COMPUTER GRAPHICS

Lecture 3: Line-Drawing Method

Associate Professor Lý Quốc Ngọc

Content

- 3.1. Problem statement
- 3.2. Line-Drawing Method
- 3.3. Line-Drawing Algorithm

3.1. Problem statement

Input: coordinates of two ends of line segment.

Output: Draw a line based on the determination of points in the line equation on the integer coordinate grid.

The **necessary requirements** must be met:

- The drawing points must be the best approximation of the line.
- The drawing points must satisfy the spatial continuity in the neighborhood of 8 pixels.
- Low computational complexity.

3.1. Problem statement

Assumptions on the problem

- Suppose the line has the equation y = mx + b through two points A (xa, ya) and B (xb, yb).
- Investigate the method of drawing a straight segment with 0 <m <1, xa <xb.</p>
- The remaining cases are easily deduced from the above case.

Find the **cost function** to determine the **next drawing point** from the **current drawing point**.

Assuming at the step k, we have determined the pixel at (x_k, y_k) .

At **step k+1**, we need to decide which pixel to draw at positions:

$$(x_k+1, y_k), (x_k+1, y_k+1).$$

Find the cost function to determine the next drawing point from the current drawing point.

Consider the difference between two pixel separations:

$$d_{1} - d_{2} = (y - y_{k}) - (y_{k} + 1 - y)$$

$$= [m . (x_{k} + 1) + b - y_{k}] - [y_{k} + 1 - m . (x_{k} + 1) + b]$$

$$= 2. m . (x_{k} + 1) + 2b - 1 - 2. y_{k}$$
(1)

Find the cost function to determine the next drawing point from the current drawing point.

Substitute m = $\Delta y / \Delta x$ and define :

$$\mathbf{p_k} = \Delta x \cdot (d_1 - d_2) = 2. \, \Delta y. \, x_k - 2. \, \Delta x. \, y_k + C,$$
 (2)

 $C = 2. \Delta y + \Delta x. (2b - 1).$

If $p_k < 0 \implies$ Select the next drawing point as (x_k+1, y_k) .

If $p_k \ge 0$ \Rightarrow Select the next drawing point as (x_k+1, y_k+1) .

Find the cost function to determine the next drawing point from the current drawing point.

Define the inductive formula to calculate p_k ,

$$p_{k+1} = 2. \Delta y. x_{k+1} - 2. \Delta x. y_{k+1} + C,$$
 (3)

From (2) and (3), we have:

$$p_{k+1}$$
 - p_k = 2. Δy . $(x_{k+1} - x_k)$ - 2. Δx . $(y_{k+1} - y_k)$

$$p_{k+1} = p_k + 2. \Delta y - 2. \Delta x. (y_{k+1} - y_k)$$
 (4)

Find the cost function to determine the next drawing point from the current drawing point.

To complete the inductive formula for p_k , p_0 must be calculated,

$$\mathbf{p_0} = 2. \ \Delta \mathbf{y} - \ \Delta \mathbf{x} \tag{5}$$

In summary, from (4) and (5) we have **the inductive** formula to calculate p_k

Depend on pk we can select the next point at step (k+1)th

Discussion.

Since Δx , Δy is an integer $\Rightarrow p_0$ is an integer

From (4) we have:

If
$$p_k < 0 \implies p_{k+1} = p_k + 2. \Delta y$$

If
$$p_k \ge 0 \implies p_{k+1} = p_k + 2. \Delta y - 2. \Delta x$$

Since p_k is integer for all k, so arithmetic involves only integer addition and subtraction with these two constants.

3.3. Line-Drawing Algorithm

Bresenham's Line-Drawing Algorithm for 0<m<1

- **B1.** Input the two line endpoints, store the left endpoint in(x_0,y_0).
- **B2**. Plot the first point (x_0,y_0) .
- **B3**. Calculate the constants: Δx , Δy , $2.\Delta y$, $2.\Delta y$ $2\Delta x$ and obtain the starting value for the cost function as

$$p_0 = 2$$
. $\Delta y - \Delta x$.

B4.
$$k = 0$$

B6. If $p_k < 0$ then Next point to plot is (x_k+1, y_k)

Update
$$p_{k+1} = p_k + 2.\Delta y$$

B7. If $p_k \ge 0$ then Next point to plot is (x_k+1, y_k+1)

Update
$$p_{k+1} = p_k + 2.\Delta y - 2.\Delta x$$

B8.
$$k = k + 1$$

B9. Until
$$k = \Delta x$$