Introduction to Algorithms

6.046J/18.401J

LECTURE 5

Sorting Lower Bounds

Decision trees

Linear-Time Sorting

- Counting sort
- Radix sort

Appendix: Punched cards

Prof. Erik Demaine

How fast can we sort?

All the sorting algorithms we have seen so far are *comparison sorts*: only use comparisons to determine the relative order of elements.

• *E.g.*, insertion sort, merge sort, quicksort, heapsort.

The best worst-case running time that we've seen for comparison sorting is $O(n \lg n)$.

Is $O(n \lg n)$ the best we can do?

Decision trees can help us answer this question.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

Each leaf contains a permutation $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \le a_{\pi(2)} \le ... \le a_{\pi(n)}$ has been established.

Decision-tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size *n*.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.

Lower bound for decisiontree sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof. The tree must contain $\geq n!$ leaves, since there are n! possible permutations. A height-h binary tree has $\leq 2^h$ leaves. Thus, $n! \leq 2^h$.

```
∴ h \ge \lg(n!) (lg is mono. increasing)

\ge \lg ((n/e)^n) (Stirling's formula)

= n \lg n - n \lg e

= \Omega(n \lg n).
```


Lower bound for comparison sorting

Corollary. Heapsort and merge sort are asymptotically optimal comparison sorting algorithms.

Sorting in linear time

Counting sort: No comparisons between elements.

- *Input*: A[1...n], where $A[j] \in \{1, 2, ..., k\}$.
- Output: B[1 ... n], sorted.
- Auxiliary storage: C[1 ... k].

Counting sort

```
for i \leftarrow 1 to k
    do C[i] \leftarrow 0
for j \leftarrow 1 to n
    do C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{ \text{key} = i \}|
for i \leftarrow 2 to k

ightharpoonup C[i] = |\{\text{key} \le i\}|
    do C[i] \leftarrow C[i] + C[i-1]
for j \leftarrow n downto 1
    \operatorname{do} B[C[A[j]]] \leftarrow A[j]
          C[A[j]] \leftarrow C[A[j]] - 1
```


Counting-sort example

B:

for
$$i \leftarrow 1$$
 to k

$$do C[i] \leftarrow 0$$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key} \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key} \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key} \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Analysis

```
\Theta(k) \begin{cases} \text{for } i \leftarrow 1 \text{ to } k \\ \text{do } C[i] \leftarrow 0 \end{cases}
                                \begin{cases} \mathbf{for} \, j \leftarrow 1 \, \mathbf{to} \, n \\ \mathbf{do} \, C[A[j]] \leftarrow C[A[j]] + 1 \end{cases}

\begin{cases}
\mathbf{for } i \leftarrow 2 \mathbf{ to } k \\
\mathbf{do } C[i] \leftarrow C[i] + C[i-1]
\end{cases}

                                        \begin{cases} \mathbf{for} \ j \leftarrow n \ \mathbf{downto} \ 1 \\ \mathbf{do} \ B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases}
\Theta(n+k)
```


Running time

If k = O(n), then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(n \lg n)$ time!
- Where's the fallacy?

Answer:

- Comparison sorting takes $\Omega(n \lg n)$ time.
- Counting sort is not a comparison sort.
- In fact, not a single comparison between elements occurs!

Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

Exercise: What other sorts have this property?

Radix sort

- *Origin*: Herman Hollerith's card-sorting machine for the 1890 U.S. Census. (See Appendix ①.)
- Digit-by-digit sort.
- Hollerith's original (bad) idea: sort on most-significant digit first.
- Good idea: Sort on *least-significant digit first* with auxiliary *stable* sort.

Operation of radix sort

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit t

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit t are correctly sorted.

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit t are correctly sorted.
 - Two numbers equal in digit t are put in the same order as the input \Rightarrow correct order.

Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort *n* computer words of *b* bits each.
- Each word can be viewed as having b/r base- 2^r digits.

Example: 32-bit word

 $r = 8 \Rightarrow b/r = 4$ passes of counting sort on base-28 digits; or $r = 16 \Rightarrow b/r = 2$ passes of counting sort on base-216 digits.

How many passes should we make?

Analysis (continued)

Recall: Counting sort takes $\Theta(n + k)$ time to sort n numbers in the range from 0 to k - 1.

If each *b*-bit word is broken into *r*-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time. Since there are b/r passes, we have

$$T(n,b) = \Theta\left(\frac{b}{r}(n+2^r)\right).$$

Choose r to minimize T(n, b):

• Increasing r means fewer passes, but as $r \gg \lg n$, the time grows exponentially.

Choosing r

$$T(n,b) = \Theta\left(\frac{b}{r}(n+2^r)\right)$$

Minimize T(n, b) by differentiating and setting to 0.

Or, just observe that we don't want $2^r \gg n$, and there's no harm asymptotically in choosing r as large as possible subject to this constraint.

Choosing $r = \lg n$ implies $T(n, b) = \Theta(bn/\lg n)$.

• For numbers in the range from 0 to $n^d - 1$, we have $b = d \lg n \Rightarrow$ radix sort runs in $\Theta(dn)$ time.

Conclusions

In practice, radix sort is fast for large inputs, as well as simple to code and maintain.

Example (32-bit numbers):

- At most 3 passes when sorting ≥ 2000 numbers.
- Merge sort and quicksort do at least $\lceil \lg 2000 \rceil = 11$ passes.

Downside: Unlike quicksort, radix sort displays little locality of reference, and thus a well-tuned quicksort fares better on modern processors, which feature steep memory hierarchies.