HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG KHOA CO BẢN 1 BÔ MÔN TOÁN

ĐỂ MINH HOA THI HẾT HỌC PHẨN Môn: Đại số

Số lượng câu hỏi: 40 câu Thời gian làm bài: 80 phút

Mã đề thi 101

Lưu ý: Sinh viên không được sử dụng tài liệu

Câu 1. Cho ma trận $A = \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix}$. Biết $\lambda = 9$ là một giá trị riêng của A. Khẳng định nào dưới đây

không đúng?

A. (3,2,3) là một véc tơ riêng ứng với giá trị riêng $\lambda = 9$.

B. (2,1,2) là một véc tơ riêng ứng với giá trị riêng $\lambda = 9$.

C. Không gian riêng ứng với giá trị riêng $\lambda = 9$ có số chiều là 2.

D. (-2,1,0) là một véc tơ riêng ứng với giá tri riêng $\lambda=9$.

Câu 2. Cho dạng toàn phương $Q: \mathbb{R}^3 \to \mathbb{R}$ xác định bởi

$$Q(x, y, z) = x^2 + 2y^2 - z^2 + 2xy + 2yz.$$

Ký hiệu (p,q) là cặp chỉ số quán tính dương và âm của Q. Khẳng định nào dưới đây **đúng**?

A. p = 1, q = 1.

B. p = 0, q = 3.

C. p = 1, q = 2.

D. p = 2, q = 1.

Câu 3. Đối ngẫu của công thức Boole $(x' \lor 0) \land (y' \land z)$ là

A. $(x' \lor 1) \land (y' \land z)$.

B. $(x' \wedge 1) \vee (y' \vee z)$. **C.** $(x \wedge 1) \vee (y \vee z')$. **D.** $(x' \wedge 0) \vee (y' \vee z)$.

Câu 4. Cho ma trận trực giao A. Khẳng định nào dưới đây **đúng**?

A. Các véc tơ hàng của A không tạo thành hệ trực chuẩn.

B. $\det A = 1$.

C. A khả nghịch và $A^{-1} = A^t$.

D. det A = -1.

Câu 5. Cho các tập con của không gian véc tơ \mathbb{R}^3 :

$$A = \{(x,y,z)|\ xz \ge 0\}; B = \{(x,y,z)|\ x = 2z\}.$$

Khẳng định nào dưới đây **đúng**?

A. A và B không là các không gian véc tơ con của \mathbb{R}^3 .

B. Chỉ có A là không gian véc tơ con của \mathbb{R}^3 .

C. Chỉ có B là không gian véc tơ con của \mathbb{R}^3 .

D. A và B là các không gian véc tơ con của \mathbb{R}^3 .

Câu 6. Trong \mathbb{R}^3 , xét cơ sở trực giao

$$B = \{u_1 = (1, 1, 1), u_2 = (1, -1, 0), u_3 = (1, 1, -2)\}.$$

Giả sử tọa độ của véc tơ u = (a, b, c) trong cơ sở B là (x, y, z). Khẳng định nào dưới đây **đúng**?

A. $x = \frac{a+b+c}{\sqrt{3}}$.

C. x = a + b + c.

D. $x = \frac{a+b+c}{3}$.

Câu 7. Cho ánh xạ tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$ có ma trận chính tắc $\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$. Véc tơ nào dưới đây thuộc $\operatorname{Im} f$?

A. (6, -3).

B. (3, 6).

 \mathbf{C} . (4, -2).

D. (3, -6).

Câu 8. Cho ánh xa $f: \mathbb{N} \to \mathbb{N}$, $f(n) = n^2 + n$. Khẳng định nào dưới đây **đúng**?

A. f không là đơn ánh cũng không là toàn ánh.

B. f là đơn ánh nhưng không là toàn ánh.

 \mathbf{C} . f là toàn ánh nhưng không là đơn ánh.

