トップエスイー教育プログラムの概要

FAQ

2023年11月

国立情報学研究所 GRACEセンター長・特任教授 早稲田大学 理工学術院 教授 本位田真一

FAQ

- 1. 前提として要求される知識・スキルは何か?
- 2. 単位取得の難易度はどの程度か?
- 3. 年間を通して出席の頻度は?
- 4. 修了要件と修了率は?
- 5. トップエスイーとアドバンスの違いは?
- 6. オンラインだけで修了できるか?
- 7. 修了すると、何が嬉しいのか?

3 SHEERS EDUCATION PROPERTY OF THE NGINEERS OF

1. 前提として要求される知識・スキルは何か

■トップエスイーコース

下記のいずれかに該当する方は前提として要求される知識・スキルは有しており、コースの修了は可能である。

- ■ソフトウェア開発に何らかの形で関与経験のある方
- ■プログラミング経験はないが、上流工程に関わっている方
- ■ソフトウェア開発経験はないが、データサイエンティストを目指している方
- アドバンストップエスイーコース
 - ■取り組むテーマに依存する
 - ■必ずしも、ソフトウェア開発経験を求めていない

4 GINEERS EDUCATION OF THE NEINEERS OF THE NEI

1. 前提として要求される知識・スキルは何か各講義における前提知識はシラバスに明記

- テスティング(基礎):例1
 - 準備学習
 - ■基本的な内容から講義するため、特に必要ない。
 - 履修上の注意
 - ■本科目の受講生はC++/Java/Pythonのいずれかのプログラミングを習得 済みであることが望ましい。
- ソフトウェア再利用演習:例2
 - 以下の知識を前提とする.
 - ■オブジェクト指向設計の基本概念(クラス,インスタンス,メソッド,メッセージ等)
 - ■ソフトウェア開発ライフサイクルに関する基本知識(主な工程と成果物)
 - ■UMLの基礎(ユースケース図、クラス図、シーケンス図)

2. 単位取得の難易度はどの程度か?

講義の難易度は?

2022年度 難易度平均 0.24 (全受講生、全講義の平均)

とても難しい	2
難しい	1
普通	0
易しい	-1
とても易しい	-2

2. 単位取得の難易度はどの程度か?講義の分かりやすさは?

2022年度 分かりやすさ平均 0.66 (全受講生、全講義の平均)

とてもわかりやすい	2
わかりやすい	1
普通	0
わかりにくい	-1
とてもわかりにくい	-2

2. 単位取得の難易度はどの程度か?シラバスとの合致は?

2022年度 シラバスとの合致平均 1.19 (全受講生、全講義の平均)

合致していた	2
おおむね合致していた	1
やや異なる点があった	0
重要な何点かが異なっていた	-1
全く異なっていた	-2

8 CONTERS EDUCATION OF THE NEINEERS OF THE NEI

2. 単位取得の難易度はどの程度か?

- ■まとめると
 - ■講義内容は少し難しいけれど、
 - ■講義自体は比較的わかりやすいので、
 - ■シラバスをよく読んで、前提知識などの履修上 の注意事項を踏まえて適切な講義を選択し、
 - ■できるだけ出席して、レポートを提出すれば、
 - ■単位は取得できる

GINEERS EDUCATION OF THE PROPERTY OF THE PROPE

2. 単位取得の難易度はどの程度か?

単位取得の実績(2023年度)

- ■8月末までに採点結果が出ている講義の単位取得実 績(成績判明分)
 - ■全受講生平均:8.84単位
 - ■最多単位取得者:16単位を取得(現時点での最大単位数:21単位)
 - ■10単位をクリアした人数:27名(68名中)、40%

単位取得要件:課せられたレポートの提出が必須、

出席数も考慮される

(欠席の場合には、録画ビデオで復習)

受講生別取得単位数 (過去6年間の平均取得数14.16)

第12期~第17期トップエスイーコース修了者322名が取得した単位数のグラフ。修了に必要な単位数は10単位。

11

EDUCATION PROGRAM FOR TOP SOFTWARE ENGINEERS

3. 年間を通して出席の頻度は?

