Feuille d'exercices n°13

Exercice 1 #: sur la divergence

Si $f = (f_1, ..., f_n) : \mathbb{R}^n \to \mathbb{R}^n$, on rappelle que l'opérateur de divergence est défini par :

$$\operatorname{div} f = \sum_{i=1}^{n} \partial_{x_i} f_i$$

Soit ϕ^t le flot associé à une équation différentielle u' = f(t, u) sur \mathbb{R}^n , avec $f : \mathbb{R}^{n+1} \to \mathbb{R}^n$ de classe \mathcal{C}^2 . On suppose que f vérifie :

$$\operatorname{div}_x f(t, x) = 0 \quad \forall t, x$$

Montrer alors que la différentielle du flot par rapport à x est de déterminant 1. (on pourra remarquer que l'application $\psi:(t,x)\mapsto\phi^t(x)$ est de classe \mathcal{C}^2 et calculer de deux manières $\partial_t d_x \psi$.)

Exercice 2 / : équation de transport

Soit $A(t,x): \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ une fonction de classe \mathcal{C}^1 telle que $||A||_{\infty} < +\infty$.

Soit $f_0: \mathbb{R}^n \to \mathbb{R}$ de classe \mathcal{C}^1 .

On considère l'équation aux dérivées partielles suivantes :

$$\begin{cases} \partial_t f + \langle A(t, x), \nabla_x f \rangle = 0 \\ f|_{t=0} = f_0 \end{cases}$$

où l'inconnue est une fonction $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$.

1. Montrer que pour tout x il existe une unique fonction $X_x : \mathbb{R} \to \mathbb{R}^n$ telle que

$$X_x'(t) = A(t, X_x(t))$$

et $X_x(0) = x$.

- 2. Supposons que f soit solution du problème. Que peut-on dire de $g(t) := f(t, X_x(t))$?
- 3. On note $\phi^t(x) = X_x(t)$ le flot de l'équation différentielle de la première question. Montrer que $(t,x) \mapsto (t,\phi^t(x))$ est un difféomorphisme \mathcal{C}^1 de \mathbb{R}^{n+1} dans lui-même.
- 4. En déduire que si f est solution, $f(t,x) = f_0((\phi^t)^{-1}(x))$ et conclure.
- 5. Pourquoi cette équation s'appelle-t-elle « équation de transport »?

Exercice 3 // : un peu d'équa diff

Soit $n \in \mathbb{N}^*$. Soient $A : \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ et $b : \mathbb{R} \to \mathbb{R}^n$ deux applications continues. On considère l'équation suivante :

$$\dot{u} = A(t)u + b(t)$$

On suppose que A et b sont périodiques, de même période T. On va montrer que l'équation admet une solution périodique si et seulement si elle admet une solution bornée sur \mathbb{R}^+ .

- 1. Remarquer le sens facile.
- 2. Montrer que la résolvante R_s^t de l'équation linéaire u'(t) = A(t)u(t) vérifie $R_{s+T}^{t+T} = R_s^t$. En déduire qu'il existe $M \in \mathcal{M}_n(\mathbb{R})$ et $y \in \mathbb{R}^n$ tels que si u est solution, pour tout $k \in \mathbb{Z}$,

$$u((k+1)T) = Mu(kT) + y$$

[Indication : utiliser la formule de Duhamel.]

- 3. Montrer qu'il existe x_0 tel que $x_0 = Mx_0 + y$. (raisonner par l'absurde et prendre un projecteur sur $\mathbb{R}y$ dont le noyau contient Im(I M).
- 4. Conclure en considérant la solution de condition initiale x_0 .

Exercice 4 / : une étude de systèmes différentiels

Soit $\lambda > 1$. On considère le système suivant :

$$\begin{cases} \dot{x} = \lambda x - xe^{x^2 + y^2} \\ \dot{y} = \lambda y - ye^{x^2 + y^2} \end{cases}$$

- 1. Étudier l'existence, l'unicité et la régularité en (t, λ) des solutions maximales pour toute donnée initiale $(x(0), y(0)) = (x_0, y_0)$. On notera $I_{(x_0, y_0)}$ l'intervalle maximal correspondant.
- 2. Déterminer les solutions stationnaires (c'est-à-dire constantes en temps).
- 3. Transformer le système d'équations en passant aux coordonnées polaires (r, θ) et déduire que les courbes intégrales sont des portions de droite.
- 4. Lorsque $x_0^2 + y_0^2 < \ln \lambda$, montrer que la solution est de norme strictemente croissant et globale, c'est-à-dire $I_{(x_0,y_0)} = \mathbb{R}$.
- 5. Lorsque $x_0^2+y_0^2>\ln\lambda$, montrer qu'il y a explosion du côté des t négatifs uniquement, c'est-à-dire $I_{(x_0,y_0)}=]-T^*;+\infty[$.

