${\bf Modeling\ Frequency\ Division\ Multiplexing/DE-multiplexing}$

Lab # 09

Fall 2023 CSE-402L Digital Signal Processing Lab

Submitted by: Ali Asghar

Registration No.: 21PWCSE2059

Class Section: C

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Submitted to:

Dr. Yasir Saleem Afridi

Date:

8th January 2023

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

Digital Signal Processing

Demonstration of Concepts	Poor (Does not meet expectation (1)) The student failed to demonstrate a clear understanding of the assignment concepts	Fair (Meet Expectation (2-3)) The student demonstrated a clear understanding of some of the assignment concepts	Good (Exceeds Expectation (4-5) The student demonstrated a clear understanding of the assignment concepts	Score 30%
Accuracy	The student completed (<50%) tasks and provided MATLAB code and/or Simulink models with errors. Outputs shown are not correct in form of graphs (no labels) and/or tables along with incorrect analysis or remarks.	The student completed partial tasks (50% - <90%) with accurate MATLAB code and/or Simulink models. Correct outputs are shown in form of graphs (without labels) and/or tables along with correct analysis or remarks.	The student completed all required tasks (90%-100%) with accurate MATLAB code and/or Simulink models. Correct outputs are shown in form of labeled graphs and/or tables along with correct analysis or remarks.	30%
Following Directions	The student clearly failed to follow the verbal and written instructions to successfully complete the lab	The student failed to follow the some of the verbal and written instructions to successfully complete all requirements of the lab	The student followed the verbal and written instructions to successfully complete requirements of the lab	20%
Time Utilization	The student failed to complete even part of the lab in the allotted amount of time	The student failed to complete the entire lab in the allotted amount of time	The student completed the lab in its entirety in the allotted amount of time	20%

<u>Tasks:</u>

Step 1 & 2:

Signal 1:

Signal 3:

Step 3 & 4:

Signal 1:

Signal 2:

 $\times 10^4$

5 ×10⁴

0

0

200

100 0 -100 -200

-300

Answer: Because we have attenuated some of the high frequency components(Mostly Causing Noise). That is the reason we're hearing it differently.

Processing

RBW=43.07 Hz Sample Rate=44.1 kHz T=0

Step 5,6,7,8,9 & 10:

Modulated + Multiplexed Signals

Frequency Spectrum of Demodulated signals

Code:

Lab9_Loading.m

```
Lab8.m × task1.m × practice.m × modulation.m × dsp.m × Lab9_Loading.m × Lab9_Filtering.m × Lab9_Multiplexing.m × m_file.m × +
       응용
2 -
      [Y1, Fs1] = audioread('recording1(Male).mp3');
[Y2, Fs2] = audioread('recording2(Female).mp3');
3 -
4 -
      [Y3, Fs3] = audioread('recording3(Male).mp3');
 5
 6
 7 -
       figure(1);
8 -
       subplot(3,1,1);
 9 –
      plot(Y1);
10
11 -
      Y1_w = fftshift(fft(Y1));
12 -
      w1 = -length(Y1_w)/2 : (length(Y1_w) - 1)/2;
13
14
      % Convert the magnitude of Y_w to dBm
15 -
      Y1_w_dbm = mag2db(abs(Y1_w));
16
17 -
      subplot(3,1,2);
18 -
      plot(w1, abs(Y1_w));
19
20 -
      subplot(3,1,3);
21 -
      plot(w1, Y1_w_dbm);
22
23 -
       hsa1 = dsp.SpectrumAnalyzer('SampleRate',Fs1);
24 -
      step(hsal, Y1);
```

```
Lab8.m × task1.m × practice.m × modulation.m × dsp.m × Lab9_Loading.m × Lab9_Filtering.m × Lab9_Multiplexing.m × m_file.m × +
26 -
27 -
     figure(2);
      subplot(3,1,1);
28 - plot(Y2);
29
30 -
      Y2_w = fftshift(fft(Y2));
31 -
      w2 = -length(Y2_w)/2 : (length(Y2_w) - 1)/2;
32
33
      % Convert the magnitude of Y_w to dBm
34 -
      Y2_w_dbm = mag2db(abs(Y2_w));
35
36 -
      subplot(3,1,2);
37 -
      plot(w2, abs(Y2_w));
38
39 -
      subplot(3,1,3);
40 -
      plot(w2, Y2_w_dbm);
41
42 -
      hsa2 = dsp.SpectrumAnalyzer('SampleRate',Fs2);
43 -
      step(hsa2, Y2);
44
45
46 -
      figure(3);
47 -
      subplot (3,1,1);
48 -
      plot(Y3);
49
       Y3 w = fftshift(fft(Y3));
```

```
Lab8.m X task1.m X practice.m X modulation.m X dsp.m X Lab9_Loading.m X Lab9_Filtering.m X Lab9_Multiplexing.m X m_fil
42 -
       hsa2 = dsp.SpectrumAnalyzer('SampleRate',Fs2);
43 -
       step(hsa2, Y2);
44
45
       응음
46 -
       figure(3);
47 —
       subplot(3,1,1);
48 -
       plot(Y3);
49
50 -
       Y3_w = fftshift(fft(Y3));
51 -
       w3 = -length(Y3_w)/2 : (length(Y3_w) - 1)/2;
52
       % Convert the magnitude of Y_w to dBm
53
54 -
       Y3 \text{ w dbm} = \text{mag2db(abs(Y3 w));}
55
56 -
       subplot(3,1,2);
57 -
       plot(w3, abs(Y3_w));
58
59 -
       subplot(3,1,3);
60 -
       plot(w3, Y3_w_dbm);
61
62 -
       hsa3 = dsp.SpectrumAnalyzer('SampleRate',Fs3);
63 -
       step(hsa3, Y3);
64
65 -
       save('Data.mat');
```

