JUSTIFICACIÓN DEL USO DE REDES NEURONALES COMO CLASIFICADOR

MEDRANO CALLISAYA IVAR PEDRO ARIAS APAZA JHON HENDRICK

Capacidad para manejar datos no lineales

Las redes neuronales son útiles para identificar patrones no lineales en los datos. Características como los filtros fotométricos (u,g,r,i,z) o el redshift pueden interactuar de formas complejas que no son fácilmente captadas por modelos lineales.

https://doi.org/10.1093/mnras/staa2587

Clasificación multiclase

Dado que el problema es de clasificación multiclase (galaxy,star,quasar) las redes neuronales son una opción robusta. Su arquitectura permite modelar distribuciones de probabilidad complejas necesarias para asignar instancias a una de varias categorías.

https://doi.org/10.1093/mnras/stac3336

Rendimiento demostrado en tareas astronómicas

En astronomía, las redes neuronales se han utilizado exitosamente para tareas como clasificación de objetos celestes y predicción de propiedades físicas. Elegir este enfoque está respaldado por investigaciones previas en el campo.

https://doi.org/10.1016/S0893-6080(03)00028-5

Capacidad para detectar interacciones complejas

El redshift en combinación con las bandas fotométricas (u,g,r,i,z) podría indicar la naturaleza del objeto (galaxia o quásar). Una red neuronal puede modelar estas interacciones sin necesidad de pre definirlas manualmente.

https://doi.org/10.1007/BF00666212

Generalización a nuevas observaciones

El diseño de las redes neuronales facilita la generalización, lo que significa que se puede clasificar correctamente nuevos datos del SDSS que no hayan pasado por el entrenamiento.

https://doi.org/10.48550/arXiv.1802.08760

Escalabilidad con datos grandes

La arquitectura de redes neuronales se adapta bien a conjuntos de datos grandes, como los que típicamente se encuentran en astronomía. Esto las hace idóneas para trabajar con datos de observaciones masivas.

https://doi.org/10.1016/j.neucom.2016.12.022

Modelo escalable para predicciones futuras

Si el dataset se amplía o se obtienen más datos, el modelo basado en redes neuronales puede ajustarse fácilmente para incorporar nuevas características o clases sin necesidad de rehacer la lógica de clasificación.

https://doi.org/10.1093/mnras/staa350