DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(; ·

(c) 2002 EPO. All rts. reserv.

15393001

Basic Patent (No, Kind, Date): JP 11204434 A2 19990730 <No. of Patents: 001 >

SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME

(English)

Patent Assignee: SEMICONDUCTOR ENERGY LAB

Author (Inventor): OTANI HISASHI; YAMAZAKI SHUNPEI

IPC: *H01L-021/20; G02F-001/136; H01L-029/786; H01L-021/336; H01L-021/329

CA Abstract No: 131(09)123918M Derwent WPI Acc No: G 01-184676 Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 11204434 A2 19990730 JP 9818096 A 19980112 (BASIC)

Priority Data (No,Kind,Date): JP 9818096 A 19980112 DIALOG(R)File 347:JAPIO

(c) 2002 JPO & JAPIO. All rts. reserv.

06262853

Image available

SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME

PUB. NO.:

11-204434 [JP 11204434 A]

PUBLISHED:

July 30, 1999 (19990730)

INVENTOR(s): OTANI HISASHI

YAMAZAKI SHUNPEI

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD

APPL. NO.:

10-018096 [JP 9818096]

FILED:

January 12, 1998 (19980112)

INTL CLASS:

H01L-021/20; G02F-001/136; H01L-029/786; H01L-021/336;

H01L-021/329

ABSTRACT

PROBLEM TO BE SOLVED: To provide a semiconductor device with high performance and productivity by making use of a catalyst element promoting crystallization and requiring no guttering process in the process of obtaining the crystalline silicon within a short time period and at low temperature by using of a catalyst element, a heat treatment, and a laser beam irradiation.

SOLUTION: A film 304 comprising a group 14 element, germanium or the like which is in the same family as silicon in the periodic table, is formed on silicon film 3030 formed on a glass substrate 301, amorphous heat-treated at 550°C for 4 hours, irradiated by laser beam, and a crystalline silicon film 3031 is formed. The use of group 14 catalyst element giving no unfavorable influence on the TFT characteristic even resident in the silicon film makes it possible to manufacture the semiconductor with high performance and productivity.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-204434

(43)公開日 平成11年(1999)7月30日

500	
627G	
Α	
の数9 F	FD (全 12 頁)
エネルギー	研究所
長谷398番	地
長谷398番	地 株式会社半
研究所内	
長谷398番	地 株式会社半
研究所内	
	627G A の数9 F エネルギー 長谷398番 長谷398番

(54) 【発明の名称】 半導体装置およびその作製方法

(57)【要約】

【課題】 触媒元素を用い、熱処理とレーザー光の照射を併用し、低温、短時間で結晶性の高い結晶性珪素を得る方法において、結晶化を助長する触媒元素としてゲッタリング工程の不要な触媒元素を用いることにより、・特性が高く、生産性の良い半導体装置を得る。

【解決手段】 ガラス基板301上に形成された非晶質 珪素膜3030上にゲルマニウム等の珪素と周期表の族 が同じ14族元素の被膜304を形成し、550℃、4時間の加熱処理を行ない、さらにレーザー光を照射する ことによって、結晶性珪素膜3031を得る。上記構成 において、珪素膜中に残存してもTFT特性に悪影響を 及ぼさない14族元素を触媒元素に用いることで、高い特性を有し、生産性の良い半導体装置を得ることができる。

【特許請求の範囲】

【請求項1】 絶縁表面を有する基板上に結晶性を有する珪素膜からなる活性領域が設けられた半導体装置であって、

前記活性領域は、非晶質珪素膜に該非晶質珪素膜の結晶 化を助長する触媒元素を保持させ、加熱処理及び、レー ザー光または強光を照射することにより形成され、

前記触媒元素として14族元素から選ばれた一種または 複数種の元素が用いられることを特徴とする半導体装 置。

【請求項2】 絶縁表面を有する基板上に結晶性を有する珪素膜からなる活性領域が設けられた半導体装置であって.

前記活性領域は、非晶質珪素膜に該非晶質珪素膜の結晶 化を助長する触媒元素を選択的に保持させ、加熱処理を 施すことにより前記保持させた領域からその周辺領域へ と結晶成長が行われ、かつレーザー光または強光の照射 によりその結晶性が助長されたものであり、

前記触媒元素として14族元素から選ばれた一種または 複数種の元素が用いられることを特徴とする半導体装 置。

【請求項3】 請求項1又は請求項2において、 前記触媒元素としてゲルマニウムが用いられることを特 徴とする半導体装置。

【請求項4】 請求項1乃至請求項3において、 前記活性領域が設けられた半導体装置は、薄膜トランジスタまたはダイオードまたは光センサーであることを特 欲とする半導体装置。

【請求項5】 非晶質珪素膜に接して該非晶質珪素膜の結晶化を助長する触媒元素を保持させ加熱処理を施し前 30 記非晶質珪素膜を結晶化させる工程と、レーザー光または強光を照射することにより結晶性を助長する工程と、を有し.

前記触媒元素として、14族から選ばれた一種または複数種の元素を用いることを特徴とする半導体装置の作製方法。

【請求項6】 請求項5において、

前記触媒元素としてゲルマニウムを用いることを特徴と する半導体装置の作製方法。

【請求項7】 非晶質珪素膜に接して該非晶質珪素膜の 40 結晶化を助長する触媒元素単体または該触媒元素を含む 化合物を溶解あるいは分散させた溶液を塗布する工程 と

加熱処理を施し前記非晶質珪素膜を結晶化させる工程 と、レーザー光または強光を照射することにより結晶性 を助長する工程と、を有し、

前記触媒元素として、14族から選ばれた一種または複 数種類の元素を用いることを特徴とする半導体装置の作 製方法。

【請求項8】 請求項7において、

前記触媒元素としてゲルマニウムを用いることを特徴とする半導体装置の作製方法。

【請求項9】 請求項8において、前記触媒元素を含む化合物として、臭化ゲルマニウム、塩化ゲルマニウム、 沃化ゲルマニウム、酸化ゲルマニウム、酸化ゲルマニウム、硫化ゲルマニウム、ゲルマン、酢酸ゲルマニウム、 トリス(2,4ペンタンジオナト)ゲルマニウム過塩素酸塩、テトラメチルゲルマン、テトラエチルゲルマン、テトラフェニルゲルマン、ヘキサエチルゲルマニウムから 選ばれた少なくとも1種類が用いられることを特徴とする半導体装置の作製方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は結晶性を有する半導体を用いた半導体装置およびその作製方法に関する。 【0002】

