WALCHAND COLLEGE OF ENGINEERING, SANGLI

MINI-PROJECT

THIRD YEAR B.TECH. 2018-2019

Department of Computer Science and Engineering

FALL ALERT

(A NOVEL APPROACH TO FALL DETECTION AT NIGHT)

Under the Guidance of:

Prof. K. P. Kamble

Presented by:

Abhinavram Ananth (2016BTECS00103)

Ritik Poshattiwar (2016BTECS00081)

Himanshu Donadkar (2016BTECS00063)

Contents

- 1. Problem Statement
- 2. Why this Problem?
- 3. Problem Scenario
- 4. Objectives
- 5. Literature Survey
- 6. Why YOLO?
- 7. Methodology
- 8. Results
- 9. Possible Bottlenecks
- 10. Future Scope

Problem Statement

 To detect and alert irrecoverable fall of armed forces/security personnel at night

Why we chose this problem?

- Armed forces are at continuous vigil at places of importance
- At night times, activity in the surrounding as well as visibility of the environment is relatively low
- Enemy can strike the personnel in silence and stealth

Problem Scenario

- Army/Security Personnel are guarding a place of high importance
- Its night and dark
- Two Situations of Irrecoverable Fall:
 - Ambush Attack
 - Cardiac Arrest or Similar
- A Secondary Surveillance Camera needed to alert such conditions

Objectives

- To study Objection detection through deep learning.
- To detect irrecoverable fall at night
- To reduce the processing time and be as real-time as possible
- Use Object detection + image processing to solve the given problem

Literature Survey

- Development of Human Fall Detection System using Joint Height, Joint Velocity and Joint Position from Depth Maps
 - Equipment: Kinect v1 sensor with IR sensor stream
 - Accuracy: 96.55%
- Classification of Human Fall from Activities of Daily Life using Joint Measurements
 - Equipment: Kinect with Microsoft SDK v1.7. having IR sensor stream
 - Accuracy: 94.43%
- Human Fall Detection from Depth Images Using Position and Velocity of Subject
 - Equipment: Microsoft Kinect Sensor to compute velocity and position of the subject
 - Accuracy: 93.94%

Why YOLO?

- RCNN / Fast R-CNN:
 - Two-stage Detector
 - 1) Selective Search 2) CNN for classification
 - Extremely slow
 - Not a complete end-to-end object detector
- Faster R-CNN:
 - Remove above bottlenecks
 - Region Proposal Network (RPN)
 - Very Accurate but Very slow
- Yolo: 1) One-stage detector strategy
 - 2) Significantly faster

How YOLO works?

Why YOLO?

Methodology

Results

Input Fall

Fall	No Fall		Total
1245	34		1299
657	14		717
800	15		1167
2702	63		3183
Precision		97.72%	
Recall		84.88%	
F1 Score		90.85%	

Input No Fall

No Fall	Fall		Total	
915	0		915	
1455	0		1456	
1657	0		1669	
4027	0		4040	
Precision	Precision		100%	
Recall		99.67%		
F1 Score		99.83%		

Possible Bottlenecks

- Person Detection
- Orientation of the Camera

Future Scope

- Adapt the Solution for Old Age Homes
- Multithreading
- Improve fall detection accuracy using better image processing techniques.

References

- https://pjreddie.com/darknet/yolo/
- https://www.pyimagesearch.com/2018/11/12/yoloobject-detection-with-opency/

THANK YOU