#### MSBA 7004 Operations Analytics

Class 5-1: Process Flow Analysis (IV)
Shouldice Hospital Case
2023

### Learning Objectives

- To apply process analysis methods
- To understand how operations analytics can be applied to healthcare management problems

- Purpose of the analysis:
  - To determine the capacity, throughput, resource utilizati on of the current practice (evaluate) and
  - propose future expansion plans for Shouldice Hospital (improve)

#### Assumptions: For the *current* operations

- No weekend (Sat & Sun) surgeries
- Admits 30 patients/day on Sun-Thurs
- Each surgeon can operate 4 patients/day; total of 12 surgeons
- Each surgery takes 1 hour in the operating room; each of 5 operating rooms is available from 7:30am to 3:30pm (8hr/day)
- Total of 90 beds, and committed to a 3-day process
- All other resources have sufficient capacity
  - part-time assistant surgeons
  - laboratory/examination rooms
  - nurses and other staff
- Flow Units: Patient.
- Key Resources: Beds, Operating rooms, Surgeons.

### Q1: Flow Units, Resources



- Flow Units: Patient.
- Key Resources: Beds, Operating rooms, Surgeons.

#### Q2: Current operations - bed

|              |       |      | # of bed | ds requir | ed each d | ay    |       |
|--------------|-------|------|----------|-----------|-----------|-------|-------|
| Check-in day | Mon   | Tue  | Wed      | Thu       | Fri       | Sat   | Sun   |
| Mon          | 30    | 30   | 30       |           |           |       |       |
| Tue          |       | 30   | 30       | 30        |           |       |       |
| Wed          |       |      | 30       | 30        | 30        |       |       |
| Thu          |       |      |          | 30        | 30        | 30    |       |
| Fri          |       |      |          |           |           |       |       |
| Sat          |       |      |          |           |           |       |       |
| Sun          | 30    | 30   |          |           |           |       | 30    |
| Total        | 60    | 90   | 90       | 90        | 60        | 30    | 30    |
| Utilization  | 66.7% | 100% | 100%     | 100%      | 66.7%     | 33.3% | 33.3% |

# Q2: Current operations for weekday (operating day)



| Resource          | Unit Load<br>(per patient) | Operating hours per day | Daily Capacity (per 1 resource) | # of<br>Resources | Daily Capacity  |
|-------------------|----------------------------|-------------------------|---------------------------------|-------------------|-----------------|
| Bed               | 3 days                     | 24 hrs                  | 1/3 patient/day                 | 90                | 30 patients/day |
| Operating<br>Room | 1 hr                       | 8 hrs                   | 8 patients/day                  | 5                 | 40 patients/day |
| Surgeon           | 1 hr                       | 4 hrs                   | 4 patients/day                  | 12                | 48 patients/day |

#### Q2

- 2(a) (Per week) hospital throughput rate (actual output rate)
- = 30 patients/operating day \* 5 operating days/week= 150 patients/week
- 2(b) Utilization(bed)= Throughput Rate/ Capacity Rate (bed)
  - **=150/210=71.4%**

## Q2: What is the current bed utilization? (Alternative approach 1)

|              |       |      | # of bed | ds requir | ed each d | ay    |       |
|--------------|-------|------|----------|-----------|-----------|-------|-------|
| Check-in day | Mon   | Tue  | Wed      | Thu       | Fri       | Sat   | Sun   |
| Mon          | 30    | 30   | 30       |           |           |       |       |
| Tue          |       | 30   | 30       | 30        |           |       |       |
| Wed          |       |      | 30       | 30        | 30        |       |       |
| Thu          |       |      |          | 30        | 30        | 30    |       |
| Fri          |       |      |          |           |           |       |       |
| Sat          |       |      |          |           |           |       |       |
| Sun          | 30    | 30   |          |           |           |       | 30    |
| Total        | 60    | 90   | 90       | 90        | 60        | 30    | 30    |
| Utilization  | 66.7% | 100% | 100%     | 100%      | 66.7%     | 33.3% | 33.3% |

Utilization=Average utilization in a week

## Q2: What is the current bed utilization? (Alternative approach 2)

| Check-in day | Input | Output | Capacity | Inventory (at the end of day) |
|--------------|-------|--------|----------|-------------------------------|
| Sun          | 30    | 30     | 30       | 30                            |
| Mon          | 30    | 0      | 30       | 60                            |
| Tue          | 30    | 0      | 30       | 90                            |
| Wed          | 30    | 30     | 30       | 90                            |
| Thu          | 30    | 30     | 30       | 90                            |
| Fri          | 0     | 30     | 30       | 60                            |
| Sat          | 0     | 30     | 30       | 30                            |
| Total        | 150   | 150    | 210      | 450                           |
| Average      |       |        |          | 450/7=64.3                    |

