

CERTIFICATION

Schreiber Translations, Inc.

This is to certify that the attached **English** language document,

51 Monroe Street

identified as Patent Publication No. Hei 5-223500, is a true

Suite 101

and accurate translation of the original _ Japanese

Rockville, MD 20850

language document to the best of our knowledge and belief.

P: 301.424.7737

F: 301.424.2336

Executed this <u>27</u> day of July, 2004

Schreiber Translations, Inc. 51 Monroe Street, Suite 101 Rockville, Maryland 20850 ATA Member 212207

Schreiber Translations, Inc. uses all available measures to ensure the accuracy of each translation, but shall not be held liable for damages due to error or negligence in translation or transcription.

(19) Japan Patent Office (JP)

(12) Patent Gazette (A)

(11)Patent Application Publication No.

Hei 5-223500

(43) Publication Date: August 31, 1993

(51) Int. Cl. ⁵ F41J 5/10	Identification Code:	Internal Reference No.: 9209-2C	FI	Technical Indication
5/14 H04N 7/18	R	9209-2C 7337-5C		Area

Examination: Not requested No. of claims: 3 (Total 5 pages)

(21)	Application No.:	Hei 4-21264	(71)	Applicant:	592030171
					Eirii Engineering
					3-go, 38-ban, 1-chome,
					Koteyubimachi,
					Tokorozawa-shi,
					Saitama-ken
(22)	Filing Date:	February 6, 1992	(72)	Inventor	HIDANO Tadashi
					1577-1 Kume,
					Tokorozawa-shi,
					Saitama-ken
			(74)	Agent	DOBASHI Hiroshi,
					Patent Attorney

(54) [Title] Training Device for Firing Live Ammunition

(57) [Abstract]

[Object] In a training device for firing live ammunition used for firing education, training, and skill evaluation, the object is to obtain a small firearm training device for firing live ammunition that is safe, enhances the precision of evaluation of firing results, shortens the evaluation period, and shortens the time required for testing, education, and training.

[Configuration] The configuration is one in which are provided an image detecting sensor, positioned in the vicinity of a target and detecting the image of a bullet mark on the target; a processor, receiving a bullet mark image signal outputted by said image detecting sensor, conducting image processing by comparing the bullet marks prior to shooting with the bullet marks after shooting to identify a new bullet mark following shooting, and calculating evaluation data firing results; and a display, receiving a signal from the processor and displaying to an instructor and shooting trainee the position of a bullet mark on the target and shooting evaluation data calculated from the position of the bullet mark on the target; with a recorder being connected to the processor of the training device for firing live ammunition and a communicator being provided permitting communication between the instructor and the shooting trainee.

[#insert fig.]

[Claims]

[Claim 1] A small firearm training device for firing live ammunition characterized by comprising an image detecting sensor, positioned in the vicinity of a target and detecting the image of a bullet mark on the target; a processor, receiving a bullet mark image signal

outputted by said image detecting sensor, conducting image processing by comparing the bullet marks prior to shooting with bullet marks after shooting to identify a new bullet mark following shooting, and calculating evaluation data firing results; and a display, receiving a signal from the processor and displaying to an instructor and shooting trainee the position of a bullet mark on the target and shooting evaluation data calculated from the position of the bullet mark on the target.

[Claim 2] The training device for firing live ammunition of claim 1 wherein a recorder recording the position of said bullet mark and said firing evaluation data calculated from said bullet mark position is connected to said processor.

[Claim 3] The training device for firing live ammunition of claim 1 or 2 wherein a communicator permitting communication during firing training between said instructor and said firing trainee is provided.

[Detailed Description of the Invention]

[Industrial Field of Application] The present invention relates to a training device for firing live ammunition used for firing education, training, and skill evaluation, that detects by means of a video camera the bullet mark of a real bullet on the target and computes evaluation results for the same in the firing training of small firearms employing live ammunition.

[0002]

[Prior Art] Conventionally, at live ammunition firing ranges, as shown in Fig. 5, for example, a target 2 is positioned at some distance from a firing trainee 1. Trainee 1 fires live ammunition at target 2. However, firing trainee 1 does not know at his position what portion of target 2 has been hit by the live ammunition. Thus, a trench 3 is dug below target 2 and a person 4 for confirming the status of the target is positioned in trench 3 to confirm bullet marks, or a person near shooting trainee 1, such as instructor 5, observes target 2 with binoculars 6 to confirm the bullet marks, after which firing evaluation data are calculated based on the positioning of the bullet marks.

