

Chapter 6: Foundation for Systems Design

Tannaz R.Damavandi Cal Poly Pomona

Outline

- What Is Systems Design?
- Design Activities
- System Controls and Security

Overview

- Analysis says "what" is required and design tells us "how" the system will be configured and constructed
- Chapters 2, 3, 4 and 5 covered systems analysis activities (requirements)
- This chapter introduces system design and the design activities involved in systems development
- Design bridges the gap between requirements to actual implementation

What Is Systems Design

- Analysis provides the starting point for design
- Design provides the starting point for implementation
- Analysis and design results are documented to coordinate the work
- Objective of design is to define, organize, and structure the components of the final solution to serve as a blue print for construction

Analysis to Design to Implementation

Design Models

- Design is a model building activity
- The formality of the project will dictate the type, complexity, and depth of models
- Agile/iteration projects typically build fewer models, but models are still created
- Jumping to programming without design often causes less than optimum solutions and may require rework

Analysis Models to Design Models

Design Activities

- Design activities correspond to components of the new system
 - The environment
 - Application components
 - User interface
 - Database
 - Software classes and methods

Design activities

Describe the environment.

Design the application components.

Design user interface.

Design the database.

Design the software classes and methods.

Core	Iterations					
processes	1	2	3	4	5	6
Identify the problem and obtain approval.						
Plan and monitor the project.						
Discover and understand details.						! !
Design system components.						! ! !
Build, test, and integrate system components.						
Complete system tests and deploy the solution.						

Key Design Questions for Each Activity

Design activity	Key question	
Describe the environment	How will this system interact with other systems and with the organization's existing technologies?	
Design the application components	What are the key parts of the information system and how will they interact when the system is deployed?	
Design the user interface	How will users interact with the information system?	
Design the database	How will data be captured, structured, and stored for later use by the information system?	
Design the software classes and methods	What internal structure for each application component will ensure efficient construction, rapid deployment, and reliable operation?	

Design the Environment

The environment is all of the technology required to support the software application

- Servers, Desktop computers, mobile devices ...
- Operating systems
- Communication capabilities, Input and output capabilities

Design the Application Components

- Application component is a well defined unit of software that performs some function(s)
- Issues involve how to package components including
 - Scope and size what are the functions, boundaries, interfaces?
 - Programming language what are the accepted languages?
 - Build or buy is an acceptable version available to purchase?

Typical Models for Designing Application Components

Package diagram

Component diagram

Deployment diagram

Design the User Interface

- To the user, the User Interface is the system.
- The user interface has large impact of user productivity
- Includes both Analysis and Design tasks
 - Requires heavy user involvement

Typical Models for User Interface Design

Storyboard

Small screen menu prototype

14

Design the Database

- By definition, an Information System requires data usually in a database
- Current technology frequently use Relational Database Management Systems (RDBMS)
- Requires converting the data model to a relational database
- Requires addressing of many other technical issues
 - Throughput and response time
 - Security

Typical Table Definition as Part of Database Scheme

Design Software Classes and Methods

- AKA Detailed Design
- A model building activity
 - Design Class Diagram
 - Sequence Diagrams
 - State-Machine Diagrams

Typical Design Class Diagram with Attributes and Methods

System Controls and Security

- Integrity Controls
 - Controls that maintain integrity of inputs, outputs and data and programs
- Security Controls
 - Controls that protect the assets from threats, internal and external

Designing Integrity Controls

- Integrated into application programs and DBMS
- Objectives of Integrity Controls
 - Ensure that only appropriate and correct business transactions are accepted
 - Ensure that transactions are recorded and processed correctly
 - To protect and safeguard assets such as the database

Input Controls

- Prevent invalid or erroneous data from entering the system
- Value Limit Controls
 - Check the range of inputs for reasonableness
- Completeness Controls
 - Ensure all the data has been entered
- Data Validation Controls
 - Ensure that specific data values are correct
- Field Combination Controls
 - Ensure data is correct based on relationships between fields

Output Controls

- To ensure that output arrives at proper destination (for authorized eyes) and is accurate, current, and complete
- Examples
 - Physical access to printers and display devices
 - Discarded data protect from "dumpster diving"
 - Labels on printed and electronic output to correctly identify source of data

Redundancy, Backup and Recovery

- Protect data and systems from catastrophes
 - Databases
 - Hardware
 - Software applications
 - Networks
- On-site versus off-site copies

Designing Security Controls

- Protect all assets against external threats
- Other objectives
 - Protect and maintain a stable, functioning operating environment
 24/7 (equipment, operating systems, DBMSs)
 - Protect information and transactions during transmission across networks and Internet

Designing Security Controls

- Access Controls Limit a person's ability to access servers, files, data, applications
 - Authentication to identify users
 - Multifactor Authentication
 - Access control list list of valid users
 - Authorization authenticated user's list of permission level for each resource
- Registered Users those with authorization
- Unauthorized Users anyone not registered
- Privileged Users those that maintain lists and systems

Types of Users

Data Encryption

- Method to secure data stored or in transmission
- Encryption alter data so it is unrecognizable
- Decryption converted encrypted data back to readable format
- Encryption Algorithm mathematical transformation of the data
- Encryption Key a long data string that allows the same algorithm to produce unique encryptions

Symmetric Vs. Asymmetric Key Encryption

Symmetric: Encryption method that uses the same key to encrypt and decrypt

- Asymmetric: Encryption method that uses different keys to encrypt and decrypt
 - AKA Public Key Encryption

Secure Transactions

- Secure Sockets Layer (SSL) standard set of protocols for authentication and authorization
- Transport Layer Security (TLS) an Internet standard equivalent to SSL
- IP Security (IPSec) Internet security protocol at a low-level transmission
- Hypertext Transfer Protocol Secure (HTTPS) Internet standard to transmit Web pages

Summary

- This chapter introduced the concept of Systems Design
 - Analysis is fact finding and modeling
 - Design is modeling to specify how system will be implemented
 - Design is bridge between analysis an implementation
- Activities of Systems Design
 - Describe the environment
 - Design the application components
 - Design the User Interface
 - Design the database
 - Design the software classes and methods

Summary (Cont'd)

- System Controls and Security
 - Integrity Controls
 - Input controls
 - Output controls
 - Backup and recovery
 - Fraud prevention
 - Security Controls
 - Access controls
 - Data encryption
 - Digital signatures and certificates
 - Secure transactions