Theory of Automata

Shakir Ullah Shah

Lecture 5

FA and their Languages

- We will study FA from two different angles:
- 1. Given a language, can we build a machine for it?
- 2. Given a machine, can we deduce its language?

Note:

- Every state has as many outgoing edges as there are letters in the alphabet.
- It is possible for a state to have no incoming edges or to have many.

$$(a + b)*$$

starting with b=b(a + b)*

ending in a=(a+b)*a

$$(a+b)(a+b)*$$

Even length

not beginning with $(ab \neq b)^* + \Lambda$

beginning with and ending in same letters. a(a + b)*a + b(a + b)*b

beginning with and ending in different letters. a(a + b)*b + b(a + b)*a

containing double a=(a+b)* (aa) (a+b)*.

EVEN-EVEN

a(a + b)*

(a + b)*(aa + bb)(a + b)*

containing a triple letter, either aaa or bbb

FAs that accept no language

- There are FAs that accept no language. These are of two types:
- The first type includes FAs that have no final states, such as

FAs that accept no language

- The second type include FAs of which the final states can not be reached from the start state.
- This may be either because the diagram is in two separate components. In this c

 a, b

 Or it is because the final state has no incoming edges, as shown below:

