金屬也會生病

人生病時會找醫生,醫生會先診斷病情再開藥方治療。 但金屬呢?金屬材料也會生病,同樣有病徵和診療方法。

■謝之駿

金屬材料的種類

金屬材料種類相當多,但不外乎周期表上的純金屬,或兩種及兩種以上金屬所合成的合金。一般常見的金屬大致可分成鐵金屬及非鐵金屬兩大類,鐵金屬是以鐵為基底,如純鐵、鑄鐵、鋼鐵等,而非鐵金屬包括銅、鋁、鈦、鎂等及其合金。

金屬材料多使用在工程結構上,因此又稱為 工程結構材料;也使用在3C產品上,稱為電子 金屬材料。

金屬的最原始狀態是金屬礦物,不是一開始 就能達到需求的性能。有時在熔煉過程中需考慮 「合金設計」,就是透過不同元素的添加,使經 過熔煉或其他方式製成塊狀的金屬錠具有特殊的 性能。合金設計過程若考慮不周或處置不當,所 熔煉出的金屬是不健康的,就如同人體一樣也會 生病。金屬材料到底有哪些病症呢?要如何診斷 及檢驗呢?

金屬由無到有的關係圖

合金設計過程若考慮不周或處置不當, 所熔煉出的金屬是不健康的,就如同人體一樣也會生病。

強度缺乏病

在某些需求高強度的場合,金屬材料 卻未具備相當等級的強度時,稱為金屬的 強度缺乏病。

這病的診療,可以把金屬材料製備成 拉伸試片或試棒,並用拉力試驗機做拉伸 試驗。若金屬缺乏強度,拉伸試片或試棒 會很快斷掉,由此可以得到拉伸強度的數 據,以判斷這金屬是否缺乏強度。

硬度缺乏病

一般來說,金屬的強度與硬度是成正 比的,強度愈高,硬度就會愈高,但不能 把兩者混為一談。如果一個金屬材料失去 該有的硬度,就稱為硬度缺乏病。

這病的診斷,是以硬度試驗機的壓痕器把金屬材料下壓,得到一個壓痕直徑,再利用硬度壓痕的原理把直徑轉換成硬度,並量測多個點,得到最大、最小及平均值,便可以判斷出金屬材料的硬度範圍,進而了解金屬是否得了硬度缺乏病。

先天不良症候群

不是人體才會先天不良,金屬也會。若金屬熔煉及合金設計技術上或人為上出狀況,會導致製成的金屬有許多點、線、面、體的缺陷,如裂縫就是一種面缺陷。金屬材料應用於工業上是不允許有裂縫的,倘若鋼結構材料上有明顯的裂縫,使用於橋梁時,因橋梁會產生反覆的應力作用,裂縫會延展,最終發生材料斷裂,因而造成人員傷亡及財產損失。

金屬材料的先天不良要如何檢驗呢? 熔煉及合金設計完成的塊材,可先用肉眼 觀察金屬材料表面是否有孔洞及裂縫。若

金屬強度缺乏病的診斷

金屬硬度缺乏病的診斷

金屬的先天不良症候群

不銹鋼的腐蝕病一流理台孔蝕

金屬的腐蝕病

肉眼無法觀測到,則需使用光學顯微鏡觀察,因為很多金屬表面的缺陷是非常細微的。若這兩個方法中有一個能觀察到缺陷, 就可以斷定金屬材料患有先天不良症候群。

後天失調症候群

後天失調是指金屬本來是在很好的狀態,性能也不錯,但因為後續的加工處理如熱處理、銲接、鍛造、鑄造、加工成形等處理不當,造成材料的性質劣化,如耐腐蝕性不良、二次及多次加工性差、銲接性差等,稱為金屬的後天失調症候群。

後續熱處理或其他加工方式所造成的 金屬劣化,可從多方面來診斷。把原始狀態 與後續熱處理及其他加工後的金屬材料進行 機械性質如拉伸、硬度、衝擊等測試,若後 續加工處理後的實驗數據比原始狀態的差, 表示加工處理後金屬的機械性質表現較差, 便可以診斷為金屬的後天失調症候群。

