FISH & RICHARDSON P.C.

500 Arguello Street

Suite 500

Redwood City, California

94063-1526

Telephone 650 839-5070

Facsimile 650 839-5071

Web Site www.fr.com

Frederick P. Fish 1855-1930

W.K. Richardson 1859-1951 BY FAX AND MAIL

October 9, 2002

Perry Clark, Esquire Weil, Gotshal & Manges LLP 201 Redwood Shores Parkway Redwood Shores, CA 94065

Re:

Arthrocare Suit - Delaware

USDC-D. Del. - C.A. No. 01-504-SLR

Dear Perry:

BOSTON DALLAS

I have enclosed a supplemental set of invalidity claim charts.

DELAWARE

Very truly yours,

NEW YORK

SAN DIEGO

SILICON VALLEY

TWIN CITIES

WASHINGTON, DC

Kurtis MacFerrin

Jack B. Blumenfeld, Esq., Morris, Nichols, Arsht & Tunnell (fax only) cc:

50107269.doc

Exhibit A:
Prior art references upon which Smith & Nephew presently intends to primarily rely.

#	Issue/ Pub'n Date	Patent Number/ Publication	Inventor/Author	Title
8	00/00/76	Acta Medicotechnica (Medizinal- Markt), Vol. 24, No. 4, 1976 129 – 134	E. Elsasser and E. Roos	Uber ein Instrument zur leckstromfreien transurethralen Resection (Concerning An Instrument for Transurethral resection without leakage of current)
10	07/20/76	US 3,970,088	Charles F. Morrison	Electrosurgical Devices Having Sesquipolar Electrode Structures Incorporated Therein
15	09/26/78	US 4,116,198 and its file history	Eberhard Roos	Electro-Surgical Device
22	04/27/82	US 4,326,529	James D. Doss and Richard L. Hutson	Corneal-Shaping Electrode
23	04/26/83	US 4,381,007	James D. Doss	Multipolar Corneal-Shaping Electrode with Flexible Removable Skirt
26	06/00/85	JACC Vol. 5, No. 6, 1382-6	Cornelis J. Slager, MSc, Catharina E. Essed, MD, Johan C.H. Schuurbiers, BSc, Nicolaas Bom, Ph.D, Patrick W. Serruys, MD, Geert T. Meester, MD, FACC	Vaporization of Atherosclerotic Plaques by Spark Erosion
29	00/00/87	Kardiologie, Kardiol.76: Supp. 6, 67-71 (1987)	C.J. Slager, A.C. Phaff, C.E. Essed, J.C.H. Schuurbiers, N. Bom, V.A. Vandenbroucke, and P.W. Serruys	Spark Erosion of Arteriosclerotic Plaques
31	06/23/87	US 4,674,499	David S.C. Pao	Coaxial Bipolar Probe
32	07/00/88	Valleylab Part Number 945 100 102 A	Valleylab, Inc.	Surgistat Service Manual

#	Issue/ Pub'n Date	Patent Number/ Publication	Inventor/Author	Title
34	00/00/89	SPIE Vol. 1068 Catheter-based Sensing and Imaging Technology	Paul C. Nardella	Radio Frequency Energy and Impedance Feedback
36	02/21/89	US 4,805,616	David S.C. Pao	Bipolar Probes for Ophthalmic Surgery and Methods of Performing Anterior Capsulotomy
38	04/00/89	JACC Vol. 13 No. 5, 1167-75	Benjamin I. Lee, MD, FACC, Gary J. Becker, MD, Bruce F. Waller, MD, FACC, Kevin J. Barry, MS, Raymond J. Connolly, Ph.D, Jonathan Kaplan, MD, Alan R. Shapiro, MS, Paul C. Nardella, BS	Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty
48	12/11/90	US 4,976,711	David J. Parins, Mark A. Rydell, Peter Stasz	Ablation Catheter With Selectively Deployable Electrodes
51	04/16/91	US 5,007,908	Mark A. Rydell	Electrosurgical Instrument Having Needle Cutting Electrode And Spot-Coag Electrode
52	04/23/91	US 5,009,656	Harry G. Reimels	Bipolar Electrosurgical Instrument
74	1990		Jerry L. Malis, Valley Forge Scientific Corp.	CMC-III Bipolar System

50107285.doc

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	1	2	3	4	5	6	7
45. An electrosurgical system	9						
for applying electrical energy to							
a target site on a structure within							
or on a patient's body, the		,					
system comprising:						 	
a high frequency power supply;	1:15-27	207	3:48-4:14	1:5-2:2	58-60	3:3-7	2:44-66
an electrosurgical probe comprising a shaft having a proximal end and a distal end,	1:40-55, Fig. 1		8:10-9:8	1:5-2:2	58-60	3:3-7, Fig. 1, 2	4:4-19, 2:44-66
an electrode terminal disposed near the distal end, and	1:40-55, Fig. 1		8:10-9:8	1:5-2:2	58-60	3:3-7, Fig. 1, 2	4:4-19, 2:44-66
a connector near the proximal end of the shaft electrically coupling the electrode terminal to the electrosurgical power supply;	1:40-55, Fig. 1		8:10-9:8	1:5-2:2	58-60	3:3-7, Fig. 1, 2	4:4-19, 2:44-66
a return electrode electrically coupled to the electrosurgical power supply; and	1:15-27	207	3:48-4:14	1:5-2:2	58-60	3:3-7	2:44-66
an electrically conducting fluid supply for directing electrically conducting fluid to the target site such that			9:9-25	·			
the electrically conducting fluid generates a current flow path between the return electrode and the electrode terminal.			9:9-25				
46. An electrosurgical system as in claim 45, wherein							
the return electrode forms a portion of the shaft of the electrosurgical probe.	4:9-24						Fig. 2
47. An electrosurgical system as in claim 46 further including							
an insulating member circumscribing the return electrode,							3:58-61
the return electrode being sufficiently spaced from the electrode terminal to minimize direct contact between the return electrode and the patient's tissue.						:	
55. The electrosurgical system of claim 45 wherein							

Exhibit B: Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	1	2	3	4	5	6	7
the electrode terminal comprises						1	
a single active electrode	1:40-55	206	8:10:9:8	3:10-28	58	2:54-57	2:67-3:16
disposed near the distal end of	1:40-55	206	8:10:9:8	3:10-28	38	2:34-3/	2:07-3:10
the shaft.		}					
56. The electrosurgical system							
of claim 45 wherein							
the target site is selected from							
the group consisting essentially							
of the abdominal cavity,	i]
thoracic cavity, knee, shoulder,						1.45.60	-
hip, hand, foot, elbow, mouth,						1:45-50	
spine, ear, nose, throat,							
epidermis and dermis of the			1				
natient's body.							
58. The electrosurgical system							
of claim 45 wherein							
the frequency of the voltage							
applied between the return	,						
electrode and the electrode		206-07	3:49-4:14		58	1	
terminal is in the range of about							
20 kHz and 20 Mhz.							
59. The electrosurgical system		ı					
of claim 45 wherein							
the voltage applied between the			1				
electrode terminal and the return		ı					
electrode is in the range from 10		211			58		
volts (RMS) to 1000 volts		i					
(RMS).							

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	8	9	10	11	12	13	14
45. An electrosurgical system							
for applying electrical energy to				-			
a target site on a structure within							
or on a patient's body, the							
system comprising:		j					
						4:15; 7:38-	
a high frequency power supply;	1	2:33-52	4:18-28	2	528	50	
an electrosurgical probe							
comprising a shaft having a	3, 7	2:40-63	4:18-28	2	530	6:55-70	
proximal end and a distal end,							
on electrode terminal disposed							
an electrode terminal disposed	3, 7	2:40-63	4:18-28	2	530	6:55-70	
near the distal end, and							
a connector near the proximal							
end of the shaft electrically							
coupling the electrode terminal	3, 7	2:40-63	4:18-28	2	530	6:55-70	
to the electrosurgical power							
supply;							
a return electrode electrically						4:15; 7:38-	
coupled to the electrosurgical	1	2:33-52	4:18-28	2	528	50	
power supply; and						50	
an electrically conducting fluid						ŀ	
supply for directing electrically	4-5	2:40-63			529		
conducting fluid to the target							
site such that							
the electrically conducting fluid							
generates a current flow path	4-5	0.40.60			s o o		
between the return electrode and	4-5	2:40-63			529		
the electrode terminal.							
46. An electrosurgical system as				· · · · · · · · · · · · · · · · · · ·			
in claim 45, wherein							
the return electrode forms a							
portion of the shaft of the	7		4:31-43	2			
electrosurgical probe.							
47. An electrosurgical system as							
in claim 46 further including							
an insulating member				_			
circumscribing the return			5:50-57	3			
electrode,							
the return electrode being							
sufficiently spaced from the							
electrode terminal to minimize	1]	
direct contact between the return							
electrode and the patient's							
tissue. 55. The electrosurgical system							
of claim 45 wherein			Ll		L	I	

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	8	9	10	11	12	13	14
the electrode terminal comprises					İ		
a single active electrode	7	7:58-68	4.44.64	2	520	6.45.51	
disposed near the distal end of	,	/:38-08	4:44-64	3 -	530	6:45-54	
the shaft.						1	
56. The electrosurgical system							
of claim 45 wherein						1	
the target site is selected from							1
the group consisting essentially							ļ.
of the abdominal cavity,			i			Ī	l
thoracic cavity, knee, shoulder,	11.	0.0479167		•	507		
hip, hand, foot, elbow, mouth,	11	0.04/916/	1	2	527		
spine, ear, nose, throat,						1	
epidermis and dermis of the							
natient's body.							
58. The electrosurgical system							
of claim 45 wherein	•						
the frequency of the voltage							
applied between the return		1	ĺ				
electrode and the electrode		1:34-53				ļ	
terminal is in the range of about			•]			•	
20 kHz and 20 Mhz.						ļ	
59. The electrosurgical system							
of claim 45 wherein		<u> </u>					
the voltage applied between the							
electrode terminal and the return			1				•
electrode is in the range from 10		1:34-53					7:26-42
volts (RMS) to 1000 volts			Ī			}	
(RMS).							

Exhibit B: Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	15	16	17	18	19	20	21
45. An electrosurgical system for applying electrical energy to a target site on a structure within or on a patient's body, the system comprising:							
a high frequency power supply;	1:5-17	845-46	6:1-30	1:12-37	2:33-46	2:35-58	333
an electrosurgical probe comprising a shaft having a proximal end and a distal end,	4:51-5:20	846	6:1-30	1:12-37	2:33-46	2:35-58	333
an electrode terminal disposed near the distal end, and	4:51-5:20	846	6:1-30	1:12-37	2:33-46	2:35-58	333
a connector near the proximal end of the shaft electrically coupling the electrode terminal to the electrosurgical power supply;	4:51-5:20	846	6:1-30	1:12-37	2:33-46	2:35-58	333
a return electrode electrically coupled to the electrosurgical power supply; and	1:5-17	845-46	6:1-30	1:12-37	2:33-46	2:35-58	333
an electrically conducting fluid supply for directing electrically conducting fluid to the target site such that	1:52-56, 5:26-30, 7:59-62	846		3:67-4:3	1:34-38	2:35-58	334
the electrically conducting fluid generates a current flow path between the return electrode and the electrode terminal.	1:52-56, 5:26-30, 7:59-62	846		3:67-4:3	1:34-38	2:35-58	334
46. An electrosurgical system as in claim 45, wherein							
the return electrode forms a portion of the shaft of the electrosurgical probe.	5:3-10				2:34-46	2:35-58	
47. An electrosurgical system as in claim 46 further including							
an insulating member circumscribing the return electrode,					2:34-46	2:35-58	
the return electrode being sufficiently spaced from the electrode terminal to minimize direct contact between the return electrode and the patient's tissue.	3:5-20						
55. The electrosurgical system of claim 45 wherein		· · · · · · · · · · · · · · · · · · ·					

Exhibit B:

Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	15	16	17	18	19	20	21
the electrode terminal comprises				İ			
a single active electrode	4:66-5:2	845	3:1-52	1:15-36	2:34-46	2:35-58	333
disposed near the distal end of	4.00-3.2	043	3.1-32	1.13-30	2.54-40	2.33-36	333
the shaft.							
56. The electrosurgical system							
of claim 45 wherein							
the target site is selected from							
the group consisting essentially							
of the abdominal cavity,	i						
thoracic cavity, knee, shoulder,	1:18-27	845		2:21-63			334
hip, hand, foot, elbow, mouth,	1.10 27	043		2.21-03		4	334
spine, ear, nose, throat,							
epidermis and dermis of the				1			
natient's body							
58. The electrosurgical system]						
of claim 45 wherein				ļ			
the frequency of the voltage	1		<u> </u>				
applied between the return	1		ł				
electrode and the electrode	Ì			8:30-39	6:61-68	2:35-58	333
terminal is in the range of about			Ì				
20 kHz and 20 Mhz.							
59. The electrosurgical system	1			1			
of claim 45 wherein							
the voltage applied between the							
electrode terminal and the return				0.00.00		0.05.55	222
electrode is in the range from 10				8:30-39	5:46-6:7	2:35-58	333
volts (RMS) to 1000 volts	[
(RMS).			l				

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	22	23	24	25	26	27	28
45. An electrosurgical system for applying electrical energy to							
a target site on a structure within				}			
or on a patient's body, the							
system comprising:							ļ
a high frequency power supply;	2:21-58	2:42-68	1425	99	1383	2:38-66	2:23-33
an electrosurgical probe comprising a shaft having a proximal end and a distal end,	2:21-58	2:42-68	1425	99	1383	2:35-66	2:23-33
an electrode terminal disposed near the distal end, and	2:21-58	2:42-68	1425	99	1383	2:35-66	2:23-33
a connector near the proximal end of the shaft electrically coupling the electrode terminal to the electrosurgical power supply;	2:21-58	2:42-68	1425	99	1383	2:35-66	2:23-33
a return electrode electrically coupled to the electrosurgical power supply; and	2:21-58	2:42-68	1425	99	1383	2:38-66	2:23-33
an electrically conducting fluid supply for directing electrically conducting fluid to the target site such that	2:21-58	2:42-68	1425	99	1383	3:48-53	2:18, 5:28- 31
the electrically conducting fluid generates a current flow path between the return electrode and the electrode terminal.	2:21-58	2:42-68	1425	99	1383	3:48-53	2:18, 5:28- 31
46. An electrosurgical system as in claim 45, wherein							
the return electrode forms a portion of the shaft of the electrosurgical probe.		Fig. 1				3:30-47	
47. An electrosurgical system as in claim 46 further including							
an insulating member circumscribing the return electrode,		Fig. 1-2				3:30-47	
the return electrode being sufficiently spaced from the electrode terminal to minimize direct contact between the return electrode and the patient's tissue.		2:42-68			1383		
55. The electrosurgical system of claim 45 wherein							

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	22	23	24	25	26	27	28
the electrode terminal comprises						Ť T	
a single active electrode	2:41-43	Fig. 9; 3:29	1425	100	1383	1.26 50	1.62.2.6
disposed near the distal end of	2.41-43	30	1423	100	1303	1:26-50	1:57-2:6
the shaft.							}
56. The electrosurgical system							
of claim 45 wherein							İ
the target site is selected from							
the group consisting essentially		1					
of the abdominal cavity,						Į	Ì
thoracic cavity, knee, shoulder,		1	1426	100	1383	1:26-50	
hip, hand, foot, elbow, mouth,			1420	100	1363	1:20-30	
spine, ear, nose, throat,						1	
epidermis and dermis of the							
natient's body.							
58. The electrosurgical system							
of claim 45 wherein					·		
the frequency of the voltage			•				
applied between the return						1	
electrode and the electrode	3:46-51	3:30-38	1425		1383		7:62-8:14
terminal is in the range of about		·					
20 kHz and 20 Mhz.						,	
59. The electrosurgical system					:	1	
of claim 45 wherein							
the voltage applied between the							
electrode terminal and the return							
electrode is in the range from 10	3:46-51	3:30-38	1425		1383		
volts (RMS) to 1000 volts]	
(RMS).						l	

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	29	30	31	32	33	34	35
45. An electrosurgical system for applying electrical energy to a target site on a structure within or on a patient's body, the system comprising:							*
a high frequency power supply;	67-68	4:32-5:10	2:45-58		2:45-69	42	248
an electrosurgical probe comprising a shaft having a proximal end and a distal end,	67-68	4:32-5:10	2:45-58		2:45-69		248
an electrode terminal disposed near the distal end, and	67-68	4:32-5:10	2:45-58		2:45-69		248
a connector near the proximal end of the shaft electrically coupling the electrode terminal to the electrosurgical power supply;	67-68	4:32-5:10	2:45-58		2:45-69		248
a return electrode electrically coupled to the electrosurgical power supply; and	67-68	4:32-5:10	2:45-58		2:45-69	42	248
an electrically conducting fluid supply for directing electrically conducting fluid to the target site such that	68		3:31, 7:65				248
the electrically conducting fluid generates a current flow path between the return electrode and the electrode terminal.	68		3:31, 7:65				248
46. An electrosurgical system as in claim 45, wherein							
the return electrode forms a portion of the shaft of the electrosurgical probe.	69		4:55-5:16				
47. An electrosurgical system as in claim 46 further including							
an insulating member circumscribing the return electrode,	69		4:55-5:16				
the return electrode being sufficiently spaced from the electrode terminal to minimize direct contact between the return electrode and the patient's tissue.		Fig. 5	Fig. 4		Fig. 2	44	
55. The electrosurgical system of claim 45 wherein		,					

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	29	30	31	32	33	34	35
the electrode terminal comprises a single active electrode	68	5:11-27	5:17-31				
disposed near the distal end of the shaft.		3.11 27	3.1, 3.				
56. The electrosurgical system of claim 45 wherein							
the target site is selected from the group consisting essentially of the abdominal cavity,			·				
thoracic cavity, knee, shoulder, hip, hand, foot, elbow, mouth, spine, ear, nose, throat,	68		9:37-47			42	
epidermis and dermis of the natient's body. 58. The electrosurgical system							
of claim 45 wherein the frequency of the voltage							
applied between the return electrode and the electrode terminal is in the range of about 20 kHz and 20 Mhz.	68				2:45-3:16	42	
59. The electrosurgical system of claim 45 wherein							
the voltage applied between the electrode terminal and the return electrode is in the range from 10	68			8	2:45-3:16		
volts (RMS) to 1000 volts (RMS).				···			

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	36	37	38	. 39	40	41	42
45. An electrosurgical system							
for applying electrical energy to							
a target site on a structure within							
or on a patient's body, the							
system comprising:				↓		·	
a high frequency power supply;	4:4-39	662-63	1168	5:1-47	2:62-65	291	275
an electrosurgical probe	4.4.20	((2, (2	11/0	5.1.42	2.10.22	200	275
comprising a shaft having a proximal end and a distal end,	4:4-39	662-63	1169	5:1-47	2:19-22	292	275
							-
an electrode terminal disposed	4:4-39	662-63	1169	5:1-47	2:19-22	292	275
near the distal end, and	1.7 37	002 03	1105	3.1 (2.17 22	2)2	1,3
a connector near the proximal							
end of the shaft electrically							
coupling the electrode terminal	4:4-39	662-63	1169	5:1-47	2:19-22	292	275
to the electrosurgical power				1			
supply;							
a return electrode electrically							
coupled to the electrosurgical	4:4-39	662-63	1168	5:1-47	2:62-65	291	275
power supply; and							
an electrically conducting fluid supply for directing electrically				•			
conducting fluid to the target	7:30-32	663	1168	ŀ		291	275
site such that							
						<u> </u>	
the electrically conducting fluid	0						
generates a current flow path	7:30-32	663	1168			291	275
between the return electrode and							
the electrode terminal.							
46. An electrosurgical system as							
in claim 45, wherein							
the return electrode forms a				Fig. 5; 8:9-			
portion of the shaft of the				34	4:16-28	. 292	275
electrosurgical probe.							
47. An electrosurgical system as]			
in claim 46 further including							
an insulating member							
circumscribing the return	4:4-39			Fig. 5; 8:9-	4:36-43	292	275
electrode,				34			
the return electrode being		-					
sufficiently spaced from the						•	
electrode terminal to minimize							
direct contact between the return							
electrode and the patient's							
tissue.							
55. The electrosurgical system							
of claim 45 wherein				<u> </u>		L	l

Exhibit B: Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	36	37	38	39	40	41	42
the electrode terminal comprises				i			
a single active electrode disposed near the distal end of the shaft.	4:40-58	662	1168	Fig. 5; 8:9- 34	4:16-35	292	275
56. The electrosurgical system		_					
of claim 45 wherein							
the target site is selected from the group consisting essentially of the abdominal cavity, thoracic cavity, knee, shoulder,	2:16-34		1168	3:63-4:16	5:62-6:19	291	275
hip, hand, foot, elbow, mouth, spine, ear, nose, throat, epidermis and dermis of the	2.10-54		1100	3.03-4.10	3.02-0.19	291	213
natient's body. 58. The electrosurgical system of claim 45 wherein							
the frequency of the voltage applied between the return electrode and the electrode terminal is in the range of about 20 kHz and 20 Mhz.			1168		2:62-65		
59. The electrosurgical system of claim 45 wherein							
the voltage applied between the electrode terminal and the return						•	
electrode is in the range from 10 volts (RMS) to 1000 volts (RMS).							

