Espérance Conditionnelle

1. Rappels.

- Dans toute ce paragraphe, $(\Omega, \mathcal{F}, \mathbb{P})$ est un espace probabilisé, i.e.
 - $\star \Omega$ est un ensemble non vide.
 - * $\mathcal{F} \subset \mathcal{P}(\Omega)$ est une tribu (ou σ -algèbre) sur Ω :
 - 1. $\emptyset \in \mathcal{F}$;
 - 2. Si $A \in \mathcal{F}$, alors $A^c \in \mathcal{F}$;
 - 3. Si $(A_n)_{n \in \mathbb{N}} \subset \mathcal{F}$, alors $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}$.
 - $\star \ \mathbb{P} \text{ est (une mesure de) probabilité sur } (\Omega, \mathcal{F}) : \mathbb{P} : \mathcal{F} \longrightarrow \overline{\mathbf{R}}_+ := \mathbf{R}_+ \cup \{+\infty\} \text{ t.q.}$
 - 1. $\mathbb{P}(\emptyset) = 0$;
 - 2. Pour $(A_n)_{n\in\mathbb{N}}\subset\mathcal{F}$ t.q. $A_n\cap A_k=\emptyset$ si $k\neq n$,

$$\mathbb{P}\left(\bigcup_{n\in\mathbf{N}}A_n\right)=\sum_{n>0}\mathbb{P}(A_n)\;;$$

3. $\mathbb{P}(\Omega) = 1$.

Remarque(s). Une mesure de probabilité est à valeurs dans [0, 1].

Définition (Tribu engendrée). Soit $\mathcal{C} \subset \mathcal{P}(\Omega)$. On appelle tribu engendrée par \mathcal{C} , notée $\sigma(\mathcal{C})$, la plus petite tribu sur Ω , au sens de l'inclusion, contenant \mathcal{C} .

- L'existence de $\sigma(\mathcal{C})$ résulte du fait qu'une intersection quelconque de tribus sur Ω est une tribu sur Ω .
- Si $A \subset \Omega$, $\sigma(\{A\}) = \{\emptyset, \Omega, A, A^c\}$.

Définition (Tribu borélienne). On appelle *tribu borélienne de* \mathbb{R}^n , notée $\mathcal{B}(\mathbb{R}^n)$, la tribu engendrée par les ouverts (pour la topologie usuelle) de \mathbb{R}^n .

• On a $\mathcal{B}(\mathbf{R}) = \sigma(\{] - \infty, a] : a \in \mathbf{R}\}) = \sigma(\{[a, b] : a \in \mathbf{R}, b \in \mathbf{R}\})$

Définition. Soit $X: \Omega \longrightarrow \mathbb{R}^n$ une application. On dit que X est une variable aléatoire si

$$\forall B \in \mathcal{B}(\mathbf{R}^n), \quad X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \stackrel{\text{not.}}{=} \{X \in B\} \in \mathcal{F}.$$

Remarque(s). Comme $\mathcal{B}(\mathbf{R}) = \sigma(\{] - \infty, a] : a \in \mathbf{R}\})$, X est une v.a. réelle ssi, pour tout réel $a, \{X \leq a\} \in \mathcal{F}$.

Définition. Soient X une variable aléatoire et \mathcal{G} une sous-tribu de \mathcal{F} . On dit que X est \mathcal{G} -mesurable si

$$\forall B \in \mathcal{B}(\mathbf{R}^n), \quad \{X \in B\} \in \mathcal{G}.$$

Définition (Tribu engendrée par une v.a.). Soit X une variable aléatoire. On appelle tribu engendrée par X, notée $\sigma(X)$, la plus petite tribu pour l'inclusion, qui rend X mesurable.

Lemme (Factorisation). Soit X une variable aléatoire à valeurs dans \mathbf{R}^n . Une variable aléatoire réelle Y est $\sigma(X)$ -mesurable si et seulement si il existe une fonction $h: \mathbf{R}^n \longrightarrow \mathbf{R}$ borélienne telle que Y = h(X).

