СОДЕРЖАНИЕ

ПЕРЧЕНЬ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ	2
ВВЕДЕНИЕ	3
1 ПРОБЛЕМАТИКА РАЗРАБОТКИ	
МУЛЬТИСИНХРОННЫХ УСТРОЙСТВ	4
1.1 Домен синхрочастоты	4
1.2 Основные принципы	5
1.3 Решение проблемы метастабильности	6
2 Создание логической и физической модели данных	8
2.1 Работа по методическим указаниям	8
2.1.1 Построение модели данных	8
2.2 Индивидуальное задание	10
2.2.1 Построение модели данных	11
3 Создание базы данных	12
3.1 Работа по методическим указаниям	12
3.2 Индивидуальное задание	15
3.2.1 Использование MySQL CLI Client	20
3.2.2 Использование MySQL Workbench	22
4 Создание веб-клиента	24
4.1 Общие требования к приложению	24
4.1.1 Требования к функционалу	24
4.1.2 Требования к интерфейсу	24
4.2 Реализация приложения	25
4.2.1 Используемые технологии	25
4.2.2 Возможные сценария использования веб-приложения	26
4.2.3 Демонстрация работы веб-приложения	26
4.2.3.1 Авторизация	26
4.2.3.2 Отображение записей таблиц	26
4.2.3.3 Добавление записей в в таблицы	28
4.2.3.4 Выполнение произвольных запросов	29
ЗАКЛЮЧЕНИЕ	30
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	31

ПЕРЧЕНЬ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

CDC — Clock domain crossing. Пересечение доменов синхрочастоты

CLI — Command line interface

DDL — Data Definition Language

DML — Data Manipulation Language

CSS — Cascading Style Sheets

HTML — HyperText Markup Language

 $\mathbf{SQL}-\mathbf{Structured}$ query language.

БД — База данных.

ПО — Программное обеспечение.

СУБД — Система управления базами данных.

ВВЕДЕНИЕ

Целью работы является построение цифрового устройства ресинхронизации данных. Данное устройство представляет собой FIFO с восьмиразрядным входом и тридцатидвух разрядным выходом. Данные на выход подаются по мере образования во входном буфере не менее 4 8-разрядных слов. Тактовые сигналы входного и выходного каналов независимы, однако тактовая частота для выхода FIFO составляет как минимум четверть от тактовой частоты входного интерфейса FIFO.

1 ПРОБЛЕМАТИКА РАЗРАБОТКИ МУЛЬТИСИНХРОННЫХ УСТРОЙСТВ

В данном разделе будут рассмотрены проблемы и особенности построение устройств

В этом разделе будут описаны проблемы, возникающие в процессе разработки мультисихронного проекта, то есть устройства, в котором имеют место пересечения клоковых доменов или доменов синхрочастоты (CDC).

1.1 Домен синхрочастоты

Домен синхрочастоты представляет собой ту часть проекта, которая тактируется одной или несколькими синхрочастотами, причем все эти синхрочастоты должны иметь постоянные сдвиги фазы. Если в какой-либо части проекта имеется синхрочастота или инвертированная синхрочастота, или синхрочастота, полученная из исходной путем деления на 2, то такая часть проекта считается клоковым доменом с одной синхрочастотой. Если же домены имеют синхрочастоты с переменной фазой и соотношениями времени, то такие домены считают доменами с различными синхрочастотами.

На Рисунке 1.1 показано, что проект имеет единственный домен синхрочастоты, потому что синхрочастота divClk — есть деленная на два частота генератора синхронизации Clk.

Рисунок 1.1 — Проект, имеющий единственный домен синхрочастоты

На Рисунке 1.2 показано несколько синхрочастот от различных источников. Ту часть проекта, которая управляется этими синхрочастотами, называют доменами синхрочастоты, и сигналы, осуществляющие передачу импульсов между этими асинхронными доменами синхрочастоты, называют

путями пересечения домена синхрочастоты. Сигнал DA считают асинхронным сигналом в домене синхрочастоты, так как между генератором синхронизации A (clkA) и генератором синхронизации B (ClkB) не существуют постоянные соотношения фазы и времени.

Рисунок 1.2 — Путь домена синхрочастоты

1.2 Основные принципы

При разработке ультисинхрочастотных проектов следует уделять особое внимание стабильности сигнала. Когда сигнал пересекает домен синхрочастоты, то он появляется в новом домене синхрочастоты как асинхронный сигнал и должен быть засинхронизирован.

Синхронизация предотвращает в новом домене синхрочастоты метастабильное состояние первого запоминающего элемента схемы (триггера), и это позволяет в новом домене работать уже со стабильным сигналом.

Метастабильность — это неспособность триггера достигнуть известного состояния в определенный момент времени. Когда триггер входит в метастабильное состояние, то невозможно предсказать ни уровень выходного напряжения элемента, ни период времени, за который этот выход перейдет к правильному уровню напряжения.

В течение этого переходного времени выход триггера будет находиться на некотором промежуточном уровне напряжения или колебаться и может передать этот недопустимый уровень сигнала со своего выхода к другим триггерам схемы.

1.3 Решение проблемы метастабильности

С целью решения проблемы метастабильности применяются каскады стабилизирующих триггеров, включенных последовательно. Рассмотрим это решение.

Простейший синхронизатор представляет собой два триггера, включенных последовательно без какой-либо комбинационной схемы между ними. Такая схема проекта гарантирует, что первый триггер выходит из своего метастабильного состояния, и его выход переходит в устойчивое состояние перед тем, как второй триггер сохраняет его. Необходимо также разместить эти триггеры, насколько возможно, ближе друг к другу для того, чтобы гарантировать наименьшую расфазировку тактовых сигналов между ними.

Другой тип ячейки синхронизатора представляет собой два близко расположенных триггера без какой-либо комбинационной логики между ними. Для того чтобы синхронизация работала должным образом, сигнал, пересекающий домен синхрочастоты, должен проследовать от триггера в домене синхрочастоты источника сигнала к первому триггеру синхронизатора, не пройдя через комбинационную логику 1.3). Схема синхронизации приведена на Рисунке 1.4.

Рисунок 1.3 — Триггеры синхронизации

Данный способ борьбы с метастабильностью будет в дальнейшем использован при разработке узла ресихронизации данных.

Рисунок 1.4 — Схема синхронизации сигнала

2 Создание логической и физической модели данных

В данном разделе будет рассмотрено создание логической и физической модели данных предложенных предметных областей в ПО ERwin Data Modeler.

2.1 Работа по методическим указаниям

Порядок построения модели данных в среде ERwin Data Modeler рассмотрим на примере автоматизированной информационной системы «Реализация средств вычислительной техники», предназначенной для учета продаж настольных компьютеров по заказам клиентов.

Создание модели данных начинается с разработки логической модели, которая должна представлять состав сущностей предметной области с перечнем атрибутов и отношений между ними.

2.1.1 Построение модели данных

Результат разработки логической модели данных системы «Реализация средств вычислительной техники», предназначенной для учета продаж настольных компьютеров по заказам клиентов приведен на Рисунке 2.1.

Рисунок 2.1 — Логическая модель данных системы «Реализация средств вычислительной техники»

Для построения физической модели данных системы, следует определиться с СУБД, в которой будет реализована модель. При построении физической модели данных следует учитывать формальную теория представления и обработки данных в конкретной системе управления базами данных (СУБД).

В данной практической работе в качестве СУБД выбрана MySQL.

Приступим к построению физической модели данных системы «Реализация средств вычислительной техники». Результат работы можно видеть на Рисунке 2.2.

Рисунок 2.2 — Физическая модель данных системы «Реализация средств вычислительной техники»

2.2 Индивидуальное задание

Приступим к построению логической модели данных системы «Велосипедное предприятие». В соответствии с моделью, реализованной в ходе первой практической работы, добавим в рабочую область следующие сущности:

- Component;
- FrameInfo;
- Frame;
- Frameset;
- FrameSize;
- Fork;
- ComponentType;
- Wheelset;
- Groupset;
- Brake;
- FctCycleBuild;
- CycleType;
- Bar;
- Setup.

Добавим связи между сущностями в соответствии с ранее построенной моделью. Логическая модель системы «Велосипедное предприятие» приведена на Рисунке 2.3.

Рисунок 2.3 — Логическая модель данных системы «Велосипедное предприятие»

2.2.1 Построение модели данных

После уточнения типов данных, выбранных в соответствии с предметной областью и спецификой СУБД MySQL. Физическая модель системы «Велосипедное предприятие» приведена на Рисунке 2.4.

