

Routing Operations in Cisco IOS Routers

BRKRST-2350

Scott Custer

Team Lead - RTP TAC Routing Protocols

2011

Routing Operation in Cisco IOS Routers

Topics Covered:

- The Routing Table (RIB)
- Overriding the Routing Table
- Load Sharing
- Routing Segmentation and Separation
- Routing and Router Resources

Learn. Connect.
Collaborate. together.

The Routing Table

The Routing Table

- Basic Structure
- Route Selection
- Interface Down Events
- Backup Routes
- Static Routes
- Discard Routes

Learn. Connect.
Collaborate. together.

The Routing Table

Basic Structure

- The Routing Information Base or RIB
- Routing Protocols*
 - Install routes into the RIB
- Interfaces
 - Install routes into the RIB
- Other Sources
 - Install routes into the RIB
 - -Performance Routing (PFR)
 - -Reverse-Route Injection (RRI)

Routing Protocols

Pull routes from the RIB for redistribution

Cisco Express Forwarding (CEF)

CEF maintains the FIB, Forwarding Information Base, and the Adjacency tables

A copy of the RIB is sent down to the FIB

A copy of the RIB is sent down to the hardware forwarding component

router#show ip route

```
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, + - replicated route
```

```
10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
         10.1.20.0/25 is directly connected, Ethernet1/0
         10.1.20.1/32 is directly connected, Ethernet1/0
L
      172.0.0.0/8 is directly connected, Ethernet0/0
      172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
         172.16.13.1/32 is directly connected, Ethernet0/0
L
         172.16.24.0/24 [90/307200] via 10.1.20.2, 00:23:36, Ethernet1/0
D
      192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.10.0/24 is directly connected, Serial2/0
L
         192.168.10.1/32 is directly connected, Serial2/0
S
      200.15.0.0/16 is directly connected, Null0
```

router#show ip route

Network

```
10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
         10.1.20.0/25 is directly connected, Ethernet1/0
C
L
         10.1.20.1/32 is directly connected, Ethernet1/0
      172.0.0.0/8 is directly connected, Ethernet0/0
C
     172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
         172.16.13.1/32 is directly connected, Ethernet0/0
L
D
         172.16.24.0/24 [90/307200] via 10.1.20.2, 00:23:36, Ethernet1/0
     192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
C
         192.168.10.0/24 is directly connected, Serial2/0
         192.168.10.1/32 is directly connected, Serial2/0
L
S
      200.15.0.0/16 is directly connected, Null0
```

router#show ip route

Route

```
10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
         10.1.20.0/25 is directly connected, Ethernet1/0
C
L
         10.1.20.1/32 is directly connected, Ethernet1/0
      172.0.0.0/8 is directly connected, Ethernet0/0
C
      172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
         172.16.13.1/32 is directly connected, Ethernet0/0
L
D
         172.16.24.0/24 [90/307200] via 10.1.20.2, 00:23:36, Ethernet1/0
      192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
C
         192.168.10.0/24 is directly connected, Serial2/0
         192.168.10.1/32 is directly connected, Serial2/0
L
S
      200.15.0.0/16 is directly connected, Null0
```

router#show ip route

Network + Route

```
10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C
         10.1.20.0/25 is directly connected, Ethernet1/0
         10.1.20.1/32 is directly connected, Ethernet1/0
L
      172.0.0.0/8 is directly connected, Ethernet0/0
C
      172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
         172.16.13.1/32 is directly connected, Ethernet0/0
L
         172.16.24.0/24 [90/307200] via 10.1.20.2, 00:23:36, Ethernet1/0
D
      192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
C
         192.168.10.0/24 is directly connected, Serial2/0
         192.168.10.1/32 is directly connected, Serial2/0
L
S
     200.15.0.0/16 is directly connected, Null0
```

router#show ip route

Major networks with subnets show up under a single network with multiple routes

```
C 172.0.0.0/8 is directly connected, Ethernet0/0
172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
L 172.16.13.1/32 is directly connected, Ethernet0/0
D 172.16.24.0/24 [90/307200] via 10.1.20.2, 00:23:36, Ethernet1/0
192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.10.0/24 is directly connected, Serial2/0
L 192.168.10.1/32 is directly connected, Serial2/0
S 200.15.0.0/16 is directly connected, Null0
S 200.15.100.0/24 is directly connected, Null0
```

Native mask routes and supernets show up as separate networks

- The administrative distance is locally significant
- The metric is a protocol specific measure
- The time shown is the amount of time since the route was last touched

EIGRP recalculation of any type, including losing an alternate path, resets this timer

OSPF SPF run resets this timer

IS-IS SPF run resets this timer

Admin Distance

Route Source	Default Distance Values
Connected interface	0
Static route	1
Enhanced Interior Gateway Routing Protocol (EIGRP) summary route	5
External Border Gateway Protocol (BGP)	20
Internal EIGRP	90
IGRP	100
OSPF	110
Intermediate System-to-Intermediate System (IS-IS)	115
Routing Information Protocol (RIP)	120
Exterior Gateway Protocol (EGP)	140
On Demand Routing (ODR)	160
External EIGRP	170
Internal BGP	200
Unknown (infinity)	255

Learn. Connect.
Collaborate. together.

Routing Table:

Route Selection

How does the RIB decide which route is best among various sources?

Actually, it doesn't.

