INDEX

Note: Page references in *italics* refer to figures and tables.

```
A
Acceleration derivatives, 81
Accelerometers, 33-34
Actuator saturation, 612, 612-616, 613
Adaptive control. See Miniature aerial
      vehicles, adaptive control with
      application
Aerodynamic angles, defined, 75–77,
Aerodynamic coefficients
  defined, 68
  measurement and estimation, 82
Aerodynamic derivatives
  acceleration derivatives, 81
  defined, 80
  overview, 80-82, 121
Aileron-rudder interconnect (ARI), 316
Aircraft dynamic behavior, 205–213
  interpretation of aircraft transfer
      functions, 208-213, 209, 210,
      211
```

modal decomposition applied to aircraft dynamics, 205-208 Aircraft modeling, 63-141 aerodynamic coefficient measurement and estimation, 82 aerodynamic derivatives, 80–82 axes and angles, 75-77, 76basic aerodynamics and, 64, 64–75, 66, 70, 72, 74 component buildup, 83 data handling, 100, 100-101 drag coefficient, 83, 83-86, 85 force and moment coefficients, 79–80 forces and moments, defined, 77–79, lift coefficient, 86-90, 88, 89 linear models and stability derivatives, 116-137, 121, 124, 130, 131, 132, 135, 136 model building, overview, 63-64 nonlinear aircraft model, 108-116, 111

Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition. Brian L. Stevens, Frank L. Lewis, Eric N. Johnson.

© 2016 by John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons Inc.

Aircraft modeling, (Continued)	simulation example, neural network
pitching moment, 94-96, 95, 96	adaptive control, 689-690, 689,
pitching moment, control effects,	690
96–97	Autonomy, of miniature aerial vehicles,
problems, 139–141	625
rolling moment, 91–93, 92	Autopilot design
rolling moment, control effects,	altitude hold/Mach hold, 329-332,
93–94, 94	330, 332, 333
sideforce coefficient, 90, 90–91	automatic landing systems, 333-339,
static analysis, 101-108, 102	334, 335, 338, 339
yaw, defined, 93	autopilot navigational modes, 343,
yawing moment, 97–99,	343-344
98, 99	designing with modern techniques
Aircraft models for simulation,	(See Linear quadratic regulator
179-184	(LQR) with output
simple longitudinal model,	feedback)
179–180	function of automatic control systems
simulation issues, 179	and, 256–257
six-degree-of-freedom nonlinear	historical perspective,
aircraft model, 180-184,	250-254
182–183, 184	need for automatic control systems
See also Miniature aerial vehicles,	and, 254–256, 255, 256
modeling and simulation	overview, 322
Airfoil section aerodynamics	pitch-attitude hold, 322-328, 323,
aircraft configurations,	325, 328, 329
73–75, 74	roll-angle-hold autopilots, 339-342,
airfoil, defined, 64, 64	340, 341
finite wings and, 71–73, 72	turn coordination and turn
overview, 64, 64–71, 66, 70	compensation, 342
Altitude hold/Mach hold, 329–332,	See also Classical control design
330, 332, 333	Axial force, 77
American Institute of Aeronautics and	
Astronautics (AIAA), 75	В
Angle of attack, 65, 75–77, 76, 88, 89	Back side of power curve, 194
Angular velocity vector, 1–2, 17	Bending-mode filter, 295
Anhedral angle, 92	Bilinear transformation,
Area rule, 84	588-590
AscTec Pelican (quadrotor)	Bode plots, 164
miniature aerial vehicles, modeling	Body-axes equations, 109-111, 111
and simulation, 654, 654-655,	Body-fixed coordinate system, 76
655	Boeing, 252–253
quadrotor, defined, 624	Bound vector, 3

