(Affiliated to JNTUH, Approved by AICTE, Accredited by NBA & NAAC with A+ grade, nirf Ranked & an ISO certified institution)

IMPORTANT QUESTIONS(UNITWISE)

SUBJECTNAME: MACHINE LEARNING SUB CODE: CS601PC

YEAR:2024-25 SEM: III-II

UNIT-I PART-A

S.No.	Coverage	Questions
1	UNIT-I	What is Machine Learning?
2	UNIT-I	List any two types of Machine Learning with examples.
3	UNIT-I	What is a concept learning task?
4	UNIT-I	Define version space in the context of concept learning.
5	UNIT-I	What is the role of a perceptron in ML?
6	UNIT-I	Explain the term linear separability.
7	UNIT-I	What is a maximally specific hypothesis?
8	UNIT-I	Mention two issues faced in the design of a learning system.
9	UNIT-I	Define linear discriminants.
10	UNIT-I	Write a short note on linear regression.
		PART B
11	UNIT-I	Define Machine Learning. Explain its various types with examples.
12	UNIT-I	Describe the architecture of the human brain and a biological neuron. How do these concepts inspire Machine Learning?
13	UNIT-I	Explain the components of a Learning System. What are the main perspectives and issues in Machine Learning?
14	UNIT-I	What is a Concept Learning Task? Illustrate with an example.
15	UNIT-I	Explain Concept Learning as a Search Problem. How are hypotheses represented in the hypothesis space?
16	UNIT-I	Describe the process of finding a Maximally Specific Hypothesis with a suitable example.
17	UNIT-I	What is Version Space? Explain the Candidate Elimination Algorithm with its working steps.
18	UNIT-I	Write about the Perceptron algorithm. How does it work for linearly separable data?
19	UNIT-I	Explain the concept of Linear Separability in Machine Learning. Why is it important?
20	UNIT-I	Discuss Linear Regression in detail. How is it different from classification algorithms?

UNIT-II PART-A

S.No.	Coverage	Questions
1	UNIT-II	What is a Multi-layer Perceptron (MLP)?
2	UNIT-II	State the purpose of the backpropagation algorithm.
3	UNIT-II	Mention any two applications of MLP.
4	UNIT-II	What is a Radial Basis Function (RBF)?
5	UNIT-II	Define the curse of dimensionality.
6	UNIT-II	What is interpolation in the context of ML models?
7	UNIT-II	Define a basis function.
8	UNIT-II	What is a Support Vector Machine (SVM)?
9	UNIT-II	Mention one key difference between MLP and RBF networks.
10	UNIT-II	Why is it difficult to train multi-layer neural networks?
		PART B
11	UNIT-II	Explain the architecture of a Multi-layer Perceptron (MLP). How does it differ from a single-layer Perceptron?
12	UNIT-II	Discuss the Backpropagation algorithm. How does it help in training neural networks?
13	UNIT-II	Describe the forward and backward passes in Multi-layer Perceptron training.
14	UNIT-II	Explain how Multi-layer Perceptron is used in real-world applications. Provide suitable examples.
15	UNIT-II	Derive the Backpropagation rule mathematically.
16	UNIT-II	What is a Radial Basis Function (RBF) Network? How does it handle the Curse of Dimensionality?
17	UNIT-II	Compare Radial Basis Functions with Splines for interpolation tasks.
18	UNIT-II	Explain the architecture and working principle of a Support Vector Machine (SVM).
19	UNIT-II	What is the Curse of Dimensionality? How does it affect machine learning models?
20	UNIT-II	Describe the process of interpolations using Basis Functions. How are they used in RBF Networks?