SUJ2 軸承鋼熱處理後淬火裂痕

金屬的後天失調症候群

腐蝕病

有些場合使用的金屬暴露在大氣及酸 鹼的環境中,很容易生銹及發生溶解反應。 而本身耐腐蝕性良好的金屬,若使用環境變 化,發生耐腐蝕性下降的情形,不即時處理, 金屬材料最終也會破斷。這是浪費資源,因 為材料破斷後,還得再製造更多的材料,腐 蝕所遺下的廢棄物則會造成環保的問題。

金屬的皮膚病

如何診斷出這病症呢?最簡單的方法 是浸漬試驗,把金屬浸入酸或鹼的化學溶 液中,若金屬不耐腐蝕,表面就會起霧或 呈現黑色。還有一種更精準的方法是電化 學檢測,利用恆電位儀,根據腐蝕電位、 腐蝕電流的電化學原理,就可檢測出金屬 是否有腐蝕病。

生活中常用不銹鋼,一般人認為不銹 鋼不會生銹,也就是不會有腐蝕病的問題。 其實不然,不銹鋼只是比較不易生銹,而 不是不會生銹。

不銹鋼有一種腐蝕現象稱為孔蝕。若 是不銹鋼的耐腐蝕性等級不夠高,長期使 用於酸鹼的環境中,就會引起電化學反應 而破壞不銹鋼的鈍化膜,造成孔蝕現象。 常見的不銹鋼流理台,一般人都認為是不 會腐蝕的,理論上是這樣沒錯,但若業者 不是用抗蝕能力良好的不銹鋼,還是會產 生孔蝕的腐蝕病。

皮膚病

金屬在熔煉、鑄造、鍛造、銲接時,若 處理技術不當,會使雜質偏高,表面上可能 會產生一些孔洞、裂縫、介在物等缺陷,造 成外觀不完美,就像得了皮膚病。

金屬若只有表面孔洞及裂縫,就是單純的皮膚病。若再往更下層觀察,依然還是有孔洞及裂縫,可能就要懷疑是因為熔煉、鑄造過程中冷卻及凝固的速度控制不好,導致金屬凝固後表面及更深層有孔洞與裂縫。這是較嚴重的皮膚病,必須把病因追溯到材料最前端的製造過程,才能根本解決問題。

但金屬的皮膚病也可能是因為其中有 過多的硫化物或其他化合物,因為這些物質 的周圍是孔洞及裂縫容易產生的地方。

另外,在銲接過程中冷卻速度不均也 會造成銲接熱裂現象,而在銲道中形成裂 痕。利用光學顯微鏡觀察,就可研判出是 何種機制造成的。

慢性病

金屬材料也會有慢性病嗎?某些金屬 有延遲破裂現象。若材料內部有缺陷,即 使已經彎曲成型,仍然會因為氫、應力、 應變等因素發生延遲破裂的情形。也就是 不會立即破裂,有可能一天、兩天、一個 星期,甚至更久後才發生破裂現象。

另一種常見的金屬材料慢性病是潛變 現象。金屬材料在承受固定的負載或應力 下,其變形或應變會隨著時間的增加而增 加,稱為潛變。金屬材料承受一個固定負

生活中常用不銹鋼,

一般人認為不銹鋼不會生銹,其實不然,不銹鋼只是比較不易生銹。

6%西格瑪組織(癌細胞)

淺色是 δ — 肥粒鐵相,深色是 σ 相。若以人體來比喻, δ — 肥粒鐵相當於良好的細胞, σ 相在不銹鋼中就相當於癌細胞。圖中可看出不銹鋼正在被壞的組織攻擊。

載及應力下,如果瞬間沒有破裂,會因潛變 行為使它在經過一段長時間後破裂,稱為潛 變破裂。因此,這種金屬慢性病雖然不會馬 上發生,卻是許多金屬材料會有的現象,破 裂後也會產生重大的危機。

