高等数学 (上) 知识点总结

整理人: 彭任锋 1、张世瑞 2

项目组成员: 张世瑞、彭任锋、薛雨婷 2、张嘉瑶 3、杜黎4、冷超4

Abstract

本文基于参考文献 [1], 梳理了教材 [4] 中的核心内容以帮助同学们复习. 祝大家期末取得好成绩!

关键词

高等数学, 函数与极限, 导数与微分, 不定积分, 定积分, 常微分方程

- 117级数理金融试验区, 同济大学数学科学学院, 上海市杨浦区四平路 1239 号, 200092
- 217 級数学 2 班, 同济大学数学科学学院, 上海市杨浦区四平路 1239 号, 200092
- 318 级数学 1 班, 同济大学数学科学学院, 上海市杨浦区四平路 1239 号, 200092
- 417 級数学 1 班, 同济大学数学科学学院, 上海市杨浦区四平路 1239 号, 200092

Contents

1	函数与极限	3
1.1	求极限的方法	. 3
	夹逼准则 - 两个重要极限 - 无穷小运算 - 洛必达 (L'Hospital) 法则 - 泰勒 (Taylor) 展开 - Stolz 定理	
1.2	判断极限存在的方法	. Е
1.3	附: 习题册第一章习题解答	. 6
2	导数与微分	15
2.1	导数的概念	15
	导数 • 可导与连续 • 求导举例	
2.2	求导法则	16
	函数的和、差、积、而的求导法则 • 复合函数的求导法则 • 反函数的求导法则 • 基本初等函数的导数公式 • 三个求导方法	
2.3	微分及其在近似计算中的应用	19
	微分的概念 ■ 微分的运算法则	
2.4	附: 习题册第二章习题解答	20
3	微分中值定理	25
3.1	微分中值定理	25
	Fermat(费马) 引理 • Rolle(罗尔) 定理 • Lagrange(拉格朗日) 中值定理 • Cauchy(柯西) 中值定理	
3.2	L'Hospital(洛必达) 法则	25
3.3	泰勒 (Taylor) 公式	26
	泰勒 (Taylor) 公式 - Maclaurin(麦古亞林) 公式	

3.4	函数的单调性与曲线的凹凸性	27
	函数单调性的判定法 - 函数图形的描绘	
3.5	平面曲线的曲率 2	28
4	不定积分	29
4.1	不定积分的性质	29
4.2	直接积分法 2	29
4.3	第一类换元法 (凑微分法)	30
4.4	第二类换元法 (变量替换法)	30
4.5	分部积分法	31
4.6	几种特殊类型函数的积分	31
	有理函数积分 • 三角函数有理式积分 • 简单无理函数积分	
4.7	附: 有理函数积分	33
	引例 • 分母为二次多项式时 • $\Delta > 0$ • $\Delta = 0$ • $\Delta < 0$ • 定理 • 分母为次数 $\geqslant 3$ 的多项式时	
		37
	定积分的几何意义	
5.2	定积分的性质	37
5.3	变上限积分函数	8
5.4	Newton-Leibniz 公式	8
5.5	定积分的换元积分法(换元必换限) 3	8
٠,٠		
	定积分的分部积分法	88
		88 88
5.6 6		88
5.6 6	定积分的应用	88
5.6 6 6.1	定积分的应用	88 88
5.6 6 6.1	定积分的应用 极坐标 极坐标 极坐标的定义 • 极坐标与直角坐标相互表示 • 根据极坐标方程画图	88 88
5.6 6 6.1 6.2	定积分的应用 极坐标 极坐标 极坐标的定义 • 极坐标与直角坐标相互表示 • 根据极坐标方程画图 定积分的几何应用 面积 • 弧长 • 旋转体表面积 • 体积 • 旋转体体积 定积分的物理应用	38 38
5.6 6 6.1 6.2 6.3	定积分的应用 极坐标 极坐标 极坐标的定义 • 极坐标与直角坐标相互表示 • 根据极坐标方程画图 定积分的几何应用 面积 • 弧长 • 旋转体表面积 • 体积 • 旋转体体积 定积分的物理应用 质量 • 压力 • 做功 • 引力	88 88 12
5.6 6 6.1 6.2 6.3	定积分的应用 极坐标 极坐标 极坐标的定义。极坐标与直角坐标相互表示。根据极坐标方程画图 定积分的几何应用 。现长。旋转体表面积。体积。旋转体体积 定积分的物理应用 。质量。压力。做功。引力 与定积分有关的公式	88 88 12
5.6 6 6.1 6.2 6.3	定积分的应用 极坐标 极坐标的定义 • 极坐标与直角坐标相互表示 • 根据极坐标方程画图 定积分的几何应用 面积 • 弧长 • 旋转体表面积 • 体积 • 旋转体积 定积分的物理应用 质量 • 压力 • 做功 • 引力 与定积分有关的公式 Wallis(沃利斯) 公式 • Stirling(斯特林) 公式	38 38 12 13
5.6 6 6.1 6.2 6.3 6.4	定积分的应用 极坐标 极坐标 极坐标的定义・极坐标与直角坐标相互表示・根据极坐标方程画图 定积分的几何应用 面积・弧长・旋转体表面积・体积・旋转体体积 定积分的物理应用 质量・压力・做功・引力 与定积分有关的公式 Wallis(沃利斯) 公式・Stirling(斯特林) 公式 常微分方程	38 38 42 43
5.6 6 6.1 6.2 6.3 6.4 7	定积分的应用 极坐标 极坐标 极坐标的定义。极坐标与直角坐标相互表示。根据极坐标方程画图 定积分的几何应用 面积。弧长。旋转体表面积。体积。旋转体体积 定积分的物理应用 质量。压力。做功。引力 与定积分有关的公式 Wallis(沃利斯) 公式。Stirling(斯特林) 公式 常微分方程 基本概念	18 18 12 13 14 16
5.6 6 6.1 6.2 6.3 6.4 7	定积分的应用 极坐标 极坐标的定义。极坐标与直角坐标相互表示。根据极坐标方程画图 定积分的几何应用 面积。弧长。旋转体表面积。体积。旋转体积 定积分的物理应用 质量。压力。做功。引力 与定积分有关的公式 Wallis(沃利斯) 公式。Stirling(斯特林) 公式 常微分方程 基本概念 一阶微分方程	18 18 12 13 14 16
5.6 6 6.1 6.2 6.3 6.4 7 7.1 7.2	定积分的应用 极坐标 极坐标的定义。极坐标与直角坐标相互表示。根据极坐标方程画图 定积分的几何应用 面积。弧长。旋转体表面积。体积。旋转体积 定积分的物理应用 质量。压力。做功。引力 与定积分有关的公式 Wallis(沃利斯)公式。Stirling(斯特林)公式 常微分方程 基本概念 一阶微分方程 可分离变量的微分方程。 齐次数分方程。 一阶线性数分方程	18 18 12 13 14 16 16
5.6 6 6.1 6.2 6.3 6.4 7 7.1 7.2	定积分的应用 极坐标 极坐标 极坐标的定义 · 极坐标与直角坐标相互表示 · 根据极坐标方程画图 定积分的几何应用 面积 · 弧长 · 旋转体表面积 · 体积 · 旋转体体积 定积分的物理应用 质量 · 压力 · 做功 · 引力 与定积分有关的公式 Wallis(沃利斯) 公式 · Stirling(斯特林) 公式 常微分方程 基本概念 一阶微分方程 可分离变量的微分方程 · 齐次微分方程 · 一阶线性微分方程	38 38 42 43 44 46 46
5.6 6 6.1 6.2 6.3 6.4 7 7.1 7.2	定积分的应用 极坐标 极坐标的定义。极坐标与直角坐标相互表示。根据极坐标方程画图 定积分的几何应用 面积。弧长。旋转体表面积。体积。旋转体积 定积分的物理应用 质量。压力。做功。引力 与定积分有关的公式 Wallis(沃利斯)公式。Stirling(斯特林)公式 常微分方程 基本概念 一阶微分方程 可分离变量的微分方程。 齐次数分方程。 一阶线性数分方程	38 38 42 43 44 46 46
5.6 6 6.1 6.2 6.3 6.4 7 7.1 7.2	定积分的应用 极坐标 极坐标 极坐标的定义・极坐标与直角坐标相互表示・根据极坐标方程画图 定积分的几何应用 面积・弧长・旋转体表面积・体积・旋转体积 定积分的物理应用 质量・压力・做功・引力 与定积分有关的公式 Wallis(沃利斯) 公式・Stirling(斯特林) 公式 常微分方程 基本概念 一阶微分方程 可分离变量的微分方程 可分离变量的微分方程 可分离变量的微分方程 二阶线性微分方程 二阶形系数非齐次线性微分方程	38 38 42 43 44 46 46 47
5.6 6 6.1 6.2 6.3 6.4 7 7.1 7.2	定积分的应用 极坐标 极坐标 极坐标的定义・极坐标与直角坐标相互表示・根据极坐标方程画图 定积分的几何应用 面积・弧长・旋转体表面限・体积・旋转体体积 定积分的物理应用 质量・压力・做功・引力 与定积分有关的公式 Wallis(沃利斯) 公式・Stirling(斯特林) 公式 常微分方程 基本概念 一所微分方程 可分离变量的微分方程・齐次数分方程・一阶线性微分方程 二阶线性微分方程 二阶线性微分方程 二阶线性微分方程 「所然分方程 「所然分方程 「所然分方程 「所然分方程 「所然分方程 「所然分方程 「所述的分方程 「所述的分方程 「所述的分方程 「所述的分方程 「所述的分方程 「所述的分方程 「所述的分方程 「所述的方程 「所述的分方程 「所述的分析表 「所述的分析表 「所述的分析表 「所述的分析表 「所述的分析表 「所述的分析表 「所述的分析表 「所述的分析表 「形式的分析表 「所述的分析表 「形式的分析表 「形式的表 「形式的分析表 「形式的分析表 「形式的表	38 38 42 43 44 46 46 47

1. 函数与极限

1.1 求极限的方法

1.1.1 夹逼准则

- y_n ≤ x_n ≤ z_n(n 足够大时)
- $\lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n = a$ 推出 $\lim_{n\to\infty} x_n = a$.

例题 1.1. 计并 $\lim_{x\to +\infty} (1+2^x+3^x)^{\frac{1}{x}}$.

解 令
$$f(x) = (1+2^x+3^x)^{\frac{1}{x}} = 3\left(\left(\frac{1}{3}\right)^x + \left(\frac{2}{3}\right)^x + 1\right)^{\frac{1}{x}}$$

则 $3 \le f(x) \le 3 \cdot 3^{\frac{1}{x}}$, 利用夹遏准则知, $\lim_{x \to +\infty} (1 + 2^x + 3^x)^{\frac{1}{x}} = 3$.

1.1.2 两个重要极限

•
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

•
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$

例题 1.2. 计算: $\lim_{x\to 0} \left(\frac{1+x}{1-x}\right)^{\cot x}$

$$\lim_{x \to 0} \left(\frac{1+x}{1-x} \right)^{\cot x} = \lim_{x \to 0} \left(1 + \frac{2x}{1-x} \right)^{\cot x}$$

$$= \lim_{x \to 0} e^{\cot x \ln \left(1 + \frac{2x}{1-x} \right)}$$

$$\lim_{x \to 0} \frac{\cos x}{\sin x} \cdot \frac{2x}{1-x}$$

这里面用到等价无穷小量: $\ln\left(1+\frac{2x}{1-x}\right)\sim\frac{2x}{1-x}$.

1.1.3 无穷小运算

常见的的等价无穷小 $(x \to 0)$:

$$\sin x \sim x, \tan x \sim x, \arcsin x \sim x, 1 - \cos x \sim \frac{1}{2}x^2,$$

$$\sqrt[n]{1+x} - 1 \sim \frac{1}{n}x, e^x - 1 \sim x, \ln(1+x) \sim x.$$

例题 1.3. 计算: $\lim_{x\to\infty}\frac{\sin x}{x}$

$$|\sin x| < 1, \lim_{x \to \infty} \frac{1}{x} = 0,$$

并且有界函数和无穷小的乘积是无穷小. 所以 $\lim_{x\to\infty} \frac{\sin x}{x} = 0$.

所以
$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$
.

例题 1.4.

$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\tan x \ (1 - \cos x)}{x^3} = \lim_{x \to 0} \frac{x \cdot \frac{1}{2}x^2}{x^3} = \frac{1}{2}$$

错误解法; 原式 = $\lim_{x\to 0} \frac{x-x}{x^3} = 0$.

例题 1.5.

$$\begin{split} \lim_{n\to\infty} \sqrt{n}(\sqrt[n]{n}-1) &= \lim_{n\to\infty} n^{\frac{1}{2}}(n^{\frac{1}{n}}-1) \\ &= \lim_{n\to\infty} \frac{e^{\frac{\ln n}{n}}-1}{n^{-\frac{1}{2}}} \\ &= \lim_{n\to\infty} \frac{\ln n}{\sqrt{n}} = 0 \end{split}$$

1.1.4 洛必达 (L'Hospital) 法则

(1) 设在 x = a 附近 f, g 可导, 且 $g(x) \neq 0$. 又设

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$

在这些条件下,如果极限

$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$

存在 (或为∞), 那么便有

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Remark 这里的 a 可以是 $a, a^+, a^-, \infty, +\infty, -\infty$

(2) 设在 x = a 附近 f, g 可导, 且 $g(x) \neq 0$, 且

$$\lim_{x \to a} g(x) = \infty.$$

如果极限 $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ 存在 (或为 ∞), 那么

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Remark 这里的 a 可以是 $a, a^+, a^-, \infty, +\infty, -\infty$

- 先用等价无穷小替换, 并把有确定的、非零的极限的因式及早地分离出来, 再用洛必达法则
- 必须在极限 $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ 存在的情况下才能使用 L'Hospital 法则. 例如 $\lim_{x\to \infty} \frac{x+\sin x}{x} = 1 + \lim_{x\to \infty} \frac{\sin x}{x} = 1$ (有界 × 无

$$\lim_{x \to \infty} \frac{(x + \sin x)'}{x'} = 1 + \lim_{x \to \infty} \cos x$$

不存在,此处不能使用 L'Hospital 法则的原因就是:
$$\lim_{x\to a} \frac{f(x)}{g(x)}$$
 存在而 $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ 不存在

下面我们分三种情况讨论:

1.
$$\frac{0}{0}$$
 型

例题 1.6.

$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1} = \lim_{x \to 1} \frac{3x^2 - 3}{3x^2 - 2x - 1} = \lim_{x \to 1} \frac{6x}{6x - 2} = \frac{3}{2}$$

例题 1.7.

$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{nx^{n-1}} = \lim_{x \to +\infty} \frac{1}{nx^n} = 0$$

0.∞型
 0.∞型可化为上面两种类型.

1.1.5 泰勒 (Taylor) 展开

例 计算
$$\lim_{x\to 0} \frac{e^{x^2} + 2\cos x - 3}{x^4}$$
. 解 因为

$$e^{x^2} = 1 + x^2 + \frac{1}{2!}x^4 + o(x^4)$$
$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + o(x^5)$$

所以

$$e^{x^2} + 2\cos x - 3 = \left(\frac{1}{2!} + \frac{2}{4!}\right)x^4 + o(x^4)$$

$$\lim_{x \to 0} \frac{e^{x^2} + 2\cos x - 3}{x^4} = \lim_{x \to 0} \frac{\frac{7}{12}x^4 + o(x^4)}{x^4} = \frac{7}{12}$$

1.1.6 Stolz 定理

[补充知识] Stolz(斯托尔茨) 定理设 $\{b_n\}$ 是严格递增且趋于 $+\infty$ 的数列. 如果

$$\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}$$

存在 (或为∞), 那么

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}$$

例 36 计算极限 $\lim_{n\to\infty} \frac{1^k+2^k+\cdots+n^k}{n^{k+1}} (k\in\mathbb{N}).$ 解 令 $x_n=1^k+2^k+\cdots+n^k, y_n=n^{k+1}$, 由 Stolz 定理:

$$\lim_{n \to \infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}} = \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \lim_{n \to \infty} \frac{n^k}{n^{k+1} - (n-1)^{k+1}}$$
$$= \lim_{n \to \infty} \frac{1}{n \left(1 - \left(1 - \frac{1}{n}\right)^{k+1}\right)} = \lim_{n \to \infty} -\frac{1}{n \left(-\frac{k+1}{n}\right)} = \frac{1}{k+1}$$

Remark 另解:

原式 =
$$\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^k = \int_0^1 x^k dx = \frac{1}{k+1}$$
.

1.2 判断极限存在的方法

- (Cauchy) 数列 {x_n} 极限存在的充要条件是:
 ∀ε > 0, 存在正整数 N, 使得当 m > N,n > N 时, 有 |x_n x_m| < ε.
- (Heine)(归并性) $\lim_{x\to x_0} f(x) = A \iff \forall \{x_n\} : x_n \neq x_0, f(x_n)$ 有定义, 且 $x_n \to x_0 (n \to \infty)$, 有 $\lim_{n\to\infty} f(x_n) = A$.

