

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C12N 1/24, 15/00, C07H 21/00	A1	(11) International Publication Number: WO 92/06176
		(43) International Publication Date: 16 April 1992 (16.04.92)

(21) International Application Number: PCT/US91/07141 (22) International Filing Date: 27 September 1991 (27.09.91) (30) Priority data: 590,664 28 September 1990 (28.09.90) US (71) Applicant: IXSYS, INC. [US/US]; 3550 General Atomics Court, Suite L103, San Diego, CA 92121 (US). (72) Inventor: HUSE, William, D. ; 471 Avenida Primavera, Del Mar, CA 92014 (US). (74) Agents: CAMPBELL, Cathryn et al.; Pretty, Schroeder, Brueggemann & Clark, 444 South Flower Street, Suite 2000, Los Angeles, CA 90071 (US).	(81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GA (OAPI patent), GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC, MG, ML (OAPI patent), MN, MR (OAPI patent), MW, NL (European patent), NO, PL, RO, SD, SE (European patent), SN (OAPI patent), SU ⁺ , TD (OAPI patent), TG (OAPI patent).
	Published <i>With international search report.</i>

(54) Title: SURFACE EXPRESSION LIBRARIES OF RANDOMIZED PEPTIDES

(57) Abstract

A composition of matter comprising a plurality of prokaryotic cells containing a diverse population of expressible oligonucleotides operationally linked to expression elements, said expressible oligonucleotides having a desirable bias of random codon sequences.

+ DESIGNATIONS OF "SU"

Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	Côte d'Ivoire	LI	Liechtenstein	SU+	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	US	United States of America

SURFACE EXPRESSION LIBRARIES
OF RANDOMIZED PEPTIDES

5

BACKGROUND OF THE INVENTION

This invention relates generally to methods for synthesizing and expressing oligonucleotides and, more particularly, to methods for expressing oligonucleotides having random codon sequences.

10 Oligonucleotide synthesis proceeds via linear coupling of individual monomers in a stepwise reaction. The reactions are generally performed on a solid phase support by first coupling the 3' end of the first monomer to the support. The second monomer is added to the 5' end of the
15 first monomer in a condensation reaction to yield a dinucleotide coupled to the solid support. At the end of each coupling reaction, the by-products and unreacted, free monomers are washed away so that the starting material for the next round of synthesis is the pure oligonucleotide attached to the support. In this reaction scheme, the stepwise addition of individual monomers to a single, growing end of a oligonucleotide ensures accurate synthesis
20 of the desired sequence. Moreover, unwanted side reactions are eliminated, such as the condensation of two
25 oligonucleotides, resulting in high product yields.

In some instances, it is desired that synthetic oligonucleotides have random nucleotide sequences. This result can be accomplished by adding equal proportions of all four nucleotides in the monomer coupling reactions,
30 leading to the random incorporation of all nucleotides and yielding a population of oligonucleotides with random sequences. Since all possible combinations of nucleotide sequences are represented within the population, all possible codon triplets will also be represented. If the

objective is ultimately to generate random peptide products, this approach has a severe limitation because the random codons synthesized will bias the amino acids incorporated during translation of the DNA by the cell into 5 polypeptides.

The bias is due to the redundancy of the genetic code. There are four nucleotide monomers which leads to sixty-four possible triplet codons. With only twenty amino acids to specify, many of the amino acids are encoded by multiple 10 codons. Therefore, a population of oligonucleotides synthesized by sequential addition of monomers from a random population will not encode peptides whose amino acid sequence represents all possible combinations of the twenty different amino acids in equal proportions. That is, the 15 frequency of amino acids incorporated into polypeptides will be biased toward those amino acids which are specified by multiple codons.

To alleviate amino acid bias due to the redundancy of the genetic code, the oligonucleotides can be synthesized 20 from nucleotide triplets. Here, a triplet coding for each of the twenty amino acids is synthesized from individual monomers. Once synthesized, the triplets are used in the coupling reactions instead of individual monomers. By mixing equal proportions of the triplets, synthesis of 25 oligonucleotides with random codons can be accomplished. However, the cost of synthesis from such triplets far exceeds that of synthesis from individual monomers because triplets are not commercially available.

Amino acid bias can be reduced, however, by 30 synthesizing the degenerate codon sequence NNK where N is a mixture of all four nucleotides and K is a mixture guanine and thymine nucleotides. Each position within an oligonucleotide having this codon sequence will contain a total of 32 codons (12 encoding amino acids being

r presented once, 5 represented twice, 3 represented three times and one codon being a stop codon). Oligonucleotides expressed with such degenerate codon sequences will produce peptide products whose sequences are biased toward those 5 amino acids being represented more than once. Thus, populations of peptides whose sequences are completely random cannot be obtained from oligonucleotides synthesized from degenerate sequences.

There thus exists a need for a method to express 10 oligonucleotides having a fully random or desirably biased sequence which alleviates genetic redundancy. The present invention satisfies these needs and provides additional advantages as well.

SUMMARY OF THE INVENTION

15 The invention provides a plurality of prokaryotic cells containing a diverse population of expressible oligonucleotides operationally linked to expression elements, the expressible oligonucleotides having a desirable bias of random codon sequences.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic drawing for synthesizing oligonucleotides from nucleotide monomers with random triplets at each position using twenty reaction vessels.

Figure 2 is a schematic drawing for synthesizing 25 oligonucleotides from nucleotide monomers with random triplets at each position using ten reaction vessels.

Figure 3 is a schematic diagram of the two vectors used for sublibrary and library production from precursor oligonucleotide portions. M13IX22 (Figure 3A) is the 30 vector used to clone the anti-sense precursor portions

(hatched box). The single-headed arrow represents the Lac p/o expression sequences and the double-headed arrow represents the portion of M13IX22 which is to be combined with M13IX42. The amber stop codon for biological selection and relevant restriction sites are also shown. M13IX42 (Figure 3B) is the vector used to clone the sense precursor portions (open box). Thick lines represent the pseudo-wild type (ψ gVIII) and wild type (gVIII) gene VIII sequences. The double-headed arrow represents the portion of M13IX42 which is to be combined with M13IX22. The two amber stop codons and relevant restriction sites are also shown. Figure 3C shows the joining of vector population from sublibraries to form the functional surface expression vector M13IX. Figure 3D shows the generation of a surface expression library in a non-suppressor strain and the production of phage. The phage are used to infect a suppressor strain (Figure 3E) for surface expression and screening of the library.

Figure 4 is a schematic diagram of the vector used for generation of surface expression libraries from random oligonucleotide populations (M13IX30). The symbols are as described for Figure 3.

Figure 5 is the nucleotide sequence of M13IX42 (SEQ ID NO: 1).

Figure 6 is the nucleotide sequence of M13IX22 (SEQ ID NO: 2).

Figure 7 is the nucleotide sequence of M13IX30 (SEQ ID NO: 3).

Figure 8 is the nucleotide sequence of M13ED03 (SEQ ID NO: 4).

Figure 9 is the nucleotide sequence of M13IX421 (SEQ

ID NO: 5).

Figure 10 is the nucleotide sequence of M13ED04 (SEQ ID NO: 6).

DETAILED DESCRIPTION OF THE INVENTION

5 This invention is directed to a simple and inexpensive method for synthesizing and expressing oligonucleotides having a desirable bias of random codons using individual monomers. The method is advantageous in that individual monomers are used instead of triplets and by synthesizing
10 only a non-degenerate subset of all triplets, codon redundancy is alleviated. Thus, the oligonucleotides synthesized represent a large proportion of possible random triplet sequences which can be obtained. The oligonucleotides can be expressed, for example, on the
15 surface of filamentous bacteriophage in a form which does not alter phage viability or impose biological selections against certain peptide sequences. The oligonucleotides produced are therefore useful for generating an unlimited number of pharmacological and research products.

20 In one embodiment, the invention entails the sequential coupling of monomers to produce oligonucleotides with a desirable bias of random codons. The coupling reactions for the randomization of twenty codons which specify the amino acids of the genetic code are performed
25 in ten different reaction vessels. Each reaction vessel contains a support on which the monomers for two different codons are coupled in three sequential reactions. One of the reactions couples an equal mixture of two monomers such that the final product has two different codon sequences.
30 The codons are randomized by removing the supports from the reaction vessels and mixing them to produce a single batch of supports containing all twenty codons at a particular position. Synthesis at the next codon position proceeds by

equally dividing the mixed batch of supports into ten reaction vessels as before and sequentially coupling the monomers for each pair of codons. The supports are again mixed to randomize the codons at the position just 5 synthesized. The cycle of coupling, mixing and dividing continues until the desired number of codon positions have been randomized. After the last position has been randomized, the oligonucleotides with random codons are cleaved from the support. The random oligonucleotides can 10 then be expressed, for example, on the surface of filamentous bacteriophage as gene VIII-peptide fusion proteins. Alternative genes can be used as well.

In its broadest form, the invention provides a diverse population of synthetic oligonucleotides contained in 15 vectors so as to be expressible in cells. Such populations of diverse oligonucleotides can be fully random at one or more codon sites or can be fully defined at one or more site, so long as at least one site the codons are randomly variable. The populations of oligonucleotides can be 20 expressed as fusion products in combination with surface proteins of filamentous bacteriophage, such as M13, as with gene VIII. The vectors can be transfected into a plurality of cells, such as the procaryote E. coli.

The diverse population of oligonucleotides can be 25 formed by randomly combining first and second precursor populations, each precursor population having a desirable bias of random codon sequences. Methods of synthesizing and expressing the diverse population of expressible oligonucleotides are also provided.

30 In a preferred embodiment, two populations of random oligonucleotides are synthesized. The oligonucleotides within each population encode a portion of the final oligonucleotide which is to be expressed. Oligonucleotides within one population encode the carboxy terminal portion

of the expressed oligonucleotides. These oligonucleotides are cloned in frame with a gene VIII (gVIII) sequence so that translation of the sequence produces peptide fusion proteins. The second population of oligonucleotides are 5 cloned into a separate vector. Each oligonucleotide within this population encodes the anti-sense of the amino terminal portion of the expressed oligonucleotides. This vector also contains the elements necessary for expression. The two vectors containing the random oligonucleotides are 10 combined such that the two precursor oligonucleotide portions are joined together at random to form a population of larger oligonucleotides derived from two smaller portions. The vectors contain selectable markers to ensure maximum efficiency in joining together the two 15 oligonucleotide populations. A mechanism also exists to control the expression of gVIII-peptide fusion proteins during library construction and screening.

As used herein, the term "monomer" or "nucleotide monomer" refers to individual nucleotides used in the 20 chemical synthesis of oligonucleotides. Monomers that can be used include both the ribo- and deoxyribo- forms of each of the five standard nucleotides (derived from the bases adenine (A or dA, respectively), guanine (G or dG), cytosine (C or dC), thymine (T) and uracil (U)). 25 Derivatives and precursors of bases such as inosine which are capable of supporting polypeptide biosynthesis are also included as monomers. Also included are chemically modified nucleotides, for example, one having a reversible blocking agent attached to any of the positions on the 30 purine or pyrimidine bases, the ribose or deoxyribose sugar or the phosphate or hydroxyl moieties of the monomer. Such blocking groups include, for example, dimethoxytrityl, benzoyl, isobutyryl, beta-cyanoethyl and diisopropylamine groups, and are used to protect hydroxyls, exocyclic amines 35 and phosphate moieties. Other blocking agents can also be used and are known to one skilled in the art.

As used herein, the term "tuplet" refers to a group of elements of a definable size. The elements of a tuplet as used herein are nucleotide monomers. For example, a tuplet can be a dinucleotide, a trinucleotide or can also be four
5 or more nucleotides.

As used herein, the term "codon" or "triplet" refers to a tuplet consisting of three adjacent nucleotide monomers which specify one of the twenty naturally occurring amino acids found in polypeptide biosynthesis.
10 The term also includes nonsense, or stop, codons which do not specify any amino acid.

"Random codons" or "randomized codons," as used herein, refers to more than one codon at a position within a collection of oligonucleotides. The number of different
15 codons can be from two to twenty at any particular position. "Randomized oligonucleotides," as used herein, refers to a collection of oligonucleotides with random codons at one or more positions. "Random codon sequences" as used herein means that more than one codon position
20 within a randomized oligonucleotide contains random codons. For example, if randomized oligonucleotides are six nucleotides in length (i.e., two codons) and both the first and second codon positions are randomized to encode all twenty amino acids, then a population of oligonucleotides
25 having random codon sequences with every possible combination of the twenty triplets in the first and second position makes up the above population of randomized oligonucleotides. The number of possible codon combinations is 20^2 . Likewise, if randomized
30 oligonucleotides of fifteen nucleotides in length are synthesized which have random codon sequences at all positions encoding all twenty amino acids, then all triplets coding for each of the twenty amino acids will be found in equal proportions at every position. The
35 population constituting the randomized oligonucleotides

will contain 20^{15} different possible species of oligonucleotides. "Random triplets," or "randomized triplets" are defined analogously.

As used herein, the term "bias" refers to a preference. It is understood that there can be degrees of preference or bias toward codon sequences which encode particular amino acids. For example, an oligonucleotide whose codon sequences do not preferably encode particular amino acids is unbiased and therefore completely random.

The oligonucleotide codon sequences can also be biased toward predetermined codon sequences or codon frequencies and while still diverse and random, will exhibit codon sequences biased toward a defined, or preferred, sequence.

"A desirable bias of random codon sequences" as used herein, refers to the predetermined degree of bias which can be selected from totally random to essentially, but not totally, defined (or preferred). There must be at least one codon position which is variable, however.

As used herein, the term "support" refers to a solid phase material for attaching monomers for chemical synthesis. Such support is usually composed of materials such as beads of control pore glass but can be other materials known to one skilled in the art. The term is also meant to include one or more monomers coupled to the support for additional oligonucleotide synthesis reactions.

As used herein, the terms "coupling" or "condensing" refers to the chemical reactions for attaching one monomer to a second monomer or to a solid support. Such reactions are known to one skilled in the art and are typically performed on an automated DNA synthesizer such as a MilliGen/Bioscience Cyclone Plus Synthesizer using procedures recommended by the manufacturer. "Sequentially coupling" as used herein, refers to the stepwise addition of monomers.

A method of synthesizing oligonucleotides having random triplets using individual monomers is described. The method consists of several steps, the first being synthesis of a nucleotide triplet for each triplet to be randomized.

5 As described here and below, a nucleotide triplet (i.e., a codon) will be used as a specific example of a triplet. Any size triplet will work using the methods disclosed herein, and one skilled in the art would know how to use the methods to randomize triplets of any size.

10 If the randomization of codons specifying all twenty amino acids is desired at a position, then twenty different codons are synthesized. Likewise, if randomization of only ten codons at a particular position is desired then those ten codons are synthesized. Randomization of codons from 15 two to sixty-four can be accomplished by synthesizing each desired triplet. Preferably, randomization of from two to twenty codons is used for any one position because of the redundancy of the genetic code. The codons selected at one position do not have to be the same codons selected at the 20 next position. Additionally, the sense or anti-sense sequence oligonucleotide can be synthesized. The process therefore provides for randomization of any desired codon position with any number of codons.

Codons to be randomized are synthesized sequentially 25 by coupling the first monomer of each codon to separate supports. The supports for the synthesis of each codon can, for example, be contained in different reaction vessels such that one reaction vessel corresponds to the monomer coupling reactions for one codon. As will be used 30 here and below, if twenty codons are to be randomized, then twenty reaction vessels can be used in independent coupling reactions for the first twenty monomers of each codon. Synthesis proceeds by sequentially coupling the second monomer of each codon to the first monomer to produce a 35 dimer, followed by coupling the third monomer for each

codon to each of the above-synthesized dimers to produce a trimer (Figure 1, step 1, where M_1 , M_2 and M_3 represent the first, second and third monomer, respectively, for each codon to be randomized).

- 5 Following synthesis of the first codons from individual monomers, the randomization is achieved by mixing the supports from all twenty reaction vessels which contain the individual codons to be randomized. The solid phase support can be removed from its vessel and mixed to
10 achieve a random distribution of all codon species within the population (Figure 1, step 2). The mixed population of supports, constituting all codon species, are then redistributed into twenty independent reaction vessels (Figure 1, step 3). The resultant vessels are all
15 identical and contain equal portions of all twenty codons coupled to a solid phase support.

For randomization of the second position codon, synthesis of twenty additional codons is performed in each of the twenty reaction vessels produced in step 3 as the
20 condensing substrates of step 1 (Figure 1, step 4). Steps 1 and 4 are therefore equivalent except that step 4 uses the supports produced by the previous synthesis cycle (steps 1 through 3) for codon synthesis whereas step 1 is the initial synthesis of the first codon in the
25 oligonucleotide. The supports resulting from step 4 will each have two codons attached to them (i.e., a hexanucleotide) with the codon at the first position being any one of twenty possible codons (i.e., random) and the codon at the second position being one of the twenty
30 possible codons.

For randomization of the codon at the second position and synthesis of the third position codon, steps 2 through 4 are again repeated. This process yields in each vessel a three codon oligonucleotide (i.e., 9 nucleotides) with

codon positions 1 and 2 randomized and position three containing one of the twenty possible codons. Steps 2 through 4 are repeated to randomize the third position codon and synthesize the codon at the next position. The 5 process is continued until an oligonucleotide of the desired length is achieved. After the final randomization step, the oligonucleotide can be cleaved from the supports and isolated by methods known to one skilled in the art. Alternatively, the oligonucleotides can remain on the 10 supports for use in methods employing probe hybridization.

The diversity of codon sequences, i.e., the number of different possible oligonucleotides, which can be obtained using the methods of the present invention, is extremely large and only limited by the physical characteristics of 15 available materials. For example, a support composed of beads of about 100 μm in diameter will be limited to about 10,000 beads/reaction vessel using a 1 μM reaction vessel containing 25 mg of beads. This size bead can support about 1×10^7 oligonucleotides per bead. Synthesis using 20 separate reaction vessels for each of the twenty amino acids will produce beads in which all the oligonucleotides attached to an individual bead are identical. The diversity which can be obtained under these conditions is approximately 10^7 copies of $10,000 \times 20$ or 200,000 different 25 random oligonucleotides. The diversity can be increased, however, in several ways without departing from the basic methods disclosed herein. For example, the number of possible sequences can be increased by decreasing the size of the individual beads which make up the support. A bead 30 of about 30 μm in diameter will increase the number of beads per reaction vessel and therefore the number of oligonucleotides synthesized. Another way to increase the diversity of oligonucleotides with random codons is to increase the volume of the reaction vessel. For example, 35 using the same size bead, a larger volume can contain a greater number of beads than a smaller vessel and therefore

support the synthesis of a greater number of oligonucleotides. Increasing the number of codons coupled to a support in a single reaction vessel also increases the diversity of the random oligonucleotides. The total 5 diversity will be the number of codons coupled per vessel raised to the number of codon positions synthesized. For example, using ten reaction vessels, each synthesizing two codons to randomize a total of twenty codons, the number of different oligonucleotides of ten codons in length per 100 10 μm bead can be increased where each bead will contain about 2^{10} or 1×10^3 different sequences instead of one. One skilled in the art will know how to modify such parameters to increase the diversity of oligonucleotides with random codons.

15 A method of synthesizing oligonucleotides having random codons at each position using individual monomers wherein the number of reaction vessels is less than the number of codons to be randomized is also described. For example, if twenty codons are to be randomized at each 20 position within an oligonucleotide population, then ten reaction vessels can be used. The use of a smaller number of reaction vessels than the number of codons to be randomized at each position is preferred because the smaller number of reaction vessels is easier to manipulate 25 and results in a greater number of possible oligonucleotides synthesized.

The use of a smaller number of reaction vessels for random synthesis of twenty codons at a desired position within an oligonucleotide is similar to that described 30 above using twenty reaction vessels except that each reaction vessel can contain the synthesis products of more than one codon. For example, step one synthesis using ten reaction vessels proceeds by coupling about two different codons on supports contained in each of ten reaction 35 vessels. This is shown in Figure 2 where each of the two

codons coupled to a different support can consist of the following sequences: (1) (T/G)TT for Phe and Val; (2) (T/C)CT for Ser and Pro; (3) (T/C)AT for Tyr and His; (4) (T/C)GT for Cys and Arg; (5) (C/A)TG for Leu and Met; (6) 5 (C/G)AG for Gln and Glu; (7) (A/G)CT for Thr and Ala; (8) (A/G)AT for Asn and Asp; (9) (T/G)GG for Trp and Gly and (10) A(T/A)A for Ile and Cys. The slash (/) signifies that a mixture of the monomers indicated on each side of the slash are used as if they were a single monomer in the 10 indicated coupling step. The antisense sequence for each of the above codons can be generated by synthesizing the complementary sequence. For example, the antisense for Phe and Val can be AA(C/A). The amino acids encoded by each of the above pairs of sequences are given as the standard 15 three letter nomenclature.

Coupling of the monomers in this fashion will yield codons specifying all twenty of the naturally occurring amino acids attached to supports in ten reaction vessels. However, the number of individual reaction vessels to be 20 used will depend on the number of codons to be randomized at the desired position and can be determined by one skilled in the art. For example, if ten codons are to be randomized, then five reaction vessels can be used for coupling. The codon sequences given above can be used for 25 this synthesis as well. The sequences of the codons can also be changed to incorporate or be replaced by any of the additional forty-four codons which constitutes the genetic code.

The remaining steps of synthesis of oligonucleotides 30 with random codons using a smaller number of reaction vessels are as outlined above for synthesis with twenty reaction vessels except that the mixing and dividing steps are performed with supports from about half the number of reaction vessels. These remaining steps are shown in 35 Figure 2 (steps 2 through 4).

- Oligonucleotides having at least one specified tuplet at a pred terminated position and the remaining positions having random triplets can also be synthesized using the methods described herein. The synthesis steps are similar
- 5 to those outlined above using twenty or less reaction vessels except that prior to synthesis of the specified codon position, the dividing of the supports into separate reaction vessels for synthesis of different codons is omitted. For example, if the codon at the second position
- 10 of the oligonucleotide is to be specified, then following synthesis of random codons at the first position and mixing of the supports, the mixed supports are not divided into new reaction vessels but, instead, can be contained in a single reaction vessel to synthesize the specified codon.
- 15 The specified codon is synthesized sequentially from individual monomers as described above. Thus, the number of reaction vessels can be increased or decreased at each step to allow for the synthesis of a specified codon or a desired number of random codons.
- 20 Following codon synthesis, the mixed supports are divided into individual reaction vessels for synthesis of the next codon to be randomized (Figure 1, step 3) or can be used without separation for synthesis of a consecutive specified codon. The rounds of synthesis can be repeated
- 25 for each codon to be added until the desired number of positions with predetermined or randomized codons are obtained.
- Synthesis of oligonucleotides with the first position codon being specified can also be synthesized using the
- 30 above method. In this case, the first position codon is synthesized from the appropriate monomers. The supports are divided into the required number of reaction vessels needed for synthesis of random codons at the second position and the rounds of synthesis, mixing and dividing
- 35 are performed as described above.

- A method of synthesizing oligonucleotides having triplets which are diverse but biased toward a predetermined sequence is also described herein. This method employs two reaction vessels, one vessel for the synthesis of a 5 predetermined sequence and the second vessel for the synthesis of a random sequence. This method is advantageous to use when a significant number of codon positions, for example, are to be of a specified sequence since it alleviates the use of multiple reaction vessels.
- 10 Instead, a mixture of four different monomers such as adenine, guanine, cytosine and thymine nucleotides are used for the first and second monomers in the codon. The codon is completed by coupling a mixture of a pair of monomers of either guanine and thymine or cytosine and adenine
- 15 nucleotides at the third monomer position. In the second vessel, nucleotide monomers are coupled sequentially to yield the predetermined codon sequence. Mixing of the two supports yields a population of oligonucleotides containing both the predetermined codon and the random codons at the
- 20 desired position. Synthesis can proceed by using this mixture of supports in a single reaction vessel, for example, for coupling additional predetermined codons or, further dividing the mixture into two reaction vessels for synthesis of additional random codons.
- 25 The two reaction vessel method can be used for codon synthesis within an oligonucleotide with a predetermined triplet sequence by dividing the support mixture into two portions at the desired codon position to be randomized. Additionally, this method allows for the extent of
- 30 randomization to be adjusted. For example, unequal mixing or dividing of the two supports will change the fraction of codons with predetermined sequences compared to those with random codons at the desired position. Unequal mixing and dividing of supports can be useful when there is a need to
- 35 synthesize random codons at a significant number of positions within an oligonucleotide of a longer or shorter

length.

The extent of randomization can also be adjusted by using unequal mixtures of monomers in the first, second and third monomer coupling steps of the random codon position.

- 5 The unequal mixtures can be in any or all of the coupling steps to yield a population of codons enriched in sequences reflective of the monomer proportions.

Synthesis of randomized oligonucleotides is performed using methods well known to one skilled in the art. Linear 10 coupling of monomers can, for example, be accomplished using phosphoramidite chemistry with a MilliGen/Bioscience Cyclone Plus automated synthesizer as described by the manufacturer (Millipore, Burlington, MA). Other chemistries and automated synthesizers can be employed as 15 well and are known to one skilled in the art.

Synthesis of multiple codons can be performed without modification to the synthesizer by separately synthesizing the codons in individual sets of reactions. Alternatively, 20 modification of an automated DNA synthesizer can be performed for the simultaneous synthesis of codons in multiple reaction vessels.

In one embodiment, the invention provides a plurality of prokaryotic cells containing a diverse population of expressible oligonucleotides operationally linked to 25 expression elements, the expressible oligonucleotides having a desirable bias of random codon sequences produced from diverse combinations of first and second oligonucleotides having a desirable bias of random sequences. The invention provides for a method for 30 constructing such a plurality of prokaryotic cells as well.

The oligonucleotides synthesized by the above methods can be used to express a plurality of random peptides which

are unbiased, diverse but biased toward a predetermined sequence or which contain at least one specified codon at a predetermined position. The need will determine which type of oligonucleotide is to be expressed to give the 5 resultant population of random peptides and is known to one skilled in the art. Expression can be performed in any compatible vector/host system. Such systems include, for example, plasmids or phagemids in prokaryotes such as E. coli, yeast systems, and other eucaryotic systems such as 10 mammalian cells, but will be described herein in context with its presently preferred embodiment, i.e. expression on the surface of filamentous bacteriophage. Filamentous bacteriophage can be, for example, M13, f1 and fd. Such phage have circular single-stranded genomes and double 15 strand replicative DNA forms. Additionally, the peptides can also be expressed in soluble or secreted form depending on the need and the vector/host system employed.

Expression of random peptides on the surface of M13 can be accomplished, for example, using the vector system 20 shown in Figure 3. Construction of the vectors enabling one of ordinary skill to make them are explicitly set out in Examples I and II. The complete nucleotide sequences are given in Figures 5, 6 and 7 (SEQ ID NOS: 1, 2 and 3, respectively). This system produces random 25 oligonucleotides functionally linked to expression elements and to gVIII by combining two smaller oligonucleotide portions contained in separate vectors into a single vector. The diversity of oligonucleotide species obtained by this system or others described herein can be 5×10^7 or 30 greater. Diversity of less than 5×10^7 can also be obtained and will be determined by the need and type of random peptides to be expressed. The random combination of two precursor portions into a larger oligonucleotide increases the diversity of the population several fold and 35 has the added advantage of producing oligonucleotides larger than what can be synthesized by standard methods.

Additionally, although the correlation is not known, when the number of possible paths an oligonucleotide can take during synthesis such as described herein is greater than the number of beads, then there will be a correlation
5 between the synthesis path and the sequences obtained. By combining oligonucleotide populations which are synthesized separately, this correlation will be destroyed. Therefore, any bias which may be inherent in the synthesis procedures will be alleviated by joining two precursor portions into
10 a contiguous random oligonucleotide.

Populations of precursor oligonucleotides to be combined into an expressible form are each cloned into separate vectors. The two precursor portions which make up the combined oligonucleotide corresponds to the carboxy and
15 amino terminal portions of the expressed peptide. Each precursor oligonucleotide can encode either the sense or anti-sense and will depend on the orientation of the expression elements and the gene encoding the fusion portion of the protein as well as the mechanism used to
20 join the two precursor oligonucleotides. For the vectors shown in Figure 3, precursor oligonucleotides corresponding to the carboxy terminal portion of the peptide encode the sense strand. Those corresponding to the amino terminal portion encode the anti-sense strand. Oligonucleotide
25 populations are inserted between the Eco RI and Sac I restriction enzyme sites in M13IX22 and M13IX42 (Figure 3A and B). M13IX42 (SEQ ID NO: 1) is the vector used for sense strand precursor oligonucleotide portions and M13IX22 (SEQ ID NO: 2) is used for anti-sense precursor portions.

30 The populations of randomized oligonucleotides inserted into the vectors are synthesized with Eco RI and Sac I recognition sequences flanking opposite ends of the random codon sequences. The sites allow annealing and ligation of these single strand oligonucleotides into a
35 double stranded vector restricted with Eco RI and Sac I.

Alternatively, the oligonucleotides can be inserted into the vector by standard mutagenesis methods. In this latter method, single stranded vector DNA is isolated from the phage and annealed with random oligonucleotides having known sequences complementary to vector sequences. The 5 oligonucleotides are extended with DNA polymerase to produce double stranded vectors containing the randomized oligonucleotides.

The vector used for sense strand oligonucleotide portions, M13IX42 (Figure 3B) contains down-stream and in frame with the Eco RI and Sac I restriction sites a sequence encoding the pseudo-wild type gVIII product. This gene encodes the wild type M13 gVIII amino acid sequence but has been changed at the nucleotide level to reduce homologous recombination with the wild type gVIII contained on the same vector. The wild type gVIII is present to ensure that at least some functional, non-fusion coat protein will be produced. The inclusion of a wild type gVIII therefore reduces the possibility of non-viable phage 10 production and biological selection against certain peptide fusion proteins. Differential regulation of the two genes can also be used to control the relative ratio of the pseudo and wild type proteins.

Also contained downstream and in frame with the Eco RI and Sac I restriction sites is an amber stop codon. The mutation is located six codons downstream from Sac I and therefore lies between the inserted oligonucleotides and the gVIII sequence. As was the function of the wild type gVIII, the amber stop codon also reduces biological 15 selection when combining precursor portions to produce expressible oligonucleotides. This is accomplished by using a non-suppressor (^{sup} O) host strain because non-suppressor strains will terminate expression after the oligonucleotide sequences but before the pseudo gVIII 20 sequences. Therefore, the pseudo gVIII will never be 25 expressed.

expressed on the phage surface under these circumstances. Instead, only soluble peptides will be produced. Expression in a non-suppressor strain can be advantageously utilized when one wishes to produce large populations of 5 soluble peptides. Stop codons other than amber, such as opal and ochre, or molecular switches, such as inducible repressor elements, can also be used to unlink peptide expression from surface expression. Additional controls exist as well and are described below.

10 The vector used for anti-sense strand oligonucleotide portions, M13IX22, (Figure 3A), contains the expression elements for the peptide fusion proteins. Upstream and in frame with the Sac I and Eco RI sites in this vector is a leader sequence for surface expression. A ribosome binding 15 site and Lac Z promoter/operator elements are present for transcription and translation of the peptide fusion proteins.

Both vectors contain a pair of Fok I restriction enzyme sites (Figure 3 A and B) for joining together two 20 precursor oligonucleotide portions and their vector sequences. One site is located at the ends of each precursor oligonucleotide which is to be joined. The second Fok I site within the vectors is located at the end 25 of the vector sequences which are to be joined. The 5' overhang of this second Fok I site has been altered to encode a sequence which is not found in the overhangs produced at the first Fok I site within the oligonucleotide portions. The two sites allow the cleavage of each circular vector into two portions and subsequent ligation 30 of essential components within each vector into a single circular vector where the two oligonucleotide precursor portions form a contiguous sequence (Figure 3C). Non-compatible overhangs produced at the two Fok I sites allows optimal conditions to be selected for performing 35 concatemORIZATION or circularization reactions for joining

the two vector portions. Such selection of conditions can be used to govern the reaction order and therefore increase the efficiency of joining.

Fok I is a restriction enzyme whose recognition sequence is distal to the point of cleavage. Distal placement of the recognition sequence in its location to the cleavage point is important since if the two were superimposed within the oligonucleotide portions to be combined, it would lead to an invariant codon sequence at the juncture. To alleviate the formation of invariant codons at the juncture, Fok I recognition sequences can be placed outside of the random codon sequence and still be used to restrict within the random sequence. Subsequent annealing of the single-strand overhangs produced by Fok I and ligation of the two oligonucleotide precursor portions allows the juncture to be formed. A variety of restriction enzymes restrict DNA by this mechanism and can be used instead of Fok I to join precursor oligonucleotides without creating invariant codon sequences. Such enzymes include, for example, Alw I, Bbv I, Bsp MI, Hga I, Hph I, Mbo II, Mnl I, Pst I and Sfa NI. One skilled in the art knows how to substitute Fok I recognition sequences for alternative enzyme recognition sequences such as those above, and use the appropriate enzyme for joining precursor oligonucleotide portions.

Although the sequences of the precursor oligonucleotides are random and will invariably have oligonucleotides within the two precursor populations whose sequences are sufficiently complementary to anneal after cleavage, the efficiency of annealing can be increased by insuring that the single-strand overhangs within one precursor population will have a complementary sequence within the second precursor population. This can be accomplished by synthesizing a non-degenerate series of known sequences at the Fok I cleavage site coding for each

of the twenty amino acids. Since the Fok I cleavage site contains a four base overhang, forty different sequences are needed to randomly encode all twenty amino acids. For example, if two precursor populations of ten codons in length are to be combined, then after the ninth codon position is synthesized, the mixed population of supports are divided into forty reaction vessels for each of the populations and complementary sequences for each of the corresponding reaction vessels between populations are independently synthesized. The sequences are shown in Tables III and VI of Example I where the oligonucleotides on columns 1R through 40R form complementary overhangs with the oligonucleotides on the corresponding columns 1L through 40L once cleaved. The degenerate X positions in Table VI are necessary to maintain the reading frame once the precursor oligonucleotide portions are joined. However, use of restriction enzymes which produce a blunt end, such as Mnl I can be alternatively used in place of Fok I to alleviate the degeneracy introduced in maintaining the reading frame.

The last feature exhibited by each of the vectors is an amber stop codon located in an essential coding sequence within the vector portion lost during combining (Figure 3C). The amber stop codon is present to select for viable phage produced from only the proper combination of precursor oligonucleotides and their vector sequences into a single vector species. Other non-sense mutations or selectable markers can work as well.

The combining step randomly brings together different precursor oligonucleotides within the two populations into a single vector (Figure 3C; M13IX). The vector sequences donated from each independent vector, M13IX22 and M13IX42, are necessary for production of viable phage. Also, since the expression elements are contained in M13IX22 and the gVIII sequences are contained in M13IX42, expression of

functional gVIII-peptide fusion proteins cannot be accomplished until the sequences are linked as shown in M13IX.

The combining step is performed by restricting each 5 population of vectors containing randomized oligonucleotides with Fok I, mixing and ligating (Figure 3C). Any vectors generated which contain an amber stop codon will not produce viable phage when introduced into a non-suppressor strain (Figure 3D). Therefore, only the 10 sequences which do not contain an amber stop codon will make up the final population of vectors contained in the library. These vector sequences are the sequences required for surface expression of randomized peptides. By 15 analogous methodology, more than two vector portions can be combined into a single vector which expresses random peptides.

The invention provides for a method of selecting peptides capable of being bound by a ligand binding protein from a population of random peptides by (a) operationally 20 linking a diverse population of first oligonucleotides having a desirable bias of random codon sequences to a first vector; (b) operationally linking a diverse population of second oligonucleotides having a desirable bias of random codon sequences to a second vector; (c) 25 combining the vector products of steps (a) and (b) under conditions where said populations of first and second oligonucleotides are joined together into a population of combined vectors; (d) introducing said population of combined vectors into a compatible host under conditions 30 sufficient for expressing said population of random peptides; and (e) determining the peptides which bind to said binding protein. The invention also provides for determining the encoding nucleic acid sequence of such peptides as well.

Surface expression of the random peptide library is performed in an amber suppressor strain. As described above, the amber stop codon between the random codon sequence and the gVIII sequence unlinks the two components 5 in a non-suppressor strain. Isolating the phage produced from the non-suppressor strain and infecting a suppressor strain will link the random codon sequences to the gVIII sequence during expression (Figure 3E). Culturing the suppressor strain after infection allows the expression of 10 all peptide species within the library as gVIII-peptide fusion proteins. Alternatively, the DNA can be isolated from the non-suppressor strain and then introduced into a suppressor strain to accomplish the same effect.

The level of expression of gVIII-peptide fusion 15 proteins can additionally be controlled at the transcriptional level. The gVIII-peptide fusion proteins are under the inducible control of the Lac Z promoter/operator system. Other inducible promoters can work as well and are known by one skilled in the art. For 20 high levels of surface expression, the suppressor library is cultured in an inducer of the Lac Z promoter such as isopropylthio- β -galactoside (IPTG). Inducible control is beneficial because biological selection against non-functional gVIII-peptide fusion proteins can be minimized 25 by culturing the library under non-expressing conditions. Expression can then be induced only at the time of screening to ensure that the entire population of oligonucleotides within the library are accurately represented on the phage surface. Also this can be used to 30 control the valency of the peptide on the phage surface.

The surface expression library is screened for specific peptides which bind ligand binding proteins by standard affinity isolation procedures. Such methods include, for example, panning, affinity chromatography and 35 solid phase blotting procedures. Panning as described by

Parmley and Smith, Gene 73:305-318 (1988), which is incorporated herein by reference, is preferred because high titers of phage can be screened easily, quickly and in small volumes. Furthermore, this procedure can select 5 minor peptide species within the population, which otherwise would have been undetectable, and amplified to substantially homogenous populations. The selected peptide sequences can be determined by sequencing the nucleic acid encoding such peptides after amplification of the phage 10 population.

The invention provides a plurality of prokaryotic cells containing a diverse population of oligonucleotides having a desirable bias of random codon sequences that are operationally linked to expression sequences. The 15 invention provides for methods of constructing such populations of cells as well.

Random oligonucleotides synthesized by any of the methods described previously can also be expressed on the surface of filamentous bacteriophage, such as M13, for 20 example, without the joining together of precursor oligonucleotides. A vector such as that shown in Figure 4, M13IX30, can be used. This vector exhibits all the functional features of the combined vector shown in Figure 3C for surface expression of gVIII-peptide fusion proteins. 25 The complete nucleotide sequence for M13IX30 (SEQ ID NO: 3) is shown in Figure 7.

M13IX30 contains a wild type gVIII for phage viability and a pseudo gVIII sequence for peptide fusions. The vector also contains in frame restriction sites for cloning 30 random peptides. The cloning sites in this vector are Xho I, Stu I and Spe I. Oligonucleotides should therefore be synthesized with the appropriate complementary ends for annealing and ligation or insertional mutagenesis. Alternatively, the appropriate termini can be generated by

PCR technology. Between the restriction sites and the pseudo gVIII sequence is an in-frame amber stop codon, again, ensuring complete viability of phage in constructing and manipulating the library. Expression and screening is 5 performed as described above for the surface expression library of oligonucleotides generated from precursor portions.

Thus, the invention provides a method of selecting peptides capable of being bound by a ligand binding protein 10 from a population of random peptides by (a) operationally linking a diverse population of oligonucleotides having a desirable bias of random codon sequences to expression elements; (b) introducing said population of vectors into a compatible host under conditions sufficient for 15 expressing said population of random peptides; and (c) determining the peptides which bind to said binding protein. Also provided is a method for determining the encoding nucleic acid sequence of such selected peptides.

The following examples are intended to illustrate, but 20 not limit the invention.

EXAMPLE I

Isolation and Characterization of Peptide Ligands Generated From Right and Left Half Random Oligonucleotides

25 This example shows the synthesis of random oligonucleotides and the construction and expression of surface expression libraries of the encoded randomized peptides. The random peptides of this example derive from the mixing and joining together of two random 30 oligonucleotides. Also demonstrated is the isolation and characterization of peptide ligands and their corresponding nucleotide sequence for specific binding proteins.

Synthesis of Random Oligonucleotides

The synthesis of two randomized oligonucleotides which correspond to smaller portions of a larger randomized oligonucleotide is shown below. Each of the two smaller 5 portions make up one-half of the larger oligonucleotide. The population of randomized oligonucleotides constituting each half are designated the right and left half. Each population of right and left halves are ten codons in length with twenty random codons at each position. The 10 right half corresponds to the sense sequence of the randomized oligonucleotides and encode the carboxy terminal half of the expressed peptides. The left half corresponds to the anti-sense sequence of the randomized oligonucleotides and encode the amino terminal half of the 15 expressed peptides. The right and left halves of the randomized oligonucleotide populations are cloned into separate vector species and then mixed and joined so that the right and left halves come together in random combination to produce a single expression vector species 20 which contains a population of randomized oligonucleotides twenty codons in length. Electroporation of the vector population into an appropriate host produces filamentous phage which express the random peptides on their surface.

The reaction vessels for oligonucleotide synthesis 25 were obtained from the manufacturer of the automated synthesizer (Millipore, Burlington, MA; supplier of MilliGen/Bioscience Cyclone Plus Synthesizer). The vessels were supplied as packages containing empty reaction columns (1 μ mole), frits, crimps and plugs (MilliGen/Bioscience 30 catalog # GEN 860458). Derivatized and underderivatized control pore glass, phosphoramidite nucleotides, and synthesis reagents were also obtained from MilliGen/Bioscience. Crimper and decrimp r tools were obtained from Fisher Scientific Co., Pittsburgh, PA 35 (Catalog numbers 06-406-20 and 06-406-25A, respectively).

Ten reaction columns were used for right half synthesis of random oligonucleotides ten codons in length. The oligonucleotides have 5 monomers at their 3' end of the sequence 5'GAGCT3' and 8 monomers at their 5' end of the 5 sequence 5'AATTCCAT3'. The synthesizer was fitted with a column derivatized with a thymine nucleotide (T-column, MilliGen/Bioscience # 0615.50) and was programmed to synthesize the sequences shown in Table I for each of ten columns in independent reaction sets. The sequence of the 10 last three monomers (from right to left since synthesis proceeds 3' to 5') encode the indicated amino acids:

Table I

	<u>Column</u>	<u>Sequence (5' to 3')</u>	<u>Amino Acids</u>
15	column 1R	(T/G)TTGAGCT	Phe and Val
	column 2R	(T/C)CTGAGCT	Ser and Pro
	column 3R	(T/C)ATGAGCT	Tyr and His
	column 4R	(T/C)GTGAGCT	Cys and Arg
	column 5R	(C/A)TGGAGCT	Leu and Met
20	column 6R	(C/G)AGGAGCT	Gln and Glu
	column 7R	(A/G)CTGAGCT	Thr and Ala
	column 8R	(A/G)ATGAGCT	Asn and Asp
	column 9R	(T/G)GGGAGCT	Trp and Gly
	column 1R	A(T/A)AGAGCT	Ile and Cys

25 where the two monomers in parentheses denote a single monomer position within the codon and indicate that an equal mixture of each monomer was added to the reaction for coupling. The monomer coupling reactions for each of the 10 columns were performed as recommended by the 30 manufacturer (amidite version S1.06, # 8400-050990, scale 1 μ M). After the last coupling reaction, the columns were washed with acetonitrile and lyophilized to dryness.

