Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil C: Berechenbarkeit und Entscheidbarkeit

16: Varianten, Einschränkungen und Erweiterungen

Version von: 19. Juni 2018 (12:09)

And the winner is...

- In 2013 fand in Großbritannien eine Online-Umfrage statt unter dem Motto Great British Innovations
- Es sollte die wichtigste Britische Erfindung der vergangenen 100 Jahre gewählt werden:
 - ehemals: http://www.topbritishinnovations.org
- Zur Wahl standen unter anderem:
 - 3D-Displays ohne Glas
 - das WWW
 - Flüssigkristall (-Anzeigen)
 - Die Doppelhelix
 - DNA Sequenzierung
 - der Mini Cooper
- Gewonnen hat mit 24% der Stimmen:

die universelle Turingmaschine

Was das ist, schauen wir uns jetzt an

Inhalt

- > 16.1 Universelle Turingmaschinen
 - 16.2 Semientscheidbarkeit
 - 16.3 μ -rekursive und primitiv rekursive Funktionen
 - 16.4 Weitere unentscheidbare Probleme

Universelle Turingmaschinen: Vorüberlegungen

- Ein wichtiges Merkmal der von Neumann-Architektur von Rechnern ist die prinzipielle Gleichbehandlung von Programmen und Daten:
 - Programme sind nicht "fest verdrahtet"
 - Vielmehr kann der selbe Rechner viele verschiedene Programme ausführen, die im Speicher wie "normale" Daten repräsentiert werden
- Wir werden jetzt sehen, dass sich dieses Prinzip auch bei Turingmaschinen anwenden lässt
- ullet Wir konstruieren dazu jetzt eine feste Turingmaschine $oldsymbol{U}$, die als Eingabe eine (Kodierung einer) Turingmaschine $oldsymbol{M}$ und einen String $oldsymbol{x}$ erhält und dann $oldsymbol{f_M}(oldsymbol{x})$ berechnet
 - $oldsymbol{-} oldsymbol{U}$ wird als "Interpretierer" arbeiten
- Genau genommen hat von Neumann dieses Prinzip von Turingmaschinen übernommen

- $ilde{f D}$ Im Folgenden betrachten wir Turingmaschinen ausschließlich über dem Ein-/Ausgabealphabet ${f \Sigma}=\{{f 0,1}\}$
 - Die Resultate gelten aber entsprechend auch für jedes andere feste Alphabet
- Wir gehen außerdem im Folgenden davon aus, dass die Menge der Zustände und das Arbeitsalphabet einer TM geordnet sind

Kodierung von Turingmaschinen (1/2)

- Bei der Konstruktion einer universellen Turingmaschine $oldsymbol{U}$ ergibt sich eine Komplikation
- U wird ein festes Alphabet und eine feste Zustandsmenge haben
- ullet Die Turingmaschinen, die $oldsymbol{U}$ als Eingabe bekommt, können aber verschiedene und beliebig große Arbeitsalphabete und Zustandsmengen haben
- ightharpoonup Damit U beliebige TMs verarbeiten kann, müssen diese kodiert werden
- Wir kodieren Turingmaschinen über dem Alphabet $\Sigma = \{0, 1\}$:
 - Für eine gegebene TM M sei zunächst num eine Funktion 16.1, die jedem Zustand, jedem Zeichen und jeder Richtung eine Nummer zuordnet:
 - * num $: Q
 ightarrow \mathbb{N}$
 - * num : $\Gamma \to \mathbb{N}$
 - * num : $\{\leftarrow,\downarrow,\rightarrow\}\rightarrow\mathbb{N}$

• Dabei soll immer gelten:

x	$ num(oldsymbol{x}) $	x	$ num(oldsymbol{x}) $		$\mid x \mid$	$ num(oldsymbol{x}) $
←	1		1		s	1
	2		2		ja	2
\rightarrow	3	0	3		nein	3
		1	4		h	4

- Wir kodieren dann Zustände, Zeichen und Richtungen durch 0-1-Strings gemäß:
 - $-\;\mathsf{enc}(q) \stackrel{\scriptscriptstyle\mathsf{def}}{=} \mathbf{0}^{\mathsf{num}(q)} \mathbf{1}$
 - $\mathsf{enc}(oldsymbol{\sigma}) \stackrel{\scriptscriptstyle\mathsf{def}}{=} 0^{\mathsf{num}(oldsymbol{\sigma})} 1$
 - $-\ \mathsf{enc}(d) \stackrel{\scriptscriptstyle\mathsf{def}}{=} \mathbf{0}^{\mathsf{num}(d)} \mathbf{1}$
- $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sigma})=(oldsymbol{q}',oldsymbol{\sigma}',oldsymbol{d})$ kodieren wir durch den String $\mathbf{enc}(oldsymbol{q},oldsymbol{\sigma})\stackrel{ ext{def}}{=}$ $\mathbf{1}$ enc(q)enc (σ) enc(q')enc (σ') enc(d)
- ullet Die Kodierung einer TM M:
 - $-\operatorname{enc}(oldsymbol{M})\stackrel{ ext{def}}{=}\operatorname{Konkatenation der Strings}$ $\operatorname{enc}(q, \sigma)$ in lexikographischer Ordnung nach num(q), num (σ)

Kodierung von Turingmaschinen: Beispiel

Beispiel-Turingmaschine

• Zur Erinnerung:

x	$ num(oldsymbol{x}) $	x	nun
←	1	\triangleright	
\downarrow	2		
\rightarrow	3	0	
		1	

x	$ num(oldsymbol{x}) $	x	$num(oldsymbol{x})$
\triangleright	1	s	1
	2	ja	2
0	3	nein	3
1	4	h	4

Beispiel-TM als String

ullet Da s=a muss nur noch die Kodierung für b ergänzt werden:

x	$ num(oldsymbol{x}) $
a	1
b	5

Also:

, 11001	
$ q,\sigma $	$enc(oldsymbol{q},oldsymbol{\sigma})$
a, \triangleright	1010101010001
a,\sqcup	1010010001001
a, 0	10100010100010001
a, 1	10100001000001000010001
b, \triangleright	10000101000001010001
b,\sqcup	1000001001001001
b,0	100000100010000100010001
b, 1	10000010000100001000010001

Die Kodierung der TM ist dann:
10101010100011010010001001001101
00010100010001101000010000010000
1000110000101000010000100001000
1000110000010000100001000010001

Kodierung von Turingmaschinen (2/2)

- Strings, die Turingmaschinen kodieren, müssen (bisher) eine spezielle Form haben
 - Zum Beispiel müssen sie mindestens von der Form $(10^+10^+10^+10^+10^+1)^*$ sein
- ullet Wir würden aber gerne jedem 0-1-String $oldsymbol{w}$ eine TM $oldsymbol{M_w}$ zuordnen
- Deshalb definieren wir:
 - $M_w \stackrel{\mathsf{def}}{=}$
 - st die TM $oldsymbol{M}$ mit enc $(oldsymbol{M})=oldsymbol{w}$, falls eine solche TM $oldsymbol{M}$ existiert
 - * die TM M_- , die bei Lesen des linken Randsymbols \triangleright sofort in den ablehnenden Zustand übergeht, andernfalls
- ullet Ob es zu einem String $oldsymbol{w}$ eine TM $oldsymbol{M}$ mit enc $(oldsymbol{M})=oldsymbol{w}$ gibt, lässt sich von einer TM überprüfen
- M ist eindeutig bis auf die Namen der Zustände

Existenz einer universellen Turingmaschine

Satz 16.1

- ullet Es gibt eine <u>universelle Turingmaschine</u>, d.h. eine Turingmaschine U, die für jede TM M und jeden 0-1-String x die folgenden Bedingungen erfüllt:
 - Falls M die Eingabe x akzeptiert, so akzeptiert U die Eingabe $\operatorname{enc}(M) \# x$
 - Falls M die Eingabe x ablehnt, so lehnt U die Eingabe $\operatorname{enc}(M) \# x$ ab
 - Falls M bei Eingabe x nicht terminiert, so terminiert U bei Eingabe $\operatorname{enc}(M) \# x$ auch nicht

Beweisskizze

- ullet Wir konstruieren U als 4-String TM:
 - String 1: Inhalt des Arbeits-Strings von $oldsymbol{M}$
 - String 2: $\operatorname{enc}(\boldsymbol{M})$
 - String 3: Zustand von $oldsymbol{M}$
 - String 4: Hilfsstring für Kopieroperationen

Beweisskizze (Forts.)

- ullet Bei Eingabe $\operatorname{enc}(oldsymbol{M}) \# oldsymbol{x}$ geht $oldsymbol{U}$ wie folgt vor
- ullet Kopiere $\operatorname{\mathsf{enc}}(oldsymbol{M})$ auf String 2
- Ersetze # durch ▷ auf String 1 und ersetze x durch

$$\mathsf{enc}(oldsymbol{x}) \stackrel{\scriptscriptstyle\mathsf{def}}{=} \mathsf{enc}(oldsymbol{x_1}) \cdots \mathsf{enc}(oldsymbol{x_{|oldsymbol{x}|}})$$

- Schreibe 01 auf String 3
 Startzustand
- ullet Simuliere $oldsymbol{M}$ Schritt für Schritt mit Hilfe von $\operatorname{enc}(oldsymbol{M})$ auf String 2

Bemerkungen

- ullet U kann auch überprüfen, ob die Eingabe überhaupt von der Form $\mathrm{enc}(M)\#x$ ist und ablehnen, falls dies nicht der Fall ist
- Die Konstruktion kann auch für Turingmaschinen, die Funktionen berechnen, angepasst werden
- ullet Wie in Satz 13.3 kann $oldsymbol{U}$ auch als 1-String-TM konstruiert werden

Inhalt

- 16.1 Universelle Turingmaschinen
- > 16.2 Semientscheidbarkeit
 - 16.3 μ -rekursive und primitiv rekursive Funktionen
 - 16.4 Weitere unentscheidbare Probleme

Semientscheidbare Sprachen

Definition (semientscheidbar)

ullet Eine Menge $L\subseteq \Sigma^*$ heißt <u>se-mientscheidbar</u>, falls es eine TM M mit L=L(M) gibt

• Zu beachten:

- Bei einer semientscheidbaren Menge ist erlaubt, dass die TM für manche Eingaben $x \notin L$ nicht terminiert
- Klar: jede entscheidbare Sprache ist auch semientscheidbar
- ullet Ein "SemiEntscheidungsalgorithmus" für $oldsymbol{A}$ ist ein Algorithmus, der
 - für alle "Ja-Eingaben" anhält und akzeptiert und
 - für alle anderen Eingaben ablehnt oder nicht anhält

Beispiel

- CFG-SCHNITT ist semientscheidbar
 - Ein Algorithmus für CFG-SCHNITT kann alle Strings w über dem Terminalalphabet der Länge nach erzeugen und mit dem CYK-Algorithmus jeweils testen, ob $w \in L(G_1)$ und $w \in L(G_2)$
 - st Wenn er ein solches $oldsymbol{w}$ findet, akzeptiert er
 - st Wenn er kein solches $oldsymbol{w}$ findet, terminiert er nicht
- Weitere semientscheidbare Probleme:
 - TM-DIAG, TM-HALT, PCP,...
- Dass TM-HALT semientscheidbar aber nicht entscheidbar ist lässt sich wie folgt interpretieren:
 - es gibt keine einfachere, allgemeine Methode, etwas über das Verhalten einer TM herauszufinden als sie zu simulieren

Entscheidbar vs. Semientscheidbar

 Die Begriffe "entscheidbar" und "semientscheidbar" sind eng miteinander verknüpft, wie das folgende Lemma zeigt

