Stochastic Volatility Modelling: A Practitioner's Approach

Lorenzo Bergomi

Global Markets Quantitative Research

lorenzo.bergomi@sgcib.com

Paris, Third SMAI European School in Financial Mathematics
August 2010

Outline

- Motivation
- Traditional models the Heston model as an example
- Practitioner's approach an example
- Conclusion

Papers Smile Dynamics I, II, III, IV are available on SSRN website

Motivation

- Why don't we just delta-hedge options ?
- Daily P&L of delta-hedged short option position is:

$$P\&L = -\frac{1}{2}S^2\frac{d^2P}{dS^2}\left[\frac{\delta S^2}{S^2} - \hat{\sigma}^2\delta t\right]$$

• Write daily return as: $\frac{\delta S_i}{S_i} = \sigma_i Z_i \sqrt{\delta t}$. Total P&L reads:

$$P\&L = -\frac{1}{2}\sum S_i^2 \left. \frac{d^2P}{dS^2} \right|_i \left(\sigma_i^2 Z_i^2 - \hat{\sigma}^2 \right) \delta t$$

- Variance of daily P&L has two sources:
 - \bullet the Z_i have thick tails
 - the σ_i are correlated and volatile
 - Delta-hedging not sufficient in practice
 - Options are hedged with options!

- Implied volatilities of market-traded options (vanilla, ...) appear in pricing function $P(t, S, \hat{\sigma}, p, ...)$.
- Other sources of P& L:

$$P\&L = -\frac{1}{2}S^{2}\frac{d^{2}P}{dS^{2}}\left[\frac{\delta S^{2}}{S^{2}} - \hat{\sigma}^{2}\delta t\right] - \frac{dP}{d\hat{\sigma}}\delta\hat{\sigma}$$
$$-\left[\frac{1}{2}\frac{d^{2}P}{d\hat{\sigma}^{2}}\delta\hat{\sigma}^{2} + \frac{d^{2}P}{dSd\hat{\sigma}}\delta S\delta\hat{\sigma}\right] + \cdots$$

- Dynamics of implied parameters generates P&L as well
- Vanilla options should be considered as hedging instruments in their own right
- Using options as hedging instruments:
 - lowers exposure to dynamics of realized parameters, e.g. volatility
 - generates exposure to dynamics of implied parameters

Example 1: barrier option

In the Black-Scholes model, a barrier option with payoff f can be statically replicated by a European option with payoff g given by:

$$\text{Barrier:} \left\{ \begin{array}{l} f(S) & \text{if } S < L \\ 0 & \text{if } S > L \end{array} \right. \text{ European payoff:} \left\{ \begin{array}{l} f(S) & \text{if } S < L \\ -\left(\frac{L}{S}\right)^{\frac{2r}{\sigma^2}-1} f\left(\frac{L^2}{S}\right) & \text{if } S > L \end{array} \right.$$

In our example f(S) = 1 and L = 120. European payoff is approximately double European Digital.

 Gamma / Vega well hedged by double Euro digital – are there any residual risks?

- When S hits 120, unwind double Euro digital. Value of Euro digital depends on implied skew at barrier.
- Value of double Euro digital:

$$\begin{split} D &= \frac{\mathsf{Put}_{L+\epsilon} - \mathsf{Put}_{L-\epsilon}}{2\epsilon} = \left. \frac{d\mathsf{Put}_K}{dK} \right|_L \\ \frac{d\mathsf{Put}_K}{dK} &= \frac{d\mathsf{Put}_K^{BS}(K, \hat{\sigma}_K)}{dK} = \frac{d\mathsf{Put}_K^{BS}}{dK} + \frac{d\mathsf{Put}_K^{BS}}{d\hat{\sigma}} \frac{d\hat{\sigma}_K}{dK} \\ D &= \sum_{\substack{\simeq \text{ no sensitivity}}}^{BS}(\hat{\sigma}_L) + \left. \frac{d\mathsf{Put}_L^{BS}}{d\hat{\sigma}} \frac{d\hat{\sigma}_K}{dK} \right|_L \end{split}$$

▶ Barrier option price depends on scenarios of implied skew at barrier !

Example 2 : cliquet

A cliquet involves ratios of future spot prices – ATM forward option pays:

$$\left(\frac{S_{T_2}}{S_{T_1}}-k\right)^+$$

- In Black-Scholes model, price is given by: $P_{BS}(\hat{\sigma}_{12}, r, ...)$
 - S does not appear in pricing function ??
 - Cliquet is in fact an option on forward volatility. For ATM cliquet (k = 100%):

$$P_{BS} \simeq \frac{1}{\sqrt{2\pi}} \hat{\sigma}_{12} \sqrt{T_2 - T_1}$$

> Price of cliquet depends on dynamics of forward implied volatilities

Modelling the full volatility surface

• Natural approach: write dynamics for prices of vanilla options as well:

$$\left\{ \begin{array}{l} dS = (r-q)Sdt + \sigma SdW_t^S \\ dC^{KT} = rC^{KT}dt + \bullet \ dW_t^{KT} \end{array} \right.$$

Better: write dynamics on implied vols directly (P. Schönbucher)

$$\begin{cases} dS = (r - q)Sdt + \sigma SdW_t^S \\ d\hat{\sigma}^{KT} = \star dt + \bullet \ dW_t^{KT} \end{cases}$$

- drift of ô^{KT} imposed by condition that C^{KT} be a (discounted) martingale
 How do we ensure no-arb among options of different K/T??
- Other approach: model dynamics of local (implied) volatilities (R. Carmona & S. Nadtochiy, M. Schweizer & J. Wissel)
 - drift of local (implied) vols is non-local & hard to compute
- So far inconclusive − try with simpler objects: Var Swap volatilities

Forward variances

• Variance Swaps are liquid on indices – pay at maturity

$$\frac{1}{T-t} \sum_{t}^{T} \ln \left(\frac{S_{i+1}}{S_i} \right)^2 - \hat{\sigma}_t^{T^2}$$

- $\hat{\sigma}_t^T$: Var Swap implied vol for maturity T, observed at t
- ullet If S_t diffusive $\hat{\sigma}_t^T$ also implied vol of European payoff $-2\ln\left(rac{S_T}{S_t}
 ight)$
- Long $T_2 t$ VS of maturity T_2 , short $T_1 t$ VS of maturity T_1 . Payoff at T_2 :

$$\sum_{T_1}^{T_2} \ln \left(\frac{S_{i+1}}{S_i} \right)^2 - \left((T_2 - t) \ \hat{\sigma}_t^{T_2}^2 - (T_1 - t) \ \hat{\sigma}_t^{T_1}^2 \right) \ = \ \sum_{T_1}^{T_2} \ln \left(\frac{S_{i+1}}{S_i} \right)^2 - (T_2 - T_1) V_t^{T_1 T_2}$$

where discrete forward variance $V_t^{T_1T_2}$ is defined as:

$$V_t^{T_1 T_2} = \frac{(T_2 - t) \, \hat{\sigma}_t^{T_2}^2 - (T_1 - t) \, \hat{\sigma}_t^{T_1}^2}{T_2 - T_1}$$

• Enter position at t, unwind at $t + \delta t$. P&L at T_2 is:

$$P\&L = (T_2 - T_1) \left(V_{t+\delta t}^{T_1 T_2} - V_t^{T_1 T_2} \right)$$

No δt term in P&L: $\triangleright V^{T_1T_2}$ has no drift.

 Replace finite difference by derivative: introduce continuous forward variances ζ^T_t:

$$\zeta_t^T = \frac{d}{dT} \left((T - t) \ \hat{\sigma}_t^{T^2} \right)$$

 ζ^T is driftless:

$$d\zeta_t^T = \bullet dW_t^T$$

- ζ^T easier to model than $\hat{\sigma}^{KT}$??
 - ullet The ζ^T are driftless
 - ullet Only no-arb condition: $\zeta^T>0$
- ▶ Model dynamics of foward variances

