

Examen Ordinario – Tipos A y B 23 de enero de 2010

ATENCIÓN:

- Lea atentamente todo el enunciado antes de comenzar a contestar.
- Dispone de **120 minutos** para realizar la prueba.
- No se podrán utilizar libros ni apuntes, ni calculadoras de ningún tipo.
- Los teléfonos móviles deberán permanecer desconectados durante la prueba (apagados, no silenciados).
- Solamente se corregirán los ejercicios contestados con bolígrafo. Por favor no utilice lápiz.

Ejercicio 1 [0,5 puntos]: Defina el concepto de exclusión mutua.

Mecanismo que evita el acceso simultaneo a los recursos compartidos

Ejercicio 2 [0,5 puntos]: ¿Qué utilidad tiene el número mágico en el formato ELF?

Identifica al ejecutable. Así por ejemplo, en el formato ELF, el primer byte del archivo ejecutable debe contener el valor hexadecimal 7f y los tres siguientes los caracteres 'E', 'L' y 'F'.

Ejercicio 3 [1 punto]: Considere un sistema de archivos tipo UNIX en el que el tamaño de bloque es de 1 KB y las direcciones de bloques se representan como valores de 2 bytes. Determine la longitud del fichero más grande que se puede representar.

i-nodo	Tamaño
enlaces directos [10]	1KB x 10 = 10KB
enlace indirecto simple	(1KB/2bytes) x 1KB = 512 KB
enlace indirecto doble	(1KB/2bytes) x (1KB/2bytes) x 1KB = 256 MB
enlace indirecto triple	(1KB/2bytes) x (1KB/2bytes) x (1KB/2bytes) x
	1KB = 128 GB
TOTAL	10 KB + 512 KB + 256 MB + 128 GB

Examen Ordinario – Tipos A y B 23 de enero de 2010

Ejercicio 4 [1 puntos]: Explique cuál es el mayor problema que plantea la caché de bloques del sistema de ficheros.

Mantener la coherencia de los datos entre la caché y los datos disponibles en el sistema de almacenamiento.

Ejercicio 5 [2,5 puntos]: Una aplicación de gestión de ascensores tiene el siguiente código:

```
void * ascensor(void * numeroAscensor) {
 /* Código para un hilo que gestiona un ascensor */
 int * p;
 int n;
 p = (int*)numeroAscensor;
 n = *p;
 /* n contiene el número de ascensor */
 /* Resto de código de la función ascensor() */
void inicia_hilos(pthread_h * hilos, /* array de hilos */
                   int n) /* número de hilos */
{
 int i;
 for (i=0;i<n;i++) {
  pthread_create(&th[i], NULL, ascensor, (void*)&i);
}
/* Resto de función */
```

- a) Si la función inicia_hilos se llama con un valor de 1 para el parámetro n ¿Puede darse algún problema? ¿Cuál?
- b) Si la función inicia_hilos se llama con un valor de 2 para el parámetro n ¿Puede darse algún problema? ¿Cuál?
 - Si, debido a que el parámetro de los hilos se pasa por referencia, lo que puede provocar que ambos hilos compartan el valor.
- c) Soluciones el problema de concurrencia que haya identificado en los apartados anteriores.

Hay dos soluciones:

Si se pasa por parámetro un valor entero:
 pthread_create(&th[i], NULL, ascensor, (void*)i);
 y en el proceso ligero cambiar:
 int p = (int)numeroAscensor;
 n = *p;

Examen Ordinario – Tipos A y B 23 de enero de 2010

2 Solución válida para cualquier tipo de parámetro:

```
int ocupado = 1;
pthread_cond_t cond;
pthread_mutex_t mutex;
void * ascensor(void * numeroAscensor) {
/* Código para un hilo que gestiona un ascensor */
 int * p;
 int n;
   pthread mutex lock(&mutex);
   p = (int*)numeroAscensor;
   n = *p;
   pthread_cond_signal(&cond);
   ocupado=0;
   pthread mutex unlock(&mutex);
 /* n contiene el número de ascensor */
/* Resto de código de la función ascensor() */
void inicia_hilos(pthread_h * hilos, /* array de hilos */
                  int n) /* número de hilos */
{
int i;
 for (i=0;i<n;i++) {
           pthread_mutex_lock(&mutex);
           pthread_create(&th[i], NULL, ascensor, (void*)&i);
           while(ocupado){
                  pthread_cond_wait(&cond,&mutex);
           }
           ocupado=1;
           pthread_mutex_unlock(&mutex);
   Resto de función */
```


Examen Ordinario – Tipos A y B 23 de enero de 2010

Ejercicio 6 [3 puntos]: Sea un sistema de ficheros que inicialmente está vacío. Es decir, inicialmente solamente contiene el directorio raíz.