D. f là song ánh.

Câu 9. Với giá trị nào của a thì x=(1,2,a) thuộc vào không gian con sinh bởi các véc tơ (3,1,2),(-1,1,-2),(2,-1,3)của \mathbb{R}^3 ?

A.
$$a = 1$$
.

B.
$$a = -1$$
.

C.
$$a \neq -1$$
.

D.
$$a \neq 1$$
.

Câu 10. Cho hệ phương trình

$$\begin{cases} x & + y - z + t = 1 \\ 2x + y + 2z - 3t = -1 \\ z + 3t = 2 \end{cases}.$$

Khẳng định nào dưới đây đúng?

- A. Hệ phương trình đã cho có vô số nghiệm phụ thuộc 2 tham số.
- **B.** Hệ phương trình đã cho có vô số nghiệm phụ thuộc 1 tham số.
- C. Hệ phương trình đã cho vô nghiệm.
- **D.** Hệ phương trình đã cho có nghiệm duy nhất.

Câu 11. Cho
$$D = \begin{vmatrix} 1 & -2 & 0 & 0 \\ 3 & 4 & -1 & 2 \\ a & b & 0 & 0 \\ 1 & 2 & 3 & 4 \end{vmatrix}$$
. Khẳng định nào dưới đây **đúng**?
A. $D = 10(2a - b)$. **B.** $D = 10(2a + b)$. **C.** $D = 10(b - b)$

A.
$$D = 10(2a - b)$$
.

$$D = 10(2a + b).$$

C.
$$D = 10(b - 2a)$$
. **D.** $D = -10(2a + b)$.

D.
$$D = -10(2a + b)$$

Câu 12. Ánh xa $f: \mathbb{R}^2 \to \mathbb{R}^2$ nào dưới đây không là một đẳng cấu?

A.
$$f(x,y) = (x+4y, -x+2y).$$

B.
$$f(x,y) = (2x + y, -3x + 2y).$$

C.
$$f(x,y) = (x+y, -3x+y)$$
.

D.
$$f(x,y) = (x-2y, -2x+4y)$$
.

Câu 13. Cho ánh xa tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi

$$f(x, y, z) = (x - y - z, x + y - z).$$

Ma trận của f trong các cơ sở $B_1 = \{(0,1,1); (1,1,1); (1,1,0)\}$ của \mathbb{R}^3 và $B_2 = \{(1,1); (1,2)\}$ của \mathbb{R}^2 là \mathbf{A} . $\begin{bmatrix} -4 & 2 \\ -3 & 2 \\ -2 & 2 \end{bmatrix}$. \mathbf{B} . $\begin{bmatrix} -4 & 2 & -2 \\ 2 & -3 & 2 \end{bmatrix}$. \mathbf{C} . $\begin{bmatrix} -4 & 2 \\ 2 & -3 \\ -2 & 2 \end{bmatrix}$. \mathbf{D} . $\begin{bmatrix} -4 & -3 & -2 \\ 2 & 2 & 2 \end{bmatrix}$.

A.
$$\begin{bmatrix} -4 & 2 \\ -3 & 2 \\ -2 & 2 \end{bmatrix} .$$

B.
$$\begin{bmatrix} -4 & 2 & -2 \\ 2 & -3 & 2 \end{bmatrix}$$
.

$$\mathbf{C.} \begin{bmatrix} -4 & 2\\ 2 & -3\\ -2 & 2 \end{bmatrix}.$$

D.
$$\begin{bmatrix} -4 & -3 & -2 \\ 2 & 2 & 2 \end{bmatrix}$$

Câu 14. Cho ma trận $A=\begin{bmatrix}m-1&3&-3\\-3&m+5&-3\\5&-5&m-2\end{bmatrix}$. Điều kiện cần và đủ để A có ma trận nghịch đảo là

A.
$$m \neq 2$$
 và $m \neq -2$.

B.
$$m = -2 \text{ hoăc } m = 1$$

B.
$$m = -2$$
 hoặc $m = 1$. **C.** $m = 2$ hoặc $m = -2$. **D.** $m \neq -2$ và $m \neq 1$.

D.
$$m \neq -2$$
 và $m \neq 1$

Câu 15. Cho một hệ phương trình tuyến tính thuần nhất gồm 3 phương trình, 6 ẩn. Khẳng định nào dưới đây đúng?

