数值与符号计算

北京邮电大学软件学院

数值积分

1. double gauss_ch1(double(*f)(double), int n); 求积分 $\int_{-1}^{1} \frac{f(x)dx}{\sqrt{1-x^2}}$. 实现 n 点 Gauss-Chebyeshev 积分公式; 返回积分的近似值. 在区间 [-1,1] 上关于权函数 $\frac{1}{\sqrt{1-x^2}}$ 的正交多项为 $T_n(x) = \cos(n\arccos(x))$. $T_n(x)$ 在 [-1,1] 上的 n 个根是 $x_k = \cos(\frac{2k-1}{2n}\pi)$, $k=1,\cdots,n$. n 点 Gauss-Chebyeshev 积分公式为

$$\int_{-1}^{1} \frac{f(x)dx}{\sqrt{1-x^2}} \approx \frac{\pi}{n} \sum_{k=1}^{n} f\left(\cos\left(\frac{2k-1}{2n}\pi\right)\right)$$

2. double gauss_ch2(double(*f)(double), int n); 求积分 $\int_{-1}^{1} \sqrt{1-x^2} f(x) dx$. 实现 n 点 Gauss-Chebyeshev II 型积分公式; 返回积分的近似值. 在区间 [-1,1] 上关于权函数 $\sqrt{1-x^2}$ 的正交多项为 $U_n(x) = \frac{\sin((n+1)\arccos(x))}{\sin(\arccos(x))}$. $U_n(x)$ 在 [-1,1] 上的 n 个根是 $x_k = \cos(\frac{k\pi}{n+1})$, $k=1,\cdots,n$. n 点 Gauss-Chebyeshev II 型积分公式为

$$\int_{-1}^{1} \sqrt{1 - x^2} f(x) dx \approx \frac{\pi}{n+1} \sum_{k=1}^{n} \sin^2 \left(\frac{k\pi}{n+1} \right) f\left(\cos \left(\frac{k\pi}{n+1} \right) \right)$$

- 3. double comp_trep(double (*f)(double), double a, double b); 求 积分 $\int_a^b f(x) dx$.
 - 函数实现逐次减半法复化梯形公式; 返回积分的近似值.
- 4. double romberg(double (*f)(double), double a, double b); 求 积分 $\int_a^b f(x) dx$.

函数实现 Romberg 积分法: 返回积分的近似值.

- 5. double gauss_leg_9(double (*f)); 求积分 $\int_{-1}^{1} f(x) dx$. 实现 9 点 Gauss-Legendre 求积公式.
- 使用上面实现的各种求积方法求下面的积分:

$$\int_{-1}^{1} e^x \sqrt{1 - x^2} dx \quad \left(= \int_{-1}^{1} \frac{x e^x}{\sqrt{1 - x^2}} dx \right)$$

填写下面表格

	方法名称	结果	运行时间	运行细节
1				
2				
3				
4				
5				

• 使用第 3,4,5 个函数求积分:

$$\int_0^{\frac{\pi}{2}} \sin x dx \quad (=1)$$

填写下面表格

	方法名称	结果	误差	运行时间	运行细节
3					
4					
5					