

Faculté des Sciences Exactes

2019/2020

Département de Mathématiques /M.I

Master 1 (PSA)

Corrigé de la série de TD N 1 de MBCS

Exercise 1. 1. Soit $\Omega = \{1, 2, \dots, 6\}$ et $\mathcal{A} = \{\{1, 3, 5\}, \{2, 4, 6\}\}, \mathcal{B} = \{\{2, 4, 6\}, \{2, 3, 4\}\}.$

$$\sigma(\mathcal{A}) = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}. \ (card(\mathcal{A}) = 4 = 2^2.)$$

$$\sigma(\mathcal{B}) = \{\emptyset, \{2\}, \{5\}, \{2,4\}, \{3,6\}, \{1,5\}, \{2,4,6\}, \{2,3,4\}, \{1,3,5\}, \{1,5,6\}, \{2,3,4,6\}, \{1,3,5,6\}, \{2,4,6$$

$$\{1, 2, 4, 5\}, \{1, 2, 4, 5, 6\}, \{1, 2, 3, 4, 5\}, \Omega\}$$
 $(card(\sigma(\mathcal{B})) = 16 = 2^4).$

N.B: Si Ω est fini, le cardinal d'une tribu sur Ω est toujours égal à 2^m avec $m \in \mathbb{N}^*$.

2. Soit $\mathcal{F}_1, \mathcal{F}_2$ deux tribus sur Ω .

Montrons que $\mathcal{F}_1 \cap \mathcal{F}_2$ est une tribu sur Ω :

Il suffit de vérifier les trois conditions de la définition d'une tribu.

i)
$$\emptyset \in \mathcal{F}_1 \cap \mathcal{F}_2$$
 (car $\emptyset \in \mathcal{F}_1$ et $\emptyset \in \mathcal{F}_2$)

ii)
$$\forall A \in \mathcal{F}_1 \cap \mathcal{F}_2, A^c \in \mathcal{F}_1 \cap \mathcal{F}_2 \text{ (car } A^c \in \mathcal{F}_1 \text{ et } A^c \in \mathcal{F}_2).$$

iii) Soit
$$(\mathbf{A_n})_{n\geq 1} \in \mathcal{F}_1 \cap \mathcal{F}_2 \Longrightarrow \bigcup_{n\geq 1} \mathbf{A_n} \in \mathcal{F}_1 \text{ et } \bigcup_{n\geq 1} \mathbf{A_n} \in \mathcal{F}_2 \text{ (car } \mathcal{F}_1 \text{ et } \mathcal{F}_2 \text{ sont des tribus)}.$$

Donc
$$\bigcup_{n\geq 1} \mathbf{A_n} \in \mathcal{F}_1 \cap \mathcal{F}_2$$
.

Les conditions d'une tribu étant vérifiées, donc $\mathcal{F}_1 \cap \mathcal{F}_2$ est une tribu sur Ω .

• Montrons qu'en général $\mathcal{F}_1 \cup \mathcal{F}_2$ n'est pas une tribu:

Contre exemple

Soit $\Omega = \{1, 2, ..., 6\}$ et $\mathcal{F}_1 = \{\emptyset, \{1\}, \{2, 3, 4, 5, 6\}, \Omega\}$, $\mathcal{F}_2 = \{\emptyset, \{2\}, \{1, 3, 4, 5, 6\}, \Omega\}$ deux tribus sur Ω . Alors

 $\mathcal{F}_1 \cup \mathcal{F}_2 = \{\emptyset, \{1\}, \{2\}, \{1, 3, 4, 5, 6\}, \{2, 3, 4, 5, 6\}, \Omega\}$ n'est pas une tribu sur Ω car $\{1\} \cup \{2\} = \{1, 2\} \notin \mathcal{F}_1 \cup \mathcal{F}_2$.

Exercice 2. 1. Soit Ω un ensemble muni d'une tribu \mathcal{F} et $\mathbf{E} \subset \Omega$.