Рисунок 2.4 — Физическая модель данных системы «Велосипедное предприятие»

После реализации физической и логической модели можно приступать к реализации модели данной системы в СУБД MySQL.

3 Создание базы данных

3.1 Работа по методическим указаниям

Создадим базу данных forum, которая хранит в себе сведения о пользователях форумах и размещенных ими темах.

Помимо суперпользователя root, был создан пользователь denilai, под которым производятся все манипуляции с данными.

Создадим базу данных forum с помощью команды CREATE DATABASE forum:

Создадим таблицу users (см. Рисунок 3.1):

```
mysql> create table users (
-> id_user int (10) AUTO_INCREMENT,
-> name varchar (20) NOT NULL,
-> email varchar (50) NOT NULL,
-> password varchar (15) NOT NULL,
-> PRIMARY KEY (id_user));
Query OK, 0 rows affected (0.16 sec)
```

Рисунок 3.1 — Создание базы данных users

Создадим таблицу topics (см. Рисунок 3.2):

```
mysql> create table topics (
    -> id_topic int (10) AUTO_INCREMENT,
    -> topic_name varchar(100) NOT NULL,
    -> id_author int(10) NOT NULL,
    -> PRIMARY KEY (id_topic),
    -> FOREIGN KEY (id_author) REFERENCES users (id_user));
Query OK, 0 rows affected (0.13 sec)
```

Рисунок 3.2 — Создание базы данных topics

Создадим таблицу posts (см. Рисунок 3.3):

```
mysql> create table posts (
-> id_post int (10) AUTO_INCREMENT,
-> message text NOT NULL,
-> id_author int (10) NOT NULL,
-> id_topic int (10) NOT NULL,
-> primary key (id_post),
-> foreign key (id_author) references users (id_user),
-> foreign key (id_topic) references topics (id_topic));

Query OK, 0 rows affected (0.17 sec)
```

Рисунок 3.3 — Создание базы данных posts

После создания таблиц, заполним их данными о пользователях форума, о темах и размещенных публикациях. Выполним операцию выборки данных без условия, чтобы увидеть все записи, занесенные в таблицы с помощью команды SELECT * FROM <table-name> (см. Рисунок 3.4).

Рисунок 3.4 — Операция выборки из всех таблиц

Выполним запрос SELECT mesage, topic_name FROM posts p JOIN topics t ON t.id_author = p.id_author; для объединения данных из таблиц topics и posts по ключу id_author и получения полной информации о сообщении и названию темы, в которой оно было размещено (см. Рисунок 3.5).

Рисунок 3.5 — Запрос объединения

Выполним запрос выборки данных, явно указав поля отношения. Для этого перечислим имена полей через запятую после зарезервированного слова SELECT (см. Рисунок 3.6).

Рисунок 3.6 — Операция выборки с указанием полей

Выполним более сложные запросы выборки, отсортировав записи в таблице topics по убыванию значения поля topic_name и id_author, а также опишем условие сравнения значения поля id_author в сецкции WHERE(см. Рисунок 3.7).

Выполним операции по модификации таблицы — добавим в таблицу users поле country типа varchar (20) со значением по умолчанию "Russia а также добавим в эту же таблицу поле age int(10) со значением по умолчанию 19.

Выведем все записи из таблицы users, обнаружим, что столбцы были вставлены успешно (см. Рисунок 3.8).

В ходе данной практической работы были рассмотрены операторы DDL и DML диалекта MySQL. С помощью данных операторов была создана база учебная база данных forum, содержащая о пользователях форумах и размещенных ими темах.

```
mysql>
my
```

Рисунок 3.7 — Сложные запросы выборки с сортировкой и условием

Рисунок 3.8 — Добавление полей в таблицу users

3.2 Индивидуальное задание

Продолжим работу над созданием модели данных велосипедного предприятия. Создадим базу данных сусle, сущностями которой будут таблицы, описания которых были проработаны в прошлых практических работах.

Описание проектируемых отношений базы данных cycle приведены в таблицах 3.1–3.15.

