计算智能练习2

运行环境:

```
In []: import numpy as np
import os
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image

np.set_printoptions(edgeitems=2)
```

1.数据

文件夹orl中包含40个人的人脸图像,每个人有10幅图像,共400幅图像。

1.1 数据读取

```
In [ ]: img data path = "./data-ORL/ORL/"
        img names = os.listdir(img data path)
        img names.sort()
        img names.remove("Thumbs.db")
        imgs = [img_data_path + img_name for img_name in img_names]
        #print(imgs)
        img_array_list = []
        for img in imgs:
            im = Image.open(img)
            img_array = np.array(im).flatten()
            img array list.append(img array)
        #print(img array list)
        img_dataset = np.asarray(img_array_list)
        print("样本个数: %d" %len(img_dataset))
        print("样本示例: \n", img_dataset)
        print("数据集大小: ", img_dataset.shape)
        print("随机抽取30张人脸显示: ")
        fig, axes = plt.subplots(3, 10,
                                #figsize=(10,15),
                                subplot kw={'xticks':[], 'yticks':[]})
        for i,ax in enumerate(axes.flat):
            ax.imshow(img dataset[i,:].reshape(112, 92), cmap='gray')
```

样本个数: 400

样本示例:

[[48 49 45 ... 47 46 46] [60 60 62 ... 32 34 34] [39 44 53 ... 29 26 29]

[125 119 124 ... 36 39 40] [119 120 120 ... 89 94 85]

[125 124 124 ... 36 35 34]]

数据集大小: (400, 10304)

随机抽取30张人脸显示:

1.2 数据切分

按照要求将数据集划分为训练集和测试集,实验要求每个人的前5个人脸为训练集,后5 个人脸为测试集。

```
In []: step = 10 #步长,这里由于每个人包含10张图片,因此步长为10
        half step = step//2 #半步长,每个人的10张图片,前半部分为训练集,后半部分为测试集
        train X = img dataset[0 : half step, :]
        test X = img dataset[half step : step, :]
        labels = np.zeros((5,1), dtype=int)
        1 = 1
        for i in range(step, len(img_dataset), step):
           #print("range(%d, %d)" %(i, i+step))
           train X = np.concatenate([train X, img dataset[i : i+half step, :]],
           #print("range(%d, %d)" %(i, i+i+half step))
           test_X = np.concatenate([test_X, img_dataset[i+half_step : i+step, :
           #print("range(%d, %d)" %(i + half_step, i+step))
           #生成测试集标签
           labels = np.concatenate([labels, l*np.ones((5,1), dtype=int)], axis=0
           1 += 1
        print("训练集 train_X 大小: ", train_X.shape)
        print("测试集 test_X 大小: ", test_X.shape)
        print("labels :", labels.shape)
        训练集 train X 大小: (200, 10304)
        测试集 test X 大小: (200, 10304)
        labels : (200, 1)
```

2. 最小距离分类器

2.1 计算特征中心

这里每一维度的量纲相同, 因此无需进行归一化

```
In []:
        mu list = []
        for i in range(0, len(train_X), 5):
            #print("range(%d, %d)" %(i, i+5))
            smaple = train X[i:i+5, :]
            mu i = np.mean(smaple, axis=0)
            mu_list.append(mu_i)
        #各类中心
        mu_centers = np.asarray(mu_list)
        print(mu centers)
        print(mu centers.shape)
        [[ 54.8 56.4 55. ... 36.8 30.6 34.4]
         [ 34.2 35.2 35.6 ... 50.6 51.
                                           51.4]
                                          42.4]
         [102. 103.2 105.2 ... 43.6 42.2
         [106.2 109.4 109. ... 66.6 63.6 62.]
         [ 78.6 80.8 79.4 ... 124.2 121.8 122. ]
         [127. 125. 125.8 ... 67.4 68.8 68.]]
        (40, 10304)
```

2.2 最小距离分类

计算每个样本到各个特征中心的欧氏距离

```
In []: labels_ = np.zeros((200, 1), dtype=int)

for i in range(len(test_X)):

#计算到每一类中心的距离

distances = np.sum((mu_centers - test_X[i,:])**2, axis=1)

#分类到距离最小的类中心
labels_[i] = np.argmin(distances)
```

