

Quality. Uncompromised.

ROTEL®

Technical Manual

STEREO POWER AMPLIFIER RB-5000

TABLE OF CONTENTS

Chassis Layout (Top View)	2
Chassis Layout (Bottom View)	3
Chassis Disassembly.	4
Alignment	
A. DC Balance Adjustment	8
B. Watts Meter Calibration	9
C. Protection Level Adjustment	10
D. Cooling Fan Revolution Adjustment	11
Checking of Operation	12
Troubleshooting Guide.	14
Repair Parts List	18
Block Diagram.	20
Schematic Diagram	DEF-GHI

Power Supply Circuit Board Diagram.	A
Protection and Power Supply (L-ch) Circuit Board Diagram.	A
Fan Control Circuit Board Diagram.	A
Power Amp (Upper Half Cycles) Circuit Board Diagram.	C
Power Amp (Lower Half Cycles) Circuit Board Diagram.	C
Cannon Input Circuit Board Diagram.	C
Control Circuit Board Diagram	J
Predriver Circuit Board Diagram	J
Speaker Indicators Circuit Board Diagram.	J
Driver Circuit Board Diagram	K
Meter Amp Circuit Board Diagram	K
Peak Indicator Circuit Board Diagram	L
Output Circuit Board Diagram	L

INHALTSVERZEICHNIS

Chassis-Anordnung (Oberansicht).	2
Chassis-Anordnung (Unteransicht)	3
Auseinanderbau des Chassis	4
Abgleich	
A. Gleichstrom Balance-Einstellung	8
B. Eichung der Wattmeter.	9
C. Schutzpegel-Einstellung	10
D. Einstellung des Kühlgebläses.	11
Überprüfung.	12
Leitfaden zur Störungssuche.	15
Reparaturteilliste	18
Blockschaltbild	20
Schaltungsschema.	DEF-GHI

Bestückungsplan des Netzteils.	A
Bestückungsplan der Schutzschaltung und des Netzteils	A
Bestückungsplan des Kühlgebläsegeregs	A
Bestückungsplan des Leistungsverstärkers (obere Halbwellen).	C
Bestückungsplan des Leistungsverstärkers (untere Halbwellen)	C
Bestückungsplan des Cannon-Eingangs.	C
Bestückungsplan des Reglers.	J
Bestückungsplan des Vorverstärkers	J
Bestückungsplan der Lautsprecheranzeigen	J
Bestückungsplan des Treibers	K
Bestückungsplan des Anzeigeverstärkers	K
Bestückungsplan der Spitzenwertanzeige.	L
Bestückungsplan des Ausgangskreises.	L

TABLE DES MATIERES

Installation du châssis (vue de dessus)	2
Installation du châssis (vue de dessous).	3
Démontage du châssis	5
Alignment	
A. Réglage de l'équilibrage courant continu.	8
B. Étalonnage des indicateurs de puissance	9
C. Réglage du niveau de protection	10
D. Réglage de la vitesse du ventilateur de refroidissement	11
Contrôle du fonctionnement	13
Guide de dépannage	16
Liste des pièces de rechange	18
Schéma synoptique.	20
Diagramme schématique	DEF-GHI
Diagramme de la plaquette d'alimentation.	A

Diagramme de la plaquette d'alimentation du canal gauche et de protection	A
Diagramme de la plaquette de commande du ventilateur.	A
Diagramme de la plaquette de l'amplificateur de puissance (périodes supérieures)	C
Diagramme de la plaquette de l'amplificateur de puissance (périodes inférieures)	C
Diagramme de la plaquette d'entrée Cannon.	C
Diagramme de la plaquette de commande	J
Diagramme de la plaquette de pré-attaque.	J
Diagramme de la plaquette des indicateurs de haut-parleurs	J
Diagramme de la plaquette de l'étage d'attaque.	K
Diagramme de la plaquette des indicateurs de puissance	K
Diagramme de la plaquette de l'indicateur de crête.	L
Diagramme de la plaquette de sortie	L

Serial No. Beginning
NB49071

Technical Manual

STEREO POWER AMPLIFIER RB-5000

TABLE OF CONTENTS

Chassis Layout (Top View)	2	Power Supply Circuit Board Diagram.	A
Chassis Layout (Bottom View)	3	Protection and Power Supply (L-ch) Circuit Board Diagram.	A
Chassis Disassembly.	4	Fan Control Circuit Board Diagram.	A
Alignment		Power Amp (Upper Half Cycles) Circuit Board Diagram.	C
A. DC Balance Adjustment	8	Power Amp (Lower Half Cycles) Circuit Board Diagram.	C
B. Watts Meter Calibration	9	Cannon Input Circuit Board Diagram.	C
C. Protection Level Adjustment	10	Control Circuit Board Diagram	J
D. Cooling Fan Revolution Adjustment.	11	Predriver Circuit Board Diagram	J
Checking of Operation	12	Speaker Indicators Circuit Board Diagram.	J
Troubleshooting Guide.	14	Driver Circuit Board Diagram	K
Repair Parts List	18	Meter Amp Circuit Board Diagram	K
Block Diagram.	20	Peak Indicator Circuit Board Diagram	L
Schematic Diagram	DEF-GHI	Output Circuit Board Diagram	L

INHALTSVERZEICHNIS

Chassis-Anordnung (Oberansicht).	2	Bestückungsplan des Netzteils.	A
Chassis-Anordnung (Unteransicht)	3	Bestückungsplan der Schutzschaltung und des Netzteils	A
Auseinanderbau des Chassis	4	Bestückungsplan des Kühlgebläsegrels	A
Abgleich		Bestückungsplan des Leistungsverstärkers (obere Halbwellen).	C
A. Gleichstrom Balance-Einstellung	8	Bestückungsplan des Leistungsverstärkers (untere Halbwellen).	C
B. Eichung der Wattmeter.	9	Bestückungsplan des Cannon-Eingangs.	C
C. Schutzpegel-Einstellung	10	Bestückungsplan des Reglers.	J
D. Einstellung des Kühlgebläses.	11	Bestückungsplan des Vorverstärkers	J
Überprüfung.	12	Bestückungsplan der Lautsprecheranzeigen	J
Leitfaden zur Störungssuche.	15	Bestückungsplan des Treibers	K
Reparaturteilliste	18	Bestückungsplan des Anzeigeverstärkers	K
Blockschaltbild	20	Bestückungsplan der Spitzenwertanzeige.	L
Schaltungsschema.	DEF-GHI	Bestückungsplan des Ausgangskreises.	L

TABLE DES MATIERES

Installation du châssis (vue de dessus)	2	Diagramme de la plaque d'alimentation du canal gauche et de protection	A
Installation du châssis (vue de dessous)	3	Diagramme de la plaque de commande du ventilateur.	A
Démontage du châssis	5	Diagramme de la plaque de l'amplificateur de puissance (périodes supérieures)	C
Alignment		Diagramme de la plaque de l'amplificateur de puissance (périodes inférieures)	C
A. Réglage de l'équilibrage courant continu.	8	Diagramme de la plaque d'entrée Cannon.	C
B. Etalonnage des indicateurs de puissance	9	Diagramme de la plaque de commande	J
C. Réglage du niveau de protection	10	Diagramme de la plaque de pré-attaque.	J
D. Réglage de la vitesse du ventilateur de refroidissement	11	Diagramme de la plaque des indicateurs de haut-parleurs.	J
Contrôle du fonctionnement	13	Diagramme de la plaque de l'étage d'attaque.	K
Guide de dépannage	16	Diagramme de la plaque des indicateurs de puissance	K
Liste des pièces de rechange	18	Diagramme de la plaque de l'indicateur de crêtes	L
Schéma synoptique.	20	Diagramme de la plaque de sortie	L
Diagramme schématique	DEF-GHI		
Diagramme de la plaque d'alimentation.	A		

6
Chassis Layout (Top View)
Chassis-Anordnung (Oberansicht)
Installation du châssis (vue de dessus)

Chassis L
Chassis-/
Installatio

Chassis Layout (Bottom View)

Chassis-Anordnung (Unteransicht)

Installation du châssis (vue de dessous)

Chassis Disassembly

A. Top Cover:

Remove screws 1 through 12 as shown in Fig. A.

B. Bottom Cover:

Remove screws 1 through 15 as shown in Fig. B.

C. Front Panel:

- 1) Remove handles on both sides and their bases by loosening screws 1 through 4 as shown in Fig. C.
- 2) Remove knobs A through F, Fig. C, by loosening their screws.
- 3) Remove screws 5 through 10 as shown in Fig. C.

D. Power Amplifier Section:

- 1) Remove all connecting plugs, except #13 plug (#20 for R-CH) from the Driver PC board in Power Amplifier Section. (See Fig. D-1)
- 2) Remove connecting plug A and B from the Output PC board.
- 3) Disconnect wiring of ORN, thick GRN, thin GRN and YLW connected to the Driver PC board, by loosening terminal screws on Smoothing Capacitors.
- 4) In the same way, disconnect wiring of GRY, RED, and BRN from the Driver PC board to the chassis grounding terminals.
- 5) Disconnect two WHTs of Cooling Fan terminal wiring.
- 6) Detach the Power Amplifier Section from the

top of the unit, by removing screws 1 through 4 as shown in Fig. D-2 and pulling the section upward.

- 7) To remove the Driver PC board (see Fig. D-3), remove screw 1 only (which secures the Driver PC board), then detach the PC board from its holder. Remove connecting plug #13 for L-CH (#20 for R-CH).

- 8) To remove the Power Amplifier PC board unit:
 - a) After completing process 7, remove the screw 1 that secures the heat-sink to sub-chassis.
 - b) Next, loosen screw 3 to remove fixing plate 4.
 - c) Pull the Power Amplifier unit upward to detach from the body assembly.
- #### Note:
- In reassembling, be sure to fit the unit with #13 connector plug to L-CH, and the unit with #20 plug to R-CH. (Plugs are not shown in figures.)
- 9) To detach the Cooling Fan, remove screw 9 as shown in Fig. D-3.
- #### Note:
- When reassembling the Cooling Fan, be sure the Fan motor terminals face toward the right channel side as shown in Fig. D-3, otherwise terminal wiring is impossible.
- ## Auseinanderbau des Chassis
- ### A. Obere Verkleidung:
- Entfernen Sie die Schrauben 1 bis 12, wie in der Abb. A gezeigt ist.
- ### B. Untere Verkleidung:
- Entfernen Sie die Schrauben 1 bis 15, wie in der Abb. B gezeigt ist.
- ### C. Frontplatte:
- 1) Entfernen Sie die Griffe auf beiden Seiten einschließlich der Zuberhörteile, indem Sie die Schrauben 1 bis 4 lösen (Abb. C).
 - 2) Entfernen Sie die Knöpfe A bis F (Abb. C), indem Sie die Schrauben derselben lösen.
 - 3) Entfernen Sie die Schrauben 5 bis 10, wie in Abb. C gezeigt.
- ### D. Leistungsverstärkerteil:
- 1) Lösen Sie alle Steckverbindungen, außer Stecker Nr. 13 (Nr. 20 für den rechten Kanal) von der Treiber-Leiterplatte im Leistungsverstärkerteil. (Siehe Abb. D-1).
 - 2) Lösen Sie die Steckverbindung A und B von der Ausgangskreis-Leiterplatte.
 - 3) Lösen Sie die Drahtverbindungen zur Treiber-Leiterplatte, indem Sie die Anschlußschrauben an den Glättungskondensatoren lösen. Die Drähte haben folgende Kennzeichen: Orange (ORN), dicker Draht Grün (GRN), dünner Draht Grün (GRN) und Gelb (YLW).
 - 4) Auf dieselbe Weise die Drähte mit den Farben Grau (GRY), Rot (RED) und Braun (BRN) lösen, die von der Treiber-Leiterplatte an die Erdanschlüsse am Chassis gehen.
 - 5) Lösen Sie die zwei Anschlußdrähte des Kühlgebläses mit den Farben Weiß (WHT).
- 6) Nehmen Sie den Leistungsverstärkerteil von der Oberseite des Gerätes her heraus, indem Sie die Schrauben 1 bis 4 - wie in Abb. D-2 gezeigt - entfernen und das Teil nach oben ziehen.
- 7) Um die Treiber-Leiterplatte herauszunehmen, nur die Schraube 1 entfernen, (mit der die Treiber-Leiterplatte befestigt ist) und die Leiterplatte von ihrer Halterung wegnehmen. Die Steckverbindung Nr. 13 für den linken Kanal (Nr. 20 für den rechten Kanal) lösen. (Abb. D-3).
- 8) Ausbau der Leistungsverstärker-Leiterplatte:
 - a) Wenn Schritt 7 beendet ist, die Schraube 1 entfernen, mit der das Kühlblech am unteren Chassis befestigt ist.
 - b) Dann die Schraube 3 entfernen, um die Befestigungsplatte herausnehmen zu können.
 - c) Nehmen Sie nun den Leistungsverstärker heraus.
- ### Zur Beachtung:
- Achten Sie bitte beim Zusammenbau darauf, daß der Stecker Nr. 13 an den linken Kanal und der Stecker Nr. 20 an den rechten Kanal der Einheit kommt.
- (Die Stecker sind in der Abbildung nicht gezeigt.)
- 9) Zum Abnehmen des Kühlgebläses die Schraube 9 entfernen, wie es in Abb. D-3 gezeigt ist.
- ### Zur Beachtung:
- Beim Wiedereinbau des Kühlgebläses muß darauf geachtet werden, daß die Anschlüsse auf der richtigen Seite liegen, da sonst Verdrahten unmöglich ist. (Siehe Abb. D-3).
- 3
- 4

Démontage du châssis

A. Capot:

Oter les vis 1 à 12, comme indiqué sur la Fig. A.

