Get_MR2.0

写在前面

欢迎来到向量化与并行化的世界! 本次更新就一个重大功能,就是并行化运行mr分析,以最优的效率批量跑大量的数据。家用电脑较新服务器基本可以实现2小时批量运行10000个因素,如果你有高性能服务器,恭喜你,30分钟以内就能跑完。

由于本次主要是思路与方法的分享,所以函数的帮助文档写的不多,主要还是看示例代码即可,应该还是很容易上手的。

公众号回复: "示例"即得示例代码

cyclemr

描述

这个函数是用于执行循环Mendelian Randomization (CycleMR) 分析的功能函数,可以在R语言中使用。该函数可以将数据分配到多个计算节点中运行,提高MR分析的效率。

用法

直接在R语言中调用这个函数,如下所示:

1 # 调用cyclemr函数

2 mr_results <- cyclemr(dat = data, cl_num = 4, type = "list")</pre>

参数

- dat: harmonise_data后的数据,可以是数据框或列表类型。默认是list
- c1_num: 批量化线程数。
- type: MR分析数据类型,可以是"list"或"data",默认为"list"。主要使用情况也是list

注: 如何判断自己的电脑能开启的最大线程数?

在任务管理器可看到

• 内核: 计算机核心数

• 逻辑处理器: 计算机总线程数

比如说很多处理器宣传是8核16线程,这个8就指的是内核,这个16指的是逻辑处理器。

本质上,16只是将每个核心一分为2,但是他们能干的活是一样的。所以一般设置为内核数即可满载CPU

当然这不能一概而论,因为每个CPU和厂家调度不一样,如果你发现使用内核数不能让CPU跑到100%,则尝试用逻辑处理器数

返回值

• cyclemr 函数返回一个包含MR分析结果的数据框。

使用举例

下面是使用这个函数的一个示例:

```
1 mr_results <- cyclemr(dat = data, cl_num = 16, type = "list")</pre>
```

运行时间参考

在设置无误情况下,这是我手头有的所有电脑测试出的运行时间:

运行10000个数据。(ieu批量数据前10000个)除了服务器外,其他均使用Windows系统

CPU	核数 (运行时开的线程数)	时间	
-----	---------------	----	--

СРИ	核数 (运行时开的线程数)	时间
i9-12900H (拯救者2022 Y9000P 狂暴模式)	14核20线程 (14)	1小时28分
r7-5700X (台式)	8核16线程 (16)	1小时38分
r9-6800H (yoga2022 14S 性能模式)	8核16线程 (16)	1小时54分
r5-3500X (台式)	6核12线程 (12)	3小时47分
r5-4600H (拯救者 2020 R7000 狂暴模式)	6核12线程 (12)	约4小时
双路 EPYC 7T83 (服务器 Linux)	128核256线程 (128)	11分钟

欢迎各位补充自己手头的机器的运行时间数据,尤其M系列的苹果处理器数据

一些小工具

get_rsid

描述

根据CHR和POS, 从ensemble官网中获取rsID。

用法

1 get_rsid(chr, pos, version = 'hg38')

参数

• chr:染色体号。

• pos:基因位置。

• version:表示使用的基因组版本,默认为最新的版本('hg38')。也可选择hg19.

• 注: GRCh37=hg19, GRCh38=hg38

详细说明

该函数基于生物信息学数据库Ensembl SNP Mart来查询给定位置的相关信息。如果未指定基因组版本,则默认使用最新的版本(hg38)。该函数会根据指定的基因组版本选择正确的URL。如果您想查询其他版本的数据,可以将 version 参数设置为相应版本的字符串。

参考: How to find rsID with biomaRt in R (bioconductor.org)

使用举例

```
1 ds4 <- data.frame(CHR = c("8", "8", "8", "8", "8"), POS = c('101592213',
    '106973048', '108690829', '102569817', '108580746'))
2 res<-get_rsid(chr=ds4$CHR, pos=ds4$POS, version = 'hg38')</pre>
```

错误说明

如果出现:

```
Error in curl::curl_fetch_memory(url, handle = handle):

Timeout was reached: [grch37.ensembl.org:80] Operation timed out after 300013
milliseconds with 7909 bytes received
```

这并不是代码问题,而是网络超时了,ensemble的API经常拥堵,多试几次即可。当然也有可能请求的数据量太大,也可能会出现这个问题。

get_exposure 和 get_outcome

描述

这两个函数是用于进行双样本MR(Two-sample Mendelian Randomization)分析的数据处理和提取过程的功能函数。

- get_exposure 函数用于从给定的遗传仪器ID中提取出暴露 (exposure) 数据。
- get_outcome 函数用于从给定的遗传仪器ID和暴露数据中提取出结果 (outcome) 数据。

用法

使用这两个函数前,需要先安装并加载TwoSampleMR包。

```
1 | library(TwoSampleMR)
```

然后可以直接在R语言中调用这两个函数,如下所示:

```
# 调用get_exposure函数
exposure_data <- get_exposure(id = "ieu-a-1", pval = 5e-8, r2 = 0.001, kb = 10000)

# 调用get_outcome函数
outcome_data <- get_outcome(id = "ieu-a-1", expo = exposure_data)</pre>
```

