3.2. Геометрическая идея симплекс-метода

Идея состоит в том, чтобы вершины множества решений (базисные решения) перебирать направленно.

①. Пусть мы находимся в некоторой вершине множества решений \mathcal{X}_0 (имеем некоторое базисное решение ЗЛП). Для определенности будем рассматривать ЗЛП на max. Тогда все вершины разделятся на две части: "лучшие", чем \mathcal{X}_0 (значение целевой функции в них больше, чем $f(\mathcal{X}_0)=f_0$) и "худшие", чем \mathcal{X}_0 (с меньшим, чем f_0 значением целевой функции (см. рис.)).

В симплекс-методе каждый раз осуществляется переход к одной из "лучших" вершин (вершины "худшие", чем \mathcal{X}_0 , как бы заранее отсекаются). Все начинается с того, что для текущей вершины <u>проверяется условие (критерий) оптимальности</u> (т.е. имеются ли вершины "лучшие", чем \mathcal{X}_0). Если таких вершин нет, то имеющееся решение оптимально.

2. В противном случае определяются направления на "лучшие" <u>вершины</u> (здесь $-z_1$, $-z_2$, $-z_3$), которые образуют конус возможных

направлений улучшения текущего решения x_0 .

Далее выбирается одно из направлений улучшения решения (например $-z_1$). С помощью положительного числового коэффициента вектор - Z₁ растягивается (или сжимается) таким образом, чтобы вектор - θz_1 "упирался" в "лучшую" вершину (здесь χ_3).

• Умножение вектора число θ >1 геометрически представляет растяжение вектора в θ раз, если же θ <1, то умножение на θ сжимает вектор в θ раз (см. рис.) • После выбора переход к

$$x_3 = x_0 - \theta \cdot z_1$$

Теперь в качестве текущего решения имеем вершину x_3 , в которой значение целевой функции больше, чем в предыдущей вершине x_0 .

$$f(x_3) = f_1 > f_0 = f(x_0)$$

"Скачок" целевой функции в сторону увеличения равен Δf . Таким образом, мы опять пришли к случаю ①, текущее значение целевой функции увеличилось. Описанные шаги повторяются до тех будет пор, пока не достигнута оптимальная вершина (в данном случае это \mathcal{X}_4). Так как число вершин конечно и целевая функция каждый раз не убывает, то через конечное число шагов будет получено оптимальное решение ЗЛП.