Human Activity Recognition from Accelerometer Data

Data Science Initiative, Brown University

Sagar Raichandani

<u>GitHub</u>

https://github.com/raichandanisagar/human-activity-recognition

Project Goal

Objective

To create a subject independent classifier from time-series accelerometer data that identifies physical activity.

Windowing and Feature Engineering

Key Observations from EDA

Key Observations from EDA

Cross Validation Pipeline

ML Models Trained & Evaluated

	Logistic Regression (L2)	Support Vector Classifier	Random Forest Classifier	XGBoost Classifier
Classification Strategy	One vs. Rest	One vs. One	Multiclass	Multiclass
Parameters Tuned	C- regularization inverse (log scale)	C- regularization inverse (log scale)	Max features (linear scale)	Learning rate (log scale)
		gamma- kernel coefficient (log scale)	Max depth (linear scale)	Max depth (linear scale)
Optimum Parameters (over 5 random iterations)	C = 100	C = 100; gamma = 0.01	Max features = 0.5; Max depth = 12	Learning rate = 0.5; Max depth = 8
Evaluation metric	F1 macro	F1 macro	F1 macro	F1 macro

Evaluation Results

XGB Confusion Matrix

XGBoost Classifier confusion matrixnormalized by true labels (row-wise)

Top 10 Features (Permutation Importance)

Global Feature Importance (Shap)

Outlook

- Tune window length (2, 5, 10 secs); this helps create a better balance between accuracy and latency
- Gauge impact of tuning β in F_{β} the lower recall of minority classes made me question if weighing recall higher would be a more appropriate evaluation metric. Or alternatively using weighted F score with a custom function based on cost of misclassification.
- Estimate feature importance (permutation/global shap) after dropping correlated variables
- Train models for L2 classification of activity-type and intensity

Thank You!

Questions/Comments?