Investigación e Ingeniería de la Madera

Publicación del Laboratorio de Mecánica de la Madera División de Estudios de Posgrado Facultad de Ingeniería en Tecnología de la Madera

CARACTERÍSTICAS ELÁSTICAS DE MADERAS MEXICANAS

Javier Ramón Sotomayor Castellanos

y

Saúl Antonio Hernández Maldonado

Volumen 8, Número 2 Morelia, Michoacán, México. Agosto, 2012.

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO COORDINACIÓN DE LA INVESTIGACIÓN CIENTÍFICA

Comité editorial:

Luz Elena Alfonsina Ávila Calderón, UMSNH. Marco Antonio Herrera Ferreyra, UMSNH. David Raya González, UMSNH.

El artículo "Características elásticas de maderas mexicanas", fue publicado originalmente como:

Hernández Maldonado, S.A. 2010. Comportamiento elástico de la madera. Teoría y aplicaciones. Capítulo 7. Características elásticas de maderas mexicanas. Tesis de Maestría. Universidad Michoacana de San Nicolás de Hidalgo. México.

Responsable de la edición: Javier Ramón Sotomayor Castellanos.

Diseño y formación: Laboratorio de Mecánica de la Madera de la División de Estudios de Posgrado de la Facultad de Ingeniería en Tecnología de la Madera.

Impreso en Morelia, Michoacán, México. Agosto de 2012. Tiraje: 500 Ejemplares.

Consulta electrónica: www.fitecma.umich.mx y www.cic.umich.mx

Derechos reservados.

© Laboratorio de Mecánica de la Madera de la División de Estudios de Posgrado de la Facultad de Ingeniería en Tecnología de la Madera.

Investigación e Ingeniería de la Madera es patrocinada por la Coordinación de la Investigación Científica de la Universidad Michoacana de San Nicolás de Hidalgo.

CARACTERÍSTICAS ELÁSTICAS DE MADERAS MEXICANAS

Contenido

Resumen	4
Abstract	4
Introducción	5
Análisis de bibliografía	6
Problemática	7
Hipótesis	11
Objetivos	11
Metodología	12
Resultados	16
Análisis de resultados	35
Conclusiones	45
Referencias	46
Anexos	49
Lista de Tablas	77
Lista de Figuras	78

RESUMEN

Esta investigación presenta valores de las características elásticas de la madera de 490 especies mexicanas. Los datos son calculados empleando los Modelos de predicción de características elásticas de la madera. Los parámetros elásticos son estimados a partir de la densidad de la madera, que es una característica física de fácil determinación experimental.

La investigación parte del análisis de la bibliografía y de la problemática del tema de investigación. Para contestar a las preguntas de investigación, se establecen como objetivos la determinación de las características elásticas de maderas mexicanas y la descripción de sus estadígrafos.

La metodología consistió en la recopilación y la codificación de información sobre las maderas mexicanas. Para facilitar el estudio de las especies se propuso su agrupamiento de acuerdo con su división taxonómica. Para las especies angiospermas los grupos son: angiospermas encinos rojos, angiospermas encinos blancos, angiospermas de clima templado y angiospermas de clima tropical. Para las maderas de gimnospermas los grupos son: gimnospermas pinos duros, gimnospermas pinos blandos y otras gimnospermas.

Palabras clave: Modelos de predicción, características elásticas, maderas angiospermas, maderas gimnospermas, análisis estadístico.

ABSTRACT

This research presents values of the elastic characteristics of the wood of 490 Mexican species. These data are calculated employing the prediction models for elastic characteristics of wood. The elastic parameters are estimated from the density of the wood, which is a physical characteristic of simple experimental determination.

The research is based from the analysis of the bibliography and the problematic of the research subject. To answer the research question, the objectives are established as the determination of the elastic characteristics of Mexican woods and their statistical description.

The methodology consisted in the recompilation and the codification of information on Mexican woods. To facilitate the study of the species some groups were proposed according to their taxonomic division. For the angiosperm species the groups are: angiosperms red oaks, angiosperms white oaks, angiosperms of temperate environment and angiosperms of tropical environment. For the gymnosperm woods the groups are: gymnosperms hard pines, gymnosperms soft pines and other gymnosperms.

Key words: Estimation models, elastic characteristics, angiosperm woods, gymnosperm woods, statistical analysis.

INTRODUCCIÓN

Las características elásticas de la madera: Módulos de elasticidad, módulos de rigidez y coeficientes de Poisson, son necesarios en Ingeniería de la madera para el diseño y cálculo de estructuras y productos compuestos de madera. En el mismo contexto, en Ciencias de la madera, los parámetros elásticos del material son esenciales en investigación y modelado de fenómenos y procesos físicos. Además, la caracterización tecnológica de la madera es un criterio fundamental para la valoración del material en usos específicos.

Esta investigación presenta valores de las características elásticas de la madera de 490 especies mexicanas. Los datos son calculados empleando los Modelos de predicción de características elásticas de maderas mexicanas, propuestos por Hernández Maldonado (2010). Los parámetros elásticos son estimados a partir de la densidad de la madera, que es una característica física de fácil determinación experimental.

Esta estrategia tiene entre otras ventajas, evitar el proceso empírico para evaluar una madera, así como servir de criterio para la promoción de una especie en particular. Sin embargo, la estimación de un parámetro elástico de una madera en específico, a partir de la característica densidad asociada, tiene limitaciones. Una de ellas es la amplia variación en las características mecánicas de la madera (Sotomayor Castellanos, 2009). Para el caso que nos ocupa, los resultados de esta investigación se recomiendan principalmente como valores de referencia en el estudio tecnológico de estas maderas. Para proyectos de Ingeniería en Tecnología de la Madera, se hace necesario realizar estudios intensivos y experimentales para establecer cada una de las características elásticas de una madera.

La investigación parte del análisis de la bibliografía y de la problemática del tema de investigación. Para contestar a las preguntas de investigación, se establecen como objetivos, la determinación de las características elásticas de maderas mexicanas y la descripción de sus estadígrafos.

La metodología consistió en la recopilación y la codificación de información sobre las maderas mexicanas. Para facilitar el estudio de las especies, se propone su agrupamiento de acuerdo con su división taxonómica. Para las especies angiospermas los grupos son: angiospermas encinos rojos, angiospermas encinos blancos, angiospermas de clima templado y angiospermas de clima tropical. Para las maderas de gimnospermas los grupos son: gimnospermas pinos duros, gimnospermas pinos blandos y otras gimnospermas.

La estimación de las características elásticas de la madera empleando Modelos de predicción, se presenta en dos formatos: el primero de ellos son las ecuaciones de predicción propiamente dichas, y el segundo formato, refiere a las Tablas con los valores numéricos para cada especie estudiada. Adicionalmente, se presentan los estadígrafos para cada grupo de estudio.

La Figura 01 presenta el diagrama conceptual de la investigación, de acuerdo a las consideraciones de Yurén Camarena (2002) y López Cano (2006).

Figura 01. Diagrama conceptual de la investigación.

ANÁLISIS DE BIBLIOGRAFÍA

La revisión de trabajos referentes al tema de la investigación, precisó de tres enfoques: por una parte, se consideraron los trabajos que contenían datos experimentales sobre la densidad de la madera para especies mexicanas. En las referencias, el parámetro densidad se refiere usualmente a la relación peso anhidro/volumen saturado de la madera. Cuando se localizaron diferentes citas conteniendo datos de la densidad para una misma especie de madera, se seleccionó la referencia más moderna. Además, se favoreció la diversidad de autores, es decir, se intentó reunir la mayor cantidad de trabajos de Tesis, de artículos de investigación y de monografías. Igualmente, se consultaron referencias complementarias de bases de datos en páginas de la red.

Un segundo enfoque para el análisis de bibliografía, fue complementar los trabajos que presentaban datos de la densidad de la madera, con referencias que contuvieran los nombres científicos y autores, los nombres comunes, así como información sobre la familia botánica de las especies referidas.

La lista de nombres científicos, nombres comunes, familias botánicas y las referencias de las 490 especies estudiadas, se presenta en los Anexos A.01 a A.07. Estas relaciones están agrupadas de acuerdo a los diferentes grupos taxonómicos propuestos en la Tabla 01.

La lista de referencias originales, de donde se obtuvieron los valores de la densidad y que contenían información de los nombres de las maderas mexicanas estudiadas en la investigación, se presenta en el Anexo A.08.

Un tercer punto de vista en el análisis bibliográfico fue la revisión de referencias generales para establecer la problemática de la investigación y para analizar los resultados. De esta forma, los Anexos A.01 a A.08, se complementaron con los trabajos citados en las referencias generales de la investigación.

PROBLEMÁTICA

En México es reconocida la importancia de las características mecánicas en el diseño de estructuras y productos de madera (Torelli, 1982; Robles Fernández-Villegas y Echenique-Manrique, 1983; Sotomayor Castellanos, 1987; Comisión Forestal de América del Norte, 1994; Sotomayor Castellanos, 2002; Sotomayor Castellanos, 2005). Sin embargo, la revisión de la bibliografía mexicana sobre el comportamiento elástico de la madera evidenció una ausencia de Modelos y de datos de las constantes elásticas de especies mexicanas.

La argumentación anterior sugiere por una parte, un problema tecnológico: El diseño de estructuras y productos de madera en México es deficiente entre otras causas, por la falta de datos disponibles decaracterísticas de Ingeniería.

Y por otra, un problema de carácter industrial: La industria mexicana de la construcción y de artículos compuestos de madera, es deficiente en datos tecnológicos para asegurar la confiabilidad de las edificaciones de madera y mejorar el desarrollo de nuevos productos.

Modelo elástico general

Hernández Maldonado (2010), propone el Modelo elástico general del comportamiento elástico de la madera, que el autor deduce a partir de la ley general de comportamiento elástico:

$$\varepsilon_{lj} = S_{ljkl} \, \sigma_{kl} \tag{01}$$

Donde:

 ε_{ij} = Tensor de deformaciones.

 S_{ijkl} = Tensor de constantes elásticas.

 σ_{kl} = Tensor de esfuerzos.

 $i, j, k, l \in \{1,2,3\}$, con la convención de índices repetidos.

Para el caso de la madera, idealizada como un sólido elástico, macroscópicamente homogéneo, de medio continuo y con simetrías materiales y elásticas de tipo ortotrópico, esta ley de comportamiento (ecuación 7.01), se admite y se escribe con notación reducida de índices, como:

$$\begin{bmatrix}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\varepsilon_{5} \\
\varepsilon_{6}
\end{bmatrix} = \begin{bmatrix}
S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\
S_{21} & S_{22} & S_{23} & 0 & 0 & 0 \\
S_{21} & S_{22} & S_{23} & 0 & 0 & 0 \\
S_{31} & S_{32} & S_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & S_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & S_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & S_{66}
\end{bmatrix} \begin{bmatrix}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4} \\
\sigma_{5} \\
\sigma_{6}
\end{bmatrix}$$
(02)

Con las simetrías:

$$S_{12} = S_{21} S_{13} = S_{31} S_{23} = S_{32}$$
(03)

Las constantes de elasticidad S_{ij} de las ecuaciones (02) y (03), se pueden expresar en términos de las características elásticas de la madera en el sistema de coordenadas $\{1,2,3\}$: $\{R,T,L\}$, como:

$$S_{11} = \frac{1}{E_{R}}$$

$$S_{22} = \frac{1}{E_{T}}$$

$$S_{33} = \frac{1}{E_{L}}$$

$$S_{44} = \frac{1}{G_{TL}}$$

$$S_{55} = \frac{1}{G_{LR}}$$

$$S_{66} = \frac{1}{G_{RT}}$$

$$S_{12} = \frac{-v_{TR}}{E_{T}} = S_{21} = \frac{-v_{RT}}{E_{R}}$$

$$S_{23} = \frac{-v_{LT}}{E_{L}} = S_{32} = \frac{-v_{TL}}{E_{T}}$$

$$S_{13} = \frac{-v_{LR}}{E_{L}} = S_{31} = \frac{-v_{RL}}{E_{R}}$$

Empleando las ecuaciones (03) y (04), la ley de comportamiento elástico de la madera se escribe en términos de las características elásticas de la madera como:

$$\begin{bmatrix} \mathcal{E}_{R} \\ \mathcal{E}_{T} \\ \mathcal{E}_{L} \\ \mathcal{E}_{LR} \\ \mathcal{E}_{RT} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_{R}} & \frac{-v_{TR}}{E_{T}} & \frac{-v_{LR}}{E_{L}} & 0 & 0 & 0 \\ \frac{-v_{RT}}{E_{R}} & \frac{1}{E_{T}} & \frac{-v_{LT}}{E_{L}} & 0 & 0 & 0 \\ \frac{-v_{RL}}{E_{R}} & \frac{-v_{TL}}{E_{T}} & \frac{1}{E_{L}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G_{TL}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{LR}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{LR}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_{RT}} \end{bmatrix} \begin{bmatrix} \sigma_{R} \\ \sigma_{T} \\ \tau_{LR} \\ \tau_{RT} \end{bmatrix}$$

$$(05)$$

Con las simetrías:

$$\frac{-\nu_{TR}}{E_{T}} = \frac{-\nu_{RT}}{E_{R}}$$

$$\frac{-\nu_{LR}}{E_{L}} = \frac{-\nu_{RL}}{E_{R}}$$

$$\frac{-\nu_{LT}}{E_{L}} = \frac{-\nu_{TL}}{E_{T}}$$
(06)

En las ecuaciones (04), (05) y (06), los símbolos son:

R : Dirección radial.T : Dirección tangencial.L : Dirección longitudinal.

 ϵ_R : Deformación colineal a la dirección R. ϵ_T : Deformación colineal a la dirección T. ϵ_L : Deformación colineal a la dirección L.

 ϵ_{TL} : Deformación angular entre las direcciones T y L. ϵ_{LR} : Deformación angular entre las direcciones L y R. ϵ_{RT} : Deformación angular entre las direcciones R y T.

 $\begin{array}{ll} E_R & : \mbox{M\'odulo de elasticidad en la direcci\'on } R. \\ E_T & : \mbox{M\'odulo de elasticidad en la direcci\'on } T. \\ E_L & : \mbox{M\'odulo de elasticidad en la direcci\'on } L. \\ G_{TL} & : \mbox{M\'odulo de rigidez para el plano } TL. \\ G_{LR} & : \mbox{M\'odulo de rigidez para el plano } LR. \\ G_{RT} & : \mbox{M\'odulo de rigidez para el plano } RT. \\ \end{array}$

 $\begin{array}{ll} v_{RT} & : Coeficiente de Poisson para el plano RT. \\ v_{RL} & : Coeficiente de Poisson para el plano RL. \\ v_{TR} & : Coeficiente de Poisson para el plano TR. \\ v_{TL} & : Coeficiente de Poisson para el plano TL. \\ v_{LR} & : Coeficiente de Poisson para el plano LR. \\ v_{LT} & : Coeficiente de Poisson para el plano LT. \\ \end{array}$

 σ_{R} : Esfuerzo normal en la dirección R. σ_{T} : Esfuerzo normal en la dirección T. σ_{L} : Esfuerzo normal en la dirección L. τ_{TL} : Esfuerzo cortante en el plano TL. τ_{LR} : Esfuerzo cortante en el plano LR. τ_{RT} : Esfuerzo cortante en el plano RT.

Para su correcta interpretación y aplicación práctica, el Modelo general del comportamiento elástico de la madera requiere de la determinación experimental de los parámetros: Módulos de elasticidad, módulos de rigidez y coeficientes de Poisson.

La evaluación empírica de estas características elásticas es compleja. Por una parte, la instrumentación de los procedimientos experimentales es ardua, y por otra, el análisis e interpretación de resultados es igualmente complicada.

Una posible solución a esta problemática, es emplear métodos numéricos para el modelado de procesos esfuerzo-deformación, necesarios para la determinación de las características elásticas de la madera. Este enfoque de modelado numérico, puede simplificar los procesos experimentales, ahorrar tiempo y proporcionar datos útiles como referencia.

Los resultados de la simulación pueden asimismo predecir, con las debidas reservas, los parámetros en cuestión, y pueden igualmente corroborar datos experimentales.

La problemática expuesta propone la siguiente pregunta de investigación.

Preguntas de investigación

¿Cuáles son los valores de las características elásticas de maderas de especies mexicanas?

¿Cuáles son los estadígrafos de las características elásticas de maderas de especies mexicanas?

Para responder a estas preguntas, la investigación formula la siguiente hipótesis.

HIPÓTESIS

Las características elásticas de la madera pueden ser estimadas empleando Modelos de predicción, que utilicen como variable explicativa, la densidad de la madera.

Para verificar esta hipótesis, la investigación propone los siguientes objetivos.

OBJETIVOS

1. Estimar las características elásticas de maderas de especies mexicanas utilizando Modelos de predicción que emplean la densidad de la madera como factor explicativo.

Las características elásticas son:

Módulo de elasticidad radial (E_R) Módulo de elasticidad tangencial (E_T) Módulo de elasticidad longitudinal (E_L) Módulo de rigidez tangencial longitudinal (G_{TL}) Módulo de rigidez longitudinal radial (G_{LR}) Módulo de rigidez radial tangencial (G_{RT}) Coeficiente de Poisson radial tangencial (v_{RT})

Coeficiente de Poisson tangencial radial (v_{TR})

Coeficiente de Poisson radial longitudinal (V_{RL})

Coeficiente de Poisson longitudinal radial (V_{LR})

Coeficiente de Poisson tangencial longitudinal (v_{TL})

Coeficiente de Poisson longitudinal tangencial (v_{LT})

2. Evaluar los estadígrafos descriptivos de las características elásticas para los grupos taxonómicos:

Angiospermas encinos rojos.
Angiospermas encinos blancos.
Angiospermas de clima templado.
Angiospermas de clima tropical.
Gimnospermas pinos duros.
Gimnospermas pinos blandos.
Otras gimnospermas.

Los estadígrafos a determinar son:

Media aritmética.
Desviación estándar.
Coeficiente de variación.
Valor mínimo.
Valor máximo.
Rango de valores.
Número de especies.

METODOLOGÍA

Recopilación de información

La recopilación de información consistió en dos etapas:

La primera etapa tuvo como objeto encontrar publicaciones que tuvieran datos experimentales de la densidad de especies maderables mexicanas.

La segunda etapa se enfocó en localizar la información referente al nombre científico, el nombre común, la división y la familia taxonómica a la que pertenece cada especie en estudio.

Los nombres científicos y comunes, así como las familias a las que pertenecen las especies estudiadas, se corroboraron en las siguientes referencias:

Barajas Morales y León Gómez (1984); Lincoln (1986); Niembro Rocas (1990); Guizar Nolazco y Sanchez Velez (1991); Pennington y Sarukhán (1998); Soler (2001); Cheers (2006); Gutiérrez Carvajal y Dorantes López (2007); Tamarit Urias y López Torres (2007).

Igualmente se consultaron las siguientes bases de datos en la red:

Trópicos. http://www.tropicos.org/Home.aspx.;

United States Department of Agriculture. Agricultural Research Service. http://www.ars.usda.gov/main/main.htm.;

United States Department of Agriculture. Germplasm Resources Information Network. http://www.ars-grin.gov/.;

United States Department of Agriculture. Natural Resources Conservation Services. http://plants.usda.gov/index.html.

Como resultado de la recopilación de datos tecnológicos de la madera, se crearon los catálogos que se presentan en los Anexos A.01 a A.07.

La lista de referencias citadas en el catálogo de maderas de especies mexicanas se presenta el Anexo A.09.

Codificación de la información

En los Anexos A.01 a A.07, a cada especie se le atribuye un código del tipo AERXXX.

La primera letra mayúscula en el código se refiere a la división botánica a la que pertenece.

La segunda letra mayúscula en el código se refiere al grupo botánico en el que se catalogó.

La tercera letra mayúscula se refiere a la particularidad del grupo botánico.

Finalmente, los últimos tres dígitos en el código representan la secuencia en la cual están ordenados en el catálogo.

Esta información referente a los códigos empleados para agrupar las especies, se sintetiza en la Tabla 01.

Agrupamiento de datos

El criterio de ordenamiento de las especies fue a partir de dos divisiones taxonómicas (ver Tabla 01): angiospermas y gimnospermas, subdivididas las primeras en: angiospermas encinos rojos, angiospermas encinos blancos, angiospermas de clima templado y angiospermas de clima tropical. La segunda división taxonómica se subdividió en: gimnospermas pinos duros, gimnospermas pinos blandos y otras gimnospermas.

Tabla 01. Agrupación de las especies estudiadas.

	upución de n		Divisiones ta								
Grupo botánico	Nombre común	Número de especies	Código	Grupo botánico	Nombre común	Número de especies	Código				
Angiognarmag	Encinos			Cimpospormos		1					
Angiospermas encinos rojos	rojos	22	AERXXX	Gimnospermas pinos duros	Coníferas	31	GPDXXX				
Angiospermas encinos blancos	Encinos blancos	17	AEBXXX	Gimnospermas pinos blandos	Coníferas	4	GPBXXX				
Angiospermas clima templado	Latifoliadas de clima templado	69	ATEXXX	Otras gimnospermas	Coníferas	14	OGIXXX				
Angiospermas clima tropical Latifoliadas de clima tropical ATRXXX											
Total es	-	441		Total espe		49					
				Νί	ímero total d	e especies	490				

Empleo de Modelos de predicción

Hernández Maldonado (2010), elaboró varios Modelos de predicción para características elásticas de maderas angiospermas y gimnospermas. Estos Modelos, basados en correlaciones estadísticas entre datos experimentales de 238 maderas extranjeras, son útiles para predecir teóricamente valores de las características elásticas a partir de un parámetro simple e intrínseco de la madera, como es su densidad.

Para seleccionar el Modelo de regresión propuesto como Modelo de predicción, Hernández Maldonado, realizó un estudio comparativo entre varios Modelos estadísticos. Los Modelos analizados fueron regresiones simples (lineales y exponenciales), múltiples y polinomiales.

El Modelo estadístico seleccionado puede ser representado por la función:

$$CE = f(\rho) \tag{07a}$$

Las regresiones simples calculadas fueron de tipo:

$$CE = a \rho^{n}$$
 (07b)

Donde:

CE = Característica elástica.

 ρ = Densidad de la madera (g/cm³).

a = Constante particular a cada grupo taxonómico y característica elástica.

Este tipo de regresiones es aceptado por varios investigadores en Ciencias de la madera, entre otros se puede citar a: Hearmon (1948), Bodig y Goodman (1973) y Guitard y El Amri (1987). Estos Modelos fueron generados a partir de datos estadísticos de especies de maderas extranjeras, para cada una de las bases de datos desarrolladas por estos autores.

En el caso particular de esta investigación, orientada a generar Modelos estadísticos de predicción de características elásticas para las condiciones de las maderas mexicanas, el análisis realizado por Hernández Maldonado (2010) de regresiones simples (lineales y exponenciales), múltiples y polinomiales, combinando 2 grupos de maderas: 119 angiospermas y 119 gimnospermas, y el conjunto las 238 especies de las tres bases de datos, permitió observar que el mejor conjunto de coeficientes de correlación (R²) corresponde a Modelos del tipo de la ecuación (07b), pero ajustando a la unidad el exponente n.

De esta forma, para el caso de las especies mexicanas, se proponen como Modelos de predicción de las características elásticas, regresiones simples de tipo:

$$CE = a \rho$$
 (07c)

La Tabla 7.02, presenta los Modelos de predicción para características elásticas de maderas de especies angiospermas y gimnospermas extranjeras propuestos por el autor.

Tabla 02. Modelos de predicción para características elásticas de maderas de especies angiospermas y gimnospermas (Hernández Maldonado, 2010).

	Angiosperma	as mexicanas			Gimnosperma	as mexicanas	
CE	= a ρ	\mathbb{R}^2	Ec.	CE	= a ρ	\mathbb{R}^2	Ec.
E_R	= 2695 ρ	0.93	(08)	E_R	= 2194 ρ	0.97	(20)
E_{T}	$= 1548 \rho$	0.81	(09)	E_{T}	= 1379 ρ	0.98	(21)
E_L	$= 22370 \rho$	0.97	(10)	E_L	$= 28052 \rho$	0.97	(22)
G_{TL}	= 1387 ρ	0.96	(11)	G_{TL}	= 1708 ρ	0.97	(23)
G_{LR}	$= 1840 \rho$	0.97	(12)	G_{LR}	= 1839 ρ	0.96	(24)
G_{RT}	$=588$ ρ	0.80	(13)	G_{RT}	= 188 ρ	0.87	(25)
ν_{RT}	$= 1.1614 \rho$	0.80	(14)	ν_{RT}	$= 1.1677 \rho$	0.94	(26)
ν_{TR}	$= 0.5954 \ \rho$	0.88	(15)	ν_{TR}	$= 0.7562 \ \rho$	0.94	(27)
ν_{RL}	$= 0.0765 \ \rho$	0.77	(16)	ν_{RL}	$= 0.0827 \ \rho$	0.79	(28)
ν_{LR}	$= 0.6378 \ \rho$	0.84	(17)	ν_{LR}	$= 0.9617 \ \rho$	0.93	(29)
ν_{TL}	$= 0.0529 \ \rho$	0.89	(18)	$ u_{TL} $	$= 0.0578 \ \rho$	0.77	(30)
ν_{LT}	$= 0.8277 \ \rho$	0.83	(19)	ν_{LT}	$= 1.0955 \rho$	0.92	(31)

Estimación de características elásticas

Esta etapa se realizó empleando los Modelos de predicción de la Tabla 02 (ecuaciones 08 a 31).

RESULTADOS

El catálogo que contiene la identificación de las especies estudiadas y su código de referencia, se presenta en los Anexos A.01 a A.08.

Los estadísticos de la densidad y de las características elásticas se presentan en las siguientes Tablas:

Número de Tabla	Grupo taxonómico	Número de páginas	Número de especies
03	Angiospermas encinos rojos	1	22
04	Angiospermas blancos	1	17
05	Angiospermas clima templado	3	69
06	Angiospermas clima tropical	11	333
07	Gimnospermas pinos duros	1	31
08	Gimnospermas pinos blandos	1	4
09	Otras gimnospermas	1	14
	Número total de especies		490

Las características elásticas presentadas en estas Tablas son:

Módulo de elasticidad radial (E_R)

Módulo de elasticidad tangencial (E_T)

Módulo de elasticidad longitudinal (E_L)

Módulo de rigidez tangencial longitudinal (G_{TL})

Módulo de rigidez longitudinal radial (G_{LR})

Módulo de rigidez radial tangencial (G_{RT})

Coeficiente de Poisson radial tangencial (v_{RT})

Coeficiente de Poisson tangencial radial (v_{TR})

Coeficiente de Poisson radial longitudinal (V_{RL})

Coeficiente de Poisson longitudinal radial (V_{LR})

Coeficiente de Poisson tangencial longitudinal (v_{TL})

Coeficiente de Poisson longitudinal tangencial (V_{LT})

La clasificación de la densidad de la madera (CTF), se realizó de acuerdo a la TABLA FITECMA (Sotomayor Castellanos, 2008). Los criterios son los siguientes:

Intervalo	Clasificación	Símbolo
$< 0.200 \text{ g/cm}^3$	Muy baja	MB
$0.201 - 0.400 \text{ g/cm}^3$	Baja	BA
$0.401 - 0.600 \text{ g/cm}^3$	Media	ME
$0.601 - 0.800 \text{ g/cm}^3$	Alta	AL
$> 0.800 \text{ g/cm}^3$	Muy alta	MA

Tabla 03 (1 página de 1). Características elásticas de maderas mexicanas. Angiospermas encinos rojos. H = 12 %; T = 20 °C.