C	Closed-loop feedback equations, 214,
Camber line, 65	214–219, 215, 217, 218, 219
Cartesian/polar coordinate conversions, 29–31	Command, tracking a . See Tracking a command
Cascaded systems, adaptive control for,	Companion form, of linear state
677, 680	equations, 149
Celestial longitude, 26	Compensation, feedback control and,
Centrifugal force, 22	224-226
Centripetal acceleration, 20	Compressibility effects, 69
Chord line, 65	Conditional stability, 223
Classical control design, 250–376	Coning angle, 640–641
aircraft rigid-body modes, 257–274, 264, 273, 274	Constrained feedback matrix, 429–430 435, 436
autopilot, 322–344, 323, 325, 328,	Continuous controller design
329, 330, 332, 333, 334, 335,	discretization of continuous
338, 339, 340, 341, 343	controllers, 588-598, 594, 595,
closed-loop control, 276, 278, 281,	596, 597
283, 288–296, 291, 293, 378	modified continuous design,
control augmentation systems,	598–611, 599, 600, 601, 603,
303–322, 304, 307, 308, 310,	605, 606, 607, 610, 611
311, 313, 314, 317, 321	overview, 584
feedback control and, 213, 217, 226	See also Digital control
functions of automatic control	Control augmentation systems (CASs)
systems, 256–257	defined, 257
handling qualities requirements,	lateral-directional control
274–287, 275, 280, 281, 282,	augmentation, 315–322, <i>317</i> ,
284, 285, 286	321
historical perspective, 250–254	normal acceleration CASs, 308–315
limitations of, 378	310, 311, 313, 314
need for automatic control systems,	overview, 303–304 pitch-rate CASs, 304, 304–308, 307,
254–256, 255, 256	308
nonlinear simulation, 344–371, 346,	Control feel, 283
347, 349, 350, 351, 352, 353,	Control gains, modern control design
355, 356, 357, 359, 360, 362,	and, 378–379
363, 364, 365, 368, 369, 370, 371	Coordinate rotations, 7–16
overview, 250	cross-product matrix, 8
problems, 374–376	direct cosine matrix (DCM),
stability augmentation, 287, 287–303,	overview, 8–10
291, 293, 295, 296, 299, 302, 303	eigenvalues and eigenvectors,
Closed-loop dynamics, classical design	14–15
techniques, 381–396, 393, 395,	Euler rotations and DCM, 11-13
397	Euler's rotation theorem, 15–16

Coordinate rotations, (Continued)	simulation of digital controllers, 585,
linear transformations, 13–14	585–588, 586
scalar product, 7	Dihedral angle, 92
Coordinate system, defined, 3	Dihedral derivative, 93, 136
Coordination perception parameter, 280	Dimensionless stability derivatives,
Coriolis acceleration, 20-22	128–131, <i>130</i> , <i>131</i>
Critical Mach number, 69	Direct cosine matrix (DCM)
Cross-product matrix, 5, 8	eigenvalues and eigenvectors, 14-15
Cross-wind force, 77	Euler's rotation theorem, $11-13$,
Cruise missiles, 623	15–16
	linear transformations, 13–14
D	overview, 8–10
Data handling, efficiency of, 100,	from quaternion, 53
100-101	quaternion from, 53–54
Decoupling	Direct-lift control, 253
decoupled linear state equations,	Discrete-time transition matrix, 152
126-128	Dot product, 5
of nonlinear equations/3-DOF	Drag
longitudinal model, 115–116	defined, 65–66
De Havilland Comet, 252	drag coefficient, 70, 83, 83–86, 85
Department of Defense World Geodetic	drag divergence Mach number, 69
System 1984 (WGS-84)	drag due to lift, 83
defined, 23–25, 24	drag polar, 86
Earth Gravitational Model 1996	Dumping derivative, 81
(EGM96), 32	Dutch roll mode
Derivative of a vector, 16–17	classical control design and,
Derivatives. See Aerodynamic	267–269, 286
derivatives	yaw stiffness derivative and, 136-137
Derivative weighting, 430–431	Dynamic compensator, for
Deyst filter, 547	eigenstructure assignment,
Digital control, 584–622	392–393
defined, 381	Dynamic inversion, 477–491
discretization of continuous	for linear systems, 477–487, 479,
controllers, 588-598, 594, 595,	484, 485
596, 597	model reference adaptive control
implementation considerations,	based on, 665–668, 666 (See
611–618, 612, 613, 616, 618,	also Miniature aerial vehicles,
619	adaptive control with application)
modified continuous design,	for nonlinear systems, 487–491, 488,
598–611, 599, 600, 601, 603,	490, 491
605, 606, 607, 610, 611	overview, 380–381, 477
overview, 584–585	Dynamic lift, 80
problems, 620–622	Dynamic modes/stability, 67