- Interpretation of Inventory: "A flow unit is either being processed or waiting for process" implies that both "activity" and "buffer" can hold inventory.
- Note: assume patients are discharged on the morning of the 4<sup>th</sup> day
- Utilization=Average inventory/Total possible inventory =64.3/90=71.4%

## Q2(c): What is the current bed utilization? Inventory build-up diagram



## Q2(c) (red curve is also acceptable) Inventory build-up diagram



#### Q3: Adding operations on Saturday

|              |       |      | # of bed | ds requir | ed each d | lay   |       |
|--------------|-------|------|----------|-----------|-----------|-------|-------|
| Check-in day | Mon   | Tue  | Wed      | Thu       | Fri       | Sat   | Sun   |
| Mon          | 30    | 30   | 30       |           |           |       |       |
| Tue          |       | 30   | 30       | 30        |           |       |       |
| Wed          |       |      | 30       | 30        | 30        |       |       |
| Thu          |       |      |          | 30        | 30        | 30    |       |
| Fri          |       |      |          |           | 30        | 30    | 30    |
| Sat          |       |      |          |           |           |       |       |
| Sun          | 30    | 30   |          |           |           |       | 30    |
| Total        | 60    | 90   | 90       | 90        | 90        | 60    | 60    |
| Utilization  | 66.7% | 100% | 100%     | 100%      | 100%      | 66.7% | 66.7% |

- Utilization=Throughput Rate/Capacity Rate=[30(patients/operating day)\*6(operating days/week)]/[30(patient/day)\*7(days/week)]=85.7%
- Utilization=Average utilization in a week

## Q3: Adding operations on Saturday Inventory build-up diagram



### Q3-2 (not a part of the assignment): What if we increase the number of beds by 50%?

| Resource       | Daily Capacity (per 1 resource) | # of<br>Resources | Daily Capacity (for weekdays) | Utilization (for days used) |
|----------------|---------------------------------|-------------------|-------------------------------|-----------------------------|
| Bed            | 1/3 patient/day                 | 90                | 30 patients /day              | 71.4%                       |
| Operating Room | 8 patients/day                  | 5                 | 40 patients /day              | 30/40=75%                   |
| Surgeon        | 4 patients/day                  | 12                | 48 patients /day              | 30/48=62.5%                 |

| Resource       | Daily Capacity (per 1 resource) | # of<br>Resources | Daily Capacity (for weekdays) | Utilization<br>(for days used) |
|----------------|---------------------------------|-------------------|-------------------------------|--------------------------------|
| Bed            | 1/3 patient/day                 | 135               | 45 patients /day              | 63.5%                          |
| Operating Room | 8 patients/day                  | 5                 | 40 patients /day              | 40/40=100%                     |
| Surgeon        | 4 patients/day                  | 12                | 48 patients /day              | 40/48=83.3%                    |

- Utilization is for days used: bed 7 days a week, OR and surgeon 5 days a week
- Bed utilization(with 50% more beds)=Throughput Rate/Bed Capacity Rate
   =(40 patients/operating day\*5 operating days/week)/(45patients/day\*7days/week)
   =63.5%
- Improvement in throughput rate=(40 patients/operating day\*5 operating days/week)-(30 patients/operating day\*5 operating days/week)=50 patients/week

Q3-2: What if we increase the number of beds by 50%? Sub Q: Do we need to expand by 50%?

| Resource       | Daily Capacity (per 1 resource) | # of<br>Resources | Daily Capacity (for weekdays) | Utilization (for days used) |
|----------------|---------------------------------|-------------------|-------------------------------|-----------------------------|
| Bed            | 1/3 patient/day                 | 120               | 40 patients /day              | 71.4%                       |
| Operating Room | 8 patients/day                  | 5                 | 40 patients /day              | 40/40=100%                  |
| Surgeon        | 4 patients/day                  | 12                | 48 patients /day              | 40/48=83.3%                 |

- Can we save in investment cost while achieving the same output rate (40 patients/day=200patients/week)?
- OR is the bottleneck as long as bed daily capacity is at least 40 patients/day
- Required beds=40(patients/day)/(1/3)(patient/day/bed)=120beds
- Required expansion=120beds-90beds=30beds
- Every day (Sunday Thursday) admits 40 patients/day.