Lemma 16.2

- ullet Sei $L\subseteq \Sigma^*$ eine Sprache
- ullet Dann gilt: L entscheidbar \Longleftrightarrow L und \overline{L} semientscheidbar
- ullet Dabei bezeichnet \overline{L} wieder das Komplement $oldsymbol{\Sigma}^* L$ von L

Beweisidee

- "⇒":
 - Sei $oldsymbol{M}$ eine TM, die $oldsymbol{L}$ entscheidet
 - $lacktriangleright L = m{L}(m{M})$, also ist $m{L}$ semientscheidbar
 - Vertauschen von ja und nein in $m{M}$ ergibt eine immer terminierende TM $m{M}'$ mit $m{L}(m{M}')=\overline{m{L}}$
 - ightharpoonup L ist auch semientscheidbar
- "⇐":
 - Seien M_1, M_2 Turingmaschinen mit $L = L(M_1)$ und $\overline{L} = L(M_2)$
 - Sei M die TM, die, bei Eingabe $oldsymbol{w}$, beide Turing-Maschinen mit Eingabe $oldsymbol{w}$ simultan simuliert
 - st Falls M_1 akzeptieren würde, so akzeptiert M
 - st Falls M_{2} akzeptieren würde, so lehnt M ab
 - Da einer der beiden Fälle irgendwann zutreffen muss, terminiert $m{M}$ nach endlich vielen Schritten
- Zu beachten: es ist wichtig, dass die beiden Simulationen simultan und nicht nacheinander stattfinden

Nicht semientscheidbare Probleme

 Lemma 16.2 liefert eine einfache Methode zum Nachweis, dass eine Sprache nicht semientscheibar ist

Definition (CFGDISJUNKT)

Gegeben: Kontextfreie Grammatiken G_1, G_2

Frage: Gilt $L(G_1) \cap L(G_2) = \emptyset$?

Lemma 16.3

CFGDISJUNKT ist nicht semientscheidbar

Beweis

- CFGDISJUNKT ist das Komplement von CFG-SCHNITT
- CFG-SCHNITT ist semientscheidbar
- Wäre das CFGDISJUNKT auch semientscheidbar, so wäre gemäß Lemma 16.2 CFG-SCHNITT entscheidbar
- ➡ Widerspruch

Semientscheidbar vs. rekursiv aufzählbar (1/2)

- Die semientscheidbaren Sprachen werden häufig auch "rekursiv aufzählbar" genannt
- Warum dies so ist, betrachten wir als nächstes

Definition (rekursiv aufzählbar)

- ullet Eine Sprache $L\subseteq \Sigma^*$, heißt <u>rekursiv aufzählbar</u>, falls es eine (2-String-) TM M gibt, die nach und nach alle Elemente von L auf ihren zweiten String schreibt
 - Die Strings aus L werden dabei durch # getrennt
 - Der Zeiger des zweiten Strings bewegt sich niemals nach links
- ullet Wir sagen, dass M die Strings aus L nach und nach "ausgibt"
- ullet Zu beachten: M hält bei unendlichen Sprachen L nicht an

Semientscheidbar vs. rekursiv aufzählbar (2/2)

Lemma 16.4

- Sei L eine Sprache
- ullet Dann gilt: $oldsymbol{L}$ rekursiv aufzählbar \Longleftrightarrow $oldsymbol{L}$ semientscheidbar

Beweisskizze "⇒"

- Sei L rekursiv aufzählbar
- ullet Sei M eine 2-String-TM, die die Strings aus L nach und nach auf ihrem zweiten String erzeugt
- ullet Eine TM M', die L "semientscheidet" kann wie folgt arbeiten:
 - Bei Eingabe x simuliert M' die TM M
 - Falls diese den String $m{x}$ auf dem zweiten String ausgeben würde, akzeptiert $m{M}'$
 - Falls dies nicht passiert, hält $oldsymbol{M}'$ nicht an

Beweisskizze "←"

- ullet Sei $oldsymbol{M}$ eine TM mit $oldsymbol{L}(oldsymbol{M}) = oldsymbol{L}$
- ullet Eine "Aufzählungs-TM" $oldsymbol{M}'$ für $oldsymbol{L}$ kann wie folgt vorgehen:
- 1: for n:=1 TO ∞ do
- 2: **for** alle w mit $|w|\leqslant n$ do
- Simuliere M bei Eingabe w für n Schritte
- 4: **if** M akzeptiert dabei **then**
- 5: Füge $oldsymbol{w}$ auf String 2 an

Entscheidbar vs. Berechenbar (1/2)

• Der Zusammenhang zwischen berechenbaren Funktionen und entscheidbaren Mengen lässt sich mit Hilfe des Begriffs der charakteristischen Funktionen präzise formulieren

Definition (charakteristische Funktion)

- ullet Sei $L\subseteq \Sigma^*$ eine Sprache
- Die charakteristische Funktion von L, $egin{aligned} & \underline{\chi_L} \colon \Sigma^* o \{0,1\}, ext{ ist definiert durch:} \ & \chi_L(w) \stackrel{ ext{def}}{=} egin{cases} 1 & w \in L \ 0 & w
 otin L \end{cases} \end{aligned}$
- ullet Die partielle charakteristische Funktion von $oldsymbol{L}$, $oldsymbol{\chi'_L}: oldsymbol{\Sigma}^*
 ightharpoonup \{0,1\}, ext{ ist definiert durch: } oldsymbol{\chi'_L}(oldsymbol{w}) \stackrel{ ext{def}}{=} egin{cases} 1 & oldsymbol{w} \in oldsymbol{L} \ oldsymbol{\perp} & oldsymbol{w} \notin oldsymbol{L} \end{cases}$

$$oldsymbol{\chi'_L}(oldsymbol{w}) \stackrel{ ext{def}}{=} egin{cases} oldsymbol{1} & oldsymbol{w} \in oldsymbol{L} \ oldsymbol{\perp} & oldsymbol{w}
otin oldsymbol{L} \end{cases}$$

Entscheidbar vs. Berechenbar (2/2)

