

# **PROFIBUS**

## **Specification**

## **Profile for Process Control Devices**

Version V 3.01 December 2004

**Order No: 3.042** 





INTERNATIONAL

**Document Identification: TC3-04-0006** 

File name: Profile-PA-Devices\_3042\_V301\_Dec04

Prepared by the PROFIBUS Working Group 3 "PROFIBUS PA Profile" in the Technical Committee 3 "Application Profiles".

The attention of adopters is directed to the possibility that compliance with or adoption of PI (PROFIBUS International) specifications may require use of an invention covered by patent rights. PI shall not be responsible for identifying patents for which a license may be required by any PI specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. PI specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.

#### NOTICE:

The information contained in this document is subject to change without notice. The material in this document details a PI specification in accordance with the license and notices set forth on this page. This document does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, PI MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR PURPOSE OR USE.

In no event shall PI be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss of profits, revenue, data or use, incurred by any user or any third party. Compliance with this specification does not absolve manufacturers of PROFIBUS or PROFINET equipment, from the requirements of safety and regulatory agencies (TÜV, BIA, UL, CSA, FCC, IEC, etc.).

PROFIBUS® and PROFINET® logos are registered trade marks. The use is restricted for members of Profibus International. More detailed terms for the use can be found on the web page www.profibus.com/libraries.html. Please select button "Presentations & logos".

Publisher:

PROFIBUS Nutzerorganisation e.V.

Haid-und-Neu-Str. 7 D-76131 Karlsruhe

Germany

Phone: +49 721 / 96 58 590
Fax: +49 721 / 96 58 589
E-mail: pi@profibus.com

Web site: www.profibus.com

| © No   | part   | of   | this  | public  | ation | may  | be  | repro  | duced | ar   | utilized  | in   | any   | form  | or I | by a | any  | means   |
|--------|--------|------|-------|---------|-------|------|-----|--------|-------|------|-----------|------|-------|-------|------|------|------|---------|
| electr | onic d | or n | necha | anical, | inclu | ding | pho | tocopy | ing a | nd I | microfili | m, v | witho | ut pe | rmis | ssio | n in | writing |
| from t | he pu  | blis | sher. |         |       |      |     |        |       |      |           |      |       |       |      |      |      |         |

### **Table of Contents**

| 1 | GE                                                   | NERAL REQUIREMENTS - INTRODUCTION                                                                                                                                                                                                                                                                                                               | 21                                                       |
|---|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|   | 1.1                                                  | Scope                                                                                                                                                                                                                                                                                                                                           | 21                                                       |
|   | 1.2                                                  | References 2.1 Normative References 2.2 Bibliography                                                                                                                                                                                                                                                                                            | 22<br>22<br>23                                           |
|   | 1.3                                                  | Definitions                                                                                                                                                                                                                                                                                                                                     | 24                                                       |
|   | 1.4                                                  | Abbreviations                                                                                                                                                                                                                                                                                                                                   | 25                                                       |
|   | 1.5                                                  | Instruction for Use of this Profile                                                                                                                                                                                                                                                                                                             | 25                                                       |
| 2 | GE                                                   | NERAL REQUIREMENTS - TECHNICAL OVERVIEW                                                                                                                                                                                                                                                                                                         | 27                                                       |
|   | 2.1                                                  | General Overview                                                                                                                                                                                                                                                                                                                                | 27                                                       |
|   | 2.2                                                  | Device Model                                                                                                                                                                                                                                                                                                                                    | 27                                                       |
|   | 2.3                                                  | Block Model                                                                                                                                                                                                                                                                                                                                     | 28                                                       |
|   | 2.4                                                  | Status Flow between Blocks                                                                                                                                                                                                                                                                                                                      | 29                                                       |
|   | 2.5                                                  | Parameter 5.1 Naming and Addressing of Parameters 5.2 Parameter Usage                                                                                                                                                                                                                                                                           | <b>29</b><br>30<br>31                                    |
|   | 2.6                                                  | Standard Parameter Storage in Simple Devices                                                                                                                                                                                                                                                                                                    | 31                                                       |
| 3 | GE                                                   | NERAL REQUIREMENTS - STANDARD PARAMETERS AND OBJECTS                                                                                                                                                                                                                                                                                            | 32                                                       |
|   | 3.1<br>3.1<br>3.1<br>3.1<br>3.1<br>3.1<br>3.1<br>3.1 | Block Parameters and Objects Introduction  1 Block Object 2 Static Revision Parameter (ST_REV) 3 Tag Description Parameter (TAG_DESC) 4 Strategy Parameter (STRATEGY) 5 Alert Key Parameter (ALERT_KEY) 6 Target Mode Parameter (TARGET_MODE) 7 Mode Parameter (MODE_BLK) 8 Alarm Summary Parameter (ALARM_SUM) 9 View Objects 10 Alarm Objects | 32<br>32<br>32<br>32<br>32<br>32<br>32<br>34<br>34<br>35 |
|   | 3.2<br>3.2                                           | Table Legend 2.1 Parameter Description Table 2.2 Parameter Attribute Table 2.3 View Object Table                                                                                                                                                                                                                                                | 35<br>35<br>35<br>37                                     |
|   | 3.3                                                  | Standard Parameter Definition 3.1 Parameter Description of the Standard Parameters 3.2 Parameter Attributes of the Standard Parameters 3.3 View Object of the Standard Parameters                                                                                                                                                               | 38<br>38<br>39<br>39                                     |

| 3.4 Block Construction                                                                                                                        | 40                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 3.5 Batch Parameter (BATCH) Standard for Function Blocks                                                                                      | 41                    |
| <ul><li>3.6 Device Management and Identification Parameters</li><li>3.6.1 Device Management Overview</li><li>3.6.2 Directory Object</li></ul> | <b>41</b><br>41<br>41 |
| 3.6.2.1 Overview                                                                                                                              | 41                    |
| 3.6.2.2 Header                                                                                                                                | 42                    |
| 3.6.2.3 Composite List Directory Entries, Composite Directory Entries                                                                         | 42                    |
| 3.6.3 Device Management Parameters Attributes                                                                                                 | 43                    |
| 3.6.4 Device Management View Object                                                                                                           | 44                    |
| otorr Donos management view esject                                                                                                            |                       |
| 3.7 General Data Types and Structures                                                                                                         | 44                    |
| 3.7.1 Data Types                                                                                                                              | 44                    |
| 3.7.1.1 Common Data Types                                                                                                                     | 44                    |
| 3.7.1.2 Time_Value Data Type                                                                                                                  | 44                    |
| 3.7.2 Block Structure                                                                                                                         | 45                    |
| 1.1.1 52                                                                                                                                      |                       |
| 3.7.3 Value & Status – Floating Point Structure                                                                                               | 52                    |
| 3.7.3.1 Coding of Status                                                                                                                      | 53                    |
| 1.1.1.1 Invalid Status Values                                                                                                                 | 55                    |
| 3.7.3.2 55                                                                                                                                    |                       |
| 1.1.1.1 Reserved Status Values                                                                                                                | 55                    |
| 3.7.3.3 55                                                                                                                                    |                       |
| 1.1.1.1 Use of the Status Byte for Profile Compliant Devices                                                                                  | 57                    |
| 3.7.3.4 57                                                                                                                                    |                       |
| 3.7.3.5 Priority of Status                                                                                                                    | 58                    |
| 3.7.3.6 Definition of Status                                                                                                                  | 59                    |
| 3.7.4 Value & Status – Discrete Structure                                                                                                     | 62                    |
| 3.7.5 Scaling Structure                                                                                                                       | 63                    |
| 3.7.6 Mode Structure                                                                                                                          | 63                    |
| 3.7.7 Alarm Float Structure                                                                                                                   | 63                    |
| 3.7.8 Alarm Summary Structure                                                                                                                 | 64                    |
| 3.7.9 FB Linkage Structure                                                                                                                    | 66                    |
| 3.7.10 Simulation - Floating Point Structure                                                                                                  | 66                    |
| 3.7.11 Simulation - Discrete Structure                                                                                                        | 67                    |
| 3.7.12 Result Structure                                                                                                                       | 67                    |
| 3.7.13 Measurement Range Structure                                                                                                            | 68                    |
| 3.7.14 Binary Message Structure                                                                                                               | 68                    |
| 3.7.15 Sample Selection Structure                                                                                                             | 69                    |
| 3.7.16 Logbook Structure                                                                                                                      | 70                    |
| 1.1.1 70                                                                                                                                      |                       |
| 3.7.17 Precalculation Structure                                                                                                               | 70                    |
| 3.7.18 Sequential Control Structure                                                                                                           | 72                    |
| 3.7.19 Batch Structure                                                                                                                        | 73                    |
| 3.7.20 Feature Structure                                                                                                                      | 73                    |
|                                                                                                                                               |                       |
| 3.8 Table Handling                                                                                                                            | 75                    |
| 3.8.1 Parameter Description of the Table Handling Parameters                                                                                  | 79                    |
| 3.8.2 Parameter Attributes of the Table Handling Parameters                                                                                   | 83                    |
| 3.9 References between Function Blocks and Transducer Blocks                                                                                  | 83                    |
| 3.3 Neierences between Function blocks and Hansuacer blocks                                                                                   | 03                    |
| 3.10 Links between Function Blocks                                                                                                            | 85                    |
| 3.10.1 Parameter Description of the Link Object                                                                                               | 85                    |
|                                                                                                                                               |                       |
| 3.11 Physical Block                                                                                                                           | 86                    |

|   | 3.1<br>3.1<br>3.1 | 11.1 Parameter Description of the Physical Block 11.2 Parameter Attributes of the Physical Block 11.3 View Object of the Physical Block 11.4 Coding of the Physical Block Parameter DIAGNOSIS 11.5 Write Access Protection Control                                                                                                                                                                                                                          | 86<br>90<br>91<br>92<br>93                                  |
|---|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 4 | GE                | NERAL REQUIREMENTS - START-UP/BREAK-DOWN                                                                                                                                                                                                                                                                                                                                                                                                                    | 94                                                          |
|   | 4.1               | New-start-up (cold start-up)                                                                                                                                                                                                                                                                                                                                                                                                                                | 94                                                          |
|   | 4.2               | Re-start-up (warm start-up)                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94                                                          |
| 5 | GE                | NERAL REQUIREMENTS - OVERVIEW ABOUT ALL PARAMETER COD                                                                                                                                                                                                                                                                                                                                                                                                       | ES95                                                        |
|   | 5.1               | DEVICE_MAN_ID                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95                                                          |
|   | 5.2               | Units Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96                                                          |
|   | 5.3               | Material Codes                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108                                                         |
| 6 | GE                | NERAL REQUIREMENTS - CONFORMANCE STATEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                         |
| 7 | GE                | NERAL REQUIREMENTS - DOCUMENT HISTORY                                                                                                                                                                                                                                                                                                                                                                                                                       | 111                                                         |
| 8 | MA                | PPING OF THE PROFILE TO PROFIBUS-DP - INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                          | 113                                                         |
|   | 8.1               | Scope                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113                                                         |
|   | 8.2               | References                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113                                                         |
|   | 8.3               | Definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 113                                                         |
|   | 8.4               | Abbreviations                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113                                                         |
| 9 | MA                | PPING OF THE PROFILE TO PROFIBUS-DP - TECHNICAL OVERVIEW                                                                                                                                                                                                                                                                                                                                                                                                    | 114                                                         |
|   | 9.1               | General Function Block Mapping                                                                                                                                                                                                                                                                                                                                                                                                                              | 115                                                         |
|   | 9.2               | Mapping for Acyclic Data Transfer                                                                                                                                                                                                                                                                                                                                                                                                                           | 115                                                         |
|   | 9.3               | Mapping for Cyclic Data Transfer                                                                                                                                                                                                                                                                                                                                                                                                                            | 118                                                         |
|   | 9.4<br>9.4<br>9.4 | Detailed Definition of the Device Management 4.1 Overview 4.2 Device Management Parameter Description 4.3 Device Management Mapping and Parameter Attributes 4.4 Device Management Directory Examples 9.4.4.1 Device with 1 PB, 1 FB and 1 TB (see Figure 14) 9.4.4.2 Device with 1 PB, 1 FB and 3 TB (see Figure 15) 9.4.4.3 Device with 1 PB, 2 FBs and 3 TBs (see Figure 16) 9.4.4.4 Device with 1 PB, 2 FBs and 3 TBs and 1 Link Object (see Figure 17) | 121<br>121<br>121<br>122<br>125<br>125<br>126<br>127<br>128 |

| 10 MAPPING OF THE PROFILE TO PROFIBUS-DP - COMMUNICATION PROFILE                                                                                                                                                                                                                                                                                                                                                                               | 130                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 10.1 Subset of Services                                                                                                                                                                                                                                                                                                                                                                                                                        | 130                                                                       |
| 10.2 Return Error Codes                                                                                                                                                                                                                                                                                                                                                                                                                        | 130                                                                       |
| 10.3 Use of the DP Services to Provide the Profile Functionality  10.3.1 DDLM_Data_Exchange 10.3.2 DDLM_CHK_CFG 10.3.2.1 General Definition 10.3.2.2 Definition of Profile Specific Identification Format for Multi-Variable Devices 10.3.3 DDLM_GET_CFG 10.3.4 DDLM_SET_PRM 10.3.5 MS2_READ 10.3.6 MS2_WRITE 10.3.7 MS1_READ 10.3.8 MS1_WRITE 10.3.9 DDLM_SLAVE_DIAG 10.3.9.1 Status Appears and Status Disappears 10.3.10 DDLM_SET_SLAVE_ADD | 133<br>133<br>133<br>135<br>138<br>139<br>139<br>139<br>139<br>141<br>141 |
| 10.4 Loss of Cyclic Communication                                                                                                                                                                                                                                                                                                                                                                                                              | 142                                                                       |
| 10.5 Communication Relationship                                                                                                                                                                                                                                                                                                                                                                                                                | 142                                                                       |
| <ul> <li>10.6 Default Values for Communication Parameters (Bus Parameters)</li> <li>10.6.1 RS485</li> <li>10.6.2 IEC61158-2 MBP Communication</li> <li>11 MAPPING OF THE PROFILE TO PROFIBUS-DP - PROFILE SPECIFIC</li> </ul>                                                                                                                                                                                                                  | 142<br>142<br>143                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144                                                                       |
| 11.1 Ident Number                                                                                                                                                                                                                                                                                                                                                                                                                              | 144                                                                       |
| 11.2 GSD File Names                                                                                                                                                                                                                                                                                                                                                                                                                            | 145                                                                       |
| 12 MAPPING OF THE PROFILE TO PROFIBUS-DP - CONFORMANCE STATEMENTS                                                                                                                                                                                                                                                                                                                                                                              | 146                                                                       |
| 13 MAPPING OF THE PROFILE TO PROFIBUS-DP - GSD-FILES                                                                                                                                                                                                                                                                                                                                                                                           | 147                                                                       |
| 14 MAPPING OF THE PROFILE TO PROFIBUS-DP - DOCUMENT HISTORY                                                                                                                                                                                                                                                                                                                                                                                    | 148                                                                       |
| 15 DEVICE DATA SHEET TRANSMITTER                                                                                                                                                                                                                                                                                                                                                                                                               | 150                                                                       |
| 15.1 Additional Parameters for the Physical Block Parameter Description                                                                                                                                                                                                                                                                                                                                                                        | 150                                                                       |
| <ul> <li>15.2 Analog Input Function Block</li> <li>15.2.1 Analog Input Function Block Overview</li> <li>15.2.1.1 Al State Machine</li> <li>15.2.1.2 Conditions on which the Actual Mode is calculated and the Target Mode is changed</li> <li>15.2.1.3 Conditions on which the Output Status is generated</li> </ul>                                                                                                                           | 150<br>150<br>152<br>152<br>153                                           |

| 45.2.2 December Description of the Analog Input Function Plack                           | 151 |
|------------------------------------------------------------------------------------------|-----|
| 15.2.2 Parameter Description of the Analog Input Function Block                          | 154 |
| 15.2.3 Parameter Attributes for the Analog Input Function Block                          | 157 |
| 15.2.4 View Object of the Analog Input Function Block                                    | 158 |
| 15.2.5 Additions to the Start-up and Break-down Phase                                    | 158 |
| 15.2.6 Remarks on the Usage of the PV, OUT, and LIMIT Parameters                         | 159 |
| 15.3 Totalizer Function Block                                                            | 159 |
| 15.3.1 Totalizer Function Block Overview                                                 | 159 |
| 15.3.1.1 Totalizer State Machine                                                         | 161 |
| 15.3.1.2 Actual Mode Calculation                                                         | 162 |
| 15.3.1.3 Status Calculation                                                              | 162 |
| 15.3.2 Parameter Description of the Totalizer Function Block                             | 164 |
| 15.3.3 Parameter Attributes of the Totalizer Function Block                              | 167 |
| 15.3.4 View Object of the Totalizer Function Block                                       | 168 |
| 15.3.5 Additions to the Start-up and Break-down Phase                                    | 168 |
| 16 DEVICE DATA SHEET TRANSMITTER - TRANSDUCER BLOCKS                                     | 169 |
| 16.1 Temperature                                                                         | 170 |
| 16.1.1 Temperature Transducer Block Overview                                             | 170 |
| 16.1.1.1 Thermocouple input                                                              | 170 |
| 16.1.1.2 Thermoresistance input                                                          | 170 |
| 16.1.1.3 Pyrometer input                                                                 | 170 |
| 16.1.1.4 Transmitter block                                                               | 170 |
| 16.1.2 Parameter Description of the Temperature Transducer Block                         | 171 |
| 16.1.2.1 Description of the General Parameters of the Temperature Transducer Block       | 171 |
| 16.1.2.2 Description of Additional Parameters of Thermocouple Devices                    | 175 |
| 16.1.2.3 Description of Additional Parameters of Thermoresistance Devices                | 175 |
| 16.1.2.4 Description of Additional Parameters of Optical Pyrometer Devices               | 175 |
| 16.1.3 Parameter Attributes of the Temperature Transducer Block                          | 177 |
| 16.1.3.1 Parameter Attributes of the Temperature Transducer Block General Parameters     | 177 |
| 16.1.3.2 Parameter Attributes of the Additional Parameters for Thermocouple Devices      | 178 |
| 1.1.1.1 Parameter                                                                        | 178 |
| 16.1.3.3 Attributes of the Additional Parameters for Thermoresistance Devices            | 178 |
| 16.1.3.4 Parameter Attributes of the Additional Parameters for Optical Pyrometer Devices | 180 |
| 16.1.4 View Object of the Temperature Transducer Block                                   | 180 |
| 16.2 Pressure                                                                            | 182 |
| 16.2.1 Pressure Transducer Block Overview                                                | 182 |
| 16.2.2 Parameter Description of the Pressure Transducer Block                            | 185 |
| 16.2.3 Parameter Attributes of the Pressure Transducer Block                             | 189 |
| 16.2.4 View Object of the Pressure Transducer Block                                      | 190 |
| 2.2.5 Assignment of Dynamic Variables for Pressure Devices                               | 191 |
| 16.3 Level                                                                               | 193 |
| 16.3.1 Level Transducer Block Overview                                                   | 193 |
| 16.3.2 Parameter Description of the Level Transducer Block                               | 196 |
| 16.3.3 Parameter Attributes of the Level Transducer Block                                | 197 |
| 16.3.4 View Object of the Level Transducer Block                                         | 200 |
| 16.4 Flow                                                                                | 201 |
| 16.4.1 Flow Transducer Block Overview                                                    | 201 |
| 16.4.2 Flow Transducer Block Parameter Description                                       | 201 |
| 16.4.2.1 Parameter Description of the Transducer Block of an Electromagnetic Flow Device | 202 |
| 16.4.2.2 Parameter Description of the Transducer Block of a Coriolis Mass Flow Device    | 203 |
| 16.4.2.3 Parameter Description of the Transducer Block of a Vortex Flow Meter            | 204 |
| 16.4.2.4 Parameter Description of the Transducer Block of a Thermal Mass Flow Device     | 205 |

|    | 16.4.2.5 Parameter Description of the Transducer Block of an Ultrasonic Flow Device 16.4.2.6 Parameter Description of the Transducer Block of a Variable Area Flow Device 16.4.2.7 Parameters of the Transducer Block of a Differential Pressure Transmitter 16.4.3 Parameter Attributes of the Flow Transducer Block 16.4.3.1 View Object of the Flow Transducer Block                                                                                                                                                                                                                        | 205<br>206<br>207<br>208<br>210                             |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1  | 6.5 Block Order and Assignment 16.5.1 Assignment of Dynamic Variables for Flow Devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>211</b> 211                                              |
| 17 | DEVICE DATA SHEET TRANSMITTER - CONFORMANCE STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 212                                                         |
| 18 | DEVICE DATA SHEET TRANSMITTER - DOCUMENT HISTORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 213                                                         |
| 19 | DEVICE DATA SHEET DISCRETE INPUTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 215                                                         |
| 1  | 9.1 Additional Parameters for the Physical Block Parameter Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 215                                                         |
| 1  | 9.2 Discrete Input Function Block  19.2.1 Discrete Input, DI Function Block Overview  19.2.1.1 DI State Machine  19.2.1.2 Actual Mode Calculation  19.2.1.3 Output Status Calculation  19.2.2 Parameter Description of the Discrete Input Function Block  19.2.3 Parameter Attributes of the Discrete Input Function Block  19.2.4 View Object of the Discrete Input Function Block  19.2.5 Additions to the Start-up and Break-down Phase                                                                                                                                                     | 215<br>215<br>216<br>217<br>217<br>218<br>219<br>219        |
| 20 | DEVICE DATA SHEET DISCRETE INPUT - TRANSDUCER BLOCKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 220                                                         |
| 2  | 0.1 Parameter Description of the Discrete Input Transducer Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 220                                                         |
| 2  | 0.2 Parameter Attributes of the Discrete Input Transducer Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220                                                         |
| 2  | 0.3 View Object of the Discrete Input Transducer Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 221                                                         |
| 21 | DEVICE DATA SHEET DISCRETE INPUT - CONFORMANCE STATEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NT222                                                       |
| 22 | DEVICE DATA SHEET DISCRETE INPUT - DOCUMENT HISTORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 223                                                         |
| 23 | DEVICE DATA SHEET DISCRETE OUTPUTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 225                                                         |
| 2  | 3.1 Additional Parameters for the Physical Block Parameter Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225                                                         |
| 2  | <ul> <li>23.2 Discrete Output, DO Function Block</li> <li>23.2.1 Overview</li> <li>23.2.1.1 DO State Machine</li> <li>23.2.1.2 Conditions on which the Actual Mode is calculated and the Target Mode is changed</li> <li>23.2.1.3 Conditions on which the Output Status is generated</li> <li>23.2.2 Parameter Description of the Discrete Output Function Block</li> <li>23.2.3 Parameter Attributes of the Discrete Output Function Block</li> <li>23.2.4 View Object of the Discrete Output Function Block</li> <li>23.2.5 Coding of the Discrete Output FB Parameter CHECK_BACK</li> </ul> | 225<br>225<br>226<br>227<br>228<br>229<br>230<br>232<br>232 |

|          | 23.3                                         | Additions to Start-up and Break-down Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 233                                                         |
|----------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 2        | <b>4</b>                                     | DEVICE DATA SHEET DISCRETE OUTPUT - TRANSDUCER BLOCKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 234                                                         |
|          | 24.1                                         | Parameter Description of the Discrete Valve Control Transducer Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 234                                                         |
|          | 24.2                                         | Parameter Attributes of the Discrete Valve Control Transducer Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 236                                                         |
|          | 24.3                                         | View Object of the Discrete Valve Control Transducer Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 237                                                         |
| 2:<br>S  |                                              | DEVICE DATA SHEET DISCRETE OUTPUT - CONFORMANCE<br>EMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 238                                                         |
| 2        | <b>6</b>                                     | DEVICE DATA SHEET DISCRETE OUTPUT - DOCUMENT HISTORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 239                                                         |
| <b>2</b> | <b>7</b>                                     | DEVICE DATA SHEET ACTUATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 241                                                         |
|          |                                              | Function parameters for the Physical Block 7.1.1 Additional Physical Block Parameter Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>241</b><br>241                                           |
|          | 27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | Function parameters for Analog Output Function Block 7.2.1 Analog Output Function Block Overview 7.2.2 Analog Output Function Block Structure 7.2.3 Analog Output Function Block State Machine 7.2.3.1 Conditions on which the Actual Mode is calculated and the Target Mode is changed 7.2.3.2 Conditions on which the Output Status is generated 7.2.4 Parameter Description of the Analog Output Function Block 7.2.5 Parameter Attributes of the Analog Output Function Block 7.2.6 View Object of the Analog Output Function Block 7.2.7 Coding of the Analog Output FB Parameter CHECK_BACK  Additions to the Start-up and Brake-down Phase | 241<br>241<br>243<br>243<br>245<br>246<br>248<br>249<br>250 |
| 2        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 252                                                         |
|          | 28.1                                         | Actuator Transducer Block Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 252                                                         |
|          | 28.2                                         | Parameter Description of the Actuator Transducer Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 252                                                         |
|          | 28                                           | Electric Actuator Transducer Block 3.3.1 Parameter Attributes of the Electric Actuator Transducer Block 3.3.2 View Object of the Electric Actuator Transducer Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>256</b> 256 258                                          |
|          | 28                                           | Electro-Pneumatic Actuator Transducer Block 3.4.1 Parameter Attributes of the Electro-Pneumatic Actuator Transducer Block 3.4.2 View Object of the Electro-Pneumatic Actuator Transducer Block                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 260<br>260<br>261                                           |
|          | 28.5                                         | Electro-Hydraulic Actuator Transducer Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 262                                                         |
| 29<br>P  |                                              | DEVICE DATA SHEET ACTUATOR - DOWNLOAD ORDER OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 263                                                         |

| 30 | DEVICE DATA SHEET ACTUATOR - CONFORMANCE STATEMENT                                                                   | 264                |
|----|----------------------------------------------------------------------------------------------------------------------|--------------------|
| 31 | DEVICE DATA SHEET ACTUATOR - DOCUMENT HISTORY                                                                        | 265                |
| 32 | DEVICE DATA SHEET ANALYSER                                                                                           | 267                |
| 32 | 2.1 Use of the Function Block model for analyser field devices                                                       | 267                |
| 32 | 2.2 Physical Block                                                                                                   | 268                |
|    | 32.2.1 Overview                                                                                                      | 268                |
|    | 32.2.2 Parameter Description of the Physical Block                                                                   | 268                |
|    | 32.2.3 Parameter Attributes of the Physical Block                                                                    | 269                |
|    | 32.2.4 View Object of the Physical Block                                                                             | 270                |
| 32 | 2.3 Analyser Transducer Block                                                                                        | 271                |
|    | 32.3.1 Overview                                                                                                      | 271                |
|    | 32.3.2 Parameter Description of the Analyser Transducer Block                                                        | 271                |
|    | 32.3.3 Parameter Attributes of the Analyser Transducer Block                                                         | 273                |
|    | 32.3.4 View Object of the Analyser Transducer Block                                                                  | 274                |
| 32 | 2.4 Transfer Transducer Block                                                                                        | 274                |
|    | 32.4.1 Overview                                                                                                      | 274                |
|    | 32.4.2 Parameter Description of the Transfer Transducer Block                                                        | 274                |
|    | 32.4.3 Parameter Attributes of the Transfer Transducer Block                                                         | 276                |
|    | 32.4.4 View Object of the Transfer Transducer Block                                                                  | 277                |
| 32 | 2.5 Control Transducer Block                                                                                         | 278                |
|    | 32.5.1 Overview                                                                                                      | 278                |
|    | 32.5.2 Parameter Description of the Control Transducer Block                                                         | 279                |
|    | 32.5.2.1 COMMAND / STATUS Parameter Description                                                                      | 282                |
|    | 32.5.2.2 CTB_MASTER Description 32.5.2.3 Execution of Analyser Functions                                             | 283<br>283         |
|    | 32.5.3 Parameter Attributes of the Control Transducer Block                                                          | 203<br>284         |
|    | 32.5.4 View Object of the Control Transducer Block                                                                   | 285                |
|    |                                                                                                                      |                    |
| 32 | 2.6 Limit Transducer Block                                                                                           | 286                |
|    | 32.6.1 Overview                                                                                                      | 286                |
|    | 32.6.2 Parameter Description of the Limit Transducer Block 32.6.3 Parameter Attributes of the Limit Transducer Block | 286<br>287         |
|    | 32.6.4 View Object of the Limit Transducer Block                                                                     | 287                |
|    | ·                                                                                                                    | 201                |
| 32 | 2.7 Alarm Transducer Block – Binary Alert Status                                                                     | 288                |
|    | 32.7.1 Parameter Structure of the Alarm Transducer Block                                                             | 288                |
|    | 32.7.2 Parameter Description of the Alarm Transducer Block                                                           | 290                |
|    | 32.7.3 Parameter Attributes of the Alarm Transducer Block 32.7.4 View Object of the Alarm Transducer Block           | 293                |
|    | 32.7.5 Mapping of the Binary Messages to the Status of the PV                                                        | 293<br>294         |
| 32 | 2.8 Function Blocks from Other Data Sheets (Al, Dl, AO, DO)                                                          | 294                |
| 2. | 2.9 Multi Point Sampling Function Block                                                                              | 295                |
| 32 | 32.9.1 Overview                                                                                                      | 2 <b>93</b><br>295 |
|    | 32.9.2 Parameter Description of the Multi Point Sampling Function Block                                              | 296<br>296         |
|    | 32.9.3 Parameter Attributes of the Multi Point Sampling Function Block                                               | 297                |
|    | 32.9.4 View Object of the Multi Point Sampling Function Block                                                        | 297                |
|    |                                                                                                                      |                    |

| 3  | 2.10 Logbook Function Block – Functions for Archiving       | 298 |
|----|-------------------------------------------------------------|-----|
|    | 32.10.1 Overview                                            | 298 |
|    | 32.10.2 Parameter Description of the Logbook Function Block | 298 |
|    | 32.10.2.1 COMMAND / STATUS Parameter Description            | 299 |
|    | 32.10.3 Parameter Attributes of the Logbook Function Block  | 300 |
|    | 32.10.4 View Object of the Logbook Function Block           | 300 |
| 33 | DEVICE DATA SHEET ANALYSER - CONFORMANCE DEFINITION         | 301 |
| 34 | DEVICE DATA SHEET ANALYSER - DOCUMENT HISTORY               | 303 |
| 35 | GENERAL FUNCTION SET FOR MULTLYARIARI E DEVICES             | 306 |

### **Table of Figures**

| Figure 1. Integration of the Profile (bold) in the Layer Architecture of the ISO OSI Model               | 21  |
|----------------------------------------------------------------------------------------------------------|-----|
| Figure 2. PROFIBUS-PA Structure of the Specification Documents                                           | 22  |
| Figure 3. Structure of the Profile                                                                       | 26  |
| Figure 4. Device Model                                                                                   | 27  |
| Figure 5. The Relationship between Blocks, Block Parameters and the Directory in the Device I            | -   |
| Figure 6. Grouping of the Variables / Parameters in the Device                                           | 29  |
| Figure 7. Parameter Conformance Hierarchy in the Blocks                                                  | 30  |
| Figure 8. Structure of Parameters in a Block                                                             | 40  |
| Figure 9. Directory Structure and Reference to the Blocks                                                | 43  |
| Figure 10. Parameters of a Table                                                                         | 76  |
| Figure 11. Transducer Blocks are Referenced by Channel Numbers                                           | 84  |
| Figure 12. Channel Referencing                                                                           | 84  |
| Figure 13. Mapping of the Application Profile Definition to Cyclic and Acyclic Data Transfer             | 114 |
| Figure 14. Mapping of one PB, FB and TB to one Common Slot                                               | 116 |
| Figure 15. Mapping of one PB, FB and more than one TB to two Slots                                       | 117 |
| Figure 16. Mapping of one PB and more than one FB and TB to several Slots                                | 117 |
| Figure 17. Mapping of one PB, two FBs, three TBs and one Link Object                                     | 118 |
| Figure 18. Mapping of one cyclic FB Parameter to the Inp-Data Frame                                      | 119 |
| Figure 19. Mapping of more than one Cyclic FB Parameter to the Inp, Outp Data Frame                      | 120 |
| Figure 20. The Relationship between Blocks, Block Parameters and the Directory in the Device  Management | 121 |
| Figure 21. Directory Elements Data Types                                                                 | 124 |
| Figure 22. Directory Example with 1 PB, 1 FB and 1 TB                                                    | 125 |
| Figure 23. Directory Example with 1 PB, 1 FB and 3 TB                                                    | 126 |
| Figure 24. Directory Example with 1 PB, 2 FB and 3 TB                                                    | 127 |
| Figure 25. Directory Example with 1 PB, 2 FBs, 3 TBs and 1 Link Object                                   | 129 |
| Figure 26. Summary of the Parameters of Analog Input Function Block                                      | 150 |
| Figure 27. Simulation, Mode and Status Diagram of the Analog Input Function Block                        | 150 |
| Figure 28. Parameter Relationship of AI FB                                                               | 151 |
| Figure 29. Conditions of Mode and Status Generation                                                      | 151 |
| Figure 30. State Machine of the Analog Input Function Block                                              | 152 |
| Figure 31. Example for the Use of the Analog Input Function Block Parameters                             | 156 |
| Figure 32. Clarification of scaling parameters                                                           | 159 |
| Figure 33. Summary of the Parameters of the Totalizer Function Block                                     | 160 |
| Figure 34. Block Diagram of the Totalizer Function Block                                                 | 160 |
| Figure 35. State Machine of the Totalizer Function Block                                                 | 161 |

V3.01

| Figure 36. Overview about defined measuring equipment                                                                                                    | 169 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 37. Functional Diagram of the Temperature Transducer Block                                                                                        | 171 |
| Figure 38. Pressure Transducer Block                                                                                                                     | 182 |
| Figure 39. Sensor Calibration                                                                                                                            | 183 |
| Figure 40. Pressure Transducer Block Function: Pressure                                                                                                  | 183 |
| Figure 41. Pressure Transducer Block Function: Flow                                                                                                      | 184 |
| Figure 42. Pressure Transducer Block Function: Level                                                                                                     | 184 |
| Figure 43. Flow: Square Root Function                                                                                                                    | 185 |
| Figure 44. Functional Diagram of the Level Transducer Block                                                                                              | 193 |
| Figure 45. Transfer Function Level Calibration                                                                                                           | 193 |
| Figure 46. Functional Diagram of Linearisation.                                                                                                          | 194 |
| Figure 47. Application Example for Radar Level                                                                                                           | 194 |
| Figure 48. Application Example for Hydrostatic Level                                                                                                     | 195 |
| Figure 49. Application Example for Capacitance Level                                                                                                     | 195 |
| Figure 50. Functional Diagram of the Flow Transducer Block                                                                                               | 201 |
| Figure 51. Summary of the Parameters of Discrete Input Function Blocks                                                                                   | 215 |
| Figure 52. Simulation, Mode and Status Diagram of Discrete Input Function Block                                                                          | 215 |
| Figure 53. Conditions of Mode and Status Generation                                                                                                      | 216 |
| Figure 54. State Machine of the Discrete Input Function Block                                                                                            | 216 |
| Figure 55. Summary of the Parameters of Discrete Output Function Block                                                                                   | 225 |
| Figure 56. Simulation, Mode and Status Diagram of Discrete Output Function Block                                                                         | 225 |
| Figure 57. Conditions of Mode and Status Generation                                                                                                      | 226 |
| Figure 58. State Machine of the Discrete Output Function Block                                                                                           | 226 |
| Figure 59. Summary of Parameters of the Analog Output Function Block                                                                                     | 241 |
| Figure 60. Mode and Simulation Diagram of Analog Output Function Block                                                                                   | 242 |
| Figure 61. Parameter Relationship of AO FB                                                                                                               | 242 |
| Figure 62. Conditions of Mode and Status generation                                                                                                      | 243 |
| Figure 63. State Machine of the Analog Output Function Block                                                                                             | 243 |
| Figure 64. Block Structure of Analyser Devices                                                                                                           | 267 |
| Figure 65. Parameter structure of the Analyser Transducer Block                                                                                          | 271 |
| Figure 66. Example of Cooperation between Control Transducer Block, Transfer Transducer Block, Analyser Transducer Block and Analog Input Function Block |     |
| Figure 67. Parameter Hierarchy of the Control Transducer Block                                                                                           | 278 |
| Figure 68. State Diagram of the Control Transducer Block – COMMAND Parameter                                                                             | 283 |
| Figure 69. Hierarchy of the Alarm Information                                                                                                            | 288 |
| Figure 70. Parameter Structure of the Alarm Transducer Block                                                                                             | 289 |
| Figure 71. Multi Point Sampling Function Block                                                                                                           | 295 |
| Figure 72. State diagram of Logbook FB – COMMAND parameter                                                                                               | 299 |

V3.01

### **Table of Tables**

| Table 1. Block Mode Priority                                                 | 34   |
|------------------------------------------------------------------------------|------|
| Table 2. View Object definition                                              | 38   |
| Table 3. Parameter Description of the Standard Parameters                    | 38   |
| Table 4. Parameter Attributes of the Standard Parameters                     | . 39 |
| Table 5. View Object of the Standard Parameters                              | 39   |
| Table 6. Parameter Description of the BATCH Parameter                        | 41   |
| Table 7. Parameter Attributes of the BATCH Parameter                         | 41   |
| Table 8. Mapping of BitString to OctetString                                 | 44   |
| Table 9. List of Elements of the Block Structure                             | 45   |
| Table 10. Parameter Description of the Block Structure                       | . 46 |
| Table 11. Physical Block: Coding of Block_Object, Class and Parent_Class     | 47   |
| Table 12. Function Block: Coding of Block_Object, Class and Parent_Class     | . 49 |
| Table 13. Transducer Block: Coding of Block_Object, Class and Parent_Class   | 51   |
| Table 14. Coding of Profile                                                  | . 52 |
| Table 15. List of Elements of the Value & Status - Floating Point Structure  | . 52 |
| Table 16. Coding of the Status Byte                                          | 55   |
| Table 17. Invalid Status Values                                              | 55   |
| Table 18. Reserved Status Values                                             | 56   |
| Table 19. Priority of the Status Values                                      | 59   |
| Table 20. Meaning of the Status Values                                       | 61   |
| Table 21. List of Elements of the Value & Status - Discrete Structure        | . 62 |
| Table 22. Parameter Description of the Value & Status - Discrete Structure   | . 62 |
| Table 23. List of Elements of the Scaling Structure                          | . 63 |
| Table 24. List of Elements of the Mode Structure                             | . 63 |
| Table 25. List of Elements of the Alarm Float Structure                      | . 64 |
| Table 26. Parameter Description of the Alarm Float Structure                 | . 64 |
| Table 27. List of Elements of the Alarm Summery Structure                    | . 64 |
| Table 28. Coding of the Bits of the Alarm Summery Structure                  | . 65 |
| Table 29. Coding of the OctetStrings of the Alarm Summery Structure          | 65   |
| Table 30. Parameter Description of the Alarm Summary Structure               | 65   |
| Table 31. List of Elements of the FB Linkage Structure                       | 66   |
| Table 32. List of elements of the Simulation - Floating Point Structure      | . 66 |
| Table 33. Parameter Description of the Simulation - Floating Point Structure | 66   |
| Table 34. List of Elements of the Simulation - Discrete Structure            | . 67 |
| Table 35. List of the Elements of the Result Structure                       | 67   |
| Table 36. Parameter Description of the Result Structure                      | 67   |

| Table 37. List of Elements of the Measurement Range Structure              | 68  |
|----------------------------------------------------------------------------|-----|
| Table 38. List of Elements of the Binary Message Structure                 | 68  |
| Table 39. Parameter Description of the Binary Message Structure            | 69  |
| Table 40. List of Elements of the Sample Selection Structure               | 69  |
| Table 41. Parameter Description of the Sample Selection Structure          | 69  |
| Table 42. List of Elements of the Logbook Structure                        | 70  |
| Table 43. Parameter Description of the Logbook Structure                   | 70  |
| Table 44. List of Elements of the Precalculation Structure                 | 71  |
| Table 45. Parameter Description of the Precalculation Structure            | 71  |
| Table 46. List of Elements of the Sequential Control Structure             | 72  |
| Table 47. Parameter Description of the Sequential Control Structure        | 72  |
| Table 48. List of Elements of the Batch Structure                          | 73  |
| Table 49. Parameter Description of the Batch Structure                     | 73  |
| Table 50. List of Elements of the Feature Structure                        | 73  |
| Table 51. Coding of Supported                                              | 74  |
| Table 52. Coding of Enabled                                                | 75  |
| Table 53. Sequence Diagram of the Load of a Table                          | 78  |
| Table 54. Parameter Description of the Table Handling Parameters           | 82  |
| Table 55. Parameter Attributes of the Table Handling Parameters            | 83  |
| Table 56. Parameter Description of the Link Object                         | 85  |
| Table 57. Parameter Description of the Physical Block                      | 88  |
| Table 58. Parameter Attributes of the Physical Block                       |     |
| Table 59. View Object of the Physical Block                                | 91  |
| Table 60. Coding of the Physical Block Parameter DIAGNOSIS                 | 92  |
| Table 61. Coding of the OctetString of the Parameter DIAGNOSIS             | 92  |
| Table 62. Access Protection                                                | 93  |
| Table 63. Unit codes                                                       | 108 |
| Table 64. Material codes                                                   | 109 |
| Table 65. Conformance Statements for the Existence of Blocks               | 110 |
| Table 66. Conformance Statement for Device Management                      | 110 |
| Table 67. Conformance Statement Blocks                                     | 110 |
| Table 68. Changes from V3.0 to V3.01                                       | 111 |
| Table 69. Parameter Attributes of the Device Management                    | 122 |
| Table 70. DPV1 Response Codes                                              | 132 |
| Table 71. Identification for Cyclic Parameters                             | 134 |
| Table 72. Identifier Bytes for FBs                                         | 135 |
| Table 73. Construction of Identification Format for Multi-Variable Devices | 136 |
| Table 74. Coding of the Identification Format for Multi-Variable Devices   | 136 |
| Table 75. Definition of Function Block Codes                               | 136 |

| Table 76. Identification Formats for Modules of Multi-Variable Devices                     | 138 |
|--------------------------------------------------------------------------------------------|-----|
| Table 77. DPV1_Enable of User_Prm_Data Definition                                          | 139 |
| Table 78. Mapping of DIAGNOSIS into DDLM_SLAVE_DIAG Service Data Structure                 | 140 |
| Table 79. Status Appears / Disappears                                                      | 141 |
| Table 80. Initiate Parameter Values                                                        | 142 |
| Table 81. Conformance Requirements for Communication Capabilities                          | 146 |
| Table 82: Changes from V3.0 to V3.0.1                                                      | 148 |
| Table 83. Conditions and Results of the Actual Mode calculation                            | 153 |
| Table 84. Conditions and Results of the Status Calculation of the Output Parameter         | 153 |
| Table 85. Parameter Description of the Analog Input Function Block                         | 156 |
| Table 86. Parameter Attributes for the Analog Input Function Block                         | 158 |
| Table 87. View Object of the Analog Input Function Block                                   | 158 |
| Table 88. Conditions and Results of the Actual Mode Calculation                            | 162 |
| Table 89. Conditions and Results of the Status Calculation for TOTAL Parameter             | 163 |
| Table 90. Parameter Description of the Totalizer Function Block                            | 166 |
| Table 91. Parameter Attributes of the Totalizer Function Block                             | 167 |
| Table 92. View Object of the Totalizer Function Block                                      | 168 |
| Table 93. Description of the General Parameters of the Temperature Transducer Block        | 174 |
| Table 94. Thermocouple Device Temperature Transducer Block Parameter Description           | 175 |
| Table 95. Thermoresistance Devices Temperature Transducer Block Parameter Description      | 175 |
| Table 96. Optical Pyrometer Devices Temperature Transducer Block Parameter Description     | 176 |
| Table 97. Parameter Attributes of the Temperature Transducer Block General Parameters      | 178 |
| Table 98. Parameter Attributes of the Additional Parameters for Thermocouple Devices       | 178 |
| Table 99. Parameter Attributes of the Additional Parameters for Thermoresistance Devices   | 179 |
| Table 100. Parameter Attributes of the Additional Parameters for Optical Pyrometer Devices | 180 |
| Table 101. View Object of the Temperature Transducer Block                                 | 181 |
| Table 102. Parameter Description of the Pressure Transducer Block                          | 188 |
| Table 103. Parameter Attributes of the Pressure Transducer Block                           | 190 |
| Table 104. View Object of the Pressure Transducer Block                                    | 191 |
| Table 105. Assignment of Dynamic Variables for Pressure Devices                            | 192 |
| Table 106. Parameter Description of the Level Transducer Block                             | 197 |
| Table 107. Parameter Attributes of the Level Transducer Block                              | 199 |
| Table 108. View Object of the Level Transducer Block                                       | 200 |
| Table 109. Overview of Parameters of the Transducer Block of Flow Device                   | 202 |
| Table 110. Parameter Description of the Transducer Block of an Electromagnetic Flow Device | 203 |
| Table 111. Parameter Description of the Transducer Block of a Coriolis Mass Flow Device    | 204 |
| Table 112. Parameter Description of the Transducer Block of a Vortex Flow Meter            | 205 |
| Table 113. Parameter Description of the Transducer Block of a Thermal Mass Flow Device     | 205 |
| Table 114. Parameter Description of the Transducer Block of an Ultrasonic Flow Device      | 206 |

| Table 115. Parameter Description of the Transducer Block of a Variable Area Flow Device | 207 |
|-----------------------------------------------------------------------------------------|-----|
| Table 116. Parameter Attributes of the Flow Transducer Block                            | 209 |
| Table 117. View Object of the Flow Transducer Block                                     | 210 |
| Table 118. Flow Transducer Classes                                                      | 211 |
| Table 119. Assignment of Dynamic Variables                                              | 211 |
| Table 120. Conformance Statement of Transmitter Components                              | 212 |
| Table 121. Changes from V3.0 to V3.0.1                                                  | 213 |
| Table 122. Conditions and Results of the Actual Mode Calculation                        | 217 |
| Table 123. Conditions and Results of the Status Calculation of the Output parameter     | 217 |
| Table 124. Parameter Description of the Discrete Input Function Block                   | 218 |
| Table 125. Parameter Attributes of the Discrete Input Function Block                    | 219 |
| Table 126. View Object of the Discrete Input Function Block                             | 219 |
| Table 127. Parameter Description of the Discrete Input Transducer Block                 | 220 |
| Table 128. Parameter Attributes of the Discrete Input Transducer Block                  | 220 |
| Table 129. View Object of the Discrete Input Transducer Block                           | 221 |
| Table 130. Conformance Statement of Discrete Input Components                           | 222 |
| Table 131. Changes from V3.0 to V3.0.1                                                  | 223 |
| Table 132. Conditions and Results of the Actual Mode Calculation                        | 227 |
| Table 133. Conditions and Results of the Status Calculation of the Output Parameter     | 228 |
| Table 134. Conditions and Results of the Status Calculation of the Output Parameter     | 228 |
| Table 135. Parameter Description of the Discrete Output Function Block                  | 230 |
| Table 136. Parameter Attributes of the Discrete Output Function Block                   | 231 |
| Table 137. View Object of the Discrete Output Function Block                            | 232 |
| Table 138. Coding of the Discrete Output FB Parameter CHECK_BACK                        | 233 |
| Table 139. Parameter Description of the Discrete Valve Control Transducer Block         | 235 |
| Table 140. Parameter Attributes of the Discrete Valve Control Transducer Block          | 237 |
| Table 141. View Object of the Discrete Valve Control Transducer Block                   | 237 |
| Table 142. Conformance Statement of Discrete Output Components                          | 238 |
| Table 143. Changes from V3.0 to V3.0.1                                                  | 239 |
| Table 144. Conditions and Results of the Actual Mode Calculation                        | 244 |
| Table 145. Conditions and Results of the Status Calculation of the Output Parameter     | 245 |
| Table 146. Conditions and Results of the Status Calculation of Cascade Handling         | 245 |
| Table 147. Parameter Description of the Analog Output Function Block                    | 247 |
| Table 148. Parameter Attributes of the Analog Output Function Block                     | 248 |
| Table 149. View Object of the Analog Output Function Block                              | 249 |
| Table 150. Coding of the Analog Output FB Parameter CHECK_BACK                          | 250 |
| Table 151. Parameter Description of the Actuator Transducer Block                       | 255 |
| Table 152. Parameter Attributes of the Electric Actuator Transducer Block               | 257 |
| Table 153. View Object of the Electric Actuator Transducer Block                        | 259 |

| Table 154. Parameter Attributes of the Electro-Pneumatic Actuator Transducer Block                                                     | 261 |
|----------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 155. View Object of the Electro-Pneumatic Actuator Transducer Block                                                              | 262 |
| Table 156. Conformance Statement of Actuator Components                                                                                | 264 |
| Table 157. Changes from V3.0 to V3.0.1                                                                                                 | 265 |
| Table 158. Parameter Description of the Physical Block                                                                                 | 269 |
| Table 159. Parameter Attributes of the Physical Block                                                                                  | 269 |
| Table 160. View Object of the Physical Block                                                                                           | 270 |
| Table 161. Parameter Description of the Analyser Transducer Block                                                                      | 272 |
| Table 162. Parameter Attributes of the Analyser Transducer Block                                                                       | 273 |
| Table 163. View Object of the Analyser Transducer Block                                                                                | 274 |
| Table 164. Parameter Description of the Transfer Transducer Block                                                                      | 275 |
| Table 165. Parameter Attributes of the Transfer Transducer Block                                                                       | 276 |
| Table 166. View Object of the Transfer Transducer Block                                                                                | 277 |
| Table 167. Parameter Description of the Control Transducer Block                                                                       | 282 |
| Table 168. Execution of Analyser Functions                                                                                             | 283 |
| Table 169. Parameter Attributes of the Control Transducer Block                                                                        | 284 |
| Table 170. View Object of the Control Transducer Block                                                                                 | 285 |
| Table 171. Parameter Description of the Limit Transducer Block                                                                         | 286 |
| Table 172. Parameter Attributes of the Limit Transducer Block                                                                          | 287 |
| Table 173. View Object of the Limit Transducer Block                                                                                   | 287 |
| Table 174. Parameter Description of the Alarm Transducer Block                                                                         | 291 |
| Table 175. Mapping of the Status Classes to the Array Elements of STATUS_CLASSES                                                       | 292 |
| Table 176. Parameter Attributes of the Alarm Transducer Block                                                                          | 293 |
| Table 177. View Object of the Alarm Transducer Block                                                                                   | 293 |
| Table 178. Mapping of Namur Binary Message Classes to 101/102 Ctatus                                                                   | 294 |
| Table 179. Parameter Description of the Multi Point Sampling Function Block                                                            | 296 |
| Table 180. Parameter Attributes of the Multi Point Sampling Function Block                                                             | 297 |
| Table 181. View Object of the Multi Point Sampling Function Block                                                                      | 297 |
| Table 182. Parameter Description of the Logbook Function Block                                                                         | 299 |
| Table 183. Parameter Attributes of the Logbook Function Block                                                                          | 300 |
| Table 184. View Object of the Logbook Function Block                                                                                   | 300 |
| Table 185. Conformance Definition for DEVICE_STATE of the Physical Block                                                               | 301 |
| Table 186. Conformance Definition for Blocks                                                                                           | 301 |
| Table 187. Conformance Definition for BLOCK_TYPE of the Control Transducer Block                                                       | 301 |
| Table 188. Conformance Definition for COMMAND of Control Transducer Block / Multi Point Sample Function Block / Logbook Function Block | _   |
| Table 189. Conformance Definition for Subparameter Choice of the Transfer Transducer Block para CALCULATION_n                          |     |
| Table 190. Conformance Definition of the RECIPE Parameter of the Control Transducer Block                                              | 302 |

| PROFIBUS-PA Profile for Process Control Devices | V3.01       | page 20 |
|-------------------------------------------------|-------------|---------|
|                                                 |             |         |
| Table 191. Changes from V3.0 to V3.0.1          |             | 304     |
| Table 192. Conformance Statement of Multi-Varia | ble Devices | 306     |

### 1 General Requirements - Introduction

### 1.1 Scope

Field devices may operate in manufacturing and process control environments that may include intrinsic safety requirements. This creates a need for devices that operate with limited memory and processing power, and for buses that operate using very low bandwidth.

The purpose of this specification is to support the standardisation of application process definitions. The scope of this specification is to define:

- (1) a base set of device parameters for operation, commissioning, maintenance, diagnosis,
- (2) a mechanism to achieve connectivity of parameters defined by user groups and device vendors.

The fieldbus standard PROFIBUS, standardised in IEC 61158 and IEC 61684 (alias EN 50170 and DIN 19245) covers a large number of potential applications for industrial control, supervision and use in the field as well.

To co-ordinate application functions between transmitter, actuators and controls as well as visualisation and operator terminals the definition of the variable and parameters syntax and semantics have to be defined. This is the main topic of this profile. The mapping to the specific PROFIBUS protocol is defined in the mapping document of the PROFIBUS profile for process control devices. A brief overview how a profile relates to the protocol is shown in Figure 1.



Figure 1. Integration of the Profile (bold) in the Layer Architecture of the ISO OSI Model.

A profile is an instruction set to fulfil the fieldbus standard, or certain defined areas or device functions. A device must conform to both the PROFIBUS protocol specification and this profile to be called a PROFIBUS-PA device. The structure is shown in Figure 2.



Figure 2. PROFIBUS-PA Structure of the Specification Documents

This document sets out a profile describing transmitters, valves, binary devices and others used in process control e.g. chemical industry, food, water and waste water, power station and basic industries.

The profile provides a standardisation of typical device functions. This offers the possibility to standardise the reactions (behavior) of devices produced by different manufacturers in one system.

The determination of specific application process, parameters and communication functions makes the interaction between the devices and the accompanying control, maintenance and diagnosis devices, much easier.

This profile contains 2 classes, the class A and B. Class A of the profile describes common parameters of simple devices. The scope is limited to the basic functions of the operation phase. The basic set consists of the process variables (e.g. temperature, pressure, level) added by measured value state, the tag name and the engineering unit.

The scope of the class B profile for process control devices is an extension to the class A definition and will cover more complex application functions for identification, commissioning, maintenance and diagnosis. The relationship of the parameters to the classes is visible within the parameter definitions and in the conformance statements (see chapter 6).

### 1.2 References

### 1.2.1 Normative References

IEC 61158 (all parts), Digital data communication for measurement and control – Fieldbus for use in industrial control systems

IEC 61784:2003, Digital data communications for measurement and control – Part 1: Profile sets for continuous and discrete manufacturing - Fieldbus relative to use in industrial control systems

PROFIBUS Profile Amendment 1 to PROFIBUS profile for process conrol devices V 3.0, *PROFIsafe for PA Devices.* V1.0 December 2004.

PROFIBUS Profile Amendment 2 to PROFIBUS profile for process conrol devices V 3.0, Condensed Status and diagnosis messages. V1.0 December 2004.

PROFIBUS Profile Amendment 3 to PROFIBUS profile for process conrol devices V 3.0, *Identification and Maintenenace Functions.* V1.0 December 2004.

### 1.2.2 Bibliography

PROFIBUS: DIN 19245 Beuth Verlag 1994.

EN 50170: General Purpose Field Communication System, CENELEC 1996.

### 1.3 Definitions

Address: The address is an absolute numerical reference to a parameter within a

device.

**Alert Objects:** These are used to communicate notification messages when alarms or

events are detected.

**Application:** A software functional unit consisting of an interconnected aggregation of

Function Blocks, events and objects, which may be distributed and

which may have interfaces with other applications.

**Attribute:** A property or characteristic of an *entity*; for instance, value and status

are attributes of an output parameter.

**Bus address:** The bus address is the numerical reference of the device at the network.

Block (block instance): A logical processing unit of software comprising an individual, named

copy of the block and associated parameters specified by a block type,

which persists from one invocation of the block to the next.

**Data structure:** An aggregate whose elements need not be of the same data type, and

each of which may be uniquely referenced by an identifier.

**Data type:** A set of values together with a set of permitted *operations*.

**Device:** A physical entity capable of performing one or more specified functions

in a particular context and delimited by its interfaces.

**Entity:** A particular thing, such as a person, place, *process*, object, concept,

association or event.

Function: (1) A specific purpose of an entity. (2) One of a group of actions

performed by an entity in accomplishing its purposes.

**Function Block:** A named *block* consisting of one or more input, output and contained

parameters. Function Blocks represent the basic automation functions performed by an application which is as independent as possible of the specifics of I/O devices and the network. Each Function Block processes input parameters according to a specified algorithm and an internal set of contained parameters. They produce output parameters that are available for use within the same Function Block application or

by other Function Block applications.

Function Block application: Application of a automation system performed by Physical Blocks,

Function Blocks, Transducer Blocks and accompanied objects.

**Instance:** A piece of data related to an invocation of a Function Block.

Mode: Determines the block operating mode and available modes for a block

instance.

**Object:** An entity having state, behavior and identity.

**Parameter:** A *variable* that is an input, output or contained one of a Function Block.

Physical Block: Hardware specific characteristics of a field device, which are associated

with a resource, are made visible through the physical block. Similar to Transducer Blocks, they insulate Function Blocks from the physical hardware by containing a set of implementation independent hardware

parameters.

**Record:** A set of *data elements* treated as a unit.

**Relative Index:** The relative index is a logical offset of a parameter in a block.

**Simple variable:** A single variable which is characterised by a defined Data Type.

Transducer Block: Transducer Blocks insulate Function Blocks from the specifics of I/O

devices, such as sensors, actuators, and switches. Transducer Blocks control access to I/O devices through a device independent interface defined for use by Function Blocks. Transducer Blocks also perform functions, such as calibration and linearisation, on I/O data to convert it to a device independent representation. Their interface to Function Blocks is defined as one or more implementation independent I/O

channels.

Variable: A software entity that may assume any one of a set of values. The

values of a variable are usually restricted to a certain data type.

View Objects: View objects are provided to support efficient access to parameter data

within a Function Block application. View objects allow groups of

parameters to be accessed with a single communication request.

### 1.4 Abbreviations

a acyclic

AI Analog Input
AO Analog Output

AS Automation System

BM Binary Messages

cyc cyclic

**EUC** 

DM Device Management

DS Data type structures

Extended Uni Code

FB Function Block

I/O Input/Output

LUV Last Usable Value

NAMUR Normungsarbeitsgemeinschaft für Meß- und Regelungstechnik in der Chemischen Indu-

strie (Standardisation working group for Measurement and Control in the chemistry in

Germany)

PA Process Automation

PB Physical Block

PROFIBUS Process Field Bus

r read access

TB Transducer Block

w write access

### 1.5 Instruction for Use of this Profile

PROFIBUS-PA compliant devices structure their parameters and functions in Physical, Transducer and Function Block objects. Actual devices consist of instances of these blocks. The collection of block instances in a device follows some rules.

The profile consists of a General Requirement part, covering the overall definition and rules for PROFIBUS-PA devices and a couple of Device Data Sheets including the Transducer, Function and

Physical Block specifications. The mapping to the communication facilities is done in a separate document of this profile.



Figure 3. Structure of the Profile

There are devices comprising several applications (e.g. sensor systems, actuators). The profile of these devices is a combination of the definitions of the General Requirements and those of the device data sheets as necessary for the devices. In addition the mapping to the PROFIBUS protocol has to follow the definition of the mapping document of that profile. The structure of the profile, General Definitions as one part and different device data sheets as another part, enables flexible updating of the profile.

### 2 General Requirements - Technical Overview

### 2.1 General Overview

Each fieldbus device performs a portion of the total system operation by implementing one or more timecritical applications or portions of an application, such as sensor data acquisition and control algorithm processing. Each application is composed of a set of elementary field device functions modelled by Function Blocks. These applications are referred to as Function Block applications.

PROFIBUS-PA fieldbus systems are composed of digital devices and control/monitoring equipment interconnected by a fieldbus communication network. They are integrated into a plant's or a factory's physical environment where they work together to provide I/O and control for automated processes and operations.

Therefore the field device supports the customer's needs for operation, commissioning, diagnosis and maintenance.

### 2.2 Device Model

There are two different types of devices performing a PROFIBUS-PA Function Block application. The typical device is a compact one in the area of process control, e.g. transmitter and actuator. A simple device is a special Compact one, which has one sensor attachment only. In addition modular devices such as binary I/O's are often used to execute on/off valves. The compact device is a modular one with exact 1 module (see Figure 4).



DM Device Management
PB Physical Block
FB Function Block
TB Transducer Block
M x Module x

Figure 4. Device Model

Every device is represented by a Physical Block as well as Device Management functions and parameters. The modules of a device contains a Physical Block, Function Blocks and Transducer Blocks (see 2.3). A compact device contains only one Physical Block.



Figure 5. The Relationship between Blocks, Block Parameters and the Directory in the Device Manager

The device management consists of the directory of the block and object structure of the device.

### 2.3 Block Model

The variables and parameters of a device or module respectively are structured in blocks regarding their assignment to components or parts of functions. (see Figure 6). In the following document a reference is made to parameters because the same parameter could be a variable or constant depending on the context. Components of a device are for example: power supply, memory, electronics of the process attachment unit or preprocessing of the measured value. The components present many views of the devices e.g. commissioning, operation and diagnosis.

Three types of blocks are created from the profile parameters: the Function Block, the Transducer Block and the Physical Block. Function Blocks (FB) describe the functions of the devices executing within the automation system. Examples for FBs are Analog Input (AI) and Analog Output (AO). One device can contain several FBs. The Physical Block (PB) describes the necessary parameters and functions of the device or the operation of the device hardware itself. For the scope of this document one compact device contains one Physical Block.

The Transducer Block (TB) contains the parameters of a device representing the necessary parameters and functions of the connection to the process. Examples are temperature or pressure of the process, the type of sensor, type of reference point or the used linearisation method. Each FB can be connected to one TB at one time. The connection can be fixed or changed during commissioning or maintenance.

The parameters are defined by attributes such as data type or type of transport (cyclic or acyclic). Another attribute of parameters is their assignment to the blocks as Input, Output or Contained parameter. This attribute defines the direction of the information processing and the relationship of the parameters to the algorithm.



Figure 6. Grouping of the Variables / Parameters in the Device

How the parameters are stored in the device is manufacturer-specific and represented by a so-called Directory object. However, the different view of the life cycle (commissioning, operation, maintenance and diagnosis) needs different structures of the parameters. Transducer Block and Physical Block parameters are usually necessary during commissioning and maintenance, but Function Block parameters are also required during the operation phase. Diagnosis needs parameters from all blocks (see 2.5).

### 2.4 Status Flow between Blocks

The starting point of the status model is the idea that blocks are connected via their input and output parameters. These parameters are mostly process variables. The process variables are defined as floating point, discrete or bitstring types and structured together with one 'Status Byte'. The 'Status Byte' contains information about the quality of the process variable and is therefore also known as Quality Code. The main process variable types are analog and discrete data structures (e.g. DS\_33 and DS\_34). The transfer of the status is not limited to process variables but also coupled with manipulated variables or feed back variables. These Status data give information about the current status of the coupled variable and the status of the previous software process instance.

The Status Byte is structured in 3 main groups consisting of 2 bits covering fundamental statements about the transferred value (quality). Additional quality statements are coded in the remaining 4 bits. The meanings of these 4 bits differ in correspondence with the code of the first 2 bits. The third group of the remaining 2 more bits cover the information of limit crossing.

The definition of status coding is described in 3.7.3.

### 2.5 Parameter

The overall parameter in an actual PROFIBUS-PA field device is constructed from parameters of different specification levels.



Figure 7. Parameter Conformance Hierarchy in the Blocks

All blocks must provide at least the 7 standard parameters, the Function Block at least 8 (see see chapter 3). That is the top of the hierarchy. Class A blocks must provide the standard parameters plus the device type specific Function Block parameters for class A. Class B devices must provide the standard parameters plus Class A parameters plus the device type specific ones and - if there exist some - the manufacturer specific parameters of Function Block parameters for class B. Device specific and manufacturer specific parameters for each block are possible but not mandatory.

### 2.5.1 Naming and Addressing of Parameters

All blocks are identified using a tag name. The tags provide a symbolic reference to the blocks. They are unambiguous within the scope of a fieldbus system and assigned by the user of the devices with FBs.

Block parameters are identified by a machine readable name and by a relative index. The relative index is a logical offset of the parameter in the block. Parameter names and the relative index are defined within the scope of a Function Block, Transducer Block and Physical Block. The offset within the block is unique and fixed and may be used to address the parameter at application level. For communication purposes there is an unambiguously mapping between the naming and addressing of the parameters in the FB application and the communication protocol specification. This is defined e.g. in /Map96/.

Parameter Descriptions may be supplemented by additional information, e.g. using the Electronic Device Description Language (EDDL)<sup>1</sup>. Function Block definitions and their associated EDD descriptions are organized into a hierarchy of common parameter sets depending on application area, device function and manufacturer specific capabilities.

Copyright © PNO e.V. 2004. All Rights reserved.

The Electronic Device Description Language is neither defined by this specification nor scope of the PROFIBUS Profile class B. EDDL is defined in IEC 61804-2.

### 2.5.2 Parameter Usage

*Parameters* are defined for a *block* for a specific purpose. In addition, each is defined for use as an input, an output or a contained parameter.

Contained A contained parameter is a parameter whose value is configured, set by an operator,

higher level device, or calculated. It may not be linked to another Function Block input or

output.

Output An output parameter is a parameter that may be linked to an input parameter of one or

more Function Block(s). Output parameters contain both value and status attributes. The

output status indicates the quality of the parameter value generated.

Input An input parameter obtains its value from a source external to the block. An input

parameter may be linked to an output parameter of another Function Block. Its value may

be used by the algorithm of the block.

### 2.6 Standard Parameter Storage in Simple Devices

Simple devices (i.e. devices with one sensor attachment only) are allowed to store ST\_REV, TAG\_DESC, ALERT\_KEY and STRATEGY in one memory place for each parameter. That means that only one TAG is possible (see section 3).

### 3 General Requirements - Standard Parameters and Objects

### 3.1 Block Parameters and Objects Introduction

### 3.1.1 Block Object

This object applies to every block and are placed before the first parameter. It contains the characteristics of the block e.g. block type and profile number.

### 3.1.2 Static Revision Parameter (ST\_REV)

The value of the static revision parameter may be used by a configuration device to determine if a block parameter(s) stored in static memory (as defined as "S" in the parameter attribute table) has changed in value. A change in a static parameter will cause the static revision parameter of the associated block to be incremented. If the value exceeds the data type range it starts with 1. ST\_REV shall be reset to zero or incremented at least by one to indicate the change of static parameters in case of a coldstart (i.e. if FACTORY\_RESET=1 is set).

### 3.1.3 Tag Description Parameter (TAG\_DESC)

The tag description is a user-supplied description of the block.

### 3.1.4 Strategy Parameter (STRATEGY)

The strategy parameter has a user-specified value. This assigned value may be used in configuration or diagnostics as a key in sorting block information.

### 3.1.5 Alert Key Parameter (ALERT\_KEY)

The Alert\_Key parameter has a user assigned value which may be used in sorting alarms or events generated by a block <sup>1</sup>.

### 3.1.6 Target Mode Parameter (TARGET\_MODE)

The target mode attribute indicates what mode of operation is desired for the *block*. It is normally set by a control application or by an operator through a human interface application. The *input parameters* are used by the algorithm in conjunction with the state of the Function Block application containing the *block* to determine if the algorithm can achieve the target mode of operation established for it.

### 3.1.7 Mode Parameter (MODE\_BLK)

The mode parameter is a structured parameter composed of the actual mode, the normal mode and the permitted mode. The actual mode is set (calculated) by the block during its execution to reflect the mode used during execution. The normal mode is the desired operating mode of the block.

The permitted mode shows which changes of the target mode is valid for the specific block to the remote user of the MODE\_BLK parameter.

The generation and distribution of alarms and events are neither defined within this specification nor scope of the PROFIBUS Profile class B. Event and alarm handling may be defined on further specification activities (see also analyzer block definitions).

The effect of mode on the operation of the Function Block is summarized as follows:

Out of Service (O/S): The block is not being evaluated. The output shall maintain at the last value

or, in the case of output class Function Blocks, the output shall be maintained as defined for power loss. This happens independent of the

definition of a fail safe handling.

**Local Override (LO):** Applies to control and output blocks that support a track input parameter.

Also, a local lock-out switch on the device may be provided by a manufacturer to enable LO mode. In the locked out mode, the block output is being set to track the value of the track input parameter. The algorithm (for analog devices) should initialize so that no bump is experienced when

the mode switches from LO back to the target mode.

Manual (Man): The block output is not being calculated, although it may be limited. It is

directly set by the operator through an interface device. The algorithm should initialize so that no bump is experienced when the mode switches.

Automatic (Auto): The block output is calculated using the input from the TB in case of an

input FB and using a setpoint value provide by a host or an operator through an interface device in case of an output FB. For PB and TB this

mode indicates, that their block functions are able to work.

Remote Cascade (RCas): The block setpoint is being set by a Control Application through the remote

cascade parameter RCAS IN. Based on this setpoint, the normal block

algorithm determines the primary output value.

Execution of a Function Block, physical block or Transducer Block will be controlled by the mode parameter. Mode sub-index values are defined as follows:

1. Target - This is the mode requested by the operator. Only one mode from those allowed by the permitted mode parameter may be requested.

Target and normal are limited to the values allowed by the permitted mode parameter. Modes are assigned within the bitstring in the following manner:

Bit 7: Out of Service (O/S) - MSB

Bit 6: Initialisation Manual (IMan) (not used in Class A and B)

Bit 5: Local Override (LO) (not used in Class A)

Bit 4: Manual (Man)

Bit 3: Automatic (Auto)

Bit 2: Cascade (Cas) (not used in Class A and B)

Bit 1: Remote-Cascade (RCas)

Bit 0: Remote-Output (ROut) - LSB (not used in Class A and B)

The "automatic" modes used in this profile are Auto and RCas. The "manual" modes are LO and Man. In O/S mode, the normal algorithm is no longer executed and any outstanding alarms are cleared.

<u>2. Actual</u> - This is the current mode of the block, which may differ from the target based on operating conditions. Its value is calculated as part of block execution.

Under conditions which prevent the Function Block from operating in the target mode, the Function Block actual mode will automatically change. The actual mode will be calculated based on the following:

- Target attribute of the mode parameter and the mode permitted parameter attribute value.
- Status attribute of the cascade, remote-cascade, remote-output, back-calculation and primary input parameters where these parameters are defined for a block.

Value attribute of the track input parameter - (only when this parameter is defined for a block).

The concept of priority is used when the block must compute an actual mode that is different from the target mode, and when determining if write access is allowed for a particular actual mode. Mode priority is defined as follows, where zero is the lowest priority.

| Mode | Priority              |
|------|-----------------------|
| O/S  | 7 – highest           |
| IMan | 6 (not used)          |
| LO   | 5                     |
| Man  | 4                     |
| Auto | 3                     |
| Cas  | 2 (not used)          |
| RCas | 1                     |
| ROut | 0 - lowest (not used) |

**Table 1. Block Mode Priority** 

The state machine defining the detail of MODE calculation is block class specific (see data sheets).

- <u>3. Permitted</u> Defines the modes which are allowed for an instance of the block. The permitted mode is configured by the block design group, i.e. is defined for every block in the according data sheet. Any mode change request will be checked by the device to insure that the requested target mode is defined as a permitted mode (See Standard parameter MODE\_BLK).
- <u>4. Normal</u> This is the mode which the block uses during normal operation conditions. This parameter may be configured and read by an interface device but is not used by the block algorithm. The normal mode is not used in the scope of this profile and for further use.

Blocks of class A devices provide in minimum the MODE "Auto" as mandatory. MODE calculation is mandatory for Function Blocks of class B devices only. Physical and Transducer Blocks don't have to support MODE calculation, its PERMITTED MODE set the AUTO flag only.

### 3.1.8 Alarm Summary Parameter (ALARM\_SUM)

The parameter Alarm Summary summarizes the status of up to 16 block alarms. For each alarm, the current states, unacknowledged states, unreported states and disabled states are maintained. <sup>1</sup>

#### 3.1.9 View Objects

View objects allow groups of Function Block parameter values to be read with one read request. Such capability will be provided to enable group information to be efficiently communicated in a timely fashion. More than one can exist for each physical block, Function Block and Transducer Block instance to show all dynamical information for operation. This profile supports View\_1 as mandatory. The parameters to be included in VIEW\_1 are defined in the view object table for each block. All elements of the View\_1 object are mandatory.

This feature is not fully supported by the actual profile. For this profile the current state part of the alarm is used only (see 3.7.8).

#### 3.1.10 Alarm Objects

Alarm objects are used to communicate notification messages when alarms are detected. An alarm is the detection of a block leaving a particular state and when it returns back to that state. The time at which the alarm state was detected is included as a time stamp<sup>1</sup> in the alert message.

Based on the type of alarm two classes of alarms may be defined in the resource.

Analog Alarms - alarm used to report alarms or events whose associated value is floating point.

Discrete Alarms - alarm used to report alarms or events whose associated value is discrete.

Blocks provide alarm objects, the transfer of the object values is out of the scope of this profile.

### 3.2 Table Legend

Three tables are used in this section to describe the details of individual block parameters:

Parameter Attribute Table

Parameter Description Table

View Objects Table

The information provided in these tables is explained below.

#### 3.2.1 Parameter Description Table

A description of each block parameter and its intended use is contained in this table. This description contains the semantic of a parameter. For example the coding of enumerated parameters is defined in this table. These are intended to be used as help strings additionally.

If a parameter has an enumeration range it is allowed to support a manufacturer specific subset of the optional codes.

### 3.2.2 Parameter Attribute Table

Characteristics of the block parameters are specified by the parameter attribute table. This table provides the following information.

### **Relative Index**

Index offset of the parameter relative to the first parameter of the block.

#### **Parameter Name**

The Mnemonic name of the parameter.

### **Object Type**

Object type for the parameter value

Simple Simple variable

**Record** Structure of different simple variables

**Array** Array of simple variables

### **Data Type**

Data type for the parameter value

Name Basic data type of Simple variable or array

**DS**-n Data structure (Record) number n

This feature is not supported by the actual profile in general, except in analyser devices. As result of further profile specification activities time stamping may be defined.

### **Store**

Class of memory required

- **N** Non-volatile parameter which must be remembered through a power cycle, but which is not under the static update code.
- ${\bf S}$   $\,$  Static. Non-volatile and changing the parameter increases the static revision counter  ${\rm ST\_REV}$
- **D** Dynamic. The value is calculated by the block or read by another block.
- Cst Constant. The parameter doesn't change in a device.

### Size

Data size in number of octets (bytes).

#### **Access**

- r Indicates that the parameter can be read
- w Indicates that the parameter can be written

#### Parameter usage

- **C** Contained
- I Input
- Output

#### Kind of Transport (minimum requirements as indicated)

- a acyclic
- cyc cyclic

#### **Reset Class**

The FACTORY\_RESET (Physical Block parameter) affects a different set of parameters of the blocks in the device. The reset class characteristic of parameters determines if a parameter is involved in the signal chain of the measurement or actuation channel (functional parameter) or the parameter contains additional information (informational parameter).

- F Functional
- I Informational
- Not applicable

#### **Default Value**

The value assigned to parameter in the initialization process. This is required for initialization of an not configured block. Values are of the data type of the parameter. If there is a value in the attribute table of a block, this value has to be used as default value (profile default value). If there is no value for a parameter in the attribute table, the default value is manufacturer specific (manufacturer default value).

#### Download order

There are data consistency constraints in a device (e.g. several parameters using the same engineering unit). Changing one parameter may lead to some calculation within a device. Therefore a fixed download order of parameters into the device avoid data inconsistencies. A download is a sequence of write accesses to the set of parameters. This attribute defines the order the write access shall be done.

Note: Of course each parameter can be written separately.

#### **Mandatory / Optional**

- **M** Indicates the parameter is mandatory for acyclic access.
  - Cyclic access may be configured separately.
- O Indicates the parameter is optional.

### 3.2.3 View Object Table

View objects allow groups of parameter values to be read with one read request. Such capability will be provided to enable group information to be efficiently communicated in a timely fashion. More than one object - View\_1, View\_2, View\_3 and View\_4 - can exist for each block.

A View object is a concatenation of all parameters (collection) marked in a View table. One communication transaction transports all parameter values. The collection of objects is defined within the view object table in the detailed block specification.

| Rel. Index | View                                                                                             | Number_of_Views |
|------------|--------------------------------------------------------------------------------------------------|-----------------|
| 0          | View object defined to access frequently used dynamic operating parameters of a block and ST_REV | 1               |
| 1          | Reserved                                                                                         | 2               |
| 2          | Reserved                                                                                         | 3               |
| 3          | Reserved                                                                                         | 4               |
| 4          | manufacturer specific                                                                            | 5               |

Table 2. View Object definition

According to PROFIBUS PA - CLASS B, only View\_1 is mandatory for all blocks. The other view objects can be defined, but they are optional. The reserved views have to be counted, if there are manufacturer specific views.

### 3.3 Standard Parameter Definition

### 3.3.1 Parameter Description of the Standard Parameters

| Parameter    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLOCK_OBJECT | This object contains the characteristics of the blocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ST_REV       | A block has static block parameters, that are not changed by the process. Values are assigned to this parameter during the configuration or optimisation. The modification of at least one static parameter in a block has to be incremented by the according ST_REV at least by one. This provides a check of the parameter revision. ST_REV shall be reset to zero or incremented at least by one to indicate the change of static parameters in case of a coldstart (i.e. if FACTORY_RESET=1 is set). Additionally the ST_REV shall be increased if a change of a table is accepted. |
| TAG_DESC     | Every block can be assigned a textual TAG description. The TAG_DESC must be unambiguous and unique in the fieldbus system.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| STRATEGY     | Grouping of Function Block. The STRATEGY field can be used to group blocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ALERT_KEY    | This parameter contains the identification number of the plant unit. It helps to identify the location (plant unit) of an event.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TARGET_MODE  | The TARGET_MODE parameter contains desired mode normally set by a control application or an operator. The modes are valid alternatively only, i.e. only one mode can be set at one time. A write access to this parameter with more then one mode is out of the range of the parameter and have to be refused.                                                                                                                                                                                                                                                                          |
| MODE_BLK     | This parameter contains the current mode, the permitted and normal mode of the block.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ALARM_SUM    | This parameter contains the current states of the block alarms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Table 3. Parameter Description of the Standard Parameters** 

### 3.3.2 Parameter Attributes of the Standard Parameters

| Relative Index | Parameter<br>Name      | Object Type | Data Type                | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|------------------------|-------------|--------------------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| 0              | BLOCK_OBJECT           | Record      | DS-32                    | Cst   | 20   | r      | C/a                                          | -           | -             | М                                    |
| 1              | ST_REV                 | Simple      | Unsigned16               | N     | 2    | r      | C/a                                          | -           | 0             | М                                    |
| 2              | TAG_DESC               | Simple      | OctetString <sup>1</sup> | S     | 32   | r,w    | C/a                                          | I           | " "           | М                                    |
| 3              | STRATEGY               | Simple      | Unsigned16               | S     | 2    | r,w    | C/a                                          | I           | 0             | М                                    |
| 4              | ALERT_KEY              | Simple      | Unsigned8                | S     | 1    | r,w    | C/a                                          | I           | 0             | М                                    |
| 5              | TARGET_MODE            | Simple      | Unsigned8                | S     | 1    | r,w    | C/a                                          | F           | -             | М                                    |
| 6              | MODE_BLK               | Record      | DS-37                    | D     | 3    | r      | C/a                                          | -           | Block<br>spec | М                                    |
| 7              | ALARM_SUM <sup>2</sup> | Record      | DS-42                    | D     | 8    | r      | C/a                                          | -           | 0,0,0,        | М                                    |

**Table 4. Parameter Attributes of the Standard Parameters** 

### 3.3.3 View Object of the Standard Parameters

| Relative<br>Index | Parameter Name                       | View_1 | View_2 | View_3 | View_4 |
|-------------------|--------------------------------------|--------|--------|--------|--------|
| 0                 | BLOCK_OBJECT                         |        |        |        |        |
| 1                 | ST_REV                               | 2      |        |        |        |
| 2                 | TAG_DESC                             |        |        |        |        |
| 3                 | STRATEGY                             |        |        |        |        |
| 4                 | ALERT_KEY                            |        |        |        |        |
| 5                 | TARGET_MODE                          |        |        |        |        |
| 6                 | MODE_BLK                             | 3      |        |        |        |
| 7                 | ALARM_SUM                            | 8      |        |        |        |
| -                 | Overall sum of bytes in View -Object | 13     |        |        |        |

Table 5. View Object of the Standard Parameters

\_

<sup>&</sup>lt;sup>1</sup> Prefered data type should be VisibleString.