Following synthesis, the plugs were removed from each

column using a decrimper and the reaction products were poured into a single weigh boat. Initially the bead mass increases, due to the weight of the monomers, however, at later rounds of synthesis material is lost. In either 5 case, the material was equalized with underivatized control pore glass and mixed thoroughly to obtain a random distribution of all twenty codon species. The reaction products were then aliquotted into 10 new reaction columns by removing 25 mg of material at a time and placing it into 10 separate reaction columns. Alternatively, the reaction products can be aliquotted by suspending the beads in a liquid that is dense enough for the beads to remain dispersed, preferably a liquid that is equal in density to the beads, and then aliquoting equal volumes of the 15 suspension into separate reaction columns. The lip on the inside of the columns where the frits rest was cleared of material using vacuum suction with a syringe and 25 G needle. New frits were placed onto the lips, the plugs were fitted into the columns and were crimped into place 20 using a crimper.

Synthesis of the second codon position was achieved using the above 10 columns containing the random mixture of reaction products from the first codon synthesis. The monomer coupling reactions for the second codon position 25 are shown in Table II. An A in the first position means that any monomer can be programmed into the synthesizer. At that position, the first monomer position is not coupled by the synthesizer since the software assumes that the monomer is already attached to the column. An A also 30 denotes that the columns from the previous codon synthesis should be placed on the synthesizer for use in the present synthesis round. Reactions were again sequentially repeated for each column as shown in Table II and the reaction products washed and dried as described above.

Table II

	<u>Column</u>	<u>Sequence (5' to 3')</u>	<u>Amino Acids</u>
5	column 1R	(T/G)TTA	Phe and Val
	column 2R	(T/C)CTA	Ser and Pro
	column 3R	(T/C)ATA	Tyr and His
	column 4R	(T/C)GTA	Cys and Arg
	column 5R	(C/A)TGA	Leu and Met
10	column 6R	(C/G)AGA	Gln and Glu
	column 7R	(A/G)CTA	Thr and Ala
	column 8R	(A/G)ATA	Asn and Asp
	column 9R	(T/G)GGA	Trp and Gly
	column 10R	A(T/A)AA	Ile and Cys

Randomization of the second codon position was achieved by
 15 removing the reaction products from each of the columns and
 thoroughly mixing the material. The material was again
 divided into new reaction columns and prepared for monomer
 coupling reactions as described above.

Random synthesis of the next seven codons (positions
 20 3 through 9) proceeded identically to the cycle described
 above for the second codon position and again used the
 monomer sequences of Table II. Each of the newly repacked
 columns containing the random mixture of reaction products
 from synthesis of the previous codon position was used for
 25 the synthesis of the subsequent codon position. After
 synthesis of the codon at position nine and mixing of the
 reaction products, the material was divided and repacked
 into 40 different columns and the monomer sequences shown
 in Table III were coupled to each of the 40 columns in
 30 independent reactions. The oligonucleotides from each of
 the 40 columns were mixed once more and cleaved from the
 control pore glass as recommended by the manufacturer.

Table III

	<u>Column</u>	<u>Sequence (5' to 3')</u>
5	column 1R	AATTCTTTA <u>A</u>
	column 2R	AATTCTGTTA <u>A</u>
	column 3R	AATTCGTTA <u>A</u>
	column 4R	AATTCGGTTA <u>A</u>
	column 5R	AATTCTTCTA <u>A</u>
	column 6R	AATTCTCCTA <u>A</u>
10	column 7R	AATTCGTCTA <u>A</u>
	column 8R	AATTCGCCTA <u>A</u>
	column 9R	AATTCTTATA <u>A</u>
	column 10R	AATTCTCATA <u>A</u>
	column 11R	AATTCGTATA <u>A</u>
	column 12R	AATTCGCATA <u>A</u>
15	column 13R	AATTCTTGTA <u>A</u>
	column 14R	AATTCTCGTA <u>A</u>
	column 15R	AATTCGTGT <u>A</u>
	column 16R	AATTCGCGT <u>A</u>
	column 17R	AATTCTCTGA <u>A</u>
	column 18R	AATTCTATGA <u>A</u>
20	column 19R	AATTCGCTGA <u>A</u>
	column 20R	AATTCGATGA <u>A</u>
	column 21R	AATTCTCAGA <u>A</u>
	column 22R	AATTCTGAGA <u>A</u>
	column 23R	AATTCGCAGA <u>A</u>
	column 24R	AATTGGAGA <u>A</u>
25	column 25R	AATTCTACTA <u>A</u>
	column 26R	AATTCTGCTA <u>A</u>
	column 27R	AATTCGACTA <u>A</u>
	column 28R	AATTGGCTA <u>A</u>
	column 29R	AATTCTAA <u>A</u>
	column 30R	AATTCTGATA <u>A</u>
30	column 31R	AATTCGAATA <u>A</u>
	column 32R	AATTGGATA <u>A</u>
	column 33R	AATTCTTGGA <u>A</u>

	column 34R	AATTCTGGGA
	column 35R	AATTCGTGGA <u>A</u>
	column 36R	AATTCGGGGA <u>A</u>
	column 37R	AATTCTATAA <u>A</u>
5	column 38R	AATTCTAAAA <u>A</u>
	column 39R	AATTCGATA <u>A</u> A
	column 40R	AATTCGAAAA <u>A</u>

Left half synthesis of random oligonucleotides proceeded similarly to the right half synthesis. This half of the oligonucleotide corresponds to the anti-sense sequence of the encoded randomized peptides. Thus, the complementary sequence of the codons in Tables I through III are synthesized. The left half oligonucleotides also have 5 monomers at their 3' end of the sequence 5'GAGCT3' and 8 monomers at their 5' end of the sequence 5'AATTCCAT3'. The rounds of synthesis, washing, drying, mixing, and dividing are as described above.

For the first codon position, the synthesizer was fitted with a T-column and programmed to synthesize the sequences shown in Table IV for each of ten columns in independent reaction sets. As with right half synthesis, the sequence of the last three monomers (from right to left) encode the indicated amino acids:

Table IV

	<u>Column</u>	<u>Sequence (5' to 3')</u>	<u>Amino Acids</u>
5	column 1L	AA(A/C)GAGCT	Phe and Val
	column 2L	AG(A/G)GAGCT	Ser and Pro
	column 3L	AT(A/G)GAGCT	Tyr and His
	column 4L	AC(A/G)GAGCT	Cys and Arg
	column 5L	CA(G/T)GAGCT	Leu and Met
10	column 6L	CT(G/C)GAGCT	Gln and Glu
	column 7L	AG(T/C)GAGCT	Thr and Ala
	column 8L	AT(T/C)GAGCT	Asn and Asp
	column 9L	CC(A/C)GAGCT	Trp and Gly
	column 10L	T(A/T)TGAGCT	Ile and Cys

Following washing and drying, the plugs for each column
 15 were removed, mixed and aliquotted into ten new reaction
 columns as described above. Synthesis of the second codon
 position was achieved using these ten columns containing
 the random mixture of reaction products from the first
 codon synthesis. The monomer coupling reactions for the
 20 second codon position are shown in Table V.

Table V

	<u>Column</u>	<u>Sequence (5' to 3')</u>	<u>Amino Acids</u>
25	column 1L	AA(A/C)A	Phe and Val
	column 2L	AG(A/G)A	Ser and Pro
	column 3L	AT(A/G)A	Tyr and His
	column 4L	AC(A/G)A	Cys and Arg
	column 5L	CA(G/T)A	Leu and Met
30	column 6L	CT(G/C)A	Gln and Glu
	column 7L	AG(T/C)A	Thr and Ala
	column 8L	AT(T/C)A	Asn and Asp
	column 9L	CC(A/C)A	Trp and Gly
	column 10L	T(A/T)TA	Ile and Cys

Again, randomization of the second codon position was achieved by removing the reaction products from each of the columns and thoroughly mixing the beads. The beads were repacked into ten new reaction columns.

5 Random synthesis of the next seven codon positions proceeded identically to the cycle described above for the second codon position and again used the monomer sequences of Table V. After synthesis of the codon at position nine and mixing of the reaction products, the material was
 10 divided and repacked into 40 different columns and the monomer sequences shown in Table VI were coupled to each of the 40 columns in independent reactions.

Table VI

	<u>Column</u>	<u>Sequence (5' to 3')</u>
15	column 1L	AATTCCATAAAAXXA
	column 2L	AATTCCATAAACXXA
	column 3L	AATTCCATAACAXXA
	column 4L	AATTCCATAACCXXA
20	column 5L	AATTCCATAGAAXXA
	column 6L	AATTCCATAGACXXA
	column 7L	AATTCCATAGGAXXA
	column 8L	AATTCCATAGGCXXA
	column 9L	AATTCCATATAAXXA
25	column 10L	AATTCCATATACXXA
	column 11L	AATTCCATATGAXXA
	column 12L	AATTCCATATGCXXA
	column 13L	AATTCCATACAAXXA
	column 14L	AATTCCATACACXXA
30	column 15L	AATTCCATACGAXXA
	column 16L	AATTCCATACGCXXA
	column 17L	AATTCCATCAGAXXA
	column 18L	AATTCCATCAGCXAA
	column 19L	AATTCCATCATAAXXA
35	column 20L	AATTCCATCATCXXA

	column 21L	AATTCCATCTGAXXA
	column 22L	AATTCCATCTGCXXA
	column 23L	AATTCCATCTCAXXA
	column 24L	AATTCCATCTCCXXA
5	column 25L	AATTCCATAGTAXXA
	column 26L	AATTCCATAGTCXXA
	column 27L	AATTCCATAGCAXXA
	column 28L	AATTCCATAGGCCXXA
	column 29L	AATTCCATATTAXXA
10	column 30L	AATTCCATATTCTXXA
	column 31L	AATTCCATATCAXXA
	column 32L	AATTCCATATCCXXA
	column 33L	AATTCCATCCAAXXA
	column 34L	AATTCCATCCACXXA
15	column 35L	AATTCCATCCCAXXA
	column 36L	AATTCCATCCCCXXA
	column 37L	AATTCCATTATAAXXA
	column 38L	AATTCCATTATCXXA
	column 39L	AATTCCATTTAXXA
20	column 40L	AATTCCATTTCTXXA

- The first two monomers denoted by an "X" represent an equal mixture of all four nucleotides at that position. This is necessary to retain a relatively unbiased codon sequence at the junction between right and left half oligonucleotides.
- 25 The above right and left half random oligonucleotides were cleaved and purified from the supports and used in constructing the surface expression libraries below.

Vector Construction

Two M13-based vectors, M13IX42 (SEQ ID NO: 1) and 30 M13IX22 (SEQ ID NO: 2), were constructed for the cloning and propagation of right and left half populations of random oligonucleotides, respectively. The vectors were specially constructed to facilitate the random joining and subsequent expression of right and left half

oligonucleotide populations. Each vector within the population contains one right and one left half oligonucleotide from the population joined together to form a single contiguous oligonucleotide with random codons 5 which is twenty-two codons in length. The resultant population of vectors are used to construct a surface expression library.

M13IX42, or the right-half vector, was constructed to harbor the right half populations of randomized 10 oligonucleotides. M13mp18 (Pharmacia, Piscataway, NJ) was the starting vector. This vector was genetically modified to contain, in addition to the encoded wild type M13 gene VIII already present in the vector: (1) a pseudo-wild type M13 gene VIII sequence with a stop codon (amber) placed 15 between it and an Eco RI-Sac I cloning site for randomized oligonucleotides; (2) a pair of Fok I sites to be used for joining with M13IX22, the left-half vector; (3) a second amber stop codon placed on the opposite side of the vector than the portion being combined with the left-half vector; 20 and (4) various other mutations to remove redundant restriction sites and the amino terminal portion of Lac Z.

The pseudo-wild type M13 gene VIII was used for surface expression of random peptides. The pseudo-wild type gene encodes the identical amino acid sequence as that 25 of the wild type gene; however, the nucleotide sequence has been altered so that only 63% identity exists between this gene and the encoded wild type gene VIII. Modification of the gene VIII nucleotide sequence used for surface expression reduces the possibility of homologous 30 recombination with the wild type gene VIII contained on the same vector. Additionally, the wild type M13 gene VIII was retained in the vector system to ensure that at least some functional, non-fusion coat protein would be produced. The inclusion of wild type gene VIII therefore reduces the 35 possibility of non-viable phage production from the random

peptide fusion genes.

The pseudo-wild type gene VIII was constructed by chemically synthesizing a series of oligonucleotides which encode both strands of the gene. The oligonucleotides are
5 presented in Table VII (SEQ ID NOS: 7 through 16).

TABLE VII

Pseudo-Wild Type Gene VIII Oligonucleotide Series

	<u>Top Strand Oligonucleotides</u>	<u>Sequence (5' to 3')</u>
10	VIII 03	GATCC TAG GCT GAA GGC GAT
	VIII 04	GAC CCT GCT AAG GCT GC
	VIII 05	A TTC AAT AGT TTA CAG GCA
	VIII 06	AGT GCT ACT GAG TAC A
	VIII 07	TT GGC TAC GCT TGG GCT ATG
		GTA GTA GTT ATA GTT
		GGT GCT ACC ATA GGG ATT AAA
15	VIII 08	TTA TTC AAA AAG TT
	VIII 09	T ACG AGC AAG GCT TCT TA
	VIII 10	
	VIII 11	
	VIII 12	
20	<u>Bottom Strand Oligonucleotides</u>	
	VIII 08	AGC TTA AGA AGC CTT GCT CGT
	VIII 09	AAA CTT TTT GAA TAA TTT
	VIII 10	AAT CCC TAT GGT AGC ACC AAC
	VIII 11	TAT AAC TAC TAC CAT
	VIII 12	AGC CCA AGC GTA GCC AAT GTA
		CTC AGT AGC ACT TG
25		C CTG TAA ACT ATT GAA TGC
		AGC CTT AGC AGG GTC
		ATC GCC TTC AGC CTA G
30	Except for the terminal oligonucleotides VIII 03 (SEQ	

ID NO: 7) and VIII 08 (SEQ ID NO: 12), the above oligonucleotides (oligonucleotides VIII 04-VIII 07 and 09-12 (SEQ ID NOS: 8 through 11 and 13 through 16)) were mixed at 200 ng each in 10 μ l final volume and phosphorylated 5 with T4 polynucleotide Kinase (Pharmacia, Piscataway, NJ) with 1 mM ATP at 37°C for 1 hour. The reaction was stopped at 65°C for 5 minutes. Terminal oligonucleotides were added to the mixture and annealed into double-stranded form by heating to 65°C for 5 minutes, followed by cooling to 10 room temperature over a period of 30 minutes. The annealed oligonucleotides were ligated together with 1.0 U of T4 DNA ligase (BRL). The annealed and ligated oligonucleotides yield a double-stranded DNA flanked by a Bam HI site at its 15 5' end and by a Hind III site at its 3' end. A translational stop codon (amber) immediately follows the Bam HI site. The gene VIII sequence begins with the codon GAA (Glu) two codons 3' to the stop codon. The double-stranded insert was phosphorylated using T4 DNA Kinase (Pharmacia, Piscataway, NJ) and ATP (10 mM Tris-HCl, pH 20 7.5, 10 mM MgCl₂) and cloned in frame with the Eco RI and Sac I sites within the M13 polylinker. To do so, M13mp18 was digested with Bam HI (New England Biolabs, Beverley, MA) and Hind III (New England Biolabs) and combined at a molar ratio of 1:10 with the double-stranded insert. The 25 ligations were performed at 16°C overnight in 1X ligase buffer (50 mM Tris-HCl, pH 7.8, 10 mM MgCl₂, 20 mM DTT, 1 mM ATP, 50 μ g/ml BSA) containing 1.0 U of T4 DNA ligase (New England Biolabs). The ligation mixture was transformed into a host and screened for positive clones using standard 30 procedures in the art.

Several mutations were generated within the right-half vector to yield functional M13IX42. The mutations were generated using the method of Kunkel et al., Meth. Enzymol. 154:367-382 (1987), which is incorporated herein by 35 reference, for site-directed mutagenesis. The reagents, strains and protocols were obtained from a Bio Rad

Mutagenesis kit (Bio Rad, Richmond, CA) and mutagenesis was performed as recommended by the manufacturer.

A Fok I site used for joining the right and left halves was generated 8 nucleotides 5' to the unique Eco RI site using the oligonucleotide 5'-CTCGAATTCTGTACATCCTGGTCATAGC-3' (SEQ ID NO: 17). The second Fok I site retained in the vector is naturally encoded at position 3547; however, the sequence within the overhang was changed to encode CTTC. Two Fok I sites were removed from the vector at positions 239 and 7244 of M13mp18 as well as the Hind III site at the end of the pseudo gene VIII sequence using the mutant oligonucleotides 5'-CATTTTGAGATGGCTTAGA-3' (SEQ ID NO: 18) and 5'-TAGCATTAAACGTCCAATA-3' (SEQ ID NO: 19), respectively. New Hind III and Mlu I sites were also introduced at position 3919 and 3951 of M13IX42. The oligonucleotides used for this mutagenesis had the sequences 5'-ATATATTTAGTAAGCTTCATCTTCT-3' (SEQ ID NO: 20) and 5'-GACAAAGAACCGGTGAAAACCTT-3' (SEQ ID NO: 21), respectively. The amino terminal portion of Lac Z was deleted by oligonucleotide-directed mutagenesis using the mutant oligonucleotide 5'-CGGGGCCTCTCGCTATTGCTTAAGAACGCTTGCT-3' (SEQ ID NO: 22). This deletion also removed a third M13mp18 derived Fok I site. The distance between the Eco RI and Sac I sites was increased to ensure complete double digestion by inserting a spacer sequence. The spacer sequence was inserted using the oligonucleotide 5'-TTCAGCCTAGGATCCGCCAGCTCTCCTACCTGCGAATTCTGTACATCC-3' (SEQ ID NO: 23). Finally, an amber stop codon was placed at position 4492 using the mutant oligonucleotide 5'-TGGATTATACTTCTA AATAATGGA-3' (SEQ ID NO: 24). The amber stop codon is used as a biological selection to ensure the proper recombination of vector sequences to bring together right and left halves of the randomized oligonucleotides. In constructing the above mutations, all changes made in a M13 coding region were performed such that the amino acid

sequence remained unaltered. It should be noted that several mutations within M13mp18 were found which differed from the published sequence. Where known, these sequence differences are recorded herein as found and therefore may 5 not correspond exactly to the published sequence of M13mp18.

The sequence of the resultant vector, M13IX42, is shown in Figure 5 (SEQ ID NO: 1). Figure 3A also shows M13IX42 where each of the elements necessary for producing 10 a surface expression library between right and left half randomized oligonucleotides is marked. The sequence between the two Fok I sites shown by the arrow is the portion of M13IX42 which is to be combined with a portion of the left-half vector to produce random oligonucleotides 15 as fusion proteins of gene VIII.

M13IX22, or the left-half vector, was constructed to harbor the left half populations of randomized oligonucleotides. This vector was constructed from M13mp19 (Pharmacia, Piscataway, NJ) and contains: (1) Two Fok I 20 sites for mixing with M13IX42 to bring together the left and right halves of the randomized oligonucleotides; (2) sequences necessary for expression such as a promoter and signal sequence and translation initiation signals; (3) an Eco RI-Sac I cloning site for the randomized 25 oligonucleotides; and (4) an amber stop codon for biological selection in bringing together right and left half oligonucleotides.

Of the two Fok I sites used for mixing M13IX22 with M13IX42, one is naturally encoded in M13mp18 and M13mp19 30 (at position 3547). As with M13IX42, the overhang within this naturally occurring Fok I site was changed to CTTC. The other Fok I site was introduced after construction of the translation initiation signals by site-directed mutagenesis using the oligonucleotide 5'-

TAACACTCATTCCGGATGGAATTCTGGAGTCTGGGT-3' (SEQ ID NO: 25).

The translation initiation signals were constructed by annealing of overlapping oligonucleotides as described above to produce a double-stranded insert containing a 5' 5 Eco RI site and a 3' Hind III site. The overlapping oligonucleotides are shown in Table VIII (SEQ ID NOS: 26 through 34) and were ligated as a double-stranded insert between the Eco RI and Hind III sites of M13mp18 as described for the pseudo gene VIII insert. The ribosome 10 binding site (AGGAGAC) is located in oligonucleotide 015 (SEQ ID NO: 26) and the translation initiation codon (ATG) is the first three nucleotides of oligonucleotide 016 (SEQ ID NO: 27).

TABLE VIII

15 Oligonucleotide Series for Construction of
Translation Signals in M13IX22

	<u>Oligonucleotide</u>	<u>Sequence (5' to 3')</u>
	015	AATT C GCC AAG GAG ACA GTC AT
	016	AATG AAA TAC CTA TTG CCT ACG GCA
20		GCC GCT GGA TTG TT
	017	ATTA CTC GCT GCC CAA CCA GCC ATG
		GCC GAG CTC GTG AT
	018	GACC CAG ACT CCA GATATC CAA CAG
		GAA TGA GTG TTA AT
25	019	TCT AGA ACG CGT C
	020	ACGT G ACG CGT TCT AGA AT TAA
		CACTCA TTC CTG T
	021	TG GAT ATC TGG AGT CTG GGT CAT
		CAC GAG CTC GGC CAT G
30	022	GC TGG TTG GGC AGC GAG TAA TAA
		CAA TCC AGC GGC TGC C
	023	GT AGG CAA TAG GTA TTT CAT TAT
		GAC TGT CCT TGG CG

Oligonucleotide 017 (SEQ ID NO: 27) contained a Sac I restriction site 67 nucleotides downstream from the ATG codon. The naturally occurring Eco RI site was removed and a new site introduced 25 nucleotides downstream from the 5 Sac I. Oligonucleotides 5'-TGACTGTCTCCTTGGCGTGTGAAATTGTTA-3' (SEQ ID NO: 35) and 5'-TAACACTCATTCGGATGGAATTCTGGAGTCTGGGT-3' (SEQ ID NO: 36) were used to generate each of the mutations, respectively. An amber stop codon was also introduced at position 3263 of M13mp18 using the 10 oligonucleotide 5'-CAATTATCCTAAATCTTACCAAC-3' (SEQ ID NO: 37).

In addition to the above mutations, a variety of other modifications were made to remove certain sequences and redundant restriction sites. The LAC Z ribosome binding 15 site was removed when the original Eco RI site in M13mp18 was mutated. Also, the Fok I sites at positions 239, 6361 and 7244 of M13mp18 were likewise removed with mutant oligonucleotides 5'-CATTTCGCAGATGGCTTAGA-3' (SEQ ID NO: 38), 5'-CGAAAGGGGGGTGTGCTGCAA-3' (SEQ ID NO: 39) and 5'-TAGCATTAAACGTCCAATA-3' (SEQ ID NO: 40), respectively. Again, mutations within the coding region did not alter the 20 amino acid sequence.

The resultant vector, M13IX22, is 7320 base pairs in length, the sequence of which is shown in Figure 6 (SEQ ID 25 NO: 2). The Sac I and Eco RI cloning sites are at positions 6290 and 6314, respectively. Figure 3A also shows M13IX22 where each of the elements necessary for producing a surface expression library between right and left half randomized oligonucleotides is marked.

30 Library Construction

Each population of right and left half randomized oligonucleotides from columns 1R through 40R and columns 1L through 40L are cloned separately into M13IX42 and M13IX22,

respectively, to create sublibraries of right and left half randomized oligonucleotides. Therefore, a total of eighty sublibraries are generated. Separately maintaining each population of randomized oligonucleotides until the final 5 screening step is performed to ensure maximum efficiency of annealing of right and left half oligonucleotides. The greater efficiency increases the total number of randomized oligonucleotides which can be obtained. Alternatively, one can combine all forty populations of right half 10 oligonucleotides (columns 1R-40R) into one population and of left half oligonucleotides (columns 1L-40L) into a second population to generate just one sublibrary for each.

For the generation of sublibraries, each of the above populations of randomized oligonucleotides are cloned 15 separately into the appropriate vector. The right half oligonucleotides are cloned into M13IX42 to generate sublibraries M13IX42.1R through M13IX42.40R. The left half oligonucleotides are similarly cloned into M13IX22 to generate sublibraries M13IX22.1L through M13IX22.40L. Each 20 vector contains unique Eco RI and Sac I restriction enzyme sites which produce 5' and 3' single-stranded overhangs, respectively, when digested. The single strand overhangs are used for the annealing and ligation of the complementary single-stranded random oligonucleotides.

25 The randomized oligonucleotide populations are cloned between the Eco RI and Sac I sites by sequential digestion and ligation steps. Each vector is treated with an excess of Eco RI (New England Biolabs) at 37°C for 2 hours followed by addition of 4-24 units of calf intestinal 30 alkaline phosphatase (Boehringer Mannheim, Indianapolis, IN). Reactions are stopped by phenol/chloroform extraction and ethanol precipitation. The pellets are resuspended in an appropriate amount of distilled or deionized water (dH₂O). About 10 pmol of vector is mixed with a 5000-fold 35 molar excess of each population of randomized

oligonucleotides in 10 μ l of 1X ligase buffer (50 mM Tris-HCl, pH 7.8, 10 mM MgCl₂, 20 mM DTT, 1 mM ATP, 50 μ g/ml BSA) containing 1.0 U of T4 DNA ligase (BRL, Gaithersburg, MD). The ligation is incubated at 16°C for 16 hours. Reactions
5 are stopped by heating at 75°C for 15 minutes and the DNA is digested with an excess of Sac I (New England Biolabs) for 2 hours. Sac I is inactivated by heating at 75°C for 15 minutes and the volume of the reaction mixture is adjusted to 300 μ l with an appropriate amount of 10X ligase
10 buffer and dH₂O. One unit of T4 DNA ligase (BRL) is added and the mixture is incubated overnight at 16°C. The DNA is ethanol precipitated and resuspended in TE (10 mM Tris-HCl, pH 8.0, 1 mM EDTA). DNA from each ligation is electroporated into XL1 Blue™ cells (Stratagene, La Jolla,
15 CA), as described below, to generate the sublibraries.

E. coli XL1 Blue™ is electroporated as described by Smith et al., Focus 12:38-40 (1990) which is incorporated herein by reference. The cells are prepared by inoculating a fresh colony of XL1s into 5 mls of SOB without magnesium
20 (20 g bacto-tryptone, 5 g bacto-yeast extract, 0.584 g NaCl, 0.186 g KCl, dH₂O to 1,000 mls) and grown with vigorous aeration overnight at 37°C. SOB without magnesium (500 ml) is inoculated at 1:1000 with the overnight culture and grown with vigorous aeration at 37°C until the OD₅₅₀ is
25 0.8 (about 2 to 3 h). The cells are harvested by centrifugation at 5,000 rpm (2,600 x g) in a GS3 rotor (Sorvall, Newtown, CT) at 4°C for 10 minutes, resuspended in 500 ml of ice-cold 10% (v/v) sterile glycerol and centrifuged and resuspended a second time in the same
30 manner. After a third centrifugation, the cells are resuspended in 10% sterile glycerol at a final volume of about 2 ml, such that the OD₅₅₀ of the suspension is 200 to 300. Usually, resuspension is achieved in the 10% glycerol that remains in the bottle after pouring off the supernate.
35 Cells are frozen in 40 μ l aliquots in microcentrifuge tubes using a dry ice-ethanol bath and stored frozen at -70°C.

Frozen cells are electroporated by thawing slowly on ice before use and mixing with about 10 pg to 500 ng of vector per 40 μ l of cell suspension. A 40 μ l aliquot is placed in an 0.1 cm electroporation chamber (Bio-Rad, 5 Richmond, CA) and pulsed once at 0°C using 200 Ω parallel resistor, 25 μ F, 1.88 kV, which gives a pulse length (τ) of ~4 ms. A 10 μ l aliquot of the pulsed cells are diluted into 1 ml SOC (98 mls SOB plus 1 ml of 2 M MgCl₂ and 1 ml of 2 M glucose) in a 12- x 75-mm culture tube, and the culture 10 is shaken at 37°C for 1 hour prior to culturing in selective media, (see below).

Each of the eighty sublibraries are cultured using methods known to one skilled in the art. Such methods can be found in Sanbrook et al., Molecular Cloning: A 15 Laboratory Manuel, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989, and in Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, New York, 1989, both of which are incorporated herein by reference. Briefly, the above 1 ml sublibrary cultures 20 were grown up by diluting 50-fold into 2XYT media (16 g tryptone, 10 g yeast extract, 5 g NaCl) and culturing at 37°C for 5-8 hours. The bacteria were pelleted by centrifugation at 10,000 xg. The supernatant containing phage was transferred to a sterile tube and stored at 4°C.

25 Double strand vector DNA containing right and left half randomized oligonucleotide inserts is isolated from the cell pellet of each sublibrary. Briefly, the pellet is washed in TE (10 mM Tris, pH 8.0, 1 mM EDTA) and recollected by centrifugation at 7,000 rpm for 5' in a 30 Sorval centrifuge (Newtown, CT). Pellets are resuspended in 6 mls of 10% Sucrose, 50 mM Tris, pH 8.0. 3.0 ml of 10 mg/ μ l lysozyme is added and incubated on ice for 20 minutes. 12 mls of 0.2 M NaOH, 1% SDS is added followed by 10 minutes on ice. The suspensions are then incubated on 35 ice for 20 minutes after addition of 7.5 mls of 3 M NaOAc,

pH 4.6. The samples are centrifuged at 15,000 rpm for 15 minutes at 4°C, RNased and extracted with phenol/chloroform, followed by ethanol precipitation. The pellets are resuspended, weighed and an equal weight of 5 CsCl₂ is dissolved into each tube until a density of 1.60 g/ml is achieved. EtBr is added to 600 µg/ml and the double-stranded DNA is isolated by equilibrium centrifugation in a TV-1665 rotor (Sorval) at 50,000 rpm for 6 hours. These DNAs from each right and left half 10 sublibrary are used to generate forty libraries in which the right and left halves of the randomized oligonucleotides have been randomly joined together.

Each of the forty libraries are produced by joining together one right half and one left half sublibrary. The 15 two sublibraries joined together corresponded to the same column number for right and left half random oligonucleotide synthesis. For example, sublibrary M13IX42.1R is joined with M13IX22.1L to produce the surface expression library M13IX.1RL. In the alternative situation 20 where only two sublibraries are generated from the combined populations of all right half synthesis and all left half synthesis, only one surface expression library would be produced.

For the random joining of each right and left half 25 oligonucleotide populations into a single surface expression vector species, the DNAs isolated from each sublibrary are digested an excess of Fok I (New England Biolabs). The reactions are stopped by phenol/chloroform extraction, followed by ethanol precipitation. Pellets are 30 resuspended in dH₂O. Each surface expression library is generated by ligating equal molar amounts (5-10 pmol) of Fok I digested DNA isolated from corresponding right and left half sublibraries in 10 µl of 1X ligase buffer containing 1.0 U of T4 DNA ligase (Bethesda Research 35 Laboratories, Gaithersburg, MD). The ligation proceed

overnight at 16°C and are electroporated into the sup 0 strain MK30-3 (Boehringer Mannheim Biochemical, (BMB), Indianapolis, IN) as previously described for XL1 cells. Because MK30-3 is sup 0, only the vector portions encoding 5 the randomized oligonucleotides which come together will produce viable phage.

Screening of Surface Expression Libraries

Purified phage are prepared from 50 ml liquid cultures of XL1 Blue™ cells (Stratagene) which are infected at a 10 m.o.i. of 10 from the phage stocks stored at 4°C. The cultures are induced with 2 mM IPTG. Supernatants from all cultures are combined and cleared by two centrifugations, and the phage are precipitated by adding 1/7.5 volumes of PEG solution (25% PEG-8000, 2.5 M NaCl), followed by 15 incubation at 4°C overnight. The precipitate is recovered by centrifugation for 90 minutes at 10,000 x g. Phage pellets are resuspended in 25 ml of 0.01 M Tris-HCl, pH 7.6, 1.0 mM EDTA, and 0.1% Sarkosyl and then shaken slowly at room temperature for 30 minutes. The solutions are 20 adjusted to 0.5 M NaCl and to a final concentration of 5% polyethylene glycol. After 2 hours at 4°C, the precipitates containing the phage are recovered by centrifugation for 1 hour at 15,000 X g. The precipitates are resuspended in 10 ml of NET buffer (0.1 M NaCl, 1.0 mM 25 EDTA, and 0.01 M Tris-HCl, pH 7.6), mixed well, and the phage repelleted by centrifugation at 170,000 X g for 3 hours. The phage pellets are subsequently resuspended overnight in 2 ml of NET buffer and subjected to cesium chloride centrifugation for 18 hours at 110,000 X g (3.86 30 g of cesium chloride in 10 ml of buffer). Phage bands are collected, diluted 7-fold with NET buffer, recentrifuged at 170,000 X g for 3 hours, resuspended, and stored at 4°C in 0.3 ml of NET buffer containing 0.1 mM sodium azide.

Ligand binding proteins used for panning on

streptavidin coated dishes are first biotinylated and then absorbed against UV-inactivated blocking phage (see below). The biotinylation reagents are dissolved in dimethylformamide at a ratio of 2.4 mg solid NHS-SS-Biotin 5 (sulfosuccinimidyl 2-(biotinamido)ethyl-1,3'-dithiopropionate; Pierce, Rockford, IL) to 1 ml solvent and used as recommended by the manufacturer. Small-scale reactions are accomplished by mixing 1 μ l dissolved reagent with 43 μ l of 1 mg/ml ligand binding protein diluted in 10 sterile bicarbonate buffer (0.1 M NaHCO₃, pH 8.6). After 2 hours at 25°C, residual biotinylation reagent is reacted with 500 μ l 1 M ethanolamine (pH adjusted to 9 with HCl) for an additional 2 hours. The entire sample is diluted with 1 ml TBS containing 1 mg/ml BSA, concentrated to about 15 50 μ l on a Centricon 30 ultra-filter (Amicon), and washed on the same filter three times with 2 ml TBS and once with 1 ml TBS containing 0.02% NaN₃ and 7 \times 10¹² UV-inactivated blocking phage (see below); the final retentate (60-80 μ l) is stored at 4°C. Ligand binding proteins biotinylated 20 with the NHS-SS-Biotin reagent are linked to biotin via a disulfide-containing chain.

UV-irradiated M13 phage were used for blocking binding proteins which fortuitously bound filamentous phage in general. M13mp8 (Messing and Vieira, Gene 19: 262-276 25 (1982), which is incorporated herein by reference) was chosen because it carries two amber stop codons, which ensure that the few phage surviving irradiation will not grow in the sup O strains used to titer the surface expression libraries. A 5 ml sample containing 5 \times 10¹³ 30 M13mp8 phage, purified as described above, was placed in a small petri plate and irradiated with a germicidal lamp at a distance of two feet for 7 minutes (flux 150 μ W/cm²). NaN₃ was added to 0.02% and phage particles concentrated to 10¹⁴ particles/ml on a Centricon 30-kDa ultrafilter 35 (Amicon).

For panning, polystyrene petri plates (60 x 15 mm, Falcon; Becton Dickinson, Lincoln Park, NJ) are incubated with 1 ml of 1 mg/ml of streptavidin (BMB) in 0.1 M NaHCO₃, pH 8.6-0.02% NaN₃ in a small, air-tight plastic box
5 overnight in a cold room. The next day streptavidin is removed and replaced with at least 10 ml blocking solution (29 mg/ml of BSA; 3 µg/ml of streptavidin; 0.1 M NaHCO₃, pH 8.6-0.02% NaN₃) and incubated at least 1 hour at room temperature. The blocking solution is removed and plates
10 are washed rapidly three times with Tris buffered saline containing 0.5% Tween 20 (TBS-0.5% Tween 20).

Selection of phage expressing peptides bound by the ligand binding proteins is performed with 5 µl (2.7 µg ligand binding protein) of blocked biotinylated ligand
15 binding proteins reacted with a 50 µl portion of each library. Each mixture is incubated overnight at 4°C, diluted with 1 ml TBS-0.5% Tween 20, and transferred to a streptavidin-coated petri plate prepared as described above. After rocking 10 minutes at room temperature,
20 unbound phage are removed and plates washed ten times with TBS-0.5% Tween 20 over a period of 30-90 minutes. Bound phage are eluted from plates with 800 µl sterile elution buffer (1 mg/ml BSA, 0.1 M HCl, pH adjusted to 2.2 with glycerol) for 15 minutes and eluates neutralized with 48 µl
25 2 M Tris (pH unadjusted). A 20 µl portion of each eluate is titered on MK30-3 concentrated cells with dilutions of input phage.

A second round of panning is performed by treating 750 µl of first eluate from each library with 5 mM DTT for 10
30 minutes to break disulfide bonds linking biotin groups to residual biotinylated binding proteins. The treated eluate is concentrated on a Centricon 30 ultrafilter (Amicon), washed three times with TBS-0.5% Tween 20, and concentrated to a final volume of about 50 µl. Final retentate is
35 transferred to a tube containing 5.0 µl (2.7 µg ligand

- binding protein) blocked biotinylated ligand binding proteins and incubated overnight. The solution is diluted with 1 ml TBS-0.5% Tween 20, panned, and eluted as described above on fresh streptavidin-coated petri plates.
- 5 The entire second eluate (800 μ l) is neutralized with 48 μ l 2 M Tris, and 20 μ l is titered simultaneously with the first eluate and dilutions of the input phage.

Individual phage populations are purified through 2 to 3 rounds of plaque purification. Briefly, the second 10 eluate titer plates are lifted with nitrocellulose filters (Schleicher & Schuell, Inc., Keene, NH) and processed by washing for 15 minutes in TBS (10 mM Tris-HCl, pH 7.2, 150 mM NaCl), followed by an incubation with shaking for an additional 1 hour at 37°C with TBS containing 5% nonfat dry 15 milk (TBS-5% NDM) at 0.5 ml/cm². The wash is discarded and fresh TBS-5% NDM is added (0.1 ml/cm²) containing the ligand binding protein between 1 nM to 100 mM, preferably between 1 to 100 μ M. All incubations are carried out in heat-sealable pouches (Sears). Incubation with the ligand 20 binding protein proceeds for 12-16 hours at 4°C with shaking. The filters are removed from the bags and washed 3 times for 30 minutes at room temperature with 150 mls of TBS containing 0.1% NDM and 0.2% NP-40 (Sigma, St. Louis, MO). The filters are then incubated for 2 hours at room 25 temperature in antiserum against the ligand binding protein at an appropriate dilution in TBS-0.5% NDM, washed in 3 changes of TBS containing 0.1% NDM and 0.2% NP-40 as described above and incubated in TBS containing 0.1% NDM and 0.2% NP-40 with 1×10^6 cpm of ¹²⁵I-labeled Protein A 30 (specific activity = 2.1×10^7 cpm/ μ g). After a washing with TBS containing 0.1% NDM and 0.2% NP-40 as described above, the filters are wrapped in Saran Wrap and exposed to Kodak X-Omat x-ray film (Kodak, Rochester, NY) for 1-12 hours at -70°C using Dupont Cronex Lightning Plus 35 Intensifying Screens (Dupont, Willmington, DE).

Positive plaques identified are cored with the large end of a pasteur pipet and placed into 1 ml of SM (5.8 g NaCl, 2 g MgSO₄·7H₂O, 50 ml 1 M Tris-HCl, pH 7.5, 5 mls 2% gelatin, to 1000 mls with dH₂O) plus 1-3 drops of CHCl₃ and

5 incubated at 37°C 2-3 hours or overnight at 4°C. The phage are diluted 1:500 in SM and 2 µl are added to 300 µl of XL1 cells plus 3 mls of soft agar per 100 mm² plate. The XL1 cells are prepared for plating by growing a colony overnight in 10 ml LB (10 g bacto-tryptone, 5 g bacto-yeast

10 extract, 10 g NaCl, 1000 ml dH₂O) containing 100 µl of 20% maltose and 100 µl of 1 M MgSO₄. The bacteria are pelleted by centrifugation at 2000 xg for 10 minutes and the pellet is resuspended gently in 10 mls of 10 mM MgSO₄. The suspension is diluted 4-fold by adding 30 mls of 10 mM MgSO₄

15 to give an OD₆₀₀ of approximately 0.5. The second and third round screens are identical to that described above except that the plaques are cored with the small end of a pasteur pipet and placed into 0.5 mls SM plus a drop of CHCl₃ and 1-5 µl of the phage following incubation are used for plating

20 without dilution. At the end of the third round of purification, an individual plaque is picked and the templates prepared for sequencing.

Template Preparation and Sequencing

Templates are prepared for sequencing by inoculating

25 a 1 ml culture of 2XYT containing a 1:100 dilution of an overnight culture of XL1 with an individual plaque. The plaques are picked using a sterile toothpick. The culture is incubated at 37°C for 5-6 hours with shaking and then transferred to a 1.5 ml microfuge tube. 200 µl of PEG

30 solution is added, followed by vortexing and placed on ice for 10 minutes. The phage precipitate is recovered by centrifugation in a microfuge at 12,000 x g for 5 minutes. The supernatant is discarded and the pellet is resuspended in 230 µl of TE (10 mM Tris-HCl, pH 7.5, 1 mM EDTA) by

35 gently pipeting with a yellow pipet tip. Phenol (200 µl)

is added, followed by a brief vortex and microfuged to separate the phases. The aqueous phase is transferred to a separate tube and extracted with 200 μ l of phenol/chloroform (1:1) as described above for the phenol extraction. A 0.1 volume of 3 M NaOAc is added, followed by addition of 2.5 volumes of ethanol and precipitated at -20°C for 20 minutes. The precipitated templates are recovered by centrifugation in a microfuge at 12,000 x g for 8 minutes. The pellet is washed in 70% ethanol, dried and resuspended in 25 μ l TE. Sequencing was performed using a Sequenase™ sequencing kit following the protocol supplied by the manufacturer (U.S. Biochemical, Cleveland, OH).

EXAMPLE II

15 Isolation and Characterization of Peptide Ligands Generated From Oligonucleotides Having Random Codons at Two Predetermined Positions

This example shows the generation of a surface expression library from a population of oligonucleotides having randomized codons. The oligonucleotides are ten codons in length and are cloned into a single vector species for the generation of a M13 gene VIII-based surface expression library. The example also shows the selection of peptides for a ligand binding protein and characterization of their encoded nucleic acid sequences.

Oligonucleotide Synthesis

Oligonucleotides were synthesized as described in Example I. The synthesizer was programmed to synthesize the sequences shown in Table IX. These sequences correspond to the first random codon position synthesized and 3' flanking sequences of the oligonucleotide which hybridizes to the leader sequence in the vector. The

complementary sequences are used for insertional mutagenesis of the synthesized population of oligonucleotides.

