UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI CAMPUS ALTO PARAOPEBA

CAMILA CRISTINA OLIVEIRA CARLOS HENRIQUE SOUSA RIBEIRO CAMPOS

PORTFÓLIO DE EXERCÍCIOS DA UNIDADE CURRICULAR DE MECÂNICA DOS FLUIDOS PARA ENGENHARIA QUÍMICA

OURO BRANCO-MG

CAMILA CRISTINA OLIVEIRA CARLOS HENRIQUE SOUSA RIBEIRO CAMPOS

PORTFÓLIO DE EXERCÍCIOS DA UNIDADE CURRICULAR DE MECÂNICA DOS FLUIDOS PARA ENGENHARIA QUÍMICA

O PORTFÓLIO FOI SOLICITADO PELO PROFESSOR FABIANO LUIZ NAVES COMO REQUISITO PARA APROVAÇÃO NA UNIDADE CURRICULAR DE MECÂNICA DOS FLUIDOS DO CURSO DE ENGENHARIA QUÍMICA

OURO BRANCO - MG

NOVEMBRO DE 2020

Questão 1: Tem-se duas placas com uma distância entre elas. A placa inferior é fixa e a superior se move com determinada velocidade. Se os espaços entre essas placas for preenchido com óleo com determinada viscosidade e uma determinada massa específica. Elabore uma forma de determinar a tensão de cisalhamento do óleo e a força tangencial necessária para colocar a placa superior em movimento.

Farei algumas considerações para auxiliar na resolução desse problema.

Considerações:

- Trabalhamos com o Sistema Internacional de Unidades;
- Consideramos o perfil de velocidade linear;
- Tanto o perfil de velocidade do fluido quanto a espessura de tubo serão fornecidas;
- A velocidade cinemática e massa específica também serão fornecidas.

É necessário conhecer o fluido (óleo) que passa entre as duas placas, pois as características de viscosidade e massa específica são particulares de cada um.

Como foi fornecido a viscosidade cinemática, deve-se encontrar a viscosidade dinâmica que será utilizada no cálculo da tensão de cisalhamento

$$\upsilon = \frac{\mu}{\rho}$$

rearranjando a equação acima, temos

$$\mu = \upsilon . \rho$$

Encontrando a viscosidade dinâmica, podemos calcular a tensão de cisalhamento, usando a fórmula

$$\tau = \mu \cdot \frac{V}{\epsilon}$$

Após encontrar a tensão de cisalhamento e lembrando da fórmula

$$\tau = \frac{F_t}{A}$$

Rearranjando-a

$$F_t = \tau . A$$

Podemos encontrar a força tangencial necessária para movimentar a placa superior.

Questão 2: Pressão no manômetro sendo zero.

A pressão que o aluno tomou pode apresentar o valor de zero no manômetro se a pressão da tubulação for igual a zero ao compará-la com a pressão atmosférica, pois o manômetro tem a sua calibração baseada na pressão atmosférica. Outro fator importante é a possibilidade da tubulação estar ao nível do mar (onde a altitude é zero), e neste caso a pressão atmosférica é considerada zero, logo o manômetro poderá mostrar o valor de zero.

Questão 3: Criar uma planilha no Excel para cálculo de conversão de unidades de pressão. O documento estará anexado junto ao portfólio.

Questão 4: Encontre duas formas para resolver o problema

Determinar a pressão p.

$$\gamma_{H,O} = 1000 \text{ kgf/m}^3$$

$$\gamma_{Hg} = 13600 \text{ kgf/m}^3$$

$$\gamma_{Hg} = 13600 \, kgf/m^3$$

1º modo de calcular:

$$P + \gamma_{H2O}.h_{H2O} - \gamma_{Hg}.h_{Hg} = P_{atm}$$

$$P + 1000.0,025 - 13600.0,075 = 0$$

$$P = 995 \, \frac{kgf}{m^2}$$

2ª maneira de calcular:

$$P + \gamma_{Hg}.h_{Hg} - \gamma_{H2O}.h_{H2O} = P_{atm}$$

$$P = 995 \frac{kgf}{m^2}$$

Questão 5: Encontre qual a relação entre vazão mássica ou em massa e volumétrica.