参数

- get_exposure 函数的参数说明:
 - o id:遗传仪器ID。
 - o pval: 提取暴露数据的P值阈值, 默认为5e-08。
 - o r2: 遗传仪器间的LD (linkage disequilibrium) 值的阈值,默认为0.001。
 - 。 kb: 遗传仪器的范围(以kb为单位), 默认为10000。
- get_outcome 函数的参数说明:
 - o id:遗传仪器ID。
 - o expo:暴露数据,TwoSampleMR包格式

get_ao

描述

获取OPEN GWAS数据库所有可用的ID。可以指定获取某个前缀的ID

用法

使用这个函数前,需要先安装并加载TwoSampleMR包。然后可以直接在R语言中调用这个函数,如下所示:

- 1 # 调用get_ao函数
- 2 ao <- get_ao()## 不限定来源则返回所有id
- 3 ao <- get_ao(a = "finn")## 这样就会返回finn的所有可用id

参数

• a: (可选) 数据来源。

备注: 来源的名称

来自OPEN GWAS Browse the IEU OpenGWAS project (mrcieu.ac.uk) 5.1获取

Batch	Description	<u>Count</u>
<u>bbj-a</u>	Biobank Japan release of disease traits	120
<u>ebi-a</u>	<u>Datasets that satisfy minimum requirements imported from the EBI</u> <u>database of complete GWAS summary data</u>	2,585
<u>eqtl-a</u>	eQTLGen 2019 results, comprising all cis and some trans regions of gene expression in whole blood	19,942
<u>finn-b</u>	FinnGen biobank analysis round 5	2,803

Batch	Description	Count			
<u>ieu-a</u>	GWAS summary datasets generated by many different consortia that have been manually collected and curated, initially developed for MR-Base				
<u>ieu-b</u>	GWAS summary datasets generated by many different consortia that have been manually collected and curated, initially developed for MR-Base (round 2)	207			
met-a	Human blood metabolites analysed by Shin et al 2014				
met-b	Human immune system traits analysed by Roederer et al 2015	150			
met-c	Circulating metabolites analysed by Kettunen et al 2016	123			
met-d	met-d Metabolic biomarkers in the UK Biobank measured by Nightingale Health 2020				
<u>prot-a</u>	Complete GWAS summary data on protein levels as described by Sun et al 2018	3,282			
<u>prot-b</u>	Complete GWAS summary data on protein levels as described by Folkersen et al 2017	83			
<u>prot-c</u>	Complete GWAS summary data on protein levels as described by Suhre et al 2017	1,124			
ubm- a	Complete GWAS summary data on brain region volumes as described by Elliott et al 2018	3,143			
ukb-a	Neale lab analysis of UK Biobank phenotypes, round 1	596			
ukb-b	IEU analysis of UK Biobank phenotypes	2,514			
ukb-d	Neale lab analysis of UK Biobank phenotypes, round 2	904			
<u>ukb-e</u>	Pan-ancestry genetic analysis of the UK Biobank performed at the Broad Institute	3,873			

clean_outcome_from_exposure

描述

(主要用于向量化)用于清洗outcome。将exposure中 (list形式,也就是批量化的形式存在的exposure)不存在的SNP从outcome中剔除,大幅精简outcome,并大幅提升harmonise_data的速度。

实测清洗与不清洗outcome对比,速度相差一百倍以上。

用法

直接在R语言中调用这个函数,如下所示:

- 1 # 调用clean_outcome_from_exposure函数
- cleaned_outcome <- clean_outcome_from_exposure(expo = exposure_data, outcome = outcome_data)</pre>

参数

- expo:暴露数据,格式为list, TwoSampleMR包格式。比如get_exposure批量化获取下来的数据
- outcome:结果数据, TwoSampleMR包格式。

clean_GWAS

描述

这个函数是用于清洗遗传关联数据集,使其符合特定的数据集要求的功能函数。

用法

直接在R语言中调用这个函数,如下所示:

```
1 # 调用clean_GWAS函数
2 cleaned_GWAS_list <- clean_GWAS(list = GWAS_list, clean = c("bbj", "eqtl"))
```

参数

- list:一个list。里面包含每个暴露的data.frame。 具体参考批量运行get_exposure后的结果
- clean: 需要清洗的数据集名称,一个字符型向量类型。具体参考get_ao的附注。

返回值

• clean_GWAS 函数返回一个清洗后的遗传关联数据集列表,符合特定数据集要求。

作者信息

• 代码作者:广州医科大学 第一临床学院 周浩彬 第二临床学院 谢治鑫

• 帮助文档作者: 周浩彬

• 时间: 2023/5/1

适配版本: Get_MR2.0开源许可证: GPL3.0

• 公众号: GetScience

•				第六临床学院	黄覃耀和	南山学院 村	沐子凯在孟德	感尔随机化概念,	代码思路等提
	供的重	要的建设	殳性建议。						