Machine Learning

Machine learning is a branch of artificial intelligence that leverages data to improve computer performance by giving machines the ability to learn

Artificial

Intelligence

- 1. 인공[인조]의
- 2. 인위적인

1. 지능

2. 기밀,정보 ; 정보 요원들

Artificial Intelligence : 인공 지능

System that think humans

인지과학(cognitive science)적 접근 : 인간의 사고과정을 모방

System that act like humans

turing test : 인간의 행동과 컴퓨터의 행동을 구분하지 못하도록

1940	0's
------	-----

인공적인 두뇌의 가능성

→ 뇌(뉴런, 시냅스) 를 모방하여 간단한 연산 모델 구성

1950's

황금기 → 인공지능 학문의 탄생

→ 넓은 의미의 AI 탄생 (대수학 문제 해결, 기하학 정리 증명 등)

1970's

첫번째 암흑기 -> 복잡한 문제 해결 실패, 연구 속도의 부진

1980's

두번째 암흑기 → AI를 활용한 비즈니스 실패

현재 ~

제프리 힌튼 교수의 Deep Learning 으로 제2의 황금기

AI

ML

DL

Perceptron (인간의 뉴런을 참조) 컴퓨터가 스스로 학습 함수 기반이 아닌 데이터 기반 컴퓨터가 인간의 사고를 모방 사람과 컴퓨터를 구분하지 못함 (사람같은 컴퓨터)

지도학습 (Supervised Learning)

예측 (prediction - linear regression) 분류 (classification - logistic regression)

비지도학습 (UnSupervised Learning)

군집 (clustering) 주성분 분석 (PCA)

강화학습 Reinforcement Learning

보상 (reward base)

```
기존 방식
  input(x) → function(x) → output(y)

기계 학습
  training data(x, y) + learning = Model(Hypothesis)
  test data(x) → Model → output(y)
```

```
h(y) = W * X + b
학습: Weight, bias 를 변경하는 일련의 과정
```


Gradient Descent : 경사 하강법

Momentum : 관성

Adam: Momentum + RMSProp

training data set

모델 학습용

validation set

모델 검증용 → 여러 번 평가

test data set

모델 성능 평가용 -> 단 한 번 평가

Mean Squared Error (MSE)

h와 y의 차이를 제곱해서 비교

Mean Absolute Error (MAE)

h와 y의 차이를 절대값으로 비교

Root Mean Absolute Error (RMAE)

MSE의 결과의 제곱근

Cross-Entropy

q(실제 분포)를 알지 못하는 상황에서 p(예측 분포)를 통해 q를 예측

Precision : 정밀도

TP / TP + FP

Recall : 재현율

TP / TP + FN

F1 score : 정밀도와 재현율의 조화평균

2*(Precision*recall)/(Precision+recall)

false

FP False Positive

TN True Negative 1.ml

scaler

Normalization

값의 범위를 0~1 사이로 MinMaxScaler, Normalizer

Standardization

값의 범위를 평균 0 / 분산 1이 되도록 StandardScaler

Regularization

Weight 조정에 규제를 설정 Ridge, Lasso

Deep Neural Network

Neural Network에 hidden layer 추가

MLP(Multi-Layer Perceptron)

Perceptron

인간의 신경 전달 세포(Neuron)에서 착안된 개념 자극 (input) → 반응 (output)

$$y = f(x1 * w1 + x2 * w2 + b)$$

x : input

w : weight

b: bias

f: activation function

y: output

Binary step

$$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$$

Gaussian

$$f(x) = e^{-x^2}$$

Softmax

$$f(x) = \frac{e^{x_i}}{\sum_{j=1}^{J} e^{x_j}} \text{ for } i = 1, ... j$$

ReLU

$$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$$

sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$

RNN (Recurrent Neural Network)

이전 단계의 결과를 다음 단계의 입력으로 사용

CNN (Convolutional Neural Network)

convolution \rightarrow pooling \rightarrow fully connected layer

GAN (Generative Adversarial Networks)

generator와 discriminator를 경쟁시키며 학습

생성형 ai

- 매우 큰 데이터를 학습
- 이미지, 비디오, 오디오, 텍스트 등을 생성할 수 있는 ai
- 자연어를 입력받아 이해할 수 있다.
- LLM (Large Language Model) : 텍스트 데이터 기반

Prompt Engineering

prompt 를 설계하여 모델이 더 나은 결과를 도출할 수 있도록 하는 기술

- prompt

유저가 모델에게 제공하는 텍스트

- 지시 (instruction)
- 맥락 (context)
- 입력 (input) 결과 도출에 필요한 데이터 입력
- 출력 (output) 출력 형태 지정