Quando referimos a vazão volumétrica, referimos ao volume de fluido que passa em uma determinada área específica em um dado tempo, e é calculada pela fórmula

$$Q = \frac{V}{t}$$

suas unidades são cm³/s, m³/min, m³/h, l/s, l/min, l/h.

Quando referimos a vazão mássica, referimos a massa de fluido que atravessa uma determinada seção de escoamento em um dado tempo, e é calculado por

$$Q_m = \frac{m}{t}$$

suas unidades são g/s, g/min, kg/min, kg/s, kg/h, utm/s, utm/min.

Partindo dessa breve apresentação sobre o que vem a ser as vazões volumétricas e mássica, pode-se retirar uma relação entre elas.

Como foi dito a vazão volumétrica é calculada pela primeira equação e como sabemos a variável volume pode ser dada por

$$\rho = \frac{m}{V}$$

Isolando o volume ficamos com

$$V = \frac{m}{\rho}$$

Substituindo na fórmula, ficamos com

$$Q = \frac{m}{\rho} \cdot \frac{1}{t}$$

Lembrando da definição de vazão mássica, e substituindo nas equações encontradas, temos

$$Q = \frac{m}{t} \cdot \rho$$

Rearranjando essa equação, ficamos com

$$Q_m = Q.\rho$$

A fórmula acima relaciona a vazão volumétrica e a vazão mássica.

Questão 6: Os reservatórios (1) e (2) da figura são cúbicos. São enchidos pelos tubos respectivamente em 100 seg. e 500 seg. Determinar a velocidade da água na seção A indicada, sabendo-se que o diâmetro é 1m.

Os reservatórios (1) e (2) da figura são cúbicos.

São enchidos pelos tubos respectivamente em 100 seg. e 500 seg.

Determinar a velocidade da água na seção A indicada, sabendo-se que o diâmetro é 1 m.

Equação da Continuidade

Qual será a velocidade da água na seção A?

Para resolver, deve-se considerar que:

 $\Delta t1 = 100s;$

 $\Delta t2 = 500s$

Logo os cálculos de vazão serão dados pelos valores de Q1 e Q2, como implica a Equação da Continuidade, como foi descrito na figura.

Q1: No > Q1: 125 m3. Q1: 1,25 m3/5	
Ats 1003	4 100
Q1: V2 - Q1. 1000 m3 - Q1. 200 n3/5	
Q1: V2 - Q2: 1000 m3 : Q2: 2,00 n3/s	
Q=Q=1,25 m3/s, 2,00 m3/s= Q=3	3, 25 m3/s
	1 (212)

Porém, para encontrar VA, devemos considerar que:

Questão 7: O tanque da figura pode ser enchido pela água que entra pela válvula A em 5 h, pelo que entra por B em 3 h e pode ser esvaziado (quando totalmente cheio) pela válvula C em 4 h (supondo vazão constante). Abrindo todas as válvulas (A, B, C e D) ao mesmo tempo o tanque mantém-se totalmente cheio. Determinar a área da seção de saída de D se o jato de água deve atingir o ponto 0 da figura.

Corcies de Aplicaci	
	0
ta: 5h	\$ to: 3h
7	X A Paragraphy
	and the second s
V=30 m	3
C	b Colesson - Los Vand
tough &	0 to: ? >x
0,000	y-5n;
a = 10	15 Million Comment
	x - 10m
Dodo.	3 2 8 2 3 3 4
to: 5h	vinche pela válvula A > 5h;
* ts: 3h	a Enche pele válvule B = 3h;
	+ Esvasiado pela valvula C > 4h (totalnon te chero
V-30 m ³	e. varas constante);
4 4:5 ~	* Abrir A, B, C a D ao mesmo tempo, o langue se
x=10m	nanten cheio;
* g=10m/s2	

Determinar: a área da seção de D, e se o jato atinge o ponto O da figura.

