COMMENT DEVENIR RICHE RAPIDEMENT?

Edward Laurence & Guillaume St-Onge

11 avril 2016

Département de physique, de génie physique, et d'optique Université Laval, Québec, Canada

Optimisation

Plan de la présentation

Concepts

Plan de la présentation

Concepts

Présentation de trois méthodes

Algorithme tabou Algorithme des lucioles Algorithme évolutifs

Plan de la présentation

Concepts

Présentation de trois méthodes

Algorithme tabou Algorithme des lucioles Algorithme évolutifs

Problème du vendeur

Description

Comparaison des méthodes

Type d'algorithmes

Heuristique

Spécialisé à un problème et ne garantit pas la solution obtenue.

Métaheuristique

Algorithme général qu'on doit adapter au problème considéré.

RECHERCHE TABOU

Recherche tabou

Recherche Tabou

Type: Métaheuristique

Stochastique: Non

Caractéristique : Recherche local

Principes

- 1. On recherche le mouvement qui minimise notre fonction.
- 2. On ne revient pas sur nos pas (d'où tabou).

ALGORITHME DES LUCIOLES

Algorithme des lucioles

Recherche par lucioles

Type : Métaheuristique

Stochastique: Oui

Caractéristique: Recherche globale

Principes

- 1. Chaque luciole a une luminosité ${\it I}$ et une position.
- 2. Les lucioles sont attirées par les lucioles plus lumineuses.
- 3. L'attirance décroît lorsque la distance augmente.

Algorithme des lucioles

N lucioles à des positions x_i On optimise la fonction f(x) $I_i \propto f(x_i)$

Si
$$I_j > I_i$$

$$oldsymbol{x}_i
ightarrow oldsymbol{x}_i + eta_0 \mathrm{e}^{-\gamma r_{ij}^2} (oldsymbol{x}_j - oldsymbol{x}_i) + oldsymbol{lpha} \epsilon_i$$

 $eta_0=0$: Marche aléatoire $(\gamma=0$: Optimisation par essaims particulaires)

Trouver un minimum en 2D

Vidéo

Résumé des algorithmes

Tabou	Lucioles	Évolutif
Local	Global	Global
Déterministe -	Stochastique β_0, γ, α	Stochastique

Problème du vendeur

Travelling salesman problem

Un vendeur veut visiter ${\cal N}$ habitations et marcher le moins possible.

Dans quel ordre doit-il visiter les N maisons?

Meilleurs parcours pour N=20.

Distribution de la qualité des solutions

Distribution de la qualité des solutions

Probabilité d'avoir aléatoirement ces solutions : $\sim 10^{-13}$

Distance moyenne en fonction du temps algorithmique

Problème du vendeur - Comparaison des trois algorithmes

Évaluation sommaire des méthodes

	Tabou	Lucioles	Évolutif
Qualité	9/10	7/10	10/10
Vitesse de convergence	10/10	6/10	8/10
Implémentation	10/10	6/10	9/10
	29/30	19/30	27/30