id id3767239020258235696 The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and the Navier-Stokes equation. The Fourier neural operator is the first ML-based method to successfully model		doc_1		doc_2		decision	id
title Fourier Neural Operator for Parametric Partial Differential Equations publication_date SupportedSources.ARXIV	cases	authors	 Nikola Kovachki Kamyar Azizzadenesheli Burigede Liu Kaushik Bhattacharya Andrew Stuart 	authors	 Nikola B. Kovachki K. Azizzadenesheli Burigede Liu K. Bhattacharya Andrew Stuart 		
source SupportedSources.ARXIV journal None volume http://arxiv.org/pdf/2010.08895v3 http://arxiv.org/pdf/2010.08895v3 http://arxiv.org/pdf/2010.08895v3 http://arxiv.org/pdf/2010.08895v3 http://arxiv.org/pdf/2010.08895v3 http://arxiv.org/pdf/2010.08895v3 http://arxiv.org/pdf/2010.08895v3 id id3767239020258235696 The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation. Darcy flow, and Navier-Stokes equation. The Fourier neural operator shows state-of-the-art performance equation (including the turbulent regime). Our Fourier neural operator shows state-of-the-art performance and the state of the capacity neural network methods objects and tirst neural operator shows state-of-the-art performance compared to expressive neural operator shows state-of-the-art performance compared to expressive neural operator shows state-of-the-art performance compared to expressive neural network methods objects and tirst neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping shewen finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators directly learn the mapping shewen finite-dimensio					Allilla Allallukullai		
journal None volume		publication_dat		title	Fourier Neural Operator for Parametric Partial Differential Equations	<u> </u>	
volume doi id id3767239020258235696 The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation. The Fourier neural operator is the first ML-based method to successfully model				publication_date	publication_date 2020-10-18 00:00:00		
doi wris http://arxiv.org/pdf/2010.08895v3 http://arxiv.org/pdf/2010.08895v3 http://arxiv.org/pdf/2010.08895v3 http://arxiv.org/pdf/2010.08895v3 id id id3767239020258235696 The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and the Navier-Stokes equation (including the turbulent regime). Our Fourier neural operator shows state-of-the-art performance Navier-Stokes equation. The Fourier neural operator is the first ML-based method to successfully model			None	source	SupportedSources.SEMANTIC_SCHOLAR	al	
** http://arxiv.org/pdf/2010.08895v3 ** http://arxiv.org/pdf/2010.08895v3 ** http://arxiv.org/pdf/2010.08895v3 ** http://arxiv.org/pdf/2010.08895v3 ** http://arxiv.org/pdf/2010.08895v3 ** http://arxiv.org/pdf/2010.08895v3 ** id id3767239020258235696 The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation. The Fourier neural operators shows state-of-the-armic equation (including the turbulent regimes). Our Fourier neural operators shows state-of-the-armic equation (including the turbulent regimes). Our Fourier neural operators shows state-of-the-armic equation (including the turbulent regimes). Our Fourier neural operators shows state-of-the-armic equation (including the turbulent regimes). Our Fourier neural operators shows state-of-the-armic equation (including the turbulent regimes). Our Fourier neural operators shows state-of-the-armic equation (including the turbulent regimes). Our Fourier neural operators shows state-of-the-armic equation (including the turbulent regimes). Our Fourier neural operator shows state-of-the-armic equation (including the turbulent regimes). Our Fourier neural operator shows state-of-the-armic equation (including the turbulent regimes). Our Fourier neural operator shows state-of-the-armic equation (including the turbulent regimes). Our Fourier neural operator shows state-of-the-armic equation (in				journal	ArXiv		
• http://arxiv.org/abs/2010.08895v3 • http://arxiv.org/pdf/2010.08895v3 • http://arxiv.org/pdf/2010.08895v3 • http://arxiv.org/pdf/2010.08895v3 id id3767239020258235696 The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and the Navier-Stokes equation. The Fourier neural operator is the first ML-based method to successfully model		doi		volume	abs/2010.08895		S 289
id id3767239020258235696 The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and havier-Stokes equation. The Fourier neural operator is the first ML-based method to successfully model The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and the Navier-Stokes equation, Darcy flow, and the Navier-Stokes equation (including the turbulent regime). Our Fourier neural operators shows state-of-the-art performance equation (including the turbulent regime). Our Fourier neural operators shows state-of-the-art performance of the equation of the e		urls	• http://arxiv.org/abs/2010.08895v3		https://www.semanticscholar.org/paper/2f7dc1ee85e9f6a97810c66016e09ffeed684f03		
The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation. The Fourier neural operator is the first ML-based method to successfully model		id	id2767220020258225606	id	id-4621747468948422099		
turbulent flows with zero-shot super-resolution. It is up to three orders of magnitude faster compared to traditional PDE solvers. Additionally, it achieves superior accuracy compared to previous learning-based solvers under fixed resolution.			The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation. The Fourier neural operator is the first ML-based method to successfully model turbulent flows with zero-shot super-resolution. It is up to three orders of magnitude faster compared to traditional PDE solvers. Additionally, it achieves superior accuracy compared to previous learning-based		dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and the Navier-Stokes equation (including the turbulent regime). Our Fourier neural operator shows state-of-the-art performance compared to existing neural network methodologies and it is up to three orders of magnitude faster compared		
versions		versions	porters under investigation.			1	