

Assignment 05

Date: 15/03/22

Second Year BS (Honours) 2020-21

Course Title: Math Lab II (Fortran), Course Code: AMTH 250 Department of Applied Mathematics, University of Dhaka

Name: Roll No: Group:

[Write a FORTRAN program to solve each of the following problems. Use files for input/output unless specified otherwise. Name the files and the code according to the assignment and problem no., e.g., for problem no. Y of assignment X, input & output file names must be 'inXqY.txt' and 'outXqY.txt' respectively.]

Day-1												
1.	The Lucas numbers may be defined recursively by											
	$L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$ for $n = 2, 3, 4,$											
	Generate the first 12 Lucas numbers and print them in the following tabular form											
		n	0	1	2	3	4	5	6	7		
		L_n	2	1	3	4	7	11	18	29		
2.	Determine $P(n,r)$ and $C(n,r)$, where n and r are nonnegative integers. Use recursive function as a subprogram to calculate the required factorial value.											[10]
3.	Let H_n denote the number of moves needed to solve the Tower of Hanoi problem with n disks. [1]										[10]	
	The recurrence relation with the initial condition is given by											
	$H_n = 2H_{n-1} + 1$, $H_1 = 1$.											
	Use recursive function as a subprogram to determine the number of moves required if $n = 25$.											
	If each move takes 1 second, how many days required to move 25 disks from peg 1 to peg 2?											

Day-2									
4.	The number of bit strings of length n that do not have two consecutive θs may be represented by the recurrence relation $S_n = S_{n-1} + S_{n-2}$ for $n \geq 3$, and initial conditions $S_1 = 2$ and $S_2 = 3$. Write a Fortran program to determine how many such bit strings are there for $n = 1, 2,, 20$?	[10]							
5.	Generate all the possible bit strings of length n . Also, print them in ascending order.	[10]							