B Couvercle inférieur:

Oter les vis 1 à 15 comme indiqué sur la Fig. B

C Panneau avant

- 1) Oter les poignées latérales ainsi que leurs bases en dévissant les vis 1 à 4, comme indiqué sur la Fig. C.
 - 2) Oter les boutons A à F, Fig C, en desserrant leurs vis.
 - 3) Oter les vis 5 à 10, comme indiqué sur la Fig. C.

D. Section amplificatrice:

- 1) Oter toutes les fiches de raccordement, à l'exception de la fiche n°013 (n°20 pour le canal droit) de la plaquette de l'étage d'attaque de la section amplificatrice, (voir Fig. D-1).
 - 2) Oter les fiches de raccordement A et B de la plaquette du circuit de sortie.
 - 3) Déconnecter le câblage de ORN, GRN épais, GRN mince et YLW raccordé à la plaquette de l'étage d'attaque en desserrant les bornes à vis des condensateurs de filtrage.
 - 4) De la même manière, déconnecter le câblage de GRY, RED et BRN de la plaquette du circuit de l'étage d'attaque des bornes de masse du châssis.
 - 5) Débrancher les deux WHT du câblage de la borne du ventilateur.
 - 6) Détacher la section amplificatrice de la partie supérieure de l'appareil en ôtant les vis 1 à 4,

Fig. A. Chassis Disassembly (Top View)

Abb. A. Auseinanderbau des Chassis (Oberansicht)

Fig. A. Démontage du châssis (vue de dessus)

comme indiqué sur la Fig. D-2, et en la tirant vers le haut.

-) Pour ôter la plaquette du circuit de l'étage d'attaque (voir Fig. D-3), ôter seulement la vis 1 (qui maintient la plaquette), puis détacher la plaquette de sa monture. Oter la fiche de connexion n°13 pour le canal gauche (n°20 pour le canal droit).

) Pour ôter le bloc des circuits de l'amplificateur de puissance:

 - Après avoir achevé le point 7, ôter la vis 1 qui maintient la plaque de refroidissement au châssis secondaire.
 - Desserer ensuite la vis 3 pour pouvoir ôter la plaque de montage 4.
 - Tirer le bloc amplificateur vers le haut pour le désolidariser de l'ensemble de l'appareil.

Note

Lors du remontage, s'assurer de bien mettre la fiche de connexion n°13 avec le canal gauche et la fiche n°20 avec le canal droit. (Les fiches ne figurent pas sur les illustrations.)

- 9) Pour enlever le ventilateur, ôter la vis 9, comme indiqué sur la Fig. D-3.

Note

Note: Lors du remontage du ventilateur, s'assurer que les bornes du moteur de celui-ci soient bien dirigées en direction du canal droit, comme indiqué sur la Fig. D-3; le câblage de la borne est autrement impossible.

Fig. B. Chassis Disassembly (Bottom View)

Abb. B. Auseinanderbau des Chassis (Unteransicht)

Fig. B. Démontage du châssis (vue de dessous)

Fig. C. Chassis Disassembly (Front View)
Abb. C. Auseinanderbau des Chassis (Vorderansicht)
Fig. C. Démontage du châssis (vue de face)

Fig. D-1. Power Amp Section Disassembly
Abb. D-1. Auseinanderbau des Leistungsverstärkerzteils
Fig. D-1. Démontage de la section amplificatrice de puissance

Fig. D-2 Power Amp Section (Portion)
Abb. D-2 Leistungsverstärkerteils
Fig. D-2 Section amplificatrice de puissance (partie)

Fig. D-3. Power Amp Section (Exploded View)
Abb. D-3. Leistungsverstärkerteils (Explosionszeichnung)
Fig. D-3. Section amplificatrice de puissance (vue écorchée)

Key No.	Description
1.	Screw, \oplus 3 x 8mm, Tapping, Oval Countersunk Head
2.	Driver Circuit Assembly
3.	Screw, \oplus 3 x 8mm, Tap-tight, Oval Countersunk Head
4.	Metal Fittings, Heat Sink Mtg
5.	Support, Heat Sink Mtg
6.	Spacer, Heat Sink Mtg
7.	Power Amp (lower half cycle) Unit
8.	Power Amp (upper half cycle) Unit
9.	Screw, \oplus 3 x 15mm, Binding Head
10.	Spring Washer, ϕ 3
11.	Plain Washer, ϕ 3
12.	Cooling Fan
13.	Rubber Cushion, Fan Mtg
14.	Power Amp Sub-chassis

Alignment

Instruments: Line Voltage Régulateur (5kVA or over), Audio Generator, Oscilloscope, HD Analyzer, VTVM, AC Voltmeter, Thermometer and Load Resistors <non-inductive type, 8-ohm & 4-ohm (500W or over)>.

A. DC BALANCE ADJUSTMENT (FOR EACH CHANNEL)

1. Connect VTVM to SPEAKER A terminals. (VTVM should be set in DC 5V range, and used as a center meter, by positioning point zero at the center of the

scale.) Set Speaker Switch A to ON and Input Switch to OFF.

2. Set Power Switch to ON with no signal input. (Be sure Line Voltage is at specified value.) Adjust Potentiometer VR6001 (VR6002 for R-CH) on the Predriver PC board to obtain "0" reading (mid-position on the meter scale) on VTVM.

Note: Prior to this adjustment, allow the unit to run for about 10 to 20 minutes to warm it up, with no signal input.

Abgleich

Instrumente: Netzspannungsregler (5kVA oder mehr), Tongenerator, Oszillograph, Klirrfaktormesser, Röhrenvoltmeter, Wechselstrom-Voltmeter, Thermometer und Belastungswiderstände <induktionsfrei, 8-Ohm und 4-Ohm (500W oder mehr)>

A. GLEICHSTROM BALANCE-EINSTELLUNG (FÜR JEDEN KANAL)

1. Röhrenvoltmeter an den Lautsprecherausgang A (SPEAKER A) anschließen. (Das Röhrenvoltmeter auf den Gleichspannungsbereich 5V einstellen und den Nullpunkt auf die Skalenmitte legen.) Den Lautsprecherschalter auf ON, den Eingangsschalter

auf OFF stellen.

2. Legen Sie kein Signal an den Eingang. Schalten Sie nun das Gerät ein, aber achten Sie darauf, daß Sie die Spannung richtig eingestellt haben. Stellen Sie jetzt das Potentiometer VR6001 (VR6002 für den rechten Kanal) auf der Leiterplatte des Vorverstärkers so ein, daß die Nadel des Röhrenvoltmeters in der Mitte steht, d.h., „0“ anzeigt.

Zur Beachtung: Um das Gerät auf Betriebstemperatur zu bringen, sollte es 10 bis 20 Minuten vor dieser Einstellung eingeschaltet werden, aber ohne Eingangssignal.

Alignment

Instruments: Régulateur de tension (5kVA ou plus), générateur d'audiofréquences, oscilloscope, analyseur à distorsion non-linéaire, voltmètre électrique, voltmètre à courant alternatif, thermomètre et résistances de charge <de type anti-inductif, 8 ohms et 4 ohms (500W ou plus)>

A. REGLAGE DE L'EQUILIBRAGE COURANT CONTINU (POUR CHAQUE CANAL)

1. Raccorder le voltmètre électrique aux bornes de H.P. SPEAKER A. (Le voltmètre électrique doit être réglé sur la bande 5V courant continu et être utilisé en zéro central en positionnant le zéro au

centre de l'échelle.) Placer le commutateur de haut-parleurs A sur marche (ON) et le commutateur d'entrée hors circuit (OFF).

2. Placer l'interrupteur d'alimentation sur marche (ON) sans signal d'entrée. (S'assurer que l'appareil est réglé à la tension secteur correcte.) Ajuster le potentiomètre VR6001 (VR6002 pour le canal droit) de la plaque du circuit de pré-attaque de manière à obtenir la mesure "0" (position médiane sur le cadran) sur le voltmètre électrique.

Note: Avant de procéder à ce réglage, faire fonctionner l'appareil pendant 10 à 20 minutes, sans signal d'entrée, pour le faire chauffer.

Fig. 1 DC Balance Adjustment

Abb. 1 Gleichstrom Balance-Einstellung

Fig. 1 Réglage de l'équilibrage courant continu

B. WATTS METER CALIBRATION

1. Connect an 8-ohm Load Resistor to SPEAKER terminals. Connect AC Voltmeter and Oscilloscope in parallel with the Load Resistor.
2. Connect Audio Generator to Input terminal, and feed in 1,000Hz (sine wave) signal. Set Meter Sensitivity Switch at 1/10.
3. Adjust the input level to obtain 20V (50W/8-ohm) reading on the AC Voltmeter. At this stage, adjust Potentiometer VR7001 (on Meter Amp PC board) to obtain 0dB reading on Watts Meter.
4. Follow the same procedures for the other channel.

B. EICHUNG DER WATTMETER

1. Belastungswiderstände (8-Ohm) an die Lautsprecher-ausgänge (SPEAKER) anschließen. Das Wechselstrom-Voltmeter und den Oszillographen parallel mit einem der Belastungswiderstände verbinden.
2. Schließen Sie den Tongenerator an den Eingang an, und führen Sie ein 1kHz-Signal (Sinus) zu. Den Empfindlichkeitsschalter für das Instrument auf 1/10 stellen.
3. Stellen Sie den Eingangspegel so ein, daß das Wechselstrom-Voltmeter 20V (50W/8-Ohm) anzeigt. Dann das Potentiometer VR7001 (auf der Leiterplatte des Anzeigeverstärkers) verstetlen, bis das Wattmeter 0dB anzeigt.
4. Den oben beschriebenen Vorgang für den anderen Kanal ausführen.

B. ETALONNAGE DES INDICATEURS DE PUISSANCE (WATTS)

1. Raccorder une résistance de charge de 8 ohms aux bornes de haut-parleur (SPEAKER). Brancher le voltmètre à courant alternatif et l'oscilloscope en parallèle avec la résistance de charge.
2. Raccorder le générateur d'audio-fréquences à la borne d'entrée et envoyer un signal de 1.000Hz (onde sinusoïdale). Placer le commutateur de sensibilité des indicateurs sur la position 1/10.
3. Régler le niveau d'entrée de manière à ce que le voltmètre à courant alternatif affiche 20V (50W/8 ohms). A ce stade, ajuster le potentiomètre VR7001 (sur la plaque du circuit d'amplification des indicateurs) de façon que l'indicateur affiche 0dB.
4. Procéder de manière semblable pour l'autre canal.

