

Autorzy: Dzmitry Fiodarau (81755), Katarzyna Batyra (109299)

Szacowanie rozmiaru szarej strefy w Polsce w latach 2002-2012

1. Wprowadzenie

Szara strefa w Polsce, choć trudna do precyzyjnego oszacowania, stanowi istotny element gospodarki. Wielkość szarej strefy wpływa bezpośrednio na dochody państwa z tytułu podatków i składek, co z kolei przekłada się na możliwości finansowania usług publicznych, takich jak służba zdrowia, edukacja czy infrastruktura. Po drugie, zrozumienie mechanizmów i rozmiarów szarej strefy jest niezbędne do tworzenia skutecznych rozwiązań gospodarczych i prawnych, które mogą przeciwdziałać nielegalnym praktykom oraz promować uczciwe praktyki biznesowe. Wreszcie, analiza tego zjawiska pozwala na lepsze zrozumienie struktury rynku pracy i warunków zatrudnienia, co ma bezpośredni wpływ na jakość życia obywateli. Precyzyjne zdefiniowanie pojęcia Szarej strefy jest zagadnieniem nietrywialnym, ponieważ jej działalność oddziela się od legalnej działalności gospodarczej, a niekiedy wkracza w obszar przestępczy. Podstawą badań na ten temat jest odróżnienie szarej strefy od legalnej gospodarki, zdefiniowanie tego pojęcia oraz określenie jej skali i wpływu na produkt krajowy brutto (PKB). Charakterystyczną cechą szarej strefy jest nielegalne zatrudnienie lub nierejestrowana praca, które są używane zamiennie. Kluczowym elementem definiującym szarą strefę jest zatem zrozumienie, co oznacza nielegalne zatrudnienie¹. Na potrzeby tej pracy została przyjęta następująca definicja: szara strefa to wszelkie działania gospodarcze, które przyczyniają się do oficjalnego (albo obserwowalnego) tworzenia (wzrostu) PKB, ale które pozostają bezpośrednio nie zarejestrowane². To takie działania gospodarcze, które pozostają niezmierzone lub nie są zgłaszane³. Jeśli chodzi o obszary najbardziej narażone na jej występowanie są to: handel, usługi budowlane, turystykę, obrót paliwami ciekłymi, sektor zakładów wzajemnych i gier hazardowych, samozatrudnienie oraz prace domowe⁴. W odniesieniu do wpływu szarej strefy na gospodarkę autorzy corocznego raportu "Szara strefa" przygotowywanego przez Instytut Prognoz i Analiz Gospodarczych, wskazują na nasilanie się nieuczciwej konkurencji, zmniejszone przychody państwa, zwiększanie się grupy osób nieodprowadzających składek, lub odprowadzających składki o zaniżonej wartości, oraz obniżenie jakości produktów i usług dostarczanych przez osoby zatrudnione nielegalnie (co

_

¹ Instytut Koniunktur i Cen Handlu Zagranicznego. Metodologia badań szarej strefy na rynku usług turystycznych. Wykonano na zlecenie Departamentu Turystyki Ministerstwa Gospodarki. Kierownik projektu: dr Tadeusz Smuga. Autorzy: dr Wojciech Burzyński, mgr Wanda Karpińska-Mizielińska, dr hab. Anna Marzec, dr Józef Niemczyk, dr Tadeusz Smuga, dr Piotr Ważniewski. Współpraca: mgr Anna Pucek.

² F. Schneider., H.D. Ernest, *Shadow Economies: Size, Causes and Consequences,* "Journal of Economic Literature" Vol. XXXVIII, 2000.

³ L.E. Feige, *How big is the irregular Economy?* Challenge, November – December 1979.

⁴ Global Compact Network Poland, 2015/2016

umożliwia unikanie przepisów, czy norm dla danego dobra, lub usługi). Nie wykazano natomiast jednoznacznego wpływu rozmiarów szarej strefy na wzrost gospodarczy⁵. Oprócz negatywnych, zazwyczaj długotrwałych skutków, pracujący w szarej strefie są w stanie uzyskać korzyści finansowe. Literatura natomiast zdaje się być zgodna, że z perspektywy państwa ograniczanie i kontrolowanie rozmiarów szarej strefy jest korzystne, co dodatkowo potęguje konieczność prac i prób estymacji tego zjawiska.

