# Parte 4

# Resolução de Sistemas Lineares - 2

CI1164 - Introdução à Computação Científica Profs. Armando Delgado e Guilherme Derenievicz Departamento de Informática - UFPR







 $\alpha f_5 = 0$   $\alpha f_c = 0$ 

ido e Guilherme Derenievio



























```
\begin{bmatrix} \mathbf{d_1} & \mathbf{c_1} & 0 & 0 & 0 \\ \mathbf{a_1} & \mathbf{d_2} & \mathbf{c_2} & 0 & 0 \\ 0 & \mathbf{a_2} & \mathbf{d_3} & \mathbf{c_3} & 0 \\ 0 & 0 & \mathbf{a_3} & \mathbf{d_4} & \mathbf{c_4} \\ 0 & 0 & 0 & \mathbf{a_4} & \mathbf{d_5} \end{bmatrix} \begin{bmatrix} \mathbf{b_1} \\ \mathbf{b_2} \\ \mathbf{b_3} \\ \mathbf{b_4} \\ \mathbf{b_5} \end{bmatrix}
```

```
/* Seja um S.L. de ordem 'n'
void eliminacaoGauss( double **A, double *b, u
  /* para cada linha a partir da primeira */
   for (int i=0; i < n; ++i) {
      for(int k=i+1; k < n; ++k) {
         double m = A[k][i] / A[i][i];
         A[k][i] = 0.0:
         for(int j=i+1; j < n; ++j)
            A[k][i] -= A[i][i] * m;
         b[k] -= b[i] * m;
```

```
\begin{bmatrix} d_1 & c_1 & 0 & 0 & 0 \\ a_1 & d_2 & c_2 & 0 & 0 \\ 0 & a_2 & d_3 & c_3 & 0 \\ 0 & 0 & a_3 & d_4 & c_4 \\ 0 & 0 & 0 & a_4 & d_5 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}
```

```
/* Seja um S.L. de ordem 'n'
void eliminacaoGauss( double **A, double *b, u
  /* para cada linha a partir da primeira */
   for (int i=0; i < n; ++i) {
      for(int k=i+1; k < n; ++k) {
         double m = A[k][i] / A[i][i];
         A[k][i] = 0.0:
         for(int j=i+1; j < n; ++j)
            A[k][i] -= A[i][i] * m;
         b[k] -= b[i] * m;
```

```
\begin{bmatrix} \mathbf{d_1} & \mathbf{c_1} & 0 & 0 & 0 \\ \mathbf{a_1} & \mathbf{d_2} & \mathbf{c_2} & 0 & 0 \\ 0 & \mathbf{a_2} & \mathbf{d_3} & \mathbf{c_3} & 0 \\ 0 & 0 & \mathbf{a_3} & \mathbf{d_4} & \mathbf{c_4} \\ 0 & 0 & 0 & \mathbf{a_4} & \mathbf{d_5} \end{bmatrix} \begin{bmatrix} \mathbf{b_1} \\ \mathbf{b_2} \\ \mathbf{b_3} \\ \mathbf{b_4} \\ \mathbf{b_5} \end{bmatrix}
```

```
/* Seja um S.L. de ordem 'n'
void eliminacaoGauss( double **A, double *b, u
  /* para cada linha a partir da primeira */
   for (int i=0; i < n; ++i) {
      for(int k=i+1; k < n; ++k) {
         double m = A[k][i] / A[i][i];
         A[k][i] = 0.0:
         for(int j=i+1; j < n; ++j)
            A[k][j] -= A[i][j] * m;
         b[k] -= b[i] * m;
```

```
\begin{bmatrix} d_1 & c_1 & 0 & 0 & 0 \\ a_1 & d_2 & c_2 & 0 & 0 \\ 0 & a_2 & d_3 & c_3 & 0 \\ 0 & 0 & a_3 & d_4 & c_4 \\ 0 & 0 & 0 & a_4 & d_5 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}
```

```
/* Seja um S.L. de ordem 'n'
void eliminacaoGauss( double **A, double *b, u
  /* para cada linha a partir da primeira */
   for (int i=0; i < n; ++i) {
      for(int k=i+1; k < n; ++k) \{ k=i+1 \}
         double m = A[k][i] / A[i][i];
         A[k][i] = 0.0:
         for(int j=i+1; j < n; ++j)
            A[k][i] -= A[i][i] * m;
         b[k] -= b[i] * m;
```

```
\begin{bmatrix} d_1 & c_1 & 0 & 0 & 0 \\ a_1 & d_2 & c_2 & 0 & 0 \\ 0 & & d_3 & c_3 & 0 \\ 0 & 0 & a_3 & d_4 & c_4 \\ 0 & 0 & 0 & a_4 & d_5 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}
```

```
′* Seja um S.L. de ordem 'n'
void eliminacaoGauss( double **A, double *b, u
  /* para cada linha a partir da primeira */
   for (int i=0; i < n; ++i) {
             k=i+1; k < n; ++k)  k=i+1
         double m = A[k][i] / A[i][i];
        A[k][i] = 0.0;
         for(int j=i+1; j < n; ++j)
            A[k][j] -= A[i][j] * m;
         b[k] -= b[i] * m;
```

```
\begin{bmatrix} d_1 & c_1 & 0 & 0 & 0 \\ a_1 & d_2 & c_2 & 0 & 0 \\ 0 & & d_3 & c_3 & 0 \\ 0 & 0 & a_3 & d_4 & c_4 \\ 0 & 0 & 0 & a_4 & d_5 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}
```

```
′* Seja um S.L. de ordem 'n'
void eliminacaoGauss( double **A, double *b, u
   /* para cada linha a partir da primeira */
   for (int i=0; i < n; ++i) {
              k=i+1; k < n; ++k)  k=i+1
         double m = A[k][i] / A[i][i];
         f<del>or(int j=i+1; j < n; ++j)</del>
            A[k][j] -= A[i][j] * m;
         b[k] -= b[i] * m;
```



```
double b[5];
double d[5];
double a[4];
double c[4];
```

```
'* Seja um S.L. de ordem 'n'
void eliminacaoGauss( double **A, double *b, u
  /* para cada linha a partir da primeira */
   for (int i=0; i < n; ++i) {
     for(int k=i+1; k < n; ++k) { k=i+1
         double m = A[k][i] / A[i][i];
         A[k][i] = 0.0;
         for(int j=i+1; j < n; ++j)
           A[k][i] -= A[i][i] * m;
         b[k] -= b[i] * m;
```



```
double b[5];
double d[5];
double a[4];
double c[4];
```

```
double *d, double *a, double *c
 '* Seja um S.L. de ordem
void eliminacaoGauss( double **A, double *b, u
   /* para cada linha a partir da primeira */
   for (int i=0; i < n; ++i) {
      for(int k=i+1: k < n: ++k) {
         double m = A[k][i] / A[i][i];
         A[k][i] = 0.0;
         for(int j=i+1; j < n; ++j)
            A[k][j] -= A[i][j] * m;
         b[k] -= b[i] * m;
```

```
double *d, double *a, double *c
                                              ordem
                0
                    double m = a[i] / d[i];
                            void elim
                                          Gauss( double **A, double *b, u
                                           linha a partir da primeira */
                              /* para
                               for (int i = (i < n; ++i) {
                                 for (int k=1) {
                                    double m = A[k][i] / A[i][i];
                                    A[k][i] = 0.0;
                                    for(int j=i+1; j < n; ++j)
double b[5];
                                       A[k][j] -= A[i][j] * m;
                                    b[k] -= b[i] * m;
double d[5];
double a [4];
double c[4];
```

```
double *d, double *a, double *c
                                               ordem
                0
                     double m = a[i] / d[i];
                            void elim
                                           Gauss( double **A, double *b, u
                               /* para
                                                              primeira */
                                               a[i] = 0.0;
                                for (int i=
                                     double m A[k][i] / A[i][i];
                                     A[k][i] = 0.0;
                                      for(int j=i+1; j < n; ++j)
double b[5];
                                        A[k][j] -= A[i][j] * m;
                                     b[k] -= b[i] * m;
double d[5];
double a [4];
double c[4];
```

```
double *d, double *a, double *c
                                               ordem
                0
                     double m = a[i] / d[i];
                            void elim
                                           Gauss( double **A, double *b, u
                               /* para
                                                              primeira */
                                               a[i] = 0.0;
                               for (int i=
                                     double m A[k][i] / A[i][i];
                                     A[k][i] = 0.0;
                                      for(int j=i+1; j < n; ++j)
double b[5];
                                        A[k][j] -= A[i][j] * m;
                                     b[k] -= b[i] * m;
double d[5];
double a [4];
                                                       d[i+1] -= c[i]*m;
double c[4];
```



