electroussafi.ueuo.com 1/4

Compteurs synchrones

Rappel:

Table de vérité d'une bascule JK

		70.00
J	K	Q
0 7	0	Q_0
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}}_0$

Pour réaliser des compteurs synchrones à base des bascules JK, on utilise la table suivante :

Qn	Qn+1	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Qn : état actuel Qn+1 : état suivant

x : indifférent (x = 0 ou x = 1)

Exemple : passage de l'état actuel à l'état suivant

	Q_3	\mathbf{Q}_2	\mathbf{Q}_1	Q_0	J_3	\mathbf{K}_3	J_2	K_2	\mathbf{J}_1	K_1	J_0	\mathbf{K}_0
état actuel	1	0	1	0	X	0	0	X	0	X	1	X
état suivant	1.	04	1									

Table de vérité d'une bascule D

D_n	Q_{n+1}
0	0
1	1

$$Q_{n+1} \equiv D_n$$

Exemple : passage de l'état actuel à l'état suivant

	Q_3	\mathbf{Q}_2	\mathbf{Q}_1	\mathbf{Q}_0	D_3	D_2	\mathbf{D}_1	D_0
Etat actuel	1	0	71	0	1	0	0	1
Etat suivant	1	0	0	1				

electroussafi.ueuo.com 2/4

Exercice 1

En utilisant les bascules JK, étudier et donner les schémas des compteurs suivants :

- 1. Compteur synchrone modulo 10
- 2. Compteur synchrone qui compte de la façon suivante :

Exercice 2

En utilisant les bascules D à front montant d'horloge, étudier et donner les schémas des compteurs suivants :

- **1.** Compteur synchrone modulo 8

electroussafi.ueuo.com 3/4

Exercice 3

- 1. Déterminer les équations des entrées J et K des bascules.
- 2. On suppose que le compteur part de l'état $Q_DQ_CQ_BQ_A=0000$. Compléter le tableau suivant et tracer les chronogrammes de l'horloge H et des sorties Q_A , Q_B , Q_C et Q_D .

Q_{D}	Q_{C}	Q_{B}	Q_{A}	J_{D}	$K_{\rm D}$	J_{C}	K _C	J_{B}	K _B	J_{A}	K _A
0	0	0	0	4	5						

3. Déterminer le modulo de ce compteur.

electroussafi.ueuo.com 4/4

Exercice 4

Analyser le fonctionnement du compteur suivant :

- 1. Donner les équations des entrées J et K des 3 bascules.
- 2. On suppose que le compteur par de l'état $Q_CQ_BQ_A=000$. Compléter le tableau suivant et tracer les chronogrammes de l'horloge H et des sorties Q_A , Q_B et Q_C .

					- 6	27			
Q_{C}	$Q_{\rm B}$	\mathbf{Q}_{A}	J_{C}	$K_{\mathbb{C}}$		J_{B}	K_{B}	J_{A}	\mathbf{K}_{A}
0	0	0		Š					
			18						
			0"						

- 3. Déterminer la séquence réalisée par ce compteur.
- **4.** Déterminer les fréquences f_C , f_B et f_A des sorties Q_C , Q_B et Q_A en fonction de la fréquence de l'horloge f_H .

Déterminer les rapports cycliques α_C , α_B et α_A des sorties Q_C , Q_B et Q_A .

