

Opportunistic Synthesis in Reactive Games under Information Asymmetry

Abhishek N. Kulkarni

PhD Qualifying Exam Presentation

Advisor: Prof. Jie Fu

Committee: Prof. Carlo Pinciroli, Mitchell Colby

Presentation Outline

I. Research Interest:

Reactive Synthesis (Formal Methods in Robotics)

II. Research Direction:

Opportunistic Synthesis

III. Future Directions:

Generalization of Opportunistic Synthesis

Control and Intelligent Robotics Lab (CIRL)

Section I: Reactive Synthesis

- What is reactive synthesis?
- What questions the state-of-the-art answers?
- Challenges in reactive synthesis?

Reactive Synthesis: Intuition

Reactive System

Interaction between a robot (P1) and its **dynamic** and **uncontrollable** environment (P2).

Control and Intelligent Robotics Lab (CIRL)

Reactive Synthesis

Automatic synthesis of strategy for P1, guaranteed to satisfy given **logical specification**.

Strategic Applications

Human-Robot Interactions

Cyber-Security

Multi-Robot Mission Planning

Computer Game AI

From: https://images.app.goo.gl/brSycsnaE5eVLhu29

State-of-the-Art

Given a model of interaction between robot and its environment, what strategy should robot play to ensure satisfaction of its objectives.

Solution Pipeline of Reactive Synthesis

Toy Example

Robot (P1)

Environment (P2)

 φ_1 : P1's objective known to P2

 φ_2 : P1's objective NOT known to P2

Transition System

A deterministic turn-based transition system TS is defined as

$$TS = \langle V, Act, T, v_0, AP, L \rangle$$

Solution Pipeline of Reactive Synthesis

Atomic Propositions

- *p*: P1 at A
- $q: d(P1, P2) \ge 3$

Linear Temporal Logic

Linear Temporal Logic (LTL):

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \bigcirc \varphi \mid \varphi \ \mathcal{U}\varphi$$

$$\Diamond \varphi = \top \ \mathcal{U}\varphi$$

$$\Box \varphi = \neg \Diamond \neg \varphi$$

Solution Pipeline of Reactive Synthesis

Examples:

- $\Diamond p$: Eventually atomic proposition p is true.
- $\Box p$: Always atomic proposition p is true.
- $\Diamond(p \land \Diamond q)$: Eventually p will be true and then q will be true.

Control and Intelligent Robotics Lab (CIRL)

Atomic Propositions

- *p*: P1 at A
- $q: d(P1, P2) \ge 3$

Game with Symmetric Information

Given TS and LTL objective φ , a deterministic turn-based game is defined as

$$\mathcal{G} = \langle S, Act, \Delta, s_0, F, Acc \rangle$$

Solution Pipeline of Reactive Synthesis

Atomic Propositions

- p: P1 at A
- q: d(P1, P2) > 3

$$\varphi = \Diamond p$$

Winning Region and Winning Strategy

• Zielonka's Recursive Algorithm

 Runs by Recursively Adding States to Winning Region of P1

Zero-Sum Games are Determined

 Partitions State-Space in at-most Two Parts

Reference:

[1] Wieslaw Zielonka, Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science, Volume 200, Issues 1–2, 1998.

Literature Survey

Reactive Games with Complete Information

- Buchi and Landweber (1969): Equivalence of Synthesis Problem with Zero-Sum Games
- Zielonka (1998): Solution of Zero-Sum Turn-based Games on Graph
- L. de Alfaro, T. Henzinger(2000): Solution of Zero-sum Concurrent Games on Graph

Control and Intelligent Robotics Lab (CIRL)

Reference:

^[1] Buchi, J. R., & Landw eber, L. H. (1969). Solving Sequential Conditions by Finite-State Strategies. Transactions of the American Mathematical Society, 138, 295–311.

^[2] Wieslaw Zielonka, Infinite games on finitely coloured graphs with applications to automata on infinite trees, Theoretical Computer Science, Volume 200, Issues 1–2, 1998.

^[3] de Alfaro, Luca, and Thomas A. Henzinger. "Concurrent omega-regular games." Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No. 99CB36332). IEEE, 2000.

How do we make decisions?

