

Objetivos de la sesión

Propiciar que estudiantes y profesor se conozcan

Introducir técnicas de Machine Learning

Introducir conceptos básicos de ML Establecer las bases de los contenidos del curso

Modelo

- Estructura matemática típicamente representada mediante código computacional capaz de estimar el valor de una variable (categórica o continua) a partir de predictores.
- Todos los modelos tienen error (las observaciones también)

Error (residuos, pérdida, etc.) de un modelo

- Desviación del valor estimado respecto del esperado.
- Se puede medir de múltiples maneras (métricas).
- Típicamente se calcula sobre un conjunto de estimaciones/observaciones
- El error depende del modelo, pero también de los datos de entrada y de los parámetros del modelo.

Métricas: MSE

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Error cuadrático medio (MSE)

donde y_i es el resultado real esperado y \hat{y}_i es la predicción del modelo.

Métricas: MAE

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Error absoluto medio (MAE)

MAE vs RMSE

Métricas: coeficiente de determinación

$$R^2 = 1 - \frac{\text{MSE(model)}}{\text{MSE(baseline)}}$$

Métricas de Regresión en aprendizaje automatico: R al cuadrado (R2)

$$MSE(baseline) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2$$

Métricas de Regresión en aprendizaje automatico: MSE linea base

Correlación

Performance

$$Precision = \frac{True_{positive}}{True_{positive} + False_{positive}}$$

$$Recall = \frac{True_{positive}}{True_{positive} + False_{negative}}$$

$$F_1 = \frac{2}{\frac{1}{precision} + \frac{1}{recall}}$$

$$Accuracy = \frac{True_{positive} + True_{negative}}{True_{positive} + True_{negative} + False_{positive} + False_{negative}}$$

https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/

Backpropagation

¿Qué es el sobreajuste?

https://vitalflux.com/overfitting-underfitting-concepts-interview-questions/

Sobreajuste

https://vitalflux.com/overfitting-underfitting-concepts-interview-questions/

Validation techniques

- Train and Test Split
- Train, Validation and Test Split.
- K-Fold Cross-Validation
- Nested Cross-Validation
- Random Subsampling
- Bootstrapping

Train and Test Split

Train, Validation and Test Split.

https://sdsclub.com/how-to-train-and-test-data-like-a-pro/

K-Fold Cross-Validation

Nested Cross-Validation

https://www.researchgate.net/figure/Overview-of-the-adopted-Nested-cross-validation-scheme-Model-optimization-is-performed_fig1_351514990

Random Subsampling

https://towardsdatascience.com/understanding-8-types-of-cross-validation-80c935a4976d

Bootstrapping

@ **①**

This work by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

http://rasbt.github.io/mlxtend/user_guide/evaluate/bootstrap_point632_score/