<sup>&</sup>lt;sup>2</sup> See remark at 3.1.8

### 3.4 Block Construction

Chapter 2.5 describes the logical concatenation of parameters to a block. Every block starts with a header the so-called Block Object. The Block Object has a defined structure and is defined in 3.7.2. Figure 8 presents the Block Object (partly) and the parameter structure within one block.



Figure 8. Structure of Parameters in a Block

### 3.5 Batch Parameter (BATCH) Standard for Function Blocks

The Batch parameter is a structured parameter composed of four elements. This parameter is intended to be used in Batch applications in line with IEC 61512 Part1 (ISA S88). Only Function Blocks carry this parameter. There is no algorithm necessary within a Function Block.

The Batch parameter is necessary in a distributed fieldbus system to identify used and available channels, in addition to identify the current batch in case of alerts.

The Batch parameter is not part of the View\_1 object of the Function Blocks.

| Parameter | Description                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BATCH     | This parameter is intended to be used in Batch applications in line with IEC 61512 Part1. Only Function Blocks carry this parameter. There is no algorithm necessary within a Function Block. |
|           | For more details see 3.7.19.                                                                                                                                                                  |

Table 6. Parameter Description of the BATCH Parameter

| Relative<br>Index | Parameter<br>Name   | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default<br>Value | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|---------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|------------------|--------------------------------------|
| 1-7               | Standard Parameters |             |           |       |      |        |                                              |             |                  | М                                    |
| 8                 | BATCH               | Record      | DS-67     | S     | 10   | r,w    | C/a                                          | Ι           | 0,0,0,           | М                                    |

Table 7. Parameter Attributes of the BATCH Parameter

### 3.6 Device Management and Identification Parameters

### 3.6.1 Device Management Overview

The Device Management provides the table of content of a device by means of a so-called Directory, i.e. the device specific implementation of the PROFIBUS-PA profile definitions. Some parameters are reserved for future definitions. The Device Management is the basis of a Management block, that will be introduced in future versions of the PROFIBUS-PA profile.

## 3.6.2 Directory Object

#### 3.6.2.1 Overview

The directory object is defined to act as a guide within the Function Block application in a device. It is a list of references to the objects making up this application. This information may be read by an interface device desiring to access objects in the device.

There are different types of objects represented in the directory. One parameter is represented as a single entry in the logical address space of the device. A group of parameters, e.g. a Function Block allocate many single entries is called a Composite object. A Composite object is referenced by a Composite\_Directory\_Entry in the directory. Composite\_Directory\_Entries of the same type (i.e. Physical Block, Function Block and Transducer Block, Link objects) are listed in the directory continuously. This results in compact lists of Composite Directory Entries. References to these lists of

Composite Directory Entries are an additional part of the directory, the so called Composite\_List\_Directory\_Entry. The Composite List Directory Entry contains the reference to the list of Physical Block Composite\_Directory\_Entries, Function Blocks Composite\_Directory\_Entries, Transducer Blocks Composite\_Directory\_Entries and Link objects Composite\_Directory\_Entries if available.

The directory is logically constructed by concatenating the several directory parts. These parts are the header followed by Composite List Directory Entries and the Composite Directory Entries. The Composite\_List\_Directory\_Entries points to the reference of the composite objects types PB, FB, TB and Link objects. The following Composite\_Directory\_Entries points to the parameter address of the first block parameters and objects (see Figure 9). One Composite Directory Entry is composed of the parameter address of the first element of the according composite object and its number of elements. The directory object is seen as one array. It has to be mapped to the definition of the underlying communication system.

The Directory object consists of the following parts:

| Header                           |
|----------------------------------|
| Composite List Directory Entries |
| Composite Directory Entries      |

with the following definitions:

#### 3.6.2.2 Header

- 1. Reserved Directory ID not used in this profile
- 2. Directory Revision Number
- 3. Number of Directory Objects If more than one object is used for the entire directory, then the elements are treated as continuously defined as though one larger object were used. Multiple directory objects will be contiguously listed in the directory. This object counts the numbers of objects which are necessary for the all over directory. The header object is not counted.
- 4. Total Number of Directory Entries Number if Composite List Directory Entries and Composite Directory Entries shall be added
- 5. Directory Entry number of first Composite List Directory Entry This number counts the entries within the directory not the address of the parameter which contains the entry. The 1<sup>st</sup> directory entry is the Physical Block reference in the Composite List Directory Entry. There is no gap between Composite List Directory Entry and Composite Directory Entry in counting the entries.
- 6. Number of Composite List Directory Entries Counts the number of different block types (Physical Block, Transducer Blocks and Function Block) and object types (in the scope of this profile Link object only) in the device.

### 3.6.2.3 Composite List Directory Entries, Composite Directory Entries

- 1. Directory Entry Number for the Physical Block / Number of Physical Blocks
- 2. Directory\_Entry\_Number for the first Transducer Block pointer / Number of Transducer Blocks
- 3. Directory\_Entry\_Number for the first Function Block pointer / Number of Function Blocks
- 4. Directory\_Entry\_Number for the first link object pointer / Number of Link Objects

Note: The Directory\_Entry\_Number counts both, the address of the parameter which contains the according entry of the Directory (this address is communication system depending, it can be e.g. an

index) and the elements <u>in</u> the directory array starting with the first Composite\_List\_Directory\_Entry (this is communication system independent and the counter in the array).

Composite\_Directory\_Entries

- 4. Block\_ptr\_1/Number of Elements
- 5. Block\_ptr\_2/Number of Elements
- 6. ...
- n. Block\_ptr\_n/Number of Elements

The Directory is structured in 3 levels as shown in the following figure.



Figure 9. Directory Structure and Reference to the Blocks

The header contains the concrete structure of the directory and objects. The Composite\_List\_Directory distinguishes between the different block types (FB, TB, PB) and provides the number of each kind of block in the device. The Composite Directory\_Entries provides the pointers to the first element of the blocks and the number of elements within the block. The Composite Directory\_Entries part of the directory shall follow the Composite List Directory Entry without gap.

The mapping of the Directory object to communication objects is dependent from the communication system and the device capabilities (max. length of communication objects). E.g., if the total number of bytes in the directory is higher than the maximal length of one communication object (respectively parameter), a new parameter has to be added and follows directly with the next index.

### 3.6.3 Device Management Parameters Attributes

For the Device Management Parameter Description see 9.4.3.

### 3.6.4 Device Management View Object

The Device Management provides no View Object because there are no dynamic parameters in the read only parameters.

### 3.7 General Data Types and Structures

### 3.7.1 Data Types

### 3.7.1.1 Common Data Types

The data types (1-Boolean to 13-TimeDifference) are used as defined in the underlying PROFIBUS specification.

In the scope of this profile there is no BitString data type. The BitString data type is mapped to the OctetString one as follows:

#### BitString definition

|   | Byte 1 |   |   |   |   |   | Byte 2 |   |  |  |  |  |  | Byte 3 |    |    |    |    |    |    |    |  |
|---|--------|---|---|---|---|---|--------|---|--|--|--|--|--|--------|----|----|----|----|----|----|----|--|
| 1 | 2      | 3 | 4 | 5 | 6 | 7 | 8      | 9 |  |  |  |  |  | 17     | 18 | 19 | 20 | 21 | 22 | 23 | 24 |  |

#### OctetString definition

|          |   |   | Byt | e 1 |   |   |          | Byte 2   |    |    |    | Byte 3 |    |    |          |          |    |    |    |    |    |    |          |  |
|----------|---|---|-----|-----|---|---|----------|----------|----|----|----|--------|----|----|----------|----------|----|----|----|----|----|----|----------|--|
| 8        | 7 | 6 | 5   | 4   | 3 | 2 | 1        | 16       | 15 | 14 | 13 | 12     | 11 | 10 | 9        | 24       | 23 | 22 | 21 | 20 | 19 | 18 | 17       |  |
| Bit<br>7 |   |   |     |     |   |   | Bit<br>0 | Bit<br>7 |    |    |    |        |    |    | Bit<br>0 | Bit<br>7 |    |    |    |    |    |    | Bit<br>0 |  |

Table 8. Mapping of BitString to OctetString

### 3.7.1.2 Time\_Value Data Type

This data type is an additional (to Boolean, Unsigned, Integer, ...) data type and is used to represent date and time in the required precision for device time and clock synchronisation. It is a 64-bit unsigned fixed-point number with the integer part in the first 32 bits and the fraction part in the last 32 bits.

DataType Time\_Value

Key Attribute Index = 21

In the scope of this profile there is no application time synchronisation and therefore no use of time stamps. Parameter with data type 21 shall have the default value 0 (zero).

### 3.7.2 Block Structure

This data structure consists of the attributes of the blocks (see also 3.4).

DataType Block

Shortcut DS-32

Attribute Number of Elements = 12

Attribute List of Elements (shown below)

| Е  | Element Name                 | Data Type   | (Index) | Size |
|----|------------------------------|-------------|---------|------|
| 1  | Reserved                     | Unsigned8   | (5)     | 1    |
| 2  | Block_Object                 | Unsigned8   | (5)     | 1    |
| 3  | Parent_Class                 | Unsigned8   | (5)     | 1    |
| 4  | Class                        | Unsigned8   | (5)     | 1    |
| 5  | DD_Reference                 | Unsigned32  | (7)     | 4    |
| 6  | DD_Revision                  | Unsigned16  | (6)     | 2    |
| 7  | Profile                      | OctetString | (10)    | 2    |
| 8  | Profile_Revision             | Unsigned16  | (6)     | 2    |
| 9  | Execution_Time               | Unsigned8   | (5)     | 1    |
| 10 | Number_of_Parameters         | Unsigned16  | (6)     | 2    |
| 11 | Address_of_View_1            | Unsigned16  | (6)     | 2    |
| 12 | Number_of_Views <sup>1</sup> | Unsigned8   | (5)     | 1    |

Table 9. List of Elements of the Block Structure

| Parameter     | Description           |                                                 |  |  |  |  |  |  |  |  |
|---------------|-----------------------|-------------------------------------------------|--|--|--|--|--|--|--|--|
| Reserved,     | These four parameters | nese four parameters define the kind of device. |  |  |  |  |  |  |  |  |
| Block_Object, | Coding:               | oding:                                          |  |  |  |  |  |  |  |  |
| Parent_Class, | 0 – 127:              | see Table 11, Table 12 and Table 13 below.      |  |  |  |  |  |  |  |  |
| Class         | 128 – 249:            | manufacturer specific                           |  |  |  |  |  |  |  |  |
|               | 250:                  | not used                                        |  |  |  |  |  |  |  |  |
|               | 251:                  | none                                            |  |  |  |  |  |  |  |  |
|               | 252:                  | unknown                                         |  |  |  |  |  |  |  |  |
|               | 253:                  | special                                         |  |  |  |  |  |  |  |  |
|               | 254 and 255:          | reserved                                        |  |  |  |  |  |  |  |  |
| DD_Reference  | For future use.       |                                                 |  |  |  |  |  |  |  |  |
| DD_Revision   | For future use.       |                                                 |  |  |  |  |  |  |  |  |
| Profile       | Coding see Table 14 b | pelow.                                          |  |  |  |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> If a block has more than one (1) View object, the View objects must follow the first one without gaps.

Copyright © PNO e.V. 2004. All Rights reserved.

\_

| Parameter            | Description                                                                                                                                                                          |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Profile_Revision     | Coding:                                                                                                                                                                              |
|                      | Byte 1 (MSB): Number before the decimal point; range 00 - 99                                                                                                                         |
|                      | Byte 2 (LSB): Number after the decimal point; range 0 - 255                                                                                                                          |
|                      | The MSB counts the first number and the LSB counts the second and third number of NAMUR NE53:                                                                                        |
|                      | Example for this new profile 3.01: MSB = 0x03, LSB = 0x01.                                                                                                                           |
| Execution_Time       | For future use.                                                                                                                                                                      |
| Number_of_Parameters | Number of used Relative Indices (parameters) of a block including                                                                                                                    |
|                      | - Gaps within the mandatory part of the block                                                                                                                                        |
|                      | - Optional parameters                                                                                                                                                                |
|                      | - Reserved parameters                                                                                                                                                                |
|                      | - Manufacturer specific parameters                                                                                                                                                   |
|                      | - Gap within the manufacturer specific part of the block                                                                                                                             |
|                      | The Number_of_Parameters doesn't include the view objects.                                                                                                                           |
| Address_of_View_1    | Reference to View_1 parameter for access (see 3.1.9). The specific meaning of the value of this parameter is communication specific and defined in the mapping part of this profile. |
|                      | Coding:                                                                                                                                                                              |
|                      | Byte 1 (MSB): Slot                                                                                                                                                                   |
|                      | Byte 2 (LSB): Index                                                                                                                                                                  |
| Number_of_Views      | If there are more than the View_1 view objects in a block, this parameter contains the number of view objects of the block including the View_1 and the reserved ones.               |

Table 10. Parameter Description of the Block Structure

Block Object of the Physical Block:

| Byte 1                   | Byte 2            | Byte 3             | Byte 4                   |
|--------------------------|-------------------|--------------------|--------------------------|
| Reserved                 | Block_Object      | Parent_Class       | Class                    |
| 0 – 127 reserved         | 01 Physical Block | 01 Transmitter     | Default = 250 (not used) |
| Default = 250 (not used) |                   | 02 Actuator        |                          |
|                          |                   | 03 Discrete I/O    |                          |
|                          |                   | 04 Controller      |                          |
|                          |                   | 05 Analyser        |                          |
|                          |                   | 06 Lab Device      |                          |
|                          |                   | 07 reserved        |                          |
|                          |                   | <br>126 reserved   |                          |
|                          |                   | 127 Multi-Variable |                          |

Table 11. Physical Block: Coding of Block\_Object, Class and Parent\_Class

Block Object of Function Blocks:

| Byte 1   | Byte 2            | Byte 3                                                                                                          | Byte 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|-------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | Block_Object      | Parent_Class                                                                                                    | Class <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reserved | 02 Function Block | 01 Input 02 Output 03 Control 04 Advanced Control 05 Calculation 06 Auxiliary 07 Alert 08 reserved 127 reserved | Input 01 Analog Input 02 Discrete Input 03 reserved 127 reserved  Control 01 PID 02 Sample Selector 03 Lab Device Control 04 reserved 127 reserved  Output 01 Analog Output 02 Discrete Output 03 reserved 127 reserved  Advanced Control 01 Lab instruments 02 reserved 127 reserved  Calculation 01 reserved 127 reserved  Calculation 01 reserved 127 reserved |

<sup>&</sup>lt;sup>1</sup> More definitions of Class codes are done in the data sheets in arrangement with the PNO.

| Byte 1   | Byte 2       | Byte 3       | Byte 4                         |
|----------|--------------|--------------|--------------------------------|
| Reserved | Block_Object | Parent_Class | Class <sup>1</sup>             |
|          |              |              | Alert 01 reserved 127 reserved |

Table 12. Function Block: Coding of Block\_Object, Class and Parent\_Class

# Block Object of Transducer Blocks:

| Byte 1   | Byte 2              | Byte 3                                                                                                                             | Byte 4                                                      |
|----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Reserved | Block_Object        | Parent_Class                                                                                                                       | Class <sup>1</sup>                                          |
|          | 03 Transducer Block | 01 Pressure 02 Temperature 03 Flow 04 Level 05 Actuator 06 Discrete I/O 07 Analyzer 08 Auxiliary 09 Alarm 10 reserved 127 reserved | Pressure  01 Differential 02 Absolute 03 Gage 04 Pressure + |

-

<sup>&</sup>lt;sup>1</sup> More definitions of Class codes are done in the data sheets in arrangement with the PNO.

| Byte 1   | Byte 2       | Byte 3       | Byte 4                                                                                        |
|----------|--------------|--------------|-----------------------------------------------------------------------------------------------|
| Reserved | Block_Object | Parent_Class | Class <sup>1</sup>                                                                            |
|          |              |              | 03 Radiometric 04 Capacity 05 reserved 127 reserved                                           |
|          |              |              | Actuator  01 Electric  02 Electro-pneumatic  03 Electro-hydraulic  04 reserved   127 reserved |
|          |              |              | Discrete I/O  01 Sensor Input  02 Actuator  03 reserved  127 reserved                         |
|          |              |              | Analyser  01 Standard  02 reserved   127 reserved                                             |
|          |              |              | Auxiliary 01 Transfer 02 Control 03 Limit 04 reserved 127 reserved                            |
|          |              |              | Alarm  01 Binary Message  02 reserved  127 reserved                                           |

Table 13. Transducer Block: Coding of Block\_Object, Class and Parent\_Class

| Byte 1 (MSB)                                                    | Byte 2 (LSB)                                     | Description                                                                                                                          |
|-----------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Number of the PROFIBUS-PA profiles within the PNO Profile Class | -                                                | The Profile Class is given by the PNO for the profile document on the cover page: "PROFIBUS-PA, Profile for Process Control Devices" |
| 64, i.e. 0x40                                                   | 0x01 – Compact class A<br>0x02 – Compact class B | highest bit not set means, all standard parameters have their own memory place                                                       |
|                                                                 | 0x81 – Simple class A<br>0x82 – Simple class B   | highest bit is set means: mapping of the standard parameters ST_REV, TAG_DESC, STRATEGY, ALERT_KEY in one memory place.              |
|                                                                 | 253 – special                                    | manufacturer specific block structures                                                                                               |

**Table 14. Coding of Profile** 

## 3.7.3 Value & Status - Floating Point Structure

This data structure consists of the values and the state of the Floating Point parameters. These parameters can be inputs or outputs.

Data Type Value & Status - Floating Point

Data Type Numeric Identifier = 101

Attribute Number of Elements = 2

| Е | Element Name | Data Type | (Index) | Size |
|---|--------------|-----------|---------|------|
| 1 | Value        | Float     | (8)     | 4    |
| 2 | Status       | Unsigned8 | (5)     | 1    |

Table 15. List of Elements of the Value & Status - Floating Point Structure

### 3.7.3.1 Coding of Status

The definition of the status attribute is the same for all parameters (input, output, and contained). There are four states of quality of the data, an enumerated set of sixteen sub-status values for each quality, and four states of the limits placed on the data. Limit information is generated for all status attributes of all parameters having status.

## **Meaning of Quality**

| Qua            | ality          | Qu             | ality S        | Substa         | itus           | Limits         |                       |                    |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------------|--------------------|
| Gr             | Gr             | QS             | QS             | QS             | QS             | Qu             | Qu                    |                    |
| 2 <sup>7</sup> | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup> | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | <b>2</b> <sup>0</sup> |                    |
| 0              | 0              |                |                |                |                |                |                       | BAD                |
| 0              | 1              |                |                |                |                |                |                       | UNCERTAIN          |
| 1              | 0              |                |                |                |                |                |                       | GOOD (Non Cascade) |
| 1              | 1              |                |                |                |                |                |                       | GOOD (Cascade)     |

## Meaning of Substatus if Quality = BAD

| 0 | 0 | 0 | 0 | 0 | 0 |  | non specific                         |
|---|---|---|---|---|---|--|--------------------------------------|
| 0 | 0 | 0 | 0 | 0 | 1 |  | configuration error                  |
| 0 | 0 | 0 | 0 | 1 | 0 |  | not connected                        |
| 0 | 0 | 0 | 0 | 1 | 1 |  | device failure                       |
| 0 | 0 | 0 | 1 | 0 | 0 |  | sensor failure                       |
| 0 | 0 | 0 | 1 | 0 | 1 |  | no communication (last usable value) |
| 0 | 0 | 0 | 1 | 1 | 0 |  | no communication (no usable value)   |
| 0 | 0 | 0 | 1 | 1 | 1 |  | out of service                       |

# Meaning of Substatus if Quality = UNCERTAIN

| 0 | 1 | 0 | 0 | 0 | 0 |  | non specific                                           |
|---|---|---|---|---|---|--|--------------------------------------------------------|
| 0 | 1 | 0 | 0 | 0 | 1 |  | last usable value (LUV)                                |
| 0 | 1 | 0 | 0 | 1 | 0 |  | substitute value                                       |
| 0 | 1 | 0 | 0 | 1 | 1 |  | initial value                                          |
| 0 | 1 | 0 | 1 | 0 | 0 |  | sensor conversion not accurate                         |
| 0 | 1 | 0 | 1 | 0 | 1 |  | engineering unit violation (unit not in the valid set) |
| 0 | 1 | 0 | 1 | 1 | 0 |  | sub normal                                             |
| 0 | 1 | 0 | 1 | 1 | 1 |  | configuration error                                    |
| 0 | 1 | 1 | 0 | 0 | 0 |  | simulated value                                        |
| 0 | 1 | 1 | 0 | 0 | 1 |  | sensor calibration                                     |

## Meaning of Substatus if Quality = GOOD (Non Cascade)

| 1 | 0 | 0 | 0 | 0 | 0 |  | ok                            |
|---|---|---|---|---|---|--|-------------------------------|
| 1 | 0 | 0 | 0 | 0 | 1 |  | update event                  |
| 1 | 0 | 0 | 0 | 1 | 0 |  | active advisory alarm         |
| 1 | 0 | 0 | 0 | 1 | 1 |  | active critical alarm         |
| 1 | 0 | 0 | 1 | 0 | 0 |  | unacknowledged update event   |
| 1 | 0 | 0 | 1 | 0 | 1 |  | unacknowledged advisory alarm |
| 1 | 0 | 0 | 1 | 1 | 0 |  | unacknowledged critical alarm |
| 1 | 0 | 1 | 0 | 0 | 0 |  | initiate fail safe            |
| 1 | 0 | 1 | 0 | 0 | 1 |  | maintenance required          |

# Meaning of Substatus if Quality = GOOD (Cascade)

| 1 | 1 | 0 | 0 | 0 | 0 |  | ok                          |
|---|---|---|---|---|---|--|-----------------------------|
| 1 | 1 | 0 | 0 | 0 | 1 |  | initialisation acknowlegded |
| 1 | 1 | 0 | 0 | 1 | 0 |  | initialisation request      |
| 1 | 1 | 0 | 0 | 1 | 1 |  | not invited                 |
| 1 | 1 | 0 | 1 | 0 | 0 |  | reserved                    |
| 1 | 1 | 0 | 1 | 0 | 1 |  | do not select               |
| 1 | 1 | 0 | 1 | 1 | 0 |  | local override              |
| 1 | 1 | 0 | 1 | 1 | 1 |  | reserved                    |
| 1 | 1 | 1 | 0 | 0 | 0 |  | initiate fail safe          |

## Meaning of the Limit Bits

|  |  |  | 0 | 0 | ok           |
|--|--|--|---|---|--------------|
|  |  |  | 0 | 1 | low limited  |
|  |  |  | 1 | 0 | high limited |
|  |  |  | 1 | 1 | constant     |

Table 16. Coding of the Status Byte

### 3.7.3.2 Invalid Status Values

| Qua            | Quality Quality Substatus Lim |                | nits           |                |                |                |                       |                    |
|----------------|-------------------------------|----------------|----------------|----------------|----------------|----------------|-----------------------|--------------------|
| Gr             | Gr                            | QS             | QS             | QS             | QS             | Qu             | Qu                    |                    |
| 2 <sup>7</sup> | 2 <sup>6</sup>                | 2 <sup>5</sup> | 2 <sup>4</sup> | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | <b>2</b> <sup>0</sup> |                    |
| 1              | 0                             | 0              | 0              | 0              | 0              | 1              | 0                     | GOOD (Non Cascade) |
| 1              | 1                             | 0              | 0              | 0              | 0              | 1              | 0                     | GOOD (Cascade)     |
| 1              | 0                             | 0              | 0              | 0              | 0              | 0              | 1                     | GOOD (Non Cascade) |
| 1              | 1                             | 0              | 0              | 0              | 0              | 0              | 1                     | GOOD (Cascade)     |

**Table 17. Invalid Status Values** 

### 3.7.3.3 Reserved Status Values

| Qua            | ality          | Qu             | ality S        | Substa         | itus           | Lin            | nits           |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Gr             | Gr             | QS             | QS             | QS             | QS             | Qu             | Qu             |
| 2 <sup>7</sup> | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup> | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |

# Quality = BAD

| 0 | 0 | 1 | 0 | 0 | 0 | * | * | reserved |
|---|---|---|---|---|---|---|---|----------|
|   |   |   |   |   |   |   |   |          |
| 0 | 0 | 1 | 1 | 1 | 1 | * | * | reserved |

## **Quality = UNCERTAIN**

| 0 | 1 | 1 | 0 | 1 | 0 | * | * | reserved |
|---|---|---|---|---|---|---|---|----------|
|   |   |   |   |   |   |   |   |          |
| 0 | 1 | 1 | 1 | 1 | 1 | * | * | reserved |

## Quality = GOOD (Non Cascade)

| 1 | 0 | 0 | 1 | 1 | 1 | * | * | reserved |
|---|---|---|---|---|---|---|---|----------|
| 1 | 0 | 1 | 0 | 1 | 0 | * | * | reserved |
|   |   |   |   |   |   |   |   |          |
| 1 | 0 | 1 | 1 | 1 | 1 | * | * | reserved |

# Quality = GOOD (Cascade)

| 1 | 1 | 1 | 0 | 0 | 1 | * | * | reserved |
|---|---|---|---|---|---|---|---|----------|
|   |   |   |   |   |   |   |   |          |
| 1 | 1 | 1 | 1 | 1 | 1 | * | * | reserved |

Table 18. Reserved Status Values

### 3.7.3.4 Use of the Status Byte for Profile Compliant Devices

|   |   |     |   |   |        |          | 1   |
|---|---|-----|---|---|--------|----------|-----|
| Λ | Λ | . ∩ | 1 | Λ | $\cap$ | <b>∩</b> | 1 1 |
| U | U | U   | I | U | U      | U        | 1   |
|   |   |     |   |   |        |          | i   |

BAD - sensor failure, low limited - lower physical range of the sensor reached

0 0 1 0 1 0

BAD - sensor failure, high limited - upper physical range of the sensor reached

1 0 0 0 1 0 0 1

GOOD (Non Cascade), active advisory alarm, low limited - e.g. LO\_LIM of OUT is exceeded

1 0 0 1 0 1 0

GOOD (Non Cascade), active advisory alarm, high limited - e.g. HI\_LIM of OUT is exceeded

1 0 0 1 1 0 1

GOOD (Non Cascade), active critical alarm, low limited - e.g. LO\_LO\_LIM of OUT is exceeded

1 0 0 1 1 1 0

GOOD (Non Cascade), active critical alarm, high limited - e.g. HI\_HI\_LIM of OUT is exceeded

1 0 0 0 1 \* \*

GOOD (Non Cascade), update event - Parameter with S attribute has changed

### 3.7.3.5 Priority of Status

In the following table, Status is shown in lowest (GOOD - ok) to highest priority (BAD - out of service). When multiple conditions exist which may impact status, the condition having the highest priority will determine the status value. A certain status of an input/output parameter (parameter attribute I and O) is allowed if a "X" is marked in the according column.

The status will be set if the according event occurs and will be reset to the next lower prior status if the event is gone.

| Quality   | Quality Substatus              | Priority |
|-----------|--------------------------------|----------|
| GOOD (NC) | ok                             | Lowest   |
| GOOD (NC) | maintenance required           |          |
| GOOD (NC) | update event                   |          |
| GOOD (NC) | active advisory alarm          |          |
| GOOD (NC) | active critical alarm          |          |
| GOOD (NC) | unacknowledged update event    |          |
| GOOD (NC) | unacknowledged advisory alarm  |          |
| GOOD (NC) | unacknowledged critical alarm  |          |
| GOOD (NC) | initiate fail safe             |          |
| UNCERTAIN | non specific                   |          |
| UNCERTAIN | last usable value (LUV)        |          |
| UNCERTAIN | substitute value               |          |
| UNCERTAIN | initial value                  |          |
| UNCERTAIN | sensor conversion not accurate |          |
| UNCERTAIN | engineering unit violation     |          |
| UNCERTAIN | sub normal                     |          |
| UNCERTAIN | configuration error            |          |
| UNCERTAIN | sensor calibration             |          |
| UNCERTAIN | simulated value                |          |
| GOOD (C)  | ok                             |          |
| GOOD (C)  | initialization acknowledged    |          |
| GOOD (C)  | initialization request         |          |
| GOOD (C)  | not invited                    |          |
| GOOD (C)  | do not select                  |          |
| GOOD (C)  | local override                 |          |
| GOOD (C)  | initiate fail safe             |          |
| BAD       | non specific                   |          |
| BAD       | configuration error            |          |
| BAD       | not connected                  |          |
| BAD       | sensor failure                 |          |
| BAD       | device failure                 |          |
| BAD       | no communication (LUV)         |          |
| BAD       | no communication (no LUV)      |          |

| Quality | Quality Substatus | Priority |
|---------|-------------------|----------|
| BAD     | out of service    | Highest  |

Table 19. Priority of the Status Values

### 3.7.3.6 Definition of Status

The Quality, Quality Substatus, and Limit components of the Status byte are defined as follows:

### **Meaning of the Quality Bits**

| Quality |                    | Meaning                                                                                         |
|---------|--------------------|-------------------------------------------------------------------------------------------------|
| 0       | BAD                | The value is not useful.                                                                        |
| 1       | UNCERTAIN          | The quality of the value is less than normal, but the value may still be useful.                |
| 2       | GOOD (Non Cascade) | The quality of the value is good. Possible alarm conditions may be indicated by the sub-status. |
| 3       | GOOD (Cascade)     | The value may be used in control.                                                               |

### Meaning of Substatus if Quality = BAD

|                | modifing of cuspitation a quanty = 27.2 |                                                                                                                                                                           |  |  |  |  |  |  |
|----------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Sub-<br>status | BAD                                     | Meaning                                                                                                                                                                   |  |  |  |  |  |  |
| 0              | non specific                            | There is no specific reason why the value is BAD. Used for propagation.                                                                                                   |  |  |  |  |  |  |
| 1              | configuration error                     | Set if the value is not useful because there is some inconsistency regarding the parameterization or configuration, depending on what a specific manufacturer can detect. |  |  |  |  |  |  |
| 2              | not connected                           | Set if this input is required to be connected and is not connected.                                                                                                       |  |  |  |  |  |  |
| 3              | device failure                          | Set if the source of the value is affected by a device failure.                                                                                                           |  |  |  |  |  |  |
| 4              | sensor failure                          | Set if the device can determine this condition. If the error depends on an exceeded sensor range the Limits define which direction has been exceeded.                     |  |  |  |  |  |  |
| 5              | no communication (LUV)                  | Set if this value had been set by communication, which has now failed.                                                                                                    |  |  |  |  |  |  |
| 6              | no communication (no LUV)               | Set if there has never been any communication with this value since it was last Out of Service.                                                                           |  |  |  |  |  |  |
| 7              | out of service                          | The value is not reliable because the block is not being evaluated, and may be under construction by a configurer. Set if the block mode is O/S.                          |  |  |  |  |  |  |

## Meaning of Substatus if Quality = UNCERTAIN

| Sub-<br>status | UNCERTAIN    | Meaning                                                                       |
|----------------|--------------|-------------------------------------------------------------------------------|
| 0              | non specific | There is no specific reason why the value is uncertain. Used for propagation. |

| Sub-<br>status | UNCERTAIN                      | Meaning                                                                                                                                                                                                                                    |
|----------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | last usable value (LUV)        | Whatever was writing this value has stopped doing so. This is used for fail safe handling.                                                                                                                                                 |
| 2              | substitute value               | Predefined value is used instead of the calculated one. This is used for fail safe handling.                                                                                                                                               |
| 3              | initial value                  | Value of volatile parameters during and after reset of the device or of a parameter.                                                                                                                                                       |
| 4              | sensor conversion not accurate | Set if the value is at one of the sensor limits. The Limits define which direction has been exceeded. Also set if the device can determine that the sensor has reduced accuracy (e.g. degraded analyzer), in which case no limits are set. |
| 5              | engineering unit violation     | Set if the value lies outside of the set of values defined for this parameter. The Limits define which direction has been exceeded.                                                                                                        |
| 6              | sub normal                     | Set if a value derived from multiple values has less than the required number of GOOD sources.                                                                                                                                             |
| 7              | configuration error            | Set if there is some inconsistency regarding the parameterization or configuration, depending on what a specific manufacturer can detect.                                                                                                  |
| 8              | simulated value                | Set when the process value is written by the operator while the block is in manual mode.                                                                                                                                                   |
| 9              | sensor calibration             | Set during the active calibration procedure together with the current measured value.                                                                                                                                                      |

# Meaning of Substatus if Quality = GOOD (Non Cascade)

| Sub-<br>status | GOOD (NC)                        | Meaning                                                                                                                                                    |  |
|----------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0              | ok                               | No error or special condition is associated with this value.                                                                                               |  |
| 1              | update event                     | Set if the value is good and the block has an active Update event.                                                                                         |  |
| 2              | active advisory alarm            | Set if the value is good and the block has an active Alarm.                                                                                                |  |
| 3              | active critical alarm            | Set if the value is good and the block has an active Alarm.                                                                                                |  |
| 4              | unacknowledged update event      | Set if the value is good and the block has an unacknowledg<br>Update event.                                                                                |  |
| 5              | unacknowledged advisory<br>alarm | Set if the value is good and the block has an unacknowledged Alarm.                                                                                        |  |
| 6              | unacknowledged critical alarm    | Set if the value is good and the block has an unacknowledged Alarm.                                                                                        |  |
| 7              | reserved                         | reserved                                                                                                                                                   |  |
| 8              | initiate fail safe               | The value is from a block that wants its following output block (e.g. AO) to go to Fail Safe.                                                              |  |
| 9              | maintenance required             | The device works still without failure but service support will be necessary soon. This may be detected e.g. by a Transducer Block of a value of pH meter. |  |

## Meaning of Substatus if Quality = GOOD (Cascade)

| Sub-<br>status | GOOD (C)                    | Meaning                                                                                                                                                                                                                                                                            |
|----------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0              | ok                          | No error or special condition is associated with this value.                                                                                                                                                                                                                       |
| 1              | initialisation acknowlegded | The value is an initialized value from a source (cascade input, remote-cascade in, and remote-output in parameters).                                                                                                                                                               |
| 2              | initialisation request      | The value is an initialization value for a source (back calculation input parameter), because the lower loop is broken or the mode is wrong.                                                                                                                                       |
| 3              | not invited                 | The value is from a block which does not have a target mode that would use this input.                                                                                                                                                                                             |
| 4              | reserved                    | reserved                                                                                                                                                                                                                                                                           |
| 5              | do not select               | The value is from a block which should not be selected, due to conditions in or above the block.                                                                                                                                                                                   |
| 6              | local override              | The value is from a block that has been locked out by a local key switch or is a Complex AO/DO with interlock logic active. The failure of normal control must be propagated to a function running in a host system for alarm and display purposes. This also implies Not Invited. |
| 7              | reserved                    | reserved                                                                                                                                                                                                                                                                           |
| 8              | initiate fail safe          | The value is from a block that wants its downstream output block (e.g. AO) to go to Fail Safe.                                                                                                                                                                                     |

## **Meaning of the Limit Bits**

| Limit<br>Bits |                                 | Meaning                                                                                                                                                                                                                                                    |  |  |
|---------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0             | ok                              | The value is free to move.                                                                                                                                                                                                                                 |  |  |
| 1             | low limited                     | The value has acceded its low limits.                                                                                                                                                                                                                      |  |  |
| 2             | high limited                    | The value has acceded its high limits.                                                                                                                                                                                                                     |  |  |
| 3             | constant (high and low limited) | 'constant' has to be used for parameter in general to indicate that the value of this parameter is set by operator or local means and is not following the value provided by the normal block algorithm. Status may be changed by operator (if writeable). |  |  |

The four cases are mutually exclusive. A constant cannot also be limited in just one direction.

Table 20. Meaning of the Status Values

### 3.7.4 Value & Status - Discrete Structure

This data structure consists of the value and state of the discrete value parameters.

Data Type Value & Status - Discrete

Data Type Numeric Identifier = 102

Attribute Number of Elements = 2

| Е | Element Name | Data Type | (Index) | Size |
|---|--------------|-----------|---------|------|
| 1 | Value        | Unsigned8 | (5)     | 1    |
| 2 | Status       | Unsigned8 | (5)     | 1    |

Table 21. List of Elements of the Value & Status - Discrete Structure

| Parameter | Description                                                                                      |
|-----------|--------------------------------------------------------------------------------------------------|
| Value     | Coding:  0 not set (e.g. FALSE)  <> 0 set (e.g. TRUE) (values 1 255 can have different semantic) |
| Status    | Coding see 3.7.3.1.                                                                              |

Table 22. Parameter Description of the Value & Status - Discrete Structure

### 3.7.5 Scaling Structure

This data structure consists of static data used to scale floating point values for display purposes.

DataType Scaling

Shortcut DS-36

Attribute Number of Elements = 4

Attribute List of Elements (shown below)

| Е | Element Name  | Data Type  | (Index) | Size |
|---|---------------|------------|---------|------|
| 1 | EU_at_100%    | Float      | (8)     | 4    |
| 2 | EU_at 0%      | Float      | (8)     | 4    |
| 3 | Units_Index   | Unsigned16 | (6)     | 2    |
| 4 | Decimal_Point | Integer8   | (2)     | 1    |

Table 23. List of Elements of the Scaling Structure

Codes of Units Index see chapter 5.

Decimal\_Point is a memo how many digits after the point are valid. It can be used by the master tool and by the local display.

#### 3.7.6 Mode Structure

This data structure consists of strings for actual, permitted and normal modes.

DataType Mode

Shortcut DS-37

Attribute Number of Elements = 3

Attribute List of Elements (shown below)

| Е | Element Name | Data Type | (Index) | Size |
|---|--------------|-----------|---------|------|
| 1 | Actual       | Unsigned8 | (5)     | 1    |
| 2 | Permitted    | Unsigned8 | (5)     | 1    |
| 3 | Normal       | Unsigned8 | (5)     | 1    |

Table 24. List of Elements of the Mode Structure

Codes of Mode elements see 3.1.7.

### 3.7.7 Alarm Float Structure

This data structure consists of data that describe Floating Point Alarms.

DataType Alarm Float Shortcut DS-39

Attribute Number of Elements = 5

| Е | Element Name   | Data Type  | (Index) | Size |
|---|----------------|------------|---------|------|
| 1 | Unacknowledged | Unsigned8  | (5)     | 1    |
| 2 | Alarm_State    | Unsigned8  | (5)     | 1    |
| 3 | Time_Stamp     | TimeValue  | (21)    | 8    |
| 4 | Subcode        | Unsigned16 | (6)     | 2    |
| 5 | Value          | Float      | (8)     | 4    |

Table 25. List of Elements of the Alarm Float Structure

| Parameter   | Description                                                                                                                                                                                                                                                                     |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Alarm_State | Coding:                                                                                                                                                                                                                                                                         |  |  |  |
|             | 0 no alarm <> 0 alarm active                                                                                                                                                                                                                                                    |  |  |  |
| Time_Stamp  | If the device using this data structure does not provide a clock, the Time_Stamp value is equal to the 1st of January 1984. A time synchronisation of the system time in the device applications is not used in the profile (i.e. System Management functionality is not used). |  |  |  |
| Subcode     | Defines additional information about the reason of the alarm.                                                                                                                                                                                                                   |  |  |  |
|             | Coding:                                                                                                                                                                                                                                                                         |  |  |  |
|             | 0 not used<br>1 – 32767 reserved<br>32768 – 65535 device specific                                                                                                                                                                                                               |  |  |  |

Table 26. Parameter Description of the Alarm Float Structure

## 3.7.8 Alarm Summary Structure

This data structure consists of data that summarize 16 alarms.

DataType Alarm Summary

Shortcut DS-42

Attribute Number of Elements = 4

| E | Element Name   | Data Type   | (Index) | Size |
|---|----------------|-------------|---------|------|
| 1 | Current        | OctetString | (10)    | 2    |
| 2 | Unacknowledged | OctetString | (10)    | 2    |
| 3 | Unreported     | OctetString | (10)    | 2    |
| 4 | Disabled       | OctetString | (10)    | 2    |

Table 27. List of Elements of the Alarm Summery Structure

The Bits of the OctetStrings are associated with the following alarms:

| Octet | Bit   | Element              | Description                                         |
|-------|-------|----------------------|-----------------------------------------------------|
| 0     | 0     | Discrete alarm (LSB) | only Function Blocks with discrete limit parameters |
| 0     | 1     | HI_HI_Alarm          | only Function Blocks with analog limit parameters   |
| 0     | 2     | HI_Alarm             | only Function Blocks with analog limit parameters   |
| 0     | 3     | LO_LO_Alarm          | only Function Blocks with analog limit parameters   |
| 0     | 4     | LO_Alarm             | only Function Blocks with analog limit parameters   |
| 0     | 5 - 6 | reserved             |                                                     |
| 0     | 7     | Update Event         | e.g. increment of ST_REV                            |
| 1     | 0 - 7 | reserved             |                                                     |

Table 28. Coding of the Bits of the Alarm Summery Structure

| _ | Octet 0 |  |  | Octet 1 |  |  |  |       |       |  |  |  |  |  |  |       |
|---|---------|--|--|---------|--|--|--|-------|-------|--|--|--|--|--|--|-------|
| I | Bit 7   |  |  |         |  |  |  | Bit 0 | Bit 7 |  |  |  |  |  |  | Bit 0 |

Table 29. Coding of the OctetStrings of the Alarm Summery Structure

| Parameter      | Description                                                                                                                                                                                                                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current        | Limit alarm bits will be set to 1 or 0 if the alarm reason occurs (1) or is gone (0). The update event bit will be set to 1 after ST_REV increment or other problems (see block specification) and will be set to 0 after 10 s.  Note: Some alarm reasons are mapped to the cyclic status reporting. |
| Unreported     | for future use                                                                                                                                                                                                                                                                                       |
| Unacknowledged | for future use                                                                                                                                                                                                                                                                                       |
| Disabled       | for future use                                                                                                                                                                                                                                                                                       |

Table 30. Parameter Description of the Alarm Summary Structure

### 3.7.9 FB Linkage Structure

This data structure consists of Function Block linkage data.

DataType FB Linkage Shortcut DS-49

Attribute Number of Elements = 5

Attribute List of Elements (shown below)

| Е | Element Name      | Data Type  | (Index) | Size |
|---|-------------------|------------|---------|------|
| 1 | Local_Index       | Unsigned16 | (6)     | 2    |
| 2 | Connection_Number | Unsigned16 | (6)     | 2    |
| 3 | Remote_Index      | Unsigned16 | (6)     | 2    |
| 4 | Service_Operation | Unsigned8  | (5)     | 1    |
| 5 | Stale_Count_Limit | Unsigned8  | (5)     | 1    |

Table 31. List of Elements of the FB Linkage Structure

For more details see 3.10.

### 3.7.10 Simulation - Floating Point Structure

This data structure consists of the Simulation parameters.

DataType Simulation - Floating Point

Shortcut DS-50

Attribute Number of Elements = 3

| Е | Element Name     | Data Type | (Index) | Size |
|---|------------------|-----------|---------|------|
| 1 | Simulate_Status  | Unsigned8 | (5)     | 1    |
| 2 | Simulate_Value   | Float     | (8)     | 4    |
| 3 | Simulate_Enabled | Unsigned8 | (5)     | 1    |

Table 32. List of elements of the Simulation - Floating Point Structure

| Parameter                                                                           | Description                                                                  |  |  |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| Simulate_Status                                                                     | Status written by an operator to simulate the Transducer Block value status. |  |  |  |
| Simulate_Value Value written by an operator to simulate the Transducer Block value. |                                                                              |  |  |  |
| Simulate_Enabled                                                                    | Switch to enable or disable simulation.                                      |  |  |  |
|                                                                                     | Coding:                                                                      |  |  |  |
|                                                                                     | 0 Disabled <> 0 Enabled                                                      |  |  |  |

Table 33. Parameter Description of the Simulation - Floating Point Structure

### 3.7.11 Simulation - Discrete Structure

This data structure consists of the Simulation parameters.

DataType Simulation - Discrete

Shortcut DS-51

Attribute Number of Elements = 3

Attribute List of Elements (shown below)

| Е | Element Name     | Data Type | (Index) | Size |
|---|------------------|-----------|---------|------|
| 1 | Simulate_Status  | Unsigned8 | (5)     | 1    |
| 2 | Simulate_Value   | Unsigned8 | (5)     | 1    |
| 3 | Simulate_Enabled | Unsigned8 | (5)     | 1    |

Table 34. List of Elements of the Simulation - Discrete Structure

Parameter Description see 3.7.10.

#### 3.7.12 Result Structure

This data structure contains the structure of the results.

Data Type Result

Shortcut DS-60

Attribute Number of Elements = 3

| Е | Element Name       | Data Type | (Index) | Size |
|---|--------------------|-----------|---------|------|
| 1 | PV                 | Float     | (8)     | 4    |
| 2 | Measurement_Status | Unsigned8 | (5)     | 1    |
| 3 | PV_Time            | Date      | (11)    | 7    |

Table 35. List of the Elements of the Result Structure

| Parameter          | Description                                                                                                                                                           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PV                 | Contains the value of the result of the Transducer Block. The accompanying parameter for the interpretation of this value are contained in the same Transducer Block. |
| PV_Time            | Time the PV was generated.                                                                                                                                            |
| Measurement_Status | State of the result at the time of the value generation. (Coding see General Requirements).                                                                           |

Table 36. Parameter Description of the Result Structure

### 3.7.13 Measurement Range Structure

This data structure contains the structure of the measurement range.

Data Type Measurement Range

Shortcut DS-61

Attribute Number of Elements = 2
Attribute List of Elements (see below)

| Е | Element Name   | Data Type | (Index) | Size |
|---|----------------|-----------|---------|------|
| 1 | Begin_of_Range | Float     | (8)     | 4    |
| 2 | End_of_Range   | Float     | (8)     | 4    |

Table 37. List of Elements of the Measurement Range Structure

## 3.7.14 Binary Message Structure

This data structure contains the structure of the Binary Messages (BM).

Data Type Binary Message

Shortcut DS-62

Attribute Number of Elements = 5
Attribute List of Elements (see below)

| Е | Element Name     | Data Type    | (Index) | Size |
|---|------------------|--------------|---------|------|
| 1 | Status_Class     | Unsigned16   | (6)     | 2    |
| 2 | Logbook_Entry    | Boolean      | (1)     | 1    |
| 3 | Output_Reference | Unsigned8    | (5)     | 1    |
| 4 | Supervision      | Unsigned8    | (5)     | 1    |
| 5 | Text             | ASCII-String | (9)     | 16   |

Table 38. List of Elements of the Binary Message Structure

| Parameter     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Status_Class  | There are 16 status classes, the profile defines the first four. Each BM (Binary Message) may be referenced in one or more then one status classes. The number of the bit position (starting with 1) is the reference to the status class. Bit n = 1 and this BM is active means that the sum bit (bit 16) of the status class is set to one, the related bit n in GLOBAL_STATUS is set to 1 and the bit in the related ACTIVE_BM BM is set to 1. (see data sheet Analyzer) |
| Logbook_Entry | Binary Messages may be stored in the Logbook FB accompanied by its time stamp. This parameter enable or disable the storage of this BM in the Logbook.  Coding:  False no storage in the Logbook                                                                                                                                                                                                                                                                            |

| Parameter        | Description                                                                                                                                                                                                                                                  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                  | True storage in the Logbook                                                                                                                                                                                                                                  |  |
| Output_Reference | Each BM may relates to exact one Discrete Output (DO). The OUTPUT_REFERENCE value is the number of the connected DO in the device.                                                                                                                           |  |
| Supervision      | The BM is immediately active if this parameter is switched to supervision on. Supervision off make it possible to choose between active and inactive BM independent of the occurrence of the BM provision.  Coding:                                          |  |
|                  | O Supervision is switched off; Message inactive 1 Supervision is switched off; Message active 2 Supervision is switched on                                                                                                                                   |  |
| Text             | This parameter contains an ASCII text which may used for the interpretation and more information of the coded message by a terminal or visualisation station. This parameter is optional, because future systems will use the device description technology. |  |

Table 39. Parameter Description of the Binary Message Structure

### 3.7.15 Sample Selection Structure

This data structure contains the structure of the Sample Selection.

Data Type Sample Selection

Shortcut DS-63

Attribute Number of Elements = 2
Attribute List of Elements (see below)

| Е | Element Name       | Data Type      | (Index) | Size |
|---|--------------------|----------------|---------|------|
| 1 | Channel            | Unsigned16     | (6)     | 2    |
| 2 | Active_Sample_Time | TimeDifference | (13)    | 4    |

Table 40. List of Elements of the Sample Selection Structure

| Parameter          | Description                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------|
| Channel            | Reference to the active Transducer Block which provides the measurement value to the Block. |
| Active_Sample_Time | Overall time the sample is active in the device.                                            |

Table 41. Parameter Description of the Sample Selection Structure

## 3.7.16 Logbook Structure

This data structure contains the structure of the Logbook entries.

Data Type Logbook Shortcut DS-64

Attribute Number of Elements = 4
Attribute List of Elements (see below)

| Е | Element Name | Data Type  | (Index) | Size |
|---|--------------|------------|---------|------|
| 1 | Туре         | Unsigned8  | (5)     | 1    |
| 2 | Value        | Unsigned16 | (6)     | 2    |
| 3 | Active       | Boolean    | (1)     | 1    |
| 4 | Time         | Date       | (11)    | 7    |

Table 42. List of Elements of the Logbook Structure

| Parameter | Description                                                                                                                                                                                                   |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Туре      | Coding:  0: Global_Status 1 – 16: Status information of class n 255: Binary_Message                                                                                                                           |  |
| Value     | The interpretation of Value depends of the content of Type:  Type = 0 -> Value = Global_Status  Type = 116 -> Value = OR sum of the class states of one class  Type = 255 -> Value = Number of Binary Message |  |
| Active    | Coding:  True BM becomes active False BM becomes inactive                                                                                                                                                     |  |

Table 43. Parameter Description of the Logbook Structure

### 3.7.17 Precalculation Structure

This data structure contains the structure of the Precalculation parameter.

Data Type Precalculation
Shortcut DS-65

Attribute Number of Elements = 3
Attribute List of Elements (see below)

| Е | Element Name  | Data Type | (Index) | Size |
|---|---------------|-----------|---------|------|
| 1 | Function_Type | Unsigned8 | (5)     | 1    |
| 2 | Subtype       | Unsigned8 | (5)     | 1    |

3 Choice Unsigned8 (5) 1

Table 44. List of Elements of the Precalculation Structure

| Parameter     | Description                                                                                                                                                                                                                                           |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Function_Type | This parameter contains the choice of the used function type which will be active in the pre-calculation chain.                                                                                                                                       |  |  |
|               | Coding:                                                                                                                                                                                                                                               |  |  |
|               | 0: no pre-calculation function 1: Filter 2: Average value 3: Integrator 4: Correction 5 – 127: reserved 128 – 255: device specific                                                                                                                    |  |  |
| Subtype       | Contains the specific filter, average, integration or correct pre-calculation function device specific codes. The default value 1 (one) codes the standard method the device. The description of the specific algorithms are part of the devicential. |  |  |
|               | Coding:                                                                                                                                                                                                                                               |  |  |
|               | 0: no pre-calculation 1: device specific standard algorithm 2 – 255: device specific                                                                                                                                                                  |  |  |
| Choice        | This parameter selects if the correction is inactive, using a fixed value or using a result of another block.                                                                                                                                         |  |  |
|               | Coding:                                                                                                                                                                                                                                               |  |  |
|               | 0: Function inactive 1: Function uses result of the pre-calculation chain 2: Function uses a fixed value 3: Function uses a Function Block value 4: Function uses a Transducer Block value                                                            |  |  |

Table 45. Parameter Description of the Precalculation Structure

## 3.7.18 Sequential Control Structure

This data structure contains the structure of the Sequential Control parameter.

Data Type Sequential Control

Shortcut DS-66

Attribute Number of Elements = 4
Attribute List of Elements (see below)

| Е | Element Name        | Data Type      | (Index) | Size |
|---|---------------------|----------------|---------|------|
| 1 | Time                | Date           | (11)    | 7    |
| 2 | Cycle_Time          | TimeDifference | (13)    | 4    |
| 3 | Command             | Unsigned16     | (6)     | 2    |
| 4 | Time_Control_Active | Boolean        | (1)     | 1    |

Table 46. List of Elements of the Sequential Control Structure

| Parameter           | Description                                                                                                                                        |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Time                | Determines the time of the first/next execution of the related block. This parameter may determine the start of the cycle for a cyclic execution.  |  |  |
| Cycle_Time          | Determines the interval for the automatic execution of the related block. The Cycle_Time value 0 (zero) implies a non-cyclic execution.            |  |  |
| Command             | This parameter contains the code for the command which in influences the related block.                                                            |  |  |
|                     | The Control Transducer Block contains also a COMMAND parameter. This block command parameter has a higher priority then the one of this structure. |  |  |
|                     | Coding:                                                                                                                                            |  |  |
|                     | 5: Start 6: Stop 7: Resume 8: Cancel                                                                                                               |  |  |
| Time_Control_Active | This parameter determines if the command will be carried out automatically or if the command has no consequences.                                  |  |  |
|                     | Coding:                                                                                                                                            |  |  |
|                     | False: Execution is disabled True: Execution will be carried out                                                                                   |  |  |

Table 47. Parameter Description of the Sequential Control Structure

### 3.7.19 Batch Structure

This data structure contains the structure of the Batch parameter

Data Type Batch

Shortcut DS-67

Attribute Number of Elements = 4

Attribute List of Elements (see below)

| Е | Element Name | Data Type  | (Index) | Size |
|---|--------------|------------|---------|------|
| 1 | Batch_ID     | Unsigned32 | (7)     | 4    |
| 2 | Rup          | Unsigned16 | (6)     | 2    |
| 3 | Operation    | Unsigned16 | (6)     | 2    |
| 4 | Phase        | Unsigned16 | (6)     | 2    |

Table 48. List of Elements of the Batch Structure

| Parameter | Description                                                                                                                                                                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Batch_ID  | Identifies a certain batch to allow assignment of equipment-related information (e.g. faults, alarms) to the batch.                                                                                                                                                    |
| Rup       | No. of Recipe Unit Procedure or of Unit: Identifies the active Control Recipe Unit Procedure or the related Unit (e.g. reactor, centrifuge, drier). (Unit is defined in IEC 61512 Part1 / ISA S88, but in a different meaning as parameter UNIT i.e. Engineering Unit) |
| Operation | No. of Recipe Operation: Identifies the active Control Recipe Operation.                                                                                                                                                                                               |
| Phase     | No. of Recipe Phase: Identifies the active Control Recipe Phase.                                                                                                                                                                                                       |

Table 49. Parameter Description of the Batch Structure

For more details see 3.5.

### 3.7.20 Feature Structure

This data structure consists of 2 elements describing the supported and currently enabled features.

Data Type Feature

Shortcut DS-68

Attribute Number of Elements = 2

Attribute List of Elements (shown below)

| Е | Element Name | Data Type   | (Index) | Size |
|---|--------------|-------------|---------|------|
| 1 | Supported    | OctetString | (10)    | 4    |
| 2 | Enabled      | OctetString | (10)    | 4    |

Table 50. List of Elements of the Feature Structure

Coding of Supported:

| Octet | Bit | Element                      | Description                                                                                                                                  |
|-------|-----|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 0   | Condensed_Status             | Defines the general method how the whole device handles status and diagnostics                                                               |
|       |     |                              | 0: Condensed status and diagnosis is not supported.                                                                                          |
|       |     |                              | Condensed status and diagnosis information according to the<br>Amendment 2 to PROFIBUS profile for process control devices<br>V3.0.          |
| 1     | 1   | Expanded<br>Status/Diagnosis | Defines the general method how the whole device handles status and diagnostics                                                               |
|       |     |                              | Expanded status/diagnosis as defined in this General     Requirement part of the profile for process control devices V3.01 is not supported. |
|       |     |                              | As defined in this General Requirement part of the profile for process control devices V3.01.                                                |
| 1     | 2   | DxB                          | 0: no support of data exchange broadcast                                                                                                     |
|       |     |                              | 1: data exchange broadcast supported                                                                                                         |
| 1     | 3   | MS1_AR                       | 0: no support of MS1 application relationship                                                                                                |
|       |     |                              | 1: MS1 application relationship supported                                                                                                    |
| 1     | 4   | PROFIsafe                    | 0: no support of PROFIsafe communication                                                                                                     |
|       |     |                              | 1: PROFIsafe communication supported                                                                                                         |
| 1     | 5   | reserved                     |                                                                                                                                              |
| 1     | 6   | reserved                     |                                                                                                                                              |
| 1     | 7   | reserved                     |                                                                                                                                              |
| 24    |     | reserved                     |                                                                                                                                              |

Table 51. Coding of Supported

Coding of Enabled:

| Octet | Bit | Element                      | Description                                                                                                                             |  |  |  |  |  |
|-------|-----|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1     | 0   | Condensed_Status             | Defines the general method how the whole device handles status and diagnostics                                                          |  |  |  |  |  |
|       |     |                              | 0: disabled (As defined in this General Requirement part of the profile for process control devices V3.0)                               |  |  |  |  |  |
|       |     |                              | enabled (Condensed status and diagnosis information according     to Amendment 2 to PROFIBUS profile for process control devices V3.01) |  |  |  |  |  |
| 1     | 1   | Expanded<br>Status/Diagnosis | Defines the general method how the whole device handles status and diagnostics                                                          |  |  |  |  |  |
|       |     |                              | disabled     enabled (As defined in this General Requirement part of the profile for process control devices V3.01)                     |  |  |  |  |  |

| Octet | Bit | Element   | Description                                              |
|-------|-----|-----------|----------------------------------------------------------|
| 1     | 2   | DxB       | 0: disabled (no support of data exchange broadcast)      |
|       |     |           | 1: enabled (data exchange broadcast enabled)             |
| 1     | 3   | MS1_AR    | 0: disabled (no support of MS1 application relationship) |
|       |     |           | 1: enabled (MS1 application relationship enabled)        |
| 1     | 4   | PROFIsafe | 0: disabled (no support of PROFIsafe communication)      |
|       |     |           | 1: enabled (PROFIsafe communication enabled)             |
| 1     | 5   | reserved  |                                                          |
| 1     | 6   | reserved  |                                                          |
| 1     | 7   | reserved  |                                                          |
| 24    |     | reserved  |                                                          |

Table 52. Coding of Enabled

## 3.8 Table Handling

There is the possibility to load and re-load tables in the devices. This table is used for linearisation mostly. For this procedure the following parameters are necessary:

TAB\_ENTRY

TAB\_X\_Y\_VALUE

TAB\_MIN\_NUMBER

TAB\_MAX\_NUMBER

TAB\_OP\_CODE

TAB\_STATUS

TAB\_ACTUAL\_NUMBER

The TAB\_X\_Y\_VALUE parameter contains the value couple of each table entries. The TAB\_ENTRY parameter identifies which element of the table is in the X\_Y\_VALUE parameter currently (see the following figure).





Figure 10. Parameters of a Table

TAB\_MAX\_NUMBER is the maximum size of the table in the device. For device internal reasons (e.g. for calculation), sometimes it is necessary to use a certain number of table values in minimum. This number is provided in the TAB\_MIN\_NUMBER parameter.

The modification of a table in a device influences the measurement or actuation algorithms of the device. Therefore an indication of a starting and an endpoint is necessary. The TAB\_OP\_CODE controls the transaction of the table. It is common to provide a plausibility check in the device. The result of this check is indicated in the TAB\_STATUS parameter.

During the load of a new table the device might not be able to provide valid parameters. In this case the status of the process variables (Data Type Numeric Identifier 101) shall be bad-configuration error and for the response code of acknowledged services shall be access-state conflict.

During modification (begin, end see above) up to two tables may be available. The following assignment is assumed for reading/writing:

TAB\_ENTRY new table
TAB\_X\_Y\_VALUE new table
TAB\_MIN\_NUMBER const.
TAB\_MAX\_NUMBER const.
TAB\_OP\_CODE new table

TAB\_STATUS fixed to 8 if old table is available; fixed to 26 if no valid table is available

TAB\_ACTUAL\_NUMBER old table (new calculation after transmission is finished)

The sequence diagram for the load of a table is shown in the following table.

| PA-Profile |           | PA              | BUS | PA    | PA-Profile                                          |
|------------|-----------|-----------------|-----|-------|-----------------------------------------------------|
| Client     |           | Stack           |     | Stack | Server                                              |
|            | Write.req | (TAB_OP_CODE)   |     |       |                                                     |
|            | ->        |                 |     |       |                                                     |
|            |           |                 |     |       | ->                                                  |
|            |           |                 |     |       | Write.ind                                           |
|            |           |                 |     |       | TAB_OP_CODE =1                                      |
|            |           |                 |     |       | Write.res                                           |
|            |           |                 |     |       | <-                                                  |
|            | Write.con | (+)             |     |       |                                                     |
|            | <-        |                 |     |       |                                                     |
|            | Write.req | (TAB_ENTRY)     |     |       |                                                     |
|            | ->        |                 |     |       |                                                     |
|            |           |                 |     |       | ->                                                  |
|            |           |                 |     |       | Write.ind                                           |
|            |           |                 |     |       | Index = 1                                           |
|            |           |                 |     |       | Write.res                                           |
|            |           |                 |     |       | <-                                                  |
|            | Write.con | (+)             |     |       |                                                     |
|            | <-        |                 |     |       |                                                     |
|            | Write.req | (TAB_X_Y_Value) |     |       |                                                     |
|            | ->        |                 |     |       |                                                     |
|            |           |                 |     |       | ->                                                  |
|            |           |                 |     |       | Write.ind                                           |
|            |           |                 |     |       | TAB_X_Y_Value                                       |
|            |           |                 |     |       | Write.res                                           |
|            |           |                 |     |       | <-                                                  |
|            | Write.con | (+)             |     |       |                                                     |
|            | <-        |                 |     |       |                                                     |
|            |           |                 |     |       | copy of x/y_Value into internal memory is necessary |
|            | Write.rea | (TAB_ENTRY)     |     |       | . ,                                                 |
|            | ->        |                 |     |       |                                                     |
|            | ŕ         |                 |     |       | ->                                                  |
|            |           |                 |     |       | Write.ind                                           |
|            |           |                 |     |       | Index = 2                                           |
|            |           |                 |     |       | Write.res                                           |



Table 53. Sequence Diagram of the Load of a Table

It is visible, that the transaction starts with the write of the TAB\_OP\_CODE. The order of the write services for one table row shall be Index, TAB\_X\_Y\_VALUE. After this sequence the device copies the X\_VALUE and Y\_VALUE values to the internal memory.

This TAB\_ENTRY parameter should be connected to exact one communication relationship. The TAB\_ENTRY parameter should be connected to a auto-increment function.

### 3.8.1 Parameter Description of the Table Handling Parameters

| Parameter      | Description                                                                                                                                                                                                                           |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TAB_ENTRY      | The TAB_ENTRY parameter identifies which element of the table is in the X_VALUE and Y_VALUE parameter currently                                                                                                                       |
| TAB_X_Y_VALUE  | The TAB_X_Y_VALUE parameter contains one value couple of the table                                                                                                                                                                    |
| TAB_MIN_NUMBER | For device internal reasons (e.g. for calculation), sometimes it is necessary to use a certain number of table values in minimum. This number is provided in the TAB_MIN_NUMBER parameter.                                            |
| TAB_MAX_NUMBER | TAB_MAX_NUMBER is the maximum size (number of X_VALUE and Y_VALUE values) of the table in the device.                                                                                                                                 |
| TAB_OP_CODE    | The modification of a table in a device influences the measurement or actuation algorithms of the device. Therefore an indication of a starting and an end point is necessary. The TAP_OP_CODE controls the transaction of the table. |
|                | 0: not initialized                                                                                                                                                                                                                    |
|                | 1: new operation characteristic, first value (TAB_ENTRY=1)                                                                                                                                                                            |
|                | 2: reserved                                                                                                                                                                                                                           |
|                | 3: last value, end of transmission, check table, swap the old curve with the new curve, update TAB_ACTUAL_NUMBER.                                                                                                                     |
|                | 4: delete point of table with actual ENTRY (optional), sort records with increasing  Charact-Input-Value, assign new ENTRIES, decrement CHARACT_NUMBER.                                                                               |
|                | <ol> <li>insert point (Charact-Input-Value relevant) (optional), sort records with<br/>increasing Charact-Input-Value, assign new ENTRIES. Increment<br/>CHARACT_NUMBER.</li> </ol>                                                   |
|                | 6: replace point of table with actual ENTRY (optional).                                                                                                                                                                               |
|                | It is possible to ead a table or parts of the table without start an stop an interaction (TAB_OB_CODE 1 and 3). The start is indicated by set TAB_ENTRY to 1.                                                                         |
| TAB_STATUS     | It is common to provide a plausibility check in the device. The result of this check is indicated in the TAB_STATUS parameter.                                                                                                        |
|                | 0: not initialized                                                                                                                                                                                                                    |
|                | 1: good (new table is valid)                                                                                                                                                                                                          |
|                | 2: not monotonous increasing (old table is valid)                                                                                                                                                                                     |
|                | 3: not monotonous decreasing (old table is valid)                                                                                                                                                                                     |
|                | 4: not enough values transmitted (old table is valid)                                                                                                                                                                                 |
|                | 5: too many values transmitted (old table is valid)                                                                                                                                                                                   |

| Parameter         | Descrip  | tion                                                                                                                                     |  |  |  |  |  |
|-------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                   | 6: gra   | dient of edge too high (old table is valid)                                                                                              |  |  |  |  |  |
|                   | 7: Val   | ues not excepted (old values are valid)                                                                                                  |  |  |  |  |  |
|                   |          | ole is currently loaded, set after TAB_OP_CODE = 1 and before B_OP_CODE = 3 (Additional access to table not valid, old values are valid) |  |  |  |  |  |
|                   |          | ting and checking of Table (Additional access to table not valid, old ues are valid)                                                     |  |  |  |  |  |
|                   | 10 – 19: | 10 - 19: reserved                                                                                                                        |  |  |  |  |  |
|                   | 20: not  | not monotonous increasing (table is not initialized)                                                                                     |  |  |  |  |  |
|                   | 21: not  | monotonous decreasing (table is not initialized)                                                                                         |  |  |  |  |  |
|                   | 22: not  | enough values transmitted (table is not initialized)                                                                                     |  |  |  |  |  |
|                   | 23: too  | many values transmitted (table is not initialized)                                                                                       |  |  |  |  |  |
|                   | 24: gra  | dient of edge too high (table is not initialized)                                                                                        |  |  |  |  |  |
|                   | 25: Val  | ues not excepted (table is not initialized)                                                                                              |  |  |  |  |  |
|                   | TAI      | ble is currently loaded, set after TAB_OP_CODE = 1 and before B_OP_CODE = 3 (Additional access to table not valid, table is not alized)  |  |  |  |  |  |
|                   |          | ting and checking of Table (Additional access to table not valid, table is not<br>alized)                                                |  |  |  |  |  |
|                   | 28 – 127 | 7: reserved                                                                                                                              |  |  |  |  |  |
|                   | > 128:   | manufacturer specific                                                                                                                    |  |  |  |  |  |
| TAB_ACTUAL_NUMBER |          | s the actual numbers of entries in the table. It shall be calculated after the ssion of the table is finished.                           |  |  |  |  |  |
| LIN_TYPE          | Type of  | linearisation.                                                                                                                           |  |  |  |  |  |
|                   | 0:       | no linearisation (mandatory)                                                                                                             |  |  |  |  |  |
|                   | 1:       | linearisation table (optional)                                                                                                           |  |  |  |  |  |
|                   | 10:      | Square root (optional)                                                                                                                   |  |  |  |  |  |
|                   | 20:      | cylindrical lying container (optional)                                                                                                   |  |  |  |  |  |
|                   | 21:      | spherical container (optional)                                                                                                           |  |  |  |  |  |
|                   | 50:      | equal percentage 1:33 (optional)                                                                                                         |  |  |  |  |  |
|                   | 51:      | equal percentage inverse (quick opening) 1:33 (optional)                                                                                 |  |  |  |  |  |
|                   | 52:      | equal percentage 1:50 (optional)                                                                                                         |  |  |  |  |  |
|                   | 53:      | equal percentage inverse (quick opening) 1:50 (optional)                                                                                 |  |  |  |  |  |
|                   | 54:      | equal percentage 1:25 (optional)                                                                                                         |  |  |  |  |  |
|                   | 55:      | equal percentage inverse (quick opening) 1:25 (optional)                                                                                 |  |  |  |  |  |
|                   | 100:     | RTD Pt10 a=0.003850 (IEC 751, DIN 43760, JIS C1604-97, BS1904)                                                                           |  |  |  |  |  |

| Parameter | Descript | tion                                                                                                   |
|-----------|----------|--------------------------------------------------------------------------------------------------------|
|           | 101:     | RTD Pt50 a=0.003850 (IEC 751, DIN 43760, JIS C1604-97, BS1904)                                         |
|           | 102:     | RTD Pt100 a=0.003850 (IEC 751, DIN 43760, JIS C1604-97, BS1904)                                        |
|           | 103:     | RTD Pt200 a=0.003850 (IEC 751, DIN 43760, JIS C1604-97, BS1904)                                        |
|           | 104:     | RTD Pt500 a=0.003850 (IEC 751, DIN 43760, JIS C1604-97, BS1904)                                        |
|           | 105:     | RTD Pt1000 a=0.003850 (IEC 751, DIN 43760, JIS C1604-97, BS1904)                                       |
|           | 106:     | RTD Pt10 a=0.003916 (JIS C1604-81)                                                                     |
|           | 107:     | RTD Pt50 a=0.003916 (JIS C1604-81)                                                                     |
|           | 108:     | RTD Pt100 a=0.003916 (JIS C1604-81)                                                                    |
|           | 109:     | RTD Pt10 a=0.003920 (MIL-T-24388)                                                                      |
|           | 110:     | RTD Pt50 a=0.003920 (MIL-T-24388)                                                                      |
|           | 111:     | RTD Pt100 a=0.003920 (MIL-T-24388)                                                                     |
|           | 112:     | RTD Pt200 a=0.003920 (MIL-T-24388)                                                                     |
|           | 113:     | RTD Pt500 a=0.003920 (MIL-T-24388)                                                                     |
|           | 114:     | RTD Pt1000 a=0.003920 (MIL-T-24388)                                                                    |
|           | 115:     | RTD Pt100 a=0.003923 (SAMA RC21-4-1966)                                                                |
|           | 116:     | RTD Pt200 a=0.003923 (SAMA RC21-4-1966)                                                                |
|           | 117:     | RTD Pt100 a=0.003926 (IPTS-68)                                                                         |
|           | 118:     | RTD Ni50 a=0.006720 (Edison curve #7)                                                                  |
|           | 119:     | RTD Ni100 a=0.006720 (Edison curve #7)                                                                 |
|           | 120:     | RTD Ni120 a=0.006720 (Edison curve #7)                                                                 |
|           | 121:     | RTD Ni1000 a=0.006720 (Edison curve #7)                                                                |
|           | 122:     | RTD Ni50 a= 0.006180 (DIN 43760)                                                                       |
|           | 123:     | RTD Ni100 a= 0.006180 (DIN 43760)                                                                      |
|           | 124:     | RTD Ni120 a= 0.006180 (DIN 43760)                                                                      |
|           | 125:     | RTD Ni1000 a= 0.006180 (DIN 43760)                                                                     |
|           | 126:     | RTD Cu10 a=0.004270                                                                                    |
|           | 127:     | RTD Cu100 a=0.004270                                                                                   |
|           | 128:     | TC Type B, Pt30Rh-Pt6Rh (IEC 584, NIST MN 175, DIN 43710, BS 4937, ANSI MC96.1, JIS C1602, NF C42-321) |

| Parameter | Descript | ion                                                                                                     |
|-----------|----------|---------------------------------------------------------------------------------------------------------|
|           | 129:     | TC Type C (W5), W5-W26Rh (ASTM E 988)                                                                   |
|           | 130:     | TC Type D (W3), W3-W25Rh (ASTM E 988)                                                                   |
|           | 131:     | TC Type E, Ni10Cr-Cu45Ni (IEC584, NIST MN 175, DIN 43710, BS 4937, ANSI MC96.1, JIS C1602, NF C42-321)  |
|           | 132:     | TC Type G (W), W-W26Rh (ASTM E 988)                                                                     |
|           | 133:     | TC Type J, Fe-Cu45Ni (IEC 584, NIST MN 175, DIN 43710, BS 4937, ANSI MC96.1, JIS C1602, NF C42-321)     |
|           | 134:     | TC Type K, Ni10Cr-Ni5 (IEC 584, NIST MN 175, DIN 43710, BS 4937, ANSI MC96.1, JIS C1602, NF C42-321)    |
|           | 135:     | TC Type N, Ni14CrSi-NiSi (IEC 584, NIST MN 175, DIN 43710, BS 4937, ANSI MC96.1, JIS C1602, NF C42-321) |
|           | 136:     | TC Type R, Pt13Rh-Pt (IEC 584, NIST MN 175, DIN 43710, BS 4937, ANSI MC96.1, JIS C1602, NF C42-321)     |
|           | 137:     | TC Type S, Pt10Rh-Pt (IEC 584, NIST MN 175, DIN 43710, BS 4937, ANSI MC96.1, JIS C1602, NF C42-321)     |
|           | 138:     | TC Type T, Cu-Cu45Ni (IEC 584, NIST MN 175, DIN 43710, BS 4937, ANSI MC96.1, JIS C1602, NF C42-321)     |
|           | 139:     | TC Type L, Fe-CuNi (DIN 43710)                                                                          |
|           | 140:     | TC Type U, Cu-CuNi (DIN 43710)                                                                          |
|           | 141:     | TC Type Pt20/Pt40, Pt20Rh-Pt40Rh (ASTM E 1751)                                                          |
|           | 142:     | TC Type Ir/Ir40, Ir-Ir40Rh (ASTM E 1751)                                                                |
|           | 143:     | TC Platinel II                                                                                          |
|           | 144:     | TC Ni/NiMo                                                                                              |
|           | 145 - 23 | 9: reserved                                                                                             |
|           | 240:     | Manufacturer specific                                                                                   |
|           | 249:     | Manufacturer specific                                                                                   |
|           | 250:     | Not used                                                                                                |
|           | 251:     | None                                                                                                    |
|           | 252:     | Unknown                                                                                                 |
|           | 253:     | Special                                                                                                 |

Table 54. Parameter Description of the Table Handling Parameters

### 3.8.2 Parameter Attributes of the Table Handling Parameters

| Relative<br>Index | Parameter<br>Name                            | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default<br>Value | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|----------------------------------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|------------------|--------------------------------------|
|                   | Parameters of the according Transducer Block |             |           |       |      |        |                                              |             |                  |                                      |
| 1                 | TAB_ENTRY                                    | Simple      | Unsigned8 | D     | 1    | r,w    | C/a                                          | F           | 0                | O (B)                                |
|                   | TAB_X_Y_VALUE                                | Array 2     | Float     | D     | 8    | r,w    | C/a                                          | F           | -                | O (B)                                |
|                   | TAB_MIN_NUMBER                               | Simple      | Unsigned8 | N     | 1    | R      | C/a                                          | F           | -                | O (B)                                |
|                   | TAB_MAX_NUMBER                               | Simple      | Unsigned8 | Ν     | 1    | R      | C/a                                          | F           | 1                | O (B)                                |
|                   | TAB_OP_CODE                                  | Simple      | Unsigned8 | D     | 1    | r,w    | C/a                                          | F           | 1                | O (B)                                |
|                   | TAB_STATUS                                   | Simple      | Unsigned8 | D     | 1    | R      | C/a                                          | F           | 0                | O (B)                                |
|                   | TAB_ACTUAL_NUMBER                            | Simple      | Unsigned8 | Ν     | 1    | R      | C/a                                          | F           | 1                | O (B)                                |
|                   | LIN_TYPE                                     | Simple      | Unsigned8 | S     | 1    | r,w    | C/a                                          | F           | -                | M (B)                                |
|                   | Parameters of the according Transducer Block |             |           |       |      |        |                                              |             |                  | O (B)                                |

Table 55. Parameter Attributes of the Table Handling Parameters

### 3.9 References between Function Blocks and Transducer Blocks

The input and output Function Blocks hide the specific measurement or actuation characteristics for the control application. The Transducer Blocks provide the access to the necessary parameters for configuration or adjustment of the devices. During operation one measurement or actuation channel consists of one transducer and one Function Block which are connected. This connection is configurable using the Channel parameter of the Function Blocks. The connection is a reference, i.e. the FB has a pointer to the related Transducer Block and its parameter.

Typically, a Transducer Block will have one reference. However, in some cases such as multiplexors, other combinations are necessary. The following list defines the allowed configurations:

- A Transducer Block with one reference names the used parameter Primary Value (PV).
- A Transducer Block with more then one reference names the addition used parameter Secondary Value\_n (SV\_n, with n = 2, ...). That means, that more then one Function Block can be connected to one Transducer Block
- Multiple Transducer Blocks may use the same measurement from the same sensor
- Transducer Block PV and SV parameters may have data type numeric identifier 101, 102 or shortcut DS-60

Copyright © PNO e.V. 2004. All Rights reserved.

\_

<sup>&</sup>lt;sup>1</sup> Relative Index according to the use of the table parameters in concrete blocks

<sup>&</sup>lt;sup>2</sup> First 4 bytes (Float) X\_VALUE, second 4 bytes (Float) Y\_VALUE



Figure 11. Transducer Blocks are Referenced by Channel Numbers

The reference is an Unsigned16 parameter of the Function Block and is used to logically associated transducer and Function Block information. During block configuration, the value of the channel number may be configured in input and output Function Blocks.

The valid range of this parameter and the information associated with a specific reference are determined as followed:

The Channel parameter consists of 2 elements the TB\_ID (1. Byte, see directory definitions) and the Relative Index (2. Byte, see 1. Column of the attribute table of each Transducer Block) of the used TB parameter. If a Transducer Block don't have a PV or SV (Secondary Value) the Relative Index value of the related FB CHANNEL parameter shall be 0 (zero).

This may be visualized in the following manner.



Figure 12. Channel Referencing

### 3.10 Links between Function Blocks

The data exchange between Function Blocks (FB), i.e. between FB output and input parameters, are described as Link Objects. The Link Object is this structured parameter DS-49 (see section 3.7.9). One connection between two FB parameters is exactly one Link Object. The data types of the source and destination Function Block parameters have to be the same. Configurations with invalid parameters of Function Blocks shall not be accepted. The Link Object parameter structure is readable and writeable across the fieldbus.

The scope of this profile revision is limited to FB links within one device. Within a device a Function Block link is supported from output to one input parameter.

