Exercise 2.6

For more educational resources visit

www.taleemcity.com

Q. 1: Use synthetic division to find the quotient and the remainder, when

(i)
$$(x^2 + 7x - 1) \div (x + 1)$$

From divisor, x + a, here a = -1

So the remainder is -7.

(ii)
$$(4x^3 - 5x + 15) \div (x + 3)$$

From divisor, x + a, here a = -3

	4	0	-5	15	
-3	\downarrow	-12	36	-93	
y-	4	-12	31	-78	

So the remainder is -78.

(iii)
$$(x^3 + x^2 - 3x + 2) \div (x - 2)$$

From divisor, x - a, here a = 2

."	1	1	-3	2	
2	\downarrow	2	6	6	
	1	3	3	8	

So the remainder is 8.

Q. 2: Find the value of h using synthetic division, if

(i) 3 is the zero of the polynomial $2x^3 - 3hx^2 + 9$

According to given condition

$$63 - 27h = 0$$

$$-27h = -63$$

$$h = \frac{-63}{-27}$$

$$h = \frac{7}{2}$$

(ii) 1 is the zero of the polynomial $x^3 - 2hx^2 + 11$

According to given condition

$$12 - 2h = 0$$

$$-2h = -12$$

$$h = \frac{-12}{-2}$$

$$h = 6$$

(iii) -1 is the zero of the polynomial $2x^3 + 5hx - 23$

According to given condition

$$-5h - 25 = 0$$

$$-5h = 25$$

$$h = \frac{25}{-5}$$

$$h = -5$$

Q. 3: Use synthetic division to find the values of l and m, if

(i) (x+3) and (x-2) are the factors of the polynomial $x^3+4x^2+2lx+m$

As x + 3 is factor of given polynomial

So,

From divisor, x + a, here a = -3

So,

$$m - 6l + 9 = 0$$

 $m - 6l = -9$ -----(i)

As x - 2 is factor of given polynomial

From divisor, x - a, here a = 2

$$m + 4l + 24 = 0$$

 $m + 4l = -24$ ----- (ii)

Subtracting equation (i) from equation (ii)

$$m + 4l = -24$$

$$-m + 6l = +9$$

$$10l = -15$$

$$l = -\frac{3}{2}$$

Putting the value in equation (i)

$$m - 6l = -9$$

$$m - 6\left(-\frac{3}{2}\right) = -9$$

$$m + 9 = -9$$

$$m = -9 - 9$$

$$m = -18$$

(ii)
$$(x-1)$$
 and $(x+1)$ are the factors of the polynomial $x^3-3lx^2+2mx+6$

As x - 1 is factor of given polynomial

So,

From divisor, x - a, here a = 1

So,

$$2m - 3l + 7 = 0$$

 $2m - 3l = -7$ (i)

As x + 1 is factor of given polynomial

From divisor, x + a, here a = -1

So,

$$-2m - 3l + 5 = 0$$

 $-2m - 3l = -5$ (ii)

Adding equation (i) and equation (ii)

$$2m - 3l = -7$$

$$-2m - 3l = -5$$

$$-6l = -12$$

Putting the value in equation (i)

$$2m - 3l = -7$$

 $2m - 3(2) = -7$
 $2m - 6 = -7$
 $2m = -7 + 6$
 $m = -\frac{1}{2}$

Q. 4: Solve by using synthetic division, if

(i) 2 is the root of the equation $x^3 - 28x + 48 = 0$ as 2 is the root of given equation

	1	0	-28	48	
2	4	2	4	-48	
	1	2	-24	0	17

So,

 χ

x + 6 = 0

$$x^{2} + 2x - 24 = 0$$

$$x^{2} + 6x - 4x - 24 = 0$$

$$x(x+6) - 4(x+6) = 0$$

$$(x+6)(x-4) = 0$$
and
$$x-4 = 0$$
and
$$x = 0$$

So the roots are 2, -6, 4

= -6

(ii) 3 is the root of the equation $2x^3 - 3x^2 - 11x + 6 = 0$ as 3 is the root of given equation

So,

$$2x^{2} + 3x - 2 = 0$$

$$2x^{2} + 4x - x - 2 = 0$$

$$2x(x + 2) - 1(x + 2) = 0$$

$$(x + 2)(2x - 1) = 0$$

$$x + 2 = 0 \qquad \text{and} \qquad 2x - 1 = 0$$

$$x = -2 \qquad \text{and} \qquad 2x = 1$$

$$x = -2 \qquad \text{and} \qquad x = \frac{1}{2}$$

So the roots are 3, -2, $\frac{1}{2}$

(iii) -1 is the root of the equation
$$4x^3 - x^2 - 11x - 6 = 0$$
 as -1 is the root of given equation

So,

$$4x^{2} - 5x - 6 = 0$$

$$4x^{2} - 8x + 3x - 6 = 0$$

$$4x(x - 2) + 3(x - 2) = 0$$

$$(x - 2)(4x + 3) = 0$$
and
$$4x + 3x - 6 = 0$$

x - 2 = 0

$$4x = -3$$

$$x = \frac{-1}{4}$$

So the roots are -1, 2, $\frac{-3}{4}$

Q. 5: Solve by using synthetic division, if

(i) 1 and 3 are the roots of the equation
$$x^4 - 10x^2 + 9 = 0$$

	1	0	-10	0	9	
1	\downarrow	1	1	-9	-9	
	1	1	-9	-9	0	1
3	\downarrow	3	12	9		
	1	4	3	0	1	
So			52-50			

$$x^{2} + 4x + 3 = 0$$

$$x^{2} + 3x + x + 3 = 0$$

$$x(x+3) + 1(x+3) = 0$$

$$(x+3)(x+1) = 0$$

$$x + 3 = 0$$

$$x+1 = 0$$

$$x = -3$$

$$x = -1$$

(ii) 3 and -4 are the roots of the equation
$$x^4 + 2x^3 - 13x^2 - 14x + 24 = 0$$

$$x^2 + x - 2 = 0$$

$$x^2 + 2x - x - 2 = 0$$

$$x(x+2) - 1(x+2) = 0$$
 $(x+2)(x-1) = 0$
 $x+2 = 0$ and $x-1 = 0$
 $x = -2$ and $x = 1$

So the roots are 3, -4, -2, 1