Logo: usar a Eq. da Continuidade.

$$Q_A + Q_B = Q_C + Q_D \tag{1}$$

Determinando os valores de Q_A , Q_B , Q_C e Q_D :

DA: V	= 30 m3	: QA: 6m3/2
t _A	5 h	
QB. V:	30 m3 :	QB= 10~3/h
to	34	
20-V=	30 m3.	: Qc = 7,50 m3/h
to	4/	

Para determinar QD, deve-se substituir os valores de $Q_{\rm A}$, $Q_{\rm B}$ e $Q_{\rm C}$ na equação 1:

Para calcular a área do tubo D, devemos usar a eq.: $Q_D = A_D * V_X$, temos Q_D , mas devemos encontrar o valor de V_X :

Logo, deve-se decompor a projeção do lançamento em um plano cartesiano e calcular o lançamento horizontal.

Vx- ASX	Vu= a.t			
Δ}	Vn = 20.05			
Yx= 10 m	1: 05y= g t2			
15	1 12			
Vx- ADm/s	5m = 10m/s. t2			
	2			
	t= 5 m/s2			
	1 5 pl			
	' t=15			

Calculando a área:

 $A_D = \frac{Q_D}{V_X}$, e substituir os valores de Q_D e V_X , depois converter hora em segundos em Q_D .

Qp: 8,5	ĵμ³.	JK	Qp.	0,00	236 m3	1.
	×	36005		*,		
Ap: 0,0	2023	6m3/6	 AD:	2,3	6 x 10 -	4 m2
	10%	1/8				

Para transformar a área de $A_{\rm D}$ de ${\rm m^2~para~cm^2}$, deve-se multiplicar o resultado por 10^4 , logo:

Ap: 2,36,19 m2. 105 , Ap: 2,36cm2

Questão 8: Um dos métodos para produzir vácuo numa câmera é descarregar água por um tubo convergente como é mostrado na figura. Qual deverá ser a vazão em massa no tubo da figura para produzir um vácuo de 50 mmHg na câmera?

Admitindo que H1 = H2 podemos abrir a equação de bernoulli para descobrir as perdas de carga de energia, Consideramos P2 e Z2 zero pois está aberto para a atmosfera e está no nível do eixo respectivamente. Assim,temos:

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g}$$

Rearranjando os termos

$$\frac{V1^2 - V2^2}{2g} = -Z_1 - \frac{P1}{\gamma} [1]$$

Usando a equação da continuidade sabemos que a vazão que entra é a mesma que sai, e que é a multiplicação de velocidade e área. Assim:

$$O1 = O2$$

$$V1 \times A1 = V2 \times A2$$

Isolando V1 e admitindo que a área é dada por π x D²/4:

$$V1 = (V2 \times \pi \times D_1^2)/4 / \pi \times D_2^2/4$$

Cancelando os termos repetidos;

$$V1 = V2 \times (D_1^2 / D_2^2)$$

Como o diâmetro da entrada e da saída nos foi dado, temos:

$$V1 = V2 \times (3,4^2 / 1^2)$$

$$V1 = V2 \times 11,56 \text{ m/s}$$
 [2]

Substituindo em [1]:

$$((11,56 \times V2)^2 - V2^2) / 2g = -Z1 - P1/\gamma$$

- Z1 é 4 metros,
- P1 usaremos a definição de pressão, que é o peso específico do mercúrio multiplicado pela cota de 0,5 metros.

$$P1 = -13600 \times 0.5$$

$$P1 = -6800 \text{ Kgf/m}^3$$

Assim:

$$((11,56 \times V2)^2 - V2^2) / 2g = -Z1 - P1/\gamma$$

$$((11,56 \times V2)^2 - V2^2) / 20 = -4 + 6800/1000$$

$$133,6 \times V2^2 - V2^2 = 2,8 \times 20$$

$$V2^2 (133,6-1) = 56$$

$$V2^2 = 56 / 132,6$$

$$V2^2 = 0.42$$

$$V2 = 0.65 \text{ m/s}$$

Substituindo em [2] temos :

$$V1 = V2 \times 11,56$$

$$V1 = 0.65 \times 11.56$$

$$V1 = 7.5 \text{ m/s}$$

Com os valores já estabelecidos de velocidade e área podemos agora encontrar a vazão de entrada, que será:

$$Q1 = V1 \times A1$$

$$Q1 = 7.5 \text{ x } (\pi D^2)/4$$

$$Q1 = 7.5 \text{ x } (3.14 \text{ x } (1 \text{x} 10^{-3})^2) / 4$$

$$Q1 = 7.5 \times 2.5 \times 10^{-7}$$

$$Q1 = 5.89 \times 10^{-6} \text{ m/s}$$

Enfim, a vazão necessária para provocar um vácuo de 50cmHg no tubo será de 5,89x10-6 m/s.