#### Local Links:

Only one link object is required to define a link within a resource. Such a link may identify an output-input parameter or input-to-input parameter transfer. The parameter identified by the Remote Index will be updated with the value and status of the parameter identified by the Local Index.

### 3.10.1 Parameter Description of the Link Object

| Parameter         | Description         | Description                                                                                                                                                                                                  |  |  |  |
|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Local_Index       | parameter which     | This specifies the FB_ID and parameter relative offset number of the output parameter which is to be linked to the input parameter identified by the Remote Index. This is the source of the link.           |  |  |  |
| Connection_Number | Set to zero to ider | ntify that this is a link within the device.                                                                                                                                                                 |  |  |  |
| Remote_Index      | parameter linked    | This specifies the FBID and parameter relative offset number of the input parameter linked to the parameter identified by the Local Index (valid for local links only). This is the destination of the link. |  |  |  |
| Service_Operation | Determines the a    | oction of the link.                                                                                                                                                                                          |  |  |  |
|                   | Coding:             |                                                                                                                                                                                                              |  |  |  |
|                   | 0:                  | no service - link is inactive                                                                                                                                                                                |  |  |  |
|                   | 1:                  | LOCAL - link within a device                                                                                                                                                                                 |  |  |  |
|                   | 2 – 127: reserved   |                                                                                                                                                                                                              |  |  |  |
|                   | 128 – 255:          | manufacturer specific                                                                                                                                                                                        |  |  |  |
| Stale_Count_Limit | This is set to zero | o - stale detection not required.                                                                                                                                                                            |  |  |  |

Table 56. Parameter Description of the Link Object

# 3.11 Physical Block

## 3.11.1 Parameter Description of the Physical Block

| Parameter            | Description                                                                                                                                                                                                                                                              |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DEVICE_CERTIFICATION | Certifications of the field device, e.g. EX certification.                                                                                                                                                                                                               |  |  |
| DESCRIPTOR           | User-definable text (a string) to describe the device within the application.                                                                                                                                                                                            |  |  |
| DEVICE_INSTAL_DATE   | Date of installation of the device.                                                                                                                                                                                                                                      |  |  |
| DEVICE_MESSAGE       | User-definable MESSAGE (a string) to describe the device within the application or in the plant.                                                                                                                                                                         |  |  |
| DEVICE_ID            | Manufacturer specific identification of the device.                                                                                                                                                                                                                      |  |  |
| DEVICE_MAN_ID        | Identification code of the manufacturer of the field device.                                                                                                                                                                                                             |  |  |
| DEVICE_SER_NUM       | Serial number of the field device.                                                                                                                                                                                                                                       |  |  |
| DIAGNOSIS            | Detailed information of the device, bitwize coded. More than one message possible at once. If MSB of byte 4 is set to 1 than more diagnose information is available in the DIAGNOSIS_EXTENSION parameter.                                                                |  |  |
| DIAGNOSIS_EXTENSION  | Additional manufacturer-specific information of the device, bitwize coded. More than one message possible at once.                                                                                                                                                       |  |  |
| DIAGNOSIS_MASK       | Definition of supported DIAGNOSIS information-bits.                                                                                                                                                                                                                      |  |  |
|                      | 0: not supported                                                                                                                                                                                                                                                         |  |  |
|                      | 1: supported                                                                                                                                                                                                                                                             |  |  |
| DIAGNOSIS_MASK_      | Definition of supported DIAGNOSIS_EXTENSION information-bits.                                                                                                                                                                                                            |  |  |
| EXTENSION            | 0: not supported                                                                                                                                                                                                                                                         |  |  |
|                      | 1: supported                                                                                                                                                                                                                                                             |  |  |
| FACTORY_RESET        | Coding:                                                                                                                                                                                                                                                                  |  |  |
|                      | 1: (mandatory) is the command for resetting device for default values. The setting of the bus address is not affected.                                                                                                                                                   |  |  |
|                      | 2: (optional) is the command for resetting informational device parameters to default values. Parameters with Reset Class characteristic "informational" are defined within the parameter attribute table of each block. The setting of the bus address is not affected. |  |  |
|                      | 3: (optional) is the command for resetting device parameters with Reset Class characteristic "functional" to default values. The setting of the bus address is not affected.                                                                                             |  |  |
|                      | 3 – 2505: reserved                                                                                                                                                                                                                                                       |  |  |
|                      | 2506: (optional) is the command for warmstart of the device. All parametrisation remains unchanged.                                                                                                                                                                      |  |  |
|                      | 2507 – 2711: reserved                                                                                                                                                                                                                                                    |  |  |
|                      | 2712: (optional) The bus address to its default address; other parametrisation remains unchanged. The bus address is changed immediately regardless if the device is in cyclic data transfer state. The reset is not suspended up to a subsequent power cycle/warmstart. |  |  |

| Parameter                 | Description                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | 2713 – 32767: reserved                                                                                                                                                                                                                                                                                                                                                                   |
|                           | 32768 – 65535: manufacturer specific                                                                                                                                                                                                                                                                                                                                                     |
|                           | Manufacturing specific commands for other reset results are possible.                                                                                                                                                                                                                                                                                                                    |
|                           | The Ident_Number_Selector parameter isn't effected by the Factory_Reset.                                                                                                                                                                                                                                                                                                                 |
|                           | Note: Address manipulation by local display is not in the scope of this profile.                                                                                                                                                                                                                                                                                                         |
| HARDWARE_REVISION         | Revision-number of the hardware of the field device.                                                                                                                                                                                                                                                                                                                                     |
| IDENT_NUMBER_<br>SELECTOR | Each PROFIBUS-DP /IEC 61158/ device shall have an Ident_Number provided by the PNO. There are profile specific Ident_Numbers. A device may have profile specific and manufacturer specific ones. The user is able to choose one of these using this parameters.                                                                                                                          |
|                           | 0: profile specific Ident_Number V3.0 (mandatory)                                                                                                                                                                                                                                                                                                                                        |
|                           | 1: manufacturer specific Ident_Number V3.0 (optional)                                                                                                                                                                                                                                                                                                                                    |
|                           | 2: manufacturer specific Ident_Number of V2.0 (optional)                                                                                                                                                                                                                                                                                                                                 |
|                           | 3: profile specific Ident_Number of Multi-Variable Device V3.0 (optional)                                                                                                                                                                                                                                                                                                                |
|                           | 4 – 127: reserved for profile use (not allowed)                                                                                                                                                                                                                                                                                                                                          |
|                           | 128 – 255: manufacturer specific (optional)                                                                                                                                                                                                                                                                                                                                              |
|                           | If a device is switched to the profile Ident_Number, the device shall interact with the profile features of the GSD file. The Ident_Number_Selector parameter isn't effected by the Factory_Reset.                                                                                                                                                                                       |
|                           | The change of the Ident-Number via the IDENT_NUMBER_SELECTOR change the identity of the cyclic behaviour of the device. The identity of the cyclic behaviour is determined by the according GSD-file. The change is intended to be done if there is no cyclic communication to the device.                                                                                               |
|                           | It is a valid device behaviour additionally that the parameter IDENT_NUMBER_SELECTOR is read only during an active cyclic data transfer to the master class 1. There are master class 1 on the market, which are not able to read the parameter IDENT_NUMBER_SELECTOR via C1 communication. Therefore the master class 1 has no information about the actual Ident_Number of the device. |
|                           | See also NOTE 1, NOTE 2 and NOTE 3                                                                                                                                                                                                                                                                                                                                                       |
| LOCAL_OP_ENA              | Local operation enable.                                                                                                                                                                                                                                                                                                                                                                  |
|                           | disabled (Local operation not allowed, i.e. change of FB MODE from host device only)                                                                                                                                                                                                                                                                                                     |
|                           | 1: enabled (Local operation is allowed)                                                                                                                                                                                                                                                                                                                                                  |
|                           | The operation of the host has higher priority then the local terminal one.                                                                                                                                                                                                                                                                                                               |
|                           | If communication fails for a time greater 30 sec, local operation will be enabled automatically. Communication failure is defined here as absence of cyclic and acyclic communication for the specified time period. If LOCAL_OP_ENA parameter is equal 0 (disabled) and the communication is working again, then the device switch back to remote operation. See 3.11.5.                |
| SOFTWARE_REVISION         | Revision-number of the software of the field device.                                                                                                                                                                                                                                                                                                                                     |

| Parameter               | Description                                                                                                                                                                                              |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WRITE_LOCKING           | Software write protection.                                                                                                                                                                               |
|                         | 0: acyclic write service of all parameter are refused, except WRITE_LOCKING and the TAB_ENTRY parameter of the Linerarisation table, i.e. access is denied.                                              |
|                         | 1 – 2456: reserved                                                                                                                                                                                       |
|                         | 2457: is the default value and means all writeable parameters of a device are writeable.                                                                                                                 |
|                         | 2458 – 32767: reserved                                                                                                                                                                                   |
|                         | 32768 – 65535: manufacturer specific                                                                                                                                                                     |
| HW_WRITE_<br>PROTECTION | Indicates the position of a write blocking mechanism (e.g. hardware jumper) which protects acyclic write access to writeable parameters of a device.                                                     |
|                         | 0: Unprotected (mandatory)                                                                                                                                                                               |
|                         | 1: Protected, manual operation permitted (optional)                                                                                                                                                      |
|                         | Acyclic write access to all parameter is refused (write access is denied) except the TAB_ENTRY parameter of the Linearisation table and parameters TARGET_MODE and OUT/OUT_D (only valid for AO and DO). |
|                         | 2: Protected, no manual operation (optional)                                                                                                                                                             |
|                         | Acyclic write access to all parameter is refused (write access is denied) except the TAB_ENTRY parameter of the Linearisation table.                                                                     |
|                         | 3 – 127: reserved                                                                                                                                                                                        |
|                         | 128 – 255: manufacturer specific                                                                                                                                                                         |
|                         | A device may support code 1 and/or 2.                                                                                                                                                                    |
| FEATURE                 | Indicates optional features implemented in the device and the status of these features which indicates if the feature is supported or not supported.                                                     |

Table 57. Parameter Description of the Physical Block

Note 1 A device may be purchased with manufacturer specific or profile specific Ident-Number. There is no default value for the IDENT\_NUMBER\_SELECTOR parameter (see Table 58).

The device has to response the Ident\_Number during the start-up phase which is intended to be the first use of the device. The parameter IDENT\_NUMBER\_SELECTOR has to have the according value. For example, a device is purchased as profile device according Profile GSD PA139700.gsd. The device has to respond during the start-up phase with Ident-Number = 9700 and the parameter IDENT\_NUMBER\_SELECTOR =0.

Note 2 The parameter IDENT\_NUMBER\_SELECTOR may be changed.

There are the following situations:

- There is no cyclic communication between Master C1 and the device during the change of the IDENT\_NUMBER\_SELECTOR. After installation of the cyclic data the Ident\_Number is used which is selected by the IDENT\_NUMBER\_SELECTOR. The bit IDENT\_NUMBER\_VIOLATION of the DIAGNOSIS parameter is not set and remains 0.
- There is a cyclic communication between Master C1 and the device in which the IDENT\_NUMBER\_SELECTOR value changes. The bit IDENT\_NUMBER\_VIOLATION of the DIAGNOSIS parameter is set to 1. The cyclic data transfer is not influenced by the parameter

change. The cyclic data transfer and the according Ident\_Number of the device remains the same until either the cyclic transfer is aborted and reinstalled or a power down happens. During the new re-establishment of the cyclic data transfer the latest IDENT\_NUMBER\_SELECTOR value and the related Ident\_Number is used.

- It is also a valid behaviour that the parameter IDENT\_NUMBER\_SELECTOR can not be written during the cyclic data transfer is active.

### Note 3 The parameter IDENT\_NUMBER\_SELECTOR may be changed.

The Profile\_Ident\_Number attribute of the MS2 Initiate service is not the same as the Ident\_Number of the device. It is defined within the profile (see mapping document table 10), that the Profile\_Ident\_Number of the MS2 Initiate service primitive.req/res attribute is set fix to 0x9700 for all PROFIBUS-PA devices.

## 3.11.2 Parameter Attributes of the Physical Block

| Relative<br>Index | Parameter<br>Name            | Object Type | Data Type                                            | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default<br>Value | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|------------------------------|-------------|------------------------------------------------------|-------|------|--------|----------------------------------------------|-------------|------------------|--------------------------------------|
| Stan              | dard Parameters see General  | Requireme   | nts                                                  |       |      |        |                                              |             |                  |                                      |
|                   |                              |             |                                                      |       |      |        |                                              |             |                  |                                      |
| Additio           | nal Physical Block Parameter | S           |                                                      |       |      |        |                                              |             |                  |                                      |
| 8                 | SOFTWARE_REVISION            | Simple      | VisibleString                                        | Cst   | 16   | r      | C/a                                          | -           | -                | М                                    |
| 9                 | HARDWARE_REVISION            | Simple      | VisibleString                                        | Cst   | 16   | r      | C/a                                          | -           | -                | М                                    |
| 10                | DEVICE_MAN_ID                | Simple      | Unsigned16                                           | Cst   | 2    | r      | C/a                                          | -           | -                | М                                    |
| 11                | DEVICE_ID                    | Simple      | VisibleString                                        | Cst   | 16   | r      | C/a                                          | -           | -                | М                                    |
| 12                | DEVICE_SER_NUM               | Simple      | VisibleString                                        | Cst   | 16   | r      | C/a                                          | -           | -                | М                                    |
| 13                | DIAGNOSIS                    | Simple      | OctetString<br>byte4,MSB=1<br>more diag<br>available | D     | 4    | r      | C/a                                          | -           | -                | М                                    |
| 14                | DIAGNOSIS_EXTENSION          | Simple      | Octetstring                                          | D     | 6    | r      | C/a                                          | ı           | ı                | 0                                    |
| 15                | DIAGNOSIS_MASK               | Simple      | Octetstring                                          | Cst   | 4    | r      | C/a                                          | 1           | -                | М                                    |
| 16                | DIAGNOSIS_MASK_<br>EXTENSION | Simple      | Octetstring                                          | Cst   | 6    | r      | C/a                                          | ı           | ı                | 0                                    |
| 17                | DEVICE_CERTIFICATION         | Simple      | VisibleString                                        | Cst   | 32   | r      | C/a                                          | 1           | 1                | 0                                    |
| 18                | WRITE_LOCKING                | Simple      | Unsigned16                                           | N     | 2    | r,w    | C/a                                          | F           | 1                | 0                                    |
| 19                | FACTORY_RESET                | Simple      | Unsigned16                                           | S     | 2    | r,w    | C/a                                          | F           | 1                | 0                                    |
| 20                | DESCRIPTOR                   | Simple      | OctetString                                          | S     | 32   | r,w    | C/a                                          | _           | 1                | 0                                    |
| 21                | DEVICE_MESSAGE               | Simple      | OctetString                                          | S     | 32   | r,w    | C/a                                          | _           | 1                | 0                                    |
| 22                | DEVICE_INSTAL_DATE           | Simple      | OctetString                                          | S     | 16   | r,w    | C/a                                          | _           | 1                | 0                                    |
| 23                | LOCAL_OP_ENA                 | Simple      | Unsigned8                                            | N     | 1    | r,w    | C/a                                          | F           | 1                | 0                                    |
| 24                | IDENT_NUMBER_<br>SELECTOR    | Simple      | Unsigned8                                            | S     | 1    | r,w    | C/a                                          | ı           | -                | M (B)                                |
| 25                | HW_WRITE_<br>PROTECTION      | Simple      | Unsigned8                                            | D     | 1    | r      | C/a                                          | ı           | i                | 0                                    |
| 26                | FEATURE                      | Record      | DS-68                                                | N     | 8    | R      | C/a                                          | -           | -                | M (for<br>Revision<br>3.01)          |
| 27-32             | Reserved by PNO              |             |                                                      |       |      |        |                                              |             |                  |                                      |

Table 58. Parameter Attributes of the Physical Block

## 3.11.3 View Object of the Physical Block

| Relative<br>Index | Parameter Name                                                       | View_1 | View_2 | View_3 | View_4 |
|-------------------|----------------------------------------------------------------------|--------|--------|--------|--------|
| 8                 | SOFTWARE_REVISION                                                    |        |        |        |        |
| 9                 | HARDWARE_REVISION                                                    |        |        |        |        |
| 10                | DEVICE_MAN_ID                                                        |        |        |        |        |
| 11                | DEVICE_ID                                                            |        |        |        |        |
| 12                | DEVICE_SER_NUM                                                       |        |        |        |        |
| 13                | DIAGNOSIS                                                            | 4      |        |        |        |
| 14                | DIAGNOSIS_EXTENSION                                                  |        |        |        |        |
| 15                | DIAGNOSIS_MASK                                                       |        |        |        |        |
| 16                | DIAGNOSIS_MASK_EXTENSION                                             |        |        |        |        |
| 17                | DEVICE_CERTIFICATION                                                 |        |        |        |        |
| 18                | WRITE_LOCKING                                                        |        |        |        |        |
| 19                | FACTORY_RESET                                                        |        |        |        |        |
| 20                | DESCRIPTOR                                                           |        |        |        |        |
| 21                | DEVICE_MESSAGE                                                       |        |        |        |        |
| 22                | DEVICE_INSTAL_DATE                                                   |        |        |        |        |
| 23                | LOCAL_OP_ENA                                                         |        |        |        |        |
| 24                | IDENT_NUMBER_SELECTOR                                                |        |        |        |        |
| 25                | HW_WRITE_PROTECTION                                                  |        |        |        |        |
| 26                | FEATURE                                                              |        |        |        |        |
| -                 | Overall sum of bytes in View-Object (+ 13 Standard parameters bytes) | 4+13   |        |        |        |

Table 59. View Object of the Physical Block

## 3.11.4 Coding of the Physical Block Parameter DIAGNOSIS

| Octet | Bit | DIAGNOSIS Mnemonic     | Description                                                                                                                                            | Indication<br>Class |
|-------|-----|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1     | 0   | DIA_HW_ELECTR          | Hardware failure of the electronic                                                                                                                     | R                   |
|       | 1   | DIA_HW_MECH            | Hardware failure mechanics                                                                                                                             | R                   |
|       | 2   | DIA_TEMP_MOTOR         | Motor- temperature too high                                                                                                                            | R                   |
|       | 3   | DIA_TEMP_ELECTR        | Electronic temperature too high                                                                                                                        | R                   |
|       | 4   | DIA_MEM_CHKSUM         | Memory error                                                                                                                                           | R                   |
|       | 5   | DIA_MEASUREMENT        | Failure in measurement                                                                                                                                 | R                   |
|       | 6   | DIA_NOT_INIT           | Device not initialized (No selfcalibration)                                                                                                            | R                   |
|       | 7   | DIA_INIT_ERR           | Selfcalibration failed                                                                                                                                 | R                   |
| 2     | 0   | DIA_ZERO_ERR           | Zero point error (limit position)                                                                                                                      | R                   |
|       | 1   | DIA_SUPPLY             | Power supply failed (electrical, pneumatic)                                                                                                            | R                   |
|       | 2   | DIA_CONF_INVAL         | Configuration not valid                                                                                                                                | R                   |
|       | 3   | DIA_WARMSTART          | New-start-up (warmstart up) carried out.                                                                                                               | А                   |
|       | 4   | DIA_COLDSTART          | Re-start-up (coldstart up) carried out.                                                                                                                | А                   |
|       | 5   | DIA_MAINTAINANCE       | Maintenance required                                                                                                                                   | R                   |
|       | 6   | DIA_CHARACT            | Characterization invalid                                                                                                                               | R                   |
|       | 7   | IDENT_NUMBER_VIOLATION | Set to 1 (one), if the Ident_Number of the running cyclic data transfer and the value of Physical Block IDENT_NUMBER_SELECTOR parameter are different. | R                   |
| 3     | 0 7 | reserved               | Reserved                                                                                                                                               |                     |
| 4     | 0 6 | reserved               | Reserved                                                                                                                                               |                     |
| 4     | 7   | EXTENSION_AVAILABLE    | More diagnosis information is available                                                                                                                |                     |

Table 60. Coding of the Physical Block Parameter DIAGNOSIS

### Coding of the DIAGNOSIS bits:

0: not set 1: set

### Indication Class:

- R Indication remains active as long as the reason for the message exists.
- A The indication has to be set in minimum 10 s and has to be reset not later then 10s after the action is finshed.



Table 61. Coding of the OctetString of the Parameter DIAGNOSIS

#### 3.11.5 Write Access Protection Control

There are write accesses to block parameters by remote devices via the communication and by a local terminal. This may courses access conflicts which will be controlled by a Protection strategy.

The following Physical Block parameters control the write access to block parameters.

- LOCAL\_OP\_ENA
- HW\_WRITE\_PROTECTION
- WRITE\_LOCKING

In addition the following issue influences the write access:

• Communication error longer then 30s

These parameters and issue shall control the parameter access as defined in the following table. If there is a emergency input possibility, the access rights may differ from this specification.

| LOCAL_OP_<br>ENA | HW_WRITE_<br>PROTECTION | Communication<br>Error >30s | Local Access possible                                   | Remote access possible                                                             |
|------------------|-------------------------|-----------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|
| *                | Protected               | *                           | No                                                      | No                                                                                 |
| Enabled          | Unprotected             | No                          | Yes (according of write access rigths of WRITE_LOCKING) | Yes (according of write access rigths of WRITE_LOCKING) Remote data will overwrite |
| Disabled         | Unprotected             | No                          | No                                                      | Yes  (according of write access                                                    |
|                  |                         |                             |                                                         | rigths of WRITE_LOCKING)                                                           |
| Disabled         | Unprotected             | Yes                         | Yes (according of write access rigths of WRITE_LOCKING) | Not possible **                                                                    |
| Enabled          | Unprotected             | Yes                         | Yes (according of write access rigths of WRITE_LOCKING) | Not possible **                                                                    |

<sup>\* -</sup> don't care

**Table 62. Access Protection** 

<sup>\*\* -</sup> if communication is reconnected the access rights are the same as before the communication loss

# 4 General Requirements - Start-up/break-down

There are two types of start-up that can be selected depending on different situations. The types are called New-start-up and Re-start-up.

Additional subtypes arise from different memory management facilities of the devices. There are devices with non-volatile memory and without non-volatile memory.

During New-start-up and Re-start-up and if the cyclic communication is lost, the status of parameter with attribute I (input) and cyc (cyclic) shall set to BAD – no communication LUV for cyclic communication loss and to BAD – no communication no value for New-start-up and Re-start-up.

Additional descriptions may be described in the specific data sheets.

### 4.1 New-start-up (cold start-up)

During New-start-up there is usually no specific information about the field device working on the fieldbus in the automation system (existent information is erased because the actual site configurations have been changed). This operation state occurs after the first power-on of the system (purchase configuration of the devices). The devices must deliver the default values\* of the parameters (initial state).

The default values\* are valid both for the devices with non-volatile and without non-volatile memory.

New start up is executed if FACTORY\_RESET = 1 is set.

### 4.2 Re-start-up (warm start-up)

In using the Re-start-up after a power down, it is assumed that devices working at the fieldbus were in the operation state before the power down.

Devices with non-volatile memory will restart with the state before the power down or with the default values\*. Devices without non-volatile memory must restart with the default values\*.

New start up is executed if FACTORY\_RESET = 2506 is set.

• - Default values are, if defined, the default values of the Parameter Attribute tables or, if not defined in these tables, manufacturer specific.

# 5 General Requirements - Overview about all parameter codes

The codes of the manufacturer, the engineering units and the materials follow the specifications of the Smart-Transmitter contained in the following tables:

## 5.1 DEVICE\_MAN\_ID

The list of DEVICE\_MAN\_ID is maintained by he central office of the PNO in Karlsruhe. The list is available at <a href="https://www.PROFIBUS.com">www.PROFIBUS.com</a>.

## 5.2 Units Codes

The definition of several units or the conditions for their measurement might be different for several countries or depends on the sector of industry. If there is no exact conversion/definition within the table the manufacturer has to describe the supported units and their meaning in the device manual. The user has to check for differences if interchangeability is required.

| Value   | Symbol            | Description          | Equivalence                                                        |
|---------|-------------------|----------------------|--------------------------------------------------------------------|
| 0 - 999 | reserved          |                      |                                                                    |
| 1000    | K                 | kelvin               | SI                                                                 |
| 1001    | °C                | degree Celsius       | T/K = t°C+273.15<br>$\Delta T = 1$ °C is equal to $\Delta T = 1$ K |
| 1002    | °F                | degree Fahrenheit    | $T/K = (t)^{\circ}F + 459.67)/1.8$                                 |
| 1003    | °R                | degree Rankine       | $T/K = (T/^{\circ}R)/1.8$                                          |
| 1004    | rad               | radian               | = 1 m/m                                                            |
| 1005    | 0                 | degree               | $=(\pi/180)$ rad                                                   |
| 1006    | 1                 | minute               | = (1/60)°                                                          |
| 1007    | II .              | second               | = (1/60)'                                                          |
| 1008    | gon               | gon (or grade)       | $=(\pi/200)$ rad                                                   |
| 1009    | r                 | revolution           | $=2\pi \mathrm{rad}$                                               |
| 1010    | m                 | meter                | SI                                                                 |
| 1011    | km                | kilometer            | = 1000.0 m                                                         |
| 1012    | cm                | centimeter           | = 0.01 m                                                           |
| 1013    | mm                | millimeter           | $= 10^{-3} \mathrm{m}$                                             |
| 1014    | μm                | micrometer           | $= 10^{-6} \mathrm{m}$                                             |
| 1015    | nm                | nanometer            | $= 10^{-9} \mathrm{m}$                                             |
| 1016    | pm                | picometer            | $= 10^{-12} \mathrm{m}$                                            |
| 1017    | Å                 | angstrom             | $= 10^{-10} \mathrm{m}$                                            |
| 1018    | ft                | foot                 | = 12 in                                                            |
| 1019    | in                | inch (international) | = 0.0254 mm                                                        |
| 1020    | yd                | yard                 | = 36 in                                                            |
| 1021    | mile              | mile                 | = 1760 yd                                                          |
| 1022    | nautical mile     | nautical mile        | = 1852 m                                                           |
| 1023    | m <sup>2</sup>    | square meter         |                                                                    |
| 1024    | km <sup>2</sup>   | square kilometer     |                                                                    |
| 1025    | cm <sup>2</sup>   | square centimeter    |                                                                    |
| 1026    | dm <sup>2</sup>   | square decimeter     |                                                                    |
| 1027    | mm <sup>2</sup>   | square millimeter    |                                                                    |
| 1028    | а                 | are                  | $= 10^2 \mathrm{m}^2$                                              |
| 1029    | ha                | hectare              | $= 10^4 \mathrm{m}^2$                                              |
| 1030    | in <sup>2</sup>   | square inch          |                                                                    |
| 1031    | ft <sup>2</sup>   | square feet          |                                                                    |
| 1032    | yd <sup>2</sup>   | square yard          |                                                                    |
| 1033    | mile <sup>2</sup> | square mile          |                                                                    |
| 1034    | m³                | cubic meter          |                                                                    |
| 1035    | dm <sup>3</sup>   | cubic decimeter      |                                                                    |
| 1036    | cm <sup>3</sup>   | cubic centimeter     |                                                                    |
| 1037    | mm <sup>3</sup>   | cubic millimeter     | 40-3 3                                                             |
| 1038    | L                 | liter                | $=10^{-3} \mathrm{m}^3$                                            |
| 1039    | cl                | centiliter           | = 0.01 L                                                           |
| 1040    | ml                | milliliter           | = 0.001 L                                                          |
| 1041    | hl                | hectoliter           | = 100 L                                                            |
| 1042    | in <sup>3</sup>   | cubic inch           |                                                                    |
| 1043    | ft <sup>3</sup>   | cubic foot           |                                                                    |
| 1044    | yd <sup>3</sup>   | cubic yard           |                                                                    |
| 1045    | mile <sup>3</sup> | cubic mile           |                                                                    |

|       | T                    |                              | ı                            |
|-------|----------------------|------------------------------|------------------------------|
| Value | Symbol               | Description                  | Equivalence                  |
| 1046  | pint                 | pint (U.S. liquid)           | = (1/8) gal                  |
| 1047  | quart                | quart (U.S. liquid)          | = (1/4) gal                  |
| 1048  | gal                  | gallon (U.S.)                | = 231 in <sup>3</sup>        |
| 1049  | ImpGal               | gallon (Imperial)            | = 4.54609 L                  |
| 1050  | bushel               | bushel (U.S. dry)            | = 2150.42 in <sup>3</sup>    |
| 1051  | bbl                  | barrel (U.S. petroleum)      | = 42 gal                     |
| 1052  | bbl (liq)            | barrel (U.S. liquid)         | = 31.5 gal                   |
| 1053  | ft <sup>3</sup> std. | standard cubic foot          |                              |
| 1054  | S                    | second                       | SI                           |
| 1055  | ks                   | kilosecond                   | $= 10^3 s$                   |
| 1056  | ms                   | millisecond                  | $= 10^{-3} s$                |
| 1057  | μs                   | microsecond                  | $= 10^{-6} \mathrm{m}$       |
| 1058  | min                  | minute                       | = 60 s                       |
| 1059  | h                    | hour                         | = 60 min                     |
| 1060  | d                    | day                          | = 24 h                       |
| 1061  | m/s                  | meter per second             |                              |
| 1062  | mm/s                 | millimeter per second        |                              |
| 1063  | m/h                  | meter per hour               |                              |
| 1064  | km/h                 | kilometer per hour           |                              |
| 1065  | knot                 | nautical mile per hour       | = 1.852 km/h                 |
| 1066  | in/s                 | inch per second              |                              |
| 1067  | ft/s                 | foot per second              |                              |
| 1068  | yd/s                 | yard per second              |                              |
| 1069  | in/min               | inch per minute              |                              |
| 1070  | ft/min               | foot per minute              |                              |
| 1071  | yd/min               | yard per minute              |                              |
| 1072  | in/h                 | inch per hour                |                              |
| 1073  | ft/h                 | foot per hour                |                              |
| 1074  | yd/h                 | yard per hour                |                              |
| 1075  | mi/h                 | mile per hour                | = 0.44704 m/s                |
| 1076  | m/s <sup>2</sup>     | meter per second squared     |                              |
| 1077  | Hz                   | hertz                        | = 1 s <sup>-1</sup>          |
| 1078  | THz                  | terahertz                    | = 10 <sup>12</sup> Hz        |
| 1079  | GHz                  | gigahertz                    | = 10 <sup>9</sup> Hz         |
| 1080  | MHz                  | megahertz                    | = 10 <sup>6</sup> Hz         |
| 1081  | kHz                  | kilohertz                    | $= 10^3  \text{Hz}$          |
| 1082  | 1/s                  | per second                   | = 1 s <sup>-1</sup>          |
| 1083  | 1/min                | per minute                   | $= (1/60) s^{-1}$            |
| 1084  | r/s                  | revolution per second        | <u> </u>                     |
| 1085  | r/min                | revolution per minute        |                              |
| 1086  | rpm<br>rad/s         | radian per second            |                              |
| 1087  | 1/s <sup>2</sup>     | per second squared           |                              |
| 1088  | kg                   | kilogram                     | SI                           |
| 1089  | g                    | gram                         | $= 10^{-3} \text{ kg}$       |
| 1090  | mg                   | milligram                    | = 10 <sup>-6</sup> kg        |
| 1091  | Mg                   | megagram                     | $= 10^3 \text{ kg}$          |
| 1092  | t                    | metric ton                   | $= 10^{3} \text{ kg}$        |
| 1092  | OZ                   | ounce (Avoirdupois)          | = 1/16 lb                    |
| 1093  | lb                   | pound (Avoirdupois)          | = 0.45359237 kg              |
| 1094  | STon                 | short ton                    | = 0.49359237 kg<br>= 2000 lb |
| 1095  | LTon                 | long ton                     | = 2000 lb                    |
| 1096  | kg/m <sup>3</sup>    | kilogram per cubic meter     | - 227U IV                    |
| 1097  | Mg/m <sup>3</sup>    | megagram per cubic meter     |                              |
|       | kg/dm <sup>3</sup>   | kilogram per cubic decimeter |                              |
| 1099  | g/cm <sup>3</sup>    |                              |                              |
| 1100  | g/CIII               | gram per cubic centimeter    |                              |

| Value | Symbol                           | Description                          | Equivalence                                     |
|-------|----------------------------------|--------------------------------------|-------------------------------------------------|
| 1101  | g/m <sup>3</sup>                 | gram per cubic meter                 |                                                 |
| 1102  | t/m <sup>3</sup>                 | metric ton per cubic meter           |                                                 |
| 1103  | kg/L                             | kilogram per liter                   |                                                 |
| 1104  | g/ml                             | gram per milliliter                  |                                                 |
| 1105  | g/L                              | gram per liter                       |                                                 |
| 1106  | lb/in <sup>3</sup>               | pound per cubic inch                 |                                                 |
| 1107  | lb/ft <sup>3</sup>               | pound per cubic foot                 |                                                 |
| 1108  | lb/gal                           | pound per gallon (U.S.)              |                                                 |
| 1109  | STon/yd <sup>3</sup>             | short ton per cubic yard             |                                                 |
| 1110  | °Twad                            | degree Twaddell                      |                                                 |
| 1111  | °Baum (hv)                       | degree Baume heavy                   |                                                 |
| 1112  | °Baum (It)                       | degree Baume light                   |                                                 |
| 1113  | °API                             | degree API                           |                                                 |
| 1114  | SGU                              | specific gravity units               |                                                 |
| 1115  | kg/m                             | kilogram per meter                   |                                                 |
| 1116  | mg/m                             | milligram per meter                  |                                                 |
| 1117  | tex                              | tex                                  | = 10 <sup>-6</sup> kg/m                         |
| 1118  | kg·m <sup>2</sup>                | kilogram square meter                | _ 10 Kg/III                                     |
| 1119  | kg·m/s                           | kilogram meter per second            |                                                 |
| 1120  | N N                              | newton                               | $= 1 \text{ kg·m/s}^2$                          |
| 1121  | MN                               | meganewton                           | $= 10^6 \mathrm{N}$                             |
| 1122  | kN                               | kilonewton                           | $= 10^3 \text{ N}$                              |
| 1123  | mN                               | millinewton                          | = 10 N<br>= 10 <sup>-3</sup> N                  |
| 1123  | μN                               | micronewton                          | = 10 N<br>= 10 <sup>-6</sup> N                  |
| 1124  |                                  |                                      | = 10 N                                          |
| 1125  | kg·m²/s                          | kilogram square meter per second     |                                                 |
| 1126  | N⋅m                              | newton meter                         |                                                 |
| 1127  | MN·m                             | meganewton meter                     |                                                 |
| 1128  | kN⋅m                             | kilonewton meter                     |                                                 |
| 1129  | mN⋅m                             | millinewton meter                    | _                                               |
| 1130  | Pa                               | pascal                               | = 1 N/m <sup>2</sup>                            |
| 1131  | GPa                              | gigapascal                           | = 10 <sup>9</sup> PA                            |
| 1132  | MPa                              | megapascal                           | = 10 <sup>6</sup> PA                            |
| 1133  | kPa                              | kilopascal                           | $= 10^3 PA$                                     |
| 1134  | mPa                              | millipascal                          | = 10 <sup>-3</sup> PA                           |
| 1135  | μРа                              | micropascal                          | $= 10^{-6} PA$                                  |
| 1136  | hPa                              | hectopascal                          | $= 10^2 PA$                                     |
| 1137  | bar                              | bar                                  | = 100 kPa                                       |
| 1138  | mbar                             | millibar                             | = 1 hPa                                         |
| 1139  | torr                             | torr                                 | = (1/760) atm                                   |
| 1140  | atm                              | atmosphere                           | = 101325.0 Pa                                   |
|       | lbf/in <sup>2</sup>              | ·                                    | $= (0.45359237 \cdot 9.80665 / 0.0254^2)$ Pa    |
| 1141  | psi                              | pound-force per square inch          | (unreferenced or differential pressure)         |
| 4440  | lbf/in <sup>2</sup> <sub>a</sub> | pound-force per square inch          | $= (0.45359237 \cdot 9.80665 / 0.0254^{2}) $ Pa |
| 1142  | psia                             | absolute                             | (referenced to a vacuum)                        |
| 1110  | lbf/in <sup>2</sup> <sub>q</sub> | pound-force per square inch          | = $(0.45359237 \cdot 9.80665 / 0.0254^2)$ Pa    |
| 1143  | psig                             | gauge                                | (referenced to atmosphere)                      |
| 1144  | gf/cm <sup>2</sup>               | gram-force per square centimeter     | = 98.0665 Pa                                    |
| 1145  | kgf/cm <sup>2</sup>              | kilogram-force per square centimeter | = 98066.5 Pa                                    |
| 1146  | inH <sub>2</sub> O               | inch of water                        |                                                 |
| 1146  |                                  | inch of water at 4°C                 |                                                 |
|       | inH <sub>2</sub> O (4°C)         |                                      |                                                 |
| 1148  | inH <sub>2</sub> O (68°F)        | inch of water at 68°F                |                                                 |
| 1149  | mmH <sub>2</sub> O               | millimeter of water                  |                                                 |
| 1150  | mmH <sub>2</sub> O (4°C)         | millimeter of water at 4°C           |                                                 |
| 1151  | mmH <sub>2</sub> O (68°F)        | millimeter of water at 68°F          |                                                 |

| Value | Symbol                    | Description                   | Equivalence                      |
|-------|---------------------------|-------------------------------|----------------------------------|
| 1152  | ftH <sub>2</sub> O        | foot of water                 |                                  |
| 1153  | ftH <sub>2</sub> O (4°C)  | foot of water at 4°C          |                                  |
| 1154  | ftH <sub>2</sub> O (68°F) | foot of water at 68°F         |                                  |
| 1155  | inHg                      | inch of mercury               |                                  |
| 1156  | inHg (0°C)                | inch of mercury at 0°C        |                                  |
| 1157  | mmHg                      | millimeter of mercury         |                                  |
| 1158  | mmHg (0°C)                | millimeter of mercury at 0°C  |                                  |
| 1159  | Pa·s                      | pascal second                 |                                  |
| 1160  | m <sup>2</sup> /s         | square meter per second       |                                  |
| 1161  | P                         | poise                         | = 0.1 Pa·s                       |
| 1162  | cP                        | centipoise                    | = 1 mPa·s                        |
| 1163  | St                        | stokes                        | $= 10^{-4} \text{ m}^2/\text{s}$ |
| 1164  | cSt                       | centistokes                   | = 1 mm <sup>2</sup> /s           |
| 1165  | N/m                       | Newton per meter              | - 1 11111 70                     |
| 1166  | mN/m                      | millinewton per meter         |                                  |
| 1167  | J                         | joule                         | = 1 N·m                          |
| 1168  | EJ                        | exajoules                     | $= 10^{18} \text{ J}$            |
| 1169  | PJ                        | petajoules                    | $= 10^{15} \text{ J}$            |
| 1170  | TJ                        | terajoules                    | $= 10^{12} \text{ J}$            |
| 1171  | GJ                        | gigajoules                    | = 10 <sup>9</sup> J              |
| 1172  | MJ                        | megajoules                    | $= 10^6 \text{ J}$               |
| 1173  | kJ                        | kilojoules                    | $= 10^3 \text{ J}$               |
| 1174  | mJ                        | millijoules                   | = 10 <sup>-3</sup> J             |
| 1175  | W⋅h                       | watt hour                     | - 10 3                           |
| 1176  | TW-h                      | terawatt hour                 |                                  |
| 1177  | GW·h                      | gigawatt hour                 |                                  |
| 1178  | MW·h                      | megawatt hour                 |                                  |
| 1178  | kW·h                      | kilowatt hour                 |                                  |
| 1180  | cal <sub>th</sub>         | calorie (thermochemical)      | = 4.184 J                        |
| 1181  | kcal <sub>th</sub>        | kilocalorie (thermochemical)  | = 4.184 kJ                       |
| 1182  | Mcal <sub>th</sub>        | megacalorie (thermochemical)  | = 4.184 MJ                       |
|       | ivicai <sub>th</sub>      | British thermal unit          | = 4.104 IVIJ                     |
| 1183  | Btu <sub>th</sub>         | (thermochemical)              | = (4184 · 0.45359237/1.8) J      |
| 1184  | datherm                   | dekatherm                     | = 1.05506·10 <sup>9</sup> J      |
| 1185  | ft-lbf                    | foot pound-force              | = 1.3558179483314004 J           |
| 1186  | W                         | watt                          | = 1 J/s                          |
| 1187  | TW                        | terawatt                      | $= 10^{12} \text{ W}$            |
| 1188  | GW                        | gigawatt                      | = 10° W                          |
| 1189  | MW                        | megawatt                      | = 10 <sup>6</sup> W              |
| 1190  | kW                        | kilowatt                      | $= 10^{3} \text{ W}$             |
| 1191  | mW                        | milliwatt                     | $= 10^{-3} \text{ W}$            |
| 1191  | μW                        | microwatt                     | = 10 VV<br>= 10 <sup>-6</sup> W  |
| 1193  | nW                        | nanowatt                      | = 10 VV<br>= 10 <sup>-9</sup> W  |
| 1193  | pW                        | picowatt                      | $= 10^{-12} \text{ W}$           |
| 1194  | Mcal <sub>th</sub> /h     | megacalorie per hour          | - 10 VV                          |
| 1195  | MJ/h                      | megajoule per hour            |                                  |
| 1196  | Btu <sub>th</sub> /h      | British thermal unit per hour |                                  |
| 1197  | hp                        | horsepower (electric)         | = 746 W                          |
| 1198  | W/(m·K)                   | watt per meter kelvin         | — 1 →O VV                        |
| 1200  | W/(m²·K)                  | watt per meter kelvin         |                                  |
| 1200  | m <sup>2</sup> ·K/W       |                               |                                  |
|       | J/K                       | square meter kelvin per watt  |                                  |
| 1202  |                           | joule per kelvin              |                                  |
| 1203  | kJ/K                      | kilojoule per kelvin          |                                  |
| 1204  | J/(kg·K)                  | joule per kilogram kelvin     |                                  |
| 1205  | kJ/(kg·K)                 | kilojoule per kilogram kelvin |                                  |
| 1206  | J/kg                      | joule per kilogram            |                                  |

| Value | Symbol                                | Description                   | Equivalence             |  |
|-------|---------------------------------------|-------------------------------|-------------------------|--|
| 1207  | MJ/kg                                 | megajoule per kilogram        |                         |  |
| 1208  | kJ/kg                                 | kilojoule per kilogram        |                         |  |
| 1209  | A                                     | ampere                        | SI                      |  |
| 1210  | kA                                    | kiloampere                    | $= 10^3 \mathrm{A}$     |  |
| 1211  | mA                                    | milliampere                   | $= 10^{-3} A$           |  |
| 1212  | μΑ                                    | microampere                   | $= 10^{-6} A$           |  |
| 1213  | nA                                    | nanoampere                    | $= 10^{-9} A$           |  |
| 1214  | pA                                    | picoampere                    | $= 10^{-12} A$          |  |
| 1215  | С                                     | coulomb                       | = 1 A·s                 |  |
| 1216  | MC                                    | megacoulomb                   | $= 10^6 \mathrm{C}$     |  |
| 1217  | kC                                    | kilocoulomb                   | $= 10^3  \text{C}$      |  |
| 1218  | μС                                    | microcoulomb                  | $= 10^{-6} \mathrm{C}$  |  |
| 1219  | nC                                    | nanocoulomb                   | $= 10^{-9} \mathrm{C}$  |  |
| 1220  | pC                                    | picocoulomb                   | $= 10^{-12} \mathrm{C}$ |  |
| 1221  | A∙h                                   | ampere hour                   |                         |  |
| 1222  | C/m <sup>3</sup>                      | coulomb per cubic meter       |                         |  |
| 1223  | C/mm <sup>3</sup>                     | coulomb per cubic millimeter  |                         |  |
| 1224  | C/cm <sup>3</sup>                     | coulomb per cubic centimeter  |                         |  |
| 1225  | kC/m <sup>3</sup>                     | kilocoulomb per cubic meter   |                         |  |
| 1226  | mC/m <sup>3</sup>                     | millicoulomb per cubic meter  |                         |  |
| 1227  | μC/m <sup>3</sup><br>C/m <sup>2</sup> | microcoulomb per cubic meter  |                         |  |
| 1228  | C/m <sup>2</sup>                      | coulomb per square meter      |                         |  |
| 1229  | C/mm <sup>2</sup>                     | coulomb per square millimeter |                         |  |
| 1230  | C/cm <sup>2</sup>                     | coulomb per square centimeter |                         |  |
| 1231  | kC/m <sup>2</sup>                     | kilocoulomb per square meter  |                         |  |
| 1232  | mC/m <sup>2</sup>                     | millicoulomb per square meter |                         |  |
| 1233  | μC/m <sup>2</sup>                     | microcoulomb per square meter |                         |  |
| 1234  | V/m                                   | volt per meter                |                         |  |
| 1235  | MV/m                                  | megavolt per meter            |                         |  |
| 1236  | kV/m                                  | kilovolt per meter            |                         |  |
| 1237  | V/cm                                  | volt per centimeter           |                         |  |
| 1238  | mV/m                                  | millivolt per meter           |                         |  |
| 1239  | μV/m                                  | microvolt per meter           |                         |  |
| 1240  | V                                     | volt                          | = 1 W/A                 |  |
| 1241  | MV                                    | megavolt                      | $=10^{6} \text{ V}$     |  |
| 1242  | kV                                    | kilovolt                      | $=10^{3} \text{ V}$     |  |
| 1243  | mV                                    | millivolt                     | = 10 <sup>-3</sup> V    |  |
| 1244  | μV                                    | microvolt                     | $= 10^{-6} \text{ V}$   |  |
| 1245  | F                                     | farad                         | = 1 C/V                 |  |
| 1246  | mF                                    | millifarad                    | = 10 <sup>-3</sup> F    |  |
| 1247  | μF                                    | microfarad                    | = 10 <sup>-6</sup> F    |  |
| 1248  | nF                                    | nanofarad                     | $=10^{-9}$ F            |  |
| 1249  | pF                                    | picofarad                     | $=10^{-12} \mathrm{F}$  |  |
| 1250  | F/m                                   | farad per meter               |                         |  |
| 1251  | μF/m                                  | microfarad per meter          |                         |  |
| 1252  | nF/m                                  | nanofarad per meter           |                         |  |
| 1253  | pF/m                                  | picofarad per meter           |                         |  |
| 1254  | C·m                                   | coulomb meter                 |                         |  |
| 1255  | A/m <sup>2</sup>                      | ampere per square meter       |                         |  |
| 1256  | MA/m <sup>2</sup>                     | megaampere per square meter   |                         |  |
| 1257  | A/cm <sup>2</sup>                     | ampere per square centimeter  |                         |  |
| 1258  | kA/m <sup>2</sup>                     | kiloampere per square meter   |                         |  |
| 1259  | A/m                                   | ampere per meter              |                         |  |
| 1260  | kA/m                                  | kiloampere per meter          |                         |  |
| 1261  | A/cm                                  | ampere per centimeter         | 3                       |  |
| 1262  | Т                                     | tesla                         | = 1 Wb/m <sup>2</sup>   |  |

| Value | Symbol                 | Description                     | Equivalence                  |
|-------|------------------------|---------------------------------|------------------------------|
| 1263  | mT                     | millitesla                      | = 10 <sup>-3</sup> T         |
| 1264  | μТ                     | microtesla                      | $= 10^{-6} \text{ T}$        |
| 1265  | nT                     | nanotesla                       | $= 10^{-9} \text{ T}$        |
| 1266  | Wb                     | weber                           | = 1 V⋅s                      |
| 1267  | mWb                    | milliweber                      | $= 10^{-3} \text{ W}$        |
| 1268  | Wb/m                   | weber per meter                 |                              |
| 1269  | kWb/m                  | kiloweber per meter             |                              |
| 1270  | Н                      | henry                           | = 1 Wb/A                     |
| 1271  | mH                     | millihenry                      | = 10 <sup>-3</sup> H         |
| 1272  | μН                     | microhenry                      | = 10 <sup>-6</sup> H         |
| 1273  | nH                     | nanohenry                       | = 10 <sup>-9</sup> H         |
| 1274  | pН                     | picohenry                       | = 10 <sup>-12</sup> H        |
| 1275  | H/m                    | henry per meter                 |                              |
| 1276  | μH/m                   | microhenry per meter            |                              |
| 1277  | nH/m                   | nanohenry per meter             |                              |
| 1278  | A·m <sup>2</sup>       | ampere square meter             |                              |
| 1279  | $N \cdot m^2 / A$      | newton square meter per ampere  |                              |
| 1280  | Wb·m                   | weber meter                     |                              |
| 1281  | Ω                      | ohm                             | = 1 V/A                      |
| 1282  | $G\Omega$              | gigaohm                         | $= 10^9 \Omega$              |
| 1283  | ΜΩ                     | megohm                          | $=10^6 \Omega$               |
| 1284  | kΩ                     | kilohm                          | $=10^3 \Omega$               |
| 1285  | mΩ                     | milliohm                        | $=10^{-3} \Omega$            |
| 1286  | μΩ                     | microohm                        | $= 10^{-6} \Omega$           |
| 1287  | S                      | siemens                         | $= 1 \Omega^{-1}$            |
| 1288  | kS                     | kilosiemens                     | $=10^3 \Omega^{-1}$          |
| 1289  | mS                     | millisiemens                    | $=10^{-3} \Omega^{-1}$       |
| 1290  | μS                     | microsiemens                    | $=10^{-6} \Omega^{-1}$       |
| 1291  | $\Omega \cdot m$       | ohm meter                       |                              |
| 1292  | GΩ·m                   | gigaohm meter                   |                              |
| 1293  | MΩ·m                   | megohm meter                    |                              |
| 1294  | $k\Omega \cdot m$      | kilohm meter                    |                              |
| 1295  | $\Omega	ext{-cm}$      | ohm centimeter                  |                              |
| 1296  | $m\Omega{\cdot}m$      | milliohm meter                  |                              |
| 1297  | μΩ·m                   | microohm meter                  |                              |
| 1298  | $n\Omega \cdot m$      | nanoohm meter                   |                              |
| 1299  | S/m                    | siemens per meter               |                              |
| 1300  | MS/m                   | megasiemens per meter           |                              |
| 1301  | kS/m                   | kilosiemens per meter           |                              |
| 1302  | mS/cm                  | millisiemens per centimeter     |                              |
| 1303  | μS/mm                  | microsiemens per millimeter     |                              |
| 1304  | 1/H                    | per henry                       | 2 2                          |
| 1305  | sr                     | steradian                       | $= 1 \text{ m}^2/\text{m}^2$ |
| 1306  | W/sr                   | watt per steradian              |                              |
| 1307  | W/(sr·m <sup>2</sup> ) | watt per steradian square meter |                              |
| 1308  | W/m <sup>2</sup>       | watt per square meter           |                              |
| 1309  | lm                     | lumen                           | = 1 cd·sr                    |
| 1310  | lm·s                   | lumen second                    |                              |
| 1311  | lm·h                   | lumen hour                      |                              |
| 1312  | lm/m <sup>2</sup>      | lumen per square meter          |                              |
| 1313  | lm/W                   | lumen per watt                  | 2                            |
| 1314  | lx                     | lux                             | = 1 lm/m <sup>2</sup>        |
| 1315  | lx·s                   | lux second                      |                              |
| 1316  | cd                     | candela                         | SI                           |
| 1317  | cd/m <sup>2</sup>      | candela per square meter        |                              |
| 1318  | g/s                    | gram per second                 |                              |

| Value        | Symbol                    | Description Equivalence                                 |        |
|--------------|---------------------------|---------------------------------------------------------|--------|
| 1319         | g/min                     | gram per minute                                         |        |
| 1320         | g/h                       | gram per hour                                           |        |
| 1321         | g/d                       | gram per day                                            |        |
| 1322         | kg/s                      | kilogram per second                                     |        |
| 1323         | kg/min                    | kilogram per minute                                     |        |
| 1324         | kg/h                      | kilogram per hour                                       |        |
| 1325         | kg/d                      | kilogram per day                                        |        |
| 1326         | t/s                       | metric ton per second                                   |        |
| 1327         | t/min                     | metric ton per minute                                   |        |
| 1328         | t/h                       | metric ton per hour                                     |        |
| 1329         | t/d                       | metric ton per day                                      |        |
| 1330         | lb/s                      | pound per second                                        |        |
| 1331         | lb/min                    | pound per minute                                        |        |
| 1332         | lb/h                      | pound per hour                                          |        |
| 1333         | lb/d                      | pound per day                                           |        |
| 1334         | STon/s                    | short ton per second                                    |        |
| 1335         | STon/min                  | short ton per minute                                    |        |
| 1336         | STon/h                    | short ton per hour                                      |        |
| 1337         | STon/d                    | short ton per day                                       |        |
| 1338         | LTon/s                    | long ton per second                                     |        |
| 1339         | LTon/min                  | long ton per minute                                     |        |
| 1340         | LTon/h                    | long ton per hour                                       |        |
| 1341         | LTon/d                    | long ton per day                                        |        |
| 1342         | %                         | percent                                                 | = 0.01 |
| 1343         | % sol/wt                  | percent solid per weight                                |        |
| 1344         | % sol/vol                 | percent solid per volume                                |        |
| 1345         | % stm qual                | percent steam quality                                   |        |
| 1346         | °Plato                    | degree Plato                                            |        |
| 1347         | m <sup>3</sup> /s         | cubic meter per second                                  |        |
| 1348         | m³/min                    | cubic meter per minute                                  |        |
| 1349         | m <sup>3</sup> /h         | cubic meter per hour                                    |        |
| 1350         | m <sup>3</sup> /d         | cubic meter per day                                     |        |
| 1351         | L/s                       | liter per second                                        |        |
| 1352         | L/min                     | liter per minute                                        |        |
| 1353         | L/h                       | liter per hour                                          |        |
| 1354         | L/d                       | liter per day                                           |        |
| 1355         | ML/d                      | megaliter per day                                       |        |
| 1356         | ft <sup>3</sup> /s        | cubic foot per second                                   |        |
| 1357         | ft <sup>3</sup> /min      | cubic foot per minute                                   |        |
| 1358         | ft <sup>3</sup> /h        | cubic foot per hour                                     |        |
| 1359         | ft <sup>3</sup> /d        | cubic foot per day                                      |        |
| 1360         | ft <sup>3</sup> /min std. | standard cubic foot per minute                          |        |
| 1361         | ft <sup>3</sup> /h std.   | standard cubic foot per hour                            |        |
| 1362         | gal/s                     | gallon (U.S.) per second                                |        |
| 1363         | gal/min                   | gallon (U.S.) per minute                                |        |
| 1364         | gal/h                     | gallon (U.S.) per hour                                  |        |
| 1365         | gal/d                     | gallon (U.S.) per day                                   |        |
| 1366<br>1367 | Mgal/d                    | megagallon (U.S.) per day                               |        |
|              | ImpGal/s                  | gallon (Imperial) per second                            |        |
| 1368         | ImpGal/min<br>ImpGal/h    | gallon (Imperial) per minute                            |        |
| 1369<br>1370 | ImpGal/d                  | gallon (Imperial) per hour<br>gallon (Imperial) per day |        |
| 1370         | bbl/s                     |                                                         |        |
| 1371         | bbl/min                   | barrel per second                                       |        |
| 1372         | bbl/h                     | barrel per minute                                       |        |
|              |                           | barrel per hour                                         |        |
| 1374         | bbl/d                     | barrel per day                                          |        |

|                                                                                                                      | 1                                                                              | T.                                                                                                                                                                                                                              | 1                                                                        |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Value                                                                                                                | Symbol                                                                         | Description                                                                                                                                                                                                                     | Equivalence                                                              |
| 1375                                                                                                                 | W/m <sup>2</sup>                                                               | watt per square meter                                                                                                                                                                                                           |                                                                          |
| 1376                                                                                                                 | mW/m²                                                                          | milliwatt per square meter                                                                                                                                                                                                      |                                                                          |
| 1377                                                                                                                 | μW/m <sup>2</sup>                                                              | microwatt per square meter                                                                                                                                                                                                      |                                                                          |
| 1378                                                                                                                 | pW/m <sup>2</sup>                                                              | picowatt per square meter                                                                                                                                                                                                       |                                                                          |
| 1379                                                                                                                 | Pa·s/m <sup>3</sup>                                                            | pascal second per cubic meter                                                                                                                                                                                                   |                                                                          |
| 1380                                                                                                                 | N·s/m                                                                          | newton second per meter                                                                                                                                                                                                         |                                                                          |
| 1381                                                                                                                 | Pa·s/m                                                                         | pascal second per meter                                                                                                                                                                                                         |                                                                          |
| 1382                                                                                                                 | В                                                                              | bel                                                                                                                                                                                                                             | = lg(ratio)                                                              |
| 1383                                                                                                                 | dB                                                                             | decibel                                                                                                                                                                                                                         | = 10 <sup>-1</sup> B                                                     |
| 1384                                                                                                                 | mol                                                                            | mole                                                                                                                                                                                                                            | SI                                                                       |
| 1385                                                                                                                 | kmol                                                                           | kilomole                                                                                                                                                                                                                        |                                                                          |
| 1386                                                                                                                 | mmol                                                                           | mill mole                                                                                                                                                                                                                       |                                                                          |
| 1387                                                                                                                 | μmol                                                                           | micromole                                                                                                                                                                                                                       |                                                                          |
| 1388                                                                                                                 | kg/mol                                                                         | kilogram per mole                                                                                                                                                                                                               |                                                                          |
| 1389                                                                                                                 | g/mol                                                                          | gram per mole                                                                                                                                                                                                                   |                                                                          |
| 1390                                                                                                                 | m³/mol                                                                         | cubic meter per mole                                                                                                                                                                                                            |                                                                          |
| 1391                                                                                                                 | dm³/mol                                                                        | cubic decimeter per mole                                                                                                                                                                                                        |                                                                          |
| 1392                                                                                                                 | cm <sup>3</sup> /mol                                                           | cubic centimeter per mole                                                                                                                                                                                                       |                                                                          |
| 1393                                                                                                                 | L/mol                                                                          | liter per mole                                                                                                                                                                                                                  |                                                                          |
| 1394                                                                                                                 | J/mol                                                                          | joule per mole                                                                                                                                                                                                                  |                                                                          |
| 1395                                                                                                                 | kJ/mol                                                                         | kilojoule per mole                                                                                                                                                                                                              |                                                                          |
| 1396                                                                                                                 | J/(mol-K)                                                                      | joule per mole kelvin                                                                                                                                                                                                           |                                                                          |
| 1397                                                                                                                 | mol/m <sup>3</sup>                                                             | mole per cubic meter                                                                                                                                                                                                            |                                                                          |
| 1398                                                                                                                 | mol/dm <sup>3</sup>                                                            | mole per cubic decimeter                                                                                                                                                                                                        |                                                                          |
| 1399                                                                                                                 | mol/L                                                                          | mole per liter                                                                                                                                                                                                                  |                                                                          |
| 1400                                                                                                                 | mol/kg                                                                         | mole per kilogram                                                                                                                                                                                                               |                                                                          |
| 1401                                                                                                                 | mmol/kg                                                                        | millimole per kilogram                                                                                                                                                                                                          |                                                                          |
| 1402                                                                                                                 | Bq                                                                             | becquerel                                                                                                                                                                                                                       | $= 1 s^{-1}$                                                             |
| 1403                                                                                                                 | MBq                                                                            | megabecquerel                                                                                                                                                                                                                   |                                                                          |
| 1404                                                                                                                 | kBq                                                                            | kilobecquerel                                                                                                                                                                                                                   |                                                                          |
| 1405                                                                                                                 | Bq/kg                                                                          | becquerel per kilogram                                                                                                                                                                                                          |                                                                          |
| 1406                                                                                                                 | kBq/kg                                                                         | kilobecquerel per kilogram                                                                                                                                                                                                      |                                                                          |
| 1407                                                                                                                 | MBq/kg                                                                         | megabecquerel per kilogram                                                                                                                                                                                                      |                                                                          |
| 1408                                                                                                                 | Gy                                                                             | gray                                                                                                                                                                                                                            | = 1 J/kg                                                                 |
| 1409                                                                                                                 | mGy                                                                            | milligray                                                                                                                                                                                                                       |                                                                          |
| 1410                                                                                                                 | rd                                                                             | rad                                                                                                                                                                                                                             | $= 10^{-2} \text{ Gy}$                                                   |
| 1411                                                                                                                 | Sv                                                                             | sievert                                                                                                                                                                                                                         | = 1 J/kg                                                                 |
| 1412                                                                                                                 | mSv                                                                            | millisievert                                                                                                                                                                                                                    |                                                                          |
| 1413                                                                                                                 |                                                                                |                                                                                                                                                                                                                                 |                                                                          |
|                                                                                                                      | rem                                                                            | rem                                                                                                                                                                                                                             | = 10 <sup>-2</sup> Sv                                                    |
| 1414                                                                                                                 | rem<br>C/kg                                                                    |                                                                                                                                                                                                                                 | = 10 <sup>-2</sup> Sv                                                    |
|                                                                                                                      |                                                                                | rem                                                                                                                                                                                                                             |                                                                          |
| 1414                                                                                                                 | C/kg<br>mC/kg<br>R                                                             | rem<br>coulomb per kilogram                                                                                                                                                                                                     | $= 10^{-2} \text{ Sv}$ $= 2.58 \cdot 10^{-4} \text{ C/kg}$               |
| 1414<br>1415                                                                                                         | C/kg<br>mC/kg<br>R<br>1/J·m <sup>3</sup>                                       | rem coulomb per kilogram millicoulomb per kilogram                                                                                                                                                                              |                                                                          |
| 1414<br>1415<br>1416                                                                                                 | C/kg<br>mC/kg<br>R<br>1/J⋅m³<br>e/V⋅m³                                         | rem coulomb per kilogram millicoulomb per kilogram                                                                                                                                                                              |                                                                          |
| 1414<br>1415<br>1416<br>1417                                                                                         | C/kg<br>mC/kg<br>R<br>1/J·m <sup>3</sup>                                       | rem coulomb per kilogram millicoulomb per kilogram                                                                                                                                                                              |                                                                          |
| 1414<br>1415<br>1416<br>1417<br>1418                                                                                 | C/kg<br>mC/kg<br>R<br>1/J⋅m³<br>e/V⋅m³                                         | rem coulomb per kilogram millicoulomb per kilogram roentgen                                                                                                                                                                     |                                                                          |
| 1414<br>1415<br>1416<br>1417<br>1418<br>1419                                                                         | C/kg<br>mC/kg<br>R<br>1/J·m³<br>e/V·m³<br>m³/C                                 | rem coulomb per kilogram millicoulomb per kilogram roentgen cubic meter per coulomb                                                                                                                                             |                                                                          |
| 1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420                                                                 | C/kg mC/kg R 1/J·m³ e/V·m³ m³/C V/K                                            | rem coulomb per kilogram millicoulomb per kilogram roentgen  cubic meter per coulomb volt per kelvin                                                                                                                            | = 2.58·10 <sup>-4</sup> C/kg                                             |
| 1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420<br>1421                                                         | C/kg mC/kg R 1/J·m³ e/V·m³ m³/C V/K mV/K                                       | rem coulomb per kilogram millicoulomb per kilogram roentgen  cubic meter per coulomb volt per kelvin millivolt per kelvin                                                                                                       | = 2.58·10 <sup>-4</sup> C/kg<br>= 10 <sup>-6</sup>                       |
| 1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420<br>1421<br>1422                                                 | C/kg mC/kg R 1/J·m³ e/V·m³ m³/C V/K mV/K                                       | rem coulomb per kilogram millicoulomb per kilogram roentgen  cubic meter per coulomb volt per kelvin millivolt per kelvin pH                                                                                                    | = 2.58·10 <sup>-4</sup> C/kg<br>= 10 <sup>-6</sup><br>= 10 <sup>-9</sup> |
| 1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420<br>1421<br>1422<br>1423                                         | C/kg mC/kg R 1/J·m³ e/V·m³ m³/C V/K mV/K pH ppm                                | rem coulomb per kilogram millicoulomb per kilogram roentgen  cubic meter per coulomb volt per kelvin millivolt per kelvin pH parts per million                                                                                  | = 2.58·10 <sup>-4</sup> C/kg<br>= 10 <sup>-6</sup>                       |
| 1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420<br>1421<br>1422<br>1423<br>1424                                 | C/kg mC/kg R 1/J⋅m³ e/V⋅m³ m³/C V/K mV/K pH ppm ppb                            | rem coulomb per kilogram millicoulomb per kilogram roentgen  cubic meter per coulomb volt per kelvin millivolt per kelvin pH parts per million parts per billion                                                                | = 2.58·10 <sup>-4</sup> C/kg<br>= 10 <sup>-6</sup><br>= 10 <sup>-9</sup> |
| 1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420<br>1421<br>1422<br>1423<br>1424<br>1425                         | C/kg mC/kg R 1/J·m³ e/V·m³ m³/C V/K mV/K pH ppm ppb ppth                       | rem coulomb per kilogram millicoulomb per kilogram roentgen  cubic meter per coulomb volt per kelvin millivolt per kelvin pH parts per million parts per billion parts per thousand                                             | = 2.58·10 <sup>-4</sup> C/kg<br>= 10 <sup>-6</sup><br>= 10 <sup>-9</sup> |
| 1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420<br>1421<br>1422<br>1423<br>1424<br>1425<br>1426                 | C/kg mC/kg R 1/J·m³ e/V·m³ m³/C V/K mV/K pH ppm ppb ppth °Brix                 | rem coulomb per kilogram millicoulomb per kilogram roentgen  cubic meter per coulomb volt per kelvin millivolt per kelvin pH parts per million parts per billion parts per thousand degree Brix                                 | = 2.58·10 <sup>-4</sup> C/kg<br>= 10 <sup>-6</sup><br>= 10 <sup>-9</sup> |
| 1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420<br>1421<br>1422<br>1423<br>1424<br>1425<br>1426<br>1427         | C/kg mC/kg R 1/J·m³ e/V·m³ m³/C V/K mV/K pH ppm ppb ppth °Brix °Ball           | rem coulomb per kilogram millicoulomb per kilogram roentgen  cubic meter per coulomb volt per kelvin millivolt per kelvin pH parts per million parts per billion parts per thousand degree Brix degree Balling                  | = 2.58·10 <sup>-4</sup> C/kg<br>= 10 <sup>-6</sup><br>= 10 <sup>-9</sup> |
| 1414<br>1415<br>1416<br>1417<br>1418<br>1419<br>1420<br>1421<br>1422<br>1423<br>1424<br>1425<br>1426<br>1427<br>1428 | C/kg mC/kg R 1/J·m³ e/V·m³ m³/C V/K mV/K pH ppm ppb ppth °Brix °Ball proof/vol | rem coulomb per kilogram millicoulomb per kilogram roentgen  cubic meter per coulomb volt per kelvin millivolt per kelvin pH parts per million parts per billion parts per thousand degree Brix degree Balling proof per volume | = 2.58·10 <sup>-4</sup> C/kg<br>= 10 <sup>-6</sup><br>= 10 <sup>-9</sup> |

| Value | Symbol                  | Description                       | Equivalence |
|-------|-------------------------|-----------------------------------|-------------|
|       |                         |                                   |             |
| 1431  | kcal <sub>th</sub> /s   | kilocalorie per second            |             |
| 1432  | kcal <sub>th</sub> /min | kilocalorie per minute            |             |
| 1433  | kcal <sub>th</sub> /h   | kilocalorie per hour              |             |
| 1434  | kcal <sub>th</sub> /d   | kilocalorie per day               |             |
| 1435  | Mcal <sub>th</sub> /s   | megacalorie per second            |             |
| 1436  | Mcal <sub>th</sub> /min | megacalorie per minute            |             |
| 1437  | Mcal <sub>th</sub> /d   | megacalorie per day               |             |
| 1438  | kJ/s                    | kilojoule per second              |             |
| 1439  | kJ/min                  | kilojoule per minute              |             |
| 1440  | kJ/h                    | kilojoule per hour                |             |
| 1441  | kJ/d                    | kilojoule per day                 |             |
| 1442  | MJ/s                    | megajoule per second              |             |
| 1443  | MJ/min                  | megajoule per minute              |             |
| 1444  | MJ/d                    | megajoule per day                 |             |
| 1445  | Btu <sub>th</sub> /s    | British thermal unit per second   |             |
| 1446  | Btu <sub>th</sub> /min  | British thermal unit per minute   |             |
| 1447  | Btu <sub>th</sub> /day  | British thermal unit per day      |             |
| 1448  | μgal/s                  | microgallon (U.S.) per second     |             |
| 1449  | mgal/s                  | milligallon (U.S.) per second     |             |
| 1450  | kgal/s                  | kilogallon (U.S.) per second      |             |
| 1451  | Mgal/s                  | megagallon (U.S.) per second      |             |
| 1452  | μgal/min                | microgallon (U.S.) per minute     |             |
| 1453  | mgal/min                | milligallon (U.S.) per second     |             |
| 1454  | kgal/min                | kilogallon (U.S.) per minute      |             |
| 1455  | Mgal/min                | megagallon (U.S.) per minute      |             |
| 1456  | μgal/h                  | microgallon (U.S.) per hour       |             |
| 1457  | mgal/h                  | milligallon (U.S.) per hour       |             |
| 1458  | kgal/h                  | kilogallon (U.S.) per hour        |             |
| 1459  | Mgal/h                  | megagallon (U.S.) per hour        |             |
| 1460  | μgal/d                  | microgallon (U.S.) per day        |             |
| 1461  | mgal/d                  | milligallon (U.S.) per day        |             |
| 1462  | kgal/d                  | kilogallon (U.S.) per day         |             |
| 1463  | μImpGal/s               | microgallon (Imperial) per second |             |
| 1464  | mImpGal/s               | milligallon (Imperial) per second |             |
| 1465  | klmpGal/s               | kilogallon (Imperial) per second  |             |
| 1466  | MImpGal/s               | megagallon (Imperial) per second  |             |
| 1467  | μImpGal/min             | microgallon (Imperial) per minute |             |
| 1468  | mImpGal/min             | milligallon (Imperial) per minute |             |
| 1469  | kImpGal/min             | kilogallon (Imperial) per minute  |             |
| 1470  | MImpGal/min             | megagallon (Imperial) per minute  |             |
| 1471  | μImpGal/h               | microgallon (Imperial) per hour   |             |
| 1472  | mImpGal/h               | milligallon (Imperial) per hour   |             |
| 1473  | klmpGal/h               | kilogallon (Imperial) per hour    |             |
| 1474  | MImpGal/h               | megagallon (Imperial) per hour    |             |
| 1475  | μlmpGal/d               | microgallon (Imperial) per day    |             |
| 1476  | mImpGal/d               | milligallon (Imperial) per day    |             |
| 1477  | klmpGal/d               | kilogallon (Imperial) per day     |             |
| 1478  | MImpGal/d               | megagallon (Imperial) per day     |             |
| 1479  | μbbl/s                  | microbarrel per second            |             |
| 1480  | mbbl/s                  | millibarrel per second            |             |
| 1481  | kbbl/s                  | kilobarrel per second             |             |
| 1482  | Mbbl/s                  | megabarrel per second             |             |
| 1483  | μbbl/min                | microbarrel per minute            |             |
| 1484  | mbbl/min                | millibarrel per minute            |             |
| 1485  | kbbl/min                | kilobarrel per minute             |             |
|       |                         |                                   |             |
| 1486  | Mbbl/min                | megabarrel per minute             |             |

| Value | Symbol                            | Description Equivalence        |  |
|-------|-----------------------------------|--------------------------------|--|
| 1487  | μbbl/h                            | microbarrel per hour           |  |
| 1488  | mbbl/h                            | millibarrel per hour           |  |
| 1489  | kbbl/h                            | kilobarrel per hour            |  |
| 1490  | Mbbl/h                            | megabarrel per hour            |  |
| 1491  | μbbl/d                            | microbarrel per day            |  |
| 1492  | mbbl/d                            | millibarrel per day            |  |
| 1493  | kbbl/d                            | kilobarrel per day             |  |
| 1494  | Mbbl/d                            | megabarrel per day             |  |
| 1495  | μm³/s                             | cubic micrometer per second    |  |
| 1496  | mm <sup>3</sup> /s                | cubic millimeter per second    |  |
| 1497  | km <sup>3</sup> /s                | cubic kilometer per second     |  |
| 1498  | Mm <sup>3</sup> /s                | cubic megameter per second     |  |
| 1499  | μm³/min                           | cubic micrometer per minute    |  |
| 1500  | mm³/min                           | cubic millimeter per minute    |  |
| 1501  | km <sup>3</sup> /min              | cubic kilometer per minute     |  |
| 1502  | Mm <sup>3</sup> /min              | cubic megameter per minute     |  |
| 1503  | μm³/h                             | cubic micrometer per hour      |  |
| 1504  | mm³/h                             | cubic millimeter per hour      |  |
| 1505  | km <sup>3</sup> /h                | cubic kilometer per hour       |  |
| 1506  | Mm <sup>3</sup> /h                | cubic megameter per hour       |  |
| 1507  | μm³/d                             | cubic micrometer per day       |  |
| 1508  | mm³/d                             | cubic millimeter per day       |  |
| 1509  | km <sup>3</sup> /d                | cubic kilometer per day        |  |
| 1510  | Mm <sup>3</sup> /d                | cubic megameter per day        |  |
| 1511  | cm³/s cubic centimeter per second |                                |  |
| 1512  | cm <sup>3</sup> /min              | cubic centimeter per minute    |  |
| 1513  | cm <sup>3</sup> /h                | cubic centimeter per hour      |  |
| 1514  | cm <sup>3</sup> /d                | cubic centimeter per day       |  |
| 1515  | kcal <sub>th</sub> /kg            | kilocalorie per kilogram       |  |
| 1516  | Btu <sub>th</sub> /lb             | British thermal unit per pound |  |
| 1517  | kL                                | kiloliter                      |  |
| 1518  | kL/min                            | kiloliter per minute           |  |
| 1519  | kL/h                              | kiloliter per hour             |  |
| 1520  | kL/d                              | kiloliter per day              |  |
| 1521  | vendor-specific 1521              |                                |  |
| 1522  | vendor-specific 1522              |                                |  |
| 1523  | vendor-specific 1523              |                                |  |
| 1524  | vendor-specific 1524              |                                |  |
| 1525  | vendor-specific 1525              |                                |  |
| 1526  | vendor-specific 1526              |                                |  |
| 1527  | vendor-specific 1527              |                                |  |
| 1528  | vendor-specific 1528              |                                |  |
| 1529  | vendor-specific 1529              |                                |  |
| 1530  | vendor-specific 1530              |                                |  |
| 1531  | vendor-specific 1531              |                                |  |
| 1532  | vendor-specific 1532              |                                |  |
| 1533  | vendor-specific 1533              |                                |  |
| 1534  | vendor-specific 1534              |                                |  |
| 1535  | vendor-specific 1535              |                                |  |
| 1536  | vendor-specific 1536              |                                |  |
| 1537  | vendor-specific 1537              |                                |  |
| 1538  | vendor-specific 1538              |                                |  |
| 1539  | vendor-specific 1539              |                                |  |
| 1540  | vendor-specific 1540              |                                |  |
| 1541  | vendor-specific 1541              |                                |  |
| 1542  | vendor-specific 1542              |                                |  |

| 1/-1  | Oh. al                | December 1                                                 | Facilities                  |
|-------|-----------------------|------------------------------------------------------------|-----------------------------|
| Value | Symbol                | Description                                                | Equivalence                 |
| 1543  | vendor-specific 1543  |                                                            |                             |
| 1544  | vendor-specific 1544  |                                                            |                             |
| 1545  | vendor-specific 1545  |                                                            |                             |
| 1546  | vendor-specific 1546  |                                                            |                             |
| 1547  | vendor-specific 1547  |                                                            |                             |
| 1548  | vendor-specific 1548  |                                                            |                             |
| 1549  | vendor-specific 1549  |                                                            |                             |
| 1550  | vendor-specific 1550  |                                                            |                             |
| 1551  | S/cm                  | siemens per centimeter                                     |                             |
| 1552  | μS/cm                 | microsiemens per centimeter                                |                             |
| 1553  | mS/m                  | millisiemens per meter                                     |                             |
| 1554  | μS/m                  | microsiemens per meter                                     |                             |
| 1555  | MΩ·cm                 | Megohm centimeter                                          |                             |
| 1556  | kΩ-cm                 | kilohm centimeter                                          |                             |
| 1557  | Gew%                  | Gewichtsprozent                                            |                             |
| 1558  | mg/L                  | milligram per liter                                        |                             |
| 1559  | μg/L                  | microgram per liter                                        |                             |
| 1560  | %Sät                  |                                                            |                             |
| 1561  | vpm                   |                                                            |                             |
| 1562  | %vol                  | Volume percent                                             |                             |
| 1563  | ml/min                | milliliter per minute                                      |                             |
| 1564  | mg/dm <sup>3</sup>    | milligram per cubic decimeter                              |                             |
| 1565  | mg/L                  | milligram per liter (do not use in new projects; use 1558) |                             |
| 1566  | mg/m³                 | milligram per cubic meter                                  |                             |
| 1567  | ct                    | carat (jewel)                                              | = 200.0·10 <sup>-6</sup> kg |
| 1568  | lb (tr)               | pound (troy or apothecary)                                 | = 0.3732417216 kg           |
| 1569  | oz (tr)               | ounce (troy or apothecary)                                 | = 1/12 lb (tr)              |
| 1570  | fl oz (U.S.)          | ounce (U.S. fluid)                                         | = (1/128) gal               |
| 1571  | cm <sup>3</sup>       | cubic centimeter                                           | $= 10^{-6} \mathrm{m}^3$    |
| 1572  | af                    | acre foot                                                  | = 43560 ft <sup>3</sup>     |
| 1573  | m <sup>3</sup> normal | Normal cubic meter<br>(0°C, 1atm = 101325Pa)               |                             |
| 1574  | L normal              | Normal liter<br>(0°C, 1atm = 101325PA)                     |                             |
| 1575  | m <sup>3</sup> std.   | Standard cubic meter<br>(20°C, 1atm = 101325Pa)            |                             |
| 1576  | L std.                | Standard liter<br>(20°C, 1atm = 101325PA)                  |                             |
| 1577  | ml/s                  | milliliter per second                                      |                             |
| 1578  | ml/h                  | milliliter per hour                                        |                             |
| 1579  | ml/d                  | milliliter per day                                         |                             |
| 1580  | af/s                  | acre foot per second                                       |                             |
| 1581  | af/min                | acre foot per minute                                       |                             |
| 1582  | af/h                  | acre foot per hour                                         |                             |
| 1583  | af/d                  | acre foot per day                                          |                             |
| 1584  | fl oz (U.S.)/s        | ounce (U.S. fluid) per second                              |                             |
| 1585  | fl oz (U.S.) /min     | ounce (U.S. fluid) per minute                              |                             |
| 1586  | fl oz (U.S.)/h        | ounce (U.S. fluid) per hour                                |                             |
| 1587  | fl oz (U.S.)/d        | ounce (U.S. fluid) per day                                 |                             |
| 1588  | m³/s normal           | Normal cubic meter per second (0°C, 1atm = 101325Pa)       |                             |
| 1589  | m³/min normal         | Normal cubic meter per minute (0°C, 1atm = 101325Pa)       |                             |

| Value | Symbol                          | Description                                             | Equivalence |  |
|-------|---------------------------------|---------------------------------------------------------|-------------|--|
| 1590  | m³/h normal                     | Normal cubic meter per hour (0°C, 1atm = 101325Pa)      |             |  |
| 1591  | m <sup>3</sup> /d normal        | Normal cubic meter per day (0°C, 1atm = 101325Pa)       |             |  |
| 1592  | L/s normal                      | Normal liter per second (0°C, 1atm = 101325PA)          |             |  |
| 1593  | L/min normal                    | Normal liter per minute (0°C, 1atm = 101325PA)          |             |  |
| 1594  | L/h normal                      | Normal liter per hour (0°C, 1atm = 101325PA)            |             |  |
| 1595  | L/d normal                      | Normal liter per day<br>(0°C, 1atm = 101325PA)          |             |  |
| 1596  | m <sup>3</sup> /s std.          | Standard cubic meter per second (20°C, 1atm = 101325Pa) |             |  |
| 1597  | m³/min std.                     | Standard cubic meter per minute (20°C, 1atm = 101325Pa) |             |  |
| 1598  | m <sup>3</sup> /h std.          | Standard cubic meter per hour (20°C, 1atm = 101325Pa)   |             |  |
| 1599  | m <sup>3</sup> /d std.          | Standard cubic meter per day (20°C, 1atm = 101325Pa)    |             |  |
| 1600  | L/s std.                        | Standard liter per second (20°C, 1atm = 101325PA)       |             |  |
| 1601  | L/min std.                      | Standard liter per minute (20°C, 1atm = 101325PA)       |             |  |
| 1602  | L/h std.                        | Standard liter per hour (20°C, 1atm = 101325PA)         |             |  |
| 1603  | L/d std.                        | Standard liter per day (20°C, 1atm = 101325PA)          |             |  |
| 1604  | ft <sup>3</sup> /s std.         | standard cubic foot per second                          |             |  |
| 1605  | ft <sup>3</sup> /d std.         | standard cubic foot per day                             |             |  |
| 1606  | oz/s                            | ounce per second                                        |             |  |
| 1607  | oz/min                          | ounce per minute                                        |             |  |
| 1608  | oz/h                            | ounce per hour                                          |             |  |
| 1609  | oz/d                            | ounce per day                                           |             |  |
| 1610  | Pa <sub>a</sub>                 | pascal absolute                                         |             |  |
| 1611  | Pa <sub>q</sub>                 | pascal gauge                                            |             |  |
| 1612  | GPa <sub>a</sub>                | gigapascal absolute                                     |             |  |
| 1613  | GPa <sub>q</sub>                | gigapascal gauge                                        |             |  |
| 1614  | MPa <sub>a</sub>                | megapascal absolute                                     |             |  |
| 1615  | MPa <sub>q</sub>                | megapascal gauge                                        |             |  |
| 1616  | kPa <sub>a</sub>                | kilopascal absolute                                     |             |  |
| 1617  | kPa <sub>q</sub>                | kilopascal gauge                                        |             |  |
| 1618  | mPa <sub>a</sub>                | millipascal absolute                                    |             |  |
| 1619  | mPa q                           | millipascal gauge                                       |             |  |
| 1620  | μPa <sub>a</sub>                | micropascal absolute                                    |             |  |
| 1621  | μPa <sub>q</sub>                | micropascal gauge                                       |             |  |
| 1622  | hPa <sub>a</sub>                | hectopascal absolute                                    |             |  |
| 1623  | hPa <sub>q</sub>                | hectopascal gauge                                       |             |  |
| 1624  | gf/cm <sup>2</sup> a            | gram-force per square centimeter absolute               |             |  |
| 1625  | gf/cm <sup>2</sup> <sub>g</sub> | gram-force per square centimeter gauge                  |             |  |
| 1626  | kgf/cm <sup>2</sup> a           | kilogram-force per square centimeter absolute           |             |  |
| 1627  | kgf/cm <sup>2</sup> g           | kilogram-force per square centimeter gauge              |             |  |
| 1628  | SD4°C                           | standard density at 4°C                                 |             |  |
| 1020  | 100.0                           | Totaliaala acholty at + 0                               |             |  |

| Value           | Symbol                  | Description                         | Equivalence   |
|-----------------|-------------------------|-------------------------------------|---------------|
| 1629            | SD15°C                  | standard density at 15°C            |               |
| 1630            | SD20°C                  | standard density at 20°C            |               |
| 1631            | PS                      | metric horsepower<br>(Pferdestärke) | = 735.49875 W |
| 1632            | ppt                     | parts per trillion                  | $=10^{-12}$   |
| 1633            | hl/s                    | hectoliter per second               |               |
| 1634            | hl/min                  | hectoliter per minute               |               |
| 1635            | hl/h                    | hectoliter per hour                 |               |
| 1636            | hl/d                    | hectoliter per day                  |               |
| 1637            | bbl (liq)/s             | barrel (U.S. liquid) per second     |               |
| 1638            | bbl (liq)/min           | barrel (U.S. liquid) per minute     |               |
| 1639            | bbl (liq)/h             | barrel (U.S. liquid) per hour       |               |
| 1640            | bbl (liq)/d             | barrel (U.S. liquid) per day        |               |
| 1641            | bbl (fed)               | barrel (U.S. federal)               | = 31 gal      |
| 1642            | bbl (fed)/s             | barrel (U.S. federal) per second    |               |
| 1643            | bbl (fed)/min           | barrel (U.S. federal) per minute    |               |
| 1644            | bbl (fed)/h             | barrel (U.S. federal) per hour      |               |
| 1645            | bbl (fed)/d             | barrel (U.S. federal) per day       |               |
| 1646            | Reserved                |                                     |               |
|                 |                         |                                     |               |
| 1994            | Reserved                |                                     |               |
| 1995            | Textual unit definition |                                     |               |
| 1996            | Not used                |                                     |               |
| 1997            | None                    |                                     |               |
| 1998            | unknown                 |                                     |               |
| 1999            | special                 |                                     |               |
| 2000-<br>32767  | Reserved                |                                     |               |
| 32768-<br>65535 | Manufacturer specific   |                                     |               |