Таблица 3.1 — Описание таблицы Ваг

Имя	Тип
Width	INTEGER NOT NULL
Diameter	INTEGER NOT NULL
BarID	INTEGER NOT NULL AUTO_INCREMENT
Color	VARCHAR(20) NULL DEFAULT 'black'

Таблица 3.2 — Описание таблицы Brake

Имя	Тип
BrakeID	INT NOT NULL AUTO_INCREMENT
ComponentID	INTEGER NULL

Таблица 3.3 — Описание таблицы Сотропепт

Имя	Тип
ComponentID	INTEGER NOT NULL AUTO_INCREMENT
Brand	VARCHAR(20) NOT NULL
ManufacturerCountry	VARCHAR(20) NOT NULL
PriceCent	INTEGER NOT NULL
Model	VARCHAR(20) NOT NULL
ComponentTypeID	INTEGER NOT NULL
WeightGramm	INTEGER NOT NULL

Таблица 3.4 — Onucaние таблицы ComponentType

Имя	Тип
ComponentTypeID	INTEGER NOT NULL AUTO_INCREMENT
Name	VARCHAR(20)

Таблица 3.5 — Описание таблицы CycleType

Имя	Тип
CycleTypeID	INTEGER NOT NULL AUTO_INCREMENT
Name	VARCHAR(20) NOT NULL

Таблица 3.6 — Описание таблицы FctCycleBuild

Имя	Тип
SetupID	INTEGER NOT NULL
Datetime	DATE NOT NULL
Stage	INTEGER NOT NULL
Workshop	varchar(20) NOT NULL DEFAULT 'main'
Master	VARCHAR(20) NOT NULL
Status	VARCHAR(20) NOT NULL
Comment	VARCHAR(20) NOT NULL

Таблица 3.7 — Описание таблицы Fork

Имя	Тип
ForkID	INTEGER NOT NULL AUTO_INCREMENT
Color	VARCHAR(20) NULL DEFAULT 'black'
ComponentID	INTEGER NULL

Таблица 3.8 — Описание таблицы Frame

Имя	Тип
FrameID	INTEGER NOT NULL AUTO_INCREMENT
Color	VARCHAR(20) NULL DEFAULT 'black'

Таблица 3.9 — Описание таблицы FrameInfo

Имя	Тип
FrameID	INTEGER NOT NULL
Size	INTEGER NOT NULL
Stack	INTEGER NOT NULL
Reach	INTEGER NOT NULL

Таблица 3.10 — Описание таблицы Frameset

Имя	Тип
FrameSizeID	INTEGER NOT NULL AUTO_INCREMENT
ForkID	INTEGER NOT NULL
FramesetID	INTEGER NOT NULL
ComponentID	INTEGER NOT NULL

Таблица 3.11 — Описание таблицы FrameSize

Имя	Тип
FrameID	INTEGER NOT NULL
Size	INTEGER NOT NULL
FrameSizeID	INTEGER NOT NULL AUTO_INCREMENT
ComponentID	INTEGER NOT NULL

Таблица 3.12 — Описание таблицы Groupset

Имя	Тип
Ratio	INTEGER NOT NULL
BrakeID	CHAR(18) NOT NULL
GroupsetID	INTEGER NOT NULL AUTO_INCREMENT
Color	VARCHAR(20) NOT NULL
ComponentID	INTEGER NOT NULL

Таблица 3.13 — Описание таблицы Setup

Имя	Тип
GroupsetID	INTEGER NOT NULL
WheelsetID	INTEGER NOT NULL
FramesetID	INTEGER NOT NULL
BarID	INTEGER NOT NULL
CycleTypeID	INTEGER NOT NULL
SetupID	INTEGER NOT NULL AUTO_INCREMENT

Таблица 3.14 — Описание таблицы Wheelset

Имя	Тип
DiametrInch	INTEGER NOT NULL
Width	INTEGER NOT NULL
SpokesCount	INTEGER NULL
WheelsetID	INTEGER NOT NULL AUTO_INCREMENT
Color	VARCHAR(20) NOT NULL
ComponentID	INTEGER NOT NULL

Таблица 3.15 — Описание таблицы Log

Имя	Тип
ID	INTEGER NOT NULL AUTO_INCREMENT
msg	VARCHAR100 NOT NULL
row_id	INTEGER NOT NULL

3.2.1 Использование MySQL CLI Client

Создадим данные таблицы с помощью MySQL CLI Client — клиента, предоставляющего доступ к СУБД через интерфейс командой строки, использовав ключевое слово CREATE TABLE. После создания таблиц выполним команду SHOW TABLES, выбрав базу данных сусle (см. Рисунок 3.9).

```
mysql> use cycle;
Database changed
mysql> show tables;
 Tables in cycle
 bar
 brake
 component
 componenttype
 cycletype
  fctcyclebuild
 fork
  frame
  frameset
 framesize
 groupset
 log
 setup
 test
 wheelset
15 rows in set (0.02 sec)
```

Рисунок 3.9 — таблицы базы данных сус1е

Выведем записи из таблицы Component (см. Рисунок 3.10).