[Indication : vérifier que, pour $t \leq 0$, il existe C > 0 (dépendant de $x_0^2 + y_0^2$) tel que $\dot{r} \leq -Cr^2$, où r = ||(x,y)||.]

- 6. Quelles sont les valeurs limites possibles pour la norme lorsque $t \to \pm \infty$? Déterminer ces limites dans les différents cas.
- 7. Tracer les courbes intégrales dans le plan (x, y).

Exercice 5 // : théorème de Hadamard

Ce théorème énonce que si $f: \mathbb{R}^n \to \mathbb{R}^n$ est de classe \mathcal{C}^1 , alors il y a équivalence entre :

- 1. f est un difféomorphisme de \mathbb{R}^n sur lui-même.
- 2. f est propre et df(x) est de déterminant non nul pour tout x (c'est-à-dire inversible pour tout x).

[On dit qu'une application est propre si l'image réciproque de tout compact est un compact.] On veut démontrer l'équivalence précédente dans le cas où f est de classe C^2 .

- 1. Montrer que (1) implique (2), puis que (2) implique que f est surjective (par un argument de connexité).
- 2. On suppose désormais que f vérifie (2). Soit $z \in \mathbb{R}^n$ un vecteur fixé dans la suite de l'énoncé. Montrer que $S = \{x \in \mathbb{R}^n, f(x) = f(z)\}$ est fini.

3. Montrer que les solutions du système différentiel

$$\begin{cases} \dot{x} = -(df(x))^{-1} \cdot (f(x) - f(z)) \\ x(0) = x_0 \end{cases}$$

sont bien définies sur $[0, +\infty[$. (On pourra astucieusement calculer la dérivée de $t \mapsto f(x(t))$ et utilise la propreté de f.)

4. Montrer que f est injective puis conclure.

Exercice 6

Soit (E) l'équation x'(t) = f(x(t)), avec $f : \mathbb{R}^n \to \mathbb{R}^n$ lipschitzienne. Soit Φ_t le flot associé. Pour tout x_0 , on appelle orbite de x_0 et on note $\mathrm{Orb}(x_0)$ l'ensemble des $\Phi_t(x_0)$ pour $t \in \mathbb{R}^+$. On appelle ensemble ω -limite de x_0 l'ensemble :

$$\omega(x_0) = \bigcap_{t \ge 0} \overline{\{\Phi_s(x_0), s \ge t\}}$$

- 1. Montrer que si $\operatorname{Orb}(x_0)$ est bornée, alors $\omega(x_0)$ est un compact non-vide, connexe et invariant (c'est-à-dire $\Phi_t(\omega(x_0)) = \omega(x_0)$ pour tout t).
- 2. Montrer que si f est de la forme ∇g pour une certaine fonction g de classe \mathcal{C}^1 , alors Φ_t n'a pas d'orbites périodiques autres que les solutions stationnaires.
- 3. On suppose qu'il existe une fonction de Lyapunov « stricte » pour le système (E), c'est-à-dire une fonction ψ telle que :

$$\forall x \in \mathbb{R}^n$$
, $\langle \nabla \psi(x), f(x) \rangle < 0$ sauf si $f(x) = 0$

et, pour tout M, l'ensemble $\{\psi(x) \leq M\}$ est compact.

- a) Montrer que les solutions maximales de (E) sont définies sur des intervalles non-majorés.
- b) Montrer que ψ est constante sur $\omega(x_0)$, pour tout x_0 .
- c) On suppose que les points où f s'annule sont isolés. Montrer que si $\Phi_{t_n}(x_0)$ est une suite convergente (avec $t_n \to +\infty$), alors elle converge vers un zéro de f.
- d) Sous la même hypothèse qu'à la question c), montrer que toute trajectoire converge vers un zéro de f.

Exercice 7 "/": résolution d'une équation différentielle via le théorème d'inversion locale

Soit $F = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme de la convergence uniforme, et E le sous-espace fermé de $\mathcal{C}^2([0,1],\mathbb{R})$ des fonctions qui s'annulent en 0 et 1, muni de la norme $\|y\|_E = \|y''\|_{\infty} + \|y'\|_{\infty} + \|y'\|_{\infty}$. On se donne deux fonctions h et k réelles continues sur [0,1], et on considère l'application $\phi: E \to F$ définie par $\phi(y) = y'' + hy'^2 + ky^2$.

- 1. Montrer que l'application $\psi: E \times E \to F$ définie par $\psi(y,z) = h \cdot y' \cdot z' + k \cdot y \cdot z$ est bilinéaire continue.
- 2. Montrer que ϕ est de classe \mathcal{C}^1 sur E et calculer la différentielle $d\phi(0)$ de ϕ en 0.
- 3. En déduire qu'il existe $\epsilon > 0$ tel que, pour toute fonction $f \in F$ vérifiant $||f||_{\infty} < \epsilon$, il existe $y \in E$ tel que $\phi(y) = f$, c'est-à-dire une solution de l'équation différentielle $y'' + h(x)y'^2 + k(x)y^2 = f(x)$ qui s'annule en 0 et en 1.

