

CAPTURE THE MARK 2024

University of Trento

Embedding

Multilevel DWT

To increase robustness

Modular alpha

To adapt the embedding to different layers and sub-bands

Perceptual mask

To increase invisibility

M. Barni, F. Bartolini and A. Piva, "Improved wavelet-based watermarking through pixel-wise masking," in IEEE Transactions on Image Processing, May 2001, doi: 10.1109/83.918570.

Detection

Defense phase

Parameters we chose for the embedding

Number of layers

Alpha 8.4

Perceptual mask only edges

Tested against both global and localized attacks

- awgn
- blur_gauss
- jpeg_compression
- sharp
- blur_median
- resize

- gauss_dwt
- median_dwt
- gauss_edge

Results

LAYERS	ALPHA	INVISIBILITY	ROBUSTNESS
3	0.88	3	4
3	8.4	1	6
2	0.2	6	0
2	1.4	2	5
1	20	1	6

Attack phase

The Attack function allowed to specify the attack to use and the corresponding parameters.

- Global attacks
- Localized attacks
- Combination attacks
- Wavelet transform attacks

During the challenge we manually chose which one to apply, trying different parmeters in order to remove the watermark.

Results

STATISTICS

WPSNR

max

73.71 (9999)

avg

~43

min

36.06

Further improvements and things we tried

SVD / Hashing

ECC

Limit
quantization
errors

- Hamming codes
- Reed-Solomon codes
- Low-Density Parity Check

THANK YOU