Autorki Anna Czapkiewicza, Katarzyna Brzozowska-Rup, wyróżniają bezpośrednie (np. za pomocą badań ankietowych) i pośrednie metody szacowania rozmiarów szarej strefy (skupiające się na szacowaniu na podstawie dostępnych danych makroekonomicznych). Wśród metod pośrednich można dodatkowo wyodrębnić model wielu wskaźników i wielu przyczyn typu MIMIC oraz DYMIMIC (określanie relacji pomiędzy szarą strefą oraz potencjalnymi powodami, które mogą na nią wpływać, wadą tej metody jest fakt, że otrzymujemy jedynie względne zmiany wielkości szarej strefy, co wymusza konieczność wyznaczenia jakiejś wielkości początkowej), podejście transakcyjne (analiza ilości gotówki w obiegu, w oparciu o założenie, że jest ona głównym środkiem wymiany stosowanym w ramach szarej strefy), metody rezydualne (obliczanie różnicy pomiędzy deklarowanym, a rzeczywistym stanem gospodarki np. różnica pomiędzy PBK mierzonego w ujęciu dochodów i wydatków), metoda oparta o analizie zużycia energii elektrycznej, oraz metody delfickie.

Celem badania będzie oszacowanie wielkości szarej strefy w Polsce, na podstawie estymacji PKB korzystając z definicji w ujęciu wydatkowym i produkcyjnym (wzory 1.1 oraz 1.2). Podejście to zostało zaczerpnięte z badania przeprowadzonego przez Annę Czapkiewicza, Katarzynę Brzozowska-Rup. Dodatkowo estymacja zostanie wzbogacona o próbę użycia bardziej wyszukanego modelu ekonometrycznego wykorzystanego w celach oszacowań niż ta użyta przez autorki. W tym podejściu przyjmuje się założenie, że rozmiarów szarej strefy można doszukiwać się w niewspółmiernych wzrostach wskaźników makroekonomicznych składających się na PKB. Proponowana przez autorki metodyka polega na określeniu rozbieżności pomiędzy PKB obliczonym na podstawie wzoru 1.1 oraz wzoru 1.2, poprzez

⁵ Cichocki, S. J. (2006). Metody pomiaru szarej strefy. *Gospodarka Narodowa*, 205(1/2), 37–61. https://doi.org/10.33119/GN/101449 dostęp (08.06.2024)

konstrukcje dwóch modeli. Dodatkowo w celu uniknięcia wpływu inflacji stosuje się transformacje logarytmiczną przyrostów⁶.

Wzór 1.1 Wzór na PKB od strony produkcji

PKB = glob. produkcja kraju - zużycie pośrednie

Wzór 1.2 Wzór na PKB od strony wdyatków

PKB = konsumpcja + inwestycje + wydatki rządowe + eksport netto

2. Analiza danych

Główne źródło danych stanowi Bank Danych Lokalnych GUS. Bank Danych Lokalnych (BDL) to obszerna baza danych prowadzona przez Główny Urząd Statystyczny, która gromadzi i udostępnia szczegółowe informacje dotyczące różnych aspektów życia społecznogospodarczego na poziomie lokalnym w Polsce. Baza ta obejmuje dane statystyczne dotyczące m.in. demografii, rynku pracy, edukacji, zdrowia, gospodarki oraz finansów publicznych, umożliwiając kompleksową analizę i monitorowanie rozwoju poszczególnych regionów kraju. Również dla obliczenia Eksportu Netto skorzystano z pracy autorek Sylwii Pangsy-Kania, Katarzyny Wierzbickiej oraz Anny Czarnomskiej⁷, gdzie przedstawiono udział poszczególnych województw w eksporcie i imporcie Polski. Również w tej pracy wymienione są dane dotyczące importu oraz eksportu w poszczególnych latach. W celu uzyskania zmiennej Eksportu Netto skorzystano z następującego wzoru:

 $\frac{\left(\left((udzia\text{l eksport$ u t,n}*eksport$ t,n\right)-\left(udzia\text{l import$ u t,n}*import$ t,n\right)*100000000\right)*kurs euro t}{populacja Polski t}$

gdzie:

udział eksportu t, n – to udział dla n-tego województwa, dla roku t eksport t, n- to wartość czynnika dla n-tego województwa, dla roku t udział importu t, n – to udział dla n-tego województwa, dla roku t import t, n- to wartość czynnika dla n-tego województwa, dla roku t kurs euro t- kurs EUR/PLN na koniec roku t⁸ Populacja Polski t- wartość czynnika na koniec roku t⁹

⁶ Czapkiewicz A., Brzozowska-Rup K., Szacowanie rozmiarów szarej strefy w Polsce, 2021, Główny Urząd Statystyczny

⁷ Sylwia Pangsy-Kania, Katarzyna Wierzbicka, Anna Czarnomska. "Aktywność eksportowa i importowa województw w Polsce". Optimum. Studia Ekonomiczne nr 1(115) 2023, str. 1-22

⁸ https://pl.investing.com/currencies/eur-pln-historical-data dostep z dnia 14.05.2024.

⁹ https://pl.wikipedia.org/wiki/Demografia_Polski dostęp z dnia 14.05.2024

Wysoka jakość bazy oraz powszechność czynników uwzględnionych w analizie, pozwoliła na uzyskanie zbioru pozbawionego braków danych, które negatywnie mogłyby wpłynąć na jakość przeprowadzonej analizy¹⁰. Zdecydowano się na uwzględnienie w badaniu wszystkich województw w Polsce, a zebrane dane są coroczne i pochodzą z okresu 2002 – 2012. Liczba obserwacji w wybranej próbie wynosi 177.