Table IX

	<u>Column</u>	<u>Sequence (5' to 3')</u>
5	column 1	AA(A/C)GGTTGGTCGGTACCGG
	column 2	AG(A/G)GGTTGGTCGGTACCGG
	column 3	AT(A/G)GGTTGGTCGGTACCGG
	column 4	AC(A/G)GGTTGGTCGGTACCGG
10	column 5	CA(G/T)GGTTGGTCGGTACCGG
	column 6	CT(G/C)GGTTGGTCGGTACCGG
	column 7	AG(T/C)GGTTGGTCGGTACCGG
	column 8	AT(T/C)GGTTGGTCGGTACCGG
	column 9	CC(A/C)GGTTGGTCGGTACCGG
15	column 10	T(A/T)TGGTTGGTCGGTACCGG

The next eight random codon positions were synthesized as described for Table V in Example I. Following the ninth position synthesis, the reaction products were once more combined, mixed and redistributed into 10 new reaction 20 columns. Synthesis of the last random codon position and 5' flanking sequences are shown in Table X.

Table X

	<u>Column</u>	<u>Sequence (5' to 3')</u>
25	column 1	AGGATCCGCCGAGCTCAA(A/C) <u>A</u>
	column 2	AGGATCCGCCGAGCTCAG(A/G) <u>A</u>
	column 3	AGGATCCGCCGAGCTCAT(A/G) <u>A</u>
	column 4	AGGATCCGCCGAGCTCAC(A/G) <u>A</u>
	column 5	AGGATCCGCCGAGCTCCA(G/T) <u>A</u>
	column 6	AGGATCCGCCGAGCTCCT(G/C) <u>A</u>
30	column 7	AGGATCCGCCGAGCTCAG(T/C) <u>A</u>
	column 8	AGGATCCGCCGAGCTCAT(T/C) <u>A</u>
	column 9	AGGATCCGCCGAGCTCCC(A/C) <u>A</u>
	column 10	AGGATCCGCCGAGCTCT(A/T) <u>TA</u>

The reaction products were mixed once more and the oligonucleotides cleaved and purified as recommended by the manufacturer. The purified population of oligonucleotides were used to generate a surface expression library as 5 described below.

Vector Construction

The vector used for generating surface expression libraries from a single oligonucleotide population (i.e., without joining together of right and left half 10 oligonucleotides) is described below. The vector is a M13-based expression vector which directs the synthesis of gene VIII-peptide fusion proteins (Figure 4). This vector exhibits all the functions that the combined right and left half vectors of Example I exhibit.

15 An M13-based vector was constructed for the cloning and surface expression of populations of random oligonucleotides (Figure 4, M13IX30), M13mp19 (Pharmacia) was the starting vector. This vector was modified to contain, in addition to the encoded wild type M13 gene 20 VIII: (1) a pseudo-wild type gene, gene VIII sequence with an amber stop codon placed between it and the restriction sites for cloning oligonucleotides; (2) Stu I, Spe I and Xho I restriction sites in frame with the pseudo-wild type gVIII for cloning oligonucleotides; (3) sequences necessary 25 for expression, such as a promoter, signal sequence and translation initiation signals; (4) various other mutations to remove redundant restriction sites and the amino terminal portion of Lac Z.

Construction of M13IX30 was performed in four steps. 30 In the first step, a precursor vector containing the pseudo gene VIII and various other mutations was constructed, M13IX01F. The second step involved the construction of a small cloning site in a separate M13mp18 vector to yield

M13IX03. In the third step, expression sequences and cloning sites were constructed in M13IX03 to generate the intermediate vector M13IX04B. The fourth step involved the incorporation of the newly constructed sequences from the 5 intermediate vector into M13IX01F to yield M13IX30. Incorporation of these sequences linked them with the pseudo gene VIII.

Construction of the precursor vector M13IX01F was similar to that of M13IX42 described in Example I except 10 for the following features: (1) M13mp19 was used as the starting vector; (2) the Fok I site 5' to the unique Eco RI site was not incorporated and the overhang at the naturally occurring Fok I site at position 3547 was not changed to 5'-CTTC-3'; (3) the spacer sequence was not 15 incorporated between the Eco RI and Sac I sites; and (4) the amber codon at position 4492 was not incorporated.

In the second step, M13mp18 was mutated to remove the 5' end of Lac Z up to the Lac i binding site and including the Lac Z ribosome binding site and start codon. 20 Additionally, the polylinker was removed and a Mlu I site was introduced in the coding region of Lac Z. A single oligonucleotide was used for these mutagenesis and had the sequence "5'-AAACGACGGCCAGTGCCAAAGTGACCGTGTGAAATTGTTATCC-3'" (SEQ ID NO: 41). Restriction enzyme sites for Hind III 25 and Eco RI were introduced downstream of the MluI site using the oligonucleotide "5'-GGCGAAAGGGAATTCTGCAAGGCGATTAAGCTTGGGTAACGCC-3'" (SEQ ID NO: 42). These modifications of M13mp18 yielded the vector M13IX03.

30 The expression sequences and cloning sites were introduced into M13IX03 by chemically synthesizing a series of oligonucleotides which encode both strands of the desired sequence. The oligonucleotides are presented in Table XI (SEQ ID NOS: 43 through 50).

TABLE XI
M13IX30 Oligonucleotide Series

<u>Top Strand Oligonucleotides</u>		<u>Sequence (5' to 3')</u>
5	084	GGCGTTACCCAAGCTTGTACATGGAGAAAATAAAG
	027	TGAAACAAAGCACTATTGCACTGGCACTCTTACCGT TACCGT
	028	TACTGTTACCCCTGTGACAAAAGCCGCCAGGTCC AGCTGC
10	029	TCGAGTCAGGCCTATTGTGCCAGGGATTGTACTAG TGGATCCG
<u>Bottom Oligonucleotides</u>		<u>Sequence (5' to 3')</u>
15	085	TGGCGAAAGGAATTGGATCCACTAGTACAATCCCTG
	031	GGCACAAATAGGCCTGACTCGAGCAGCTGGACCAGGGCG GCTT
	032	TTGTCACAGGGTAAACAGTAACGGTAACGGTAAGTGT GCCA
	033	GTGCAAATAGTGCTTGTTCACTTTATTTCTCCATGT ACAA

The above oligonucleotides except for the terminal oligonucleotides 084 (SEQ ID NO: 43) and 085 (SEQ ID NO: 47) of Table XI were mixed, phosphorylated, annealed and ligated to form a double stranded insert as described in Example I. However, instead of cloning directly into the intermediate vector the insert was first amplified by PCR using the terminal oligonucleotides 084 (SEQ ID NO: 43) and 085 (SEQ ID NO: 47) as primers. The terminal oligonucleotide 084 (SEQ ID NO: 43) contains a Hind III site 10 nucleotides internal to its 5' end. Oligonucleotide 085 (SEQ ID NO: 47) has an Eco RI site at its 5' end. Following amplification, the products were restricted with Hind III and Eco RI and ligated as described in Example I into the polylinker of M13mp18

digested with the same two enzymes. The resultant double stranded insert contained a ribosome binding site, a translation initiation codon followed by a leader sequence and three restriction enzyme sites for cloning random 5 oligonucleotides (Xho I, Stu I, Spe I). The vector was named M13IX04.

During cloning of the double-stranded insert, it was found that one of the GCC codons in oligonucleotides 028 and its complement in 031 was deleted. Since this deletion 10 did not affect function, the final construct is missing one of the two GCC codons. Additionally, oligonucleotide 032 contained a GTG codon where a GAG codon was needed. Mutagenesis was performed using the oligonucleotide 5'-TAACGGTAAGAGTGCCAGTGC-3' (SEQ ID NO: 51) to convert the 15 codon to the desired sequence. The resultant intermediate vector was named M13IX04B.

The fourth step in constructing M13IX30 involved inserting the expression and cloning sequences from M13IX04B upstream of the pseudo-wild type gVIII in 20 M13IX01F. This was accomplished by digesting M13IX04B with Dra III and Ban HI and gel isolating the 700 base pair insert containing the sequences of interest. M13IX01F was likewise digested with Dra III and Bam HI. The insert was combined with the double digested vector at a molar ratio 25 of 3:1 and ligated as described in Example I. It should be noted that all modifications in the vectors described herein were confirmed by sequence analysis. The sequence of the final construct, M13IX30, is shown in Figure 7 (SEQ ID NO: 3). Figure 4 also shows M13IX30 where each of the 30 elements necessary for surface expression of randomized oligonucleotides is marked.

Library Construction, Screening and Characterization of
Encoded Oligonucleotides

Construction of an M13IX30 surface expression library is accomplished identically to that described in Example I for sublibrary construction except the oligonucleotides described above are inserted into M13IX30 by mutagenesis instead of by ligation. The library is constructed and propagated on MK30-3 (BMB) and phage stocks are prepared for infection of XLI cells and screening. The surface expression library is screened and encoding oligonucleotides characterized as described in Example I.

EXAMPLE III

Isolation and Characterization of Peptide Ligands
Generated from Right and Left Half

15 Degenerate Oligonucleotides

This example shows the construction and expression of a surface expression library of degenerate oligonucleotides. The encoded peptides of this example derive from the mixing and joining together of two separate oligonucleotide populations. Also demonstrated is the isolation and characterization of peptide ligands and their corresponding nucleotide sequence for specific binding proteins.

Synthesis of Oligonucleotide Populations

25 A population of left half degenerate oligonucleotides and a population of right half degenerate oligonucleotides was synthesized using standard automated procedures as described in Example I.

The degenerate codon sequences for each population 30 of oligonucleotides were generated by sequentially

synthesizing the triplet NNG/T where N is an equal mixture of all four nucleotides. The antisense sequence for each population of oligonucleotides was synthesized and each population contained 5' and 3' flanking sequences complementary to the vector sequence. The complementary termini was used to incorporate each population of oligonucleotides into their respective vectors by standard mutagenesis procedures. Such procedures have been described previously in Example I and in the Detailed Description. Synthesis of the antisense sequence of each population was necessary since the single-stranded form of the vectors are obtained only as the sense strand.

The left half oligonucleotide population was synthesized having the following sequence: 5'-AGCTCCGGATGCCCTCAGAAGATG(A/CNN),₁₀GGCTTTGCCACAGGGG-3' (SEQ ID NO: 52). The right half oligonucleotide population was synthesized having the following sequence: 5'-CAGCCTCGGATCCGCC(A/CNN)₁₀ATG(A/C)GAAT-3' (SEQ ID NO. 53). These two oligonucleotide populations when incorporated into their respective vectors and joined together encode a 20 codon oligonucleotide having 19 degenerate positions and an internal predetermined codon sequence.

Vector Construction

Modified forms of the previously described vectors were used for the construction of right and left half sublibraries. The construction of left half sublibraries was performed in an M13-based vector termed M13ED03. This vector is a modified form of the previously described M13IX30 vector and contains all the essential features of both M13IX30 and M13IX22. M13ED03 contains, in addition to a wild type and a pseudo-wild type gene VIII, sequences necessary for expression and two Fok I sites for joining with a right half oligonucleotide

sublibrary. Therefore, this vector combines the advantages of both previous vectors in that it can be used for the generation and expression of surface expression libraries from a single oligonucleotide population or it can be joined with a sublibrary to bring together right and left half oligonucleotide populations into a surface expression library.

M13ED03 was constructed in two steps from M13IX30. The first step involved the modification of M13IX30 to remove a redundant sequence and to incorporate a sequence encoding the eight amino-terminal residues of human β -endorphin. The leader sequence was also mutated to increase secretion of the product.

During construction of M13IX04 (an intermediate vector to M13IX30 which is described in Example II), a six nucleotide sequence was duplicated in oligonucleotide 027 (SEQ ID NO: 44) and its complement 032 (SEQ ID NO: 49). This sequence, 5'-TTACCG-3', was deleted by mutagenesis in the construction of M13ED01. The oligonucleotide used for the mutagenesis was 5'-GGTAAACAGTAACGGTAAGAGTGCCAG-3' (SEQ ID NO: 54). The mutation in the leader sequence was generated using the oligonucleotide 5'-GGGCTTTGCCACAGGGGT-3' (SEQ ID NO: 55). This mutagenesis resulted in the A residue at position 6353 of M13IX30 being changed to a G residue. The resultant vector was designated M13IX32.

To generate M13ED01, the nucleotide sequence encoding β -endorphin (8 amino acid residues of β -endorphin plus 3 extra amino acid residues) was incorporated after the leader sequence by mutagenesis. The oligonucleotide used had the following sequence: 5'-AGGGTCATGCCCTTCAGCTCCGGATCCCTCAGAAGTCATAAACCCCCCATAGGC TTTGCCAC-3' (SEQ ID NO: 56). This mutagenesis also removed some of the downstream sequences through the Spe

I site.

The second step in the construction of M13ED03 involved vector changes which put the β -endorphin sequence in frame with the downstream pseudo-gene VIII sequence and incorporated a Fok I site for joining with a sublibrary of right half oligonucleotides. This vector was designed to incorporate oligonucleotide populations by mutagenesis using sequences complementary to those flanking or overlapping with the encoded β -endorphin sequence. The absence of β -endorphin expression after mutagenesis can therefore be used to measure the mutagenesis frequency. In addition to the above vector changes, M13ED03 was also modified to contain an amber codon at position 3262 for biological selection during joining of right and left half sublibraries.

The mutations were incorporated using standard mutagenesis procedures as described in Example I. The frame shift changes and Fok I site were generated using the oligonucleotide 5'-

20 TCGCCTTCAGCTCCGGATGCCCTCAGAAGCATGAACCCCCCATAGGC-3' (SEQ ID NO: 57). The amber codon was generated using the oligonucleotide 5'-CAATTTATCCTAAATCTTACCAAC-3' (SEQ ID NO: 58). The full sequence of the resultant vector, M13ED03, is provided in Figure 8 (SEQ ID NO: 4).

25 The construction of right half oligonucleotide sublibraries was performed in a modified form of the M13IX42 vector. The new vector, M13IX421, is identical to M13IX42 except that the amber codon between the Eco RI-SacI cloning site and the pseudo-gene VIII sequence 30 was removed. This change ensures that all expression off of the Lac Z promoter produces a peptide-gene VIII fusion protein. Removal of the amber codon was performed by mutagenesis using the following oligonucleotide: 5'- GCCTTCAGCCTCGGATCCGCC-3' (SEQ ID NO: 59). The full

sequence of M13IX421 is shown in Figure 9 (SEQ ID NO: 5).

Library Construction, Screening and Characterization of
Encoded Oligonucleotides

A sublibrary was constructed for each of the

5 previously described degenerate populations of
oligonucleotides. The left half population of
oligonucleotides was incorporated into M13ED03 to
generate the sublibrary M13ED03.L and the right half
population of oligonucleotides was incorporated into
10 M13IX421 to generate the sublibrary M13IX421.R. Each of
the oligonucleotide populations were incorporated into
their respective vectors using site-directed mutagenesis
as described in Example I. Briefly, the nucleotide
sequences flanking the degenerate codon sequences were
15 complementary to the vector at the site of incorporation.
The populations of nucleotides were hybridized to single-
stranded M13ED03 or M13IX421 vectors and extended with T4
DNA polymerase to generate a double-stranded circular
vector. Mutant templates were obtained by uridine
20 selection in vivo, as described by Kunkel et al., supra.
Each of the vector populations were electroporated into
host cells and propagated as described in Example I.

The random joining of right and left half
sublibraries into a single surface expression library was
25 accomplished as described in Example I except that prior
to digesting each vector population with Fok I they were
first digested with an enzyme that cuts in the unwanted
portion of each vector. Briefly, M13ED03.L was digested
with Bgl II (cuts at 7094) and M13IX421.R was digested
30 with Hind III (cuts at 3919). Each of the digested
populations were further treated with alkaline
phosphatase to ensure that the ends would not religate
and then digested with an excess of Fok I. Ligations,
electroporation and propagation of the resultant library

was performed as described in Example I.

The surface expression library was screened for ligand binding proteins using a modified panning procedure. Briefly, 1 ml of the library, about 10^{12} phage particles, was added to 1-5 μ g of the ligand binding protein. The ligand binding protein was either an antibody or receptor globulin (Rg) molecule, Aruffo et al., Cell 61:1303-1313 (1990), which is incorporated herein by reference. Phage were incubated shaking with affinity ligand at room temperature for 1 to 3 hours followed by the addition of 200 μ l of latex beads (Biosite, San Diego, CA) which were coated with goat-antimouse IgG. This mixture was incubated shaking for an additional 1-2 hours at room temperature. Beads were pelleted for 2 minutes by centrifugation in a microfuge and washed with TBS which can contain 0.1% Tween 20. Three additional washes were performed where the last wash did not contain any Tween 20. The bound phage were then eluted with 200 μ l 0.1 M Glycine-HCl, pH 2.2 for 15 minutes and the beads were spun down by centrifugation. The supernatant-containing phage (eluate) was removed and phage exhibiting binding to the ligand binding protein were further enriched by one-to-two more cycles of panning. Typical yields after the first eluate were about 1×10^6 - 5×10^6 pfu. The second and third eluate generally yielded about 5×10^6 - 2×10^7 pfu and 5×10^7 - 1×10^{10} pfu, respectively.

The second or third eluate was plated at a suitable density for plaque identification screening and sequencing of positive clones (i.e., plated at confluence for rare clones and 200-500 plaques/plate if pure plaques were needed). Briefly, plaques grown for about 6 hours at 37°C and were overlaid with nitrocellulose filters that had been soaked in 2 mM IPTG and then briefly dried. The filters remained on the plaques overnight at room

- temperature, removed and placed in blocking solution for 1-2 hours. Following blocking, the filters were incubated in 1 µg/ml ligand binding protein in blocking solution for 1-2 hours at room temperature. Goat 5 antimouse Ig-coupled alkaline phosphatase (Fisher) was added at a 1:1000 dilution and the filters were rapidly washed with 10 mls of TBS or block solution over a glass vacuum filter. Positive plaques were identified after alkaline phosphatase development for detection.
- 10 Screening of the degenerate oligonucleotide library with several different ligand binding proteins resulted in the identification of peptide sequences which bound to each of the ligands. For example, screening with an antibody to β -endorphin resulted in the detection of 15 about 30-40 different clones which essentially all had the core amino acid sequence known to interact with the antibody. The sequences flanking the core sequences were different showing that they were independently derived and not duplicates of the same clone. Screening with an 20 antibody known as 57 gave similar results (i.e., a core consensus sequence was identified but the flanking sequences among the clones were different).

EXAMPLE IV

Generation of a Left Half Random Oligonucleotide Library

- 25 This example shows the synthesis and construction of a left half random oligonucleotide library.

A population of random oligonucleotides nine codons in length was synthesized as described in Example I except that different sequences at their 5' and 3' ends 30 were synthesized so that they could be easily inserted into the vector by mutagenesis. Also, the mixing and dividing steps for generating random distributions of

reaction products was performed by the alternative method of dispensing equal volumes of bead suspensions. The liquid chosen that was dense enough for the beads to remain dispersed was 100% acetonitrile.

5 Briefly, each column was prepared for the first coupling reaction by suspending 22 mg (1 μ mole) of 48 μ mol/g capacity beads (Genta, San Diego, CA) in 0.5 mls of 100% acetonitrile. These beads are smaller than those described in Example I and are derivatized with a guanine
10 nucleotide. They also do not have a controlled pore size. The bead suspension was then transferred to an empty reaction column. Suspensions were kept relatively dispersed by gently pipetting the suspension during transfer. Columns were plugged and monomer coupling
15 reactions were performed as shown in Table XII.

Table XII

	<u>Column</u>	<u>Sequence (5' to 3')</u>
20	column 1L	AA(A/C)GGCTTTGCCACAGG
	column 2L	AG(A/G)GGCTTTGCCACAGG
	column 3L	AT(A/G)GGCTTTGCCACAGG
	column 4L	AC(A/G)GGCTTTGCCACAGG
	column 5L	CA(G/T)GGCTTTGCCACAGG
	column 6L	CT(G/C)GGCTTTGCCACAGG
25	column 7L	AG(T/C)GGCTTTGCCACAGG
	column 8L	AT(T/C)GGCTTTGCCACAGG
	column 9L	CC(A/C)GGCTTTGCCACAGG
	column 10L	T(A/T)GGCTTTGCCACAGG

After coupling of the last monomer, the columns were
30 unplugged as described previously and their contents were poured into a 1.5 ml microfuge tube. The columns were rinsed with 100% acetonitrile to recover any remaining beads. The volume used for rinsing was determined so

that the final volume of total bead suspension was about 100 μ l for each new reaction column that the beads would be aliquoted into. The mixture was vortexed gently to produce a uniformly dispersed suspension and then

5 divided, with constant pipetting of the mixture, into equal volumes. Each mixture of beads was then transferred to an empty reaction column. The empty tubes were washed with a small volume of 100% acetonitrile and also transferred to their respective columns. Random

10 codon positions 2 through 9 were then synthesized as described in Example I where the mixing and dividing steps were performed using a suspension in 100% acetonitrile. The coupling reactions for codon positions 2 through 9 are shown in Table XIII.

15

Table XIII

	<u>Column</u>	<u>Sequence (5' to 3')</u>
20	column 1L	AA(A/C)A
	column 2L	AG(A/G)A
	column 3L	AT(A/G)A
	column 4L	AC(A/G)A
	column 5L	CA(G/T)A
	column 6L	CT(G/C)A
	column 7L	AG(T/C)A
	column 8L	AT(T/C)A
	column 9L	CC(A/C)A
	column 10L	T(A/T)TA

After coupling of the last monomer for the ninth codon position, the reaction products were mixed and a portion was transferred to an empty reaction column. Columns were plugged and the following monomer coupling reactions were performed: 5'-CGGATGCCTCAGAACCCCCXXA-3' (SEQ ID NO: 60). The resulting population of random oligonucleotides was purified and incorporated by

mutagenesis into the left half vector M13ED04.

M13ED04 is a modified version of the M13ED03 vector described in Example III and therefore contains all the features of that vector. The difference between M13ED03
5 and M13ED04 is that M13ED04 does not contain the five amino acid sequence (Tyr Gly Gly Phe Met) recognized by anti- β -endorphin antibody. This sequence was deleted by mutagenesis using the oligonucleotide 5'-
CGGATGCCCTCAGAAGGGCTTTGCCACAGG (SEQ ID NO: 61). The
10 entire nucleotide sequence of this vector is shown in Figure 10 (SEQ ID NO: 6).

Although the invention has been described with reference to the presently preferred embodiment, it should be understood that various modifications can be
15 made without departing from the spirit of the invention. Accordingly, the invention is limited only by the claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Huse, William D.

(ii) TITLE OF INVENTION: SURFACE EXPRESSION LIBRARIES OF
RANDOMIZED PEPTIDES

(iii) NUMBER OF SEQUENCES: 61

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Pretty, Schroeder, Brueggemann & Clark
- (B) STREET: 444 South Flower Street, Suite 2000
- (C) CITY: Los Angeles
- (D) STATE: California
- (E) COUNTRY: United States
- (F) ZIP: 90071

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Campbell, Cathryn A
- (B) REGISTRATION NUMBER: 31,815
- (C) REFERENCE/DOCKET NUMBER: P31 9072

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (619) 535-9001
- (B) TELEFAX: (619) 535-8949

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7294 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: circular

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AATGCTACTA CTATTAGTAG AATTGATGCC ACCTTTCA	60
ATAGCTAAC AGGTTATTGA CCATTTGCGA AATGTATCTA ATGGTAAAC TAAATCTACT	120
CGTTCGCAGA ATTGGAAATC AACTGTTACA TGGAATGAAA CTTCCAGACA CCGTACTTTA	180
GTTGCATATT TAAAACATGT TGAGCTACAG CACCAGATTC AGCAATTAAG CTCTAAGCCA	240
TCTGCAAAAA TGACCTCTTA TCAAAAGGAG CAATTAAAGG TACTCTCTAA TCCTGACCTG	300
TTGGAGTTG CTTCCGGTCT GGTTCGCTT GAAGCTCGAA TTAAAACGCG ATATTGAAAG	360
TCTTTCGGGC TTCCCTCTAA TCTTTTGAT GCAATCCGCT TTGCTTCTGA CTATAATAGT	420

CAGGGTAAAG ACCTGATTT TGATTTATGG TCATTCTCGT TTTCTGAAC	480
TTTGAGGGGG ATTCAATGAA TATTTATGAC GATTCCGCAG TATTGGACGC TATCCAGTCT	540
AAACATTTA CTATTACCCC CTCTGGCAAAC TTCTCTTTG CAAAAGCCTC TCGCTATT	600
GGTTTTATC GTCGTCTGGT AAACGAGGGT TATGATAGTG TTGCTCTTAC TATGCCCTCGT	660
AATTCCCTTT GGCGTTATGT ATCTGCATTA GTTGAATGTG GTATTCCCTAA ATCTCAACTG	720
ATGAATCTTT CTACCTGTAA TAATGTTGTT CCAGTTAGTTC GTTTTATTAA CGTAGATT	780
TCTTCCCAAC GTCCTGACTG GTATAATGAG CCAGTTCTTA AAATCGCATA AGGTAATTCA	840
CAATGATTAA AGTTGAAATT AAACCATCTC AAGCCCAATT TACTACTCGT TCTGGTGT	900
CTCGTCAGGG CAAGCCTTAT TCACTGAATG AGCAGCTTG TTACGTTGAT TTGGGTAATG	960
AATATCCGGT TCTTGTCAAG ATTACTCTTG ATGAAGGTCA GCCAGCCTAT GCGGCTGGTC	1020
TGTACACCGT TCATCTGTCC TCTTCAAAG TTGGTCAGTT CGGTTCCCTT ATGATTGACC	1080
GTCTGCGCCT CGTTCCGGCT AAGTAACATG GAGCAGGTGG CGGATTTCGA CACAATT	1140
CAGGCCATGA TACAAATCTC CGTTGTACTT TGTTTCGGC TTGGTATAAT CGCTGGGGT	1200
CAAAGATGAG TGTTTAGTG TATTCTTCGG CCTCTTCGT TTTAGGTTGG TGCCTTCGTA	1260
GTGGCATTAC GTATTTACC CGTTAACATGG AAACCTCCTC ATGAAAAAGT CTTAGTCCT	1320
CAAAGCCTCT GTAGCCGTTG CTACCCCTCGT TCCGATGCTG TCTTCGCTG CTGAGGGTGA	1380
CGATCCCCGA AAAGGGCCT TTAACCTCCCT GCAAGCCTCA GCGACCGAAT ATATCGGTTA	1440
TGCGTGGCG ATGGTTGTG TCATTGTCGG CGCAACTATC GGTATCAAGC TGTTAACAA	1500
ATTCACCTCG AAAGCAAGCT GATAAACCGA TACAATTAAA GGCTCCTTT GGAGCCTTT	1560
TTTTGGAGA TTTTCAACGT GAAAAAAATTA TTATTGCAA TTCTTTAGT TGTCCTTTC	1620
TATTCTCACT CCGCTGAAAC TGTTGAAAGT TGTTAGCAA AACCCCATAC AGAAAATTCA	1680
TTTACTAACG TCTGGAAAGA CGACAAAAGT TTAGATCGTT ACGCTAACTA TGAGGGTTGT	1740
CTGTGGAATG CTACAGGCGT TGTAGTTGT ACTGGTGACG AAACTCAGTG TTACGGTACA	1800
TGGGTTCCCTA TTGGGCTTGC TATCCCTGAA AATGAGGGTG GTGGCTCTGA GGGTGGCGGT	1860
TCTGAGGGTG GCGGTTCTGA GGGTGGCGGT ACTAAACCTC CTGAGTACGG TGATACACCT	1920
ATTCCGGGCT ATACTTATAT CAACCCCTCTC GACGGGACTT ATCCGCTGG TACTGAGCAA	1980
AACCCCGCTA ATCCTAATCC TTCTCTTGAG GAGTCTCAGC CTCTTAATAC TTTCATGTTT	2040
CAGAATAATA GGTTCCGAAA TAGGCAGGG GCATTAACCTG TTATACGGG CACTGTTACT	2100
CAAGGCACTG ACCCCGTTAA AACTTATTAC CAGTACACTC CTGTATCATC AAAAGCCATG	2160
TATGACCGTT ACTGGAACGG TAAATTGAGA GACTGGCTT TCCATTCTGG TTAAATGAA	2220
GATCCATTG TTTGTGAATA TCAAGGCCAA TCGTCTGACC TGCCTCAACC TCCTGTCAAT	2280
GCTGGCGGCG GCTCTGGTGG TGTTCTGGT GCGGGCTCTG AGGGTGGTGG CTCTGAGGGT	2340
GCCGGTTCTG AGGGTGGCGG CTCTGAGGGA GCGGGTCCCG GTGGTGGCTC TGTTCCGGT	2400
GATTTGATT ATGAAAAGAT GGCAACGCT AATAAGGGGG CTATGACCGA AAATGCCGAT	2460

GAAAACGCGC TACAGTCTGA CGCTAAAGGC AAACATTGATT CTGTCGCTAC TGATTACGGT	252G
GCTGCTATCG ATGGTTTCAT TGGTGACGTT TCCGGCCTTG CTAATGGTAA TGGTGCTACT	2580
GGTGATTTG CTGGCTCTAA TTCCCAAATG GCTCAAGTCG GTGACGGTGA TAATTCACCT	2640
TTAATGAATA ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA ATGTCGCCCT	2700
TTTGTCTTTA GCGCTGGTAA ACCATATGAA TTTTCTATTG ATTGTGACAA AATAAACTTA	2760
TTCCGTGGT TCTTTGCGTT TCTTTATAT GTTGCCACCT TTATGTATGT ATTTCTACG	2820
TTTGCTAAC A TACTGCGTAA TAAGGAGTCT TAATCATGCC AGTTCTTTG GGTATTCCGT	2880
TATTATTGCG TTTCCCTCGGT TTCCCTCTGG TAACTTTGTT CGGCTATCTG CTTACTTTG	2940
TTAAAAAGGG CTTCGGTAAG ATAGCTATTG CTATTCATT GTTTCTTGCT CTTATTATTG	3000
GGCTTAACTC AATTCTTGTG GGTTATCTCT CTGATATTAG CGCTGAATTAA CCCTCTGACT	3060
TTGTTCAGGG TGTTCAAGTTA ATTCTCCCGT CTAATGCGCT TCCCTGTTT TATGTTATTG	3120
TCTCTGTAAA GGCTGCTATT TTCATTTTG ACGGTAAACA AAAAATCGTT TCTTATTG	3180
ATTGGGATAA ATAATATGGC TGTTTATTT GTAACTGGCA AATTAGGCTC TGGAAAGACG	3240
CTCGTTAGCG TTGGTAAGAT TCAGGATAAA ATTGTAGCTG GGTGCAAAAT AGCAACTAAT	3300
CTTGATTTAA GGCTCAAAA CCTCCGGCAA GTCGGGAGGT TCGCTAAAAC GCCTCGCGTT	3360
CTTAGAATAC CGGATAAGCC TTCTATATCT GATTGCTTG CTATTGGCG CGGTAATGAT	3420
TCCTACGATG AAAATAAAA CGGCTTGCTT GTTCTCGATG AGTGCCTGAC TTGGTTAAAT	3480
ACCCGTTCTT GGAATGATAA GGAAAGACAG CCGATTATTG ATTGGTTCT ACATGCTCGT	3540
AAATTAGGAT GGGATATTAT CTTCTTGTT CAGGACTTAT CTATTGTGA TAAACAGGCG	3600
CGTTCTGCAT TAGCTGAACA TGTTGTTAT TGTCGTGTC TGGACAGAAT TACTTTACCT	3660
TTTGTGGTA CTTTATATTG TCTTATTACT GGCTCGAAAA TGCCCTGCGC TAAATTACAT	3720
GTTGGCGTTG TTAAATATGG CGATTCTCAA TTAAGCCCTA CTGTTGAGCG TTGGCTTTAT	3780
ACTGGTAAGA ATTTGTATAA CGCATATGAT ACTAAACAGG CTTTTCTAG TAATTATGAT	3840
TCCGGTGTGTT ATTCTTATTT AACGCCTTAT TTATCACACG GTCGGTATTT CAAACCATTAA	3900
AATTAGGTC AGAAGATGAA GCTTACTAAA ATATATTGAA AAAAGTTTC ACGGCTTCTT	3960
TGTCTTGCGA TTGGATTGCG ATCAGCATT ACATATAGTT ATATAACCCA ACCTAACCGG	4020
GAGGTTAAAA AGGTAGTCTC TCAGACCTAT GATTGATA AATTCACTAT TGACTCTTCT	4080
CAGCGTCTTA ATCTAAGCTA TCGCTATGTT TTCAAGGATT CTAAGGGAAA ATTAATTAAT	4140
AGCGACGATT TACAGAAGCA AGGTTATTCA CTCACATATA TTGATTTATG TACTGTTCC	4200
ATTAAAAAGG TAATTCAAAT GAAATTGTTA AATGTAATTAA ATTTGTTTT CTTGATGTTT	4260
CTTTCATCAT CTTCTTTGC TCAGGTAATT GAAATGAATA ATTCGCCTCT GCGCGATTTT	4320
GTAAACTTGGT ATTCAAAGCA ATCAGGGCAA TCCGTTATTG TTTCTCCCGA TGIAAAAGGT	4380
ACTGTTACTG TATATTCACTC TGACGTTAAA CCTGAAAATC TACGCAATTAA CTTTATTCT	4440
GTTCACGGT CTAATAATTG TGATATGGTT GGTCGAATTG CTTCCATTAT TTAGAAGTAT	4500

AATCCAAACA ATCAGGATTA TATTGATGAA TTGCCATCAT CTGATAATCA GGAATATGAT	4560
GATAATTCCG CTCCCTCTGG TGTTTCTTT GTTCCGCAAA ATGATAATGT TACTCAAAC	4620
TTTAAAATTA ATAACGTTCG GGCAAAGGAT TTAATACGAG TTGTCGAATT GTTGTAAG	4680
TCTAATACTT CTAATCCTC AAATGTATTA TCTATTGACG GCTCTAATCT ATTAGTTGTT	4740
AGTGCACCTA AAGATATTT AGATAACCTT CCTCAATTCC TTTCTACTGT TGATTTGCCA	4800
ACTGACCAGA TATTGATTGA GGGTTTGATA TTTGAGGTC AGCAAGGTGA TGCTTAGAT	4860
TTTCATTG CTGCTGGCTC TCAGCGTGGC ACTGTTGCAG GCGGTGTTAA TACTGACCGC	4920
CTCACCTCTG TTTTATCTTC TGCTGGTGGT TCGTTCGGTA TTTTAATGG CGATGTTTA	4980
GGGCTATCAG TTCCGCATT AAAGACTAAT AGCCATTCAA AAATATTGTC TGTGCCACGT	5040
ATTCTTACGC TTTCAGGTCA GAAGGGTCT ATCTCTGTTG GCCAGAATGT CCCTTTATT	5100
ACTGGTCGTG TGACTGGTGA ATCTGCAAAT GTAAATAATC CATTTCAGAC GATTGAGCGT	5160
CAAATGTAG GTATTTCCAT GAGCGTTTT CCTGTTGCAA TGGCTGGCGG TAATATTGTT	5220
CTGGATATTA CCAGCAAGGC CGATAGTTG AGTTCTTCTA CTCAGGCAAG TGATGTTATT	5280
ACTAATCAAA GAAGTATTGC TACAACGGTT AATTGCGTG ATGGACAGAC TCTTTACTC	5340
GGTGGCCTCA CTGATTATAA AAACACTTCT CAAGATTCTG GCGTACCGTT CCTGCTAAA	5400
ATCCCTTTAA TCGGCCTCCT GTTTAGCTCC CGCTCTGATT CCAACGAGGA AAGCACGTTA	5460
TACGTGCTCG TCAAAGAAC CATACTACGC GCCCTGTAGC GCGCATTAA GCGCGGCGGG	5520
TGTGGTGGTT ACGCCAGCG TGACCGCTAC ACTTGCCAGC GCCCTAGCGC CCGCTCCCTT	5580
CGCTTTCTTC CCTTCCTTTC TCGCCACGTT CGCCGGCTTT CCCCGTCAAG CTCTAAATCG	5640
GGGGCTCCCT TTAGGGTCC GATTTAGTGC TTTACGGCAC CTCGACCCCC AAAAACTTGA	5700
TTTGGGTGAT GGTTCACGTA GTGGGCCATC GCCCTGATAG ACGGTTTTTC GCCCTTGAC	5760
GTTGGAGTCC ACGTTCTTAA ATAGTGGACT CTTGTTCCAA ACTGGAACAA CACTCAACCC	5820
TATCTCGGGC TATTCTTTG ATTATATAAGG GATTTGCGG ATTTGGAAC CACCATCAA	5880
CAGGATTTTC GCCTGCTGGG GCAAACCAGC GTGGACCGCT TGCTGCAACT CTCTCAGGGC	5940
CAGGCGGTGA AGGGCAATCA GCTGTTGCCG GTCTCGCTGG TGAAAAGAAA AACCAACCTG	6000
GCGCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGCCG ATTCAATTAT GCAGCTGGCA	6060
CGACAGGTTT CCCCAGTGGAA AAGCGGGCAG TGAGCGAAC GCAATTAAAT TGAGTTAGCT	6120
CACTCATTAG GCACCCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT TGTGTGGAAT	6180
TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CAGGATGTAC GAATTGCGAG	6240
GTAGGAGAGC TCGGGGATC CTAGGCTGAA GGGATGACC CTGCTAAGGC TGCATTCAAT	6300
AGTTTACAGG CAAGTGCTAC TGAGTACATT GGCTACGCTT GGGCTATGGT AGTAGTTATA	6360
GTTGGTGCTA CCATAGGGAT TAAATTATTC AAAAAGTTA CGAGCAAGGC TTCTTAACCA	6420
GCTGGCGTAA TAGCGAAGAG GCGCCGACCG ATCGCCCTTC CCAACAGTTG CGCAGCCTGA	6480
ATGGCGAATG GCGCTTGCC TGGTTCCGG CACCAAGGC GGTGCCGAA AGCTGGCTGG	6540

AGTGCGATCT TCCTGAGGCC GATA CGGT CG TCGT CCCC TC AACTGGCAG ATGCACGGTT	6600
ACGATGCGCC CATCTACACC AACGTAACCT ATCCCATTAC GGTCAATCCG CCGTTTGTTC	6660
CCACGGAGAA TCCGACGGGT TGTTACTCGC TCACATTAA TGTTGATGAA AGCTGGCTAC	6720
AGGAAGGCCA GACGCGAATT ATTTTGATG GCGTCCCTAT TGGTTAAAAA ATGAGCTGAT	6780
TTAACAAAAA TTTAACGCGA ATTTAACAA AATATTAACG TTTACAATT AAATATTGCG	6840
TTATACAATC TTCTGTTTT TGGGGCTTT CTGATTATCA ACCGGGGTAC ATATGATTGA	6900
CATGCTAGTT TTACGATTAC CGTTCATCGA TTCTCTGTT TGCTCCAGAC TCTCAGGCAA	6960
TGACCTGATA GCCTTGTAG ATCTCTAAA AATAGCTACC CTCTCCGGCA TTAATTATC	7020
AGCTAGAACG GTTGAATATC ATATTGATGG TGATTGACT GTCTCCGGCC TTTCTCACCC	7080
TTTGAATCT TTACCTACAC ATTACTCAGG CATTGCATT AAAATATATG AGGGTTCTAA	7140
AAATTTTAT CCTTGCCTTG AAATAAAGGC TTCTCCCGCA AAAGTATTAC AGGGTCATAA	7200
TGTTTTGGT ACAACCGATT TAGCTTATG CTCTGAGGCT TTATTGCTTA ATTTGCTAA	7260
TTCTTGCCT TGCCTGTATG ATTTATTGGA CGTT	7294

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7320 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: circular

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

AATGCTACTA CTATTAGTAG AATTGATGCC ACCTTTCA G CTCGCGCCCC AAATGAAAAT	60
ATAGCTAAAC AGGTTATTGA CCATTTGCGA AATGTATCTA ATGGTCAAAC TAAATCTACT	120
CGTTCGCAGA ATTGGGAATC AACTGTTACA TGGAATGAAA CTTCCAGACA CCGTACTTTA	180
GTTGCATATT TAAAACATGT TGAGCTACAG CACCA GATTTC AGCAATTAAG CTCTAAGCCA	240
TCTGCAAAAA TGACCTCTTA TCAAAAGGAG CAATTAAGG TACTCTCTAA TCCTGACCTG	300
TTGGAGTTTG CTTCCGGTCT GGTCGCTTT GAAGCTCGAA TTAAAACGGG ATATTGAAAG	360
TCTTCGGGC TTCCTCTTAA TCTTTTGAT GCAATCCGCT TTGCTTCTGA CTATAATAGT	420
CAGGGTAAAG ACCTGATTT TGATTATGG TCATTCTCGT TTTCTGAACG GTTTAAAGCA	480
TTTGAGGGGG ATTCAATGAA TATTTATGAC GATTCCGCAG TATTGGACGC TATCCAGTCT	540
AAACATTTTA CTATTACCCC CTCTGGCAAA ACTTCTTTG CAAAAGCCTC TCGCTATTTT	600
GGTTTTATC GTCGTCTGGT AAACGAGGGT TATGATAGTG TTGCTCTTAC TATGCCTCGT	660
AATTCCCTTT GGCGTTATGT ATCTGCATTA GTTGAATGTG GTATTCTAA ATCTCAACTG	720
ATGAATCTTT CTACCTGTAA TAATGTTGTT CCGTTAGTTC GTTTTATTAA CGTAGATT	780
TCTTCCCAAC GTCCTGACTG GTATAATGAG CCAGTTCTTA AAATCGCATA AGGTAATTCA	840