[0003]

[Problem to Be Solved by the Invention] In such a conventional live ammunition firing training method, there are delays in aiming adjustment, trajectory confirmation, and confirmation of bullet marks on the target. Additionally, there are a number of issues relating to the safety of personnel in the vicinity of the target. Thus, there are problems in that the training time and the time required for score evaluation, and costs associated therewith, greatly increase due to the time and manpower required to confirm bullet marks on the target and calculate firing evaluation data. The present invention, devised in light of such problems of prior art, has for its object to provide a training device for firing live ammunition that is safe, enhances the precision of firing result evaluation, shortens evaluation time, and shortens testing, education, and training time.

[0004]

[Means of Solving the Problems] To solve the above-stated problems, the present invention is configured as a small firearm training device for firing live ammunition comprising an image detecting sensor, positioned in the vicinity of a target and detecting the image of a bullet mark on the target; a processor, receiving a bullet mark image signal outputted by said image detecting sensor, conducting image processing by comparing bullet marks prior to shooting with bullet marks after shooting to identify a new bullet

mark following shooting, and calculating evaluation data firing results; and a display, receiving a signal from the processor and displaying to an instructor and shooting trainee the position of a bullet mark on the target and shooting evaluation data calculated from the position of the bullet mark on the target. Further, a recorder is connected to the processor of the training device for firing live ammunition, and a communicator is provided, permitting communication between the instructor and the shooting trainee. [0005]

[Operation] The operation of the present invention will be described next. The image detecting sensor is positioned near the target and detects the target and the images of bullet marks on the target. The processor receives an image signal of bullet marks outputted by the image detecting sensor, compares the bullet marks before firing with those after firing, conducts processing to identify newly generated bullet marks following firing, and computes firing result evaluation data. The display receives a signal from the processor and displays the position of the bullet marks on the target and shooting evaluation data computed from the position of the bullet marks to the instructor and firing trainee. The displayed data are recorded by the recorder, with communication between the instructor and the shooting trainee being possible.

[0006]

[Embodiments] The present invention is described below based on the figures. Fig. 1 is a configurational diagram of the present invention. An image detecting sensor 14 is positioned in the vicinity of a target 12 to detect the bullet marks 13 of live ammunition hitting and passing through target 12 in a small firearm 10 training device for firing live ammunition 11. Image detecting sensor 14 picks up the images of target 12 and of bullet marks 13 made by live ammunition passing through, and transmits an image signal of target 12 and bullet marks 13 to processor 15, which will be described next. A display 18 that displays firing evaluation data processed by processor 15 in a location readily visible to instructor 16 and shooting trainee 17 is provided. A recording device 19 inputting the shooting evaluation data processed by processor 15 is also provided. And a communicator 20 permitting communication between instructor 16 and trainee 17 is provided.

[0007] Image detecting sensor 14 picks up the entire image of target 12 with a small, lightweight, high-precision CCD camera and transmits this image to processor 15. Processor 15 inputs an image signal from image detecting sensor 14 once each second, compares the current image to the image of the preceding second, and conducts image processing by means of a microprocessor and a semiconductor memory. A display 18 in the form of a small, lightweight liquid-crystal display is employed for the trainee and a display in the form of a cathode-ray tube display is employed for the instructor. Recorder 19 is a small serial dot printer. A headset and sound amplifier in which a microphone is integrated with a headphone is employed as communicator 20 by the instructor 16 and trainee 17.

[0008] Fig. 2 is a block diagram of the individual components of processor 15 in Fig. 1. An image of bullet marks 13 on target 12 is outputted by image detecting sensor 14. Target graphic generating device 22 generates graphics of the target with a bull's eye but without bullet marks, which is inputted by graphics synthesizer 21. There is a training first memory 23 storing the image of the bullet marks of the results of the first round, a training second memory 24 storing the image of the bullet marks of the results of the

second round, and a qualification memory 25 storing the image of the bullet marks of the results of the final round for qualification. Synthesizer 26 inputs and synthesizes the training first memory, training second memory, and qualification memory. The image of target 12 and firing result data are outputted by synthesizer 26 via graphics synthesizer 21 to display device 18 and recorder 19.

[0009] Graphics synthesizer 21 compares the image received from signal detecting sensor 14 with the image received the previous second. It assumes that there was no bullet mark in the image one second earlier, and extracts the images of new bullet marks, detecting bullet marks in the manner described further below. Thus, it is possible to identify bullet marks that have been newly generated after firing by comparing the bullet marks prior to firing with those after firing. A switch 27 is provided and manually operated to input to the training first memory, training second memory, and qualification memory from graphics synthesizer 21.