W oszacowanych modelach zostaną wykorzystane zmienne:

- Produkt Krajowy Brutto,
- Produkt Krajowy Brutto per capita,
- Produkcja Globalna,
- Zużycie pośrednie,
- Inwestycje,
- Wydatki budżetowe,
- Konsumpcja,
- Eksport Netto.

Zostały one wybrane na podstawie wzorów umożliwiającego obliczenie PKB od strony produkcji oraz od strony wydatków wspomnianych we Wprowadzeniu tej pracy.

W tabeli 2.1. zostały przedstawione statystyki opisowe zmiennych wykorzystanych w badaniu. Ze względu na zbliżone wartości średniej oraz mediany dla wszystkich zmiennych, sugeruje, że rozkłady zmiennych można uznać w przybliżeniu za symetryczne. Zmienna inwestycje cechuje się największym odchyleniem standardowym oraz wariancją, co wskazuje na dużą zmienność danych dot. inwestycji. Dodatkowo wysoka kurtoza tej zmiennej sugeruje rozkład skupiony wokół wartości średniej oraz większe prawdopodobieństwo wystąpienia wartości ekstremalnych. Pozostałe zmienne wydają się zachowywać stabilnie (w szczególności produkcja globalna oraz konsumpcja).

¹⁰ Bank danych Lokalnych, https://stat.gov.pl/projekty-unijne-w-statystyce/sisp/bank-danych-lokalnych/, dostęp z dnia (15.05.2024).

Tabela 2.1 Statystyki opisowe zmiennych

Zmienna	Średnia	Mediana	Odchylenie Standardowe	Wariancja	Skośność	Kurtoza
PKB	0,65	0,658	0,028	0,0008	0,282	2,8
Produkcja Globalna	0,07	0,066	0,038	0,0014	0,188	2,34
Zużycie pośrednie	0,073	0,077	0,052	0,0028	-0,23	2,54
Inwestycje	0,085	0,078	0,117	0,14	-0,012	4,56
Wydatki budżetowe	0,127	0,117	0,245	0,06	0,177	3,817
Konsumpcja	0,05	0,0494	0,042	0,0017	0,15	2,8
Eksport netto	0,12	0,14	0,566	0,32	0,37	6,73

Porównanie heatmap dla większości zmiennych prezentuje się podobnie, a wnioski wyciągnięte na ich podstawie są w dużym stopniu tożsame, dlatego w tej pracy nie zostaną umieszczone tego rodzaju wizualizacje dla wszystkich zmiennych. W przypadku zmiennych PKB (widoczna na Rysunku 2.1), produkcji globalnej oraz zużycia pośredniego najbardziej oznaczają się zmiany wartości tych zmiennych pomiędzy poszczególnymi województwami. W mniejszym stopniu widoczne są różnice w latach, jednak tutaj również dla wszystkich województw zauważalny jest trend wzrostowy.

Rysunek 2.1 Heatmap'a dla zmiennej PKB

▼	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Suma
DOLNOŚLĄSKIE	63379	65703	71536	77443	86613	97575	104869	113246	122595	133929	138176	1075064
KUJAWSKO-POMORSKIE	39498	40788	44456	46338	50072	55392	59743	62427	64837	69237	71366	604154
LUBELSKIE	33758	35206	37908	39678	42153	47207	51852	53571	56269	61228	63912	522742
LUBUSKIE	18860	19352	21866	23670	25379	28028	29538	31047	32361	34408	35679	300188
ŁÓDZKIE	50615	53539	58259	61850	66491	73608	79936	83883	88895	95230	99430	811736
MAŁOPOLSKIE	60899	64349	70477	75053	82659	90798	99232	104991	108886	119721	123746	1000811
MAZOWIECKIE	164904	172353	190070	206633	224807	250877	268647	292222	308920	335087	351426	2765946
OPOLSKIE	18345	18670	21973	22642	23844	27176	30009	30482	31082	33487	34295	292005
PODKARPACKIE	33158	34735	37220	39220	41976	46009	50680	53427	55224	60441	62331	514421
PODLASKIE	19588	20182	21719	23054	24416	27613	29319	31522	32932	35642	36192	302179
POMORSKIE	46511	48135	52592	56376	60897	67788	71418	78681	81313	88268	93640	745619
ŚLĄSKIE	109299	113475	128218	131128	138974	153285	167785	177857	184566	200026	204573	1709186
ŚWIĘTOKRZYSKIE	21831	22962	25093	25607	28086	31601	35303	36152	37092	39519	40170	343416
WARMIŃSKO-MAZURSKIE	22875	24315	26411	27902	29832	32795	35453	37786	39494	42393	43657	362913
WIELKOPOLSKIE	74220	78614	87883	94073	100502	111131	120701	131636	134763	146516	153374	1233413
ZACHODNIOPOMORSKIE	34473	34774	37410	39864	42730	46626	51087	53093	55141	58509	60772	514479
Suma	812213	847152	933091	990531	1069431	1187509	1285572	1372023	1434370	1553641	1612739	13098272