Table 63. Unit codes

## 5.3 Material Codes

| Value | Display             | Abbreviation | Description                                 |
|-------|---------------------|--------------|---------------------------------------------|
| 0     | Carbon Steel        |              |                                             |
| 1     | Stainless Steel 304 | 304 SST      |                                             |
| 2     | Stainless Steel 316 | 316 SST      |                                             |
| 3     | Hastelloy C         | Hast C       |                                             |
| 4     | Monel               |              |                                             |
| 5     | Tantalum            |              |                                             |
| 6     | Titanium            |              |                                             |
| 7     | Pt-Ir               |              | Platinum-Iridium                            |
| 8     | Alloy 20            |              |                                             |
| 9     | Co-Cr-Ni            |              | Cobalt-Chromium-Nickel                      |
| 10    | PTFE                |              | PTFE (Teflon)                               |
| 11    | Viton               |              |                                             |
| 12    | Buna-N              |              |                                             |
| 13    | Ethyl-Prop          |              |                                             |
| 14    | Urethane            |              |                                             |
| 15    | Gold Monel          |              | Gold Monel Alloy                            |
| 16    | Tefzel              |              |                                             |
| 17    | Ryton               |              | Ryton is a registered trademark of Phillips |

| Value      | Display                       | Abbreviation             | Description                                                                                                                                                      |
|------------|-------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                               |                          | Petroleum Company                                                                                                                                                |
| 18         | Ceramic                       |                          |                                                                                                                                                                  |
| 19         | Stainless Steel 316L          | 316L SST                 |                                                                                                                                                                  |
| 20         | PVC                           |                          |                                                                                                                                                                  |
| 21         | Nitrile Rubber                |                          |                                                                                                                                                                  |
| 22         | Kalrez                        |                          | Teflon and Kalrez are registered trademarks of E. I. DuPont De Nemours Company.                                                                                  |
| 23         | Inconel                       |                          | Inconel is a trademark of International Nickel Company                                                                                                           |
| 24         | Kynar                         |                          | Kynar is a trademark of Pennwalt Incorporated. Hastelloy C is a trademark of Cabot Corporation                                                                   |
| 25         | Aluminium                     | Al                       |                                                                                                                                                                  |
| 26         | Nickel                        | Nickel                   |                                                                                                                                                                  |
| 27         | FEP                           |                          | Perfluoroethylenpropylene. Typically a sealing material for O-Ring                                                                                               |
| 28         | Stainless Steel 316 Ti        | 316 SST Ti               | 316 Stainless steel Ti, 16-18% Chromium, 10-14% Nickel, 2-3% Molybdan.                                                                                           |
| 30         | Hastelloy C276                | Hast C276                |                                                                                                                                                                  |
| 31         | Klinger C4401                 | 4401                     | Material that may be referenced by Klinger compound No. C4401                                                                                                    |
| 32         | Thermotork                    |                          | Material trademarked by Armstrong World Industries Inc.                                                                                                          |
| 33         | Grafoil                       |                          | Grafoil - Material trademarked by Union Carbide Poly Tetra Fluoro Ethylene coated 316L Stainless steel-Material, PTFE is also known by the trademark name Teflon |
| 34         | PTFE coated 316I SST          |                          |                                                                                                                                                                  |
| 35         | Gold plated Hastelloy<br>C276 | Gold plated Hast<br>C276 |                                                                                                                                                                  |
| 36         | PTFE Glass                    |                          | Poly Tetra Fluoro Ethylene Glass - Material, Glass filled PTFE, PTFE is also known by the trademark name Teflon                                                  |
| 37         | PTFE Graphite                 |                          | Poly Tetra Fluoro Ethylene Graphite - Material, Graphite filled PTFE, PTFE is also known by the trademark name Teflon                                            |
| 234        | PTFE Hastelloy                | PTFE Hast                |                                                                                                                                                                  |
| 235        | Stainless Steel CF 8M         |                          |                                                                                                                                                                  |
| 236        | Hastelloy SST                 | Hast SST                 |                                                                                                                                                                  |
| 237        | Gold plated SST               |                          |                                                                                                                                                                  |
| 239        | Monel 400                     |                          |                                                                                                                                                                  |
| 250        | not used                      |                          |                                                                                                                                                                  |
| 250        | not used                      |                          |                                                                                                                                                                  |
| 251<br>252 | none<br>unknown               |                          |                                                                                                                                                                  |
|            |                               |                          |                                                                                                                                                                  |
| 253        | special                       |                          |                                                                                                                                                                  |

Table 64. Material codes

# 6 General Requirements - Conformance Statements

Every device chooses the necessary subset out of the defined structures of this document. Choosing a subset follows certain rules defined in the conformance statements below. The tables show which structure are mandatory (M), selected (S) and which are optional (O).

| Item                   | Conformance Statement |
|------------------------|-----------------------|
| Physical Block         | M                     |
| Transducer Blocks      | 0                     |
| Function Block         | M                     |
| Analog_Input_Blocks    | S                     |
| Analog_Output_Blocks   | S                     |
| Discrete_Input_Blocks  | S                     |
| Discrete_Output_Blocks | S                     |
| Other Function Blocks  | S                     |
|                        | 0                     |

Table 65. Conformance Statements for the Existence of Blocks

| Item              | Conformance Statement | Subelement |
|-------------------|-----------------------|------------|
| Device Management | M                     |            |
| Directory Object  |                       | М          |
| Block Object      |                       | М          |
| Alarm-Objects     |                       | 0          |
| Link-Objects      |                       | 0          |
| Trend-Object      |                       | 0          |
|                   |                       |            |

**Table 66. Conformance Statement for Device Management** 

| Item                                         | Conformance Statement | Subelement   |
|----------------------------------------------|-----------------------|--------------|
| Blocks                                       | M                     |              |
| Standard Parameter from General Requirements |                       | М            |
| functions / blockspecific Parameters         |                       | M / O        |
| Manufacturer specific parameters             |                       | 0            |
| View_1 object                                |                       | M (Class B), |
|                                              |                       | O (Class A)  |
| View_x objects                               |                       | 0            |

**Table 67. Conformance Statement Blocks** 

# 7 General Requirements - Document History

Changes from V3.0 to V3.0.1

| Chapter/Figure/Table     | Change                                                                                                      |
|--------------------------|-------------------------------------------------------------------------------------------------------------|
| Entire document          | Correction of spelling errors                                                                               |
| 1.2                      | Change reference to IEC 61158 and IEC 61784                                                                 |
| 3.1.10                   | Delete hint to priority                                                                                     |
| 3.2.1                    | Integrate Reset_Class characteristic for parameter                                                          |
| 3.2.2                    | Clarify use of parameter range definition which is of type enumeration                                      |
| 3.3.1, Tab.2             | Change of description of ST_REV                                                                             |
| Table 6                  | Batch parameter data type "record" instead of structure                                                     |
| 3.7                      | Replace key attribute by Data type numeric identifier or shortcut                                           |
| All document             | Replace DS-33 by 101 and DS-34 by 102                                                                       |
| 3.7                      | Harmonisation of the write conventions of sub parameter of GR data structures to "Name_Name"                |
| Tab 15                   | New table which clarifies the byte order of View reference                                                  |
|                          | NOTE all further table numbers a increased by 1                                                             |
| 3.7.3.1 and 3.7.3.6      | Delete hints to priority < or > 8                                                                           |
| Table 14                 | Description of semantic of Profile Revision                                                                 |
| 3.7.3.2                  | Number the table                                                                                            |
|                          | NOTE all further table numbers are increased by additional 1                                                |
| 3.7.3.3 New table 19     | Cross bit 2 and 3 within GOOD (cascade) first raw                                                           |
| New table 20             | New priority assignment                                                                                     |
| 3.7.3.6                  | New description substatus "constant"                                                                        |
| 3.7.19.4                 | New data type structure "Feature", i.e. new clause and new tables 55 to 57,                                 |
|                          | NOTE all further table numbers a increased by additional 3                                                  |
| 3.7                      | The following data structures are deleted:                                                                  |
|                          | DS-35, DS-38, DS-40, DS-41, DS-43 to DS-48, DS-51,                                                          |
| 3.8                      | New text before new table 55                                                                                |
| 3.8 new Table 55         | New text for write.ind and read.ind                                                                         |
| 3.11.1, new Table 56     | New description parameter FATORY_RESET                                                                      |
| 3.11.2 new Table 58 - 60 | New parameter FEATURE                                                                                       |
| 3.11.1, new Table 56     | New description parameter IDENT_NUMBER_SELECTOR (with additional notes), WRITE_LOCKING; HW_WRITE_PROTECTION |
| 3.11.4                   | New description of characteristic of Diagnosis bits                                                         |
| 5.1                      | Replace MAN_ID list by reference to PNO web server                                                          |
| 5.2; Table 55            | Rename display by symbol within the unit table, add new units                                               |
| 5.2; Table 55            | Add codes areas for reserved and manufacturer specific units                                                |

Table 68. Changes from V3.0 to V3.01

# **PROFIBUS - PA**

# **Mapping of the Profile to Profibus-DP**

# 8 Mapping of the Profile to PROFIBUS-DP - Introduction

## 8.1 Scope

This document defines the mapping of the PROFIBUS FB application profile definition to the PROFIBUS-DP protocol. The description of the device model and the block model is given in /GR04/.

### 8.2 References

[EN50170] EN 50170: General Purpose Field Communication System, CENELEC 1996.

[GR99] PROFIBUS-PA Profile for Process Control Devices, General Requirement, PNO 1999

[DPV1] PROFIBUS-DP/V1, Version 2.0 Specification, April 1998, PNO Karlsruhe

### 8.3 Definitions

The definitions is done in /GR99/.

Index: DP DDLM-Read and DDLM-Write service attribute to address a

parameter in a device

Parameter Address: Reference between the Directory object of a device and the Slot/Index

address of the blocks

Slot: DP DDLM-Read and DDLM-Write service attribute to address a group of

parameter in a logical module in a device.

#### 8.4 Abbreviations

Al Analog Input

AO Analog Output

DM Device Management
DS Data type structure

FB Function Block

LUV Last Usable Value

MSAC Master Slave acyclic

MSCY Master Slave cyclic

PA Process Automation

PB Physical Block

PROFIBUS Process Field Bus

r read access

SAP Service Access Point
TB Transducer Block

w write access

# 9 Mapping of the Profile to PROFIBUS-DP - Technical Overview

The profile which is described in the General Requirement document and the data sheets specifies FB application definitions, without communication characteristics. The profile definition aims to provide access to the application parameters and functions. This access is done by acyclic and cyclic data transfer supported by the Device Mapper, the interface between the FB application and the PROFIBUS-DP protocol. This mapping document describes these two types of access. The alarm handling and the Up/Download mapping to PROFIBUS-DP will be defined in a future version of this document.



Figure 13. Mapping of the Application Profile Definition to Cyclic and Acyclic Data Transfer

The mapping of the profile is done by means of three examples, a device with one Physical Block, one Function Block and one Transducer Block, a device with more than one Transducer Block and a device with more than one Function Block and Transducer Block.

# 9.1 General Function Block Mapping

Function Blocks are seen as functional modules similar to the more hardware oriented pluggable modules of PROFIBUS-DP devices. These modules are part of the GSD file which are needed to configure the cyclic data transfer. This profile defines the following rules, to allow the same mapping of PROFIBUS-PA FBs as the PROFIBUS –DP modules (see also section 9.2 and 9.3):

- 1. 1 Slot contains 1 FB only
- 2. Slot 1 contains the first FB, Slot 2 contains the 2<sup>nd</sup> FB, ..., i.e. there is a one to one mapping between Module (in GSD), FB and Slot. Rule number 10 is the only exception.
- 3. All FBs starts at Index 16 of the according Slot (i.e. Block\_Object of FBs are always at Index 16)
- 4. The Directory of the Device Management starts on Slot 1 Index 0 always
- 5. Physical Block shall be located in Slot 0 for all Devices. It should begin at Index 16.
- 6. The order of the FBs in the Slots, the order of the references of the FB start addresses in the Composite\_Directory\_Entry and the intentional order of the according FB parameters in the cyclic telegram are the same. I.e. the order of the Identifier Byte or Extended Identifier Format in the configuration string and the order of the FBs in the slots should be the same.
- 7. The allocation of the Transducer Blocks to Slots is manufacturer-specific. It is recommended, that devices with a fixed relation between FB and TB allocate the TB in the same Slot as their FBs. However, one TB may be connected to more then one FB, i.e. a FB may be connected to a TB of another Slot.
- 8. The allocation of the Physical Blocks for devices with more than one PB to Slots is manufacturer-specific. It is recommended, that devices with a fixed relation between these PB to TR (e.g. plugable hardware modules) allocate the PBs in the same Slot as their TBs.
- 9. A not used FB of a device is represented by an empty slot Identifier in the configuration string. Only a sequence of Empty Slots at the end of the configuration string is optional
- 10. FBs which allocate more then 1 slot, are represented by empty slot Identifiers for the additional slots.

The allocation rules are suitable for applications which uses FBs only. Commissioning and other applications which access Physical Block, Transducer Block and Link Object parameters need the information of the directory in the Device Management.

## 9.2 Mapping for Acyclic Data Transfer

In principle one can distinguishes between the acyclic and cyclic data transfer. PROFIBUS-DP provides protocol functions for both requirements [DP].

Each parameter of a device which has one unique address can be read or written. If a parameter can be written is defined in the according Function Block specification. The parameter address is composed of one Slot number (range: 0 to 254) and one Index number (range: 0 to 254). An address of one parameter is calculated as follows:

Parameter XX address = Slot/Index of Block\_Object parameter as defined in the Composite\_Directory\_Entry + Relative Index as defined in parameter attribute tables of the according block. Is this sum greater then 254 the Slot will be increased by 1 and the Index count beginning by 0 (zero) again.

VIEW\_1 address = address (Slot/Index) as defined in Block\_Object of the related block

VIEW\_n address = VIEW\_1 Address + (n-1)

Figure 14 shows a simple device with one PB, FB and TB. The Physical Block's parameter are located in Slot 0. The parameters of the Device Management are assigned to Index 0 to 13 of Slot 1. Function and Transducer Block parameters follow. Usually the blocks have 20 up to 50 parameters and one Slot has 255 Indexes (from 0 to 254, Index 255 of every Slot is reserved).



Figure 14. Mapping of one PB, FB and TB to one Common Slot

If not all parameters fit in one Slot the blocks may overlap over the slot boundaries.



Figure 15. Mapping of one PB, FB and more than one TB to two Slots

A more complex device needs more Slots to locate all parameters. The allocation in the Slots are manufacturer-specific. Gaps between Slot numbers are not allowed, but not all Indices of a Slot have to be used.



Figure 16. Mapping of one PB and more than one FB and TB to several Slots



Figure 17. Mapping of one PB, two FBs, three TBs and one Link Object

PROFIBUS-DP maps the block parameter structure to modules which contains the references between the service parameters (Slot and Index) and the FB application block parameters. Each block parameter is mapped to a Slot/Index combination. The starting Slot/Index and the number of block parameters are block specific. The Device Management parameters are fixed bonded to defined modules (i.e. Slot/Index). The block parameters are device specific bonded to the Slots and Index which are referenced in the directory in the Device Management. The Device Mapper is a logical sub-layer and contains the wiring between block parameters and the Slot/Index combination and protects the FB application block structures from the DP communication facilities.

# 9.3 Mapping for Cyclic Data Transfer

In the FB application profile definition only FBs may have cyclic parameters. Physical and Transducer Blocks don't have cyclic parameters. In the example Figure 18 the FB has one out parameter only which takes place in the cyclic data transfer.



**DM- Device Management** 

PB - Physical Block

FB - Function Block

TB - Transducer Block

Figure 18. Mapping of one cyclic FB Parameter to the Inp-Data Frame

If there are more than one Transducer Blocks in a device but one Function Block only, there is no difference in cyclic data transfer. If there are more than one Function Blocks with more than one cyclic parameters the data elements are concatenated in the Input and Output data frame (np\_Data and Outp\_Data). The order of the parameters of one Function Block in the input and output data frame is from the lower to the higher Relative Index in the Parameter Attribute table of the Function Blocks. Is there more then one FB with the same type in a device (e.g. 3 AI FBs) the order of the cyclic parameters in the Input and Output data frame is the same as the order of the FB in the directory.



DM - Device Management

PB - Physical Block FB - Function Block

TB - Transducer Block

Figure 19. Mapping of more than one Cyclic FB Parameter to the Inp, Outp Data Frame

The DDLM CHK CFG contains the CFG DATA, which describes the members of the Inp Data and Out Data of the DDLM DATA EXCHANGE service. Each block which provides parameters to the Inp\_Data and Outp\_Data must be addressed by an Identifier Byte. Only Function Block parameters with the cyclic attribute in the parameter attribute table become members of the cyclic data transfer. For more details about the cyclic data transfer refer to /IEC 61158/ specification.

If an optional parameter for cyclic data transport, which is not implemented but is selected for cyclic data transfer, the configuration which contains this parameter may be accepted by the device.

In this case the status shall be set to "BAD – not connected" and the value shall be set to zero.

# 9.4 Detailed Definition of the Device Management

#### 9.4.1 Overview

All parameters of a device visible across the PROFIBUS-DP communication protocol are related to a certain block or object (e.g. Link object). The configuration of a device in terms of blocks and objects are device type and manufacturer specific. The concrete configuration of a device is described in a so called Directory object which is located in the Device Management. The Directory object is defined to act as a guide to the information within the Function Block application of a device and described in /GR96/. This information may be read by an interface device desiring to access parameters and used to fulfill the necessary check during the DDLM\_CHK\_CFG or DDLM\_GET\_CFG services respectively.



Figure 20. The Relationship between Blocks, Block Parameters and the Directory in the Device Management

The Directory contains in an unambiguously defined syntax the numbers and types of instantiated blocks and objects in its device. The reference table provides the link between the directory syntax defined in this profile and the manufacturer-specific allocation of the block or object beginning in the DP address range. The Directory is part of the Device Management.

### 9.4.2 Device Management Parameter Description

The device management parameters are described in 3.6.

# 9.4.3 Device Management Mapping and Parameter Attributes

The Device Management occupies slot 1 Index 0 to 13 and has the following structure:

| Relative<br>Index | Parameter<br>Name                                                         | Usage                                                                                                                              | Data Type              | Store       | Size                                 | Access      | Parameter<br>Usage /<br>Kind of<br>Transport  | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|--------------------------------------|-------------|-----------------------------------------------|--------------------------------------|
| 0                 | DIRECTORY_OBJECT_<br>HEADER                                               | Directory Header                                                                                                                   | Array of<br>Unsigned16 | С           | spec                                 | R           | C/a                                           | М                                    |
| 1                 | COMPOSITE_LIST_<br>DIRECTORY_ENTRIES /<br>COMPOSITE_<br>DIRECTORY_ENTRIES | Begin_PB  No_PB  Begin_TB_  No_TB  Begin_FB_  No_FB  Begin_LO_  No_LO¹  Slot/Index_PB  No_PB_Param  Slot/Index_1.TB  No_1.TB_Param | Array of<br>Unsigned16 | 0 0 0 0 0 0 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | R R R R R R | C/a<br>C/a<br>C/a<br>C/a<br>C/a<br>C/a<br>C/a | м<br>м<br>м<br>м                     |
| 2-8<br>9-13       | COMPOSITE_ DIRECTORY_ENTRIES continuous  Reserved by PNO  END of DEVICE   | Slot/Index_n.xB No_n.xB_Param Slot/Index_n.LO No_n.LO.Param                                                                        | Array of<br>Unsigned16 | С           | spec                                 | R           | C/a                                           | O M                                  |
| 16                | MANAGEMENT  Start of 1 <sup>st</sup> Function Block                       | Block_Object                                                                                                                       | DS-32                  |             |                                      |             |                                               |                                      |
|                   |                                                                           |                                                                                                                                    |                        |             |                                      |             |                                               |                                      |
| to<br>254         |                                                                           |                                                                                                                                    |                        |             |                                      |             |                                               |                                      |

Table 69. Parameter Attributes of the Device Management

Copyright © PNO e.V. 2004. All Rights reserved.

<sup>&</sup>lt;sup>1</sup> The Composite\_List\_Directory\_Entry for Link\_Object can appear, although no Link\_Object is implemented. In this case No\_LO shall be set to zero.

The use of the data types are as followed:

Unsigned16

Header: Slot 1 Index 0

Unsigned16

Dir\_ID Rev-Number Num\_Dir\_Obj Num\_Dir\_Entry First\_Comp\_ Num\_Comp\_

Unsigned16

List\_Dir\_ List\_Dir\_

Unsigned16

Unsigned16

Entry Entry

Unsigned16

Composite\_List\_Directory\_Entries: Slot 1 (is fixed) Index 1 (Directory object number)

| Begin_PB               | Num_PB     | Begin_TB               | Num_TB     | Begin_FB               | Num_FB     | Begin_LO               | Num_LO     |
|------------------------|------------|------------------------|------------|------------------------|------------|------------------------|------------|
| Index/Offset           |            | Index/Offset           |            | Index/Offset           |            | Index/Offset           |            |
| high byte/ low<br>byte | Unsigned16 | high byte/<br>low byte | Unsigned16 | high byte/<br>low byte | Unsigned16 | high byte/<br>low byte | Unsigned16 |
| Directory_Entry number |            | Directory_<br>numbe    | -          | Directory_<br>numbe    | -          | Directory_<br>numbe    | •          |

Directory\_Entry - One logical field in the directory composed of a reference and a counter, which occupy 4 bytes.

Composite\_List\_Directory\_Entries (first part of the entry which occupy 2 bytes) reference to Composite\_Directory\_Entries and count the number of Composite\_Directory\_Entries of the same type (Physical Blocks, Function Blocks, Transducer Blocks or Link Objects)

Composite\_Directory\_Entries reference to the first parameter of the Blocks (first part of the entry which occupy 2 bytes) and count the number of parameters within the blocks or object

#### Index (Directory object number)

- Index is the read and write service attribute Index of this parameter which contains the according Composite Directory Entries parameter. The valid range is 1 to 13.

# Offset (Directory Entry number)

- Offset is the logical number of Composite\_Directory\_Entries, which is counted within the directory starting with the first Composite\_List\_Directory\_Entry by 1.

**Composite\_Directory\_Entries:** Slot 1 Index 1 (direct after Composite\_List\_Directory\_Entries in the same array)

| Pointer                  | РВ          | Number     | Pointer                  | xx          | Number                   | Pointer      |             | Number     |
|--------------------------|-------------|------------|--------------------------|-------------|--------------------------|--------------|-------------|------------|
| Slot                     | Index       | para-      | Slot                     | Index       | para-                    | Slot         | Index       | para-      |
|                          |             | meters     |                          |             | meters                   |              |             | meters     |
| high<br>byte             | Low<br>byte | Unsigned16 | high<br>byte             | low<br>byte | Unsigned16               | high<br>byte | low<br>byte | Unsigned16 |
| PB_ID                    |             |            | TR_ID                    |             |                          | FB_ID        |             |            |
| Directory_Entry number 5 |             |            | Directory_Entry number 6 |             | Directory_Entry number 7 |              |             |            |

| Pointer                |             | Number     |  |  |  |
|------------------------|-------------|------------|--|--|--|
| Slot                   | Index       | para-      |  |  |  |
|                        |             | meters     |  |  |  |
| high<br>byte           | low<br>byte | Unsigned16 |  |  |  |
| L                      | .O_ID       |            |  |  |  |
| Directory_Entry number |             |            |  |  |  |

Figure 21. Directory Elements Data Types

Slot/Index - Reference to the first parameter of a block (BLOCK\_OBJECT) or an object (LINK\_OBJECT)

PB\_ID, TR\_ID, FB\_ID and LO\_ID are logical numbers for design and configuration purposes. The TR\_ID is used

The following ranges are valid for the xx\_IDs within one Directory:

- 1 <= PB\_ID <= 255
- 1 <= TR\_ID <= 255
- 1 <= FB ID <= 255
- 1 <= LO\_ID <= 255

The following sections present examples for the Directory for these devices used in 9.2.

PB\_ID, TB\_ID and FB\_ID are defined as a position of the corresponding block in the Composite\_Directory\_Entries of the according Block Object type (see 2nd element of the Block structure DS-32) starting with 1.

# 9.4.4 Device Management Directory Examples

# 9.4.4.1 Device with 1 PB, 1 FB and 1 TB (see Figure 14)

Header: Slot 1 Index 0

|   | Dir_ID Rev-Number Num_Dir_Obj |   | Num_Dir_Entry | First_Comp_List _Dir_Entry | Num_Comp_<br>List_Dir_Entr |   |
|---|-------------------------------|---|---------------|----------------------------|----------------------------|---|
| _ |                               |   |               |                            |                            | у |
|   | 0                             | 1 | 1             | 6                          | 1                          | 3 |

Composite\_List\_Directory\_Entries: Slot 1 Index 1

| Begin_PB Num_PB          | Begin_TB Num_TB          | Begin_FB Num_FB          |
|--------------------------|--------------------------|--------------------------|
| Index/Offset             | Index/Offset             | Index/Offset             |
| 1 /4 1                   | 1/5 1                    | 1/6 1                    |
| Directory_Entry number 1 | Directory_Entry number 2 | Directory_Entry number 3 |

**Composite\_Directory\_Entries:** Slot 1 Index 1 (direct after Composite\_List\_Directory\_Entries in the same array)

| Pointer                  | РВ    | Number | Pointer   | TB              | Number | Pointer | FB        | Number |
|--------------------------|-------|--------|-----------|-----------------|--------|---------|-----------|--------|
| Offset                   | 0     | of PB  | Offset    | 1               | of TB  | Offset  | 2         | of FB  |
| Slot                     | Index | para-  | Slot      | Index           | para-  | Slot    | Index     | para-  |
|                          |       | meters |           |                 | meters |         |           | meters |
| 0                        | 0     | 25     | 1         | 51              | 90     | 1       | 16        | 35     |
| PB ID=1                  |       |        | TF        | R_ID = 1        |        | FE      | 3_ID=1    |        |
| Directory_Entry number 4 |       |        | Directory | _Entry nur<br>5 | mber   |         | tory_Entr | у      |

Figure 22. Directory Example with 1 PB, 1 FB and 1 TB

# 9.4.4.2 Device with 1 PB, 1 FB and 3 TB (see Figure 15)

Header: Slot 1 Index 0

| Dir_ID Rev-Number |   | Num_Dir_Obj | Num_Dir_Entry | First_Comp_List _Dir_Entry | Num_Comp_<br>List_Dir_Entr |
|-------------------|---|-------------|---------------|----------------------------|----------------------------|
|                   |   |             |               |                            | у                          |
| 0                 | 1 | 2           | 8             | 1                          | 3                          |

Composite\_List\_Directory\_Entries: Slot 1 Index 1

| Begin_PB     | Num_PB       | Begin_TB     | Num_TB        | Begin_FB      | Num_FB      |
|--------------|--------------|--------------|---------------|---------------|-------------|
| Index/Offset |              | Index/Offset |               | Index/Offset  |             |
| 2/4          | 1            | 2/5          | 3             | 2/8           | 1           |
| Directory_En | try number 1 | Directory_Er | ntry number 2 | Directory_Ent | ry number 3 |

Composite\_Directory\_Entries: Slot 1 Index 2 (new parameter)

| _                        |       | -      |                          |       |         |                          |       |         |
|--------------------------|-------|--------|--------------------------|-------|---------|--------------------------|-------|---------|
| Pointer                  | РВ    | Number | Pointer                  | TB_1  | Number  | Pointe<br>r              | TB_2  | Number  |
| Offset                   | 0     | of PB  | Offset                   | 1     | of TB_1 | Offset                   | 2     | of TB_2 |
| Slot                     | Index | para-  | Slot                     | Index | para-   | Slot                     | Index | para-   |
|                          |       | meters |                          |       | meters  |                          |       | meters  |
| 0                        | 0     | 25     | 1                        | 51    | 90      | 2                        | 0     | 115     |
| PB ID=1                  |       |        | TR_ID = 1                |       |         | TR_ID = 2                |       |         |
| Directory_Entry number 4 |       |        | Directory_Entry number 5 |       |         | Directory_Entry number 6 |       |         |

| Pointer   | TB_3       | Number  | Pointer | FB                | Number |
|-----------|------------|---------|---------|-------------------|--------|
| Offset    | 0          | of TB_3 | Offset  | 1                 | of FB  |
| Slot      | Index      | para-   | Slot    | Index             | para-  |
|           |            | meters  |         |                   | meters |
| 2         | 115        | <139    | 1       | 16                | 35     |
| Т         | R_ID = 3   |         | FB_I    | D = 1             |        |
| Directory | /_Entry no | umber   |         | ry_Entry<br>ber 8 |        |

Figure 23. Directory Example with 1 PB, 1 FB and 3 TB

# 9.4.4.3 Device with 1 PB, 2 FBs and 3 TBs (see Figure 16)

Header: Slot 1 Index 0

| Dir_ID | Dir_ID Rev-Number Num_Dir_Obj |   | Num_Dir_Entry | First_Comp_List _Dir_Entry | Num_Comp_<br>List_Dir_Entr |
|--------|-------------------------------|---|---------------|----------------------------|----------------------------|
|        |                               |   |               |                            | у                          |
| 0      | 1                             | 2 | 9             | 1                          | 3                          |

Composite\_List\_Directory: Slot 1 Index 1

| Begin_PB     | Num_PB       | Begin_TB     | Num_TB        | Begin_FB                 | Num_FB |  |
|--------------|--------------|--------------|---------------|--------------------------|--------|--|
| Index/Offset |              | Index/Offset |               | Index/Offset             |        |  |
| 2/4          | 1            | 2/5          | 3             | 2/8                      | 2      |  |
| Directory_En | try number 1 | Directory_Er | ntry number 2 | Directory_Entry number 3 |        |  |

Composite\_Directory\_Entries: Slot 1 Index 2 (new parameter)

| Pointer                  | РВ    | Number | Pointer                  | TB_1   | Number  | Pointer                  | TB_2    | Number  |
|--------------------------|-------|--------|--------------------------|--------|---------|--------------------------|---------|---------|
| Offset                   | 0     | of PB  | Offset                   | 1      | of TB_1 | Offset                   | 2       | of TB_2 |
| Slot                     | Index | para-  | Slot                     | Index  | para-   | Slot                     | Index   | para-   |
|                          |       | meters |                          |        | meters  |                          |         | meters  |
| 0                        | 16    | 25     | 1                        | 51     | 90      | 2                        | 76      | 115     |
| PB ID=1                  |       |        | TR_                      | ID = 1 |         | TR                       | _ID = 2 |         |
| Directory_Entry number 4 |       |        | Directory_Entry number 5 |        |         | Directory_Entry number 6 |         |         |

| Pointer                  | TB_3     | Number  | Pointer                  | FB_1  | Number  | Pointer                     | FB_2  | Number  |
|--------------------------|----------|---------|--------------------------|-------|---------|-----------------------------|-------|---------|
| Offset                   | 0        | of TB_3 | Offset                   | 1     | of FB_1 | Offset                      | 2     | of FB_2 |
| Slot                     | Index    | para-   | Slot                     | Index | para-   | Slot                        | Index | para-   |
|                          |          | meters  |                          |       | meters  |                             |       | meters  |
| 3                        | 0        | <254    | 1                        | 16    | 35      | 2                           | 16    | 60      |
| Т                        | R_ID = 3 |         | FB ID=1                  |       |         | FB ID=2                     |       |         |
| Directory_Entry number 7 |          |         | Directory_Entry number 8 |       |         | Directory_Entry<br>number 9 |       |         |

Figure 24. Directory Example with 1 PB, 2 FB and 3 TB

# 9.4.4.4 Device with 1 PB, 2 FBs and 3 TBs and 1 Link Object (see Figure 17)

Header: Slot 1 Index 0

| Dir_ID Rev-Number Num_Dir_Ol |   | Num_Dir_Obj | Num_Dir_Entry | First_Comp_List _Dir_Entry | Num_Comp_<br>List_Dir_Entr |
|------------------------------|---|-------------|---------------|----------------------------|----------------------------|
|                              |   |             |               |                            | У                          |
| 0                            | 1 | 2           | 11            | 1                          | 4                          |

Composite\_List\_Directory: Slot 1 Index 1

| Begin_PB                 | Num_PB | Begin_TB                    | Num_TB | Begin_FB              | Num_FB | Begin_Link           | Num_Link |
|--------------------------|--------|-----------------------------|--------|-----------------------|--------|----------------------|----------|
| Index/Offset             |        | Index/Offset                |        | Index/Offset          |        | Index/Offset         |          |
| 2/5                      | 1      | 2/6                         | 3      | 2/9                   | 2      | 2/11                 | 1        |
| Directory_Entry number 1 |        | Directory_Entry<br>number 2 |        | Directory_E<br>number | •      | Directory_<br>number | •        |

Composite\_Directory\_Entries: Slot 1 Index 2 (new parameter)

| Pointer                  | РВ    | Number | Pointer                  | TB_1  | Number  | Pointer                  | TB_2  | Number  |
|--------------------------|-------|--------|--------------------------|-------|---------|--------------------------|-------|---------|
| Offset                   | 0     | of PB  | Offset                   | 1     | of TB_1 | Offset                   | 2     | of TB_2 |
| Slot                     | Index | Para-  | Slot                     | Index | para-   | Slot                     | Index | para-   |
|                          |       | Meters |                          |       | meters  |                          |       | meters  |
| 0                        | 16    | 25     | 1                        | 51    | 90      | 2                        | 76    | 115     |
| PB_ID=1                  |       |        | TR_ID = 1                |       |         | TR_ID = 2                |       |         |
| Directory_Entry number 5 |       |        | Directory_Entry number 6 |       |         | Directory_Entry number 7 |       |         |

| Pointer                  | TB_3  | Number  | Pointer                  | FB_1  | Number  | Pointer                   | FB_2  | Number  |
|--------------------------|-------|---------|--------------------------|-------|---------|---------------------------|-------|---------|
| Offset                   | 0     | of TB_3 | Offset                   | 1     | of FB_1 | Offset                    | 2     | of FB_2 |
| Slot                     | Index | para-   | Slot                     | Index | para-   | Slot                      | Index | para-   |
|                          |       | meters  |                          |       | meters  |                           |       | meters  |
| 3                        | 0     | 80      | 1                        | 16    | 35      | 2                         | 16    | 60      |
| TR ID = 3                |       |         | FB ID=1                  |       |         | FB ID=2                   |       |         |
| Directory_Entry number 8 |       |         | Directory_Entry number 9 |       |         | Directory_Entry number 10 |       |         |

| Pointer                   | Link  | Number  |  |  |
|---------------------------|-------|---------|--|--|
| Offset                    | 0     | of Link |  |  |
| Slot                      | Index | para-   |  |  |
|                           |       | meters  |  |  |
| 3                         | 80    | 1       |  |  |
| LO_ID=1                   |       |         |  |  |
| Directory_Entry number 11 |       |         |  |  |

Figure 25. Directory Example with 1 PB, 2 FBs, 3 TBs and 1 Link Object

# 10 Mapping of the Profile to PROFIBUS-DP - Communication Profile

# 10.1 Subset of Services

The service subset of the communication protocol is defined in /IEC 61158/.

# 10.2 Return Error Codes

The error codes are defined in /IEC 61158/ and used in the scope of this profile as described in the following table:

| Error_Class<br>(Meaning) | Error_Class<br>(decimal) | Error_code (Meaning)  | Error_Code<br>(decimal) | Description                                                                                                                                                                                   |
|--------------------------|--------------------------|-----------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| application              | 10                       | read error            | 0                       | Data can not be read from the application (may happen if there is an error in the EEPROM or in local bus)                                                                                     |
|                          |                          | write error           | 1                       | Data can not be written to the application (may happen if there is an error in the EEPROM or local bus)                                                                                       |
|                          |                          | module failure        | 2                       | Happens, if a module is not available in a device anymore                                                                                                                                     |
|                          |                          | Reserved              | 3-7                     | -                                                                                                                                                                                             |
|                          |                          | version conflict      | 8                       | not used in the scope of this profile                                                                                                                                                         |
|                          |                          | feature not supported | 9                       | not used in the scope of this profile                                                                                                                                                         |
|                          |                          | manufacturer specific | 10-14                   |                                                                                                                                                                                               |
|                          |                          | Other                 | 15                      | The reason is unspecific                                                                                                                                                                      |
| access                   | 11                       | invalid index         | 0                       | The parameter can not be accessed because it is never used (for optional parameters, which are not implemented).  The parameter can not be accessed because of it is invisible at the moment. |
|                          |                          | write length error    | 1                       | The length in the write request does not match (larger or smaller) to the size of the parameter                                                                                               |
|                          |                          | invalid slot          | 2                       | Accessed a slot that contains no parameters at all.                                                                                                                                           |
|                          |                          | type conflict         | 3                       | not used in the scope of this profile                                                                                                                                                         |
|                          |                          | invalid area          | 4                       | not used in the scope of this profile                                                                                                                                                         |

| Error_Class<br>(Meaning) | Error_Class (decimal) | Error_code (Meaning)      | Error_Code (decimal) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------|-----------------------|---------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                       | state conflict            | 5                    | device is busy because it has to work internally. This may happen: after writing the reset parameter time delay during calibration specific parameters are not changeable after the start-up of the device                                                                                                                                                                                                                                                                                                         |
|                          |                       | access denied             | 6                    | The parameter can not be written because the device is write protected.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                       | invalid range             | 7                    | The parameter can not be written because of the value is out of range, e.g.: configurations which are not allowed (e.g. fixed channel between FB and TB) commands which are not supported (e.g. FACTORY_RESET) functions which are not supported (e.g. LIN_TYPE sphere, invalid TARGET_MODE value) a specific order in writing parameters is necessary, for consistency reasons Invalid selection of an enumeration or the value is smaller than the minimum value or the value is greater than the maximum value. |
|                          |                       | invalid parameter         | 8                    | not used in the scope of this profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          |                       | invalid type              | 9                    | not used in the scope of this profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          |                       | read only                 | 10                   | The parameter can never be written                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          |                       | temporal invalid          | 11                   | The requested service can not be carried out because it is temporally not possible (not valid) in the current state of the device.                                                                                                                                                                                                                                                                                                                                                                                 |
|                          |                       | manufacturer specific     | 12-14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          |                       | other                     | 15                   | The reason is non-specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| resource                 | 12                    | Read constraint conflict  | 0                    | not used in the scope of this profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          |                       | Write constraint conflict | 1                    | not used in the scope of this profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          |                       | Resource busy             | 2                    | because the device: needs some time for EEPROM access get a download                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          |                       | Resource unavailable      | 3                    | Tried to access up-/download parameter objects, but the device does not support up-/downloading.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                       | Reserved                  | 4-7                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Error_Class<br>(Meaning) | Error_Class<br>(decimal) | Error_code (Meaning)  | Error_Code<br>(decimal) | Description              |
|--------------------------|--------------------------|-----------------------|-------------------------|--------------------------|
|                          |                          | manufacturer specific | 8-14                    |                          |
|                          |                          | Other                 | 15                      | The reason is unspecific |

**Table 70. DPV1 Response Codes** 

# 10.3 Use of the DP Services to Provide the Profile Functionality

#### 10.3.1 DDLM\_Data\_Exchange

This service is used for the cyclic data exchange of the block parameters with the cyclic attribute. The current structure of the Data\_Exchange service is specified by the block structure of the device and defined by the CFG\_DATA (see 10.3.2).

If more than one cyclic parameter is chosen, the order of the cyclic parameters in DDLM\_Data\_Exchange is according to the relative index of the parameters in the according attribute parameter table, starting with the lowest one.

#### 10.3.2 DDLM\_CHK\_CFG

#### 10.3.2.1 General Definition

This service initiates the Function Block application of a PROFIBUS-PA device (i.e. the device management) to check the consistency between the master and slave configuration of cyclic parameter exchange.

/IEC 61158/ describes a structure of the service parameter CFG\_DATA and the coding of a number of Identifier Bytes (Identifier Byte is a byte or a string of bytes representing an input and output cyclic data string, which is transferred between a PROFIBUS-DP Master Class 1 and a PROFIBUS-DP slave device.). In terms of this profile each Function Block has its own Identifier Byte, which expresses all of its parameters with the cyclic attribute (see parameter attribute tables of each FB) for PROFIBUS-DP communication configuration.

1. There will be use of Identifier Byte and Extended Identifier Format in the devices. (see Table 72)

The support of Identifier Byte and Extended Identifier Format is mandatory as defined in the table. Before configuration the device answers for analog components with the Identifier Byte version and the smallest parameter combination, for discrete components with the Extended Identifier Format version and the smallest parameter combination (the bold identifier in Table 72 and Table 76).

The structure of the CFG\_DATA is directly derived from the block structure of the device, described in the directory of the Device Management. The order of the cyclic parameters in the cyclic data telegram is exactly the same as the order of the Function Blocks in the Slots i.e. the Identifier Bytes are concatenated in the order of their Function Blocks in the Slots. According to the example in Figure 16 the following CFG data strings will be valid for the device (see also Table 72), assuming that the Function Blocks are both Analog Input ones:

• Identifier Byte 0x94, 0x94

• Extended Identifier Format 0x42,0x84,0x08,0x05, 0x42,0x84,0x08,0x05

In case of a device with 4 Discrete Outputs there are the following string valid, assuming the setpoint (SP D) parameter is in the cyclic data telegram only.

• Identifier Byte 0xA1, 0xA1, 0xA1, 0xA1

For Function Blocks there are different parameter combinations in the cyclic data telegram possible. The differences come from different user needs regarding the necessary scope of information (with feed back of the actual position of the output or without) and the way of integration in the control task (with remote cascade or without). During configuration the operator chooses the parameter combination (see Table 72) and the tools concatenate the according Config string. For Function Blocks the different parameter combinations are marked with one additional number in the Extended Identifier Format as follows:

| Bit | Cyclic Parameter for AO     | Cyclic Parameter for DO | Cyclic Parameter for TOT | Cyclic Parameter for Al | Cyclic Parameter for DI |
|-----|-----------------------------|-------------------------|--------------------------|-------------------------|-------------------------|
| 0   | READBACK                    | READBACK_D              | TOTAL                    | OUT                     | OUT_D                   |
| 1   | SP                          | SP_D                    | SET_TOT                  | *                       | *                       |
| 2   | RCAS_IN                     | RCAS_IN_D               | MODE_TOT                 | *                       | *                       |
| 3   | RCAS_OUT                    | RCAS_OUT_D              | *                        | *                       | *                       |
| 4   | CHECK_BACK                  | CHECK_BACK_D            | *                        | *                       | *                       |
| 5   | POS_D                       | *                       | *                        | *                       | *                       |
| 6   | not used or vendor specific | *                       | *                        | *                       | *                       |
| 7   | 1                           | 1                       | 1                        | 1                       | 1                       |

**Table 71. Identification for Cyclic Parameters** 

The next sections defines the Identifier Bytes for the already existing FBs.

| Function Block       | Parameter                                     | Identifier Byte | Extended Identifier format                                                               |  |
|----------------------|-----------------------------------------------|-----------------|------------------------------------------------------------------------------------------|--|
| Analog Input (AI)    | OUT                                           | 0x94            | 0x42, 0x84, 0x08, 0x05                                                                   |  |
| Analog Output (AO)   | SP                                            | 0xA4            | 0x82, 0x84, 0x08, 0x05                                                                   |  |
|                      | SP<br>READBACK<br>POS_D                       | 0x96, 0xA4      | 0xC6, 0x84, 0x86, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05                                     |  |
|                      | SP<br>CHECK_BACK                              | 0x92, 0xA4      | 0xC3, 0x84, 0x82, 0x08, 0x05, 0x0A                                                       |  |
|                      | SP<br>READBACK<br>POS_D<br>CHECK_BACK         | 0x99, 0xA4      | 0xC7, 0x84, 0x89, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05, 0x05, 0x0A                         |  |
|                      | RCAS_IN<br>RCAS_OUT                           | 0xB4            | 0xC4, 0x84, 0x84, 0x08, 0x05, 0x08, 0x05                                                 |  |
|                      | RCAS_IN<br>RCAS_OUT<br>CHECK_BACK             | 0x97, 0xA4      | 0xC5, 0x84, 0x87, 0x08, 0x05, 0x08, 0x05, 0x0A                                           |  |
|                      | SP READBACK RCAS_IN RCAS_OUT POS_D CHECK_BACK | 0x9E, 0xA9      | 0xCB, 0x89, 0x8E, 0x08, 0x05, 0x08, 0x05, 0x08, 0x05, 0x08, 0x05, 0x05, 0x05, 0x05, 0x06 |  |
| Discrete Input (DI)  | OUT_D                                         | 0x91            |                                                                                          |  |
| Discrete Output (DO) | SP_D                                          | 0xA1            |                                                                                          |  |
|                      | SP_D<br>READBACK_D                            |                 | 0xC1, 0x81, 0x81, 0x83                                                                   |  |

page 135

| Function Block | Parameter                                                     | Identifier Byte | Extended Identifier format |
|----------------|---------------------------------------------------------------|-----------------|----------------------------|
|                | SP_D<br>CHECK_BACK_D                                          |                 | 0xC1, 0x81, 0x82, 0x92     |
|                | SP_D<br>READBACK_D<br>CHECK_BACK_D                            |                 | 0xC1, 0x81, 0x84, 0x93     |
|                | RCAS_IN_D<br>RCAS_OUT_D                                       |                 | 0xC1, 0x81, 0x81, 0x8C     |
|                | RCAS_IN_D<br>RCAS_OUT_D<br>CHECK_BACK_D                       |                 | 0xC1, 0x81, 0x84, 0x9C     |
|                | SP_D<br>READBACK_D<br>RCAS_IN_D<br>RCAS_OUT_D<br>CHECK_BACK_D |                 | 0xC1, 0x83, 0x86, 0x9F     |
| Totalisator    | TOTAL                                                         | -               | 0x41, 0x84, 0x85           |
|                | TOTAL<br>SET_TOT                                              | -               | 0xC1, 0x80, 0x84, 0x85     |
|                | TOTAL SET_TOT MODE_TOT                                        | -               | 0xC1, 0x81, 0x84, 0x85     |
| Not used       |                                                               | 0x00            | 0x00                       |

Table 72. Identifier Bytes for FBs

FBs can be removed from the cyclic data transfer using the PROFIBUS-DP empty module mechanism.

## 10.3.2.2 Definition of Profile Specific Identification Format for Multi-Variable Devices

Multi-Variable devices are compact or modular devices which are characterised by a variable number and possibly a variable set of FB types. A fixed relation between Function Block combinations and device types as done e.g. for temperature or level devices are not possible. The used Function Block combination of a Multi-Variable device is a result of the configuration process (i.e. dependent on the requirements of the application). It is not possible to specify all useful combinations of Function Blocks of devices within this profile. Technological innovations and manufacturer specific solutions offering a specific added value have to be configurable within the scope of the profile, if the solutions use the behaviour of the specified Function Blocks. This is one of the main advantages using the modular Function Block model.

During the configuration an unambiguously identification of FBs and of their cyclic parameters in the cyclic telegram has to be defined. So it is necessary to identify the type of Function Block (Function Block code) and the chosen cyclic parameter combination of this particular FB within the DDLM\_CHK\_CFG data string. Therefore the Function Block code and the chosen cyclic parameter combination in the CFG string has to match the order of the Function Blocks in the Slots (remember: one slot contains one Function Block only!). This CFG string is the result of the configuration of the device using the GSD. Therefore there is one specific GSD file for Multi-Variable devices, which gives the opportunity to configure all possible Function Block combinations of all Function Block driven device .

The profile specific Identification Format for Multi-Variable devices are built according to the following rules:

| Header            | I/O               | l/O<br>(if necessary) | Block code            | Cyclic parameter combination ID |
|-------------------|-------------------|-----------------------|-----------------------|---------------------------------|
| According to [DP] | According to [DP] | According to [DP]     | According to Table 75 | According to Table 71           |

Table 73. Construction of Identification Format for Multi-Variable Devices

The bytes of the Identifier Format represents the structure of the format according to the following definition:

| Byte | Bit   | Element    | Description                                                        |
|------|-------|------------|--------------------------------------------------------------------|
| 1    | 7 - 6 | Header     | length of numbers of I/O data                                      |
|      | 5 - 4 |            | fixed to 0 (specific identifier format)                            |
|      | 3 - 0 |            | number of profile specific bytes                                   |
| 2    | 7 - 6 | I/O        | over all consistency and byte structure                            |
|      | 5 - 0 |            | number of I/O bytes in the Identification Format                   |
| 3    | 7 - 6 | I/O        | over all consistency and byte structure                            |
|      | 5 - 0 |            | number of I/O bytes in the Identification Format (if both I and O) |
| 3/4  | 7 - 0 | Block code | see Table 75                                                       |
| 4/5  | 7 - 0 | Cyc P ID   | see Table 71                                                       |

Table 74. Coding of the Identification Format for Multi-Variable Devices

| Function Block           | Block code   |
|--------------------------|--------------|
| AI                       | 0x81         |
| AO                       | 0x82         |
| DI                       | 0x83         |
| DO                       | 0x84         |
| TOTALIZER                | 0x85         |
| PID                      | 0x86         |
| Reserved                 | 0x87 to 0xEF |
| Manufacturer<br>specific | 0xF0 to 0xFF |

**Table 75. Definition of Function Block Codes** 

The following table defines the Identification Format for Multi-Variable devices as far as defined in the data sheets within version 3.01:

| Function Block       | Parameter                                         | Identification Format for Multi-Variable devices |
|----------------------|---------------------------------------------------|--------------------------------------------------|
| Analog Input (AI)    | OUT                                               | 0x42, 0x84, 0x81, 0x81                           |
| Analog Output (AO)   | SP                                                | 0x82, 0x84, 0x82, 0x82                           |
|                      | SP<br>READBACK<br>POS_D                           | 0xC2, 0x84, 0x86, 0x82, 0xA3                     |
|                      | SP<br>CHECK_BACK                                  | 0xC2, 0x84, 0x82, 0x82, 0x92                     |
|                      | SP<br>READBACK<br>POS_D<br>CHECK_BACK             | 0xC2, 0x84, 0x89, 0x82, 0xB3                     |
|                      | RCAS_IN<br>RCAS_OUT                               | 0xC2, 0x84, 0x84, 0x82, 0x8C                     |
|                      | RCAS_IN<br>RCAS_OUT<br>CHECK_BACK                 | 0xC2, 0x84, 0x87, 0x82, 0x9C                     |
|                      | SP READBACK RCAS_IN RCAS_OUT POS_D CHECK_BACK     | 0xC2, 0x89, 0x8E, 0x82, 0xBF                     |
| Discrete Input (DI)  | OUT_D                                             | 0x42, 0x81, 0x83, 0x81                           |
| Discrete Output (DO) | SP_D                                              | 0x82, 0x81, 0x84, 0x82                           |
|                      | SP_D<br>READBACK_D                                | 0xC2, 0x81, 0x81, 0x84, 0x83                     |
|                      | SP_D<br>CHECK_BACK_D                              | 0xC2, 0x81, 0x82, 0x84, 0x92                     |
|                      | SP_D<br>READBACK_D<br>CHECK_BACK_D                | 0xC2, 0x81, 0x84, 0x84, 0x93                     |
|                      | RCAS_IN_D<br>RCAS_OUT_D                           | 0xC2, 0x81, 0x81, 0x84, 0x8C                     |
|                      | RCAS_IN_D<br>RCAS_OUT_D<br>CHECK_BACK_D           | 0xC2, 0x81, 0x84, 0x84, 0x9C                     |
|                      | SP_D READBACK_D RCAS_IN_D RCAS_OUT_D CHECK_BACK_D | 0xC2, 0x83, 0x86, 0x84, 0x9F                     |
| Totalisator          | TOTAL                                             | 0x42, 0x84, 0x85, 0x81                           |

| ١ | n | $\sim$ | 4 |
|---|---|--------|---|
|   |   |        |   |

| Function Block | Parameter              | Identification Format for Multi-Variable devices |
|----------------|------------------------|--------------------------------------------------|
|                | TOTAL<br>SET_TOT       | 0xC2, 0x80, 0x84, 0x85, 0x83                     |
|                | TOTAL SET_TOT MODE_TOT | 0xC2, 0x81, 0x84, 0x85, 0x87                     |
| Not used       |                        | 0x00                                             |

Table 76. Identification Formats for Modules of Multi-Variable Devices

#### 10.3.3 DDLM\_GET\_CFG

This service delivers the current CFG-DATA (i.e. the order of the cyclic data in the DDLM\_DATA-EXCHANGE service) of the device (see 10.3.2). The device shall return the bold marked identifier before first configuration.

### 10.3.4 DDLM\_SET\_PRM

This service can be used to initialise parameters with application specific values. The User\_Prm\_Data of this service are defined in /IEC 61158/ and may have manufacturer specific additions which are described in manufacturer-specific "GSD" files. This profile does not define any User\_Prm\_Data.

IEC 61158 specifies 3 bytes User\_Prm\_Data with specific definitions regarding the PROFIBUS-DP. For compatibility reasons devices should accept User\_Prm\_Data\_Len = 0 and User\_Prm\_Data\_Len = 3. The following definitions are valid for devices according to this profile specification:

| GSD<br>Revision | GSD key word<br>DPV1-Slave | GSD key word<br>MS1-RW-Support | User_Prm_Data bit<br>DPV1_Enable (valid<br>for MS1 connection<br>only) | Comments                                                                                                             |
|-----------------|----------------------------|--------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2 *             | - (not available)          | - (not available)              | 0 (False)                                                              | MS2 connection available                                                                                             |
| 3               | 0 (False)                  | 0 (False)                      | 0 (False)                                                              | Devices without acyclic MS1<br>and MS2 connections,<br>Devices have not to support<br>DPV1 specific<br>User_Prm_Data |
| 3               | 1 (True)                   | 0 (False)                      | 0 (False)                                                              | Devices without acyclic MS1 connection, Devices have to support DPV1 specific User_Prm_Data                          |
| 3               | 0 (False)                  | 1 (True)                       | Error in GSD                                                           | This device configuration isn't valid                                                                                |
| 3               | 1 (True)                   | 1 (True)                       | 1 (True)                                                               | Devices with acyclic MS1 connection, acyclic MS1 connection will be opened                                           |
| 3               | 1 (True)                   | 1 (True)                       | 0 (False)                                                              | Devices with acyclic MS1 connection, acyclic MS1 connection will not be used                                         |

#### Table 77. DPV1\_Enable of User\_Prm\_Data Definition

Device getting User\_Prm\_Data which are not in line with the definition of Table 77 shall set a diagnosis Diag\_Prm\_Fault.

#### 10.3.5 MS2\_READ

This service is used to read block parameters with an acyclic or cyclic attribute. The address is defined by Slot and Index number. The values of the Slot and Index number for a parameter in a block can be calculated using the directory object.

## 10.3.6 MS2\_WRITE

This service is used to write block parameters with an acyclic or cyclic attribute. The address is defined by Slot and Index number. The values of the Slot and Index number for a parameter in a block can be calculated using the directory object.

### 10.3.7 MS1\_READ

If MSAC1\_READ is supported then the same mapping rules as defined for MSAC2\_READ are valid. The support of MSAC1\_READ is optional. The GSD definitions have to be considered.

#### 10.3.8 MS1\_WRITE

If MSAC1\_WRITE is supported then the same mapping rules as defined for MSAC2\_WRITE are valid.

The support of MSAC1\_WRITE is optional. The GSD definitions have to be considered.

#### 10.3.9 DDLM SLAVE DIAG

The service parameters indicate standardised diagnosis information /IEC 61158/ as well as module specific diagnosis one after the DIAG\_STATUS of the DATA\_EXCHANGE service has been active. The Physical Block parameter DIAGNOSIS is mapped onto the DDLM\_SLAVE\_DIAG service parameter. If one bit of the DIAGNOSIS parameter is changed then the DIAG\_STATUS is set. The 4 bytes of the DIAGNOSIS parameter is transferred with the DDLM\_SLAVE\_DIAG service with the following syntax [DPV1]:

| Byte    | DPV1 name   | Bit   | Value                                  | Info                                                     |
|---------|-------------|-------|----------------------------------------|----------------------------------------------------------|
| 1 - 6   |             |       | DDLM_SLAVE_DIAG                        |                                                          |
| 7       | Header      | 7     | 0                                      | fixed                                                    |
|         |             | 6     | 0                                      | fixed                                                    |
|         |             | 5 - 0 | 0x08 or optional                       | block length                                             |
| 8       | Status_Type | 7     | 1                                      | Status                                                   |
|         |             | 6 - 0 | 126                                    | Highest manufacturer specific status. Not used in future |
| 9       | Slot_Number |       | Slot Number of PB                      | The PB contains<br>Diagnosis                             |
| 10      | Specifier   | 7 - 2 | reserved                               |                                                          |
|         |             | 1 - 0 | 1: Status appears 2: Status disappears | Depends on the content of Diagnosis                      |
| 11 - 14 |             |       | Diagnosis                              |                                                          |

Table 78. Mapping of DIAGNOSIS into DDLM\_SLAVE\_DIAG Service Data Structure

#### 10.3.9.1 Status Appears and Status Disappears

The following table shows how to treat the bits "status appears" and "status disappears".

| Bit in DIAGNOSIS or<br>DIAGNOSIS_EXTENSION<br>or set synchronously<br>because of the same<br>diagnostic event | Other Bit in DIAGNOSIS or<br>DIAGNOSIS_EXTENSION<br>or set synchronously<br>because of the same<br>diagnostic event | Status disappears | Status appears |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 0                                                                                                             | 0                                                                                                                   | 0                 | 0              |
| 0 -> 1                                                                                                        | *                                                                                                                   | 0                 | 1              |
| 1 -> 0                                                                                                        | 0                                                                                                                   | 1                 | 0              |
| *                                                                                                             | 0 -> 1                                                                                                              | 0                 | 1              |
| 1 -> 0                                                                                                        | 1                                                                                                                   | 1                 | 0              |
| 0                                                                                                             | 1 -> 0                                                                                                              | 1                 | 0              |

<sup>\*:</sup> does not matter (state 0 or 1 or transition 0->1 or 1->0)

# Table 79. Status Appears / Disappears

This means in short terms:

- The default position for the bits status appears and status disappears is 0.
- Every new event is indicated as status appears despite whether there was one before or has gone another. (status appears has higher priority than status disappears)
- If one or more events have gone and no new one has appeared this will be indicated as status disappears.

#### 10.3.10 DDLM SET SLAVE ADD

Slave Devices conforming to this profile revision have to support the DP service DDLM\_SET\_SLAVE\_ADD. If these devices also have a hardware switch to select a bus address the following rules have to be followed:

- 1. If the hardware switch provides a valid address this address is used by the device. DDLM\_SET\_SLAVE\_ADD is refused by the device.
- 2. If the hardware switch provides an invalid address it is interpreted as not present. DDLM\_SET\_SLAVE\_ADD is permitted by the device.
- 3. If the hardware switch is shifted from an invalid address to a valid address the device takes over the hardware selected address.
- 4. If the hardware switch is shifted from a valid address to an invalid address the device takes over the default address 126. Parameter NO\_ADD\_CHG will be reseted.
- 5. Physical Block parameter FACTORY\_RESET code 2712 will reset an address set by DDLM\_SET\_SLAVE\_ADD (even if NO\_ADD\_CHG is set).

An address is valid if the value provided by the switch is within the valid range (<=125).

An address is invalid if the value provided by the switch is outside the valid range (>125).

Additionally the validity of the address can be provided by other means (e.g. additional switch).

# 10.4 Loss of Cyclic Communication

Loss of cyclic communication is the event, that the DP watchdog timer expires due to missing cyclic Data Exchange to the DP-Master.

During New-start-up and Re-start-up and failure and loss of cyclic communication, the status of parameter with attribute I (input) and cyc (cyclic), which are in DDLM\_DATA\_EXCHANGE service configured currently, shall set to 'BAD – no communication LUV" for cyclic communication loss and to "BAD – no communication no value" for New-start-up and Re-start-up. A prerequisite is, that the DP watch dog is configured.

# 10.5 Communication Relationship

The connections access points (SAPs) between master class 1 and 2 and DP slaves as well as the allowed services is defined in /IEC 61158/.

A device compliant with this profile shall provide 1 Master/Slave acyclic Class 2 (MS2 relationship) communication relationship in minimum.

/DPV1 figure 2/ specifies the use of different logical applications in one device in terms of the initiate service parameter API (Application Programming Interface). The V 3.01 profile defines, that the PA FB application is reachable under API = 0 and SCL=0 only, i.e. the initiate service parameter API should be API=0 and SCL=0. The API as well as SCL numbers 1 <= API/SCL <= 127 are reserved for future profile use. API/SCL numbers higher than 127 are manufacturer specific.

The Initiate parameters Profile\_Ident\_Number and Profile\_Feature\_Supported are defined for devices according to this profile as described in Table 80 additionally. The device has to answer with these values of the Profile\_Ident\_Number and Profile\_Feature\_Supported parameters independent what the initiate.req values of these parameters contain, if the initiate.req PDU fulfill the DPV1 definition.

| Initiate parameter        | Value  |
|---------------------------|--------|
| Profile_Ident_Number      | 0x9700 |
| Profile_Feature_Supported | 0x0000 |

**Table 80. Initiate Parameter Values** 

## 10.6 Default Values for Communication Parameters (Bus Parameters)

# 10.6.1 RS485

The default communication parameters are a result of a PROFIBUS-Nutzerorganisation e.V. (PNO) working group. These parameters are the basis for a communication between PROFIBUS station without addition configuration (except the station address) at layer 2. Optimisation can be done for specific application purposes. The parameter definition is available in the GSD files.

### 10.6.2 IEC61158-2 MBP Communication

The default communication parameters are a result of the PROFIBUS-Nutzerorganisation e.V. (PNO) working group DP specification. These parameters are the basis for a communication between a PROFIBUS station without additional configuration (except the station address) at layer 2. Optimisation can be done for specific application purposes. The parameter definition is available in the GSD files.

# 11 Mapping of the Profile to PROFIBUS-DP - Profile Specific Communication Definition

#### 11.1 Ident Number

The profile provides it's own Ident\_Numbers for the devices. The classification are as follows:

### **Device Classification**

| • | Transmitter            | 0x9700 to 0x970f |
|---|------------------------|------------------|
| • | Actuator               | 0x9710 to 0x971f |
| • | Discrete_Input         | 0x9720 to 0x972f |
| • | Discrete_Output        | 0x9730 to 0x973f |
| • | Transmitter AI + TOT   | 0x9740           |
| • | Transmitter 2 AI + TOT | 0x9741           |
| • | Transmitter 3 AI + TOT | 0x9742           |
| • | Analyser               | 0x9750           |
| • | Multi_Variable         | 0x9760           |
|   |                        |                  |

Using the Ident\_Numbers from 9700 to 9742 the interchangeability regarding the cyclic data exchange is in principle possible. The prerequisite for interchangeability is that the Function Blocks represent the

Function Blocks):

reserved

• One input or output Function Block per measurement and actuation point (e.g. temperature)

same measurement and actuation type. The interchangeability covers the following cases (basic set of

 Devices with more than one channel with one input or output Function Block per measurement and actuation point (e.g. discrete output)

all other numbers until 0x977F

• Specific and fixed combinations of Function Blocks (e.g. flow)

Devices which provide these basic set of Function Blocks should support the according Ident-Number in minimum for interchangeability reasons. If a device offers more then the basic set of Function Blocks, it can be configured as Multi-Variable device additionally.

Devices which have one and more than one FB of the same type should take the following Ident\_Numbers:

• lowest significant digit in the Ident\_Number 0. 1 FB of the same type, 1: 2 FBs of the same type, ... f: 16 FBs of the same type

### 11.2 GSD File Names

The name of the GSD files is combined out of

- PA\_x\*
- Ident\_Number (9700 ... 970f, 9710 ...)
- .gsd

 $x^*$  - Version number of the GSD language specification, i.e. x = 2 for GSD V2 and x = 3 for GSD V3. For instance, the GSD file name for Transmitter with one Al FB only is "PA\_29700.gsd". The profile GSD files are available at the PNO server.

Copyright © PNO e.V. 2004. All Rights reserved.

# 12 Mapping of the Profile to PROFIBUS-DP - Conformance Statements

| Item                        | Conformance Statement | Subelemente |
|-----------------------------|-----------------------|-------------|
| Communication Relationships | M                     |             |
| MSCY                        |                       | M           |
| MSAC_C1                     |                       | 0           |
| MSAC_C2                     |                       | M           |

**Table 81. Conformance Requirements for Communication Capabilities** 

## 13 Mapping of the Profile to PROFIBUS-DP - GSD-Files

The GSD files according to the definition of this mapping are actual available at the PNO web server.

There are no restrictions for manufacturer specific GSD except those coming from the IEC 61158 definitions.

It is recommended to use only data types which have appropriate definitions in this document.

Profile GSD must cover all devices so sometimes there are features described in the Profile GSD that a device can't fulfil. E. g. with RS-485 transmission some devices do not support the higher baud rates. Or a device does not support the maximum length of acyclic data written down in the Profile GSD etc.

# 14 Mapping of the Profile to PROFIBUS-DP - Document History

Changes from V3.0 to V3.0.1

| Chapter/Figure/Table  | Change                                                                                                                                                                                                                         |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cover, Header, Footer | Update of date and version                                                                                                                                                                                                     |
| 9.1                   | Physical Block shall be located in Slot 0 for all devices. Old clause 6 deleted.                                                                                                                                               |
| 9.2                   | Correction of figures concerning allocation and sequence of Blocks, first and last index                                                                                                                                       |
| 9.3                   | Description of status of an optional not implemented cyclic parameter added.                                                                                                                                                   |
| 9.4.3/Table 69        | Footnote added concerning Link Object                                                                                                                                                                                          |
| 9.4.3                 | Sentence added: PB_ID, TB_ID and FB_ID is defined as position of the corresponding block in the Composite_Directory_Entries of the according Block Object type (see 2nd element of the Block structure DS-32) starting with 1. |
| 9.4.4.1/Figure 22     | PB located in Slot 0                                                                                                                                                                                                           |
| 9.4.4.2/Figure 23     |                                                                                                                                                                                                                                |
| 10.2/Table 70         | Adaptation of the table header to the terms of IEC 61158,                                                                                                                                                                      |
| 10.2/Table 70         | Access - Invalid range: Additional description if an invalid selection of an enumeration or a value is tried to be written which is out of a range of valid values.                                                            |
| 10.2/Table 70         | Better definition of Access – temporal invalid: The requested service can not be carried out because it is temporally not possible (not valid) in the current state of the device.                                             |
| 10.3.7 and 10.3.8     | MSAC1 services are optional.                                                                                                                                                                                                   |
| 10.3.9.1              | New chapter to clarify the treating of status disappears and status appears in DDLM_SLAVE_DIAG.                                                                                                                                |
| 10.3.10               | Clarification of the rules if a hardware switch is implemented to select the bus address.                                                                                                                                      |
| 10.3.11               | Chapter Alarm handling deleted                                                                                                                                                                                                 |
| 10.3.12               | Chapter Download deleted                                                                                                                                                                                                       |
| 13                    | Additional hints and recommendations concerning manufacturer specific and profile GSDs                                                                                                                                         |

Table 82: Changes from V3.0 to V3.0.1

### **PROFIBUS - PA**

# Device Data Sheet Transmitter

### 15 Device Data Sheet Transmitter

### 15.1 Additional Parameters for the Physical Block Parameter Description

There are no additional parameters. First manufacturer specific block may start at Relative Index 33.

### 15.2 Analog Input Function Block

### 15.2.1 Analog Input Function Block Overview

Analog Input Function Blocks represent transmitters. The parameters are shown in Figure 26.



Figure 26. Summary of the Parameters of Analog Input Function Block

The structure of the MODE and the simulation feature of the AI is shown in Figure 27.



Figure 27. Simulation, Mode and Status Diagram of the Analog Input Function Block

The structure of the AI with Simulation, Mode and Status is shown in Figure 27. More details about the relationships between the AI parameters are visible in Figure 28.



Figure 28. Parameter Relationship of AI FB

The following figure presents a summary of the inputs and outputs of the Mode- and Status-generation.



Figure 29. Conditions of Mode and Status Generation

The measurement value status delivered by the Transducer Block to the Function Block across the Channel is one of the input of the MODE calculation. The Resource state describing the health of the device in general is not explicitly defined in the profile i.e. it is device specific and not presented in a parameter, but the Resource state has to distinguish between *ok* and *not o.k.* in minimum. Device state

not ok means, that there is an failure in the device, which is not covered in the DIAGNOSIS parameter of the Physical Block or in the status byte of the OUT parameter of this Al and the device is not able to able to work properly. Permitted and Target Mode are attributes from the FB-Parameter MODE\_BLK. The Target Mode is set by the operator and the permitted Mode according to the block vendor in this specification (Figure 29). Also the high and low limiting value (HI\_LIM, HI\_HI\_LIM, LO\_LIM, LO\_LO\_LIM), regarding the output value, influences the status of the output.

Actual Mode is an attribute of the FB-Parameter MODE\_BLK and the result of the mode calculation. The Status (Out) is coupled with the Out parameter (DS 33) of the block.

#### 15.2.1.1 Al State Machine



Figure 30. State Machine of the Analog Input Function Block

The possible transitions are illustrated in Figure 30. The MODEs have the following meanings:

- O/S The Al FB is not able to fulfil its functional calculations anymore (e.g. the parameter values in the non-volatile memory are not accessible after a reset).
- MAN The operator writes directly the OUT parameter of the AI FB.
- AUTO The AI FB processes the value from the transmitter (PV) according all algorithms (scaling, filtering, status and mode calculation, limit checks).

The modes O/S (Out of Service), MAN (Manual) and AUTO (Automatic) are mandatory as permitted modes for AI FBs according to conformance class B.

### 15.2.1.2 Conditions on which the Actual Mode is calculated and the Target Mode is changed

The following table contains on the left side all conditions which demand a mode change from the Actual Mode (last execution) to the new Actual and Target Mode of the Al-Function Block. The results of the calculation are illustrated on the right side.

The first column contains the number of the transition of the state machine in Figure 30.

