Embedded Systems Laboratory

Lap4: - มีความรู้ความเข้าใจในรายละเอียดของ UART ของ ESP32

- การโปรแกรมเพื่อควบคุมการทำงานโดยใช้ UARTO และ UART2

การโปรแกรมประยุกต์ในการใช้งาน UART ของ ESP32

อุปกรณ์ Lab4

1. ชุดอุปกรณ์ Embedded System 1 ชุด

2. Laptop หรือ Notebook 1 เครื่อง (Window/Mac/Linux ในการสอนจะใช้ Window เป็น OS)

4.1 ข้อมูลเบื้องต้น UART ของ ESP32

ให้นิสิตหาร่วมกันหาข้อมูลเพื่อนำมาตอบคำถามข้างล่างดังนี้

คำถาม	คำตอบ
UART คือ?	การสื่อสารของอุปกรณ์ 2 ตัว โดยการส่งข้อมูลแบบขนานมาในรูปแบบอนุกรมแล้วแปลงกลับ เป็นแบบขนานที่ฝั่งผู้รับ
ESP32 มี UART จำนวนเท่าใด?	3 ใช้งานได้ 2
และผู้ใช้สามารถใช้ได้จำนวนเท่าใด?	
ลักษณะการรับส่งข้อมูล UART เป็นแบบใด?	Full Duplex
(Half/Full Duplex)	
BAUDRATE ที่สามารถตั้งค่าของ ESP32	
เท่าใดบ้าง? (ทั้งหมด)	<= 115200
ความเร็วสูงสุดของ UART มีความเร็วกี่ byte/s	115200
	115200
ถ้าต้องการใช้ UART เชื่อมต่อระยะไกล และมีอุปกรณ์	
ในเครือข่ายมากกว่า1 ควรใช้ มาตรฐานการสื่อสาร	RS485
ข้อมูลดิจิตอลแบบอนุกรมชนิดใด	
ในการสื่อสารแบบ UART สามารถมี Slave ได้ทั้งสิ้นกี่	1 ตัว ปัจจัยกำหนดคือ วิธีการเชื่อมต่อ
ตัว? ปัจจัยใดเป็นตัวกำหนดจำนวนของ Slave	1 ตว บจจยกาหนดคอ วธการเชอมตอ

จงตอบคำถามทั่วไปสำหรับ PIN UART ของ ESP32

UART	RX	TX	CTS	RTS
UART0	GPIO3	GPIO1	N/A	N/A
UART1	GPIO9	GPIO10	GPIO6	GPIO11
UART2	GPIO16	GPIO11	GPIO8	GPIO7

จงตอบคำถามทั่วไปสำหรับ UART ของ ESP32

คำถาม	คำตอบ
BAUDRATE ที่สามารถตั้งค่าของ ESP32	75, 110, 134, 150, 300, 600, 1200, 1800, 2400, 4800,
เท่าใดบ้าง (ทั้งหมด)	7200, 9600, 14400, 19200, 38400, 57600, 115200

จงอธิบายการทำงาน Function SPI ที่ใช้กับ Lib UART ใน ArduinoIDE

Function	คำตอบ
Serial.begin()	ประกาศการเริ่มส่งข้อมูล
Serial.write()	ส่งข้อมูลเลขฐานสอง 8 bit
Serial.print()	ส่งข้อมูลเหมือน write แต่ส่งข้อมูลได้ทุกชนิด

จงอธิบายการทำงาน Function SPI ที่ใช้กับ Lib UART ใน ArduinoIDE (ต่อ)

Function	คำตอบ
Serial.printf()	ส่งข้อมูลออกไป (มี format ที่ช่วยส่งข้อมูลง่ายขึ้น)
Serial.prinln()	ส่งข้อมูลออกไปพร้อมเว้นบรรทัด
Serial.available()	ตรวจสอบว่ามีข้อมูลส่งเข้ามาหรือไม่
Serial.read()	อ่านค่าของข้อมูลที่ส่งเข้ามาที่ละ byte
Serial.readString()	อ่านค่าของข้อมูลที่ส่งเข้ามาในรูปแบบข้อความ
Serial.setTimeout()	กำหนดการสิ้นสุดของการอ่านข้อมูล

