Unitary Renormalization Group Solution of the Single-Impurity Anderson model

ABHIRUP MUKHERJEE (18IPO14)

SUPERVISOR: DR. SIDDHARTHA LAL

DEPARTMENT OF PHYSICAL SCIENCES IISER KOLKATA

JULY 10, 2021

THE SINGLE-IMPURITY ANDERSON MODEL

THE SINGLE-IMPURITY ANDERSON MODEL

THE SINGLE-IMPURITY ANDERSON MODEL

NRG Results - Symmetric Model

- the **free-orbital** fixed point $(U = \Delta = 0)$ unstable
- the **local moment** fixed point $(U = \infty, \Delta = 0)$ saddle point, and
- the **strong-coupling** fixed point $(\Delta = \infty, U = \text{finite})$ stable.

Krishna-murthy, Wilson, and Wilkins 1975.

■ Is it possible to get **non-perturbative scaling equations** for the whole journey?

- Is it possible to get **non-perturbative scaling equations** for the whole journey?
- What is the nature of the strong-coupling fixed point for a **finite system** where $J \neq \infty$?

- Is it possible to get **non-perturbative scaling equations** for the whole journey?
- What is the nature of the strong-coupling fixed point for a **finite system** where $J \neq \infty$?
- Is it possible to show the **transfer of spectral weight** along the flow, possibly by tracking the spectral function?

- Is it possible to get **non-perturbative scaling equations** for the whole journey?
- What is the nature of the strong-coupling fixed point for a **finite system** where $J \neq \infty$?
- Is it possible to show the **transfer of spectral weight** along the flow, possibly by tracking the spectral function?
- How does the renormalization affect the **many-particle entanglement** between the electrons?

- Is it possible to get **non-perturbative scaling equations** for the whole journey?
- What is the nature of the strong-coupling fixed point for a **finite system** where $J \neq \infty$?
- Is it possible to show the **transfer of spectral weight** along the flow, possibly by tracking the spectral function?
- How does the renormalization affect the **many-particle entanglement** between the electrons?
- Are there any interesting **topological aspects** of the fixed points?

THE UNITARY RENORMALIZATION GROUP

Unitary Renormalization Group: Overview

The Short Version

Apply unitary many-body transformations to the Hamiltonian so as to successively decouple high energy states and hence obtain scaling equations.

Mukherjee and Lal 2020.

URG: FORMALISM

Step 1:

Start with the electrons farthest from the Fermi surface. Write the Hamiltonian as diagonal and off-diagonal terms in this basis.

URG: FORMALISM

Step 2: Rotate the Hamiltonian to kill the off-diagonal blocks.

Step 3: Repeat the process with the new blocks.

URG: SALIENT FEATURES

- \blacksquare Presence of the quantum fluctuation energy scale ω
- Presence of finite-valued fixed points
- Spectrum-preserving transformations
- Tractable low-energy effective Hamiltonians

GENERALIZED SIAM

MODEL: GENERALIZED SIAM

$$H = H_{\mathsf{SIAM}} + J\vec{S_d} \cdot \vec{s} + K\vec{C_d} \cdot \vec{c}$$

$$\vec{S_d} \equiv \frac{1}{2} \sum_{\alpha\beta} c_{d\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{d\beta}$$

$$\vec{S} \equiv \frac{1}{2} \sum_{\alpha\beta} c_{o\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{o\beta}$$

$$\vec{C_d} \equiv \frac{1}{2} \sum_{\alpha\beta} \psi_{d\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{d\beta}$$

$$\vec{C} \equiv \frac{1}{2} \sum_{\alpha\beta} \psi_{o\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{o\beta}$$

$$\vec{\psi}_d \equiv \begin{pmatrix} c_{d\uparrow} \\ c_{d\downarrow}^{\dagger} \end{pmatrix}$$

$$\vec{\psi}_o \equiv \sum_{k} \begin{pmatrix} c_{k\uparrow} \\ c_{k\downarrow}^{\dagger} \end{pmatrix}$$

Schrieffer and Wolff 1966.

