离散数学作业week4 by 2023010747 刘一铭

第五题

合取范式:
$$P \lor \neg P$$

析取范式: $P \lor \neg P$
主合取范式: 无
主析取范式: $\bigvee_{0;1}$
公式为真的解释: $\{P = T\}$
 $\{P = F\}$
合取范式: $(\neg P \lor \neg Q) \to (P \leftrightarrow \neg Q)$
 $= \neg (\neg P \lor \neg Q) \lor ((P \to \neg Q) \land (\neg Q \to P))$
 $= (P \land Q) \lor ((\neg P \lor \neg Q) \land (Q \lor P))$ [摩根律]
 $= ((P \land Q) \lor (\neg P \lor \neg Q)) \land ((P \land Q) \lor (Q \lor P))$ [夢根律]
 $= ((P \land Q) \lor \neg (P \land Q)) \land ((P \land Q) \lor Q \lor P)$ [摩根律]
 $= T \land ((P \land Q) \lor Q \lor P)$ [补余律]
 $= P \lor Q$ [同一律 + 吸收律]
析取范式: $(\neg P \lor \neg Q) \to (P \leftrightarrow \neg Q)$
 $= \neg (\neg P \lor \neg Q) \lor (P \land \neg Q) \lor (\neg P \land Q)$
 $= (P \land Q) \lor (P \land \neg Q) \lor (\neg P \land Q)$ [摩根律]
主合取范式: $\bigwedge_{1;2;3}$
公式为真的解释: $\{P = T, Q = T\}$
 $\{P = T, Q = F\}$
 $\{P = F, Q = T\}$

第六题

$$\begin{array}{l} A \rightarrow B \dot{\chi} \dot{q}: (P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R)) \\ = (P \rightarrow (Q \rightarrow R)) \rightarrow (P \rightarrow (Q \rightarrow R)) [\text{分配律}] \\ = T \\ A \wedge \neg B \dot{\chi} \dot{q}: (P \rightarrow (Q \rightarrow R)) \wedge \neg ((P \rightarrow Q) \rightarrow (P \rightarrow R)) \\ = (P \rightarrow (Q \rightarrow R)) \wedge \neg (P \rightarrow (Q \rightarrow R)) [\text{分配律}] \\ = F [\dot{\gamma} \dot{\gamma} \dot{q}] \\ \text{解释法}: (P \rightarrow (Q \rightarrow R)) = T \\ \text{从而有P} = T, Q \rightarrow R = T \vec{y} \dot{q} P = F \\ \ddot{z} P = T, Q \rightarrow R = T, \mathcal{M}Q = F \vec{y} Q = R = T \\ \ddot{z} Q = F, P \rightarrow Q = F, (P \rightarrow Q) \rightarrow (P \rightarrow R) = T \\ \ddot{z} Q = R = T \mathcal{M} (P \rightarrow Q) = (P \rightarrow R) = T, (P \rightarrow Q) \rightarrow (P \rightarrow R) = T \\ \ddot{z} P = F, \mathcal{M} (P \rightarrow Q) = (P \rightarrow R) = T, (P \rightarrow Q) \rightarrow (P \rightarrow R) = T \end{array}$$

$$P \to (Q \to R), \neg S \lor P, Q \Rightarrow S \to R$$
 $(1)\neg S \lor P [前提引 \lambda]$
 $(2)S \to P [(1)置换]$
 $(3)P \to (Q \to R) [前提引 \lambda]$
 $(4)S \to (Q \to R) [(2) (3) 三段论]$
 $(5)Q \to (S \to R) [(4)置换]$
 $(6)Q [前提引 \lambda]$
 $(7)S \to R [(5) (6) 分离]$

第八题

$$A = 北京队第三$$
 $B = 上海队第二$
 $C = 天津队第四$
 $D = 沈阳队第一$
 $A \to (B \to C), \neg D \lor A, B \Rightarrow D \to C$
 $(1) \neg D \lor A [前提引入]$
 $(2)D \to A [(1)置换]$
 $(3)D [附加前提引入]$
 $(4)A [(2)(3)分离]$
 $(5)A \to (B \to C) [前提引入]$
 $(6)B \to C [(4)(5)分离]$
 $(7)B [前提引入]$
 $(8)C [(6)(7)分离]$
 $(9)D \to C [条件证明规则]$