Nombre cientifico	1 4014 05 (1 pagina de 1). Características e	rusticus (uc IIIa							.05 10]0	D, 11 —	12 /0,	1 – 20		1
AERO01 Quercus acatenangensis	Código	Nombre científico		CTF	E _R	E _T	E _L				$v_{\text{\tiny pt}}$	$v_{\scriptscriptstyle ext{TR}}$	$\nu_{\text{\tiny Pl}}$	$\nu_{\scriptscriptstyle LR}$	$\nu_{\scriptscriptstyle \mathrm{TI}}$	ν_{LT}
AERO02 Quercus acutifolia			U													
AERO03 Quercus candicans 0.694 AL 1870 1074 15525 963 1277 408 0.806 0.413 0.053 0.443 0.037 0.574																1
AER004 Quercus castanea 0.790 AL 2129 1223 17672 1096 1454 465 0.918 0.470 0.060 0.504 0.042 0.654 AER005 Quercus coccolobifolia 0.600 ME 1617 929 13422 832 1104 353 0.697 0.357 0.046 0.383 0.032 0.497 AER006 Quercus conspersa 0.690 AL 1860 1068 15435 597 1270 406 0.801 0.411 0.053 0.440 0.037 0.571 AER007 Quercus crassifolia 0.670 AL 1806 1037 14988 929 1233 394 0.778 0.399 0.051 0.427 0.035 0.555 AER008 Quercus deserticola 0.801 MA 2159 1240 17918 1111 1474 471 0.930 0.477 0.061 0.511 0.042 0.663 AER010 Quercus deserticola 0.760 AL 2048 1176 17001 1054 1398 447 0.883 0.453 0.058 0.4485 0.040 0.629 AER011 Quercus elliptica 0.644 AL 1736 997 14406 893 1185 379 0.748 0.383 0.049 0.411 0.034 0.533 AER010 Quercus laurina 0.560 ME 1509 867 12527 777 1030 329 0.650 0.333 0.043 0.357 0.030 0.464 AER013 Quercus laurina 0.660 AL 1779 1022 14764 915 1214 388 0.767 0.393 0.050 0.421 0.035 0.555 AER014 Quercus planipocula 0.796 AL 2145 1232 17807 1104 1465 468 0.924 0.474 0.061 0.508 0.449 0.659 AER016 Quercus sartorii 0.530 ME 1428 820 1185 735 975 312 0.616 0.316 0.404 0.538 0.028 0.439 AER018 Quercus sartorii 0.530 ME 1428 820 1185 735 975 312 0.616 0.316 0.041 0.338 0.028 0.439 AER019 Quercus sideroxyla 0.813 MA 2191 1259 18187 1128 1496 478 0.944 0.484 0.065 0.666 0.039 0.612 0.659 AER021 Quercus sideroxyla 0.813 MA 2191 1259 18187 1128 1496 478 0.944 0.484 0.065 0.666 0.039 0.612 0.659 0.650 0.65		~														1
AERO10 Quercus conspersa 0.690 ME 1617 929 13422 832 1104 353 0.697 0.357 0.046 0.383 0.032 0.497	AER003	Quercus candicans	0.694	AL	1870	1074	15525		1277	408	0.806		0.053	0.443	0.037	0.574
AER006 Quercus conspersa 0.690 AL 1860 1068 15435 957 1270 406 0.801 0.411 0.053 0.440 0.037 0.571 AER007 Quercus crassifolia 0.670 AL 1806 1037 14988 929 1233 394 0.778 0.399 0.051 0.427 0.035 0.555 AER008 Quercus crispipilis 0.801 MA 2159 1240 17918 1111 1474 471 0.930 0.477 0.061 0.511 0.042 0.663 AER009 Quercus deserticola 1.014 MA 2733 1570 22683 1406 1866 596 1.178 0.604 0.078 0.647 0.054 0.839 AER010 Quercus durifolia 0.760 AL 2048 1176 17001 1054 1398 447 0.883 0.453 0.058 0.485 0.040 0.629 AER011 Quercus elliptica 0.644 AL 1736 997 14406 893 1185 379 0.748 0.383 0.049 0.411 0.034 0.533 AER012 Quercus germana 0.560 ME 1509 867 12527 777 1030 329 0.650 0.333 0.043 0.357 0.030 0.464 AER013 Quercus laurina 0.660 AL 1779 1022 14764 915 1214 388 0.767 0.399 0.051 0.427 0.035 0.555 AER015 Quercus planipocula 0.796 AL 2145 1232 17807 1104 1465 468 0.924 0.474 0.061 0.508 0.042 0.659 AER016 Quercus scripphylla 0.730 AL 1967 1130 16330 1013 1343 429 0.848 0.435 0.056 0.466 0.039 0.604 AER017 Quercus scripphylla 0.933 MA 2514 1444 20871 1294 1717 549 0.848 0.455 0.051 0.427 0.035 0.564 AER019 Quercus scripphylla 0.933 MA 2514 1444 20871 1294 1717 549 0.848 0.655 0.071 0.595 0.049 0.772 AER020 Quercus tuberculata 0.820 MA 2210 1269 18343 1137 1509 482 0.952 0.488 0.063 0.523 0.043 0.673 AER021 Quercus tuberculata 0.740 AL 1994 1146 16554 1026 1365 435 0.859 0.441 0.057 0.472 0.039 0.612 AER021 Quercus tuberculata 0.740 AL 1994 1146 16554 1026 1365 435 0.859 0.441 0.057 0.472 0.039 0.612 AER022 Quercus tubercul	AER004	Quercus castanea	0.790										0.060	0.504		1
AER007 Quercus crassifolia 0.670 AL 1806 1037 14988 929 1233 394 0.778 0.399 0.051 0.427 0.035 0.555	AER005	Quercus coccolobifolia	0.600	ME	1617	929	13422		1104	353	0.697	0.357		0.383	0.032	0.497
AER008 Quercus crispipilis 0.801 MA 2159 1240 17918 1111 1474 471 0.930 0.477 0.061 0.511 0.042 0.663 AER009 Quercus deserticola 1.014 MA 2733 1570 22683 1406 1866 596 1.178 0.604 0.078 0.647 0.054 0.839 AER010 Quercus durifolia 0.760 AL 2048 1176 17001 1054 1398 447 0.883 0.453 0.058 0.485 0.040 0.629 AER011 Quercus elliptica 0.644 AL 1736 997 14406 893 1185 379 0.748 0.383 0.049 0.411 0.034 0.533 AER012 Quercus germana 0.560 ME 1509 867 12527 777 1030 329 0.650 0.333 0.043 0.357 0.030 0.464 AER013 Quercus laurina 0.660 AL 1779 1022 14764 915 1214 388 0.767 0.393 0.050 0.421 0.035 0.546 AER014 Quercus ochroetes 0.670 AL 1806 1037 14988 929 1233 394 0.778 0.399 0.051 0.427 0.035 0.555 AER015 Quercus planipocula 0.796 AL 2145 1232 17807 1104 1465 468 0.924 0.474 0.061 0.508 0.042 0.659 AER016 Quercus rysophylla 0.730 AL 1967 1130 16330 1013 1343 429 0.848 0.435 0.056 0.466 0.039 0.604 AER018 Quercus sartorii 0.530 ME 1428 820 11856 735 975 312 0.616 0.316 0.041 0.338 0.028 0.439 AER019 Quercus scytophylla 0.933 MA 2514 1444 20871 1294 1717 549 1.084 0.556 0.071 0.595 0.049 0.772 AER019 Quercus skinneri 0.820 MA 2210 1269 18343 1137 1509 482 0.952 0.488 0.062 0.519 0.043 0.673 AER022 Quercus tuberculata 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 0.612	AER006	Quercus conspersa	0.690	AL	1860	1068	15435			406	0.801	0.411	0.053	0.440	0.037	0.571
AER010 Quercus durifolia 0.760 AL 2048 1176 17001 1054 1398 447 0.883 0.453 0.058 0.485 0.040 0.624 0.881 0.644 AL 1736 997 14406 893 1185 379 0.748 0.383 0.043 0.357 0.030 0.533 0.464 0.0649 0.644 AL 1736 997 14406 893 1185 379 0.748 0.383 0.043 0.357 0.030 0.464 0.0881 0.044 0.0881 0.044 0.0881 0.044 0.0881 0.044 0.0881 0.044 0.0881 0.045 0.048 0.0881 0.049 0.411 0.034 0.533 0.0484 0.0881 0.049 0.411 0.034 0.533 0.0484 0.0881 0.049 0.411 0.034 0.533 0.0484 0.0881 0.049 0.041 0.034 0.533 0.0484 0.0481	AER007	Quercus crassifolia	0.670	AL	1806	1037	14988	929	1233	394	0.778	0.399	0.051	0.427	0.035	0.555
AER010 Quercus durifolia 0.760 AL 2048 1176 17001 1054 1398 447 0.883 0.453 0.058 0.485 0.040 0.629 AER011 Quercus elliptica 0.644 AL 1736 997 14406 893 1185 379 0.748 0.383 0.049 0.411 0.034 0.533 AER012 Quercus germana 0.560 ME 1509 867 12527 777 1030 329 0.650 0.333 0.043 0.357 0.030 0.464 AER013 Quercus germana 0.560 AL 1779 1022 14764 915 1214 388 0.767 0.333 0.050 0.421 0.035 0.555 AER015 Quercus ochroetes 0.670 AL 1806 1037 14988 929 1233 394 0.751 0.427 0.035 0.555 AER015 Quercus planipocula 0.796 AL 2145 <t< td=""><td>AER008</td><td>Quercus crispipilis</td><td>0.801</td><td>MA</td><td>2159</td><td>1240</td><td>17918</td><td>1111</td><td>1474</td><td>471</td><td>0.930</td><td>0.477</td><td>0.061</td><td>0.511</td><td>0.042</td><td>0.663</td></t<>	AER008	Quercus crispipilis	0.801	MA	2159	1240	17918	1111	1474	471	0.930	0.477	0.061	0.511	0.042	0.663
AER011 Quercus elliptica 0.644 AL 1736 997 14406 893 1185 379 0.748 0.383 0.049 0.411 0.034 0.533 AER012 Quercus germana 0.560 ME 1509 867 12527 777 1030 329 0.650 0.333 0.043 0.357 0.030 0.464 AER013 Quercus laurina 0.660 AL 1779 1022 14764 915 1214 388 0.767 0.393 0.050 0.421 0.035 0.546 AER014 Quercus laurina 0.660 AL 11806 1037 14988 929 1233 394 0.778 0.399 0.051 0.427 0.035 0.556 AER015 Quercus planipocula 0.760 AL 11806 1130 16330 1013 1343 429 0.484 0.435 0.056 0.466 0.039 0.604 AER016 Quercus sartorii 0.530	AER009	Quercus deserticola	1.014	MA	2733	1570	22683	1406	1866	596	1.178	0.604	0.078	0.647	0.054	0.839
AER012 Quercus germana 0.560 ME 1509 867 12527 777 1030 329 0.650 0.333 0.043 0.357 0.030 0.464 AER013 Quercus laurina 0.660 AL 1779 1022 14764 915 1214 388 0.767 0.393 0.050 0.421 0.035 0.546 AER014 Quercus ochroetes 0.670 AL 1806 1037 14988 929 1233 394 0.778 0.399 0.051 0.427 0.035 0.555 AER015 Quercus planipocula 0.796 AL 2145 1232 17807 1104 1465 468 0.924 0.474 0.061 0.508 0.042 0.659 AER016 Quercus sysophylla 0.730 AL 1967 1130 16330 1013 1343 429 0.848 0.435 0.056 0.466 0.039 0.604 AER017 Quercus sytophylla 0.933	AER010	Quercus durifolia	0.760	AL	2048	1176	17001	1054	1398	447	0.883	0.453	0.058	0.485	0.040	0.629
AER013 Quercus laurina 0.660 AL 1779 1022 14764 915 1214 388 0.767 0.393 0.050 0.421 0.035 0.546 AER014 Quercus ochroetes 0.670 AL 1806 1037 14988 929 1233 394 0.778 0.399 0.051 0.427 0.035 0.555 AER015 Quercus planipocula 0.796 AL 2145 1232 17807 1104 1465 468 0.924 0.474 0.061 0.508 0.042 0.659 AER016 Quercus rysophylla 0.730 AL 1967 1130 16330 1013 1343 429 0.848 0.435 0.056 0.466 0.039 0.604 AER017 Quercus sartorii 0.530 ME 1428 820 11856 735 975 312 0.616 0.316 0.041 0.338 0.028 0.439 AER018 Quercus sideroxyla 0.813	AER011	Quercus elliptica	0.644	AL	1736	997	14406	893	1185	379	0.748	0.383	0.049	0.411	0.034	0.533
AER014 Quercus ochroetes 0.670 AL 1806 1037 14988 929 1233 394 0.778 0.399 0.051 0.427 0.035 0.555 AER015 Quercus planipocula 0.796 AL 2145 1232 17807 1104 1465 468 0.924 0.474 0.061 0.508 0.042 0.659 AER016 Quercus rysophylla 0.730 AL 1967 1130 16330 1013 1343 429 0.848 0.435 0.056 0.466 0.039 0.604 AER017 Quercus sartorii 0.530 ME 1428 820 11856 735 975 312 0.616 0.316 0.041 0.338 0.028 0.439 AER018 Quercus scytophylla 0.933 MA 2514 1444 20871 1294 1717 549 1.084 0.556 0.071 0.595 0.049 0.772 AER019 Quercus sideroxyla 0.813 <td>AER012</td> <td>Quercus germana</td> <td>0.560</td> <td>ME</td> <td>1509</td> <td>867</td> <td>12527</td> <td>777</td> <td>1030</td> <td>329</td> <td>0.650</td> <td>0.333</td> <td>0.043</td> <td>0.357</td> <td>0.030</td> <td>0.464</td>	AER012	Quercus germana	0.560	ME	1509	867	12527	777	1030	329	0.650	0.333	0.043	0.357	0.030	0.464
AER015 Quercus planipocula 0.796 AL 2145 1232 17807 1104 1465 468 0.924 0.474 0.061 0.508 0.042 0.659 AER016 Quercus rysophylla 0.730 AL 1967 1130 16330 1013 1343 429 0.848 0.435 0.056 0.466 0.039 0.604 AER017 Quercus sartorii 0.530 ME 1428 820 11856 735 975 312 0.616 0.316 0.041 0.338 0.028 0.439 AER018 Quercus scytophylla 0.933 MA 2514 1444 20871 1294 1717 549 1.084 0.556 0.071 0.595 0.049 0.772 AER019 Quercus sideroxyla 0.813 MA 2514 1444 20871 1128 1496 478 0.944 0.484 0.062 0.519 0.043 0.673 AER020 Quercus suberculata 0.740	AER013	Quercus laurina	0.660	AL	1779	1022	14764	915	1214	388	0.767	0.393	0.050	0.421	0.035	0.546
AER016 Quercus rysophylla 0.730 AL 1967 1130 16330 1013 1343 429 0.848 0.435 0.056 0.466 0.039 0.604 AER017 Quercus sartorii 0.530 ME 1428 820 11856 735 975 312 0.616 0.316 0.041 0.338 0.028 0.439 AER018 Quercus scytophylla 0.933 MA 2514 1444 20871 1294 1717 549 1.084 0.556 0.071 0.595 0.049 0.772 AER019 Quercus sideroxyla 0.813 MA 2191 1259 18187 1128 1496 478 0.944 0.484 0.062 0.519 0.043 0.673 AER020 Quercus skinneri 0.820 MA 2210 1269 18343 1137 1509 482 0.952 0.488 0.063 0.523 0.043 0.679 AER021 Quercus tuberculata 0.740 <td>AER014</td> <td>Quercus ochroetes</td> <td>0.670</td> <td>AL</td> <td>1806</td> <td>1037</td> <td>14988</td> <td>929</td> <td>1233</td> <td>394</td> <td>0.778</td> <td>0.399</td> <td>0.051</td> <td>0.427</td> <td>0.035</td> <td>0.555</td>	AER014	Quercus ochroetes	0.670	AL	1806	1037	14988	929	1233	394	0.778	0.399	0.051	0.427	0.035	0.555
AER017 Quercus sartorii 0.530 ME 1428 820 11856 735 975 312 0.616 0.316 0.041 0.338 0.028 0.439 AER018 Quercus scytophylla 0.933 MA 2514 1444 20871 1294 1717 549 1.084 0.556 0.071 0.595 0.049 0.772 AER019 Quercus sideroxyla 0.813 MA 2191 1259 18187 1128 1496 478 0.944 0.484 0.062 0.519 0.043 0.673 AER020 Quercus skinneri 0.820 MA 2210 1269 18343 1137 1509 482 0.952 0.488 0.063 0.523 0.043 0.679 AER021 Quercus tuberculata 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 0.612 AER022 Quercus usoris 0.981	AER015	Quercus planipocula	0.796	AL	2145	1232	17807	1104	1465	468	0.924	0.474	0.061	0.508	0.042	0.659
AER018 Quercus scytophylla 0.933 MA 2514 1444 20871 1294 1717 549 1.084 0.556 0.071 0.595 0.049 0.772 AER019 Quercus sideroxyla 0.813 MA 2191 1259 18187 1128 1496 478 0.944 0.484 0.062 0.519 0.043 0.673 AER020 Quercus skinneri 0.820 MA 2210 1269 18343 1137 1509 482 0.952 0.488 0.063 0.523 0.043 0.679 AER021 Quercus tuberculata 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 0.612 AER022 Quercus tuxoris 0.981 MA 2644 1519 21945 1361 1805 577 1.139 0.584 0.075 0.626 0.052 0.812 - - - -	AER016	Quercus rysophylla	0.730	AL	1967	1130	16330	1013	1343	429	0.848	0.435	0.056	0.466	0.039	0.604
AER019 Quercus sideroxyla 0.813 MA 2191 1259 18187 1128 1496 478 0.944 0.484 0.062 0.519 0.043 0.673 AER020 Quercus skinneri 0.820 MA 2210 1269 18343 1137 1509 482 0.952 0.488 0.063 0.523 0.043 0.679 AER021 Quercus tuberculata 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 0.612 AER022 Quercus uxoris 0.981 MA 2644 1519 21945 1361 1805 577 1.139 0.584 0.075 0.626 0.052 0.812 - <td>AER017</td> <td>Quercus sartorii</td> <td>0.530</td> <td>ME</td> <td>1428</td> <td>820</td> <td>11856</td> <td>735</td> <td>975</td> <td>312</td> <td>0.616</td> <td>0.316</td> <td>0.041</td> <td>0.338</td> <td>0.028</td> <td>0.439</td>	AER017	Quercus sartorii	0.530	ME	1428	820	11856	735	975	312	0.616	0.316	0.041	0.338	0.028	0.439
AER020 Quercus skinneri 0.820 MA 2210 1269 18343 1137 1509 482 0.952 0.488 0.063 0.523 0.043 0.679 AER021 Quercus tuberculata 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 0.612 AER022 Quercus uxoris 0.981 MA 2644 1519 21945 1361 1805 577 1.139 0.584 0.075 0.626 0.052 0.812 - <	AER018	Quercus scytophylla	0.933	MA	2514	1444	20871	1294	1717	549	1.084	0.556	0.071	0.595	0.049	0.772
AER021 Quercus tuberculata 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 0.612 AER022 Quercus uxoris 0.981 MA 2644 1519 21945 1361 1805 577 1.139 0.584 0.075 0.626 0.052 0.812 -	AER019	Quercus sideroxyla	0.813	MA	2191	1259	18187	1128	1496	478	0.944	0.484	0.062	0.519	0.043	0.673
AER022 Quercus uxoris 0.981 MA 2644 1519 21945 1361 1805 577 1.139 0.584 0.075 0.626 0.052 0.812	AER020	Quercus skinneri	0.820	MA	2210	1269	18343	1137	1509	482	0.952	0.488	0.063	0.523	0.043	0.679
	AER021	Quercus tuberculata	0.740	AL	1994	1146	16554	1026	1362	435	0.859	0.441	0.057	0.472	0.039	0.612
	AER022	Quercus uxoris	0.981	MA	2644	1519	21945	1361	1805	577	1.139	0.584	0.075	0.626	0.052	0.812
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	ı	-	-	-	-	-	-	-	ı	1	-	-	-	-
	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_

Tabla 04 (1 página de 1). Características elásticas de maderas mexicanas. Angiospermas encinos blancos. H = 12 %; T = 20 °C.

AEB001 Quercus affinis 0.590 ME 1590 913 13198 818 1086 347 0.685 0.351 0.045 0.376 0.031 0. AEB002 Quercus convallata 0.710 AL 1913 1099 15883 985 1306 417 0.825 0.423 0.054 0.453 0.038 0. AEB003 Quercus excelsa 0.870 MA 2345 1347 19462 1207 1601 512 1.010 0.518 0.067 0.555 0.046 0. AEB004 Quercus glaucoides 0.826 MA 2226 1279 18478 1146 1520 486 0.959 0.492 0.063 0.527 0.044 0. AEB005 Quercus glaucoides 0.873 MA 2353 1351 19529 1211 1606 513 1.014 0.520 0.067 0.557 0.046 0. AEB006 Quercus insignis 0.700 AL 1887 1084 15659 971 1288 412 0.813 0.417 0.054 0.446 0.037 0. AEB007 Quercus magnoliifolia 0.771 AL 2078 1194 17247 1069 1419 453 0.895 0.459 0.059 0.492 0.036 0. AEB009 Quercus magnoliifolia 0.771 AL 2078 1194 17247 1069 1419 453 0.895 0.459 0.059 0.492 0.041 0. AEB001 Quercus obtusata 0.828 MA 2231 1282 18522 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0. AEB011 Quercus potosina 0.828 MA 2231 1282 18522 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0. AEB012 Quercus potosina 0.750 AL 2067 1187 17158 1064 1411 451 0.891 0.457 0.059 0.489 0.041 0. AEB013 Quercus prinopsis 0.767 AL 2067 1187 17158 1064 1411 451 0.891 0.457 0.059 0.489 0.041 0. AEB016 Quercus prinopsis 0.760 AL 1919 1146 16554 1026 1362 435 0.859 0.441 0.057 0.478 0.040 0. AEB017 Quercus rugosa 0.876 MA 2361 1356 19596 1215 1612 515 1.017 0.522 0.067 0.559 0.046 0. AEB017 Quercus rugosa 0.876 MA 2361 1356 19596 1215 1612 515 1.017 0.522 0.067 0.559 0.046 0. AEB017 Quercus rugosa 0.993 MA 2676 1537 22213 1377 1827 584 1.153 0.591 0.760 0.633 0.053 0.		T pagina de 1). Características		1							ios ora	11000.1	1 1 2 /	0, 1		1
AEB001 Quercus convallata O.710 AL 1913 1099 15883 985 1306 417 0.825 0.423 0.054 0.453 0.038 0. AEB002 Quercus excelsa O.870 MA 2345 1347 19462 1207 1601 512 1.010 0.518 0.067 0.555 0.046 0. AEB003 Quercus excelsa O.870 MA 2345 1347 19462 1207 1601 512 1.010 0.518 0.067 0.555 0.046 0. AEB004 Quercus glaucoides O.826 MA 2245 1279 18478 1146 1520 486 0.959 0.492 0.063 0.527 0.044 0. AEB005 Quercus glaucoides O.873 MA 2353 1351 19529 1211 1606 513 1.014 0.520 0.067 0.557 0.046 0. AEB006 Quercus misignis O.700 AL 1887 1084 15659 971 1288 412 0.813 0.417 0.054 0.446 0.037 0. AEB007 Quercus leata O.680 AL 1833 1033 15212 943 1251 400 0.790 0.405 0.052 0.434 0.036 0. AEB009 Quercus magnoliifolia O.771 AL 2078 1194 17247 1069 1419 453 0.895 0.459 0.059 0.492 0.041 0. AEB001 Quercus matrinezii O.620 AL 1671 960 13869 860 1141 365 0.720 0.369 0.047 0.395 0.033 0. AEB010 Quercus peduncularis O.828 MA 2231 1282 18522 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0. AEB011 Quercus peduncularis O.828 MA 2231 1282 18522 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0. AEB012 Quercus peduncularis O.828 MA 2231 1282 18522 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0. AEB013 Quercus peduncularis O.828 MA 2231 1280 1852 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0. AEB014 Quercus prinopsis O.760 AL 2021 1161 16778 1040 1380 441 0.871 0.447 0.057 0.478 0.040 0. AEB015 Quercus resinosa O.876 MA 2361 1356 19596 1215 1612 515 1.017 0.522 0.067 0.559 0.048 0. AEB016 Quercus rugosa O.600 ME 1617 929 13422 832 1104 353 0.891 0.076 0.633 0.053 0.528 0.044 0. AEB017 Quercus rugosa O.600 ME 1617 929 13422 832 1140 433 0.897 0.494 0.075 0.472 0.039 0. AEB016 Quercus rugosa O.600 ME 1617 929 13422 832 1140 433 0.897 0.496 0.383 0.033 0.03 0.03 0.03 0.03 0.03 0.	Código	Nombre científico	-	CTF							$v_{\text{\tiny PT}}$	$\nu_{\scriptscriptstyle ext{TR}}$	$\nu_{\text{\tiny Pl}}$	V_{LR}	$\nu_{\scriptscriptstyle \mathrm{TI}}$	$ u_{\text{lt}} $
AEB002 Quercus convallata 0.710 AL 1913 1099 15883 985 1306 417 0.825 0.423 0.054 0.453 0.038 0.			υ													
AEB003 Quercus excelsa 0.870 MA 2345 1347 19462 1207 1601 512 1.010 0.518 0.067 0.555 0.046 0.		~ 00														0.488
AEB004 Quercus glauccides Quercus insignis Q.700 AL 1887 1084 15659 971 1288 412 Q.813 Q.417 Q.057 Q.446 Q.037 Q.068 Q.067		· ~														0.588
AEB005 Quercus glaucoides 0.873 MA 2353 1351 19529 1211 1606 513 1.014 0.520 0.067 0.557 0.046 0.1	AEB003	Quercus excelsa	0.870	MA	2345	1347	19462	1207	1601			0.518		0.555	0.046	0.720
AEB006 Quercus insignis Q.700 AL 1887 1084 15659 971 1288 412 Q.813 Q.417 Q.054 Q.446 Q.037 Q. AEB007 Quercus laeta Q.680 AL 1833 1053 15212 943 1251 400 Q.790 Q.405 Q.052 Q.434 Q.036 Q. AEB008 Quercus magnoliifolia Q.771 AL 2078 1194 17247 1069 1419 453 Q.895 Q.459 Q.059 Q.492 Q.041 Q. AEB009 Quercus matrinezii Q.620 AL 1671 960 13869 860 1141 365 Q.720 Q.369 Q.047 Q.995 Q.033 Q. AEB010 Quercus obtusata Q.828 MA 2231 1282 18522 1148 1524 487 Q.962 Q.493 Q.063 Q.528 Q.044 Q. AEB011 Quercus peduncularis Q.828 MA 2231 1282 18522 1148 1524 487 Q.962 Q.493 Q.063 Q.528 Q.044 Q. AEB012 Quercus polymorpha Q.750 AL 2021 1161 16778 1040 1380 441 Q.871 Q.447 Q.057 Q.478 Q.040 Q. AEB013 Quercus prinopsis Q.767 AL 2067 1187 17158 1064 1411 451 Q.891 Q.457 Q.059 Q.489 Q.041 Q. AEB015 Quercus prinopsis Q.740 AL 1994 1146 16554 1026 1362 435 Q.859 Q.441 Q.057 Q.472 Q.039 Q. AEB016 Quercus resinosa Q.876 MA 2361 1356 19596 1215 1612 515 1.017 Q.522 Q.067 Q.559 Q.489 Q.606 Q.893 Q.606 Q.893 Q.8	AEB004	~ 0	0.826										0.063	0.527	0.044	0.684
AEB007 Quercus laeta 0.680 AL 1833 1053 15212 943 1251 400 0.790 0.405 0.052 0.434 0.036 0.	AEB005	Quercus glaucoides	0.873	MA		1351	19529	1211	1606	513		0.520	0.067	0.557	0.046	0.723
AEB008 Quercus magnoliifolia 0.771 AL 2078 1194 17247 1069 1419 453 0.895 0.459 0.059 0.492 0.041 0.1		~ 0						971						0.446	0.037	0.579
AEB009 Quercus martinezii 0.620 AL 1671 960 13869 860 1141 365 0.720 0.369 0.047 0.395 0.033 0. AEB010 Quercus obtusata 0.828 MA 2231 1282 18522 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0. AEB011 Quercus peduncularis 0.828 MA 2231 1282 18522 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0. AEB012 Quercus polymorpha 0.750 AL 2021 1161 16778 1040 1380 441 0.871 0.447 0.057 0.478 0.040 0. AEB013 Quercus potosina 0.767 AL 2067 1187 17158 1064 1411 451 0.891 0.457 0.059 0.448 0.040 0. AEB015 Quercus prinopsis 0.876	AEB007	Quercus laeta	0.680	AL	1833	1053	15212	943	1251	400	0.790		0.052	0.434	0.036	0.563
AEB010 Quercus obtusata 0.828 MA 2231 1282 18522 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0.063 AEB011 Quercus peduncularis 0.828 MA 2231 1282 18522 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0.0 AEB012 Quercus polymorpha 0.750 AL 2021 1161 16778 1040 1380 441 0.871 0.447 0.057 0.478 0.040 0.0 AEB013 Quercus polymorpha 0.767 AL 2067 1187 17158 1064 1411 451 0.891 0.457 0.059 0.489 0.041 0.0 AEB014 Quercus prinopsis 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 AEB015 Quercus resinosa 0.600 ME	AEB008	Quercus magnoliifolia	0.771	AL	2078	1194	17247	1069	1419		0.895	0.459	0.059	0.492	0.041	0.638
AEB011 Quercus peduncularis 0.828 MA 2231 1282 18522 1148 1524 487 0.962 0.493 0.063 0.528 0.044 0. AEB012 Quercus polymorpha 0.750 AL 2021 1161 16778 1040 1380 441 0.871 0.447 0.057 0.478 0.040 0. AEB013 Quercus potosina 0.767 AL 2067 1187 17158 1064 1411 451 0.891 0.457 0.059 0.489 0.041 0. AEB014 Quercus potosina 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 0.489 0.041 0.057 0.472 0.039 0.046 0. 1215 1612 515 1.017 0.522 0.067 0.559 0.046 0. 383 0.032 0. 0.063 0.093 0.063 0.093	AEB009	Quercus martinezii	0.620	AL	1671	960	13869	860	1141	365	0.720	0.369	0.047	0.395	0.033	0.513
AEB012 Quercus polymorpha 0.750 AL 2021 1161 16778 1040 1380 441 0.871 0.447 0.057 0.478 0.040 0.04 AEB013 Quercus potosina 0.767 AL 2067 1187 17158 1064 1411 451 0.891 0.457 0.059 0.489 0.041 0.0 AEB014 Quercus prinopsis 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 0. AEB015 Quercus resinosa 0.876 MA 2361 1356 19596 1215 1612 515 1.017 0.522 0.067 0.559 0.046 0. AEB016 Quercus rugosa 0.600 ME 1617 929 13422 832 1104 353 0.697 0.357 0.046 0.383 0.032 0. AEB017 Quercus rugosa 0.993 MA	AEB010	Quercus obtusata	0.828	MA	2231	1282	18522	1148	1524	487	0.962	0.493	0.063	0.528	0.044	0.685
AEB013 Quercus potosina 0.767 AL 2067 1187 17158 1064 1411 451 0.891 0.457 0.059 0.489 0.041 0.050 AEB014 Quercus prinopsis 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 0.009 AEB015 Quercus resinosa 0.876 MA 2361 1356 19596 1215 1612 515 1.017 0.522 0.067 0.559 0.046 0.0 AEB016 Quercus rugosa 0.600 ME 1617 929 13422 832 1104 353 0.697 0.357 0.046 0.383 0.032 0.0 AEB017 Quercus rugosa 0.993 MA 2676 1537 22213 1377 1827 584 1.153 0.591 0.076 0.633 0.053 - - - - - -	AEB011	Quercus peduncularis	0.828	MA	2231	1282	18522	1148	1524	487	0.962	0.493	0.063	0.528	0.044	0.685
AEB014 Quercus prinopsis 0.740 AL 1994 1146 16554 1026 1362 435 0.859 0.441 0.057 0.472 0.039 0.486 AEB015 Quercus resinosa 0.876 MA 2361 1356 19596 1215 1612 515 1.017 0.522 0.067 0.559 0.046 0. AEB016 Quercus rugosa 0.600 ME 1617 929 13422 832 1104 353 0.697 0.357 0.046 0.383 0.032 0. AEB017 Quercus rugosa 0.993 MA 2676 1537 22213 1377 1827 584 1.153 0.591 0.063 0.053 0.053 0. -<	AEB012	Quercus polymorpha	0.750	AL	2021	1161	16778	1040	1380	441	0.871	0.447	0.057	0.478	0.040	0.621
AEB015 Quercus resinosa 0.876 MA 2361 1356 19596 1215 1612 515 1.017 0.522 0.067 0.559 0.046 0. AEB016 Quercus rugosa 0.600 ME 1617 929 13422 832 1104 353 0.697 0.357 0.046 0.383 0.032 0. AEB017 Quercus rugosa 0.993 MA 2676 1537 22213 1377 1827 584 1.153 0.591 0.076 0.633 0.053 0. -	AEB013	Quercus potosina	0.767	AL	2067	1187	17158	1064	1411	451	0.891	0.457	0.059	0.489	0.041	0.635
AEB016 Quercus rugosa 0.600 ME 1617 929 13422 832 1104 353 0.697 0.357 0.046 0.383 0.032 0.038 AEB017 Quercus rugosa 0.993 MA 2676 1537 22213 1377 1827 584 1.153 0.591 0.076 0.633 0.053 0.003 0.0	AEB014	Quercus prinopsis	0.740	AL	1994	1146	16554	1026	1362	435	0.859	0.441	0.057	0.472	0.039	0.612
AEB017 Quercus rugosa 0.993 MA 2676 1537 22213 1377 1827 584 1.153 0.591 0.076 0.633 0.05	AEB015	Quercus resinosa	0.876	MA	2361	1356	19596	1215	1612	515	1.017	0.522	0.067	0.559	0.046	0.725
	AEB016	Quercus rugosa	0.600	ME	1617	929	13422	832	1104	353	0.697	0.357	0.046	0.383	0.032	0.497
	AEB017	Quercus rugosa	0.993	MA	2676	1537	22213	1377	1827	584	1.153	0.591	0.076	0.633	0.053	0.822
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	ı	-	ı	ı	-	-	-	-	ı	-	-
	-	-	-	-	-	ı	-	ı	ı	-	-	-	-	ı	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- - - - - - - - - -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Tabla 05 (1 página de 3). Características elásticas de maderas mexicanas. Angiospermas clima templado. H = 12 %; T = 20 °C.

	1 pagnia de 3). Características ciasta	ρ		E_R	E _T	E _L	G_{TL}	G_{LR}	G_{RT}						
Código	Nombre científico	g/cm ³	CTF	MPa	MPa	MPa	MPa	MPa	MPa	$\nu_{ ext{RT}}$	$ u_{\mathrm{TR}} $	$ u_{ ext{\tiny RL}}$	$ u_{\scriptscriptstyle m LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$ u_{\text{LT}} $
ATE001	Acer negundo var. Mexicanum	0.546	ME	1471	845	12214	757	1005	321	0.634	0.325	0.042	0.348	0.029	0.452
ATE002	Acer saccharum	0.520	ME	1401	805	11632	721	957	306	0.604	0.310	0.040	0.332	0.028	0.430
ATE003	Acer skutchii	0.520	ME	1401	805	11632	721	957	306	0.604	0.310	0.040	0.332	0.028	0.430
ATE004	Alnum cuminata ssp. Glabrata	0.451	ME	1214	697	10078	625	829	265	0.523	0.268	0.034	0.287	0.024	0.373
ATE005	Alnus acuminata arguta	0.496	ME	1337	768	11096	688	913	292	0.576	0.295	0.038	0.316	0.026	0.411
ATE006	Alnus jorullensis	0.400	BA	1078	619	8948	555	736	235	0.465	0.238	0.031	0.255	0.021	0.331
ATE007	Aralia pubescens	0.497	ME	1339	769	11118	689	914	292	0.577	0.296	0.038	0.317	0.026	0.411
ATE008	Arbutus xalapensis	0.520	ME	1401	805	11632	721	957	306	0.604	0.310	0.040	0.332	0.028	0.430
ATE009	Arctostaphylos discolor	0.830	MA	2237	1285	18567	1151	1527	488	0.964	0.494	0.063	0.529	0.044	0.687
ATE010	Buddleia americana	0.750	AL	2021	1161	16778	1040	1380	441	0.871	0.447	0.057	0.478	0.040	0.621
ATE011	Buddleia parviflora	0.720	AL	1940	1115	16106	999	1325	423	0.836	0.429	0.055	0.459	0.038	0.596
ATE012	Bursera arborea	0.250	BA	674	387	5593	347	460	147	0.290	0.149	0.019	0.159	0.013	0.207
ATE013	Carpinus caroliniana	0.664	AL	1789	1028	14854	921	1222	390	0.771	0.395	0.051	0.423	0.035	0.550
ATE014	Carya ovata	0.620	AL	1671	960	13869	860	1141	365	0.720	0.369	0.047	0.395	0.033	0.513
ATE015	Casimiroa pringlei	0.710	AL	1913	1099	15883	985	1306	417	0.825	0.423	0.054	0.453	0.038	0.588
ATE016	Casuarina equisetifolia	0.955	MA	2574	1478	21363	1325	1757	562	1.109	0.569	0.073	0.609	0.051	0.790
ATE017	Ceiba aesculifolia	0.490	ME	1321	759	10961	680	902	288	0.569	0.292	0.037	0.313	0.026	0.406
ATE018	Celastrus pringlei	0.453	ME	1221	701	10134	628	834	266	0.526	0.270	0.035	0.289	0.024	0.375
ATE019	Celtis caudata	0.699	AL	1884	1082	15637	970	1286	411	0.812	0.416	0.053	0.446	0.037	0.579
ATE020	Cestrum lanatum	0.570	ME	1536	882	12751	791	1049	335	0.662	0.339	0.044	0.364	0.030	0.472
ATE021	Clethra mexicana	0.480	ME	1294	743	10738	666	883	282	0.557	0.286	0.037	0.306	0.025	0.397
ATE022	Cleyera integrifolia	0.640	AL	1725	991	14317	888	1178	376	0.743	0.381	0.049	0.408	0.034	0.530
ATE023	Condalia velutina	0.810	MA	2183	1254	18120	1123	1490	476	0.941	0.482	0.062	0.517	0.043	0.670
ATE024	Cornus disciflora	0.686	AL	1849	1062	15346	951	1262	403	0.797	0.408	0.052	0.438	0.036	0.568
ATE025	Crataegus mexicana	0.687	AL	1851	1063	15368	953	1264	404	0.798	0.409	0.053	0.438	0.036	0.569
ATE026	Crataegus pubescens	0.670	AL	1806	1037	14988	929	1233	394	0.778	0.399	0.051	0.427	0.035	0.555
ATE027	Dendropanax arboreus	0.440	ME	1186	681	9843	610	810	259	0.511	0.262	0.034	0.281	0.023	0.364
ATE028	Erythrina coralloides	0.220	BA	593	341	4921	305	405	129	0.256	0.131	0.017	0.140	0.012	0.182
ATE029	Erythrina lanata	0.320	BA	862	495	7158	444	589	188	0.372	0.191	0.024	0.204	0.017	0.265
ATE030	Euphorbia calyculata	0.270	BA	728	418	6040	374	497	159	0.314	0.161	0.021	0.172	0.014	0.223

Tabla 05 (2 página de 3). Características elásticas de maderas mexicanas. Angiospermas clima templado. H = 12 %; T = 20 °C.

Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}						1,
Courgo	Nombre cientifico	g/cm ³	CIF	MPa	MPa	MPa	MPa	MPa	MPa	$v_{\rm RT}$	$v_{ ext{TR}}$	$\nu_{\scriptscriptstyle m RL}$	$ u_{\text{LR}} $	$ u_{\scriptscriptstyle \mathrm{TL}}$	$\nu_{ m LT}$
ATE031	Eysenhardtia polystachya	0.770	AL	2075	1192	17225	1068	1417	453	0.894	0.458	0.059	0.491	0.041	0.637
ATE032	Ficus benjamina	0.372	BA	1003	576	8322	516	684	219	0.432	0.221	0.028	0.237	0.020	0.308
ATE033	Forestiera tomentosa	0.460	ME	1240	712	10290	638	846	270	0.534	0.274	0.035	0.293	0.024	0.381
ATE034	Fraxinus uhdei	0.664	AL	1789	1028	14854	921	1222	390	0.771	0.395	0.051	0.423	0.035	0.550
ATE035	Fuchsia arborescens	0.560	ME	1509	867	12527	777	1030	329	0.650	0.333	0.043	0.357	0.030	0.464
ATE036	Garrya laurifolia	0.711	AL	1916	1101	15905	986	1308	418	0.826	0.423	0.054	0.453	0.038	0.588
ATE037	Grevillea robusta	0.487	ME	1312	754	10894	675	896	286	0.566	0.290	0.037	0.311	0.026	0.403
ATE038	Ilex brandegeana	0.707	AL	1905	1094	15816	981	1301	416	0.821	0.421	0.054	0.451	0.037	0.585
ATE039	Juglans pyriformis	0.850	MA	2291	1316	19015	1179	1564	500	0.987	0.506	0.065	0.542	0.045	0.704
ATE040	Liquidambar macrophylla	0.480	ME	1294	743	10738	666	883	282	0.557	0.286	0.037	0.306	0.025	0.397
ATE041	Liquidambar styraciflua	0.470	ME	1267	728	10514	652	865	276	0.546	0.280	0.036	0.300	0.025	0.389
ATE042	Macadamia ternifolia	0.756	AL	2037	1170	16912	1049	1391	445	0.878	0.450	0.058	0.482	0.040	0.626
ATE043	Magnolia schiedeana	0.540	ME	1455	836	12080	749	994	318	0.627	0.322	0.041	0.344	0.029	0.447
ATE044	Meliosma dentata	0.576	ME	1552	892	12885	799	1060	339	0.669	0.343	0.044	0.367	0.030	0.477
ATE045	Morus celtidifolia	0.806	MA	2172	1248	18030	1118	1483	474	0.936	0.480	0.062	0.514	0.043	0.667
ATE046	Oreopanax peltatus	0.820	MA	2210	1269	18343	1137	1509	482	0.952	0.488	0.063	0.523	0.043	0.679
ATE047	Oreopanax xalapensis	0.660	AL	1779	1022	14764	915	1214	388	0.767	0.393	0.050	0.421	0.035	0.546
ATE048	Perrottetia longistylis	0.440	ME	1186	681	9843	610	810	259	0.511	0.262	0.034	0.281	0.023	0.364
ATE049	Platanus mexicana	0.451	ME	1215	698	10089	626	830	265	0.524	0.269	0.035	0.288	0.024	0.373
ATE050	Populus deltoides	0.448	ME	1207	694	10022	621	824	263	0.520	0.267	0.034	0.286	0.024	0.371
ATE051	Populus tremuloides	0.750	AL	2021	1161	16778	1040	1380	441	0.871	0.447	0.057	0.478	0.040	0.621
ATE052	Prunus brachybotrya	0.692	AL	1865	1071	15480	960	1273	407	0.804	0.412	0.053	0.441	0.037	0.573
ATE053	Prunus capuli	0.676	AL	1822	1046	15122	938	1244	397	0.785	0.402	0.052	0.431	0.036	0.560
ATE054	Prunus hintonii	0.860	MA	2318	1331	19238	1193	1582	506	0.999	0.512	0.066	0.549	0.045	0.712
ATE055	Prunus serotina	0.810	MA	2183	1254	18120	1123	1490	476	0.941	0.482	0.062	0.517	0.043	0.670
ATE056	Psidium guajava	0.650	AL	1752	1006	14541	902	1196	382	0.755	0.387	0.050	0.415	0.034	0.538
ATE057	Rapanea juergensenii	0.760	AL	2048	1176	17001	1054	1398	447	0.883	0.453	0.058	0.485	0.040	0.629
ATE058	Salix bonplandiana	0.560	ME	1509	867	12527	777	1030	329	0.650	0.333	0.043	0.357	0.030	0.464
ATE059	Salix paradoxa	0.590	ME	1590	913	13198	818	1086	347	0.685	0.351	0.045	0.376	0.031	0.488
ATE060	Saurauia reticulata	0.500	ME	1348	774	11185	694	920	294	0.581	0.298	0.038	0.319	0.026	0.414

Tabla 05 (3 página de 3). Características elásticas de maderas mexicanas. Angiospermas clima templado. H = 12 %; T = 20 °C.