Montrons que

 $\mathcal{F}_{\mathbf{E}} = \{A \cap \mathbf{E}, A \in \mathcal{F}\}$ est une tribu sur \mathbf{E} (tribu trace de \mathcal{F} sur \mathbf{E}).

$$\mathcal{F}_{\mathbf{E}} = \mathcal{F} \cap \mathbf{E}$$

i)
$$\emptyset = \emptyset \cap \mathbf{E} \in \mathcal{F}_{\mathbf{E}}$$
.

ii) Soit
$$A \in \mathcal{F}_{\mathbf{E}} \Longrightarrow \exists B \in \mathcal{F} : A = B \cap \mathbf{E}$$

$$C_{\mathbf{E}}A = C_{\mathbf{E}}(B \cap \mathbf{E}) = C_{\mathbf{E}}B \cap \mathbf{E} \in \mathcal{F}_{\mathbf{E}} \text{ car } C_{\mathbf{E}}B \in \mathcal{F}.$$

iii) Soit
$$(A_n)_{n\geq 1}\in \mathcal{F}_{\mathbf{E}}$$
 et $(B_n)_{n\geq 1}$ tel que $A_n=B_n\cap \mathbf{E}$. Alors

$$\bigcup A_n = \bigcup (B_n \cap \mathbf{E}) = \bigcup (B_n) \cap \mathbf{E} \in \mathcal{F}_{\mathbf{E}} \text{ car } \bigcup (B_n) \in \mathcal{F}.$$

Les conditions de la définition d'une tribu étant vérifiées, donc $\mathcal{F}_{\mathbf{E}}$ est une tribu sur \mathbf{E} .

2. Soit $f: \mathbb{F} \to \mathbb{G}$ une application et \mathcal{T} est une tribu sur \mathbb{G} .

Montrons que $\mathcal{T}' = f^{-1}(\mathcal{T})$ est une tribu sur \mathbb{F}

On a
$$\mathcal{T}' = \{ f^{-1}(A), A \in \mathcal{T} \}$$

i) On a $\emptyset = f^{-1}(\emptyset) \in \mathcal{T}' \text{ car } \emptyset \in \mathcal{T}.$

- ii) Soit $B \in \mathcal{T}' \Longrightarrow B = f^{-1}(A)$ avec $A \in \mathcal{T}$ alors $C_{\mathbb{F}}B = C_{\mathbb{F}}(f^{-1}(A)) = f^{-1}(C_{\mathbb{G}}A) \in \mathcal{T}'$ car $C_{\mathbb{G}}A \in \mathcal{T}$.
- iii) Soit $(B_n) \in \mathcal{T}' \Longrightarrow B_n = f^{-1}(A_n)$ avec $A_n \in \mathcal{T}$ alors $\bigcup B_n = \bigcup f^{-1}(A_n) = f^{-1}(\bigcup A_n) \in \mathcal{T}'$ car $\bigcup A_n \in \mathcal{T}$.

D'où \mathcal{T}' est une tribu sur \mathbb{F} .

Exercice 3. Soit $g: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction borélienne et $X: (\Omega, \mathcal{F}) \longrightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R})$ une variable aléatoire.

Montrons que g(X) est une variable aléatoire.

On a
$$g(X) = g \circ X : \Omega \longrightarrow \mathbb{R}$$
.

Soit
$$B \in \mathcal{B}(\mathbb{R}) \Longrightarrow (g \circ X)^{-1}(B) = X^{-1}(g^{-1}(B)) \in \mathcal{F} \text{ car } g^{-1}(B) \in \mathbb{R}.$$

donc $(g(X))^{-1}(B) \in \mathcal{F}$. d'où g(X) est une variable aléatoire.

Exercice 4. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, \mathcal{G} une sous tribu de \mathcal{F} . On considère deux variables aléatoires X et Y telles que: X - Y est indépendante de \mathcal{G} d'espérance mathématique m et de variance σ^2 et Y est \mathcal{G} -mesurable.

1. $\mathbb{E}(X - Y | \mathcal{G}) = \mathbb{E}(X - Y) = m \operatorname{car} X - Y \text{ est indépendante de } \mathcal{G}.$