Remarque(s). Plus généralement, si X_1, \ldots, X_n sont des v.a., $\sigma(X_1, \ldots, X_n)$ est la plus petite tribu pour l'inclusion qui rend X_1, \ldots, X_n mesurables et Y est $\sigma(X_1, \ldots, X_n)$ -mesurable ssi $Y = h(X_1, \ldots, X_n)$ avec h borélienne.

Définition (Indépendance). Deux variables aléatoires X et Y sont indépendantes si les tribus $\sigma(X)$ et $\sigma(Y)$ le sont c'est à dire si

$$\forall B \in \mathcal{B}(\mathbf{R}^n), \ \forall C \in \mathcal{B}(\mathbf{R}^m),$$
$$\mathbb{P}\left(\left\{X \in B\right\} \cap \left\{Y \in C\right\}\right) = \mathbb{P}\left(\left\{X \in B\right\}\right) \mathbb{P}\left(\left\{Y \in C\right\}\right).$$

Remarque(s). On peut également donner une définition « fonctionnelle » de l'indépendance : X et Y sont indépendantes si et seulement si, pour toutes fonctions f et g boréliennes et bornées,

$$\mathbb{E}\left[f(X)\,g(Y)\right] = \mathbb{E}\left[f(X)\right]\,\mathbb{E}\left[g(Y)\right].$$

Le passage de la définition ensembliste à la définition fonctionnelle se fait via la formule :

$$\forall B \in \mathcal{B}(\mathbf{R}^n), \quad \mathbb{P}(\{X \in B\}) = \mathbb{E}[\mathbf{1}_B(X)].$$

2. Espérance conditionnelle.

- Soient X et Y des variables aléatoires et \mathcal{G} une sous-tribu de \mathcal{F} .
 - \star Connaissant l'information contenue dans \mathcal{G} , que peut-on dire de plus sur la v.a. X?
 - \star Quelle est la meilleure approximation de X connaissant $\sigma(Y)$?
 - * La notion d'espérance conditionnelle répond à ces questions

2.1. Exemple introductif.

- Soient X et Y deux v.a.r.; X de carré intégrable et Y discrète à valeurs $y_1 < y_2 < y_3 < \dots$
- Pour tout borélien B et tout $j \geq 1$, la probabilité conditionnelle

$$\mathbb{P}(\{X \in B\} | \{Y = y_j\}) = \frac{\mathbb{P}(\{X \in B\} \cap \{Y = y_j\})}{\mathbb{P}(\{Y = y_j\})}$$

représente la fréquence de réalisation de $\{X \in B\}$ parmi tous les événements où $Y = y_j$.

• On remarque que

$$\mathbb{P}\left(\left\{X \in B\right\} \middle| \left\{Y = y_j\right\}\right) = \frac{\mathbb{E}\left[\mathbf{1}_B(X)\mathbf{1}_{\left\{Y = y_j\right\}}\right]}{\mathbb{P}\left(\left\{Y = y_j\right\}\right)},$$

et on définit, pour toute fonction f borélienne (bornée ou positive)

$$\mathbb{E}\left[f(X) \mid \{Y = y_j\}\right] = \frac{\mathbb{E}\left[f(X)\mathbf{1}_{\{Y = y_j\}}\right]}{\mathbb{P}\left(\{Y = y_i\}\right)}.$$

- * En fait, la probabilité conditionnelle sachant $\{Y=y_j\}, A \longmapsto \mathbb{P}(A|\{Y=y_j\})$, est la probabilité de densité $\mathbf{1}_{\{Y=y_j\}}/\mathbb{P}\left(\{Y=y_j\}\right)$ par rapport à \mathbb{P} .
- \bullet On définit une variable aléatoire Z en posant

$$Z(\omega) = \sum_{j \ge 1} \mathbb{E}\left[X \mid \{Y = y_j\}\right] \mathbf{1}_{Y(\omega) = y_j}, \quad \text{i.e. } Z = \mathbb{E}\left[X \mid \{Y = y_j\}\right] \text{ si } Y = y_j.$$

