LEC 14: SOLVING CIRCUIT PROBLEMS

Quix #3: figure in Q#3 is not showing correctly

→ don't start if you have not yet

→ I will add the figure in the quix pre-amble

→ I will add extra attempt (4)

CHAPTER 19:

19.1: ELECTRIC CURRENT

19.2: BATTERIES AND EMP

19.3: Making and representing simple circuits

19.4: OHM'S LAW

19.5: QUALITATIVE ANALYSIS OF CIRCUITS

19.6: Joule's Law

19.7: KIRCHHOFF'S RULES

19.8 RESISTOR AND CAPACITOR CIRCUITS.

19.9 SOLVING CIRCUIT PROBLEMS 19.10: PROPERTIES OF RESISTORS

REVIEW

Ohm's Law: $\Delta V = IR$

Resistance: $R = \frac{\rho L}{A}$

Capacitor: $C = \frac{Q}{\Delta V}$

Joule's Law: $P = \left| \frac{\Delta U_q}{\Delta t} \right| = I \Delta V$

Kirchhoff's Loop Law:

$$\sum_{loop} \Delta V_i = 0$$

Kirchhoff's Junction (Node) Law:

$$\sum_{node} I_i = 0$$

19.8 DC CIRCUITS – RESISTORS IN SERIES

Current has only one way to go, so the current through each resistor is the same.

$$\epsilon - IR_1 - IR_2 = 0$$

$$\epsilon = \Delta V_1 + \Delta V_2$$

$$IR_{eq} = IR_1 + IR_2$$

$$Req = R_1 + R_2$$

IN SERIES

$$Req = \sum_{i=1}^{N} R_i$$

19.8 DC CIRCUITS - RESISTORS IN PARALLEL

RTOTAL = Requiralent

Current splits at the node, but potential difference across each resistor is the same:

$$-I_{A}R_{2} + \epsilon = 0 \quad \mathbf{1}$$

$$-I_{B}R_{1} + \epsilon = 0$$

$$I_{A} + I_{B} = I$$

$$\Delta V_{1} = \epsilon, \quad \Delta V_{2} = \epsilon$$

$$I_{A} = \frac{\Delta V_{2}}{R_{2}} = \frac{\epsilon}{R_{2}} \qquad I_{B} = \frac{\Delta V_{1}}{R_{1}} = \frac{\epsilon}{R_{1}}$$

$$I = \frac{\epsilon}{R_{TOT}} \qquad - \frac{\epsilon}{R_{2}} = \frac{\epsilon}{R_{1}} + \frac{\epsilon}{R_{2}} \Rightarrow \frac{\epsilon}{R_{2}} = \frac{\epsilon}{R_{1}} + \frac{\epsilon}{R_{2}}$$

$$\frac{1}{R_{2}} = \frac{\epsilon}{R_{1}} + \frac{\epsilon}{R_{2}} \Rightarrow \frac{1}{R_{2}} = \frac{\epsilon}{R_{1}} + \frac{\epsilon}{R_{2}}$$

EXAMPLE 19E – TRY

If the voltage of 30 V is applied between points A and B, what is the current through each resistor, voltage across each resistor and power dissipated by each one.

$R\left[oldsymbol{\Omega} ight]$	V [V]	I[A]	<i>P</i> [<i>W</i>] ∀・ ↓
$R_1 = 3\Omega$	ΔV ₁ = R ₁ ·I ₁ 6V	2	12
$R_2 = 20\Omega$	Δ٧2= 24٧	1.2	28.8
$R_3 = 18\Omega$	0.8 · 18	2-1.2 = 0.8	11.52
$R_4 = 12\Omega$	9.6	0.8	7.68
$R_{eq} = 15\Omega$	<i>3</i> 0 V	$\frac{\epsilon}{Req} = 2$	60W

$$R_{2}$$
 R_{3}
 R_{4}
 R_{4}
 R_{4}
 R_{4}
 R_{4}
 R_{4}
 R_{4}
 R_{5}
 R_{4}
 R_{4}
 R_{4}
 R_{5}
 R_{8}
 R_{8}

R2 & RA in parallel

$$\frac{1}{R_{B}} = \frac{1}{R_{2}} + \frac{1}{R_{A}} = \frac{1}{20} + \frac{1}{30} = \frac{3}{60} + \frac{2}{60} = \frac{5}{60}$$

$$R_{B} = 12 \Omega$$

$$Reg = R_B + R_1 = 12 \Omega + 3 \Omega = 15 \Omega$$

EXAMPLE 19F – WHICH LIGHTBULB WOULD BE THE

$$P = I\Delta V = I^{2}R = \frac{\Delta V}{R}^{2}$$

EXAMPLE 19G – A MORE COMPLICATED APPROACH

$$R_{A}: R_{1}, R_{2}, R_{3} \text{ in parallel}$$

$$\frac{1}{R_{A}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} = \frac{1}{4} + \frac{1}{12} + \frac{1}{6} = \frac{3}{12} + \frac{1}{12} + \frac{2}{12} = \frac{6}{12}$$

$$R_{A} = 2 \Omega$$

$$V_{bat} = 17 V$$

$$R_{A}$$

$$R_{5}$$

$$R_{4}$$

$$AV_{4} = 5V$$

$$R_{1}$$

e add in series

$$R_A + R_4 + R_5 = 2 \Omega + 5 \Omega + 10 \Omega = 17 \Omega$$

Table

$$R_A \rightarrow V_A = I_{ToT} \cdot R_A$$

= 2.0.Q \cdot 1A = 2Y

R[Q]	I[A]	VEVJ	P[W]
$R_1 = 4.0$	$I = \frac{\Delta V_A}{R_A} = 0.5$	AVA = AV1 = 24	1
R2= 12.0	= 1/61	AVA = 2V	1/3
$R_3 = 6.0$	= 1/31	$\Delta V_A = \Delta V_3 = 2Y$	² /3
$R_4 = 5.0$	all 1A	I:R4 = 54	5
R5 = 10.0	all 1A	I.R5 = 104	10
Reg = 17 JL	Reg = 1	171	17 yay!

When analyzing circuits some people find if helpful to keep all the info in the table like this one:

Bolded values are given.

Red values are those than can be calculated once two things for a given resistor are known.

	Total	R_1	R_2	R_3	R_4	R_5
R	R_{eq}	R_1	R_2	R_3	R_4	R_5
I	$I_{total} = \frac{V_{bat}}{R_{eq}}$	I_1	I_2	I_3	I_4	I_5
V	V_{bat}	V_1	V_2	V_3	V_4	V_5
P	$P_{total} = V_{bat}I_{tot}$	P_1	P_2	P_3	P_4	P_5

As you figure out information, you just fill the table, keeping track of the information.

I don't use the tables (my brain doesn't really work that way, I prefer putting my info in the figure), but I figured I would share the technique just in case someone finds it useful.

What is the equivalent resistance of R_4 and R_5 ?

Simplified circuit: R1

What is the equivalent resistance of R_2 and R_3 ? in popular.

Simplified circuit:

Simplified circuit:

What is the equivalent resistance for this circuit? "one resistor to replace them all"

R1 is in series with the rest of the resistors

Simplified circuit: