Rational OpenCog Controlled Agent

Nil Geisweiller, Hedra Yusuf

Artificial General Intelligence 2023 (AGI-23)

Cognitive Schematic

• Context \wedge Action \leadsto^T Goal

$$C_1 \wedge^{T_1} \dots \wedge^{T_{i-1}} C_i \wedge A_i \wedge^{T_i} \dots \wedge^{T_j} A_j \rightsquigarrow^{T_i + \dots + T_{j+1}} G$$

$$[C_1 \wedge^{T_1} \dots \wedge^{T_{i-1}} C_i](t) = True \mid False$$

$$\begin{bmatrix} C_1 \wedge^{T_1} \dots \wedge^{T_{i-1}} C_i \end{bmatrix} (t) = \text{True} \mid \text{False} \\ \mapsto \mathcal{D}ist(Bool)$$

$$\begin{bmatrix} C_1 \wedge^{T_1} \dots \wedge^{T_{i-1}} C_i \end{bmatrix} (t) = True \mid False \\ \mapsto \mathcal{D}ist(Bool) \\ \mapsto \mathcal{D}ist(\mathcal{D}ist(Bool))$$

$$C \wedge A_1 \wedge^{T_1} A_2 \wedge^{T_2} A_3 \rightsquigarrow^{T_1+T_2+T_3} G$$
Now Then
$$C \wedge A_1 \wedge^{T_1} A_2 \wedge^{T_2} A_3 \rightsquigarrow^{T_2+T_3} G$$
Context Plan Goal

$$C \wedge A_1 \wedge^{T_1} A_2 \wedge^{T_2} A_3 \rightsquigarrow^{T_1+T_2+T_3} G$$

$$C \wedge A_1 \wedge^{T_1} A_2 \wedge^{T_2} A_3 \rightsquigarrow^{T_2+T_3} G$$

Actions

- get(key)
- go(house)
- collect(diamond)

Percepts

- outside(house)
- inside(house)
- hold(key)
- next(door)
- reward(1)
- reward(0)

 $outside(house) \land get(key) \mathbin{{\scriptstyle \nearrow}}^1 go(house) \mathbin{{\scriptstyle \nearrow}}^1 collect(diamond) \mathbin{{\scriptstyle \leadsto}}^3 reward(1)$

outside(house) \land get(key) \land^1 go(house) \land^1 collect(diamond) \rightsquigarrow^3 reward(1)

outside(house) \land get(key) \nearrow^1 go(house) \nearrow^1 collect(diamond) \rightsquigarrow^3 reward(1) hold(key) \land go(house) \nearrow^1 collect(diamond) \rightsquigarrow^2 reward(1)

outside(house) \land get(key) \nearrow^1 go(house) \nearrow^1 collect(diamond) \rightsquigarrow^3 reward(1) hold(key) \land go(house) \nearrow^1 collect(diamond) \rightsquigarrow^2 reward(1)

7/13

outside(house) \land get(key) \land^1 go(house) \land^1 collect(diamond) \leadsto^3 reward(1)

hold(key) \land go(house) \land ¹ collect(diamond) \leadsto ² reward(1)

inside(house) ∧ collect(diamond) → 1 reward(1)

outside(house) \land get(key) \nearrow^1 go(house) \nearrow^1 collect(diamond) \rightsquigarrow^3 reward(1)

hold(key) \land go(house) \land ¹ collect(diamond) \leadsto ² reward(1)

inside(house) ∧ collect(diamond) → 1 reward(1)

The Paradox of Choice

Many applicable schemata

$$\begin{array}{cccc} C_1 \wedge A_1 \rightsquigarrow^{T_1} G & \stackrel{\text{\tiny m}}{=} & TV_1 \\ & \vdots & & & \\ C_{9999} \wedge A_{9999} \rightsquigarrow^{T_{9999}} G & \stackrel{\text{\tiny m}}{=} & TV_{9999} \end{array}$$

