

Teil des LILY-Projekts

Urheberrechtsschutz und alle Rechte vorbehalten.

Kontakt: info@lilyqml.de Webseite: lilyqml.de

Dies ist LLY-DML, ein Modell des LILY Quantum Machine Learning Projekts.

Seine Aufgabe ist es, Datensätze mit sogenannten L-Gates, Quanten-Maschinenlern-Gates, auf einen Zustand zu trainieren.

Eingangsdaten werden in Teilen der Maschinenlern-Gates verwendet, und andere Phasen werden optimiert, sodass ein Zustand besonders wahrscheinlich wird.

QUANTUM LLY-DML TRAININGSBERICHT

Datum: 01.08.2024 Autor: LILY Team Version: 1.0

Kontakt: info@lilyqml.de Webseite: lilyqml.de

Dieser Bericht zeigt alle Daten zum durchgeführten Training am: 10.10.2024

Inhaltsverzeichnis

- 1. Initialisierte Daten
- 2. Liste der Optimierungsmethoden
- 3. Vergleich zwischen Methoden
- 4. Quantenschaltkreis
- 5. Endergebnisse

1. Initialisierte Daten

Anfangsquantenschaltkreis:

Qubits	Tiefe	Shots	Maximale Iterationen
5	3	1024	10

2. Liste der Optimierungsmethoden

Basic Gradient Descent (GD)

Beschreibung: Ein einfacher Optimierungsalgorithmus, der die Parameter in entgegengesetzter Richtung des Gradienten der Zielfunktion aktualisiert.

Momentum

Beschreibung: Eine Erweiterung des grundlegenden Gradientenabstiegs, die die Konvergenz beschleunigt, indem sie einen Teil der vorherigen Aktualisierungsrichtung berücksichtigt.

Matrix 1

Initiale Phasenmatrix 1

4.26	1.01	1.22	4.63	2.55
1.91	3.15	3.93	3.01	0.72
3.85	2.63	2.65	2.16	1.41
0.80	4.62	2.10	1.68	4.34
5.46	5.99	6.28	1.93	5.97
6.05	4.69	2.74	0.91	1.52
3.83	2.33	5.23	3.04	3.13
6.18	5.85	2.73	6.22	1.30
1.89	2.39	1.02	0.52	3.64

Optimierte Phasenmatrix 1

4.28	1.01	1.21	4.64	2.58
1.95	3.12	3.97	2.98	0.72
3.89	2.63	2.65	2.17	1.39
0.85	4.61	2.10	1.69	4.33
5.48	5.97	6.29	1.91	5.96
6.02	4.70	2.71	0.91	1.56
3.84	2.32	5.27	3.00	3.11
6.18	5.82	2.72	6.23	1.32
1.89	2.40	1.07	0.50	3.63

Matrix	Zielzustand	Wahrscheinlich Weithrsche	einlichkeit des nächstliegenden	
Matrix 1	10110	0.1000	0.3000	

Initiale Phasenmatrix 2

4.04	4.43	3.63	4.71	5.38
6.24	5.08	6.17	5.40	3.92
0.29	3.60	3.35	0.56	3.17
0.68	0.50	4.64	1.22	5.86
0.85	5.87	0.57	3.63	4.88
5.62	2.33	3.43	0.05	4.61
4.26	5.64	5.19	1.18	4.04
5.30	1.19	2.42	5.69	3.99
4.54	3.26	3.53	4.78	4.02

Optimierte Phasenmatrix 2

4.00	4.47	3.66	4.74	5.36
6.28	5.11	6.15	5.40	3.96
0.28	3.64	3.36	0.58	3.18
0.68	0.48	4.68	1.22	5.85
0.85	5.90	0.63	3.59	4.89
5.61	2.31	3.43	0.06	4.58
4.30	5.64	5.26	1.23	4.05
5.20	1.18	2.47	5.71	4.02
4.51	3.24	3.55	4.77	4.01

Matrix	Zielzustand	Wahrscheinlich Weithrsche	einlichkeit des nächstliegenden
Matrix 2	11100	0.8000	0.1000

Initiale Phasenmatrix 3

1.63	0.16	4.66	2.45	4.22
3.17	2.77	5.04	1.56	3.53
4.06	2.67	1.26	2.25	3.68
1.58	0.92	1.55	0.49	3.25
6.06	3.61	3.90	3.72	0.82
6.20	5.97	5.69	3.95	1.63
2.03	2.17	4.75	0.01	3.97
5.14	0.87	3.14	2.43	4.25
0.77	5.59	0.36	5.26	5.34

Optimierte Phasenmatrix 3

1.64	0.13	4.65	2.49	4.19
3.14	2.80	5.03	1.56	3.52
4.07	2.61	1.27	2.28	3.73
1.55	0.95	1.56	0.41	3.19
6.07	3.65	3.87	3.76	0.78
6.20	5.95	5.69	3.97	1.64
1.99	2.22	4.76	-0.00	3.96
5.08	0.93	3.16	2.44	4.17
0.65	5.62	0.36	5.32	5.34

Matrix	Zielzustand	Wahrscheinlich Weithrsche	einlichkeit des nächstliegenden
Matrix 3	11110	0.0000	0.2000

Adam (Adaptive Moment Estimation)

Beschreibung: Kombiniert die Vorteile von RMSProp und Momentum, passt die Lernrate für jeden Parameter an und hält gleitende Mittelwerte der Gradienten und ihrer Quadrate bei.

