

Visualization of Robot Interaction Space

Berkay Çakal¹, Oğuzhan Karakaya¹, Miraç Sanisoğlu¹ Mentors: Alexander Winkler¹, Ulrich Eck¹, Alejandro Martín¹

1. Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, Munich, Germany

Goal

Motivation

- Robots are steadily taking their place in OR [1]
- They may hurt the staff or hit other devices while moving
- Positioning of the robot w.r.t. the patient is not easy
- Robots are not aware of their surroundings

Creating a HoloLens – Robot system that

- Detects the objects and the people in the vicinity
- Allows the user to specify the destination point of the robot
- Calculates a safe trajectory and visualizes it on HoloLens
- Executes the movement if the trajectory is approved

Initial scene

Specifying the destination point

Spatial awareness

Trajectory calculation

Features

- **ROS-Integration**
- Spatial Awareness
- Tracker Detection
- Voice Command

Moving the actual robot to destination

Trajectory visualization as hologram

Conclusion

- A HoloLens application that allows control and safe manipulation of a robot is developed
- The robot is made aware of its surroundings through HoloLens
- Planning is made simpler

Future work

- Get feedback from surgeons to improve the design and visualizations
- Implement connection with an actual Kuka robot
- Find a more practical solution for specifying the destination point of the robot

Keywords

- "Plan trajectory"
- Visualizes the computed safe path
- "Execute trajectory" \rightarrow Moves the robot in the shown path

References

[1] H.P. Ganapathi, G. Ogaya-Pinies, T. Rogers, V.R. Patel. Surgical Robotics: Past, Present and Future. Operative Atlas of Laparoscopic and Robotic Reconstructive Urology, 2017

[2] RosSharp Documentation. https://zoetrope.github.io/RosSharp