Relative objects

1 Relative schemes

Definition 1. Let X be a scheme. An \mathcal{O}_X -algebra is a sheaf. Yang: To be continued...

Definition 2. Let X be a scheme and \mathcal{A} be a quasi-coherent \mathcal{O}_X -algebra. The relative Spec of \mathcal{A} , denoted by $\operatorname{Spec}_X \mathcal{A}$, is the scheme obtained by gluing the affine schemes $\operatorname{Spec} \mathcal{A}(U)$ for all affine open subsets $U \subset X$. Yang: To be continued...

Proposition 3. Let X be a scheme and \mathcal{E} be a locally free sheaf of finite rank on X. Then the relative Spec of the symmetric algebra of \mathcal{E} , denoted by $\mathbb{V}(\mathcal{E}) = \operatorname{Spec}_{X \mathcal{O}_X} \mathcal{E}$, is called the geometric vector bundle associated to \mathcal{E} . The projection morphism $\pi: \mathbb{V}(\mathcal{E}) \to X$ is affine and for any open subset $U \subset X$, we have $\pi^{-1}(U) \cong \operatorname{Spec}_{\mathcal{O}_X(U)} \mathcal{E}(U)$. Yang: To be continued...

Definition 4. Let X be a scheme and \mathcal{A} be a quasi-coherent graded \mathcal{O}_X -algebra such that $\mathcal{A}_0 = \mathcal{O}_X$ and \mathcal{A} is generated by \mathcal{A}_1 as an \mathcal{O}_X -algebra. The relative Proj of \mathcal{A} , denoted by $\operatorname{Proj}_X \mathcal{A}$, is the scheme obtained by gluing the affine schemes $\operatorname{Proj}_{\mathcal{A}}(U)$ for all affine open subsets $U \subset X$. The projection morphism $\pi : \operatorname{Proj}_X \mathcal{A} \to X$ is projective and for any open subset $U \subset X$, we have $\pi^{-1}(U) \cong \operatorname{Proj}_{\mathcal{A}}(U)$. Yang: To be continued...

2 Blowing up

Definition 5. Let X be a scheme and $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. The blowing up of X along \mathcal{I} , denoted by $\mathrm{Bl}_{\mathcal{I}} X$, is defined to be the relative Proj of the Rees algebra of \mathcal{I} :

$$\mathrm{Bl}_{\mathcal{I}}X=\mathrm{Proj}_X\bigoplus_{n=0}^\infty\mathcal{I}^n.$$

The projection morphism $\pi: \operatorname{Bl}_{\mathcal{I}}X \to X$ is projective and for any open subset $U \subset X$, we have $\pi^{-1}(U) \cong \operatorname{Bl}_{\mathcal{I}(U)}U$. The exceptional divisor of the blowing up is defined to be the closed subscheme $E = \pi^{-1}(V(\mathcal{I}))$ of $\operatorname{Bl}_{\mathcal{I}}X$. Yang: To be continued...

3 Relative ampleness and relative morphisms

Date: August 31, 2025, Author: Tianle Yang, My Homepage