LESSON

matplotlib

파이썬 시각화 라이브러리

파이썬의 시각화 라이브러리들

- 1.Matplotlib: 가장 널리 사용되는 시각화 라이브러리 중 하나입니다. 다양한 차트 및 플롯을 생성할 수 있고, 강력하면서도 유연한 기능을 제공.
 - •웹사이트: Matplotlib
- **2.Seaborn**: Matplotlib을 기반으로 한 통계 데이터 시각화 라이브러리입니다. 간단한 코드로 다양한 통계 그래픽을 그릴 수 있으며, 기본적으로 예쁜 스타일을 제공.
 - •웹사이트: Seaborn
- 3.Plotly: 인터랙티브한 웹 기반 시각화를 제공하는 라이브러리입니다. 차트 및 그래프를 생성하고 웹 브라우저에서 인터랙티브하게 탐색할 수 있음.
 - •웹사이트: Plotly
- 4.Bokeh: 웹 기반 시각화를 지원하는 라이브러리로, 인터랙티브 플롯 및 대시보드를 만들 수 있음.
 - •웹사이트: Bokeh
- 5.Altair: 간단하면서도 선언적인 문법을 사용하여 인터랙티브한 시각화를 생성할 수 있는 라이브러리.
 - •웹사이트: Altair
- **6.Pandas Plotting**: Pandas에 내장된 간단한 플로팅 기능을 제공합니다. Pandas 데이터프레임에서 직접 시각화할 수 있음.
 - •웹사이트: <u>Pandas Visualization</u>

matplotlib 참고 사이트

https://matplotlib.org

https://wikidocs.net/book/5011

matplotlib 설치 및 사용

- 1. 라이브러리 설치 pip install matplotlib
- 2. 라이브러리 import import matplotlib.pyplot as plt
- 3. 데이터로 그래프 그리기 plt.plot([1,2,3,4,5])
- 4. 그래프 표시하기 plt.show()

자주 사용되는 차트 유형


```
import matplotlib.pyplot as plt
score=[65,100,80,85,90,55,30,67,78,88]
name=['a','b','c','d','e','f','g','h','i','j']
# 1.꺽은선 그래프 plot
plt.plot(score)
plt.show()
# 2.박스플롯 그래프 boxplot
plt.boxplot(score)
plt.show()
# 3.히스토그램 그래프 hist
plt.hist(score,bins=5) # bins: 계급의 구간수 지정
plt.show()
# 4.막대 그래프 bar, barh -가로축, 세로축 지정할 것
plt.bar(name, score)
plt.show()
plt.barh(name, score)
plt.show()
```

```
# 5.원형 그래프 pie
data=[4,1,3,5,2]
plt.pie(data)
plt.show()
# 6.산점도 그래프 scatter
noise=[20,25,30,35,40,45,50,55,60,65,70]
stress=[10,11,15,20,30,42,55,70,88,110,150]
plt.scatter(noise, stress)
plt.show()
```


실습1


```
import matplotlib.pyplot as plt

name=['kim','lee','park','choi']
score=[100,60,80,85]

plt.plot(name,score)
# plt.pie(score)
plt.show()
```


실습2(파일 데이터 시각화)


```
import matplotlib.pyplot as plt
import csv
data=csv.reader(open('성적.csv',encoding='utf-8'))
next(data)
names=[]
scores=[]
for row in data:
   names.append(row[0])
   scores.append(int(row[1]))
plt.bar(names, scores)
plt.show()
plt.bar(names, scores)
plt.savefig("성적현황.png") # 이미지로 저장
plt.show()
```


구글 코랩에서 차트 한글 깨짐 해결하기

1. 폰트 설치(나눔 폰트 설치)

2. 폰트 설정


```
import matplotlib.pyplot as plt
plt.rc('font', family='NanumBarunGothic')
plt.rcParams['axes.unicode_minus'] =False
```

3. 런타임 재시작(런타임-> 세션 다시 시작)

파일 수정 보기 삽입	런타임 도구 도움말 몯	
+ 코드 + 텍스트	모두 실행	Ctrl+F9
	이전 셀 실행	Ctrl+F8
	초점이 맞춰진 셀 실행	Ctrl+Enter
	선택항목 실행	Ctrl+Shift+Enter
	이후 셀 실행	Ctrl+F10
	실행 중단	Ctrl+M I
	세션 다시 시작	Ctrl+M .
	세션 다시 시작 및 모두 실행	
	런타임 연결 해제 및 삭제	
	런타임 유형 변경	
	세션 관리	
	리소스 보기	
	런타임 로그 보기	

한글과 마이너스 기호가 있는 경우 해결법

실습(시스템 글꼴 이름 확인하기)

- 1. c:\windows\fonts 폴더에서 "굴림 보통"을 선택하고 마우스 우클릭
- 2. "속성"을 선택하면 글꼴 파일이름이 표시된다.

