

Vilniaus universitetas Matematikos ir informatikos fakultetas

Tiesioginio sklidimo dirbtiniai neuroniniai tinklai

prof. dr. Olga Kurasova

Olga.Kurasova@mif.vu.lt

- Turintys daugiau nei vieną neuronų sluoksnį tinklai, kuriuose galimi tik ryšiai į priekį iš įėjimų į išėjimus, yra vadinami
 - daugiasluoksniais perceptronais (multilayer perceptrons),
 - arba daugiasluoksniais tiesioginio sklidimo neuroniniais tinklais (multilayer feedforward neural networks).

Tiesioginio sklidimo DNT (1)

Kiekvienas neuronų sluoksnis turi po papildomą įėjimą ir jo jungtis su to sluoksnio neuronais, tačiau paprastumo dėlei jie paveiksle nėra pavaizduoti.

Tiesioginio sklidimo DNT (2)

- Tegul turime daugiasluoksnį neuroninį tinklą, kuriame yra L sluoksnių, pažymėtų $l=0,\,1,\,...,\,L$, čia
 - sluoksnis l = 0 žymi **įėjimus**,
 - l = 1, ..., L-1 žymi paslėptus sluoksnius,
 - o l = L paskutinį (**išėjimų**) sluoksnį.
- Kiekviename sluoksnyje l yra n_l neuronų.

Tiesioginio sklidimo DNT (3)

• Pirmojo sluoksnio j-ojo neurono išėjimo reikšmė y_i yra apskaičiuojama pagal formulę.

$$y_j = f(a_j) = f\left(\sum_{k=0}^n w_{jk} x_k\right), \quad j = 1,...,d$$

- čia w_{jk} yra jungties iš k-ojo įėjimo į j-ąjį neuroną svoris.
- Įėjimai į neuronus l-ajame sluoksnyje yra neuronų išėjimai (l-1)-ajame sluoksnyje.

Tiesioginio sklidimo DNT (4)

• Todėl kiekvieno *j*-ojo neurono išėjimo reikšmė *l*-ajame sluoksnyje yra apskaičiuojama taip:

$$y_j = f(a_j) = f\left(\sum_{k=0}^{n_{l-1}} w_{jk} y_k\right), \quad j = 1, ..., n_l$$

- čia f() yra neuronų aktyvacijos funkcija,
- w_{jk} svoriai jungčių, kurios jungia k-ąjį neuroną (l-1)ajame sluoksnyje su j-uoju neuronu l-ajame sluoksnyje,
- n_{l-1} neuronų skaičius (l-1)-ajame sluoksnyje, $y_0=0$.
- Kairiojoje lygybės pusėje y_j yra l-ojo sluoksnio j-ojo neurono išėjimo reikšmė,
- o dešiniojoje y_k yra (l-1)-ojo sluoksnio k-ojo neurono išėjimo reikšmė.

- Taikant vienasluoksnio perceptrono mokymo idėją daugiasluoksniam neuroniniam tinklui, būtina žinoti paslėptųjų neuronų išėjimų reikšmes.
- Jei paklaidos ir aktyvacijos funkcijos yra diferencijuojamos, ieškant minimalios paklaidos gali būti naudojama gradientinio nusileidimo strategija.
- Algoritmas, kuris realizuoja gradientinio nusileidimo mokymo strategiją daugiasluoksniam tiesioginio sklidimo neuroniniam tinklui, vadinamas "klaidos skleidimo atgal" algoritmu (back-propagation learning algorithm).

- Algoritmą sudaro du žingsniai:
 - įėjimų reikšmių "skleidimas pirmyn" iš įėjimų į išėjimų sluoksnį;
 - paklaidos "skleidimas atgal" iš išėjimų į įėjimų sluoksnį.
- Tiek perceptrono mokyme, tiek "klaidos skleidimo atgal" algoritme naudojama mokymo su mokytoju strategija.

"Klaidos skleidimo atgal" mokymo algoritmas (3)

- Pirmame algoritmo žingsnyje **įėjimų** vektoriui X_i apskaičiuojamas **išėjimų** vektorius $Y_i = (y_{i1}, y_{i2}, ..., y_{id})$.
- Įvertinama **paklaidos funkcija** $E_i(W)$ išėjimų sluoksnyje L.

$$E_i(W) = \frac{1}{2} \sum_{j=1}^{d} (y_{ij} - t_{ij})^2$$

- čia t_{ij} norimo j-ojo išėjimo reakcija į vektorių X_i .
- Tuo baigiama "skleidimo pirmyn" fazė.

