```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [4]: df=pd.read_csv("SampleSuperstore.csv")
 df.head()

Out[4]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage	22
4										•

In [5]: | df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 13 columns):
Ship Mode
                9994 non-null object
Segment
                9994 non-null object
Country
                9994 non-null object
                9994 non-null object
City
State
                9994 non-null object
                9994 non-null int64
Postal Code
                9994 non-null object
Region
                9994 non-null object
Category
Sub-Category
                9994 non-null object
Sales
                9994 non-null float64
                9994 non-null int64
Quantity
                9994 non-null float64
Discount
Profit
                9994 non-null float64
dtypes: float64(3), int64(2), object(8)
memory usage: 1015.1+ KB
```

```
In [6]: df.isnull().sum()
Out[6]: Ship Mode
                         0
        Segment
                         0
        Country
                         0
                         0
        City
                         0
         State
        Postal Code
                         0
                         0
        Region
                         0
        Category
        Sub-Category
                         0
                         0
        Sales
         Quantity
                         0
                         0
        Discount
        Profit
                         0
        dtype: int64
In [7]: df.columns
Out[7]: Index(['Ship Mode', 'Segment', 'Country', 'City', 'State', 'Postal Code',
                'Region', 'Category', 'Sub-Category', 'Sales', 'Quantity', 'Discount',
                'Profit'],
               dtype='object')
In [8]: df.shape
Out[8]: (9994, 13)
In [9]:
        df.nunique()
Out[9]: Ship Mode
                            4
        Segment
                            3
        Country
                            1
        City
                          531
                           49
        State
        Postal Code
                          631
        Region
                            4
                            3
        Category
        Sub-Category
                           17
        Sales
                         5825
        Quantity
                           14
        Discount
                           12
        Profit
                         7287
        dtype: int64
```

```
In [10]: plt.figure(figsize=(8,5))
    sns.kdeplot(df['Sales'],color='red',label='Sales',shade=True,bw=25)
    sns.kdeplot(df['Profit'],color='Blue',label='Profit',shade=True,bw=25)
    plt.xlim([-100,1000])
    plt.legend()
```

Out[10]: <matplotlib.legend.Legend at 0x1369bda5be0>

In [11]: sns.pairplot(df,hue='Category')

Out[11]: <seaborn.axisgrid.PairGrid at 0x1369be7c710>

In [12]: sns.pairplot(df,hue='Region')

Out[12]: <seaborn.axisgrid.PairGrid at 0x1369f1434a8>

In [13]: sns.pairplot(df,hue='Segment')

Out[13]: <seaborn.axisgrid.PairGrid at 0x136a1528b70>

In [14]: df.corr()

Out[14]:

	Postal Code	Sales	Quantity	Discount	Profit
Postal Code	1.000000	-0.023854	0.012761	0.058443	-0.029961
Sales	-0.023854	1.000000	0.200795	-0.028190	0.479064
Quantity	0.012761	0.200795	1.000000	0.008623	0.066253
Discount	0.058443	-0.028190	0.008623	1.000000	-0.219487
Profit	-0.029961	0.479064	0.066253	-0.219487	1.000000

In [15]: sns.heatmap(df.corr(),cmap='rocket_r',annot=True)

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x136a38bda20>


```
In [16]: fig,axs=plt.subplots(nrows=2,ncols=2,figsize=(10,7));

sns.countplot(df['Category'],ax=axs[0][0])
sns.countplot(df['Segment'],ax=axs[0][1])
sns.countplot(df['Ship Mode'],ax=axs[1][0])
sns.countplot(df['Region'],ax=axs[1][1])
axs[0][0].set_title('Category',fontsize=20)
axs[0][1].set_title('Segment',fontsize=20)
axs[1][0].set_title('Ship Mode',fontsize=20)
axs[1][1].set_title('Region',fontsize=20)
```



```
In [17]: plt.figure(figsize=(20,8))
    sns.countplot(df['Sub-Category'])
    plt.title('Sub-Category',fontsize=20)
```

