OpenGL Final Project

Loïc Simon

Project Overview

Main Goals:

Develop a simple OpenGL game Team-work

Optional Goals:

Implement fancy rendering/animation techniques

Project Milestones

Teaming up:
4-5 per team + project leader Game proposal:

Design document D0 +3 weeks ∘ **Project preparation:** Role assignment (MindMap) Base code + git repositories creation (private + public) Prototyping Project sessions:
6/8 hours (3/4 sessions)

Lab & Lecture session

D0 (today) ∽	mar. 23 févr.	15:30 – 17:30	⊕ BSI2A TP E206 to
	mer. 24 févr.	14:15 – 16:15	⊕ ■ BSI2A TP (E206) 💆
	lun. 29 févr.	15:30 – 17:30	⊕ BSI2A TP (E206) 💆
	mer. 2 mars	14:15 – 16:15	⊕ BSI2A TP (E206) 💆
	ven. 4 mars	08:00 - 10:00	⊕ BSI2A TP remplacé p
D0 +2 weeks	lun. 7 mars	10:30 – 12:30	⊕ ■ BSI2A CM (E206) 💆
	mar. 8 mars	15:30 – 17:30	⊞ BSI2A TP (E206) 💆
D0 +3 weeks	mar. 15 mars	15:30 – 17:30	⊕ ■ BSI2A TP (E206) 💆
	mer. 16 mars	10:00 – 12:00	⊞ BSI2A TP (E206)
D0 +4 weeks o	lun. 21 mars	08:15 – 10:15	⊕ BSI2A TP (E206) 💆
	mar. 22 mars	15:30 – 17:30	⊕ BSI2A TP (E206) 💆
	mar. 29 mars	15:30 – 17:30	⊕ ■ BSI2A TP (E206) 💆
	jeu. 31 mars	10:30 – 12:30	⊕ BSI2A TP (E206) 💆

Lab: fromScratch / Minimal

Lab: Minimal

Lab: Textures

Lecture: Textures / Shading

<u>Lab:</u> *Texture / Shading* (PAG)

Lab: Shading

Lab: Shading

Lab: Blender

Lab: Blender / Project

Project: Development

Project: Development

Project: Development

Project: Doc / presentation

Deliverables

Design document + role assignment (Mind map):

Two weeks before starting the project

Code / documentation:

gitlab / github repository of project leader Readme.md wiki / web page (optional)

Auto-evaluation:

Leader assessment of failure/success (per participant)
Grading

Presentation (10min per group):

Updated design document or README.md Live demo

Design document

Overview

Goal / controls / mockup / feature

Description

Type of game / principle

GamePlay

Rules / challenges

Controls

interaction with game objects

Technical details

Scene configuration / Effects / functionalities

Mind map (role assignment)

Gitlab / Github: Readme.md

Overview

Goal / Type of game / Authors Build / Run instructions

GamePlay / Controls / Demo

Rules / challenges Key / mouse bindings Video or gif (gif conversion: `ffmpeg -i f.mov -pix_fmt rgb24 f.gif`)

Technical details

Scene configuration / Effects / Advanced functionalities Screenshots

License disclaimer

Annotated demo

SPACESTIC CHECKEN (CHECKEN)

Readme.md	Adding a readme to Rubik.	36 minutes ago
game.cpp	Initial commit.	6 months ago
rubik.cpp	Adding a readme to Rubik.	36 minutes ago
rubik.hpp	Initial commit.	6 months ago

Readme.md

OpenGL Rubik's Cube

Author

Loïc Simon

*

Requirements

- Cmake 2.8
- OpenGL 3.2
- GLFW 3.0
- GLM 0.9.2

Build

The program can be compiled by running mkdir build; cd build; cmake; make.