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	43	44	45	: 46	47	48	49
45. An electrosurgical system							
for applying electrical energy to							
a target site on a structure within			1		1	: 	
or on a patient's body, the							
system comprising:							
a high frequency power supply;	2:8-4:10	2:26-51	4:21-5:6	2:31-53	1:34	2:28	1:55
an electrosurgical probe comprising a shaft having a proximal end and a distal end,	8, 10	2:26-51	4:40	2:31-53		2:28	1:55
an electrode terminal disposed near the distal end, and	8, 10	2:26-51	4:40	2:31-53		2:28	1:55
a connector near the proximal end of the shaft electrically coupling the electrode terminal to the electrosurgical power supply;	8, 10	2:26-51	4:40	2:31-53		2:28	1:55
a return electrode electrically coupled to the electrosurgical power supply; and	2:8-4:10	2:26-51	4:21-5:6	2:31-53	1:34	2:28	1:55
an electrically conducting fluid supply for directing electrically conducting fluid to the target site such that	11		3:48-55	6:42		6:28, 4:6	1:65
the electrically conducting fluid generates a current flow path between the return electrode and the electrode terminal.	11		3:48-55	6:42		6:28, 4:6	1:65
46. An electrosurgical system as in claim 45, wherein		-					
the return electrode forms a portion of the shaft of the electrosurgical probe.				3:41-4:2	1:57-2:35	4:18-28	
47. An electrosurgical system as in claim 46 further including							
an insulating member							
circumscribing the return	ĺ			3:41-4:2	1:57-2:35	4:18-28	·
electrode,					2.2.2		
the return electrode being						· —· — · · ·	
sufficiently spaced from the							
electrode terminal to minimize			inhore	6.42		6.20	
direct contact between the return			inherent	6:42		6:28	
electrode and the patient's							
tissue.							
55. The electrosurgical system					-		
of claim 45 wherein							

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	43	44	45	46	47	48	49
the electrode terminal comprises					:		
a single active electrode	22.0	2 40 51					. -
disposed near the distal end of	2:8-18	3:48-51	5:7-19	3:41-4:2	1:57-2:35	3:65-4:17	3:27-44
the shaft.				İ	:		
56. The electrosurgical system							
of claim 45 wherein							
the target site is selected from							
the group consisting essentially							
of the abdominal cavity,							
thoracic cavity, knee, shoulder,		2625		0.004			
hip, hand, foot, elbow, mouth,	1:1-4	3:6-25		3:8-34	1:18-39		1:47-68
spine, ear, nose, throat,							
epidermis and dermis of the						l	
natient's body.							
58. The electrosurgical system							
of claim 45 wherein							
the frequency of the voltage							
applied between the return							
electrode and the electrode		3:36-41		6:5-30			
terminal is in the range of about							
20 kHz and 20 Mhz.							
59. The electrosurgical system							
of claim 45 wherein						.	
the voltage applied between the							
electrode terminal and the return							
electrode is in the range from 10							
volts (RMS) to 1000 volts				İ			
(RMS).				, ,			

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	50	51	52	53	54	55	56
45. An electrosurgical system	30	31		35			- 55
for applying electrical energy to a target site on a structure within or on a patient's body, the system comprising:							
a high frequency power supply;	2:21-63	2:41-3:58	3:1-32	2:28-55	670	2:7-46	1:61-2:12
an electrosurgical probe comprising a shaft having a proximal end and a distal end,	2:21-63	2:41-3:58	3:1-32	2:28-55	669	2:7-46	1:61-2:12
an electrode terminal disposed near the distal end, and	2:21-63	2:41-3:58	3:1-32	2:28-55	669	2:7-46	1:61-2:12
a connector near the proximal end of the shaft electrically coupling the electrode terminal to the electrosurgical power supply;	2:21-63	2:41-3:58	3:1-32	2:28-55	669	2:7-46	1:61-2:12
a return electrode electrically coupled to the electrosurgical power supply; and	2:21-63	2:41-3:58	3:1-32	2:28-55	670	2:7-46	1:61-2:12
an electrically conducting fluid supply for directing electrically conducting fluid to the target site such that		3:53	2:26	3:63, 2:1	672		
the electrically conducting fluid generates a current flow path between the return electrode and the electrode terminal.		3:53	2:26	3:63, 2:1	672		
46. An electrosurgical system as in claim 45, wherein							,
the return electrode forms a portion of the shaft of the electrosurgical probe.	3:17-23	3:35-57	2:63-3:5	3:37-64		2:62-68	1:61-2:11
47. An electrosurgical system as in claim 46 further including							
an insulating member circumscribing the return electrode,	3:17-23	3:35-57	1:42-50	3:37-64		2:62-68	
the return electrode being sufficiently spaced from the electrode terminal to minimize direct contact between the return electrode and the patient's tissue.		3:53					
55. The electrosurgical system of claim 45 wherein							

Exhibit B: Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	50	51	52	53	54	55	56
the electrode terminal comprises	30	<u> </u>	32	55		33	30
a single active electrode disposed near the distal end of the shaft.	1:40-51	3:35-57	1:42-50	3:37-64	670		1:61-2:11
56. The electrosurgical system							-
of claim 45 wherein						 	
the target site is selected from the group consisting essentially of the abdominal cavity,							
thoracic cavity, knee, shoulder, hip, hand, foot, elbow, mouth,	2:2-20	1:9-12	1:5-9	1:9-15	669	1:52-55	1:50-58
spine, ear, nose, throat,							
epidermis and dermis of the						İ	
patient's body.							
58. The electrosurgical system				!			
of claim 45 wherein							
the frequency of the voltage applied between the return				1			
electrode and the electrode					669		
terminal is in the range of about							
20 kHz and 20 Mhz.							
59. The electrosurgical system							
of claim 45 wherein				·		<u> </u>	
the voltage applied between the							
electrode terminal and the return							
electrode is in the range from 10					672	1	
volts (RMS) to 1000 volts							
(RMS).							

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	57	58	59	60	61	62	.63
45. An electrosurgical system for applying electrical energy to a target site on a structure within or on a patient's body, the system comprising:							
a high frequency power supply;	3	3:9-49		4:45	3:30	2:35	
an electrosurgical probe comprising a shaft having a proximal end and a distal end,	3	3:9-49	- 3:5-36	3:35	3:30	2:20	
an electrode terminal disposed near the distal end, and	3	3:9-49	3:5-36	3:35	3:30	2:20	
a connector near the proximal end of the shaft electrically coupling the electrode terminal to the electrosurgical power supply;	3	3:9-49	3:5-36	3:35	3:30	2:20	
a return electrode electrically coupled to the electrosurgical power supply; and	3	3:9-49		4:45	3:30	2:35	
an electrically conducting fluid supply for directing electrically conducting fluid to the target site such that	6	-					
the electrically conducting fluid generates a current flow path between the return electrode and the electrode terminal.	6						
46. An electrosurgical system as in claim 45, wherein							
the return electrode forms a portion of the shaft of the electrosurgical probe.		4:27-33		3:52-66		3:12-27	
47. An electrosurgical system as in claim 46 further including	•					·	• !
an insulating member circumscribing the return electrode,				3:52-66		3:12-27	
the return electrode being sufficiently spaced from the electrode terminal to minimize direct contact between the return electrode and the patient's tissue.						Fig. 3	
55. The electrosurgical system of claim 45 wherein						!	

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	57	58	59	60	61	62	63
the electrode terminal comprises					1		
a single active electrode				4:15-29	5.10.20	2 20 60	
disposed near the distal end of				4:13-29	5:10-28	3:28-60	·
the shaft.		_					
56. The electrosurgical system							
of claim 45 wherein					1		
the target site is selected from							
the group consisting essentially							
of the abdominal cavity,				ŀ			
thoracic cavity, knee, shoulder,	4.20 5.5	2.20.40			•		
hip, hand, foot, elbow, mouth,	4:20-5:5	3:30-49	1:5-12		ļ	2:14-20	3:21-32
spine, ear, nose, throat,							
epidermis and dermis of the				j			
natient's body							
58. The electrosurgical system					·		
of claim 45 wherein	-				·		
the frequency of the voltage							
applied between the return							
electrode and the electrode		N.			4:28-48		
terminal is in the range of about	·						
20 kHz and 20 Mhz.							
59. The electrosurgical system							
of claim 45 wherein				α.			
the voltage applied between the							
electrode terminal and the return							
electrode is in the range from 10					4:28-48		3:21-32
volts (RMS) to 1000 volts							
(RMS).							

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	64	65	66	67	68	69	70
45. An electrosurgical system for applying electrical energy to a target site on a structure within or on a patient's body, the system comprising:							
a high frequency power supply;	2:5	5:34	2:1	2:35	3:25	3:20	2:38
an electrosurgical probe comprising a shaft having a proximal end and a distal end,	4:25	5:34	3:14	2:35	3:25	3:20	2:38
an electrode terminal disposed near the distal end, and	4:25	5:34	3:14	2:35	3:25	3:20	2:38
a connector near the proximal end of the shaft electrically coupling the electrode terminal to the electrosurgical power supply;	4:25	5:34	3:14	2:35	3:25	3:20	2:38
a return electrode electrically coupled to the electrosurgical power supply; and	2:5	5:34	2:1	2:35	3:25	3:20	2:38
an electrically conducting fluid supply for directing electrically conducting fluid to the target site such that		2:10, 6:65	2:10	4:10			3:1
the electrically conducting fluid generates a current flow path between the return electrode and the electrode terminal.		2:10, 6:65	2:10	4:10			3:1
46. An electrosurgical system as in claim 45, wherein							
the return electrode forms a portion of the shaft of the electrosurgical probe.				4:37-52	4:33-43		2:37-46
47. An electrosurgical system as in claim 46 further including							
an insulating member circumscribing the return electrode,				4:37-52	4:33-43		2:58-66
the return electrode being sufficiently spaced from the electrode terminal to minimize direct contact between the return electrode and the patient's tissue.							
55. The electrosurgical system of claim 45 wherein							

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	64	65	66	(7	T (9		T
the electrode terminal comprises		05	00	67	68	69	70
a single active electrode disposed near the distal end of the shaft.	5:44-63	5:20-36	1:63-2:17	4:37-52	4:33-43	3:13-16	2:37-46
56. The electrosurgical system of claim 45 wherein							
the target site is selected from the group consisting essentially of the abdominal cavity, thoracic cavity, knee, shoulder, hip, hand, foot, elbow, mouth,	15:62-16:7			1:10-15			·
spine, ear, nose, throat, epidermis and dermis of the natient's hody. 58. The electrosurgical system							
of claim 45 wherein	·			•			
the frequency of the voltage applied between the return electrode and the electrode		6:25-40					
terminal is in the range of about 20 kHz and 20 Mhz.							
59. The electrosurgical system of claim 45 wherein							0
the voltage applied between the electrode terminal and the return							
electrode is in the range from 10 volts (RMS) to 1000 volts (RMS).							

Exhibit B: Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	71	72	73	74
45. An electrosurgical system				
for applying electrical energy to				
a target site on a structure within				
or on a patient's body, the				
system comprising:				
,	3:43-4:18	2:30	4:35	SN61173
a high frequency power supply;	3.43-4.16	2.30	4.33	31401173
an electrosurgical probe				
comprising a shaft having a	Figs. 1-6	2:30	4:35	SN61187
proximal end and a distal end,				
an electrode terminal disposed	50. 16	0.00	4.05	02761107
near the distal end, and	Figs. 1-6	2:30	4:35	SN61187
a connector near the proximal				
end of the shaft electrically				
11	Figs. 1-6	2:30	4:35	SN61187
coupling the electrode terminal to the electrosurgical power	Figs. 1-0	2.30	4.33	SNUTTE
supply; a return electrode electrically				
coupled to the electrosurgical	3:43-4:18	2:30	4:35	SN61173
power supply; and				
an electrically conducting fluid			•	
supply for directing electrically				03/61/07
conducting fluid to the target				SN61187
site such that				
the electrically conducting fluid				
generates a current flow path				
between the return electrode and				SN61187
the electrode terminal.				
46. An electrosurgical system as				
in claim 45, wherein the return electrode forms a				
portion of the shaft of the			5:36-58	SN61186
electrosurgical probe.			5.50-50	51101100
47. An electrosurgical system as				
in claim 46 further including				
In Claim to faction moderating				
an insulating member				
circumscribing the return			5:36-58	SN61184
electrode,				
the return electrode being				
sufficiently spaced from the				
electrode terminal to minimize		2:29-36		SN61173
direct contact between the return		2.27-30		01101173
electrode and the patient's			İ	
tissue,				
55. The electrosurgical system				
of claim 45 wherein	l	l <u>.</u>	1	

Exhibit B:
Examples of where each limitation of the claims of the '536 patent may be found in each reference.

claim text \ reference	71	72	73	74
the electrode terminal comprises				
a single active electrode	0.40.50			
disposed near the distal end of	3:43-53	2:36-41	6:8-22	SN61173
the shaft.				
56. The electrosurgical system				
of claim 45 wherein				
the target site is selected from				
the group consisting essentially				
of the abdominal cavity,			1	Ī
thoracic cavity, knee, shoulder,		2:63-68	2.26.24	GD1(1100
hip, hand, foot, elbow, mouth,		2:03-08	3:26-34	SN61183
spine, ear, nose, throat,				
epidermis and dermis of the				
natient's body.				
58. The electrosurgical system				
of claim 45 wherein				
the frequency of the voltage				
applied between the return			ì	
electrode and the electrode				SN61173
terminal is in the range of about				
20 kHz and 20 Mhz.				
59. The electrosurgical system				
of claim 45 wherein				
the voltage applied between the				
electrode terminal and the return				
electrode is in the range from 10			6:23-33	SN61173
volts (RMS) to 1000 volts				
(RMS).				

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	1	2	3	4	5	6
1. A method for applying energy to a target						
site on a patient body structure comprising:						
sko on a panem coaj ca acces compresses.						
providing an electrode terminal and	1:15-27	207	3:48-4:14	1:5-2:2	58-60	3:3-7
	1.13-21	201	3.46-4.14	1.5-2.2	30-00	5.5-7
a return electrode electrically coupled to a	1:15-27	207		1:5-2:2	58-60	3:3-7
high frequency voltage source;			:			
positioning the active electrode in close						
proximity to the target site in the presence of		211	9:9-25	1:38-44		
an electrically conducting terminal [sic]; and	ı					
applying a high frequency voltage between			1			
the electrode terminal and the return						
electrode, the high frequency voltage being	į į					
sufficient to vaporize the fluid in a thin layer					50.61	
over at least a portion of the electrode					58,61	
terminal and to induce the discharge of						
energy to the target site in contact with the			1 1			
vanor laver.						
13. The method of claim 1 wherein						
at least a portion of the energy induced is in			1			
the form of photons having a wavelength in			1			
the ultraviolet spectrum.						
17. The method of claim 1 wherein					<u> </u>	
the high frequency voltage is at least 200		211	1 .		58	
volts peak to peak.			ļ			
18. The method of claim 1 wherein	•		1		·	
the high frequency voltage is in the range		211			58	
from about 500 to 1400 volts peak to peak.		211			36	
21. The method of claim 1 wherein						
the distance between the most proximal						
portion of the electrode terminal and the						
most distal portion of the return electrode is			1		ļ	3:22-40
in the range from 0.5 to 10 mm.						
			ļ			
23. The method of claim 1 wherein						
the liquid phase of the electrically			6.2.6		}	*
conducting fluid has a conductivity greater			5:3-5		1	
than 2 mS/cm. 24. The method of claim 1 wherein						
the liquid phase of the electrically			-		 	
conductive fluid comprises isotonic saline.			5:3-5			
conductive find comprises isotomic same.			3.5.5			
28. A method for applying energy to a target						
site on a patient body structure comprising:	ł	ļ				
providing an electrode terminal and a return						1
electrode electrically coupled to a high	1:15-27	207	3:48-4:14	1:5-2:2	58-60	3:3-7
frequency voltage source;	L	L	1		L	<u>L.</u>