Heine 定理提供了证明极限不存在的两种方法:

- 1. 找到一个数列 $\{x_n\}: x_n \neq x_0$, 且 $x_n \to x_0 (n \to \infty)$, 使 $\lim_{n \to \infty} f(x)$ 不存在.
- 2. 找两个趋于 x_0 的不同数列 $\{x_n\}$ 和 $\{x_n'\}$, 使 $\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(x_n')$

例 证明 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

Proof. 取两个趋于 0 的数列 $x_n = \frac{1}{2n\pi}$ 及 $x_n' = \frac{1}{2n\pi + \frac{\pi}{2}}$ $(n = 1, 2, \cdots)$ 有

$$\lim_{n\to\infty}\sin\frac{1}{x_n}=\lim_{n\to\infty}\sin 2\pi n=0$$

$$\lim_{n\to\infty}\sin\frac{1}{x_n'}=\lim_{n\to\infty}\sin\left(2\pi n+\frac{\pi}{2}\right)=1$$

所以 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

1.3 附: 习题册第一章习题解答

例 2(P3 第 5 题) 数列 $\{x_n\}$ 有界是数列 $\{x_n\}$ 收敛的 () 条件.

分析 有界数列不一定收敛, 反例:{(-1)"}.

Remark 该反例还可以用于证明 P4 第 7 题: 如果数列 $\{|u_n|\}$ 有极限, 数列 $\{u_n\}$ 未必有极限.

例 3(P4 第 7 题) 如果数列 $\{|u_n|\}$ 有极限, 数列 $\{u_n\}$ 未必有极限. 分析 见上题.

Proof. 设 $|x_n| \le M(\forall n \in \mathbb{N})$, 根据题意有 $\lim_{n \to \infty} |y_n| = 0$, 于是成立不等式:

$$0 \leqslant |x_n y_n| = |x_n||y_n| \leqslant M|y_n|$$

两边取极限, 由夹逼准则: $\lim_{n\to\infty}|x_ny_n|=0$, 即 $\lim_{n\to\infty}x_ny_n=0$

Remark $\lim_{n\to\infty} |a_n| = 0$ 和 $\lim_{n\to\infty} a_n = 0$ 是等价的, 用 $\varepsilon - \delta$ 语言可以验证这一点.

例 $5(P5 \ \ \ \ \ 3$ 题) 求 $y=\frac{\sin x}{\sqrt{x}}$ 的水平渐近线. 水平渐近线 求法: 计算 $\lim_{x\to +\infty} y$ 和 $\lim_{x\to -\infty} y$. 本题中 $\lim_{x\to +\infty} y=0$, 有水平渐近线 y=0(x 轴).

例
$$6$$
(补充): 求 $y = \arctan x$ 的水平渐近线.
解: 由 $\lim_{x \to +\infty} y = \frac{\pi}{2}$ 和 $\lim_{x \to -\infty} y = -\frac{\pi}{2}$ 知 y 有两条水平渐近线: $y = \pm \frac{\pi}{2}$.

例 7(P6 第 7 题) 举例说明: 如果当 $x \to \infty$ 时 |f(x)| 有极限, f(x) 未必有极限.

Proof.
$$f(x) = (-1)^{[x]}$$
 符合题意. 其中 $[x]$ 表示取整.

例 8(P6 第 8 题)

- 1. 设 $\lim_{x \to \infty} f(x) = A$, 证明存在正数 X, 使得 f(x) 在 $(-\infty, -X) \cup (X, +\infty)$ 上有界.
- 2. 当 $x \to +\infty$ 时, 函数 sin√x 是否有极限? 试说明理由.

Proof. (1) 见例 29.

(2) 没有极限. 记该函数为 f(x), 取 $x_n = \left(2n\pi + \frac{\pi}{2}\right)^2$, $y_n = (2n\pi)^2$, 有: $f(x_n) = 1$, $f(y_n) = 0$, 当 $n \to +\infty$ 时, $x_n, y_n \to +\infty$, 但此时 $f(x_n)$ 和 $f(y_n)$ 收敛到不同的值, 这说明函数的极限不存在.

例 9(P6 思考题) 讨论:Dirichlet(狄利克雷) 函数 $D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{Q}^C \end{cases}$ 在任意点的单侧极限是否存在?

解 f(x) 在 x_0 点极限存在的充要条件是 $\forall \varepsilon > 0, \exists \delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, 有 $|f(x) - f(x_0)| < \varepsilon$. 在 x_0 的任意去心 邻域内, 总存在有理数和无理数 (实数理论), 于是 D(x) 在这个去心邻域内总可以取到 0 和 1, 这说明极限不存在. 同 理,单侧极限也不存在. 进而,Dirichlet 函数在 ℝ 上处处不连续.

注: Dirichlet 函数常用来举例或反例. 如:

- 1. 周期函数不一定有最小正周期.
 - :: 任意正有理数都是 D(x) 的正周期 (有理数 + 有理数仍是有理数, 无理数 + 有理数是无理数.) 于是任意正有 理数都是 D(x) 的周期, 没有最小的正有理数, 故周期函数 D(x) 无最小正周期.
- 2. 构造只在一点连续的函数.
 - f(x) = xD(x) 在点 x = 0 处连续, 在其他点处间断. 且此函数处处不可导.
- 3. 构造只在一点可导的函数。
 - $f(x) = x^2 D(x)$ 在点 x = 0 处可导, 进而连续. 在其他点处不连续, 进而不可导.
- 4. 构造处处不可导的函数.
 - D(x) 本身即处处不连续, 进而, 处处不可导.
- 此外,还有处处连续,处处不可导的函数:Weierstrass(魏尔斯特拉斯)函数.还有在有理点处处不连续,无理点处 处连续的 Riemann(黎曼) 函数.1

¹Weierstrass, Riemann, Cauchy 等人对分析学作出了不可磨灭的贡献、他们还是复变函数论的主要奠基人.

例 10(P8 第 7 题) 求函数 $f(x) = \frac{4}{2-x^2}$ 图形的渐近线.

解 求渐进线应该求斜渐近线 (同时可以求出水平渐近线) 和铅直渐近线. Step 1: 铅直渐近线 只要研究 f(x) 没有定义的点 $x = \pm \sqrt{2}$, 容易知 $x \to \pm \sqrt{2}$ 时, $f(x) \to \infty$, 为铅直渐近线.

Step 2: 斜渐近线, 应分开考虑 $x \to \pm \infty$ 的情况.

1.
$$x \to +\infty$$
 时
斜率 $k_1 = \lim_{x \to +\infty} \frac{f(x)}{x} = 0$,
截距 $b_1 = \lim_{x \to +\infty} y - k_1 x = 0$.

2.
$$x \to -\infty$$
 时
斜率 $k_2 = \lim_{x \to -\infty} \frac{f(x)}{x} = 0$,
截距 $b_2 = \lim_{x \to -\infty} y - k_2 x = 0$.

即:f(x) 有水平渐近线 y=0.

例 11(P8 第 8 题) 当 $x \to x_0$ 时, f(x) 是无穷大, 是指对任何收敛于 x_0 的数列 $\{x_n\}$, 都有 $\lim_{n \to \infty} f(x_n) = \infty f(x)$ 在 x_0 的任一去心邻域是无界量, 是指至少存在一个收敛于点 x_0 的数列 $\{x_n\}$, 使 $\lim_{n\to\infty} f(x_n) = \infty$, 所以无穷大是无界量, 而无界量未必是无穷大. 由此分析 $f(x) = \frac{1}{x} \sin \frac{1}{x} \, \, \exists \, x \to 0$ 时是一个无界量而非无穷大. 分析 见例 33.

例 12(P8 思考题) 下列关于无穷小量的定义正确吗? 为什么?

- 1. 对 $\forall \varepsilon > 0, \exists N > 0$, 当 n > N 时, 成立 $x_n < \varepsilon$.
- 2. 对 $\forall \varepsilon > 0$, 存在无穷多个 x_n , 使 $|x_n| < \varepsilon$.
- 解 (1) 不对. 反例: $x_n = -n$ 不是无穷小量.
- (2) 不对. 反例: $x_n = (-1)^n + 1$ 不是无穷小量.

例 13(P10 第 4 题) 设 $\{a_n\},\{b_n\},\{c_n\}$ 均为非负数列,且 $\lim_{n\to\infty}a_n=0,\lim_{n\to\infty}b_n=1,\lim_{n\to\infty}c_n=\infty$,下列陈述中哪些是对 的,哪些是错的,如果是对的,说明理由;如果是错的,试给出一个反例.

- $(1)a_n < b_n, n \in \mathbb{N}^+$.
- $(2)b_n < c_n, n \in \mathbb{N}^+$.
- (3) lim anbn 不存在.
- (4) lim b_nc_n 不存在.
- 解 (1) 错. 反例: $a_n = \frac{1}{n}, b_n = 1 \frac{1}{n},$ 当 n = 1 时.
- (2) 错. 反例: $b_n = 1, c_n = n$, 当 n = 1 时.
- (3) 错. 反例: $a_n = 0, b_n = 1$, 则 $\lim_{n \to \infty} a_n b_n = 0$.
- (4) 对. 使用反证法. 假设 $\lim_{n\to\infty}b_nc_n=a(a$ 是一个确定的值), 则根据极限的运算法则有: $\lim_{n\to\infty}c_n=\lim_{n\to\infty}\frac{b_nc_n}{b_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b_nc_n}=\frac{\lim_{n\to\infty}b_nc_n}{\lim_{n\to\infty}b$ a, 这与题意矛盾!

例 14(P10 思考题) 求极限
$$\lim_{x\to 1} \frac{(1-\sqrt{x})(1-\sqrt[3]{x})\cdots(1-\sqrt[n]{x})}{(1-x)^{n-1}}$$
.

解 必须熟悉两个公式:

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + a^{2}b^{n-3} + ab^{n-2} + b^{n-1})$$

上面这个公式对任何正整数 n 都对. 若 n 是奇数时, 还有下面这个公式:

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots + a^{2}b^{n-3} - ab^{n-2} + b^{n-1})$$

上式右边第二个括号里,+ 和 - 交替出现.

本题中, 可以分别将 1-x 看作 $1-(\sqrt{x})^2,1-(\sqrt[3]{x})^3,\cdots,1-(\sqrt[5]{x})^n$, 于是得到:

$$1 - x = (1 - \sqrt{x})(1 + \sqrt{x})$$
$$1 - x = (1 - \sqrt[3]{x})(1 + \sqrt[3]{x} + (\sqrt[3]{x})^2)$$

一般地,有

$$1 - x = (1 - \sqrt[n]{x}) \cdot \sum_{k=0}^{n-1} (\sqrt[n]{x})^k$$

于是原式 =
$$\lim_{x \to 1} \frac{(1 - \sqrt{x})(1 - \sqrt[3]{x}) \cdots (1 - \sqrt[n]{x})}{(1 - x)(1 - x) \cdots (1 - x)} = \lim_{x \to 1} \prod_{t=2}^{n} \frac{1}{\sum_{k=0}^{t-1} (\sqrt[t]{x})^k} = \frac{1}{n!}.$$

例 15(P11 第 2 题 (2)) 计算: $\lim_{x\to 0} (\cos x)^{2\csc^2(\frac{x}{2})}$

解原式 =
$$\lim_{x\to 0} (1+(\cos x-1))^{\frac{2}{\sin^2(\frac{x}{2})}} = \lim_{x\to 0} (1+(\cos x-1))^{\frac{1}{(\cos x-1)}} \cdot \frac{2(\cos x-1)}{\sin^2(\frac{x}{2})}$$

$$\lim_{x\to 0} \frac{2(\cos x-1)}{\sin^2(\frac{x}{2})}$$

$$= e^{\frac{2(\cos x-1)}{\sin^2(\frac{x}{2})}}$$
(注意这里不要写成 $\lim_{x\to 0} e^{\frac{2(\cos x-1)}{(\frac{x}{2})}}$, 即使结果正确)
$$\lim_{x\to 0} \frac{(-x^2)}{(\frac{x}{2})^2} = e^{-4}$$

例 16(P12 第 3 题 (2)) 计算: $\lim_{x\to 0^+} x \left[\frac{1}{x}\right] = 1$. 解: $\lim_{x\to 0^+} x\left(\frac{1}{x} - \left\{\frac{1}{x}\right\}\right) = 1 - \lim_{x\to 0^+} x\left\{\frac{1}{x}\right\} = 1(\because \{x\} \in [0,1)(\forall x))$

例 17(P12 第 4 题) 利用单调有界收敛定理证明: 数列 $\sqrt{2},\sqrt{2+\sqrt{2}},\sqrt{2+\sqrt{2}+\sqrt{2}},\cdots$ 极限存在, 并求出极限.

Proof. 记这个数列为 $\{x_n\}$, 其中 $x_1 = \sqrt{2}$, 递推公式为 $x_{n+1} = \sqrt{2+x_n}$, 且若 $x_n < 2$, 则有 $x_{n+1} < \sqrt{2+2} = 2$, 而 $x_1 < 2$, 于是 $x_n < 2(\forall n \in \mathbb{N})$,

又
$$x_{n+1}-x_n=\sqrt{x_n+2}-x_n=\frac{x_n+2-x_n^2}{\sqrt{x_n+2}+x_n}=\frac{(2-x_n)(1+x_n)}{\sqrt{x_n+2}+x_n}>0.$$
,即 $\{x_n\}$ 递增,有上界 2,根据单调有界收敛定理, $\{x_n\}$ 收敛.设 $\lim_{n\to\infty}x_n=a$,

在
$$x_{n+1} = \sqrt{2+x_n}$$
 两边同时取极限, 得: $a = \sqrt{2+a}$, 解得: $a = -1$ (舍去) 或 $a = 2$, 于是 $\lim_{n \to \infty} x_n = 2$.

例 18(P12 思考题) 已知极限 $\lim_{x\to e} f(x)$ 存在, 且函数 f(x) 满足 $f(x) = \frac{\ln x - 1}{x - e} \lim_{x\to e} f(x) + \left(\frac{x}{e}\right)^{\frac{e}{x-e}}$, 求 $\lim_{x\to e} f(x)$. 解 这里 $\lim_{x\to e} f(x)$ 已经是一个确定的数, 于是为了求出这一个常数, 我们在等式两边作极限过程 $x\to e$, 即:

$$\lim_{x \to e} f(x) = \lim_{x \to e} f(x) \lim_{x \to e} \frac{\ln x - 1}{x - e} + \lim_{x \to e} \left(\frac{x}{e}\right)^{\frac{e}{x - e}}$$

即:
$$\lim_{x \to e} f(x) = \frac{1}{e} \lim_{x \to e} f(x) + e$$
, 整理得: $\lim_{x \to e} f(x) = \frac{e^2}{e - 1}$.

解
$$x = 0$$
 时, 原式 $= \lim n^2(0-0) = 0$,

例 19(P16 思考题) 计算极限
$$\lim_{n\to\infty} n^2(\sqrt[n]{x} - \sqrt[n+1]{x})$$
.
解 $x = 0$ 时,原式 $=\lim_{n\to\infty} n^2(0-0) = 0$,
 $x > 0$ 时,令 $\frac{1}{n} = t$,则 $\frac{1}{n} = t$, $\frac{1}{n+1} = \frac{t}{1+t}$,

原式 =
$$\lim_{t\to 0^+} \frac{x^t - x^{\frac{t}{1+t}}}{t^2} = \lim_{t\to 0^+} \frac{x^{\frac{t}{1+t}}(x^{\frac{t^2}{t+1}} - 1)}{t^2} = \lim_{t\to 0^+} \frac{\frac{t^2}{t+1}\ln x}{t^2} = \ln x.$$
 Remark 这里应用了等价无穷小: $a^x - 1 \sim x \ln a(x \to 0)$.

例 20(P17 第 1 题)

- 1. f(x) 在点 $x = x_0$ 处有定义是当 $x \to x_0$ 时 f(x) 有极限的()条件.
- 2. f(x) 在点 $x=x_0$ 处有定义是 f(x) 在 $x=x_0$ 处连续的()条件.
- 解 (1) 无关条件. 有定义但不一定有极限的反例: f(x) = D(x). 有极限但不一定有定义的反例: $f(x) = 0 (x \neq 0)$, 在 x = 0处没有定义, 但有 $\lim_{x\to 0} f(x) = 0$ (极限的取值与该点函数值无关). (2) 必要条件. 连续一定要有定义, 但有定义不一定连续, 反例: f(x) = D(x).

例 21(P18 第7题)

- 1. 讨论函数 $f(x) = \lim_{n \to \infty} \frac{1 x^{2n}}{1 + x^{2n}} x$ 的连续性.
- 2. 上述的 f(x) 是否为初等函数? 说明理由.
- 解 (1) 先取定 x, 再作极限过程. 当 |x| < 1 时, $f(x) = \lim_{n \to \infty} \frac{1-0}{1+0} x = x$, 当 |x| = 1 时, $f(x) = \lim_{n \to \infty} \frac{1-1}{1+1} x = 0$, 当 |x| > 1

时,
$$f(x) = \lim_{n \to \infty} \frac{\frac{1}{x^{2n}} - 1}{\frac{1}{x^{2n}} + 1} x = -x$$
. 于是 $f(x)$ 在 \mathbb{R} 上有跳跃间断点 $x = \pm 1$.

