Inverses and Transposes

First synthesis:

Assume that A is invertible.

- (1) The elimination produces n pivots.
- (2) A^{-1} is unique. Proof Suppose BA = I and AC = I, then B = C: $B(AC) = (BA)C \implies BI = IC \implies B = C$
- (3) Ax = b has one and only one solution: $X = A^{-1}b$.
- (4) If Ax = 0, x +0, then A is not invertible.

Useful inverses:

$$\begin{pmatrix} a b \\ c d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d-b \\ -c a \end{pmatrix}$$

Gauss - Jordan: The idea: Find X such that AX = I.

Columnwise: $A(x_1 x_2 ... x_n) = (e_1 e_2 ... e_n)$ Eliminate all RHSs simultaneously!

2 -1 0 | 1 0 0 This stage is
$$UX = B$$
.

0 $\frac{3}{2}$ -1 $\frac{14}{2}$ 1 0 $\frac{7}{3}$ /4 We want $IX = A^{-1}$.

0 0 $\frac{4}{3}$ | $\frac{1}{3}$ $\frac{2}{3}$ 1 Solution: Eliminate upwards!

Transpose:
$$A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$$
; $A^{T} = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}$

In short: A = (xij), At = (xji).

Two essential formulas:

$$(a) (AB)^{\mathsf{T}} = B^{\mathsf{T}} A^{\mathsf{T}}$$

(b)
$$(A^{-1})^{T} = (A^{T})^{-1}$$

(b) assuming (a) is true:
$$\begin{cases} AA^{-1} = I \iff (AA^{-1})^{T} = I^{T} \\ A^{-1}A = I \iff (A^{-1}A)^{T} = I^{T} \end{cases}$$

$$(A^{-1})^{T}A^{T} = A^{T}(A^{-1})^{T} = I \implies (A^{-1})^{T} = (A^{T})^{-1}$$

Definition Matrix A is symmetric, if A = AT.

Important identity: R^TR is symmetric $(R^TR)^T = R^TR$

For symmetric metrices: A = LDU = LDLT is symmetric!

Definition Permutation Metrix

The rows of any permutation matrices are rows of the corresponding identity matrix in some order.

Any inverse permutation is also a permutation.

Morcover, P-1 = PT.

Definition If A-1 = AT, A is orthogonal.

Example
$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow P^{-1} = P^{T} (= P)$$

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \Rightarrow P^{T} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} d_{22} & d_{23} & d_{21} \\ d_{32} & d_{33} & d_{31} \\ d_{12} & d_{13} & d_{11} \end{pmatrix}$$

P from left permules rows; PT from right permutes columns