- A. Hệ phương trình đã cho có nghiệm duy nhất.
- B. Không có đủ thông tin để kết luận về số nghiệm của hệ phương trình đã cho.
- C. Hê phương trình đã cho có vô số nghiệm.
- **D.** Hệ phương trình đã cho vô nghiệm.

Câu 16. Hệ véc tơ nào dưới đây sinh ra không gian véc tơ \mathbf{P}_2 (không gian véc tơ các đa thức có bậc không vượt quá 2)?

A.
$$\{2-t+3t^2, 4-2t+6t^2, 1-3t+5t^2\}.$$

B.
$$\{1-3t+5t^2, -3+8t-2t^2\}.$$

C.
$$\{1+t^2, 2-t+t^2, 4-3t+t^2\}$$
.

D.
$$\{3+t+2t^2, -1+t-2t^2, -1+5t+3t^2\}.$$

 $\begin{array}{l} \textbf{Câu 17.} \ \text{K\'{y}} \ \text{hiệu} \ r(A) \ \text{là hạng của ma trận} \ A = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 3 & 4 & -1 & 2 \\ 1 & -1 & 0 & 0 \\ 1 & m & m^2 & m^3 \\ \end{bmatrix}. \ \text{Khẳng định nào dưới đây} \ \textbf{đúng}? \\ \textbf{A.} \ r(A) = \begin{cases} 3 & \text{nếu } m = 0 \\ 4 & \text{nếu } m \neq 0 \end{cases}. \\ \textbf{B.} \ r(A) = \begin{cases} 2 & \text{nếu } m = 0 \ \text{hoặc } m = -2 \\ 4 & \text{nếu } m \neq 0 \ \text{và } m \neq -2 \\ 4 & \text{nếu } m \neq 0 \ \text{và } m \neq -2 \\ 4 & \text{nếu } m \neq 0 \ \text{và } m \neq -2 \\ 4 & \text{nếu } m \neq 0 \ \text{và } m \neq -2 \\ 4 & \text{nếu } m \neq 0 \ \text{và } m \neq -2 \\ 4 & \text{nếu } m \neq 0 \ \text{và } m \neq -2 \\ 4 & \text{nếu } m \neq 0 \ \text{và } m \neq -2 \\ \end{array}.$

$$\mathbf{A.} \ r(A) = \left\{ \begin{array}{ll} 3 & \text{n\'eu } m = 0 \\ 4 & \text{n\'eu } m \neq 0 \end{array} \right.$$

$$\mathbf{B.} \ r(A) = \begin{cases} 2 & \text{neu } m = 0 \text{ noạc } m = -2 \\ 4 & \text{nếu } m \neq 0 \text{ và } m \neq -2 \end{cases}$$

$$\mathbf{C.} \ r(A) = \begin{cases} 3 & \text{n\'eu } m = 0 \text{ hoặc } m = 2 \\ 4 & \text{n\'eu } m \neq 0 \text{ và } m \neq 2 \end{cases}$$

D.
$$r(A) = \begin{cases} 3 & \text{n\'eu } m = 0 \text{ hoặc } m = -2 \\ 4 & \text{n\'eu } m \neq 0 \text{ và } m \neq -2 \end{cases}$$

Câu 18. Cho dang song tuyến tính $\eta: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ xác định bởi

$$\eta(u,v) = x_1y_1 - 3x_1y_2 + x_2y_1 + 4x_2y_2,$$

trong đó $u=(x_1,x_2), v=(y_1,y_2)\in\mathbb{R}^2$. Khẳng định nào dưới đây **đúng**?

A. η xác định dương nhưng không đối xứng.

B. η đối xứng nhưng không xác định dương.

 \mathbf{C} . η không đối xứng cũng không xác định dương.