Źródło: Opracowanie własne

W przypadku PKB per capita (widocznej na Rysunku 2.2), inwestycji, konsumpcji oraz wydatków budżetowych trend wzrostowy najbardziej oznacza się wraz ze wzrostem lat, a dodatkowo widoczny jest wyższy poziom tych zmiennych w województwie mazowieckim (z wyjątkiem wydatków budżetowych widocznych na Rysunku 2.3).

Rysunek 2.2 Heatmap'a dla zmiennej PKB per capita

▼	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Suma
DOLNOŚLĄSKIE	21800	22647	24704	26793	30030	33883	36453	38833	42035	45932	47398	370508
KUJAWSKO-POMORSKIE	19084	19719	21502	22410	24231	26817	28911	29753	30893	32999	34019	290338
LUBELSKIE	15351	16049	17326	18183	19378	21764	23968	24499	25793	28154	29472	239937
LUBUSKIE	18690	19199	21667	23454	25167	27792	29285	30382	31636	33631	34874	295777
ŁÓDZKIE	19376	20580	22472	23953	25856	28743	31328	32846	34908	37528	39322	316912
MAŁOPOLSKIE	18834	19813	21644	23002	25295	27728	30232	31636	32689	35835	36935	303643
MAZOWIECKIE	32177	33595	36982	40121	43528	48446	51713	55796	58768	63533	66392	531051
OPOLSKIE	17235	17646	20852	21573	22831	26145	29004	29870	30516	32974	33878	282524
PODKARPACKIE	15758	16568	17746	18696	20017	21937	24164	25147	25961	28405	29278	243677
PODLASKIE	16207	16733	18038	19195	20388	23116	24598	26141	27345	29652	30167	251580
POMORSKIE	21327	22020	23988	25660	27667	30720	32241	34810	35810	38727	40949	333919
ŚLĄSKIE	23051	24028	27235	27939	29714	32878	36091	38309	39798	43202	44274	366519
ŚWIĘTOKRZYSKIE	16827	17756	19449	19906	21911	24737	27718	28071	28870	30871	31493	267609
WARMIŃSKO-MAZURSKIE	16013	17024	18490	19532	20904	22988	24855	25978	27160	29175	30068	252187
WIELKOPOLSKIE	22138	23422	26140	27927	29781	32858	35592	38374	39158	42465	44342	362197
ZACHODNIOPOMORSKIE	20298	20492	22062	23528	25231	27544	30187	30797	31981	33956	35288	301364
Suma	314166	327291	360297	381872	411929	458096	496340	521242	543321	587039	608149	5009742

Źródło: Opracowanie własne

Rysunek 2.3 Heatmap'a dla zmiennej wydatki budżetowe

▼	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Suma
DOLNOŚLĄSKIE	110	114	144	197	275,74	304,72	349,75	552,85	446,89	520,24	578,76	3593,95
KUJAWSKO-POMORSKIE	118	120	138	179	258,57	287,62	310,06	471,07	405,4	369,38	365,19	3022,29
LUBELSKIE	111	159	153	168	223,91	240,09	322,91	441,83	351,68	412,38	387,73	2971,53
LUBUSKIE	171	163	191	238	305,33	331,67	337,14	769,95	501,86	490,87	436,68	3936,5
ŁÓDZKIE	86	91	101	125	150,84	218,51	260,33	559,95	338,96	377,02	357,05	2665,66
MAŁOPOLSKIE	113	118	130	164	192,29	221,76	281,3	455,07	359,9	420,39	341,13	2796,84
MAZOWIECKIE	96	101	210	330	457,3	526,86	592,73	622,24	477,22	492,09	465,29	4370,73
OPOLSKIE	106	129	150	232	298,27	332,86	359,46	670,78	544,85	476,89	407,1	3707,21
PODKARPACKIE	115	136	153	150	261,57	244,82	308,03	547,56	460,56	452,32	418,52	3247,38
PODLASKIE	121	119	142	152	240,71	255,29	280,65	517,64	341,84	431,14	410,22	3011,49
POMORSKIE	115	130	144	201	253,64	270,9	321,54	573,79	384,03	418,6	402,25	3214,75
ŚLĄSKIE	128	132	168	198	222,36	212,92	271,72	372,47	304,05	314,54	317,99	2642,05
ŚWIĘTOKRZYSKIE	125	133	139	133	199,8	244,63	293,71	593,4	436,57	413,72	539,64	3251,47
WARMIŃSKO-MAZURSKIE	118	158	179	204	265,73	308,69	315,15	568,15	372,33	399,47	467,96	3356,48
WIELKOPOLSKIE	116	119	132	173	227,42	233,97	283,89	553,15	326,29	392,18	328,46	85,36
ZACHODNIOPOMORSKIE	118	124	139	194	222,06	267,11	316,74	644,56	455,94	494,76	477,7	53,87
Suma	1867	2046	2413	3038	4055.54	4502.42	5205.11	8914.46	6508.37	6875.99	6701.67	52127.56