- Each route is marked with the installing routing process
- When another process attempts to install an overlapping route in the RIB, the RIB allows the owner of the current route to decide if it should be installed or not
- Generally, this decision is made using the administrative distance of the two routing processes

The RIB receives OSPF's new route, calls into EIGRP, and EIGRP determines if the OSPF route should be installed

The RIB receives the EIGRP reply and flushes the EIGRP route

RT: closer admin distance for 192.168.254.0, flushing 1 routes

EIGRP-IPv4(1):Callback: lostroute 192.168.254.0/24

RT: add 192.168.254.0/24 via 208.0.245.11, ospf metric [110/65]

EIGRP receives a callback stating the RIB has removed one of its routes

The RIB installs OSPF's route

The RIB notifies OSPF its route has been installed

How is administrative distance used to determine which route should be installed?

The lowest administrative distance wins.

- Only identical routes are compared
- Identical prefixes with different prefix lengths are not the same route
- The route from the protocol with the lower administrative distance is installed

- What happens if the administrative distance of the two routes are equal?
- It depends on the routing protocol

It depends. Usually the route with the default AD is installed into the RIB

OSPF and IS-IS

The older route remains in the RIB

OSPF and IS-IS

- The default administrative distance of each route is compared
- If these are the same, the older route remains in the routing table

EIGRP

EIGRP 2 route is installed in the RIB

Tie breaker is the lowest AS number

 What happens if the same routing process has multiple identical routes with the same metric?

When multiple paths exist within the same routing process with equal cost, both are presented to the RIB for equal cost load-sharing

EIGRP

- Default administrative distance of each route's protocol is compared
- If these are the same, both routes must be EIGRP
- Compare the metric type and metric, the lower cost route is installed
- If the metric and metric type are the same, compare the EIGRP AS number
- The lower AS number wins

Learn. Connect.
Collaborate. together.

The Routing Table:

Interface Down Events

Interface Down Events

How does the RIB interact with the routing protocol when an interface fails?

```
interface Ethernet1/0
  ip address 10.1.20.1 255.255.255.128

router eigrp 1
  network 10.0.0.0

interface Ethernet1/0
  ip address 10.1.20.2 255.255.255.128

router eigrp 1
  network 10.0.0.0
```

Interface Down Events

A#show ip route

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

- C 10.1.20.0/25 is directly connected, Ethernet1/0
- L 10.1.20.1/32 is directly connected, Ethernet1/0
 - 172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
- D 172.16.24.0/24 [90/307200] via 10.1.20.2, 00:00:05, Ethernet1/0....

The RIB tells EIGRP the interface is down 20:46:58.151: EIGRP-IPv4(1): Callback: route adjust Ethernet1/0 20:46:58.151: RT: interface Ethernet1/0 removed from routing 10.1.20.0, connected, is removed from the table RIB 20:46:58.151: RT: del 10.1.20.0 via 0.0.0.0, connected metric [0/0] 20:46:58.151: RT: delete subnet route to 10.1.20.0/25 20:46:58.151: RT: delete route to 10.1.20.1 via 0.0.0.0, 172.16.24.0, learned through EIGRP, is removed from the RIB (before EIGRP Ethernet1/0 20:46:58.151: RT: no routes to 10.1.20.1, flushing takes the neighbor down) 20:46:58.151: RT: delete route to 172.16.24.0 via 10.1.20.2. Ethernet1/0 20:46:58.151: RT: no routes to 172.16.24.0, flushing The EIGRP neighbor goes down 20:46:58.151: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.1.20.2 (Ethernet1/0) is down: interface down 20:47:00.139: %LINK-5-CHANGED: Interface Ethernet1/0, changed state to administratively down The interface changes to down state 20:47:01.139: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet1/0, changed state to down

Learn. Connect.
Collaborate. together.

The Routing Table:

Backup, Static, and Discard Routes

Learn. Connect.
Collaborate. together.

- If a route with a low administrative distance fails...
- The routing table calls each routing process asking for backup routes
- Each routing process attempts to install its matching routes
- The route with the lowest administrative distance wins

```
router-b#show ip route
Codes: D - EIGRP, EX - EIGRP external, O - OSPF....
                                                                     The route is installed
     10.0.16.0/24 [110/1064] via 10.0.12.10, Serial0/3
0
                                                                     by OSPF
                                                                     EIGRP has the same route
router-b#show ip eigrp topo
                                                                     in its topology table, but
IP-EIGRP Topology Table for AS(100)/ID(208.0.17.11)
                                                                     it's not installed because
P 10.0.16.0/24, 0 successors, FD is Inaccessible
                                                                     it has a higher AD (170)
router-b#debug ip routing
                                                                     The OSPF route fails...
router-b#debug ip eigrp notifications
                                                                      EIGRP gets a callback for
RT: delete route to 10.0.16.0/24
                                                                      10.0.16.0/24, which is the
IP-EIGRP: Callback: callbackup routes 10.0.16.0/24
                                                                      OSPF route that failed
IP-EIGRP: Callback: reload iptable
                                                                     EIGRP installs the
RT: add 10.0.16.0/24 via 10.0.12.10, eigrp metric [170/3072256]
                                                                     existing 10.0.16.0/24 route
                                                                     from its topology table
router-b#show ip route
Codes: D - EIGRP, EX - EIGRP external, O - OSPF....
                                                                      The route is now installed
       10.0.16.0/24 [170/3072256] via 10.0.12.10, Serial0/3
D EX
                                                                      by EIGRP
```

Learn. Connect.
Collaborate. Logether.

