Neutron enhancement

LIU Yulong

1. DHCP and ml2 openvswitch agent

- DHCP agent backgrouds
 - one more RPC S/C, one more persure on MQ
 - extra processes
 - dnsmasq
 - haproxy (for metadata, if needed)
 - namespace
 - DHCP namespace
 - tons of DVR local router namespace
 - host_dvr_for_dhcp = False (Train)
 - provisioning blocks
 - retry and fullsync
 - loops
 - locks
 - caches
 - •

1. DHCP and mI2 openvswitch agent

Basic Framework

Graphic1. DHCPv4

1. DHCP and ml2 openvswitch agent

- New approach
 - · Retire DHCP-agent
 - No more extra processes, no DNS
 - For large scale
 - Add L2 agent extension to replace the DHCP-agent
 - DHCPv4 and DHCPv6
 - Flows for DHCP to send request to the local controller
 - A DHCP server based on RYU (os-key) application
 - Directly packet-out to the INPORT
 - Upgrading without any side effect
 - Fully distributed
 - · no sigle point of failure
 - every compute node will do DHCP R/R locally

1. DHCP and mI2 openvswitch agent

New Framework

1. DHCP and ml2 openvswitch agent

Basic Flows

```
DHCP_IPV6_TABLE = 77
DHCP_IPV6_TABLE = 78

table=60, n_packets=0, n_bytes=0, priority=101,udp,nw_dst=255.255.255.255.tp_src=68,tp_dst=67 actions=resubmit(,77)
table=60, n_packets=0, n_bytes=0, priority=101,udp6,ipv6_dst=ff02::1:2,tp_src=546,tp_dst=547 actions=resubmit(,78)
```

table=77, n_packets=0, n_bytes=0, priority=100,udp,in_port=58,dl_src=fa:16:3e:f0:2a:c3,tp_src=68,tp_dst=67 actions=controller(userdata=fd.eb.08.bf.db.81.46.4b.8e.a8.2a.bb.41.1c.30.a9)

 $table=78, n_packets=0, n_bytes=0, priority=100, udp6, in_port=58, dl_src=fa:16:3e:f0:2a:c3, tp_src=546, tp_dst=547, actions=controller(userdata=fd.eb.08.bf.db.81.46.4b.8e.a8.2a.bb.41.1c.30.a9)$

- Original problem
 - https://bugs.launchpad.net/neutron/+bug/1732067
 - · openvswitch firewall flows cause flooding on integration bridge
 - ingress output -> port
 - egress normal
 - fdb unknow/unlearned -> flood
 - For shared network, it is an security issue.
 - VMs among different tenants should not receive packets from others.

- New approach
 - [L2][OVS] add accepted egress fdb flows
 - https://bugs.launchpad.net/neutron/+bug/1841622
- To solve the egress traffic flood in br-int
- New config option will be needed for those deployments which require the fix
- Openflow firewall enabled
 - 1. the "dest mac" is handled in this ovs-agent, direct "output" to that of port
 - 2. "ARP request" with enabled L2 pop, packets will still be sent to patch port to tunnel bridge by NORMAL action
 - 3. "dest mac" is not in this host, vlan or tunnel (gre/vxlan/geneve) unicast will be sent (output) to corresponding patch port of tunnel/physical bridge.
 - 4. other traffic still match the original NORMAL flow

- A new table=61 will be used to do egress traffic classification when not enable openflow firewall (for HA routers this should not be enabled):
 - 1. egress packets will be send to table 61, match rule will be of-port which be handled by ovs-agent "in port=<some local of port>"
 - 2. the "dest mac" is handled this ovs-agent, direct "output" to that port
 - 3. "ARP request" with enabled L2 pop, packets will still be sent to patch port to tunnel bridge by the original NORMAL
 - 4. "dest mac" not in this host, vlan or tunnel (gre/vxlan/geneve) unicast will be sent (output) to corresponding patch port of tunnel/physical bridge.
 - 5. other traffic still match the original NORMAL flow

table and flows

```
LOCAL SWITCHING = 0
DVR TO SRC_MAC = 1
DVR TO SRC MAC VLAN = 2
CANARY TABLE = 23
ARP SPOOF TABLE = 24
MAC_SPOOF_TABLE = 25
TRANSIENT TABLE = 60
BASE EGRESS TABLE = 71
RULES EGRESS TABLE = 72
ACCEPT OR INGRESS TABLE = 73
BASE_INGRESS_TABLE = 81
RULES INGRESS TABLE = 82
ACCEPTED EGRESS TRAFFIC TABLE = 91
ACCEPTED_INGRESS_TRAFFIC_TABLE = 92
DROPPED TRAFFIC TABLE = 93
ACCEPTED EGRESS TRAFFIC NORMAL TABLE = 94
```

TRANSIENT EGRESS TABLE = 61

```
table=61, priority=12,dl_dst=fa:16:3e:39:42:e4
actions=output:"tapd2df8572-62"
table=61, priority=10,in_port="tapd2df8572-62",dl_src=fa:16:3e:39:42:e4,dl_dst=00:00:00:00:00:00/01:00:00:00:00:00
actions=mod_vlan_vid:1,output:"patch-tun"
table=61, priority=3 actions=NORMA
```

3. Performance of ml2 openvswitch agent

- · Local resource cache
 - dump cache to local file
 - load cache from the local file path duing the agent restart
- · Local flows cache and batch/defer updating
 - '--bundle' has been used in openflow security group flows.
- Async-processing large set flows after ports basic flows installed
 - [L2] update the port DB status directly in agent-side
 - https://bugs.launchpad.net/neutron/+bug/1840979

3. Performance of ml2 openvswitch agent

- [L2] stop processing ports twice in ovs-agent (Sapna Jadhav is looking into this now.)
- https://bugs.launchpad.net/neutron/+bug/1841865
- Increase port processing time linearly
 - rpc_loop X (10 added, 0 updated)
 - rpc_loop X +1 (20 added, 10 updated)
 - rpc_loop X + 2 (30 added, 20 updated)

4. Health check for ml2 openvswitch agent

- A new API and small (one or two long-term) agent for L2 traffic health check
 - https://bugs.launchpad.net/neutron/+bug/1830014
 - https://review.opendev.org/#/c/662541/
 - Why introduce a new agent?
 - For now, we have no choice.
 - We just want one smiple agent which can save time for operators.

Thank You

To be continue...

L3 is coming...

- Retire metering-agent
- https://bugs.launchpad.net/neutron/+bug/1817881
- https://review.opendev.org/#/c/658511/
- https://review.opendev.org/#/c/675654/

- Lazy-load agent side router resources when no related service port (compute ports or baremental ports)
- Router (HA) will be processed at least 4 times after a user create a new router and bind floating IP under it.
 - create
 - add subnet
 - set external gateway
 - bind floating ip

- [RFE][L3] I3-agent should have its capacity
- https://bugs.launchpad.net/neutron/+bug/1828494

- Centralized DNAT traffic (floating IP) Scale-out
- Using some protocols to extend the theoretical maximum bandwidth (one host's max bandwidth)
 for single IP
- Active-Active model for a single router in DNAT nodes
- each connection to the destenation IP will be hashed to different nodes

- Router agent side health check
 - namespace
 - iptables
 - route rules
 - arp entries
 - dvr related flows
 - HA related processes
 - Extension related
 - floating IP tc rules
 - gateway IP tc rules