Nombre científico P g/cm² CTF Eg/cm² MPa M	1 4014 05	(5 pagina de 5). Caracteristicas clasticas de l	macra	<i>j</i> 111023	TCullu	13. 1 XII	grospe	TITIGS	CIIIII	t tolli	praao.	11 - 1	2 70,		<u> </u>	
ATE061 Styrax argenteus C. Presl var. Ramirezii 0.530 ME 1428 820 11856 735 975 312 0.616 0.316 0.041 0.338 0.028 0.45 ATE062 Styrax ramirezii 0.590 ME 1345 772 11163 692 918 293 0.580 0.297 0.038 0.318 0.026 0.4 ATE063 Styrax ramirezii 0.630 AL 1698 975 14093 874 11185 694 920 294 0.581 0.298 0.038 0.319 0.026 0.4 ATE064 Ternstroemia pringlei 0.630 AL 1698 975 14093 874 1159 370 0.732 0.375 0.048 0.402 0.033 0.55 ATE065 Tilia houghii 0.400 BA 1078 619 8948 555 736 235 0.465 0.238 0.031 0.255 0.021 0.33 ATE065 Tilia maxicana 0.469 ME 1264 726 10492 651 863 276 0.545 0.279 0.036 0.299 0.025 0.33 ATE065 Ulmus mexicana 0.220 BA 593 341 4921 305 405 129 0.256 0.131 0.017 0.140 0.012 0.13 ATE068 Zimoviewia aff. Concinna 0.557 ME 1501 862 12460 773 1025 328 0.647 0.332 0.043 0.355 0.029 0.44 ATE069 Zimowiewia concinna 0.521 ME 1404 807 11655 723 959 306 0.605 0.310 0.040 0.332 0.028 0.45 0.555 0.555 0.555 0.029 0.355 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.555 0.029 0.45 0.029 0.	Código	Nombre científico		CTF				G_{TL}	G_{LR}	G_{RT}	v	v	v	v	1/	v
ATE062 Styrax ramirezii	Courgo	romore elemento	g/cm ³	CII	MPa	MPa	MPa	MPa	MPa	MPa	v _{RT}	v _{TR}	$v_{\rm RL}$	v_{LR}	v _{TL}	\mathbf{v}_{LT}
ATE063 Symplocos citrea 0.500 ME 1348 774 11185 694 920 294 0.581 0.298 0.38 0.319 0.026 0.4 ATE064 Ternstroemia pringlei 0.630 AL 1698 975 14093 874 1159 370 0.732 0.375 0.048 0.402 0.033 0.55 ATE066 Tilia mexicana 0.400 ME 1264 726 10492 651 863 276 0.545 0.279 0.036 0.299 0.025 0.33 ATE067 Ulmus mexicana 0.200 BA 593 341 4921 305 405 129 0.256 0.131 0.017 0.140 0.012 0.13 ATE068 Zinowiewia aff. Concinna 0.521 ME 1404 807 11655 723 959 306 0.605 0.310 0.040 0.332 0.028 0.45 ATE069 Zinowiewia concinna 0.521 ME 1404 807 11655 723 959 306 0.605 0.310 0.040 0.332 0.028 0.45	ATE061	Styrax argenteus C. Presl var. Ramirezii	0.530	ME	1428	820	11856	735	975	312	0.616	0.316	0.041	0.338	0.028	0.439
ATE064 Ternstroemia pringlei 0.630 AL 1698 975 14093 874 1159 370 0.732 0.375 0.048 0.402 0.033 0.555 ATE065 Tilia houghii 0.400 BA 1078 619 8948 555 736 235 0.465 0.238 0.031 0.255 0.021 0.335 ATE066 Tilia mexicana 0.469 ME 1264 726 10492 651 863 276 0.545 0.279 0.036 0.299 0.025 0.33 ATE067 Ulmus mexicana 0.220 BA 593 341 4921 305 405 129 0.256 0.131 0.017 0.140 0.012 0.18 ATE068 Zinowiewia aff. Concinna 0.557 ME 1501 862 12460 773 1025 328 0.647 0.332 0.043 0.355 0.029 0.44 ATE069 Zinowiewia concinna 0.521 ME 1404 807 11655 723 959 306 0.605 0.310 0.040 0.332 0.028 0.45 0.255	ATE062	Styrax ramirezii	0.499	ME	1345	772	11163	692	918	293	0.580	0.297	0.038	0.318	0.026	0.413
ATE065 Tilia houghii	ATE063	Symplocos citrea	0.500	ME	1348	774	11185	694	920	294	0.581	0.298	0.038	0.319	0.026	0.414
ATE066 Tilia mexicana 0.469 ME 1264 726 10492 651 863 276 0.545 0.279 0.036 0.299 0.025 0.33 ATE067 Ulmus mexicana 0.220 BA 593 341 4921 305 405 129 0.256 0.131 0.017 0.140 0.012 0.18 ATE068 Zinowiewia aff. Concinna 0.557 ME 1501 862 12460 773 1025 328 0.647 0.332 0.043 0.355 0.029 0.44 ATE069 Zinowiewia concinna 0.521 ME 1404 807 11655 723 959 306 0.605 0.310 0.040 0.332 0.028 0.43	ATE064	Ternstroemia pringlei	0.630	AL	1698	975	14093	874	1159	370	0.732	0.375	0.048	0.402	0.033	0.521
ATE067 Ulmus mexicana 0.220 BA 593 341 4921 305 405 129 0.256 0.131 0.017 0.140 0.012 0.18 ATE068 Zinowiewia aff. Concinna 0.557 ME 1501 862 12460 773 1025 328 0.647 0.332 0.043 0.355 0.029 0.44 ATE069 Zinowiewia concinna 0.521 ME 1404 807 11655 723 959 306 0.605 0.310 0.040 0.332 0.028 0.44	ATE065	Tilia houghii	0.400	BA	1078	619	8948	555	736	235	0.465	0.238	0.031	0.255	0.021	0.331
ATE068 Zinowiewia aff. Concinna 0.557 ME 1501 862 12460 773 1025 328 0.647 0.332 0.043 0.355 0.029 0.44 ATE069 Zinowiewia concinna 0.521 ME 1404 807 11655 723 959 306 0.605 0.310 0.040 0.332 0.028 0.45 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	ATE066	Tilia mexicana	0.469	ME	1264	726	10492	651	863	276	0.545	0.279	0.036	0.299	0.025	0.388
ATE069 Zinowiewia concinna	ATE067	Ulmus mexicana	0.220	BA	593	341	4921	305	405	129	0.256	0.131	0.017	0.140	0.012	0.182
	ATE068	Zinowiewia aff. Concinna	0.557	ME	1501	862	12460	773	1025	328	0.647	0.332	0.043	0.355	0.029	0.461
	ATE069	Zinowiewia concinna	0.521	ME	1404	807	11655	723	959	306	0.605	0.310	0.040	0.332	0.028	0.431
	-	-	-	1	-	-	1	-	-	-	-	-	-	-	-	-
	-	-	-	1	-	-	1	-	-	-	-	-	-	-	-	-
	-	-	-	1	-	-	1	-	-	-	-	-	-	-	-	-
	-	-	-	1	-	-	1	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	1	-	-	-	-		-
	-	-	-	-	-	-	-	-	-	1	-	-	-	-		-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_

Tabla 06 (1 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

1 4014 00 ((1 pagnia de 11). Características eras	oticus uc	maac	nus III	CAICai	103. 1 XII	Siospe	TITIUS V	CIIIIIa	tropic	u1. 11 —	12 /0,	1 – 20	<i>)</i> C.	
Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	$ u_{\scriptscriptstyle{RT}}$	$ u_{\scriptscriptstyle TR}$	$ u_{\scriptscriptstyle{\mathrm{RL}}}$	$ u_{ m LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$\nu_{\scriptscriptstyle m LT}$
courgo	Tromote elementes	g/cm ³	011	MPa	MPa	MPa	MPa	MPa	MPa	V RT	V TR		V LR	V TL	V LT
ATR001	Acacia angustissima	0.850	MA	2291	1316	19015	1179	1564	500	0.987	0.506	0.065	0.542	0.045	0.704
ATR002	Acacia berlandieri	0.600	ME	1617	929	13422	832	1104	353	0.697	0.357	0.046	0.383	0.032	0.497
ATR003	Acacia cochliacantha	0.940	MA	2533	1455	21028	1304	1730	553	1.092	0.560	0.072	0.600	0.050	0.778
ATR004	Acacia glomerosa	0.470	ME	1267	728	10514	652	865	276	0.546	0.280	0.036	0.300	0.025	0.389
ATR005	Acacia hindsii	0.780	AL	2102	1207	17449	1082	1435	459	0.906	0.464	0.060	0.497	0.041	0.646
ATR006	Acacia mayana	0.730	AL	1967	1130	16330	1013	1343	429	0.848	0.435	0.056	0.466	0.039	0.604
ATR007	Acacia melanoxylon	0.553	ME	1490	856	12371	767	1018	325	0.642	0.329	0.042	0.353	0.029	0.458
ATR008	Acnistus macrophyllus	0.280	BA	755	433	6264	388	515	165	0.325	0.167	0.021	0.179	0.015	0.232
ATR009	Acosmium panamense	1.000	MA	2695	1548	22370	1387	1840	588	1.161	0.595	0.077	0.638	0.053	0.828
ATR010	Acrocarpus fraxinifolius	0.490	ME	1321	759	10961	680	902	288	0.569	0.292	0.037	0.313	0.026	0.406
ATR011	Adelia oaxacana	0.870	MA	2345	1347	19462	1207	1601	512	1.010	0.518	0.067	0.555	0.046	0.720
ATR012	Albizia plurijuga	0.530	ME	1428	820	11856	735	975	312	0.616	0.316	0.041	0.338	0.028	0.439
ATR013	Albizia purpusii	0.640	AL	1725	991	14317	888	1178	376	0.743	0.381	0.049	0.408	0.034	0.530
ATR014	Alchornea latifolia	0.390	BA	1051	604	8724	541	718	229	0.453	0.232	0.030	0.249	0.021	0.323
ATR015	Allophylus camptostachys	0.770	AL	2075	1192	17225	1068	1417	453	0.894	0.458	0.059	0.491	0.041	0.637
ATR016	Alseis yucatanensis	0.330	BA	889	511	7382	458	607	194	0.383	0.196	0.025	0.210	0.017	0.273
ATR017	Alstonia longifolia	0.850	MA	2291	1316	19015	1179	1564	500	0.987	0.506	0.065	0.542	0.045	0.704
ATR018	Ampelocera hottlei	0.690	AL	1860	1068	15435	957	1270	406	0.801	0.411	0.053	0.440	0.037	0.571
ATR019	Amphipterygium adstringens	0.410	ME	1105	635	9172	569	754	241	0.476	0.244	0.031	0.261	0.022	0.339
ATR020	Amphitecna tuxtlensis	0.460	ME	1240	712	10290	638	846	270	0.534	0.274	0.035	0.293	0.024	0.381
ATR021	Andira inermis	0.710	AL	1913	1099	15883	985	1306	417	0.825	0.423	0.054	0.453	0.038	0.588
ATR022	Aphananthe monoica	0.690	AL	1860	1068	15435	957	1270	406	0.801	0.411	0.053	0.440	0.037	0.571
ATR023	Apoplanesia paniculata	0.940	MA	2533	1455	21028	1304	1730	553	1.092	0.560	0.072	0.600	0.050	0.778
ATR024	Ardisia compressa	0.650	AL	1752	1006	14541	902	1196	382	0.755	0.387	0.050	0.415	0.034	0.538
ATR025	Aspidosperma megalocarpon	0.670	AL	1806	1037	14988	929	1233	394	0.778	0.399	0.051	0.427	0.035	0.555
ATR026	Astronium graveolen	0.720	AL	1940	1115	16106	999	1325	423	0.836	0.429	0.055	0.459	0.038	0.596
ATR027	Belotia mexicana	0.320	BA	862	495	7158	444	589	188	0.372	0.191	0.024	0.204	0.017	0.265
ATR028	Bernoullia flammea	0.440	ME	1186	681	9843	610	810	259	0.511	0.262	0.034	0.281	0.023	0.364
ATR029	Blepharidium mexicanum	0.600	ME	1617	929	13422	832	1104	353	0.697	0.357	0.046	0.383	0.032	0.497
ATR030	Bourreria purpusii	0.730	AL	1967	1130	16330	1013	1343	429	0.848	0.435	0.056	0.466	0.039	0.604

Tabla 06 (2 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

Tabla 00	(2 pagnia de 11). Características ciast	icus uc.	maacı	us IIIc	Aican	ع. 1 1115	, rospe	illias	iiiia	uopice	11. 11 —	12 /0,	1 – 20	<i>.</i> C.	
Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	1/	1/	W	1/	W	1,
Codigo	Nombre elemente	g/cm ³	CII	MPa	MPa	MPa	MPa	MPa	MPa	$v_{ m RT}$	$v_{ m TR}$	$ u_{\mathrm{RL}} $	$ u_{\text{LR}} $	$ u_{\scriptscriptstyle \mathrm{TL}}$	$\nu_{\rm LT}$
ATR031	Brosimum alicastrum	0.730	AL	1967	1130	16330	1013	1343	429	0.848	0.435	0.056	0.466	0.039	0.604
ATR032	Bucida buceras	0.850	MA	2291	1316	19015	1179	1564	500	0.987	0.506	0.065	0.542	0.045	0.704
ATR033	Bunchosia palmeri	0.740	AL	1994	1146	16554	1026	1362	435	0.859	0.441	0.057	0.472	0.039	0.612
ATR034	Bursera excelsa	0.350	BA	943	542	7830	485	644	206	0.406	0.208	0.027	0.223	0.019	0.290
ATR035	Bursera grandifolia	0.470	ME	1267	728	10514	652	865	276	0.546	0.280	0.036	0.300	0.025	0.389
ATR036	Bursera heteresthes	0.400	BA	1078	619	8948	555	736	235	0.465	0.238	0.031	0.255	0.021	0.331
ATR037	Bursera instabilis	0.240	BA	647	372	5369	333	442	141	0.279	0.143	0.018	0.153	0.013	0.199
ATR038	Bursera simaruba	0.430	ME	1159	666	9619	596	791	253	0.499	0.256	0.033	0.274	0.023	0.356
ATR039	Byrsonima crassifolia	0.630	AL	1698	975	14093	874	1159	370	0.732	0.375	0.048	0.402	0.033	0.521
ATR040	Caesalpinia caladenia	0.910	MA	2452	1409	20357	1262	1674	535	1.057	0.542	0.070	0.580	0.048	0.753
ATR041	Caesalpinia coriaria	1.140	MA	3072	1765	25502	1581	2098	670	1.324	0.679	0.087	0.727	0.060	0.944
ATR042	Caesalpinia eriostachys	0.740	AL	1994	1146	16554	1026	1362	435	0.859	0.441	0.057	0.472	0.039	0.612
ATR043	Caesalpinia platyloba	0.940	MA	2533	1455	21028	1304	1730	553	1.092	0.560	0.072	0.600	0.050	0.778
ATR044	Caesalpinia pulcherrima	0.840	MA	2264	1300	18791	1165	1546	494	0.976	0.500	0.064	0.536	0.044	0.695
ATR045	Caesalpinia sclerocarpa	1.390	MA	3746	2152	31094	1928	2558	817	1.614	0.828	0.106	0.887	0.074	1.151
ATR046	Calatola laevigata	0.760	AL	2048	1176	17001	1054	1398	447	0.883	0.453	0.058	0.485	0.040	0.629
ATR047	Calophyllum brasiliense	0.520	ME	1401	805	11632	721	957	306	0.604	0.310	0.040	0.332	0.028	0.430
ATR048	Calycophyllum candidissimum	0.670	AL	1806	1037	14988	929	1233	394	0.778	0.399	0.051	0.427	0.035	0.555
ATR049	Capparis baducca	0.480	ME	1294	743	10738	666	883	282	0.557	0.286	0.037	0.306	0.025	0.397
ATR050	Capparis indica	0.680	AL	1833	1053	15212	943	1251	400	0.790	0.405	0.052	0.434	0.036	0.563
ATR051	Capparis verrucosa	0.860	MA	2318	1331	19238	1193	1582	506	0.999	0.512	0.066	0.549	0.045	0.712
ATR052	Casearia corymbosa	0.670	AL	1806	1037	14988	929	1233	394	0.778	0.399	0.051	0.427	0.035	0.555
ATR053	Casearia tremula	0.740	AL	1994	1146	16554	1026	1362	435	0.859	0.441	0.057	0.472	0.039	0.612
ATR054	Cassia atomaria	0.740	AL	1994	1146	16554	1026	1362	435	0.859	0.441	0.057	0.472	0.039	0.612
ATR055	Cassia emarginata	0.890	MA	2399	1378	19909	1234	1638	523	1.034	0.530	0.068	0.568	0.047	0.737
ATR056	Cassia fistula	0.608	AL	1639	941	13601	843	1119	358	0.706	0.362	0.047	0.388	0.032	0.503
ATR057	Cecropia obtusifolia	0.310	BA	835	480	6935	430	570	182	0.360	0.185	0.024	0.198	0.016	0.257
ATR058	Cedrela mexicana	0.374	BA	1008	579	8366	519	688	220	0.434	0.223	0.029	0.239	0.020	0.310
ATR059	Cedrela odorata	0.400	BA	1078	619	8948	555	736	235	0.465	0.238	0.031	0.255	0.021	0.331
ATR060	Ceiba pentandra	0.190	MB	512	294	4250	264	350	112	0.221	0.113	0.015	0.121	0.010	0.157
	-														

Tabla 06 (3 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

1 abia 00	(5 pagina de 11). Características ciastic	as ac m	aucra	3 IIICA	icana.	o. Milgi	ospen	mas Ci	mia t	ropical	1. 11 —	12 /0,	1 – 20	<u> </u>	
Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_{L}	G_{TL}	G_{LR}	G_{RT}	1/	1/	1/	1/	W	v
Codigo	Nomble elemined	g/cm ³	CII	MPa	MPa	MPa	MPa	MPa	MPa	$\nu_{ m RT}$	$ u_{\mathrm{TR}} $	$ u_{\mathrm{RL}} $	$ u_{\text{LR}} $	$ u_{\scriptscriptstyle \mathrm{TL}}$	$v_{\rm LT}$
ATR061	Celeanodendron mexicanum	0.940	MA	2533	1455	21028	1304	1730	553	1.092	0.560	0.072	0.600	0.050	0.778
ATR062	Chiranthodendron pentadactylon	0.456	ME	1229	706	10201	632	839	268	0.530	0.272	0.035	0.291	0.024	0.377
ATR063	Chloroleucon mangense	0.652	AL	1757	1009	14585	904	1200	383	0.757	0.388	0.050	0.416	0.034	0.540
ATR064	Chlorophora tinctoria	0.960	MA	2587	1486	21475	1332	1766	564	1.115	0.572	0.073	0.612	0.051	0.795
ATR065	Cibistax donell-smithii	0.400	BA	1078	619	8948	555	736	235	0.465	0.238	0.031	0.255	0.021	0.331
ATR066	Citharexylum affine	0.710	AL	1913	1099	15883	985	1306	417	0.825	0.423	0.054	0.453	0.038	0.588
ATR067	Clarisia biflora	0.520	ME	1401	805	11632	721	957	306	0.604	0.310	0.040	0.332	0.028	0.430
ATR068	Cnidoscolus multilobus	0.290	BA	782	449	6487	402	534	171	0.337	0.173	0.022	0.185	0.015	0.240
ATR069	Coccoloba barbadensis	0.710	AL	1913	1099	15883	985	1306	417	0.825	0.423	0.054	0.453	0.038	0.588
ATR070	Coccoloba liebmannii	0.800	AL	2156	1238	17896	1110	1472	470	0.929	0.476	0.061	0.510	0.042	0.662
ATR071	Cochlospermum vitifolium	0.270	BA	728	418	6040	374	497	159	0.314	0.161	0.021	0.172	0.014	0.223
ATR072	Cocos nucifera	0.558	ME	1504	864	12482	774	1027	328	0.648	0.332	0.043	0.356	0.030	0.462
ATR073	Cojoba arborea	0.553	ME	1490	856	12371	767	1018	325	0.642	0.329	0.042	0.353	0.029	0.458
ATR074	Colubrina heteroneura	0.970	MA	2614	1502	21699	1345	1785	570	1.127	0.578	0.074	0.619	0.051	0.803
ATR075	Colubrina triflora	0.700	AL	1887	1084	15659	971	1288	412	0.813	0.417	0.054	0.446	0.037	0.579
ATR076	Comocladia engleriana	0.790	AL	2129	1223	17672	1096	1454	465	0.918	0.470	0.060	0.504	0.042	0.654
ATR077	Cordia alliodora	0.490	ME	1321	759	10961	680	902	288	0.569	0.292	0.037	0.313	0.026	0.406
ATR078	Cordia boissieri	0.580	ME	1563	898	12975	804	1067	341	0.674	0.345	0.044	0.370	0.031	0.480
ATR079	Cordia dentata	0.530	ME	1428	820	11856	735	975	312	0.616	0.316	0.041	0.338	0.028	0.439
ATR080	Cordia dodecandra	0.796	AL	2145	1232	17807	1104	1465	468	0.924	0.474	0.061	0.508	0.042	0.659
ATR081	Cordia elaeagnoides	1.100	MA	2965	1703	24607	1526	2024	647	1.278	0.655	0.084	0.702	0.058	0.910
ATR082	Cordia megalantha	0.405	ME	1091	627	9060	562	745	238	0.470	0.241	0.031	0.258	0.021	0.335
ATR083	Cordia seleriana	0.780	AL	2102	1207	17449	1082	1435	459	0.906	0.464	0.060	0.497	0.041	0.646
ATR084	Cordia sonorae	0.810	MA	2183	1254	18120	1123	1490	476	0.941	0.482	0.062	0.517	0.043	0.670
ATR085	Cornutia grandifolia	0.600	ME	1617	929	13422	832	1104	353	0.697	0.357	0.046	0.383	0.032	0.497
ATR086	Couepia polyandra	0.740	AL	1994	1146	16554	1026	1362	435	0.859	0.441	0.057	0.472	0.039	0.612
ATR087	Crataeva tapia	0.550	ME	1482	851	12304	763	1012	323	0.639	0.327	0.042	0.351	0.029	0.455
ATR088	Crescentia alata	0.710	AL	1913	1099	15883	985	1306	417	0.825	0.423	0.054	0.453	0.038	0.588
ATR089	Croton glabellus	1.000	MA	2695	1548	22370	1387	1840	588	1.161	0.595	0.077	0.638	0.053	0.828
ATR090	Croton nitens	0.530	ME	1428	820	11856	735	975	312	0.616	0.316	0.041	0.338	0.028	0.439
	-														

Tabla 06 (4 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

Tabla 00 t	(4 pagina de 11). Características eras	ticas ac	made	ras m	CAICan	us. 7 1112	Stospe	IIIIas (cillia	uopica	<i>1</i> 1. 11 —	12 /0,	1 – 20	<i>.</i> .	
Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	37	37	37	37	1/	1,
Codigo	Nombre elementes	g/cm ³	CII	MPa	MPa	MPa	MPa	MPa	MPa	$\nu_{ m RT}$	$v_{ ext{TR}}$	$\nu_{\scriptscriptstyle m RL}$	$ u_{\text{LR}} $	$ u_{\scriptscriptstyle \mathrm{TL}}$	$v_{\rm LT}$
ATR091	Cupania dentata	0.380	BA	1024	588	8501	527	699	223	0.441	0.226	0.029	0.242	0.020	0.315
ATR092	Cupania macrophylla	0.940	MA	2533	1455	21028	1304	1730	553	1.092	0.560	0.072	0.600	0.050	0.778
ATR093	Cupressus lusitanica	0.430	ME	1159	666	9619	596	791	253	0.499	0.256	0.033	0.274	0.023	0.356
ATR094	Cymbopetalum baillonii	0.480	ME	1294	743	10738	666	883	282	0.557	0.286	0.037	0.306	0.025	0.397
ATR095	Cymbopetalum penduliflorum	0.420	ME	1132	650	9395	583	773	247	0.488	0.250	0.032	0.268	0.022	0.348
ATR096	Cynometra oaxcana	0.980	MA	2641	1517	21923	1359	1803	576	1.138	0.583	0.075	0.625	0.052	0.811
ATR097	Cynometra retusa	0.800	AL	2156	1238	17896	1110	1472	470	0.929	0.476	0.061	0.510	0.042	0.662
ATR098	Dalbergia congestiflora	0.830	MA	2237	1285	18567	1151	1527	488	0.964	0.494	0.063	0.529	0.044	0.687
ATR099	Dalbergia granadillo	1.070	MA	2884	1656	23936	1484	1969	629	1.243	0.637	0.082	0.682	0.057	0.886
ATR100	Dalbergia paloescrito	0.525	ME	1415	813	11744	728	966	309	0.610	0.313	0.040	0.335	0.028	0.435
ATR101	Dialium guianense	0.800	AL	2156	1238	17896	1110	1472	470	0.929	0.476	0.061	0.510	0.042	0.662
ATR102	Diospyros digyna	0.790	AL	2129	1223	17672	1096	1454	465	0.918	0.470	0.060	0.504	0.042	0.654
ATR103	Dipholis minutiflora	0.930	MA	2506	1440	20804	1290	1711	547	1.080	0.554	0.071	0.593	0.049	0.770
ATR104	Dipholis salicifolia	0.840	MA	2264	1300	18791	1165	1546	494	0.976	0.500	0.064	0.536	0.044	0.695
ATR105	Dipholis stevensonii	0.800	AL	2156	1238	17896	1110	1472	470	0.929	0.476	0.061	0.510	0.042	0.662
ATR106	Diphysa occidentalis	1.180	MA	3180	1827	26397	1637	2171	694	1.370	0.703	0.090	0.753	0.062	0.977
ATR107	Diphysa thurberi	0.980	MA	2641	1517	21923	1359	1803	576	1.138	0.583	0.075	0.625	0.052	0.811
ATR108	Drypetes lateriflora	0.720	AL	1940	1115	16106	999	1325	423	0.836	0.429	0.055	0.459	0.038	0.596
ATR109	Dussia mexicana	0.510	ME	1374	789	11409	707	938	300	0.592	0.304	0.039	0.325	0.027	0.422
ATR110	Enterolobium cyclocarpum	0.390	BA	1051	604	8724	541	718	229	0.453	0.232	0.030	0.249	0.021	0.323
ATR111	Erythrina folkersii	0.380	BA	1024	588	8501	527	699	223	0.441	0.226	0.029	0.242	0.020	0.315
ATR112	Erythroxylon habanensis	0.980	MA	2641	1517	21923	1359	1803	576	1.138	0.583	0.075	0.625	0.052	0.811
ATR113	Erythroxylon mexicanum	0.990	MA	2668	1533	22146	1373	1822	582	1.150	0.589	0.076	0.631	0.052	0.819
ATR114	Esenbeckia berlandieri	0.860	MA	2318	1331	19238	1193	1582	506	0.999	0.512	0.066	0.549	0.045	0.712
ATR115	Esenbeckia nesiotica	1.190	MA	3207	1842	26620	1651	2190	700	1.382	0.709	0.091	0.759	0.063	0.985
ATR116	Eucalyptus marginata	0.675	AL	1819	1045	15100	936	1242	397	0.784	0.402	0.052	0.431	0.036	0.559
ATR117	Eugenia origanoides	0.820	MA	2210	1269	18343	1137	1509	482	0.952	0.488	0.063	0.523	0.043	0.679
ATR118	Euphorbia peganoides	0.450	ME	1213	697	10067	624	828	265	0.523	0.268	0.034	0.287	0.024	0.372
ATR119	Exostema caribaeum	0.990	MA	2668	1533	22146	1373	1822	582	1.150	0.589	0.076	0.631	0.052	0.819
ATR120	Faramea occidentalis	0.550	ME	1482	851	12304	763	1012	323	0.639	0.327	0.042	0.351	0.029	0.455
-	•														

Tabla 06 (5 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

1 4014 00 (J pagina de 11). Características cia	sticus u	o maa	Crus II	ICAICA	nas. 1 m	grospi	Jimas	CIIIII	i ii opic	u1. 11 –	12 /0,	, 1 – 2	<i>o</i> c.	
Código	Nombre científico	ρ	CTF	E _R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	$ u_{ ext{RT}}$	$ u_{\scriptscriptstyle TR}$	$ u_{\scriptscriptstyle{\mathrm{RL}}}$	$ u_{\scriptscriptstyle LR}$	$ u_{\scriptscriptstyle{\mathrm{TL}}}$	$\nu_{\scriptscriptstyle m LT}$
		g/cm ³		MPa	MPa	MPa	MPa	MPa	MPa						
ATR121	Ficus cotinifolia	0.400	BA	1078	619	8948	555	736	235	0.465	0.238	0.031	0.255	0.021	0.331
ATR122	Ficus goldmanii	0.470	ME	1267	728	10514	652	865	276	0.546	0.280	0.036	0.300	0.025	0.389
ATR123	Ficus insipida	0.410	ME	1105	635	9172	569	754	241	0.476	0.244	0.031	0.261	0.022	0.339
ATR124	Ficus maxima	0.491	ME	1323	760	10984	681	903	289	0.570	0.292	0.038	0.313	0.026	0.406
ATR125	Forchameria pallida	0.840	MA	2264	1300	18791	1165	1546	494	0.976	0.500	0.064	0.536	0.044	0.695
ATR126	Garrya longifolia	0.787	AL	2121	1218	17605	1092	1448	463	0.914	0.469	0.060	0.502	0.042	0.651
ATR127	Genipa americana	0.690	AL	1860	1068	15435	957	1270	406	0.801	0.411	0.053	0.440	0.037	0.571
ATR128	Gilibertia arborea	0.384	BA	1035	594	8590	533	707	226	0.446	0.229	0.029	0.245	0.020	0.318
ATR129	Gliricidia sepium	0.640	AL	1725	991	14317	888	1178	376	0.743	0.381	0.049	0.408	0.034	0.530
ATR130	Gmelina arborea	0.502	ME	1353	777	11230	696	924	295	0.583	0.299	0.038	0.320	0.027	0.416
ATR131	Guaiacum coulteri	1.100	MA	2965	1703	24607	1526	2024	647	1.278	0.655	0.084	0.702	0.058	0.910
ATR132	Guaiacum officinale	1.230	MA	3315	1904	27515	1706	2263	723	1.429	0.732	0.094	0.784	0.065	1.018
ATR133	Guapira linearibracteata	0.690	AL	1860	1068	15435	957	1270	406	0.801	0.411	0.053	0.440	0.037	0.571
ATR134	Guarea chichon	0.530	ME	1428	820	11856	735	975	312	0.616	0.316	0.041	0.338	0.028	0.439
ATR135	Guarea excelsa	0.520	ME	1401	805	11632	721	957	306	0.604	0.310	0.040	0.332	0.028	0.430
ATR136	Guarea glabra	0.560	ME	1509	867	12527	777	1030	329	0.650	0.333	0.043	0.357	0.030	0.464
ATR137	Guarea grandifolia	0.510	ME	1374	789	11409	707	938	300	0.592	0.304	0.039	0.325	0.027	0.422
ATR138	Guatteria anomala	0.430	ME	1159	666	9619	596	791	253	0.499	0.256	0.033	0.274	0.023	0.356
ATR139	Guazuma ulmifolia	0.360	BA	970	557	8053	499	662	212	0.418	0.214	0.028	0.230	0.019	0.298
ATR140	Guettarda elliptica	0.970	MA	2614	1502	21699	1345	1785	570	1.127	0.578	0.074	0.619	0.051	0.803
ATR141	Guettarda seleriana	0.640	AL	1725	991	14317	888	1178	376	0.743	0.381	0.049	0.408	0.034	0.530
ATR142	Haematoxylon brasiletto	0.950	MA	2560	1471	21252	1318	1748	559	1.103	0.566	0.073	0.606	0.050	0.786
ATR143	Hamelia longipes	0.500	ME	1348	774	11185	694	920	294	0.581	0.298	0.038	0.319	0.026	0.414
ATR144	Hampea nutricia	0.390	BA	1051	604	8724	541	718	229	0.453	0.232	0.030	0.249	0.021	0.323
ATR145	Harpalyce arborescens	0.870	MA	2345	1347	19462	1207	1601	512	1.010	0.518	0.067	0.555	0.046	0.720
ATR146	Heliocarpus appendiculatus	0.190	MB	512	294	4250	264	350	112	0.221	0.113	0.015	0.121	0.010	0.157
ATR147	Heliocarpus donnell-smithii	0.130	MB	350	201	2908	180	239	76	0.151	0.077	0.010	0.083	0.007	0.108
ATR148	Heliocarpus pallidus	0.690	AL	1860	1068	15435	957	1270	406	0.801	0.411	0.053	0.440	0.037	0.571
ATR149	Hintonia latiflora	0.740	AL	1994	1146	16554	1026	1362	435	0.859	0.441	0.057	0.472	0.039	0.612
ATR150	Hura polyandra	0.850	MA	2291	1316	19015	1179	1564	500	0.987	0.506	0.065	0.542	0.045	0.704
	•														

