Performance Analysis of Different Time Series Classification Techniques Demonstrated on the Lightning7 Dataset

Zachary Saegesser, Khayyam Saleem

CS559 - Machine Learning Fundamentals and Applications

Outline

The Dataset

Weak Classifiers

Advanced Classifiers

Future Work

Topic

The Dataset

Weak Classifiers

Advanced Classifiers

Future Worl

Lightning7

- ► The FORTE satellite detects transient electromagnetic events associated with lightning using a suite of optical and radio-frequency (RF) instruments.
- ► A Fourier transform is performed on the input data to produce a spectrogram.
- ▶ The spectrograms are then collapsed in frequency to produce a power density time series, which is then smoothed.

Classes

- 1. CG (Positive Initial Return Stroke)
- 2. IR (Negative Initial Return Strokes)
- 3. SR (Subsequent Negative Return Stroke)
- 4. I (Impulsive Event)
- 5. I2 (Impulsive Event Pair)
- 6. KM (Gradual Intra-Cloud Smoke)
- 7. O (Off-record) (special case)

Visualization of Classes

Label	CG	IR	SR	I	12	KM	0
Name	Positive Initial Return Stroke	Negative Initial Return Stroke	Subsequent Negative Return Stroke	Impulsive Event	Impulsive Event Pair	Gradual Intra-Cloud Stroke	Off-Record
# Samples	18	17	14	19	15	38	22
Ex. Time Series			and the same				niminianal

0. CG (Positive Initial Return Stroke)

1. IR (Negative Initial Return Strokes)

2. SR (Subsequent Negative Return Stroke)

3. I (Impulsive Event)

4. I2 (Impulsive Event Pair)

5. KM (Gradual Intra-Cloud Smoke)

6. O (Off-record) (special case)

The Problem

- ► Imbalanced data
- Unequal class representation
- Curse of dimensionality

Topic

The Dataset

Weak Classifiers

Advanced Classifiers

Future Work

Naive Bayes

- ► Essence of Naïve Bayes → Given multiple pieces of evidence, treat each piece as independent.
- $P(outcome|evidence) = \frac{P(likelihood_of_evidence)*(Prior)}{P(evidence)}$
- Our job is to look at the evidence, to consider how likely it is to be this class or that class, and assign a label to each entity.
- The class that has the highest probability is declared the "winner" and that class label gets assigned to that combination of evidences.
- ▶ Gaussian Naïve Bayes \rightarrow assumes means within classes are normally distributed.
- With a (default) train-test split of 70-73, we achieved an accuracy of 0.573.

K-Nearest-Neighbors

Topic

The Dataset

Weak Classifiers

Advanced Classifiers

Future Work

SVM

CNN

Topic

The Dataset

Weak Classifiers

Advanced Classifiers

Future Work

Hyperparameter Tuning

Feature Preprocessing