Dynamic pressure, 68	LQR design for F-16 lateral regulator
Dynamic regulator design, using	(example), 407
separation principle, 550-554,	modern design techniques and, 377,
552	381, 407–408, 424, 435, 439,
	442, 481–487
E	mode variation, 272–274,
Earth, spheroid model of. See Geodesy	273, 274
Earth-centered-Earth-fixed (ECEF)	singular-value plots for F-16
system, 25–26	dynamics (example), 509-511,
Earth-centered-inertial (ECI) system,	510
25-26	six-degree-of-freedom nonlinear
Earth Gravitational Model 1996	aircraft model (example),
(EGM96) (WGS-84), 32	180–184, <i>182–183</i> , <i>184</i>
Eccentricity, 25	Feedback control design, 213-240
Efficiency factor, 84	closed-loop equations, 214, 214-219,
Eigenvalues/eigenvectors	215, 217, 218, 219
defined, 14–15	frequency-domain design, 233-240,
eigenstructure assignment by full	234, 235, 236, 237, 238,
state feedback, 387-390	239, 241
eigenstructure assignment by output	overview, 213, 213-214
feedback, 391-396, 393, 395,	robust output feedback design,
397	525-529, 528
modal decomposition, 152-153	SISO root-locus design, 226,
See also Modern design techniques	226–233, 229, 231, 232
Electric motor modeling, 647–648	stability, 221–224, 223
Elevator control power, 96	steady-state error and system type,
Equation of Coriolis, 17–19, 18, 45	219-221
Euler angle kinematics, 19–20	types of compensation, 224-226
Euler integration, 2, 171	Feedback linearization, dynamic
Euler kinematical equations, defined,	inversion and, 381
120	Feedback linearization loop, 479
Euler rotations, 11–13	Finite wings, 71–73, 72
Euler's rotation theorem, 15–16	Fixed-pitch propeller nomenclature, 636
Evans, W. R., 226, 251	Flare control, 357–371
	automatic flare control (example),
F	358–360, 359, 360
F-16	overview, 357, 357–358
aircraft dynamic behavior (example),	roll-angle steering control system
208-210, 209	(example), 361–362, 362, 363,
dynamic inversion design for linear	364, 365
F-16 longitudinal dynamics	simulation of a controller with
(example), 481–487	limiters (example), 365–371,
linearization, 203–205	368, 369, 370, 371

Flat-Earth equations defined, 1 matrix form, 41–43	Frequency-response specifications, handling qualities requirements, 278–279
Flattening, 25	
Forces and moments	G
aerodynamic coefficient measurement	Geocentric coordinates, 26
and estimation, 82	Geodesy, 23–34
aerodynamic derivatives, 80–82	Cartesian/polar coordinate
on aircraft from flapping rotor,	conversions, 29–31
644–645	defined, 1
axes and angles, 75–77, 76	Earth-related coordinate
basic aerodynamics and, <i>64</i> , 64–75,	transformations, 31
66, 70, 72, 74	frames, Earth-centered coordinates,
component buildup, 83	latitude and longitude, 25–27
data handling, 100, 100–101	geodetic coordinates, 26, 26–27
defined, 77–79, 78	gravitation and accelerometers,
drag coefficient, 83, 83–86, 85	33–34
force and moment coefficients, 79–80	gravitation and gravity, 31–33
lift coefficient, 86–90, 88, 89	local coordinate systems, 27
linearization of force equations,	overview, 23
119–123, <i>121</i> linearization of moment equations,	radii of curvature, 27–28 shape of the Earth and Department of
123–126, <i>124</i>	Defense World Geodetic System
	1984 (WGS-84), 23–25, 24
pitching moment, 94–96, 95, 96 pitching moment, control effects,	trigonometric relationships for the
96–97	spheroid, 29
propeller/rotor forces and moments,	Geoid, 24
630, 630–639, 632, 633, 634,	Glide-slope coupler, <i>446</i> , 446–455,
635, 637	453, 454–455
rolling moment, 91–94, <i>92</i> , <i>94</i>	Global Positioning System (GPS), 24
sideforce coefficient, 90, 90–91	Gravitation, 23–34
static analysis, 101–108, <i>102</i>	accelerometers and, 33–34
wind- or stability-axes equations,	defined, 1, 31–33
111–115	Earth's gravitational field, defined, 23
yawing moment, 97–99, <i>98</i> , <i>99</i>	geoid, 24
Frame of reference, defined, 3	See also Geodesy
Freestream Mach number, 68–69	Greenwich Hour Angle (GHA), 31
Free vector, defined, 3	Gyroscopic moments, 638–639
Frequency-domain design, 233–240,	dyroscopic moments, 030–037
234, 235, 236, 237, 238, 239, 241	Н
Frequency-domain performance	Hamilton, Sir William Rowan, 44, 45
specifications, 511–524, 513,	Handling qualities requirements,
516, 522, 523	274–287

