

Multimodal Learning:

A case study for Gesture and Audio-Visual Speech Recognition

Hsieh Yu-Guan (Info 2016)

Supervised by Amélie Cordier & Mathieu Lefort

Internship period: 14th June 2017 – 11th August 2017

behaviers.at

- BEHAVIORS.AI
- Hoomano & LIRIS
- TensorFlow

Artifical Intelligence

- Artifical Intelligence
- > Robotics (embodied paradigme)

- Artifical Intelligence
- > Robotics (embodied paradigme)
- Developmental robotics

- Artifical Intelligence
- > Robotics (embodied paradigme)
- Developmental robotics
- > Multimodal learning

- Artifical Intelligence
- > Robotics (embodied paradigme)
- Developmental robotics
- > Multimodal learning
- > Gesture and Audio-Visual recogntion

Deep Network Architectures – Convolutional Neural Networks (CNNs)

Deep Network Architectures – Convolutional Neural Networks (CNNs) – Convolution

 $Source: \ https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html$

Also see https://github.com/vdumoulin/conv_arithmetic

Deep Network Architectures – Convolutional Neural Networks (CNNs) – Max-pooling

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	7	112	37
112	100	25	12			

Source: https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html

Deep Network Architectures - Autoencoder

Source:

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694

Deep Network Architectures - Convolutional Autoencoder

Source:

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694

Training a Machine Learning Model

- Loss function: cross-entropy, L2-distance
- Stochastic gradient descent (SGD)
- Backpropagation
- Varaints of SGD: AdaGrad, Adam

Datasets - ASL Finger Spelling

- RGB and depth
- More than 60000 images for each modality
- 24 static signs in American Sign Language
- 5 subjects
- Only one channel in input
- Resized to 83×83 and Z-normalization

Datasets – AVLetters

- Audio-visual
- 26 letters from A to Z
- 10 speakers, each letter 3 times each
- Audio: 24 frames in input, 26 MFCCs for each frame
- Video: 12 frames in input, z-normalized

Results - Unsupervised Learning with CAE

Results – Unsupervised Learning with CAE

Results - Unsupervised Learning with CAE

- Raw: Perceptron that reads raw input data.
- CAE features: Perceptron stacked on the middle layer of the CAE.
- CAE architecture: Perceptron stacked on the middle layer of the CAE but train the whole network in a supervised way as a CNN.

		Raw	CAE features	CAE architecture
Intensity	train	69.47 %	78.87 %	91.29 %
	test	32.64 %	50.24 %	65.44 %
Depth	train	63.64 %	79.61 %	88.80 %
	test	29.93 %	41.64 %	55.62 %

Results - Shared Representation Learning

Results – Shared Representation

 Shared: Perceptron that exploits the shared representation learned by a bimodal CAE.

		Raw	CAE features	CAE architecture	Shared
Intensity	train test	69.47 % 32.64 %	78.87 % 50.24 %	91.29 % 65.44 %	85.85 % 53.38 %
Depth		63.64 % 29.93 %	79.61 % 41.64 %	88.80 % 55.62 %	81.83 % 42.85 %

AVSR Knowledge Transfer

4 - - 4 - - - 4 - - - 4 - - -

AVSR Knowledge Transfer

Fine-tuned for 160 steps.

For **Exp1**, **Exp2** and **Exp3**, we have respectively $\alpha_0 = 0.001, 0.005, 0.001$ and $\rho_a = 0.85, 0.85, 1$.

Notice that since $p_a=1$ for **Exp3** no video data is given in input during fine-tuning.

	Tr [∨]	$Tr^{v}_{A\sim T}$	$Tr^{v}_{U\sim Z}$	Te ^v	$Te^{v}_{A\sim T}$	$Te^{v}_{U\sim Z}$
No transfer	77.67 %	100 %	0 %	40.56 %	54.48 %	0 %
Exp1	81.17 %	98.28 %	21.64 %	39.44 %	47.76 %	15.22 %
Exp2	40.83 %	51.07 %	5.22 %	23.89 %	30.60 %	4.35 %
Exp3	19.67 %	12.23 %	45.52 %	12.22 %	2.24 %	41.34 %

Conclusion

- Datasets, hyperparameters
- Applications in robotics
- Other approaches