Out[17]: Text(0.5, 1.0, 'Sub-Category')


```
In [18]: plt.figure(figsize=(18,5))
    sns.countplot(df['State'])
    plt.xticks(rotation=90)
    plt.title('State', fontsize=20)
```

Out[18]: Text(0.5, 1.0, 'State')


```
In [19]: plt.figure(figsize=(18,5))
    sns.countplot(df['Quantity'])
    plt.title('Quantity',fontsize=20)
```

Out[19]: Text(0.5, 1.0, 'Quantity')


```
In [20]: plt.figure(figsize=(18,5))
    sns.countplot(df['Discount'])
    plt.xticks(rotation=90)
    plt.title('Discount',fontsize=20)
```

Out[20]: Text(0.5, 1.0, 'Discount')


```
In [21]: fig, axs = plt.subplots(ncols=2, nrows = 2, figsize = (10,10))
    sns.distplot(df['Sales'], color = 'red', ax = axs[0][0])
    sns.distplot(df['Profit'], color = 'green', ax = axs[0][1])
    sns.distplot(df['Quantity'], color = 'orange', ax = axs[1][0])
    sns.distplot(df['Discount'], color = 'blue', ax = axs[1][1])
    axs[0][0].set_title('Sales Distribution', fontsize = 20)
    axs[0][1].set_title('Profit Distribution', fontsize = 20)
    axs[1][0].set_title('Quantity distribution', fontsize = 20)
    axs[1][1].set_title('Discount Distribution', fontsize = 20)
    plt.show()
```


In [22]: df['Country'].value_counts()

Out[22]: United States 9994

Name: Country, dtype: int64

```
df1 = df['State'].value_counts()
In [23]:
          df1.head(10)
Out[23]: California
                            2001
         New York
                            1128
         Texas
                             985
         Pennsylvania
                             587
         Washington
                             506
         Illinois
                             492
         Ohio
                             469
         Florida
                             383
                             255
         Michigan
         North Carolina
                             249
         Name: State, dtype: int64
In [24]: df1.plot(kind='bar',figsize=(15,5))
         plt.ylabel('Frequency / Number of deals')
          plt.xlabel('States')
          plt.title('State Wise Dealings', fontsize = 20)
          plt.show()
```



```
In [27]: df2.plot(kind='bar',figsize=(15,5))
    plt.ylabel('Frequency / Number of deals')
    plt.xlabel('City')

plt.title('City Wise Dealings', fontsize = 20)
    plt.show()
```



```
In [28]: df['City'].value_counts().mean()
```

Out[28]: 18.821092278719398

In [29]: | df['Segment'].value_counts()

Out[29]: Consumer 5191 Corporate 3020 Home Office 1783

Name: Segment, dtype: int64

In [30]: df_segment= df.groupby(['Segment'])[['Sales', 'Discount', 'Profit']].mean()
 df_segment

Profit

Out[30]:

Segment			
Consumer	223.733644	0.158141	25.836873
Corporate	233.823300	0.158228	30.456667
Home Office	240.972041	0.147128	33.818664

Sales Discount

Out[31]: Text(0.5, 1.0, 'Segment wise analysis of Sale, Discount, profit')

In [32]: df['State'].value_counts().head(10)

Out[32]:	Californ	ia	2	2001
	New York		1	L128
	Texas			985
	Pennsylva	ania		587
	Washingto		506	
	Illinois			492
	Ohio			469
	Florida			383
	Michigan			255
	North Ca	rolir	ıa	249
	Name: St	ate,	dtype:	int64

Profit

```
In [33]: df_state= df.groupby(['State'])[['Sales', 'Discount', 'Profit']].mean()
    df_state.head(10)
```

Sales Discount

Out[33]:

	Jaies	Discount	FIUIL
State			
Alabama	319.846557	0.000000	94.865989
Arizona	157.508933	0.303571	-15.303235
Arkansas	194.635500	0.000000	66.811452
California	228.729451	0.072764	38.171608
Colorado	176.418231	0.316484	-35.867351
Connecticut	163.223866	0.007317	42.823071
Delaware	285.948635	0.006250	103.930988
District of Columbia	286.502000	0.000000	105.958930
Florida	233.612815	0.299347	-8.875461
Georgia	266.825217	0.000000	88.315453

```
In [34]: df_state1=df_state.sort_values('Profit')

df_state1[['Profit']].plot(kind = 'bar', figsize = (15,4))
plt.title('State wise Profit Analysis', fontsize = 20)
plt.ylabel('Profit per Sate')
plt.xlabel('States')
plt.show()
```


