	-	-	-	10	PC2	I/O/A	-	PC2	ADC_IN12	
-	-	-	-	11	PC3	I/O/A	-	PC3	ADC_IN13	
-	-	-	8	12	V_{SSA}	P	-	V_{SSA}		
5	5	5	9	13	V_{DDA}	P	-	V_{DDA}		
6	6	6	10	14	PA0-WKUP	I/O/A	-	PA0	WKUP USART2_CTS ADC_IN0 TIM2_CH1 TIM2_ETR TIM5_CH1	TIM2_CH1_ETR_2
7	7	7	11	15	PA1	I/O/A	-	PA1	USART2_RTS ADC_IN1 TIM2_CH2 TIM5_CH2	TIM2_CH2_2
8	8	8	12	16	PA2	I/O/A	-	PA2	USART2_TX ADC_IN2 TIM2_CH3 OPA2_OUT0 TIM5_CH3	TIM2_CH3_1

_										
									USART2_RX	
									ADC_IN3	
9	9	9	13	17	PA3	I/O/A	-	PA3	TIM2_CH4	TIM2_CH4_1
									OPA1_OUT0	
									TIM5_CH4	
-	-	-	-	18	V_{SS_4}	P	-	V_{SS_4}		
-	-	-	-	19	$V_{DD_IO_4}$	P	-	$V_{DD_IO_4}$		
									SPI1_NSS	
1.0	1.0	1.0	1.4	20	D. 4	1/0/4		D. 4	USART2_CK	
10	10	10	14	20	PA4	I/O/A	-	PA4	ADC_IN4	
									OPA2_OUT1	
11	11	11	15	-					SPI1_SCK	USART4_TX_1
					PA5	I/O/A	_	PA5	ADC_IN5	USART1_CTS_2
-	-	-	-	21					OPA2_CH1N	USART1_CK_3
									SPI1 MISO	TIM1 BKIN 1
12	12	12	16	-					ADC IN6	USART4_CK_1
					PA6	I/O/A	-	PA6	TIM3_CH1	TIM1_BKIN_1
-	-	-	-	22					OPA1 CH1N	USART1_TX_3
									SPI1 MOSI	TIM1_CH1N_1
13	13	13	17	-					ADC IN7	USART4_CTS_1
					PA7	I/O/A	-	PA7	TIM3_CH2	TIM1_CH1N_1
-	-	-	-	23					OPA2 CH1P	USART1_RX_3
-	-	-	-	24	PC4	I/O/A		PC4	ADC_IN14	USART1_CTS_3
-	-	-	-	25	PC5	I/O/A		PC5	ADC IN15	USART1 RTS 3
									ADC IN8	
									TIM3_CH3	TIM1_CH2N_1
-	14	14	18	-					OPA1_CH1P	TIM3_CH3_2
					PB0	I/O/A	_	PB0	USART4_TX	
									ADC_IN8	TIM1_CH2N_1
_	_	-	_	26					TIM3_CH3	TIM3_CH3_2
									OPA1 CH1P	UART4_TX_1
									ADC IN9	
		٠.							TIM3_CH4	TIM1_CH3N_1
14	15	15	19	-					OPA1_OUT1	TIM3_CH4_2
					PB1	I/O/A	_	PB1	USART4_RX	
									ADC_IN9	TIM1_CH3N_1
_	-	_	_	27					TIM3_CH4	TIM3_CH4_2
									OPA1_OUT1	UART4_RX_1
-	-	-	20	-	DD 2(5)	1/0	E	PB2	USART4_CK	
-	-	-	-	28	PB2 ⁽⁵⁾	I/O	FT	BOOT1 ⁽⁵⁾		
									I2C2_SCL	TIMO CHO O
1 -	-	-	21	29	PB10	I/O/A	FT	PB10	USART3_TX	TIM2_CH3_2
									OPA2_CH0N	TIM2_CH3_3
			<u> </u>				L	1	_	1

-	-	-	22	30	PB11	I/O/A	FT	PB11	I2C2_SDA USART3_RX	TIM2_CH4_2 TIM2_CH4_3
15	16	16	23	31	V_{SS_1}	P		V_{SS_1}	OPA1_CH0N	
16	17	17	24	32		P				
10	1 /	1 /	∠4	32	$V_{DD_IO_1}$	Г		$V_{DD_IO_1}$	CDI2 NCC	
-	-	-	25	33	PB12	I/O/A	FT	PB12	SPI2_NSS I2C2_SMBA USART3_CK TIM1_BKIN	
_	1	-	26	-					SPI2_SCK	
					PB13	I/O/A	FT	PB13	USART3_CTS	
-	-	-	-	34					TIM1_CH1N	USART3_CTS_1
-	-	-	27	-					SPI2_MISO TIM1 CH2N	
-	-	-	-	35	PB14	I/O/A	FT	PB14	USART3_RTS OPA2 CH0P	USART3_RTS_1
			28						SPI2_MOSI	
_	-	-	28	-	PB15	I/O/A	FT	PB15	TIM1_CH3N	
-	-	-	-	36					OPA1_CH0P	USART1_TX_2
-	-	-	-	37	PC6	I/O/A	FT	PC6	ETH_RXP	TIM3_CH1_3
-	1	-	-	38	PC7	I/O/A	FT	PC7	ETH_RXN	TIM3_CH2_3
-	1	-	-	39	PC8	I/O/A	FT	PC8	ETH_TXP	TIM3_CH3_3
-	1	-	-	40	PC9	I/O/A	FT	PC9	ETH_TXN	TIM3_CH4_3
-	ı	18	29	1					USART1_CK	USART1_CK_1
				4.1	PA8	I/O	FT	PA8	TIM1_CH1	
-	-	1	-	41					MCO	
-	18	19	30	-						TIM1_CH1_1
					PA9	I/O	FT	PA9	USART1_TX	USART1_CK_1
-	-	-	-	42					TIM1_CH2	USART1_RX_2
										TIM1_CH1_1
-	19	20	31	-	7.10	7.0		7.40	USART1_RX	TIM1_CH2_1
_	-	-	-	43	PA10	I/O	FT	PA10	TIM1_CH3	USART1_RTS_2
									LICADES CEC	TIM1_CH2_1
17	19	21	32	-					USART1_CTS	USART1_CTS_1
					PA11	I/O/A	FT	PA11	USBDM CANL BY	TIM1_CH3_1
-	-	-	-	44					CAN1_RX TIM1_CH4	USART1_CK_2 TIM1_CH3_1
									USART1 RTS	USART1_RTS_1
18	20	22	33	-					USBDP	TIM1 CH4 1
					PA12	I/O/A	FT	PA12	CAN1_TX	USART1_CTS_1
-	-	-	-	45					TIM1_ETR	TIM1 CH4 1
19	21	23	34	46	PA13	I/O	FT	SWDIO	_	PA13
	-	-	35	-	V _{SS 2}	P	-	V _{SS 2}		
-	-	-	36	-	V_{DD_2}	P	-	V_{DD_2}		

_	_	_	_	47	NC			NC		
_	-	_	-	48	NC			NC		
20	22	24	37	49	PA14	I/O	FT	SWCLK		PA14
										TIM2 CH1 ETR 1
										TIM2_CH1_ETR_3
-	23	25	38	-						SPI1 NSS
					PA15	I/O	FT	PA15		USART4_RTS_1
										TIM2 CH1 ETR 1
-	-	-	-	50						TIM2_CH1_ETR_3
										SPI1_NSS
-	-	-	-	51	PC10	I/O	FT	PC10	UART4_TX	USART3_TX_1
-	-	1	-	52	PC11	I/O	FT	PC11	UART4_RX	USART3_RX_1
-	-	1	-	53	PC12	I/O	FT	PC12		USART3_CK_1
				54	PD2	I/O	FT	PD2	TIM2 ETD	TIM3_ETR_2
_	•	-	ı	34	FD2	1/0	ГІ	FD2	TIM3_ETR	TIM3_ETR_3
-	24	26	39	-					USART4_CTS	TIM2_CH2_1
_	_	_	-	55	PB3	I/O	FT	PB3		TIM2_CH2_3
	-	-	-	33						SPI1_SCK
-	25	27	40	-	PB4	I/O	FT	PB4	USART4_RTS	TIM3_CH1_2
-	-	-	-	56	1 D4	1/0	11	1 154		SPI1_MISO
										TIM3_CH2_2
-	26	28	41	-						SPI1_MOSI
					PB5	I/O	FT	PB5	I2C1_SMBA	USART4_RX_1
_	_	_	_	57						TIM3_CH2_2
				,						SPI1_MOSI
									I2C1_SCL	
-	27	29	42	58	PB6	I/O	FT	PB6	TIM4_CH1	USART1_TX_1
									USBHD_DM	
	2.0	2.0	4.5		DE -	T/0	-	DE -	I2C1_SDA	Ma A Description
-	28	30	43	59	PB7	I/O	FT	PB7	TIM4_CH2	USART1_RX_1
			4.4	60	DOCTO	-		DOCTO.	USBHD_DP	
1(6)	1(6)	216	44	60	BOOT0	I	-	BOOT0		TOCAL COT
1(6)	1(6)	31(6)	45	61	PB8	I/O/A	FT	PB8	TIM4_CH3	I2C1_SCL
									_	CAN1_RX
-	-	-	46	68	PB9	I/O/A	FT	PB9	TIM4_CH4	I2C1_SDA
		22	47	(2	17	D		17		CAN1_TX
-	-	32	47	63	V_{SS_3}	P	-	V _{SS_3}		
-	-	1	48	64	$V_{DD_IO_3}$	P	-	$V_{DD_IO_3}$		

Table 3-3 CH32V208xx pin definitions

Note: The pin function in the table below refer to all functions and does not involve specific model(s). There are differences in peripheral resources between different models. Please confirm whether this function is available according to the particular model's resource table before viewing this table.