| $\mathbf{A}$                                                                                                                                                                                                                                                                    | $\mathrm{A}^{\text{-}1}$                                          | I          |   |   |   |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------|---|---|---|---|
| a       11       a       12       a       13       a       14         a       21       a       22       a       24       a       24         a       31       a       32       a       34       a       34         a       41       a       42       a       43       a       44 | x <sub>11</sub> x <sub>12</sub> x <sub>13</sub> x <sub>14</sub>   | <b>[</b> 1 | 0 | 0 | 0 | 7 |
| a <sub>21</sub> a <sub>22</sub> a <sub>23</sub> a <sub>24</sub>                                                                                                                                                                                                                 | $\begin{bmatrix} x_{21} & x_{22}x_{23} & x_{24} \end{bmatrix}$    | 0          | 1 | 0 | 0 |   |
| a <sub>31</sub> a <sub>32</sub> a <sub>33</sub> a <sub>34</sub>                                                                                                                                                                                                                 | x <sub>31</sub> x <sub>32</sub> x <sub>33</sub> x <sub>34</sub>   | 0          | 0 | 1 | 0 |   |
| a <sub>41</sub> a <sub>42</sub> a <sub>43</sub> a <sub>44</sub>                                                                                                                                                                                                                 | $\begin{bmatrix} x_{41} & x_{42} & x_{43} & x_{44} \end{bmatrix}$ | 0          | 0 | 0 | 1 |   |

$$a_{11}x_{11} + a_{12}x_{21} + a_{13}x_{31} + a_{14}x_{41} = 1$$



 $a_{11}x_{11} + a_{12}x_{21} + a_{13}x_{31} + a_{14}x_{41} = 1$  $a_{21}x_{11} + a_{22}x_{21} + a_{23}x_{31} + a_{24}x_{41} = 0$ 