[0010] To conduct shooting training, necessary data such as the name of the trainee, date, time, and name of the instructor are inputted to processor 15 through a keyboard, not shown. The images and data of image sensor 14, processor 15, display 18, and the like are fully cleared to achieve a state of full preparation. When this is done, image sensor 14 and processor 15 begin operation, scanning the surface of target 12 about once a second, detecting the positions of bullet marks 13, and sending them to processor 15. [0011] When shooting begins, processor 15 receives the image signals of target 12 and bullet marks 13 outputted by image detecting sensor 14, and conducts image processing in a manner set forth further below to compute shooting result evaluation data. Display 18 receives a signal from graphics synthesizer 21 in processor 15 and displays the positions of bullet marks 13 on target 12 and firing evaluation data computed from the positions of bullet marks 13. Once each specified number of rounds – for example, when three volleys of practice rounds in the form of training 1, training 2, and qualification 3, each consisting of five rounds of live ammunition, have been completed – a record of the firing evaluation data that have been displayed up to that point is stored in recorder 19 and the display image is cleared.

[0012] An image signal such as that shown in Fig. 3 is inputted to processor 15 as the image signal of target 12 and bullet mark 13. When the image 25 of target 12 is scanned over 501 scan lines, an image comprised of 501 horizontal pixels and the same number of vertical pixels is generated, and numbers between 0 and 500 are assigned to the position of each pixel, with y denoting the vertical and x denoting the horizontal position, to express the position of each pixel in coordinates, the upper left corner is denoted as (y_0, x_0) , the upper right corner as (y_0, x_{500}) , the center as (y_{250}, x_{250}) , the lower left corner as (y_{500}, x_0) , and the lower right corner as (y_{500}, x_{500}) .

[0013] The bullet mark 13 portion of the image picked up by image sensor 14 is black. Assume for example that a bullet mark 13 has been made in the upper left portion of image 30. Denoting the dots in the spot where the bullet mark has been made as "1" and dots in other spots as "0", since the shape of bullet mark 13 is nearly round, the coordinates of dots yielding signals of "1" become $(y_{122}, x_{125-127})$, $(y_{123}, x_{124-128})$, $(y_{124}, x_{123-129})$, $(y_{125}, x_{123-129})$, $(y_{126}, x_{123-129})$, $(y_{127}, x_{124-128})$, $(y_{128}, x_{125-127})$, as partially shown in the image of target 12 in Fig. 4.

[0014] To detect a point comprised of such "1" dots, the positions of the individual dots of

 $(y_0, x_0), (y_0, x_1), (y_0, x_2),...(y_0, x_{500}),$ $(y_1, x_0), (y_1, x_1), (y_1, x_2),...(y_1, x_{500}),$ \vdots $(y_{122}, x_0), (y_{122}, x_1), (y_{122}, x_2),...(y_{122}, x_{500}),$

 $(y_{500}, x_0), (y_{500}, x_1), (y_{500}, x_2),...(y_{500}, x_{500})$ are sequentially scanned and the first position (y_{122}, x_{125}) at which the signal becomes "1" is detected. The adjacent dots (y_{122}, x_{126}) and (y_{122}, x_{127}) are checked and connected to determine the portion of "1". The continuous dot group $(y_{122}, x_{125-127})$ is "1", indicating a bullet mark.

[0015] When the next line down is then scanned to check whether the (y_{123}, x_0) , (y_{123}, x_1) , ... (y_{123}, x_{500}) signals are "1" or "0", it is discovered that $(y_{123}, x_{124-128})$ are "1". When a check is made as to whether the (y_{124}, x_0) , (y_{124}, x_1) , ... (y_{124}, x_{500}) signals are "1" or "0", it is discovered that $(y_{124}, x_{123-129})$ are "1". Likewise, $(y_{125}, x_{123-129})$ are found to be "1" for (y_{125}, x_0) , (y_{125}, x_1) , ... (y_{125}, x_{500}) ; $(y_{126}, x_{123-129})$ for (y_{126}, x_0) , (y_{126}, x_1) , ... (y_{126}, x_{500}) ; $(y_{127}, x_{124-128})$ for (y_{127}, x_0) , (y_{127}, x_1) , ... (y_{127}, x_{500}) ; and $(y_{128}, x_{125-127})$ for (y_{128}, x_0) , (y_{128}, x_1) , ... (y_{128}, x_{500}) . These are dots for which the signal obtained by picking up bullet mark 13 in image 20 is "1"; there are no dots for which the signal on the image of target 12 is "1" on or below scan line (y_{129}, x_0) , (y_{129}, x_1) ,... (y_{129}, x_{500}) .

