Searching PAJ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-044089

(43) Date of publication of application: 18.02.1994

(51)Int.CI.

G06F 9/46

G06F 9/46 G06F 9/38

G06F 9/38

(21)Application number : 05-115913

(71)Applicant: MATSUSHITA ELECTRIC IND

CO LTD

(22) Date of filing:

18.05.1993

(72)Inventor: KIMURA KOZO

HIRATA HIROAKI

(30)Priority

Priority number: 04124910

Priority date: 18.05.1992 Priority country: JP

(54) INFORMATION PROCESSOR

(57)Abstract:

PURPOSE: To efficiently use the plural arithmetic operation units of plural instruction streams so is to execute them.

CONSTITUTION: Plural operand buffers 51, 61, 71 and 81, the plural arithmetic operation units 52, 62, 72 and 82, plural register files 107-109, execution control parts 54, 64, 74 and 84 controlling the execution of the plural instruction streams and a context back-up memory 111 storing the context of the instruction stream are provided. The execution control parts 54, 69, 74 and 84 stops the execution of the instruction stream of an instruction which becomes a main cause when a specified event

occurs or a specified state is detected, saves the context in the context back-up memory 111 and executes change-over to the new instruction stream context so as to start execution.

LEGAL STATUS

[Date of request for examination]

17.05.2000

[Date of sending the examiner's decision of 08.06.2004

rejection]

[Kind of final disposal of application other

than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against

examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) B本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-44089

(43)公開日 平成6年(1994)2月18日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
G06F	9/46	3 4 0 Z	8120-5B		
		3 1 3 Z	8120-5B		
	9/38	310 F	9193-5B		
		380 B	9193-5B		

		1	密查請求 未	卡請求	請求項の数150	(全 15 頁)
(21)出願番号	特願平5-115913	(71) 出願人	000005821 松下電器産	業株式	会社	
(22)出願日	平成5年(1993)5月18日	(72)発明者	大阪府門真 木村 浩三		2門真1006番地	
(31)優先権主張番号	特願平4-124910		大阪府門真	【市大学	門真1006番地	松下電器
(32)優先日	平4 (1992) 5月18日		産業株式会	社内		
(33)優先権主張国	日本(JP)	(72)発明者			·門真1006番地	松下電器
			産業株式会	社内		
		(74)代理人	弁理士 武	田元	金	
						•

(54) 【発明の名称】 情報処理装置

(57)【要約】 (修正有)

【目的】 複数の命令ストリームの複数の演算ユニット を効率よく使用して実行する。

【構成】 複数のオペランドパッファ51, 61, 71, 81 と、複数の演算ユニット52, 62, 72, 82と、複数のレジ スタファイル107~109と、複数の命令流の実行を制御す る実行制御部54,64,74,84と、命令流のコンテキスト を格納するコンテキスト・パックアップ・メモリ111を 備え、実行制御部54, 64, 74, 84は、特定のイベントが 発生したり、特定の状態を検出した場合にはその要因と なった命令の命令流の実行を停止し、コンテキスト・パ ックアップ・メモリ111にそのコンテキストを退避し、 新たな命令流のコンテキストに切換えして実行を開始す る。

【特許請求の範囲】

【請求項1】 複数の命令準備部と、複数の演算実行部 と、複数のレジスタファイルと、前記命令準備部と演算 実行部の間に設けられる命令スケジュール部を備え、前 記命令準備部は、命令を読み出す命令フェッチ手段と、 前記演算実行部からのデータ依存情報を解析、保管する 依存解析手段と、前記命令フェッチ手段が読み出した命 令を解読して前記データ依存情報を基に命令の発行可能 性を判定する命令解読手段からなり、前記命令スケジュ ール部は、複数の命令準備部からの命令解読結果を受け 付けるとともに、複数の演算実行部のうち命令受付可能 状態にある演算実行部を対象として発行可能な命令解読 結果を選択し、それらの中の各命令を対応する演算実行 部に出力する手段を含み、前記演算実行部は、命令スケ ジュール部から受け付けた命令を実行する手段と、実行 終了時には依存解消情報をその命令の解読時に依存解析 を行った命令準備部の依存解析手段に通知する手段とを 含み、特定のイベントが発生したり、または特定の状態 を検出した場合には、その要因となった命令の命令流の 実行を停止し、メモリに停止した命令流のコンテキスト を退避し、メモリから新たな命令流のコンテキストを格 納して実行を開始することを特徴とする情報処理装置。

【請求項2】 複数の命令準備部と、複数の演算実行部 と、複数のレジスタファイルと、前記命令準備部と演算 実行部の間に設けられる命令スケジュール部と、複数の 命令流の実行を制御する命令流実行制御部と、命令流の コンテキストを格納するメモリを備え、前記命令準備部 は、命令を読み出す命令フェッチ手段と、前記演算実行 部からのデータ依存情報を解析、保管する依存解析手段 と、前記命令フェッチ手段が読み出した命令を解読して 前記データ依存情報を基に命令の発行可能性を判定する 命令解読手段からなり、前記命令スケジュール部は、複 数の命令準備部からの命令解読結果を受け付けるととも に、複数の演算実行部のうち命令受付可能状態にある演 算実行部を対象として発行可能な命令解読結果を選択 し、それらの中の各命令を対応する演算実行部に出力す る手段を含み、前記演算実行部は、命令スケジュール部 から受け付けた命令を実行する手段と、実行終了時には 依存解消情報をその命令の解読時に依存解析を行った命 今準備部の依存解析手段に通知する手段とを含み、前記 命令流実行制御部は、特定のイベントが発生したり、ま たは特定の状態を検出した場合には、その要因となった 命令の命令流の実行を停止し、メモリに停止した命令流 のコンテキストを退避し、メモリから新たな命令流のコ ンテキストを格納して実行を開始することを特徴とする 情報処理装置。

複数の命令準備部と、複数の演算実行部 【請求項3】 と、少なくとも前記命令準備部よりも多くの複数のレジ スタファイルと、前記命令準備部と演算実行部の間に設 けられる命令スケジュール部と、複数の命令流の実行を 50 応させて、新たに割り付けられた命令流の実行を開始す