ava	Pin		cora	ing to the particul			Main	before viewing this table.	
QFN28	QFN48	LQFP64	OFN68	Pin name	Pin type	I/O voltage level	function (After reset)	Default alternate function	Remapping function
0	0	-	0	V_{SS}	P	-	V_{SS}		
-	48	1	1	V_{BAT}	P	-	V_{BAT}		
-	1	2	2	PC13- TAMPER-RTC ⁽²⁾	I/O	-	PC13 ⁽³⁾	TAMPER-RTC	
-	2	3	3	PC14- OSC32_IN ⁽²⁾	I/O/ A	-	PC14 ⁽³⁾	OSC32_IN	
-	3	4	4	PC15- OSC32_OUT ⁽²⁾	I/O/ A	-	PC15 ⁽³⁾	OSC32_OUT	
1	4	5	5	OSC_IN	I/A	-	OSC_IN		
2	5	6	6	OSC_OUT	O/A	-	OSC_OUT		
3	6	7	7	NRST	I	-	NRST		
-	1	8	8	PC0	I/O/ A	-	PC0	ADC_IN10	
-	1	9	9	PC1	I/O/ A	-	PC1	ADC_IN11	
-	1	10	10	PC2	I/O/ A	-	PC2	ADC_IN12	
-	-	11	11	PC3	I/O/ A	-	PC3	ADC_IN13	
-	7	12	12	V_{SSA}	P	-	V_{SSA}		
4	8	13	13	V_{DDA}	P	-	V_{DDA}		
5	9	14	14	PA0-WKUP	I/O/ A	ı	PA0	WKUP/USART2_CTS ADC_IN0/TIM2_CH1 TIM2_ETR/TIM5_CH1	TIM2_CH1_ETR_2
6	10	15	15	PA1	I/O/ A	-	PA1	USART2_RTS/ADC_IN1 TIM5_CH2/TIM2_CH2	TIM2_CH2_2
7	11	16	16	PA2	I/O/ A	-	PA2	USART2_TX/TIM5_CH3 ADC_IN2/TIM2_CH3 OPA2_OUT0	TIM2_CH3_1
-	-	-	17	$V_{{ m IO}_4}$	P	ı	V _{IO_4}		
_	-	_	18	PD4	I/O	FT	PD4		
8	12	17	19	PA3	I/O/ A	-	PA3	USART2_RX/TIM5_CH4 ADC_IN3/TIM2_CH4 OPA1_OUT0	TIM2_CH4_1
L-	-	18		V_{SS_4}	P	-	V_{SS_4}		
_	-	19	-	$V_{DD_IO_4}$	P	ı	$V_{DD_IO_4}$		

					I/O/			CDI1 NCC/LICADT2 CV	
9	13	20	20	PA4	I/O/	-	PA4	SPI1_NSS/USART2_CK	
					A			ADC_IN4/OPA2_OUT1	TICARET CEC O
10	14	21	21	PA5	I/O/	-	PA5	SPI1_SCK/ADC_IN5	USART1_CTS_2
					A			OPA2_CH1N	USART1_CK_3
11	15	22	22	PA6	I/O/	-	PA6	SPI1_MISO/ADC_IN6	TIM1_BKIN_1
				-	Α			TIM3_CH1/OPA1_CH1N	USART1_TX_3
12	16	23	23	PA7	I/O/	-	PA7	SPI1_MOSI/ADC_IN7	TIM1_CH1N_1
	10	23	23	111,	A		111,	TIM3_CH2/OPA2_CH1P	USART1_RX_3
		24	24	PC4	I/O/		PC4	ADC IN14	USART1 CTS 3
		27	27	104	A		104	ADC_IIVI4	
		25	25	PC5	I/O/		PC5	ADC_IN15	USART1_RTS_3
_	_	23	23	res	Α	1	103	ADC_IN13	USAKII_KIS_3
					I/O/			ADC IN8/TIM3 CH3	TIM1_CH2N_1
-	17	26	26	PB0		-	PB0	OPA1 CH1P	TIM3_CH3_2
					Α			OPAI_CHIP	UART4_TX_1
					1/0/			ADC DIO/TIM2 CHA	TIM1_CH3N_1
-	18	27	27	PB1	I/O/	-	PB1	ADC_IN9/TIM3_CH4	TIM3_CH4_2
					Α			OPA1_OUT1	UART4_RX_1
	10	20	20	PD 2(5)	T/0		PB2/BOO		
-	19	28	28	PB2 ⁽⁵⁾	I/O	FT	T1 ⁽⁵⁾		
	20	20	20	DD10	I/O/		DD 10	I2C2 SCL/USART3 TX	TIM2_CH3_2
-	20	29	29	PB10	Α	FT	PB10	OPA2 CH0N	TIM2 CH3 3
		•	•	22.11	I/O/		22.11	I2C2 SDA/USART3 RX	TIM2 CH4 2
-	21	30	30	PB11	Α	FT	PB11	OPA1 CH0N	TIM2 CH4 3
-	-	31	-	V_{SS_1}	P		$V_{\mathrm{SS_1}}$	_	
13	22	32	-	V _{DD IO 1}	P		V _{DD IO 1}		
-	-	-	31	V_{IO_1}	P		V_{IO_1}		
-	-	-	32	$ m V_{DD_1}$	P		V_{DD_1}		
_	_	_	33	PD5	I/O	FT	PD5		
_	_	_	34	PD6	I/O	FT	PD6		
					I/O/			SPI2_NSS/I2C2_SMBA	
-	23	33	35	PB12	A	FT	PB12	USART3 CK/TIM1 BKIN	
					I/O/			SPI2 SCK/TIM1 CH1N	
-	24	34	36	PB13	A	FT	PB13	USART3 CTS	USART3_CTS_1
					I/O/			SPI2 MISO/TIM1 CH2N	
-	25	35	37	PB14	A	FT	PB14	USART3 RTS/OPA2 CH0P	USART3_RTS_1
					I/O/			SPI2 MOSI/TIM1 CH3N	
-	26	36	38	PB15	A	FT	PB15	OPA1 CH0P	USART1_TX_2
14	_	37	39	PC6	I/O	FT	PC6	ETH RXP	TIM3 CH1 3
15	_	38	40	PC7	I/O	FT	PC7	ETH_RXP ETH RXN	TIM3_CH1_3 TIM3_CH2_3
\vdash	-	39			I/O			_	
16	-		41	PC8		FT	PC8	ETH_TXP	TIM3_CH3_3
17	-	40	42	PC9	I/O	FT	PC9	ETH_TXN	TIM3_CH4_3
-	27	41	43	PA8	I/O	FT	PA8	USART1_CK	
								TIM1_CH1/MCO	

	1				1		T		I
								USART1_TX	USART1_CK_1
-	28	42	44	PA9	I/O	FT	PA9	TIM1_CH2	USART1_RX_2
								11111_0112	TIM1_CH1_1
_	29	43	45	PA10	I/O	FT	PA10	USART1_RX	USART1_RTS_2
_	29	43	43	IAIU	1/0	1.1	IAIU	TIM1_CH3	TIM1_CH2_1
1.0	20	11	16	DA 11	I/O/	EТ	DA 11	USART1_CTS/USBDM	USART1_CK_2
18	30	44	46	PA11	Α	FT	PA11	CAN1_RX/TIM1_CH4	TIM1_CH3_1
10	2.1	1.5	4.7	D. 10	I/O/	DT	D. 10	USART1_RTS/USBDP	USART1_CTS_1
19	31	45	47	PA12	A	FT	PA12	CAN1_TX/TIM1_ETR	TIM1_CH4_1
20	32	46	48	PA13	I/O	FT	SWDIO		PA13
-	35	-	49	V _{SS 2}	P	-	V_{SS_2}		
21	33	47	50	V _{INTA}	P	-	V _{INTA}		
22	34	48	51	ANT	Α	_	ANT		
23	36	49	52	PA14	I/O	FT	SWCLK		PA14
	-	-							TIM2_CH1_ETR_1
24	37	50	53	PA15	I/O	FT	PA15		TIM2_CH1_ETR_3
	5 /	20	00	11110		- 1	11110		SPI1_NSS
_	_	51	54	PC10	I/O	FT	PC10	UART4 TX	USART3 TX 1
	_	52	55	PC11	I/O	FT	PC11	UART4 RX	USART3 RX 1
_	_	53	56	PC12	I/O	FT	PC12	07HCI+_ICY	USART3_CK_1
		33	50	1 012	1/0	11	1012		TIM3_ETR_2
-	-	54	57	PD2	I/O	FT	PD2	TIM3_ETR	TIM3_ETR_2 TIM3 ETR 3
									TIM2_CH2_1
	38	55	58	PB3	I/O	FT	PB3		TIM2_CH2_1 TIM2_CH2_3
-	30	33	30	гъз	1/0	ГІ	rbs		SPI1 SCK
-	39	56	59	PB4	I/O	FT	PB4		TIM3_CH1_2
									SPI1_MISO
-	40	57	60	PB5	I/O	FT	PB5	I2C1_SMBA	TIM3_CH2_2
								12 C1 CC1 /TD 14 C111	SPI1_MOSI
25	41	58	61	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1	USART1_TX_1
								USBHD_DM	
26	42	59	62	PB7	I/O	FT	PB7	I2C1_SDA	USART1_RX_1
					_			TIM4_CH2/USBHD_DP	
I -	43	60	63	BOOT0	I	-	BOOT0		
$27^{(6)}$	44	61	64	PB8	I/O/	FT	PB8	TIM4_CH3	I2C1 SCL/CAN1 RX
	•	-		-	A	•			_ =====================================
_	45	62	65	PB9	I/O/	FT	PB9	TIM4 CH4	I2C1 SDA/CAN1 TX
					A				
-	-	-	66	PD3	I/O	FT	PD3		
	46	63	-	$V_{\mathrm{SS_3}}$	P	-	V_{SS_3}		
28	47	64	-	$V_{DD_IO_3}$	P	-	$V_{DD_IO_3}$		
-	-	-	67	V_{IO_3}	P	-	V_{IO_3}		
_	-	-	68	${ m V}_{ m DD_3}$	P	-	V_{DD_3}		

Note 1: Abbreviations in the table

I = TTL/CMOS level Schmitt input;

O = CMOS level tri-state output;

A = analog signal input or output;

P = power supply;

FT = 5V tolerance;

ANT = RF signal input and output (antenna);

Note 2: The PC13, PC14 and PC15 pins are powered by the power's switch, and this power's switch can only absorb a limited current (3mA). Therefore, when these 3 pins are used as output pins, there are the following restrictions: only one pin can be used as an output at the same time. When used as an output pin, it can only work in 2MHz mode. The maximum drive load is 30pF and cannot be used as a current source (Such as driving LED).

Note 3: These pins are in the main function state when the backup area is powered on for the first time. Even after resetting, the state of these pins is controlled by the backup area registers (these registers will not be reset by the main reset system). For specific information on how to control these IO ports, please refer to the relevant chapters on the battery backup area and BKP register in the CH32FV2x V3xRM datasheet.

Note 4: Pin 5 and pin 6 of those in LQFP64M package are configured as OSC_IN and OSC_OUT function pins by default after chip reset. Software can reconfigure these 2 pins as PD0 and PD1. But for those in LQFP100 package, since PD0 and PD1 are inherent functional pins, there is no need to re-image settings by software. For the CH32V203RBT6, the OSC_IN and OSC_OUT function pins have no alternate functions of PD0 and PD1. For more detailed information, please refer to the chapters on Alternate Function I/O and Debug Setting in the CH32FV2x V3xRM datasheet.

Note 5: For devices without the BOOT0 pinout, they are pulled down to GND internally. For devices without the BOOT1/PB2 pinout, they are pulled down to GND internally. In this case, it is recommended that the BOOT1/PB2 pinout is set to input pull-down mode if a device goes into the low-power mode and configures IO port state, to avoid generating extra current.

