ЛАБОРАТОРНАЯ РАБОТА №41

ИЗМЕРЕНИЕ УСКОРЕНИЯ СИЛЫ ТЯЖЕСТИ ПРИ ПОМОЩИ ОБОРОТНОГО МАЯТНИКА КАТЕРА

Поляков Даниил, Б07-Ф3

Цель работы: используя маятник Катера определить значение ускорения свободного падения с наибольшей точностью.

Оборудование:

- Маятник Катера;
- Электронный секундомер;
- Штангенциркуль;
- Уровень;
- Угольник.

Расчётные формулы:

• Средний период:

$$T = \frac{T_1 + T_2}{2}$$

 T_1, T_2 — измеренные периоды колебаний относительно сопряжённых осей.

• Разность периодов:

$$\tau = T_1 - T_2$$

 T_1 , T_2 — измеренные периоды колебаний относительно сопряжённых осей.

• Расстояние между сопряжёнными осями:

$$a = a_1 + a_2$$

 a_1, a_2 – расстояния от сопряжённых осей до центра инерции.

• Разность расстояний от сопряжённых осей до центра инерции:

$$b = a_1 - a_2$$

 a_1 , a_2 – расстояния от сопряжённых осей до центра инерции.

• Ускорение свободного падения:

$$g = \frac{4\pi^2 a}{T^2} \cdot \left(\frac{1}{1 + \frac{\tau(a+d)}{Tb}}\right)$$

T — средний период;

au – разность периодов;

a — расстояние между сопряжёнными осями;

b – разность расстояний от сопряжённых осей до центра инерции;

d – диаметр опорных шариков.

• Длительность промежуточного измерения количества колебаний маятника:

$$t_{k+1} \approx t_k \frac{T}{4\theta}$$

 t_k – продолжительность промежуточного измерения;

Т – примерное значение периода колебаний маятника;

 $\theta = 0.2$ с – погрешность отсчёта;

- Формулы для вычисления погрешностей:
 - о Частная относительная погрешность д по аргументам:

$$\begin{split} &\left(\frac{\Delta g}{g}\right)_{T_1} = \frac{\Delta T_1}{T} \left| 1 + \frac{a}{b} \right| \\ &\left(\frac{\Delta g}{g}\right)_{T_2} = \frac{\Delta T_2}{T} \left| 1 - \frac{a}{b} \right| \\ &\left(\frac{\Delta g}{g}\right)_a = \frac{\Delta a}{a} \\ &\left(\frac{\Delta g}{g}\right)_{a_1} = \frac{\Delta a_1}{a} \cdot 2 \frac{|\tau|}{T} \cdot \left(\frac{a}{b}\right)^2 \\ &\left(\frac{\Delta g}{g}\right)_a = \frac{\Delta d}{a} \left| \frac{\tau}{T} \cdot \frac{a}{b} \right| \end{split}$$

о Погрешность измерения времени:

$$\Delta t_k = \sqrt{(\alpha t_k)^2 + (k\theta)^2}$$

 t_k – измеренное за k-ый запуск секундомера время;

lpha — неточность хода секундомера;

 θ — неточность отсчёта.

Метод измерения

- 1. С помощью угольника удостоверимся, что опоры с шариками перпендикулярны стержню.
- 2. Измерим расстояние *а* между держателями маятника с помощью штангенциркуля.
- 3. С помощью уровня удостоверимся, что площадка, на которую устанавливается маятник, горизонтальна.
- 4. Установим маятник на площадку держателем, находящимся ближе к грузу, убедимся, что оба шарика касаются площадки, и измерим время t, за которое маятник совершает n=20 колебаний. Найдём период колебаний T_1 маятника на данном держателе. Потом подвесим маятник за противоположный держатель и проведём те же измерения. Если периоды T_1 и T_2 будут сильно различаться, переместим держатель, находящийся ближе к грузу маятника, измерим новое расстояние между держателями a и повторим эти же измерения времени.

- 5. Подберём такое положение держателя, находящегося ближе к грузу, чтобы периоды колебаний T_1 и T_2 были максимально близки друг к другу. Измерим расстояние между держателями a. Повторим измерение времени 20 колебаний для двух держателей и найдём периоды колебаний.
- 6. Теперь перейдём к точному измерению периодов T_1 и T_2 . Установим маятник на площадку держателем, находящимся ближе к грузу, и измерим время t_1 , за которое маятник совершает N=50 колебаний, остановив секундомер, но не сбрасывая его. Найдём приблизительное значение периода T_1 . Далее будем находить количество колебаний, которых маятник совершает за время t_2 , примерно равное $t_1 \frac{T}{4\theta}$. Запустим секундомер (продолжим измерение с момента времени t_1) в начале колебания маятника и подождём, пока секундомер не начнёт подходить к моменту времени t_2 . Остановим секундомер в конце колебания и запишем значение t_2 . Найдём количество совершённых колебаний N, поделив t_2 на $T_1\left(v_k = \frac{t_k}{T_{k-1}}\right)$ и округлив значение до целого. Найдём новое значение периода колебаний T_1 . Далее будем находить количество колебаний, которых маятник совершает за время t_3 , примерно равное $t_2 \frac{T}{4\theta}$. Продолжим измерение и также будем находить более точное значение периода T_1 , пока количество колебаний не достигнет 600. Повторим такую же серию измерений, подвесив маятник за второй держатель, и найдём T_2 .
- 7. Найдём положение центра инерции маятника. Уравновесим маятник на уголке и посмотрим, какому делению на стержне маятника это положение соответствует. Потом воспользуемся уголком и посмотрим, какому делению на стержне маятника соответствует точка опоры шариков одного из держателей. Таким образом, найдём расстояние от одного из держателей до центра инерции маятника.

