AI in Built Environment DCP4300

Week 12: Natural Language Processing

Transformers

Dr. Chaofeng Wang Jianhao Gao (TA) University of Florida

College of Design Construction and Planning

Word embeddings

RNNs

Word2vec, 2013
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. https://arxiv.org/abs/1301.3781

GloVe, 2014
Pennington, J., Socher, R., &
Manning, C. D. (2014, October).
Glove: Global vectors for word
representation. In Proceedings of
the 2014 conference on empirical
methods in natural language
processing (EMNLP) (pp. 15321543).
https://aclanthology.org/D14-

1162.pdf

LSTM. 2000

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural computation, 12(10), 2451-2471. https://ieeexplore.ieee.org/abstract/document/6789445

GRU, 2014

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. https://arxiv.org/abs/1412.3555

Transformers (BERT, GPT)

2017/2018 -

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). **Attention is all you need**. Advances in neural information processing systems, 30. https://arxiv.org/abs/1706.03762

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pretraining of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. https://arxiv.org/abs/1810.04805

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901. https://arxiv.org/abs/2005.14165

Self-attention layer:

Help encoder look at other words in the input sentences as it encodes a specific word.

Language models

ChatGPT Decoder:

predict the next word in a sentence or complete a partial sentence

$$P(w_1 w_2 ... w_n) = P(w_n \mid w_1 ... w_{n-1}) * P(w_{n-1} \mid w_1 ... w_{n-2}) ... P(w_2 \mid w_1) * P(w_1)$$

P(The quick brown fox jumps over the lazy dog) =

P(The) * P(quick | The) * P(brown | The quick) * P(fox | The quick brown) * P(jumps | The quick brown fox) * P(over | The quick brown fox jumps) * P(the | The quick brown fox jumps over) * P(lazy | The quick brown fox jumps over the) * P(dog | The quick brown fox jumps over the lazy)

Input: Give me a random sentence

Output: [begin]

Input: Give me a random sentence

Output: [begin] How

Input: Give me a random sentence

Output: [begin] How may

Input: Give me a random sentence

Output: [begin] How may I

Input: Give me a random sentence

Output: [begin] How may I help

Input: Give me a random sentence

Output: [begin] How may I help you

Input: Give me a random sentence

Output: [begin] How may I help you?

A good video to illustrate the structure:

Illustrated Guide to Transformers Neural Network: A step by step explanation https://www.youtube.com/watch?v=4Bdc55j80l8

Do not share weights.

Take a closer look into an encoder.

Self-attention layer: A layer that helps the encoder look at other words in the input sentence as it encodes a specific word

Thinking Machines Input Self-attention Embedding X_2 WQ Queries \mathbf{W}^{K} Keys k_2 W۷ Values

Self-attention	Input	Thinking	Machines
	Embedding	X1	X ₂
	Queries	q ₁	q ₂
	Keys	k ₁	k ₂
	Values	V ₁	V ₂
	Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96

Self-attention

Self-attention

I saw Anchorage flying back to China.

I saw Anchorage flying back to China.

Attention vector used to encode/embed/understand the word 'flying', in the context of this sentence.

Transformer Thinking Input **Machines** Self-attention Embedding $\mathbf{X}_{\mathbf{1}}$ X₂ Queries q_1 $q_2 \\$ k_2 Keys \mathbf{k}_1 Values V_1 V_2 Score $q_1 \cdot k_1 = 112$ $q_1 \cdot k_2 = 96$ Divide by 8 ($\sqrt{d_k}\,$) 12 14 0.88 0.12 Softmax Softmax Χ V_2 V_1 Value Sum \mathbf{Z}_{1} \mathbf{Z}_2

Self-attention
Matrix Calculation

Self-attention Matrix Calculation

Transformer X Thinking Multi-head attention Machines ATTENTION HEAD #0 ATTENTION HEAD #1 $\mathbf{W_0}^{\mathbf{Q}}$ W_1^Q K_0 K_1 W_0^{K} $W_1^{\,\,K}$ V_0 W_0^{V} W_1^{V}

Each head can project the input into a different representation subspace

Multi-head attention

Decoder

Encoder-Decoder Attention layer: An attention layer that helps the decoder focus on relevant parts of the input sentence

Decoder

