4 Esquemas elétricos

4.1 Esquema de ligação para Baixa Tensão

Os projetos elétricos em baixa tensão devem ser utilizados, conforme esquemas de ligação, onde as ligações são desenvolvidas através de símbolos. Os esquemas utilizados em instalações elétricas de baixa tensão são dos esquemas funcional, multifilares e unifilares.

Para apresentação destes esquemas utilizaremos um interruptor uma lampada.

4.2 Esquema funcional

Apresenta todo o sistema elétrico e permite interpreter, com clareza e rapidez, o funcionamento ou sequencia functional dos circuito.

Figure 1: Esquema funcional

Professor Luiz Fernando L Campos

4.3 Esquema Multifilar

Representa do o sistema elétricos, com todos os seus condutores e detalhes onde cada traço representa um cabo e a simbologia utilizada fica restrita aos aparelhos de utilização. Para um melhor entendimento vamos tomar como exemplo o circuito de uma lâmpada acionada por um interruptor:

Figure 2: Esquema Multifilar

Figura 1: Ligação de uma lâmpada com um interruptor simples

Professor Luiz Fernando L Campos

4.4 Unifilar

Baseado neste circuito apresentado no item acima podemos desenhar o diagrama unifilar do circuito representado acima, onde os traços de fase (R1) e neutro(N1) são oriundos de um quadro de luz. Sempre deve-se interromper a fase do circuito através do interruptor.

Esquema unifilar

Figura 2: Diagrama Unifilar do esquema apresentado

Professor Luiz Fernando L Campos

5 Instalação elétrica de uma tomada

> Diagrama Multifilar

Professor Luiz Fernando L Campos

> Diagrama Unifilar

NOTA: OBSERVE DE FORMA CORRETA A SEQUÊNCIA ABAIXO:

Professor Luiz Fernando L Campos

6 Acionamento de duas lâmpadas com Interruptor de duas seções

> Diagrama Multifilar

Diagrama Unifilar

Professor Luiz Fernando L Campos

PLANTA BAIXA

7 Acionamento de duas lâmpadas com Interruptor de três seções

Professor Luiz Fernando L Campos

Esquema unifilar

Professor Luiz Fernando L Campos

PLANTA BAIXA

8 Ligação De Lampada Fluorescente

Como vimos, em período passado, encontramos reatores para uma lâmpada, ou reatores para duas lâmpadas fluorescente, desta forma, em uma luminária para duas lâmpadas você pode fazer a opção por um ou dois reatores.

No reator, vêm gravadas todas as informações necessárias para a instalação, tais como: tensão, corrente, número de lâmpadas, potência e esquema de ligação.

É importante observar em qual dos fios vão ser ligados o neutro e a fase, pois cada um tem a sua posição definida. Para a segurança e bom funcionamento das lâmpadas, é necessário que se aterre a carcaça do reator juntamente com a luminária.

Professor Luiz Fernando L Campos

Esquema multilar

Esquema unifilar

25

Para um reator de 2 lampadas segue-se a mesma linha de pensamento para a instalação de reator. Primeiramente observam-se a forma de montagem e a ligação do reator conforme abaixo.

Professor Luiz Fernando L Campos

8.4 Interruptores paralelos (Three-Way)

Este tipo de interruptor é utilizado quando se deseja acionar uma lâmpada ou um conjunto de lâmpadas através de dois pontos distintos, evitando assim que o usuário tenha que retornar ao um determinado ponto para desligar a lâmpada, o interruptor paralelo é usado nos seguintes locais:

- ➤ Escadarias: A melhor solução é instalar um interruptor no inicio da escada e outro no final daescada;
- Corredores: Podem ser instalados no inicio e no final do corredor;
- Quartos: Instala-se um interruptor próximo à porta do quarto e outro na cabeceira da cama. O interruptor paralelo também pode ser chamado de three way, pois o interruptor possui três terminais, onde o terminal central é denominado terminal comum sendo este ligado na fase

Professor Luiz Fernando L Campos

ou retorno para a lâmpada e os demais ligados os retornos para o próximo interruptor paralelo. No diagrama abaixo temos o circuito multifilar do interruptor paralelo.

Diagrama multifilar

Esquema multifilar

❖ Diagrama Unifilar

Professor Luiz Fernando L Campos

Esquema unifilar

De forma prática temos:

Para dois pontos de luz num mesmo ambiente, e as mesmas lâmpadas são comandadas por um único par de interruptores. Desta forma as lâmpadas serão ligadas em paralelo. Conforme abaixo:

Professor Luiz Fernando L Campos

Também é possível comandar lâmpadas fluorescentes por interruptores paralelos (three way), como indica abaixo:

8.5 Interruptor Intermediário (Four Way)

O interruptor paralelo é utilizado quando é necessário comandar uma lâmpada ou um conjunto de lâmpadas de três ou mais pontos diferentes. Podem ser usados quantos interruptores paralelos quanto se desejar, entretanto eles devem ser instalados sempre entre dois interruptores intermediários. O interruptor paralelo também é conhecido como interruptor four way, possui quatro terminais, onde são interligados os retornos provenientes dos interruptores paralelos ou intermediários no caso de instalação de mais de um interruptor intermediário. Na figura abaixo temos o diagrama multifilar de um interruptor intermediário.

