Econ 6190 Problem Set 4

Fall 2024

- 1. Let $\{X_1, \ldots, X_n\}$ be a random sample from the uniform distribution on the interval $(\theta, \theta + 1), -\infty < \theta < \infty$. Find a minimal sufficient statistic for θ . This question shows that the dimension of a minimal sufficient statistic does not necessarily match the dimension of the unknown parameter.
- 2. [Mid term, 2022] Suppose $X \sim N(\mu, \sigma^2)$ with an unknown mean μ and **known** variance $\sigma^2 > 0$. We draw a random sample $\mathbf{X} := \{X_1, X_2, \dots X_n\}$ of size n from X. We are interested in estimating μ based on \mathbf{X} .
 - (a) Find a minimal sufficient statistic for μ .
 - (b) Suppose now $\sigma^2 = 1$ and n = 1. Consider the following estimator $\hat{\theta} = \frac{c^2}{c^2 + 1} X_1$ for some known c > 0.
 - i. Find the MSE of $\hat{\theta}$. Is $\hat{\theta}$ unbiased?
 - ii. Compare the MSE of $\hat{\theta}$ with the MSE of $\tilde{\theta} = X_1$. Which one is more efficient? (Hint: there is a range of values of μ for which $\hat{\theta}$ is more efficient).
 - iii. Based on your answer to (ii), which of the two estimators, $\hat{\theta}$ or $\tilde{\theta}$, is more efficient when $\mu = c$?
- 3. Let $\{X_1, \ldots, X_n\}$ be a random sample from finite second moment, and let $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ be an estimator for $\sigma^2 = \text{var}(X)$. Show $\mathbb{E}[\hat{\sigma}^2] = (1 \frac{1}{n})\sigma^2$ and thus find the bias of $\hat{\sigma}^2$.
- 4. [Hong] Suppose $\{X_1, X_2 \dots X_n\}$ is iid $N(0, \sigma^2)$. Consider the following estimator for σ^2 :

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

Find:

- (a) the sampling distribution of $n\hat{\sigma}^2/\sigma^2$.
- (b) $\mathbb{E}\hat{\sigma}^2$.
- (c) $\operatorname{var}(\hat{\sigma}^2)$.
- (d) $MSE(\hat{\sigma}^2)$.

5. Let $\{X_1,\ldots,X_n\}$ be a random sample from a Poisson distribution with parameter λ

$$P\{X_i = j\} = \frac{e^{-\lambda} \lambda^j}{j!}, j = 0, 1...$$

- (a) Find a minimal sufficient statistic for λ , say T.
- (b) Suppose we are interested in estimating probability of a count of zero $\theta = P\{X = 0\} = e^{-\lambda}$. Find an unbiased estimator for θ , say $\hat{\theta}_1$. (Note $P\{X = 0\} = \mathbb{E}[\mathbf{1}\{X = 0\}]$.)
- (c) Is the estimator in (b) a function of the minimal sufficient statistics T?
- (d) Use the definition of a sufficient statistic and an unbiased estimator, show that the estimator $\hat{\theta}_2 = \mathbb{E}[\hat{\theta}_1|T]$ is also unbiased and $\text{MSE}(\hat{\theta}_2) \leq \text{MSE}(\hat{\theta}_1)$.
- (e) Based on (d), find an analytic form of $\hat{\theta}_2$.