Questão 9:

- a) Tipo de Máquina = ?
- **b)** $N_m = ? (\eta_m = 75\%)$

Calculando o tipo de máquina

Primeiramente aplicamos a equação de Bernoulli no trecho (1) - (2)

$$H_1 + H_m = H_2$$

Isolando o H_m

$$H_m = H_2 - H_1$$

Fazendo o cálculo de H_1

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} = 10 + \frac{10^4}{10^3} = 20m$$

Fazendo o cálculo de H_2

$$H_2 = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} = 30m$$

Assim, $H_m = 10m$

Como $H_m > 0$, M é uma bomba

Calculando agora a potência da bomba temos,

$$N = \frac{\gamma Q H_B}{75} = \frac{10^3 \cdot 10^{-2} \cdot 10}{75} = 1,33 \ C.V.$$

Assim, calculamos o N_B

$$N_B = \frac{\gamma Q H_B}{n.75} = \frac{10^3.10^{-2}.10}{75.0,75} = 1,78$$

Assim, temos que a potência da bomba é de 1,78 C.V.

Questão 10:

Dada a instalação da figura, pedem-se:

Q = 25
$$\ell$$
/s

$$H_{P_{i,i}} = 3 \, m.c.a.$$

$$H_{P_{tr}} = 0.5 \, m.c.a.$$

$$g = 10m/s^2$$

$$\gamma = 10^3 \, \text{kgf/m}^3$$

$$N = 1 C.V.$$

Fazendo os cálculos para encontrar P_1

$$H_1 + H_B = H_2 + HP_{1.2}$$

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} + H_B = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + HP_{1,2}$$

Rearranjando a equação acima, temos

$$\frac{P_1}{\gamma} = Z_2 - Z_1 + \frac{V_2^2}{2g} + HP_{1,2} - H_B$$

Onde Z_1 = 3 metros e Z_2 = -7 metros

Sabendo que a velocidade pode ser calculada pela equação

$$V_2 = \frac{Q}{A}$$

Calculamos essa velocidade, adequando todas as unidades para o Sistema Internacional de Unidades

$$Q = \frac{25l}{s} \cdot \frac{1m^3}{1000l} = \frac{0.025m^3}{s}$$

$$V_2 = \frac{0.025m^3}{s} \div 5, 0.10^{-3}m^2 = \frac{5m}{s}$$

Encontramos $HP_{1,2}$ de 3m

Utilizando a fórmula

$$\eta = \gamma Q_B H_B$$

Encontramos a perda de carga da bomba, representada por $H_{\rm B}$

$$H_B = 4, 0.10^{-3} m$$

Utilizando a equação

$$\frac{P_1}{\gamma} = Z_2 - Z_1 + \frac{V_2^2}{2g} + HP_{1,2} - H_B$$

Temos,

$$\frac{P_1}{\gamma} = 7m - 3m + \frac{25}{20} + 3 - 3 = -8,75$$

Assim,

$$P_1 = -8750 \frac{kgf}{m^3}$$

Calculando P_e

Aplicamos Bernoulli de (1) - (e), assim $H_1 = H_e + H_{p1,e}$

A velocidade é a mesma de 5m/s.

Assim,

$$\frac{P_e}{1000} = 3 - \frac{8750}{1000} - \frac{25}{20} - 0, 5 = -7, 5$$

$$P_e = -7500 \frac{kgf}{m^2}$$

Calculando P_s

Aplicamos Bernoulli de (e) - (s), assim $H_e + H_B = H_S$

Assim,

$$Z_e + \frac{P_e}{\gamma} + \frac{V_e^2}{2g} + H_B = Z_S + \frac{P_S}{\gamma} + \frac{V_S^2}{2g}$$

$$\frac{P_S}{\gamma} = \frac{P_e}{\gamma} + H_B = -7,5+3 = -4,5$$

$$P_S = -4500 \frac{kgf}{m^2}$$

Questão 11: Importância dos números adimensionais para Mecânica dos Fluidos aplicada em Engenharia Química.