Note 6: For a device whose BOOT0 and PB8 pinouts are shorted, it is recommended to be connected to an external 500K pull-down resistor, to ensure that the device is powered on stably and enters the mode of booting from program flash memory. After that, only the drive output function of the PB8 pin and its alternate function pin is used.

Chapter 4 Electrical characteristics

4.1 Test conditions

Unless otherwise specified and marked, all voltages are based on Vss.

All minimum and maximum values will be guaranteed under the worst conditions of ambient temperature, supply voltage and clock frequency. Typical values are based on normal temperature (25° C) and $V_{DD} = 3.3V$ environment, which can be used for design guidance.

The data obtained through comprehensive evaluation, design simulation or process characteristics will not be tested on the production line. On the basis of comprehensive evaluation, the minimum and maximum values are statistically obtained after sample testing. Unless were specifically explained that is a measured value, the characteristic parameters are guaranteed by comprehensive evaluation or design.

Power supply plan:

Figure 4-1 Typical circuit of power supply

4.2 Absolute maximum ratings

Operating in critical ratings or exceeding the absolute maximum ratings may cause the chip to work abnormally or even be damaged.

Table 4-1 Absolute maximum ratings

Symbol	Description	Min.	Max.	Unit
T_A	Ambient temperature during operation	-40	85	°C
Ts	Ambient temperature during storage	-40	125	°C
V_{DD} - V_{SS}	External main supply voltage (including V_{DDA} and V_{DD})	-0.3	4.0	V
V_{IO} - V_{SS}	IO domain supply voltage	-0.3	4.0	V
$ m V_{IN}$	Input voltage on the FT (5V tolerant) pin	V_{SS} -0.3	5.5	V
VIN	Input voltage on other pins	V_{SS} -0.3	V _{DD} +0.3	
$ \triangle V_{DD_x} $	Variations between different main power supply pins		50	mV
$ \triangle V_{IO_x} $	Variations between different IO power supply pins		50	mV
$ \triangle V_{SS_x} $	Variations between different ground pins		50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model, non-contact)		4K	V

I_{VDD}	Total current into V _{DD} /V _{DDA} /V _{IO} power lines (source)	150	
I_{Vss}	Total current out of Vss ground lines (sink)	150	
т	Sink current on any I/O and control pin	25	
I_{IO}	Output current on any I/O and control pin	-25	^
	Injected current on NRST pin	+/-5	mA
$I_{\mathrm{INJ(PIN)}}$	Injected current on HSE's OSC_IN pin and LSE's OSC_IN pin	+/-5	
	Injected current on other pins	+/-5	
$\sum I_{INJ(PIN)}$	Total injected current on all IOs and control pins	+/-25	

4.3 Electrical characteristics

4.3.1 Operating conditions

Table 4-2 General operating conditions

Symbol	Parameter	Condition	Min.	Max.	Unit
F_{HCLK}	Internal AHB clock frequency			144	MHz
F _{PCLK1}	Internal APB1 clock frequency			144	MHz
F _{PCLK2}	Internal APB2 clock frequency			144	MHz
$V_{ m DD}$	Standard operating voltage		2.4	3.6	V
V DD	Standard operating voltage	Use USB or ETH	3.0	3.6	V
V_{IO}	Output voltage on most IO pins	V_{IO} cannot be more than V_{DD}	2.4	3.6	V
$ m V_{DDA}$	Analog operating voltage (ADC is not used) Analog operating voltage (ADC is used)	V_{DDA} must be the same as V_{IO} , V_{REF^+} cannot be higher than V_{DDA} , V_{REF^-} is equal to V_{SS} .	2.4	3.6	V
V _{BAT} ⁽¹⁾	Backup operating voltage	Cannot be more than V _{DD}	1.8	3.6	V
T _A	Ambient temperature		-40	85	°C
$T_{\rm J}$	Junction temperature range		-40	85	°C

Note: 1. The connection line from the battery to VBAT should be as short as possible.

Table 4-3 Power-on and power-down conditions

Symbol	Parameter	Condition	Min.	Max.	Unit
4	V _{DD} rise time rate		0	∞	ııs/V
t _{VDD}	V _{DD} fall time rate		30	8	us/V

4.3.2 Embedded reset and power control block characteristics

Table 4-4 Reset and voltage monitor (For PDR, select high threshold gear)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
		PLS[2:0] = 000 (rising edge)		2.39		V
	Duo anamanahla valta aa	PLS[2:0] = 000 (falling edge)		2.31		V
$V_{PVD}^{(1)}$	Programmable voltage	PLS[2:0] = 001 (rising edge)		2.56		V
	detector level selection	PLS[2:0] = 001 (falling edge)		2.48		V
		PLS[2:0] = 010 (rising edge)		2.65		V

		(1	
		PLS[2:0] = 010 (falling edge)		2.57		V
		PLS[2:0] = 011 (rising edge)		2.78		V
		PLS[2:0] = 011 (falling edge)		2.69		V
		PLS[2:0] = 100 (rising edge)		2.89		V
		PLS[2:0] = 100 (falling edge)		2.81		V
		PLS[2:0] = 101 (rising edge)		3.05		V
		PLS[2:0] = 101 (falling edge)		2.96		V
		PLS[2:0] = 110 (rising edge)		3.17		V
		PLS[2:0] = 110 (falling edge)		3.08		V
		PLS[2:0] = 111 (rising edge)		3.31		V
		PLS[2:0] = 111 (falling edge)		3.21		V
V _{PVDhyst}	PVD hysteresis			0.08		V
17	Power-on/power-down	Rising edge	1.9	2.2	2.4	V
V _{POR/PDR}	reset threshold	Falling edge	1.9	2.2	2.4	V
V _{PDRhyst}	PDR hysteresis			20		mV
	Power on reset		24	28	30	C
t _{RSTTEMPO}	Other resets		8	10	30	mS

Note: 1. Normal temperature test value.

4.3.3 Embedded reference voltage

Table 4-5 Embedded reference voltage

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V_{REFINT}	Internal reference voltage	$T_{A} = -40^{\circ}\text{C} \sim 85^{\circ}\text{C}$	1.17	1.2	1.23	V
$T_{S_vrefint}$	ADC sampling time when reading the internal reference voltage				17.1	us

4.3.4 Supply current characteristics

Current consumption is a comprehensive index of a variety of parameters and factors. These parameters and factors include operating voltage, ambient temperature, I/O pin load, product software configuration, operating frequency, I/O pin flip rate, and program in memory The location in and the executed code, etc. The current consumption measurement method is as follows:

Figure 4-2 Current consumption measurement

The microcontroller is in the following conditions:

Under normal temperature conditions and when $V_{DD} = 3.3V$, all IO ports are configured with pull-up inputs, only one of HSE and HIS is enabled, HSE=8M (32M for the V208, V203RBT6), HIS=8M (calibrated), $F_{PLCK1}=F_{HCLK}/2$, $F_{PLCK2}=F_{HCLK}$, PLL is enabled when FHCLK>8MHz. Enable or disable the power consumption of all peripheral clocks.

Table 4-6-1 Typical current consumption in Run mode, the data processing code runs from the internal Flash (V30x)

		Condition		Ту	p.	
Symbol	Parameter			All peripherals enabled	All peripherals disabled ⁽²⁾	Unit
		F _{HCL}	$F_{HCLK} = 144MHz$	31.2	19.3	
			$F_{HCLK} = 72MHz$	16.5	10.1	
			$F_{HCLK} = 48MHz$	12.0	7.2	
			$F_{HCLK} = 36MHz$	10.3	6.1	
		External clock	$F_{HCLK} = 24MHz$	7.7	4.4	
			$F_{HCLK} = 16MHz$	6.3	3.5	
			$F_{HCLK} = 8MHz$	4.4	1.8	
	C1		$F_{HCLK} = 4MHz$	3.5	1.3	
$I_{DD}^{(1)}$	Supply current in		$F_{HCLK} = 500 kHz$	2.8	0.8	A
IDD	Run mode		$F_{HCLK} = 144MHz$	31.3	19.7	IIIA
	Kull illode		$F_{HCLK} = 72MHz$	16.5	10.2	
		Runs on the	$F_{HCLK} = 48MHz$	11.9	7.2	
		high-speed internal	$F_{HCLK} = 36MHz$	9.8	5.9	mA
	RC oscillator (HSI), using AHB prescaler to reduce the frequency	` '	$F_{HCLK} = 24MHz$	7.3	4.4	
			$F_{HCLK} = 16MHz$	6.0	3.3	
		$F_{HCLK} = 8MHz$	4.1	1.8		
		$F_{HCLK} = 4MHz$	3.3	1.3		
			$F_{HCLK} = 500 kHz$	2.6	0.8	

Table 4-6-2 Typical current consumption in Run mode, the data processing code runs from the internal Flash (V203)

				Ту		
Symbol	Parameter	Condi	Condition		All peripherals	Unit
				enabled	disabled ⁽²⁾	
			$F_{HCLK} = 144MHz$	12.08	8.24	
			$F_{HCLK} = 72MHz$	6.43	4.43	
	Supply		$F_{HCLK} = 48MHz$	4.51	3.18	
$I_{DD}^{(1)}$	current in	External clock	$F_{HCLK} = 36MHz$	4.12	2.98	mA
	Run mode		$F_{HCLK} = 24MHz$	2.72	1.95	
			$F_{HCLK} = 16MHz$	2.18	1.68	
			$F_{HCLK} = 8MHz$	1.21	0.99	

^{2.} During the test, the clocks of USART1 and GPIOA are not disabled when all peripheral clocks are disabled.

	$F_{HCLK} = 4MHz$ $F_{HCLK} = 500kHz$	0.92 0.65	0.80 0.64	
	$F_{HCLK} = 144MHz$	11.72	7.44	
D d	$F_{HCLK} = 72MHz$	6.02	3.86	
Runs on the	$F_{HCLK} = 48MHz$	4.13	2.69	
high-speed internal	$F_{HCLK} = 36MHz$	3.31	2.25	
RC oscillator (HSI),	$F_{HCLK} = 24MHz$	2.23	1.53	
using AHB prescaler to reduce the	$F_{HCLK} = 16MHz$	1.68	1.18	
frequency	$F_{HCLK} = 8MHz$	0.86	0.63	
nequency	$F_{HCLK} = 4MHz$	0.56	0.45	
	$F_{HCLK} = 500kHz$	0.31	0.29	

Note: 1. The above are measured parameters.