ADJUST VR7001 SO THAT
WATTS METER INDICATES
0 dB

Fig. 2 Watts Meter Calibration

Abb. 2 Eichung der Wattmeter

Fig. 2 Etalonnage des indicateurs de puissance

C. PROTECTION LEVEL ADJUSTMENT

Note: This adjustment must be made by one channel operation.

1. Connect a 4-ohm Load Resistor to SPEAKER terminals, and connect Oscilloscope and HD Analyzer in parallel with the resistor.
2. Feed 1,000Hz (sine wave) signal to Input Terminal from Audio Generator, and adjust the input level to obtain an output signal of 20% distortion on speaker terminals. At this state, adjust Potentiometer VR6003 (on the Driver PC board) to activate the Protection Circuit.
3. Set Power Switch to OFF and the input signal level to "0" to release the Protection Circuit temporarily. Set the Power Switch to ON again, and raise the input level gradually, until the distortion factor of output signal reaches 10% or over. Check to see that the Protection Circuit works.
4. Follow the same procedures for the other channel.

C. SCHUTZPEGEL-EINSTELLUNG

Zur Beachtung: Diese Einstellung ist nur bei Einzelkanalbetrieb vorzunehmen.

1. Belastungswiderstände (4-Ohm) an die Lautsprecher-ausgänge anschließen. An einen Belastungswiderstand den Oszillographen und den Klirrfaktormesser parallel anschließen.
2. Führen Sie nun ein 1kHz-Signal (Sinus) an den Eingang. Den Eingangspegel so einstellen, daß am Lautsprecherausgang ein Ausgangssignal mit 20% Verzerrung liegt. Verstellen Sie jetzt das Potentiometer VR6003 (auf der Leiterplatte des Treibers), bis die Überlastungsschutzschaltung anspricht und das Laut-

C. REGLAGE DU NIVEAU DE PROTECTION

Note: Ce réglage doit être effectué avec l'appareil fonctionnant sur un seul canal.

1. Brancher une résistance de charge de 4 ohms aux bornes de H.P. (SPEAKER) et brancher l'oscilloscope et l'analyseur à distorsion non-linéaire en parallèle avec la résistance.
2. Envoyer un signal de 1.000Hz (onde sinusoïdale) à la borne d'entrée, à partir du générateur d'audio-fréquences et régler le niveau d'entrée de manière à obtenir un signal de sortie de 20% de distorsion aux bornes de haut-parleurs. A ce stade, ajuster le potentiomètre VR6003 (sur la plaque du circuit de l'étage d'attaque) pour mettre en action le circuit

Protection Circuit et turn off the Speaker Relay (output wave on the oscilloscope disappears).

3. Set Power Switch to OFF and the input signal level to "0" to release the Protection Circuit temporarily. Set the Power Switch to ON again, and raise the input level gradually, until the distortion factor of output signal reaches 10% or over. Check to see that the Protection Circuit works.
4. Follow the same procedures for the other channel.

sprechersignal abschaltet (das Signal auf dem Oszillographen verschwindet).

3. Schalten Sie den Netzschalter auf OFF und setzen Sie den Pegel des Eingangssignals auf „0“, damit die Überlastungsschutzschaltung das Lautsprecherrelais freigibt. Den Netzschalter wieder einschalten und den Eingangspegel allmählich erhöhen, bis der Klirrfaktor des Ausgangssignals 10% oder mehr beträgt. Hierbei überprüfen, ob die Überlastungsschutzschaltung arbeitet.
4. Den oben beschriebenen Vorgang für den anderen Kanal ausführen.

de protection, puis mettre le relais de haut-parleur hors circuit (l'onde de sortie disparaît sur l'oscilloscope).

3. Placer l'interrupteur d'alimentation sur arrêt (OFF) et régler le niveau du signal d'entrée sur "0" pour désenclencher le circuit de protection temporairement. Remettre l'appareil sous tension et augmenter progressivement le niveau d'entrée jusqu'à ce que le facteur de distorsion du signal de sortie atteigne 10% ou plus. Vérifier que le circuit de protection fonctionne.
4. Suivre le même processus pour l'autre canal.

CHASSIS SIDE VIEW (PORTION)

Fig. 3 Protection Level Adjustment

Abb. 3 Schutzpegel-Einstellung

Fig. 3 Réglage du niveau de protection

D. COOLING

1. Connect Load Resistor to SPEAKER terminals.

measuring set attached), when Amplifier. Me heat-sink.

D. EINSTELLUNG

1. Belastungswiderstände und ein Eingangssignal. Hilfe des Thermometers auf dem Kühlbleches findet, welche stungsverstärkung sollte sich die Lage befinden.

D. REGLAGE

1. Connecter un résistance de charge aux bornes de haut-parleur et envoyer un signal d'entrée au point de coupure. L'interrupteur est fermé pour la mise en tension de l'amplificateur; l'amplificateur est dans la position horizontale.

rn off the Speaker Relay
oscope disappears).
and the input signal level
ection Circuit temporarily.
N again, and raise the input
distortion factor of output
er. Check to see that the
s for the other channel.

das Signal auf dem Oszillo-
alter auf OFF und setzen
signals auf „0“, damit die
ig das Lautsprecherrelais
wieder einschalten und den
rhöhen, bis der Klirrfaktor
der mehr beträgt. Hierbei
berlastungsschutzschaltung

Vorgang für den anderen

le relais de haut-parleur
tie disparaît sur l'oscillo-
ration sur arrêt (OFF) et
entrée sur "0" pour désen-
tection temporairement.
ension et augmenter pro-
entrée jusqu'à ce que le
signal de sortie atteigne
le circuit de protection

sur l'autre canal.

VR6003 SO THAT
R RELAY IS DIS-
ED.

D. COOLING FAN REVOLUTION ADJUSTMENT

1. Connect Load Resistor to the amplifier, and feed in input signal. Place a thermometer on the temperature measuring section (to which the thermo-switch is attached), which is on top of the heat-sink of Power Amplifier. Measure the increase of temperature of the heat-sink.

D. EINSTELLUNG DES KÜHLGEBLÄSES

1. Belastungswiderstand an den Verstärker anschließen und ein Eingangssignal zuführen. Messen Sie nun mit Hilfe des Thermometers den Temperaturanstieg des Kühlbleches dort, wo sich der Thermoschalter befindet, welcher oben auf dem Kühlblech des Leistungsverstärkers angebracht ist. Bei der Messung sollte sich der Leistungsverstärker in horizontaler Lage befinden, d.h. wie beim Normalbetrieb.

D. REGLAGE DE LA VITESSE DU VENTILATEUR DE REFROIDISSEMENT

1. Connecter une résistance de charge à l'amplificateur et envoyer un signal d'entrée. Placer un thermomètre au point de prise de température (auquel le thermorupteur est fixé) situé sur la plaque de refroidissement de l'amplificateur de puissance. Mesurer l'augmentation de la température de la plaque de refroidissement; l'amplificateur doit, pour ce faire, être en position horizontale, comme lors du fonctionnement normal.

At this stage, the Power Amplifier should be horizontal as in normal operation.

2. After the temperature of the heat-sink is stabilized at around 65°C to 70°C, connect AC Voltmeter to FAN terminal, and adjust Potentiometer VR7003 (on Fan Control PC board) to get 90V terminal voltage.

2. Verbinden Sie das Wechselstrom-Voltmeter mit dem Ausgang des Gebläses (FAN), wenn sich die Temperatur des Kühlbleches zwischen 65°C und 70°C stabilisiert hat. Stellen Sie das Potentiometer VR7003 (auf der Leiterplatte des Gebläsereglers) so ein, daß am Ausgang eine Spannung von 90V liegt.

Fig. 4 Fan Revolution Adjustment

Abb. 4 Einstellung des Kühlgebläses

Fig. 4 Réglage de la vitesse du ventilateur de refroidissement

Checking of Operation

1. Line Relay

Line Relay should begin operating within 3 seconds upon setting Power Switch to ON.

2. Speaker Relay

Set one of Speaker Switches A, B, or C to ON, then set the Power Switch to ON. After the Line Relay is activated, the Speaker Relay should operate the moment the Stand-by Indicator goes off. This sequence should take 7 to 10 seconds after the Power Switch is turned on. Speaker Switches may also be used in combinations, as in; (A + B), (B + C), (A + C).

Note: When A, B and C switches are all set to ON simultaneously, switch C circuit is opened, and the relay of speaker C (RY003) will not work.

3. Input Sensitivity

a) The input level should be $1V \pm 0.5dB$ when 1,000Hz signal (sine wave) is fed to Pin Jack Input terminal, to obtain 44.7V (250W/8-ohm) output at Speaker terminal.

b) The input level should be $0.775V \pm 0.5dB$, when 1,000Hz signal (sine wave) is fed to CANNON Jack input terminal, to obtain 44.7V (250W/8-ohm) output at Speaker terminal.

4. Power Limiter

The Power Limiter allows you to select the maximum output level in three modes: FULL, 1/2 and 1/4. These modes are based on 8-ohm load impedance. The output level will rise higher than the above figure when the Power Limiter is activated, enabling a specified distortion factor to enter the respective output range.

a) Connect a 3-ohm Load Resistor (or 8-ohm and 4-ohm in parallel: consequently about 2.7 ohms), Oscilloscope and AC Voltmeter to speaker terminals. Set the Limiter Switch at FULL and feed 1,000Hz signal (sine wave) into Input terminal from the Audio Generator. As the input level is gradually raised, the Limiter should be activated to limit the upper and lower peaks to a certain predetermined maximum value simultaneously. (In this case, the Limiter should work at an output voltage of around 25V or over.) In the similar manner, the Limiter should work for both upper and lower peaks at the same time at 1/2 and 1/4 positions of the Limiter Switch as well.

5. Protection

When 2W (with 8-ohm load) is applied at the speaker terminal, if the speaker terminals are shorted, the Protection Circuit should start to work (Speaker Relay turns off). The Protection Lamp should light up at the same time.

6. Overload

Operate the amplifier at high output with the ventilation holes blocked (or with the fan off). When the temperature of the upper portion of the heat-sink rises to around 85°C, the Overload Protection Circuit should be activated to turn off the Speaker Relay and light up the Overload Lamp simultaneously. Remove the block from the ventilation holes (or turn on the fan). When the temperature of the heat-sink falls to a certain level, the Thermo-switch should return automatically to the former position, to turn off the Overload Lamp and set Speaker Relay to ON.

Überprüfung

1. Netzrelais

Das Netzrelais sollte innerhalb von 3 Sekunden nach dem Einschalten des Netzschatzers ansprechen.

2. Lautsprecherrelais

Stellen Sie einen der Lautsprecherschalter A, B oder C auf ON, und schalten Sie die Netzspannung ein. Nach dem Ansprechen des Netzschatzers muß das Lautsprecherrelais dann schalten, wenn die Bereitschaftsanzeigelampe erlischt. Das Lautsprecherrelais sollte 7 bis 10 Sekunden nach dem Einschalten der Netzspannung ansprechen. Die Lautsprecherschalter können auch in Kombinationen benutzt werden, wie z.B. (A - B), (B - C), (A - C).

Zur Beachtung: Der Kreis des Schalters C ist offen, und das Lautsprecherrelais C (RY003) spricht nicht an, wenn die Schalter A, B und C gleichzeitig auf ON stehen.

3. Eingangsempfindlichkeit

a) Der Eingangsspegel sollte $1V \pm 0.5dB$ bei Einspeisung eines 1kHz-Signals (Sinus) in die Miniaturbuchse sein, um am Lautsprecherausgang eine Spannung von 44,7V (250W/8-Ohm) zu erhalten.

b) Wenn das 1kHz-Signal (Sinus) an die CANNON-Eingangsbuchse gelegt wird, sollte der Eingangsspegel $0.775 \pm 0.5dB$ betragen, um am Lautsprecherausgang eine Spannung von 44,7V (250W/8-Ohm) zu erhalten.

4. Leistungsbegrenzer

Der Leistungsbegrenzer gibt Ihnen die Möglichkeit, zwischen drei maximalen Ausgangsspeichern zu wählen: FULL, 1/2 und 1/4.