Para determinar os números adimensionais mais importantes na Mecânica dos Fluidos, devemos saber as unidades utilizadas para obtê-los:

- $F(\rho, v, L, \mu, F, g, c) = 0;$
- ρ = massa específica do fluido;
- v = velocidade característica;
- L = comprimento característico;
- μ = viscosidade dinâmica do fluido;
- F = força oposta ao movimento;
- g = aceleração da gravidade;
- c = velocidade do som.

Número de Reynolds (Re): utilizado para obter o escoamento de fluido incompressível em condutos forçados.

$$Re = \frac{\rho vL}{\mu} = \frac{vL}{\frac{\mu}{\rho}} = \frac{vL}{v}$$

$$Re = \frac{forças de inércia}{forças de atrito viscosos} = \frac{F_i}{F_v}$$

É utilizado parâmetros diferentes para saber como o fluxo do fluido pode ser classificado.

- \square Re \leq 2.000, escoamento laminar;
- □ 2.000 < Re < 4.000, escoamento de transição;
- \Box Re \geq 4.000, escoamento turbulento.

Número de Euler (Eu): utilizado para obter o escoamento de fluidos em torno de corpos submersos (aerodinâmica), em máquinas hidráulicas, e em tubos.

$$Eu = \frac{F}{\rho v^2 L^2} = \frac{\Delta P}{\rho v^2}$$

$$Eu = \frac{forças\ de\ inércia}{forças\ de\ atrito\ viscosas} = \frac{F_i}{F_{\Delta p}}$$

Número de Froude (Fr): utilizado para obter o escoamento de em canais, rios, vertedouros, ação de ondas sobre estruturas de navios, e etc.

$$Fr = \frac{v^2}{gL} = \frac{\Delta P}{\rho v^2}$$

$$Fr = \frac{forças\ de\ inércia}{forças\ de\ gravidade} = \frac{F_i}{F_g}$$

Número de Mach (□): utilizado para obter o escoamento de fluidos compressíveis.

$$\Box = \frac{v}{c}$$

$$\Box = \sqrt{\frac{forças\ de\ inércia}{forças\ de\ compressibilidade}} = \sqrt{\frac{F_i}{F_c}}$$

É utilizado parâmetros diferentes para saber como o fluxo do fluido pode ser classificado.

- \Box < 1 e v < c, escoamento subsônico;
- $\square = 1$ e v = c, escoamento de sônico;
- $\square > 1$ e v > c, escoamento supersônico.

Questão 12: Qual a potência teórica da bomba para a instalação esquematizada a seguir, considerando-se que a vazão de água transportada é de $10 \frac{m^3}{h}$?

Utilize o método da fórmula universal

Qual a potência teórica da bomba para a instalação esquematizada a seguir, considerando-se que a vazão de água transportada é de 10 m³/h?

Primeiramente calculamos o fluxo de massa

$$\frac{10m^3}{h} \div \frac{1h}{3600s} = 2,77.10^{-3} \frac{m^3}{s} = 0,00277 \frac{m^3}{s}$$

Tendo a área de cada seção (sucção e recalque), determinamos as velocidades

$$V_2 = \frac{Q}{A_2}$$

$$V_2 = \frac{0.00277}{0.00202} = 1.371 \frac{m}{s}$$

Sendo V_2 a velocidade de escoamento da água no ponto 2 (saída)

$$V_1 = \frac{Q}{A_1}$$

$$V_1 = \frac{0.00277}{0.00144} = 2,429 \frac{m}{s}$$

Sendo V_1 a velocidade de escoamento da água no ponto 1 (entrada)

