Concept-level Debugging of Part-Prototype Networks

Part-Prototype Networks

ProtoPNets are **self-explainable deep image classifiers** that work by:

- Embedding image using (pre-trained) convolutional/pooling layers
- Computing activation (similarity) of part-prototypes capturing concepts in training data
- Aggregating activations into class probabilities

Their **explanations** highlight what part-prototypes (and training examples) are responsible for a given prediction y = f(x) and where they activate on the input.

ProtoPNets are trained to optimize the log-likelihood of the data and two clustering losses that encourage the part-prototypes to strongly activate only on examples of their associated class.

Confounding in ProtoPNets

ProtoPNets exploit **confounds** in the data to maximize training set performance, for instance by classifying birds based on the background.

Compromises (esp. out-of-distribution) performance.

CUB200

COVID-19

Input-level vs Concept-based Debugging

Input-level (e.g., IAIA-BL [Barnett et al.])	Concept-level (ProtoPDebug)
penalizes part-prototypes that activate on pixels annotated as irrelevant	penalizes part-prototypes that correlate with known-forbidden concepts (e.g., "sea")
■ Attribution masks are local, i.e., they do not generalize across images.	■ Generalizes across images: one concept-level annotation = several pixel-level annotations.
■ Hence, a substantial number of example must be annotated to fix the model.	■ Speeds up convergence, avoids relapse.
■ Acquiring per-pixel attribution annotations is expensive.	■ Cheap, click-based feedback!

Andrea Bontempelli*, Stefano Teso*, Katya Tentori*, Fausto Giunchiglia*+, Andrea Passerini*

* University of Trento, Italy + Jilin University, China

Concept-level Debugging with ProtoPDebug

The "cut-out" is a box that covers 95% of the activation in the part-prototype saliency map, and it is extracted automatically by ProtoPNets.

Algorithm 1 A debugging session with ProtoPDebug. f is a ProtoPNet trained on data set D.

- 1: initialize $\mathcal{F} \leftarrow \emptyset$, $\mathcal{V} \leftarrow \emptyset$ 2: while True do for $\mathbf{p} \in \mathcal{P}$ do
- for each (x, y) of the a training examples most activated by p do if p appears confounded to user then
- add cut-out \mathbf{x}_R to \mathcal{F}
- else if p appears high-quality to user then
- add cut-out \mathbf{x}_R to \mathcal{V} if no confounds found then
- fine-tune f by minimizing $\ell(\theta) + \lambda_f \ell_{for}(\theta) + \lambda_r \ell_{rem}(\theta)$
- 12: return

After each round of feedback, in which it collects part-prototypes to be forbidden and remembered, ProtoPDebug fine-tunes the model by optimizing the ProtoPNet loss augmented with two extra terms

■ The **forgetting loss** penalizes part-prototypes for activating on forbidden concepts:

■ The **remembering loss** encourages at least one part-prototype to activate on a concept to be retained:

$$\ell_{ ext{for}}(heta) := rac{1}{v} \sum_{y \in [v]} \max_{egin{subarray}{c} \mathbf{p} \in \mathcal{P}^y \\ \mathbf{f} \in \mathcal{F}_y \end{subarray}} \operatorname{act}(\mathbf{p}, \mathbf{f})$$

$$\ell_{\mathrm{rem}}(\theta) := -\frac{1}{v} \sum_{y \in [v]} \min_{\substack{\mathbf{p} \in \mathcal{P}_y \\ \mathbf{v} \in \mathcal{V}_y}} \mathrm{act}(\mathbf{p}, \mathbf{v})$$

Benefits: encourages model to focus on relevant concepts with few clicks; invariant to concept order; prevents model from re-learning forbidden concepts (simply deleting concepts does not); robust to cases where non-deleted concepts are useless.

arxiv.org/abs/2205.15769

code

github.com/abonte/protopdebug

Concept-level Debugging is Useful ...

We add **synthetic confounds** (colored boxes) in the first five classes of CUB200, and measure F1 score on a clean test set.

The baseline model (**black**) performs poorly, and a model trained on clean (green) data very well. IAIA-BL (blue) requires plenty of attribution masks to perform reasonably well. ProtoPDebug (red) achieves best performance with a single click per class.

... Even for Natural Confounds ...

Here we look at how well different methods handle **natural confounds** (like "sea" and "foliage") on the five "most confounded" CUB200 classes. Performance is test F1 (we swapped backgrounds of test images to prevent confounding to affect performance) and pixel-level activation precision. We ran a real-world user study with 10 participants over three rounds of sequential debugging.

	ProtoPNet	ProtoPDebug
Class $\overline{F_1}$ AP_1 AP_2	$\overline{F_1 AP_1 AP_2}$	$\overline{F_1}$ AP_1 AP_2
0	0.48 0.75 0.75	0.54 0.84 0.84
6	0.38 0.73 0.48	0.64 0.94 0.95
8	0.67 0.27 0.93	0.93 0.89 0.89
14	0.51 0.79 0.79	0.52 0.95 0.95
15	0.77 0.85 0.86	0.82 0.89 0.89
Avg.	0.56 0.68	0.69 0.90

.. and in High-stakes Applications

Test F1 improves from 0.26 of ProtoPNets to 0.54 at the end of the debugging process.

Chen et al. "This looks like that: Deep learning for interpretable image recognition". NeurIPS, 2019. Barnett et al. "A case-based interpretable deep learning model for classification of mass lesions in digital mammography". Nature Machine Intelligence, 2021.

DeGrave et al. "Al for radiographic covid-19 detection selects shortcuts over signal". Nature Machine