On en déduit que

$$\mathbb{E}(X|\mathcal{G}) = m + \mathbb{E}(Y|\mathcal{G})$$

$$= m + Y \text{ car } Y \text{ est } \mathcal{G}\text{-mesurable}$$

2. $\mathbb{E}[(X-Y)^2|\mathcal{G}) = \mathbb{E}[(X-Y)^2] = \sigma^2 + m^2$ car X-Y est indépendante de \mathcal{G} , il en est de même pour $(X-Y)^2$. Or $\mathbb{E}[(X-Y)^2|\mathcal{G}) = \mathbb{E}(X^2|\mathcal{G}) + Y^2 - 2Y$ $\mathbb{E}(X|\mathcal{G})$. D'où on en déduit que

$$\mathbb{E}(X^{2}|\mathcal{G}) = \sigma^{2} + m^{2} - Y^{2} + 2Y(m+Y)$$

$$= \sigma^{2} + m^{2} + Y^{2} + 2Ym$$

$$= \sigma^{2} + (Y+m)^{2}$$

Exercice 5. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité, $\mathcal{F}_1 \subset \mathcal{F}_2$ des sous tribus de \mathcal{F} et X une variable aléatoire.

1. Montrons que: $\mathbb{E}([X - \mathbb{E}(X|\mathcal{F}_2)]^2) + \mathbb{E}([\mathbb{E}(X|\mathcal{F}_2) - \mathbb{E}(X|\mathcal{F}_1)]^2) = \mathbb{E}([X - \mathbb{E}(X|\mathcal{F}_1)]^2)$ On pose $X_1 = \mathbb{E}(X|\mathcal{F}_1), \ X_2 = \mathbb{E}(X|\mathcal{F}_2)$

En utilisant la propriété (g) de l'espérance conditionnelle et le théorème de l'espérance totale (revoir le cours):

On a
$$X_1 = \mathbb{E}(X_2|\mathcal{F}_1)$$
 et $\mathbb{E}(XX_1) = \mathbb{E}(\mathbb{E}(XX_1|\mathcal{F}_1)) = \mathbb{E}(X_1\mathbb{E}(X|\mathcal{F}_1)) = \mathbb{E}(X_1^2)$

par conséquent

$$\mathbb{E}[(X - X_1)^2] = \mathbb{E}(X^2) - 2\mathbb{E}(X_1 X) + \mathbb{E}(X_1^2) = \mathbb{E}(X^2) - \mathbb{E}(X_1^2).$$

De la même manière on trouve

$$\mathbb{E}(XX_2) = \mathbb{E}(X_2^2)$$
 et $\mathbb{E}(X_1X_2) = \mathbb{E}(X_1^2)$

$$\mathbb{E}[(X - X_2)^2] = \mathbb{E}(X^2) - \mathbb{E}(X_2^2)$$
 et $\mathbb{E}[(X_1 - X_2)^2] = \mathbb{E}(X_2^2) - \mathbb{E}(X_1^2)$. D'où $\mathbb{E}[(X - X_2)^2] + \mathbb{E}[(X_1 - X_2)^2] = \mathbb{E}[(X - X_1)^2]$.

2. Montrons que $Var(X) = \mathbb{E}(Var(X|\mathcal{F}_1)) + Var(\mathbb{E}(X|\mathcal{F}_1)).$

On a $Var(X|\mathcal{F}_1) = \mathbb{E}(X^2|\mathcal{F}_1) - (\mathbb{E}(X|\mathcal{F}_1))^2$. Alors en appliquant l'espérance mathématique au deux membres on aura

$$\mathbb{E}(Var(X|\mathcal{F}_1)) = \mathbb{E}[\mathbb{E}(X^2|\mathcal{F}_1)] - \mathbb{E}[(\mathbb{E}(X|\mathcal{F}_1))^2]$$

$$= \mathbb{E}(X^2) - (Var(\mathbb{E}(X|\mathcal{F}_1))) + \mathbb{E}^2[(\mathbb{E}(X|\mathcal{F}_1))]$$

$$= \mathbb{E}(X^2) - Var(\mathbb{E}(X|\mathcal{F}_1)) - \mathbb{E}^2(X)$$

$$= Var(X) - Var(\mathbb{E}(X|\mathcal{F}_1)).$$

D'où $Var(X) = \mathbb{E}(Var(X|\mathcal{F}_1)) + Var(\mathbb{E}(X|\mathcal{F}_1)).$

Exercise 6. 1. $X \rightsquigarrow \mathcal{N}(0, \sigma^2)$.

Calculons $\mathbb{E}(X^3)$, $\mathbb{E}(X^4)$, $\mathbb{E}(|X|)$, $\mathbb{E}(|X^3|)$ et $\mathbb{E}(e^X)$.