Calculamos as perdas de carga localizadas, utilizando a fórmula abaixo

$$h_{S} = K_{S}.\frac{V_{X}^{2}}{2g}$$

$$h_{s_{SUC} ilde{\mathsf{q}} ilde{\mathsf{a}} o} = h_{s_{v\'{\mathsf{a}} | vula p\'{\mathsf{e}}}} + h_{s_{curva 90^{\circ}}} + h_{s_{trecho reto}}$$

Para facilitar, calcularei separadamente cada perda de carga e posteriormente somarei as perdas de cargas

$$h_{s_{v\'alvula\ p\'e}} = K_s. \frac{V_1^2}{2g} = 1,75. \frac{(2,429)^2}{20} = 0,51625\ m$$

$$h_{s_{curva\,90^{\circ}}} = K_s \cdot \frac{V_1^2}{2g} = 0, 4 \cdot \frac{5.9}{20} = 0, 118 \ m$$

$$h_{s_{trecho\,reto}} = 9,0 \, m$$

Assim, ao somar os valores de perda de carga calculados acima, ficamos com a seguinte perda de carga para a sucção

$$h_{s_{sucção}} = 0,51625 \ m + 0,118 \ m + 9,0 \ m = 9,6343 \ m$$

Fazemos o mesmo procedimento para calcular a perda de carga localizada para o recalque

$$h_{s} = h_{s} + h_{s$$

Calculando separadamente as perdas de carga, obtemos

$$h_{s_{registro\ de\ gaveta}} = K_s \cdot \frac{V_2^2}{2g} = 0, 2 \cdot \frac{(1,371)^2}{20} = 0,0188\ m$$

$$h_{s_{v\'alvula\ de\ retenção}} = K_s.\frac{V_2^2}{2g} = 2, 5.0, 094 = 0, 235\ m$$

$$h_{s_{trecho \ reto}} = 5,0 \ m + 2,0 \ m + 16,0 \ m + 10,0 \ m = 33,0 \ m$$

$$h_{s_{curva\,90^{\circ}}} = K_s.\frac{V_2^2}{2g} = 0, 4.0, 094 = 0, 0376 \ m$$

$$h_{s_{saida}} = K_s \cdot \frac{V_2^2}{2g} = 1, 0.0, 094 = 0, 094 m$$

Assim, ao somarmos as perdas de carga localizadas, encontramos a perda de carga localizada no recalque

$$h_{s_{reca,que}} = 0,0188 \ m + 0,235 \ m + 33,0 \ m + 3.(0,0376) \ m + 0,094 \ m = 33,46 \ m$$

Com as velocidades podemos determinar os números de Reynolds para a sucção e para o recalque

$$R_e = V \cdot \frac{D}{v}$$

Onde υ é a velocidade cinemática e vale 1,006.10⁻⁶.

Assim,

$$Re_{sucção} = 9, 2.10^4 > 4000$$

$$Re_{recalque} = 6,9.10^4 > 4000$$

Como o Reynolds foi acima de 4000, trabalhamos com sistema turbulento.

Com Reynolds e sabendo que na sucção o tubo é liso e no recalque o tubo tem rugosidade estimada da forma $\frac{\varepsilon}{D} = 0,03$, encontramos os valores dos fatores de atrito f da sucção e do recalque.

No diagrama de Moody (f), encontramos os seguintes valores. O fator de atrito na sucção (liso) foi de 0,018 e o fator de atrito no recalque (rugoso) foi de 0,058.

Com os valores de f podemos calcular a perda de carga na sucção e no recalque, utilizando a seguinte fórmula

$$\Delta e = \frac{f.L.V^2}{2D} + h_s$$

$$\Delta e_1 = \frac{0.018.9,6343.(2,429)^2}{2.0,0381} + 9,6343$$

$$\Delta e_1 = 23,06 \frac{m^2}{s^2}$$

$$\Delta e_2 = \frac{0,058.33,46.(1,371)^2}{2.0,0508} + 33,46$$

$$\Delta e_2 = 69, 36 \frac{m^2}{s^2}$$

Somando as perdas de carga encontradas acima, temos a perda de carga total que é

$$\Delta e = \Delta e_1 + \Delta e_2$$

$$\Delta e = 23,06+69,36=92,42\frac{m^2}{s^2}$$

Finalmente, calculamos a potência da bomba da seguinte forma

$$Q_m = Q.\rho$$

$$Q_m = 0,00277 \frac{m^3}{s}.10^3 \frac{kg}{m^3} = 2,77 \frac{kg}{s}$$

$$W_b = Q_m \left[\frac{V_2^2}{2} + gz_2 + \Delta e_t \right]$$

$$W_b = 2,77. \left[\frac{(1,371)^2}{2} + 9,8.17 + 92,42 \right] = 720,1 \text{ w}$$

Assim, a potência da bomba encontrada foi de 720,1 w.