General condition: permitted modes are O/S (OUT value last usable value or fail safe value), Man (OUT value provided by the operator), Auto (OUT value provided by the device)

|            | Conditions                | Results           |                             |
|------------|---------------------------|-------------------|-----------------------------|
| Transition | Target-Mode<br>(Operator) | Resource<br>State | Actual Mode<br>(calculated) |
| T2,T5,T6   | *                         | <>o.k.            | O/S                         |
| T2,T5,T6   | O/S                       | o.k.              | O/S                         |
| T4,T8,T9   | Auto                      | o.k.              | Auto                        |
| T1,T3,T7   | Man                       | o.k.              | Man                         |

<sup>\*</sup> no influence

Table 83. Conditions and Results of the Actual Mode calculation

### 15.2.1.3 Conditions on which the Output Status is generated

The following table shows which conditions influence the Status of the output parameter. The conditions are illustrated on the left side and the results of the calculation on the right.

|         | Conditions         | result                                |  |  |  |
|---------|--------------------|---------------------------------------|--|--|--|
| Actual- | Status             | Status                                |  |  |  |
| Mode    | (Transducer input) | (Out)                                 |  |  |  |
| O/S     | *                  | BAD-Out of Service                    |  |  |  |
|         |                    | high limited = low limited = 1        |  |  |  |
| Man     | *                  | as written by the operator            |  |  |  |
| Auto    | BAD                | Influenced by the following parameter |  |  |  |
|         |                    | FSAFE_TYPE                            |  |  |  |
| Auto    | <> BAD             | Influenced by the following parameter |  |  |  |
|         |                    | PV Sub status                         |  |  |  |
|         |                    | Alarms (ST_REV, Limits)               |  |  |  |
|         |                    | Priority table of status (see General |  |  |  |
|         |                    | Requirements)                         |  |  |  |

<sup>\*</sup> no influence

Table 84. Conditions and Results of the Status Calculation of the Output Parameter

### 15.2.2 Parameter Description of the Analog Input Function Block

| Parameter   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUT         | The Function Block parameter OUT contains the current measurement value in a vendor specific or configuration adjusted engineering unit and the belonging state in AUTO MODE. The Function Block parameter OUT contains the value and status set by an operator in MAN MODE.                                                                                                                                                                                                                                                                            |
| PV_SCALE    | Conversion of the Process Variable into percent using the high and low scale values. The engineering unit of PV_SCALE high and low scale values are directly related to the PV_UNIT of the configured Transducer Block (configured via Channel parameter). The PV_SCALE high and low scale values follow the changes of the PV_UNIT of the related Transducer Block automatically, i.e. a change of the Transducer Block PV_Unit causes no bump at OUT from AI. There are exceptions possible where the bumb is required such as cleaning of analysers. |
| OUT_SCALE   | Scale of the Process Variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | The Function Block parameter OUT_SCALE contains the values of the lower limit and upper limit effective range, the code number of the engineering unit of Process Variable and the number of digits on the right hand side of the decimal point.                                                                                                                                                                                                                                                                                                        |
| LIN_TYPE    | Type of linearisation. For details see 3.8.1, Table Table 54.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CHANNEL     | Reference to the active Transducer Block which provides the measurement value to the Function Block. For more details, please see the General Requirement definitions.                                                                                                                                                                                                                                                                                                                                                                                  |
| PV_FTIME    | Filter time of the Process Variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | The Function Block parameter PV_FTIME contains the time constant for the rise time of the FB output up to a value of 63,21 % resulted from a jump on the input (PT1 filter). The engineering unit of the parameter is second.                                                                                                                                                                                                                                                                                                                           |
| FSAFE_TYPE  | Defines the reaction of device, if a fault is detected. The calculated ACTUAL MODE remains in AUTO.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 0: value FSAFE_VALUE is used as OUT Status - UNCERTAIN_Substitute Value,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 1: use last stored valid OUT value Status - UNCERTAIN_LastUsableValue if there is no valid value available, then UNCERTAIN- Inital_Value, OUT value is = Initial value                                                                                                                                                                                                                                                                                                                                                                                  |
|             | OUT has the wrong calculated value and status     Status - BAD_* (* as calculated )                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FSAFE_VALUE | Default value for the OUT parameter, if a sensor or sensor electronic fault is detected. The unit of this parameter is the same like the OUT one.                                                                                                                                                                                                                                                                                                                                                                                                       |

| Parameter | Description                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALARM_HYS | Hysteresis                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | Within the scope of the PROFIBUS-PA specification for transmitters there are functions for the monitoring of limit violation (off-limit conditions) of adjustable limits.                                                                                                                                                                                                                                                               |
|           | Maybe the value of one process variable is just the same as the value of a limit and the variable fluctuates around the limit it will occur a lot of limit violations.                                                                                                                                                                                                                                                                  |
|           | That triggers a lot of messages; so it must be possible to trigger messages only after crossing an adjustable hysteresis. The sensitivity of triggering of the alarm messages is adjustable. The value of the hysteresis is fixed in ALARM_HYS and is the same for the parameters HI_HI_LIM, HI_LIM, LO_LIM and LO_LO_LIM. The hysteresis is expressed as value below high limit and above low limit in the engineering unit of xx_LIM. |
| HI_HI_LIM | Value for upper limit of alarms                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Upper limit value for alarms with the same engineering unit of the OUT parameter. If the measured variable is equal or higher than the upper limit value the State Bits in the State Byte of OUT and in the FB parameter ALARM_SUM have to change to 1. The unit of this parameter is the same like the OUT one.                                                                                                                        |
| HI_LIM    | Value for upper limit of warnings                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | Upper limit value for warnings with the same engineering unit of the OUT parameter. If the measured variable is equal or higher than the upper limit value, the State Bits in the State Byte of OUT and in the FB parameter ALARM_SUM have to change to 1. The unit of this parameter is the same like the OUT one.                                                                                                                     |
| LO_LIM    | Value for lower limit of warnings                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | Lower limit value for warnings with the same engineering unit of the OUT parameter. If the measured variable is equal to or lower than the lower limit value, the State Bits in the State Byte of OUT and in the FB parameter ALARM_SUM have to change to 1. The unit of this parameter is the same like the OUT one.                                                                                                                   |
| LO_LO_LIM | Value for the lower limit of alarms                                                                                                                                                                                                                                                                                                                                                                                                     |
|           | Lower limit value for alarms with the same engineering unit of the OUT parameter. If the measured variable is equal to or lower than the lower limit value, the State Bits in the State Byte of OUT and in the FB parameter ALARM_SUM have to change to 1. The unit of this parameter is the same like the OUT one.                                                                                                                     |
| HI_HI_ALM | State of the upper limit of alarms                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | This parameter contains the state of the upper limit of an alarm and the related time stamp. The time stamp expresses the time the measured variable has been equal or higher than the upper limit of the alarm. Devices without clock use the beginning of the PROFIBUS-PA time (1st January 1984) as time stamp. See 3.7.7.                                                                                                           |
| HI_ALM    | State of the upper limit of warnings                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | This parameter contains the state of the upper limit of a warning and the related time stamp. The time stamp expresses the time the measured variable has been equal or higher than the upper limit of the warning. Devices without clock use the beginning of the PROFIBUS-PA time (1st January 1984) as time stamp. See 3.7.7.                                                                                                        |

| Parameter     | Description                                                                                                                                                                                                                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LO_ALM        | State of the lower limit of warnings  This personator contains the state of the lower limit of a warning and the related                                                                                                                                                                                                                    |
|               | This parameter contains the state of the lower limit of a warning and the related time stamp. The time stamp expresses the time at which the measured variable has been equal to or lower than the lower limit of the warning. Devices without clock use the beginning of the PROFIBUS-PA time (1st January 1984) as time stamp. See 3.7.7. |
| LO_LO_ALM     | State of the lower limit of alarms                                                                                                                                                                                                                                                                                                          |
|               | This parameter contains the state of the lower limit of an alarm and the related time stamp. The time stamp expresses the time at which the measured variable has been equal to or lower than the lower limit of the alarm. Devices without clock use the beginning of the PROFIBUS-PA time (1st January 1984) as time stamp. See 3.7.7.    |
| SIMULATE      | For commissioning and test purposes the input value from the Transducer Block in the Analog Input Function Block AI-FB can be modified. That means that the Transducer and AI-FB will be disconnected.                                                                                                                                      |
| OUT_UNIT_TEXT | If a specific unit of OUT parameter is not in the code list (see General Requirement) the user has the possibility to write the specific text in this parameter. The unit code is then equal to "textual unit definition".                                                                                                                  |

Table 85. Parameter Description of the Analog Input Function Block



Figure 31. Example for the Use of the Analog Input Function Block Parameters

### 15.2.3 Parameter Attributes for the Analog Input Function Block

| Relative<br>Index | Parameter<br>Name<br>Object Type             |                    | Data Type   | Store | Size | Access         | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default<br>Value                                 | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|----------------------------------------------|--------------------|-------------|-------|------|----------------|----------------------------------------------|-------------|--------------------------------------------------|-------------------|--------------------------------------|
| Stan              | Standard Parameters see General Requirements |                    |             |       |      |                |                                              |             |                                                  |                   |                                      |
|                   |                                              |                    |             |       |      |                |                                              |             |                                                  |                   |                                      |
| Additio           | nal Analog Input Function Bloo               | ck Paramete        | ers         | 1     |      | ī              |                                              |             | •                                                |                   |                                      |
| 10                | OUT                                          | Record             | 101         | D     | 5    | r <sup>1</sup> | O/cyc                                        | -           | meas<br>ured<br>of the<br>varia<br>ble,<br>state | 1                 | M (A,B)                              |
| 11                | PV_SCALE                                     | Array <sup>2</sup> | Float (*)   | S     | 8    | r,w            | C/a                                          | F           | 100,0                                            | 1                 | M (A,B)                              |
| 12                | OUT_SCALE                                    | Record             | DS-36       | S     | 11   | r,w            | C/a                                          | F           | 100,0                                            | 3                 | M (B)                                |
| 13                | LIN_TYPE                                     | Simple             | Unsigned8   | S     | 1    | r,w            | C/a                                          | F           | 0                                                | 2 <sup>3</sup>    | M (B)                                |
| 14                | CHANNEL                                      | Simple             | Unsigned16  | S     | 2    | r,w            | C/a                                          | F           | -                                                | -                 | M (B)                                |
| 16                | PV_FTIME                                     | Simple             | Float       | S     | 4    | r,w            | C/a                                          | F           | 0                                                | -                 | M (A,B)                              |
| 17                | FSAFE_TYPE 4                                 | Simple             | Unsigned8   | S     | 1    | r,w            | C/a                                          | F           | 1                                                | -                 | O (B)                                |
| 18                | FSAFE_VALUE                                  | Simple             | Float       | S     | 4    | r,w            | C/a                                          | F           | -                                                | -                 | O (B)                                |
| 19                | ALARM_HYS                                    | Simple             | Float       | S     | 4    | r,w            | C/a                                          | F           | 0.5 %<br>of<br>range                             | ı                 | M (A,B)                              |
| 21                | HI_HI_LIM                                    | Simple             | Float       | S     | 4    | r,w            | C/a                                          | F           | max<br>value                                     | 4.1               | M (A,B)                              |
| 23                | HI_LIM                                       | Simple             | Float       | S     | 4    | r,w            | C/a                                          | F           | max<br>value                                     | 4.2               | M (A,B)                              |
| 25                | LO_LIM                                       | Simple             | Float       | S     | 4    | r,w            | C/a                                          | F           | min<br>value                                     | 4.3               | M (A,B)                              |
| 27                | LO_LO_LIM                                    | Simple             | Float       | S     | 4    | r,w            | C/a                                          | F           | min<br>value                                     | 4.4               | M (A,B)                              |
| 30                | HI_HI_ALM                                    | Record             | DS-39       | D     | 16   | r              | C/a                                          | -           | 0                                                | -                 | O (A,B)                              |
| 31                | HI_ALM                                       | Record             | DS-39       | D     | 16   | r              | C/a                                          | -           | 0                                                | -                 | O (A,B)                              |
| 32                | LO_ALM                                       | Record             | DS-39       | D     | 16   | r              | C/a                                          | -           | 0                                                | -                 | O (A,B)                              |
| 33                | LO_LO_ALM                                    | Record             | DS-39       | D     | 16   | r              | C/a                                          | -           | 0                                                | -                 | O (A,B)                              |
| 34                | SIMULATE                                     | Record             | DS-50       | S     | 6    | r,w            | C/a                                          | F           | dis-<br>able                                     | -                 | M (B)                                |
| 35                | OUT_UNIT_TEXT                                | Simple             | OctetString | S     | 16   | r,w            | C/a                                          | -           | -                                                | -                 | O (A,B)                              |
| 36-44             | Reserved by PNO                              |                    |             |       |      |                |                                              |             |                                                  |                   | M (A,B)                              |

 $<sup>^{1}</sup>$  The OUT parameter can be written if the AI FB Actual MODE = Man

<sup>&</sup>lt;sup>2</sup> First Float value: value at EU of 100%, Second Float value: value at EU of 0%

<sup>&</sup>lt;sup>3</sup> if available

 $<sup>^4</sup>$  If this parameter is not implemented the AI FB bahaves like FSAFE\_TYPE = 1

| Relative<br>Index | Parameter<br>Name                     | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default<br>Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|---------------------------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|------------------|-------------------|--------------------------------------|
| H 40              | First manufacturer specific parameter |             |           |       |      |        |                                              |             |                  |                   | O (A,B)                              |

Table 86. Parameter Attributes for the Analog Input Function Block

### 15.2.4 View Object of the Analog Input Function Block

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 10                | OUT                                                                 | 5      |        |        |        |
| 11                | PV_SCALE                                                            |        |        |        |        |
| 12                | OUT_SCALE                                                           |        |        |        |        |
| 13                | LIN_TYPE                                                            |        |        |        |        |
| 14                | CHANNEL                                                             |        |        |        |        |
| 16                | PV_FTIME                                                            |        |        |        |        |
| 17                | FSAFE_TYPE                                                          |        |        |        |        |
| 18                | FSAFE_VALUE                                                         |        |        |        |        |
| 19                | ALARM_HYS                                                           |        |        |        |        |
| 21                | HI_HI_LIM                                                           |        |        |        |        |
| 23                | HI_LIM                                                              |        |        |        |        |
| 25                | LO_LIM                                                              |        |        |        |        |
| 27                | LO_LO_LIM                                                           |        |        |        |        |
| 30                | HI_HI_ALM                                                           |        |        |        |        |
| 31                | HI_ALM                                                              |        |        |        |        |
| 32                | LO_ALM                                                              |        |        |        |        |
| 33                | LO_LO_ALM                                                           |        |        |        |        |
| 34                | SIMULATE                                                            |        |        |        |        |
| 35                | OUT_UNIT_TEXT                                                       |        |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard parameter bytes) | 5 + 13 |        |        |        |

Table 87. View Object of the Analog Input Function Block

### 15.2.5 Additions to the Start-up and Break-down Phase

In addition to the definitions in the General Requirement document the default values defined in Table 86 must be settled at the start-up phase.

### 15.2.6 Remarks on the Usage of the PV, OUT, and LIMIT Parameters



Figure 32. Clarification of scaling parameters

### 15.3 Totalizer Function Block

#### 15.3.1 Totalizer Function Block Overview

A Totalizer may be used in various applications to integrate ("totalize", accumulate) a rate or another quantity (e.g. flow rate or power) to the corresponding integral (e.g. volume, mass or distance). For instance Totalizers are typically implemented in flow devices to totalize a volume or mass flow to a volume or a mass quantity.

The units for the rate and for the totalized quantity have to match (e.g. if the channel is a mass flow (kg/s), then the totalized quantity has to be a mass kg, g, ton, ...). The unit of the totalized quantity is the integral or compatible (compatible means: g, kg, ton, ... are compatible) to the integral of the channel value unit. All totalized quantity related values (e.g. Hysteresis, Limits) are in the UNIT\_TOT.

The Totalizer Function Block can be tailored for different applications using the MODE\_TOT parameter. Additionally the FAIL\_TOT parameter determines the fail-safe behaviour of this Function Block. The alarm parameters are identical to the parameters of the analog input Function Block and might be also utilised e.g. for a batch functionality. No specific manual, simulation or test modes are defined since with the given control parameters, a defined output of the Function Block may be generated. The default MODE is AUTO, i.e. Permitted Mode is in minimum AUTO and Actual Mode is AUTO too.



Figure 33. Summary of the Parameters of the Totalizer Function Block

The structure of the Totalizer Function Block and the internal data flow is shown in Figure 34



Figure 34. Block Diagram of the Totalizer Function Block

The CHANNEL provides the rate information to the Totalizer, which processes this input in different stages depending on the settings of the control parameters. After passing the first two blocks, which

page 161

defines the fail-safe behaviour and the operation of the Function Block, the actual Function Block algorithm is entered.

The block "Integrator" accumulates the rate, which represents the measured rate for a specific time interval  $\Delta t$ , to a total quantity. The integration time interval  $\Delta t$  is in general specific to a certain transmitter. Further, it might be constant or it might depend on certain parameters of the transmitter or even the magnitude or the rate. The TOTAL is stored at the event of a power failure by the device in a non-volatile memory and recovered after a following power-up.

The Limitation Alarm affects the status of the output.<sup>1</sup>

#### 15.3.1.1 Totalizer State Machine



Figure 35. State Machine of the Totalizer Function Block

The possible transitions are illustrated in Figure 35. The MODEs have the following meanings:

- O/S Totalizing is stopped. The Totalizer FB enters this mode without action by the operator if it is not able to fulfil its functional calculations anymore (e.g. the parameter values in the non-volatile memory are not accessible after a reset).
- MAN The TOTAL parameter of the Totalizer FB is disconnected from the Integrator Block. The operator can write direct to the TOTAL parameter. Nevertheless the Integrator Block continues totalizing according to the FB configuration.
- AUTO The Totalizer FB processes the value from the transmitter (PV) according all algorithms (totalizing, status and mode calculation, limit checks).

The modes O/S (Out of Service), MAN (Manual) and AUTO (Automatic) are mandatory as permitted modes for Totalizer FBs according to conformance class B.

\_

<sup>&</sup>lt;sup>1</sup> Same as the analog input block.

#### 15.3.1.2 Actual Mode Calculation

The Actual Mode of the Totalizer Function Block depends on the parameter TARGET\_MODE and internal state of the Function Block. The following table contains on the left side all conditions which demand a mode change of Totalizer Function Block. The results of the calculation are illustrated on the right side.

|            | Conditions                                       | Results |                             |
|------------|--------------------------------------------------|---------|-----------------------------|
| Transition | Transition Target-Mode Resource (Operator) State |         | Actual Mode<br>(calculated) |
| T2,T5,T6   | *                                                | <>o.k.  | O/S                         |
| T2,T5,T6   | O/S                                              | o.k.    | O/S                         |
| T4,T8,T9   | AUTO                                             | o.k.    | AUTO                        |
| T1,T3,T7   | MAN                                              | o.k.    | MAN                         |

<sup>\*</sup> no influence

Table 88. Conditions and Results of the Actual Mode Calculation

The first column contains the number of the transition of the state machine in Figure 35.

#### General conditions:

- permitted modes are O/S (TOTAL value is last usable value or fail safe value), MAN (TOTAL value is provided by the operator), AUTO (TOTAL value is provided by the device).
- normal mode is AUTO mode.

### 15.3.1.3 Status Calculation

The following table shows the conditions which influence the status of the TOTAL parameter. The conditions are illustrated on the left side and the results of the calculation on the right.

|                | Conditions        |             |          |          |                      |                                                         | Result (****)                           |             |  |
|----------------|-------------------|-------------|----------|----------|----------------------|---------------------------------------------------------|-----------------------------------------|-------------|--|
| Actual<br>Mode | Status<br>(Input) | SET_TOT     | MODE_TOT | FAIL_TOT | F-Block<br>State     |                                                         | Status (TOTAL)                          |             |  |
|                | Quality           |             |          |          |                      | Quality Sub-Status Limit                                |                                         |             |  |
| O/S            | *                 | *           | *        | *        | *                    | BAD                                                     | Out of Service                          | const.      |  |
| MAN            | *                 | *           | *        | *        | *                    | as                                                      | written by the opera                    | tor         |  |
| AUTO           | *                 | *           | *        | *        | hardware<br>defect   | BAD                                                     | Device Failure                          | ok.         |  |
|                | *                 | *           | *        | *        | inconsistent<br>unit | BAD                                                     | Configuration Error                     | ok.         |  |
|                | *                 | <> TOTALIZE | *        | *        | ok. (***)            | UNCERTAIN                                               | Initial Value                           | const. (**) |  |
|                | *                 | TOTALIZE    | HOLD     | *        | ok. (***)            | last status is frozen before co                         |                                         | const. (**) |  |
|                | BAD               | TOTALIZE    | <> HOLD  | HOLD     | ok. (***)            | UNCERTAIN                                               | Last Usable Value                       | const. (**) |  |
|                | BAD               | TOTALIZE    | <> HOLD  | MEM      | ok. (***)            | UNCERTAIN                                               | Non Specific                            | ok. (**)    |  |
|                | BAD               | TOTALIZE    | <> HOLD  | RUN      | ok. (***)            | UNCERTAIN                                               | Non Specific                            | ok. (**)    |  |
|                | UNCERTAI          | TOTALIZE    | <> HOLD  | *        | ok. (***)            | Influenced (                                            | device specific) by                     |             |  |
|                | N                 |             |          |          |                      | PV Sub                                                  | status                                  |             |  |
|                |                   |             |          |          |                      | • Update                                                | Event                                   |             |  |
|                |                   |             |          |          |                      | Limit Ch                                                | neck                                    |             |  |
|                |                   |             |          |          |                      | Priority table of status     (see General Requirements) |                                         |             |  |
|                | GOOD              | TOTALIZE    | <> HOLD  | *        | ok. (***)            | Influenced (device specific) by                         |                                         |             |  |
|                |                   |             |          |          |                      | PV Sub status                                           |                                         |             |  |
|                |                   |             |          |          |                      | Update Event                                            |                                         |             |  |
|                |                   |             |          |          |                      | Limit Check                                             |                                         |             |  |
|                |                   |             |          |          |                      |                                                         | table of status<br>eneral Requirements) |             |  |

Table 89. Conditions and Results of the Status Calculation for TOTAL Parameter

- (\*) no influence (don't care)
- (\*\*) Limit might be changed to "high limited" or "low limited" according to the Totalizer Limit Check
- (\*\*\*) ok. means no hardware defect and no inconsistent unit configured for UNIT\_TOT
- (\*\*\*\*) under the following conditions the status is fixed to UNCERTAIN Non Specific
  - previous status was UNCERTAIN or BAD and
  - calculated status according to Table 89 is GOOD

Status is not fixed if it is set to UNCERTAIN because SET\_TOT <> TOTALIZE (i.e. no additional actions are required to acknowledge the status if SET\_TOT changes to TOTALIZE from RESET or PRESET).

### 15.3.2 Parameter Description of the Totalizer Function Block

| Parameter | Description                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TOTAL     | The Function Block parameter TOTAL contains the integrated quantity of the rate parameter provided by CHANNEL and the associated status.                                                                                                                                                                                                                                                  |  |  |  |  |
| UNIT_TOT  | Unit of the totalized quantity.                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| CHANNEL   | Reference to the active Transducer Block, which provides the measurement value to the Function Block.                                                                                                                                                                                                                                                                                     |  |  |  |  |
| SET_TOT   | Reset of the internal value of the FB algorithm to 0 or set this value to PRESET_TOT. The Function Block parameter SET_TOT affects the current totalized value immediately. This function is level sensitive. While SET_TOT is set to RESET or PRESET, the status of the totalized value shall be UNCERTAIN-initial value.  The parameter TOTAL is affected if the block is in AUTO mode. |  |  |  |  |
|           | Totalized Value UNCERTAIN-init value UNCERTAIN-init value  0.0  SET_TOT  2 1                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|           | Time                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|           | The following selections of this Function Block parameter are possible:                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|           | 0: TOTALIZE; "normal" operation of the Totalizer                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|           | <ol> <li>RESET; assign value "0" to Totalizer</li> <li>PRESET; assign value of PRESET_TOT to Totalizer</li> </ol>                                                                                                                                                                                                                                                                         |  |  |  |  |
| MODE TOT  |                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| MODE_TOT  | This Function Block parameter governs the behaviour of the totalization. The following selections are possible:                                                                                                                                                                                                                                                                           |  |  |  |  |
|           | 0: BALANCED; true arithmetic integration of the incoming rate values.                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|           | 1: POS_ONLY; totalization of positive incoming rate values only.                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|           | 2: NEG_ONLY; totalisation of negative incoming rate values only.                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|           | 3: HOLD; totalisation stopped.                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| FAIL_TOT  | Fail-safe mode of the Totalizer Function Block. This parameter governs the behaviour of the Function Block during the occurrence of input values with BAD status. The following selections are possible:                                                                                                                                                                                  |  |  |  |  |
|           | 0: RUN; totalisation is continued using the input values despite the BAD status. The status is ignored.                                                                                                                                                                                                                                                                                   |  |  |  |  |
|           | HOLD; totalisation is stopped during occurrence of BAD status of incoming values.                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|           | 2: MEMORY; totalisation is continued based on the last incoming value with GOOD status before the first occurrence of BAD status.                                                                                                                                                                                                                                                         |  |  |  |  |

| Parameter  | Description                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRESET_TOT | This value is used as a preset for the internal value of the FB algorithm. The value get effective if using the SET_TOT function.                                                                                                                                                                                                                                                                                                       |
| ALARM_HYS  | Hysteresis                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Within the scope of the PROFIBUS-PA specification for transmitters there are functions for the monitoring of limit violation (off-limit conditions) of adjustable limits.                                                                                                                                                                                                                                                               |
|            | Maybe the value of one process variable is just the same as the value of a limit and the variable fluctuates around the limit it will occur a lot of limit violations.                                                                                                                                                                                                                                                                  |
|            | That triggers a lot of messages; so it must be possible to trigger messages only after crossing an adjustable hysteresis. The sensitivity of triggering of the alarm messages is adjustable. The value of the hysteresis is fixed in ALARM_HYS and is the same for the parameters HI_HI_LIM, HI_LIM, LO_LIM and LO_LO_LIM. The hysteresis is expressed as value below high limit and above low limit in the engineering unit of xx_LIM. |
| HI_HI_LIM  | Value for upper limit of alarms                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | Upper limit value for alarms with the same engineering unit. If the measured variable is equal or higher than the upper limit value the State Bit in the State Byte of TOTAL and in the FB parameter ALARM_SUM have to change to 1.                                                                                                                                                                                                     |
| HI_LIM     | Value for upper limit of warnings                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Upper limit value for warnings with the same engineering unit. If the measured variable is equal or higher than the upper limit value, the State Bit in the State Byte of TOTAL and in the FB parameter ALARM_SUM have to change to 1.                                                                                                                                                                                                  |
| LO_LIM     | Value for lower limit of warnings                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Lower limit value for warnings with the same engineering unit. If the measured variable is equal to or lower than the lower limit value, the State Bit in the State Byte of TOTAL and in the FB parameter ALARM_SUM have to change to 1.                                                                                                                                                                                                |
| LO_LO_LIM  | Value for the lower limit of alarms                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | Lower limit value for alarms with the same engineering unit. If the measured variable is equal to or lower than the lower limit value, the State Bit in the State Byte of TOTAL and in the FB parameter ALARM_SUM have to change to 1.                                                                                                                                                                                                  |
| HI_HI_ALM  | State of the upper limit of alarms                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | This parameter contains the state of the upper limit of an alarm and the related time stamp. The time stamp expresses the time the measured variable has been equal or higher than the upper limit of the alarm. Devices without clock use the beginning of the PROFIBUS-PA time (1st January 1992) as time stamp. See 3.7.7.                                                                                                           |
| HI_ALM     | State of the upper limit of warnings                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | This parameter contains the state of the upper limit of a warning and the related time stamp. The time stamp expresses the time the measured variable has been equal or higher than the upper limit of the warning. Devices without clock use the 1st January 1992 as time stamp. See 3.7.7.                                                                                                                                            |

| Parameter | Description                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LO_ALM    | State of the lower limit of warnings  This parameter contains the state of the lower limit of a warning and the related time stamp. The time stamp expresses the time at which the measured variable has been equal to or lower than the lower limit of the warning. Devices without clock use the 1st January 1992 as time stamp. See 3.7.7. |
| LO_LO_ALM | State of the lower limit of alarms  This parameter contains the state of the lower limit of an alarm and the related time stamp. The time stamp expresses the time at which the measured variable has been equal to or lower than the lower limit of the alarm. Devices without clock use the 1st January 1992 as time stamp. See 3.7.7.      |

Table 90. Parameter Description of the Totalizer Function Block

### 15.3.3 Parameter Attributes of the Totalizer Function Block

| Relative<br>Index | Parameter<br>Name                            | Object Type | Data Type                                                 | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default<br>Value                                                 | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|----------------------------------------------|-------------|-----------------------------------------------------------|-------|------|--------|----------------------------------------------|-------------|------------------------------------------------------------------|-------------------|--------------------------------------|
| Stan              | Standard Parameters see General Requirements |             |                                                           |       |      |        |                                              |             |                                                                  |                   |                                      |
|                   |                                              |             |                                                           |       |      |        |                                              |             |                                                                  |                   |                                      |
|                   | nal Totalizer Function Block Pa              |             |                                                           |       |      |        |                                              |             | ı                                                                | 1                 |                                      |
| 10                | TOTAL                                        | Record      | 101                                                       | N     | 5    | r      | O/cyc                                        | -           | 0                                                                | -                 | M (A,B)                              |
| 11                | UNIT_TOT                                     | Simple      | Unsigned16                                                | S     | 2    | r,w    | C/a                                          | F           | direct<br>integr<br>al of<br>the<br>chan<br>nel<br>value<br>unit | 1                 | M (A,B)                              |
| 12                | CHANNEL                                      | Simple      | Unsigned16                                                | S     | 2    | r,w    | C/a                                          | F           | -                                                                | 2                 | M (B)                                |
| 13                | SET_TOT                                      | Simple      | Unsigned8 0: TOTALIZE 1: RESET 2: PRESET                  | N     | 1    | r,w    | I/cyc                                        | F           | 0:<br>TOTA<br>LIZE                                               | -                 | M (B)                                |
| 14                | MODE_TOT                                     | Simple      | Unsigned8  0: BALANCED  1: POS_ONLY  2: NEG_ONLY  3: HOLD | N     | 1    | r,w    | l/cyc                                        | F           | 0:<br>BAL<br>ANCE<br>D                                           | 3                 | M (B)                                |
| 15                | FAIL_TOT                                     | Simple      | Unsigned8<br>0: RUN<br>1: HOLD<br>2: MEMORY               | S     | 1    | r,w    | C/a                                          | F           | 0:<br>RUN                                                        | 4                 | M (B)                                |
| 16                | PRESET_TOT                                   | Simple      | Float                                                     | S     | 4    | r,w    | C/a                                          | F           | 0                                                                | 8                 | M (B)                                |
| 17                | ALARM_HYS                                    | Simple      | Float                                                     | S     | 4    | r,w    | C/a                                          | F           | 0                                                                | 5                 | M (A,B)                              |
| 18                | HI_HI_LIM                                    | Simple      | Float                                                     | S     | 4    | r,w    | C/a                                          | F           | max<br>value                                                     | 6                 | M (A,B)                              |
| 19                | HI_LIM                                       | Simple      | Float                                                     | S     | 4    | r,w    | C/a                                          | F           | max<br>value                                                     | 7                 | M (A,B)                              |
| 20                | LO_LIM                                       | Simple      | Float                                                     | S     | 4    | r,w    | C/a                                          | F           | min<br>value                                                     | 9                 | M (A,B)                              |
| 21                | LO_LO_LIM                                    | Simple      | Float                                                     | S     | 4    | r,w    | C/a                                          | F           | min<br>value                                                     | 10                | M (A,B)                              |
| 22                | HI_HI_ALM                                    | Record      | DS-39                                                     | D     | 16   | r      | C/a                                          | -           | 0                                                                | -                 | O (A,B)                              |
| 23                | HI_ALM                                       | Record      | DS-39                                                     | D     | 16   | r      | C/a                                          | -           | 0                                                                | -                 | O (A,B)                              |
| 24                | LO_ALM                                       | Record      | DS-39                                                     | D     | 16   | r      | C/a                                          | -           | 0                                                                | -                 | O (A,B)                              |
| 25                | LO_LO_ALM                                    | Record      | DS-39                                                     | D     | 16   | r      | C/a                                          | -           | 0                                                                | -                 | O (A,B)                              |
| 26-35             | Reserved by PNO                              |             |                                                           |       |      |        |                                              |             |                                                                  |                   | M (A,B)                              |
| 36                | First manufacturer specific parameter        |             |                                                           |       |      |        |                                              |             |                                                                  |                   | O (A,B)                              |

Table 91. Parameter Attributes of the Totalizer Function Block

### 15.3.4 View Object of the Totalizer Function Block

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 10                | TOTAL                                                               | 5      |        |        |        |
| 11                | UNIT_TOT                                                            |        |        |        |        |
| 12                | CHANNEL                                                             |        |        |        |        |
| 13                | SET_TOT                                                             |        |        |        |        |
| 14                | MODE_TOT                                                            |        |        |        |        |
| 15                | FAIL_TOT                                                            |        |        |        |        |
| 16                | ALARM_HYS                                                           |        |        |        |        |
| 17                | PRESET_TOT                                                          |        |        |        |        |
| 18                | HI_HI_LIM                                                           |        |        |        |        |
| 19                | HI_LIM                                                              |        |        |        |        |
| 20                | LO_LIM                                                              |        |        |        |        |
| 21                | LO_LO_LIM                                                           |        |        |        |        |
| 22                | HI_HI_ALM                                                           |        |        |        |        |
| 23                | HI_ALM                                                              |        |        |        |        |
| 24                | LO_ALM                                                              |        |        |        |        |
| 25                | LO_LO_ALM                                                           |        |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard parameter bytes) | 5 + 13 |        |        |        |

Table 92. View Object of the Totalizer Function Block

### 15.3.5 Additions to the Start-up and Break-down Phase

In addition to the definitions in the General Requirement document the default values defined in Table 91 must be settled at the start-up phase.

### 16 Device Data Sheet Transmitter - Transducer Blocks

The Transducer Blocks contain the measurement specific parameters. There is an selection of measurement principles defined in this profile. The selected principles are marked in the following figure. This overview is in line with the German standard DIN V 19259.



Figure 36. Overview about defined measuring equipment

### 16.1 Temperature

### 16.1.1 Temperature Transducer Block Overview

This section describes the specific aspect of temperature measurement used in the process control with three different primary elements, thermocouple, thermoresistance and pyrometer.

### 16.1.1.1 Thermocouple input

The voltage generated from a thermocouple is compensated with a reference junction value, internal or fixed value EXTERNAL RJ VALUE and is a function of the RJ TYPE parameter.

#### 16.1.1.2 Thermoresistance input

There is the possibility to connect the thermoresistance with 2, 3 and 4 wires. The selection of the internal circuit is chosen by parameter SENSOR\_CONNECTION and compensated, if it is a 2 or 3 wires type, by parameter COMP\_WIRE1/2.

#### 16.1.1.3 Pyrometer input

The voltage generated from an optical sensor is multiplied by EMISSIVITY factor to relate as a black body. The parameter SPECT\_FILT\_SET selects the internal optical filters for a specific work-band in the infrared field.

### 16.1.1.4 Transmitter block

Inputs 1 and 2 the after control of short or open circuit and the range imposed by LOWER\_SENSOR\_LIMIT and UPPER\_SENSOR\_LIMIT are linearised in function of parameter LIN TYPE.

A BIAS\_1/2 value is algebraically added to the measuring value.

Input 1 and input 2 are mathematically manipulated in function of parameter SENSOR\_MEAS\_TYPE to obtain the main measuring value PRIMARY\_VALUE.



Figure 37. Functional Diagram of the Temperature Transducer Block

In optical pyrometer transducers there is the possibility to have more functions like peak picker detector or track and hold.

### 16.1.2 Parameter Description of the Temperature Transducer Block

### 16.1.2.1 Description of the General Parameters of the Temperature Transducer Block

| Parameter       | Description                                                                                                                                                                      |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| BIAS_1          | Bias that can be algebraically added to the process value of channel 1. The unit of BIAS_1 is the PRIMARY_VALUE_UNIT.                                                            |  |  |  |
| BIAS_2          | Bias that can be algebraically added to the process value of channel 2.<br>The unit of BIAS_2 is the PRIMARY_VALUE_UNIT.                                                         |  |  |  |
| INPUT_FAULT_GEN | Input malfunction: Diagnosis object for errors that concerns all values  0: device OK  Bit 0 Rj error  Bit 1 Hardware error  Bit 2 - 4 reserved  Bit 5 - 7 manufacturer specific |  |  |  |

| Parameter     | Description                                                                                                                                                                                                            |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INPUT_FAULT_1 | Input malfunction: Diagnosis object for errors that concern SV_1                                                                                                                                                       |
|               | 0: Input OK                                                                                                                                                                                                            |
|               |                                                                                                                                                                                                                        |
|               | Bit 0 underrange                                                                                                                                                                                                       |
|               | Bit 1 overrange                                                                                                                                                                                                        |
|               | Bit 2 lead breakage                                                                                                                                                                                                    |
|               | Bit 3 short circuit                                                                                                                                                                                                    |
|               | Bit 4 - 5 reserved                                                                                                                                                                                                     |
|               | Bit 6 - 7 manufacturer specific                                                                                                                                                                                        |
| INPUT_FAULT_2 | Input malfunction: Diagnosis object for errors that concern SV_2                                                                                                                                                       |
|               | Bit definition see INPUT_FAULT_1                                                                                                                                                                                       |
| INPUT_RANGE   | Electrical input range and mode. The ranges are manufacturer specific but range n is smaller than range n+1 if more than one range is supported for one input mode (e.g. range1=0400 $\Omega$ , range2=04k $\Omega$ ). |
|               | INPUT_RANGE is equal for channel 1 and 2.                                                                                                                                                                              |
|               | Coding (other codes are reserved):                                                                                                                                                                                     |
|               | 0: mV range 1                                                                                                                                                                                                          |
|               | 1: mV range 2                                                                                                                                                                                                          |
|               |                                                                                                                                                                                                                        |
|               | 9: mV range 10                                                                                                                                                                                                         |
|               | 128: $\Omega$ range 1                                                                                                                                                                                                  |
|               | 129: $\Omega$ range 2                                                                                                                                                                                                  |
|               |                                                                                                                                                                                                                        |
|               | 137: Ω range 10                                                                                                                                                                                                        |
|               | 192: mA range 1                                                                                                                                                                                                        |
|               | 193: mA range 2                                                                                                                                                                                                        |
|               |                                                                                                                                                                                                                        |
|               | 201: mA range 10                                                                                                                                                                                                       |
|               | 240: manufacturer specific                                                                                                                                                                                             |
|               |                                                                                                                                                                                                                        |
|               | 249: manufacturer specific                                                                                                                                                                                             |
|               | 250: not used                                                                                                                                                                                                          |
|               | 251: none                                                                                                                                                                                                              |
|               | 252: unknown                                                                                                                                                                                                           |
|               | 253: special                                                                                                                                                                                                           |
|               | Remark: When using codes 240249 (manufacturer specific) interchangeability not possible.                                                                                                                               |

| Parameter                   | Description                                                                                                                                                                                                                                                               |  |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| LIN_TYPE                    | Select the type of sensor (Code) for Thermocouples, Rtd, Pyrometers or linear.                                                                                                                                                                                            |  |  |  |
|                             | For details see 3.8.1, Table Table 54.                                                                                                                                                                                                                                    |  |  |  |
| LOWER_SENSOR_LIMIT          | Physical lower limit function of the sensor (e.g. Pt 100 = -200°C) and input range. In the case of multichannel measurements (e.g. differential measurement) the meaning of LOWER_SENSOR_LIMIT is the limit of one channel and not the calculated limit of both channels. |  |  |  |
|                             | The unit of LOWER_SENSOR_LIMIT is the PRIMARY_VALUE_UNIT.                                                                                                                                                                                                                 |  |  |  |
| MAX_SENSOR_VALUE_1          | Holds the maximum SECONDARY_VALUE_1. The unit is defined in SECONDARY_VALUE_1.                                                                                                                                                                                            |  |  |  |
| MIN_SENSOR_VALUE_1          | Holds the minimum SECONDARY_VALUE_1. The unit is defined in SECONDARY_VALUE_1.                                                                                                                                                                                            |  |  |  |
| MAX_SENSOR_VALUE_2          | See. MAX_SENSOR_VALUE_1                                                                                                                                                                                                                                                   |  |  |  |
| MIN_SENSOR_VALUE_2          | See. MIN_SENSOR_VALUE_1                                                                                                                                                                                                                                                   |  |  |  |
| PRIMARY_VALUE               | Process value, function of SECONDARY_VALUE_1/2.                                                                                                                                                                                                                           |  |  |  |
|                             | The unit of PRIMARY_VALUE is the PRIMARY_VALUE_UNIT.                                                                                                                                                                                                                      |  |  |  |
| PRIMARY_VALUE_UNIT          | Selects the unit code of the PRIMARY_VALUE and other values.                                                                                                                                                                                                              |  |  |  |
|                             | Minimum set of unit codes:                                                                                                                                                                                                                                                |  |  |  |
|                             | 1000: K (Kelvin)                                                                                                                                                                                                                                                          |  |  |  |
|                             | 1001: °C (degree Celsius)                                                                                                                                                                                                                                                 |  |  |  |
|                             | 1002: °F (degree Fahrenheit)                                                                                                                                                                                                                                              |  |  |  |
|                             | 1003: Rk (Rankine)                                                                                                                                                                                                                                                        |  |  |  |
|                             | Electrical units must be supported according to the supported INPUT_RANGE codes (for LIN_TYPE=0).                                                                                                                                                                         |  |  |  |
| SECONDARY_VALUE_1<br>(SV_1) | Process value connected to channel 1 and corrected by BIAS_1. The unit of SECONDARY_VALUE_1 is the PRIMARY_VALUE_UNIT.                                                                                                                                                    |  |  |  |
| SECONDARY_VALUE_2<br>(SV_2) | Process value connected to channel 2 and corrected by BIAS_2. The unit of SECONDARY_VALUE_2 is the PRIMARY_VALUE_UNIT.                                                                                                                                                    |  |  |  |

| Parameter          | Description                                                                                                                                                                                                                                                              |                              |                                              |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|--|--|--|
| SENSOR_MEAS_TYPE   | Mathematical function to calculate PRIMARY_VALUE (PV).                                                                                                                                                                                                                   |                              |                                              |  |  |  |
|                    | Coding:                                                                                                                                                                                                                                                                  |                              |                                              |  |  |  |
|                    | 0:                                                                                                                                                                                                                                                                       | PV = SV_1                    |                                              |  |  |  |
|                    | 1:                                                                                                                                                                                                                                                                       | PV = SV_2                    |                                              |  |  |  |
|                    | 128:                                                                                                                                                                                                                                                                     | PV = SV_1 - SV_2             | Difference                                   |  |  |  |
|                    | 129:                                                                                                                                                                                                                                                                     | PV = SV_2 - SV_1             | Difference                                   |  |  |  |
|                    | 192:                                                                                                                                                                                                                                                                     | PV = ½ * (SV_1 + SV_2) Ave   | erage                                        |  |  |  |
|                    | 193:                                                                                                                                                                                                                                                                     | PV = ½ * (SV_1 + SV_2) Ave   | erage but SV_1 or SV_2 if the other is wrong |  |  |  |
|                    | 194:                                                                                                                                                                                                                                                                     | reserved                     |                                              |  |  |  |
|                    |                                                                                                                                                                                                                                                                          |                              |                                              |  |  |  |
|                    | 219:                                                                                                                                                                                                                                                                     | reserved                     |                                              |  |  |  |
|                    | 220:                                                                                                                                                                                                                                                                     | manufacturer specific        |                                              |  |  |  |
|                    |                                                                                                                                                                                                                                                                          |                              |                                              |  |  |  |
|                    | 239:                                                                                                                                                                                                                                                                     | manufacturer specific        |                                              |  |  |  |
| SENSOR_WIRE_       | Enables lead breakage and short circuit detection for Sensor 1.                                                                                                                                                                                                          |                              |                                              |  |  |  |
| CHECK_1            | List of valid values :                                                                                                                                                                                                                                                   |                              |                                              |  |  |  |
|                    | 0: Lead breakage and short circuit detection enabled                                                                                                                                                                                                                     |                              |                                              |  |  |  |
|                    | Lead breakage detection enable, short circuit detection disabled                                                                                                                                                                                                         |                              |                                              |  |  |  |
|                    | Lead breakage detection disable, short circuit detection enabled                                                                                                                                                                                                         |                              |                                              |  |  |  |
|                    | 3: Lead breakage and short circuit detection disabled                                                                                                                                                                                                                    |                              |                                              |  |  |  |
| SENSOR_WIRE_       | Enables lead                                                                                                                                                                                                                                                             | breakage and short circuit d | etection for Sensor 2                        |  |  |  |
| CHECK_2            | Valid values:                                                                                                                                                                                                                                                            | see SENSOR_WIRE_CHEC         | K_1                                          |  |  |  |
| TAB_ACTUAL_NUMBER  | See 3.8.1, Ta                                                                                                                                                                                                                                                            | able Table 54.               |                                              |  |  |  |
| TAB_ENTRY          | See 3.8.1, Ta                                                                                                                                                                                                                                                            | able Table 54.               |                                              |  |  |  |
| TAB_MAX_NUMBER     | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                               |                              |                                              |  |  |  |
| TAB_MIN_NUMBER     | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                               |                              |                                              |  |  |  |
| TAB_OP_CODE        | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                               |                              |                                              |  |  |  |
| TAB_STATUS         | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                               |                              |                                              |  |  |  |
| TAB_X_Y_VALUE      | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                               |                              |                                              |  |  |  |
| UPPER_SENSOR_LIMIT | Physical upper limit function of the sensor (e.g. Pt 100 = 850°C) and input range. In the case of multichannel measurements (e.g. differential measurement) the meaning of UPPER_SENSOR_LIMIT is the limit of one channel and not the calculated limit of both channels. |                              |                                              |  |  |  |
|                    | The unit of UF                                                                                                                                                                                                                                                           | PPER_SENSOR_LIMIT is the     | PRIMARY_VALUE_UNIT.                          |  |  |  |

Table 93. Description of the General Parameters of the Temperature Transducer Block

### 16.1.2.2 Description of Additional Parameters of Thermocouple Devices

| Parameter         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| EXTERNAL_RJ_VALUE | Fixed temperature value of an external reference junction. The unit of EXTERNAL_RJ_VALUE is the PRIMARY_VALUE_UNIT. If PRIMARY_VALUE_UNIT is no temperature unit (e.g. mV) EXTERNAL_RJ_VALUE is stated in °C.                                                                                                                                                                                                                                    |  |  |  |
| RJ_TEMP           | Reference junction temperature. The unit of RJ_TEMP is the PRIMARY_VALUE_UNIT. If PRIMARY_VALUE_UNIT is no emperature unit (e.g. mV) RJ_TEMP is stated in °C.                                                                                                                                                                                                                                                                                    |  |  |  |
| RJ_TYPE           | Selects reference junction from internal to fixed value.  Coding:  0: No reference: Compensation is not used (e.g. for TC Type B).  1: Internal: Reference junction temperature is measured by the device itself  via an internal or external mounted sensor.  2: External: The fixed value EXTERNAL_RJ_VALUE is used for compensation. The reference junction must be kept at a constant temperature (e.g. by a reference junction thermostat). |  |  |  |

Table 94. Thermocouple Device Temperature Transducer Block Parameter Description

### 16.1.2.3 Description of Additional Parameters of Thermoresistance Devices

| Parameter         | Description                                                                                                      |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| COMP_WIRE1        | Value in $\Omega$ to compensate line resistance when the thermoresistance 1 is connected with 2 or 3 wires.      |  |  |  |
| COMP_WIRE2        | Value in $\Omega$ to compensate line resistance when the thermoresistance 2 is connected with 2 or 3 wires.      |  |  |  |
| SENSOR_CONNECTION | Connection to the sensor, selected for 2, 3 and 4 wires connection.  Coding:  0: 2 wires  1: 3 wires  2: 4 wires |  |  |  |

Table 95. Thermoresistance Devices Temperature Transducer Block Parameter Description

### 16.1.2.4 Description of Additional Parameters of Optical Pyrometer Devices

| Parameter  | Description                                                                                     |
|------------|-------------------------------------------------------------------------------------------------|
| DECAY_RATE | Decay rate in degrees/minutes (used with peak picker).                                          |
| EMISSIVITY | Emissivity compensation: Value in % (0 to 100) to compensate the process value as a black body. |
| PEAK_TIME  | Time in seconds of peak picking type "C".                                                       |

| Parameter      | Description                                                                                |
|----------------|--------------------------------------------------------------------------------------------|
| PEAK_TRACK     | Choice if normal measurement or peak picker (3 types) or track and hold is to be inserted. |
|                | Coding:                                                                                    |
|                | 0: No peak and no track                                                                    |
|                | 1: Peak "A"                                                                                |
|                | 2: Peak "B"                                                                                |
|                | 3: Peak "C" Mode 1                                                                         |
|                | 4: Peak "C" Mode 2                                                                         |
|                | 5: Track and hold                                                                          |
| SPECT_FILT_SET | Selection of filter type.                                                                  |
|                | Coding:                                                                                    |
|                | 0: No selection                                                                            |
|                | 1: Filter Nr. 1                                                                            |
|                | 2: Filter Nr. 2                                                                            |
|                | 3: Filter Nr. 3                                                                            |
|                |                                                                                            |
|                | N: Filter Nr. N                                                                            |
| TRACK_HOLD     | Logical level to track the measure and hold (used only with track and hold).               |
|                | Coding:                                                                                    |
|                | 0: Hold                                                                                    |
|                | 1: Track                                                                                   |

Table 96. Optical Pyrometer Devices Temperature Transducer Block Parameter Description

### 16.1.3.1 Parameter Attributes of the Temperature Transducer Block General Parameters

| Relative Index | Parameter<br>Name            | Object Type                | Data Type            | Store     | Size     | Access  | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|----------------|------------------------------|----------------------------|----------------------|-----------|----------|---------|----------------------------------------------|-------------|---------------|-------------------|--------------------------------------|
| Stan           | dard Parameters see General  | Requireme                  | nts                  |           |          |         |                                              |             |               |                   |                                      |
|                |                              |                            |                      |           |          |         |                                              |             |               |                   |                                      |
| Additio        | nal Temperature Transducer I | Block Paran                | neters               |           |          |         |                                              |             |               |                   |                                      |
| 8              | PRIMARY_VALUE                | Record                     | 101                  | D         | 5        | r       | C/a                                          | -           |               |                   | М                                    |
| 9              | PRIMARY_VALUE_UNIT           | Simple                     | Unsigned16           | S         | 2        | r,w     | C/a                                          | F           |               | 2                 | М                                    |
| 10             | SECONDARY_VALUE_1            | Record                     | 101                  | D         | 5        | r       | C/a                                          | -           |               |                   | М                                    |
| 11             | SECONDARY_VALUE_2            | Record                     | 101                  | D         | 5        | r       | C/a                                          | -           |               |                   | 0                                    |
| 12             | SENSOR_MEAS_TYPE             | Simple                     | Unsigned8            | S         | 1        | r,w     | C/a                                          | F           |               | 3                 | М                                    |
| 13             | INPUT_RANGE                  | Simple                     | Unsigned8            | S         | 1        | r,w     | C/a                                          | F           |               | 4                 | М                                    |
| 14             | LIN_TYPE                     |                            |                      | See 3.    | 8.2, Tab | le 55.  |                                              |             |               | 1                 | М                                    |
| 19             | BIAS_1                       | Simple                     | Float                | S         | 4        | r,w     | C/a                                          | F           | 0.0           | 5                 | М                                    |
| 20             | BIAS_2                       | Simple                     | Float                | S         | 4        | r,w     | C/a                                          | F           | 0.0           |                   | 0                                    |
| 21             | UPPER_SENSOR_LIMIT           | Simple                     | Float                | N         | 4        | r       | C/a                                          | -           |               |                   | М                                    |
| 22             | LOWER_SENSOR_LIMIT           | Simple                     | Float                | N         | 4        | r       | C/a                                          | -           |               |                   | М                                    |
| 24             | INPUT_FAULT_GEN              | Simple                     | Unsigned8            | D         | 1        | r       | C/a                                          | -           |               |                   | М                                    |
| 25             | INPUT_FAULT_1                | Simple                     | Unsigned8            | D         | 1        | r       | C/a                                          | -           |               |                   | М                                    |
| 26             | INPUT_FAULT_2                | Simple                     | Unsigned8            | D         | 1        | r       | C/a                                          | -           |               |                   | 0                                    |
| 27             | SENSOR_WIRE_<br>CHECK_1      | Simple                     | Unsigned8            | S         | 1        | r,w     | C/a                                          | F           |               |                   | 0                                    |
| 28             | SENSOR_WIRE_<br>CHECK_2      | Simple                     | Unsigned8            | S         | 1        | r,w     | C/a                                          | F           |               |                   | 0                                    |
| 29             | MAX_SENSOR_VALUE_1           | Simple                     | Float                | N         | 4        | r,w     | C/a                                          | I           |               |                   | 0                                    |
| 30             | MIN_SENSOR_VALUE_1           | Simple                     | Float                | N         | 4        | r,w     | C/a                                          | _           |               |                   | 0                                    |
| 31             | MAX_SENSOR_VALUE_2           | Simple                     | Float                | N         | 4        | r,w     | C/a                                          | _           |               |                   | 0                                    |
| 32             | MIN_SENSOR_VALUE_2           | Simple                     | Float                | N         | 4        | r,w     | C/a                                          | _           |               |                   | 0                                    |
| 33-44          |                              |                            | See Table 9          | 98, Table | 99 and   | Table 1 | 00 below.                                    |             |               |                   |                                      |
| 45             | TAB_ENTRY                    |                            |                      | See 3.    | 8.2, Tab | le 55.  |                                              |             |               |                   | O 1                                  |
| 46             | TAB_X_Y_VALUE                |                            |                      | See 3.    | 8.2, Tab | le 55.  |                                              |             |               |                   | O 1                                  |
| 47             | TAB_MIN_NUMBER               |                            |                      | See 3.    | 8.2, Tab | le 55.  |                                              |             |               |                   | O 1                                  |
| 48             | TAB_MAX_NUMBER               | JMBER See 3.8.2, Table 55. |                      |           |          |         |                                              |             |               |                   | O 1                                  |
| 49             | TAB_OP_CODE                  | See 3.8.2, Table 55.       |                      |           |          |         |                                              |             |               |                   | O 1                                  |
| 50             | TAB_STATUS                   | See 3.8.2, Table 55.       |                      |           |          |         |                                              |             |               | O 1               |                                      |
| 51             | TAB_ACTUAL_NUMBER            |                            | See 3.8.2, Table 55. |           |          |         |                                              |             |               | O 1               |                                      |
| 52-61          | Reserved by PNO              |                            |                      |           |          |         |                                              |             |               |                   | М                                    |

<sup>&</sup>lt;sup>1</sup> These parameters are mandatory if LIN\_TYPE=1 (linearisation table) is supported.

Copyright © PNO e.V. 2004. All Rights reserved.

| Relative Index | Parameter<br>Name                     | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|---------------|-------------------|--------------------------------------|
| 62             | First manufacturer specific parameter |             |           |       |      |        |                                              |             |               |                   | 0                                    |

Table 97. Parameter Attributes of the Temperature Transducer Block General Parameters

### 16.1.3.2 Parameter Attributes of the Additional Parameters for Thermocouple Devices

| Relative<br>Index | Parameter<br>Name                               | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default<br>Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|-------------------------------------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|------------------|-------------------|--------------------------------------|
| Star              | Standard Parameters see General Requirements    |             |           |       |      |        |                                              |             |                  |                   |                                      |
| Gen               | General Temperature Transducer Block Parameters |             |           |       |      |        |                                              |             |                  |                   |                                      |
|                   |                                                 |             |           |       |      |        |                                              |             |                  |                   |                                      |
| Additio           | nal Parameters for Thermocou                    | ıple Device | s         |       |      |        |                                              |             |                  |                   |                                      |
| 33                | RJ_TEMP                                         | Simple      | Float     | D     | 4    | r      | C/a                                          | -           |                  |                   | 0                                    |
| 34                | RJ_TYPE                                         | Simple      | Unsigned8 | S     | 1    | r,w    | C/a                                          | F           |                  | 6                 | М                                    |
| 35                | EXTERNAL_RJ_VALUE                               | Simple      | Float     | S     | 4    | r,w    | C/a                                          | F           |                  |                   | O 1                                  |
| 36-44             | Reserved by PNO <sup>2</sup>                    |             |           |       |      |        |                                              |             |                  |                   |                                      |

Table 98. Parameter Attributes of the Additional Parameters for Thermocouple Devices

### 16.1.3.3 Parameter Attributes of the Additional Parameters for Thermoresistance Devices

| Relative<br>Index | Parameter<br>Name                               | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default<br>Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|-------------------------------------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|------------------|-------------------|--------------------------------------|
| Star              | Standard Parameters see General Requirements    |             |           |       |      |        |                                              |             |                  |                   |                                      |
| Gen               | General Temperature Transducer Block Parameters |             |           |       |      |        |                                              |             |                  |                   |                                      |
|                   |                                                 |             |           |       |      |        |                                              |             |                  |                   |                                      |
| Additio           | nal Parameters for Thermores                    | sistance De | vices     |       |      |        |                                              |             |                  |                   |                                      |
| 33-35             | Reserved by PNO <sup>3</sup>                    |             |           |       |      |        |                                              |             |                  |                   |                                      |
| 36                | SENSOR_CONNECTION                               | Simple      | Unsigned8 | S     | 1    | r,w    | C/a                                          | F           |                  | 7                 | М                                    |
| 37                | COMP_WIRE1                                      | Simple      | Float     | S     | 4    | r,w    | C/a                                          | F           | 0.0              | 8                 | М                                    |
| 38                | COMP_WIRE2                                      | Simple      | Float     | S     | 4    | r,w    | C/a                                          | F           | 0.0              |                   | O 1                                  |

<sup>&</sup>lt;sup>1</sup> EXTERNAL\_RJ\_VALUE is mandatory if RJ\_TYPE=2 (External) is supported.

<sup>&</sup>lt;sup>2</sup> The addional parameters for thermoresistance and optical pyrometer devices may optionally be used. Otherwise these indices must not be used.

<sup>&</sup>lt;sup>3</sup> The additional parameters for thermocouple devices may optionally be used. Otherwise these indices must not be used.

| Relative<br>Index | Parameter<br>Name            | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default<br>Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|------------------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|------------------|-------------------|--------------------------------------|
| 39-44             | Reserved by PNO <sup>2</sup> |             |           |       |      |        |                                              |             |                  |                   |                                      |

Table 99. Parameter Attributes of the Additional Parameters for Thermoresistance Devices

 $<sup>^{1}</sup>$  COMP\_WIRE2 is mandatory if SENSOR\_MEAS\_TYPE  $\!\!\ge\!\!128$  is supported.

<sup>&</sup>lt;sup>2</sup> The additional parameters for optical pyrometer devices may optionally be used. Otherwise these indices must not be used.

### 16.1.3.4 Parameter Attributes of the Additional Parameters for Optical Pyrometer Devices

| Relative<br>Index | Parameter<br>Name                               | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default<br>Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|-------------------|-------------------------------------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|------------------|-------------------|--------------------------------------|
| Star              | Standard Parameters see General Requirements    |             |           |       |      |        |                                              |             |                  |                   |                                      |
| Gen               | General Temperature Transducer Block Parameters |             |           |       |      |        |                                              |             |                  |                   |                                      |
|                   |                                                 |             |           |       |      |        |                                              |             |                  |                   |                                      |
| Additio           | nal Parameters for Optical Pyr                  | ometer Dev  | vices     |       |      |        |                                              |             |                  |                   |                                      |
| 33-38             | Reserved by PNO <sup>1</sup>                    |             |           |       |      |        |                                              |             |                  |                   |                                      |
| 39                | EMISSIVITY                                      | Simple      | Float     | S     | 4    | r,w    | C/a                                          | F           | 100.0            | 9                 | М                                    |
| 40                | PEAK_TRACK                                      | Simple      | Unsigned8 | S     | 1    | r,w    | C/a                                          | F           | 0                | 10                | М                                    |
| 41                | DECAY_RATE                                      | Simple      | Float     | S     | 4    | r,w    | C/a                                          | F           |                  | 11                | М                                    |
| 42                | PEAK_TIME                                       | Simple      | Float     | S     | 4    | r,w    | C/a                                          | F           |                  | 12                | М                                    |
| 43                | TRACK_HOLD                                      | Simple      | Unsigned8 | S     | 1    | r,w    | C/a                                          | F           | 0                | 13                | М                                    |
| 44                | SPECT_FILT_SET                                  | Simple      | Unsigned8 | S     | 1    | r,w    | C/a                                          | F           | 0                | 14                | М                                    |

Table 100. Parameter Attributes of the Additional Parameters for Optical Pyrometer Devices

### 16.1.4 View Object of the Temperature Transducer Block

| Relative<br>Index | Parameter Name      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------|--------|--------|--------|--------|
| 8                 | PRIMARY_VALUE       | 5      |        |        |        |
| 9                 | PRIMARY_VALUE_UNIT  |        |        |        |        |
| 10                | SECONDARY_VALUE_1   |        |        |        |        |
| 11                | SECONDARY_VALUE_2   |        |        |        |        |
| 12                | SENSOR_MEAS_TYPE    |        |        |        |        |
| 13                | INPUT_RANGE         |        |        |        |        |
| 14                | LIN_TYPE            |        |        |        |        |
| 19                | BIAS_1              |        |        |        |        |
| 20                | BIAS_2              |        |        |        |        |
| 21                | UPPER_SENSOR_LIMIT  |        |        |        |        |
| 22                | LOWER_SENSOR_LIMIT  |        |        |        |        |
| 24                | INPUT_FAULT_GEN     | 1      |        |        |        |
| 25                | INPUT_FAULT_1       | 1      |        |        |        |
| 26                | INPUT_FAULT_2       |        |        |        |        |
| 27                | SENSOR_WIRE_CHECK_1 |        |        |        |        |
| 28                | SENSOR_WIRE_CHECK_2 |        |        |        |        |

<sup>&</sup>lt;sup>1</sup> The additional parameters for thermocouple and thermoresistance devices are optional. Otherwise these indices must not be used.

Copyright © PNO e.V. 2004. All Rights reserved.

.

| Relative<br>Index | Parameter Name                                                      | View_1  | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|---------|--------|--------|--------|
| 29                | MAX_SENSOR_VALUE_1                                                  |         |        |        |        |
| 30                | MIN_SENSOR_VALUE_1                                                  |         |        |        |        |
| 31                | MAX_SENSOR_VALUE_2                                                  |         |        |        |        |
| 32                | MIN_SENSOR_VALUE_2                                                  |         |        |        |        |
| 33                | RJ_TEMP                                                             |         |        |        |        |
| 34                | RJ_TYPE                                                             |         |        |        |        |
| 35                | EXTERNAL_RJ_VALUE                                                   |         |        |        |        |
| 36                | SENSOR_CONNECTION                                                   |         |        |        |        |
| 37                | COMP_WIRE1                                                          |         |        |        |        |
| 38                | COMP_WIRE2                                                          |         |        |        |        |
| 39                | EMISSIVITY                                                          |         |        |        |        |
| 40                | PEAK_TRACK                                                          |         |        |        |        |
| 41                | DECAY_RATE                                                          |         |        |        |        |
| 42                | PEAK_TIME                                                           |         |        |        |        |
| 43                | TRACK_HOLD                                                          |         |        |        |        |
| 44                | SPECT_FILT_SET                                                      |         |        |        |        |
| 45                | TAB_ENTRY                                                           |         |        |        |        |
| 46                | TAB_X_Y_VALUE                                                       |         |        |        |        |
| 47                | TAB_MIN_NUMBER                                                      |         |        |        |        |
| 48                | TAB_MAX_NUMBER                                                      |         |        |        |        |
| 49                | TAB_OP_CODE                                                         |         |        |        |        |
| 50                | TAB_STATUS                                                          |         |        |        |        |
| 51                | TAB_ACTUAL_NUMBER                                                   |         |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard parameter bytes) | 20 + 13 |        |        |        |

Table 101. View Object of the Temperature Transducer Block

#### 16.2 Pressure

#### 16.2.1 Pressure Transducer Block Overview

This document describes the specific aspects of pressure measurement used in the process control.

The Standard Pressure Profile describes base sets of parameters and characteristics common to pressure measurement. This transducer described is limited in scope to a single type of measurement.

A pressure transducer computes its output using primary sensor data and parameters. The calculation can be modeled using the following steps: The manufacturer-specific Signal Compensation and Linearisation process, Trim, Limit Checking, Primary Value to Eng. Unit Convertion and Alarming processes.



Figure 38. Pressure Transducer Block

#### Calibration

This information is provided to recommend parameters for a common user calibration method for pressure transmitters.

The calibration process is used to match the channel value reading with the applied input. The calibration of the sensor itself is not changed, because that is a factory procedure. Six parameters are defined to configure this process: CAL\_POINT\_HI, CAL\_POINT\_LO, CAL\_MIN\_SPAN, SENSOR\_UNIT, SENSOR\_HI\_LIM and SENSOR\_LO\_LIM. The CAL\_\* parameters define the highest and lowest calibrated values for this sensor, and the minimum allowable span value for calibration (if necessary). SENSOR\_UNIT allows the user to select different units for calibration purposes other than the units defined by PRIMARY VALUE UNIT.

The SENSOR\_HI\_LIM and SENSOR\_LO\_LIM parameter defines the maximum and minimum values the sensor is capable of indicating, according to SENSOR\_UNIT used as it can be seen in Figure 39 below.



Figure 39. Sensor Calibration

#### **Linearisation Functions**



Figure 40. Pressure Transducer Block Function: Pressure



Figure 41. Pressure Transducer Block Function: Flow



Figure 42. Pressure Transducer Block Function: Level



Figure 43. Flow: Square Root Function

## 16.2.2 Parameter Description of the Pressure Transducer Block

| Parameter           | Description                                                                                                                                                                                                                                                    |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAL_MIN_SPAN        | This parameter contains the minimum calibration span value allowed. This minimum span information is necessary to ensure that when calibration is done, the two calibrated points (high and low) are not too close together. Unit is derived from SENSOR_UNIT. |
| CAL_POINT_HI        | This parameter contains the highest calibrated value. For calibration of the high limit point give the high measurement value (pressure) to the sensor and transfer this point as HIGH to the transmitter. Unit is derived from SENSOR_UNIT.                   |
| CAL_POINT_LO        | This parameter contains the lowest calibrated value. For calibration of the low limit point give the low measurement value (pressure) to the sensor and transfer this point as LOW to the transmitter. Unit is derived from SENSOR_UNIT.                       |
| FLOW_LIN_SQRT_POINT | This is the point of the flow function where the curve changes from linear to square root function. The input has to be done in percent of flow.                                                                                                               |
| LIN_TYPE            | See General Requirements                                                                                                                                                                                                                                       |
| LOW_FLOW_CUT_OFF    | This is the point in percent of flow until the output of the flow function is set to zero. It is used for suppressing low flow values.                                                                                                                         |

| Parameter                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| MAX_SENSOR_VALUE                | Holds the maximum process SENSOR_VALUE. The unit is defined in SENSOR_UNIT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| MIN_SENSOR_VALUE                | olds the minimum process SENSOR_VALUE. The unit is defined in ENSOR_UNIT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| MAX_TEMPERATURE                 | Holds the maximum temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| MIN_TEMPERATURE                 | Holds the minimum temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| PRIMARY_VALUE                   | This parameter contains the measured value and status available to the Function Block. The unit of PRIMARY_VALUE is the PRIMARY_VALUE_UNIT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| PRIMARY_VALUE_TYPE              | This parameter contains the application of the pressure device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                 | Coding:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                 | 0: Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                 | 1: Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                 | 2: Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                 | 3: Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                 | 4-127: reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                 | > 128: manufacturer specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| PRIMARY_VALUE_UNIT              | This parameter contains the engineering unit code for the primary value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                 | The minimum set of unit codes for pressure is: kPa (1133), bar (1137), psi (1141), inHg (1155). If the device supports flow or level measurements the corresponding units have to be supported, too. The minimum set of unit codes for volume flow is: m³/h (1349), L/s (1351), CFM – cubic feet per minute (1357), GMP - US gallon per minute (1363). The minimum set of unit codes for mass flow is: kg/s (1322), lb/s (1330). The minimum set of unit codes for level is: % (1342), m (1010), ft (1018). The minimum set of unit codes for volume is: m³ (1034), L (1038),cf³ - cubic feet (1043),GMP - US gallon (1048). The coding is in accordance to the table of Unit Codes given in the General Requirements. |  |  |  |  |  |
|                                 | This parameter contains the engineering units code for the primary value according to PRIMARY_VALUE_TYPE. An automatic adjustment of Primary_Value_Unit within the devices is optional.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| PROCESS_<br>CONNECTION_MATERIAL | This parameter contains the index code for the material of the process connection.  The coding is in accordance to the table of Material Codes given in the General Requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| PROCESS_<br>CONNECTION_TYPE     | This parameter contains the material code for the type of process connection. The index code is manufacturer specific.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| SCALE_IN                        | This is the input conversion of the Pressure into SECONDARY_VALUE_2 using the high and low scale. The related unit is the SECONDARY_VALUE_1_UNIT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| SCALE_OUT                       | This is the output conversion of the linearisated value using the high and low scale. The related unit is the PRIMARY_VALUE_UNIT. It is in accordance to the table of Units Codes given in the General Requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| SECONDARY_VALUE_1               | This parameter contains the Pressure value and status available to the Function Block.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |

| Parameter                      | Description                                                                                                                                                                                                 |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SECONDARY_VALUE_1_             | This parameter contains the pressure units of the SECONDARY_VALUE_1. The                                                                                                                                    |
| UNIT                           | minimum set of unit codes for pressure is: kPa (1133), bar (1137), psi (1141), inHg (1155). It is in accordance to the table of Units Codes given in the General Requirements.                              |
| SECONDARY_VALUE_2              | This parameter contains the measured value after input scaling and status available to the Function Block. The parameter contains the normalised pressure value without engineering unit.                   |
| SECONDARY_VALUE_2_<br>UNIT     | This parameter contains the units of the SECONDARY_VALUE_2. It is fixed to None, i.e. the value of this parameter is equal to 1997.                                                                         |
| SENSOR_DIAPHRAGM_<br>MATERIAL  | This parameter contains the index code for the material of the diaphragm, which comes in contact with the process media.                                                                                    |
| SENSOR_FILL_FLUID              | This parameter contains the index code for the fillfluid inside the sensor. The index code is manufacture specific.                                                                                         |
| SENSOR_HI_LIM                  | This parameter contains the sensor upper limit value. Unit is derived from SENSOR_UNIT.                                                                                                                     |
| SENSOR_LO_LIM                  | This parameter contains the sensor lower limit value. Unit is derived from SENSOR_UNIT.                                                                                                                     |
| SENSOR_MAX_STATIC_<br>PRESSURE | This parameter contains the maximum static pressure value for the sensor. Unit is derived from SENSOR_UNIT.                                                                                                 |
| SENSOR_O_RING_<br>MATERIAL     | This parameter contains the index code for the material of the o-ring between the diaphragm and process connection.                                                                                         |
| SENSOR_SERIAL_<br>NUMBER       | This parameter contains the sensor serial number.                                                                                                                                                           |
| SENSOR_TYPE                    | This parameter contains the index code for the sensor type described in manufacturer's specific tables.                                                                                                     |
| SENSOR_UNIT                    | This parameter contains the engineering units index code for the calibration values. SENSOR_UNIT must be a subset of the interchangeable part of the Pressure unit.                                         |
| SENSOR_VALUE                   | This parameter contains the raw sensor value. This is the uncalibrated measurement value from the sensor. Unit is derived from SENSOR_UNIT.                                                                 |
| TAB_ACTUAL_NUMBER              | See 3.8.1, Table Table 54.                                                                                                                                                                                  |
| TAB_INDEX                      | See 3.8.1, Table Table 54.                                                                                                                                                                                  |
| TAB_MAX_NUMBER                 | See 3.8.1, Table Table 54.                                                                                                                                                                                  |
| TAB_MIN_NUMBER                 | See 3.8.1, Table Table 54.                                                                                                                                                                                  |
| TAB_OP_CODE                    | See 3.8.1, Table Table 54.                                                                                                                                                                                  |
| TAB_STATUS                     | See 3.8.1, Table Table 54.                                                                                                                                                                                  |
| TAB_X_Y_VALUE                  | See 3.8.1, Table Table 54.                                                                                                                                                                                  |
| TEMPERATURE                    | This parameter contains the temperature (e.g. sensor temperature used for measurement compensation) with the associated status used within the transducer. The unit of TEMPERATURE is the TEMPERATURE_UNIT. |

| Parameter        | Description                                                                                                                                                                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEMPERATURE_UNIT | This parameter contains the units of the temperature. The minimum set of unit codes for volume flow is: K (1000), °C (1001), °F (1002). The coding is in accordance to the table of Units Codes given in the General Requirements. |
| TRIMMED_VALUE    | This parameter contains the sensor value after the trim processing. Unit is derived from SENSOR_UNIT.                                                                                                                              |

Table 102. Parameter Description of the Pressure Transducer Block

## 16.2.3 Parameter Attributes of the Pressure Transducer Block

| Relative Index | Parameter<br>Name               | Object Type | Data Type  | Store  | Size     | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------|-------------|------------|--------|----------|--------|----------------------------------------------|-------------|---------------|-------------------|--------------------------------------|
| Star           | dard Parameters see General     | Requireme   | nts        | -      |          | -      |                                              |             |               | -                 |                                      |
|                |                                 |             |            |        |          |        |                                              |             |               |                   |                                      |
| Additio        | nal Pressure Transducer Bloo    | ck Paramete | ers        |        |          |        |                                              |             |               |                   |                                      |
| 8              | SENSOR_VALUE                    | Simple      | Float      | D      | 4        | r      | C/a                                          | -           | -             | -                 | M (B)                                |
| 9              | SENSOR_HI_LIM                   | Simple      | Float      | N      | 4        | r      | C/a                                          | ı           | -             | -                 | M (B)                                |
| 10             | SENSOR_LO_LIM                   | Simple      | Float      | N      | 4        | r      | C/a                                          | ı           | -             | -                 | M (B)                                |
| 11             | CAL_POINT_HI                    | Simple      | Float      | S      | 4        | r,w    | C/a                                          | F           | -             | -                 | M (B)                                |
| 12             | CAL_POINT_LO                    | Simple      | Float      | S      | 4        | r,w    | C/a                                          | F           | -             | -                 | M (B)                                |
| 13             | CAL_MIN_SPAN                    | Simple      | Float      | N      | 4        | r      | C/a                                          | ı           | -             | -                 | M (B)                                |
| 14             | SENSOR_UNIT                     | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | F           | -             | 2                 | M (B)                                |
| 15             | TRIMMED_VALUE                   | Record      | 101        | D      | 5        | r      | C/a                                          | ı           | -             | -                 | M (B)                                |
| 16             | SENSOR_TYPE                     | Simple      | Unsigned16 | N      | 2        | r      | C/a                                          | ı           | -             | -                 | M (B)                                |
| 17             | SENSOR_SERIAL_<br>NUMBER        | Simple      | Unsigned32 | N      | 4        | r      | C/a                                          | i           | 1             | -                 | M (B)                                |
| 18             | PRIMARY_VALUE                   | Record      | 101        | D      | 5        | r      | C/a                                          | ı           | -             | -                 | M (B)                                |
| 19             | PRIMARY_VALUE_UNIT              | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | F           | -             | 3                 | M (B)                                |
| 20             | PRIMARY_VALUE_TYPE              | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | _           | -             | -                 | M (B)                                |
| 21             | SENSOR_DIAPHRAGM_<br>MATERIAL   | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | -           | ı             | -                 | O (B)                                |
| 22             | SENSOR_FILL_FLUID               | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | I           | -             | -                 | O (B)                                |
| 23             | SENSOR_MAX_<br>STATIC_PRESSURE  | Simple      | Float      | N      | 4        | r      | C/a                                          | -           | -             | -                 | O (B)                                |
| 24             | SENSOR_O_RING_<br>MATERIAL      | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | I           | 1             | -                 | O (B)                                |
| 25             | PROCESS_<br>CONNECTION_TYPE     | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | I           | 1             | -                 | O (B)                                |
| 26             | PROCESS_<br>CONNECTION_MATERIAL | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | I           | -             | -                 | O (B)                                |
| 27             | TEMPERATURE                     | Record      | 101        | D      | 5        | r      | C/a                                          | -           | -             | -                 | O (B)                                |
| 28             | TEMPERATURE_<br>UNIT            | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | F           | 1             | 4                 | O (B)                                |
| 29             | SECONDARY_VALUE_1               | Record      | 101        | D      | 5        | r      | C/a                                          | ı           | -             | -                 | O (B)                                |
| 30             | SECONDARY_VALUE_1_<br>UNIT      | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | F           | -             | 5                 | O (B)                                |
| 31             | SECONDARY_VALUE_2               | Record      | 101        | D      | 5        | r      | C/a                                          | -           | -             | -                 | O (B)                                |
| 32             | SECONDARY_VALUE_2_<br>UNIT      | Simple      | Unsigned16 | S      | 2        | r,w    | C/a                                          | F           | 1             | 6                 | O (B)                                |
| 33             | LIN_TYPE                        |             |            | See 3. | 8.2, Tab | le 55. |                                              |             |               | 1                 | M (B)                                |

| Relative Index | Parameter<br>Name   | Object Type          | Data Type            | Store  | Size     | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value      | Download<br>Order  | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------|----------------------|----------------------|--------|----------|--------|----------------------------------------------|-------------|--------------------|--------------------|--------------------------------------|
| 34             | SCALE_IN            | Array                | Float 1              | S      | 8        | r,w    | C/a                                          | F           | -                  | 7                  | O (B)                                |
| 35             | SCALE_OUT           | Array                | Float 1              | S      | 8        | r,w    | C/a                                          | F           | -                  | 8                  | O (B)                                |
| 36             | LOW_FLOW_CUT_OFF    | Simple               | Float                | S      | 4        | r,w    | C/a                                          | F           | -                  | -                  | O (B)                                |
| 37             | FLOW_LIN_SQRT_POINT | Simple               | Float                | S      | 4        | r,w    | C/a                                          | F           | -                  | -                  | O (B)                                |
| 38             | TAB_ACTUAL_NUMBER   | See 3.8.2, Table 55. |                      |        |          |        |                                              | -           | O (B) <sup>2</sup> |                    |                                      |
| 39             | TAB_ENTRY           |                      | See 3.8.2, Table 55. |        |          |        |                                              | -           | O (B) <sup>2</sup> |                    |                                      |
| 40             | TAB_MAX_NUMBER      |                      | See 3.8.2, Table 55. |        |          |        |                                              |             |                    | -                  | O (B) <sup>2</sup>                   |
| 41             | TAB_MIN_NUMBER      |                      | See 3.8.2, Table 55. |        |          |        |                                              |             | -                  | O (B) <sup>2</sup> |                                      |
| 42             | TAB_OP_CODE         |                      |                      | See 3. | 8.2, Tab | le 55. |                                              |             |                    | -                  | O (B) <sup>2</sup>                   |
| 43             | TAB_STATUS          |                      |                      | See 3. | 8.2, Tab | le 55. |                                              |             |                    | -                  | O (B) <sup>2</sup>                   |
| 44             | TAB_X_Y_VALUE       |                      |                      | See 3. | 8.2, Tab | le 55. |                                              |             |                    | -                  | O (B) <sup>2</sup>                   |
| 45             | MAX_SENSOR_VALUE    | Simple               | Float                | Ν      | 4        | r,w    | C/a                                          | _           | -                  | -                  | O (B)                                |
| 46             | MIN_SENSOR_VALUE    | Simple               | Float                | Ν      | 4        | r,w    | C/a                                          | _           | -                  | -                  | O (B)                                |
| 47             | MAX_TEMPERATURE     | Simple               | Float                | N      | 4        | r,w    | C/a                                          | Ι           | -                  | -                  | O (B)                                |
| 48             | MIN_TEMPERATURE     | Simple               | Float                | N      | 4        | r,w    | C/a                                          | Ι           | -                  | -                  | O (B)                                |
| 49-58          | Reserved by PNO     | -                    | -                    | -      | -        | -      | -                                            |             | -                  | -                  | -                                    |

Table 103. Parameter Attributes of the Pressure Transducer Block

## 16.2.4 View Object of the Pressure Transducer Block

| Relative<br>Index | Parameter Name       | View_1 | View_2 | View_3 | View_4 |
|-------------------|----------------------|--------|--------|--------|--------|
| 8                 | SENSOR_VALUE         |        |        |        |        |
| 9                 | SENSOR_HI_LIM        |        |        |        |        |
| 10                | SENSOR_LO_LIM        |        |        |        |        |
| 11                | CAL_POINT_HI         |        |        |        |        |
| 12                | CAL_POINT_LO         |        |        |        |        |
| 13                | CAL_MIN_SPAN         |        |        |        |        |
| 14                | SENSOR_UNIT          |        |        |        |        |
| 15                | TRIMMED_VALUE        |        |        |        |        |
| 16                | SENSOR_TYPE          |        |        |        |        |
| 17                | SENSOR_SERIAL_NUMBER |        |        |        |        |
| 18                | PRIMARY_VALUE        | 5      |        |        |        |
| 19                | PRIMARY_VALUE_UNIT   |        |        |        |        |
| 20                | PRIMARY_VALUE_TYPE   |        |        |        |        |

 $<sup>^{\</sup>rm 1}$  First Float value: value at EU of 100%, Second Float value: value at EU of 0%

 $<sup>^{\</sup>rm 2}$  These parameters are mandatory if LIN\_TYPE=1 (linearisation table) is supported.

| Relative<br>Index | Parameter Name                                                     | View_1 | View_2 | View_3 | View_4 |
|-------------------|--------------------------------------------------------------------|--------|--------|--------|--------|
| 21                | SENSOR_DIA PHRAGM_MATERIAL                                         |        |        |        |        |
| 22                | SENSOR_FILL_FLUID                                                  |        |        |        |        |
| 23                | SENSOR_MAX_STATIC_PRESSURE                                         |        |        |        |        |
| 24                | SENSOR_O_RING_MATERIAL                                             |        |        |        |        |
| 25                | PROCESS_CONNECTION_TYPE                                            |        |        |        |        |
| 26                | PROCESS_CONNECTION_MATERIAL                                        |        |        |        |        |
| 27                | TEMPERATURE                                                        |        |        |        |        |
| 28                | TEMPERATURE_UNIT                                                   |        |        |        |        |
| 29                | SECONDARY_VALUE_1                                                  |        |        |        |        |
| 30                | SECONDARY_VALUE_1_UNIT                                             |        |        |        |        |
| 31                | SECONDARY_VALUE_2                                                  |        |        |        |        |
| 32                | SECONDARY_VALUE_2_UNIT                                             |        |        |        |        |
| 33                | LIN_TYPE                                                           |        |        |        |        |
| 34                | SCALE_IN                                                           |        |        |        |        |
| 35                | SCALE_OUT                                                          |        |        |        |        |
| 36                | LOW_FLOW_CUT_OFF                                                   |        |        |        |        |
| 37                | FLOW_LIN_SQRT_POINT                                                |        |        |        |        |
| 38                | TAB_ACTUAL_NUMBER                                                  |        |        |        |        |
| 39                | TAB_INDEX                                                          |        |        |        |        |
| 40                | TAB_MAX_NUMBER                                                     |        |        |        |        |
| 41                | TAB_MIN_NUMBER                                                     |        |        |        |        |
| 42                | TAB_OP_CODE                                                        |        |        |        |        |
| 43                | TAB_STATUS                                                         |        |        |        |        |
| 44                | TAB_X_Y_VALUE                                                      |        |        |        |        |
| 45                | MAX_SENSOR_VALUE                                                   |        |        |        |        |
| 46                | MIN_SENSOR_VALUE                                                   |        |        |        |        |
| 47                | MAX_TEMPERATURE                                                    |        |        |        |        |
| 48                | MIN_TEMPERATURE                                                    |        |        |        |        |
| -                 | Overall sum of bytes in View-Object (+13 Standard parameter bytes) | 5 + 13 |        |        |        |

Table 104. View Object of the Pressure Transducer Block

## 2.2.5 Assignment of Dynamic Variables for Pressure Devices

| Application            | Transducer Output |                       |                       |             |  |  |  |
|------------------------|-------------------|-----------------------|-----------------------|-------------|--|--|--|
| PRIMARY_<br>VALUE_TYPE | PRIMARY_<br>VALUE | SECONDARY_<br>VALUE_1 | SECONDARY_<br>VALUE_2 | TEMPERATURE |  |  |  |
| Pressure               | Pressure          | _                     | _                     | Temperature |  |  |  |
| Flow                   | Flow              | Pressure              | _                     | Temperature |  |  |  |

| Application            | Transducer Output |          |                        |             |  |  |
|------------------------|-------------------|----------|------------------------|-------------|--|--|
| PRIMARY_<br>VALUE_TYPE | PRIMARY_<br>VALUE | _   _    |                        | TEMPERATURE |  |  |
| Level                  | Level             | Pressure | _                      | Temperature |  |  |
| Volume                 | Volume            | Pressure | Normalised<br>Pressure | Temperature |  |  |

**Table 105. Assignment of Dynamic Variables for Pressure Devices** 

#### 16.3 Level

#### 16.3.1 Level Transducer Block Overview

The Level Transducer Block describes the basic set of parameters for level devices. The following diagrams define the basic functional interrelation of the parameters.



