Groups of Order 2025 Are Not Simple

Dion Mann

August 24, 2025

Let G be a group with $|G| = 2025 = 3^4 \cdot 5^2$. Prove that G is not simple, i.e. has a proper (nontrivial and a proper subset) normal subgroup.

Proof. Assume that $n_5(G) > 1$ (otherwise we are done). Sylow's theorem says $n_5(G)$ divides 3^4 , hence $n_5(G) \in \{1, 3, 9, 27, 81\}$. Since $n_5(G) - 1 \equiv 0 \mod 5$ also, we must have $n_5(G) = 81$. There are now two cases to consider.

• Case 1). All Sylow 5-subgroups intersect trivially.

Here G has $24 \cdot 81 = 1944$ distint elements of order 5 or 25. Since 2025 - 1944 = 81, which is the order of any Sylow 3-subgroup, one has $n_3(G) = 1$ necessarily. Thus G has a normal Sylow 3-subgroup.

• Case 2). There exists distinct $P,Q \in Syl_5(G)$ that do not intersect trivially.

Consider $P \cap Q$. Then $P \cap Q \leq P$, so by Lagrange's theorem, $|P \cap Q| = 5$ (it cannot be 5^2 , for this would imply $P \cap Q = P$ i.e. P = Q). We will show that $P \cap Q$ is normal in G (so G has a normal subgroup of order 5). Equivalently, we show $N_G(P \cap Q) = G$.

To that end, let $H := N_G(P \cap Q)$; we will study the order of H.

First, observe that $|P:P\cap Q|=5$. Since 5 is the smallest prime dividing $|P|=5^2$, it follows that $P\cap Q$ is normal in P. This means that $P\leq H$. By Lagrange's theorem, we have that $|P|=5^2$ divides |H|. Since |H| divides $|G|=3^4\cdot 5^2$, we must have $|H|=3^r\cdot 5^2$ for some $0\leq r\leq 4$. The goal is to show that r=4. To do so, we will apply Sylow's theorems on H now.

Sylow's theorem says that $n_5(H)$ divides 3^r and $n_5(H) - 1 \equiv 0 \mod 5$. If r < 4, then these two imply $n_5(H) = 1$. This is irrelevant to our case, because we've shown that H contains at least 2 Sylow 5-subgroups (namely P and Q). Note that if r = 4, we have either $n_5(H) = 1$ or $n_5(H) = 81$. Again since $n_5(H) \geq 2$, we must have $n_5(H) = 81$.

Therefore r=4 and |H|=2025=|G|, i.e. $N_G(P\cap Q)=G$. This means $P\cap Q$ is a normal subgroup of G of order 5, so G is not simple in this case either.

In any case, we've shown G cannot be simple.