Classification Problem

Loss Function

F(Features, params)=Targets

DistanceFunction(RealTarget, EstimatedTarget)

Min(Σ(DistanceFunction(RealTarget[i],EstimatedTarget[i]))

EstimatedTarget[i]=F(Features[i],params)

Min(Σ(DistanceFunction(RealTarget[i], F(Features[i], params))

=> use params of F to find optimal Targets that are very close to real targets

Example: Support Vector Machine

Example: Support Vector Machine

Example: Support Vector Machine

Find Plane so that support vectors are the largest and hence the dataset is most separated

DEMO: https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Example: Decision Tree

Finding optimal parameters PN

Example: (Random) Forest

Samples

Finding optimal parameters PN

+ Decision parameter which tree wins (i.e. majority voting)

Example: (Random) Forest

Finding optimal parameters PN

+ Decision parameter which forest wins (i.e. majority voting)

Model Validation

yields a confidence probability +- error ->How often will I hit the right target

Final Model Validation only with Testset

if possible cross validated

cross validation datasets can overlap and be chosen randomly

but know what you are doing!