- (2) 不是初等函数、因为 f(x) 在其定义区间 $(-\infty, +\infty)$ 上不连续、
- 例 22(P18 思考题) 单调有界函数的间断点有哪些类型?
- 解 单调函数只有第一类间断点,可以证明每个间断点的左、右极限都存在.

例 23(P19 第 1 题) 判断下列命题真伪、并说明理由:

- 1. 若 $\lim_{x\to a} (f(x) + g(x))$ 及 $\lim_{x\to a} f(x)$ 都存在, 则 $\lim_{x\to a} g(x)$ 也存在.
- 2. 若 $\lim_{x \to \infty} f(x)g(x)$ 及 $\lim_{x \to \infty} f(x)$ 都存在, 则 $\lim_{x \to \infty} g(x)$ 也存在.
- 解(1)正确,由极限的运算法则可证.
- (2) 错误, 反例: 取 $a = 0, f(x) = x, g(x) = \frac{1}{x}$.

例 24(P19 第 2 题) 讨论极限 $\lim_{x\to 0^-} \frac{1}{1+a^{\frac{1}{2}}}(a>0)$.

解 分三种情况讨论.

1.
$$a = 1$$
 时, 原式 $= \frac{1}{2}$.

2.
$$0 < a < 1$$
 时,原式 $= \lim_{t \to -\infty} \frac{1}{1 + a^t} = 0$.

3.
$$a > 1$$
 时,原式 = $\lim_{t \to -\infty} \frac{1}{1 + a^t} = 1$.

例 25(P19 第 4 题 (1)) 计算: $\lim_{x \to +\infty} (\cos \sqrt{x^4 + x} - \cos \sqrt{x^4 - x})$.

和差化积

$$\begin{split} \sin\alpha + \sin\beta &= \sin\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) + \sin\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha - \sin\beta &= \sin\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) - \sin\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \cos\alpha + \cos\beta &= \cos\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) + \cos\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha - \cos\beta &= \cos\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) - \cos\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \end{split}$$

积化和差

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) - \sin(\alpha - \beta))$$

$$\cos \alpha \sin \beta = \frac{1}{2} (\sin(\alpha + \beta) - \sin(\alpha - \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

以上八个公式不需要记, 但是需要会推导 (推导方法也不限于上面所述方法).

解原式 =
$$-2\lim_{x \to +\infty} \sin\left(\frac{\sqrt{x^4 + x} + \sqrt{x^4 - x}}{2}\right) \sin\left(\frac{\sqrt{x^4 + x} - \sqrt{x^4 - x}}{2}\right)$$

= $-2\lim_{x \to +\infty} \sin\left(\frac{\sqrt{x^4 + x} + \sqrt{x^4 - x}}{2}\right) \sin\left(\frac{x}{\sqrt{x^4 + x} + \sqrt{x^4 - x}}\right)$
= $-2\lim_{x \to +\infty} \sin\left(\frac{\sqrt{x^4 + x} + \sqrt{x^4 - x}}{2}\right) \sin\left(\frac{1}{\sqrt{x^2 + \frac{1}{x}} + \sqrt{x^2 - \frac{1}{x}}}\right)$
= $0.(有界 \times 无穷小)$

例 26(P20 思考题) 设函数 f(x) 对任何实数有意义, 且对任何实数 x,y, 有 f(x+y) = f(x) + f(y), 试证明: 若 f(x) 在 x = 0 处连续, 则 f(x) 在 $(-\infty, +\infty)$ 内处处连续.

$$Proof.\ f(0+0) = f(0) + f(0),\$$
于是 $f(0) = 0.\ \forall x_0 \in \mathbb{R}, f(x_0 + \Delta x) - f(x_0) = f(x_0) + f(\Delta x) - f(0) = f(\Delta x),\$ 于是 $\lim_{\Delta x \to 0} f(x_0 + \Delta x) - f(x_0) = \lim_{\Delta x \to 0} f(\Delta x) = f(0) = 0,\$ 即 $f(x)$ 处处连续.

例 27(P21 第 4 题) 设函数 f(x) 对于闭区间 [a,b] 上的任意两点 x,y 恒有 $|f(x)-f(y)| \leq l|x-y|$, 其中 l 为常数, 且 f(a)f(b) < 0, 证明: 至少有一点 $\xi \in (a,b)$, 使得 $f(\xi) = 0$.

Proof. $\forall x_0 \in (a,b)$, 记 $k = \min\{x_0 - a, b = x_0\}$, 取 Δx 满足 $0 < |\Delta x| < k$ (这是为了保证 $x_0 + \Delta x$ 落在区间 (a,b) 上), 有

$$0 \le |f(x_0 + \Delta x) - f(x_0)| \le l|\Delta x|$$

对上式取极限 $\Delta x \to 0$, 有 $\lim_{\Delta x \to 0} f(x_0 + \Delta x) - f(x_0) = 0$, 即 f(x) 在 (a,b) 上处处连续.

再取 $0 < \Delta x < b-a$, 有 $0 \le |f(a+\Delta x)-f(a)| \le l\Delta x$, 且 $0 \le |f(b)-f(b-\Delta x)| \le l\Delta x$, 对以上两式取极限 $\Delta x \to 0^+$, 得 到 f(x) 在 x=a 处右连续以及在 x=b 处左连续, 于是 f(x) 在 [a,b] 上连续. 由零点定理即可证明原命题.

Remark 本题的条件称为 Lipschitz(利普希茨) 条件, 在数学分析、实变函数中有重要作用.

例 28(P22 第 6 题) 设常数 $\alpha_1,\alpha_2,\alpha_3 > 0$, 证明当 a < b < c 时, 方程 $\frac{\alpha_1}{x-a} + \frac{\alpha_2}{x-b} + \frac{\alpha_3}{x-c} = 0$ 有且仅有两个不同的实根.

Proof. 方程在 x = a,b,c 处没有定义. 在 $\mathbb{R} \setminus \{a,b,c\}$ 上方程等价于

$$\alpha_1(x-b)(x-c) + \alpha_2(x-c)(x-a) + \alpha_3(x-a)(x-b) = 0,$$

 $i \exists f(x) = \alpha_1(x-b)(x-c) + \alpha_2(x-c)(x-a) + \alpha_3(x-a)(x-b)(x \in \mathbb{R}),$

 $f(a) = \alpha_1(a-b)(a-c) > 0$, $f(b) = \alpha_2(b-c)(b-a) < 0$, $f(c) = \alpha_3(c-a)(c-b) > 0$, 于是 f(a)f(b) < 0, f(b)f(c) < 0, 由零点定理, f(x) 在 (a,b) 和 (b,c) 上各至少有一个零点, 即 f(x) 至少有 2 个不同的实根. 而 f(x) 是二次多项式, 至多有 2 个不同的实根, 即 f(x) 有且仅有 2 个不同的实根, 且这 2 个实根不在 x = a,b,c 处取, 于是原方程与 f(x) = 0 同解, 原命题得证.

例 29(P22 第 8 题) 证明: 若 f(x) 在 $(-\infty, +\infty)$ 内连续, 且 $\lim_{x\to \infty} f(x)$ 存在, 则 f(x) 在 $(-\infty, +\infty)$ 内有界.

Proof. 设 $\lim_{x\to\infty} f(x) = A$, 即 $\forall \varepsilon > 0, \exists X > 0, \text{s.t.} \forall |x| > X : |f(x) - A| < \varepsilon$. 取 $\varepsilon = 1$, 记此时的 X 为 X_0 , 有 $|f(x)| \le |f(x) - A| + |A| < |A| + 1$, 记 $M_1 = |A| + 1$, 即有 $|f(x)| \le M_1(\forall |x| > X_0)$

而在闭区间 $[-X_0,X_0]$ 上, 由闭区间上连续函数有界, 知 $|f(x)| \leq M_2(\exists M_2 > 0), \forall x \in [-X_0,X_0]$.

取
$$M = \max\{M_1, M_2\}$$
,知 $|f(x)| \leq M(\forall x \in \mathbb{R})$,即 $f(x)$ 在 $(-\infty, +\infty)$ 上有界.

例 30(P22 思考题) 设函数 f(x) 在 [0,1] 上连续, 且 f(0) = f(1), 求证:

- 1. 存在 $\xi \in [0,1]$, 使 $f(\xi) = f(\xi + \frac{1}{2})$.
- 2. 对任何正整数 n, 存在 $\xi \in [0,1]$, 使 $f(\xi) = f\left(\xi + \frac{1}{n}\right)$.

Proof. 只要做第 2 问. 设 $g(x) = f\left(x + \frac{1}{n}\right) - f(x)$. 有

$$\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right) = f(1) - f(0) = 0.$$

- 若 $g\left(\frac{k_0}{n}\right) = 0(\exists k_0 \in \{0, 1, \dots, n-1\})$, 则命题得证.
- 若不满足以上条件,则必定有

$$g\left(\frac{k_1}{n}\right) > 0(\exists k_1 \in \{0, 1, \dots, n-1\})$$

 $g\left(\frac{k_2}{n}\right) < 0(\exists k_2 \in \{0, 1, \dots, n-1\})$

于是 $g\left(\frac{k_1}{n}\right)g\left(\frac{k_2}{n}\right) < 0$, 根据 f 的连续性可得 g 的连续性, 由零点定理知命题成立.

例 31(P25 第 1 题) 叙述极限 $\lim_{x \to \infty} f(x) = -1$ 的数学定义.

解 虽然高等数学考试中对 $\varepsilon - \delta$ 语言的要求不如数学分析那么高, 但是掌握 $\varepsilon - \delta$ 语言仍然是学好高等数学的必要 条件. 本题答案如下:

 $\forall \varepsilon > 0, \exists \delta > 0, \text{s.t.} \forall x \in (1, 1 + \delta) : |f(x) + 1| < \varepsilon.$

例 32(P25 第 3 题) 若函数 f(x) 与 g(x) 在 $(-\infty, +\infty)$ 上各有且仅有三个间断点 $x_1 = 1, x_2 = 2, x_3 = 3$, 则复合函 数 f(g(x)) 在 $(-\infty, +\infty)$ 上 ().

A. 有 3 个间断点 B. 有 6 个间断点 C. 有 9 个间断点 D. 可以有无穷个间断点

例如,取
$$g(x) = \begin{cases} \sin x, & x \neq 1, 2, 3 \\ 0, & x = 1, 2, 3 \end{cases}$$
, $f(x) = \begin{cases} 0, & x \neq 1, 2, 3 \\ 1, & x = 1, 2, 3 \end{cases}$ 则 $f(g(x)) = \begin{cases} 0, & g(x) \neq 1 \\ 1, & g(x) = 1 \end{cases} = \begin{cases} 0, & \sin x \neq 1 \\ 1, & \sin x = 1 \end{cases} = \begin{cases} 0, & \sin x \neq 1 \\ 1, & \sin x = 1 \end{cases} = \begin{cases} 0, & \cos x \neq 1 \\ 1, & \sin x = 1 \end{cases}$

此时 f(g(x)) 有 (可数) 无穷个间断点 $x = \left(2k + \frac{1}{2}\right)\pi(k \in \mathbb{Z})$.

例 33(P25 第 4 题)f(x) 在 x_0 的某一邻域内无界是 $\lim_{x\to x_0} f(x) = \infty$ 的 () 条件.

解 "f(x) 在 x_0 的某一邻域内无界"的定义是: $\exists \ \delta > 0, \forall M > 0, \exists \ x \in (x_0 - \delta, x_0 + \delta), \text{s.t.} |f(x)| > M$.

" $\lim_{x\to x_0} f(x) = \infty$ "的定义是: $\forall M > 0, \exists \delta > 0, \text{s.t.} \forall x \in (x_0 - \delta, x_0) \cup (x_0 + \delta), 有 |f(x)| > M.$

根据定义知后者能推出前者,但前者不一定能推出后者,本题应填"必要非充分". 反例可以是: 取 $x_0 = 0, f(x) = \frac{1}{x} \sin \frac{1}{x}$ 取 $a_n = \frac{1}{2n\pi}(n \in \mathbb{N})$. 任取 $\delta > 0$, 当 $n > \frac{1}{2\pi}$ 时, $\{a_n\}$ 中下标大于 n 的各项全部落在 0 的 δ 邻域内, 但 $f(a_n) = 0$, 这 说明不可能有 $\lim_{x \to x_0} f(x) = \infty$.

另一方面, 取 $b_n = \frac{1}{2n\pi + \frac{\pi}{2}} < 1$, 取 $\delta = 1$, 任意取定正数 M, 只要 $n > \frac{M}{2\pi}$, 就有 $f(b_n) = 2n\pi + \frac{\pi}{2} > M$. 根据无界的定 义,f(x) 无界,但其极限不存在(且不为 $\pm \infty$).

例 34(P25 第 5 题) 设数列 $a_n > 0(n=1,2,\cdots), S_n = a_1 + a_2 + \cdots + a_n$, 则数列 $\{S_n\}$ 有界是数列 $\{a_n\}$ 收敛的 () 条

解 一方面、 S_n 严格单调增加 $(\cdot : S_n - S_{n-1} = a_n > 0)$,若 $\{S_n\}$ 有界,则由单调有界收敛原则, $\{S_n\}$ 一定收敛,设 $S_n \to a_n = a_n > 0$,若 $\{S_n\}$ 有界,则由单调有界收敛原则, $\{S_n\}$ 一定收敛,设 $\{S_n\}$ $a(n \to \infty)$, 则 $a_n = S_n - S_{n-1} \to a - a = O(n \to \infty)$, 即 $\{a_n\}$ 收敛.

但反之, 若 $\{a_n\}$ 收敛, 比如 $a_n = 1$, 则其收敛到 1, 而 $S_n = n$ 发散. 本题应填"充分非必要".

Remark 若题目改为 " $\{S_n\}$ 有界是数列 $\{a_n\}$ 收敛到 0 的 () 条件", 结果如何?

仍然是充分非必要条件. 反例: $a_n = \frac{1}{n}$, 同学们下学期即将学到无穷级数理论, 调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 是发散的, 即

$$\lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) = +\infty,$$
 尽管此时 $\lim_{n\to\infty} a_n = 0$.

例 35(P28 第 9 题) 计算极限 $\lim_{x\to a}\frac{a^x-x^a}{x^2-a^2}$. 解 如果 a=0, 原式 $=\lim_{x\to 0}\frac{0-1}{x^2}=-\infty$, 极限不存在.

如果
$$a > 0$$
, 令 $t = x - a$, 原式 $= \frac{1}{2a} \lim_{t \to 0} \frac{a^{t+a} - (t+a)^a}{t} = \frac{a^{a-1}}{2} \lim_{t \to 0} \frac{a^t - \left(\frac{t}{a} + 1\right)^a}{t} = \frac{a^{a-1}}{2} \left(\lim_{t \to 0} \frac{a^t - 1}{t} - \lim_{t \to 0} \frac{\left(\frac{t}{a} + 1\right)^a - 1}{t}\right) = \frac{a^{a-1}}{2} \lim_{t \to 0} \frac{a^t - 1}{t} = \frac{a^{a-1}}{2} \lim_{t \to 0} \frac{a^t - 1}{t} - \frac{1}{2} \lim_{t$

 $\frac{a^{a-1}}{2} (\ln a - 1) (这里用了等价无穷小 <math>a^x - 1 \sim x, (1+x)^{\alpha} - 1 \sim \alpha x (x \to 0)).$

2. 导数与微分

2.1 导数的概念

2.1.1 导数

定义 2.1 (导数). 设函数 y = f(x) 在 x_0 的某一邻域内有定义, 当自变量 x 在 x_0 处有增量 $\Delta x (\Delta x \neq 0$ 且 $x_0 + \Delta x$ 仍 在该邻域内) 时, 相应的函数有增量 $\Delta y = f(x_0 + \Delta x) - f(x_0)$, 如果 Δy 与 Δx 之比 $\frac{\Delta y}{\Delta x}$ 当 $\Delta x \to 0$ 时, 极限

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称这个极限值为函数 y = f(x) 在 x_0 点的导数,并且说,函数 y = f(x) 在 x_0 处可导,记作 $f'(x_0)$. 也记为 $y'|_{x=x_0}$, $\frac{\mathrm{d}f(x)}{\mathrm{d}x}|_{x=x_0}$, 或者 $\frac{\mathrm{d}y}{\mathrm{d}x}|_{x=x_0}$, 即

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

性质 2.1 (导数存在的充要条件). 左右导数存在且相等.

性质 2.2 (导数的几何意义). 函数 y = f(x) 在 x_0 点的导数等于函数所表示的曲线 L 在相应点 (x_0, y_0) 处的切线斜率。

曲线的切线方程: 曲线 L 在点 $M(x_0, y_0)$ 处的切线方程就是 $y-y_0=f'(x_0)(x-x_0)$. 特别的, 若 $f'(x_0)=+\infty$, 则切线垂直 x 轴,切线方程就是 x 轴的垂线 $x=x_0$

2.1.2 可导与连续

定理 2.1 (可导与连续). 设函数 y=f(x) 在 x_0 处可导,有 $f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}$,根据函数的极限与无穷小的关系,可得 $\frac{\Delta y}{\Delta x}=f'(x)\Delta x+\alpha(x)\Delta x$,由此可见 $\lim_{\Delta x\to 0}\Delta y=0$. 即,若函数 y=f(x) 在 x 处可导,那么在 x 处必连续,但反过来不一定成立,即在 x 处连续不一定在 x 处可导.