### Q4: Increasing output by 20% without Saturday operations

- Objective: 20% throughput rate increase
   150 patients/week → 180 patients/week
- Bottleneck resources (beds) need to be added
- # of patients admitted each day
  - = 180(patients/week)/5(operating days/week)
  - = 36 (patients/day)
- # of additional beds required= 36 (patients/day) / (1/3)(patient/day/bed)-90beds = 18 beds
- Is this feasible? What do we need to check?
   Other resources may become the new bottleneck, if so, ad ding 18 beds might not achieve 20% throughput rate increase

#### Q4: Adding 18 beds

| Resource          | Unit Load<br>(per patient) | Operating hours per day | Daily Capacity<br>(per 1 resource) | # of<br>Resources | Daily Capacity  |
|-------------------|----------------------------|-------------------------|------------------------------------|-------------------|-----------------|
| Bed               | 3 days                     | 24 hrs                  | 1/3 patient/day                    | 108               | 36 patients/day |
| Operating<br>Room | 1 hr                       | 8 hrs                   | 8 patients/day                     | 5                 | 40 patients/day |
| Surgeon           | 1 hr                       | 4 hrs                   | 4 patients/day                     | 12                | 48 patients/day |

- Process capacity rate = Bottleneck capacity rate = 36 patients/(operating) day
- We can achieve a 20% increase in throughput by adding 18 more beds
- Is this the most economical way?

#### Q4: Flexible admission schedule

|              |     |      | # of bed | ds requir | ed each d | lay |     |
|--------------|-----|------|----------|-----------|-----------|-----|-----|
| Check-in day | Mon | Tue  | Wed      | Thu       | Fri       | Sat | Sun |
| Mon          | 40  | 40   | 40       |           |           |     |     |
| Tue          |     | 20   | 20       | 20        |           |     |     |
| Wed          |     |      | 40       | 40        | 40        |     |     |
| Thu          |     |      |          | 40        | 40        | 40  |     |
| Fri          |     |      |          |           |           |     |     |
| Sat          |     |      |          |           |           |     |     |
| Sun          | 40  | 40   |          |           |           |     | 40  |
| Total        | 80  | 100  | 100      | 100       | 80        | 40  | 40  |
| Utilization  | 80% | 100% | 100%     | 100%      | 80%       | 40% | 40% |

- Throughput rate = 180 (patients/week) =40+20+40+40+40
- We need to add 10 more beds (=100-90)

#### More alternatives for 20% throughput increase

- What if the hospital admits patients only on Monday, Wednesday, Thursday and Sunday, i.e., NO admission on Tuesday and weekend?
- What is the new bottleneck?

### More alternatives for 20% throughput increase: 4-day operation

For now let's ignore resource limitation and focus on schedule

|              |      | :    | # of bed | s require | ed each c | lay |     |
|--------------|------|------|----------|-----------|-----------|-----|-----|
| Check-in day | Mon  | Tue  | Wed      | Thu       | Fri       | Sat | Sun |
| Mon          | 45   | 45   | 45       |           |           |     |     |
| Tue          |      |      |          |           |           |     |     |
| Wed          |      |      | 45       | 45        | 45        |     |     |
| Thu          |      |      |          | 45        | 45        | 45  |     |
| Fri          |      |      |          |           |           |     |     |
| Sat          |      |      |          |           |           |     |     |
| Sun          | 45   | 45   |          |           |           |     | 45  |
| Total        | 90   | 90   | 90       | 90        | 90        | 45  | 45  |
| Utilization  | 100% | 100% | 100%     | 100%      | 100%      | 50% | 50% |

- Throughput rate: 180(patients/week) with no new resources added.
- Now let's consider resources: Not feasible. Let's check the OR. We may nee
  d to either
  - add one operating room
  - extend operating room hours by 1 hour (from 8 to 9) per day