制御する命令流実行制御部を備え、前記命令準備部は、 命令を読み出す命令フェッチ手段と、前記演算実行部か らのデータ依存情報を解析、保管する依存解析手段と、 前記命令フェッチ手段が読み出した命令を解読して前記 データ依存情報を基に命令の発行可能性を判定する命令 解読手段からなり、前記命令スケジュール部は、複数の 命令準備部からの命令解読結果を受け付けるとともに、 複数の演算実行部のうち命令受付可能状態にある演算実 行部を対象として発行可能な命令解説結果を選択し、そ 10 れらの中の各命令を対応する演算実行部に出力する手段 を含み、前記演算実行部は、命令スケジュール部から受 け付けた命令を実行する手段と、実行終了時には依存解 消情報をその命令の解読時に依存解析を行った命令準備 部の依存解析手段に通知する手段とを含み、前記命令流 実行制御部は、命令流を命令準備部およびレジスタファ イルに対応させて、命令準備部に割り付けられている命 令流については実行させるが、特定のイベントが発生し たり、または特定の状態を検出した場合には、その要因 となった命令の命令流の実行を停止し、その命令流に割 り付けられていた命令準備部をまだ割り付けられていな かった命令流に対応させて、新たに割り付けられた命令 流の実行を開始することを特徴とする情報処理装置。

2

【請求項4】 複数の命令準備部と、複数の演算実行部 と、少なくとも前記命令準備部よりも多くの複数のレジ スタファイルと、前記命令準備部と演算実行部の間に設 けられる命令スケジュール部と、複数の命令流の実行を 制御する命令流実行制御部と、命令流のコンテキストを 格納するメモリを備え、前記命令準備部は、命令を読み 出す命令フェッチ手段と、前記演算実行部からのデータ 依存情報を解析、保管する依存解析手段と、前記命令フ エッチ手段が読み出した命令を解読して前記データ依存 情報を基に命令の発行可能性を判定する命令解説手段か らなり、前記命令スケジュール部は、複数の命令準備部 からの命令解読結果を受け付けるとともに、複数の演算 実行部のうち命令受付可能状態にある演算実行部を対象 として発行可能な命令解読結果を選択し、それらの中の 各命令を対応する演算実行部に出力する手段を含み、前 記演算実行部は、命令スケジュール部から受け付けた命 令を実行する手段と、実行終了時には依存解消情報をそ 40 の命令の解読時に依存解析を行った命令準備部の依存解 析手段に通知する手段とを含み、前記命令流実行制御部 は、命令流を命令準備部およびレジスタファイルに対応 させて、命令準備部に割り付けられている命令流につい ては実行させるが、特定のイベントが発生したり、また は特定の状態を検出した場合には、その要因となった命 令の命令流の実行を停止し、その命令流のコンテキスト をメモリに退避し、その命令流に割り付けられていた命 令準備部をまだ命令準備部に割り付けられておらず、か **つレジスタファイルには割り付けられている命令流に対**

30

ることを特徴とする情報処理装置。

【請求項5】 命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとすることを特徴とする請求項1ないし4のいずれかに記載の情報処理装置。

【請求項6】 特定のイベントが発生したり、または特定の状態を検出した場合には、その要因となった命令の命令流に割り付けられている命令準備部の実行を停止し、命令準備部の内部状態を初期化することを特徴とする請求項1ないし4のいずれかに記載の情報処理装置。

【請求項7】 命令流の実行を停止し退避するコンテキストに先頭PCを含み、再度この命令流を実行する場合には先頭PCから実行を再開することを特徴とする請求項1ないし4のいずれかに記載の情報処理装置。

【請求項8】 命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、キャッシュミスが発生した場合、メモリアクセス命令を打ち切り正常終了させることを特徴とする請求項1ないし4のいずれかに記載の情報処理装置。

【請求項9】 新たな命令流を命令準備部に割り付け、命令実行を再開する場合、切り替えの要因となり実行を打ち切ったメモリアクセス命令を再実行させることを特徴とする請求項1ないし4のいずれかに記載の情報処理装置。

【請求項10】 命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセス命令のPCも一緒に退避することを特徴とする請求項1ないし4のいずれかに記載の情報処理装置。

【請求項12】 コンテキストを退避するメモリが同一プロセッサ上にあることを特徴とする請求項2または4 記載の情報処理装置。

【請求項13】 命令流実行制御部は、コンテキストが メモリに退避された命令流については、特定の状態が解 消され、かつ命令流に割り付けられていないレジスタフ 40 ァイルがある場合、コンテキストがレジスタファイルに 復元され命令流がそのレジスタファイルに割り付けるこ とを特徴とする請求項4記載の情報処理装置。

【請求項14】 命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセスアドレスも一緒に退避することを特徴とする請求項1ないし4のいずれかに記載の情報処理装置。

【請求項15】 命令流の切り替えの契機となる特定の ードストアユニットはインタロック状態に陥る。これよイベントをメモリアクセスに関するエラーとすることを 50 り、長時間にわたり、キャッシュミスを起こした命令ス

特徴とする請求項1ないし4のいずれかに記載の情報処理装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は複数の命令ストリームの 命令を並列に発行することによって、複数の演算ユニッ トを効率よく使用する情報処理装置に関する。

[0002]

【従来の技術】従来の情報処理装置の例としては、一つ 10 のプロセッサ内で複数の命令流を同時に処理するマルチ スレッド・プロセッサがある。この方式については、

"A Multi threaded Processor Architecture With Simultaneous InstructionIssuing," In Proc. of ISS'9 1: International Symposium on Supercomputing, Pukuo ka, Japan, pp. 87-96, November 1991 に詳細に述べられている。この従来の情報処理装置の構成図を図7に示す。図7において200は命令キャッシュ、201は命令フェッチユニット、202は解読ユニット、203はスタンバイステーション、204は命令スケジュールユニット、205は機能ユニット、206はレジスタセットである。以上のように構成された従来例の情報処理装置について、その動作を説明する。

【0003】各命令フェッチユニット201はそれぞれ異なる命令流の命令を命令キャッシュ200から読み込む。解読ユニット202はそれぞれの命令流の命令を解読し、命令を処理可能な機能ユニット205に接続されているスタンパイステーション203に格納する。命令スケジュールユニット204はスタンパイステーション203から適切な命令を選択し、機能ユニット205に送る。機能ユニット205はしジスタセット206を思いて実行する

【0004】このプロセッサの特徴は複数の命令流を演算器で共有して実行することである。既存のスーパースカラ処理方式のプロセッサは機能ユニット205のみの多重化(複数化)のため、同時に処理可能な命令ストリームは1つで、命令間の依存関係によりパイプラインインタロックが頻繁に発生する。その結果、機能ユニット205の使用効率は上がらず性能向上が困難であった。また、従来例のプロセッサでは複数の命令ストリームの命令を並列に実行することにより命令レベルの並列性を増加し、各機能ユニットの使用効率を上げ、性能向上を実現できる。

[0005]

【発明が解決しようとする課題】しかしながら上記の構成では、下記の問題点を有していた。機能ユニット205の1つのロードストアユニットにおいて、ある1つの命令ストリームのロード命令を実行した時、キャッシュミスを起こしたとする。キャッシュミスが発生するとキャッシュは主記憶よりデータのアップデートを行うためロードストアユニットはインタロック状態に陥る。これより、長時間にわたり、キャッシュミスを紀こした命令ス