- * Z est $\sigma(Y)$ -mesurable puisque Z=h(Y) avec $h(y)=\sum_{j\geq 1}\mathbb{E}\left[X\mid\{Y=y_j\}\right]$ $\mathbf{1}_{y=y_j}$
- * Par ailleurs, si G = g(Y) est $\sigma(Y)$ -mesurable et de carré intégrable, on a

$$\begin{split} \mathbb{E}\left[GZ\right] &= \mathbb{E}\left[g(Y)\sum_{j\geq 1}\mathbb{E}\left[X\mid \{Y=y_j\}\right] \; \mathbf{1}_{Y=y_j}\right] = \sum_{j\geq 1}\mathbb{E}\left[g(Y)\mathbb{E}\left[X\mid \{Y=y_j\}\right] \; \mathbf{1}_{Y=y_j}\right], \\ &= \sum_{j\geq 1}\mathbb{E}\left[g(y_j)\mathbb{E}\left[X\mid \{Y=y_j\}\right] \; \mathbf{1}_{Y=y_j}\right] = \sum_{j\geq 1}g(y_j)\mathbb{E}\left[X\mid \{Y=y_j\}\right]\mathbb{P}(\{Y=y_j\}), \\ &= \sum_{j\geq 1}g(y_j)\mathbb{E}\left[X\mathbf{1}_{Y=y_j}\right] = \sum_{j\geq 1}\mathbb{E}\left[g(y_j)X\mathbf{1}_{Y=y_j}\right] = \sum_{j\geq 1}\mathbb{E}\left[g(Y)X\mathbf{1}_{Y=y_j}\right], \\ &= \mathbb{E}\left[Xg(Y)\sum_{j\geq 1}\mathbf{1}_{Y=y_j}\right] = \mathbb{E}\left[Xg(Y)\right], \quad \text{puisque } \sum_{j\geq 1}\mathbf{1}_{Y=y_j} = 1, \\ &= \mathbb{E}\left[GX\right]. \end{split}$$

- \bullet La variable aléatoire Z vérifie les deux propriétés suivantes :
 - * Z est $\sigma(Y)$ -mesurable;
 - \star pour toute v.a. G, $\sigma(Y)$ -mesurable et de carré intégrable,

$$\mathbb{E}\left[G(X-Z)\right] = \langle G, X-Z \rangle = 0$$

où $\langle \cdot, \cdot \rangle$ désigne le produit scalaire de L².

- Par conséquent, Z est la projection orthogonale de X sur $L^2(\sigma(Y))$, le sous-espace des v.a. $\sigma(Y)$ -mesurables de carré intégrable
- Z est vérifie donc

$$\mathbb{E}\left[|X-Z|^2\right] = \min\left\{\mathbb{E}\left[|X-G|^2\right]: G \in \mathrm{L}^2(\sigma(Y))\right\}.$$

• Z est la meilleure approximation de X, au sens des moindres carrés, connaissant l'information contenue dans $\sigma(Y)$.

2.2. Définition.

- Soit \mathcal{G} une sous-tribu de \mathcal{F}
- Notons $P_{\mathcal{G}}$ la projection orthogonale sur $L^2(\mathcal{G})$, le sous-espace vectoriel des « variables aléatoires » \mathcal{G} -mesurables et de carré intégrable.
- Si $X \in L^2(\mathcal{F}), Z = P_{\mathcal{G}}(X)$ vérifie
 - $\star Z \text{ est } \mathcal{G}\text{-mesurable};$
 - \star Z est de carré intégrable;
 - * Pour toute v.a. G, \mathcal{G} -mesurable et de carré intégrable, $\mathbb{E}[XG] = \mathbb{E}[ZG]$
- On a également,

$$\mathbb{E}\left[|X - Z|^2\right] = \min\left\{\mathbb{E}\left[|X - G|^2\right] : G \in L^2(\mathcal{G})\right\}.$$

- Il s'agit d'une généralisation du calcul introductif!
- On peut remarquer que $\mathbb{E}[P_{\mathcal{G}}(X)] = \mathbb{E}[X]$ et que $P_{\mathcal{G}}(X) \geq 0$ p.s. si $X \geq 0$ p.s.
- Cette construction peut être étendue, d'une certaine manière, aux v.a. intégrables