Źródło: Opracowanie własne

Zmienna eksport netto (widoczna na Rysunku 2.4) oznacza się małym zróżnicowaniem wśród lat oraz dużym zróżnicowaniem występującym między województwami, na początku badanego okresu można zauważyć dodatkowo trend wzrostowy postępujący wraz z upływem lat.

Rysunek 2.4 Heatmap'a dla zmiennej eksport netto

Etykiety wierszy	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Suma końcowa
DOLNOŚLĄSKIE	218,76	299,81	278,20	333,10	392,56	386,63	469,37	472,20	576,54	688,44	701,90	4817,52
KUJAWSKO-POMORSKIE	35,65	53,68	48,58	62,08	70,57	61,82	65,05	86,16	99,14	122,33	131,71	836,77
LUBELSKIE	-16,20	-12,56	-14,12	-9,07	-15,88	-31,01	-57,65	-16,56	-22,44	-30,73	-17,34	-243,56
LUBUSKIE	17,83	26,84	24,29	31,04	35,29	30,91	32,52	43,08	49,57	61,16	65,86	418,39
ŁÓDZKIE	27,55	47,40	41,52	57,55	62,63	46,32	36,22	77,88	87,92	106,96	123,04	714,99
MAŁOPOLSKIE	19,46	41,12	34,45	53,01	54,69	30,82	7,40	69,59	76,69	91,60	114,38	593,21
MAZOWIECKIE	137,77	237,01	207,58	287,74	313,15	231,60	181,11	389,38	439,58	534,81	615,22	3574,97
OPOLSKIE	-8,10	-6,28	-7,06	-4,54	-7,94	-15,50	-28,83	-8,28	-11,22	-15,36	-8,67	-121,78
PODKARPACKIE	13,78	23,70	20,76	28,77	31,31	23,16	18,11	38,94	43,96	53,48	61,52	357,50
PODLASKIE	17,83	26,84	24,29	31,04	35,29	30,91	32,52	43,08	49,57	61,16	65,86	418,39
POMORSKIE	38,91	82,25	68,91	106,03	109,38	61,63	14,79	139,19	153,39	183,20	228,75	1186,43
ŚLĄSKIE	22,72	69,69	54,78	96,96	93,49	30,63	-42,86	122,62	130,95	152,47	211,42	942,87
ŚWIĘTOKRZYSKIE	-8,10	-6,28	-7,06	-4,54	-7,94	-15,50	-28,83	-8,28	-11,22	-15,36	-8,67	-121,78
WARMIŃSKO-MAZURSKIE	-16,20	-12,56	-14,12	-9,07	-15,88	-31,01	-57,65	-16,56	-22,44	-30,73	-17,34	-243,56
WIELKOPOLSKIE	-4,84	22,29	13,27	39,41	30,86	-15,69	-79,08	44,75	43,03	45,51	88,37	227,87
ZACHODNIOPOMORSKIE	9,73	20,56	17,23	26,51	27,34	15,41	3,70	34,80	38,35	45,80	57,19	296,61
Suma końcowa	506,56	913,52	791,48	1126,03	1208,91	841,14	565,91	1511,96	1721,35	2054,76	2413,22	13654,84

Na Rysunku 2.5 widoczny jest przebieg w czasie wartości wybranych do analizy zmiennych (do obliczenia PKB metodą stosującą definicję od strony produkcji), które zgodnie z intuicją rosną w czasie. Wzrost produkcji globalnej jest większy niż wzrost zużycia pośredniego, o czym świadczy wykres różnicy tych dwóch wskaźników. Ponadto widoczny trend wzrostowy wszystkich branych pod uwagę wskaźników sugeruje brak stacjonarności analizowanych szeregów czasowych.

Rysunek 2.5 PKB i jego składniki - metoda od strony produkcji 200,000 150,000 Rzeczywisty PKB mln zł produkcja globalna zużycie pośrednie różnica Produkcja-Zużycie 100,000 50,000 2002 2006 2008 2010 2012 2004 Rok

Źródło: Opracowanie własne

W modelu zostały wykorzystane zlogarytmizowane przyrosty zmiennych. Przekształcenie to umożliwia zarówno wykrycie anomalii, takich jak nieproporcjonalne przyrosty, uzyskanie stacjonarnych szeregów czasowych oraz minimalizowanie wpływu inflacji na badanie zmiennych. Dla wszystkich przyrostów osiągnięto stacjonarność, co potwierdzono za pomocą testu ADF. Przyrosty zostały obliczone według następującego 2.1.