【従来の技術】薄膜半導体を用いた薄膜トランジスタ (以下TFT等)が知られている。このTFTは、基板 上に薄膜半導体を形成し、この薄膜半導体を用いて構成 されるものである。このTFTは、各種集積回路に利用 されているが、特に電気光学装置特にアクティブマトリ ックス型の液晶表示装置の各画素が設けられたスイッチ ング素子、周辺回路部分に形成されるドライバー素子と して注目されている。

【0003】TFTに利用される薄膜半導体としては、 非晶質珪素膜を用いることが簡便であるが、その電気的 特性が低いという問題がある。TFTの特性向上を得る ためには、結晶性を有するシリコン薄膜を利用すればよ い。結晶性を有するシリコン膜は、多結晶シリコン、ボ リシリコン、微結晶シリコン等と称されている。この結 晶性を有するシリコン膜を得るためには、まず非晶質珪 素膜を形成し、しかる後に加熱によって結晶化すればよ い。

【0004】しかしながら、加熱による結晶化は、加熱温度が600℃以上の温度で10時間以上の時間をかけることが必要であり、基板としてガラス基板を用いることが困難であるという問題がある。例えばアクティブ型の液晶表示装置に用いられるコーニング7059ガラスはガラス歪点が593℃であり、基板の大面積化を考慮した場合、600℃以上の加熱には問題がある。

【0005】〔発明の背景〕本発明者らの研究によれば、非晶質珪素膜の表面にニッケルやバラジウム等の元素を微量に堆積させ、しかる後に加熱することで、550°、4時間程度の処理時間で結晶化を行なえることが判明している。しかしながら、上記のような元素が半導体中に多量に存在していることは、これら半導体を用いた装置の信頼性や電気的安定性を阻害するものであり好ましいことではない。

【0006】即ち、上記のニッケル等の結晶化を助長す 50 る元素(本明細書では、結晶化を助長する元素を触媒元 3

素という)は、非晶質珪素を結晶化させる際には必要であるが、結晶化した珪素中には極力含まれないようにすることが望ましい。この目的を達成するために、結晶化した珪素中の触媒元素をゲッタリングする種々の方法が検討されているが、いずれの方法もゲッタリングのために工程数が増え、素子作製上あまり好ましくない。

【0007】また、触媒元素の導入により600℃以下、短時間で結晶化を行なえることは判明しているが、 熱処理で得られる結晶性には限界があり結晶性が不十分 となる問題が生じている。

[0008]

【発明が解決しようとする課題】本発明は、触媒元素を 用いた600℃以下の熱処理による結晶性を有する薄膜 珪素半導体の作製において、

- (1) 工程数を減らし生産性の高い方法とする。
- (2) 熱処理で得られる結晶性よりさらに高い結晶性を 得る。

といった要求を満たすことを目的とする。

[0009]

【課題を解決するための手段】本発明は、上記目的を満足するために以下の手段を用いて結晶性を有した珪素膜を得る。非晶質珪素膜に接して該非晶質珪素膜の結晶化を助長する触媒元素単体または前記触媒元素を含む化合物を保持させ加熱処理を施し、前記非晶質珪素膜の一部または全部を結晶化させる。そして、レーザー光または強光を照射することによりさらに結晶化を助長する。上記の触媒元素に14族から選ばれた一種または複数種類の元素を用いる。

【0010】特に本発明においては、触媒元素に用いる元素を半導体材料である珪素と同じ周期表の族に属する14族から選ばれた一種または複数種の元素を用いることが特徴である。即ち14族元素を触媒元素として用いると、ゲッタリング工程が不必要となる。それは、一般に同じ族に属する元素は互いに似た性質をもっており、14族の触媒元素が14族の珪素膜中に残存していても半導体特性の低下が起こらないからである。特性が低下しないのは、複合合金半導体としてSiGeやSiSn等の14族-14族合金半導体が知られていることからも明らかである。

【0011】また、触媒元素としてゲルマニウム、スズ、鉛から選ばれた一種または複数種の元素を用いることは好ましい。珪素以外の14族には、炭素、ゲルマニウム、スズ、鉛が知られているが、このうちゲルマニウム、スズ、鉛は珪素と電気陰性度が近く、互いの元素がランダムに混ざり合うので、炭素を用いた場合に比べて半導体特性が向上する。

【0012】また、触媒元素としてゲルマニウムを用いることは更に好ましい。珪素とゲルマニウムは電気陰性度が近いだけでなく、共有結合半径も似ており、連続的で均一な組成のランダムネットワークを形成し、スズ、

鉛を用いた場合に比べて更に半導体特性が向上する。 【0013】また本発明は、加熱処理を施し前記非晶質 珪素膜の一部または全部を結晶化させた後、レーザー光

(3.

または強光を照射することによりさらに結晶化を助長することをもう一つの特徴としている。この方法により極めて結晶性の良好な結晶性珪素膜を、生産性の高い方法

で得ることができる。

【0014】加熱処理の後に行なうレーザー光の照射を行なうことによって、加熱処理によって結晶化された珪素膜の結晶性をさらに高くすることができる。また、加熱処理によって部分的に結晶化を生じせしめた場合には、レーザー光の照射によってその部分からさらに結晶成長を行なわせ、より結晶性の高い状態を実現することができる。

【0015】例えば、触媒元素の導入量が少ない場合、結晶化は微小な点々とした領域において発生する。この状態は、全体として見れば結晶性を有する成分と非晶質の成分とが混在する状態ということもできる。ここでレーザー光を照射することによって、この結晶性を有する成分に存在する結晶核から結晶成長を行なわすことができ、結晶性の高い珪素膜を得ることができる。即ち、小さな結晶粒を大きな結晶粒へと成長させることができる。このように、レーザー光の照射による結晶性の助長の効果は、結晶化が不完全な珪素膜の場合に特に顕著となる。