分类并统计结果

```
In []: result_dict = dict(已知类号=labels.flatten(),识别结果=labels_.flatten()) result_df = pd.DataFrame(result_dict) pd.set_option('display.max_rows', 500) result_df.index.name = '样本编号' result_df.loc[result_df['已知类号'] != result_df['识别结果'], '结果'] = 'erroresult_df.loc[result_df['已知类号'] == result_df['识别结果'], '结果'] = '' result_df
```

Out[]: 已知类号 识别结果 结果

样本编号

11 1 200 3			
0	0	0	
1	0	0	
2	0	0	
3	0	0	
4	0	0	
5	1	1	
6	1	1	
7	1	1	
8	1	1	
9	1	1	
10	2	2	
11	2	2	
12	2	2	
13	2	2	
14	2	2	
15	3	3	
16	3	3	

17	3	3	
18	3	3	
19	3	3	
20	4	4	
21	4	4	
22	4	4	
23	4	4	
24	4	39	error
25	5	5	
26	5	5	
27	5	5	
28	5	5	
29	5	5	
30	6	6	
31	6	6	
32	6	6	
33	6	6	
34	6	6	
35	7	7	
36	7	7	
37	7	7	
38	7	7	
39	7	7	
40	8	8	
41	8	8	
42	8	8	
43	8	8	
44	8	8	
45	9	9	
46	9	9	
47	9	9	
48	9	9	
49	9	3	error
50	10	10	

51	10	10	
52	10	10	
53	10	10	
54	10	10	
55	11	11	
56	11	11	
57	11	11	
58	11	11	
59	11	11	
60	12	17	error
61	12	12	
62	12	12	
63	12	12	
64	12	12	
65	13	27	error
66	13	27	error
67	13	27	error
68	13	10	error
69	13	13	
70	14	14	
71	14	14	
72	14	14	
73	14	14	
74	14	14	
75	15	15	
76	15	15	
77	15	24	error
78	15	15	
79	15	15	
80	16	35	error
81	16	35	error
82	16	35	error
83	16	35	error
84	16	35	error

85	17	17
86	17	17
87	17	17
88	17	17
89	17	17
90	18	18
91	18	18
92	18	18
93	18	10 error
94	18	18
95	19	19
96	19	19
97	19	19
98	19	19
99	19	19
100	20	20
101	20	20
102	20	20
103	20	20
104	20	20
105	21	21
106	21	21
107	21	21
108	21	21
109	21	21
110	22	22
111	22	22
112	22	22
113	22	22
114	22	37 error
115	23	23
116	23	23
117	23	23
118	23	23

119	23	23	
120	24	24	
121	24	24	
122	24	24	
123	24	24	
124	24	24	
125	25	25	
126	25	27	error
127	25	25	
128	25	25	
129	25	25	
130	26	16	error
131	26	10	error
132	26	10	error
133	26	26	
134	26	26	
135	27	27	
136	27	27	
137	27	36	error
138	27	27	
139	27	27	
140	28	28	
141	28	28	
142	28	28	
143	28	28	
144	28	28	
145	29	29	
146	29	29	
147	29	29	
148	29	29	
149	29	29	
150	30	30	
151	30	20	error
152	30	8	error

153	30	20	error
154	30	30	
155	31	31	
156	31	1	error
157	31	31	
158	31	31	
159	31	1	error
160	32	20	error
161	32	32	
162	32	32	
163	32	32	
164	32	32	
165	33	33	
166	33	33	
167	33	33	
168	33	33	
169	33	33	
170	34	34	
171	34	24	error
172	34	34	
173	34	34	
174	34	34	
175	35	23	error
176	35	35	
177	35	35	
178	35	35	
179	35	16	error
180	36	36	
181	36	36	
182	36	36	
183	36	36	
184	36	36	
185	37	37	
186	37	37	

187	37	37	
188	37	37	
189	37	37	
190	38	38	
191	38	38	
192	38	38	
193	38	38	
194	38	38	
195	39	39	
196	39	39	
197	39	39	
198	39	39	
199	39	4 erro	or

```
In []: errorno = np.count_nonzero(labels - labels_)
    print("识别错误率: %f" %(errorno/len(labels)))
```