[0016] When a signal of "1" is obtained for each of seven dots from y_{122} to y_{127} [sic: y_{128}] in the vertical direction and x_{123} to x_{129} in the horizontal direction, this is determined to be the bullet mark of one round. When a bullet mark of nine or more dots is found running either vertically or horizontally, it is determined to be the bullet mark of two rounds. When a bullet mark of nine or more dots is found running both vertically and horizontally, it is determined to be the bullet mark of three rounds.

[0017] In this manner, when the signals of seven dots from y_{122} to y_{127} and seven dots from x_{123} to x_{129} become "1", the calculation:

(122+128)/2 = 125 is performed for y,

(123+129)/2 = 126 is performed for x, and (y_{125}, x_{126}) is determined to be the center point of the bullet mark. Vector computation is then used to determine the position of the center point (y_{125}, x_{126}) of bullet mark 13 relative to the center point (y_{250}, x_{126}) x_{250}) of target 12 in image 20. That value becomes the evaluation score. [0018] Such bullet mark detection and computation is repeated once each second, as stated above, and outputted to display 18. By repeating detection each second and comparing the current image received with the image received the previous second, making the assumption there is no bullet mark in the image of the previous second, and extracting only the image of new bullet marks, when a shot is fired during the interval, the bullet mark prior to shooting ends up being compared with the bullet mark after shooting, resulting in the identification of the newly generated bullet mark after shooting. [0019] When a fixed number of shots have been fired in this manner, generally upon the direction of the instructor 16, the evaluation data and the positions of the bullet marks up to that point are stored in recorder 19 and the screen of display 18 is cleared. When the operations of bullet mark detection and computation and storage in recorder 19 have been repeated three times, for example, upon the direction of the instructor, a combined total of three bullet mark diagrams and evaluation data are printed out together with the initially inputted time, date, name, and the like and one session of shooting training is

concluded. There are normally several shooting trainees 17 simultaneously undergoing training, and there are multiple displays 18 at target 12 and the position of trainees 17. The instructor 16 switches between giving instructions to individual trainees and the recorded data of each trainee by means of switch 26 built into display 18.

[0020] The method of detecting bullet marks, the conducting of bullet mark detection and computation once each second, and the method of frequency of combining the three-round bullet mark diagram with evaluation data described in the above embodiment can be suitably modified. The block diagram of the device shown in Fig. 2 is an example, and the present invention is not limited thereto.

[0021]

[Effect of the Invention] Since the present invention as set forth above comprises an image detecting sensor, positioned in the vicinity of a target and detecting the image of a bullet mark on the target; a processor, receiving a bullet mark image signal outputted by said image detecting sensor, conducting image processing by comparing bullet marks prior to shooting with bullet marks after shooting to identify a new bullet mark following shooting, and calculating evaluation data firing results; and a display, receiving a signal from the processor and displaying to an instructor and shooting trainee the position of a bullet mark on the target and shooting evaluation data calculated from the position of the bullet mark on the target, safety is ensured on the live ammunition training range, aiming adjustment training is facilitated, bullet mark identification is simple and uniform, the time required for testing, teaching, and training is shortened, and the precision of firing evaluation data is enhanced. The time required to record evaluation results is shortened, the instructor and trainees are linked over great distances, and numerous other important effects are achieved.

[Brief Description of the Figures]

- [Fig. 1] A perspective view of a complete training device for firing live ammunition showing the configuration of the present invention.
- [Fig. 2] A block diagram of the individual components of the processor of the system of Fig. 1.
- [Fig. 3] The front view of an image of the target and a bullet mark left on it picked up by an image detecting sensor.
- [Fig. 4] A typical front view of part of a target showing dots for which the signal obtained by scanning the bullet mark on the target has become "1".
- [Fig. 5] A perspective view of a complete conventional live ammunition firing range, showing the position of bullet marks and how firing evaluation data are computed.

[Key to the Numerals]

- 10 Small firearm
- 11 Training device for firing living ammunition
- 12 Target
- 13 Bullet mark
- 14 Image detecting sensor
- 15 Processor
- 16 Instructor
- 17 Trainee
- 18 Display
- 19 Recorder

20 Communicator

TRAINING DEVICE FOR LIVE AMMUNITION FIRING

Patent number:

JP5223500

Publication date:

1993-08-31

Inventor:

HIDANO TADASHI

Applicant:

EIRII ENG:KK

Classification:

- international:

F41J5/10; F41J5/14; H04N7/18

- european:

Application number: JP19920021264 19920206

Priority number(s):

