

|     | 24/  |
|-----|------|
|     | 20/  |
| a-1 | Lax. |
| 0// | da   |

| <br>F(x)  | Sin  | los      | Tan        | Cof       | <b>4</b>             | 90                   |
|-----------|------|----------|------------|-----------|----------------------|----------------------|
| 0         |      |          |            |           |                      | <b>A</b>             |
|           |      | <u> </u> |            |           |                      | И                    |
| 30 (T/6)  | 1/2  | V3/2     | V3/3       | V3        |                      | Quadrant I           |
|           |      |          |            |           | Quadrant II          | sin 0: t             |
| 45 (T/4)  | V42  | 52/2     | 1          | 1         | Sin 0: +             | (≥s <del>+</del> : + |
|           | ,    | ĺ        |            |           | 180°   Car 0: -      | tan o: t             |
| bo (T/3)  | 13/2 | 1/2      | $\sqrt{3}$ | <u>V3</u> |                      | 7 360                |
|           |      |          |            | 3         | Quadrant III         | Quadrant IV 360      |
| 90 (V2)   | 1    | 0        | 20         | 0         | Sin O: -             | Sin O: -             |
|           |      |          |            |           | Lo <sub>3</sub> θ: − | (ο <sub>2</sub> θ: + |
| 180 (T)   | 0    | -1       | D          | 90        | Tam o: t             | tan 0: -             |
|           |      |          |            |           |                      |                      |
| 360 (2TT) | 0    | Λ        | 0          | Ø         |                      | 27°                  |
|           |      |          |            |           |                      |                      |

Sin 
$$\theta = \frac{\delta p}{hyb} = \frac{1}{csc\theta}$$
 (sc =  $\frac{hyb}{\delta p} = \frac{1}{sin\theta}$ 

$$\log \theta = \frac{\text{ad} t}{\text{hyp}} = \frac{1}{\text{sec}\theta} \qquad \frac{1}{\text{ad} t} = \frac{1}{\text{hyp}}$$

tan 
$$\theta = \frac{d\phi}{dt} = \frac{din\theta}{ds}$$
 but  $\theta = \frac{adj}{ds} = \frac{L}{sin\theta}$ 

$$0 \quad \text{Sin } (90^\circ - \theta) = \text{los } \theta$$

$$0 \quad \text{los } (90^\circ - \theta) = \text{sin } \theta$$

spousite

$$\iiint \sin^2 \theta + \cos^2 \theta = 1$$

Resulting into

$$(os (2A) = |-sin^2 A - sin^2 A - |-2sin^2 A| = |-2sin^2 A - |-|-2sin^2 A| = |-2sin^2 A - |-|-2sin^2 A|$$

Product identities

Sum identities

$$\beta$$
 sin(A) + sin(B) =  $\frac{2}{3}$  sin( $\frac{A+B}{2}$ ) los( $\frac{A-B}{2}$ )

Sin (A) - Sin (B) = 2 Sin 
$$\left(\frac{A-13}{2}\right)$$
 Cos  $\left(\frac{A+1}{2}\right)$ 

$$\cos(A) - \cos(B) = -2 \sin(\frac{A+B}{2}) \sin(\frac{A-B}{2})$$

Half-angle identities

$$fin^2\left(\frac{A}{2}\right) = \frac{1 - \cos(A)}{2}$$

$$(os^{2}(A) = 1 + css(A)$$

Example: Find the exact ratio of sin (15)

$$Sin(15°) = Sin(45'-30)$$
= Sin 45' lot 30' - Cos(45) Sin (30)
$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$$

$$= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

From radian to degree the S rad sos To define the inverse function for f, the function of has to be one to one If For is me Ex: for = x2 is not one-to-one because (-yand(1) have the same range, Shich is 1 duverse function stes Step 1: rerify if the function is one-to-one Hebr. Alse for se Ptco 3: Vroitch x for y Ex: 1(x) = 3x+2 Step1: (x) = f(2) Step2: 7= 3x, +2 = 3x2 f2 X= J-2 3x1 = 3x2  $\chi_{\ell} = \chi_{r}$ Steps x= 4-2  $\sqrt{\frac{2}{3}} = \frac{2-2}{3}$ 

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$$

Steps let 
$$f(x) = f(x_2)$$

$$\frac{2x_1+1}{4x_1+3} \times \frac{2x_2+1}{4x_2+3}$$

$$(2x_1+1)(4x_2+3)=(2x_2+1)(4x_1+3)$$

8×1×2+6×1+4×2+8=8×1×2+6×2+4×1+8

6x1 fux2 = 6x2 fux1

$$\frac{2x = \frac{1-3y}{2y-1}}{2}$$

$$y = 2 - 67$$
 $2y - 1$ 

$$\chi = -3/y$$

|       | Somair | rounge |                 |
|-------|--------|--------|-----------------|
| f (M) |        |        |                 |
| f (h) |        |        | $\overline{\ }$ |

Ex = \( \frac{1}{3} \times - 10 Fred F'(x). Also find the domain and nays.
I F and F'. 0 Wine