D. η đối xứng và xác định dương.

Câu 19. Cho A là ma trận vuông cấp 3. Khẳng định nào dưới đây không đúng?

A. $\det(3A) = 3 \det A$.

B. $\det(-A) = -\det A$.

C. Nếu A là ma trận tam giác và có một phần tử trên đường chéo chính bằng 0 thì det A=0.

D. $\det(A^t A) = \det(A^2)$.

Câu 20. Khẳng định nào dưới đây không đúng?

A.
$$\emptyset \in \{\emptyset, \{\emptyset\}\}$$
.

B.
$$x \in \{x\}.$$

C.
$$\{x\} \in \{\{x\}\}.$$
 D. $\emptyset \in \{x\}.$

$$\mathbf{D.} \ \emptyset \in \{x\}$$

Câu 21. Ánh xạ nào dưới đây là ánh xạ tuyến tính?

A. $f: \mathbb{R}^3 \to \mathbb{R}^3, f(x, y, z) = (xy, 2y - z, x + y - 3z).$

B. $f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = 2x + 3y - z^2$.

C. $f: \mathbf{P}_2 \to \mathbf{P}_2, f(a_0 + a_1 x + a_2 x^2) = a_1 - 2a_0 x + (a_1 + a_2) x^2$.

D. $f: \mathbf{P}_2 \to \mathbf{P}_2, f(a_0 + a_1x + a_2x^2) = a_0 + a_1 - (2a_0 + 1)x + (a_1 + a_2)x^2$.

Câu 22. Cho ánh xa tuyến tính $f: \mathbb{R}^4 \to \mathbb{R}^3$ xác định bởi

$$f(x, y, z, t) = (x - 2y - z - t, y + 2z + 3t, x - y + 3z).$$

Số chiều của $\operatorname{Ker} f$ là

A. 2.

B. 3.

C. 4.

D. 1.

Câu 23. Với giá trị nào của a thì hệ phương trình dưới đây có nghiệm không tầm thường?

$$\begin{cases} x + y - z = 0 \\ 2x + 4y + az = 0 \\ 3x + 11y + z = 0 \end{cases}$$

A.
$$a = -1$$
.

B.
$$a = 1$$
.

C.
$$a \neq 1$$
.

D. $a \neq -1$.

Câu 24. Cho hệ phương trình

$$\begin{cases} x + y - z = 1 \\ 2x + 3y + mz = 3 \\ x + my + 3z = 2 \end{cases}.$$

Khẳng định nào dưới đây **đúng**?

A. Nếu m=2 thì hệ phương trình đã cho vô nghiệm.

B. Nếu $m \neq 2$ và $m \neq -3$ thì hệ phương trình đã cho có ngiệm duy nhất.

C. Nếu $m \neq 2$ và $m \neq 3$ thì hệ phương trình đã cho có ngiệm duy nhất.

D. Nếu m=3 thì hệ phương trình đã cho có vô số nghiệm.

Câu 25. Cho các mệnh đề p, q, r. Mệnh đề nào dưới đây **không đúng**?

A.
$$((p \Rightarrow q) \land (p \Rightarrow r)) \equiv (p \Rightarrow (q \land r)).$$

B. $\overline{p \Rightarrow q} \equiv (p \wedge \overline{q}).$

C.
$$(p \lor q) \equiv (\overline{p} \Rightarrow q)$$
.

D.
$$((p \Rightarrow r) \land (q \Rightarrow r)) \equiv ((p \land q) \Rightarrow r).$$

Câu 26. Cho dạng toàn phương $Q: \mathbb{R}^3 \to \mathbb{R}$ xác định bởi

$$Q(x, y, z) = x^{2} + 2y^{2} - z^{2} + 2xy + 2yz.$$

Ma trận của Q trong cơ sở chính tắc của \mathbb{R}^3 là

$$\mathbf{A.} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{bmatrix}.$$

$$\mathbf{B.} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}.$$

$$\mathbf{C.} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & -1 \end{bmatrix}$$

A.
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
 B.
$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$
 C.
$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & -1 \end{bmatrix}$$
 D.
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

Câu 27. Cho ánh xạ tuyến tính $f: \mathbf{P}_2 \to \mathbf{P}_2$ xác định bởi

$$f(a_0 + a_1x + a_2x^2) = (a_0 + a_1 + ma_2) + (a_0 + ma_1 + a_2)x + (ma_0 + a_1 + a_2)x^2.$$

Tìm m để dim $(\operatorname{Im} f) = 2$.

A.
$$m = 1$$
 hoặc $m = -2$.

B.
$$m = -2$$
.

C.
$$m \neq 1$$
 và $m \neq -2$. **D.** $m = 1$.

D.
$$m = 1$$

Câu 28. Cho tích vô hướng trên không gian véc tơ \mathbb{R}^2 xác định bởi

$$\eta(u,v) = x_1y_1 - 2x_1y_2 - 2x_2y_1 + 5x_2y_2,$$

trong đó $u=(x_1,x_2), v=(y_1,y_2) \in \mathbb{R}^2$. Xét véc tơ v=(1,2). Khẳng định nào dưới đây **đúng**?

A.
$$||v|| = \sqrt{5}$$
.

B.
$$||v|| = 13$$
.

C.
$$||v|| = 1$$
.

D.
$$||v|| = \sqrt{13}$$
.

Câu 29. Cho A, B, C là các tập con của tập hợp E. Khẳng định nào dưới đây **không đúng**?

A.
$$A \cap (B \setminus A) = \emptyset$$
.

B.
$$(A \cap B \cap C) \subset (B \cap C)$$
.

C.
$$(A \setminus C) \cap (C \setminus B) = \emptyset$$
.

D. Nếu
$$A \cup C = B \cup C$$
 thì $A = B$.

Câu 30. Cho hệ phương trình

$$\begin{cases} x + y - 5z = a \\ -2x + 2y + 2z = b \\ -x + 3y - 3z = c \end{cases}.$$

Điều kiện cần và đủ để hệ phương trình đã cho có nghiệm là

A.
$$3a - b + c = 0$$
.

B.
$$a + b - c = 0$$
.

C.
$$3a - b + c \neq 0$$
.

D.
$$a + b - c \neq 0$$
.

Câu 31. Ánh xạ nào dưới đây là toàn ánh?

A.
$$f: \mathbb{R}^* \to \mathbb{R}, f(x) = \frac{1}{x}$$
.

B.
$$f: \mathbb{N} \to \mathbb{N}, f(n) = 2n$$
.

C.
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x}{x^2 + 2x}$$
.

D.
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 5$$
.

Câu 32. Cho ma trận $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 3 \\ 4 & 2 & 0 \end{bmatrix}$. Phần tử ở vị trí hàng 2, cột 1 của ma trận A^{-1} là $\mathbf{A.} - \frac{1}{9}.$ $\mathbf{C.} \frac{1}{9}.$ $\mathbf{D.} \frac{2}{3}.$

A.
$$-\frac{1}{9}$$
.

$$\frac{1}{8} - \frac{2}{3}$$
.

C.
$$\frac{1}{9}$$
.

D.
$$\frac{2}{3}$$
.

Câu 33. Cho một hệ phương trình tuyến tính có ma trân hệ số và ma trân bổ sung lần lượt là A, Â. Giả sử A là ma trận cỡ 5×7 và $r(A) = r(\tilde{A}) = 4$. Khẳng định nào dưới đây **đúng**?

