(19) SU (11) 1690365 A 1

(51)5 C 08 F 138/00

ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ ПРИ ГЖНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

- (46) 07.11.92. Бюл. № 41
- (21) 4740830/05
- (22) 26.09.89
- (71) Институт нефтехимического синте за им. А.В. Топчиева
- (72) Н.А. Платэ, В.С. Хотимский и Е.Г. Литвинова
- (56) Пат. Великобритании № 2315319, кл. С 08 г 138/00, 1984.
- (54) СПОСОБ ПОЛУЧЕНИЯ ПОЛИ-1 (ТРИМЕ-ТИЛСИЛИЛ) ПРОПИНА-1
- (57) Изобретение относится к спосо-

бам получения поликремнийуглеводородов, используемых для полимерных газоразделительных мембран и позволяет повысить газопроницаемость мембран из поли-1 (триметилсилил) пропина-1 и улучшить стабильность параметров газопереноса в процессе эксплуатации за счет проведения синтеза полимера с использованием в качестве катализатора комплекса TaCl₅·RLi, где R алкил нормального или изостроения и проведением процесса при температуре 0-100°C. 3 табл.

Изобретение относится к области химии высокомолекулярных соединений, в частности к способам получения по-ликремнийуглеводородов, используемых для целей газоразделения, а именно к способам получения поли-1 (триметил-силил) пропина-1 (ПТМСП).

Указанный полимер обладает наиболее высокой селективной газопроницаемостью среди известных полимерных
материалов и может быть использован
в процессах разделения и концентрироз
вания разнообразных газовых смесей
в различных областях техники.

Наиболее близким к изобретению по технической сущности и достигаемо- иу результату является способ получения поли-1 (триметилсилил) пропина-1 в углеводородном растворителе под действием TaCl₅ или TaCl₅ в сочетании с алюминийорганическим соединением. Однако газопроницаемость мембран полимера, полученного по этому спо-

собу, падает как во времени, так и под действием температуры.

Цель изобретения состоит в повышении газопроницаемости полимера и улучшения стабильности параметров газопереноса процесса эксплуатации.

Поставленная цель достигается тем, что в способе получения ПТМСП полимеризацией 1-триметилсилилпропина-1 в присутствии катализатора на основе [TaCl₅ в углеводородном растворителе, в качестве катализатора используют комплекс TaCl₅-RLi, где R - алкил нормального или изостроения, и прощесс проводят при температуре 0-100°C.

Используемый для получения ПТМСП мономер синтезируют по методу Гринья-ра:

1) $M_9 + C_2H_5Br \xrightarrow{T\Gamma\Phi} C_2H_5M_9Br$;

... SU ... 1690365

- 2) $C_2H_5MgBr+CH\equiv C-CH_3\frac{T\Gamma\Phi}{}$ $\rightarrow MgBrC\equiv C-CH_3+C_2H_6$;
- 3) MgBrC=C-CH₃+(CH)₃SiC1 $\frac{T\Gamma\Phi}{}$ \rightarrow (CH₃)₃SiC=C-CH₃+ $\frac{1}{2}$ MgBrC1.

Раствор сливают с осадка, перегоняют на ректификационной колонке и отбирают фракцию с т.кип. 95-96°. Выход мономера составляет 60%. Анализ чистоты целевого продукта проводят ме-15 тодом хроматомасс-спектрометрии на приборе фирмы "Кратос" (капиллярная колонка SE-30 - 25 м на карбоваксе - 20 н; tкол = 28°; tuch = 250°). Содержание триметилсилилпропина в ос- 20 новной фракции 98%.

Полимеризацию триметилсилилпропина проводит в среде углеводородного растворителя (например, толуол, циклогексан, бензол, гептан) в вакууме при температуре > 100°. Выбор этого интервала температур обусловлен тем, что при температуре ниже 0° процесс полимеризации протекает с такой низкой скоростью, что становится непригодным для осуществления в промышленности, а проведение полимеризации при температуре 100° приводит к образованию полимеров, имеющих более низкие эксплуатационные характеристики. Соотношение мономер: катализатор составляет 50-100.