$$a_{11}x_{11} + a_{12}x_{21} + a_{13}x_{31} + a_{14}x_{41} = 1$$

$$a_{21}x_{11} + a_{22}x_{21} + a_{23}x_{31} + a_{24}x_{41} = 0$$

$$a_{31}x_{11} + a_{32}x_{21} + a_{33}x_{31} + a_{34}x_{41} = 0$$

$$\begin{cases} a_{11}x_{11} + a_{12}x_{21} + a_{13}x_{31} + a_{14}x_{41} = 1 \\ a_{21}x_{11} + a_{22}x_{21} + a_{23}x_{31} + a_{24}x_{41} = 0 \\ a_{31}x_{11} + a_{32}x_{21} + a_{33}x_{31} + a_{34}x_{41} = 0 \\ a_{41}x_{11} + a_{42}x_{21} + a_{43}x_{31} + a_{44}x_{41} = 0 \end{cases}$$

$$\begin{pmatrix} a_{11}x_{11} + a_{12}x_{21} + a_{13}x_{31} + a_{14}x_{41} = 1 \\ a_{21}x_{11} + a_{22}x_{21} + a_{23}x_{31} + a_{24}x_{41} = 0 \\ a_{31}x_{11} + a_{32}x_{21} + a_{33}x_{31} + a_{34}x_{41} = 0 \\ a_{41}x_{11} + a_{42}x_{21} + a_{43}x_{31} + a_{44}x_{41} = 0 \end{pmatrix}$$



$$\begin{cases} a_{11}x_{11} + a_{12}x_{21} + a_{13}x_{31} + a_{14}x_{41} = 1 \\ a_{21}x_{11} + a_{22}x_{21} + a_{23}x_{31} + a_{24}x_{41} = 0 \\ a_{31}x_{11} + a_{32}x_{21} + a_{33}x_{31} + a_{34}x_{41} = 0 \\ a_{41}x_{11} + a_{42}x_{21} + a_{43}x_{31} + a_{44}x_{41} = 0 \end{cases}$$

#### Refinamento

#### Algoritmo:

Basta aplicar em **r** todas as transformações que foram aplicadas em **b** 

- 1 Obter solução inicial  $\mathbf{x}^{(0)}$  resolvendo  $\mathbf{A}\mathbf{x} = \mathbf{b}$  e inicializar  $\mathbf{i} = \mathbf{0}$ ;
- 2 Calcular o resíduo  $\mathbf{r} = \mathbf{b} \mathbf{A}\mathbf{x}^{(i)}$  e testar critério de parada (a);
- 3 Obter w resolvendo  $\mathbf{A}\mathbf{w} = \mathbf{r}$ ;
- 4 Obter nova solução  $\mathbf{x^{(i+1)}} = \mathbf{x^{(i)}} + \mathbf{w}$  e testar critério de parada (b);
- 5 Incrementar i e voltar ao passo 2;

 $Ax_4 = i_4$ 

Decompor A em duas matrizes triangulares A = LU.

Ax = b

Decompor A em duas matrizes triangulares A = LU.

Ax = b

LUx = b

$$Ax = b$$

$$L\underbrace{Ux}_{V} = b$$

$$Ax = b$$

$$LUx = b$$

$$y$$

$$Ux = y$$





Decompor A em duas matrizes triangulares A = LU.

 $\mathbf{Ax}_1 = \mathbf{i}_1$ 

 $Ax_2 = i_2$ 

 $Ax_3 = i_3$ 

:

 $Ax_k = i_k$ 



custo(decomposição)  $+ 2 \text{kn}^2 \text{ FLOPs}$ 

Decompor A em duas matrizes triangulares A = LU.

#### A

```
a<sub>11</sub> a<sub>12</sub> a<sub>13</sub> a<sub>14</sub>
a<sub>21</sub> a<sub>22</sub> a<sub>23</sub> a<sub>24</sub>
a<sub>31</sub> a<sub>32</sub> a<sub>33</sub> a<sub>34</sub>
a<sub>41</sub> a<sub>42</sub> a<sub>43</sub> a<sub>44</sub>
```

Decompor A em duas matrizes triangulares A = LU.

m<sub>21</sub> m<sub>31</sub>

#### A

$$a_{11}$$
 $a_{12}$ 
 $a_{13}$ 
 $a_{14}$ 
 $a_{21}$ 
 $a_{22}$ 
 $a_{23}$ 
 $a_{24}$ 
 $a_{21}$ 
 $a_{21}$ 
 $a_{21}$ 
 $a_{21}$ 
 $a_{31}$ 
 $a_{32}$ 
 $a_{33}$ 
 $a_{34}$ 
 $a_{31}$ 
 $a_{31}$ 
 $a_{41}$ 
 $a_{42}$ 
 $a_{43}$ 
 $a_{44}$ 
 $a_{42}$ 
 $a_{43}$ 
 $a_{44}$ 
 $a_{42}$ 
 $a_{43}$ 
 $a_{44}$ 
 $a_{42}$ 
 $a_{43}$ 
 $a_{44}$ 
 $a_{44}$ 

## m<sub>21</sub>

Decompor A em duas matrizes triangulares A = LU.