Control and Intelligent Robotics Lab (CIRL)

Literature: Reactive Games with Asymmetric Information

I. Bayesian Games

- Harsanyi (1967): Bayesian Games to Model Games with Incomplete Information
 - P1 has some private information (not known to P2)
 - Type of P1 is the private information it has.
 - P2 maintains and updates belief over types: Θ
- Zhuang and Bier (2009): Secrecy and Deception at Equilibrium
- Huang and Zhu (2018): Dynamic Bayesian Games for Cyber-deception

^[1] Harsanyi, John C. "Games with incomplete information played by "Bayesian" players, HIII Part I. The basic model." Management science 14, no. 3 (1967): 159-182.

Control and Intelligent Robotics Lab (CIRL)

^[2] Huang, Linan, and Quanyan Zhu. "Dynamic Bayesian Games for Adversarial and Defensive Cyber Deception." arXiv preprint arXiv:1809.02013 (2018).

^[3] Jun Zhuang & Vicki M. Bier (2011) SECRECY AND DECEPTION AT EQUILIBRIUM. WITH APPLICATIONS TO ANTI-TERRORISM RESOURCE ALLOCATION, Defence and Peace Economics, 22:1, 43-61

Literature: Reactive Games with Asymmetric Information

II. Hypergames

- Bennett (1977): Hypergames as Game of Games
 - Discussed in next section
- Gharesifard (2011, 12): Exploration and Evolution of Misperceptions in Hypergames
- Nicholas Kovach (2016): Temporal Framework of Games
- Ehab Al-Shaer et al. (2019): Modeling and Analysis of Normal-form Deception Games

Control and Intelligent Robotics Lab (CIRL)

Reference:

^[1] Al-Shaer E., Wei J., Hamlen K.W., Wang C. (2019) Modeling and Analysis of Deception Games Based on Hypergame Theory. In: Al-Shaer E., Wei J., Hamlen K., Wang C. (eds) Autonomous Cyber Deception. Springer, Cham [2] PG Bennett, Toward a theory of hypergames, Omega, Volume 5, Issue 6, 1977, Pages 749-751.

^[3] Gharesifard, B., & Cortes, J. (2011). Exploration of misperceptions in hypergames. 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 1565–1570.

^[4] Gharesifard, B., & Cortés, J. (2012). Evolution of players' misperceptions in hypergames under perfect observations. *IEEE Transactions on Automatic Control*, 57(7), 1627–1640.

^[5] Kovach, Nicholas S.. "A Temporal Framew ork For Hypergame Analysis Of Cyber Physical Systems In Contested Environments." (2016).

Section II: Opportunistic Synthesis

- What is opportunistic synthesis?
- How to identify, and represent the opportunities?
- How to synthesize an opportunistic strategy?
- Is opportunistic synthesis better than reactive synthesis?

Idea behind Opportunistic Synthesis

Reactive Synthesis

- P2 is Adversary
- P2 has Complete Information

Opportunistic Synthesis

- P2 is an Adversary
- P2 has Partial Information about P1's Objective

Problem Statement

Given φ and ψ such that

$$\varphi = \varphi_1 \wedge \varphi_2$$
$$\psi = \varphi_1$$

Problem:

Synthesize an *opportunistic* strategy $\pi: S \to Act$ for P1, which guarantees that P1 will satisfy φ with probability one.

Control and Intelligent Robotics Lab (CIRL)

What do we expect?

- Strategy π is better than the strategy computed by reactive synthesis!
 - How do we decide if one strategy is better than other?
- P1 should be able to leverage <u>Information Asymmetry</u>
 - Try to satisfy $\varphi = \varphi_1 \wedge \varphi_2$, if possible.
 - If not, try to satisfy φ_2 , which is not known to P2.
- Computational cost of new algorithm should be comparable to, if not better than, reactive synthesis.

Control and Intelligent Robotics Lab (CIRL)

Hypergame, not Game!

• A Zero-sum Hypergame is Game of Zero-sum Games

$$\mathcal{H} = \langle \mathcal{G}_1, \mathcal{G}_2 \rangle$$

Reactive Synthesis

Opportunistic Synthesis

Hypergame Model with Information Asymmetry

Level-1 Hypergame

$$\mathcal{H}^1 = \langle \mathcal{G}_1, \mathcal{G}_2 \rangle$$

- P2 perceives P1's objective as ψ
- P2 uses strategy to satisfy $\neg \psi$
- P1 uses strategy to satisfy φ

Level-2 Hypergame

$$\mathcal{H}^2 = \langle \mathcal{H}^1, \mathcal{G}_2 \rangle$$

- P2 perceives P1's objective as ψ
- P2 uses strategy to satisfy $\neg \psi$
- P1 knows P2 misperceives φ as ψ and uses this information

Hypergame Transition System

Given a second-level hypergame; $\mathcal{H}^2 = \langle \langle \mathcal{G}_1, \mathcal{G}_2 \rangle, \mathcal{G}_2 \rangle$, P1 computes strategy by solving $\mathcal{H}^1 = \langle \mathcal{G}_1, \mathcal{G}_2 \rangle$.