CAATGATTAA AGTTGAAATT AAACCATCTC AAGCCCAATT TACTACTCGT TCTGGTGT	900
CTCGTCAGGG CAAGCCTTAT TCACTGAATG AGCAGCTTG TTACGTTGAT TTGGGTAATG	960
AATATCCGGT TCTTGTCAAG ATTACTCTTG ATGAAGGTCA GCCAGCCTAT GCGCCTGGTC	1020
TGTACACCGT TCATCTGTCC TCTTCAAAG TTGGTCAGTT CGGTTCCCTT ATGATTGACC	1080
GTCTGCCCT CGTTCCGGCT AAGTAACATG GAGCAGGTGG CGGATTTCGA CACAATTAT	1140
CAGGCATGA TACAAATCTC CGTTGTACTT TGTTTGGCGC TTGGTATAAT CGCTGGGGT	1200
CAAAGATGAG TGTTTAGTG TATTCTTCG CCTCTTCGT TTTAGGTTGG TGCCCTCGTA	1260
GTGGCATTAC GTATTTAACCGT CGTTAACATGG AAACCTCCCTC ATGAAAAAGT CTTIAGTCCT	1320
CAAAGCCTCT GTAGCCGTTG CTACCCCTCGT TCCGATGCTG TCTTTCGCTG CTGAGGGTGA	1380
CGATCCCGCA AAAGCCGGCT TTAACTCCCT GCAAGCCTCA GCGACCGAAT ATATCGGTTA	1440
TGGTGGGCG ATGGTTGTTG TCATTGTCGG CGCAACTATC GGTATCAAGC TGTTAACGAA	1500
ATTCACCTCG AAAGCAAGCT GATAAACCGA TACAATTAAA GGCTCCTTT GGAGCCTTT	1560
TTTTGGAGA TTTTCAACGT GAAAAAATTA TTATTGCAA TTCTTTAGT TGTTCCCTTC	1620
TATTCTCACT CCGCTGAAAC TGTTGAAAGT TGTTAGCAA AACCCCATAAC AGAAAATTCA	1680
TTTACTAACG TCTGGAAAGA CGACAAAAGT TTAGATCGTT ACGCTAACTA TGAGGGTTGT	1740
CTGTGGAATG CTACAGGCGT TGTAGTTGT ACTGGTGACG AAACTCAGTG TTACGGTACA	1800
TGGGTTCCCTA TTGGGCTTGC TATCCCTGAA AATGAGGGTG GTGGCTCTGA GGGTGGCGGT	1860
TCTGAGGGTG GCGGTTCTGA GGGTGGCGGT ACTAAACCTC CTGAGTACGG TGATACACCT	1920
ATTCCGGGCT ATACTTATAT CAACCCCTCTC GACGGCACTT ATCCGCTGG TACTGAGCAA	1980
AACCCCCGCTA ATCCTAAATCC TTCTCTTGAG GAGTCTCAGC CTCTTAATAC TTTCATGTTT	2040
CAGAATAATA GGTTCCGAAA TAGGCAGGGG GCATTAACGT TTTATACGGG CACTGTTACT	2100
CAAGGCACTG ACCCCGTTAA AACTTATTAC CAGTACACTC CTGTATCATC AAAAGCCATG	2160
TATGACGCTT ACTGGAACGG TAAATTAGA GACTGCGCTT TCCATTCTGG CTTTAATGAA	2220
GATCCATTG TTTGTGAATA TCAAGGCCAA TCGTCTGACC TGCCTCAACC TCCTGTCAAT	2280
GCTGGCGGCG GCTCTGGTGG TGGTTCTGGT GGCGGCTCTG AGGGTGGTGG CTCTGAGGGT	2340
GGCGGTTCTG AGGGTGGCGG CTCTGAGGGA GGCGGTTCCG GTGGTGGCTC TGGTTCCGGT	2400
GATTTTGATT ATGAAAAGAT GGCAAACGCT AATAAGGGGG CTATGACCGA AAATGCCAT	2460
GAAAACGCCG TACAGTCTGA CGCTAAAGGC AAACCTGATT CTGTCGCTAC TGATTACGGT	2520
GCTGCTATCG ATGGTTTCAT TGGTGACGTT TCCGGCCTTG CTAATGGTAA TGGTGCTACT	2580
GGTGATTTTG CTGGCTCTAA TTCCCAAATG GCTCAAGTCG GTGACGGTGA TAATTACACCT	2640
TTAATGAATA ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA ATGTGCCCT	2700
TTTGTCTTTA GCGCTGGTAA ACCATATGAA TTTTCTATTG ATTGTGACCAA AATAAACTTA	2760
TTCCGTGGTG TCTTTCGCTT TCTTTATAT GTTGCCACCT TTATGTATGT ATTTCTACG	2820
TTTGCTAACAA TACTGCGTAA TAAGGAGTCT TAATCATGCC AGTTCTTTG GGTATTCCGGT	2880

TATTATTGCG TTTCCCTCGGT TTCCCTCTGG TAACTTGTG CGGCTATCTG CTTACTTTTC	2940
TTAAAAAGGG CTTCGTAAG ATAGCTATTG CTATTCATT GTTTCTTGCT CTTATTATTG	3000
GGCTTAACTC AATTCTTGTG GGTTATCTCT CTGATATTAG CGCTCAATTAA CCCTCTGACT	3060
TTGTCAGGG TGTCAGTTA ATTCTCCCGT CTAATGCGCT TCCCTGTTT TATGTTATTG	3120
TCTCTGTAAA GGCTGCTATT TTCATTTTG ACGTTAAACA AAAATCGTT TCTTATTG	3180
ATTGGGATAA ATAATATGGC TGTTTATTG GTAACTGGCA AATTAGGCTC TGGAAAGACG	3240
CTCGTTAGCG TTGGTAAGAT TTAGGATAAA ATTGTAGCTG GGTGCAAAT AGCAACTAAT	3300
CTTGATTTAA GGCTCAAAA CCTCCCGCAA GTCGGGAGGT TCGCTAAAC GCCTCGCGTT	3360
CTTAGAATAC CGGATAAGCC TTCTATATCT GATTTGCTTG CTATTGGCG CGGTAATGAT	3420
TCCTACGATG AAAATAAAA CGGCTTGCTT GTTCTCGATG ACTGCGGTAC TTGGTTAAT	3480
ACCCGTTCTT GGAATGATAA GGAAAGACAG CCGATTATTG ATTGGTTCT ACATGCTCGT	3540
AAATTAGGAT GGGATATTAT CTTCCTTGTG CAGGACTTAT CTATTGTTGA TAAACAGGCG	3600
CGTTCTGCAT TAGCTGAACA TGTTGTTAT TGTCGTCGTC TGGACAGAAT TACTTACCT	3660
TTTGTGGTA CTTTATATTG TCTTATTACT GGCTCGAAAA TGCTCTGCC TAAATTACAT	3720
GTTGGCGTTG TTAAATATGG CGATTCTCAA TTAAGCCCTA CTGTTGAGGG TTGGCTTAT	3780
ACTGGTAAGA ATTTGTATAA CGCATATGAT ACTAAACAGG CTTTTCTAG TAATTATGAT	3840
TCCGGTGTGTT ATTCTTATTG AACGCCCTAT TTATCACACG GTCGGTATTG CAAACCATTA	3900
AATTTAGGTC AGAAGATGAA ATTAACTAAA ATATATTGAA AAAAGTTTC TCGCGTTCTT	3960
TGTCTTGCAT TTGGATTGCA ATCAGCATTG ACATATAGTT ATATAACCCA ACCTAACCGG	4020
GAGGTTAAAA AGGTAGTCTC TCAGACCTAT GATTTGATA AATTCACTAT TGACTCTTCT	4080
CAGCGTCTTA ATCTAAGCTA TCGCTATGTT TTCAAGGATT CTAAGGGAAA ATTAATTAAT	4140
AGCGACGATT TACAGAACCA AGGTTATTCA CTCACATATA TTGATTTATG TACTGTTCC	4200
ATTAAGGAG GTAATTCAAA TGAAATTGTT AAATGTAATT AATTTGTTT TCTTGATGTT	4260
TGTTTCATCA TCTTCTTTG CTCAGGTAAT TGAAATGAAT AATTGGCCTC TGGCGATTG	4320
TGTAACCTGG TATTCAAAGC AATCAGGCGA ATCCGTTATT GTTTCTCCCG ATGAAAAGG	4380
TACTGTTACT GTATATTCACT CTGACGTTAA ACCTGAAAAT CTACGCAATT TCTTATTTC	4440
TGTTTACGT GCTAATAATT TTGATATGGT TGTTCAATT CCTTCCATAA TTCAGAACGTA	4500
TAATCCAAAC AATCAGGATT ATATTGATGA ATTGCCATCA TCTGATAATC AGGAATATGA	4560
TGATAATTCC GCTCCTCTG GTGGTTCTT GTTCCGCAA AATGATAATG TTACTCAAAC	4620
TTTAAAATT AATAACGTTG GGGCAAAGGA TTTAATACGA GTTGTGAAAT TGTTGTAAA	4680
GTCTAATACT TCTAAATCCT CAAATGTATT ATCTATTGAC GGCTCTAATC TATTAGTTGT	4740
TAGTGCACCT AAAGATATTG TAGATAACCT TCCTCAATTG CTTTCTACTG TTGATTGCC	4800
AACTGACCAG ATATTGATTG AGGGTTGAT ATTTGAGGTT CAGCAAGGTG ATGCTTTAGA	4860
TTTTTCATTT GCTGCTGGCT CTCAGCGTGG CACTGTTGCA GGCGGTGTAA ATACTGACCG	4920

CCTCACCTCT	GTTTATCCT	CTGCTGGTGG	TTCGTCGGT	ATTTTAATG	GCGATGTTT	4980
AGGGCTATCA	GTTCGGCAT	TAAAGACTAA	TAGCCATTCA	AAAATATTGT	CTGTGCCACG	5040
TATTCTTACG	CTTCAGGTC	AGAAGGGTTC	TATCTCTGTT	GGCCAGAATG	TCCCTTTAT	5100
TACTGGTCGT	GTGACTGGTG	AATCTGCCAA	TGTAAATAAT	CCATTTCAGA	CGATTGAGCG	5160
TCAAAATGTA	GGTATTCCA	TGAGCGTTTT	TCCTGTTGCA	ATGGCTGGCG	GTAATATTGT	5220
TCTGGATATT	ACCAAGCAAGG	CCGATAGTTT	GAGTTCTTCT	ACTCAGGCAA	GTGATGTTAT	5280
TACTAATCAA	AGAAGTATTG	CTACAACGGT	TAATTGCGT	GATGGACAGA	CTCTTTACT	5340
CGGTGGCCTC	ACTGATTATA	AAAACACTTC	TCAAGATTCT	GGCGTACCGT	TCCTGTCTAA	5400
AATCCCTTTA	ATCGGCCTCC	TGTTTAGCTC	CCGCTCTGAT	TCCAACGAGG	AAAGCACGTT	5460
ATACGTGCTC	GTCAAAGCAA	CCATAGTACG	CGCCCTGTAG	CGGCCGATT	AGCCGGCGG	5520
GTGTGGTGGT	TACGCGCAGC	GTGACCGCTA	CACTGCCAG	CGCCCTAGCG	CCCGCTCCTT	5580
TCGCTTTCTT	CCCTTCCTT	CTCGCCACGT	TCGCCCCCTT	TCCCCGTCAA	GCTCTAAATC	5640
GGGGGCTCCC	TTTAGGGTTC	CGATTTAGTG	CTTACGGCA	CCTCGACCCC	AAAAAACTTG	5700
ATTGGGTGA	TGGTTCACGT	AGTGGGCCAT	CGCCCTGATA	GACGGTTTTT	CGCCCTTTGA	5760
CGTTGGAGTC	CACGTTCTTT	AATAGTGGAC	TCTTGTTCGA	AACTGGAACA	ACACTCAACC	5820
CTATCTCGGG	CTATTCTTTT	GATTATAAG	GGATTTGCC	GATTTCGGAA	CCACCATCAA	5880
ACAGGATTTC	CGCCTGCTGG	GGCAAACCA	CGTGGACCGC	TTGCTGCAAC	TCTCTCAGGG	5940
CCAGGCGGTG	AAGGGCAATC	AGCTGTTGCC	CGTCTCGCTG	GTGAAAAGAA	AAACCACCC	6000
GGCGCCCAAT	ACGCAAACCG	CCTCTCCCCG	CGCGTTGGCC	GATTICATTAA	TGCAGCTGGC	6060
ACGACAGGTT	TCCCGACTGG	AAAGCGGGCA	GTGAGCCAA	CGCAATTAAT	GTGAGTTAGC	6120
TCACTCATTA	GGCACCCCCAG	GCTTACACT	TTATGCTTCC	GGCTCGTATG	TTGTGTGGAA	6180
TTGTGAGCGG	ATAACAATT	CACACGCCAA	GGAGACAGTC	ATAATGAAAT	ACCTATTGCC	6240
TACGGCAGCC	GCTGGATTGT	TATTACTCGC	TGCCAACCA	GCCATGGCCG	AGCTCGTGAT	6300
GACCCAGACT	CCAGAATTCC	ATCCGAATG	AGTGTAAATT	CTAGAACCGG	TAAGCTTGGC	6360
ACTGGCCGTC	GTTTTACAAC	GTCGTGACTG	GGAAAACCC	GGCGTTACCC	AACTTAATCG	6420
CCTTGCAGCA	CACCCCCCTT	TCGCCAGCTG	CGCTAATAGC	GAAGAGGCC	GCACCGATCG	6480
CCCTTCCCAA	CAGTTGGCA	GCCTGAATGG	CGAATGGCC	TTTGCCTGGT	TTCCGGCACC	6540
AGAAGCGGTG	CCGAAAGCT	GGCTGGAGTG	CGATCTCCT	GAGGCCGATA	CGGTCTCGT	6600
CCCCCTCAAAC	TGGCAGATGC	ACGGTTACGA	TGCGCCCATC	TACACCAACG	TAACCTATCC	6660
CATTACGGTC	AATCCGCCGT	TTGTTCCCAC	GGAGAATCCG	ACGGGTTGTT	ACTCGCTCAC	6720
ATTTAATGTT	GATGAAAGCT	GGCTACAGGA	AGGCCAGACG	CGAATTATTT	TTGATGGCGT	6780
TCCTATTGGT	AAAAAAATGA	GCTGATTAA	AAAAAATTIA	ACCGGAATT	TAACAAAATA	6840
TTAACGTTA	CAATTAAAT	ATTGCTTAT	ACAATCTCC	TGTTTTGGG	GCTTTCTGA	6900
TTATCAACCG	GGGTACATAT	GATTGACATG	CTAGTTTAC	GATTACCGTT	CATCGATTCT	6960

CTTGTGGCT CCAGACTCTC AGGCAATGAC CTGATAGCCT TTGTAGATCT CTCAAAAATA	7020
GCTACCCCTCT CGGGCATTAA TTTATCAGCT AGAACGGTTG AATATCATAT TGATGGTGAT	7080
TTGACTGTCT CGGGCCTTTC TCACCCCTTT GAATCTTAC CTACACATTA CTCAGGCATT	7140
GCATTTAAAA TATATGAGGG TTCTAAAAAT TTTTATCCTT GCGTTGAAAT AAAGGCTTCT	7200
CCCGCAAAAG TATTACAGGG TCATAATGTT TTTGGTACAA CCGATTTAGC TTTATGCTCT	7260
GAGGCTTTAT TGCTTAATT TGCTAATTCT TTGCCTTGCC TGTATGATT ATTGGACGTT	7320

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 7445 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: circular

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

AATGCTACTA CTATTAGTAG AATTGATGCC ACCTTTGAG CTCGGCCCC AAATGAAAAT	60
ATAGCTAAAC AGGTTATTGA CCATTTGCGA AATGTATCTA ATGGTCAAAC TAAATCTACT	120
CGTTCGCAGA ATTGGGAATC AACTGTTACA TGGAATGAAA CTTCCAGACA CCGTACTTTA	180
GTTGCATATT TAAAACATGT TGAGCTACAG CACCAAGATT AGCAATTAAAG CTCTAAGCCA	240
TCTGCAAAAA TGACCTCTTA TCAAAAGGAG CAATTAAAGG TACTCTCTAA TCCTGACCTG	300
TTGGAGTTG CTTCCGGTCT GGTTCGCTT GAAGCTCGAA TTAAAACGCG ATATTGAAAG	360
TCTTCGGGC TTCCTCTTAA TCTTTTGAT GCAATCCGCT TTGCTCTGA CTATAATAGT	420
CAGGGTAAAG ACCTGATTT TGATTTATGG TCATTCTCGT TTTCTGAAC GTTTAAAGCA	480
TTTGAGGGGG ATTCAATGAA TATTTATGAC GATTCCGAG TATTGGACGC TATCCAGTCT	540
AAACATTTA CTATTACCCC CTCTGGCAAA ACTTCTTTG CAAAAGCCTC TCGCTATTTT	600
GGTTTTATC GTCGTCTGGT AAACGAGGGT TATGATAGTG TTGCTCTTAC TATGCCTCGT	660
AATTCCCTTT GGCGTTATGT ATCTGCATTA GTTGAATGTG GTATTGCTAA ATCTCAACTG	720
ATGAATCTTT CTACCTGAA TAATGTTGTT CCGTTAGTTC GTTTTATTAA CGTAGATTTT	780
TCTTCCCAAC GTCCTGACTG GTATAATGAG CCAGTTCTTA AAATCGCATA AGGTAAATTCA	840
CAATGATTAA AGTTGAAATT AAACCATCTC AAGCCCCAATT TACTACTCGT TCTGGTGT	900
CTCGTCAGGG CAAGCCTTAT TCACTGAATG AGCAGCTTG TTACGTTGAT TTGGGTAATG	960
AATATCCGGT TCTTGTCAGG ATTACTCTTG ATGAAGGTCA GCCAGCCTAT GCGCCTGGTC	1020
TGTACACCGT TCATCTGTCC TCTTCAAAG TTGGTCAGTT CGGTTCCCTT ATGATTGACC	1080
GTCTGCGCCT CGTTCCGGCT AAGTAACATG GAGCAGGTG CGGATTTCGA CACAATTAT	1140
CAGGCGATGA TACAAATCTC CGTTGTACTT TGTTTGGCC TTGGTATAAT CGCTGGGGGT	1200
CAAAGATGAG TGTTTAGTG TATTCTTCG CCTCTTCGT TTTAGGTTGG TGCCTTCGTA	1260

GTGGCATTAC GTATTTTACC CGTTTAATGG AAACCTCCTC ATGAAAAAGT CTTTAGTCCT	1320
CAAAGCCTCT GTAGCCGTTG CTACCCCTCGT TCCGATGCTG TCTTCGCTG CTGAGGGTGA	1380
CGATCCCGCA AAAGCGGCCT TTAACTCCCT GCAAGCCTCA GCGACCGAAT ATATCGGTTA	1440
TGCGTGGGCG ATGGTTGTTG TCATTGTCGG CGCAACTATC GGTATCAAGC TGTTAACGAA	1500
ATTCACCTCG AAAGCAAGCT GATAAACCGA TACAATTAAA GGCTCCTTT GGAGCCTTT	1560
TTTTGGAGA TTTTCAACGT GAAAAAAATTA TTATTGCAA TTCCTTAGT TGTTCCCTTC	1620
TATTCTCACT CCGCTGAAAC TGTTGAAAGT TGTTAGCAA AACCCCATAAC AGAAAATTCA	1680
TTTACTAACG TCTGGAAAGA CGACAAAAGT TTAGATCGTT ACGCTAACTA TGAGGGTTGT	1740
CTGTGGAATG CTACAGGCCGT TGTAGTTGT ACTGGTGACG AAACTCAGTG TTACGGTACA	1800
TGGGTTCCCTA TTGGGCTTGC TATCCCTGAA AATGAGGGTG GTGGCTCTGA GGGTGGGGT	1860
TCTGAGGGTG GCGGTTCTGA GGGTGGCGGT ACTAAACCTC CTGAGTACGG TGATACACCT	1920
ATTCCGGGCT ATACTTATAT CAACCCCTCTC GACGGCACTT ATCCGCTGG TACTGAGCAA	1980
AACCCCGCTA ATCCTAATCC TTCTCTTGAG GAGTCTCAGC CTCTTAATAC TTTCATGTTT	2040
CAGAATAATA GGTTCCGAAA TAGGCAGGGG GCATTAACTG TTTATACGGG CACTGTTACT	2100
CAAGGCACTG ACCCCGTTAA AACTTATTAC CAGTACACTC CTGTATCATC AAAAGCCATG	2160
TATGACGCTT ACTGGAACGG TAAATTAGA GACTGGCCTT TCCATTCTGG CTTTAATGAA	2220
GATCCATTCTG TTTGTGAATA TCAAGGCCAA TCGTCTGACC TGCCTCAACC TCCTGTCAAT	2280
GCTGGCGGGG GCTCTGGTGG TGGTTCTGGT GGCGGCTCTG AGGGTGGTGG CTCTGAGGGT	2340
GGCGGTTCTG AGGGTGGCGG CTCTGAGGGA GGCGGTTCCG GTGGTGGCTC TGGTTCCGGT	2400
GATTTTGATT ATGAAAAGAT GGCAAACGCT AATAAGGGGG CTATGACCGA AAATGCCGAT	2460
GAAAACGCCG TACAGTCTGA CGCTAAAGGC AAACITGATT CTGTGGCTAC TGATTACGGT	2520
GCTGCTATCG ATGGTTTCAT TGGTGACGTT TCCGGCCTTG CTAATGGTAA TGGTGTACT	2580
GGTGATTTG CTGGCTCTAA TTCCCAAATG GCTCAAGTCG GTGACGGTGA TAATTACCT	2640
TTAATGAATA ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA ATGTGCCCT	2700
TTTGTCTTTA GCGCTGGTAA ACCATATGAA TTTTCTATTG ATTGTGACAA AATAAAACTTA	2760
TTCCGTGGTGC TCTTGGCCTT TCTTTATAT GTGCCACCT TTATGTATGT ATTTCTACG	2820
TTTGCTAACCA TACTGGTAA TAAGGAGTCT TAATCATGCC AGTTCTTTG GGTATTCCGT	2880
TATTATTGCCG TTTCTCGGT TTCCCTCTGG TAACTTTGTT CGGTATCTG CTTACTTTTC	2940
TTAAAAAGGG CTTCGGTAAG ATAGCTATTG CTATTCATT GTTCTTGCT CTTATTATTG	3000
GGCTTAACCTC AATTCTTGTG GGTATCTCT CTGATATTAG CGCTCAATTAA CCCTCTGACT	3060
TTGTTCAAGG TGTTCAAGTTA ATTCTCCCGT CTAATGGCCT TCCCTGTTTT TATGTATTG	3120
TCTCTGTAAA GGCTGCTATT TTCAATTGTT ACAGTAAACA AAAAATCGTT TCTTATTG	3180
ATTGGGATAA ATAATATGGC TGTTTATTG GTAACGGCA AATTAGGCTC TGGAAAGACG	3240
CTCGTTAGCG TTGGTAAGAT TCAGGATAAA ATTGTAGCTG GGTGCAAAAT AGCAACTAAT	3300

CTTGATTTAA GGCTCAAAA CCTCCGGCAA GTCGGGAGGT TCGCTAAAAC GCCTCGCGTT	3360
CTTAGAATAC CGGATAAGCC TTCTATATCT GATTGCTTG CTATTGGGCG CGGTAATGAT	3420
TCCTACGATG AAAATAAAAA CGGCTTGCTT GTTCTCGATG AGTGCAGTAC TTGGTTAAT	3480
ACCCGTTCTT GGAATGATAA GGAAAGACAG CCGATTATTG ATTGGTTCT ACATGCTCGT	3540
AAATTAGGAT GGGATATTAT TTTCTTGTG CAGGACTTAT CTATTGTTGA TAAACAGGCC	3600
CGTTCTGCAT TAGCTGAACA TGTTGTTAT TGTCGTCGTC TGGACAGAAT TACTTACCT	3660
TTTGTGGTA CTTTATATTC TCTTATTACT GGCTCGAAA TGCCCTCGCC TAAATTACAT	3720
GTTGGCGTTG TTAAATATGG CGATTCTCAA TTAAGCCCTA CTGTTGAGCG TTGGCTTTAT	3780
ACTGGTAAGA ATTTGTATAA CGCATATGAT ACTAACACAGG CTTTTCTAG TAATTATGAT	3840
TCCGGTGTGTT ATTCTTATTT AACGCCCTAT TTATCACACCG GTCCGTATT CAAACCATT	3900
AATTTAGGTC AGAAGATGAA GCTTACTAAA ATATATTTGA AAAAGTTTC ACGCGTTCTT	3960
TGTCTTGCAGA TTGGATTGTC ATCAGCATT ACATATAGTT ATATAACCCA ACCTAACGCCG	4020
GAGGTTAAAAA AGGTAGTCTC TCAGACCTAT GATTTGATA AATTCACTAT TGACTCTCT	4080
CAGCGTCTTA ATCTAAGCTA TCGCTATGTT TTCAAGGATT CTAAGGGAAA ATTAATTAAAT	4140
AGCGACGATT TACAGAAGCA AGGTTATTCA CTCACATATA TTGATTTATG TACTGTTCC	4200
ATTAaaaaaaAG GTAATTCAA TGAAATTGTT AAATGTAATT AATTTGTTT TCTTGATGTT	4260
TGTTTCATCA TCTTCTTTG CTCAGGTAAT TGAAATGAAT AATTGGCCTC TGCGCGATT	4320
TGTAACCTGG TATTCAAAGC AATCAGGCGA ATCCGTTATT GTTTCTCCCG ATGAAAAGG	4380
TACTGTTACT GTATATTCACT CTGACGTTAA ACCTGAAAAT CTACGCAATT TCTTATTTC	4440
TGTTTACGT GCTAATAATT TTGATATGGT TGGTTCAATT CCTTCCATAA TTCAGAAGTA	4500
TAATCCAAAC AATCAGGATT ATATTGATGA ATTGCCATCA TCTGATAATC AGGAATATGA	4560
TGATAATTCC GCTCCTCTG GTGGTTCTT TGTTCCGCAA AATGATAATG TTACTCAAAC	4620
TTTAAATT AATAACGTTG GGGCAAAGGA TTTAATACGA GTTGTGAAT TGTTGTAAA	4680
GTCTAATACT TCTAAATCCT CAAATGTATT ATCTATTGAC GGCTCTAAC TATTAGTTGT	4740
TAGTGCACCT AAAGATATTT TAGATAACCT TCCTCAATT CTTTCTACTG TTGATTTGCC	4800
AACTGACCAG ATATTGATTG AGGGTTTGAT ATTTGAGGTT CAGCAAGGTG ATGCTTACA	4860
TTTTTCATTT GCTGCTGGCT CTCAGCGTGG CACTGTTGCA GGCGGTGTTA ATACTGACCG	4920
CCTCACCTCT GTTTATCTT CTGCTGGTGG TTGCTCGGT ATTTTAATG GCGATGTTTT	4980
AGGGCTATCA GTTCGCGCAT TAAAGACTAA TAGCCATTCA AAAATATTGT CTGTGCCACG	5040
TATTCTTACG CTTTCAGGTC AGAAGGGTTC TATCTCTGTT GGCCAGAATG TCCCTTTAT	5100
TACTGGTCGT GTGACTGGTG AATCTGCCAA TGTAAATAAT CCATTCAGA CGATTGAGCG	5160
TCAAAATGTA GGTATTCCA TGAGCGTTTT TCCCTGTTGCA ATGGCTGGGG GTAATATTGT	5220
TCTGGATATT ACCAGCAAGG CCGATACTTT GAGTTCTCT ACTCAGGCAA GTGATGTTAT	5280
TACTAATCAA AGAAGTATTG CTACAACGGT TAATTGCGT GATGGACAGA CTCTTTACT	5340

CGGTGGCCTC ACTGATTATA AAAACACTTC TCAAGATTCT GCGTACCGT TCCTGTCTAA	5400
AATCCCTTTA ATCGGCCTCC TGTTAGCTC CCGCTCTGAT TCCAACGAGG AAAGCACGTT	5460
ATACGTGCTC GTCAAAGCAA CCATAGTACG CGCCCTGTAG CGGCGCATT ACGCGGGCGG	5520
GTGTGGTGGT TACGCCAGC GTGACCGCTA CACTGCCAG CGCCCTAGCG CCCGCTCCTT	5580
TCGCTTCTT CCCTTCCTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC	5640
GGGGGCTCCC TTAGGGTTC CGATTTAGTG CTTACGGCA CCTCGACCCC AAAAAACTTG	5700
ATTTGGGTGA TGGTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTT CGCCCTTTGA	5760
CGTTGGAGTC CACGTTCTT AATAGTGGAC TCTTGTCCA AACTGGAACA ACACCTCAACC	5820
CTATCTCGGG CTATTCTTT GATTTATAAG GGATTTGCC GATTCGGAA CCACCATCAA	5880
ACAGGATTT CGCCTGCTGG GGCAAACAG CGTGGACCCC TTGCTGCAAC TCTCTCAGGG	5940
CCAGGCCGTG AAGGGCAATC AGCTGTTGCC CGTCTCGCTG GTGAAAAGAA AAACCACCC	6000
GGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCAATTAA TGCAGCTGGC	6060
ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC	6120
TCACTCATTA GGCAACCCAG GCTTACACT TTATGTTCC GGCTCGTATG TTGTGTGGAA	6180
TTGTGAGCGG ATAACAATT CACACCGTC ACTTGGCACT GGCGTCGTT TTACAACGTC	6240
GTGACTGGGA AAACCTGGC GTTACCCAAG CTTTGACAT GGAGAAAATA AAGTGAACACA	6300
AAGCACTATT GCACTGGCAC TCTTACCGTT ACCGTTACTG TTTACCCCTG TGACAAAAGC	6360
CGCCCAGGTC CAGCTGCTCG AGTCAGGCCT ATTGTGCCA GGGGATTGTA CTAGTGGATC	6420
CTAGGCTGAA GGCGATGACC CTGCTAAGGC TGCAATTCAAT AGTTTACAGG CAAGTGCTAC	6480
TGAGTACATT GGCTACGCTT GGGCTATGGT AGTAGTTATA GTTGGTGCTA CCATAGGGAT	6540
TAAATTATTC AAAAAGTTA CGAGCAAGGC TTCTTAAGCA ATAGCGAAGA GGCCCCGACC	6600
GATCGCCCTT CCCAACAGTT GCGCAGCCTG AATGGCGAAT GGCGCTTGC CTGGTTCCG	6660
GCACCAGAAG CGGTGCCGGA AAGCTGGCTG GAGTGGATC TTCCTGAGGC CGATACGGTC	6720
GTCGTCCCT CAAACTGGCA GATGCACGGT TACGATGCGC CCATCTACAC CAACGTAACC	6780
TATCCCATTAA CGGTCAATCC GCCGTTGTT CCCACGGAGA ATCCGACGGG TTGTTACTCG	6840
CTCACATTAA ATGTTGATGA AAGCTGGCTA CAGGAAGGCC AGACGCGAAT TATTTTGAT	6900
GGCGTTCTA TTGGTTAAAA AATGAGCTGA TTTAACAAAA ATTTAACGCG AATTTAACAA	6960
AAATATTAAAC GTTTACAATT TAAATATTG CTTATACAAT CTTCTGTT TTGGGGCTTT	7020
TCTGATTATC AACCGGGGTA CATATGATTG ACATGCTAGT TTTACGATTA CCGTTCATCG	7080
ATTCTCTTGT TTGCTCCAGA CTCTCAGGCA ATGACCTGAT AGCCTTGTGTA GATCTCTCAA	7140
AAATAGCTAC CCTCTCCGGC ATTAATTTAT CAGCTAGAAC GGTTGAATAT CATATTGATG	7200
GTGATTGAC TGTCTCCGGC CTTCTCACC CTTTGAAATC TTTACCTACA CATTACTCAG	7260
GCATTGCATT TAAAATATAT GAGGGTTCTA AAAATTTTA TCCTTGCGTT GAAATAAAGG	7320
CTTCTCCGGC AAAAGTATTAA CAGGGTCATA ATGTTTTGG TACAACCGAT TTAGCTTTAT	7380

GCTCTGAGGC TTTATTGCTT AATTTTGCTA ATTCTTGCC TTGCCTGTAT GATTTATTGG	7440
ACGTT	7445

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 7409 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: circular

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

AATGCTACTA CTATTAGTAG AATTGATGCC ACCTTTAG CTCGCGCCCC AAATGAAAAT	60
ATAGCTAAAC AGGTTATTGA CCATTTGCGA AATGTATCTA ATGGTCAAAC TAAATCTACT	120
CGTTCGCAGA ATTGGGAATC AACTGTTACA TGGAATGAAA CTTCCAGACA CCGTACTTTA	180
GTTCATATT TAAAACATGT TGAGCTACAG CACCAGATTG ACCAATTAAG CTCTAACGCCA	240
TCTGCAAAAA TGACCTCTTA TCAAAAGGAG CAATTAAAGG TACTCTCTAA TCCTGACCTG	300
TTGGAGTTG CTTCCGGTCT GGTTCGCTT GAAGCTCGAA TTAAAACCGG ATATTGAAAG	360
TCTTCGGGC TTCCTCTTAA TCTTTTGAT GCAATCCGCT TTGCTTCTGA CTATAATAGT	420
CAGGGTAAAG ACCTGATTT TGATTTATGG TCATTCTCGT TTTCTGAACG GTTTAAAGCA	480
TTTGAGGGGG ATTCAATGAA TATTTATGAC GATTCCCGAG TATTGGACGC TATCCAGTCT	540
AAACATTTA CTATTACCCC CTCTGGCAAA ACTTCTTTG CAAAAGCCTC TCGCTATTTT	600
GGTTTTATC GTCGTCTGGT AAACGAGGGT TATGATAGTG TTGCTCTTAC TATGCCTCGT	660
AATTCTTTT GGCGTTATGT ATCTGCATTA GTTGAATGTG GTATTCTAA ATCTCAACTG	720
ATGAATCTTT CTACCTGTAA TAATGTTGTT CCGTTAGTTC GTTTTATTAA CGTAGATTTT	780
TCTTCCCAAC GTCCTGACTG GTATAATGAG CCAGTTCTTA AAATCGCATA AGGTAATTCA	840
CAATGATTAA AGTTGAAATT AAACCATCTC AAGCCCAATT TACTACTCGT TCTGGTGT	900
CTCGTCAGGG CAAGCCTTAT TCACTGAATG AGCAGCTTG TTACGTTGAT TTGGGTAATG	960
AATATCCGGT TCTTGTCAAG ATTACTCTTG ATGAAGGTCA GCCAGCCTAT GCGCCTGGTC	1020
TGTACACCGT TCATCTGTCC TCTTCAAAG TTGGTCAGTT CGGTTCCCTT ATGATTGACC	1080
GTCTGCGCCT CGTTCCGGCT AAGTAACATG GACCAGGTGG CGGATTTCGA CACAATTTAT	1140
CAGGCGATGA TACAAATCTC CGTTGTACTT TGTTTCCGCG TTGGTATAAT CGCTGGGGGT	1200
CAAAGATGAG TGTTTAGTG TATTCTTCG CCTCTTCTCGT TTTAGGTTGG TGCCTTCGTA	1260
GTGGCATTAC GTATTTTACCG CGTTTAATGG AAACCTCCTC ATGAAAAAGT CTTTAGTCCT	1320
CAAAGCCTCT GTAGCCGTTG CTACCCCTCGT TCCGATGCTG TCTTTCGCTG CTGAGGGTGA	1380
CGATCCCGCA AAAGCGGCCT TTAACCCCT GCAAGCCTCA GCGACCGAAT ATATCGGTTA	1440
TGGGTGGCG ATGGTTGTTG TCATTGTCTGG CGCAACTATC GGTATCAAGC TGTTAAGAA	1500

ATTCACCTCG	AAAGCAAGCT	GATAAACCGA	TACAATTAAA	GGCTCCTTT	GGAGCCTTT	1560
TTTTGGAGA	TTTCAACGT	GAAAAAATTA	TTATCGCAA	TCCTTAGT	TGTCCTTTC	1620
TATTCTCACT	CCGCTGAAAC	TGTTGAAAGT	TGTTAGCAA	AACCCCATAAC	AGAAAATTCA	1680
TTTACTAACG	TCTGGAAAGA	CGACAAAAC	TTAGATCGTT	ACGCTAACTA	TGAGGGTTGT	1740
CTGTGGAATG	CTACAGGCCT	TGTAGTTGT	ACTGGTGACG	AAACTCAGTG	TTACGGTACA	1800
TGGGTTCCCA	TTGGGCTTGC	TATCCCTGAA	AATGAGGGTG	GTGGCTCTGA	GGGTGGCGGT	1860
TCTGAGGGTG	GCGGTTCTGA	GGGTGGCGGT	ACTAAACCTC	CTGAGTACGG	TGATACACCT	1920
ATTCCGGGCT	ATACTTATAT	CAACCCCTCTC	GACGGCACTT	ATCCGCCTGG	TACTGAGCAA	1980
AACCCCGCTA	ATCCTAATCC	TTCTCTTGAG	GAGTCTCAGC	CTCTTAATAC	TTTCATGTTT	2040
CAGAATAATA	GGTTCCGAAA	TAGGCAGGGG	GCATTAACGT	TTTATACGGG	CACTGTTACT	2100
CAAGGCACTG	ACCCCGTTAA	AACTTATTAC	CAGTACACTC	CTGTATCATC	AAAAGCCATG	2160
TATGACGCTT	ACTGGAACGG	AAATTCAAGA	GAUTGGCTT	TCCATTCTGG	CTTTAATGAA	2220
GATCCATTCTG	TTTGTGAATA	TCAAGGCCAA	TCGTCTGACC	TGCCTCAACC	TCCTGTCAAT	2280
GCTGGCGGGC	GCTCTGGTGG	TGGTTCTGGT	GGCGGCTCTG	AGGGTGGTGG	CTCTGAGGGT	2340
GGCGGTTCTG	AGGGTGGCGG	CTCTGAGGGA	GGCGGTTCCG	GTGGTGGCTC	TGGTCCGGT	2400
GATTTTGATT	ATGAAAAGAT	GGCAAACGCT	AATAAGGGGG	CTATGACCGA	AAATGCCGAT	2460
GAAAACGCC	TACAGTCTGA	CGCTAAAGGC	AAACTTGATT	CTGTCGCTAC	TGATTACGGT	2520
GCTGCTATCG	ATGGTTTCAT	TGGTGACGTT	TCCGGCCTTG	CTAATGGTAA	TGGTGCTACT	2580
GGTGATTTG	CTGGCTCTAA	TTCCCAAATG	GCTCAAGTCG	GTGACGGTGA	AAITCACCT	2640
TTAATGAATA	ATTTCCGTCA	ATATTACCT	TCCCTCCCTC	AATCGGTTGA	ATGTCGCCCT	2700
TTTGTCTTA	GGCGTGGTAA	ACCATATGAA	TTTCTATTG	ATTGTGACAA	AATAAACTTA	2760
TTCCGTGGTG	TCTTTCGGTT	TCTTTATAT	GTTGCCACCT	TTATGTATGT	ATTTCTACG	2820
TTTGCTAAC	TACTGGTAA	TAAGGAGTCT	TAATCATGCC	AGTTCTTTG	GGTATTCCGT	2880
TATTATTGGG	TTCCCTCGGT	TTCCCTCTGG	TAACTTGTT	GGGCTATCTG	CTTACTTTTC	2940
TTAAAAAGGG	CTTCGGTAAG	ATAGCTATTG	CTATTTCATT	GTTCCTTGCT	CTTATTATTG	3000
GGCTTAACTC	AATTCTTGTG	GGTTATCTCT	CTGATATTAG	CGCTCAATTA	CCCTCTGACT	3060
TTGTTCAAGG	TGTTCAAGTTA	ATTCTCCCGT	CTAATGCGCT	TCCCTGTTT	TATGTTATTG	3120
TCTCTGTAAA	GGCTGCTATT	TTCATTTTG	ACGTTAAACA	AAAAATCGTT	TCTTATTG	3180
ATTGGGATAAA	ATAATATGGC	TGTTTATTTT	GTAACGGCA	AATTAGGCTC	TGGAAAGACG	3240
CTCGTTAGGG	TTGGTAAGAT	TCAGGATAAA	ATTGTAGCTG	GGTGCAGGAA	AGCAACTAAT	3300
CTTGATTTAA	GGCTTCAAAA	CCTCCCGCAA	GTCGGGAGGT	TCGCTAAAAC	GCCTCGCGTT	3360
CTTAGAATAC	CGGATAAGCC	TTCTATATCT	GATTGCTTG	CTATTGGGCG	CGGTAATGAT	3420
TCCTACGATG	AAAATAAAA	CGGCTTGCTT	GTTCTCGATG	AGTGCAGGTAC	TTGGTTAAT	3480
ACCCGTTCTT	GGAATGATAA	GGAAAGACAG	CCGATTATTG	ATTGGTTTCT	ACATGCTCGT	3540

AAATTAGGAT GGGATATTAT TTTCTTGT CAGGACTTAT CTATTGTTGA TAAACAGGCC	3600
CGTTCTGCAT TAGCTGAACA TGTTGTTAT TGTCTCGTC TGGACAGAAT TACTTACCT	3660
TTTGTGGTA CTTTATATTG TCTTATTACT GGCTCGAAAA TGCCCTGCC TAAATTACAT	3720
GTTGGCGTTG TTAAATATGG CGATTCTCAA TTAAGCCCTA CTGTTGAGCG TTGGCTTAT	3780
ACTGGTAAGA ATTTGTATAA CGCATATGAT ACTAACAGG CTTTTCTAG TAATTATGAT	3840
TCCGGTGTG ATTCTTATTT AACGCCCTAT TTATCACACG GTCGGTATTT CAAACCATT	3900
AATTAGGTC AGAAGATGAA GCTTACTAAA ATATATTGA AAAAGTTTC ACGCCGTT	3960
TGTCTTGCAG TTGGATTTGC ATCAGCATT ACATATAGTT ATATAACCCA ACCTAACCG	4020
GAGGTTAAAA AGGTAGTCTC TCAGACCTAT GATTTGATA AATTCACTAT TGACTCTCT	4080
CAGCGTCTTA ATCTAAGCTA TCGCTATGTT TTCAAGGATT CTAAGGGAAA ATTAATTAA	4140
AGCGACGATT TACAGAAGCA AGGTTATTCA CTCACATATA TTGATTTATG TACTGTTCC	4200
ATTAAAAAAAG CTAATTCAA TGAAATTGTT AAATGTAATT AATTTGTTT TCTTGATGTT	4260
TGTTTCATCA TCTTCTTTG CTCAGGTAAT TGAAATGAAT AATTCCGCTC TGCGCGATT	4320
TGTAACCTGG TATTCAAAGC AATCAGGCCA ATCCGTTATT GTTCTCCCG ATGAAAAGG	4380
TACTGTTACT GTATATTCACT CTGACGTTAA ACCTGAAAAT CTACGCAATT TCTTATTTC	4440
TGTTTACGT GCTAATAATT TTGATATGGT TGGTTCAATT CCTTCATAA TTCAGAAGTA	4500
TAATCCAAAC AATCAGGATT ATATTGATGA ATTGCCATCA TCTGATAATC AGGAATATGA	4560
TGATAATTCC GCTCCTCTG GTGGTTCTT TGTTCCGCAA AATGATAATG TTACTCAAAC	4620
TTTAAAATT AATAACGTTG GGGCAAAGGA TTAAACACGA GTTGTGAAT TGTTGTAAA	4680
GTCTAAACT TCTAAATCCT CAAATGTATT ATCTATTGAC GGCTCTAAC TATTAGTTGT	4740
TAGTGCACCT AAAGATATT TAGATAACCT TCCTCAATT CTTCTACTG TTGATTTGCC	4800
AACTGACCAG ATATTGATTG AGGGTTTGAT ATTTGAGGTT CAGCAAGGTG ATGCTTACA	4860
TTTTTCATTG GCTGCTGGCT CTCAGCGTGG CACTGTTGCA GGCGGTGTTA ATACTGACCG	4920
CCTCACCTCT GTTTTATCTT CTGCTGGTGG TTGCTCGGT ATTTTAATG GCGATGTTT	4980
AGGGCTATCA GTTCCGGCAT TAAAGACTAA TAGCCATTCA AAAATATTGT CTGTGCCACG	5040
TATTCTTACG CTTTCAGGTC AGAAGGGTC TATCTCTGTT GGCCAGAATG TCCCTTTAT	5100
TACTGGTCGT GTGACTGGTG AATCTGCCAA TGAAATAAT CCATTCAGA CGATTGAGCG	5160
TCAAAATGTA GGTATTCCA TGAGCGTTT TCCTGTTGCA ATGGCTGGCG GTAATATTGT	5220
TCTGGATATT ACCAGCAAGG CCGATAGTTT GAGTTCTCT ACTCAGGCAA GTGATGTTAT	5280
TACTAATCAA AGAAGTATTG CTACAACGGT TAATTGCGT GATGGACAGA CTCTTTACT	5340
CGGTGGCCTC ACTGATTATA AAAACACTTC TCAAGATTCT GGCGTACCGT TCCTGTCTAA	5400
AATCCCTTAA ATCGGCCCTCC TGTTTAGCTC CCGCTCTGAT TCCAACGAGG AAAGCACGTT	5460
ATACGTGCTC GTCAAAGCAA CCATAGTAGG CGCCCTGTAG CGGCGCATTA AGCGCGGGGG	5520
GTGTGGTGGT TACGGCCAGC GTGACCGCTA CACTTGGCAG CGCCCTAGCG CCCGCTCCTT	5580