 $m_{21}$   $m_{31}$   $m_{32}$   $m_{41}$ 

Decompor A em duas matrizes triangulares A = LU.

 $m_{21}$   $m_{31}$   $m_{32}$   $m_{41}$   $m_{42}$   $m_{43}$ 

Decompor A em duas matrizes triangulares A = LU.

 $m_{21}$   $m_{31}$   $m_{32}$   $m_{41}$   $m_{42}$   $m_{43}$ 







Exemplo: encontrar a inversa da matriz A.

#### A

```
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}
```

|          | A      |     |                                                  | X                                  |                                 |   |     | В      |     |  |
|----------|--------|-----|--------------------------------------------------|------------------------------------|---------------------------------|---|-----|--------|-----|--|
| 25<br>64 | 5<br>8 | 1 1 | $\begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix}$ | x <sub>12</sub><br>x <sub>22</sub> | x <sub>13</sub> x <sub>23</sub> | = | 1 0 | 0<br>1 | 0 0 |  |
| 144      | 12     | 1   | X <sub>31</sub>                                  | $X_{32}$                           | X33                             |   | 0   | 0      | 1   |  |

```
\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} m_{21} = 2.56 \\ m_{31} = 5.76
```

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{array}{c} m_{21} = 2.56 \\ m_{31} = 5.76 \end{array} \qquad \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76 \end{bmatrix}$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

Exemplo: encontrar a inversa da matriz A.

 $\begin{array}{ccc} Ax = b \\ L \underbrace{Ux} = b & \longrightarrow & Ly = b \\ y & & Ux = y \end{array}$ 

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix}$$

$$U$$

$$L$$

Exemplo: encontrar a inversa da matriz A.

 $L\underbrace{Ux}_{y} = b \qquad \Longrightarrow \qquad Ly = b$  Ux = y

$$\mathbf{L}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} y_1 \\ y_2 \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -2.56 \\ 3.2 \end{bmatrix}$$
 Aplica o mesmo escalonamento no vetor b

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2.56 \\ 3.2 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.04762 \\ -0.9524 \\ 4.571 \end{bmatrix}$$

Exemplo: encontrar a inversa da matriz A.

Ux = y

$$\mathbf{L}$$

 $\begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} y_1 \\ y_2 \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -3.5 \end{bmatrix}$  Aplica o mesmo escalonamento no vetor b

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -3.5 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -0.08333 \\ 1.417 \\ -5.000 \end{bmatrix}$$

Exemplo: encontrar a inversa da matriz A.

Ax = b  $L\underbrace{Ux}_{y} = b \qquad \Longrightarrow \qquad Ly = b$  Ux = y

$$\mathbf{L}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} y_1 \\ y_2 \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 Aplica o mesmo escalonamento no vetor b

U

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.03571 \\ -0.4643 \\ 1.429 \end{bmatrix}$$

$$A^{-1}$$

$$\begin{bmatrix} 0.04762 & -0.08333 & 0.03571 \\ -0.9524 & 1.417 & -0.4643 \\ 4.571 & -5.000 & 1.429 \end{bmatrix}$$



Exemplo: encontrar a inversa da matriz A.

Para pivoteamento parcial, efetuar as mesmas trocas de linhas no vetor **b**.



Exemplo: encontrar a inversa da matriz A.

Para pivoteamento parcial, efetuar as mesmas trocas de linhas no vetor **b**.



#### Exemplo:



Exemplo: encontrar a inversa da matriz A

Para pivoteamento parcial, efetuar as m de linhas no vetor **b**.

Exemplo:

$$Ax = b$$

$$LU \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

|                 | A            |             |                 | A'           |             |         |
|-----------------|--------------|-------------|-----------------|--------------|-------------|---------|
| 25<br>64<br>144 | 5<br>8<br>12 | 1<br>1<br>1 | 144<br>64<br>25 | 12<br>8<br>5 | 1<br>1<br>1 | A' = LU |

Exemplo: encontrar a inversa da matriz A

Para pivoteamento parcial, efetuar as m de linhas no vetor **b**.

#### Exemplo:

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$$



#### Ax = b

$$LU \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Atenção: além do vetor **b**, as mesmas trocas de linhas devem ser feitas <u>a cada</u> <u>iteração</u> na matriz **L**.



$$A' = LU$$

#### Exemplo:

#### Exemplo:

# $\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$

#### Exemplo:

#### A

| 25  | 5  | 1 |
|-----|----|---|
| 64  | 8  | 1 |
| 144 | 12 | 1 |

Escolhendo o primeiro pivô: trocar as linhas 1 e 3.

 $\mathbf{L}$ 



#### Exemplo:







A mesma troca deve ser feita no vetor **b**.

#### Exemplo:







A mesma troca deve ser feita no vetor **b**.

#### Exemplo:

#### Α



Definindo multiplicadores da primeira iteração.

#### ${ m L}$



b

#### Exemplo:

Armazenando na matriz L.

