\mathbb{R}^2 的完备性

钟柳强

华南师范大学数学科学学院, 广东广州 510631

2015年11月27日

课本例题

例 1 对于 $n=1,2,3,\cdots$, 定义 $P_n=(1/n,1/n^2)$. 则 $\{P_n\}$ 是 \mathbb{R}^2 中的点列, 且

$$P_n\left(\frac{1}{n}, \frac{1}{n^2}\right) \to O(0, 0), \quad \stackrel{\omega}{=} \quad n \to \infty.$$

思考题

- 1. 对于 \mathbb{R}^2 中的非空点集 E, 开集簇 $\{U^{\circ}(p;\delta)|p\in E\}$ 总是 E 的开覆盖吗?
- 1. 对于任何 \mathbb{R}^2 中的非空点集 E 和 $\delta > 0$, 开集簇 $\{U^{\circ}(p;\delta)|p \in E\}$ 总是 E 的开覆盖吗?

解: 开集簇 $\{U^{\circ}(p;\delta)|p \in E\}$ 不一定是 E 的开覆盖, 如假设 p 是非空点集 E 的孤立点, 则开集簇 $\{U^{\circ}(p;\delta)|p \in E\}$ 不可能包含点 p, 此时开集簇 $\{U^{\circ}(p;\delta)|p \in E\}$ 就不是 E 的开覆盖; 若非空点集 E 中没有孤立点, 则开集簇 $\{U^{\circ}(p;\delta)|p \in E\}$ 是 E 的开覆盖.

习题

1. 证明致密性定理 (推论 13.2.1)

证明. 致密性定理: \mathbb{R}^2 中得有界点列 $\{P_n\}$ 有收敛子列.

证法一: 由聚点定理, 点列 $E := \{P_n\}_{n=1}^{\infty}$ 有聚点, 不妨设 P_0 是 $\{P_n\}$ 的一个聚点, 即 $\forall \epsilon > 0$, $U(P_0,\epsilon)$ 中有点列 $\{P_n\}$ 中的无限项, 于是

令
$$\epsilon = 1$$
,可取到 $P_{n_1} \in U(P_0, 1) \cap E$;
令 $\epsilon = \frac{1}{2}$,可取到 $P_{n_2} \in (U(P_0, \frac{1}{2}) \cap E) \setminus \{P_{n_1}\}$;
……
令 $\epsilon = \frac{1}{k}$,取 $P_{n_k} \in (U(P_0, \frac{1}{k}) \cap E) \setminus \{P_{n_1}, P_{n_2}, \cdots, P_{n_{k-1}}\}$
如此无限进行下去,则可得到 $\{P_n\}$ 的子列 $\{P_{n_k}\}$.
进一步 注音到

进一步, 注意到

$$||P_{n_k} - P_0|| < \frac{1}{k} \to 0, \quad k \to \infty$$

即有当 $k \to \infty$ 时, 有 $\{P_{n_k}\}$ 收敛于 P_0 .

证法二: 即证明至少存在一个点 $P_0(x_0, y_0)$, 使得存在 $\{P_n(x_n, y_n)\}$ 的子列 $\{P_{n''}(x_n'', y_n'')\}$ 收敛于 P_0 . 首先, 证明 $P_0(x_0, y_0)$ 和 $\{P_{n''}(x''_n, y''_n)\}$ 的存在性.

由一维空间的致密性定理知, 存在 $\{x_n\}$ 收敛子列 $\{x_n'\}$, 不妨设其收敛到 x_0 , 则对应的 $\{y_n'\} \subset \{y_n\}$ 也是 \mathbb{R} 中的有界数列. 对 $\{y_n'\}$ 再次利用一维空间的致密性定理知, 则可知 $\{y_n'\}$ 存在收敛子列 $\{y_n''\}$, 不 妨设其收敛到 y_0 . 由此得到点 $P_0(x_0,y_0)$ 和 $\{P_n(x_n,y_n)\}$ 的子列 $\{P_{n''}(x_n'',y_n'')\}$.

其次证明 $\{P_{n''}(x''_n, y''_n)\}$ 收敛于 P_0 .

因为已知 $\{y_n''\}$ 收敛到 y_0 , 故只需要证明 $\{x_n''\}$ 收敛到 x_0 . 事实上, $\{x_n\}$ 收敛子列 $\{x_n'\}$ 收敛到 x_0 , 而 x_n'' 又是 $\{x_n'\}$ 的子列. (见 << 数学分析 (一)>> 第 20 页的推论 1.4.1: 数列 $\{a_n\}$ 收敛的充要条件 是: $\{a_n\}$ 的任何子列都收敛, 且有相同极限.)

2. 证明基本列必有界.

证明. 设 $\{P_n\}$ 是 Cauchy 列, 由 Cauchy 收敛准则知, 存在点 $P_0 \in \mathbb{R}^2$, 满足

$$\lim_{n\to\infty} P_n = P_0.$$

即对 $\forall \epsilon > 0, \exists N(\epsilon),$ 使得当 $n > N(\epsilon)$ 时,有

$$||P_n - P_0|| < \epsilon$$
.