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	1	2	3	4	5	6
p sitioning the electrode terminal in close						
proximity to the target site in the presence of		211	9:9-25	1:38-44		
an electrically conducting fluid; and		J				
			-			
applying a high frequency voltage between						
the electrode terminal and the return						
electrode, the high frequency voltage being		İ		03		
sufficient to impart sufficient energy into the			1 1		58	
target site to ablate the body structure			ľ		30	
without causing substantial tissue necrosis						
below the surface of the body structure				A 1		A
underlying the ablated body structure.			-			
29. The method of claim 28 wherein the						
applying step comprises:		0				
vaporizing the electrically conducting fluid			:			
in a thin layer over at least a portion of the			inherent		58,61	
electrode terminal; and				-		
inducing the discharge of photons to the						
target site in contact with the vapor layer.						
1		ļ				
47. The method of claims 23 or 48 wherein	•					
the electrode terminal has a contact surface						
area in the range of about 0.25 mm ² to			2:36-3:25			
50 mm ² .						
48. The method of claims 26 and 28 wherein		1				
			1			
the high frequency voltage is at least 200		211			58	
volts peak to peak.		211				
49. The method of claims 26 and 28 wherein						
		ļ				
the high frequency voltage is in the range			1		50	1
from about 500 to 1400 volts peak to peak.	•	211			58	
50. The method of claims 26 and 28 wherein		+				
30. The menion of clambs 20 and 26 wherein						
the electrode terminal is positioned between		 	 			
0.02 to 2.0 mm from the target site.	•					
0.02 to 2.0 2 0 tas tags						
54. The method of claims 23 or 48 further						
comprising						
evacuating fluid generated at the target site						
with a suction lumen having a distal end			8:10-9:8	3:10-28		
adjacent the electrode terminal.	tr.		1			l

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	7	8	9	10	11	12
1. A method for applying energy to a target				ł		
site on a patient body structure comprising:						
providing an electrode terminal and	2:44-66	1	2:33-52	4:18-28	2	528
a return electrode electrically coupled to a	2:44-66	ı	2:33-52	4:18-28	2	528
high frequency voltage source;			<u> </u>			
positioning the active electrode in close						
proximity to the target site in the presence of		5	2:40-63			528
an electrically conducting terminal [sic]; and						
applying a high frequency voltage between						
the electrode terminal and the return						
electrode, the high frequency voltage being			į			
sufficient to vaporize the fluid in a thin layer		1,6		6:54-7:5		
over at least a portion of the electrode		,-				
terminal and to induce the discharge of						
energy to the target site in contact with the						
vapor laver.						
13. The method of claim 1 wherein						
at least a portion of the energy induced is in			·			
the form of photons having a wavelength in				5:58-66		
the ultraviolet spectrum.						
17. The method of claim 1 wherein						
the high frequency voltage is at least 200			1:34-53			
volts peak to peak.						
18. The method of claim 1 wherein						
the high frequency voltage is in the range			1.24.52			
from about 500 to 1400 volts peak to peak.			1:34-53			
21. The method of claim 1 wherein						
the distance between the most proximal						
portion of the electrode terminal and the						
most distal portion of the return electrode is	3:17-32				2:1-14	
in the range from 0.5 to 10 mm.						
23. The method of claim 1 wherein						
the liquid phase of the electrically						
conducting fluid has a conductivity greater than 2 mS/cm.		inherent				529
24. The method of claim 1 wherein						
the liquid phase of the electrically						
conductive fluid comprises isotonic saline.		inherent				529
consultive rate comprises isotomic same.		mision				
28. A method for applying energy to a target						
site on a patient body structure comprising:						
providing an electrode terminal and a return			·			
electrode electrically coupled to a high	2:44-66	1	2:33-52	4:18-28	2	528
frequency voltage source;						

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	7	8	9	10	11	12
positioning the electrode terminal in close			1			
proximity to the target site in the presence of			2.40.62			500
an electrically conducting fluid; and		5	2:40-63			528
					ĺ	
applying a high frequency voltage between						
the electrode terminal and the return					Į	
electrode, the high frequency voltage being			1	İ		!
sufficient to impart sufficient energy into the				[
target site to ablate the body structure		1	1	ļ		
without causing substantial tissue necrosis						
below the surface of the body structure						
underlying the ablated body structure.	•					
29. The method of claim 28 wherein the						
applying step comprises:			. 0			
vaporizing the electrically conducting fluid				·		
in a thin layer over at least a portion of the		1,6		6:54-7:5		
electrode terminal; and						
inducing the discharge of photons to the						
target site in contact with the vapor layer.				5:58-66		
47. The method of claims 23 or 48 wherein			 			
the electrode terminal has a contact surface						
1)					_	
area in the range of about 0.25 mm ² to					3	
50 mm ² .						
48. The method of claims 26 and 28 wherein					**	
the high frequency voltage is at least 200			1 24 52			
volts peak to peak.			1:34-53			
49. The method of claims 26 and 28 wherein						
the high frequency voltage is in the range						· ·
from about 500 to 1400 volts peak to peak.			1:34-53			
50. The method of claims 26 and 28 wherein						
50. The ficulod of clantis 20 and 28 WHEIGH						
the electrode terminal is positioned between						
0.02 to 2.0 mm from the target site.						
54. The method of claims 23 or 48 further						
comprising	İ					
evacuating fluid generated at the target site				-		
with a suction lumen having a distal end]		2:40-63			
adjacent the electrode terminal.						

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	13	14	15	16	17	18
1. A method for applying energy to a target						
site on a patient body structure comprising:			, i			
providing an electrode terminal and	4:15; 7:38- 50	····• · · · · · · · · · · · · · · · · ·	1:5-17	845-46	6:1-30	1:12-37
a return electrode electrically coupled to a	4:15; 7:38-		1:5-17	845-46	6:1-30	1:12-37
high frequency voltage source;	50		1.5-17	045-40	0.1-30	1.12-57
positioning the active electrode in close						
proximity to the target site in the presence of			5:26-30	848		3:67-4:3
an electrically conducting terminal [sic]; and			3.20 30	0.0		
applying a high frequency voltage between						
the electrode terminal and the return	1					
electrode, the high frequency voltage being	(}
sufficient to vaporize the fluid in a thin layer	4:47		1:33-40			inherent
over at least a portion of the electrode	4.47		1.55-40			innetent
terminal and to induce the discharge of		-				
energy to the target site in contact with the	1					
vapor laver.						
13. The method of claim 1 wherein						
at least a portion of the energy induced is in						l
the form of photons having a wavelength in			3:31-33	845		İ
the ultraviolet spectrum.						
17. The method of claim 1 wherein	<u> </u>					
the high frequency voltage is at least 200		7:26-				8:30-39
volts peak to peak.		42;Fig. 6				0.50 57
18. The method of claim 1 wherein			l			
the high frequency voltage is in the range		7:26-				l
from about 500 to 1400 volts peak to peak.		42;Fig.6				
21. The method of claim 1 wherein						
the distance between the most proximal						
portion of the electrode terminal and the						1
most distal portion of the return electrode is						
in the range from 0.5 to 10 mm.						
23. The method of claim 1 wherein						
the liquid phase of the electrically						
conducting fluid has a conductivity greater than 2 mS/cm.						
24. The method of claim 1 wherein				 		
the liquid phase of the electrically						
conductive fluid comprises isotonic saline.						
The state of the s						
28. A method for applying energy to a target						
site on a patient body structure comprising:						
providing an electrode terminal and a return	1.15. 7.20					
electrode electrically coupled to a high	4:15; 7:38-		1:5-17	845-46	6:1-30	1:12-37
frequency voltage source;	50				L	<u> </u>

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	13	14	15	16	17	18
positioning the electrode terminal in close						
proximity to the target site in the presence of		İ	5:26-30	848		2.67 4.2
an electrically conducting fluid; and			3.20-30	040	· .	3:67-4:3
applying a high frequency voltage between		1	i			
the electrode terminal and the return		İ			1	
electrode, the high frequency voltage being					į.	
sufficient to impart sufficient energy into the			5:53-54,	-0	ļ	
target site to ablate the body structure			6:27-29	848		1
without causing substantial tissue necrosis			1		Ī	
below the surface of the body structure						
underlying the ablated body structure.						
29. The method of claim 28 wherein the						
applying step comprises:						
vaporizing the electrically conducting fluid	. A					
in a thin layer over at least a portion of the	4:47		1:33-40			inherent
electrode terminal; and					ļ	
inducing the discharge of photons to the				0.45		
target site in contact with the vapor layer.			3:31-33	845		
47. The method of claims 23 or 48 wherein						
the electrode terminal has a contact surface						
area in the range of about 0.25 mm ² to	11:62-					
50 mm ² .	12:34					
48. The method of claims 26 and 28 wherein						
					· ·	
the high frequency voltage is at least 200		7:26-42;				8:30-39
volts peak to peak.		Fig. 6				
49. The method of claims 26 and 28 wherein						
the high frequency voltage is in the range		2.26.42				
from about 500 to 1400 volts peak to peak.		7:26-42;			ł	
	_	Fig. 6				
50. The method of claims 26 and 28 wherein				•		
the electrode terminal is positioned between						
0.02 to 2.0 mm from the target site.		<u> </u>				Ī
54. The method of claims 23 or 48 further						
comprising]				
evacuating fluid generated at the target site						
with a suction lumen having a distal end						
adjacent the electrode terminal.		<u> </u>		_		

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	19	20	21	22	23	24
1. A method for applying energy to a target						
site on a patient body structure comprising:						
providing an electrode terminal and	2:33-46	2:35-58	333	2:21-58	2:42-68	1425
	2.55-40	2.55 50				
a return electrode electrically coupled to a	2:33-46	2:35-58	333	2:21-58	2:42-68	1425
high frequency voltage source;						
positioning the active electrode in close					0.40.60	
proximity to the target site in the presence of	1:34-38	2:35-58	334	2:21-58	2:42-68;	1425
an electrically conducting terminal [sic]; and					3:66	
1:16						
applying a high frequency voltage between	,					
the electrode terminal and the return electrode, the high frequency voltage being						
sufficient to vaporize the fluid in a thin layer						
over at least a portion of the electrode					-	
terminal and to induce the discharge of		-				
energy to the target site in contact with the						
vapor laver.						
13. The method of claim 1 wherein						
at least a portion of the energy induced is in		·			,	
the form of photons having a wavelength in						
the ultraviolet spectrum.						
17. The method of claim 1 wherein						
the high frequency voltage is at least 200					3:30-38	
volts peak to peak.				ļ		
18. The method of claim 1 wherein				ļ.:		
the high frequency voltage is in the range					3:30-38	
from about 500 to 1400 volts peak to peak.			•		2.30-30	
21. The method of claim 1 wherein			 			
the distance between the most proximal						
portion of the electrode terminal and the						
most distal portion of the return electrode is				İ		*
in the range from 0.5 to 10 mm.	İ					
23. The method of claim 1 wherein						
the liquid phase of the electrically						
conducting fluid has a conductivity greater			334	2:47-51	3:65-68	1426
than 2 mS/cm.						
24. The method of claim 1 wherein						
the liquid phase of the electrically	1			2:47-	0.65.60	1404
conductive fluid comprises isotonic saline.			334	51;Fig. 1	3:65-68	1426
00 1 - 0 - 15 1 :				-		
28. A method for applying energy to a target	1					
site on a patient body structure comprising:					1	
providing an electrode terminal and a return	 			·	 	·
electrode electrically coupled to a high	2:33-46	2:35-58	333	2:21-58	2:42-68	1425
frequency voltage source;	2.33-40	2.55-50	555	2.21-30	2.12.00	1,23
In educited Anitake Sonice.	L	J	1			L

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	19	20	21	22	23	24
positioning the electrode terminal in close						
proximity to the target site in the presence of	1.24.20	2.25.50	224	2-21-60	2:42-68;	1405
an electrically conducting fluid; and	1:34-38	2:35-58	334	2:21-58	3:66	1425
, , ,						
applying a high frequency voltage between	_					
the electrode terminal and the return						
electrode, the high frequency voltage being						
sufficient to impart sufficient energy into the						
target site to ablate the body structure			337			
without causing substantial tissue necrosis						
below the surface of the body structure						
underlying the ablated body structure.						
29. The method of claim 28 wherein the						
applying step comprises:						
vaporizing the electrically conducting fluid						
in a thin layer over at least a portion of the						
electrode terminal; and						
inducing the discharge of photons to the			-		·	*
target site in contact with the vapor layer.						
47. The method of claims 23 or 48 wherein						
the electrode terminal has a contact surface						
			333	5:31-33		1425
area in the range of about 0.25 mm ² to			333	3:31-33		1423
50 mm ² . 48. The method of claims 26 and 28 wherein	-					
48. The method of claims 20 and 28 wherein						
the high frequency voltage is at least 200						
volts peak to peak.					3:30-38	
49. The method of claims 26 and 28 wherein						
the high frequency voltage is in the range						
from about 500 to 1400 volts peak to peak.						
50. The method of claims 26 and 28 wherein						
the electrode terminal is positioned between						
0.02 to 2.0 mm from the target site.			ļ			
and the second second						
54. The method of claims 23 or 48 further						
comprising						
evacuating fluid generated at the target site						
with a suction lumen having a distal end						•
adjacent the electrode terminal.						

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	25	26	27	28	29	30
1. A method for applying energy to a target						
site on a patient body structure comprising:						
providing an electrode terminal and	99	1383	2:38-66	2:23-33	67-68	4:32-5:10
a return electrode electrically coupled to a		1202	2 20 66	0.02.22	(2.60	4 22 5 10
high frequency voltage source;	99	1383	2:38-66	2:23-33	67-68	4:32-5:10
positioning the active electrode in close						
proximity to the target site in the presence of	100	1202	1:18; 3:48-	6.00.01	رم	4.40.50
an electrically conducting terminal [sic]; and	100	1383	53	5:28-31	68	4:48-58
applying a high frequency voltage between		 				<u> </u>
the electrode terminal and the return						
electrode, the high frequency voltage being						
sufficient to vaporize the fluid in a thin layer		1382-83	inherent			inherent
over at least a portion of the electrode		1302-03	unterent			Inner ent
terminal and to induce the discharge of						
energy to the target site in contact with the]			1
vapor laver						
13. The method of claim 1 wherein						
at least a portion of the energy induced is in		1				
the form of photons having a wavelength in		1382	1		68	5:11-27
the ultraviolet spectrum.		I				
17. The method of claim 1 wherein		<u> </u>				
the high frequency voltage is at least 200		1383			68	
volts peak to peak.		1505				
18. The method of claim 1 wherein		1				
the high frequency voltage is in the range			1.			1
from about 500 to 1400 volts peak to peak.		1383			68	
21. The method of claim 1 wherein						
the distance between the most proximal						
portion of the electrode terminal and the						
most distal portion of the return electrode is		1383				
in the range from 0.5 to 10 mm.						}
23. The method of claim 1 wherein				<u> </u>		
the liquid phase of the electrically						
conducting fluid has a conductivity greater	100	1383		1:57-2:6	68	
than 2 mS/cm.						<u> </u>
24. The method of claim I wherein		<u> </u>				-
the liquid phase of the electrically						
conductive fluid comprises isotonic saline.	100	1383		1:57-2:6	68	7:3-8:5
28. A method for applying energy to a target		 				
site on a patient body structure comprising:	٠					
providing an electrode terminal and a return						
electrode electrically coupled to a high	99	1383	2:38-66	2:23-33	67-68	4:32-5:10
frequency voltage source;			[

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	25	26	27	28	29	30
positioning the electrode terminal in close						
proximity to the target site in the presence of	100	1383	1:18; 3:48-	5:28-31	68	4:48-58
an electrically conducting fluid; and	100	1303	53	J.20-J1	00	4.40-30
			ļ. ————			
applying a high frequency voltage between		Ì	}			
the electrode terminal and the return						
electrode, the high frequency voltage being			ł .			
sufficient to impart sufficient energy into the		1202			60.70	
target site to ablate the body structure		1383	1		68-70	
without causing substantial tissue necrosis						
below the surface of the body structure						
underlying the ablated body structure.						
29. The method of claim 28 wherein the						
applying step comprises:						
vaporizing the electrically conducting fluid						
in a thin layer over at least a portion of the		1382-83	inherent			inherent
electrode terminal; and						
inducing the discharge of photons to the						
target site in contact with the vapor layer.		1382			68	5:11-27
47. The method of claims 23 or 48 wherein						
the electrode terminal has a contact surface						
area in the range of about 0.25 mm ² to		1383	, 1		68	
50 mm ² .		1303	1 1		00	
48. The method of claims 26 and 28 wherein						
To The house of olders to take to wholen						
the high frequency voltage is at least 200		1202			(0	
volts peak to peak.		1383	1 [68	
49. The method of claims 26 and 28 wherein						
						
the high frequency voltage is in the range		1202			60	
from about 500 to 1400 volts peak to peak.		1383			68	
50. The method of claims 26 and 28 wherein	<u> </u>					
the electrode terminal is positioned between		1202.04			(0	
0.02 to 2.0 mm from the target site.		1383-84	.		68	
54. The method of claims 23 or 48 further						
comprising						
evacuating fluid generated at the target site						
with a suction lumen having a distal end				:	İ	
adjacent the electrode terminal.						L

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	31	32	33	34	35	36
1. A method for applying energy to a target	l					
site on a patient body structure comprising:						
						<u> </u>
providing an electrode terminal and	2:45-58		2:45-69	42	248	4:4-39
a return electrode electrically coupled to a	2:45-58		2:45-69	42	248	4:4-39
high frequency voltage source;	2.45-56		2.45-07	72	246	4.4-57
positioning the active electrode in close	1		1.			
proximity to the target site in the presence of	3:31; 7:65		2:45-69	43	248	7:30-32
an electrically conducting terminal [sic]; and	3.31, 7.03		2.43 07	43	240	7.50-52
applying a high frequency voltage between						
the electrode terminal and the return						1
electrode, the high frequency voltage being	l					
sufficient to vaporize the fluid in a thin layer	l l	i			}	i
over at least a portion of the electrode						1
terminal and to induce the discharge of						1
energy to the target site in contact with the					1	1
vanor laver.						
13. The method of claim 1 wherein		-				
at least a portion of the energy induced is in						
the form of photons having a wavelength in				•	1	1
the ultraviolet spectrum.						<u> </u>
17. The method of claim 1 wherein				•		
the high frequency voltage is at least 200		8				
volts peak to peak.		· · · · · · · · · · · · · · · · · · ·				<u> </u>
18. The method of claim 1 wherein			<u> </u>			<u> </u>
the high frequency voltage is in the range			· .			
from about 500 to 1400 volts peak to peak.		8			ļ	
21. The method of claim 1 wherein			 		 	ļ
the distance between the most proximal						
portion of the electrode terminal and the			1			
most distal portion of the return electrode is	2:45-67				1	6:34-37
in the range from 0.5 to 10 mm.					!	
23. The method of claim 1 wherein						
the liquid phase of the electrically	i					
conducting fluid has a conductivity greater	7:3-8:5		5:4-30		248	7:26-52
than 2 mS/cm.						
24. The method of claim 1 wherein						1
the liquid phase of the electrically						
conductive fluid comprises isotonic saline.					248	7:26-52
28. A method for applying energy to a target						!
site on a patient body structure comprising:					}	
providing an electrode terminal and a return					 	-
electrode electrically coupled to a high	2:45-58		2:45-69	42	248	4:4-39
frequency voltage source;]		1			

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	31	32	33	34	35	36
positioning the electrode terminal in close		-				
proximity to the target site in the presence of	3:31; 7:65		2:45-69	43	248	7:30-32
an electrically conducting fluid; and	3:31, 7:03		2.43-09	43	240	1.30-32
applying a high frequency voltage between		•				
the electrode terminal and the return						
electrode, the high frequency voltage being	}					
sufficient to impart sufficient energy into the						
target site to ablate the body structure						
without causing substantial tissue necrosis						
below the surface of the body structure						
underlying the ablated body structure.						.*
29. The method of claim 28 wherein the						
applying step comprises:			<u> </u>			
vaporizing the electrically conducting fluid						
in a thin layer over at least a portion of the						
electrode terminal; and						
inducing the discharge of photons to the	·					
target site in contact with the vapor layer.						
47. The method of claims 23 or 48 wherein						
the electrode terminal has a contact surface				1		
area in the range of about 0.25 mm ² to	6:14-37					5:5-20
50 mm ² .						
48. The method of claims 26 and 28 wherein						
the high frequency voltage is at least 200						
volts peak to peak.		8				
49. The method of claims 26 and 28 wherein						
the high frequency voltage is in the range						
from about 500 to 1400 volts peak to peak.		8				
from about 500 to 1400 voits peak to peak.		O				
50. The method of claims 26 and 28 wherein				<u> </u>		
the electrode terminal is positioned between						
0.02 to 2.0 mm from the target site.						
54. The method of claims 23 or 48 further						
comprising						
evacuating fluid generated at the target site						
with a suction lumen having a distal end	2:45-3:10]		· i	
adjacent the electrode terminal.						

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

			1		
i		1	1 [
				•	
62-63	1168	5:1-47	2:62-65	291	275
62-63	1168	5:1-47	2:62-65	291	275
663	1168		2-37-42	291	275
				~ .	2.3
	1170				
}	1170				
			l i		
1		1:26-37			
			:		,
662	1168		5:62-6:19	291	275
	·				
662	1168			291	275
	-				
62-63	1168	5:1-47	2:62-65	291	275
		L		0	
	662	662 1168 662 1168	562-63 1168 5:1-47 663 1168 1170 1:26-37 662 1168 662 1168	562-63 1168 5:1-47 2:62-65 663 1168 2:37-42 1170 1:26-37 662 1168 5:62-6:19 662 1168 5:62-6:19	562-63 1168 5:1-47 2:62-65 291 663 1168 2:37-42 291 1170 1:26-37 662 1168 5:62-6:19 291 662 1168 291

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	37	38	39	40	41	42
positioning the electrode terminal in close	· · · · · · · · · · · · · · · · · · ·			!		
proximity to the target site in the presence of an electrically conducting fluid; and	663	1168		2:37-42	291	275
applying a high frequency voltage between						
the electrode terminal and the return			l	!		
electrode, the high frequency voltage being				!		
sufficient to impart sufficient energy into the						
target site to ablate the body structure					293	276
without causing substantial tissue necrosis				ĺ		
below the surface of the body structure	•					
underlying the ablated body structure.					•	
29. The method of claim 28 wherein the						
applying step comprises:					•	
vaporizing the electrically conducting fluid						
in a thin layer over at least a portion of the		1170				
electrode terminal; and			<u> </u>			
inducing the discharge of photons to the			1.06.37			
target site in contact with the vapor layer.			1:26-37			
47. The method of claims 23 or 48 wherein						
the electrode terminal has a contact surface						
area in the range of about 0.25 mm ² to		1168		5:59-61		
50 mm ² .						
48. The method of claims 26 and 28 wherein						
the high frequency voltage is at least 200						
volts peak to peak.						
49. The method of claims 26 and 28 wherein						
the high frequency voltage is in the range						
from about 500 to 1400 volts peak to peak.	٠					
50. The method of claims 26 and 28 wherein						
the electrode terminal is positioned between						
0.02 to 2.0 mm from the target site.			-			
54. The method of claims 23 or 48 further				-		
comprising						
evacuating fluid generated at the target site			1			
with a suction lumen having a distal end				5:43-53		
adjacent the electrode terminal.			l			

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	43	44	45	46	47	48
1. A method for applying energy to a target						
site on a patient body structure comprising:						
providing an electrode terminal and	2:8-4:10	2:26-51	4:21-5:6	2:31-53	1:34	2:28
a return electrode electrically coupled to a	2:8-4:10	2:26-51	4:21-5:6	2:31-53	1:34	2:28
high frequency voltage source;		ļ				
positioning the active electrode in close						
proximity to the target site in the presence of	11		3:48-55	6:42	6:4-60	5:39
an electrically conducting terminal [sic]; and						
applying a high frequency voltage between						
the electrode terminal and the return		i				
electrode, the high frequency voltage being			İ			1
sufficient to vaporize the fluid in a thin layer			inherent	inherent		inherent
over at least a portion of the electrode						
terminal and to induce the discharge of			·			1
energy to the target site in contact with the						
vanor laver	! 		 			
13. The method of claim 1 wherein						
at least a portion of the energy induced is in						ĺ
the form of photons having a wavelength in the ultraviolet spectrum.]			1
17. The method of claim 1 wherein						-
the high frequency voltage is at least 200						
volts peak to peak.						
18. The method of claim 1 wherein						
the high frequency voltage is in the range						
from about 500 to 1400 volts peak to peak.						
21. The method of claim 1 wherein		**************************************				
the distance between the most proximal		•				
portion of the electrode terminal and the						
most distal portion of the return electrode is				:		
in the range from 0.5 to 10 mm.						
23. The method of claim 1 wherein						
the liquid phase of the electrically						
conducting fluid has a conductivity greater			3:48-4:7	6:39-45		5:65-6:19
than 2 mS/cm.						
24. The method of claim 1 wherein						
the liquid phase of the electrically						
conductive fluid comprises isotonic saline.			3:48-4:7			5:65-6:19
28. A method for applying energy to a target		-				
site on a patient body structure comprising:					• •	
providing an electrode terminal and a return						
electrode electrically coupled to a high	2:8-4:10	2:26-51	4:21-5:6	2:31-53	1:34	2:28
frequency voltage source;						

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	43	44	45	46	47	48
positioning the electrode terminal in close		-				
proximity to the target site in the presence of	11		3:48-55	6:42	6:4-60	5:39
an electrically conducting fluid; and	11		3.46-33	0.42	0.4-00	3.39
			l			
applying a high frequency voltage between						
the electrode terminal and the return	i					
electrode, the high frequency voltage being						
sufficient to impart sufficient energy into the	i					
target site to ablate the body structure	ı	1:66-68	3:64-65			
without causing substantial tissue necrosis			÷			
below the surface of the body structure				}		
underlying the ablated body structure.	ı					
29. The method of claim 28 wherein the					<u> </u>	
applying step comprises:		-	1			
vaporizing the electrically conducting fluid			!			
in a thin layer over at least a portion of the	•		inherent	inherent		inherent
electrode terminal; and						
inducing the discharge of photons to the			i .			
target site in contact with the vapor layer.						
47. The method of claims 23 or 48 wherein			·			
the electrode terminal has a contact surface						
area in the range of about 0.25 mm ² to	1		1			
50 mm² .					•	
48. The method of claims 26 and 28 wherein						
the high frequency voltage is at least 200						
volts peak to peak.						
49. The method of claims 26 and 28 wherein						
the high frequency voltage is in the range			·			
from about 500 to 1400 volts peak to peak.						
50. The method of claims 26 and 28 wherein						
· · · · · · · · · · · · · · · · · · ·						
the electrode terminal is positioned between						
0.02 to 2.0 mm from the target site.						
54. The method of claims 23 or 48 further						
comprising						
evacuating fluid generated at the target site						
with a suction lumen having a distal end	2:8-18		3:40-47	6:39-45		3:65-4:17
adjacent the electrode terminal.		l	<u></u>	l		<u> </u>

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	49	50	51	52	53	54
1. A method for applying energy to a target						
site on a patient body structure comprising:						
providing an electrode terminal and	1:55	2:21-63	2:41-3:58	3:1-32	2:28-55	670
a return electrode electrically coupled to a	1:55	2:21-63	2:41-3:58	3:1-32	2:28-55	670
high frequency voltage source;	1.55	2.21-03	2.41-3.36	3.1-32	2.26-33	070
positioning the active electrode in close			1			
proximity to the target site in the presence of	1:65	2:2-20	3:53	1:38	3:63-2:1	672
an electrically conducting terminal [sic]; and	1.05	2.2-20	3.33	1.50	3.03-2.1	072
applying a high frequency voltage between			·			
the electrode terminal and the return		1				
electrode, the high frequency voltage being						
sufficient to vaporize the fluid in a thin layer			inherent	4:10		
over at least a portion of the electrode			WHICH CHIL	4.10		
terminal and to induce the discharge of						
energy to the target site in contact with the						
vanor laver						
13. The method of claim 1 wherein						
at least a portion of the energy induced is in						
the form of photons having a wavelength in		İ		4:3-18		670
the ultraviolet spectrum.	·				ļ	
17. The method of claim 1 wherein		ļ				
the high frequency voltage is at least 200						670
volts peak to peak. 18. The method of claim 1 wherein						
the high frequency voltage is in the range					-	
from about 500 to 1400 volts peak to peak.						
nom about 500 to 1400 voits peak to peak.						
21. The method of claim 1 wherein				•		
the distance between the most proximal				-		
portion of the electrode terminal and the		ĺ				
most distal portion of the return electrode is]			
in the range from 0.5 to 10 mm.						
23. The method of claim 1 wherein						
the liquid phase of the electrically						· <u>·</u>
conducting fluid has a conductivity greater than 2 mS/cm.	3:45-68		3:35-57	2:24-29		
24. The method of claim 1 wherein						
the liquid phase of the electrically						
conductive fluid comprises isotonic saline.			3:35-57	2:24-29		
28. A method for applying energy to a target					<u></u>	************
site on a patient body structure comprising:						
providing an electrode terminal and a return					 	
electrode electrically coupled to a high	1:55	2:21-63	2:41-3:58	3:1-32	2:28-55	670
frequency voltage source;						

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	49	50	51	52	53	54
positioning the electrode terminal in close						
proximity to the target site in the presence of	1:65	2.2.20	2.52	1.20	2.62.2.1	(72
an electrically conducting fluid; and	1:03	2:2-20	3:53	1:38	3:63-2:1	672
applying a high frequency voltage between						
the electrode terminal and the return						
electrode, the high frequency voltage being						
sufficient to impart sufficient energy into the						
target site to ablate the body structure	•				İ	
without causing substantial tissue necrosis						
below the surface of the body structure						
underlying the ablated body structure.						
29. The method of claim 28 wherein the						
applying step comprises:		-				
vaporizing the electrically conducting fluid	·			•		
in a thin layer over at least a portion of the			inherent	4:10		
electrode terminal; and						
inducing the discharge of photons to the						
target site in contact with the vapor layer.				4:3-18		670
47. The method of claims 23 or 48 wherein						
the electrode terminal has a contact surface						
area in the range of about 0.25 mm ² to		3:40-50				
50 mm ² .		ŀ				
48. The method of claims 26 and 28 wherein						
the high frequency voltage is at least 200						
volts peak to peak.						670
49. The method of claims 26 and 28 wherein			-			
the high frequency voltage is in the range						
from about 500 to 1400 volts peak to peak.		Ì				
Don't dood! 300 to 1100 void pour to pour.						
50. The method of claims 26 and 28 wherein						
	·					
the electrode terminal is positioned between						
0.02 to 2.0 mm from the target site.						
54. The method of claims 23 or 48 further		-				
comprising						
evacuating fluid generated at the target site				-		
with a suction lumen having a distal end	5:16-23					
adjacent the electrode terminal.						

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	55	56	57	58	59	60
1. A method for applying energy to a target						
site on a patient body structure comprising:						
providing an electrode terminal and	2:7-46	1:61-2:12	3	3:9-49		4:45
a return electrode electrically coupled to a	2:7-46	1:61-2:12	3	3:9-49		4:45
high frequency voltage source;	2.7 10	1.01 2.12		3.5 45		7.13
positioning the active electrode in close		1				
proximity to the target site in the presence of	1:52-55		6	1		5:40
an electrically conducting terminal (sic); and	1.32 33					3.40
applying a high frequency voltage between						
the electrode terminal and the return			ĺ		 	
electrode, the high frequency voltage being						
sufficient to vaporize the fluid in a thin layer		ļ				
over at least a portion of the electrode						
terminal and to induce the discharge of						
energy to the target site in contact with the						
vapor laver.						
13. The method of claim 1 wherein						
at least a portion of the energy induced is in						
the form of photons having a wavelength in	3:15-31			1:42-53		
the ultraviolet spectrum.						
17. The method of claim I wherein				1		
the high frequency voltage is at least 200						
volts peak to peak.				<u> </u>	·	
18. The method of claim 1 wherein						
the high frequency voltage is in the range						
from about 500 to 1400 volts peak to peak.			·			
21. The method of claim 1 wherein						
the distance between the most proximal						
portion of the electrode terminal and the					ļ.	
most distal portion of the return electrode is						
in the range from 0.5 to 10 mm.			-			
23. The method of claim 1 wherein						
the liquid phase of the electrically						
conducting fluid has a conductivity greater			6:7-15			
than 2 mS/cm.			<u> </u>			
24. The method of claim 1 wherein				*		
the liquid phase of the electrically						
conductive fluid comprises isotonic saline.		·	6:7-15			
28. A method for applying energy to a target						
site on a patient body structure comprising:						
providing an electrode terminal and a return						
electrode electrically coupled to a high	2:7-46	1:61-2:12	3	3:9-49		4:45
frequency voltage source;				1		

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	55	56	57	58	59	60
positioning the electrode terminal in close						<u> </u>
proximity to the target site in the presence of	1.62.66					5.40
an electrically conducting fluid; and	1:52-55		6			5:40
applying a high frequency voltage between						· .
the electrode terminal and the return						
electrode, the high frequency voltage being						
sufficient to impart sufficient energy into the				ļ		
target site to ablate the body structure			7	l		
without causing substantial tissue necrosis				}	•	
below the surface of the body structure			İ	1		-
underlying the ablated body structure.						
29. The method of claim 28 wherein the				 		
applying step comprises:	(1			
vaporizing the electrically conducting fluid						
in a thin layer over at least a portion of the						
electrode terminal; and						
inducing the discharge of photons to the						
target site in contact with the vapor layer.	3:15-31			1:42-53		
47. The method of claims 23 or 48 wherein		<u> </u>	<u> </u>	<u> </u>		
the electrode terminal has a contact surface						
area in the range of about 0.25 mm ² to						
50 mm ² .			1			
48. The method of claims 26 and 28 wherein						
1.1.1.6		-				
the high frequency voltage is at least 200			1			
volts peak to peak. 49. The method of claims 26 and 28 wherein		····				
49. The mediod of clams 20 and 28 wherein						
the high frequency voltage is in the range						
from about 500 to 1400 volts peak to peak.						
						
50. The method of claims 26 and 28 wherein			ľ			1
the electrode terminal is positioned between				· · · · ·		
0.02 to 2.0 mm from the target site.			1			
54. The method of claims 23 or 48 further				 		
comprising		_				
evacuating fluid generated at the target site						
with a suction lumen having a distal end						
adjacent the electrode terminal.						

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	61	62	63	64	65	66
1. A method for applying energy to a target						
site on a patient body structure comprising:						
. , ,						
providing an electrode terminal and	3:30	2:35		2:5	5:34	2:1
	3.50	2.50			J.5.	
a return electrode electrically coupled to a	3:30	2:35		2:5	5:34	2:1
high frequency voltage source;						
positioning the active electrode in close						
proximity to the target site in the presence of	11:65-66	4:10-29			2:10; 6:65	2:10
an electrically conducting terminal [sic]; and						
applying a high frequency voltage between						
the electrode terminal and the return			1			
electrode, the high frequency voltage being						
sufficient to vaporize the fluid in a thin layer					6.56	
over at least a portion of the electrode					6:56	
terminal and to induce the discharge of			1			
energy to the target site in contact with the						
vapor laver.						
13. The method of claim 1 wherein						
at least a portion of the energy induced is in						
the form of photons having a wavelength in	13:3-4	4:6-9	4:21-32		6:50-63	1:63-2:17
the ultraviolet spectrum.						
17. The method of claim 1 wherein						
the high frequency voltage is at least 200	4:28-48		3:21-32		1	
volts peak to peak.					<u> </u>	
18. The method of claim 1 wherein			<u> </u>			
the high frequency voltage is in the range	4.00.40		1.			
from about 500 to 1400 volts peak to peak.	4:28-48					
21. The method of claim 1 wherein						
the distance between the most proximal						
portion of the electrode terminal and the			1		ļ	
most distal portion of the return electrode is			•			
in the range from 0.5 to 10 mm.						
23. The method of claim 1 wherein						
the liquid phase of the electrically			 	·	 	
conducting fluid has a conductivity greater			1		6:64-7:10	3:24-33
than 2 mS/cm.					5.57 7.10	دو ۱۵۰۰
24. The method of claim 1 wherein						
the liquid phase of the electrically						
conductive fluid comprises isotonic saline.					6:64-7:10	3:24-33
	_					
28. A method for applying energy to a target						
site on a patient body structure comprising:						
providing an electrode terminal and a return						
electrode electrically coupled to a high	3:30	2:35]	2:5	5:34	2:1
frequency voltage source;						

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	61	62	63	64	65	66
positioning the electrode terminal in close			· · · · · · · · · · · · · · · · · · ·			
proximity to the target site in the presence of	11.65.66	4.10.00			2.10.666	2.10
an electrically conducting fluid; and	11:65-66	4:10-29	!		2:10; 6:65	2:10
applying a high frequency voltage between						
the electrode terminal and the return						
electrode, the high frequency voltage being						1
sufficient to impart sufficient energy into the						
target site to ablate the body structure	12:35		ļ		inherent	
without causing substantial tissue necrosis				8		
below the surface of the body structure						
underlying the ablated body structure.	,				·	
29. The method of claim 28 wherein the						
applying step comprises:						
vaporizing the electrically conducting fluid						
in a thin layer over at least a portion of the					6:56	
electrode terminal; and						
inducing the discharge of photons to the						
target site in contact with the vapor layer.	13:3-4	4:6-9	4:21-32		6:50-63	1:63-2:17
47. The method of claims 23 or 48 wherein				·		
77. The medica of classic 25 of 16 wholes						,
the electrode terminal has a contact surface						
area in the range of about 0.25 mm ² to						1
50 mm ² .]			
48. The method of claims 26 and 28 wherein					-	
the high frequency voltage is at least 200	4:28-48		3:21-32			
volts peak to peak.	4.20-40		3.21-32			
49. The method of claims 26 and 28 wherein						
the high frequency voltage is in the range		 		-0		
from about 500 to 1400 volts peak to peak.	4:28-48					
	<u>.</u>					
50. The method of claims 26 and 28 wherein						
the electrode terminal is positioned between		,				
0.02 to 2.0 mm from the target site.					5:55-61;	
and my man and my me and and and and and and and and and and			•		8:19-31	
54. The method of claims 23 or 48 further						
comprising						
evacuating fluid generated at the target site						
with a suction lumen having a distal end		4:30-46			ļ	
adjacent the electrode terminal.						

