Universidade de São Paulo

Instituto de Física de São Carlos

Lista 3

Pedro Calligaris Delbem 5255417

Professor: Attilio Cucchieri

Sumário

1	The Numerov Algorithm			
	1.1	Exercí	ício 1	2
		1.1.1	Resolução Analítica	9

1 The Numerov Algorithm

1.1 Exercício 1

Tarefa: Reolver a equação de Poisson para $\hat{\phi}(r)$ definido por $\frac{\hat{\phi}(r)}{r} := \phi(r)$ onde $\phi(r)$ é o potencial eletrostático e a densidade de carga é $\rho(r) = \frac{e^{-r}}{8\pi}$, considerando simetria esférica.

Deve-se resolver das seguintes maneiras:

- Pelo algoritmo de Numerov
 - Escolhendo $\hat{\phi}(0)$ e $\hat{\phi}(\delta r)$, para $r \approx 0$
 - Escolhendo $\hat{\phi}(0)$ e $\hat{\phi}(\delta r)$, r
 muito grande (o equivalente numérico a $r \to \infty$)
- Analiticamente

Primeiro deve-se manipular a equação de Poisson de modo a obter uma equação para $\hat{\phi}(r)$

A equação de Poisson é:

$$\nabla^2 \phi(r) = -4\pi \rho(r)$$

Sabemos que ∇^2 em coordenadas esféricas é:

$$\nabla^2 = \frac{1}{r^2} \left(\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right)$$

Pela simetria radial reduzimos para:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right)$$

Substituimos $\frac{\hat{\phi}(r)}{r} := \phi(r)$:

$$\nabla^2 \phi(r) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \left(\frac{\hat{\phi}(r)}{r} \right) \right)$$

Aplicando as derivadas:

$$\nabla^2 \phi(r) = \frac{1}{r} \frac{\partial^2}{\partial r^2} \hat{\phi}(r)$$

Substituindo na equação de Poisson:

$$\frac{1}{r}\frac{d^2\hat{\phi}(r)}{dr^2} = -4\pi\rho(r) = -\frac{e^{-r}}{2}$$

Assim, obtemos:

$$\frac{d^2\hat{\phi}(r)}{dr^2} = -\frac{re^{-r}}{2}$$

1.1.1 Resolução Analítica

Integrando a equação, com relação ao r duas vezes, obtemos:

$$\hat{\phi}(r) = e^{-r} \left(1 + \frac{r}{2} \right) + C_1 r + C_2$$

Toma-se $\hat{\phi}(0) = -1$ e $\hat{\phi}(\infty) = 0$, obtemos:

$$C_1 = 0$$
 e $C_2 = 0$

E deste modo a solução analítica é:

$$\hat{\phi}(r) = e^{-r} \left(1 + \frac{r}{2} \right)$$