Features Extraction and Preprocessing

What are features in ML?

Features are the independent variables in ML models.

Example 1

Dependent Variable

Risk of Cardiac Disease

Independent Variables (Features)

- Age
- Weight
 - Sex
- Whether the person smokes
- Whether the person consumes alcohol
 - Whether the person has diabetes
- Whether the person is heavily stressed
- Whether the person is physically active

• • • •

What are features in ML?

Features are the independent variables in ML models.

Example 2

Dependent Variable

Probability of getting the job

Independent Variables (Features)

- Educational Qualification
- Number of years of professional experience
- Strength of the letters of recommendation
 - Whether they have leadership skills
 - Strength of their communication skills

• ...

What are features in ML?

Features are the independent variables in ML models.

Example 3

Dependent Variable

Plaksha University Happiness Index

Independent Variables (Features)

- Vibrancy of Student Life
- Student's Mental Health
- Student Achievements
- Hostel Infrastructure
- Ease of interaction with faculty

...

Features Representation in a ML Dataset

As a general convention in ML, rows in a dataset denote instances while columns in a dataset denote features and classes.

Features are of two types

- 1. Continuous Features
 - Numerical values that can take on any value in a certain range.
- 2. Categorical (Discrete) Features
 - Features that can be divided into categories.

Dependent Variable

Risk of Cardiac Disease

Continuous Features

- Age (18-90)
- Weight (45-110)
- Cigarettes they smoke/day (0-30)
 - Hours of exercise/day (o-6)

Categorical (Discrete) Features

- Sex (Male/Female/Intersex)
- Whether the person smokes (True/False)
- Whether the person has diabetes (True/False)
- Whether the person is heavily stressed (True/False)
- Whether the person is physically active (True/False)

Why use features in ML?

1. Features represent relevant information in data that could be useful in interpreting it. For example: Color could be a great feature to classify fruits into apples and oranges.

Why use features in ML?

2. Choice of features has a big impact on the quality of insights you get from ML models. For example:

- Features Preprocessing are steps used to transform the features data so that it is easily parsed by the ML model.
- Real-world datasets are highly susceptible to issues such as missing values, duplicates, outliers, etc. These need to be taken care of before sending the features into the ML model, else the ML model may not work efficiently.
- Categorical features have to be transformed into a "numerical" representation so that the ML model can understand them. For example, a feature like *Car Model* that can have values like *Swift/Thar/Nexon/Scorpio* needs to be converted into a representation that the ML model could understand.

I. Missing values in the dataset

Missing feature values in a dataset must be filled for the ML model to work.

a) If many instances are missing, ignore the feature.

	Height	Weight	Country	Place	Number of days	Some column
0	12.0	35.0	India	Bengaluru	1.0	NaN
1	NaN	36.0	US	New York	2.0	NaN
2	13.0	32.0	UK	London	NaN	NaN
3	15.0	NaN	France	Paris	4.0	NaN
4	16.0	39.0	US	California	5.0	12.0
5	NaN	NaN	NaN	Mumbai	NaN	NaN
6	NaN	NaN	NaN	NaN	6.0	NaN

I. Missing values in the dataset

Missing feature values in a dataset must be filled for the ML model to work.

b) Fill in the missing values by regression/interpolation

Row/ Col	1	2	3	4	5	6
1	0.24	-0.1		0.18	0.42	-0.25
2	0.19	-0.22	-0.2	0.12	0.21	-0.26
3	0.21	0.09	0.57	-0.14	0.29	0.01
4	0.76	0.07	0.04	-0.06	0.3	-0.47
5	0.46	0.12	0.49	-0.42	0.28	-0.3
6	0.43	-0.23	-0.3	-0.24	0.23	
7	0.44	-0.32	0.26	-0.77	0.31	-0.09
8	0.11	0.03		-0.24	0.36	-0.11
9	0.32	0	0.26	-0.5	0.31	0.1
10	0.12	-0.01	-0.13	0.12	0.47	-0.3
11	0.53	0.25	0.49	-0.3	0.13	-0.12
12	0.17	0.06	0.06	0.28	0.38	-0.23
13	0.19	-0.06	0.05	-0.25	0.23	-0.05

II. Outlier removal

It is important to remove outliers because they interfere with model fitting and may inflate the error metrics while assessing performance of a ML model.

Can occur due to noise/errors in data collection.

Can occur due to a valid natural outlier in data.

- II. Outlier removal
- a) Using Bell Curve

For e.g., labels datapoints that lie outside [1-99] percentile of data as outliers.