	月	火	水	木	金	土		
4月	オブジェクト 指向分析設 計	 		データサイ エンスプロ グラミング	テスティング (基礎)	統計学と最 適化	分散システム基礎とクラウドでの活用	

箱の一つが1単位(8コマ)

2024年4月の月曜日、オブジェクト指向分析・設計:1単位

- 4月1日(月) 2コマ(18:20-19:50, 20:00-21:30)
- 4月8日(月) 2コマ(18:20-19:50, 20:00-21:30)
- 4月15日(月) 2コマ(18:20-19:50, 20:00-21:30)
- 4月22日(月) 2コマ(18:20-19:50, 20:00-21:30)

2024年4月の土曜日、統計学と最適化:1単位

- 4月6日(土) 4コマ (10:30-12:00, 13:00-14:30, 14:45-16:15, 16:30-18:00)
- 4月13日(土) 4コマ (10:30-12:00, 13:00-14:30, 14:45-16:15, 16:30-18:00)

3. 年間を通して出席の頻度は? 履修モデル別出席の頻度

顧客要求分析に基づくプロダクト開発に関わる人向け(10単位)

Ī		月	火	水	木	金	=	Ł
	4月	オブジェクト 指向分析設計	大規模言語モデ ルを組み込んだ アプリ開発	要求工学基礎	データサイエン スプログラミング	テスティング (基礎)	統計学と最適化	分散システム基 礎とクラウドでの 活用
	5月	ソフトウェア パターン	形式仕様記述 入門 I	デザイン思考 要求工学	大規模言語モデ ルのソフトウェア 開発への応用	モデル検査 入門I	機械学習概論	機械学習概論
	6月	アーキテクチャ 設計・評価	形式仕様記述 入門II	要求工学先端	ベイズ統計学	モデル検査 入門II	クラウド実践演 習	生成モデルの 基礎
	7月	アジャイル概論	プログラム解析	セキュア プログラミング	ビジネス・アナリ ティクス概論	設計モデル検証	クラウド基盤 構築演習	クラウド基盤 構築演習
	8月	アジャイル プロダクト開発	8月20日, 21日 モデル駆動開発	セキュリティの 脅威分析実践演習	テキストデータ 分析の 基礎と応用		データ駆動型 時系列分析	
	9月	ソフトウェア 再利用演習		セキュリティと セーフティの 要求分析	ベイズ統計 によるデータ解 析		LC4RI演習	
	10月		アート思考 要求工学	モデル検査特論		トップエスイー 実適用ワーク ショップ	ソフトウェア開発 見積もり手法	画像データ認識 の 基礎と応用
	11月	アジャイル テクニカル プラクティス	高信頼ソフト ウェアのための 証明ツール		ピン	ク色の箱	ーーー 笛が履修	

3. 年間を通して出席の頻度は? 履修モデル別出席の頻度

業務システムをクラウドに構築することが求められている人向け(10単位)

	月	火	水	木	金	=	±	
4月	オブジェクト 指向分析設計	大規模言語モデ ルを組み込んだ アプリ開発	要求工学基礎	データサイエン スプログラミング	テスティング (基礎)	統計学と最適化	分散システム基 礎とクラウドでの 活用	
5月	ソフトウェア パターン	形式仕様記述 入門 I	デザイン思考 要求工学	大規模言語モデ ルのソフトウェア 開発への応用	モデル検査 入門I	機械学習概論	機械学習概論	
6月	アーキテクチャ 設計・評価	形式仕様記述 入門II	要求工学先端	ベイズ統計学	モデル検査 入門II	クラウド実践演 習	生成モデルの 基礎	
7月	アジャイル概論	プログラム解析	セキュア プログラミング	ビジネス・アナリ ティクス概論	設計モデル検証	クラウド基盤 構築演習	クラウド基盤 構築演習	
8月	アジャイル プロダクト開発	8月20日, 21日 モデル駆動開発	セキュリティの 脅威分析実践演習	テキストデータ 分析の 基礎と応用		データ駆動型 時系列分析		
9月	ソフトウェア 再利用演習		セキュリティと セーフティの 要求分析	ベイズ統計 によるデータ解 析		LC4RI演習		
10月		アート思考 要求工学	モデル検査特論		トップエスイー 実適用ワーク ショップ	ソフトウェア開発 見積もり手法	画像データ認識 の 基礎と応用	
11月	アジャイル テクニカル プラクティス	高信頼ソフト ウェアのための 証明ツール		ピン	」 ク色のギ	i 首が履修	 科目	

