```
In [21]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import sklearn.datasets
         from sklearn.model_selection import train_test_split
         from xgboost import XGBRegressor
         from sklearn import metrics
In [10]: house_price_dataset=pd.read_csv("Boston Housing.csv")
In [11]: print(house_price_dataset)
                 crim
                             indus
                                    chas
                                            nox
                                                         age
                                                                 dis
                                                                     rad
                                                                          tax
                                                                               \
                         zn
                                                    rm
         0
              0.00632 18.0
                              2.31
                                       0
                                         0.538
                                                6.575
                                                        65.2
                                                             4.0900
                                                                       1
                                                                           296
                                                             4.9671
                              7.07
         1
              0.02731
                        0.0
                                       0 0.469 6.421
                                                      78.9
                                                                        2
                                                                          242
                                         0.469 7.185
                              7.07
                                       0
         2
              0.02729
                        0.0
                                                        61.1 4.9671
                                                                        2
                                                                          242
         3
              0.03237
                        0.0
                              2.18
                                       0
                                          0.458 6.998
                                                      45.8 6.0622
                                                                        3
                                                                          222
         4
              0.06905
                        0.0
                              2.18
                                       0
                                          0.458
                                                7.147 54.2 6.0622
                                                                        3
                                                                          222
                        . . .
                               . . .
                                                   . . .
                                                         . . .
         501 0.06263
                        0.0
                             11.93
                                          0.573
                                                 6.593
                                                        69.1
                                                              2.4786
                                                                          273
                                       0
                                                                       1
              0.04527
                        0.0 11.93
         502
                                       0 0.573
                                                6.120
                                                       76.7
                                                             2.2875
                                                                       1 273
         503
              0.06076
                        0.0 11.93
                                       0 0.573
                                                6.976 91.0 2.1675
                                                                          273
                                                                       1
         504 0.10959
                        0.0 11.93
                                       0 0.573 6.794 89.3 2.3889
                                                                          273
                                                                       1
         505 0.04741
                        0.0 11.93
                                       0
                                          0.573 6.030
                                                       80.8 2.5050
                                                                          273
                                                                        1
              ptratio
                            b
                               lstat
                                      medv
         0
                 15.3
                       396.90
                                4.98
                                      24.0
         1
                 17.8
                       396.90
                                9.14
                                      21.6
         2
                 17.8
                       392.83
                                4.03
                                      34.7
         3
                 18.7
                       394.63
                                2.94
                                      33.4
         4
                 18.7
                       396.90
                                5.33
                                      36.2
         501
                 21.0 391.99
                                9.67
                                      22.4
         502
                 21.0 396.90
                                9.08
                                      20.6
         503
                 21.0 396.90
                                5.64
                                     23.9
         504
                 21.0 393.45
                                6.48
                                     22.0
         505
                 21.0 396.90
                                7.88 11.9
         [506 rows x 14 columns]
In [15]: house_price_dataset.rename(columns={"medv":"price"},inplace=True)
```

```
In [16]: print(house_price_dataset)
                         zn indus chas
                  crim
                                             nox
                                                     rm
                                                          age
                                                                   dis
                                                                       rad
                                                                            tax
              0.00632 18.0
                              2.31
                                        0
                                           0.538
                                                 6.575
                                                         65.2
                                                               4.0900
                                                                         1
                                                                            296
         1
              0.02731
                        0.0
                              7.07
                                           0.469
                                                 6.421
                                                        78.9
                                                               4.9671
                                                                             242
              0.02729
                        0.0
                              7.07
                                           0.469
                                                 7.185
                                                               4.9671
                                                                             242
         2
                                                         61.1
                                                                          2
         3
              0.03237
                        0.0
                              2.18
                                        0
                                           0.458
                                                 6.998 45.8
                                                               6.0622
                                                                          3
                                                                            222
         4
              0.06905
                        0.0
                              2.18
                                        0
                                           0.458
                                                  7.147
                                                         54.2
                                                               6.0622
                                                                          3
                                                                            222
                         . . .
                                . . .
                                             . . .
                                                    . . .
                                                          . . .
                                                                             . . .
         501
              0.06263
                        0.0
                             11.93
                                       0
                                           0.573
                                                  6.593
                                                         69.1
                                                               2.4786
                                                                         1
                                                                            273
         502
              0.04527
                        0.0
                             11.93
                                        0
                                           0.573
                                                  6.120
                                                         76.7
                                                               2.2875
                                                                         1
                                                                            273
         503
              0.06076
                        0.0
                             11.93
                                        0
                                           0.573
                                                  6.976
                                                         91.0
                                                               2.1675
                                                                          1
                                                                            273
         504
              0.10959
                        0.0
                             11.93
                                        0
                                           0.573
                                                  6.794
                                                         89.3
                                                               2.3889
                                                                          1
                                                                            273
         505
              0.04741
                        0.0 11.93
                                           0.573 6.030 80.8 2.5050
                                                                          1 273
              ptratio
                             b lstat
                                       price
         0
                 15.3 396.90
                                 4.98
                                        24.0
                 17.8 396.90
                                        21.6
         1
                                 9.14
         2
                 17.8 392.83
                                 4.03
                                        34.7
         3
                 18.7
                       394.63
                                 2.94
                                        33.4
         4
                 18.7
                       396.90
                                 5.33
                                        36.2
                  . . .
                                 . . .
                 21.0 391.99
         501
                                 9.67
                                        22.4
         502
                 21.0 396.90
                                 9.08
                                        20.6
         503
                 21.0 396.90
                                        23.9
                                 5.64
                                        22.0
         504
                  21.0 393.45
                                 6.48
         505
                 21.0 396.90
                                 7.88
                                        11.9
         [506 rows x 14 columns]
In [17]: house_price_dataset.shape
Out[17]: (506, 14)
In [18]: house_price_dataset.describe()
Out[18]:
```

