Kolmogorov Complexity and Diophantine Approximation

Jan Reimann

Institut für Informatik

Universität Heidelberg

Algorithmic Information Theory

 Algorithmic Information Theory classifies objects by their descriptive complexity.

Algorithmic Information Theory

 Algorithmic Information Theory classifies objects by their descriptive complexity.

• Examples:

- A sequence of 10000 zeroes has low complexity, as there is a much shorter description.
- \circ Any (infinite) sequence computable by an algorithm such as π has a short description (the algorithm).
- An outcome of an (unbiased) coin toss has high complexity. (There is no shorter description than the sequence itself.)

Algorithmic Information Theory

 Algorithmic Information Theory classifies objects by their descriptive complexity.

• Examples:

- A sequence of 10000 zeroes has low complexity, as there is a much shorter description.
- \circ Any (infinite) sequence computable by an algorithm such as π has a short description (the algorithm).
- An outcome of an (unbiased) coin toss has high complexity. (There is no shorter description than the sequence itself.)
- Rigorous Formulation: Kolmogorov complexity.

Kolmogorov Complexity

• Kolmogorov complexity: U a universal Turing-machine. Def. for a binary string $\sigma \in \{0, 1\}^*$,

$$C(\sigma) = C_U(\sigma) = \min\{|p| : p \in \{0, 1\}^*, U(p) = \sigma\},\$$

i.e. $C(\sigma)$ is the length of the shortest program (for U) that outputs σ .

Kolmogorov Complexity

• Kolmogorov complexity: U a universal Turing-machine. Def. for a binary string $\sigma \in \{0, 1\}^*$,

$$C(\sigma) = C_U(\sigma) = \min\{|p| : p \in \{0, 1\}^*, U(p) = \sigma\},\$$

i.e. $C(\sigma)$ is the length of the shortest program (for U) that outputs σ .

Kolmogorov's invariance theorem: C is independent of U (up to a constant).

Kolmogorov Complexity

• Kolmogorov complexity: U a universal Turing-machine. Def. for a binary string $\sigma \in \{0, 1\}^*$,

$$C(\sigma) = C_{U}(\sigma) = \min\{|p| : p \in \{0, 1\}^*, U(p) = \sigma\},\$$

i.e. $C(\sigma)$ is the length of the shortest program (for U) that outputs σ .

- Kolmogorov's invariance theorem: C is independent of U (up to a constant).
- The pigeonhole principle yields that for any length there are incompressible strings, $C(\sigma) \ge |\sigma|$ (in fact, most of them are).

• Suppose there are only finitely many primes p_1, \ldots, p_n .

- Suppose there are only finitely many primes p_1, \ldots, p_n .
- Then each number N can be factored

$$N = p_1^{k_1} \cdots p_n^{k_n}$$
, each $k_i \leq \log N$.

- Suppose there are only finitely many primes p_1, \ldots, p_n .
- Then each number N can be factored

$$N = p_1^{k_1} \cdots p_n^{k_n}$$
, each $k_i \leq \log N$.

• Therefore, N can be described by a program of length $O(n \log \log N)$. (Identify natural numbers with their binary representation).

- Suppose there are only finitely many primes p_1, \ldots, p_n .
- Then each number N can be factored

$$N = p_1^{k_1} \cdots p_n^{k_n}$$
, each $k_i \leq \log N$.

- Therefore, N can be described by a program of length $O(n \log \log N)$. (Identify natural numbers with their binary representation).
- Yields a contradiction if N is incompressible ($C(N) \ge \log N$).

 A prefix-free Turing machine is a TM with prefix-free domain. The prefix-free version of C (use only prefix free TMs) is denoted by K.