【0016】またレーザー光の照射の代わりに、強光、 特に赤外光を照射する方法を採用してもよい。赤外光は ガラスには吸収されにくく、珪素薄膜に吸収されやすい ので、ガラス基板上に形成された珪素薄膜を選択的に加 熱することができ有用である。この赤外光を用いる方法 は、ラピッド・サーマル・アニール (RTA) またはラ ピッド・サーマル・プロセス(RTP)と呼ばれる。 【0017】 このように非晶質珪素膜に、14族元素か ら選ばれた一種または複数種の元素、好ましくはゲルマ ニウム、スズ、鉛から選ばれた一種または複数種の元 素、更に好ましくはゲルマニウムを保持させ、加熱処理 を施して、その後レーザー光または強光を照射すること により結晶性の良好な結晶性珪素膜を得ることができ た。この結晶性珪素膜を用いた半導体特性はオフ電流の 40 増加やばらつきが見られず、触媒元素をゲッタリングし なくとも特性の良いものが得られる。

【0018】また本発明は、結晶化された結晶性珪素膜を用いて半導体装置のPN、PI、NIその他の電気的接合を少なくとも1つ有する活性領域を構成することを特徴とする。半導体装置としては、薄膜トランジスタ(TFT)、ダイオード、光センサを用いることができる

【0019】本発明の構成を採用することによって以下 に示すような基本的な有意性を得ることができる。

io (a)高温プロセスを必要としないで、結晶性の良好な

5

結晶性珪素膜を得ることができる。

- (b) 触媒元素をゲッタリングする必要がなく、デバイス作製工程を大幅に削減することができる。
- (c) 触媒元素が珪素膜中に残存してもよいので、触媒元素の導入量の精密な制御を必要としない。
- (d) レーザー光または強光を照射することによりさら に結晶化が助長されるので、極めて結晶性の良好な結晶 性珪素膜を得ることができる。

【0020】結晶化を助長する触媒元素の導入方法とし ては、プラズマ処理、イオン注入法等の気相法や、固相 法、さらには溶液塗布法を利用する。固相法はプラズマ CVD法、LPCVD法、PVD法等を用いて触媒元素 を含む膜を成膜し、アニールすることにより拡散させ触 媒元素を導入する方法である。溶液塗布法は、触媒元素 単体または触媒元素を含む化合物を溶解あるいは分散さ せた溶液を塗布する方法である。例えば触媒元素として ゲルマニウムを用いた場合、触媒元素を含む化合物とし て、臭化ゲルマニウム、塩化ゲルマニウム、沃化ゲルマ ニウム、酸化ゲルマニウム、酸化ゲルマニウム、硫化ゲ ルマニウム、ゲルマン、酢酸ゲルマニウム、トリス(2, 20 4-ペンタンジオナト)ゲルマニウム過塩素酸塩、テトラ メチルゲルマン、テトラエチルゲルマン、テトラフェニ ルゲルマン、ヘキサエチルゲルマニウム等を用いること ができる。

【0021】非晶質珪素膜上に結晶化を助長する元素を含有させた溶液を塗布する方法としては、溶液として水溶液、有機溶媒溶液等を用いることができる。とこで含有とは、化合物として含ませるという意味と、単に分散させることにより含ませるという意味との両方を含む。【0022】触媒元素を含む溶媒としては、極性溶媒である水、アルコール、酸、アンモニア、また無極性溶媒であるベンゼン、トルエン、キシレン、四塩化炭素、クロロホルム、エーテルから選ばれたものを用いることができる。

【0023】また触媒元素を含有させた溶液に界面活性 剤を添加することも有用である。これは、被塗布面に対 する密着性を高め吸着性を制御するためである。この界 面活性剤は予め被塗布面上に塗布するのでもよい。触媒 元素としてゲルマニウム単体を用いる場合には、酸に溶 かして溶液とする必要がある。

【0024】以上述べたのは、触媒元素が完全に溶解した溶液を用いる例であるが、触媒元素が完全に溶解していなくとも、触媒元素単体あるいは触媒元素を含む化合物からなる粉末が分散媒中に均一に分散したエマルジョンの如き材料を用いてもよい。または酸化膜形成用の溶液を用いるのでもよい。このような溶液としては、東京応化工業株式会社のOCD(Ohka Diffusion Source)を用いることができる。このOCD溶液を用いれば、被形成面上に塗布し、200℃程度でベークすることで、簡単に酸化珪素膜を形成できる。また不純物を添加するこ 50

とも自由であるので、本発明に利用することができる。 【0025】また、触媒元素を選択的に保持することにより、結晶成長を選択的に行なうことができる。特にこの場合、触媒元素が保持されなかった領域に向かって、触媒元素が保持された領域から珪素膜の面に概略平行な方向に結晶成長を行なわすことができる。この珪素膜の面に概略平行な方向に結晶成長を行なうことを本明細書中においては横成長ということとする。

【0026】またこの横成長の結晶粒界方向とキャリアの移動方向とを概略一致するようにデバイスを作製すると、キャリアの移動方向に沿った半導体装置の活性層領域は粒界のほとんどない領域若しくは均一な粒界が存在する領域となり、キャリアの移動度が向上し、また素子間のばらつきがなくなり信頼性が向上する。従って、上記横方向に結晶成長が行なわれた領域を用いて半導体装置の活性層領域を形成することはデバイス作製上有用である。

[0027]

【実施例】 (実施例1) 本実施例では、結晶化を助長する14族の触媒元素を非晶質珪素膜上に保持し、しかる後に加熱により結晶化させ、さらにレーザー光の照射により結晶性を高めて作製した結晶性珪素膜を用いて、TFTを得る例である。本実施例のTFTは、アクティブマトリックス型の液晶表示装置のドライバー回路や画素部分に用いることができる。なお、TFTの応用範囲としては、液晶表示装置のみではなく、一般に言われる薄膜集積回路に利用できることはいうまでもない。