Définition (Espérance conditionnelle). Soient X une v.a.r. intégrable et \mathcal{G} une sous-tribu de \mathcal{F} . On appelle (version de l')espérance conditionnelle de X sachant \mathcal{G} toute variable aléatoire Z vérifiant :

- 1. Z est \mathcal{G} -mesurable;
- 2. Z est intégrable i.e. $\mathbb{E}[|Z|] < +\infty$;
- 3. Pour toute v.a. G, \mathcal{G} -mesurable et bornée, $\mathbb{E}[XG] = \mathbb{E}[ZG]$.

On note dans ce cas $Z = \mathbb{E}[X \mid \mathcal{G}]$.

Théorème. Soient X une v.a.r. intégrable et \mathcal{G} une sous-tribu de \mathcal{F} . Il existe une version de l'espérance conditionnelle de X sachant \mathcal{G} .

Si Z et Z' sont deux versions de l'espérance conditionnelle de X sachant \mathcal{G} , alors Z=Z' p.s. i.e. $\mathbb{P}(Z=Z')=1$.

- Lorsque $\mathcal{G} = \sigma(Y)$ où Y est une v.a. dans \mathbf{R}^m , on note $\mathbb{E}[X \mid Y]$ au lieu de $\mathbb{E}[X \mid \sigma(Y)]$
- $\mathbb{E}[X \mid Y]$ est la meilleure approximation de X connaissant Y
- D'après le lemme de factorisation, $Z = \mathbb{E}\left[X \mid Y\right]$ si
 - 1. Z = h(Y) avec $h : \mathbf{R}^m \longrightarrow \mathbf{R}$ borélienne;
 - 2. $\mathbb{E}[|h(Y)|] < \infty$;
 - 3. Pour toute $g: \mathbf{R}^m \longrightarrow \mathbf{R}$ borélienne et bornée, $\mathbb{E}[Xg(Y)] = \mathbb{E}[h(Y)g(Y)]$.

Exemple(s). 1. Soient X et Y indépendantes; X intégrable. On a $\mathbb{E}[X \mid Y] = \mathbb{E}[X]$. En effet, notant $Z = \mathbb{E}[X]$:

- (a) Z = h(Y) avec h fonction constante égale à $\mathbb{E}[X]$;
- (b) Z intégrable;
- (c) Pour g borélienne bornée, puisque X et Y son indépendantes

$$\mathbb{E}\left[Xg(Y)\right] = \mathbb{E}\left[X\right] \, \mathbb{E}\left[g(Y)\right] = \mathbb{E}\left[\mathbb{E}\left[X\right]g(Y)\right] = \mathbb{E}\left[Zg(Y)\right].$$

- 2. Soient X et Y deux v.a.; X intégrable et $\sigma(Y)$ -mesurable. Alors $\mathbb{E}[X \mid Y] = X$. En effet,
 - (a) X est $\sigma(Y)$ -mesurable;
 - (b) X intégrable;
 - (c) Pour g borélienne bornée,

$$\mathbb{E}\left[Xg(Y)\right] = \mathbb{E}\left[Xg(Y)\right].$$

3. Soit Y discrète prenant les valeurs distinctes $(y_j)_{j\geq 1}$. Si X est intégrable

$$\mathbb{E}\left[X\mid Y\right] = \sum_{j\geq 1} \mathbb{E}\left[X\mid Y = y_j\right] \,\mathbf{1}_{Y=y_j}, \quad \text{ où } \mathbb{E}\left[X\mid Y = y_j\right] = \frac{\mathbb{E}\left[X\mathbf{1}_{Y=y_j}\right]}{\mathbb{P}(Y=y_j)}.$$

C'est le calcul introductif.

Proposition (Propriétés élémentaires). Soit \mathcal{G} une sous-tribu de \mathcal{F} .