Выполним более сложные запросы выборки — объединим таблицы с помощью оператора INNER JOIN Component и fork по полю component_id, а также воспользуемся функцией ROW_NUMBER() в сочетании с оконной функцией OVER(), пронумеровав компоненты из таблицы Fork одного цвета по возрастанию значения поля color (см. Рисунок 3.11).

Создадим триггеры delete_component и add_component на добавление и удаление записи в таблице Component. При срабатываении данного триггера, будет добавляться запись в таблицу log, информирующая о совершении манипуляций с данными (см. Листинг 3.1). Приведем объявление данного триггера на диалекте MySQL:

Листинг 3.1 - Триггер

nysql> select	/sql> select * from component;								
ComponentID	Brand	ManufacturerCountry	PriceCent	ComponentTypeID	WeightGramm	Model			
47	3T	Italy	9000	2	210	Superleggera			
48	Deda	Italy	7000	2	200	Elementi			
49	Ritchey	England	25100	2	140	Superlogic			
50	FSA	USA	3000	2	220	Omega Compact			
51	Fox	USA	40000	6	1740	Suspension 40			
52	Fox	USA	34000	6	2040	Suspension 70			
53	Columbus	Italia	22000	6	340	Minimal Road Forks			
54	Dedacciai	Italia	31400	6	300	RS Carbon Road Fork			
55	Tifosi	Italia	26000	6	350	SR5 Road Disc Brake Forks			
56	Cinelli	Italia	80000	4	1780	Zydeco			
57	Ragley	England	65000	4	2000	Trig Gravel			
58	Cinelli	Italy	17000	4	1900	King Zydeco Gravel			
59	Campagnolo	Italy	180000	8	600	Record 2x12 Speed Road Groupset			
60	SRAM	USA	95000	8	500	Red eTap AXS 1x12 Speed Road Groupset			
61	Campagnolo	Italy	60000	8	570	Centaur 11 Speed Rim Brake Road Groupset			
62	Shimano	Japan	4500	7	200	Ultegra 6800 Brake Caliper			
63	Shimano	Japan	4600	7	200	105 R7000 Brake Caliper			
64	Easton	England	90000	5	1700	EC90 SL Disc Road Tubular Wheelset			
65	Hope	China	15000	5	2000	Pro 4 Boost MTB Rear Hub			
66	Novatec	China	9000	5	2000	Model 32			
67	Mavic	Italy	15000	5	1400	Ellipse			
70	Novatec	China	5000	5	300	One One			
71	Novatec	China	5000	6	300	One			
82	3T	Italy	90000	2	2220	Twins One			
83	3T	Italy	90000	2	2220	Twins One			
84	3T	Italy	90000	2	2220	Twins One			
85	3T	Italý	90000	2	2220	Twins One			
86	3T	Italy	90000	2	2220	Twins One			
87	3T	Italy	90000	2	2220	Twins One			
88	3T	Italy	90000	2	2220	Twins One			
89	3T	Italý	90000	2	2220	Twins One			
90	3T	Italý	90000	2	2220	Twins One			
91	3T	Italy	90000	2	2220	Twins One			
92	3T	Italy	90000	2	2220	Twins One			

Рисунок 3.10 — Вывод записей из таблицы Components

```
nysql>
nysql> select c.brand, c.model, c.pricecent from component c join fork f on c.componentid=f.componentid where color='black';
 brand
           | model
                                   pricecent
             Suspension 40
                                         40000
Fox | Suspension 70
Columbus | Minimal Road Forks
                                         34000
                                         22000
 rows in set (0.00 sec)
ussql> select * ,row_number() over(partition by color order by forkid) from fork order by color;
                           ComponentID | row_number() over(partition by color order by forkid)
 ForkID | Color
           black
                                     51
52
53
51
54
           black
          black
          Green
Red matte
           Steel
Yellow gloss
 rows in set (0.00 sec
```