Full model

ullet Instantaneous variance is $\zeta_t^{T=t}.$ Simplest diffusive dynamics for S_t is:

$$dS_t = (r - q)S_t dt + \sqrt{\zeta_t^t}S_t dZ_t^S$$

Pricing equation is:

$$\begin{split} &\frac{dP}{dt} + (r - q)S\frac{dP}{dS} + \frac{\zeta^t}{2}S^2\frac{d^2P}{dS^2} \\ &+ \frac{1}{2}\int_t^T \int_t^T \frac{\langle d\zeta^u_t d\zeta^v_t \rangle}{dt} \frac{d^2P}{\delta\zeta^u \delta\zeta^v} du dv + \int_t^T \frac{\langle dS_t d\zeta^u_t \rangle}{dt} \frac{d^2P}{dS d\zeta^u} du \ = \ rP \end{split}$$

- Dynamics of S / ζ^T generates joint dynamics of S and $\hat{\sigma}^{KT}$
 - Even though VSs may not be liquid, we can use forward variances to drive the dynamics of the full volatility surface.
- Can we come up with non-trivial low-dimensional examples of stochastic volatility models?
- How do we specify a model what do require from model ?

Historical motivations

Traditionally other motivations put forward – not always relevant from practitioner's point of view – for example:

- Stoch. vol. needed because realized volatility is stochastic, exhibits clustering, etc.
- We don't care about dynamics of realized vol we're hedged. What we need to model is the dynamics of implied vols.

- Stoch. vol. needed fo fit vanilla smile
- Not always necessary to fit vanilla smile usually mismatch can be charged as hedging cost
- - OK if one is able to pinpoint vanillas to be used as hedges.
 - Letting vanilla smile through model filter dictate dynamics of implied vols may not be reasonable.

Connection to traditional approach to stochastic volatility modelling

Traditionally stochastic volatility models have been specified using the instantaneous variance:

Start with historical dynamics of instantaneous variance:

$$dV = \mu(t, S, V, p)dt + \alpha()dW_t$$

ullet in "risk-neutral dynamics", drift of V_t is altered by "market price of risk":

$$dV = (\mu(t, S, V, p) + \lambda(t, S, V))dt + \alpha()dW_t$$

 a few lines down the road, jettison "market price of risk" and conveniently decide that risk-neutral drift has same functional form as historical drift – except parameters now have stars:

$$dV = \mu(t, S, V, p^*)dt + \alpha()dW_t$$

- eventually calibrate (starred) parameters on smile and live happily ever after.
- \triangleright V is in fact wrong object to focus on drift issue is pointless:

$$V_t = \zeta_t^t \quad o \quad dV_t = \left. rac{d\zeta_t^T}{dT} \right|_{T=t} dt \ + ullet \ dW_t^t$$

The Heston model

Among traditional models, the Heston model (Heston, 1993) is the most popular:

$$\begin{cases} dV_t = -k(V_t - V_0)dt + \sigma\sqrt{V_t}dZ_t \\ dS_t = (r - q)S_tdt + \sqrt{V_t}S_tdW_t \end{cases}$$

• It is an example of a 1-factor Markov-functional model of fwd variances: ζ^T and $\hat{\sigma}^T$ are functions of V_t :

$$\zeta_t^T = E_t[V_T] = V_0 + (V_t - V_0)e^{-k(T-t)}
\hat{\sigma}_t^{T^2} = \frac{1}{T-t} \int_t^T \zeta_t^{\tau} d\tau = V_0 + (V_t - V_0) \frac{1 - e^{-k(T-t)}}{k(T-t)}$$

• Look at term-structure of volatilities of $\hat{\sigma}_t^T$. Dynamics of $\hat{\sigma}_t^T$ is given by:

$$d[\hat{\sigma}_t^{T^2}] = \star dt + \frac{1 - e^{-k(T-t)}}{k(T-t)} \sigma \sqrt{V_t} dZ_t$$

Volatilities of volatilities

• Term-structure of volatilities of volatilities:

$$T - t \ll \frac{1}{k} \quad \text{Vol}(\sigma_t^T) \simeq 1 - \frac{k(T - t)}{2}$$

 $T - t \gg \frac{1}{k} \quad \text{Vol}(\sigma_t^T) \simeq \frac{1}{k(T - t)}$

Term-structure of historical volatilities of volatilities for the Stoxx50 index:

Term-structure of skew

ullet ATM skew in Heston model: at order 1 in volatility-of-volatility σ :

$$T - t \ll \frac{1}{k} \quad \frac{d\hat{\sigma}^{KT}}{d \ln K} \Big|_{K=F} = \frac{\rho \sigma}{4\sqrt{V_t}}$$

$$T - t \gg \frac{1}{k} \quad \frac{d\hat{\sigma}^{KT}}{d \ln K} \Big|_{K=F} = \frac{\rho \sigma}{2\sqrt{V_0}} \frac{1}{k(T-t)}$$

- ightharpoonup Short-term skew is flat, long-term skew decays like 1/(T-t)
- Market skews of indices display $\simeq 1/\sqrt{T-t}$ decay:

Relationship of skew to volatility

ullet ATM skew in Heston model at order 1 in volatility-of-volatility σ :

$$T-t \ll rac{1}{k}: \qquad \left. rac{d\hat{\sigma}^{KT}}{d\ln K}
ight|_{K=F} = rac{
ho\sigma}{4\sqrt{V_t}} \simeq rac{
ho\sigma}{4\hat{\sigma}_{\mathrm{ATM}}}$$

- In Heston model short-term skew is inversely proportional to short-term ATM vol
- Historical behavior for Stoxx50 index: (left-hand axis: $\hat{\sigma}_{ATM}$, right-hand axis:

$$\hat{\sigma}_{K=95} - \hat{\sigma}_{K=105})$$

Maybe not reasonable to hard-wire inverse dependence of skew on $\hat{\sigma}_{ATM}$.

Smile of vol-of-vol

In Heston model short ATM vol is normal:

$$\hat{\sigma}_{ATM} \simeq \sqrt{V} \rightarrow d\hat{\sigma}_{ATM} = \star dt + \frac{\sigma}{2} dZ$$

• Historical behavior for Stoxx50 index: (left-hand axis: $\hat{\sigma}_{ATM}$, right-hand axis: 6-month vol of $\hat{\sigma}_{ATM}$)

- \triangleright $\hat{\sigma}_{\mathsf{ATM}}$ seems log-normal or more than log-normal rather than normal.
- Other issue: in Heston model VS variances are floored:

$$\hat{\sigma}_t^{T^2} = V_0 + (V_t - V_0) \frac{1 - e^{-k(T-t)}}{k(T-t)} \ge V_0 \frac{k(T-t) - 1 + e^{-k(T-t)}}{k(T-t)}$$

Smile of vol-of-vol - VIX market

- VIX index is published daily: it is equal to the 30-day VS volatility of the S&P500 index: VIX $_t=\sigma_t^{t+30~{\rm days}}$
- VIX futures have monthly expiries their settlement value is the VIX index at expiry

VIX options have same expiries as futures

$$F_t^i = E_t[\hat{\sigma}_i^{i+30d}]$$

$$C_t^{iK} = E_t[(\hat{\sigma}_i^{i+30d} - K)^+]$$

So what do we do?

- From a practitioner's point of view, question is: what do we require from a model?
- Which risks would we like to have a handle on ?
 - · forward skew
 - volatilities-of-volatilities, smiles of vols-of-vols
 - correlations between spot and implied volatilities
 - ...
- In next few slides an example of how to proceed to build model that satisfies (some of) our requirements

Practitioner's approach - an example

- Start with dynamics of fwd variances we would like a time-homogeneous model
 - Start with 1-factor model:

$$d\zeta_t^T = \omega(T - t)\zeta_t^T dU_t \quad \to \ln\left(\frac{\zeta_t^T}{\zeta_0^T}\right) = \bullet + \int_0^t \omega(T - \tau)dU_\tau$$

- ullet For general volatility function ω , curve of $\zeta^{\mathcal{T}}$ depends on path of U_t
- Choose exponential form: $\omega(T-t) = \omega e^{-k(T-t)}$

$$\int_0^t \omega(T-\tau)dU_\tau = \omega e^{-k(T-t)} \ \int_0^t e^{-k(t-\tau)}dU_\tau$$