단, "맑은 고딕"같은 "속성"이 없는 경우 더블 클릭하면 속성을 볼 수 있다.

```
from matplotlib import font_manager as fm

# 맑은 고딕의 글꼴 파일명
font_path=r"c:\windows\fonts\malgunsl.ttf"
# 휴먼 편지체의 글꼴 파일명

# font_path=r"c:\windows\fonts\HMFMPYUN.TTF"
font_name=fm.FontProperties(fname=font_path).get_name()
print(font_name) # 결과: Malgun Gothic
```


한글 깨짐, 축에 마이너스 기호 깨짐

- 한글 글꼴 설정 : plt.rc('font',family='malgun gothic')
- 마이너스 기호 설정 : plt.rcParams['axes.unicode_minus']=False

※ 참고

rc() 함수는 Matplotlib의 설정을 변경하는 데 사용되는 함수이다.

rc는 "run command"의 약자로, 여러 설정을 한 번에 변경하거나 특정 설정을 조회하고 수정할 때 사용된다. rc(group, **kwargs)

- group: 설정을 적용할 그룹을 나타내는 문자열. 'font', 'axes', 'lines' 등이 있다.
- **kwargs: 설정을 변경할 키워드 인수들. 각 그룹에 따라 적용 가능한 설정들이 다르다.

rcParams는 Matplotlib의 전역 설정을 관리하는 객체입니다. 이 객체를 사용하여 그래프의 다양한 속성을 설정할 수 있습니다.그래픽 관련 설정, 텍스트 속성, 폰트, 색상 등을 포함하는 딕셔너리 형태로 제공됩니다.

실습(한글 처리)


```
import matplotlib.pyplot as plt
score=[100,70,95.4,88.9,90]
name=['김','이','박','정','오']
# 한글 깨짐 처리
plt.rc("font", family="Malgun Gothic")
# 꺾은선 그래프 만들기
plt.title("중간고사 성적") # 차트 제목
plt.xlabel("이름") # x축 제목
plt.ylabel("점수") # y축 제목
plt.bar(name, score)
plt.show()
```


실습(마이너스 기호 처리)


```
import matplotlib.pyplot as plt
# 한글 폰트 설정: rcParams or rc 사용
plt.rcParams['font.family'] = 'NanumGothic'
# plt.rc("font",family="Malgun Gothic")
# 음수 기호 설정
plt.rcParams['axes.unicode_minus'] = False
# 예시 데이터
x = [-1, 0, 1, 2, 3]
y = [2, 5, 0, -2, 1]
# 그래프 그리기
plt.plot(x, y)
plt.title("음수값이 있는 그래프")
plt.show()
```


※ 한글처리를 위해 폰트 설정을 한 경우 데이터에 음수가 있는 경우 마이너스 기호가 깨지는 것을 처리할 때 plt.rcParams['axes.unicode_minus'] = False 설정이 필요함.

실습(차트에 이미지 표시)


```
### 이미지를 표시해보자
import matplotlib.pyplot as plt
from matplotlib.image import imread

img=imread('weather.png')
plt.imshow(img)
plt.axis('off') # 축 제거
plt.show()
```

- 이미지
- matplotlib.image 모듈의 imread(): 이미지를 읽어들임
- imshow() : 이미지 표시

다운받은 글꼴이 설치된 경로 확인

1. c:₩windows₩fonts 폴더에서 원하는 글 꼴 파일을 선택하고 "속성"을 클릭

2. 경로를 복사하고 경로로 이동한다.

실습(다운받아 설치한 글꼴 사용)


```
import matplotlib.pyplot as plt
from matplotlib import font_manager
font_path=r"C:\Users\kes12\AppData\Local\Microsoft\Windows\Fonts\ONE Mobile POP.ttf"
# font_path=r"c:\windows\fonts\gulim.ttc" # 굴림의 글꼴 파일명
# font_path=r"c:\windows\fonts\HMFMPYUN.TTF" # 휴먼 편지체의 글꼴 파일명
font name=font manager.FontProperties(fname=font path).get name()
plt.rc("font", family=font_name)
score=[100,70,95.4,88.9,90]
name=['김','이','박','정','오']
# 꺾은선 그래프 만들기
                                          ※ 설치된 모든 글꼴을 사용할 수 있는 것은 아니다.
plt.title("중간고사 성적") # 차트 제목
plt.xlabel("이름") # x축 제목
plt.ylabel("점수") # y축 제목
plt.bar(name, score)
plt.show()
```

LESSON

collections 모듈의 Counter

iterable 한 객체에서 각 요소의 개수 세기

```
### collections의 Counter로 개수 세기
from collections import Counter

data=[1,2,3,4,1,1]
# data='hello, world'
c=Counter(data)
print(c)
```

Counter({1: 3, 2: 1, 3: 1, 4: 1})

실습

```
### collections의 Counter로 개수 세기
from collections import Counter

data=[1,2,3,4,1,1,3]
# data="hello, world"
c=Counter(data)
print(c.most_common()) # 빈도수 순으로 출력
print(c.most_common(2)) # 빈도수 순으로 상위 2건 출력
```

```
[(1, 3), (3, 2), (2, 1), (4, 1)]
[(1, 3), (3, 2)]
```