Out[35]: Text(0.5, 1.0, 'State wise analysis of Sale')

State wise analysis of Sale


```
In [36]: df_state1['Discount'].plot(kind='bar',figsize=(18,5))
plt.title('State wise analysis of Discount', fontsize=20)
```

Out[36]: Text(0.5, 1.0, 'State wise analysis of Discount')

Out[37]:

	Sales	Discount	Profit
City			
Bethlehem	337.926800	0.380000	-200.619160
Champaign	151.960000	0.600000	-182.352000
Oswego	107.326000	0.600000	-178.709200
Round Rock	693.436114	0.274286	-169.061614
Lancaster	215.031826	0.315217	-157.371052

```
In [38]: #1.Low Profit
    df_city['Profit'].head(30).plot(kind='bar',figsize=(15,5),color = 'Pink')
    plt.title('City wise analysis of Sale, Discount, profit')
```

Out[38]: Text(0.5, 1.0, 'City wise analysis of Sale, Discount, profit')


```
In [39]: #2. High Profit
    df_city['Profit'].tail(30).plot(kind='bar',figsize=(15,5),color = 'Pink')
    plt.title('City wise analysis of Sale, Discount, profit')
```

Out[39]: Text(0.5, 1.0, 'City wise analysis of Sale, Discount, profit')

In [40]: df_quantity = df.groupby(['Quantity'])[['Sales', 'Discount', 'Profit']].mean()
df_quantity.head(10)

Out[40]:

	Sales	Discount	Profit
Quantity			
1	59.234632	0.152959	8.276396
2	120.354488	0.154858	16.006831
3	175.201578	0.153329	23.667715
4	271.764059	0.157708	37.131310
5	337.936339	0.157146	40.257394
6	362.101960	0.166556	18.051517
7	395.888393	0.161980	56.579163
8	458.210802	0.171595	42.244342
9	498.083683	0.147946	68.557716
10	422.046737	0.190702	35.862404

Out[41]: Text(0.5, 1.0, 'Quantity wise analysis of Sale, Discount, profit')


```
In [42]: df_category = df.groupby(['Category'])[['Sales', 'Discount', 'Profit']].mean()
df_category
```

Out[42]:

	Sales	Discount	Profit
Category			
Furniture	349.834887	0.173923	8.699327
Office Supplies	119.324101	0.157285	20.327050
Technology	452.709276	0.132323	78.752002

Out[44]:

	Sales	Discount	Profit
Sub-Category			
Accessories	215.974604	0.078452	54.111788
Appliances	230.755710	0.166524	38.922758
Art	34.068834	0.074874	8.200737
Binders	133.560560	0.372292	19.843574
Bookcases	503.859633	0.211140	-15.230509
Chairs	532.332420	0.170178	43.095894
Copiers	2198.941618	0.161765	817.909190
Envelopes	64.867724	0.080315	27.418019
Fasteners	13.936774	0.082028	4.375660
Furnishings	95.825668	0.138349	13.645918

Sub-Category Wise Sales Analysis

Sub-Category Wise Discount Analysis

Out[48]: <matplotlib.axes._subplots.AxesSubplot at 0x136a5a20dd8>

Out[49]:

	Sales	Discount	Profit
Region			
Central	215.772661	0.240353	17.092709
East	238.336110	0.145365	32.135808
South	241.803645	0.147253	28.857673
West	226.493233	0.109335	33.849032


```
In [51]: df['Ship Mode'].value_counts()
```

Out[51]: Standard Class 5968 Second Class 1945 First Class 1538 Same Day 543

Name: Ship Mode, dtype: int64

```
In [52]: df_shipmode = df.groupby(['Ship Mode'])[['Sales', 'Discount', 'Profit']].mean
   ()
```



```
In [ ]:
```