Professor Luiz Fernando L Campos

ESQUEMA FUNCIONAL

Esquema multifilar

Esquema unifilar

Professor Luiz Fernando L Campos

Figura 3: Esquema com um interruptor intermediário

Esquema com n pontos para interruptores intermediários:

Professor Luiz Fernando L Campos

PLANTA BAIXA COM INTERRUPTOR INTERMEDIÁRIO.

Figura 4: Esquema com dois interruptores intermediário

O interruptor intermediário funciona da seguinte maneira: quando na posição I há contato entre o terminal A e o terminal D e o terminal B com o terminal C mantendo o circuito desligado. Na posição

Professor Luiz Fernando L Campos

Il há o contato entre o terminal A e C e os terminais B e D fazendo com que a lâmpada acenda.

Qualquer mudança em qualquer um dos interruptores paralelos irá trocar o estado da lâmpada assim, se o interruptor estiver desligando o circuito da lâmpada ela poderá ser ligada através de qualquer um dos interruptores paralelos e vice-versa.

9 Seção mínima dos Condutores

9.1 Fase

As seções dos condutores fase, em circuitos CA, e dos condutores vivos, em circuitos CC, não devem ser inferiores aos valores dados abaixo.

Tipo de Linha		Utilização do Circuito	Seção Mínima do Condutor (mm²)	Material		
		Circuito de iluminação	1,5 16	Cobre Alumínio		
	Condutores e cabos isolados	Circuito de força ²⁾	2,5 16	Cobre Alumínio		
Instalações fixas em geral		Circuito de sinalização e circuitos de controle	0,5 ³⁾	Cobre		
	Condutana au	Circuito de força	10 16	Cobre Alumínio		
	Condutores nus	Circuitos de sinalização e circuitos de controle	4	Cobre		
Linhas flexíveis com cabos isolados		Para um equipamento específico	Como especificado na norma do equipamer			
		Para qualquer outra aplicação	0,75 4)	Cobre		
		Circuitos a extrabaixa tensão para aplicações especiais	0,75	Cobre		

¹⁾ Seções mínimas ditadas por razões mecânicas.

9.2 Seção do Condutor Neutro

O condutor neutro, num sistema elétrico de distribuição secundária (BT), tem por finalidade o equilíbrio e a proteção desse sistema elétrico.

A norma NBR 5410/2004 determina:

- O condutor neutro n\u00e3o pode ser comum a mais de um circuito
- 2. O condutor neutro de um circuito monofásico deve ter a mesma seção do condutor de fase.
- 3. Com a presença das correntes de terceira harmônica;
 - a. Circuitos trifásicos com neutro (3F+N), mesmo equilibrados;

²⁾ Os circuitos de tomadas de corrente são considerados circuitos de força.

³⁾ Em circuitos de sinalização e controle destinados a equipamentos eletrônicos é admitida uma seção mínima de 0,1 mm².

⁴⁾ Em cabos multipolares flexíveis contendo sete ou mais veias é admitida uma seção mínima de $0.1\ \mathrm{mm}^2$.

Professor Luiz Fernando L Campos

 Quando a taxa de terceira harmônica e seus múltiplos forem superiores a 15%, o condutor neutro deve ser igual ao dos condutores de fase;

- ii. Quando a taxa de terceira harmônica e seus múltiplos forem superiores a 33% pode ser necessário um condutor neutro com seção superior à dos condutores de fase;
- b. Circuitos com duas fases e neutro (2F+N);
 - Se a taxa de terceira harmônica e seus múltiplos não forem superiores a 33%, o condutor neutro deve ser igual ao condutor de fase;
 - ii. Se a taxa de terceira harmônica e seus múltiplos forem superiores a 33%, pode ser necessário um condutor neutro com seção superior à dos condutores fase;

NOTAS: 1) Os níveis das correntes harmônicas, citadas no item anterior em ai e bi, são encontrados em circuitos que alimentam luminárias com lâmpadas de descarga, incluindo as fluorescentes; 2) Os níveis de correntes harmônicas, citadas em aii e bii são encontrados, por exemplo, em circuitos que alimentam computadores ou outros equipamentos de tecnologia de informação; 3) Dimensionamento do condutor neutro: os níveis da "terceira harmônica das correntes de fase e do comportamento imposto à corrente de neutro pelas condições de desequilíbrio em que o circuito pode vir a operar, conforme as condições em aii e bii. Deve proceder conforme anexo F da NBR 5410/2004.