(\*) Maintenance Information is additional information which has no influence on the Primary\_Value

Figure 44. Functional Diagram of the Level Transducer Block



Figure 45. Transfer Function Level Calibration



Figure 46. Functional Diagram of Linearisation



Figure 47. Application Example for Radar Level



Hydrostatic Level Devices can be calibrated online or offline. (SENSOR\_VALUE is used for the levelcalibration; CAL\_TYPE = 1, Online)

Figure 48. Application Example for Hydrostatic Level



Capacity Level Devices are calibrated online. (SENSOR\_VALUE is used for the level calibration; CAL\_TYPE = 1, Online)

Figure 49. Application Example for Capacitance Level

# 16.3.2 Parameter Description of the Level Transducer Block

| Description                                                                                                                                                                                                                                   |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Cal_Point_Hi is the upper calibrated point of the Sensor_Value. It refers to Level_Hi. The unit is defined in Sensor_Unit.                                                                                                                    |  |  |  |
| Cal_Point_Lo is the lower calibrated point of the Sensor_Value. It refers to Level_Lo. The unit is defined in Sensor_Unit.                                                                                                                    |  |  |  |
| Defines the type of calibration.                                                                                                                                                                                                              |  |  |  |
| Coding:                                                                                                                                                                                                                                       |  |  |  |
| <ul><li>0: Dry; no influence of the sensor value on level calibration.</li><li>Mandatory for Radar Devices</li><li>1: online; current sensor value determines level calibration.</li></ul>                                                    |  |  |  |
| Level derives directly from Sensor_Value by a linear transformation using Level_hi, Level_Lo, Cal_Point_Hi, Cal_Point_Lo and Sensor_Offset. The unit is defined in Level_Unit.                                                                |  |  |  |
| Level_Hi is the value of Level at Cal_Point_Hi. The unit is defined in Level_Unit.                                                                                                                                                            |  |  |  |
| When writing LEVEL_HI and Cal_Type = 1 the Cal_Point_Hi is automatically set to Sensor_Value.                                                                                                                                                 |  |  |  |
| Level_Lo is the value of Level at Cal_Point_Lo. The unit is defined in Level_Unit.                                                                                                                                                            |  |  |  |
| When writing LEVEL_LO and Cal_Type = 1 the Cal_Point_Lo is automatically set to Sensor_Value.                                                                                                                                                 |  |  |  |
| Level_Offset is a constant offset that is added after the transfer function of Level_Calibration. The unit is defined in Level_Unit.                                                                                                          |  |  |  |
| Selected unit code for Level, Level_Hi, Level_Lo and Cyl_Diameter.                                                                                                                                                                            |  |  |  |
| Mandatory: %, m, ft                                                                                                                                                                                                                           |  |  |  |
| Diameter for cylindric lying or spherical container in Level_units                                                                                                                                                                            |  |  |  |
| It is used when linearisation type = 20 or 21.                                                                                                                                                                                                |  |  |  |
| Lin_Volume is the complete volume of the cylindric lying or spherical container.                                                                                                                                                              |  |  |  |
| It is used when linearisation type = 20 or 21. The unit is defined in Primary_Value_Unit.                                                                                                                                                     |  |  |  |
| Holds the maximum process Sensor_Value. The unit is defined in Sensor_Unit.                                                                                                                                                                   |  |  |  |
| Holds the minimum process Sensor_Value. The unit is defined in Sensor_Unit.                                                                                                                                                                   |  |  |  |
| Holds the maximum process temperature.                                                                                                                                                                                                        |  |  |  |
| Holds the minimum process temperature.                                                                                                                                                                                                        |  |  |  |
| Primary_Value is the process value and the status of the Transducer Block and is the input for the analog input block. Primary_Value contains the same value as level when linearisation type = 0. The unit is defined in Primary_Value_Unit. |  |  |  |
| Selected unit code for Primary_Value and Cyl_Volume.                                                                                                                                                                                          |  |  |  |
| Mandatory: %, m, ft                                                                                                                                                                                                                           |  |  |  |
| Secondary_Value_1 is Level + Level_Offset and the status of the Transducer Block. The unit is defined in Secondary_Value_1_Unit. It can be connected to a second Analog Input Block.                                                          |  |  |  |
|                                                                                                                                                                                                                                               |  |  |  |

| Parameter          | Description                                                                                                                                                                                 |  |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| SECONDARY_VALUE_1_ | Selected unit code for Secondary_Value_1. It is the same as in Level_Unit.                                                                                                                  |  |  |  |  |  |
| UNIT               | Mandatory: %, m, ft                                                                                                                                                                         |  |  |  |  |  |
| SECONDARY_VALUE_2  | Secondary_Value_2 is Sensor_Value + Sensor_Offset and the status of the Transducer Block. The unit is defined in Secondary_Value_2_Unit. It can be connected to a third Analog Input Block. |  |  |  |  |  |
| SECONDARY_VALUE_2_ | Selected unit code for Secondary_Value_2. It is the same as in Sensor_Unit.                                                                                                                 |  |  |  |  |  |
| UNIT               | Mandatory for pressure: PA, mbar, psi, Mandatory for distance: m, ft.                                                                                                                       |  |  |  |  |  |
| SENSOR_HIGH_LIMIT  | Upper Process limit of the sensor in Sensor_Units.                                                                                                                                          |  |  |  |  |  |
| SENSOR_LOW_LIMIT   | Lower Process limit of the sensor in Sensor_Units.                                                                                                                                          |  |  |  |  |  |
| SENSOR_OFFSET      | Sensor_Offset is a constant offset that is added to the Sensor_Value. The unit is defined in Sensor_Unit.                                                                                   |  |  |  |  |  |
| SENSOR_UNIT        | Unit for Sensor_Value, Sensor_Low_Limit, Sensor_High_Limit, Cal_Point_Hi, Cal_Point_Lo, Max_Sensor_Value and Min_Sensor_Value                                                               |  |  |  |  |  |
|                    | Mandatory for pressure: PA, mbar, psi, Mandatory for distance: m, ft.                                                                                                                       |  |  |  |  |  |
| SENSOR_VALUE       | Sensor value is the physical value of the sensor.                                                                                                                                           |  |  |  |  |  |
| TEMPERATURE        | Process temperature.                                                                                                                                                                        |  |  |  |  |  |
| TEMPERATURE_UNIT   | Temperature unit. Selects the unit of Temperature, Max_Temperature, Min_Temperature.                                                                                                        |  |  |  |  |  |
| TAB_ENTRY          | See 3.8.1, Table Table 54.                                                                                                                                                                  |  |  |  |  |  |
| LIN_TYPE           | See 3.8.1, Table Table 54.                                                                                                                                                                  |  |  |  |  |  |
| TAB_X_Y_VALUE      | See 3.8.1, Table Table 54.                                                                                                                                                                  |  |  |  |  |  |
| TAB_MIN_NUMBER     | See 3.8.1, Table Table 54.                                                                                                                                                                  |  |  |  |  |  |
| TAB_MAX_NUMBER     | See 3.8.1, Table Table 54.                                                                                                                                                                  |  |  |  |  |  |
| TAB_OP_CODE        | See 3.8.1, Table Table 54.                                                                                                                                                                  |  |  |  |  |  |
| TAB_STATUS         | See 3.8.1, Table Table 54.                                                                                                                                                                  |  |  |  |  |  |
| TAB_ACTUAL_NUMBER  | See 3.8.1, Table Table 54.                                                                                                                                                                  |  |  |  |  |  |

Table 106. Parameter Description of the Level Transducer Block

## 16.3.3 Parameter Attributes of the Level Transducer Block

| Relative Index | Parameter<br>Name                            | Object Type | Data Type  | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|----------------|----------------------------------------------|-------------|------------|-------|------|--------|----------------------------------------------|-------------|---------------|-------------------|--------------------------------------|
| Star           | Standard Parameters see General Requirements |             |            |       |      |        |                                              |             |               |                   |                                      |
|                |                                              |             |            |       |      |        |                                              |             |               |                   |                                      |
| Additio        | Additional Level Transducer Block Parameters |             |            |       |      |        |                                              |             |               |                   |                                      |
| 8              | PRIMARY_VALUE                                | Record      | 101        | D     | 5    | r      | C/a                                          | -           | -             | -                 | M (B)                                |
| 9              | PRIMARY_VALUE_UNIT                           | Simple      | Unsigned16 | S     | 2    | r,w    | C/a                                          | F           | %             | 2                 | M (B)                                |

| Relative Index | Parameter<br>Name          | Object Type          | Data Type            | Store  | Size     | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class        | Default Value      | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|----------------|----------------------------|----------------------|----------------------|--------|----------|--------|----------------------------------------------|--------------------|--------------------|-------------------|--------------------------------------|
| 10             | LEVEL                      | Simple               | Float                | D      | 4        | r      | C/a                                          | -                  | -                  | -                 | M (B)                                |
| 11             | LEVEL_UNIT                 | Simple               | Unsigned16           | S      | 2        | r,w    | C/a                                          | F                  | %                  | 3                 | M (B)                                |
| 12             | SENSOR_VALUE               | Simple               | Float                | D      | 4        | r      | C/a                                          | -                  | -                  | -                 | M (B)                                |
| 13             | SENSOR_UNIT                | Simple               | Unsigned16           | S      | 2        | r,w    | C/a                                          | F                  | -                  | 4                 | M (B)                                |
| 14             | SECONDARY_VALUE_1          | Record               | 101                  | D      | 5        | r      | C/a                                          | ı                  | -                  | -                 | O (B)                                |
| 15             | SECONDARY_VALUE_1_<br>UNIT | Simple               | Unsigned16           | S      | 2        | r,w    | C/a                                          | F                  | -                  | -                 | O (B)                                |
| 16             | SECONDARY_VALUE_2          | Record               | 101                  | D      | 5        | r      | C/a                                          | -                  | -                  | -                 | O (B)                                |
| 17             | SECONDARY_VALUE_2_<br>UNIT | Simple               | Unsigned16           | S      | 2        | r,w    | C/a                                          | F                  | -                  | -                 | O (B)                                |
| 18             | SENSOR_OFFSET              | Simple               | Float                | S      | 4        | r,w    | C/a                                          | F                  | 0                  | 5                 | M (B)                                |
| 19             | CAL_TYPE                   | Simple               | Unsigned8            | S      | 1        | r,w    | C/a                                          | F                  | -                  | 7 <sup>1</sup>    | M (B)                                |
| 20             | CAL_POINT_LO               | Simple               | Float                | S      | 4        | r,w    | C/a                                          | F                  | -                  | 8 <sup>1</sup>    | M (B)                                |
| 21             | CAL_POINT_HI               | Simple               | Float                | S      | 4        | r,w    | C/a                                          | F                  | -                  | 9 <sup>1</sup>    | M (B)                                |
| 22             | LEVEL_LO                   | Simple               | Float                | S      | 4        | r,w    | C/a                                          | F                  | 0                  | 10 <sup>1</sup>   | M (B)                                |
| 23             | LEVEL_HI                   | Simple               | Float                | S      | 4        | r,w    | C/a                                          | F                  | 100                | 11 <sup>1</sup>   | M (B)                                |
| 24             | LEVEL_OFFSET               | Simple               | Float                | S      | 4        | r,w    | C/a                                          | F                  | 0                  | 6                 | M (B)                                |
| 25             | LIN_TYPE                   |                      |                      | See 3. | 8.2, Tab | le 55. |                                              |                    |                    | 1                 | M (B)                                |
| 26             | LIN_DIAMETER               | Simple               | Float                | S      | 4        | r,w    | C/a                                          | F                  | 100                | -                 | O (B)                                |
| 27             | LIN_VOLUME                 | Simple               | Float                | S      | 4        | r,w    | C/a                                          | F                  | 100                | -                 | O (B)                                |
| 28             | SENSOR_HIGH_LIMIT          | Simple               | Float                | С      | 4        | r      | C/a                                          | -                  | -                  | -                 | O (B)                                |
| 29             | SENSOR_LOW_LIMIT           | Simple               | Float                | С      | 4        | r      | C/a                                          | -                  | -                  | -                 | O (B)                                |
| 30             | MAX_SENSOR_VALUE           | Simple               | Float                | N      | 4        | r,w    | C/a                                          | I                  | -                  | -                 | O (B)                                |
| 31             | MIN_SENSOR_VALUE           | Simple               | Float                | N      | 4        | r,w    | C/a                                          | I                  | -                  | -                 | O (B)                                |
| 32             | TEMPERATURE                | Simple               | Float                | D      | 4        | r      | C/a                                          | -                  | -                  | -                 | O (B)                                |
| 33             | TEMPERATURE_UNIT           | Simple               | Unsigned16           | S      | 2        | r,w    | C/a                                          | F                  | °C                 | -                 | O (B)                                |
| 34             | MAX_TEMPERATURE            | Simple               | Float                | N      | 4        | r,w    | C/a                                          | I                  | -                  | -                 | O (B)                                |
| 35             | MIN_TEMPERATURE            | Simple               | Float                | N      | 4        | r,w    | C/a                                          | I                  | -                  | -                 | O (B)                                |
| 36             | TAB_ENTRY                  | See 3.8.2, Table 55. |                      |        |          |        |                                              | -                  | O (B) <sup>2</sup> |                   |                                      |
| 37             | TAB_X_Y_VALUE              | See 3.8.2, Table 55. |                      |        |          |        |                                              | -                  | O (B) <sup>2</sup> |                   |                                      |
| 38             | TAB_MIN_NUMBER             | See 3.8.2, Table 55. |                      |        |          |        | -                                            | O (B) <sup>2</sup> |                    |                   |                                      |
| 39             | TAB_MAX_NUMBER             | See 3.8.2, Table 55. |                      |        |          |        | -                                            | O (B) <sup>2</sup> |                    |                   |                                      |
| 40             | TAB_OP_CODE                | See 3.8.2, Table 55. |                      |        |          |        | -                                            | O (B) <sup>2</sup> |                    |                   |                                      |
| 41             | TAB_STATUS                 |                      | See 3.8.2, Table 55. |        |          |        |                                              | -                  | O (B) <sup>2</sup> |                   |                                      |
| 42             | TAB_ACTUAL_NUMBER          |                      |                      | See 3. | 8.2, Tab | le 55. | <del>,</del>                                 |                    | 1                  | -                 | O (B) <sup>2</sup>                   |
| 43-52          | Reserved by PNO            |                      |                      |        |          |        |                                              |                    |                    |                   | M (A,B)                              |

<sup>1</sup> Download only allowed if CAL\_TYPE = 0.

<sup>&</sup>lt;sup>2</sup> These parameters are mandatory if LIN\_TYPE = 1 (linearisation table) is supported.

| Relative Index | Parameter<br>Name                     | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|---------------|-------------------|--------------------------------------|
| 53             | First manufacturer specific parameter |             |           |       |      |        |                                              |             |               |                   | O (A,B)                              |

Table 107. Parameter Attributes of the Level Transducer Block

# 16.3.4 View Object of the Level Transducer Block

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 8                 | PRIMARY_VALUE                                                       | 5      |        |        |        |
| 9                 | PRIMARY_VALUE_UNIT                                                  |        |        |        |        |
| 10                | LEVEL                                                               | 4      |        |        |        |
| 11                | LEVEL_UNIT                                                          |        |        |        |        |
| 12                | SENSOR_VALUE                                                        |        |        |        |        |
| 13                | SENSOR_UNIT                                                         |        |        |        |        |
| 14                | SECONDARY_VALUE_1                                                   |        |        |        |        |
| 15                | SECONDARY_VALUE_1_UNIT                                              |        |        |        |        |
| 16                | SECONDARY_VALUE_2                                                   |        |        |        |        |
| 17                | SECONDARY_VALUE_2_UNIT                                              |        |        |        |        |
| 18                | SENSOR_OFFSET                                                       |        |        |        |        |
| 19                | CAL_TYPE                                                            |        |        |        |        |
| 20                | CAL_POINT_LO                                                        |        |        |        |        |
| 21                | CAL_POINT_HI                                                        |        |        |        |        |
| 22                | LEVEL_LO                                                            |        |        |        |        |
| 23                | LEVEL_HI                                                            |        |        |        |        |
| 24                | LEVEL_OFFSET                                                        |        |        |        |        |
| 25                | LIN_TYPE                                                            |        |        |        |        |
| 26                | LIN_DIAMETER                                                        |        |        |        |        |
| 27                | LIN_VOLUME                                                          |        |        |        |        |
| 28                | SENSOR_HIGH_LIMIT                                                   |        |        |        |        |
| 29                | SENSOR_LOW_LIMIT                                                    |        |        |        |        |
| 30                | MAX_SENSOR_VALUE                                                    |        |        |        |        |
| 31                | MIN_SENSOR_VALUE                                                    |        |        |        |        |
| 32                | TEMPERATURE                                                         |        |        |        |        |
| 33                | TEMPERATURE_UNIT                                                    |        |        |        |        |
| 34                | MAX_TEMPERATURE                                                     |        |        |        |        |
| 35                | MIN_TEMPERATURE                                                     |        |        |        |        |
| 36                | TAB_ENTRY                                                           |        |        |        |        |
| 37                | TAB_X/Y_VALUE                                                       |        |        |        |        |
| 38                | TAB_MIN_NUMBER                                                      |        |        |        |        |
| 39                | TAB_MAX_NUMBER                                                      |        |        |        |        |
| 40                | TAB_OP_CODE                                                         |        |        |        |        |
| 41                | TAB_STATUS                                                          |        |        |        |        |
| 42                | TAB_ACTUAL_NUMBER                                                   |        |        |        |        |
| -                 | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 9 + 13 |        |        |        |

Table 108. View Object of the Level Transducer Block

#### 16.4 Flow

#### 16.4.1 Flow Transducer Block Overview

The flow Transducer Block describes the basic set of parameters for flow devices. The mandatory set of parameters for several measuring principles is described in the following chapter. The following diagram shows the functional interrelation of the parameters.



Figure 50. Functional Diagram of the Flow Transducer Block

#### 16.4.2 Flow Transducer Block Parameter Description

The parameters of the flow Transducer Block depend on the type of flow meter. The following table gives an overview of the allocation of parameters. Parameters are defined for electromagnetic, coriolis, vortex, thermal, ultrasonic and variable area flow meters and differential pressure transmitters, in case they are applied for flow measurement (e.g. orifice plate). The following table assigns each parameter for use to one of the flow meter types. For this types all parameters are mandatory.

| Parameter          |                      | Type of flow Meter |        |                 |                 |                  |
|--------------------|----------------------|--------------------|--------|-----------------|-----------------|------------------|
|                    | Electro-<br>magnetic | Coriolis           | Vortex | Thermal<br>Mass | Ultra-<br>sonic | Variable<br>Area |
| CALIBR_FACTOR      | Х                    | Х                  | Х      | Х               | Х               | Х                |
| NOMINAL_SIZE       | Х                    | Х                  | Х      | Х               | Х               | Х                |
| NOMINAL_SIZE_UNITS | Х                    | Х                  | Х      | Х               | Х               | Х                |
| LOW_FLOW_CUTOFF    | Х                    | Х                  | Х      | Х               | Х               | Х                |
| FLOW_DIRECTION     | Х                    | Х                  |        |                 | Х               |                  |
| ZERO_POINT         | Х                    | Х                  |        | Х               | Х               | Х                |
| ZERO_POINT_ADJUST  | Х                    | Х                  |        | Х               | Х               | Х                |
| ZERO_POINT_UNIT    | Х                    | Х                  |        | Х               | Х               | Х                |
| MEASUREMENT_MODE   | Х                    | Х                  |        |                 | Х               |                  |
| SAMPLING_FREQUENCY | Х                    |                    |        |                 |                 |                  |

| Parameter               | arameter Type of flow Meter |          |        |                 |                 |                  |
|-------------------------|-----------------------------|----------|--------|-----------------|-----------------|------------------|
|                         | Electro-<br>magnetic        | Coriolis | Vortex | Thermal<br>Mass | Ultra-<br>sonic | Variable<br>Area |
| SAMPLING_FREQ_UNITS     | Х                           |          |        |                 |                 |                  |
| VOLUME_FLOW             | Х                           |          | Х      |                 | Х               | Х                |
| VOLUME_FLOW_LO_LIMIT    | Х                           |          | Х      |                 | Х               | Х                |
| VOLUME_FLOW_HI_LIMIT    | Х                           |          | Х      |                 | Х               | Х                |
| VOLUME_FLOW_UNITS       | Х                           |          | Х      |                 | Х               | Х                |
| MASS_FLOW               |                             | Х        |        | Х               |                 |                  |
| MASS_FLOW_LO_LIMIT      |                             | Х        |        | Х               |                 |                  |
| MASS_FLOW_HI_LIMIT      |                             | Х        |        | Х               |                 |                  |
| MASS_FLOW_UNITS         |                             | Х        |        | Х               |                 |                  |
| DENSITY                 |                             | Х        |        |                 |                 |                  |
| DENSITY_LO_LIMIT        |                             | Х        |        |                 |                 |                  |
| DENSITY_HI_LIMIT        |                             | Х        |        |                 |                 |                  |
| DENSITY_UNITS           |                             | Х        |        |                 |                 |                  |
| TEMPERATURE             |                             | Х        |        |                 |                 |                  |
| TEMPERATURE_LO_LIMIT    |                             | X        |        |                 |                 |                  |
| TEMPERATURE_HI_LIMIT    |                             | Х        |        |                 |                 |                  |
| TEMPERATURE_UNITS       |                             | Х        |        |                 |                 |                  |
| VORTEX_FREQUENCY        |                             |          | Х      |                 |                 |                  |
| VORTEX_FREQ_LO_LIMIT    |                             |          | Х      |                 |                 |                  |
| VORTEX_FREQ_HI_LIMIT    |                             |          | Х      |                 |                 |                  |
| VORTEX_FREQ_UNITS       |                             |          | Х      |                 |                 |                  |
| SOUND_VELOCITY          |                             |          |        |                 | Χ               |                  |
| SOUND_VELOCITY_LO_LIMIT |                             |          |        |                 | Х               |                  |
| SOUND_VELOCITY_HI_LIMIT |                             |          |        |                 | Х               |                  |
| SOUND_VELOCITY_UNITS    |                             |          |        |                 | Х               |                  |

Table 109. Overview of Parameters of the Transducer Block of Flow Device

## 16.4.2.1 Parameter Description of the Transducer Block of an Electromagnetic Flow Device

| Parameter        | Description                                                                                                                                                     |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CALIBR_FACTOR    | Gain compensation value for the flow sensor, so that flow indication is as accurate as specified by the manufacturer (Sensor specific, must not be downloaded). |  |  |  |
| FLOW_DIRECTION   | Assigns an arbitrary positive or negative sign to the measured PV value.                                                                                        |  |  |  |
| LOW_FLOW_CUTOFF  | Value can have an hysteresis. If the value has an hysteresis, LOW_FLOW_CUTOFF defines the lower switching point. The unit of this value is the unit of the PV.  |  |  |  |
| MEASUREMENT_MODE | Mode of flow measurement, either unidirectional or bidirectional measurement.                                                                                   |  |  |  |

| Parameter                | Description                                                                                                                                                      |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOMINAL_SIZE             | Ideal size of the measuring pipe, or process pipe size for insertion type flow transmitter.                                                                      |
| NOMINAL_SIZE_UNITS       | Selects the unit for NOMINAL_SIZE parameter.                                                                                                                     |
| SAMPLING_FREQ            | Indicates the field frequency of the sensor (Sensor specific, must not be downloaded).                                                                           |
| SAMPLING_FREQ_UNITS      | Selected unit code for SAMPLING_FREQ parameter.                                                                                                                  |
| VOLUME_FLOW              | Measuring value, measured volume flow value. Primary Variable (PV) of this device type.                                                                          |
| VOLUME_FLOW_HI_<br>LIMIT | Absolute value of the upper range value (volume flow) of the sensor.                                                                                             |
| VOLUME_FLOW_LO_<br>LIMIT | Absolute value of the lower range value (volume flow) of the sensor.                                                                                             |
| VOLUME_FLOW_UNITS        | Selected unit code for VOLUME_FLOW, VOLUME_FLOW_LO_LIMIT and VOLUME_FLOW_HI_LIMIT parameters.                                                                    |
| ZERO_POINT               | Offset compensation value for the flow sensor, so that true zero flow value can be indicated during no flow condition (Sensor specific, must not be downloaded). |
| ZERO_POINT_ADJUST        | Initiates a device specific adjustment cycle that determines the true ZERO_POINT value during no-flow process conditions. The result is placed in ZERO_POINT.    |
| ZERO_POINT_UNIT          | Selected unit code for ZERO_POINT parameter.                                                                                                                     |

Table 110. Parameter Description of the Transducer Block of an Electromagnetic Flow Device

## 16.4.2.2 Parameter Description of the Transducer Block of a Coriolis Mass Flow Device

| Parameter          | Description                                                                                                                                                     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CALIBR_FACTOR      | Gain compensation value for the flow sensor, so that flow indication is as accurate as specified by the manufacturer (Sensor specific, must not be downloaded). |
| DENSITY            | Measuring value, measured medium density. Secondary Variable (SV) of this device type.                                                                          |
| DENSITY_HI_LIMIT   | Upper range value (density) of the sensor.                                                                                                                      |
| DENSITY_LO_LIMIT   | Lower range value (density) of the sensor.                                                                                                                      |
| DENSITY_UNITS      | Selected unit code for DENSITY, DENSITY_HI_LIMIT and DENSITY_LO_LIMIT parameters.                                                                               |
| FLOW_DIRECTION     | Assigns an arbitrary positive or negative sign to the measured PV value.                                                                                        |
| LOW_FLOW_CUTOFF    | Value can have an hysteresis. If the value has an hysteresis, LOW_FLOW_CUTOFF defines the lower switching point. The unit of this value is the unit of the PV.  |
| MASS_FLOW          | Measuring value, measured mass-flow. Primary Variable (PV) of this device type.                                                                                 |
| MASS_FLOW_HI_LIMIT | Absolute value of the upper range value (mass flow) of the sensor.                                                                                              |
| MASS_FLOW_LO_LIMIT | Absolute value of lower range value (mass flow) of the sensor.                                                                                                  |

| Parameter                | Description                                                                                                                                                      |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| MASS_FLOW_UNITS          | Selected unit code for MASS FLOW, MASS_FLOW_HI_LIMIT and MASS_FLOW_LO_LIMIT parameters.                                                                          |  |  |  |  |  |
| MEASUREMENT_MODE         | Mode of flow measurement, either unidirectional or bidirectional measurement.                                                                                    |  |  |  |  |  |
| NOMINAL_SIZE             | Ideal size of the measuring pipe, or process pipe size for insertion type flow transmitter.                                                                      |  |  |  |  |  |
| NOMINAL_SIZE_UNITS       | Selects the unit for NOMINAL_SIZE parameter.                                                                                                                     |  |  |  |  |  |
| TEMPERATURE              | Measured Sensor Temperature. Tertiary Variable (TV) of this device type.                                                                                         |  |  |  |  |  |
| TEMPERATURE UNITS        | Selected unit code for TEMPERATURE, TEMPERATURE_HI_LIMIT and TEMPERATURE_LO_LIMIT parameters.                                                                    |  |  |  |  |  |
| TEMPERATURE_HI_<br>LIMIT | Upper range value (temperature) of the sensor.                                                                                                                   |  |  |  |  |  |
| TEMPERATURE_LO_<br>LIMIT | Lower range value (temperature) of the sensor.                                                                                                                   |  |  |  |  |  |
| ZERO_POINT               | Offset compensation value for the flow sensor, so that true zero flow value can be indicated during no flow condition (Sensor specific, must not be downloaded). |  |  |  |  |  |
| ZERO_POINT_ADJUST        | Initiates a device specific adjustment cycle that determines the true ZERO_POINT value during no-flow process conditions. The result is placed in ZERO_POINT.    |  |  |  |  |  |
| ZERO_POINT_UNIT          | Selected unit code for ZERO_POINT parameter.                                                                                                                     |  |  |  |  |  |

Table 111. Parameter Description of the Transducer Block of a Coriolis Mass Flow Device

## 16.4.2.3 Parameter Description of the Transducer Block of a Vortex Flow Meter

| Parameter                | Description                                                                                                                                                     |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CALIBR_FACTOR            | Gain compensation value for the flow sensor, so that flow indication is as accurate as specified by the manufacturer (Sensor specific, must not be downloaded). |  |  |  |  |
| LOW_FLOW_CUTOFF          | Value can have an hysteresis. If the value has an hysteresis, LOW_FLOW_CUTOFF defines the lower switching point. The unit of this value is the unit of the PV.  |  |  |  |  |
| NOMINAL_SIZE             | Ideal size of the measuring pipe, or process pipe size for insertion type flow transmitter.                                                                     |  |  |  |  |
| NOMINAL_SIZE_UNITS       | Selects the unit for NOMINAL_SIZE parameter.                                                                                                                    |  |  |  |  |
| VOLUME_FLOW              | Measuring value, measured volume flow. Primary Variable PV of this device type.                                                                                 |  |  |  |  |
| VOLUME_FLOW_HI_<br>LIMIT | Absolute value of the upper range value (volume flow) of the sensor.                                                                                            |  |  |  |  |
| VOLUME_FLOW_LO_<br>LIMIT | Absolute value of the lower range value (volume flow) of the sensor.                                                                                            |  |  |  |  |
| VOLUME_FLOW_UNITS        | Selected unit code for VOLUME_FLOW, VOLUME_FLOW_LO_LIMIT and VOLUME_FLOW_HI_LIMITS parameters.                                                                  |  |  |  |  |
| VORTEX_FREQ              | Measured Vortex frequency, proportional to flow velocity. Secondary Variable (SV) of this device type.                                                          |  |  |  |  |
| VORTEX_FREQ_HI_LIMIT     | Upper range value (vortex frequency) of the sensor.                                                                                                             |  |  |  |  |

| Parameter            | Description                                                                                   |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| VORTEX_FREQ_LO_LIMIT | Lower range value (vortex frequency) of the sensor.                                           |  |  |  |  |
| VORTEX_FREQ_UNITS    | Selected unit code for VORTEX_FREQ, VORTEX_FREQ_LO_LIMIT and VORTEX_FREQ_HI_LIMIT parameters. |  |  |  |  |

Table 112. Parameter Description of the Transducer Block of a Vortex Flow Meter

## 16.4.2.4 Parameter Description of the Transducer Block of a Thermal Mass Flow Device

| Parameter          | Description                                                                                                                                                      |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CALIBR_FACTOR      | Gain compensation value for the flow sensor, so that flow indication is as accurate as specified by the manufacturer (Sensor specific, must not be downloaded).  |  |  |  |
| LOW_FLOW_CUTOFF    | Value can have an hysteresis. If the value has an hysteresis, LOW_FLOW_CUTOFF defines the lower switching point. The unit of this value is the unit of the PV.   |  |  |  |
| MASS_FLOW          | Measuring value, measured mass flow. Primary Variable (PV) of this device type.                                                                                  |  |  |  |
| MASS_FLOW_HI_LIMIT | Absolute value of the upper range value (mass flow) of the sensor.                                                                                               |  |  |  |
| MASS_FLOW_LO_LIMIT | Absolute value of lower range value (mass flow) of the sensor.                                                                                                   |  |  |  |
| MASS_FLOW_UNITS    | Selected unit code for MASS_FLOW, MASS_FLOW_LO_LIMIT and MASS_FLOW_HI_LIMIT parameters.                                                                          |  |  |  |
| NOMINAL_SIZE       | Ideal size of the measuring pipe, or process pipe size for insertion type flow transmitter.                                                                      |  |  |  |
| NOMINAL_SIZE_UNITS | Selects the unit for NOMINAL_SIZE parameter.                                                                                                                     |  |  |  |
| ZERO_POINT         | Offset compensation value for the flow sensor, so that true zero flow value can be indicated during no flow condition (Sensor specific, must not be downloaded). |  |  |  |
| ZERO_POINT_ADJUST  | Initiates a device specific adjustment cycle that determines the true ZERO_POINT value during no-flow process conditions. The result is placed in ZERO_POINT.    |  |  |  |
| ZERO_POINT_UNIT    | Selected unit code for ZERO_POINT parameter.                                                                                                                     |  |  |  |

Table 113. Parameter Description of the Transducer Block of a Thermal Mass Flow Device

## 16.4.2.5 Parameter Description of the Transducer Block of an Ultrasonic Flow Device

| Parameter          | Description                                                                                                                                                     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CALIBR_FACTOR      | Gain compensation value for the flow sensor, so that flow indication is as accurate as specified by the manufacturer (Sensor specific, must not be downloaded). |
| FLOW_DIRECTION     | Assigns an arbitrary positive or negative sign to the measured PV value.                                                                                        |
| LOW_FLOW_CUTOFF    | Value can have an hysteresis. If the value has an hysteresis, LOW_FLOW_CUTOFF defines the lower switching point. The unit of this value is the unit of the PV.  |
| NOMINAL_SIZE       | Ideal size of the measuring pipe, or process pipe size for insertion type flow transmitter.                                                                     |
| NOMINAL_SIZE_UNITS | Selects the unit for NOMINAL_SIZE parameter.                                                                                                                    |

| Parameter                   | Description                                                                                                                                                      |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| MEASUREMENT_MODE            | Mode of flow measurement, either unidirectional or bidirectional measurement.                                                                                    |  |  |  |
| SOUND_VELOCITY              | Sound velocity of the medium. Secondary Variable (SV) of this device type.                                                                                       |  |  |  |
| SOUND_VELOCITY_HI_<br>LIMIT | Upper range value (sound velocity) of the sensor.                                                                                                                |  |  |  |
| SOUND_VELOCITY_LO_<br>LIMIT | Lower range value (sound velocity) of the sensor.                                                                                                                |  |  |  |
| SOUND_VELOCITY_UNIT<br>S    | Selected unit code for SOUND_VELOCITY, SOUND_VELOCITY_LO_LIMIT and SOUND_VELOCITY_HI_LIMIT parameters.                                                           |  |  |  |
| VOLUME_FLOW                 | Measuring value, measured volume flow. Primary Variable (PV) of this device type.                                                                                |  |  |  |
| VOLUME_FLOW_HI_<br>LIMIT    | Absolute value of the upper range value (volume flow) of the sensor.                                                                                             |  |  |  |
| VOLUME_FLOW_LO_<br>LIMIT    | Absolute value of the lower range value (volume flow) of the sensor.                                                                                             |  |  |  |
| VOLUME_FLOW_UNITS           | Selected unit code for VOLUME_FLOW, VOLUME_FLOW_LO_LIMIT and VOLUME_FLOW_HI_LIMIT parameters.                                                                    |  |  |  |
| ZERO_POINT                  | Offset compensation value for the flow sensor, so that true zero flow value can be indicated during no flow condition (Sensor specific, must not be downloaded). |  |  |  |
| ZERO_POINT_ADJUST           | Initiates a device specific adjustment cycle that determines the true ZERO_POINT value during no-flow process conditions. The result is placed in ZERO_POINT.    |  |  |  |
| ZERO_POINT_UNIT             | Selected unit code for ZERO_POINT parameter.                                                                                                                     |  |  |  |

Table 114. Parameter Description of the Transducer Block of an Ultrasonic Flow Device

## 16.4.2.6 Parameter Description of the Transducer Block of a Variable Area Flow Device

| Parameter                | Description                                                                                                                                                 |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CALIBR_FACTOR            | ain compensation value for the flow sensor, so that flow indication is as accurate specified by the manufacturer (Sensor specific, must not be downloaded). |  |  |  |  |
| LOW_FLOW_CUTOFF          | alue can have an hysteresis. If the value has an hysteresis, DW_FLOW_CUTOFF defines the lower switching point. The unit of this value is e unit of the PV.  |  |  |  |  |
| NOMINAL_SIZE             | Ideal size of the measuring pipe, or process pipe size for insertion type flow transmitter.                                                                 |  |  |  |  |
| NOMINAL_SIZE_UNITS       | Selects the unit for nominal size parameter.                                                                                                                |  |  |  |  |
| VOLUME_FLOW              | Measuring value, measured volume flow. Primary Variable (PV) of this device type.                                                                           |  |  |  |  |
| VOLUME_FLOW_HI_<br>LIMIT | Absolute value of the upper range value (volume flow) of the sensor.                                                                                        |  |  |  |  |
| VOLUME_FLOW_LO_<br>LIMIT | Absolute value of the lower range value (volume flow) of the sensor.                                                                                        |  |  |  |  |
| VOLUME_FLOW_UNITS        | Selected unit code for VOLUME_FLOW, VOLUME_FLOW_HI_LIMIT and VOLUME_FLOW_LO_LIMIT parameters.                                                               |  |  |  |  |

| Parameter         | Description                                                                                                                                                                                                                                      |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZERO_POINT        | Offset compensation value for the flow sensor, so that true zero flow value can be indicated during no flow condition (Sensor specific, must not be downloaded).                                                                                 |
| ZERO_POINT_ADJUST | Initiates a device specific adjustment cycle that determines the true ZERO_POINT value during no-flow process conditions. The result is placed in ZERO_POINT. During active adjustment, the value of this Parameter is 1 (execute), otherwise 0. |
| ZERO_POINT_UNIT   | Selected unit code for ZERO_POINT parameter.                                                                                                                                                                                                     |

Table 115. Parameter Description of the Transducer Block of a Variable Area Flow Device

#### 16.4.2.7 Parameters of the Transducer Block of a Differential Pressure Transmitter

Its not possible to define a minimum set of parameters for a flow Transducer Block of a differential pressure transmitter. The output type of the primary variable of the Transducer Block (mass flow or volume flow) depends on the application. The differential pressure transmitter Transducer Block should deliver a sensor lower and upper range value and a corresponding unit.

## 16.4.3 Parameter Attributes of the Flow Transducer Block

| Relative Index | Parameter<br>Name            | Object Type | Data Type                                                                                 | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value       | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|----------------|------------------------------|-------------|-------------------------------------------------------------------------------------------|-------|------|--------|----------------------------------------------|-------------|---------------------|-------------------|--------------------------------------|
| Star           | dard Parameters see General  | Requireme   | ents                                                                                      |       |      |        |                                              |             |                     |                   |                                      |
|                |                              |             |                                                                                           |       |      |        |                                              |             |                     |                   |                                      |
| Additio        | nal Flow Transducer Block Pa | arameters   |                                                                                           |       |      |        |                                              |             | Ι_                  |                   |                                      |
| 8              | CALIBR_FACTOR                | Simple      | Float                                                                                     | S     | 4    | r,w    | C/a                                          | F           | Sens<br>or-<br>spec | -                 | 1                                    |
| 9              | LOW_FLOW_CUTOFF              | Simple      | Float                                                                                     | S     | 4    | r,w    | C/a                                          | F           | 0                   | 12                | 1                                    |
| 10             | MEASUREMENT_MODE             | Simple      | Unsigned8<br>0: unidir.<br>1: bidirect.                                                   | S     | 1    | r,w    | C/a                                          | F           | 0                   | 1                 | 1                                    |
| 11             | FLOW_DIRECTION               | Simple      | Unsigned8<br>0: positiv<br>1: negativ                                                     | S     | 1    | r,w    | C/a                                          | F           | 0                   | 2                 | 1                                    |
| 12             | ZERO_POINT                   | Simple      | Float                                                                                     | S     | 4    | r,w    | C/a                                          | F           | Sens<br>or-<br>spec | -                 | 1                                    |
| 13             | ZERO_POINT_ADJUST            | Simple      | Unsigned8<br>0: cancel<br>1: execute                                                      | N     | 1    | r,w    | C/a                                          | -           | 0                   | -                 | 1                                    |
| 14             | ZERO_POINT_UNIT              | Simple      | Unsigned16<br>1062: mm/s                                                                  | S     | 2    | r,w    | C/a                                          | ı           | 1062                | 3                 | 1                                    |
| 15             | NOMINAL_SIZE                 | Simple      | Float                                                                                     | S     | 4    | r,w    | C/a                                          | F           | -                   | -                 | 1                                    |
| 16             | NOMINAL_SIZE_UNITS           | Simple      | Unsigned16<br>1013: mm<br>1019: inch                                                      | S     | 2    | r,w    | C/a                                          | -           | 1013                | 4                 | 1                                    |
| 17             | VOLUME_FLOW                  | Record      | 101                                                                                       | D     | 5    | r      | C/a                                          | 1           | -                   | -                 | 1                                    |
| 18             | VOLUME_FLOW_UNITS            | Simple      | Unsigned16<br>1349: m3/h<br>1351: L/s<br>1357: CFM <sup>2</sup><br>1363: GMP <sup>3</sup> | Ø     | 2    | r,w    | C/a                                          | F           | 1349                | 5                 | 1                                    |
| 19             | VOLUME_FLOW_<br>LO_LIMIT     | Simple      | Float                                                                                     | S     | 4    | r,w    | C/a                                          | F           | -                   | -                 | 1                                    |
| 20             | VOLUME_FLOW_<br>HI_LIMIT     | Simple      | Float                                                                                     | S     | 4    | r,w    | C/a                                          | F           | -                   | -                 | 1                                    |
| 21             | MASS_FLOW                    | Record      | 101                                                                                       | D     | 5    | r      | C/a                                          | ı           | -                   | -                 | 1                                    |

<sup>&</sup>lt;sup>1</sup> See Table 109.

<sup>&</sup>lt;sup>2</sup> CFM: cubic feet per minute

<sup>&</sup>lt;sup>3</sup> GPM: US gallon per minute

| Relative Index | Parameter<br>Name                     | Object Type | Data Type                                     | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Download<br>Order | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|-----------------------------------------------|-------|------|--------|----------------------------------------------|-------------|---------------|-------------------|--------------------------------------|
| 22             | MASS_FLOW_UNITS                       | Simple      | Unsigned16<br>1322: kg/s<br>1330: lb/s        | S     | 2    | r,w    | C/a                                          | F           | 1322          | 6                 | 1                                    |
| 23             | MASS_FLOW_LO_LIMIT                    | Simple      | Float                                         | S     | 4    | r,w    | C/a                                          | F           | -             | -                 | 1                                    |
| 24             | MASS_FLOW_HI_LIMIT                    | Simple      | Float                                         | S     | 4    | r,w    | C/a                                          | F           | -             | -                 | 1                                    |
| 25             | DENSITY                               | Record      | 101                                           | D     | 5    | r      | C/a                                          | -           | -             | -                 | 1                                    |
| 26             | DENSITY_UNITS                         | Simple      | Unsigned16<br>1103: kg/l<br>1107: lb/ft3      | S     | 2    | r,w    | C/a                                          | F           | 1103          | 7                 | 1                                    |
| 27             | DENSITY_LO_LIMIT                      | Simple      | Float                                         | S     | 4    | r,w    | C/a                                          | F           | -             | -                 | 1                                    |
| 28             | DENSITY_HI_LIMIT                      | Simple      | Float                                         | S     | 4    | r,w    | C/a                                          | F           | -             | -                 | 1                                    |
| 29             | TEMPERATURE                           | Record      | 101                                           | D     | 5    | r      | C/a                                          | -           | -             | -                 | 1                                    |
| 30             | TEMPERATURE_UNITS                     | Simple      | Unsigned16<br>1000: K<br>1001: °C<br>1002: °F | S     | 2    | r,w    | C/a                                          | F           | 1000          | 8                 | 1                                    |
| 31             | TEMPERATURE_LO_LIMIT                  | Simple      | Float                                         | S     | 4    | r,w    | C/a                                          | F           | -             | -                 | 1                                    |
| 32             | TEMPERATURE_HI_LIMIT                  | Simple      | Float                                         | S     | 4    | r,w    | C/a                                          | F           | -             | -                 | 1                                    |
| 33             | VORTEX_FREQ                           | Record      | 101                                           | D     | 5    | r      | C/a                                          | -           | -             | -                 | 1                                    |
| 34             | VORTEX_FREQ_UNITS                     | Simple      | Unsigned16<br>1077: Hz                        | S     | 2    | r,w    | C/a                                          | F           | 1077          | 9                 | 1                                    |
| 35             | VORTEX_FREQ_LO_LIMIT                  | Simple      | Float                                         | S     | 4    | r,w    | C/a                                          | F           | -             | -                 | 1                                    |
| 36             | VORTEX_FREQ_HI_LIMIT                  | Simple      | Float                                         | S     | 4    | r,w    | C/a                                          | F           | -             | -                 | 1                                    |
| 37             | SOUND_VELOCITY                        | Record      | 101                                           | D     | 5    | r      | C/a                                          | -           | -             | -                 | 1                                    |
| 38             | SOUND_VELOCITY_<br>UNITS              | Simple      | Unsigned16<br>1061: m/s<br>1067: ft/s         | S     | 2    | r,w    | C/a                                          | F           | 1061          | 10                | 1                                    |
| 39             | SOUND_VELOCITY_<br>LO_LIMIT           | Simple      | Float                                         | S     | 4    | r,w    | C/a                                          | F           | -             | -                 | 1                                    |
| 40             | SOUND_VELOCITY_<br>HI_LIMIT           | Simple      | Float                                         | S     | 4    | r,w    | C/a                                          | F           | -             | -                 | 1                                    |
| 41             | SAMPLING_FREQ                         | Record      | 101                                           | D     | 5    | r      | C/a                                          | -           | -             | -                 | 1                                    |
| 42             | SAMPLING_FREQ_UNITS                   | Simple      | Unsigned16<br>1077: Hz                        | S     | 2    | r,w    | C/a                                          | -           | 1077          | 11                | 1                                    |
| 43-52          | Reserved by PNO                       |             |                                               |       |      |        |                                              |             |               |                   | M (A,B)                              |
| 53             | First manufacturer specific parameter |             |                                               |       |      |        |                                              |             |               |                   | O (A,B)                              |

Table 116. Parameter Attributes of the Flow Transducer Block

# 16.4.3.1 View Object of the Flow Transducer Block

| Relative<br>Index | Parameter Name                                                       | View_1               |          |        |                 |            |                  |  |  |
|-------------------|----------------------------------------------------------------------|----------------------|----------|--------|-----------------|------------|------------------|--|--|
|                   |                                                                      | Electro-<br>magnetic | Coriolis | Vortex | Thermal<br>Mass | Ultrasonic | Variable<br>Area |  |  |
| 8                 | CALIBR_FACTOR                                                        |                      |          |        |                 |            |                  |  |  |
| 9                 | LOW_FLOW_CUTOFF                                                      |                      |          |        |                 |            |                  |  |  |
| 10                | MEASUREMENT_MODE                                                     |                      |          |        |                 |            |                  |  |  |
| 11                | FLOW_DIRECTION                                                       |                      |          |        |                 |            |                  |  |  |
| 12                | ZERO_POINT                                                           |                      |          |        |                 |            |                  |  |  |
| 13                | ZERO_POINT_ADJUST                                                    |                      |          |        |                 |            |                  |  |  |
| 14                | ZERO_POINT_UNIT                                                      |                      |          |        |                 |            |                  |  |  |
| 15                | NOMINAL_SIZE                                                         |                      |          |        |                 |            |                  |  |  |
| 16                | NOMINAL_SIZE_UNITS                                                   |                      |          |        |                 |            |                  |  |  |
| 17                | VOLUME_FLOW                                                          | 5                    |          | 5      |                 | 5          | 5                |  |  |
| 18                | VOLUME_FLOW_UNITS                                                    |                      |          |        |                 |            |                  |  |  |
| 19                | VOLUME_FLOW_LO_LIMIT                                                 |                      |          |        |                 |            |                  |  |  |
| 20                | VOLUME_FLOW_HI_LIMIT                                                 |                      |          |        |                 |            |                  |  |  |
| 21                | MASS_FLOW                                                            |                      | 5        |        | 5               |            |                  |  |  |
| 22                | MASS_FLOW_UNITS                                                      |                      |          |        |                 |            |                  |  |  |
| 23                | MASS_FLOW_LO_LIMIT                                                   |                      |          |        |                 |            |                  |  |  |
| 24                | MASS_FLOW_HI_LIMIT                                                   |                      |          |        |                 |            |                  |  |  |
| 25                | DENSITY                                                              |                      | 5        |        |                 |            |                  |  |  |
| 26                | DENSITY_UNITS                                                        |                      |          |        |                 |            |                  |  |  |
| 27                | DENSITY_LO_LIMIT                                                     |                      |          |        |                 |            |                  |  |  |
| 28                | DENSITY_HI_LIMIT                                                     |                      |          |        |                 |            |                  |  |  |
| 29                | TEMPERATURE                                                          |                      | 5        |        |                 |            |                  |  |  |
| 30                | TEMPERATURE_UNITS                                                    |                      |          |        |                 |            |                  |  |  |
| 31                | TEMPERATURE_LO_LIMIT                                                 |                      |          |        |                 |            |                  |  |  |
| 32                | TEMPERATURE_HI_LIMIT                                                 |                      |          |        |                 |            |                  |  |  |
| 33                | VORTEX_FREQ                                                          |                      |          | 5      |                 |            |                  |  |  |
| 34                | VORTEX_FREQ_UNITS                                                    |                      |          |        |                 |            |                  |  |  |
| 35                | VORTEX_FREQ_LO_LIMIT                                                 |                      |          |        |                 |            |                  |  |  |
| 36                | VORTEX_FREQ_HI_LIMIT                                                 |                      |          |        |                 |            |                  |  |  |
| 37                | SOUND_VELOCITY                                                       |                      |          |        |                 | 5          |                  |  |  |
| 38                | SOUND_VELOCITY_UNITS                                                 |                      |          |        |                 |            |                  |  |  |
| 39                | SOUND_VELOCITY_LO_LIMIT                                              |                      |          |        |                 |            |                  |  |  |
| 40                | SOUND_VELOCITY_HI_LIMIT                                              |                      |          |        |                 |            |                  |  |  |
| 41                | SAMPLING_FREQ                                                        | 5                    |          |        |                 |            |                  |  |  |
| 42                | SAMPLING_FREQ_UNITS                                                  |                      |          |        |                 |            |                  |  |  |
|                   | Overall sum of bytes in View -<br>Object (+ 13 byte Standard Param.) | 10 + 13              | 15       | 10     | 5               | 10         | 5                |  |  |

Table 117. View Object of the Flow Transducer Block

## 16.5 Block Order and Assignment

There are three classes of flow devices. A class describes the relation (connection order) of the dynamic variables of the flow Transducer Block to following blocks (Analog Input Blocks and Totaliser Blocks).

| Class   | Dynamic Transducer Output Variable |     |     |     |  |  |
|---------|------------------------------------|-----|-----|-----|--|--|
|         | Block 1 Block 2 Block 3 Block 4    |     |     |     |  |  |
| Class 1 | PV                                 | TOT |     |     |  |  |
| Class 2 | PV                                 | SV  | TOT |     |  |  |
| Class 3 | PV                                 | SV  | TV  | TOT |  |  |

PV: Primary Variable, SV: Secondary Variable, TV: Tertiary Variable, TOT: Totaliser Block

**Table 118. Flow Transducer Classes** 

#### 16.5.1 Assignment of Dynamic Variables for Flow Devices

| Device type (coded in<br>Transducer class) | Transducer Output |                  |             |  |  |
|--------------------------------------------|-------------------|------------------|-------------|--|--|
|                                            | PV                | SV               | TV          |  |  |
| Coriolis                                   | Mass flow         | Density          | Temperature |  |  |
| Electromagnetic                            | Volume flow       | -                | -           |  |  |
| Thermal Mass                               | Mass flow         | -                | -           |  |  |
| Ultrasonic                                 | Volume flow       | Sound velocity   | -           |  |  |
| Variable Area                              | Volume flow       | -                | -           |  |  |
| Vortex                                     | Volume flow       | Vortex frequency | -           |  |  |

Table 119. Assignment of Dynamic Variables

## 17 Device Data Sheet Transmitter - Conformance Statement

Every device chooses the necessary subset out of the defined structures of this document. Choice of a subset follows certain rules defined in the conformance statements below. The tables show which structure is mandatory (M), conditional (C) and which are optional (O).

| Parameter                    | Conformance class A | Conformance class B |
|------------------------------|---------------------|---------------------|
| Physical Block               | M                   | М                   |
| Analog Input Function Block  | M                   | M                   |
| Transducer Block             | 0                   | M                   |
| Temperature Transducer Block | 0                   | С                   |
| Pressure Transducer Block    | 0                   | С                   |
| Level Transducer Block       | 0                   | С                   |
| Flow Transducer Block        | 0                   | С                   |
| other Function Blocks        | 0                   | 0                   |
| other Transducer Blocks      | 0                   | 0                   |

**Table 120. Conformance Statement of Transmitter Components** 

# 18 Device Data Sheet Transmitter - Document History

Changes from V3.0 to V3.0.1

| Chapter/Figure/Table | Change                                                                                                                                                        |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| general              | DS-33 replaced with 101                                                                                                                                       |
| general              | Reset class added                                                                                                                                             |
| 15.2.1 / Figure 27   | Order of MAN-mode, Limit check and Fail safe.                                                                                                                 |
| 15.2.1.1             | Definition of the supported modes for the Function Blocks AI for Class B.                                                                                     |
| 15.2.2 / Table 85    | Handling of PV Scale.                                                                                                                                         |
| 15.3.1.1             | Totalizer state machine                                                                                                                                       |
| 15.3.1.2             | Totalizer actual Mode Calculation                                                                                                                             |
| 15.3.1.3             | Totalizer status Calculation                                                                                                                                  |
| 15.3.3 / Table 91    | The parameter TOTAL is defined as "M(A,B)".                                                                                                                   |
| 16.2.2 / Table 102   | Relation between PRIMARY_VALUE_UNIT and PRIMARY_VALUE_TYPE.                                                                                                   |
| 16.2.2 / Table 102   | PRIMARY_VALUE_UNIT:                                                                                                                                           |
|                      | The minimum set of unit codes for volume is:                                                                                                                  |
|                      | m³ (1034), L (1038),cf³ - cubic feet (1043),GMP - US gallon (1048).                                                                                           |
| 16.2.3 / Table 103   | All default values for the parameters of the pressure transducer are removed.                                                                                 |
| 16.2.3 / Table 103   | Access and Storage of SECONDARY_VALUE_1_UNIT changed.                                                                                                         |
| 16.2.3 / Table 103   | Order of the floats of the parameters SCALE_IN and SCALE_OUT described.                                                                                       |
| 16.3.2 / Table 106   | Adapted parameter names in table 25/27 according to table 26:                                                                                                 |
| 16.3.4 / Table 108   | INDEX -> TAB_ENTRY                                                                                                                                            |
|                      | ACTUAL_NUMBER -> TAB_ACTUAL_NUMBER                                                                                                                            |
|                      | MIN_NUMBER -> TAB_MIN_NUMBER                                                                                                                                  |
|                      | MAX_NUMBER -> TAB_MAX_NUMBER                                                                                                                                  |
|                      | X_VALUE, Y_VALUE -> TAB_X_Y_VALUE                                                                                                                             |
| 16.3.2 / Table 106   | In the description of LIN_DIAMETER and LIN_VOLUME the linearisation types 20 and 21 are referenced.                                                           |
| 16.3.3 / Table 107   | TEMPERATURE_UNIT size shall be 2 bytes.                                                                                                                       |
| 16.4.2 / Table 109   | The Thermal Mass Transducer Block View Object supports only VOLUME_FLOW. The Ultrasonic Transducer Block View Object supports VOLUME_FLOW and SOUND_VELOCITY. |

Table 121. Changes from V3.0 to V3.0.1

# **PROFIBUS - PA**

**Device Data Sheet** 

**Discrete Input** 

## 19 Device Data Sheet Discrete Inputs

## 19.1 Additional Parameters for the Physical Block Parameter Description

There are no additional parameters. First manufacturer specific block parameter may be started at relative index 33.

#### 19.2 Discrete Input Function Block

#### 19.2.1 Discrete Input, DI Function Block Overview

Discrete Input Function Blocks represent e.g. inductive-, optical-, capacitive-, ultrasonic-, proximity, ... switches.



Figure 51. Summary of the Parameters of Discrete Input Function Blocks

The structure of the MODE and the simulation feature of the DI are shown in the following figure.



Figure 52. Simulation, Mode and Status Diagram of Discrete Input Function Block

The following figure presents a summary of the inputs and outputs of the Mode- and Status-generation.



Figure 53. Conditions of Mode and Status Generation

The Transducer Block process variable Status is visible at the Transducer Block. The Resource state is not defined in the profile and device specific. It has to distinguish between *ok* and *not o.k.* in minimum. The Target Mode is set by the operator and the permitted Mode by the block designer. Actual Mode is an attribute of the FB-Parameter MODE\_BLK and the result of the mode calculation (see General Requirement document).

The Status (OUT\_D) is coupled with the OUT\_D value (Data type 102) of the block.

#### 19.2.1.1 DI State Machine



Figure 54. State Machine of the Discrete Input Function Block

The modes O/S (Out of Service), Man (Manual) and Auto (Automatic) are mandatory as permitted modes for DI-FBs according to conformance class B. The possible transitions are illustrated in Figure 54.

#### 19.2.1.2 Actual Mode Calculation

The following table contains on the left side all conditions that demand a mode change from the current Actual Mode (last execution) to the new Actual Mode of the DI-Function Block. On the right side the results of the calculation are illustrated.

The first column contains the number of the transition of the state machine in Figure 54.

General condition: permitted modes are O/S, Man, Auto

|            | Conditions                | Result            |                          |
|------------|---------------------------|-------------------|--------------------------|
| Transition | Target-Mode<br>(Operator) | Resource<br>State | Actual Mode (calculated) |
| T2,T5,T6   | *                         | <>0.k.            | O/S                      |
| T2,T5,T6   | O/S                       | o.k.              | O/S                      |
| T4,T8,T9   | Auto                      | o.k.              | Auto                     |
| T1,T3,T7   | Man                       | o.k.              | Man                      |

<sup>\*</sup> no influence

Table 122. Conditions and Results of the Actual Mode Calculation

#### 19.2.1.3 Output Status Calculation

The following table shows which conditions influence the Status of the output parameter. On the left side all conditions are illustrated and on the right side the result.

| Co          | onditions           | Result                                              |
|-------------|---------------------|-----------------------------------------------------|
| Actual-Mode | Status              | Status                                              |
|             | (Transducer output) | (OUT_D)                                             |
| O/S         | *                   | BAD - Out of Service - constant                     |
| Man         | *                   | as written by the operator                          |
| Auto        | BAD                 | Influenced by the following parameter               |
|             |                     | FSAFE_TYPE                                          |
| Auto        | <> BAD              | Influenced by the following parameters              |
|             |                     | PV Sub status                                       |
|             |                     | Alarms (ST_REV, Limits)                             |
|             |                     | Priority table of status (see General Requirements) |

<sup>\*</sup> no influence

Table 123. Conditions and Results of the Status Calculation of the Output parameter

## 19.2.2 Parameter Description of the Discrete Input Function Block

| Parameter   | Description                                                                                                                                                                                              |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CHANNEL     | Reference to the active Transducer Block which provides the measurement value to the Function Block. For more details, please see the General Requirement definitions.                                   |  |  |  |  |
| INVERT      | Indicates whether the input value of the PV_D should be logically inverted before it is stored in the OUT_D.                                                                                             |  |  |  |  |
|             | Coding:  0: not inverted  1: inverted                                                                                                                                                                    |  |  |  |  |
| FSAFE_TYPE  | Defines reaction of device, if a fault is detected.                                                                                                                                                      |  |  |  |  |
|             | Coding:                                                                                                                                                                                                  |  |  |  |  |
|             | value FSAFE_VALUE is used as OUT_D     Status = UNCERTAIN-substitute value                                                                                                                               |  |  |  |  |
|             | use of last stored valid OUT_D value     Status = UNCERTAIN-last usable value     (if no valid value is available UNCERTAIN-Initial Value shall be used)                                                 |  |  |  |  |
|             | OUT_D has the wrong calculated value and status     Status = BAD-* (* as calculated)                                                                                                                     |  |  |  |  |
| FSAFE_VAL_D | Default value for the OUT_D parameter, if a sensor or sensor electronic fault is detected.                                                                                                               |  |  |  |  |
| OUT_D       | OUT_D is the output of the Function Block. The value is specified by the operator in MODE Man.                                                                                                           |  |  |  |  |
| SIMULATE    | For commissioning and test purposes the input value from the Transducer Block in the Discrete Input Function Block DI-FB can be modified. That means that the Transducer and DI-FB will be disconnected. |  |  |  |  |

V3.01

Table 124. Parameter Description of the Discrete Input Function Block

#### 19.2.3 Parameter Attributes of the Discrete Input Function Block

| Relative Index | Parameter<br>Name                     | Object Type | Data Type  | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Star           | ndard Parameters see General          | Requireme   | nts        |       |      |        |                                              |             |               |                                      |
|                |                                       |             |            |       |      |        |                                              |             |               |                                      |
| Additio        | nal Discrete Input Function Blo       | ock Paramet | ters       |       |      |        |                                              |             |               |                                      |
| 10             | OUT_D                                 | Record      | 102        | D     | 2    | r,w    | O/cyc                                        | 1           | -             | М                                    |
| 14             | CHANNEL                               | Simple      | Unsigned16 | S     | 2    | r,w    | C/a                                          | F           | -             | O(A),<br>M(B)                        |
| 15             | INVERT                                | Simple      | Unsigned8  | S     | 1    | r,w    | C/a                                          | F           | 0             | М                                    |
| 20             | FSAFE_TYPE                            | Simple      | Unsigned8  | S     | 1    | r,w    | C/a                                          | F           | -             | O(A),<br>M(B)                        |
| 21             | FSAFE_VAL_D                           | Simple      | Unsigned8  | S     | 1    | r,w    | C/a                                          | F           | 0             | М                                    |
| 24             | SIMULATE                              | Record      | DS-51      | S     | 3    | r,w    | C/a                                          | F           | disabl<br>ed  | O(A),<br>M(B)                        |
| 25-34          | Reserved by PNO                       |             |            |       |      |        |                                              |             |               | М                                    |
| 35             | First manufacturer specific parameter |             |            |       |      |        |                                              |             |               | 0                                    |

Table 125. Parameter Attributes of the Discrete Input Function Block

## 19.2.4 View Object of the Discrete Input Function Block

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 10                | OUT_D                                                               | 2      |        |        |        |
| 14                | CHANNEL                                                             |        |        |        |        |
| 15                | INVERT                                                              |        |        |        |        |
| 20                | FSAFE_TYPE                                                          |        |        |        |        |
| 21                | FSAFE_VAL_D                                                         |        |        |        |        |
| 24                | SIMULATE                                                            |        |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 2 + 13 |        |        |        |

Table 126. View Object of the Discrete Input Function Block

## 19.2.5 Additions to the Start-up and Break-down Phase

In addition to the definitions in the General Requirement document the following values must be settled at the start-up phase:

MODE\_BLK (actual MODE) = O/S

## 20 Device Data Sheet Discrete Input - Transducer Blocks

## 20.1 Parameter Description of the Discrete Input Transducer Block

| Parameter         | Description                                                                            |  |  |  |
|-------------------|----------------------------------------------------------------------------------------|--|--|--|
| SENSOR_WIRE_CHECK | Enables the lead breakage and short circuit detection.                                 |  |  |  |
|                   | Coding:                                                                                |  |  |  |
|                   | 0: Lead breakage and short circuit detection enabled                                   |  |  |  |
|                   | Lead breakage detection enabled, short circuit detection disabled                      |  |  |  |
|                   | 2: Lead breakage detection disabled, short circuit detection enabled                   |  |  |  |
|                   | 3: Lead breakage and short circuit detection disabled                                  |  |  |  |
| SENSOR_SER_NUM    | Serial number of the sensor.                                                           |  |  |  |
| SENSOR_ID         | Identification of the sensor (-type).                                                  |  |  |  |
| SENSOR_MAN        | Manufacturer of the sensor.                                                            |  |  |  |
| PV_D              | This parameter contains the measured value and status available to the Function Block. |  |  |  |

Table 127. Parameter Description of the Discrete Input Transducer Block

## 20.2 Parameter Attributes of the Discrete Input Transducer Block

| Relative Index | Parameter<br>Name                     | Object Type | Data Type   | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|-------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Star           | ndard Parameters see General          | Requireme   | nts         |       |      |        |                                              |             |               |                                      |
|                |                                       |             |             |       |      |        |                                              |             |               |                                      |
| Additio        | onal Parameters for Discrete In       | put Transd  | ucer Blocks |       |      |        |                                              |             |               |                                      |
| 8              | SENSOR_WIRE_CHECK                     | Simple      | Unsigned8   | S     | 1    | r,w    | C/a                                          | F           | -             | 0                                    |
| 9              | SENSOR_ID                             | Simple      | OctetString | S     | 16   | r,w    | C/a                                          | I           | -             | 0                                    |
| 10             | SENSOR_SER_NUM                        | Simple      | OctetString | S     | 16   | r,w    | C/a                                          | I           | 1             | 0                                    |
| 11             | SENSOR_MAN                            | Simple      | OctetString | S     | 16   | r,w    | C/a                                          | I           | 1             | 0                                    |
| 12             | PV_D                                  | Record      | 102         | D     | 2    | r      | C/a                                          | -           | 1             | M (B)                                |
| 13-22          | Reserved by PNO                       |             |             |       |      |        |                                              |             |               | М                                    |
| 23             | First manufacturer specific parameter |             |             |       |      |        |                                              |             |               | 0                                    |

Table 128. Parameter Attributes of the Discrete Input Transducer Block

# 20.3 View Object of the Discrete Input Transducer Block

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 8                 | SENSOR_WIRE_CHECK                                                   |        |        |        |        |
| 9                 | SENSOR_ID                                                           |        |        |        |        |
| 10                | SENSOR_SER_NUM                                                      |        |        |        |        |
| 11                | SENSOR_MAN                                                          |        |        |        |        |
| 12                | PV_D                                                                | 2      |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 2 + 13 |        |        |        |

Table 129. View Object of the Discrete Input Transducer Block

## 21 Device Data Sheet Discrete Input - Conformance Statement

Every device chooses out the necessary subset of the defined structures of this document. To chioce of a subset follows certain rules defined in the conformance statements below. Table 130 show which structure is mandatory (M), selected (S) and which are optional (O).

| Parameter                       | Conformance class A | Conformance class B |
|---------------------------------|---------------------|---------------------|
| Physical Block                  | М                   | M                   |
| Discrete Input Function Block   | М                   | М                   |
| Transducer Block                | 0                   | М                   |
| Discrete Input Transducer Block | 0                   | S                   |
| Other Function Blocks           | 0                   | 0                   |
| Other Transducer Blocks         | 0                   | 0                   |

**Table 130. Conformance Statement of Discrete Input Components** 

# 22 Device Data Sheet Discrete Input - Document History

Changes from V3.0 to V3.0.1

| Chapter/Figure/Table | Change                                                                                                                                          |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 19.2.1.1             | Sentence added below Figure 54:                                                                                                                 |  |  |  |  |
|                      | The modes O/S (Out of Service), MAN (Manual) and AUTO (Automatic) are mandatory as permitted modes for DI FBs according to conformance class B. |  |  |  |  |
| 19.2.2/Table 124     | Editorial:                                                                                                                                      |  |  |  |  |
|                      | FSAVE_VALUE -> FSAFE_VAL_D                                                                                                                      |  |  |  |  |
| 19.2.2/Table 124     | Expected status changed in case of                                                                                                              |  |  |  |  |
|                      | - FSAFE_TYPE=0:                                                                                                                                 |  |  |  |  |
|                      | UNCERTAIN-Initial Value -> UNCERTAIN-Substitute Value                                                                                           |  |  |  |  |
|                      | - FSAFE_TYPE=2:                                                                                                                                 |  |  |  |  |
|                      | BAD-Sensor Failure (0x08) -> BAD-* (*=as calculated)                                                                                            |  |  |  |  |
| 19.2.3/Table 125     | Editorial:                                                                                                                                      |  |  |  |  |
|                      | FSAVE_TYPE -> FSAFE_TYPE                                                                                                                        |  |  |  |  |
|                      | FSAVE_VAL_D -> FSAFE_VAL_D                                                                                                                      |  |  |  |  |
| 19.2.3/Table 125     | Column "Reset Class" added.                                                                                                                     |  |  |  |  |
|                      | Default value for FSAFE_TYPE is deleted.                                                                                                        |  |  |  |  |
|                      | Data type DS-34 replaced by Data type 102 according to Profile Guideline.                                                                       |  |  |  |  |
| 19.2.4/Table 126     | Editorial:                                                                                                                                      |  |  |  |  |
|                      | FSAVE_TYPE -> FSAFE_TYPE                                                                                                                        |  |  |  |  |
|                      | FSAVE_VAL_D -> FSAFE_VAL_D                                                                                                                      |  |  |  |  |
| 20.2/Table 128       | Column "Reset Class" added.                                                                                                                     |  |  |  |  |
|                      | Data type DS-34 replaced by Data type 102 according to Profile Guideline.                                                                       |  |  |  |  |

Table 131. Changes from V3.0 to V3.0.1

# **PROFIBUS - PA**

**Device Data Sheet** 

**Discrete Output** 

## 23 Device Data Sheet Discrete Outputs

## 23.1 Additional Parameters for the Physical Block Parameter Description

There are no additional Parameters. First manufacturer specific block may be started at Relative Index 33.

## 23.2 Discrete Output, DO Function Block

#### 23.2.1 Overview

This profile is meant to be for every kind of discrete output. So if a valve is mentioned it's just an example.

Discrete Output Function Block represents e.g. discrete valves, relay outputs, transistor outputs etc.



Figure 55. Summary of the Parameters of Discrete Output Function Block



Figure 56. Simulation, Mode and Status Diagram of Discrete Output Function Block

The structure of the DO with Simulation, Mode and Status is shown in Figure 56.

The following figure presents a summary of all considering factors of the Mode and Status generation.



Figure 57. Conditions of Mode and Status Generation

The Status (RCAS\_IN\_D) is coupled with the value provided by a supervisory host for the target setpoint. The Resource state is not defined in the profile and device specific and has to distinguish between *OK* and *not OK* in minimum. The Target Mode is set by the operator and the permitted Mode by the block designer.

Actual Mode is an attribute of the FB parameter MODE\_BLK and the result of the calculation. The Status (RCAS\_OUT\_D) is coupled with the RCAS\_OUT\_D value (Data type 102) from the block, provided to a supervisory host. The Process Status to Transducer Block is coupled with the primary Output value (Data type 102) from the Function Block to the Transducer Block.

#### 23.2.1.1 DO State Machine



Figure 58. State Machine of the Discrete Output Function Block

The modes O/S (Out of Service), MAN (Manual) and AUTO (Automatic) are mandatory as permitted modes for DO FBs according to conformance class B. The modes LO (Local Override) and RCas (Remote Cascade) are optional. The possible mode changes (transitions) are illustrated in Figure 58.

## 23.2.1.2 Conditions on which the Actual Mode is calculated and the Target Mode is changed

The following table contains on the left side all conditions that demand a mode change from the Actual Mode (last execution) to the new Actual and Target Mode of the DO-Block. On the right side the results of the calculation are illustrated.

