Dérivée et primitives des fonctions usuelles

f(x)	f'(x)	Intervalle de validité
k	0]-∞;+∞[
x	1]-∞;+∞[
$x^n, n \in \mathbb{N}^*$	nx ^{n-l}]-∞;+∞[
1 x	$-\frac{1}{x^2}$]-∞;0[∪]0;+∞[
$\frac{1}{x^n}$, $n \in \mathbb{N}^*$	$-\frac{n}{x^{n+1}}$]-∞;0[∪]0;+∞[
\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0;+∞[
x" , α∈R	0.x ⁿ⁻¹]0;+∞[
ln(x)	1 <u>x</u>]0;+∞[
e ^x	e ^x]-∞;+∞[
cos(x)	-sin(x)]-∞;+∞[
sin(x)	cos(x)]-∞; +∞[
$e^{ix}, r = \alpha + i\beta$	re ^{IX}]-∞;+∞[

Opérations sur les dérivées

$$\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$$

$$\left(\frac{f}{g}\right)' = -\frac{f'g - fg'}{g^2}$$

$$(e^{u})' = u'e^{u}$$

$$(\ln u)' = \frac{u'}{u}$$
, u à valeurs strictements positives.