Scilab Textbook Companion for Electrical Engineering Materials by R. K. Shukla and A. Singh¹

Created by
Chanagam Saikomal
B.tech
Electronics Engineering
Sastra University
College Teacher
NA
Cross-Checked by
Spandana

June 1, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electrical Engineering Materials

Author: R. K. Shukla and A. Singh

Publisher: Tata McGraw-Hill, New Delhi

Edition: 1

Year: 2012

ISBN: 9781259029745

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Crystal structure Bonding and Defects in solids	5
2	Band Theory of Solids	21
3	Magnetic properties of Materials	27
4	Behaviour of Dielectric Materials in ac and dc fields	45
5	Conductivity of metals and superconductivity	62
6	Electrical Conducting and Insulating materials	99
7	Junction Resistor Transistors and Devices	117
8	Mechanism of Conduction in Semiconductors	132
9	Mechanical Properties of Materials	152
10	Mechanical Properties of Materials	156

List of Scilab Codes

Exa 1.1	To find lattice constant	5
Exa 1.2	To find interplanar distances	6
Exa 1.3	To find miller indices	7
Exa 1.4	To find miller indices	8
Exa 1.5	To find miller indices	9
Exa 1.6	To find miller indices	10
Exa 1.8	To find interplanar distance	12
Exa 1.9	To find interplanar spacing	13
Exa 1.10	To find distance between atoms	14
Exa 1.11	To find wavelength	14
Exa 1.12	To find spacing between planes	15
Exa 1.13	To find lattice constant	16
Exa 1.14	To find angle	17
Exa 1.15	To find wavelength	18
Exa 1.16	To find lattice parameters	19
Exa 2.1	To find three lowest permissible quantum energies	21
Exa 2.2	To find energy differences between two states	22
Exa 2.3	comment on first three energy levels of an electron	23
Exa 2.4	To find lowest allowed energy bandwidth	24
Exa 2.5	T find energy of free electron for first Brillouin Zone .	25
Exa 3.1	To find magnetic moment and bohr magneton	27
Exa 3.2	To find the magnetic moment of the rod	28
Exa 3.3	To find the magnetic moment of the rod	29
Exa 3.4	To find change in magnetic moment	29
Exa 3.6	To find temperate must the substance cooled	30
Exa 3.7	To find magnetisation vector and flux density	31
Exa 3.8	To find increase in percentage	31
Exa 3.9	To find magnetisation vector and flux density	32

Exa 3.10	To find permeability and relative permeability 3
Exa 3.11	To find absolute and relative permeability 3
Exa 3.12	To find relative permeability and magnetic susceptibility 3
Exa 3.13	To find diamagnetic susceptability of He
Exa 3.14	To find permiability and susceptibility
Exa 3.15	To find susceptability
Exa 3.16	To find number ampere turns
Exa 3.17	To find current to be sent into solenoid 4
Exa 3.18	To find number of turns 4
Exa 3.19	To find permeability and susceptibility 4
Exa 3.20	To find loss of energy per hour
Exa 3.21	To find hysteresis loss per cycle
Exa 4.1	To find dielectric constant of argon at NTP 4
Exa 4.2	To estimate the shift of the electron cloud 4
Exa 4.3	To find local field acting on a given molecule 4
Exa 4.4	To find polarisabilities of benzene and water 4
Exa 4.5	To find polarisation of plates 4
Exa 4.6	To find percentage contribution of ionic polarisability . 50
Exa 4.7	To find separation between positive and negative charges 5
Exa 4.8	To find orientational polarisation at room temperature 5:
Exa 4.9	To find relative dielectric constant
Exa 4.10	To find ratio between electronic and ionic polarisability 5-
Exa 4.11	To find dielectric constant and electrical susceptibility 5-
Exa 4.12	To find the polarisation
Exa 4.13	To find dielectric susceptibility 5
Exa 4.14	To find free charge and polarisation and displacement 50
Exa 4.15	To find capacitance and charge stored and displacement
	vector and polarisation vector
Exa 4.16	To find phase difference 6
Exa 5.1	To find average drift velocity of free electron 69
Exa 5.2	To find drift velocity 6
Exa 5.3	To find current density and drift velocity of electrons . 6
Exa 5.4	To find resistivity of the material 6
Exa 5.5	To find mobility and relaxation time of electrons 6
Exa 5.6	To find mobility of conduction electrons 6
Exa 5.7	To find relaxation time
Exa 5.9	To find thermal conductivity for a metal 69
Exa. 5.10	To find energy difference between two states 7

Exa 5.11	To find fermi energy	71
Exa 5.12	To find fermi energy	72
Exa 5.13	To find fermi energy	73
Exa 5.14	To find number of electrons	74
Exa 5.15	To find electron density	75
Exa 5.16	To find average energy and temperature	76
Exa 5.17	To find average energy and speed of electron	77
Exa 5.18	To find average energy and speed of electron	78
Exa 5.19	To find fermi energy and fermi velocity	79
Exa 5.20	To find efficiency of transmission and percentage voltage	
	drop	80
Exa 5.21	To find value of constants	81
Exa 5.23	To find neutral temperature and temperature of inversion	82
Exa 5.24	To find resistivity of an alloy	83
Exa 5.25	To find transition temperature	84
Exa 5.26	To find critical temperature	85
Exa 5.27	To find critical temperature	86
Exa 5.28	To find critical magnetic field	87
Exa 5.29	To find critical current density	88
Exa 5.30	To find transition temperature	89
Exa 5.31	To find transition temperature	89
Exa 5.32	To find transition temperature	90
Exa 5.33	To find critical current	91
Exa 5.34	To find current	92
Exa 5.35	To find Londons penetration depth	93
Exa 5.36	To find penetration depth	94
Exa 5.37	To find critical temperature of aluminium	95
Exa 5.38	To find wavelength	96
Exa 5.39	To find energy gap and wavelength	97
Exa 6.1	To find temperature coefficient of resistance	99
Exa 6.2	To find temperature	100
Exa 6.3	Tofind cold resistance and average temperature coeffi-	
		101
Exa 6.4	v	102
Exa 6.5	ı Ü	103
Exa 6.10	To find resistance	104
Exa 6.11	· · · · · · · · · · · · · · · · · · ·	105
Exa 6.12	To find insulation resistance	106

Exa 6.13	To find capacitance
Exa 6.14	To find charge and electric flux and flux density and
	electric field strength
Exa 6.15	To find capacitance
Exa 6.16	To find thickness of insulation
Exa 6.17	To find area and breakdown voltage
Exa 6.18	To find dielectric loss
Exa 6.19	To find area
Exa 6.20	To find thermal conductivity
Exa 7.2	To find change in temperature
Exa 7.3	To find current
Exa 7.4	To find diffusion coefficients
Exa 7.6	To find resistance of diode
Exa 7.7	To find diffusion constant
Exa 7.8	To find pinch off voltage
Exa 7.9	To find pinch off voltage
Exa 7.10	To find transconductance
Exa 7.11	To find drain current
Exa 7.12	To find transconductance
Exa 7.13	To find resistance
Exa 7.14	To find transconductance
Exa 7.15	To find drain resistance and transconductance and am-
	plification fector
Exa 7.16	To find transconductance
Exa 8.1	To find kinetic energy and momenta
Exa 8.2	To find thermal equilibrium hole concentration
Exa 8.3	To find intrinsic carrier concentration
Exa 8.4	To find position of intrinsic fermi level
Exa 8.5	To find donor binding energy
Exa 8.6	To find position of fermi level
Exa 8.7	To find electrical conductivity
Exa 8.8	To find resistivity
Exa 8.9	To find intrinsic carrier density
Exa 8.10	To find conductivity
Exa 8.11	To find carrier density
Exa 8.12	To find drift velocity
Exa 8.13	To know about changes in temperature
Exa 8.14	To find conductivity

Exa 8.15	To find diffusion current density	46
Exa 8.16	To find wavelength	47
Exa 8.17	To find cut off wavelength	47
Exa 8.18	To find energy	148
Exa 8.19	To find hall voltage	49
Exa 8.20	To find current density	150
Exa 8.21	To find hall coefficient	151
Exa 9.1	To find elongation	52
Exa 9.3	To find stress	153
Exa 9.4	To find strain	154
Exa 9.5	To find ductility	154
Exa 10.1	To find wavelength	156
Exa 10.2	To find maximum wavelength of opaque 1	157
Exa 10.3	To find composition	158
Exa 10.4	To find energy of metastable state	159
Exa 10.5	To find number of optical modes	60
Exa 10.6	To find numerical aperture	61
Exa 10.7	To find critical angle	62

Chapter 1

Crystal structure Bonding and Defects in solids

Scilab code Exa 1.1 To find lattice constant

```
3 // chapter 1 example 1
5 clc;
6 clear;
8 // input data
9 // FCC structured crystal
10
11 p = 6250; // Density of crystal
   in kg/m^3
  N = 6.023*10^26; // Avagadros number in
12
  atoms/kilomole
                // molecular weight per
  M = 60.2;
13
   mole
  n = 4;
                          // No. of atoms per
14
```

Scilab code Exa 1.2 To find interplanar distances

1

```
3 // chapter 1 example 2
4 clc;
5 clear;
7 //input data
                             // miller indice
8 h1
            = 1;
                             // miller indice
9 k1
            = 1;
                             // miller indice
10 11
            = 1;
                             // miller indice
11 h0
            = 0;
                             // miller indice
12 k0
            = 0;
                            // miller indice
          = 0;
13 10
                                // Density of KCl in kg/
14 p
           = 1980;
     m^3
           = 6.023*10^26;
                               // Avagadros number in
15 N
     atoms/kilomole
```

```
16 M = 74.5;
                               // molecular weight of
     KCl
     = 4;
                               // No. of atoms per unit
17 n
     cell for FCC
18
19 // calculations
20 a = ((n*M)/(N*p))^{(1/3)};
21
22 // dhkl = a/sqrt((h^2)+(k^2)+(1^2)); //
   interplanar distance
23 d100 = a/sqrt((h1^2)+(k0^2)+(10^2)); //
     interplanar distance
24 d110 = a/sqrt((h1^2)+(k1^2)+(10^2)); //
     interplanar distance
25 d111 = a/sqrt((h1^2)+(k1^2)+(l1^2)); //
     interplanar distance
26
27 // Output
28 mprintf ('d100 = \%3.2 \,\mathrm{f} \n d110 = \%3.2 \,\mathrm{f} \n d111 =
     \%3.2 \,\mathrm{f} ', d100*10^10, d110*10^10, d111*10^10);
29
30 //
```

Scilab code Exa 1.3 To find miller indices

```
2 // chapter 1 example 3
3
4
5 clc;
6 clear;
```

```
// Variable Declaration
                                    //miller indices
                = 4;
  h
                                    //miller indices
10
   k
               = 1;
                                    //miller indices
11
               = 2;
12
   //result
13
14
15 v= int32([h k l]);
16 lc=double(lcm(v));
   //calculation
17
18
   h1 = 1/h;
19
   k1 = 1/k;
20
   11 = 1/1;
21
   a = h1*lc;
22
   b = k1*lc;
23
    c = 11*1c;
24
   //result
   mprintf('miller indices = %d %d %d',a,b,c);
25
26
27
```

Scilab code Exa 1.4 To find miller indices

```
1 // chapter 1 example 4
2
3
4 clc;
5 clear;
6
7 //intercepts given are 3a,4b,2c
8 //from the law of rational indices
9 //3a:4b:2c=a/h:b/k:c/l
```

```
10
11 // Variable Declaration
                                      //miller indices
12
    h1
                = 3;
                                     //miller indices
                 = 4;
13
    k1
14
    11
                 = 2;
                                      //miller indices
15
16 //calculation
17 v= int32([h1 k1 l1]);
18 lc=int32(lcm(v));
19 h = lc*1/h1;
20 k = lc*1/k1;
21 l = lc*1/11;
22
23
   //result
    mprintf('miller indices = %d %d %d',h,k,l);
24
```

Scilab code Exa 1.5 To find miller indices

```
2 //chapter 1 example 5
3
4 clc;
5 clear all;
7 //intercepts given are a, 2b, -3c/2
8 //from the law of rational indices
9 //a:2b:-3c/2=a/h:b/k:c/l
10
11
12 //variable declaration
13 \text{ h1} = 1;
                           //miller indices
14 k1 = 1/2;
                             //miller indices
                              //miller indices
15 \ 11 = -2/3;
```

```
16
17  // calculation
18  p = int32([1,2,3]);
19  12 = lcm(p);
20  h=h1*12;
21  k=(k1)*double(12);
22  1=(11)*double(12);
23
24  // result
25  mprintf('miller indices = %d %d %d',h,k,1);
26
27  //
```

Scilab code Exa 1.6 To find miller indices

```
2 //chapter 1 example 6
4 clc;
5 clear all;
7 //intercepts given are 3a,3b,2c
8 //from the law of rational indices
9 //3a:3b:2c=a/h:b/k:c/1
10 //variable declaration
11
                               //miller indices
12 \text{ h1} = 1/4;
13 \text{ k1} = 1/4;
                               //miller indices
14 \ 11 = 1/2;
                               //miller indices
15 \text{ h} 12 = 1/2;
                                     //miller indices
                                   //miller indices
16 \text{ k12} = 1;
```

```
17 \ 112 = 1/\%inf;
                                    //miller indices
18 \text{ h} 13 = 1;
19 k13 = 2;
20 \quad 113 = 1;
21
22
23 //calculation
24 p = int32([4,4,2]);
25 	 12 = lcm(p);
26 h=h1*double(12);
27 k = (k1) * double(12);
28 l = (11) * double (12);
29
30 p1 = int32([2,1,1]);
31
32
  // 1/\% \inf = 0 ; (1/2 1/1 0/1) hence lcm is taken
      for [2 1 1]
33
34 \ 122 = 1cm(p1);
35 h3=h12*double(122);
36 k3=(k12)*double(122);
37 13=(112)*double(122);
38
39 p3 = int32([1,1,1]);
40 \ 123 = 1cm(p3);
41 h4=h13*double(123);
42 \text{ k4} = (\text{k13}) * \text{double} (123);
43 14=(113)*double(123);
44
45
46
47 //result
48 mprintf('miller indices = \%d \%d \%d n',h,k,l);
49 mprintf('Note: printing mistake of miller indices in
      textbook \n');
50 mprintf('\nmiller indices = \%d \%d \%d \land n', h3, k3, l3);
51 mprintf('\nmiller indices = \%d \%d \%d \land n', h4, k4, 14);
52 mprintf('Note: calculation mistake in textbook \n');
```

```
53
54
55 //
```