识别错误率: 0.150000

3. PCA

3.1 算法流程

- 1. 创建所有训练样本组成的矩阵,并计算训练样本的平均值矩阵
- 2. 去除平均值,得到规格化后的训练样本矩阵
- 3. 计算协方差矩阵及其特征值和特征向量,并对特征值排序,保留k个最大的特征值对 应的特征向量
- 4. 获得训练样本的特征脸空间,并计算训练样本在特征脸空间上的投影
- 5. 计算欧式距离, 找出匹配的人量

3.2 实现

```
In [ ]: ####### (1) 数据中心化 #######
        img_mean = np.mean(img_dataset, axis=0)
        img dataset center = img dataset - img mean
        ####### (2) 求协方差矩阵 ######
        cov_mat = np.cov(img_dataset_center, rowvar=0)
        print("协方差矩阵: ", cov_mat.shape)
        print(cov_mat)
        ####### (3) 特征值分解 #######
        #cov mat = cov mat.astype(np.float16)
        eigVals, eigVects = np.linalg.eig(cov mat)
        print("特征值: \n", eigVals)
        print("特征向量: \n", eigVects)
        协方差矩阵: (10304, 10304)
        [[1283.65031955 1271.88059524 ... -112.43522556 -58.93531955]
        [1271.88059524 1276.58044486 ... -110.82660401 -58.63296366]
        [-112.43522556 -110.82660401 \dots 1978.60328321 1841.77765664]
        特征值:
        [2.82391006e+06+0.00000000e+00j 2.06973946e+06+0.00000000e+00j ...
        3.56479873e-14+2.79997997e-14j 3.56479873e-14-2.79997997e-14j
        特征向量:
        [[-2.12507923e-03+0.00000000e+00j 1.46851506e-02+0.00000000e+00j ...
          1.77985538e-04+2.82110395e-04j 1.77985538e-04-2.82110395e-04j
        [-2.11276614e-03+0.00000000e+00j 1.46139383e-02+0.00000000e+00j ...
          1.73740520e-05+4.22082625e-05 1.73740520e-05-4.22082625e-05
        [-6.39096175e-03+0.00000000e+00j-9.70069545e-03+0.00000000e+00j...
         -5.48286160e-03-7.26738461e-03j -5.48286160e-03+7.26738461e-03j]
        [-7.34479428e-03+0.00000000e+00j -8.81892481e-03+0.00000000e+00j ...
         -3.40522445e-03-2.32162539e-04j -3.40522445e-03+2.32162539e-04j]
In [ ]: | ####### (4) 特征值排序 ######
        #选取前1000个特征值
        top = 1000
        ranked eigval indice = np.argsort(eigVals)
        topk_eigval_idx = ranked_eigval_indice[-1:-(top+1):-1]
        topk eigvecs = eigVects[:, topk eigval idx]
        print(topk_eigvecs.shape)
        ####### (5) 降维 ######
        img dataset reduced = np.matmul(img dataset center, topk eigvecs)
        print("降维之后的数据:")
        print(img_dataset_reduced.shape)
        print(img_dataset_reduced)
```

```
(10304, 1000)
降维之后的数据:
(400, 1000)
[[ 1.53117605e+03+0.00000000e+00j 1.07218127e+03+0.00000000e+00j ...
-1.95399252e-14-7.16093851e-15j -3.04201109e-14-4.06341627e-14j]
[ 2.97589645e+03+0.00000000e+00j 7.59883085e+02+0.00000000e+00j ...
5.82867088e-15+9.76996262e-15j -6.26165786e-14-1.86517468e-14j]
...
[ 1.40061766e+03+0.00000000e+00j 1.27641047e+03+0.00000000e+00j ...
-4.20774526e-14-3.10862447e-15j 3.55271368e-15+1.77635684e-15j]
[ 5.34834654e+02+0.000000000e+00j 4.76892070e+02+0.000000000e+00j ...
-5.32907052e-15-4.01900735e-14j 6.56141808e-14-5.50670620e-14j]]
```

3.3 可解释性方差及人脸图像重构

下图表示可解释性方差

从图中可以看出,1个维度的特征保留了20%的原始数据的信息,而20个维度的的特征就几乎保留了80%原始数据的信息,100个维度的特征几乎保留了原始数据100%的信息。

