Análisis comparativo de sistemas de posicionamiento indoor Trabajo de Memoria

Carlos Chesta Rivas

Universidad Técnica Federico Santa María carlos.chesta@alumnos.usm.cl

6 de noviembre de 2017

Tabla de Contenidos

- 1 Introducción
 - Descripción del Problema
 - Objetivos
- 2 Estado del Arte
 - Métodos de Posicionamiento
 - Tecnologías que permiten la geolocalización

- 3 Diseño del Estudio
 - Cualidades y costos de tecnologías
 - Lugar del estudio
- 4 Implementación
 - Requerimientos
 - Hardware utilizado
 - Ejecución
- 5 Resultados
- 6 Conclusiones

Tabla de Contenidos

- 1 Introducción
 - Descripción del Problema
 - Objetivos
- 2 Estado del Arte

- 3 Diseño del Estudio
- 4 Implementación
- 5 Resultados
- 6 Conclusiones

Introducción

Geolocalización

- Usado ampliamente por el sector militar, académico e industrial.
- Cada vez se vuelve más accesible: basta con tener un smartphone o similar para poder geolocalizarse.
 - 2 mil millones de *smartphones* activos en el mundo¹.

¹Worldwide Internet and Mobile Users, eMarketer, 2015.

- Descripción del Problema

Descripción del Problema

- Alta demanda en el posicionamiento en interiores
- Tecnologías de geolocalización satelital como GPS funciona de manera limitada o nula en ambientes interiores

¿Cómo podemos conocer nuestra posición en dichos lugares?

Objetivos

Objetivos

- Identificar los métodos y tecnologías que actualmente permiten conocer la posición.
- Determinar los trade-offs entre exactitud y costo para tecnologías de posicionamiento indoor

Tabla de Contenidos

- 1 Introducción
- 2 Estado del Arte
 - Métodos de Posicionamiento
 - Tecnologías que permiten la geolocalización

- 3 Diseño del Estudio
- 4 Implementación
- 5 Resultados
- 6 Conclusiones

Métodos de Posicionamiento

Métodos de Posicionamiento

Métodos de Posicionamiento

Fingerprints

Métodos de Posicionamiento

Basado en celdas de origen

Métodos de Posicionamiento

Triangulación

Métodos de Posicionamiento

Trilateración

Métodos de Posicionamiento

Trilateración

 P_1 , P_2 , P_3 , r_1 , r_2 y r_3 conocidos ¿Cuál es la posición de B?

$$x^{2} + y^{2} + z^{2} = r_{1}^{2}$$
$$(x - d)^{2} + y^{2} + z^{2} = r_{2}^{2}$$
$$(x - i)^{2} + (y - j)^{2} + z^{2} = r_{3}^{2}$$

Métodos de Posicionamiento

Trilateración

 P_1 , P_2 , P_3 , r_1 , r_2 y r_3 conocidos ¿Cuál es la posición de B?

$$x = \frac{r_1^2 - r_2^2 - d^2}{2d}$$

$$y = \frac{r_1^2 - r_3^2 - x^2 + i^2 + j^2}{2j} - \frac{i}{j}x$$

La Tecnologías que permiten la geolocalización

Tecnologías que permiten la geolocalización

Posicionamiento outdoor

- Sistemas satelitales (GPS, GLONASS, Galileo, Beidou)
- Localización por antenas móviles (GSM)

Posicionamiento *indoor* (IPS)

- Wi-Fi
- Bluetooth
- RFID

La Tecnologías que permiten la geolocalización

Posicionamiento outdoor

GPS

- Red de 24 satélites
- Precisión del orden de centímetros a unos pocos metros
- Requiere línea de visión directa (Line of Sight)

GSM

- Localización principalmente por Celdas de Origen y triangulación
- Precisión del orden de 50m a 4km
- Menor gasto energético

La Tecnologías que permiten la geolocalización

Posicionamiento indoor - WiFi

Free-space path loss (FSPL)

FSPL es la pérdida de la intensidad de señal que ocurre cuando una onda electromagnética viaja desde un transmisor a un receptor a través de una línea de visión directa en un espacio libre.

Tecnologías que permiten la geolocalización

Posicionamiento indoor - WiFi

$$FSPL = \left(\frac{4\pi df}{c}\right)^2$$

$$FSPL(dB) = 20log(d) + 20log(f) + K$$

$$d = 10^{\frac{1}{20}(K - 20log(f) + FSPL)}$$

La Tecnologías que permiten la geolocalización

Posicionamiento indoor - Bluetooth

- Bluetooth 4.0 (*Bluetooth Low Energy*)
- Beacons

Tecnologías que permiten la geolocalización

Posicionamiento indoor - Bluetooth

Tx Power

Potencia constante transmitida por cada Beacon. A medida que la señal se aleja del beacon va decayendo su valor.

RSSI

Escala de referencia para medir el nivel de potencia de las señales recibidas por un dispositivo.

$$d = 0,899 \left(\frac{RSSI}{TxPower}\right)^{7,771} + 0,111$$

La Tecnologías que permiten la geolocalización

Posicionamiento indoor - RFID

- Posee tres componentes
 - 1 Lector de etiquetas
 - Ordenador central
 - 3 Transpondedor
- Posicionamiento basado en celdas de origen

Tabla de Contenidos

- 1 Introducción
- 2 Estado del Arte
- 3 Diseño del Estudio
 - Cualidades y costos de

- tecnologías
- Lugar del estudio
- 4 Implementación
- 5 Resultados
- 6 Conclusiones