RG EQUATIONS, THEIR FEATURES AND FIXED POINTS

RG EQUATIONS

$$\Delta U = 4|V|^2 \left[\frac{1}{\omega - \frac{1}{2}D + \frac{U}{2} + \frac{1}{2}J} - \frac{1}{\omega - \frac{1}{2}D - \frac{U}{2} + \frac{1}{2}K} \right] + \sum_{k < \Lambda} \frac{3}{4} \frac{K^2 - J^2}{\omega - \frac{1}{2}D + \frac{1}{4}J + \frac{1}{4}K}$$

$$\Delta V = \frac{VK}{16} \left(\frac{1}{\omega - \frac{1}{2}D - \frac{U}{2} + \frac{1}{2}K} + \frac{1}{\omega - \frac{1}{2}D + \frac{1}{4}J + \frac{1}{4}K} \right) - \frac{3VJ}{4} \left(\frac{1}{\omega - \frac{1}{2}D + \frac{U}{2} + \frac{1}{2}J} + \frac{1}{\omega - \frac{1}{2}D + \frac{1}{4}J + \frac{1}{4}K} \right)$$

$$\Delta J = -J^2 \left(\omega - \frac{1}{2}D + \frac{1}{4}J + \frac{1}{4}K \right)^{-1}$$

$$\Delta K = -K^2 \left(\omega - \frac{1}{2}D + \frac{1}{4}J + \frac{1}{4}K \right)^{-1}$$

PASSAGE TO POOR MAN'S SCALING RESULTS

$$\blacksquare$$
 $J = 0, K = 0$

$$\omega = -\frac{D}{2}$$

$$\blacksquare$$
 $U = -\frac{\epsilon_d}{2} \ll D$

■
$$J = 0, K = 0$$

$$\omega = -\frac{D}{2}$$

$$\blacksquare$$
 $U\gg D\gg\epsilon_d$

$$\longrightarrow$$

$$\delta U = \delta V = 0$$

$$\delta U = \delta V = o$$

$$\delta \epsilon_d = \frac{\Delta}{\pi} \delta \ln D$$

FIXED POINTS

$$\blacksquare J = K = O \longrightarrow \Delta V = O$$

- $J, K, V = O^+ \longrightarrow (V^*, J^*, K^*) = \text{large}, U^* = O$ ► strong-coupling fixed point
- J = K = V = O → all couplings marginal
 line of fixed points on y-axis
- $U = O^+ \longrightarrow local moment fixed point$
 - ► ground-state is a decoupled impurity spin

RESULTS: $U > 0, \overline{J} > K$

RESULTS: U < o, J < K

LOW ENERGY EFFECTIVE THEORY AND GROUND

STATE WAVEFUNCTIONS

RESULTS: PHASE DIAGRAM

RESULTS: EFFECTIVE ZERO-MODE HAMILTONIAN

$$H_{IR} = \epsilon_d^* \left(\hat{n}_{1\uparrow} - \hat{n}_{1\downarrow} \right)^2 + V^* \sqrt{N^*} \sum_{-} \left(c_{1\sigma}^{\dagger} c_{2\sigma} + \text{h.c.} \right) + J^* N^* \vec{S_1} \cdot \vec{S_2} + K^* N^* \vec{C_1} \cdot \vec{C_2}$$

Wilson 1975; Krishna-murthy, Wilson, and Wilkins 1975; Taraphder and Coleman 1991.

RESULTS: GROUND STATE

$$\begin{split} J>K,U>o \\ |\Psi\rangle_{\mathsf{GS}} = c_{-}^{s}\left[|\uparrow,\downarrow\rangle-|\downarrow,\Uparrow\rangle\right] + c_{-}^{c}\left[|\uparrow,\downarrow\rangle+|\downarrow,\Uparrow\rangle\right] \end{split}$$

 $|\Psi\rangle_{GS} \sim [|\uparrow, \downarrow\rangle - |\downarrow, \uparrow\rangle]$

$$J < K, U < o$$

$$|\Psi\rangle_{\mathsf{GS}} = [|\uparrow_c, \downarrow_c\rangle - |\downarrow_c, \uparrow_c\rangle]$$

IMPURITY SUSCEPTIBILITIES AND IMPURITY

SPECTRAL FUNCTION

RESULTS: SPIN SUSCEPTIBILITY

$$\chi_{s} = \lim_{B \to o} \frac{\partial m}{\partial B}$$

$$(\chi \times T)(T \rightarrow 0) = \frac{1}{2i}$$

$$T_K \equiv \frac{2N^*}{\pi} (D^* - 2\omega)$$

$$\chi(T\to\infty)=\frac{1}{9}$$

Wilson 1975; Krishna-murthy, Wilson, and Wilkins 1975.