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	67	68	69	70	71	72
1. A method for applying energy to a target			;			
site on a patient body structure comprising:						
. ,						
providing an electrode terminal and	2:35	3:25	3:20	2:38	3:43-4:18	2:30
	2.33	3.23	3.20	2.36	3.43-4.16	2.30
a return electrode electrically coupled to a	2:35	3:25	3:20	2:38	3:43-4:18	2:30
high frequency voltage source;	2.55	3.23	3.20	2.56	3.43-4.16	
positioning the active electrode in close						
proximity to the target site in the presence of	4:10			3:1		4:33
an electrically conducting terminal [sic]; and					1	
			ļ	ļ		
applying a high frequency voltage between			1		1	
the electrode terminal and the return			ŀ		1	
electrode, the high frequency voltage being		}	1			
sufficient to vaporize the fluid in a thin layer						
over at least a portion of the electrode						
terminal and to induce the discharge of						
energy to the target site in contact with the						
13. The method of claim 1 wherein					 	
at least a portion of the energy induced is in					l	
the form of photons having a wavelength in			1:22-34		7:17-37	
the ultraviolet spectrum.		}	1.22 5 .			
17. The method of claim 1 wherein			†			
the high frequency voltage is at least 200					İ	
volts peak to peak.					1	
18. The method of claim 1 wherein						
the high frequency voltage is in the range						
from about 500 to 1400 volts peak to peak.				<u> </u>]	
21. The method of claim 1 wherein						
the distance between the most proximal						
portion of the electrode terminal and the					1	
most distal portion of the return electrode is		i		! :	1	
in the range from 0.5 to 10 mm.]	
23. The method of claim 1 wherein		 	 	ļ		
the liquid phase of the electrically		-		 	 	
conducting fluid has a conductivity greater	4:4-11	ļ		2:67-3:8		
than 2 mS/cm.	7.7-11			2.07-3.0		
24. The method of claim 1 wherein					 	
the liquid phase of the electrically			 	 		
conductive fluid comprises isotonic saline.	4:4-11]		2:67-3:8		
The state of the s					.	
28. A method for applying energy to a target						
site on a patient body structure comprising:						
providing an electrode terminal and a return						•
electrode electrically coupled to a high	2:35	3:25	3:20	2:38	3:43-4:18	2:30
frequency voltage source;						

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	67	68	69	70	71	72
positioning the electrode terminal in close						
proximity to the target site in the presence of	4:10	ļ		3:1		4:33
an electrically conducting fluid; and	4.10		:	3.1		4.55
applying a high frequency voltage between			!			
the electrode terminal and the return					:	
electrode, the high frequency voltage being						
sufficient to impart sufficient energy into the				į		
target site to ablate the body structure		1		<u> </u>		
without causing substantial tissue necrosis				<u> </u>		
below the surface of the body structure						
underlying the ablated body structure.						
29. The method of claim 28 wherein the						
applying step comprises:						
vaporizing the electrically conducting fluid						
in a thin layer over at least a portion of the					•	
electrode terminal; and					<u> </u>	
inducing the discharge of photons to the	•			ł		
target site in contact with the vapor layer.			1:22-34		7:17-37	
47. The method of claims 23 or 48 wherein			, v			
the electrode terminal has a contact surface						
area in the range of about 0.25 mm ² to						2:42-54
50 mm ² .	I	j		}		
48. The method of claims 26 and 28 wherein					·	
the high frequency voltage is at least 200			.			
volts peak to peak.	I					
49. The method of claims 26 and 28 wherein						
the high frequency voltage is in the range						
from about 500 to 1400 volts peak to peak.						
•						
50. The method of claims 26 and 28 wherein						
the electrode terminal is positioned between						
0.02 to 2.0 mm from the target site.						
54. The method of claims 23 or 48 further			<u></u>			-
comprising						
evacuating fluid generated at the target site						
with a suction lumen having a distal end	3:64-4:3	2:65-3:22		3:44-53		
adjacent the electrode terminal.					<u> </u>	

Exhibit C:
Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	73	74
1. A method for applying energy to a target		
site on a patient body structure comprising:		
providing an electrode terminal and	4:35	SN61173
a return electrode electrically coupled to a	4:35	SN61173
high frequency voltage source;	4.33	31101173
positioning the active electrode in close		
proximity to the target site in the presence of	6:45-55	SN61174
an electrically conducting terminal [sic]; and	0.43-33	31401174
applying a high frequency voltage between		
the electrode terminal and the return		
electrode, the high frequency voltage being		
sufficient to vaporize the fluid in a thin layer		SN61173
over at least a portion of the electrode		31101173
terminal and to induce the discharge of		İ
energy to the target site in contact with the		
yanor laver		
13. The method of claim 1 wherein	•	
at least a portion of the energy induced is in	2:22-34	
the form of photons having a wavelength in	2.22-34	
the ultraviolet spectrum.		
17. The method of claim 1 wherein		ļ
the high frequency voltage is at least 200	6:23-33	SN61173
volts peak to peak. 18. The method of claim 1 wherein		<u> </u>
the high frequency voltage is in the range		SN61173
from about 500 to 1400 volts peak to peak.	* * 1	31101173
21. The method of claim 1 wherein		
the distance between the most proximal		·
portion of the electrode terminal and the		1
most distal portion of the return electrode is		SN61186
in the range from 0.5 to 10 mm.		
23. The method of claim 1 wherein		
the liquid phase of the electrically		
conducting fluid has a conductivity greater		SN61174
than 2 mS/cm.		
24. The method of claim 1 wherein		<u> </u>
the liquid phase of the electrically		SN61174
conductive fluid comprises isotonic saline.		51101174
28. A method for applying energy to a target		
site on a patient body structure comprising:		
providing an electrode terminal and a return		
electrode electrically coupled to a high	4:35	SN61173
frequency voltage source;		

Exhibit C: Examples of where each limitation of the claims of the '882 patent may be found in each reference.

claim text \ reference	73	74
positioning the electrode terminal in close		7.4
proximity to the target site in the presence of		
an electrically conducting fluid; and	6:45-55	SN61174
- an electrically conducting hala, and		
applying a high frequency voltage between		
the electrode terminal and the return		
electrode, the high frequency voltage being		
sufficient to impart sufficient energy into the		
target site to ablate the body structure		SN61171
without causing substantial tissue necrosis		
below the surface of the body structure		
underlying the ablated body structure.		
29. The method of claim 28 wherein the		
applying step comprises:		
vaporizing the electrically conducting fluid		
in a thin layer over at least a portion of the		SN61173
electrode terminal; and		
inducing the discharge of photons to the		
target site in contact with the vapor layer.	2:22-34	
47. The method of claims 23 or 48 wherein		
the electrode terminal has a contact surface		
area in the range of about 0.25 mm ² to		SN61173
50 mm ² .		
48. The method of claims 26 and 28 wherein		
the high frequency voltage is at least 200	(00.00	C) 161 150
volts peak to peak.	6:23-33	SN61173
49. The method of claims 26 and 28 wherein		
the high frequency voltage is in the range		
from about 500 to 1400 volts peak to peak.	•	SN61173
50. The method of claims 26 and 28 wherein		
the electrode terminal is positioned between		
0.02 to 2.0 mm from the target site.		SN61173
54. The method of claims 23 or 48 further		
comprising		
evacuating fluid generated at the target site		
with a suction lumen having a distal end		inherent
adjacent the electrode terminal.		

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	1	2	3	4	5	6
A method for applying electrical energy to a target site on a body structure on or within a patient's body, the method comprising:						
positioning an electrode terminal into at least close proximity with the target site in the presence of an electrically conductive fluid;	2:1-17	206, 211	9:9-25	1:38-44, 1:11-15	58	
positioning a return electrode within the electrically conductive fluid such that the return electrode is not in contact with the body structure to generate a current flow path between the electrode terminal and the return electrode; and						
applying a high frequency voltage difference between the electrode terminal and the return electrode such that an electrical current flows from the electrode terminal, through the region of the target site, and to the return electrode through the current flow path.	1:15-27	207	3:48-4:14	1:5-2:2	58-60	3:3-7
3. The method of claim 1 further comprising	· · · · · ·					
immersing the target site within a volume of the electrically conductive fluid and			5:3-5; 9:8- 25			2:55-3:2
positioning the return electrode within the volume of electrically conductive fluid to generate the current flow path between the electrode terminal and the return electrode.						
4. The method of claim 1 further comprising						ļ
delivering the electrically conductive fluid to			5:3-5; 9:8- 25			2:55-3:2
9. The method of claim 1 wherein the electrode terminal comprises a single active electrode disposed near the distal end of an instrument shaft.	1:40-55	206	8:10-9:8	3:10-28	58	2:54-57
11. The method of claim 1 wherein the electrically conductive fluid comprises isotonic saline.			5:3-5			
13. The method of claim 1 wherein						

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	1	2	3	4	5	6
the return electrode is spaced from the						
electrode terminal such that when the	i		1 1			
electrode terminal is brought adjacent a	ļ		1			
tissue structure immersed in electrically			1 1			
conductive fluid, the return electrode is			1			
spaced from the tissue structure and the						
electrically conductive fluid completes a						
conduction path between the electrode			1			
terminal and the return electrode						
18. The method of claim 1 further			1 1		İ	
comprising						
applying a sufficient high frequency voltage						
difference to vaporize the electrically			·			
c nductive fluid in a thin layer over at least a						
portion of the electrode terminal and to			inherent	!	58,61	
induce the discharge of energy to the target						
site in contact with the vapor layer.			l			
21. The method of claim 1 wherein			-			
the voltage is in the range from 500 to 1400		211	1		58	†
volts peak to peak.						
23. A method for applying electrical energy			1			0
to a target site on a body structure on or						
within a patient's body, the method						
comprising:			-			
contacting an active electrode with the body					İ	
structure in the presence of an electrically	2:1-17	211	9:9-25	1:38-44,	58	
conductive fluid;	2.1-17	211	7.5-25	1:11-15		
spacing a return electrode away from the						
body structure in the presence of the					l	
electrically conductive fluid; and						
applying a high frequency voltage difference						
between the active electrode and the return			1		1	
electrode such that an electrical current						
flows from the active electrode, through the	1:15-27	207	3:48-4:14	1:5-2:2	58-60	3:3-7
electrically conductive fluid, and to the						
return electrode.		ļ	1			
			 		ļ	-
26. The method of claim 23 further	ł				ì	
comprising		<u> </u>	526.00			1
immersing the target site within a volume of			5:3-5; 9:8-			2:55-3:2
the electrically conductive fluid and		-	25			
positioning the return electrode within the			1			1
volume of electrically conductive fluid to	1					
generate a current flow path between the				ĺ		
active electrode and the return electrode.	İ					
<u> </u>	L	<u></u>	_1	J	J	<u></u>

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	1	2	3	4	5	6 .
27. The method of claim 23 further						
comprising	<u> </u>					
delivering the electrically conductive fluid to			5:3-5; 9:8-			2:55-3:2
the target site.			25			2:33-3:2
30. The method of claim 23 wherein						
the active electrode comprises a single active						
electrode disposed near the distal end of an	1:40-55	206	8:10-9:8	3:10-28	58	2:54-57
instrument shaft.						
32. The method of claim 23 wherein						
the electrically conductive fluid comprises			5:3-5			
isotonic saline.		·	3.3-3			
34. The method of claim 23 wherein						
the return electrode is spaced from the						
active electrode such that when the active						ł
electrode is brought adjacent a tissue						
structure immersed in electrically conductive						
fluid, the return electrode is spaced from the	į					
tissue structure and the electrically	l					
conductive fluid completes a conduction						-
path between the active electrode and the					-	
return electrode.						
39. The method of claim 23 further]			1
comprising			ļ			
applying a sufficient high frequency voltage						
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a			1		40.54	
portion of the active electrode and to induce			inherent		58,61	
the discharge of energy to the target site in	,					
contact with the vapor layer.	1					
42. The method of claim 23 wherein				•		
the voltage is in the range from 500 to 1400		211			58	
volts peak to peak.		l	1			L

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

7	8	9	10	11	12
3:33-44	1, 4-5	2:40-63	7:2-5		528-29
	1 .				
2:44-66	l	2:33-52	4:18-28	2	528
	11	2:40-63	•		529
	1, 11				
:	11	2:40-63		-	529
2:67-3:16	7	7:58-68	4:44-64	3	530
	inherent				529
	2:44-66	3:33-44	3:33-44	3:33-44	3:33-44

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	7	8	9	10	11	12
the return electrode is spaced from the				1		
electrode terminal such that when the		1		}		
electrode terminal is brought adjacent a		Ì				
tissue structure immersed in electrically	1		ŧ	}		1
conductive fluid, the return electrode is		1, 11		1		
spaced from the tissue structure and the	1			{		
electrically conductive fluid completes a]]
conduction path between the electrode	1	ĺ				
terminal and the return electrode	ł	Ī				}
18. The method of claim 1 further						
comprising			1			
applying a sufficient high frequency voltage						
difference to vaporize the electrically			ļ			
conductive fluid in a thin layer over at least a						
portion of the electrode terminal and to		1,6	l .	6:54-7:5		
induce the discharge of energy to the target	·	-,-	· ·			
site in contact with the vapor layer.	l					
The in contact with the vapor layer.]]			
21. The method of claim 1 wherein						
the voltage is in the range from 500 to 1400			1:34-53			
volts peak to peak.			1:34-33			
23. A method for applying electrical energy						
to a target site on a body structure on or]			
within a patient's body, the method						
comprising:		•	1			
contacting an active electrode with the body						
structure in the presence of an electrically						
conductive fluid;	3:33-44	1, 4-5	2:40-63	7:2-5		528-29
spacing a return electrode away from the						
body structure in the presence of the		1	1			
electrically conductive fluid; and						
applying a high frequency voltage difference			–			
between the active electrode and the return						
electrode such that an electrical current						
flows from the active electrode, through the	2:44-66	1	2:33-52	4:18-28	2	528
n		•	2.33 32		2	220
electrically conductive fluid, and to the return electrode.						
notain electrone.						
26. The method of claim 23 further						
comprising						
immersing the target site within a volume of		•	0.46.70			
the electrically conductive fluid and		11	2:40-63			529
positioning the return electrode within the						
volume of electrically conductive fluid to						
generate a current flow path between the		4, 11				
active electrode and the return electrode.		•				
The state of the s						

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	7	8	9	10	11	12
27. The method of claim 23 further						
comprising						
delivering the electrically conductive fluid to		11	2:40-63			529
the target site.	•	11	2.40-03			329
30. The method of claim 23 wherein						
the active electrode comprises a single active						
electrode disposed near the distal end of an	2:67-3:16	7	7:58-68	4:44-64	3	530
instrument shaft.						
32. The method of claim 23 wherein					*	
the electrically conductive fluid comprises		inherent				529
isotonic saline.		Buicient	L			329
34. The method of claim 23 wherein						
the return electrode is spaced from the	• .		1			
active electrode such that when the active			}			
electrode is brought adjacent a tissue			ļ			
structure immersed in electrically conductive						
fluid, the return electrode is spaced from the		1, 11		[
tissue structure and the electrically] [
conductive fluid completes a conduction	l					
path between the active electrode and the]		İ
return electrode						
39. The method of claim 23 further						
comprising						
applying a sufficient high frequency voltage	-			·		
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a						
portion of the active electrode and to induce		1,6		6:54-7:5		İ
the discharge of energy to the target site in						
contact with the vapor layer.		į				
42. The method of claim 23 wherein						
the voltage is in the range from 500 to 1400 volts peak to peak.			1:34-53			

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	13	14	15	16	17	18
1. A method for applying electrical energy to						
a target site on a body structure on or within						
a patient's body, the method comprising:						
			1:52-56,			
positioning an electrode terminal into at least			5:26-30,			
close proximity with the target site in the			7:59-62,	846-47	5:25-33	3:67-4:3
presence of an electrically conductive fluid;			3:59-61,			j
			6:23-27			
positioning a return electrode within the						
electrically conductive fluid such that the						
return electrode is not in contact with the			3:5-20			
body structure to generate a current flow			3.5-20			
path between the electrode terminal and the						
return electrode; and						
applying a high frequency voltage difference						
between the electrode terminal and the return						
electrode such that an electrical current	4:15; 7:38-					
flows from the electrode terminal, through .	50		1:5-17	845-46	6:1-30	1:12-37
the region of the target site, and to the return						
electrode through the current flow path.						
						•
3. The method of claim 1 further comprising						
immersing the target site within a volume of			7:45-62			1:65-2:21
the electrically conductive fluid and			7.43-02			1:03-2:21
positioning the return electrode within the						
volume of electrically conductive fluid to			3:5-20;			
generate the current flow path between the	İ		5:21-30			
electrode terminal and the return electrode.			5.21-50			
4. The method of claim 1 further comprising						
delivering the electrically conductive fluid to						
the target site.			7:45-62			1:65-2:21
9. The method of claim 1 wherein						
the electrode terminal comprises a single					!	
active electrode disposed near the distal end	6:45-54		4:66-5:2	845	3:1-52	1:15-36
of an instrument shaft.						
11. The method of claim 1 wherein						
the electrically conductive fluid comprises						
isotonic saline.						
13. The method of claim 1 wherein						

Exhibit D:

Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	13	14	15	16	17	18
the return electrode is spaced from the						
electrode terminal such that when the						
electrode terminal is brought adjacent a						
tissue structure immersed in electrically			2.5 20.			
conductive fluid, the return electrode is			3:5-20;		}	
spaced from the tissue structure and the			5:21-30		i	·
electrically conductive fluid completes a						
conduction path between the electrode						
•						
terminal and the return electrode						
comprising	·]
applying a sufficient high frequency voltage						
difference to vaporize the electrically					1	
conductive fluid in a thin layer over at least a						
· ·	4:47		1:33-40	•		inherent
portion of the electrode terminal and to	7.7/		1.55 40			
induce the discharge of energy to the target	1					
site in contact with the vapor layer.						
21. The method of claim 1 wherein						
the voltage is in the range from 500 to 1400		7:26-42;				
volts peak to peak.	!	Fig. 6				
23. A method for applying electrical energy				·-···		
to a target site on a body structure on or	·					
within a patient's body, the method						
comprising:						
contacting an active electrode with the body			1:52-56,			
structure in the presence of an electrically			5:26-30,		j	
conductive fluid;			7:59-62,	846-47	5:25-33	3:67-4:3
conductive nata,			3:59-61,			
			6:23-27			
spacing a return electrode away from the						
body structure in the presence of the			3:5-20			
electrically conductive fluid; and		•			:	
applying a high frequency voltage difference					İ	
between the active electrode and the return			i			1
electrode such that an electrical current			į	i	1	
flows from the active electrode, through the	4:15; 7:38-		1:5-17	845-46	6:1-30	1:12-37
	50			0.12		
electrically conductive fluid, and to the						
return electrode.					1	
26. The method of claim 23 further						
comprising				1		
immersing the target site within a volume of			5 45 65		1	1.6600:
the electrically conductive fluid and			7:45-62			1:65-2:21
positioning the return electrode within the				···-		
volume of electrically conductive fluid to						
generate a current flow path between the	1		3:5-20;			
active electrode and the return electrode.	1		5:21-30			
derive electrode and the fermin electrode.	1					