- A prefix-free Turing machine is a TM with prefix-free domain. The prefix-free version of C (use only prefix free TMs) is denoted by K.
- Kraft-Chaitin Theorem: $\{\sigma_i\}_{i\in\mathbb{N}}$ set of strings, $\{l_i, l_2, \dots\}$ sequence of natural numbers ('lengths') such that

$$\sum_{i\in\mathbb{N}}2^{-l_i}\leq 1,$$

then one can construct (primitive recursively) a prefix-free TM M and strings $\{\tau_i\}_{i\in\mathbb{N}}$, such that

$$|\tau_i| = l_i$$
 and $M(\tau_i) = \sigma_i$.

• Semimeasures: $m : \{0, 1\}^* \to [0, \infty)$ with

$$\sum_{\sigma \in \{0,1\}^*} m(\sigma) \le 1.$$

• Semimeasures: $m:\{0,1\}^* \to [0,\infty)$ with

$$\sum_{\sigma \in \{0,1\}^*} m(\sigma) \le 1.$$

• There exists a maximal enumerable semimeasure \widetilde{m} , i.e. \widetilde{m} is enumerable from below, and for any enumerable semimeasure m it holds that $m \leq c_m \widetilde{m}$ for some constant c_m .

• Semimeasures: $m:\{0,1\}^* \to [0,\infty)$ with

$$\sum_{\sigma \in \{0,1\}^*} m(\sigma) \le 1.$$

- There exists a maximal enumerable semimeasure \widetilde{m} , i.e. \widetilde{m} is enumerable from below, and for any enumerable semimeasure m it holds that $m \leq c_m \widetilde{m}$ for some constant c_m .
- Coding Theorem: (Zvonkin-Levin)

$$K(\sigma) = -\log \widetilde{m}(\sigma) + c$$
.

• Semimeasures: $m:\{0,1\}^* \to [0,\infty)$ with

$$\sum_{\sigma \in \{0,1\}^*} m(\sigma) \le 1.$$

- There exists a maximal enumerable semimeasure \widetilde{m} , i.e. \widetilde{m} is enumerable from below, and for any enumerable semimeasure m it holds that $m \leq c_m \widetilde{m}$ for some constant c_m .
- Coding Theorem: (Zvonkin-Levin)

$$K(\sigma) = -\log \widetilde{m}(\sigma) + c$$
.

• Identify randomness with incompressibility: Say an infinite binary sequence ξ is random if for all n, $K(\xi \upharpoonright_n) \ge n - c$, for some constant c.

 Diophantine Approximation classifies real numbers by how well they may be approximated by rational numbers.

- Diophantine Approximation classifies real numbers by how well they may be approximated by rational numbers.
- Fundamental Theorem by Dirichlet: For any irrational α there exist infinitely many p/q (rel. prime) such that

$$|\alpha - p/q| \le 1/q^2. \tag{3}$$

- Diophantine Approximation classifies real numbers by how well they may be approximated by rational numbers.
- Fundamental Theorem by Dirichlet: For any irrational α there exist infinitely many p/q (rel. prime) such that

$$|\alpha - p/q| \le 1/q^2. \tag{5}$$

 Such a series of rationals is obtained by the continued fraction expansion:

$$\alpha = [a_0, a_1, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$
 $a_i \in \mathbb{N}$ (6)

- Diophantine Approximation classifies real numbers by how well they may be approximated by rational numbers.
- Fundamental Theorem by Dirichlet: For any irrational α there exist infinitely many p/q (rel. prime) such that

$$|\alpha - p/q| \le 1/q^2. \tag{7}$$

 Such a series of rationals is obtained by the continued fraction expansion:

$$\alpha = [a_0, a_1, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$
 $a_i \in \mathbb{N}$ (8)

• The expansion is finite if and only if α is rational.

• In general, one cannot improve the factor 2 in Dirichlet's theorem.

- In general, one cannot improve the factor 2 in Dirichlet's theorem.
- A number β is badly approximable if there exists a K such that

$$\forall p/q \in \mathbb{Q} |\beta - p/q| \ge K/q^2$$
.

- In general, one cannot improve the factor 2 in Dirichlet's theorem.
- A number β is badly approximable if there exists a K such that

$$\forall p/q \in \mathbb{Q} |\beta - p/q| \ge K/q^2$$
.

