无类型的 λ -演算

读书笔记

许博

1 疑惑

Definition 1.6.1 (Substitution)

(1a) $x[x := N] \equiv N$,

(1b) $y[x := N] \equiv y \text{ if } x \not\equiv y$,

(2) $(PQ)[x := N] \equiv (P[x := N])(Q[x := N]),$

(3) $(\lambda y \cdot P)[x := N] \equiv \lambda z \cdot (P^{y \to z}[x := N])$, if $\lambda z \cdot P^{y \to z}$ is an α -variant of $\lambda y \cdot P$ such that $z \notin FV(N)$.

x 和 y 什么时候句法等同 ≡?

2 函数的本质 (essence)

在 λ -calculus 中,函数被表示为如 $\lambda x.x^2+1$ 的形式,. 的右边是表达式, λx 表示在表达式中 x 是一个变量,同时 x 是该函数的形参。在函数调用时,传入的值跟随在函数之后以括号包裹,如 $(\lambda x.x^2+1)(3)$ 。

总结出两个构造原则(construction principles)和一个求值规则(evaluation rule)。

2.1 构造原则

- 1. 抽象(Abstraction): 由表达式 M 和变量 x 可以构造得到一个新的表达式: $\lambda x.M$,称之为 M 上 x 的抽象。
- 2. 应用(Application): 由表达式 M 和 N 可以构造表达式 MN,称之为 M 应用于 N。

函数 $\lambda x.x^2$ 中,表达式 x^2 不是一个函数,而是一个抽象的输出值,表示 x 的平方。与函数的区别在于,假设 x 是一个自然数,函数 $\lambda x.x^2$ 接收自然数返回自然数,而 x^2 表示一个自然数。

2.2 求值规则

函数求值的过程的形式化称为 β -规约(β -reduction),使用替换(substitution)来进行计算,由中括号进行表示,如表达式 M[x:=N] 表示 M中的 x 被替换成 N。

β-规约: 形如 (λx.M)N 的表达式可以被重写为表达式 M[x:=N],表达式 M 中的每一个 x 都会被替换成 N,从 (λx.M)N 到 M[x:=N] 的过程记为 β-规约。

2.3 多参数

本书中,只考虑单参数的函数,在函数需要多个参数时,可以通过柯里化,使用单参数函数的复合来模拟多参数函数,如函数 $\lambda(x,y).(x^2+y)$ 可以柯里化为函数 $\lambda x.(\lambda y.(x^2+y))$,即为函数 g,在求值时,可以通过形如q(3)(5) 的方式来进行应用。

3 λ -项(terms)

λ-演算中主要关心的部分是以最简单,最抽象的视角描述函数的行为,可以不考虑数,以及和数有关的操作,如加法等,剩下的部分为:

- 1. 变量 (x, y, ...)
- 2. 构造原则,抽象和应用
- 3. 求值规则,β-规约

3.1 Λ

 λ -演算中的表达式被称为 λ -项,所有 λ -项的集合 Λ 可以通过归纳的定义来构造,首先假设存在一个无限的变量集合 V, $V=\{x,y,z,...\}$ 。

 Λ 的定义:

- 1. (变量) 如果 $u \in V$, 那么 $u \in \Lambda$
- 2. (应用) 如果 M 和 N \in Λ , 那么 $(MN) \in \Lambda$
- 3. (抽象) 如果 $u \in V$ 以及 $M \in \Lambda$,那么 $(\lambda u.M) \in \Lambda$ Λ 以抽象语法的定义为: $\Lambda = V|(\Lambda\Lambda)|(\lambda V.\Lambda)$ 。

3.2 λ -项的表示

- 1. 使用字母 x, y, z 以及它们使用下标(subscript)和上标符(prime,/)的变体来表示 V 中的变量
- 2. 使用 L, M, N, P, Q, R 以及它们的变体来表示 Λ 中的元素
- 3. 使用符号 ≡ 表示两个 λ -项句法等同

所以 $(x\ z)\equiv (x\ z)$,但是 $(x\ z)\not\equiv (xy)$,需要注意的是, $M\equiv N$ 表示 M 和 N 代表的实际的 λ -项句法等同。

3.3 子项

记 Sub(M) 为 M 中的子项的多重集(multiset),即相同的子项可以出现多次。Sub 的定义为:

- 1. (基础) $\forall x \in V.Sub(x) = \{x\}$
- 2. (应用) $Sub((MN)) = Sub(M) \cup Sub(N) \cup \{(MN)\}$
- 3. (抽象) $Sub((\lambda x.M)) = Sub(M) \cup (\lambda x.M)$

如果 $L \in Sub(M)$,记 L 为 M 的一个子项。如 $Sub((\lambda x.(xx))) = \{((\lambda x.(xx)), xx, x, x\}$,其中 x 出现了两次,一次是 xx 中的第一个 x,一次是 xx 中的第二个 x。

3.3.1 引理(lemma)

- 1. (自反性, reflexivity) $\forall M \in \Lambda.M \in Sub(M)$
- 2. (传递性, transitivity) 由 $L \in Sub(M) \land M \in Sub(N)$ 可以得到 $L \in Sub(N)$