TCGGCTTCCTT CCCTTCCTTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC	5640
GGGGGCTCCC TTTAGGGTTC CGATTTAGTG CTTTACGGCA CCTCGACCCC AAAAAACTTG	5700
ATTTGGGTGA TGTTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTT CGCCCTTGAA	5760
CGTTGGAGTC CACGTTCTTT AATAGTGGAC TCTTGTTCGA AACTGGAACA ACACCTCAACC	5820
CTATCTCGGG CTATTCTTT GATTATAAG GGATTTGCC GATTCGGAA CCACCATCAA	5880
ACAGGATTTC CGCCTGCTGG GGAAACCCAG CGTGGACCCGC TTGCTGCAAC TCTCTCAGGG	5940
CCAGGCGGTG AAGGGCAATC AGCTGTTGCC CGTCTCGCTG GTGAAAAGAA AAACCCACCT	6000
GGCCGCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCAATTAA TGCAGCTGGC	6060
ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGGGCAA CGCAATTAAAT GTGAGTTAGC	6120
TCACTCATTA GGCACCCAG GCTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA	6180
TTGTGAGCGG ATAACAATT CACACGCGTC ACTTGGCACT GGCCGTCGTT TTACAACGTC	6240
GTGACTGGGA AAACCTGGC GTTACCCAAG CTTTGTACAT GGAGAAAATA AAGTGAACACA	6300
AAGCACTATT GCACTGGCAC TCTTACCGTT ACTGTTTACC CCTGTGGCAA AAGCCTATGG	6360
GGGGTTTATG ACTTCTGAGG GATCCGGAGC TGAAGGCGAT GACCCTGCTA AGGCTGCATT	6420
CAATAGTTA CAGGCAAGTG CTACTGAGTA CATTGGCTAC GCTTGGGCTA TGGTAGTAGT	6480
TATAGTTGGT GCTACCATAG GGATTAAATT ATTCAAAAAG TTTACGAGCA AGGCTTCTTA	6540
AGCAATAGCG AAGAGGCCCG CACCGATCGC CCTTCCCAAC AGTTGCGCAG CCTGAATGGC	6600
GAATGGCGCT TTGCCTGGTT TCCGGCACCA GAAGCGGTGC CGGAAAGCTG GCTGGAGTGC	6660
GATCTTCCCG AGGCCGATAC GGTGTCGTC CCCTCAAACCT GGCAGATGCA CGGTTACGAT	6720
GCGCCCATCT ACACCAAACGT AACCTATCCC ATTACGGTCA ATCCGCCGTT TGTTCCCACG	6780
GAGAATCCGA CGGGTTGTTA CTCGCTACA TTTAATGTTG ATGAAAGCTG GCTACAGGAA	6840
GGCCAGACGC GAATTATTT TGATGGCGTT CCTATTGGTT AAAAAATGAG CTGATTTAAC	6900
AAAAATTTAA CGCGAATTTT AACAAAATAT TAACGTTTAC AATTAAATA TTTGCTTATA	6960
CAATCTTCCT GTTTTGCCCC CTTTCTGAT TATCAACCGG GGTACATATG ATTGACATGC	7020
TAGTTTACG ATTACCGTTC ATCGATTCTC TTGTTGCTC CAGACTCTCA GGCAATGACC	7080
TGATAGCCTT TGTAGATCTC TCAAAAATAG CTACCCCTCTC CGGCATTAAT TTATCAGCTA	7140
GAACGGTTGA ATATCATATT GATGGTGATT TGACTGTCTC CGGCCTTCT CACCCCTTTG	7200
AATCTTACCG TACACATTAC TCAGGCATTG CATTAAAAT ATATGAGGGT TCTAAAATT	7260
TTTATCCTTG CGTTGAAATA AAGGCTTCTC CCGCAAAAGT ATTACAGGGT CATAATGTTT	7320
TTGGTACAAC CGATTAGCT TTATGCTCTG AGGCTTATT GCTTAATT GCTAATTCTT	7380
TGCCTTGCT GTATGATTAA TTGGACGTT	7409

(2) INFORMATION FOR SEQ ID NO:5:

- (1) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 7294 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: circular

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AATGCTACTA CTATTAGTAG AATTGATGCC ACCTTTCAAG CTCGCGCCCC AAATGAAAAT	60
ATAGCTAAAC AGGTTATTGA CCATTTGCGA AATGTATCTA ATGGTCAAAC TAAATCTACT	120
CGTTCGCAGA ATTGGGAATC AACTGTTACA TGGAATGAAA CTTCCAGACA CCGTACTTTA	180
GTTGCATATT TAAAACATGT TGAGCTACAG CACCAAGATTG AGCAATTAAAG CTCTAAGCCA	240
TCTGCAAAAA TGACCTCTTA TCAAAAGGAG CAATTAAGG TACTCTCTAA TCCTGACCTG	300
TTGGAGTTTG CTTCCGGTCT GGTCGCTTT GAAGCTCGAA TTAAAACGCG ATATTGAAAG	360
TCTTCGGGC TTCCTCTTAA TCTTTTGAT GCAATCCGCT TTGCTCTGA CTATAATAGT	420
CAGGGTAAAG ACCTGATTT TGATTTATGG TCATTCTCGT TTTCTGAAC GTTTAAAGCA	480
TTTGAGGGGG ATTCAATGAA TATTTATGAC GATTCCGAG TATTGGACGC TATCCAGTCT	540
AAACATTTA CTATTACCCC CTCTGGCAAA ACTTCTTTG CAAAAGCCTC TCGCTATTTT	600
GGTTTTATC GTCGTCTGGT AAACGAGGGT TATGATAGTG TTGCTCTTAC TATGCCCTCGT	660
AATTCTTTT GGCGTTATGT ATCTGCATTA GTTGAATGTG GTATTCTAA ATCTCAACTG	720
ATGAATCTTT CTACCTGTAA TAATGTTGTT CCGTTAGTTC GTTTTATTAA CGTAGATTTT	780
TCTTCCCAAC GTCCTGACTG GTATAATGAG CCAGTTCTTA AAATCGCATA AGGTAATTCA	840
CAATGATTAA AGTTGAAATT AAACCATCTC AAGCCAATT TACTACTCGT TCTGGTGT	900
CTCGTCAGGG CAAGCCTTAT TCACTGAATG ACCAGCTTG TTACGTTGAT TTGGGTAATG	960
AATATCCGGT TCTTGTCAAG ATTACTCTTG ATGAAGGTCA GCCAGCCTAT GCGCCTGGTC	1020
TGTACACCGT TCATCTGTCC TCTTCAAAG TTGGTCAGTT CGGTTCCCTT ATGATTGACC	1080
GTCTGCGCCT CGTTCCGGCT AAGTAACATG GAGCAGGTG CGGATTTCGA CACAATTAT	1140
CAGGCGATGA TACAAATCTC CGTTGTACTT TGTTTGCAGC TTGGTATAAT CGCTGGGGGT	1200
CAAAGATGAG TGTGTTAGTG TATTCTTCG CCTCTTCGT TTTAGGTTGG TGCCTTCGTA	1260
GTGGCATTAC GTATTTAAC CGTTTAATGG AAACCTCCTC ATGAAAAGT CTTAGTCCT	1320
CAAAGCCTCT GTAGCCGTTG CTACCCCTCGT TCCGATGCTG TCTTTCGCTG CTGAGGGTGA	1380
CGATCCCGCA AAAGCGGCCT TTAACCTCCCT GCAAGCCTCA GCGACCGAAT ATATCGGTTA	1440
TGGCGTGGCG ATGGTTGTTG TCATTGTCGG CGCAACTATC GGTATCAAGC TGTTAAGAA	1500
ATTCACCTCG AAAGCAAGCT GATAAACCGA TACAATTAAA GGCTCCTTTT GGAGCCTTTT	1560
TTTTGGAGA TTTTCAACGT GAAAAAATTA TTATTGCAA TTCTTTAGT TGTTCTTTC	1620
TATTCTCACT CCGCTGAAAC TGGTGAAGT TGTTAGCAA AACCCCCATAC AGAAAATTCA	1680

TTTACTAACG TCTGGAAAGA CGACAAAACT TTAGATCGTT ACGCTAACTA TGAGGGTTGT	1740
CTGTGGAATG CTACAGGCCT GTAGTTTG ACTGGTGACG AAACCTCAGTG TTACGGTACA	1800
TGGGTTCCCTA TTGGGCTTGC TATCCCTGAA AATGAGGGTG GTGGCTCTGA GGGTGGCGGT	1860
TCTGAGGGTG GCGGTTCTGA GGGTGGCGGT ACTAAACCTC CTGAGTACGG TGATACACCT	1920
ATTCCGGGCT ATACTTATAT CAACCCTCTC GACGGCACTT ATCCGCCTGG TACTGAGCAA	1980
AACCCCGCTA ATCCTAATCC TTCTCTTGAG GAGTCTCAGC CTCTTAATAC TTTCATGTTT	2040
CAGAATAATA GGTTCCGAAA TAGGCAGGGG GCATTAACTG TTTATACGGG CACTGTTACT	2100
CAAGGCAGTG ACCCCGTTAA AACTTATTAC CAGTACACTC CTGTATCATC AAAAGCCATG	2160
TATGACGCTT ACTGGAACGG TAAATTCAAGA GACTGCCCTT TCCATTCTGG CTTTAATGAA	2220
GATCCATTG TTTGTGAATA TCAAGGGCAA TCGTCTGACC TGCCTCAACC TCCTGTCAAT	2280
GCTGGCGGGG GCTCTGGTGG TGGTCTGGT GGCGGCTCTG AGGGTGGTGG CTCTGAGGGT	2340
GGCGGTTCTG AGGGTGGCGG CTCTGAGGGA GGCGGTTCCG GTGGTGGCTC TGGTCCGGT	2400
GATTTGATT ATGAAAAGAT GGCAAACGCT AATAAGGGGG CTATGACCGA AAATGCCGAT	2460
AAAAACGCGC TACAGTCTGA CGCTAAAGGC AAACTTGATT CTGTCGCTAC TGATTACGGT	2520
GCTGCTATCG ATGGTTTCAT TGGTGACGTT TCCGGCCTTG CTAATGGTAA TGGTGCTACT	2580
GGTGATTTG CTGGCTCTAA TTCCCAAATG GCTCAAGTCG GTGACGGTGA TAATTCACCT	2640
TTAATGAATA ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTGA ATGTCGCCCT	2700
TTTGTCTTTA GCGCTGGTAA ACCATATGAA TTTTCTATTG ATTGTGACAA AATAAACTTA	2760
TTCCGTGGTG TCTTTGGTTC TCTTTTATAT GTTGCCACCT TTATGTATGT ATTTCTACG	2820
TTTGCTAACAA TACTGGTAA TAAGGAGTCT TAATCATGCC AGTTCTTTG GGTATTCCGT	2880
TATTATTGCG TTTCTCGGT TTCTCTGG TAACTTTGTT GGGCTATCTG CTTACTTTTC	2940
TTAAAAAGGG CTTCGGTAAG ATAGCTATTG CTATTCATT GTTCTTGCT CTTATTATTG	3000
GGCTTAACTC AATTCTTGTG GGTTATCTCT CTGATATTAG CGCTCAATTAA CCCTCTGACT	3060
TTGTTCAAGGG TGTTCAAGTTA ATTCTCCCGT CTAATGGCCT TCCCTGTTT TATGTTATTG	3120
TCTCTGTAAA GGCTGCTATT TTGATTTTG ACGTTAAACA AAAAATCGTT TCTTATTGG	3180
ATTGGGATAAA ATAATATGGC TGTTTATTGTT GTAATGGCA AATTAGGCTC TGGAAAGACG	3240
CTCGTTAGCG TTGGTAAGAT TCAGGATAAA ATTGTAGCTG GGTGCAAAAT AGCAACTAAT	3300
CTTGATTTAA GGCTTCAAAA CCTCCCGCAA GTCGGGAGGT TCGCTAAAC GCCTCGCGTT	3360
CTTAGAATAC CGGATAAGCC TTCTATATCT GATTTGCTTG CTATTGGGG CGGTAATGAT	3420
TCCTACGGATG AAAATAAAA CGGCTTGCTT GTTCTCGATG AGTGCAGGTAC TTGGTTAAAT	3480
ACCCGTTCTT GGAATGATAA GGAAAGACAG CCGATTATTG ATTGGTTCT ACATGCTCGT	3540
AAATTAGGAT GGGATATTAT CTTCCTTGTT CAGGACTTAT CTATTGTTGA TAAACAGGGG	3600
CGTTCTGCAT TAGCTGAACA TGTTGTTTAT TGTCGTGTC TGGACAGAAAT TACTTTACCT	3660
TTTGTGGTAA CTTTATATTCT TCTTATTACT GGCTCGAAAA TGCCTCTGCC TAAATTACAT	3720

GTTGGCGTTG TTAAATATGG CGATTCTCAA TTAAGCCCTA CTGTTGAGGG TTGGCTTTAT	3780
ACTGGTAAGA ATTTGTATAA CGCATATGAT ACTAAACAGG CTTTTCTAG TAATTATGAT	3840
TCCGGTGTTC ATTCTTATTT AACGCCTTAT TTATCACACG GTCGGTATTT CAAACCATT	3900
AATTTAGGTC AGAAGATGAA GCTTACTAAA ATATATTGA AAAAGTTTC ACGCGTTCTT	3960
TGTCTTGCGA TTGGATTGTC ATCAGGATT ACATATAGTT ATATAACCCA ACCTAACCGG	4020
GAGGTTAAAA AGGTAGTCTC TCAGACCTAT GATTTGATA AATTCACTAT TGACTCTTCT	4080
CAGCGTCTTA ATCTAAGCTA TCGCTATGTT TTCAAGGATT CTAAGGGAAA ATTAATTAAAT	4140
AGCGACGATT TACAGAAGCA AGGTTATTCA CTCACATATA TTGATTATG TACTGTTCC	4200
ATTAAAAAGG TAATTCAAAT GAAATTGTTA AATGTAATTAA TTTTGTTTT CTTGATGTTT	4260
TTTCATCAT CTTCTTTGTC TCAGGTAATT GAAATGAATA ATTCCGCTCT GCGCGATT	4320
GTAACTTGGT ATTCAAAGCA ATCAGGCAGA TCCGTTATTG TTTCTCCGA TGAAAAGGT	4380
ACTGTTACTG TATATTCTAC TGACGTTAAA CCTGAAAATC TACGCAATT CTTTATTCT	4440
GTTCACGTG CTAATAATT TGATATGGTT GGTTCAATT CTTCCATTAT TTAGAAGTAT	4500
AATCCAAACA ATCAGGATTA TATTGATGAA TTGCCATCAT CTGATAATCA GGAATATGAT	4560
GATAATTCCG CTCCTCTGG TGGTTCTTT GTTCCGAAA ATGATAATGT TACTCAAAC	4620
TTTAAATTAA ATAACGTTGG GGCAAAGGAT TTAATACGAG TTGTCGAATT GTTGTAAAG	4680
TCTAATACTT CTAATCCTC AAATGTATTAA TCTATTGACG GCTCTAATCT ATTAGTTGTT	4740
AGTGCACCTA AAGATATTAA AGATAACCTT CCTCAATTCC TTTCTACTGT TGATTGCCA	4800
ACTGACCAGA TATTGATTGA GGGTTGATA TTTGAGGTTTC AGCAAGGTGA TGCTTAGAT	4860
TTTCATTTG CTGCTGGCTC TCAGCGTGGC ACTGTTGCAG GCGGTGTTAA TACTGACCGC	4920
CTCACCTCTG TTTTATCTTC TGCTGGGGT TCGTTGGTA TTTTAATGG CGATGTTTA	4980
GGGCTATCAG TTCGGCATT AAAGACTAAT AGCCATTCAA AAATATTGTC TGTGCCACGT	5040
ATTCTTACGC TTTCAGGTCA GAAGGGTTCT ATCTCTGTTG GCCAGAATGT CCCTTTATT	5100
ACTGGTCGTG TGACTGGTGA ATCTGCCAAT GTAAATAATC CATTTCAGAC GATTGAGCGT	5160
CAAAATGTAG GTATTCCAT GAGCGTTTT CCTGTTGCAA TGGCTGGGG TAATATTGTT	5220
CTGGATATTAA CCAGCAAGGC CGATAGTTG AGTTCTCTA CTCAGGCAAG TGATGTTATT	5280
ACTAATCAA GAAGTATTGC TACAACGGTT AATTGCGTG ATGGACAGAC TCTTTACTC	5340
GGTGGCCTCA CTGATTATAA AAACACTTCT CAAGATTCTG GGGTACCGTT CCTGTCTAAA	5400
ATCCCCTTAA TCGGCCCTCCT GTTTAGCTCC CGCTCTGATT CCAACGAGGA AAGCACGTTA	5460
TACGTGCTCG TCAAAGCAAC CATAGTACGCC GCCCCTGAGC GCGCATTAA GCGCGGCCGG	5520
TGTGGTGGTT ACGCGCAGCG TGACCGCTAC ACTTGGCAGC GCGCTAGCGC CCGCTCCTT	5580
CGCTTTCTTC CCTTCCCTTTC TCGCCACGTT CGCCGGCTTT CCCCGTCAAG CTCTAAATCG	5640
GGGGCTCCCT TTAGGGTTCC GATTTAGTGC TTTACGGCAC CTCGACCCCCA AAAAACTTGA	5700
TTTGGGTGAT GGTCACGTA GTGGGCCATC GCGCTGATAG ACGGTTTTTC GCGCTTGAC	5760

GTTGGAGTCC ACGTTCTTA ATAGTGGACT CTTGTTCAA ACTGGAACAA CACTAACCC	5820
TATCTCGGGC TATTCTTTG ATTTATAAGG GATTTGCCG ATTCGGAAC CACCATAAA	5880
CAGGATTTG GCCTGCTGGG GCAAACCAGC GTGGACCGCT TGCTGCAACT CTCTCAGGGC	5940
CAGGCCTGAG AGGGCAATCA GCTGTTGCCG GTCTGCTGG TGAAAAGAAA AACCAACCTG	6000
GCGCCCAATA CGCAAACCGC CTCTCCCCG GCCTGGCCG ATTCAATTAT GCAGCTGGCA	6060
CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGCGAAC GCAATTAAATG TGAGTTAGCT	6120
CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT TGTGTGGAAT	6180
TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CAGGATGTAC GAATTGCAG	6240
GTAGGAGAGC TCGGCGGATC CGAGGCTGAA GGCGATGACC CTGCTAAGGC TGCATTCAAT	6300
AGTTTACAGG CAAGTGCTAC TGAGTACATT GGCTACGGCTT GGGCTATGGT AGTAGTTATA	6360
TTTGGTGCTA CCATAGGGAT TAAATTATTTC AAAAGTTA CGAGCAAGGC TTCTTAACCA	6420
GCTGGCGTAA TAGCGAAGAG GCCCGCACCG ATCGCCCTTC CCAACAGTTG CGCAGCCTGA	6480
ATGGCGAATG GCGCTTGCC TGGTTCCGG CACCAGAACG GGTGCCGGAA AGCTGGCTGG	6540
AGTGCATCT TCCTGAGGCC GATACTGGTCG TCGTCCCTC AAACCTGGCAG ATGCACGGTT	6600
ACGATGCGCC CATCTACACC AACGTAACCT ATCCCATTAC GGTCAATCCG CCGTTGTTC	6660
CCACGGAGAA TCCGACGGGT TGTTACTCGC TCACATTAA TGTTGATGAA AGCTGGCTAC	6720
AGGAAGGCCA GACCGAATT ATTTTGATG GCGTCCCTAT TGGTTAAAAAA ATGAGCTGAT	6780
TTAACAAAAA TTTAACGCGA ATTTAACAA AATATTAACG TTTACAATT AAATATTGCA	6840
TTATACAATC TTCCCTGTTT TGGGGCTTTT CTGATTATCA ACCGGGGTAC ATATGATTGA	6900
CATGCTAGTT TTACGATTAC CGTTCATCGA TTCTCTTGTGTT TGCTCCAGAC TCTCAGGCAA	6960
TGACCTGATA GCCTTGTAG ATCTCTAAA AATAGCTACC CTCTCCGGCA TTAATTATC	7020
AGCTAGAACG GTTGAATATC ATATTGATGG TGATTGACT GTCTCCGGCC TTTCTCACCC	7080
TTTTGAATCT TTACCTACAC ATTACTCAGG CATTGCATT AAAATATATG AGGGTTCTAA	7140
AAATTTTAT CCTTGCCTTG AAATAAAGGC TTCTCCGCA AAAGTATTAC AGGGTCATAA	7200
TGTTTTGGT ACAACCGATT TAGCTTATG CTCTGAGGCT TTATTGCTTA ATTTGCTAA	7260
TTCTTGCCT TGCCTGTATG ATTTATTGGA CGTT	7294

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7394 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: circular

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

AATGCTACTA CTATTAGTAG AATTGATGCC ACCTTTCACTCGGCCGGCC AAATGAAAAT

ATAGCTAAAC AGGTTATTGA CCATTTGGCA AATGTATCTA ATGGTCAAAC TAAATCTACT	120
CGTTCGCAGA ATTGGGAATC AACTGTTACA TGGAATGAAA CTTCCAGACA CCGTACTTTA	180
GTTGCATATT TAAAACATGT TGAGCTACAG CACCAAGATTG AGCAATTAAG CTCTAAGCCA	240
TCTGCAAAAA TGACCTCTTA TCAAAAGGAG CAATTAAGG TACTCTCTAA TCCTGACCTG	300
TTGGAGTTTG CTTCCGGTCT GGTCGCTTT GAAGCTCGAA TTAAAACGCG ATATTGAAAG	360
TCTTTGGGC TTCCTCTAA TCTTTTGAT GCAATCCGCT TTGCTTCTGA CTATAATAGT	420
CAGGGTAAAG ACCTGATTT TGATTTATGG TCATTCTCGT TTTCTGAACG GTTAAAGCA	480
TTTGAGGGGG ATTCAATGAA TATTTATGAC GATTCCGCAG TATTGGACGC TATCCAGTCT	540
AAACATTTTA CTATTACCCC CTCTGGCAAA ACTTCTTTG CAAAAGCCTC TCGCTATTTT	600
GGTTTTTATC GTCGTCTGGT AAACGAGGGT TATGATACTG TTGCTCTTAC TATGCCCTCGT	660
AATTCCCTTT GGGGTTATGT ATCTGCATTA GTTGAATGTG GTATTCCCTAA ATCTCAACTG	720
ATGAATCTTT CTACCTGTAA TAATGTTGTT CCGTTAGTTC GTTTTATTAA CGTAGATTTT	780
TCTTCCCAAC GTCCTGACTG GTATAATGAG CCAGTTCTTA AAATCGCATA AGGTAATTCA	840
CAATGATTAA AGTTGAAATT AAACCATCTC AAGCCCAATT TACTACTCGT TCTGGTGT	900
CTCGTCAGGG CAAGCCTTAT TCACTGAATG AGCAGCTTG TTACGTTGAT TTGGGTAATG	960
AATATCCGGT TCTTGTCAAG ATTACTCTTG ATGAAGGTCA GCCAGCCTAT GCGCCTGGTC	1020
TGTACACCGT TCATCTGTCC TCTTCAAAG TTGGTCAGTT CGGTTCCCTT ATGATTGACC	1080
GTCTGGCCT CGTTCGGCT AAGTAACATG GAGCAGGTG CGGATTTGCA CACAATTAT	1140
CAGGGCATGA TACAAATCTC CGTTGTACTT TGTTTCGCGC TTGGTATAAT CGCTGGGGGT	1200
CAAAGATGAG TGTTTAGTG TATTCTTCG CCTCTTTCGT TTTAGGTTGG TGCCTTCGTA	1260
GTGGCATTAC GTATTTACC CGTTAACATGG AAACCTCCTC ATGAAAAAGT CTTTAGTCCT	1320
CAAAGCCTCT GTAGCCGTTG CTACCCCTCGT TCCGATGCTG TCTTCGCTG CTGAGGGTGA	1380
CGATCCCGCA AAAGCCGCTT TIAACTCCCT GCAAGCCTCA GCGACCGAAT ATATCGGTTA	1440
TGCGTGGGGC ATGGTTGTTG TCATTGTCGG CGCAACTATC GGTATCAAGC TGTTAACAA	1500
ATTCACCTCG AAAGCAAGCT GATAAACCGA TACAATTAAA GGCTCCTTTT GGAGCCTTTT	1560
TTTTGGAGA TTTTCAACGT GAAAAAATTA TTATTCGAA TTCTTTAGT TGTTCTTTC	1620
TATTCTCACT CCGCTGAAAC TGTTGAAAGT TGTTAGCAA AACCCCATAC AGAAAATTCA	1680
TTTACTAACG TCTGGAAAGA CGACAAAAGT TTAGATCGTT ACGCTAACTA TGAGGGTTGT	1740
CTGTGGAATC CTACAGGCCT GTAGTTTGT ACTGGTGACG AAACTCAGTG TTACGGTACA	1800
TGGGTTCTA TTGGGCTTGC TATCCCTGAA AATGAGGGTG GTGGCTCTGA GGGTGGCGGT	1860
TCTGAGGGTG GCGGTTCTGA GGGTGGCGGT ACTAAACCTC CTGAGTACGG TGATACACCT	1920
ATTCCGGGCT ATACTTATAT CAACCCCTCTC GACGGCAGTT ATCCGCTGG TACTGAGCAA	1980
AACCCCGCTA ATCCTAATCC TTCTCTTGAG GAGTCTCAGC CTCTTAATAC TTTCATGTTT	2040
CAGAATAATA GGTTCCGAAA TAGGCAGGGG GCATTAACGT TTTATACGGG CACTGTTACT	2100

CAAGGGACTG ACCCCGTTAA AACTTATTAC CAGTACACTC CTGTATCATC AAAAGCCATG	2160
TATGACGCTT ACTGGAACGG TAAATTAGA GACTGCGCTT TCCATTCTGG CTTTAATGAA	2220
GATCCATTG TTTGTGAATA TCAAGGCCAA TCGTCTGACC TGCCCTAACCC TCCTGTCAAT	2280
GCTGGCGGG GCTCTGGTGG TGGTTCTGGT GGCGGCTCTG AGGGTGGTGG CTCTGAGGGT	2340
GGCGGTTCTG AGGGTGGCGG CTCTGAGGGA GGCGGTTCCG GTGGTGGCTC TGGTTCCGGT	2400
GATTTGATT ATGAAAAGAT GGCAAACGCT AATAAGGGGG CTATGACCGA AAATGCCGAT	2460
GAAAACGCCG TACAGTCTGA CGCTAAAGGC AAACCTGATT CTGTCGCTAC TGATTACGGT	2520
GCTGCTATCG ATGGTTTCAT TGGTGACGTT TCCGGCCTTG CTAATGGTAA TGGTGCTACT	2580
GGTGATTTG CTGGCTCTAA TTCCCAAATG GCTCAAGTCG GTGACGGTGA TAATTACACCT	2640
TTAATGAATA ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA ATGTCGCCCT	2700
TTTGTCTTTA GCGCTGGTAA ACCATATGAA TTTTCTATTG ATTGTGACAA AATAAACTTA	2760
TTCCGTGGTG TCTTIGCGTT TCTTTATAT GTTGCCACCT TTATGTATGT ATTTTCTACG	2820
TTTGCTAACAA TACTGGTAA TAAGGAGTCT TAATCATGCC AGTTCTTTG GGTATTCCGT	2880
TATTATTGGG TTTCCTCGGT TTCCCTCTGG TAACTTTGTT CGGCTATCTG CTTACTTTTC	2940
TTAAAAAGGG CTTCGGTAAG ATAGCTATTG CTATTCATT GTTTCTTGCT CTTATTATTG	3000
GGCTTAACCTC AATTCTTGTG GGTTATCTCT CTGATATTAG CGCTCAATTAA CCCTCTGACT	3060
TTGTTCAAGGG TGTTCAAGTTA ATTCTCCCGT CTAATGGCT TCCCTGTTT TATGTTATTG	3120
TCTCTGTAAA GGCTGCTATT TTCATTTTG ACGTTAAACA AAAAATCGTT TCCTATTG	3180
ATTGGGATAAA ATAATATGGC TGTTTATTT GTAACTGGCA AATTAGGCTC TGGAAAGACG	3240
CTCGTTAGCG TTGGTAAGAT TTAGGATAAA ATTGTAGCTG GGTGCAAAAT AGCAACTAAT	3300
CTTGATTTAA GGCTCAAAA CCTCCCGCAA GTCGGGAGGT TCGCTAAAAC GCCTCGCGTT	3360
CTTAGAATAC CGGATAAGCC TTCTATATCT GATTGCTTG CTATTGGCG CGGTAATGAT	3420
TCCTACGATG AAAATAAAA CGGCTTGCTT GTTCTCGATG AGTGCCTGAC TTGGTTAAT	3480
ACCCGTTCTT GGAATGATAA GGAAAGACAG CCGATTATTG ATTGGTTCT ACATGCTCGT	3540
AAATTAGGAT GGGATATTAT TTTCTTGTT CAGGACTTAT CTATTGTTGA TAAACAGGCG	3600
CGTTCTGCAT TAGCTGAACA TGTTGTTAT TGTCGTCGTC TGGACAGAAT TACTTTACCT	3660
TTTGTGGTA CTTTATATTC TCTTATTACT GGCTCGAAAA TGCCCTGCCC TAAATTACAT	3720
GTGCGCGTTG TAAATATGG CGATTCTCAA TTAAGCCCTA CTGTTGAGCG TTGGTTTAT	3780
ACTGGTAAGA ATTTGTATAA CGCATATGAT ACTAAACAGG CTTTTCTAG TAATTATGAT	3840
TCCGGTGTGTT ATTCTTATTT AACGCCCTAT TTATCACACG GTCGGTATTG CAAACCATTA	3900
AATTAGGTC AGAAGATGAA GCTTACTAAA ATATATTGAA AAAAGTTTC ACGGTTCTT	3960
TGTCTTGGCGA TTGGATTGCA ATCAGCATT ACATATAGTT ATATAACCCA ACCTAAGCCG	4020
GAGGTTAAAA AGGTAGTCTC TCAGACCTAT GATTTGATA AATTCACTAT TGACTCTTCT	4080
CAGCGTCTTA ATCTAAGCTA TCGCTATGTT TTCAAGGATT CTAAGGAAA ATTAATTAAT	4140

AGCGACGATT TACAGAAGCA AGGTTATTCA CTCACATATA TTGATTTATG TACTGTTCC	4200
ATTAAAAAAAG GTAATTCAAA TGAAATTGTT AAATGTAATT AATTTGTTT TCTTGATGTT	4260
TGTTTCATCA TCCTCTTTG CTCAGGTAAT TGAAATGAAT AATTGCCCTC TGCGCGATTT	4320
TGTAACCTGG TATTCAAAGC AATCAGGGCA ATCCGTTATT GTTTCTCCCC ATGTAAAAGG	4380
TACTGTTACT GTATATTCACT CTGACGTTAA ACCTGAAAAT CTACGCAATT TCCTTATTTC	4440
TGTTTACGT GCTAATAATT TTGATATGGT TGGTCAATT CCTTCATAA TTCAGAAGTA	4500
TAATCCAAAC AATCAGGATT ATATTGATGA ATTGCATCA TCTGATAATC AGGAATATGA	4560
TGATAATTCC GCTCCTCTG GTGGTTCTT TGTTCCGCAA AATGATAATG TTACTCAAAC	4620
TTTTAAAATT AATAACGTTG GGGCAAAGGA TTTAATACGA GTTGTGAAAT TGTTGTAAA	4680
GTCTAACACT TCTAAATCCT CAAATGTATT ATCTATTGAC GGCTCTAAC TATTAGTTGT	4740
TAGTGCACCT AAAGATATT TAGATAACCT TCCTCAATTCTTCTACTG TTGATTTGCC	4800
AACTGACCAAG ATATTGATTG AGGGTTTGAT ATTTGAGGTT CAGCAAGGTG ATGCTTTAGA	4860
TTTTCATTT GCTGCTGGCT CTCAGCGTGG CACTGTTGCA GGCGGTGTTA ATACTGACCG	4920
CCTCACCTCT GTTTATCTT CTGCTGGTGG TTCGTTCGGT ATTTTTAATG GCGATGTTTT	4980
AGGGCTATCA GTTCGGCAT TAAAGACTAA TAGCCATTCA AAAATATTGT CTGTGCCACG	5040
TATTCTTACG CTTTCAGGTC AGAAGGGTTC TATCTCTGTT GGCCAGAACG TCCCTTTAT	5100
TACTGGTCGT GTGACTGGTG AATCTGCCAA TGAAATAAT CCATTCAGA CGATTGAGCG	5160
TCAAAATGTA GGTATTCCA TGAGCGTTT TCCTGTTGCA ATGGCTGGGG GTAATATTGT	5220
TCTGGATATT ACCAGCAAGG CCGATAGTTT GAGTTCTTCT ACTCAGGCAA GTGATGTTAT	5280
TACTAATCAA AGAAGTATTG CTACAACGGT TAATTGCGT GATGGACAGA CTCTTTACT	5340
CGGTGGCCTC ACTGATTATA AAAACACTTC TCAAGATTCT GGCGTACCGT TCCTGTCTAA	5400
AATCCCTTTA ATCGGCCTCC TGTTAGCTC CCGCTCTGAT TCCAACGAGG AAAGCACGTT	5460
ATACGTGCTC GTCAAAGCAA CCATAGTAGG CGCCCTGTAG CGGCGCATTA AGCGCGGGCGG	5520
GTGTGGTGGT TACGGGCAGC GTGACCGCTA CACTGCCAG CGCCCTAGGG CCCGCTCCTT	5580
TCGCTTTCTT CCCTTCCTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC	5640
GGGGGCTCCC TTTAGGGTTC CGATTTAGTG CTTTACGGCA CCTCGACCCC AAAAAACTTG	5700
ATTTGGGTGA TGGTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT CGCCCTTTGA	5760
CGTTGGAGTC CACGTTCTT AATAGTGGAC TCTTGTCCA AACTGGAACA ACACCTCAACC	5820
CTATCTCGGG CTATTCTTT GATTTATAAG GGATTTGCC GATTCGGAA CCACCATCAA	5880
ACAGGATTTT CGCCTGCTGG GGCAAACCAAG CGTGGACCGC TTGCTGCAAC TCTCTCAGGG	5940
CCAGGGCGGTG AAGGGCAATC AGCTGTTGCC CGTCTCGCTG GTGAAAAGAA AAACCACCC	6000
GGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTGGCC GATTCAATTAA TGCAGCTGGC	6060
ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAA GTGAGTTAGC	6120
TCACTCATTAA GGCAACCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA	6180

TTGTGAGCGG ATAACAATTT CACACGGCTC ACTTGGCACT GGCGTCGTT TTACAAACGTC	6240
GTGACTGGGA AAACCCCTGGC GTTACCCAAG CTTTGTACAT GGAGAAAATA AAGTGAAACA	6300
AAGCACTATT GCACTGGCAC TCTTACCGTT ACTGTTTACC CCTGTGGCAA AAGCCCTTCT	6360
GAGGCATCCG GGAGCTGAAG GCGATGACCC TGCTAAGGCT GCATTCAATA GTTTACAGGC	6420
AAGTGCTACT GAGTACATTG GCTACGCTTG GGCTATGGTA GTAGTTATAG TTGGTGCTAC	6480
CATAGGGATT AAATTATTCA AAAAGTTAC GAGCAAGGCT TCTTAAGCAA TAGCGAAGAG	6540
GCCCCGACCG ATCGCCCTTC CCAACAGTTG CGCAGCCTGA ATGGCGAATG GCGCTTGCC	6600
TGGTTTCCGG CACCAAGAAGC GGTGCCGGAA AGCTGGCTGG AGTGGCATCT TCCTGAGGCC	6660
GATACGGTCTG TCGTCCCCTC AAACTGGCAG ATGCACGGTT ACGATGCGCC CATCTACACC	6720
AACGTAACCT ATCCCATTAC GGTCAATCCG CCGTTTGTTC CCACGGAGAA TCCGACGGGT	6780
TGTTACTCGC TCACATTTAA TGTTGATGAA AGCTGGCTAC AGGAAGGCCA GACCGAATT	6840
ATTTTGATG GCGTTCTAT TGGTTAAAAA ATGAGCTGAT TTAACAAAAA TTTAACCGCA	6900
ATTTTAACAA AATATTAACG TTTACAATT AAATATTTGC TTATACAATC TTCTGTTT	6960
TGGGGCTTT CTGATTATCA ACCGGGGTAC ATATGATTGA CATGCTAGTT TTACGATTAC	7020
CGTTCATCGA TTCTCTTGTG TGCTCCAGAC TCTCAGGCAA TGACCTGATA GCCTTGAG	7080
ATCTCTCAAA AATAGCTACC CTCTCCGGCA TTAATTATAC AGCTAGAACG GTTGAATATC	7140
ATATTGATGG TGATTTGACT GTCTCCGGCC TTTCTCACCC TTTGAATCT TTACCTACAC	7200
ATTACTCAGG CATTGCATTT AAAATATATG AGGGTTCTAA AAATTTTAT CCTTGCGTTG	7260
AAATAAAGGC TTCTCCCGCA AAAGTATTAC AGGGTCATAA TGTTTTGGT ACAACCGATT	7320
TAGCTTATG CTCTGAGGCT TTATTGCTTA ATTTGCTAA TTCTTTGCCT TGCCTGTATG	7380
ATTTATTGGA CGTT	7394

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 37 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GATCCTAGGC TGAAGGCGAT GACCCTGCTA AGGCTGC

37

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 35 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

ATTCAATAGT TTACAGGCAA GTGCTACTGA GTACA

35

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 35 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TTGGCTACGC TTGGGCTATG GTAGTAGTTA TAGTT

35

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 35 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GGTGCTACCA TAGGGATTAA ATTATTCAAA AAGTT

35

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TACGAGCAAG GCTTCTTA

18

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 39 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

AGCTTAAGAA GCCTTGCTCG TAAACTTTT GAATAATT

39

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

AATCCCTATG GTAGCACCAA CTATAACTAC TACCAT

36

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AGCCCCAAGCG TAGCCAATGT ACTCAGTAGG ACTTG

35

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 34 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CCTGTAAACT ATTGAATGCA GCCTTAGCAG GGTC

34

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 16 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

ATCGCCTTCA GCCTAG

16

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: lin ar

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CTCGAATTCTG TACATCCTGG TCATAGC

27

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CATTTTGCA GATGGCTTAG A

21

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

TAGCATTAAC GTCCAATA

18

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 26 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

ATATATTTTA GTAAGCTTCA TCTTCT

26

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GACAAAGAAC CGGTGAAAAC TTT

23

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GGGGGCCTCT TCGCTATTGC TTAAGAACCC TTGCT

35

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 48 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

TTCAGCCTAG GATCCGCCGA GCTCTCCTAC CTGCGAATTG GTACATCC

48

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

TGGATTATAAC TTCTAAATAA TGGA

24

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

TAACACTCAT TCCGGATGGA ATTCTGGAGT CTGGGT

36

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

AATTCGCCAA GGAGACAGTC AT

22

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

AATGAAATAC CTATTGCCTA CGGCAGCCGC TGGATTGTT

39

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

ATTACTCGCT GCCCAACCAG CCATGGCCGA GCTCGTGAT

39

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GACCCAGACT CCAGATATCC AACAGGAATG AGTGTAAAT

39

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 13 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

TCTAGAACGC GTC

13

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

ACGTGACGCC TTCTAGAATT AACACTCATT CCTGT

35

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TGGATATCTG GAGTCTGGGT CATCACCGAGC TCGGCCATG

39

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GCTGGTTGGG CAGCGAGTAA TAACAATCCA GCGGCTGCC

39

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 37 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GTAGGCAATA GGTATTCAT TATGACTGTC CTTGGCG

37

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 30 bas pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

TGACTGTCTC CTTGGCGTGT GAAATTGTTA

30

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

TAACACTCAT TCCGGATGGA ATTCTGGAGT CTGGGT

36

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

CAATTTTATC CTAAATCTTA CCAAC

25

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

CATTTTGCA GATGGCTTAG A

21

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CGAAAGGGGG GTGTGCTGCA A

21

100

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

TAGCATTAAC GTCCAATA

18

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 43 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

AAACGACGGC CAGTGCCAAG TGACGGGTGT GAAATTGTTA TCC

43

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 43 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GGCGAAAGGG AATTCTGCAA GGCGATTAAG CTTGGGTAAC GCC

43

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

GGCGTTACCC AAGCTTGTA CATGGAGAAA ATAAAG

36

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 42 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

TGAAACAAAG CACTATTGCA CTGGCACTCT TACCGTTACC GT

42

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 42 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

TACTGTTTAC CCCTGTGACA AAAGCCGCC AGGTCCAGCT GC

42

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 44 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

TCGAGTCAGG CCTATTGTGC CCAGGGATTG TACTAGTGGAA TCCG

44

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 38 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

TGGCGAAAGG GAATTCGGAT CCACTAGTAC AATCCCTG

38

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 42 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

GGCACACAATAG GCCTGACTCG AGCAGCTGGA CCAGGGCGGC TT

42

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 42 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

TTGTCACAGG GGTAAACAGT AACGGTAACG GTAAGTGTGC CA

42

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 42 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

GTGCAATAGT GCTTTGTTTC ACTTTATTTC CTCCATGTAC AA

42

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

TAACGGTAAG AGTGCCAGTG C

21

(52) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 68 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: misc_difference
- (B) LOCATION: r place(25, "")
- (D) OTHER INFORMATION: /note= "M REPRESENTS AN EQUAL MIXTURE OF A AND C AT THIS LOCATION AND AT LOCATIONS 28, 31, 34, 37, 40, 43, 46 & 49"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

AGCTCCCGGA TGCCTCAGAA GATGMNNMNN MNNMNNMNNM NNMNNMNNMN NGGCTTTGC	60
CACAGGGG	68

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 54 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: misc_difference
- (B) LOCATION: replace(17, "")
- (D) OTHER INFORMATION: /note= "M REPRESENTS AN EQUAL MIXTURE OF A AND C AT THIS LOCATION AND AT LOCATIONS 20, 23, 26, 29, 32, 35, 38, 41, 44 & 50"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

CAGCCTCGGA TCCGCCMNNM NNMNNMNNMN NMNNMNNMNN MNMMNNATGM GAAT	54
---	----

(2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

GGTAAACAGT AACGGTAAGA GTGCCAG	27
-------------------------------	----

(2) INFORMATION FOR SEQ ID NO:55:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

GGGCTTTGC CACAGGGT	19
--------------------	----

(2) INFORMATION FOR SEQ ID NO:56:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 63 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

104

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

AGGGTCATCG CCTTCAGCTC CGGATCCCTC AGAAGTCATA AACCCCCCAT AGGCTTTGC	60
CAC	63

(2) INFORMATION FOR SEQ ID NO:57:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 47 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

TCGCCCTTCAG CTCCCGGATG CCTCAGAACG ATGAACCCCC CATAGGC	47
--	----

(2) INFORMATION FOR SEQ ID NO:58:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

CAATTTTATC CTAATCTTA CCAAC	25
----------------------------	----

(2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

GCCTTCAGCC TCGGATCCGC C	21
-------------------------	----

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

CGGATGCCTC AGAAGCCCCN N	21
-------------------------	----

105

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

CGGATGCCTC AGAAGGGCTT TTGCCACAGG

30

I CLAIM:

1. A composition of matter comprising a plurality of cells containing a diverse population of expressible oligonucleotides operationally linked to expression elements, said expressible oligonucleotides having a desirable bias of random codon sequences produced from random combinations of first and second oligonucleotide precursor populations having a desirable bias of random codon sequences.
2. The composition of claim 1, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is unbiased.
3. The composition of claim 1, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is biased toward a predetermined sequence.
4. The composition of claim 1, wherein said first and second oligonucleotides having random codon sequences have at least one specified codon at a predetermined position.
5. The composition of claim 1, wherein said cells are prokaryotes.
6. The composition of claim 1, wherein said cells are E. coli.