【0028】図1に本実施例の作製工程の概要を示す。本実施例においては、ガラス基板301としてコーニング7059ガラスを用いる。まずガラス基板301上に下地の酸化珪素膜302を200nmの厚さに成膜する。この酸化珪素膜302は、ガラス基板からの不純物の拡散を防ぐために設けられる。

【0029】そして、非晶質珪素膜3030をプラズマ CVD法やLPCVD法によって10~150nm形成 する。ここでは、LPCVD法によって50nmの厚さ に成膜する。

【0030】そして原料にGeH,を用いてLPCVD 法で5~100nm好ましくは10~50nmのゲルマ ニウム膜304を成膜する(図1(A))。そして、加熱炉において、窒素雰囲気中において550度、4時間の加熱処理を行う。この結果、基板301上に形成された結晶性を有する珪素薄膜3031を得ることができる。

【0031】上記の加熱処理は450度以上の温度で行うことができるが、温度が低いと加熱時間を長くしなけらばならず、生産効率が低下する。また、600度以上とすると基板として用いるガラス基板の耐熱性の問題が表面化してしまう。

0 【0032】上記加熱処理を行うことによって、非晶質

成分と結晶成分とが混在した珪素膜を得られる。この結晶成分には結晶核が存在している領域である。その後ゲルマニウム膜を除去し、KrFエキシマレーザ(液長248nm、パルス幅30nsec)を窒素雰囲気中において200~350mJ/cm²のパワー密度で数ショト照射し、珪素膜3031の結晶性を助長させる。このレーザー光の照射工程においては、基板を400℃程度に加熱させてもよい。この工程よって、結晶成分に存在している結晶核を核として結晶成長が行なわれる。この工程は、前述した赤外光の照射によってもよい(図1(B))。

【0033】次に、結晶化した珪素膜をパターニングして、島状の領域3032を形成する。この島状の領域3032はTFTの活性層を構成する。そして、厚さ $20\sim150$ nm、とこでは100nmの酸化珪素膜305を形成する。この酸化珪素膜はゲート絶縁膜としても機能する(図1(C))。

【0034】上記酸化珪素膜305の作製には注意が必要である。ここでは、TEOSを原料とし、酸素とともに基板温度150~600℃、好ましくは300~450℃で、RFプラズマCVD法で分解・堆積した。TEOSと酸素の圧力比は1:1~1:3、また、圧力は0.05~0.5torr、RFパワーは100~250Wとした。あるいはTEOSを原料としてオゾンガスとともに減圧CVD法もしくは常圧CVD法によって、基板温度を350~600℃、好ましくは400~550℃として形成した。

【0035】この状態でKrFエキシマーレーザー(波長248nm、パルス幅20nsec)あるいはそれと同等な強光を照射することで、シリコン領域3032の30結晶化を助長させてもよい。特に、赤外光を用いたRTA(ラビッドサーマルアニール)は、ガラス基板を加熱せずに、珪素のみを選択的に加熱することができ、しかも珪素と酸化珪素膜との界面における界面準位を減少させることができるので、絶縁ゲート型電界効果半導体装置の作製においては有用である。

【0036】その後、厚さ200nm~1μmのアルミニウムを主成分とする膜を電子ビーム蒸着法によって形成して、これをパターニングし、ゲート電極306を形成する。アルミニウムを主成分とする膜にはスカンジウム(Sc)を0.15~0.2重量%ドーピングしておいてもよい。次に基板をpH≒7、1~3%の酒石酸のエチレングリコール溶液に浸し、白金を陰極、このアルミニウムのゲート電極を陽極として、陽極酸化を行う。陽極酸化は、最初一定電流で220Vまで電圧を上げ、その状態で1時間保持して終了させる。本実施例では定電流状態では、電圧の上昇速度は2~5V/分が適当である。このようにして、厚さ150~350nm、例えば、200nmの陽極酸化物307を形成する(図1

(D))。陽極酸化物は耐熱性の低いアルミニウムを主 50 均一性を得ることができない。

成分とする膜の表面を電気的及び機械的に保護する機能を有する。本実施例ではゲート電極として陽極酸化物で 覆われたアルミニウムを用いたが、耐熱性に優れたシリコンもしくはシリサイドを用いてもかまわない。

【0037】その後、イオンドービング法(プラズマドービング法ともいう)によって、各TFTの島状シリコン膜中に、ゲート電極部をマスクとして自己整合的に不純物(燐)を注入した。ドービングガスとしてはフォスフィン(PH,)を用いた。ドーズ量は、1~4×101°cm⁻¹とする。

【0038】さらに、KrFエキシマーレーザー(液長248nm、パルス幅20nsec)を照射して、上記不純物の導入によって結晶性の劣化した部分の結晶性を改善させる。レーザーのエネルギー密度は150~400mJ/cm'である。こうして、N型不純物(燐)領域3132、3232を形成する。これらの領域のシート抵抗は200~800Ω/□であった。この工程において、レーザー光を用いる代わりに、RTA等のいわゆるレーザー光20と同等の強光を用いてもよい。

【0039】その後、全面に層間絶縁物308として、TEOSを原料として、これと酸素とのプラズマCVD法、もしくはオゾンとの減圧CVD法あるいは常圧CVD法によって酸化珪素膜を厚さ300nm形成する。基板温度は250~450℃、例えば、350℃とする。【0040】そして、層間絶縁物308をエッチングして、図1(E)に示すようにTFTのソース/ドレインにコンタクトホールを形成し、アルミニウムもしくは窒化チタンとアルミニウムの多層膜のソース/ドレイン電極・配線3091、3092を形成する。

【0041】最後に、水素中で300~400℃で0.1~2時間アニールして、シリコンの水素化を完了する。このようにして、TFTが完成する。そして、同時に作製した多数のTFTをマトリクス状に配列せしめてアクティブマトリクス型液晶表示装置として完成する。このTFTは、ソース/ドレイン領域3132/3232とチャネル形成領域3332を有している。また3100、3101がN1の電気的接合部分となる。