Genetic Algorithm (GA)

Beschreibung: Inspiriert von der natürlichen Selektion verwendet dieser Algorithmus Operationen wie Mutation, Kreuzung und Selektion, um Lösungen über Generationen hinweg zu entwickeln.

Particle Swarm Optimization (PSO)

Beschreibung: Ein populationsbasierter Optimierungsalgorithmus, der soziales Verhalten simuliert, wobei Partikel ihre Positionen basierend auf eigenen und Nachbarerfahrungen anpassen.

Bayesian Optimization

Beschreibung: Verwendet ein probabilistisches Modell, um die Zielfunktion zu schätzen und konzentriert sich auf Bereiche mit hoher Wahrscheinlichkeit, das Minimum zu finden.

Simulated Annealing

Beschreibung: Imitiert den Annealing-Prozess in der Metallurgie, reduziert die 'Temperatur' im Laufe der Zeit, um lokalen Minima zu entkommen und ein globales Minimum zu finden.

Quantum Natural Gradient (QNG)

Beschreibung: Eine quantenbewusste Optimierungstechnik, die die geometrischen Eigenschaften des Parameterraums berücksichtigt, oft mit besserer Konvergenz in der Quantenschaltkreisoptimierung.

3. Vergleich zwischen Methoden

Matrix 1

Optimizer: SimulatedAnnealing

Zielzustand: 10110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.1000

Verbesserung: -0.1000

Optimizer: Adam **Zielzustand:** 10110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.2000

Verbesserung: 0.0000

Optimizer: Basic **Zielzustand:** 10110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.0000

Verbesserung: -0.2000

Optimizer: Momentum Zielzustand: 10110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.1000

Verbesserung: -0.1000

Optimizer: Bayesian **Zielzustand:** 10110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.3000

Verbesserung: 0.1000

Optimizer: PSO Zielzustand: 10110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.0000

Verbesserung: -0.2000

Matrix 2

Optimizer: SimulatedAnnealing

Zielzustand: 11100

Anfangswahrscheinlichkeit: 0.3000 Endwahrscheinlichkeit: 0.5000

Verbesserung: 0.2000

Optimizer: Adam **Zielzustand:** 11100

Anfangswahrscheinlichkeit: 0.3000 Endwahrscheinlichkeit: 0.6000

Verbesserung: 0.3000

Optimizer: Basic Zielzustand: 11100

Anfangswahrscheinlichkeit: 0.3000 Endwahrscheinlichkeit: 0.2000

Verbesserung: -0.1000

Optimizer: Momentum Zielzustand: 11100

Anfangswahrscheinlichkeit: 0.3000 Endwahrscheinlichkeit: 0.8000

Verbesserung: 0.5000

Optimizer: PSO Zielzustand: 11100

Anfangswahrscheinlichkeit: 0.3000 Endwahrscheinlichkeit: 0.0000

Verbesserung: -0.3000

Optimizer: Bayesian **Zielzustand:** 11100

Anfangswahrscheinlichkeit: 0.3000 Endwahrscheinlichkeit: 0.3000

Verbesserung: 0.0000

Matrix 3

Optimizer: SimulatedAnnealing

Zielzustand: 11110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.0000

Verbesserung: -0.2000

Optimizer: Basic **Zielzustand:** 11110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.0000

Verbesserung: -0.2000

Optimizer: Momentum **Zielzustand:** 11110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.0000

Verbesserung: -0.2000

Optimizer: Adam **Zielzustand:** 11110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.1000

Verbesserung: -0.1000

Optimizer: PSO Zielzustand: 11110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.1000

Verbesserung: -0.1000

Optimizer: Bayesian **Zielzustand:** 11110

Anfangswahrscheinlichkeit: 0.2000 Endwahrscheinlichkeit: 0.0000

Verbesserung: -0.2000

Zusammenfassung der Endwahrscheinlichkeiten des Zielzustands für jede Matrix und jeden Optimierer:

atrix	SimulatedAnnealing	Adam	Basic	Momentum	Bayesian	PSC
atrix 1	0.1000	0.2000	0.0000	0.1000	0.3000	0.000
atrix 2	0.5000	0.6000	0.2000	0.8000	0.0000	0.300
atrix 3	0.0000	0.0000	0.0000	0.1000	0.1000	0.000

4. Quantenschaltkreis

5. Endergebnisse

Endergebnisse

Die effektivste Optimierungsmethode war **Momentum**, die die höchste Verbesserung der Zielzustandswahrscheinlichkeit erreichte.