Static Routes

© 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Static Routes

Static Routes Can Have a Next Hop of an IP Address

- ip route 10.1.1.0 255.255.255.0 10.1.2.1
- This causes the RIB and CEF to do a recursive lookup to find the correct Layer 2 header to rewrite onto the packet
- Recursive lookup: For each packet destined to 10.1.1.0/24:
 - 1) Look up the destination (10.1.1.0/24)
 - 2) Find the next hop is 10.1.2.1
 - 3) Look up how to get to 10.1.2.1
 - 4) Find 10.1.2.1 is via connected interface
 - 5) Look up the layer 2 header out connected interface to next-hop 10.1.2.1
- As long as the next hop is reachable, the router assumes the destination through that next hop is reachable

Static Routes Can Have a Next Hop of a Point-to-Point interface

- ip route 10.1.1.0 255.255.255.0 serial0
- The RIB and forwarding tables point the route directly out the point-to-point interface
 - No need to do a recursive lookup
- For each packet destined to 10.1.1.0/24, the Layer 2 rewrite header is set up to reach the other end of the point-to-point link
- Faster, less complicated lookup
- As long as the interface is up, the router assumes the destination is reachable through that interface

Static Routes Can Have a Next Hop of a broadcast interface

• ip route 10.1.0.0 255.255.0.0 fa0/0

 The RIB and CEF will point this route directly to the broadcast interface

Note: Proxy ARP disabled by default

• For a default route (0.0.0.0/0), this could result in 2³² ARP entries in A's local tables

This would overflow the ARP cache, and crash A

Control static routes to broadcast interfaces

Small range of reachable addresses

Don't use with proxy ARP, just for reaching hosts actually connected to that segment

 Static routes to point-to-point interfaces don't have this problem

 For a static route to an interface, the destination network is shown in the routing table as connected:

```
router(config)#ip route 10.1.0.0 255.255.0.0 fa 0/1
router#show ip route
....
10.0.0.0/16 is subnetted, 1 subnets
S 10.1.0.0 is directly connected, FastEthernet0/1
```

- Static routes to interfaces will be included if you configure redistribute connected
- How do routing protocols handle this in relation to the network statement?

OSPF:

Static routes to interfaces are not advertised as a result of a network statement

• IS-IS:

IS-IS doesn't use network statements, so static routes to interfaces are not advertised without redistribution

EIGRP:

Static routes to interfaces are considered connected routes They will be picked up and advertised if they are contained within a network statement

• BGP:

Static routes to interfaces are installed in the routing table They will be picked up and advertised if they match a network statement

Floating Static Routes

- The concepts of administrative distance and backup routes are used to create floating static routes
- Configuring a static route with a very high administrative distance ensures it won't be installed as long as there is a dynamically learned route installed in the RIB using the default AD
- 255 = unreachable

Floating Static Routes

- When the dynamically learned route fails, the RIB calls the processes looking for a backup route
- Since no other processes have routes to install, the static route with an administrative distance of 250 wins
- This assumes that the primary route will be removed from the table in a failure event. If a failure event will not remove the primary route from the RIB then the floating static backup will not be installed.

Static Routing with Object Tracking

How can we get dynamic failover with no dynamic routing?

Static Routing with Object Tracking

ip route 10.1.1.0 255.255.255.0 172.16.12.2 track 1 ip route 10.1.1.0 255.255.255.0 172.16.13.3 10

track 1 ip sla 1 reachability

ip sla 1 icmp-echo 172.16.24.2 source-interface Ethernet1/0 frequency 5 ip sla schedule 1 life forever start-time now

Probes are being sent to 172.16.24.2

The track object goes down when reachability fails

The routing table is updated to remove the route to the destination through the tracked path

The floating static route is installed into the routing table

Probes are still sent to determine when this path is available again

02:34:12.106: ICMP: echo reply rcvd, src 172.16.24.2, dst 172.16.12.1, topology BASE, dscp 0 topoid 0

№02:34:17.114: ICMP: dst (172.16.12.1) host unreachable rcv from 172.16.12.2

02:34:17.306: Track: 1 Change #9 ip sla 1, reachability Up>Down

02:34:17.306: %TRACKING-5-STATE: 1 ip sla 1 reachability Up->Down

02:34:17.306: RT: del 10.1.1.0 via 172.16.12.2, static metric [1/0]

^02:34:17.306: RT: delete subnet route to 10.1.1.0/24

02:34:17.306: RT: updating static 10.1.1.0/24 (0x0) via 172.16.13.3

02:34:17.306: RT: add 10.1.1.0/24 via 172.16.13.3, static metric [10/0]

02:34:17.310: RT: updating static 10.1.1.0/24 (0x0) via 172.16.13.3

02:34:22.114: ICMP: dst (172.16.12.1) host unreachable rcv from 172.16.12.2

Object Tracking Tip - Use EEM

event syslog pattern "%TRACKING-5-STATE: 1 ip sla 1 reachability Up->Down"
action 1 wait 3
action 2 cli command "enable"
action 3 cli command "term len 0"
action 4 cli command "term exec prompt timestamp"
action 5 cli command "show log | append flash:log_output"
action 6 mail server "<mail_server_ip>" to "<email_address>" from "<sender>" subject "Link C-D is down."
end

Connectivity is unstable. Any helpful tools?

We can use Embedded Event Manager (EEM) to notify us of the issue

www.cisco.com/web/go/eem

Static Routing with BFD

BFD – Bidirectional Forwarding Detection

BFD builds its own neighbor relationship with adjacent routers to provide fast peer failure detection independent of media type, encapsulation, or routing protocols

- Static routing has no method of peer discovery
 - Can use BFD to track the reachability of the peer
- Static route only installed in RIB if BFD session is up allowing us to consider the Gateway reachable

Interface GigabitEthernet0 ip address 2.2.2.1 255.255.252 bfd interval 500 min_rx 500 multiplier 5

ip route static bfd GigabitEthernet0 2.2.2.2 ip route 192.168.1.1 255.255.255.255 GigabitEthernet0 2.2.2.2

Learn. Connect.
Collaborate. together.

