Homework 3

Name: Rohan Karamel

NetID: rak218

Course: Graph Theory

Instructor: Professor Benjamin Gunby

Date: February 16, 2024

Problem 1a.

Solution. Here's an adjacency matrix, A, of G:

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Problem 1b.

Solution. Let the first row and column of the matrix A signify the vertex a. Likewise, let the third row and column signify the vertex b(such that the distance between a and b is 2). To find the number of walks of length 30, we can just find the (1,3) or (3,1) element of the matrix A^{30} . Using a computer, the matrix A^{30} is

```
215492564 214146295
                      214978335
                                 214978335
                                            214146295
214146295
           215492564
                      214146295
                                 214978335
                                            214978335
                                            214978335
214978335
           214146295
                      215492564
                                 214146295
214978335
           214978335
                      214146295
                                 215492564
                                            214146295
214146295
           214978335
                     214978335
                                214146295
                                            215492564
```

Thus, the number of walks of length 30 from a to b is 214 978 335.

Problem 2.

Proof. Let T be the transition probability matrix of G. To prove that $\frac{\deg(v)}{2m}$ is a steady state, we need to show that

$$Tx = x, \quad x = \begin{bmatrix} \frac{\deg(v_1)}{2m} \\ \frac{\deg(v_2)}{2m} \\ \vdots \\ \frac{\deg(v_n)}{2m} \end{bmatrix}$$

Now, we know that

$$Tx = \begin{bmatrix} \sum_{k=1}^{n} T_{1,i} \cdot \frac{\deg(v_1)}{2m} \\ \sum_{k=1}^{n} T_{2,i} \cdot \frac{\deg(v_2)}{2m} \\ \vdots \\ \sum_{k=1}^{n} T_{n,i} \cdot \frac{\deg(v_n)}{2m} \end{bmatrix}$$

By construction, we also know that the (i, j)-element of T is equal to $\frac{1}{\deg(v_i)}$ if $i \neq j$ and v_i is connected to v_j . Let f(u, v) signify that the vertices u and v are connected. Therefore, we can simplify Tx to

$$\begin{bmatrix} \sum_{k:f(v_1,v_k)} \frac{1}{\deg(v_1)} \cdot \frac{\deg(v_1)}{2m} \\ \sum_{k:f(v_2,v_k)} \frac{1}{\deg(v_2)} \cdot \frac{\deg(v_2)}{2m} \\ \vdots \\ \sum_{k:f(v_n,v_k)} \frac{1}{\deg(v_n)} \cdot \frac{\deg(v_n)}{2m} \end{bmatrix}$$

This can be written as

$$\begin{bmatrix} \sum_{k:f(v_1,v_k)} \frac{1}{2m} \\ \sum_{k:f(v_2,v_k)} \frac{1}{2m} \\ \vdots \\ \sum_{k:f(v_n,v_k)} \frac{1}{2m} \end{bmatrix}$$

Because there are $deg(v_i)$ terms of the i^{th} sum, this equals

$$\begin{bmatrix} \frac{\deg(v_1)}{2m} \\ \frac{\deg(v_2)}{2m} \\ \vdots \\ \frac{\deg(v_n)}{2m} \end{bmatrix}$$

Thus, is equivalent to x and we are done.

Problem 3a.

Proof. We know that because G has 6 vertices and non-bipartite, it must contain an odd cycle. Notably, a 3-cycle (triangle) or a 5-cycle because G has only 6 vertices. Assume for the sake of contradiction that G doesn't contain a triangle. We can form G by starting with C_5 as it must contain the 5-cycle. However, to make G 3-regular, we must connect more edges. But there is no possible edge you can add between vertices that will not create a 3-cycle. Thus, a contradiction forms. Therefore G must contain a triangle.

Problem 3b.

Proof. 3 edges because U needs at least 3 edges to make the triangle. U also has at most 3 edges connected to each of its vertices as a triangle is also the complete graph on 3 vertices. Therefore, there is exactly 3 edges.

Because each vertex has degree 3, and the vertices in U connect to two other vertices in U, each of those vertices must connect to exactly 1 other vertex in W. Therefore there is 3 edges that connect a vertex in U and in W, 1 for each vertex in U.

We have sorted that all the vertices in U are connected to two vertices in U and 1 in W. Now, let's say all of the vertices in U connected to the same vertex in W. Then it would be impossible for the other vertices in W to be degree 3, as they can only connect to each other and are max degree 2. Now, suppose that 2 vertices in U connected to the same vertex in W. Then, the vertex in W with no connection to U could only connect to the other two vertices in W, which would be max degree 2. Therefore, we have shown that each vertex in U connects to a unique vertex in W. Because of this, it follows that each vertex in W must connect to the other two vertices in W to be degree 3.

We know W forms a triangle because each of the three vertices in W is connected to two other vertices in W. This creates a 3-cycle/triangle. \Box

Problem 3c.

Proof. Let the smaller triangle in the drawing be U. Let the bigger triangle be W. We can see that the drawing follows all the same rules as G does. This includes, 3-regular, non-bipartite, and all the rules we showed in 3b. We can see the 3 edges that connect vertices in U which form a triangle. We can see the 3 edges that connect a vertex in U with a unique vertex in W (and vice-versa). We can see the 3 edges that connect vertices in W which form a triangle. \Box