- 1. Pour toute constante réelle c, $\mathbb{E}[c | \mathcal{G}] = c$;
- 2. Si a et b sont deux réels, U et V deux v.a. intégrables

$$\mathbb{E}\left[aU + bV \mid \mathcal{G}\right] = a \,\mathbb{E}\left[U \mid \mathcal{G}\right] + b \,\mathbb{E}\left[V \mid \mathcal{G}\right] \; ;$$

- 3. Pour toute v.a. intégrable $\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right]\right] = \mathbb{E}\left[X\right]$;
- 4. Si X est positive, $\mathbb{E}[X | \mathcal{G}]$ est positive; en particulier, si X est intégrable

$$|\mathbb{E}[X | \mathcal{G}]| \leq \mathbb{E}[|X| | \mathcal{G}].$$

Démonstration. La preuve est laissée en exercice.

Exemple(s). 1. Si X et Y sont indépendantes, alors

$$\begin{split} \mathbb{E}\left[(X+Y)^2\,|\,Y\right] &= \mathbb{E}\left[X^2\,|\,Y\right] + 2\,\mathbb{E}\left[XY\,|\,Y\right] + \mathbb{E}\left[Y^2\,|\,Y\right] = \mathbb{E}\left[X^2\right] + 2Y\,\mathbb{E}\left[X\,|\,Y\right] + Y^2, \\ &= \mathbb{E}\left[X^2\right] + 2Y\,\mathbb{E}\left[X\right] + Y^2 = \mathbb{V}(X) + (Y-\mathbb{E}\left[X\right])^2\,. \end{split}$$

2. Soient X une v.a. de loi uniforme sur [0,1] et Y une v.a. à valeurs dans \mathbb{N}^* telle que

$$\forall k \in \mathbf{N}^*, \qquad \mathbb{P}(Y = k \mid X) = \mathbb{E}\left[\mathbf{1}_{Y=k} \mid X\right] = (1 - X) X^{k-1}.$$

On obtient facilement la loi de Y: pour $k \in \mathbb{N}^*$,

$$\mathbb{P}(Y = k) = \mathbb{E}\left[\mathbb{P}\left(Y = k \mid X\right)\right] = \mathbb{E}\left[(1 - X)X^{k-1}\right] = \int_0^1 (1 - x)x^{k-1} \, dx = \frac{1}{k(k+1)}.$$

Par ailleurs, Y étant discrète à valeurs dans N^* , on a

$$\mathbb{E}[X \mid Y] = \sum_{k \ge 1} \mathbb{E}[X \mid Y = k] \ \mathbf{1}_{Y = k} = \sum_{k \ge 1} \mathbb{E}[X \mathbf{1}_{Y = k}] \ \mathbb{P}(Y = k)^{-1} \mathbf{1}_{Y = k},$$

et, pour tout $k \in \mathbf{N}^*$,

$$\mathbb{E}\left[X\mathbf{1}_{Y=k}\right] = \mathbb{E}\left[\mathbb{E}\left[X\mathbf{1}_{Y=k} \mid X\right]\right] = \mathbb{E}\left[X\mathbb{E}\left[\mathbf{1}_{Y=k} \mid X\right]\right] = \mathbb{E}\left[(1-X)X^{k}\right] = \frac{1}{(k+1)(k+2)}.$$

Par conséquent,

$$\mathbb{E}[X \mid Y] = \sum_{k>1} \frac{k(k+1)}{(k+1)(k+2)} \mathbf{1}_{Y=k} = \sum_{k>1} \frac{k}{k+2} \mathbf{1}_{Y=k} = \frac{Y}{Y+2}.$$

Calculer $\mathbb{E}[X | Y]$.

2.3. Propriétés.

Proposition (Projections emboitées). Soient X une variable aléatoire intégrable, $\mathcal{H} \subset \mathcal{G}$ des sous-tribus de \mathcal{F} . Alors,

$$\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}\right]\mid\mathcal{H}\right]=\mathbb{E}\left[X\mid\mathcal{H}\right].$$

• Cette propriété généralise $\mathbb{E}\left[\mathbb{E}\left[X\,\middle|\,\mathcal{G}\right]\right] = \mathbb{E}\left[X\right]$.

