INÍCIO / PLANOS DE ENSINO / DETALHES DO PLANO DE ENSINO

Disciplina

INTELIGÊNCIA ARTIFICIAL #114300030

ENGENHARIA DE COMPUTAÇÃO - BACHARELADO

RAONI FLORENTINO DA SILVA TEIXEIRA

Estrutura 2020/2

Carga Horária Teórica 32

Carga Horária Prática 32

(S) Carga Horária Campo O

nstituto de Engenharia

Tipo de Disciplina: OBRIGATÓRIO

Turma VE1

Período **2024/2**

(S) Carga Horária Total 64

Em homologação

Ementa da Disciplina (Recuperado do PPC vigente)

Agentes inteligentes. Resolução de problemas por meio de busca. Busca informada. Busca competitiva. Aprendizado supervisionado. Avaliação de modelos preditivos. Aprendizado não-supervisionado. Aprendizado por reforço.

Dados do Plano de Ensino

Justificativa

A disciplina de Inteligência Artificial apresenta aos alunos conceitos, técnicas e metodologias da área: agentes inteligentes, resolução de problemas por meio de busca, agentes lógicos, raciocínio probabilístico e técnicas de aprendizado de máquina. Esse conteúdo desenvolve habilidades para execução de atividades de P&D na academia e indústria.

Objetivo Geral

Apresentar uma visão geral sobre as principais técnicas de inteligência artificial. Treinar e desenvolver capacidade de aplicação e análise dos métodos de inteligência artificial na resolução de problemas.

Objetivos Específicos

Ao fim deste curso, o discente irá:

- * Conhecer as alguns dos algoritmos e técnicas propostos na literatura.
- * Entender os principais dificuldades a serem enfrentadas quando se resolve um problema com técnicas de inteligência artificial. *

Ser capaz de aplicar e combinar diferentes técnicas para resolver problemas

* Ser capaz de analisar soluções criadas.

Metodologia

Aula expositiva e dialogada. Trabalhos práticos. Uso de recursos tecnológicos (projetor multimídia, Internet e softwares)

Avaliação

A avaliação levará em conta os 4 (quatro) exercícios práticos. Ao fim de cada unidade e após a entrega de cada trabalho prático, o professor e os alunos vão se reunir para discutir, dentre outras coisas, os modelos estudados e as conclusões dos experimentos realizados. A média M de cada aluno será calculada da seguinte maneira: M = ((TP1 + TP2 + TP3 + TP4)/4), em que TP1, TP2, TP3 e TP4 são Trabalhos práticos com notas variando entre 0 e 10. Aprovar-se-ão os alunos com média M igual ou superior à 5 (cinco) pontos e com um mínimo de 75% (setenta e cinco porcento) de frequência nas aulas. Não haverá prova final.

Informações Adicionais

Conteúdo Programático

O conteúdo, organizado em unidades e subunidades ou eixos temáticos, deverá explicitar os conteúdos propostos de modo a se conhecer toda a matéria a ser desenvolvida na disciplina.

Tópicos

Unidade I - Conceitos Iniciais

O que é IA?

Fundamentos

Tópicos

História

Estado da Arte

Unidade II - Agentes Inteligentes

Agentes e Ambientes

Racionalidade

Ambientes

Estruturas

Unidade III - Resolução de Problemas por meio de Busca

Agentes de Resolução de problemas

Estratégias de busca sem informação

Estratégias de busca informada

Funções Heurísticas

Unidade IV - Além da busca clássica

Algoritmos de busca local

Busca em espaços contínuos

Busca não determinística

Agentes de Busca

Unidade V - Busca Competitiva

Jogos

Decisões ótimas

Decisões imperfeitas

Jogos estocásticos

V - Aprendizagem - Formas de aprendizagem - Regressão linear - Classificação - Redes neurais - Métodos com otimização - Máquinas de vetores de suporte (SVM) - Métodos não-paramétricos (K-NN) - Aprendizagem não-supervisionada - Apredizado por reforço - Deep learning

Bibliografia

No mínimo dois títulos para bibliografia básica e cinco títulos para bibliografia complementar. Cada título da bibliografia básica deve ter, na Biblioteca Central da UFMT, um exemplar para cada seis estudantes.

Referências Bibliográficas	Tipo	Existe na Biblioteca?
RUSSEL, S.; NORVIG, P. Inteligência Artificial. 3a Edição. Editora Campus/Elsevier, 2013.	Básica	Sim
FACELI, K.; LORENA, A. C.; GAMA, J. A. C. de CARVALHO P. L. F. InteligênciaArtificial: Uma Abordagem de Aprendizado de Máquina. 1a Edição. LTC, 2011.	Básica	Sim
THEODORIDIS, S. Machine Learning: A Bayesian and Optimization Perspective. 2a Edição. Academic Press, 2020.	Básica	Sim
LUGER, G. F. Inteligência Artificial. 6a Edição. Pearson, 2015.	Complementar	Sim
MURPHY, K. P. Machine Learning: A Probabilistic Perspective. 1a Edição. MIT Press, 2012.	Complementar	Sim
HAYKIN, S.; ENGEL, P. M. Redes Neurais: Princípios e Prática. 2a Edição. Bookman, 2003.	Complementar	Sim
ROSA, J. L. G. Fundamentos da Inteligência Artificial. 1a Edição. LTC, 2011.	Complementar	Sim
HASTIE, T.; TIBSHIRANI, R; FRIEDMAN, J. The Elements of tatistical Learning: Data Mining, Inference, and Prediction. 2a Edição. Springer, 2009.	Complementar	Sim