Abstract of JP5223500

PURPOSE:To permit the training and the evaluation of live ammunition firing safely and efficiently respectively by a method wherein the trace of a live ammunition, hitting a target, is detected by a picture detecting sensor and a picture signal is processed by a processor while the evaluating data of the processed firing is indicated on an indicator. CONSTITUTION:In a training device 11 for the live ammunition firing of small firearms 10, the trace 13 of a live ammunition, hitting a target 12 and penetrating the same, is detected by a picture detecting sensor 14. The picture signals of the targets 12 and the live ammunitions, which are detected by the picture detecting sensors 14, are processed by a processor 15. Then, the processed firing evaluation data are indicated on an indicators 18 installed at places easily observed by a teacher 16 and trainees 17. On the other hand, the processed firing evaluation data are recorded in a recorder 19. Communications are effected between the teacher 16 and the trainees 17 through talking devices 20. According to this method, the evaluation of the live ammunition firing training is effected safely and quickly with good accuracy whereby times requested for the training and the evaluation can be shortened.

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-223500

(43)公開日 平成5年(1993)8月31日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
F41J	5/10		9209-2C		
	5/14		9209-2C		
H04N	7/18	R	7337-5C		

審査請求 未請求 請求項の数3(全 5 頁)

(O1) (USE 45 E)	14 EETH 1 01001	(71) IUEE F00000171
(21)出願番号	特顯平4-21264	(71)出願人 592030171
		株式会社エイリイ・エンジニアリング
(22)出廣日	平成4年(1992)2月6日	埼玉県所沢市小手指町1丁目38番3号
		(72)発明者 肥田野 正
	•	埼玉県所沢市久米1577-1
		(74)代理人 弁理士 土橋 皓

(54) 【発明の名称】 実弾射撃訓練装置

(57)【要約】

【目的】 射撃の教育、訓練及び技能検定等に用いる実 弾射撃訓練装置に関し、安全で、射撃結果の評価の精度 が向上し、評価時間も短縮し、試験や教育訓練時間を短 縮することができる小火器の実弾射撃訓練装置を得るこ とを目的とする。

【構成】 標的の付近に設置して標的上の弾痕の画像を検出する画像検出センサと、該画像検出センサから出力される弾痕の画像信号を受け射撃前の弾痕と射撃後の弾痕とを比較して射撃後に新たに発生した弾痕を認識するための画像処理を行うと共に射撃結果の評価データを算出する処理器と、該処理器からの信号を受け標的上の弾痕の位置及び該弾痕の位置から算出される射撃評価データを指導教官及び射撃訓練生の前に表示する表示器と有し、また前記実弾射撃訓練装置の処理器には記録器が接続されており、更に指導教官と射撃訓練生との間で通話連絡を可能にする通話器が設けられるように構成する。

(2)

10

特開平5-223500

【特許請求の範囲】

【請求項1】 小火器の実弾射撃訓練装置において、標 的の付近に設置して標的上の弾痕の画像を検出する画像 検出センサと、該画像検出センサから出力される弾痕の 画像信号を受け射撃前の弾痕と射撃後の弾痕とを比較し て射撃後に新たに発生した弾痕を認識するための画像処 理を行うと共に射撃結果の評価データを算出する処理器 と、該処理器からの信号を受け標的上の弾痕の位置及び 該弾痕の位置から算出される射撃評価データを指導教官 及び射撃訓練生の前に表示する表示器とを有することを 特徴とする実弾射撃訓練装置。

1

【欝求項2】 前記処理器に前記弾痕の位置及び該弾痕 の位置から算出される射撃評価データを記録する記録器 を接続したことを特徴とする請求項1記載の実弾射撃訓 練装置。

【請求項3】 前記指導教官と前記射撃訓練生との間 で、射撃訓練中に通話連絡を可能にする通話器を設けた ことを特徴とする請求項1及び請求項2記載の実弾射撃 訓練装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、実弾を使用する小火 器の射撃訓練において、標的への実弾の弾痕とその評価 結果を、ビデオカメラ及び演算により検知し、射撃の教 育、訓練及び技能検定等に用いる実弾射撃訓練装置に関 する。

[0002]

【従来の技術】従来、実弾射撃訓練場においては、例え ば、図5に示すように、射撃訓練生1からかなり離れた 所に標的2が設置されており、標的2に向かって射撃訓 練生1が実弾を射撃するが、標的2のどの部分に実弾が 当たったかは、射撃訓練生1の所からはわからないか ら、標的2の下方に塹壕3が掘られており、標的を確認 するための人員4を塹壕3の中に配置して弾痕を確認す るか、射撃削練生1の近くにいる人例えば指導教官5 が、双眼鏡6により標的2を観察して弾痕を確認した 後、弾痕の位置を基に射撃評価データを算出していた。 [0003]