2. During the test, the clocks of USART1 and GPIOA are not disabled when all peripheral clocks are disabled.

Table 4-6-2 Typical current consumption in Run mode, the data processing code runs from the internal Flash (V208, V203RBT6)

(V208, V20	312310)			Ty	·р.	
Symbol	Parameter	Condition		All peripherals enabled	All peripherals disabled ⁽²⁾	Unit
			$F_{HCLK} = 144MHz$ $F_{HCLK} = 72MHz$ $F_{HCLK} = 48MHz$	21.37 10.91 7.58	16.77 8.73 6.16	
			$F_{HCLK} = 36MHz$ $F_{HCLK} = 24MHz$	6.49 4.59	5.29 3.61	
			$F_{HCLK} = 16MHz$	3.13	2.59	
	C1		$F_{HCLK} = 8MHz$ $F_{HCLK} = 4MHz$	2.0 1.42	1.71 1.28	
$I_{DD}^{(1)}$	Supply current in		$F_{HCLK} = 500 \text{KHz}$ $F_{HCLK} = 144 \text{MHz}$	1.0 20.75	0.95 16.27	mA
	Run mode		$F_{HCLK} = 72MHz$	10.74	8.53	
		high-speed internal RC oscillator (HSI),	$F_{HCLK} = 48MHz$ $F_{HCLK} = 36MHz$	7.42 5.96	5.98 5.05	
		using AHB prescaler	$F_{HCLK} = 24MHz$ $F_{HCLK} = 16MHz$	4.62 3.03	3.41 2.49	
	to reduce the frequency	$F_{HCLK} = 8MHz$ $F_{HCLK} = 4MHz$	1.66 1.11	1.42 1.0		
			$F_{HCLK} = 500 \text{kHz}$	0.63	0.62	

^{2.} During the test, the clocks of USART1 and GPIOA are not disabled when all peripheral clocks are disabled.

Table 4-7-1 Typical current consumption in Sleep mode, data processing code runs from internal Flash or SRAM (V30x)

				Ту	/p.	
Symbol	Parameter	Condit	cion	All peripherals	All peripherals	Unit
Symbol I _{DD} ⁽¹⁾	Supply current in Sleep mode (In this case, peripheral power supply and clock are maintaine	External clock Runs on the high-speed internal RC oscillator (HSI), using AHB prescaler	FHCLK = 144MHz FHCLK = 72MHz FHCLK = 48MHz FHCLK = 36MHz FHCLK = 24MHz FHCLK = 16MHz FHCLK = 8MHz FHCLK = 4MHz FHCLK = 44MHz FHCLK = 500kHz FHCLK = 144MHz FHCLK = 72MHz FHCLK = 36MHz FHCLK = 36MHz FHCLK = 36MHz FHCLK = 24MHz FHCLK = 24MHz FHCLK = 16MHz			Unit
	d) to reduce the	$F_{HCLK} = 8MHz$	3.2	0.9		
		frequency	$F_{HCLK} = 4MHz$	2.8	0.84	
			$F_{HCLK} = 500kHz$	2.5	0.79	

Table 4-7-2 Typical current consumption in Sleep mode, data processing code runs from internal Flash or SRAM (V203)

				Ту	/p.	
Symbol	Parameter	Condit	ion	All peripherals	All peripherals	Unit
				enabled	disabled ⁽²⁾	
	Supply		$F_{HCLK} = 144MHz$	7.37	3.05	
	current in		$F_{HCLK} = 72MHz$	4.0	1.88	
	Sleep		$F_{HCLK} = 48MHz$	2.9	1.7	
	mode		$F_{HCLK} = 36MHz$	2.9	1.48	
	(In this	External clock	$F_{HCLK} = 24MHz$	1.93	1.2	
	case,		$F_{HCLK} = 16MHz$	1.64	1.0	
$I_{DD}^{(1)}$	peripheral		$F_{HCLK} = 8MHz$	0.94	0.72	mA
	power		$F_{HCLK} = 4MHz$	0.78	0.66	
	supply		$F_{HCLK} = 500 \text{kHz}$	0.63	0.62	
	and clock	Runs on the	$F_{HCLK} = 144MHz$	7.1	2.72	
	are	high-speed internal	$F_{HCLK} = 72MHz$	3.65	1.56	
	maintaine RC oscillator (HSI),	$F_{HCLK} = 48MHz$	2.56	1.15		
	d)	using AHB prescaler	$F_{HCLK} = 36MHz$	2.17	1.06	

^{2.} During the test, the clocks of USART1, GPIOA and power module are not disabled.

to reduce the	$F_{HCLK} = 24MHz$	1.46	0.76	
frequency	$F_{HCLK} = 16MHz$	1.2	0.68	
	$F_{HCLK} = 8MHz$	0.6	0.4	
	$F_{HCLK} = 4MHz$	0.44	0.34	
	$F_{HCLK} = 500 \text{kHz}$	0.3	0.28	

Note: 1. The above are measured parameters.

Table 4-7-3 Typical current consumption in Sleep mode, data processing code runs from internal Flash or SRAM (V208, V203RBT6)

				Ту	/p.	
Symbol	Parameter	Condit	tion	All peripherals enabled	All peripherals disabled ⁽²⁾	Unit
$I_{DD}^{(1)}$	Supply current in Sleep mode (In this case, peripheral power supply and clock are maintaine	External clock Runs on the high-speed internal RC oscillator (HSI), using AHB prescaler	$F_{HCLK} = 144MHz$ $F_{HCLK} = 72MHz$ $F_{HCLK} = 48MHz$ $F_{HCLK} = 36MHz$ $F_{HCLK} = 24MHz$ $F_{HCLK} = 16MHz$ $F_{HCLK} = 8MHz$ $F_{HCLK} = 4MHz$ $F_{HCLK} = 4MHz$ $F_{HCLK} = 500kHz$ $F_{HCLK} = 144MHz$ $F_{HCLK} = 72MHz$ $F_{HCLK} = 48MHz$ $F_{HCLK} = 36MHz$ $F_{HCLK} = 36MHz$ $F_{HCLK} = 24MHz$ $F_{HCLK} = 16MHz$	* *	* *	mA
	d) to reduce the frequency	$F_{HCLK} = 8MHz$ $F_{HCLK} = 4MHz$	0.93 0.75	0.69 0.63		
			$F_{HCLK} = 4WHZ$ $F_{HCLK} = 500kHz$	0.73	0.56	

Table 4-8-1 Typical current consumption in Stop and Standby mode (V30x)

Symbol	Parameter	Condition	Тур.	Unit
$I_{ m DD}$	Supply current in Stop mode	The voltage regulator is in Run mode, and the low-speed and high-speed internal RC oscillators and external oscillators are off (no independent watchdog)	110.5	uA

^{2.} During the test, the clocks of USART1, GPIOA and power module are not disabled.

^{2.} During the test, the clocks of USART1, GPIOA and power module are not disabled.

		The voltage regulator is in low power mode, the low-speed and high-speed internal RC oscillators and external oscillators are off (no independent watchdog, PVD off)	34
		Low-speed internal RC oscillator and independent watchdog are on	1.91
	Supply current in Standby mode	The low-speed internal RC oscillator is on, and the independent watchdog is off	1.9
		Low-speed internal RC oscillator and independent watchdog are off, low-speed external oscillator and RTC are off	1.18
I _{DD_VBAT}	$\begin{array}{ccc} Backup & domain & supply \\ current & (Remove \ V_{DD} & and \\ V_{DDA}, only & powered \ by \ V_{BAT} \end{array}$	Low-speed external oscillator and RTC are on	1.9

Note: The above are measured parameters.

Table 4-8-2 Typical current consumption in Stop and Standby mode (V203)

Symbol	Parameter	Condition	Тур.	Unit
	Supply current in Stop mode	The voltage regulator is in Run mode, and the low-speed and high-speed internal RC oscillators and external oscillators are off (no independent watchdog)	60	
$I_{ m DD}$	Suppry current in Stop mode	The voltage regulator is in low power mode, the low-speed and high-speed internal RC oscillators and external oscillators are off (no independent watchdog, PVD off)	12	
		Low-speed internal RC oscillator and independent watchdog are on	1.3	uA
	Supply current in Standby mode	The low-speed internal RC oscillator is on, and the independent watchdog is off	1.3	
		Low-speed internal RC oscillator and independent watchdog are off, low-speed external oscillator and RTC are off	0.6	
$I_{ m DD_VBAT}$	$\begin{array}{ccc} Backup & domain & supply \\ current & (Remove \ V_{DD} & and \\ V_{DDA}, & only & powered \ by \ V_{BAT} \end{array}$	Low-speed external oscillator and RTC are on	1.3	

Table 4-8-3 Typical current consumption in Stop and Standby mode (V208, V203RBT6)

Symbol	Parameter	Condition	Тур.	Unit
	Sounds and the State and the	The voltage regulator is in Run mode, and the low-speed and high-speed internal RC oscillators and external oscillators are off (no independent watchdog)	253.4	
${ m I_{DD}}$	Supply current in Stop mode	The voltage regulator is in low power mode, the low-speed and high-speed internal RC oscillators and external oscillators are off (no independent watchdog, PVD off)	19.5	
	Supply current in Standby mode	Low-speed internal RC oscillator and independent watchdog are on	1.21	uA
		The low-speed internal RC oscillator is on, and the independent watchdog is off	1.18	
		Low-speed internal RC oscillator and independent watchdog are off, low-speed external oscillator and RTC are off	0.6	
I _{DD_VBAT}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Low-speed external oscillator and RTC are on	1.23	

Note: The above are measured parameters.

4.3.5 External clock source characteristics

Table 4-9 From external high-speed clock

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
			3	8	25	
F _{HSE_ext}	External clock frequency	applied for V208, V203RBT6		32		MHz
V _{HSEH} ⁽¹⁾	OSC_IN input pin high level		$0.8 m V_{IO}$		V _{IO}	V
V HSEH	voltage		0.0 V 10		V IO	V
V _{HSEL} ⁽¹⁾	OSC_IN input pin low-level		0		$0.2V_{IO}$	V
V HSEL`	voltage		U		0.2 V 10	V
$C_{in(HSE)}$	OSC_IN input capacitance			5		pF
DuCy _(HSE)	Duty cycle			50		%
$I_{\rm L}$	OSC_IN input leakage current				±1	uA

Note: 1. Failure to meet this condition may cause level recognition error.