UNIT-III PART-A

S.No.	Coverage	Questions
1	UNIT-III	What is a Decision Tree?
2	UNIT-III	Mention one advantage of using decision trees.
3	UNIT-III	Define CART (Classification and Regression Trees).
4	UNIT-III	What is ensemble learning?
5	UNIT-III	Distinguish between bagging and boosting.
6	UNIT-III	What is a Gaussian Mixture Model (GMM)?
7	UNIT-III	Define K-means clustering.
8	UNIT-III	What are nearest neighbor methods?
9	UNIT-III	What is unsupervised learning? Give one example.
10	UNIT-III	Mention any one way to combine classifiers.
		PART B
11	UNIT-III	What is a Decision Tree? Explain how it is constructed with an example.
12	UNIT-III	Discuss the differences between Classification Trees and Regression Trees.
13	UNIT-III	Explain the concept and working of Ensemble Learning. What are its benefits?
14	UNIT-III	Define Boosting. How does it improve the performance of weak classifiers?
15	UNIT-III	What is Bagging? Explain its advantages in ensemble learning.
16	UNIT-III	Discuss different techniques to combine multiple classifiers in ensemble methods.
17	UNIT-III	Explain Gaussian Mixture Models (GMM). How do they work for clustering tasks?
18	UNIT-III	Describe the Nearest Neighbor methods. How are they used for classification and regression?
19	UNIT-III	What is Unsupervised Learning? Compare it with Supervised Learning with examples.
20	UNIT-III	Explain the K-means Clustering Algorithm with a suitable example and its limitations.

UNIT-IV PART-A

S.No.	Coverage	Questions
1	UNIT-IV	What is dimensionality reduction?
2	UNIT-IV	Define Linear Discriminant Analysis (LDA).
3	UNIT-IV	What is Principal Component Analysis (PCA) used for?
4	UNIT-IV	Mention one difference between PCA and Factor Analysis.
5	UNIT-IV	Define Independent Component Analysis (ICA).
6	UNIT-IV	What is Locally Linear Embedding (LLE)?
7	UNIT-IV	What is Isomap used for?
8	UNIT-IV	What is least squares optimization?
9	UNIT-IV	Define genetic algorithms.
10	UNIT-IV	Name any two genetic operators used in evolutionary learning.
		PART B
11	UNIT-IV	What is Dimensionality Reduction? Why is it important in Machine Learning?
12	UNIT-IV	Explain Linear Discriminant Analysis (LDA) with its working principles and formula.
13	UNIT-IV	Discuss Principal Component Analysis (PCA). How is it different from LDA?
14	UNIT-IV	Write about Factor Analysis. How does it help in dimensionality reduction?
15	UNIT-IV	Explain Independent Component Analysis (ICA) and its applications.
16	UNIT-IV	Describe Locally Linear Embedding (LLE) and its working principle.
17	UNIT-IV	Explain the Isomap technique for non-linear dimensionality reduction.
18	UNIT-IV	What is Least Squares Optimization? How is it used in ML models?
19	UNIT-IV	Define Genetic Algorithms. Describe its process and key components.
20	UNIT-IV	Discuss Genetic Operators such as Selection, Crossover, and Mutation used in Genetic Algorithms.

UNIT-V PART-A

S.No.	Coverage	Questions
1	UNIT-V	What is Reinforcement Learning (RL)?
2	UNIT-V	Mention the key elements of an RL system.
3	UNIT-V	What is the 'Getting Lost' example in RL?
4	UNIT-V	Define Markov Chain Monte Carlo (MCMC) method.
5	UNIT-V	What is a proposal distribution?
6	UNIT-V	Define graphical models in ML.
7	UNIT-V	What is a Bayesian Network?
8	UNIT-V	Mention one application of Markov Random Fields (MRFs).
9	UNIT-V	What is a Hidden Markov Model (HMM)?
10	UNIT-V	Name any one object tracking method in ML.
		PART B
11	UNIT-V	What is Reinforcement Learning? Explain its basic components with an example.
12	UNIT-V	Describe the 'Getting Lost' problem in Reinforcement Learning. How is it solved?
13	UNIT-V	Explain the concept of Markov Chain Monte Carlo (MCMC) methods.
14	UNIT-V	Discuss the importance of Proposal Distributions in MCMC.
15	UNIT-V	Explain the working of Markov Chain Monte Carlo in sampling-based learning.
16	UNIT-V	What are Graphical Models? Explain their types with examples.
17	UNIT-V	Describe Bayesian Networks and their application in probabilistic inference.
18	UNIT-V	Explain Markov Random Fields and their difference from Bayesian Networks.
19	UNIT-V	What are Hidden Markov Models (HMM)? Describe their components and applications.
20	UNIT-V	Discuss different Tracking Methods used in Machine Learning. Provide suitable examples.