DOKUMENTACJA PROJEKTU

Przedmiot: Inżynierski projekt zespołowy

Projekt realizowany w współpracy między Zachodniopomorskim Uniwersytetem Technologicznym oraz TietoEvry

Temat: PC-Hardware

Autorzy: David Wrocławski & Maurycy Demidowicz

Prowadzący: dr hab. inż. Imed El Fray

Mentor: Jakub Połczyński

Rok akademicki: 2023/24 Poziom i semestry: 1/5&6

Tryb studiów: stacjonarne

1 Spis treści

1	Spi	s treści	2
2	Od	nośniki do innych źródeł	3
3	Wp	rowadzenie	4
	3.1	Cel dokumentacji	4
	3.2	Przeznaczenie dokumentacji	4
4	4 Specyfikacja wymagań		5
	4.1	Definicja Projektu	5
	4.2	Wymagania Funkcjonalne	5
	4.3	Wymaganie niefunkcjonalne	6
5	Zar	ządzanie jakością	7
	5.1	Scenariusze i przypadki testowe	7
6	Pro	jekt techniczny	11
	6.1	Opis architektury sytemu	11
	6.2	Technologie implementacji systemu	12
	6.3	Projekt bazy danych	13
	6.4	Interfejs użytkownika	24
7	Urı	uchomienie projektu	29

2 Odnośniki do innych źródeł

Wersjonowanie kodu: https://IPZ-PC-Hardware@dev.azure.com/IPZ-PC-Hardware/PC-Hardware/git/PC-Hardware

3 Wprowadzenie

3.1 Cel dokumentacji

Dokumentacja opisuje działanie oraz obsługę systemu.

3.2 Przeznaczenie dokumentacji

Dla pracowników uczelni w celu poznania budowy oraz działania programu, jak i w celu dokumentacji oraz archiwizacji pracy studenckiej oraz przebiegu studiów.

4 Specyfikacja wymagań

4.1 Definicja Projektu

Aplikacja internetowa wspomagająca użytkownika w procesie budowy komputera z automatycznie dopasowywanych komponentów. Pozwala użytkownikowi na zapis oraz eksport stworzonych konfiguracji.

4.2 Wymagania Funkcjonalne

1. Wybór Komponentów:

- Automatyczne dopasowanie kompatybilnych komponentów na podstawie poprzednio wybranych komponentów
- o Wyświetlanie tylko kompatybilnych komponentów.
- Możliwość filtrowania komponentów na podstawie specyfikacji technicznej, ceny, producenta.

2. Obliczanie Poboru Mocy:

- o Obliczanie szacunkowego maksymalnego poboru mocy przez wybrane komponenty.
- o Rekomendacja zasilaczy z odpowiednią mocą i certyfikatem efektywności na podstawie obliczonego poboru mocy.
- Wyświetlanie tylko kompatybilnych zasilaczy.

3. Ocena Certyfikatów Zasilacza:

- Wyjaśnienie różnic między różnymi certyfikatami zasilacza
- Przewidywanie efektywności zasilacza w odniesieniu do wybranego zestawu komponentów.

4. Rekomendacja Konfiguracji*:

- Sugestie gotowych konfiguracji
- o Personalizowane rekomendacje w zależności od preferencji użytkownika (np. gaming, grafika komputerowa, praca biurowa).

5. Zapis i Eksport Konfiguracji:

- o Możliwość zapisywania listy na profilu i eksportowania listy wybranych komponentów do pliku (np. PDF, CSV).
- o Opcja udostępniania konfiguracji w mediach społecznościowych lub na forach*.

6. Obsługa Użytkownika:

- o Interaktywny tutorial jak korzystać z aplikacji*.
- Wsparcie dla użytkowników poprzez FAQ i opcję kontaktu z obsługą techniczną*.
- o Możliwość założenia konta i zapisu swojej konfiguracji na profilu.

^{* -} opcjonalne/ponad mvp

4.3 Wymaganie niefunkcjonalne

1. Użyteczność:

- o Intuicyjny interfejs użytkownika.
- Wsparcie wielojęzyczne*.
- o Dostosowanie do użytkowników o różnym poziomie wiedzy technicznej.
- o Łatwość użytkowania na urządzeniach mobilnych.

2. Wydajność:

- o Szybkie ładowanie interfejsu i przetwarzanie danych.
- o Zoptymalizowany pod kątem różnych urządzeń i rozdzielczości ekranów.

3. Skalowalność:

- o Możliwość łatwej aktualizacji bazy danych komponentów.
- o Architektura umożliwiająca rozbudowę funkcjonalności w przyszłości.