Рисунок 3.11 — Сложные запросы выборки. База данных сусве

```
DELIMITER $$
1
2
   drop trigger delete_component; $$
4
  create trigger 'delete_component' after delete on component
5
  for each row begin
   insert into log (msg, row_id) values (concat('delete component
      ',old.Brand,' ', old.Model), old.ComponentID);
   end; $$
7
  create trigger 'add_component' after insert on component
  for each row begin
10
   insert into log (msg, row_id) values (concat('insert component
      ', new.Brand,'', new.Model), new.ComponentID);
12 | end; $$
```

3.2.2 Использование MySQL Workbench

Выполним операции по изменению и просмотру данных, занесенных в базу данных cycle, с помощью инструмента для визуального проектирования баз данных MySQL Workbench.

Для этого подключимся к локально развернутому на машине MySQL Server, указав порт, имя пользователя и пароль. После этого мы получим доступ к пользовательскому интерфейсу программы, представляющему собой две области — область выполнения запросов и область отображения результатов (см. Рисунок 3.12).

Рисунок 3.12 — Интерфейс MySQL Workbench

Создадим временную таблицу, в котором объединим сведения о компонентах (см. Рисунок 3.13).

Выполним еще один запрос — ограничим вывод только компонентами типа «Fork» (см. Рисунок 3.14).

Данный визуальный инструмент позволяет удобно организовать работу с базой данных, сохранять SQL-скрипты, параметры подключения и настройки.

Рисунок 3.13 — Просмотр временной таблицы компонентов

Рисунок 3.14 — Просмотр временной таблицы компонентов. Компоненты «Fork»

4 Создание веб-клиента

В данном разделе будет рассмотрен процесс реализации веб-приложения, с помощью которого будет производится взаимодействие конечного пользователя с созданной в рамках предыдущих работ базой данных.

4.1 Общие требования к приложению

Приведем технические требования, предъявляемые к разрабатываемому приложению.

4.1.1 Требования к функционалу

К функционалу приложения предъявляются следующие требования:

- регистрация и авторизация пользователя в системе;
- добавление, изменение, удаление, обновление информации по теме;
- фильтрация списков по соответствующим признакам;
- просмотр информации по запросу.

4.1.2 Требования к интерфейсу

Интерфейс системы должен поддерживать русский язык.

Интерфейс системы должен быть спроектирован с учетом ролевой модели и уровней доступа пользователей.

Интерфейс системы должен обеспечивать наглядное, интуитивно понятное представление структуры размещенной информации, быстрый и логичный переход к соответствующим разделам.

Навигационные элементы интерфейса должны обеспечивать понимание пользователем их смысла и обеспечивать навигацию по всем доступным пользователю разделам и отображать соответствующую информацию.

Интерфейс системы должен позволять решать задачи пользователя наиболее быстрым, простым и удобным из возможных способов.

Дизайн и удобство интерфейса должны быть на уровне ожиданий современного пользователя и восприниматься им как комфортная, удобная и приятная рабочая среда.

4.2 Реализация приложения

На основании функциональных требований, указанных в задании, было реализовано веб приложение, позволяющие взаимодействовать с данными, хранящимися в базе данных сусle, созданной в ходе выполнения предыдущих практических работ данного курса.

Интерфейс системы спроектирован с учетом ролевой модели и уровней доступа пользователей и подразумевает регистрацию пользователя в СУБД MySQL.

Интерфейс поддерживает русский язык и позволяет пользователю удобно просматривать сведения, содержащиеся в таблицах выбранной базы данных.

Акцент в приложении сделан на содержании, дизайн интерфейса прост и лаконичен, чтобы облегчить и упростить взаимодействие пользователя с системой.

4.2.1 Используемые технологии

В качестве набора программных технологий был выбран LAMP-стэк, объединяющий в себе следующие компоненты:

- Linux;
- Apache;
- MySQL;
- PHP.

Программно-аппаратная часть сервиса (бэкенд) реализована на языке РНР в парадигме объектно-ориентированного программирования, а также с использованием языка MySQL для работы с базой данных.

Структура гипертекстового документа описана средствами HTML и CSS.

Клиентская сторона пользовательского интерфейса системы (фронтэнд) основана на подходе AJAX (Asynchronous Javascript and XML). В качестве языка программирования был использован Java Script.

Запросы веб-сервиса обрабатываются сервером Apache.

