

NAME: MUSTAFA JAVED

ID: CSC-22S-140

COURSE: ARTIFICAL INTELLIGENCE

DEPARTMENT: COMPUTER SCIENCE

SECTION: 6-C

PROGRAM: BS(CS)

Question No 1

Supervised

Inter Active	Practical Skill	Comm Skills	Job offer
Yes	Very good	Moderate	No
No	Good	Moderate	No
No	Very good	Poor	No
Yes	Good	Moderate	No
No	Average	Poor	Yes
No	Good	Poor	No
Yes	Average	Good	No
No	Very good	Poor	Yes
No	Good	Poor	Yes
No	Very good	Poor	Yes

Entropy

Gain Overall

C1 = yes = 7, C2=No=3

We know that the formula

$$=>-\frac{3}{10}\log\log 2\left(\frac{3}{10}\right)-\frac{7}{10}\log\log 2\left(\frac{7}{10}\right)$$

=>0.88

So, It is our overall gain

Date set of Inter Active: Gain

$$\frac{3}{10} \times \left[-\frac{3}{3} \log \log 2 \left(\frac{3}{3} \right) \right] + \frac{7}{10} \times \left[-\frac{3}{7} \log \log 2 \left(\frac{3}{7} \right) - \frac{4}{7} \log \log 2 \left(\frac{4}{7} \right) \right]$$

0 + 0.69

0.69

0.88-0.69

0.18

Dataset Prac skill

$$\frac{4}{10} \times \left[-\frac{2}{4} \log \log 2 \left(\frac{2}{4} \right) - \frac{2}{4} \log \log 2 \left(\frac{2}{4} \right) \right] + \frac{4}{10} \times \left[-\frac{4}{4} \log \log 2 \left(\frac{4}{4} \right) \right] + \frac{2}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) \right] + \frac{4}{10} \left[-\frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) - \frac{1}{2} \log \log 2 \right] + \frac{1}{2} \log \log 2 \left(\frac{1}{2} \right) +$$

0.6

0.88-0.6

0.28

Dataset Comman skill

$$\frac{6}{10} \times \left[-\frac{3}{6} \log \log 2 \left(\frac{3}{6} \right) - \frac{3}{6} \log \log 2 \left(\frac{3}{6} \right) \right] + \frac{3}{10} \times \left[-\frac{3}{3} \log \log 2 \left(\frac{3}{3} \right) \right] + \frac{1}{10} \left[-\frac{1}{1} \log \log 2 \left(\frac{1}{1} \right) \right]$$

0.6

0.88-0.6

0.28

Gains:

Inter Active: 0.18

Prac skill:0.6

Comm skill:0.6

Yes No

Inter Active	Prac Skills	Job offer
No	Very Good	No
No	Average	Yes
No	Good	No

No	Very Good	Yes
No	Good	No
No	Very Good	Yes

Gain overall

$$-\frac{3}{6}\log\log 2\left(\frac{3}{6}\right) - \frac{3}{6}\log\log 2\left(\frac{3}{6}\right)$$

1

Gain Inter Active

$$\frac{6}{6} \left[-\frac{3}{6} \log \log 2 \left(\frac{3}{6} \right) - \frac{3}{6} \log \log 2 \left(\frac{3}{6} \right) \right]$$

1

1-1

0

Gain Prac skill

$$\frac{3}{6}\left[-\frac{1}{3}\log\log 2\left(\frac{1}{3}\right)-\frac{2}{3}\log\log 2\left(\frac{2}{3}\right)\right]+\frac{2}{6}\times\left[-\frac{2}{2}\log\log 2\left(\frac{2}{2}\right)\right]+\frac{1}{6}\times\left[-\frac{1}{1}\log\log 2\left(\frac{1}{1}\right)\right]$$

0.46

1-0.46

0.54

Prac skill has highest gain

Inter Active	Job Offer
No	No
No	Yes
No	Yes

Gain overall

$$\frac{2}{3} \times \left[-\frac{2}{3} \log \log 2 \left(\frac{2}{3} \right) - \frac{1}{3} \log \log 2 \left(\frac{1}{3} \right) \right]$$

0.92

Gain Inter Active

$$\frac{3}{3} \times \left[-\frac{2}{3} \log \log 2 \left(\frac{2}{3} \right) - \frac{1}{3} \log \log 2 \left(\frac{1}{3} \right) \right]$$