Diesen Werten liegt eine Belastung von 8-Ohm zugrunde. Der Ausgangsspegel wird höher als oben angegeben, wenn der Leistungsbegrenzer betrieben wird, wodurch ein bestimmter Klirrfaktor entsteht und in den entsprechenden Ausgangsbereich übergegangen wird.

a) Schließen Sie einen Belastungswiderstand von 3-Ohm (oder 8-Ohm und 4-Ohm parallel), den Oszillographen und das Wechselstrom-Voltmeter an den Lautsprecherausgang. Stellen Sie den Begrenzerschalter auf FULL und legen Sie ein 1kHz-Signal (Sinus) an den Eingang. Bei allmählichem Erhöhen des Eingangsspeglers sollte der Begrenzer wirksam werden und die unteren und oberen Spitzen auf einen vorbestimmten Maximalwert gleichzeitig begrenzen. (In diesem Fall sollte der Begrenzer bei einer Ausgangsspannung von etwa 25V oder mehr arbeiten.) Auf diese Weise sollte der Begrenzer auch die unteren und oberen Spitzen gleichzeitig begrenzen, wenn der Begrenzerschalter in der Stellung 1/2 bzw. 1/4 steht.

5. Schutz

Wenn der Lautsprecherausgang bei einer Ausgangsleistung von 2W (mit einer Belastung von 8-Ohm) kurzgeschlossen wird, muß die Schutzschaltung ansprechen (Lautsprecherrelais öffnet sich). Die Schutzanzeigelampe leuchtet auf.

6. Überlastung

Betreiben Sie den Verstärker mit hoher Ausgangsleistung bei unterbrochener Luftzufuhr des Gebläses (oder bei abgeschaltetem Gebläse). Wenn die Temperatur des oberen Kühlblechteils auf etwa 85°C

angestiegen ist, muß die Überlastungsschaltung ansprechen und das Lautsprecherrelais öffnen. Die Überlastungsanzeige muß dabei gleichzeitig aufleuchten. Wenn dem Gebläse wieder genügend Kühlluft zugeführt wird (bzw. das Gebläse wieder eingeschaltet wird) sinkt die Temperatur, und bei einem bestimmten Wert sollte der Thermoschalter auf seine vorige Position zurückgehen, die Überlastungsanzeige ausschalten und das Lautsprecherrelais auf ON bringen.

Contrôle du fonctionnement

1. Relais de ligne:

Le relais de ligne doit entrer en action dans les trois secondes après la mise sous tension de l'appareil.

2. Relais de haut-parleur:

Mettre l'un des commutateurs A, B ou C en service (ON), puis mettre l'appareil sous tension. Le relais de haut-parleur doit fonctionner au moment où l'indicateur de position d'attente s'éteint, après que le relais de ligne soit entré en action. Ceci correspond à un laps de temps de 7 à 10 secondes après la mise sous tension de l'appareil. La combinaison des commutateurs de haut-parleurs est possible: (A + B), (B + C), (A + C).

Note: Lorsque les commutateurs A, B et C sont tous placés simultanément sur ON, le circuit du commutateur C est shunté et le relais du haut-parleur C (RY003) ne fonctionne pas.

3. Sensibilité d'entrée

a) Le niveau d'entrée doit être de 1V à $\pm 0,5\text{dB}$ lorsqu'un signal de 1.000Hz (onde sinusoïdale) est transmis au jack d'entrée miniature, pour obtenir une sortie de 44,7V (250W/8 ohms) à la borne de haut-parleur.
b) Le niveau d'entrée doit être de 0,775V à $\pm 0,5\text{dB}$ lorsqu'un signal de 1.000Hz (onde sinusoïdale) est appliqué au jack d'entrée CANNON, pour obtenir une sortie de 44,7V (250W/8 ohms) à la borne de haut-parleur.

4. Limiteur de puissance

Le limiteur de puissance permet de sélectionner le niveau de sortie maximum en trois incrément: Pleine puissance (FULL), 1/2 et 1/4. Ces modes de fonctionnement sont basés sur une impédance de charge de 8 ohms. Le niveau de sortie dépasse cependant les valeurs ci-dessus lorsque le limiteur de puissance est mis en action, autorisant ainsi la prise en compte d'un facteur de distorsion spécifique en rapport avec la gamme de sortie.
a) Connecter une résistance de charge de 3 ohms (ou

8 ohms et 4 ohms en parallèle, soit environ 2,7 ohms), l'oscilloscope et le voltmètre à courant alternatif aux bornes de haut-parleur. Placer le commutateur du limiteur sur FULL et envoyer un signal de 1.000Hz (onde sinusoïdale) à la borne d'entrée à partir du générateur d'audio-fréquences. Le limiteur doit être mis en action, tandis que le niveau d'entrée est progressivement augmenté, afin de limiter les crêtes supérieures et inférieures simultanément à une certaine valeur maximum pré-déterminée. (Dans cette alternative, le limiteur doit travailler avec une tension de sortie d'environ 25V ou plus.)

Le limiteur fonctionne de manière semblable pour les crêtes supérieures et inférieures, aux positions 1/2 et 1/4 du commutateur du limiteur.

5. Protection

Lorsqu'une sortie de 2W (sur une charge de 8 ohms) est appliquée à la borne du haut-parleur, le circuit de protection entre en action (le relais de haut-parleur décroche) si les bornes de haut-parleur sont court-circuitées. La lampe de protection s'allume dans le même temps.

6. Surcharge

Faire fonctionner l'amplificateur à haute puissance avec les ouïes d'aération fermées (ou le ventilateur arrêté). Lorsque la température de la partie supérieure de la plaque de refroidissement s'élève aux alentours de 85°C, le circuit de protection contre la surcharge doit entrer en action, arrêter le relais de haut-parleur et allumer la lampe de surcharge simultanément. Dégager les ouïes de ventilation (ou mettre le ventilateur en marche). Lorsque la température de la plaque de refroidissement descend à un certain niveau, le thermo-rupteur doit revenir automatiquement sur sa position initiale, éteindre la lampe de surcharge et remettre le relais de haut-parleur en marche.

a) Connecter une résistance de charge de 3 ohms (ou

Troubleshooting Guide

I. UNIT INOPERATIVE.

Check to see if any fuse on either of the power supply circuits (from F9001 to F9008 on Power Supply PC board; from F001 to F007 on chassis) is blown.

A. When all fuses are normal.

1. If Line Relay (RY004) does not run when Power Switch is ON, check Base and Collector Voltage of Line Relay driving transistor Q7079 on Control Circuit PC board.

a) Excessively high minus voltage is applied at Collector.

1) Base Bias may be wrong. — Check Bias Circuit.

2) Q7079 may be faulty.

b) Base Bias Voltage is normal, and yet no voltage is applied to the Collector.

1) Relay Power Supply Circuit may be faulty (including faulty wiring connections).

2) Relay may be faulty.

2. Line Relay operates normally, but Stand-by Lamp remains on.

a) Speaker Relay Control Circuit may be faulty.

3. Stand-by Lamp operates normally* (turns off the moment Line Relay is activated), but the Protection Lamp lights up immediately.

a) Power Amplifier Bias may be wrong. Driver on Power Amplifier Circuit may be faulty.

b) Output circuit may be shorted.

c) Protection circuit may be faulty. This can be distinguished from the above two cases a) and b), because Watts Meter and Peak Indicator show the level proportionate with the level of input signal.

* Normally, the Stand-by Lamp stays lighted for about three seconds from the moment Power Switch is turned on until Line Relay is activated.

4. If steps 1, 2 and 3 above are found normal, and yet no signal comes, then check the output of the Control Amplifier.

If no signal comes out, check B voltage at connector #3 of the Control Amplifier to see if it reaches normal voltage of $\pm 33.5\text{V}$.

B. If 8A fuse (F004 and 005, or F006 and F007) is blown, remove Driver PC board input connector plug #15 (or #18 for R-CH) from the Driver PC board, and short connector pin 2 with 4. Ground connector pin 1, and connect Oscilloscope between 2 and 1. Then feed signal into the Predriver input.

If a signal is fed to output, there is no abnormality in the circuits up to the Predriver, and if there is no signal,

1. Check the voltage of Power Supply PC board. If the voltage is normal, the Predriver Circuit may be faulty.

2. If the Predriver is found normal, connect the Audio Generator between connector pins 4 and 1 of the Driver PC board connector socket #15 (or #18). Ground pin 1, and feed in signal. In this case, place a resistor as low as $20\text{k}\Omega \sim 30\text{k}\Omega$ between pins 4 and 1.

Connect Oscilloscope and AC Voltmeter be-

tween 1 and 2 on the Output PC board, and check the output voltage by attaching and removing the load resistor of 8-ohm or 4-ohm.

a) If there is an output produced when the load resistor is removed. — Power Amplifier may be faulty.

b) If there is no output produced when the load resistor is removed. — Both the Driver and Power Amplifier Transistor may be faulty.

1) When Q7030 (or 7041) is shorted, Driver Transistor is faulty.

2) If any fault is found among Q7031 to Q7034 (or Q7037 to Q7040), replace both Base and Emitter resistors of the faulty Power Transistor.

Note 1: When checking item B-1, the dead 8A fuse may either be left as it is or removed, because the Driver and Power Amplifier should not be operated.

Note 2: When checking item B-2, the dead fuse should be replaced, or connect the B-circuit of the Power Amplifier section to other power supply with a rating of $\pm 50\text{V}$, 1A or over.

II. If the Overload Indicator lights up soon after switching on, check the temperature of the heat-sink of the Power Amplifier, and make sure the cooling fan is revolving normally.

A. If the fan is idle, check fuse F7001 on the Fan Control PC board.

1. If Fuse F7001 is blown,

a) Cooling fan may be faulty. (Shorting of inner coil, etc.)

b) Rectifier circuit for Fan Control may be faulty.

2. If the fuse is normal,

a) Cooling fan may be faulty. (Broken inner coil)
b) Bad contact in the wiring of the cooling fan power supply.

B. Fan does not revolve fast enough, even though the heat-sink is hot.

1. Fan Control Circuit may be faulty.

2. Cooling fan may be faulty. (Fan motor has deteriorated.)

C. Fan revolves at normal speed.**

1. If the temperature of the heat-sink is below 85°C ***

a) The temperature detecting circuit may be faulty.

2. If the temperature of the heat-sink is above 85°C ,

a) The Driver or Power Amplifier Circuit may be faulty.

b) Operation is performed under excessive load.

1) Over-input and over-output caused by feeding signal continuously.

2) Over-output caused by using low impedance load.

** Cooling fan normally revolves slowly at a terminal voltage of around 50VAC. As the temperature of the heat-sink of the power amplifier rises, the fan revolution increases gradually. When the temperature of the heat-sink reaches 70°C , the fan revolves at maximum speed, at a terminal voltage of around

90V. (See Alignment Procedures.)
*** Thermo-switch used in the R-CH section to cut off the power at a temperature of $85^\circ\text{C} \pm 5^\circ\text{C}$.
Note: When operating the Power Amplifier

Leitfaden zur Störungssuche

I. DAS GERÄT IST NICHT IN DER STANDBY-POSITION

Prüfen Sie die Sicherungen nach (auf der Netzteil-Leiterplatte; F001 bis F007). Alle Sicherungen sind in Ordnung.

1. Falls das Netzrelais (RY004) defekt ist, prüfen Sie bitte die Basis- und Emitterwiderstände des Netzrelais (sie befindet sich auf der Leiterplatte R-CH).

a) Sehr hohe Minusspannung an der Basis des Relais ist falsch. Sie die Vorspannungsschaltung (Q7079) ist defekt.

b) Basisvorspannung ist normal am Kollektor.

1) Der Spannungsversorgung ist nicht in Ordnung (einfache Verdrahtung).

2) Das Relais ist nicht in Ordnung.

2. Das Netzrelais arbeitet normal, schafft die Anzeigelampe bleibt an.

a) Der Lautsprecherrelais-Regler ist nicht in Ordnung.

3. Die Bereitschaftsanzeigelampe (sie erlischt, wenn das Netzrelais arbeitet) und die Schutzanzeigelampe leuchtet.

a) Vorspannung des Leistungsteils ist nicht richtig. Treiber im Lautsprecher ist nicht in Ordnung.

b) Ausgangskreis ist kurzgeschlossen.

c) Schutzkreis ist nicht in Ordnung. Von a) und b) klar unterscheiden, denn das Wattmeter und die Anzeige zeigen Werte proportional zum Signalpegel an.