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	13	14	15	16	17	18
27. The method of claim 23 further		_				T
comprising]	ļ
delivering the electrically conductive fluid to			7:45-62		1	1:65-2:21
the target site.			7:43-02			1:03-2:21
30. The method of claim 23 wherein						
the active electrode comprises a single active						
electrode disposed near the distal end of an	6:45-54		4:66-5:2	845	3:1-52	1:15-36
instrument shaft.		l				
32. The method of claim 23 wherein						
the electrically conductive fluid comprises		-		•		
isotonic saline.						
34. The method of claim 23 wherein						
the return electrode is spaced from the		1				
active electrode such that when the active						
electrode is brought adjacent a tissue		l	1			
structure immersed in electrically conductive			3:5-20;			
fluid, the return electrode is spaced from the			5:21-30]
tissue structure and the electrically			3.21-30			
conductive fluid completes a conduction		ļ				
path between the active electrode and the		1				
return electrode						
39. The method of claim 23 further						
comprising					ļ	<u> </u>
applying a sufficient high frequency voltage		1				Ì
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a						
portion of the active electrode and to induce	4:47		1:33-40		j	inherent
the discharge of energy to the target site in						
contact with the vapor layer.						
42. The method of claim 23 wherein						
the voltage is in the range from 500 to 1400		7:26-42;				
volts peak to peak.		Fig. 6			i	

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	19	20	21	22	23	24
1. A method for applying electrical energy to a target site on a body structure on or within a patient's body, the method comprising:						
positioning an electrode terminal into at least close proximity with the target site in the presence of an electrically conductive fluid;	1:34-38	2:35-58	332, 334	2:21-58	2:42-68	1425
positioning a return electrode within the electrically conductive fluid such that the return electrode is not in contact with the body structure to generate a current flow path between the electrode terminal and the return electrode; and					2:42-68	
applying a high frequency voltage difference between the electrode terminal and the return electrode such that an electrical current flows from the electrode terminal, through the region of the target site, and to the return electrode through the current flow path.	2:33-46	2:35-58	333	2:21-58	2:42-68	1425
3. The method of claim 1 further comprising						
immersing the target site within a volume of the electrically conductive fluid and	3:1-16	2:59-3:5	334	2:25-31	2:51-55	1425
positioning the return electrode within the volume of electrically conductive fluid to generate the current flow path between the electrode terminal and the return electrode.				2:25-31	.2:42-68; 3:65-4:7	1426
4. The method of claim 1 further comprising		·				
delivering the electrically conductive fluid to the target site.			334	2:25-31; Figs. 1-2	2:51-55	1425
9. The method of claim 1 wherein the electrode terminal comprises a single active electrode disposed near the distal end of an instrument shaft.	2:34-46	2:35-58	333	2:41-43	Fig. 9; 3:29-	1425
11. The method of claim 1 wherein the electrically conductive fluid comprises isotonic saline.			334	2:47-51; Fig. 1	3:65-68	1426
13. The method of claim 1 wherein						

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	19	20	21	22	23	24
the return electrode is spaced from the						
electrode terminal such that when the						
electrode terminal is brought adjacent a	ı l				1	
tissue structure immersed in electrically	1	1			2:42-68;	
conductive fluid, the return electrode is				2:25-31	- 1	1426
spaced from the tissue structure and the					3:65-4:7	
electrically conductive fluid completes a					1	
conduction path between the electrode						į
terminal and the return electrode		·				
18. The method of claim 1 further						
comprising						
applying a sufficient high frequency voltage						
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a						
portion of the electrode terminal and to						
induce the discharge of energy to the target						
site in contact with the vapor layer.					ļ	
Site in contact with the vapor layer.						
21. The method of claim 1 wherein						
the voltage is in the range from 500 to 1400					3:30-38	
volts peak to peak.					3.30-36	
23. A method for applying electrical energy						
to a target site on a body structure on or						
within a patient's body, the method						
comprising:						
contacting an active electrode with the body						
structure in the presence of an electrically				İ		
conductive fluid;	1:34-38	2:35-58	334	2:21-58	2:42-68	1425
,				1		
spacing a return electrode away from the						
body structure in the presence of the					2:42-68	
electrically conductive fluid; and	,					
applying a high frequency voltage difference						
between the active electrode and the return	,					
electrode such that an electrical current	1					
flows from the active electrode, through the	2:33-46	2:35-58	333	2:21-58	2:42-68	1425
electrically conductive fluid, and to the	'					
return electrode.		1				
lictum cicculouc.		· .				
26. The method of claim 23 further						
comprising						
immersing the target site within a volume of	2.2.16	2.50.2.5	224	2,25.21	2.51.55	1425
the electrically conductive fluid and	3:1-16	2:59-3:5	334	2:25-31	2:51-55	1423
positioning the return electrode within the			1			
volume of electrically conductive fluid to			1		2,42 60.	
generate a current flow path between the			[2:25-31	2:42-68;	1426
active electrode and the return electrode.					3:65-4:7	

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	19	20	21	22	23	24
27. The method of claim 23 further						
comprising	İ					
delivering the electrically conductive fluid to	İ	1	334	2:25-31;	2:51-55	1425
the target site.	<u></u>			Figs. 1-2	2.51-55	1423
30. The method of claim 23 wherein						
the active electrode comprises a single active	ł				Fig. 9; 3:29	
electrode disposed near the distal end of an	2:34-46	2:35-58	333	2:41-43	30	1425
instrument shaft.				<u> </u>	30	
32. The method of claim 23 wherein						
the electrically conductive fluid comprises	i	1	334	2:47-51;	3:65-68	1426
isotonic saline.			334	Fig. 1	3.03-00	1420
34. The method of claim 23 wherein			· · · · · · · · · · · · · · · · · · ·			
the return electrode is spaced from the]				
active electrode such that when the active	i	1 i			1	
electrode is brought adjacent a tissue		1			1 1	
structure immersed in electrically conductive]		1	2:42-68;	
fluid, the return electrode is spaced from the				2:25-31	3:65-4:7	1426
tissue structure and the electrically					1 3.03	
conductive fluid completes a conduction		!				
path between the active electrode and the		i				
return electrode				ļ		······
39. The method of claim 23 further]		!		
comprising			 			
applying a sufficient high frequency voltage				!		
difference to vaporize the electrically		l i				
conductive fluid in a thin layer over at least a]				
portion of the active electrode and to induce	•	.				
the discharge of energy to the target site in		1				
contact with the vapor layer.						
42. The method of claim 23 wherein						
the voltage is in the range from 500 to 1400					3:30-38	
volts peak to peak.			· wa	1	3.50 50	

Exhibit D: Examples of where each limitation of the claims of the '592 patent may be found in each reference.

25	26	27	28	29	30
99-100	1383	3:48-53	2:18, 5:28- 31	68, 71	4:48-58, Fig. 5
	1383				Fig. 5
99	1383	2:38-66	2:23-33	67-68	4:32-5:10
100	1383		5:12-35	68	
100	1383		1:57-2:6	68	Fig. 5
-					
100	1383		·	68	
100	1383	1:26-50	1:57-2:6	68	5:11-27
100	1383		1:57-2:6	68	
	99-100	99-100 1383 99 1383 100 1383 100 1383	99-100	99-100	99-100

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	25	26	27	28	29	30
the return electrode is spaced from the						
electrode terminal such that when the	Ì			1 1		
electrode terminal is brought adjacent a		1				
tissue structure immersed in electrically	j	<u> </u>				
conductive fluid, the return electrode is	100	1383	İ	1:57-2:6	68	Fig. 5
spaced from the tissue structure and the		İ				
electrically conductive fluid completes a		<u> </u>				
conduction path between the electrode	l					
terminal and the return electrode.					V	
18. The method of claim 1 further						
comprising		<u> </u>				
applying a sufficient high frequency voltage		į		1		
difference to vaporize the electrically		Ī				
conductive fluid in a thin layer over at least a						
portion of the electrode terminal and to		1382-83	inherent	1		inherent
induce the discharge of energy to the target				1		
site in contact with the vapor layer.						
21. The method of claim 1 wherein						
the voltage is in the range from 500 to 1400				 		1
volts peak to peak.		1383		}	68	1
23. A method for applying electrical energy						
to a target site on a body structure on or						1
within a patient's body, the method		•		1		
comprising:						
contacting an active electrode with the body						
structure in the presence of an electrically						
conductive fluid;	99-100	1383	3:48-53	2:18, 5:28-	68	4:48-58,
,				31		Fig. 5
spacing a return electrode away from the						
body structure in the presence of the		1383				Fig. 5
electrically conductive fluid; and		1303				1 - 25 - 2
applying a high frequency voltage difference						·
between the active electrode and the return						
electrode such that an electrical current						
flows from the active electrode, through the	99	1383	2:38-66	2:23-33	67-68	4:32-5:10
electrically conductive fluid, and to the						
return electrode.		ļ	Ì			
return electrode.				ŀ		
26. The method of claim 23 further						
comprising						
immersing the target site within a volume of	100	1383		5:12-35	68	
the electrically conductive fluid and	100	1303		3.12-33		
positioning the return electrode within the						
volume of electrically conductive fluid to						
profunic of ciccalcally conductive fluid to						
generate a current flow path between the	100	1383		1:57-2:6	68	Fig. 5

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	25	26	27	28	29	30
27. The method of claim 23 further						
comprising			1			
delivering the electrically conductive fluid to	100	1383			68	
the target site.	100	1363			08	
30. The method of claim 23 wherein						
the active electrode comprises a single active						
electrode disposed near the distal end of an	100	1383	1:26-50	1:57-2:6	68	5:11-27
instrument shaft.						ļ
32. The method of claim 23 wherein						
the electrically conductive fluid comprises	100	1202		1.57.0.6	6 0	
isotonic saline.	100	1383		1:57-2:6	68	}
34. The method of claim 23 wherein						
the return electrode is spaced from the						
active electrode such that when the active		ł				
electrode is brought adjacent a tissue		1				
structure immersed in electrically conductive						
fluid, the return electrode is spaced from the	100	1383		1:57-2:6	68	Fig. 5
tissue structure and the electrically		j	<u> </u>		•	
conductive fluid completes a conduction		1				
path between the active electrode and the	•					
return electrode						
39. The method of claim 23 further			j	-		
comprising						
applying a sufficient high frequency voltage				·		
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a						
portion of the active electrode and to induce		1382-83	inherent			inherent
the discharge of energy to the target site in						
contact with the vapor layer.						
		ļ				
42. The method of claim 23 wherein						ļ
the voltage is in the range from 500 to 1400		1383			68	
volts peak to peak.		L		<u> </u>		

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	31	32	33	34	35	36
1. A method for applying electrical energy to a target site on a body structure on or within a patient's body, the method comprising:						
positioning an electrode terminal into at least close proximity with the target site in the presence of an electrically conductive fluid;	3:11-26, 3:31, 7:65		2:45-69	43	248	7:30-37
positioning a return electrode within the electrically conductive fluid such that the return electrode is not in contact with the body structure to generate a current flow path between the electrode terminal and the return electrode; and	Fig. 4		Fig. 2	44		
applying a high frequency voltage difference between the electrode terminal and the return electrode such that an electrical current flows from the electrode terminal, through the region of the target site, and to the return electrode through the current flow path.	2:45-58		2:45-69	_. 42	248	4:4-39
3. The method of claim 1 further comprising						
immersing the target site within a volume of the electrically conductive fluid and	7:3-8:5		5:4-30		248	7:26-52
positioning the return electrode within the volume of electrically conductive fluid to generate the current flow path between the electrode terminal and the return electrode.	Fig. 4		Fig. 2; 5:4- 30	44		7:26-52
4. The method of claim 1 further comprising						
delivering the electrically conductive fluid to the target site.	2:45-3:10				248	7:26-52
9. The method of claim 1 wherein the electrode terminal comprises a single active electrode disposed near the distal end of an instrument shaft.	5:17-31				•	4:40-58
11. The method of claim 1 wherein the electrically conductive fluid comprises isotonic saline.	7:3-8:5				248	7:26-52
13. The method of claim 1 wherein			<u> </u>		L	

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	31	32	33	· 34	35	36
the return electrode is spaced from the						
electrode terminal such that when the						
electrode terminal is brought adjacent a						
tissue structure immersed in electrically			Fig. 2; 5:4-			
conductive fluid, the return electrode is	Fig. 4		30	44		7:26-52
spaced from the tissue structure and the			30			
electrically conductive fluid completes a						
conduction path between the electrode]]	
terminal and the return electrode			1			
18. The method of claim 1 further					,	
comprising						
applying a sufficient high frequency voltage						
difference to vaporize the electrically			1 ' 1			
conductive fluid in a thin layer over at least a						
portion of the electrode terminal and to						
induce the discharge of energy to the target						
site in contact with the vapor layer.					ŀ	
			-			
21. The method of claim 1 wherein			-			
the voltage is in the range from 500 to 1400		8			i	į
volts peak to peak. 23. A method for applying electrical energy					 	
to a target site on a body structure on or						
within a patient's body, the method						
comprising:						1
contacting an active electrode with the body						
structure in the presence of an electrically						l
conductive fluid;	3:11-26,		2:45-69	43	248	7:30-37
	3:31, 7:65					
spacing a return electrode away from the						
body structure in the presence of the	Fig. 4		Fig. 2	44		
electrically conductive fluid; and	1.5.		1 -5 -			
applying a high frequency voltage difference				-	 	
between the active electrode and the return						
electrode such that an electrical current						
flows from the active electrode, through the	2:45-58		2:45-69	42	248	4:4-39
electrically conductive fluid, and to the						
return electrode.						
26. The method of claim 23 further			-			
comprising						
immersing the target site within a volume of	7.2.0.5		6.4.20		240	7.06.50
the electrically conductive fluid and	7:3-8:5		5:4-30		248	7:26-52
positioning the return electrode within the						
volume of electrically conductive fluid to			Fig. 2. 5.4	0	·	
generate a current flow path between the	Fig. 4		Fig. 2; 5:4-	44		7:26-52
active electrode and the return electrode.			30			
	<u> </u>					<u> </u>

Exhibit D:

Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	31	32	33	34	35	36
27. The method of claim 23 further						
comprising	l					
delivering the electrically conductive fluid to	2:45-3:10		1 1		248	7:26-52
the target site.	2.43-3.10				240	7.20-32
30. The method of claim 23 wherein						
the active electrode comprises a single active						
electrode disposed near the distal end of an	5:17-31					4:40-58
instrument shaft.						
32. The method of claim 23 wherein						
the electrically conductive fluid comprises	7:3-8:5				248	7:26-52
isotonic saline.	7.5-6.5				240	7.20-32
34. The method of claim 23 wherein						
the return electrode is spaced from the						
active electrode such that when the active	1					
electrode is brought adjacent a tissue	[
structure immersed in electrically conductive	1		Fig. 2; 5:4-			
fluid, the return electrode is spaced from the	Fig. 4		30	44		7:26-52
tissue structure and the electrically					·	
conductive fluid completes a conduction			1			İ
path between the active electrode and the						
return electrode.						
39. The method of claim 23 further						
comprising	 		·			
applying a sufficient high frequency voltage						
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a	l					
portion of the active electrode and to induce						
the discharge of energy to the target site in				*:		
contact with the vapor layer.						
42. The method of claim 23 wherein						
the voltage is in the range from 500 to 1400		8	1			
volts peak to peak.	l	·	1			

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	37	38	39	40	41	42
 A method for applying electrical energy to a target site on a body structure on or within a patient's body, the method comprising: 						
positioning an electrode terminal into at least close proximity with the target site in the presence of an electrically conductive fluid;	663	1168		2:37-42	291	275-76
positioning a return electrode within the electrically conductive fluid such that the return electrode is not in contact with the body structure to generate a current flow path between the electrode terminal and the return electrode; and					•	
applying a high frequency voltage difference between the electrode terminal and the return electrode such that an electrical current flows from the electrode terminal, through the region of the target site, and to the return electrode through the current flow path.	662-63	1168	5:1-47	2:62-65	291	275
3. The method of claim 1 further comprising			· ·			
immersing the target site within a volume of the electrically conductive fluid and	662	1168	1:64-2:17	5:62-6:19	291	275
positioning the return electrode within the volume of electrically conductive fluid to generate the current flow path between the electrode terminal and the return electrode.	662					
4. The method of claim 1 further comprising						
delivering the electrically conductive fluid to the target site.	662	1168	1:64-2:17		291	275
9. The method of claim 1 wherein the electrode terminal comprises a single active electrode disposed near the distal end of an instrument shaft.	662	1168	Fig. 5; 8:9-	4:16-35	292	275
11. The method of claim 1 wherein the electrically conductive fluid comprises isotonic saline.	662	1168			291	275

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	37	38	39	40	41	42
the return electrode is spaced from the						
electrode terminal such that when the						
electrode terminal is brought adjacent a						
tissue structure immersed in electrically						
conductive fluid, the return electrode is	662					
spaced from the tissue structure and the						
electrically conductive fluid completes a						1
conduction path between the electrode				j		}
terminal and the return electrode						
18. The method of claim 1 further					•	
comprising						
applying a sufficient high frequency voltage	41			14		
difference to vaporize the electrically	9		1			
conductive fluid in a thin layer over at least a						
portion of the electrode terminal and to		1170				0
induce the discharge of energy to the target						
site in contact with the vapor layer.			1			
site in contact with the vapor layer.						:
21. The method of claim 1 wherein						
the voltage is in the range from 500 to 1400						
volts peak to peak.						l .
23. A method for applying electrical energy						
to a target site on a body structure on or						
within a patient's body, the method				·		
comprising:						
contacting an active electrode with the body						
structure in the presence of an electrically						
conductive fluid;	663	1168	1	2:37-42	291	275-76
spacing a return electrode away from the			<u> </u>			
body structure in the presence of the	ĺ					
electrically conductive fluid; and]					
applying a high frequency voltage difference					·	
between the active electrode and the return	1					ł
electrode such that an electrical current						
flows from the active electrode, through the	662-63	1168	5:1-47	2:62-65	291	275
electrically conductive fluid, and to the		i				
return electrode.						
						į
26. The method of claim 23 further						
comprising						
immersing the target site within a volume of	((2)	1140	1.64 2:17	5:62-6:19	291	275
the electrically conductive fluid and	662	1168	1:64-2:17	3:02-0:19	271	275
positioning the return electrode within the					•	
volume of electrically conductive fluid to			}			
generate a current flow path between the	662		1			
active electrode and the return electrode.						
	1					

