

Le façonnage d'impulsions ultracourtes par amplification paramétrique optique à dérive de fréquence

Ambre NELET

Introduction générale

«Le façonnage d'impulsions ultracourtes par amplification paramétrique optique à dérive de fréquence»

Accroître la puissance d'un laser

Énergie

Système régénératif Système multipassage Milieu laser

Temps

Technique OPCPA Cristal non-linéaire

Contraintes

Gain simple passage faible Stockage d'énergie Charge thermique critique Émission parasite (ASE)

→

 \rightarrow

 \rightarrow

Réponse

Élevé

Transfert d'énergie

Négligeable

Fluorescence paramétrique

«Le façonnage d'impulsions ultracourtes par amplification paramétrique optique à dérive de fréquence»

«Le façonnage d'impulsions ultracourtes par amplification paramétrique optique à dérive de fréquence»

Gain OPA

Module du gain OPA

$$G_{OPA}(L) = 1 + \left(\frac{\Gamma}{\gamma}\right)^2 \sinh^2(\gamma L)$$

Phase du gain OPA

$$\Phi_{OPA}(L) = \frac{\Delta k}{2} L + \arctan \left[\frac{\Delta k}{2\gamma} \tanh(\gamma L) \right]$$

$$\Gamma^{2} = \frac{8\pi^{2}d_{eff}^{2}I_{p}}{n_{s}n_{i}n_{p}\lambda_{s}\lambda_{i}\varepsilon_{0}c}$$

$$\gamma = \sqrt{\Gamma^{2} - \left(\frac{\Delta k}{2}\right)^{2}}$$

$$\Delta k = k_{p} - k_{s} - k_{i}$$

$$I_{p}(t), I_{p}(x)$$

$$\Delta k \neq 0 \quad \text{lorsque} \quad \omega_{s} \neq \omega_{s0}$$

$$Configuration \\ \text{dégénérée / non-dégénérée}$$

$$k_{s}$$

$$\alpha \qquad k_{p}$$

«Le façonnage d'impulsions ultracourtes par amplification paramétrique optique à dérive de fréquence»

Ambre NELET

Amplification et duplication d'impulsions ultracourtes par OPCPA

Motivations

Extraction d'énergie et duplication

Onde idler

Ambre NELET 7/26

Montage

Ambre NELET

Principe

Gain en énergie

Signal étiré: 1,3 nJ / impulsion

Multipassage: 3.10⁵ nJ / train

🦈 Gain

Gain en énergie:

Simple passage ~250

Multi-passage >2.105

Spectre typique

Accordabilité

√6 nm sans rétrécissement spectral

√15 nm avec gain constant

Influence de l'angle d'interaction

Plage spectrale: $G_{OPA} \ge \frac{G_{max}}{2}$

Taux de répétition

Longueur de cavité: 15 cm

Cadence: 1 GHz

Ajustable 160 MHz «Cadence «3GHz

Conclusion

Extraction d'énergie et duplication

Cavité Onde idler haute énergie

Train de répliques amplifiées du signal

- √ Haute énergie
- √ Haute cadence
- ✓ Accordable

Mise en forme spatio-spectrale du signal par mise en forme temporelle du faisceau pompe et OPCPA

Motivations

Rétrécissement spectral par le gain

Mise en forme spectrale

Pré-amplificateur Pompe $I_p(t)$

Ambre NELET

Montage: maquette de Petal

Mise en forme du signal

Domaine spatial

Faisceau signal

Domaine spectral

Validation: phase spectrale OPA?

Phase du gain OPA

$$\lambda_s(t) = \frac{2\pi c}{\omega_0 + \frac{t}{\phi^{(2)}}} \longrightarrow I_p(t)$$

$$\Phi_{OPA}(L) = \frac{\Delta k}{2} L + \arctan \left[\frac{\Delta k}{2\gamma} \tanh(\gamma L) \right]$$

$$\Delta k \neq 0$$
 lorsque $\omega_z \neq \omega_{z0}$

Sur maquette
$$\omega_p = 2\omega_s$$
 or $\alpha \neq 0$

Influence sur la puissance crête

Validation: phase spectrale OPA?

Ambre NELET

A

OPCPA et codage spectral de l'amplification

Motivations

Phase OPA additionnelle Gain supérieur

Cristal à polarisation périodique

Cristal de type éventail Codage spectral de l'amplification

Ambre NELET 19/26

Motivations

Cristal non-linéaire classique

Cristal à polarisation périodique

Grande acceptance spectrale Mais gain OPA limité par d_{eff} L $\Delta k \neq 0$ sauf à ω_{s0}

De type éventail

Amplification homogène de toutes les composantes spectrales

Adressage spectral Ligne à dispersion nulle

Mais faible tolérance spectrale

Polarisations

périodiques

Montage

Choix du cristal

Simulations

Influence de la répartition gaussienne de la puissance surfacique

Optimisation

Simulations: répartition puissance surfacique adaptée

Conclusion

Démonstration

Adressage spectral du gain Rétrécissement spectral par le gain de l'OPA

Conclusion générale

Pré-amplificateur OPCPA

Réalisation

Amélioration

Perspective

- -Train de répliques amplifiées (Hautes intensité & cadence, Accordable)
- -Modèle acceptance spectrale fonction de l'angle α

- -Robustesse
- -Précision angle a

Chaîne FCI

- -Mise en forme spatio-spectrale
- -Simulations phase spectrale OPA
- -Amplificateur de puissance
- -Recompression Mesure de la phase spectrale

Chaîne type Petal

- -Amplification par codage spectral
- -PPLN en éventail+ligne 4f
- -Rétrécissement spectral par le gain OPA

- -Montage
- -Cristal
- -Recompression
 Mesure de la phase OPA

Chaîne moyenne puissance

Application: «ultrafast picket fence»

Fusion par confinement inertiel

Solution: maintenir une illumination quasi-constante

Ref.: J. E. Rothenberg, Appl. Opt. 39, 6931-6938 (2000)

Ambre NELET

Application: «ultrafast picket fence»

Technique: OPCPA régénératif

Caractéristiques

Ligne à dispersion nulle

Temporelle: autocorrélation

Ligne à dispersion nulle

Superposition spatiale des faisceaux (entrée PPLN)

Ambre NELET 31/26

Caractéristiques

Spatiale: coupes tranverses des faisceaux