Questão 13: Qual a potência da bomba?

transformando todas as unidades para o sistema internacional:

- Diâmetro da tubulação: 50x10⁻³ metros
- Vazão: 2x10⁻³ m³/s.

Calculando as perdas de carga localizadas:

$$L_{sucção} = VP + Curva + CaminhoReto$$

$$L_{\text{sucção}} = 15 + 2 + 12$$

$$L_{\text{succão}} = 29 \text{ metros}$$

 $L_{Recalque} = CaminhoReto + 2 Curvas + VR + Saída$

$$L_{\text{Recalque}} = 30 + 4 + 20 + 3$$

$$L_{Recalque} = 57 \text{ metros}$$

Somando as duas perdas teremos:

$$\mathbf{L}_{\text{total}} = \mathbf{L}_{\text{sucção}} + \mathbf{L}_{\text{Recalque}}$$

$$L_{total} = 29 + 57$$

$$L_{total} = 86 \text{ metros}$$

Determinando a velocidade dentro da tubulação usando a equação da continuidade:

$$V = Q/A$$

$$V = 2x10^{-3}/(\pi D^2)/4$$

$$V = 2x10^{-3}/3,14 \times (50x10^{-3})^2/4$$

$$V = 1.019 \text{ m/s}$$

Para encontrar o fator de atrito primeiramente precisamos calcular o Reynolds, onde υ é a velocidade cinemática e vale $1,006 \times 10^{-6}$. Assim:

$$R_e = V \cdot \frac{D}{v}$$

$$Re = (1,019 \times 50 \times 10^{-3}) / 1,006 \times 10^{-6}$$

Re = 50646,13 regime turbulento.

Admitindo que a tubulação é feita de Ferro Fundido com rugosidade de 0,15x10⁻³m temos que a rugosidade relativa será:

$$\varepsilon_{R} = \varepsilon/D$$

$$\mathcal{E}_{R} = 0.15 \times 10^{-3} / 50 \times 10^{-3}$$

$$\varepsilon_{\rm R} = 0.003$$

Traçando uma linha vertical no número de Reynolds e uma horizontal na rugosidade relativa, determinamos que o fator de atrito é de aproximadamente 0,029.

Para encontrar as perdas totais usaremos a seguinte equação, onde f é o fator de atrito encontrado anteriormente, L o comprimento total da tubulação, D o diâmetro do tubo, v a velocidade nas áreas e g a aceleração da gravidade.

$$\Delta e = \frac{f.L.V^2}{2D} + h_s$$

$$\Delta e = \frac{0.029 \times 41 \times .(1.019)^2}{2 \times 50 \times 10^{-3}} + 86$$

$$\Delta e = 98,34 \frac{m^2}{s^2}$$

Para determinar as perdas da bomba, admitiremos que H1 + Hb = H2 + Hpt. Abrindo a equação de energia temos que:

$$Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} + H_B = Z_2 + \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Hpt$$

- P1 e P2 serão zero pois estão abertos para a atmosfera
- Z1 é zero pois é o eixo de referência
- V1 e V2 são iguais portanto se cancelarão

Assim resta:

$$Hb = Z2 + Hpt$$

$$Hb = 15 + 98,35$$

$$Hb = 113,35$$

Calculamos enfim a potência dessa bomba baseada na seguinte equação:

$$N = \gamma QHb / 75$$

- $\bullet \quad \gamma$ é o peso específico da água em kgf/m3
- Q a vazão
- Hb a perda de energia da bomba

$$N = (1000 \times 2 \times 10^{-3} \times 113,75) / 75$$

$$N = 3,03 \text{ C.V}$$