例如, 函数
$$y = \begin{cases} x, x \ge 0, \\ -x, x < 0 \end{cases}$$
 , 显然在 $x = 0$ 处连续, 但是在该点不可导

因为 $\Delta y = f(0+\Delta x) - f(x) = |\Delta x|$, 所以在 x = 0 点的右导数:

$$f'_{+}(x_0) = \lim_{\Delta x \to 0^+} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{|\Delta x|}{\Delta x} = 1$$

而左导数是:

$$f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{|\Delta x|}{\Delta x} = -1$$

左右导数不相等, 故函数在该点不可导. 所以, 函数连续是可导的必要条件而不是充分条件,

2.1.3 求导举例

定义 2.2 (基本方法). 求函数 y = f(x) 的导数 y 的步骤:

1. 求增量:
$$\Delta y = f(x + \Delta x) - f(x)$$

2. 其比值:
$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

3. 求极限:
$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

例题 2.1. 试确定常数 a 和 b 的值, 使函数

$$f(x) = \begin{cases} 1 + \ln(1 - 2x), x \leq 0 \\ a + be^x, x > 0 \end{cases}$$

在 x=0 处可导.

解: 要使 f(x) 在 x=0 处可导, 故 f(x) 在 x=0 处连续, 即

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0) = 1$$

得 a+b=1, 由导数定义有

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{a + be^{x} - 1}{x} = b$$
$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = -2$$

此时应有 $b = f'_{+}(0) = f'_{-}(0) = -2, a = 3$

例题 2.2. 设 $f(x) = (x-a)\varphi(x)$, 其中 $\varphi(x)$ 在 x=a 处连续, 求 f'(a)

分析 本题不知道 φ'(x) 是否存在, 因此只能用定义去做.

解: 由导数定义知

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{(x - a)\varphi(x) - 0}{x - a} = \lim_{x \to a} \varphi(x)$$

因为 $\varphi(x)$ 在 x = a 处连续, 从而有 $\lim_{x \to a} \varphi(x) = \varphi(a)$, 故 $f'(a) = \varphi(a)$

2.2 求导法则

2.2.1 函数的和、差、积、商的求导法则

定理 2.2. 设函数 u = u(x), v = v(x) 在 x 处可导, 则函数 $u(x) \pm v(x)$, u(x)v(x), $\frac{u(x)}{v(x)}(v(x) \neq 0)$ 在 x 处可导, 且有以下法则

1.
$$[u(x) \pm v(x)]' = u'(x) \pm v'(x)$$

2.
$$[u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)$$

3.
$$\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}, \ (v(x) \neq 0)$$

特别的, 当
$$u(x) \equiv C$$
 时, $\left[\frac{C}{v(x)}\right]' = -\frac{Cv'(x)}{v^2(x)}$

2.2.2 复合函数的求导法则

定理 2.3. 如果函数 $u=\varphi(x)$ 在点 x 处可导,而函数 y=f(u) 对应的点 u 处可导,那么复合函数 f(u(x)) 也在点 x 处可导,且有 $\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} y}{\mathrm{d} u}\cdot\frac{\mathrm{d} u}{\mathrm{d} x}$ 或 $f'(\varphi(x))=f'(u)\varphi'(x)$.

2.2.3 反函数的求导法则

定理 2.4. 如果单调连续函数 $x=\varphi(y)$ 在点 y 处可导, 而且 $\varphi'(y)\neq 0$, 那么它的反函数 y=f(x) 在对应的点 x 处可导, 且有 $f'(x)=\frac{1}{\varphi'(y)}$ 或 $\frac{dx}{dy}=\frac{1}{\frac{dy}{dx}}$

2.2.4 基本初等函数的导数公式

定理 2.5 (基本初等函数的导数公式).

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$
$$(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$
$$(\arctan x)' = \frac{1}{1 + x^2}$$
$$(\operatorname{arccot} x)' = -\frac{1}{1 + x^2}$$

例题 2.3. 求 $y = \frac{1 - \ln x}{1 + \ln x}$ 的导数

解:

$$y' = \frac{-\frac{1}{x}(1 + \ln x) - \frac{1}{x}(1 - \ln x)}{(1 + \ln x)^2} = -\frac{2}{x(\ln x + 1)^2}$$

例题 2.4. 求 y=lnlnlnx 的导数

解:

$$y' = \frac{1}{\ln \ln x} \frac{1}{\ln x} \frac{1}{x}$$

例题 2.5. 设 f(x) 可导, 求 $y = f(\sin^2 x) + f(\cos^2 x)$ 的导数

解:

$$y' = f'(\sin^2 x) 2 \sin x \cos x - f'(\cos^2 x) 2 \sin x \cos x = \sin 2x (f'(\sin^2 x) - f'(\cos^2 x))$$

例题 2.6. 求 $y = \arcsin \frac{2t}{1+t^2}$ 的导数

解:

$$y' = \frac{1}{\sqrt{1 - \left(\frac{2t}{1 + t^2}\right)^2}} \cdot \frac{2(1 + t^2) - 2t \cdot 2t}{(1 + t^2)^2} = \begin{cases} \frac{1}{1 + t^2}, |t| < 1\\ -\frac{1}{1 + t^2}, |t| > 1 \end{cases}$$

2.2.5 三个求导方法

导,所得的结果也必然相等,但应注意,左端 F(x,f(x)) 是将 y=f(x) 代入 F(x,y)=0 后所得的结果,所以,当方程 $F(x,y)\equiv 0$ 的两端对 x 求导时,要记住 y 是 x 的函数,然后用复合函数求导法则去求导,这样,便可得到欲求的导数。下面举例说明这种方法。

例题 2.7. 求由方程 $xy-e^x+e^y=0$ 所确定的隐函数的导数 $\frac{dy}{dx}$

解: 把方程两边对 x 求导, 记住 y 是 x 的函数, 得

$$y + xy' - e^x + e^y y' = 0$$

由上式解出 y, 便得隐函数的导数为 $y = \frac{e^x - y}{x + e^y}$, $x + e^y \neq 0$

定义 2.4 (对数求导法), 适合于由几个因子通过乘、除、乘方、开方所构成的比较复杂的函数 (包括幂指函数), 对数求导法过程是先取对数, 化乘、除、乘方、开方为乘积, 然后利用隐函数求导法求导,

例题 2.8. 设
$$y = (x-1)\sqrt[3]{(3x+1)^2(x-2)}$$

解: 把方程两边取绝对值, 再取对数, 得

$$\ln|y| = \ln|x - 1| + \frac{2}{3}\ln|3x + 1| + \frac{1}{3}\ln|x - 2|$$

两边对 x 求导得

$$\frac{y'}{y} = \frac{1}{x-1} + \frac{2}{3x+1} + \frac{1}{3(x-2)}$$

所以

$$y' = (x-1)\sqrt[3]{(3x+1)^2(x-2)}\left(\frac{1}{x-1} + \frac{2}{3x+1} + \frac{1}{3(x-2)}\right)$$

注: 以后解题时, 为了方便起见, 取绝对值可以略去.

例题 2.9. 设 $y = (\cos x)^{x^2}$, 求 y'

解: (法一) 将函数化为指数函数的形式 $y = e^{x^2 \ln \cos x}$, 由复合函数求导法则, 得

$$y' = e^{x^2 \ln \cos x} \cdot (2x \ln \cos x - x^2 \tan x)$$

解: (法二) 对数求导法, 两边取对数得

$$\ln y = x^2 \ln \cos x$$

两边对x求导

$$\frac{y'}{y} = 2x \ln \cos x - x^2 \tan x$$

即

$$y' = e^{x^2 \ln \cos x} \cdot (2x \ln \cos x - x^2 \tan x)$$

定义 2.5 (由参数方程所确定的函数求导法). 设参数方程 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ 确定 y = x 之间的函数关系, 则称此函数关

对于参数方程所确定的函数的求导, 通常也并不需要首先由参数方程消去参数 t 化为 y 与 x 之间的直接函数关系后再求导. 如果函数 $x = \varphi(t)$, $y = \psi(t)$ 都可导, 且 $\varphi'(t) \neq 0$, 又 $x = \varphi(t)$ 具有单调连续的反函数 $t = \varphi^{-1}(x)$, 则参数方程确定的函数可以看成 $y = \psi(t)$ 与 $t = \varphi^{-1}(x)$ 复合而成的函数.

根据复合函数与反函数的求导法则,有

系所表示的函数为由参数方程所确定的函数,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\psi'(t)}{\varphi'(t)}$$

定义 2.6 (高阶导数). 如果函数 y=f(x) 的导数 y'=f'(x) 仍是 x 的可导函数, 就称 y'=f'(x) 的导数为函数 y=f(x) 的二阶导数, 记作 y'', f'' 或 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$, 即 y''=(y')'=f''(x) 或 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}=\frac{\mathrm{d}}{\mathrm{d} x}\frac{\mathrm{d} y}{\mathrm{d} x}$. 类似地, 二阶导数的导数叫做三阶导数, 三阶导数的导数叫做四阶导数, ……, 一般地, 函数 f(x) 的 (n-1) 阶导数的

分别记作 $y'', y^{(4)}, \cdots, y^{(n)}, f'''(x), f^{(4)}(x), \cdots, f^{(n)}(x)$ 或 $\frac{d^3y}{dx^3}, \frac{d^4y}{dx^4}, \cdots, \frac{d^ny}{dx^n}$

且有
$$y^{(n)} = (y^{(n-1)})'$$
,或 $\frac{d^n y}{dx^n} = \frac{d}{dx} \frac{d^{(n-1)} y}{dx^{(n-1)}}$

异数叫做 n 阶异数.

二阶及二阶以上的导数统称为高阶导数. 虽然, 求高阶导数并不需要更新的方法, 只要逐阶求导, 直到所要求的阶数即可, 所以仍可用前面学过的求导方法来计算高阶导数.

例题 2.10. 求方程 $\begin{cases} x = a\cos t \\ y = b\sin t \end{cases}, 0 \leqslant t \leqslant 2\pi \text{ 所确定的函数的一阶导数 } \frac{\mathrm{d}y}{\mathrm{d}x} \text{ 及二阶导数 } \frac{\mathrm{d}^2y}{\mathrm{d}x^2}$

解:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{b\cos t}{a(-\sin t)} = -\frac{b}{a}\cot t$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) / \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\frac{b}{a} \csc^2 t}{-a \sin t} = -\frac{b}{a^2 \sin^3 t}$$

例题 2.11. 求由方程 $x-y+\frac{1}{2}\sin y$ 所确定的隐函数 y 的二阶导数 $\frac{d^2y}{dx^2}$

解: 将方程两边对 x 求导

$$1 - \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{2}\cos y \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \tag{2.1}$$

故

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{2 - \cos y}$$

方程(2.1)再对 x 求导, 得

$$-\frac{d^{2}y}{dx^{2}} - \frac{1}{2}\sin y \left(\frac{dy}{dx}\right)^{2} + \frac{1}{2}\cos y \frac{d^{2}y}{dx^{2}} = 0$$

于是

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{siny}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}{\mathrm{cos}y - 2}$$

故

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{4\sin y}{(\cos y - 2)^3}$$

2.3 微分及其在近似计算中的应用

2.3.1 微分的概念

定义 2.7 (微分). 若函数 y=f(x) 在点 x 处的改变量 $\Delta y=f(x+\Delta x)+f(x)$ 可以表示成 $\Delta y=A\Delta x+o(\Delta x)$ 其中 $o(\Delta x)$ 为比 $\Delta x(\Delta x\to 0)$ 高阶的无穷小,则称函数 f(x) 在点 x 处可微,并称其线性主部 $A\Delta x$ 为函数 f(x) 在点 x 处的微分,记为 dy 或 df,即 $dy=A\Delta x$ 且有 A=f'(x),这样 $dy=f'(x)\Delta x$.

由上面的讨论和微分定义可知: 一元函数的可导与可微是等价的, 且其关系为 $dy=f'(x)\Delta x$. 当函数 f(x)=x 时, 函数的微分 $df(x)=dx=\Delta x$. 因此我们规定自变量的微分等于自变量的增量, 这样函数 y=f(x) 的微分可以写成 $dy=f'(x)\Delta x=f'(x)dx$, 或上式两边同除以 dx 有 $\frac{dy}{dx}=f'(x)$.

由此可见, 导数等于函数的微分与自变量的微分之商, 即 $f'(x) = \frac{\mathrm{d}y}{\mathrm{d}x}$, 正因为这样, 导数也称为"微商", 而微分的分式 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 也常常被用作导数的符号. 注: 微分与导数虽然有着密切的联系, 但它们是有区别的: 导数是函数在一点处的变化率, 而微分是函数在一点处由

注: 微分与导数虽然有着密切的联系, 但它们是有区别的: 导数是函数在一点处的变化率, 而微分是函数在一点处由变量增量所引起的函数变化量的主要部分; 导数的值只与 x 有关, 而微分的值与 x 和 Δx 都有关. 可微与可导互为充氧条件.

例题 2.12. 求函数 $y=x^2$ 在 $x=1, \Delta x=0.1$ 时的改变量和微分.

解:

$$\Delta y = (x + \Delta x)^2 - x^2 = 1.1^2 - 1^2 = 0.21$$

在点 x=1 处, $y|_{x=1}=2x|_{x=1}=2$, 所以 $dy=y'\Delta x=2\times0.1=0.2$

定义 2.8 (微分的几何意义). 设函数 y = f(x) 的图形, MP 是曲线上点 $M(x_0, y_0)$ 的切线, 设 MP 的倾角为 α , 当自变量有改变量 Δx 时, 得到曲线上另外一点 $N(x_0 + \Delta x, x_0 + \Delta y)$, 从右图可知, $MQ = \Delta x$, $QN = \Delta y$, 则 $QP = MQ \cdot \tan \alpha = f'(x_0)\Delta x$, 即 dy = QP.

由此可知, 微分 $dy = f'(x_0)\Delta x$, 是当自变量 x 有改变量 Δx 时, 曲线 y = f(x) 在点 (x_0, y_0) 处的切线的纵坐标的改变量 . 用 dy 近似代替 Δy 就是用点 (x_0, y_0) 处的切线纵坐标的改变量 QP 来近似代替曲线 y = f(x) 的纵坐标的改变量 QN, 并且有 $|\Delta y - dy| = PN$.

2.3.2 微分的运算法则

定义 2.9 (复合函数的微分法则). 设函数 y=f(u), 根据微分的定义, 当 u 是自变量时, 函数 y=f(u) 的微分是 dy=f'(u)du, 如果 u 不是自变量,而是 x 的导函数 $u=\varphi(x)$, 则复合函数 $y=f(\varphi(x))$ 的导数为 $y'=f'(u)\varphi'(x)$. 于是, 复合函数 $y=f(\varphi(x))$ 的微分为 $dy=f'(u)\varphi'(x)dx$, 由于 $du=\varphi'(x)dx$, 所以 dy=f'(u)du. 由此可见, 不论 u 是自变量还是函数 $(\varphi(x))$,函数 $(\varphi(x))$ 的微分总保持同一形式 $(\varphi(x))$ 0 。

例题 2.13. 设 $y = \cos(\sqrt{x})$, 求 dy

解: (法一) 用公式 dy = f'(x) dx 得

$$dy = (\cos\sqrt{x})' dx = -\frac{1}{2\sqrt{x}} \sin\sqrt{x} dx$$

解: (法二) 用一阶微分形式不变性

$$dy = d(\cos\sqrt{x}) = -\sin\sqrt{x} d(\sqrt{x}) = -\sin\sqrt{x} \frac{1}{2\sqrt{x}} dx = -\frac{1}{2\sqrt{x}} \sin\sqrt{x} dx$$

例题 2.14. 求方程
$$\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases}$$
 , $(0 \leqslant t \leqslant 2\pi)$ 确定的函数的一阶导数 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 即二阶导数 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$

为一阶微分形式不变性, 有时, 利用一阶微分形式不变性求复合函数的微分比较方便,

解: 因为 $dx = -3a\cos^2t\sin t dt$, $dy = 3a\sin^2t\cos t dt$, 所以利用导数为微分之商得

$$\frac{dy}{dx} = \frac{3a\sin^2 t \cos t dt}{-3a\cos^2 t \sin t dt} = -\tan t$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{-\operatorname{dtan}t}{dt} \frac{dt}{dx} = \frac{-\sec^2 t dt}{-3a\cos^2 t \sin t dt} = \frac{1}{3a\cos^4 t \sin t}$$

2.4 附: 习题册第二章习题解答

² 例 1(P29 第 1 题) 用导数定义证明 (cosx)' = -sinx.

