MA 114 Worksheet #00: Review and Integration By Parts

1. Provide the most general antiderivative of the following functions:

(a)
$$f(x) = x^4 + x^2 + x + 1000$$

(b)
$$g(x) = (3x - 2)^{20}$$

(c)
$$h(x) = \frac{\sin(\ln(x))}{x}$$

2. Compute the following definite integrals:

(a)
$$\int_{-1}^{1} e^{u+1} du$$

(d)
$$\int_{0}^{10} |x-5| dx$$

(b)
$$\int_{-2}^{2} \sqrt{4-x^2} \, dx$$

(e)
$$\int_{0}^{1} xe^{-x^{2}} dx$$

(c)
$$\int_{1}^{9} \frac{x-1}{\sqrt{x}} dx$$

Hint: For some of the integrals, you will need to interpret the integral as an area and use facts from geometry to compute the integral.

3. Write as a single integral in the form $\int_a^b f(x) dx$:

$$\int_{-2}^{2} f(x) \, dx + \int_{2}^{5} f(x) \, dx - \int_{-2}^{-1} f(x) \, dx$$

4. Evaluate the following:

(a)
$$\int_0^4 (3x^{0.5} - 2xe^{-x^2}) dx$$

(e)
$$G'(2)$$
, if $G(x) = \int_{1}^{x^3} te^t dt$

(b)
$$\int_0^1 \frac{e^{2x}}{1 + e^{2x}} \, dx$$

(f)
$$A'(x)$$
, if $A(x) = \int_{2}^{\sqrt{3x}} \sin(t) dt$

(c)
$$\int \frac{[\ln(s)]^2}{s} \, ds$$

(g)
$$\int_{-2}^{1} 3 + 2|x| dx$$

(d)
$$\int (z^3 + 1)\sin(z^4 + 4z) dz$$

- 5. Use calculus to find the area of the triangle with the vertices (2,0), (0,2), and (-1,1).
- 6. Evaluate the integral

$$\int_0^{2\pi} \sqrt{1 - \cos^2(x)} \, dx.$$

7. Find $\int_0^2 f(x) dx$, where

$$f(x) = \begin{cases} x^2 & \text{if } 0 \le x \le 1 \\ x & \text{if } 1 < x \le 2 \end{cases}.$$

- 8. Evaluate the following integrals using integration by parts.
 - (a) $\int x^2 \ln(x) dx$ Hint: Let $u = \ln(x)$ and $dv = x^2 dx$.
 - (b) $\int \theta \cos(\theta) d\theta$ Hint: Let $u = \theta$ and $dv = \cos(\theta) d\theta$.
 - (c) $\int x \cos(5x) dx$
 - (d) $\int te^{-3t}dt$
 - (e) $\int (x-1)\sin(\pi x)dx$
 - (f) $\int (x^2 + 2x)\cos(x)dx$