## More alternatives for 20% throughput increase: 4-day operation: Adding 1 OR

| Resource          | Daily Capacity (per 1 resource) | # of<br>Resources | Daily Capacity                  | Operating Days per Week | Weekly Capacity                   |
|-------------------|---------------------------------|-------------------|---------------------------------|-------------------------|-----------------------------------|
| Bed               | 1/3 patient/day                 | 90                | 30 patients/day                 | 7 days/week             | 210 patients/week                 |
| Operating<br>Room | 8 patients/day                  | 5                 | 40 patients/day                 | 4 days/ week            | 160 patients/week                 |
| Surgeon           | 4 patients/day                  | 12                | 48 patients/day                 | 4 days/week             | 192 patients/week                 |
|                   |                                 |                   |                                 |                         |                                   |
| Resource          | Daily Capacity (per 1 resource) | # of<br>Resources | Daily Capacity                  | Operating Days per Week | Weekly Capacity                   |
| Resource<br>Bed   |                                 | _                 | Daily Capacity  30 patients/day |                         | Weekly Capacity 210 patients/week |
|                   | (per 1 resource)                | Resources         |                                 | per Week                |                                   |

- With the current resources, 4-day operations cannot achieve 20% (30patients/week) increase. Only 10=(160-150) (patients/week)
- If we add 1 more OR, we can handle 180 patients/week

## More alternatives for 20% throughput increase: 4-day operation: Increasing OR hour

| Resource          | Daily Capacity (per 1 resource) | # of<br>Resources | Daily Capacity                  | Operating Days per Week | Weekly Capacity                   |
|-------------------|---------------------------------|-------------------|---------------------------------|-------------------------|-----------------------------------|
| Bed               | 1/3 patient/day                 | 90                | 30 patients/day                 | 7 days/week             | 210 patients/week                 |
| Operating<br>Room | 8 patients/day                  | 5                 | 40 patients/day                 | 4 days/ week            | 160 patients/week                 |
| Surgeon           | 4 patients/day                  | 12                | 48 patients/day                 | 4 days/week             | 192 patients/week                 |
|                   |                                 |                   |                                 |                         |                                   |
| Resource          | Daily Capacity (per 1 resource) | # of<br>Resources | Daily Capacity                  | Operating Days per Week | Weekly Capacity                   |
| Resource<br>Bed   |                                 | - Table 1         | Daily Capacity  30 patients/day |                         | Weekly Capacity 210 patients/week |
|                   | (per 1 resource)                | Resources         |                                 | per Week                |                                   |

- ORs are extremely expensive. Then what can we do with our current resources to meet the objective?
- If we operate each OR 1 more hour each day, 9 operations can be performed per OR each day. We can achieve 180 patients/week

# Q4(c): Current operations for weekday (operating day)



| Resource          | Unit Load<br>(per patient) | Operating hours per day | Daily Capacity (per 1 resource) | # of<br>Resources | Daily Capacity  |
|-------------------|----------------------------|-------------------------|---------------------------------|-------------------|-----------------|
| Bed               | 3 days                     | 24 hrs                  | 1/3 patient/day                 | 90                | 30 patients/day |
| Operating<br>Room | 1 hr                       | 8 hrs                   | 8 patients/day                  | 5                 | 40 patients/day |
| Surgeon           | 1 hr                       | 4 hrs                   | 4 patients/day                  | 12                | 48 patients/day |

- Process capacity rate = Bottleneck capacity rate
  - = 30 patients/(operating) day

# Q4(c): Current operations for weekend (non-operating day)



| Resource          | Unit Load<br>(per patient) | Operating hours per day | Daily Capacity (per 1 resource) | # of<br>Resources | Daily Capacity  |
|-------------------|----------------------------|-------------------------|---------------------------------|-------------------|-----------------|
| Bed               | 3 days                     | 24 hrs                  | 1/3 patient/day                 | 90                | 30 patients/day |
| Operating<br>Room | 1 hr                       | 0 hrs                   | 0 patients/day                  | 5                 | 0 patients/day  |
| Surgeon           | 1 hr                       | 0 hrs                   | 0 patients/day                  | 12                | 0 patients/day  |

- Process capacity rate = Bottleneck capacity rate
  - = 0 patients/(non-operating) day

# Q4(c): Current operations for a week



| Resource          | Unit Load<br>(per patient) | Operating hours per operating day | Daily Capacity<br>(per 1 resource per<br>operating day) | # of<br>Resources | # of operating days per<br>week | Weekly<br>Capacity       |
|-------------------|----------------------------|-----------------------------------|---------------------------------------------------------|-------------------|---------------------------------|--------------------------|
| Bed               | 3 days                     | 24 hrs                            | 1/3 patient<br>/(operating) day                         | 90                | 7 (operating) days<br>/week     | 210<br>patients<br>/week |
| Operating<br>Room | 1 hr                       | 8 hrs                             | 8 patients<br>/(operating) day                          | 5                 | 5 (operating) days<br>/week     | 200<br>patients<br>/week |
| Surgeon           | 1 hr                       | 4 hrs                             | 4 patients<br>/(operating) day                          | 12                | 5 (operating) days<br>/week     | 240<br>Patients<br>/week |

#### Q4 (c)

- (Per week) hospital capacity rate
  - = Weekly capacity rate of (weekly) bottleneck
  - = Weekly capacity rate of operating room
- = 40 patients/(operating) day \* 5 (operating) days/week= 200 patients/week?