The first column contains the number of the transition of the state machine in section Figure 58.

| Conditions            |                               |                                        |                   |                       |                                                                 | Results                     |
|-----------------------|-------------------------------|----------------------------------------|-------------------|-----------------------|-----------------------------------------------------------------|-----------------------------|
| Transi-<br>tion       | Target-<br>Mode<br>(Operator) | Actual-Mode<br>(previous<br>execution) | Resource<br>State | Status<br>(RCAS_IN_D) | Status of<br>RCAS_IN_D<><br>GOOD (C)<br>longer as<br>FSAFE_TIME | Actual-Mode<br>(calculated) |
| 2,7,8,11,<br>16       | *                             | *                                      | <>0.k.            | *                     | *                                                               | O/S                         |
| 2,7,8,11,<br>16       | O/S                           | *                                      | o.k.              | *                     | *                                                               | O/S                         |
| 15, 18,<br>20, 21, 22 | LO                            | *                                      | o.k.              |                       |                                                                 | LO                          |
| 1,4,9,12,<br>17       | Man                           | *                                      | o.k.              | *                     | *                                                               | Man                         |
| 3,5,13,19,<br>23      | Auto                          | *                                      | o.k.              | *                     | *                                                               | Auto                        |
| 19                    | RCas                          | LO                                     | o.k.              | *                     | *                                                               | Auto                        |
| 23                    | RCas                          | O/S                                    | o.k.              | *                     | *                                                               | Auto                        |
| 6                     | RCas                          | Auto                                   | o.k.              | GOOD (C)-IA           | *                                                               | RCas                        |
| 13                    | RCas                          | Auto                                   | o.k.              | <>GOOD (C)-IA         | *                                                               | Auto                        |
| 10                    | RCas                          | Man                                    | o.k.              | GOOD (C)-IA           | *                                                               | RCas                        |
| 12                    | RCas                          | Man                                    | o.k.              | <>GOOD (C)-IA         | *                                                               | Man                         |
| 14                    | RCas                          | RCas                                   | o.k.              | <>GOOD (C)            | no                                                              | RCas                        |
| 5                     | RCas                          | RCas                                   | o.k.              | <>GOOD (C)            | yes                                                             | Auto                        |
| 14                    | RCas                          | RCas                                   | o.k.              | GOOD (C)              | *                                                               | RCas                        |
| 5                     | RCas                          | RCas                                   | o.k.              | GOOD (C)-IFS          | *                                                               | Auto                        |

IA Initialization Acknowledge

Table 132. Conditions and Results of the Actual Mode Calculation

<sup>\*</sup> no influence

## 23.2.1.3 Conditions on which the Output Status is generated

The following tables show which conditions influence the Status of the output parameters.

|         | Conditions                                  |             | Results                                                      |
|---------|---------------------------------------------|-------------|--------------------------------------------------------------|
| Actual- | Status                                      | Status      | Status                                                       |
| Mode    | (SP_D)                                      | (RCAS_IN_D) | (OUT_D)                                                      |
| O/S     | *                                           | *           | BAD-Out of Service, constant                                 |
| LO      | *                                           | *           | GOOD (NC)- ok, constant                                      |
| Man     | *                                           | *           | Last status value and constant or as written by the operator |
| Auto    | <> BAD and <> GOOD (NC)-IFS                 | *           | GOOD (NC)                                                    |
| Auto    | BAD (fail safe time still active)           | *           | GOOD (NC)                                                    |
| Auto    | BAD (fail safe time ended) or GOOD (NC)-IFS | *           | See FAIL_SAFE_TYPE                                           |
| Rcas    | *                                           | GOOD (C)-*  | GOOD (NC)- ok                                                |

<sup>\*</sup> no influence

Table 133. Conditions and Results of the Status Calculation of the Output Parameter

|                 | Con             | ditions                       | Results                                   |
|-----------------|-----------------|-------------------------------|-------------------------------------------|
| Actual-<br>Mode | Target-<br>Mode | Status (RCAS_IN_D)            | Status (RCAS_OUT_D)                       |
| O/S             | *               | *                             | BAD-Out of Service, constant              |
| LO              | *               | *                             | GOOD (C)-Local Override, constant         |
| Man             | <>RCas          | *                             | GOOD (C)-Not Invited,constant             |
| Auto            | <>RCas          | *                             | GOOD (C)-Not Invited                      |
| Man             | RCas            | <> Initialization acknowledge | GOOD (C)-Initialization Request, constant |
| Man             | RCas            | Initialization acknowledge    | GOOD (C)-ok                               |
| Auto            | RCas            | <> Initialization acknowledge | GOOD (C)-Initialization Request           |
| Auto            | RCas            | Initialization acknowledge    | GOOD (C)-ok                               |
| Rcas            | RCas            | GOOD(C) - *                   | GOOD (C)-ok                               |

<sup>\*</sup> no influence

Table 134. Conditions and Results of the Status Calculation of the Output Parameter

## 23.2.2 Parameter Description of the Discrete Output Function Block

| Parameter       | Description                                                                                                                                                                                                                                      |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHANNEL         | Reference to the active Transducer Block and its parameter, which provides the actual position of the final control element. For more description see General Requirements (CHANNEL)                                                             |
| CHECKBACK       | Detailed information of the device, bitwize coded. More than one message is possible at once.                                                                                                                                                    |
| CHECK_BACK_MASK | Definition of supported CHECK_BACK information bits.                                                                                                                                                                                             |
|                 | Coding of each bit:                                                                                                                                                                                                                              |
|                 | 0: not supported 1: supported                                                                                                                                                                                                                    |
| FSAFE_TIME      | Time in seconds from detection of failure of the actual used setpoint (SP_D = BAD or RCAS_IN <> GOOD) to the action of the block if the condition still exists.                                                                                  |
|                 | Note: A communication time out changes the status of the transmitted setpoint to BAD (see 10.4).                                                                                                                                                 |
| FSAFE_TYPE      | Defines reaction of the device, if a failure of the actual used setpoint is still detected after FSAFE_TIME or if the status of the actual used setpoint is "Initiate Fail Safe".                                                                |
|                 | The calculated ACTUAL MODE is AUTO respectively (see Table 132).                                                                                                                                                                                 |
|                 | Coding:                                                                                                                                                                                                                                          |
|                 | value FSAFE_VALUE _D is used as setpoint status of OUT_D = UNCERTAIN - Substitute Value                                                                                                                                                          |
|                 | storing last valid setpoint     status of OUT_D = UNCERTAIN - Last usable Value     or BAD - No communication, no LUV                                                                                                                            |
|                 | <ol> <li>actuator goes to fail-safe position defined by ACTUATOR_ACTION,<br/>status of OUT_D = BAD - non specific</li> </ol>                                                                                                                     |
| FSAFE_VAL_D     | OUT_D used if FSAFE_TYPE = 0 and FSAFE is activated.                                                                                                                                                                                             |
| INVERT          | Indicates whether the SP_D should be logically inverted before writing to OUT_D in mode AUTO or RCAS.                                                                                                                                            |
|                 | Coding:                                                                                                                                                                                                                                          |
|                 | 0: not inverted 1: inverted                                                                                                                                                                                                                      |
| OUT_D           | This parameter is the process variable of the discrete output block in AUTO, and RCas mode and is the value specified by the operator/engineer in MAN and LO. In case of BAD status the valve goes to the position specified in ACTUATOR_ACTION. |
| READBACK_D      | In case of valve Control this Object indicates the position of the discrete valve and the sensor states.                                                                                                                                         |
|                 | Bit 0 (LSB), 1: 0 = not initialized, 1 = closed, 2 = open, 3 = intermediate                                                                                                                                                                      |
|                 | Bit 2: State sensor 1                                                                                                                                                                                                                            |
|                 | Bit 3: Short circuit sensor 1, 1 = active, 0 = inactive                                                                                                                                                                                          |
|                 | Bit 4: Lead break sensor 1, 1 = active, 0 = inactive                                                                                                                                                                                             |

| Parameter  | Description                                                                                                                                                                                       |                                                  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
|            | Bit 5:                                                                                                                                                                                            | State sensor 2                                   |  |  |
|            | Bit 6:                                                                                                                                                                                            | Short circuit sensor 2, 1 = active, 0 = inactive |  |  |
|            | Bit 7 (MSB):                                                                                                                                                                                      | Lead break sensor 2, 1 = active, 0 = inactive    |  |  |
| RCAS_IN_D  | Target Setpoint and status provided by a supervisory Host to the discrete output block used in MODE RCAS.                                                                                         |                                                  |  |  |
| RCAS_OUT_D | Function Block Setpoint and status provided to a supervisory Host for monitoring / back calculation and to allow action to be taken under limited conditions or mode change.                      |                                                  |  |  |
| SIMULATE   | For commissioning and maintenance reasons, it is possible to simulate the READBACK by defining the value and the status. That means that the Transducer Block and the DO-FB will be disconnected. |                                                  |  |  |
| SP_D       | Setpoint of Function                                                                                                                                                                              | on Block used in MODE AUTO.                      |  |  |

V3.01

Table 135. Parameter Description of the Discrete Output Function Block

## 23.2.3 Parameter Attributes of the Discrete Output Function Block

| Relative Index | Parameter<br>Name              | Object Type | Data Type   | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|--------------------------------|-------------|-------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Stan           | dard Parameters see General    | Requireme   | nts         |       |      |        |                                              |             |               |                                      |
|                |                                |             |             |       |      |        |                                              |             |               |                                      |
| Additio        | nal Discrete Output Function E | Block Param | neters      |       |      |        |                                              |             |               |                                      |
| 9              | SP_D                           | Record      | 102         | D     | 2    | r, w   | I/a, cyc                                     | ı           | -             | М                                    |
| 10             | OUT_D                          | Record      | 102         | D     | 2    | r, w   | C/a                                          | ı           | -             | O(A),<br>M(B)                        |
| 12             | READBACK_D                     | Record      | 102         | D     | 2    | r      | O/a, cyc                                     | ı           | -             | 0                                    |
| 14             | RCAS_IN_D                      | Record      | 102         | D     | 2    | r, w   | I/a, cyc                                     | ı           | -             | 0                                    |
| 17             | CHANNEL                        | Simple      | Unsigned16  | Ø     | 2    | r, w   | C/a                                          | F           | -             | O(A),<br>M(B)                        |
| 18             | INVERT                         | Simple      | Unsigned8   | S     | 1    | r, w   | C/a                                          | F           | 0             | М                                    |
| 19             | FSAVE_TIME                     | Simple      | Float       | S     | 4    | r, w   | C/a                                          | F           | 0             | O(A),<br>M(B)                        |
| 20             | FSAVE_TYPE                     | Simple      | Unsigned8   | 8     | 1    | r, w   | C/a                                          | F           | -             | O(A),<br>M(B)                        |
| 21             | FSAVE_VAL_D                    | Simple      | Unsigned8   | Ø     | 1    | r, w   | C/a                                          | F           | 0             | O(A),<br>M(B)                        |
| 22             | RCAS_OUT_D                     | Record      | 102         | D     | 2    | r      | O/a, cyc                                     | 1           | -             | 0                                    |
| 24             | SIMULATE                       | Record      | DS-51       | S     | 3    | r, w   | C/a                                          | F           | disabl<br>ed  | O(A),<br>M(B)                        |
| 33             | CHECK_BACK                     | Simple      | OctetString | D     | 3    | r      | C/a, cyc                                     | -           | -             | М                                    |
| 34             | CHECK_BACK_MASK                | Simple      | OctetString | Cst   | 3    | r      | C/a                                          | -           | -             | М                                    |
| 35-44          | Reserved by PNO                |             |             |       |      |        |                                              | ı           |               | М                                    |

| ١ | n | $\sim$ | 4 |
|---|---|--------|---|
|   |   |        |   |

| Relative Index | Parameter<br>Name                     | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| 45             | First manufacturer specific parameter |             |           |       |      |        |                                              | ı           |               | 0                                    |

Table 136. Parameter Attributes of the Discrete Output Function Block

## 23.2.4 View Object of the Discrete Output Function Block

| Relative<br>Index | Parameter Name                                                      | View_1  | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|---------|--------|--------|--------|
| 9                 | SP_D                                                                | 2       |        |        |        |
| 10                | OUT_D                                                               | 2       |        |        |        |
| 12                | READBACK_D                                                          |         |        |        |        |
| 14                | RCAS_IN_D                                                           | 2       |        |        |        |
| 17                | CHANNEL                                                             |         |        |        |        |
| 18                | INVERT                                                              |         |        |        |        |
| 19                | FSAVE_TIME                                                          |         |        |        |        |
| 20                | FSAVE_TYPE                                                          |         |        |        |        |
| 21                | FSAVE_VAL_D                                                         |         |        |        |        |
| 22                | RCAS_OUT_D                                                          | 2       |        |        |        |
| 24                | SIMULATE                                                            |         |        |        |        |
| 33                | CHECK_BACK                                                          | 3       |        |        |        |
| 34                | CHECK_BACK_MASK                                                     |         |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 13 + 11 |        |        |        |

Table 137. View Object of the Discrete Output Function Block

## 23.2.5 Coding of the Discrete Output FB Parameter CHECK\_BACK

For the mapping of BitStrings to OctetStrings see 3.7.1, Table 8.

|     | CHECKBACK              | Description                                                       | Ind.  |
|-----|------------------------|-------------------------------------------------------------------|-------|
| Bit | Mnemonic               |                                                                   | Class |
| 0   | CB_FAIL_SAFE           | Field device in Fail safe active                                  | R     |
| 1   | CB_REQ_LOC_OP          | Request for local operation at device                             | R     |
| 2   | CB_LOCAL_OP            | Field device under local control                                  | R     |
| 3   | CB_OVERRIDE            | Emergency override active                                         | R     |
| 4   | CB_DISC_DIR            | Actual position feedback different from expected position         | R     |
| 5   | CB_LEAD_BREAK_VALVE    | Indicates a lead break of the valve connection.                   | R     |
| 6   | CB_SHORT_CIRCUIT_VALVE | Indicates a short circuit of the valve connection.                | R     |
| 7   | Notused                |                                                                   |       |
| 8   | CB_ACT_OPEN            | Actuator is moving towards open direction                         | R     |
| 9   | CB_ACT_CLOSE           | Actuator is moving towards close direction                        | R     |
| 10  | CB_UPDATE_EVT          | The alert generated by any change to the static data of FB and TB | А     |
| 11  | CB_SIMULATE            | Simulation of process values is enabled                           | R     |

|     | CHECKBACK                    | Description                                                 | Ind.  |
|-----|------------------------------|-------------------------------------------------------------|-------|
| Bit | Mnemonic                     |                                                             | Class |
| 12  | Not used                     |                                                             |       |
| 13  | CB_CONTR_ERR                 | Internal control loop disturbed                             | R     |
| 14  | CB_CONTR_INACT               | Valve inactive (status OUT_D BAD)                           | R     |
| 15  | CB_SELFTEST                  | Device under self-test.                                     | R     |
| 16  | CB_TOT_VALVE_TRAV            | Indicates that the total valve travel limit is exceeded     | R     |
| 17  | CB_BREAK_TIME_OPEN_TO_CLOSE  | Limit for break time of change from OPEN to CLOSE exceeded. | R     |
| 18  | CB_BREAK_TIME_CLOSE_TO_OPEN  | Limit for break time of change from CLOSE to OPEN exceeded. | R     |
| 19  | CB_CYCLE_TEST                | Error occurred in the internal cycle test.                  | R     |
| 20  | CB_TRAVEL_TIME_OPEN_TO_CLOSE | Limit for time between change from OPEN to CLOSE exceeded.  | R     |
| 21  | CB_TRAVEL_TIME_CLOSE_TO_OPEN | Limit for time between change CLOSE to OPEN exceeded.       | R     |
| 22  | CB_TRAVEL_BLOCKED            | Valve mechanically blocked.                                 | R     |
| 23  | CB_ZERO_POINT_ERROR          | Zero point position cannot be reached.                      | R     |

Table 138. Coding of the Discrete Output FB Parameter CHECK\_BACK

Values of the CHECK\_BACK bits:

0: not set

1: set

#### **Indication Class:**

R: Indication remains active as long as the reason for the message exists.

A: Indication will be automatically reset after 10 seconds.

## 23.3 Additions to Start-up and Break-down Phase

In addition to the definitions in the General Definitions the following values must be settled at the start-up phase:  $MODE_BLK$  (actual MODE) = O/S

## 24 Device Data Sheet Discrete Output - Transducer Blocks

## 24.1 Parameter Description of the Discrete Valve Control Transducer Block

The output of the Transducer Block is READBACK\_D for discrete valve control applications. For each discrete output 2 proximity switches inputs are available. The input signals indicate the ON/OFF state of the valve.

| Parameter                     | Description                                                                                                                                   |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| ACTUATOR_ACTION               | Fail-safe position for power-loss of the actuator resp. the valve:                                                                            |
|                               | Coding:                                                                                                                                       |
|                               | 0: not initialized                                                                                                                            |
|                               | 1: opening                                                                                                                                    |
|                               | 2: closing                                                                                                                                    |
| ACTUATOR_MAN                  | Name of the actuator Manufacturer                                                                                                             |
| ACTUATOR_SER_NUM              | Serial number of the actuator belonging to the device.                                                                                        |
| ACTUATOR_ID                   | Identification of the actuator (-type)                                                                                                        |
| TRAVEL_COUNT                  | Number of cycles from OPEN to CLOSE and CLOSE to OPEN (Sum of both)                                                                           |
| TRAVEL_COUNT_LIM              | Limit for TRAVEL_COUNT                                                                                                                        |
| BREAK_TIME_OPEN_<br>CLOSE     | Setpoint for the time in 10 millisecond resolution between the change to state CLOSE and the indication that the valve leaves the state OPEN. |
| BREAK_TIME_CLOSE_<br>OPEN     | Setpoint for the time in 10 millisecond resolution between the change to state OPEN and the indication that the valve leaves the state CLOSE. |
| BREAK_TIME_OPEN_<br>CLOSE_ACT | Actual time in 10 millisecond resolution between the change to state CLOSE and the indication that the valve leaves the state OPEN.           |
| BREAK_TIME_CLOSE_<br>OPEN_ACT | Actual time in 10 millisecond resolution between the change to state OPEN and the indication that the valve leaves the state CLOSE.           |
| BREAK_TIME_OPEN_<br>CLOSE_TOL | Maximal allowed time difference between BREAK_TIME_OPEN_CLOSE and BREAK_TIME_OPEN_CLOSE_ACT.                                                  |
| BREAK_TIME_CLOSE_<br>OPEN_TOL | Maximal allowed time difference between BREAK_TIME_CLOSE_OPEN and BREAK_TIME_CLOSE_OPEN_ACT.                                                  |
| CYCLE_TEST_CMD                | Enables/disables an internal function test procedure. The function is defined vendor specific.                                                |
|                               | Coding:                                                                                                                                       |
|                               | 0: disabled                                                                                                                                   |
|                               | 1: enabled                                                                                                                                    |
| CYCLE_TEST_TIME               | Time in seconds between two internal test cycles.                                                                                             |
| SELF_CALIB_CMD                | Initiation of a device-specific calibration-procedure, manufacturer specific.                                                                 |
|                               | 0 – default                                                                                                                                   |
| SELF_CALIB_STATUS             | Result or status of the device-specific calibration-procedure, manufacture specific.                                                          |
|                               | 0 – default                                                                                                                                   |

| Parameter                      | Description                                                                                             |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| TRAVEL_TIME_CLOSE_<br>OPEN     | Setpoint for the time in 10 millisecond resolution between the changes of the state from CLOSE to OPEN. |  |  |
| TRAVEL_TIME_OPEN_<br>CLOSE     | Setpoint for the time in 10 millisecond resolution between the changes of the state from OPEN to CLOSE. |  |  |
| TRAVEL_TIME_CLOSE_<br>OPEN_ACT | The last Travel time from close to open in 10 millisecond resolution.                                   |  |  |
| TRAVEL_TIME_OPEN_<br>CLOSE_ACT | The last Travel time from open to close in 10 millisecond resolution.                                   |  |  |
| TRAVEL_TIME_CLOSE_<br>OPEN_TOL | Maximal allowed time difference between TRAVEL_TIME_CLOSE_OPEN and TRAVEL_TIME_CLOSE_OPEN_ACT.          |  |  |
| TRAVEL_TIME_OPEN_<br>CLOSE_TOL | Maximal allowed time difference between TRAVEL_TIME_OPEN_CLOSE and TRAVEL_TIME_OPEN_CLOSE_ACT.          |  |  |
| VALVE_MAN                      | Name of the valve Manufacturer                                                                          |  |  |
| VALVE_SER_NUM                  | Serial number of the valve belonging to the device.                                                     |  |  |
| VALVE_ID                       | Identification of the valve (-type)                                                                     |  |  |
| SENSOR_WIRE_CHECK              | Enables the lead breakage and short circuit detection.                                                  |  |  |
|                                | Coding:                                                                                                 |  |  |
|                                | 0: Lead breakage and short circuit detection enabled                                                    |  |  |
|                                | Lead breakage detection enable, short circuit detection disabled                                        |  |  |
|                                | 2: Lead breakage detection disable, short circuit detection enabled                                     |  |  |
|                                | 3: Lead breakage and short circuit detection disabled                                                   |  |  |

Table 139. Parameter Description of the Discrete Valve Control Transducer Block

## 24.2 Parameter Attributes of the Discrete Valve Control Transducer Block

| Relative Index | Parameter<br>Name                                                         | Object Type | Data Type   | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |  |
|----------------|---------------------------------------------------------------------------|-------------|-------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|--|
| Star           | Standard Parameters see General Requirements                              |             |             |       |      |        |                                              |             |               |                                      |  |
|                |                                                                           |             |             |       |      |        |                                              |             |               |                                      |  |
| Additio        | Additional Transducer Block Parameters for Discrete Valve Control Devices |             |             |       |      |        |                                              |             |               |                                      |  |
| 8              | VALVE_MAN                                                                 | Simple      | OctetString | S     | 16   | r,w    | C/a                                          | I           | -             | O (B)                                |  |
| 9              | ACTUATOR_MAN                                                              | Simple      | OctetString | S     | 16   | r,w    | C/a                                          | I           | -             | O (B)                                |  |
| 10             | VALVE_SER_NUM                                                             | Simple      | OctetString | S     | 16   | r,w    | C/a                                          | I           | -             | O (B)                                |  |
| 11             | ACTUATOR_SER_NUM                                                          | Simple      | OctetString | S     | 16   | r,w    | C/a                                          | I           | -             | O (B)                                |  |
| 12             | VALVE_ID                                                                  | Simple      | OctetString | S     | 16   | r,w    | C/a                                          | I           | -             | O (B)                                |  |
| 13             | ACTUATOR_ID                                                               | Simple      | OctetString | S     | 16   | r,w    | C/a                                          | I           | -             | O (B)                                |  |
| 14             | ACTUATOR_ACTION                                                           | Simple      | Unsigned8   | S     | 1    | r,w    | C/a                                          | F           | -             | M (B)                                |  |
| 15             | TRAVEL_COUNT                                                              | Simple      | Unsigned32  | N     | 4    | r,w    | C/a                                          | 1           | -             | O (B)                                |  |
| 16             | TRAVEL_COUNT_LIM                                                          | Simple      | Unsigned32  | S     | 4    | r,w    | C/a                                          | F           | -             | O (B)                                |  |
| 17             | BREAK_TIME_OPEN_<br>CLOSE                                                 | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | O (B)                                |  |
| 18             | BREAK_TIME_CLOSE_<br>OPEN                                                 | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | O (B)                                |  |
| 19             | BREAK_TIME_OPEN_<br>CLOSE_ACT                                             | Simple      | Unsigned16  | D     | 2    | r      | C/a                                          | -           | -             | O (B)                                |  |
| 20             | BREAK_TIME_CLOSE_<br>OPEN_ACT                                             | Simple      | Unsigned16  | D     | 2    | r      | C/a                                          | -           | -             | O (B)                                |  |
| 21             | BREAK_TIME_OPEN_<br>CLOSE_TOL                                             | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | O (B)                                |  |
| 22             | BREAK_TIME_CLOSE_<br>OPEN_TOL                                             | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | O (B)                                |  |
| 23             | CYCLE_TEST_CMD                                                            | Simple      | Unsigned8   | S     | 1    | r,w    | C/a                                          | F           | -             | O (B)                                |  |
| 24             | CYCLE_TEST_TIME                                                           | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | O (B)                                |  |
| 25             | TRAVEL_TIME_CLOSE_<br>OPEN                                                | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | O (B)                                |  |
| 26             | TRAVEL_TIME_OPEN_<br>CLOSE                                                | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | O (B)                                |  |
| 27             | TRAVEL_TIME_CLOSE_<br>OPEN_ACT                                            | Simple      | Unsigned16  | D     | 2    | r      | C/a                                          | -           | ı             | O (B)                                |  |
| 28             | TRAVEL_TIME_OPEN_<br>CLOSE_ACT                                            | Simple      | Unsigned16  | D     | 2    | r      | C/a                                          | -           | -             | O (B)                                |  |
| 29             | TRAVEL_TIME_CLOSE_<br>OPEN_TOL                                            | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | 1             | O (B)                                |  |
| 30             | TRAVEL_TIME_OPEN_<br>CLOSE_TOL                                            | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | O (B)                                |  |
| 31             | SELF_CALIB_CMD                                                            | Simple      | Unsigned8   | N     | 1    | r,w    | C/a                                          | -           | -             | M (B)                                |  |

<sup>1</sup> Manufacturer specific

| Relative Index | Parameter<br>Name | Object Type | Data Type | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|-------------------|-------------|-----------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| 32             | SELF_CALIB_STATUS | Simple      | Unsigned8 | N     | 1    | r      | C/a                                          | -           | -             | M (B)                                |
| 33             | SENSOR_WIRE_CHECK | Simple      | Unsigned8 | S     | 1    | r,w    | C/a                                          | F           | -             | O (B)                                |
| 34-43          | Reserved by PNO   |             |           |       |      |        |                                              |             |               |                                      |

Table 140. Parameter Attributes of the Discrete Valve Control Transducer Block

## 24.3 View Object of the Discrete Valve Control Transducer Block

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 8                 | VALVE_MAN                                                           |        |        |        |        |
| 9                 | ACTUATOR_MAN                                                        |        |        |        |        |
| 10                | VALVE_SER_NUM                                                       |        |        |        |        |
| 11                | ACTUATOR_SER_NUM                                                    |        |        |        |        |
| 12                | VALVE_ID                                                            |        |        |        |        |
| 13                | ACTUATOR_ID                                                         |        |        |        |        |
| 14                | ACTUATOR_ACTION                                                     |        |        |        |        |
| 15                | TRAVEL_COUNT                                                        |        |        |        |        |
| 16                | TRAVEL_COUNT_LIM                                                    |        |        |        |        |
| 17                | BREAK_TIME_OPEN_CLOSE                                               |        |        |        |        |
| 18                | BREAK_TIME_CLOSE_OPEN                                               |        |        |        |        |
| 19                | BREAK_TIME_OPEN_CLOSE_ACT                                           |        |        |        |        |
| 20                | BREAK_TIME_CLOSE_OPEN_ACT                                           |        |        |        |        |
| 21                | BREAK_TIME_OPEN_CLOSE_TOL                                           |        |        |        |        |
| 22                | BREAK_TIME_CLOSE_OPEN_TOL                                           |        |        |        |        |
| 23                | CYCLE_TEST_CMD                                                      |        |        |        |        |
| 24                | CYCLE_TEST_TIME                                                     |        |        |        |        |
| 25                | TRAVEL_TIME_CLOSE_OPEN                                              |        |        |        |        |
| 26                | TRAVEL_TIME_OPEN_CLOSE                                              |        |        |        |        |
| 27                | TRAVEL_TIME_CLOSE_OPEN_ACT                                          |        |        |        |        |
| 28                | TRAVEL_TIME_OPEN_CLOSE _ACT                                         |        |        |        |        |
| 29                | TRAVEL_TIME_CLOSE_OPEN_TOL                                          |        |        |        |        |
| 30                | TRAVEL_TIME_OPEN_CLOSE _TOL                                         |        |        |        |        |
| 31                | SELF_CALIB_CMD                                                      |        |        |        |        |
| 32                | SELF_CALIB_STATUS                                                   |        |        |        |        |
| 33                | SENSOR_WIRE_CHECK                                                   |        |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 13     |        |        |        |

**Table 141. View Object of the Discrete Valve Control Transducer Block** 

## 25 Device Data Sheet Discrete Output - Conformance Statement

Every device chooses out of the defined structures of this document the necessary subset. To choose a subset follows certain rules defined in the conformance statements below. The tables show which structure is mandatory (M), selected (S) and which are optional (O).

| Parameter                       | Conformance class A | Conformance class B |
|---------------------------------|---------------------|---------------------|
| Physical Block                  | M                   | M                   |
| Discrete Output Function Block  | M                   | М                   |
| Transducer Block                | 0                   | М                   |
| Discrete valve Transducer Block | 0                   | S                   |
| Other Function Blocks           | 0                   | 0                   |
| Other Transducer Blocks         | 0                   | 0                   |

**Table 142. Conformance Statement of Discrete Output Components** 

# 26 Device Data Sheet Discrete Output - Document History

Changes from V3.0 to V3.0.1

| Chapter/Figure/Table | Change                                                                                                                                                                                                                |  |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 24.2.1/Figure 56     | The value written to by the operator in mode Man is OUT_D instead of SP_D.                                                                                                                                            |  |  |  |
| 24.2.1               | DS-34 replaced by data type 102.                                                                                                                                                                                      |  |  |  |
| 24.2.1.1             | Sentence changed below Figure 4:                                                                                                                                                                                      |  |  |  |
|                      | The modes O/S (Out of Service), MAN (Manual) and AUTO (Automatic) are mandatory as permitted modes for DO FBs according to conformance class B. The modes LO (Local Override) and Rcas (Remote Cascade) are optional. |  |  |  |
| 24.2.3/Table 136     | In column "Mandatory optional Class (A/B)" all "cyc optional" deleted. RCAS_IN_D and RCAS_OUT_D are now O(A/B).                                                                                                       |  |  |  |
|                      | Default value for FSAVE_TYPE is deleted.                                                                                                                                                                              |  |  |  |
|                      | Column "Reset Class" added.                                                                                                                                                                                           |  |  |  |
|                      | Data type DS-34 replaced by data type 102.                                                                                                                                                                            |  |  |  |
| 24.2.5/Table 138     | Description for CB_DISC_DIR changed:                                                                                                                                                                                  |  |  |  |
|                      | Actual position feedback different from expected position                                                                                                                                                             |  |  |  |
|                      | Bit 23 CB_ZERO_POINT_ERROR added:                                                                                                                                                                                     |  |  |  |
|                      | Zero point position cannot be reached                                                                                                                                                                                 |  |  |  |
| 25.2/Table 140       | Column "Reset Class" added.                                                                                                                                                                                           |  |  |  |

Table 143. Changes from V3.0 to V3.0.1

# PROFIBUS - PA Device Data Sheet Actuator

## 27 Device Data Sheet Actuator

## 27.1 Function parameters for the Physical Block

#### 27.1.1 Additional Physical Block Parameter Descriptions

There are no additional parameters.

First manufacturer specific block may be started at Relative Index 33.

## 27.2 Function parameters for Analog Output Function Block

#### 27.2.1 Analog Output Function Block Overview

Analog Output Function Blocks in this document represent positioners or valves for the actuation of final control. The parameters are shown in the following figure.

Variable speed motor drives (i.e. pumps, ventilators, drives, ...) are not included in the scope of this device data sheet.

The Analog Output Function Block can also be used for other analog outputs than valves. In this case all parameters related to valves have to be used in a way corresponding to the transducer used in this application.



Figure 59. Summary of Parameters of the Analog Output Function Block

## 27.2.2 Analog Output Function Block Structure

The structure of the AO with Simulation, Mode and Status is shown in Figure 60. More details about the relationships between some AO parameters are visible in Figure 63.



Figure 60. Mode and Simulation Diagram of Analog Output Function Block



Figure 61. Parameter Relationship of AO FB

#### 27.2.3 Analog Output Function Block State Machine

The following figure presents a summary of all considering factors of the Mode and Status generation.



Figure 62. Conditions of Mode and Status generation

The Status (RCAS\_IN) is coupled with the value provided by a supervisory host for the target set point. The Resource state is not defined in the profile and device specific and has to distinguish between *OK* and *not OK* in minimum. Permitted and Target Mode are attributes from the FB-Parameter MODE\_BLK. The Target Mode is set by the operator and the Permitted Mode by the block designer. Actual Mode is an attribute of the FB parameter MODE\_BLK and the result of the calculation. The Status (RCAS\_OUT) is coupled with the RCAS\_OUT value (Data type 101) from the block, provided to a supervisory host. The Process Status to Transducer Block is coupled with the primary Output value (Data type 101) from the Function Block to the Transducer Block.



Figure 63. State Machine of the Analog Output Function Block

The modes O/S (Out of Service), MAN (Manual) and AUTO (Automatic) are mandatory as permitted modes for AO Function Blocks according to conformance class B. The modes LO (Local Override) and RCas (Remote Cascade) are optional. The possible mode changes (transitions) are illustrated in Figure 63.

#### 27.2.3.1 Conditions on which the Actual Mode is calculated and the Target Mode is changed

The following table contains on the left side all conditions that demand a mode change from the Actual Mode (last execution) to the new Actual and Target Mode of the AO-Block. On the right side the results of the calculation are illustrated.

The first column contains the number of the transition of the state machine in section Figure 63.

|                       |                               | Со                                     | nditions          |                     |                                                                | Results                     |
|-----------------------|-------------------------------|----------------------------------------|-------------------|---------------------|----------------------------------------------------------------|-----------------------------|
| Transition            | Target-<br>Mode<br>(Operator) | Actual-Mode<br>(previous<br>execution) | Resource<br>State | Status<br>(RCAS_IN) | Status of<br>RCAS_IN <><br>GOOD (C)<br>longer as<br>FSAFE_TIME | Actual-Mode<br>(calculated) |
| 2,7,8,11              | *                             | *                                      | <>0.k.            | *                   | *                                                              | O/S                         |
| 2,7,8,11, 16          | O/S                           | *                                      | o.k.              | *                   | *                                                              | O/S                         |
| 15, 18, 20,<br>21, 22 | LO                            | *                                      | o.k.              |                     |                                                                | LO                          |
| 1,4,9,12, 17          | Man                           | *                                      | o.k.              | *                   | *                                                              | Man                         |
| 3,5,13,19,2<br>3      | Auto                          | *                                      | o.k.              | *                   | *                                                              | Auto                        |
| 19                    | RCas                          | LO                                     | o.k.              | *                   | *                                                              | Auto                        |
| 23                    | RCas                          | O/S                                    | o.k.              | *                   | *                                                              | Auto                        |
| 6                     | RCas                          | Auto                                   | o.k.              | GOOD (C)-IA         | *                                                              | RCas                        |
| 13                    | RCas                          | Auto                                   | o.k.              | <>GOOD (C)-<br>IA   | *                                                              | Auto                        |
| 10                    | RCas                          | Man                                    | o.k.              | GOOD (C)-IA         | *                                                              | RCas                        |
| 12                    | RCas                          | Man                                    | o.k.              | <>GOOD (C)-<br>IA   | *                                                              | Man                         |
| 14                    | RCas                          | RCas                                   | o.k.              | <>GOOD (C)          | no                                                             | RCas                        |
| 5                     | RCas                          | RCas                                   | o.k.              | <>GOOD (C)          | yes                                                            | Auto                        |
| 14                    | RCas                          | RCas                                   | o.k.              | GOOD (C)            | *                                                              | RCas                        |
| 5                     | RCas                          | RCas                                   | o.k.              | GOOD (C)-IFS        | *                                                              | Auto                        |

IA Initialization Acknowledge

Table 144. Conditions and Results of the Actual Mode Calculation

<sup>\*</sup> no influence

## 27.2.3.2 Conditions on which the Output Status is generated

The following table shows the conditions that influence the status of the output parameters. On the left side all conditions and on the right side the results are illustrated.

|             | Conditions                                  | Results    |                                                              |
|-------------|---------------------------------------------|------------|--------------------------------------------------------------|
| Actual-Mode | Status                                      | Status     | Status                                                       |
|             | (SP)                                        | (RCAS_IN)  | (OUT)                                                        |
| O/S         | *                                           | *          | BAD- Out of Service, constant                                |
| LO          | *                                           | *          | GOOD (NC)- ok, constant                                      |
| Man         | *                                           | *          | last status value and constant or as written by the operator |
| Auto        | <> BAD and <> GOOD (NC)-<br>IFS             | *          | GOOD (NC)                                                    |
| Auto        | BAD (fail safe time still active)           | *          | GOOD (NC)                                                    |
| Auto        | BAD (fail safe time ended) or GOOD (NC)-IFS | *          | see FAIL_SAFE_TYPE                                           |
| RCas        | *                                           | GOOD (C)-* | GOOD (NC)- ok                                                |

<sup>\*</sup> no influence

Table 145. Conditions and Results of the Status Calculation of the Output Parameter

|             | Conditio    | Results                       |                                  |
|-------------|-------------|-------------------------------|----------------------------------|
| Actual-Mode | Target-Mode | Status (RCAS_IN)              | Status (RCAS_OUT)                |
| O/S         | *           | *                             | BAD-Out of Service,              |
|             |             |                               | Constant                         |
| LO          | *           | *                             | GOOD (C)-Local Override,         |
|             |             |                               | Constant                         |
| Man         | <>RCas      | *                             | GOOD (C)-Not Invited,            |
|             |             |                               | Constant                         |
| Auto        | <>RCas      | *                             | GOOD (C)-Not Invited             |
| Man         | RCas        | <> Initialization acknowledge | GOOD (C)-Initialization Request, |
|             |             |                               | Constant                         |
| Man         | RCas        | Initialization acknowledge    | GOOD (C)-ok                      |
| Auto        | RCas        | <> Initialization acknowledge | GOOD (C)-Initialization Request  |
| Auto        | RCas        | Initialization acknowledge    | GOOD (C)-ok                      |
| RCas        | RCas        | GOOD (C)- *                   | GOOD (C)-ok                      |

<sup>\*</sup> no influence

Table 146. Conditions and Results of the Status Calculation of Cascade Handling

# 27.2.4 Parameter Description of the Analog Output Function Block

| Parameter       | Description                                                                                                                                                                                                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHECK_BACK      | Detailed information of the device, bitwise coded. More than one message possible at once.                                                                                                                                                                          |
| CHECK_BACK_MASK | Definition of supported CHECK_BACK information bits.                                                                                                                                                                                                                |
|                 | Coding:                                                                                                                                                                                                                                                             |
|                 | 0: not supported                                                                                                                                                                                                                                                    |
|                 | 1: supported                                                                                                                                                                                                                                                        |
| FSAFE_TIME      | Time in seconds from detection of failure of the actual used set point (SP = BAD or RCAS_IN <> GOOD) to the action of the block if the condition still exists. Note: A communication time out changes the status of the transmitted set point to BAD (see Mapping). |
| FSAFE_TYPE      | Defines reaction of the device, if a failure of the actual used set point is still detected after FSAFE_TIME or if the status of actual used set point is Initiate Fail Safe.                                                                                       |
|                 | The calculated ACTUAL MODE is AUTO respectively (see Table 1).                                                                                                                                                                                                      |
|                 | value FSAFE_VALUE is used as set point     status of OUT = UNCERTAIN - Substitute Value                                                                                                                                                                             |
|                 | use last valid set point     status of OUT = UNCERTAIN - Last usable Value     or BAD - No communication, no LUV                                                                                                                                                    |
|                 | actuator goes to fail-safe position defined by ACTUATOR_ACTION (only useful for actuators with spring return)     status of OUT = BAD - non specific                                                                                                                |
| FSAFE_VALUE     | Set point used if FSAFE_TYPE = 1 and FSAFE is activated.                                                                                                                                                                                                            |
| INCREASE_CLOSE  | Direction of positioner in mode RCas and Auto                                                                                                                                                                                                                       |
|                 | Coding:                                                                                                                                                                                                                                                             |
|                 | 0: rising (increasing of set point input results in OPENING of the valve)                                                                                                                                                                                           |
|                 | falling (increasing of set point input results in CLOSING of the valve)                                                                                                                                                                                             |
| IN_CHANNEL      | Reference to the active Transducer Block and its parameter that provides the actual position of the final control element. For more description see General Requirements (CHANNEL).                                                                                 |
| OUT             | This parameter is the process variable of the analog output block in engineering units in AUTO and RCas mode and is the value specified by the operator/engineer in Man and LO mode.                                                                                |
| OUT_CHANNEL     | Reference to the active Transducer Block and its parameter that provides the position value for the final control element. For more description see General Requirements (CHANNEL).                                                                                 |
| OUT_SCALE       | Conversion of the OUT of the Function Block in percent to OUT in engineering units as the output value of the Function Block. The high and low scale values, engineering unit code, and the number of digits to the right of the decimal point.                     |
|                 | The following units should be supported in minimum: mm, ° (Degrees), % (depending on VALVE_TYPE)                                                                                                                                                                    |

| Parameter      | Description                                                                                                                                                                                                                       |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POS_D          | The current position of the valve (discrete).                                                                                                                                                                                     |
|                | Coding:                                                                                                                                                                                                                           |
|                | 0: not initialized                                                                                                                                                                                                                |
|                | 1: closed                                                                                                                                                                                                                         |
|                | 2: opened                                                                                                                                                                                                                         |
|                | 3: intermediate                                                                                                                                                                                                                   |
| PV_SCALE       | Conversion of the PV in engineering units to PV in percent as the input value of the Function Block. It consists of the high and low scale values, engineering unit code, and number of digits to the right of the decimal point. |
| RCAS_IN        | Target set point in units of PV_SCALE and status provided by a supervisory host to the analog control or output block in mode RCas.                                                                                               |
| RCAS_OUT       | Function Block set point in units of PV_SCALE and status. Provided to a supervisory Host for monitoring / back calculation and to allow action to be taken under limited conditions or mode change.                               |
| READBACK       | The actual position of the final control element within the travel span (between OPEN and CLOSE position) in units of PV_SCALE.                                                                                                   |
| SETP_DEVIATION | Difference between set point signal and feedback position in % travel span (between OPEN and CLOSE position).                                                                                                                     |
| SIMULATE       | For commissioning and maintenance reasons, it is possible to simulate the READBACK by defining the value and the status. That means that the Transducer Block and the DO-FB will be disconnected.                                 |
| SP             | Set point. Defines the position of the final control element within the travel span (between OPEN and CLOSE position) in units of PV_SCALE in mode AUTO.                                                                          |

**Table 147. Parameter Description of the Analog Output Function Block** 

## 27.2.5 Parameter Attributes of the Analog Output Function Block

| i——            | <u> </u>                                           |             |             |       |      |        |                                              |             |               |                                      |  |
|----------------|----------------------------------------------------|-------------|-------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|--|
| Relative Index | Parameter<br>Name                                  | Object Type | Data Type   | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |  |
| Stan           | Standard Parameters see General Requirements       |             |             |       |      |        |                                              |             |               |                                      |  |
|                | ·                                                  |             |             |       |      |        |                                              |             |               |                                      |  |
| Additio        | Additional Analog Output Function Block Parameters |             |             |       |      |        |                                              |             |               |                                      |  |
| 9              | 9 SP Record 101 D 5 r,w I/cyc M                    |             |             |       |      |        |                                              |             |               |                                      |  |
| 11             | PV_SCALE                                           | Record      | DS-36       | S     | 11   | r,w    | C/a                                          | F           | 100,<br>0, %  | М                                    |  |
| 12             | READBACK                                           | Record      | 101         | D     | 5    | r      | O/cyc                                        | -           | -             | O (A),<br>M (B)                      |  |
| 14             | RCAS_IN                                            | Record      | 101         | D     | 5    | r,w    | I/cyc                                        | -           | -             | O (B)                                |  |
| 21             | IN_CHANNEL                                         | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | O (A),<br>M (B)                      |  |
| 22             | OUT_CHANNEL                                        | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | O (A),<br>M (B)                      |  |
| 23             | FSAFE_TIME                                         | Simple      | Float       | S     | 4    | r,w    | C/a                                          | F           | 0             | O (A),<br>M (B)                      |  |
| 24             | FSAFE_TYPE                                         | Simple      | Unsigned8   | S     | 1    | r,w    | C/a                                          | F           | 2             | O (A),<br>M (B)                      |  |
| 25             | FSAFE_VALUE                                        | Simple      | Float       | S     | 4    | r,w    | C/a                                          | F           | 0             | O (A),<br>M (B)                      |  |
| 27             | RCAS_OUT                                           | Record      | 101         | D     | 5    | r      | O/cyc                                        | -           | -             | O (B)                                |  |
| 31             | POS_D                                              | Record      | 102         | D     | 2    | r      | O/cyc                                        | -           | -             | М                                    |  |
| 32             | SETP_DEVIATION                                     | Simple      | Float       | D     | 4    | r      | C/a                                          | -           | -             | 0                                    |  |
| 33             | CHECK_BACK                                         | Simple      | OctetString | D     | 3    | r      | O/cyc                                        | -           | -             | O (A),<br>M (B)                      |  |
| 34             | CHECK_BACK_MASK                                    | Simple      | OctetString | Cst   | 3    | r      | C/a                                          | -           | -             | O (A),<br>M (B)                      |  |
| 35             | SIMULATE                                           | Record      | DS-50       | S     | 6    | r,w    | C/a                                          | F           | disabl<br>ed  | O (A),<br>M (B)                      |  |
| 36             | INCREASE_CLOSE                                     | Simple      | Unsigned8   | S     | 1    | r,w    | C/a                                          | F           | 0             | O (A),<br>M (B)                      |  |
| 37             | ОИТ                                                | Record      | 101         | D     | 5    | r,w    | C/a                                          | -           | -             | O (A),<br>M (B)                      |  |
| 38             | OUT_SCALE                                          | Record      | DS-36       | S     | 11   | r,w    | C/a                                          | F           | -             | М                                    |  |
| 39-48          | Reserved by PNO                                    |             | -           |       |      |        |                                              |             |               | М                                    |  |
| 49             | First manufacturer specific parameter              |             |             |       |      |        |                                              |             |               | 0                                    |  |

Table 148. Parameter Attributes of the Analog Output Function Block

## 27.2.6 View Object of the Analog Output Function Block

| Relative<br>Index | Parameter Name                                                      | View_1  | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|---------|--------|--------|--------|
| 9                 | SP                                                                  |         |        |        |        |
| 11                | PV_SCALE                                                            |         |        |        |        |
| 12                | READBACK                                                            | 5       |        |        |        |
| 14                | RCAS_IN                                                             |         |        |        |        |
| 21                | CHANNEL                                                             |         |        |        |        |
| 23                | FSAFE_TIME                                                          |         |        |        |        |
| 24                | FSAFE_TYPE                                                          |         |        |        |        |
| 25                | FSAFE_VALUE                                                         |         |        |        |        |
| 27                | RCAS_OUT                                                            |         |        |        |        |
| 31                | POS_D                                                               | 2       |        |        |        |
| 32                | SETP_DEV                                                            |         |        |        |        |
| 33                | CHECK_BACK                                                          | 3       |        |        |        |
| 34                | CHECK_BACK_MASK                                                     |         |        |        |        |
| 35                | SIMULATE                                                            |         |        |        |        |
| 36                | INCREASE_CLOSE                                                      |         |        |        |        |
| 37                | OUT                                                                 |         |        |        |        |
| 38                | OUT_SCALE                                                           |         |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 13 + 10 |        |        |        |

Table 149. View Object of the Analog Output Function Block

## 27.2.7 Coding of the Analog Output FB Parameter CHECK\_BACK

For the mapping of BitStrings to OctetStrings see 3.7.1, Table 8.

|       | CHECKBACK           | Description                                                                                    | Ind.  |
|-------|---------------------|------------------------------------------------------------------------------------------------|-------|
| Bit   | Mnemonic            |                                                                                                | Class |
| 0     | CB_FAIL_SAFE        | Field device in Fail safe active                                                               | R     |
| 1     | CB_REQ_LOC_OP       | Request for local Operation                                                                    | R     |
| 2     | CB_LOCAL_OP         | Field device under local control, LOCKED OUT switch is in gear                                 | R     |
| 3     | CB_OVERRIDE         | Emergency override active                                                                      | R     |
| 4     | CB_DISC_DIR         | Actual position feedback different from expected position                                      | R     |
| 5     | CB_TORQUE_D_OP      | Indicates that the torque limit in OPEN direction is exceeded                                  | R     |
| 6     | CB_TORQUE_D_CL      | Indicates that the torque limit in CLOSE direction is exceeded                                 | R     |
| 7     | CB_TRAV_TIME        | Indicates status of travel monitoring equipment, if YES, travel time for actuator has exceeded | Α     |
| 8     | CB_ACT_OPEN         | Actuator is moving towards open direction                                                      | R     |
| 9     | CB_ACT_CLOSE        | Actuator is moving towards close direction                                                     | R     |
| 10    | CB_UPDATE_EVT       | The alert generated by any change to the static data (Function and Transducer Block).          | Α     |
| 11    | CB_SIMULATE         | Simulation of process values is enabled                                                        | R     |
| 12    | not used            | -                                                                                              | -     |
| 13    | CB_CONTR_ERR        | Internal control loop disturbed                                                                | R     |
| 14    | CB_CONTR_INACT      | Positioner inactive (OUT status = BAD)                                                         | R     |
| 15    | CB_SELFTEST         | Device under self test                                                                         | R     |
| 16    | CB_TOT_VALVE_TRAV   | Indicates that total valve travel limit is exceeded                                            | R     |
| 17    | CB_ADD_INPUT        | Indicates that an additional input (i.e. for diagnostics) is activated                         | R     |
| 18-22 | not used            | -                                                                                              |       |
| 23    | CB_ZERO_POINT_ERROR | Zero point position cannot be reached                                                          | R     |

Table 150. Coding of the Analog Output FB Parameter CHECK\_BACK

Values of the CHECK\_BACK bits:

0: not set 1: set

#### Indication Class:

- R: Indication remains active as long as the reason for the message exists.
- A: Indication will be automatically reset after 10 seconds.

## 27.3 Additions to the Start-up and Brake-down Phase

In addition to the definitions in the General Definitions the following values must be settled at the start-up phase:

MODE\_BLK (actual MODE) = O/S

## 28 Device Data Sheet Actuator - Transducer Blocks

## 28.1 Actuator Transducer Block Overview

The following chapters describe the parameters of the electric and electro-pneumatic Transducer Blocks.

## 28.2 Parameter Description of the Actuator Transducer Block

| Parameter           | Description                                                                                                                                    |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ACTUATOR_SER_NUM    | Serial number of the actuator belonging to the positioner or the electronic device.                                                            |  |
| ACTUATOR_ACTION     | Fail-Safe position for power-loss of the actuator respectively the valve.                                                                      |  |
|                     | Coding:                                                                                                                                        |  |
|                     | 0: not initialized                                                                                                                             |  |
|                     | 1: opening (100%)                                                                                                                              |  |
|                     | 2: closing (0%)                                                                                                                                |  |
|                     | 3: none / remains in actual position                                                                                                           |  |
| ACTUATOR_MAN        | Name of Actuator-Manufacturer.                                                                                                                 |  |
| ACTUATOR_TYPE       | Type of actuator.                                                                                                                              |  |
|                     | Coding:                                                                                                                                        |  |
|                     | 0: electro-pneumatic                                                                                                                           |  |
|                     | 1: electric                                                                                                                                    |  |
|                     | 2: electro-hydraulic                                                                                                                           |  |
|                     | 3: others                                                                                                                                      |  |
| ACT_ROT_DIR         | Actuator rotation in direction OPEN.                                                                                                           |  |
|                     | Coding:                                                                                                                                        |  |
|                     | 0: clockwise OPEN                                                                                                                              |  |
|                     | 1: counterclockwise OPEN                                                                                                                       |  |
| ACT_STROKE_TIME_DEC | Minimum of time to move from OPEN to CLOSE position (in sec.) for total system (positioner, actuator and valve). Measured while commissioning. |  |
| ACT_STROKE_TIME_INC | Minimum of time to move from CLOSE to OPEN position (in sec.) for total system (positioner, actuator and valve). Measured while commissioning. |  |
| ACT_TRAV_TIME       | Travel time limit detection. Measured while commissioning.                                                                                     |  |
| ADD_GEAR_ID         | Manufacturer specific type identification of the additional component (e.g. a gearbox, booster) mounted between the actuator and valve.        |  |
| ADD_GEAR_INST_DATE  | Installation date of the additional component (e.g. gearbox, booster) mounted between the actuator and valve.                                  |  |
| ADD_GEAR_MAN        | _GEAR_MAN Manufacturer name of the additional component (e.g. gearbox, booster) mound between the actuator and valve.                          |  |
| ADD_GEAR_SER_NUM    | Serial number of the additional component (e.g. gearbox, booster) mounted between the actuator and valve.                                      |  |

| Parameter          | Description                                                                                                                                                                                                                                                                                                                            |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANTI_PUMP_CL       | Fast-moving electric actuators with non self-locking gearbox often need the 'Anti-pumping'-feature to avoid pump effects. This may occur if limit-switch releases while actuator moves back a little bit during motor is switched off. This variable defines the distance from limit position CLOSE where the Anti-pumping is enabled. |
| ANTI_PUMP_OP       | Fast-moving electric actuators with non self-locking gearbox often need the 'Anti-pumping'-feature to avoid pump effects. This may occur if limit-switch releases while actuator moves back a little bit during motor is switched off. This variable defines the distance from limit position OPEN where the Anti-pumping is enabled.  |
| BREAK_STRENGTH     | Power of actuator brake. Depends on the way, the brake works (time, current,)                                                                                                                                                                                                                                                          |
| BYPASS_SETP_CL     | When starting from limit position CLOSE to direction OPEN, the start bypass allows the max. torque value to exceed for a short time.                                                                                                                                                                                                   |
| BYPASS_SETP_OP     | When starting from limit position OPEN to direction CLOSE, the start bypass allows the max. torque value to exceed for a short time.                                                                                                                                                                                                   |
| DEADBAND           | Dead band in percent of travel span. Travel span correspondents to OUT_SCALE.                                                                                                                                                                                                                                                          |
| DEVICE_CALIB_DATE  | Date of last calibration of the device.                                                                                                                                                                                                                                                                                                |
| DEVICE_CONFIG_DATE | Date of last configuration of the device.                                                                                                                                                                                                                                                                                              |
| LIN_TYPE           | See General Requirements.                                                                                                                                                                                                                                                                                                              |
| FEEDBACK_VALUE     | The actual position of the final control element in units of OUT_SCALE.                                                                                                                                                                                                                                                                |
| MAX_TORQUE         | Maximum torque, allowed for the actuator.                                                                                                                                                                                                                                                                                              |
| MOTOR_ON_TIME      | Accumulation of the motor on-time in hours.                                                                                                                                                                                                                                                                                            |
| NUM_LIMIT_CUT_OFF  | Total number of limit switch dependent cut-offs of the actuator.                                                                                                                                                                                                                                                                       |
| NUM_MOT_ON_CYC     | Total number of Start and Stop cycles of motor.                                                                                                                                                                                                                                                                                        |
| NUM_MOT_ON_HOUR    | Number of cycles that the motor has been switched on/off in the last hour.                                                                                                                                                                                                                                                             |
| NUM_TORQ_CUT_OFF   | Total number of torque dependent cut/offs of the actuator.                                                                                                                                                                                                                                                                             |
| POSITIONING_VALUE  | The actual command variable for the final control element in units of OUT_SCALE. Status BAD will drive the actuator to the fail-safe position defined by ACTUATOR_ACTION.                                                                                                                                                              |
| RATED_TRAVEL       | Nominal stroke of the valve in units of OUT_SCALE.                                                                                                                                                                                                                                                                                     |
| SELF_CALIB_CMD     | Initiation of a device-specific (manufacturer specific) calibration-procedure.                                                                                                                                                                                                                                                         |
|                    | Coding:                                                                                                                                                                                                                                                                                                                                |
|                    | 0: default value; no reaction of the field device (mandatory)                                                                                                                                                                                                                                                                          |
|                    | 1: start zero point adjustment (optional)                                                                                                                                                                                                                                                                                              |
|                    | 2: start self calibration / initialization (optional)                                                                                                                                                                                                                                                                                  |
|                    | 7: reset "total valve travel limit exceeded" CB_TOT_VALVE_TRAV (optional) and reset "Accumulated valve travel" TOTAL_VALVE_TRAVEL (optional)                                                                                                                                                                                           |
|                    | 10: reset "internal control loop disturbed" CB_CONTR_ERR (optional)                                                                                                                                                                                                                                                                    |
|                    | 255: abort current calibration-procedure (optional)                                                                                                                                                                                                                                                                                    |

| Parameter                      | Description                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SELF_CALIB_STATUS              | Result or status of the device-specific (manufacturer specific) calibration-procedure.  Coding:  0: undetermined (mandatory)  2: aborted (optional)  4: error in mechanical system (optional)  11: timeout (optional)  20: aborted by means of "Emergency override active" CB_OVERRIDE (opt.)  30: zero point error (optional)  254: successful (optional) |
|                                | 255: no valid data (optional)                                                                                                                                                                                                                                                                                                                              |
| SERVO_GAIN_1<br>SERVO_GAIN_2   | Proportional-action coefficient for both moving directions. Actuators that have only one servo gain use SERVO_GAIN_1.                                                                                                                                                                                                                                      |
| SERVO_RATE_1<br>SERVO_RATE_2   | Derivative-action coefficient for both moving directions. Actuators that have only one servo rate use SERVO_RATE_1.                                                                                                                                                                                                                                        |
| SERVO_RESET_1<br>SERVO_RESET_2 | Integral-action coefficient for both moving directions. Actuators that have only one servo reset use SERVO_RESET_1.                                                                                                                                                                                                                                        |
| SETP_CUTOFF_DEC                | When the servo set point goes below the defined percent of span, the position goes to the limit position CLOSE.  With electro-pneumatic actuator, this is done by totally ventilate/filling of the actuator (ref. to fail-safe position.)  With electric actuator, the actuator goes motor-driven to the limit position CLOSE.                             |
| SETP_CUTOFF_INC                | When the servo set point goes above the defined percent of span, the position goes to the limit position OPEN.  With electro-pneumatic actuator, this is done by totally ventilate/filling of the actuator (ref. to fail-safe position.)                                                                                                                   |
|                                | With electric actuator, the actuator goes motor-driven to the limit position OPEN.                                                                                                                                                                                                                                                                         |
| SETP_CUTOFF_MODE               | Select travel- or torque-dependent cut-off (separate for each direction on travel).  Coding:  0: torque in dir. OPEN, torque in dir. CLOSE  1: torque in dir. OPEN, travel in dir. CLOSE  2: travel in dir. OPEN, torque in dir. CLOSE  3: travel in dir. OPEN, travel in dir. CLOSE                                                                       |
| TAB_ENTRY                      | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                                                                                                                 |
| TAB_X_Y_VALUE                  | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                                                                                                                 |
| TAB_MIN_NUMBER                 | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                                                                                                                 |
| TAB_MAX_NUMBER                 | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                                                                                                                 |
| TAB_ACTUAL_NUMBER              | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                                                                                                                 |
| TAB_OP_CODE                    | See 3.8.1, Table Table 54.                                                                                                                                                                                                                                                                                                                                 |

| Parameter          | Description                                                                                                  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TAB_STATUS         | See 3.8.1, Table Table 54.                                                                                   |  |  |  |  |
| TORQUE_ACTUAL      | Indicates actual torque value in engineering unit.                                                           |  |  |  |  |
| TORQUE_LIM_CL      | Set value in engineering units. Determines the limit for the torque dependent switch off in CLOSE direction. |  |  |  |  |
| TORQUE_LIM_OP      | Set value in engineering units. Determines the limit for the torque dependent switch off in OPEN direction.  |  |  |  |  |
| TORQUE_UNIT        | Engineering unit for torque or force.                                                                        |  |  |  |  |
| TOTAL_VALVE_TRAVEL | Accumulated valve travel in nominal duty cycles.                                                             |  |  |  |  |
| TOT_VALVE_TRAV_LIM | Limit for the TOTAL_VALVE_TRAVEL in nominal duty cycles.                                                     |  |  |  |  |
| TRAVEL_LIMIT_LOW   | Lower limit of the valve position in percent of travel span. Travel span correspondents to OUT_SCALE.        |  |  |  |  |
| TRAVEL_LIMIT_UP    | Upper limit of the valve position in percent of travel span. Travel span correspondents to OUT_SCALE.        |  |  |  |  |
| TRAVEL_RATE_DEC    | Configurable seconds to full span change (closing time of the valve) in seconds.                             |  |  |  |  |
| TRAVEL_RATE_INC    | Configurable seconds to full span change (opening time of the valve) in seconds.                             |  |  |  |  |
| VALVE_MAINT_DATE   | Date of last valve maintenance.                                                                              |  |  |  |  |
| VALVE_MAN          | Name of Valve Manufacturer.                                                                                  |  |  |  |  |
| VALVE_SER_NUM      | Serial number of the valve belonging to the positioner or the electronic device.                             |  |  |  |  |
| VALVE_TYPE         | Type of valve.                                                                                               |  |  |  |  |
|                    | Coding:                                                                                                      |  |  |  |  |
|                    | 0: linear moving valve, sliding valve                                                                        |  |  |  |  |
|                    | 1: rotary moving valve, part-turn                                                                            |  |  |  |  |
|                    | 2: rotary moving valve, multi-turn                                                                           |  |  |  |  |

Table 151. Parameter Description of the Actuator Transducer Block

# 28.3 Electric Actuator Transducer Block

## 28.3.1 Parameter Attributes of the Electric Actuator Transducer Block

| Relative Index | Parameter<br>Name                 | Object Type  | Data Type       | Store  | Size     | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|-----------------------------------|--------------|-----------------|--------|----------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Stan           | dard Parameters see General       | Requireme    | nts             |        |          |        |                                              |             |               |                                      |
| Additio        | nal Transducer Block Parame       | ters for ele | ctric actuators |        |          |        |                                              |             |               |                                      |
| 8              | ACT_ROT_DIR                       | Simple       | Unsigned8       | S      | 1        | r,w    | C/a                                          | F           | 0             | O (B)                                |
| 9              | ACT_STROKE_TIME_DEC               | Simple       | Float           | S      | 4        | r      | C/a                                          | man<br>spec | ı             | O (B)                                |
| 10             | ACT_STROKE_TIME_INC               | Simple       | Float           | S      | 4        | r      | C/a                                          | man<br>spec | -             | O (B)                                |
| 11             | ACT_TRAV_TIME                     | Simple       | Float           | S      | 4        | r      | C/a                                          | man<br>spec | -             | O (B)                                |
| 12             | ANTI_PUMP_CL                      | Simple       | Float           | S      | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 13             | ANTI_PUMP_OP                      | Simple       | Float           | S      | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 14             | BREAK_STRENGTH                    | Simple       | Float           | S      | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 15             | BYPASS_SETP_CL                    | Simple       | Float           | S      | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 16             | BYPASS_SETP_OP                    | Simple       | Float           | S      | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 17             | 17 TAB_ENTRY See 3.8.2, Table 55. |              |                 |        |          |        |                                              |             |               | O (B)                                |
| 18             | TAB_X_Y_VALUE                     |              |                 | See 3. | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 19             | TAB_MIN_NUMBER                    |              |                 | See 3. | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 20             | TAB_MAX_NUMBER                    |              |                 | See 3. | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 21             | TAB_ACTUAL_NUMBER                 |              |                 | See 3. | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 22             | DEADBAND                          | Simple       | Float           | S      | 4        | r,w    | C/a                                          | F           | 1             | O (B)                                |
| 23             | DEVICE_CALIB_DATE                 | Simple       | OctetString     | S      | 16       | r,w    | C/a                                          | I           | 1             | O (B)                                |
| 24             | DEVICE_CONFIG_DATE                | Simple       | OctetString     | S      | 16       | r,w    | C/a                                          | Ι           | 1             | O (B)                                |
| 25             | LIN_TYPE                          |              |                 | See 3. | 8.2, Tab | le 55. |                                              |             |               | M (B)                                |
| 26             | MAX_TORQUE                        | Simple       | Float           | S      | 4        | r,w    | C/a                                          | F           | 1             | O (B)                                |
| 27             | MOTOR_ON_TIME                     | Simple       | Float           | D      | 4        | r      | C/a                                          | man<br>spec | -             | O (B)                                |
| 28             | NUM_LIMIT_CUT_OFF                 | Simple       | Float           | D      | 4        | r      | C/a                                          | man<br>spec | -             | O (B)                                |
| 29             | NUM_MOT_ON_CYCL                   | Simple       | Float           | D      | 4        | r      | C/a                                          | man<br>spec | -             | O (B)                                |
| 30             | NUM_MOT_ON_HOUR                   | Simple       | Unsigned8       | D      | 1        | r      | C/a                                          | man<br>spec | -             | O (B)                                |
| 31             | NUM_TORQ_CUT_OFF                  | Simple       | Float           | D      | 4        | r      | C/a                                          | man<br>spec | ı             | O (B)                                |
| 32             | RATED_TRAVEL                      | Simple       | Float           | S      | 4        | r,w    | C/a                                          | F           | -             | M (B)                                |
| 33             | SELF_CALIB_CMD                    | Simple       | Unsigned8       | N      | 1        | r,w    | C/a                                          | -           | 0             | M (B)                                |
| 34             | SELF_CALIB_STATUS                 | Simple       | Unsigned8       | N      | 1        | r      | C/a                                          | -           | 0             | M (B)                                |
| 35             | SERVO_GAIN_1                      | Simple       | Float           | S      | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |

| Relative Index | Parameter<br>Name                     | Object Type | Data Type   | Store          | Size     | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|-------------|----------------|----------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| 36             | SERVO_RATE_1                          | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 37             | SERVO_RESET_1                         | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 38             | SETP_CUTOFF_DEC                       | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | -             | M (B)                                |
| 39             | SETP_CUTOFF_INC                       | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | -             | M (B)                                |
| 40             | SETP_CUTOFF_MODE                      | Simple      | Unsigned8   | S              | 1        | r,w    | C/a                                          | F           | 3             | O (B)                                |
| 41             | TORQUE_ACTUAL                         | Record      | 101         | D              | 5        | r      | C/a                                          | i           | ı             | O (B)                                |
| 42             | TORQUE_LIM_CL                         | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | ı             | O (B)                                |
| 43             | TORQUE_LIM_OP                         | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | ı             | O (B)                                |
| 44             | TORQUE_UNIT                           | Simple      | Unsigned16  | S              | 2        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 45             | TOTAL_VALVE_TRAVEL                    | Simple      | Float       | D <sup>1</sup> | 4        | r,w    | C/a                                          | man<br>spec | 1             | O (B)                                |
| 46             | TOT_VALVE_TRAV_LIM                    | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 47             | TRAVEL_LIMIT_LOW                      | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | 0             | M (B)                                |
| 48             | TRAVEL_LIMIT_UP                       | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | 100           | M (B)                                |
| 49             | TRAVEL_RATE_DEC                       | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | 1             | M (B)                                |
| 50             | TRAVEL_RATE_INC                       | Simple      | Float       | S              | 4        | r,w    | C/a                                          | F           | -             | M (B)                                |
| 51             | VALVE_MAINT_DATE                      | Simple      | OctetString | S              | 16       | r,w    | C/a                                          | I           | -             | O (B)                                |
| 55             | TAB_OP_CODE                           |             |             | See 3.         | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 56             | TAB_STATUS                            |             |             | See 3.         | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 57             | POSITIONING_VALUE                     | Record      | 101         | D              | 5        | r      | C/a                                          | ı           | 1             | M (B)                                |
| 58             | FEEDBACK_VALUE                        | Record      | 101         | D              | 5        | r      | C/a                                          | -           | -             | M (B)                                |
| 59             | VALVE_MAN                             | Simple      | OctetString | S              | 16       | r,w    | C/a                                          | I           | -             | M (B)                                |
| 60             | ACTUATOR_MAN                          | Simple      | OctetString | S              | 16       | r,w    | C/a                                          | I           | -             | O (B)                                |
| 61             | VALVE_TYPE                            | Simple      | Unsigned8   | S              | 1        | r,w    | C/a                                          | F           | -             | M (B)                                |
| 62             | ACTUATOR_TYPE                         | Simple      | Unsigned8   | Cst            | 1        | r      | C/a                                          | -           | -             | M (B)                                |
| 63             | ACTUATOR_ACTION                       | Simple      | Unsigned8   | S              | 1        | r,w    | C/a                                          | man<br>spec | ı             | M (B)                                |
| 64             | VALVE_SER_NUM                         | Simple      | OctetString | S              | 16       | r,w    | C/a                                          | I           | -             | O (B)                                |
| 65             | ACTUATOR_SER_NUM                      | Simple      | OctetString | S              | 16       | r,w    | C/a                                          | I           | -             | O (B)                                |
| 66             | ADD_GEAR_SER_NUM                      | Simple      | OctetString | S              | 16       | r,w    | C/a                                          | I           | -             | O (B)                                |
| 67             | ADD_GEAR_MAN                          | Simple      | OctetString | S              | 16       | r,w    | C/a                                          | I           | -             | O (B)                                |
| 68             | ADD_GEAR_ID                           | Simple      | OctetString | S              | 16       | r,w    | C/a                                          | I           | -             | O (B)                                |
| 69             | ADD_GEAR_INST_DATE                    | Simple      | OctetString | S              | 16       | r,w    | C/a                                          | I           | -             | O (B)                                |
| 70-79          | Reserved by PNO                       |             |             |                |          |        |                                              |             |               | M (B)                                |
| 80             | First manufacturer specific parameter |             |             |                |          |        |                                              |             |               | O (B)                                |

Table 152. Parameter Attributes of the Electric Actuator Transducer Block

<sup>&</sup>lt;sup>1</sup> Should be stored non volatile

# 28.3.2 View Object of the Electric Actuator Transducer Block

| Relative<br>Index | Parameter Name      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------|--------|--------|--------|--------|
| 8                 | ACT_ROT_DIR         |        |        |        |        |
| 9                 | ACT_STROKE_TIME_DEC |        |        |        |        |
| 10                | ACT_STROKE_TIME_INC |        |        |        |        |
| 11                | ACT_TRAV_TIME       |        |        |        |        |
| 12                | ANTI_PUMP_CL        |        |        |        |        |
| 13                | ANTI_PUMP_OP        |        |        |        |        |
| 14                | BREAK_STRENGTH      |        |        |        |        |
| 15                | BYPASS_SETP_CL      |        |        |        |        |
| 16                | BYPASS_SETP_OP      |        |        |        |        |
| 17                | TAB_ENTRY           |        |        |        |        |
| 18                | TAB_X_Y_VALUE       |        |        |        |        |
| 19                | TAB_MIN_NUMBER      |        |        |        |        |
| 20                | TAB_MAX_NUMBER      |        |        |        |        |
| 21                | TAB_ACTUAL_NUMBER   |        |        |        |        |
| 22                | DEADBAND            |        |        |        |        |
| 23                | DEVICE_CALIB_DATE   |        |        |        |        |
| 24                | DEVICE_CONFIG_DATE  |        |        |        |        |
| 25                | LIN_TYPE            |        |        |        |        |
| 26                | MAX_TORQUE          |        |        |        |        |
| 27                | MOTOR_ON_TIME       |        |        |        |        |
| 28                | NUM_LIMIT_CUT_OFF   |        |        |        |        |
| 29                | NUM_MOT_ON_CYCL     |        |        |        |        |
| 30                | NUM_MOT_ON_HOUR     |        |        |        |        |
| 31                | NUM_TORQ_CUT_OFF    |        |        |        |        |
| 32                | RATED_TRAVEL        |        |        |        |        |
| 33                | SELF_CALIB_CMD      |        |        |        |        |
| 34                | SELF_CALIB_STATUS   |        |        |        |        |
| 35                | SERVO_GAIN_1        |        |        |        |        |
| 36                | SERVO_RATE_1        |        |        |        |        |
| 37                | SERVO_RESET_1       |        |        |        |        |
| 38                | SETP_CUTOFF_DEC     |        |        |        |        |
| 39                | SETP_CUTOFF_INC     |        |        |        |        |
| 40                | SETP_CUTOFF_MODE    |        |        |        |        |
| 41                | TORQUE_ACTUAL       |        |        |        |        |
| 42                | TORQUE_LIM_CL       |        |        |        |        |
| 43                | TORQUE_LIM_OP       |        |        |        |        |
| 44                | TORQUE_UNIT         |        |        |        |        |
| 45                | TOTAL_VALVE_TRAVEL  |        |        |        |        |
| 46                | TOT_VALVE_TRAV_LIM  |        |        |        |        |

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 47                | TRAVEL_LIMIT_LOW                                                    |        |        |        |        |
| 48                | TRAVEL_LIMIT_UP                                                     |        |        |        |        |
| 49                | TRAVEL_RATE_DEC                                                     |        |        |        |        |
| 50                | TRAVEL_RATE_INC                                                     |        |        |        |        |
| 51                | VALVE_MAINT_DATE                                                    |        |        |        |        |
| 55                | TAB_OP_CODE                                                         |        |        |        |        |
| 56                | TAB_STATUS                                                          |        |        |        |        |
| 57                | POSITIONING_VALUE                                                   |        |        |        |        |
| 58                | FEEDBACK_VALUE                                                      |        |        |        |        |
| 59                | VALVE_MAN                                                           |        |        |        |        |
| 60                | ACTUATOR_MAN                                                        |        |        |        |        |
| 61                | VALVE_TYPE                                                          |        |        |        |        |
| 62                | ACTUATOR_TYPE                                                       |        |        |        |        |
| 63                | ACTUATOR_ACTION                                                     |        |        |        |        |
| 64                | VALVE_SER_NUM                                                       |        |        |        |        |
| 65                | ACTUATOR_SER_NUM                                                    |        |        |        |        |
| 66                | ADD_GEAR_SER_NUM                                                    |        |        |        |        |
| 67                | ADD_GEAR_MAN                                                        |        |        |        |        |
| 68                | ADD_GEAR_ID                                                         |        |        |        |        |
| 69                | ADD_GEAR_INST_DATE                                                  |        |        |        |        |
| Total             | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 13     |        |        |        |

Table 153. View Object of the Electric Actuator Transducer Block

# 28.4 Electro-Pneumatic Actuator Transducer Block

## 28.4.1 Parameter Attributes of the Electro-Pneumatic Actuator Transducer Block

| Relative Index | Parameter<br>Name           | Object Type  | Data Type          | Store          | Size     | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|-----------------------------|--------------|--------------------|----------------|----------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Star           | dard Parameters see General | Requireme    | nts                |                |          |        |                                              |             |               |                                      |
|                |                             |              |                    |                |          |        |                                              |             |               |                                      |
| Additio        | nal Transducer Block Parame | ters for ele | ctro-pneumatic act | uators         |          |        |                                              |             |               |                                      |
| 9              | ACT_STROKE_TIME_DEC         | Simple       | Float              | S              | 4        | r      | C/a                                          | man<br>spec | -             | O (B)                                |
| 10             | ACT_STROKE_TIME_INC         | Simple       | Float              | S              | 4        | r      | C/a                                          | man<br>spec | -             | O (B)                                |
| 17             | TAB_ENTRY                   |              |                    | See 3.         | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 18             | TAB_X_Y_VALUE               |              |                    | See 3.         | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 19             | TAB_MIN_NUMBER              |              |                    | See 3.         | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 20             | TAB_MAX_NUMBER              |              |                    | See 3.         | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 21             | TAB_ACTUAL_NUMBER           |              |                    | See 3.         | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 22             | DEADBAND                    | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | ı             | O (B)                                |
| 23             | DEVICE_CALIB_DATE           | Simple       | OctetString        | S              | 16       | r,w    | C/a                                          | I           | -             | O (B)                                |
| 24             | DEVICE_CONFIG_DATE          | Simple       | OctetString        | S              | 16       | r,w    | C/a                                          | I           | ı             | O (B)                                |
| 25             | LIN_TYPE                    |              |                    | See 3.         | 8.2, Tab | le 55. |                                              |             |               | M (B)                                |
| 32             | RATED_TRAVEL                | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | -             | M (B)                                |
| 33             | SELF_CALIB_CMD              | Simple       | Unsigned8          | N              | 1        | r,w    | C/a                                          | -           | 0             | M (B)                                |
| 34             | SELF_CALIB_STATUS           | Simple       | Unsigned8          | N              | 1        | r      | C/a                                          | -           | 0             | M (B)                                |
| 35             | SERVO_GAIN_1                | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 36             | SERVO_RATE_1                | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 37             | SERVO_RESET_1               | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 38             | SETP_CUTOFF_DEC             | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | -             | M (B)                                |
| 39             | SETP_CUTOFF_INC             | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | ı             | M (B)                                |
| 45             | TOTAL_VALVE_TRAVEL          | Simple       | Float              | D <sup>1</sup> | 4        | r      | C/a                                          | man<br>spec | 1             | O (B)                                |
| 46             | TOT_VALVE_TRAV_LIM          | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | ı             | O (B)                                |
| 47             | TRAVEL_LIMIT_LOW            | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | 0             | M (B)                                |
| 48             | TRAVEL_LIMIT_UP             | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | 100           | M (B)                                |
| 49             | TRAVEL_RATE_DEC             | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | -             | M (B)                                |
| 50             | TRAVEL_RATE_INC             | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | _             | M (B)                                |
| 51             | VALVE_MAINT_DATE            | Simple       | OctetString        | S              | 16       | r,w    | C/a                                          | I           | -             | O (B)                                |
| 52             | SERVO_GAIN_2                | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 53             | SERVO_RATE_2                | Simple       | Float              | S              | 4        | r,w    | C/a                                          | F           | ı             | O (B)                                |

<sup>&</sup>lt;sup>1</sup> should be stored non volatile

Copyright © PNO e.V. 2004. All Rights reserved.

| Relative Index | Parameter<br>Name                     | Object Type | Data Type   | Store  | Size     | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|-------------|--------|----------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| 54             | SERVO_RESET_2                         | Simple      | Float       | S      | 4        | r,w    | C/a                                          | F           | -             | O (B)                                |
| 55             | TAB_OP_CODE                           |             |             | See 3. | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 56             | TAB_STATUS                            |             |             | See 3. | 8.2, Tab | le 55. |                                              |             |               | O (B)                                |
| 57             | POSITIONING_VALUE                     | Record      | 101         | D      | 5        | r      | C/a                                          | -           | -             | M (B)                                |
| 58             | FEEDBACK_VALUE                        | Record      | 101         | D      | 5        | r      | C/a                                          | -           | 1             | M (B)                                |
| 59             | VALVE_MAN                             | Simple      | OctetString | S      | 16       | r,w    | C/a                                          | Ι           | ı             | M (B)                                |
| 60             | ACTUATOR_MAN                          | Simple      | OctetString | S      | 16       | r,w    | C/a                                          | Ι           | ı             | M (B)                                |
| 61             | VALVE_TYPE                            | Simple      | Unsigned8   | S      | 1        | r,w    | C/a                                          | F           | -             | M (B)                                |
| 62             | ACTUATOR_TYPE                         | Simple      | Unsigned8   | Cst    | 1        | r      | C/a                                          | -           | ı             | M (B)                                |
| 63             | ACTUATOR_ACTION                       | Simple      | Unsigned8   | S      | 1        | r,w    | C/a                                          | man<br>spec | -             | M (B)                                |
| 64             | VALVE_SER_NUM                         | Simple      | OctetString | S      | 16       | r,w    | C/a                                          | I           | ı             | O (B)                                |
| 65             | ACTUATOR_SER_NUM                      | Simple      | OctetString | S      | 16       | r,w    | C/a                                          | Ι           | ı             | O (B)                                |
| 66             | ADD_GEAR_SER_NUM                      | Simple      | OctetString | S      | 16       | r,w    | C/a                                          | Ι           | ı             | O (B)                                |
| 67             | ADD_GEAR_MAN                          | Simple      | OctetString | S      | 16       | r,w    | C/a                                          | Ι           | ı             | O (B)                                |
| 68             | ADD_GEAR_ID                           | Simple      | OctetString | S      | 16       | r,w    | C/a                                          | Ι           | ı             | O (B)                                |
| 69             | ADD_GEAR_INST_DATE                    | Simple      | OctetString | S      | 16       | r,w    | C/a                                          | Ι           | ı             | O (B)                                |
| 70-79          | Reserved by PNO                       |             |             |        |          |        |                                              |             |               | M (B)                                |
| 80             | First manufacturer specific parameter |             |             |        |          |        |                                              |             |               | O (B)                                |

Table 154. Parameter Attributes of the Electro-Pneumatic Actuator Transducer Block

# 28.4.2 View Object of the Electro-Pneumatic Actuator Transducer Block

| Relative<br>Index | Parameter Name      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------|--------|--------|--------|--------|
| 9                 | ACT_STROKE_TIME_DEC |        |        |        |        |
| 10                | ACT_STROKE_TIME_INC |        |        |        |        |
| 17                | TAB_ENTRY           |        |        |        |        |
| 18                | TAB_X_Y_VALUE       |        |        |        |        |
| 19                | TAB_MIN_NUMBER      |        |        |        |        |
| 20                | TAB_MAX_NUMBER      |        |        |        |        |
| 21                | TAB_ACTUAL_NUMBER   |        |        |        |        |
| 22                | DEADBAND            |        |        |        |        |
| 23                | DEVICE_CALIB_DATE   |        |        |        |        |
| 24                | DEVICE_CONFIG_DATE  |        |        |        |        |
| 25                | LIN_TYPE            |        |        |        |        |
| 32                | RATED_TRAVEL        |        |        |        |        |

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 33                | SELF_CALIB_CMD                                                      |        |        |        |        |
| 34                | SELF_CALIB_STATUS                                                   |        |        |        |        |
| 35                | SERVO_GAIN_1                                                        |        |        |        |        |
| 36                | SERVO_RATE_1                                                        |        |        |        |        |
| 37                | SERVO_RESET_1                                                       |        |        |        |        |
| 38                | SETP_CUTOFF_DEC                                                     |        |        |        |        |
| 39                | SETP_CUTOFF_INC                                                     |        |        |        |        |
| 45                | TOTAL_VALVE_TRAVEL                                                  |        |        |        |        |
| 46                | TOT_VALVE_TRAV_LIM                                                  |        |        |        |        |
| 47                | TRAVEL_LIMIT_LOW                                                    |        |        |        |        |
| 48                | TRAVEL_LIMIT_UP                                                     |        |        |        |        |
| 49                | TRAVEL_RATE_DEC                                                     |        |        |        |        |
| 50                | TRAVEL_RATE_INC                                                     |        |        |        |        |
| 51                | VALVE_MAINT_DATE                                                    |        |        |        |        |
| 52                | SERVO_GAIN_2                                                        |        |        |        |        |
| 53                | SERVO_RATE_2                                                        |        |        |        |        |
| 54                | SERVO_RESET_2                                                       |        |        |        |        |
| 55                | TAB_OP_CODE                                                         |        |        |        |        |
| 56                | TAB_STATUS                                                          |        |        |        |        |
| 57                | POSITIONING_VALUE                                                   |        |        |        |        |
| 58                | FEEDBACK_VALUE                                                      |        |        |        |        |
| 59                | VALVE_MAN                                                           |        |        |        |        |
| 60                | ACTUATOR_MAN                                                        |        |        |        |        |
| 61                | VALVE_TYPE                                                          |        |        |        |        |
| 62                | ACTUATOR_TYPE                                                       |        |        |        |        |
| 63                | ACTUATOR_ACTION                                                     |        |        |        |        |
| 64                | VALVE_SER_NUM                                                       |        |        |        |        |
| 65                | ACTUATOR_SER_NUM                                                    |        |        |        |        |
| 66                | ADD_GEAR_SER_NUM                                                    |        |        |        |        |
| 67                | ADD_GEAR_MAN                                                        |        |        |        |        |
| 68                | ADD_GEAR_ID                                                         |        |        |        |        |
| 69                | ADD_GEAR_INST_DATE                                                  |        |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 13     |        |        |        |

Table 155. View Object of the Electro-Pneumatic Actuator Transducer Block

# 28.5 Electro-Hydraulic Actuator Transducer Block

Not specified.

# 29 Device Data Sheet Actuator - Download Order of Parameters

If a set of parameters have to be written to the device a special order must be obtained. All other parameters must be written after these parameters.

For devices described in this Data Sheet the order is described as follows.

VALVE\_TYPE

RATED\_TRAVEL

OUT\_SCALE

# 30 Device Data Sheet Actuator - Conformance Statement

Every device chooses out of the defined structures of this document the necessary subset. To choose a subset follows certain rules defined in the conformance statements below. The tables shows which structure is mandatory (M), selected (S) and which are optional (O).

| Parameter                          | Conformance class A | Conformance class B |
|------------------------------------|---------------------|---------------------|
| Physical Block                     | М                   | М                   |
| Analog Output Function Block       | М                   | М                   |
| Transducer Block                   | 0                   | М                   |
| Electro-pneumatic Transducer Block | 0                   | S                   |
| Electric Transducer Block          | 0                   | S                   |
| Electro-hydraulic Transducer Block | 0                   | S                   |
| Other Function Blocks              | 0                   | 0                   |
| Other Transducer Blocks            | 0                   | 0                   |

**Table 156. Conformance Statement of Actuator Components** 

# 31 Device Data Sheet Actuator - Document History

Changes from V3.0 to V3.0.1

| Chapter/Figure/Table       | Change                                                                                                |
|----------------------------|-------------------------------------------------------------------------------------------------------|
| Entire document            | Correction of spelling errors                                                                         |
| 27.2.1                     | Editorial changes                                                                                     |
| 27.2.3                     | Clarification of permitted modes                                                                      |
| 27.2.3                     | Replaced DS-33 by Data type 101                                                                       |
| 27.2.3.2 table 145 and 146 | Term 'high limit, low limit' replaced by 'Constant'                                                   |
| 27.2.5 table 148           | Clarification of "Mandatory Optional (Class)":                                                        |
|                            | Replaced "M(A,B)" by "M"; Replaced "M(B)" by O(A), M(B); Replaced "O(B)" by "O"; Changed POS_D to "M" |
| 27.2.5 table 148           | Column "Reset Class" added.                                                                           |
| 27.2.5 table 148           | Replaced DS-33 by Data type 101                                                                       |
| 27.2.5 table 148           | Replaced DS-34 by Data type 102                                                                       |
| 27.2.7 table 150           | Bit 23 CB_ZERO_POINT_ERROR added                                                                      |
| 27.3                       | Clarification                                                                                         |
| 28.3.1 table 152           | Relative Index for first manufacturer specific parameter corrected                                    |
| 28.3.1 table 152           | Column "Reset Class" added.                                                                           |
| 28.3.1.table 152           | Replaced DS-33 by Data type 101                                                                       |
| 28.4.1 table 154           | Relative Index for first manufacturer specific parameter corrected                                    |
| 28.4.1 table 154           | Column "Reset Class" added.                                                                           |
| 28.4.1 table 154           | Replaced DS-33 by Data type 101                                                                       |

Table 157. Changes from V3.0 to V3.0.1

# **PROFIBUS - PA**

# **Device Data Sheet**

# **Analyser**

# 32 Device Data Sheet Analyser

## 32.1 Use of the Function Block model for analyser field devices

The parameter structures of the analyser field devices are in accordance with the block model of the General Requirements document of this guideline. An analyser device consists of one Physical Block as well as of several instances of Transducer Blocks and Function Blocks. The blocks differ in the parameters they contain. The Function Blocks (FB) Analog Input (AI), Analog Output (AO), Discrete Input (DI) and Discrete Output (DO) are used as defined in the other parts of this guideline.