Good for Gaussian data.

An easy way to detect outliers is to use the Bell Curve

II. Outlier removal

b) Using distance from mean

Find distance (Euclidean) of each point from the mean of the dataset.

If $dist_i > threshold$, label $data_i$ as an outlier.

Sensitive to the cutoff threshold.

Graphic courtesy: https://towardsdatascience.com/outlier-detection-methods -in-machine-learning-1c8b7cca6cb8

III. Features Scaling

Features Scaling is necessary to ensure that all features have comparable scale and ranges to efficiently train the ML model.

a) Normalization

Features are scaled between o and 1.

Good for non-Gaussian data.

Prone to outliers.

Graphic courtesy:
https://ashutoshtripathi.com/2021/06/12/what-is-feature-scal
ing-in-machine-learning-normalization-vs-standardization/

III. Features Scaling

Features Scaling is necessary to ensure that all features have comparable scale and ranges to efficiently train the ML model.

b) z-Scoring (Standardization)

					$x_{\text{stand}} = \frac{x - \text{mean}(x)}{\text{standard deviation }(x)}$			n(x) iation (x)
#	Emp	Age	Salary		Age	Standardized Age	Salary	Standardized Salary
1	Emp1	44	73000		44	0.954611636	73000	1.197306616
2	Emp2	27	47000	Standardization	27	-1.514927162	47000	-1.278941158
3	Emp3	30	53000		30	-1.079126198	53000	-0.707499364
4	Emp4	38	62000	value? = 6.88 527	38	0.083009708	62000	0.149663327
5	Emp5	40	57000	zed valu Dev. = 6.	40	0.373543684	57000	-0.326538168
6 7	Emp6	35 48	53000 78000	culate Standardi Pan = 37.42, Std. Por column Age. 	35	-0.352791257	53000	-0.707499364
	Emp7		gjanananang	nlate S 1 = 37. r colu r 5) = 35	48	1.535679589	78000	1.673508111
		Mean = 37.42857 Std. Dev. = 6.883876	Mean = 60428.5714 Std. Dev = 10499.7570	How to calculate Standardized value? X = 35, mean = 37.42, Std. Dev. = 6.88 for column Age. Xstd(for 35) = 55.57.42 6.88		Mean = 0 Std. dev. = 1		Mean = 0 Std. dev. = 1

Features are scaled such that mean = 0, std = 1.

Good for Gaussian data.

More robust to outliers.

https://ashutoshtripathi.com/2021/06/12/what-is-feature-scal ing-in-machine-learning-normalization-vs-standardization/

IV. Encoding for Categorical Features

ML models can only understand numbers. How to convert categorical data into numbers?

- IV. Encoding for Categorical Features
- a) One-Hot Encoding

Human-Readable

Machine-Readable

Pet	Cat	Dog	Turtle	Fish
Cat	1	0	0	0
Dog	0	1	0	0
Turtle	0	0	1	0
Fish	0	0	0	1
Cat	1	0	0	0

Every unique value in category becomes a feature.

But, dimensionality increases.

Bad when there are a lot of categories.

Graphic courtesy:

https://medium.com/analytics-vidhya/stop-one-hot-encodingyour-categorical-variables-bbb0fba89809

IV. Encoding for Categorical Features

b) Target Encoding

	Animal	Target	Encoded Animal
0	cat	1	0.40
1	hamster	0	0.50
2	cat	0	0.40
3	cat	1	0.40
4	dog	1	0.67
5	hamster	1	0.50
6	cat	0	0.40
7	dog	1	0.67
8	cat	0	0.40
9	dog	0	0.67

	Animal Group	Target 0	Target 1	Probability of 1
0	cat	3	2	0.40
1	dog	1	2	0.67
2	hamster	1	1	0.50

Every categorical feature is substituted by a probability value.

Dimensionality does not increase.

Prone to distribution of the target. Bad when dataset is heavily skewed.

Graphic courtesy

https://medium.com/analytics-vidhya/target-encoding-vs-one-hot-encoding-with-simple-examples-276a7e7b3e64

Splitting Datasets

- To evaluate the performance of a ML model, we split datasets into Train/Validation/Test sets.
- This is done so that we train our ML model on one set of data but test it on another test so that we can be sure if the ML model will work for new data.
- Usually, we randomly take 80% of the total dataset (rows) for training+validation and the remaining 20% for testing.

Splitting Datasets (N-fold Cross Validation)

• Training and Validation set is usually randomly broken N (usually 10) times to validate the ML model again and again before testing it on the Test set.