和差化积

$$\begin{split} \sin\alpha + \sin\beta &= \sin\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) + \sin\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha - \sin\beta &= \sin\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) - \sin\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \cos\alpha + \cos\beta &= \cos\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) + \cos\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha - \cos\beta &= \cos\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right) - \cos\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \end{split}$$

积化和差

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

²习题解答是笔者在给新生院同学上课时单独制作的、根据课程需要只制作了前两章。

$$\sin \alpha \cos \beta = \frac{1}{2}(\sin(\alpha + \beta) - \sin(\alpha - \beta))$$

$$\cos \alpha \sin \beta = \frac{1}{2}(\sin(\alpha + \beta) - \sin(\alpha - \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

以上八个公式不需要记, 但是需要会推导 (推导方法也不限于上面所述方法).

Proof. 我们计算函数在每一点的导数.

$$\frac{\operatorname{d}\cos x}{\operatorname{d}x}\Big|_{x=x_0} = \lim_{\Delta x \to 0} \frac{\cos(x_0 + \Delta x) - \cos(x_0)}{\Delta x} = -2\lim_{\Delta x \to 0} \frac{\sin\frac{2x_0 + \Delta x}{2}\sin\frac{\Delta x}{2}}{\Delta x}$$

$$= -\lim_{\Delta \to 0} \sin(x_0 + \frac{\Delta x}{2}) = -\sin x_0.$$

常用导数
$$(a^x)' = a^x \ln a, (\tan x)' = \sec^2 x, (\cot x)' = -\csc^2 x, (\sec x)' = \sec x \tan x, (\csc x)' = -\csc x \cot x, (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, (\arctan x)' = \frac{1}{1+x^2}, (\ln |x|)' = \frac{1}{x}.$$
 熟记常用的导数是做不定积分的前提.

例 2(补充) 证明: $(\arctan x)' = \frac{1}{1+x^2}$.

Proof. 设
$$y = \arctan x$$
, 则 $x = \tan y$, 于是 $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \cos^2 y = \frac{\cos^2 y}{\cos^2 y + \sin^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$.

例 3(P30 第 8 题) 已知
$$f(x) = \begin{cases} \frac{x}{1 + e^{\frac{1}{x}}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 求点 $x = 0$ 处的 $f'_{+}(0), f'_{-}(0)$ 及 $f'(0)$.

Remark 千万不能" 先用求导公式求导",再把
$$x = 0$$
 代入.

解 $f'_{+}(0) = \lim_{x \to 0^{+}} \frac{\frac{x}{1 + e^{\frac{1}{x}}} - f(0)}{x} = \lim_{x \to 0^{+}} \frac{1}{1 + e^{\frac{1}{x}}} = 0$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{\frac{x}{1 + e^{\frac{1}{x}}} - f(0)}{x} = \lim_{x \to 0^{-}} \frac{1}{1 + e^{\frac{1}{x}}} = 1,$$

: $f'_{-}(0) \neq f'_{-}(0) : f'_{-}(0)$ 不存在.

例 4(P30 思考题) 设 f(x) 可导, $F(x) = f(x)(1+|\sin x|)$, 则 f(0) = 0 是 F(x) 在点 x = 0 处可导的 () 条件? 证

明你的结论. 解
$$F(x)$$
 在点 $x=0$ 处可导 \iff $\lim_{x\to 0} \frac{F(x)-F(0)}{x}$ 存在 \iff $\lim_{x\to 0} \frac{f(x)(1+|\sin x|)-f(0)}{x}$ 存在 \iff $\lim_{x\to 0} \frac{f(x)(\sin x|)}{x}$ 存在 \implies $\lim_{x\to 0} \frac{f(x)|\sin x|}{x}$ 存在 \implies $\lim_{x\to 0^+} \frac{f(x)|\sin x|}{x}$ 存在且相等 \iff $\lim_{x\to 0^+} f(x) = -\lim_{x\to 0^-} f(x) \iff f(0) = -f(0) \iff f(0) = 0$. 所以是充要条件.

辨析 $f'(\ln x)$ 是先对 x 求导, 再将 $\ln x$ 代入 f'(x) 的表达式中.

 $(f(\ln x))'$ 是先把 $\ln x$ 代入 f(x) 的表达式中, 代入后的表达式再对 x 求导.

解令
$$x = e^t$$
, 则 $f'(t) = \begin{cases} 1, & t \le 0 \\ e^t, & t > 0 \end{cases}$, 即 $f'(x) = \begin{cases} 1, & x \le 0 \\ e^x, & x > 0 \end{cases}$,

于是 $f(x) = \begin{cases} x + C_1, & x < 0 \\ e^x + C_2, & x > 0 \end{cases}$ 由于 x = 0 两边 f(x) 的表达式不同, 我们单独研究这一点的左右导数来确定这一点

的函数值.

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{x + C_1 - f(0)}{x} = 1$$
(此时必须 $C_1 = f(0)$)

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{e^{x} + C_{2} - f(0)}{x} = 1$$
 (此时必须 $C_{2} + 1 = f(0)$)

从而
$$C_1 = C_2 + 1 = f(0)$$
,于是 $f(x) = \begin{cases} x, & x \leq 0 \\ e^x - 1, & x > 0 \end{cases} + C(C)$ 为任意常数). 考虑到 $f(0) = 0$,故 $C = 0.3$

例 6(P34 思考题) 求函数 y=xxx 的导数.

解 把幂指函数化为以 e 为底数的函数, $y = e^{x^x \ln x} = e^{e^{x \ln x} \ln x}$,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{e^{x\ln x}\ln x} \left((e^{x\ln x})'\ln x + e^{x\ln x} \cdot \frac{1}{x} \right) = e^{e^{x\ln x}\ln x} \left(e^{x\ln x} (\ln x + 1)\ln x + \frac{e^{x\ln x}}{x} \right)$$

$$= x^{x^{x}+x-1}(x(\ln x + 1)\ln x + 1).$$

例 7(P35 第 2 题) 试从
$$\frac{dx}{dy} = \frac{1}{y'}$$
 导出 $\frac{d^2x}{dy^2} = -\frac{y''}{(y')^3}, \frac{d^3x}{dy^3} = \frac{3(y'')^2 - y'y'''}{(y')^5}.$

$$\begin{split} &\mathit{Proof.}\ \frac{\mathrm{d}^2x}{\mathrm{d}y^2} = \frac{\mathrm{d}}{\mathrm{d}y}\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right) = \frac{\mathrm{d}x}{\mathrm{d}y} \cdot \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right) = \frac{1}{y'}\left(-\frac{y''}{(y')^2}\right) = -\frac{y''}{(y')^3} \cdot \frac{\mathrm{d}^3x}{\mathrm{d}y^3} = \frac{\mathrm{d}}{\mathrm{d}y}\left(\frac{\mathrm{d}^2x}{\mathrm{d}y^2}\right) = \frac{\mathrm{d}x}{\mathrm{d}y} \cdot \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}^2x}{\mathrm{d}y^2}\right) = -\frac{1}{y'} \cdot \frac{y'''(y')^3 - y'' \cdot 3(y')^2y''}{(y')^6} \\ &= \frac{3(y'')^2 - y'y'''}{(y')^5}. \end{split}$$

Remark 注意每一步在对谁求导.

例 8(P36 第 3 题 (3)) 求函数 $y = \frac{x+3}{x^2-5x+6}$. 的 n 阶导数.

常用 n 阶导数 会推导 n 阶导数是使用 Taylor 公式的必要条件. 具体做题时, 应用以下公式时还要考虑复合函数的 求导法则.

$$(\sin x)^{(n)} = \sin\left(x + \frac{n\pi}{2}\right) (n \ge 0)$$

$$(\cos x)^{(n)} = \cos\left(x + \frac{n\pi}{2}\right) (n \ge 0)$$

$$\left(\frac{1}{x}\right)^{(n)} = \frac{(-1)^n n!}{x^{n+1}} (n \ge 0)$$

$$(\ln x)^{(n)} = \frac{(-1)^{n-1} (n-1)!}{x^n} (n \ge 1)$$

解 因式分解:

$$y = \frac{x+3}{x^2 - 5x + 6} = \frac{6}{x-3} - \frac{5}{x-2}$$
$$\therefore y^{(n)} = \frac{6(-1)^n n!}{(x-3)^{n+1}} - \frac{5(-1)^n n!}{(x-2)^{n+1}} = (-1)^n n! \left(\frac{6}{(x-3)^{n+1}} - \frac{5}{(x-2)^{n+1}}\right).$$

³笔者之前疏忽了题中所给条件 f(0) = 0

例 9(P36 第 4 题) 设 $y = x^2 \sin 2x$, 求 $y^{(50)}$.

解 本题考查 Leibniz(莱布尼茨) 公式.

$$y^{(50)} = \sum_{k=0}^{50} C_{50}^k(x^2)^{(k)} (\sin 2x)^{(50-k)} = C_{50}^0(x^2)^{(0)} (\sin 2x)^{(50)} + C_{50}^1(x^2)^{(1)} (\sin 2x)^{(49)} + C_{50}^2(x^2)^{(2)} (\sin 2x)^{(48)} = x^2 \cdot 2^{50} \cdot \sin\left(2x + \frac{50\pi}{2}\right) + 100x \cdot 2^{49} \cdot \sin\left(2x + \frac{49\pi}{2}\right) + 2450 \cdot 2^{48} \sin\left(2x + \frac{48\pi}{2}\right) = 2^{49} \cdot (100x\cos(2x) + (1225 - 2x^2)\sin(2x)).$$
例 10(P36 思考题) 验证: $(x^{n-1}e^{\frac{1}{2}})^{(n)} = \frac{(-1)^n}{x^{n+1}}e^{\frac{1}{2}}.$

Proof. 对 n 使用数学归纳法.

n=0,1 时命题成立. 假设命题对 n 成立, 即 $(x^{n-1}e^{\frac{1}{x}})^{(n)}=\frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}$. 我们来证明命题对 n+1 的情况也成立, 即 $(x^ne^{\frac{1}{x}})^{(n+1)}=\frac{(-1)^{n+1}}{x^{n+2}}e^{\frac{1}{x}}$.

$$\begin{split} &(x^ne^{\frac{1}{x}})^{(n+1)} = (x \cdot x^{n-1}e^{\frac{1}{x}})^{(n+1)} = \sum_{k=0}^{n+1} C_{n+1}^k x^{(k)} (x^{n-1}e^{\frac{1}{x}})^{(n+1-k)} \text{(Leibniz 公式)} \\ &= x(x^{n-1}e^{\frac{1}{x}})^{(n+1)} + (n+1)(x^{n-1}e^{\frac{1}{x}})^{(n)} = x((x^{n-1}e^{\frac{1}{x}})^{(n)})' + (n+1)(x^{n-1}e^{\frac{1}{x}})^{(n)}, \\ & \text{由归纳假设, L式} = x \cdot (-1)^n \frac{e^{\frac{1}{x}} \left(-\frac{1}{x^2}\right) x^{n+1} - e^{\frac{1}{x}} (n+1) x^n}{x^{2n+2}} + (n+1) \frac{(-1)^n}{x^{n+1}} e^{\frac{1}{x}} \\ &= (-1)^n e^{\frac{1}{x}} \left(\frac{-x^{n-1} - (n+1) x^n}{x^{2n+1}} + \frac{n+1}{x^{n+1}}\right) = (-1)^n e^{\frac{1}{x}} \left(-\frac{1}{x^{n+2}}\right) = \frac{(-1)^{n+1}}{x^{n+2}} e^{\frac{1}{x}}. \\ &\text{这就证明了对 } n+1 \text{ 的情形命题也成立, 由数学归纳法, 原命题得证.} \end{split}$$

例 $11(P38~\%~5~\mathbb{B})$ 求由 $\arctan\frac{y}{x} = \ln\sqrt{x^2 + y^2}$ 方程所确定的隐函数的二阶导数 $\frac{d^2y}{dx^2}$. Remark 下学期学的偏导数为隐函数存在的条件和求解隐函数导数提供了更简洁的做法. 于是在本学期我们不赘述 隐函数相关内容.

解 两边同时对 x 求导, 得:

$$\frac{\frac{y'x - y}{x^2}}{1 + \left(\frac{y}{x}\right)^2} = \frac{\frac{2x + 2yy'}{2\sqrt{x^2 + y^2}}}{\sqrt{x^2 + y^2}}$$

整理得:

$$y' = \frac{x+y}{x-y},$$

再把 y' 对 x 求导, 得: y'' =
$$\frac{(1+y')(x-y) - (x+y)(1-y')}{(x-y)^2}$$

= $\frac{2x(x-y) - 2y(x+y)}{(x-y)^3} = \frac{2(x^2 - 2xy - y^2)}{(x-y)^3}$.

例 12(P38 第 6 题 (2)) 求参数方程 $\begin{cases} x = f'(t), \\ y = tf'(t) - f(t), \end{cases}$ (设 f''(t) 存在且不为 0) 所确定的函数的二阶导数 $\frac{d^2y}{dx^2}$.

$$\Re \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{tf''(t)}{f''(t)} = t,$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{dt}{dx} \cdot \frac{d}{dt}(t) = \frac{1}{f''(t)}.$$

例 13(P38 思考题) 已知 f(x) 在 $(0,+\infty)$ 可导, f(x) > 0, $\lim_{x \to +\infty} f(x) = 1$, 且满足 $\lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = e^{\frac{1}{k}}$, 求 f(x).

解
$$\lim_{h\to 0} \left(\frac{f(x+hx)}{f(x)}\right)^{\frac{1}{h}} = \lim_{h\to 0} \left(1 + \frac{f(x+hx) - f(x)}{f(x)}\right)^{\frac{1}{h}}$$

$$= \lim_{h\to 0} \left(1 + \frac{f(x+hx) - f(x)}{f(x)}\right) \frac{f(x)}{f(x+hx) - f(x)} \cdot \frac{f(x+hx) - f(x)}{hf(x)}$$

$$= \lim_{h\to 0} \frac{(f(x+hx) - f(x))x}{hxf(x)} = \frac{f'(x)x}{f(x)}$$

$$= e^{hx\to 0} \frac{f'(x)x}{hxf(x)} = e^{f'(x)x}$$
于是根据题意 $\frac{f'(x)x}{f(x)} = \frac{1}{x}$,解这个微分方程得到 $f(x) = Ce^{-\frac{1}{x}}$,再根据 $\lim_{x\to +\infty} f(x) = 1$ 得 $C = 1$,即 $f(x) = e^{-\frac{1}{x}}$.

例 14(P41 第 4 题) 设 f(0) = 0, 则 f(x) 在点 x = 0 处可导的充分必要条件为 ():

A: 反例:
$$f(x) = |x|$$
 不可导 (·· 左右导数不相等),但 $\lim_{h \to 0} \frac{f(1-\cos h)}{h^2} = \lim_{h \to 0} \frac{|1-\cos h|}{h^2} = \lim_{h \to 0} \frac{1-\cos h}{h^2} = \frac{1}{2}$.

B. 证明: 令
$$1 - e^h = t$$
, 则 $h = \ln(1 - t)$, $\lim_{h \to 0} \frac{f(1 - e^h)}{h} = \lim_{t \to 0} \frac{f(t)}{\ln(1 - t)} = \lim_{t \to 0} -\frac{f(t)}{t}$ (等价无穷小替换)= $-f'(0)$.

C. 反例:
$$f(x) = |x|$$
 不可导 (: 左右导数不相等),但 $\lim_{h \to 0} \frac{f(\tan h - \sin h)}{h^2} = \lim_{h \to 0} \frac{|\tan h|(1 - \cos h)}{h^2} = \frac{1}{2} \lim_{h \to 0} |\tan h| = 0.$

D. 反例:
$$f(x) = \begin{cases} x+1, & x \neq 0 \\ 0, & x=0 \end{cases}$$
 在 $x = 0$ 处不可导 (∵ 不连续),但 $\lim_{h \to 0} \frac{f(2h) - f(h)}{h} = \lim_{h \to 0} \frac{(2h+1) - (h+1)}{h} = 1$,存在.

例 15(P41 第 5 题) 函数 f(x) 在点 x=1 处连续但不可导,则下列在 x=1 处可导的函数是 (). $(x+1)f(x)x^2f(x)f(x^2)(x^2-1)f(x)$

解 不能用求导公式求导, 应该根据导数的定义来做. 我们在做 A,B,C,D 四个选项的时候都把给出的函数称为 g(x), 假设 g'(1) 存在, 我们来推矛盾.

$$A.g'(1) = \lim_{\Delta x \to 0} \frac{(2 + \Delta x)f(1 + \Delta x) - 2f(1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2f(1 + \Delta x) - 2f(1) + \Delta x f(1 + \Delta x)}{\Delta x}$$
$$= f(1) + 2\lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x}, \text{ 不存在, 矛盾.}$$

$$B.g'(1) = \lim_{\Delta x \to 0} \frac{(1 + \Delta x)^2 f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x} +$$

$$2f(1+\Delta x) + \Delta x f(1+\Delta x) = 2f(1) + \lim_{\Delta x \to 0} \frac{f(1+\Delta x) - f(1)}{\Delta x}$$
, 不存在, 矛盾.