Scilab code Exa 1.8 To find interplanar distance

```
2 //chapter 1 example 8
3
4 clc;
5 clear all;
7 //intercepts given are a, 2b, -3c/2
8 //from the law of rational indices
9 //a:2b:-3c/2=a/h:b/k:c/l
10
11
12 //variable declaration
                            //miller indices
13 \text{ h} 12 = 1;
14 k12 = 1/2;
                             //miller indices
                                 //miller indices
15 \ 112 = 1/\%inf;
16 \ a = 10*10^-9;
17 //calculation
18
19 p1 = int32([2,1,1]);
20 \ // \ 1/\% inf = 0 ; (1/2 \ 1/1 \ 0/1) hence lcm is taken
      for [2 1 1]
21
22 	 122 = lcm(p1);
23 h=h12*double(122);
24 k = (k12) * double(122);
```

```
25 l=(112)*double(122);
26 d=a/double(((h^2)+(k^2)+(1^2))^(1/2));
27
28
29 //result
30 mprintf('miller indices = %d %d %d',h,k,1);
31 mprintf('interplanar distance is =%e ',d);
32 //
```

Scilab code Exa 1.9 To find interplanar spacing

```
2 // chapter 1 example 9
3
4
5 clc;
6 clear;
8 // Variable Declaration
9
          = 0.175*10^-9;
10 r
                                           //radius in m
          = 2;
                                           //miller indices
11 h
                                           //miller indices
12 k
          = 3;
                                           //miller indices
13 l
          = 1;
14
15 //calculation
16 a = (4*r)/sqrt(2);
   dhkl = a/sqrt((h^2)+(k^2)+(1^2));
17
18
19
   //result
    mprintf('inter planar spacing =\%3.2 \,\mathrm{e} \,\mathrm{m}\,\mathrm{n}', dhkl);
20
```

Scilab code Exa 1.10 To find distance between atoms

```
1 //
2 // chapter 1 example 10
3
4 clc;
5 clear;
7 //input data
                    //lattice constant in
  a = 4;
9
10 //calculation
11 d = (sqrt(3)*a)/4;
12
  //result
13
  mprintf('distance between two atoms = \%3.3 f. \n',d)
14
15
16 //
```

Scilab code Exa 1.11 To find wavelength

```
1 //
2 // chapter 1 example 11
3 clc;
4 clear;
6 //input data
   d = 1.41;  //lattice constant in
theta = 8.8;  // angle in degrees
10
    n = 1;
11
12 //calculation
13
    lamda = (2*d*sin(theta*%pi/180))/n;
14
15
16
17 // result
18 mprintf ('wavelength=\%3.2 \, f \n',lamda);
19
20 //
```

Scilab code Exa 1.12 To find spacing between planes

```
2 // chapter 1 example 12
3
4 clc;
5 clear;
```

```
7 //input data
                                          //spacing in
8 	 d = 2.5;
     {
m angstroms}
                                                    //glancing
    theta = 9;
     angle in degrees
    n1 = 1;
n2 = 2;
10
11
12
13
14 //calculation
   lamda = (2*sin(theta*(%pi/180))*d);
theta = asin((2*lamda)/(2*d));
15
16
17
18 // result
19 mprintf('wavelength = \%3.4 \text{ f} \setminus \text{n',lamda});
20 mprintf('glancing angle =\%3.1 \text{ f} \setminus \text{n'}, theta*(180/%pi))
21
22 //
```

Scilab code Exa 1.13 To find lattice constant

```
angstroms
                                          //angle in
10
    theta1 = 60;
       degrees
        = 1;
11
12
13 //formula
14 //2*d*sin(theta)=n*lamda;
15
16 //calculation
17 d = (n*lamda)/(2*sin(theta1*%pi/180));
18
19 // result
20
21 mprintf('lattice constant=\%3.4 \,\mathrm{f} \n',d);
22 mprint('Note: calulation mistake in textbook)
```

Scilab code Exa 1.14 To find angle

```
2 //chapter 1 example 14
4 clc;
5 clear;
7 //input data
                                          //wavelength
  lamda = 1.4*10^-10;
      in angstroms
                                          //lattice
              = 2*10^-10;
      parameter in angstroms
                                   //miller indices
10
             = 1;
   h
                                   //miller indices
11
   k
              = 1;
```

```
12 1 = 1;
13 n = 1;
                                 //miller indices
14 //formula
15 //2*d*sin(theta)=n*lamda
16
17 //calculation
18
19 dhkl = a/sqrt((h^2)+(k^2)+(1^2));
                                                  //
     inter planar spacing
20 theta = asin((n*lamda)/(2*dhkl));
21
22 // result
23 mprintf('angle=\%3.2 f.\n', theta*(180/\%pi));
24
25 //
```

Scilab code Exa 1.15 To find wavelength

```
2 // Chapter 1 example 15
3 clc;
4 clear;
6 // input data
  d = 3.84 *10^-10; //spacing between
      planes in m
   theta = 45;
                              //glancing angle in
     degrees
   m = 1.67*10^-27;
h = 6.62*10^-34;
9
                            //mass ef electron
                              // planck 's constant
10
                              //braggg reflextion
11 n
        = 1;
```

```
12  v = 5.41*10^-10;
13
14  //calculation
15  //lamda = 2*d*(1/sqrt(2));
16  lamda = h/(m*v);
17
18  //result
19  mprintf('wavelength of neutron =%3.2e m\n',lamda);
20  mprintf(' Note:calculation mistake in text book in calculating wavelength')
21  //
```

Scilab code Exa 1.16 To find lattice parameters

```
2 // chapter 1 example 16
3 clc;
4 clear;
6 //input data
     = 9.1*10^-31; // mass of electron in
   m
      kilograms
                             //charge of electron in
         = 1.6*10^-19;
      coulombs
9
         = 1;
                            //bragg's reflection
   n
         = 6.62*10^-34;
                            //planck's constant J.s
10
                             //bragg reflecton
11
         = 1;
                             //voltage in V
12
         = 200;
                             //observed reflection
13
   theta = 22;
14
15
   //calculation
```

```
16
17
    lamda = h1/sqrt(2*m*e*V);
             = (n*lamda)/(2*sin(theta*%pi/180));
18
    dhkl
             = dhkl*sqrt(3);
19
    a
20
   //result
21
22
    mprintf('lattice parameter =\%3.0 \, f. \n',a*10^10);
23
24
```

Chapter 2

Band Theory of Solids

Scilab code Exa 2.1 To find three lowest permissible quantum energies

```
1 // Chapter 2 example 1
3 clc;
4 clear;
6 // Variable declaration
7 h = 6.63*10^{-34};
                               // plancks constant in J
     = 9.1*10^-31;
                              // mass of electron in
9 a = 2.5*10^-10;
                               // width of infinite
     square well
                               // charge of electron
10 e = 1.6*10^-19;
     coulombs
11 \quad n2 = 2;
                               //number of
     permiissable quantum
12 \quad n3 = 3;
                               //number of
     permiissable quantum
13
14 // Calculations
15 E1 = (h^2)/(8*m*a^2*e); // first lowest
```

Scilab code Exa 2.2 To find energy differences between two states

```
1 // Chapter 2 example 2
3 clc;
4 clear;
6 // Variable declaration
  h = 6.63*10^{-34};
                              // plancks constant in
      J . s
8
      = 9.1*10^-31;
                                // mass of electron in
      kg
     = 10^-10;
                            // width of infinite square
9
       well in m
     = 1.6*10^-19;
10
                                // charge of electron
      in coulombs
11
   n1 = 1;
                                 //energy level
      constant
                                   //energy level
12
   n2 = 2;
      constant
13
14 // calculations
   E1 = ((n1^2)*(h^2))/(8*m*(a^2)*e); // ground
      state energy in eV
```

Scilab code Exa 2.3 comment on first three energy levels of an electron

```
1 // Chapter 2 example 3
2 clc;
3 clear;
5 // Variable declaration
6 h = 6.63*10^{-34};
                                // plancks constant in J
     = 9.1*10^{-31};
                                // mass of electron in
     kg
8 \ a = 5*10^-10;
                                // width of infinite
     potential well in m
     = 1.6*10^-19;
                                 // charge of electron
     in coulombs
10 \text{ n1} = 1;
                                   // energy level
      constant
                                   // energy level
11 \quad n2 = 2;
      constant
12 \quad n3 = 3;
                                   // energy level
      constant
13
14 // Calculations
15 E1 = ((n1^2)*(h^2))/(8*m*(a^2)*e);
                                             // first
      energy level in eV
16 E2 = ((n2^2)*(h^2))/(8*m*(a^2)*e); // second
     energy level in eV
```

```
17 E3 = ((n3^2)*(h^2))/(8*m*(a^2)*e); // third
        energy level in eV

18
19 // Result
20 mprintf('First Three Energy levels are \n E1 = %3.2f
        eV\n E2 = %3.2f eV\n E3 = %3.2f eV',E1,E2,E3);
21 mprintf('\n Above calculation shows that the energy
        of the bound electron cannot be continuous')
```

Scilab code Exa 2.4 To find lowest allowed energy bandwidth

```
1 // Chapter 2 example 4
2 clc;
3 clear;
5 // Variable declaration
6 h
     = 1.054*10^{-34};
                               //plancks constant in J
     = 9.1*10^{-31};
                               // mass of electron in
     kg
     = 5*10^-10;
                               // width of infinite
     potential well in m
                                // charge of electron
     = 1.6*10^-19;
     coulombs
10
11 // Calculations
12 //\cos(ka) = ((P\sin(alpha*a))/(alpha*a)) + \cos(alpha*a)
13 //to find the lowest allowed energy bandwidth, we
     have to find the difference in a values, as ka
     changes from 0 to
14 // for ka = 0 in above eq becomes
15 // 1 = 10*\sin(a))/(a) + \cos(a)
16 // This gives a = 2.628 rad
17 // ka = , a =
```

Scilab code Exa 2.5 T find energy of free electron for first Brillouin Zone

```
1 // Chapter 2 example 5
2 clc;
3 clear;
5 // Variable declaration
6 \quad a = 3*10^-10;
                              // side of 2d square
     lattice in m
7 h = 6.63*10^{-34};
                              // plancks constant in J
8 e = 1.6*10^-19
                             // charge of electron in
     coulombs
9 m = 9.1*10^-31;
                              // mass of electron in
     kg
10
11 // calculations
12 / p = h * k
                                 // momentum of the
     electron
13 k = \%pi/a;
                                 // first Brillouin
     zone
     = (h/(2*\%pi))*(\%pi/a);
                                       //momentum of
14 p
     electron
15 E = (p^2)/(2*m*e)
                                     // Energyin eV
```

```
16
17 // Result
18 mprintf('Electron Momentum for first Brillouin zone
          appearance = %g\n Energy of free electron with
          this momentum = %4.1 feV',p,E);
19 mprintf("\n Note: in Textbook Momentum value is
          wrongly printed as 1.1*10^-10')
```

Chapter 3

Magnetic properties of Materials

Scilab code Exa 3.1 To find magnetic moment and bohr magneton

```
1 // Chapter 3 example 1
2 clc;
3 clear;
5 // Variable declaration
6 r = 0.53*10^-10;
                                // orbit radius m
7 n = 6.6*10^15;
                                // frequency of
     revolution of electronHz
8 e = 1.6*10^-19
                                // charge of electron in
     coulombs
9 h = 6.63*10^{-34};
                                // plancks constant in J
10 \text{ m} = 9.1*10^-31;
                                 // mass of electron in
11
12 // Calculations
                                   // current produced
13 \quad i = e*n
     due to electron
14 A = \%pi*r*r
                                   // Area in m<sup>2</sup>
```

Scilab code Exa 3.2 To find the magnetic moment of the rod

```
1 // Chapter 3 example 2
2 clc;
3 clear;
5 // Variable declaration
                          // relative permeability
6 \text{ ur} = 1150;
       = 500;
                         // turns per m
                         // volume of iron rod in m<sup>3</sup>
       = 10^{-3};
                         // current in amp
9 i
       = 0.5;
10
11 // Calculations
12 // B = uo(H+M)
13 // B = uH, u/uo = ur
14 // M = (ur - 1)H
15 // if current is flowing through a solenoid having n
       turns/l then H = ni
16
    M = (ur - 1)*n*i
                       // magnetisation
    m = M * V;
                         // magnetic moment
17
18
19
    // Output
    mprintf('Magnetic moment = \%3.2 e A-m^2', m);
20
    mprintf('\n Note: Instead of 2.87*10^2, 2.87*10^-2
21
       is printed in textbook');
```

Scilab code Exa 3.3 To find the magnetic moment of the rod

```
1 // Chapter 3 example 3
 2 clc;
 3 clear;
 5 // Variable declaration
6 ur = 90;  // relative permeability
7 n = 300;  // turns per m
8 i = 0.5;  // current in amp
9 d = 10*10^-3;  // diameter of iron rod
10 l = 2;  // length of iron rod
10 \ 1 = 2;
11
12 // Calculations
13 V = \pi (d/2)^2 * 1 // volume of rod
14 M = (ur - 1)*n*i
                                      // magnetisation
                                        // magnetic moment
15 \quad m = M*V
16
17 // Output
18 mprintf ('Magnetic Moment of the rod = \%3.3 \,\mathrm{g} \,\mathrm{A-m^2}
19 mprintf('Note: In textbook length of iron rod given
       as 2m whereas in calculation it is wrongly taken
       as 0.2m')
```

Scilab code Exa 3.4 To find change in magnetic moment

```
1 // Chapter 3 example 4
2 clc;
3 clear;
4
5 // Variable declaration
```

```
6 Bo = 2;
                          // magnetic field in tesla
      = 5.29*10^-11
= 9.1*10^-31;
                          // radius in m
      = 9.1*10^-31;
                              // mass of electron in
     kg
9 e
    = 1.6*10^-19
                              // charge of electron
10
11 // calculations
12 du = (e^2 * Bo * r^2)/(4*m)
                                       // change in
     magnetic moment
13
14 // output
15 mprintf('Change in magnetic moment = \%3.1e J/T', du);
```

Scilab code Exa 3.6 To find temperate must the substance cooled

```
1 // Chapter 3 example 6
2 clc;
3 clear;
5 // Variable declaration
                       // magnetic dipole moment
6 \text{ u1} = 3.3;
      = 9.24*10^-24;
                       // magnetic field in tesla
      = 5.2;
8 B
      = 1.38*10^-23; // boltzmann constant
9 k
10
11 // calculations
12 T = (u*u1*B)/(1.5*k); // Temperature in Kelvin
13
14 // Output
15 mprintf ('Temperature to which substance to be cooled
      = \%3.1 f K n ', T);
16 mprintf('Note: Values given in question B = 52, u =
     924*10^-24. Values substituted in calculation B =
     5.2, u = 9.24*10^-24;
```

Scilab code Exa 3.7 To find magnetisation vector and flux density

```
1 // Chapter 3 example 7
2 clc;
3 clear;
5 // Variable declaration
6 \text{ xm} = -4.2*10^-6;
                                     // magnetic
      susceptibility in A.m^-1
7 H
           = 1.15*10^5;
                                     // magnetic field in
      A.m^-1
8
9 // Calculations
10 uo = 4*\%pi*10^-7;
                                     // magnetic
      permeability NA^-2
           = xm * H
                                     // magnetisation in
11 M
     A.m^-1
12 B
           = uo*(H + M)
                                     // flux density in T
                                     // relative
13 ur
          = 1 + (M/H)
     permeability
14
15 // Output
16 mprintf ('Magnetisation = \%3.2 \text{ f A/m/n} flux density =
     %g Tesla \ n relative permeability = %g',M,B,ur);
```