m	zn	indus	chas	nox	rm	age	dis	rad	tax	ptrati
)0	506.000000	506.000000	506.000000	506.000000	501.000000	506.000000	506.000000	506.000000	506.000000	506.00000
24	11.363636	11.136779	0.069170	0.554695	6.284341	68.574901	3.795043	9.549407	408.237154	18.45553
15	23.322453	6.860353	0.253994	0.115878	0.705587	28.148861	2.105710	8.707259	168.537116	2.16494
50	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.60000
15	0.000000	5.190000	0.000000	0.449000	5.884000	45.025000	2.100175	4.000000	279.000000	17.40000
10	0.000000	9.690000	0.000000	0.538000	6.208000	77.500000	3.207450	5.000000	330.000000	19.05000
33	12.500000	18.100000	0.000000	0.624000	6.625000	94.075000	5.188425	24.000000	666.000000	20.20000
)0	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.00000
4										•

In [19]: | correlation=house_price_dataset.corr()

```
In [25]: plt.figure(figsize=(10,10))
    sns.heatmap(correlation,cbar=True,square=True,fmt=".1f",annot=True,annot_kws={"size":8},cmap="Red
```

Out[25]: <Axes: >


```
In [28]: x=house_price_dataset.drop(["price"],axis=1)
y=house_price_dataset["price"]
```

```
In [29]:
         print(x)
         print(y)
                 crim
                          zn indus chas
                                             nox
                                                     rm
                                                          age
                                                                  dis rad
                                                                            tax
              0.00632 18.0
                              2.31
                                       0 0.538
                                                 6.575 65.2 4.0900
                                                                            296
         1
              0.02731
                        0.0
                              7.07
                                        0
                                           0.469
                                                 6.421 78.9
                                                               4.9671
                                                                         2
                                                                            242
         2
              0.02729
                        0.0
                              7.07
                                           0.469
                                                 7.185 61.1 4.9671
                                                                         2
                                                                            242
                                        0
         3
              0.03237
                        0.0
                              2.18
                                           0.458
                                                 6.998 45.8
                                                               6.0622
                                                                         3
                                                                            222
                                       0
         4
              0.06905
                        0.0
                              2.18
                                        0
                                           0.458
                                                 7.147
                                                         54.2
                                                               6.0622
                                                                         3
                                                                            222
                                . . .
                         . . .
                                                    . . .
                                                          . . .
         501
              0.06263
                        0.0
                             11.93
                                       0
                                           0.573
                                                  6.593
                                                         69.1
                                                               2.4786
                                                                         1
                                                                            273
         502
              0.04527
                        0.0
                             11.93
                                       0
                                           0.573
                                                  6.120
                                                         76.7
                                                               2.2875
                                                                         1
                                                                            273
         503
              0.06076
                        0.0
                             11.93
                                       0
                                           0.573
                                                  6.976
                                                         91.0
                                                               2.1675
                                                                         1
                                                                            273
         504
              0.10959
                        0.0
                             11.93
                                       0
                                           0.573
                                                 6.794
                                                         89.3
                                                               2.3889
                                                                         1
                                                                            273
         505 0.04741
                        0.0 11.93
                                        0 0.573 6.030
                                                         80.8 2.5050
                                                                         1 273
              ptratio
                            b 1stat
                 15.3 396.90
         0
                                4.98
                 17.8 396.90
         1
                                9.14
         2
                 17.8 392.83
                                4.03
         3
                 18.7 394.63
                                2.94
                 18.7 396.90
                                 5.33
                  . . .
                           . . .
                                 . . .
                 21.0 391.99
         501
                                9.67
         502
                 21.0 396.90
                                9.08
         503
                 21.0 396.90
                                 5.64
         504
                 21.0 393.45
                                 6.48
         505
                 21.0 396.90
                                 7.88
         [506 rows x 13 columns]
         0
                24.0
         1
                21.6
         2
                34.7
         3
                33.4
         4
                36.2
         501
                22.4
         502
                20.6
         503
                23.9
         504
                22.0
         505
                11.9
         Name: price, Length: 506, dtype: float64
In [31]:
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=2)
In [32]:
         model=XGBRegressor()
In [33]: model.fit(x_train,y_train)
Out[33]:
                                            XGBRegressor
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample bytree=None, device=None, early stopping rounds=None,
                       enable categorical=False, eval metric=None, feature types=None,
                       gamma=None, grow_policy=None, importance_type=None,
                       interaction_constraints=None, learning_rate=None, max_bin=None,
                       max_cat_threshold=None, max_cat_to_onehot=None,
                       max_delta_step=None, max_depth=None, max_leaves=None,
                       min_child_weight=None, mis$ing=nan, monotone_constraints=None,
                       multi_strategy=None, n_estimators=None, n_jobs=None,
                       num_parallel_tree=None, random_state=None, ...)
```

In [34]: training_data_prediction=model.predict(x_train)

In [35]: print(training_data_prediction)