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	37	38	39	40	41	42
27. The method of claim 23 further						
comprising						
delivering the electrically conductive fluid to	662	1168	1:64-2:17		291	275
the target site.	002	1106	1.04-2.17		291	213
30. The method of claim 23 wherein						
the active electrode comprises a single active			Fig. 5; 8:9-			Ī
electrode disposed near the distal end of an	662	1168	34	4:16-35	292	275
instrument shaft.			34			
32. The method of claim 23 wherein					·	·
the electrically conductive fluid comprises	662	1168			291	275
isotonic saline.		1100	ļ			2,3
34. The method of claim 23 wherein						
the return electrode is spaced from the						!
active electrode such that when the active		ł	1			
electrode is brought adjacent a tissue						
structure immersed in electrically conductive						•
fluid, the return electrode is spaced from the	662					!
tissue structure and the electrically						
conductive fluid completes a conduction						
path between the active electrode and the						İ
return electrode		ļ			-	
39. The method of claim 23 further			1			ļ `
comprising		<u> </u>				
applying a sufficient high frequency voltage						
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a portion of the active electrode and to induce		1170				
1 - {		1170				
the discharge of energy to the target site in						
contact with the vapor layer.						
42. The method of claim 23 wherein						
the voltage is in the range from 500 to 1400						
volts peak to peak.		<u> </u>				L

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	43	44	45	46	47	48
1. A method for applying electrical energy to						
a target site on a body structure on or within						
a patient's body, the method comprising:						
positioning an electrode terminal into at least close proximity with the target site in the presence of an electrically conductive fluid;	11	4:18-28	3:48-55, 5:6-19	6:42, 4:1	6:4-60	6:28, 4:6, 7:59
positioning a return electrode within the electrically conductive fluid such that the return electrode is not in contact with the body structure to generate a current flow path between the electrode terminal and the return electrode; and				6:42		6:28
applying a high frequency voltage difference between the electrode terminal and the return electrode such that an electrical current flows from the electrode terminal, through the region of the target site, and to the return electrode through the current flow path.	2:8-4:10	2:26-51	4:21-5:6	2:31-53	1:34	2:28
3. The method of claim 1 further comprising						
immersing the target site within a volume of the electrically conductive fluid and	11:1-20		3:48-4:7	6:39-45		3:65-4:17
positioning the return electrode within the volume of electrically conductive fluid to generate the current flow path between the electrode terminal and the return electrode.			inherent	6:42; 3:8- 34		6:28; 5:65- 6:19
4. The method of claim 1 further comprising						
delivering the electrically conductive fluid to the target site.	11:1-20		3:48-4:7	6:39-45		3:65-4:17
9. The method of claim 1 wherein						
the electrode terminal comprises a single active electrode disposed near the distal end of an instrument shaft.	2:8-18	3:48-51	5:7-19	3:41-4:2	1:57-2:35	3:65-4:17
11. The method of claim 1 wherein						
the electrically conductive fluid comprises isotonic saline.			3:48-4:7			5:65-6:19
13. The method of claim 1 wherein						

Exhibit D:

Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	43	44	45	46	47	48
the return electrode is spaced from the						
electrode terminal such that when the				l l		
electrode terminal is brought adjacent a			1			
tissue structure immersed in electrically				640.00		600 5 65
conductive fluid, the return electrode is			inherent	6:42; 3:8-		6:28; 5:65-
spaced from the tissue structure and the				34		6:19
1 -			:			
electrically conductive fluid completes a			!			
conduction path between the electrode						
terminal and the return electrode			<u></u>			
E :			1			
comprising						
applying a sufficient high frequency voltage			1			
difference to vaporize the electrically			İ			
conductive fluid in a thin layer over at least a			inhann	inherent		inherent
portion of the electrode terminal and to			inherent	umerent		umerent
induce the discharge of energy to the target						
site in contact with the vapor layer.		•	1			
21. The method of claim 1 wherein						
the voltage is in the range from 500 to 1400	-					
volts peak to peak.						
23. A method for applying electrical energy						
to a target site on a body structure on or						
11 -						
within a patient's body, the method						1
comprising: contacting an active electrode with the body						
II						
structure in the presence of an electrically	11	4:28	3:48-55	6:42, 4:1	6:4-60	6:28, 4:6,
conductive fluid;	* 1	4.20	3.40-33	0.42, 4.1	0.4-00	7:59
•						
spacing a return electrode away from the						
body structure in the presence of the				6:42		6:28
electrically conductive fluid; and				1		
applying a high frequency voltage difference				ĺ		
between the active electrode and the return			1			
electrode such that an electrical current			İ]		
flows from the active electrode, through the	2:8-4:10	2:26-51	4:21-5:6	2:31-53	1:34	2:28
electrically conductive fluid, and to the				1		
return electrode.]
						1
26. The method of claim 23 further						
comprising						
immersing the target site within a volume of	11.1.20		2.40 4.7	6:39-45		2:65 4:17
the electrically conductive fluid and	11:1-20		3:48-4:7	0.59-45		3:65-4:17
positioning the return electrode within the			1			
volume of electrically conductive fluid to				6.42: 2:0		6.20, 5.65
generate a current flow path between the			inherent	6:42; 3:8-		6:28; 5:65-
active electrode and the return electrode.				34		6:19
and the same and the same of t						

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	43	44	45	46	47	48
27. The method of claim 23 further			<u> </u>			
comprising			<u> </u>			<u> </u>
delivering the electrically conductive fluid to	11:1-20		3:48-4:7	6:39-45		3:65-4:17
the target site.	11.1-20		3.40-4.7	0.53-45		3.03-4.17
30. The method of claim 23 wherein						
the active electrode comprises a single active			· .			
electrode disposed near the distal end of an	2:8-18	3:48-51	. 5:7-19	3:41-4:2	1:57-2:35	3:65-4:17
instrument shaft.						
32. The method of claim 23 wherein			<u> </u>			
the electrically conductive fluid comprises			3:48-4:7			5:65-6:19
isotonic saline.			3.40-4.7			3.05-0.17
34. The method of claim 23 wherein			ļ <u> </u>			<u> </u>
the return electrode is spaced from the			1			1
active electrode such that when the active						
electrode is brought adjacent a tissue						
structure immersed in electrically conductive				6:42; 3:8-		6:28; 5:65-
fluid, the return electrode is spaced from the			inherent	34		6:19
tissue structure and the electrically						0.17
conductive fluid completes a conduction			i			
path between the active electrode and the			ł	İ		
return electrode						ļ
39. The method of claim 23 further						
comprising						
applying a sufficient high frequency voltage				Ì		·
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a						
portion of the active electrode and to induce			inherent	inherent		inherent
the discharge of energy to the target site in						Į
contact with the vapor layer.				ļ		
42. The method of claim 23 wherein						
the voltage is in the range from 500 to 1400						
volts peak to peak.			<u> </u>			L

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

1:65	2:2-20	3:50-53 3:53	2:26	3:63, 2:1, 6:28	669, 672
1:65	2:2-20		2:26	1 1	669, 672
		3:53			
1:55	2:21-63	2:41-3:58	3:1-32	2:28-55	670
1:47-68		3:30-34	2:24-29	3:37-64	
1:47-68		3:35-57	1:30-39	3:37-64	
	·	·			
1:47-68		3:30-34	2:24-29	3:37-64	
3:27-44	1:40-51	3:35-57	1:42-50	3:37-64	670
		3:35-57	2:24-29		
1	1:47-68	1:47-68 1:47-68	1:47-68 3:30-34 1:47-68 3:35-57 1:47-68 3:30-34 3:27-44 1:40-51 3:35-57	1:47-68 3:30-34 2:24-29 1:47-68 3:35-57 1:30-39 1:47-68 3:30-34 2:24-29 3:27-44 1:40-51 3:35-57 1:42-50	1:47-68 3:30-34 2:24-29 3:37-64 1:47-68 3:35-57 1:30-39 3:37-64 1:47-68 3:30-34 2:24-29 3:37-64 3:27-44 1:40-51 3:35-57 1:42-50 3:37-64

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

49	50	51	52	53	54
		i			
					İ
1:47-68		3:35-57	1:30-39	3:37-64	
			<u> </u>		
		1			
		inherent	4:10		
4 400					
		0.50.50	206	3:63, 2:1,	600
1:65	2:2-20	3:50-53	2:26	6:28	672
,		3:53		1	
			•		
1:55	2:21-63	2:41-3:58	3:1-32	2:28-55	670
		l			
				 	
1:47-68		3:30-34	2:24-29	3:37-64	
		 		 	
1.47 68		3.35-57	1.30_30	3-37-64	
1.47-00		''	1.50-37	3.37-04	
	1:47-68	1:47-68	1:47-68 3:35-57 inherent 1:65 2:2-20 3:50-53 1:55 2:21-63 2:41-3:58 1:47-68 3:30-34	1:47-68 3:35-57 1:30-39 inherent 4:10 1:65 2:2-20 3:50-53 2:26 3:53 3:53 1:55 2:21-63 2:41-3:58 3:1-32	1:47-68 3:35-57 1:30-39 3:37-64 inherent 4:10 1:65 2:2-20 3:50-53 2:26 3:63, 2:1, 6:28 1:55 2:21-63 2:41-3:58 3:1-32 2:28-55

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	49	50	51	52	53	54
27. The method of claim 23 further						
comprising					L	
delivering the electrically conductive fluid to	1:47-68		3:30-34	2:24-29	3:37-64	
the target site.	1:47-06		3.30-34	2.24-29	3.37-04	
30. The method of claim 23 wherein						
the active electrode comprises a single active		_				
electrode disposed near the distal end of an	3:27-44	1:40-51	3:35-57	1:42-50	3:37-64	670
instrument shaft.						- ()
32. The method of claim 23 wherein						
the electrically conductive fluid comprises			3:35-57	2:24-29		
isotonic saline.			3.33-37	2.24-23		
34. The method of claim 23 wherein	•					
the return electrode is spaced from the		•			1	
active electrode such that when the active					ł	
electrode is brought adjacent a tissue						
structure immersed in electrically conductive						
fluid, the return electrode is spaced from the	1:47-68	i	3:35-57	1:30-39	3:37-64	
tissue structure and the electrically			1			
conductive fluid completes a conduction						
path between the active electrode and the						
return electrode.						
39. The method of claim 23 further						
comprising						
applying a sufficient high frequency voltage					•	
difference to vaporize the electrically					}	
conductive fluid in a thin layer over at least a						
portion of the active electrode and to induce	ļ		inherent	4:10		
the discharge of energy to the target site in						
contact with the vapor layer.						
42. The method of claim 23 wherein						
the voltage is in the range from 500 to 1400						
volts peak to peak.			<u> </u>		<u> </u>	

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	55	56	57	58	59	60
A method for applying electrical energy to a target site on a body structure on or within a patient's body, the method comprising:						
positioning an electrode terminal into at least close proximity with the target site in the presence of an electrically conductive fluid;	1:52-55, 2:7-46	4:20-50	4, 6		2-3	5:40
positioning a return electrode within the electrically conductive fluid such that the return electrode is not in contact with the body structure to generate a current flow path between the electrode terminal and the return electrode; and				·	-	
applying a high frequency voltage difference between the electrode terminal and the return electrode such that an electrical current flows from the electrode terminal, through the region of the target site, and to the return electrode through the current flow path.	2:7-46	1:61-2:12	3	3:9-49		4:45
3. The method of claim 1 further comprising						
immersing the target site within a volume of the electrically conductive fluid and			6:7-15			4:30-37
positioning the return electrode within the volume of electrically conductive fluid to generate the current flow path between the electrode terminal and the return electrode.			6:7-15			
4. The method of claim 1 further comprising						
delivering the electrically conductive fluid to the target site.			6:7-15			4:30-37
9. The method of claim 1 wherein the electrode terminal comprises a single active electrode disposed near the distal end of an instrument shaft.		1:61-2:11				4:15-29
11. The method of claim 1 wherein the electrically conductive fluid comprises isotonic saline.			6:7-15		,	
13. The method of claim 1 wherein						

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	55	56	57	58	59	60
the return electrode is spaced from the						
electrode terminal such that when the						
electrode terminal is brought adjacent a						
tissue structure immersed in electrically				ĺ		
conductive fluid, the return electrode is			6:7-15	·		1
spaced from the tissue structure and the		1	,			<u> </u>
electrically conductive fluid completes a	İ		1			
conduction path between the electrode	 					
terminal and the return electrode	Ì					i l
18. The method of claim 1 further				11		
comprising		.				
applying a sufficient high frequency voltage						·
difference to vaporize the electrically				1		
conductive fluid in a thin layer over at least a]			Į		
portion of the electrode terminal and to				1		
induce the discharge of energy to the target						
site in contact with the vapor layer.	ļ	- 1		ļ		
21. The method of claim 1 wherein						
the voltage is in the range from 500 to 1400	ĺ					
volts peak to peak.						
23. A method for applying electrical energy	ŀ	!				<u> </u>
to a target site on a body structure on or	Ì	l .				
within a patient's body, the method	ł					ļ
comprising:						
contacting an active electrode with the body]		1		}
structure in the presence of an electrically	1:52-55,					
conductive fluid;	2:7-46	4:20-50	6		2-3	5:40
specing a setum electrode away from the						
spacing a return electrode away from the						
body structure in the presence of the electrically conductive fluid; and						
applying a high frequency voltage difference						
between the active electrode and the return			=			
electrode such that an electrical current						
flows from the active electrode, through the	2:7-46	1:61-2:12	3	3:9-49		4:45
electrically conductive fluid, and to the	2.,-40	1.01-2.12		3.5-45		1 4.43
return electrode.						
return electrode.		[
26. The method of claim 23 further	· ·	 		 		
comprising		1			!	
immersing the target site within a volume of				l	!	
the electrically conductive fluid and	<u> </u>]	6:7-15			4:30-37
positioning the return electrode within the		 		 		
volume of electrically conductive fluid to		<u> </u>		}		
generate a current flow path between the]	6:7-15			
active electrode and the return electrode.		1				
and the foldin electrone.						ļ

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	55	56	57	58	59	60
27. The method of claim 23 further						1
comprising						
delivering the electrically conductive fluid to			6:7-15			4:30-37
the target site.			0.7-13			4.30-37
30. The method of claim 23 wherein						
the active electrode comprises a single active						
electrode disposed near the distal end of an		1:61-2:11				4:15-29
instrument shaft.						
32. The method of claim 23 wherein						
the electrically conductive fluid comprises			6:7-15			
isotonic saline.			0.7-13			l
34. The method of claim 23 wherein					-	
the return electrode is spaced from the						
active electrode such that when the active						
electrode is brought adjacent a tissue						
structure immersed in electrically conductive						
fluid, the return electrode is spaced from the .			6:7-15			
tissue structure and the electrically				1]
conductive fluid completes a conduction						
path between the active electrode and the						
return electrode						
39. The method of claim 23 further						
comprising						
applying a sufficient high frequency voltage						
difference to vaporize the electrically				ł		}
conductive fluid in a thin layer over at least a						
portion of the active electrode and to induce						
the discharge of energy to the target site in		1	•	}		
contact with the vapor layer.						
42. The method of claim 23 wherein						
the voltage is in the range from 500 to 1400	•	1				
volts peak to peak.						

Exhibit D:

Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	61	62	63	64	65	66
A method for applying electrical energy to a target site on a body structure on or within a patient's body, the method comprising:						
positioning an electrode terminal into at least close proximity with the target site in the presence of an electrically conductive fluid;	11:65-66, 4:15	4:10-29	2:26		2:10, 6:65, 8:22	2:10, 5:15
positioning a return electrode within the electrically conductive fluid such that the return electrode is not in contact with the body structure to generate a current flow path between the electrode terminal and the return electrode; and		Fig. 3				
applying a high frequency voltage difference between the electrode terminal and the return electrode such that an electrical current flows from the electrode terminal, through the region of the target site, and to the return electrode through the current flow path.	3:30	2:35		2:5	5:34	2:1
3. The method of claim 1 further comprising						
immersing the target site within a volume of the electrically conductive fluid and		4:30-46		4:23-31	6:64-7:10	1:63-2:17
positioning the return electrode within the volume of electrically conductive fluid to generate the current flow path between the electrode terminal and the return electrode.		Fig. 3				
4. The method of claim 1 further comprising						
delivering the electrically conductive fluid to the target site.		4:30-46		4:23-31	6:64-7:10	1:63-2:17
9. The method of claim 1 wherein the electrode terminal comprises a single active electrode disposed near the distal end of an instrument shaft.	5:10-28	3:28-60		5:44-63	5:20-36	1:63-2:17
11. The method of claim 1 wherein the electrically conductive fluid comprises isotonic saline.	•				6:64-7:10	3:24-33
13. The method of claim 1 wherein						

Exhibit D:

Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	61	62	63	64	65	66
the return electrode is spaced from the			-			
electrode terminal such that when the						
electrode terminal is brought adjacent a				1		
tissue structure immersed in electrically				Į		
conductive fluid, the return electrode is		Fig. 3			:	
spaced from the tissue structure and the			1			
electrically conductive fluid completes a					i	
					l	
conduction path between the electrode						
terminal and the return electrode. 18. The method of claim 1 further						
comprising						
applying a sufficient high frequency voltage		•		İ]	
difference to vaporize the electrically	,					
conductive fluid in a thin layer over at least a					C.5C	
portion of the electrode terminal and to	,			1	6:56	
induce the discharge of energy to the target						
site in contact with the vapor layer.						
21. The method of claim 1 wherein						
the voltage is in the range from 500 to 1400	4:28-48					
volts peak to peak.			·			
23. A method for applying electrical energy						
to a target site on a body structure on or			1			
within a patient's body, the method						
comprising:						
contacting an active electrode with the body					1	
structure in the presence of an electrically	11:65-66,	4 40 00	0.06		2:10, 6:65,	2:10
conductive fluid;	4:15	4:10-29	2:26		8:22	2:10
spacing a return electrode away from the						
body structure in the presence of the		Fig. 3	}	1		1
electrically conductive fluid; and						
applying a high frequency voltage difference					1	
between the active electrode and the return				į		
electrode such that an electrical current				į		
flows from the active electrode, through the	3:30	2:35		2:5	5:34	2:1
electrically conductive fluid, and to the						
return electrode.						
26. The method of claim 23 further						
comprising					<u> </u>	
immersing the target site within a volume of		4:30-46		4:23-31	6:64-7:10	1:63-2:17
the electrically conductive fluid and .		4.50-40		7.2.5-51	0.07-7.10	1.03-2.17
positioning the return electrode within the					1	1
volume of electrically conductive fluid to				ŀ		
generate a current flow path between the		Fig. 3				
active electrode and the return electrode.						
				1		

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	61	62	63	64	65	66
27. The method of claim 23 further						
comprising						
delivering the electrically conductive fluid to		4:30-46		4:23-31	6:64-7:10	1:63-2:17
the target site.		4.30-40	İ	4:23-31	0.04-7.10	1.05-2.17
30. The method of claim 23 wherein						
the active electrode comprises a single active			1			
electrode disposed near the distal end of an	5:10-28	3:28-60		5:44-63	5:20-36	1:63-2:17
instrument shaft.						
32. The method of claim 23 wherein						
the electrically conductive fluid comprises					6:64-7:10	3:24-33
isotonic saline.					0.04-7.10	3.24-33
34. The method of claim 23 wherein				<u> </u>		
the return electrode is spaced from the						
active electrode such that when the active	•			·		
electrode is brought adjacent a tissue						
structure immersed in electrically conductive						
fluid, the return electrode is spaced from the		Fig. 3				
tissue structure and the electrically				!		
conductive fluid completes a conduction				i		
path between the active electrode and the				į.		
return electrode						
39. The method of claim 23 further						
comprising						
applying a sufficient high frequency voltage			,			
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a			•	•		
portion of the active electrode and to induce					6:56	
the discharge of energy to the target site in						
contact with the vapor layer.						
42. The method of claim 23 wherein						
the voltage is in the range from 500 to 1400	4:28-48				*	
volts peak to peak.						