•
$$\mathbb{E}(X^3) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^3 e^{-\frac{x^2}{2\sigma^2}} dx$$

On pose $f(x) = x^3 e^{-\frac{x^2}{2\sigma^2}}$

$$\mathbb{E}(X^3) = \frac{1}{\sigma\sqrt{2\pi}} \left[\int_{-\infty}^0 f(x)dx + \int_0^{+\infty} f(x)dx \right]$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \left[\int_{+\infty}^0 f(x)dx + \int_0^{+\infty} f(x)dx \right]$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \left[-\int_0^{+\infty} f(x)dx + \int_0^{+\infty} f(x)dx \right]$$

$$= 0$$

Donc $\mathbb{E}(X^3) = 0$

•
$$\mathbb{E}(X^4) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^4 e^{-\frac{x^2}{2\sigma^2}} dx = \frac{2}{\sigma\sqrt{2\pi}} \int_{0}^{+\infty} x^4 e^{-\frac{x^2}{2\sigma^2}} dx$$

Utilisons l'intégration par parties: On pose $x^3 = u \Longrightarrow du = 3x^2 dx$.

Intégrons une 2^{ème} fois par parties:

On pose
$$u = x \Longrightarrow du = dx$$
, $dv = xe^{-\frac{x^2}{2\sigma^2}} \Longrightarrow v = -\sigma^2 e^{-\frac{x^2}{2\sigma^2}}$

$$\mathbb{E}(X^4) = \frac{6\sigma}{\sqrt{2\pi}} \left[-x\sigma^2 e^{-\frac{x^2}{2\sigma^2}} \right]_0^{+\infty} + \frac{6\sigma^3}{\sqrt{2\pi}} \int_0^{+\infty} e^{-\frac{x^2}{2\sigma^2}} dx$$

Comme $\frac{2}{\sigma \sqrt{2\sigma}} \int_0^{+\infty} e^{-\frac{x^2}{2\sigma^2}} dx = 1$. Alors $\mathbb{E}(X^4) = 3\sigma^4$.

•
$$\mathbb{E}(|X|) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{0} -xe^{-\frac{x^2}{2\sigma^2}} dx + \frac{1}{\sigma\sqrt{2\pi}} \int_{0}^{+\infty} xe^{-\frac{x^2}{2\sigma^2}} dx.$$

En posant dans la 1ère intégrale u=-x on aura après calcul $\mathbb{E}(|X|)=\frac{2\sigma}{\sqrt{2}}$

•
$$\mathbb{E}(|X^3|) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^0 -x^3 e^{-\frac{x^2}{2\sigma^2}} dx + \frac{1}{\sigma\sqrt{2\pi}} \int_0^{+\infty} x^3 e^{-\frac{x^2}{2\sigma^2}} dx = \frac{2}{\sigma\sqrt{2\pi}} \int_0^{+\infty} x^3 e^{-\frac{x^2}{2\sigma^2}} dx.$$

En intégrant par parties: $u = x^2$, $dv = xe^{-\frac{x^2}{2\sigma^2}}$, on aura $\mathbb{E}(|X^3|) = \frac{4\sigma^3}{\sqrt{2\sigma}}$.

•
$$\mathbb{E}(e^X) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^x e^{-\frac{x^2}{2\sigma^2}} dx = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{x - \frac{x^2}{2\sigma^2}} dx$$

or
$$e^{x-\frac{x^2}{2\sigma^2}} = e^{-\frac{(x-\sigma^2)^2}{2\sigma^2} + \frac{\sigma^2}{2}}$$
. Dono

$$\mathbb{E}(e^X) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{\sigma^2}{2}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\sigma^2)^2}{2\sigma^2}} dx = e^{\frac{\sigma^2}{2}} \operatorname{car} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\sigma^2)^2}{2\sigma^2}} dx = 1.$$

2.
$$X \rightsquigarrow \mathcal{N}(m; \sigma^2)$$
.

a) •
$$Y = \frac{X-m}{\sigma} \rightsquigarrow \mathcal{N}(0;1)$$
. On peut le vérifier soit par:

$$F_Y(y) = F_X(m + \sigma y) \Longrightarrow f_Y(y) = \sigma f_X(m + \sigma y)$$
. Donc