Figure 4-3 External high-frequency clock source circuit

Table 4-10 From external low-speed clock

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{LSE_ext}	User external clock frequency			32.768	1000	kHz
V_{LSEH}	OSC32_IN input pin high level voltage		$0.8 \mathrm{V}_\mathrm{DD}$		$V_{ m DD}$	V
V _{LSEL}	OSC32_IN input pin low voltage		0		$0.2V_{DD}$	V
C _{in(LSE)}	OSC32_IN input capacitance			5		pF
DuCy _(LSE)	Duty cycle			50		%
$I_{\rm L}$	OSC32_IN input leakage current				±1	uA

Figure 4-4 External low-frequency clock source circuit

Table 4-11 High-speed external clock generated from a crystal/ceramic resonator

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
			3	8	25	
F _{OSC_IN}	Resonator frequency	applied for V208, V203RBT6		32(2)		MHz
R_{F}	Feedback resistance			250		kΩ
С	Recommended load capacitance and corresponding crystal series impedance RS	$R_S\!\!=\!\!60\Omega^{(1)}$		20		pF
I_2	HSE drive current	$V_{DD} = 3.3V$, 20p load		0.53		mA
$g_{\rm m}$	Oscillator transconductance	Startup		17.5		mA/V
$t_{SU(HSE)}$	Startup time	V _{DD} is stable, 8M crystal		2.5		ms

Note 1: It is recommended that the ESR of 25M crystal should not exceed 60 Ω , and it can be relaxed if it is lower than 25M.

2. No external load capacitor is required.

Circuit reference design and requirements:

The load capacitance of the crystal is subject to the recommendation of the crystal manufacturer, $C_{L1}=C_{L2}$, generally $10\sim20$ pF is recommended.

For the CH32V208xx series and CH32V203RB, they are connected with external 32M crystals, and they have built-in load capacitor, so the external circuit is not necessary.

Figure 4-5 Typical circuit of external 8M crystal

Table 4-12 Low-speed external clock generated by generated from a crystal/ceramic resonator (f_{LSE}=32.768kHz)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R_{F}	Feedback resistance			5		ΜΩ
С	Recommended load capacitance and corresponding crystal serial impedance Rs				15	pF
i ₂	LSE drive current	VDD = 3.3V		0.35		uA
$g_{\rm m}$	Oscillator transconductance	Startup		25.3		uA/V
$t_{SU(LSE)}$	Startup time	VDD is stable		800		mS

Circuit reference design and requirements:

The load capacitance of the crystal is subject to the recommendation of the crystal manufacturer, $C_{L1}=C_{L2}$, generally $10\sim20$ pF is recommended.

Figure 4-6 Typical circuit of external 32.768K crystal

Note: The load capacitance C_L is calculated by the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$. C_{stray} is the capacitance of the pin and the PCB board or PCB-related capacitance. Its typical value is between 2pF and 7pF.

4.3.6 Internal clock source characteristics

Table 4-13 Internal high-speed (HSI) RC oscillator characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F_{HSI}	Frequency (after calibration)			8		MHz
DuCy _{HSI}	Duty cycle		45	50	55	%
ACC _{HSI}	Accuracy of HSI oscillator (after	$TA = 0$ ° $C \sim 70$ ° C	-1.0		1.6	%
ACCHSI	calibration)	$TA = -40^{\circ}C \sim 85^{\circ}C$	-2.2		2.2	%
+	HSI oscillator startup			10		110
t _{SU(HSI)}	stabilization time					us
I _{DD(HSI)}	HSI oscillator power consumption		120	180	270	uA

Table 4-14 Internal low-speed (LSI) RC oscillator characteristics

Symbol	Parameter	C	Condition		Min.	Тур.	Max.	Unit
Б	Emagnamary				25	39	60	kHz
F_{LSI}	Frequency	applied	for	V208,	25	32	45	КПХ

		V203RBT6				
DuCy _{LSI}	Duty cycle		45	50	55	%
ACC _{LSI}	Accuracy of LSI oscillator (after calibration)	applied for V208, constant temperature (±1°C), it is recommended to calibrate once every 10s		±500		ppm
t _{SU(LSI)}	LSI oscillator startup stabilization time			100		us
I _{DD(LSI)}	LSI oscillator power consumption			0.6		uA

4.3.7 PLL characteristics

Table 4-15 PLL characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
			3	8	25	
F _{PLL_IN}	PLL input clock	applied for V208, V203RBT6	4	8	25	MHz
	PLL input clock duty cycle		40		60	%
			18		144(1)	
F _{PLL_OUT}	PLL multiplier output clock	applied for V208, V203RBT6	40		240(1)	MHz
t_{LOCK}	PLL lock time				200	us

Note 1: The frequency multiplier must be selected to meet the PLL output frequency range.

Table 4-16 PLL2 and PLL3 characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
E	PLL input clock		3		25	MHz
F_{PLL_IN}	PLL input clock duty cycle1		40		60	%
F _{PLL_OUT}	PLL multiplier output clock		30		75(1)	MHz
F_{VCO}	VCO output clock		60		150	MHz
t _{LOCK1}	PLL lock time				200	us

Note 1: The frequency multiplier must be selected to meet the PLL output frequency range.

4.3.8 Wakeup time from low power mode

Table 4-17-1 Wakeup time from low power mode⁽¹⁾ (V30x)

Symbol	Parameter	Condition	Тур.	Unit
$t_{ m wusleep}$	Wakeup from Sleep mode	Wake up using HSI RC clock	2.4	us
	Wakeup from Stop mode (voltage regulator is in Run mode)	Wake on HSI RC clock	23.1	us
$t_{ m wustop}$	Wakeup from Stop mode (voltage regulator is in low power mode)	Voltage regulator wake-up time from low power mode + HSI RC clock wake up	76.7	us
twustdby	Wakeup from Standby mode	LDO stabilization time + HSI RC clock wake up + code load time ⁽²⁾	8.9	ms

(. 1. 2567		l
(take 256K as example)		
(take 25 off as example)		1

Note: 1. The above parameters are measured parameters.

2. The code load time is calculated based on the current zero wait area capacity configured by the chip and the size of the loading configuration clock.

Table 4-17-2 Wakeup time from low power mode⁽¹⁾ (V208, V203RBT6)

Symbol	Parameter	Condition	Тур.	Unit
$t_{ m wusleep}$	Wakeup from Sleep mode	Wake up using HSI RC clock	2.6	us
	Wakeup from Stop mode (voltage regulator is in Run mode)	Wake on HSI RC clock	23.1	us
$t_{ m wustop}$	Wakeup from Stop mode (voltage regulator is in low power mode)	Voltage regulator wake-up time from low power mode + HSI RC clock wake up	299	us
t _{WUSTDBY}	Wakeup from Standby mode	LDO stabilization time + HSI RC clock wake up + code load time ⁽²⁾ (take 128K as example)	5.0	ms

Note: 1. The above parameters are measured parameters.

4.3.9 Memory characteristics

Table 4-18 Flash memory characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F_{prog}	Programming frequency ⁽¹⁾	$T_A = -40$ °C \sim 85°C			72	MHz
t _{prog_page}	Page (256 bytes) programming time	$T_A = -40^{\circ}\text{C} \sim 85^{\circ}\text{C}$		2		ms
terase_page	Page (256 bytes) erase time	$T_A = -40$ °C \sim 85°C		16		ms
terase_sec	Sector (4K bytes) erase time	$T_A = -40$ °C \sim 85°C		16		ms
V_{prog}	Programming voltage		2.4		3.6	V

Note: 1. For the programming frequency of flash, read operation, program operation and erase operation are included. The clock is from HCLK.

Table 4-19 Flash memory endurance and data retention

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
N_{END}	Endurance	$T_A = 25$ °C	10K	80K ⁽¹⁾		times
t _{RET}	Data retention		20			year

Note: The endurance parameter is actual measured, which is not guaranteed.

4.3.10 I/O port characteristics

Table 4-20 General purpose I/O static characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V	Standard I/O pin, input high level		0.41*(V _{DD} -		V _{DD} +0.3	V
$V_{ m IH}$	voltage		1.8)+1.3		V DD⊤0.3	v

^{2.} The code load time is calculated based on the current zero wait area capacity configured by the chip and the size of the loading configuration clock.

	FT IO pin, input high level voltage		0.42*(V _{DD} - 1.8)+1		5.5	V
V	Standard I/O pin, input low-level voltage		-0.3		0.28*(V _{DD} - 1.8)+0.6	V
$V_{ m IL}$	FT IO pin, input low-level voltage		-0.3		0.32*(V _{DD} - 1.8)+0.55	V
77	Standard I/O pin Schmitt trigger voltage hysteresis		150			
$V_{ m hys}$	FT IO pin Schmitt trigger voltage hysteresis		90			mV
Ţ	Lumit looks on animant	Standard IO port			1	4
I_{lkg}	Input leakage current	FT IO port			3	uA
R_{PU}	Weak pull-up equivalent resistance		30	40	50	kΩ
R_{PD}	Weak pull-down equivalent resistance		30	40	50	kΩ
C_{IO}	I/O pin capacitance			5		pF

Output drive current characteristics

GPIO (General Purpose Input/Output Port) can sink or output up to ± 8 mA current, and sink or output ± 20 mA current (not strictly to $V_{\text{OI}}/V_{\text{OH}}$). In user applications, the total driving current of all IO pins cannot exceed the absolute maximum ratings given in Section 4.2:

Table 4-21 Output voltage characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
V_{OL}	Output low level when 8 pins are sunk	TTL port, $I_{IO} = +8mA$		0.4	V
V_{OH}	Output high level when 8 pins are sourced	$2.7V < V_{DD} < 3.6V$	V _{DD} -0.4		V
V_{OL}	Output low level when 8 pins are sunk	CMOS port, I _{IO} = +8mA		0.4	V
V_{OH}	Output high level when 8 pins are sourced	$2.7V < V_{DD} < 3.6V$	2.3		V
V_{OL}	Output low level when 8 pins are sunk	$I_{IO} = +20mA$		1.3	V
V_{OH}	Output high level when 8 pins are sourced	$2.7V < V_{DD} < 3.6V$	V _{DD} -1.3		V
V_{OL}	Output low level when 8 pins are sunk	$I_{IO} = +6mA$		0.4	V
V_{OH}	Output high level when 8 pins are sourced	2.4V< V _{DD} <2.7V	V _{DD} -1.3		V

Note: In the above conditions, if multiple IO pins are driven at the same time, the total current cannot exceed the absolute maximum ratings given in Table 4.2. In addition, when multiple IO pins are driven at the same time, the current on the power/ground point is very large, which will cause the voltage drop to make the internal IO voltage not reach the power supply voltage in the table, resulting in the drive current being less than the nominal value.