Scilab code Exa 3.8 To find increase in percentage

```
1 // Chapter 3 example 8
2 clc;
3 clear;
4
5 // Variable declaration
```

Scilab code Exa 3.9 To find magnetisation vector and flux density

```
1 // Chapter 3 example 9
2 clc;
3 clear;
5 // Variable declaration
6 \text{ xm} = -0.2*10^-5; // \text{magnetic}
     susceptability in A.m^-1
                             // magnetic field in A/m
7 H
     = 10^4;
8
10 // Calculations
11 uo = 4*\%pi*10^-7; // magnetic
     permeability
12 M
                            // magnetisation in A/m
       = xm * H
                         // magnetic flux density
      = uo*(H+M);
13 B
     in T
14
15 // Output
```

```
16 mprintf('magnetisation = \%3.2 \, f \, A/m \ Magnetic flux density = <math>\%3.4 \, f \, T', M,B);
```

Scilab code Exa 3.10 To find permeability and relative permeability

```
1 //
2 // chapter 3 example 10
3
4
5 clc;
6 clear;
7
9 //input data
   sighem = 2.1*10^-5; //magnetic
       susceptability
                    = 4*\%pi*10^-7;
    u0
11
12
13
14 //calculation
         = 1+(sighem);
= 110*11r:
15 ur
                   = u0*ur;
16 u
17
18 // result
19 mprintf('permeability = \%3.6 \, \text{f} \, \text{n',ur});
    mprintf ('relative permeability = \%3.4 \,\mathrm{e.N/A^2 \setminus n'}, u);
20
21
22
```

Scilab code Exa 3.11 To find absolute and relative permeability

```
2 // chapter 3 example 11
 4
 5 clc;
 6 clear;
 7
9 //input data
10 sighem = 0.084; // magnetic
       susceptability
                    = 4*\%pi*10^-7;
11
12
13
14 // calculation
15 ur = 1+(sighem);
16 u = n0*nr.
17
18 // result
19 mprintf('permieability = \%3.6 \, f \setminus n', ur);
    mprintf ('relative permiability = \%3.4 \,\mathrm{e.N/A^2 \setminus n'}, u);
20
21
22
```

Scilab code Exa 3.12 To find relative permeability and magnetic susceptibility

```
2 // chpter 3 example 12
4
5 clc;
6 clear;
8
  //input data
               = 0.126; //permiability
10
   in N/A^2
u0 = 4*%pi*10^-7;
11
12
13 //calculation
                  = u/u0
14
  ur
                                //magnetic
    sighe = ur-1;
15
       susceptability
16
17 //result
    mprintf('relative permiability = \%3.5 \,\mathrm{e}\,\mathrm{n}', sighe);
18
   mprintf(' Note: Calculation mistake in textbook in
19
       calculating sighe by taking ur as 10<sup>5</sup> instead
       of 100318.4')
20
21
```

Scilab code Exa 3.13 To find diamagnetic susceptability of He

```
2 // chapter 3 example 13
```

```
4
5 clc;
6 clear;
7
 //input data
9 //diamagnetic susceptability of He
      = 0.6*10^{-10};
                                      //mean radius
10
      of atom in m
             = 28*10^26;
                                     //avagadro
11
   N
      number in per m<sup>3</sup>
                                       //charge of
            = 1.6*10^-19;
12
      electron in coulombs
       = 9.1*10^-31;
13
                                         //mass of
      electron in kilograms
                                         //atomic
    Z
14
              = 2;
       number
15
16
   //calculation
            17
   u0
            = -(u0*Z*(e^2)*N*(R^2))/(6*m);
18
   si
      susceptability of diamagnetic material
19
20 // result
   mprintf('susceptability of diamagnetic material =
      \%3.4e\n',si);
22
23 //
```

Scilab code Exa 3.14 To find permiability and susceptibility

```
2 // chpter 3 example 14
3
4
5 clc;
6 clear;
8 //input data
            = 2*10^-5; //magnetic flux in
   phi
       Wb/m^2
10
               = 2*10^3;
                                         //in A/m
               = 0.2*10^{-4}; //area in m<sup>2</sup>
11
12
13
14
15 //calculation
   u0
                = 4*\%pi*10^-7;
16
    B = phi/A;
17
                                      //magnetic flux
       density in Wb/m<sup>2</sup>
         = B/H;
                                      //permiability in /A
18
19
    sighem = (u/u0)-1;
20 /// result
    mprintf ('permiability = \%3.2 \,\mathrm{e.N/A^2 \setminus n'}, u);
21
    mprintf('susceptability = \%4f \setminus n', sighem);
22
    mprintf('Note:answer of permiability is wrong in
23
       textbook \n');
    mprintf(' Note: calcuation mistake in textbook in
24
       sighem');
25
26
```

Scilab code Exa 3.15 To find susceptability

```
1 //
```

```
2 // chpter 3 example 15
3
4
5 clc;
6 clear;
  //input data
                                        //number of atoms
               = 6.5*10^25;
   N
       in atoms per m<sup>3</sup>
10
               = 1.6*10^-19;
                                         //charge of
       electron in coulombs
               = 9.1*10^{-31};
                                          //mass of
11
    m
       electron inilograms
               = 6.6*10^{-34};
                                         //planck's
12
    h
       constant in J.s
               = 300;
                                         //temperature in K
13
    Τ
               = 1.38*10^-23;
                                           //boltzman
14
        constant in J*(K^-1)
                                           //constant
15
                = 1;
16
17
   //calculation
18
               = 4*\%pi*10^-7;
19
    u0
                    = n*((e*h)/(4*\%pi*m));
20
    M
                         //magnetic moment in A*m^2
                    = (u0*N*(M^2))/(3*k*T);
21
    sighe
       //susceptability of diamagnetic material
22
23
  //result
    mprintf('susceptability of diamagnetic material =
       \%3.2e\n', sighe);
25
26
```

Scilab code Exa 3.16 To find number ampere turns

```
1 //
2 // chpter 3 example 16
3
5 clc;
6 clear;
8 //input data
                                      //length in m
9 L
           = 2.0;
                                      //cross section sq.
          = 4*10^-4;
10 A
     \mathbf{m}
                                     //permiability in H*
     = 50*10^-4;
11 u
     m^-1
                                     //magnetic flux in
             = 4*10^-4;
12 phi
     Wb
13
14 //calculation
                                     //magnetic flux
   B = phi/A;
15
       density in Wb/m<sup>2</sup>
                                     //ampere turn in A/m
16
    NI
       = B/u;
17
    //result
18
    mprintf('ampere turn = \%3.2 \, f.A/m n', NI);
19
20
21
    //
```

Scilab code Exa 3.17 To find current to be sent into solenoid

```
2 // chapter 3 example 17
5 clc;
6 clear;
8 //input data
9 \quad H = 5*10^3;
10 \quad 1 = 10^-1;
                                //corecivity in A/m
                                   //length in m
10
                                 //number of turns
11
  n = 500;
12
13 //calculation
14 	 N = n/1;
                                // number of turns
   per m
                               //current in A
  i = H/N;
15
16
17 // result
18 mprintf('current = \%1d A \setminus n',i);
19
20 //
```

Scilab code Exa 3.18 To find number of turns

```
1 //
2 // chapter 3 example 18
```

```
4
5 clc;
6 clear;
8 //input data
         = 6*10^-4;
9
   Α
                                           //area in m<sup>2</sup>
               = 0.5;
                                          //length in m
10
    1
                                          //permiability
               = 65*10^-4;
11
       in H/m
    phi = 4*10^-5;
                                          // magnetic flux
12
        in Wb
13
14
15 //calculation
   B = phi/A;
H = B/u;
N = H*1;
16
17
18
19
20 // result
    mprintf('number of turns = \%1f \setminus n', N);
21
22
    mprintf(' Note: calculation mistake in textbook in
       calculattig H by taking B value as 0.06 instead
       of 0.0666');
23
```

Scilab code Exa 3.19 To find permeability and susceptibility

```
1 //
2 // chpter 3 example 19
```

```
4
5 clc;
6 clear;
8 //input data
  A = 0.2*10^-4;
H = 500;
9
                                      //area in m<sup>2</sup>
10
    magnetising field in A.m<sup>-1</sup>
   phi = 2.4*10^-5;
                                      // magnetic
11
    flux in Wb
12
13
   //calculation
   u0 = 4*\%pi*10^-7;
14
   B = phi/A;
                                       //magnetic
15
     flux density in N*A^-1 *m^-1
   u = B/H;
16
                                       //
     permiability in N/m
17
   fm = (u/u0)-1;
                                       //
      susceptability
18
19 //result
  mprintf('susceptability = %3.2d\n',fm);
20
21
22
23 //
```

Scilab code Exa 3.20 To find loss of energy per hour

```
2 // chapter 3 example 20
```

```
4
5 clc;
6 clear;
7
  //input data
                                     //number of reversals
           = 50;
       /s in Hz
           = 50;
                                     //weight in kg
10
                                     //density in kg/m<sup>3</sup>
11
           = 7500;
                                     //area in joules /m
12
           = 200;
      ^3
13
14
    //calculation
15
    V
          = 1/d;
                              //volume of 1 kg iron
16
                                //loss of energy per kg
17
    Ε
          = A * V;
       = f*E;
                              //hysteresisloss/s in Joule
18
    L
      /second
                              //loss per hour
19
    Lh = L*60*60;
20
21
    //calculation
    mprintf('loss of energy per hour =\%3.2 \,\mathrm{f} \,\mathrm{n}',Lh);
22
    mprintf('calculation mistake in textbook in
23
       calculating Lh');
24
25
```

Scilab code Exa 3.21 To find hysteresis loss per cycle

```
3
4
5 clc;
6 clear;
8 //input data
                                 //frequency in Hz
            = 50;
            = 1.1;
                                //magnetic flux in Wb/m<sup>2</sup>
10 Bm
                                //thickness of sheet
11 t
            = 0.0005;
            = 30*10^-8*7800;
                                       //resistivity in ohms
12 p
13 d
            = 7800;
                                         //density in kg/m<sup>3</sup>
14 Hl
            = 380;
                                         //hysteresis loss
      per cycle in W-S/m<sup>2</sup>
15
16 //calculation
           = ((%pi^2)*(f^2)*(Bm^2)*(t^2))/(6*p);
17
    Ρl
       eddy current loss
           = (Hl*f)/d;
18
       hysteresis loss
19
             = Pl+Hel;
       total iron loss
20
21
    //result
    mprintf('total iron loss = \%3.2 \, \text{f watt/kg } \, \text{n',Tl});
22
```

Chapter 4

Behaviour of Dielectric Materials in ac and dc fields

Scilab code Exa 4.1 To find dielectric constant of argon at NTP

```
1 //
2 // chapter 4 example 1
3
4 clc;
5 clear;
7 //input data
                                     //polarisability
  alpha = 1.8*10^-40;
      of argon in Fm<sup>2</sup>
      = 8.85*10^-12;
                                      // dielectric
    constant F/m
       = 6.02*10^23;
                                      //avagadro
10
   N 1
      number in mol^-1
             = 22.4*10^3;
                                      //volume in m<sup>3</sup>
11
12
13 //formula
14 / er -1 = N * p / e0 * E = (N / e0) * alpha
```

```
15 //calculation
       = N1/double(x);
                                           //number
   of argon atoms in per unit volume in cm<sup>2</sup>
      = N*10^6;
                                  //number
17
      of argon atoms in per unit volume in m^3
   er = 1+((N2/e0))*alpha;
18
      dielectric constant F/m
19
20
21 / result
22 mprintf('dielectric constant of argon=\%3.7 f n', er);
23 //
```

Scilab code Exa 4.2 To estimate the shift of the electron cloud

```
2  // chapter 4 example 2
3
4  clc;
5  clear;
6
7
8  //input dta
9  alpha = 1.8*10^-40;  // polarisability of argon in F*m^2
10  E = 2*10^5;  // in V/m
11  z = 18;
12  e = 1.6*10^-19;
13
14
15  //formula
```

Scilab code Exa 4.3 To find local field acting on a given molecule

```
2 // chapter 4 example 3
3
4 clc;
5 clear;
6
  //input data
    E0 = 300*10^2;
                                         //local field in
       V/m
    P1 = 3.398*10^-7;
                                         //dipole moment
10
      Coulomb/m
                                         //dipole moment
    P2 = 2.124*10^{-5};
11
       Coulomb/m
    e0 = 8.85*10^{-12};
                                         //permittivity
12
      in F/m
13
14
```

```
15 // formula
16 / E10Ci=E0-(2*Pi/3*e0)
17 //calculation
    E10C1 = E0-((2*P1)/(3*e0)); //local field of
18
         benzene in V/m
    E10C2 = E0-((2*P2)/(3*e0)); //local field of
19
       water in V/m
20
21
    //result
    mprintf('local field of benzene=\%3.2 \,\mathrm{e.V/m} \,\mathrm{n'}, E10C1)
    mprintf('local field of water=\%3.2 \,\mathrm{e.V/m} \,\mathrm{n'}, E10C2);
23
24
25 //
```

Scilab code Exa 4.4 To find polarisabilities of benzene and water

```
13
14 //formula
15 /p=alphai*e10Ci
16 //calculation
   17
     benzene in F*m^2
   18
      F*m^2
19
20
21
   //result
   mprintf('polarisability of benzene=%3.2e.F*m^2\n',
22
     alpha1);
   mprintf('polarisability of water=\%3.2e.F*m^2\n',
23
     alpha2);
   mprintf('Note: mistake in textbok, alpha1 value is
24
     printed as 1.16*10^{-38} instead of 1.16*10^{-37};
25
26
```

Scilab code Exa $4.5\,$ To find polarisation of plates

```
2 //chapter 4 example 5
3
4 clc;
5 clear;
6
7
8 //input data
9 e0 = 8.85*10^-12; //abslute
```

```
permittivity in (m^-3)*(kg^-1)*(s^4)*(A^2)
                                 //strength in V/cm
           = 600*10^2;
10
                             //dielectric constant of
    er1 = 2.28;
11
      benzene in coulomb/m
12
    er2
           = 81;
                            //dielectric constant of
       water in coulomb/m
13
14
15 //fomula
16 / p = e0 *E*(er -1)
17 //calculation
       = e0*E*(er1-1); // polarisation of
      benzene in c/m<sup>2</sup>
    pW = e0*E*(er2-1); // polarisation of
19
      water in c/m<sup>2</sup>
20
21
22 / result
   mprintf ('polarisation of benzene=\%3.2 \,\mathrm{e.c/m^2 \backslash n'}, pB)
    mprintf ('polarisation of water=\%3.2e.c/m^2 n', pW);
24
25
26 //
```

Scilab code Exa 4.6 To find percentage contribution of ionic polarisability

```
2 // chapter 4 example 6
3
4 clc;
5 clear;
```

```
6
7
  //input data
   er0 = 5.6; //static dielectric constant of
      NaCl
                        //optical index of refraction
   n = 1.5;
10
11
12
  //calculation
13
   er = er0-n^2;
    d = (er/er0*100);
15
16
17 //result
   mprintf('percentage contribution from ionic
       polaristion=\%3.2 f percent\n',d);
19
20
```

