MATH357 - Statistics

Based on lectures from Winter 2025 by Prof. Abbas Khalili. Notes by Louis Meunier

Contents		
1 Review of Probability		

§1 Review of Probability

⇒ Definition 1.1 (Measurable Space, Probability Space): We work with a set Ω = sample space = {outcomes}, and a σ -algebra \mathcal{F} , which is a collection of subsets of Ω containing Ω and closed under taking complements and countable unions. The tuple (Ω, \mathcal{F}) is called *measurable space*.

We call a nonnegative function $P: \mathcal{F} \to \mathbb{R}$ defined on a measurable space a *probability* function if $P(\Omega) = 1$ and if $\{E_n\} \subseteq \mathcal{F}$ a disjoint collection of subsets of Ω , then $P(\bigcup_{n \geq 1} E_n) = \sum_{n \geq 1} P(E_n)$. We call the tuple (Ω, \mathcal{F}, P) a *probability space*.

 \hookrightarrow **Definition 1.2** (Random Variables): Fix a probability space (Ω, \mathcal{F}, P) . A Borel-measurable function $X : \Omega \to \mathbb{R}$ (namely, $X^{-1}(B) \in \mathcal{F}$ for every $B \in \mathfrak{B}(\mathbb{R})$) is called a *random variable* on \mathcal{F} .

- *Probability distribution*: X induces a probability distribution on $\mathfrak{B}(\mathbb{R})$ given by $P(X \in B)$
- *Cumulative distribution function (CDF)*:

$$F_X(x) := P(X \le x).$$

Note that $F(-\infty) = 0$, $F(+\infty) = 1$ and F right-continuous.

We say X discrete if there exists a countable set $S := \{x_1, x_2, ...\} \subset \mathbb{R}$, called the *support* of X, such that $P(X \in S) = 1$. Putting $p_i := P(X = x_i)$, then $\{p_i : i \ge 1\}$ is called the *probability mass function* (PMF) of X, and the CDF of X is given by

$$P(X \le x) = \sum_{i: x_i \le x} p_i.$$

We say *X* continuous if there is a nonnegative function *f* , called the *probability distribution* function (PDF) of *X* such that $F(x) = \int_{-\infty}^{x} f(t) dt$ for every $x \in \mathbb{R}$. Then,

- $\forall B \in \mathfrak{B}(\mathbb{R}), P(X \in B) = \int_B f(t) dt$
- F'(x) = f(x)
- $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1$

If $X : \Omega \to \mathbb{R}$ a random variable and $g : \mathbb{R} \to \mathbb{R}$ a Borel-measurable function, then $Y := g(X) : \Omega \to \mathbb{R}$ also a random variable.

1 Review of Probability

Definition 1.3 (Moments): Let *X* be a discrete/random random variable with pmf/pdf *f* and support *S*. Then, if $\sum_{x \in S} |x| f(x) / \int_{S} |x| f(x) dx < \infty$, then we say the first moment/mean of *X* exists, and define

$$\mu_X = \mathbb{E}[X] = \begin{cases} \sum_{x \in S} x f(x) \\ \int_S x f(x) \, \mathrm{d}x \end{cases}.$$

Let $g : \mathbb{R} \to \mathbb{R}$ be a Borel-measurable function. Then, we have

$$\mathbb{E}[g(X)] = \begin{cases} \sum_{x \in S} g(x) f(x) \\ \int_{S} g(x) f(x) \end{cases}.$$

Taking $g(x) = |x|^k$ gives the so-called "kth absolute moments", and $g(x) = x^k$ gives the ordinary "kth moments". Notice that $\mathbb{E}[\cdot]$ linear in its argument.

For $k \ge 1$, if μ exists, define the central moments

$$\mu_k \coloneqq \mathbb{E}\Big[\left(X - \mu\right)^k\Big],$$

where they exist.

 \hookrightarrow **Definition 1.4** (Moment Generating Function (mgf)): If *X* a r.v., the mgf of *X* is given by

$$M(t) \coloneqq \mathbb{E}[e^{tX}],$$

if it exists for $t \in (-h, h)$, h > 0. Then, $M^{(n)}(0) = \mathbb{E}[X^n]$.

Definition 1.5 (Multiple Random Variable): $X = (X_1, ..., X_n) : \Omega \to \mathbb{R}^n$ a random vector if $X^{-1}(I) \in \mathcal{F}$ for every $I \in \mathfrak{B}_{\mathbb{R}^n}$. (It suffices to check for "rectangles" $I = (-\infty, a_1] \times \cdots \times (-\infty, a_n]$, as before.)

Let *F* be the CDF of *X*, and let $A \subseteq \{1, ..., n\}$, enumerating *A* by $\{i_1, ..., i_k\}$. Then, the CDF of the subvector $X_A = (X_{i_1}, ..., X_{i_k})$ is given by

$$F_{X_A}(x_{i_1},...,x_{i_k}) = \lim_{\substack{x_{i_j} \to \infty, \\ i_j \in \mathcal{I} \setminus A}} F(x_1,...,x_n).$$

In particular, the marginal distribution of X_i is given by

$$F_{X_i}(x) = \lim_{x_1,...,x_{i-1},x_{i+1},...,x_n \to +\infty} F(x_1,...,x,...,x_n).$$

Let $g: \mathbb{R}^n \to \mathbb{R}$ measurable. Then,

$$\mathbb{E}[g(X_1,...,X_n)] = \begin{cases} \sum_{(x_1,...,x_n)} g(x_1,...,x_n) f(x_1,...,x_n) \\ \int \cdots \int g(x_1,...,x_n) f(x_1,...,x_n) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_n \end{cases}.$$

We have the notion of a joint mgf,

$$M(t_1,...,t_n) = \mathbb{E}\left[e^{\sum_{i=1}^n t_i X_i}\right],$$

if it exists for $0 < \left(\sum_{i=1}^n t_i^2\right)^{\frac{1}{2}} < h$ for some h > 0. Notice that $M(0, ..., 0, t_i, 0, ..., 0)$ is equal to the mgf of X_i .

1 Review of Probability