background, 274–276, 275 control feel, 283 frequency-response specifications, 278–279 military flying qualities specifications, 283 pole-zero specifications, 276–278 requirements based on human operator models, 280–282, 281, 282 speed stability, 283 time-response specifications, 279–280, 280 Horizontal tail, 103–104 Human operator describing function, 280–281 Hypersonic vehicles, history of, 252–254	estimation of angle of attack in gust noise (example), 547–550, 548 observer design problem and, 530–537, 531 overview, 381, 529–530 probability theory and, 538–540, 539 Kalman gain, 471–473 Kinematic coupling, 315 Kinematics and dynamics of aircraft motion, 1–62 geodesy, coordinate systems, gravity, 23–34, 24, 26 kinematics, defined, 3 matrix operations on vector coordinates, 7–16, 9 overview, 1–3 Poisson's kinematical equations (PKEs), 44–45 quaternions, 45–58, 57 rigid-body dynamics, 34–43 rotational kinematics, 16–20, 18, 21
Induced drag, 83 Inertia coupling, 251, 315	vector operations, 3–7, 7
Inertial frame, defined, 3	*
Inertial Navigation System (INS), 55	L Lag compensator, 232
Initial-value problem, 170	Landing systems, automatic, 333–339,
Interference drag, 83	334, 335, 338, 339
Internal combustion engine modeling,	Langley, Samuel Pierpont, 623
646-647	Laplace transform (LT), 153-154
Irreversible control system, 256	Lateral-directional coefficients, 79
•	Lateral-directional control
J Jacobian matrices	augmentation, 315–322, <i>317</i> ,
Jacobian matrices defined, 120	321 Lateral-directional dimensionless
for linearization, 199, 202, 203–205	derivatives, 136, 136–137
	Lateral-directional stability
K	augmentation/yaw damper,
Kalman filter, 529–554	294–303, 295, 296, 299, 300,
derivation of, 540–547	302, 303
developing, 537–538 dynamic regulator design using	Lateral-directional transfer functions
separation principle, 550–554,	accuracy of, 271–272 algebraic derivation of, 266–267
552	Latitude, 25–27

Lead compensation, 225	Linear multistep methods (LMMs), 170
Life coefficient, 70	173–174, 175
Life-curve slope, 70	Linear quadratic Gaussian/loop transfer
Life-over-drag ratio, 71	recovery (LQG/LTR), 554-577
Lift	for dynamic regulator, 551
defined, 65-66	Gaussian, defined, 546
direct-lift control, 253	guaranteed robustness of LQR,
drag due to lift, 83	554–558, 557, 558
dynamic lift, 80	loop transfer recovery, 558–577, 560,
lift coefficient, 86-90, 88, 89	565, 566, 567, 568, 569, 570,
lift-curve slope, 132–133	571, 572, 573, 574, 575, 576
vortex lift, 73–75	overview, 501, 554–555
Limit cycle, 176–178, 178	Linear quadratic regulator (LQR) with
Limited authority adaptive control,	full state feedback, 470–476
673–679, 674, 677, 679	guaranteed closed-loop stability,
Linear and time invariant (LTI) state	473–476
equations	overview, 470–471
defined, 150	Riccati equation and Kalman gain,
Laplace transform (LT) solution of,	471–473
153–154	state feedback relevance, 471, 473
time domain of, 150–152	Linear quadratic regulator (LQR) with
Linearization	output feedback, 397–413
algebraic compared to numerical	determining optimal feedback gain,
linearization, 202–203	402–405
algorithm, 200-202, 201	overview, 397–398
of F-16 model, 203–205	quadratic performance index,
numerical linearization, 199-205,	398–399
201, 204, 205	selection of PI weighting matrices,
theory of, 199–200	405–413, <i>411</i> , <i>412</i>
Linear models and stability derivatives	
decoupled linear state equations,	solution of LQR problem, 399–402, 403, 404
126–128	
dimensionless stability and control	Linear state equation, 2
derivatives, 128–131, 130, 131	Linear transformations, 13–14
lateral-directional dimensionless	Local geocentric system (c-system), 28
derivatives, 136, 136–137	Lockheed X-7, 252
linearization, 119–126, <i>121</i> , <i>124</i>	Longitude, 25–27
longitudinal dimensionless	Longitudinal coefficients, 79
derivatives, 131–135, <i>132</i> , <i>135</i>	Longitudinal dimensionless derivatives,
overview, 116–117	131–135, <i>132</i> , <i>135</i> , <i>136</i>
singular points and steady-state flight,	Longitudinal pitch pointing control,
117-118	393-396