下面展示使用降维到不同维度(1000, 100, 20, 10)后的数据重构原始的人脸数据的 直观结果。

```
In []: dim list = [1000, 100, 20, 10]
       display_list = []
       [display list.append(img dataset[i, :].reshape(112, 92)) for i in range(1
       for d in dim list:
          n_eigvals_idx = ranked_eigval_indice[-1:-(d+1):-1]
          n_eigvecs = eigVects[:, n_eigvals_idx]
          #数据降维
          low dim data = np.matmul(img dataset center, n eigvecs)
          #利用低纬度数据重构数据
          reverse_data = np.matmul(low_dim_data, n_eigvecs.T) + img_mean
          [display list.append(reverse data[i, :].reshape(112, 92)) for i in ra
       fig, axes = plt.subplots(5, 10,
                          figsize=(20,15),
                          subplot_kw={'xticks':[], 'yticks':[]},
                          sharey=True)
       for i,ax in enumerate(axes.flat):
          ax.imshow(np.abs(display_list[i]), cmap='gray')
       print("一共5行数据, 第1, 2, 3, 4, 5行分别代表原始数据, 降低到1000, 100, 20, 10维之原
       一共5行数据, 第1, 2, 3, 4, 5行分别代表原始数据, 降低到1000, 100, 20, 10维之后的数据
```

4. Eigenface + Fisherface (PCA + LDA)

4.1 应用Eigenface的方法得到N - C个Eigenfaces

N为训练样本个数,C为类数

```
In []: N = len(train_X)
C = 40

# EVN-C^Eigenfaces
nc_eigvals_idx = ranked_eigval_indice[-1:-(N-C+1):-1]
eigenfaces = eigVects[:, nc_eigvals_idx]

print("Eigenface", eigenfaces.shape)

200
Eigenface (10304, 160)
```

4.2 将模式投影到Eigenface

将训练样本投影到特征脸空间,得到投影特征

```
In [ ]: train_X_prj = np.abs(np.dot(train_X, eigenfaces))
       test_X_prj = np.abs(np.dot(test_X, eigenfaces))
       print("训练样本投影特征\n", train_X_prj, "\nshape", train_X_prj.shape)
       print("测试样本投影特征\n", test_X_prj, "\nshape", test_X_prj.shape)
       训练样本投影特征
        [[ 9355.17 7908.76 ...
                                70.37
                                        17.45]
        [10799.89 7596.46 ...
                               126.
                                        73.61]
        [ 8438.14 6815. ... 261.57
                                        21.37]
        [ 9027.73 8407.22 ... 53.64
                                       56.56]]
       shape (200, 160)
       测试样本投影特征
        [[10354.3 7965.89 ... 196.27
                                        63.51]
        [10210.9 7588.08 ... 57.76
                                       162.46]
        . . .
        [ 9224.61 8112.99 ... 99.08 177.04]
        [ 8358.83 7313.47 ...
                               61.98
                                       89.96]]
       shape (200, 160)
```

4.3 FisherFace

- 1. 计算每类样本中心和总体样本中心
- 2. 计算类内散度Sw和类间散度Sb

```
In [ ]: m, n = train X prj.shape
        total_mu = np.mean(train_X_prj, axis=0)
        #计算Sw,Sb
        Sw = np.zeros((n, n))
        Sb = np.zeros((n, n))
        for i in range(0, m, m//C):
            # 取出每一类的样本
            sub_sample = train_X prj[i:i+5,:]
            # 计算sw
            nor sub sample = sub sample - np.mean(sub sample, axis=0)
            Sw += np.dot(nor_sub_sample.T, nor_sub_sample)
            # 计算Sb
            normu_sub_sample = sub_sample - total_mu
            Sb += m//C* np.dot(normu sub sample.T, normu sub sample)
        print("类内散度Sw: \n", Sw, "\nShape", Sw.shape)
        print("类间散度Sb: \n", Sb, "\nShape", Sb.shape)
```

类内散度Sw:

```
[[ 4.35e+07 3.97e+06 ... -3.48e+04 4.53e+05]
[ 3.97e+06 4.45e+07 ... -2.70e+05 -2.91e+05]
...
[-3.48e+04 -2.70e+05 ... 8.35e+05 -9.46e+01]
[ 4.53e+05 -2.91e+05 ... -9.46e+01 6.49e+05]]
Shape (160, 160)
类间散度Sb:
[[ 3.02e+09 -1.05e+08 ... 8.23e+06 2.24e+07]
[-1.05e+08 2.01e+09 ... -1.11e+07 -1.26e+07]
...
[ 8.23e+06 -1.11e+07 ... 5.15e+06 2.75e+05]
[ 2.24e+07 -1.26e+07 ... 2.75e+05 4.35e+06]]
Shape (160, 160)
```

应用fisher鉴别准则,得到C-1个鉴别方向,并将特征脸空间中的样本投影到鉴别向量上得到鉴别特征

```
In []: #计算变换矩阵并进行特征值分解
eignvals, eignvecs = np.linalg.eig(np.mat(np.linalg.inv(Sw)*Sb))
ranked_eignvals = np.argsort(eignvals)

#选取C-1个最大的特征值
top_eignval_idx = ranked_eignvals[-1:-C:-1]
#print(eignvecs.shape)
top_eignvecs = eignvecs[:, top_eignval_idx]
#print(top_eignvecs.shape)

#将测试样本投影到鉴别向量
train_X_prjprj = np.dot(train_X_prj, top_eignvecs)
#print(train_X_prjprj.shape)
test_X_prjprj = np.dot(test_X_prj, top_eignvecs)
#print(test X prjprj.shape)
```

利用将别特征做最小距离分类器

```
In []: #分类标签
labels_ = np.zeros((m,1), dtype=int)

#最小距离分类
for i in range(m):
    test_sample = test_X_prjprj[i, :]
    distances = np.sum(((train_X_prjprj - test_sample).A)**2, axis=1)
    #distances = np.sum((mu_centers - test_X[i,:])**2, axis=1)
    sorted_distances = np.argsort(distances)
    labels_[i] = (sorted_distances[0]//5)
```

显示分类结果

```
In []: result_dict2 = dict(已知类号=labels.flatten(),识别结果=labels_.flatten()) result_df2 = pd.DataFrame(result_dict2) pd.set_option('display.max_rows', 500) result_df2.index.name = '样本编号' result_df2.loc[result_df2['已知类号'] != result_df2['识别结果'], '结果'] = 'result_df2.loc[result_df2['已知类号'] == result_df2['识别结果'], '结果'] = 'result_df2
```

Out[]: 已知类号 识别结果 结果

样本编号

11 1 7/15 3			
0	0	17	error
1	0	0	
2	0	12	error
3	0	0	
4	0	11	error
5	1	1	
6	1	1	
7	1	1	
8	1	1	
9	1	1	
10	2	2	
11	2	2	
12	2	2	
13	2	2	
14	2	2	
15	3	3	
16	3	3	

17	3	3	
18	3	3	
19	3	3	
20	4	4	
21	4	4	
22	4	4	
23	4	4	
24	4	17	error
25	5	5	
26	5	5	
27	5	5	
28	5	5	
29	5	5	
30	6	6	
31	6	6	
32	6	6	
33	6	6	
34	6	6	
35	7	7	
36	7	7	
37	7	7	
38	7	7	
39	7	7	
40	8	8	
41	8	37	error
42	8	8	
43	8	8	
44	8	8	
45	9	9	
46	9	9	
47	9	9	
48	9	9	
49	9	3	error
50	10	10	

51	10	10	
52	10	14	error
53	10	10	
54	10	10	
55	11	11	
56	11	11	
57	11	11	
58	11	11	
59	11	11	
60	12	12	
61	12	12	
62	12	12	
63	12	12	
64	12	12	
65	13	36	error
66	13	27	error
67	13	27	error
68	13	15	error
69	13	27	error
70	14	14	
71	14	14	
72	14	14	
73	14	14	
74	14	14	
75	15	1	error
76	15	4	error
77	15	4	error
78	15	39	error
79	15	15	
80	16	35	error
81	16	35	error
82	16	16	
83	16	16	
84	16	35	error

85	17	17	
86	17	17	
87	17	17	
88	17	17	
89	17	17	
90	18	18	
91	18	18	
92	18	18	
93	18	10 er	ror
94	18	18	
95	19	19	
96	19	19	
97	19	37 er	ror
98	19	37 er	ror
99	19	19	
100	20	20	
101	20	20	
102	20	20	
103	20	20	
104	20	20	
105	21	21	
106	21	21	
107	21	21	
108	21	21	
109	21	21	
110	22	22	
111	22	22	
112	22	22	
113	22	37 er	ror
114	22	22	
115	23	23	
116	23	23	
117	23	23	
118	23	23	

119	23	23
120	24	24
121	24	24
122	24	24
123	24	24
124	24	24
125	25	25
126	25	12 error
127	25	25
128	25	25
129	25	25
130	26	16 error
131	26	16 error
132	26	15 error
133	26	26
134	26	26
135	27	27
136	27	27
137	27	36 error
138	27	27
139	27	27
140	28	28
141	28	28
142	28	28
143	28	28
144	28	28
145	29	29
146	29	29
147	29	29
148	29	29
149	29	29
150	30	30
151	30	20 error
152	30	30

153	30	30	
154	30	30	
155	31	31	
156	31	1	error
157	31	31	
158	31	31	
159	31	1	error
160	32	20	error
161	32	32	
162	32	32	
163	32	32	
164	32	32	
165	33	33	
166	33	33	
167	33	33	
168	33	33	
169	33	33	
170	34	34	
171	34	24	error
172	34	34	
173	34	34	
174	34	39	error
175	35	15	error
176	35	23	error
177	35	35	
178	35	35	
179	35	15	error
180	36	36	
181	36	36	
182	36	36	
183	36	36	
184	36	36	
185	37	37	
186	37	37	

187	37	37
188	37	37
189	37	37
190	38	38
191	38	32 error
192	38	20 error
193	38	38
194	38	28 error
195	39	4 error
196	39	39
197	39	39
198	39	39
199	39	39

```
In []: print("分类错误率: %f" %(np.count_nonzero(labels_ - labels)/m))
```

分类错误率: 0.205000

4. An efficient algorithm for Fisher criterion

```
In []:
        m, n = train_X.shape
        total_mu = np.mean(train_X, axis=0)
        #计算Sw,Sb
        Sw = np.zeros((n, n))
        Sb = np.zeros((n, n))
        for i in range(0, m, m//C):
            # 取出每一类的样本
            sub_sample = train_X[i:i+5,:]
            # 计算sw
            nor_sub_sample = sub_sample - np.mean(sub_sample, axis=0)
            Sw += np.dot(nor_sub_sample.T, nor_sub_sample)
            normu_sub_sample = sub_sample - total_mu
            Sb += m//C* np.dot(normu sub sample.T, normu sub sample)
        print("类内散度Sw: \n", Sw, "\nShape", Sw.shape)
        print("类间散度Sb: \n", Sb, "\nShape", Sb.shape)
```

```
类内散度Sw:
         [[25607.2 25427.6 ... 8627. 9128.8]
         [25427.6 28204.4 ... 8406.6 8607.4]
         [ 8627.
                  8406.6 ... 65225.2 54032.8]
         [ 9128.8 8607.4 ... 54032.8 72297.2]]
        Shape (10304, 10304)
        类间散度Sb:
         [[1241179.9 1228949.7 ... -151239.8
                                              -54572.051
         [1228949.7 1236349.1 ... -140424.4
                                              -50501.15]
         [-151239.8 -140424.4 \dots 1989179.6 1782404.1]
         [ -54572.05 -50501.15 ... 1782404.1 1783972.97]]
        Shape (10304, 10304)
In []: #计算变换矩阵并进行特征值分解
        eignvals, eignvecs = np.linalg.eig(np.mat(np.linalg.inv(Sw)*Sb))
        ranked_eignvals = np.argsort(eignvals)
In []: #选取C-1个最大的特征值
        top eignval idx = ranked eignvals[-1:-N:-1]
        #print(eignvecs.shape)
        top eignvecs = eignvecs[:, top eignval idx]
        #print(top eignvecs.shape)
        #将测试样本投影到鉴别向量
        train_X_prj = np.dot(train_X, top_eignvecs)
        #print(train X prj.shape)
        test_X_prj = np.dot(test_X, top_eignvecs)
        #print(test X prj.shape)
        #分类标签
        labels_ = np.zeros((m,1), dtype=int)
        #最小距离分类
        for i in range(m):
            test_sample = test_X_prj[i, :]
            distances = np.sum(((train_X_prj - test_sample).A)**2, axis=1)
            #distances = np.sum((mu centers - test X[i,:])**2, axis=1)
            sorted distances = np.argsort(distances)
            labels_[i] = (sorted_distances[0]//5)
In []: result dict3 = dict(已知类号=labels.flatten(),识别结果=labels.flatten())
        result df3 = pd.DataFrame(result dict3)
        pd.set_option('display.max_rows', 500)
        result df3.index.name = '样本编号'
        result_df3.loc[result_df3['已知类号'] != result_df3['识别结果'], '结果'] = '@
        result df3.loc[result df3['已知类号'] == result df3['识别结果'], '结果'] =
        result df3
Out[]:
               已知类号 识别结果 结果
        样本编号
```