4. Bezpieczeństwo:

- o Zabezpieczenia danych użytkowników.
- o Szyfrowanie komunikacji między aplikacją a serwerem.

5. **Zgodność i Interoperacyjność:**

o Kompatybilność z najpopularniejszymi przeglądarkami.

^{* -} opcjonalne/ponad mvp

5 Zarządzanie jakością

5.1 Scenariusze i przypadki testowe

ID: 101

Nazwa scenariusza: Testowanie logowania

Kategoria: Systemowy **Tester:** Użytkownik

Termin: Po zaimplementowaniu modułu zarządzania użytkownikami

Przebieg działań:

Działanie testera	Działanie systemu
Wypełnij formularz logowania	
Zatwierdź przyciskiem "Continue"	
	Zaloguj i przenieś do menu głównego (warunek zaliczenia testu) lub wyświetl komunikat błędu
	Wypełnij formularz logowania

Warunki wstępne:

- Tester znajduje się na ekranie logowania (jest nie zalogowany)
- W systemie zapisane jest tylko konto z danymi:
 - o Email: "test@gmail.com"
 - Hasło: "MojeHaslo!123"

- 1. Poprawny
 - a. Krok 1:
 - i. Email: "test@gmail.com"
 - ii. Hasło: "MojeHaslo!123"
 - b. Krok 3:
 - i. Zalogowanie i przeniesienie do menu głównego
- 2. Poprawny
 - a. Krok 1:
 - i. Email: "TEST@gmail.com"
 - ii. Hasło: "MojeHaslo!123"
 - b. Krok 3:
 - i. Zalogowanie i przeniesienie do menu głównego
- 3. Niepoprawny
 - a. Krok 1:
 - i. Email: "test123@gmail.com"
 - ii. Hasło: "MojeHaslo!123"
 - b. Krok 3:
 - i. "Wrong email or password"
- 4. Niepoprawny
 - a. Krok 1:
 - i. Email: "test@gmail.com"
 - ii. Hasło: "MojeHaslo!123456"
 - b. Krok 3:
 - i. "Wrong email or password"

ID: 102

Nazwa scenariusza: Testowanie filtrowania

Kategoria: Systemowy **Tester:** Użytkownik

Termin: Po zaimplementowaniu funkcjonalności filtrowania komponentów

Przebieg działań:

L. p.	Działanie testera	Działanie systemu
1.	Wybierz komponent	
2.	Zaznacz lub wypełnij wybrane filtry	
3.		Wyświetl komponenty zgodne z filtrami
		(warunek zaliczenia testu)

Warunki wstępne:

- Tester znajduje się na ekranie konfiguratora
- W systemie zapisane są części komputerowe:
 - o "HDD"

- 1. Poprawny
 - a. Krok 1:
 - i. Wybrany produkt: "HDD"
 - b. Krok 2:
 - i. Max Price: 400
 - ii. Capacity: 2 TB, 1 TB
 - c. Krok 3:
 - i. Wyświetlenie odpowiednich komponentów
- 2. Niepoprawny
 - a. Krok 1:
 - i. Wybrany produkt: "HDD"
 - b. Krok 2:
 - i. Max Price: -400
 - ii. Capacity: 2 TB, 1 TB
 - c. Krok 3:
 - i. Brak wyświetlonych komponentów
- 3. Niepoprawny
 - a. Krok 1:
 - i. Wybrany produkt: "HDD"
 - b. Krok 2:
 - i. Name: "ssd"
 - ii. Max Price: 400
 - iii. Capacity: 2 TB, 1 TB
 - c. Krok 3:
 - i. Brak wyświetlonych komponentów

ID: 103

Nazwa scenariusza: Testowanie kompatybilności

Kategoria: Systemowy **Tester:** Użytkownik

Termin: Po zaimplementowaniu funkcjonalności kompatybilności komponentów

Przebieg działań:

L. p.	Działanie testera	Działanie systemu
1.	Wybierz pierwszy komponent	
2.	Wybierz drugi komponent	
3.		Wyświetl komponenty kompatybilne z resztą
		listy (warunek zaliczenia testu)

Warunki wstępne:

- Tester znajduje się na ekranie konfiguratora
- W systemie zapisane są części komputerowe:
 - o "HDD"
 - o "SSD"