Exhibit D:

Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	67	68	69	. 70	. 71	72
A method for applying electrical energy to a target site on a body structure on or within a patient's body, the method comprising:				: :		
positioning an electrode terminal into at least close proximity with the target site in the presence of an electrically conductive fluid;	4:10, 2:35	1:21-44	4:13-17	3:1, 2:45	7:13-15	4:33, 3:9
positioning a return electrode within the electrically conductive fluid such that the return electrode is not in contact with the body structure to generate a current flow path between the electrode terminal and the return electrode; and						2:29-36
applying a high frequency voltage difference between the electrode terminal and the return electrode such that an electrical current flows from the electrode terminal, through the region of the target site, and to the return electrode through the current flow path.	2:35	3:25	3:20	2:38	3:43-4:18	2:30
3. The method of claim 1 further comprising					ü	
immersing the target site within a volume of the electrically conductive fluid and	4:4-11	2:65-3:22	,	2:67-3:8		
positioning the return electrode within the volume of electrically conductive fluid to generate the current flow path between the electrode terminal and the return electrode.	4:4-11			2:67-3:8		2:29-36
4. The method of claim 1 further comprising						
delivering the electrically conductive fluid to the target site.	4:4-11	2:65-3:22		2:67-3:8		
9. The method of claim 1 wherein the electrode terminal comprises a single active electrode disposed near the distal end of an instrument shaft.	4:37-52	4:33-43	3:13-16	2:37-46	3:43-53	2:36-41
11. The method of claim 1 wherein the electrically conductive fluid comprises isotonic saline. 13. The method of claim 1 wherein	4:4-11			2:67-3:8		

Exhibit D: Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	67	68	69	70	71	72
the return electrode is spaced from the						
electrode terminal such that when the						
electrode terminal is brought adjacent a		l				}
tissue structure immersed in electrically	l					
conductive fluid, the return electrode is	4:4-11			2:67-3:8		2:29-36
spaced from the tissue structure and the	l					
electrically conductive fluid completes a	1					
conduction path between the electrode	1					
terminal and the return electrode.						
18. The method of claim 1 further						
comprising						
applying a sufficient high frequency voltage						
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a					1	
portion of the electrode terminal and to						
induce the discharge of energy to the target				-		
site in contact with the vapor layer.					U	
21. The method of claim 1 wherein				-		
the voltage is in the range from 500 to 1400				·	1	
volts peak to peak.						
23. A method for applying electrical energy				1	 -	
to a target site on a body structure on or						
within a patient's body, the method				1		
comprising:		}	ļ			
contacting an active electrode with the body						
structure in the presence of an electrically						•
conductive fluid;	4:10, 2:35			3:1, 2:45	}	4.33, 3.9
			,			
spacing a return electrode away from the						
body structure in the presence of the				1		2:29-36
electrically conductive fluid; and						
applying a high frequency voltage difference		-				-
between the active electrode and the return						
electrode such that an electrical current				1		
flows from the active electrode, through the	2:35	3:25	3:20	2:38	3:43-4:18	2:30
electrically conductive fluid, and to the	·			1		
return electrode.						
26. The method of claim 23 further	•					
comprising						
immersing the target site within a volume of						
the electrically conductive fluid and	4:4-11	2:65-3:22		2:67-3:8		
positioning the return electrode within the						
volume of electrically conductive fluid to	6.					
generate a current flow path between the	4:4-11			2:67-3:8		2:29-36
active electrode and the return electrode.						

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	67	68	69	70	71	72
27. The method of claim 23 further				:		
comprising				i		
delivering the electrically conductive fluid to	4:4-11	2:65-3:22		2:67-3:8		
the target site.	4:4-11	2:03-3:22		2.07-3.8		
30. The method of claim 23 wherein						
the active electrode comprises a single active						
electrode disposed near the distal end of an	4:37-52	4:33-43	3:13-16	2:37-46	3:43-53	2:36-41
instrument shaft.						
32. The method of claim 23 wherein					·	
the electrically conductive fluid comprises	4:4-11		•	2:67-3:8		
isotonic saline.	4.4-11			2.07-3.8		
34. The method of claim 23 wherein						
the return electrode is spaced from the		ļ		1		
active electrode such that when the active		1		1		
electrode is brought adjacent a tissue						
structure immersed in electrically conductive				1		
fluid, the return electrode is spaced from the	4:4-11	1		2:67-3:8		2:29-36
tissue structure and the electrically		ł .				
conductive fluid completes a conduction						
path between the active electrode and the						
return electrode			·			
39. The method of claim 23 further]		-
comprising		ļ				
applying a sufficient high frequency voltage		1				
difference to vaporize the electrically						
conductive fluid in a thin layer over at least a						
portion of the active electrode and to induce						
the discharge of energy to the target site in						
contact with the vapor layer.						
42. The method of claim 23 wherein						
the voltage is in the range from 500 to 1400						
volts peak to peak.						

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	73	- 74
1. A method for applying electrical energy to		
a target site on a body structure on or within		
a patient's body, the method comprising:		
positioning an electrode terminal into at least		02163107
close proximity with the target site in the	6:45-55	SN61187, SN61173
presence of an electrically conductive fluid;		2N011/3
positioning a return electrode within the		
electrically conductive fluid such that the		
return electrode is not in contact with the		SN61173
body structure to generate a current flow		
path between the electrode terminal and the		
return electrode; and		
applying a high frequency voltage difference		
between the electrode terminal and the return		
electrode such that an electrical current	4.25	GNICN 172
flows from the electrode terminal, through	4:35	SN61173
the region of the target site, and to the return		
electrode through the current flow path.		
3. The method of claim 1 further comprising		
immersing the target site within a volume of	3:60-4:3	SN61174
the electrically conductive fluid and		51101111
positioning the return electrode within the		
volume of electrically conductive fluid to		SN61171,
generate the current flow path between the		SN61173
electrode terminal and the return electrode.		
4. The method of claim 1 further comprising		
delivering the electrically conductive fluid to	3:60-4:3	SN61174
the target site.	5.00 7.5	Q11011/1
9. The method of claim 1 wherein		
the electrode terminal comprises a single		
active electrode disposed near the distal end	6:8-22	SN61173
of an instrument shaft.		
11. The method of claim 1 wherein		
the electrically conductive fluid comprises isotonic saline.	1	SN61174
13. The method of claim 1 wherein		
13. The memor of claim I wherein		l

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	73	74
the return electrode is spaced from the		1
electrode terminal such that when the		1
electrode terminal is brought adjacent a		
tissue structure immersed in electrically		SN61171,
conductive fluid, the return electrode is		SN61173
spaced from the tissue structure and the		21401112
electrically conductive fluid completes a		
conduction path between the electrode		
terminal and the return electrode		
18. The method of claim 1 further		
comprising		-
applying a sufficient high frequency voltage		
difference to vaporize the electrically		:
conductive fluid in a thin layer over at least a		
portion of the electrode terminal and to		SN61173
induce the discharge of energy to the target		
site in contact with the vapor layer.		
Site in contact with the vapor layer.		
21. The method of claim 1 wherein		
the voltage is in the range from 500 to 1400		SN61173
volts peak to peak.		SN01173
23. A method for applying electrical energy		
to a target site on a body structure on or		
within a patient's body, the method		
comprising:		
contacting an active electrode with the body		
structure in the presence of an electrically		CNIC1107
conductive fluid;	6:45-55	SN61187,
		SN61173
spacing a return electrode away from the		
body structure in the presence of the		SN61173
electrically conductive fluid; and		
applying a high frequency voltage difference		
between the active electrode and the return	ĺ	-
electrode such that an electrical current		
flows from the active electrode, through the	4:35	SN61173
electrically conductive fluid, and to the		
return electrode.		
	İ	
26. The method of claim 23 further		
comprising		<u> </u>
immersing the target site within a volume of	3:60-4:3	SN61174
the electrically conductive fluid and	J.00-4.3	51101174
positioning the return electrode within the		
volume of electrically conductive fluid to		SN61171,
generate a current flow path between the		SN61171,
active electrode and the return electrode.		31101173
	<u> </u>	1

Exhibit D:
Examples of where each limitation of the claims of the '592 patent may be found in each reference.

claim text \ reference	73	74
27. The method of claim 23 further		
comprising		
delivering the electrically conductive fluid to	3:60-4:3	SN61174
the target site.	3.00-4.3	31101174
30. The method of claim 23 wherein	-	
the active electrode comprises a single active		
electrode disposed near the distal end of an	6:8-22	SN61173
instrument shaft.		
32. The method of claim 23 wherein		
the electrically conductive fluid comprises		SN61174
isotonic saline.		31101174
34. The method of claim 23 wherein		
the return electrode is spaced from the		ė
active electrode such that when the active		
electrode is brought adjacent a tissue		
structure immersed in electrically conductive		SN61171,
fluid, the return electrode is spaced from the		SN61171,
tissue structure and the electrically		31101173
conductive fluid completes a conduction		
path between the active electrode and the		
return electrode		
39. The method of claim 23 further		
comprising		
applying a sufficient high frequency voltage		
difference to vaporize the electrically		
conductive fluid in a thin layer over at least a		
portion of the active electrode and to induce		SN61173
the discharge of energy to the target site in		·
contact with the vapor layer.		
42. The method of claim 23 wherein		
the voltage is in the range from 500 to 1400		SN61173
volts peak to peak.		

Exhibit E:
Anticipation and obviousness contentions

Smith & Nephew contends that the following claims are anticipated by at least each of the following primary references. Smith & Nephew reserves the right to supplement this contention in the event ArthroCare changes its construction of the asserted claims, or in the event the Court's construction of the asserted claims differs.

Patent	Claim	References
536	45	8, 15, 22, 23, 26, 29, 31, 36, 38, 48, 51, 52, 74
	46	8, 15, 23, 29, 31, 48, 51, 52
	47	23, 31, 48, 51
	55	8, 15, 22, 23, 26, 29, 31, 36, 38, 48, 51, 52, 65
	56	8, 15, 26, 29, 31, 36, 38, 51, 52
	58	22, 23, 26, 29, 38, 65
	59	22, 23, 26, 29
882	1	8, 15, 26, 38, 48, 51, 52, 65
	13	15, 26, 52, 65
•	17	26
	18	26
_	21	26, 52
	23	8, 26, 38, 48, 51, 52, 65
	24	8, 26, 38, 48, 51, 52, 65
•	28	8, 15, 26, 29, 74
	29	15, 26, 65
	47	26, 29, 38
	48	26, 29
	49	26, 29
	50	26, 29, 65
	54	48
592	1	8, 15, 23, 26, 31, 34, 48, 51, 74
	3	8, 15, 23, 26, 31, 48, 51
	4	8, 15, 23, 26, 31, 48, 51
	9	8, 15, 23, 26, 31, 48, 51
	11	8, 23, 26, 31, 48, 51
	13	8, 15, 23, 26, 31, 48, 51
	18	8, 15, 26, 48, 51
	21	23, 26
	23	8, 15, 23, 26, 31, 34, 48, 51, 74
	26	8, 15, 31, 48, 51
	27	8, 15, 31, 48, 51
	30	8, 15, 31, 48, 51

Patent	Claim	References
	32	8, 31, 48, 51
	34	8, 15, 31, 34, 48, 51
i	39	8, 15, 48, 51
	42	23, 26, 74

Smith & Nephew also contends that the following claims would have been obvious to one of ordinary skill in the art at the time of the invention in view of at least each of the following combinations of primary references, which Smith & Nephew contends would have been combined for at least the following reasons. Smith & Nephew reserves the right to supplement this contention in the event ArthroCare changes its construction of the asserted claims, or in the event the Court's construction of the asserted claims differs.

Patent	Claim	Combinations	Motivation to Combine
536	45	Any one or more of 10, 32, 34 with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
·	46	10 with any one or more of 22, 26, 36, 38, 65; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	47	Any one or more of 8, 15, 26, 29, 36, 52 with any one or more of 10, 34; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	55	10 with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.

Patent	Claim	Combinations	Motivation to Combine
	56	34 with any one or more of 48, 65; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	58	Any one or more of 8, 15, 31, 48, 51, 52 with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	59	32 with any one or more of 8, 15, 31, 38, 48, 51, 52, 65; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
882	1	10 with any one or more of 22, 23, 29, 31, 34, 36; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	13	Any one or more of 10, 29 with any one or more of 8, 38, 48, 51; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	17	Any one or more of 23, 29, 32 with any one or more of 8, 15, 38, 48, 51, 52, 65; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	18	Any one or more of 23, 29, 32 with any one or more of 8, 15, 38, 48, 51, 52, 65; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.

Patent	Claim	Combinations	Motivation to Combine
	21	Any one or more of 31, 36 with any one or more of 8, 15, 38, 48, 51, 65; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
*	23	Any one or more of 22, 23, 29, 31, 36 with 15; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	24	Any one or more of 22, 23, 29, 36 with 15; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	28	Any one or more of 10, 22, 23, 31, 32, 34, 36, 38, 48, 51, 52 with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	29	Any one or more of 10, 48, 52 with any one or more of 8, 29; any one or more of the preceding with any one or more of the anticipating references listed above; 38, 51 with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	47	Any one or more of 22, 31, 36 with any one or more of 8, 15, 48, 51, 52, 65; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem — applying electrical energy to a target site on a patient's body structure.

Patent	Claim	Combinations	Motivation to Combine
	48	Any one or more of 23, 32 with	Each reference is directed to the
		any one or more of 8, 15, 65;	same problem applying
	•	any one or more of the preceding	electrical energy to a target site on
		with any one or more of the	a patient's body structure.
		anticipating references listed	
		above.	
	49	32 with any one or more of 8,	Each reference is directed to the
		15, 65;	same problem applying
		any one or more of the preceding	electrical energy to a target site on
		with any one or more of the	a patient's body structure.
	ļ	anticipating references listed	-
		above.	
	50	Any one or more of 8, 15 with	Each reference is directed to the
		any one or more of the	same problem applying
	<u>.</u>	anticipating references listed	electrical energy to a target site on
		above.	a patient's body structure.
	54	31 with any one or more of the	Each reference is directed to the
		anticipating references listed	same problem applying
		above.	electrical energy to a target site on
			a patient's body structure.
592	1	Any one or more of 10, 22, 29,	Each reference is directed to the
		32, 36, 38, 52 with any one or	same problem applying
		more of the anticipating	electrical energy to a target site on
		references listed above.	a patient's body structure.
	3	Any one or more of 22, 29, 36,	Each reference is directed to the
		52 with 34;	same problem applying
		any one or more of the preceding	electrical energy to a target site on
		with any one or more of the	a patient's body structure.
		anticipating references listed	
		above;	
		38, 65 with any one or more of	
		the anticipating references listed	
		above.	
	4	Any one or more of 22, 29, 36,	Each reference is directed to the
		38, 52, 65 with 34;	same problem applying
		any one or more of the preceding	electrical energy to a target site on
		with any one or more of the	a patient's body structure.
		anticipating references listed	
	<u> </u>	above.	
	9	Any one or more of 10, 22, 29,	Each reference is directed to the
		36, 38, 52, 65 with 34;	same problem — applying
		any one or more of the preceding	electrical energy to a target site on
		with any one or more of the	a patient's body structure.
	}	anticipating references listed	
		above.	

Patent	Claim	Combinations	Motivation to Combine
	11	Any one or more of 22, 29, 36,	Each reference is directed to the
		38, 52, 65 with any one or more	same problem applying
		of 15, 34;	electrical energy to a target site on
		any one or more of the preceding	a patient's body structure.
·		with any one or more of the	•
		anticipating references listed	
ļ		above.	
	13	Any one or more of 22, 29, 36,	Each reference is directed to the
		52 with 34;	same problem applying
		any one or more of the preceding	electrical energy to a target site on
	ļ	with any one or more of the	a patient's body structure.
		anticipating references listed	_
		above.	
	18	Any one or more of 10, 38, 52,	Each reference is directed to the
		65 with any one or more of 23,	same problem applying
		31, 34;	electrical energy to a target site on
		any one or more of the preceding	a patient's body structure.
	ļ	with any one or more of the	
		anticipating references listed	
		above.	
	21	Any one or more of 29, 32 with	Each reference is directed to the
		any one or more of 8, 15, 31, 34,	same problem applying
		48, 51;	electrical energy to a target site on
		any one or more of the preceding	a patient's body structure.
		with any one or more of the	
İ		anticipating references listed	
		above.	[]
	23	Any one or more of 10, 22, 29,	Each reference is directed to the
		32, 36, 38, 52 with any one or	same problem applying
		more of the anticipating	electrical energy to a target site on
	26	references listed above.	a patient's body structure.
	26	Any one or more of 22, 23, 26,	Each reference is directed to the
		29, 36, 52 with 34;	same problem — applying
		any one or more of the preceding	electrical energy to a target site on a patient's body structure.
		with any one or more of the	a patient's body structure.
		anticipating references listed	
		above; 38, 65 with any one or more of	
Ì	ļ		
	1	the anticipating references listed	
L	1	above.	<u> </u>

Patent	Claim	Combinations	Motivation to Combine
	27	Any one or more of 22, 23, 26, 29, 36, 38, 52, 65 with 34; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	30	Any one or more of 10, 22, 23, 26, 29, 36, 38, 52, 65 with 34; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
-	32	Any one or more of 22, 23, 26, 29, 36, 38, 52, 65 with any one or more of 15, 34; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
:	34	Any one or more of 22, 23, 26, 29, 36, 52 with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	39	Any one or more of 10, 26, 38, 52, 65 with any one or more of 31, 34; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.
	42	Any one or more of 23, 26, 29, 32 with any one or more of 8, 15, 31, 34, 48, 51; any one or more of the preceding with any one or more of the anticipating references listed above.	Each reference is directed to the same problem applying electrical energy to a target site on a patient's body structure.

50107288.doc