Wzór 2.1 Przyrosty

$$LN\left(\frac{Bt,n}{Bt-1,n}\right)$$

gdzie:

B_{t, n} - wartość czynnika w roku t, dla n-tego województwa

 $B_{t\text{-}1,\,n}$ - wartość czynnika w roku poprzednim, dla n-tego województwa

Rysunek 2.6 PKB i jego składniki - metoda wydatkowa

Źródło: Opracowanie własne

Z kolei metoda wydatkowa konstrukcji wskaźnika PKB opiera się na komponentach takich jak konsumpcja, inwestycje, wydatki rządowe oraz eksport netto. W analizie wskaźniki te zostały przeliczone na jednego mieszkańca.

Na Rysunku 2.6 przedstawiono zmiany w czasie wskaźnika konsumpcji, wskaźnika inwestycji, wydatków rządowych oraz różnicy między eksportem, a importem na jednego

mieszkańca. Wartości analizowanych wskaźników wykazują na trend wzrostowy. Test ADF potwierdził niestacjonarność przyrostów Inwestycji i Konsumpcji. Niestacjonarność zmiennych jest problematyczna, ponieważ może prowadzić do błędnych wniosków statystycznych ze względu na zmienność średniej oraz wariancji w czasie.

3. Wybór modelu oraz interpretacja wyników

Biorąc pod uwagę rodzaj posiadanych danych, można rozważyć wykorzystanie metody największej wiarygodności zakładającej random effects w modelu. Warto również oddzielnie rozważyć modele fixed effects i random effects oraz porównać je za pomocą testu Hausmana, aby określić, który z nich jest bardziej odpowiedni dla tych danych.

Metoda największej wiarygodności jest efektywna, gdy specyfika danych spełnia założenia teoretyczne modelu. Jest to metoda często używana w modelach panelowych ze względu na prostotę jej zastosowania. Model fixed effects jest stosowany, gdy istnieją przesłanki, aby podejrzewać, że nieobserwowalne różnice między jednostkami mają wpływ na zmienne zależne. Z kolei model random effects jest używany, gdy efekty nieobserwowalne są uznawane za niezależne od zmiennych objaśniających w modelu.

Tabela 3.1 Oszacowania modeli

	(1)	(2)	(3)	(4)
Тур	RE	RE	MNW	MNW
Produkcja Globalna	1,884 *** (0,040)		1,884 *** (0,039)	
Zużycie Pośrednie	-0,935*** (0,029)		-0,935*** (0,029)	
Konsumpcja		0,075 (0,047)		0,075 (0,047)
Inwestycje		0,109*** (0,017)		0,109*** (0,017)
Wydatki Budżetowe		0,0162** (0,008)		0,0162** (0,008)
Eksport Netto		0,0016 (0,034)		0,0016 (0,034)
Stała	0,002** (0,001)	0,050** (0,003)	0,002** (0,001)	0,050**
Liczba obserwacji	160	160	160	160
\mathbb{R}^2	0,9661	0,2736		
Pseudo R ²			0,79	0,802
R ² within	0,9652	0,2974		
R ² between	0,9860	0,0797		
AIC	-	-	0,288	0,307
BIC	-	-	-315,578	-316,452

Błędy standardowe: *p<0,1; **p<0,5; ***p<0,01

Źródło: Opracowanie własne

W pierwszej kolejności można zauważyć, że wyniki modelu random effects (RE) oszacowanego za pomocą UMNK są takie same jak dla modelu random effects (RE) oszacowanego za pomocą MNW. Wynika to z faktu, że wariancja dla random effects (RE) w obu modelach wyniosła zero, co sugeruje, że można skorzystać z prostszych modeli.

Oszacowano dwa modele: random effects (RE) i fixed effects (FE), a następnie skorzystano z testu Hausmana. Wyniki testu Hausmana wskazały na poziomie istotności p=0,28 dla modelu RE (1) i p=0,52 dla modelu RE (2), że model random effects (RE) jest odpowiedni dla tych danych, ponieważ nie ma dowodów na systematyczne różnice pomiędzy oszacowaniami współczynników w modelach FE i RE.

Następnie oszacowano model korzystając z metody największej wiarygodności (MNW) zakładając random effects. Estymacja MNW w modelu random effects uwzględnia zarówno

wariancję efektów jednostkowych, jak i wariancję błędów. Założono, że końcowy model będzie estymowany za pomocą MNW.

Ze względu na krótki szereg czasowy założono, że wariancje obu modeli są stałe w czasie. Wartość odchylenia standardowego błędu dla modelu MNW (3) wynosi 0,005, podczas gdy dla modelu MNW (4) wynosi 0,024. W modelu MNW (4) zlogarytmizowane przyrosty inwestycji oraz wydatków budżetowych nie mają statystycznie istotnego wpływu na wzrost PKB.

