ADT	DS	INSERT	MIN .	EX-MIN	MERGE.
priority aveves	Heaps	V	V	V	×
Mergeable Pas	Binomial	de	O()	de	N/ N
	arenes	acosty	alogy	d Logn)	(Ligh)

If a CPV has two cones, each with a PQ of tasks, they might need to merge them. Not possible with heaps, possible with ...

· Binomial Heaps:

	SK +	nee: S	$G_0 = 0$			
	L	Si	x: take	tuo Sk-1 to	rees, make 1	mot of one parent of other
Ex:	So	Si	52	Sz	54	
	0	J		9 0		8 0 52 0 0 0 5.

· Sk attached to So, Si, Sz, ... Sk-23. · (\$) nodes at depth d.

k=4	d=0	nodes = 1=(6)	1
000	d=1	nodes = 4 = (1)	1
Ø Ø Ø Ø Ø	d=2	$6 = {4 \choose 2}$	
Ø-0 0	d=3	4=(3)	
0	d= 4	$ -\binom{9}{4} $	

a binomial forest of size M (denoted Fm) is a sequence of Sk trees with increasing k, with m total nodes

sh thees have multiples of 2 nodes for all k fine represent m in binary to find which Sk thees are contained in the fonest

+ · Ex: m=7= <1112 = 22+21+201, F++ {Sz, Si, So}

Fm with $m = \langle b_e, b_{e-1}, ..., b_o \rangle$: $Fm = \langle \delta_j \text{ st. } b_j = 1 \rangle$ ($l = \lfloor \log_2 m \rfloor$)

Fm has $\alpha(m)$ theer, where $\alpha(m) = \# 1$ s in binary representation of $m \to Fm$ has $M - \alpha(m)$ edges