Table 4-22 Input/output AC characteristics

MODEx[1:0] configuration	Symbol	Parameter	Condition	Min.	Max.	Unit
10	F _{max(IO)out}	Maximum frequency	CL=50pF,V _{DD} =2.7-3.6V		2	MHz
(2MHz)	$t_{f(IO)out}$	Output high to low fall time	CI =50mEV =2.7.2.6V		125	ns
(2MHz)	t _{r(IO)out}	Output low to high rise time	$CL=50pF, V_{DD}=2.7-3.6V$		125	ns
01	F _{max(IO)out}	Maximum frequency	CL=50pF,V _{DD} =2.7-3.6V		10	MHz

(10MHz)	$t_{f(IO)out}$	Output high to low fall time	CI =50mEV =2.7.2.6V		25	ns
	$t_{r(IO)out}$	Output low to high rise time	$CL=50pF, V_{DD}=2.7-3.6V$		25	ns
	E	Marianum fra auamar	CL=30pF,V _{DD} =2.7-3.6V		50	MHz
	Γ max(IO)out	F _{max(IO)out} Maximum frequency	CL=50pF,V _{DD} =2.7-3.6V		30	MHz
11	4	Output high to love fall time	CL=30pF,V _{DD} =2.7-3.6V		20	ns
(50MHz)	$t_{ m f(IO)out}$	Output high to low fall time	CL=50pF,V _{DD} =2.7-3.6V		5	ns
	4	Output lass to high miga time	CL=30pF,V _{DD} =2.7-3.6V		8	ns
	$t_{r(IO)out}$ Output low to high rise time	CL=50pF,V _{DD} =2.7-3.6V		12	ns	
		The EXTI controller detects				
	$t_{\rm EXTIpw}$	the pulse width of the		10		ns
		external signal				

4.3.11 NRST pin characteristics

Table 4-24 External reset pin characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{IL(NRST)}	NRST input low-level voltage		-0.3		0.28*(V _{DD} -1.8)+0.6	V
$V_{\text{IH(NRST)}}$	NRST input high level voltage		0.41*(V _{DD} -1.8)+1.3		V _{DD} +0.3	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis		150			mV
$R_{PU}^{(1)}$	Weak pull-up equivalent resistance		30	40	50	kΩ
V _{F(NRST)}	NRST input filtered pulse width				100	ns
V _{NF(NRST)}	NRST input not filtered pulse width		300			ns

Note: 1. The pull-up resistor is a real resistor in series with a switchable PMOS implementation. The resistance of this PMOS/NMOS switch is very small (approximately 10%).

Circuit reference design and requirements:

Figure 4-7 Typical circuit of external reset pin

4.3.12 TIM timer characteristics

Table 4-24 TIMx characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
		1		$t_{TIMxCLK}$	
t _{res(TIM)}	Timer reference clock	$f_{TIMxCLK} = 72MHz$	13.9		ns

Е	Timer external clock frequency on		0	f _{TIMxCLK} /2	MHz
F_{EXT}	CH1 to CH4	$f_{TIMxCLK} = 72MHz$	0	36	MHz
R_{esTIM}	Timer resolution			16	位
_	16-bit counter clock cycle when the		1	65536	$t_{TIMxCLK}$
tcounter	internal clock is selected	$f_{TIMxCLK} = 72MHz$	0.0139	910	us
t _{MAX_COUNT}	Maximum possible count			65535	$t_{TIMxCLK}$
		$f_{TIMxCLK} = 72MHz$		59.6	S

4.3.13 I2C interface characteristics

Figure 4-8 I²C bus timing diagram

Table 4-25 I²C interface characteristics

Cross h a l	D	Standa	ard I ² C	Fast I ² C		T T : 4
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
$t_{w(SCKL)}$	SCL clock low time	4.7		1.2		us
$t_{\mathrm{w(SCKH)}}$	SCL clock high time	4.0		0.6		us
$t_{\mathrm{SU(SDA)}}$	SDA data setup time	250		100		ns
$t_{h(\mathrm{SDA})}$	SDA data hold time	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA and SCL rise time		1000	20		ns
$t_{f(\mathrm{SDA})}/t_{f(\mathrm{SCL})}$	SDA and SCL fall time		300			ns
$t_{h(STA)}$	Start condition hold time	4.0		0.6		us
$t_{\rm SU(STA)}$	Repeated start condition setup time	4.7		0.6		us
t _{SU(STO)}	Stop condition setup time	4.0		0.6		us
4	Time from stop condition to start condition	4.7		1.2		110
$t_{w(STO:STA)}$	(bus free)	4.7		1.2		us
Сь	Capacitive load for each bus		400		400	pF

4.3.14 SPI interface characteristics

Figure 4-9 SPI timing diagram in Master mode

Figure 4-10 SPI timing diagram in Slave mode (CPHA=0)

Figure 4-11 SPI timing diagram in Slave mode (CPHA=1)

Table 4-26 SPI interface characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
£ /4	CDI -11- f	Master mode		36	MHz
f _{SCK} /t _{SCK}	SPI clock frequency	Slave mode		36	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI clock rise and fall time	Load capacitance:C = 30pF		20	ns
t _{SU(NSS)}	NSS setup time	Slave mode	$2t_{PCLK}$		ns
$t_{h(NSS)}$	NSS hold time	Slave mode	$2t_{PCLK}$		ns
+ /+	CCV high and law times	Master mode, $f_{PCLK} = 36MHz$,	40	60	
$t_{w(SCKH)}/t_{w(SCKL)}$	SCK high and low time	Prescaler factor = 4	40	60	ns
$t_{SU(MI)}$	D. i. i. i. i.	Master mode	5		ns
$t_{ m SU(SI)}$	Data input setup time	Slave mode	5		ns
$t_{h(MI)}$	D-4- i41-114i	Master mode	5		ns
$t_{h(SI)}$	Data input hold time	Slave mode	4		ns
$t_{a(SO)}$	Data output access time	Slave mode, $f_{PCLK} = 20MHz$	0	1t _{PCLK}	ns
$t_{\rm dis(SO)}$	Data output disable time	Slave mode	0	10	ns
$t_{V(SO)}$	Data autout valid time	Slave mode (After enable edge)		25	ns
t _{V(MO)}	Data output valid time	Master mode (After enable edge)		5	ns
t _{h(SO)}	Data autout hald time	Slave mode (After enable edge)	15		ns
$t_{ m h(MO)}$	Data output hold time	Master mode (After enable edge)	0		ns

4.3.15 I2S interface characteristics

Figure 4-12 I²S master timing diagram (Philips protocol)

Figure 4-13 I²S slave timing diagram (Philips protocol)

Table 4-27 I²S interface characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
£ /4	I2C -11-f	Master mode		8	MHz
$f_{\rm CK}/t_{ m CK}$	I ² S clock frequency	Slave mode		8	MHz
$t_{r(CK)}/t_{f(CK)}$	I ² S clock rise and fall time	Load capacitance: C = 30pF		20	ns
$t_{V(WS)}$	WS valid time	Master mode		5	ns
$t_{\rm SU(WS)}$	WS setup time	Slave mode	10		ns
4	WS hold time	Master mode	0		ns
$t_{h(WS)}$		Slave mode	0		ns
4 /4	SCV high and law time	Master mode, $f_{PCLK} = 36MHz$,	40	60	%
$t_{w(CKH)}/t_{w(CKL)}$	SCK high and low time	Prescaler factor =4	40	60	70
$t_{SU(SD_MR)}$	Data input setup time	Master mode	8		ns

$t_{SU(SD_SR)}$		Slave mode	8		ns
t _{h(SD_MR)}	Data innut hald time	Master mode	5		ns
$t_{h(\mathrm{SD_SR})}$	Data input hold time	Slave mode	4		ns
$t_{h(SD_MT)}$	D-4	Master mode (After enable edge)		5	ns
$t_{h(\mathrm{SD_ST})}$	Data output hold time	Slave mode (After enable edge)		5	ns
$t_{V(SD_MT)}$	Data output valid time	Master mode (After enable edge)		5	ns
$t_{v(\mathrm{SD_ST})}$		Slave mode (After enable edge)		4	ns

4.3.16 USB interface characteristics

Table 4-28 USB characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
V_{DD}	USB operating voltage		3.0	3.6	V
$ m V_{SE}$	Single-ended receiver threshold	$V_{DD} = 3.3V$	1.2	1.9	V
$ m V_{OL}$	Static output low level			0.3	V
V_{OH}	Static output high level		2.8	3.6	V
$V_{ ext{HSSQ}}$	High-speed suppression information detection threshold		100	150	mV
V _{HSDSC}	High-speed disconnection detection threshold		500	625	mV
$V_{ m HSOI}$	High-speed idle level		-10	10	mV
$V_{ m HSOH}$	High-speed data high level		360	440	mV
V _{HSOL}	High-speed data low level		-10	10	mV

4.3.17 SD/MMC interface characteristics

Figure 4-14 SD high-speed timing diagram

Figure 4-15 SD default timing diagram

Table 4-29 SD/MMC interface characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit			
f_{CK}/t_{CK}	Clock frequency in data transfer mode	CL≤30pF		48	MHz			
$t_{W(CKL)}$	Clock low time	CL≤30pF	6					
tw(CKH)	Clock high time	CL≤30pF	6		***			
$t_{r(CK)}$	Rise Time	CL≤30pF		4	ns			
$t_{\rm f(CK)}$	Fall time	CL≤30pF		4				
CMD/DAT inp	CMD/DAT input (refer to CK)							
$t_{ m ISU}$	Input setup time	CL≤30pF	7					
t_{IH}	Input hold time	CL≤30pF	2		ns			
CMD/DAT ou	tput in MMC and SD high-speed	mode (refer to CK)						
t _{OV}	Output valid time	CL≤30pF		5				
t _{OH}	Output hold time	CL≤30pF	20		ns			
CMD/DAT ou	CMD/DAT output in SD default mode (refer to CK)							
t _{OVD}	Output valid default time	CL≤30pF		8				
t _{OHD}	Output hold default time	CL≤30pF	20		ns			

4.3.18 FSMC characteristics

Figure 4-16 Asynchronous multiplexed PSRAM/NOR read waveform

Table 4-30 Asynchronous multiplexed PSRAM/NOR read timings

Symbol	Parameter	Min.	Max.	Unit
t _{W(NE)}	FSMC_NE low time	7t _{HCLK}		
$t_{V(NOE_NE)}$	FSMC_NE low to FSMC_NOE low	0		
t _{W(NOE)}	FSMC_NOE low time	7t _{HCLK}		
$t_{h(NE_NOE)}$	FSMC_NOE high to FSMC_NE high hold time	0		
$t_{V(A_NE)}$	FSMC_NE low to FSMC_A valid	0	5	
$t_{V(NADV_NE)}$	FSMC_NE low to FSMC_NADV low	0	5	
$t_{W(NADV)}$	FSMC_NADV low time	t _{HCLK}		
$t_{h(AD_NADV)}$	FSMC_AD (address) valid hold time after FSMC_NADV high	2t _{HCLK}		ns
$t_{h(A_NOE)}$	Address hold time after FSMC_NOE high	0		
$t_{h(BL_NOE)}$	FSMC_BL hold time after FSMC_NOE high	0		
$t_{V(BL_NE)}$	FSMC_NE low to FSMC_BL valid	0	5	
t _{SU(DATA_NE)}	Data to FSMC_NE high setup time	3t _{HCLK}		
t _{SU(DATA_NOE)}	Data to FSMC_NOE high setup time	3t _{HCLK}		
t _{h(DATA_NE)}	Data hold time after FSMC_NE high	0		
t _{h(DATA_NOE)}	Data hold time after FSMC_NOE high	0		