Również w modelu MNW (4) obie zmienne objaśniające są nieistotne statystycznie. Te wszystkie czynniki wskazują, że model MNW (4) gorzej opisuje przyrosty PKB niż model MNW (3).

Następnie, na podstawie otrzymanych modeli, dokonano predykcji przyrostów PKB dla obu modeli. Kolejnym krokiem była przeprowadzona odwrotna transformacja w celu uzyskania prognozowanych wartości PKB w mln PLN, według wzoru 3.1.

Wzór 3.1 Transformacja odwrotna

$$PKBt, n = PKBt - 1, n * \exp(Pt, n)$$

gdzie:

 $P_{t,n}$ -prognozowana wartość przyrostu PKB w roku t, dla n-tego województwa

PKB_{t-1, n}- wartość czynnika w roku poprzednim, dla n-tego województwa

Różnica otrzymana pomiędzy wynikami uzyskanymi w wyniku predykcji modelu MNW (3) oraz modelu MNW (4) stanowi szarą strefę. Otrzymane różnice przeliczono na procentowy udział szarej strefy w PKB Polski. Wyniki widoczne są na rysunku 3.1.

Rysunek 3.1 PKB i oszacowane PKB

Jak wynika z wizualizacji mamy do czynienia ze zbyt dokładną predykcją wartości PKB. Uzyskane zbyt dobre dopasowanie może wynikać np. z małej wielkości próby użytej do badania lub różnicach pomiędzy realną wartością PKB, a tą dostępną w danych (problem ten może również dotyczyć innych użytych do estymacji zmiennych).

Tabela 3.2 Porównanie wartości oszacowań

Rok	PKB w mln zł	PKB prognozowa ne według Modelu I	PKB prognozowa ne według Modelu II	Szara strefa w %	Szara strefa w mln zł
2002	50763.31	-	-	-	-
2003	52947	52957.79	53167.34	1.49	790.45
2004	58318.19	58644.41	56523.82	3.63	2120.59
2005	61,908.19	61538.15	62142.13	0.97	604
2006	66839.44	66904.95	66980.05	0.11	75.09
2007	74219.31	73934.16	70139.23	5.11	3794.93
2008	80348.25	80217.93	74336.31	7.32	5881.617
2009	85751.44	85901.91	75855.84	11.71	10046.07
2010	89648.13	89263.37	89831.98	0.63	568.603
2011	97102.56	97298.39	95716.89	1.62	1581.5
2012	100796.2	101277.3	102057.2	0.77	779.93

Źródło: Opracowanie własne

W tej Tabeli 3.2 zestawiono prognozowane wartości PKB uzyskane na podstawie Modelu I i Modelu II oraz wielkość szarej strefy widoczną jako procentowy udział w PKB oraz wartość w mln PLN, wyznaczoną ze według wzoru 3.2.

Szara strefa=
$$\frac{|PKBt I - PKBt II|}{|PKBt|}$$

gdzie:

PKBt I – wartość przetransformowanego czynnika w roku t dla modelu I

PKBt II – wartość przetransformowanego czynnika w roku t dla modelu II

PKBt - wartość czynnika w roku t

Rysunek 3.2 Wartości oszacowanej szarej strefy

Źródło: Opracowanie własne

Na Rysunku 3.2 widoczna jest dokładna wartość oszacowania rozmiaru szarej strefy w kolejnych latach. Duże wahania rok do roku w otrzymanej wartości mogą sugerować otrzymanie błędnych wyników. Oszacowania uzyskane przez niezależne instytucje są do siebie nawzajem znacząco bardziej zbliżone.

Następnym krokiem, było porównanie uzyskanych wartości do szacunków przeprowadzonych przez niezależne organizacje, które przeprowadzały badania i estymacje w zakresie mierzenia szarej strefy w Polsce. Wyniki tych oszacowań są widoczne w Tabeli 3.4 oraz na Rysunki 3.3.

Tabela 3.3 Porównanie wartości oszacowań

Data	Szara strefa według	Szara strefa według	Szara strefa według
	własnego badania	GUS	EY
2005	0,975	13,7	18.9
2006	0,11	13,7	17.4
2007	5.11	12,8	15,8
2008	7.32	11,8	14
2009	11.71	13,1	14,4
2010	0.634	12,6	14,6
2011	1.63	12,1	14,2
2012	0,77	14	14,1