【0042】本実施例で作製されたTFTは、14族の触媒元素を用いることによりゲッタリング工程なしで移動度がNチャネルで150cm²/Vs以上のものが得られている。またV、も小さく良好な特性を有していることが確認されている。さらに、移動度のバラツキも±10%以内であることが確認されている。このバラツキの少なさは、加熱処理により不完全な結晶化とレーザー光の照射による結晶性の助長とによる工程によるものと考えられる。レーザー光のみを利用した場合には、Nチャケル型で150cm²/Vs以上のものを容易に得ることができるが、バラツキが大きく、本実施例のような均一性を得ることができない。

【0043】本実施例においては、非晶質珪素膜上に触媒元素を導入する方法を示したが、非晶質珪素膜下に触媒元素を導入する方法を採用してもよい。その場合は触媒元素を含む膜を成膜してから非晶質珪素膜を形成すればよい。また、触媒元素の導入法はLPCVD法でなくとも他の固相法や、気相法、溶液塗布法などを用いることもできる。

【0044】〔実施例2〕本実施例では、結晶化を助長する14族の触媒元素を溶液塗布法を用いて非晶質珪素膜上に保持し、しかる後に加熱により結晶化させ、さらにレーザー光の照射により結晶性を高めて作製した結晶性珪素膜を用いて、TFTを得る例である。本実施例のTFTは、アクティブマトリックス型の液晶表示装置のドライバー回路や画素部分に用いることができる。なお、TFTの応用範囲としては、液晶表示装置のみではなく、一般に言われる薄膜集積回路に利用できることはいうまでもない。

【0045】図2に本実施例の作製工程の概要を示す。まずガラス基板401(コーニング7059)上に下地の酸化珪素膜402を200nmの厚さに成膜する。C 20の酸化珪素膜は、ガラス基板からの不純物の拡散を防ぐために設けられる。さらに、非晶質珪素膜4030をプラズマCVD法によって20~150nm、CCでは50nmの厚さに成膜する。

【0046】そして、自然酸化膜を取り除くためのフッ酸処理の後、薄い酸化膜を2nm程度の厚さに酸素雰囲気でのUV光の照射によって成膜する。この薄い酸化膜の作製方法は、過水処理や熱酸化による方法でもよい。 【0047】そして10ppm(重量換算)のゲルマニウムを含有した酢酸塩溶液404を塗布し(図2

(A))、5分間保持し、スピナーを用いてスピンドライを行う。その後550度、4時間の加熱によって、結晶化した珪素膜4031を得る。

【0048】上記加熱処理を行うととによって、非晶質成分と結晶成分とが混在した珪素膜を得られる。この結晶成分には結晶核が存在している領域である。その後ゲルマニウム膜を除去し、さらにKrFエキシマレーザー光を200~300mJ/cm'で照射することにより、珪素膜の結晶性を助長させる。このレーザー光の照射工程においては、基板を400℃程度に加熱してもよい。この工程よって、結晶成分に存在している結晶核を核として結晶成長が行なわれる(図2(B))。

【0049】次に、結晶化した珪素膜4031をパターニングして、島状の領域4032を形成する。この島状の領域4032はTFTの活性層を構成する。そして、厚さ100nmの酸化珪素膜405を形成する。この酸化珪素膜はゲート絶縁膜としても機能する(図2(C))。

【0050】引き続いて、スパッタリング法によって、 も固相法や、気相法、更に厚さ300~800nm、例えば600nmのアルミニ 50 法を用いることもできる。

ウムを主成分とする膜(0.1~0.3重量%のスカン ジウムを含む)を堆積する。そして、公知のフォトリソ グラフィー法によって、ゲート電極406を形成する。 次に基板を3%酒石酸のエチレングリコール溶液(アン モニアで中性に p H調整したもの) 中に基板を浸漬し、 これに電流を流して、1~5 V/分、例えば4 V/分で 電圧を100Vまで上昇させて、陽極酸化を行なう。と の際には、ゲート電極上面のみならず、ゲート電極側面 も陽極酸化されて、緻密な無孔質陽極酸化物407が厚 さ100nm形成される。この陽極酸化物の耐圧は50 V以上である。本実施例ではゲート電極として陽極酸化 物で覆われたアルミニウムを用いたが、耐熱性に優れた シリコンもしくはシリサイドを用いてもかまわない。 【0051】次に、プラズマドーピング法によって、シ リコンの島状領域4032にゲート電極406をマスク として不純物(燐)を注入する。ドーピングガスとし て、フォスフィン(PH。)を用い、加速電圧を5~3 OkV、例えば10kVとする。ドーズ量は1×10¹⁴ ~8×10¹¹cm⁻¹、例えば、2×10¹¹cm⁻¹とする (図2(D))。

【0052】その後、上面からレーザー光を照射して、レーザーアニールをおこない、ドーピングされた不純物を活性化する。続いて、厚さ600nmの酸化珪素膜408を層間絶縁物としてプラズマCVD法によって形成する。そして、画素電極となるITO電極を形成する。さらにコンタクトホールを形成して、金属材料、例えば、窒化チタンとアルミニウムの多層膜によってTFTのソース領域、ドレイン領域の電極・配線4091、4092を形成する。最後に、1気圧の水素雰囲気で350℃、30分のアニールをおこなった。以上の工程によって薄膜トランジスタが完成する(図2(E))。

【0053】本実施例で作製されたTFTは、14族の 触媒元素を用いることによりゲッタリング工程なしで移 動度がNチャネルで150cm²/Vs以上のものが得 られている。またV。も小さく良好な特性を有している ことが確認されている。さらに、移動度のバラツキも± 10%以内であることが確認されている。このバラツキ の少なさは、加熱処理により不完全な結晶化とレーザー 光の照射による結晶性の助長とによる工程によるものと 考えられる。レーザー光のみを利用した場合には、Nチャケル型で150cm²/Vs以上のものを容易に得る ことができるが、バラツキが大きく、本実施例のような 均一性を得ることができない。

【0054】本実施例においては、非晶質珪素膜上に触媒元素を導入する方法を示したが、非晶質珪素膜下に触媒元素を導入する方法を採用してもよい。その場合は触媒元素を含む膜を成膜してから非晶質珪素膜を形成すればよい。また、触媒元素の導入法は溶液塗布法でなくとも固相法や、気相法、更に他の溶液等を用いた溶液塗布法を用いることもできる