假设
$$g'(1)$$
 存任, 我们来推矛盾.

A. $g'(1) = \lim_{\Delta x \to 0} \frac{(2 + \Delta x)f(1 + \Delta x) - 2f(1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2f(1 + \Delta x) - 2f(1) + \Delta x f(1 + \Delta x)}{\Delta x}$

$$= f(1) + 2 \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x}, \quad \text{不存在, 矛盾.}$$
B. $g'(1) = \lim_{\Delta x \to 0} \frac{(1 + \Delta x)^2 f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x} + 2f(1 + \Delta x) + \Delta x f(1 + \Delta x) = 2f(1) + \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x}, \quad \text{不存在, 矛盾.}$
C. $g'(1) = \lim_{\Delta x \to 0} \frac{f((1 + \Delta x)^2) - f(1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(1 + (2\Delta x + (\Delta x)^2)) - f(1)}{(2\Delta x + (\Delta x)^2)} \cdot \frac{2\Delta x + (\Delta x)^2}{\Delta x} = 2 \lim_{t \to 0} \frac{f(1 + t) - f(1)}{t}, \quad \text{不存在, 矛盾.}$

$$D.g'(1) = \lim_{\Delta x \to 0} \frac{((\Delta x)^2 + 2\Delta x)f(1 + \Delta x)}{\Delta x} = 2f(1)$$
, 存在.

3. 微分中值定理

3.1 微分中值定理

3.1.1 Fermat(费马) 引理

若函数 f 在其极值点 $x_0 \in (a,b)$ 处可导, 则必有 $f'(x_0) = 0$.

Remark Fermat 引理的几何意义是: 如果 x_0 是函数 f 的极值点且在 $(x_0, f(x_0))$ 处曲线 f(x) 的切线存在, 那么这条 切先必与 x 轴平行.

3.1.2 Rolle(罗尔) 定理

设函数 f 在 [a,b] 上连续, 在 (a,b) 内可导, 且 f(a) = f(b), 那么存在一点 $\xi \in (a,b)$, 使得 $f'(\xi) = 0$.

3.1.3 Lagrange(拉格朗日) 中值定理

设 f 在 [a,b] 上连续, 在 (a,b) 上可导, 则存在一点 $\xi \in (a,b)$, 使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

3.1.4 Cauchy(柯西) 中值定理

设函数 f 和 g 在区间 [a,b] 上连续,在区间 (a,b) 上可导,且当 $x \in (a,b)$ 时, $g'(x) \neq 0$,这时必存在一点 $\xi \in (a,b)$,使得

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

变形技巧

•
$$f(x) + xf'(x) = (xf(x))'$$
.

•
$$\frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} = \left(\frac{f(x)}{g(x)}\right)'.$$

•
$$\frac{f'(x) - f(x)}{e^x} = \frac{f'(x)e^x - f(x)e^x}{e^{2x}} = \left(\frac{f(x)}{e^x}\right)'$$
.

•
$$\frac{f'(x)x - f(x)}{x^2} = \left(\frac{f(x)}{x}\right)'$$
.

3.2 L'Hospital(洛必达) 法则

(1) 设在 x = a 附近 f,g 可导, 且 $g(x) \neq 0$. 又设

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$

在这些条件下,如果极限

$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$

存在 (或为∞), 那么便有

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Remark 这里的 a 可以是 $a, a^+, a^-, \infty, +\infty, -\infty$.

(2) 设在 x = a 附近 f, g 可导, 且 $g(x) \neq 0$, 且

$$\lim_{x\to a}g(x)=\infty.$$

如果极限 $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ 存在 (或为 ∞), 那么

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Remark 这里的 a 可以是 $a, a^+, a^-, \infty, +\infty, -\infty$.

- 先用等价无穷小替换, 并把有确定的、非零的极限的因式及早地分离出来, 再用洛必达法则
- 必须在极限 $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ 存在的情况下才能使用 L'Hospital 法则. 例如 $\lim_{x\to \infty} \frac{x+\sin x}{x} = 1 + \lim_{x\to \infty} \frac{\sin x}{x} = 1$ (有界 × 无 穷小),但

$$\lim_{x \to \infty} \frac{(x + \sin x)'}{x'} = 1 + \lim_{x \to \infty} \cos x$$

不存在,此处不能使用 L'Hospital 法则的原因就是:
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 存在而 $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 不存在

3.3 泰勒 (Taylor) 公式

3.3.1 泰勒 (Taylor) 公式

如果函数 f(x) 在含有 x_0 的某个开区间 (a,b) 内具有直到 (n+1) 阶的导数,则当 x 在 (a,b) 内时, f(x) 可以表示为 $(x-x_0)$ 的一个 n 次多项式与一个余项 $R_n(x)$ 之和:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中 Lagrange(拉格朗日) 型余项

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} (\xi - x_0) = x \ge 0$$

满足

$$|R_n(x)| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \right| \le \frac{M}{(n+1)!} (x - x_0)^{n+1}$$

及

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = 0$$

Peano(佩亚诺) 型余项

$$R_n(x) = o\left(\left(x - x_0\right)^n\right)$$

即

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

3.3.2 Maclaurin(麦克劳林) 公式

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} (0 < \theta < 1)$$

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

常用的 Maclaurin 公式

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o\left(x^{2n+2}\right)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o\left(x^{2n}\right)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{n+1} + o\left(x^{n+1}\right)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o\left(x^n\right)$$

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!} x^2 + \dots + \frac{m(m-1) + \dots + (m-n+1)}{n!} x^n + o\left(x^n\right)$$

3.4 函数的单调性与曲线的凹凸性

3.4.1 函数单调性的判定法

定理 3.1. 设函数 f(x) 在开区间 I内可导,若 f'(x) > O(f'(x) < 0),则 f(x) 在 I内单调递增(递减)。 求极值的步骤:

- 1. 求导数 f(x).
- 2. 求驻点, 即方程 f'(x) = 0 的根.
- 3. 检查 f(x) 在驻点左右的正负号,判断是否为极值点.
- 4. 求极值.

二、曲线的凹凸与拐点

定义 3.1. 设函数 f(x) 在区间 I 上连续, $\forall x_1, x_2 \in I$,

(1) 若恒有
$$f\left(\frac{x_1+x_2}{2}\right) < \frac{f(x_1)+f(x_2)}{2}$$
, 则称 $f(x)$ 是凸函数 (图形是凹的),

(1) 若恒有
$$f\left(\frac{x_1+x_2}{2}\right) < \frac{f\left(x_1\right)+f\left(x_2\right)}{2}$$
,则称 $f(x)$ 是凸函数 (图形是凹的). (2) 若恒有 $f\left(\frac{x_1+x_2}{2}\right) > \frac{f\left(x_1\right)+f\left(x_2\right)}{2}$,则称 $f(x)$ 是凹函数 (图形是凸的). 连续曲线上有切线的凹凸分界点称为拐点。

定理 3.2. (凹凸判定法) 设函数 f(x) 在区间 I 上有二阶导数

- (1) 在 I 内 f''(x) > 0, 则 f(x) 在 I 内图形是凹的;
- (2) 在 I 内 f''(x) < 0, 则 f(x) 在 I 内图形是凸的.

3.4.2 函数图形的描绘

- 1. 确定函数 y = f(x) 的定义域,并考察其对称性及周期性;
- 2. 求 f'(x), f"(x), 并求出 f'(x) 及 f"(x) 为 0 和不存在的点;
- 3. 列表判别增减凹凸区间, 求出极值和拐点;
- 4. 求渐近线;

斜渐近线应分开考虑 $x \to \pm \infty$ 的情况.

1.
$$x \to +\infty$$
 时
斜率 $k_1 = \lim_{x \to +\infty} \frac{f(x)}{x}$,
截距 $b_1 = \lim_{x \to +\infty} y - k_1 x$.

2.
$$x \to -\infty$$
 时
斜率 $k_2 = \lim_{x \to -\infty} \frac{f(x)}{x}$,
截距 $b_2 = \lim_{x \to -\infty} y - k_2 x$.

5. 确定某些特殊点,描绘函数图形.

3.5 平面曲线的曲率

在光滑圆弧上自点 M 开始取弧段,其长为 Δs ,对应切线转角为 $\Delta \alpha$

定义 3.2. 点M 处的曲率

$$K = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \left| \frac{\mathrm{d}\alpha}{\mathrm{d}s} \right|$$

Remark 直线上任意点处的曲率为 0.

曲率 K 的计算公式

设曲线弧 y = f(x) 二阶可导, 曲率的计算公式为

$$K = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}}$$

Remark (1) 若曲线由参数方程

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

给出,则

$$K = \frac{|\dot{x}\dot{y} - \dot{x}\dot{y}|}{(\dot{x}^2 + \dot{y}^2)^{\frac{3}{2}}}$$

(2) 若曲线方程为 $x = \phi(y)$ 则

$$K = \frac{|x''(y)|}{(1+x'^2(y))^{\frac{3}{2}}}$$

4. 不定积分

4.1 不定积分的性质

定理 4.1.

1. 微分运算和求不定积分运算互逆;

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int f(x) \, \mathrm{d}x \right) = f(x) \qquad \qquad \mathrm{d} \left(\int f(x) \, \mathrm{d}x \right) = f(x) \, \mathrm{d}x$$

$$\int F'(x) \, \mathrm{d}x = F(x) + C \qquad \qquad \int \mathrm{d}F = F(x) + C$$

先积后微形式不变, 先微后积差一常数

2. (a)
$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$$
(b)
$$\int kf(x) dx = k \int f(x) dx, \ k \in \mathbb{R} \setminus \{0\}$$

定理 4.2 (基本积分表).

$$\int k \, dx = kx + C$$

$$\int x^{\mu} \, dx = \frac{x^{\mu+1}}{\mu+1} + C \ (\mu \neq -1)$$

$$\int \frac{dx}{\cos^2 x} = \int \sec^2 x \, dx = \tan x + C$$

$$\int \frac{1}{x} \, dx = \ln x + C$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arctan x + C$$

$$\int \csc x \cot x \, dx = \sec x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \cot x \, dx = \ln \sin x + C$$

$$\int \sec x \, dx = \ln (\sec x + \tan x) + C$$

$$\int \csc x \, dx = \ln (\sec x + \tan x) + C$$

$$\int \csc x \, dx = \ln (\sec x + \cot x) + C$$

$$\int \frac{dx}{a^2 - x^2} = \ln (x + \sqrt{x^2 \pm a^2}) + C$$

4.2 直接积分法

定义 4.1 (直接积分法). 利用恒等变形、积分性质及基本积分公式进行积分.

4.3 第一类换元法 (凑微分法)

定理 4.3 (第一类换元法 (凑微分法)). 设 f(u) 具有原函数, $u=\varphi(x)$ 可导, 则有换元公式

$$\int f(\varphi(x))\varphi'(x)\,\mathrm{d}x = \left[\int f(u)\,\mathrm{d}u\right]\bigg|_{u=\varphi(x)}$$

称之为第一类换元公式,

定理 4.4 (常见的凑微分公式).

$$\int f(ax+b) \, dx = \frac{1}{a} \int f(ax+b) \, d(ax+b)$$

$$\int f(x^n) x^{n-1} \, dx = \int f(x^n) \, dx^n$$

$$\int f(\sqrt{x}) \frac{1}{\sqrt{x}} \, dx = 2 \int f(\sqrt{x}) \, d\sqrt{x}$$

$$\int f(\sin x) \cos x \, dx = \int f(\sin x) \, d\sin x$$

$$\int f(\cos x) \sin x \, dx = -\int f(\cos x) \, d\cos x$$

$$\int f(\tan x) \sec^2 x \, dx = \int f(\tan x) \, d\tan x$$

$$\int f(e^x) e^x \, dx = \int f(e^x) \, de^x$$

$$\int f(\ln x) \frac{1}{x} \, dx = \int f(\ln x) \, d\ln x$$

$$\int f\left(\frac{1}{x}\right) \frac{1}{x^2} = \int f\left(\frac{1}{x}\right) \, d\frac{1}{x}$$

$$\int f(\arcsin x) \frac{1}{\sqrt{1-x^2}} \, dx = \int f(\arcsin x) \, d\arcsin x$$

$$\int f(\arctan x) \frac{1}{1+x^2} \, dx = \int f(\arctan x) \, d\arctan x$$

4.4 第二类换元法 (变量替换法)

定理 4.5 (第二类换元法 (变量替换法)). 设 $x=\psi(t)$ 是单调的、可导的函数, 并且 $\psi'(t)\neq 0$, 又设 $f(\psi(t))\psi'(t)$ 具有原函数, 则有换元公式

$$\int f(x) dx = \int f(\psi(t)) \psi'(t) dt \Big|_{t=\psi^{-1}(x)}$$

其中 $t = \psi^{-1}(x)$ 为 $x = \psi(t)$ 的反函数.

一般规律如下:

1.
$$\sqrt{a^2-x^2}$$
, 可令 $x=a\sin t$

2.
$$\sqrt{a^2+x^2}$$
, 可令 $x=a \tan t$

3.
$$\sqrt{x^2-a^2}$$
. 可令 $x=a\sec t$

4.
$$\sqrt[n]{x}$$
, $\forall x \in t = \sqrt[n]{x}$, $\forall x \in t^n$
 $\sqrt[n]{ax + b}$, $\forall x \in t = \sqrt[n]{ax + b}$

5. 倒置代换, 令
$$x = \frac{1}{x}$$

4.5 分部积分法

定义 4.2 (分部积分法).

$$\int uv^{\prime} dx = uv - \int v du \qquad \int u dv = uv - \int v du$$

称上述公式为分部积分公式.

选择 u 的有效方法: 反对幂指三, 哪个在前哪个选作 u.

反: 反三角函数

对:对数函数

幂:暴函数

指:指数函数

三: 三角函数

定理 4.6 (必须用分部积分法积分的被积函数的类型).

1. 幂函数与三角函数的乘积

$$\int x \sin x \, dx \qquad \int x^2 \cos x \, dx \qquad \int x^2 \sin 3x \, dx \qquad \int x \sin x \cos x \, dx \qquad \int x \sin x \cos 3x \, dx$$

2. 幂函数与指数函数的乘积

$$\int xe^x dx \qquad \int xe^{2x} dx \qquad \int x^2 e^x dx \qquad \int xe^{-x} dx$$

3. 幂函数与对数函数的乘积

$$\int x \ln x \, dx \qquad \int x^3 \ln x \, dx \qquad \int \ln x \, dx$$

4. 幂函数与反三角函数的乘积

$$\int x \arcsin x \, dx \qquad \int x^2 \arctan x \, dx \qquad \int \arcsin x \, dx \qquad \int \arctan x \, dx$$

5. 三角函数与指数函数的乘积

$$\int e^x \sin x \, dx \qquad \int e^x \cos x \, dx \qquad \int e^{-x} \cos x \, dx \qquad \int e^{2x} \cos 3x \, dx$$

4.6 几种特殊类型函数的积分

定义 4.3 (几种特殊类型函数的积分).

1. 有理式分解成部分分式之和的积分.

注: 必须化成真分式

2. 三角有理式的积分, (万能置换公式)

注: 万能公式并不万能

3. 简单无理式的积分。("谁妨碍我就把谁换掉":做根式代换)

4.6.1 有理函数积分

定义 4.4 (有理函数). 4 两个多项式的商表示的函数称之为有理函数.

$$\frac{P(x)}{Q(x)} = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m}$$

其中 m,n 都是非负整数; a_0,a_1,\cdots,a_n 及 b_0,b_1,\cdots,b_m 都是实数, 并且 $a_n\neq 0,b_n\neq 0$. 假定分子与分母之间没有公因式, 若

- 1. n>m 这有理函数是真分式,
- 2. n≤m 这有理函数是假分式.

利用多项式除法, 假分式可以化成一个多项式和一个真分式之和,

定义 4.5 (一般真分式的积分方法).

- 1. 将分母 Q(x) 分解为一次因式 (可能有重因式) 和二次质因式的乘积,
- 2. 把该真分式按分母的因式, 分解成若干简单分式 (称为部分分式) 之和.
- 3. 简单分式的积分.

性质 4.1 (真分式化为部分分式之和的待定系数法), 有理真分式的积分大体有下面三种形式:

$$\int \frac{A}{x-a} dx$$

$$\int \frac{A}{(x-a)^n} dx$$

$$\int \frac{Ax+B}{x^2+px+a} dx, \quad p^2-4q \le 0$$

4.6.2 三角函数有理式积分

定义 4.6 (三角函数有理式). 由三角函数和常数经过有限次四则运算构成的函数称之为三角函数有理式. 一般记为 $R(\sin x,\cos x)$

定义 4.7 (万能公式). 令 $u = \tan \frac{x}{2}$, 则 $x = 2 \arctan u$, 则有

$$\sin x = \frac{2u}{1+u^2}$$
 $\cos x = \frac{1-u^2}{1+u^2}$ $dx = \frac{2}{1+u^2}du$

则

$$\int R(\sin x, \cos x) \, dx = \int R\left(\frac{2u}{1+u^2}, \frac{1-u^2}{1+u^2}\right) \frac{2}{1+u^2} \, du$$

4.6.3 简单无理函数积分

定义 4.8 (简单无理函数). 我们讨论形如以下函数的不定积分

$$R(x, \sqrt[n]{ax+b})$$
 $R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right)$

解决方法: 作代换去根号

$$t = \sqrt[n]{ax+b}$$
 $t = \sqrt[n]{\frac{ax+b}{cx+d}}$

⁴这部分可以参看本章附录4.7中的内容。

4.7 附: 有理函数积分

4.7.1 引例

例题 4.1. 在实数域 R 上因式分解:

$$x^4 + 1$$

解

$$x^4 + 1 = x^4 + 2x^2 + 1 - 2x^2 = (x^2 + 1)^2 - (\sqrt{2}x)^2 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$$

于是可以计算不定积分

$$\int \frac{1}{x^4 + 1} dx$$

留做习题.