Rysunek 3.3 Porównanie wartości oszacowań z innymi badaniami

Źródło: Opracowanie własne

Wyniki przeprowadzonego badania znacząco różnią się od wyników GUS czy EY¹¹. Jedną z możliwych przyczyn takiej sytuacji może być zbyt dokładne wartości predykcyjne, co mogło prowadzić do nadmiernego dopasowania modelu do danych historycznych. Problem ten może mieć swoje źródło w małej próbie wykorzystanej do przeprowadzenia estymacji oraz trudnością z uzyskaniem danych dla dłuższego okresu. Dodatkowo różnice mogą wynikać z przyjęcia różnej metodyki badania przy obliczaniu rozmiaru szarej strefy w Polsce. W badaniu GUS na

_

¹¹ https://assets.ey.com/content/dam/ey-sites/ey-com/en_pl/topics/eat/pdf/03/ey-szara-strefa-w-polsce-final.pdf dostep (15.05.2024)

temat szarej strefy szacowano szarą strefę za pomocą danych o rynku pracy oraz danych o przedsiębiorcach. W Jak już wcześniej wspomniano szacowanie szarej strefy jest tematem zajmujących wielu statystyków i ekonomistów. Charakter tego zjawiska znacząco utrudnia jego poprawne oszacowanie, a spektrum dostępnych metod jest bardzo szerokie. Różnice w osiąganych poziomach są znaczące, dlatego warto zastanowić się nad możliwościami ulepszenia oszacowań, czy też dalszych możliwych kierunków bada w tym obszarze.

4. Zakończenie

W pracy podjęto temat rozmiaru szarej strefy. Skorzystano z definicji PKB i na podstawie oszacowania modeli ekonometrycznych przeprowadzono obliczenia mające na celu oszacowanie rozmiaru szarej strefy określanej jako procent PKB. Postarano się o wzbogacenie dostępnej w tym zakresie literatury, o dodatkowe metody oszacowań. Samo zagadnienie jest problematyczne ze względu na trudności w weryfikacji otrzymanych wyników ze stanem faktycznym. Jest to problem, z którym próbuje się zmierzyć wiele instytucji statystycznych i naukowych, a literatura czy prace z tego zakresu stale pojawiają się w sferze naukowej. W kwestii dalszych możliwych kierunków badan w tym obszarze, które można by podjąć jest między innymi uwzględnienie dodatkowych zmiennych objaśniających, czy skorzystanie z bardziej wyszukanych modeli ekonometrycznych np. modeli wielorównianowych.

5. Bibliografia

- Instytut Koniunktur i Cen Handlu Zagranicznego. Metodologia badań szarej strefy na rynku usług turystycznych. Wykonano na zlecenie Departamentu Turystyki Ministerstwa Gospodarki. Kierownik projektu: dr Tadeusz Smuga. Autorzy: dr Wojciech Burzyński, mgr Wanda Karpińska-Mizielińska, dr hab. Anna Marzec, dr Józef Niemczyk, dr Tadeusz Smuga, dr Piotr Ważniewski. Współpraca: mgr Anna Pucek.
- 2. F. Schneider., H.D. Ernest, *Shadow Economies: Size, Causes and Consequences*, "Journal of Economic Literature" Vol. XXXVIII, 2000.
- 3. L.E. Feige, How big is the irregular Economy? Challenge, November December 1979.
- 4. Global Compact Network Poland, 2015/2016
- 5. Cichocki, S. J. (2006). Metody pomiaru szarej strefy. *Gospodarka Narodowa*, 205(1/2), 37–61. https://doi.org/10.33119/GN/101449 dostep (08.06.2024)
- 6. Czapkiewicz A., Brzozowska-Rup K., Szacowanie rozmiarów szarej strefy w Polsce, 2021, Główny Urząd Statystyczny
- 7. Sylwia Pangsy-Kania, Katarzyna Wierzbicka, Anna Czarnomska. "Aktywność eksportowa i importowa województw w Polsce". Optimum. Studia Ekonomiczne nr 1(115) 2023, str. 1-22
- 8. https://pl.investing.com/currencies/eur-pln-historical-data dostęp z dnia 14.05.2024.
- 9. https://pl.wikipedia.org/wiki/Demografia Polski dostęp z dnia 14.05.2024
- 10. Bank danych Lokalnych, https://stat.gov.pl/projekty-unijne-w-statystyce/sisp/bank-danych-lokalnych/, dostęp z dnia 15.05.2024.
- 11. https://assets.ey.com/content/dam/ey-sites/ey-com/en_pl/topics/eat/pdf/03/ey-szara-strefa-w-polsce-final.pdf dostęp z dnia 15.05.2024.
- 12. Zienkowski, L. (1996). Szacunek rozmiarów szarej gospodarki (synteza). Z Prac Zakładu Badań Statystyczno-Ekonomicznych GUS i PAN. Studia i Prace, (233), 23–30. dostęp z dnia 15.05.2024.
- 13. Organisation for Economic Co-operation and Development. (2002). Measuring the Non-Observed Economy: A Handbook. https://www.oecd.org/sdd/na/1963116.pdf dostęp z dnia 17.05.2024.