Figure 4-17 Asynchronous multiplexed PARAM/NOR write waveform

Table 4-31 Asynchronous multiplexed PARAM/NOR write timings

Symbol	Parameter	Min.	Max.	Unit
tw(NE)	FSMC_NE low time	5t _{HCLK}		
$t_{V(NEW_NE)}$	FSMC_NE low to FSMC_NWE low	$3t_{HCLK}$		
$t_{W(NWE)}$	FSMC_NWE low time	2t _{HCLK}		
$t_{h(NE_NWE)}$	FSMC_NWE high to FSMC_NE high hold time	t_{HCLK}		
$t_{V(A_NE)}$	FSMC_NE low to FSMC_A valid	0	5	
$t_{V(NADV_NE)}$	FSMC_NE low to FSMC_NADV low	0	5	
$t_{W(NADV)}$	FSMC_NADV low time	t_{HCLK}		ns
$t_{h(AD_NADV)}$	FSMC_AD (address) valid hold time after FSMC_NADV high	2t _{HCLK}		
$t_{h(A_NWE)}$	Address hold time after FSMC_NWE high	t_{HCLK}		
$t_{V(BL_NE)}$	FSMC_NE low to FSMC_BL valid	0	5	
$t_{h(BL_NWE)}$	FSMC_BL hold time after FSMC_NWE high	t _{HCLK}		
tv(data_nadv)	FSMC_NADV high to data hold time	2t _{HCLK}		
t _{h(DATA_NWE)}	Data hold time after FSMC_NWE high	t _{HCLK}		

Figure 4-18 Synchronous multiplexed NOR/PARAM read waveform

Table 4-32 Synchronous multiplexed NOR/PSRAM read timings

Symbol	Parameter	Min.	Max.	Unit
t _{W(CLK)}	FSMC_CLK period	2t _{HCLK}		
$t_{d(\mathrm{CLKL_NEL})}$	FSMC_CLK low to FSMC_NE low	0	5	
$t_{d(CLKH_NEH)}$	FSMC_CLK high to FSMC_NE high	0.5t _{HCLK}	$0.5t_{HCLK}$	
t _{d(CLKL_NADVL)}	FSMC_CLK low to FSMC_NADV low	0	5	
t _{d(CLKL_NADVH)}	FSMC_CLK low to FSMC_NADV high	0	5	
t _{d(CLKL_AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1623)	0	5	
$t_{d(CLKH_AIV)}$	FSMC_CLK high to FSMC_Ax invalid (x = 1623)	0	5	
$t_{d(CLKL_NOEL)}$	FSMC_CLK low to FSMC_NOE low	2t _{HCLK}		ns
t _{d(CLKH_NOEH)}	FSMC_CLK high to FSMC_NOE high	t_{HCLK}		
t _{d(CLKL_ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	0	5	
t _{d(CLKL_ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0	5	
t _{SU(ADV_CLKH)}	FSMC_AD[15:0] valid data before FSMC_CLK high	8		
t _{h(CLKH_ADV)}	FSMC_AD[15:0] valid data after FSMC_CLK high	8		
tsu(nwaitv_clkh)	FSMC_NWAIT valid before FSMC_CLK high	6		
$t_{h(CLKH_NWAITV)}$	FSMC_NWAIT valid after FSMC_CLK high	2		

Figure 4-19 Synchronous multiplexed PSRAM write waveform

Table 4-33 Synchronous multiplexed PSRAM write timings

Symbol	Parameter	Min.	Max.	Unit
$t_{W(CLK)}$	FSMC_CLK period	$2t_{HCLK}$		
$t_{d(\mathrm{CLKL_NEL})}$	FSMC_CLK low to FSMC_NE low	0	5	
t _{d(CLKH_NEH)}	FSMC_CLK high to FSMC_NE high	0.5t _{HCLK}	$0.5t_{HCLK}$	
t _{d(CLKL_NADVL)}	FSMC_CLK low to FSMC_NADV low	0	5	
t _{d(CLKL_NADVH)}	FSMC_CLK low to FSMC_NADV high	0	5	
t _{d(CLKL_AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1623)	0	5	
t _{d(CLKH_AIV)}	FSMC_CLK high to FSMC_Ax invalid (x = 1623)	0	5	
t _{d(CLKL_NWEL)}	FSMC_CLK low to FSMC_NWE low	0		ns
t _{d(CLKH_NWEH)}	FSMC_CLK high to FSMC_NWE high	0		
$t_{d(CLKL_ADV)}$	FSMC_CLK low to FSMC_AD[15:0] valid	0	5	
t _{d(CLKL_ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0	5	
t _{d(CLKL_DATA)}	FSMC_AD[15:0] valid after FSMC_CLK low	2		
$t_{SU(NWAITV_CLKH)}$	FSMC_NWAIT valid before FSMC_CLK high	6		
t _{h(CLKH_NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2		
$t_{d(\mathrm{CLKL_NBLH})}$	FSMC_CLK low to FSMC_NBL high	2		

NAND controller waveform and timing

Test conditions: NAND operation area, 16-bit data width is selected, ECC calculation circuit is enabled, 512-byte page size, other timing configurations are setting registers FSMC_PCR2=0x0002005E, FSMC PMEM2=0x01020301, FSMC PATT2=0x01020301.

Figure 4-20 NAND controller read waveform

Figure 4-21 NAND controller write waveform

Figure 4-22 NAND controller read waveform in general storage space

Figure 4-23 NAND controller write waveform in general storage space

Table 4-34 Timing characteristics of NAND Flash read and write cycles

Symbol	Parameter	Min.	Max.	Unit
$t_{d(D\text{-}NWE)}$	Before FSMC_NWE high to FSMC_D[15:0] data valid	4t _{HCLK}		
$t_{w(NOE)}$	FSMC_NOE low time	4t _{HCLK}		
t _{su(D-NOE)}	Before FSMC_NOE high to FSMC_D[15:0] data valid	20		
t _{h(NOE-D)}	After FSMC_NOE high to FSMC_D[15:0] data valid	15		
$t_{w(NWE)}$	FSMC_NWE low time	4t _{HCLK}		
$t_{v(NWE-D)}$	FSMC_NWE low to FSMC_D[15:0] data valid	0		ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15:0] data invalid	2t _{HCLK}		
$t_{d(ALE-NWE)}$	Before FSMC_NWE low to FSMC_ALE valid	2t _{HCLK}		
$t_{h(NWE-ALE)}$	FSMC_NWE high to FSMC_ALE invalid	2t _{HCLK}		
t _{d(ALE-NOE)}	Before FSMC_NOE low to FSMC_ALE valid	2t _{HCLK}		
t _{h(NOE-ALE)}	FSMC_NOE high to FSMC_ALE invalid	4t _{HCLK}		

4.3.19 DVP interface characteristics

Figure 4-24 DVP timing waveform

Table 4-35 DVP characteristics

Symbol	Parameter	Min.	Max.	Unit
f_{PixCLK}/t_{PixCLK}	Pixel clock input frequency		144	MHz

DuCy _(PixCLK)	Pixel clock duty cycle		%
$t_{su(DATA)}$	Data setup time	2	
$t_{h(DATA)}$	Data hold time	1	***
$t_{su(HSYNC)}\!/t_{su(VSYNC)}$	HSYNC/VSYNC signal input setup time	2	ns
$t_{h(HSYNC)}\!/t_{h(VSYNC)}$	HSYNC/VSYNC signal input hold time	1	

4.3.20 Gigabit Ethernet interface characteristics

Figure 4-25 ETH-SMI timing waveform

Table 4-36 SMI signal characteristics of Ethernet MAC

Symbol	Parameter	Min.	Тур.	Max.	Unit
f_{MDC}/t_{MDC}	MDC clock frequency			2.5	MHz
$t_{d(\mathrm{MDIO})}$	MDIO write data valid time	0		300	
$t_{\rm su(MDIO)}$	Read data setup time	10			ns
$t_{h(\mathrm{MDIO})}$	Read data hold time	10			

Figure 4-26 ETH-RMII signal timing waveform

Table 4-37 RMII signal characteristics of Ethernet MAC

	Symbol	Parameter	Min.	Тур.	Max.	Unit
ſ	$t_{su(RXD)}$	Setup time of received data	4			ns

$t_{ih(RXD)}$	Hold time of received data	2		
$t_{su(CRS_DV)}$	Carrier detect signal setup time	4		
$t_{ih(CRS_DV)}$	Carrier detect signal hold time	2		
$t_{d(TXEN)}$	Transmission enable effective delay time		16	
$t_{d(TXD)}$	Data transmission effective delay time		16	

Figure 4-27 ETH-MII signal timing waveform

Table 4-38 MII signal characteristics of Ethernet MAC

Symbol	Parameter	Min.	Тур.	Max.	Unit
$t_{\rm su(RXD)}$	Setup time of received data	10			
$t_{ih(RXD)}$	Hold time of received data	10			
$t_{\rm su(DV)}$	Data valid signal setup time	10			
$t_{ih(\mathrm{DV})}$	Data valid signal hold time				***
$t_{su(ER)}$	Error signal setup time	10			ns
$t_{ih(ER)}$	Error signal hold time				
$t_{d(TXEN)}$	Transmission enable effective delay time			16	
$t_{d(TXD)}$	Data transmission effective delay time			16	

Figure 4-28 ETH-RGMII signal timing waveform

Table 4-39 RGMII signal characteristics of Ethernet MAC

Symbol	Parameter	Min.	Тур.	Max.	Unit
f_{TXC}/t_{TXC}	TXC/RXC clock frequency	7.2	8	8.8	
$t_{ m R}$	TXC/RXC rise time			2.0	
$t_{ m F}$	TXC/RXC fall time			2.0	
$t_{su(TDATA)}$	Transmit data setup time	1.2	2.0		ns
$t_{h(TDATA)}$	Transmit data hold time	1.2	2.0		
$t_{su(RDATA)} \\$	Input data setup time	1.2	2.0		
$t_{h(RDATA)} \\$	Input data hold time	1.2	2.0		

4.3.21 12- bit ADC characteristics

Table 4-40 ADC characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V_{DDA}	Supply voltage		2.4		3.6	V
$V_{\text{REF}+}$	Positive reference voltage	V_{REF^+} cannot be more than V_{DDA}	2.4		V_{DDA}	V
I_{VREF}	Reference current			160	220	uA
I_{DDA}	Supply current			480	530	uA
$f_{ m ADC}$	ADC clock frequency				14	MHz
f_S	Sampling rate		0.05		1	MHz
f_{TRIG}	External trigger frequency				16	$1/f_{ADC}$
V_{AIN}	Conversion voltage range		0		V_{REF^+}	V
R_{AIN}	External input impedance				50	kΩ
R _{ADC}	Sampling switch resistance			0.6	1	kΩ
C_{ADC}	Internal sample and hold capacitor			8		pF

t_{CAL}	Calibration time	applied for V203		100		1/f _{ADC}
		Others		40		
t_{Iat}	Injected trigger conversion latency				2	$1/f_{ADC}$
t_{Iatr}	Regular trigger conversion latency				2	$1/f_{ADC}$
$t_{\rm s}$	Sampling time		1.5		239.5	$1/f_{ADC}$
t_{STAB}	Power-on time				1	us
4	Total conversion time (including		14		252	1/fadc
t _{CONV}	sampling time)		14		232	1/1ADC

Note: Above parameters are guaranteed by design.

