EXERCICE N°1 Objectif Spé

On donne x la mesure d'un angle aigu. Démontrer les égalités suivantes :

1)
$$(\cos(x) + \sin(x))^2 = 1 + 2\sin(x)\cos(x)$$
 2) $(\cos(x))^2 - (\sin(x))^2 = 1 - 2(\sin(x))^2$

3)
$$1 + (\tan(x))^2 = \frac{1}{(\cos(x))^2}$$
 4) $1 + \frac{1}{(\tan(x))^2} = \frac{1}{(\sin(x))^2}$

Remarque n°1.

Très souvent, vous simplifierez ces écritures de la façon suivante :

1)
$$(\cos x + \sin x)^2 = 1 + 2\sin x \cos x$$
 2) $\cos^2 x - \sin^2 x = 1 - 2\sin^2 x$

3)
$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$
 4) $1 + \frac{1}{\tan^2 x} = \frac{1}{\sin^2 x}$

EXERCICE N°2 Valeurs remarquables part 1

On donne le triangle équilatéral OMI tel que OM = 1 et H le milieu de [OI].

- 1) Montrer que la droite (MH) est un axe de symétrie de OMI, en déduire que le triangle MHO est rectangle en H.
- 2) Déterminer la valeur exacte de $\cos(60^{\circ})$ puis de $\sin(60^{\circ})$.
- 3) En déduire la valeur exacte de $\cos(30^{\circ})$ puis de $\sin(30^{\circ})$.

EXERCICE N°3 Valeurs remarquables part 2

On considère un triangle OMH rectangle en H tel que $\widehat{MOH} = 45^{\circ}$ et OM = 1.

- 1) Montrer que le triangle OMH est également isocèle puis en déduire la valeur exacte de la longueur OH.
- 2) En déduire la valeur exacte de $\cos(45^{\circ})$ puis de $\sin(45^{\circ})$.

EXERCICE N°4 Tableau des valeurs remarquables de la trigonométrie.

En vous aidant des deux exercices précédents compléter le tableau et l'apprendre par cœur !

x	0°	30°	45°	60°	90°
$\cos(x)$	1				0
$\sin(x)$	0				1
$\tan(x)$	0				« infini »

EXERCICE N°1 Objectif Spé

On donne x la mesure d'un angle aigu. Démontrer les égalités suivantes :

1)
$$(\cos(x) + \sin(x))^2 = 1 + 2\sin(x)\cos(x)$$
 2) $(\cos(x))^2 - (\sin(x))^2 = 1 - 2(\sin(x))^2$

3)
$$1+(\tan(x))^2 = \frac{1}{(\cos(x))^2}$$
 4) $1+\frac{1}{(\tan(x))^2} = \frac{1}{(\sin(x))^2}$

Remarque n°2.

Très souvent, vous simplifierez ces écritures de la façon suivante :

1)
$$(\cos x + \sin x)^2 = 1 + 2\sin x \cos x$$
 2) $\cos^2 x - \sin^2 x = 1 - 2\sin^2 x$

3)
$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$
 4) $1 + \frac{1}{\tan^2 x} = \frac{1}{\sin^2 x}$

EXERCICE N°2 Valeurs remarquables part 1

On donne le triangle équilatéral OMI tel que OM = 1 et H le milieu de [OI].

- 1) Montrer que la droite (MH) est un axe de symétrie de OMI, en déduire que le triangle MHO est rectangle en H.
- 2) Déterminer la valeur exacte de $\cos(60^{\circ})$ puis de $\sin(60^{\circ})$.
- 3) En déduire la valeur exacte de $\cos(30^{\circ})$ puis de $\sin(30^{\circ})$.

EXERCICE N°3 Valeurs remarquables part 2

On considère un triangle OMH rectangle en H tel que $\widehat{MOH} = 45^{\circ}$ et OM = 1.

- 1) Montrer que le triangle OMH est également isocèle puis en déduire la valeur exacte de la longueur OH.
- 2) En déduire la valeur exacte de $\cos(45^{\circ})$ puis de $\sin(45^{\circ})$.

EXERCICE N°4 Tableau des valeurs remarquables de la trigonométrie.

En vous aidant des deux exercices précédents compléter le tableau et l'apprendre par cœur!

x	0°	30°	45°	60°	90°
$\cos(x)$	1				0
$\sin(x)$	0				1
tan(x)	0				« infini »