Tabla 06 (6 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

1 4014 00 (o pagnia de 11). Características ela	isticas u	c mad	cras n	icaica	nas. An	igiosp	crinas	CIIIII	i iiopic	ai. 11 –	-12/0,	1 - 20	<i>J</i> C.	
Código	Nombre científico	ρ	CTF	E _R	E _T	EL	G _{TL}	G _{LR}	G _{RT}	$\nu_{\scriptscriptstyle RT}$	$ u_{ m TR}$	$ u_{\scriptscriptstyle{\mathrm{RL}}}$	$ u_{ m LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$ u_{\scriptscriptstyle m LT}$
		g/cm ³		MPa	MPa	MPa	MPa	MPa	MPa						
ATR151	Hymenaea courbaril	0.710	AL	1913	1099	15883	985	1306	417	0.825	0.423	0.054	0.453	0.038	0.588
ATR152	Ilex tolucana	0.630	AL	1698	975	14093	874	1159	370	0.732	0.375	0.048	0.402	0.033	0.521
ATR153	Ilex valeri	0.630	AL	1698	975	14093	874	1159	370	0.732	0.375	0.048	0.402	0.033	0.521
ATR154	Inga brevipedicellata	0.580	ME	1563	898	12975	804	1067	341	0.674	0.345	0.044	0.370	0.031	0.480
ATR155	Inga hintonii	0.685	AL	1846	1060	15323	950	1260	403	0.796	0.408	0.052	0.437	0.036	0.567
ATR156	Inga spuria	0.510	ME	1374	789	11409	707	938	300	0.592	0.304	0.039	0.325	0.027	0.422
ATR157	Ipomoea wolcottiana	0.570	ME	1536	882	12751	791	1049	335	0.662	0.339	0.044	0.364	0.030	0.472
ATR158	Iresine arbuscula	0.480	ME	1294	743	10738	666	883	282	0.557	0.286	0.037	0.306	0.025	0.397
ATR159	Jacaranda mimosifolia	0.408	ME	1100	632	9127	566	751	240	0.474	0.243	0.031	0.260	0.022	0.338
ATR160	Jacaratia mexicana	0.160	MB	431	248	3579	222	294	94	0.186	0.095	0.012	0.102	0.008	0.132
ATR161	Jacquinia pungens	0.810	MA	2183	1254	18120	1123	1490	476	0.941	0.482	0.062	0.517	0.043	0.670
ATR162	Jatropha chamelensis	0.400	BA	1078	619	8948	555	736	235	0.465	0.238	0.031	0.255	0.021	0.331
ATR163	Jatropha malacophylla	0.260	BA	701	402	5816	361	478	153	0.302	0.155	0.020	0.166	0.014	0.215
ATR164	Jatropha platyphylla	0.470	ME	1267	728	10514	652	865	276	0.546	0.280	0.036	0.300	0.025	0.389
ATR165	Krugiodendron ferreum	0.910	MA	2452	1409	20357	1262	1674	535	1.057	0.542	0.070	0.580	0.048	0.753
ATR166	Leucaena lanceolata	0.940	MA	2533	1455	21028	1304	1730	553	1.092	0.560	0.072	0.600	0.050	0.778
ATR167	Leucaena leucocephala	0.840	MA	2264	1300	18791	1165	1546	494	0.976	0.500	0.064	0.536	0.044	0.695
ATR168	Licania platypus	0.621	AL	1674	961	13892	861	1143	365	0.721	0.370	0.048	0.396	0.033	0.514
ATR169	Licaria campechiana	0.780	AL	2102	1207	17449	1082	1435	459	0.906	0.464	0.060	0.497	0.041	0.646
ATR170	Licaria excelsa	0.499	ME	1345	772	11163	692	918	293	0.580	0.297	0.038	0.318	0.026	0.413
ATR171	Lippia mcvaughi	0.700	AL	1887	1084	15659	971	1288	412	0.813	0.417	0.054	0.446	0.037	0.579
ATR172	Lonchocarpus castilloi	0.740	AL	1994	1146	16554	1026	1362	435	0.859	0.441	0.057	0.472	0.039	0.612
ATR173	Lonchocarpus cochleatus	0.790	AL	2129	1223	17672	1096	1454	465	0.918	0.470	0.060	0.504	0.042	0.654
ATR174	Lonchocarpus constrictus	0.930	MA	2506	1440	20804	1290	1711	547	1.080	0.554	0.071	0.593	0.049	0.770
ATR175	Lonchocarpus cruentus	0.460	ME	1240	712	10290	638	846	270	0.534	0.274	0.035	0.293	0.024	0.381
ATR176	Lonchocarpus eriocarinalis	0.970	MA	2614	1502	21699	1345	1785	570	1.127	0.578	0.074	0.619	0.051	0.803
ATR177	Lonchocarpus hondurensis	0.670	AL	1806	1037	14988	929	1233	394	0.778	0.399	0.051	0.427	0.035	0.555
ATR178	Lonchocarpus parviflorus	0.890	MA	2399	1378	19909	1234	1638	523	1.034	0.530	0.068	0.568	0.047	0.737
ATR179	Lonchocarpus rugosus	0.910	MA	2452	1409	20357	1262	1674	535	1.057	0.542	0.070	0.580	0.048	0.753
ATR180	Lonchocarpus unifoliolatus	0.860	MA	2318	1331	19238	1193	1582	506	0.999	0.512	0.066	0.549	0.045	0.712

Tabla 06 (7 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

1 4014 00 (/ pagina de 11). Caracteristicas etastic	cas ac n	iaucia	is inca	ricana	s. migi	iospei	mas c	iiiia i	nopica	1. 11 —	12 /0,	1 – 20	<i>C</i> .	
Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_{L}	G_{TL}	G_{LR}	G_{RT}	1/	1/	v	1/	v	$\nu_{\scriptscriptstyle m LT}$
Codigo	Nombre elemented	g/cm ³	CII	MPa	MPa	MPa	MPa	MPa	MPa	$\nu_{ m RT}$	$\nu_{\scriptscriptstyle TR}$	$\nu_{_{ m RL}}$	$\nu_{\scriptscriptstyle LR}$	$v_{\scriptscriptstyle TL}$	\mathbf{v}_{LT}
ATR181	Lucuma campechiana	0.862	MA	2323	1334	19283	1196	1586	507	1.001	0.513	0.066	0.550	0.046	0.713
ATR182	Lucuma salicifolia	0.710	AL	1913	1099	15883	985	1306	417	0.825	0.423	0.054	0.453	0.038	0.588
ATR183	Luehea candida	0.910	MA	2452	1409	20357	1262	1674	535	1.057	0.542	0.070	0.580	0.048	0.753
ATR184	Luehea speciosa	0.648	AL	1746	1003	14496	899	1192	381	0.753	0.386	0.050	0.413	0.034	0.536
ATR185	Lunania mexicana	0.580	ME	1563	898	12975	804	1067	341	0.674	0.345	0.044	0.370	0.031	0.480
ATR186	Lysiloma acapulcense	0.760	AL	2048	1176	17001	1054	1398	447	0.883	0.453	0.058	0.485	0.040	0.629
ATR187	Lysiloma bahamensis	0.710	AL	1913	1099	15883	985	1306	417	0.825	0.423	0.054	0.453	0.038	0.588
ATR188	Lysiloma divaricata	0.730	AL	1967	1130	16330	1013	1343	429	0.848	0.435	0.056	0.466	0.039	0.604
ATR189	Lysiloma latisiliquum	0.600	ME	1617	929	13422	832	1104	353	0.697	0.357	0.046	0.383	0.032	0.497
ATR190	Lysiloma microphylla	0.920	MA	2479	1424	20580	1276	1693	541	1.068	0.548	0.070	0.587	0.049	0.761
ATR191	Maclura tinctoria	0.710	AL	1913	1099	15883	985	1306	417	0.825	0.423	0.054	0.453	0.038	0.588
ATR192	Mangifera indica	0.560	ME	1509	867	12527	777	1030	329	0.650	0.333	0.043	0.357	0.030	0.464
	Manilkara zapota	0.900	MA	2426	1393	20133	1248	1656	529	1.045	0.536	0.069	0.574	0.048	0.745
ATR194	Mappia longipes	0.650	AL	1752	1006	14541	902	1196	382	0.755	0.387	0.050	0.415	0.034	0.538
ATR195	Metopium brownei	0.800	AL	2156	1238	17896	1110	1472	470	0.929	0.476	0.061	0.510	0.042	0.662
ATR196	Mimosa arenosa	1.010	MA	2722	1563	22594	1401	1858	594	1.173	0.601	0.077	0.644	0.053	0.836
ATR197	Mirandaceltis monoica	0.691	AL	1862	1070	15458	958	1271	406	0.803	0.411	0.053	0.441	0.037	0.572
ATR198	Misanteca peckii	0.600	ME	1617	929	13422	832	1104	353	0.697	0.357	0.046	0.383	0.032	0.497
ATR199	Morisonia americana	0.880	MA	2372	1362	19686	1221	1619	517	1.022	0.524	0.067	0.561	0.047	0.728
ATR200	Mortoniodendron guatemalense	0.510	ME	1374	789	11409	707	938	300	0.592	0.304	0.039	0.325	0.027	0.422
ATR201	Mosquitoxylum jamaicense	0.591	ME	1593	915	13221	820	1087	348	0.686	0.352	0.045	0.377	0.031	0.489
ATR202	Myrcianthes fragrans	0.720	AL	1940	1115	16106	999	1325	423	0.836	0.429	0.055	0.459	0.038	0.596
ATR203	Nectandra aff. Tabascensis	0.460	ME	1240	712	10290	638	846	270	0.534	0.274	0.035	0.293	0.024	0.381
ATR204	Nectandra ambigens	0.570	ME	1536	882	12751	791	1049	335	0.662	0.339	0.044	0.364	0.030	0.472
ATR205	Nectandra globosa	0.483	ME	1302	748	10805	670	889	284	0.561	0.288	0.037	0.308	0.026	0.400
ATR206	Nectandra rudis	0.460	ME	1240	712	10290	638	846	270	0.534	0.274	0.035	0.293	0.024	0.381
ATR207	Nectandra salicifolia	0.460	ME	1240	712	10290	638	846	270	0.534	0.274	0.035	0.293	0.024	0.381
ATR208	Nectandra tabascensis	0.574	ME	1547	889	12840	796	1056	338	0.667	0.342	0.044	0.366	0.030	0.475
ATR209	Neea psychotrioides	0.260	BA	701	402	5816	361	478	153	0.302	0.155	0.020	0.166	0.014	0.215
ATR210	Ochroma lagopus	0.160	MB	431	248	3579	222	294	94	0.186	0.095	0.012	0.102	0.008	0.132

Tabla 06 (8 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

Tabla 00	(o pagina de 11). Características en	asticus u	C IIIac	ici as ii	ICAICA	11as. 1 XI	igiosp	CIIIIas	CIIIII	i ii opic	ai. 11 –	- 12 /0,	1 – 2	<i>J</i> C.	
Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	v	v	1/	W	W	1/
Codigo	Tromore elementes	g/cm ³	CII	MPa	MPa	MPa	MPa	MPa	MPa	$\nu_{ m RT}$	$v_{ ext{TR}}$	$ u_{\mathrm{RL}} $	$\nu_{\scriptscriptstyle LR}$	$\nu_{\scriptscriptstyle ext{TL}}$	$\nu_{\scriptscriptstyle LT}$
ATR211	Ocotea dendrodaphne	0.570	ME	1536	882	12751	791	1049	335	0.662	0.339	0.044	0.364	0.030	0.472
ATR212	Oecopetalum mexicanum	0.563	ME	1517	872	12594	781	1036	331	0.654	0.335	0.043	0.359	0.030	0.466
ATR213	Omphalea oleifera	0.440	ME	1186	681	9843	610	810	259	0.511	0.262	0.034	0.281	0.023	0.364
ATR214	Orthlon subsessile	0.690	AL	1860	1068	15435	957	1270	406	0.801	0.411	0.053	0.440	0.037	0.571
ATR215	Pachira aquatica	0.500	ME	1348	774	11185	694	920	294	0.581	0.298	0.038	0.319	0.026	0.414
ATR216	Peltogyne mexicana	0.775	AL	2089	1200	17337	1075	1426	456	0.900	0.461	0.059	0.494	0.041	0.641
ATR217	Persea americana	0.474	ME	1277	734	10603	657	872	279	0.551	0.282	0.036	0.302	0.025	0.392
ATR218	Phoebe effusa	0.508	ME	1369	786	11364	705	935	299	0.590	0.302	0.039	0.324	0.027	0.420
ATR219	Phoebe tampicensis	0.620	AL	1671	960	13869	860	1141	365	0.720	0.369	0.047	0.395	0.033	0.513
ATR220	Pimenta dioica	0.960	MA	2587	1486	21475	1332	1766	564	1.115	0.572	0.073	0.612	0.051	0.795
ATR221	Piptadenia obliqua	1.110	MA	2991	1718	24831	1540	2042	653	1.289	0.661	0.085	0.708	0.059	0.919
ATR222	Piscidia communis	0.590	ME	1590	913	13198	818	1086	347	0.685	0.351	0.045	0.376	0.031	0.488
ATR223	Piscidia piscipula	0.644	AL	1736	997	14406	893	1185	379	0.748	0.383	0.049	0.411	0.034	0.533
ATR224	Piterocarpus rohrii	0.520	ME	1401	805	11632	721	957	306	0.604	0.310	0.040	0.332	0.028	0.430
ATR225	Pithecellobium arboreum	0.650	AL	1752	1006	14541	902	1196	382	0.755	0.387	0.050	0.415	0.034	0.538
ATR226	Pithecellobium dulce	1.000	MA	2695	1548	22370	1387	1840	588	1.161	0.595	0.077	0.638	0.053	0.828
ATR227	Ebenopsis ebano	1.060	MA	2857	1641	23712	1470	1950	623	1.231	0.631	0.081	0.676	0.056	0.877
ATR228	Pithecellobium flexicaule	0.520	ME	1401	805	11632	721	957	306	0.604	0.310	0.040	0.332	0.028	0.430
ATR229	Pithecellobium leucocalyx	0.520	ME	1401	805	11632	721	957	306	0.604	0.310	0.040	0.332	0.028	0.430
ATR230	Pithecellobium mangense	0.990	MA	2668	1533	22146	1373	1822	582	1.150	0.589	0.076	0.631	0.052	0.819
ATR231	Pithecellobium pallens	0.730	AL	1967	1130	16330	1013	1343	429	0.848	0.435	0.056	0.466	0.039	0.604
ATR232	Pithecellobium seleri	0.980	MA	2641	1517	21923	1359	1803	576	1.138	0.583	0.075	0.625	0.052	0.811
ATR233	Platanus occidentalis	0.800	AL	2156	1238	17896	1110	1472	470	0.929	0.476	0.061	0.510	0.042	0.662
ATR234	Platymiscium lasiocarpum	0.820	MA	2210	1269	18343	1137	1509	482	0.952	0.488	0.063	0.523	0.043	0.679
ATR235	Platymiscium pinnatum	0.760	AL	2048	1176	17001	1054	1398	447	0.883	0.453	0.058	0.485	0.040	0.629
ATR236	Platymiscium yucatanum	0.660	AL	1779	1022	14764	915	1214	388	0.767	0.393	0.050	0.421	0.035	0.546
ATR237	Pleuranthodendron lindenii	0.680	AL	1833	1053	15212	943	1251	400	0.790	0.405	0.052	0.434	0.036	0.563
ATR238	Poeppigia procera	0.780	AL	2102	1207	17449	1082	1435	459	0.906	0.464	0.060	0.497	0.041	0.646
ATR239	Poulsenia armata	0.400	BA	1078	619	8948	555	736	235	0.465	0.238	0.031	0.255	0.021	0.331
ATR240	Pouteria aff. Campechiana	0.750	AL	2021	1161	16778	1040	1380	441	0.871	0.447	0.057	0.478	0.040	0.621

Tabla 06 (9 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

Tabla 00	(3 pagina de 11). Características eras	ticas ac	maac	ras m	Aican	as. 1 1112	stospe.	iiiias (JIIIIIa	uopica	11. II —	12 /0,	1 – 20	<i>)</i> C.	
Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	v	v	v	v	W	1/
Courgo	Tromore elemented	g/cm ³	CII	MPa	MPa	MPa	MPa	MPa	MPa	ν_{RT}	$v_{ ext{TR}}$	$\nu_{\scriptscriptstyle RL}$	$ u_{\text{LR}} $	$ u_{\scriptscriptstyle \mathrm{TL}}$	$\nu_{\rm LT}$
ATR241	Pouteria durlandii	0.800	AL	2156	1238	17896	1110	1472	470	0.929	0.476	0.061	0.510	0.042	0.662
ATR242	Pouteria sapota	0.810	MA	2183	1254	18120	1123	1490	476	0.941	0.482	0.062	0.517	0.043	0.670
ATR243	Pouteria unilocularis	0.841	MA	2266	1302	18813	1166	1547	495	0.977	0.501	0.064	0.536	0.044	0.696
ATR244	Prosopis juliflora	0.730	AL	1967	1130	16330	1013	1343	429	0.848	0.435	0.056	0.466	0.039	0.604
ATR245	Protium copal	0.592	ME	1595	916	13243	821	1089	348	0.688	0.352	0.045	0.378	0.031	0.490
ATR246	Pseudobombax ellipticum	0.440	ME	1186	681	9843	610	810	259	0.511	0.262	0.034	0.281	0.023	0.364
ATR247	Pseudolmedia oxyphyllaria	0.650	AL	1752	1006	14541	902	1196	382	0.755	0.387	0.050	0.415	0.034	0.538
ATR248	Pseudolmedia oxyphyllaria	0.680	AL	1833	1053	15212	943	1251	400	0.790	0.405	0.052	0.434	0.036	0.563
ATR249	Psidium sartorianum	0.790	AL	2129	1223	17672	1096	1454	465	0.918	0.470	0.060	0.504	0.042	0.654
ATR250	Psychotria chiapensis	0.650	AL	1752	1006	14541	902	1196	382	0.755	0.387	0.050	0.415	0.034	0.538
ATR251	Psychotria sp.	0.640	AL	1725	991	14317	888	1178	376	0.743	0.381	0.049	0.408	0.034	0.530
ATR252	Pterocarpus hayesii	0.450	ME	1213	697	10067	624	828	265	0.523	0.268	0.034	0.287	0.024	0.372
ATR253	Quararibea funebris	0.480	ME	1294	743	10738	666	883	282	0.557	0.286	0.037	0.306	0.025	0.397
ATR254	Quararibea guatemalteca	0.600	ME	1617	929	13422	832	1104	353	0.697	0.357	0.046	0.383	0.032	0.497
ATR255	Quercus anglohondurensis	0.690	AL	1860	1068	15435	957	1270	406	0.801	0.411	0.053	0.440	0.037	0.571
ATR256	Quercus barbinervis	0.700	AL	1887	1084	15659	971	1288	412	0.813	0.417	0.054	0.446	0.037	0.579
ATR257	Randia tetracantha	0.700	AL	1887	1084	15659	971	1288	412	0.813	0.417	0.054	0.446	0.037	0.579
ATR258	Randia thurberi	0.860	MA	2318	1331	19238	1193	1582	506	0.999	0.512	0.066	0.549	0.045	0.712
ATR259	Recchia mexicana	1.020	MA	2749	1579	22817	1415	1877	600	1.185	0.607	0.078	0.651	0.054	0.844
ATR260	Rheedia edulis	0.700	AL	1887	1084	15659	971	1288	412	0.813	0.417	0.054	0.446	0.037	0.579
ATR261	Rinorea guatemalensis	0.740	AL	1994	1146	16554	1026	1362	435	0.859	0.441	0.057	0.472	0.039	0.612
ATR262	Robinsonella discolor	0.560	ME	1509	867	12527	777	1030	329	0.650	0.333	0.043	0.357	0.030	0.464
ATR263	Robinsonella mirandae	0.468	ME	1261	724	10469	649	861	275	0.544	0.279	0.036	0.298	0.025	0.387
ATR264	Rollinia rensoniana	0.318	BA	857	492	7114	441	585	187	0.369	0.189	0.024	0.203	0.017	0.263
ATR265	Rondeletia buddleioides	0.560	ME	1509	867	12527	777	1030	329	0.650	0.333	0.043	0.357	0.030	0.464
ATR266	Rondeletia galeottii	0.500	ME	1348	774	11185	694	920	294	0.581	0.298	0.038	0.319	0.026	0.414
ATR267	Roseodendron donnell-smithii	0.390	BA	1051	604	8724	541	718	229	0.453	0.232	0.030	0.249	0.021	0.323
ATR268	Roupala montana	0.890	MA	2399	1378	19909	1234	1638	523	1.034	0.530	0.068	0.568	0.047	0.737
ATR269	Ruprechtia fusca	0.700	AL	1887	1084	15659	971	1288	412	0.813	0.417	0.054	0.446	0.037	0.579
ATR270	Sapindus saponaria	0.660	AL	1779	1022	14764	915	1214	388	0.767	0.393	0.050	0.421	0.035	0.546
ATR271	Sapium lateriflorum	0.500	ME	1348	774	11185	694	920	294	0.581	0.298	0.038	0.319	0.026	0.414
	·														

Tabla 06 (10 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

Tabla 00	(10 pagina de 11). Características en	usticus u	c mac	icias i	поліса	iiias. 1 X	ngrosp	CHIHa	CIIIII	a nopi	cai. II	— 1 <i>2</i> /0	$r_{1}, r_{2} - r_{2}$	<u> 20 C.</u>	
Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_{L}	G_{TL}	G_{LR}	G_{RT}	$ u_{\scriptscriptstyle{\mathrm{RT}}}$	$ u_{\mathrm{TR}}$	$ u_{\scriptscriptstyle{\mathrm{RL}}}$	$ u_{ m LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$ u_{\rm LT}$
courge	Tyomore elements	g/cm ³	011	MPa	MPa	MPa	MPa	MPa	MPa	V RT	V TR	▼ RL	V LR	V TL	V LT
ATR272	Sapium pedicellatum	0.360	BA	970	557	8053	499	662	212	0.418	0.214	0.028	0.230	0.019	0.298
ATR273	Sapranthus microcarpus	0.580	ME	1563	898	12975	804	1067	341	0.674	0.345	0.044	0.370	0.031	0.480
ATR274	Saurauia laevigata	0.470	ME	1267	728	10514	652	865	276	0.546	0.280	0.036	0.300	0.025	0.389
ATR275	Saurauia yasicae	0.400	BA	1078	619	8948	555	736	235	0.465	0.238	0.031	0.255	0.021	0.331
ATR276	Schizolobium parahybum	0.300	BA	809	464	6711	416	552	176	0.348	0.179	0.023	0.191	0.016	0.248
ATR277	Sciadodendron excelsum	0.530	ME	1428	820	11856	735	975	312	0.616	0.316	0.041	0.338	0.028	0.439
ATR278	Sebastiania longicuspis	0.570	ME	1536	882	12751	791	1049	335	0.662	0.339	0.044	0.364	0.030	0.472
ATR279	Sickingia salvadorensis	0.660	AL	1779	1022	14764	915	1214	388	0.767	0.393	0.050	0.421	0.035	0.546
ATR280	Sideroxylon aff. Guamerii	0.810	MA	2183	1254	18120	1123	1490	476	0.941	0.482	0.062	0.517	0.043	0.670
ATR281	Sideroxylon meyeri	0.865	MA	2331	1339	19350	1200	1592	509	1.005	0.515	0.066	0.552	0.046	0.716
ATR282	Simaruba glauca	0.460	ME	1240	712	10290	638	846	270	0.534	0.274	0.035	0.293	0.024	0.381
ATR283	Sloanea petenensis	0.670	AL	1806	1037	14988	929	1233	394	0.778	0.399	0.051	0.427	0.035	0.555
ATR284	Spathodea campanulata	0.289	BA	779	447	6465	401	532	170	0.336	0.172	0.022	0.184	0.015	0.239
ATR285	Spondias mombin	0.450	ME	1213	697	10067	624	828	265	0.523	0.268	0.034	0.287	0.024	0.372
ATR286	Spondias purpurea	0.310	BA	835	480	6935	430	570	182	0.360	0.185	0.024	0.198	0.016	0.257
ATR287	Spondias radlkoferi	0.560	ME	1509	867	12527	777	1030	329	0.650	0.333	0.043	0.357	0.030	0.464
ATR288	Stemmadenia donnell-smithii	0.530	ME	1428	820	11856	735	975	312	0.616	0.316	0.041	0.338	0.028	0.439
ATR289	Sterculia apetala	0.380	BA	1024	588	8501	527	699	223	0.441	0.226	0.029	0.242	0.020	0.315
ATR290	Swartzia cubensis	0.830	MA	2237	1285	18567	1151	1527	488	0.964	0.494	0.063	0.529	0.044	0.687
ATR291	Swartzia guatemalensis	0.890	MA	2399	1378	19909	1234	1638	523	1.034	0.530	0.068	0.568	0.047	0.737
ATR292	Sweetia panamensis	0.800	AL	2156	1238	17896	1110	1472	470	0.929	0.476	0.061	0.510	0.042	0.662
ATR293	Swietenia macrophylla	0.420	ME	1132	650	9395	583	773	247	0.488	0.250	0.032	0.268	0.022	0.348
ATR294	Switenia humillis	0.705	AL	1900	1091	15771	978	1297	415	0.819	0.420	0.054	0.450	0.037	0.584
ATR295	Tabebuia chrysantha	0.940	MA	2533	1455	21028	1304	1730	553	1.092	0.560	0.072	0.600	0.050	0.778
ATR296	Tabebuia donnell-smithii	0.530	ME	1428	820	11856	735	975	312	0.616	0.316	0.041	0.338	0.028	0.439
ATR297	Tabebuia impetiginosa	0.960	MA	2587	1486	21475	1332	1766	564	1.115	0.572	0.073	0.612	0.051	0.795
ATR298	Tabebuia palmeri	0.881	MA	2374	1364	19708	1222	1621	518	1.023	0.525	0.067	0.562	0.047	0.729
ATR299	Tabebuia penthaphylla	0.562	ME	1515	870	12572	779	1034	330	0.653	0.335	0.043	0.358	0.030	0.465
ATR300	Tabebuia rosea	0.623	AL	1679	964	13937	864	1146	366	0.724	0.371	0.048	0.397	0.033	0.516
ATR301	Talauma mexicana	0.490	ME	1321	759	10961	680	902	288	0.569	0.292	0.037	0.313	0.026	0.406
ATR302	Talisia olivaeformis	0.992	MA	2673	1536	22191	1376	1825	583	1.152	0.591	0.076	0.633	0.052	0.821

Tabla 06 (11 página de 11). Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

1 abia 00 (11 pagina de 11). Características (ciasticas	ue III	aueras	mexic	canas. F	Angios	perma	as ciii	на пор	icai. 11	- 12 7	0, 1 - 1	20 C.	
Código	Nombre científico	ρ	CTF	E _R	E _T	E _L	G _{TL}	G_{LR}	G_{RT}	$\nu_{ ext{RT}}$	$ u_{\scriptscriptstyle \mathrm{TR}}$	$ u_{ ext{\tiny RL}}$	$ u_{\scriptscriptstyle LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$\nu_{\scriptscriptstyle m LT}$
		g/cm ³		MPa	MPa	MPa	MPa	MPa	MPa						
ATR303	Tectona grandis	0.656	AL	1768	1015	14675	910	1207	386	0.762	0.391	0.050	0.418	0.035	0.543
ATR304	Terminalia amazonia	0.660	AL	1779	1022	14764	915	1214	388	0.767	0.393	0.050	0.421	0.035	0.546
ATR305	Tetrorchidium rotundatum	0.470	ME	1267	728	10514	652	865	276	0.546	0.280	0.036	0.300	0.025	0.389
ATR306	Thevetia ovata	0.720	AL	1940	1115	16106	999	1325	423	0.836	0.429	0.055	0.459	0.038	0.596
ATR307	Thouinia paucidentata	0.940	MA	2533	1455	21028	1304	1730	553	1.092	0.560	0.072	0.600	0.050	0.778
ATR308	Thouinia serrata	0.980	MA	2641	1517	21923	1359	1803	576	1.138	0.583	0.075	0.625	0.052	0.811
ATR309	Tonduzia longifolia	0.850	MA	2291	1316	19015	1179	1564	500	0.987	0.506	0.065	0.542	0.045	0.704
ATR310	Trema micrantha	0.110	MB	296	170	2461	153	202	65	0.128	0.065	0.008	0.070	0.006	0.091
ATR311	Trichilia japurensis	0.840	MA	2264	1300	18791	1165	1546	494	0.976	0.500	0.064	0.536	0.044	0.695
ATR312	Trichilia martiana	0.470	ME	1267	728	10514	652	865	276	0.546	0.280	0.036	0.300	0.025	0.389
ATR313	Trichilia moschata	0.880	MA	2372	1362	19686	1221	1619	517	1.022	0.524	0.067	0.561	0.047	0.728
ATR314	Trichilia pallida	0.690	AL	1860	1068	15435	957	1270	406	0.801	0.411	0.053	0.440	0.037	0.571
ATR315	Trichilia trifolia	0.800	AL	2156	1238	17896	1110	1472	470	0.929	0.476	0.061	0.510	0.042	0.662
ATR316	Trophis mexicana	0.680	AL	1833	1053	15212	943	1251	400	0.790	0.405	0.052	0.434	0.036	0.563
ATR317	Trophis mollis	0.880	MA	2372	1362	19686	1221	1619	517	1.022	0.524	0.067	0.561	0.047	0.728
ATR318	Trophis racemosa	0.780	AL	2102	1207	17449	1082	1435	459	0.906	0.464	0.060	0.497	0.041	0.646
ATR319	Turpinia occidentalis	0.330	BA	889	511	7382	458	607	194	0.383	0.196	0.025	0.210	0.017	0.273
ATR320	Urera caracasana	0.490	ME	1321	759	10961	680	902	288	0.569	0.292	0.037	0.313	0.026	0.406
ATR321	Urera elata	0.490	ME	1321	759	10961	680	902	288	0.569	0.292	0.037	0.313	0.026	0.406
ATR322	Vatairea lundellii	0.660	AL	1779	1022	14764	915	1214	388	0.767	0.393	0.050	0.421	0.035	0.546
ATR323	Virola guatemalensis	0.520	ME	1401	805	11632	721	957	306	0.604	0.310	0.040	0.332	0.028	0.430
ATR324	Vitex gaumeri	0.670	AL	1806	1037	14988	929	1233	394	0.778	0.399	0.051	0.427	0.035	0.555
ATR325	Vochysia hondurensis	0.460	ME	1240	712	10290	638	846	270	0.534	0.274	0.035	0.293	0.024	0.381
ATR326	Wimmeria concolor	0.790	AL	2129	1223	17672	1096	1454	465	0.918	0.470	0.060	0.504	0.042	0.654
ATR327	Xylosma flexuosa	0.730	AL	1967	1130	16330	1013	1343	429	0.848	0.435	0.056	0.466	0.039	0.604
ATR328	Xylosma intermedia	0.770	AL	2075	1192	17225	1068	1417	453	0.894	0.458	0.059	0.491	0.041	0.637
ATR329	Zanthoxylum caribaeum	0.970	MA	2614	1502	21699	1345	1785	570	1.127	0.578	0.074	0.619	0.051	0.803
ATR330	Zanthoxylum fagara	0.650	AL	1752	1006	14541	902	1196	382	0.755	0.387	0.050	0.415	0.034	0.538
ATR331	Zanthoxylum kellermanii	0.480	ME	1294	743	10738	666	883	282	0.557	0.286	0.037	0.306	0.025	0.397
ATR332	Ziziphus amole	0.940	MA	2533	1455	21028	1304	1730	553	1.092	0.560	0.072	0.600	0.050	0.778
ATR333	Zuelania guidonia	0.610	AL	1644	944	13646	846	1122	359	0.708	0.363	0.047	0.389	0.032	0.505
-															

Tabla 07 (1 página de 1). Características elásticas de maderas mexicanas. Gimnospermas pinos duros. H = 12 %; T = 20 °C.

Tabla 07	(1 pagina de 1). Características ciasticas (ac maac	1 as 11.	ICAICA	mas. C	Jiiiiios	perm	as pii	ios at	1105. 11	- 12	70 , 1 –	20 0	· •	
Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	v	V	v	V	v	V
Courgo	TVOINDIC CICITITICO	g/cm ³	CII	MPa	MPa	MPa	MPa	MPa	MPa	$v_{\rm RT}$	$ u_{ ext{TR}}$	$ u_{\mathrm{RL}} $	$ u_{\text{LR}} $	$ u_{\scriptscriptstyle \mathrm{TL}}$	$v_{\rm LT}$
GPD001	Pinus aff. pseudostrobus	0.430	ME	943	593	12062	734	791	81	0.502	0.325	0.036	0.414	0.025	0.471
GPD002	Pinus arizonica	0.430	ME	943	593	12062	734	791	81	0.502	0.325	0.036	0.414	0.025	0.471
GPD003	Pinus arizonica var. stormiae	0.461	ME	1011	636	12932	787	848	87	0.538	0.349	0.038	0.443	0.027	0.505
GPD004	Pinus cembroides	0.525	ME	1152	724	14727	897	965	99	0.613	0.397	0.043	0.505	0.030	0.575
GPD005	Pinus chihuahuana	0.440	ME	965	607	12343	752	809	83	0.514	0.333	0.036	0.423	0.025	0.482
GPD006	Pinus contorta	0.362	BA	794	499	10155	618	666	68	0.423	0.274	0.030	0.348	0.021	0.397
GPD007	Pinus cooperi	0.390	BA	856	538	10940	666	717	73	0.455	0.295	0.032	0.375	0.023	0.427
GPD008	Pinus cooperi var. ornelasi	0.430	ME	943	593	12062	734	791	81	0.502		0.036		0.025	0.471
GPD009	Pinus coulteri	0.419	ME	919	578	11754	716	771	79	0.489	0.317	0.035	0.403	0.024	0.459
GPD010	Pinus douglasiana	0.521	ME	1143	718	14615	890	958	98	0.608	0.394	0.043	0.501	0.030	0.571
GPD011	Pinus durangensis f. quinquefoliata	0.450	ME	987	621	12623	769	828	85	0.525	0.340	0.037	0.433	0.026	0.493
GPD012	Pinus durangensis	0.460	ME	1009	634	12904	786	846	86	0.537	0.348	0.038	0.442	0.027	0.504
GPD013	Pinus greggii	0.470	ME	1031	648	13184	803	864	88	0.549	0.355	0.039	0.452	0.027	0.515
GPD014	Pinus hartwegii	0.496	ME	1088	684	13914	847	912	93	0.579	0.375	0.041	0.477	0.029	0.543
GPD015	Pinus jeffreyi	0.381	BA	836	525	10688	651	701	72	0.445	0.288	0.032	0.366	0.022	0.417
GPD016	Pinus lawsonii	0.470	ME	1031	648	13184	803	864	88	0.549	0.355	0.039	0.452	0.027	0.515
GPD017	Pinus leiophylla	0.520	ME	1141	717	14587	888	956	98	0.607	0.393	0.043	0.500	0.030	0.570
GPD018	Pinus martinezii	0.539	ME	1183	743	15120	921	991	101	0.629	0.408	0.045	0.518	0.031	0.590
GPD019	Pinus maximinoi	0.400	BA	878	552	11221	683	736	75	0.467	0.302	0.033	0.385	0.023	0.438
GPD020	Pinus michoacana var. cornuta	0.450	ME	987	621	12623	769	828	85	0.525	0.340	0.037	0.433	0.026	0.493
GPD021	Pinus montezumae	0.420	ME	921	579	11782	717	772	79	0.490	0.318	0.035	0.404	0.024	0.460
GPD022	Pinus oocarpa	0.360	BA	790	496	10099	615	662	68	0.420	0.272	0.030	0.346	0.021	0.394
GPD023	Pinus patula	0.500	ME	1097	690	14026	854	920	94	0.584	0.378	0.041	0.481	0.029	0.548
GPD024	Pinus patula var. longepedunculata	0.500	ME	1097	690	14026	854	920	94	0.584	0.378	0.041	0.481	0.029	0.548
GPD025	Pinus ponderosa	0.389	BA	853	536	10912	664	715	73	0.454	0.294	0.032	0.374	0.022	0.426
GPD026	Pinus pringlei	0.474	ME	1040	654	13297	810	872	89	0.553	0.358	0.039	0.456	0.027	0.519
GPD027	Pinus pseudostrobus	0.540	ME	1185	745	15148	922	993	102	0.631	0.408	0.045	0.519	0.031	0.592
GPD028	Pinus rudis	0.410	ME	900	565	11501	700	754	77	0.479	0.310	0.034	0.394	0.024	0.449
GPD029	Pinus tenuifolia	0.430	ME	943	593	12062	734	791	81	0.502	0.325	0.036	0.414	0.025	0.471
GPD030	Pinus teocote	0.580	ME	1273	800	16270	991	1067	109	0.677	0.439	0.048	0.558	0.034	0.635
GPD031	Pseudotsuga menziesii	0.462	ME	1014	637	12960	789	850	87	0.539	0.349	0.038	0.444	0.027	0.506
	-														

Tabla 08 (1 página de 1). Características elásticas de maderas mexicanas. Gimnospermas pinos blandos. H = 12 %; T = 20 °C.

Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	11	11	11	1/	11	11
Courgo	Nombre elemented	g/cm ³	CII	MPa	MPa	MPa	MPa	MPa	MPa	$\nu_{ m RT}$	$v_{\scriptscriptstyle TR}$	$ u_{\text{RL}} $	$\nu_{\scriptscriptstyle LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$\nu_{ m LT}$
GPB001	Pinus ayacahuite	0.420	ME	921	579	11782	717	772	79	0.490	0.318	0.035	0.404	0.024	0.460
GPB002	Pinus ayacahuite var. veitchii	0.398	BA	873	549	11165	680	732	75	0.465	0.301	0.033	0.383	0.023	0.436
GPB003	Pinus lambertiana	0.350	BA	768	483	9818	598	644	66	0.409	0.265	0.029	0.337	0.020	0.383
GPB004	Pinus quadrifolia	0.410	ME	900	565	11501	700	754	77	0.479	0.310	0.034	0.394	0.024	0.449
=	-	-	-	-	-	ı	-	1	-	-	ı	-	-	-	-
=	-	-	-	-	-	-	-	ı	-	-	1	=.	-	-	-
=	-	-	-	-	-	-	-	ı	-	-	1	=.	-	-	-
=	-	-	-	-	-	-	-	ı	-	-	1	=.	-	-	-
=	-	-	-	-	-	-	-	ı	-	-	1	=.	-	-	-

Tabla 09 (1 página de 1). Características elásticas de maderas mexicanas. Otras gimnospermas. H = 12 %; T = 20°C.

Código	Nombre científico	ρ	CTF	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	11	11	11	11	11	1,
Courgo	Nombre elemented	g/cm ³	CII	MPa	MPa	MPa	MPa	MPa	MPa	ν_{rt}	$ u_{\mathrm{TR}}$	$\nu_{\scriptscriptstyle RL}$	$\nu_{\scriptscriptstyle LR}$	$\nu_{\scriptscriptstyle ext{TL}}$	$ u_{\rm LT} $
OGI001	Abies concolor	0.360	BA	790	496	10099	615	662	68	0.420	0.272	0.030	0.346	0.021	0.394
OGI002	Abies durangensis	0.392	BA	860	541	10996	670	721	74	0.458	0.296	0.032	0.377	0.023	0.429
OGI003	Abies religiosa	0.380	BA	834	524	10660	649	699	71	0.444	0.287	0.031	0.365	0.022	0.416
OGI004	Abies religiosa var. emarginata	0.484	ME	1062	667	13577	827	890	91	0.565	0.366	0.040	0.465	0.028	0.530
OGI005	Araucaria angustifolia	0.460	ME	1009	634	12904	786	846	86	0.537	0.348	0.038	0.442	0.027	0.504
OGI006	Cupressus lindleyi	0.419	ME	919	578	11754	716	771	79	0.489	0.317	0.035	0.403	0.024	0.459
OGI007	Juniperus flaccida	0.557	ME	1222	768	15625	951	1024	105	0.650	0.421	0.046	0.536	0.032	0.610
OGI008	Libocedrus decurrens	0.363	BA	796	501	10183	620	668	68	0.424	0.275	0.030	0.349	0.021	0.398
OGI009	Picea abies	0.366	BA	803	505	10267	625	673	69	0.427	0.277	0.030	0.352	0.021	0.401
OGI010	Picea chihuahuana	0.429	ME	941	592	12034	733	789	81	0.501	0.324	0.035	0.413	0.025	0.470
OGI011	Podocarpus matudae	0.476	ME	1044	656	13353	813	875	89	0.556	0.360	0.039	0.458	0.028	0.521
OGI012	Pseudotsuga macrolepis	0.522	ME	1145	720	14643	892	960	98	0.610	0.395	0.043	0.502	0.030	0.572
OGI013	Taxodium nucronatum	0.476	ME	1044	656	13353	813	875	89	0.556	0.360	0.039	0.458	0.028	0.521
OGI014	Thuja plicata	0.295	BA	647	407	8275	504	543	55	0.344	0.223	0.024	0.284	0.017	0.323
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

ANÁLISIS DE RESULTADOS

Los estadígrafos de la densidad y de las características elásticas de las maderas estudiadas se presentan agrupados para los diferentes conjuntos taxonómicos, en las siguientes Tablas:

Número de Tabla	Grupo taxonómico	Número de especies
10	Angiospermas encinos rojos	22
11	Angiospermas encinos blancos	17
12	Angiospermas clima templado	69
13	Angiospermas clima tropical	333
14	Gimnospermas pinos duros	31
15	Gimnospermas pinos blandos	4
16	Otras gimnospermas	14
	Número total de especies	490

Los estadígrafos presentados en las Tablas 10 a 16 son:

Media aritmética.

Desviación estándar.

Coeficiente de variación.

Valor mínimo.

Valor máximo.

Rango de valores.

Número de especies.

Las características elásticas de la madera presentadas en las Tablas de resultados 03 a 09 y sus estadígrafos presentados en las Tablas 10 a 16, corresponden a valores de la madera aserrada a partir de troncos de árboles, idealizada como un sólido elástico, macroscópicamente homogéneo, con propiedades de un medio continuo y con simetrías materiales y elásticas ortotrópicas.

Estos parámetros son válidos como valores de referencia para volúmenes elementales de madera de pequeñas dimensiones, libres de defectos y orientados según las direcciones de ortotropía de la madera, a saber, radial, tangencial y longitudinal. En el mismo contexto, las condiciones de ensayo de los valores de las características elásticas, con los cuales fueron establecidos los Modelos de predicción (Hernández Maldonado, 2010), fueron en condiciones de carga estática, con una temperatura de la madera de $T=20\,^{\circ}\text{C}$ y con un contenido de humedad de $T=12\,^{\circ}\text{C}$. Por lo tanto, la aplicación de los datos de las Tablas 03 a 16, se refieren a condiciones de utilización similares.

Para el caso de madera en dimensiones reales de empleo, por ejemplo, miembros estructurales con secciones mínimas de 25 mm, y con particularidades de crecimiento tales como nudos y fisuras, es recomendable ajustar las características elásticas propuestas en esta investigación, empleando las técnicas recomendadas, entre otros, por los autores

siguientes: American Society of Civil Engineers (1975) y (1982), Hoyle (1978), Bodig (1992), American Institute of Timber Construction (1994), Faherty y Williamson (1997) y Breyer y col. (2003); y en México por: Robles Fernández-Villegas y Echenique-Manrique (1983), Comisión Forestal de América del Norte (1994) y Sotomayor Castellanos (2002).

Los resultados de la investigación se presentan en tres diferentes formatos:

Las ecuaciones de la Tabla 02, representan los Modelos de predicción correspondientes a especies de madera angiospermas y gimnospermas, parámetros que son útiles, entre otras aplicaciones, en el modelado y en la predicción de la respuesta elástica de la madera. Este formato es útil para fines de investigación.

Los datos de las Tablas 03 a 09, subministran valores puntuales, asociados a especies mexicanas y son útiles para su empleo en Ingeniería de la Madera.

Los estadígrafos de las Tablas 10 a 16, son útiles como valores de referencia para valorización de maderas para empleos específicos.

Densidad de la madera

La densidad de la madera es el parámetro físico aceptado en Ciencias, Ingeniería y Tecnología de la Madera, como la característica física que puede predecir tanto las características mecánicas de resistencia de la madera, por ejemplo, resistencia al límite elástico, módulo de ruptura y dureza (Sotomayor Castellanos, 2002), como sus características elásticas (Bodig y Goodman, 1973).

Sin embargo, la densidad de la madera es una peculiaridad que varía entre especies, al interior de una especie y según la localización de la probeta en el fuste de un árbol (Sotomayor Castellanos, 2009). La variación de la densidad entre especies, de acuerdo a los resultados de esta investigación, presenta coeficientes de variación que van desde 0.08 para el caso de maderas de gimnospermas pinos blandos (Tabla 15), hasta 0.33 para el caso de maderas angiospermas clima tropical.

Para el caso de la variación al interior de una especie, de acuerdo con los resultados de las Tesis realizadas en la Facultad de Ingeniería en Tecnología de la Madera, que estudiaron características mecánicas de especies específicas, entre otros se puede citar a: Romero Hinojosa (1986), Pérez Tello (1994), Cerriteño Espinoza (1995), Acevedo Sánchez y Ambriz Parra (1999), Ramos Pantaleón (1999), Ávila Calderón (1999), Vega Sámano (2002), Correa Méndez (2003), Valdovinos Sánchez (2004), Escobedo Torres (2005), Villaseñor Aguilar (2005) y Camarena Tello (2009), se puede estimar que el coeficiente de variación de la densidad de la madera, al interior de una especie en particular, es del 10 %.

Estas referencias se localizan en el Anexo A.08.

Los argumentos anteriores permiten un intervalo de variación de \pm 5 % en la variación de la densidad anotada en los resultados para cada especie de la investigación. Lo que implica

que los datos estimados a partir de la densidad de cada especie, permiten igualmente una variación porcentual y proporcional a la densidad de la madera.

Los coeficientes de variación de las características elásticas de todos los grupos taxonómicos fueron iguales al coeficiente de variación de la densidad correspondiente al grupo referido. Este resultado se explica por el hecho de que los parámetros elásticos fueron estimados empleando Modelos de predicción donde la densidad es la variable explicativa. Los Modelos son correlaciones estadísticas simples de tipo lineal. En consecuencia, la variación de los valores de la densidad para cada uno de los grupos taxonómicos estudiados corresponde a la variación de los valores calculados.

La Figura 02, presenta la interpretación gráfica del estadígrafo media aritmética correspondiente a la densidad de la madera para cada grupo taxonómico. Este resultado debe ponderarse con el rango de valores que presenta cada grupo taxonómico. Por ejemplo, el valor de la media aritmética correspondiente al conjunto de angiospermas clima tropical, aparentemente es menor que los valores correspondientes a los encinos. Sin embargo, existen muchas maderas de clima tropical con densidades superiores al valor máximo de los encinos. En la misma Figura 02, se muestran los valores de los coeficientes de variación de la densidad para cada grupo taxonómico. De esta forma se puede observar que la magnitud de la variación, no corresponde necesariamente a la graduación de los valores de las medias aritméticas.

Para complementar la reflexión anterior, un análisis análogo, pero relacionando los valores de los coeficientes de variación con los rangos de valores, mostró, una correspondencia entre estos dos estadígrafos. Este resultado tuvo como excepción los conjuntos de maderas de gimnospermas pinos blandos (número de especies estudiadas igual a 4) y de maderas de otras gimnospermas (número de especies estudiadas igual a 13),

Para una correcta interpretación de los estadígrafos, es necesario entonces, considerar en conjunto todos los estadígrafos presentados en las Tablas 10 a 16. Este argumento es igualmente recomendado para la correcta interpretación de los estadígrafos de todas las características elásticas de maderas mexicanas.

Para una correcta interpretación del manejo de la densidad de una especie en estudio, como variable explicativa, es necesario diferenciar entre la densidad de una especie de madera en particular, como es el caso de la investigación, y el valor de la densidad de una muestra de madera para un caso en particular. Como ejemplos, se pueden analizar dos escenarios:

Para el caso de modelado del comportamiento elástico de la madera, empleado en investigaciones sobre fenómenos de transferencia de masa y de energía, se pueden utilizar los valores de referencia propuestos en las diferentes Tablas de resultados o de estadígrafos. Por ejemplo, el fenómeno de esfuerzos internos inducidos en la madera, durante el proceso de secado, necesita un análisis tridimensional. Este enfoque implica considerar a la madera como un sólido que posee ortotropías materiales y elásticas, tal como lo propone el Modelo elástico general de comportamiento elástico de la madera (Hernández Maldonado, 2010) y lo corroboran los resultados de esta investigación.

Figura 02. Interpretación gráfica de la media aritmética y del coeficiente de variación (Coef. Variación) correspondientes a la densidad de la madera para cada grupo taxonómico.

Un segundo escenario, es el caso cuando se requiere el valor elástico de una muestra de madera en específico. Este escenario puede ser útil cuando es necesario conocer el valor de un módulo de elasticidad para su empleo en diseño y cálculo en Ingeniería de la Madera. Para estimar el módulo de elasticidad en cuestión, únicamente es necesario identificar la especie de madera, o su pertenencia a uno de los grupos taxonómicos propuestos y calcular su densidad.

Una vez con esta información, se puede emplear la ecuación correspondiente a este grupo taxonómico, y de esta forma, obtener un valor razonablemente aceptable para fines de Ingeniería.

Es conveniente hacer notar que las ecuaciones de la Tabla 02 son lineales, lo que permite una proporcionalidad en la variable explicativa. Es decir, si se tiene el valor de la densidad de una muestra de una especie de madera, una segunda muestra de la misma madera, pero con una densidad 10 % mayor, tendrá una característica elástica proporcionalmente 10 % mayor.

Tabla 10. Estadígrafos de las características elásticas de maderas mexicanas. Angiospermas encinos rojos. H = 12 %; T = 20 °C.

							\overline{c}			J			
Angiospermas	ρ	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	1,1	1,	37	1/	1/	1/
encinos rojos	g/cm ³	MPa	MPa	MPa	MPa	MPa	MPa	$ u_{\text{RT}} $	$ u_{\text{TR}} $	$ u_{\scriptscriptstyle RL}$	$ u_{\text{LR}}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$ u_{\rm LT}$
Media aritmética	0.742	2000	1149	16601	1029	1365	436	0.862	0.442	0.057	0.473	0.039	0.614
Desviación estándar	0.1245	335.44	192.67	2784.31	172.63	229.02	73.19	0.1446	0.0741	0.0095	0.0794	0.0066	0.1030
Coef. de variación	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Valor mínimo	0.530	1428	820	11856	735	975	312	0.616	0.316	0.041	0.338	0.028	0.439
Valor máximo	1.014	2733	1570	22683	1406	1865	596	1.178	0.604	0.078	0.647	0.054	0.839
Rango de valores	0.484	1304	749	10827	671	891	285	0.562	0.288	0.037	0.309	0.026	0.401
Número de especies	22	•			•	•					•	•	

Tabla 11. Estadígrafos de las características elásticas de maderas mexicanas. Angiospermas encinos blancos. H = 12 %; T = 20 °C.

Angiospermas	ρ	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	$ u_{ m RT}$	$ u_{\scriptscriptstyle \mathrm{TR}}$	$ u_{\scriptscriptstyle{\mathrm{RL}}}$	$ u_{\scriptscriptstyle LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$ u_{\scriptscriptstyle LT}$
encinos blancos	g/cm ³	MPa	MPa	MPa	MPa	MPa	MPa	V RT	V TR	V RL	V LR	V TL	V LT
Media aritmética	0.766	2064	1186	17135	1062	1409	450	0.890	0.456	0.059	0.489	0.041	0.634
Desviación estándar	0.1098	295.90	169.96	2456.09	152.28	202.02	64.56	0.1275	0.0654	0.0084	0.0700	0.0058	0.0909
Coef. de variación	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Valor mínimo	0.590	1590.1	913	13198	818	1085.6	346.92	0.685	0.351	0.045	0.376	0.031	0.488
Valor máximo	0.993	2676	1537	22213	1377	1827	584	1.153	0.591	0.076	0.633	0.053	0.822
Rango de valores	0.403	1086	624	9015	559	742	237	0.468	0.240	0.031	0.257	0.021	0.334
Número de especies	17				•	•							·

Tabla 12. Estadígrafos de las características elásticas de maderas mexicanas. Angiospermas clima templado. H = 12 %; T = 20 °C.

Angiospermas clima templado	ρ g/cm ³	E _R MPa	E _T MPa	E _L MPa	G _{TL} MPa	G _{LR} MPa	G _{RT} MPa	$ u_{ ext{RT}}$	$ u_{\scriptscriptstyle TR}$	$ u_{\scriptscriptstyle{\mathrm{RL}}}$	$ u_{\scriptscriptstyle LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$ u_{\scriptscriptstyle LT}$
1	g, cm	1,11 (4	1,11 #	1111 4	1,11 (4	1,11 (4	1,11 (4	<u> </u> _		L	<u> </u> _	<u> </u>	
Media aritmética	0.581	1566	899	12996	806	1069	342	0.675	0.346	0.044	0.370	0.031	0.481
Desviación estándar	0.1614	434.98	249.83	3610.84	223.89	296.93	94.95	0.1874	0.0961	0.0123	0.1030	0.0086	0.1336
Coef. de variación	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
Valor mínimo	0.220	593	341	4921	305	405	129	0.256	0.131	0.017	0.140	0.012	0.182
Valor máximo	0.955	2574	1478	21363	1325	1757	562	1.109	0.569	0.073	0.609	0.051	0.790
Rango de valores	0.735	1981	1137	16442	1020	1352	433	0.853	0.438	0.056	0.469	0.039	0.608
Número de especies	69	•	•	·	•			•	•	•		•	

Tabla 13. Estadígrafos de las características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 °C.

Angiospermas clima	ρ	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	v	37	1/	V	v	v
tropical	g/cm ³	MPa	MPa	MPa	MPa	MPa	MPa	$v_{ m RT}$	$ u_{\mathrm{TR}} $	$ u_{\scriptscriptstyle RL}$	$ u_{ m LR}$	$ u_{\scriptscriptstyle TL}$	$ u_{\rm LT}$
Media aritmética	0.661	1781	1023	14785	917	1216	389	0.768	0.394	0.051	0.422	0.035	0.547
Desviación estándar	0.2155	580.78	333.60	4820.77	298.90	396.52	126.72	0.2503	0.1283	0.0165	0.1374	0.0114	0.1784
Coef. de variación	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
Valor mínimo	0.110	296	170	2461	153	202	65	0.128	0.065	0.008	0.070	0.006	0.091
Valor máximo	1.390	3746	2152	31094	1928	2558	817	1.614	0.828	0.106	0.887	0.074	1.151
Rango de valores	1.280	3450	1982	28633	1775	2356	752	1.486	0.763	0.098	0.817	0.068	1.060
Número de especies	333			•							•		

Tabla 14. Estadígrafos de las características elásticas de maderas mexicanas. Gimnospermas pinos duros. H = 12 %; T = 20 °C.

Gimnospermas	ρ	E_R	E_{T}	E_L	G_{TL}	G_{LR}	G_{RT}	11	1,	11	11	11	11
pinos duros	g/cm ³	MPa	MPa	MPa	MPa	MPa	MPa	$ u_{ ext{RT}}$	$ u_{\text{TR}} $	$ u_{\mathrm{RL}}$	$ u_{ m LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$ u_{\rm LT}$
Media aritmética	0.455	998	628	12767	777	837	86	0.531	0.344	0.038	0.438	0.026	0.499
Desviación estándar	0.0554	121.67	76.49	1554.39	94.74	101.87	10.41	0.0647	0.0419	0.0045	0.0533	0.0032	0.0607
Coef. de variación	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Valor mínimo	0.360	790	496	10099	615	662	68	0.420	0.272	0.030	0.346	0.021	0.394
Valor máximo	0.580	1273	800	16270	991	1067	109	0.677	0.439	0.048	0.558	0.034	0.635
Rango de valores	0.220	483	304	6171	376	405	41	0.257	0.167	0.018	0.212	0.013	0.241
Número de especies	31						·						

Tabla 15. Estadígrafos de las características elásticas de maderas mexicanas. Gimnospermas pinos blandos. H = 12 %; T = 20 °C.

Gimnospermas pinos	ρ	E_R	E _T	E_{L}	G_{TL}	G_{LR}	G_{RT}	$ u_{ m RT}$	$ u_{\mathrm{TR}}$	$ u_{ ext{RL}}$	$ u_{ m LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$ u_{\rm LT}$
blandos	g/cm ³	MPa	MPa	MPa	MPa	MPa	MPa	* K1	V IK	* KL	▼ LR	V IL	▼ L1
Media aritmética	0.395	866	544	11067	674	726	74	0.461	0.299	0.033	0.380	0.023	0.432
Desviación estándar	0.0310	67.90	42.47	869.71	52.72	56.74	5.74	0.0360	0.0234	0.0026	0.0296	0.0019	0.0341
Coef. de variación	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Valor mínimo	0.350	768	483	9818	598	644	66	0.409	0.265	0.029	0.337	0.020	0.383
Valor máximo	0.420	921	579	11782	717	772	79	0.49	0.318	0.035	0.404	0.024	0.460
Rango de valores	0.070	153	96	1964	119	128	13	0.081	0.053	0.006	0.067	0.004	0.077
Número de especies	4												

Tabla 16. Estadígrafos de las características elásticas de maderas mexicanas. Otras gimnospermas. H = 12 %; T = 20 °C.

								<i>6</i>		,			
Otras gimnospermas	ρ	E_R	E_{T}	E_{L}	G_{TL}	G_{LR}	G_{RT}	$ u_{ ext{RT}}$	$ u_{\scriptscriptstyle TR}$	$ u_{ ext{\tiny RL}}$	$ u_{\scriptscriptstyle LR}$	$ u_{\scriptscriptstyle \mathrm{TL}}$	$\nu_{\scriptscriptstyle LT}$
ourus giinnosperinus	g/cm ³	MPa	MPa	MPa	MPa	MPa	MPa	v RT	v TR	V _{RL}	V LR	V TL	V LT
Media aritmética	0.427	937	589	11980	729	785	80	0.499	0.323	0.035	0.411	0.025	0.468
Desviación estándar	0.0725	159.03	99.95	2033.26	123.80	133.29	13.63	0.0846	0.0548	0.0060	0.0697	0.0042	0.0794
Coef. de variación	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Valor mínimo	0.295	647	407	8275	504	543	55	0.344	0.223	0.024	0.284	0.017	0.323
Valor máximo	0.557	1222	768	15625	951	1024	105	0.650	0.421	0.046	0.536	0.032	0.610
Rango de valores	0.262	575	361	7350	447	481	50	0.306	0.198	0.022	0.252	0.015	0.287
Número de especies	14												

Anisotropía de las características elásticas

La verificación de las propiedades del Modelo elástico general, se realiza en dos partes. La primera de ellas, es la comprobación de la anisotropía, encontrada usualmente entre las diferentes características elásticas de la madera. Por otra parte, se verifican los postulados referentes a la simetría elástica de un material ortotrópico, como es el caso de la madera, los cuales son propuestos en las ecuaciones (03) y (06).

Para fines de análisis se examinan únicamente dos grupos de maderas: angiospermas de clima templado y gimnospermas pinos duros.

Respecto a las propiedades de anisotropía encontrada usualmente entre las diferentes características elásticas de la madera, y de acuerdo con Bodig y Jayne (1982), los valores de los módulos de elasticidad de la madera, de la matriz de las características elásticas, presentan una anisotropía del tipo:

$$E_L \gg E_R > E_T \tag{32}$$

Y de acuerdo a los resultados presentados en las Tablas 12 y 14, se verifica la proposición de la ecuación (32). Las relaciones de proporcionalidad se presentan en la Tabla 17, para maderas angiospermas de clima templado y maderas gimnospermas pinos duros.

Tabla 17. Proporcionalidad de la anisotropía de las características elásticas.

Grupo botánico	E _R :	E _T :	E_{L}	G _{TL} :	G _{LR} :	G_{RT}	ν_{RT} :	ν_{TR} :	ν_{RL} :	ν_{LR} :	ν_{TL} :	$\nu_{ ext{LT}}$
Angiospermas de clima templado	1.00	0.57	8.30	1.00	1.33	0.42	1.00	0.51	0.07	0.55	0.05	0.71
Gimnospermas pinos duros	1.00	0.63	12.79	1.00	1.08	0.11	1.00	0.65	0.07	0.82	0.05	0.94

En el mismo contexto (Bodig y Jayne, 1982), los módulos de rigidez presentan una anisotropía del tipo:

$$G_{LR} > G_{TL} > G_{RT} \tag{33}$$

Y de acuerdo a los resultados presentados en las Tablas 7.12 y 7.14, se verifica la proposición de la ecuación (33). Las relaciones de proporcionalidad se presentan en la Tabla 17.

Respecto a las relaciones de proporcionalidad de los coeficientes de Poisson, las Tablas 17 y 18 ordenan los datos de las Tablas 12 y 14. Estos resultados concuerdan con las proposiciones dadas por Guitard (1987):

$$V_{RT} > V_{LT} > V_{LR} \approx V_{TR} >> V_{RL} > V_{TL}$$

$$\tag{34}$$

Respecto a la anisotropía de las características elásticas, las relaciones entre ellas son, para angiospermas de clima templado:

 $E_L >> E_R > E_T : 12996 >> 1566 > 899$

 $G_{LR} > G_{TL} > G_{RT} : 1069 > 806 > 342$

 $\nu_{RT} > \nu_{LT} > \nu_{LR} \approx \nu_{TR} >> \nu_{RL} > \nu_{TL} : 0.675 > 0.481 > 0.370 \approx 0.346 >> 0.044 > 0.031$

Tabla 18. Valores y relaciones de proporcionalidad de los coeficientes de Poisson.

Grupo botánico	$ u_{\mathrm{RT}}$	>	$\nu_{ m LT}$	>	$ u_{\text{LR}}$	\approx	ν_{TR}	>>	ν_{RL}	>	$ u_{\mathrm{TL}}$
Angiospermas de clima templado	0.675		0.481		0.370		0.346		0.044		0.031
Gimnospermas pinos duros	0.531		0.499		0.438		0.344		0.038		0.026

y para gimnospermas pinos duros:

 $E_L >> E_R > E_T : 12767 > 998 > 628$

 $G_{LR} > G_{TL} > G_{RT} : 837 > 777 > 86$

 $v_{RT} > v_{LT} > v_{LR} \approx v_{TR} >> v_{RL} > v_{TL} : 0.531 > 0.499 > 0.438 \approx 0.344 >> 0.038 > 0.026$

Las proporciones anteriores coinciden con las de los datos de los otros grupos estudiados.

Estos resultados confirman los requerimientos del Modelo elástico general con respecto a las relaciones de anisotropía observadas en la madera.

Las argumentaciones anteriores sugieren una variabilidad en la magnitud de los parámetros de Ingeniería, a partir de los cuales, se calculan las constantes de las matrices de elasticidad de la madera. Es decir, los datos experimentales son congruentes con las predicciones teóricas del Modelo general elástico, pero denotan una variabilidad inherente al material.

Simetrías de las matrices de las constantes elásticas

La variación en la simetría de las matrices de constantes elásticas está expresada con los coeficientes de anisotropía propuestos por Bucur y Rasolofosaon (1998):

$$S_{ij}/S_{ji} = [(S_{ij} - S_{ji})/S_{ij}] \times (100)$$
 (35)

Tabla 19. Matrices de constantes elásticas y simetrías.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Matriz de cons		<u> </u>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S_{11}			-	-	-
		S_{22}	S_{23}	-	-	-
	S_{31}	S_{32}	S_{33}	-	-	-
Matriz de constantes elásticas para angiospermas de clima templado 0.0006385696 0.0003848721 0.0000284703 - - - 0.0000280971 0.0001123471 0.0000370114 - - - 0.0000280971 0.0000344828 0.0000769468 - - - - - 0.0012406948 - - - - - - 0.0002939766 - - - Simetrías de la matriz de constantes elásticas para angiospermas de clima templado 0 -11.99 1.31 - - - - 0 6.83 - - - - 0 6.83 - - - - - 0 - - - - - 0 - - - - - - 0 - - - 0 - - - - 0 - -	-	-	-	S_{44}	-	-
Matriz de constantes elásticas para angiospermas de clima templado	-	-	-	-	S_{55}	- C
0.0006385696 0.0003848721 0.0000284703 -	- Mo	triz do constant	og alágtigag parg	- n angiognarmas	do alima tan	
0.0004310345 0.0011123471 0.0000370114 - - - 0.0000280971 0.0000344828 0.0000769468 - - - - - 0.0012406948 - - - - - 0.0009354537 - - - - 0.00029239766 - 0.0029239766 Simetrías de la matriz de constantes elásticas para angiospermas de clima templado 0 -11.99 1.31 - - - - 0 6.83 - - - - 0 6.83 - - - - 0 - - - - - - 0 - - - - - - 0 - - 0 - - - 0 - - - 0 - - - - - - - - - - <td< td=""><td></td><td></td><td></td><td>angiospermas</td><td>s de Cillia tell</td><td>ipiado</td></td<>				angiospermas	s de Cillia tell	ipiado
0.0000280971 0.0000344828 0.0000769468 -				-	-	-
Company				-	-	-
Company	0.0000280971	0.0000344828	0.0000769468	-	-	-
Simetrías de la matriz de constantes elásticas para angiospermas de clima templado O	-	-	-	0.0012406948	-	-
Simetrías de la matriz de constantes elásticas para angiospermas de clima templado O	-	-	-	-	0.000935453	-
0 -11.99 1.31	-	-	-	-	-	0.0029239766
- 0 6.83	Simetrías d	le la matriz de c	onstantes elásti	cas para angio	spermas de cl	lima templado
0 0 0 - 0 Matriz de constantes elásticas para gimnospermas pinos duros 0.0010020040 0.0005477707 0.0000343072	0	-11.99	1.31		_	
	-	0	6.83	3	_	
Matriz de constantes elásticas para gimnospermas pinos duros	-	-	0		-	
Matriz de constantes elásticas para gimnospermas pinos duros	-	-	-		0	
Matriz de constantes elásticas para gimnospermas pinos duros	-	-	-		- () -
0.0010020040 0.0005477707 0.0000343072 -	-	-	-		-	- 0
0.0005320641 0.0015923567 0.0000390851 -]	Matriz de const	antes elásticas p	ara gimnosper	mas pinos du	iros
0.0000380762 0.0000414013 0.0000783269 -	0.0010020040	0.0005477707	0.0000343072	-	-	-
- - 0.0012870013 - - - - 0.0011947431 - - - - 0.0116279070 Simetrías de la matriz de constantes elásticas para gimnospermas pinos duros 0 2.87 -10.99 - - - - - 0 -5.93 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - - - 0 - - - - - - -<	0.0005320641	0.0015923567	0.0000390851	-	-	-
- - 0.0012870013 - - - - 0.0011947431 - - - - 0.0116279070 Simetrías de la matriz de constantes elásticas para gimnospermas pinos duros 0 2.87 -10.99 - - - - - 0 -5.93 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - 0 - - - - - - - - 0 - - - - - - -<	0.0000380762	0.0000414013	0.0000783269	-	-	-
Comparison Com	_	_	_	0.0012870013	-	-
Comparison Com				_	0.001194743	31 -
0 2.87 -10.99 - - - - 0 -5.93 - - - - - 0 - - - - - 0 - - - - 0 - - - - 0 - -	_	- -	-	-	-	
0 2.87 -10.99 - - - - 0 -5.93 - - - - - 0 - - - - - 0 - - - - 0 - - - - 0 - -	Simetría	as de la matriz d	le constantes elá	ásticas para gir	nnospermas i	oinos duros
- 0 -5.93						
0 0	-				-	
0 -	-	-	0			
-	-	-	-		0	
0	-	-	-		_ () -
	-	-	-			- 0

Los valores de los coeficientes de anisotropía presentados en la Tabla 19, varían al interior de un intervalo que va de -11.99 a 6.83, para el caso de las simetrías de la matriz de constantes elásticas para angiospermas de clima templado. Para el caso de las simetrías de la matriz de constantes elásticas para gimnospermas pinos duros, el intervalo correspondiente va de -10.99 a 2.87. Bien que este panorama es frecuente en la caracterización mecánica de la madera, los resultados ejemplifican la variación en los parámetros elásticos de la madera, calculados experimentalmente, o estimados numéricamente.

Las constantes de elasticidad S_{ij} , son calculadas y dependen de los parámetros de Ingeniería: Módulos de elasticidad, módulos de rigidez y coeficientes de Poisson. Los valores de estas características elásticas de la madera varían por una parte, por la estructura anatómica del material particular y diferente a cada especie de madera. Por otra parte, las condiciones de ensayo y la configuración de las pruebas de laboratorio difieren entre sí, dando como resultado una variación en las dimensiones de los parámetros experimentales.

Los resultados de la Tabla 19 son similares a los presentados por Hernández Maldonado (2010) en un estudio similar pero utilizando valores experimentales de características elásticas de 238 maderas de especies extranjeras. Esta información, sugiere que las discrepancias en el requisito de la simetría de la matriz de constantes elásticas (ecuaciones 03 y 06) pueden ser aceptables para fines prácticos.

CONCLUSIONES

Empleando Modelos de predicción que utilizan la densidad de la madera como factor explicativo, se estimaron 12 características elásticas para 490 maderas de especies mexicanas.

Los valores de sus estadígrafos confirmaron las relaciones de anisotropía propias a las características elásticas de la madera. Además, los resultados respetaron las condiciones de simetría del Modelo elástico general de la madera.

REFERENCIAS

American Institute of Timber Construction. 1994. Fourth Edition. Timber Construction Manual. John Wiley & Sons. USA.

American Society of Civil Engineers. 1975. Wood Structures: A Design Guide and Commentary. American Society of Civil Engineers. USA.

American Society of Civil Engineers. 1982. Evaluation, Maintenance and Upgrading of Wood Structures: A Guide and Commentary. American Society of Civil Engineers. USA.

