

| including suggestions for reducing                                                                 | completing and reviewing the collect<br>this burden, to Washington Headqu<br>uld be aware that notwithstanding ar<br>OMB control number. | arters Services, Directorate for Infor | mation Operations and Reports      | , 1215 Jefferson Davis                      | Highway, Suite 1204, Arlington |  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------|---------------------------------------------|--------------------------------|--|
| 1. REPORT DATE       2. REPORT TYPE         01 NOV 2006       N/A                                  |                                                                                                                                          |                                        |                                    | 3. DATES COVERED -                          |                                |  |
| 4. TITLE AND SUBTITLE                                                                              | 5a. CONTRACT NUMBER                                                                                                                      |                                        |                                    |                                             |                                |  |
| Propellantless Propulsion: The role of drift transport in asymmetrical capacitor thrust production |                                                                                                                                          |                                        |                                    | 5b. GRANT NUMBER                            |                                |  |
| Capacitor tili ust production                                                                      |                                                                                                                                          |                                        |                                    | 5c. PROGRAM ELEMENT NUMBER                  |                                |  |
| 6. AUTHOR(S)                                                                                       |                                                                                                                                          |                                        |                                    | 5d. PROJECT NUMBER                          |                                |  |
|                                                                                                    |                                                                                                                                          |                                        |                                    | 5e. TASK NUMBER                             |                                |  |
|                                                                                                    |                                                                                                                                          |                                        |                                    | 5f. WORK UNIT NUMBER                        |                                |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) New Prague High School, New Prague, NM          |                                                                                                                                          |                                        |                                    | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER |                                |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)                                            |                                                                                                                                          |                                        |                                    | 10. SPONSOR/MONITOR'S ACRONYM(S)            |                                |  |
|                                                                                                    |                                                                                                                                          |                                        |                                    | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)   |                                |  |
| 12. DISTRIBUTION/AVAIL Approved for publ                                                           | LABILITY STATEMENT<br><b>ic release, distributi</b>                                                                                      | on unlimited                           |                                    |                                             |                                |  |
| 13. SUPPLEMENTARY NO See also ADM0020                                                              | otes<br><b>75., The original do</b>                                                                                                      | cument contains col                    | or images.                         |                                             |                                |  |
| 14. ABSTRACT                                                                                       |                                                                                                                                          |                                        |                                    |                                             |                                |  |
| 15. SUBJECT TERMS                                                                                  |                                                                                                                                          |                                        |                                    |                                             |                                |  |
| 16. SECURITY CLASSIFIC                                                                             | 17. LIMITATION OF<br>ABSTRACT                                                                                                            | 18. NUMBER<br>OF PAGES                 | 19a. NAME OF<br>RESPONSIBLE PERSON |                                             |                                |  |
| a. REPORT<br>unclassified                                                                          | ь. abstract<br><b>unclassified</b>                                                                                                       | c. THIS PAGE<br>unclassified           | UU                                 | 21                                          | RESPONSIBLE PERSON             |  |

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

**Report Documentation Page** 

Form Approved OMB No. 0704-0188

# ASYMMETRICAL CAPACITORS

- Produces net force when charged
- No moving parts
- Silent Operation



### ASYMMETRICAL CAPACITORS

- Geometrically dissimilar electrodes
- Isolative supports
- High Voltage (26kV, 300uA)
- Force in direction of smaller electrode



# **PHYSICS** "This thrust cannot be presently explained by any previous theories..." Purdue University, 2000

# 

- Evaluate the effect of the following on the direction/magnitude of the resulting thrust:
  - SEPERATION
  - ASYMMETRY
  - POLARITY
- Analyze results mathematically and look for possible theories



# HYPOTHESIS

- Force is proportional to the electric field strength and the flux through the foil electrode
- Force will only be produced when the wire electrode is charged



# 



- Configuration positioned so force is downward
- Placed on electronic balance with support stand
- When charged, thrust is measured as an increase in weight
- Quickly and accurately obtained results



# **ELECTRODE SEPARATION** Separation to Force 30.00 25.00 20.00 Farce (mN) 10.00 8.00 POS NEG 0.00 10 12 Separation (cm)



# ELECTRIC FIELD

# 

lons move between ionizing and non-ionizing electrode

Mechanism comparable to ion thruster

$$F = I_{\sqrt{\frac{2mV}{q}}}$$

Theory predicts 0.0007N.

Experiment showed 0.018N



$$E = \frac{V}{s} = \frac{V}{y}$$

### DRIFT TRANSPORT



- Single ionizing electrode
- lons impact molecules of dielectric
- Transfer momentum

$$F = qE = I\frac{s}{k}$$

Current is a complicated function of voltage, separation, and electrode geometry.

### **BARSOUKOV THEORY**



Theory of current flow between two electrodes

Current is substituted into previous derivation of force

$$F = sGV(V - V_0)$$

$$F = I \frac{s}{k} = 2\pi \varepsilon_0 V L \frac{V - r_w \delta E_0 \ln(\frac{s}{r_w}) (1 + \frac{0.301}{\sqrt{\delta r_w}})}{s \ln(\frac{R_f \pi \cdot e^{\frac{2\pi s}{R_f}}}{r_w})}$$



### **ELECTRODE SEPERATION** Separation to Force 20.00 18,00 16,00 14.00 12.00 Force (mN) 10.00 8,00 6,00 4.00 2.00 • THEORETICAL **▲ MEASURED** 00.0 10 Q Electrode Separation (cm)



### **CURRENT FLOW MATHEMATICS**

Theory assumed only one ionizing electrode

Ion pockets on foil electrode not accounted for—subtract from force

$$f(i) = \sum_{i=1}^{n} f_n(i) = f_w(i) + f_f(i)$$

Total force is sum of flow from wire and foil

$$f_f(i) = \phi(i)(i - \xi)$$

Flow from foil is percentage of total flow times the increase in current from initiation

$$f(i) = f_w(i) - \sum_{i=1}^{P} \phi(n)(i - \xi)$$

Total force is magnitude of wire force minus magnitude of foil force.

$$f(i) = \begin{cases} 0 & V < V_w \\ I \frac{s}{k} & V \ge V_w \end{cases} - \begin{cases} 0 & V < V_f \\ \sum_{1}^{P} \phi(n) (I \frac{s}{k} - \xi \circ V_f) & V \ge V_f \end{cases}$$

The revised force equation takes into account counter-current from the foil electrode



## POTENTIAL APPLICATIONS



- Atmosphere as sole propulsive medium
- No onboard propellant
- No moving parts
- Silent

# CONCLUSION

- Thrust dependent primarily on the current applied
- Polarity was not a major factor in thrust magnitude or direction
- Results of experimentation pointed towards an ionic model for thrust

