	(ii) use 1. + an op-category we can construct at of F.
	Pet'n: let $X \in \mathcal{L}$ the under category w.v.t. X so the pullback (in simplicial sets) $\mathcal{L}^{X/-} \rightarrow \mathcal{F}_{un}(\mathcal{I}\mathcal{I}, \mathcal{L}) (= M_{q,p} (\Delta', \mathcal{L})).$
	pullback (in simplicial sets)
	Ex1> Fun [[], [] (= Map [1', 6]).
	المراعل المراع
-	3xxxidz + evo
	2 x x x i d z . E . (30,12, E)
	11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	More governly for t: K - to we define to by
	The pull backs:
	More goverly to, $F: K \to \mathcal{L}$ we define $\mathcal{L}^{F'}$ by the pull backs: $ \begin{array}{cccccccccccccccccccccccccccccccccc$
_	
	7 AF 1= 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
_	F . # (F
	F is the image of F in Fun(k, Po!).
	Prop: For any diagram p: k - & the simplicial set 681-
	is an a-category.
	Pfilen: (just in the case F. 1° - E, i.e. Xe El.
	Hou (X, Y) - 6 X1-
	Achally the map p is a
	left fibration, i.e. lifts against
	A; co A" for O < i < n.
	Then I'm & is an inner tibration.
i de la	feg. No → Exi-
	$\Delta' \rightarrow \zeta$

	[3
	Of n: A solimit of a diagram Fik - I is an initial
	object in property of a diagram F: K -> 6 is an initial
	RK: (1) the special soil lor A. A lobject list at the gree
	an initial object is unique up to a contractible space of choices,
	i.e. bx/ & is a trivial Kan fibration.
	Follows from: Exp -> 6 is a left titration, + Y Y E 6
	The fiber Ex,- x } Y = Hom (x, y) is contractible. [HTT lemma ?!.].4.] Ex x } Y = Hom (x, y) is contractible.
17.	(HTT lemma ?!. 3.4.]. (AD) Our det In of Exer of (or of E ^{-/x}) is a slightly diff. Then the initial detinition in (HTT \$1.2.9]. Its bushed Exi- They had turne out to be equivalent. as no-cotopories. [HTT 4.7.1.5.] Exi- Exi- Exi- Exi- They had turne out to be equivalent. as no-cotopories. [HTT 4.7.1.5.]
	Then the initial definition in (1+77 817.97 0 to doubted Ex-
	Though & tune out to be equivalent, as so-cotopories. [HIT 4.7.1-S.]
	1 Ext- Ext-
	(iii) Colimits of all diagrams of shape k, i.e. Fun(k, &) this is defined a the left adjoint bolow:
	is defined a the left adjoint below:
	Glim P
	Fm(k, 6) 000 - 1
	This leads us to the discussion of a third important concept in category theory.
	apport part.
	3. Adjunction functors: in usual cat. They we have the duto:
	F: CID: 6 + natural transformations:
	ido => GOF & FOG => id

<u>Froblem:</u> We don't have a 2-category structure on Catos, i.e. we killed all non-investible untural transformations in its definition. It would be great to be able to termulate this data using only Catoo. Composition 4. In Talk 4 we discussed the easterction of an associative map o on the cortegory Iap. However, what about promoting this to a Ander of 00-categories:

How (-, -): Lop X & - Spc. (not just into hSpc = Top.) These two problems are subtle in so-categories, but the notion of Cartesian & Cartesian fibrations helps answer both problems:

(i) write functors between so-categories, specially if the tauget is Spec or Catoo.

(ii) transform 7-categorical data into 1-categorical data. Fibrations & Crothan direct construction. We are interested in the following picture:

P I map of so-onts.

P -'Idl=

P - 111 - Hde P Ed:= Exidity is an no-cat - Y worphism d-od' a tructor to: by - bd, i.e.

for each YE Ed' give the Lata at a morphism F: X-oy

s.t. $\rho(\vec{r}) = t$, i.e. $t^{\prime}_{y} = X$.

Q: How to chose this data f: X -> y. Heuristically, we want to says that tow any object ? in & the data of a map should be recovered from a data into gard into d should be recovered from a data into gard into d should be gard into d should be gard into d should be such that the commical worph; sm: (A) How (2, X) => How (2, Y/ x How (p/2), p/x)). is qui isomorphism in Spc. Exercise: (1) being an isom is equivalent to asking that \overline{f} is a f-sal object in f-sal object Det'n: A morphism f: X -> Y in & satisfying (A) is proposed on p-Contesion, and we say f is a p-Contesion lift of p(f). in P. Def'u: A finctor p: 6 - p is a Cartesian fibration if
for every YE 6 and f: X - p(4) (= y) three
exists a p-Cartesian lift of f

Before giving examples of Cartesian (or co Cartesian) tibrations we mention the straightening / unstraightening result, which continues that the notion of tibrations capture the data of tunolous into the co-category of co-calls. Let Cart (B) be the subcategory of Catago well generated by Cartesian hibrations where marphisms take p- Cartesian morphisms

D -> D' to p'- Cartesian morphisms. P de' The f-llowing is Thm. 3.2.0.1. [1+TT]. Ihm: For any co-category & one has an equivalence. St: Cart (b) = Fun (book Catoo): Un,
whom in tormally

- the straightening tructor is girm by

St (p = p): pop - Catoo.

Un (pep - Catoo) is the co-category w

-objects: (QX,D/, XE & DE F(X).

- marphisms. Opplication (x, D) -0 (Y, D') is 4: X → Y + x: F(+)(D') → D

Rk: -(i/St, Un) forms an adjoint pair.

(ii) Un is sometimes called the Grothendieck construction, in analogy to the similar construction in the thy of fibered categories.