(T-LLM 诞生的背景

(T-LLM 简介

꾦

当开山

痩

IT-LLM 的性能

TensorRT-LLM保姆级教程(一)-快速入门

吃果冻不吐果冻皮

关注他

赞同 54

54 人赞同了该文章

随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。

收起

本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。

另外,我撰写的**大模型相关的博客及配套代码**均整理放置在Github: <u>Ilm-action</u>,有需要的朋友自取。

TensorRT-LLM 诞生的背景

第一、**大模型参数量大,推理成本高。**以10B参数规模的大模型为例,使用FP16数据类型进行部署至少需要20GB以上(模型权重+KV缓存⁺等)。

第二、**纯TensorRT使用较复杂,ONNX存在内存限制**。深度学习模型通常使用各种框架(如PyTorch、TensorFlow、Keras等)进行训练和部署,而每个框架都有自己的模型表示和存储格式。因此,开发者通常使用 ONNX 解决深度学习模型在不同框架之间的互操作性问题。比如:TensorRT 就需要先将 PyTorch 模型转成 ONNX,然后再将 ONNX 转成 TensorRT。除此之外,一般还需要做数据对齐⁺,因此需要编写 plugin⁺,通过修改 ONNX 来适配 TensorRT plugin。另外,ONNX 使用Protobuf作为其模型文件的序列化格式。Protobuf是一种轻量级的、高效的数据交换格式,但它在序列化和反序列化大型数据时有一个默认的大小限制。在Protobuf中,默认的大小限制是2GB。这意味着单个序列化的消息不能超过2GB的大小。当你尝试加载或修改超过2GB的ONNX模型时,就会收到相关的限制提示。

第三、**纯FastTransformer使用门槛高**。FastTransformer 是用 C++ 实现的;同时,它的接口和文档相对较少,用户可能需要更深入地了解其底层实现和使用方式,这对于初学者来说可能会增加学习和使用的难度。并且 FastTransformer 的生态较小,可用的资源和支持较少,这也会增加使用者在理解和应用 FastTransformer 上的困难。因此,与 Python 应用程序的部署和集成相比,它可能涉及到更多的技术细节和挑战。这可能需要用户具备更多的系统级编程⁺知识和经验,以便将 FastTransformer 与其他系统或应用程序进行无缝集成⁺。

综上所述, TensorRT-LLM 诞生了。

TensorRT-LLM 简介

TensorRT-LLM 为用户提供了易于使用的 Python API 来定义大语言模型⁺ (LLM) 并构建 TensorRT 引擎,以便在 NVIDIA GPU 上高效地执行推理。 TensorRT-LLM 还包含用于创建执行 这些 TensorRT 引擎的 Python 和 C++ 运行时组件。 此外,它还包括一个用于与 NVIDIA Triton 推理服务集成的后端;

同时,使用 TensorRT-LLM 构建的模型可以使用使用张量⁺并行和流水线并行在单 GPU 或者多机多 GPU 上执行。

TensorRT-LLM 的 Python API 的架构看起来与 PyTorch API 类似。 它为用户提供了包含 einsum、softmax、matmul 或 view 等函数的 **functional** 模块。 **layers** 模块捆绑了有用的构建块来组装 LLM; 比如: Attention 块、MLP 或整个 Transformer 层。 特定于模型的组件,例如: GPTAttention 或 BertAttention,可以在 **models** 模块中找到。

为了最大限度地提高性能并减少内存占用,TensorRT-LLM 允许使用不同的量化模式执行模型。 TensorRT-LLM 支持 INT4 或 INT8 权重量化(也称为仅 INT4/INT8 权重量化)以及

支持的设备

TensorRT-LLM 在以下 GPU 上经过严格测试:

- H100
- L40S
- A100/A30
- · V100 (试验阶段)

注意: 如果是上面未列出 GPU, TensorRT-LLM 预计可在基于 Volta、Turing、Ampere、Hopper 和 Ada Lovelace 架构的 GPU 上工作。但是,可能存在某些限制。

关键特性

- 支持多头注意力(Multi-head Attention, MHA)
- 支持多查询注意力 (Multi-query Attention, MQA)
- 支持分组查询注意力(Group-query Attention, GQA)
- 支持飞行批处理 (In-flight Batching)
- Paged KV Cache for the Attention
- 支持 张量并行
- 支持 流水线并行
- 支持仅 INT4/INT8 权重量化 (W4A16 & W8A16)
- 支持 SmoothQuant 量化
- ・ 支持 GPTQ 量化
- 支持 **AWQ** 量化
- 支持 FP8
- 支持贪心搜索 (Greedy-search)
- 支持波束搜索 (Beam-search)
- 支持旋转位置编码 * (RoPE)

支持的模型

- Baichuan
- Bert
- Blip2
- BLOOM
- ChatGLM-6B
- ChatGLM2-6B
- Falcon
- GPT
- GPT-J
- GPT-Nemo
- GPT-NeoX
- <u>LLaMA</u>
- LLaMA-v2
- MPT
- OPT
- SantaCoder
- StarCoder

