

Schedule

State of the course

Lesson 5 Review

Challenge

Notebook + resources

State of the course

- Lesson 1 Cleaning & Exploratory Data Pandas
- Lesson 2 Linear Regression & Decision Trees
- Lesson 3 FI, Random Forest Deep Dive
- Lesson 4 Unsupervised Learning
- Lesson 5 Intro to Deep Learning
- Split
 - SGD
 - Neural Networks

Today!

Agenda:

9:30 Machine Learning Lesson 5 + Work

11:30 Coffee break

12:45 Projects

13:00 Talk: Quantum Computing & ML

¿Cómo aprendemos?

Revisar y entender la documentación

X Cómo preparar la 3ª Sesión

Atentos a las indicaciones para preparar este sábado:

Para ML, #3 - FI, Random Forest Deep Dive.

En este tercera semana vamos repasar conceptos de ML, y meternos de lleno en Random Forest (RF). Ya habéis experimentado, cada vez entenderéis más lo que estás practicando y, en concreto, RF es la mejor opción para continuar porque vamos a seguir trabajando sobre los mismos conceptos.

Para trabajar esta sesión vamos a ver las dos primeras lecciones de fast.ai. La idea es seguir el notebook que os dejamos mientras seguimos también ambos videos.

- Notebook para seguir junto con estos videos
- Video 1
- Video 2
- Tutorial Feature Importance

Tendremos preparados 3 ejercicios para este sábado y un Kahoot 🥮

Jugar con los datos

Aprendizaje cooperativo

Slack

- Dudas Técnicas
- Seguimiento semanal
- Recursos
- Proyectos
- Contacto con la Comunidad

(0)

Ahora...

Neural Networks

Crea tu Red Neuronal

NEURAL NETWORK USING STOCHASTIC GRADIENT

DESCENT

Normalizar

Why normalize?

Gradient Descent

Loss Function

Argmax

Keras vs. PyTorch

Keras vs Pytorch for Deep Learning

Learning Rates

<u>Understand the Impact of Learning Rate on Neural Network</u>
<u>Performance</u>

Work!

 Review the notebooks from the lecture.

<u>Challenge</u> -> Apply your model

Backpropagation

¡Compartidlo!

@AISaturdaysES

@aisaturdays_madrid

#AlSaturdaysMadrid

Bibliografía

- [Libro] Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
- [Curso] Fast.Al módulo 8 & 9
- [Curso] MlCourse.ai lecture 10

mlcourse.ai

by OpenDataScience lead by Yury Kashnitsky (@yorko)

Talk

Other datasets

Google Collab: instalar el paquete kaggle-cli

```
!pip install kaggle-cli
# always use ! to run bash commands from Notebook
```

Obtener los datos escribiendo:

```
!kg download -u <<Kaggle UserName>> -p <<Kaggle Password>> -c
bluebook-for-bulldozers -f Train.zip
```

• Extraerlos y organizarlos

```
!mkdir -p data/bulldozers/
!mv Train.zip data/bulldozers/
!unzip data/bulldozers/Train.zip -d data/bulldozers/
```

• Google Collab: Utilizamos !wget para descargar el archivo de un repositorio, y !tar para descomprimirlo

```
!wget
https://raw.githubusercontent.com/Giffy/Personal_dataset_repository/
master/train.tar.gz
!tar xvf train.tar.gz
```

• Jupyter notebook: Descargas los archivos de Kaggle, decomprimes el archivo en data/bulldozers (Debes crearla)

WI-FI

LOOM_Guest -> Bienvenidos! LOOM Princesa -> LoomPr1nc3sa

