

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02215 - Estatística Geral 2 - 2021/1

Plano Aula 05 e 06

Markus Stein

Introdução à estimação intervalar

Estimação pontual × estimação intervalar

- Exemplo 1: Média amostral, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, em que X_1, \dots, X_n uma amostra aleatória de $X_i \sim Normal(\mu, \sigma^2)$ e σ^2 conhecido:
- a. Qual a distribuição amostral de \overline{X} ? \overline{X} é um bom estimador para a média populacional μ ?
- b. Como usar $Var(\overline{X})$ para darmos um grau de certeza sobre usarmos \overline{X} para estimar μ ?
- Exemplo 2: E para a média amostral $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ se σ^2 desconhecido?
- Exemplo 3: E para a proporção amostral $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$?

Intervalos de Confiança (IC) (Bussab e Morettin - Seção 11.6)

Definição (Intervalo de confiança (IC)): Seja T um estimador para o parâmetro θ , o IC ao nível $(1 - \alpha) \times 100\%$ para θ será denotado pelo intervalo

$$IC(\theta; 1 - \alpha) = (t_1(T), t_2(T)),$$

para dois valores $t_1(T)$ e $t_2(T)$ tais que $P[t_1(T) < \theta < t_2(T)] = 1 - \alpha$. (Se conhecida a distribuição amostral de T, será sempre possível achar $t_1(T)$ e $t_2(T)$).

- Esse é um tipo de estimação intervalar (o mais popular em inferência paramétrica clássica)
- Veremos todas as situações de intervalos nos slides dessa e das próximas semanas.
 - Essa semana iniciaremos com o IC para uma média populacional μ ;

Erro padrão de um Estimador (Bussab e Morettin - Seção 11.7)

Definição (Erro padrão): O erro padrão do estimador T (para o parâmetro θ) é a quantidade dada por

$$EP(T) = \sqrt{Var(T)}.$$

- ...cont. Exemplo 1: Média amostral \overline{X} . Calcular $EP(\overline{X})$.
- ...cont. Exemplo 3: Proporção amostral \hat{p} . $EP(\hat{p})$?

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02215 - Estatística Geral 2 - 2021/1

Definição (Erro padrão estimado): $ep(T) = \widehat{EP}(T) = \sqrt{\widehat{Var}(T)}$.

- ...cont. Exemplo 1: Média amostral \overline{X} . Calcular $ep(\overline{X})$.
- ...cont. Exemplo 3: Proporção amostral \hat{p} . $ep(\hat{p})$?

IC para uma média populacional μ (supondo σ^2 conhecido ou n > 30)

Iniciaremos com o IC para uma média populacional μ ;

- ullet Resultado importante na construção de IC para uma média populacional:
 - No **Exemplo 1**, supondo σ^2 conhecido (ou n > 30), então

$$\overline{X} \sim Normal(\mu, \sigma^2/n)$$

se $X \sim Normal(\mu, \sigma^2)$. Também

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim Normal(0, 1).$$

- Como usar a distribuição de Z para construir um IC para μ ?
- Quais as suposições necessárias?
- Como interpretar os resultados?

Ler slides das aulas 5 e 6.

Iniciar exercícios da lista 1-3.

Quantis da distribuição Normal

Queremos calcular P(Y < y) = 0.025: o valor que "deixa área acumulada (à esquerda)" igual a 0.025:

- Como encontrar valores da distribuição normal padrão?
 - Usar tabelas(???)
 - Nas planilhas eletrônicas, do Google por exemplo, digitar =INV.NORMP(0,025) e o valor retornado será -1,9599639861202. Na versão inglês da planilha OpenOffice Calc a função é =NORMSINV(0,025).
 - No software R usando a função quorm (0.025) corresponde na figura abaixo a y=-1.959964

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

 $\operatorname{MAT}02215$ - Estatística Geral 2 - 2021/1