- Examples of badly approximable numbers:
 - Golden mean $(1 + \sqrt{5})/2 = [1, 1, 1, 1, \dots]$. $0 < K < \sqrt{5}$.
 - $\sqrt{2}/2 = [1, 2, 2, 2, ...]$, in fact all irrational square roots.
 - \circ e mod 1 = [1, 2, 1, 1, 4, 1, 1, 6, ...] not badly approximable.
 - $\circ \pi \mod 1 = [7, 15, 1, 292, 1, 1, \dots]$???

• Algebraic numbers are close to badly approximable: Roth's Theorem: For any algebraic α , for any $\varepsilon > 0$,

$$|\alpha - \frac{p}{q}| \le \frac{1}{q^{2+\varepsilon}} \tag{9}$$

has only finitely many solutions.

• Algebraic numbers are close to badly approximable: Roth's Theorem: For any algebraic α , for any $\varepsilon > 0$,

$$|\alpha - \frac{p}{q}| \le \frac{1}{q^{2+\varepsilon}} \tag{10}$$

has only finitely many solutions.

 However, there are numbers which are very well approximable.

A Liouville number is an irrational α for which

$$\forall n \exists \frac{p}{q} \left| \alpha - \frac{p}{q} \right| \leq \frac{1}{q^n}.$$

Example: $\sum 10^{-n!}$.

Metric Diophantine Approximation

 What's the situation typically? Are most numbers rather well or rather badly approximable?

Metric Diophantine Approximation

- What's the situation typically? Are most numbers rather well or rather badly approximable?
- For almost all numbers, the exponent 2 cannot be improved much:

Khintchine's Theorem: Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be such that $\lim_n \psi(n) = 0$. Define

$$W_{\psi} = \{\alpha : \stackrel{\infty}{\exists} (\mathfrak{p}/\mathfrak{q}) | \alpha - (\mathfrak{p}/\mathfrak{q}) | < \psi(\mathfrak{q}) \}.$$

Then it holds, for Lebesgue measure λ ,

$$\lambda W_{\psi} = \begin{cases} 0, & \text{if } \sum k\psi(k) < \infty, \\ 1, & \text{if } \sum k\psi(k) = \infty. \end{cases}$$

Metric Diophantine Approximation

- What's the situation typically? Are most numbers rather well or rather badly approximable?
- For almost all numbers, the exponent 2 cannot be improved much:

Khintchine's Theorem: Let $\psi : \mathbb{N} \to \mathbb{R}^+$ be such that $\lim_n \psi(n) = 0$. Define

$$W_{\psi} = \{\alpha : \stackrel{\infty}{\exists} (\mathfrak{p}/\mathfrak{q}) | \alpha - (\mathfrak{p}/\mathfrak{q}) | < \psi(\mathfrak{q}) \}.$$

Then it holds, for Lebesgue measure λ ,

$$\lambda W_{\psi} = \begin{cases} 0, & \text{if } \sum k\psi(k) < \infty, \\ 1, & \text{if } \sum k\psi(k) = \infty. \end{cases}$$

 So, well-approximable numbers are rather rare. Can we tell how rare?

• Caratheodory-Hausdorff construction on metric spaces: let $A \subseteq X$, X some seperable metric space, $h : \mathbb{R} \to \mathbb{R}$ a monotone, increasing, continous on the right function with h(0) = 0, and let $\delta > 0$.

- Caratheodory-Hausdorff construction on metric spaces: let $A \subseteq X$, X some seperable metric space, $h : \mathbb{R} \to \mathbb{R}$ a monotone, increasing, continous on the right function with h(0) = 0, and let $\delta > 0$.
- Define a set function

$$\mathcal{H}^h_\delta(A) = \inf \left\{ \sum_i h(\text{diam}(U_i)) : \, A \subseteq \bigcup_i U_i, \, \text{diam}(U_i) \le \delta \right\}.$$

- Caratheodory-Hausdorff construction on metric spaces: let $A \subseteq X$, X some seperable metric space, $h : \mathbb{R} \to \mathbb{R}$ a monotone, increasing, continous on the right function with h(0) = 0, and let $\delta > 0$.
- Define a set function

$$\mathcal{H}^h_\delta(A) = \text{inf } \left\{ \sum_i h(\text{diam}(U_i)) : \ A \subseteq \bigcup_i U_i, \ \text{diam}(U_i) \le \delta \right\}.$$

• Letting $\delta \to 0$ yields an (outer) measure.