Démonstration. Notons $Z = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mid \mathcal{H}\right]$ et montrons que $Z = \mathbb{E}\left[X \mid \mathcal{H}\right]$. Il s'agit de montrer que :

- 1. Z est \mathcal{H} -mesurable;
- 2. Z est intégrable;
- 3. Pour toute v.a. H bornée et \mathcal{H} -mesurable,

$$\mathbb{E}\left[ZH\right] = \mathbb{E}\left[ZX\right].$$

Pour le premier point, comme $Z = \mathbb{E}[TRUC \mid \mathcal{H}], Z$ est \mathcal{H} -mesurable. Par construction de l'espérance conditionnelle, X étant intégrable, $\mathbb{E}[X \mid \mathcal{G}]$ est intégrable et $Z = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}]$ aussi. Soit H bornée et \mathcal{H} -mesurable. Comme $\mathcal{H} \subset \mathcal{G}$, H est aussi \mathcal{G} -mesurable et donc

$$\mathbb{E}\left[ZH\right] = \mathbb{E}\left[\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mid \mathcal{H}\right]H\right] = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right]H\right] = \mathbb{E}\left[XH\right].$$

Proposition. Soient X et Y deux v.a. et \mathcal{G} une sous-tribu. On suppose que X et XY sont intégrable et que Y est \mathcal{G} -mesurable. Alors

$$\mathbb{E}\left[XY \mid \mathcal{G}\right] = Y \mathbb{E}\left[X \mid \mathcal{G}\right].$$

• Il s'agit d'une propriété d'usage très fréquent.

Démonstration. Faisons la preuve dans le cas où Y est bornée. Notons $Z = Y \mathbb{E}[X | \mathcal{G}]$ et montrons que $Z = \mathbb{E}[XY | \mathcal{G}]$. Les deux premiers points de la définition sont évidents. Pour le 3^e, soit G une va \mathcal{G} -mesurable et bornée. Comme YG est \mathcal{G} -mesurable et bornée, on a, par définition de $\mathbb{E}[X | \mathcal{G}]$,

$$\mathbb{E}\left[GYX\right] = \mathbb{E}\left[GY\mathbb{E}\left[X \mid \mathcal{G}\right]\right] = \mathbb{E}\left[GZ\right].$$

Proposition. Soient X et Y deux variables aléatoires indépendantes à valeurs dans \mathbf{R}^n et \mathbf{R}^m et $h: \mathbf{R}^n \times \mathbf{R}^m \longrightarrow \mathbf{R}$ une fonction borélienne telle que $\mathbb{E}[|h(X,Y)|] < \infty$. Alors

$$\mathbb{E}[h(X,Y)|Y] = H(Y), \quad avec \quad H(y) = \mathbb{E}[h(X,y)].$$

• La preuve sera vue en TD dans le cas où (X,Y) possède une densité.

Exemple(s). Si X et Y sont des v.a. indépendantes, X de loi de Poisson de paramètre $\lambda > 0$, Y de loi exponentielle de paramètre 2λ , on a, Y^X étant positive,

$$\mathbb{E}\left[Y^X \mid Y\right] = H(Y) \quad \text{avec} \quad H(a) = \mathbb{E}\left[a^X\right] = e^{\lambda(a-1)} \; ; \qquad \mathbb{E}\left[Y^X \mid Y\right] = e^{\lambda(Y-1)}.$$

Par conséquent,

$$\mathbb{E}\left[Y^X\right] = \mathbb{E}\left[\mathbb{E}\left[Y^X \mid Y\right]\right] = e^{-\lambda} \,\mathbb{E}\left[e^{\lambda Y}\right] = e^{-\lambda} \,\int_0^{+\infty} e^{\lambda y} \,(2\lambda) e^{-2\lambda y} \,dy = 2e^{-\lambda}.$$

Proposition. Soient X une v.a. intégrable, \mathcal{G} et \mathcal{H} deux sous-tribus de \mathcal{F} . On suppose que \mathcal{H} est indépendante de la sous-tribu $\sigma(\sigma(X),\mathcal{G})$. Alors

$$\mathbb{E}\left[X \mid \sigma(\mathcal{G}, \mathcal{H})\right] = \mathbb{E}\left[X \mid \mathcal{G}\right].$$