* Die Bereitschaftsanzeigelampe ist normalerweise vom Moment der Netzzspannung an auf und einschaltet das Netzrelais anspricht; d.h. sie leuchtet 3 Sekunden.

4. Falls die Überprüfungen 1, 2 und 3 Ergebnisse bringen, aber trotzdem vorhanden ist, dann überprüfen Sie die Verbindung des Regelverstärkers. Wenn kein Signal anliegt, die Verbindung Nr. 3 des Regelverstärkers prüfen, ob sie die normale Spannung erreicht.

B. Eine 8A Sicherung ist durchgeschmolzen (F005 bzw. F006 und F007). Ziehen Sie den Eingangsstekker N

90V. (See Alignment Procedures.)
*** Thermo-switch used in the RB-5000 is designed to cut off the power at a temperature of $85^{\circ}\text{C} \pm 5^{\circ}\text{C}$. The thermo-switch will automatically return to its former position (ON) when the temperature falls by 7 or more degrees from $85^{\circ}\text{C} \pm 5^{\circ}\text{C}$.

Note: When operating the Power Amplifier at maximum

output, incomplete contact of the power cord plug, or use of inadequately rated extension cord will result in inadequate voltage in the primary winding of the power transformer, causing symptom similar to II-B. In such cases, the cooling fan begins to revolve at full speed and voltage increases the moment the load is disconnected.

Leitfaden zur Störungssuche

I. DAS GERÄT IST NICHT IN BETRIEB ZU SETZEN

Prüfen Sie die Sicherungen nach (F9001 bis F9008 auf der Netzteil-Leiterplatte; F001 bis F007 auf dem Chassis)

- A. Alle Sicherungen sind in Ordnung.
 - 1. Falls das Netzrelais (RY004) nicht arbeitet, prüfen Sie bitte die Basis- und Kollektorspannung des Netzrelaisstreibtransistors Q7079 nach, der sich auf der Leiterplatte des Reglers befindet.
 - a) Sehr hohe Minusspannung am Kollektor.
 - 1) Basisvorspannung ist falsch. – Überprüfen Sie die Vorspannungsschaltung.
 - 2) Q7079 ist defekt.
 - b) Basisvorspannung ist normal, keine Spannung am Kollektor.
 - 1) Der Spannungsversorgungskreis des Relais ist nicht in Ordnung (einschließlich falscher Verdrahtung).
 - 2) Das Relais ist nicht in Ordnung.
 - 2. Das Netzrelais arbeitet normal, aber die Bereitschaftsanzeigelampe bleibt an.
 - a) Der Lautsprecherrelais-Regler ist nicht in Ordnung.
 - 3. Die Bereitschaftsanzeigelampe arbeitet normal* (sie erlischt, wenn das Netzrelais anspricht), aber die Schutzanzeigelampe leuchtet sofort auf.
 - a) Vorspannung des Leistungsverstärkers ist nicht richtig. Treiber im Leistungsverstärker ist nicht in Ordnung.
 - b) Ausgangskreis ist kurzgeschlossen.
 - c) Schutzkreis ist nicht in Ordnung. Das kann von a) und b) klar unterschieden werden, denn das Wattmeter und die Spitzenwertanzeige zeigen Werte proportional dem Eingangssignalpegel an.
 - * Die Bereitschaftsanzeigelampe leuchtet normalerweise vom Moment des Einschaltens der Netzzspannung an auf und erlischt, wenn das Netzrelais anspricht; d.h. sie leuchtet etwa drei Sekunden.
 - 4. Falls die Überprüfungen 1, 2 und 3 normale Ergebnisse bringen, aber trotzdem kein Signal vorhanden ist, dann überprüfen Sie den Ausgang des Regelverstärkers. Wenn kein Signal anliegt, die B-Spannung an der Verbindung Nr. 3 des Regelverstärkers überprüfen, ob sie die normale Spannung von $\pm 33,5\text{V}$ erreicht.
 - B. Eine 8A Sicherung ist durchgeschmolzen (F004 und F005 bzw. F006 und F007). Ziehen Sie den Eingangsstecker Nr. 15 (bzw. Nr. 18

1. Die Sicherung F7001 ist durchgeschmolzen.
 - a) Das Kühlgebläse ist defekt. (Kurzschluß in den inneren Wicklungen, usw.)
 - b) Gleichrichterkreis des Gebläseregels ist nicht in Ordnung.
2. Die Sicherung ist in Ordnung.
 - a) Das Kühlgebläse ist defekt. (Unterbrechung in der Wicklung)
 - b) Schlechter Kontakt in der Verdrahtung der Kühlgebläse-Spannungsversorgung.
- B. Das Gebläse dreht sich nicht schnell genug, obwohl das Kühlblech heiß ist.
 - 1. Gebläsereglerkreis ist nicht in Ordnung.
 - 2. Gebläse ist nicht in Ordnung. (Gebläsemotor veraltet)
- C. Kühlgebläse läuft mit normaler Geschwindigkeit.**
 - 1. Die Temperatur des Kühlbleches liegt unter 85°C .**
 - a) Der Temperaturmeßkreis ist nicht in Ordnung.
 - 2. Die Temperatur des Kühlbleches liegt über 85°C .
 - a) Der Treiber- oder der Leistungsverstärkerkreis ist fehlerhaft.
 - b) Betrieb erfolgt mit übermäßiger Belastung.
 - 1) Hohes Eingangs- und Ausgangssignal, verursacht durch ständiges Einspeisen von Signalen.

2) Zu hohes Ausgangssignal, verursacht durch zu niedrige Belastungsimpedanz.
** Das Kühlgebläse dreht normalerweise langsam bei einer Ausgangswechselspannung von 50V. Die Umdrehung steigt mit dem Temperaturanstieg des Kühlbleches allmählich. Das Kühlgebläse erreicht die volle Drehzahl bei einer Temperatur des Kühlbleches von 70°C . Die Ausgangsspannung beträgt hierbei 90V. (Siehe Kapitel „Abgleich“)
*** Der im RB-5000 benutzte Thermoschalter ist so ausgelegt, daß er die Spannungsversorgung bei einer Temperatur von $85^{\circ}\text{C} \pm 5^{\circ}\text{C}$ abschaltet. Der Thermoschalter geht automatisch in seine Ausgangsposition (ON) zurück, wenn die Temperatur um 7 oder mehr Grad von $85^{\circ}\text{C} \pm 5^{\circ}\text{C}$ abfällt.

Zur Beachtung: Beim Betrieb des Leistungsverstärkers mit voller Ausgangsleistung kann eine schlechte Verbindung des Netzkabels oder ein leistungsschwaches Verlängerungskabel unzureichende Spannung an der Primärwicklung des Netztransformators zur Folge haben und ähnliche Erscheinungen wie bei II-B hervorrufen. In diesem Fall beginnt das Kühlgebläse sich mit voller Geschwindigkeit zu drehen, und die Spannung erhöht sich in dem Moment, in dem die Last abgetrennt wird.

Guide de dépannage

I. L'appareil ne fonctionne pas

Vérifier si un fusible quelconque ou l'un des circuits d'alimentation (de F9001 à F9008 sur la plaquette du circuit d'alimentation; de F001 à F007 sur le châssis) est grillé.

- A. Si rien n'est anomal du côté des fusibles
 - 1. Si le relais de ligne (RY004) ne fonctionne pas lorsque l'appareil est sous tension, vérifier la base et le collecteur du relais de ligne commandant le transistor Q7079 sur la plaquette du circuit de commande.
 - a) Une tension négative excessivement élevée est appliquée au collecteur.
 - 1) La polarisation de la base peut être défective–vérifier le circuit de polarisation.
 - 2) Q7079 peut être défectueux.
 - b) La tension de polarisation de la base est normale, cependant, aucune tension ne parvient au collecteur.
 - 1) Le circuit d'alimentation du relais peut être défectueux (câblage erroné y compris).
 - 2) Le relais peut être défectueux.
 - 2. Le relais de ligne fonctionne normalement mais la lampe de position d'attente reste allumée.
 - a) Le circuit de commande du relais de haut-parleur peut être défectueux.
 - 3. La lampe de position d'attente fonctionne normalement.*
 - (c.à.d. s'éteint au moment où le relais de ligne est mis en action), mais la lampe de protection s'allume immédiatement.
 - a) La polarisation de l'amplificateur peut être défective. L'étage d'attaque du circuit de l'amplificateur de puissance peut être

défectueux.

- b) Le circuit de sortie peut être court-circuité.
- c) Le circuit de protection peut être défectueux. Ceci se différencie des points a) et b) ci-dessus du fait que les indicateurs de puissance et de crêtes indiquent un niveau proportionnel au niveau du signal d'entrée.

* Normalement, la lampe de position d'attente reste allumée pendant environ 3 secondes, à partir de la mise sous tension de l'appareil et jusqu'à ce que le relais de ligne soit mis en action.

- 4. Si les points 1, 2 et 3 ci-dessus s'avèrent normaux mais qu'aucun signal ne sort, vérifier la sortie du préamplificateur. Si aucun signal ne sort, vérifier la tension B du préamplificateur à la borne n°3; celle-ci doit atteindre une tension normale de $\pm 33,5\text{V}$.

- B. Si un fusible 8A (F004 et 005, ou F006 et F007) est grillé, ôter la fiche de connexion d'entrée n°15 de la plaquette du circuit de l'étage d'attaque (n°18 pour le canal droit) et court-circuiter les broches 2 et 4. Mettre la broche 1 à la masse et brancher l'oscilloscope entre 2 et 1. Envoyer un signal à l'entrée de l'étage de pré-attaque. Si le signal parvient à la sortie, c'est qu'il n'y a pas d'anomalie dans les circuits jusqu'à l'étage de pré-attaque; s'il n'y a pas de signal:
 - 1. Vérifier la tension de la plaquette du circuit d'alimentation. Si la tension s'avère normale, le circuit de pré-attaque, peut être défectueux.
 - 2. Si le circuit de pré-attaque s'avère normal, brancher le générateur d'audio-fréquences entre les broches de connexion 4 et 1 de la prise de connexion n°15 (ou 18) de la plaquette du cir-

- cuit de l'étage d'attaque. Mettre la broche 1 à la masse et envoyer un signal. Dans cette alternative, placer une résistance de l'ordre de $20k\Omega$ à $30k\Omega$ entre les broches 4 et 1. Brancher l'oscilloscope et le voltmètre à courant alternatif entre 1 et 2 sur la plaquette du circuit de sortie et vérifier la tension de sortie en adjoignant et ôtant la résistance de charge de 8 ohms ou 4 ohms.
- S'il y a une sortie lorsque la résistance est enlevée — L'amplificateur de puissance peut être défectueux.
 - S'il n'y a pas de sortie lorsque la résistance est enlevée — Le transistor de l'étage d'attaque ou de l'amplificateur de puissance peut être défectueux.
 - Si Q7030 (ou 7041) est court-circuité, le transistor de l'étage d'attaque est défectueux.
 - Si une pièce défectueuse est trouvée parmi Q7031 à Q7034 (ou Q7037 à Q7040), remplacer les résistances de la base et de l'émetteur du transistor de puissance défaillant.

Note 1: Lors de la vérification du point B-1, le fusible 8A grillé peut soit être laissé en place soit enlevé car l'étage d'attaque et l'amplificateur de puissance ne doivent pas fonctionner.

Note 2: Lors de la vérification du point B-2, le fusible mort doit être remplacé ou encore le circuit B de la section amplificatrice de puissance doit être connecté à une autre alimentation ayant un indice de $\pm 50V$, 1A ou plus.

II. Si l'indicateur de surcharge s'allume aussitôt après la mise sous tension de l'appareil, vérifier la température de la plaque de refroidissement de l'amplificateur de puissance et s'assurer que le ventilateur tourne normalement.