- Caratheodory-Hausdorff construction on metric spaces: let $A \subseteq X$, X some seperable metric space, $h : \mathbb{R} \to \mathbb{R}$ a monotone, increasing, continous on the right function with h(0) = 0, and let $\delta > 0$.
- Define a set function

$$\mathcal{H}^h_\delta(A) = \text{inf } \left\{ \sum_i h(\text{diam}(U_i)) : \ A \subseteq \bigcup_i U_i, \ \text{diam}(U_i) \le \delta \right\}.$$

- Letting $\delta \to 0$ yields an (outer) measure.
- The h-dimensional Hausdorff measure \mathcal{H}^h is defined as

$$\mathcal{H}^{h}(A) = \lim_{\delta \to 0} \mathcal{H}^{h}_{\delta}(A)$$

Properties of Hausdorff Measures

• \mathcal{H}^h is Borel regular: all Borel sets are measurable and for every $Y \subseteq X$ there is a Borel set $B \subseteq Y$ such that $\mathcal{H}^h(B) = \mathcal{H}^h(Y)$.

Properties of Hausdorff Measures

- \mathcal{H}^h is Borel regular: all Borel sets are measurable and for every $Y \subseteq X$ there is a Borel set $B \subseteq Y$ such that $\mathcal{H}^h(B) = \mathcal{H}^h(Y)$.
- An obvious choice for h is $h(x) = x^s$ for some $s \ge 0$. For such h, denote the corresponding Hausdorff measure by \mathcal{H}^s .

Properties of Hausdorff Measures

- \mathcal{H}^h is Borel regular: all Borel sets are measurable and for every $Y \subseteq X$ there is a Borel set $B \subseteq Y$ such that $\mathcal{H}^h(B) = \mathcal{H}^h(Y)$.
- An obvious choice for h is $h(x) = x^s$ for some $s \ge 0$. For such h, denote the corresponding Hausdorff measure by \mathcal{H}^s .
- For s = 1, \mathcal{H}^1 is the usual Lebesgue measure λ on $2^{\mathbb{N}}$.

Properties of Hausdorff Measures

- \mathcal{H}^h is Borel regular: all Borel sets are measurable and for every $Y \subseteq X$ there is a Borel set $B \subseteq Y$ such that $\mathcal{H}^h(B) = \mathcal{H}^h(Y)$.
- An obvious choice for h is $h(x) = x^s$ for some $s \ge 0$. For such h, denote the corresponding Hausdorff measure by \mathcal{H}^s .
- For s = 1, \mathcal{H}^1 is the usual Lebesgue measure λ on $2^{\mathbb{N}}$.
- For $0 \le s < t < \infty$ and $Y \subseteq X$,

$$\begin{split} \mathcal{H}^s(Y) < \infty \text{ implies } \mathcal{H}^t(Y) &= 0, \\ \mathcal{H}^t(Y) > 0 \text{ implies } \mathcal{H}^s(Y) &= \infty. \end{split}$$

Hausdorff dimension

• The situation is depicted in the following graph:

Hausdorff dimension

• The situation is depicted in the following graph:

The Hausdorff dimension of A is

$$\begin{aligned} \dim_{H}(A) &=& \inf\{s \geq 0: \, \mathcal{H}^{s}(A) = 0\} \\ &=& \sup\{t \geq 0: \, \mathcal{H}^{t}(A) = \infty\} \end{aligned}$$

Let

$$W_{\delta} = W_{\psi} \text{ for } \psi(q) = \frac{1}{q^{\delta}}.$$

Let

$$W_{\delta} = W_{\psi} \text{ for } \psi(q) = \frac{1}{q^{\delta}}.$$

• So, the Liouville numbers are just the ones contained in every W_n .