4.2.2 Возможные сценария использования веб-приложения

Реализуемое веб-приложение может быть использовано для просмотра таблиц, добавления данных в таблицы базы данных под управлением СУБД MySQL, а также для написания произвольных DML и DDL запросов на диалекте MySQL.

Веб-приложение объединяет в себе часть возможностей командой строки СУБД MySQL и веб-клиента для просмотра таблиц.

4.2.3 Демонстрация работы веб-приложения

Продемонстрируем общие сценарий использования веб-приложения, созданного в рамках данной практической работы.

4.2.3.1 Авторизация

При первом входе на сайт пользователю необходимо авторизоваться и выбрать пользователя СУБД MySQL, который имеет права на изменение и просмотр данных в выбранной базе данных. Форма авторизации приведена на Рисунке 4.1.

В данном примере будет выбран пользователь denilai, который имеет привилегии супер-пользователя в данной базе данных и может вносить изменения в базу даннных, просматривать все записи в ней, создавать новые постоянные и временные таблицы, процедуры и макросы.

4.2.3.2 Отображение записей таблиц

После успешной авторизации пользователю будет предложено выбрать таблицу в базе данных, записи в которой будут отображены на экране. Поля

Рисунок 4.1 — Авторизация пользователя

таблиц могут содержать кириллические символы — они будут корректно отображаться веб-приложением (см. Рисунки 4.2, 4.3).

Рисунок 4.2 — Отображение записей таблицы Component

Рисунок 4.3 — Отображение записей таблицы Log

4.2.3.3 Добавление записей в в таблицы

Ниже, под выведенными записями таблицы расположены поля для добавления значений в выбранную базу данных. В случае ввода корректных данных, после нажатия кнопки «ОК», поля будут немедленно добавлены в таблицу и отобразятся на экране (см. Рисунок 4.4).

Рисунок 4.4 — Добавление записей в таблицу Frame

4.2.3.4 Выполнение произвольных запросов

В самом низу веб-страницы расположено текстовое поле для выполнения SQL-запросов. Запросы могут относиться не только к выбранной таблице или базе данных, а к любой таблице, права на взаимодействие с которой имеет выбранный пользователь.

Текст, введенный пользователем, передается в виде строки на исполнение MySQL серверу. В случае ввода корректного запроса, он будет выполнен, о чем будет сообщено пользователю.

С помощью данного поля также можно производить операции по удалению и вставке записей в таблицы, отображаемые на экране (см. Рисунок 4.5).

Рисунок 4.5 — Выполнение произвольных запросов

С помощью данного веб-клиента пользователь может просматривать записи, хранящиеся в базе данных, отмечать продвижение деталей по производственным цехам, отражать текущий статус сборки велосипеда, проверять наличие тех или иных компонентов на складе, получать полную информацию о них. Интерфейс отвечает требованиям, выдвинутым в задании: поддерживает русский язык, акцент в приложении сделан на содержании, дизайн интерфейса прост и лаконичен, чтобы упросить взаимодействие пользователя с системой.

ЗАКЛЮЧЕНИЕ

В ходе выполнения данных практических работ были получены знания по написанию запросов на диалекте MySQL, отработаны навыки работы в средах ER Assistant и ERwin Data Modeler, навыки работы с интерфейсом командной строки MySQL CLI Client, а также с инструментом для визуального проектирования баз данных MySQL Workbench.

Полученные знания были применены на практике для построения проектов баз данных, физические и логические модели баз данных. В последствии данные базы данных были реализованы в СУБД MySQL. Также было создано пользовательское веб – приложение, представляющее удобный интерфейс для взаимодействия с информационной системой и базой данных.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Дюбуа, Поль. MySQL: Полн. и исчерпывающее руководство по применению и администрированию баз данных MySQL 4, а также программированию приложений / Поль Дюбуа. Издательский дом Вильямс, 2004.
- 2. *Балдин, Евгений Михайлович*. Компьютерная типография LaTeX / Евгений Михайлович Балдин. Evgeny Baldin, 2008.
- 3. Converse, Tim. PHP5 and MySQL bible / Tim Converse, Joyce Park, Clark Morgan. John Wiley & Sons, 2004. Vol. 147.
- 4. *Юртанова, Екатерина Михайловна*. Разработка Web-приложений с использованием языка PHP / Екатерина Михайловна Юртанова // *Учебный* эксперимент в образовании. 2011. С. 47–50.