Soft in Flow: a Compliant Flow Sensing Underwater Robot

Prof. Maarja Kruusmaa Tallinna Tehnikaülikool

Fluids

Solids resist shear deformation – shear stress is proportional to shear strain.

$$\frac{F}{S} = G$$

Fluids resist rate of shear

$$\frac{F}{S} = \frac{1}{t}$$

$$\tau = \mu \frac{dU}{dz}$$

For Newtonian fluids (dynamic) viscosity $\mu = const$.

Elasticity, viscosity and deformation

Dynamic modulus

Strain
$$\mathcal{E} = \mathcal{E}_0 \sin(t)$$

Stress
$$\sigma = \sigma_0 \sin(t + t)$$
 δ - Phase lag

Elastic materials
$$\delta = 0$$
 Viscous materials $\delta = \frac{\pi}{2}$

Elasticity : Storage modulus – energy conserved $E' = \frac{0}{1000} \cos \theta$

$$E'' = \frac{0}{\sin \theta}$$

Springs and chock absorbers

$$\frac{d\epsilon_{Total}}{dt} = \frac{d\epsilon_D}{dt} + \frac{d\epsilon_S}{dt} = \frac{\sigma}{\eta} + \frac{1}{E} \frac{d\sigma}{dt}$$

$$\sigma(t) = E\varepsilon(t) + \eta \frac{d\varepsilon(t)}{dt}$$

Solids are springs Fluids are absorbers

How to we measure it?

Stress and pressure

Pressure sensors

$$p + \frac{U^2}{2} + gz = const$$

Bernoulli's principle

Momentum, thrust and drag

$$\frac{m}{t} = \rho SU^{2}$$

$$\frac{mU}{t} = \rho SU^{2}$$

$$dF = \rho dS_{1}U_{1}^{2} - \rho dS_{2}U_{2}^{2}$$

$$C_p = \frac{2 p}{U^2}$$
 Drag coefficient

Drag is the removal of the momentum from the moving fluid Thrust is the addition of the momentum to the moving fluid

How to we measure it?

Measuring forces with force and torque sensors

Controlling the speed

Maarja Kruusmaa, Taavi Salumae, Gert Toming, Andres Ernits, Jaas Ježov, "Swimming Speed Control and on-board Flow Sensing of an Artificial Trout", In Proc. of IEEE Int. Conf. of Robotics and Automation (IEEE ICRA 2011), Shanghai, China, May 9-13, 2011.

www.biorobotics.ttu.ee

Reynolds number

$$Re = \frac{lU}{l}$$

$$F_I = SU^2$$

$$F_{v} = \frac{SU}{l}$$

$$\frac{F_l}{F_V} = \frac{SU^2}{SU/l} = \frac{lU}{SU}$$

$$D_d = f(\text{Re}) \qquad D = \frac{1}{2}C_d \ SU^2$$

How to we measure it? Indirect measurements – Digital Particle Image Velocimetry

Laminar flow

Von Karman Vortex street

Undulatory swimming

Click to edit Master text styles

Second level

- Third level
 - Fourth level
 - Fifth level

Bath University, , Ocean Technologies Laboratory

SubCarangiform

Drag, wake and entropy

Fish robots of the world

Festo Aqua ray

The role of embodiment – stiffness profile

T. Salumäe, M. Kruusmaa, A flexible fin with bio-inspired stiffness profile and geometry", Journal of Bionic Engineering 8.4, Elsevier, 2011, pp. 418-428

Understanding kinematics

Biomimetic stiffness profile produces fish-like kinematics at cruising speeds

T. Salumäe, M. Kruusmaa, A flexible fin with bio-inspired stiffness profile and geometry", Journal of Bionic Engineering 8.4, Elsevier, 2011, pp. 418-428

Viscoelasticity of the tail

Thrust and viscoelasticity

Efficiency and viscoelasticity

Modelling the tail motion

$$[M]\{\ddot{q}(t)\} + [K]\{q(t)\} = \{Q(t)\}$$

$$m_{ij} = \int_0^l (\mu(x) + \rho_f A(x)) \varphi_i(x) \varphi_j(x) dx$$

$$k_{ij} = \int_0^l EI(x)\varphi_i''(x)\varphi_j''(x)dx$$

$$q(t) = ae^{\lambda}(t)$$

$$det(\lambda^2 M + K) = 0 \qquad \lambda_r = -iw_r$$

$$\lambda_r = -iw_r$$

$$q(t) = U\eta(t)$$

$$U = [a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ \dots \ a_n] \quad a_r^T.M.a_s = \delta_{rs}$$

$$a_r^T.M.a_s = \delta_{rs}$$

$$a_r^T.K.a_s = w_r^2 \delta_{rs}$$

$$\ddot{\eta}(t) + \Lambda \eta(t) = N(t)$$

in which:

$$\Lambda = diag[w_1^2 \ w_2^2 \ w_3^2 \ w_4^2 \ w_5^2 \ w_6^2 \ \dots \ w_n^2]$$

$$N(t) = U^T Q(t)$$

$$\Lambda = diag[w_1^2 \ w_2^2 \ w_3^2 \ w_4^2 \ w_5^2 \ w_6^2 \ \ w_n^2] \qquad N(t) = U^T Q(t) \qquad \eta_i(t) = \frac{1}{w_i} \int_0^t N_i(t-\tau) sin(w_i \tau) d\tau$$

$$h(x,t) = v(x,t)$$

$$M_0 h_1(x,t) = v(x,t)$$

H. El Daou, T. Salumäe, G. Toming, M. Kruusmaa, "Bio-inspired Compliant Robotic Fish: Design and Experiments", IEEE International Conference on Robotics and Automation, St. Paul, USA, May 14-18, 2012.

Experimental validation

Swimming in von Karman vortex street

Swimming in steady flow and periodic turbulence

Bath University, , Ocean Technologies Laboratory

Beyond 100%

] Liao J. C., Beal D. N., Lauder G.V., Triantafyllou M. S., The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. Journal of Experimental Biology, vol. 206, 1059 - 1073, 2003.

Passive dynamics in von Karman vortex street

Fish robot in the turbulent flow

Sensing vorticity

Controlling tail beat timing saves 30% energy

3D flow sensing

Roberto Venturelli, Otar Akanyeti, Francesco Visentin, Jaas Ježov, Lily D Chambers, Gert Toming, Jennifer Brown, Maarja Kruusmaa, William M Megill and Paolo Fiorini, "Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows", Bioinspiration & Biomimetics Volume 7 Number 3

Methods - MEMS Artificial Lateral Line

Antonio Qualtieri; Francesco Rizzi; Maria Teresa Todaro; Adriana Passaseo; Massimo De Vittorio, Stress-driven AIN cantilever-based flow sensor for fish lateral line system 36th International Conference on Micro and Nano Engineering 19-22 September 2010, Genova, Italy.

Brainteberg fish

T. Salumäe, I. Rano, O. Akanyeti, M. Kruusmaa, "Against the flow: A Braitenberg controller for a fish robot", IEEE International Conference on Robotics and Automation, St. Paul, USA, May 14-18, 2012.

Thanks to...

Steve Vogel, Jimmy Liao, George Lauder, John Long, Thor Fossen, Pablo Alvarado, Otar Akanyeti, Lily Chambers, Joachim Mogdans, William Megill, Rolf Pfeifer, David Lane, Jeff Tuthan, Otar Akanyeti, Massimo de Vittorio, Francesco Rizzi, Hadi el Daou, Mart Anton, Madis Listak, Taavi Salumäe, Gert Toming, Andres Ernits,