4.2 Workshop in 7 Segment 4 Digit

ให้นิสิตเขียนโปรแกรมควบคุมให้ 7Segment 4Digit แสดงค่า 1201 ติดค้าง

วงจรทดสอบ

หมู่ 832

เติมส่วนของ Code ที่หายไปให้ถูกต้อง

```
#define LED ON
#define LED OFF HIGH
#define DG1 23
#define DG2 ^{\overline{25}}
#define DG3 18
#define DG4 14
#define A 32
#define B 13
#define C 5
#define D ^{22}
#define E <sup>19</sup>
#define F 33
#define G 27
#define DP 21
#define DPColon 26
hw_timer_t *timer1 = NULL;
unsigned int number = 0;
unsigned int tmpnumber1, tmpnumber2, tmpnumber3, tmpnumber4;
int status7Seg = 1;
void IRAM_ATTR timer1_callback( void );
void IRAM ATTR showNumber(int num);
void setup() {
  number = 1201;
  tmpnumber1 = number / 1000;
  tmpnumber2 = (number - ((tmpnumber1) * 1000)) / 100;
  tmpnumber3 = (number - (tmpnumber1 * 1000) - (tmpnumber2 * 100)) / 10;
  tmpnumber4 = (number - (tmpnumber1 * 1000) - (tmpnumber2 * 100) - (tmpnumber3 * 10));
  Serial.begin( 115200 );
  Serial.printf( "\nShow Number : %d\n", number);
  Serial.printf( "\nDG1:%d DG2:%d DG3:%d DG4:%d\n", tmpnumber1, tmpnumber2, tmpnumber3,
tmpnumber4);
  pinMode(DG1, OUTPUT); pinMode(DG2, OUTPUT); pinMode(DG3, OUTPUT); pinMode(DG4, OUTPUT);
  pinMode(DPColon, OUTPUT);
  pinMode(A, OUTPUT); pinMode(B, OUTPUT); pinMode(C, OUTPUT); pinMode(D, OUTPUT);
  pinMode(E, OUTPUT); pinMode(F, OUTPUT); pinMode(G, OUTPUT); pinMode(DP, OUTPUT);
  timer1 = timerBegin( 1, 80, true );
  timerAlarmWrite( timer1, \frac{1000000}{}, true );
  timerAttachInterrupt( timer1, &timer1 callback, true );
  timerAlarmEnable( timer1 );
}
void loop() {
}
```

```
void IRAM_ATTR timer1_callback( void )
  if (status7Seg == 1)
     showNumber(____); tmpnu
digitalWrite( DG1, _____); LOW
digitalWrite( DG2, _____); HIGH
                                                tmpnumber1
     digitalWrite( DG3, _____ ); HIGH
     digitalWrite( DG4, _____); HIGH
     status7Seg = ____;
  else if (status7Seg == 2)
     showNumber(____); tmpnudigitalWrite( DG1, _____); HIGH digitalWrite( DG2, _____); LOW
                                              tmpnumber2
     digitalWrite( DG3, ____); HIGH digitalWrite( DG4, ____); HIGH
     status7Seg = _____;
  else if (status7Seg == 3)

      showNumber(_____);
      tmpnum

      digitalWrite( DG1, ______);
      );
      HIGH

      digitalWrite( DG2, ______);
      );
      LOW

      digitalWrite( DG4, ______);
      HIGH

                                              tmpnumber3
     status7Seg = _____;
  else if (status7Seg == 4)
     showNumber(____); tmpnu
digitalWrite( DG1, _____); HIGH
                                               tmpnumber4
     digitalWrite( DG2, _____);HIGH
     digitalWrite( DG3, ______);HIGH digitalWrite( DG4, ______);LOW
     status7Seg = ____;
  }
  else
     status7Seg = 1;
}
void IRAM_ATTR showNumber(int num)
  if (num == <u>0</u> )
  {
     digitalWrite( A, HIGH ); digitalWrite( B, HIGH ); digitalWrite( C, HIGH );
     digitalWrite( D, HIGH ); digitalWrite( E, HIGH ); digitalWrite( F, HIGH ); digitalWrite( G, LOW );
  else if (num == 1 ) {
    digitalWrite( A, LOW ); digitalWrite( B, HIGH ); digitalWrite( C, HIGH );
    digitalWrite( D, LOW ); digitalWrite( E, LOW ); digitalWrite( F, LOW ); digitalWrite( G, LOW );
  else if (num == 2 ) {

digitalWrite( A, HIGH ); digitalWrite( B, HIGH ); digitalWrite( C, LOW );

digitalWrite( D, HIGH ); digitalWrite( E, HIGH ); digitalWrite( F, LOW ); digitalWrite( G, HIGH );
     digitalWrite( A, LOW ); digitalWrite( B, LOW ); digitalWrite( C, LOW );
     digitalWrite( D, LOW ); digitalWrite( E, LOW ); digitalWrite( F, LOW ); digitalWrite( G, LOW );
}
```