Lab9_Filtering.m

```
Lab8.m × task1.m × practice.m × modulation.m × dsp.m × Lab9_Loading.m × Lab9_Filtering.m × Lab9_Multiplexing.m × m_file.m ×
      load('Data.mat');
     fc = 3000; % Cut off frequency
3 -
4 -
     fs = 8000; % Sampling rate
     [b,a] = butter(6,fc/(fs/2)); % Butterworth filter of order 6
6
7 -
      Y1 LPF = filter(b, a, Y1);
8 -
     Y2_LPF= filter(b, a, Y2);
9 -
     Y3_LPF = filter(b, a, Y3);
0
2 -
     figure(1);
3 –
      Y1_w_LPF = fftshift(fft(Y1_LPF));
4 -
      w1_LPF = -length(Y1_w_LPF)/2 : (length(Y1_w_LPF) - 1)/2;
15
16
      % Convert the magnitude of Y w to dBm
7 –
     Y1_w_dbm_LPF = mag2db(abs(Y1_w_LPF));
8
      subplot(2,1,1);
20 -
      plot(w1_LPF, abs(Y1_w_LPF));
21
22 -
      subplot(2,1,2);
23 -
      plot(Y1_w_dbm_LPF, Y1_w_dbm_LPF);
      hsa1 = dsp.SpectrumAnalyzer('SampleRate',Fs1);
```

```
Lab8.m × task1.m × practice.m × modulation.m × dsp.m × Lab9_Loading.m × Lab9_Filtering.m × Lab9_Multiplexing.m × m_file.m
25 -
       hsa1 = dsp.SpectrumAnalyzer('SampleRate',Fs1);
26 -
       step(hsal, Y1_LPF);
27
       응용
28 -
        figure(2);
29
30 -
        Y2_w_LPF = fftshift(fft(Y2_LPF));
31 -
        w2\_LPF = -length(Y2\_w\_LPF)/2 : (length(Y2\_w\_LPF) - 1)/2;
32
33
        % Convert the magnitude of Y_w to dBm
34 -
        Y2 w dbm LPF = mag2db(abs(Y2 w LPF));
35
36 -
        subplot(2,1,1);
37 -
        plot(w2_LPF, abs(Y2_w_LPF));
38
39 -
        subplot(2,1,2);
40 -
        plot(w2_LPF, Y2_w_dbm_LPF);
41
42 -
       hsa2 = dsp.SpectrumAnalyzer('SampleRate',Fs2);
43 -
       step(hsa2, Y2_LPF);
44
45
        용용
46 -
        figure(3);
47
48 -
        Y3_w_LPF = fftshift(fft(Y3_LPF));
49 -
        w3_LPF = -length(Y3_w_LPF)/2 : (length(Y3_w_LPF) - 1)/2;
```

```
Lab8.m X task1.m X practice.m X modulation.m X dsp.m X Lab9_Loading.m X Lab9_Filtering.m X Lab9_Multiplexing.m
50
51
        % Convert the magnitude of Y w to dBm
52 -
        Y3 w dbm LPF = mag2db(abs(Y3 w LPF));
53
54 -
        subplot(2,1,1);
55 -
        plot(w3_LPF, abs(Y3_w_LPF));
56
57 –
        subplot(2,1,2);
58 –
       plot(w3 LPF, Y3 w dbm LPF);
59
60 –
       hsa3 = dsp.SpectrumAnalyzer('SampleRate',Fs3);
61 -
       step(hsa3, Y3);
62
63
64 -
       sound(Y1_LPF, Fs1);
65 –
       pause (2);
66 –
       sound(Y1, Fs1);
67
68 -
       pause (3);
69
70 -
       sound(Y2 LPF, Fs2);
71 -
       pause(2);
72 -
       sound(Y2, Fs2);
73
74 -
       pause (3);
```

