Say hello to machine learning in Python (with scikit-learn)

Michal Mikolajczak (mkm0796@gmail.com)
Dominik Pieczynski (dominik.pieczynski@gmail.com)

Before we start...

```
The most important thing (WiFi):
```

AP: Lawendowa

Pass: lawendowa2015

Workshop material link:

https://github.com/PUTvision/MLWorkshopPyCon2018

Before we start...

Important note: it is a basic level tutorial, and this
workshop goal is for attendants to learn something
(hopefully, as much as possible :))

Don't be afraid to ask questions - they are highly encouraged!

Workshop outline

- 1. Introduction what is machine learning and how it can be useful?
- 2. Supervised learning classification.
- Supervised learning regression.
- 4. Stand alone project.

Is this a dog?

Is this a cat?

What about the computer?

Machine learning is the science of programming computers so they can learn from data - without being explicitly programmed.

ML - how it can be useful?

Types of machine learning

Machine Learning Supervised Unsupervised Reinforcement Task driven Data driven Algorithm learns to (Regression / (Clustering) react to an Classification) environment

Supervised learning

Unsupervised learning

Say hello to ML in Python

Unsupervised learning

Reinforcement learning

We will only work with simple examples of supervised learning

Why scikit-learn?

• Fast, efficient implementations of ML algorithms.

Coherent, user friendly interfaces.

Popular, actively maintained.

Workshop outline

- 1. Introduction what is machine learning and how it can be useful?
- Supervised learning classification.
- Supervised learning regression.
- 4. Stand alone project.

Classification problem

Data - features and labels

Train/test splitting

Train/test splitting

Performance on training data vs test data

K-Nearest Neighbors overview

Neighborhood

$$3 \times \Delta$$

Prediction

Underfitting and overfitting

Logistic regression overview

Workshop outline

- 1. Introduction what is machine learning and how it can be useful?
- 2. Supervised learning classification.
- Supervised learning regression.
- 4. Stand alone project.

Regression problem

Square meters: 50 Condition: good Location: NY

Price: 100 000\$ (Continuous value)

Data preparation - missing values

ID	Universe	Comics count	Vilains defeated	FanRating	HeroName
1	Marvel	237	13	9.1	IronMan
2	Marvel	189	16	N/A	Captain America
3	Marvel	165	N/A	8.4	Thor
4	Marvel	172	25	8.3	Hulk
5	Marvel	109	10	9.5	Dr. Strange
6	N/A	N/A	N/A	N/A	Batman
7	DC	45	4	7.9	Superman

Data preparation - categorical variables

Sample	Category	Numerical
1	Human	1
2	Human	1
3	Penguin	2
4	Octopus	3
5	Alien	4
6	Octopus	3
7	Alien	4

Sample	Human	Penguin	Octopus	Alien
1	1	0	0	0
2	1	0	0	0
3	0	1	0	0
4	0	0	1	0
5	0	0	0	1
6	0	0	1	0
7	0	0	0	1

Data preparation - feature scaling

Data preparation - feature scaling

Linear regression overview

Workshop outline

- 1. Introduction what is machine learning and how it can be useful?
- 2. Supervised learning classification.
- Supervised learning regression.
- 4. Stand alone project.

Stand alone project

JUST DO IT.

Appendix A - further resources

- Scikit-learn docs: http://scikit-learn.org/stable/
- Kaggle ML tasks and datasets: https://www.kaggle.com
- "Python Machine learning" by Sebastian Raschka, often available for free on:
 - https://www.packtpub.com/packt/offers/free-learning
- Also, something from Google (other than search bar):
 - https://developers.google.com/machine-learning/crash-course/
 - https://www.tensorflow.org/tutorials/

