CS215 Assignment-2

210050115 Patil Vipul Sudhir 210050119 Hari Prakash Reddy

1 Multivariate Gaussian

1.1 Random Number Generation

We know that $Y = AW + \mu$ and A is found using the Covariance matrix

We know that
$$Y = AW + U$$
 and $C = AA^T$

—DEXPlanation to get A from C:

 $[Q, D] = eig(C)$
 $eig(C)$ returns orthogonal matrix Q which has columns as eigenvector of C and D is a diagonal matrix with diagonal elements as eigenvalues corresponding to eigenvector present in Q .

 $CQ = QD$

as $|Q| \neq 1$
 $Q^T = Q = D$
 Q is orthogonal

 $Q^T = Q = D$
 $Q^T = Q^T = D$
 $Q^T = Q^T = D$

W can be generated using randn

Instructions to run the code:

Run multivariate_gaussuian.m , it generates random numbers based on given PDF of multivariate gaussian.

1.2 Boxplot of the error between the true mean μ and the ML estimate μ_N

ML estimate μ_N :

Value of N	Value of ML estimate μ_N
10	[-0.3284, 3.8600]'
100	[0.9162, 2.2217]
1000	[1.0109, 1.9373]'
10000	[0.9985, 2.0079]
100000	[0.9998, 2.0037]

Instructions to run the code:

Run multivariate_mean.m from code folder of Q2 for ML estimate of the mean, mean_Boxplot.m for Boxplot of errors in empirical mean.

1.3 Boxplot of the error between the true covariance C and the ML estimate C_N ML estimate C_N :

Value of N	Value of ML estimate C_N
10	$\begin{bmatrix} 5.0702 & -5.8263 \end{bmatrix}$
	$\begin{bmatrix} -5.8263 & 9.6411 \end{bmatrix}$
100	$\begin{bmatrix} 1.8754 & -2.2874 \end{bmatrix}$
	$\begin{bmatrix} -2.2874 & 4.6412 \end{bmatrix}$
1000	$\begin{bmatrix} 1.6770 & -1.9291 \end{bmatrix}$
	$\begin{bmatrix} -1.9291 & 3.6975 \end{bmatrix}$
10000	$\begin{bmatrix} 1.6275 & -1.9109 \end{bmatrix}$
	$\begin{bmatrix} -1.9109 & 3.7212 \end{bmatrix}$
100000	$\begin{bmatrix} 1.6179 & -1.9393 \end{bmatrix}$
	-1.9393 3.8656

Instructions to run the code:

Run multivariate_covariance.m from code folder of Q2 for ML estimate of covariance, covariance_Boxplot.m for Boxplot of errors in empirical covariance

1.4 Principal modes of variation of the data

N=10

N=100

N=1000

N=10000

N=100000

Instructions to run the code:

Run q2d.m with argument N where N belongs to $\{10,100,1000,10000,100000\}$, It gives scatterplot