10 Dimensionamento do condutor pela capacidade de corrente

Método de Instalação Número	Método de Referência a Utilizar para a Capacidade de Condução de Corrente ⁽¹⁾	Descrição					
1	A1	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em parede termicamente isolante ²⁾ .					
2	A2	Cabo multipolar em eletroduto de seção circular embutido em parede termicamente isolante ²⁾ .					
3	В1	Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vezes o diâmetro do eletroduto.					
4	B2	Cabo multipolar em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vezes o diâmetro do eletroduto.					
5	B1	Condutores isolados ou cabos unipolares em eletroduto aparente de seção não circular sobre parede.					
6	B2	Cabo multipolar em eletroduto aparente de seção não circular sobre parede.					
7	B1	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em alvenaria.					
8	B2	Cabo multipolar en eletroduto de seção circular embutido em alvenaria.					

Esquema de Condutores Vivos do Circuito	Número de Condutores Carregados a ser Adotado	Exemplo de aplicação				
Monofásico a dois condutores	2	Circuitos de distribuição (Iluminação, tomadas, etc.)				
Monofásico a três condutores	2	Circuitos alimentadores de transformadores monofásicos com tap (derivação) central no secundário				
Duas fases sem neutro	2	Circuitos de distribuição de aparelhos de ar condicionados, chuveiros elétricos, ligados entre F-F=220V				
Duas fases com neutro	3	Alimentadores gerais de quadros bifásicos				
Trifásico sem neutro	3	Circuitos de distribuição para banco de capacitores, motores trifásicos, etc.				
Trifásico com neutro	3 ou 4 ⁽¹⁾	Alimentadores gerais de quadros trifásicos				

6 2	Métodos de Referência Indicados na Tabela 10.8											
Seções Nominais	A1		A2		B 1		B2		С		D	
mm ²	Número de Condutores Carregados											
	2	3	2	3	2	3	2	3	2	3	2	3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11	(12)	(13)
	Cobre											
0,5	7	7	7	7	9	8	9	8	10	9	12	10
0,75	9	9	9	9	11	10	11	10	13	11	15	12
1	11	10	11	10	14	12	13	12	15	14	18	15
1.5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24
4	26	24	25	23	32	28	30	27	36	32	38	31
6	34	31	32	29	41	36	38	34	46	41	47	39
10	46	42	43	39	57	50	52	46	63	57	63	52
16	61	56	57	52	76	68	69	62	85	76	81	67
25	80	73	75	68	101	89	90	80	112	96	104	86
35	99	89	92	83	125	110	111	99	138	119	125	103
50	119	108	110	99	151	134	133	118_	168	144	148	122
70	151	136	139	125	192	171	168	149	213	184	183	151
95	182	164	167	150	232	207	201	179	258	223	216	179
120	210	188	192	172	269	239	232	206	299	259	246	203
150	240	216	219	196	309	275	265	236	344	299	278	230
185	273	245	248	223	353	314	300	268	392	341	312	258
240	321	286	291	261	415	370	351	313	461	403	361	297
300	367	328	334	298	477	426	401	358	530	464	408	336
400	438	390	398	355	571	510	477	425	634	557	478	394
500	502	447	456	406	656	587	545	486	729	642	540	445

Alumínio												
16	48	43	44	41	60	53	54	48	66	59	62	52
25	63	57	58	53	79	70	71	62	83	73	80	66
35	77	70	71	65_	97	86	86	77	103	90	96	80
50	93	84	86	78	118	104	104	92	125	110	113	94
70	118	107	108	98	150	133	131	116	160	140	140	117
95	142	129	130	118	181	161	157	139	195	170	166	138
120	164	149	150	135	210	186	181	160	226	197	189	157
150	189	170	172	155	241	214	206	183	261	227	213	178
185	215	194	195	176	275	245	234	208	298	259	240	200
240	252	227	229	207	324	288	274	243	352	305	277	230
300	289	261	263	237	372	331	313	278	406	351	313	260
400	345	311	314	283	446	397	372	331	488	422	366	305
500	396	356	360	324	512	456	425	378	563	486	414	345
630	456	410	416	373	592	527	488	435	653	562	471	391
800	529	475	482	432	687	612	563	502	761	654	537	446
1000	607	544	552	495	790	704	643	574	878	753	607	505

Professor Luiz Fernando L Campos

11 Conexões e emendas

11.1 Introdução

Nas instalações elétricas em geral, as emendas ou conexões são, na maioria da vezes, inevitáveis. A sua execução pode trazer tanto problemas elétricos como mecânicos, por isso, sempre que possível, devemos evitá-las.

Outro agravante na execução das emendas é a perda em torno de 20% da força de tração e de 20% da capacidade de condução de corrente elétrica.

Por isso, para eliminar os problemas com as emendas ou conexões é necessário executá-las obedecendo a certos critérios, que permitem a passagem da corrente elétrica sem perdas de energia (perdas por efeito joule) e evitando também, problemas inerentes à elevada densidade de corrente.

11.2 Emendas de condutores em prolongamento

Essa operação consiste em unir condutores, para prolongar linhas. Siga os seguintes passos:

Remova o isolante, aproximadamente 50 vezes o diâmetro (d) do condutor, utilizando um alicate universal ou mesmo um alicate especial para retirar a camada isolante do condutor;

Cruze as pontas, formando um ângulo de 90° a 120°, aproximadamente, conforme figura A; Siga os passos na sequencia de acordo com as figuras abaixo:

