Wi-Fi Crash Course

A noobs guide to key terms and concepts

Who am I?

- Darian Leung
- Senior Embedded Software Engineer
- 7 years at Espressif
- Software Platforms Team
- ESP-IDF Development
 - Core Subsystems
 - Protocols

Contents

- 1. What is Wi-Fi/IEEE 802.11?
- 2. Wired vs Wireless
- 3. Topologies
- 4. MAC Frames
- 5. Management Operations
- 6. Medium Access Methods
- 7. Physical Layer
- 8. Follow-up

What is Wi-Fi & IEEE 802.11

WLAN, Standards, and Amendments

- Computer networks categorized by spatial scope
- Local Area Network (LAN)
 - E.g., residence, campus, office
- Ethernet: Wired LAN
- Wi-Fi: Wireless LAN (WLAN)

- IEEE 802.11
 - Set of protocol standards for Wireless Local Area Networks (WLAN)
 - Created/maintained by IEEE
- Wi-Fi
 - Trademark owned by Wi-Fi Alliance
 - Certified products labelled "Wi-Fi Certified"
- Terms used interchangeably

IEEE 802.11 Standards Timeline

802.11 Versioning

Wi-Fi Gen	Key Features Added	Amendment	Incorporated Standard	Max Link Rate (Mb/s)
0	DSSS, FHSS	N/A	802.11-1997	1-2
1	CCK	802.11b-1999	802.11-2007	11
2	5GHz OFDM	802.11a-1999	802.11-2007	6-54
3	2.4GHz OFDM	802.11g-2003	802.11-2007	6-54
4	MIMO	802.11n-2009	802.11-2012	6.5-600
5	5GHz MU-MIMO, 256-QAM	802.11ac-2013	802.11-2016	6.5–6933
6	TWT, OFDMA, 1024-QAM,	802.11ax-2021	N/A	0.4–9608

Amendments & Generations

The Wireless Medium

Wired vs Wireless

SAD NEWS: DUE TO HIGH COPPER PRICES AND BUDGET CONSTRAINTS, NASA MAY FINALLY HAVE TO CUT THE WIRES THAT THEY'VE BEEN SPOOLING OUT TO COMMUNICATE WITH VOYAGER 1 AND 2.

Wired (Ethernet)

- Unicast (if not bus)
- Reliable delivery (differential signaling)
- Full-duplex (if multiple wires)

Wireless (Wi-Fi)

- Broadcast
- Half-duplex (same frequency)
- Unreliable delivery
 - Attenuation
 - RF interference

Wired vs Wireless Medium

Advantages

- Device Mobility
- Ease of deployment
- Flexibility
- Cost

Disadvantages

- Lower Throughput
- Less reliability
- Less security

Benefits of Wireless

Wi-Fi Topologies

Terminology & Topologies

- Any 802.11 capable device is known as a station (STA)
- Typically the Wireless Network Interface Controller (WNIC)
- Unique MAC address
- Antenna/Radio for wireless connection

Wi-Fi Stations

- Grouping of STAs is a Service Set (i.e., WLAN)
- Service Set Identifier (SSID)

Service Sets

- Associated STA
- Unassociated STA

- (Infrastructure) BSS
 - Typical SOHO network
 - Single AP, one or more STAs
- Access Point (AP)
 - Is itself a STA
 - Acts like network switch
- BSS Identifier (BSSID)
 - Not the same as SSID
 - Is MAC address of AP
- STAs associate with AP
- Basic Service Area (BSA)
 - Physical coverage of AP
 - Based on RSSI thresholds

Basic Service Set (BSS)

- Extended Service Set (ESS)
 - Two or more BSS connected by a DS
- Seamless roaming
 - Overlapping BSAs to form ESA
 - STA reassociates with stronger AP
- Distribution System (DS)
 - Implementation not defined by 802.11
 - Tracking STA associations
 - Forwards frames between APs
- Same logical network
 - Same SSID

Extended Service Set (ESS)

ESS in Practice

MAC Frames

Frame, Frame Types

Frame Control					Sequence Control			HT Control
2 octets	2 octets 6 octets		6 octets	6 octets	2 octets	6 octets	2 octets	4 octets

