

Programación concurrente y de tiempo real

Práctica 5 - Análisis operador de resaltado

Nicolás Ruiz Requejo

Cádiz 14 de agosto de $2020\,$

$\mathbf{\acute{I}ndice}$

1	Aná	lisis de Speed-Up del problema de resaltado de imagen en escala de grises	2
	1.1	Tabla de tiempos y Speed-Up según número de hilos	2
	1.2	Gráfica de Speed-Up en función del número de tareas	2
	1.3	Conclusiones	2

1. Análisis de Speed-Up del problema de resaltado de imagen en escala de grises

Hemos utilizado matrices de 10000x10000 números enteros. La máquina donde se han ejecutado las pruebas tiene un procesador de 8 núcleos (AMD FX-8350).

1.1. Tabla de tiempos y Speed-Up según número de hilos

Los tiempos se miden en milisegundos.

Tiempo solución secuencial	1482,40	
Número de hilos	Tiempo paralelo en milisegundos	Speed-Up
1	1176,50	1,26
2	614,8	2,41
4	362,45	4,08
6	273,81	5,41
8	279,95	5,29
10	285,54	5,19
12	252,77	5,86
14	250,67	5,91
16	231,20	6,41

1.2. Gráfica de Speed-Up en función del número de tareas

1.3. Conclusiones

Según los Spped-up obtenidos, la versión paralela reduce el tiempo de ejecución con respecto a la versión secuencial.

Para tomar los datos hemos supuesto, como dice la teoría, que el coeficiente de bloqueo para tareas que no esperan por I/O es cero.

Observando la gráfica vemos que el mejor Speed-Up no se encuentra en 8 hilos y según la anterior

Nicolás Ruiz Requejo 2

suposición, $8\ {\rm hilos}$ debería ser lo óptimo en nuestra situación.

Entonces nuestra suposición de Cb=0 es demasiado optimista y deberíamos aumentar el coeficiente de bloqueo para obtener un resultado más acertado.

Nicolás Ruiz Requejo 3