Summary Midterm 1

February 12, 2023 13:08

4.1 Divisibility

 $a \mid b \leftrightarrow \exists c \text{ such that } b = ac$

+ Theorems

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$:

- If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$
 - We also have $a \mid (mb + nc) \forall m, n \in \mathbb{Z}$
- If $a \mid b$, then $a \mid bc \ \forall c \in \mathbb{Z}$
- If $a \mid b$ and $b \mid c$, then $a \mid c$

4.2 Division Algorithm

Let $a, d \in \mathbb{Z}$ with d > 0 $\exists! q, r \in \mathbb{Z}$ such that a = dq + r for $0 \le r < d$

Notation: If a = dq + r for $0 \le r < d$, we write:

- $q = a \operatorname{div} d$
- $r = a \mod d$

4.3 Modulo

Let $a, b, m \in \mathbb{Z}$ with $m \ge 2$. a is congruent to b modulo m if $m \mid (a - b)$, and we denote it as $a \equiv b \pmod{m}$

Note: $a \equiv b \pmod{m} \leftrightarrow b \equiv a \pmod{m}$

+ Theorems

- Let $a, b, c, d, m \in \mathbb{Z}$ with $m \ge 2$. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then:
 - $a + c \equiv b + d \pmod{m}$
 - $ac \equiv bd \pmod{m}$
- $a + c \equiv b + c \pmod{m} \rightarrow a \equiv b \pmod{m}$
- $c \not\equiv 0 \pmod{m}, ac \equiv bc \pmod{m} \not\rightarrow a$ $\equiv b \pmod{m}$

4.4 Arithmetic Modulo

For $m \ge 2$, define $\mathbb{Z}_m = \{0,1,2,...,m-1\}$ $a +_m b = (a + b) \pmod{m}$ $a \cdot_m b = (a \cdot b) \pmod{m}$

5.1 Prime Numbers

 $p \in \mathbb{Z}$ is prime if it has exactly two divisors, 1 and itself

5.2 Fundamental Theorem of Arithmetic

All integers greater than 1 can be written as a unique product of prime numbers

+ Theorems

- ▶ For $n \in \mathbb{Z}$ such that n > 1. If n is not prime, then n has a prime divisor p such that $p \le \sqrt{n}$
- ▶ There exists an infinite number of prime numbers

5.3 Greatest Common Divisor

For $a, b \in \mathbb{Z}$ such that $a \neq 0$ or $b \neq 0$

The greatest integer d such that $d \mid a$ and $d \mid b$ is the GCD of a and b

a, b are coprime if GCD(a, b) = 1

5.4 Least Common Divisor

For $a, b \in \mathbb{Z}$ such that $a \neq 0$ and $b \neq 0$. The least integer m such that $a \mid m$ and $b \neq 0$.

The least integer m such that $a \mid m$ and $b \mid m$ is the LCM of a and b

+ Theorems

- ▶ For $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ where p_i are prime numbers and $a_i > 0$ are integers and for $d \in \mathbb{Z}$ Then $d \mid n \leftrightarrow d = p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}$ where $0 \le b_i \le a_i$
- - GCD $(a,b) = p_1^{\min(a_1,b_1)} \dots p_k^{\min(a_k,b_k)}$
 - LCM $(a, b) = p_1^{\max(a_1, b_1)} \dots p_k^{\max(a_k, b_k)}$
- For $a, b, q, r \in \mathbb{Z}$ such that a = bq + r, then GCD(a, b) = GCD(b, r)

6.1 Euclid's Algorithm

 $a = q_1 \times b + r_1$

 $b = q_2 \times r_1 + r_2$

 $r_1 = q_3 \times r_2 + r_3$

 $r_{n-2} = q_n r_{n-1} + r_n$

 $r_{n-1} = q_{n+1}r_n + r_{n+1}$

And $GCD(a, b) = r_n$ when $r_{n+1} = 0$

6.2 Bezout's Algorithm

For $a, b \in \mathbb{Z}$ and a, b > 0, then there exists $s, t \in \mathbb{Z}$ such that sa + tb = GCD(a, b)

We run Euclid's algorithm backwards:

$$GCD(a, b) = r_n = r_{n-2} - q_{n-1} \times r_{n-2} = \dots = sa + tb$$

+ Example of Euclid and Bezout

```
Run Euclid first for GCD(662,414)
```

$$a: 662 = 1 \times 414 + 248$$

$$b: 414 = 1 \times 248 + 166$$

$$c$$
: 248 = 1 × 166 + 82

$$d: 166 = 2 \times 82 + 2$$

$$e: 82 = 41 \times 2 + 0$$

So GCD(662, 414) = 2

Run Bezout now:

$$2 = 166 - 2 \times 82$$
 from *d*

$$= 166 - 2(248 - 1 \times 166)$$
 from c

$$= -2 \times 248 + 3 \times 166$$
 simple rearranging

$$= -2 \times 248 + 3(414 - 1 \times 248)$$
 from b

$$= 3 \times 414 - 5 \times 248$$
 simple rearranging

$$= 3 \times 414 - 5(662 - 1 \times 414)$$
 from a

$$= 8 \times 414 - 5 \times 662$$
 simple rearranging

$$= -5 \times 662 + 8 \times 414$$

$$So -5 \times 662 + 8 \times 414 = 2 = GCD(662, 414)$$

+ Theorems

- For $a, b, c \in \mathbb{Z}$ with $a \neq 0$ If GCD(a, b) = 1 and $a \mid (bc)$, then $a \mid c$
- ▶ For $a, b, m \in \mathbb{Z}$ with a > 0 and b > 0There exists $s, t \in \mathbb{Z}$ such that $sa + tb = m \leftrightarrow GCD(a, b) \mid m$
- For $a, b, c, m \in \mathbb{Z}$ with $m \ge 2$ If $ac \equiv bc \pmod{m}$ and GCD(c, m) = 1, then $a \equiv b \pmod{m}$
- For p, a prime number and $a_1, ..., a_n \in \mathbb{Z}$ If $p \mid (a_1 \times \cdots \times a_n)$, then $\exists \ 1 \le i \le n$ such that $p \mid a_i$
- ▶ For $m \in \mathbb{Z}$ with $m \ge 2$ and $a \in \mathbb{Z}_m$ The multiplicative inverse of $a \pmod{m}$ exists if and only if GCD(a, m) = 1. It's unique when it exists