Protocol Version	Type	Subtype		From DS	More Frag	Retry	Power Mgmt.	More Data	Protected Frame	+HTC/ Order
2 bits	2 bits	4 bits	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit	1 bit

- Frames are a basic unit transmission
- Frame Body
 - Payload or contents
- Frame Check Sequence (FCS)
 - CRC calculated from header and body
- Frame Header
 - Source/Receiver/Destination MAC addresses
 - Sequence Control: Related to sequencing and fragmenting of payloads
 - Frame Control (FC) determines frame type

MAC Frame

Data Frames

- Carries data from higher-layer protocol
- E.g., IP packet

Control Frames

- Assist with delivery of other frames
- No frame body (i.e., payload)
- Typically part of multi-frame exchange
- Management Frames
 - Manages STAs in the BSS
 - E.g., Scanning, Association, reassociation

Frame Types

- Bits indicated direction of a wireless frame's traversal
 - To DS: Frame is destined for DS
 - Form DS: Frame is from DS
- 2-bit combination affects how header MAC Addresses 1 to 4 fields are interpreted

	To DS = 0	To DS = 1
From DS = 0	Management and Control Frames	Data frames from STA to AP
From DS = 1	Data frames from AP to STA	Only used in Wireless Distribution Systems

To/From DS Bits

SA	DA	TA	RA	To DS	From DS
Y	AP1	Y	AP1	0	0
PC	Х	AP1	Х	0	1
Х	PC	Χ	AP1	1	0
Y	Z	AP1	AP2	1	1

- All address fields are MAC Addresses
 - (6 bytes) xx:xx:xx:xx:xx
 - Shares address space with Ethernet
- Source Address (SA)
 - Original source of the MAC frame
- Destination Address (DA)
 - Final destination of the MAC frame
- Transmitter Address (TA)
 - STA/AP that transmitted the frame onto wireless medium
- Receiver Address (RA)
 - STA/AP that should process the wireless frame
- Notice that there is always an address repeated

Address Types

Frame Header

 Addr 1	Addr 2	Addr 3	 Addr 4 (Opt)	 Body (Opt)	FCS

- Addr 4 is optional. Only used when "To DS" and "From DS" are 0
- Address fields can represent SA, DA, TA, RA, BSSID
- "To DS" and "From DS" fields indicate how to interpret address fields

To DS	From DS	Addr 1	Addr 2	Addr 3	Addr 4	Comment
0	0	DA = RA	SA = TA	BSSID	N/A	Control/management frames
0	1	DA = RA	TA = BSSID	SA	N/A	Data frame from AP to STA
1	0	RA = BSSID	TA = SA	DA	N/A	Data frame from STA to AP
1	1	RA	TA	DA	SA	Data frames between APs in WDS

Address Felds

Management Operations

How the wireless link is established and maintained

Management Operations

- Establish and maintain the wireless link
- Cooperative effort between APs and STAs
- Typically involves exchanging various management frames
- Scanning
- Authentication
- Association

- Allows networks to announce their existence
- Transmitted periodically by AP in BSS at beacon interval
 - Time units (TU) of 1024µs
 - Typical interval is 100 TU ≈ 1ms
- SSID of the network
- Service set capabilities
 - Topology (BSS, ESS, IBSS)
 - Modulation, QoS
- Timestamp (µs)
 - Synchronize STAs local clocks

Beacon Frames

- Process of STAs identifying existing Wi-Fi networks
- Passive Scan
 - Sweeps through different channels (i.e., frequencies)
 - Listens to AP's beacon frames
- Active Scan
 - Sweeps through different channels
 - Transmits a probe request frame
- Generates scan report
- Scan filter by parameters (e.g., SSID, service set type, channel)

Scanning

- Open System Authentication
 - Simple handshake
 - Provides no meaningful security
 - Ensure STA has proper capabilities to join BSS
- Involves Authentication Request and Response frames

- Procedure for STA to join BSS
- Involves (Re)association request and response frame
- AP assigns Association ID (AID) to each STA in BSS
- DS updated to keep track of BSSs and their associated STAs
- Reassociation Request used when roaming to another BSS
 - New AP contacts old AP to finish reassociation and send response
 - Another AID assigned in new BSS