Longitudinal transfer functions and modes, algebraic derivation of, 258–259 Loop transfer function feedback control, 215–217, 222 robust design and LGQ/LTR, 558–577, 560, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576	neural network adaptive control, 668, 668–673, 672 neural network adaptive control (example), 679–708, 680, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708 overview, 664–665 Miniature aerial vehicles, modeling and simulation, 623–663
See also Classical control design;	historical perspective, 623-624
Modeling, design, and simulation tools	modeling rotor flapping, 640, 640–645, 641, 643
	motor modeling, 645-648, 647
M	overview, 623–625
Mach-hold autopilot, 329–332, 330,	problems, 661-663
332, 333	propeller/rotor forces and moments,
Mach number, 68–69	630, 630–639, 632, 633, 634,
MATLAB	635, 637
adaptive control, 670, 675	propellers vs. rotors, 625–630, 626,
classical control design, 290, 292,	627, 628, 629
294, 299, 305, 312, 319, 324,	quadrotor model, 654, 654–655, 655
344, 353	small aerobatic airplane model, 648,
dynamic inversion design, 477, 481,	648–653, 649, 651, 652, 653
483, 489, 491	small helicopter model, 655–659,
feedback control, 216, 223, 228, 235	656, 657, 658, 660
(See also Feedback control design)	Mission adaptive wing, 75
Kalman filter, 569	Modal decomposition
simulation tools, 176, 179, 181, 190,	applied to aircraft dynamics, 205–208 classical design techniques and,
195	384–387
Mean line, 65	state-space models and, 152–153
Meridian radius of curvature, 27–28	Model building. See Aircraft modeling
Miniature aerial vehicles, adaptive	Model-following design (modern design
control with application,	techniques), 455–470
664–713	explicit model-following control,
adaptive controller, defined, 664	456–461, <i>461</i>
limited authority adaptive control,	implicit model-following control,
673–679, 674, 677, 678, 679	461–470, 464, 465, 468, 469
model reference adaptive control	model following, defined,
based on dynamic inversion,	380
665–668, 666	overview, 455

Modeling, design, and simulation tools, 142–249	modifying performance index, 428–455, 433, 436, 437, 438,
aircraft dynamic behavior, 205-213,	440, 441, 442, 445, 446, 453,
209, 210, 211	454, 455
aircraft models for simulations,	overview, 377–378
179–184, <i>180, 184, 185</i>	philosophy of, 378–379
feedback control, 213, 213-240, 214,	problems, 495–499
215, 217, 218, 219, 221, 223, 226, 229, 231, 232, 234, 235,	tracking a command, 413–428, <i>414</i> , <i>417</i> , <i>422</i> , <i>423</i> , <i>427</i>
236, 237, 238, 239, 241	See also Miniature aerial vehicles,
numerical linearization, 199–205,	adaptive control with application
201, 204, 205	Moment equations. See Forces and
numerical solution of state equations,	moments
170–178, <i>176</i> , <i>178</i>	Motor modeling (miniature aerial
overview, 142–143, 143	vehicles), 645–648
	Multiple-input, multiple-output
problems, 243–249	(MIMO) systems
state-space models, overview,	defined, 143
144–154, <i>145</i> , <i>146</i> , <i>148</i> , <i>149</i> ,	feedback control, 217–218
150	modern control techniques, 379
steady-state flight, 185–199, 189,	Multivariable Bode plot, 506–511, 508,
190, 192, 193, 194, 195, 196,	510
197, 198	Multivariable frequency-domain
transfer function models, 155–170,	analysis, 502–525
158, 161, 162, 165, 167, 168, 169	frequency-domain performance
See also Aircraft modeling; Miniature	specifications, 511–524, <i>513</i> ,
aerial vehicles, modeling and	516, 522, 523
simulation	multivariable Bode plot, 506–511,
Modern design techniques, 377–499	508, 510
assignment of closed-loop dynamics,	overview, 502
381–396, <i>393</i> , <i>395</i> , <i>397</i>	robustness bounds for plant parameter
dynamic inversion design, 477-491,	variations, 524–525
479, 484, 485, 488, 490, 491	sensitivity and cosensitivity,
fundamental design problems,	502–506, <i>503</i> , <i>504</i>
379-381	Multivariable wing leveler, 442,
limitations of classical control, 378	442–446, <i>445</i>
linear quadratic design with full state	772-770, 773
feedback, 470–476, 473	N
linear quadratic regulator with output	National Imagery and Mapping Agency
feedback, 397–413, 403, 404,	(NIMA), 24
411, 412	Natural mode, 195
model-following design, 455–470,	Navigational modes, autopilot, <i>343</i> ,
461, 464, 465, 468, 469	343–344
101, 101, 100, 100, 107	313 311