【0055】〔実施例3〕本実施例においては、ゲルマ ニウムを選択的に導入し、その部分から横方向(基板に 平行な方向) に結晶成長した領域を用いて電子デバイス を形成する例を示す。このような構成を採用した場合、 デバイスの活性層領域における結晶性を高めることがで き、デバイスの電気的安定性や信頼性の上から極めて好 ましい構成とすることができる。

【0056】図3に本実施例の作製工程を示す。まず、 基板201 (コーニング7059、10cm角) を洗浄 し、TEOS (テトラ・エトキシ・シラン) と酸素を原 10 料ガスとしてプラズマCVD法によって厚さ200nm の酸化珪素の下地膜202を形成する。そして、プラズ マCVD法によって、厚さ50~150nm、例えば1 00 n m の非晶質珪素膜203を成膜する。次に連続的 に厚さ50~200nm、例えば100nmの酸化珪素 膜205をプラズマCVD法によって成膜する。そし て、酸化珪素膜205を選択的にエッチングして、非晶 質珪素の露出した領域206を形成する。

【0057】そして原料にGeH、を用いてLPCVD 法で5~100 n m 好ましくは10~50 n m のゲルマ ニウム膜を成膜する。この後、窒素雰囲気下で500~ 600℃、例えば550℃、4時間の加熱アニールを行 い、珪素膜203の結晶化を行う。結晶化は、ゲルマニ ウムと珪素膜が接触した領域206を出発点として、矢 印で示されるように基板に対して平行な方向に結晶成長 が進行する。図においては領域204はゲルマニウムが 直接導入されて結晶化した部分、領域203は横方向に 結晶化した部分を示す。この203で示される横方向へ の結晶は、 $25\sim100\mu$ m程度である。またその結晶 成長方向は概略〈111〉軸方向であることが確認され ている(図3(A))。

【0058】上記加熱処理による結晶化工程の後にさら に赤外光の照射により珪素膜203の結晶性を助長させ る。この工程は、波長0.6~4 µm、例えば、0.8 ~1. 4 μ m にピークをもつ赤外光を照射することによ って行なう。との工程によって、数分間で高温加熱処理 したものと同等の効果を得ることができる。

【0059】赤外線の光源としてはハロゲンランプを用 いる。赤外光の強度は、モニターの単結晶シリコンウェ ハー上の温度が900~1200℃の間にあるように調 整する。具体的には、シリコンウェハーに埋め込んだ熱 電対の温度をモニターして、これを赤外線の光源にフィ ードバックさせる。本実施例では、昇温は、一定で速度 で50~200℃/秒、降温は自然冷却で20~100 ℃とする。この赤外光照射は、珪素膜を選択的に加熱す ることになるので、ガラス基板への加熱を最小限に抑え

【0060】次に、酸化珪素膜205を除去する。この 際、領域206の表面に形成される酸化膜も同時に除去

エッチングして、島状の活性層領域208を形成する。 この際、図3(A)の206で示された領域は、ゲルマ ニウムが直接導入された領域であり、ゲルマニウムが高 濃度に存在する領域である。また、結晶成長の先端に も、やはりゲルマニウムが高濃度に存在することが確認 されている。ゲルマニウムが珪素膜に高濃度に存在して も半導体特性に影響を与えないが、活性領域においてゲ ルマニウムの濃度が不均一であると、素子の特性がばら つき好ましくない。したがって、本実施例においては、 活性層208においてゲルマニウム濃度の高い領域がチ ャネル形成領域と重ならないようにした。

【0061】その後、100体積%の水蒸気を含む10 気圧、500~600℃の、代表的には550℃の雰囲 気中において、1時間放置することによって、活性層 (珪素膜) 208の表面を酸化させ、酸化珪素膜209 を形成する。酸化珪素膜の厚さは100mmとする。熱 酸化によって酸化珪素膜209を形成したのち、基板 を、アンモニア雰囲気(1気圧、100%)、400℃ に保持させる。そして、この状態で基板に対して、波長 0.6~4μm、例えば、0.8~1.4μmにピーク をもつ赤外光を30~180秒照射し、酸化珪素膜20 9に対して窒化処理を施す。なおこの際、雰囲気に0. 1~10%のHC1を混入してもよい(図3(B))。 【0062】引き続いて、スパッタリング法によって、 厚さ300~800nm、例えば600nmのアルミニ ウム(0.01~0.2%のスカンジウムを含む)を成 膜する。そして、アルミニウム膜をパターニングして、 ゲート電極210を形成する(図3(C))。

【0063】さらに、このアルミニウムの電極の表面を 陽極酸化して、表面に酸化物層211を形成する。この 陽極酸化は、酒石酸が1~5%含まれたエチレングリコ ール溶液中で行う。得られる酸化物層211の厚さは2 00nmである。なお、この酸化物211は、後のイオ ンドーピング工程において、オフセットゲート領域を形 成する厚さとなるので、オフセットゲート領域の長さを 上記陽極酸化工程で決めることができる(図3

(D))。ゲート電極としてアルミニウムより耐熱性に 優れたシリコンもしくはシリサイドを用いてもよい。シ リコンもしくはシリサイドを用いてゲート電極を形成し た場合は、ゲート電極にサイドウォールを設けた後にイ オンドーピングすることによって、オフセットゲート領 域を形成することができる。

【0064】次に、イオンドーピング法(プラズマドー ピング法とも言う)によって、活性層領域(ソース/ド レイン、チャネルを構成する) にゲート電極部、すなわ ちゲート電極210とその周囲の酸化層211をマスク として、自己整合的にN導電型を付与する不純物(こと では燐)を添加する。ドーピングガスとして、フォスフ ィン(PH、)を用い、加速電圧を60~90kV、例 する。そして、珪素膜204をパターニング後、ドライ 50 えば80kVとする。ドーズ量は1×10゚゚~8×10

*** c m-2、例えば、4×10** c m-2とする。この結果、N型の不純物領域212と213を形成することができる。図からも明らかなように不純物領域とゲート電極とは距離xだけ放れたオフセット状態となる。このようなオフセット状態は、特にゲート電極に逆電圧(NチャネルTFTの場合はマイナス)を印加した際のリーク電流(オフ電流ともいう)を低減する上で有効である。特に、本実施例のようにアクティブマトリクスの画素を制御するTFTにおいては良好な画像を得るために画素電極に蓄積された電荷が逃げないようにリーク電流が低いことが望まれるので、オフセットを設けることは有効である。