Cualidades y costos de tecnologías

Cualidades y costos de tecnologías - WiFi

Protocolo 802.11	Frecuencia [GHz]	Banda ancha [MHz]	Rango indoor aproximado [m]	Rango outdoor aproximado [m]
а	3.7/ 5	20	35	120
b	2.4	20	35	140
g	2.4	20	50	140
n	2.4/5	20 - 40	70	250
ac	5	20/40/80/160	35	-

■ Precio: CLP\$17.990 - CLP\$315.790

Consumo promedio mensual: 5,4[kWh]

Costo energético mensual: CLP\$607²

²Valor kWh: CLP\$112,36. Fuente: Enel

Diseño del Estudio

Cualidades y costos de tecnologías

Cualidades y costos de tecnologías - Bluetooth

	Locación	Proximidad	Sticker	Video
Vida útil batería	Hasta 5 años	Hasta 2 años	Hasta 1 año	conectado por USB)
Rango	Hasta 200 metros	Hasta 70 metros	Hasta 7 metros	Hasta 10 metros
Grosor	24 mm	17 mm	6 mm	14 mm
Dispositivos en el kit	3 beacons	3 beacons	10 stickers	3 mirrors
Precio	USD\$99	USD\$59	USD\$99	USD\$99

- Plug & Play
- Baterías de litio 3[V] 620[mAh]
 - Costo: CLP\$5.000 CLP\$6.000
 - Costo energético mensual: CLP\$250

— Cualidades y costos de tecnologías

Cualidades y costos de tecnologías - RFID

Tipo	LF	HF	UHF
Frecuencia	125 kHz	13.5 MHz	915 MHz
Alcance	<2.0 m	<1.0 m	>3.0 m
	Identificación	Monedero,	Logística, Retail,
Aplicaciones	de animales,	Pasaporte, Tarjeta BIP,	Caja, Pallet,
	control de acceso	control de acceso	Identificación de vehículos

■ Precio: Desde USD\$568.50³

Reader: Desde USD\$450Antena (9m): USD\$79

Cable conexión: USD\$39 (2m) - USD\$114 (10m)

■ Tag RFID Pasivo: USD\$0.50 - USD\$2

Consumo promedio mensual: 9[kWh]

energético mensual: CLP\$1.011

³https://www.atlasfridstore.com/

Cualidades y costos de tecnologías

Cualidades y costos de tecnologías - Resumen

Tecnología	Rango por dispositivo	Costo unitario	Costo mensual unitario
Wi-Fi	50 metros (802.11g) a 70 metros (802.11n)	Desde CLP\$17.990	CLP\$607
Bluetooth	70-200 metros	Desde CLP\$13.223 ⁵	CLP\$250
RFID	Desde 5 metros	Desde CLP\$382.242 ⁵	CLP\$1.011

Fuente: Banco Central de Chile.

⁵Dólar observado el 02/07/2017: CLP\$672,37.

Diseño del Estudio

Lugar del estudio

Lugar del estudio

Estacionamiento subterráneo del Campus San Joaquín - Universidad Técnica Federico Santa María

Tabla de Contenidos

- 1 Introducción
- 2 Estado del Arte
- 3 Diseño del Estudio

- 4 Implementación
 - Requerimientos
 - Hardware utilizado
 - Ejecución
- 5 Resultados
- 6 Conclusiones

Requerimientos

- Mostrar el plano de la ubicación
- Permitir al usuario colocar marcadores de dispositivos Beacon/Access Point
- 3 Calcular la posición del usuario
- 4 Permitir al usuario agregar un marcador de la ubicación real
- 5 Calcular la distancia entre ubicación real y la calculada
- 6 Registrar las distancias en un archivo persistente

Implementación

Requerimientos

Aplicación móvil

Hardware utilizado

Hardware utilizado

WiFi

Buffalo AirStation WHR-HP-G54

- Protocolo: 802.11g
- Rango: Hasta 50 metros
- Dimensiones: 28x130x144[mm]
- Peso: 277[g]
- Alimentación: 5[V]

Bluetooth

Beacon Estimote Proximity

- Rango: Hasta 70 metros
- Dimensiones: 55x38x18[mm]
- Peso: 30[g]
- Alimentación: Batería de 3[V] reemplazable

- Ejecución

Ejecución

- Áreas de medición: $7,95[m^2] - 25,09[m^2] - 27,64[m^2] - 84,52[m^2] - 118,37[m^2]$
- 200 mediciones por área
- Usuario inmóvil
- Método de mitigación: ventana deslizante

Tabla de Contenidos

- 1 Introducción
- 2 Estado del Arte
- 3 Diseño del Estudio

- 4 Implementación
- 5 Resultados
- 6 Conclusiones

Área $7,95[m^2]$

Posiciones calculadas

Área $7,95[m^2]$

Errores entre posición real y calculada

Área 25,09 $[m^2]$

Posiciones calculadas

Área 25,09 $[m^2]$

Errores entre posición real y calculada

Área 27,64 $[m^2]$

Posiciones calculadas

Área 27,64 $[m^2]$

Errores entre posición real y calculada

Área 84,52 $[m^2]$

Posiciones calculadas

Área $84,52[m^2]$

Errores entre posición real y calculada

Área 118,37 $[m^2]$

Posiciones calculadas

Área 118,37 $[m^2]$

Errores entre posición real y calculada

Resumen resultados

Tabla de Contenidos

- 1 Introducción
- 2 Estado del Arte
- 3 Diseño del Estudio

- 4 Implementación
- 5 Resultados
- 6 Conclusiones

Conclusiones

- Para áreas reducidas, Bluetooth es más efectivo que WiFi
- Para áreas mayores, WiFi presenta un error más estable
- La precisión y exactitud del posicionamiento depende de la densidad de dispositivos
- Importancia en algoritmos de localización
- El posicionamiento indoor aún es un campo abierto de estudio

Gracias por su atención