3.3.2 真子项

如果 $\{L \in Sub(M)\} \land \{L \not\equiv \{M\}\}$,那么 L 是 M 的真子项。

3.4 省略括号

- 1. 最外层的括号可以省略: $MN \equiv (MN)$
- 2. 应用是左结合的: $MNL \equiv ((MN)L)$
- 3. 应用的优先级高于抽象: $\lambda x.MN \equiv \lambda x.(MN)$
- 4. 同一 λ 后出现的抽象是右结合的: $\lambda xy.M \equiv \lambda x.(\lambda y.M)$

4 自由和约束(bound)变量

出现在 λ -项中的变量可以被分成三种:自由(free),约束(bound)和 绑定(binding)。

- 1. 绑定变量,指直接出现在 λ 之后的变量
- 2. 约束变量,指出现在表达式中的绑定变量,如 $\lambda x.xy$ 中的第二个 \mathbf{x}
- 3. 自由变量,指出现在表达式中的非绑定变量,如 $\lambda x.xy$ 中的 v

4.1 FV(L)

FV(L) 表示 λ-项 L 中的自由变量的集合,其定义为:

- 1. (变量) $FV(x) = \{x\}$
- 2. (应用) $FV(MN) = FV(M) \cup FV(N)$
- 3. (抽象) $FV(\lambda x.M) = FV(M) \{x\}$

需要注意, $FV(x(\lambda x.xy)) = \{x,y\}$,尽管其中 x, y 都是自由变量,但是自由变量的 x 是 $x(\lambda x.xy)$ 中的第一个 x, 而 y 之前的 x 依然是约束变量。

4.2 组合子 (combinator)

如果一个 λ -项 M 满足 $FV(M)=\emptyset$,称 M 是闭合的(closed),也可以将其称为是一个组合子。所有组合子的集合用 Λ^0 表示。

5 α -变换(conversion)

 λ -项中的绑定变量并不是必须的,如平方函数可以写作 $\lambda x.x^2$,也可以写作 $\lambda u.u^2$,都表示函数计算传入值的平方之后将得到的值作为输出值。变量名只是为了给传入的值提供一个临时的名字。因此在 λ -演算中,只有绑定变量(以及对应的约束变量)不同的 λ -项是相同的。

定义关系 α -变换或 α -等价(equivalence)来形式化地描述这个过程:

令 $M^{x\to y}$ 表示将 M 中所有的自由变量 x 替换为 y,重命名的关系使用符号 $=_{\alpha}$ 表示,则当 $y\notin FV(M)$ 以及 y 不是 M 中的绑定变量时, $\lambda x.M =_{\alpha} \lambda y.M^{x\to y}$ 。

也即 $\lambda x.M$ 被重命名为 $\lambda y.M^{x\to y}$ 。

 α -变换具有如下性质:

- 1. (相容性, compatibility) 如果 $M =_{\alpha} N$, 那么 $ML =_{\alpha} NL$, $LM =_{\alpha} LN$, 并且对于任意的 z, $\lambda z.M =_{\alpha} \lambda z.N$
- 2. (自反性, reflexivity) $M =_{\alpha} M$
- 3. (对称性, symmetry) 如果 $M =_{\alpha} N$, 那么 $N =_{\alpha} M$
- 4. (传递性, transitivity) 如果 $L =_{\alpha} M \wedge M =_{\alpha} N$, 那么 $L =_{\alpha} N$

如果 $M=_{\alpha}N$,则 M 和 N 称为 α -可变换(α -convertible)或 α -等价 (α -equivalent)。M 被记为是 N 的一个 α -变体(α -variant)。

6 替换

替换 λ -项中的自由变量,它的定义如下:

- 1. $x[x := N] \equiv N$
- 2. 如果 $x \neq y$, 那么 $y[x := N] \equiv y$
- 3. $(PQ)[x := N] \equiv (P[x := N])(Q[x := N])$
- 4. 如果 $\lambda z.P^{y\to z}$ 是 $\lambda y.P$ 的一个 α -变体,且 $z\notin FV(N)$,则 $(\lambda y.P)[x:=N]\equiv \lambda z.(P^{y\to z}[x:=N])$

重命名可被看作是一种特殊的替换,如 $M^{x\to u}=_{\alpha}M[x:=u]$,如果重命名的条件满足的话。

替换的顺序会影响 λ -项,如 $x[x:=y][y:=x]\equiv x$,但是 $x[y:=x][x:=y]\equiv y$ 。

M[x:=L] 不是一个合法的 λ -项,当替换执行完之后,所有的 [x:=L] 都消失了以后所得到的才是 λ -项。

6.1 引理

7 λ-项模 α 等价(module α -equivalence)

 α -等价在项构造时会被保留,引理: 令 $M_1 =_{\alpha} N_1 \wedge M_2 =_{\alpha} N_2$,则:

- 1. $M_1N_1 =_{\alpha} M_2N_2$
- 2. $\lambda x.M_1 =_{\alpha} \lambda x.M_2$
- 3. $M_1[x := N_1] =_{\alpha} M_2[x := N_2]$ 句法等同 \equiv 现在包括 α -等价 $=_{\alpha}$ 。

7.1 Barendregt 约定

约定 λ -项中的绑定变量的名字都不相同,并且与其中出现的所有自由变量也不相同。

如使用 $(\lambda xy.xz)(\lambda uv.v)$, 而非 $(\lambda xy.xz)(\lambda xz.z)$ 。

8 β-规约

8.1 单步 β -规约 (one-step β -reduction, \rightarrow_{β})

1. (基础, Basis) $(\lambda x.M)N \rightarrow_{\beta} M[x:=N]$

2. (相容性,compatibility)如果 $M \to_{\beta} N$,那么 $ML \to_{\beta} NL$, $LM \to_{\beta} LN$ 以及 $\lambda x.M \to_{\beta} \lambda x.N$

形如 $(\lambda x.M)N$ 的 λ -项记为 redex (可规约的表达式, reducible expression), 而规约后的 M[x:=N] 记为 contractum。

8.2 β -规约(零步或多步, \rightarrow_{β})

如果存在 $n \ge 0$,有若干项 $M_0, ..., M_n$,且 $M_0 \equiv M, M_n \equiv N$,以及对于 $0 \le i < n$,有 $M_i \to_{\beta} M_{i+1}$,则有 $M \to_{\beta} N$ 。 \to_{β} 具有自反性以及传递性。

8.3 β -变换(β -conversion, β -equality, $=_{\beta}$)

如果存在 $n \ge 0$,有若干项 $M_0, ..., M_n$,且 $M_0 \equiv M, M_n \equiv N$,以及对于 $0 \le i < n$,有 $M_i \to_{\beta} M_{i+1}$ 或 $M_{i+1} \to_{\beta} M_i$,则有 $M =_{\beta} N$ 。 对于 $(\lambda y.yv)z \to_{\beta} zv \leftarrow_{\beta} (\lambda x.zv)v$ 而言,也有 $(\lambda y.yv)z =_{\beta} (\lambda x.zv)v$ 。 $=_{\beta}$ 具有自反性,对称性以及传递性。

9 范式 (normal forms)

定义:

- 1. 如果 M 不能进行 β -规约,则 M 是满足 β -范式 (β -nf) 的
- 2. 如果存在 N 使得 $M =_{\beta} N$,则称 M 具有 β -范式 N,或称 M 是可 β -常 化(β -normalising)的。

记 M 的 β-范式为 M 的输出。

9.1 引理

当 M 满足 β -范式,那么 $M \rightarrow_{\beta} N$ 隐含 $M \equiv N$ 。

9.2 规约路径 (reduction path)

1. (M 的有限规约路径) 一个有限 λ -项序列 $N_0,N_1,N_2,...,N_n$,且 $N_0\equiv M$ 以及对于 $0\leq i < n$ 有 $N_i\to_\beta N_{i+1}$

2. (M 的无限规约路径) 一个无限 λ -项序列 $N_0, N_1, N_2, ...$,且 $N_0 \equiv M$ 以及对于自然数 i 有 $N_i \to_{\beta} N_{i+1}$

9.3 Weak/strong normalisation

- 1. 如果存在 β -范式 N, 使得 $M \rightarrow_{\beta} N$, 称 M 为 weakly normalising
- 2. 如果不存在以 M 出发的无限规约路径,则称 M 为 strongly normalising 所有的 strongly normalising 的项都是 weakly normalising 的。

9.4 Church-Rosser 定理

缩写为 CR,或称汇流(Confluence)定理

假设对于给定的 λ -项 M,有 $M \rightarrow_{\beta} N_1$ 以及 $M \rightarrow_{\beta} N_2$,则存在一个 λ -项 N_3 使得 $N_1 \rightarrow_{\beta} N_3$ 以及 $N_2 \rightarrow_{\beta} N_3$ 。

通过 CR 定理可以得到一个结论,假设 $M=_{\beta}N$,则存在 L 使得 $M \to_{\beta} L$ 以及 $N \to_{\beta} L$ 。

9.5 引理

- 1. 如果 N 是 M 的 β -范式,那么 $M \rightarrow _{\beta} N$
- 2. 一个 λ-项至多有一个 β-范式

非正式表述如下:

- 1. 如果一个 λ -项有一个输出,则这个输出可以向前(forward)计算到达
- 2. 一个计算的输出若存在则唯一

10 不动点(fixed point)定理

对于任意 λ -项 L,都存在一个 λ -项 M,使得 $LM =_{\beta} M$,称之为不动 点。

定理: $\forall L \in \Lambda . \exists M \in \Lambda . LM =_{\beta} M$.

在无类型的 λ-演算中,存在不动点组合子 Y,接收一个 λ-项,返回它的不动点:

 $Y\equiv \lambda y.(\lambda x.y(xx))(\lambda x.y(xx))$ 。 对于任意的 λ -项 L,YL 都是 L 的一个不动点,因为 $L(YL)=_{\beta}YL$ 。