The Paradox of Choice

Many applicable schemata

$$\begin{array}{cccc} C_1 \wedge A_1 \rightsquigarrow^{T_1} G & \stackrel{\mathbb{m}}{=} & TV_1 \\ \vdots & & & \\ C_{9999} \wedge A_{9999} \rightsquigarrow^{T_{9999}} G & \stackrel{\mathbb{m}}{=} & TV_{9999} \end{array}$$

Some contradicting each other

$$C_1 \wedge A \rightsquigarrow^{T_1} G \stackrel{\text{m}}{=} <0.9 \ 0.5>$$

 $C_2 \wedge A \rightsquigarrow^{T_1} G \stackrel{\text{m}}{=} <0.1 \ 0.5>$

8/13

The Paradox of Choice

Many applicable schemata

$$\begin{array}{cccc} C_1 \wedge A_1 \rightsquigarrow^{T_1} G & \stackrel{\mathbb{m}}{=} & TV_1 \\ \vdots & & & \\ C_{9999} \wedge A_{9999} \rightsquigarrow^{T_{9999}} G & \stackrel{\mathbb{m}}{=} & TV_{9999} \end{array}$$

Some contradicting each other

$$C_1 \wedge A \rightsquigarrow^{T_1} G \stackrel{\text{m}}{=} <0.9 \ 0.5>$$

 $C_2 \wedge A \rightsquigarrow^{T_1} G \stackrel{\text{m}}{=} <0.1 \ 0.5>$

With different risk/reward profiles

$$C_1 \wedge A_1 \leadsto^{T_1} G \stackrel{\underline{m}}{=} <0.9 \ 0.1>$$

 $C_2 \wedge A_2 \leadsto^{T_2} G \stackrel{\underline{m}}{=} <0.6 \ 0.9>$

Balancing exploitation and exploration

Solomonoff-ish Induction
+
Thompson Sampling

Balancing exploitation and exploration

Solomonoff-ish Induction \
+ Second Order Mixture
Thompson Sampling

Balancing exploitation and exploration

Learning Schemata

Pattern Mining
+
Temporal Reasoning

Pattern Mining Schemata

Time	Event
:	:
10	Reward(0)
10	outside(house)
10	hold(key)
10	go(house)
11	inside(house)
11	go(diamond)
11	Reward(0)
12	Reward(1)
:	:

Reasoning Schemata

```
\frac{\textit{outside}(\textit{house}) \land \textit{go}(\textit{key}) \leadsto^1 \textit{outside}(\textit{house}) \quad \textit{outside}(\textit{house}) \land \textit{go}(\textit{key}) \leadsto^1 \textit{hold}(\textit{key})}{\underbrace{\textit{outside}(\textit{house}) \land \textit{go}(\textit{key}) \leadsto^1 \textit{outside}(\textit{house}) \land \textit{hold}(\textit{key})}_{\textit{outside}(\textit{house}) \land \textit{go}(\textit{house}) \leadsto^2 \textit{inside}(\textit{house}) \rightsquigarrow^2 \textit{inside}(\textit{house})}} \text{(PD)}
```

Reasoning Schemata

```
\frac{outside(house) \land go(key) \leadsto^1 outside(house) \quad outside(house) \land go(key) \leadsto^1 hold(key)}{outside(house) \land go(key) \leadsto^1 outside(house) \land hold(key)} \underbrace{(CC)}_{outside(house) \land hold(key) \land go(house) \leadsto^1 inside(house)}_{outside(house) \land go(key) \land^1 go(house) \leadsto^2 inside(house)} (PD)
\vdots
```

outside(house) \land go(key) \land ¹ go(house) \land ¹ go(diamond) \rightsquigarrow ³ reward(1) $\stackrel{\text{\tiny m}}{=}$ < 0.833, 0.005 >

<BEGIN-SPEECH> And for the observation phase, all percepts coming from the environment are merely mechanically timestamped and stored in the Percepta AtomSpace. I know that in general perception should not be treated independently from cognition, but that's how it works for now. <END-SPEECH>

Events
Timestamped
Recorded