LESSON

wordcloud

텍스트 데이터의 빈도수에 따라 단어를 시각적으로 표현하는 데 사용되는 라이브러리

wordcloud 설치 및 사용

- 1. 라이브러리 설치 pip install wordcloud
- 2. 라이브러리 import import wordcloud

실습9


```
### wordcloud로 시각화
import wordcloud
import matplotlib.pyplot as plt
words={'파이썬':10,'빅데이터':12,'인공지능':7,'JSP':5,'C++':9}
# wc=wordcloud.WordCloud()
wc=wordcloud.WordCloud(font_path='Katuri.ttf') # 한글 글꼴 지정
cloud=wc.generate_from_frequencies(words)
plt.imshow(cloud)
plt.show()
                  ※ Katuri.ttf 글꼴 파일이 현재 폴더에 있어야 한다.
```



```
### exam.txt 파일 시각화하기
from collections import Counter
import wordcloud
import matplotlib.pyplot as plt
# 사용할 폰트 파일을 미리 저장하고 아래와 같이 설정한다.
wc=wordcloud.WordCloud(font_path='Katuri.ttf')
word list=[] # 공백으로 분리된 단어를 저장할 리스트
with open('exam.txt',encoding='utf-8') as f:
 exam=f.readlines()
for line in exam:
 words=line.strip('\n').strip('.').split(' ') # (\n)줄바꿈 문자와 "."을 제거하고 공백으로 분리
 for word in words:
   word list.append(word)
c=Counter(word list)
cloud=wc.generate from frequencies(c)
plt.imshow(cloud)
plt.show()
```

LESSON

KoNLPY로 한국어 형태소 분석

konlpy

- 한국어의 자연어 처리를 위한 파이썬 라이브러리
- 형태소 분석, 명사 추출, 품사 태깅, 구문 분석 등과 같은 기능들을 제공
- 한국어 문장에서 단어를 추출하고 토큰화
- 여러 가지 형태소 분석기를 지원
 제공되는 분석기 Kkma, Hannanum, Mecab, Komoran, Okt (Open Korean Text),...

코랩에서 연습하기

0. 구글 코랩을 실행한다.

파이썬 한글 형태소 분석기 konlpy 내부의 클래스는 Java 기반으로 작성되어있기 때문에 반드시 JDK 가 설치되어있어야 konlpy 를 사용할 수 있다. 그런데 구글 코랩에서는 JDK설치 없이 사용 가능.

- 1. konlpy 라이브러리 설치하기 pip install konlpy
- 2. 형태소 분석기 import from konlpy.tag import Okt
- 3. Okt 형태소 분석기 객체 생성 okt = Okt()
- 4. 문장에서 형태소와 품사 정보 얻기 okt.pos(문자열)

```
from konlpy.tag import Okt
okt=Okt()
text="파이썬은 쉬운 문법으로 초보자도 접
근하기 쉬운 인터프리터 언어이다."
okt.pos(text)
# 명사만 출력하기
okt.nouns(text)
[('파이썬', 'Noun'), ('은', 'Josa'), ('쉬운',
'Adjective'), ('문법', 'Noun'), ('으로', 'Josa'),
('초보자', 'Noun'), ('도', 'Josa'), ('접근',
'Noun'), ('하기', 'Verb'), ('쉬운', 'Adjective'),
('인터프리터', 'Noun'), ('언어', 'Noun'), ('이다',
'Josa'), ('.', 'Punctuation')]
```

뉴스 파일에서 한글 형태소 시각화


```
from konlpy.tag import Okt
from collections import Counter
from wordcloud import WordCloud
import matplotlib.pyplot as plt
okt=Okt()
text=open("n news.txt", 'r', encoding='utf8').read()
okt.pos(text)
                         # 명사만 추출
okt list=okt.nouns(text)
                         # 명사의 단어별 개수를 리스트로 생성
c=Counter(okt list)
                         # 상위 10개 단어만 추출
tags=c.most common(10)
tags
wc=wordcloud.WordCloud(font path='gf.ttf') # 한글 처리
wc=wc.generate from frequencies(dict(tags)) # 딕셔너리로 변경하기
plt.imshow(wc)
plt.show()
```

뉴스 파일에서 한글 형태소 시각화


```
from konlpy.tag import Okt
from collections import Counter
from wordcloud import WordCloud
import matplotlib.pyplot as plt
text=open("n news.txt", 'r', encoding='utf8').read()
okt=Okt()
line=[]
line=okt.pos(text)
line
n adj=[]
for word, tag in line:
  if tag=="Noun" and len(word)>=2: # 명사이고 길이가 2자 이상인 것만
    n adj.append(word)
counts=Counter(n adj)
tags=counts.most common(10)
wc=WordCloud(font path='gf.ttf')
wc=wc.generate from frequencies(dict(tags))
```

plt.imshow(wc) plt.axis('off') plt.show()

서비스 네이버