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

soit en utilisant les fonctions caractéristiques: On a $\varphi_X(t) = \mathbb{E}(e^{itX}) = e^{itm - \frac{t^2\sigma^2}{2}}, \ \forall t \in \mathbb{R}$ $\varphi_Y(t) = e^{-i\frac{tm}{\sigma}} \varphi_X(\frac{t}{\sigma}) = e^{-\frac{t^2}{2}}, \forall t \in \mathbb{R}.$

• On a :
$$X - m \rightsquigarrow \mathcal{N}(0, \sigma^2) \Longrightarrow \mathbb{E}(|X - m|) = \frac{2\sigma}{\sqrt{2\pi}}$$
 (voir question 1).

b) • Montrons que
$$\mathbb{E}(e^{\lambda X}) = \exp(\lambda m + \frac{1}{2}\lambda^2 \sigma^2)$$
.

b) • Montrons que
$$\mathbb{E}(e^{\lambda X}) = \exp(\lambda m + \frac{1}{2}\lambda^2\sigma^2)$$
.
 $\mathbb{E}(e^{\lambda X}) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{\sigma^2}{2}}\int_{-\infty}^{+\infty}e^{\lambda x}e^{-\frac{(x-\sigma^2)^2}{2\sigma^2}}dx = \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{1}{2\sigma^2}[(x-m)^2-2\lambda x\sigma^2]}dx$ or $e^{-\frac{1}{2\sigma^2}[(x-m)^2-2\lambda x\sigma^2]} = e^{-\frac{1}{2\sigma^2}[x-(m+\lambda\sigma^2)]^2}e^{\lambda m+\frac{\lambda^2\sigma^2}{2}}$. D'où

$$\mathbb{E}(e^{\lambda X}) = \frac{1}{\sigma\sqrt{2\pi}} e^{\lambda m + \frac{\lambda^2 \sigma^2}{2}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2} [x - (m + \lambda \sigma^2)]^2} dx = e^{\lambda m + \frac{1}{2}\lambda^2 \sigma^2}. \text{(C.Q.F.D)}.$$

• Calculer $\mathbb{E}(Xe^{\lambda X})$.

$$\mathbb{E}(Xe^{\lambda X}) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{\sigma^2}{2}} \int_{-\infty}^{+\infty} x e^{\lambda x} e^{-\frac{(x-\sigma^2)^2}{2\sigma^2}} dx = e^{\lambda m + \frac{1}{2}\lambda^2\sigma^2} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} x e^{-\frac{1}{2\sigma^2}[x - (m + \lambda\sigma^2)]^2} dx$$
 or $\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} x e^{-\frac{1}{2\sigma^2}[x - (m + \lambda\sigma^2)]^2} dx = m + \lambda\sigma^2$ (la moyenne de $\mathcal{N}(m + \lambda\sigma^2, \sigma^2)$).

Donc $\mathbb{E}(Xe^{\lambda X}) = (m + \lambda \sigma^2)e^{\lambda m + \frac{1}{2}\lambda^2\sigma^2}$.

Exercice 7. Soit X une v.a. sur $(\Omega, \mathcal{F}, \mathbb{P})$ et $Y(w) = e^{X(w)}, \forall w \in \Omega$

1.
$$F_Y(y) = \mathbb{P}(e^X \le y) = \mathbb{P}(X \le \ln y) = F_X(\ln y)$$

2. Supposons que X est continue.
$$f_Y(y) = \frac{1}{y} f_X(\ln y)$$
.

3. On suppose que
$$X \rightsquigarrow \mathcal{N}(0,1)$$
. $f_Y(y) = \frac{1}{y\sqrt{2\pi}}e^{-\frac{1}{2}(\ln y)^2}, \forall y \geq 0$.

$$\mathbb{P}(Y \le 1) = \int_0^1 f_Y(y) dy
= \int_0^1 \frac{1}{y\sqrt{2\pi}} e^{-\frac{1}{2}(\ln y)^2} dy
= \int_{-\infty}^0 \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du \text{ (en posant } u = \ln y)
= F_X(0) = 0.5$$

Exercice 8. Soit $X_n \rightsquigarrow \mathcal{N}(m_n, \sigma_n^2)$

$$X_n \xrightarrow{L^2} X \Longrightarrow m_n \longrightarrow m \text{ et } \sigma_n^2 \longrightarrow \sigma^2.$$

D'où $X \rightsquigarrow \mathcal{N}(m, \sigma^2)$.