Discard Routes

© 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

 Discard routes are created when a router aggregates routing information

```
(EIGRP) ip summary-address eigrp 100 10.1.0.0 255.255.0.0 5
(OSPF) area 1 range 10.1.0.0 255.255.0.0
(IS-IS) summary-address 10.1.0.0 255.255.0.0 level-2
....
Router_A#show ip route
....
D 10.1.0.0/16 is a summary, 00:04:03, Null0
```

 A discard route has an administrative distance of five by default

Why is this discard route created?

Suppose

A is advertising a default route to B

B is advertising the summary 10.1.0.0/16 to A

B is not building a discard route for this summary

interface eth 0/0 ip summary-address eigrp 100 10.1.0.0 255.255.0.0

ip route 0.0.0.0 0.0.0.0 <A>

A receives a packet for 10.1.3.1

We have a permanent routing loop.

Routing Loop avoided if B had a discard route for 10.1.0.0/16

A receives a packet for 10.1.3.1

A examines its local routing table, and finds the best path is through B, using the route to 10.1.0.0/16

A forwards the packet to B

B receives the packet for 10.1.3.1

B examines its local routing table, and finds the best path is through A, using the default route

B forwards the packet to A

- We have a permanent routing loop!
- If B builds a discard route for 10.1.0.0/16, it will discard the packet, rather than forwarding it through the default route back to A

 Can you prevent the routing protocol from creating a discard route?

OSPF

```
router ospf 100 no discard route
```

EIGRP

```
interface serial0
ip summary-address 10.1.0.0 255.255.0.0 255
```

Why would you want to get rid of the discard route?

Be very careful with removing discard routes—this can create routing loops

Be careful when using non default AD values for summary routes.

D#show ip route 10.1.1.0

Routing entry for 10.1.1.0/24

Known via "eigrp 1", distance 250, type internal Redistributing via eigrp 1

Routing Descriptor Blocks:

* directly connected, via Null0

D receives the route from C via EIGRP with an AD of 90. This is better than the installed route to Null with an AD of 250.

Learn. Connect.
Collaborate. together.

Overriding the Routing Table

Overriding the Routing Table

What if I do not want to route my traffic based only on destination?

Policy-Based Routing (PBR)

Route-map

Performance Routing (PfR)

Source IP

ToS

Application

Link Utilization

Learn. Connect.
Collaborate. together.

Overriding the Routing Table:

Policy Based Routing

Route maps allow you to:

Combine more than one type of filter into a single phrase

Use some rudimentary forms of logical "AND" and "OR" to filter routes

Set some route attributes, rather than just permitting or denying routes

Route maps can be used to:

Set IP next-hop

Filter BGP updates

Filter EIGRP updates

Filter routes being redistributed between two protocols

Etc.

One of the two results of a route map is whether the route is permitted or denied through the filter

Type of phrase (permit or deny) Phrase sequence

phrase

If this match Phrase 1 route-map networkers permit 10 match ip address 10 ← succeeds, the route map exits route-map networkers permit 20 Phrase 2 | match ip address 20 ← — If this match with *permit* succeeds, set set ip next-hop 10.1.1.1 If not, the route route-map networkers permit 30 next-hop is set ip next-hop 10.2.2.2 executed, as map continues executed, and with the next the route map phrase exits with If the route map makes it to this permit phrase, set next-hop is If not, the route executed, and the route map map continues exits with *permit* with the next

Phrase type	Match result	Route map result
Permit	Permit	Set statements within the phrase are executed and the route map exits with <i>permit</i>
Deny	Permit	Set statements within the phrase are not executed and the route map exits with deny
Permit/ Deny	Deny	Set statements within the phrase are not executed and route map continues with the next phrase If there is no next phrase, route map exits with deny

- PBR proceeds through the route map until a match is found. If no match is found in the route map, the packet will be forwarded according to normal destination-based routing
- If the route-map statement is marked as a deny, the packets meeting the match criteria are forwarded according to normal destination-based routing
- If the statement is marked as permit and the packets do not meet the match criteria, the packets are forwarded according to normal destinationbased routing
- If the route-map statement is marked as permit and the packets meet the match criteria, the set clauses are applied and policy routing is performed

Match	Description		
metric	Metric of the route In BGP's case, this is the MED Must match exactly!		
route-type	OSPF or EIGRP route type Internal, External OSPF external type 1 or 2		
tag	Route tag		
ip address	Standard or extended access list Applied against the prefix Numbered or named		
<pre>ip address prefix-list</pre>	Prefix list Applied against the prefix and prefix length		
ip next-hop	Standard or extended access list Applied against the next hop (via in the routing table) Numbered or named		
length	Packet length		
ip route-source	Standard or extended access list Applied against the neighbor this route was learned from (from in the routing table) Numbered or named		

- Not all set statements work with all protocols or in all situations
- It is recommended to test what you want to do before you try to use it

Set	Description		
ip next-hop	Set the next hop in the routing table or transmitted route		
ip next-hop recursive	Set the next hop to a subnet which is not directly connected		
ip next-hop verify	Set the next hop and verify availability using tracking		
interface	Set the output interface		
metric	Set the metric of the redistributed or transmitted route		
metric-type	Set the type of external route External type 1 or type 2 for OSPF		
tag	Sets the route tag		

Route Map Logic (AND)

```
route-map networkers permit 10

match ip address 10 
match tag 1000 
set ip next-hop 10.1.1.1

Must match BOTH 'match' conditions to successfully match route-map phrase

Logical AND
```

Some types of matches cannot co-exist in the same route map phrase, such as an access list and a prefix list

Route Map Logic (OR)

```
route-map networkers permit 10
match ip address 10 20
set ip next-hop 10.1.1.1

Can match any ACL in the ACL list under the single 'match' statement

Logical OR
```

Route Map Logic (NOT)

```
route-map networkers permit 10

match ip address 10

route-map networkers permit 20

match ip address 20

route-map networkers permit 30

set ip next-hop 10.1.1.1
```

If we match either ACL in phrase 10 or phrase 20 then we exit the route-map and don't fall to catch-all phrase 30.

