

Цель работы: определение дифракционного предела разрешения объектива микроскопа.

В работе используются: лазер; кассета с набором сеток разного периода; щель с микрометрическим винтом; оптический стол с набором рейтеров и крепёжных винтов; экран; линейка.

Теория

Для иммерсионного микроскопа разрешающая способность объектива при некогерент-ном освещении

$$\ell_{min} \approx \frac{0.61\lambda}{n\sin u},\tag{1}$$

где u – апертурный угол объектива микроскопа (угол между оптической осью и лучом, направленным из центра объекта в край линзы).

Метод Аббе для оценки разрешающей способности состоит в разделении хода хучей на две части: сначала рассматривается картина в задней фокальной плоскости F объектива – она называется первичным изображением или фурье-образом. Это первичное изображение рассматривается как источник волн (принцип Гюйгенса-Френеля), создающий изображение в плоскости P_2 , сопряжённой плоскости предмета – вторичное изображение. Первичное изображение есть картина дифракции Фраунгофера (на дифракционной решётке), если её период d, то для направления максимальной интенсивности φ_m

Разрешающей способностью оптического прибора называют минимальное расстояние l_{\min} между двумя точками в пространстве предметов, которое прибор может разрешить. Если наблюдения с помощью микроскопа ведутся при внешнем освещении, то, как правило, различные точки предмета рассеивают когерентные волны. Теория разрешающей способности для случая освещаемых объектов была разработана Аббе.

Рассмотрим когерентно освещенный объект, наблюдаемый в объектив микроскопа. Минимальное разрешаемое объективом расстояние определяется условием

$$l_{\min} \approx \frac{\lambda}{\sin A} \approx \frac{\lambda}{D/2f},$$
 (2)

где A – апертурный угол микроскопа, D – диаметр диафрагмы. При этом диафрагма, расположенная симетрично, пропускает нулевой и ± 1 дифракционные максимумы.

В нашей работе применяется двумерная решётка — сетка. В таком случае главные максимумы возникают тогда, когда одновременно выполняются условия:

$$\begin{cases} d\sin\theta_x = m_x \lambda, \\ d\sin\theta_y = m_y \lambda, \end{cases}$$
 (3)

где m_x и m_y – целые числа, харакетризующие порядки дифракционных максимумов, θ_x и θ_y – направления нв главные дифракционные максимумы в горизонтальное и вертикальной плоскостях соответственно.

Максимумы, удовлетворяющие условию $\theta_x, \theta_y < A$, создают в задней фокальной плоскости F объектива картину дифракции Фраунгофера – первичное изображение:

Рис. 1: Дифракция Фраунгофера на двумерной решётке (сетке). Максимумы изображены кружками, размеры которых характеризуют интенсивности.

Если теперь поместить в фокальной плоскости щель так, чтобы через неё проходили дифракционные максимумы с $m_x=0$ и $m_y=0,\pm 1,\pm 2,...$ (с $m_y=0$ и $m_x=0,\pm 1,\pm 2,...$), то в плоскости P_2 получится изображение решётки с горизонтальными (вертикальными) штрихами. Таким образом можно продемонстрировать явление пространственной фильтрации — выделение различных структур в изображении.

Экспериментальная установка

Рис. 2: Схема установки.

Схема установки приведена на Рис. 1. Предметом P_1 служат сетки в кассете C. Линза Π_1 длиннофокусная, а Π_2 короткофокусная. В F устанавливаются диафрагмы D, с помощью сеток с разными d и щелевой диафрагмы можно проверить соотношение (3). Период сеток может быть измерен либо по расстоянию между дифракционными максимумами на экране, либо по увеличенному с помощью микроскопа изображению сетки на экране. Пространственную фильтрацию (получение наклонного изображение решётки) можно получить с помощью подбора угла наклона и ширины вспомогательной щели.

Ход работы

1. Определение периода решёток по их пространственному спектру

Соберём установку согласно Рис 1, за исключением линз. Длина волны излучения лазера $\lambda=532$ нм.

Расстояние от сетки до экрана $H = 141 \pm 2$ см.

Измерим линейкой на экране расстояние Δx между n+1 максимумами и рассчитаем по формуле (2) с учётом $\varphi = \frac{\Delta x}{H}$ период решётки $d = \frac{n\lambda}{\Delta x}H$, на основании данных построим таблицу:

Реш.	Δx cm	$\sigma_{\Delta x}$, cm	n	d, MKM	σ_d , MKM
1	22.7	0.1	6	20	3
4	22.6	0.1	9	30	3
3	25.1	0.1	20	60	3
4	22.5	0.1	35	117	3
5	22.7	0.1	48	159	4

Таблица 1: Метод 1 по нахождению периодов решёток.

Погрешность d считаем по формуле:

$$\sigma_{d} = \sqrt{\left(\frac{\partial d}{\partial \Delta x}\right)^{2} \sigma_{\Delta x}^{2} + \left(\frac{\partial d}{\partial n}\right)^{2} \sigma_{n}^{2} + \left(\frac{\partial d}{\partial \Delta x}\right)^{2} \sigma_{H}^{2}} = \lambda \sqrt{\frac{n^{2} H^{2} \sigma_{\Delta x}^{2}}{\Delta x^{4}} + \frac{\Delta x^{2} \sigma_{n}^{2} \sigma_{H}^{2}}{n^{2}} + \frac{H^{2} \sigma_{n}^{2}}{\Delta x^{2}}}.$$

2. Определение периода решёток по изображению, увеличинному с помощью микроскопа

Соберём модель микроскопа, добавив линзы согласно Рис. 1. Фокусные расстояния линз $F_1=110$ мм, $F_2=25$ мм. Измеряем необходимые расстояния:

$$a_1 = 120 \pm 10$$
 MM, $a_2 + b_1 = 455 \pm 10$ CM, $b_2 = 815 \pm 10$ CM,

Из формулы тонкой линзы $a_2=\frac{b_2F_2}{b_2-F_2}=25.79$ мм, откуда $a_2\approx F_2$, поэтому в дальнейшем будем использовать это значение, следовательно $b_1=420\pm10$ мм.