Barajas Morales, J.; León Gómez, C. 1984. Anatomía de maderas de México: Especies de una selva caducifolia. Instituto de Biología. Publicaciones especiales 1. Universidad Nacional Autónoma de México.

Bodig, J. Editor. 1992. Reliability-Based Design of Engineered Wood Structures. NATO ASI Series E: Applied Sciences. Volume 215. Kluwer Academic Publishers. The Netherlands.

Bodig, J.; Goodman, J.R. 1973. Prediction of Elastic Parameters for Wood. *Wood Science*. 5(4):249-264.

Bodig, J.; Jayne, B.A. 1982. Mechanics of Wood Composites. Van Nostrand Reinhold. USA.

Breyer, D.E. et al. 2003. Fifth Edition. Design of Wood Structures - ASD. McGraw-Hill. USA.

Bucur, V.; Rasolofosaon, P.N.J. 1998. Dynamic elastic anisotropy and nonlinearity in wood and rock. *Ultrasonics*. 36:813-824.

Cheers, G. Editor. 2006. Edición en Español. Botánica. Guía ilustrada de plantas. Könemann. Alemania.

Comisión Forestal de América del Norte. 1994. Manual de construcción de estructuras ligeras de madera. Consejo Nacional de la Madera en la Construcción. México.

Faherty, K F.; Williamson, T.G. 1997. Third Edition. Wood Engineering and Construction Handbook. McGraw-Hill. USA.

Guitard, D. 1987. Mécanique du Matériau Bois et Composites. CEPADUES-EDITIONS. France.

Guitard, D.; El Amri, F. 1987. Modèles prévisionnels de comportement élastique tradimensionnel pour les bois feuillus et les bois résineux. *Annales des Sciences Forestières*. INRA. 45(3):335-358.

Guizar Nolazco, E.; Sanchez Velez, A. 1991. Guía para el reconocimiento de los principales árboles del Alto Balsas. Universidad Autónoma Chapingo. México.

Gutiérrez Carvajal, L.; Dorantes López, J. 2007. Especies forestales de uso tradicional del Estado de Veracruz. CONAFOR-CONACYT-UV 2003-2004. México.

Hearmon, R.F.S. 1948. The Elasticity of Wood and Plywood. Department of Scientific and Industrial Research. Forest Products Research. Special Report No. 7. His Majesty's Stationery Office. England.

Hernández Maldonado, S.A. 2010. Comportamiento elástico de la madera. Teoría y aplicaciones. Tesis de Maestría. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. México.

Hoyle, R.J. Jr. 1978. Wood Technology in the Design of Structures. Fourth Edition. Mountain Press Publishing Company. USA.

Lincoln, W.A. 1986. World Woods in Color. Linden Publishing. USA.

López Cano, J.L. 2006. Método e hipótesis científicos. Temas básicos. Área: Metodología de la ciencia 3. Editorial Trillas. México.

Niembro Rocas, A. 1990. Árboles y arbustos útiles de México. Editorial LIMUSA. México.

Pennington, T.D.; Sarukhán, J. 1998. Segunda edición. Árboles tropicales de México. Manual para la identificación de las principales especies. Ediciones Científicas Universitarias. UNAM. México.

StatPoint, Inc. 2005. The User's Guide to STATGRAPHICS® Centurion XV. StatPoint, Inc. USA.

Robles Fernández-Villegas, F.; Echenique-Manrique, R. 1983. Estructuras de Madera. Editorial LIMUSA. México.

Soler, M. 2001. Mil Maderas. Editorial UPV. España.

Sotomayor Castellanos, J.R. 1987. Calidad de la madera para la industria de la construcción. Consideraciones Tecnológicas, Industriales y Comerciales. Cámara Nacional de la Industria de la Construcción. México.

Sotomayor Castellanos, J.R. 2002. Características mecánicas de la madera y su aplicación en la industria de la construcción. *Ciencia Nicolaita*. 33:127-138.

Sotomayor Castellanos, J.R. 2005. Características mecánicas y clasificación de 150 especies de maderas Mexicanas. *Investigación e Ingeniería de la Madera*. UMSNH. 1(1):3-22. México.

Sotomayor Castellanos, J.R. 2008. Segunda edición. TABLA FITECMA de clasificación de características mecánicas de maderas mexicanas. FITECMA. UMSNH. Formato: 30 x 60 cm.

Sotomayor Castellanos, J.R. 2009. Variabilidad de la densidad y de las características mecánicas de 150 maderas mexicanas. *Investigación e Ingeniería de la Madera*. 5(1):23-32.

Tamarit Urias, J.C.; López Torres, J.L. 2007. Xilotecnología de los principales árboles tropicales de México. Libro Técnico No. 3. INIFAP-CIR Golfo Centro, Campo Experimental San Martinito. Tlahuapan, Puebla. México.

Torelli, N. 1982. Estudio promocional de 43 especies forestales tropicales mexicanas. Programa de Cooperación Científica y Técnica, México-Yugoslavia. SARH. SFF. México.

Tropicos. http://www.tropicos.org/Home.aspx.

United States Department of Agriculture. Agricultural Research Service. http://www.ars.usda.gov/main/main.htm.

United States Department of Agriculture. Germplasm Resources Information Network. http://www.ars-grin.gov/.

United States Department of Agriculture. Natural Resources Conservation Services. http://plants.usda.gov/index.html.

Yurén Camarena, M.T. 2002. Leyes, teorías y modelos. Temas básicos. Área: Metodología de la ciencia 5. Editorial Trillas. México.

ANEXOS

Angiospermas encinos rojos	48
Anexo A.02. Catálogo de nombres de maderas de especies mexicanas. Angiospermas encinos blancos	79
Anexo A.03. Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima templado	70
Anexo A.04. Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical	53
Anexo A.05. Catálogo de nombres de maderas de especies mexicanas. Gimnospermas pinos duros	64
Anexo A.06. Catálogo de nombres de maderas de especies mexicanas. Gimnospermas pinos blandos	65
Anexo A.07. Catálogo de nombres de maderas de especies mexicanas. Otras gimnospermas	65
Anexo A.08. Lista de referencias originales con valores de densidad e información de características tecnológicas de maderas de especies mexicanas	66

Anexo A.01 (1 pagina de 1). Catálogo de nombres de maderas de especies mexicanas. Angiospermas encinos rojos.

AER001 Quercus acatenangensis Trel. Encino hoja fina Fagaceae Ordóñez Candelaria y Col. (1989) AER002 Quercus acutifolia Née. Encino rojo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER003 Quercus candicans Née. Encino blanco Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER004 Quercus castanea Née. Teposcohuite chino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER005 Quercus coccolobifolia Trel. Encino roble Fagaceae Sotomayor Castellanos (1987) AER006 Quercus conspersa Benth. Encino escobillo Fagaceae Erythrobalanus Valdovinos Sánchez (2004) AER007 Quercus crassifolia Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Ordóñez Candelaria y Col. (1989) AER008 Quercus crispipilis Trel. Chiquinib Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER009 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER010 Quercus durifolia Seem. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER011 Quercus elliptica Née. Encino rojo Fagaceae Erythrobalanus Ramos Pantaleón (1999) AER012 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER013 Quercus laurina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus ochroesthes E.F. Warb. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER015 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992)	Código	Nombre científico	Nombre común	Familia	Referencia
AER002 Quercus candidans Néc. Encino rojo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER003 Quercus candidans Néc. Encino blanco Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER005 Quercus candidans Néc. Teposcohilute chino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER005 Quercus coccolobifolia Trel. Encino roble Fagaceae Sotomayor Castellanos y col. (2010) AER006 Quercus conspersa Benth. Encino escobillo Fagaceae Erythrobalanus Ordóñez Candelaria y Col. (1989) AER007 Quercus corsipilis Trel. Chiquinib Fagaceae Erythrobalanus Ordóñez Candelaria y Col. (1989) AER008 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER009 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER010 Quercus deserticola Trel. Encino Colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER011 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Ramos Pantaleón (1999) AER012 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER015 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER016 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER017 Quercus sartorii Liebm. Fresno Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER018 Quercus svytophylla Weath. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus simpocula Trel. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus simpor Benth. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus simpor Benth. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER021 Quercus suberculata Liebm. Encino colorado Fagaceae Erythrobalanus Sotomayor Castel	U			** **	
AER003 Quercus candicans Née. Encino blanco Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER004 Quercus castanea Née. Teposcohuite chino Fagaceae Sotomayor Castellanos y col. (2010) AER005 Quercus cocolobifolia Trel. Encino roble Fagaceae Sotomayor Castellanos y col. (2010) AER006 Quercus conspersa Benth. Encino escobillo Fagaceae Erythrobalanus Valdovinos Sánchez (2004) AER007 Quercus crassifolia Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Ordóñez Candelaria y Col. (1989) AER008 Quercus crisspilis Trel. Chiquinib Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER009 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER010 Quercus durifolia Seem. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER011 Quercus durifolia Seem. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER012 Quercus elliptica Née. Encino rojo Fagaceae Erythrobalanus Ramos Pantaleón (1999) AER013 Quercus laurina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus laurina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Bárcenas Pazos (1985) AER015 Quercus laurina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus rysophylla Weath. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER017 Quercus sartori Liebm. Fresno Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus sideroxyla Humb. et Bonpl. Encino cap		2 0	J		• ` '
AER004 Quercus castanea Née. Teposcohuite chino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER005 Quercus coccolobifolia Trel. Encino roble Fagaceae Sotomayor Castellanos y col. (2010) AER006 Quercus conspersa Benth. Encino escobillo Fagaceae Erythrobalanus Valdovinos Sánchez (2004) AER007 Quercus crassifolia Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER008 Quercus crispipilis Trel. Chiquinib Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER010 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER011 Quercus germana Schitdl. & Cham. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER012 Quercus germana Schitdl. & Cham. Encino Fagaceae Erythrobalanus Fragaceae Erythrobalanus AER013 Quercus durina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER013 Quercus germana Schitdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus planipocula Trel. Encino Fagaceae Bárcenas Pazos (1985) AER015 Quercus planipocula Trel. Encino Fagaceae Crythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus rysophylla Weath. Encino Fagaceae Martinez-Pinillos y Martínez Castillo (1996) AER017 Quercus sideroxyla Humb. et Bonpl. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus simeri Benth. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER021 Quercus uxoris McVaugh. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER023 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)		~ *	3	<u> </u>	
AER005 Quercus coccolobifolia Trel. Encino roble Fagaceae Sotomayor Castellanos (1987) AER006 Quercus conspersa Benth. Encino escobillo Fagaceae Erythrobalanus Valdovinos Sánchez (2004) AER007 Quercus crassifolia Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Ordônez Canalearia y Col. (1989) AER008 Quercus crispipilis Trel. Chiquinib Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER009 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER010 Quercus durifolia Seem. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER011 Quercus durifolia Seem. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER011 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER013 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus ortovesthes E.F. Warb. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER015 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER017 Quercus sartorii Liebm. Fresno Fagaceae Martínez-Pinillos y Martínez Castillo (1996) AER018 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus sideroxyla Humb. et Bonpl. Encino hojeador Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER021 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)		~		<u> </u>	• ` '
AER006 Quercus conspersa Benth. Encino escobillo Fagaceae Erythrobalanus Valdovinos Sánchez (2004) AER007 Quercus crassifolia Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Ordóñez Candelaria y Col. (1989) AER008 Quercus deserticola Trel. Chiquinib Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER010 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER011 Quercus durifolia Seem. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER012 Quercus elliptica Née. Encino Fagaceae Erythrobalanus Ramos Pantaleón (1999) AER013 Quercus laurina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus planipocula Trel. Encino Fagaceae AER015 Quercus planipocula Trel. Encino Fagaceae AER016 Quercus splanipocula Trel. Encino Fagaceae AER017 Quercus sartorii Liebm. Fresno Fagaceae AER018 Quercus sideroxyla Humb. et Bonpl. Encino Rosillo Fagaceae Crythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus sideroxyla Humb. et Bonpl. Encino nojocador Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER021 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus suxoris McVaugh. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)		~	*	<u> </u>	, , , ,
AER007 Quercus crassifolia Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER008 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER010 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER011 Quercus deserticola Kee. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER012 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Ramos Pantaleón (1999) AER013 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus cus furina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER015 Quercus sochroesthes E.F. Warb. Encino Blanco Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus rysophylla Weath. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER017 Quercus sartorii Liebm. Fresno Fagaceae Martínez-Pinillos y Martínez Castillo (1996) AER019 Quercus sartorii Liebm. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER021 Quercus suberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus suberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)		~ v	Encino escobillo		` /
AER008 Quercus crispipilis Trel. AER009 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER010 Quercus durifolia Seem. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER011 Quercus durifolia Seem. Encino rojo Fagaceae Erythrobalanus Ramos Pantaleón (1999) AER012 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER013 Quercus laurina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus ochroesthes E.F. Warb. AER015 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus rysophylla Weath. Encino Fagaceae AER017 Quercus sartorii Liebm. AER018 Quercus scytophylla Liebm. AER019 Quercus scytophylla Liebm. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus skinneri Benth. Encino hojeador Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER021 Quercus suberculata Liebm. Encino hojeador Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus suxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER007	Quercus crassifolia Humb. et Bonpl.	Encino colorado	Fagaceae Erythrobalanus	Ordóñez Candelaria y Col. (1989)
AER010 Quercus deserticola Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER011 Quercus durifolia Seem. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER012 Quercus elliptica Née. Encino rojo Fagaceae Erythrobalanus Ramos Pantaleón (1999) AER013 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus ochroesthes E.F. Warb. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER015 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus rysophylla Weath. Encino Fagaceae Cruz de Leon (1994) AER017 Quercus sartorii Liebm. Fresno Fagaceae Martínez-Pinillos y Martínez Castillo (1996) AER018 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus simeri Benth. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER008	~ ,	Chiquinib	Fagaceae Erythrobalanus	• • • •
AER011 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Ramos Pantaleón (1999) AER012 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER013 Quercus laurina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus ochroesthes E.F. Warb. Encino blanco Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER015 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus rysophylla Weath. Encino Fagaceae Cruz de Leon (1994) AER017 Quercus sartorii Liebm. Fresno Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER018 Quercus systophylla Liebm. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus simneri Benth. Encino hojeador Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER021 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER009		Encino	Fagaceae Erythrobalanus	
AER012 Quercus germana Schltdl. & Cham. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER013 Quercus laurina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus ochroesthes E.F. Warb. Encino blanco Fagaceae Bárcenas Pazos (1985) AER015 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus rysophylla Weath. Encino Fagaceae Cruz de Leon (1994) AER017 Quercus sartorii Liebm. Fresno Fagaceae Martínez-Pinillos y Martínez Castillo (1996) AER018 Quercus scytophylla Liebm. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus sideroxyla Humb. Encino hojeador Fagaceae Erythrobalanus Torelli (1982) AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER010	Quercus durifolia Seem.	Encino colorado	Fagaceae Erythrobalanus	Sotomayor Castellanos y col. (2010)
AER013 Quercus laurina Humb. Et Bonpl. Encino Fagaceae Erythrobalanus Erdoiza Sordo y Castillo Morales (1992) AER014 Quercus ochroesthes E.F. Warb. Encino blanco Fagaceae Bárcenas Pazos (1985) AER015 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus rysophylla Weath. Encino Fagaceae Cruz de Leon (1994) AER017 Quercus sartorii Liebm. Fresno Fagaceae Martínez-Pinillos y Martínez Castillo (1996) AER018 Quercus scytophylla Liebm. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus skinneri Benth. Encino hojeador Fagaceae Erythrobalanus Torelli (1982) AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER011	Quercus elliptica Née.	Encino rojo	Fagaceae Erythrobalanus	Ramos Pantaleón (1999)
AER014 Quercus ochroesthes E.F. Warb. Encino blanco Fagaceae Bárcenas Pazos (1985) AER015 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus rysophylla Weath. Encino Fagaceae AER017 Quercus sartorii Liebm. Fresno Fagaceae AER018 Quercus scytophylla Liebm. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus skinneri Benth. Encino hojeador Fagaceae Erythrobalanus Torelli (1982) AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER012	Quercus germana Schltdl. & Cham.	Encino	Fagaceae	Erdoiza Sordo y Castillo Morales (1992)
AER015 Quercus planipocula Trel. Encino Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER016 Quercus rysophylla Weath. Encino Fagaceae Cruz de Leon (1994) AER017 Quercus sartorii Liebm. Fresno Fagaceae Martínez-Pinillos y Martínez Castillo (1996) AER018 Quercus scytophylla Liebm. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus simeri Benth. Encino hojeador Fagaceae Erythrobalanus Torelli (1982) AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER013	Quercus laurina Humb. Et Bonpl.	Encino	Fagaceae Erythrobalanus	Erdoiza Sordo y Castillo Morales (1992)
AER016 Quercus rysophylla Weath. Encino Fagaceae Cruz de Leon (1994) AER017 Quercus sartorii Liebm. Fresno Fagaceae Martínez-Pinillos y Martínez Castillo (1996) AER018 Quercus scytophylla Liebm. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus skinneri Benth. Encino hojeador Fagaceae Erythrobalanus Torelli (1982) AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER014	Quercus ochroesthes E.F. Warb.	Encino blanco	Fagaceae	Bárcenas Pazos (1985)
AER017 Quercus sartorii Liebm. Fresno Fagaceae Martínez-Pinillos y Martínez Castillo (1996) AER018 Quercus scytophylla Liebm. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus skinneri Benth. Encino hojeador Fagaceae Erythrobalanus Torelli (1982) AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER015	Quercus planipocula Trel.	Encino	Fagaceae Erythrobalanus	Sotomayor Castellanos y col. (2010)
AER018 Quercus scytophylla Liebm. Encino Rosillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus skinneri Benth. Encino hojeador Fagaceae Erythrobalanus Torelli (1982) AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER016	Quercus rysophylla Weath.	Encino	Fagaceae	Cruz de Leon (1994)
AER019 Quercus sideroxyla Humb. et Bonpl. Encino colorado Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER020 Quercus skinneri Benth. Encino hojeador Fagaceae Erythrobalanus Torelli (1982) AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER017	Quercus sartorii Liebm.	Fresno	Fagaceae	Martínez-Pinillos y Martínez Castillo (1996)
AER020 Quercus skinneri Benth. Encino hojeador Fagaceae Erythrobalanus Torelli (1982) AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER018	Quercus scytophylla Liebm.	Encino Rosillo	Fagaceae Erythrobalanus	Sotomayor Castellanos y col. (2010)
AER021 Quercus tuberculata Liebm. Encino prieto Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010)	AER019	Quercus sideroxyla Humb. et Bonpl.	Encino colorado	Fagaceae Erythrobalanus	Sotomayor Castellanos y col. (2010)
AER022 Quercus uxoris McVaugh. Encino capulincillo Fagaceae Erythrobalanus Sotomayor Castellanos y col. (2010) - - - - - - - - - - - - - - - - - - - -<	AER020	Quercus skinneri Benth.	Encino hojeador	Fagaceae Erythrobalanus	Torelli (1982)
	AER021	Quercus tuberculata Liebm.	Encino prieto	Fagaceae Erythrobalanus	Sotomayor Castellanos y col. (2010)
	AER022	Quercus uxoris McVaugh.	Encino capulincillo	Fagaceae Erythrobalanus	Sotomayor Castellanos y col. (2010)
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-

Anexo A.02 (1 pagina de 1). Catálogo de nombres de maderas de especies mexicanas. Angiospermas encinos blancos.

	1.02 (1 pagnia de 1). Catalogo de nombres de ma			
Código	Nombre científico	Nombre común	Familia	Referencia
AEB001	Quercus affinis M. Martens & Galeotti.	Encino	Fagaceae	Cruz de Leon (1994)
AEB002	Quercus convallata Trel.	Encino blanco	Fagaceae	De la Paz y Dàvalos (2008)
AEB003	Quercus excelsa Liebm.	Encino bornio	Fagaceae Leucobalanus	Sotomayor Castellanos y col. (2010)
AEB004	Quercus glabrescens L.	Encino roble	Fagaceae Leucobalanus	Sotomayor Castellanos y col. (2010)
AEB005	Quercus glaucoides Mart. et Gal.	Encino tocuz	Fagaceae Leucobalanus	Sotomayor Castellanos y col. (2010)
AEB006	Quercus insignis M. Martens & Galeotti.	Roble	Fagaceae	Machuca Velasco (1995)
AEB007	Quercus laeta Liebm.	Encino blanco	Fagaceae Leucobalanus	Nájera Luna y col. (2005)
AEB008	Quercus magnoliifolia Née.	Encino	Fagaceae Leucobalanus	Sotomayor Castellanos y col. (2010)
AEB009	Quercus martinezii C.H. Müll.	Encino	Fagaceae	Sotomayor Castellanos (1987)
AEB010	Quercus obtusata Humb. et Bonpl.	Chilillo	Fagaceae Leucobalanus	Sotomayor Castellanos y col. (2010)
AEB011	Quercus peduncularis Née.	Encino sancón	Fagaceae Leucobalanus	Sotomayor Castellanos y col. (2010)
AEB012	Quercus polymorpha A. DC. non Schltdl. & Cham.	Encino	Fagaceae	Cruz de Leon (1994)
AEB013	Quercus potosina Trel.	Encino	Fagaceae	De la Paz y Dàvalos (2008)
AEB014	Quercus prinopsis Trel.	Encino	Fagaceae	Cruz de Leon (1994)
AEB015	Quercus resinosa Liebm.	Encino amarillo	Fagaceae Leucobalanus	Sotomayor Castellanos y col. (2010)
AEB016	Quercus rugosa Née.	Encino Avellano	Fagaceae	Ordóñez Candelaria y Col. (1989)
AEB017	Quercus rugosa Née.	Encino	Fagaceae Leucobalanus	Sotomayor Castellanos y col. (2010)
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	=	-	-
-	-	-	-	-
-	-	=	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-

Anexo A.03 (1 pagina de 3). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima templado.

	Nombre científico		Familia	Referencia
Código ATE001	Acer negundo var. mexicanum (DC.) Kuntze.	Nombre común Zarcillo	Aceraceae	Sotomayor Castellanos y col. (2010)
ATE001	Acer negunao var. mexicanum (DC.) Runize. Acer saccharum Marsh subs. Skutchii.	Alamo	Aceraceae	Martínez Castillo y Martínez-Pinillos (1996)
		** *		• ` ′
ATEO03	Acer skutchii Rehder.	Alamo plateado	Sapindaceae	Erdoiza Sordo y Castillo Morales (1992)
ATE004	Alnus acuminata ssp. glabrata H.B.K.	Aile	Betulaceae	Espinoza Herrera (1996)
ATE005	Alnus acuminata arguta (Schlecht.) Furlow.	Aile	Betulaceae	Sotomayor Castellanos y col. (2010)
ATE006	Alnus jorullensis Kunth.	Ilite	Betulaceae	Ordóñez Candelaria y Col. (1989)
ATE007	Aralia pubescens DC.	Hormiguillo	Araliaceae	Sotomayor Castellanos y col. (2010)
ATE008	Arbutus xalapensis H.B.K.	Madroño	Ericaceae	Escobedo Torres (2005)
ATE009	Arctostaphylos discolor (Hook.) DC.	Flor mayo	Ericaceae	Aguilar Rodríguez y col. (2001)
ATE010	Buddleia americana L.	Tepozán	Loganiaceae	Aguilar Rodríguez y col. (2001)
ATE011	Buddleia parviflora H.B.K.	Tepozán cimarrón	Loganiaceae	Aguilar Rodríguez y col. (2001)
ATE012	Bursera arborea (Rose) L. Riley.	Huahuica	Burseraceae	Barajas Morales (1987)
ATE013	Carpinus caroliniana Walter.	Mora	Betulaceae	Sotomayor Castellanos y col. (2010)
ATE014	Carya ovata (Mill.) K. Koch.	Nogalillo	Juglandaceae	Erdoiza Sordo y Castillo Morales (1992)
ATE015	Casimiroa pringlei (S.Wats.) Engl.	Zapotillo	Rutaceae	Fuentes Salinas y col. (2008)
ATE016	Casuarina equisetifolia L.	Casuarina	Casuarinaceae	Cerriteño Espinoza (1995)
ATE017	Ceiba aesculifolia (H.B.K.) Britt. et Baker.	Ceiba	Bombacaceae	Carrillo Sánchez (2000)
ATE018	Celastrus pringlei Rose.	Cuero de vaca	Celastraceae	Sotomayor Castellanos y col. (2010)
ATE019	Celtis caudata Planch.	Cuáquil	Ulmaceae	Sotomayor Castellanos y col. (2010)
ATE020	Cestrum lanatum Mart. et Gal.	Frutilla	Solanaceae	Carrillo Sánchez (2000)
ATE021	Clethra mexicana DC.	Canelo	Clethraceae	Sotomayor Castellanos y col. (2010)
ATE022	Cleyera integrifolia (Benth.) Choisy.	Escobo	Theaceae	Aguilar Rodríguez y col. (2001)
ATE023	Condalia velutina I.M. Johnst.	Abrojo	Rhamnaceae	Carrillo Sánchez (2000)
ATE024	Cornus disciflora Moc et Sessé ex DC.	Aceituno	Cornaceae	Sotomayor Castellanos y col. (2010)
ATE025	Crataegus mexicana Moc. et Sessé ex DC.	Tejocote	Rosaceae	Sotomayor Castellanos y col. (2010)
ATE026	Crataegus pubescens(H.B.K.) Steud.	Tejocote	Rosaceae	Vega Sámano (2002)
ATE027	Dendropanax arboreus(L.) Planch. & Decne.	Sac-chacah	Araliaceae	Martínez Trinidad y col. (2001)
ATE028	Erythrina coralloides DC.	Colorin	Fabaceae	Carrillo Sánchez (2000)
ATE029	Erythrina lanata Rose.	Colorin cimaron	Fabaceae	Barajas Morales (1987)
ATE030	Euphorbia calyculata H.B.K.	Chupire	Euphorbiaceae	Carrillo Sánchez (2000)

Anexo A.03 (2 pagina de 3). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima templado.

CódigoNombre científicoNombre comúnFamiliaReferenciaATE031Eysenhardtia polystachya (Ortega) Sarg.Palo dulceFabaceaeCarrillo Sánchez (2000)ATE032Ficus benjamina L.FicusMoraceaeSotomayor Castellanos y col. (20ATE033Forestiera tomentosa S. Wats.OlivoOleaceaeCarrillo Sánchez (2000)ATE034Fraxinus uhdei (Wenz.) Lingelsh.Fresno machoOleaceaeSotomayor Castellanos y col. (20	10)
ATE032 Ficus benjamina L. Ficus Moraceae Sotomayor Castellanos y col. (20 ATE033 Forestiera tomentosa S. Wats. Olivo Oleaceae Carrillo Sánchez (2000) ATE034 Fraxinus uhdei (Wenz.) Lingelsh. Fresno macho Oleaceae Sotomayor Castellanos y col. (20	10)
ATE033 Forestiera tomentosa S. Wats. Olivo Oleaceae Carrillo Sánchez (2000) ATE034 Fraxinus uhdei (Wenz.) Lingelsh. Fresno macho Oleaceae Sotomayor Castellanos y col. (20	10)
ATE034 Fraxinus uhdei (Wenz.) Lingelsh. Fresno macho Oleaceae Sotomayor Castellanos y col. (20	
	10)
ATE035 Fuchsia arborescens Sims. Aretillo Onagraceae Aguilar Rodríguez y col. (2001)	10)
ATE036 Garrya laurifolia Hartw. ex Benth. Aguacatillo Garryaceae Sotomayor Castellanos y col. (20	10)
ATE037 Grevillea robusta A. Cunn. ex R. Br. Encino de seda Proteaceae Zárate Morales y col. (2001)	
ATE038 Ilex brandegeana Loes. Palo azul Aquifoliaceae Sotomayor Castellanos y col. (20	10)
ATE039 Juglans pyriformis Liebm. Nogal cimarron Juglandaceae Sotomayor Castellanos y col. (20	10)
ATE040 Liquidambar macrophylla Oersted. Liquidambar Hamamelidaceae Martínez Castillo y Martínez-Pini	llos (1996)
ATE041 Liquidambar styraciflua L. Liquidambar Hamamelidaceae Erdoiza Sordo y Castillo Morales	(1992)
ATE042 Macadamia ternifolia F. Muell. Macadamia Proteaceae Sotomayor Castellanos y col. (20	10)
ATE043 Magnolia schiedeana Schltdl. Magnoliaceae Erdoiza Sordo y Castillo Morales	(1992)
ATE044 Meliosma dentata (Liebm.) Urban. Cuental Sabiaceae Sotomayor Castellanos y col. (20	10)
ATE045 Morus celtidifolia Kunth. Mora Moraceae Sotomayor Castellanos y col. (20	10)
ATE046 Oreopanax peltatus Linden ex Regel. Mano de leon Araliaceae Aguilar Rodríguez y col. (2001)	
ATE047 Oreopanax xalapensis (H.B.K.) Decne. Et Planchon. Mano de leon Araliaceae Aguilar Rodríguez y col. (2001)	
ATE048 Perrottetia longistylis Rose. Perrottetia Celastraceae Aguilar Rodríguez y col. (2001)	
ATE049 Platanus mexicana Moric. Álamo blanco Platanaceae Sotomayor Castellanos y col. (20	10)
ATE050 Populus deltoides Bartr. Alamillo Salicaceae Alcaraz Vargas (2006)	
ATE051 Populus tremuloides Michx. Alamillo Salicaceae Sotomayor Castellanos y col. (20	10)
ATE052 Prunus brachybotrya Zucc. Aguacatillo Rasaceae Quintanar Isaías y col. (1998)	
ATE053 Prunus capuli Cav. Capulín Rosaceae Sotomayor Castellanos y col. (20	10)
ATE054 Prunus hintonii (C.K. Allen) Kosterm. Ucaz Rosaceae Vega Sámano (2002)	
ATE055 Prunus serotina Ehrh. Capulín borracho Rosaceae Vega Sámano (2002)	
ATE056 Psidium guajava L. Guayabo Myrtaceae Vega Sámano (2002)	
ATE057 Rapanea juergensenii Mez. Lengua de Tigre Myrsinaceae Aguilar Rodríguez y col. (2001)	
ATE058 Salix bonplandiana H.B.K. Ahujote Salicaceae Aguilar Rodríguez y col. (2001)	
ATE059 Salix paradoxa H.B.K. Sauce Salicaceae Aguilar Rodríguez y col. (2001)	
ATE060 Saurauia reticulata Rose. Acalama Delleniaceae Aguilar Rodríguez y col. (2001)	

Anexo A.03 (3 pagina de 3). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima templado.