- Si le ventilateur ne tourne pas, vérifier le fusible F7001 sur la plaquette du circuit de commande du ventilateur.
 - Si le fusible F7001 est grillé,
 - Le ventilateur peut être défectueux (court-circuit de la bobine interne, etc.)
 - Le circuit rectifieur de la commande du ventilateur peut être défectueux.
 - Si le fusible est normal,
 - Le ventilateur peut être défectueux (bobine interne cassée)
 - Eventuel mauvais contact dans le câblage de

- l'alimentation du ventilateur.
- Le ventilateur ne tourne pas assez vite, bien que la température de la plaque de refroidissement soit élevée.
 - Le circuit de commande du ventilateur peut être défectueux.
 - Le ventilateur peut être défectueux (moteur endommagé).
 - Le ventilateur tourne à vitesse normale.**
 - Si la température de la plaque de refroidissement est inférieure à $85^\circ C$.***
 a) Le circuit de détection de température peut être défectueux.
 - Si la température de la plaque de refroidissement est supérieure à $85^\circ C$,
 - Le circuit de l'étage d'attaque ou de l'amplificateur de puissance peut être défectueux.
 - Le fonctionnement s'effectue avec une charge excessive.
 - Surcharge à l'entrée et à la sortie causée par l'envoi continu de signaux.
 - Surcharge à la sortie causée par l'emploi d'une faible impédance de charge.
- ** Le ventilateur tourne normalement lentement à une tension aux bornes d'environ 50V courant alternatif. Le nombre de tours du ventilateur augmente proportionnellement à l'élévation de la température de la plaque de refroidissement. Lorsque la température de la plaque de refroidissement atteint $70^\circ C$, le ventilateur tourne à la vitesse maximum, avec une tension aux bornes d'environ 90V. (Voir procédures d'alignement.)
- *** Le thermo-rupteur utilisé sur le RB-5000 est conçu pour couper l'alimentation à la température de $85^\circ C \pm 5^\circ C$. Le thermo-rupteur retourne automatiquement à sa position initiale (ON) lorsque la température baisse de 7° ou plus depuis $85^\circ C \pm 5^\circ C$.
- Note:** Lorsque l'amplificateur fonctionne à la puissance maximum, un contact imparfait de la prise du cordon d'alimentation ou encore l'emploi d'un cordon d'extension inadéquat peuvent résulter en une tension insuffisante dans le bobinage primaire du transformateur d'alimentation, causant ainsi des symptômes similaires à ceux de II-B. Dans de tels cas, le ventilateur commence à tourner à pleine vitesse et la tension augmente au moment où la charge est déconnectée.

Repair Parts List Reparaturteilliste Liste des pièces de rechange

Schematic Location	Part No.	Description	Schematic Location	Part No.	Description
TRANSISTORS, DIODES AND IC'S					
Q6001, 6002, 6007, 6008, 6009, 6010, 9015, 9016, 9028, 9029	301201164	2SC1885	D9026, 9030, 9035 ~ 9038	300212010	SV-04FS
Q6003, 6004, 6005, 6006, 6011, 6012, 9012, 9017, 9019, 9025, 9030, 9032	301001142	2SA912	D7003 ~ 7006, 7026	300313031	WZ-056
Q6013, 6014	301201182	2SC1583	D7021, 9027, 9031, 9032	300313006	BZ-270
Q6015, 6016	301001150	2SA798	D7032 ~ 7047, 7052 ~ 7054, 7060 ~ 7062	300414014	SEL-105RC
Q6017, 6018, 6021, 6022, 6025, 6026, 6029, 6030	301001151	2SA914	D9006, 9011	300515001	2SF656
Q6019, 6020, 6023, 6024, 6027, 6028, 6031, 6032	301201183	2SC1953	D9007	300212004	KB269
Q6033, 6034, 6035	301101125	2SB628	D9009	300111008	1K188
Q6036, 6037, 6038	301301135	2SD608	D9016, 9017 9039, 9041	300212002	KB-265
Q6039, 7035, 7076, 7077, 7078	301201162	2SC1384	D9028, 9029	300313014	WZ-090
Q6040, 7027, 7028, 7041, 7079	301001140	2SA684	D9033, 9034	300313004	BZ-120
Q6041, 9001, 9005, 9006, 9007, 9009, 9010, 9011	301201134	2SC1327	D9018, 9042	300313030	CZ-117
Q7005, 7006, 7007, 7008	302001113	2SK68A	D9043, 9044	300313015	BZ-340
Q7009, 7010, 7011, 7012, 7017, 7018, 9002, 9004, 9008	301001145	2SA921	D001, 002	300919029	S-15VB-40
Q7013, 7014, 7015, 7016, 7019, 7020, 7021, 7022, 9013, 9026	301201171	2SC1980	IC7001, 7002	303452152	NJM-4558DF, Meter Amp, etc.
Q7023, 7024, 7042 ~ 7075	301201156	2SC1222	VARIABLE RESISTORS		
Q7025, 7026	301001134	2SA750	VR6001, 6002	510502169	1KB, DC Balance Adj
Q7029	301201178	2SC1504	VR6003	510502153	10KB
Q7030 ~ 7034	301201179	2SC1586A	VR7001	510502170	1KB VU Meter Cal
Q7036 ~ 7040	301001147	2SA909A	VR7003	510502147	10KB
Q7081, 7083	302001116	2SK127	VR7005, 7006	515321122	100K, Level Control
Q7082, 7084	302001117	2SJ43	OTHERS		
Q9003	301301127	2SD389A	S1	614010107	Power Switch
Q9014, 9027	301201184	2SC2168	S2	613000026	Input Selector
Q9018, 9031	301001152	2SA958	S3	615212260	Thermostat, ($85^\circ C$)
Q9020, 9033	301201181	2SC2167	S5	611001228	Input Switch
Q9021, 9034	301001148	2SA957	S6	601011325	Filter Switch
Q9022, 9024	301001143	2SA913	S7, 8	601011324	Meter Sensitivity Selector and Power Limiter Switch
Q9023	301201164	2SC1913	S9	614010107	Primary Resistor Switch (* Not used for European Type)
D6001 ~ 6008	300111014	1S2473F	S10, 11, 12 (1Set)	614030817	Speakers Switch
D6009 ~ 6012 6015 ~ 6018, 7001, 7002, 7007 ~ 7014, 7022 ~	300111010	1S2472	RY001, 002, 003	240111234	Speaker Relay
7025, 7027 ~ 7031, 7048 ~ 7051, 7056 ~ 7059, 9005, 9008, 9010	300111010	1S2472	RY004	240111235	Line Relay
D6013, 6014, 7015 ~ 7020, 9001 ~ 9004, 9012 ~ 9015, 9021 ~	300919025	SR1K-08	T001, 002	205001432	Power Transformer
			T003	205001433	Power Transformer for Control Amp
			L7001	228641140	Anti-parasitic Coil
			VS001, 002, 003	648211194	Line Voltage Selector
			C001	470101118	Noise Canceller for STD Type
			C001, 002	470101125	Noise Canceller for European Type
			C003, 004, 005 006	407000103	Capacitor, 22,000 mfd, 140V
			C7031, 7033, 7034	650901114	FAN, Power Amp Cooler Capacitor, 470 mfd, 160V, without Band
			C7032	407000101	Capacitor, 470 mfd, 160V
			TH7001, 7002, 7003	511001111	Thermistor, TD5-A125
				395101116	Lamp, 6.3V, 0.25A, Meter Light
			F9001, 9002, 9003, 9004, 9007, 9008	341221100	Fuse, 1A-3AG, Secondary AC

Schematic Location
F7001, 9005, 900
F001
F002, 003
F004, 005, 006, 007
M001, 002

Part No.	Description
00212010	SV-04FS
00313031	WZ-056
00313006	BZ-270
00414014	SEL-105RC
00515001	2SF656
00212004	KB269
00111008	1K188
00212002	KB-265
00313014	WZ-090
00313004	BZ-120
00313030	CZ-117
00313015	BZ-340
00919029	S-15VB-40
03452152	NJM-4558DF, Meter Amp, etc.
BLE RESISTORS	
10502169	1KB, DC Balance Adj
10502153	10KB
10502170	1KB VU Meter Cal
10502147	10KB
15321122	100K, Level Control
OTHERS	
14010107	Power Switch
13000026	Input Selector
15212260	Thermostat, (85°C)
11001228	Input Switch
01011325	Filter Switch
01011324	Meter Sensitivity Selector and Power Limiter Switch
14010107	Primary Resistor Switch (* Not used for European Type)
14030817	Speakers Switch
40111234	Speaker Relay
40111235	Line Relay
05001432	Power Transformer
05001433	Power Transformer for Control Amp
28641140	Anti-parasitic Coil
18211194	Line Voltage Selector
70101118	Noise Canceller for STD Type
70101125	Noise Canceller for European Type
07000103	Capacitor, 22,000 mfd, 140V
050901114	FAN, Power Amp Cooler
07000102	Capacitor, 470 mfd, 160V, without Band
07000101	Capacitor, 470 mfd, 160V
11001111	Thermistor, TD5-A125
05101116	Lamp, 6.3V, 0.25A, Meter Light
11221100	Fuse, 1A-3AG, Secondary AC

Schematic Location	Part no.	Description
F7001, 9005, 9006	341221050	Fuse, 0.5A-3AG, Secondary AC
F001	341221500	Fuse, 5A-3AG, for Line Voltage 100V ~ 120V Area
	341221300	Fuse, 3A-3AG, for Line Voltage 220V ~ 240V Area
F002, 003	340121115	Fuse, 15A-3AG, for Line Voltage 100V ~ 120V Area
	341221750	Fuse, 7.5A-3AG, for Line Voltage 220V ~ 240V Area
F004, 005, 006, 007	341221800	Fuse, 8A-3AG, Secondary AC for Power Amp Circuit
M001, 002	231310081	Watts Meter
	628111122	Receptacle, Cannon Connector, F Type
	624201202	Pin Jack, 2P
	661111116	Speaker Terminal (RED)
	661111115	Speaker Terminal (BLK)
	770911119	GND Terminal
	673402015	Foot
	141810783	Level Indicator Circuit Board Ass'y
	141810777	Protection and L-ch Power Supply Circuit Board Ass'y
	141810778	Power Supply Circuit Board Ass'y
	141810779	Control Circuit Board Ass'y
	141810787	Cannon Input Circuit Board Ass'y
	141810785	L-ch, Meter Amp Circuit Board Ass'y
	141810786	R-ch, Meter Amp Circuit Board Ass'y
	141610313	Predriver Circuit Board Ass'y
	141610314	Driver Circuit Board Ass'y
	141810782	FAN Control Circuit Board Ass'y
	141810780	Upper Half Cycles Power Amp Circuit Board Ass'y†
	141810781	Lower Half Cycles Power Amp Circuit Board Ass'y†
	141810788	Output Circuit Board Ass'y
	141810784	Speaker Ind Circuit Board Ass'y
	648211194	Bracket, Fuse, Primary AC
	648211179	Fuse Clip, pcb Mtg.
	657201118	Cord Stopper
	657201115	Cord Stopper, for European Type
	796301141	Line Cord for 120V Area
	796301130	Line Cord, for UK
	796301145	Line Cord, for West Germany
	796301125	Line Cord, for Australia
	628111124	F Type No. 2 Plug Ass'y
	628111125	F Type No. 12 Plug Ass'y
	628111126	F Type No. 21 Plug Ass'y
	628111136	F Type No. 31 Plug Ass'y
	628111139	F Type No. 30 Plug Ass'y
	628111140	F Type No. 22 Plug Ass'y
	628111138	F Type No. 37 Plug Ass'y
	628111141	F Type No. 13 Plug Ass'y
	628111142	F Type No. 20 Plug Ass'y
	628111123	F Type 3P Plug Ass'y for Output Circuit
	628111131	F Type No. 26 Plug Ass'y
	628111132	F Type No. 32 Plug Ass'y
	628111155	F Type No. 9 Plug Ass'y
	628111153	F Type No. 40 Receptacle Ass'y
	628111130	F Type No. 38 Plug Ass'y
	628111133	F Type No. 34 Plug Ass'y