- 1. Poprawny
 - a. Krok 1:
 - i. Wybrany produkt: "HDD"
 - b. Krok 2:
 - i. Wybrany produkt: "SSD"
 - c. Krok 3:
 - i. Wyświetlenie wszystkich SSD kompatybilnych z wybranym HDD
- 2. Poprawny
 - a. Krok 1:
 - i. Wybrany produkt: "SSD"
 - b. Krok 2:
 - i. Wybrany produkt: "HDD"
 - c. Krok 3:
 - i. Wyświetlenie wszystkich HDD kompatybilnych z wybranym SSD
- 3. Niepoprawny
 - a. Krok 1:
 - i. Brak wybranego produktu
 - b. Krok 2:
 - i. Wybrany produkt: "HDD"
 - c. Krok 3:
 - i. Wyświetlenie wszystkich HDD
- 4. Niepoprawny
 - a. Krok 1:
 - i. Brak wybranego produktu
 - b. Krok 2:
 - i. Wybrany produkt: "SSD"
 - c. Krok 3:
 - i. Wyświetlenie wszystkich SSD

ID: 104

Nazwa scenariusza: Testowanie formularza kontaktowego

Kategoria: Systemowy **Tester:** Użytkownik

Termin: Po zaimplementowaniu formularza kontaktowego

Przebieg działań:

L. p.	Działanie testera	Działanie systemu
1.	Wpisz email	
2.	Wpisz wiadomość	
3.		Wyświetl komunikat (warunek zaliczenia testu)

Warunki wstępne:

• Tester znajduje się na ekranie kontaktowym

- 1. Poprawny
 - a. Krok 1:
 - i. Podany email: randomperson@gmail.com
 - b. Krok 2:
 - i. Podana wiadomość: "This website is so cool:)"
 - c. Krok 3:
 - i. "Email sent successfully"
- 2. Nieoprawny
 - a. Krok 1:
 - i. Podany email: randomperson@gmail.com
 - b. Krok 2:
 - i. Podana wiadomość: <Puste pole>
 - c. Krok 3:
 - i. "Proszę wypełnić to pole"
- 3. Nieoprawny
 - a. Krok 1:
 - i. Podany email: <Puste pole>
 - b. Krok 2:
 - i. Podana wiadomość: "This website is so cool:)"
 - c. Krok 3:
 - i. "Proszę wypełnić to pole"

6 Projekt techniczny

6.1 Opis architektury sytemu

6.1.1 Backend

Architektura projektu jest podzielona na trzy części

- 1. Models: Klasy oraz enumy, za pomocą których tworzone są tabele
- 2. Data: Tworzenie tabel oraz wstawienie danych do bazy
- 3. Controllers: Kontrolery dla każdej tabeli odpowiedzialnej za komponenty komputera, oraz dla tabeli zawierającej listy

6.1.2 Frontend

Architektura frontendu jest zbudowana w oparciu o Vue.js za pomocą narzędzia Vite, z wykorzystaniem komponentów Vue do tworzenia interfejsu użytkownika. Struktura projektu jest podzielona na trzy główne części:

- 1. Komponenty (Components): Są to reużywalne elementy interfejsu użytkownika. Każdy komponent jest zdefiniowany w osobnym pliku vue, który zawiera zarówno logikę (w sekcji <script>), jak i szablon HTML (w sekcji <template>).
- 2. Widoki (Views): Są to strony aplikacji, które agregują różne komponenty i zarządzają logiką strony.
- Magazyny (Stores): Magazyny są używane do zarządzania stanem aplikacji. Projekt korzysta z biblioteki Pinia do tworzenia magazynów. Każdy magazyn reprezentuje określony obszar stanu aplikacji i zawiera zarówno stan, jak i funkcje do manipulowania tym stanem.