5

トリームの解読ユニット202などが命令発行待ちの状態となり、ロード命令に後続する命令が実行できなくなる。そして、他の命令ストリームの命令についてもロードストアユニットを使用できなくなり、やがてプロセッサ全体が停止してしまうことになる。このように、ある1箇所でパイプラインのインタロックが発生するとプロセッサ全体に影響を及ぼし、性能劣化を引き起こす。

【0006】本発明は上記問題点に鑑み、複数の命令ストリームを同時実行するプロセッサにおいて、パイプラインのインタロックおよびロック時間を削減し、高性能 10を実現する情報処理装置の提供を目的とする。

[0007]

【課題を解決するための手段】本発明は、上記問題点を解決するために、請求項1記載の発明の情報処理装置は、複数の命令準備部と、複数の演算実行部と、複数のレジスタファイルと、前記命令準備部と演算実行部の間に設けられる命令スケジュール部を備え、特定のイベントが発生したり、または特定の状態を検出した場合には、その要因となった命令の命令流の実行を停止し、メモリに停止した命令流のコンテキストを退避し、メモリから新たな命令流のコンテキストを格納して実行を開始することを特徴としている。

【0008】請求項2記載の発明の情報処理装置は、複数の命令準備部と、複数の演算実行部と、複数のレジスタファイルと、前記命令準備部と演算実行部の間に設けられる命令スケジュール部と、複数の命令流の実行を制御する命令流実行制御部と、命令流のコンテキストを格納するメモリを備え、命令流実行制御部は、特定のイベントが発生したり、または特定の状態を検出した場合には、その要因となった命令の命令流の実行を停止し、メることを特徴としている。モリに停止した命令流のコンテキストを退避し、メモリから新たな命令流のコンテキストをととを持つとしている。「0015】請求項9記録から新たな命令流のコンテキストをととで発達し、メモリな命令流を命令準備部にすることを特徴としている。

場合、切り替えの要因となったの令のの要因となった。

【0009】請求項3記載の発明の情報処理装置は、複数の命令準備部と、複数の演算実行部と、少なくとも前記命令準備部よりも多くの複数のレジスタファイルと、前記命令準備部と演算実行部の間に設けられる命令スケジュール部と、複数の命令流の実行を制御する命令流実行制御部と、前記命令流実行制御部は、命令流を命令準備部およびレジスタファイルに対応させて、命令準備部に割り付けられている命令流については実行させるが、特定のイベントが発生したり、または特定の状態を検出した場合には、その要因となった命令の命令流の実行を停止し、その命令流に割り付けられていた命令準備部をまだ割り付けられていなかった命令流に対応させて、新たに割り付けられた命令流の実行を開始することを特徴としている。

【0010】 請求項4記載の発明の情報処理装置は、複数の命令準備部と、複数の演算実行部と、少なくとも前記命令準備部よりも多くの複数のレジスタファイルと、

前記命令準備部と演算実行部の間に設けられる命令スケジュール部と、複数の命令流の実行を制御する命令流実行制御部と、命令流のコンテキストを格納するメモリを備え、前配命令流実行制御部は、命令流を命令準備部に割り付けられている命令流については実行させるが、特定のイベントが発生したり、または特定の状態を検出した場合には、その要因となった命令の命令流の実行を停止し、その命令流に割り付けられていた命令準備部をまだ割り付けられていなかった命令流に対応させて、新たに割り付けられた命令流の実行を開始することを特徴としている。

【0011】請求項5記載の発明の情報処理装置は、命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとすることを特徴としている。

【0012】請求項6記載の発明の情報処理装置は、特定のイベントが発生したり、または特定の状態を検出した場合には、その要因となった命令の命令流に割り付けられている命令準備部の実行を停止し、命令準備部の内部状態を初期化することを特徴としている。

【0013】請求項7記載の発明の情報処理装置は、命令流の実行を停止し退避するコンテキストに先頭PCを含み、再度この命令流を実行する場合には先頭PCから実行を再開することを特徴としている。

【0014】請求項8記載の発明の情報処理装置は、命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、キャッシュミスが発生した場合、メモリアクセス命令を打ち切り正常終了させることを特徴としている。

【0015】請求項9記載の発明の情報処理装置は、新たな命令流を命令準備部に割り付け、命令実行を再開する場合、切り替えの要因となり実行を打ち切ったメモリアクセス命令を再実行させることを特徴としている。

【0016】請求項10記載の発明の情報処理装置は、命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセス命令のPCも一緒に退避することを特徴としている。

【0017】請求項11記載の発明の情報処理装置は、命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセス命令も一緒に退避することを特徴としている。

【0018】請求項12記載の発明の情報処理装置は、コンテキストを退避するメモリが同一プロセッサ上にあることを特徴としている。

【0019】 請求項13記載の発明の情報処理装置は、命令流の実行制御部は、コンテキストがメモリに退避されたの令流については、特定の状態が解消され、かつ命令

流に割り付けられていないレジスタファイルがある場合、コンテキストがレジスタファイルに復元され命令流がそのレジスタファイルに割り付けることを特徴としている。

【0020】請求項14記載の発明の情報処理装置は、命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセスアドレスも一緒に退避することを特徴としている。

【0021】 請求項15記載の発明の情報処理装置は、命 10 令流の切り替えの契機となる特定のイベントをメモリアクセスに関するエラーとすることを特徴としている。

[0022]

【作用】請求項1記載の発明の情報処理装置においては、インタロックを発生した命令流を休眠状態(退避)にし、ハードウェア機構を他の命令流に割り付ける、すなわち命令流を切り替えて実行することより、パイプラインのインタロックおよびロック時間を削減し、機能ユニットの使用効率を向上させ、高性能を実現できる。

【0023】請求項2記載の発明の情報処理装置におい 20 ては、インタロックを発生した命令流を休眠状態にしてコンテキストをメモリに退避し、新たな命令流のコンテキストを復帰させ、ハードウェア機構を割り付ける、すなわち命令流を切り替えて実行することにより、パイプラインのインタロックおよびロック時間を削減し、機能ユニットの使用効率を向上させ、高性能を実現できる。

【0024】請求項3記載の発明の情報処理装置においては、命令準備部よりも多くのレジスタファイルを設けることにより、インタロックが発生しても、インタロックが発生した命令流のコンテキストをメモリに退避する 30 ことなく、新たな命令流を実行させることができるので、高速な命令流切り替えができる。