Полученные полимеры имеют [η 1 30°.] толуол = 5.1 - 28 дл/г и $M_W = 78 \cdot 10^4$ - .1075 104. Структура элементарного

$$\begin{bmatrix} C = C \\ CH_3 & Si (CH_3)_3 \end{bmatrix}$$

синтезированных полимеров подтвержде-1 на методами ИК-, ЯМР $^{\prime}$ Н и ЯМР $^{\prime 2}$ С спектроскопии. В ИК-спектре полимеров содержатся следующие характеристические полосы: $12^{\prime 10}$ см $^{\prime\prime}$ (связь Si $^{\prime}$ СН); $15^{\prime 10}$ см $^{\prime\prime}$ (связь $^{\prime}$ ССВ $^{\prime}$ ССВ $^{\prime}$ СП с СП $^{\prime}$ СВ $^{\prime}$ СВ $^{\prime}$ СП см $^{\prime}$ СВ $^{\prime}$ СВ $^{\prime}$ СП с СП $^{\prime}$ СП с СП $^{\prime}$ СВ $^{\prime}$ СП с СП $^{\prime}$ СП с СП $^{\prime}$ СВ $^{\prime}$ СП с СП $^{\prime}$ СВ $^{\prime}$ СП с СП $^{\prime}$ СП $^{\prime}$ ССП $^{\prime}$ ССП $^{\prime}$ СП $^{\prime}$ ССП $^{\prime}$ СП $^{\prime$

Молекулярные массы полимеров определяют методом гель-проникающей хроматографии.

Для излучения способности синтезированного полимера к селективному газопереносу готовят тонкие сплошные пленки толщиной 25-100 мкм. Используют метод полива раствора полимера в углеводородном растворителе на целлофан с последующим медленным испарением и сушкой до постоянной массы.

Измерение параметров газопереноса ПТИСП осуществляют на газохромат тографической установке с помощью ячейки дифференциального типа при 25°C при перепаде давления исследуемых газов $(0_2, N_2, CH_4, He)$ 1 атм и скорости газа носителя (Не) в ячейке 120-140 мл/мин. Влияние термообработки пленок на газопроницаемость исследовали при температуре 100°, так как при этой температуре не наблюдает. ся изменения структурных параметров материала. Кроме того, было изучено влияние длительного циклического воздействия повышенной температуры г на свойства пленок из ПТСМП (4000 ч цикл 25-100°).

Пример 1. В стеклянный реакітор в токе аргона загружают 0,2 г (0.54 ммоль) ТаСlы, переконленсацией в вакууме добавляют 20 мл толуола. Затем реактор откачивают. Через стеклянную мембрану к раствору TaCl в толуоле добавляют 2 мл раствора н-ВиLi в пентане (0,54 ммоль). Реактор с каталитическим комплексом (1:1) прогревают 10 мин при 80%. После охлаждения раствора до комнатной температуры в него вводят 4 мл (27 ммоль) триметилсилилпропина, проводят полимеризацию при 25° в течение 24 ч. Получают полимер с выходом 90%. $Lh130^{\circ}$, ronyon = 13 gn/r, $M_{W} = 390 \times$ 110⁴. Газопроницаемость пленок толщиной 50 мкм, полученных из этого поли-50 мера; составляет $P \cdot 10^{-7} \frac{\text{См}^3 \cdot \text{См}}{202} \cdot \frac{\text{см}}{200}$ CM2 . C. CM PT.CT. $P_{02} = 6,27$; $P_{N2} = 2,98$. Селективность газоразделения для $0_2/N_2 = 2,10$. Пленки ПТИСП толщиной 50 мкм подвергали нагреву на воздухе при 100° и измеряли их газопроницаемость через 10

Yepes 10 4 $P_{0e} = 4,49$; $P_{142} = 2,08$; d = 2,16.

Yepes 50 $4 P_{02} = 4,44$; $P_{N2} = 2,17$; $\alpha = 2,10$.

Пленки ЛТМСП толщиной 50 мкм подвергали циклическому нагреванию до 100° и через 4000 ч измеряли их газопроницаемость.

 $P_{O_2} = 3,66$; $P_{N_2} = 1,69$; $\alpha = 2,18$. При меры 2-12. Проводят по примеру 1.. Результаты опытов по получению полимеров триметилсилилпропина приведены в табл.1.

В табл. 2 приводятся данные по газопроницаемости пленок из полученных полимеров, а в табл. 3 - данные по газопроницаемости пленок из ПТМСП, подвергнутых термообработке. Формула изобретения

Способ получения поли-1 (триметилсилил) пропина-1 полимеризацией 1-триметилсилилпропина-1 в присутствии катализатора на основе ТаС1₅ в углеводородном растворителе, о т л и ч аю щ и й с я тем, что, с целью повышения газопроницаемости полимера и улучшения стабильности параметров газопереноса в процессе эксплуатации, в качестве катализатора используют 1-2% от массы мономера комплекса ТаС1₅ RLi, где R — алкил нормального или изостроения, и процесс проводят при температуре 0-100°C.

