Punktgruppen und Kristalle

Naoki Pross, Tim Tönz

Hochschule für Technik OST, Rapperswil

10. Mai 2021

Einleitung

Geometrische Symmetrien

Algebraische Symmetrien

Kristalle

Anwendungen

Einleitung

Geometrische Symmetrien

Algebraische Symmetrien

Kristalle

Anwendungen

Polarisation Fe $\operatorname{ld} ec{E}_p$

Symmetriegruppe und Darstellung $G = \{1, r, \sigma, \dots\}$

 $\Phi: G \to O(n)$

 $U_{\lambda} = \{v : \Phi v = \lambda v\}$

 $\nabla^2 \vec{E} = \varepsilon \mu \frac{\partial^2}{\partial t^2} \vec{E}$

Helmholtz Wellengleichung

 $= \text{null} (\Phi - \lambda I)$

Ebene Welle

 $ec{E} = ec{E}_{
m o} \exp \left[i \left(ec{k} \cdot ec{r} - \omega t
ight)
ight]$

 $R\varepsilon\vec{E} = \frac{\omega^2}{\mu k^2}\vec{E}$

 $ec{E} \in U_{\lambda} \implies (R\varepsilon) ec{E} = \lambda ec{E}$

 $\vec{F} = \kappa \vec{x}$ (Hooke)

Ähenlich auch in der Mechanik

Anisotropisch Dielektrikum