【0025】 請求項4および13記載の発明の情報処理装置においては、命令準備部よりも多くのレジスタファイルとコンテキストを退避するメモリを設けることにより、インタロックを発生した場合、インタロックを発生した命令流のコンテキストはメモリに退避するが、新たな命令流のコンテキストは予めレジスタに準備することができるので、通常の命令と命令流の切り替えをオーバーラップして実行できるので、高速な命令流切り替えが40できる。

【0026】請求項5記載の発明の情報処理装置においては、命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとすることにより、メモリアクセス時のオーバーヘッドを削減できる。

【0027】請求項6記載の発明の情報処理装置においては、特定のイベントが発生したり、または特定の状態を検出した場合には、その要因となった命令の命令流に割り付けられている命令準備部の実行を停止し、命令準備部の内部状態を初期化することにより、パイプライン 50

制御が容易になる。

【0028】請求項7記載の発明の情報処理装置においては、命令流の実行を停止し退避するコンテキストに先頭PCを含み、再度この命令流を実行する場合には先頭PCから実行を再開することにより、命令切り替えの制御が容易になる。

8

【0029】請求項8記載の発明の情報処理装置においては、命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、キャッシュミスが発生した場合、メモリアクセス命令を打ち切り正常終了させることにより、命令切り替えの制御が容易になる。

【0030】請求項9記載の発明の情報処理装置においては、新たな命令流を命令準備部に割り付け、命令実行を再開する場合、切り替えの要因となり実行を打ち切ったメモリアクセス命令を再実行させることにより、命令切り替えの制御が容易になる。

【0031】 請求項10記載の発明の情報処理装置においては、命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセス命令のPCも一緒に退避することにより、命令再実行が可能となり切り替えの制御が容易になる。

【0032】請求項11記載の発明の情報処理装置においては、命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセス命令も一緒に退避することにより、命令再実行が高速に実現でき切り替えの制御も容易になる。

【0033】請求項12記載の発明の情報処理装置においては、コンテキストを退避するメモリを同一プロセッサ上に実現することにより、高速な切り替えやロード命令などの外部パスを使用する命令と並列に実行できる。

【0034】請求項14記載の発明の情報処理装置においては、命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセスアドレスも一緒に退避することにより、命令再実行が高速に実現でき切り替えの制御も容易になる。

【0035】請求項15記載の発明の情報処理装置においては、命令流の切り替えの契機となる特定のイベントをメモリアクセスに関するエラーとすることにより、メモリアクセスエラー時のオーバーヘッドを削減できる。

[0036]

【実施例】図1は本発明の一実施例における情報処理装置の構成図を示すものである。図1において、11および21はメモリからフェッチした命令を格納しておく命令パッファ、12および22はフェッチしてくる命令のアドレス計算およびアドレス(PC(プログラムカウンタ)値と同じになる)管理を行う命令フェッチ制御部、13および23

はフェッチする命令のアドレスを格納する命令フェッチ カウンタ(以下、FCと略す)、14および24は命令パッフ ァ11および21から出力する命令を解読する命令解読部、 15および25は命令解読部14および24と対応して解読中の 命令のアドレスを格納する解読プログラムカウンタ(以 下、解読PCと略す)であり、この解読PC_A15およ び解読PC B25は解読PC値だけではなく命令流のI D番号を格納している。

【0037】51,61,71および81はレジスタからの命令 よび82は演算ユニットであり、この演算ユニットの機能 は特に限定する必要はないが説明を簡単にするため、か つ一般的な構成を考えると、52はメモリアクセス命令を 処理するロードストアユニット、62は整数演算を処理す る整数演算ユニット、72は浮動小数点の加減算や整数と 浮動小数点間の変換を行う浮動小数点加算ユニット、82 は浮動小数点の乗算や除算を行う浮動小数点乗算ユニッ トである。

【0038】53,63,73および83はオペレーションまた は命令を一時的に格納するオペレーションパッファ、5 20 4,64,74および84は各演算ユニットを制御する実行制 御部、55,65,75および85は実行中の命令のアドレス (実行PC)を格納する実行プログラムカウンタ(以下、 実行PCと略す)であり、この実行PC__55および実行 PC65は実行PC値だけではなく命令流のID番号を格 納している。

【0039】101は命令フェッチ用のアドレスを命令フ ェッチ制御部12および22から選択するセレクタ、102は 命令の解読結果であるオペレーションおよび即値などを イッチ、103はオペレーション用スイッチ102と連動して 解読PC値を対応する実行PCに接続するPC用スイッ チ、104は命令解読部14および24から出力された即値と レジスタファイル107, 108および109から出力されたオ ペランドをオペランドパッファ51,61,71および81に接 続するオペランドスイッチである。

【0040】105はパイプラインを無効化したり、命令 を再実行させたりなどのパイプライン制御を司るパイプ ライン制御部、106は実行対象となっているレジスタフ ァイル107, 108, 109を選択してレジスタ番号を出力す 40 るレジスタ指定用スイッチ、前記レジスタファイル10 7, 108および109は演算ユニット52, 62, 72, 82に対応 して整数用と浮動小数点用レジスタを持つ。

【0041】110は演算結果を対応するレジスタに接続 する書き込み用スイッチ、111は命令流を切り替えたと きにレジスタファイル107、108および109の内容や実行 PC値を格納するコンテキスト・パックアップ・メモ リ、112はレジスタファイル107、108および109とコンテ キスト・パックアップ・メモリ111間でデータを転送す は命令実行中でデータが確定していないレジスタの番号 を示すスコアポード、114はスコアポードの状態と命令 よりデータ依存が発生しているか否かを調べるデータ依 存チェック部、115は命令流の状態と対応する命令フェ ッチユニットと対応するレジスタファイルを示す状態管 理テーブルである。

10

【0042】説明を分かりやすくするために、同じ機能 を持つ機構(命令パッファや命令解読部など)について は、図1に示すように名称の最後に適当なアルファベッ を一時的に格納するオペランドパッファ、52,62,72お 10 トを付加して区別する。同じアルファペットが付加され たものは、同一の命令流を扱うと考えてよい。

> 【0043】命令パッファ11および21をそれぞれ命令パ ッファ A、命令パッファ Bとし、同様に命令解読部 14および24もそれぞれ命令解読部 A、命令解読部 B とする。命令フェッチ制御部12および22や解読PC15お よび25等についても図1に示すとおり同様である。レジ スタファイル107、108および109については、それぞれ レジスタファイル X, レジスタファイル Y, レジス タファイル 2とする。