Neural network adaptive control	Nyquist, H., 222
adaptive guidance and flight control	Nyquist-D contour, 222–224, 223
system applied to rotorcraft flight	0
control (example), 679–689, 680	
overview, 668–669	Oblate-rotating-Earth 6-DoF equations
quadrotor simulation, 689–690, 689,	54–58, 57
690	Observer canonical form, of linear state
small helicopter simulation, 690–697,	equations, 149
691, 692, 693, 694, 701, 702,	Optimal control model (OCM), 282
703, 704, 705, 706, 707, 708	Ordinary differential equations (ODEs)
universal approximation theorem,	143, <i>143</i> , 144. <i>See also</i>
669–673, 672	State-space models
Neutral point, 107–108	Output equation, 144–145
Nonlinear aircraft model	Output feedback design. See Feedback
body-axes equations, 109–111, 111	control design
decoupling of nonlinear	
equations/3-DOF longitudinal	P
model, 115–116	Padé approximants, 605
overview, 108–109	Parasite drag, 83
wind- or stability-axes equations,	Performance index (PI) modification,
111–115	428-455
Nonlinear simulation, 344–371	constrained feedback matrix,
flare control, 357, 357–371, 359, 360,	429–430, 435, 436
362, 363, 364, 365, 368, 369,	derivative weighting, 430–431
370, 371	glide-slope coupler, <i>446</i> , 446–455,
lateral-directional CAS nonlinear	453, 454–455
simulation (example), 347,	integral-squared PI, 379–380
347–353, 349, 350, 351, 352,	multivariable wing leveler, 442,
353	442–446, <i>445</i>
overview, 344	overview, 428–429
pitch-rate CAS nonlinear simulation	PI overview, 377–378
(example), 344–347, 346	
simulation of automatic landing,	pitch-rate control system using LQ
353–356, 355, 356, 357	design, 438, 438–441, 439, 441
Nonlinear state equation,	quadratic PI, 398–399
144-145	time-dependent weighting, 431–435
Normal acceleration control	433, 437, 437–438, 440–441
augmentation systems (CASs),	See also Modern design techniques
308–315, <i>310</i> , <i>311</i> , <i>313</i> , <i>314</i> ,	Phase-lead compensation, 225
423, 423–428, 427	Phase portrait, 178
Normal force, 77	Phugoid approximation, 261–265, 264
North-East-down (NED) system, 11	284
Numerical linearization, 199–205	Pilot opinion rating scales, 275

Pitch-attitude hold, 322–328, 323, 325, 328, 329	Proportional plus integral (PI) compensator, 225
Pitch-axis stability augmentation, 287–294, 291, 293	Pseudocontrol hedging (PCH), 674–677, 675, 677, 679
Pitch damping derivative, 133–134	Pseudovectors, 4
Pitching moment	
coefficient, 70	Q
control effects, 96-97	Quadratic-lag circuit, 163, 165
overview, 70, 94–96, 95, 96	Quadratic performance index, 398–399
static stability analysis and, 102, 102,	Quadrotor
104-107	defined, 624
Pitch-rate control augmentation systems	quadrotor model, 654, 654–655, 655
(CASs), 304, 304–308, 307, 308,	simulation example, neural network
526-529, 528	adaptive control, 689-691, 690,
Pitch-rate control system, using LQ	691
design, 438, 438-441, 439, 441	Quaternions
Pitch stability, 265–266	from direction cosine matrix, 53–54
Pitch stiffness derivative, 133	direction cosine matrix from, 53
Poisson's kinematical equations (PKEs)	initializing, 51–52
equation of Coriolis, 45	oblate-rotating-Earth 6-DoF
overview, 44–45	equations, 54–58, <i>57</i>
Poles, transfer function models,	overview, 45–46
155–157, 158	quaternion coordinate rotation, 49–50
Pole-zero specifications, classical control design, 276–278	quaternion kinematical equations, 50–51
Power spectral density function (PSDF),	quaternion properties, 47-48
219	vector rotation by, 48–49
Prandtl-Glauert correction factor, 72	
Prandtl's lifting line theory, 72	R
Pressure altitude, 329	Radii of curvature, 27–28
Prime vertical radius of curvature, 28	Rate-of-climb (ROC) constraint, 186,
Principle of the argument, 222	187
Probability theory, Kalman filter and,	Regulator applications, 214
538–540, 539	Regulator problem, 379–380
Propellers	Relative wind, 43
fixed-pitch propeller nomenclature,	Remnant, 280
636	Resonance, 158–159
propeller/rotor forces and moments,	Reynolds number, 68–69, 70–71, 625
630, 630–639, 632, 633, 634,	Riccati equation, 471–473
635, 637	Rigid-body dynamics
rotors vs., 625–630, 626, 627, 628,	angular motion, 35–39
629	overview, 34–35