Remarque(s). Attention, il ne suffit pas que \mathcal{H} et X soient indépendantes pour appliquer ce résultat! \mathcal{G} peut amener un couplage. Par exemple, si X et Y sont indépendantes, notant $\mathcal{H} = \sigma(Y)$ et $\mathcal{G} = \sigma(X + Y)$

$$\mathbb{E}[X \mid \sigma(\mathcal{G}, \mathcal{H})] = X, \quad \mathbb{E}[X \mid \mathcal{G}] = \frac{X + Y}{2}.$$

Proposition (Intégrabilité). Soient $(X_n)_{n\geq 1}$ et X des v.a. intégrables.

Convergence monotone. On suppose que, pour tout $n \geq 1$, $0 \leq X_n \leq X_{n+1}$ presque sûrement. Alors,

$$\lim_{n\to\infty} \mathbb{E}\left[X_n \mid \mathcal{G}\right] = \sup_{n\geq 1} \mathbb{E}\left[X_n \mid \mathcal{G}\right] = \mathbb{E}\left[\lim_{n\to\infty} X_n \mid \mathcal{G}\right] = \mathbb{E}\left[\sup_{n\geq 1} X_n \mid \mathcal{G}\right].$$

Lemme de Fatou. On suppose que, pour tout $n \ge 1$, $X_n \ge 0$ presque sûrement. Alors,

$$\mathbb{E}\left[\liminf_{n\to\infty}X_n\,|\,\mathcal{G}\right] \leq \liminf_{n\to\infty}\mathbb{E}\left[X_n\,|\,\mathcal{G}\right].$$

Convergence dominée. On suppose que $(X_n)_{n\geq 1}$ converge vers X presque sûrement et que $\sup_{n\geq 1}|X_n|$ est intégrable. Alors,

$$\lim_{n\to\infty} \mathbb{E}\left[\left|X_n - X\right| \mid \mathcal{G}\right] = 0 \; ; \quad en \; particulier, \; \lim_{n\to\infty} \mathbb{E}\left[X_n \mid \mathcal{G}\right] = \mathbb{E}\left[X \mid \mathcal{G}\right].$$

• Ces propriétés se déduisent facilement de leurs analogues pour l'espérance classique.

Proposition (Inégalité de Jensen). Soient X une v.a. intégrable et \mathcal{G} une sous-tribu de \mathcal{F} . Soit $g: \mathbf{R} \longrightarrow \mathbf{R}$ une fonction convexe telle que $\mathbb{E}[|g(X)|] < \infty$. Alors,

$$g\left(\mathbb{E}\left[X\,|\,\mathcal{G}\right]\right) \leq \mathbb{E}\left[g(X)\,|\,\mathcal{G}\right].$$

• Une fonction g est convexe si, pour tous x, y et $\lambda \in [0, 1]$,

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)y.$$

- \star On a alors $g(y) \ge g(x) + g'(x)(y x)$
- \star Si g est dérivable, g est convexe ssi g' est croissante.
- On utilise souvent l'inégalité de Jensen avec les fonctions $x \mapsto |x|^p$ convexe dès que $p \ge 1$ et $x \mapsto e^{ax}$ convexe pour tout réel a.

3. Loi conditionnelle.

Paragraphe non traité en 2019/2020

Définition. On appelle noyau de transition toute fonction $K : \mathbf{R}^m \times \mathcal{B}(\mathbf{R}^n) \longrightarrow [0,1]$ telle que :

- 1. Pour tout $B \in \mathcal{B}(\mathbf{R}^n)$, $y \longmapsto K(y, B)$ est borélienne;
- 2. Pour tout $y \in \mathbf{R}^m$, $B \longmapsto K(y, B)$ est une mesure de probabilité notée K(y, dx).
- K(y, dx) est une famille de probabilités sur \mathbb{R}^n indexée par $y \in \mathbb{R}^m$.