Scilab code Exa 4.7 To find separation between positive and negative charges

```
10
      = 2.6*10^25;
                                   //number of
   N
     atoms in per m<sup>3</sup>
       = 1.6*10^-19;
11
12
13
14 //formula
15 / P = N * p
16 //charge of He=2*electron charge
17 / p = 2(e * d)
18 //calculation
  P = N*alpha*E;
                               //in coul/m^2
19
                               //polarisation of He
20
        = P/N;
      in coul.m
     = p/(2*e);
                        //separation between
21
      charges in m
22
23
24 / result
25 mprintf ('separation=\%3.2 e.m\n',d);
26
27 //
```

Scilab code Exa 4.8 To find orientational polarisation at room temperature

```
2 // chapter 4 example 8
3 clc;
4 clear;
5
6 //input data
```

```
//number of HCl
  N = 10^27;
7
      molecules in molecules/m<sup>3</sup>
                                      //electric field
    Ε
     = 10^5;
      in V/m
                                      //permanent dipole
9
      = 1.04*3.33*10^-30;
      moment in coul.m
                                     //temperature in
10
    Τ
      = 300;
       kelvin
     = 1.38*10^-23;
11
12
13
14 //calculation
   PO = (N*P^2*E)/(3*K*T); //oriental
15
      polarisation in coul/m<sup>2</sup>
16
17
18 // result
  mprintf ('oriental polarisation=\%3.2 \,\mathrm{e.\,coul/m^2 \setminus n'}, PO
20
21 //
```

Scilab code Exa 4.9 To find relative dielectric constant

```
//avagadro number (lb-
          = 6.023*10^26;
8
   N
      mol)^-1
                              //polarisability in F*m
   alpha = 3.28*10^-40;
9
10
          = 32;
                              //molecular weight in
      kilograms
                             //density of sulphur in
          = 2.08*10^3;
11
      g/cm^3
   e0 = 8.85*10^12; //permitivity in F/m
12
13
14
  //calculation
   er = ((2*N*p*alpha)+(3*M*e0))/((3*M*e0)-(N*p*alpha)
      );
16
  //result
17
18
   mprintf('relative dielectric constant = \%3.1 f\n', er)
19
20
   mprintf(' Note: calculation mistake in text book in
       calculating relative dielectric constant');
21 //
```

Scilab code Exa 4.10 To find ratio between electronic and ionic polarisability

```
2 // chapter 4 example 10
3
4 clc;
5 clear;
```

```
7
8 //input data
  er = 4.94;
              = 1.64;
10
11
12
13 //calculatio
14 //(alphae)/(alphai) = x
  x = ((er-1)/(er+2))*(((n^2)+2)/((n^2)-1));
15
16
17
18 / result
  mprintf('ratio of electronic and ionic
      probabilities = \%6f \cdot n', x);
20
21 //
```

Scilab code Exa 4.11 To find dielectric constant and electrical susceptibility

```
2 // chapter 4 example 11
3
4
5 clc;
6 clear;
7
8
9 //input data
10 E = 1.46*10^-10;  // permitivity in c^2*N^-1*m^-2
```

```
E0 = 8.885*10^{-12};
11
                                      // permitivity in
       c^2*N^-1*m^-2
12
13
14 //calculation
    Er = E/E0;
15
    sighe = E0*(Er-1); //electrical suseptbility in c^2*N^-1*M^-2
16
17
18
19 / result
  mprintf('dielectric constant=%3.2f.\n',Er);
20
    mprintf('electrical suseptibility=\%3.4e.c^2*N^-1*M
21
      -2 n', sighe);
22
23 //
```

Scilab code Exa 4.12 To find the polarisation

```
2 // chapter 4 example 12
3
4 clc;
5 clear;
6
7 //input data
8 r = 0.1;
9 pw = 1;
in g/ml
10 Mw = 18;
of water

// molecular mass
```

```
//dipole moment of
11
   E = 6.0*10^-30;
      water in cm
         = 6.0*10^26;
                         //avagadro constant
12
      in (lb-mol) 1
13
14
15 //calculation
  n = N*(4*(\%pi)*(r^3)*pw)/(Mw*3)
                                            //number of
       water molecules in a water drop
   p = n*E;
17
      polarisation in cm<sup>2</sup>
18
19
20 // result
21 mprintf('polarisation=\%3.1e.cm^2\n',p);
22
23 //
```

Scilab code Exa 4.13 To find dielectric susceptibility

Scilab code Exa 4.14 To find free charge and polarisation and displacement

```
2 // chapter 4 example 14
4
5 clc;
6 clear;
9 //input data
10 	 E = 10^6;
                                  //dielectric in
    volts/s
   er = 3;
e0 = 8.85*10^-12;
                                   //dielectric in mm
11
12
13
14
15 //calculation
                                     //electric field
16 \quad EO \quad = er*E;
   in V/m
                                    //free charge in
   sigma = e0*E0;
17
```

```
Coul/m<sup>2</sup>
             = e0*(er-1)*E0;
                                        //polarisation in
18
        coul/m
                                        //displacement in in
        = e0*er*E0;
19
    D
         dielectric
20
21
22 / result
    mprintf ('free charge=\%3.2 \,\mathrm{e.\,Coul/m^2 \backslash n'}, sigma);
23
    mprintf ('polarisation=\%3.2 e. Coul/m n', P);
    mprintf('displacement=\%3.2e\n',D);
25
26
27
```

Scilab code Exa 4.15 To find capacitance and charge stored and displacement vector and polarisation vector

```
2 // chapter 4 example 15
3
4 clc;
5 clear;
7 //input data
                    //separation between
  d = 1.0*10^-3;
     plates in m
                    // surface area in m
        = 6.45*10^-4;
9
10
   e0 = 8.85*10^-12;
                             //permitivity of
     electron in (m^-3)*(kg^-1)*(s^4)*(A^2)
   er = 6.0;
                             //relative
11
```

```
permittivity in (m^-3)*(kg^-1)*(s^4)*(A^2)
                                      //voltage in V
    V
12
           = 10;
           = 10;
13
    Ε
14
15
16
   //calculation
       = (e0*er*A)/d;
                                            //capacitance in
17
       Farad
                                             //charge in
            = C * V;
18
    q
       coulomb
            = (e0*er*E)/(10^-3); //displacement
19
    D
       vector in c/m<sup>2</sup>
20
    Р
            = D-(e0*E/(10^-3));
                                                     //
        polarisation vector in c/m<sup>2</sup>
21
22
23
   //result
24
    mprintf ('capacitance = \%3.2e, Farad\n',C);
    mprintf('charge = \%3.2e.coulomb \setminus n',q);
25
    mprintf ('displacement = \%3.2 \,\mathrm{e.c/m^2 \setminus n'}, D);
26
    mprintf('polarisation = \%3.2 \,\mathrm{e.c/m^2 \, n'},P);
27
    mprintf('Note: error in calculation of P,E value is
28
        taken as 5000 instead of 10^4\n');
29
30
```

Scilab code Exa 4.16 To find phase difference

```
4
5
6 clc;
7 clear;
8
9
10 //input data
              = 18*10^-6;
                                         //relaxation time in
11
   t
12
              = 1;
                                         //permitivity in F/m
    er1
                                         //permitivity in F/m
13
             = 1;
    er
                                         //relaxation time in
             = 18*10^-6;
14
       \mathbf{S}
15
    //calculation
16
                       = 1/(2*\%pi*t);
                                                            //
17
       frequency in Hz
18
                            = atan(er1/er);
    theta_c
                       = theta_c*(180/%pi);
19
    theta_c_deg
                        = 90-theta_c_deg;
                                                            //
20
       phase difference in degrees
21
22
    //result
23
    mprintf('frequency = \%3.2 \, \text{f KHz} \cdot \text{n'}, (\text{f/10^3}));
24
    mprintf('phase difference =\%3.2 \text{ f} \setminus \text{n',phi});
25
26
27
```

Chapter 5

Conductivity of metals and superconductivity

Scilab code Exa 5.1 To find average drift velocity of free electron

```
1 //
2 // chapter 5 example 1
3 clc;
4 clear;
6 //input data
7 	 d = 2*10^-3;
                                       //diameter in m
  I = 5*10^{-3};
                                       //current in A
       = 1.6*10^-19;
                                       //charge of
   electron in coulombs
                                      //side of cube in
         = 3.61*10^-10;
10
       \mathbf{m}
                                      //number of atoms
11
            = 4;
       in per unit cell
12
13
14 //formula
```

```
15 //J = n * v * e
16
17 //calculation
                                     //radius in m
18
    r = d/2;
                                     //number of atoms per
19
           = N/(a^3);
        unit volume in atoms/m<sup>3</sup>
                                     //area in m^2
20
          = %pi*(r^2);
    Α
                                     //current density in
21
           = I/A;
       Amp/m^2
            = J/(n*e);
                                    //average drift
22
       velocity in m/s
23
24 / result
    mprintf ('velocity=\%3.2 e.m/s n',v);
26
27 //
```

Scilab code Exa 5.2 To find drift velocity

Scilab code Exa 5.3 To find current density and drift velocity of electrons

```
e = 1.6*10^-19;
                             //charge of
13
    electronin coulomb
                      //planck's constant
   h = 6.02*10^28;
14
    in (m^2)*kg/s
15
16
17 //calculation
18 A = %pi*(r^2); // area in m^2
19 N = h*d;
20 n
        = N/V;
21 J = I/A;
                //current density in m/
22 vd = J/(n*e); //drift velocity in m/s
23
24 / result
25 mprintf('velocity=\%2e.m/s \setminus n',vd);
26
27 // ===
```

Scilab code Exa 5.4 To find resistivity of the material

```
1 //
2 // chapter 5 example 4
3
4 clc;
5 clear;
6
7
8 //input data
9 R = 0.182; //resistance in ohm
10 1 = 1; //length in m
```

```
= 0.1*10^-6; //area in m^2
11
12
13 //formula
14 / R = (p * l) / A
15
16 //calculation
                        //resistivity in ohm
17 p = (R*A)/1;
       \mathbf{m}
18
19
20 / result
  mprintf ('restivity=\%3.2 e.ohm m\n',p);
21
22
23 //
```

Scilab code Exa 5.5 To find mobility and relaxation time of electrons

```
2 // chapter 5 example 5
3
4 clc;
5 clear;
7 //input data
  n = 5.8*10^28;
                                        //number of
      silver electrons in electrond/m<sup>3</sup>
                                        //resistivity
      = 1.45*10^-8;
9
      in ohm m
                                      //electric field
10
   Ε
       = 10^2;
    in V/m
        = 1.6*10^-19;
11
```

```
12
13
14 //formula
15 / sigma = n * e * u
16 / sigma = //p
17 //calculation
18 u = 1/(n*e*p);
    vd = u*E;
                                           //drift velocity
19
      in m/s
20
21 / result
   mprintf ('velocity=\%3.2 \text{ f.m/s} \cdot \text{n'}, vd);
23
24 //
```

Scilab code Exa 5.6 To find mobility of conduction electrons

```
2 // chapter 5 example 6
3
4 clc;
5 clear;
7 //input data
                                     //atomic weight
8
       = 107.9;
               = 10.5*10^3;
                                     //density in kg/
9
   р
     m^3
                                    //conductivity in
              =6.8*10^7;
10
   sigma
      ohm^-1.m^-1
               =1.6*10^-19;
                                    //charge of
11
      electron in coulombs
```

```
12 N = 6.02*10^26; //avagadro number
    in mol^-1
13
14
15 //calculation
16 n = (N*p)/W; //number of atoms
  per unit volume
  u = sigma/(n*e); //density of
17
    electron in m^2.V^-1.s^-1
18
19
20 / result
21 mprintf('density=\%3.2 e.m^2.V^-1.s^-1\n',u);
22
23 //
```

Scilab code Exa 5.7 To find relaxation time

```
1 //
2 // chapter 5 example 7
4 clc;
5 clear;
7 //input data
8 //for common metal copper
                                    //number of
9 	 n = 8.5*10^28;
    atoms in m^-3
10
  sigma = 6*10^7;
                                    //sigma in
   ohm^-1m^-1
                                    //mass of
      = 9.1*10^{-31};
11
```

Scilab code Exa 5.9 To find thermal conductivity for a metal

```
2 // chapter 5 example 9
4 clc;
5 clear;
7 //input data
  t = 3.0*10^-14;
                                     //time in s
8
   n = 2.5*10^22;
                                    //in electrons
      per m<sup>3</sup>
     = 9.1*10^-31;
                                     //mass of
10
   electron in kilograms
   e = 1.6*10^-19;
                                     //charge of
11
      electron in coulombs
                                   //temperature in K
12
        = 3.25;
13
```

```
14
15 //formula
16 / K/(sigma*T) = 2.44*10^-8 from wiedemann Franz law
17 //calculation
18
    sigma = (n*(e^2)*t)/(m*10^-6);
                                                      //
       conductivity in m<sup>3</sup>
        = (2.44*10^-8)*sigma*T;
19
       thermalconductivity in W/m-K
20
21
22 / result
23
    mprintf ('thermal conductivity=\%3.4 \text{ f.W/m-K/n', K});
24
    mprintf(' Note: calculation mistake in textbook in
       calculating K as T value is taken 325 instead of
        3.25;
25
26 //
```

Scilab code Exa 5.10 To find energy difference between two states

```
2 // chapter 5 example 10
3
4 clc;
5 clear;
6
7 //input data
8 a = 10^-10; //one dimension
in m
9 m = 9.1*10^-31;
10 h = 6.62*10^-34;
```

```
11
12
13 //formula
        = ((n^2)*(h^2))/(8*m*(a^2))
14 / En
15 //calculation
          = (h^2)/(8*m*(a^2));
16
    E1
17
    E2
           = (4*(h^2))/(8*m*(a^2));
    dE = (3*(h^2))/(8*m*(a^2));
18
19
20
21 / result
   mprintf('energy diefference=\%3.2 \,\mathrm{e.J/n',dE});
23
24 //
```

Scilab code Exa 5.11 To find fermi energy

```
2 // chapter 5 example 11
3
4 clc;
5 clear;
7 //input data
8
   N
              =6.02*10^23;
                                       //avagadro number
       in atoms / mole
                                       //planck's
       = 6.63*10^{-34};
9
   h
      constant in joule-s
10
           = 9.11*10^{-31};
                                      //mass in kg
   m
             = 23;
                                     //atomic weight in
11
      grams / mole
```

```
//density in gram/cm
           = 0.971;
12
    р
13
14
15 //formula
16 / x=N/V=(N*p)/M
17 //calculation
18
             = (N*p)/M;
   X
19
           = x*10^6;
    x1
            = (((h^2)/(2*m)))*(((3*x1)/(8*%pi))^(2/3));
20
    еF
              //Fermi energy
             = (eF)/(1.6*10^-19);
21
    eF1
22 / result
    mprintf ('fermi energy=\%3.2 \, \text{f.eV} \, \text{n',eF1});
24
25
```