Таблицы и обработка данных

1. Найдём сопряжённые оси.

а, мм	n	<i>t</i> ₁ , c	$\langle t_1 \rangle$, c	T_1 , c	<i>t</i> ₂ , c	$\langle t_2 \rangle$, c	T_2 , c
843.0±0.1	20	36.88	36.88	1.844	36.79	36.79	1.840
		36.87			36.78		

Разница в периодах очень мала, поэтому можно использовать текущее положение держателей.

2. Измерение периодов колебаний маятника.

Промежуточное время измерения будем выбирать с разницей примерно в $\frac{T}{4\theta} \approx 2.3$ раза.

Относительная погрешность измерения периода равна:

$$\frac{\Delta T_{1,2}}{T_{1,2}} = \frac{\Delta t_k}{t_k} = \frac{\sqrt{(\alpha t_k)^2 + (k\theta)^2}}{t_k}$$

Следовательно, абсолютная погрешность равна:

$$\Delta T_{1,2} = \frac{\sqrt{(\alpha t_k)^2 + (k\theta)^2}}{t_k} \cdot T_{1,2}$$

Измерения времени колебаний маятника на держателе 1 (ближнем к грузу, груз находится над точкой опоры):

t_1 , c	ν	N	T_1 , c	$\Delta T_1/T_1$	$T_1 \pm \Delta T_1$, c
92.19	-	50	1.8438	0.002	1.844±0.004
212.09	115.03	115	1.8443	0.002	1.844±0.003
479.19	259.83	260	1.8430	0.001	1.843±0.002
1105.32	599.72	600	1.8422	0.0007	1.8422±0.0013

Измерения времени колебаний маятника на держателе 2 (дальше от груза, груз находится под точкой опоры):

t_2 , c	ν	N	T_2 , c	$\Delta T_2/T_2$	$T_2 \pm \Delta T_2$, c
91.87	-	50	1.8374	0.002	1.837±0.004
211.30	115.00	115	1.8374	0.002	1.837±0.003
477.52	259.61	260	1.8366	0.001	1.837±0.002
1101.74	599.88	600	1.8362	0.0007	1.8362±0.0013

Вычислим значение g и его погрешность:

<i>T</i> , c	τ, c	a_1 , mm	<i>a</i> ₂ , мм	а, мм	<i>b</i> , мм	d, MM
1.8392	0.006	171±1	672±1	843.0±0.6	-501	8.00±0.05

$$\bar{g} = \frac{4\pi^2 a}{T^2} \cdot \left(\frac{1}{1 + \frac{\tau(a+d)}{Tb}}\right) \approx 9.8234 \frac{M}{c^2}$$

$$\left(\frac{\Delta g}{g}\right)_{T_1} = \frac{\Delta T_1}{T} \left|1 + \frac{a}{b}\right| = 0.00048$$

$$\left(\frac{\Delta g}{g}\right)_{T_2} = \frac{\Delta T_2}{T} \left|1 - \frac{a}{b}\right| = 0.0019$$

$$\left(\frac{\Delta g}{g}\right)_a = \frac{\Delta a}{a} = 0.00071$$

$$\left(\frac{\Delta g}{g}\right)_{a_1} = \frac{\Delta a_1}{a} \cdot 2 \frac{|\tau|}{T} \cdot \left(\frac{a}{b}\right)^2 = 0.000022$$

$$\left(\frac{\Delta g}{g}\right)_a = \frac{\Delta d}{a} \left|\frac{\tau}{T} \cdot \frac{a}{b}\right| = 0.00000033$$

$$\frac{\Delta g}{g} = \sqrt{\left(\frac{\Delta g}{g}\right)_{T_1}^2 + \left(\frac{\Delta g}{g}\right)_{T_2}^2 + \left(\frac{\Delta g}{g}\right)_a^2 + \left(\frac{\Delta g}{g}\right)_{a_1}^2 + \left(\frac{\Delta g}{g}\right)_a^2} \approx 0.002$$

$$\Delta g \approx 0.02 \frac{M}{c^2}$$

$$g = 9.82 \pm 0.02 \frac{M}{c^2}$$

Табличное значение ускорения свободного падения на широте Санкт-Петербурга равно $9.81908 \frac{M}{c^2}$. Полученное значение совпадает с ним в пределах погрешности.