Allexo A	1.03 (5 pagnia de 5). Catalogo de nombres de maderas di			ias cillia tempiado.
Código	Nombre científico	Nombre común	Familia	Referencia
ATE061	Styrax argenteus C. Presl var. ramirezii (Greenm.) Gonsoulin.	Chilacuate	Styracaceae	Aguilar Rodríguez y col. (2001)
ATE062	Styrax ramirezii Greenm.	Canelillo	Styracaceae	Sotomayor Castellanos y col. (2010)
ATE063	Symplocos citrea Lex.	Garrapato	Symplocaceae	Aguilar Rodríguez y col. (2001)
ATE064	Ternstroemia pringlei (Rose) Standley.	Tilia estrella	Theaceae	Aguilar Rodríguez y col. (2001)
ATE065	Tilia houghii Rose.	Sirimo	Tiliaceae	Aguilar Rodríguez y col. (2001)
ATE066	Tilia mexicana Schlecht.	Sirimo	Tiliaceae	Sotomayor Castellanos y col. (2010)
ATE067	Ulmus mexicana (Liebm.) Planch.	Cuero de vieja	Ulmaceae	Erdoiza Sordo y Castillo Morales (1992)
ATE068	Zinowiewia aff. concinna Lund.	Librillo	Celastraceae	Sotomayor Castellanos y col. (2010)
ATE069	Zinowiewia concinna Lund.	Gloria	Celastraceae	Sotomayor Castellanos y col. (2010)
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
_	-	-	-	-
-	-	-	-	-
_	-	-	-	-
_	-	-	-	-
-	-	-	-	-
_	-	-	-	-
_	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	=	-	-
-	-	-	-	-

Anexo A.04 (1 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

Código	Nombre científico	Nombre común	Familia	Referencia
ATR001	Acacia angustissima (Mill.) Kuntze.	Timbe	Fabaceae	Barajas Morales (1987)
ATR002	Acacia berlandieri Benth.	Guajillo	Fabaceae	Fuentes Salinas y col. (2008)
ATR003	Acacia cochliacantha Humb. & Bonpl. ex Willd.	Espino	Fabaceae	Barajas Morales (1987)
ATR004	Acacia glomerosa Benth.	Rabo de lagarto	Fabaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR005	Acacia hindsii Benth.	Cornezuelo	Fabaceae	Barajas Morales (1987)
ATR006	Acacia mayana Lundell.	Crucetillo	Fabaceae	Barajas Morales (1987)
ATR007	Acacia melanoxylon R. Br.	Acacia	Fabaceae Mimosoideae	Sotomayor Castellanos y col. (2008)
ATR008	Acnistus macrophyllus (Benth) Standl.	Palmeadora	Solanaceae	Carrillo Sánchez (2000)
ATR009	Acosmium panamense (Benth.) Yakovlev.	Bálsamo amarillo	Fabaceae	De la Paz Pérez Olvera y Col. (1979)
ATR010	Acrocarpus fraxinifolius Wight ex Arn.	Cedro rosado	Fabaceae	Camarena Tello (2009)
ATR011	Adelia oaxacana (Müll. Arg.) Hemsl.	Nanche de monte	Euphorbiaceae	Barajas Morales (1987)
ATR012	Albizia plurijuga (Standl) Britt et Rose.	Parotilla	Fabaceae	Carrillo Sánchez (2000)
ATR013	Albizia purpusii Britton & Rose.	Palo blanco	Fabaceae	Barajas Morales (1987)
ATR014	Alchornea latifolia Sw.	Carne de caballo	Euphorbiaceae	Torelli (1982)
ATR015	Allophylus camptostachys Radlk.	Cascarillo	Sapindaceae	Barajas Morales (1987)
ATR016	Alseis yucatanensis Standl.	Tabaquillo	Rubiaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR017	Alstonia longifolia (A. DC.) Pichon.	Chamisillo	Apocynaceae	Barajas Morales (1987)
ATR018	Ampelocera hottlei (Standl.) Standl.	Cautivo	Ulmaceae	Torelli (1982)
ATR019	Amphipterygium adstringens (Schltdl.) Standl.	Cuachalalate	Julianaceae	Barajas Morales (1987)
ATR020	Amphitecna tuxtlensis A.H. Gentry.	Huiro de montaña	Bignoniaceae	Barajas Morales (1987)
ATR021	Andira inermis (W. Wrigth) DC.	Cuilimbuca	Fabaceae Faboideae	Tellez Sanchez (2004)
ATR022	Aphananthe monoica (Hemsl.) JF. Leroy	Ajuate	Ulmaceae	Bárcenas Pazos y col. (2005)
ATR023	Apoplanesia paniculata C. Presl.	Palo de arco	Fabaceae	Barajas Morales (1987)
ATR024	Ardisia compressa H.B.K.	Querembe	Myrsinaceae	Aguilar Rodríguez y col. (2001)
ATR025	Aspidosperma megalocarpon Müll. Arg.	Pelmax	Apocynaceae	Torelli (1982)
ATR026	Astronium graveolens Jacq.	Jobillo	Anacardiaceae	Bárcenas Pazos (1985)
ATR027	Belotia mexicana (DC.) K. Schum.	Majagua	Tiliaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR028	Bernoullia flammea Oliv.	Amapola	Bombacaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR029	Blepharidium mexicanum Standl.	Popiste	Rubiaceae	Torelli (1982)
ATR030	Bourreria purpusii Brandegee.	Huanita	Boraginaceae	Barajas Morales (1987)

Anexo A.04 (2 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

Código	Nombre científico	Nombre común	Familia	Referencia
ATR031	Brosimum alicastrum Sw.	Ramón	Moraceae	Torelli (1982)
ATR032	Bucida buceras L.	Pucté	Combretaceae	Echenique-Manrique y Plumptre (1994)
ATR033	Bunchosia palmeri S. Watson.	Garbancillo	Malpighiaceae	Barajas Morales (1987)
ATR034	Bursera excelsa (Kunth) Engl.	Pomo	Burseraceae	Barajas Morales (1987)
ATR035	Bursera grandifolia Mc Vaugh & Rzedowski.	Siracoque	Burseraceae	Cárdenas Palominos (2002)
ATR036	Bursera heteresthes Bullock.	Copal	Burseraceae	Barajas Morales (1987)
ATR037	Bursera instabilis McVaugh & Rzed.	Papelillo	Burseraceae	Barajas Morales (1987)
ATR038	Bursera simaruba (L.) Sarg.	Copalillo	Burseraceae	Torelli (1982)
ATR039	Byrsonima crassifolia (L.) Kunth.	Changungo	Malpighiaceae	Tamarit Urias (1996)
ATR040	Caesalpinia caladenia Standl.	Palo piojo	Fabaceae	Barajas Morales (1987)
ATR041	Caesalpinia coriaria (Jacq.) Willd.	Cascalote	Fabaceae	Barajas Morales (1987)
ATR042	Caesalpinia eriostachys Benth.	Palo alejo	Fabaceae	Barajas Morales (1987)
ATR043	Caesalpinia platyloba S. Watson.	Frijolillo	Fabaceae	Tamarit Urias (1997)
ATR044	Caesalpinia pulcherrima (L.) Sw.	Tabachin del monte	Fabaceae	Barajas Morales (1987)
ATR045	Caesalpinia sclerocarpa Standl.	Husache bola	Fabaceae	Barajas Morales (1987)
ATR046	Calatola laevigata Standl.	Nuez de calatola	Icacinaceae	Barajas Morales (1987)
ATR047	Calophyllum brasiliense Cambess.	Barí	Guttiferae	Torelli (1982)
ATR048	Calycophyllum candidissimum (Vahl) DC.	Dagame	Rubiaceae	Echenique-Manrique (1970)
ATR049	Capparis baducca L.	Baso de caballo	Capparidaceae	Barajas Morales (1987)
ATR050	Capparis indica (L.) Druce.	Colorin	Capparidaceae	Barajas Morales (1987)
ATR051	Capparis verrucosa Jacq.	Limoncillo	Capparidadeae	Barajas Morales (1987)
ATR052	Casearia corymbosa Kunth.	Plomillo blanco	Flacourtiaceae	Barajas Morales (1987)
ATR053	Casearia tremula (Griseb.) Griseb. ex C. Wright.	Ocotillo	Flacourtiaceae	Barajas Morales (1987)
ATR054	Cassia atomaria L.	Hediondilla	Fabaceae	Barajas Morales (1987)
ATR055	Cassia emarginata L.	Jediondillo	Fabaceae	Barajas Morales (1987)
ATR056	Cassia fistula L.	Lluvia de oro	Fabaceae Caesalpinoideae	Sotomayor Castellanos y col. (2008)
ATR057	Cecropia obtusifolia Bertol.	Guarumo	Urticaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR058	Cedrela mexicana Roem.	Cedro rojo	Meliaceae	Sotomayor Castellanos y col. (2008)
ATR059	Cedrela odorata L.	Cedro rojo	Melicaceae	Echenique-Manrique y Col. (1975)
ATR060	Ceiba pentandra (L.) Gaertn.	Ceiba	Malvaceae	Martínez y Martínez-Pinillos (1996)

Anexo A.04 (3 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

	.04 (5 pagma de 11). Catalogo de hombles de l	1		
Código	Nombre científico	Nombre común	Familia	Referencia
ATR061	Celeanodendron mexicanum Standl.	Guayabillo	Euphorbiaceae	Barajas Morales (1987)
ATR062	Chiranthodendron pentadactylon Larreat.	Manita	Sterculiaceae	Sotomayor Castellanos y col. (2008)
ATR063	Chloroleucon mangense (Jacq.) Britton & Rose.	Moralete	Fabaceae mimosoideae	Sotomayor Castellanos y col. (2008)
ATR064	Chlorophora tinctoria (L.) Gaudich. ex Benth.	Palo amarillo	Moraceae	Barajas Morales (1987)
ATR065	Cibistax donell-smithii (Rose) Seibert	Primavera	Bignoniaceae	Tamarit Urias y Fuentes Salinas (2003)
ATR066	Citharexylum affine D. Don.	Coral	Verbenaceae	Barajas Morales (1987)
ATR067	Clarisia biflora Ruiz & Pav.	Leche de vaca	Moraceae	Barajas Morales (1987)
ATR068	Cnidoscolus multilobus (Pax) I.M. Johnst.	Ortiga	Euphorbiaceae	Barajas Morales (1987)
ATR069	Coccoloba barbadensis Jacq.	Tamulero	Plygonaceae	Barajas Morales (1987)
ATR070	Coccoloba liebmannii Lindau.	Roble de la costa	Plygonaceae	Barajas Morales (1987)
ATR071	Cochlospermum vitifolium (Willd.) Spreng.	Comasuche	Cochlospermaceae	Barajas Morales (1987)
ATR072	Cocos nucifera L.	Palma de coco	Palmaceae	Silva Guzmán (1989)
ATR073	Cojoba arborea (L.) Britton & Rose.	Cuicuil	Fabaceae mimosoideae	Sotomayor Castellanos y col. (2008)
ATR074	Colubrina heteroneura (Griseb.) Standl.	Brazilillo	Rhamnaceae	Barajas Morales (1987)
ATR075	Colubrina triflora Brongn.	Carindapaz	Rhamnaceae	Carrillo Sánchez (2000)
ATR076	Comocladia engleriana Loes.	Teclate que quema	Anacardiaceae	Barajas Morales (1987)
ATR077	Cordia alliodora (Ruiz & Pav.) Oken.	Aguardientillo	Boraginaceae	Torelli (1982)
ATR078	Cordia boissieri A. DC.	Trompillo	Boraginaceae	Fuentes Salinas y col. (2008)
ATR079	Cordia dentata Poir.	Zazanil	Boraginaceae	Barajas Morales (1987)
ATR080	Cordia dodecandra A. DC.	Siricote	Boraginadeae	Sotomayor Castellanos y col. (2008)
ATR081	Cordia elaeagnoides A. DC.	Barcino	Boraginaceae	Sotomayor Castellanos (2005)
ATR082	Cordia megalantha S.F. Blake.	Xuchitl	Boraginaceae	Sotomayor Castellanos y col. (2008)
ATR083	Cordia seleriana Fernald.	Coliguana	Boraginaceae	Barajas Morales (1987)
ATR084	Cordia sonorae Rose.	Chirare	Boraginaceae	Barajas Morales (1987)
ATR085	Cornutia grandifolia (Schltdl. & Cham.) Schauer.	Lengua de vaca	Verbenaceae	Barajas Morales (1987)
ATR086	Couepia polyandra (Kunth) Rose.	Zapotillo	Chrysobalanaceae	Barajas Morales (1987)
ATR087	Crataeva tapia L.	Zapote amarillo	Capparidadeae	Barajas Morales (1987)
ATR088	Crescentia alata Kunth.	Cirián	Bignoniaceae	Barajas Morales (1987)
ATR089	Croton glabellus L.	Agualaja	Euphorbiaceae	Tamarit Urias (1996)
ATR090	Croton nitens Sw.	Algayubo	Euphorbiaceae	Barajas Morales (1987)

Anexo A.04 (4 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

Código	Nombre científico	Nombre común	Familia	Referencia
ATR091	Cupania dentata DC.	Cuisal	Sapindaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR092	Cupania macrophylla Mart.	Colorado	Sapindaceae	Barajas Morales (1987)
ATR093	Cupressus lusitanica Mill.	Ciprés	Cupressaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR094	Cymbopetalum baillonii R.E. Fr.	Flor de oreja	Annonaceae	Barajas Morales (1987)
ATR095	Cymbopetalum penduliflorum (Dunal) Baill.	Flor de oreja	Annonaceae	Torelli (1982)
ATR096	Cynometra oaxcana Brandegee.	Tamarindillo	Fabaceae	Barajas Morales (1987)
ATR097	Cynometra retusa Britton & Rose.	Tamarindillo de agua	Fabaceae	Barajas Morales (1987)
ATR098	Dalbergia congestiflora Pittier.	Canpinceran	Fabaceae	Barajas Morales (1987)
ATR099	Dalbergia granadillo Pittier.	Granadillo	Fabaceae papilionoideae	Cárdenas Palominos (2002)
ATR100	Dalbergia paloescrito Rzedowski et Guridi.	Palo escrito	Fabaceae papilionoideae	Sotomayor Castellanos y col. (2008)
ATR101	Dialium guianense (Aubl.) Sandwith.	Guapaque	Fabaceae Caesalpinoideae	Torelli (1982)
ATR102	Diospyros digyna Jacq.	Zapote prieto	Ebenaceae	Barajas Morales (1987)
ATR103	Dipholis minutiflora Pittier.	Zapotillo	Sapotaceae	Barajas Morales (1987)
ATR104	Dipholis salicifolia (L.) A. DC.	Zapote faisán	Sapotaceae	Huerta Crespo y Becerra Martínez (1982)
ATR105	Dipholis stevensonii Standl.	Guaité	Sapotaceae	Torelli (1982)
ATR106	Diphysa occidentalis Rose.	Guilache	Fabaceae	Barajas Morales (1987)
ATR107	Diphysa thurberi (A. Gray) Rydb. ex Standl.	Ixcuahuite	Fabaceae	Barajas Morales (1987)
ATR108	Drypetes lateriflora (Sw.) Drug et Urban.	Reventón	Putranjivaceae.	Fuentes Salinas y col. (2008)
ATR109	Dussia mexicana (Standl.) Harms.	Palo de burro	Fabaceae	Barajas Morales (1987)
ATR110	Enterolobium cyclocarpum (Jacq.) Griseb.	Parota	Fabaceae mimosoideae	Avila Calderon (1999)
ATR111	Erythrina folkersii Krukoff & Moldenke.	Equelite	Fabaceae	Barajas Morales (1987)
ATR112	Erythroxylon habanensis Jacq.	Coralillo	Erythroxylaceae	Barajas Morales (1987)
ATR113	Erythroxylon mexicanum Kunth.	Acusá	Erythroxylaceae	Barajas Morales (1987)
ATR114	Esenbeckia berlandieri Baill.	Limoncillo	Rutaceae	Correa Méndez (2006)
ATR115	Esenbeckia nesiotica Standl.	Palo amarillo	Rutaceae	Barajas Morales (1987)
ATR116	Eucalyptus marginata Smith	Eucalipto	Myrtaceae	Wiemann y Green (2007)
ATR117	Eugenia origanoides O. Berg.	Palito blanco	Myrtaceae	Barajas Morales (1987)
ATR118	Euphorbia peganoides Boiss.	Noche buena, Pascua	Euphorbiaceae	Barajas Morales (1987)
ATR119	Exostema caribaeum (Jacq.) Roem. & Schult.	Quina de Michoacan	Rubiaceae	Barajas Morales (1987)
ATR120	Faramea occidentalis (L.) A. Rich.	Hueso de tigre	Rubiaceae	Barajas Morales (1987)

Anexo A.04 (5 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

Código	Nombre científico	Nombre común	Familia	Referencia
ATR121	Ficus cotinifolia Kunth.	Saiba	Moraceae	Barajas Morales (1987)
ATR122	Ficus goldmanii Standl.	Zalate	Moraceae	Barajas Morales (1987)
ATR123	Ficus insipida Willd.	Higuerón	Moraceae	Barajas Morales (1987)
ATR124	Ficus maxima P. Miller.	Chimon	Moraceae	Schulz (1999)
ATR125	Forchameria pallida Liebm.	Armol	Capparidaceae	Barajas Morales (1987)
ATR126	Garrya longifolia Rose.	Palo amargo	Garryaceae	Sotomayor Castellanos y col. (2008)
ATR127	Genipa americana L.	Maluco	Rubiaceae	Echenique-Manrique y Col. (1975)
ATR128	Gilibertia arborea (L.) Marchal.	Zapotillo	Araliaceae	Sotomayor Castellanos y col. (2008)
ATR129	Gliricidia sepium (Jacq.) Kunth ex Walp.	Cacahuananche	Fabaceae	Barajas Morales (1987)
ATR130	Gmelina arborea L.	Melina	Verbenaceae	Sotomayor Castellanos y col. (2008)
ATR131	Guaiacum coulteri A. Gray.	Palo santo	Zygophyllaceae	Barajas Morales (1987)
ATR132	Guaiacum officinale L.	Guayacan negro	Zygophyllaceae	Echenique-Manrique y Col. (1975)
ATR133	Guapira linearibracteata (Heimerl) Lundell.	Mala sombra	Nyctaginaceae	Barajas Morales (1987)
ATR134	Guarea chichon C. DC.	Cedrillo	Meliaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR135	Guarea excelsa H. B. K.	Chichi de perra	Meliaceae	Echenique-Manrique (1970)
ATR136	Guarea glabra Vahl.	Azote	Meliaceae	Torelli (1982)
ATR137	Guarea grandifolia A.DC.	Cedrillo	Meliaceae	Bárcenas Pazos y col. (2005)
ATR138	Guatteria anomala R.E. Fr.	Zopo	Annonaceae	Torelli (1982)
ATR139	Guazuma ulmifolia Lamb.	Guácima	Sterculiaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR140	Guettarda elliptica Sw.	Negritos	Rubiaceae	Barajas Morales (1987)
ATR141	Guettarda seleriana (Loes.) Standl.	Popiste negro	Rubiaceae	Sotomayor Castellanos y col. (2008)
ATR142	Haematoxylon brasiletto H. Karst.	Azulillo	Fabaceae	Barajas Morales (1987)
ATR143	Hamelia longipes Standl.	Coloradillo	Rubiaceae	Barajas Morales (1987)
ATR144	Hampea nutricia Fryxell.	Majagua	Tiliaceae	Barajas Morales (1987)
ATR145	Harpalyce arborescens A. Gray.	Chicharrilla	Fabaceae	Correa Méndez (2006)
ATR146	Heliocarpus appendiculatus Turcz.	Majao	Tiliaceae	Barajas Morales (1987)
ATR147	Heliocarpus donnell-smithii Rose.	Jolocin	Tiliaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR148	Heliocarpus pallidus Rose.	Cicuita	Tiliaceae	Barajas Morales (1987)
ATR149	Hintonia latiflora (Sessé & Moc. ex DC.) Bullock.	Campanilla	Rubiaceae	Barajas Morales (1987)
ATR150	Hura polyandra Baill.	Habillo	Euphorbiaceae	Silva Guzmán (2008)

Anexo A.04 (6 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

Código	Nombre científico	Nombre común	Familia	Referencia
ATR151	Hymenaea courbaril L.	Guapinol	Fabaceae	Echenique-Manrique (1970)
ATR152	Ilex tolucana Hemsl.	Hiedra	Aquifoliaceae	Tamarit Urias (1996)
ATR153	Ilex valeri Standl.	Capiransi	Aquifoliaceae	Barajas Morales (1987)
ATR154	Inga brevipedicellata Harms.	Chalahuite	Fabaceae	Barajas Morales (1987)
ATR155	Inga hintonii Sandwith.	Cuajiniquil de hoja chica	Fabaceae Mimosoideae	Sotomayor Castellanos y col. (2008)
ATR156	Inga spuria Humb. et Bonpl. ex Willd.	Chacahuanté	Fabaceae Mimosoideae	Sotomayor Castellanos y col. (2008)
ATR157	Ipomoea wolcottiana Rose.	Cazahuate	Convolvulaceae	Barajas Morales (1987)
ATR158	Iresine arbuscula Uline & W.L. Bray.	Palo de Agua	Amaranthaceae	Barajas Morales (1987)
ATR159	Jacaranda mimosifolia D. Don.	Jacaranda	Bignoniaceae	Sotomayor Castellanos y col. (2008)
ATR160	Jacaratia mexicana A. DC.	Bonete	Caricaceae	Barajas Morales (1987)
ATR161	Jacquinia pungens A. Gray.	Piñicua	Theophrastaceae	Barajas Morales (1987)
ATR162	Jatropha chamelensis Pérez-Jiménez.	Piñoncillo de monte	Euphorbiaceae	Barajas Morales (1987)
ATR163	Jatropha malacophylla Standl.	Jatrofa	Euphorbiaceae	Barajas Morales (1987)
ATR164	Jatropha platyphylla Müll. Arg.	Bonete	Euphorbiaceae	Barajas Morales (1987)
ATR165	Krugiodendron ferreum (Vahl) Urban.	Hueso de tigre	Rhamnaceae	Correa Méndez (2006)
ATR166	Leucaena lanceolata S. Watson.	Guaje	Fabaceae	Barajas Morales (1987)
ATR167	Leucaena leucocephala (Lam.) de Wit.	Guaje	Fabaceae	Barajas Morales (1987)
ATR168	Licania platypus (Hemsl.) Fritsch.	Cabeza de mico	Chrysobalanaceae.	Barcenas Pazos y Davalos Sotelo (2001)
ATR169	Licaria campechiana (Standl.) Kosterm.	Pimientillo	Lauraceae	Sotomayor Castellanos y col. (2008)
ATR170	Licaria excelsa Kosterm.	Zacocote	Lauraceae	Sotomayor Castellanos y col. (2008)
ATR171	Lippia mcvaughi Moldenke.	-	Verbenaceae	Barajas Morales (1987)
ATR172	Lonchocarpus castilloi Standl.	Machiche	Fabaceae Papilionoideae	Torelli (1982)
ATR173	Lonchocarpus cochleatus Pittier.	Lombricero	Fabaceae	Barajas Morales (1987)
ATR174	Lonchocarpus constrictus Pittier.	-	Fabaceae	Barajas Morales (1987)
ATR175	Lonchocarpus cruentus Lundell.	Frijolillo	Fabaceae	Barajas Morales (1987)
ATR176	Lonchocarpus eriocarinalis Micheli.	Garrapato	Fabaceae	Barajas Morales (1987)
ATR177	Lonchocarpus hondurensis Benth.	Palo gusano	Fabaceae	Torelli (1982)
ATR178	Lonchocarpus parviflorus Benth.	-	Fabaceae	Barajas Morales (1987)
ATR179	Lonchocarpus rugosus Benth.	Machiche	Fabaceae	Tamarit Urias (1996)
ATR180	Lonchocarpus unifoliolatus Benth.	-	Fabaceae	Barajas Morales (1987)

Anexo A.04 (7 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

	.04 (7 pagina de 11). Catalogo de nombres de ma			, *
Código	Nombre científico	Nombre común	Familia	Referencia
ATR181	Lucuma campechiana Kunth.	Kanisté	Sapotaceae	Sotomayor Castellanos y col. (2008)
ATR182	Lucuma salicifolia Kunth.	Zapote amarillo	Sapotaceae	Martínez-Pinillos y Martínez Castillo (1996)
ATR183	Luehea candida (Moc. & Sessé ex DC.) Mart.	Algodoncillo	Sterculiaceae	Barajas Morales (1987)
ATR184	Luehea speciosa Willd.	Kascat	Tiliaceae	Sotomayor Castellanos y col. (2008)
ATR185	Lunania mexicana Brandegee.	Chile de montaña	Flacourtiaceae	Barajas Morales (1987)
ATR186	Lysiloma acapulcense (Kunth) Benth.	Tripal	Fabaceae	Mondragón Noguez (2004)
ATR187	Lysiloma bahamensis Benth.	Tzalám	Fabaceae	Pérez Tello (1994)
ATR188	Lysiloma divaricata (Jacq.) Macbride.	Rajador	Fabaceae	Correa Méndez (2006)
ATR189	Lysiloma latisiliquum (L.) Benth.	T'zalam	Fabaceae	Echenique-Manrique y Díaz Gómez (1969)
ATR190	Lysiloma microphylla Benth.	Tepeguaje	Fabaceae	Barajas Morales (1987)
ATR191	Maclura tinctoria (L.) D.Don ex Steud.	Mora	Moraceae	Echenique-Manrique (1970)
ATR192	Mangifera indica L.	Mango	Anacardiaceae	Correa Méndez (2003)
ATR193	Manilkara zapota (L.) P. Royen.	Chicozapote	Sapotacea	Torelli (1982)
ATR194	Mappia longipes Lundell.	-	Icacinaceae	Barajas Morales (1987)
ATR195	Metopium brownei (Jacq.) Urban.	Chechém negro	Anacardiaceae	Tamarit Urias (1996)
ATR196	Mimosa arenosa (Willd.) Poir.	-	Fabaceae	Barajas Morales (1987)
ATR197	Mirandaceltis monoica (Hemsl.) Sharp.	Chicharra	Cannabaceae	Barcenas Pazos y Davalos Sotelo (2001)
ATR198	Misanteca peckii I.M. Johnst.	Pimientillo	Lauraceae	Torelli (1982)
ATR199	Morisonia americana L.	Chico cimarron	Capparidadeae	Barajas Morales (1987)
ATR200	Mortoniodendron guatemalense Standl. & Steyerm.	-	Tiliaceae	Barajas Morales (1987)
ATR201	Mosquitoxylum jamaicense Krug & Urb.	Pajulté	Anacardiaceae	Barcenas Pazos y Davalos Sotelo (2001)
ATR202	Myrcianthes fragrans (S.W.) McVaugh var. fragrans.	Pimientilla	Myrtaceae	Correa Méndez (2006)
ATR203	Nectandra aff. Tabascensis Lundell.	Laurel	Lauraceae	Tamarit Urias (1996)
ATR204	Nectandra ambigens (S.F. Blake) C.K. Allen.	Laurelillo	Lauraceae	Barajas Morales (1987)
ATR205	Nectandra globosa (Aubl.) Mez.	Aguacatillo negro	Lauraceae	Sotomayor Castellanos y col. (2008)
ATR206	Nectandra rudis C.K. Allen.	Onte	Lauraceae	Torelli (1982)
ATR207	Nectandra salicifolia (Kunth) Nees.	Ahuacatillo	Lauraceae	Barajas Morales (1987)
ATR208	Nectandra tabascensis Lundell.	Laurel	Lauraceae	Sotomayor Castellanos y col. (2008)
ATR209	Neea psychotrioides Donn. Sm.	Palo pozole	Nictaginaceae	Barajas Morales (1987)
ATR210	Ochroma lagopus Sw.	Jop	Bombacaceae	Echenique-Manrique y Col. (1975)

Anexo A.04 (8 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

Código	Nombre científico	Nombre común	Familia	Referencia
ATR211	Ocotea dendrodaphne Mez.	-	Lauraceae	Barajas Morales (1987)
ATR212	Oecopetalum mexicanum Greenm. & C.H. Thomps.	Cachichín	Icacinaceae	Lascurain y col. (2007)
ATR213	Omphalea oleifera Hemsl.	Aguacate de danta	Euphorbiaceae	Barajas Morales (1987)
ATR214	Orthlon subsessile (Standl.) S.& S.	-	Violaceae	Barajas Morales (1987)
ATR215	Pachira aquatica Aubl.	Apompo	Bombacaceae	Torelli (1982)
ATR216	Peltogyne mexicana Martinez.	Palo morado	Fabaceae	Navarro Martinez y col. (2005)
ATR217	Persea americana Mill.	Aguacatillo blanco	Lauraceae	Sotomayor Castellanos y col. (2008)
ATR218	Phoebe effusa Meisn.	Aguacatillo	Lauraceae	Sotomayor Castellanos y col. (2008)
ATR219	Phoebe tampicensis Mez.	Magüira	Lauraceae	Correa Méndez (2006)
ATR220	Pimenta dioica (L.) Merr.	Pimienta	Myrtaceae	Barajas Morales (1987)
ATR221	Piptadenia obliqua (Pers.) J.F. Macbr.	=	Fabaceae	Barajas Morales (1987)
ATR222	Piscidia communis (Blake) I.M. Johnst.	Jabin	Fabaceae	Tamarit Urias y López Torres (2007)
ATR223	Piscidia piscipula Sarg.	Jabín	Fabaceae Papilionoideae	Sotomayor Castellanos y col. (2008)
ATR224	Piterocarpus rohrii Vahl.	Llora sangre	Fabaceae	Barajas Morales (1987)
ATR225	Pithecellobium arboreum (L.) Urban.	Frijolillo	Fabaceae Mimosoideae	Torelli (1982)
ATR226	Pithecellobium dulce (Roxb.) Benth.	Pinzan	Fabaceae	Barajas Morales (1987)
ATR227	Ebenopsis ebano (Berl.) Britton & Rose.	Ebano	Fabaceae	Zizumbo Cortés (1998)
ATR228	Pithecellobium flexicaule (Benth.) Coulter.	Ébano de Nuevo Leon	Fabaceae	Tamarit Urias (1997)
ATR229	Pithecellobium leucocalyx (Britton & Rose) Standl.	Caracolillo	Fabaceae	Torelli (1982)
ATR230	Pithecellobium mangense (Jacq.) J.F. Macbr.	Cacho de toro	Fabaceae	Barajas Morales (1987)
ATR231	Pithecellobium pallens (Benth.) Standley.	Tenaza	Fabaceae	Correa Méndez (2006)
ATR232	Pithecellobium seleri Harms.	Chamacuero	Fabaceae	Barajas Morales (1987)
ATR233	Platanus occidentalis L.	Sicomoro	Platanaceae	Silva Guzmán (2008)
ATR234	Platymiscium lasiocarpum Sandwith.	Granadillo	Fabaceae	Barajas Morales (1987)
ATR235	Platymiscium pinnatum (Jacq.) Dugand.	Chagane	Fabaceae	Barajas Morales (1987)
ATR236	Platymiscium yucatanum Standl.	Granadillo	Fabaceae Papilionoideae	Torelli (1982)
ATR237	Pleuranthodendron lindenii (Turcz.) Sleumer.	Golondrina	Flacourtiaceae	Barajas Morales (1987)
ATR238	Poeppigia procera C. Presl.	Bicho	Fabaceae	Barajas Morales (1987)
ATR239	Poulsenia armata (Miq.) Standl.	Chichicaste	Moraceae	Torelli (1982)
ATR240	Pouteria aff. campechiana (Kunth) Baehni.	Mameicillo	Sapotaceae	Sotomayor Castellanos y col. (2008)

Anexo A.04 (9 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

Código	Nombre científico	Nombre común	Familia	Referencia
ATR241	Pouteria durlandii (Standl.) Baehni.	Sapote cabello	Sapotaceae	Barajas Morales (1987)
ATR242	Pouteria sapota (Jacq.) H.E. Moore & Stearn.	Mamey	Sapotaceae	Barajas Morales (1987)
ATR243	Pouteria unilocularis (Donn. Smith) Baehni.	Zapotillo	Sapotaceae	Sotomayor Castellanos y col. (2008)
ATR244	Prosopis juliflora DC.	Mezquite	Fabaceae Mimosoideae	Villaseñor Aguilar (2005)
ATR245	Protium copal (Schltdl. et Cham.) Engl.	Copal	Burseraceae	Sotomayor Castellanos y col. (2008)
ATR246	Pseudobombax ellipticum (Kunth) Dugand.	Amapola	Bombacaceae	Torelli (1982)
ATR247	Pseudolmedia oxyphyllaria Donn Smith.	Mamba	Moraceae	Torelli (1982)
ATR248	Pseudolmedia oxyphyllaria Donn. Sm.	Pentetomate	Moraceae	Barajas Morales (1987)
ATR249	Psidium sartorianum (O. Berg) Nied.	Guayabillo	Myrtaceae	Barajas Morales (1987)
ATR250	Psychotria chiapensis Standl.	Yoale priteo	Rubiaceae	Barajas Morales (1987)
ATR251	Psychotria sp.	Popiste blanco	Rubiaceae	Sotomayor Castellanos y col. (2008)
ATR252	Pterocarpus hayesii Hemsl.	Palo de sangre	Fabaceae	Torelli (1982)
ATR253	Quararibea funebris (Llave) Visher.	Molinillo	Fagaceae	Bárcenas Pazos (1995)
ATR254	Quararibea guatemalteca (Donn. Sm.) Standl. & Steyerm.	Mahate	Bombacaceae	Barajas Morales (1987)
ATR255	Quercus anglohondurensis C.H. Müll.	Chiquinib de montaña	Fagaceae	Torelli (1982)
ATR256	Quercus barbinervis Benth.	Encino	Fagaceae	Echenique-Manrique y Becerra (1972)
ATR257	Randia tetracantha (Cav.) DC.	Arbol de la cruces	Rubiaceae	Barajas Morales (1987)
ATR258	Randia thurberi S. Watson.	Papache	Rubiaceae	Barajas Morales (1987)
ATR259	Recchia mexicana Moc. & Sessé ex DC.	Palo de corazon bonito	Simaroubaceae	Barajas Morales (1987)
ATR260	Rheedia edulis (Seem.) Triana & Planch.	Limoncillo	Guttiferae	Barajas Morales (1987)
ATR261	Rinorea guatemalensis (S. Watson) Bartlett.	Botoncillo	Violaceae	Barajas Morales (1987)
ATR262	Robinsonella discolor Rose & E.G. Baker ex Rose.	Malva	Malvaceae	Correa Méndez (2006)
ATR263	Robinsonella mirandae Gómez Pompa.	Manzanillo	Malvaceae	Schulz (1999)
ATR264	Rollinia rensoniana Standl.	Anona	Annonaceae	Schulz (1999)
ATR265	Rondeletia buddleioides Benth.	-	Rubiaceae	Barajas Morales (1987)
ATR266	Rondeletia galeottii Standl.	-	Rubiaceae	Barajas Morales (1987)
ATR267	Roseodendron donnell-smithii (Rose) Miranda.	Primavera	Bignoniaceae	Echenique-Manrique (1970)
ATR268	Roupala montana Aubl.	Palo del muerto	Proteaceae	Barajas Morales (1987)
ATR269	Ruprechtia fusca Fernald.	Guayabillo	Plygonaceae	Barajas Morales (1987)
ATR270	Sapindus saponaria L.	Jaboncillo	Sapindaceae	Correa Méndez (2006)
ATR271	Sapium lateriflorum Hemsl.	Amantillo	Euphorbiaceae	Tamarit Urias (1996)

Anexo A.04 (10 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

Código	Nombre científico	Nombre común	Familia	Referencia
ATR272	Sapium pedicellatum Huber.	Higuerilla brava	Euphorbiaceae	Barajas Morales (1987)
ATR273	Sapranthus microcarpus (Donn. Sm.) R.E. Fr.	Madre de cacao	Annonaceae	Barajas Morales (1987)
ATR274	Saurauia laevigata Triana & Planch.	Calama	Actinidiaceae	Barajas Morales (1987)
ATR275	Saurauia yasicae Loes.	Mameyito	Actinidiaceae	Barajas Morales (1987)
ATR276	Schizolobium parahybum (Vell.) S.F. Blake	Guanacaste	Fabaceae Caesalpinoideae	Torelli (1982)
ATR277	Sciadodendron excelsum Griseb.	Cedro macho	Araliaceae	Barajas Morales (1987)
ATR278	Sebastiania longicuspis Standl.	Chechén blanco	Euphorbiaceae	Sotomayor Castellanos (1980)
ATR279	Sickingia salvadorensis Standl.	Chacahuanté	Rubiaceae	Torelli (1982)
ATR280	Sideroxylon aff. guamerii Pither.	Caracolillo	Sapotaceae	Tamarit Urias (1997)
ATR281	Sideroxylon meyeri Standl.	Zapotillo	Sapotaceae	Sotomayor Castellanos y col. (2008)
ATR282	Simaruba glauca DC.	Zapatero	Simaroubaceae	Torelli (1982)
ATR283	Sloanea petenensis Standl. & Steyerm.	Terciopelo	Elaeocarpaceae	Barajas Morales (1987)
ATR284	Spathodea campanulata Beauv.	Tulipan africano	Bignoniaceae	Sotomayor Castellanos y col. (2008)
ATR285	Spondias mombin Lindl.	Jobo	Anacardiaceae	Torelli (1982)
ATR286	Spondias purpurea L.	Ciruelo	Anacardiaceae	Barajas Morales (1987)
ATR287	Spondias radlkoferi Donn. Sm.	Ciruelo cimarron	Anacardiaceae	Barajas Morales (1987)
ATR288	Stemmadenia donnell-smithii (Rose) Woodson.	Cojon de toro	Apocynaceae	Barajas Morales (1987)
ATR289	Sterculia apetala (Jacq.) H. Karst.	Bellota	Sterculiaceae	Tamarit Urias y Fuentes Salinas (2003)
ATR290	Swartzia cubensis (Britton & Wilson) Standl.	Katalox	Fabaceae Papilionoideae	Torelli (1982)
ATR291	Swartzia guatemalensis (Donn. Sm.) Pittier.	Corazon azul	Fabaceae	Barajas Morales (1987)
ATR292	Sweetia panamensis Benth.	Cencerro	Fabaceae Papilionoideae	Torelli (1982)
ATR293	Swietenia macrophylla King.	Caoba	Meliaceae	Torelli (1982)
ATR294	Switenia humillis Zucc.	Cobano	Meliaceae	Sotomayor Castellanos y col. (2008)
ATR295	Tabebuia chrysantha (Jacq.) Nicholson.	Atanicua	Bignoniaceae	Cárdenas Palominos (2002)
ATR296	Tabebuia donnell-smithii Rose.	Primavera	Bignoniaceae	Barajas Morales (1987)
ATR297	Tabebuia impetiginosa (Mart. ex DC.) Standl.	Amapa prieta	Bignoniaceae	Barajas Morales (1987)
ATR298	Tabebuia palmeri Rose.	Cañafistula	Bignoniaceae	Sotomayor Castellanos y col. (2008)
ATR299	Tabebuia penthaphylla (L.) Hemsl.	Palo de rosa	Bignoniaceae	Sotomayor Castellanos y col. (2008)
ATR300	Tabebuia rosea (Bertol) DC.	Rosa morada	Bignoniaceae	Sotomayor Castellanos y col. (2008)
ATR301	Talauma mexicana (DC.) G. Don.	Anonillo	Magnoliaceae	Torelli (1982)
ATR302	Talisia olivaeformis (Kunth) Radlk.	Guaya	Sapindaceae	Sotomayor Castellanos y col. (2008)

Anexo A.04 (11 pagina de 11). Catálogo de nombres de maderas de especies mexicanas. Angiospermas clima tropical.