Scilab code Exa 5.12 To find fermi energy

```
11 m = 9.11*10^-31; // mass in kg
                                          //density in grams/
12
            = 0.971;
    \mathrm{cm}\,\hat{\,}3
         = 1.38*10^-23;
13
    k
14
15
16 //calculation
           = (N*p)/M;
= (((h^2)/(2*m)))*(((3*x)/(8*%pi))^(2/3));
17 / x
18 eF
          //Fermi energy
= (eF)/(1.6*10^-19);
    eF1
19
            = sqrt((2*eF)/m);
20
    νF
21
    TF
           = eF/k;
22
23
24 / result
    mprintf ('fermi energy = \%3.2 \, \text{f.eV} \, \text{n',eF1});
25
    mprintf('fermi velocit =\%3.2 \,\mathrm{e.m/s \setminus n'}, vF);
26
    mprintf ('femi temperature = \%3.2 \,\mathrm{e.K} \,\mathrm{m'}, TF);
27
28
29
```

Scilab code Exa 5.13 To find fermi energy

```
8 //input data
                                //atomic weight
         = 65.4;
         = 65.4;
= 7.13;
                                //density
10
          = 6.62*10^-34;
                              // planck 's constant
11
12
          = 7.7*10^-31;
                               // mass
13
          = 6.02*10^23;
14
15
16 //calculation
17 / x = N/V
  V = M/p;
18
       //volume of one atom in cm<sup>3</sup>
19
      = v/V;
       // number of Zn atoms in volume v
       = 2*n*(10^6);
20
     number of free electrons in unit volume iper m^2
    eF = ((h^2)/(2*m))*(((3*x)/(8*%pi))^(2/3));
21
             // fermi energy in J
22
    eF1 = eF/(1.6*(10^-19));
23
24
25 / result
  mprintf ('fermi energy = \%3.2 \,\mathrm{d.eV} \,\mathrm{n'}, eF1);
27
28 //
```

Scilab code Exa 5.14 To find number of electrons

```
2 // chapter 5 example 14
```

```
4 clc;
5 clear;
7
  //input data
           = 4.27;  // fermi energy in eV
= 9.11*10^-31;  // mass of electron in
9
    еF
10
       kg
       = 6.63*10^-34; // planck's constant in
11
    h
       J \cdot s
12
13
14 //formula
15 //x = N/V
16 //calculation
    eF1 = eF*1.6*10^-19;
17
                                                           //
       fermi energy in eV
18
           = (((2*m*eF1)/(h^2))^(3/2))*((8*%pi)/3);
       //number of electrons per unit volume
19
20
21 / result
   mprintf('number of electrons per unit volume = %4.0 e
       ./m^3 n', x);
23
24 //
```

Scilab code Exa 5.15 To find electron density

```
3
4 clc;
5 clear;
6
7
  //input data
                                  // fermi energy in eV
   eF1
         = 4.70;
                                   // fermi energy in eV
        = 2.20;
= 4.6*10^28;
    eF2
10
                                // electron density
11
    x1
      of lithium per m<sup>3</sup>
12
13
14 //formula
15 //N/V = (((2*m*eF1)/(h^2))^(3/2))*((8*\%pi)/3);
16 / N/V = k*(eF^3/2)
17 //N/V = x
18 //calculation
  x2 = x1*((eF2/eF1)^{(3/2)});
       electron density for metal in per m<sup>3</sup>
20
21
22 // result
   mprintf('electron density for a metal = %4.2e per m
       3 n', x2);
24
25
```

Scilab code Exa 5.16 To find average energy and temperature

```
1 //
2 // chapter 5 example 16
```

```
3
4 clc;
5 clear;
6
7
8 //input data
                                                //fermi
9 	 eF = 5.4;
       energy in eV
                                                // k in
    k = 1.38*10^-23;
10
       joule/K
11
12
13 //calculation
   e0 = (3*eF)/5;
                                                   //average
       energy in eV
    T = (e0*(1.6*10^-19)*2)/(3*k);
15
                                                         //
       temperature in K
16
17
18 / result
19 mprintf('average energy =\%3.2 \, \text{f.eV} \, \text{n',e0});
    mprintf ('temperature = \%3.2 \,\mathrm{e.K \setminus n'}, T);
20
21
22 //
```

Scilab code Exa 5.17 To find average energy and speed of electron

```
1 //
2 // chapter 5 example 17
3
4 clc;
```

```
5 clear;
6
8 //input data
  EF = 15;
                                           //fermi energy
    in eV
        = 9.1*10^-31;
                                           //mass of
10
       electron in kilogarams
11
12
13 //calculation
14 E0 = (3*EF)/5;
                                                     //
    average energy en eV
    v = \frac{sqrt}{((2*E0*1.6*10^-19)/m)};
15
       //speed of electron in m/s
16
17
18 / result
19 mprintf('average energy = \%3.2 \, \text{f.eV} \, \text{n',E0});
    mprintf('speed = \%3.2 \,\mathrm{e.m/s} \,\mathrm{n'},v);
21
22 //
```

 ${f Scilab\ code\ Exa\ 5.18}$ To find average energy and speed of electron

```
2 // chapter 5 example 18
3
4 clc;
5 clear;
6
```

```
7 //input data
                                             //fermi energy
   \mathsf{EF}
         = 7.5;
      {
m in \ eV}
        = 9.1*10^-31;
                                           //mass of
9
       electron in kilograms
10
11 //calculation
12
       = (3*EF)/5; //average energy
13
    ΕO
       en eV
    v = sqrt((2*E0*1.6*10^-19)/m); //speed in m
14
15
16 //result
   mprintf('average energy =\%3.2 \, \text{f.eV} \, \text{n',E0});
    mprintf(' speed = \%3.2 \,\mathrm{e.m/s \setminus n'}, v);
18
19
20 //
```

Scilab code Exa 5.19 To find fermi energy and fermi velocity

```
11
12 //formula
13 / x=N/V
   x = 2.5*10^28;
14
15
16 //calculation
       = ((h^2)/(8*(\%pi^2)*m))*((3*(\%pi^2)*x)
17 EF
                                       //fermi energy in J
       ^(2/3));
    EF1 = EF/(1.6*10^-19);
18
                                             //fermi energy
       in eV
    vF = (h/(2*m*\%pi))*((3*(\%pi^2)*x)^(1/3));
19
                    //fermi velocity in m/s
20
21
22 / result
    mprintf ('energy=\%3.2 \,\mathrm{e.eV} \,\mathrm{n'}, EF1);
23
    {\tt mprintf} (' speed = {\tt =}\%3.2\,{\rm e.m/\,s}\,{\tt n}', vF);
25
26 //
```

Scilab code Exa 5.20 To find efficiency of transmission and percentage voltage drop

```
2  // chapter 5 example 20
3
4  clc;
5  clear;
6
7  //input data
```

```
Рs
           = 10^7;
            = 33*10^3;
9
10
            = 2;
11
12
    //calculation
13
           = Ps/V;
           = (I^2*R)/1000;
14
    Ρd
          = ((Ps-Pd)/Ps)*100;
15
16
           = I *R;
                                          //percentage
17
          = (v/V)*100;
    Vd
       voltage drop
18
19
    //result
    mprintf('efficiency = \%0f percent\n',n);
20
    mprintf('voltage drop = \%3.2 \, \text{f percent} \, \text{n',Vd});
21
```

Scilab code Exa 5.21 To find value of constants

```
2 // chapter 5 example 21
3
4 clc;
5 clear;
7 //input data
   a1 = 2.76;
                               //a1 in uv/ C
9
    a2 = 16.6;
                            //a2 in uv/ C
                              //b1 in uv/ C
10
   b1 = 0.012;
                              //b2 in uv/ C
   b2 = -0.03;
11
12
13 // calculation
14 / aFe, Pb
            =a1
15 //aCu, Pb
            = a2
```

```
16 / bCu, Fe = b1
17 / bFe, Pb = b2
18
19 //calculation
                                 //a3 in uv/ C
20
  a3 = a1-a2;
                                 //b3 in uv/( C)^2
21
    b3 = b1-b2;
22
23 / result
   mprintf('aCu, Fe = \%3.2 \, \text{f.uV/} \, \text{C} \, \text{n',a3});
24
    mprintf(' bCu, Fe = \%3.3 \, \text{f.uV/(C)}^2 \, \text{n',b3});
25
26
27 //
```

Scilab code Exa 5.23 To find neutral temperature and temperature of inversion

```
2 // chapter 5 example 23
3
4 clc;
5 clear;
7 //input data
                              //a in uv/ C
8 \quad a = 15;
                                //b in uv/ C
9
        = -1/30;
10
11 /E = at+bt^2
12 //dE/dT = a + 2*b*t
13 // t=tn
14 / dE/dT = 0
15 //calculation
```

```
//neutral
  tn = -(a/(2*(b)))
16
      temperature in C
17 / t1 + t2 = 2 * t2;
  t2 = 2*tn
                            //inversion temperature
18
      in C
19
   //result
20
    mprintf('neutral temperature = \%3.2 \,\mathrm{d} C\n',tn);
21
    mprintf('temperature of inversin = \%3.2 \,\mathrm{d} C\n',t2);
22
23
24
```

Scilab code Exa 5.24 To find resistivity of an alloy

```
1 //
2 // chapter 5 example 23
3
4 clc;
5 clear;
7 //input data
       = 2.75; //resistivity of alloy 1
8 p2
     percent of Ni in uohm-cm
        = 1.42; //resistivity of pure
   р1
     copper in uohm-cm
   p3 = 1.98; //resistivity of alloy 3
10
      percent of silver in uohm-cm
11
12
  //p(Ni+Cu) = p1
13
  //pCu = p2
  //p(Cu+silver)=p3
14
```

```
//calculation
15
         = p2-p1;
16
   рNі
\frac{1}{17} \quad p4 = (p3-p1)/3;
  palloy = p1+(2*pNi)+(2*p4); //
18
      resistivity of alloy 2 percent of silver and 2
       percent of nickel in uohm-cm
19
20
    //result
    mprintf('resistivity of alloy =\%3.4 \, \text{f.uohm-cm/n'},
21
      palloy);
```

Scilab code Exa 5.25 To find transition temperature

```
2 // chapter 5 example 25
4 clc;
5 clear;
 6
 7
8 //input data
                               //mass number
9 M1 = 202;
10 M2 = 200;
11 Tc1 = 4.153;
                                // mass number
                               // temperature in K
12
   alpha = 0.5;
13
14
15 //formula
16 / \text{m^alpha*}(\text{Tc}) = \text{conatant}
17 // calculation
18 Tc2 = ((M1^alpha)*Tc1)/(M2^alpha);
19
20
```

```
21 // result
22 mprintf('transition temperature = %3.2 f.K\n', Tc2);
23
24 //
```

Scilab code Exa 5.26 To find critical temperature

```
1 //
2 // chapter 5 example 26
3
4 clc;
5 clear;
7 //input data
                                  //temperature in
  Tc1 = 2.1;
    K
  M1
       = 26.91;
   M2 = 32.13;
10
11
12
13 //formula
14 //Tc*(M1^2) = constant
15 //calculation
   Tc2 = (Tc1*(M1^(1/2)))/(M2^(1/2));
16
17
18
19 / result
20 mprintf('critical temperature = \%3.2 \, f.K \, \gamma', Tc2);
21
22 //
```

Scilab code Exa 5.27 To find critical temperature

```
1 //
2 // chapter 5 example 27
4 clc;
5 clear;
7 //input data
  Hc1 = 1.41*10^5; //critical fields in
       amp/m
             = 4.205*10^5;
                                  // critical fields
   Hc2
      in amp/m
            = 14.1;
                                  //temperature in K
10
   T1
                                 // temperature in K
              = 12.9;
11
                                  //temperature in K
12
   T3
              = 4.2;
13
14
15 //formula
16 //Hen =Hc*((1-((T/Tc)^4)))
17 //calculation
   Тс
             =(((((Hc2*(T1^2))-(Hc1*(T2^2)))/(Hc2-Hc1)
18
      ))^(1/2));
                         //temperature in K
       = Hc1/(1-((T1/Tc)^2));
19
                               //critical field in A/
      \mathbf{m}
          = Hc0*(1-(T3/Tc)^2);
20
   Hc2
                                //critical field in A/
      \mathbf{m}
21
22
```

```
// result
mprintf('transition temperature = %3.2 f K\n', Tc);
mprintf('critical field = %3.2 e.A/m\n', Hc2);
mprintf('delta field = %3.2 e.A/m\n', Hc2);

//
```

Scilab code Exa 5.28 To find critical magnetic field

```
2 // Chapter 5 example 28
4
5 clc;
6 clear;
8
9 // input data
  10
11
12
13
14
 // calculation
15
    Hc = Hc0*(1-(T/Tc)^2);
16
17
18
19 / result
   mprintf('critical field =\%3.4 \,\mathrm{e.A/m} \,\mathrm{n'}, Hc);
20
    mprintf(' Note: calculation mistake in texttbook
21
       in calculating Hc')
22
```

```
23 //
```

Scilab code Exa 5.29 To find critical current density

```
1 //
2 // Chapter 5 example 29
4 clc;
 5 clear;
6
8 // input data
9 Hc0 = 8*10^4; //critical field

10 T = 4.5; //temperature in K

11 Tc = 7.2; //temperature in K

12 D = 1*10^-3; //diameter in m
10 T
11 Tc
12
13
14
   //calculation
15
   16
17
18
19
20
21 / result
   mprintf('critical current =\%3.2 \, f.A\n',Ic);
23
24 //
```

Scilab code Exa 5.30 To find transition temperature

```
1 //
2 // Chapter 5 example 30
4 clc;
5 clear;
6
8 // input data
9 HcO = 0.0306;  // critical field at 0 K

10 T = 2;  // temperature in K

11 Tc = 3.7;  // temperature in K
12
13
   // calculation
14
   Hc = Hc0*(1-(T/Tc)^2);
15
16
17
18 // result
   mprintf('critical field = %3.4 f tesla \n', Hc);
19
20
21
```

Scilab code Exa 5.31 To find transition temperature

```
2 // Chapter 5 example 31
4 clc;
5 clear;
7
8 // input data
        НсТ
    niobium at 0 K
   Hc0 = 2*10^5; // critical field for
10
    nobium at 0 K
          = 8;
                     // temperature in K
11
12
13
14 //calculation
   Tc = T/((1-(HcT/Hc0))^0.5);
15
16
17
18 // result
  mprintf('transition temperature = \%3.2 \, f.K \, \gamma', Tc);
19
20
21
```

Scilab code Exa 5.32 To find transition temperature

```
6
 7
8 //input data
           = 0.176; //critical fields
= 0.528; // critical fields
= 14; //temperature in K
= 13; // temperature in K
9
10
    Hc2
11
     T1
12
     T2
13
     Т3
                   = 4.2;
14
15 //formula
16 //\text{Hcn} = \text{Hc} * ((1 - ((T/Tc)^4)))
17 //calculation
18
   Tc = ((((Hc2*(T1^2))-(Hc1*(T2^2)))/(Hc2-Hc1)))
         ^(1/2));
     Hc0 = Hc1/(1-((T1/Tc)^2));
19
     Hc2 = Hc0*(1-((T3/Tc)^2));
20
21
22
23 / result
    mprintf('transition temperature = \%3.2 \, f \, K \setminus n', Tc);
    mprintf(' critical field =\%3.2 \, \text{f.T/n', Hc2});
25
26
27 //
```