Therefore we must NOT match either ACL 10 nor 20 in order for the 'set' to apply

Logical NOT

Route map	Logic	Notes
route-map networkers permit 10 match ip address 10 match tag 1000 set ip next-hop 10.1.1.1	AND	Both matches must succeed for the set to be executed Some types of matches cannot co-exist in the same route map phrase, such as an access list and a prefix list
<pre>route-map networkers permit 10 match ip address 10 20 set ip next-hop 10.1.1.1</pre>	OR	If the route matches either access list 10 or 20, the set will be executed
route-map networkers permit 10 match ip address 10 route-map networkers permit 20 match ip address 20 route-map networkers permit 30 set ip next-hop 10.1.1.1	NOT	The route must not match access list 10 or 20 for the set to execute If the access lists deny routes, then the routes must not exist for a specific action to be taken (useful in conditional advertisement)

Route map AND and OR rules

If two different types of matches are configured in the same phrase, they must both succeed for the set to be executed and the route map to exit (logical AND)

If two of the same type of match are configured (where permitted) in the same phrase, either one can succeed for the set to be executed and the route map to exit (logical OR)

All matches in a single phrase must fail for the route map to fall through to the next phrase (logical NOT)

 Route maps can become very complicated based on these parsing rules

Gathering Policy with Continue

Route Maps

- In normal processing, if all matches fail, the route map falls through to the next phrase
- Route map continue allows you to continue to another phrase if the matches succeed
- Sets are executed before the continue is followed
- Use for:

Gathering policy (matches and sets) into a single phrase

More complex logical constructions

- Allows packets to be filtered through route maps containing policies that selectively determine the next hop to which packets are to be forwarded
- Policy routes can be determined based on such things as the source of the packet, protocol types, port numbers, and the size of the packet
- Must be applied on the interface on which the packet is received. "ip policy route-map <name>" in interface configuration mode

Router_B#show ip route

. . . .

D 10.1.3.0/24 via <E>

Router_B#show run

interface Ethernet1/0 ip policy route-map networkers

access-list 10 permit 1.1.1.0 0.0.0.255 access-list 20 permit 1.1.2.0 0.0.0.255

route-map networkers permit 10 match ip address 10 route-map networkers permit 20 match ip address 20 set ip next-hop 10.1.1.2 route-map networkers permit 30 set ip next-hop 10.2.2.2

- PBR applied to an interface only affects traffic that comes in that interface
- Can configure a PBR policy local to the router

```
Router#show run

ip local policy route-map networkers

access-list 101 permit ip any 1.1.1.0 0.0.0.255

route-map networkers permit 10
match ip address 101
set ip next-hop 10.1.1.2
```

Local PBR policy only affects traffic generated from the router itself

Can PBR be Dynamic?

You can use Object Tracking with PBR to track the availability of the next-hop

- Tracking object tied to IP SLA object
- •Route-map ties next-hop to tracking object so next-hop is only valid if the tracking object is UP
- If both tracking objects are DOWN, normal routing is used

Sequence number determines priority of next-hops

- Load sharing—Supplemental to dynamic load-sharing capabilities offered by Cisco IOS, PBR allows traffic to be administratively distributed among multiple paths based on the traffic characteristics
- Quality of Service (QoS)—Using IP Precedence or type of service (ToS) values to prioritize differentiated traffic
- Source-sensitive routing—Route traffic originating from different users through different paths
- Cost—Route traffic across low-bandwidth, low-cost permanent paths or high-bandwidth, high-cost, switched paths
- Security—Route certain types of traffic (like http) to firewall/IPS/content filtering device and allow other traffic to follow normal routing

Learn. Connect.
Collaborate. together.

Overriding the Routing Table:

Performance Routing

© 2011 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Performance Routing

- Traditional routing based on destination of packet
- Policy-based routing allows routing based on more information about the packet

Source IP, Protocol, Ports Used, QoS markings, etc

 Performance Routing (PFR) allows for routed path decisions to be made on path characteristics (like reachability, delay, packet loss, jitter, Mean opinion Score) so application traffic can be given the optimum path given it's path requirements

Performance Routing

- Learn traffic and applications
 - Discovers traffic going through network via Netflow
- Measure traffic and application performance
 - Tracks characteristics like loss/delay/jitter about paths either passively (via netflow) or actively (via IP SLA probes)
- Apply policies to the traffic based on measurements
 - Allows definitions of policies so certain applications or traffic classes given required network service
- Reroute traffic
 - Dynamically alters path of application traffic if current service not in line with specified policy to sustain performance

Performance Routing

- Border Routers collect traffic information and pass the information to a central router (called a Master Controller)
- Master Controller receives information about flows and determine if they are within configured policy for traffic class
- If measurements of traffic class is out of policy or lessoptimum, Master controller can send commands to the borders to re-route traffic

 www.cisco.com/go/pfr

Learn. Connect.
Collaborate. Logether.

