

Home Credit Default Risk

Power to know who will default

Manikanta Chinta

Problem

Foreclosure by Home Credit to recover loan

Credit to recover loan

amount

Financial Situations force them to default

Home Credit faces loss of thousands of dollars as well as bad customer experience

What Home Credit is doing right now?

Usually, Financial Institutions predict which customers will default using **logistic regression** which is one of the popular techniques

With the data home credit collects, logistic regression model ranks only 56% of random defaulters above random non defaulters

Our Results

Our model can rank **76%** of times a random defaulter above a random non defaulter

So how did we create this model?

Data Exploration

Number of non-defaulters are 10 times defaulters

Missing values of various features

Features are not able to provide any distinction in the target class

Data Exploration

Number of non-defaulters are 10 times defaulters

Missing values of various features

Features are not able to provide any distinction in the target class

Data Exploration

Number of non-defaulters are 10 times defaulters

Missing values of various features

Features are not able to provide any distinction in the target class

Data Transformation

Feature Engineering

Using domain knowledge to transform some existing variables and Creating new variables which can help the algorithm in performing better. Some of fields are listed below.

Transformed the below existing columns:

- % of loan amount approved
- No. of previous applications

Created the below new columns:

- Previous Rejects
- Previous applications(yes or no)
- Percent of time employed

Feature Selection

With too many features, models struggle to find a pattern because of noise introduced by features that do not hold any information about the target.

More features leads to increased calculations impacting model performance

Using feature selection algorithm we eliminated all such features and retained only the features that are important.

Feature Selection Technique:

XGBOOST feature importance based on information gain.

Final Feature Count: 76

Total Features: 490* features after one hot encoding categorical variables

	AUC	Cost Savings
Logistic	56%	\$108k*
XG Boost	76%	

Thank YOU !!!!!!