- ullet Aus Sicht der zur Berechnung verwendeten Turingmaschine ist der Unterschied zwischen dem Entscheiden einer Sprache L und der Berechnung ihrer charakteristischen Funktion χ_L rein formal:
 - Beim Entscheiden von $m{L}$ geht sie für Strings $m{w} \in m{L}$ am Ende in den Zustand ja
 - Beim Berechnen von χ_L gibt sie für Strings $w \in L$ den Wert 1 aus
- Das ist also im Grunde nur eine Frage des User Interfaces

Lemma 16.5

- ullet Sei $L\subseteq \Sigma^*$ eine Sprache
- Dann gelten:
 - (a) L entscheidbar $\iff \chi_L$ berechenbar
 - (b) L semientscheidbar $\iff \chi_L'$ berechenbar

Beweis

- Wir betrachten den Beweis von (a) "⇒"
 - Die anderen Beweise sind analog
- ullet Sei L entscheidbar
- lacktriangle Dann gibt es eine TM M, die L entscheidet
- ullet Aus M lässt sich eine TM M' konstruieren, die, wenn M in den Zustand "ja" gehen würde, im letzten String $1 \sqcup$ neben \triangleright schreibt, den Zeiger an den linken Rand bewegt und anhält
 - (und analog für Zustand "nein" mit $\mathbf{0} \sqcup$)
- $ightharpoonup f_{M'} = \chi_L$
- $\Rightarrow \chi_L$ berechenbar

Inhalt

- 16.1 Universelle Turingmaschinen
- 16.2 Semientscheidbarkeit
- ightharpoonup 16.3 μ -rekursive und primitiv rekursive Funktionen
 - 16.4 Weitere unentscheidbare Probleme

Rekursive Funktionen: Vorüberlegungen

Beispiel

 Die Addition natürlicher Zahlen lässt sich induktiv mit Hilfe der "+1"-Funktion definieren:

$$oldsymbol{-m} + oldsymbol{0} \stackrel{ ext{def}}{=} oldsymbol{m} \ oldsymbol{-m} + (oldsymbol{n} + oldsymbol{1}) \stackrel{ ext{def}}{=} (oldsymbol{m} + oldsymbol{n}) + oldsymbol{1}$$

- Analog lässt sich die Multiplikation induktiv mit Hilfe der Addition definieren:
 - $m imes 0 \stackrel{ ext{def}}{=} 0$
 - $oldsymbol{-m} oldsymbol{m} imes (oldsymbol{n} + oldsymbol{1}) \stackrel{\mathsf{def}}{=} (oldsymbol{m} imes oldsymbol{n}) + oldsymbol{m}$
- Wir werden jetzt genauer untersuchen, welche Funktionen sich mit solchen induktiven Definitionen beschreiben lassen
- Wir verwenden für arithmetische Operationen Funktionsnotation anstelle der Infixnotation
- ullet Mit $s: \mathbb{N}_0
 ightarrow \mathbb{N}_0$ bezeichnen wir die Funktion $n\mapsto n+1$

Beispiel

- Formal definieren wir die 2-stellige Funktion add : $\mathbb{N}_0^2 \to \mathbb{N}_0$ induktiv wie folgt:
- ullet add $(oldsymbol{0},oldsymbol{m})\stackrel{ ext{def}}{=}oldsymbol{m}$, für alle $oldsymbol{m}\in\mathbb{N}_{oldsymbol{0}}$
- ullet add $(m{n}+m{1},m{m})\stackrel{ ext{def}}{=} m{s}(\mathsf{add}(m{n},m{m})),$ für alle $m{n},m{m}\in\mathbb{N}_{m{0}}$
- Analog definieren wir mult : $\mathbb{N}_0^2 \to \mathbb{N}_0$ durch:
- ullet mult $(oldsymbol{0},oldsymbol{m})\stackrel{ ext{def}}{=}oldsymbol{0}$
- ullet mult $(oldsymbol{n}+oldsymbol{1},oldsymbol{m})\stackrel{ ext{def}}{=}$ add $(\mathsf{mult}(oldsymbol{n},oldsymbol{m}),oldsymbol{m})$
- Wir verwenden hier also
 - gewisse Basisfunktionen (s, 0),
 - Komposition von Funktionen, und
 - rekursive Definitionen
- Dies führt uns zur Definition der primitiv rekursiven Funktionen

Primitiv rekursive Funktionen: Definition (1/2)

 Die primitiv rekursiven Funktionen sind induktiv wie folgt definiert

Definition (PR: Basisfunktionen)

ullet Alle Funktionen $c^k:\mathbb{N}_0^k o\mathbb{N}_0$ mit $c\in\mathbb{N}_0$, definiert durch

$$- c^{oldsymbol{k}}(x_1,\ldots,x_k) \stackrel{ ext{def}}{=} c$$

sind primitiv rekursiv sonstante Funktionen

- ullet Alle Funktionen $\pi_i^k:\mathbb{N}_0^k o\mathbb{N}_0$, definiert durch $-\pi_{m{i}}^{m{k}}(x_1,\ldots,x_{m{k}})\stackrel{ ext{ iny def}}{=} x_{m{i}}$ sind primitiv rekursiv Projektionen
- Die Funktion $s: \mathbb{N}_0 \to \mathbb{N}_0$, definiert durch $-s(x_1)\stackrel{\mathsf{def}}{=} x_1+1$ ist primitiv rekursiv ■ Nachfolgerfunktion

Primitiv rekursive Funktionen: Definition (2/2)

Definition (PR: Zusammengesetzte Funktionen)