Lab9_Multiplexing.m

```
dsp.m × Lab9_Loading.m × Lab9_Filtering.m × Lab9_Multiplexing.m × m_file.m ×
   Lab8.m × task1.m × practice.m × modulation.m ×
 1 -
       load('Data.mat');
 3 -
       Fc1 = 15000;
       Fc2 = 20000;
Fc3 = 25000;
 4 -
 5 -
 6
7 -
8 -
9 -
       Y1_Mod = ammod(Y1_LPF, Fc1, 30000);
       Y2\_Mod = ammod(Y2\_LPF, Fc2, 3*Fs2);
       Y3 \mod = \operatorname{ammod}(Y3 \perp PF, Fc3, 3*Fs3);
10
11 -
       Y_Mux = Y1_Mod + Y2_Mod + Y3_Mod;
12
13 -
       Noise = awgn(Y_Mux, 10);
14
15 -
16 -
       S1 = Y3 Mod + Y2 Mod;
       demux_s1 = Y_Mux - S1;
17
18 -
19 -
       S2 = Y3\_Mod + Y1\_Mod;
       demux_s2 = Y_Mux - S2;
20
21 -
22 -
       S3 = Y1\_Mod + Y2\_Mod;
       demux_s3 = Y_Mux - s3;
23
```

```
71 -
       pause(2);
72 -
       sound(Y2, Fs2);
73
74 -
       pause (3);
75
76 -
       sound(Y2_LPF, Fs2);
77 -
       pause(2);
78 -
       sound(Y2, Fs2);
79
80 -
       save('Data.mat');
```

```
Lab8.m X task1.m X practice.m X modulation.m X dsp.m X Lab9_Loading.m X Lab9_Filtering.m X Lab9_Multiplexing.m X m_file.m X
       load('Data.mat');
 2
3 -
      Fc1 = 15000;
 4 -
      Fc2 = 20000;
5 -
      Fc3 = 25000;
 6
7 –
      Y1_Mod = ammod(Y1_LPF, Fc1, 30000);
 8 -
      Y2 Mod = ammod(Y2 LPF, Fc2, 3*Fs2);
9 -
      Y3\_Mod = ammod(Y3\_LPF, Fc3, 3*Fs3);
10
11 -
      Y_Mux = Y1_Mod + Y2_Mod + Y3_Mod;
12
13 -
      Noise = awgn(Y_Mux, 10);
14
      S1 = Y3 Mod + Y2 Mod;
15 -
16 -
      demux_s1 = Y_Mux - S1;
17
18 -
      S2 = Y3 \mod + Y1 \mod;
19 -
      demux_s2 = Y_Mux - S2;
20
21 -
      S3 = Y1\_Mod + Y2\_Mod;
22 -
       demux_s3 = Y_Mux - S3;
23
```

```
Editor - D:\Uni\DSP Lab\Lab 09\Lab9_Multiplexing.m
 Lab8.m × task1.m × practice.m × modulation.m × dsp.m × Lab9_Loading.m × Lab9_Filtering.m × Lab9_Multiplexing.m × m_file.m × +
25 -
      Y_Mux_w = fftshift(fft(Y_Mux));
w_Y_Mux = -length(Y_Mux_w)/2 : (length(Y_Mux_w) - 1)/2;
26 -
27 -
28
29
       \mbox{\ensuremath{\$}} Convert the magnitude of Y_w to dBm
30 -
       Y_Mux_w_dbm_LPF = mag2db(abs(Y_Mux_w));
31
32 -
       subplot (2,1,1);
33 -
       plot(abs(Y_Mux_w));
34
35 -
       subplot(2,1,2);
36 -
       plot(w_Y_Mux, Y_Mux_w_dbm_LPF);
37
38 -
       hsa1 = dsp.SpectrumAnalyzer('SampleRate',Fs1);
39 -
       step(hsal, Y_Mux_w);
40
41
42
       કુક
43
       % Demodulate the signals
44 -
       Y1_Demod = amdemod(demux_s1, Fc1, 3*Fs1);
45 -
       Y2_Demod = amdemod(demux_s2, Fc2, 3*Fs2);
46 -
       Y3_Demod = amdemod(demux_s3, Fc3, 3*Fs3);
47
       % Compute FFT of the demodulated signals
48
```

```
Y1_Demod_fft = fftshift(fft(Y1_Demod));
Y2_Demod_fft = fftshift(fft(Y2_Demod));
        Y3_Demod_fft = fftshift(fft(Y3_Demod));
52
53
54 –
55
      f = (-Fs1/2 : Fs1/length(Y1_Demod) : Fs1/2 - Fs1/length(Y1_Demod));
        % Plot the magnitude of the FFT of the demodulated signals
        figure(3);
        subplot(3,1,1);
       plot(f, abs(Y1_Demod_fft));
title('Frequency Spectrum of Demodulated Signal Y1');
62 -
        subplot(3,1,2);
63 -
64 -
       plot(f, abs(Y2_Demod_fft));
        title('Frequency Spectrum of Demodulated Signal Y2');
        subplot(3,1,3);
        plot(f, abs(Y3_Demod_fft));
68 -
69
        title('Frequency Spectrum of Demodulated Signal Y3');
        lpf = designfilt('lowpassfir', 'PassbandFrequency', 0.45, 'StopbandFrequency', 0.55, 'PassbandRipple', 1, 'StopbandAttenuation', 60, 'DesignMethod
```

```
| Lab8m | | Lab8m | | Lab9_Multiplexing.m | | Lab9_Multiplexing.m | | Lab9_Multiplexing.m | | Lab9_Multiplexing.m | | Multiplexing.m | | Multiplexing.m | Multi
```

Conclusion:

We modulated three speech signals and add noise to it to simulate the behavior of channel and demodulated the signal to obtain the original signal.