【0044】以上のように構成された本実施例の情報処 理装置について、以下図1を用いてその動作を説明す る。まず、動作を説明する前に、データ(命令も含む)や 構成に関する前提条件について述べる。命令流(スレッ ド)は4個とし説明を分かりやすくするために、命令流 1. 命令流2. 命令流3. 命令流4とする。図1に示し たようにレジスタファイルはX, Y, Zの3セット(10 7, 108, 109)とする。同様に、命令フェッチユニット (命令パッファ11, 21および命令フェッチ制御部12, 22 などを含む)や、命令解読部14,24などは2セットとす 処理対象の演算ユニットに接続するオペレーション用ス 30 る。従って、同時実行の可能な命令流は2個となる。演 算ユニット52.62.72.82はパイプライン化されている が、パイプライン段数を始め詳細な構成等については本 発明とは直接関係しないので特に規定しない。また、命 令解読部14.24は命令流1個につき1命令を解読し、一 度に発行できる命令も1個とする。 ロードストアユニッ ト52はキャッシュユニットに接続され、ヒット時には高 速にデータをアクセスできるとする。

> 【0045】命令流の状態と対応する命令フェッチユニ ットおよびレジスタファイルの初期状態を表1に示す。

[0046]

【表1】

	状	態	レジスタ	命令フェッチ ユニット
命令流1	実	行	Х	A
命令流2	実	行	Y	В
命令流3	町	能	Z	なし
命令流4	甲	能	メモリ	なし

【0047】これはパイプライン制御部105内の状態管 る場合に両者を接続するバックアップ用スイッチ、113 50 理テープル115の内容と等価であり、パイプライン制御

部105はこの状態管理テーブル115の内容を更新すると同 時に、状態管理テーブル115の内容に基づいて命令流や パイプラインを制御する。表1を用いて初期状態を説明 する。

【0048】命令流1および2が情報処理装置内部で現 在実行中であり、命令流3および4は実行可能状態にあ る。命令流1および2は実行状態にあるのでレジスタフ ァイル107, 108, 109に割り付けられており、命令フェ ッチユニットは命令流1および2の命令をフェッチして ット A(命令パッファ A11や命令フェッチ制御部 A12等を含む)で命令をフェッチし、命令解読部 A14 (解読PC A15等も含む)で命令を解読し、演算は演算 ユニット(演算ユニットについては命令流に関わらず命 令の種類によって使用する) でレジスタファイル_X107 を使用して実行する。

【0049】同様に、命令流2については、命令フェッ チユニット B(命令パッファ B21や命令フェッチ制 御部 B22等を含む)で命令をフェッチし、命令解読部 B24(解読PC B25等も含む)で命令を解読し、演算 20 は演算ユニット(演算ユニットについては命令流に関わ らず命令の種類によって使用する)でレジスタファイル Y108を使用して実行する。命令流3および命令流4 は、初期状態は実行可能状態なので、命令フェッチパッ ファや命令解読部等は使用できない。しかし、レジスタ ファイルはもう1セット設けてあるので、命令流3をレ ジスタファイル2109に割り付けることにする。

【0050】演算ユニットでは命令流1または命令流2 の命令が実行されており、処理する命令がない場合には アイドル状態になっている。スコアボード113では実行 30 中により結果が確定していないレジスタ番号が命令流ご とに管理されている。コンテキスト・パックアップ・メ モリ111には現在レジスタファイル107, 108, 109に格納 されていない命令流のレジスタ資源などが格納されてい

【0051】次に切り替えが発生しない定常状態につい ての動作を説明する。

【0052】命令フェッチ制御部 A12は命令流1の命 令をフェッチし命令パッファ A11に格納している。同 ェッチし命令パッファ_B21に格納している。命令フェ ッチ制御部 A12および B22は切れ目なく命令を供給 するのが主機能であるから、その他の構成とは独立に命 令バッファ__A11および__B21に命令を供給する。命令 パッファ A11およびB21がフル(一杯)になれば命令フ ェッチを停止する。FC_A13および_B23は命令をフ ェッチする際の命令のアドレスを格納している。定常状 態ではアドレスをインクリメントしてフェッチ先のアド レスを計算しておく。また、フェッチ先のアドレスはセ レクタ101で選択される。分岐が発生した場合には分岐 50 12

先命令のアドレス計算や分岐先命令のフェッチなどの動 作もあるが、本発明とは特に関係しないので省略する。 【0053】命令解読部 A14および B24より以下の

ステージの説明は、動作を分かり易くするために命令流 1および命令流2の命令から動作を説明する。

【0054】命令解読部 A14は命令バッファ A11か らLOAD命令(メモリからレジスタへのロード命令) を、命令解読部__B24は命令パッファ__B21からADD 命令(整数レジスタ間の加算命令)を取り出し、それぞ いる。従って、命令流1については、命令フェッチユニ 10 れ解読しオペレーションを作成するとともに、そのオペ レーションを処理すべき演算ユニットを決定する。同時 に同一命令流内でデータ依存関係が発生していないかを チェックする。依存関係のチェックは、スコアポード11 3とデータ依存チェック部114が行う。

> 【0055】具体的には現在実行中のためにレジスタの 値が確定していないレジスタ番号がスコアボード113に 登録されており、命令解読部からこれから読み出すレジ スタ番号と比較し、一致すればデータ依存発生を命令解 読部に返す。これから実行する命令が、結果を反映して いないレジスタの値を使用することを防ぐためである。 レジスタ番号の登録は命令解読部 A14および B24が 命令を演算ユニットに発行するときに登録し、レジスタ 番号の解除は各演算ユニットの実行制御部54,64,74お よび84が命令実行の終了とともに行う。

【0056】解読PC A15と解読PC B25は命令解 読部 A14および命令解読部 B24に対応するPC値を 格納しているので、命令解読部 A14, B24が命令バ ッファ A11, B21より命令を受け取ったときには、 同時に命令フェッチ制御部A12, __B22よりPC値を受 け取る。前述したように解読PC A15には解読PC値 以外に命令流1のIDが、解読PC_B25には命令流2 のIDが格納されている。データ依存関係については信 学技報CPSY-90-54('90.7)「SIMP(単一命令 流/多重命令パイプライン)方式に基づくスーパースカ ラ・プロセッサの改良方針」に詳細に解説されている。