Load Sharing

- Assume the same routing process attempts to install two routes for the same destination in the RIB
- The routing process may allow the second route to be installed based on its own rules

	OSPF	IS-IS	EIGRP		
Route cost	Must be equal to installed route	Must be equal to installed route	Must be less than or equal to the lowest cost route times the variance		
Maximum Paths	Must be less than or equal to the <i>maximum-paths</i> configured under the routing process				

Load sharing performed in the CEF (Cisco Express Forwarding) path

CEF has 2 forms of load sharing

Per-session (Per-destination)

Flow 1 - ___ Flow 2 - ___

Per-packet

Per-Session Load Sharing

- Often referred to as per-destination load sharing, even within Cisco IOS
- This method is the default behavior and does not require any additional configuration
- A session is a flow that shares the same source and destination.
 Traffic with different source to destination pairs tend to take different paths
- This method ensures that traffic for a given session arrive in order
- Has the potential for traffic polarization and is more effective as the number of source to destination pairs increase

Per-Packet Load Sharing

- To utilize this method, configure "ip cef load-sharing per-packet" in interface configuration mode. Each outgoing interface must have this command configured
- Uses a round-robin method to determine which path each packet takes to the destination without consideration of source to destination sessions
- Ensures traffic is more evenly distributed over multiple paths
- Packets for a given source to destination session may take different paths, introducing a greater potential for packets to arrive out of sequence. Not advisable for all types of traffic
- Method used when process-switching

The *traffic share count* is critical to understanding the actual load sharing of packets using these two routes

How is this calculated?

```
router#show ip route 192.168.239.0
Routing entry for 192.168.239.0/24
 Known via "eigrp 100", distance 170, metric 3072256, type external
 Redistributing via eigrp 100
  Last update from 192.168.245.11 on Serial3/1, 00:18:17 ago
 Routing Descriptor Blocks:
  * 192.168.246.10, from 192.168.246.10, 00:18:17 ago, via Serial3/0
      Route metric is 3072256, traffic share count is 1
    192.168.245.11, from 192.168.245.11, 00:18:17 ago, via Serial3/1
      Route metric is 3072256, traffic share count is 1
                    The metric of each route is divided into
                    the highest metric among the available
                    metrics
                    3072256/3072256 == 1
```

The resulting number is the traffic share count

```
router#show ip route 192.168.239.0
Routing entry for 192.168.239.0/24
  Known via "eigrp 100", distance 170, metric 3072256, type external
  Redistributing via eigrp 100
  Last update from 192.168.245.11 on Serial3/1, 00:18:17 ago
  Routing Descriptor Blocks:
  * 192.168.246.10, from 192.168.246.10, 00:18:17 ago, via Serial3/0
      Route metric is 1536128, traffic share count is 2
    192.168.245.12, from 192.168.245.11, 00:18:17 ago, via Serial3/1
      Route metric is 3072256, traffic share count is 1
                    If one metric is less than another metric, the
                    traffic share count will be something other
                    than 1 (only for EIGRP and requires variance
                    to be configured)
                    3072256/3072256 == 1
                    3072256/1536128 == 2
                    The resulting number is the traffic share count
```

next available path

```
Routing entry for 192.168.239.0/24

Known via "eigrp 100", distance 170, metric 3072256, type external Redistributing via eigrp 100

Last update from 192.168.245.11 on Serial3/1, 00:18:17 ago

Routing Descriptor Blocks:

* 192.168.246.10, from 192.168.246.10, 00:18:17 ago, via Serial3/0

Route metric is 3072256, traffic share count is 1

....

192.168.245.11, from 192.168.245.11, 00:18:17 ago, via Serial3/1

Route metric is 3072256, traffic share count is 1

....

When process switching, traffic share count packets is sent down one path, and then the process moves to the
```

The route with the * beside it is the current in use path for process-switching

 CEF uses 16 hash buckets and assigns hash buckets to each next-hop

Router#sh ip route 1.1.1.3

Routing entry for 1.1.1.3/32

Known via "ospf 10", distance 110, metric 20, type extern 2, forward metric 30

Last update from 10.3.3.2 on Ethernet1/0, 00:01:04 ago Routing Descriptor Blocks:

10.3.3.2, from 70.70.70.70, 00:01:04 ago, via Ethernet1/0 Route metric is 20, traffic share count is 1

* 10.3.3.1, from 70.70.70.70, 00:01:24 ago, via Ethernet1/0 Route metric is 20, traffic share count is 1

Each packet that comes in gets measured against the HASH, and the HASH result determines which hash bucket the packet uses

Router#sh ip cef 1.1.1.3 internal [snip]

1.1.1.3/32, epoch 0, RIB[I], refcount 5, per-destination sharing

Ethernet1/0(7): 10.3.3.1, 10.3.3.2

nexthop 10.3.3.1 Ethernet1/0, adjacency IP adj out of Ethernet1/0, addr 10.3.3.1 nexthop 10.3.3.2 Ethernet1/0, adjacency IP adj out of Ethernet1/0, addr 10.3.3.2

flags: Per-session, for-rx-IPv4

16 hash buckets

< 0 > IP adj out of Ethernet1/0, addr 10.3.3.1 044C4608

< 1 > IP adj out of Ethernet1/0, addr 10.3.3.2 044C44E8

< 2 > IP adj out of Ethernet1/0, addr 10.3.3.1 044C4608

< 3 > IP adj out of Ethernet1/0, addr 10.3.3.2 044C44E8

< 4 > IP adj out of Ethernet1/0, addr 10.3.3.1 044C4608

< 5 > IP adj out of Ethernet1/0, addr 10.3.3.2 044C44E8

< 6 > IP adj out of Ethernet1/0, addr 10.3.3.1 044C4608

< 7 > IP adj out of Ethernet1/0, addr 10.3.3.2 044C44E8

< 8 > IP adj out of Ethernet1/0, addr 10.3.3.1 044C4608

< 9 > IP adj out of Ethernet1/0, addr 10.3.3.2 044C44E8

<10 > IP adj out of Ethernet1/0, addr 10.3.3.1 044C4608

<11 > IP adj out of Ethernet1/0, addr 10.3.3.2 044C44E8

<12 > IP adj out of Ethernet1/0, addr 10.3.3.1 044C4608

<13 > IP adj out of Ethernet1/0, addr 10.3.3.2 044C44E8

<14 > IP adj out of Ethernet1/0, addr 10.3.3.1 044C4608

<15 > IP adj out of Ethernet1/0, addr 10.3.3.2 044C44E8

Each next-hop has 8 hash buckets

The result is a 50/50 chance of getting each next-hop

1:1 load-sharing

- Per-destination Load-sharing takes a set of inputs, runs those inputs into the hash algorithm, and the result of the algorithm determines which load-sharing Hash bucket that packet will use
- Per-destination load-sharing algorithm used will determine which inputs are put into the hash

