Geometric Dimensioning & Tolerancing (GDT/GD&T)

- A means of defining parts and features more efficiently, taking into consideration how they function and fit with other parts.
- It involves the use a universally accepted graphic language, as published in national and international standards, it improves communication, product design, and quality.
- ➤GD&T is used to convey in a brief and precise manner complete geometrical requirements on engineering drawings.
- ➤ A popular GD&T standard is the ASME Y14.5.
- ➤GD&T has an advantage of significantly reducing the need for notes on drawings, whiles creating manufacturing and inspection definitions with a minimum of confusion and misinterpretation, among others pros.

Geometric Dimensioning & Tolerancing (GDT/GD&T)

Some Geometric Tolerancing Symbols

Type of tolerance	Characteristics to be toleranced	Symbol	Datum needed	Applications
Form	Straightness		No	A straight line. The edge or axis of a feature.
	Flatness		No	A plane surface.
	Roundness		No	The periphery of a circle.Cross-section of a bore, cylinder, cone or sphere.
	Cylindricity	/\/	No	The combination of circularity, straightness and parallelism of cylindrical surfaces. Mating bores and plungers.
	Profile of a line		No	The profile of a straight or irregular line.
	Profile of a surface		No	The profile of a straight or irregular surface.

Some Geometric Tolerancing Symbols

Orientation	Parallelism	//	Yes	Parallelism of a feature related to a datum. Can control flatness when related to a datum.
	Perpendicularity		Yes	Surfaces, axes, or lines positioned at right angles to each other.
	Angularity	_	Yes	The angular displacement of surfaces, axes, or lines from a datum.
	Profile of a line		Yes	The profile of a straight or irregular line positioned by theoretical exact dimensions with respect to datum plane(s).
	Profile of a surface		Yes	The profile of a straight or irregular surface positioned by theoretical exact dimensions with respect to datum plane(s).

Some Geometric Tolerancing Symbols

Location	Position	\oplus	See note below	The deviation of a feature from a true position.
	Concentricity and coaxiality		Yes	The relationship between two circles having a common centre or two cylinders having a common axis.
	Symmetry		Yes	The symmetrical position of a feature related to a datum.
	Profile of a line		Yes	The profile of a straight or irregular line positioned by theoretical exact dimensions with respect to datum plane(s).
	Profile of a surface		Yes	The profile of a straight or irregular surface positioned by theoretical exact dimensions with respect to datum plane(s).
Runout	Circular runout	/	Yes	The position of a point fixed on a surface of a part which is rotated 360° about its datum axis.
	Total runout		Yes	The relative position of a point when traversed along a surface rotating about its datum axis.

Representing Geometric Tolerances

94

FEATURE CONTROL FRAME

COMPARTMENT VARIABLES

Reading Geometric Tolerances

Reads as: The position of the feature must be within a .003 diametrical tolerance zone at maximum material condition relative to datums A, B, and C.

Placement of Geometric Tolerances on Drawings

TOLERANCING Datums

FIRST DATUM ESTABLISHED BY THREE HIGHEST POINTS CONTACT WITH SIMULATED DATUM A

SECOND DATUM **ESTABLISHED** BY TWO HIGHEST **POINTS CONTACT WITH SIMULATED DATUM B**

PLANEA **MEASURING DIRECTIONS**

THIRD DATUM ESTABLISHED BY HIGHEST POINT CONTACT WITH SIMULATED DATUM C

DIMENSIONS

Effect of Order of Datums

Effect of Order of Datums

101

102

#103

DDEK