Module 1

(Data communication Components: Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model)

Dr. Nirnay Ghosh

Assistant Professor

Department of Computer Science & Technology

IIEST, Shibpur

Data Communications & Components

- Telecommunication means communication at a distance.
- Data refers to information presented in whatever form, agreed upon by the parties generating and using the data.
- Data communications are the exchange of data between two devices via some form of transmission medium such as a wire cable.
- Four characteristics of data communication
 - Delivery; Accuracy; Timeliness; Jitter
- Five components
 - Message; Sender; Receiver; Medium; Protocol
- Network criteria
 - Performance; Reliability; Security

Data Flow

Simplex

- Communication is unidirectional
- Uses the entire capacity of the channel to send the data
- Example: keyboards, traditional monitors

Half-duplex

- Communication is bi-directional
- Station can both transmit and receive, but not at the same time
- Example: Walkie-talkies

Full-duplex

- Both stations can transmit and receive at the same time
- Channel capacity is shared between the two directions
- Example: Telephone line

b. Half-duplex

c. Full-duplex

Types of Connection

- Point-to-point
 - Provides a dedicated link between two devices
 - Entire capacity reserved for communication between those two devices
 - Example: Changing television channels by remote control
- Multipoint (Multidrop)
 - More than two devices share a link
 - Channel capacity is shared, either spatially or temporally.
 - If several devices can use the link simultaneously, it is a spatially shared connection.
 - If users must take turns, it is a timeshared connection.

a. Point-to-point

b. Multipoint

Physical Topology

Network Types

a. LAN with a common cable (past)

b. LAN with a switch (today)

Local Area Network (LAN)

Legend

a. Switched WAN

b. Point-to-point WAN

Wide Area Network (WAN)

Switching

Circuit-Switched Network

Packet-Switched Network

- Circuit-switched network
 - Dedicated connection (called a circuit) exists between two end systems
 - Switch makes it active or inactive; performs only forwarding tasks
 - <u>Example</u>: Telephone network
 - <u>Limitation</u>: high-capacity link remains under utilized majority of times
- Packet-switched network
 - Computers exchange *packets* (blocks of data) between one another
 - Switches have both forwarding and storing capabilities
 - Better utilization of the link capacity but introduces some delays

Present Day Internet

- A network is a group of connected, communicating devices.
- An internet is two or more networks that can communicate with each other.
- The most notable internet is called the Internet composed of thousands of interconnected networks.
- Three level hierarchical structure:
 - Backbones
 - Provider network
 - Customer network

Hierarchical Organization of the Internet

History of Internet

- Before 1960: telegraph & telephone networks
- 1961: Birth of packet-switched networks
- Mid-1960s: Defense Advanced Research Projects Agency (DoD)
- 1967: Advanced Research Projects Agency Network (ARPANET)
- 1969: Implementation of ARPANET
 - Four computers Interface Message Processor (IMP)
 - Network Control Protocol (NCP) provided communication between hosts
- 1972: Internetting Project Vint Cerf and Bob Kahn
 - Devised the idea of gateway
- 1973: Transmission Control Protocol (TCP) new version of NCP
 - Landmark paper: outlined the protocol to achieve end-to-end communication
 - Concepts of encapsulation, datagram, function of gateway
- 1977: demonstration of an internet consisting of three different networks (ARPANET, packet radio, and packet satellite)
 - Split TCP: Transmission Control Protocol (TCP) and Internetworking Protocol (IP)

History of Internet (Contd...)

- 1981: UC Berkeley modified the UNIX operating system to include TCP/IP
 - Rise in the popularity of internetworking
 - Manufacturers used open-source Berkley UNIX code to build their products
- 1981: Creation of Computer Science Network (CSNET)
- 1983: ARPANET split into two networks: *Military Network (MILNET)* and *ARPANET*
 - TCP/IP became the official protocol for ARPANET
- 1986: Creation of National Science Foundation Network (NSFNET)
- 1991: Creation of a new, high-speed Internet backbone called Advanced Network Services Network (ANSNET)
 - Participating companies: IBM, Merit, Verizon
- 1990s: Emergence of the World Wide Web (WWW) explosion of Internet!
 - The Web was invented at CERN by Tim Berners-Lee.
 - Three fundamental technologies: HTML, URI, HTTP
 - Added commercial application to the Internet odule 1)

Protocol & Protocol Layering

- It consists of a set of rules that govern data communications.
- To be followed by sender, receiver, and intermediate devices
- The key elements of a protocol are syntax, semantics and timing
- Advantages of protocol layering:
 - Divides complex communication task into several smaller and simpler tasks (modularity)
 - Decouples services from implementations
 - Simpler intermediate systems

Logical Connection Between Peers

TCP/IP Protocol Suit Source (A) Application Transport Application Layer 5 Application Network Data link Physical Transport Transport Layer 4 Layer 3 Network Internet Network Interface Data link Layer 2 Physical **Hardware Devices** Layer 1 **Original TCP/IP** Today's TCP/IP Source Destination host Logical connections Application Application Application | Transport Transport Network Network Transport Data link Data link Physical Physical Network Switch Switch Router Data link LAN LAN Router Source Destination Link 1 Link 2 Physical To link 3

Logical Connection between TCP/IP Protocol Suite Layers Netw

Router

Data link Data link

Physical

Switch

Data link

Physical

Network

Physical

Switch

Data link

Physical

Destination (B)

▲ Application

Transport

Network

Data link

Physical

Description of Each Layer

Layers	Functionalities
Physical	 Carries individual bits in a frame across the link Converts bits into electrical/optical signals so that they can be propagated through the transmission media (cable or air)
Data-Link	 Takes the datagram and carries it across the link as frame Link can be either wired LAN with a link-layer switch, a wireless LAN, a wired WAN, or a wireless WAN. May provide complete error detection and correction or only correction
Network	 Responsible for host-to-host communication Chooses the best route for each packet Internet Protocol (IP) defines the format of the packet (datagram), structure of the address used in the network layer IP is responsible for routing a packet from source to destination, which is achieved by each router forwarding the datagram to the next router in its path Other protocols in this layer: ICMP, IGMP, DHCP, ARP
Transport	 Responsible for process-to-process communication Two main protocols: TCP (connection-oriented, reliable) & UDP (connection-less, unreliable) Flow control, error control, congestion control
Application	 Process-to-process communication Protocols supported by the application layer: HTTP, SMTP, FTP, TELNET, SSH, DNS, SNMP

Two Important Concepts of Protocol Layering

Encapsulation and Decapsulation

Addressing

Encapsulation/Decapsulation

Addressing in the TCP/IP Protocol Suite

The OSI Model

- International Organization for Standardization (ISO)
 - multinational body dedicated to worldwide agreement on international standards.
- Open Systems Interconnection (OSI) model
 - An ISO standard that covers all aspects of network communication