- Sind die Funktionen
 - $h: \mathbb{N}_0^\ell o \mathbb{N}_0$ und
 - $g_1, \ldots g_\ell: \mathbb{N}_0^k o \mathbb{N}_0$

primitiv rekursiv, so auch die durch

$$egin{aligned} -f(x_1,\ldots,x_k) &\stackrel{ ext{ iny def}}{=} \ hig(g_1(x_1,\ldots,x_k),\ldots,g_\ell(x_1,\ldots,x_k)ig) \end{aligned}$$

definierte Funktion $f: \mathbb{N}_0^k o \mathbb{N}_0$

- Sind die Funktionen
 - $-g: \mathbb{N}_0^{k-1} o \mathbb{N}_0$ und
 - $h: \mathbb{N}_0^{k+1}
 ightarrow \mathbb{N}_0$

primitiv rekursiv, so auch die durch

$$- f(0, x_2, \ldots, x_k) \stackrel{ ext{ iny def}}{=} g(x_2, \ldots, x_k)$$

$$-f(x_1+1,x_2,\ldots,x_k)\stackrel{ ext{def}}{=}$$

 $h(f(x_1, x_2, \ldots, x_k), x_1, x_2, \ldots, x_k)$

definierte Funktion $f: \mathbb{N}_0^k o \mathbb{N}_0$ Primitive Rekursion

Primitiv rekursive Funktionen: Beispiele (1/2)

- Wenn wir die Definition der primitiv rekursiven Funktionen ganz genau befolgen, erhalten wir sehr schlecht lesbare Funktionsdefinitionen
- ullet Deshalb verwenden wir eine leicht abkürzende Notation für die Konstanten und Projektionen und erlauben Variablen wie x,y,z

Beispiel: Addition

- ullet add $(0,x_2)\stackrel{ ext{def}}{=} \pi_1^1(x_2)$
 - Abkürzende Notation: $\mathsf{add}(\mathbf{0}, \boldsymbol{y}) \stackrel{\scriptscriptstyle\mathsf{def}}{=} \boldsymbol{y}$
- ullet add $(x_1+1,x_2)\stackrel{ ext{def}}{=} s(\pi_1^3(\mathsf{add}(x_1,x_2),x_1,x_2))$
 - Streng genommen müsste die Komposition $s\circ\pi_1^3$ sogar zuerst als neue Funktion definiert werden...
 - Abkürzende Notation: $\mathsf{add}(m{x}+m{1},m{y}) \stackrel{\scriptscriptstyle\mathsf{def}}{=} m{s}(\mathsf{add}(m{x},m{y}))$

Beispiel: Multiplikation

- Multiplikation in abkürzender Notation:
 - Abkürzende Notation: $\operatorname{mult}(\mathbf{0}, \boldsymbol{y}) \stackrel{\text{def}}{=} \mathbf{0}$
 - $\mathsf{mult}(oldsymbol{x}+oldsymbol{1},oldsymbol{y})\stackrel{\mathsf{def}}{=} \mathsf{add}(\mathsf{mult}(oldsymbol{x},oldsymbol{y}),oldsymbol{y})$

Beispiel: Signum

ullet Sei $\sigma: \mathbb{N}_0 o \mathbb{N}_0$ die "Sigma-Funktion" mit der "üblichen Definition"

$$m{\sigma}(m{x}) \stackrel{ ext{def}}{=} egin{cases} m{1}, & ext{falls } m{x} > m{0} \ m{0}, & ext{falls } m{x} = m{0} \end{cases}$$

- ullet σ ist primitiv rekursiv:
 - $oldsymbol{\sigma}(\mathbf{0})\stackrel{ ext{def}}{=} \mathbf{0}$
 - $oldsymbol{\sigma}(x+1)\stackrel{ ext{ iny def}}{=} 1$
- ullet Sei $au: \mathbb{N}_0
 ightarrow \mathbb{N}_0$ definiert durch
 - $oldsymbol{ au}(\mathbf{0})\stackrel{ ext{def}}{=} \mathbf{1}$
 - $oldsymbol{ au}(x+1)\stackrel{ ext{def}}{=} \mathbf{0}$

 $au \equiv 1-\sigma$

Primitiv rekursive Funktionen: Beispiele (2/2)

 Wir definieren einen "kleinste Nullstelle"-Operator mit "beschränktem Suchraum"

Beispiel

- ullet Sei $oldsymbol{f}(oldsymbol{x},oldsymbol{y}) = (oldsymbol{x^2} \dot{-} oldsymbol{y}) + (oldsymbol{y} \dot{-} oldsymbol{x^2})$
- ullet Die kleinste Nullstelle von f bezüglich y=25 ist 5
- ullet Allgemein ist die "kleinste Nullstelle" von f bezüglich eines festen Wertes b für y die kleinste Zahl $a\in \mathbb{N}_{f 0}$ mit $f(a,b)={f 0}$
- ullet Für eine Funktion $f: \mathbb{N}_0^k o \mathbb{N}_0$ sei MIN $_f: \mathbb{N}_0^k o \mathbb{N}_0$ definiert durch: MIN $_f(x, x_2, \ldots, x_k) \stackrel{ ext{def}}{=}$
 - $\min\{n\leqslant x\mid f(n,x_2,\ldots,x_k)=0\}$, and falls so ein n existient
 - 0,

 □ andernfalls
- $ilde{\mathbb{N}} \mathsf{MIN}_{m{f}}(m{x},\cdots) = m{0}$ kann bedeuten,
 - dass es keine Nullstelle $\leqslant x$ gibt, oder
 - dass die kleinste Nullstelle 0 ist

Beispiel: beschränktes Minimum

- Ist f primitiv rekursiv, so auch MIN $_f$:
 - $\mathsf{MIN}_f(0, x_2, \dots, x_k) \stackrel{\scriptscriptstyle\mathsf{def}}{=} 0$
 - MIN $_f(x+1,x_2,\ldots,x_k)\stackrel{ ext{def}}{=}$

$$\mathsf{MIN}_f(x, x_2, \dots, x_k) +$$

$$egin{aligned} igl(au(\mathsf{MIN}_{m{f}}(m{x},m{x_2},\ldots,m{x_k})) imes\ m{\sigma}(m{f}(m{0},m{x_2},\ldots,m{x_k})) imes\ (m{x+1}) imes \end{aligned}$$

$$m{ au}(m{f}(m{x}+m{1},m{x_2},\ldots,m{x_k}))ig]$$

• Erläuterung:

-
$$\mathsf{MIN}_f(x+1,x_2,\ldots,x_k) = \ \mathsf{MIN}_f(x,x_2,\ldots,x_k)$$
 falls $\mathsf{MIN}_f(x,x_2,\ldots,x_k) \neq 0$ oder $f(0,x_2,\ldots,x_k) = 0$

- Andernfalls ist es $m{x}+m{1},$ falls $m{f}(m{x}+m{1},m{x_2},\dots,m{x_k})=m{0}$
- Sonst: 0

μ -rekursive Funktionen

 Wir betrachten jetzt einen Operator, der "global" nach der kleinsten Nullstelle sucht

Definition (μ -rekursiven Funktionen)

- Ist $f: \mathbb{N}_0^{k+1} \to \mathbb{N}_0$ eine partielle Funktion, so sei die partielle Funktion $\mu f: \mathbb{N}_0^k \to \mathbb{N}_0$, definiert durch:
- $\mu f(x_1,\ldots,x_k) \stackrel{\text{def}}{=}$
 - kleinstes $n \in \mathbb{N}_0$, für das gilt:
 - $*~ f(n,x_1,\ldots,x_k)=0$ und
 - $st oldsymbol{f(m, x_1, \ldots, x_k)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \perp$, für alle m < n
 - $-\perp$, wenn kein solches n existiert
- Die μ-rekursiven Funktionen sind wie die primitiv rekursiven Funktion definiert mit der zusätzlichen Regel:
 - Ist f μ -rekursiv, so auch μf

Beispiel

• Ist $f(x,y)=(x^2 \dot{-} y)+(y \dot{-} x^2)$, so ist also $\mu f(y)$ die nicht negative ganzzahlige Quadratwurzel von y, falls diese existiert

μ -rekursiv vs. WHILE

Satz 16.6

• Eine partielle Funktion $f: \mathbb{N}_0^k \longrightarrow \mathbb{N}_0$ ist genau dann μ -rekursiv, wenn sie durch ein WHILE-Programm berechnet werden kann

Beweisidee

- "WHILE $\rightarrow \mu$ -rekursiv": kompliziert
- " μ -rekursiv \rightarrow WHILE": sehr einfach
 - Sei $f: \mathbb{N}_0^{k+1}
 ightharpoonup \mathbb{N}_0$ WHILE-berechenbar
 - Das folgende WHILE-Programm berechnet μf :

Wesentlicher Induktionsschritt

```
x_{k+1} := 0; \ x_{k+2} := f(0, x_1, \ldots, x_k); \ 	ext{WHILE } x_{k+2} \neq 0 	ext{ DO} \ x_{k+1} := x_{k+1} + 1; \ x_{k+2} := f(x_{k+1}, x_1, \ldots, x_k); \ 	ext{END}; \ x_1 := x_{k+1}
```

- Dabei ist $x_{k+2}:=f(x_{k+1},x_1,\ldots,x_k)$ eine abkürzende Schreibweise für den Einschub eines WHILE-Programmes zur Berechnung von f
- Zu beachten: es ist möglich, dass das Programm für $m{f}$ nicht terminiert
 - st In diesem Fall ist der Wert für μf undefiniert

LOOP-Programme (1/2)

- LOOP-Programme sind eine Einschränkung von WHILE-Programmen
- Ihre Syntax ergibt sich aus der Syntax von WHILE-Programmen wie folgt:
- Keine bedingte Wiederholung
- Weiteres Schlüsselwort: LOOP
- ullet (Unbedingte Wiederholung) Falls P ein LOOP-Programm ist, so auch LOOP x_i DO P END

LOOP-Programm 1

$$x_1 \vcentcolon= x_2$$
;
Loop x_3 do $x_1 \vcentcolon= x_1 + 1$
End

• Effekt: $x_1 := x_2 + x_3$

LOOP-Programm 2

$$x_2 := 1;$$
 Loop x_1 do $x_2 := 0$ end; Loop x_2 do P end

- ullet Dabei ist $oldsymbol{P}$ ein beliebiges LOOP-Programm
- ullet Effekt: IF $x_1=0$ THEN $oldsymbol{P}$ END

LOOP-Programme (2/2)

Definition (Semantik von LOOP-Programmen)

Semantik von LOOP-Schleifen:
 Ist P von der Form

so ist
$$oldsymbol{P}(X) \stackrel{ ext{def}}{=} oldsymbol{P_1}^{X(i)}(X)$$

- Dabei bezeichnet $oldsymbol{P_1^{X(i)}}$ die $oldsymbol{X(i)}$ malige Wiederholung von $oldsymbol{P_1}$
- ullet Die Funktion f_P ist dann wie bei WHILE-Programmen definiert
- $ullet f: \mathbb{N}_0
 ightharpoonup \mathbb{N}_0$ heißt <code>LOOP-berechenbar</code>, falls $f = f_P$ für ein <code>LOOP-Programm</code> P
- LOOP-Programme berechnen nur totale berechenbare Funktionen

Proposition 16.7

- $oldsymbol{f}$ LOOP-berechenbar \Rightarrow f WHILE-berechenbar
- Die Umkehrung gilt jedoch nicht
- Wir verwenden die gleiche Konvention im Hinblick auf syntaktischen Zucker wie bei LOOP-Programmen

LOOP-Programme vs. primitive Rekursion

• Erinnerung: LOOP-Programme können beliebig-stellige Funktionen berechnen

Satz 16.8

ullet Eine Funktion $f:\mathbb{N}_0^k o \mathbb{N}_0$ ist genau dann primitiv rekursiv, wenn sie durch ein LOOP-Programm berechnet werden kann