Exercice 9. Soient $X, Y \rightsquigarrow \mathcal{N}(0, 1)$.

1. Si X et Y sont indépendantes, alors (X;Y) est un vecteur gaussien car toute combinaison linéaire de ses composantes est gaussienne, en particulier X+Y est gaussienne.

Soit T une variable aléatoire indépendante de X et telle que $\mathbb{P}(T=+1)=\mathbb{P}(T=-1)=1/2$ (veuillez corriger cette probabilité sur la série de TD).

2. Montrer que Z = TX est gaussienne:

$$F_{Z}(z) = \mathbb{P}(XT < z)$$

$$= \frac{1}{2}\mathbb{P}(X < z) + \frac{1}{2}\mathbb{P}(-X < z)$$

$$= \frac{1}{2}F_{X}(z) + \frac{1}{2}\mathbb{P}(X > -z)$$

$$= \frac{1}{2}F_{X}(z) + \frac{1}{2}(1 - \mathbb{P}(X < -z))$$

$$= \frac{1}{2}F_{X}(z) + \frac{1}{2}\mathbb{P}(X < z)$$

$$= F_{X}(z)$$

Donc $Z \rightsquigarrow \mathcal{N}(0,1)$.

3.

$$Cov(X, Z) = \mathbb{E}(XZ) - \mathbb{E}(X)\mathbb{E}(Z)$$

 $= \mathbb{E}(XZ)$
 $= \mathbb{E}(XTX)$
 $= \mathbb{E}(T)\mathbb{E}(X^2)(\operatorname{car} T \text{ et } X \text{ sont indépendantes})$
 $= 0.$

Si on conclut que X et Z sont indépendantes alors $X + Z \rightsquigarrow \mathcal{N}(0, 2)$ or $\mathbb{P}(X + Z = 0) = \mathbb{P}(X(1 + T) = 0) = \mathbb{P}(1 + T = 0) = 1/2$ contradiction car X + Z est une v.a. continue (la probabilité attachée en un point doit être nulle). D'où X + Z n'est pas gaussienne et X et Z ne sont pas indépendantes et donc (X, Z) n'est pas un vecteur gaussien.

Exercice 10. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et \mathcal{G} une sous tribu de \mathcal{F} .

1. a) Montrons que $\mathbb{E}(Y\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X\mathbb{E}(Y|\mathcal{G}))$

On a X et Y sont deux v.a. sur $(\Omega, \mathcal{F}, \mathbb{P})$ donc elles sont \mathcal{F} -mesurables. Donc

$$\begin{split} \mathbb{E}\left[\mathbb{E}(XY|\mathcal{G})|\mathcal{F}\right] &= \mathbb{E}\left[Y\mathbb{E}(X|\mathcal{G})|\mathcal{F}\right] \\ &= \mathbb{E}\left[Y\mathbb{E}(X|\mathcal{G})|\mathcal{F}\right] \\ &= \mathbb{E}\left[Y\mathbb{E}(X|\mathcal{G})\right] \\ &= \mathbb{E}\left[X\mathbb{E}(Y|\mathcal{G})\right] \end{split}$$

b) $X \in L^2(\Omega)$ et $\mathbb{E}(X|\mathcal{G}) = Y$ et $\mathbb{E}(X^2|\mathcal{G}) = Y^2$. Montrons que X = Y.

$$\mathbb{E}\left[(X-Y)^2|\mathcal{G}\right] = \mathbb{E}\left[X^2 - 2XY + Y^2|\mathcal{G}\right]$$
$$= \mathbb{E}(X^2|\mathcal{G}) + \mathbb{E}(Y^2|\mathcal{G}) - 2\mathbb{E}(XY|\mathbb{G})$$
$$= Y^2 + Y^2 - 2Y^2 = 0$$

D'où $\mathbb{E}\left[\mathbb{E}((X-Y)^2|\mathcal{G})\right] = \mathbb{E}((X-Y)^2) = 0 \Longrightarrow X = Y.$

2. Soit $X = X_1 + X_2$. On suppose que X_1 est gaussienne et indépendante de \mathcal{G} , que X_2 est \mathcal{G} -mesurable.

a)
$$\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(X_1 + X_2|\mathcal{G}) = \mathbb{E}(X_1|\mathcal{G}) + \mathbb{E}(X_2|\mathcal{G}) = \mathbb{E}(X_1) + X_2.$$