- ullet Model is now one-dimensional curve of ζ^T is a function of one factor
- For $T-t\gg \frac{1}{k}$, at order 1 in ω :

$$\operatorname{vol}(\hat{\sigma}_t^T) \propto \frac{1}{k(T-t)}$$
 and $\frac{d\hat{\sigma}^{KT}}{d \ln K} \bigg|_{K=F} \propto \frac{1}{k(T-t)}$

 No flexibility on term-structure of vols-of-vols and term-structure of ATM skew

• Try with 2 factors:

$$d\zeta_t^T = \omega \zeta_t^T [(1 - \theta)e^{-k_1(T - t)}dW_t^X + \theta e^{-k_2(T - t)}dW_t^Y]$$

Expression of fwd variances:

$$\zeta_t^T = \zeta_0^T e^{\omega x_t^T - \frac{\omega^2}{2} E[x_t^{T^2}]}$$

with x_t^T given by:

$$\begin{aligned} \mathbf{x}_{t}^{T} &= (1 - \theta) e^{-k_{1}(T - t)} X_{t} + \theta e^{-k_{2}(T - t)} Y_{t} \\ dX_{t} &= -k_{1} X_{t} dt + dW_{t}^{X} \\ dY_{t} &= -k_{2} Y_{t} dt + dW_{t}^{Y} \end{aligned}$$

 Dynamics is low-dimensional Markov – fwd variances are functions of 2 easy-to-simulate factors:

$$V_t^{T_1 T_2} = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \zeta_t^T dT$$

ullet Log-normality of ζ^T can be relaxed while preserving Markov-functional feature

By suitably choosing parameters, it is possible to mimick power-law behavior for:

- Term-structure of vol-of-vol
 - for flat term-structure of VS vols, volatility of VS volatility is given by:

$$\begin{aligned} \text{vol}(\hat{\sigma}^T)^2 &= \frac{\omega^2}{4} \left[(1 - \theta)^2 \left(\frac{1 - e^{-k_1 T}}{k_1 T} \right)^2 + \theta^2 \left(\frac{1 - e^{-k_2 T}}{k_2 T} \right)^2 \right. \\ &\quad \left. + 2 \rho_{XY} \theta (1 - \theta) \frac{1 - e^{-k_1 T}}{k_1 T} \frac{1 - e^{-k_2 T}}{k_2 T} \right] \end{aligned}$$

- Term-structure of ATM skew
 - for flat term-structure of VS vols, at order 1 in ω , skew is given by:

$$\left. \frac{d\hat{\sigma}^{KT}}{d \ln K} \right|_{F} \;\; = \;\; \frac{\omega}{2} \left[(1-\theta) \rho_{SX} \frac{k_{1}T - (1-e^{-k_{1}T})}{(k_{1}T)^{2}} + \theta \rho_{SY} \frac{k_{2}T - (1-e^{-k_{2}T})}{(k_{2}T)^{2}} \right]$$

• Term-structure of volatilities of VS vols

	Set1	Set 2	Set 3
v	130.0%	137.0%	125.0%
θ	28%	29%	32%
k ₁	8.0	12.0	4.5
k ₂	0.35	0.30	0.60
ρ_{XY}	0%	90%	-70%
log/log			
0.2	1.3.1.5		
0			
	1	2	3 4
-0.2			
-0.4 -			
-0.6	slope ~ -0.35		
	`		
-0.8			
- 1			1
-1.2			

Term-structure of ATM skew

Note that factors have no intrinsic meaning − only vol/vol and spot/vol correlation functions do have physical significance.

It is possible to get slow decay of vol-of-vol and skew

Conclusion

- Models for exotics need to capture joint dynamics of spot and implied volatilities
- Calibration on vanilla smile not always a criterion for choosing model & model parameters
 - We need to have direct handle on dynamics of volatilities
 - Some parameters cannot be locked with vanillas: need to be able to choose them
- Availability of closed-form formulæ not a criterion either
 - Wrong / unreasonable dynamics too high a price to pay
 - What's the point in ultrafast mispricing ?
- So far, models for the (1-dimensional) set of forward variances. Next challenge: add one more dimension.
- One fundamental issue: in what measure does the initial configuration of asset prices – e.g. implied volatilities – restrict their dynamics?