Formula: Maximum RAIN

$$R_{AIN} < \frac{Ts}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

The above formula is used to determine the maximum external impedance so that the error can be less than 1/4 LSB. Where N=12 (representing 12-bit resolution).

Table 4-41 Maximum R_{AIN} when $f_{ADC} = 14MHz$

T _S (cycle)	t _s (us)	Maximum R _{AIN} (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	Invalid
239.5	17.1	Invalid

Table 4-42 ADC error

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ЕО	Offset error	$f_{PCLK2} = 56 \text{ MHz},$		±2		
ED	Differential nonlinearity error	$f_{ADC} = 14 \text{ MHz},$		±0.5	±3	LSB
EL	Integral nonlinearity error	$R_{AIN} < 10 \text{ k}\Omega$		±1	±4	LSD
EL	integral nonlinearity error	$V_{DDA} = 3.3V$		±1	±4	

 C_p represents the parasitic capacitance on the PCB and the pad (about 5pF), which may be related to the quality of the pad and PCB layout. A larger C_p value will reduce the conversion accuracy, the solution is to reduce the f_{ADC} value.

Figure 4-29 ADC typical connection diagram

Figure 4-30 Analog power supply and decoupling circuit reference

4.3.22 Temperature sensor characteristics

Table 4-43 Temperature sensor characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R _{TS}	Measurement range of temperature sensor		-40		85	°C
\mathbf{A}_{TSC}	Measurement range of temperature sensor after software calibration			±12		°C
Avg_Slope	Average slope (negative temperature coefficient)		3.8	4.3	4.7	mV/°C
V_{25}	Voltage at 25°C		1.34	1.40	1.46	V
T_{S_temp}	ADC sampling time when reading temperature	$f_{ADC} = 14MHz$			17.1	us

4.3.23 DAC characteristics

Table 4-44 DAC characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V_{DDA}	Supply voltage		2.4	3.3	3.6	V
$ m V_{REF^+}$	Positive reference voltage	V_{REF^+} cannot be more than V_{DDA}	2.4	3.3	3.6	V
$R_L^{(1)}$	Load resistance when the buffer is on		5			kΩ
$C_L^{(1)}$	Load capacitance when the buffer is on				50	pF
$V_{OUT_MIN}^{(1)}$	12-bit DAC conversion when		3			mV
$V_{OUT_MAX}^{(1)}$	the buffer is on				V _{REF+} -0.01	V
$V_{OUT_MIN}^{(1)}$	12-bit DAC conversion when			0.1		mV
V _{OUT_MAX} ⁽¹⁾	the buffer is off				V _{REF+} -1LSB	V
I (1)	No load			60		A
$I_{\text{VREF}^+}^{(1)}$	No load, when V _{REF+} =3.6V, the inj	put value is 0xF1C		202		uA
T (1)	No load, input value 0x800			211		
$I_{DDA}^{(1)}$	No load, when V _{REF+} =3.6V, the inj	put value is 0xF1C		193		uA
DNL	Differential nonlinearity error			±2		LSB
INL	Integral nonlinearity error	After calibration of offset error and gain error		±4		LSB

Offset	Offset error				±8	mV
		$V_{REF+}=3.6V$			±10	LSB
Gain error		DAC is configured as 12 bits		±0.4		%
Amplifier gain ⁽¹⁾	Amplifier gain in open loop	5kΩ load (max)	80	85		dB
tsettling	Setting time (full range: input codes change from minimum to maximum value, DAC_OUT reaches final value ±1 LSB)	•		3	4	us
Update rate	When the input code has a small change (the value changes from i to i+1LSB), the maximum frequency of the correct DAC_OUT is obtained	C _{LOAD} ≤50pF R _{LOAD} ≥5kΩ			1	MS/s
t _{WAKEUP}	Time to wake up from off state (PDV18 changes from 1 to 0)	C _{LOAD} ≤50pF, R _{LOAD} ≥5kΩ, input codes between the minimum and maximum possible values		6.5	10	us
PSRR+(1)	Power supply rejection ratio (relative to V_{DDA}) (static DC measurement)	No R _{LOAD} , C _{LOAD} ≤50pF		-100	-75	dB

Note: 1. The values are guaranteed by design, not tested in production.

4.3.24 OPA characteristics

Table 4-45 OPA characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V_{DDA}	Supply voltage		2.4	3.3	3.6	V
C_{MIR}	Common mode input voltage		0		V _{DDA} -0.9	V
V _{IOFFSET}	Input offset voltage			1.5	6	mV
I_{LOAD}	Drive current				600	uA
$I_{DDOPAMP}$	Current consumption	No load, static mode		195		uA
$C_{MRR}^{(1)}$	Common mode rejection ratio	@1kHz		96		dB
$P_{SRR}^{(1)}$	Power supply rejection ratio	@1kHz		86		dB
$Av^{(1)}$	Open loop gain	C _{LOAD} =5pF		136		dB
$G_{BW}^{(1)}$	Unit gain bandwidth	C _{LOAD} =5pF		19		MHz
$P_{M}^{(1)}$	Phase margin	C _{LOAD} =5pF		93		
$S_R^{(1)}$	Slew rate limited	C _{LOAD} =5pF		8		V/us
t _{WAKUP} ⁽¹⁾	Setup time from shutdown to wake up, 0.1%	Input $V_{DDA}/2$, C_{LOAD} =5pF, R_{LOAD} =4k Ω			368	ns
R _{LOAD}	Resistive load		4			kΩ
C_{LOAD}	Capacitive load				50	pF

V _{OHSAT} ⁽²⁾	High saturation output voltage	$\begin{array}{ll} R_{LOAD}\!\!=\!\!4k\Omega, & \text{input} \\ V_{DDA} & \end{array}$	V _{DDA} -45			mV	
		$R_{LOAD}=20k\Omega$, input	V _{DDA} -10			mv	
		V_{DDA}	V DDA-10				
V _{OLSAT} ⁽²⁾	Low saturation output voltage	$R_{LOAD}=4k\Omega$, input 0			0.5	mV	
		$R_{LOAD}=20k\Omega$, input 0			0.5		
EN ⁽¹⁾	Equivalent input voltage noise	$R_{LOAD}=4k\Omega,@1kHz$		83		nv	
		R_{LOAD} =4k Ω ,@10kHz		42		$\overline{\sqrt{Hz}}$	

Note: 1. Above parameters are guaranteed by design.

^{2.} The load current limits the saturated output voltage.

Chapter 5 Package and ordering information

Packages

Part No.	Package	Body size	Lead pitch	Description	Packing type
CH32V203F6P6	TSSOP20	4.4*6.5mm	0.65mm	Thin shrink small outline 20-pin patch	Tube
CH32V203G6U6	QFN28X4	4*4mm	0.4mm	Quad no-lead 28-pin	Tray
CH32V203K6T6	LQFP32	7*7mm	0.8mm	LQFP32 (7*7) patch	Tray
CH32V203K8T6	LQFP32	7*7mm	0.8mm	LQFP32 (7*7) patch	Tray
CH32V203C6T6	LQFP48	7*7mm	0.5mm	LQFP48 (7*7) patch	Tray
CH32V203C8T6	LQFP48	7*7mm	0.5mm	LQFP48 (7*7) patch	Tray
CH32V203C8U6	QFN48X7	7*7mm	0.5mm	Quad no-lead 48-pin	Tray
CH32V203RBT6	LQFP64M	10*10mm	0.5mm	LQFP64M (10*10) patch	Tray
CH32V303CBT6	LQFP48	7*7mm	0.5mm	LQFP48 (7*7) patch	Tray
CH32V303RBT6	LQFP64M	10*10mm	0.5mm	LQFP64M (10*10) patch	Tray
CH32V303RCT6	LQFP64M	10*10mm	0.5mm	LQFP64M (10*10) patch	Tray
CH32V303VCT6	LQFP100	14*14mm	0.5mm	LQFP100 (14*14) patch	Tray
CH32V305FBP6	TSSOP20	4.4*6.5mm	0.65mm	Thin shrink small outline 20-pin patch	Tube
CH32V305RBT6	LQFP64M	10*10mm	0.5mm	LQFP64M (10*10) patch	Tray
CH32V307RCT6	LQFP64M	10*10mm	0.5mm	LQFP64M (10*10) patch	Tray
CH32V307WCU6	QFN68X8	8*8mm	0.4mm	Quad no-lead 68-pin	Tray
СН32V307VСТ6	LQFP100	14*14mm	0.5mm	LQFP100 (14*14) patch	Tray
CH32V208GBU6	QFN28X4	4*4mm	0.4mm	Quad no-lead 28-pin	Tray
CH32V208CBU6	QFN48X5	5*5mm	0.35mm	Quad no-lead 48-pin	Tray
CH32V208RBT6	LQFP64M	10*10mm	0.5mm	LQFP64M (10*10) patch	Tray
CH32V208WBU6	QFN68X8	8*8mm	0.4mm	Quad no-lead 68-pin	Tray

Note: 1. The packing type of QFP/QFN is usually tray. Please confirm with the packaging factory for specific part number.

2. Size of tray: The size of Tray is generally a uniform size (322.6*135.9*7.62). There are differences in the size of the restriction holes for different package types, and there are differences between different packaging factories for tubes, please confirm with the manufacturer for details.

Note: All dimensions are in millimeters. The pin center spacing values are nominal values, with no error. And the error of other dimensions is not more than ± 0.2 mm or 10%.

Figure 5-1 TSSOP20 outline

Figure 5-2 QFN28X4 outline

Figure 5-3 QFN48X5 outline

Figure 5-4 QFN48X7 outline

Figure 5-5 QFN68X8 outline

Figure 5-6 LQFP32 outline

Figure 5-7 LQFP48 outline

Figure 5-8 LQFP64M outline

Figure 5-9 LQFP100 outline

Ordering information

 $6 = -40^{\circ}\text{C} \sim 85^{\circ}\text{C}$ (industrial-grade)

7 = -40°C ~ 105 °C (automotive-grade 2)

3 = -40°C ~ 125 °C (automotive-grade 1)

D = -40°C ~ 150 °C (automotive-grade 0)