SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES

I - SUITES ARITHMÉTIQUES

DÉFINITION

On dit qu'une suite (u_n) est une **suite arithmétique** s'il existe un nombre r tel que :

pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} = u_n + r$

Le réel *r* s'appelle la **raison** de la suite arithmétique.

REMARQUE

Pour démontrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique, on pourra calculer la différence $u_{n+1}-u_n$.

Si on constate que la différence est une constante r, on pourra affirmer que la suite est arithmétique de raison r.

EXEMPLE

Soit la suite (u_n) définie par $u_n = 3n + 5$.

$$u_{n+1} - u_n = 3(n+1) + 5 - (3n+5) = 3$$

La suite (u_n) est une suite arithmétique de raison r = 3

PROPRIÉTÉ

Pour n et k quelconques entiers naturels, si la suite (u_n) est arithmétique de raison r alors

$$u_n = u_k + (n - k) \times r$$

En particulier pour k = 0:

$$u_n = u_0 + n \times r$$

EXEMPLE

Soit (u_n) la suite arithmétique de premier terme $u_0 = 500$ et de raison r = 3.

La formule précédente permet de calculer directement u_{100} (par exemple) :

$$u_{100} = u_0 + 100 \times r = 500 + 100 \times 3 = 800$$

PROPRIÉTÉ

Réciproquement, si a et b sont deux nombres réels et si la suite (u_n) est définie par $u_n = a \times n + b$ alors cette suite est une suite arithmétique de raison r = a et de premier terme $u_0 = b$.

DÉMONSTRATION

$$u_{n+1} - u_n = a(n+1) + b - (an+b) = an + a + b - an - b = a$$

et

$$u_0 = a \times 0 + b = b$$

PROPRIÉTÉ

Les points de coordonnées $(n; u_n)$ représentant une suite arithmétique (u_n) sont **alignés**.

EXEMPLE

Le graphique ci-dessous représente les premiers termes de la suite arithmétique de raison r = 0,5 et de premier terme $u_0 = -1$.

Suite arithmétique de raison r = 0,5 et de premier terme $u_0 = -1$

THÉORÈME

Soit (u_n) une suite arithmétique de raison r:

- si r > 0 alors (u_n) est strictement croissante
- si r = 0 alors (u_n) est constante
- si r < 0 alors (u_n) est strictement décroissante.

EXEMPLES

- Le graphique de la partie II (ci-dessus) représente les premiers termes d'une suite arithmétique de raison r = 0,5 **positive**. Cette suite est **croissante**.
- Le graphique ci-dessous représente les premiers termes d'une suite arithmétique de raison r = -1 **négative**. Cette suite est **décroissante**.

Suite arithmétique de raison r = -1 et de premier terme $u_0 = 3$

II - SUITES GÉOMÉTRIQUES

DÉFINITION

On dit qu'une suite (u_n) est une **suite géométrique** s'il existe un nombre réel q tel que, pour tout $n \in \mathbb{N}$:

$$u_{n+1} = q \times u_n$$

Le réel q s'appelle la **raison** de la suite géométrique (u_n) .

REMARQUE

Pour démontrer qu'une suite (u_n) dont les termes sont **non nuls** est une suite géométrique, on pourra calculer le rapport $\frac{u_{n+1}}{u_n}$.

Si ce rapport est une constante q, on pourra affirmer que la suite est une suite géométrique de raison q.

EXEMPLE

Bien revoir les règles de calcul sur les puissances qui servent énormément pour les suites géométriques

Soit la suite (u_n) définie par $u_n = \frac{3}{2^n}$.

Les termes de la suite sont tous strictement positifs et

$$\frac{u_{n+1}}{u_n} = \frac{3}{2^{n+1}} \times \frac{2^n}{3} = \frac{2^n}{2^{n+1}} = \frac{2^n}{2 \times 2^n} = \frac{1}{2}$$

La suite (u_n) est une suite géométrique de raison $\frac{1}{2}$

PROPRIÉTÉ

Pour n et k quelconques entiers naturels, si la suite (u_n) est géométrique de raison q

$$u_n = u_k \times q^{n-k}$$
.

En particulier pour k = 0

$$u_n = u_0 \times q^n$$
.

PROPRIÉTÉ

Réciproquement, soient a et b deux nombres réels. La suite (u_n) définie par $u_n = a \times b^n$ suite est une suite géométrique de raison q = b et de premier terme $u_0 = a$.

DÉMONSTRATION

$$u_{n+1} = a \times b^{n+1} = a \times b^n \times b = u_n \times b$$

 (u_n) est donc une suite géométrique de raison q.

Le premier terme est

$$u_0 = a \times b^0 = a \times 1 = a$$

THÉORÈME

Soit (u_n) une suite géométrique de raison q > 0 et de premier terme strictement positif :

- Si q > 1, la suite (u_n) est strictement croissante
- Si 0 < q < 1, la suite (u_n) est strictement décroissante
- Si q = 1, la suite (u_n) est constante

EXEMPLES

- La figure 1 représente une suite géométrique de raison q=1,5>1
- La figure 2 représente une suite géométrique de raison q = 0, 5 < 1