4.7.2 分母为二次多项式时

分子中次数大于 2 的项可以通过带余除法拿到分式外。

带余除法 设 a,b 为整数, 且 $b \neq 0$, 则存在唯一的一对整数 q 和 r, 使得

$$a = bq + r, 0 \leqslant r < |b|$$

- 存在性 仅考虑 b > 0 的情况,b < 0 的情况类似可得. 可以取 $q = \left[\frac{a}{b}\right]([]$ 表示取整),r = a - bq, $\therefore q \in \left(\frac{a}{b} - 1, \frac{a}{b}\right], \therefore bq \in (a - b, a], \therefore r = a - bq \in [0, b).$
- 唯一性 设 $a = bq_1 + r_1 = bq_2 + r_2$, 则 $b(q_1 q_2) = r_2 r_1$, 一方面, $r_2 r_1$ 是 b 的整数倍; 另一方面, $r_2 r_1 \in (-|b|,|b|)$, 于是 $r_1 = r_2$, 进而, 由于 $b \neq 0$, 有 $q_1 = q_2$. 这说明 q 和 r 是唯一的.

于是我们只要研究形如:

$$\frac{Dx+E}{Ax^2+Bx+C}(A\neq 0)$$

的式子在实数域 \mathbb{R} 上如何拆成容易积分的分式之和. 下设 $\Delta = B^2 - 4AC$.

4.7.3 $\Delta > 0$

此时 $Ax^2 + Bx + C$ 有两个不同实根, 记为 x_1 和 x_2 , 那么一定有:

$$Ax^2 + Bx + C = A(x - x_1)(x - x_2)$$

下面,设

$$\frac{Dx + E}{Ax^2 + Bx + C} = \frac{1}{A} \left(\frac{a}{x - x_1} + \frac{b}{x - x_2} \right)$$

其中 a,b 是待定系数. 这时, 我们常采取下面这种方法:

Step 1 两边同时乘以 $x-x_1$, 得:

$$\frac{Dx + E}{A(x - x_2)} = \frac{1}{A} \left(a + \frac{b(x - x_1)}{x - x_2} \right)$$

两边令 $x=x_1$, 得:

$$\frac{Dx_1 + E}{A(x_1 - x_2)} = \frac{a}{A}$$

即:

$$a = \frac{Dx_1 + E}{x_1 - x_2}$$

(记方法, 不要记答案)

Step 2 两边同时乘以 $x-x_2$, 得:

$$\frac{Dx + E}{A(x - x_1)} = \frac{1}{A} \left(\frac{a(x - x_2)}{x - x_1} + b \right)$$

两边令 $x=x_2$, 得:

$$\frac{Dx_2+E}{A(x_2-x_1)}=\frac{b}{A}$$

即:

$$b = \frac{Dx_2 + E}{x_2 - x_1}$$

Step 3 积分:

$$\int \frac{Dx + E}{Ax^2 + Bx + C} dx = \frac{1}{A} (aln|x - x_1| + bln|x - x_2|) + c$$

(c 为任意常数)

4.7.4 $\Delta = 0$

此时 $Ax^2 + Bx + C$ 有两个相等的实根、记为 x_0 , 那么一定有:

$$Ax^2 + Bx + C = A(x - x_0)^2$$

下面,设

$$\frac{Dx + E}{Ax^2 + Bx + C} = \frac{1}{A} \left(\frac{a}{x - x_0} + \frac{b}{(x - x_0)^2} \right)$$

其中 a,b 是待定系数. 这时, 我们常采取下面这种方法:

Step 1 两边同时乘以 $(x-x_0)^2$, 得:

$$\frac{Dx+E}{A} = \frac{1}{A} \left(a(x-x_0) + b \right)$$

两边令 $x=x_0$, 得:

$$\frac{Dx_0+E}{A}=\frac{b}{A}$$

即:

$$b = Dx_0 + E$$

Step 2 在如下方程中取特殊值, 比如当 $x_0 \neq 0$ 时可以两边令 $x = 0(x_0 = 0$ 时可两边令 x = 1):

$$\frac{Dx+E}{A} = \frac{1}{A} \left(a(x-x_0) + b \right)$$

有:

$$\frac{E}{A} = \frac{1}{A}(-ax_0 + b)$$

解得:

$$a = \frac{b-E}{x_0}$$

 $(x_0 \neq 0$, 而 b 之前已解出)

Step 3 积分:

$$\int \frac{Dx + E}{Ax^2 + Bx + C} dx = \frac{1}{A} \left(aln|x - x_0| - \frac{b}{x - x_0} \right) + c$$

(c 为任意常数)

4.7.5 A < 0

此时 $Ax^2 + Bx + C$ 不可约.

Step 1 配方得:

$$Ax^{2} + Bx + C = A\left(x + \frac{B}{2A}\right)^{2} + \frac{4AC - B^{2}}{4A}$$

令 $t = x + \frac{B}{2A}$. 此时有:

$$\frac{Dx + E}{Ax^2 + Bx + C} = \frac{D\left(t - \frac{B}{2A}\right) + E}{At^2 + \frac{4AC - B^2}{4A}} = \frac{4ADt - 2BD + 4AE}{4A^2t^2 + 4AC - B^2}$$

Step 2 在分子中凑出分母的导数, 即 8A21, 这是为了凑成 In 形式的积分. 有:

$$\frac{4ADt - 2BD + 4AE}{4A^2t^2 + 4AC - B^2} = \frac{4AD}{8A^2} \cdot \frac{8A^2t}{4A^2t^2 + 4AC - B^2} + \frac{4AE - 2BD}{4A^2t^2 + 4AC - B^2}$$

前者的积分是

$$\frac{D}{2A} \cdot \ln|4A^2t^2 + 4AC - B^2| + c$$

(c 是任意常数)

而

$$\begin{split} \frac{4AE - 2BD}{4A^2t^2 + 4AC - B^2} &= \frac{1}{4AC - B^2} \cdot \frac{4AE - 2BD}{\frac{4A^2}{4AC - B^2}t^2 + 1} \\ &= \frac{4AE - 2BD}{4AC - B^2} \cdot \frac{1}{\left(\frac{2|A|}{\sqrt{4AC - B^2}}t\right)^2 + 1} \\ &= \frac{2AE - BD}{|A|\sqrt{4AC - B^2}} \cdot \frac{\frac{2|A|}{\sqrt{4AC - B^2}}}{\left(\frac{2|A|}{\sqrt{4AC - B^2}}t\right)^2 + 1} \end{split}$$

其积分为:

$$\frac{2AE - BD}{|A|\sqrt{4AC - B^2}} \cdot \arctan\left(\frac{2|A|}{\sqrt{4AC - B^2}}t\right) + c$$

(c 是任意常数)

Step 3 积分:

$$\int \frac{Dx + E}{Ax^2 + Bx + C} dx =$$

$$\frac{D}{2A} \cdot \ln|4A^2t^2 + 4AC - B^2| + \frac{2AE - BD}{|A|\sqrt{4AC - B^2}} \cdot \arctan\left(\frac{2|A|}{\sqrt{4AC - B^2}}t\right) + c$$

(c 为任意常数, 其中 $t = x + \frac{B}{2A}$)

4.7.6 定理

Theorem (实系数多项式的因式分解) 任意次数 $\geqslant 1$ 的实系数多项式在 \mathbb{R} 上可以唯一地分解成一次因式和二次不可约因式的乘积.

证明需要用到多项式的知识, 我们这里就不做了.

这个定理告诉我们, 无论分母的次数多高, 它一定可以分解成一次因式和二次不可约因式的乘积, 因式分解的技巧这里不赘述.

于是, 只要掌握了分母为一次、二次多项式时如何积分, 就掌握了有理函数的积分方法, 下面详细叙述之.

4.7.7 分母为次数 ≥ 3 的多项式时

首先可以通过带余除法, 使得分子多项式的次数小于分母. 根据上面定理, 分母在实数域上可以分解为一次因式和二次不可约因式的乘积. 分解好以后, 把分解以后的式子写在等式左边, 做下面的事情:

- 若等式左边分母中有 (x-m), 那么等式右边要有 $\frac{a}{x-m}$ (a 是待定系数).
- 若等式左边分母中有 (x-m)n, 那么等式右边要有

$$\frac{a_1}{x-m} + \frac{a_2}{(x-m)^2} + \frac{a_3}{(x-m)^3} + \dots + \frac{a_n}{(x-m)^n}$$

 $(a_1,a_2,\cdots,a_n$ 是待定系数)

- 若等式左边分母中有 (x^2+bx+c) , 那么等式右边要有 $\frac{px+q}{x^2+bx+c}(p,q$ 是待定系数).
- 若等式左边分母中有 (x2+bx+c)n, 那么等式右边要有

$$\frac{p_1x+q_1}{x^2+bx+c}+\frac{p_2x+q_2}{(x^2+bx+c)^2}+\cdots+\frac{p_nx+q_n}{(x^2+bx+c)^n}$$

 $(p_1, p_2, \cdots, p_n, q_1, q_2, \cdots, q_n$ 是待定系数).

待定系数的求解,可以通过分母为二次多项式时的方法求解,也可以代入特殊值 (比如令 x = 0,列出等式成立的条件,再令 x = 1,列出等式成立的条件,根据实际情况取特殊值). 求解出待定系数后,对等式右边分别积分就可以了.

5. 定积分

5.1 定积分的几何意义

定义 5.1 (定积分的几何意义). 对于在区间 [a,b] 上连续的函数 f(x), 其定积分的定义如下:

- 1. 当 $f(x) \ge 0$ 时, 定积分 $\int_a^b f(x) dx$ 表示由曲线 y = f(x), x = a, x = b, y = 0 围成的曲边梯形的面积
- 2. 当 $f(x) \leq 0$ 时, 定积分 $\int_a^b f(x) dx$ 表示由曲线 y = f(x), x = a, x = b, y = 0 围成的曲边梯形的面积的负值
- 3. 当 f(x) 既取正又取负时,定积分 $\int_a^b f(x) dx$ 表示由曲线 y = f(x), x = a, x = b, y = 0 围成的平面图形的面积的代数和. 记它们的绝对值分别为 A_+, A_- ,则定积分可表示为

$$\int_a^b f(x) \, \mathrm{d}x = A_+ - A_-$$

5.2 定积分的性质

性质 5.1 (定积分的性质). 假定函数 f(x),g(x) 在 [a,b] 上可积.

1. 被积函数的常数因子 k(k 为常数) 可提到积分号外, 即

$$\int_{a}^{b} kf(x) \, \mathrm{d}x = k \int_{a}^{b} f(x) \, \mathrm{d}x$$

2. 两个函数代数和的定积分, 等于他们定积分的代数和, 即

$$\int_a^b (f(x) \pm g(x)) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x \pm \int_a^b g(x) \, \mathrm{d}x$$

这一结论可以推广到有限个代数和上.

3. (积分区间的可加性) 设 $c \in [a,b]$, 则

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_b^c f(x) \, \mathrm{d}x$$

4. 在 [a,b] 上, 若 f(x) ≥ g(x), 则

$$\int_{a}^{b} f(x) \, \mathrm{d}x \geqslant \int_{a}^{b} g(x) \, \mathrm{d}x$$

5. 若 f(x) = 1, 则

$$\int_{a}^{b} f(x) \, \mathrm{d}x = b - a$$

6. 设 M 和 m 分别是函数 f(x) 在 [a,b] 上的最大值和最小值, 则

$$m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a)$$

又称为定积分的估值定理

定理 5.1 (积分中值定理). 设函数 f(x) 在 [a,b] 上连续,则在 (a,b) 上最少存在一点 ξ , s.t.

$$\int_{a}^{b} f(x) dx = (b - a)f(\xi)$$

5.3 变上限积分函数

定义 5.2 (变上限积分函数). 设函数 f(x) 在 [a,b] 上连续,则对任意 $x \in [a,b]$,f(x) 在 [a,x] 上必可积,则定积分 $\int_a^x f(x) dx$ 存在,且随上限 x 的变化而变化,因此 $\int_a^x f(x) dx$ 是一个关于上限 x 的函数,称为变上限积分函数,记为 $\Phi(x) = \int_a^x f(x) dx, x \in [a,b]$,为避免混淆,把积分变量改成 t,则为 $\Phi(t) = \int_a^x f(t) dt, t \in [a,b]$

定理 5.2. 设函数 f(x) 在 [a,b] 上连续,则变上限积分函数 $\Phi(t) = \int_a^x f(t) \, \mathrm{d}t, t \in [a,b]$ 可导,即 $\Phi'(x) = f(x)$ 由定理知,若函数 f(x) 在 [a,b] 上连续,则 $\Phi(t) = \int_a^x f(t) \, \mathrm{d}t, t \in [a,b]$ 是 f(x) 的一个原函数,因此

$$\int f(x) \, \mathrm{d}x = \int_{a}^{x} f(t) \, \mathrm{d}t + C$$

5.4 Newton-Leibniz 公式

定义 5.3 (Newton-Leibniz 公式). 设函数 f(x) 在 [a,b] 上连续, F(x) 是 f(x) 的原函数, 则

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

证明见课本.

注: 为了方便起见, 公式常写为

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(x)|_{a}^{b}$$

5.5 定积分的换元积分法 (换元必换限)

例题 5.1. 求
$$\int_{1}^{4} \frac{dx}{1+\sqrt{x}}$$

解:设 $x=t^2$.则

$$\int_{1}^{4} \frac{dx}{1+\sqrt{x}} = \int_{1}^{2} \frac{2t}{1+t} dt = 2 \int_{1}^{2} \frac{t+1-1}{1+t} dt = 2 \left(\int_{1}^{2} dt - \int_{1}^{2} \frac{1}{1+t} dt \right) = 2 \left(t - \ln(t+1) \right) \Big|_{1}^{2} = 2 + 2 \ln \frac{2}{3}$$

5.6 定积分的分部积分法

定理 5.3. 设函数 u(x), v(x) 在 [a,b] 上有连续导数,则

$$\int_a^b uv' \, dx = uv|_a^b - \int_a^b vu' \, dx \qquad \int_a^b u'v \, dx = uv|_a^b - \int_a^b v'u \, dx$$

方法:

幂三 (指) 选器, 幂反 (对) 选反 (对); 三角指数可任选, dv 容易凑, du 可化简, 出现循环移项解.

6. 定积分的应用

6.1 极坐标

6.1.1 极坐标的定义

在 \mathbb{R}^2 平面内取一个定点 O, 称为坐标原点 (或极点), 引一条射线 Ox, 称为 x 轴 (或极轴), 再选定一个长度单位和角度的正方向 (通常取逆时针方向), 就构成了一个极坐标系.

对于平面内任何一点 M, 用 ρ (或 r) 表示线段 OM 的长度, θ 表示从 Ox 到 OM 的角度, ρ 叫做点 M 的极半径 (简称 极径), θ 叫做点 M 的极角, 有序数对 (ρ,θ) 就叫点 M 的极坐标.

p(极半径)

- · ρ 表示该点到坐标原点的距离.
- $\rho = \rho_0$ 表示圆心为坐标原点, 半径为 ρ_0 的圆. 特别地, $\rho = 0$ 表示坐标原点.
- 一般 $\rho \ge 0$, 但是也可以定义 $\rho < 0$ 的情形.

θ(极角)

- θ 表示从 x 轴出发, 沿逆时针方向到 OM 的角度.
- $\theta = \theta_0$ (规定 $\rho \ge 0$) 表示从原点出发, 与 x 轴夹角为 θ_0 的一条射线. 特别地, $\theta = 0$ 表示 x 轴.
- 点 (ρ,θ+2kπ)(k∈Z) 和点 (ρ,θ) 是同一点.
- 点 (-ρ,θ+(2k+1)π)(k∈ℤ) 和点 (ρ,θ) 是同一点.
- 一般只需要取 θ∈ [0,2π) 就够了.

6.1.2 极坐标与直角坐标相互表示

$$\begin{cases} x = \rho \cos \theta, \\ y = \rho \sin \theta. \end{cases}$$

$$\begin{cases} \rho = \sqrt{x^2 + y^2}, \\ \theta = \arctan \frac{y}{x} (x > 0). \end{cases}$$

6.1.3 根据极坐标方程画图

Step 1 确定几个特殊点的位置:

$$(\rho(0),0),\left(\rho\left(\frac{\pi}{2}\right),\frac{\pi}{2}\right),(\rho(\pi),\pi),\left(\rho\left(\frac{3\pi}{2}\right),\frac{3\pi}{2}\right)$$

Step 2 计算

$$\frac{d\rho}{d\theta}$$

Step 3 根据 $\frac{\mathrm{d}\rho}{\mathrm{d}\theta}$ 的符号判断 ρ 随 θ 的变化情况, 画图. Remark

- 1. 巧妙利用对称性.
- 2. 复杂的曲线可参照教材的附录或使用 Matlab 等软件.