0

26 error

15 error

0

2	0	15	error
3	0	15	error
4	0	17	error
5	1	11	error
6	1	26	error
7	1	26	error
8	1	10	error
9	1	11	error
10	2	36	error
11	2	39	error
12	2	39	error
13	2	21	error
14	2	26	error
15	3	39	error
16	3	3	
17	3	39	error
18	3	21	error
19	3	21	error
20	4	18	error
21	4	15	error
22	4	39	error
23	4	11	error
24	4	39	error
25	5	5	
26	5	35	error
27	5	5	
28	5	5	
29	5	23	error
30	6	38	error
31	6	38	error
32	6	23	error
33	6	15	error
34	6	26	error
35	7	39	error

36	7	11	error
37	7	39	error
38	7	39	error
39	7	21	error
40	8	35	error
41	8	22	error
42	8	22	error
43	8	8	
44	8	35	error
45	9	38	error
46	9	14	error
47	9	39	error
48	9	28	error
49	9	21	error
50	10	23	error
51	10	7	error
52	10	23	error
53	10	34	error
54	10	15	error
55	11	38	error
56	11	32	error
57	11	21	error
58	11	15	error
59	11	32	error
60	12	15	error
61	12	15	error
62	12	12	
63	12	15	error
64	12	15	error
65	13	26	error
66	13	25	error
67	13	12	error
68	13	26	error
69	13	12	error

70	14	11	error
71	14	35	error
72	14	21	error
73	14	39	error
74	14	35	error
75	15	12	error
76	15	35	error
77	15	12	error
78	15	12	error
79	15	39	error
80	16	39	error
81	16	39	error
82	16	26	error
83	16	25	error
84	16	25	error
85	17	33	error
86	17	26	error
87	17	35	error
88	17	21	error
89	17	39	error
90	18	12	error
91	18	12	error
92	18	12	error
93	18	26	error
94	18	12	error
95	19	21	error
96	19	35	error
97	19	5	error
98	19	39	error
99	19	19	
100	20	39	error
101	20	39	error
102	20	3	error
103	20	36	error

104	20	3	error
105	21	3	error
106	21	11	error
107	21	11	error
108	21	3	error
109	21	25	error
110	22	35	error
111	22	35	error
112	22	39	error
113	22	39	error
114	22	39	error
115	23	39	error
116	23	39	error
117	23	39	error
118	23	25	error
119	23	25	error
120	24	11	error
121	24	39	error
122	24	25	error
123	24	11	error
124	24	11	error
125	25	34	error
126	25	26	error
127	25	15	error
128	25	34	error
129	25	26	error
130	26	26	
131	26	11	error
132	26	6	error
133	26	12	error
134	26	11	error
135	27	15	error
136	27	26	error
137	27	15	error

138	27	26	error
139	27	15	error
140	28	21	error
141	28	35	error
142	28	35	error
143	28	28	
144	28	35	error
145	29	3	error
146	29	11	error
147	29	11	error
148	29	35	error
149	29	28	error
150	30	25	error
151	30	10	error
152	30	38	error
153	30	3	error
154	30	12	error
155	31	12	error
156	31	15	error
157	31	34	error
158	31	24	error
159	31	12	error
160	32	25	error
161	32	39	error
162	32	28	error
163	32	25	error
164	32	39	error
165	33	17	error
166	33	15	error
167	33	39	error
168	33	11	error
169	33	11	error
170	34	39	error
171	34	26	error

172	34	39	error
173	34	26	error
174	34	11	error
175	35	39	error
176	35	39	error
177	35	38	error
178	35	38	error
179	35	39	error
180	36	35	error
181	36	15	error
182	36	15	error
183	36	15	error
184	36	38	error
185	37	35	error
186	37	35	error
187	37	39	error
188	37	39	error
189	37	35	error
190	38	6	error
191	38	35	error
192	38	35	error
193	38	35	error
194	38	6	error
195	39	7	error
196	39	15	error
197	39	23	error
198	39	15	error
199	39	29	error