#### Exemplo:

#### A





Aplicando operações sobre as equações.

$$\begin{bmatrix} 144 & 12 & 1 \\ 0 & 2.6672 & 0.5556 \\ 0 & 2.9168 & 0.8264 \end{bmatrix}$$

#### ${ m L}$

#### b



Exemplo:

A

1

0.4444 0.1736

Na segunda iteração é necessário trocar as linhas 2 e 3.

$$\begin{bmatrix} 144 & 12 & 1 \\ 0 & 2.6672 & 0.5556 \\ 0 & 2.9168 & 0.8264 \end{bmatrix}$$

b

0 0 1



Α



A mesma troca deve ser feita no vetor **b** e nos elementos já preenchidos da matriz **L**.







Α



A mesma troca deve ser feita no vetor  $\mathbf{b}$  e nos elementos já preenchidos da matriz  $\mathbf{L}$ .





Exemplo:

 $\mathbf{A}$ 

 $\mathbf{L}$ 

Definindo multiplicadores da segunda iteração.

$$\begin{bmatrix} 144 & 12 & 1 \\ 0 & 2.9168 & 0.8264 \\ 0 & 2.6672 & 0.5556 \end{bmatrix} m_{32} = 0.9144$$

b

Exemplo:

Α

Armazenando na matriz L.

 ${
m L}$ 

0.1736 0.4444 0.9144

```
      144
      12
      1

      0
      2.9168
      0.8264

      0
      2.6672
      0.5556
```

 $\left[\begin{array}{c}0\\1\\0\end{array}\right]$ 

#### Exemplo:

#### A

$$\begin{bmatrix} 144 & 12 & 1 \\ 0 & 2.9168 & 0.8264 \\ 0 & 0 & -0.2001 \end{bmatrix}$$



Aplicando operações sobre as equações.

$$\begin{bmatrix} 144 & 12 & 1 \\ 0 & 2.9168 & 0.8264 \\ 0 & 2.6672 & 0.5556 \end{bmatrix} m_{32} = 0.914$$

#### ${ m L}$



#### Exemplo:

#### Α

$$\begin{bmatrix} 144 & 12 & 1 \\ 0 & 2.9168 & 0.8264 \\ 0 & 0 & -0.2001 \end{bmatrix}$$

#### Completando matriz L.

#### $\mathbf{L}$



Na prática: efetuar as trocas no(s) vetor(es) **b** posteriormente. No momento da fatoração, apenas armazenar as trocas em uma estrutura de dados.

C

1

## Métodos de Resolução de Sistemas Lineares

- <u>Métodos Exatos ou Diretos</u>: permitiram a solução exata com um número finito de operações, se não fosse por erros numéricos.
- <u>Métodos Iterativos</u>: permitem uma solução aproximada através de um processo infinito convergente.

```
\begin{cases} a_{11}x_1 & + & a_{12}x_2 & + & a_{13}x_3 & + & \dots & + & a_{1n}x_n & = & b_1 \\ a_{21}x_1 & + & a_{22}x_2 & + & a_{23}x_3 & + & \dots & + & a_{2n}x_n & = & b_2 \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1}x_1 & + & a_{n2}x_2 & + & a_{n3}x_3 & + & \dots & + & a_{nn}x_n & = & b_n \end{cases}
```

```
\begin{bmatrix} a_1 (x_1) & + & a_{12}x_2 & + & a_{13}x_3 & + & \dots & + & a_{1n}x_n & = & b_1 \\ a_{21}x_1 & + & a_{22}(x_2) & + & a_{23}x_3 & + & \dots & + & a_{2n}x_n & = & b_2 \\ \vdots & \vdots \\ a_{n1}x_1 & + & a_{n2}x_2 & + & a_{n3}x_3 & + & \dots & + & a_{nn}(x_n) & = & b_n \end{bmatrix}
```

$$\begin{bmatrix} a_1 (x_1) & + & a_{12}x_2 & + & a_{13}x_3 & + & \dots & + & a_{1n}x_n & = & b_1 \\ a_{21}x_1 & + & a_{22}(x_2) & + & a_{23}x_3 & + & \dots & + & a_{2n}x_n & = & b_2 \\ \vdots & \vdots \\ a_{n1}x_1 & + & a_{n2}x_2 & + & a_{n3}x_3 & + & \dots & + & a_{nn}(x_n) & = & b_n \end{bmatrix}$$

$$\begin{array}{rcl}
\overbrace{x_1} & = & \frac{1}{a_{11}} \left[ b_1 - a_{12} x_2 - a_{13} x_3 - \dots - a_{1n} x_n \right] \\
\overbrace{x_2} & = & \frac{1}{a_{22}} \left[ b_2 - a_{21} x_1 - a_{23} x_3 - \dots - a_{2n} x_n \right] \\
\vdots & \vdots & \vdots \\
\overbrace{x_n} & = & \frac{1}{a_{nn}} \left[ b_n - a_{n1} x_1 - a_{n2} x_2 - \dots - a_{n,n-1} x_{n-1} \right]
\end{array}$$













$$Max \left\{ \left| x_i^{(k+1)} - x_i^{(k)} \right| \right\} \le \varepsilon$$
  $i = 1, 2, 3, ..., n$ 



$$Max \left\{ \left| \frac{x_i^{(k+1)} - x_i^{(k)}}{x_i^{(k+1)}} \right| \right\} \le \varepsilon \qquad i = 1, 2, 3, ..., n$$

$$x_1^{(2)}, \dots, x_n^{(2)}$$

$$x_2^{(3)}, \dots, x_n^{(3)}$$

$$\vdots \qquad \vdots$$

$$x_n^{(3)} = \frac{1}{a_{22}} [b_2 - a_{21}(x_1) - a_{23}(x_3) - \dots - a_{2n}(x_n)]$$



$$\begin{cases} 3x_1 - x_2 - x_3 = 1 \\ x_1 + 3x_2 + x_3 = 5 \\ x_1 - x_2 + 2x_3 = 2 \end{cases}$$

