SISTEMAS MULTIMÍDIA ÁUDIO 1

Prof.: Danilo Coimbra

(coimbra.danilo@ufba.br)

Áudio

- De suma importância para conteúdo multimídia
 - É a única mídia que estimula o sentido da audição
 - Todas as outras mídias usam a visão
 - Será?

- Diferenças entre informação de imagem e sonora
 - Quando a velocidade de reprodução da mídia é alterada, mais informação é perdida no áudio que na imagem

Fisicamente

- Som é uma onda mecânica tridimensional
 - Necessita de um meio material para se propagar
- Som é um fenômeno de onda como a luz, mas acontece em nível macroscópico e envolve moléculas de ar sendo comprimidas e expandidas sob a ação de dispositivos físicos (Li, 2004)

- Como se propaga uma onda sonora?
 - Vibração de um material que ao vibrar, produz uma compressão na região próxima, seguida de uma rarefação
 - Vibração longitudinal (paralela à sua propagação)
 - Transmite a vibração para as moléculas vizinhas e assim sucessivamente para todas as moléculas das vizinhança

- Som cotidiano que escutamos é um fenômeno físico produzido por variações na pressão do ar (vibrações)
 - Flutuações periódicas de pressão em um meio
 - Cordas de violino, bater palmas, cordas vocais, ...
- Com as variações
 - as moléculas vizinhas **vibram** no ar criando uma variação de pressão no ar à sua volta sentido de propagação das ondas sonoras

 Os ouvidos dos seres humanos detectam variações na pressão do ar de modo totalmente diferente do modo como os olhos detectam a presença de luz (imagem)

 Sensações produzidas pelo cérebro são igualmente distintas

Quão importante o som é para aplicações multimídia?

Fenômeno:

variação da pressão do ar por efeito de propagação de ondas sonoras

Microfone:

mede os valores do fenômeno (vibração) e transforma-os em valores de tensão elétrica

Tensão Elétrica:

variação física dependente do tempo que varia de forma análoga à variação da pressão do ar

- Em sistemas analógicos
 - O sinal sonoro é representado por um sinal magnético ou elétrico
 - com amplitude proporcional à amplitude do sinal acústico original

- Nos dispositivos e sistemas eletrônicos
 - Sinal sonoro é representado por uma sequência de números
 - Bits: 0 e 1

- Similarmente ao ouvido, o microfone é um transdutor
 - Converte as variações de pressão do ar em sinais elétricos usáveis pelos equipamentos de áudio

- A saída de um microfone é uma voltagem elétrica analógica que varia no tempo do mesmo modo que as ondas mecânicas do som = Sinal de áudio
- $ldsymbol{\square}$ Alto-falantes: sinal elétrico ightarrow ondas mecânicas

Transdutores

□ Sinal acústico → sinal elétrico

□ sinal elétrico → sinal acústico (ondas mecânicas)

- Primeiro sistema de captura do som: Fonógrafos mecânicos (1877)
 - Cilindro com sulcos e folha de estanho, e uma ponta aguda pressionando esse cilindro
 - Conjunto ligado a um diafragma, no qual era acoplado a um bocal em forma de cone
 - Aparelho era capaz de gravar o som, e reproduzir, bastando trocar a ponta aguda por uma agulha

- Posteriormente
 - □ Até 1948: discos de goma-laca
 (78 rpm, usados em gramofones,
 totalmente mecânicos)
- □ 1963: Fita cassete
 - "Até" final da década de 80: discos de vinil ou LP (usados em toca-discos/vitrolas, conversão para sinal elétrico
- Início da década de 90: compact-discs ou CDs

- Possui alguns aspectos/características
 - □ Amplitude, <u>frequência</u> (<u>mídia contínua</u>) <u>e velocidade</u>

Deslocamento máximo medido a partir da posição de equilíbrio

- Amplitude
 - Medida escalar negativa e positiva da magnitude de oscilação de uma onda
- þ Amplitude = Intensidade
 - Está relacionada ao volume do som. Quanto maior a amplitude, mais alto ouvimos o som

🗖 Amplitude

Quantidade de energia transportada pela onda

- Amplitude (Decibéis dB)
 - Amplitude: conceito físico
 - Intensidade: conceito psicofísico

- □ Percepção do ouvido não é linear
 - Logarítmica
 - Produzir um som de intensidade 2x maior, necessário 10x mais potência acústica