Then, the deterministic turn-based hypergame transition system is defined as

$$\mathcal{H} = \langle S, Act, \Delta, s_0, \mathcal{F}, Acc \rangle$$

where

- S, Act, Δ , s_0 , Acc have same definitions as that for game (See <u>slide on games</u>)
- $\mathcal{F} = (F_1, F_2, F_{12})$ is a collection of set of final states such that
 - F_1 is set of states corresponding to satisfying φ_1
 - F_2 is set of states corresponding to satisfying φ_2
 - F_{12} is set of states corresponding to satisfying both φ_1 and φ_2 .

Solution of Hypergame

 $G(\varphi_1)$: P1's task is φ_1

P2 knows φ_1

 $G(\varphi_2)$: P1's task is φ_2

P2 does NOT know φ_1

 $G(\varphi)$: P1's task is φ

Characterization of Hypergame State-Space

Win-Label (L, W, L) means that

- P1 is Losing in $\mathcal{G}(\varphi_1)$
- P1 is Winning in $G(\varphi_2)$
- P1 is Losing in $G(\varphi)$

Solution of Hypergame

Observations

- (W, L, L): P1 has a winning-strategy to satisfy φ_1 .
- (L, W, L): P1 has a winning-strategy to satisfy φ_2 .
- (W, W, W): P1 has a winning-strategy to satisfy φ .
- (W, W, L): P1 has winning-strategy to satisfy φ_1 OR φ_2 , but not both simultaneously.
- (L, L, L): P2 has a winning-strategy to stop P1 from satisfying φ .

Hypergame Markov Decision Process (MDP)

Assumption:

P2 plays a randomized permissive strategy.

Given hypergame \mathcal{H} and P2's strategy σ , a Hypergame-MDP is defined as

$$\mathcal{H}^{\sigma} = \langle S, Act \cup \{\text{stop}\}, P, s_0, R \rangle$$

where

- "stop" is an additional special action that is chosen by P1, when P1 decides to switch to winning strategy in particular sub-game.
- $P: S_1 \times Act_1 \to \mathcal{D}(S_1)$ is a probability transition function.
 - P1 is constructed by marginalizing out P2's strategy σ .
- R is the reward function defined based on satisfaction of φ_1 , φ_2 or φ .

Reward Function and Stop Action

Reward Function:

$$R = R_1 + R_2$$

- Case (W, W, L)
 - P1 may wait until it enters (W, W, W)
 - Or execute *STOP* action
 - \circ To settle with reward R_1 satisfying φ_1
 - o Or settle with reward R_2 satisfying φ_2

Toy Example

$$\varphi = (\neg O \ \mathcal{U} \ A) \land (\neg O \ \mathcal{U} \ B)$$

$$\varphi_1 \qquad \varphi_2$$

Toy Example

Partition	Number of States
(W, W, W)	1831
(W, W, L)	181
(W, L, L)	479
(L, W, L)	515
(L, L, L)	194
(W, L, W)	0
(L, W, W)	0
(L, L, W)	0

Table 1: Partition of game state-space due to information asymmetry.

A sampled run from (W, L, L) to (W, W, W) from the optimal policy:

- 1. State: (((0,2),(4,2),0),1,1), win-label: (W,L,L)
- 2. State: (((0,3),(3,2),0),0,1), win-label: (W,L,L)
- 3. State: (((1,2),(2,2),0),0,1), win-label: (W,W,W)

Key Results

Result 1:

Opportunistic synthesis may provide a winning strategy for robot from its sure-losing states in reactive game.

Result 2:

Opportunistic synthesis computes a strategy to satisfy φ , φ_1 and φ_2 in order of preference given by the reward function.

Result 3:

Time-complexity of opportunistic synthesis is same as that of reactive synthesis.

Conclusions and Future Work

Opportunistic Synthesis: A Fundamental Problem

- Modelled opportunistic synthesis as a hypergame.
- Reduced the decision problem in hypergame to that of solving an MDP.
- Solution has same complexity as that of reactive synthesis.

Opportunistic and Deceptive Synthesis under

- Misperception of Actions
- Misperception of Labeling Function
- Different models of P2's Intelligence