Código	Nombre científico	Nombre común	Familia	Referencia
ATR303	Tectona grandis Linn. F.	Teca	Verbenaceae	Sotomayor Castellanos y col. (2008)
ATR304	Terminalia amazonia (J.F. Gmel.) Exell.	Canshán	Combretaceae	Torelli (1982)
ATR305	Tetrorchidium rotundatum Standl.	Choute	Euphorbiaceae	Barajas Morales (1987)
ATR306	Thevetia ovata (Cav.) A. DC.	Huevo de gato	Apocynaceae	Barajas Morales (1987)
ATR307	Thouinia paucidentata Radlk.	Verde lucero	Sapindaceae	Barajas Morales (1987)
ATR308	Thouinia serrata Radlk.	Hueso de tigre	Sapindaceae	Barajas Morales (1987)
ATR309	Tonduzia longifolia (A. DC.) Markgr.	Chamisillo	Apocynaceae	Barajas Morales (1987)
ATR310	Trema micrantha (L.) Blume.	Capulín de macapal	Ulmaceae	Erdoiza Sordo y Castillo Morales (1992)
ATR311	Trichilia japurensis C. DC.	Uchumallaca negra	Meliaceae	Barajas Morales (1987)
ATR312	Trichilia martiana C. DC.	Cedrillo	Meliaceae	Barajas Morales (1987)
ATR313	Trichilia moschata Sw.	Cedrillo Rojo	Meliaceae	Barajas Morales (1987)
ATR314	Trichilia pallida Sw.	Cedrillo	Meliaceae	Barajas Morales (1987)
ATR315	Trichilia trifolia L.	Huesito	Meliaceae	Barajas Morales (1987)
ATR316	Trophis mexicana (Liebm.) Bureau.	Estrellita	Moraceae	Barajas Morales (1987)
ATR317	Trophis mollis	Confitura	Moraceae	Barajas Morales (1987)
ATR318	Trophis racemosa L. Urb.	Ramon colorado	Moraceae	Barajas Morales (1987)
ATR319	Turpinia occidentalis (Sw.) G. Don.	Manzanillo	Staphyleaceae	Barajas Morales (1987)
ATR320	Urera caracasana (Jacq.) Gaudich. ex Griseb.	Mal hombre	Urticaceae	Barajas Morales (1987)
ATR321	Urera elata (Sw.) Griseb.	Ortiga	Urticaceae	Barajas Morales (1987)
ATR322	Vatairea lundellii (Standl.) Killip ex Record.	Tinco	Fabaceae	Torelli (1982)
ATR323	Virola guatemalensis (Hemsl.) Warb.	Cedrillo	Myristicaceae	Barajas Morales (1987)
ATR324	Vitex gaumeri Greenm.	Ya' axnik	Verbenaceae	Torelli (1982)
ATR325	Vochysia hondurensis Sprague.	Maca blanca	Vochysiaceae	Torelli (1982)
ATR326	Wimmeria concolor Schlecht. & Cham.	Volantín	Celastraceae	Correa Méndez (2006)
ATR327	Xylosma flexuosa (H.B.K.) Hemsl.	Alfilerillo	Flacourtiaceae	Aguilar Rodríguez y col. (2001)
ATR328	Xylosma intermedia (Seem.) Triana & Planch.	Caronilla	Flacourtiaceae	Barajas Morales (1987)
ATR329	Zanthoxylum caribaeum Lam.	Zorrillo	Rutaceae	Barajas Morales (1987)
ATR330	Zanthoxylum fagara (L.) Sarg.	Uña de gato	Rutaceae	Fuentes Salinas y col. (2008)
ATR331	Zanthoxylum kellermanii P. Wilson.	Tachuelillo	Rutaceae	Barajas Morales (1987)
ATR332	Ziziphus amole (Sessé & Moc.) M.C. Johnst.	Capulincito	Rhamnaceae	Barajas Morales (1987)
ATR333	Zuelania guidonia (Sw.) Britton & Millsp.	Trementino	Flacourtiaceae	Torelli (1982)

Anexo A.05 (1 pagina de 1). Catálogo de nombres de maderas de especies mexicanas. Gimnospermas pinos duros.

Código	Nombre científico	Nombre común	Familia	Referencia
GPD001	Pinus aff. pseudostrobus Lindl.	Pino blanco	Pinaceae Diploxylon	Ordóñez Candelaria y Col. (1989)
GPD002	Pinus arizonica Engelm.	Pino arizónica	Pinaceae Diploxylon	Dávalos Sotelo y Col. (1977)
GPD003	Pinus arizonica var. stormiae Martínez.	Pino	Pinaceae Diploxylon	Sotomayor Castellanos y col. (2010)
GPD004	Pinus cembroides Zucc.	Pino piñonero	Pinaceae Diploxylon	Sotomayor Castellanos y col. (2010)
GPD005	Pinus chihuahuana Engelm.	Pino chihuahuana	Pinaceae Diploxylon	Dávalos Sotelo y Col. (1977)
GPD006	Pinus contorta Douglas ex Loudon.	Pino	Pinaceae Diploxylon	Romero Amaya y Col. (1982)
GPD007	Pinus cooperi C.E. Blanco.	Pino chino	Pinaceae Diploxylon	Dávalos Sotelo y Col. (1977)
GPD008	Pinus cooperi var. ornelasi (Martinez) C.E. Blanco.	Pino chino	Pinaceae Diploxylon	Dávalos Sotelo y Col. (1977)
GPD009	Pinus coulteri D. Don.	Pino de piña grande	Pinaceae Diploxylon	Sotomayor Castellanos y col. (2010)
GPD010	Pinus douglasiana Martínez.	Pino lacio amarillo	Pinaceae Diploxylon	Villaseñor Aguilar (2007)
GPD011	Pinus durangensis f. quinquefoliata Martínez.	Pino real	Pinaceae Diploxylon	Dávalos Sotelo y Col. (1977)
GPD012	Pinus durangensis Martínez.	Pino de Durango	Pinaceae Diploxylon	Dávalos Sotelo y Col. (1977)
GPD013	Pinus greggii Engelm.	Pino	Pinaceae Diploxylon	López Locia y Valencia Manzo (2001)
GPD014	Pinus hartwegii Lindl.	Pino	Pinaceae Diploxylon	Rojas García y Villers Ruiz (2005)
GPD015	Pinus jeffreyi Balf.	Pino	Pinaceae Diploxylon	Romero Amaya y Col. (1982)
GPD016	Pinus lawsonii Roezl ex Gordon & Glend.	Pino ortiguillo	Pinaceae Diploxylon	Echenique-Manrique y Díaz Gómez (1969)
GPD017	Pinus leiophylla Schiede ex Schltdl. & Cham.	Pino negro	Pinaceae Diploxylon	Romero Hinojosa (1986)
GPD018	Pinus martinezii Larsen.	Pino coyote	Pinaceae Diploxylon	Sotomayor Castellanos y col. (2010)
GPD019	Pinus maximinoi Moore.	Pino	Pinaceae Diploxylon	Herrera Ferreyra (1992)
GPD020	Pinus michoacana var. cornuta Martínez.	Pino lacio	Pinaceae Diploxylon	Echenique-Manrique y Díaz Gómez (1969)
GPD021	Pinus montezumae Lamb.	Pino lacio	Pinaceae Diploxylon	Fuentes Salinas (1987)
GPD022	Pinus oocarpa Schiede.	Pino trompillo	Pinaceae Diploxylon	Herrera Ferreyra (1992)
GPD023	Pinus patula Schl. et Cham.	Ocote colorado	Pinaceae Diploxylon	Ordóñez Candelaria y Col. (1989)
GPD024	Pinus patula var. longepedunculata Schl. Et cham.	Pino	Pinaceae Diploxylon	Ordóñez Candelaria y Col. (1989)
GPD025	Pinus ponderosa Dougl.	Pino ponderosa	Pinaceae Diploxylon	Quiñones Olguín (1974)
GPD026	Pinus pringlei Shaw.	Pino escobetillo	Pinaceae Diploxylon	Acevedo Sánchez y Ambriz Parra (1999)
GPD027	Pinus pseudostrobus Lindl.	Pino michoacano	Pinaceae Diploxylon	Ordóñez Candelaria y Col. (1989)
GPD028	Pinus rudis Endl.	Ocote blanco	Pinaceae Diploxylon	Quiñones Olguín (1974)
GPD029	Pinus tenuifolia Benth.	Pino	Pinaceae Diploxylon	Bárcenas Pazos (1985)
GPD030	Pinus teocote Schl. et Cham.	Pino colorado	Pinaceae Diploxylon	Dávalos Sotelo (1978)
GPD031	Pseudotsuga menziesii (Mirb.) Franco.	Pino real colorado	Pinaceae Diploxylon	Wiemann y Green (2007)
-	-	-	-	-
-	-	-	-	-

Anexo A.06 (1 pagina de 1). Catálogo de nombres de maderas de especies mexicanas. Gimnospermas pinos blandos.

Código	Nombre científico	Nombre común	Familia	Referencia
GPB001	Pinus ayacahuite Ehr.	Ayacahuite	Pinaceae Haploxylon	Ordóñez Candelaria y Col. (1989)
GPB002	Pinus ayacahuite var. veitchii (Roezl) Shaw.	Pino	Pinaceae Haploxylon	Sotomayor Castellanos y col. (2010)
GPB003	Pinus lambertiana Douglas.	Pino	Pinaceae Haploxylon	Romero Amaya y Col. (1982)
GPB004	Pinus quadrifolia Parl. ex Sudw.	Pino piñonero	Pinaceae Haploxylon	Romero Amaya y col. (1982)
-	-	-	=	-
-	-	-	=	-
-	-	-	=	-
-	-	-	=	-
-	-	-	-	-

Anexo A.07 (1 pagina de 1). Catálogo de nombres de maderas de especies mexicanas. Otras gimnospermas.

Código	Nombre científico	Nombre común	Familia	Referencia
OGI001	Abies concolor (Gordon & Glend.) Lindl. ex Hildebr.	Pino real blanco	Pinaceae	Romero Amaya y Col. (1982)
OGI002	Abies durangensis Martínez.	Oyamel	Pinaceae	Sotomayor Castellanos y col. (2010)
ATR003	Abies religiosa (Kunth) Schltdl. & Cham.	Oyamel	Pinaceae	Echenique y Becerra (1972)
OGI004	Abies religiosa var. emarginata Loock & Martinez.	Oyamel	Pinaceae	Sotomayor Castellanos y col. (2010)
OGI005	Araucaria angustifolia (Bertol.) Kuntze.	Pino de brasil	Araucariaceae	Wiemann y Green (2007)
OGI006	Cupressus lindleyi Klotzsch.	Cedro blanco	Cupressaceae	Sotomayor Castellanos y col. (2010)
OGI007	Juniperus flaccida Schltdl.	Táscate	Cupressaceae	Sotomayor Castellanos y col. (2010)
OGI008	Libocedrus decurrens Torr.	Cedro	Cupressaceae	Romero Amaya y Col. (1982)
OGI009	Picea abies (L.) H. Karst.	Picea	Pinacea	Sotomayor Castellanos y col. (2010)
OGI010	Picea chihuahuana Martínez.	Pinabete	Pinaceae	Sotomayor Castellanos y col. (2010)
OGI011	Podocarpus matudae Lundell.	Palmillo	Podocarpaceae	Sotomayor Castellanos y col. (2010)
OGI012	Pseudotsuga macrolepis Flous.	Oyamel colorado	Pinaceae	Sotomayor Castellanos y col. (2010)
OGI013	Taxodium nucronatum Ten.	Ahuehuete	Taxoidiaceae	Sotomayor Castellanos y col. (2010)
OGI014	Thuja plicata D. Don.	Cedro rojo del oeste	Cupressaceae	Sotomayor Castellanos y col. (2010)
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-

Anexo A.08. Lista de referencias originales con valores de densidad e información de características tecnológicas de maderas de especies mexicanas.

Las referencias que se presentan en el Anexo A.08, fueron revisadas en base a dos criterios: Por una parte, que los autores presentaran valores experimentales de la densidad de la madera, calculada ésta, como la relación peso anhidro/volumen verde de la madera. Por otra, que las referencias especificaran el nombre científico, y de preferencia, el nombre común. Para el caso de las maderas angiospermas, se buscó igualmente el tipo de clima en el que habitan estas especies.

Cuando en las referencias no se encontraron algunos de los datos necesarios para conformar el catalogo: nombres científicos, comunes, familia, habitat y clasificación taxonómica, la base de datos se complementó con la información localizada en las referencias complementarias y en las páginas de la red que se presentan al final de la lista de citas bibliográficas.

- 1) Acevedo Sánchez, B.; Ambriz Parra, J.E. 1999. Efecto del muérdago (*Psittacanthus macrantherus Eichl*) en las propiedades físico-mecánicas de la madera de *Pinus pringlei* Shaw. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 2) Aguilar Rodríguez, S.; Abundiz Bonilla, L.; Barajas Morales, J. 2001. Comparación de la gravedad específica y características anatómicas de la madera de dos comunidades vegetales en México. *Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica*. 72(2):171-185.
- 3) Alcaraz Vargas, B.G. 2006. Caracterización atómica y propiedades físico-mecánicas de la madera de *Populus deltoides* Bartr. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 4) Ávila Calderón, L.E.A. 1999. Efecto de los extraíbles en cuatro propiedades físicas y mecánicas de la madera de *Enterolobium cyclocarpum* (Jacq.) Griseb. Tesis de Maestría. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 5) Barajas Morales, J. 1987. Wood Specific Gravity in Species from Two Tropical Forests in Mexico. *International Association of Wood Anatomists Bulletin* n.s. 8(12):143-148.
- 6) Barajas Morales, J.; León Gómez, C. 1984. Anatomía de maderas de México: Especies de una selva caducifolia. Instituto de Biología. Publicaciones especiales 1. Universidad Nacional Autónoma de México.
- 7) Bárcenas Pazos, G.; Dávalos Sotelo, R. 2001. Shrinkage Values for 106 Mexican Woods. *Journal of Tropical Forest Products*. 7(2):126-135.

- 8) Bárcenas Pazos, G.M. 1995. Caracterización tecnológica de veinte Especies maderables de la Selva Lacandona. *Madera y Bosques*. 1(1):9-38.
- 9) Bárcenas Pazos, G.M. et al. 2005. Relación estructura-propiedades de la madera de angiospermas Mexicanas. *Universidad y Ciencia. Trópico Húmedo*. 21(42):45-55.
- 10) Bárcenas-Pazos, G.M. 1985. Recomendaciones para el uso de 80 maderas de acuerdo con su estabilidad dimensional. Nota Técnica 11. LACITEMA-INIREB. México.
- 11) Camarena Tello, J.C. 2009. Caracterización físico-mecánica de la madera de *Acrocarpus fraxinifolius*. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 12) Cárdenas Palominos, A. 2002. Anatomía macroscópica de la madera de 10 especies de Arteaga, Michoacán, México. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 13) Carrillo Sánchez, A. 2000. Descripción anatómica microscópica y tendencias ecológicas estructurales de la Madera de 11 especies de árboles y arbustos del matorral subtropical, del municipio de Morelia, Michoacán, México. Tesis de Maestría. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 14) Cerriteño Espinoza, F.R. 1995. Propiedades físicas y mecánicas de la madera de *Casuarina equisetifolia* L. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 15) Cheers, G. Editor. 2006. Edición en Español. Botánica. Guía ilustrada de plantas. Könemann. Alemania.
- 16) Correa Méndez, F. 2003. Determinación de las características físicas y mecánicas de la madera de *Mangifera indica* L. Mango. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 17) Correa Méndez, F. 2006. Factibilidad tecnológica de aprovechamiento para tableros aglomerados de 16 especies de maderas del Edo. de Tamaulipas, México. Tesis de Maestría. División de Ciencias Forestales. Universidad Autónoma de Chapingo. México.
- 18) Cruz de León, J. 1994. Nota sobre las características físicas de la madera de cuatro especies de *Quercus* de Nuevo Leon, México. *Investigación agraria. Sistemas y recursos forestales*. 3(1):91-98.

- 19) Dávalos Sotelo, R.; Echenique-Manrique, R.; Sánchez Velasco, J. 1978. Características mecánicas de tres especies de pino del Cofre de Perote, Veracruz. *Biotica* 3 (1): 37-55.
- 20) Dávalos Sotelo, R.; Wangaard, F.F.; Echenique-Manrique, R. 1977. Clasificación de la Madera de Pinos Mexicanos. La madera y su uso en la construcción. Número 2. LACITEMA-INIREB. México.
- 21) De la Paz Pérez Olvera, C.; Dávalos Sotelo, R. 2008. Algunas características anatómicas y tecnológicas de la madera de 24 especies de *Quercus* (encinos) de México. *Madera y Bosques*. 14(3):43-80.
- 22) De La Paz Pérez Olvera, C.; Robles Gálvez, F.; Simental Serrano, A. 1979. Determinacion de las características anatomicas y fisicomecanicas de la madera de cuatro especies de leguminosas. Boletín Técnico Número 61. INIF. México.
- 23) Echenique-Manrique, R. 1970. Descripción, características y usos de 25 maderas tropicales mexicanas. Maderas de México. Número 1. Cámara Nacional de la Industria de la Construcción, México.
- 24) Echenique-Manrique, R.; Barajas Morales, J.; Pinzón Picaseño, L.M.; Pérez Morales, V. 1975. Estudio botánico y ecológico de la región del río Uxpanapa, Veracruz. Número 1. Características tecnológicas de la madera de diez especies. Programa Nacional Indicativo de Ecología Tropical CONACYT. Publicación del INIREB. México.
- 25) Echenique-Manrique, R.; Becerra Martínez, J. 1972. Algunas características físicomecánicas de la madera de tres especies de la cordillera neo-volcánica. Nota Técnica Número 27. INIF. México.
- 26) Echenique-Manrique, R.; Díaz Gómez, V. 1969. Algunas características tecnológicas de la madera de once especies mexicanas. Boletín Técnico Número 6. INIF. México.
- 27) Echenique-Manrique, R.; Plumptre, R.A. 1994. Guía para el uso de maderas de Belice y México. Universidad de Guadalajara, Consejo Británico, Universidad de Oxford, LACITEMA. México.
- 28) Erdoiza Sordo, J.J.; Castillo Morales, M.I. 1992. Susceptibilidad de impregnación con preservadores de cincuenta especies maderables mexicanas. La madera y sus usos 22. Boletín técnico. LACITEMA. México.
- 29) Escobedo Torres, S.M. 2005. Propiedades físico mecánicas y proceso de secado de madroño (*Arbutus xalapensis*). Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 30) Espinoza Herrera, R. 1996. Propiedades físico-mecánicas y caracterización anatómica de la madera de *Alnus acuminata* ssp. *glabrata* H.B.K. (Aile). Tesis de Licenciatura.

Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.

- 31) Forest Products Laboratory. 1999. Wood Handbook: Wood As An Engineering Material, Revised. FPL-GTR-113. U. S. Department of Agriculture. Forest Service. Forest Products Laboratory. USA.
- 32) Fuentes Salinas, M. 1987. Efecto de la digestión en los índices de calidad de pulpa para papel, de la madera de *Pinus montezumae* Lamb. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 33) Fuentes Salinas, M.; Correa Méndez, F.; Borja de la Rosa, A.; Corona Ambriz, A. 2008. Características tecnológicas de 16 maderas del estado de Tamaulipas, que influyen en la fabricación de tableros de partículas y de fibras. *Revista Chapingo. Serie ciencias forestales y del ambiente*. 14(1):65-71.
- 34) Grandtner, M.M. 2005. Elsevier's Dictionary of Trees. Volume 1. Elsevier B.V. The Netherlands.
- 35) Guizar Nolazco, E.; Sanchez Velez, A. 1991. Guía para el reconocimiento de los principales árboles del Alto Balsas. Universidad Autónoma Chapingo. México.
- 36) Gutiérrez Carvajal, L.; Dorantes López, J. 2007. Especies forestales de uso tradicional del Estado de Veracruz. CONAFOR-CONACYT-UV 2003-2004. México.
- 37) Herrera Ferreyra, M.A. 1992. Características Físico-Mecánicas de la Madera de 15 especies del municipio de Morelia. Tesis Profesional. UMSNH.
- 38) Huerta Crespo, J.; Becerra Martínez, J. 1982. Anatomía macroscópica y algunas características físicas de diecisiete maderas tropicales mexicanos. Boletín Divulgativo No. 46. INIF. México. (* Citado en Tamarit Urias y López Torres, 2007).
- 39) Lascurain, M. *et al.* 2007. Características anatómicas y propiedades mecánicas de la Madera de *Oecopetalum mexicanum* Greenm. & C.H. Thomps. (Icacinaceae) de la sierra de Misantla, Veracruz, México. *Maderas y Bosques*. 13(2):83-95.
- 40) Lincoln, W.A. 1986. World Woods in Color. Linden Publishing. USA.
- 41) López Locia, M.; Valencia Manzo, S. 2001. Variación de la densidad relativa de la madera de *Pinus greggii* Engelm. del norte de México. *Madera y Bosques*. 7(1):37-46.
- 42) Machuca Velasco, R. 1995. Estudio tecnológico de la madera de *Quercus insignis* de Huatusco, Veracruz, México. Tesis de Licenciatura. División de Ciencias Forestales. Universidad de Chapingo. Chapingo, Estado de México. México.

- 43) Martínez Castillo, J.L.; Martínez-Pinillos Cueto, E. 1996. Características de maquinado de 32 especies de madera. *Madera y Bosques*. 2(1):45-61.
- 44) Martínez Trinidad, T; Borja de la Rosa, A.; Ávalos-Rodríguez, M.A. 2001. Características tecnológicas de la madera de sac-chacah de Campeche en diferentes zonas del árbol. *Revista Chapingo. Serie Ciencias Forestales y del Ambiente*. 7(1):91-97.
- 45) Martínez-Pinillos Cueto, E.; Martínez Castillo, J.L. 1996. Características de cepillado y lijado de 33 especies de madera. *Madera y Bosques*. 2(2):11-27.
- 46) Mondragón Noguez, V.S. 2004. Contribución al conocimiento de la Madera de *Lysiloma acpulcensis* (Kunth) Benth. Tesis de Maestría. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 47) Nájera Luna, J.A. *et al.* 2005. Propiedades físicas y mecánicas de la madera en *Quercus laeta* Liebm. De el Salto, Durango. *Ra Ximhai*. 1(3):559-576.
- 48) Navarro Martínez, J.; Borja de la Rosa, A.; Machuca Velasco, R. 2005. Características tecnológicas de la madera de palo morado (*Peltogyne mexicana Mart*ínez) de tierra colorada, Guerrero, México. *Revista Chapingo. Serie Ciencias Forestales y del Ambiente*. 11(1):73-82.
- 49) Niembro Rocas, A. 1990. Árboles y arbustos útiles de México. Editorial LIMUSA. México.
- 50) Ordóñez Candelaria, V.R.; Bárcenas Pazos, G.M.; Quiroz Soto, A. 1989. Características físico-mecánicas de la madera de diez especies de San Pablo Macuiltianguis, Oaxaca. Nota Técnica. LACITEMA-INIREB. Xalapa, México.
- 51) Pennington, T.D.; Sarukhán, J. 1998. Segunda edición. Árboles tropicales de México. Manual para la identificación de las principales especies. Ediciones Científicas Universitarias. UNAM. México.
- 52) Pérez Tello, I. 1994. Propiedades fisico-mecánicas de la madera de *Bucida buceras* y *Lysiloma bahamensis*. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 53) Quiñones Olguín, J.O. 1974. Características físicas y mecánicas de la madera de cinco especies mexicanas. Boletín Técnico Número 42. INIF. México.
- 54) Quintanar Isaías, A. *et al.* 1998. Algunas características anatómicas y acústicas de tres especies de angiospermas de Huayacocotla, Ver. *Madera y Bosques*. 4(1):15-25.
- 55) Ramos Pantaleón, P. 1999. Características y propiedades de la madera de *Quercus elliptica* Née (Encino) del municipio de Morelia, Michoacán, México. Tesis de

- Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 56) Rojas García, F.; Villers Ruiz, L. 2005. Comparación de dos métodos para estimar la densidad de la madera de *Pinus hartwegii* Lindl. del volcán La Malinche. *Madera y Bosques*. 11(1):63-71.
- 57) Romero Amaya, C.; De la Paz Pérez Olvera, C.; Corral López, G. 1982. Características anatómicas y físicomecánicas de ocho especies de coníferas de Baja California Norte. Boletín Técnico Número 57. INIF. México.
- 58) Romero Hinojosa, J.A. 1986. Estudio tecnológico de *Pinus douglasiana* y *Pinus leiophylla* para proponer usos racionales. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 59) Schulz, H. 1999. Tecnología de la Madera de especies forestales. Universidad Autónoma Chapingo. División de Ciencias Forestales. México.
- 60) Silva Guzmán, J.A. 1989. Determinación de algunas características anatómicas y propiedades tecnológicas del fuste de palma de coco (*Cocos nucifera* L.). Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 61) Silva Guzmán, J.A. 2008. Fichas técnicas sobre características tecnológicas y usos de maderas comercializadas en México. Comisión Nacional Forestal. México.
- 62) Soler, M. 2001. Mil Maderas. Editorial UPV. España.
- 63) Sotomayor Castellanos, J.R. 1980. Ocho características tecnológicas de la madera de diez especies tropicales de la Selva Lacandona. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 64) Sotomayor Castellanos, J.R. 1987. Calidad de la madera para la industria de la construcción. Consideraciones Tecnológicas, Industriales y Comerciales. Cámara Nacional de la Industria de la Construcción. México.
- 65) Sotomayor Castellanos, J.R. 2005. Características mecánicas y clasificación de 150 especies de maderas Mexicanas. *Investigación e Ingeniería de la Madera*. UMSNH. 1(1):3-22. México.
- 66) Sotomayor Castellanos, J.R.; Guridi Gómez, L.I.; García Moreno, T. 2010. Características acústicas de la madera de 152 especies mexicanas. Velocidad del ultrasonido, módulo de elasticidad, índice material y factor de calidad. Base de datos. *Investigación e Ingeniería de la Madera*. 6(1):3-32.

- 67) Tamarit Urias, J.C. 1996. Determinación de los índices de calidad de pulpa para papel de 132 maderas latifoliadas. *Madera y Bosques*. 2(2):29-41.
- 68) Tamarit Urias, J.C. 1997*. Propiedades mecánicas de 71 maderas latifoliadas en funsión del peso seco volumétrico. Reporte de investigación. CIR-Sureste, INIFAP. México. (* Citado en Tamarit Urias y López Torres, 2007. Cita 69).
- 69) Tamarit Urias, J.C.; Fuentes Salinas, M. 2003. Parámetros de humedad de 63 maderas latifoliadas mexicanas en función de su densidad básica. *Revista Chapingo. Serie Ciencias Forestales y del Ambiente*. 9(2):155-164.
- 70) Tamarit Urias, J.C.; López Torres, J.L. 2007. Xilotecnología de los principales árboles tropicales de México. Libro Técnico No. 3. INIFAP-CIR Golfo Centro, Campo Experimental San Martinito. Tlahuapan, Puebla. México.
- 71) Téllez Sánchez, C. 2004. Descripción anatómica, caracterización físico mecánica y análisis químico de la Madera de *Andira inermis* (W. Wright) DC. Tesis de Maestría. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 72) Torelli, N. 1982. Estudio promocional de 43 especies forestales tropicales mexicanas. Programa de Cooperación Científica y Técnica, México-Yugoslavia. SARH. SFF. México.
- 73) Valdovinos Sánchez, S. 2004. Estudio anatómico microscópico, índices de calidad de pulpa, propiedades físico-mecánicas y químicas de la Madera de un Encino (*Quercus conspersa* Benth.) de la región de Morelia, Michoacán, México. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 74) Vega Sámano, A. 2002. Estudio anatómico, densidad básica e índices de calidad de pulpa de la madera de 4 árboles frutales del Municipio de Morelia: *Cataegus pubescens* (H.B.K.) Steud. (tejocote), *Prunus serotina* Ehrh. (capulín borracho), *Prunus hintonii* (C.K. Allen) Kosterm. (ucaz, aguacatillo) y *Psidium guajava* L. (guayabo). Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 75) Villaseñor Aguilar, J.M. 2005. Comportamiento mecánico de la madera de *Prosopis* sp. en la relación con la variación de su masa. Tesis de Licenciatura. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.
- 76) Villaseñor Aguilar, J.M. 2007. Comportamiento higroelástico de la madera de *Pinus douglasiana*. Evaluado por ultrasonido, ondas de esfuerzo, vibraciones transversales y flexión estática. Tesis de Maestría. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.

- 77) Wiemann, M.C.; Green, D.W. 2007. Estimating Janka hardness from specific gravity for tropical and temperate species. Research Paper FPL-RP-643. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. USA.
- 78) Zárate Morales, R.P.; Ordoñez Candelaria, V.R.; Martínez Castillo, J.L. 2001. Determinación de algunas propiedades físicas y mecánicas de *Grevillea robusta* A. Cunn. del estado de Veracruz. *Madera y Bosques*. 7(1):57-69.
- 79) Zizumbo Cortés, F. 1998. Estudio Tecnológico de la madera de *Pithecellobium ebano* (Benth.) Berlan., como fundamento para su aprovechamiento racional. Tesis de Maestría. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México.

Referencias complementarias:

- 80) Barajas Morales, J.; León Gómez, C. 1984. Anatomía de maderas de México: Especies de una selva caducifolia. Instituto de Biología. Publicaciones especiales 1. Universidad Nacional Autónoma de México.
- 81) Cheers, G. Editor. 2006. Edición en Español. Botánica. Guía ilustrada de plantas. Könemann. Alemania.
- 82) De la Paz Pérez Olvera, C.; Dávalos Sotelo, R.; Quintanar Isaías, P.A. 2005. Influencia de los radios en algunas propiedades físicas y mecánicas de la madera de ocho encinos (*Quercus*) de Durango, México. Madera y Bosques. 11(2):49-68.
- 83) Encina Domínguez, J.A.; Villareal Quintanilla, J.A. 2002. Distribución y aspectos ecológicos del género *Quercus* (Fagaceae), en el estado de Coahuila, México. Polibotánica. 13:1-23.
- 84) Guizar Nolazco, E.; Sanchez Velez, A. 1991. Guía para el reconocimiento de los principales árboles del Alto Balsas. Universidad Autónoma Chapingo. México.
- 85) Gutiérrez Carvajal, L.; Dorantes López, J. 2007. Especies forestales de uso tradicional del Estado de Veracruz. CONAFOR-CONACYT-UV 2003-2004. México.
- 86) Lincoln, W.A. 1986. World Woods in Color. Linden Publishing. USA.
- 87) Niembro Rocas, A. 1990. Árboles y arbustos útiles de México. Editorial LIMUSA. México.
- 88) Pennington, T.D.; Sarukhán, J. 1998. Segunda edición. Árboles tropicales de México. Manual para la identificación de las principales especies. Ediciones Científicas Universitarias. UNAM. México.

- 89) Sánchez-Ramos, G.; Reyes-Castillo, P. 2006. Ecological interaction of *Pantophthalmus roseni* (Enderlein) (Diptera: Pantophthalmidae) and the red oak *Quercus germane* Sachltdl. Et Cham. (Fagaceae) in a Mexican cloud forest. Acta Zoological Mexicana. 22(2):45-56.
- 90) Soler, M. 2001. Mil Maderas. Editorial UPV. España.
- 91) Tamarit Urias, J.C.; López Torres, J.L. 2007. Xilotecnología de los principales árboles tropicales de México. Libro Técnico No. 3. INIFAP-CIR Golfo Centro, Campo Experimental San Martinito. Tlahuapan, Puebla. México.
- 92) Tropicos. http://www.tropicos.org/Home.aspx.
- 93) United States Department of Agriculture. Agricultural Research Service. http://www.ars.usda.gov/main/main.htm.
- 94) United States Department of Agriculture. Germplasm Resources Information Network. http://www.ars-grin.gov/.
- 95) United States Department of Agriculture. Natural Resources Conservation Services. http://plants.usda.gov/index.html.
- 96) Valencia-A., S. 2004. Diversidad de género *Quercus* (Fagaceae) en México. Boletín de la Sociedad Botánica de México. 75:33-53.

Lista de Tablas

Tabla 01. Agrupación de las especies estudiadas	14
Tabla 02. Modelos de predicción para características elásticas de maderas de especies angiospermas y gimnospermas	15
Tabla 03. Características elásticas de maderas mexicanas. Angiospermas encinos rojos. H = 12 %; T = 20 °C	17
Tabla 04. Características elásticas de maderas mexicanas. Angiospermas encinos blancos. H = 12 %; T = 20 $^{\circ}$ C	18
Tabla 05. Características elásticas de maderas mexicanas. Angiospermas clima templado. H = 12 %; T = 20 °C	19
Tabla 06. Características elásticas de maderas mexicanas. Angiospermas clima tropical. H = 12 %; T = 20 $^{\circ}$ C	22
Tabla 07. Características elásticas de maderas mexicanas. Gimnospermas pinos duros. H = 12 %; T = 20 °C	33
Tabla 08. Características elásticas de maderas mexicanas. Gimnospermas pinos blandos. H = 12 %; T = 20 $^{\circ}$ C	34
Tabla 09. Características elásticas de maderas mexicanas. Otras gimnospermas. H = 12 %; T = 20 °C	34
Tabla 10. Estadígrafos de las características elásticas de maderas mexicanas. Angiospermas encinos rojos. H = 12 %; T = 20 $^{\circ}$ C	39
Tabla 11. Estadígrafos de las características elásticas de maderas mexicanas. Angiospermas encinos blancos. H = 12 %; T = 20 $^{\circ}$ C	39
Tabla 12. Estadígrafos de las características elásticas de maderas mexicanas. Angiospermas clima templado. H = 12 %; T = $20 ^{\circ}$ C	39
Tabla 13. Estadígrafos de las características elásticas de maderas mexicanas. Angiospermas clima tropical. $H=12~\%$; $T=20~^{\circ}C$	40
Tabla 14. Estadígrafos de las características elásticas de maderas mexicanas. Gimnospermas pinos duros. H = 12 %; T = 20 °C	40
Tabla 15. Estadígrafos de las características elásticas de maderas mexicanas. Gimnospermas pinos blandos. H = 12 %; T = $20 ^{\circ}\text{C}$	40

Tabla 16. Estadígrafos de las características elásticas de maderas mexicanas. Otras gimnospermas. H = 12 %; T = 20 °C	41
Tabla 17. Proporcionalidad de la anisotropía de las características elásticas	42
Tabla 18. Valores y relaciones de proporcionalidad de los coeficientes de Poisson	43
Tabla 19. Matrices de constantes elásticas y simetrías	44
Lista de Figuras	
Figura 01. Diagrama conceptual de la investigación	6
Figura 02. Interpretación gráfica de la media aritmética y del coeficiente de variación correspondientes a la densidad de la madera para cada grupo taxonómico	38