- Amplitude -> Intensidade
 - Parâmetros perceptuais do som

Som	I (dB)
Limiar de audibilidade	0
Rumorejar das folhas	10
Sussurrar	30
Barulho de um mosquito	40
Conversa normal	50
Aspirador	70
Trânsito intenso	80
Concerto de rock	120
Avião a jato próximo	150
Ruptura do tímpano	160

Amplitude -> Intensidade (decibéis)

dB	DIRECT SOUNDS	EXPOSURE TIME
140	Jet tak e-off, Gun shot	DANGER ZONE
130	Jack ham mer	
120	Threshold of pain	Less than 7 m inutes
115	Rock concert	15 Minutes
110	Dance dub	30 Minutes
105	Voice shouting	1 Hour
100	Factory	2 Hours
95	Subway	4 Hours
90	Heavy traffic	8 Hours
80	Busystreet	
70	Restaurant	
60	Average conversation	
50	Av erage suburban hom e	
40	Quiet auditorium	
30	Quiet whisper	
20	Extrem ely quiet recording studio	
10	Anechoic chamber	
0	Threshold of hearing	

Figure #2. Sound levels and maximum exposure time.

- Frequência
 - Quantidade de ciclos completos (vibrações) de uma onda sonora
 - Que ocorrem em um determinado período de tempo (1s)
 - Determina a altura do som
 - Altura ≠ volume
 - □ Frequências altas = altura maior = sons mais agudos
 - □ Frequências baixas = altura menor = sons mais graves

- Frequência
 - Quantidade de ciclos completos (vibrações) de uma onda sonora
 - Que ocorrem em um determinado período de tempo (1s)
 - Determina a altura do som
 - Altura ≠ volume

- □ Frequências altas = altura maior = sons mais agudos
- Frequências baixas = altura menor = sons mais graves
 Espectros de Frequências

Unidades de Período e de Frequência

Unidade	Equivalência	Unidade	Equivalência
segundos (s)	1 s	hertz (Hz)	1 Hz
milisegundos (ms)	10 ⁻³ s	kilohertz (kHz)	10 ³ Hz
microsegundos (ms)	10 ⁻⁶ s	megahertz (MHz)	10 ⁶ Hz
nanosegundos (ns)	10 ⁻⁹ s	gigahertz (GHz)	10 ⁹ Hz
psicosegundos (ps)	10 ⁻¹² s	terahertz (THz)	10 ¹² Hz

Frequência

CATEGORIA	INTERVALO DE FREQUÊNCIA
Infra-som	0 – 20 Hz
Som Audível	20Hz - 20 KHz
Ultra-som	20 KHz – 1GHz
Hipersom	1 GHz – 10 GHz

Frequência

CATEGORIA	INTERVALO DE FREQUÊNCIA
Infra-som	0 – 20 Hz
Som Audível	20Hz – 20 KHz
Ultra-som	20 KHz – 1GHz
Hipersom	1 GHz – 10 GHz

Abalo sísmico, batidas do coração

Frequência

CATEGORIA	INTERVALO DE FREQUÊNCIA
Infra-som	0 – 20 Hz
Som Audível	20Hz – 20 KHz
Ultra-som	20 KHz – 1GHz
Hipersom	1 GHz – 10 GHz

Ouvido Humano
Voz humana e de
Animais, instrumentos
Musicais, alto falantes
Comunicação!

Frequência

CATEGORIA	INTERVALO DE FREQUÊNCIA
Infra-som	0 – 20 Hz
Som Audível	20Hz – 20 KHz
Ultra-som	20 KHz – 1GHz
Hipersom	1 GHz – 10 GHz

vibrações térmicas das moléculas

Morcego, cão, Gafanhotos, grilos

Investigação em medicina, biologia e física molecular. Defeitos em estruturas em construções

Frequência

Timbre

- O timbre do som é o que nos permite distinguir a natureza de sua fonte.
- Característica sonora que permite distinguir sons de mesma frequência e intensidade
- O timbre é o modo de vibração da onda sonora, e cada fonte sonora possui o seu timbre característico.
 - Exemplo: nota LÁ (440 Hz) emitida de um violino e de um piano

Flauta

Violino

Representação gráfica das formas das ondas, de uma mesma nota musical, emitidas por três instrumentos diferentes.