 $\mathbb{E}(X^2|\mathcal{G}) = \mathbb{E}(X_1^2|\mathcal{G}) + \mathbb{E}(X_2^2|\mathcal{G}) + 2\mathbb{E}(X_1X_2|\mathcal{G}) = \mathbb{E}(X_1^2|) + X_2^2 + 2X_2\mathbb{E}(X_1)$
 $Var(X|\mathcal{G}) = \mathbb{E}(X^2|\mathcal{G}) - (\mathbb{E}(X|\mathcal{G}))^2 = VarX_1.$
b) $\mathbb{E}(e^{\lambda}X|\mathcal{G}).$

$$\begin{split} \mathbb{E}(e^{\lambda}X|\mathcal{G}) &= \mathbb{E}(e^{\lambda}X_{1}e^{\lambda}X_{2}|\mathcal{G}) \\ &= e^{\lambda}X_{2}\mathbb{E}(e^{\lambda}X_{1}) \\ &= e^{\lambda}X_{2}\exp\{\lambda\mathbb{E}(X_{1}) + \frac{\lambda^{2}}{2}var(X_{1})\} \text{ (voir Exercice 6).} \end{split}$$

Exercice 11. Dans $(\Omega, \mathcal{F}, (\mathcal{F}_t))$, on considère $(M_t)_{t\geq 0}$ une \mathcal{F}_t -martingale de carré intégrable. 1.

$$\mathbb{E}\left[(M_t - M_s)^2 | \mathcal{F}_s\right] = \mathbb{E}(M_t^2 | \mathcal{F}_s) + \mathbb{E}(M_s^2 | \mathcal{F}_s) - 2\mathbb{E}(M_t M_s | \mathcal{F}_s)$$
$$= \mathbb{E}(M_t^2 | \mathcal{F}_s) - M_s^2$$

- **2.** Par passage à l'espérance, on trouve $\mathbb{E}[(M_t M_s)^2] = \mathbb{E}(M_t^2) \mathbb{E}(M_s^2) \ge 0, \quad \forall t > s.$
- **3.** Soit ϕ définit par $\phi(t) = \mathbb{E}(M_t^2)$.

Soit
$$t \ge s \Longrightarrow \phi(t) - \phi(s) = \mathbb{E}(M_t^2) - \mathbb{E}(M_s^2) \ge 0$$
.

D'où ϕ est croissante.

Exercice 12. L'espace Ω est muni d'une filtration (F_t) .

1. Soit $s \leq t$ et $Y_t = \mathbb{E}(X|F_t)$.

On a Y_t est intégrable et \mathcal{F}_t -mesurable et

$$\mathbb{E}(Y_t|\mathcal{F}_s) = \mathbb{E}(\mathbb{E}(X|F_t)|\mathcal{F}_s)$$
$$= \mathbb{E}(\mathbb{E}(X|F_s)|\mathcal{F}_t)$$
$$= \mathbb{E}(X|F_s) = Y_s$$

Donc (Y_t) est une martingale.

2. On dit que M est une surmartingale si M_t est adapté, intégrable et $\mathbb{E}(M_t|\mathcal{F}_t) \leq M_s; \forall s \leq t.$

Le processus M est une sous-martingale si -M est une sur-martingale.

a) Montrons que si M est une martingale et A un processus croissant adapté $(A_s \leq A_t; \forall s \leq t)$ alors M-A est une sur-martingale.

Soit $Z_t = M_t - A_t$ et $s \le t$: on a $\mathbb{E}(Z_t | \mathcal{F}_s) = M_s - \mathbb{E}(A_t | \mathcal{F}_s)$ et comme $A_s \le A_t$ ou $-A_t \le -A_s$, $\mathbb{E}(Z_t | \mathcal{F}_s) \le M_s - \mathbb{E}(A_s | \mathcal{F}_s) = M_s - A_s = Z_s$. Donc M - A est une sur-martingale.

b) Soit M une martingale. Que peut-on dire de M^2 ?

On a $\forall s \leq t$, $\mathbb{E}(M_t^2 | \mathcal{F}_s) = \mathbb{E}\left[(M_t - M_s)^2\right] + M_s^2 \geq M_s^2$. D'où (M_t^2) est une sous-martingale.