Let

$$W_{\delta} = W_{\psi} \text{ for } \psi(q) = \frac{1}{q^{\delta}}.$$

- So, the Liouville numbers are just the ones contained in every W_n .
- Jarnik-Besicovitch Theorem: For $\delta \geq 2$,

$$\dim_{\mathsf{H}} W_{\delta} = 2/\delta$$
.

Let

$$W_{\delta} = W_{\psi} \text{ for } \psi(q) = \frac{1}{q^{\delta}}.$$

- So, the Liouville numbers are just the ones contained in every W_n .
- Jarnik-Besicovitch Theorem: For $\delta \geq 2$,

$$\dim_{\mathsf{H}} W_{\delta} = 2/\delta$$
.

 In particular, the set of Liouville numbers has dimension zero.

 Other questions: What does a typical continued fraction look like? Do the components reflect some approximation properties?

- Other questions: What does a typical continued fraction look like? Do the components reflect some approximation properties?
- Interesting from a different point of view: What is the complexity of a function from natural numbers to natural numbers?

- Other questions: What does a typical continued fraction look like? Do the components reflect some approximation properties?
- Interesting from a different point of view: What is the complexity of a function from natural numbers to natural numbers?
- In the following, identify an initial segment $[a_1, \ldots, a_n]$ of a continued fraction with the n-convergent

$$\frac{p_{n}}{q_{n}} = \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{3} + \dots + \frac{1}{a_{n}}}}}$$

Using the ergodic theorem, one can show, for instance, that

$$\frac{1}{n}\log q_n \longrightarrow \frac{\pi^2}{12\log 2}$$

for almost every α .

Using the ergodic theorem, one can show, for instance, that

$$\frac{1}{n}\log q_n \longrightarrow \frac{\pi^2}{12\log 2}$$

for almost every α .

• Entropy of the Gauss map $x \mapsto \frac{1}{x} \mod 1$.

Measure on Baire Space

• Basic open cylinders: convergents of continued fractions, $[a_0, \dots a_n]$.

Measure on Baire Space

- Basic open cylinders: convergents of continued fractions, $[a_0, \dots a_n]$.
- The diameter of these (as a subset of [0, 1]) can be determined:

$$diam[a_0, \dots a_n] = \frac{1}{q_n(q_n + q_{n-1})}$$

Measure on Baire Space

- Basic open cylinders: convergents of continued fractions, $[a_0, \dots a_n]$.
- The diameter of these (as a subset of [0, 1]) can be determined:

$$diam[a_0, \dots a_n] = \frac{1}{q_n(q_n + q_{n-1})}$$

 Gives rise to a Borel measure in the usual way (extension from algebra to σ-algebra). Equivalently, Hausdorff measures.

• Introduce effective coverings and define the notion of effective \mathcal{H}^s -measure 0.

- Introduce effective coverings and define the notion of effective \mathcal{H}^s -measure 0.
- Let $X = 2^{\mathbb{N}}$ or $X = \mathbb{N}^{\mathbb{N}}$, let $s \ge 0$ be rational. $A \subseteq X$ is Σ_1 - \mathcal{H}^s null, Σ_1^0 - $\mathcal{H}^s(A) = 0$, if there is a recursive sequence (C_n) of enumerable sets such that for each n,

$$A\subseteq\bigcup_{w\in C_n}[w]$$
 and $\sum_{w\in C_n}\operatorname{diam}[w]<2^{-n}.$

- Introduce effective coverings and define the notion of effective \mathcal{H}^s -measure 0.
- Let $X = 2^{\mathbb{N}}$ or $X = \mathbb{N}^{\mathbb{N}}$, let $s \ge 0$ be rational. $A \subseteq X$ is Σ_1 - \mathcal{H}^s null, Σ_1^0 - $\mathcal{H}^s(A) = 0$, if there is a recursive sequence (C_n) of enumerable sets such that for each n,

$$A\subseteq\bigcup_{w\in C_n}[w]$$
 and $\sum_{w\in C_n}\operatorname{diam}[w]<2^{-n}.$

• For s = 1, one obtains an effective vesion of Lebesgue measure λ .