- Jei paklaidos funkcija $E_i(W)$ nelygi nuliui, reikia keisti jungčių svorius.
- Panašiai kaip ir vienasluoksniame perceptrone, visi svoriai w_{jk} jungčių, kurios jungia k-ąjį neuroną (l-1)-ajame sluoksnyje su j-uoju neuronu l-ajame sluoksnyje, keičiami naudojantis formule

$$\Delta w_{jk}^{i} = -\eta \frac{\partial E_{i}}{\partial w_{jk}}$$

"Klaidos skleidimo atgal" mokymo algoritmas (5)

Dalinės išvestinės išreiškiamos taip:

$$\frac{\partial E_i}{\partial w_{jk}} = \frac{\partial E_i}{\partial a_{ij}} \cdot \frac{\partial a_{ij}}{\partial w_{jk}}$$

- Kadangi $a_{ij} = \sum_{k=0}^{n_{l-1}} w_{jk} y_{ik}$, tai $\frac{\partial a_{ij}}{\partial w_{ik}} = y_{ik}$.
- Tegul $\delta_{ij} = \frac{\partial E_i}{\partial a_{ij}}$, tuomet $\frac{\partial E_i}{\partial w_{jk}} = \delta_{ij} y_{ik}$
- ir $\Delta w_{jk}^i = -\eta \delta_{ij} y_{ik}$,
- čia j-asis neuronas priklauso l-ajam sluoksniui, k-asis neuronas priklauso (l-1)-ajam sluoksniui.

"Klaidos skleidimo atgal" mokymo algoritmas (6)

• <u>Išėjimų sluoksnyje</u>

$$\delta_{ij} = \frac{\partial E_i}{\partial a_{ij}} = f'(a_{ij})(y_{ij} - t_{ij})$$

- ullet čia j-asis neuronas priklauso išėjimų sluoksniui L.
- Turime rasti $\delta_{ij} = \frac{\partial E_i}{\partial a_{ij}}$ paslėptiems neuronas, t. y. kai j-asis neuronas priklauso l-ajam sluoksniui ir l < L.

"Klaidos skleidimo atgal" mokymo algoritmas (7)

 Naudojantis dalinėmis išvestinėmis, bendruoju atveju galima parašyti

$$\delta_{ij} = \frac{\partial E_i}{\partial a_{ij}} = \sum_{s=1}^{n_{l+1}} \frac{\partial E_i}{\partial a_{is}} \cdot \frac{\partial a_{is}}{\partial a_{ij}}$$

- čia n_{l+1} žymi neuronų (l+1)-ajame sluoksnyje skaičių.
- Išraiška $\frac{\partial E_i}{\partial a_{is}}$ yra lygi dydžiui δ_{is} , apibrėžtam

s-ajam neuronui (l+1)-ajame sluoksnyje.

"Klaidos skleidimo atgal" mokymo algoritmas (8)

• Turint
$$\frac{\partial a_{is}}{\partial a_{ij}} = f'(a_{ij})w_{is}$$

• Paslėptųjų j-ųjų neuronų

$$\delta_{ij} = f'(a_{ij}) \sum_{s=1}^{n_{l+1}} w_{is} \delta_{is}$$

• čia j-asis neuronas priklauso sluoksniui l < L, s-asis neuronas priklauso (l+1)-ajam sluoksniui.

"Klaidos skleidimo atgal" mokymo algoritmas (9)

Apibendrinimas:

- Iš pradžių reikia apskaičiuoti δ_{ij} reikšmes **išėjimų** sluoksnyje L.
- Tada palaipsniui skaičiuoti δ_{ij} reikšmes **paslėptiems neuronams** tarpiniuose sluoksniuose l < L naudojantis (l+1)-ųjų sluoksnių δ_{ij} reikšmėmis.
- Kai visi svoriai pakeičiami, į tinklą pateikiamas sekantis mokymo vektorius ir procesas kartojamas iš naujo.

Algoritmo **sustojimo kriterijus** yra

- arba iš anksto nustatyta paklaidos funkcijos slenksčio reikšmė,
- arba atitinkamas atliktų iteracijų (mokymo žingsnių) skaičius.

"Klaidos skleidimo atgal" mokymo algoritmas (10)

 Norint pagreitinti mokymo procesą, yra koreguojama mokymo taisyklė ir gaunama tokia svorių pokyčio formulė:

$$\Delta w_{jk}^{i}(t) = -\eta \delta_{ij}(t) y_{ik}(t) + \alpha \Delta w_{jk}^{i}(t-1)$$

- čia t yra iteracijos numeris,
- η yra teigiamas daugiklis, kuris vadinamas **mokymo greičiu** (*learning rate*).
- α teigiama konstanta ($0 < \alpha \le 1$), vadinamoji **momento konstanta** (*momentum constant*).