[23.098213	20.999493	20.100712	34.69146	13.908512	13.499188
22.005543	15.206342	10.8988695	22.677683	13.802292	5.5992246
29.79903	50.000896	34.881298	20.619646	23.372395	19.202538
32.697285	19.604185	26.987984	8.400937	45.993626	21.712433
27.08105	19.349197	19.29314	24.7933	22.61487	31.693779
18.539114	8.702092	17.40409	23.699408	13.297645	10.494993
12.669688	25.000593	19.698307	14.9110775	24.21232	25.000761
14.900763	17.013046	15.597457	12.68823	24.503881	14.999328
49.99955	17.532228	21.199259	32.010696	15.601823	22.893911
19.322012	18.73874	23.292349	37.210262	30.105167	33.121197
20.999691	49.985893	13.400765	5.009729	16.502712	8.40547
28.691751	19.494135	20.596006	45.400337	39.80286	33.40684
19.829916	33.40482	25.281872	49.998436	12.519731	17.429428
18.605316	22.591347	50.00362	23.805405	23.30907	23.092073
41.70726	16.111097	31.623669	36.082043	6.9961967	20.400877
19.989061	11.98513	25.046114	49.968384	37.89933	23.098452
41.309887	17.590723	16.296797	30.049692	22.863256	19.800455
17.10464	18.901573	18.911537	22.599606	23.177149	33.20601
14.998805	11.705264	18.802998	20.812239	17.996387	19.630117
49.998535	17.201649	16.404898	17.50357	14.599329	33.103542
14.500418	43.812004	34.903797	20.394728 6.304934	14.62216	8.093705 13.07154
11.792478	11.815979	18.68806		23.985	
19.601086	49.98379	22.312391	18.926582 15.699518	31.205538	20.703587
32.201614 16.1949	36.17072	14.194604	31.607615	49.991993 12.266604	20.413244
	13.396754	49.992847	10.199806		19.208345 23.701332
29.793688 22.00898	31.506674 13.798573	22.800661 28.402477	33.16191	24.09686 13.103114	19.000732
	36.977833	30.79909	22.790192	10.204003	22.203903
26.61407 24.473537	36.195976	23.099493	20.124691	19.486431	10.798922
22.708363	19.520206	20.105482	9.618499	42.799683	48.787125
13.107633	20.297323	24.777777	14.100037	21.696146	22.159771
33.000343	21.096354	24.77777	19.10297	32.395473	13.60095
15.076382	23.065681	27.493874	19.400146	26.486158	27.50132
28.696423	21.219297	18.703724	26.69608	14.009387	21.687016
18.36929	43.097454	29.084362	20.295773	23.70212	18.305271
17.203133	18.31718	24.379559	26.407068	19.093657	13.302053
22.151814	22.193771	8.535822	18.900906	21.794275	19.301249
18.198235	7.5031695	22.39194	20.005772	14.405179	22.504189
28.496006	21.609188	13.797945	20.4931	21.902758	23.101397
49.996716	16.235315	30.304276	50.010593	17.784084	19.066183
10.402657	20.361696	16.504766	17.198158	16.73516	19.542725