- O timbre é formado por duas características:
 - □ forma de onda
 - envelope sonoro
- □ Forma de onda
 - Som de um determinado instrumento produz ondas na frequência fundamental e várias frequências harmônicas com diferentes amplitudes
 - Combinação dessas frequências e amplitudes geram uma forma de onda irregular
 - característica do instrumento

□ Forma de onda

 $T_{L/H}$ = time for one cycle = signal period

- Envelope sonoro
 - □ É a forma como o som se inicia, se mantém e termina ao longo do tempo
 - Composto de quatro momentos:
 - Ataque, decaimento, sustentação, relaxamento

X intensidade

Y tempo

Ataque

 Início da nota musical. Depende do instrumento mas pode durar de um centésimo de segundo até mais de um segundo

Decaimento

- Em alguns instrumentos, após o ataque o som sofre um decaimento de intensidade antes de se estabilizar (sopro)
- Dura de centésimos a menos de um décimo de segundo

Sustentação

 Tempo de duração da nota musical. Durante esse tempo a intensidade é mantida no mesmo nível (estabilidade)

Relaxamento

final da nota, quando a intensidade sonora diminui até desaparecer completamente

Envelope Exemplo Envelope sustain 1- Tambor 2- Trompete 3-flauta

- As ondas sonoras atingem o tímpano
- O tímpano faz os ossos do ouvido médio vibrarem
- Essas vibrações são convertidas em impulsos nervosos que são transmitidos, via o nervo auditivo, para o cérebro
- Quando esses impulsos chegam ao cérebro,
 "ouvimos" o som!

- As ondas sonoras atingem o tímpano
- O tímpano faz os ossos do ouvido médio vibrarem.
- Essas vibrações são convertidas em impulsos nervosos que são transmitidos, via o nervo auditivo, para o cérebro.
- Quando esses impulsos chegam ao cérebro,
 "ouvimos" o som!

- As ondas sonoras atingem o tímpano
- O tímpano faz os ossos do ouvido médio vibrarem.
- Essas vibrações são convertidas em impulsos nervosos que são transmitidos, via o nervo auditivo, para o cérebro.
- Quando esses impulsos chegam ao cérebro,
 "ouvimos" o som!

- As ondas sonoras atingem o tímpano
- O tímpano faz os ossos do ouvido médio vibrarem.
- Essas vibrações são convertidas em impulsos nervosos que são transmitidos, via o nervo auditivo, para o cérebro.
- Quando esses impulsos chegam ao cérebro, "ouvimos" o som!

 Assim, o ouvido funciona como um sensor ou transdutor que converte sons em estímulos nervosos que podem ser interpretados pelo cérebro

- As características do som estão relacionadas/associadas com os meios de transmissão dessa onda
 - Ar, água, vidro, ferro,...
- A maioria dos sons chega ao ouvido transmitidos pelo ar, que age como meio de transmissão

 Nas pequenas altitudes, os sons são bem audíveis, o que não ocorre em altitudes maiores, onde o ar é menos denso

- O ar denso é melhor transmissor do som que o ar rarefeito
 - as moléculas gasosas estão mais próximas e transmitem a energia cinética da onda de umas para outras com maior facilidade
 - Água: podemos perceber isso quando colocamos a cabeça dentro da água e ouvimos o ruído do motor de um barco com extrema nitidez

De uma maneira geral, os sólidos transmitem o som melhor que os líquidos, e estes, melhor do que os gases

 Som não se propaga no vácuo, porque exigem um meio material para sua propagação

Velocidade de propagação varia de acordo com

o meio

Material	Velocidade de propagação do som v/(m/s)
Ar (10 °C)	331
Ar (20 °C)	343
Ar (30 °C)	350
Oxigénio	317
Dióxido de carbono	250
Água	1480
Água do mar	1522
Borracha	54
Alumínio	4420
Aço	6000
Betão	5000
Latáo	3500

Imagem do livro "FQ8 - Sustentabilidade na Terra - Edições ASA".

Portanto, quanto mais denso, maior a velocidade

Música

- O que é Música?
- É uma forma de arte que se consitui na combinação de vários sons e ritmos, seguindo uma pré-organização ao longo do tempo
- A repetição sonora cria um dos aspectos fundamentais da música: ritmo (repetição regular)

Um som repetido rapidamente se torna um tom

🔰 Tocar vários tons ao mesmo tempo: harmonia

Música

- Por quê temos tanta sensibilidade à música?
- Conexão com o sentimento
- Está ligada ao movimento
 - Batida musical é reconhecida pelo Sistema motor (dança)
 - Benefícios sociais