RESULTS: CHARGE SUSCEPTIBILITY

$$\chi_{c} = \lim_{\mu \to 0} \frac{\partial N}{\partial \mu}$$

 $\chi(T\to\infty)=\frac{1}{8}$

$$(\chi_c \times T)(T \to 0)\Big|_{K>J} = \frac{1}{2k} \qquad (\chi_c \times T)(T \to 0)\Big|_{J>K} = 0$$

Taraphder and Coleman 1991; Zitko and Bonca 2006.

RESULTS: IMPURITY SPECTRAL FUNCTION

Hewson 1993; Bulla, Costi, and Pruschke 2008.

RESULTS: SPECTRAL FUNCTION RENORMALIZATION

$$\mathcal{A}(\omega) = -\frac{1}{\pi} \text{Im} \left[G_{dd}^{\sigma}(\omega) \right]$$

$$G_{dd}^{\sigma}\left(t\right)=-i\theta(t)\left\langle \left\{ c_{d\sigma}(t),c_{d\sigma}^{\dagger}\right\} \right\rangle$$

RESULTS: KONDO CLOUD HAMILTONIAN

$$H^*(d, cloud) \xrightarrow{solve for bath Hamiltonian} H^*_{cloud}$$

 $H_{\text{cloud}}^* = \overbrace{H_{\text{o}}^*}^{\text{kinetic energy}} + \underbrace{\sum_{kk'\sigma\sigma'} f_{kk'} \hat{n}_{k\sigma} \hat{n}_{k'\sigma'}}_{\text{kk'}\sigma\sigma'} + \underbrace{\sum_{kk'qq'} F_{kk'qq'} c_{k\uparrow}^{\dagger} c_{k\uparrow}^{\dagger} c_{q\uparrow} c_{q'\downarrow}}_{\text{kk'}qq'}$

ENTANGLEMENT MEASURES AND TOPOLOGICAL

FEATURES OF LOW ENERGY THEORY

RESULTS: REVERSE RG: OVERVIEW

Mukherjee 2020.

RESULTS: REVERSE RG: MUTUAL INFORMATION

$$S_A = -\text{Tr} \left[\rho_A \ln \rho_A \right]$$

RESULTS: REVERSE RG: CORRELATIONS

RESULTS: LUTTINGER'S THEOREM

total no. of poles of imp. Greens func.

N =
$$P_{\text{Det } G_d}(\Gamma_{<}) + \frac{1}{2}P_{\text{Det } G_d}(\Gamma_{\text{O}}) + \frac{1}{V_L}$$

no. of poles of cbath Greens func

$$P_X(C) \equiv \frac{1}{2\pi i} \oint_C dz \frac{\partial \ln X}{\partial z} = \text{no. of poles of } X \text{ enclosed by curve } C$$
$$= \frac{1}{2\pi i} \oint_{C(X)} \frac{dX}{X} = \text{winding number of } X \text{ around } X(C)$$

Seki and Yunoki 2017.

RESULTS: LUTTINGER'S THEOREM

$$n_{\text{Det }G_d^{-1}}=1$$

$$n_{\text{Det }G_d^{-1}} = o$$

$$V_L = V_L^{\circ} + 1$$

 $V \neq 0$

RESULTS: LOCAL FERMI LIQUID

solve exactly treat as perturbation
$$H^* = \overrightarrow{J^*S_d} \cdot \overrightarrow{s} + K^*\overrightarrow{C_d} \cdot \overrightarrow{c} + V^* \left(c_{d\sigma}^\dagger c_{0\sigma} + \text{h.c.} \right) + \underbrace{t \sum_{\langle i,j \rangle} c_{i\sigma}^\dagger c_{j\sigma}}_{\langle i,j \rangle}$$

$$\downarrow 4^{\text{th}} \text{ fourth order pert.}$$

$$E_1^{(4)} = -\frac{16t^4}{3J^{*3}}, E_2^{(4)} = -\frac{16t^4}{9J^{*3}}$$

$$\downarrow C_{i,j} = -\frac{16t^4}{9J^{*3}}$$

Nozières 1974.