4.3 7 Segment 4 Digit

- การต่อวงจรเหมือนในแลป 4.2
- โดยเริ่มต้น ให้แสดงค่า 1234 บน 7Segment 4 Digit
- LED แสดงเวลา : ที่อยู่บริเวณตรงกลาง 7Segment 4Digit กระพริบติดดับ (ใช้ Timer interrupt)
- ตัวเลขบน 7Segment จะรับค่ามาจาก Serial monitor แล้วนำมาแสดงบน 7Segment 42ig(
- ถ้าป้อน case invalid เข้ามาเช่น ตัวเลขเกิน 4หลัก, ป้อนอักษร ให้แสดงเป็น 0000

ment 40ight

Function สำหรับ UART ESP32 in ArduinoIDE

Serial.begin(speed, config)

Serial.write(buf, int len=1);

Serial.print(val); หรือ void Serial.print(int val, int format);

Serial.println("String");

int Serial.available();

byte Serial.read();

String Serial.readString();

void Serial.setTimeout(long timeout);

เขียนโปรแกรมลงในกล่องคำตอบด้านล่าง **และถ่ายวีดีโอผลลัพท์ของโจทย์นี้ Upload ไฟล์ตามหมู่เรียน**

ในกรณีตัวหน้ากระดาษไม่พอให้เพิ่มหน้าแทรกในไฟล์แทน

```
#define LED_ON LOW
#define LED_OFF HIGH
#define DG1 23
#define DG2 25
#define DG3 18
#define DG4 14
#define A 32
                                                                        void setup() {
#define B 13
                                                                        number = 1234:
#define C 5
                                                                         tmpnumber1 = number / 1000;
#define D 22
                                                                        tmpnumber2 = (number - ((tmpnumber1) * 1000)) / 100;
#define E 19
                                                                        tmpnumber3 = (number - (tmpnumber1 * 1000) - (tmpnumber2 * 100)) / 10;
#define F 33
                                                                        tmpnumber4 = (number - (tmpnumber1 * 1000) - (tmpnumber2 * 100) - (tmpnumber3 * 10));
#define G 27
                                                                        Serial.begin( 115200 );
#define DP 21
                                                                         Serial.printf( "\nShow Number : %d\n", number);
#define DPColon 26
                                                                        Serial.printf( "\nDG1:%d DG2:%d DG3:%d DG4:%d\n", tmpnumber1, tmpnumber2, tmpnumber3,
hw_timer_t *timer1 = NULL, *timer0=NULL;
                                                                                 tmpnumber4);
unsigned int number = 0;
                                                                        pinMode(DG1, OUTPUT); pinMode(DG2, OUTPUT); pinMode(DG3, OUTPUT); pinMode(DG4,
unsigned\ int\ tmpnumber 1,\ tmpnumber 2,\ tmpnumber 3,\ tmpnumber 4;
                                                                        OUTPUT);
int status7Seg = 1;
                                                                        pinMode(DPColon, OUTPUT);
bool stateToggle = true;
                                                                         pinMode(A, OUTPUT); pinMode(B, OUTPUT); pinMode(C, OUTPUT); pinMode(D, OUTPUT);
void IRAM_ATTR timer1_callback( void );
                                                                        pinMode(E, OUTPUT); pinMode(F, OUTPUT); pinMode(G, OUTPUT); pinMode(DP, OUTPUT);
void IRAM ATTR showNumber(int num):
                                                                        // SLOW 1M MED 20K FAST 4K timer1
void IRAM_ATTR timero_callback( void );
                                                                        timer1 = timerBegin( 1, 80, true );
                                                                        timerAlarmWrite( timer1, 4000, true );
                                                                        timerAttachInterrupt( timer1, &timer1_callback, true );
                                                                        timerAlarmEnable( timer1 );
                                                                        // timero
                                                                        timer0 = timerBegin( 0, 80, true );
                                                                        timerAlarmWrite( timero, 1000000, true );
                                                                        timer Attach Interrupt (\ timer 0,\ \&timer 0\_callback,\ true\ );
                                                                        timerAlarmEnable( timero );
```

```
void loop() {
if(Serial.available()>0)
 String w = Serial.readString();
 Serial.printf("msg = %s",w);
 int num = w.toInt();
 if(num>9999){num=0;}
 Serial.printf("convert\ int = %d\ OK.\n",num);
 tmpnumber1 = num / 1000;
 tmpnumber2 = (num - ((tmpnumber1) * 1000)) / 100;
 tmpnumber3 = (num - (tmpnumber1 * 1000) - (tmpnumber2 * 100)) / 10;
 tmpnumber4 = (num - (tmpnumber1 * 1000) - (tmpnumber2 * 100) - (tmpnumber3 * 10));
void IRAM_ATTR timero_callback( void )
{ digitalWrite(DPColon,stateToggle);
stateToggle=!stateToggle;
void IRAM_ATTR timer1_callback( void )
if (status7Seg == 1)
 show Number (tmpnumber 1);\\
 digitalWrite( DG1, LOW );