【0065】その後、レーザー光の照射によってアニールを行う。レーザー光としては、KrFエキシマレーザー(液長248nm、パルス幅20nsec)を用いるが、他のレーザーであってもよい。レーザー光の照射条件は、エネルギー密度が200~400mJ/cm²、例えば250mJ/cm²とし、一か所につき2~10ショット、例えば2ショット照射した。このレーザー光の照射時に基板を200~450℃程度に加熱することとによって、効果を増大せしめてもよい(図3(E))。【0066】続いて、厚さ600nmの酸化珪素膜214を層間絶縁物としてブラズマCVD法によって形成する。さらに、スピンコーティング法によって透明なポリイミド膜215を形成し、表面を平坦化する。

【0067】そして、層間絶縁物214、215にコンタクトホールを形成して、金属材料、例えば、窒化チタンとアルミニウムの多層膜によってTFTの電極・配線217、218を形成する。最後に、1気圧の水素雰囲気で350℃、30分のアニールを行い、TFTを有す 30るアクティブマトリクスの画素回路を完成する(図3(F))。

【0068】本実施例で作製したTFTの活性領域の結晶性が良好であるので、TFTは高移動度を得ることができ、アクティブマトリックス型の液晶表示装置のドライバー回路に利用することができる。

【0069】本実施例は触媒元素にゲルマニウムを用いたが、他の14族元素を用いることもできる。また本実施例では、ゲルマニウムの導入法にLPCVD法を用いたが、他の方法を用いた固相法や、気相法、溶液塗布法 40などの方法を用いても同様の効果が得られる。

【0070】〔実施例4〕本実施例は逆スタガー型のTFTに本発明を適用したものである。図4に本実施例の作製工程の断面図を示す。まず、基板(コーニング7059)101上にスパッタリング法によって厚さ200nmの酸化珪素の下地膜(図示せず)を形成する。そして、金属シリサイドでなるゲート電極102を形成する。更にゲート絶縁膜103を成膜する。

【0071】次に、LPCVD法によって、厚さ50~ 150nm、例えば100nmの真性(I型)の非晶質 50

珪素膜を成膜する。そして原料にGeH、を用いてLPCVD法で5~100nm好ましくは10~50nmのゲルマニウム膜を成膜する。そして窒素雰囲気(大気圧)、550℃、4時間アニールして結晶化させる。ゲルマニウム膜を除去した後、KrFエキシマレーザーを照射し、さらに結晶化を助長させる。そして、珪素膜をパターニングして、島状の珪素膜(TFTの活性層)105を形成する(図4(B))。

【0072】次にマスク106を設け、イオンドーピング法(プラズマドーピング法とも言う)によって、活性層領域(ソース/ドレイン、チャネルを構成する)にN導電型を付与する不純物(ここでは燐)を添加する。ドーピングガスとして、フォスフィン(PH,)を用い、加速電圧を60~90kV、例えば80kVとする。ドーズ量は1×10³¹~8×10¹⁵cm⁻²、例えば、5×10³¹cm⁻²とする。この結果、N型の不純物領域107と108が形成される。

【0073】その後、レーザー光の照射によってアニール行う。レーザー光としては、KrFエキシマレーザー(液長248nm、パルス幅20nsec)を用いたが、他のレーザーであってもよい。レーザー光の照射条件は、エネルギー密度が200~400mJ/cm²、例えば250mJ/cm²とし、一か所につき2~10ショット、例えば2ショット照射する。このレーザー光の照射時に基板を200~450℃程度に加熱することによって、効果を増大せしめてもよい。また、この工程は、近赤外光によるランプアニールによる方法でもよい(図4(C))。

【0074】次に、層間絶縁膜として窒化珪素膜112、ボリイミド膜113を成膜する。更に、コンタクトホールの形成を行い、金属材料、例えば窒化チタンとアルミニウムの多層膜によってTFTの金属配線110、111を形成する。最後に、1気圧の水素雰囲気で350℃、30分のアニールを行い、逆スタガー型のTFTを完成する(図4(D))。

【0075】上記に示す方法で得られたTFTの移動度は110~150cm²/Vs、S値は0.2~0.5 V/桁であった。また、同様な方法によってソース/ドレインにホウ素をドーピングしたPチャネル型TFTも作製したところ、移動度は90~120cm²/Vs、S値は0.4~0.6 V/桁であり、公知のPVD法やCVD法によってゲート絶縁膜を形成した場合に比較して、移動度は2割以上高く、S値は20%以上も減少した。また、信頼性の面からも、本実施例で作製されたTFTは1000℃の高温熱酸化によって作製されたTFTは1000℃の高温熱酸化によって作製されたTF

【0076】本実施例は触媒元素にゲルマニウムを用いたが、他の14族元素を用いることもできる。また本実施例では、ゲルマニウムの導入法にLPCVD法を用いたが、他の方法を用いた固相法や、気相法、溶液塗布法

などの方法を用いても同様の効果が得られる。また本実 施例では珪素膜の全面にゲルマニウムを導入し結晶化珪 素膜を得たが、珪素膜の一部に選択的にゲルマニウムを 導入し横成長により結晶化珪素膜を得ても同様の効果が 得られる。

【0077】 [実施例5] 実施例1~4に示した構成を 有するアクティブマトリクス基板を用い、液晶表示装置 を構成した例を図5に示す。図5は液晶表示装置の本体 に相当する部位であり、液晶モジュールとも呼ばれる。 【0078】図5において、501は基板(石英、シリ コンウェハ、結晶化ガラスのいずれでも良い)、502 は下地となる絶縁性珪素膜であり、その上に本願発明の 作製工程に従って作製された半導体膜で複数のTFTが

【0079】これらのTFTは基板上に画素マトリクス 回路503、ゲイト側駆動回路504、ソース側駆動回 路505、ロジック回路506を構成する。その様なア クティブマトリクス基板に対して対向基板507が貼り 合わされる。アクティブマトリクス基板と対向基板50 7との間には液晶層(図示せず)が挟持される。