This part defines additional blocks for analyser field devices. The Analyser Transducer Block contains a common set of parameters unique for all analyser devices of this profile. The adaptation of the Analyser Transducer Blocks to particular sensor types is done by the parameter values. The Transfer Transducer Block provides cascadable functions for the precalculation of the process values (e.g. filter, average, integration or correction). The Control Transducer Block starts and stops device functions like "Init", "Measurement" and "Calibration". Additionally a device may have a Multi Point Sampling Function Block and a Logbook Function Block. Alarm Transducer Blocks contain information about device or process specific events (e.g. limit exceedance or short circuit).



Figure 64. Block Structure of Analyser Devices

Figure 64 shows the block structure of an analyser device. The block model defines that there is exactly one Physical Block and a free number and combination of Transducer and Function Blocks. Most of the block types may be instantiated several times.

The specification of each block starts with a short overview accompanied by figures. All parameters of the blocks are described by text and if necessary by special codes with their meanings. A following table contains all parameters with their specific attributes like data type, access rights and default value.

## 32.2 Physical Block

#### 32.2.1 Overview

The analyser shall use the Physical Block as defined in the General Requirements part. Additionally the Physical Block comprises the parameters defined in the following subsections.

#### 32.2.2 Parameter Description of the Physical Block

| Parameter                | Description                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| DEVICE_<br>CONFIGURATION | extual description of its configuration of functional units.                                                                                                                                                                                               |  |  |  |  |  |  |  |
| INIT_STATE               | The device stops in a parametrised state after a reset and a device specific initialisation phase. This state may be either one of the states of DEVICE_STATE or the state STATUS_BEFORE_RESET.                                                            |  |  |  |  |  |  |  |
|                          | Coding:                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|                          | 1: STATUS_BEFORE_RESET                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                          | 2: RUN                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                          | 3: STANDBY                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                          | 4: POWER_DOWN                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                          | 5: MAINTENANCE                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| DEVICE_STATE             | There are 4 states, which are disjunct. The operator chooses a new state by writing the code of the desired state to this parameter. Please notice that not all functions of the Control Transducer Block are executable in every device state (see 32.5). |  |  |  |  |  |  |  |
|                          | Coding:                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|                          | 2: RUN                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                          | 3: STANDBY                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                          | 4: POWER_DOWN                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                          | 5: MAINTENANCE                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                          | RUN                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                          | In the RUN state all operation items are active, which are necessary to generate a process value.                                                                                                                                                          |  |  |  |  |  |  |  |
|                          | STANDBY                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |

| Parameter     | Description                                                                                                                                                                                                                                            |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | The device is ready for measurement in the STANDBY state and can be switched to RUN without delay.                                                                                                                                                     |
|               | POWER_DOWN                                                                                                                                                                                                                                             |
|               | The POWER_DOWN state is a mode with low power consumption i.e. throttled and economy operation. The device is not in operation. Putting into operation can take a longer period of time.                                                               |
|               | MAINTENANCE                                                                                                                                                                                                                                            |
|               | The behaviour in the state MAINTENANCE is device specific. In addition to the functions of the states RUN, STANDBY and POWER_DOWN other Control Transducer Block functions like test, service or cleaning can be carried out in the state MAINTENANCE. |
| GLOBAL_STATUS | See 32.7.2, Table 174.                                                                                                                                                                                                                                 |

Table 158. Parameter Description of the Physical Block

# 32.2.3 Parameter Attributes of the Physical Block

| Relative Index | Parameter<br>Name                            | Object Type | Data Type     | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|----------------------------------------------|-------------|---------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Stan           | Standard Parameters see General Requirements |             |               |       |      |        |                                              |             |               |                                      |
|                |                                              |             |               |       |      |        |                                              |             |               |                                      |
| Additio        | nal Physical Block Parameters                | <b>3</b>    |               |       |      |        |                                              |             |               |                                      |
| 33-35          | Reserved by PNO                              |             |               |       |      |        |                                              |             |               |                                      |
| 36             | DEVICE_<br>CONFIGURATION                     | Simple      | VisibleString | N     | 32   | r      | C/a                                          | -           | -             | М                                    |
| 37             | INIT_STATE                                   | Simple      | Unsigned8     | S     | 1    | r,w    | C/a                                          | F           | -             | М                                    |
| 38             | DEVICE_STATE                                 | Simple      | Unsigned8     | D     | 1    | r,w    | C/a                                          | F           | -             | М                                    |
| 39             | GLOBAL_STATUS                                | Simple      | Unsigned16    | D     | 2    | r      | C/a                                          | -           | 0             | М                                    |
| 40-47          | Reserved by PNO                              |             |               |       |      |        |                                              |             |               | М                                    |
| 48             | First manufacturer specific parameter        |             |               |       |      |        |                                              |             |               | 0                                    |

Table 159. Parameter Attributes of the Physical Block

# 32.2.4 View Object of the Physical Block

| Relative<br>Index | Parameter Name                                                                                        | View_1       | View_2 | View_3 | View_4 |
|-------------------|-------------------------------------------------------------------------------------------------------|--------------|--------|--------|--------|
| 36                | DEVICE_CONFIGURATION                                                                                  |              |        |        |        |
| 37                | INIT_STATE                                                                                            |              |        |        |        |
| 38                | DEVICE_STATE                                                                                          | 1            |        |        |        |
| 39                | GLOBAL_STATUS                                                                                         | 2            |        |        |        |
|                   | Overall sum of bytes in View-Object<br>(+4 of common Physical Block + 13<br>Standard Parameter bytes) | 3 + 4<br>+13 |        |        |        |

Table 160. View Object of the Physical Block

# 32.3 Analyser Transducer Block

#### 32.3.1 Overview



V3.01

Figure 65. Parameter structure of the Analyser Transducer Block

Every existing measurement value in the analyser device is represented by an Analyser Transducer Block. This block contains a set of parameters which describes the measurement value in a way that can be interpreted by a remote station.

### 32.3.2 Parameter Description of the Analyser Transducer Block

| Parameter      | Description                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMPONENT_NAME | Description of the measurement value as readable ASCII text.                                                                                                                                                                                                                                                                                                                                               |
| PV             | The primary value is of primary interest for the device users. All results are available as value which has been scaled and which represents the physical process value. Raw data and internal intermediate results are not visible across the communication system.                                                                                                                                       |
|                | A measurement value is raw data generated by the sensor. This raw data is a dynamic value. The dynamic values may be calculated further on by using standardised and non-standardised algorithms. These functions are the scope of the Transfer Transducer Block (see 32.4). The PV is read only. The PV is the result of using standardised and non-standardised algorithms and is structured as follows: |
|                | PV  Value of the result. All accompanying information which is necessary to interpret the value is scope of other parameters of the Analyser Transducer Block.  Measurement_Status                                                                                                                                                                                                                         |

| Parameter        | Description                                                                                                                                                                                                                                                                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Status of the result. It is calculated at the sampling time (Coding see General Requirements).                                                                                                                                                                                                                                                                       |
|                  | PV_Time                                                                                                                                                                                                                                                                                                                                                              |
|                  | Sampling time of the measurement value (e.g. for the use in trend objects). Note: Devices without clock use the value 0.                                                                                                                                                                                                                                             |
| PV_UNIT          | Engineering unit of the measurement value (Coding see General Requirements).                                                                                                                                                                                                                                                                                         |
| PV_UNIT_TEXT     | Additional manufacturer specific engineering units.                                                                                                                                                                                                                                                                                                                  |
| ACTIVE_RANGE     | Number of the active range. The ranges are defined in the according parameter array of this block.                                                                                                                                                                                                                                                                   |
|                  | Coding:                                                                                                                                                                                                                                                                                                                                                              |
|                  | 1: RANGE_1                                                                                                                                                                                                                                                                                                                                                           |
|                  | 2: RANGE_2                                                                                                                                                                                                                                                                                                                                                           |
|                  | n: RANGE_n                                                                                                                                                                                                                                                                                                                                                           |
| AUTORANGE_ON     | Switches the automatic range choice on and off.                                                                                                                                                                                                                                                                                                                      |
|                  | There are 2 scaling parameters, one in the Analyser Transducer Block and one in the Analog Input Function Block (AI). For consistency reasons the PV_SCALE parameter of the AI should use the RANGE_n parameter of the Analyser Transducer Block.                                                                                                                    |
|                  | Two approaches are valid: If the Transducer uses autoranging (AUTORANGE_ON = TRUE) the connected AI should use the Transducer Blocks RANGE_n with the widest measuring range for scaling. If the Transducer uses a fixed measuring range only (AUTORANGE_ON = FALSE) the connected AI should use the Transducer Blocks RANGE_n selected by ACTIVE_RANGE for scaling. |
| SAMPLING_RATE    | The measurement values are sampled device and measurement type specific. This parameter contains the time between two samples.                                                                                                                                                                                                                                       |
| NUMBER_OF_RANGES | This parameter contains the number of ranges which are supported by the device.                                                                                                                                                                                                                                                                                      |
| RANGE_n          | Every range is a record which contains the values Begin_of_Range and End_of_Range. The engineering unit is the same as the unit of the measurement value of the Analyser Transducer Block.                                                                                                                                                                           |

Table 161. Parameter Description of the Analyser Transducer Block

## 32.3.3 Parameter Attributes of the Analyser Transducer Block

| Relative Index | Parameter<br>Name                            | Object Type | Data Type       | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |  |
|----------------|----------------------------------------------|-------------|-----------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|--|
| Stan           | Standard Parameters see General Requirements |             |                 |       |      |        |                                              |             |               |                                      |  |
|                |                                              |             |                 |       |      |        |                                              |             |               |                                      |  |
| Additio        | nal Analyser Transducer Bloo                 | k Paramet   | ers             |       |      |        |                                              |             |               |                                      |  |
| 8              | COMPONENT_NAME                               | Simple      | OctetString     | S     | 32   | r,w    | C/a                                          | I           | -             | М                                    |  |
| 9              | PV                                           | Record      | DS-60           | D     | 12   | r      | C/a                                          | -           | 1             | М                                    |  |
| 10             | PV_UNIT 1                                    | Simple      | Unsigned16      | S     | 2    | r,w    | C/a                                          | F           | ı             | М                                    |  |
| 11             | PV_UNIT_TEXT                                 | Simple      | OctetString     | S     | 8    | r,w    | C/a                                          | -           | ı             | М                                    |  |
| 12             | ACTIVE_RANGE                                 | Simple      | Unsigned8       | S     | 1    | r,w    | C/a                                          | F           | ı             | М                                    |  |
| 13             | AUTORANGE_ON                                 | Simple      | Boolean         | S     | 1    | r,w    | C/a                                          | F           | ı             | М                                    |  |
| 14             | SAMPLING_RATE                                | Simple      | Time_Difference | S     | 4    | r,w    | C/a                                          | F           | ı             | М                                    |  |
| 15-24          | Reserved by PNO                              |             |                 |       |      |        |                                              |             |               | М                                    |  |
| 25             | NUMBER_OF_RANGES                             | Simple      | Unsigned8       | Ν     | 1    | r      | C/a                                          | -           | ı             | М                                    |  |
| 26             | RANGE_1                                      | Record      | DS-61           | Ν     | 8    | r,w    | C/a                                          | F           | -             | М                                    |  |
|                |                                              |             |                 |       |      |        |                                              |             |               |                                      |  |
| 25+n           | RANGE_n                                      | Record      | DS-61           | N     | 8    | r,w    | C/a                                          | F           | 1             | 0                                    |  |
| 25+n<br>+1     | First manufacturer specific parameter        |             |                 |       |      |        |                                              |             |               | 0                                    |  |

Table 162. Parameter Attributes of the Analyser Transducer Block

Copyright © PNO e.V. 2004. All Rights reserved.

-

<sup>&</sup>lt;sup>1</sup> Engineering units without existing unit code have to use the code 1995. The engineering unit will be placed in the PV\_UNIT\_TEXT parameter.

#### 32.3.4 View Object of the Analyser Transducer Block

| Relative<br>Index | Parameter Name                                                      | View_1  | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|---------|--------|--------|--------|
| 8                 | COMPONENT_NAME                                                      |         |        |        |        |
| 9                 | PV                                                                  | 12      |        |        |        |
| 10                | PV_UNIT                                                             |         |        |        |        |
| 11                | PV_UNIT_TEXT                                                        |         |        |        |        |
| 12                | ACTIVE_RANGE                                                        | 1       |        |        |        |
| 13                | AUTORANGE_ON                                                        |         |        |        |        |
| 14                | SAMPLING_RATE                                                       |         |        |        |        |
| 15-24             | Reserved by PNO                                                     |         |        |        |        |
| 25                | NUMBER_OF_RANGES                                                    |         |        |        |        |
| 26                | RANGE_1                                                             |         |        |        |        |
|                   |                                                                     |         |        |        |        |
| 25+n              | RANGE_n                                                             |         |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 13 + 13 |        |        |        |

Table 163. View Object of the Analyser Transducer Block

### 32.4 Transfer Transducer Block

### 32.4.1 Overview

The result of a Transducer Block may have to be precalculated before being used by an Analog Input FB. This task is carried out by the Transfer Transducer Block which provides average, integration, correction and filter functions. These functions can be concatenated to a cascaded structure. The CHANNEL parameter of the Transfer Transducer Block refers to the Analyser Transducer Block whose PV needs precalculation. The time conditions of the cascaded function structure are device specific and therefore not in the scope of this profile. The Transfer Transducer Block provides the calculated value in the parameter PV.

#### 32.4.2 Parameter Description of the Transfer Transducer Block

| Parameter              | Description                                                                                                             |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|
| CHANNEL                | The CHANNEL parameter defines the Transducer Block whose PV needs precalculation (Coding see General Requirements).     |
| PV                     | This parameter contains the calculated value of the Transfer Transducer Block. This value can be used by other blocks.  |
| PV_UNIT                | Engineering unit of the measurement value (Coding see General Requirements).                                            |
| PV_UNIT_TEXT           | Additional manufacturer-specific engineering units.                                                                     |
| STATIC_VALUE           | Fixed value which is used for correction.                                                                               |
| CORRECTION_<br>CHANNEL | This parameter defines the Transducer Block which is used for the correction of the PV (Coding like parameter CHANNEL). |

| Parameter                 | Description                                                                                                                                                                                                                                                     |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FB_VALUE                  | Output parameter of another block (local or remote) which is used for correction. This parameter is used as FB input parameter, i.e. the connection between the FB output parameter and this parameters is handled by a link object.                            |
| NUMBER_OF_<br>CALCULATION | Number of cascaded precalculations in this block.                                                                                                                                                                                                               |
| CALCULATION_N             | This parameter structure contains the code of the functions which will be used for precalculation. The order of execution of the precalculation is the order of the relative index attribute of the precalculation structures in the Transducer Transfer Block. |

Table 164. Parameter Description of the Transfer Transducer Block



Figure 66. Example of Cooperation between Control Transducer Block, Transfer Transducer Block, Analyser Transducer Block and Analog Input Function Block

## 32.4.3 Parameter Attributes of the Transfer Transducer Block

| Relative Index | Parameter<br>Name                            | Object Type | Data Type   | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |  |
|----------------|----------------------------------------------|-------------|-------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|--|
| Stan           | Standard Parameters see General Requirements |             |             |       |      |        |                                              |             |               |                                      |  |
|                |                                              |             |             |       |      |        |                                              |             |               |                                      |  |
| Additio        | nal Transfer Transducer Block                | Paramete    | rs          |       |      | 1      |                                              |             |               |                                      |  |
| 9              | CHANNEL                                      | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | -             | М                                    |  |
| 10             | PV                                           | Record      | DS-60       | D     | 12   | r      | C/a                                          | -           | -             | М                                    |  |
| 11             | PV_UNIT 1                                    | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | ı             | М                                    |  |
| 12             | PV_UNIT_TEXT                                 | Simple      | OctetString | S     | 8    | r,w    | C/a                                          | -           | -             | М                                    |  |
| 13             | STATIC_VALUE                                 | Simple      | Float       | S     | 4    | r,w    | C/a                                          | F           | -             | М                                    |  |
| 14             | CORRECTION_CHANNEL                           | Simple      | Unsigned16  | S     | 2    | r,w    | C/a                                          | F           | i             | М                                    |  |
| 15             | FB_VALUE                                     | Record      | 101         | S     | 5    | r,w    | C/a                                          | F           | 0             | М                                    |  |
| 16-25          | Reserved by PNO                              |             |             |       |      |        |                                              |             |               | М                                    |  |
| 26             | NUMBER_OF_<br>CALCULATION                    | Simple      | Unsigned8   | S     | 1    | r,w    | C/a                                          | F           | ı             | М                                    |  |
| 27             | CALCULATION_1                                | Record      | DS-65       | S     | 3    | r,w    | C/a                                          | F           | i             | М                                    |  |
|                |                                              |             |             |       |      |        |                                              |             |               |                                      |  |
| 26+n           | CALCULATION_n                                | Record      | DS-65       | S     | 3    | r,w    | C/a                                          | F           | -             | М                                    |  |
| 26+n<br>+1     | First manufacturer specific parameter        |             |             |       |      |        | -                                            |             |               | 0                                    |  |

Table 165. Parameter Attributes of the Transfer Transducer Block

Copyright © PNO e.V. 2004. All Rights reserved.

\_

<sup>&</sup>lt;sup>1</sup> Engineering units without existing codes have to use the code 1995. The engineering unit will be placed in the PV\_UNIT\_TEXT parameter.

# 32.4.4 View Object of the Transfer Transducer Block

| Relative<br>Index | Parameter Name                                                      | View_1  | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|---------|--------|--------|--------|
| 9                 | CHANNEL                                                             |         |        |        |        |
| 10                | PV                                                                  | 12      |        |        |        |
| 11                | PV_UNIT                                                             |         |        |        |        |
| 12                | PV_UNIT_TEXT                                                        |         |        |        |        |
| 13                | STATIC_VALUE                                                        |         |        |        |        |
| 14                | CORRECTION_CHANNEL                                                  |         |        |        |        |
| 15                | FB_VALUE                                                            |         |        |        |        |
| 16-25             | Reserved by PNO                                                     |         |        |        |        |
| 26                | NUMBER_OF_CALCULATION                                               |         |        |        |        |
| 27                | CALCULATION_1                                                       |         |        |        |        |
|                   |                                                                     |         |        |        |        |
| 26+n              | CALCULATION_n                                                       |         |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 12 + 13 |        |        |        |

Table 166. View Object of the Transfer Transducer Block

#### 32.5 Control Transducer Block

#### 32.5.1 Overview

The Control Transducer Block (CTB) is a Transducer Block with contained parameters only, executing general initialisation and control functions of the analyser device. It influences the other Transducer Blocks of the device according to the chosen function (see parameter BLOCK\_TYPE). The details of the influence are device specific and are therefore out of the scope of this profile. The functions are represented by codes with a common name. Link objects for the interconnection of parameters between the Control Transducer Block and other Blocks are not possible.

There are function specific parameters in the Control Transducer Block, i.e. not all parameters are used for all functions. An overview is shown in Figure 67.



Figure 67. Parameter Hierarchy of the Control Transducer Block

# 32.5.2 Parameter Description of the Control Transducer Block

| Parameter  | Description                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |  |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| BLOCK_TYPE | The BLOCK_TYPE determines the function of the Control Transducer Block which has to be executed. The Control Transducer Block carries out exactly one function type at the same time. The switch over to another block type is possible in every operation state. The valid parameters of the Control Transducer Block according to the block types are shown in Figure 67. |                                                                                                    |  |  |  |  |  |  |  |
|            | The choice of device specific Control Transducer Block types is manufacturer specific or can be extended in further versions of the profile.                                                                                                                                                                                                                                |                                                                                                    |  |  |  |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                             | Not all functions are executable in all device states. Table 168 shows the permitted combinations. |  |  |  |  |  |  |  |
|            | Coding:                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    |  |  |  |  |  |  |  |
|            | 1:                                                                                                                                                                                                                                                                                                                                                                          | INIT                                                                                               |  |  |  |  |  |  |  |
|            | 2:                                                                                                                                                                                                                                                                                                                                                                          | MEASUREMENT                                                                                        |  |  |  |  |  |  |  |
|            | 3:                                                                                                                                                                                                                                                                                                                                                                          | CALIBRATION                                                                                        |  |  |  |  |  |  |  |
|            | 4:                                                                                                                                                                                                                                                                                                                                                                          | CLEANING                                                                                           |  |  |  |  |  |  |  |
|            | 5:                                                                                                                                                                                                                                                                                                                                                                          | SYSTEM_CHECK                                                                                       |  |  |  |  |  |  |  |
|            | 6 – 32767:                                                                                                                                                                                                                                                                                                                                                                  | reserved                                                                                           |  |  |  |  |  |  |  |
|            | 32768 – 65535:                                                                                                                                                                                                                                                                                                                                                              | manufacturer specific                                                                              |  |  |  |  |  |  |  |
|            | INIT  The INIT function carries out a manufacturer specific new initialisation of the related Transducer Block.                                                                                                                                                                                                                                                             |                                                                                                    |  |  |  |  |  |  |  |
|            | MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |  |  |  |  |  |  |  |
|            | The MEASUREMENT function starts the algorithms for the generation of the process value and the precalculation if any. The related Transducer Block is chosen by the parameter CHANNEL. The parameter RECIPE chooses one of several optional signal calculation functions implemented in the device.                                                                         |                                                                                                    |  |  |  |  |  |  |  |
|            | CALIBRATION                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |  |  |  |  |  |  |  |
|            | The CALIBRATION calculates correction data from set points and PV. The correction data will be used for the adjustment of the analyser device. With the parameter CHANNEL one single Transducer Block is chosen for calibration. If the calibration calculation is finished successfully, the CTB automatically starts the measurement of the according Transducer Block.   |                                                                                                    |  |  |  |  |  |  |  |
|            | CLEANING                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |  |  |  |  |  |  |  |
|            | This is a device specific function. Details are out of the scope of this profile.                                                                                                                                                                                                                                                                                           |                                                                                                    |  |  |  |  |  |  |  |
|            | SYSTEM_CHECK                                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |  |  |  |  |  |  |  |
|            | This is a device specifi                                                                                                                                                                                                                                                                                                                                                    | c function. Details are out of the scope of this profile.                                          |  |  |  |  |  |  |  |

| Parameter        | Descript                                                                                                                                                                                                                                       | ion                                                                                   |                             |                                                                                                             |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| COMMAND          | The COMMAND executes the regarding function a single time (e.g. MEASUREMENT, SYSTEM_CHECK,). The COMMAND parameter has higher priority than SEQUENCE_CONTROL, i.e. the function of SEQUENCE_CONTROL is active only if COMMAND equals 0 (zero). |                                                                                       |                             |                                                                                                             |  |  |  |
|                  | Coding:                                                                                                                                                                                                                                        |                                                                                       |                             |                                                                                                             |  |  |  |
|                  | 0:                                                                                                                                                                                                                                             | RESET                                                                                 | COI                         | MMAND function is not active                                                                                |  |  |  |
|                  | 5:                                                                                                                                                                                                                                             | START                                                                                 | exe                         | cutes a device function                                                                                     |  |  |  |
|                  | 6:<br>state                                                                                                                                                                                                                                    | STOP                                                                                  | inte                        | rrupts a device function, function remains in current                                                       |  |  |  |
|                  | 7:                                                                                                                                                                                                                                             | RESUME                                                                                |                             | function resumes execution from current state                                                               |  |  |  |
|                  | 8:<br>state                                                                                                                                                                                                                                    | CANCEL                                                                                | disa                        | bles a device function, sets the function into initial                                                      |  |  |  |
| STATUS           |                                                                                                                                                                                                                                                | The STATUS presents the current state or the result of the execution of the function. |                             |                                                                                                             |  |  |  |
|                  | Coding:                                                                                                                                                                                                                                        |                                                                                       |                             |                                                                                                             |  |  |  |
|                  | 0:                                                                                                                                                                                                                                             | function has successfully been executed                                               |                             |                                                                                                             |  |  |  |
|                  | 1:                                                                                                                                                                                                                                             | NO_INIT                                                                               | function is not initialised |                                                                                                             |  |  |  |
|                  | 2:                                                                                                                                                                                                                                             | IDLE                                                                                  |                             | function is inactive                                                                                        |  |  |  |
|                  | 3:                                                                                                                                                                                                                                             | RUNNING                                                                               |                             | function is currently active                                                                                |  |  |  |
|                  | 4:                                                                                                                                                                                                                                             | INTERRUPTE                                                                            | Đ                           | function is currently interrupted                                                                           |  |  |  |
|                  | 5:                                                                                                                                                                                                                                             | TIME_OUT                                                                              |                             | function execution time has expired                                                                         |  |  |  |
|                  | 6 – 127:                                                                                                                                                                                                                                       |                                                                                       |                             | reserved                                                                                                    |  |  |  |
|                  | 128 – 25                                                                                                                                                                                                                                       | 55:                                                                                   |                             | manufacturer specific                                                                                       |  |  |  |
| CHANNEL          |                                                                                                                                                                                                                                                |                                                                                       |                             | defines the Transducer Block which is controlled by the Coding see General Requirements).                   |  |  |  |
| SEQUENCE_CONTROL |                                                                                                                                                                                                                                                | Transducer Blo                                                                        |                             | OL parameter provides an automated execution of the iggered by a cyclic time event or by a defined date and |  |  |  |
|                  | automat                                                                                                                                                                                                                                        | ic calibration ev                                                                     | ery                         | 8 hours,                                                                                                    |  |  |  |
|                  | start Init                                                                                                                                                                                                                                     | function at April                                                                     | l 3 <sup>rd</sup>           | 1992, 7.30 am.                                                                                              |  |  |  |
|                  | This par                                                                                                                                                                                                                                       | ameter is a rec                                                                       | ord (                       | containing all necessary information.                                                                       |  |  |  |
| RECIPE           | The RECIPE parameter provides the possibility to choose between different versions of the Control Transducer Block function selected by BLOCK_TYPE coding of RECIPE depends on the BLOCK_TYPE:                                                 |                                                                                       |                             |                                                                                                             |  |  |  |
|                  |                                                                                                                                                                                                                                                | REMENT<br>of the signal pr                                                            | roces                       | ssing method. The default number is zero (0).                                                               |  |  |  |
|                  | CALIBRA                                                                                                                                                                                                                                        | ATION                                                                                 |                             |                                                                                                             |  |  |  |
|                  | 1:                                                                                                                                                                                                                                             | Automatic ove                                                                         | er all                      | calibration                                                                                                 |  |  |  |

| Parameter                | Description                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | 2: Calculate the current value of the active probe and store it at position 1                                                                                                                                                                                                                                                                                                        |
|                          | 3: Calculate the current value of the active probe and store it at position 2                                                                                                                                                                                                                                                                                                        |
|                          | 4: Calculate the current value of the active probe and store it at position 3                                                                                                                                                                                                                                                                                                        |
|                          | 5: Evaluate parallelism with position 1                                                                                                                                                                                                                                                                                                                                              |
|                          | 6: Evaluate slope with position 1 and 2                                                                                                                                                                                                                                                                                                                                              |
|                          | 7: 3-Point-Calibration                                                                                                                                                                                                                                                                                                                                                               |
|                          | 8: Check parallelism                                                                                                                                                                                                                                                                                                                                                                 |
|                          | 9: Check slope                                                                                                                                                                                                                                                                                                                                                                       |
|                          | 10: Check 3-Point-Calibration                                                                                                                                                                                                                                                                                                                                                        |
|                          | 11 – 32767: reserved                                                                                                                                                                                                                                                                                                                                                                 |
|                          | 32768 – 65535: non standardised recipe (manufacturer specific)                                                                                                                                                                                                                                                                                                                       |
| QUALITY                  | The QUALITY parameter contains the result of the RECIPE check calibration. It is calculated by comparing the SP and the PV of the device.                                                                                                                                                                                                                                            |
| SP                       | The calibration of the Transducer Block needs 1 or more SP/PV couples, depending on the calibration method. The parameter SP is therefore an array containing the setpoints. The SP are e.g. filled in ascending order. The engineering unit of the SP is the same as the one of the Transducer Block.                                                                               |
| PV                       | The calibration of the Transducer Block needs 1 or more SP/PV couples, depending on the calibration method. The parameter PV is therefore an array containing the current values. The PV are filled in the same order as the belongig setpoints. The engineering unit of the PV is the same as the one of the Transducer Block.                                                      |
| CTB_MASTER               | A master CTB is used to simultaneously control a set of other CTBs. This means that the COMMAND parameter of a master CTB applies to all slave CTBs which are listed in the parameter SELECTION. The STATE and all other parameters are maintained separately in every controlled slave CTB. The master CTB is an additional CTB. There can be more than one master CTB in a device. |
|                          | Coding:                                                                                                                                                                                                                                                                                                                                                                              |
|                          | TRUE: CTB is a master                                                                                                                                                                                                                                                                                                                                                                |
|                          | FALSE: CTB is a slave                                                                                                                                                                                                                                                                                                                                                                |
| SELECTION                | The SELECTION parameter is valid for master CTBs only (CTB_MASTER = TRUE). It contains an array of pointers to the slave CTBs which are controlled by this master CTB. The pointers have the same coding as the parameter CHANNEL.                                                                                                                                                   |
| PARAMETER_SET_<br>NUMBER | Choice of a device or measurement specific set of block parameters. The selected set of block parameters is mapped onto the relative indexes above the index of PARAMETER_SET_NUMBER. This mapping preserves the possibility to integrate other parameter sets in future.                                                                                                            |
|                          | Coding:                                                                                                                                                                                                                                                                                                                                                                              |
|                          | 1: pH                                                                                                                                                                                                                                                                                                                                                                                |
|                          | 2: CONDUCTIVITY                                                                                                                                                                                                                                                                                                                                                                      |
|                          | 3: OXYGEN                                                                                                                                                                                                                                                                                                                                                                            |

| Parameter               | Description                                                                                                                                                              |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NUMBER_PARAMETERS       | Contains the number of parameters belonging to the parameter set selected by PARAMETER_SET_NUMBER.                                                                       |
| BUFFER_NUMBER           | Choice of the active buffer of the buffer set list which is available in the device. If the buffer number equals 0 (zero), no buffer is used.                            |
| ZERO                    | The ZERO point has the same engineering unit as the associated Analyser or Transfer Transducer Block.                                                                    |
| SLOPE                   | Slope of the sensor characteristics. The engineering unit is mV/pH.                                                                                                      |
| CELL_CONSTANT           | Slope of the sensor.                                                                                                                                                     |
| CALOXY_TYPE             | Selects the type of calibration.                                                                                                                                         |
|                         | Coding:                                                                                                                                                                  |
|                         | 1: SATURATION                                                                                                                                                            |
|                         | 2: CONCENTRATION                                                                                                                                                         |
| CALOXY_ZERO             | Sensor zero point current. Value and status set by calibration. Unit code same as associated Transducer Block.                                                           |
| CALOXY_HIGH             | Sensor high point current at normal conditions (Example: 1013.25 hPa, 25 °C, 100 % rH). Value and status set by calibration. Unit code same as related Transducer Block. |
| CALOXY_HUMIDITY_<br>REL | Calibration air humidity. Value set by calibration. Unit code 1342 [%].                                                                                                  |
| CALOXY_PRESSURE         | Calibration pressure. Value set by calibration. Unit code same as associated Transducer Block.                                                                           |
| CALOXY_TEMP             | Calibration temperature. Value set by calibration. Unit code same as associated Transducer Block.                                                                        |
| CALOXY_BUFFER_SAT       | Manual saturation calibration buffer. Value set by calibration. Unit code 1342 [%].                                                                                      |
| CALOXY_BUFFER_CONC      | Manual concentration calibration buffer. Value set by calibration. Unit code same as associated Transducer Block.                                                        |

Table 167. Parameter Description of the Control Transducer Block

## 32.5.2.1 COMMAND / STATUS Parameter Description

The COMMAND parameter controls the following state machine. The transitions are fired by the change of the COMMAND value.

The STATUS parameter contains the actual state. Additional states are manufacturer specific.



Figure 68. State Diagram of the Control Transducer Block – COMMAND Parameter

#### 32.5.2.2 CTB\_MASTER Description

There are two possibilities to control the analysers functions. The COMMAND parameter switches the functions according to the state diagram. The SEQUENCE\_CONTROL parameter gives the opportunity for time controlled execution. The Element COMMAND of the SEQUENCE\_CONTROL parameter has lower priority than the COMMAND parameter of the Control Transducer Block. The CTB\_MASTER mechanism gives the opportunity to control more than one Transducer Block in parallel as result of a COMMAND change in the master CTB. The SELECTION parameter contains a list of slave CTBs which are controlled by the parameter COMMAND of the master CTB.

## 32.5.2.3 Execution of Analyser Functions

| Anglygar function | DEVICE STATE | DEVICE_STATE | DEVICE_STATE | DEVICE_STATE |  |
|-------------------|--------------|--------------|--------------|--------------|--|
| Analyser function | RUN          | STANDBY      | POWER_DOWN   | MAINTENANCE  |  |
| INIT              | Х            | Х            | Х            | Х            |  |
| MEASUREMENT       | Х            |              |              | X            |  |
| CALIBRATION       | X            |              |              | X            |  |
| CLEANING          | X            |              |              | X            |  |
| SYSTEM_CHECK      |              |              |              | Х            |  |

Legend: X - Function execution permitted

**Table 168. Execution of Analyser Functions** 

## 32.5.3 Parameter Attributes of the Control Transducer Block

| Relative Index | Parameter<br>Name                     | Object Type | Data Type  | Store | Size        | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|------------|-------|-------------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Stan           | dard Parameters see General           | Requireme   | nts        |       |             |        |                                              |             |               |                                      |
| Additio        | nal Control Transducer Block I        | Parameters  |            |       |             |        |                                              |             |               |                                      |
| 9              | BLOCK_TYPE                            | Simple      | Unsigned16 | S     | 2           | r,w    | C/a                                          | F           | -             | М                                    |
| 10             | COMMAND                               | Simple      | Unsigned16 | N     | 2           | r,w    | C/a                                          | F           | -             | М                                    |
| 11             | STATUS                                | Simple      | Unsigned8  | D     | 1           | r      | C/a                                          | -           | -             | М                                    |
| 12             | CHANNEL                               | Simple      | Unsigned16 | S     | 2           | r,w    | C/a                                          | F           | -             | М                                    |
| 13             | SEQUENCE_CONTROL                      | Record      | DS-66      | S     | 14          | r,w    | C/a                                          | F           | -             | М                                    |
| 14             | RECIPE                                | Simple      | Unsigned16 | S     | 2           | r,w    | C/a                                          | F           | -             | М                                    |
| 15             | QUALITY                               | Array       | Float      | N     | man<br>spec | r      | C/a                                          | -           | -             | 0                                    |
| 16             | SP                                    | Array       | Float      | N     | man<br>spec | r,w    | C/a                                          | F           | -             | 0                                    |
| 17             | PV                                    | Array       | Float      | N     | man<br>spec | r      | C/a                                          | -           | ı             | 0                                    |
| 18             | CTB_MASTER                            | Simple      | Unsigned8  | N     | 1           | r,w    | C/a                                          | F           | -             | 0                                    |
| 19             | SELECTION                             | Array       | Unsigned16 | N     | man<br>spec | r,w    | C/a                                          | F           | -             | 0                                    |
| 20-29          | Reserved by PNO                       |             |            |       |             |        |                                              |             |               | М                                    |
| 30             | PARAMETER_SET_<br>NUMBER              | Simple      | Unsigned8  | Z     | 1           | r      | C/a                                          |             | ı             | М                                    |
| 31             | NUMBER_PARAMETERS                     | Simple      | Unsigned8  | N     | 1           | r      | C/a                                          | -           | -             | 0                                    |
| Param          | eter set for pH                       |             |            |       |             |        |                                              |             |               |                                      |
| 32             | BUFFER_NUMBER                         | Simple      | Unsigned8  | N     | 1           | r,w    | C/a                                          | F           | -             | 0                                    |
| 33             | ZERO                                  | Simple      | Float      | S     | 4           | r,w    | C/a                                          | -           | -             | 0                                    |
| 34             | SLOPE                                 | Simple      | Float      | S     | 4           | r,w    | C/a                                          | -           | -             | 0                                    |
| Param          | eter set for Conductivity             |             |            |       |             |        |                                              |             |               |                                      |
| 32             | CELL_CONSTANT                         | Simple      | Float      | S     | 4           | r,w    | C/a                                          | -           | -             | 0                                    |
| Param          | eter set for Oxygen                   |             |            |       |             |        |                                              |             |               |                                      |
| 32             | CALOXY_TYPE                           | Simple      | Unsigned8  | S     | 1           | r,w    | C/a                                          | F           | -             | 0                                    |
| 33             | CALOXY_ZERO                           | Record      | 101        | S     | 5           | r,w    | C/a                                          | -           | -             | 0                                    |
| 34             | CALOXY_HIGH                           | Record      | 101        | S     | 5           | r,w    | C/a                                          | -           | -             | 0                                    |
| 36             | CALOXY_HUMIDITY_REL                   | Simple      | Float      | S     | 4           | r,w    | C/a                                          | F           | -             | 0                                    |
| 37             | CALOXY_PRESSURE                       | Simple      | Float      | S     | 4           | r,w    | C/a                                          | F           | -             | 0                                    |
| 38             | CALOXY_TEMP                           | Simple      | Float      | S     | 4           | r,w    | C/a                                          | F           | -             | 0                                    |
| 39             | CALOXY_BUFFER_SAT                     | Simple      | Float      | S     | 4           | r,w    | C/a                                          | F           | -             | 0                                    |
| 40             | CALOXY_BUFFER_CONC                    | Simple      | Float      | S     | 4           | r,w    | C/a                                          | F           | -             | 0                                    |
| 31+n<br>+1     | First manufacturer specific parameter |             |            |       |             |        |                                              |             |               | 0                                    |

Table 169. Parameter Attributes of the Control Transducer Block

# 32.5.4 View Object of the Control Transducer Block

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 9                 | BLOCK_TYPE                                                          |        |        |        |        |
| 10                | COMMAND                                                             |        |        |        |        |
| 11                | STATUS                                                              | 1      |        |        |        |
| 12                | CHANNEL                                                             |        |        |        |        |
| 13                | SEQUENCE_CONTROL                                                    |        |        |        |        |
| 14                | RECIPE                                                              |        |        |        |        |
| 15                | QUALITY                                                             |        |        |        |        |
| 16                | SP                                                                  |        |        |        |        |
| 17                | PV                                                                  |        |        |        |        |
| 18                | CTB_MASTER                                                          |        |        |        |        |
| 19                | SELECTION                                                           |        |        |        |        |
| 20-29             | Reserved by PNO                                                     |        |        |        |        |
| 30                | PARAMETER_SET_NUMBER                                                |        |        |        |        |
| 31                | NUMBER_PARAMETERS                                                   |        |        |        |        |
| Paramete          | r set for pH                                                        |        |        |        |        |
| 32                | BUFFER_NUMBER                                                       |        |        |        |        |
| 33                | ZERO                                                                |        |        |        |        |
| 34                | SLOPE                                                               |        |        |        |        |
| Paramete          | r set for Conductivity                                              |        |        |        |        |
| 32                | CELL_CONSTANT                                                       |        |        |        |        |
| Paramete          | r set for Oxygen                                                    |        |        |        |        |
| 32                | CALOXY_TYPE                                                         |        |        |        |        |
| 33                | CALOXY_ZERO                                                         |        |        |        |        |
| 34                | CALOXY_HIGH                                                         |        |        |        |        |
| 36                | CALOXY_HUMIDITY_REL                                                 |        |        |        |        |
| 37                | CALOXY_PRESSURE                                                     |        |        |        |        |
| 38                | CALOXY_TEMP                                                         |        |        |        |        |
| 39                | CALOXY_BUFFER_SAT                                                   |        |        |        |        |
| 40                | CALOXY_BUFFER_CONC                                                  |        |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 1 + 13 |        |        |        |

Table 170. View Object of the Control Transducer Block

### 32.6 Limit Transducer Block

#### 32.6.1 Overview

The Limit Transducer Block is used to observe whether a PV of a Transducer Block has exceeded a configurable limit (THRESHOLD). The result of the limit check is stored in LIMIT\_STATUS and can be integrated in the cyclic data transfer by a Discrete Input (DI) FB (this is done by setting the CHANNEL parameter of the DI to the LIMIT\_STATUS parameter of the Limit Transducer Block). Devices can provide more than one limit check.

### 32.6.2 Parameter Description of the Limit Transducer Block

| Parameter    | Description                                                                                                                                                                                                         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHANNEL      | The CHANNEL parameter defines the PV of the Transducer Block which is checked against THRESHOLD (Coding see General Requirements).                                                                                  |
| THRESHOLD    | THRESHOLD contains the limit value. The engineering unit is the same as the one of the related Analyser Transducer or Transfer Transducer Block.                                                                    |
| HYSTERESIS   | Absolute value of the switching hysteresis. The engineering unit is the same as the one of the related Analyser Transducer or Transfer Transducer Block.                                                            |
| DIRECTION    | The DIRECTION determines whether the result of the limit check is active in case of a higher or a lower value than the limit.                                                                                       |
|              | Coding:                                                                                                                                                                                                             |
|              | 0: active if value has fallen below the limit (PV < THRESHOLD)                                                                                                                                                      |
|              | 1: active if value has exceeded the limit (PV > THRESHOLD)                                                                                                                                                          |
| ON_DELAY     | ON_DELAY defines the time interval while the PV must permanently exceed the limit before LIMIT_STATUS switches to active.                                                                                           |
| OFF_DELAY    | OFF_DELAY defines the time before LIMIT_STATUS switches back to inactive after the limit exceedance has disappeared.                                                                                                |
| RESET        | With this parameter an active LIMIT_STATUS can be frozen, i.e. LIMIT_STATUS will not return to inactive after the limit exceedance has gone.                                                                        |
|              | Coding:                                                                                                                                                                                                             |
|              | 0: update LIMIT_STATE continuously                                                                                                                                                                                  |
|              | 1: freeze LIMIT_STATE when active                                                                                                                                                                                   |
| CONFIRMATION | This parameter is used to reset the LIMIT_STATUS parameter. The default value for reset is 0x42. The parameter will be set to 0 (zero) by the Transducer Limit Block after LIMIT_STATUS has been reset to inactive. |
| LIMIT_STATUS | Result of the limit check.                                                                                                                                                                                          |
|              | Coding of LIMIT_STATUS.Value:                                                                                                                                                                                       |
|              | 0: Limit condition is inactive                                                                                                                                                                                      |
|              | 1: Limit condition is active                                                                                                                                                                                        |
|              | LIMIT_STATUS.Status is given by the related Transducer Block.                                                                                                                                                       |

Table 171. Parameter Description of the Limit Transducer Block

# 32.6.3 Parameter Attributes of the Limit Transducer Block

| Relative Index | Parameter<br>Name                     | Object Type | Data Type       | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|-----------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Stan           | ndard Parameters see General          | Requireme   | nts             |       |      |        |                                              |             |               |                                      |
|                |                                       |             |                 |       |      |        |                                              |             |               |                                      |
| Additio        | nal Limit Transducer Block Par        | rameters    |                 |       |      |        |                                              |             |               |                                      |
| 9              | CHANNEL                               | Simple      | Unsigned16      | S     | 2    | r,w    | C/a                                          | F           | -             | М                                    |
| 10             | THRESHOLD                             | Simple      | Float           | S     | 4    | r,w    | C/a                                          | F           | 1             | М                                    |
| 11             | HYSTERESIS                            | Simple      | Float           | S     | 4    | r,w    | C/a                                          | F           | 1             | М                                    |
| 12             | DIRECTION                             | Simple      | Unsigned8       | S     | 1    | r,w    | C/a                                          | F           | ı             | М                                    |
| 13             | ON_DELAY                              | Simple      | Time_Difference | S     | 4    | r,w    | C/a                                          | F           | -             | М                                    |
| 14             | OFF_DELAY                             | Simple      | Time_Difference | S     | 4    | r,w    | C/a                                          | F           | 1             | М                                    |
| 15             | RESET                                 | Simple      | Unsigned8       | S     | 1    | r,w    | C/a                                          | F           | 1             | М                                    |
| 16             | CONFIRMATION                          | Simple      | Unsigned8       | S     | 1    | r,w    | C/a                                          | i           | ı             | М                                    |
| 17             | LIMIT_STATUS                          | Simple      | 102             | S     | 2    | r      | C/a                                          | i           | ı             | М                                    |
| 18-27          | Reserved by PNO                       |             |                 |       |      |        |                                              |             |               | М                                    |
| from<br>28     | First manufacturer specific parameter |             |                 |       |      |        |                                              |             |               | 0                                    |

Table 172. Parameter Attributes of the Limit Transducer Block

# 32.6.4 View Object of the Limit Transducer Block

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 9                 | CHANNEL                                                             |        |        |        |        |
| 10                | THRESHOLD                                                           |        |        |        |        |
| 11                | HYSTERESIS                                                          |        |        |        |        |
| 12                | DIRECTION                                                           |        |        |        |        |
| 13                | ON_DELAY                                                            |        |        |        |        |
| 14                | OFF_DELAY                                                           |        |        |        |        |
| 15                | RESET                                                               |        |        |        |        |
| 16                | CONFIRMATION                                                        |        |        |        |        |
| 17                | LIMIT_STATUS                                                        | 2      |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 2 + 13 |        |        |        |

Table 173. View Object of the Limit Transducer Block

## 32.7 Alarm Transducer Block - Binary Alert Status

#### 32.7.1 Parameter Structure of the Alarm Transducer Block

The Alarm Transducer Block is composed of a hierarchy of several objects. The top of this hierarchy is the sum of all class specific states containing the OR information of each class. Stepping into the lower level objects the user can get more detailed information about an alarm, e.g. the alarm source or reason (see Figure 69).



Figure 69. Hierarchy of the Alarm Information

The GLOBAL\_STATUS parameter is a summary of all states of the device and is therefore placed in the Physical Block.



Figure 70. Parameter Structure of the Alarm Transducer Block

Binary Messages are the lowest hierarchy level of the alarm information. They reflect individual device or process states without influence of other signals. All BMs are numbered in ascending order starting with 1. The parameter NUMBER\_OF\_MESSAGES shows the number of present BMs. The change of BM states can be stored in the Logbook Function Block.

## 32.7.2 Parameter Description of the Alarm Transducer Block

| Parameter      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                              |  |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| GLOBAL_STATUS  | classes has an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s the top of the status hierarchy. It shows if any of the status ctive message. Each bit of the GLOBAL_STATUS parameter is ion of the related status class. GLOBAL_STATUS is an element ock. |  |  |  |  |  |
|                | Bit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Failure                                                                                                                                                                                      |  |  |  |  |  |
|                | Bit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maintenance Reqired                                                                                                                                                                          |  |  |  |  |  |
|                | Bit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Function Check                                                                                                                                                                               |  |  |  |  |  |
|                | Bit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limits (This class is used for the results of<br>the Transducer Blocks and/or the OUT parameter of<br>the Analog Input/Output Blocks)                                                        |  |  |  |  |  |
|                | Bit 5 to 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | manufacturer specific                                                                                                                                                                        |  |  |  |  |  |
| STATUS_CLASSES | This array contains one element (unsigned16) for each status class. The bits 0 to 14 of each element mirror the states of individual Binary Messages or device specific events. Bit 15 (MSB) is the OR combination of all Binary Messages belonging to the status class (see classification of the BM status) and shows if at least one of these Binary Messages is active. Reading the parameter STATUS_CLASSES provides a quick way to find out which BMs are currently active. |                                                                                                                                                                                              |  |  |  |  |  |
|                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of the status classes to the elements of STATUS_CLASSES is 75. Unused STATUS_CLASSES elements are set to 0 (zero).                                                                           |  |  |  |  |  |
|                | Coding of Bit 16 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f each STATUS_CLASSES element:                                                                                                                                                               |  |  |  |  |  |
|                | 0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no Binary Message of this status class is active                                                                                                                                             |  |  |  |  |  |
|                | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at least one Binary Message of this status class is active                                                                                                                                   |  |  |  |  |  |
|                | Status Class Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                              |  |  |  |  |  |
|                | This status class                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | relates to the failure of the device.                                                                                                                                                        |  |  |  |  |  |
|                | Bit 1 to15                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | not standardised                                                                                                                                                                             |  |  |  |  |  |
|                | Bit 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | reserved for sum of BMs                                                                                                                                                                      |  |  |  |  |  |
|                | Status Class Mair                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ntenance Required                                                                                                                                                                            |  |  |  |  |  |
|                | This status class                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | relates to the required maintenance of the device.                                                                                                                                           |  |  |  |  |  |
|                | Bit 1 to 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | not standardised                                                                                                                                                                             |  |  |  |  |  |
|                | Bit 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | reserved for sum of BMs                                                                                                                                                                      |  |  |  |  |  |
|                | Status Class Function Check                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                              |  |  |  |  |  |
|                | The status class Function Check provides information about the current mode and state of the analyser device. If the measurement equipment does not provide the process attributes as required, the message Function Check has to be generated.                                                                                                                                                                                                                                   |                                                                                                                                                                                              |  |  |  |  |  |
|                | The status Functi                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on Check can be generated                                                                                                                                                                    |  |  |  |  |  |

| Parameter              | Description                                                                     |                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                        |                                                                                 | evice is in modes which inhibit the measurement of the process device may provide a list of modes which generate the status                                                                                                                                                                                             |  |  |  |  |  |
|                        | - at least one Binary Message related to status class Function Check is active. |                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                        | Bit 1                                                                           | Standby                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                        | Bit 2                                                                           | Power down                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                        | Bit 3                                                                           | Hold                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                        | Bit 4                                                                           | Stop measurement                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                        | Bit 5                                                                           | Maintenance by hand                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                        | Bit 6                                                                           | Maintenance automatically                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                        | Bit 7                                                                           | Calibration by hand                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                        | Bit 8                                                                           | Calibration automatically                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                        | Bit 9 to 15                                                                     | not standardised                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                        | Bit 16                                                                          | reserved for sum of BMs                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                        | Status Class Limits                                                             |                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                        | This status class relates to limit exceedance of the measurement values.        |                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                        | Bit 1                                                                           | HI_HI_LIM exceeded in the AI-Block                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                        | Bit 2                                                                           | HI_LIM exceeded in the AI-Block                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                        | Bit 3                                                                           | LO_LIM exceeded in the AI-Block                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                        | Bit 4                                                                           | LO_LO_LIM exceeded in the AI-Block                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                        | Bit 5 to 15                                                                     | not standardised                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                        | Bit 16                                                                          | reserved for sum of BMs                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| ACTIVE_MESSAGES        | represented by o<br>the bitstring is th<br>Alarm Transduce                      | ontains all configured Binary Messages, i.e. each BM is ne bit. All active BMs are marked. The order number of the bits in e same as the order of the BMs in the block parameter list of the er Block. The number of BMs is device specific. The read access provides an overview of all active BMs at a specific time. |  |  |  |  |  |
|                        | Coding of each b                                                                | it:                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                        | 0 BM_NO                                                                         | T_ACTIVE Binary Message not active                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                        | 1 BM_AC                                                                         | TIVE Binary Message active                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| NUMBER_OF_<br>MESSAGES | Number of config                                                                | urable Binary Messages in the device.                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| BM_n                   | This parameter<br>General Require                                               | contains the attributes of the Binary Message (Coding see ments).                                                                                                                                                                                                                                                       |  |  |  |  |  |

Table 174. Parameter Description of the Alarm Transducer Block

| STATUS_CLASSES<br>Array element<br>(Bit numbering) | Status class          |
|----------------------------------------------------|-----------------------|
| 1                                                  | Failure               |
| 2                                                  | Maintenance Required  |
| 3                                                  | Function Check        |
| 4                                                  | Limits                |
| 5-16                                               | manufacturer specific |

Table 175. Mapping of the Status Classes to the Array Elements of STATUS\_CLASSES

#### 32.7.3 Parameter Attributes of the Alarm Transducer Block

| Relative Index | Parameter<br>Name                     | Object Type | Data Type  | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Stan           | dard Parameters see General           | Requireme   | nts        |       |      |        |                                              |             |               |                                      |
|                |                                       |             |            |       |      |        |                                              |             |               |                                      |
| Additio        | nal Alarm Transducer Block P          | arameters   |            |       |      |        |                                              |             |               |                                      |
| 8              | STATUS_CLASSES                        | Array       | Unsigned16 | D     | 32   | r      | C/a                                          | ı           | 0,,0          | М                                    |
| 9              | ACTIVE_MESSAGES                       | Array       | BitString  | D     | 32   | r      | C/a                                          | ı           | 0,0,0         | М                                    |
| 10-14          | Reserved by PNO                       |             |            |       |      |        |                                              |             |               | М                                    |
| 15             | NUMBER_OF_MESSAGES                    | Simple      | Unsigned16 | N     | 2    | r      | C/a                                          | ı           | -             | М                                    |
| 16             | BM_1                                  | Record      | DS-62      | N     | 21   | r,w    | C/a                                          | F           | -             | М                                    |
|                |                                       |             |            |       |      |        |                                              |             |               |                                      |
| 15+n           | BM_n                                  | Record      | DS-62      | N     | 21   | r,w    | C/a                                          | F           | -             | 0                                    |
| 15+n<br>+1     | First manufacturer specific parameter |             |            |       |      |        |                                              |             |               | 0                                    |

Table 176. Parameter Attributes of the Alarm Transducer Block

## 32.7.4 View Object of the Alarm Transducer Block

| Relative<br>Index | Parameter Name                                                      | View_1  | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|---------|--------|--------|--------|
| 8                 | STATUS_CLASSES                                                      | 32      |        |        |        |
| 9                 | ACTIVE_MESSAGES                                                     | 32      |        |        |        |
| 10-14             | Reserved by PNO                                                     |         |        |        |        |
| 15                | NUMBER_OF_MESSAGES                                                  |         |        |        |        |
| 16                | BM_1                                                                |         |        |        |        |
|                   |                                                                     |         |        |        |        |
| 15+n              | BM_n                                                                |         |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 64 + 13 |        |        |        |

Table 177. View Object of the Alarm Transducer Block

#### 32.7.5 Mapping of the Binary Messages to the Status of the PV

The following table shows the coding of the Status byte of the OUT and OUT\_D parameter of the Al and DI Function Blocks as a result of active Binary Messages. For the generation of the Status bytes the device has to make the necessary information available for the FBs.

| Namur Binary Message class of BM | Status quality                             |
|----------------------------------|--------------------------------------------|
| Failure                          | BAD – sub-status dependent on failure type |
| Maintenance required             | GOOD – Maintenance required                |
| Function check                   | UNCERTAIN – Last Usable Value (LUV)        |
| Limit                            | See General Requirements                   |

Table 178. Mapping of Namur Binary Message Classes to 101/102 Ctatus

## 32.8 Function Blocks from Other Data Sheets (AI, DI, AO, DO)

This chapter is contained in the data sheets Transmitter, Actuator, Discrete Input and Discrete Output of the PROFIBUS-PA profile.

### 32.9 Multi Point Sampling Function Block

#### 32.9.1 Overview

An analyser device may offer a Multi Point Sampling Function Block. This block executes all samplings described in the sample list one after another. The execution time of each sample is configured in the according parameter element of the sample structure. A device may contain n samples. Each sample can be used for different applications. There may be one Multi Point Sampling Function Block in an analyser device at the most.

With the commands START and STOP the Multi Point Sampling Function Block will be started and stopped.



Figure 71. Multi Point Sampling Function Block

## 32.9.2 Parameter Description of the Multi Point Sampling Function Block

| Parameter            | Description                                   |                                                                                                                                                                                                                                                                                                                                              |                                                                    |  |  |  |  |
|----------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| COMMAND <sup>1</sup> | The COMMA                                     | ND parameter conti                                                                                                                                                                                                                                                                                                                           | rols the sampling activity.                                        |  |  |  |  |
|                      | Coding:                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                    |  |  |  |  |
|                      | 0:                                            | RESET                                                                                                                                                                                                                                                                                                                                        | COMMAND function not active                                        |  |  |  |  |
|                      | 5:                                            | START                                                                                                                                                                                                                                                                                                                                        | activates this device function                                     |  |  |  |  |
|                      | 6:                                            | STOP                                                                                                                                                                                                                                                                                                                                         | interrupts this device function                                    |  |  |  |  |
|                      | 7:                                            | RESUME                                                                                                                                                                                                                                                                                                                                       | reactivates an interrupted device function                         |  |  |  |  |
|                      | 8:                                            | CANCEL                                                                                                                                                                                                                                                                                                                                       | stops this device function                                         |  |  |  |  |
| STATUS <sup>1</sup>  |                                               | S parameter mirro<br>presents the result of                                                                                                                                                                                                                                                                                                  | ors the state of the function which is currently of the execution. |  |  |  |  |
|                      | Coding:                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                    |  |  |  |  |
|                      | 0:                                            | READY                                                                                                                                                                                                                                                                                                                                        | function execution was stopped successfully                        |  |  |  |  |
|                      | 1:                                            | NO_INIT                                                                                                                                                                                                                                                                                                                                      | function is not initialised                                        |  |  |  |  |
|                      | 2:                                            | IDLE                                                                                                                                                                                                                                                                                                                                         | function is inactive                                               |  |  |  |  |
|                      | 3:                                            | RUNNING                                                                                                                                                                                                                                                                                                                                      | function is currently active                                       |  |  |  |  |
|                      | 4:                                            | INTERRUPTED                                                                                                                                                                                                                                                                                                                                  | functionexecution is currently interrupted                         |  |  |  |  |
|                      | 5:                                            | TIME_OUT                                                                                                                                                                                                                                                                                                                                     | function execution time is over                                    |  |  |  |  |
|                      | 6 – 127:                                      | reserved                                                                                                                                                                                                                                                                                                                                     |                                                                    |  |  |  |  |
|                      | 128 – 25                                      | 55: manufacture                                                                                                                                                                                                                                                                                                                              | rspecific                                                          |  |  |  |  |
| ACTIVE_SAMPLE        | This parame                                   | ter shows which sa                                                                                                                                                                                                                                                                                                                           | mple of the sample list is currently taken.                        |  |  |  |  |
| NUMBER_SAMPLES       | This paramet                                  | er shows how man                                                                                                                                                                                                                                                                                                                             | y samples are configured in the device.                            |  |  |  |  |
| SAMPLE_n             | time of each<br>Block which<br>order (relativ | This parameter structure contains the reference to the samples and the execution time of each sample. The Channel structure element refers to the Transducer Block which is sampled. The order in which the samples are taken equals the order (relative index) of the SAMPLE_n block parameters in the Multi Point Sampling Function Block. |                                                                    |  |  |  |  |

Table 179. Parameter Description of the Multi Point Sampling Function Block

Copyright © PNO e.V. 2004. All Rights reserved.

<sup>&</sup>lt;sup>1</sup> For more details see 32.5.2.1.

## 32.9.3 Parameter Attributes of the Multi Point Sampling Function Block

| Relative Index | Parameter<br>Name                     | Object Type | Data Type  | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Stan           | dard Parameters see General           | Requireme   | nts        |       |      |        |                                              |             |               |                                      |
|                |                                       |             |            |       |      |        |                                              |             |               |                                      |
| Additio        | nal Multi Point Sampling Functi       | on Block Pa | arameters  |       |      |        |                                              |             |               |                                      |
| 9              | COMMAND                               | Simple      | Unsigned16 | N     | 2    | r,w    | C/a                                          | F           | -             | М                                    |
| 10             | STATUS                                | Simple      | Unsigned8  | D     | 1    | r      | C/a                                          | -           | -             | М                                    |
| 11-20          | Reserved by PNO                       |             |            |       |      |        |                                              |             |               | М                                    |
| 21             | ACTIVE_SAMPLE                         | Simple      | Unsigned16 | D     | 2    | r      | C/a                                          | -           | -             | М                                    |
| 22             | NUMBER_SAMPLES                        | Simple      | Unsigned16 | N     | 2    | r      | C/a                                          | -           | -             | М                                    |
| 23             | SAMPLE_1                              | Record      | DS-63      | N     | 6    | r,w    | C/a                                          | F           | -             | М                                    |
|                |                                       |             |            |       |      |        |                                              |             |               |                                      |
| 22+n           | SAMPLE_n                              | Record      | DS-63      | N     | 6    | r,w    | C/a                                          | F           | -             | 0                                    |
| 22+n<br>+1     | First manufacturer specific parameter |             |            |       |      |        |                                              |             |               | 0                                    |

Table 180. Parameter Attributes of the Multi Point Sampling Function Block

### 32.9.4 View Object of the Multi Point Sampling Function Block

| Relative<br>Index | Parameter Name                                                      | View_1 | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|--------|--------|--------|--------|
| 9                 | COMMAND                                                             |        |        |        |        |
| 10                | STATUS                                                              | 1      |        |        |        |
| 11-20             | reserved by PNO                                                     |        |        |        |        |
| 21                | ACTIVE_SAMPLE                                                       | 2      |        |        |        |
| 22                | NUMBER_SAMPLES                                                      |        |        |        |        |
| 23                | SAMPLE_1                                                            |        |        |        |        |
|                   |                                                                     |        |        |        |        |
| 22+n              | SAMPLE_n                                                            |        |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 3 + 13 |        |        |        |

Table 181. View Object of the Multi Point Sampling Function Block

### 32.10 Logbook Function Block – Functions for Archiving

#### **32.10.1 Overview**

Binary Messages and status information can be stored in a Logbook Function Block. Changes, i.e. the appearance and disappearance of Binary Messages or status information will be coupled with its time stamp and stored in the Logbook. The number of entries in the logbook is limited and configured by the device manufacturer. Read services have access to single entries. The first entry has the number 1. Each new entry gets the next position in the ring memory until the highest position SIZE\_OF\_ENTRIES is reached. From that moment on each new entry will overwrite the oldest one contained in the logbook. The support of a Logbook in an analyser device is optional. The COMMAND parameter and the parameterisation of the Binary Messages determine whether and in which way events are stored in the Logbook.

Each logbook entry is of data structure DS-64. The first element of this data structure is the type of entry, i.e. a Binary Message or a status information of one of the status classes. The second element is either the number of the Binary Message or the sum of the related status class. The third element shows if the BM became active or inactive. If an entry is a status information this third element has no meaning. The last element contains the time stamp of the state change.

#### 32.10.2 Parameter Description of the Logbook Function Block

| Parameter            | Description |                                                                                                                              |                                                      |  |  |  |  |  |  |
|----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|
| COMMAND <sup>1</sup> |             | The COMMAND is used to switch on and off as well as resume or reset the Logbook FB.                                          |                                                      |  |  |  |  |  |  |
|                      | Coding:     |                                                                                                                              |                                                      |  |  |  |  |  |  |
|                      | 0           | RESET                                                                                                                        |                                                      |  |  |  |  |  |  |
|                      | 5           | START                                                                                                                        |                                                      |  |  |  |  |  |  |
|                      | 6           | STOP                                                                                                                         |                                                      |  |  |  |  |  |  |
|                      | 7           | RESUME                                                                                                                       |                                                      |  |  |  |  |  |  |
| STATUS <sup>1</sup>  |             | The STATUS parameter contains the state of the function which is currently executed or presents the result of the execution. |                                                      |  |  |  |  |  |  |
|                      | Coding:     |                                                                                                                              |                                                      |  |  |  |  |  |  |
|                      | 0           | READY                                                                                                                        | function execution was stopped successfully          |  |  |  |  |  |  |
|                      | 1           | NO_INIT                                                                                                                      | function is not initialised                          |  |  |  |  |  |  |
|                      | 2           | IDLE                                                                                                                         | function is inactive                                 |  |  |  |  |  |  |
|                      | 3           | RUNNING                                                                                                                      | function is currently active                         |  |  |  |  |  |  |
|                      | 4 – 127     | reserve                                                                                                                      | d                                                    |  |  |  |  |  |  |
|                      | 128 – 2     | 55 manufa                                                                                                                    | cturer specific                                      |  |  |  |  |  |  |
| SIZE_OF_ENTRIES      |             | This parameter shows the number of different entries which the Logbook can take up at the same time.                         |                                                      |  |  |  |  |  |  |
| NUMBER_OF_ENTRIES    | This parame | ter contains th                                                                                                              | e actual number of entries in the Logbook.           |  |  |  |  |  |  |
| TURN_NUMBER          | This parame | ter counts hov                                                                                                               | v many times the logbook has completely been filled. |  |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> For more details see 32.5.2.1.

\_

| Parameter                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| NEWEST_ENTRY                | This parameter contains the newest entry of the Logbook. As long as no entries have been stored in the Logbook, NEWEST_ENTRY shall point to the following Binary Message (DS-62):                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                             | Status_Class = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                             | Logbook_Entry = TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                             | Output_Reference = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                             | Supervision = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                             | Text = "Empty Logbook"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|                             | This Binary Message is not listed in the parameters STATUS_CLASSES and ACTIVE_MESSAGES and is overwritten by the first Logbook entry.                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| OLDEST_ENTRY                | This parameter contains the oldest entry of the Logbook.                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| ACTUAL_POST_READ_<br>NUMBER | This parameter shows the number of the Logbook entry which will be returned by the next read access to the parameter POST_READ_ENTRY. This parameter provides a flow control of the entry access of the Logbook. It decreases after each POST_READ_ENTRY parameter read access. If the oldest entry was read then this parameter switches to the number of the newest one. If the value 0 (zero) is written to ACTUAL_POST_READ_NUMBER then the parameter POST_READ_ENTRY is set to the newest entry. |  |  |  |  |  |  |  |
| POST_READ_ENTRY             | A read access to this parameter returns the logbook entry with the number given by ACTUAL_POST_READ_NUMBER. Every read access automatically decreases ACTUAL_POST_READ_NUMBER by one, i.e. the read pointer is shifted to the next older entry. Step by step every entry of the Logbook can be read.                                                                                                                                                                                                  |  |  |  |  |  |  |  |

Table 182. Parameter Description of the Logbook Function Block

## 32.10.2.1 COMMAND / STATUS Parameter Description

The COMMAND parameter controls the following state machine. The transitions are fired by the change of the COMMAND value.

The STATUS parameter contains the actual state. Additional states are manufacturer specific.



Figure 72. State diagram of Logbook FB - COMMAND parameter

## 32.10.3 Parameter Attributes of the Logbook Function Block

| Relative Index | Parameter<br>Name                     | Object Type | Data Type  | Store | Size | Access | Parameter<br>Usage /<br>Kind of<br>Transport | Reset Class | Default Value | Mandatory<br>Optional<br>(Class A,B) |
|----------------|---------------------------------------|-------------|------------|-------|------|--------|----------------------------------------------|-------------|---------------|--------------------------------------|
| Star           | dard Parameters see General           | Requireme   | nts        |       |      |        |                                              |             |               |                                      |
|                |                                       |             |            |       |      |        |                                              |             |               |                                      |
| Additio        | nal Logbook Function Block Pa         | arameters   |            |       |      |        |                                              |             |               |                                      |
| 9              | COMMAND                               | Simple      | Unsinged16 | S     | 2    | r,w    | C/a                                          | F           | 5             | М                                    |
| 10             | STATUS                                | Simple      | Unsigned8  | D     | 1    | r      | C/a                                          | 1           | ı             | М                                    |
| 11             | SIZE_OF_ENTRIES                       | Simple      | Unsigned16 | N     | 2    | r      | C/a                                          | 1           | ı             | М                                    |
| 12             | NUMBER_OF_ENTRIES                     | Simple      | Unsigned16 | N     | 2    | r      | C/a                                          | 1           | 0             | М                                    |
| 13             | TURN_NUMBER                           | Simple      | Unsigned16 | N     | 2    | r      | C/a                                          | 1           | 0             | М                                    |
| 14             | NEWEST_ENTRY                          | Record      | DS-64      | N     | 11   | r      | C/a                                          | -           | 0             | М                                    |
| 15             | OLDEST_ENTRY                          | Record      | DS-64      | N     | 11   | r      | C/a                                          | -           | 0             | М                                    |
| 16             | ACTUAL_POST_READ_<br>NUMBER           | Simple      | Unsigned16 | D     | 2    | r,w    | C/a                                          | F           | 0             | М                                    |
| 17             | POST_READ_ENTRY                       | Record      | DS-64      | D     | 11   | r      | C/a                                          | 1           | 0             | М                                    |
| 18-27          | Reserved by PNO                       |             |            |       |      |        |                                              |             | 1             | М                                    |
| 28             | First manufacturer specific parameter |             |            |       |      |        |                                              |             |               | 0                                    |

Table 183. Parameter Attributes of the Logbook Function Block

## 32.10.4 View Object of the Logbook Function Block

| Relative<br>Index | Parameter Name                                                      | View_1  | View_2 | View_3 | View_4 |
|-------------------|---------------------------------------------------------------------|---------|--------|--------|--------|
| 9                 | COMMAND                                                             |         |        |        |        |
| 10                | STATUS                                                              | 1       |        |        |        |
| 11                | SIZE_OF_LOGBOOK                                                     |         |        |        |        |
| 12                | NUMBER_OF_ENTRIES                                                   |         |        |        |        |
| 13                | TURN_NUMBER                                                         |         |        |        |        |
| 14                | NEWEST_ENTRY                                                        | 11      |        |        |        |
| 15                | OLDEST_ENTRY                                                        |         |        |        |        |
| 16                | ACTUAL_POST_READ_NUMBER                                             |         |        |        |        |
| 17                | POST_READ_ENTRY                                                     |         |        |        |        |
| 18 27             | Reserved by PNO                                                     |         |        |        |        |
|                   | Overall sum of bytes in View-Object (+ 13 Standard Parameter bytes) | 12 + 13 |        |        |        |

Table 184. View Object of the Logbook Function Block

## 33 Device Data Sheet Analyser - Conformance Definition

An analyser device does not have to support all blocks with its parameters and functions defined in section 1 of this document. The definitions mean that if a block with its functions and parameters is accessable in a device then the definitions have to be implemented in the way described. The following tables define which functions and parameters have to be implemented (mandatory - M) and which may be implemented (optional - O) in an analyser device.

| Description | Conformity statement |  |
|-------------|----------------------|--|
| RUN         | М                    |  |
| STANDBY     | 0                    |  |
| POWER_DOWN  | 0                    |  |
| MAINTENANCE | M                    |  |

Table 185. Conformance Definition for DEVICE\_STATE of the Physical Block

| Description                         | Conformity statement |
|-------------------------------------|----------------------|
| Physical Block                      | М                    |
| Analyser Transducer Block           | М                    |
| Transfer Transducer Block           | 0                    |
| Control Transducer Block            | 0                    |
| Limit Transducer Block              | 0                    |
| Alarm Transducer Block              | 0                    |
| Analog Input Function Block         | M                    |
| Analog Output Function Block        | 0                    |
| Discrete Input Function Block       | 0                    |
| Discrete Output Function Block      | 0                    |
| Multi Point Sampling Function Block | 0                    |
| Logbook Function Block              | 0                    |

**Table 186. Conformance Definition for Blocks** 

| Function     | Conformity statement |  |  |
|--------------|----------------------|--|--|
| INIT         | М                    |  |  |
| MEASUREMENT  | М                    |  |  |
| CALIBRATION  | 0                    |  |  |
| CLEANING     | 0                    |  |  |
| SYSTEM_CHECK | 0                    |  |  |

Table 187. Conformance Definition for BLOCK\_TYPE of the Control Transducer Block

| Command | Conformity statement |
|---------|----------------------|
| RESET   | М                    |
| START   | M                    |
| STOP    | 0                    |
| RESUME  | 0                    |
| CANCEL  | М                    |

Table 188. Conformance Definition for COMMAND of Control Transducer Block / Multi Point Sampling Function Block / Logbook Function Block

| Code for subparameter Choice | Conformity statement |  |
|------------------------------|----------------------|--|
| 0                            | М                    |  |
| 1 – 4                        | 0                    |  |

Table 189. Conformance Definition for Subparameter Choice of the Transfer Transducer Block parameter CALCULATION\_n

| Recipe code | Conformity statement |  |  |
|-------------|----------------------|--|--|
| 1           | М                    |  |  |
| 2 – 10      | 0                    |  |  |

Table 190. Conformance Definition of the RECIPE Parameter of the Control Transducer Block

# 34 Device Data Sheet Analyser - Document History

Changes from V3.0 to V3.0.1.

| Chapter/Figure/Table | Change                                                                                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter/Figure/Table | Change                                                                                                                                        |
| Entire document      | Editorial changes.                                                                                                                            |
| All parameter tables | Extended by column Reset class.                                                                                                               |
| 32.2.2 / Table 158   | Reference to inexistent DEVICE_STATE figure deleted.                                                                                          |
| 32.2.2 / Table 158   | Description of GLOBAL_STATUS replaced by a reference to the same description within chapter 1.7.2 / Table 17                                  |
| 32.3.2 / Table 161   | Description of parameter AUTORANGE_ON clarified.                                                                                              |
| 32.3.4 / Table 163   | Size of ACTIVE_RANGE in View_1 changed from 2 to 1. Overall sum of bytes in VIEW_1 changed from 14+13 to 13+13.                               |
| 32.5.2 / Table 167   | Extended by parameters for PARAMETER_SET_NUMBER = 3 (Oxygen).                                                                                 |
| 32.5.2 / Table 167   | Description of CTB_MASTER: "parameter Choice" changed to "SELECTION".                                                                         |
| 32.5.2 / Table 167   | Limitation "which shall be active during an all over calibration" changed to "which are controlled by this master CTB".                       |
| 32.5.2.1 / Figure 68 | STATUS NO_INIT added; COMMAND CANCEL added.                                                                                                   |
| 32.5.2.2             | Sentence deleted: One example is shown in the following figure.                                                                               |
| 32.5.3 / Table 169   | Mandatoy Optional attribute of parameter PARAMETER_SET_NUMBER changed from o to m.                                                            |
| 32.5.3 / Table 169   | Extended by parameters for PARAMETER_SET_NUMBER = 3 (Oxygen).                                                                                 |
| 32.6.2 / Table 171   | Coding of parameter DIRECTION changed from TRUE/FALSE to 0/1.                                                                                 |
| 32.6.2 / Table 171   | Coding of parameter RESET changed from TRUE/FALSE to 0/1.                                                                                     |
| 32.6.2 / Table 171   | Coding of parameter LIMIT_STATE changed from TRUE/FALSE to 0/1. Additional description of new component Status.                               |
| 32.6.3 / Table 172   | Data Type of parameter LIMIT_STATE changed from Unsigned8 to 102. Attribute Size changed from 1 to 2.                                         |
| 32.7.4 / Table 177   | Manspecific deleted from overall sum of bytes in View-Object.                                                                                 |
| 32.7.5 / Table 178   | Number of table integrated in the automated table counting. The new number is table 21, all subsequent tables are shifted one number upwards. |
| 32.8.1               | Chapter deleted.                                                                                                                              |
| 32.8.1.1             | Chapter deleted, contents moved to chapter 1.8.                                                                                               |
| 32.8.1.2             | Chapter deleted.                                                                                                                              |
| 32.9                 | Labels harmonised: "Probe FB" and "Multi Point Sample FB" changed to "Multi Point Sampling FB".                                               |
| 32.10.1              | Change of Logbook description.                                                                                                                |
| 32.10.2 / Table 182  | Extension to the description of parameter ACTUAL_POST_READ_NUMBER.                                                                            |
| 32.10.2 / Table 182  | Definition of parameter NEWEST_ENTRY enlarged by the definition of a default value.                                                           |
| 32.10.2 / Table 182  | Value Cancel (8) deleted from the list of valid COMMAND values.                                                                               |
| 32.10.3 / Table 183  | Access attribute of parameter NEWEST_ENTRY changed from r,w to r.                                                                             |

| 32.10.3 / Table 183                                                       | Default value of parameter COMMAND changed from 0 (Reset) to 5 (Start). |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 32.10.3 / Table 183                                                       | Default value of parameter STATUS deleted.                              |
| 32.10.3 / Table 183                                                       | Default value of parameter TURN_NUMBER changed from 1 to 0.             |
| 33 / Table 185 – 190 Table captions corrected and redered more precisely. |                                                                         |
| 33 / Table 186                                                            | Limit Transducer Block and Alarm Transducer Block added as optionals.   |
| 33 / Table 188                                                            | Value RESET added as mandatory.                                         |

Table 191. Changes from V3.0 to V3.0.1

## **PROFIBUS-PA**

## **Device Data Sheet**

## **Multi-Variable Device**

## 35 General Function Set for Multi-Variable Devices

There are device types which cover a large variety hardware configuration and functionality. Such device types are a combination of different block types. These device types may be a selection of one or more blocks specified in the range of PROFIBUS-PA Device data sheets. The choice of a subset follows certain rules defined in the conformance statements below. The tables show which block is mandatory (M), conditional (C), selected (S) and which are optional (O).

| Parameter                           | Conformance class B |  |
|-------------------------------------|---------------------|--|
| Physical Block                      | М                   |  |
| Function Blocks                     | M (in minimum 1 FB) |  |
| Analog Input Function Block         | S                   |  |
| Analog Output Function Block        | S                   |  |
| Discrete Input Function Block       | S                   |  |
| Discrete Output Function Block      | S                   |  |
| Totaliser Function Block            | S                   |  |
| Logbock Function Block              | S                   |  |
| Multipoint Sampling Function Block  | S                   |  |
| PID                                 | S                   |  |
| other PROFIBUS-PA Function Blocks   | S                   |  |
| Transducer Blocks                   | 0                   |  |
| Temperature Transducer Block        | S                   |  |
| Pressure Transducer Block           | S                   |  |
| Level Transducer Block              | S                   |  |
| Flow Transducer Block               | S                   |  |
| Electro-pneumatic Transducer Block  | S                   |  |
| Electro Transducer Block            | S                   |  |
| Hydraulic Transducer Block          | S                   |  |
| Analyser Transducer Block           | S                   |  |
| Transfer Transducer Block           | S                   |  |
| Control Transducer Block            | S                   |  |
| Alarm Transducer Block              | S                   |  |
| Limit Transducer Block              | S                   |  |
| other PROFIBUS-PA Transducer Blocks | 0                   |  |

Table 192. Conformance Statement of Multi-Variable Devices

# © Copyright by:

PROFIBUS Nutzerorganisation e.V.

Haid-und-Neu-Str. 7

D-76131 Karlsruhe

Germany

Phone: +49 721 / 96 58 590

Fax: +49 721 / 96 58 589

e-mail: pi@profibus.com

http://www.profibus.com