- Introduce effective coverings and define the notion of effective \mathcal{H}^s -measure 0.
- Let $X = 2^{\mathbb{N}}$ or $X = \mathbb{N}^{\mathbb{N}}$, let $s \ge 0$ be rational. $A \subseteq X$ is Σ_1 - \mathcal{H}^s null, Σ_1^0 - $\mathcal{H}^s(A) = 0$, if there is a recursive sequence (C_n) of enumerable sets such that for each n,

$$A \subseteq \bigcup_{w \in C_n} [w]$$
 and $\sum_{w \in C_n} \operatorname{diam}[w] < 2^{-n}$.

- For s = 1, one obtains an effective vesion of Lebesgue measure λ .
- Theorem: (Schnorr) A sequence $\xi \in 2^{\mathbb{N}}$ is random if and only if $\{\xi\}$ is not Σ_1 - λ null.

Does a similar characterization hold for continued fractions?

- Does a similar characterization hold for continued fractions?
- Theorem: (Reimann, Gacs) A continued fraction α is not Σ_1 - λ -null if and only if

$$\sup_n \{-K(\langle \alpha_1, \dots, \alpha_n \rangle) - \log \lambda[\alpha_1, \dots, \alpha_n]\} < \infty$$

• Is the real represented by a random binary sequence (via its dyadic expansion) also a random continued fraction (in terms of Σ_1 -measure)?

- Is the real represented by a random binary sequence (via its dyadic expansion) also a random continued fraction (in terms of Σ₁-measure)?
- Problem: The continued fraction expansion might code things more efficiently.

Surprisingly, it does not.

Theorem: (Lochs) For $\xi \in 2^{\mathbb{N}}$, denote by $\pi_n(\xi)$ the number of partial convergents a_i of the continued fraction expansion of ξ obtained from the first n digits of ξ . Then it holds for almost every ξ ,

$$\lim_{n\to\infty}\frac{|\pi_n(\xi)|}{n}=\frac{6\log^22}{\pi^2}.$$

• Surprisingly, it does not. Theorem: (Lochs) For $\xi \in 2^{\mathbb{N}}$, denote by $\pi_n(\xi)$ the number of partial convergents a_i of the continued fraction expansion of ξ obtained from the first n digits of ξ . Then it holds for almost every ξ ,

$$\lim_{n\to\infty}\frac{|\pi_n(\xi)|}{n}=\frac{6\log^2 2}{\pi^2}.$$

• Lochs' Theorem holds effectively, that is, for any random ξ .

• Surprisingly, it does not. Theorem: (Lochs) For $\xi \in 2^{\mathbb{N}}$, denote by $\pi_n(\xi)$ the number of partial convergents a_i of the continued fraction expansion of ξ obtained from the first n digits of ξ . Then it holds for almost every ξ ,

$$\lim_{n\to\infty} \frac{|\pi_n(\xi)|}{n} = \frac{6\log^2 2}{\pi^2}$$

- Lochs' Theorem holds effectively, that is, for any random ξ.
- Proof requires some effort to avoid the use of the ergodic theorem (which is not an effective law of probability).

Every random continued fraction satisfies

$$\frac{1}{n}\log q_n \longrightarrow \frac{\pi^2}{12\log 2}.$$

Every random continued fraction satisfies

$$\frac{1}{n}\log q_n \longrightarrow \frac{\pi^2}{12\log 2}.$$

• The proof also yields that a random c.f. $\alpha = [\alpha_1, \alpha_2, ...]$ must have arbitrary large partial convergents α_i .