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 \\ x_1 + 3x_2 + x_3 = 5 \\ x_1 - x_2 + 2x_3 = 2 \end{cases}$$



$$\begin{cases} 3x_1 - x_2 - x_3 = 1 \\ x_1 + 3x_2 + x_3 = 5 \\ x_1 - x_2 + 2x_3 = 2 \end{cases}$$



| $\int x_1^{(k+1)} = (1 + x_2^{(k)} + x_3^{(k)}) / 3$                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{cases} x_1^{(k+1)} = (1 + x_2^{(k)} + x_3^{(k)})/3 \\ x_2^{(k+1)} = (5 - x_1^{(k)} - x_3^{(k)})/3 \\ x_3^{(k+1)} = (2 - x_1^{(k)} + x_2^{(k)})/2 \end{cases}$ |
| $x_3^{(k+1)} = (2 - x_1^{(k)} + x_2^{(k)}) / 2$                                                                                                                       |

| k | $X_1^{(k)}$ | $x_{2}^{(k)}$ | $x_3^{(k)}$ | $ x_1^{(k+1)} - x_1^{(k)} $ | $ x_2^{(k+1)} - x_2^{(k)} $ | $ x_3^{(k+1)}-x_3^{(k)} $ |
|---|-------------|---------------|-------------|-----------------------------|-----------------------------|---------------------------|
| 0 | 0           | 0             | 0           | -                           | <del>-</del>                | -                         |
| 1 | 0.333       | 1.667         | 1           | 0.333                       | 1.667                       | 1                         |
| 2 | 1.222       | 1.222         | 1.667       | 0.889                       | 0.555                       | 0.667                     |
| 3 | 1.296       | 0.704         | 1           | 0.074                       | 0.518                       | 0.667                     |
| 4 | 0.901       | 0.901         | 0.704       | 0.395                       | 0.197                       | 0.296                     |
| 5 | 0.868       | 1.132         | 1           | 0.033                       | 0.197                       | 0.296                     |
| 6 | 1.044       | 1.044         | 1.132       | 0.176                       | 0.088                       | 0.132                     |

Fonte: Cálculo Numérico Computacional (Peters & Szeremeta)

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 \\ x_1 + 3x_2 + x_3 = 5 \\ x_1 - x_2 + 2x_3 = 2 \end{cases}$$



| $\int x_1^{(k+1)} = (1 + x_2^{(k)} + x_3^{(k)}) / 3$                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{cases} x_2^{(k+1)} = (5 - x_1^{(k)} - x_3^{(k)}) / 3 \end{cases}$                                                                                             |
| $\begin{cases} x_1^{(k+1)} = (1 + x_2^{(k)} + x_3^{(k)})/3 \\ x_2^{(k+1)} = (5 - x_1^{(k)} - x_3^{(k)})/3 \\ x_3^{(k+1)} = (2 - x_1^{(k)} + x_2^{(k)})/2 \end{cases}$ |

| k | $\mathcal{X}_1^{(k)}$ | $x_{2}^{(k)}$ | $X_3^{(k)}$ | $ x_1^{(k+1)} - x_1^{(k)} $ | $ x_2^{(k+1)} - x_2^{(k)} $ | $ x_3^{(k+1)} - x_3^{(k)} $ |
|---|-----------------------|---------------|-------------|-----------------------------|-----------------------------|-----------------------------|
| 0 | 0                     | 0             | 0           | -                           | ) <del>E</del>              | -                           |
| 1 | 0.333                 | 1.667         | 1           | 0.333                       | 1.667                       | 1                           |
| 2 | 1.222                 | 1.222         | 1.667       | 0.889                       | 0.555                       | 0.667                       |
| 3 | 1.296                 | 0.704         | 1           | 0.074                       | 0.518                       | 0.667                       |
| 4 | 0.901                 | 0.901         | 0.704       | 0.395                       | 0.197                       | 0.296                       |
| 5 | 0.868                 | 1.132         | 1           | 0.033                       | 0.197                       | 0.296                       |
| 6 | 1.044                 | 1.044         | 1.132       | 0.176                       | 0.088                       | 0.132                       |