Scilab code Exa 5.33 To find critical current

```
2 //chapter 5 example 33
3 4 clc;
5 clear;
```

```
6
8 //input data
             = 7900;
  Нс
     //magnetic field in A/m
        = 2.0*10^{-3};
10
      //radius of super condutor in m
11
12
13 //calculation
14 I = 2*\%pi*r*Hc;
     //critical current in A
15
16 // result
17 mprintf('critical current = \%4f.A\n',I);
   mprintf('Note: calculation mistake in textbook in
      calculation of I');
19
20 //
```

Scilab code Exa 5.34 To find current

```
2 //chapter 5 example 34
3
4 clc;
5 clear;
6
7
8 //input data
9 d = 10^-3; //diameter in m
```

```
= 0.0548; // Bc in T
10
    Вс
11
12
    //calculation
13
                 = 4*%pi*10^-7; //permiability m
14
    u0
                = d/2; //radius in i
= (2*%pi*r*Bc)/u0; //current in
                                           //radius in m
15
    r
16
       Amp
17
18 // result
19 mprintf('current = \%3.2 \,\mathrm{d} Amp\n', Ic);
20
21 //
```

Scilab code Exa 5.35 To find Londons penetration depth

```
2 // chapter 5 example 35
3
4 clc;
5 clear;
6
7
  //input data
                                        //density in kg/m
               =8.5*10^3;
       ^3
                                        //atomic weight
10
    W
               =93;
               =9.1*10^-31;
11
                                        //mass of
   m
      electron in kilograms
                                        //charge of
               =2*1.6*10^-19;
12
```

```
electron in coulombs
               =6.023*10^26;
                                           //avagadro
13
       number in (lb-mol) 1
14
15
16 //calculation
                =4*\%pi*10^-7;
17
               =(D*N)/W;
                                               //in per m^3
18
    ns
    lamdaL
               =(m/(u0*ns*e^2))^(1/2); //London's
19
       penetration depth in nm
20
21 / result
22
    mprintf ('penetration depth=\%3.2 \text{ f.nm} \cdot \text{n'}, lamdaL
       /10^-9);
23
24
```

Scilab code Exa 5.36 To find penetration depth

```
2  // chapter 5 example 36
3
4  clc;
5  clear;
6
7
8  //input data
9  Tc =7.2;  //temperature in K
10  lamda =380;  //penetration depth in
11  T =5.5;  //temperature in K
```

```
13
14 //calculation
15 lamdaT=lamda*((1-((T/Tc)^4))^(-1/2)); //
        penetration depth in
16
17 //result
18 mprintf('penetration depth=%3.1 f. \n',lamdaT);
19 mprintf('Note: calculation mistake in textbook in calculating lamdaT');
20
21 //
```

Scilab code Exa 5.37 To find critical temperature of aluminium

```
2 // chapter 5 example 37
3
4 clc;
5 clear;
6
7
 //input data
  9
10
11
12
13
14 //formula
15 //lamdaT = lamda0 * ((1 - ((T/Tc)^4))^(-1/4))
16 //calculation
             = ((((lamda2*(T2^4))-(lamda1*(T1^4))))/(
17
   Τс
```

```
lamda2-lamda1))^(1/4));

18
19
20  //result
21  mprintf('critical temperature =%3.2 f K\n',Tc);
22
23  //
```

Scilab code Exa 5.38 To find wavelength

```
2 // chapter 5 example 38
3
4 clc;
5 clear;
6
8 //input data
  Eg =30.5*1.6*10^-23; //energy gap in eV
h =6.6*10^-34; //planck's constant
9
10
      in (m^2) * kg/s
                                     //velocity of light
            =3.0*10^8;
11
       in m
12
13
14 //formula
15 / Eg = h * v
16 //calculation
                                     //velocity in m
17 v = Eg/h;
    lamda = c/v;
                                   //wavelength in m
18
19
```

Scilab code Exa 5.39 To find energy gap and wavelength

```
1 //
2 //chapter 5 example 39
3
4 clc;
5 clear;
6
8 //input data
  k = 1.38*10^-23;
                               //tempetrature in K
10
    Tc = 4.2;
                               //planck's constant in (m
    h = 6.6*10^{-34};
11
       ^2)*kg/s
                               // velocity of light in m
    c = 3*10^8;
12
13
14
15 //calculation
  Eg=(3*k*Tc); //energy gap in eV lamda=h*c/Eg; //wavelngth in m
16
17
18
19 // result
    mprintf('region of electromagnetic spectrum=%3.2e.m
       \n', lamda);
21
22
    //
```

Chapter 6

1 //

Electrical Conducting and Insulating materials

Scilab code Exa 6.1 To find temperature coefficient of resistance

```
2 // chapter 6 example 1
3
4 clc;
5 clear;
6
7 //input data
8
9 R75 = 57.2; //resistance at 75 C in ohm
10 R25 = 55; //resistance at 25 C in ohm
11 t1 = 25; //temperature in C
12 t2 = 75 // temperature in C
13
14 //formula
15 //Rt = R0*(1+(alpha*t))
16 //calculation
17 alpha = (R25-R75)/((25*R75)-(75*R25)); //
```

```
temperature cofficient

18
19
20 //result
21 mprintf('temperature coefficient =\%3.5 f.K^-1', alpha
);
22
23 //
```

Scilab code Exa 6.2 To find temperature

```
1 //
2 // chapter 6 example 2
4 clc;
5 clear;
7 //input data
                           //resistance in ohm at
   R1 = 50;
      temperature 15 C
                            // resistance in ohm
9
    R2
       = 60;
       temperature 15 C
    t1 = 15; //temperature in C alpha = 0.00425; //temperature coefficient of
10
11
       resistance
12
13
14 //formula
15 //\text{Rt} = \text{R0}*(1+(\text{alpha}*t))
16 //Rt1/Rt2 = R0*(1+(alpha*t1))/R0*(1+(alpha*t2))
17 //calculation
```

```
= R2/R1;
18
  R
   X
           = 1+(alpha*t1);
19
            = ((R*X)-1)/alpha;
20
21
22
23
24 / result
  mprintf('temperature coefficient of resistance = \%3
     .2 f C \setminus n', t2);
26
27 //
```

Scilab code Exa 6.3 To find cold resistance and average temperature coefficient

```
2 // chapter 6 example 3
4 clc;
5 clear;
7 //input data
  t1 = 20;
                                 // temperature in
      \mathbf{C}
   alpha = 5*10^-3; //average
    temperature coefficient at 20 C
            = 8;
= 140;
                             //resistance in ohm
10
   R1
                              //resistaance in ohm
11
12
13
14 //calculation
```

Scilab code Exa 6.4 To find resistivity

```
1 //
2 //chapter 6 example 4
3 clc;
4 clear;
5
7 //input data
  1 = 100;
                                      //length in cm
                                     //diameter of wire
        = 0.008;
   d
      {
m in}~{
m cm}
   R = 95.5;
                                   //resistance in ohm
10
     = %pi*0.004*0.004;
                                   // cross - sectional
11
      area
12
13
14 //formula
15 / R = p * l / A
16 //calculation
17 p = R*A/1;
                                   //; resistivity of
      wire in ohm-cm
```

```
18
19
20  // result
21  mprintf('resistivity=%3.2e ohm-m\n',p);
22
23  //
```

Scilab code Exa 6.5 To find percentage conductivity

```
2 //chapter 6 example 5
3
4 clc;
5 clear;
6
7
8 //input data
  RO =17.5; //resistance at 0 degree
     c in ohm
   alpha =0.00428; //temperature
10
     coefficient of copper in per degree c
           =16;
                //temperature in degree
11
12
13
14 //formula
  Rt = R0*(1+(alpha*t)); //resistance
15
   at 16 degree C
         = (R0/Rt)*100;
16
     percentage conductivity at 16 degree C
17
18
```

```
19 // result
20 mprintf('percentage conductivity=%3.2f.percent\n',P)
;
21
22 //
```

Scilab code Exa 6.10 To find resistance

```
1 // ____
2 // chapter 6 example 10
3 clc;
4 clear;
5
7 //input data
8 	 1 	 = 60;

9 	 r2 	 = 38/2;
                                  //length in m
                                 // radius of outer
    cylinder in m
                        //radius of inner
10
   r1 = 18/2;
     cylinder in m
                        //specific resistance
      = 8000;
11
      in ohm-m
12
13 //calculation
14 R = (p/(2*\%pi*1))*log(r2/r1); //insulation
      resistance of liquid resistor in ohm
15
16 // result
17 mprintf('insulation resistance=\%3.0 \text{ f ohm} \ ', R);
18
19 //
```

Scilab code Exa 6.11 To find resistivity

```
1 //
2 //chapter 6 example 11
3 clc;
4 clear;
  //input data
    d1 =0.0018; // inner diameter in m
9
    d2 =0.005; //outer diameter in m
        =1820*10^6; //insulation resistance in ohm
10
        =3000; //length in m
11
12
13
14
  //formula
   r1 =d1/2;//inner radius in m
15
    r2 =d2/2;//outer radius in m
16
17
18
  //calculation
   p=2*\%pi*l*R/log(r2/r1);//resistivity of dielectric
19
      in ohm-m
20
21 / result
   mprintf('resistivity=\%3.3e.ohm-m\n',p);
23
24 //
```

Scilab code Exa 6.12 To find insulation resistance

```
1 // ___
2 // chapter 6 example 12
3 clc;
4 clear;
5
7 //input data
12
13
14 //formula
15 r1 = d1/2; //radius in m
16 r2 = d2/2; //radius in m
17
18 //calculation
  R = (p/(2*\%pi*1))*(log(r2/r1)) //insulation
19
      resistance
20
21 / result
   mprintf('insulation resistance =%1e.ohm\n',R);
   mprintf(' Note: calculation mistake in textbook in
      calculating insulating resistance');
24
25 //
```

Scilab code Exa 6.13 To find capacitance

```
1 //
2 // chapter 6 example 13
4 clc;
5 clear;
6
  //input data
                                        //area in m^2
  a = 110*10^-3;
                                       //thickness in
10
         = 2;
   d
      mm
                                      //relative
11
   er = 5;
      permitivity
12
   E = 12.5*10^3;
                                      //electric field
     strength in V/mm
   e0 = 8.854*10^{-12};
                                       //charge of
13
      electron in coulombs
14
15
16 //calculations
17
  Α
       = a*a;
                                            //area in m
         = e0*((er*A)/(d*10^-3))
18
      capacitance in F
         = E*(d);
19
   V
                                      //charge on
20
         = (C)*(V)
      capacitor in C
21
22 // result
   mprintf('capacitance = \%3.2e.F\n',C);
```

```
24 mprintf(' charge=%3.4e C\n',Q);
25
26 //
```

Scilab code Exa 6.14 To find charge and electric flux and flux density and electric field strength

```
1 //
2 // chapter 6 example 14
3
5 clc;
6 clear;
7
8
9 //input data
10
  I = 15*10^-3;
                                       //current in A
                                       //time in s
11
         = 5;
       = 120*10^-3*120*10^-3;
= 1000;
                                       //area in m^2
12
13
                                       //voltage in
     {
m volts}
      = 10^{-3};
                                       //thickness in m
14
   d
15
16 //calculation
                                       //charge on
17 \quad Q = I*t;
      capacitor in C
18 //since charge and electric field are equal
                                        //electric flux
  phi = Q;
       in mc
                                       //electric flux
20
      = Q/A;
      density in c/m<sup>2</sup>
```

Scilab code Exa 6.15 To find capacitance

```
2 // chapter 6 example 15
3
4 clc;
5 clear;
6
8 //input data
  n = 12;
er = 4;
                            //number of plates
9
10
                           //relative
   permitivty
   d = 1.0*10^-3; //distance between
11
   plates in m
  12
13
14
15 //calculation
16 	 c = (n-1)*e0*er*A/d;
                             //capacitance in
```

```
F

17

18 // result

19 mprintf('capacitance=%3.4e.F\n',c);

20

21 //
```

Scilab code Exa 6.16 To find thickness of insulation

```
2 // chpter 6 example 16
4 clc;
5 clear;
8 //input data
  e0 = 40000; //dielectric strength in
       volts/m
    d = 33000;  //thickness in kV
t = d/e0;  //required thickness
10
                           //required thickness of
11
       insulation in mm
12
13 // result
14 mprintf('thickness=\%4f.mm\n',t);
15
16 //
```

Scilab code Exa 6.17 To find area and breakdown voltage

```
1 //
2 // chapter 6 example 17
4
5 clc;
6 clear;
8
9 //input data
  C = 0.03*10^-6;
                                     //capacitance in F
10
          = 0.001;
                                    //thickness in m
11
                                    //dielectric constant
          = 2.6;
12
    er
          = 8.85*10^-12;
                                    //dielectric strength
13
    e0
14
    ΕO
           = 1.8*10^7
15
16 //formula
17 / C = e0 * er *A/d
18 / e0 = v/d
19 //calculation
  A = (C*d)/(e0*er); //area of dielectric
        needed in m<sup>2</sup>
       = E0*d;
21
    ۷b
                                      //breakdown voltage
      in m
22
23 / result
24 mprintf('area=\%3.2 \text{ f.m}^2 \text{ n'}, A);
25 mprintf(' breakdown voltage=\%3.1 \, e.V \, \gamma', Vb);
26
27 //
```

Scilab code Exa 6.18 To find dielectric loss

```
1 //
2 // chapter 6 example 18
4
5 clc;
6 clear;
7
8
9 //input data
10 \quad C = 0.035*10^-6;
      capacitance in F
    tangent = 5*10^-4;
11
      power factor
12
    f = 25*10^3;
     frequency in Hz
   I = 250;
13
      current in A
14
15
16 //calculation
                                             //voltage
17 V = I/(2*\%pi*f*C)
   across capacitor in volts
                                           //dielectric
18
  P = V*I*tangent;
      loss in watts
19
20 // result
21 mprintf('dielectric loss=\%3.2 \, \text{f.watts} \, \text{n',P});
22
23 //
```

Scilab code Exa 6.19 To find area

```
1 //
2 // chapter 6 exmple 19
4 clc;
5 clear;
7 //input data
                                       //charge of
       = 20*10^-6;
9
      electron in coulomb
                                       //potential in
10
          = 10*10^3;
11
   e0 = 8.854*10^{-12};
                                      //absolute
      permitivity
      = 5*10^-4;
                                     //separation
12
   d
      between plates in m
                                    // dielectric
      = 10;
13
   er
      constant
14
15 //formula
16 / Q = CV
17 / C = er * e0 * A/d
  C = Q/V;
18
     = (C*d)/(er*e0);
                                    //area in m^2
19
20
21 / result
22 mprintf('area=\%1e.m^2 \ n', A);
23
```

