§11.1–Sequences

Tom Lewis

Spring Semester 2015

Examples	Recursion	Visualization	Limits	Limit theorems	Monotone sequences			
Outline								

Examples

Recursion

Visualization

Limits

Limit theorems

Monotone sequences

Definition (Informal)

A sequence is a list of real numbers in a definite order: $a_1, a_2, a_3 \dots$ The sequence a_1, a_2, a_3, \dots will be denoted by $\{a_n\}$.

Definition (Formal)

A *sequence* is a function from the natural numbers to the real numbers, $a : \mathbb{N} \to \mathbb{R}$.

Examples Recursion Visualization Limits Limit theorems Monotone sequences

Problem

Let $a_n = 2/(n^2 + n + 1)$, $n \ge 1$. List the first four terms of $\{a_n\}$.

Definition

A triangle of dots is created by placing one less dot in each successive row. The number of dots in the resulting triangle is called a *triangular number*. The first four triangular numbers are 1, 3, 6, and 10. The corresponding triangles are pictured below.

Figure: The first four triangular numbers

Problem

Let T_n denote the nth triangular number. Find a formula for T_n .

Examples	Recursion	Visualization	Limits	Limit theorems	Monotone sequences				
A recursively defined sequence									

Problem

Let f_n count the number of distinct ways to write n-1 as a sum of 1s and 2s. We will set $f_1=1$.

- 1. Find f_2 , f_3 , and f_4 by inspection.
- 2. Find a recursive formula for f_n . Use this recursive formula to compute f_8 .

Problem

Graph the sequence $\{a_n\}$ with $a_n = \frac{n}{n+1}$ by two different methods:

- 1. By plotting a_n on the real line.
- 2. By plotting (n, a_n) in the plane.

Problem

What is the tendency of the sequence $\{a_n\}$ as $n \to \infty$.

Examples Recursion Visualization Limits Limit theorems Monotone sequences

Problem

In each case, determine the limit of the sequence $\{a_n\}$.

1.
$$a_n = \frac{n^2 + 1}{n^3 + 4n + 9}$$

2.
$$a_n = ne^{-n}$$
.

Theorem

Recursion

If $a_n \to a$ and $b_n \to b$ as $n \to \infty$, and if c is a constant, then

- $(a_n + b_n) \rightarrow a + b$ as $n \rightarrow \infty$;
- $(a_n b_n) \rightarrow a b$ as $n \rightarrow \infty$:
- $ca_n \rightarrow ca$ as $n \rightarrow \infty$;
- $a_nb_n \rightarrow ab$ as $n \rightarrow \infty$;
- $a_n/b_n \rightarrow a/b$ as $n \rightarrow \infty$, provided $b \neq 0$;
- $(a_n)^p \to a^p$ as $n \to \infty$, provided $a \geqslant 0$ and p > 0.

Visualization Examples Recursion Limits Limit theorems Monotone sequences

Problem

Find the limit, if it exists, of the sequence $\{c_n\}$ where

$$c_n = \frac{n^2 + 2n + 5}{4n^2 + 8} + \frac{n^2}{3^n}.$$

Theorem (Squeeze Theorem)

If there exists an integer m such that $a_n \leqslant b_n \leqslant c_n$ for $n \geqslant m$ and if $a_n \to L$ and $c_n \to L$ as $n \to \infty$, then $b_n \to L$ as $n \to \infty$.

Problem

Let $\{a_n\}$ be the sequence whose nth term is $a_n = \frac{\sin(n)}{n}$. Show that $a_n \to 0$ as $n \to \infty$.

Examples Recursion Visualization Limits Limit theorems Monotone sequences

Theorem

If $|a_n| \to 0$ as $n \to \infty$, then $a_n \to 0$ as $n \to \infty$.

Theorem

Let r be a real number.

$$r^n egin{cases}
ightarrow 0 & \textit{if} -1 < r < 1, \
ightarrow 1 & \textit{if} r = 1, \ \textit{diverges} & \textit{if otherwise}. \end{cases}$$

Problem
Let
$$a_n = \frac{2^n}{3^n + 8}$$
. Evaluate $\lim_{n \to \infty} a_n$.

Definition

- A sequence $\{a_n\}$ is said to be *bounded above* if there exists a number M such that $a_n \leq M$ for each $n \geq 1$.
- A sequence $\{a_n\}$ is said to be *bounded below* if there exists a number M such that $a_n \ge M$ for each $n \ge 1$.
- A sequence $\{a_n\}$ is said to be *bounded* if it is bounded above and below.

Problem

Show that the sequence $a_n = \frac{n}{n+1}$ is bounded.

Definition

- A sequence $\{a_n\}$ is called *monotone increasing* if $a_n \leqslant a_{n+1}$ for all $n \geqslant 1$.
- A sequence $\{a_n\}$ is called *monotone decreasing* if $a_n \geqslant a_{n+1}$ for all $n \geqslant 1$.
- A sequence $\{a_n\}$ is called *monotone* if it is either monotone increasing or decreasing.

Problem

Let $a_n = \frac{n}{n+1}$. Show that the sequence $\{a_n\}$ is monotone.

Examples Recursion Visualization Limits Limit theorems Monotone sequences

Theorem

- If a sequence is monotone increasing and bounded above, then it converges to a limit.
- If a sequence is monotone decreasing and bounded below, then it converges to a limit.

Problem

Let $a_1 = 1$ and let $a_n = 20 + \frac{1}{3}a_{n-1}$ for $n \ge 2$. Show that $\{a_n\}$ is monotone increasing and bounded above. Find the limit of the sequence.