Astro 270 – Astrophysical Dynamics – Study Guide

UCLA, Fall 2014

November 2, 2014

Contents

Co	ontents	1
1	Orders of Magnitude	1
2	Equations to Know 2.1 Potential Theory	2 2 2 2
3	Definitions	3
	1. Orders of Magnitue	de

- Galactic properties: Page 18
- Pramemters of clusters: 31
- Star clusters have $10^2 10^6$ stars
- Galaxies can have $10^5 10^{12}$ stars
- Mikly Way orders of Mag
- Luminosities
 - Sun: 10^{26}

2.1 Potential Theory

• General potential:

$$\Phi(x) = -G \int d^3 \mathbf{x}' \frac{\rho \mathbf{x}'}{|\mathbf{x}' - \mathbf{x}|}$$
 (1)

• Poisson's equation

$$\nabla^2 \Phi = 4\pi G \rho \tag{2}$$

2.2 Spherically Symmetric Potentials

• Blah

$$\Phi(r) = -4\pi G \left[\frac{1}{r} \int_0^r dr' r'^2 \rho(r') + \int_r^\infty dr' r' \rho(r') \right]$$
 (3)

• Point mass

$$\Phi(r) = -\frac{GM}{r} \tag{4}$$

• Homogeneous sphere within radius a

$$\Phi(r) = -2\pi G \rho (a^2 - \frac{1}{3}r^2) \tag{5}$$

• Homogeneous sphere outside radius A

$$-\frac{4\pi G\rho a^3}{3r}\tag{6}$$

• Plummer Model

$$\Phi = -\frac{GM}{\sqrt{r^2 + b^2}}\tag{7}$$

2.3 Circular velocities

• Blah

$$v_c^2 = \frac{GM(r)}{r} \tag{8}$$

• Escape speed

$$v_e(r) = \sqrt{2|\Phi(r)|} \tag{9}$$

3. Definitions

- Radial period The time that it takes a star to go from a pocenter to pericenter back to a pocenter
- True Anomaly
- Eccentric anomaly