Scilab code Exa 6.20 To find thermal conductivity

```
1 // chapter 6 example 20
3 clc;
4 clear;
5
7 //input data
  //number of electrons per m^3
10
                          //lorentz number in ohm W/K
      = 2.44*10^-8;
11
   T = 330;
                     //temperature in kelvin
12
                        //charge of electron
13
   e = 1.6*10^-19;
14
15
  //calculation
16
   sigma = n*e^2*t/m; //electrical conductivity in
17
       (ohm-m)^-1
18
19 // result
   mprintf ('electrial conductivity=\%3.2 \,\mathrm{e.} (ohm-m)^-1\n'
20
      ,sigma);
21
22
23
24
25
26
```

70 622

Chapter 7

1 //

Junction Resistor Transistors and Devices

Scilab code Exa 7.2 To find change in temperature

```
2  // Chapter 7 example 2
3
4  clc;
5  clear;
6
7  // variable declaration
8  // given Is 2 / Is 1 = 150
9   // Is 2 / Is 1 = 2^(T2-T1) / 10
10  // dT=10ln(I) / ln(2)
11  I = 150;
12
13
14
15  // Calculations
16  dT = 10*log(I)/log(2);  // increase in temperature in C
```

```
17
18 // Result
19 mprintf('Increase in temperature necessary to
        increase Is by a factor by 150 is %3.2 f C',dT);
20
21 //
```

Scilab code Exa 7.3 To find current

```
2 // Chapter 7 example 3
4 clc;
5 clear;
7 // Variable declaration
8 Io = 0.25*10^-6; // large reverse biased
  current in A
9 V = 0.12;
10 Vt = 0.026;
                          // applied voltage in V
                          // Volt-equivalent of
    temperature in V
11
12 // Calculations
13 I = Io*(exp(V/Vt)-1); // current in A
14
15 // Result
16 mprintf('Current flowing through germanium diode =
     %g uA', I*10^6);
17
```

Scilab code Exa 7.4 To find diffusion coefficients

```
1 //
2 // Chapter 7 example 4
4 clc;
5 clear;
7 // Variable declaration
8 k = 1.38*10^-23;
                                   // boltzmann constant (m
      ^2) * (kg) * (s^2 - 2) * (K^2 - 1)
      = 1.6*10^-19;
                                   // charge of electron in
       coulombs
10 \text{ ue} = 0.19
                                   // mobility of electron
       in m^2.V^-1.s^-1
11 \text{ uh} = 0.027;
                                   // mobilty of holes in m
      ^{2}.V^{-1}.s^{-1}
12 T
       = 300;
                                   // temperature in K
13
14 // Calculations
15 Dn = (k*T/e)*ue;
                                   //diffusion constant of
      electrons in cm<sup>2</sup>/s
  Dh = (k*T/e)*uh;
                                   // diffusion constant of
       holes in cm<sup>2</sup>/s
17
18
19 // Result
20 mprintf('Diffusion co-efficients of electrons = %g m
      ^2/s n Diffusion co-efficients of holes = g m^2/s
      {
m s} ', Dn , Dh)
21
```

```
22 //
```

Scilab code Exa 7.6 To find resistance of diode

```
1 //
 2 // chapter 7 example 6
 4 clc;
 5 clear;
 7 // Variable declaration
8 I1 = 20;  // current in ma

9 V1 = 0.8;  // vtg in volts

10 V2 = 0.7;  // vtg in volts

11 I2 = 10;  // current in ma
12 v3 = -10;
13 I3 = -1*10^-6; // current
14
15 // Calculations
16 R = (V1 - V2)/(I1 - I2);
17 Vreb = v3/I3;
18
19 // Result
20 mprintf('a. resistance = \%d ohm\n Vreb = \%3.1e ohm',
       R*10^3, Vreb);
21
22 //
```

Scilab code Exa 7.7 To find diffusion constant

```
1 //
2 // Chapter 7 example 7
4 clc;
5 clear;
7 // Variable Declaration
8 T = 300; // temp in kelvin
9 k = 1.38*10^-23; // Boltzmann constant (m^2)*(kg)
     *(s^{-2})*(K^{-1})
10 e = 1.602*10^-19; // charge of electron in
     coulombs
13
14 // Calculations
15 De = (ue*k*T)/e; // diffusion constant of
     electrons in cm^2/s
16 Dh = (uh*k*T)/e;
                        // diffusion constant of
     holes in cm<sup>2</sup>/s
17
18 // Result
19 mprintf('Diffusion constant of electrons = \%3.1 f cm
      ^2/s \ Diffusion constant of electrons = \%3.1 f \ cm
      ^2/\mathrm{s}, De, Dh);
20
21 //
```

Scilab code Exa 7.8 To find pinch off voltage

```
1 //
2 // chapter 7 example 8
4 clc;
5 clear;
7 // Variable Declaration
8 p = 2;  // resistivity in ohm-m
9 er = 16;  // relative dielectrivity of Ge cm
      ^2/\mathrm{s}
10 up = 1800; // mobility of holes in cm^2/s
11 e0 = 8.85*10^-12; //permitivity in (m^-3)*(kg)
     (-1)*(s^4)*(A^2)
     = 2*10^-4; //channel height in m
12 a
13
14 // Calculations
15 qNa = 1/(up*p);
16 e = e0*er; // permittivity in F/cm
    Vp = (qNa*(a^2))/(2*e); // pinch-off
17
       voltage in V
18
19 // Result
20 mprintf('Pinch-off voltage = \%3.4 \,\mathrm{e} \,\mathrm{V} \,\mathrm{n}',\mathrm{Vp});
21 mprintf(' Note: calculation mistake in text book, e
      value is taken as 14.16*10^-12 instead of
      141.6*10^-12;
22
23 //
```

Scilab code Exa 7.9 To find pinch off voltage

```
1 // __
2 //chapter 7 example 9
3 clc;
4 clear;
5
7 //input data
  a = 3.5*10^-6; //channel width in
     \mathbf{m}
                                      //number of
9
   N
       = 10^21;
     electrons in electrons/m<sup>3</sup>
       = 1.6*10^-19;
                                  //charge of electron
10
      in coulombs
                                  //dielectric
11
           = 12;
   er
      constant F/m
    e0 = 8.85*10^{-12};
12
                                            //
      dielectric constant F/m
13
14
15 //calculation
  e = (e0)*(er);
16
                                      //permitivityin
      F/m
   Vp = (q*(a^2)*N)/(2*e);
                                      //pinch off
17
      voltage in V
18
19
20 // result
21 mprintf('pinch off velocity = \%2f V \setminus n', Vp);
22
23 //
```

Scilab code Exa 7.10 To find transconductance

```
1 //
2 //chapter 7 example 10
3
4 clc;
5 clear;
7
8 //input data
                                   //current in mA
  IDSS = 10;
             =2.;
   IDS
                                   // current in mA
10
               = -4.0;
                                    //pinch off voltage
11
    Vр
     in V
12
13 //formula
14 //IDS = IDSS*((1-(VGS/Vp))^2)
15 //calculation
    VGS = Vp*(1-(sqrt(IDS/IDSS)));
16
            = ((-2*IDSS)/Vp)*(1-(VGS/Vp));
17
18
19
20 // result
   mprintf ('transconductance = \%3.2 \text{ f.m*A/V} \cdot \text{n',gm});
21
22
23 //
```

Scilab code Exa 7.11 To find drain current

```
1 //
2 //chapter 7 example 11
4 clc;
5 clear;
6
8 //input data
  VGS = -3;
                            //pinch off voltage
   IDSS =10*10^-3;
                                     // current in
10
        = -5.0; //pinch off voltage
   ۷p
11
     in V
12
13
14 //calculation
15 IDS = IDSS*((1-(VGS/Vp))^2);
16
17
18 // result
19 mprintf('current = \%3.2 \text{ f.A/n', IDS/10^--3});
20
21 //
```

Scilab code Exa 7.12 To find transconductance

```
1 //
2 //chapter 7 example 12
3
4 clc;
5 clear;
6
8 //input data
           = 2*10^-3;
                                           //current in mA
9
   IDS
                                           // current in
10
    IDSS
               = 8*10^-3;
      mA
                                     //pinch off voltage
11
    Vр
      in V
                                     //pinch off voltage
             = -1.902;
    VGS1
12
        when IDS =3*10^{-3} A
13
14 //formula
         = IDSS*((1-(VGS/Vp))^2)
15 //IDS
16 //calculation
               = Vp*(1-(sqrt(IDS/IDSS)));
17
    VGS
               = ((-2*IDSS)/Vp)*(1-(VGS1/Vp));
18
    gm
19
20
21 / result
   mprintf ('transconductance = \%3.2 \text{ f.mS} \cdot \text{n',gm/10^-3});
```

Scilab code Exa 7.13 To find resistance

```
1 //
```

```
2 //chapter 7 example 13
4
5 clc;
6 clear;
9 //input data
                    //gate source
10 \quad VGS = 26;
   voltage in V
   IG = 1.6*10^-9; //gate current in A
11
12
13
14 // calculation
  R = VGS/IG;
                      //gate to current
15
     resistance in ohms
16
17
18 // result
19 mprintf('resistance =\%3.2e.ohms\n',R);
20
21 //
```

Scilab code Exa 7.14 To find transconductance

```
1 //
2 //chapter 7 example 14
3 4 clc;
```

```
5 clear;
6
8 //input data
9
  ID1
                  = 1;
                                      //current in A
                                         // current in A
10
    ID2
                  = 2.1;
                                       //pinch off voltage
                  = 3.0;
11
    VGS1
       in V
                                      //pinch off voltage
    VGS2
12
                  = 3.5;
       in V
13
14
15 //calculation
    dID
16
                 = ID2-ID1;
    dVGS = VGS2-VGS1;
gm = (dID*10^-3)/dVGS;
17
18
19
20
21 / result
   mprintf('transconductance = %3.2e mho\n',gm);
22
    mprintf('Note:wrong answer in textbook');
23
24
25 //
```

Scilab code Exa 7.15 To find drain resistance and transconductance and amplification fector

```
1 //
2 //chapter 7 example 15
3 4 clc;
```

```
5 clear;
6
8
  //input data
    ID1
                  = 8;
                                              // drain
       current in mA
                                             //drain current
10
                  = 8.3;
        in mA
                                            //drainn source
    VDS1
11
                  = 5;
       voltage in V
12
                  = 14;
                                           //drain source
    VDS2
       voltage in V
13
    ID3
                  = 7.1;
                                          //drain current
       when VDS constant VGS change
                                        //drain current
14
                  = 8.3;
       when VDS constant VGS change
                   = 0.1;
                                       //drain source
15
    VGS1
       voltage in V
                                      //drain source
                   = 0.4;
16
    VGS2
       voltage in V
17
   //calculation
18
19
    dID1
                  = ID2 - ID1;
20
    dVDS
                  = VDS2-VDS1;
                  = dVDS/dID1;
                                                  //ac drain
21
       resistance
22
    dID2
                 = ID4 - ID3;
23
    dVGS
                  = VGS2-VGS1;
                  = dID2/dVGS;
24
    gm
       transconductance
                                                 //
25
                  = rd*gm;
       amplification factor
26
27
28
   //result
29
    mprintf('ac drain resistnce = \%3.2 \,\mathrm{d.k-ohms} \,',rd);
    mprintf('transconductance = \%3.2d.u ohms\n',gm
       /10^-3);
```

Scilab code Exa 7.16 To find transconductance

```
2 // chapter 7 example 16
4
5 \text{ clc};
6 clear;
8 //input data
                     //amplification
              = 100;
      factor
             = 33*10^3;
10
   rd
                                 //drain resistance
      in ohms
11
12
13 //calculation
14 gm = u/rd; //transconductance in
     mhos
15
16 // result
17 mprintf ('transconductance = \%3.2 \text{ f mmhos/n', gm/10^-3})
   printf('Note:transconductance value is wrongly
18
      printed in terms of umhos');
19
20 //
```

Chapter 8

Mechanism of Conduction in Semiconductors

Scilab code Exa 8.1 To find kinetic energy and momenta

Scilab code Exa 8.2 To find thermal equilibrium hole concentration

```
400 k in cm^-3

15 kT = (0.0259)*(T2/T1);  //kT in eV

16 po = Nv*exp(-(f1)/(kT));  //hole oncentration in cm^-3

17

18

19 // Result

20 mprintf('Thermal equilibrium hole concentration = %3 .2 e cm^-3\n ',po);

21 mprintf('Note: Calculation mistake in textbook Nv is not multiplied by exponentiation');

22

23 //
```

Scilab code Exa 8.3 To find intrinsic carrier concentration

```
2 // Chapter 8 example 3
3
4 clc;
5 clear;
7 // Variable declaration
                                   // constant in cm^-3
8 \text{ Nc} = 3.8*10^17;
                                 // constant in cm^-3
9 \text{ Nv} = 6.5*10^{18};
                                 // band gap energy in eV
10 \text{ Eg} = 1.42;
                                 // kt value at 450K
11 \text{ KT1} = 0.03885;
12 \text{ T1} = 300;
                                  //temperature in K
13 T2 = 450;
                                 //temperature in K
14
```

```
15 // calculation
16 n1i = sqrt(Nc*Nv*exp(-Eg/0.0259));
                                                     //
     intrinsic carrier concentration in cm<sup>-3</sup>
17 n2i = sqrt(Nc*Nv*((T2/T1)^3) *exp(-Eg/KT1));
                                                       //
      intrinsic carrier conc at 450K in cm<sup>-3</sup>
18
19 // Result
20 mprintf('Intrinsic Carrier Concentration at 300K =
     %3.2 e cm<sup>-3</sup>\n Intrinsic Carrier Concentration at
     300K = \%3.2e \text{ cm}^{-3}, \text{n1i,n2i}
21 mprintf('\n Note: Calculation mistake in textbook
     in finding carrier conc. at 450K')
22
23
24 //
```

Scilab code Exa 8.4 To find position of intrinsic fermi level

Scilab code Exa 8.5 To find donor binding energy

```
1 //
2 // chapter 8 example 5
3
4 clc;
5 clear;
7 // variable declaration
8 \text{ mo} = 9.11*10^{-31};
                                  // mass of electron
     inkilograms
9 e = 1.6*10^-19;
                                  // charge of electron in
       coulombs
10 \text{ er} = 13.2;
                                  //relative permitivity
      in F/m
11 eo = 8.85*10^-12;
                                  // permitivity in F/m
12 h = 6.63*10^{-34};
                                  // plancks constant J.s
13 \text{ me} = 0.067*\text{mo};
14
```

Scilab code Exa 8.6 To find position of fermi level

```
2 // Chapter 8 example 6
4 clc;
5 clear;
7 // Variable declaration
8 no = 10^17 // doping carrier conc
9 ni = 1.5*10^10; // intrinsic
   concentration
10 \text{ kT} = 0.0259
11
12 // Calculations
13 \text{ po} = (\text{ni}^2)/\text{no}
14 fl = kT*log10(no/ni)
15
16 // Result
17 mprintf('Equlibrium hole concentration = \%3.2e cm
     -3\n Position of fermi energy level = \%3.3 \,\mathrm{f} eV',
```

```
po,fl)
18
19 //
```