Увеличение микроскопа $\Gamma = \frac{b_1 b_2}{a_1 a_2} = 114 \pm 10$. Погрешность находится по формуле

$$\sigma_{\Gamma} = \sqrt{\left(\frac{\partial \Gamma}{\partial a_1}\right)^2 \sigma_{a_1}^2 + \left(\frac{\partial \Gamma}{\partial b_1}\right)^2 \sigma_{b_1}^2 + \left(\frac{\partial \Gamma}{\partial b_2}\right)^2 \sigma_{b_2}^2}.$$

Повторим измерения периодов изображений в новой конфигурации, погрешности считаются аналогично, полученные данные занесем в таблицу:

Реш.	Δx , cm	$\sigma_{\Delta x}$, cm	n	d, mkm	σ_d , MKM
1	3.7	0.1	16	20	2
2	15.7	0.1	49	28	3
3	25.3	0.1	38	58	5
4	24.1	0.1	18	117	12
5	23.6	0.1	13	159	19

Таблица 2: Метод 2 по нахождению периодов решёток..

Здесь d определялось по формуле $d=\frac{\Delta x}{\Gamma n}$ погрешность d:

$$\sigma_d = \sqrt{\left(\frac{\partial d}{\partial \Delta x}\right)^2 \sigma_{\Delta x}^2 + \left(\frac{\partial d}{\partial n}\right)^2 \sigma_n^2 + \left(\frac{\partial d}{\partial \Gamma}\right)^2 \sigma_{\Gamma}^2}.$$

Обратим внимание, что значения периодов решётки совпадают в пределах погрешности.

3. Определение периода решёток по оценке разрешающей способности микроскопа

Поместим в фокальной плоскости линзы Π_1 щелевую диафрагму с микрометрическим винтом и определим минимальную толщину D при которой на экране видна двумерная решётка. В этом случае период будет вычисляться по формуле (3) в предельном случае

$$d = \frac{2\lambda F_1}{D},$$

погрешность вычисляется по формуле

$$\sigma_d = d \frac{\sigma_D}{D}.$$

Результаты приведены в Таблице 3.

D, мм	σ_D , MM	d, MKM	σ_d , MKM
4.14	0.02	28.27	3
1.960	0.010	59.7	3
1.020	0.010	114.7	3
0.810	0.010	144.5	4

Таблица 3: Метод 3 по нахождению периодов решёток.

Через щель проходили только нулевой (по центру) и два первых максимумы, за исключением второй щели, где нулевой максимум был помещён к краю щели. Для первой

Рис. 3: Зависимость d = f(1/D).

решётки период таким методом измерить не получилось, так как ширины щели не хватает.

Для проверки теории Аббе построим график $d=f(\frac{1}{D})$ со значениями d из части 1, погрешность $\frac{1}{D}$ рассчитывается по формуле

$$\sigma_{1/D} = \frac{\sigma_D}{D^2}.$$

Угловой коэффициент прямой из МНК $k=(124\pm 8)\cdot 10^{-9}~{\rm M}^2$, в пределах погрешности он совпадает с теоретическим $2\lambda F_1=117\cdot 10^{-9}~{\rm M}^2$. Таким образом, теория Аббе подтвердилась.

Реш.	1/D, mm ¹	$\sigma_{1/D}, \text{ mm}^1$	d, MKM	σ_d , MKM
2	0.2415	0.0012	30	3
3	0.5100	0.0030	60	3
4	0.9800	0.0100	117	3
5	1.2350	0.0150	159	4

Таблица 4: Значения для графика d = f(1/D).

4. Пространственная фильтрация и мультиплицирование

Для наблюдения фильтрации на сетке 2 откроем щель так, чтобы она пропускала только максимум нулевого порядка и, поворачивая щель, наблюдаем за изменением картины.

Для наблюдения мультиплицированния поменяем местами сетку и щель, пронаблюлюдаем мультипликацию.

Вывод

В ходе данной лабораторной работы мы определили периоды дифракционных решёток различными способами. Полученные результаты отличаются друг от друга существуенно (наименьший от наибольшего в два раза), хотя имеют одинаковый порядок величины. Это может быть связано с приближенным характером используемой теории, неточностью определения величин a_2 и b_1 , неисправностью источника света, который в ходе выполнения лабораторной работы периодически выключался.

Стоит отметить, что у всех величин, полученных прямым измерением, мы принебрегли случайной погрешностью, так как она мала по сравнению с систематической, которая явным образом повлияла на разброс результатов.

Не смотря на расхождения, нам удалось убедиться в справедливости формулы, то есть проверка теории Аббе оказалась положительной. Действительно, периоды решёток, определенные в первом и третьем способах, отличаются от их среднего значения на 20 %, что может навести на мысль о том, что во втором способе, скорее всего, имеется грубая ошибка и эксперимент требует повторного проведения.

Выход из строя источника света не позволил пронаблюдать за явлениями фильтрации и мультиплицирования.