KNUM x GOLEM Hackathon 2022

Machine Learning: Few-Shot Image Classification

Zadanie powstało dzięki zaangażowaniu firmy nomagic.ai

Problem

Problematykę treningu z kilku przykładów treningowych nazywamy few-shot learningiem.

Zadanie polega na stworzeniu klasyfikatora obiektów z danych pozyskanych z kilkudziesięciu przykładów referencyjnych, a następnie klasyfikację obiektów, które znajdują się w skrzynce. Każdy przykład referencyjny zawiera zdjęcie skrzynki z przedmiotami jednego typu oraz odpowiednimi bounding boxami umożliwiającymi wycięcie danych. Każdy przykład walidacyjny/ewaluacyjny zawiera zdjęcie skrzynki, w której mogą znajdować się przedmioty wielu typów wraz z odpowiednimi bounding boxami. Celem zadania jest przydzielenie dla każdego bounding boxa ze zbioru walidacyjnego(ewaluacyjnego) odpowiedniej klasy obiektu, korzystając z modelu wytrenowanego na danych referencyjnych tylko part1 (folder: reference_images_part1, plik z adnotacjami: reference_images_part1. json). Dopuszczone jest skorzystanie z pretrenowanych checkpointów dostępnych w internecie, lecz zakazane jest dotrenowywanie modelu na czymkolwiek innym niż danych pozyskanych z reference_images_part1.

Rozwiązanie będzie ewaluowane na dwóch rodzajach danych. W pierwszym wariancie należy wykorzystać zdjęcia referencyjne reference_images_part1 (wraz z odpowiadającymi adnotacjami reference_images_part1.json) oraz model wytrenowany na nich w celu klasyfikacji każdego bounding boxa z każdego zdjęcia z images_part1_test (wraz z odpowiadającymi adnotacjami images_part1_test_public.json).

W drugim wariancie należy wykorzystać zdjęcia referencyjne reference_images_part2 (wraz z odpowiadającymi adnotacjami reference_images_part2.json) oraz ten sam model co wyżej - czyli taki, który podczas treningu (lub finetuningu z gotowego checkpointa) widział tylko reference_images_part1 - w celu klasyfikacji każdego bounding boxa z każdego zdjęcia z images_part2_test (wraz z odpowiadającymi adnotacjami images_part2_test_public.json).

Uwaga 1 - dane do ewaluacji mają taki sam format jak dane do walidacji. Zostaną one dostarczone godzinę przed końcem hackathonu.

Uwaga 2 - jeśli wśród danych referencyjnych brakuje, któregoś typu przedmiotu, który znajduje się w jsonie - należy nie brać pod uwagę tej klasy podczas treningu i inferencji. Żadne id nie ulegają przez to zmianie.

Dane można obejrzeć przy użyciu skryptu public_dataset/view.py, np.

Wyświetlenie danych referencyjnych part1:

```
python3 public_dataset/view.py --data-path
public_dataset/reference_images_part1 --labels-path
public_dataset/reference_images_part1.json
```

Wyświetlenie danych walidacyjnych:

```
python3 public_dataset/view.py --data-path
public_dataset/images_part1_valid --labels-path
public_dataset/images_part1_valid.json
```

Cel Zadania

Rozwiązanie można testować na części walidacyjnej. Jest ona w takim samym formacie jak część ewaluacyjna. W pliku <u>images_part1_valid.json</u> zawarte są słowniki, wśród nich takie o kluczach:

- images tutaj zawarte są meta informacje o zdjęciach.
- annotations każde entry zawiera pojedynczy bounding box zdjęcia o id image_id, przedstawiający
 obiekt o kategorii category_id. W entry znaleźć można również dodatkowe dane takie jak to, czy
 obiekt był przysłunięty na zdjęciu.
- categories globalne mapowanie id kategorii (w tym entry id odpowiadające category_id z adnotacji) na nazwę obiektu name.

Publiczne części testowego datasetu (images_part1_test_public.json oraz images_part2_test_public.json) mają ukryte category_id. Celem zadania jest podmienienie wartości null na id kategorii, w taki sposób jak to wygląda w części walidacyjnej.

Ostateczny wynik to procent poprawnie zaklasyfikowanych bounding boxów w images_part1_test_public.json oraz images_part2_test_public.json.

Rozwiązaniem zadania są pliki images_part1_test_solution.json oraz images_part2_test_solution.json, powstałe z images_part1_test_public.json oraz images_part2_test_public.json, kod i link do checkpointa, który powstał w wyniku tego kodu. Istotną częścią rozwiązania jest zapewnienie reprodukowalności treningu (np. poprzez ustawienie wszystkich seedów w używanych frameworkach).

Rozwiązanie należy przesłać na adres quiz@mlinpl.org przed końcem hackathonu z nazwą zespołu w tytule.