                                                               void IRAM_ATTR showNumber(int num)
 digitalWrite( DG2, HIGH );
 digitalWrite( DG3, HIGH );
                                                                if (num == 0)
 digitalWrite( DG4, HIGH );
 status7Seg = 2;
                                                                 digitalWrite( A, HIGH ); digitalWrite( B, HIGH ); digitalWrite( C, HIGH );
                                                                 digitalWrite( D, HIGH ); digitalWrite( E, HIGH ); digitalWrite( F, HIGH ); digitalWrite( G, LOW );
else if (status7Seg == 2)
                                                                else if (num == 1) {
 showNumber(tmpnumber2);
                                                                 digitalWrite( A, LOW ); digitalWrite( B, HIGH ); digitalWrite( C, HIGH );
 digitalWrite( DG1, HIGH );
                                                                 digital Write(\ D,\ LOW\ ); \\ digital Write(\ E,\ LOW\ ); \\ digital Write(\ F,\ LOW\ ); \\ digital Write(\ G,\ LOW\ ); \\
 digitalWrite( DG2, LOW);
 digitalWrite( DG3, HIGH);
 digitalWrite( DG4, HIGH);
                                                                 digitalWrite( A, HIGH ); digitalWrite( B, HIGH ); digitalWrite( C, LOW );
 status7Seg = 3;
                                                                 digitalWrite( D, HIGH ); digitalWrite( E, HIGH ); digitalWrite( F, LOW ); digitalWrite( G, HIGH );
else if (status7Seg == 3)
                                                                else if (num == 3) {
                                                                 digitalWrite( A, HIGH ); digitalWrite( B, HIGH ); digitalWrite( C, HIGH );
 showNumber(tmpnumber3);
                                                                 digitalWrite( D, HIGH ); digitalWrite( E, LOW ); digitalWrite( F, LOW ); digitalWrite( G, HIGH );
 digitalWrite( DG1, HIGH );
 digitalWrite( DG2, HIGH );
                                                                else if (num == 4) {
 digitalWrite( DG3, LOW );
                                                                 digitalWrite( A, LOW ); digitalWrite( B, HIGH ); digitalWrite( C, HIGH );
 digitalWrite( DG4, HIGH );
                                                                 digitalWrite( D, LOW ); digitalWrite( E, LOW ); digitalWrite( F, HIGH ); digitalWrite( G, HIGH );
 status7Seg = 4;
                                                                 else if (num == 5) {
else if (status7Seg == 4)
                                                                 digitalWrite( A, HIGH ); digitalWrite( B, LOW ); digitalWrite( C, HIGH );
                                                                 digital Write(\ D,\ HIGH\ );\ digital Write(\ E,\ LOW\ );\ digital Write(\ F,\ HIGH\ );\ digital Write(\ G,\ HIGH\ );
 showNumber(tmpnumber4);
 digitalWrite( DG1, HIGH );
                                                                else if (num == 6) {
 digitalWrite( DG2, HIGH );
                                                                 digitalWrite( A, HIGH ); digitalWrite( B, LOW ); digitalWrite( C, HIGH );
 digitalWrite( DG3, HIGH );
                                                                 digitalWrite( D, HIGH ); digitalWrite( E, HIGH ); digitalWrite( F, HIGH ); digitalWrite( G, HIGH );
 digitalWrite( DG4, LOW );
 status7Seg = 1;
                                                                 digital Write(\ A,\ HIGH\ );\ digital Write(\ B,\ HIGH\ );\ digital Write(\ C,\ HIGH\ );
else
                                                                 digital Write(\ D,LOW\ ); \\ digital Write(\ E,LOW\ ); \\ digital Write(\ F,LOW\ ); \\ digital Write(\ G,LOW\ ); \\
 status7Seg = 1;
                                                                else if (num == 8) {
                                                                 digitalWrite( A, HIGH ); digitalWrite( B, HIGH ); digitalWrite( C, HIGH );
                                                                 digitalWrite( D, HIGH ); digitalWrite( E, HIGH ); digitalWrite( F, HIGH ); digitalWrite( G, HIGH );
                                                                else if (num == 9) {
                                                                 digital Write(\ A, HIGH\ ); \ digital Write(\ B, HIGH\ ); \ digital Write(\ C, HIGH\ );
                                                                 digital Write(\ D,\ HIGH\ );\ digital Write(\ E,\ LOW\ );\ digital Write(\ F,\ HIGH\ );\ digital Write(\ G,\ HIGH\ );
                                                                }
                                                                 digitalWrite( A, LOW ); digitalWrite( B, LOW ); digitalWrite( C, LOW );
                                                                  digitalWrite( D, LOW ); digitalWrite( E, LOW ); digitalWrite( F, LOW ); digitalWrite( G, LOW );
```