A. Hệ phương trình đã cho có vô số nghiệm phụ thuộc 3 tham số.

B. Hệ phương trình đã cho có vô số nghiệm phụ thuộc 1 tham số.

C. Hệ phương trình đã cho có vô số nghiệm phụ thuộc 4 tham số.

D. Hệ phương trình đã cho có nghiệm duy nhất.

Câu 34. Cho các ma trận

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}; B = \begin{bmatrix} 4 & 1 & 1 \\ -4 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Phần tử ở vị trí hàng 1, cột 2 của ma trận AB - BA là

A. -4.

C. 1.

D. 3.

Câu 35. Cho không gian véc tơ con của \mathbb{R}^4 :

$$U = \{(x, y, z, t) | x + 2y + z - 3w = 0\}.$$

Khẳng định nào dưới đây **đúng**?

A. dim U = 1.

B. dim U = 3.

C. dim U = 4.

D. dim U = 2.

Câu 36. Cho ánh xạ tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (3x+2y,4x+y). Một cơ sở gồm các véc tơ riêng của f là

A.
$$\{v_1 = (1, -2); v_2 = (1, -1)\}.$$

B.
$$\{v_1 = (1, -2); v_2 = (1, 1)\}.$$

C.
$$\{v_1 = (-2, 1); v_2 = (1, -1)\}.$$

D.
$$\{v_1 = (-2, 1); v_2 = (1, 1)\}.$$

Câu 37. Cho W_1, W_2 là các không gian véc tơ con của \mathbb{R}^3 . Khẳng định nào dưới đây **không đúng**?

- **A.** Nếu $\mathbb{R}^3 = W_1 \oplus W_2$ thì dim $W_1 + \dim W_2 = 3$.
- **B.** $W_1 + W_2$ là tổng trực tiếp khi và chỉ khi dim $(W_1 \cap W_2) = 0$.
- **C.** Nếu $W_1 = \{(x, y, 0) | x, y \in \mathbb{R}\}; W_2 = \{(0, y, y) | y \in \mathbb{R}\} \text{ thì } \mathbb{R}^3 = W_1 \oplus W_2.$
- **D.** Nếu $W_1 = \{(x, y, 0) | x, y \in \mathbb{R}\}; W_2 = \{(x, y, z) | x y + 2z = 0\}$ thì $\mathbb{R}^3 = W_1 \oplus W_2$.

Câu 38. Cho A là một ma trận vuông cấp 3. Khẳng định nào dưới đây **đúng**?

- Δ . Nếu A có tổng các phần tử ở mỗi hàng đều bằng 0 thì A khả nghịch.
- **B.** Nếu $A^2 = A$ và $A \neq 0$ thì A = I.
- C. Nếu $A \neq 0$ thì $A^2 \neq 0$.
- **D.** Nếu A^2 khả nghịch thì A khả nghịch.

Câu 39. Cho $B = \{(1, -3); (-2, 4)\}$ là một cơ sở của không gian véc tơ \mathbb{R}^2 . Ma trận chuyển từ cơ sở B sang

$$\mathbf{A.} \begin{bmatrix} -2 & -1 \\ -3/2 & -1/2 \end{bmatrix}.$$

$$\mathbf{B.} \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}.$$

C.
$$\begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$$

D.
$$\begin{bmatrix} -2 & -3/2 \\ -1 & -1/2 \end{bmatrix}$$

Câu 40. Tìm ma trận X thỏa mãn $X \begin{bmatrix} -2 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$.

$$\mathbf{A.} \ X = \begin{bmatrix} 2 & 2 \\ -4 & 0 \end{bmatrix}.$$

A.
$$X = \begin{bmatrix} 2 & 2 \\ -4 & 0 \end{bmatrix}$$
. **B.** $X = \begin{bmatrix} -1/2 & -1/2 \\ 1 & 0 \end{bmatrix}$. **C.** $X = \begin{bmatrix} -2 & -2 \\ 8 & 4 \end{bmatrix}$. **D.** $X = \begin{bmatrix} 1/2 & 1/2 \\ -2 & -1 \end{bmatrix}$.

$$\mathbf{C.} \ \ X = \begin{bmatrix} -2 & -2 \\ 8 & 4 \end{bmatrix}$$

D.
$$X = \begin{bmatrix} 1/2 & 1/2 \\ -2 & -1 \end{bmatrix}$$