Travaux Pratiques en Python 2, seconde partie

Exercice 1 (Méthode d'Aitken):

Dans TP 1, Exercice 3, on avait considéré la suite (u_n) définie par $u_n = \sin(0.7^n)$. La limite de (u_n) est l = 0. Pour Effectuer la procédé d'accélération d'Aitken, on définit

$$v_n = u_n - \frac{(\Delta u_n)^2}{\Delta^2 u_n}$$

avec $\Delta u_n = u_{n+1} - u_n$ et $\Delta^2 u_n = \Delta u_{n+1} - \Delta u_n$.

- 1. Afficher les 50 premières valeurs de $\frac{u_{n+1}-l}{u_n-l}$.
- 2. Afficher les 50 premières valeurs de v_n et puis de $\frac{v_n l}{u_n l}$, est-ce que ces valeurs satisfonts les énoncés de la Proposition 4.1 sur la Fiche du cours?
- 3. Tracer la suite u_n et v_n dans la même figure. Est-ce que la figure illustre que la suite (v_n) converge plus vite que la suite (u_n) ?

Exercice 2 (Approximation de $\sqrt{3}$ par la fausse position):

Dans la même exercice, on applique la méthode de la fausse position. L'algorithme est le même que pour la dichotomie, mais c_n est défini par

$$c_n = \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)}$$

- Programmer cette méthode dans une fonction **FaussePosition**(**f**, **a**, **b**, **eps**) comment mentionnée dans la question 2.
- En utilisant l'intervalle initial $[a_0, b_0] = [0.5, 2.0]$, tracer les suites (n, a_n) et (n, b_n) par la méthode de dichotomie dans une figure, et les mêmes suites obtenues par fausse position dans une autre figure. Comparer ces deux figures.

Exercice 3 (Un cas où la méthode de Newton ne converge pas):

On considère la fonction $f(x) = \arctan(x)$. On rappel que $f'(x) = \frac{1}{1+x^2}$. On applique la méthode de Newton à la résolution de f(x) = 0 à partir d'un réel x_0 qui est non nul, la suite $(x_n)_n$ obtenue vérifie $x_{n+1} = \phi(x_n)$ pour tout $n \in \mathbb{N}$.

- 1. Donner l'expression de ϕ pour cette résolution.
- 2. Effectuer la résolution par $x_0 = 10.0$, avec le criète d'arrêt que " $|x_{n+1} x_n| < eps$ ou nombre itération est plus petit que 20 ".
- 3. Choisir $x_0 = 2.0$, que constatez-vous?