【0057】データ依存が発生している場合には依存関 係が解除されるまで命令の発行を停止し、発生していな い場合には、命令解読部はオペレーションを演算ユニッ トに発行すると同時に、レジスタファイルへ読み出し要 様に、命令フェッチ制御部 $_$ B22は命令流2の命令をフ40 求を出す。命令流1はレジスタファイル $_$ X107を使用 しているので、命令解読部 A14はレジスタファイルX 107ヘレジスタ番号を送出し、命令解読部 B24はレジ スタファイル Y108へ送出する。同時に、解読PC A15および解説PC B25の解説PC値を処理される演 算ユニットに送出する。レジスタ指定用スイッチ106は 状態管理テーブル115を基に命令解読部 A14とレジス タファイル_X107を、命令解読部_B24とレジスタフ ァイル Y108を接続する。オペレーション用スイッチ1 02は解読結果より命令解読部と演算ユニットを接続す る。同様にPC用スイッチ103は解読結果より解読PC と実行PCを接続する。本実施例の場合は、命令解読部 A14からLOAD命令が、命令解読部 B24からAD D命令が発行されるので、オペレーション用スイッチ10 2は命令解読部 A14とロードストアユニット52, 命令 解読部_B24と整数演算ユニット62を接続する。PC用 スイッチ103も同様の対応関係で接続(解読PC A15と 実行 P C 55, 解読 P C B 25 と実行 P C 65)を行う。命 令流1はレジスタファイル X107を使用し、命令流2 はレジスタファイル Y108を使用しているので、オペ ランドスイッチ104はレジスタファイル X107とロード 10 実行状態へ遷移する説明図と、図6に示すコンテキスト ストアユニット52を、レジスタファイル_Y108と整数 演算ユニット62を接続する。

【0058】ロードストアユニット52の入力にあるオペ ランドバッファ51にはレジスタファイル_X107から読 み出したオペランド値を、整数演算ユニット62の入力に あるオペランドバッファ61にはレジスタファイル Y10 8から読み出したオペランド値を格納する。そして命令 解読部 A14が発行したオペレーションをオペレーショ ンパッファ53に、命令解読部 B24が発行したオペレー ションをオペレーションパッファ63に、解読PC A15 20 の解読PC値および命令流1のIDを実行PCA55に、 解読PC_B25の解読PC値および命令流2のIDを実 行PC_B65にそれぞれ格納する。

【0059】以下、各演算ユニットはオペレーションや オペランドを基に実行し、結果をそれぞれレジスタやメ モリ等に格納する。ロードストアユニット52において は、命令流1のLOAD命令が実行され、計算したメモ リアドレスを基にキャッシュからデータをフェッチし、 レジスタファイル_X107内のレジスタに格納する。整 数演算ユニット62においてはADD命令が実行され、加 30 算結果をレジスタファイル Y108内のレジスタに格納 する。各実行制御部54,64はロードストアユニット52と レジスタファイル X107を、整数演算ユニット62とレ ジスタファイルY108を接続するように書き込み用スイ ッチ110を制御する。

【0060】実行制御部54,64は演算が終了しレジスタ ファイル X107, Y108への書き込みが終了すると、 スコアポード113に登録されたレジスタ番号をクリアす る。同時に、実行PCを無効化する(後続する命令が入 ってくれば必然的に更新される)。なお、演算ユニット 40 がパイプライン構成されているので、実行PCもそれに 対応して複数段必要であるが、本発明とは直接関係しな いので省略する。

【0061】また、命令解読部から発行されたオペレー ションが同じ演算ユニットを使用する場合、本実施例の 構成ではどちらか一方のオペレーションを待たせるため の機構が必要になるが、本発明とは直接関係ないのでそ の機構は省略する。演算ユニットの構成が変わった場合 には待ち合わせ機構も不要になる可能性もある。同様 に、同じ命令流の2つの命令が同時に演算が終了した場 50 態)

合には、レジスタファイルへの書き込みを待たせる、ま たはレジスタファイルの書き込みポートを複数設けるな どの対策が必要であるが、本発明とは直接関係ないので その説明は省略する。

14

【0062】続いて、命令流の切り替えが発生する場合 について、以下図2に示す命令流の状態遷移図と、図3 に示す命令流が実行状態から休眠状態へ遷移する説明図 と、図4に示す命令流が休眠状態から実行可能状態へ遷 移する説明図と、図5に示す命令流が実行可能状態から ・パックアップ・メモリのデータ配置図を用いて動作を 説明する。

【0063】図2は命令流の状態と状態遷移をさせるイ ペントの関係を示した状態遷移図である。命令流1は実 行中の状態(ア)なのでプロセッサの資源を使用して命令 を処理している。ロードストアユニット52で命令流1の ロード命令を実行するが、キャッシュミスを起こすとす る。キャッシュミスが発生するとキャッシュは主記憶よ りデータのアップデートを行うためロードストアユニッ ト52はインタロック状態に陥る。そこで他の命令流を実 行状態にするため命令流1を休眠状態(イ)にする。命令 流1はキャッシュが主記憶からデータをアップデートす れば実行させてもかまわない。そこで実行可能状態(ウ) に遷移させる。命令流1は実行可能状態なので、実行の ためのハードウェア資源が確保できれば実行状態(ア)に 遷移できる。

【0064】命令流の切り替えが発生する場合につい て、次に概説するような命令流の状態遷移に沿って説明

【0065】(1) 命令流1および命令流2は実行中の状 態なのでプロセッサの資源を使用して(命令流1がレジ スタファイル X107、命令流2がレジスタファイル_ Y108)命令を処理している。(初期状態, 命令流1およ び命令流2:実行状態)

(2) ロードストアユニット52で命令流1のロード命令を 実行するが、キャッシュミスを発生する。

【0066】(3) 命令流1のコンテキストをコンテキス ト・バックアップ・メモリ111に退避し、命令流1を休 眠状態にする。(命令流1:実行状態→休眠状態)

(4) 実行可能状態でレジスタファイルにコンテキストが 用意されている命令流3を実行するためにFC値などを 設定する。

【0067】(5)命令流3に起動をかける。(命令流 3: 実行可能状態→実行状態)

(6) 命令流4は実行可能状態なのでコンテキスト・パッ クアップ・メモリ111からコンテキストをレジスタファ イル X107に格納する。

【0068】(7) キャッシュはミスヒットしたデータを アップデートする。(命令流1:休眠状態→実行可能状

上記(1)~(7)に沿って詳細な動作を説明する。

【0069】(1-1) 命令流1のLOAD命令がロードス トアユニット52においてキャッシュアクセスするまで上 述した定常状態の説明と同じである。命令流の初期状態 については前出の表1に示す。また、一連の動作の様子 については図3に示す。

【0070】(2-1) キャッシュアクセスの結果、キャッ シュミスを起こす。キャッシュミス情報がパイプライン 制御部105に送られる。

トアユニット52の実行制御部54にキャッシュミスを発生 した命令流の調査を依頼する。実行制御部54は命令流1 であることをパイプライン制御部105に伝える。

【0072】(2-3) パイプライン制御部105は、状態管 理テープル115を参照し、命令流1の命令がキャッシュ ミスヒットを起こしたことにより、命令解読部 A14、 命令バッファ__A11、命令フェッチ制御部__A12、解説 PC A15など命令解読部より上流部の処理を停止さ せ、命令の発行を禁止する。