Run

Auto-evaluation / Grading

Group leader

Grade all other participants: $x_k \in [0,5]$ Write a short paragraph to explain the grading

Class instructor

Grade the project as a whole $y \in [0,20]$

Final grade

Group leader: y

Participant k: $z_k = x_k - \mu_x + y \in [0,20]$ where $\mu_x = mean(x_k)$

Design Document Example

Rubik's Cube

Overview

Title

RubikGL

Goal

Solve from random configuration as fast as possible

Controls

Event	Effect	
Arrow keys	rotate cube	
Mouse	Control slices	
h	help	
Esc	Quit game	

Features

- Manual control
- IA solution (Hints)
- Animated transitions

Description

- Rubik's cube is a single player game
- The goal is to get the cube in order

Game Play

- The game is played in single player mode, with several level.
- At each level, a random permutation of the cube is presented and the player must come back to the original configuration in a given amount of time.
- Difficulty (number of required movements) increases with levels.

Controls

- The player can control each slice of the cube by picking and draging
- He can also rotate the whole cube around with the arrow keys

Technical details viewport configuration

- The viewport is composed of a single area with the cube at the center
- A time counter will be rendered at top-left corner

Technical details Rendering

- Standard local shading (ambient+Lambert+Phong)
- Three positional light sources
- Particle-system fire around cube upon solving

Technical details

Animation

- Slices are controlled with pick and drag
- Upon mouse releases, animation towards closest non blocking configuration
- In case of failure, animation starts with:
 - solution steps
 - "Game Over!" text overlay

Game development

advices

Resources

Example

Labs framework: Rubik's cube

online book: http://www.learnopengl.com/#!In-Practice/2D-Game/

<u>Breakout</u>

Book

SFML Game Development. Haller, Jan, and Henrik Vogelius Hansson. Packt Publishing Ltd, 2013.

Start simple Prototyping

Simple game

Rubik's cube not Quake 3!

Simple modes

Single player doesn't require network management!

Easy interaction

Need picking? Start with lame std::in!

In short, start with a rough prototype!

Integration One step at a time

Examples

Add a time countdown
Randomness
2 players on same keyboard

Be patient

One feature at a time Do integration often!

Gitor Hero

Fancy Features

Overview

- Here, you will find
 - a list of optional features
 - each is associated with several tutorials

Disclaimer

- It is more important to have a working game than fancy features
- Some features are more complex than others
- Most require modifying the lab's framework

Better gameplay

Text rendering

http://www.learnopengl.com/#!In-Practice/Text-Rendering

Picking

http://ogldev.atspace.co.uk/www/tutorial29/tutorial29.html http://antongerdelan.net/opengl/raycasting.html

Audio

http://www.learnopengl.com/#!In-Practice/2D-Game/Audio

Rendering (easy)

Fancier light casters

http://www.learnopengl.com/#!Lighting/Light-casters

Billboarding with GS (new shaders)

http://ogldev.atspace.co.uk/www/tutorial27/tutorial27.html

Instanced rendering (new glDraw routine)

http://www.learnopengl.com/#!Advanced-OpenGL/Instancinghttp://ogldev.atspace.co.uk/www/tutorial33/tutorial33.html

Rendering (hard)

Shadow mapping (frame buffers)

http://ogldev.atspace.co.uk/www/tutorial23/tutorial23.html http://ogldev.atspace.co.uk/www/tutorial24/tutorial24.html https://open.gl/framebuffers

Displacement Mapping with TS

http://ogldev.atspace.co.uk/www/tutorial30/tutorial30.html http://prideout.net/blog/?p=48

Animation / simulation

Path instancing

[easy] http://prideout.net/blog/?p=56

Skeletal animation (model loading)

[hard] http://ogldev.atspace.co.uk/www/tutorial38/tutorial38.html

Particle systems

[easy] http://www.learnopengl.com/#!In-Practice/2D-Game/Particles
[hard] http://ogldev.atspace.co.uk/www/tutorial28/tutorial28.html

"Happy hunger games!"

-President Snow

Hall of fame

2015

SokobanGL

R. Tourrel, G. Zerathe, A. Schoentgen, B. Nougier & V. Trellu

TunnelGL

E. Louvat, G. Boeda, P. Vandrome, R. Garcia & M. Esnault

KuiperRace

J. Anger, H. Benjelloun, A. Benkeddad, E. Bourrand & S. Lerouzic