

Intelligent Image Trigger Acquisition (IITA)

Sajeeb Roy Chowdhury*1, Gabriel Popescu**1, 2,3

¹Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Illinois, 61801

²Department of Bioengineering, University of Illinois Urbana-Champaign, Illinois, 61801

³Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Illinois, 61801

*srchowdh@illinois.edu, **gpopescu@illinois.edu

- 1. Background and Motivation
- 2. Imaging System Schematic
- 3. Network Architecture and Loss Plots
- 4. Trigger Workflow
- 5. Results and Demo
- 6. Summary and Future Work

- 1. Background and Motivation
- 2. Imaging System Schematic
- 3. Network Architecture and Loss Plots
- 4. Trigger Workflow
- 5. Results and Demo
- 6. Summary and Future Work

Background

- Acquisition of frames that do not contain any information is a waste, both in terms of <u>time</u> and <u>storage space</u>.
- This is especially true when the cell cultures are <u>sparse</u> as most of the frames don't have any cells at all or contain very few cells that provide no benefit to the analysis.
- Other triggers Live Cells, Cancer regions, etc.

Motivation

Selectively picking which frames to acquire does not only save in storage space, but also aids biologists in only focusing on interesting frames - frames that meet a certain condition.

- 1. Background and Motivation
- 2. Imaging System Schematic
- 3. Network Architecture and Loss Plots
- 4. Trigger Workflow
- 5. Results and Demo
- 6. Summary and Future Work

Imaging System Schematic

UIUC

- 1. Background and Motivation
- 2. Imaging System Schematic
- 3. Network Architecture and Loss Plots
- 4. Trigger Workflow
- 5. Results and Demo
- 6. Summary and Future Work

Neural Network Design: Efficient U-Net

- 1. Background and Motivation
- 2. Imaging System Schematic
- 3. Network Architecture and Loss Plots
- 4. Trigger Workflow
- 5. Results and Demo
- 6. Summary and Future Work

Trigger Workflow

- 1. Background and Motivation
- 2. Imaging System Schematic
- 3. Network Architecture and Loss Plots
- 4. Trigger Workflow
- 5. Results and Demo
- 6. Summary and Future Work

Results and Demo: Real Time

Trigger on 7 or more cells per FOV

Image	Mask	Cell Count	Acquired in IITA Mode	Acquired in non-IITA mode
		7	Yes	Yes
		0	No	Yes
		4	No	Yes
		0	No	Yes

- 1. Background and Motivation
- 2. Imaging System Schematic
- 3. Network Architecture and Loss Plots
- 4. Trigger Workflow
- 5. Results and Demo
- **6. Summary and Future Work**

Summary and Future Work

- Intelligent Image triggered intelligent microscopy systems
- Examples: confluency threshold, viability, cell count, etc.
- Reduced analysis time/ effort, storage space, etc → real-time data curation

Future Plans

- More cell lines: e.g., neurons to study the effects drug treatment
- Extend to timelapse imaging: e.g., trigger when growth-cone forms
- Develop other triggers: culture confluency, cancer regions, etc

Quantitative Light Imaging lab

- Yuchen He
- Masayoshi Sakakura
- Neha Goswami
- Young Jae Lee
- Chenfei Hu
- Shenghua He
- Edward M. Kong
- Hua Li
- Mark A. Anastasio