【発明が解決しようとする課題】ところでこのような従 来の実弾射撃訓練方法にあっては、照準調整、弾道の確 認、標的上の弾痕状況確認が遅れるほか、標的付近にい る人員の安全性に多少問題があり、標的上の弾痕の確認 と、射撃評価データの算出に時間と人手を要するため、 訓練時間及び得点評価所要時間とそのための費用が大幅 に増加するという問題があった。この発明はこのような 従来の課題に着目してなされたもので、安全で、射撃結 果の評価の精度が向上し、しかも評価時間も短縮し、試 験や教育訓練時間を短縮することができる実弾射撃訓練 装置を得ることを目的とする。

[0004]

2

【課題を解決するための手段】本発明は、上記の課題を 解決するための手段として、その構成を、小火器の実弾 射撃訓練装置において、標的の付近に設置して標的上の 弾痕の画像を検出する画像検出センサと、該画像検出セ ンサから出力される弾痕の画像信号を受け射撃前の弾痕 と射撃後の弾痕とを比較して射撃後に新たに発生した弾 痕を認識するための画像処理を行うと共に射撃結果の評 価データを算出する処理器と、該処理器からの信号を受 け標的上の弾痕の位置及び該弾痕の位置から算出される 射撃評価データを指導教官及び射撃訓練生の前に表示す る表示器とを有することとし、また前記実弾射撃訓練装 置の処理器には、記録器が接続されており、更に指導教 官と射撃訓練生との間で通話連絡を可能にする通話器が 設けられていることとした。

[0005]

【作用】次に本発明の作用を説明する。画像検出センサ は標的の付近に設置され、標的及び該標的上の弾痕の画 像を検出する。処理器は該画像検出センサから出力され る弾痕の画像信号を受け、射撃前の弾痕と射撃後の弾痕 とを比較して、射撃後に新たに発生した弾痕を認識する ための画像処理を行い、かつ射撃結果の評価データを算 出する。表示器は前配処理器からの信号を受け標的上の 弾痕の位置及び該弾痕の位置から算出される射撃評価デ 一夕を指導教官及び射撃訓練生の前に表示する。そして 表示されたデータは記録器に記録され、また指導教官と 射撃訓練生との間で通話連絡ができるようになる。

[0006]

【実施例】以下、この発明を図面に基づいて説明する。 図1は本発明の構成図で、小火器10の実弾射撃訓練装 置11には、弾丸が標的12に当たってこれを貫通する 実弾の弾痕13を検出するため、画像検出センサ14を 標的12に近接して設置する。画像検出センサ14は標 的12とこれを実弾が貫通してできる弾痕13を撮影 し、標的12と弾痕13の画像信号を次に述べる処理器 15に送信するものである。そして処理器15で処理さ れた射撃評価データを、射撃指導教官16及び訓練生1 7の見やすい場所に表示する表示器18が設けられる。 また処理器15で処理された射撃評価データを入力する 記録器19が設けられ、さらに指導教官16と訓練生1 7との間で通話連絡を可能にする通話器20が設けられ

【0007】画像検出センサ14は小型軽量の高精度C CDカメラで、標的12の全面を撮影し、その画像を処 理器15に送出する。処理器15は、画像検出センサ1 4からの画像信号を1秒毎に取り込んで、現在の画像と 1秒前の画像の比較を行い、マイクロプロセッサ及び半 導体メモリにより画像処理を行う。表示器18は訓練生 用のものは小型軽量の液晶表示装置を用い、射撃指導教 官用のものはブラウン管表示装置を使用する。 記録器 1

50 9は小型のシリアルドットプリンタである。また指導教

40

(3)

特開平5-223500

官16と訓練生17との通話器20として、マイクロホ ンとヘッドホンとが一体となったヘッドセット及び音声 増幅器を用いる。

【0008】図2は図1の処理器15の中の、各要素の プロック図である。画像検出センサ14からは標的12 の弾痕13の画像が出力し、また標的図形発生装置22 からは弾痕がなくしかも真円を形成する標的の図形が出 カして、図形合成器21に入力する。また第1回の射撃 結果の弾痕の画像がメモリされる訓練1メモリ23、第 2回の射撃結果の弾痕の画像がメモリされる訓練2メモ リ24、最終の検定のための射撃結果の弾痕の画像がメ モリされる検定メモリ25がある。そして訓練1メモ リ、削練2メモリ及び検定メモリの全部が入力して合成 される合成器26があり、そして合成器26から図形合 成器21を介して、表示器18及び記録器19へ、標的 12の画像と射撃結果のデータを出力するようになって いる。