【0080】また、図5に示す構成では、アクティブマ トリクス基板の側面と対向基板の側面とをある一辺を除 いて全て揃えることが望ましい。こうすることで大阪基 板からの多面取り数を効率良く増やすことができる。

【0081】また、その一辺では、対向基板の一部を除 去してアクティブマトリクス基板の一部を露出させ、そ こにFPC (フレキシブル・プリント・サーキット) 5 08を取り付ける。 ここには必要に応じて I C チップ (単結晶シリコン上に形成されたMOSFETで構成される半 導体回路)を搭載しても構わない。

【0082】本願発明で利用する半導体薄膜を活性層と したTFTは極めて高い動作速度を有しているため、数 百MHz~数GHzの髙周波数で駆動する信号処理回路 を画素マトリクス回路と同一の基板上に一体形成すると とが可能である。即ち、図5に示す液晶モジュールはシ ステム・オン・バネルを具現化したものである。

【0083】なお、本実施例では本願発明を液晶表示装 置に適用した場合について記載しているが、アクティブ マトリクス型EL(エレクトロルミネッセンス)表示装 置などを構成することも可能である。また、光電変換層 40 を具備したイメージセンサ等を同一基板上に形成するこ とも可能である。

【0084】なお、上述の液晶表示装置、EL表示装置 及びイメージセンサの様に光学信号を電気信号に変換す る、又は電気信号を光学信号に変換する機能を有する装 置を電気光学装置と定義する。本願発明は絶縁表面を有 する基板上に半導体薄膜を利用して形成しうる電気光学 装置ならば全てに適用することができる。

【0085】 (実施例6) 本願発明は実施例5に示した 様な電気光学装置だけでなく、機能回路を集積化した薄 50 あり、本体2501、光源2502、表示装置250

膜集積回路(または半導体回路)を構成することもでき る。例えば、マイクロプロセッサ等の演算回路や携帯機 器用の高周波回路(MMIC:マイクロウェイブ・モジ ュール・IC) などを構成することもできる。

【0086】さらには、薄膜を用いるTFTの利点を生 かして三次元構造の半導体回路を構成し、超高密度に集 積化されたVLS!回路を構成することも可能である。 との様に、本願発明のTFTを用いて非常に機能性に富 んだ半導体回路を構成することが可能である。なお、本 明細書中において、半導体回路とは半導体特性を利用し て電気信号の制御、変換を行う電気回路と定義する。

【0087】 [実施例7] 本実施例では、実施例5や実 施例6に示された電気光学装置や半導体回路を搭載した 電子機器(応用製品)の一例を図6に示す。なお、電子 機器とは半導体回路および/または電気光学装置を搭載 した製品と定義する。

【0088】本願発明を適用しうる電子機器としてはビ デオカメラ、電子スチルカメラ、プロジェクター、ヘッ ドマウントディスプレイ、カーナビゲーション、パーソ ナルコンピュータ、携帯情報端末(モバイルコンピュー タ、携帯電話、PHS等)などが挙げられる。

【0089】図6(A)は携帯電話であり、本体200 1、音声出力部2002、音声入力部2003、表示装 置2004、操作スイッチ2005、アンテナ2006 で構成される。本願発明は音声出力部2002、音声出 力部2003、表示装置2004等に適用することがで

【0090】図6(B)はビデオカメラであり、本体2 101、表示装置2102、音声入力部2103、操作 スイッチ2104、バッテリー2105、受像部210 6で構成される。本願発明は表示装置2102、音声入 力部2103、受像部2106等に適用することができ

【0091】図6(C)はモバイルコンピュータ(モー ビルコンピュータ)であり、本体2201、カメラ部2 202、受像部2203、操作スイッチ2204、表示 装置2205で構成される。本願発明はカメラ部220 2、受像部2203、表示装置2205等に適用でき る.

【0092】図6(D)はヘッドマウントディスプレイ であり、本体2301、表示装置2302、バンド部2 303で構成される。本発明は表示装置2302に適用 することができる。

【0093】図6(E)はリア型プロジェクターであ り、本体2401、光源2402、表示装置2403、 偏光ビームスプリッタ2404、リフレクター240 5、2406、スクリーン2407で構成される。本発 明は表示装置2403に適用することができる。

【0094】図6(F)はフロント型プロジェクターで

17

3、光学系2504、スクリーン2505で構成される。本発明は表示装置2503に適用することができる。

【0095】以上の様に、本願発明の適用範囲は極めて 広く、あらゆる分野の電子機器に適用することが可能で ある。また、電気光学装置や半導体回路を必要とする製 品であれば全てに適用できる。

[0096]

【発明の効果】14族の触媒元素を導入して低温で短時間で結晶化させ、さらにレーザー光または強光を照射し 10 た結晶性珪素膜を用いて、半導体装置を作製することで、生産性が高く、特性のよいデバイスを得ることができる。

【0097】そして、この様にTFTの電気特性に影響を及ぼさない触媒元素を用いることによって、優れた電気特性を有するTFTを実現させ、そのTFTで高性能な半導体装置を実現することが可能となる。

【図面の簡単な説明】

【図1】 実施例の作製工程を示す

【図2】 実施例の作製工程を示す。

【図3】 実施例の作製工程を示す。

*【図4】 実施例の作製工程を示す。

【図5】 液晶モジュールの構成を示す。

【図6】 電子機器の構成を示す。

【符号の説明】

301・・・ガラス基板

302・・・酸化珪素膜

3030 · · 非晶質珪素膜

304・・・ゲルマニウム膜

3031 · · 結晶性珪素膜

3032 · · 島状領域

305・・・酸化珪素膜

306・・・ゲート電極

307・・・陽極酸化物

3132・・ソース領域

3232・・ドレイン領域

3332・・チャネル形成領域

308 · · · 層間絶縁膜(酸化珪素膜)

3091・・ソース電極・配線

3092・・ドレイン電極・配線

20 3100・・NIの電気的接合部分

* 3101・・NIの電気的接合部分

【図1】

[図2]

【図6】