Or operating day + (non) operating day: 150 patients/week?

### Q4(c) Maximum throughput without adding re source and changing current practice

- How to formulate the question?
  - Integer programming
  - Objective: weekly throughput
  - Decision variables: daily admissions
  - Constraints: Bed, OR, surgeon capacity

$$\max \sum_{i \in DOW} admit_i$$

s.t.  $admit_{i-1} + admit_i + admit_{i+1} \le 90$  for  $\forall i \in DOW$   $admit_i \le 40$  for  $\forall i \in \{Sun, Mon, Tue, Wed, Thu\},$   $admit_i = 0$  for  $\forall i \in \{Fri, Sat\}.$ 

### Q4(c)

|              | # of beds required each day |     |     |     |     |     |     |
|--------------|-----------------------------|-----|-----|-----|-----|-----|-----|
| Check-in day | Mon                         | Tue | Wed | Thu | Fri | Sat | Sun |
| Mon          | 40                          | 40  | 40  |     |     |     |     |
| Tue          |                             | 10  | 10  | 10  |     |     |     |
| Wed          |                             |     | 40  | 40  | 40  |     |     |
| Thu          |                             |     |     | 40  | 40  | 40  |     |
| Fri          |                             |     |     |     |     |     |     |
| Sat          |                             |     |     |     |     |     |     |
| Sun          | 40                          | 40  |     |     |     |     | 40  |
| Total        | 80                          | 90  | 90  | 90  | 80  | 40  | 40  |
|              |                             |     |     |     |     |     |     |

### Shouldice Hospital

- Video:
  - https://www.shouldice.com/about/
- Background
  - What is the target market?
- Competitive priorities?
  - What do they do to achieve them?
  - Patients' experience?
  - Nurse experience?
  - Doctor experience?





\*\*MONDAY, OCTOBER 18\*\*
WALK IN CLINIC HAS REACHED CAPACITY
AND IS NOW CLOSED FOR THE DAY.
Walk in Clinic reopens Tuesday
Clinic hours are 9 am to 3 pm on weekdays.
The current wait time for surgery is 12 weeks.

#### A Strategic Framework for Process Design and Improvement: Three questions



- 1. What is our strategic position: how do we compete & provide value in the market?
  - What is the value proposition to our customers?
  - Rank (p, T, Q, V)

- 2. Given our strategic position, what must op erations do particularly well?
  - Which competencies must ops develop?
  - Rank (c, T, Q, Flex)

- 3. Given needed competencies, how should operations processes be structured to develop competencies that support strategy?
  - Process choice (structure) and management

## Firms compete on product attributes. This requires process competencies.

| Product Attribute (External) | Process Competency (Internal) |
|------------------------------|-------------------------------|
| Price                        | Cost                          |
| Response time                | Flow time                     |
| Variety                      | Flexibility                   |
| Quality                      | Quality                       |

## Firms compete on product attributes. This requires process competencies.

| Product Attribute (External) | Process Competency (Internal) |
|------------------------------|-------------------------------|
| Price                        | Cost                          |
| Response time                | Flow time                     |
| <del>Variety</del>           | Flexibility                   |
| Quality                      | Quality                       |

#### **Shouldice Hospital**

#### Quality

- Superior technique
- Specialized surgeons
- Environment decorated and designed
- Committed to 3-day process
- Screen patients (Shouldice accepts only patients with uncomplicated external hernias)

#### Cost

- Standardized services
- Do not need to hire the best surgeons (work 4 hours a day)
- Surgeons' turnover rate is low
- New patients paired with old patients (old patients take nurses' job)
- Short operating hours

# Strategy and Operations of Shouldice Hospital

- Focused strategy
  - Very selective with patient types: certain hernia patients
  - Prioritized product attribute? P, ∓, Q, ¥
- Operations aligned with strategy
  - Prioritized process attribute? C, T, Q, F
  - Enables a very specialized process