CEF hashes the source and destination addresses, and chooses a bucket from the load share table

The load share table points to an adjacency corresponding to one of the next hops in the routing table

How do I tell which next-hop a particular packet will take?

```
router#show ip cef exact-route 10.1.1.1 192.168.239.1 10.1.1.1 -> 192.168.239.1 : Serial3/0 (next hop 192.168.246.10)
```

- •'exact-route' command in CEF takes hash inputs (source/destination IP) and puts them through the hash to result the egress interface
 - Useful in tracing path of packet during troubleshooting

Polarization

• If the same input into the hash algorithm produces the same result, then what if there are many routers using the same algorithm?

Packet 1 = src 1.1.1.1 dst 2.2.2.2 Packet 2 = src 1.1.1.1 dst 3.3.3.3

If the hash for packet 1 always results in path 1

And if the hash for packet 2 always results in path 2

Then all routers will make the same path decision and as a result the links between B=>E and C=>F will never be used!

Polarization

- We can fix this if we change the inputs on each router by looking at something else besides just the src/dst IP
 - -But this extra input would need to be unique per router, otherwise every router will pick the same path again

Universal Algorithm

Each router adds a unique random number to the hash algorithm resulting in the possibility that the hash result on each hop may be different

Algorithms

- Original algorithm—Src/Dst IP
 - -could potentially produce distortions in load sharing across multiple routers because the same algorithm was used on every router (polarization)
- Universal algorithm—Src/Dst IP and Universal ID
 - -allows each router on the network to make a different load sharing decision for each source-destination address pair (resolves polarization)
 - -default algorithm in IOS.
- Tunnel algorithm—
 - -designed to balance the per-packet load when only a few source and destination pairs are involved.
- Include-ports algorithm— Src/Dst IP Src/Dst Port and Universal ID
 - -allows you to use the Layer 4 source and destination ports as part of the load-balancing decision.

Performance Routing

 In addition to load sharing traffic based on application policies, PfR can also load share or load balance traffic based on link utilization.

Performance Routing

- CE2 link was 60% utilized and CE1 only 20%. PfR can identify this and move traffic to better balance out the egress link utilizations.
 - Done by configuring a policy to keep link utilization within a % of each other, so one link isn't utilized more than the other

Learn. Connect.
Collaborate. Logether.

Routing Segmentation and Separation

- When would you want to separate routing operations? Prevent any potential exchange of data or routing information.
- Why not use ACLs or other security features?
 Helpful but limited
- A VRF can help prevent the exchange of routes as well as data and does not have to be constantly updated.

What is a VRF?

A VPN Routing and Forwarding (VRF) is an IOS routing instance.

All tables (routing/cef) maintained in routing instance (vrf)

All protocols/features run independently in each VRF instance

Allows for logical separation at Layer-3

 Originally designed for MPLS VPN so multiple MPLS customers can use overlapping IP space and be logically separated from each other

This presentation will be referring to VRF outside of an MPLS VPN context. Also known as VRF-Lite.


```
Router A#show run vrf blue
                                          Router A#show run vrf red
ip vrf blue
                                          ip vrf red
interface Ethernet0/1
                                          interface Ethernet0/2
ip vrf forwarding blue
                                           ip vrf forwarding red
ip address 172.16.12.1 255.255.255.0
                                           ip address 172.16.12.1 255.255.255.0
interface Loopback1
                                          interface Loopback2
ip vrf forwarding blue
                                           ip vrf forwarding red
ip address 1.1.1.1 255.255.255.255
                                           ip address 2.2.2.2 255.255.255.255
router eigrp 1
                                          router eigrp 1
address-family ipv4 vrf blue
                                          address-family ipv4 vrf red
 network 172.16.12.0 0.0.0.255
                                           network 172.16.12.0 0.0.0.255
 no auto-summary
                                           no auto-summary
 autonomous-system 1
                                           autonomous-system 1
                                           exit-address-family
exit-address-family
```

How to configure and identify a VRF

Router#sh	now ip vrf						
Name	Defau	Default RD <not set=""></not>					
blue	<not s<="" th=""><th></th><th></th><th></th><th></th></not>						
red	<not se<="" td=""><td></td><td></td><td></td><td></td></not>						
Router#sh	now ip vrf int						
Interface	IP-Address	VRF		Protocol			
Et0/1	172.16.12.1	blue		up			
Lo1	1.1.1.1	blue		up			
Et0/2	172.16.12.1	red		up			
Lo2	2.2.2.2	red		up			
Router#sh	now ip route vrf blue						
Routing T	able: blue						
1.0.0.0/32 is subnetted, 1 subnets							
C 1.1.1.1 is directly connected, Loopback1							
172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks							
C 172.16.12.0/24 is directly connected, Ethernet0/1							
L 172.16.12.1/32 is directly connected, Ethernet0/1							

- Routing principles are the same within a VRF as in the global routing table.
- All routes and prefixes are unique to a given VRF unless route leaking is configured.
- Features that affect forwarding (like Routing Protocols/static routes/NAT/PBR) need to be configured on a per-VRF basis
- Interface-level features that affect traffic (like ACLs/QoS/uRPF) do not need to be configured to be VRF aware because they inherit the VRF of the interface on which they are configured

Learn. Connect.
Collaborate. together.