7. A kit for the preparation of vectors useful for the expression of a diverse population of random peptides from combined first and second oligonucleotides having a desirable bias of random codon sequences,

5 comprising: two vectors: a first vector having a cloning site for said first oligonucleotides and a pair of restriction sites for operationally combining first oligonucleotides with second oligonucleotides; and a second vector having a cloning site for said second

10 oligonucleotides and a pair of restriction sites complementary to those on said first vector, one or both vectors containing expression elements capable of being operationally linked to said combined first and second oligonucleotides.

8. The kit of claim 7, wherein said vectors are in a filamentous bacteriophage.

9. The kit of claim 8, wherein said filamentous bacteriophage are M13.

10. The kit of claim 7, wherein said vectors are plasmids.

11. The kit of claim 7, wherein said vectors are phagemids.

12. The kit of claim 7, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is unbiased.

13. The kit of claim 7, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is diverse but biased toward a predetermined sequence .

14. The kit of claim 7, wherein said first and second oligonucleotides having a desirable bias of random codon sequences have at least one specified codon at a predetermined position.

15. The kit of claim 7, wherein said pair of restriction sites are Fok I.

16. A cloning system for expressing random peptides from diverse populations of combined first and second oligonucleotides having a desirable bias of random codon sequences, comprising: a set of first vectors
5 having a diverse population of first oligonucleotides having a desirable bias of random codon sequences and a set of second vectors having a diverse population of second oligonucleotides having a desirable bias of random codon sequences, said first and second vectors each
10 having a pair of restriction sites so as to allow the operational combination of first and second oligonucleotides into a contiguous oligonucleotide having a desirable bias of random codon sequences.

17. The cloning system of claim 16, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is unbiased.

18. The cloning system of claim 16, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is diverse but biased toward a predetermined sequence.

19. The cloning system of claim 16, wherein said first and second oligonucleotides having a desirable bias of random codon sequences have at least one specified codon at a predetermined position.

20. The cloning system of claim 16, wherein said combined first and second vectors is through a pair of restriction sites.

21. The cloning system of claim 16, wherein said pair of restriction sites are Fok I.

22. A composition of matter comprising a plurality of cells containing a diverse population of expressible oligonucleotides operationally linked to expression elements, said expressible oligonucleotides having a desirable bias of random codon sequences.

5 23. The composition of claim 22, wherein said cells are prokaryotes.

24. The composition of claim 22, wherein said expressible oligonucleotides are expressed as peptide fusion proteins on the surface of a filamentous bacteriophage.

25. The composition of claim 22, wherein said filamentous bacteriophage is M13.

26. The composition of claim 22, wherein said fusion protein contains the product of gene VIII.

27. The composition of claim 22, wherein said diverse population of oligonucleotides having a desirable bias of random codon sequences are produced from the combination of diverse populations of first and second
5 oligonucleotides having a desirable bias of random codon sequences.

28. The composition of claim 22, wherein the desirable bias of random codon sequences of said oligonucleotides is unbiased.

29. The composition of claim 22, wherein the desirable bias of random codon sequences of said oligonucleotides is diverse but biased toward a predetermined sequence.

30. The composition of claim 22, wherein said oligonucleotides having a desirable bias of random codon sequences have at least one specified codon at a predetermined position.

31. A plurality of vectors containing a diverse population of expressible oligonucleotides having a desirable bias of random codon sequences.

32. The vectors of claim 31, wherein said oligonucleotides are expressible as fusion proteins on the surface of filamentous bacteriophage.

33. The vectors of claim 31, wherein said filamentous bacteriophage is M13.

34. The vectors of claim 31, wherein said fusion protein contains the product of gene VIII.

35. The vectors of claim 31, wherein the desirable bias of random codon sequences of said oligonucleotides is unbiased.

36. The vectors of claim 31, wherein the desirable bias of random codon sequences of said oligonucleotides is diverse but biased toward a predetermined sequence.

37. The vectors of claim 31, wherein said oligonucleotides having a desirable bias of random codon sequences have at least one specified codon at a predetermined position.

38. A composition of matter, comprising a diverse population of oligonucleotides having a desirable bias of random codon sequences produced from random combinations of two or more oligonucleotide precursor populations having a desirable bias of random codon sequences.

39. A method of constructing a diverse population of vectors having combined first and second oligonucleotides having a desirable bias of random codon sequences capable of expressing said combined oligonucleotides as random peptides, comprising the steps of:

- (a) operationally linking sequences from a diverse population of first oligonucleotides having a desirable bias of random codon sequences to a first vector;
- (b) operationally linking sequences from a diverse population of second oligonucleotides having a desirable bias of random codon sequences to a second vector; and
- (c) combining the vector products of steps (a) and (b) under conditions where said populations of first and second oligonucleotides are joined together into a population of combined vectors capable of being expressed.

40. The method of claim 39, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is unbiased.

41. The method of claim 39, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is diverse but biased toward a predetermined sequence.

42. The method of claim 39, wherein said first and second oligonucleotides having a desirable bias of random codon sequences have at least one specified codon at a predetermined position.

43. The method of claim 38, wherein steps (a) through (c) are repeated two or more times.

44. A method of selecting a peptide capable of being bound by a ligand binding protein from a population of random peptides, comprising:

- 5 (a) operationally linking a diverse population of first oligonucleotides having a desirable bias of random codon sequences to a first vector;
- 10 (b) operationally linking a diverse population of second oligonucleotides having a desirable bias of random codon sequences to a second vector;
- 15 (c) combining the vector products of steps (a) and (b) under conditions where said populations of first and second oligonucleotides are joined together into a population of combined vectors;
- 20 (d) introducing said population of combined vectors into a compatible host under conditions sufficient for expressing said population of random peptides; and
- (e) determining the peptide which binds to said ligand binding protein.

45. The method of claim 44, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is unbiased.

46. The method of claim 44, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is diverse but biased toward a predetermined sequence.

47. The method of claim 44, wherein said first and second oligonucleotides having a desirable bias of random codon sequences have at least one specified codon at a predetermined position.

48. The method of claim 44, wherein steps (a) through (c) are repeated two or more times.

49. A method for determining the nucleic acid sequence encoding a peptide capable of being bound by a ligand binding protein which is selected from a population of random peptides, comprising:

- 5 (a) operationally linking a diverse population of first oligonucleotides having a desirable bias of random codon sequences to a first vector;
- 10 (b) operationally linking a diverse population of second oligonucleotides having a desirable bias of random codon sequences to a second vector;
- 15 (c) combining the vector products of steps (a) and (b) under conditions where said populations of first and second oligonucleotides are joined together into a population of combined vectors;
- 20 (d) introducing said population of combined vectors into a compatible host under conditions sufficient for expressing said population of random peptides;
- 25 (e) determining the peptide which binds to said ligand binding protein;
- (f) isolating the nucleic acid encoding said peptide; and
- (g) sequencing said nucleic acid.

50. The method of claim 49, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is unbiased.

51. The method of claim 49, wherein the desirable bias of random codon sequences of said first and second oligonucleotides is diverse but biased toward a predetermined sequence.

52. The method of claim 49, wherein said first and second oligonucleotides having a desirable bias of random codon sequences have at least one specified codon at a predetermined position.

53. The method of claim 49, wherein steps (a) through (c) are repeated two or more times.

54. A method of constructing a diverse population of vectors containing expressible oligonucleotides having a desirable bias of random codon sequences, comprising operationally linking a diverse 5 population of oligonucleotides having a desirable bias of random codon sequences to expression elements.

55. The method of claim 54, wherein said oligonucleotides are expressible as fusion proteins on the surface of filamentous bacteriophage.

56. The method of claim 54, wherein said filamentous bacteriophage are M13.

57. The method of claim 54, wherein said fusion protein contains the product of gene VIII.

58. The method of claim 54, wherein the desirable bias of random codon sequences of said oligonucleotides is unbiased.

59. The method of claim 54, wherein the desirable bias of random codon sequences of said oligonucleotides is diverse but biased toward a predetermined sequence.

60. The method of claim 54, wherein said oligonucleotides having a desirable bias of random codon sequences have at least one specified codon at a predetermined position.

61. The method of claim 54, wherein said operationally linking further comprising the steps of:

5 (a) operationally linking a diverse population of first oligonucleotides having a desirable bias of random codon sequences to a first vector;

10 (b) operationally linking a diverse population of second oligonucleotides having a desirable bias of random codon sequences to a second vector; and

15 (c) combining the vector products of steps (a) and (b) under conditions where said populations of first and second oligonucleotides are joined together into a population of combined vectors.

62. The method of claim 61, wherein steps (a) through (c) are repeated two or more times.

63. A method of selecting a peptid capable of being bound by a binding protein from a population of random peptides, comprising:

- 5

(a) operationally linking a diverse population
of oligonucleotides having a desirable
bias of random codon sequences to
expression elements;

10

(b) introducing said population of vectors
into a compatible host under conditions
sufficient for expressing said population
of random peptides; and

(c) determining the peptide which binds to
said ligand binding protein.

64. The method of claim 63, wherein said population of random peptides are expressed as fusion proteins on the surface of filamentous bacteriophage.

65. The method of claim 63, wherein said filamentous bacteriophage are M13.

66. The method of claim 63, wherein said fusion protein contains the product of gene VIII.

67. The method of claim 63, wherein the desirable bias of random codon sequences of said oligonucleotides is unbiased.

68. The method of claim 63, wherein the desirable bias of random codon sequences of said oligonucleotides is diverse but biased toward a predetermined sequence.

69. The method of claim 63, wherein said oligonucleotides having a desirable bias of random codon sequences have at least one specified codon at a predetermined position.

70. The method of claim 63, wherein step (a) further comprises:

(a1) operationally linking a diverse population of first oligonucleotides having a desirable bias of random codon sequences to a first vector;

5

(a2) operationally linking a diverse population of second oligonucleotides having a desirable bias of random codon sequences to a second vector; and

10

(a3) combining the vector products of steps (a) and (b) under conditions where said populations of first and second oligonucleotides are joined together into a population of combined vectors.

15

71. The method of claim 70, wherein steps (a1) through (a3) are repeated two or more times.

72. A method of determining the nucleic acid sequence encoding a peptide capable of being bound by a ligand binding protein which is selected from a population of random peptides, comprising:

- 5 (a) operationally linking a diverse population of oligonucleotides having a desirable bias of random codon sequences to expression elements.
- 10 (b) introducing said population of vectors into a compatible host under conditions sufficient for expressing said population of random peptides;
- 15 (c) determining the peptide which binds to said ligand binding protein;
- (d) isolating the nucleic acid encoding said peptide; and
- (e) sequencing said nucleic acid.

73. The method of claim 72, wherein said population of random peptides are expressed as fusion proteins on the surface of filamentous bacteriophage.

74. The method of claim 72, wherein said filamentous bacteriophage are M13.

75. The method of claim 72, wherein said fusion protein contains the product of gene VIII.

76. The method of claim 72, wherein the desirable bias of random codon sequences of said oligonucleotides is unbiased.

77. The method of claim 72, wherein the desirable bias of random codon sequences of said oligonucleotides is diverse but biased toward a predetermined sequence.

78. The method of claim 72, wherein said oligonucleotides having a desirable bias of random codon sequences have at least one specified codon at a predetermined position.

79. The method of claim 72, wherein step (a) further comprises:

(a1) operationally linking a diverse population of first oligonucleotides having a desirable bias of random codon sequences to a first vector;

(a2) operationally linking a diverse population of second oligonucleotides having a desirable bias of random codon sequences to a second vector; and

(a3) combining the vector products of steps (a) and (b) under conditions where said populations of first and second oligonucleotides are joined together into a population of combined vectors.

5

10

15

80. The method of claim 78, wherein steps (a1) through (a3) are repeated two or more times.

81. A vector comprising two copies of a gene encoding a filamentous bacteriophage coat protein, both copies encoding substantially the same amino acid sequence but having different nucleotide sequences.

82. The vector of claim 81, wherein said filamentous bacteriophage is M13.

83. The vector of claim 81, wherein said gene is gene VIII.

84. The vector of claim 81, wherein said vector has substantially the sequence shown in Figure 5 (SEQ ID NO: 1).

85. A vector comprising two copies of a gene encoding a filamentous bacteriophage coat protein, one copy of said gene capable of being operationally linked to an oligonucleotide wherein said oligonucleotide can be
5 expressed as a fusion protein on the surface of said filamentous bacteriophage or as a soluble peptide.

86. The vector of claim 84, wherein said one copy of said gene is expressed on the surface of said filamentous bacteriophage.

87. The vector of claim 84, wherein said bacteriophage coat protein is M13 gene VIII.

1 / 16

FIG. 1

2 / 16

FIG. 2

3 / 16

FIG. 3

4 / 16

FIG. 4

5 / 16

	10	20	30	40	50	60
1	AATGCTACTA	CTATTAGTAG	AATTGATGCC	ACCTTTCA	CTCGCGCCCC	AAATGAAAAT
61	ATAGCTAAC	AGGTATTG	CCATTGCGA	AATGTATCTA	ATGGTCAAAC	TAAATCTACT
121	CGTTCGCAGA	ATTGGGAATC	AACTGTACA	TGGAATGAAA	CTTCCAGACA	CCGTACTTTA
181	GTTGCATATT	TAAAACATGT	TGAGCTACAG	CACCAAGATT	AGCAATTAAAG	CTCTAAGCCA
241	TCTGAAAAAA	TGACCTCTTA	TCAAAAGGAG	CAATTAAAGG	IACTCTCTAA	TCCTGACCTG
301	TTGGAGTTG	CTTCGGTCT	GGTTCGCTT	GAAGCTCGAA	TTAAAACGCG	ATATTTGAAG
361	TCTTCGGGC	TTCCCTCTAA	TCTTTTGAT	GCAATCCGCT	TTGCTTCTGA	CTATAATAGT
421	CAGGGTAAAG	ACCTGATTT	TGATTTATGG	TCATTCTCGT	TTTCTGAACT	GTTTAAAGCA
481	TTTGAGGGGG	ATTCAATGAA	TATTTATGAC	GATTCCGCAG	TATTGGACGC	TATCCAGTCT
541	AAACATTTA	CTATTACCCC	CTCTGGCAAA	ACTTCTTTG	CAAAGCCTC	TCGCTATT
601	GGTTTTATC	GTCGCTGGT	AAACGAGGGT	TATGATAGTG	TTGCTCTTAC	TATGCCTCGT
661	AATTCCCTT	GGCGTTATGT	ATCTGCATTA	GTTGAATGTG	GTATTCCCTAA	ATCTCAACTG
721	ATGAATCTT	CTACCTGTAA	TAATGTTGTT	CCGTTAGTT	GTTTTATTAA	CGTAGATTTT
781	TCTTCCCAC	GTCCTGACTG	GTATAATGAG	CCAGTTCTTA	AAATCGCATA	AGGTAAATTCA
841	CAATGATTAA	AGTTGAAATT	AAACCATCTC	AAGCCCAATT	TAATCTCGT	TCTGGTGT
901	CTCGTCAGGG	CAAGCCTTAT	TCACTGAATG	AGCAGCTTTG	TTACGTTGAT	TTGGGTAATG
961	AATATCCGGT	TCTTGTCAAG	ATTACTCTTG	ATGAAGGGTCA	GCCAGCCTAT	GCGCCTGGTC
1021	TGTACACCGT	TCATCTGTCC	TCTTCAAAAG	TTGGTCAGTT	CGGTTCCCTT	ATGATTGACC
1081	GTCTGCGCT	CGTTCGGGCT	AAGTAACATG	GAGCAGGTGCG	CGGATTTCGA	CACAATT
1141	CAGGCATGA	TACAAATCTC	CGTTGTACTT	TGTTTCGCGC	TTGGTATAAT	CGCTGGGGGT
1201	CAAAGATGAG	TGTTTAGTG	TATTCTTCG	CCTCTTTCG	TTTGGTTGG	TGCCCTTCGTA
1261	GTGGCATTAC	GTATTTACC	CGTTTAATGG	AAACTTCCCTC	ATGAAAAAGT	CTTCTAGTCCT
1321	CAAAGCCTCT	GTAGCCGTTG	CTACCCCTCGT	TCCGATGCTG	TCTTCGCTG	CTGAGGGGTGA
1381	CGATCCCAGA	AAAGCCGCT	TTAAACTCCCT	GCAAGCCTCA	GCGACCGAAT	ATATCGGTTA
1441	TGCGTGGGCG	ATGGTTGTTG	TCATTGTCGG	CGCAACTATC	GGTATCAAGC	TGTTTAAGAA
1501	ATTCACCTCG	AAAGCAAGCT	GATAAACCGA	TACAATTAAA	GGCTCCTTTT	GGAGCCTTTT
1561	TTTTGGAGA	TTTCAACGT	GAAAAAAATT	TTATTGCAA	TTCTTTAGT	TGTTCTTTTC
1621	TATTCTCACT	CCGCTGAAAC	TGTTGAAAGT	TGTTAGCAA	AACCCCATAC	AGAAAATTCA
1681	TTTACTAACG	TCTGAAAGA	CGACAAA	TTAGATCGTT	ACGCTAACTA	TGAGGGTTGT
1741	CTGTGGAATG	CTACAGCGT	TGTAGTTGT	ACTGGTGACG	AAACTCAGT	TTACGGTACA
1801	TGGGTTCCCTA	TTGGGCTTGC	TATCCCTGAA	AATGAGGGGTG	GTGGCTCTGA	GGGTGGCGGT
1861	TCTGAGGGGTG	GCGGTTCTGA	GGGTGGCGGT	ACTAAACCTC	CTGAGTACGG	TGATACACCT
1921	ATTCGGGCT	ATACTTATAT	CAACCCCTC	GACGGGCACTT	ATCCGCTTGG	TACTGAGCAA
1981	AACCCCGCTA	ATCCTAATCC	TTCTCTTGAG	GAGTCTCAGC	CTCTTAATAC	TTTATGTTT
2041	CAGAATAATA	GGTCCGAAA	TAGGCAGGGG	GCATTAAC	TTTATACGGG	CACTGTTACT
2101	CAAGGCACTG	ACCCCGTTAA	AACTTATTAC	CACTACACTC	CTGTATCATC	AAAAGCCATG
2161	TATGACGCT	ACTGGAACCG	TAAATTCTAGA	GACTGCGCTT	TCCATTCTGG	CTTAAATGAA
2221	GATCCATTG	TTTGTGAATA	TCAAGGCCAA	TCGTCTGACC	TCGGTCAACC	TCCTGTCAAT
2281	GCTGGCGGCG	GCTCTGGTGG	TGGTTCTGGT	GGCGGCTCTG	AGGGTGGTGG	CTCTGAGGGGT
2341	GGCGGTTCTG	AGGGTGGCGG	CTCTGAGGGGA	GGCGGTTCCG	GTGGTGGCTC	TGTTCCGGT
2401	GATTTGATT	ATGAAAAGAT	GGCAAACGCT	AATAAGGGGG	CTATGACCGA	AAATGCCGAT
2461	GAAAACGCGC	TACAGTCTGA	CGCTAAAGGC	AAACTTGTATT	CTGCGCTAC	TGATTACGGT
2521	GCTGCTATCG	ATGGTTCAT	TGGTGA	TCCGGCCTTG	CTAATGGTAA	TGGTGTACT
2581	GGTGATTTG	CTGGCTCTAA	TTCCCAAATG	GCTCAAGTCG	GTGACGGTGA	TAATTCCACCT
2641	TTAATGAATA	ATTCCTCGTCA	ATATTACCT	TCCCTCCCTC	AATCGGTTGA	ATGTCGCCCT
2701	TTTGTCTTAA	GCCTGGTAA	ACCATATGAA	TTTCTATTG	ATTGTCACAA	AATAAACTTA
2761	TTCCGTGGTG	TCTTTCGTT	TCTTTTATAT	GTTGCCACCT	TTATGTATGT	ATTTCATGCG
2821	TTTGCTAAC	TAATGCGTAA	TAAGGGAGTCT	TAATCATGCC	AGTTCTTTG	GGTATTCCGT
2881	TATTATTGCG	TTTCCTCGGT	TTCCCTCTGG	TAACCTTGT	GCCGTATCTG	CTTACTTTTC
2941	TTAAAAAGGG	CTTCGGTAAG	ATAGCTATTG	CTATTCATT	TTTTCTTGCT	CTTATTATTG
3001	GGCTTAAC	AATTCTTG	GGTTATCTC	CTGATATTAG	CGCTCAATT	CCCTCTGACT
3061	TTGTTCAAGG	TGTTCA	ATTCTCCCGT	CTAATGCGCT	TCCCCTGTTT	TATGTTATT
3121	TCTCTGTAA	GGCTGCTATT	TTCATTTTG	ACGTTAAACAA	AAAAATCGTT	TCTTATTG
3181	ATTGGGATAA	ATAATATGGC	TGTTTATT	GTAACCTGGCA	AATTAGGCTC	TGAAAGACG
3241	CTCGTTAGCG	TTGGTAAGAT	TCAGGATAAA	ATTGTTAGCTG	GGTCAAAAT	AGCAACTAAT
3301	CCTGATTTAA	GGCTTCAAA	CCTCCCGCAA	GTCGGGAGGT	TCGCTAAAC	GCCTCGCGTT
3361	CTTAGAATAC	CGGATAAGCC	TTCTATATCT	GATTGCTTG	CTATTGGCG	CGGTAAATGAT
3421	TCCTACGATG	AAAATAAAAAA	CGGCTTGCTT	GTTCTCGATG	AGTGCCTGATC	TTGGTTTAAT
3481	ACCCGTTCTT	GGAATGATAA	GGAAAGACAG	CGGATTATTG	ATTGGTTCT	ACATGCTCGT
3541	AAATTAGGAT	GGGATATTAT	CTTCCTTGT	CAGGACTTAT	CTATTGTTGA	TAAACAGGCG
3601	CGTTCTGCT	TAGCTGAACA	TCTTGT	TGTCGTCGTC	TGGACAGAAT	TACTTTACCT
3661	TTTGTGCGTA	CTTTATATT	TCTTATTACT	GGCTCGAAA	TGCCTCTG	TAATTACAT
3721	GTTGGCGTTG	TTAAATATGG	CGATTCTCAA	TTAAGCCCTA	CTGTTGAGCG	TTGGCTTTAT
3781	ACTGGTAAGA	ATTGTATAA	CGCATATGAT	ACTAAACAGG	CTTTTCTAG	TAATTATGAT

FIG. 5-1

SUBSTITUTE SHEET

3841	TCCGGTGT	TTT	ATTCTTAT	T	AACGCC	TTATCACACG	GTCGGT	TATT	CAAACC	ATTA	3900	
3901	AATTAGGTC		AGAAGATGAA	GCTTACT	AAA	ATATATTG	AAAAGTTT	ACCGC	GTTCTT	ACCTAAC	3960	
3961	TGTCTTGCGA		TTGGATT	TCAGCATT	ACATATAG	TTCAAGG	ATTCACTAT	ACCTAAC	AGCCG	ACCTAAC	4020	
4021	GAGGTTAAA	AA	AGGTAGTCTC	TCAGAC	TTCAAGG	ATTCACTAT	TGACTCTT	CTAAC	AGCCG	ACCTAAC	4080	
4081	CAGCGTCTT		ATCTAAGCTA	TCGCTATG	TTCAAGG	ATTCACTAT	TGACTCTT	CTAAC	AGCCG	ACCTAAC	4140	
4141	AGCGACGATT		TACAGAAGCA	AGGTTATT	CTCACATATA	TTGATT	TACTGTTT	TACTGTTT	TACTGTTT	TACTGTTT	4200	
4201	ATTAAAAAAGG		TAATTCAAAT	GAAATTGTT	AATGTAATT	ATT	TTT	CTTGATGTT	CTTGATGTT	CTTGATGTT	4260	
4261	GTTTCATCAT		CTTCTTTG	TCAGGTAATT	GAAATGAATA	ATT	CGCCTCT	GCGCGATT	TGAAAAGGT	TGAAAAGGT	4320	
4321	GTAACCTGGT		ATTCAAAGCA	ATCAGGC	TCCGTTATTG	TTTCTCCG	GTTAAAGGT	TTTCTCCG	TGAAAAGGT	TGAAAAGGT	4380	
4381	ACTGTTACTG		TATATTCATC	TGACGTT	CCTGAAATC	TACGCAATT	CTT	TATTCT	TTAGAAGT	TTAGAAGT	4440	
4441	GTTTACGTG		CTAATAATT	TGATATGG	GGTTCAATT	CTTCCATT	TTAGAAGT	TTAGAAGT	TTAGAAGT	TTAGAAGT	4500	
4501	AATCCAAACA		ATCAGGATT	TATTGATG	TTGCCATCAT	CTGATAATCA	GGAATATG	CTGATAATCA	GGAATATG	GGAATATG	4560	
4561	GATAATTCCG		CTCCCTCTGG	TGGTTCTT	GTTCCG	ATGATAATG	TACTCAA	ATGATAATG	TACTCAA	TACTCAA	4620	
4621	TTTAAAATTA		ATAACGTTCG	GGCAAAGG	TTAATACGAG	TTGTCG	TTTGTAAAG	TTTGTAAAG	TTTGTAAAG	TTTGTAAAG	4680	
4681	TCTAATACCT		CTAAATCCTC	AAATGTATT	TCTATTGACG	GCTCTAATCT	ATTAGTTG	ATTAGTTG	ATTAGTTG	ATTAGTTG	4740	
4741	AGTGCACCTA		AAGATATTTT	AGATAAC	CTTCAATT	TTTCTACTG	TGATTG	TGATTG	TGATTG	TGATTG	4800	
4801	ACTGACCAGA		TATTGATTG	GGGTTG	TTTGAGG	AGCAAGG	TGCTT	TGCTT	TGCTT	TGCTT	4860	
4861	TTTTCATTTG		CTGCTGGCTC	TCAGCGT	ACTGTTG	GCGGTG	TACTG	TACTG	TACTG	TACTG	4920	
4921	CTCACCTCTG		TTTATCTTC	TGCTGGT	TGCTCGG	TTTTAATG	CGATG	CGATG	CGATG	CGATG	4980	
4981	GGGCTATCG		TTCGCGCATT	AAAGACTA	AGCCATT	AAATATTG	TGTGCC	TGTGCC	TGTGCC	TGTGCC	5040	
5041	ATTCTTACG		TTTCAGGTCA	GAAGGGT	ATCTCTG	GCCAGAATG	CCCTTT	CCCTTT	CCCTTT	CCCTTT	5100	
5101	ACTGGTCGTG		TGACTGGT	ATCTGCCA	GTAATAATC	CATTTCAGAC	GATTGAGC	GATTGAGC	GATTGAGC	GATTGAGC	5160	
5161	AAAAATGTAG		GTATTCAT	GAGCG	TTCTG	TGGCTGG	TAATATTG	TAATATTG	TAATATTG	TAATATTG	5220	
5221	CTGGATATT		CCAGCAAGGC	CGATAG	TTG	AGTCTT	CTCAGG	CTCAGG	CTCAGG	CTCAGG	5280	
5281	ACTAATCAA		GAAGTATTG	TACAACG	TTG	AGTCTT	TCTTTACT	TCTTTACT	TCTTTACT	TCTTTACT	5340	
5341	GGTGGCCTCA		CTGATTATAA	AAACACT	TTG	AGTCTT	GGGTAC	GGGTAC	GGGTAC	GGGTAC	5400	
5401	ATCCCTTAA		TCGGCCTCCT	TTTAGCT	CCGCT	TTCTAA	GGGTAC	GGGTAC	GGGTAC	GGGTAC	5460	
5461	TACGTGCTG		TCAAAGCAAC	CATAGTAC	GGCC	CTGATAG	GGCGCATT	GGCGCATT	GGCGCATT	GGCGCATT	5520	
5521	TGTGGTGGT		ACGCGCAGCG	TGACCG	TTG	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	5580	
5581	CGCTTCTTC		CCTTCCTT	TCGCCA	TTTACGG	GGCGGCTT	GGCGGCTT	GGCGGCTT	GGCGGCTT	GGCGGCTT	5640	
5641	GGGGCTCC		TTAGGGT	GATTTAG	TTTACGG	CTCTAAAT	GGGTAC	GGGTAC	GGGTAC	GGGTAC	5700	
5701	TTGGGTGAT		GGTTACG	GTGGGCCAT	GGCC	TGATAG	GGGT	GGGT	GGGT	GGGT	5760	
5761	GTTGGAGTCC		ACGTTCTT	ATAGTGG	CTTGT	GGCAAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	5820	
5821	TATCTGGG		TATTCTTTG	ATT	TATAAGG	GATTTG	GGGTAC	GGGTAC	GGGTAC	GGGTAC	5880	
5881	CAGGATTTC		GCCTGCTGGG	GCAAAC	GGGTAC	TGCTG	GGGTAC	GGGTAC	GGGTAC	GGGTAC	5940	
5941	CAGGCGGTGA		AGGGCAATCA	GCTGTTG	GGT	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6000	
6001	GCGCCCAATA		CGCAAACCGC	CTCTCCC	GGC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6060	
6061	CGACAGGTT		CCCGACTG	AAGCGG	TGAGC	GGCAATT	TGAGT	TGAGT	TGAGT	TGAGT	6120	
6121	CACTCATTAG		GCACCC	CTT	TATG	TGCTG	TGCTG	TGCTG	TGCTG	TGCTG	6180	
6181	TGTGAGCGG		TAACAATT	ACACAGG	GGC	TGATAG	CAGGT	CAGGT	CAGGT	CAGGT	6240	
6241	GTAGGAGAGC		TCGGCGGATC	CTAGG	GGC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6300	
6301	AGTTTACAGG		CAAGTGT	TGAGT	GGC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6360	
6361	GTTGGTGT		CCATAGG	TAAATT	GGC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6420	
6421	GCTGGCTAA		TAGCGAAGAG	GCCC	GGC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6480	
6481	ATGGCGAATG		GCGCTT	TGG	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6540	
6541	AGTGCATCT		TCC	TGAGG	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6600	
6601	ACGATGCGC		CATCTACACC	AACG	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6660	
6661	CCACGGAGAA		TCCGACGGG	TGTT	TGTT	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6720	
6721	AGGAAGGCCA		GACGCGAATT	ATTTT	TGAT	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6780	
6781	TTAACAAAAA		TTAACG	ATTTT	AACAA	AATTTAAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6840	
6841	TTATACAATC		TTCTG	GGGG	CTT	GGGTAC	GGGTAC	GGGTAC	GGGTAC	GGGTAC	6900	
6901	CATGCTAGTT		TTACGATTAC	CGTT	CATCG	TTCTT	TGCTC	TGCTC	TGCTC	TGCTC	6960	
6961	TGACCTGATA		GCCTTGT	ATCT	CTCAA	AATAG	TGCTC	TGCTC	TGCTC	TGCTC	7020	
7021	AGCTAGAACG		GTTGAATATC	ATATTG	ATATTG	TGATT	TGCTC	TGCTC	TGCTC	TGCTC	7080	
7081	TTTGAATCT		TTACCTACAC	ATTACT	CAAGG	CATTG	CATTG	CATTG	CATTG	CATTG	7140	
7141	AAATTTTAT		CCTTGC	AAATAAAGG	TTCTCC	GGCA	AAAGTATT	AGGGT	AGGGT	AGGGT	7200	
7201	TGTTTTGGT		ACAACCG	TAGCTT	TGCTG	CGTT	TTATTG	TTATTG	TTATTG	TTATTG	7260	
7261	TTCTTGCCT		TGCTG	ATT	TGGA	CGTT	TTATTG	TTATTG	TTATTG	TTATTG	7294	
		10		20		30		40		50		60

FIG. 5-2

7 / 16

	10	20	30	40	50	60
1	AATGCTACTA	CTATTAGTAG	AATTGATGCC	ACCTTTTCA	CTCGGCC	AAATGAAA
61	ATAGCTAAC	AGGTATTGA	CCATTTGCGA	AATGTATCTA	ATGGTCAA	AAATCTACT
121	CGTTCGCAGA	ATTGGGAATC	AACTGTTACA	TGGAATGAAA	CTTCCAGACA	CCGTACTTTA
181	GTTGCATATT	TAAAACATGT	TGAGCTACAG	CACCAAGATT	AGCAATTAA	CTCTAAGCCA
241	TCTGCAAAAA	TGACCTCTTA	TCAAAAGGAG	CAATTAAAGG	TACTCTCTAA	TCCTGACCTG
301	TTGGAGTTTG	CTTCCGGTCT	GGTTCGCTT	GAAGCTCGAA	TTAAAACGCG	ATATTTGAAG
361	TCTTCGGGC	TTCCCTTAA	TCTTTTGAT	GCAATCCGCT	TTGCTCTGA	CTATAATAGT
421	CAGGGTAAAG	ACCTGATTTT	TGATTATATGG	TCATTCTCGT	TTTCTGA	GTTTAAAGCA
481	TTTGGGGGGG	ATTCAATGAA	TATTATGAC	GATTCCGCG	TATTGGACGC	TATCCAGTCT
541	AAACATTTA	CTATTACCCC	CTCTGGCAA	ACTTCTTTG	CAAAGCCTC	TCGCTATTTT
601	GGTTTTTATC	GTCGTCTGGT	AAACGAGGGT	TATGATAGTG	TTGCTCTAC	TATGCCTCGT
661	AATTCCCTT	GGCGTTATGT	ATCTGCATTA	GTTGAATGTG	GTATTCTCAA	ATCTCAACTG
721	ATGAATCTT	CTACCTGTAA	TAATGTTGTT	CCGTTAGTTC	GTTTTATTAA	CGTAGATT
781	TCTTCCCAAC	GTCCTGACTG	GTATAATGAG	CCAGTTCTTA	AAATCGCATA	AGGTAATTCA
841	CAATGATTAA	AGTTGAAATT	AAACCATCTC	AAGCCCAATT	TACTACTCGT	TCTGGTGT
901	CTCGTCAGGG	CAAGCCTTAT	TCACTGAATG	AGCAGCTTG	TTACGTTGAT	TTGGGTAATG
961	AATATCCGGT	TCTTGTCAAG	ATTACTCTTG	ATGAAGGTCA	GCCAGCCTAT	GCGCCTGGTC
1021	TGTACACCCTG	TCATCTGTCC	TCTTCAAAG	TTGGTCAGTT	CGGTTCCCTT	ATGATTGACC
1081	GTCCTGCGCCT	CGTTCCGGCT	AAGTAACATG	GAGCAGGTG	CGGATTTGGA	CACAATTAT
1141	CAGGCATGAA	TACAAATCTC	CGTTGTACTT	TGTTTGC	TTGGTATAAT	CGCTGGGGT
1201	CAAAGATGAG	TGTTTTAGTG	TATTCTTCG	CCTCTTCTGT	TTAGGTG	TGCTTCTCGT
1261	GTGGCATTAC	GTATTTACC	CGTTTAATGG	AAACTCCCTC	ATGAAAAGT	CTTGTGCT
1321	CAAAGCCTCT	GTAGCCGTTG	CTACCCCTCGT	TCCGATGCTG	TCTTCGCTG	CTGAGGGTGA
1381	CGATCCCGCA	AAAGCCGCTT	TTAACCTCCCT	GCAAGCCTCA	GCGACCGAAT	ATATCGGTTA
1441	TGCGTGGGGCG	ATGGTTGTTG	TCATTGTCGG	CGCAACTATC	GGTATCAAGC	TGTTTAAGAA
1501	ATTCACCTCG	AAAGCAAGCT	GATAAACCGA	TACAATTAAA	GGCTCCTTTT	GGAGCCTTTT
1561	TTTTGGGAGA	TTTTCAACGT	AAAAAAATT	TTATTGCAA	TCCTTTAGT	TGTTCCCTTC
1621	TATTCTCACT	CCGCTGAAAC	TGTTGAAAGT	TGTTTAGCAA	AACCCCATAC	AGAAAATTCA
1681	TTTACTAACG	TCTGGAAAGA	CGACAAAAGT	TTAGATCGTT	ACGCTAACTA	TGAGGGTTG
1741	CTGTGGAATG	CTACAGGCGT	TGTAGTTGT	ACTGGTACG	AAACTCAGT	TTACGGTACA
1801	TGGGTTCTA	TTGGGTTG	TATCCCTGAA	AATGAGGGT	GTGGCTCTG	GGGTGGCGGT
1861	TCTGAGGGTG	CGGGTTCTGA	GGGTGGCGGT	ACTAAACCTC	CTGAGTACGG	TGATACACCT
1921	ATTCCGGGCT	ATACTTATAT	CAACCCCTCTC	GACGGCACTT	ATCCGCTGG	TACTGAGCAA
1981	AACCCCCTA	ATCCTAATCC	TTCTCTTGAG	GAGTCCTCAGC	CTCTTAATAC	TTTCATGTTT
2041	CAGAATAATA	GGTTCGAAA	TAGGCAGGGG	GCATTAAC	TTTATACGGG	CACTGTTACT
2101	CAAGGCAC	ACCCCGTTAA	AACTTATTAC	CAGTACACTC	CTGTATCATC	AAAAGCCATG
2161	TATGACGCTT	ACTGGAACCG	TAATTCAAGA	GA	TCCATTCTGG	CTTAATGAA
2221	GATCCATTG	TTTGTGAATA	TCAAGGCCAA	TCGTC	TGCTCAACC	TCCGTCAAT
2281	GCTGGCGGCG	GCTCTGGTGG	TGGTTCTGGT	GGCGGCTCTG	AGGGTGGTGG	CTCTGAGGGT
2341	GGCGGTTCTG	AGGGTGGCGG	CTCTGAGGGG	GGCGGTTCCG	GTGGTGGCTC	TGGTTCCGGT
2401	GATTTTGATT	ATGAAAAGAT	GGCAAACGCT	AATAAGGGGG	CTATGACCGA	AAATGCCGAT
2461	GAAAACGCGC	TACAGICTGA	CGCTAAAGGC	AAACTTGATT	CTGTCGCTAC	TGATTACGGT
2521	GCTGCTATCG	ATGGTTICAT	TGGTGA	TCG	CTAATGGTAA	TGGTGTACT
2581	GGTGA	CTGGCTCTAA	TTCCCAAATG	GCTCAAGTCG	GTGACGGTGA	TAATTACACCT
2641	TTAATGAATA	ATTTCCGTC	ATATTACCT	TCCCTCCCTC	AATCGGTTGA	ATGTCGCC
2701	TTTGTCTTTA	CGCCTGGTAA	ACCATATGAA	TTTCTATTG	ATTGTGACAA	AATAAAACTTA
2761	TTCCGTGGT	TCTTTCGTT	TCTTATAT	GTTGCCACCT	TTATGTA	TTACG
2821	TTTGCTAAC	TACTGCGTAA	TAAGGAGTCT	TAATCATGCC	AGTTCTTTG	GGTATTCCGT
2881	TATTATTGCG	TTTCTCGGT	TTCTTCTG	TAACTTTGTT	CGGCTATCTG	CTTACTTTTC
2941	TTAAAAGGG	CTTCGGTAAG	ATAGCTATTG	CTATTTCATT	GTTTCTTGT	CTTATTATTG
3001	GGCTTAAC	AATTCTGTG	GGTTATCTCT	CTGATATTAG	CGCTCAATT	CCCTCTGACT
3061	TTGTCAGGG	TGTCAGTTA	ATTCTCCCGT	GTAATGCGCT	TCCCTGTTT	TATGTTATT
3121	TCTCTGTAAA	GGCTGCTATT	TTCA	ACGTTAAACAA	AAAAATCGTT	TCTTATTG
3181	ATTGGGATAA	ATAATATGGC	TGTTTATTTT	GTAACTGGCA	AATTAGGCTC	TGGAAAGACG
3241	CTCGTTAGCG	TTGGTAAGAT	TTAGGATAAA	ATTGTA	GGTGCAAAAT	AGCAACTAAT
3301	CTTGATTTAA	GGCTTCAAAA	CCTCCCGCAA	GTCGGGAGGT	TCGCTAAAAC	GCCTCGCGTT
3361	CTTAGAATAC	CGGATAAGCC	TTCTATATCT	GATTGCTTG	CTATTGGGCG	CGGTAAATGAT
3421	TCCTACGATG	AAAATAAAAA	CGGCTTGCTT	GTTCTCGATG	AGTGC	GGT
3481	ACCCGTTCTT	GGAAATGATAA	GGAAAGACAG	CCGATTATTG	ATTGGTTCT	ACATGCTCGT
3541	AAATTAGGAT	GGGATATTAT	CTTCCTTGTT	CAGGACTTAT	CTATTGTTGA	AAACAGGCG
3601	CGTTCTGCAT	TAGCTGAACA	TGTTGTTTAT	TGTC	TGGACAGAAT	TACTTACCT
3661	TTTGTGGTA	CTTTATATT	TCTTATTACT	GGCTGAAAAA	TGCCTCTGCC	TAAATTACAT
3721	GTTGGCGTTG	TTAAATATGG	CGATTCTCAA	TTAAGCCCTA	CTGTTGAGCG	TTGGCTTTAT
3781	ACTGGTAAGA	ATTGTATAA	CGCATATGAT	ACTAAACAGG	CTTTTCTAG	TAATTATGAT