6.2 Technologie implementacji systemu

KATEGORIA	TECHNOLOGIA	UZASADNIENIE
Framework	.NET Core	.NET Core został użyty z powodu swojej wydajności oraz dużej ilości narzędzi i bibliotek. Dodatkowo Framework zapewnia łatwą integrację z innymi technologiami Microsoftu, które zostały wykorzystane przy tworzeniu projektu
	Entity Framework	Enitity Framework obsługuje mapowanie relacyjno obiektowe - w kodzie tworzone są klasy i obiekty, które potem zostają mapowane na schemat bazy danych. Umożliwia to wygodniejszą pracę z bazą danych
	Vue.js	Vue.js jest wykorzystywany w tej aplikacji ze względu na jego łatwość użycia, skalowalność i wydajność. Vue.js oferuje reaktywne komponenty, które ułatwiają tworzenie interfejsów użytkownika. Dodatkowo, Vue.js wspiera Single File Components (SFC), które są wykorzystywane w tej aplikacji.
	Vite	Vite jest używany do szybkiego odświeżania modułów i gorącego ładowania (hot reload) modułów podczas rozwoju. Dzięki temu, zmiany w kodzie są natychmiast widoczne w przeglądarce bez konieczności pełnej kompilacji projektu.
Serwer bazy danych	Auth0	Auth0 jest używany do zarządzania uwierzytelnianiem i autoryzacją w aplikacji. Dzięki Auth0, aplikacja może obsługiwać logowanie, rejestrację i zarządzanie sesjami użytkowników w bezpieczny i skalowalny sposób. Auth0 oferuje również wiele funkcji związanych z bezpieczeństwem, takich jak ochrona przed atakami brute force, logowanie wieloczynnikowe i integracja z różnymi dostawcami tożsamości.
	Microsoft SQL Server	Microsoft SQL Server jest łatwym w użyciu, wszechstronnym systemem zarządzania bazami danych, nadającym się idealnie do dużych zbiorów danych

6.3 Projekt bazy danych

6.3.1 Case

6.3.2 Coolers

6.3.3 CPU

6.3.4 GPU

6.3.5 HDD

6.3.6 Motherboard

6.3.7 PSU

6.3.8 RAM

6.3.9 SSD

6.3.10 BuildList

BuildList		
PK	Id INT NOT NULL	
	Name NVARCHAR NULL	
	UserId NVARCHAR NULL	
	Case NVARCHAR NULL	
	CPU NVARCHAR NULL	
	GPU NVARCHAR NULL	
	Motherboard NVARCHAR NULL	
	PSU NVARCHAR NULL	
	RAM NVARCHAR NULL	
	HDD NVARCHAR NULL	
	SSD NVARCHAR NULL	
	CaseCooler NVARCHAR NULL	
	CPUCooler NVARCHAR NULL	

6.4 Interfejs użytkownika

6.4.1 Home

Strona startowa.

6.4.2 PC Configurator

Strona konfiguratora. Umożliwia ręczne wybranie komponentów, lub wybranie z przygotowanych zestawów. Zalogowani użytkownicy mają możliwość zapisania listy.

6.4.3 Components

Wybrane strony komponentów. Filtry dobierane są automatycznie w celu zapewnienia kompatybilności z resztą zestawu. Użytkownik ma również opcję filtrować według własnych preferencji. Po wciśnięciu przycisku "Show All Filters" (opcja niewidoczna na zrzutach ekranu) użytkownik może zobaczyć filtry nie wyświetlane na bocznym pasku.

6.4.4 Log in

Strona logowania

6.4.5 User Profile

Profil użytkownika. Zawiera podstawowe informacje o użytkowniku oraz zapisane listy

6.4.6 Certifications

Strona zawierająca listę certyfikatów zasilaczy jak i wyjaśnień różnic między nimi

6.4.7 FAQ

Strona zawierająca najczęściej zadawane pytania oraz odpowiedzi na nie

6.4.8 Contact

Strona zawierająca formularz kontaktowy

7 Uruchomienie projektu

1. Rozpakować plik .zip (Można do tego użyć narzędzia WinRar, 7-Zip, ...)

2. W programie Microsoft Visual Studio wybrać opcję "Open a project or solution", wybrać plik PC-Hardware.sln

3. W górnym pasku wcisnąć przycisk "http". W przeglądarce odpali się Swagger UI, WAŻNE: wyłączenie Swaggera jest równoważne z wyłączeniem backendu, proszę nie opuszczać strony w trakcie korzystania z PC-Hardware.

4. W programie Visual Studio Code wybrać opcję "File" > "Open Folder", wybrać folder ClientApp.

5. Za pomocą skrótu klawiszowego Ctr+Shift+` otworzyć terminal i wpisać "npm install" (Przy realizacji projektu używana była wersja 10.2.3)

6. W lewym pasku wybrać opcję, explorer, pojawi się w nim opcja "NPM SCRIPTS". Znaleźć w niej "dev" i wybrać opcję "Run"

7. W terminalu wyświetlą się informacje i hoście, za pomocą którego możliwe będzie odpalenie projektu

```
VITE v4.5.2 ready in 1719 ms

→ Local: http://localhost:5173/
→ Network: use --host to expose
→ press h to show help
```

Należy skopiować link i wkleić w przeglądarkę. Link przenosi do strony startowej projektu

8. Poprawne odpalenie można przetestować za pomocą przycisku "Get a random numer". Jeżeli liczba się zmienia, projekt będzie działał poprawnie