金屬的慢性病與人體的慢性病一樣,不 是那麼容易觀察到,而是必須經過一段時間 的觀察與檢驗。如果是延遲破斷所造成的裂 縫,可把金屬材料沖壓成杯狀,並浸漬在酸 或鹼的化學溶液中,再利用動態攝影機拍攝 其變化情形,有可能幾分鐘、幾小時或幾天 內會有裂縫產生,如此可以確認發生延遲破 斷的金屬慢性病的敏感性。

若是潛變造成的慢性病,可以利用疲勞 試驗機檢測。疲勞試驗機是對材料施以振盪反 覆周期模式的應力,測試其發生破斷的周期 數,進而評估其耐疲勞性質或潛變的敏感性。

骨質疏鬆病

金屬材料在高溫及低溫都可能脆化。 高溫時,有可能產生一些硬而脆的析出物, 若析出狀態很明顯,材料受到負載及應力 就會發生脆化現象。而在低溫環境中,若 金屬材料不具抵抗低溫環境的能力,就會 脆化,即使是強硬的鋼鐵也會。

金屬材料的骨質疏鬆病是由於材料脆化所造成,而會造成材料脆化一般多與材料內部的析出物及雜質有關。檢驗方法是利用光學顯微鏡觀察材料內部是否有過多硬脆的二次相,若二次相尺度太小,則需使用電子顯微鏡觀察。若觀察到很多有害的二次相,就可研判是二次相的析出物造成材料的脆化。

癌症

金屬材料也會有類似人類癌症的病症嗎?當金屬某些元素過量,在一定的高溫區間下停留時間太長,加速元素的擴散,原本正常的組織會因為元素的擴散,在凝固及冷卻過程中產生另外一種組織,這處的組織相當於人體的細胞,最終成為一種不好的二次組織(二次相)。當這種二次組織含量過多時,會使金屬不堪使用,這相當於癌細胞占據金屬內部而造成不健康。

觀察金屬是否罹患癌症,可取樣再利 用光學顯微鏡觀察其內部有多少正常組織 及不良組織。從不良組織占據的情況,可 以判定癌化的程度。若要更清楚金屬的癌 化情形,可以利用電子顯微鏡定量分析不 良的組織。

金相顯微浸蝕術

人體中若有病毒或癌細胞,必須從特定的部位取切片,再把切片處理後的組織置入生物顯微鏡下觀察。金屬材料也是一樣,若金屬生病了,也有一種專屬的技術去檢驗及觀察,稱為金相技術。

金相顯微技術有一系列的前處理過程,包括選擇試片取樣位置、切割試片、把試 片冷鑲埋或熱鑲埋以利研磨、研磨(粗磨 及精磨)試片、試片拋光、試片的化學浸 蝕以去除非金屬成分、試片的顯微鏡觀察, 這些過程需要很多檢查設備及耗材。

取樣位置是選擇金屬病症的所在位置, 以切割機進行機械切割,再把切割後的試 片放入模具中,並以樹脂加硬化劑倒入模 具內,凝固後脫膜,稱為鑲埋。再把鑲埋 後的試片以旋轉式研磨機利用砂紙粗磨及 精磨,由低號數砂紙磨到高號數砂紙。研

金屬所有病症的首要把關技術一金相顯微浸蝕術。

磨後的金屬試片仍有細刮痕,須以抛光去除,即利用抛光氧化鋁粉對金屬抛光。抛 光完的試片必須呈現鏡面的狀態,也就是 可以像鏡子一樣照到自己。

再把鏡面的試片浸入化學溶液中數秒 或數分鐘以去除非金屬,取出試片沖水後 吹乾。化學浸蝕是為了呈現出金屬的金相 組織,相當於人體若要進行斷層掃描檢查, 有時必須注射顯影劑方便成像,以看清楚 內部組織的變化。

這種金相浸蝕術可以指出前述所有病症的原因。因為金屬材料的組織會直接影響其性質,所以檢查金屬的病症多以金相顯微浸蝕術為首要的檢驗及判定技術。

謝之駿

守富國際股份有限公司金屬材料研發部