Fonte: Cálculo Numérico Computacional (Peters & Szeremeta)









$$x_1^{(0)}, \dots, x_n^{(0)}$$













$$x_1^{(1)}, \dots, x_n^{(1)}$$





# Comparação

#### Gauss-Jacobi

#### Gauss-Seidel

```
\begin{vmatrix} x_1^{(1)} &=& \frac{1}{a_{11}} \left[ b_1 - a_{12} x_2^{(0)} - a_{13} x_3^{(0)} - \dots - a_{1n} x_n^{(0)} \right] \\ x_2^{(1)} &=& \frac{1}{a_{22}} \left[ b_2 - a_{21} x_1^{(0)} - a_{23} x_3^{(0)} - \dots - a_{2n} x_n^{(0)} \right] \\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\ x_n^{(1)} &=& \frac{1}{a_{nn}} \left[ b_n - a_{n1} x_1^{(0)} - a_{n2} x_2^{(0)} - \dots - a_{n,n-1} x_{n-1}^{(0)} \right] \end{vmatrix} \begin{vmatrix} x_1^{(1)} &=& \frac{1}{a_{11}} \left[ b_1 - a_{12} x_2^{(0)} - a_{13} x_3^{(0)} - \dots - a_{1n} x_n^{(0)} \right] \\ x_1^{(1)} &=& \frac{1}{a_{11}} \left[ b_1 - a_{12} x_2^{(0)} - a_{13} x_3^{(0)} - \dots - a_{1n} x_n^{(0)} \right] \\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\ x_n^{(1)} &=& \frac{1}{a_{nn}} \left[ b_n - a_{n1} x_1^{(1)} - a_{n2} x_2^{(0)} - \dots - a_{n,n-1} x_{n-1}^{(1)} \right] \end{vmatrix}
```

### Exemplo

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 \\ x_1 + 3x_2 + x_3 = 5 \\ x_1 - x_2 + 2x_3 = 2 \end{cases}$$



$$\begin{cases} 3x_1 - x_2 - x_3 = 1 \\ x_1 + 3x_2 + x_3 = 5 \\ x_1 - x_2 + 2x_3 = 2 \end{cases} \begin{cases} x_1^{(k+1)} = (1 + x_2^{(k)} + x_3^{(k)})/3 \\ x_2^{(k+1)} = (5 - x_1^{(k+1)} - x_3^{(k)})/3 \\ x_3^{(k+1)} = (2 - x_1^{(k+1)} + x_2^{(k+1)})/2 \end{cases}$$

| k | $x_1^{(k)}$ | $x_{2}^{(k)}$ | $X_3^{(k)}$ | $ x_1^{(k+1)} - x_1^{(k)} $ | $ x_2^{(k+1)} - x_2^{(k)} $ | $ x_3^{(k+1)} - x_3^{(k)} $ |
|---|-------------|---------------|-------------|-----------------------------|-----------------------------|-----------------------------|
| 0 | 0           | 0             | 0           |                             | 5 <del>2</del>              | -                           |
| 1 | 0.333       | 1.555         | 1.611       | 0.333                       | 1.555                       | 1.611                       |
| 2 | 1.388       | 0.666         | 0.638       | 1.055                       | 0.888                       | 0.972                       |
| 3 | 0.768       | 1.197         | 1.214       | 0.620                       | 0.531                       | 0.575                       |
| 4 | 1.137       | 0.882         | 0.872       | 0.368                       | 0.314                       | 0.341                       |
| 5 | 0.918       | 1.069         | 1.075       | 0.218                       | 0.186                       | 0.202                       |
| 6 | 1.048       | 0.958         | 0.955       | 0.129                       | 0.110                       | 0.120                       |

Fonte: Cálculo Numérico Computacional (Peters & Szeremeta)

CI1164 - Profs. Armando Delgado e Guilherme Derenievicz

### Exemplo

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 \\ x_1 + 3x_2 + x_3 = 5 \\ x_1 - x_2 + 2x_3 = 2 \end{cases}$$



| $\begin{cases} x_1^{(k+1)} = (1 + x_2^{(k)} + x_3^{(k)})/3 \\ x_2^{(k+1)} = (5 - x_1^{(k+1)} - x_3^{(k)})/3 \\ x_3^{(k+1)} = (2 - x_1^{(k+1)} + x_2^{(k+1)})/2 \end{cases}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{cases} x_2^{(k+1)} = (5 - x_1^{(k+1)} - x_3^{(k)}) / 3 \end{cases}$                                                                                                 |
| $x_3^{(k+1)} = (2 - x_1^{(k+1)} + x_2^{(k+1)}) / 2$                                                                                                                         |

| k | $x_1^{(k)}$ | $x_{2}^{(k)}$ | $x_3^{(k)}$ | $ x_1^{(k+1)}-x_1^{(k)} $ | $ x_2^{(k+1)}-x_2^{(k)} $ | $ x_3^{(k+1)} - x_3^{(k)} $ |
|---|-------------|---------------|-------------|---------------------------|---------------------------|-----------------------------|
| 0 | 0           | 0             | 0           | -                         | S=                        | -                           |
| 1 | 0.333       | 1.555         | 1.611       | 0.333                     | 1.555                     | 1.611                       |
| 2 | 1.388       | 0.666         | 0.638       | 1.055                     | 0.888                     | 0.972                       |
| 3 | 0.768       | 1.197         | 1.214       | 0.620                     | 0.531                     | 0.575                       |
| 4 | 1.137       | 0.882         | 0.872       | 0.368                     | 0.314                     | 0.341                       |
| 5 | 0.918       | 1.069         | 1.075       | 0.218                     | 0.186                     | 0.202                       |
| 6 | 1.048       | 0.958         | 0.955       | 0.129                     | 0.110                     | 0.120                       |

