Shuyang Gong

PhD candidate, School of Mathematical Sciences, Peking University, Beijing, China gongshuyang@stu.pku.edu.cn — +(86)18811712921 — https://gongmathproba.github.io — https://pkuprobability.com

RESEARCH INTERESTS

Probability theory and its intersection with statistical physics, combinatorics, statistics and computer science.

EDUCATION

 ${\bf Peking\ University},\ {\bf Beijing},\ {\bf China}$

September, 2021 — June, 2026(expected)

PhD in Mathematics

Shandong University, Jinan, China

September, 2017 — June, 2021

Bachelor of Mathematics: GPA ranked 1st/132

PUBLICATIONS/PREPRINTS

• A polynomial-time approximation scheme for the maximal overlap of two independent Erdős-Rényi graphs.

Preprint: https://arxiv.org/abs/2210.07823, submitted Coauthors: Jian Ding(PKU) and Hang Du(MIT)

Abstract: We presented a polynomial-time algorithm that finds a vertex correspondence which maximizes the overlap of two independent Erdős-Rényi graphs with a constant arbitrarily close to 1 compared with the asymptotic of the maximal overlap. This result gives a new example to the few problems that efficient algorithms exist for random instances while worst-cases are known to be NP-hard.

• The Algorithmic Phase Transition of Random Graph Alignment Problem.

 $Preprint:\ https://arxiv.org/abs/2307.06590,\ submitted$

Coauthors: Hang Du(MIT) and $Rundong\ Huang(PKU)$

Abstract: We study the graph alignment problem over two independent Erdős-Rényi graphs on n vertices, with edge density p falling into two regimes separated by the critical window around $p_c = \sqrt{\log n/n}$. Our result reveals an algorithmic phase transition for this random optimization problem: polynomial-time approximation schemes exist in the sparse regime, while statistical-computational gap emerges in the dense regime. Additionally, we establish a sharp transition on the performance of online algorithms for this problem when p lies in the dense regime, resulting in a $\sqrt{8/9}$ multiplicative constant factor gap between achievable and optimal solutions.

TALKS

• An Introduction to First Passage Percolation.

Shandong University/October 12, 2020

- A polynomial-time approximation scheme for the maximal overlap of two independent Erdős-Rényi graphs. Shandong University/November 7, 2022
- Algorithms and Phase Transitions in Random Graph Alignment Problem.

Peking University/September 11, 2023

CONFERENCES

•	• The 42nd Conference on Stochastic Processes and their Applications.	Wuhan, China/June 27—July 1, 2022
•	• Probability, Stochastic Analysis and Related Topics.	Sanya, China/Janurary 3—7, 2023
•	• The 8th National Probability and Statistics Annual Conference of China.	Fuzhou, China/August 20—24, 2023

SELECTED AWARDS

National Scholarship	October, 2019/Shandong University
National Scholarship	October, 2020/Shandong University
• Principal Scholarship(Top Award for Undergraduates)	October, 2020/Shandong University
• Schlumberger Scholarship	October, 2023/Peking University

LANGUAGE

Chinese(native), English(fluent)

TEACHING EXPERIENCES

• Calculus (C)	Fall, 2021
• Applied Stochastic Processes	Spring, 2022
• Applied Stochastic Processes	Fall, 2022
• Measure Theory	Spring, 2023
Advanced Probability Theory	Fall. 2023