FIG. 6-1

SUBSTITUTE SHEET

3841	TCCGGTGT	TT ATTCTTATT	AACGCC	TTATCACACG	GTCGGT	CAAACC	3900
3901	AATTTAGGTC	AGAAGATGAA	ATTAAC	ATATATTG	AAAAGTTTC	TCGC	3960
3961	TGTCTTGCGA	TTGGATTG	ATCAGCA	ATCATATAGT	ATATAACCA	ACCTAAG	4020
4021	GAGGTTAAAAA	AGGTAGTCTC	TCAGAC	GATTTG	AATTCACTAT	TGACT	4080
4081	CAGCGTCTTA	ATCTAACG	TCGCTA	TTCAAGG	CTAAGGGAA	ATTAATT	4140
4141	AGCGACGATT	TACAGAACG	AGGTTA	CTCACATATA	TTGATT	TACTG	4200
4201	ATTAACAAAG	GTAATTCAA	TGAAAATG	AAATGTAATT	AATTGTTT	TCTTGAT	4260
4261	TGTTTCATCA	TCTTCTT	CTCAGG	TGAAATGA	AATTGC	TGCGC	4320
4321	TGTAACCTGG	TATTCAAAGC	AATCAGG	ATCCGTTA	GTTTCCC	ATG	4380
4381	TACTGTTACT	GTATATTCA	CTGACG	ACCTGAA	CTACG	TCTT	4440
4441	TGTTTACGT	GCTAATAATT	TTGATATG	TGTTCA	CTTC	CATAA	4500
4501	TAATCCAAAC	AATCAGG	ATATTG	ATGCCAT	TCTG	GATAATC	4560
4561	TGATAATTCC	GCTCCTCTG	GTGGTT	TGTTCCG	AATG	GATAATG	4620
4621	TTTAAATT	AATAACG	GGGCAAA	TTAAC	GTTG	TGAAT	4680
4681	GTCTAACT	TCTAAATC	CAAATG	ATCTATTG	GGCT	CTAATC	4740
4741	TAGTGCACCT	AAAGATATT	TAGATAAC	TCC	TTCTACTG	TTGAT	4800
4801	AACTGACCA	AGATTG	AGGGTT	ATTGAGG	CAGCAAGG	ATGCTT	4860
4861	TTTTCA	GCTGCTGG	CTCAGC	CACTG	GGCGGTG	ATACTGAC	4920
4921	CCTCACCT	GTTTATC	CTGCTGG	TTGTT	ATTTTA	GCGATG	4980
4981	AGGGCTATCA	GTTCGCG	TAAAGACT	TAGCC	AAAATATTG	CTGTGCC	5040
5041	TATTCTTACG	CTTTCAGG	AGAAGG	TATCT	TGTT	GGCC	5100
5101	TACTGGT	GTGACTGG	AATCTG	CCATT	TGAAATAA	TGATTG	5160
5161	TCAAAATG	GGTATTT	TGAGC	TCTG	TGCA	GTAAT	5220
5221	TCTGGAT	ACCAGCA	CCGATAG	GAGT	TCTT	GTGATG	5280
5281	TACTAATCAA	AGAAGTATTG	CTACAAC	TAATTTG	GATGG	ACAGA	5340
5341	CGGTGGC	ACTGATT	AAAACACT	TCAAG	GGCGT	TCTG	5400
5401	AATCCCTT	ATCGC	TGTTAG	CCGCT	TGAT	TCCAAC	5460
5461	ATACGTG	GTCAAG	CCATAG	CGCC	CGAGG	AGCGC	5520
5521	GTGTGGT	TACGCG	GTGACG	CACTT	CGGCG	CCC	5580
5581	TCGCTT	CCCTT	CTGCCAC	TCGCGG	TCCCC	GCT	5640
5641	GGGGGCT	TTAGGG	CGATTAG	CTTACG	CCTCGAC	AAAAAA	5700
5701	ATTTGGG	TGGTT	AGTGGC	CGCC	CGATG	CGCC	5760
5761	CGTGGAG	CACG	AAATAG	TCTG	TCCA	AACTGG	5820
5821	CTATCTCG	CTATT	GATT	TATAA	GGATT	GGAA	5880
5881	ACAGGATT	CGCCTG	GGCAAAC	GGTGG	ACCG	TCTCT	5940
5941	CCAGGCG	AAGGCA	AGCTG	CGTCT	CGCTG	GTGAAA	6000
6001	GGCGCC	ACGCAAA	CCTCT	CGCGT	GGCC	TGCAGCT	6060
6061	ACGACAGG	TCCC	AAAGC	GTGAG	CGCAA	CGCA	6120
6121	TCACTCAT	GGCAC	GCTT	TTATG	CGTATG	GGCTG	6180
6181	TTGTGAGC	ATAAC	CACAGC	GGAGA	CGAGTC	ATAATG	6240
6241	TACGGCAG	GCTG	TATTACT	CGCC	GGCG	AGCTCG	6300
6301	GACCCAG	CCAGA	ATCCG	ATGTT	TAATT	CTAGAAC	6360
6361	ACTGGCC	GTTT	ACTG	GTCG	GGAAAAC	GGCGT	6420
6421	CCTTGAG	CACCC	TCGCC	AGCTA	GGC	AAACT	6480
6481	CCCTTCCC	CAGT	GGCT	GAATG	GGCC	TTC	6540
6541	AGAAGCG	CCGG	GGCTG	GGAGT	GGGCC	GGCGT	6600
6601	CCCTCTAA	TGGCAG	ACGGT	TGCG	CCATC	TACACCA	6660
6661	CATTACGG	AATC	TTGTT	CCAC	GGAGA	TAACCTAT	6720
6721	ATTTAATG	GATG	GGCT	ACAGGA	GGCC	TCGGGT	6780
6781	TCCTATTG	TAAAAA	GCTG	ATTAA	ACGCG	ATTT	6840
6841	TTAACGTT	CAATT	ATTC	ACAAT	TGTTT	TGGG	6900
6901	TTATCAACG	GGGTAC	GATTG	CTAG	GATTAC	CGT	6960
6961	CTTGTG	CCAG	AGGCA	CTG	TGATG	ATCT	7020
7021	GCTAC	CCGG	TTTAT	AGAAC	GGG	TGATGG	7080
7081	TTGACTG	CCGG	TCAC	TTT	GAAT	GGG	7140
7141	GCATTTAA	TATATG	TTCT	AAAT	TTTATC	GGCTGAA	7200
7201	CCCGAAA	TATTACAG	TCATA	AGTGT	TTGGT	AAAGG	7260
7261	GAGGCTT	TGCT	TGCTA	ATTCT	TTGCC	TGTATG	7320
	10	20	30	40	50	60	

FIG. 6-2

9 / 16

	10	20	30	40	50	60
1	AATGCTACTA	CTATTAGTAG	AATTGATGCC	ACCTTTCA	CTCGCGCCCC	AAATGAAAAT
61	ATAGCTAAC	AGGTATTG	CCATTGCGA	AATGTATCTA	ATGGTCAAAC	TAATCTACT
121	CGTTCGCAGA	ATTGGGAATC	AACTGTTACA	TGGAATGAAA	CTTCCAGACA	CCGTACTTTA
181	GTTGCATATT	TAAAACATGT	TGAGCTACAG	CACCAAGATT	AGCAATTAAAG	CTCTAAGCCA
241	TCTGAAAAAA	TGACCTCTTA	TCAAAAGGAG	CAATTAAAGG	TACTCTCTAA	TCCTGACCTG
301	TTGGAGTTTG	CTTCGGTCT	GGTTCGCTT	GAAGCTCGAA	TTAAAACGCG	ATATTTGAAG
361	TCTTCGGGC	TTCCCTTAA	TCTTTTGT	GCAATCCGCT	TTGCTTCTGA	CTATAATAGT
421	CAGGGTAAAG	ACCTGATTTT	TGATTTATGG	TCATTCTCGT	TTTCTGAAC	GTTTAAAGCA
481	TTTGAGGGGG	ATTCAATGAA	TATTTATGAC	GATTCCGCAG	TATTGGACGC	TATCCAGTCT
541	AAACATTTTA	CTATTACCCC	CTCTGGCAAA	ACTTCTTTG	CAAAAGCCTC	TCGCTATTTT
601	GGTTTTATC	GTCGTCGGT	AAACGAGGGT	TATGATAGTG	TTGCTCTTAC	TATGCCTCGT
661	ATTCTCTTT	GGCGTTATGT	ATCTGCATTA	GTTGAATGTG	GTATTCCCAA	ATCTCAACTG
721	ATGAATCTT	CTACCTGTAA	TAATGTTGT	CCGTTAGTTC	GTTTATTAA	CGTAGATTTT
781	TCTTCCCAC	GTCCTGACTG	GTATAATGAG	CCAGTTCTTA	AAATCGCATA	AGGTAATTCA
841	CAATGATTAA	AGTTGAAATT	AAACCATCTC	AAGCCCAATT	TACTACTCGT	TCTGGTGT
901	CTCGTCAGGG	CAAGCCTTAT	TCACTGAATG	AGCAGCTTTG	TTACGTGAT	TTGGGTAATG
961	AATATCCGGT	TCTTGTCAAG	ATTACTCTTG	ATGAAGGTC	GCCAGCTAT	GGCCCTGGTC
1021	TGTACACCGT	TCATCTGTCC	TCTTCAAAAG	TTGGTCAGTT	CGGTTCCCTT	ATGATTGAC
1081	GTCTCGCCT	CGTTCCGGT	AAGTAACATG	GAGCAGGTG	CGGATTTCGA	CACAATTAT
1141	CAGGCATGA	TACAAATCTC	CGTTGTACTT	TGTTTCGCGC	TTGGTATAAT	CGCTGGGGGT
1201	CAAAGATGAG	TGTTTATGTG	TATCTTCTCG	CCTCTTCTGT	TTAGGTTGG	TGCCCTCGTA
1261	GTGGCATTAC	GTATTCTACC	CGTTTAATGG	AAACTCCCTC	ATGAAAAAGT	CTTATGTCCT
1321	CAAAGCCTCT	GTAGCCGTTG	CTACCCCTCGT	TCCGATGCTG	TCTTCGCTG	CTGAGGGTGA
1381	CGATCCCGCA	AAAGCGGCCT	TTAACTCCCT	GCAAGCCTCA	GCGACCGAAT	ATATCGGTTA
1441	TGCGTGGGGG	ATGGTTGTTG	TCATTGTCGG	CGCAACTATC	GGTATCAAGC	TGTTTAAGAA
1501	ATTCACTCG	AAAGCAAGCT	GATAAACCGA	TACAATTAAA	GGCTCCTTTT	GGAGCCTTTT
1561	TTTTGGAGA	TTTCAACGT	GAAAAAATTA	TTATTGCAA	TTCTTCTAGT	TGTTCTTTTC
1621	TATTCTCACT	CCGCTGAAAC	TGTTGAAAGT	TGTTTAGCAA	AACCCCATAC	AGAAAATTCA
1681	TTTACTAACG	TCTGGAAAGA	CGACAAAAC	TTAGATCGTT	ACGCTAACTA	TGAGGGTTGT
1741	CTGTGGAATG	CTACAGCGT	TGTAGTTGT	ACTGGTGACG	AAACTCAGT	TTACGGTACA
1801	TGGGTTCCCTA	TTGGGCTTGC	TATCCCTGAA	AATGAGGGGTG	GTGGCTCTGA	GGGTGGCGGT
1861	TCTGAGGGGTG	GCGGTTCTGA	GGGTGGCGGT	ACTAAACCTC	CTGAGTACGG	TGATACACCT
1921	ATTCCGGGCT	ATACTTATAT	CAACCCCTC	GACGGCACCT	ATCCGCTTGG	TACTGAGCAA
1981	AACCCCGCTA	ATCCTAATCC	TTCTCTTGAG	GAGTCTCAGC	CTCTTAATAC	TTTATGTTT
2041	CAGAATAATA	GGTCCGAAA	TAGGCAGGGG	GCATTAAC	TTTATACGGG	CACTGTTACT
2101	CAAGGCACTG	ACCCCGTTAA	AACTTATTAC	CAGTACACTC	CTGTATCATC	AAAAGCCATG
2161	TATGACGCTT	ACTGGAACGG	TAAATTCTAGA	GACTGCGCTT	TCCATTCTGG	CTTAATGAA
2221	GATCCATTCTG	TTTGTGAATA	TCAAGGCAA	TCGTCTGACC	TGCCCTCAACC	TCTGTCAAT
2281	GCTGGCGGCG	GCTCTGGTGG	TGGTTCTGGT	GGCGGCTCTG	AGGGTGGTGG	CTCTGAGGGT
2341	GGCGGTTCTG	AGGGTGGCGG	CTCTGAGGGG	GGCGGTTCCG	GTGGTGGCTC	TGGTTCCGGT
2401	ATTTTGATT	ATGAAAAGAT	GGCAAAACGCT	AATAAGGGGG	CTATGACCGA	AAATGCCGAT
2461	GAAAACGCGC	TACAGTCTGA	CGCTAAAGGC	AAACTTGTG	CTGTCGCTAC	TGATTACGGT
2521	GCTGCTATCG	ATGGTTTCAT	TGGTGCAGTT	TCCGGCTTG	CTAATGGTAA	TGGTGTACT
2581	GGTGTATTTG	CTGGCTCTAA	TTCCCAAATG	GCTCAAGTCG	GTGACGGTGA	TAATTCAACCT
2641	TTAATGAATA	ATTTCCGTCA	ATATTTACCT	TCCCTCCCTC	AATCGGTTGA	ATGTCGCCCT
2701	TTTGTCTTTA	GCGCTGGTAA	ACCATATGAA	TTTCTATTG	ATTGTGACAA	AATAAACTTA
2761	TTCCGTGGTG	TCTTTCGTT	TCTTTTATAT	GTTGCCACCT	TTATGTATGT	ATTTTCTACG
2821	TTTGCTAAC	TACTGCGTAA	TAAGGAGTCT	TAATCATGCC	AGTTCTTTG	GGTATTCCGT
2881	TATTATTGCG	TTTCTCGGT	TTCCCTCTGG	TAACTTTGT	CGGCTATCTG	CTTACTTTTC
2941	TTAAAAAGGG	CTTCGGTAAG	ATAGCTATTG	CTATTTCTT	TTTCTTGCT	CTTATTATTG
3001	GGCTTAAC	AATTCTTGTG	GGTTATCTCT	CTGATATTAG	CGCTCAATT	CCCTCTGACT
3061	TTGTTCAAGGG	TGTTCACTT	ATTCTCCCGT	CTAATGCGCT	TCCCTGTTT	TATGTTATTG
3121	TCTCTGTA	GGCTGCTATT	TTCATTTTG	ACGTTAAACA	AAAAATCGTT	TCTTATTG
3181	ATGGGGATAA	ATAATATGGC	TGTTTATT	GTAACCTGGCA	AATTAGGCTC	TGGAAAGACG
3241	CTCGTTAGCG	TTGGTAAAGAT	TCAGGATAAA	ATTGAGCTG	GGTCAAAAT	AGCAACTAAT
3301	CTTGATTTAA	GGCTTCAAAAA	CCTCCCGCAA	GTCGGGAGGT	TCGCTAAAC	GCCTCGCGTT
3361	CTTAGAATAC	CGGATAAGCC	TTCTATATCT	GATTGCTTG	CTATTGGGCG	CGGTAATGAT
3421	TCCTACGATG	AAAATAAAAAA	CGGCTTGCTT	GTTCTCGATG	AGTGCAGGTC	TTGGTTAAAT
3481	ACCGGTTCTT	GGAATGATAA	GGAAAGAGACG	CCGATTATG	ATTGGTTCT	ACATGCTCGT
3541	AAATTAGGAT	GGGATATTAT	TTTTCTTGT	CAGGACTTAT	CTATTGTTGA	AAACAGGCG
3601	CGTTCTGCAT	TAGCTGAACA	TGTTGTTTAT	TGTCGTCGTC	TGGACAGAA	TACTTTACCT
3661	TTTGTGGT	CTTTATATT	TCTTATTACT	GGCTCGAAAA	TGCCTCTGCC	TAAATTACAT
3721	GTTGGCGTTG	TTAAATATGG	CGATTCTCAA	TTAAGCCCTA	CTGTTGAGCG	TTGGCTTTAT

FIG. 7-1

SUBSTITUTE SHEET

10 / 16

3781	ACTGGTAAGA	ATTTGTATAA	CGCATATGAT	ACTAAACAGG	CTTTTCTAG	TAATTATGAT	3840
3841	TCCGGTGT	TTT ATTCTTATTT	AACGCCTTAT	TTATCACACG	GTCGGTATTT	CAAACCATT	3900
3901	AATTTAGGT	C AGAAGATGAA	GCTTACTAAA	ATATATTG	AAAAGTTTC	ACCGGTTCT	3960
3961	TGTCTGCGA	TTGGATTTC	ATCAGCATT	ACATATAGTT	ATATAACCCA	ACCTAAGCCG	4020
4021	GAGGTTAAAAA	AGGAGTCTC	TCAGACCTAT	GATTTGATA	AATTCACTAT	TGACTCTTCT	4080
4081	CAGCGTCTT	ATCTAACGCTA	TCGCTATGTT	TTCAAGGATT	CTAAGGGAAA	ATTAATTAA	4140
4141	AGCGACGATT	TACAGAACGA	AGGTTATTCA	CTCACATATA	TTGATTATG	TACTGTTCC	4200
4201	ATTAAGAAAG	GTAATTCAA	TGAAATTGTT	AAATGTAATT	AATTTTGTT	TCTTGATGTT	4260
4261	TGTTTCTATCA	TCTTCTTTG	CTCAGGTAAT	TGAAATGAAT	AATTCCGCTC	TGCGCGATT	4320
4321	TGTAACCTGG	TATCAGAACG	AATCAGGCGA	ATCCGTTATT	GTTCCTCCG	ATGTAAGAGG	4380
4381	TACTGTTACT	GTATATTCA	CTGACGTTAA	ACCTGAAAT	CTACGCCATT	TCTTATTTTC	4440
4441	TGTTTACGT	GCTAATATT	TTGATATGGT	TGGTCATT	CCTTCCATAA	TTCAAGAGTA	4500
4501	TAATCCAAAC	AATCAGGATT	ATATTGATGA	ATTGCCATCA	TCTGATAATC	AGGAATATGA	4560
4561	TGATAATTCC	GCTCCTCTG	GTGGTTCTT	TGTTCCGCAA	AATGATAATG	TTACTCAAAC	4620
4621	TTTTAAAATT	AATAACGTT	GGGCAAAGGA	TTTAATACGA	GTTGTCGAAT	TGTTTGTA	4680
4681	GTCTAATACT	TCTAAATCCT	CAAATGTATT	ATCTATTGAC	GGCTCTAAC	TATTAGTTGT	4740
4741	TAGTGCACCT	AAAGATATT	TAGATAACCT	TCCTCAATT	CTTCTACTG	TTGATTGCCC	4800
4801	AACTGACCAAG	ATATTGATTG	AGGGTTGAT	ATTGAGGTT	CAGCAAGGTG	ATGCTTAA	4860
4861	TTTTTCTATT	GCTGCTGGCT	CTCAGCGTGG	CACTGTTGCA	GGCGGGT	ATACTGACCG	4920
4921	CCTCACCTCT	GTTTTATCTT	CTGCTGGTGG	TTGCTTCGGT	ATTTTAAATG	GCGATGTTT	4980
4981	AGGGCTATCA	GTTCGCGCAT	TAAGACTAA	TAGCCATTCA	AAAATATTGT	CTGTGCCACG	5040
5041	TATTCTTACG	CTTTCAAGGTC	AGAAGGGTT	TATCTCTGTT	GGCCAGAATG	TCCCTTTAT	5100
5101	TACTGGTCGT	GTGACTGGT	AATCTGCCAA	TGTAATAAT	CCATTTCAGA	CGATTGAGCG	5160
5161	TCAAAATGTA	GGTATTTC	TGAGCGTTT	TCCTGTTGCA	ATGGCTGGCG	GTAATATTGT	5220
5221	TCTGGATATT	ACCAGCAAGG	CCGATAGTTT	GAGTTCTTCT	ACTCAGGCAA	GTGATGTTAT	5280
5281	TACTAATCAA	AGAAGTATTG	CTACAACGGT	TAATTGCGT	GATGGACAGA	CTCTTTACT	5340
5341	CGGTGGCCTC	ACTGATTATA	AAAACACCTC	TCAAGATTCT	GGCGTACCGT	TCTGTCTAA	5400
5401	AATCCCTTTA	ATCGGCCCTC	TGTTTAGCTC	CCGCTCTGAT	TCCAACGAGG	AAAGCACGTT	5460
5461	ATACGTGCTC	GTCAAAGCAA	CCATAGTAGC	CGCCCTGTAG	CGGCGCATT	AGCGCGGCGG	5520
5521	GTGTGGTGGT	TACGCGCAGC	GTGACCGCTA	CACTGCCAG	CGCCCTAGCG	CCCGCTCCTT	5580
5581	TCGCTTCTT	CCCTTCTTT	CTCGCACGT	TCGCCGGCTT	TCCCCGTCAA	GCTCTAAATC	5640
5641	GGGGGCTCCC	TTTAGGGTTC	CGATTAGTG	CTTACGGCA	CCTCGACCCC	AAAAAAACTTG	5700
5701	ATTGGGGTGA	TGGTTCACGT	AGTGGGCCAT	CGCCCTGTATA	GACGGTTTT	CGCCCTTTGA	5760
5761	CGTGGGAGTC	CACGTTCTT	ATAAGTGGAC	TCTTGTTC	AACCTGAAAC	ACACTCAAC	5820
5821	CTATCTCGGG	CTATTCTTT	GATTATAAG	GGATTTTG	GATTGGAAAC	CCACCATCAA	5880
5881	ACAGGATT	CGCCTGCTGG	GGCAAAACAG	C GTGGACCGC	TTGCTGAAAC	TCTCTCAGGG	5940
5941	CCAGGCGGTG	AAGGGCAATC	AGCTGTTGCC	CGTCTCGT	GTAAAAGAA	AAACCCACCT	6000
6001	GGCGCCCAAT	ACGCAAAACG	CCTCTCCCCG	CGCGTTGGCC	GATTCAATTAA	TGAGCTGGC	6060
6061	ACGACAGGTT	TCCCAGCTGG	AAAGCGGGCA	GTGAGCGCAA	CGCAATTAA	GTGAGTTAGC	6120
6121	TCACTCATTA	GGCACCCAG	GCTTACACT	TTATGCTTC	GGCTCGTATG	TTGTGTGGAA	6180
6181	TTGTGAGCGG	ATAACATT	CACACGCGTC	ACTTGGCACT	GGCCGTCGTT	TTACAACGTC	6240
6241	GTGACTGGGA	AAACCCCTGGC	GTTACCCAAG	CTTGTACAT	GGAGAAAATA	AAGTGAACAA	6300
6301	AAGCACTATT	GCAGTGGCAC	TCTTACCGTT	ACCGTTACTG	TTTACCCCTG	TGACAAAAGC	6360
6361	CGCCCAGGTC	CAGCTGCTCG	AGTCAGGCCT	ATTGTGCCA	GGGGATTGTA	CTAGTGGATC	6420
6421	CTAGGCTGAA	GGCGATGACC	CTGCTAAGGC	TGCATTCAAT	AGTTTACAGG	CAAGTGCTAC	6480
6481	TGAGTACATT	GGCTACGCTT	GGGCTATGGT	AGTAGTTATA	TTTGGTGCTA	CCATAGGGAT	6540
6541	TAAATTATTC	AAAAAGTTA	CGAGCAAGGC	TTCTTAAGCA	ATAGCGAAGA	GGCCCGCACC	6600
6601	GATGCCCTT	CCCAACAGTT	GGCGCAGCTG	AATGGCGAAT	GGCGCTTGC	CTGGTTCCG	6660
6661	GCACCAAGAAG	CGGTGCCGGA	AAGCTGGCTG	GAGTGCAGTC	TTCCCTGAGGC	CGATAACGGTC	6720
6721	GTCGTCCCC	CAAACCTGGCA	GATGACCGGT	TACGATGCGC	CCATCTACAC	CAACGTAACC	6780
6781	TATCCCATT	CGGTCAATCC	GGCGTTTGT	CCCACGGAGA	ATCCGACGGG	TTGTTACTCG	6840
6841	CTCACATT	ATGTTGATGA	AAGCTGGCTA	CAGGAAGGCC	AGACGCGAAT	TATTTTTGAT	6900
6901	GGCGTCTCTA	TTGGTTAAAAA	AATGAGCTGA	TTTACACAAA	ATTTAACGCG	AATTAAACAA	6960
6961	AAATATTAAAC	GTTTACATT	TAATATTGTT	CTTATACAT	CTTCCTGTT	TTGGGGCTTT	7020
7021	TCTGATTATC	AACCGGGGTA	CATATGATG	ACATGCTAGT	TTTACGATTA	CCGTTCATCG	7080
7081	ATTCTCTTGT	TTGCTCCAGA	CTCTCAGGCA	ATGACCTGAT	AGCCTTGT	GATCTCTCAA	7140
7141	AAATAGCTAC	CCTCTCCGGC	ATTAATTAT	CAGCTAGAAC	GGTTGAATAT	CATATTGATG	7200
7201	GTGATTGAC	TGTCTCCGGC	CTTCTCACC	CTTTTGAATC	TTTACCTACA	CATTACTCAG	7260
7261	GCATTGCAATT	AAAAATATAT	GAGGGTTCTA	AAAATTTTA	TCCTTGCGTT	GAAATAAAGG	7320
7321	CTTCTCCCGC	AAAAGTATT	CAGGGTCATA	ATGTTTTGG	TACAACCGAT	TTAGCTTAT	7380
7381	GCTCTGAGGC	TTTATTGCTT	AATTTTGCTA	ATTCTTTGCC	TTGCCTGTAT	GATTATTG	7440
7441	ACGTT						7445

| 10 | 20 | 30 | 40 | 50 | 60 |

FIG. 7-2

11 / 16

	10	20	30	40	50	60
1	AATGCTACTA	CTATTAGTAG	AATTGATGCC	ACCTTTCA	CTCGCGCCCC	AAATGAAAAT
61	ATAGCTAAC	AGGTTATTGA	CCATTGCGA	AATGTATCTA	ATGGTCAAAC	TAAATCTACT
121	CGTCGCGAGA	ATTGGGAATC	AACTGTTACA	TGGAATGAAA	CTTCCAGACA	CCGTACTTTA
181	GTTGCATATT	TAAAACATGT	TGAGCTACAG	CACAGATTC	AGCAATTAAAG	CTCTAAGCCA
241	TCTGCAAAAAA	TGACCTCTTA	TCAAAAGGAG	CAATTAAAGG	TACTCTCTAA	TCCTGACCTG
301	TTGGAGTTTG	CTTCGGTCT	GGTCGCTT	GAAGCTCGA	TTAAAACGCG	ATATTGAAAG
361	TCTTCGGGC	TCCTCTTAA	TCTTTTGT	GCAATCCGCT	TTGCTTCTGA	CTATAATAGT
421	CAGGGTAAAG	ACCTGATTTT	TGATTATGG	TCATTCTCGT	TTCTGAACT	GTTTAAAGCA
481	TTTGAGGGGG	ATTCATGAA	TATTTATGAC	GATTCCGCA	TATTGGACGC	TATCCAGTCT
541	AAACATTTA	CTATTACCCC	CTCTGGCAA	ACITCTTTG	CAAAAGCCTC	TCGCTATTTT
601	GGTTTTATC	GTGCTCTGGT	AAACGAGGGT	TATGATAGTG	TTGCTCTTAC	TATGCCTCGT
661	AATTCCCTTT	GGCGTTATGT	ATCTGCATTA	GTTGAATGTG	GTATTCCCTAA	ATCTCAACTG
721	ATGAATCTT	CTACCTGTAA	TAATGTTGTT	CCGTTAGTTC	GTTTTATTAA	CGTAGATTTT
781	TCTTCCCAAC	GTCTGACTG	GTATAATGAG	CCAGTTCTTA	AAATCGCATA	AGGTAATTCA
841	CAATGATTA	AGTTGAAATT	AAACCATCTC	AAGCCCAATT	TACTACTCGT	TCTGGTGT
901	CTCGTCAGGG	CAAGCCTTAT	TCACTGAATG	AGCAGCTTTG	TTACGTTGAT	TTGGGTAATG
961	AATATCCGGT	TCTTGTCAAG	ATTACTCTT	ATGAAGGTCA	GCCAGCCTAT	GCGCCTGGTC
1021	TGTACACCGT	TCATCTGTCC	TCTTCAAAG	TTGGTCAGTT	CGGTTCCCTT	ATGATTGACC
1081	GTCTGCGCCT	CGTTCCGGCT	AAGTAACATG	GAGCAGGTCG	CGGATTTCGA	CACAATTAT
1141	CAGGCATGA	TACAAATCTC	CGTTGTACTT	TGTTTCGCGC	TTGGTATAAT	CGCTGGGGT
1201	CAAAGATGAG	TGTTTAGTGT	TATTCTT	CTCGTCTTCGT	TTAGGTTGG	TGCCCTCGTA
1261	GTGGCATTAC	GTATTTTAC	CGTTTAAATGG	AAACTTCCTC	ATGAAAAAAGT	CTTGTAGTCT
1321	CAAAGCCTCT	GTAGCCGTTG	CTACCCCTCGT	TCCGATGCTG	TCTTCGCTG	CTGAGGGTGA
1381	CGATCCCGCA	AAAGCGGCCT	TTAACTCCCT	GCAAGCCTCA	GCGACCGAAT	ATATCGGTTA
1441	TGCGTGGGCG	ATGGTTGTTG	TCATTGTCGG	CGCAACTATC	GGTATCAAGC	TGTTTAAGAA
1501	ATTCACTCTG	AAAGCAAGCT	GATAAAACCGA	TACAATTAAA	GGCTCCCTTT	GGAGCCTTT
1561	TTTTTGGAGA	TTTCAACGT	GAAAAAAATTA	TTATTGCGAA	TTCCCTTAGT	TGTTCCCTTC
1621	TATTCTCACT	CCGCTGAAAC	TGTTGAAAGT	TGTTTAGC	AACCCCCATAC	AGAAAATTCA
1681	TTTACTAACG	TCTGAAAGA	CGACAAAAC	TTAGATCGTT	ACGCTAACTA	TGAGGGTTGT
1741	CTGTGGAATG	CTACAGGCGT	TGTAGTTGT	ACTGGTACG	AAACTCACTG	TTACGGTACA
1801	TGGGTTCTA	TTGGGCTTGC	TATCCCTGAA	AATGAGGGTG	GTGGCTCTGA	GGGTGGCGGT
1861	TCTGAGGGTG	GCGGTTCTGA	GGGTGGCGGT	ACTAAACCTC	CTGAGTACGG	TGATACACCT
1921	ATTCCGGGCT	ATACTTATAT	CAACCCTCTC	GACGGCACTT	ATCCGCTGG	TACTGAGCAA
1981	AACCCCGCTA	ATCCTAATCC	TTCTCTTGAG	GAGTCTCAGC	CTCTTAAATAC	TTTCATGTTT
2041	CAGAATAATA	GGTTCCGAAA	TAGGCAGGGG	GCATTAAC	TTTATACGGG	CACTGTTACT
2101	CAAGGCACTG	ACCCCGTTAA	AACTTATTAC	CACTACACTC	CTGTATCATC	AAAAGCCATG
2161	TATGACGCTT	ACTGGAACGG	TAAATTCA	GACTGCGCTT	TCCATTCTGG	CTTAATGAA
2221	GATCCATTG	TTTGTGAATA	TCAAGGCCA	TCGTCGAC	TGCCTCAACC	TCCTGTCAAT
2281	GCTGGCGGCG	CGTCTGGTGG	TGGTCTGGT	GGCGGCTCTG	AGGGTGGTGG	CTCTGAGGGT
2341	GGCGGTTCTG	AGGGTGGCGG	CTCTGAGGG	GGCGGTTCCG	GTGGTGGCTC	TGGTCCGGT
2401	GATTTTGATT	ATGAAAAGAT	GGCAAAACGCT	AATAAGGGGG	CTATGACCGA	AAATGCCGAT
2461	AAAAACGCGC	TACAGTCTGA	CGCTAAAGGC	AAACTTGATT	CTGTCGCTAC	TGATTACGGT
2521	GCTGCTATCG	ATGGTTTCA	TGGTGACGT	TCCGGCTCTG	CTAATGGTAA	TGGTGCTACT
2581	GGTGATTGTTG	CTGGCTCTAA	TTCCCAAATG	GCTCAAGTCG	GTGACGGTGA	TAATTACACCT
2641	TTAATGAATA	ATTTCCGTC	ATATTTCAC	TCCCTCCCTC	AATCGGGTGA	ATGTCGCCCT
2701	TTTGTCTTT	GCGCTGGTAA	ACCATATTGAA	TTTCTATTG	ATTGTGACAA	AATAAACTTA
2761	TTCCGTGGT	TCTTGTGCTT	TCTTTATAT	GTTGCCACCT	TTATGTTATG	ATTTTCTACG
2821	TTTGCTAAC	TACTGCGTAA	TAAGGAGCT	TAATCATG	AGTTCTTTG	GGTATTCCGT
2881	TATTATTGCG	TTTCCTCGGT	TTCCCTCTGG	TAACTTGTT	CGGCTATCTG	CTTACTTTTC
2941	TTAAAAAGGG	CTTCGGTAAG	ATAGCTATTG	CTATTCATT	GTTTCTGCT	CTTATTATTG
3001	GGCTTAAC	AATTCTGTG	GGTTATCTC	CTGATATTAG	CGCTCAATT	CCCTCTGACT
3061	TTGTTCAAGGG	TGTTCACTT	ATTCTCCGT	CTAATGCGCT	TCCCTGTTT	TATGTTATT
3121	TCTCTGTA	AAAGCTGCTATT	TTCATTTTG	ACGTTAAACA	AAAAATCGTT	TCTTATTG
3181	ATTGGGATAA	ATAATATGGC	TGTTTATTTT	GTAACTGGCA	AATTAGGCTC	TGAAAAGACG
3241	CTCGTTAGCG	TTGGTAAGAT	TTAGGATAAA	ATTGTAGCTG	GGTGAAAAT	AGCAACTAAT
3301	CTTGATTTAA	GGCTCAAAA	CCTCCCGCAA	GTCGGGAGGT	TCGCTAAAAC	GCCTCGCGTT
3361	CTTAGAATAC	CGGATAAGCC	TTCTATATCT	GATTGCTTG	CTATTGGGCG	CGGTAATGAT
3421	TCCTACGATG	AAAATAAAAA	CGGCTTGTCT	GTTCTCGATG	AGTGCGGTAC	TTGGTTAAAT
3481	ACCCGTTCTT	GGAAATGATAA	GGAAAGACAG	CCGATTATTG	ATTGGTTCT	ACATGCTCGT
3541	AAATTAGGAT	GGGATATTAT	TTTTCTGTT	CAGGACTTAT	CTATTGTTGA	TAAACAGGCG
3601	CGTTCTGCA	TAGCTGAACA	TGTTGTTTAT	TGTCGTCGTC	TGGACAGAAT	TACTTACCT
3661	TTTGTGCGGT	CTTTATATT	TCTTATTACT	GGCTCGAAAA	TGCCTCTGCC	TAAATTACAT
3721	GTGGCGTTG	TTAAATATGG	CGATTCTCAA	TAAAGCCCTA	CTGTTGAGCG	TTGGCTTTAT
3781	ACTGGTAAGA	ATTGTATAA	CGCATATGAT	ACTAAACAGG	CTTTTCTAG	TAATTATGAT
						3840

FIG. 8-1

SUBSTITUTE SHEET

12 / 16

3841	TCCGGTGT	TTT	ATTCTTAT	TTT	AACGCC	TTT	TTATCACACG	GTCGGT	TTT	CAAACC	ATTA	3900
3901	AATTAGGTC	AGAAGATGAA	GCTTACTAAA	ATATATTTGA	AAAAGTTTC	ACGC	GTTCTT	CG	TT	ACGCGT	TTCT	3960
3961	TGTCTGCGA	TTGGATTG	ATCAGCATT	ACATATAGTT	ATATAACCCA	ACCTAAG	ACCG	4020				
4021	GAGGTAAAAA	AGGTAGTCTC	TCAGACAT	GATTTTGATA	AATTCACTAT	TGACTCTT	CT	4080				
4081	CAGCGTCTTA	ATCTAACGCTA	TCGCTATGTT	TTCAAGGATT	CTAAGGGAAA	ATTAATTAA	T	4140				
4141	AGCGACGATT	TACAGAACGCA	AGGTTATTCA	CTCACATATA	TTGATTATG	TACTGTT	TTCC	4200				
4201	ATTAAGGAAAG	GTAATTCAAA	TGAAATTGTT	AAATGTAATT	AATTGTTT	TCTTGATGTT	TT	4260				
4261	TGTTTCACTA	TCTTCTTTG	CTCAGGTAAT	TGAAATGAAT	AATTGCGCTC	TGCGCGATTT	TT	4320				
4321	TGTAACCTGG	TATTCAAAGC	AATCAGGCGA	ATCCGTTATT	GTTTCTCCCG	ATGTA	AAAGG	4380				
4381	TACTGTTACT	GTATATTCAT	CTGACGTTAA	ACCTGAAAAT	CTACGCAATT	TCTT	TATTTC	4440				
4441	TGTTTACGT	GCTAATAATT	TTGATATGGT	TGTTCAATT	CCTTCATAA	TTCAGAAGTA	4500					
4501	TAATCCAAAC	AATCAGGATT	ATATTGATGA	ATTGCCATCA	TCTGATAATC	AGGAATATGA	4560					
4561	TGATAATTCC	GCTCCTTCTG	GTGGTTCTT	TGTTCCGCAA	AATGATAATG	TTACTCAAAC	4620					
4621	TTTAAATT	AATAACGTTC	GGGCAAAGGA	TTAATACGA	GTTGTCGAAT	TGTTTGTA	4680					
4681	GTCTAAACT	TCTAAATCCT	CAAATGTATT	ATCTATTGAC	GGCTCTAATC	TATTAGTTG	4740					
4741	TAGTGCACCT	AAAGATATT	TAGATAACCT	TCCTCAATT	CTTCTACTG	TTGATTTGCC	4800					
4801	AACTGACCAAG	ATATTGATTG	AGGGTTGAT	ATTGAGGTT	CAGCAAGGTG	ATGCTT	AGA	4860				
4861	TTTTCACTT	GCTGCTGGCT	CTCAGCGTGG	CACTGTTGCA	GGCGGTGTTA	ATACTGACCG	4920					
4921	CCTCACCTCT	GT	TTTATCTT	CTGCTGGTGG	TTGTTCGGT	ATTTTAATG	GCGATGTTT	4980				
4981	AGGGCTATCA	GTTCGCGCAT	TAAGACTAA	TAGCCATTCA	AAAATATTGT	CTGTGCCACG	5040					
5041	TATTCTTACG	CTTCAGGTC	AGAAGGGTTC	TATCTCTGTT	GGCCAGAATG	TCCCCTTTAT	5100					
5101	TACTGGTCGT	GTGACTGGTG	AATCTGCCA	TGAAATAAT	CCATTTCAGA	CGATTGAGCG	5160					
5161	TCAAAATGTA	GGTATTTC	TGAGCGTTT	TCCTGTTGCA	ATGGCTGGCG	GTAATATTG	5220					
5221	TCTGGATATT	ACCAGCAAGG	CCGATAGTTT	GAGTTCTTCT	ACTCAGGCAA	GTGATGTTAT	5280					
5281	TACTAATCAA	AGAAGTATTG	CTACAACGGT	TAATTGCGT	GATGGACAGA	CTCTTTACT	5340					
5341	CGGTGGCCCTC	ACTGATTATA	AAAACACTTC	TCAAGATTCT	GGCGTACCGT	TCCTGTCTAA	5400					
5401	AACTCCCTTA	ATCGGCCCTCC	TGTTTAGCTC	CCGCTCTGAT	TCCAACGAGG	AAAGCACGTT	5460					
5461	ATACGTGCTC	GTCAAAGCAA	CCATAGTAGC	CGGCCCTGTAG	CGGCCGATT	AGCGCGGGCGG	5520					
5521	GTGTGGTGGT	TACGCGCAGC	GTGACCGCTA	CACTGCGCAG	CGCCCTAGCG	CCCGCTCCCT	5580					
5581	TCGCTTCTT	CCCTCCTT	CTCGCACGT	TCGCCGGCTT	TCCCCGTCAA	GCTCTAAATC	5640					
5641	GGGGGCTCCC	TTAGGGTTC	CGATTAGTG	CTTACGGCA	CCTCGACCCC	AAAAAAACTG	5700					
5701	ATTTGGGTGA	TGGTTCACGT	AGTGGGCCAT	CGCCCTGATA	GACGGTTTT	CGCCCTTTGA	5760					
5761	CGTTGGAGTC	CACGTTCTT	AATAGTGGAC	TCTTGTTC	AACTGGAACA	ACACTCAACC	5820					
5821	CTATCTCGGG	CTATTCTTT	GATTTATAAG	GGATTTGCC	GATTICGGAA	CAACCATCAA	5880					
5881	ACAGGATT	CGCTGCTGG	GGCAAACCA	CGTGGACCGC	TTGCTGCAAC	TCTCTCAGGG	5940					
5941	CCAGGCCTG	AAGGGCAATC	AGCTGTTGCC	CGTCTCGCTG	GTGAAAAGAA	AAACCACCT	6000					
6001	GGCGCCCAAT	ACGCAAACCG	CCTCTCCCCG	CGCGTTGGCC	GATTCA	TGCAGCTGGC	6060					
6061	ACGACAGGTT	TCCCAGTGG	AAAGCGGGCA	GTGAGCGCAA	CGCAATTAT	GTGAGTTAGC	6120					
6121	TCACTCATT	GGCACCCCCAG	GCTTACACT	TTATGCTTCC	GGCTCGTATG	TTGTGTGGAA	6180					
6181	TTGTGAGCGG	ATAACAATT	CACACGCGTC	ACTTGGCACT	GGCGTCGTT	TTACAACGTC	6240					
6241	GTGACTGGG	AAACCTGGC	GTTACCAAG	CTTGTACAT	GGAGAAAATA	AAGTGA	AAACA	6300				
6301	AAGCACTATT	GCAC	TCTTACCGT	ACTGTTTAC	CCTGTGGCAA	AAGCCTATGG	6360					
6361	GGGGGTTCATG	CTTCGAGGC	ATCCGGGAGC	TGAAGGCAGAT	GACCC	CTGCTGCATT	6420					
6421	CAATAGTTA	CAGGCAAGTG	CTACTGAGTA	CATTGGCTAC	GCTTGGGCTA	TGGTAGTAGT	6480					
6481	TATAGTTG	GCTACCATAG	GGATTAAATT	ATTCAAAAAG	TTTACGAGCA	AGGCTTCTTA	6540					
6541	AGCAATAGCG	AAGAGGCCCG	CACCGATCGC	CCTTCCCAAC	AGTTGCGCAG	CCTGAATGGC	6600					
6601	GAATGGCCT	TTGCTGTT	TCCGGCACC	GAAGCGGGTC	CGGAAAGCTG	GCTGGAGTGC	6660					
6661	GATCTTCTG	AGGCCGATAC	GGTCGTC	CCCTCAAACT	GGCAGATGCA	CGGTTACGAT	6720					
6721	GGGCCCATC	ACACCAACGT	AACCTATCCC	ATTACGGTC	ATCCGCCGTT	TGTTCCCACG	6780					
6781	GAGAAATCGA	CGGGTTGTTA	CTCGCTCACA	TTTATGTTG	ATGAAAAGCTG	GCTACAGGAA	6840					
6841	GGCCAGACG	GAATTATTT	TGATGGCGTT	CCTATTGTT	AAAAAAATGAG	CTGATTAAC	6900					
6901	AAAAATTTAA	CGCGAATT	AACAAATAT	TAACGTTTAC	AATTAAATA	TTTGCTTATA	6960					
6961	CAATCTTCT	GTTTTGGGG	CTTTCTGAT	TATCAACCGG	GGTACATATG	ATTGACATGC	7020					
7021	TAGTTTACG	ATTACCGTTC	ATCGATTCTC	TTGTTGCTC	CAGACTCTCA	GGCAATGACC	7080					
7081	TGATAGCC	TGTAGATCTC	TCAAAATAG	CTACCCCTCTC	CGGCATTAAT	TTATCAGCTA	7140					
7141	GAACGGTTGA	ATATCATATT	GATGGTGATT	TGACTGTC	CGGCCTTCT	CACCC	TTTTG	7200				
7201	AATCTTAC	TACACATTAC	TCAGGCAATTG	CATTAAAAT	ATATGAGGGT	TCTAAA	AAATT	7260				
7261	TTTATCCTG	CGTTGAAATA	AAGGCTTCTC	CCGCAAAAGT	ATTACAGGGT	CATAATGTT	7320					
7321	TTGGTACAAC	CGATTAGCT	TTATGCTG	AGGCTTATT	GCTTAATT	GCTAATTCTT	7380					
7381	TGCCCTGCCT	GTATGATT	TTGGACGTT				7409					