30.511305	29.022295	19.556704	23.16179	24.410498	9.503701
23.889511	49.992424	21.190037	22.59402	20.004858	13.400503
19.992882	17.11022	12.705852	23.011364	15.190408	20.60995
26.204994	18.10329	24.090755	14.101646	21.70381	20.07812
24.99523	27.912807	22.92296	18.506147	22.195614	23.998285
14.794136	19.883074	24.399878	17.789375	24.592009	32.00416
17.786402	23.310347	16.102678	13.006888	11.000934	24.287457
15.598231	35.21383	19.607826	42.306316	8.799025	24.411901
14.106117	15.4000225	17.29131	22.142748	23.090525	44.821854
17.797606	31.496786	22.788765	16.812382	23.909449	12.09243
38.696747	21.405613	15.998646	23.922968	11.903084	24.975605
7.2051916	24.70098	18.194902	22.4938	23.03588	24.301077
17.096863	17.798708	13.505205	27.100895	13.301572	21.899876
20.003866	15.368651	16.601213	22.29691	24.686428	21.391602
22.885778	29.599918	21.8974	19.871151	29.603804	23.415052
13.800514	24.492027	11.905178	7.2101088	20.497765	9.713653
48.292183	25.205778	11.696702	17.40583	14.498054	28.578287
19.38771	22.479158	7.028048	20.606165	22.99739	19.711414
23.702559	25.042511	27.972979	13.398359	14.5203905	20.295069
19.307014	24.094303	14.902324	26.38988	33.303482	23.635433
24.600914	18.504745	20.897694	10.403686	23.30222	13.105769
24.69939	22.596542	20.494177	16.816057	10.196415	33.827606
18.601995	49.997982	23.782066	23.89807	21.177568	18.80857
8.506363	21.496952	23.213255	21.040653	16.612797	28.085756
21.204151	28.38265	14.288944	50.006256	30.999334	25.007833

```
21.433289 19.00253 28.993366 15.21607 22.79087 21.794004
19.900063 23.777464 ]
```

```
In [36]: score_1=metrics.r2_score(y_train,training_data_prediction)
    score_2=metrics.mean_absolute_error(y_train,training_data_prediction)
    print("R squared error",score_1)
    print("mean absolute error",score_2)
```

R squared error 0.9999974930039426 mean absolute error 0.0099853890957219

```
In [37]: | test_data_prediction=model.predict(x_test)
```

```
In [38]: score_1=metrics.r2_score(y_test,test_data_prediction)
    score_2=metrics.mean_absolute_error(y_test,test_data_prediction)
    print("R squared error",score_1)
    print("mean absolute error",score_2)
```

R squared error 0.9156404620793328 mean absolute error 1.9900942007700595

```
In [39]: plt.scatter(y_train,training_data_prediction)
   plt.xlabel("Actual Prices")
   plt.ylabel("predicted price")
   plt.title("Actual price VS predicted price")
   plt.show()
```



```
In [ ]:

In [ ]:
```