御部54にロードストアユニット52を正常終了させるよう 制御する。ただし、実際の書き込みレジスタには何も書 き込まずに終了させる。

【0074】(2-5) パイプライン制御部105は、実行制 御部64,74および84を経由して、命令流1の命令の処理 状況を調査し、すでに演算ユニットで処理中のものがあ れば終了まで停止する。

【0075】(3-1) パイプライン制御部105は、すでに 演算ユニットで処理中の命令流1の命令がなくなれば、 命令流1のコンテキストをコンテキスト・バックアップ 30 ・メモリ111に退避する。コンテキストは本実施例の場 合にはレジスタファイル_X107、解読PC_A15(命令 流のIDも含む)、ロードストアユニット52の実行PC _A55(LOAD命令のPC), ロードストアユニット52 のオペレーションパッファ53(LOAD命令のオペレー ション)およびメモリアクセスアドレスである。通常、 メモリアクセスアドレスは、オペランドバッファ51の内 容を使用して計算する。コンテキスト・バックアップ・ メモリ111に格納された命令流の実行を停止し退避する コンテキストの様子を図6に示し、上記命令流を実行す 40 基に命令流3のLOAD命令を再実行させる。 る場合にはコンテキストに先頭PCを含み、この先頭P Cから実行する。

【0076】(3-2) パイプライン制御部105は命令流1 に関して有為なものがないようにスコアポード113等も 無効化する。

【0077】(3-3) パイプライン制御部105は、状態管 理テーブル115の命令流1の状態を実行から休眠状態へ 遷移させる。これを表2に示す。

[0078]

【表2】

16

	状	態	レジスタ	命令フェッチ ユニット
命令流1	休	眠	メモリ	A
命令流2	実	行	Y	В
命令流3	実	行	Z	なし
命令流4	町	能	メモリ	なし

【0079】(4-1) パイプライン制御部105は、コンテ キスト・バックアップ・メモリ111から命令流3を休眠 【0071】(2-2) パイプライン制御部105はロードス 10 状態にした要因のLOAD命令の実行PC, オペレーシ ョンおよびメモリアクセスアドレスを実行PC A55お よびオペレーションパッファ53およびロードストアユニ ット52に復帰させる。命令流3に関する一連の動作を図 4に示す。

> 【0080】(4-2) パイプライン制御部105は、コンテ キスト・パックアップ・メモリ111から命令流3の解読 PCをFC A13に設定する。解読PC_A15には命令 流3のIDを設定しておく。

【0081】(5-1) パイプライン制御部105は、命令流 【0073】(2-4) パイプライン制御部105は、実行制 20 1の休眠状態への遷移で命令フェッチユニット(A)や 命令解読部 A14に空きができたこと、命令流3が実行 可能状態であり、かつすでにレジスタファイル 2109 に割り付けられていることから状態管理テーブル115の 命令流3の状態を実行可能から実行状態へ遷移させる。 それを表3に示す。命令流3に関する一連の動作を図5 に示す。

[0082]

【表3】

	状	態	レジスタ	命令フェッチ ユニット
命令流1	休	眠	メモリ	なし
命令流2	実	行	Y	В
命令流3	実	行	Z	A
命令流4	可	能	メモリ	なし

【0083】(5-3) パイプライン制御部105は、ロード ストアユニット52の実行制御部54に対して、オペレーシ ョンバッファ53に設定されたオペレーションやロードス トアユニット52に設定されたメモリアクセスアドレスを

【0084】(5-4) パイプライン制御部105は、命令流 3を実行するため、命令フェッチ制御部 A12に対して FC A13から命令の実行を開始させる。

【0085】(5-5) 命令フェッチ制御部 A12はFC A13のアドレスを起点として、命令フェッチを開始し命 令パッファ A11に命令を格納する。命令解読部 A14 は命令パッファ A11に格納された命令を解読する。以 降、定常状態で説明したように命令を処理していく。

【0086】(6-1) パイプライン制御部105は、命令流 50 1の休眠状態への遷移でレジスタファイル__X107に空

きができたことと、命令流4が実行可能状態であることから命令流4のコンテキストをレジスタファイル_X107に割り付ける。コンテキスト・パックアップ・メモリ11からレジスタファイル_X107にデータを転送する。それを表4に示す。

[0087]

【表4】

	状	態	レジスタ	命令フェッチ ユニット
命令流1	休	眠	メモリ	なし
命令流2	実	行	Y	В
命令流3	実	行	Z	A
命令流4	可	能	Х	なし

【0088】(6-2) パイプライン制御部105は、命令流4にレジスタファイル_X107を割り付けたように状態管理テーブル115を更新する。

【0089】(7-1) キャッシュは命令流1が休眠状態へ 遷移する要因となったミスヒットのデータをアップデー トする。

【0090】(7-2) パイプライン制御部105は、キャッシュにアップデートされたことから、命令流1を休眠状態から実行可能に状態を変更し、状態管理テーブル115を更新する。それを表5に示す。

[0091]

【表5】

	状	態	レジスタ	命令フェッチ ユニット
命令流1	可	雒	メモリ	なし
命令流2	実	行	Y	В
命令流3	実	行	Z	A
命令流4	可	能	х	なし

【0092】以上で一連の状態遷移および内部動作を説明したが、それ以降の状態遷移について一例を次に示す。

【0093】命令流2: 実行状態→休眠状態

命令流4: 実行可能状態→実行状態

命令流1: コンテキスト・パックアップ・メモリ111に レジスタファイル Y108を割り付ける

命令流3: 実行状態→休眠状態(命令流2: 休眠状態 →実行可能状態)

命令流1: 実行可能→実行状態

以上説明したように、本実施例によれば、

(1) インタロックを発生した命令流を休眠状態(退避)に し、ハードウェア機構を他の命令流に割り付ける、すな わち命令流を切り替えて実行することにより、パイプラ インのインタロックおよびロック時間を削減し、機能ユ ニットの使用効率を向上させ、高性能を実現できる。

【0094】(2) インタロックを発生した命令流を休眠 50 が可能となり切り替えの制御が容易になる。

状態にしてコンテキストをメモリに退避し、新たな命令 流のコンテキストを復帰させ、ハードウェア機構を割り 付ける、すなわち命令流を切り替えて実行することによ

り、パイプラインのインタロックおよびロック時間を削減し、機能ユニットの使用効率を向上させ、高性能を実現できる。

18

【0095】(3) 命令準備部よりも多くのレジスタファイルを設けることにより、インタロックを発生しても、インタロックを発生した命令流のコンテキストをメモリ10 に退避することなく、新たな命令流を実行させることができるので、高速な命令流切り替えができる。

