D. Quase Menor Caminho

Time limit: 3s

Achar um caminho que vai de um ponto inicial até um ponto de destino dados um conjunto de pontos e a extensão das rotas que os conectam é um problema já bem conhecido, e já até é parte de nosso dia-a-dia, uma vez que programas de caminho mínimo estão largamente distribuídos hoje em dia.

A maioria das pessoas normalmente gosta bastante dessas aplicações já que elas tornam suas vidas mais fáceis. Bem, talvez nem tão mais fáceis.

Agora que quase todo mundo tem acesso a aparelhos de GPS capazes de calcular os caminhos mais curtos a maioria das rotas que formam o caminho mais curto estão ficando lentas devido ao tráfego pesado. Como a maioria das pessoas tenta seguir o mesmo caminho, não vale mais a pena seguir essas direções.

Com isso em mente, seu chefe pediu a você que desenvolvesse uma nova aplicação à qual somente ele vai ter acesso, poupando tempo sempre que ele tiver uma reunião ou qualquer evento urgente. Ele pede a você que o programa não deve dizer o menor caminho, mas o quase menor caminho. Ele define o quase menor caminho como o menor caminho que vai de um ponto inicial até um um ponto de destino de forma que nenhuma rota entre dois pontos consecutivos pertence a qualquer caminho mínimo entre o ponto de partida e o de destino.

Por exemplo, suponha que a figura abaixo representa o mapa dado, com círculos representando localizações e linhas representando rotas diretas, de mão única com as distâncias indicadas. O ponto de partida está marcado como S e o de destino está marcado como D. As linhas em negrito pertencem a um caminho mínimo (nesse caso existem dois caminhos mínimos, cada um com extensão 4). Logo, o quase menor caminho seria o indicado com linhas pontilhadas (extensão 5), já que nenhuma rota entre dois pontos consecutivos pertence a nenhum caminho mínimo. Note que poderia existir mais de uma resposta possível, por exemplo, se a rota com extensão 3 tivesse extensão 1. Bem como poderia inexistir uma resposta certa.

Entrada

A entrada contém vários casos de teste. A primeira linha de um caso de teste contém dois inteiros $\bf N$ (2 <= $\bf N$ <= 500) e $\bf M$ (1 <= $\bf M$ <= 104), separados por um espaço, indicando, respectivamente, o número de pontos no mapa e o número de rotas de mão única conectando dois pontos diretamente. Cada ponto é identificado por um único inteiro entre 0 e $\bf N$ - 1. A segunda linha contém dois inteiros $\bf S$ e $\bf D$, separados por um único espaço, indicando, respectivamente, os pontos de partida e de destino ($\bf S$!= $\bf D$; 0 <= $\bf S$, $\bf D$ < $\bf N$). Cada uma das $\bf M$ linhas seguintes contém

três inteiros \mathbf{U} , \mathbf{V} e \mathbf{P} (\mathbf{U} != \mathbf{V} ; 0 <= \mathbf{U} , \mathbf{V} < \mathbf{N} ; 1 <= \mathbf{P} <= $\mathbf{10}^3$), separados por espaço, indicando a existência de uma rota de \mathbf{U} para \mathbf{V} com distância \mathbf{P} . Existe no máximo uma rota de um ponto \mathbf{U} até um ponto \mathbf{V} , mas perceba que a existência de uma rota de \mathbf{U} para \mathbf{V} não implica a existência de uma rota de \mathbf{V} para \mathbf{U} e, se tal estrada existir, ela pode ter extensão diferente. O fim da entrada é indicado por uma linha contendo apenas dois zeros separados por um espaço.

Saída

Para cada caso de teste na entrada, seu programa deve imprimir uma única linha, contendo -1 se não for possível cumprir os requisitos ou um inteiro representando a extensão do quase menor caminho encontrado.

Exemplo de Entrada	Exemplo de Saída
7 9	5
0 6	-1
0 1 1	6
0 2 1	
0 3 2	
0 4 3	
1 5 2	
2 6 4	
3 6 2	
4 6 4	
5 6 1	
4 6	
0 2	
0 1 1	
1 2 1	
1 3 1	
3 2 1	
2 0 3	
3 0 2	
6 8	
0 1	
0 1 1	
0 2 2	
0 3 3	
2 5 3	
3 4 2	
4 1 1	
5 1 1	
3 0 1	
0 0	

ACM/ICPC South America Contest 2008.