| 10 | 20 | 30 | 40 | 50 | 60

FIG. 8-2

13 / 16

	10	20	30	40	50	60	
1	AATGCTACTA	CTATTAGTAG	AATTGATGCC	ACCTTTCA	CTCGGCC	AAATGAAA	60
61	ATAGCTAAC	AGGTATTG	CCATTGCGA	AATGTATCTA	ATGGTCAA	TAAATCTACT	120
121	CGTCGCGAGA	ATTGGGAATC	AACTGTTACA	TGAAATGAAA	CTTCCAGACA	CCGTACTTTA	180
181	GTTGCATATT	TAAAACATGT	TGAGCTACAG	CACCAGATT	AGCAATTAA	CTCTAAGCCA	240
241	TCTGCAAAAAA	TGACCTCTTA	TCAAAAGGAG	CAATTAAAGG	TACTCTCTAA	TCCTGACCTG	300
301	TTGGAGTTTG	CTTCCGGTCT	GGTTCGCTT	GAAGCTCGA	TTAAAACGCG	ATATTTGAAG	360
361	TCTTCCGGGC	TTCCCTCTAA	TCTTTTGAT	GCAATCCGCT	TTGCTTCTGA	CTATAATAGT	420
421	CAGGGTAAG	ACCTGATTTT	TGATTATGG	TCATTCTCGT	TTTCTGA	GTAAAGAGCA	480
481	TTTGAGGGGG	ATTCATGAA	TATTTATGAC	GATTCCGCG	TATTGACGCG	TATCCAGTCT	540
541	AAACATTTA	CTATTACCCC	CTCTGGCAA	ACCTCTTTG	CAAAGCCTC	TCGCTATTTT	600
601	GGTTTTATC	GTGCTCTGGT	AAACGAGGGT	TATGATAGTG	TTGCTCTTAC	TATGCCTCGT	660
661	AATTCTTTT	GGCGTTATGT	ATCTGCATTA	GTGAAATGTG	GTATTCCTAA	ATCTCAACTG	720
721	ATGAATCTT	CTACCTGTAA	TAATGTTGTT	CCGTTAGTT	GTTTTATTA	CGTAGATT	780
781	TCTTCCCAAC	GTCCGTACTG	GTATAATGAG	CCAGTCTTA	AAATCGCAT	AGGTAATTCA	840
841	CAATGATTA	AGTTGAAATT	AAACCATCTC	AAGCCCAATT	TACTACTCGT	TCTGGTGT	900
901	CTCGTCAGGG	CAAGCCTTAT	TCACTGAATG	AGCAGCTTTG	TTACGTTGAT	TTGGGTAATG	960
961	AATATCCGGT	TCTTGTCAAG	ATTACTCTT	ATGAAGGTCA	GCCAGCCTAT	GCGCCTGGTC	1020
1021	TGTACACCGT	TCATCTGTCC	TCTTCAAAG	TTGGTCAGTT	CGGTTCC	ATGATTGACC	1080
1081	GTCTGCGCCT	CGTCCGGCT	AAGTAACATG	GAGCAGGTG	CGGATTTCGA	CACAATTAT	1140
1141	CAGGCGATGA	TACAAATCTC	CGTTGTACTT	TGTTTCGCG	TTGGTATAAT	CGCTGGGGT	1200
1201	CAAAGATGAG	TGTTTAGTG	TATTCTTCG	CCTCTTTCGT	TTAGGTTGG	TGCCTTCGTA	1260
1261	GTGGCATTAC	GTATTTACC	CGTTTAATGG	AAACTTCCTC	ATGAAAAAGT	CTTTAGTCCT	1320
1321	CAAAGCCTCT	GTAGCCGTTG	CTACCCCTCGT	TCCGATGCTG	TCTTCGCTG	CTGAGGGTGA	1380
1381	CGATCCCGCA	AAAGCGGCCT	TTAACCTCC	GCAAGCCTCA	GCGACCGAAT	ATATCGGTTA	1440
1441	TGCGTGGGCG	ATGGTTGTG	TCATTGTCGG	CGCAACTATC	GGTATCAAGC	TGTTTAAGAA	1500
1501	ATTACCCCTCG	AAAGCAAGC	GATAAACCGA	TACAATTAAA	GGCTCC	GGAGCCTTT	1560
1561	TTTTGGGAGA	TTTCAACGT	AAAAAAATTA	TTATTGCAA	TTCTTCTAGT	TGTTCTTTC	1620
1621	TATTCTCACT	CCGCTGAAAC	TGTTGAAAGT	TGTTTAGCAA	AACCCCATAC	AGAAAATTCA	1680
1681	TTTACTAACG	TCTGAAAAGA	CGAACAAACT	TTAGATCGT	ACGCTAACTA	TGAGGGTTGT	1740
1741	CTGTGGAAATG	CTACAGCGT	TGTAGTTGT	ACTGGTACG	AAACTCAGT	TACGGTACA	1800
1801	TGGGTTCTA	TTGGGCTTGC	TATCCCTGAA	AATGAGGGGTG	GTGGCTCTGA	GGGTGGCGGT	1860
1861	TCTGAGGGTG	GCGGGTTCTGA	GGGTGGCGGT	ACTAAACCTC	CTGAGTACGG	TGATACACCT	1920
1921	ATTCCGGGT	ATACCTATAT	CAACCCCTCTC	GACGGCACTT	ATCCGCTGG	TACTGAGCAA	1980
1981	AACCCCGCTA	ATCCTAATCC	TTCTCTTGAG	GAGTCAGTC	CTCTTAATAC	TTTCATGTT	2040
2041	CAGAATAATA	GGTTCCGAAA	TAGGCAGGGG	GCATTAACTG	TTTATACGGG	CACTGTTACT	2100
2101	CAAGGCACTG	ACCCCGTTAA	AACTTATTAC	CAGTACACTC	CTGTATCATC	AAAAGCCATG	2160
2161	TATGACGCTT	ACTGGAACGG	TAAATTCAA	GACTGCGCTT	TCCATTCTGG	CTTAATGAA	2220
2221	GATCCATTG	TTTGTGAATA	TCAAGGCCA	TGCTCTGACC	TGCTCAACC	TCTGTCAAT	2280
2281	GCTGGCGGCG	GCTCTGGTGG	TGGTCTGGT	GGCGGCTCTG	AGGGTGGTGG	CTCTGAGGGT	2340
2341	GGCGGTTCTG	AGGGTGGCGG	CTCTGAGGGA	GGCGGTTCCG	GTGDTGGCTC	TGTTCCGGT	2400
2401	GATTTTGATT	ATGAAAAGAT	GGCAAACGCT	AATAAGGGGG	CTATGACCGA	AAATGCCGAT	2460
2461	AAAAACGCGC	TACAGTCTGA	CGCTAAAGGC	AAACTTGATT	CTGTCGCTAC	TGATTACGGT	2520
2521	GCTGCTATCG	ATGGTTTCAT	TGGTGACGT	TCCGGCTTG	CTAATGGTAA	TGGTGCTACT	2580
2581	GGTGATTTTG	CTGGCTCTAA	TTCCCAAATG	GCTCAAGTCG	GTGACGGTGA	TAATTACACT	2640
2641	TTAATGAAATA	ATTTCCGTCA	ATATTTACCT	TCCCTCCCTC	AATCGGGTGA	ATGTCGCCCT	2700
2701	TTTGTCTTTA	GCCTCGGTAA	ACCATATGAA	TTTCTATTG	ATTGTGACAA	AATAAACTTA	2760
2761	TTCCGTGGTG	TCTTCTGGT	TCTTTTATAT	GTTGCCACCT	TTATGATGT	ATTTTCTACG	2820
2821	TTTGCTAAC	TACTGCGTAA	TAAGGAGTCT	TAATCATGCC	AGTTCTTTG	GGTATTCCGT	2880
2881	TATTATTGCG	TTTCCTCGGT	TTCTCTCTGG	TAACTTTGTT	CGGCTATCTG	CTTACTTTTC	2940
2941	TTAAAAAAGGG	CTTCGGTAAAG	ATAGCTATTG	CTATTCATT	GTTTCTTGCT	CTTATTATTG	3000
3001	GGCTTAAC	AATTCTGTG	GGTTATCTC	CTGATATTAG	CGCTCAATT	CCCTCTGACT	3060
3061	TTGTTCAAGGG	TGTTCACTT	ATTCTCCCGT	CTAATGCGCT	TCCCTGTTT	TATGTTATT	3120
3121	TCTCTGAA	GGCTGATT	ITCATTTTG	ACGTTAAACA	AAAAATCGTT	TCTTATTG	3180
3181	ATTGGGATAAA	ATAATATGGC	TGTTTATT	GTAACTGGCA	AATTAGGCTC	TGAAAGACG	3240
3241	CTCGTTAGCG	TTGGTAAGAT	TCAGGATAAA	ATTGTAGCTG	GGTGCAAAAT	AGCAACTAAT	3300
3301	CTTGATTTAA	GGCTCAAAA	CCTCCCGAA	GTCGGGAGGT	TCGCTAAAC	GCCTCGCGTT	3360
3361	CTTAGAATAC	CGGATAAGCC	TTCTATATCT	GATTGCTTG	CTATTGGGCG	CGGTAATGAT	3420
3421	TCCTACGATG	AAAATAAAAA	CGGCTTGT	GTTCTCGATG	AGTGCAGTAC	TGGTTAAAT	3480
3481	ACCCGTTCTT	GGAATGATAA	GGAAAGACAG	CCGATTATTG	ATTGGTTCT	ACATGCTCGT	3540
3541	AAATTAGGAT	GGGATATTAT	CTTCTTGTT	CAGGACTTAT	CTATTGTTGA	TAAACAGGGCG	3600
3601	CGTTCTGCAT	TAGCTGAACA	TGTTGTTTAT	TGTCGTCGTC	TGGACAGAAT	TACTTTACCT	3660
3661	TTTGTGGT	CTTTATATT	TCTTATTACT	GGCTGAAAAA	TGCCTCTGCC	TAAATTACAT	3720
3721	TTGGGCGTTG	TTAAATATGG	CGATTCTCAA	TTAAGCCCTA	CTGTTGAGCG	TTGGCTTTAT	3780
3781	ACTGGTAAGA	ATTTGTATAA	CGCATATGAT	ACTAAACAGG	CTTTTCTAG	TAATTATGAT	3840

FIG. 9-1
SUBSTITUTE SHEET

3841	TCCGGTGT	TTT	ATTCTTAT	TTT	AACGCC	TTT	TTATCACACG	TTT	GTCGGT	TTT	CAAACC	TTT	3900
3901	AAATTAGG	TC	AGAAGATGAA	GC	TACTAAA	AT	ATATATTG	GA	AAAAGTTT	TC	ACCGC	GTT	3960
3961	TGTCTTG	CGA	TTGGATT	TC	ATCAGCAT	TT	ACATATAGT	AT	ATAACCCA	AC	CTAACGCC	G	4020
4021	GAGGTTAAA	AA	AGGTAGT	TC	CAGAC	TT	GATTTG	ATA	TTCAAGG	AA	TGACT	CTTCT	4080
4081	CAGCGTCT	TA	ATCTAAGCTA	TC	GCTATG	TT	TCAGG	AT	CTAACATATA	TT	AGGGAAA	AT	4140
4141	AGCGACG	AT	TACAGAAGCA	AG	GTTATTCA	CT	CACATATA	TT	GATT	TG	TACTG	TTTCC	4200
4201	ATTAAAAAGG	TA	ATTCAAAAT	GA	AAATTGTTA	AA	ATGTAATT	AT	TTTGTTT	CT	TGATG	TTT	4260
4261	TTTTCATCAT	CT	CTTTT	TC	AGGTAATT	GA	AAATGAATA	AT	TCGCTCT	GC	CGAT	TTT	4320
4321	GTAAC	TTGGT	AT	TC	AGGCGAA	TC	CGTTATTG	TT	TCTCCC	GA	TGAAAAGG	T	4380
4381	ACTGTTACTG	TAT	ATTCATC	TG	ACGTTAAA	CC	TGAAAATC	TA	CGCAATT	CT	TTTATT	TCT	4440
4441	GTTTACGTG	CT	AAATAATT	TG	ATATGGTT	CC	TCAATT	CT	TCCATT	TT	AGAAGT	TAT	4500
4501	AATCCAAACA	AT	CAAGG	TT	TATGATGAA	TT	GCATCAT	CT	GATAATCA	GG	AAATATGAT	AT	4560
4561	GATAATTCCG	CT	CCCTT	CT	GGTTCTT	GT	TCGCAAA	AT	GATAATGT	TA	CTCAAAC	T	4620
4621	TTTAAAATTA	AT	AAACGTT	GG	CAAAGGAT	TT	ATACGAG	TT	GTGAAATT	GT	TTGTAAG	AA	4680
4681	TCTAATACTT	CT	AAATC	CT	AAATGTATT	TC	TATTGACG	GC	TCTAATCT	AT	TAGTTGTT	TT	4740
4741	AGTGCACCTA	AA	AGATATT	AG	ATAACCTT	CC	TCATT	TT	TCTACTGT	TG	ATTTGCCA	TT	4800
4801	ACTGACCAGA	TA	TATTGATT	GG	GGTTGATA	TT	TGAGGTT	AG	CAAGGTGA	TG	CTTTAGAT	AG	4860
4861	TTTTCATTG	CT	GTG	GGCT	TC	AGCGT	GC	GGTTAA	TACT	GACCGC	4920		
4921	CTCACCTCTG	TT	TTATCTC	TG	CTGTTG	TC	GTGTTG	TT	TTAATGG	CG	ATGTTTTA	4980	
4981	GGGCTATCAG	TT	CGCGC	TT	AAAGACTAAT	AG	CCATTCAA	AA	ATATTGTC	TG	TGCCACGT	5040	
5041	ATTCTTACGC	TT	TCAAGG	TC	AAAGGGTTCT	GA	AGGGTTCT	AT	CTCTGTTG	GC	CAGATGT	CC	5100
5101	ACTGGTCGTG	TG	ACTG	GGT	ATCTGCAAT	GT	AAATAATC	CAT	TTCAGAC	GATT	GAGCGT	T	5160
5161	AAAAATGTAG	GT	ATTTCCAT	GAGC	GT	TTT	CTGTTGCAA	TG	GTGCGG	TA	ATATTGTT	5220	
5221	CTGGATATTA	CC	AGCAAGGC	CG	ATAGTTT	AG	TTCTCTCA	CT	CAGGCAAG	TG	ATGTTATT	5280	
5281	ACTAATCAAA	GA	AGTATTG	TAC	ACGGGTT	AA	TTGCGT	AT	GGACAGAC	TCT	TTTACTC	5340	
5341	GGTGGCCTCA	CT	GATTATAA	AA	ACACTCT	CA	AGATTCTG	GC	GTACCGTT	CCT	GTCATAA	5400	
5401	ATCCCCTAA	TC	GGCCTCCT	GT	TTAGCTCC	CG	CTCTGATT	CC	ACAGGAGA	AAG	CACGTTA	5460	
5461	TACGTGCTC	T	CAAACGAA	CA	AGTACGC	GC	CCCTGTAGC	GG	GCATTAA	GG	CGGGCGGG	5520	
5521	TGTGGTGGT	AC	GGCAGCG	TG	ACCGCTAC	AC	TTGCCAGC	GC	CCCTAGC	CC	GCTCCTT	5580	
5581	CGCTTTCTTC	CC	TCTC	TTT	TCGCCACGTT	CG	CCGGCTTT	CCCC	GTCAAG	CT	TAAATCG	5640	
5641	GGGGCTCCCT	TT	AGGGTTCC	GAT	TTAGTGC	TT	ACGGCAC	CT	GACCCC	AAA	AAACTTGA	5700	
5701	TTTGGGTGAT	GG	TCACTA	GT	GGGCCATC	GC	CCGTGATAG	AC	GGTTTTTC	GC	CCTTTGAC	5760	
5761	GTTGGAGTCC	AC	GTTCTTTA	AT	AGTGGACT	CT	GTGTTCAA	AC	TGGAACAA	CA	CTCAACCC	5820	
5821	TATCTCGGGC	T	ATTCTTTT	AT	TTATAAGG	GT	TTTGC	AT	TCGGAAC	CA	CCATCAA	5880	
5881	CAGGATTTTC	GC	CTGCTGGG	GC	AAACCAAGC	GT	GGACCGCT	TG	CTGCAACT	CT	CTCAGGGC	5940	
5941	CAGGCGGTGA	AG	GGCAATCA	G	TGTTGCCCC	GT	CTCGCTGG	TG	AAAAGAAA	AA	CCACCCCTG	6000	
6001	GCGCCCAATA	CG	AAACC	CG	TCCCCGC	GC	GTGCCCCG	AT	TATTAAT	GC	AGCTGGCA	6060	
6061	CGACAGGTTT	CC	CGACTGGA	AAG	CGGGCAG	TG	AGCGCAAC	GC	ATTAAATG	TG	AGTTAGCT	6120	
6121	CACTCATTAG	GC	ACCCCAGG	CT	TTACACTT	TAT	GCTTCCCG	GCT	CGTATGT	TG	GTGTTGAAT	6180	
6181	TGTGAGCGA	TA	ACAAATT	AC	ACAGGAAA	CAG	CTATGAC	CAG	GATGTAC	GA	ATTGCGCAG	6240	
6241	GTAAGGAGAGC	TC	GGCGGGATC	CG	AGGCTGAA	GG	CGATGACC	CT	GCTAAGGC	TG	CATTCAAT	6300	
6301	AGTTTACAGG	CA	AGTGTCTAC	TG	AGTACATT	GG	CTACGCTT	GG	GCTATGGT	AG	TAGTTATA	6360	
6361	GTTGGTGT	CT	CAAGGGAT	TA	AAATTATT	AA	AAAGTTTA	CG	AGCAAGGC	TT	CTTAACCA	6420	
6421	GCTGGCGTAA	TAG	CGAAGAG	GC	CCGACCG	AT	CGCCCTTC	CC	ACAGTTG	CG	CAGCCTGA	6480	
6481	ATGGCGAATG	GC	GCTTTGCC	TG	GGCTTCCGG	CA	CAGAAGC	GG	TGCGGGA	AG	TGGCTGG	6540	
6541	AGTGCATG	TC	CTGAGGCC	GAT	ACGGTCG	TC	GCTCCCCTC	AA	ACTGGCAG	AT	GCACGGTT	6600	
6601	ACGATGCGCC	CAT	TACACC	AA	CGTAAACCT	AT	CCCATTAC	GG	TCAATCCG	CC	GTTTGTTC	6660	
6661	CCACGGAGAA	TCC	GACGGG	TG	TTACTCGC	TC	ACATTAA	TG	TGATGAA	AG	CTGGCTAC	6720	
6721	AGGAAGGCA	GAC	CGAAATT	AT	TTTTGAT	GC	GTGCTCTAT	TG	TTAAAAAA	AT	GAGCTGAT	6780	
6781	TTAACAAAAA	TT	TAACGCGA	AT	TTTAACAA	AA	TATTAACG	TT	TACAATT	AA	ATATTGTC	6840	
6841	TTATACAATC	TT	CTGTTT	TG	GGGCTTT	CT	GATTATCA	AC	GGGGTAC	AT	TGATTGATG	6900	
6901	CATGCTAGTT	TT	ACGATTAC	CG	TCTACG	TT	TCTTGT	TG	TCCAGAC	TCT	CAGGCAA	6960	
6961	TGACCTGATA	GC	CTTGTG	AT	CTCTCAA	AA	TAGCTACC	CT	TCCGGCA	TT	ATTTATAC	7020	
7021	AGCTAGAACG	GTT	GAATATC	AT	TTGATGG	TG	TTTACT	GT	TCCGGGCC	TT	TCTCACCC	7080	
7081	TTTTGAATCT	TT	ACCTACAC	AT	ACTCAGG	CAT	TCATTG	AA	ATATATG	AG	GGGTTCTAA	7140	
7141	AAATTTTAT	CCT	TGCGTTG	AA	ATAAAGGC	TT	TCCC	AA	AGTATTAC	AG	GGGTACATAA	7200	
7201	TGTTTGTG	ACA	ACCGATT	TAG	TTTATG	CT	TGAGG	TT	TGCTTA	AT	TTTGCTAA	7260	
7261	TTCTTG	GC	TGCTGTATG	AT	TTTATTGGA	CG	TT	TTT	TGCTTA	AT	TTTGCTAA	7294	

FIG. 9-2

15 / 16

	10	20	30	40	50	60
1	AATGCTACTA	CTATTAGTAG	AATTGATGCC	ACCTTTCA	CTCGCGCCCC	AAATGAAAAT
61	ATAGCTAAC	AGGTTATTGA	CCATTGCGA	AATGTATCTA	ATGGTCAAAC	TAAATCTACT
121	CGTTCGCAGA	ATTGGGAATC	AACTGTTACA	TGGAATGAAA	CTTCCAGACA	CCGTAACCTTA
181	GTTGCATATT	AAAAACATGT	TGAGCTACAG	CACCAGATT	AGCAATTAAAG	CTCTAAGGCCA
241	TCTGCAAAAA	TGACCTCTTA	TCAAAAGGAG	CAATTAAAGG	TACTCTCTAA	TCCGTACCTG
301	TTGGAGTTG	CTTCGGTCT	GGTTCGCTT	GAAGCTCGAA	TTAAAACGCG	ATATTGAAAG
361	TCTTCCGGC	TTCTCTTTAA	TCTTTTGAT	GCAATCCGCT	TCGTTCTGA	CTATAATAGT
421	CAGGGTAAAG	ACCTGATTTT	TGATTATGG	TCATTCTCGT	TTTCTGAACT	GTAAAGCA
481	TTTGAGGGGG	ATTCATGAA	TATTTATGAC	GATTCCGCA	TATTGGACGC	TATCCAGTCT
541	AAACATTTA	CTATTACCCC	CTCTGGCAAA	ACCTCTTTTG	CAAAGCCTC	TCGCTATTTT
601	GGTTTTATC	GTCTGCTGGT	AAACGAGGGT	TATGATAGTG	TTGCTCTTAC	TATGCCTCGT
661	AATTCCCTT	GGCGTTATGT	ATCTGCATTA	GTGAAATGTG	GTATTCTAA	ATCTCAACTG
721	ATGAATCTT	CTACCTGTAA	TAATGTGTT	CCGTTAGITC	GTTTTATTAA	CGTAGATTTT
781	TCTTCCCAAC	GTCTGACTG	GTATAATGAG	CCAGTTCTTA	AAATCGCATA	AGGTAATTCA
841	CAATGATTAA	AGTTGAAATT	AAACCATCTC	AAGCCCAATT	TACTACTCGT	TCTGGTGT
901	CTCGTCAGGG	CAAGCCTTAT	TCACTGAATG	AGCAGCTTTG	TTACGTTGAT	TTGGGTAATG
961	AATATCCGGT	TCTTGTCAAG	ATTACTCTG	ATGAAGGTC	GCCAGCCTAT	GCGCCTGGTC
1021	TGTACACCGT	TCATCTGTCC	TCTTCAAAG	TTGGTCAGTT	CGGTTCCCTT	ATGATTGACC
1081	GTCTGCCT	CGTTCCGGCT	AAGTAACATG	GAGCAGGTCG	CGGATTCGA	CACAATTAT
1141	CAGGCGATGA	TACAAATCTC	CGTTGTACTT	TGTTTCGCGC	TTGGTATAAT	CGCTGGGGT
1201	CAAAGATGAG	TGTTTAGTG	TATTCTTCG	CCCTTTCTG	TTAGGTTGG	TGCCCTCGTA
1261	GTGGCATTAC	GTATTTACC	CGTTTAATGG	AAACTTCCTC	ATGAAAAAAAGT	CTTAGTCTC
1321	CAAAGCCTCT	GTAGCCGTTG	CTACCCCTCGT	TCCGATGCTG	TCTTCGCTG	CTGAGGGTGA
1381	CGATCCCGCA	AAAGCGGCCT	TTAACCTCCCT	GCAAGCCTCA	GCGACCGAAT	ATATCGGTTA
1441	TGCGTGGGCG	ATGGTTGTTG	TCATTGTGG	CGCAACTATC	GGTATCAAGC	TGTTTAAGAA
1501	ATTCACCTCG	AAAGCAAGCT	GATAAACCGA	TACAATTAAA	GGCTCCTTTT	GGAGCCTTTT
1561	TTTTTGGAGA	TTTCAACGT	AAAAAAATTA	TTATTGCAA	TTCTTCTAGT	TGTTCCCTTC
1621	TATTCTCACT	CCGCTGAAAC	TGTTGAAAGT	TGTTTAGCAA	AACCCCATAC	AGAAAATTCA
1681	TTTACTAAAG	TCTGGAAAGA	GCACAAAATC	TTAGATCGTT	ACGCTAACTA	TGAGGGTTGT
1741	CTGTGGAATG	CTACAGGCGT	TGTAGTTGT	ACTGGTACG	AAACTCAGTG	TTACGGTACA
1801	TGGGTTCTA	TTGGGCTTGC	TATCCCTGAA	AATGAGGGTG	GTGGCTCTGA	GGGTGGCGGT
1861	TCTGAGGGTG	GGCGGTTCTGA	GGGTGGCGGT	ACTAACCTC	CTGAGTACGG	TGATACACCT
1921	ATTCGGGCT	ATACTTATAT	CAACCCCTCTC	GACGGCACTT	ATCCGCTGG	TACTGAGCAA
1981	AACCCCGCTA	ATCCCTAATCC	TTCTCTTGAG	GAGCTCAGC	CTCTTAATAC	TTTCATGTT
2041	CAGAATAATA	GGTTCGAA	TAGGCAGGGG	GCATTAACTG	TTTATACGGG	CACTGTTACT
2101	CAAGGCACTG	ACCCCGTTAA	AACTTATTAC	CACTACACTC	CTGTATCATC	AAAAGCCATG
2161	TATGACGCT	ACTGGAACGG	TAATTCTAGA	GACTGCGCTT	TCCATTCTGG	CTTTAATGAA
2221	GATCCATTG	TTTGTGAATA	TCAGGCGAA	TCGCTCTGACC	TGCCCTCAACC	TCCTGTCAAT
2281	GCTGGCGGCG	GCTCTGGTGG	TGGGCTCTGGT	GGCGGCTCTG	AGGGTGGTGG	CTCTGAGGGT
2341	GGCGGTTCTG	AGGGTGGCGG	CTCTGAGGG	GGCGGTTCCG	GTGGTGGCTC	TGGTCCCGGT
2401	GATTTGATT	ATGAAAAGAT	GGCAAACGCT	AAATAAGGGGG	CTATGACCGA	AAATGCCGAT
2461	AAAAACGCGC	TACAGTCTGA	CGCTAAAGGC	AAACTTGTATT	CTGTCGCTAC	TGATTACGGT
2521	GCTGCTATCG	ATGGTTTCAT	TGGTGACGTT	TCCGGCCTTG	CTAATGGTAA	TGGTGCTACT
2581	GGTGAATTTC	CTGGCTCTAA	TTCCCAAATG	GCTCAAGTCG	GTGACGGTGA	TAATTACACT
2641	TTAATGAATA	ATTTCCGTCA	ATATTTACCT	TCCCTCCCTC	AATCGGGTGA	ATGTCGCCCT
2701	TTTGTCTTTA	GCGCTGGTAA	ACCATATGAA	TTTCTATTG	ATTGTGACAA	AATAAAACTTA
2761	TTCCGTGGTG	TCTTGTGTT	TCTTTTATAT	GTTGCCACCT	TTATGTATGT	ATTTCTACG
2821	TTTGCTAAC	TACTGCGTAA	TAAGGAGTCT	TAATCATGCC	AGTTCTTTTG	GGTATTCCGT
2881	TATTATTGCG	TTTCTCTGGT	TTCTTCTCTGG	TAACTTTGTT	CGGCTATCTG	CTTACTTTTC
2941	TTAAAAAGGG	CTTCGGTAAAG	ATAGCTATTG	CTATTTCTATT	GTTTCTGCT	CTTATTATTG
3001	GGCTTAACTC	AATTCTTG	GGTTATCTCT	CTGATATTAG	CGCTCAATT	CCCTCTGACT
3061	TTGTTCAAGGG	TGTTCAAGTTA	ATTCTCCCGT	CTAATGCGCT	TCCCTGTTT	TATGTTATT
3121	TCTCTGTA	AAAGCTCTATT	TTCATTTTG	ACGTTAAACA	AAAAATCGTT	TCTTATTG
3181	ATTGGGATAAA	ATAATATGGC	TGTTTATTTT	GTAACTGGCA	AATTAGGCTC	TGGAAAGACG
3241	CTCGTTAGCG	TTGGTAAGAT	TTAGGATAAA	ATTGTAGCTG	GGTGAAAAT	AGCAACTAAT
3301	CTTGAATTAA	GGCTTCAAAA	CCTCCCGCAA	GTGGGGAGGT	TGCTAAACAC	GCTCTCGCGTT
3361	CTTAGAATAC	CGGATAAGCC	TTCTATATCT	GATTGCTTG	CTATTGGGCG	CGGTAATGAT
3421	TCCCTACGATG	AAAATAAAAAA	CGGCTTGTCT	GTTCTCGATG	AGTGCAGTAC	TTGGTTAAAT
3481	ACCCGTTCTT	GGAAATGATAA	GGAAAGACAG	CCGATTATTG	ATTGGTTCT	ACATGCTCGT
3541	AAATTAGGAT	GGGATATTAT	TTTCTTGTGTT	CAGGACTTAT	CTATTGTTGA	AAACAGGGCG
3601	CGTTCTGCAT	TAGCTGAACA	TGTTGTTTAT	TGTCGTGTC	TGGACAGAAT	TACTTTACCT
3661	TTTGTGGTAA	CTTTATATT	TCTTATTACT	GGCTCGAAAA	TGCCTCTGCC	TAATTACAT
3721	TTTGTGGTAA	TTAAATATGG	CGATTCTAA	TTAAGCCCTA	CTGTTGAGCG	TTGGCTTTAT
3781	ACTGGTAAGA	ATTGTATAA	CGCATATGAT	ACTAAACAGG	CTTTTCTAG	TAATTATGAT

FIG. 10-1

SUBSTITUTE SHEET

3841	TCCGGTGT	TTT	ATTCTTAT	TTT	AACGCC	TTT	TTATCACACG	GTCGGT	TTT	CAAACC	ATTA	3900		
3901	AATTTAGGTC	AGAAGATGAA	GCTTACTAAA	ATATATTTGA	AAAAGTTTC	ACGC	GTTCT	C	3960					
3961	TGTCTTGC	GA	TTGGATTTC	GC	ATCAGCAT	TT	ACATATA	GGT	ATATAACCC	ACCTAAG	CG	4020		
4021	GAGGTTAAAA	AGG	TAGTCTC	TC	CAGACCT	AT	GATTTGATA	AATTCA	CTAAGGGAAA	TGACT	CTTCT	4080		
4081	CAGCGTCTT	TA	CTAAGCTA	TC	CGCTATG	TT	TCAGGATT	CTAAGGGAAA	ATTAATTA	ATTAA	TAT	4140		
4141	AGCGACGATT	TACAGAAGCA	AGGTTATTCA	CTC	CACATATA	TT	TCAGGATT	TTGATT	TAT	TACTG	TTTCC	4200		
4201	ATTA	AAAAAG	GTAATTCAA	TGAAATTG	AAATGTA	TT	AAATGTA	AATTG	TCTTGAT	TCTTGAT	TGTT	4260		
4261	TGTTT	CATCA	TCTTCTT	TG	TCAGGTA	AT	TGAAATGA	AATT	TCGCG	CG	TGCG	4320		
4321	TGTAAC	TTGG	TATTCAAAGC	AATCAGG	CGA	AT	CCGTT	AT	GTAA	AAAG	TAA	4380		
4381	TACTGTTACT	GT	ATATTCA	CTGAC	GTTAA	AC	CTGAA	CT	AGCA	ATT	TCTT	4440		
4441	TGTTTACGT	GCTA	ATAATT	TTG	ATATG	GGT	TTCA	C	CTTCC	CATAA	TTCAGAAG	4500		
4501	TAATCCAAAC	AATCAGG	ATT	ATTGATG	ATT	GGCC	CATCA	TCTG	GATAATC	AGGA	ATATG	4560		
4561	TGATAATT	CC	GCTC	TTCTG	GTG	GGTT	TTCTG	AA	AATG	GATAATG	TTACTCA	4620		
4621	TTTT	AAAATT	AATAAC	GGT	TC	GGCA	AA	TTAATAC	GTTG	TGCA	TGTTG	4680		
4681	GTCTA	AAACT	TCTAA	ATC	C	AAATG	TATT	ATCTATTG	GG	CTCTA	ATC	4740		
4741	TAGTGCAC	CCT	AAAGAT	TTT	TAG	AACT	TC	CTCAATT	CTT	TCTACTG	TTGATT	4800		
4801	AACTGACCAG	ATATTG	ATATTG	AGGG	TTG	GAT	ATTTG	GAGGT	CAGC	AAAGGTG	ATGCTT	4860		
4861	TTTT	TCATT	GCTG	CTGG	CT	CAGCGT	GG	ACTGTTG	GG	CGGTG	TTA	ATACTGACCG	4920	
4921	CCTCAC	CCT	GT	TTT	TATC	CTG	CTGG	TT	TCGTT	CGT	ATTTTAA	GCGATG	4980	
4981	AGGGCTATCA	GT	TGCGC	GAT	TA	AAAGACT	AA	TGAC	TTCA	AAAATATTG	CTGTG	CCACG	5040	
5041	TATTCTTACG	CTT	CAGG	TC	AGAAGGG	TT	TG	CTG	GG	CCAGAATG	TCCC	TTTAT	5100	
5101	TACTGGT	CGT	GT	ACTGG	GT	AATCT	GCC	AA	TTAAT	ATC	CGATTGAGC	5160		
5161	TCAAA	ATGTA	GGT	ATTTC	CA	TGAGC	TTT	TC	CTG	TG	ATGAT	TGTT	5220	
5221	TCTGG	ATATT	ACCAG	CAAGG	CC	GATAG	TTT	GAGT	TTCT	ACTCAGG	GTGAT	TGTT	5280	
5281	TACTA	ATCAA	AGAAG	TATTG	CT	ACAAC	G	TA	TTG	GACAGA	CTCT	TTTACT	5340	
5341	CGGTGG	CCTC	ACTG	ATTATA	AA	AAAC	ACTC	TCA	AGATT	CT	GGTACCG	TCC	GTCTAA	5400
5401	AATCC	CTTA	ATCG	CC	TGTT	AGCTC	CC	GCTCT	GAT	TCCAAC	GAGG	AAAGCACG	5460	
5461	ATACGT	GCTC	GT	CAAAGC	AA	CCATAG	TACG	CG	CCCTGT	CG	CGCATT	AGCGCG	5520	
5521	GTGTGG	TGG	TACG	CGC	G	GTGAC	CG	CA	CTTGCC	CG	CCCTAGCG	CCC	GCTC	5580
5581	TG	CTT	CTT	CC	CTG	CCAC	GT	TC	GGG	CTT	TCCCCGTCAA	GCTCTAA	5640	
5641	GGGGG	CTCCC	TT	TA	GGG	TT	CG	ATT	ACGG	CC	CTGAC	CCCC	5700	
5701	ATTTGG	GTA	TG	TTT	CAC	GT	GGG	CC	CTG	TTG	GACG	GGG	5760	
5761	CGTTGG	AGTC	CA	CAC	GT	AA	AGT	GG	TG	TT	AACT	CAACC	5820	
5821	CTATCT	CGGG	CT	ATTCT	TTT	GATT	TA	AG	GG	TTT	GCG	CCACCATCAA	5880	
5881	ACAGG	ATTT	CGC	CTG	CTG	GG	CAA	ACCAG	CG	GG	TGCAAC	TCTCTAGGG	5940	
5941	CCAGG	CGGT	AA	GGGCA	ATC	AGC	TG	TTG	CG	TTG	AAAGGAA	AAACCACCT	6000	
6001	GGCG	CCAA	AT	ACG	AAACCG	CCT	CT	CCCCG	CG	CGT	TTGGCC	GATTCA	6060	
6061	ACGAC	AGGT	TCC	CG	ACTG	GG	AA	AGCGGG	CA	GTGAG	CGC	TTAG	6120	
6121	TCA	CTT	TA	GG	CA	CCCC	CAG	G	CTT	AC	GGCT	GATG	6180	
6181	TTG	TGAG	CGG	AT	A	AA	ACA	TTT	AG	TT	GTG	TGAA	6240	
6241	GTG	ACT	GGG	AA	AC	CC	CTGG	GG	CT	AC	GGCG	TGTT	6300	
6301	AAG	CACT	TT	GC	ACT	GG	CA	AC	GG	CT	GG	AAAGCC	TTCT	6360
6361	GAGG	CAT	CCG	GG	AG	CTG	GA	G	G	CT	GG	CAAC	6420	
6421	AAG	TG	CTACT	G	AG	TAC	TTG	CT	GG	TG	TT	GGTGTG	6480	
6481	CAT	AGG	GATT	AA	AA	TTT	CA	AA	AG	TT	AA	TAGCGAAGAG	6540	
6541	GCCC	GCAC	CG	ATG	CC	CTA	AC	GT	GG	TT	AA	GCGCTTG	6600	
6601	TGG	TT	CCGG	CA	CC	AGA	G	GG	TG	GG	CT	TGAGGCC	6660	
6661	GAT	ACG	GTG	CG	TC	AA	ACT	GG	CA	AT	CT	TACACC	6720	
6721	AA	C	GT	AC	CC	TT	AA	GG	TT	GG	AC	GCGGGT	6780	
6781	TG	T	ACT	CG	TC	AC	ATT	AA	AG	TT	GA	ACGCGAATT	6840	
6841	ATTTT	GAT	GC	GTT	CC	TT	AA	AG	GT	AA	AA	TTAACGCGA	6900	
6901	ATTTT	AA	AA	AA	TTA	AA	AA	AG	TC	AA	AA	TTCTGT	6960	
6961	TGGGG	TTT	CTG	ATT	ATC	CC	GGGG	GT	AT	AA	AA	TTACGATTAC	7020	
7021	CGT	T	CAT	CG	TT	CTT	TT	GG	TT	AC	TT	GCCTTTGTAG	7080	
7081	ATCT	CTAA	AA	ATAG	CT	CT	CC	GG	CA	TT	AC	AGCTAGAACG	7140	
7141	ATATT	GAT	GG	TG	ATT	TTG	AC	GG	CT	TT	AC	CTACAC	7200	
7201	ATT	ACT	CAGG	C	ATT	G	AA	AA	AG	TT	TT	CCTTGC	7260	
7261	AA	AA	AA	AA	AA	GG	AA	AG	TT	AA	TT	ACACCGATT	7320	
7321	TAG	TTT	ATG	CT	CTG	G	AG	GG	CT	TT	TT	TGCGCT	7380	
7381	ATTT	ATT	TGGA	CG	TT	TT	AA	GG	CT	TT	TT	TGCGTATG	7394	

| 10 | 20 | 30 | 40 | 50 | 60

FIG. 10-2

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/07141

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC
 IPC(5): C12N 1/24, 15/00; C07H 21/00
 U.S. CL.: 435/252.33, 320.1, 172.3; 536/27

II FIELDS SEARCHED

Minimum Documentation Searched ?

Classification System	Classification Symbols
U.S.	435/252.33, 320.1, 172.3, 69.1; 536/27

Documentation Searched other than Minimum Documentation
 to the Extent that such Documents are Included in the Fields Searched *

APS, CAS: search terms: Codon bins, codon preference

III. DOCUMENTS CONSIDERED TO BE RELEVANT *

Category *	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
Y	EP. A. 0.383.620 (Cook) 22 August 1990. See entire document.	1-87
Y	US. A. 4.458.066 (Caruthers et al.) 03 July 1984. see entire document.	1-87
Y	US. A. 4.771.000 (Verrips et al.) 13 September 1988. see entire document.	8.9.24-26 32-34. 55-57. 64-66. 73-75. 81-87
Y	APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. Volume 21. issued 1985. J.M. Jaynes et al., "Construction and expression of synthetic DNA fragments coding for polypeptides with elevated levels of essential amino acids". pages 200-205. see entire document.	1-87

* Special categories of cited documents: ¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"G" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

11 December 1991

Date of Mailing of this International Search Report

22 JAN 1992

International Searching Authority

ISA/US

Signature of Authorized Ficer

James Ketter

ebw

III DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
Y	GENE, Volume 44, issued 1986. A.R. Oliphant, "Cloning of random-sequence oligodeoxynucleotides", pages 177-183, see entire document.	1-87
Y	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE, Volume 87, issued August 1990, Cwirla et al., "Peptides on phage: A vast library of peptides for identifying ligands", pages 6378-6382. see entire document.	1-87
Y	SCIENCE, Volume 249, issued 27 July 1990, J.J. Devlin, "Random Peptide Libraries: A Source of Specific Protein Binding Molecules", pages 404-406, see entire document.	1-87
Y	SCIENCE, Volume 249, issued 27 July 1990, J.K. Scott, "Searching for Peptide Ligands with an Epitope Library", pages 386-390, see entire document.	1-87
Y	E.-L. WINNACKER. "From Genes to Clones: Introduction to Gene Technology", published 1987 by VCH VmbH (Weinheim, Germany), See pages 276-279, especially Table 7-4.	1-87
Y	SCIENCE, Volume 228, issued 14 June 1985, G.P. Smith, "Filamentous Fusion Phage: Novel Expression Vectors That Display Cloned Antigens on the Virion Surface", pages 1315-1317. see entire document.	8.9.24-26. 32-34. 55-57. 64-66. 73-75. 81-87