Théorème (Jirina). Soient X et Y deux v.a. à valeurs dans \mathbf{R}^n et \mathbf{R}^m . Il existe un noyau de transition K(y,dx) tel que : pour toute fonction $f: \mathbf{R}^n \longrightarrow \mathbf{R}$ borélienne et bornée,

$$\mathbb{E}\left[f(X) \mid Y\right] = \int_{\mathbf{R}^n} f(x) K(Y, dx) \quad \mathbb{P} - p.s.$$

- Un tel noyau de transition K(y, dx) est appelée (version de la) loi conditionnelle de X sachant Y.
- On désigne K(y, dx) par $\mathcal{L}(X | Y)$ ou $\mathcal{L}(X | Y = y)$.

Remarque(s). La loi du couple (X, Y) est obtenue à partir de $\mathcal{L}(X \mid Y)$ et $\mathcal{L}(Y)$. En effet, si f et g sont boréliennes et bornées

$$\mathbb{E}\left[f(X)g(Y)\right] = \mathbb{E}\left[\mathbb{E}\left[g(Y)f(X)\mid Y\right]\right] = \mathbb{E}\left[g(Y)\,\mathbb{E}\left[f(X)\mid Y\right]\right],$$

$$= \mathbb{E}\left[g(Y)\,\int_{\mathbf{R}^n} f(x)K(Y,dx)\right] = \int_{\mathbf{R}^m} g(y)\int_{\mathbf{R}^n} f(x)K(y,dx)\,\mathbb{P}_Y(dy),$$

$$= \iint_{\mathbf{R}^n \times \mathbf{R}^m} g(y)f(x)\,K(y,dx)\,\mathbb{P}_Y(dy).$$

Plus généralement, si $h: \mathbf{R}^n \times \mathbf{R}^m \longrightarrow \mathbf{R}$ est borélienne et bornée

$$\mathbb{E}\left[h(X,Y)\right] = \iint_{\mathbf{R}^n \times \mathbf{R}^m} h(x,y) K(y,dx) \mathbb{P}_Y(dy).$$

On retient $\mathbb{P}_{(X,Y)}(dx,dy) = K(y,dx) \mathbb{P}_Y(dy)$.

Exemple(s). 1. Supposons que X et Y sont indépendantes. On a, dans ce cas, pour toute f borélienne bornée

$$\mathbb{E}\left[f(X) \mid Y\right] = \mathbb{E}\left[f(X)\right] = \int_{\mathbf{R}^n} f(x) \, \mathbb{P}_X(dx).$$

Par conséquent, $K(y, dx) = \mathbb{P}_X(dx)$ soit $\mathcal{L}(X \mid Y = y) = \mathcal{L}(X)$.

2. Supposons que X est $\sigma(Y)$ -mesurable. D'après le lemme de factorisation, X = h(Y) avec $h: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ borélienne. On a, pour toute f borélienne bornée,

$$\mathbb{E}\left[f(X) \mid Y\right] = f(X) = f(h(Y)) = \int_{\mathbf{R}^n} f(x) \, \delta_{h(Y)}(dx).$$

Il s'en suit $K(y, dx) = \delta_{h(y)}(dx)$.

3. On suppose que (X,Y) possède une densité p(x,y). Pour f et g boréliennes bornées,

$$\mathbb{E}\left[f(X)g(Y)\right] = \iint_{\mathbf{R}^n \times \mathbf{R}^m} f(x)g(y) \, p(x,y) \, dx dy = \int_{\mathbf{R}^m} g(y) \left(\int_{\mathbf{R}^n} f(x) \, p(x,y) \, dx\right) dy$$
$$= \int_{\mathbf{R}^m} g(y) \left(\frac{\int_{\mathbf{R}^n} f(x) \, p(x,y) \, dx}{p_Y(y)}\right) p_Y(y) dy,$$

où p_Y désigne la densité de Y i.e.

$$p_Y(y) = \int_{\mathbf{R}^n} p(x, y) \, dx.$$

Par conséquent,

$$\mathbb{E}\left[f(X) \mid Y\right] = \int_{\mathbf{R}^n} f(x) \frac{p(x, Y)}{p_Y(Y)} dx, \qquad K(y, dx) = \frac{p(x, y)}{p_Y(y)} dx.$$