Fonte: Cálculo Numérico Computacional (Peters & Szeremeta)

CI1164 - Profs. Armando Delgado e Guilherme Derenievicz

Se o sistema  $\mathbf{A}\mathbf{x} = \mathbf{b}$  tiver **diagonal dominante**, os métodos Gauss-Jacobi e Gauss-Seidel convergem para a solução do sistema.

$$\alpha_i = \frac{\sum_{j=1, j \neq i}^{n} |a_{ij}|}{|a_{ii}|}$$

$$\alpha = max(\alpha_i) < 1$$

Se o sistema  $\mathbf{A}\mathbf{x} = \mathbf{b}$  tiver **diagonal dominante**, os métodos Gauss-Jacobi e Gauss-Seidel convergem para a solução do sistema.

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 & |3| \ge |-1| + |-1| & V \\ x_1 + 3x_2 + x_3 = 5 & |3| \ge |+1| + |+1| & V \\ x_1 - x_2 + 2x_3 = 2 & |2| \ge |+1| + |-1| & V \end{cases}$$

Para o método de Gauss-Seidel, o critério pode ser relaxado (Critério de Sassenfeld).

$$\beta_{i} = \frac{\sum_{j=1}^{i-1} |a_{ij}| \beta_{j} + \sum_{j=i+1}^{n} |a_{ij}|}{|a_{ii}|}$$

$$\beta = max(\beta_i) < 1$$

Para o método de Gauss-Seidel, o critério pode ser relaxado (Critério de Sassenfeld).

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 & |3| \ge |-1| + |-1| & V \\ x_1 + 3x_2 + x_3 = 5 & |3| \ge |+1| + |+1| & V \\ x_1 - x_2 + 2x_3 = 2 & |2| \ge |+1| + |-1| & V \end{cases}$$
 2/3 = 0,6666 =  $\beta_1$ 

Para o método de Gauss-Seidel, o critério pode ser relaxado (Critério de Sassenfeld).

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 & |3| \ge |-1| + |-1| & V \implies 2/3 = 0,6666 = \beta_1 \\ x_1 + 3x_2 + x_3 = 5 & |3| \ge |+1| + |+1| & V \implies (0,6666+1) \\ x_1 - x_2 + 2x_3 = 2 & |2| \ge |+1| + |-1| & V \end{cases}$$

Para o método de Gauss-Seidel, o critério pode ser relaxado (Critério de Sassenfeld).

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 & |3| \ge |-1| + |-1| & V \\ x_1 + 3x_2 + x_3 = 5 & |3| \ge |+1| + |+1| & V \\ x_1 - x_2 + 2x_3 = 2 & |2| \ge |+1| + |-1| & V \end{cases} \xrightarrow{2/3 = 0,6666 = \beta_1} (0,6666+1)/3 = 0,5555 = \beta_2$$

Para o método de Gauss-Seidel, o critério pode ser relaxado (Critério de Sassenfeld).

$$\begin{cases} 3x_1 - x_2 - x_3 = 1 & |3| \ge |-1| + |-1| & V \\ x_1 + 3x_2 + x_3 = 5 & |3| \ge |+1| + |+1| & V \\ x_1 - x_2 + 2x_3 = 2 & |2| \ge |+1| + |-1| & V \end{cases} \xrightarrow{2/3 = 0.6666 = \beta_1} (0.6666 + 1)/3 = 0.5555 = \beta_2 \\ (0.6666 + 0.5555)/2 = 0.61105 = \beta_3$$

Se os critérios de convergência forem satisfeitos, os métodos Gauss-Jacobi e Gauss-Seidel convergem para a solução do sistema para qualquer  $\mathbf{X}^{(0)}$ .

#### Referências

- Daniel Weingaertner; notas de aula da disciplina **Introdução à Computação** Científica (UFPR/DINF)
- M. Cristina C. Cunha; Métodos Numéricos. Editora Unicamp.
- Márcia A. G. Ruggiero e Vera L. R. Lopes; Cálculo Numérico Aspectos Teóricos e Computacionais. Editora Pearson.
- Claudio H. Asano e Eduardo Colli; **Cálculo Numérico Fundamentos e Aplicações.**Disponível em <a href="https://www.ime.usp.br/~asano/LivroNumerico/LivroNumerico.pdf">https://www.ime.usp.br/~asano/LivroNumerico/LivroNumerico.pdf</a>
- Sérgio Peters e Julio Felipe Szeremeta; **Cálculo Numérico Computacional**. Editora UFSC. Disponível em <a href="http://sergiopeters.prof.ufsc.br/livro-calculo-numerico-computacional/">http://sergiopeters.prof.ufsc.br/livro-calculo-numerico-computacional/</a>

#### Créditos

Este documento é de autoria do Prof. Guilherme Alex Derenievicz (UFPR/DINF), para uso na disciplina Introdução à Computação Científica (CI1164).

Compartilhe este documento de acordo com a licença abaixo



Este documento está licenciado com uma Licença Creative Commons **Atribuição-NãoComercial-SemDerivações** 4.0 Internacional.

https://creativecommons.org/licenses/by-nc-sa/4.0/