translational motion of the center of mass, 39–43	robust output feedback design, 525–529, 528
Rigid-body modes, 257–274	Roll-angle-hold autopilots, 339–342,
accuracy of lateral-mode	340, 341
•	Roll control derivatives, 93
approximations, 271–272	Roll damping derivative, 137
accuracy of short-period and phugoid	Rolling mode, 269–270, 285
approximations, 263–265, 264	
algebraic derivation of	Rolling moment
lateral-directional transfer	control effects, 93–94, 94
functions, 266–267	overview, 91–93, 92
algebraic derivation of longitudinal	Root-locus design, 226, 226–233, 229,
transfer functions and modes,	231, 232
258–259	Rotational kinematics
dutch roll approximation, 267–269	angular velocity as a vector, 17
mode variation from nonlinear model,	derivative of a vector, 16–17
272–274, 273, 275	Euler angle kinematics, 19–20
overview, 257	overview, 16
phugoid approximation, 261-263	vector derivatives and rotation,
pitch stability, 265-266	17–19, <i>18</i>
short-period approximation, 259-261	Rotation of vector
spiral and roll subsidence	defined, 6–7, 7
approximations, 269–270	quaternion coordinate rotation, 49–50
spiral stability, 270–271	by quaternions, 48–49
Rigidity, defined, 1	Rotors
Robust design	forces and moments on aircraft from
linear Gaussian quadratic/loop	flapping rotor, 644–645
transfer recovery, 554–577, 557,	modeling rotor flapping, 640,
558, 560, 565, 566, 567, 568,	640–645, 641, 643
569, 570, 571, 572, 573, 574,	propeller/rotor forces and moments,
575, 576	630, 630–639, 632, 633, 634,
linear quadratic Gaussian/loop	635, 637
transfer recovery (LQG/LTR),	propellers vs., 625–630, 626, 627,
501	628, 629
multivariable frequency-domain	quadrotor, defined, 624
analysis, 502–525, 503, 504,	quadrotor model, 654, 654–655, 655
508, 510, 513, 514, 516, 522, 523	Runge-Kutta (RK) methods, 170–172,
observers and Kalman filter,	174–175, 585–588
529–554, <i>531</i> , <i>537</i> , <i>539</i> , <i>546</i> ,	g
	S Seeles and 1 of 7
548, 552	Scalar product, 7
overview, 377, 381, 500–502 (See	Separation principle, 550–554, 552
also Modern design techniques)	Short-period mode, 195, 259–261,
problems, 580–583	263–265, 264, 284–285

Sideforce coefficient, 90, 90–91	Spoilers, 94
Sideslip angle, 75–77, 76. See also	Stability
Rolling moment	feedback control and, 221, 221-224,
Sign convention, for control surfaces,	223
184, <i>184</i> , 288	numerical algorithms and, 174
Simulation. See Miniature aerial	stability-axes coordinate system, 76
vehicles, modeling and	stability-axes equations, 111–115
simulation; Modeling, design,	stabilizer bars on rotors, 628, 643,
and simulation tools	643-644
Single-input, single-output (SISO)	stable equilibrium, 66
systems	Stability augmentation systems (SASs),
defined, 143	287-303
feedback control, 215-217, 219	defined, 257
root-locus design, 226, 226-233, 229,	designing with modern techniques
231, 232	(See Linear quadratic regulator
SISO transfer function, 157–160	(LQR) with output feedback)
Six-degrees-of-freedom (6-DoF)	lateral-directional stability
equations	augmentation/yaw damper,
defined, 16	294–303, 295, 296, 299, 300,
Euler angle kinematics, 19	302, 303
F-16 aircraft model for simulation	overview, 287
(example), 180–184, 182–183,	pitch-axis stability augmentation,
184	287–294, 291, 293
quaternion, 54–58, <i>57</i>	stability augmentation, defined, 252
rigid-body dynamics, 34, 40, 42-43	Stalled (airfoil), 70
translational kinematics, 20	Standard atmosphere model, 67–68
Skin friction, 65	State feedback, LQR with, 470-476,
Small aerobatic airplane model, 648,	473
648–653, <i>649</i> , <i>651</i> , <i>652</i> , <i>653</i>	State-space models, 144–154
Small helicopter	classical design techniques and,
miniature aerial vehicles, modeling	382-384
and simulation, 655–659, 656,	Laplace transform (LT) solution of
657, 658, 660	LTI state equations, 153–154
simulation example, neural network	modal decomposition, 152-153
adaptive control, 691-698, 692,	models of mechanical and electrical
693, 694, 695, 702, 703, 704,	systems, 144-147, 145, 146
705, 706, 707, 708	nonlinear state and output equations,
Speed damping derivative, 135	144-145
Speed stability, 283	ordinary differential equations
Sperry, Elmer, 339	(ODEs), 143, 143, 144
Sperry Gyroscope Company, 250	reduction of differential equations to
Spiral mode, 208, 269-270, 285	state-space form, 147–150, 148,
Spiral stability, 270–271	149, 150