Beweisskizze

• "LOOP → primitiv rekursiv":

etwas technischer Beweis, findet sich im Buch von Schöning

- "primitiv rekursiv → LOOP":
 - Wesentlicher Schritt: Ist f definiert durch:

$$f(0,x_2,\ldots,x_k) \stackrel{ ext{def}}{=} g(x_2,\ldots,x_k) \ f(x+1,x_2,\ldots,x_k) \stackrel{ ext{def}}{=} h(f(x,x_2,\ldots,x_k),x,x_2,\ldots,x_k),$$

so ist $f(x_1,\ldots,x_k)$ berechenbar durch:

$$x_{k+1} := 0; x_{k+2} := g(x_2, \dots, x_k);$$
 LOOP x_1 DO $x_{k+2} := h(x_{k+2}, x_{k+1}, x_2, \dots, x_k);$ $x_{k+1} := x_{k+1} + 1$ END; $x_1 := x_{k+2}$

Verhältnis der Berechnungsmodelle

Charakterisierungen der semientscheidbaren Sprachen

 Der folgende Satz fasst verschiedene Charakterisierungen der semientscheidbaren Sprachen zusammen

Satz 16.9

- ullet Für jede Sprache $L\subseteq \Sigma^*$ sind die folgenden Aussagen äquivalent:
 - (a) $m{L}$ ist semientscheidbar
 - (b) $m{L}$ ist rekursiv aufzählbar
 - (c) χ_L' ist (Turing-, GOTO-, WHILE-) berechenbar
 - (d) χ_L' ist μ -rekursiv
 - (e) $oldsymbol{L} = oldsymbol{D}(oldsymbol{f})$ für ein berechenbares $oldsymbol{f}$
 - (f) $oldsymbol{L} = oldsymbol{W}(oldsymbol{f})$ für ein berechenbares $oldsymbol{f}$

Inhalt

- 16.1 Universelle Turingmaschinen
- 16.2 Semientscheidbarkeit
- 16.3 μ -rekursive und primitiv rekursive Funktionen
- > 16.4 Weitere unentscheidbare Probleme

Logik und Berechenbarkeit (1/3)

- Wie in Kapitel 12 erwähnt, wurden Turingmaschinen zunächst mit dem Ziel entwickelt, zu zeigen, dass das "Entscheidungsproblem" keine Lösung hat
- Wir betrachten jetzt kurz einige der erzielten Ergebnisse
- Für die Definition prädikatenlogischer Formeln wird auf die Logik-Vorlesung verwiesen

Definition (FO-SAT)

Gegeben: prädikatenlogische Formel φ

Frage: Ist φ erfüllbar?

Definition (FO-FINSAT)

Gegeben: prädikatenlogische Formel φ

Frage: Hat φ ein endliches Modell?

Definition (FOTaut)

Gegeben: prädikatenlogische Formel φ

Frage: Ist φ allgemein gültig?

Logik und Berechenbarkeit (2/3)

Satz 16.10

- (a) FO-SAT, FO-TAUT, und FO-FINSAT sind semient-scheidbar, aber nicht ent-scheidbar
- (b) FO-SAT ist nicht semientscheidbar
 - Zur Erinnerung: für jede prädikatenlogische Formel φ gilt:
 - φ ist Tautologie \iff $\neg \varphi$ ist unerfüllbar
 - Also gelten:
 - FO-TAUT ≤ FO-SAT und
 - FO-SAT ≤ FO-TAUT

Beweisidee

- Dass FO-TAUT (und damit auch FO-SAT) semientscheidbar ist, folgt aus dem Resolutionssatz:
 - Ist eine Formel eine Tautologie, so gibt es dafür einen (endlichen) Resolutionsbeweis, der in endlich vielen Schritten gefunden werden kann
- Die Semientscheidbarkeit von FO-FINSAT folgt, da die endlichen Strukturen systematisch aufgezählt werden können, bis ein endliches Modell gefunden ist
- Die Unentscheidbarkeit von FO-SAT, FO-TAUT, und FO-FINSAT ergibt sich durch Reduktion von TM-E-HALT:
 - Zu jeder TM M lässt sich eine Formel $arphi_M$ konstruieren, die genau dann ein Modell hat, wenn $M(\epsilon)$ terminiert
 - * (und das Modell enthält dann eine Kodierung dieser Berechnung)
- Dass FO-SAT nicht semientscheidbar ist, folgt dann mit Lemma 16.2

Logik und Berechenbarkeit (3/3)

 Auch der automatischen Beweisbarkeit von Aussagen über die Arithmetik sind enge Grenzen gesetzt:

Definition (FO-NAT-MC)

Gegeben: prädikatenlogische

Formel φ

Frage: Gilt

$$(\mathbb{N}_0,0,1,+, imes) \models \varphi$$
?

Satz 16.11

 FO-NAT-MC ist nicht semientscheidbar

Beweisidee

- Der Beweis ist durch Reduktion von TM-E-HALT
- ullet Die Idee ist, zu jeder TM M eine arithmetische Formel ψ_M zu konstruieren, so dass gilt:

$$(\mathbb{N}_0,0,1,+, imes)\models\psi_{M}\Longleftrightarrow$$

 $oldsymbol{M}(oldsymbol{\epsilon})$ terminiert nicht

- Dabei wird das Konzept der *Gödelisierung* verwendet:
 - Wie wir bei der Simulation von TMs durch GOTO-Programme gesehen haben, lassen sich Konfigurationen einer TM in vier Zahlen kodieren
 - Es lässt sich zeigen, dass beliebig lange (endliche)
 Konfigurations folgen auch durch einzelne Zahlen kodiert werden können
 - Außerdem lässt sich eine Formel $arphi_M(x)$ konstruieren, die ausdrückt, dass eine gegebene Zahl x eine terminierende Berechnung von M bei leerer Eingabe kodiert
 - Dann sei $\psi_{m{M}} \stackrel{ ext{ iny def}}{=}
 eg \exists m{x} \; m{arphi}_{m{M}}(m{x})$

Hilberts zehntes Problem

- David Hilbert hat in seiner Rede beim internationalen Mathematikerkongress im Jahre 1900 für das neue Jahrhundert 23 zu lösende Probleme formuliert
- Das zehnte Problem war, ein Verfahren zu finden, das für eine beliebige diophantische Gleichung entscheidet, ob sie lösbar ist
- Etwas umformuliert geht es um das folgende algorithmische Problem:

Definition (HILBERT10)

Gegeben: Ganzzahliges Polynom $f(x_1,\ldots,x_k)$

Frage: Gibt es $n_1, \dots, n_k \in \mathbb{Z}$ mit $f(n_1, \dots, n_k) = \mathbf{0}$?