Every random continued fraction satisfies

$$\frac{1}{n}\log q_n \longrightarrow \frac{\pi^2}{12\log 2}.$$

- The proof also yields that a random c.f. $\alpha = [\alpha_1, \alpha_2, ...]$ must have arbitrary large partial convergents α_i .
- Theorem: An irrational α is badly approximable if and only if its continued fraction expansion is bounded.

Every random continued fraction satisfies

$$\frac{1}{n}\log q_n \longrightarrow \frac{\pi^2}{12\log 2}.$$

- The proof also yields that a random c.f. $\alpha = [\alpha_1, \alpha_2, ...]$ must have arbitrary large partial convergents α_i .
- Theorem: An irrational α is badly approximable if and only if its continued fraction expansion is bounded.
- Hence, from our point of view, badly approximable numbers must be compressible.

 Based on effective measure, we can also define effective Hausdorff dimension:

$$\dim_1 A = \inf\{s \ge 0: \ \Sigma_1^0 \text{-} \mathcal{H}^s A = 0\}.$$

 Based on effective measure, we can also define effective Hausdorff dimension:

$$\dim_1 A = \inf\{s \ge 0: \ \Sigma_1^0 \text{-} \mathcal{H}^s A = 0\}.$$

 Yields a notion of Hausdorff dimension for individual sequences.

 Based on effective measure, we can also define effective Hausdorff dimension:

$$\dim_1 A = \inf\{s \ge 0 : \Sigma_1^0 - \mathcal{H}^s A = 0\}.$$

- Yields a notion of Hausdorff dimension for individual sequences.
- It turns out that the effective dimension of a set is determined by the dimension of its most complex members:

$$\dim_1 A = \sup_{\xi \in A} \dim_1 \xi.$$

 Based on effective measure, we can also define effective Hausdorff dimension:

$$\dim_1 A = \inf\{s \ge 0 : \Sigma_1^0 - \mathcal{H}^s A = 0\}.$$

- Yields a notion of Hausdorff dimension for individual sequences.
- It turns out that the effective dimension of a set is determined by the dimension of its most complex members:

$$\dim_1 A = \sup_{\xi \in A} \dim_1 \xi.$$

• Theorem: For any sequence $\xi \in 2^{\mathbb{N}}$ it holds that

$$\dim_1 \xi = \liminf_{n \to \infty} \frac{K(\xi \upharpoonright_n)}{n}.$$

• Badly approximable numbers are compressible.

- Badly approximable numbers are compressible.
- Jarnik's Theorem: Let

$$E_n = \{\alpha = [\alpha_0, \alpha_1, \dots] \in [0, 1] : \forall i \alpha_i \leq n\}.$$

Then, for
$$n \ge 8$$
, $1 - \frac{4}{n \log 2} \le \dim_H E_n \le 1 - \frac{1}{8n \log n}$.

- Badly approximable numbers are compressible.
- Jarnik's Theorem: Let

$$E_n = {\alpha = [\alpha_0, \alpha_1, \dots] \in [0, 1] : \forall i \alpha_i \le n}.$$

Then, for
$$n \ge 8$$
, $1 - \frac{4}{n \log 2} \le \dim_H E_n \le 1 - \frac{1}{8n \log n}$.

• Later, Bumby and Hensley gave good approximations of $\dim_H E_n$ for smaller values of n, e.g. $\dim_H E_2 = 0.5312050...$

- Badly approximable numbers are compressible.
- Jarnik's Theorem: Let

$$E_n = {\alpha = [\alpha_0, \alpha_1, \dots] \in [0, 1] : \forall i \alpha_i \le n}.$$

Then, for
$$n \ge 8$$
, $1 - \frac{4}{n \log 2} \le \dim_H E_n \le 1 - \frac{1}{8n \log n}$.

- Later, Bumby and Hensley gave good approximations of $\dim_H E_n$ for smaller values of n, e.g. $\dim_H E_2 = 0.5312050...$
- Using complexity theoretic characterization of dimension, we can give a simpler, essentially combinatorial proof.