令 $\epsilon = 1$, 则存在 N_1 , 使得当 $n > N_1$ 时, 有

$$||P_n - P_0|| < 1.$$

令 $d = \max\{\|P_1 - P_0\|, \|P_2 - P_0\|, \dots, \|P_{N_1} - P_0\|, 1\}$, 则对 $\forall n \in \mathbb{N}$, 有 $P_n \in U(P_0, d)$, 即基本列 $\{P_n\}$ 有界.

3. 证明 P_0 是 E 的聚点等价于存在一个各项互异的点列 $\{P_n\} \subset E$ 使得 $P_n \to P_0$ (当 $n \to \infty$).

证明. 首先证明充分性(←)

存在一个各项互异的点列 $\{P_n\} \subset E$ 使得

$$\lim_{n \to \infty} P_n = P_0.$$

则对 $\forall \epsilon > 0, \exists N, \exists n > N$ 时, 有 $\{P_n\} \subset U(P_0, \epsilon)$, 即 $U(P_0, \epsilon)$ 含有 E 中无穷多个点, 故 P_0 是 E 的聚点.

其次证明必要性(⇒)

若 P_0 是 E 的聚点,则对 $\forall \epsilon > 0$, $U(P_0, \epsilon)$ 含有 E 中无穷多个点.

取 $\epsilon_1 = 1$, 则 $\exists P_1 \in U(P_0, 1) \cap E$;

取 $\epsilon_2 = 1/2$, 则 $\exists P_2 \in U(P_0, \frac{1}{2}) \cap E \setminus \{P_1\};$

• • • • ;

 $\stackrel{\text{def}}{=} \epsilon_n = 1/n, \ \text{M} \ \exists P_n \in U(P_0, \frac{1}{n})) \cap E \setminus \{P_1, P_2, \cdots, P_n\};$

. ;

如此无限进行下去,则可得到各项互异的点列 $\{P_n\}$,且 $\lim_{n\to\infty} P_n = P_0$.

4. 试用闭集套定理证明聚点定理.

证明. 由于 E 是平面有界集合, 因此存在一个闭正方形 D_1 包含它, 不妨设 $d = det(D_1)$.

连接正方形对边中点, 把 D_1 分成四个小的闭正方形,则在这四个小的闭正方形中,至少有一个小闭正方形含有 E 中的无限多个点,不妨设这个小闭正方形为 D_2 ,显然 $det(D_2) = d/2$.

再对正方形 D_2 如上法分成四个更小的闭正方形, 其中又至少有一个闭正方形含有 E 中的无限多个点, 不妨设这个小闭正方形为 D_3 , 显然 $det(D_2) = d/(2^3)$.

如此下去得到一个闭正方形序列 $D_1 \supset D_2 \supset D_3 \supset \cdots$ 如图所示1

容易看到这个闭正方形序列 $D_1 \supset D_2 \supset D_3 \supset \cdots$ 是一列非空闭集组成的闭集套,且满足

$$\lim_{n \to \infty} \det(D_n) = d/(2^n) = 0,$$

于是由闭集套定理知,存在一个点 $P_0 \in D_n, n = 1, 2, \cdots$.

下面证明 P_0 就是 E 的聚点. 对 $\forall \epsilon > 0, \exists N(\epsilon),$ 使得当 $n > N(\epsilon)$ 时, 有

$$d/(2^n) < \epsilon$$

从而, 当 $n > N(\epsilon)$ 时, 有

$$D_n \subset U(P_0, \epsilon)$$

又由 D_n 的取法知道 $U(P_0,\epsilon)$ 中含有 E 中的无限多个点, 于是得 P_0 是 E 的聚点

图 1: 小正方形的划分和取法

- 5. 用致密性定理证明 Cauchy 收敛准则的充分性部分. (提示:利用第 2 题的结论,并证明 Cauchy 列如果有一个子列收敛,则其本身也是收敛的)
- **证明.** (1) 首先证明: $\{P_n\}$ 存在子列 $\{P_{n'}\}$ 收敛于 $\{P_0\}$.

事实上, 由本节的习题 2 知: Cauchy 列 $\{P_n\}$ 是有界的, 从而由致密性定理可知, $\{P_n\}$ 存在收敛子 列 $\{P_{n'}\}$, 不妨设 $\lim_{n\to\infty} \{P_{n'}\} = P_0$.

(2) 其次证明 $\{P_n\}$ 也收敛于 $\{P_0\}$. 由 Cauchy 列的定义知: $\forall \epsilon > 0, \exists N_1, \, \exists \, n, n' > N_1 \,$ 时, 有

$$||P_n - P_{n'}|| < \frac{\epsilon}{2}$$

由 $\lim_{n\to\infty} P_{n'} = P_0$, 得对上述 $\forall \epsilon > 0, \exists N_2, \ \text{当} \ n > N_2$ 时, 有

$$||P_{n'} - P_0|| < \frac{\epsilon}{2}$$

$$||P_n - P_0|| < ||P_n - P_{n'}|| + ||P_{n'} - P_0|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon$$

故有 $\lim_{n\to\infty} P_n = P_0$