支持的精度

TensorRT-LLM 支持各种数值精度。 但对其中一些数字精度的支持需要特定的GPU架构。

FP32	FP16	BF16	FP8	INT8	INT4

知乎 前发于 动手学大模型

Turing (SM75)	Υ	Υ	N	N	Υ	Υ
Ampere (SM80, SM86)	Υ	Y	Y	N	Υ	Υ
Ada- Lovelace (SM89)	Υ	Υ	Y	Υ	Υ	Υ
Hopper (SM90)	Υ	Υ	Υ	Υ	Υ	Υ

对于目前发布的v0.5.0,并非所有模型都实现了对 FP8 和量化数据类型(INT8 或 INT4)的支持,具体如下所示。

Mode I	FP32	FP16	BF16	FP8	W8A8 SQ	W8A1 6	W4A1 6	W4A1 6 AWQ	W4A1 6 GPTQ
Baich uan	Υ	Υ	Υ			Υ	Υ		
BERT	Υ	Υ	Υ						
BLOO M	Υ	Υ	Υ		Υ	Υ	Υ		
Chat GLM	Υ	Υ	Υ						
Chat GLM- v2	Υ	Υ	Υ						
Falco n	Υ	Υ	Υ						
GPT	Υ	Υ	Υ	Υ	Υ	Υ	Υ		
GPT-J	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	
GPT- NeM o	Υ	Υ	Υ						
GPT- NeoX	Υ	Υ	Υ						Υ
LLaM A	Υ	Υ	Υ		Υ	Υ	Υ	Υ	Υ
LLaM A-v2	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
OPT	Υ	Υ	Υ						
Santa Coder	Υ	Υ	Υ						
StarC oder	Υ	Υ	Υ						

TensorRT-LLM 的性能

注意

下表中的数据作为参考进行提供,以帮助用户验证观察到的性能。这不是 TensorRT-LLM 提供的峰值性能。

不同模型基于 FP16 在 A100 GPUs 上的吞吐量:

知乎 前发于 动手学大模型

GPT-J 6B	64	1	128	128	3,679
GPT-J 6B	32	1	128	2048	1,558
GPT-J 6B	32	1	2048	128	526
GPT-J 6B	16	1	2048	2048	650
LLaMA 7B	64	1	128	128	3,486
LLaMA 7B	32	1	128	2048	1,459
LLaMA 7B	32	1	2048	128	529
LLaMA 7B	16	1	2048	2048	592
LLaMA 70B	64	4	128	128	1,237
LLaMA 70B	64	4	128	2048	1,181
LLaMA 70B	64	4	2048	128	272
LLaMA 70B	64	4	2048	2048	738
Falcon 180B	64	8	128	128	929
Falcon 180B	64	8	128	2048	923
Falcon 180B	64	8	2048	128	202

不同模型基于 FP16 在 A100 GPUs 上的首Token延迟:

针对批量大小为 1 时,第一个Token延迟的数据,代表终端用户感知在线流任务的延迟。

Model	Batch Size	TP (1)	Input Length	1st Token Latency (ms)
GPT-J 6B	1	1	128	12
GPT-J 6B	1	1	2048	129
LLaMA 7B	1	1	128	16
LLaMA 7B	1	1	2048	133
LLaMA 70B	1	4	128	47
LLaMA 70B	1	4	2048	377
Falcon 180B	1	8	128	61
Falcon 180B	1	8	2048	509

结语

本文简要概述了TensorRT-LLM诞生的原因以及基本特征。码字不易,如果觉得有帮助,欢迎点赞收藏加关注。

参考文档:

- github.com/NVIDIA/Tenso...
- <u>github.com/NVIDIA/Tenso...</u>
- github.com/NVIDIA/Tenso...

发布于 2023-11-14 20:45 · IP 属地四川

大模型 人工智能 TensorRT

文章被以下专栏收录

动手学大模型

推荐阅读

[TensorRT-LLM]部署流程

TRT-LLM部署流程1. 编译trt-cpp文 件cd TensorRT-LLM/cpp/build export

TRT_LIB_DIR=/usr/local/tensorrt export

TRT_INCLUDE_DIR=/usr/local/t...

平平无奇小熊猫

TensorRT-LLM 概念指南: Overview

李稀敏 发表于模型推理优...

长文详解--LLM高效预训练(一)

【推荐文章】 MoE: MoE模型的 前世今生 DeepSeek-V2和MLA 昆 仑万维-SkyworkMoE 成本10w刀 的JetMoE MoE的top-p routing 对 MoE模型的一些观察 从dense到 MoE -- sparse upcycling MoE...

发表于NLP-L... Linsi...

关于LLM RAG的思考

RAG和Agent是两个被寄予原 LLM落地路径。相比Agent, 阶段RAG更具可行性,并已约 通用的实现方案。 目标/动机 望RAG能够带来如下几个方面 升:解决幻觉、私域知识、矢

sure