Scilab code Exa 8.7 To find electrical conductivity

```
2 // Chapter 8 example 7
4 clc;
5 clear;
7 // Variable declaration
                              //in eV/K
9 k = 8.62*10^{-5};
                              //energy in eV
10 \text{ Eg} = 1.10;
                               //temperature in C
11
  t1 = 200;
                              //temperature in C
12
   t2 = 27;
  psi = 2.3*10^3;
13
14
15 // Calculations
16 // sigma = sigmao*exp(-Eg/(2kT))
17 // k = sigma_473 / sigma_300;
                               //temperature in K
18
  t3 = t1 + 273;
                               //temperature in K
19
    t4 = t2+273;
             = \exp((-Eg)/(2*k*t3));
20
      electrical conductivity in cm^-1.m^-1
             = \exp((-Eg)/(2*k*t4));
21
       electrical conductivity in cm^--1.m^-
             = k1/k2;
22
23
    pm= k/psi;
```

Scilab code Exa 8.8 To find resistivity

```
2 // Chapter 8 example 8
4 clc;
5 clear;
7 // Variable declaration
                                 // carrier density in
8 \text{ ni} = 2.5*10^19;
    per m<sup>3</sup>
9 = 1.6*10^-19;
                                 // charge of electron in
      coulombs
10 \text{ un} = 0.35;
                                 //mobility of electrons
      in m^2/V-s
11 \text{ up} = 0.15;
                                 //mobility of electrons
      in m^2/V-s
12
13 // Calculations
14 sigma = ni*q*(un + up); //conductivity in
      per ohm-m
```

Scilab code Exa 8.9 To find intrinsic carrier density

```
2 // chapter 8 example 9
4 clc;
5 clear;
7 // Variable declaration
// charge of electron in
    coulombs
                           //mobility of electrons
10 \text{ ue} = 0.14;
  in m^2/V-s
11 \text{ uh} = 0.05;
                           //mobility of holes in m
    ^2/V-s
12
13 // Calculations
14
                         //carrier
15 n = 1/((p*e)*(ue + uh));
     density in perm<sup>3</sup>
```

Scilab code Exa 8.10 To find conductivity

```
2 // chapter 8 example 10
4 clc;
5 clear;
7 // Variable declaration
8 p = 5.32*10^3;  // density of germanium

9 Nav = 6.023*10^26;  // Avagadros number
                                // atomic wt
10 \text{ AW} = 72.59;
11 ni = 1.5*10^19
                                // carrier density
12 \text{ ue} = 0.36
13 \text{ uh} = 0.18
14 \text{ e} = 1.6*10^-19
15
16 // calculations
17 N = (p*Nav)/AW
                                // no of germanium atoms per
      unit volume
                                 // no of pentavalent
18 \text{ Nd} = \text{N}*10^-6
      impurity atoms/m<sup>3</sup>
19 f
        = Nd/ni
20 \text{ nh} = \text{ni}^2/\text{Nd}
                                 // hole conc
```

```
21 sigma = e*((Nd*ue)+(nh*uh))
22
23 // Result
24 mprintf('The factor by which the majority conc. is
    more than the intrinsic carrier conc = %d\n Hole
    concentration = %3.1e /m^3\n Conductivity = %d /
    ohm-m',f,nh,sigma)
25
26 //
```

Scilab code Exa 8.11 To find carrier density

```
2 // chapter 8 example 11
4 clc;
5 clear;
7 // variable declaration
volt-s
10 uh = 0.1;
                     // hole mobility m^2/volt-s
                   // charge of electron in
11 e = 1.6*10^-19
    coulombs
12
13 // calculations
14 \text{ sigma} = 1/p;
                             // conductivity in
  per ohm —m
15 n = sigma/(e*(ue + uh)); // carrier density
    per m<sup>3</sup>
```

```
16
17  // Result
18 mprintf('Carrier Density = %3.1e /m^3',n);
19
20  //
```

Scilab code Exa 8.12 To find drift velocity

```
1 //
 2 // chapter 8 example 12
 4 clc;
 5 clear;
 7 // Variable declaration
 8 Jd = 500; // current density A/m^2
9 p = 0.05 // resistivity in ohm-m
10 1 = 100*10^-6  // travel length m

11 ue = 0.4;  // electron mobility m^2/Vs

12 e = 1.6*10^-19;  // charge of electron in
        coulombs
13
14
15 // Calculations
16 ne = 1/(p*e*ue); //iin per m^3
17 vd = Jd/(ne*e); //drift v
                                          //drift velocity in m/s
18 \ t = 1/vd;
                                             //time teken in s
19
20 // result
21 mprintf('Drift velocity = \%d \text{ m/s} \setminus \text{n time} = \%e \text{ s',vd,t}
        );
```

```
22
23 //
```

Scilab code Exa 8.13 To know about changes in temperature

```
1 //
2 // Chapter 8 example 13
4 clc;
5 clear;
7 T = 300;
                                // room temperature
   in K
8 psi1 =100;
9 \text{ psi2} = 130;
10
11
12
13 // T+dT = 1/((1/T)-(2k/Eg)\log 1.3)
14 // T + dT = 305.9
15 \text{ dT} = 305.9 - 300;
16
17
18 mprintf('Therefore %3.1f K rise in temperature will
     lead to a rise of 30 percent in conductivity', dT)
19
20 //
```

Scilab code Exa 8.14 To find conductivity

```
1 //
2 // Chapter 8 example 14
4 clc;
5 clear;
  // variable declaration
                     // voltage in volts
8 v = 5;
                     // resistance in k-ohm
      = 10;
                     // current density in A/cm^2
10 J = 60;
                   // electric field in V.m^-1
//in cm^-3
11 E = 100;
coulombs
16
17 // Calculations
18 I = v/r;
                         // total current A
                        // cross sectional area cm^2
19 A
      = I/J
                        // length of resistor cm
20 L = v/E
21 sigma = L/(r*A); //conductivity in (ohm-cm)
     ^{\hat{}}-1
22 sigma_comp = e*up*(Na - Nd); //conductivity
     in (ohm-cm)^-1
23
24 // Result
25 mprintf('Conductivity of the compensated p-type
     semiconductor is %3.3 f', sigma_comp);
26
```

```
27 //
```

Scilab code Exa 8.15 To find diffusion current density

```
1 //
2 // chapter 8 example 15
4 clc;
5 clear;
7 // Variable declaration
8 e = 1.6*10^-19; // charge of electron in
     coulombs
9 \text{ Dn} = 250;
                           // electron diffusion co-
    efficient cm^2/s
                          // electron conc. in cm^-3
10 \text{ n1} = 10^{18}
                           // electron conc. in cm^-3
11 \quad n2 = 7*10^17
                           // distance in cm
12 dx = 0.10
13
14 // Calculations
15 Jdiff = e*Dn*((n1-n2)/dx); // diffusion current
       density A/cm<sup>2</sup>
16
17 // Result
18 mprintf('Diffusion Current Density = %d A/cm^2',
      Jdiff);
19
20 //
```

Scilab code Exa 8.16 To find wavelength

```
2 // Chapter 8 example 16
4 clc;
5 clear;
7 // Variable declaration
8 e = 1.6*10^-19 // charge of electron in
  coulombs
12
13 // Calculations
14 lamda = (h*c)/(Eg*e) // wavelength in
15
16 // Result
17 mprintf('Wavelength at which Ge starts to absorb
   light = \%d ', lamda*10^10);
18
19 //
```

Scilab code Exa 8.17 To find cut off wavelength

1 //

```
2 // chapter 8 example 17
4 clc;
5 clear;
7 // Variable Declaration
                                         //energy in
    Eg = 1.35*1.6*10^-19;
      \mathrm{eV}
    h = 6.63*10^{-34};
                                      //plancks
10
      constant in J.s
                                      //velocity in m
11
             = 3*10^8;
12
13
    //calculation
                                   //wavelength in
    lamda = (h*c)/Eg;
14
       \mathbf{m}
15
16
    //result
    mprintf('cutoff wavelength = %3.2e m\n', lamda);
17
18
19
```

Scilab code Exa 8.18 To find energy

```
2 // Chapter 8 example 18
3
4 clc;
5 clear;
```

Scilab code Exa 8.19 To find hall voltage

1 //

Scilab code Exa 8.20 To find current density

```
1 //
2 // Chapter 8 example 20
4 clc;
5 clear;
7 // Variable declaration
                     // charge of electron
// hall co-efficient
8 e = 1.6*10^-19
                            // hall co-efficient
9 \text{ Rh} = -0.0125;
                            // electron mobility
10 \text{ ue} = 0.36;
11 E = 80;
                             // electric field
12
13 // Calculations
14 \quad n = -1/(Rh*e)
                          // current density
15 J = n*e*ue*E
16
17 // Result
18 mprintf('Current density = %d Ampere/m^2', J);
19
20 //
```

Scilab code Exa 8.21 To find hall coefficient

```
1 //
2 // Chapter 8 example 21
4 clc;
5 clear;
7 // Variable declaration
8 p = 0.00893;  // resistivity in ohm-m
9 Hz = 0.5;  // field in weber/m^2
10 Rh = 3.66*10^-4;  // hall co-efficient hall
      coefficient in m<sup>3</sup>
11
12 // Calculations
13
14 u = Rh/p;
                                   //mobility of charge
      cerrier in m^2*(V^-1)*s^-1
15 theta_h = (atan(u*Hz))*(180/\%pi); // hall angle
       in degrees
16
17 // Result
18 mprintf('Hall angle = %3.4f degrees', theta_h);
19
20 //
```

Chapter 9

Mechanical Properties of Materials

Scilab code Exa 9.1 To find elongation

Scilab code Exa 9.3 To find stress

```
/10^6);
19
20 //
```

Scilab code Exa 9.4 To find strain

```
2 // chapter 9 example 4
3 clc
4 clear
5
6 // Variable declaration
7 Lf = 42.3; // guage length after strain mm
8 Lo = 40; // guage length in mm
9
10 // Calculations
11 e = ((Lf - Lo)/Lo)*100 // Engineering Strain in percent
12
13 // Result
14 mprintf('Percentage of elongation = %3.2f percent',e);
15
16 //
```

Scilab code Exa 9.5 To find ductility

```
1 //
2 // chapter 9 example 5
3
4 clc;
5 clear;
7 // Variable declaration
                   // original diameter of steel wire
9 \text{ dr} = 12.8
     in mm
10 df = 10.7; // diameter at fracture in mm
11
12 // Calculations
13
14 percent_red = (((%pi*dr*dr) - (%pi*df*df))/(%pi*dr*
     dr))*100;
15
16
17 // Result
18
19 mprintf('Percent reduction in area = \%3.2 f percent',
     percent_red);
20
21 //
```

Chapter 10

Mechanical Properties of Materials

Scilab code Exa 10.1 To find wavelength

```
1 //
2 // chapter 10 example 1
3
4 clc;
5 clear;
7 // Variable declaration
                                 // Higher Energy
  E2 = 5.56*10^-19;
     level in J
   E1 = 2.36*10^-19;
                                 // Lower Energy
     level in J
   h = 6.626*10^{-34};
                                 // plancks constant
10
      in J.s
                                 // velocity of light
11
   c = 3*10^8;
      in m
12
13 // Calculations
```

```
// Energy difference
   dE = E2 - E1;
14
     in J
    lamda = (h*c)/dE;
                                // wavelength in m
15
16
17
18 // Result
19
20 mprintf('Wavelength of the photon = \%d \n',lamda
     /10^-10);
21 mprintf(' The colour of the photon is red')
22
23 //
```

Scilab code Exa 10.2 To find maximum wavelength of opaque

```
2 // chapter 10 example 2
3 clc
4 clear
6 // Variable declaration
  h = 6.63*10^-34; // plancks constant in J
                              // velocity of light in
   c = 3*10^8;
      \mathbf{m}
     = 5.6;
                               // bandgap in eV
10
                               // charge of electron
   e = 1.6*10^-19;
11
      coulombs
12
13 // Calculations
```

Scilab code Exa 10.3 To find composition

```
1 //
2 // chapter 10 example 3
3
4 clc;
5 clear;
7 // Variable declaration
                                   // plancks constant
9
   h = 6.63*10^-34;
                                   // velocity of light
10
   c = 3*10^8;
                                   // wavelength in m
11
   lamda = 0.6*10^-6;
                                   // charge of electron
12
   e = 1.6*10^-19;
                                   // energy in eV
   EGap = 2.25
13
                                   // energy in eV
   EGas = 1.42
14
15
16 // Calculations
17
```

```
E = (h*c)/(lamda*e) // Energy in eV p_change = (EGap - EGas)/100; // rate of energy
18
19
       gap
    x = (E-EGas)/p_change // mol % og GaP to
20
        be added to get an energy gap of E
21
22 // Result
23
24
    mprintf ('Energy of radiation = \%3.4 \text{ f eV} \setminus \text{n} Rate of
       energy gap varies with addition of GaP is %3.5 f\
       n mol percent to be added to get an energy gap
       of %3.4 f eV is %3.1 f mol percent', E, p_change, E, x
25
26 //
```

Scilab code Exa 10.4 To find energy of metastable state

1 //

```
in coulombs
   E2 = 0.4*10^-19;
                            // energy level in
12
      joules
13
14
15
  // Calculations
  E3 = E2 + (h*c)/(lamda); //energy in J
17
  // Result
18
  mprintf ('Energy of the metastable state E3 = \%3.1e
      J',E3);
20
21
```

Scilab code Exa 10.5 To find number of optical modes

```
1 //
2 // chapter 10 example 5
3 clc
4 clear
6 // Variable declaration
7 c = 3*10^8;
                              // velocity of light in
    m
8 L = 1.5;
                              //length in m
                              // refractive index
9 n = 1.0204;
10 BW = 1.5*10^9;
                              // Bandwidth in Hz
11
12 // Calculations
13 dV = c/(2*L*n);
                               //frequency in Hz
                               // Number of optical
14 N = BW/dV;
```

```
nodes
15
16  // Result
17
18 mprintf('Number of Optical modes = % d',N);
19
20  //
```

Scilab code Exa 10.6 To find numerical aperture

1 //

```
2 // chapter 10 example 6
 3
4 clc
5 clear
 7 // Variable declaration
8 n1 = 1.55; // refractive index of core
9 n2 = 1.53; // refractive index of cladding
10
11
12 // Calculations
14 \text{ NA} = sqrt(n1^2 - n2^2);
15
16
17 // Result
18 mprintf('Numerical aperture = \%3.3 \, f', NA);
19
20 //
```

Scilab code Exa 10.7 To find critical angle

```
1 //
2 // chapter 10 example 7
3 clc
4 clear
6 // Variable declaration
7 n1 = 1.33; //refractive index of water
8 n2 = 1; //refractive index of air
10 // Calculations
11 theta_c = asin((n2/n1))
    theta_c_deg = theta_c*(180/%pi); // radian
12
       to degree conversion
13
14 // Result
15 mprintf('For angles above %3.2f degrees , there will
       be total internal reflection in water',
      theta_c_deg );
16
17 //
```