Note: †without Power Transistors and Heat Sink

Schematic Location	Part No.	Description
	628111135	F Type No. 39 Plug Ass'y
	628111134	F Type No. 6 Plug Ass'y
	628111143	F Type Nos. 29, 33 Connector Ass'y
	628111144	F Type Nos. 10, 36 Connector Ass'y
	628111145	F Type Nos. 5, 19 Connector Ass'y
	628111146	F Type Nos. 4, 14 Connector Ass'y
	628111148	F Type Nos. 11, 18 Connector Ass'y
	628111149	F Type Nos. 9, 15 Connector Ass'y
	628111150	F Type Nos. 24, 16, 17 Connector Ass'y
	628111147	F Type Nos. 8, 23 Connector Ass'y
	628111154	F Type Nos. 25, 41 Connector Ass'y
	648211196	M Type 3P Socket (Straight Pin)
	648211197	M Type 4P Socket (Straight Pin)
	628111151	M Type No. 40 Plug Ass'y
	628111152	M Type No. 41 Plug Ass'y
	648211200	M Type 2P Socket (Angle)
	648211201	M Type 3P Socket, (Angle)
	648211204	M Type 6P Socket, (Angle)
	648211205	M Type 9P Socket, (Angle)
	648211202	M Type 4P Socket, (Angle)
	648211203	M Type 5P Socket, (Angle)
	648211195	M Type 2P Socket, (Straight Pin)
	648211198	M Type 6P Socket (Straight Pin)
	648211199	M Type 12P Socket (Straight Pin)
	648211163	Socket, Power Amp Transistor
	111911386	Front Panel Ass'y (without Handles)
	670101113	Handle (GOLD)
	770911189	Collar, Handle Mtg (GOLD)
	770911209	Screw, 6 x 40mm, Handle Mtg
	116210030	Button, Push Switch (GOLD)
	116310212	Knob, Lever Switch (GOLD)
	116310211	Knob, Level Control (GOLD)
	116310213	Knob, Filter, etc. (GOLD)
	673901111	Caster
	120012623	Finger Guard
	991001152	Diffuser, Watts Meter Mtg
	990201233	Cushion, Cooling Fan Mtg
	127012186	Heat Sink for Power Amp
	124011290	Bottom Cover (without Finger Guard, Feet and Casters)
	138011292	Side Cover
	120012613	Top Cover
	760213006	Screw, ⊕ M3 x 6mm, Tap-tight, Round Head (Ni)
	760223008	Screw, ⊕ M3 x 8mm, Tap-tight, Round Head, (BLK)
	760213010	Screw, ⊕ M3 x 10mm, Tap-tight, Round Head (Ni)
	760213012	Screw, ⊕ M3 x 12mm, Tap-tight, Round Head (Ni)
	760223012	Screw, ⊕ M3 x 12mm, Tap-tight, Round Head (BLK)
	760213015	Screw, ⊕ M3 x 15mm, Tap-tight, Round Head (Ni)
	760213020	Screw, ⊕ M3 x 20mm, Tap-tight, Round Head (Ni)

Schematic Location	Part No.	Description
	761213006	Screw, ⊕ M3 x 6mm, Tap-tight, Oval Countersunk Head, (Ni)
	765214008	Screw, ⊕ M4 x 8mm, Tap-tight, Binding Head (Ni)
	765224008	Screw, ⊕ M4 x 8mm, Tap-tight, Binding Head, (BLK)
	765224015	Screw, ⊕ M4 x 15mm, Tap-tight, Binding Head, (BLK)
	765224020	Screw, ⊕ M4 x 20mm, Tap-tight, Binding Head, (BLK)
	725223008	Screw, ⊕ M3 x 8mm, Tapping, Binding Head (BLK)
	721223008	Screw, ⊕ M3 x 8mm, Tapping, Countersunk Head (BLK)
	705222604	Screw, ⊕ M2.6 x 4mm, Binding Head, (BLK)
	702223008	Screw, ⊕ M3 x 8mm, Oval Countersunk Head (BLK)
	770402201	Nut, Hex, M3
	770402202	Nut, Hex, M4

Schematic Location	Part No.	Description
	770402204	Nut, Hex, M6
	770402205	Nut, Hex, M7
	770402206	Nut, Hex, M8
	770402207	Nut, Hex, M9
	770911144	Nut, Square, M3, Transistor Mtg
	770500001	Washer, Plain, φ3, (Ni)
	770500002	Washer, Plain, φ4, (BLK)
	770500005	Washer, Plain, φ6
	770500007	Washer, Plain, φ7
	770500008	Washer, Plain, φ9
	770500010	Washer, Spring, φ3
	770500011	Washer, Spring, φ4
	770500012	Washer, Spring, φ6
	770500014	Teethed Washer, φ3
	770500015	Teethed Washer, φ4
	770500017	Teethed Washer, φ7
	770500018	Teethed Washer, φ8
	770500019	Teethed Washer, φ9
	992001111	Isolating Washer, φ3, Transistor Mtg, etc.

1
 Schematic Diagram
 Schaltungsschema
 Diagramme schématique

MODEL RB 5000 SCHEMATIC DIAGRAM

SHEET 1 of 4

-- PRIMARY WIRING OF POWER TRANSFORMER IS DIFFERENT ACCORDING TO DESTINATION. SEE SEPARATE POWER TRANSFORMER STRAPPING DIAGRAM (REF. SHEET 2 of 4).

ITEM	SCHMATIC LOCATION (LAST)
PREDRIVER CIRCUIT	R 6 0 6 6 C 6 0 2 2
DRIVER CIRCUIT	R 6 0 9 3 C 6 0 3 0
CANNON INPUT CIRCUIT	R 7 0 4 2 C 7 0 2 4
METER CIRCUIT	R 7 0 7 2 C 7 0 3 0
FAN CIRCUIT	R 7 0 7 9 C 7 0 3 6
POWER AMP CIRCUIT	R 7 0 9 7 C 7 0 3 7
POWER AMP CIRCUIT	R 7 1 1 5 C 7 0 3 8
PEAK IND CIRCUIT	R 7 1 7 4 C 7 0 4 2
CONTROL CIRCUIT	R 7 2 3 6 C 7 0 6 2
OUTPUT CIRCUIT	R 7 2 4 2 C 7 0 6 4
POWER SUPPLY AND PROTECTION CIRCUIT	R 9 0 6 2 C 9 0 2 5
POWER SUPPLY CIRCUIT	R 9 0 8 8 C 9 0 5 2
CHASSIS	R 0 0 9 C 0 0 7

RESISTORS
5 % TOLERANCE UNLESS OTHERWISE NOTED.
K--- KILO OHM.
M--- MEGA OHM.
▼--- COMPOSITON RESISTORS 1/2 WATT.
NONMARK-- LOW NOISE TYPE CARBON RESISTORS 1/4 WATT.

CAPACITORS

(M)--- MYLAR FILM CAPACITORS
(S)--- POLYSTYRENE FILM CAPACITORS.
(T)--- TANTALUM CAPACITORS.
(L)--- LOW NOISE TYPE CAPACITORS.
(E)--- ELECTROLYTIC CAPACITORS.

NONMARK-- CERAMIC CAPACITORS.

- UNLESS OTHERWISE NOTED IN SCHEMATIC ALL CAPACITANCE VALUES ARE EXPRESSED IN MFD.
 - VOLTAGE READING WITH VTVM FROM THE POINT SHOWN TO THE CHASSIS GROUND (LINE VOLTAGE 117 VOLT).
 - VOLTAGE READING MAY VARY ± 20%.
- (P)--- POLYPROPYLENE FILM CAPACITORS.
(BP)--- BI-POLAR ELECTROLYTIC CAPACITORS.
(MP)--- METALLIZED POLYESTER FILM CAPACITORS.

2SA684 2SC1980
2SA750 2SC1327
2SA921 2SC1384
2SA912 2SC1222
2SC1885 2SK127
2SJ43

(BOTTOM VIEW)

2SK68A

2SC1586A 2SA909A
2SD555 2SB600

2SC1913 2SC1583
2SA913 2SA798
2SB628
2SD608
2SA957
2SC2167
2SD389A
2SC2168
2SA958

BCE

BCE C B

(FRONT VIEW)

2SC1953 2SA914

RC4558DB

1 2 3 4

(TOP VIEW)

BCE

(FRONT VIEW)

Power Supply Circuit Board Diagram

Bestückungsplan des Netzteils

Diagramme de la plaquette d'alimentation

Protection and Power Supply (L-ch) Circuit Board Diagram Bestückungsplan der Schutzschaltung und des Netzteils (L-Kanal) Diagramme de la plaque d'alimentation du canal gauche et de protection

Fan Control Circuit Board Diagram
Bestückungsplan des Kühlgebläsereglers
Diagramme de la plaque de commande du ventilateur

4

Power Amp (Upper Half Cycles) Circuit Board Diagram
 Bestückungsplan des Leistungsverstärkers (obere Halbwellen)
 Diagramme de la plaquette de l'amplificateur de puissance (périodes supérieures)

Power Amp (Lower Half Cycles) Circuit Board Diagram
 Bestückungsplan des Leistungsverstärkers (untere Halbwellen)
 Diagramme de la plaquette de l'amplificateur de puissance (périodes inférieures)

Cannon Input Circuit Board Diagram
 Bestückungsplan des Cannon-Eingangs

Cannon Input Circuit Board Diagram
Bestückungsplan des Cannon-Eingangs
Diagramme de la plaquette d'entrée CANNON

A
Portion between A and B has been modified in the units
with the Serial No. NB49071 or over.

B

Note:

The following PC board assemblies used in the units with
Serial No. up to NB 49070 differ partially from the PC
board diagrams in this manual.

1. Part of Cannon Input Circuit
2. Part of Control Circuit
3. Predriver Circuit

The actual electrical circuits of these PC boards, however,
have not been changed. Therefore, to replace the above PC
board assemblies, those utilized in the units with Serial
No. NB 49071 or over can be attached.

B

C

Schematic Diagram Schaltungsschema Diagramme schématique

		C	E	B
Q 7042	2SC1222	(10.5V) 12 V	(4.8V) 0 V	(15V) 0 V
Q 7043	>	(0.6V) 5.4V	(0.6V) 0 V	(1.2V) 0 V
Q 7044	>	>	0 V (0.6V) 0 V	(0.6V) 0 V
Q 7045	>	>	(0.6V) 0 V	(1.2V) 0 V
Q 7046	>	>	0 V (0.6V) 0 V	(0.6V) 0 V
Q 7047	>	>	(0.6V) 0 V	(1.2V) 0 V
Q 7048	>	>	0 V (0.6V) 0 V	(0.6V) 0 V
Q 7049	>	>	(0.6V) 0 V	(1.2V) 0 V

Q 7050	2SC1222	(0.6V) 5.4V	0 V	(0.6V) 0 V
Q 7051	s	s	(0.6V) 0 V	(1.2V) 0 V
Q 7052	s	s	0 V	(0.6V) 0 V
Q 7053	s	s	(0.6V) 0 V	(1.2V) 0 V
Q 7054	s	s	0 V	(0.6V) 0 V
Q 7055	s	s	(0.6V) 0 V	(1.2V) 0 V
Q 7056	s	s	0 V	(0.6V) 0 V
Q 7057	s	s	(0.6V) 0 V	(1.2V) 0 V
Q 7058	s	s	0 V	(0.6V) 0 V

Q 7 0 5 9	2SC1222	(0.6V) 5.4V	0 V	(0.6V) 0 V
Q 7 0 6 0	"	"	(0.6V) 0 V	(1.2V) 0 V
Q 7 0 6 1	"	"	0 V	(0.6V) 0 V
Q 7 0 6 2	"	"	(0.6V) 0 V	(1.2V) 0 V
Q 7 0 6 3	"	"	0 V	(0.6V) 0 V
Q 7 0 6 4	"	"	(0.6V) 0 V	(1.2V) 0 V
Q 7 0 6 5	"	"	0 V	(0.6V) 0 V
Q 7 0 6 6	"	"	(0.6V) 0 V	(1.2V) 0 V
Q 7 0 6 7	"	"	0 V	(0.6V) 0 V