Se pide:

a) Diagrama de i-nodos y bloques para el sistema de ficheros en el momento inicial.

i-nodos	0	1	2	3	4	5	6
	DIR						
	CE=2						
	BD=100						

datos	100		101	102	103	104	105	106
	. 0 0							

b) Diagrama de i-nodos y bloques tras ejecutar el mandato mkdir d1; mkdir d2; cd d2; mkdir d3; cd ..; mkdir d4.

i-nodos	0	1	2	3	4	
	DIR	DIR	DIR	DIR	DIR	
	CE=5	CE=2	CE=3	CE=2	CE=2	
	BD=100	BD=101	BD=102	BD=103	BD=104	

datos	100		101		102	103		104		105	106	
		0		1		2		3		4		
		0		0		0		2		0		
	d1	1			d3	3						
	d2	2										
	d4	4										

Examen Ordinario – Tipos A y B 23 de enero de 2010

c) Diagrama de i-nodos y bloques tras ejecutar el mandato cd /; ls > f1; cp f1 d2/f1

i-nodos	0	1	2	3	4	5	6		
	DIR	DIR	DIR	DIR	DIR	FILE	FILE		
	CE=5	CE=2	CE=3	CE=2	CE=2	CE=1	CE=1		
	BD=100	BD=101	BD=102	BD=103	BD=104	BD=105	BD=106		

datos	100		101		102	102		103		104		105	106
	. 0			1		2			3		4		
		0		0		0			2		0		
	d1	1			d3	3						d1	d1
	d2	2			f1	6						d2	d2
	d4	4										d4	d4
	f1	5											

d) Diagrama de i-nodos y bloques tras ejecutar el mandato cd /; ln -s /d2/f1 /d1/ss

i-nodos	0	1	2	3	4	5	6	7
	DIR	DIR	DIR	DIR	DIR	FILE	FILE	SYMLINK
	CE=5	CE=2	CE=3	CE=2	CE=2	CE=1	CE=1	CE=1
	BD=100	BD=101	BD=102	BD=103	BD=104	BD=105	BD=106	BD=107

datos	100		101		102	2	103	3	104		105	106	107
		0		1		2		3		4			/d2/f1
		0		0		0		2		0			
	d1	1	SS	7	d3	3					d1	d1	
	d2	2			f1	6					d2	d2	
	d4	4									d4	d4	
	f1	5											

Examen Ordinario – Tipos A y B 23 de enero de 2010

e) Diagrama de i-nodos y bloques tras ejecutar el mandato cd/; $\ln /d2/f1/d1/tt$

i-nodos	0	1	2	3	4	5	6	7
	DIR	DIR	DIR	DIR	DIR	FILE	FILE	SYMLINK
	CE=5	CE=2	CE=3	CE=2	CE=2	CE=1	CE=2	CE=1
	BD=100	BD=101	BD=102	BD=103	BD=104	BD=105	BD=106	BD=107

datos	100 101 102 10		03	104		105	106	107					
		0		1		2		3		4			/d2/f1
		0		0		0		2		0			
	d1	1	SS	7	d3	3					d1	d1	
	d2	2	tt	6	f1	6					d2	d2	
	d4	4									d4	d4	
	f1	5											

Examen Ordinario – Tipos A y B 23 de enero de 2010

Ejercicio 7 [1,5 puntos]: Escriba un programa en C que cifre un fichero basado en un fichero de claves. El programa tomará tres parámetros en la línea de mandatos:

cifra datos cifrado clave

El parámetro datos, se corresponde con el nombre del fichero de datos que se desea cifrar. El parámetro cifrado se corresponde con el nombre del fichero cifrado que se desea generar. El parámetro clave se corresponde con el nombre del fichero que contiene la tabla de claves a usar.

El programa le byte a byte el fichero de datos y para cada byte determina su valor cifrado usando el fichero de claves. Para realizar el cifrado se realizar un XOR (or exclusivo) entre el i-ésimo byte del fichero de datos y el i-ésimo byte del fichero de claves. El fichero de claves se recorre de forma circular, de modo que cuando se llega al final se recorre otra vez desde el principio.

Escriba el programa usando exclusivamente archivos proyectados en memoria.