Routing and Router Resources:

CPU

- Central Processing Unit responsible for carrying out instructions.
- IOS uses a priority run-to-completion model for executing processes.
- The task scheduler is responsible for scheduling and executing kernel processes on the CPU
- Process Priorities:

Critical

High

Medium

Low

• There is no preemption but higher priority processes have more opportunity to access the CPU.

What uses CPU resources?

Router processes

Packet switching

IP Input – Process switched packets

Interrupts – CEF switched packets

```
CPU utilization for five seconds: 5\%/2\%, one minute: 3\%; five minutes: 2\%
 PID Runtime (ms) Invoked uSecs 5Sec 1Min 5Min TTY Process
[snip]
                            116 1.00% 1.00%
 2
             68
                     585
                                               0%
                                                       IP Input
             88
                             20 0.20% 1.00%
                                               0% 0 BGP Router
 17
                    4232
 18
                   14650
                                   0%
                                       0% 0%
                                                     0 BGP Scanner
            152
                             10
```

How does routing information affect CPU resources?

- BGP scanner walks the BGP table and confirms reachability of the next hops as well as checks conditional-advertisement to determine whether or not BGP should advertise conditional prefixes.
- The larger the BGP table, the longer BGP scanner takes to run which in turn may force lower priority processes to wait.

How does routing information affect CPU resources?

- BGP router calculates the best BGP path and processes any route "churn". It also sends and receives routes, establishes peers, and interacts with the routing information base (RIB).
- Does a large amount of work during initial convergence where large amount of prefixes are exchanged.
- The larger the tables that are being exchanged, the more time BGP router will have to use the CPU.

Monitoring CPU usage

Show commands:

show process cpu sorted show process cpu history

CPU threshold monitoring/logging

process cpu threshold type {total | process | interrupt} rising percentage interval seconds [falling percentage interval seconds]

18:41:20.934: %SYS-1-CPURISINGTHRESHOLD: Threshold: Total CPU Utilization(Total/Intr): 72%/0%, Top 3 processes(Pid/Util): 79/64%, 140/6%, 75/1%

Reporting CPU events via EEM

```
event snmp oid 1.3.6.1.4.1.9.9.109.1.1.1.1.3.1 get-type exact entry-op ge entry-val 90 poll-interval 10 action 1.0 cli command "enable" action 2.0 cli command "show proc cpu sorted | redirect flash:highcpu.txt" action 3.0 syslog msg "High CPU DETECTED "show process cpu sort" written to > flash:highcpu.txt "action 4.0 mail server "<mail_server_ip>" to "<email_address>" from "<sender>" subject "CPU exceeded 90%."
```

- Event manager applet monitoring SNMP OID for CPU utilization percentage every 10 seconds
 - Actual OID will depend on platform/code
- If CPU OID value exceeds value 90 (90%), script will trigger the specified actions

Learn. Connect.
Collaborate. Logether.

Routing and Router Resources:

Memory

- Managed in 2 pools: Processor and I/O
- The processor memory pool is the general memory pool common to all IOS systems including storage for routing information.
- The I/O pool or packet memory manages memory for interface packet buffers.

How does routing information affect memory resources?

- Most common example of where we see this is the storing of BGP prefixes.
- BGP generally carries the largest number of prefixes as well as the potential to store multiple tables.

How much memory do I need to store my routing information?

Full BGP table

Multiple feeds

Route filtering

Soft reconfiguration inbound

Default route

Memory Usage Example

BGP Profile 1

Baseline memory usage with no BGP peers

- BGP Profile 2
 - 1 BGP peer sending 300,000 routes
- BGP Profile 3
 - 2 BGP peers both sending the exact same 300,000 prefixes Unique AS path and next-hop IP information from each peer
- BGP Profile 4
 - 2 BGP peers both sending 300,000 unique prefixes with zero overlap Unique AS path and next-hop IP information from each peer

Memory Usage Example

The amount of memory used to store prefixes also depends on the amount of overlap between peers.

BGP Profile	1	0	0	27.5MB
	2	1	300,000	221.2MB
	3	2	600,000	245.1MB
	4	2	600,000	416.1MB

#Routes

Memory

#Peers

Monitoring memory availability

- Show commands
 show process memory sorted
 show memory statistics history
- Memory Threshold Notifications
 memory free low-watermark {processor threshold | io threshold}
 memory reserve critical kilobytes

22:31:19.559: %SYS-4-FREEMEMLOW: Free Memory has dropped below 2000k Pool: Processor Free: 66814056 freemem lwm: 204800000

Learn. Connect.
Collaborate. Logether.

Q & A

Recommended Reading

- Continue your Cisco Live learning experience with further reading from Cisco Press
- Check the Recommended Reading flyer for suggested books

Available Onsite at the Cisco Company Store

Complete Your Online Session Evaluation

- Receive 25 Cisco Preferred Access points for each session evaluation you complete.
- Give us your feedback and you could win fabulous prizes. Points are calculated on a daily basis. Winners will be notified by email after July 22nd.
- Complete your session evaluation online now (open a browser through our wireless network to access our portal) or visit one of the Internet stations throughout the Convention Center.

Don't forget to activate your Cisco Live and Networkers Virtual account for access to all session materials, communities, and on-demand and live activities throughout the year. Activate your account at any internet station or visit www.ciscolivevirtual.com. Thank you.

CISCO