3. 年間を通して出席の頻度は? 履

履修モデル別出席の頻度であ

データサイエンティストと同等の見識を学びたい人向け(10単位)

	月	火	水	木	金	±	
4月	オブジェクト 指向分析設計	大規模言語モデルを組み込んだアプリ開発	要求工学基礎	データサイエン スプログラミング	テスティング (基礎)	統計学と最適化	分散システム基 礎とクラウドでの 活用
5月	ソフトウェア パターン	形式仕様記述 入門 I	デザイン思考 要求工学	大規模言語モデ ルのソフトウェア 開発への応用	モデル検査 入門I	機械学習概論	機械学習概論
6月	アーキテクチャ 設計・評価	形式仕様記述 入門II	要求工学先端	ベイズ統計学	モデル検査 入門II	クラウド実践演 習	生成モデルの 基礎
7月	アジャイル概論	プログラム解析	セキュア プログラミング	ビジネス・アナリ ティクス概論	設計モデル検証	クラウド基盤 構築演習	クラウド基盤 構築演習
8月	アジャイル プロダクト開発	8月20日, 21日 モデル駆動開発	セキュリティの 脅威分析実践演習	テキストデータ 分析の 基礎と応用		データ駆動型 時系列分析	
9月	ソフトウェア 再利用演習		セキュリティと セーフティの 要求分析	ベイズ統計 によるデータ解 析		LC4RI演習	
10月		アート思考 要求工学	モデル検査特論		トップエスイー 実適用ワーク ショップ	ソフトウェア開発 見積もり手法	画像データ認識 の 基礎と応用
11月	アジャイル テクニカル プラクティス	高信頼ソフト ウェアのための 証明ツール		ピンク1	色の箱が	が履修和	

3. 年間を通して出席の頻度は?

■まとめると、下記が標準的なパターン

- ■4月から9月までは週に1日か2日
 - ■平日の18:20-21:30、土曜日

- ■10月からは週に1日
 - ■毎週金曜日の18:20-21:30にソフトウェア開発実践演習

4. 修了要件と修了率

- ■トップエスイー
 - ■必修科目:ソフトウェア開発実践演習
 - ■選択必修科目:10単位以上
- アドバンス・トップエスイー
 - ■必修科目:最先端ソフトウェア工学ゼミ
 - ■必修科目:プロフェッショナルスタディ
 - ■選択科目(講義、ソフトウェア開発実践演習):O単位も可
- ■修了率は?
 - ■過去3年間(2020年度、2021年度、2022年度):94%
 - ■入学者:192名、修了者:181名
 - ■未修了の11名中、半数以上は退職・休職

HANDINEERS OF THE PROPERTY OF

5. トップエスイーとアドバンス・トップエスイーの違いは

- トップエスイー
 - ●学び・習得・実践
 - ソフトウェア工学ならびにデータサイエンスを基礎から先端まで体系的に学習できるプログラム
- アドバンス・トップエスイー
 - トップエスイーのコンテンツを全て履修できる
 - 学びと調査をしながら、講師との一対一の共同研究
 - 現場での問題の分析、その解決策を立案し、最先端の 技術を駆使して課題の解決を図り、結果を評価・現場 へ展開する一連のプロセスに取り組むことで、難度の 高い先端課題を解決するスキルを獲得する人材の育成 プログラム

6.オンラインだけで修了できるか?

- ■社会人対象の夜間コースであること
- ■首都圏以外の受講生が多い

- ■全ての講義はオンライン開催
- ■ソフトウェア開発実践演習(グループ)は教室組 とオンライン組に分かれる
- ソフトウェア開発実践演習(個人)はオンライン
- アドバンスコースはオンラインで実施

7. 修了すると、何が嬉しいか?

期待される人物像

- 部署やプロジェクトにおいて、技術的なことは、この人 に聞けば何でも教えてくれる。
- 新しい技術、ツールを先頭になって導入し、その限界を見極め、どのような工夫により、どこまで自分たちの問題に適用できるのかを実践できる。そして部署内、プロジェクト内に展開できる。

副次的効果

- 業務で多忙でも勉強するという癖が身につく。
- 同世代の他社の人との人脈構築ができる。

おわりに

■ トップエスイー Webサイトに、詳細なFAQがあります。

https://www.topse.jp/ja/admission-faq.html