

EM IME-ITA 2

Nome: Turma: EM IME-ITA 2

Professor: Gabriel Braun Unidade: Tijuca II Data: junho de 2023

Instruções:

• Faça sua avaliação à caneta.

• Resoluções a lápis não serão corrigidas.

• Questões discursivas sem desenvolvimento não serão consideradas.

• Não serão fornecidas folhas para rascunho.

Nota:

QUÍMICA

Dados

Constante de Avogadro, $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$

Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$

Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2\,\mathrm{kg}\,\mathrm{s}^{-1}$

Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$

- Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
- Constante dos gases, $R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- Constante de Rydberg, $\Re = 1.1 \cdot 10^7 \, \text{m}^{-1}$
- Velocidade da luz no vácuo, $c = 3 \cdot 10^8 \text{ m s}^{-1}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

•
$$\sqrt{2} = 1.4$$
 • $\sqrt{3} = 1.7$ • $\sqrt{5} = 2.2$ • $\log 2 = 0.3$ • $\log 3 = 0.5$ • $\ln 10 = 2.3$

= 1,4 •
$$\sqrt{3} = 1$$
,

•
$$\sqrt{5} = 2.3$$

•
$$\log 2 = 0.3$$

•
$$\log 3 = 0.5$$

$$\ln 10 = 2.3$$

Tabela Periódica

1	6	7	8	11	12	16	17
H 1,01	C	N 14,01	O 16,00	Na	Mg 24,31	S 32,06	Cl 35,45

Uma solução é preparada pela mistura de 15 g de benzeno, C_6H_6 , e 64,3 g de tolueno, $C_6H_5CH_3$ em 25 °C. A pressão de vapor do benzeno é 94,6 Torr e a do tolueno é 29,1 Torr nessa temperatura.

- a. **Determine** a pressão total da fase vapor.
- b. **Determine** a fração molar de benzeno no vapor.

Questão 2

Quando uma amostra de 250 mg de eugenol, o composto responsável pelo odor do cravo-da-índia, foi dissolvida em 100 g de cânfora, o ponto de congelamento desta última abaixou $0.62\,^{\circ}$ C.

A constante do ponto de congelamento da cânfora é $k_{c,canfora} = 40 \,\mathrm{K \, kg^{-1} \, mol^{-1}}$.

Determine a massa molar do eugenol.

Questão 3

Um balão é carregado com 3,3 mbar de monocloreto de bromo, BrCl, e aquecido até 500 K, em que ocorre a reação:

$$2 \operatorname{BrCl}(g) \Longrightarrow \operatorname{Br}_2(g) + \operatorname{Cl}_2(g) \quad K = 32$$

Determine a pressão parcial de BrCl no equilíbrio.

Em um reator, a reação está em equilíbrio:

$$CH_4(g) + 4I_2(s) \Longrightarrow CI_4(g) + 4HI(g)$$

- a. **Explique** o que ocorre com a pressão parcial de CI₄ quando a pressão parcial de CH₄ é aumentada.
- b. **Explique** o que ocorre com a pressão parcial de I₂ quando a pressão parcial de CI₄ é reduzida.
- c. **Explique** o que ocorre com a constante de equilíbrio quando a concentração de HI é aumentada.
- d. **Explique** o que ocorre com a pressão parcial de CI_4 quando a massa de I_2 é aumentada.

Questão 5

Considere as reações:

1.
$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$
, ...

$$2. \ CO(g) + H_2O(g) \Longrightarrow CO_2(g) + H_2(g), \Delta H^\circ < 0.$$

$$3. \ \, CO_2(g) + 2\,NH_3(g) \Longrightarrow CO(NH_2)_2(s) + H_2O\left(g\right), \Delta H^\circ < 0.$$

4.
$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$
, endotérmica..

Identifique as reações em que os *produtos* são favorecidos por aumento da temperatura.

 $\textbf{Apresente} \text{ a fórmula estrutural de todos os isômeros constitucionais com fórmula molecular } C_5H_{10}.$

Questão 7

Considere os compostos.

Classifique as ligações duplas dos compostos como cis/trans ou E/Z.

Considere os compostos.

- 1. pentanol
- 2. pentanal
- 3. hexano
- 4. 2,2-dimetilbutano

Ordene os compostos em função de sua temperatura de ebulição.

Questão 9

A testosterona é o principal hormônio sexual masculino e um esteroide anabolizante.

Testosterona

Determine o número de estereoisômeros desse composto.

Classifique cada par de compostos a seguir como enantiômeros, diastereoisômeros, isômeros constitucionais ou representações diferentes de um mesmo composto.

c.
$$Br$$
 Br e Br

d.
$$CH_3$$
 e H_3C CH_3