time-domain solution of LTI state equations, 150–152	Taylor series, 119, 170–173, 199–202, 605
See also Modeling, design, and	Terrain-following, terrain avoidance
simulation tools	(TFTA) autopilot,
State variables	343
overview, 2–3	Terrestrial longitude, 26
state-variable model,	3-DOF longitudinal model, 115–116
378	Thrust coefficient, 79, 87
Static coefficients, 80	Thrust/torque, of propeller/rotor, 630,
Static stability analysis	631–639, 632, 633, 634, 635,
defined, 101	637
effect of horizontal tail,	Time-dependent weighting, 431–435,
103-104	<i>433</i> , <i>437</i> , 437–438, 440–441
neutral point, 107-108	Time-domain design technique, 399
static equilibrium,	Time-history simulation,
101–103, 102	175–178, 176
static stability analysis in pitch,	Time step T, 170
104–107	Tip path plane equations, of motion,
Steady-state flight, 185–199	640–642
feedback and steady-state error,	Tracker applications, 214
219–221	Tracker problem, 380
flight simulation (examples),	Tracking a command,
195–199, <i>196</i> , <i>197</i> , <i>198</i>	413–428
overview, 185–187	determining optimal feedback gain, 422–428, 423, 427
rate-of-climb constraint, 186, 187	LQ formulation of tracker problem,
steady state, defined, 546	416–420, <i>417</i>
trim algorithm, 188–192, 189, 190,	overview, 413–415, 414
192	solution of LQ tracker problem,
trimmed conditions for studying	420–421, <i>422</i>
aircraft dynamics, 193, 193–194,	tracker with desired structure,
194, 195	415–416
turn coordination constraint, 187-188	Transfer function models,
Stiff system, 174	155–170
Strapdown equation, 45	examples and standard forms,
Streamlines, 64, 64	160–163, 161
Supersonic wave drag, 72	frequency response,
	163–167, 165
T	poles and zeros, 155–157, 158
Tail efficiency factor, 97	SISO transfer function,
Tangent-plane coordinate system,	157-160
27	time response,
Target drones, 623	167–170, <i>168</i> , <i>169</i>

Translational kinematics	V
acceleration relative to Earth,	Van der Pol equation,
22-23	176–178, <i>178</i>
overview, 20	Vector analysis
velocity and acceleration in moving	angular velocity vector, 1–2
frames, 20–22, 21	matrix operations on vector
Transonic drag rise, 73	coordinates, 7–16
Transonic flow, 69	rotation of a vector, $6-7$, 7
Trigonometric relationships for	vector, defined, 3
spheroid, 29	vector operations, definitions and
Trim algorithm (for steady-state flight)	notation, 3–4
flowchart, 189	vector properties, 4–6
overview, 188-192, 189, 190, 192	Vector state equations, 39–41
for 3-DoF aircraft model, 189	Velocity feedforward, 479
trimmed conditions for studying	Vertical take-off and landing (VTOL)
aircraft dynamics, 193, 193–194,	aircraft, 624
194, 195	VOR-hold (VHF Omni Range)
Trimmed coefficients, 82	autopilot, 343
Tuck derivative, 134–135	Vortex lift, 73–75
Turbulence, 65	Vortex sheet, 71
Turn coordination constraint,	
187-188	\mathbf{W}
Turn coordination/turn compensation,	Wave drag, 83
342	Wetted area, 65
Tustin's approximation, 588–590	WGS. See Department of Defense
	World Geodetic System 1984
U	(WGS-84)
Unity feedback, 214	Whitcomb, R. T., 84
Universal approximation theorem,	Wind-axes equations,
669-673, 672	111-115
Unmanned aircraft. See Miniature aerial	Wing planform parameters,
vehicles, modeling and	72, 72–75
simulation	
Unstable equilibrium, 67	Y
Unsteady aerodynamic effects, 80	Yamaha RMAX (small helicopter)
Untrimmed coefficients, 82	modeling and simulation,
U.S. Department of Defense World	655–659, 656, 657,
Geodetic System 1984 (WGS-84)	658, 660
defined, 23–25, 24	simulation example, neural network
Earth Gravitational Model 1996	adaptive control, 691–698, 692,
(EGM96), 32	693, 694, 695, 702, 703, 704,
U.S. space shuttle, history of, 253	705, 706, 707, 708

Yaw damping derivative, 137 Yawing moment control effects, 99 overview, 97–99, 98, 99 yaw, defined, 93 yaw damping derivative, 98 Yaw stiffness derivative, 136 Yeager, Charles, 251 Z Zero-order hold (ZUH), 585, 601–603, 605
Zeros
pole-zero specifications, classical control design, 276–278
Zeros, transfer function models, 155–157, 158
Zivco Edge 540T (small aerobatic airplane model), 648, 648–653, 649, 651, 652, 653