【0096】(4) 命令準備部よりも多くのレジスタファイルとコンテキストを退避するメモリを設けることにより、インタロックを発生した場合、インタロックを発生した命令流のコンテキストはメモリに退避するが、新たな命令流のコンテキストは予めレジスタに準備することができるので、通常の命令と命令流の切り替えがオーパーラップして実行できるので、高速な命令流切り替えができる。

7 【0097】(5) コンテキストを退避するメモリを同一 プロセッサ上に実現することにより、高速な切り替えや ロード命令などの外部パスを使用する命令と並列に実行 できる。

【0098】(6) 命令流の切り替えの契機となる特定のイベントをキュッシュアクセス時のミスヒットとすることにより、メモリアクセス時のオーバーヘッドを削減できる。

【0099】(7)特定のイベントが発生したりまたは特定の状態を検出した場合には、その要因となった命令の30命令流に割り付けられている命令準備部の実行を停止し、命令準備部の内部状態を初期化することにより、パイプライン制御が容易になる。

【0100】(8) 命令流の実行を停止し退避するコンテキストに先頭PCを含み、再度この命令流を実行する場合には先頭PCから実行を再開することにより、命令流の切り替えの制御が容易になる。

【0101】(9) 命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、キャッシュミスが発生した場合、メモリアクセス命令を打ち切り正常終了させることにより、命令切り替えの制御が容易になる。

【0102】(10) 新たな命令流を命令準備部に割り付け、命令実行を再開する場合、切り替えの要因となり実行を打ち切ったメモリアクセス命令を再実行させることにより、命令流の切り替えの制御が容易になる。

【0103】(11) 命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセス命令のPCも一緒に退避することにより、命令再実行が可能となり切り替えの制御が容易になる。

【0104】(12) 命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセス命令も一緒に退避することにより、命令再実行が高速に実現でき切り替えの制御も容易になる。

【0105】(13) 命令流の切り替えの契機となる特定のイベントをキャッシュアクセス時のミスヒットとし、命令流のコンテキストを退避する場合にはメモリアクセスアドレスも一緒に退避することにより、命令再実行が高速に実現でき切り替えの制御も容易になる。

【0106】(14) 命令流の切り替えの契機となる特定のイベントをメモリアクセスに関するエラーとすることにより、メモリアクセス時のオーバーヘッドを削減できる。

【0107】なお、本実施例では、レジスタファイルのセット数を3、命令パッファや命令解読部の数を2、そして演算実行部は4種類から構成されているが、これらは本発明の効果や主旨とは関係しないので、構成や個数などについてはなんら制限はしていない。

【0108】本実施例では、再実行するロード命令につ 20 いてロード命令のPC値およびオペレーションをコンテキスト・パックアップ・メモリに退避しているが、例えばPC値のみを退避しておき、命令フェッチから再実行する方法や、命令を退避しておき解読から再実行する方法などを用いていてもかまわない。また、PC値とオペレーションの両方を退避しているのは、例外発生を考慮してのことであり、本発明を限定するものではない。

【0109】本実施例では、説明の都合上ロードストア イベントの関係を示した ユニットを使用する例としてロード命令を用いている 【図3】図1におけるtが、ストア命令についても同様の機能を実現することは 30 選移する説明図である。 【図4】図1におけるt

【0110】本実施例では、情報管理テーブル更新のあとロード命令の再実行という順番で実行しているが、この順番は逆でもよい。この以外の手続きの順番についても本実施例では一例を挙げただけである。

【0111】本実施例では、分岐処理については本発明 とは特に関係していないので記述していない。

【0112】本実施例では、切り替えの契機をロード命令としたが、インタロックなどを発生する命令やイベントについても適用できる。

【0113】本実施例では、命令流の切り替え決定後、新たな命令流を設定するまでに、メモリへ退避しているが、レジスタファイルのセット数に余裕があれば、コンテキストのバックアップは新たな命令流を切り替えてから、オーバーラップ実行してもよい。

【0114】本実施例では、プロセッサ上にメモリを設け、休眠状態に入る命令流のレジスタファイルなどのコンテキストをメモリに退避したが、外部メモリに退避してもよい。

【0 1 1 5】本実施例では、プロセッサ上にメモリを設 50 ル、 111…コンテキスト・パックアップ・メモリ、 1

け、休眠状態に入る命令流のレジスタファイルなどのコンテキストをメモリに退避したが、オンチップメモリを特に設けず、レジスタファイルに割り付けた命令流で切り替えをしたり、レジスタファイルのコンテキストを切り替えをする場合には外部メモリを使用することも可能である。

[0116]

【発明の効果】以上説明したように、本発明の情報処理 装置は、

10 (1) パイプラインのインタロックおよびロック時間を削減し、機能ユニットの使用効率を向上させ、高性能を実現できる。

【0117】(2) 通常の命令と命令流の切り替えをオーバーラップして実行できるので、高速な命令流切り替えができる。

【0118】(3) ロード命令などの外部バスを使用する 命令と並列に実行できる。

【0119】(4) メモリアクセス時のオーバーヘッドを削減できる。

20 【0120】(5) パイプライン制御や命令流の切り替え 制御が容易になる。

【0121】などの多くのことが実現でき、その実用的 効果は大きい。

【図面の簡単な説明】

【図1】本発明の一実施例における情報処理装置の構成 図である。

【図2】図1における命令流の状態と状態遷移をさせる イベントの関係を示した状態遷移図である。

【図3】図1における命令流が実行状態から休眠状態へ 遷移する説明図である。

【図4】図1における命令流が休眠状態から実行可能状態へ遷移する説明図である。

【図5】図1における命令流が実行可能状態から実行状態へ遷移する説明図である。

【図6】図1におけるコンテキスト・バックアップ・メモリのデータ配置図である。

【図7】従来の情報処理装置の構成図である。

【符号の説明】

11, 21…命令パッファ、 12, 22…命令フェッチ制御 40 部、 13, 23…フェッチカウンタ(FC)、 14, 24…命令解読部、 15, 25…解読プログラムカウンタ(解読PC)、 51, 61, 71, 81…オペランドパッファ、 52…ロードストアユニット、 62…整数演算ユニット、 72…浮動小数点加算ユニット、 82…浮動小数点乗算ユニット、 53, 63, 73, 83…オペレーションパッファ、 54, 64, 74, 84…実行制御部、 55, 65, 75, 85…実行プログラムカウンタ(実行PC)、101…セレクタ、 10 2, 103, 104, 106, 110, 112…スイッチ、 105…パイプライン制御部、 107, 108, 109…レジスタファイ 50 出、 111…コンデキフト、パックマップ・メエリー 1

21

13…スコアポード、 114…データ依存チェック部、115 …状態管理テーブル。

[図1]

【図7】