RESULTS: WILSON RATIO (T = 0)

$$\epsilon_{k\sigma}$$
 = $\epsilon_{k}^{\mathrm{o}}$ + $\sum_{q}f_{kq}\left\langle n_{q\overline{\sigma}}\right\rangle$

$$\blacksquare f_{\uparrow \uparrow} = 0$$

$$\mathbf{v}_{c}(T \rightarrow o) = o$$

$$\longrightarrow$$

$$\blacksquare$$
 $C_v(T \rightarrow o) = \rho_{imp}T$

$$\blacksquare$$
 $\chi_{\rm s}({
m T}
ightarrow {
m o})$ = 2 $ho_{
m imp}$

$$R = \frac{\chi_s}{\gamma} = 2$$

RESULTS: RELATION BETWEEN R AND ΔV_L

- particle-hole symmetry
- strong-coupling fixed-point

- Friedel's sum rule
- scattering theory arguments

$$\longrightarrow$$
 R = 1+sin² δ (o)

$$\longrightarrow \frac{1}{\pi}\delta(o) = \tilde{N} = \Delta V_L$$

$$R = 1 + \sin^2(\pi \Delta V_L)$$

 $\Delta V_L = 1 \longrightarrow R = 2$

SUMMARY OF RESULTS

FUTURE DIRECTIONS

WHAT'S NEXT?

- Analytical expression for temperature-dependent Wilson ratio
- Separating the contributions of various parts of the Kondo cloud to the spectral function
- Suggested by the generalized double-bracket form of URG, we can try to see if URG can be used as an optimizer.
- Since the zero-mode low-energy theory is an Anderson molecule (which can be exactly solved), it would be interesting to see if there is a transformation which converts the Anderson molecule to the Hubbard molecule.
- We can also check how using more feature-full baths (with non-trivial self-energy) can change the phase diagram.
- extensions to the Kondo and Anderson lattices, and hence to the problem of heavy Fermions

Thanks for your attention!

Special thanks to Dr. Siddhartha Lal, Siddhartha Patra, Dr. Anirban Mukherjee and Mounica Mahankali for guidance and feedback. The support of IISER Kolkata through a junior research fellowship is acknowledged.

```
Anderson, P W (1970). "A poor man's derivation of scaling laws for the Kondo
   problem". In: Journal of Physics C: Solid State Physics 3.12, pp. 2436-2441. DOI:
   10.1088/0022-3719/3/12/008. URL:
   https://doi.org/10.1088/0022-3719/3/12/008.
Bulla, Ralf, Theo A. Costi, and Thomas Pruschke (2008). "Numerical renormalization
   group method for quantum impurity systems". In: Rev. Mod. Phys. 80 (2),
   pp. 395-450. DOI: 10.1103/RevModPhys.80.395. URL:
   https://link.aps.org/doi/10.1103/RevModPhys.80.395.
Głazek, Stanisław D. and Kenneth G. Wilson (1993), "Renormalization of
   Hamiltonians". In: Phys. Rev. D 48 (12), pp. 5863-5872. DOI:
   10.1103/PhysRevD.48.5863. URL:
   https://link.aps.org/doi/10.1103/PhysRevD.48.5863.
Hewson, A. C. (1993). The Kondo Problem to Heavy Fermions. Cambridge University
   Press.

    (1994). "Renormalization group and Fermi liquid theory". In: Advances in Physics

   43.
```

Krishna-murthy, H. R., K. G. Wilson, and J. W. Wilkins (1975).

"Temperature-Dependent Susceptibility of the Symmetric Anderson Model:

- Connection to the Kondo Model". In: Phys. Rev. Lett. 35 (16), pp. 1101-1104. DOI: 10.1103/PhysRevLett.35.1101. URL: https://link.aps.org/doi/10.1103/PhysRevLett.35.1101.
- Martin, Richard M (1982). "Fermi-surface sum rule and its consequences for periodic kondo and mixed-valence systems". In: *Physical Review Letters* 48.5, p. 362. Mukherjee, Anirban (2020). "Unitary renormalization group for correlated
- electrons". PhD thesis. Indian Institute of Science Education and Research Kolkata.
- Mukherjee, Anirban and Siddhartha Lal (2020). "Holographic unitary renormalization group for correlated electrons I: A tensor network approach".
 - In: Nuclear Physics B 960. DOI:
 https://doi.org/10.1016/j.nuclphysb.2020.115170. URL: http://
 www.sciencedirect.com/science/article/pii/S055032132030256X.
- Temperatures". In: Journal of Low Temperature Physics 17.
 Schrieffer, J. R. and P. A. Wolff (1966). "Relation between the Anderson and Kondo Hamiltonians". In: Phys. Rev. 149 (2), pp. 491–492. DOI:

Nozières, P. (1974). "A Fermi-Liquid Description of the Kondo Problem at Low

```
10.1103/PhysRev.149.491. URL:
https://link.aps.org/doi/10.1103/PhysRev.149.491.
Seki, Kazuhiro and Seiji Yunoki (2017). "Topological interpretation of the Luttinger theorem". In: Physical Review B 96. DOI: 10.1103/physrevb.96.085124. URL: http://dx.doi.org/10.1103/PhysRevB.96.085124.
Taraphder, A. and P. Coleman (May 1991). "Heavy-fermion behavior in a negative-U
```

Anderson model". In: Phys. Rev. Lett. 66 (21), pp. 2814–2817. DOI: 10.1103/PhysRevLett.66.2814. URL: https://link.aps.org/doi/10.1103/PhysRevLett.66.2814. Wegner, Franz (1994). "Flow-equations for Hamiltonians". In: Annalen der Physik

eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19945060203.
URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/andp.19945060203.

506.2, pp. 77-91. DOI: https://doi.org/10.1002/andp.19945060203.

//onlinelibrary.wiley.com/doi/abs/10.1002/andp.19945060203. Wilson, K. G. (1975). "The Renormalization group: Critical phenomena and the Kondo Problem". In: Reviews of Modern Physics 47.

Zitko, Rok and Janez Bonca (2006). "Spin-charge separation and simultaneous spin

and charge Kondo effect". In: Phys. Rev. B 74 (22), p. 224411. DOI:

https://link.aps.org/doi/10.1103/PhysRevB.74.224411.

10.1103/PhysRevB.74.224411. URL:

URG: RELATION TO POOR MAN'S SCALING

$$H = H_0 + \underbrace{V_+ + V_-}_{\text{off-diagonal terms}}$$
 we want to remove

Philosophy of Poor Man's scaling:

- Successively eliminate high-energy energy shells
- Write high energy excitations as second-order correction to low-energy scatterings
- Typically perturbative

Anderson 1970.

URG: RELATION TO POOR MAN'S SCALING

$$H = H_0 + \underbrace{V_+ + V_-}_{\text{off-diagonal terms}}$$
 we want to remove

E = exact eigenvalue

 ω = URG quantum fluctuation scale

$$\Delta H_{PMS} = V_{-} \frac{1}{E - H_{0}} V_{+} + V_{+} \frac{1}{E - H_{0}} V_{-}$$

$$\downarrow E \rightarrow \omega$$

$$\Delta H_{URG} = V_{-} \frac{1}{\omega - H_{0}} V_{+} + V_{+} \frac{1}{\omega - H_{0}} V_{-}$$

URG: RELATION TO CONTINUOUS UNITARY TRANSFORMATION RG

diagonal part off-diagonal part
$$H = \widehat{H_d} + \widehat{H_X}$$

$$\Delta H_{\text{CUT}} = \Delta l \left[\left[H_d(l), H_X(l) \right], H(l) \right]$$

$$V_{kq}(l) = V_{kq}(0)e^{\left(\epsilon_k - \epsilon_q\right)l}$$

- off-diagonal terms decay exponentially
- those that connect larger energy differences decay fastest

Głazek and Wilson 1993; Wegner 1994.

URG: RELATION TO CONTINUOUS UNITARY TRANSFORMATION RG

diagonal part off-diagonal part
$$H = \overbrace{H_d}^{\text{diagonal part}} + \overbrace{H_X}^{\text{off-diagonal part}}$$

$$\Delta H_{\text{CUT}} = \Delta l \left[\left[H_d(l), H_X(l) \right], H(l) \right]$$

$$\Delta H_{\text{URG}} = \overbrace{\left[\left[H_d, \frac{1}{\omega_1 - \omega_0} \left(\hat{\omega} - H_d \right)^{-1} H_I \right], H \right]}^{\Delta H_0} - H^I$$

$$\Delta H_0 \xrightarrow{\left(\hat{\omega} - H_d \right)^{-1} \sim -H_d^{-1}} \Delta \lambda \times \left[\left[H_d, H_I \right], H \right]$$