

MATHEMATICS SPECIALIST 3CD

SEMESTER 1 2010

EPW 2

INTEGRATION BY PARTS INVESTIGATION

TOTAL MARKS: 35 TIME ALLOWED: 1 HOUR

Can you determine

 $\int x \cos x dx$?

One possible method would be trial and error. Obviously the appropriate result would have the form $x \sin x$

Test this by differentiating with respect to *x* which results in the expression

$$1.\sin x + x \cos x$$

which looks right but has the extra term $\sin x$.

Try $x \sin x + \cos x$

Testing this by differentiating with respect to *x* results in the expression

$$1.\sin x + x \cos x - \sin x$$
 or $x \cos x$ as required.

$$\therefore \int x \cos x dx = x \sin x + \cos x + c$$

1. [3 marks]

Determine $\int x \sin x dx$

An alternative method for finding integrals of this type utilises the product rule.

$$\frac{d}{dx}(uv) = v.\frac{du}{dx} + u.\frac{dv}{dx}$$

Integrating with respect to *x* gives

$$\int \frac{d}{dx} (uv) dx = \int v \cdot \frac{du}{dx} dx + \int u \cdot \frac{dv}{dx} dx$$
ie
$$uv = \int v \cdot \frac{du}{dx} dx + \int u \cdot \frac{dv}{dx} dx \text{ or rearranging}$$

$$\int u \cdot \frac{dv}{dx} dx = uv - \int v \cdot \frac{du}{dx} dx.$$

To use integration by parts to determine $\int x \cos x dx$

Let
$$u = x$$
 and $\frac{dv}{dx} = \cos x$
then $\frac{du}{dx} = 1$ and $v = \sin x$ (neglecting the constant term)
Using
$$\int u \cdot \frac{dv}{dx} dx = uv - \int v \cdot \frac{du}{dx} dx$$

$$\int x \cos x \, dx = x \sin x - \int \sin x \cdot 1 \, dx$$

$$= x \sin x - \int \sin x \, dx$$

$$= x \sin x + \cos x + c$$
 as before.

2. [4 marks]

Show that the result would not change if we used $v = \sin x + k$ in place of $v = \sin x$.

Generally *u* is the function which produces a simpler result when differentiated while $\frac{dv}{dv}$ is the more complex part which can still be integrated.

Integrate by parts, each of the following.

- [4, 4, 4, 4, 4, 8 marks] 3.
 - (a) $\int x e^x dx$
 - (b) $\int 3x \sin x \, dx$
 - (c) $\int x \sqrt{2x-1} \, dx$
 - (d) $\int x^3 \ln x \, dx$
 - (e) $\int 3x(2x+3)^5 dx$
 - (f) $\int e^x \cos x \, dx$ using $u = e^x$ and $\frac{dv}{dx} = \cos x$

IMPORTANT RESULTS:
$$\frac{d}{dx}e^{x} = e^{x} \qquad \qquad \int e^{x} dx = e^{x} + c$$

$$\frac{d}{dx}\ln x = \frac{1}{x} \qquad \qquad \int \frac{1}{x}dx = \ln|x| + c$$