 Matyasevich hat 1970 bewiesen, dass dieses Problem nicht entscheidbar ist

Abstufungen unentscheidbarer Probleme (1/2)

- Die nicht entscheidbaren Probleme lassen sich unterteilen in:
 - semientscheidbare Probleme und
 - nicht semientscheidbare Probleme
- Es gibt noch erheblich weitergehende Unterteilungen
- ullet Es lässt sich zeigen, dass eine Sprache L genau dann semientscheidbar ist, wenn es eine entscheidbare Sprache L' (von Tupeln von Strings) gibt, so dass für alle Strings $w\in \Sigma^*$ gilt:

$$egin{aligned} oldsymbol{w} \in oldsymbol{L} \iff \ \exists oldsymbol{x_1}, \dots, oldsymbol{x_\ell} \in oldsymbol{\Sigma^*} : \ (oldsymbol{w}, oldsymbol{x_1}, \dots, oldsymbol{x_\ell}) \in oldsymbol{L}' \end{aligned}$$

Arithmetische Hierarchie

- ullet $\Sigma_1^0 \stackrel{ ext{def}}{=}$ semientscheidbare Sprachen
- $ullet \Sigma_2^0 \stackrel{ ext{def}}{=} ext{Sprachen } oldsymbol{L}, ext{f\"ur es eine entscheidbare Sprache}$ che $oldsymbol{L}'_-$ gibt, so dass gilt:

$$egin{aligned} w \in L &\iff \ \exists x_1, \dots, x_\ell \in \Sigma^* orall y_1, \dots, orall y_m \in \Sigma^* : \ (w, x_1, \dots, x_\ell, y_1, \dots, x_m) \in L' \end{aligned}$$

- $ullet \Sigma_{m{k}}^{m{0}} \stackrel{ ext{def}}{=}$ analog mit $m{k}$ Quantorenblöcken, beginnend mit einem Block von Existenzquantoren
- ullet $\Pi_k^0 \stackrel{ ext{ def}}{=}$ analog zu Σ_k^0 , beginnend mit einem Block von Allquantoren
- Wir betrachten im Folgenden wieder algorithmische Probleme statt Sprachen
 - Die Quantifizierung kann dann auch über andere abzählbare Mengen erfolgen (z.B.: \mathbb{N})

Abstufungen unentscheidbarer Probleme (2/2)

- ullet Eine Sprache L heißt *vollständig* für eine Klasse ${\cal C}$, wenn
 - $L\in\mathcal{C}$ und
 - für jede Sprache $L' \in \mathcal{C}$ gilt: $L' \leqslant L$

Beispiel

- ullet TM-DIAG, TM-HALT, und TM-E-HALT sind vollständig für Σ_1^0
- ullet Hält eine gegebene TM M nur für endlich viele Strings?
 - $-\exists m \in \mathbb{N} \ \forall z \in \Sigma^* \ \forall n \in \mathbb{N}$:
 - st falls $|oldsymbol{z}| > oldsymbol{m}$ läuft $oldsymbol{M}(oldsymbol{z})$ mindestens $oldsymbol{n}$ Schritte ohne zu akzeptieren
 - Dieses Problem ist vollständig für Σ_2^0

- ullet Ist die von M berechnete Funktion f_M total?
 - $\mathbf{y} \in \mathbf{\Sigma}^* \, \exists n \in \mathbb{N}$:
 - $*~M(oldsymbol{y})$ hält nach spätestens $oldsymbol{n}$ Schritten an und erzeugt eine Ausgabe
 - Dieses Problem ist vollständig für Π_2^0
- ullet Ist $oldsymbol{W}(f_{oldsymbol{M}})$ entscheidbar?
 - $\exists \mathsf{TM}\ M'\ \forall y_1,y_2\in \Sigma^*\ \forall m\in \mathbb{N}$ $\exists z\in \Sigma^*\ \exists n_1,n_2\in \mathbb{N}$:
 - $st M'(y_1)$ terminiert nach spätestens n_1 Schritten
 - st falls $M(y_2)$ nach m Schritten die Ausgabe y_1 hat, akzeptiert $M'(y_1),$ und
 - st falls $oldsymbol{M}'(oldsymbol{y_1})$ akzeptiert, hat $oldsymbol{M}(oldsymbol{z})$ nach $oldsymbol{n_2}$ Schritten die Ausgabe $oldsymbol{y_1}$
- ullet Dieses Problem ist vollständig für Σ^0_3
- Es gibt noch die analytische Hierarchie...

Zusammenfassung

- Es gibt universelle Turingmaschinen
- ullet Die μ -rekursiven Funktionen sind genau die berechenbaren Funktionen
- Die primitiv rekursiven Funktionen sind genau die LOOP-berechenbaren Funktionen
- Aus der Unentscheidbarkeit des Halteproblems lässt sich folgern, dass die Erfüllbarkeit prädikatenlogischer Formeln und einige verwandte Probleme unentscheidbar sind
- Die unentscheidbaren Probleme lassen sich weiter klassifizieren, z.B., durch die Klassen der Arithmetischen Hierarchie

Literatur

- Arithmetische Hierarchie:
 - Heribert Vollmer: Berechenbarkeit und Logik: Vorlesungsskript, Uni Hannover, 2005

Erläuterungen

Bemerkung (16.1)

 \bullet Wir verwenden den Namen num hier für formal verschiedene Definitionsbereiche: $Q, \Gamma, \{\leftarrow, \downarrow, \rightarrow\}$