4.4 Assigment in 7 Segment 4 Digit

- การต่อวงจรเหมือนในแลป 4.3
- ให้เขียน Code นาฬิกาแสดงบน 7Segment 4Digit และส่งมาทาง Serial Monitor
- สามารถควบคุมการทำงานโดยใช้ Serial Monitor
- Clock -> 00:03 Clock -> 00:04
- ป้อน 1 เวลาจะเดินขึ้นทุกๆ 1 วินาที
- ป้อน 2 เวลาจะหยุดเดิน
- ** เมื่อ input ให้ส่งประโยคทวน กลับมาแสดงผลที่ Computer

ตัวอย่าง "Rx interrupt 1 : Clock continue

Rx interrupt 2 : Clock stop

ตัวอย่างการแสดงผลที่ผ่านทาง Serial Monitor (ต้องมีการแสดงบน 7Segment 4Digit ด้วย)

เขียนโปรแกรมลงในกล่องคำตอบด้านล่าง **และถ่ายวีดีโอผลลัพท์ของโจทย์นี้ Upload ไฟล์ตามหมู่เรียน**

ในกรณีตัวหน้ากระดาษไม่พอให้เพิ่มหน้าแทรกในไฟล์แทน

mbedded Systems Laboratory	ชื่อ-สกุล_ นายกฤษณพงษ์ เพ็งบุญ	หมู่ 832	รหัส6330300038