【0009】図形合成器21は、画像検出センサ14か ら受信した画像と、1秒前に受信した画像とを比較し、 1秒前の画像には弾痕は無かったものとして、新しい弾 痕の画像のみを抽出し、後に述べるようにして弾痕を検 出する。これにより射撃前の弾痕と射撃後の弾痕とを比 較して射撃後に新たに発生した弾痕を認識することがで きる。また図形合成器21から訓練1メモリ、訓練2メ モリ及び検定メモリの各々へ入力させるための切換器2 7が散けられて手動で切り換えられる。

【0010】射撃訓練を行うには、訓練生の氏名、日 時、教官名などの必要データを、図示しないキーボード から処理器15に入力し、画像センサ14、処理器1 5、表示器18等の画像やデータを、すべてクリヤして 30 準備完了の状態に入る。そうすると画像センサ14と処 理器15は作動を開始し、約1秒毎に標的12の面の走 査を行い、弾痕13の位置を検知して、処理器15に送*

*出する。

【0011】射撃が開始されると、処理器15は、画像 検出センサ14から出力される標的12と弾痕13の画 像信号を受け、後に述べるような画像処理を行って射撃 結果の評価データを算出する。表示器18は処理器15 内の図形合成器21からの信号を受け、標的12上の弾 痕13の位置及び弾痕13の位置から算出される射撃評 価データを表示する。一定の数の射撃例えば実弾5発づ つを射撃する訓練1、訓練2及び検定の3回の射撃訓練 が終了すると、それまでに表示された射撃評価データの 記録を記録器19に格納し、表示画像をクリヤする。

【0012】処理器15には標的12と弾痕13の画像 信号として、図3に示すような画像信号が入力する。そ して標的12の画像25を501本の走査線で走査し、 縦横各501本の画素からなる画像とし、上下をy,左 右をxとして各画素の位置に0から500までの番号を 付け、各画素の位置を座標で表すと、図に示すように左 上端が (yo, xo), 右上端が (yo, x500), 中心が (y 250, X260), 左下端が (y500, X0), 右下端が (y500. X500)となる。

【0013】画像センサ14で撮影された画像は弾痕1 3の部分は黒くなるので、画像30の弾痕13が例えば 左上の部分にできたとし、弾痕ができた場所にあるドッ トは「1」とし他の場所のドットは「0」とすれば、弾 痕13は円形に近い形となるから、「1」の信号が得ら れるドットの座標は、図4に標的12の画面として部分 的に示すように、(y122, X125-127), (y123, X 124-128), (y124, X128-129), (y125, X123-129), $(y_{126}, x_{123-129}), (y_{127}, x_{124-128}), (y_{128}, x_{128})$ 125-127)の各点となる。

【0014】このようなドット「1」となる点を見つけ 出すには、

```
(y_0, x_0), (y_0, x_1), (y_0, x_2), \dots (y_0, x_{500}),
(y_1, x_0), (y_1, x_1), (y_1, x_2), \dots (y_1, x_{500}),
(y_{122}, x_0), (y_{122}, x_1), (y_{122}, x_2) \cdots (y_{122}, x_{500})
(y_{600}, x_0), (y_{500}, x_1), (y_{600}, x_2) \cdots (y_{600}, x_{600})
```

になる (y122, X125)を探し出す。そして (y122, X 126), (y122, X127)というように隣にあるドットをチ ェックし、連続して「1」になっている部分を求め、 (y122, X125-127)の連続したドット群が「1」でこゝ

に弾痕があることがわかる。

【0015】次に一段下を走査し、(y123, x0), (y 123. X1), ……… (y123, X500)の信号が「1」か 「0」かを調べると、 (y123, X124-128)が「1」であ ることが判明し、次に (y124, X0), (y124, X1), …

の各ドットの位置を次々に走査し、最初に信号が「1」 40 ると、(y124, X123-120)が「1」であることが判明す る。さらに (y125, x0), (y125, x1),(y 126, X600)を調べると、(y126, X123-129)が、(y 126. X0), (y126. X1), (y126. X500)は (y 126. X123-129)於, (y127. X0), (y127. X1), …… ··· (y127, X500)は (y127, X124-128)が、 (y128, X 0), (y128, X1), (y128, X500) は (y128, X 125-127)が「1」となり、これが画像20の弾痕13を 撮影して得られた信号が「1」となるドットであり、走 査線が (y129, X0), (y129, X1), …… (y129, X ……… (y124. X500)の信号が「1」か「0」かを調べ 50 500)以下の標的12の画面上には信号が「1」となるド