Exercice 8 // // : théorème de Poincaré-Bendixson

Soit $U\subset\mathbb{R}^2$ un ouvert borné. Soit $f\in\mathcal{C}^1(U,\mathbb{R}^2)$ un champ de vecteurs. On considère l'équation différentielle suivante :

$$X'(t) = f(X(t)) \tag{*}$$

On suppose que toutes les solutions maximales de ce système sont définies sur $\mathbb R$ tout entier.

Pour tout $x_0 \in U$ et tout $s \in \mathbb{R}$, on pose $\phi_s(x_0) = X_{x_0}(s)$, où X_{x_0} est la solution de (\star) telle que $X_{x_0}(0) = x_0$. On appelle ϕ le flot associé à (\star) .

Pour tout $x \in U$, on appelle ensemble limite de x l'ensemble suivant :

$$\omega(x) = \bigcap_{s \ge 0} \overline{\{\phi_t(x) \text{ tq } t \ge s\}}$$

[C'est l'ensemble des points d'adhérence de la solution X de (\star) avec condition initiale x.]

1. Soit $x \in U$. On suppose qu'il existe $D \subset U$ un compact tel que $\phi_s(x) \in D$ pour tout $s \geq 0$.

Montrer que $\omega(x)$ est un compact connexe non-vide stable par ϕ_s .

Le but de l'exercice est de montrer une version simplifiée du théorème de Poincaré-Bendixson :

Si $\omega(x)$ ne contient pas de point où f s'annule, alors il existe une solution périodique X de (\star) telle que $\omega(x) = \{X(s), s \in \mathbb{R}\}.$

2. [Théorème de redressement du flot] Soit $x_0 \in U$ un point tel que $f(x_0) \neq 0$. Soit D une droite passant par x_0 , de vecteur directeur \vec{u} , telle que $f(x_0)$ n'est pas colinéaire à \vec{u} .

Montrer qu'il existe $V \subset U$ un voisinage de x_0 , $\epsilon_1, \epsilon_2 > 0$ et $\psi : V \to]-\epsilon_1; \epsilon_1[\times]-\epsilon_2; \epsilon_2[$ un \mathcal{C}^1 -difféomorphisme tels que :

- 1. $\psi(x_0) = (0,0)$
- 2. $\psi^{-1}(]-\epsilon_1;\epsilon_1[\times\{0\})\subset D$
- 3. Si X est une solution maximale de l'équation (\star) restreinte à V, alors $\psi(X)$ est une fonction de la forme $t \in]t_0 \epsilon_2; t_0 + \epsilon_2[\to (a, t t_0), \text{ pour certaines constantes } a \in]-\epsilon_1; \epsilon_1[, t_0 \in \mathbb{R}.$

L'ensemble $I = \psi^{-1}(] - \epsilon_1; \epsilon_1[\times\{0\}) \subset V \cap D$ (qui est un intervalle ouvert de D) est appelé section transverse.

On admet que l'ensemble des points d'intersection entre une section transverse I et l'image d'une solution maximale X de (\star) , définie sur \mathbb{R} , est toujours de l'une des trois formes suivantes :

- l'ensemble vide
- un singleton
- un ensemble dénombrable (fini ou infini); dans ce cas, si on note $\{t_k\}_{k\in\mathbb{N}}$ les réels tels que $X(t_k)\in I$, les points $X(t_k)$ sont disposés sur I dans le même ordre que les réels $\{t_k\}$ sont ordonnés dans \mathbb{R} , c'est-à-dire que le point $X(t_k)$ est « entre » les points $X(t_l)$ et $X(t_m)$ si et seulement si t_k appartient à l'intervalle $]t_l; t_m[$ (ou $]t_m; t_l[$ si $t_m < t_l)$.

[À l'aide du théorème de Jordan, la démonstration de ce résultat n'est pas très difficile mais tout de même assez technique.]

- 3. Montrer que si I est une section transverse, $\omega(x)$ a au plus un point d'intersection avec I.
- 4. Soit x comme dans la question 1. On suppose que f ne s'annule pas sur $\omega(x)$.

Soit $y \in \omega(x)$ quelconque. Soit X la solution de (\star) pour la condition initiale X(0) = y.

- a) Montrer que $X(\mathbb{R}^+) \subset \omega(x)$ et que $\omega(y) \subset \omega(x)$.
- b) Montrer que X est périodique.

[Indication : considérer un point $z \in \omega(y)$ et une section transverse passant par z.]

5. Montrer que $\{X(s), s \in \mathbb{R}\}$ est ouvert et fermé dans $\omega(x)$ puis conclure.