Q 7 0 6 8	2 S C 1 2 2 2	(0.6V) 5.4V	(0.6V) 0 V	(1.2V) 0 V
Q 7 0 6 9	"	"	0 V (0.6V) 0 V	(1.2V) 0 V
Q 7 0 7 0	"	"	0 V (0.6V) 0 V	(1.2V) 0 V
Q 7 0 7 1	"	"	0 V (0.6V) 0 V	(1.2V) 0 V
Q 7 0 7 2	"	"	0 V (0.6V) 0 V	(1.2V) 0 V
Q 7 0 7 3	"	"	0 V (0.6V) 0 V	(1.2V) 0 V
Q 7 0 7 4	"	"	0 V (0.6V) 0 V	(1.2V) 0 V
Q 7 0 7 5	"	(10.5V) 12 V	0 V	0 V

		C	E	B
Q 9 0 0 1	2SC1327	26V	-0.9V	0V
Q 9 0 0 2	2SA921	-7.3V	0V	0V
Q 9 0 0 3	2SD389A	7.3V	6.8V	7.3V
Q 9 0 0 4	2SA 921	0V	26.4V	26.4V
Q 9 0 0 5	2SC 1327	26.4V	0V	-3.6V
Q 9 0 0 6	*	5.5V	:	0V
Q 9 0 0 7	*	6.9V	-0.5V	0V

Q 9 0 0 8	2 S A 9 2 1	0 V	0 V	-0.6 V
Q 9 0 0 9	2 S C 1 3 2 7	-25.6 V	-25.6 V	-25 V
Q 9 0 1 0	+	(-6V) -3 V	+	-26.4 V
Q 9 0 1 1	*	5.5 V	0 V	-1.2 V
Q 9 0 1 2	2 S A 9 1 2	122 V	108 V	122 V
Q 9 0 1 3	2 S C 1 9 8 0	-122 V	-108 V	-122 V
Q 9 0 1 4	2 S C 2 1 6 8	106 V	123 V	107 V
Q 9 0 1 5	2 S C 1 8 8 5	107 V	~	108 V

Q	9	0	1
Q	9	0	1
Q	9	0	1
Q	9	0	1
Q	9	0	2
Q	9	0	2

Q 7047	0 V	0 V	0 V	0 V
Q 7048	~	~	(0.6V)	0 V
Q 7049	~	~	0 V	(1.2V)
Q 7050	~	~	0 V	0 V
Q 7051	~	~	0 V	0 V

Q 7056	~	~	(0.6V)	0 V
Q 7057	~	~	(1.2V)	0 V
Q 7058	~	~	0 V	(0.6V)
Q 7059	~	~	0 V	0 V
Q 7060	~	~	0 V	0 V

Q 7065	~	~	(0.6V)	0 V
Q 7066	~	~	(1.2V)	0 V
Q 7067	~	~	0 V	(0.6V)
Q 7068	~	~	0 V	0 V
Q 7069	~	~	0 V	0 V

Q 7074	~	~	0 V	0 V
Q 7075	~	~	(10.5V)	12 V
Q 9006	~	~	5.5V	0 V
Q 9007	~	~	6.9V	-0.5V
Q 9014	~	~	106V	123V

Q 7016	2SC1980	C 33.5V E -0.6V B 0 V
Q 7017	2SA921	C 0.6V E 33.5V B 32.9V
Q 7018	~	C 0.6V E 33.5V B 32.9V
Q 7019	2SC1980	C 0.6V E -33.2V B -32.5V
Q 7020	~	C 0.6V E -33.2V B -32.5V
Q 7021	~	C 33.5V E 0 V B 0.6V
Q 7022	~	C 33.5V E 0 V B 0.6V
Q 7023	2SC1222	C 12 V E 0 V B 0 V
Q 7024	~	C 12 V E 0 V B 0 V
Q 7025	2SA750	C 12 V E 0 V B 0 V
Q 7026	~	C 12 V E 0 V B 0 V

		D C	E B	S C
Q 7005	2SK68A	32.9V	0.5V	0 V
Q 7006	~	~	~	~
Q 7007	~	~	~	~
Q 7008	~	~	~	~
Q 7009	2SA921	0.5V	33.5V	32.9V

Q 7010	2SA921	0.5V	33.5V	32.9V
Q 7011	~	~	~	~
Q 7012	~	~	~	~
Q 7013	2SC1980	32.9V	-0.6V	0 V
Q 7014	~	~	~	~
Q 7015	~	~	~	~

Q 9006	~	~	5.5V	0 V
Q 9007	~	~	6.9V	-0.5V
Q 9014	ZSC2168	106V	123V	107V
Q 9015	2SC1885	107V	~	108V
Q 9016	~	~	~	~

POWER SUPPLY CIRCUIT				(B-1)
		C	E	
Q 9 022	2SA913	-34V	-26.4V	-
Q 9 023	2SC1913	34V	26.4V	2
Q 9 024	2SA913	-34V	-26.4V	-
Q 9 025	2SA912	108V	122V	12
Q 9 026	2SC1980	-108V	-122V	-1
Q 9 027	2SC2168	123V	106V	10
Q 9 028	2SC1885	+	107V	10
Q 9 029	+	108V	DV	0
Q 9 030	2SA912	-123V	-107V	-1
Q 9 031	2SA958	~	-106V	-1
Q 9 032	2SA912	-108V	-12V	-12
Q 9 033	2SC2167	85V	33.5V	3
Q 9 034	2SA957	-85V	-33.5V	-3
Q 9 035	2SA921	DV	26.4V	2

		C	E	B			Ov	Ov	-0.6V
Q 9 0 0 1	2 S C 1 3 2 7	26V	-0.9V	0V					
Q 9 0 0 2	2 S A 9 2 1	-7.3V	0V	0V					
Q 9 0 0 3	2 S D 3 8 9 A	7.3V	6.8V	7.3V					
Q 9 0 0 4	2 S A 9 2 1	0V	26.4V	26.4V					
Q 9 0 0 5	2 S C 1 3 2 7	26.4V	0V	-3.6V					
Q 9 0 0 6		+	5.5V	+	0V				
Q 9 0 0 7		+	6.9V	-0.5V	0V				
Q 9 0 0 8	2 S A 9 2 1								
Q 9 0 0 9	2 S C 1 3 2 7	-25.6V	-25.6V	-25V					
Q 9 0 1 0		(-6V)	-3V	+					-26.4V
Q 9 0 1 1		+			5.5V	0V			-1.2V
Q 9 0 1 2	2 S A 9 1 2	122V	108V	122V					
Q 9 0 1 3	2 S C 1 9 8 0	-122V	-108V	-122V					
Q 9 0 1 4	2 S C 2 1 6 8	106V	123V	107V					
Q 9 0 1 5	2 S C 1 8 8 5	107V	+	108V					

— SHEET 3 of 4 —
MODEL RB-5000 SCHEMATIC DIAGRAM

1 (0.6V)
12V
OV

Q 9 006 + 5.5V 0V
Q 9 007 + 6.9V -0.5V 0V

Q 9 014 2SC2168 106V 123V 107V
Q 9 015 2SC1885 107V + 108V

Q 9 032	2SA912	-108V -12V -12.6V
Q 9 033	2SC2167	85V 33.5V 34V
Q 9 034	2SA957	-85V -33.5V -34V
Q 9 035	2SA921	0V 26.4V 26.4V

SHEET 3 of 4

MODEL RB-5000 SCHEMATIC DIAGRAM

C	E	B
885	103V 25V 25.5V	
	" "	" "
12	-103V -25V -25.5V	
	" "	" "
0.5V	104.5V 104V	
	" "	" "
886	-0.5V -104.5V -104V	
	" "	" "
103V	25V 25.5V	
	" "	" "

Q 6011	2SA912	-103V -25V -25.5V
Q 6012	"	" "
Q 6013	2SC1583	25V -0.5V 0V
Q 6014	"	" "
Q 6015	2SA798	-25V 0.5V 0V
Q 6016	"	" "
Q 6017	2SA914	54V 103.6V 103V
Q 6018	"	" "
Q 6019	2SC1953	-54V -103.6V -103V
Q 6020	"	" "
Q 6021	2SA914	0V 54V 53.4V

Q 6029	2SA914	C E B
Q 6030	"	-112V -55.5V -56V
Q 6031	2SC1953	112V 55.5V 56V
Q 6032	"	55V -0.5V 0V
Q 6033	2SB628	1V 111V 110.5V
Q 6034	"	-55V 1.0V 0.5V
Q 6035	2SB628	-112V -55V -55.5V
Q 6036	2SD608	112V 55V 55.5V
Q 6037	"	55V -1.0V -0.5V
Q 6038	"	-1V -111V -110.5V
Q 6039	2SC1384	1.0V 0V 0V
Q 6040	2SA684	" " "
Q 6041	2SC1327	26.4V " "

Q 7030	2SC1586A	C -112V E 0.5V B 1.0V
Q 7031	2SD555	C 0V E 0.5V
Q 7032	"	C 0V E 0.5V
Q 7033	"	C 0V E 0.5V
Q 7034	"	C 0V E 0.5V
Q 7035	"	C 0V E 0.5V
Q 7036	2SA909A	C -112V E -0.5V B -1.0V
Q 7037	2SB600	C 0V E 0.5V
Q 7038	"	C 0V E 0.5V
Q 7039	"	C 0V E 0.5V
Q 7040	"	C 0V E 0.5V
Q 7041	2SA684	C 0V E 0.5V

Q 7027	2SA684	C E B
Q 7028	"	" "
Q 7029	2SC1504	50V 0V 0V

VOLTAGE READING WITH VTVM
FROM THE POINT SHOWN TO THE
8TH TERMINAL ON X-247 P.C.B

SHEET 4 of 4
MODEL RB-5000 SCHEMATIC DIAGRAM

Control Circuit Board Diagram Bestückungsplan des Reglers Diagramme de la plaquette de commande

Note:

The following PC board assemblies used in the units with Serial No. up to NB 49070 differ partially from the PC board diagrams in this manual.

1. Part of Cannon Input Circuit
 2. Part of Control Circuit
 3. Predriver Circuit

The actual electrical circuits of these PC boards, however, have not been changed. Therefore, to replace the above PC board assemblies, those utilized in the units with Serial No. NB 49071 or over can be attached.

Portion between A and B has been modified in the unit with the Serial No. NB 49071 or over.

Predriver Circuit Board Diagram

Bestückungsplan des Vorverstärkers

Diagramme de la plaquette de pré-attaque

Driver Circuit Board Bestückungsplan des Diagramme de la plac

Predriver Circuit Board Diagram
Bestückungsplan des Vorverstärkers
Diagramme de la plaque de pré-attaque

Speaker Indicators Circuit Board Diagram
Bestückungsplan der Lautsprecheranzeigen
Diagramme de la plaque des indicateurs de haut-parleurs

Driver Circuit Board
Bestückungsplan des
Diagramme de la plac

Meter Amp Circuit Board Diagram
Bestückungsplan des
Diagramme de la plac

Peak Indicator Circuit Board Diagram Bestückungsplan der Spitzenwertanzeige Diagramme de la plaquette de l'indicateur de crêtes

has been modified in the units
171 or over.

Driver Circuit Board Diagram Bestückungsplan des Treibers Diagramme de la plaquette de l'étage d'attaque

Output Circuit Board Diagram Bestückungsplan des Ausgangskreises Diagramme de la plaquette de sortie

Driver Circuit Board Diagram
Bestückungsplan des Treibers
Diagramme de la plaquette de l'étage d'attaque

C005 ⊕ R-ch.
C003 ⊕ L-ch.

Meter Amp Circuit Board Diagram
Bestückungsplan des Anzeigeverstärkers
Diagramme de la plaquette des indicateurs de puissance

NOTE:
 ♦ R7041 AND C7025 ARE USED ONLY ON L-CH CIRCUIT
 ■ R7042 AND C7026 ARE USED ONLY ON R-CH CIRCUIT
 * R-CH CIRCUIT ONLY
 • L-CH CIRCUIT ONLY

THE ROTEL CO., LTD.
ROTEL ELECTRONICS CO., LTD.
ROTEL OF AMERICA, INC.

1-36-8 OHOKAYAMA, MEGURO-KU, TOKYO 152, JAPAN
310 SEC. 5, NANKING E. ROAD, TAIPEI, TAIWAN
1055 SAW MILL RIVER ROAD, ARDSLEY, N.Y. 10502, U.S.A.
'78-06-1k
Printed in Nippon, 835201274