(4)

特開平5-223500

ð

ットは存在しない。

【0016】こうして上下方向ではy122 からy127 まで、左右方向ではx123 からx120までの夫々7ドット分から「1」の信号が出されたとき、1発分の弾痕であることが判明する。また上下または左右に、9ドット分以上の弾痕が認められた場合には、2発分の弾痕であると判定し、上下及び左右に共に9ドット分以上の弾痕が認められた場合には、3発分の弾痕であると判定する。

【0017】 こうして、y122 からy127 までの7ドット分と、x123 からx120 までの7ドット分の信号とが 10 「1」となったときには、

yについては、(122+128) /2=125 xについては、(123+129) /2=126 の演算を行って、(y125. X126)が弾痕の中心点である ことが判明する。そして画像20における標的12の中 心点(y250. X250)に対する、弾痕13の中心点(y 126. X126)の位置をベクトル計算により求め、その値が 評価データの得点となる。

【0018】このような弾痕の検出と演算を、前述のように1秒毎に繰り返し行い、表示器18の方に送出する。1秒毎に繰り返される検出により、受信した画像と、1秒前に受信した画像とを比較し、1秒前の画像には弾痕は無かったものとして、新しい弾痕の画像のみを抽出して弾痕を検出するので、その間に射撃が行われたとすれば、射撃前の弾痕と射撃後の弾痕とが比較されることになり、射撃後に新たに発生した弾痕を認識することになり、射撃後に新たに発生した弾痕を認識することになる。

【0019】このようにして一定数の射撃が終了すると、一般には指導教官16の指示により、それまでの弾痕の位置や評価データを記録器19に格納し、表示器18の画面をクリアーする。そして弾痕の検出と演算、記録器19への格納という動作を例えば3回行うと、指導教官の指示により合計3回の弾痕図と評価データとを合成したものを、最初に入力した日時、氏名等と共にプリントアウトして、1回の射撃訓練を終了する。射撃訓練生17は通常は複数人が同時に訓練を受け、標的12や訓練生17の所の表示器18も複数個あるが、各々の訓練生への指示や各訓練生のデータの記録には、指導教官16が表示器18に組み込まれている切換器26によって切り換える。

【0020】なお上記の実施例で説明した弾痕の検出方法や、弾痕の検出と演算を1秒毎に行うこと、3回の弾痕図と評価データとを合成すること等の方法や回数は、適宜変更してもよいことは言うまでもない。また装置の

プロック図も図2に示すものは一例で、これに限定されるものではない。

[0021]

【発明の効果】以上説明したように、この発明によれ ば、標的の付近に設置して標的上の弾痕の画像を検出す る画像検出センサと、該画像検出センサから出力される 弾痕の画像信号を受け射撃前の弾痕と射撃後の弾痕とを 比較して射撃後に新たに発生した弾痕を認識するための 画像処理を行うと共に射撃結果の評価データを算出する 処理器と、該処理器からの信号を受け標的上の弾痕の位 置及び該弾痕の位置から算出される射撃評価データを指 導教官及び射撃訓練生の前に表示する表示器とを有する こととしたので、実弾射撃訓練場での安全が確保され、 照準調整削練が簡素化され、弾痕確認が簡単でしかも個 人差がなくなり、試験および教育訓練の時間が短縮さ れ、射撃評価データの精度が向上する。また評価結果の 記録時間も短縮されることになり、さらに指導教官と射 撃訓練生との間の連絡が速くなる等、多くのしかも大き な効果が得られる。

の 【図面の簡単な説明】

【図1】本発明の構成を示す実弾射撃訓練装置全体の斜 視図である。

【図2】図1のシステムのうち、処理器の中の各要素を 示したプロック図である。

【図3】標的とその上に印される弾痕を画像検出センサ で撮影した画面を示す平面図である。

【図4】標的上の弾痕を走査して得られる信号が「1」 となるドットを示す標的の一部の模式的な平面図であ る。

0 【図5】従来の実弾射撃訓練場全体の斜視図で、弾痕の 位置と射撃評価データを算出する状態を示すものである。

【符号の説明】

- 10 小火器
- 11 実弾射撃訓練装置
- 12 標的
- 13 弾痕
- 14 画像検出センサ
- 15 処理器
- 7 16 指導教官
 - 17 訓練生
 - 18 表示器
 - 19 記録器
 - 20 通話器

(5)

特開平5-223500

【図2】