Таблица 1

Полимеризация триметилсилилпропина на системе TaCl₅ RLi

•			10015 101					
При-	Состав катализатора		о в реак- ммоль	T, °C	Выход поли- мера,	(1) дл/г	M _W 10 ⁻⁴	Раство-
		моно мера	катали- затора		*			-
1	н-C ₄ HqLi TaCls	27 .	0,54	25	90	13,2	390	Толуол
2	н-C ₄ H _q Li TaCls	27	0,54	0	46	11,0	327	То же
.3 .	H-C4HaLi TaCl5	27	0,54	80	90	9,0	249	Толуол
4 .	H-C4HgLi TaCl5	27	0,54	100	90	5,1	135	То же
5	H-C4HgLi.TaCl5	27	0,54	25,	73	11,0	29C	. Циклогек- сан
6	τρετ-C ₄ H ₉ Li ·TaCl ₅	27	0,54	25	80	11,0	310	Бензол
7	втор-СаНgLi TaCls	27 .	10,54	25	90	13,5	400	Толуол
8	C ₂ H ₅ Li ·TaCl ₅	27	0,54	100	100	.14,0	395	То же
9	C ₂ H ₅ Li·TaCl ₅	27 .	0,54	. 25	60	9,0	180	Гептан
10	H-CallgLi. TaCls	27	0,27	25	·80	28,0	1075	Толуол
11	н-С ₄ N ₉ Li ·TaCl ₅	27	0,27	80,	83	11,3	260	То же
12	TaCl ₅	27	0,54	80	100	4,2	63 ·	-11-

Таблица 2

Газопроницаемость пленок из ПТМСП

При- мер	Газопроницаемость Р·10 ⁻⁷ см ³ ·см см ² ·с·см рт.ст.					
	P 0 ₂ (CH ₄)	PN ₂ (He)	d 0e/N₂(dCH₄/He)			
1	6,27	2,98	2,10			
2	5,00	2,94	1,70			
3	5,10	2,86	. 1,78			
4	4,75	2,76	1,72			
5	6,05	3,41	1,76			
6 .	6,00	3,85	1,70			
7	6,15	3.40	1,81			
.8	6,00	3,39	1,77			
9	4,93	2,74	1,80			
10	9,39 (11,91)	4,47 (5,57	2,10 (0,47)			
11	6,34	3,17	2,00			
12	3,85	2,40	1,60			

30 Таблица 3 Газопроницаемость пленок из ПТМСП, подвергнутых термообработке

При-, мер	Время, ч	Газопроницаемость P·10 ⁻⁷ , см ³ ·см си ² ·с·см рт.ст.		
		P 02(CH)4	PN ₂ (He)	402/N2 (dCH4/He)
1	10	4,49	2,08	2,16
•	50	4,44	2,11	2,10
,.·· ·	После цикла	3,66	1,68	2,18
2	10	3,87	2 ¹ , 17	1,78
•	50	3,35	1,86	1,80
:	После цикла	2,01	1,75	1,72
3	. 1.0	3,90.	2,29	1,70
	50	3,43	1,88	1,83
	После цикла	3,14	1,70	1,85
4	10	3,50	2,00	1,75
	50	2,95	1,64	1,80
•	После цикла	2,80	. 1,62	1,73
5 .	10	5,00·	3,00	1,00

IInan	OTWOLL	габл.3
прод	WINCHINE	raon.s

П _{ри} - мер	Время, ч	Газопроницаемость Р·10 ⁻⁷ , см ³ .см				
		CM2.C.CM PT.CT.				
		P 02(CH)4	PN 2(He)	902/N5(9 CH4/		
	50	4,87	2,78	1,73		
	После цикла	4,80	2,73	1,76		
6	10	4,90	3,01	1,62		
:	50	4,78	2,88	1,68		
•	После цикла	4,73	2,80	1,60		
. 7	10	4,30	2,42	1,78		
	50	4,14	2,29	1,82		
	После цикла	3,66	1,99	1,84		
8	10	4,09	2,27	1,80		
	. 50	4,32	1,88	1,77		
	После цикла	3,05	1,72	1,77		
9	10	4,34	2,34	1,84		
·	50	4,05	2,28	1,78		
	После цикла	3,94	2,19	1,80		
10	10	8,30(11,91)	4,05 (5,57) 2,05(0,47)		
٠.	50	7,80(11,87)				
	После цикла	7,46(11,85)				
11	io	5,01	2,73	1,80		
• .	50	4,73	2,66	1,78		
• •	После цикла	4,60	2,50	1,80		
12	10	1,92	1,17	1,64		
•	50	0,90	0,54	1,66		
	После цикла	0,34	0,21	1,60		

Редактор Т. Никольская	Техред А. Кравчук	Корректор И. Эрдейи		
Заказ 546 ВНИИПИ Государственного 113035,	Тираж комитета по изобретениям и о Москва, Ж-35, Раушская наб.	Подписное открытиям при ГКНТ СССР , д. 4/5		
Производственно-издатель	ский комбинат 'Патент', г.	Ужгород, ул. Гагарина,101		