Medium Access Method

DCF, CSMA/CA, Interframe Space

- Simultaneous transmission on the same channel (i.e., frequency) causes interference
 - Must be half-duplex
- Hidden node problem
 - Not all STAs in a BSS are in range of each other's transmissions
- Require some Medium Access Control
 - i.e., mechanisms to coordinate STAs on medium

The Shared Wireless Medium

Point Coordination Function (PCF) Hybrid Coordination Function (HCF)

Distributed Coordination Function (DCF)

- Distributed Coordination Function (DCF)
 - Medium Access Control (MAC) technique used in 802.11
- Is distributed
 - No central node to coordinate access
 - STAs coordinated cooperatively
- Other MAC techniques (e.g., PCD and HCF) built on top of DCF
- Features
 - CSMA/CA multiple access method
 - Frame prioritization using interframe space
 - Virtual carrier sensing to save power

Distributed Coordination Function (DCF)

CSMA/CA

- Multiple Access Method is CSMA/CA
- Carrier Sense Multiple Access (CSMA)
 - Listen first, only transmit if medium is idle
- Collision Avoidance (CA)
 - Avoid collisions from simultaneous transmissions using random backoff time
- Contention Window
 - Contention window after interframe space for STAs to contest medium
 - Divided into N slots where N is a power of 2 minus 1 (e.g., 31, 63, 127)
 - STAs random backoff time is $R \times t_{slot}$ where R is a random integer

- Hidden node problem
 - Distant node may erroneously think medium is idle
- Transmitting nodes need confirmation of delivery
- Four-way frame exchange to workaround these issues
 - RTS, CTS, DATA, ACK
- Request/Clear To Send (RTS/CTS)
 - Mitigates hidden node problem
- Acknowledgement
 - Verifies successful delivery
- 4-way exchange deals with collisions, not prevent them

Interframe Spacing

- Must ensure frames in atomic operations get medium
 - e.g., 4-way frame exchange is not interrupted by an unrelated frame
- Need a way to prioritize different frame types
 - E.g., RTS/CTS/ACK frames should get priority
- Different types of interframe space
 - e.g., SIFS, PIFS, DIFS, EIFS
- Short Interframe Space (SIFS)
 - Shortest, thus highest priority
 - Used by CTS/ACK
- DCF Interframe Space (DIFS)
 - Lower priority
 - Minimum idle time for contention-based services (i.e., start of most atomic operations)

Carrier Sensing

- Physical Carrier Sensing
 - Listening to physical medium
 - Power hungry, need to keep RF components powered
 - Hidden node problem
- Virtual Carrier Sensing
 - Track when medium is busy without physical sensing
- Network Allocation Vector (NAV)
 - Timer in each STA indicating time left until medium is idle
- Working Principal
 - Duration/ID" field in frame header indicates remaining duration of frame exchange.
 - NAV updated by "Duration/ID" field
 - All STAs in range of AP, solves hidden node

Physical Layer

ISM Band, Channels

- Most wireless communication uses radio waves
- Radio spectrum is regulated and split into bands by ITU
- Industrial, Scientific, and Medical (ISM) band
 - License free band of radio frequencies
- Wi-Fi uses ISM bands of radio spectrum
 - 2.4 GHz to 2.4835 GHz
 - 5.725 GHz to 5.875 GHz

- A channel is a frequency range
 - Center Frequency
 - Bandwidth (22 MHz)
 - Numbered 1 to 14
 - Overlapping
- STAs in a BSS use the same channel
- Channel selection
 - Non-Wi-Fi interference (e.g., Microwave oven, Bluetooth)
 - Adjacent Channel Interference from neighboring BSS

Further Topics

- Topology
 - IBSS, MBSS
- MAC Frames
 - Fragmenting
- Security (WEP, WPA)
- Power Saving
 - PS-Poll, TWT
- Modulation Schemes
 - DSSS, OFDM, OFDMA, QAM

Resources

- Slides
 - https://github.com/Dazza0/wifi-crash-course
- "802.11 Wireless Networks: The Definitive Guide"
 - Matthew Gast
- CWNA Certified Wireless Network Administrator Study Guide
 - David D. Coleman & David A. Westcott

Thanks For Watching!