例题 6.1. 画图:

$$\rho=a(1-\sin\theta)(a>0)$$
 Step 1 取特殊点 $(a,0)$, $\left(0,\frac{\pi}{2}\right)$, (a,π) , $\left(2a,\frac{3\pi}{2}\right)$.

Step
$$2 \frac{\mathrm{d}\rho}{\mathrm{d}\theta} = -a\cos\theta$$
.

Step
$$g \Leftrightarrow \frac{d\rho}{d\theta} \geqslant 0$$
, $\beta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

 $Step\ 4\
ho\ \ \epsilon\ \theta\in\left[0,\frac{\pi}{2}\right]$ 和 $\left[\frac{3\pi}{2},2\pi\right]$ 上随 θ 增加而減少, $\epsilon\ \theta\in\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$ 上随 θ 增加而增加. $Step\ 5$ 函图.

Matlab 代码

```
1 theta=0:pi/100:2*pi;
2 rho=2*(1-sin(theta));
5 %take a=2 as an example
4 polar(theta, rho)
```

例题 6.2. 画图:

$$\rho = a + b\theta(a, b > 0)$$

$$Step~1$$
 取特殊点 $(a,0)$, $\left(a+b\frac{\pi}{2}\right)$.
$$Step~2~\frac{\mathrm{d}\rho}{\mathrm{d}\theta}=b>0.$$
 $Step~3~\rho~\Delta \in [0,+\infty)$ 上随 θ 增加而增加.

Step 4 画图.

6.2 定积分的几何应用

6.2.1 面积

极坐标下面积微元 (这个在下学期的二重积分中还会推导)

$$dS = \frac{1}{2}\rho^2 d\theta$$

例题 6.3. 求由曲线 $\rho=3\cos\theta$ 和曲线 $\rho=1+\cos\theta$ 围成图形的公共部分的面积.

解 求交点, 令 $3\cos\theta=1+\cos\theta$, 即 $\cos\theta=\frac{1}{2}$, 解得 $\theta=\pm\frac{\pi}{3}$, 此时 $\rho=\frac{3}{2}$. 确定积分区间. 令 $\rho=3\cos\theta=0$ 解得 $\theta=\pm\frac{\pi}{2}$. 由对称性, 只需计算 x 轴上半部分面积. 且在极坐标下

$$dS = \frac{1}{2}\rho^2 d\theta$$

子是
$$S = 2 \left(\int_0^{\frac{\pi}{3}} \frac{1}{2} (1 + \cos \theta)^2 d\theta + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{2} (3\cos \theta)^2 d\theta \right) = \frac{5\pi}{4}$$

6.2.2 弧长

以直代曲, 由勾股定理:

弧长元素

$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{1 + y^2} dx$$

极坐标下

$$ds = \sqrt{\rho^2 + \rho'^2} d\theta$$

例题 6.4. 求曲线
$$\int_0^x \sqrt{\cos t} dt \left(0 \le x \le \frac{\pi}{2}\right)$$
 的弧长.
解 $1 + f'^2(x) = 1 + \cos x = 2\cos^2\frac{x}{2}$,
 $\therefore s = \int_0^{\frac{\pi}{2}} \sqrt{1 + f'^2(x)} dx = \sqrt{2} \int_0^{\frac{\pi}{2}} \cos\frac{x}{2} dx = 2$

6.2.3 旋转体表面积

$$V = 2\pi \int_{a}^{b} f(x) \sqrt{1 + f'^{2}(x)} dx$$

不必记公式, 要会自己推导.

6.2.4 体积

设坐标为 x 处的截面面积为 S(x), 则体积为:

$$V = \int_{a}^{b} S(x) dx$$

6.2.5 旋转体体积

平面图形 $0 \le a \le x \le b, 0 \le y \le f(x)$,

绕 x 轴旋转的体积:

$$V = \pi \int_a^b f'^2(x) dx$$

绕 y 轴旋转的体积:

$$V = 2\pi \int_{a}^{b} x f(x) \mathrm{d}x$$

6.3 定积分的物理应用

6.3.1 质量

线密度为 µ(x) 的杆的质量为

$$m = \int_{L} \mu(x) \mathrm{d}x$$

6.3.2 压力

压强

$$P = \rho g h$$

压力 (微元)

$$dF = PdS$$

压力

$$F = \int \mathrm{d}F = \int \rho g h \mathrm{d}S$$

6.3.3 做功

元功

$$dW = \overrightarrow{F} \cdot d\overrightarrow{s}$$

功

$$W = \int dW = \int_{\mathbf{r}} F \cos \angle (\overrightarrow{F}, d\overrightarrow{s}) ds$$

6.3.4 引力

Newton(牛顿) 万有引力公式

$$\overrightarrow{F} = G \frac{m_1 m_2}{r^2} \overrightarrow{e_r}$$

Coulomb(库仑) 定律

$$\overrightarrow{F} = k \frac{q_1 q_2}{r^2} \overrightarrow{e_r}$$

例题 6.5. 有两根均匀的细杆, 其质量分别为 M 和 m, 长度分别为 L 和 l, 两棒距离 (即左棒的右端点到右棒的左端点的距离) 为 a, 求两棒之间万有引力大小.

解 以左棒的左端点为原点 O, 水平向右为正方向建立坐标轴, 我们考虑右棒上质量微元对左棒的引力: 在右棒上距右棒左端点距离为 t 处取长度为 dt 的微元, 其质量为 $dm = \frac{m}{t} dt$, 其对左棒的万有引力为:

$$G\frac{m}{l}dt \int_0^L \frac{\frac{M}{L}dx}{(L-x+a+t)^2} = G\frac{Mm}{l} \left(\frac{1}{a+t} - \frac{1}{L+a+t}\right) dt$$

于是右棒对左棒的万有引力大小为:

$$F = G \frac{Mm}{l} \int_0^l \left(\frac{1}{a+t} - \frac{1}{L+a+t} \right) dt = G \frac{Mm}{l} \ln \frac{(a+l)(a+L)}{a(a+L+l)}.$$

6.4 与定积分有关的公式

 $设 n \in \mathbb{N}$,则

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} \cos^n x \, dx = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{2}{3}, & \text{if } n \text{ is odd} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & \text{if } n \text{ is even} \end{cases}$$

该公式也常写作:

设 $n \in \mathbb{N}$,则

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x \, dx = \int_0^{\frac{\pi}{2}} \cos^{2n} x \, dx = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2}$$

$$\int_0^{\frac{\pi}{2}} \sin^{2n+1} x \, dx = \int_0^{\frac{\pi}{2}} \cos^{2n+1} x \, dx = \frac{(2n)!!}{(2n+1)!!}$$

推广:

$$\int_0^{2\pi} \sin^n x \, dx = \int_0^{\pi} \sin^n x \, dx + \int_{\pi}^{2\pi} \sin^n x \, dx = \int_0^{\pi} \sin^n x \, dx + \int_{\pi}^{0} \sin^n (2\pi - t)(-dt)$$

$$= (1 + (-1)^n) \int_0^{\pi} \sin^n x \, dx = (1 + (-1)^n) \left(\int_0^{\frac{\pi}{2}} \sin^n x \, dx + \int_{\frac{\pi}{2}}^{\pi} \sin^n x \, dx \right)$$

$$= (1 + (-1)^n) \left(\int_0^{\frac{\pi}{2}} \sin^n x \, dx + \int_{\frac{\pi}{2}}^{0} \sin^n (\pi - u) \, (-du) \right) = 2(1 + (-1)^n) \int_0^{\frac{\pi}{2}} \sin^n x \, dx$$

$$\int_0^{2\pi} \cos^n x \, dx = \int_0^{\pi} \cos^n x \, dx + \int_{\pi}^{2\pi} \cos^n x \, dx = \int_0^{\pi} \cos^n x \, dx + \int_{\pi}^{0} \cos^n (2\pi - t)(-dt)$$

$$= 2\int_0^{\pi} \cos^n x \, dx = 2\left(\int_0^{\frac{\pi}{2}} \cos^n x \, dx + \int_{\frac{\pi}{2}}^{\pi} \cos^n x \, dx\right)$$
$$= 2\left(\int_0^{\frac{\pi}{2}} \cos^n x \, dx + \int_{\frac{\pi}{2}}^{0} \cos^n (\pi - u) \, (-du)\right) = 2(1 + (-1)^n) \int_0^{\frac{\pi}{2}} \cos^n x \, dx$$

6.4.1 Wallis(沃利斯) 公式

推导:

$$\sin^{2n+1} x < \sin^{2n} x < \sin^{2n-1} x \left(0 < x < \frac{\pi}{2} \right)$$

$$\int_{0}^{\frac{\pi}{2}} \sin^{2n+1} x \, dx < \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \, dx < \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} x \, dx$$

$$\frac{(2n)!!}{(2n+1)!!} < \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2} < \frac{(2n-2)!!}{(2n-1)!!}$$

$$\frac{((2n)!!)^{2}}{(2n+1)((2n-1)!!)^{2}} < \frac{\pi}{2} < \frac{((2n)!!)^{2}}{2n((2n-1)!!)^{2}}$$

$$\frac{2n}{2n+1} \cdot \frac{\pi}{2} < \frac{((2n)!!)^{2}}{(2n+1)((2n-1)!!)^{2}} < \frac{\pi}{2}$$

取极限 $n \to \infty$, 由夹逼准则得:

Wallis 公式

$$\lim_{n \to \infty} \frac{((2n)!!)^2}{(2n+1)((2n-1)!!)^2} = \frac{\pi}{2}$$

6.4.2 Stirling(斯特林) 公式

Stirling 公式

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n (n \to \infty)$$

Remark

- · 该公式可由 Wallis 公式推出.
- 常用于替换极限过程中的 n!.

双阶乘

遇到 (2n)!! 和 (2n-1)!! 的处理方法:

•
$$(2n)!! = (2n) \cdot (2n-2) \cdot \dots \cdot 2 = \prod_{i=1}^{n} (2i) = 2^{n} n!$$

•
$$(2n-1)!! = \frac{(2n-1)!! \cdot (2n)!!}{(2n)!!} = \frac{(2n)!}{2^n n!}$$

7. 常微分方程

7.1 基本概念

微分方程 含有未知一元函数及其导数和自变量的方程称为常微分方程,简称微分方程. 微分方程的阶 微分方程中含有的未知函数的导数的最高阶称为微分方程的阶. 微分方程的解

- 1. 解 将 y = f(x) 代入微分方程, 使方程称为恒等式, 则称 y = f(x) 是微分方程的解.
- 2. 通解 微分方程的解中含有自由常数,且含独立自由常数的个数等于微分方程的阶数,则称该解为通解.
- 3. 特解 不含任意常数的解称为微分方程的特解. 求特解时, 初始条件的个数等于微分方程的阶数.

7.2 一阶微分方程

7.2.1 可分离变量的微分方程

方程形式

$$y' = f(x)g(y)$$

解法: 当 $g(y) \neq 0$ 时,

$$y' = f(x)g(y) \Longleftrightarrow \frac{dy}{g(y)} = f(x)dx$$

两边求不定积分

$$\int \frac{\mathrm{d}y}{g(y)} = \int f(x) \mathrm{d}x + C$$

其中,C 为任意常数.

Remark

- 1. 若 $g(y_0) = 0$ 则 $y = y_0$ 也是原方程的一个特解.
- 2. 尽可能把 y 写成 x 的函数, 也尽可能把 y 从对数中"解脱"出来.
- 3. 不要漏掉 y=yo 这种奇解.

7.2.2 齐次微分方程

方程形式

$$y' = f\left(\frac{y}{x}\right)$$

解法: 令 $u=\frac{y}{x}$, 由于 y'=u+xu', 所以微分方程 $y'=f\left(\frac{y}{x}\right)$ 变为 $u'=\frac{f(u)-u}{x}$. 由此方程解得未知函数 u=u(x), 进而得到微分方程的解 y(x)=xu(x).

7.2.3 一阶线性微分方程

方程形式

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$$

解法

$$y = e^{-\int P(x) dx} \left(\int Q(x) e^{\int P(x) dx} dx + C \right)$$

Remark
$$e^{\int P(x)dx}$$
 和 $e^{-\int P(x)dx}$ 必须互为倒数.

7.3 二阶线性微分方程

7.3.1 二阶线性微分方程

方程形式

$$y'' + P(x)y' + Q(x)y = f(x)$$

若 f(x) = 0, 则称上式为二阶齐次线性微分方程, 此时若 P(x), Q(x) 均为常数, 则称为二阶常系数齐次线性微分方程. 若 $f(x) \neq 0$ 称为二阶线性非齐次微分方程, 此时若 P(x), Q(x) 均为常数, 则称为二阶常系数非齐次线性微分方程.

7.3.2 非齐次方程特解与对应齐次方程通解的关系

$$y'' + P(x)y' + Q(x)y = 0 (7.1)$$

$$y'' + P(x)y' + Q(x)y = f(x)$$
(7.2)

- 1. 若 y_1, y_2 是 (7.1) 的解, 则 $C_1y_1 + C_2y_2$ 也是 (7.1) 的解, 其中 C_1, C_2 为任意常数.
- 2. 若 y_1, y_2 是 (7.1) 的两个线性无关的解即 $\frac{y_1}{y_2} \neq C$, 则 $y = C_1 y_1 + C_2 y_2$ 是 (7.1) 的通解.
- 3. 若 y1, y2 是 (7.2) 的解, 则 y1-y2 为 (7.1) 的解.
- 4. 若 y 是 (7.1) 的通解,y* 是 (7.2) 的特解, 则 y=y+y* 是 (7.2) 的通解.

7.3.3 二阶常系数齐次线性微分方程

$$y'' + ay' + by = 0$$

求解方法: 特征方程法 $\lambda^2 + a\lambda + b = 0$.

- 1. 当 $\lambda_1 \neq \lambda_2$ 且均为实数时, 微分方程的通解是 $y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$
- 2. 当 $\lambda_1 = \lambda_2$ 时, 微分方程的通解是 $y(x) = (C_1 + C_2 x)e^{\lambda_1 x}$
- 3. 当 $\lambda_{1,2} = \alpha \pm i\beta$ 时, 微分方程的通解是 $y(x) = e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x)$

7.3.4 二阶常系数非齐次线性微分方程

一般形式:

$$y'' + ay' + by = f(x)$$

解法: 待定系数法

我们仅讨论 f(x) 为以下两种形式时微分方程的具体解法:

- $\stackrel{\text{def}}{=} f(x) = P_n(x)e^{\mu x}$ 时

7.3.5 $f(x) = P_n(x)e^{\mu x}$ 时

设方程的特解为:

$$y(x) = x^k Q_n(x) e^{\mu x}$$

其中

- $Q(x) = a_n x^n + a_{n1} x^{n1} + \dots + a_1 x + a_0$ 为 n 次多项式的一般形式
- k 的取值

- 当 μ 不是 y'' + ay' + by = 0 的特征根时,k = 0.
- 当 μ 是 y'' + ay' + by = 0 的单特征根时,k = 1.
- 当 μ 是 y'' + ay' + by = 0 的复特征根时,k = 2.

7.3.6 $f(x) = e^{\alpha x} P_n(x) \cos \beta x$

$$y(x) = x^k e^{\alpha x} [Q_n(x) \cos \beta x + W_n(x) \sin \beta x]$$

- $Q(x) = a_n x^n + a_{n1} x^{n1} + \dots + a_1 x + a_0$
- $W(x) = b_n x^n + b_{n1} x^{n1} + \dots + b_1 x + b_0$
- k的取值
 - 当 $\alpha \pm i\beta$ 不是 y'' + ay' + by = 0 的特征根时,k = 0.
 - 当 $\alpha \pm i\beta$ 是 y"+ay'+by=0 的特征根时,k=1.

7.4 Euler(欧拉) 方程

$$x^{n}y^{(n)} + p_{1}x^{n-1}y^{(n-1)} + \cdots + p_{n-1}xy' + p_{n}y = f(x)$$

以二阶为例, 即:

$$x^2y'' + axy' + by = f(x)$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + (a-1)\frac{\mathrm{d}y}{\mathrm{d}t} + by = f(e^t)$$

则方程变为以 : 为自变量, y 为未知函数的二阶常系数线性微分方程.

Acknowledgments

感谢助教陈旻忆、谢伟、马赛东、张红、王沐晨、方志浩、曾文杰、丁顺克提供的讲义, 感谢同济大学生、同济数学青年微信公众平台工作人员对我们的支持. 本文 IATEX 模板来源:IATEX Templates由彭任锋修改为可以支持中文格式的模板. 本文任务量大, 难免有疏漏, 敬请读者批评指正. 联系人: 小济.