0.92

0.92-0.92

0

The Final Graph Will be look like this

Practical skill

GINI

Job Offer 2 type Yes/No

Gini Inter Active

Gini (Yes):
$$1 - \left(\frac{0}{3}\right)^2 + \left(\frac{3}{3}\right)^2$$

=1-1=0

Gini (No):1
$$-\left(\frac{3}{7}\right)^2 + \left(\frac{4}{7}\right)^2$$

=o-4892

Gini Weighted Avg:
$$\left(\frac{3}{10}\right) \times 0 + \left(\frac{7}{10}\right) \times 0.4897$$

=0.34279

Gini Practical Skill

Gini (Very Good) =
$$1 - \left(\frac{2}{4}\right)^2 \times \left(\frac{2}{4}\right)^2$$

=0.5

Gini (Good)=
$$1 - \left(\frac{4}{4}\right)^2 \times \left(\frac{0}{4}\right)^2$$

=0

Gini (Average)=1
$$-\left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right)^2$$

=0.5
Gini (Weighted)= $\left(\frac{1}{2}\right) \times 0.5 + \left(\frac{4}{10}\right) \times 0 + \left(\frac{2}{10}\right) \times 0.5$

= 0.3

Gini Comman Skill

Gini (Poor)=
$$1 - \left(\frac{3}{6}\right)^2 + \left(\frac{3}{6}\right)^2$$

= 0.5

Gini(Moderate)=1
$$-\left(\frac{0}{3}\right)^2 + \left(\frac{3}{3}\right)^2$$

= 0

Gini(Good) =
$$1 - \left(\frac{0}{1}\right)^2 + \left(\frac{1}{1}\right)^2$$

= 0

Gini (Weighted)=
$$\left(\frac{6}{10}\right) \times 0.5 + \left(\frac{3}{10}\right) \times 0 + \left(\frac{1}{10}\right) \times 0.5$$

= 0.3

Comman Skill

Yes

No

Inter Active	Prac Skills	Job offer
No	Very Good	No
No	Average	Yes
No	Good	No
No	Very Good	Yes
No	Good	No
No	Very Good	Yes

2nd Iteration

Gini (No)=
$$1 - \left(\frac{3}{6}\right)^2 + \left(\frac{3}{6}\right)^2$$

= 0.5

Gini (Weighted) =
$$\left(\frac{3}{6}\right)^{\times} 0.5$$

= 0.5

Gini Practical Skill

Gini (Very Good) =
$$1 - \left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2$$

=0.44

Gini (Good)=1
$$-\left(\frac{0}{2}\right)^2 + \left(\frac{2}{2}\right)^2$$

Gini (Average)=1
$$-\left(\frac{1}{1}\right)^2 + \left(\frac{0}{1}\right)^2$$

=0
Gini (Weighted)= $\left(\frac{1}{6}\right) \times 0.44 + \left(\frac{2}{6}\right) \times 0 + \left(\frac{1}{6}\right) \times 0.44$

= 0.22

Prac skill has highest gain

Inter Active	Job Offer	
No	No	
No	Yes	
No	Yes	

3rd Iteration

Gini (No) =
$$1 - \left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2$$

0.44

Inter Active

The Final Graph Will be look like this

Comm skill

Question N0 2

Instance	A1	A2	A3	Classificatio
				n
1	True	Hot	High	No
2	True	Hot	High	No
3	False	Hot	High	Yes
4	False	Cool	Normal	Yes
5	False	Cool	Normal	Yes
6	True	Cool	High	No
7	True	Hot	High	No
8	True	Hot	Normal	Yes
9	False	Cool	Normal	Yes
10	False	Cool	High	Yes

Step 01: Entropy Of Entire Data

$$S\{+6,-4\} = \\ -610 \log_2 610 - 410 \log_2 410 - 610 \log_2 610 - 410 \log_2 410 \\ = 0.9709$$

Step 02: Entropy of all Attributes.

$$510*[-45log245-15log215] + 510*[-55log255] \\ = 0.3609$$

A2:

 $510*[-35\log 235 - 25\log 225] + 510[-15\log 215 - 45\log 245] \\ 510*[-35\log 235 - 25\log 225] + 510[-15\log 215 - 45\log 245] \\ 510*[-35\log 235 - 25\log 225] + 510[-15\log 215 - 45\log 245] \\ 510*[-35\log 235 - 25\log 225] + 510[-15\log 215 - 45\log 245] \\ 510*[-35\log 235 - 25\log 225] + 510[-15\log 215 - 45\log 245] \\ 510*[-35\log 235 - 25\log 225] + 510[-15\log 215 - 45\log 245] \\ 510*[-35\log 235 - 25\log 225] + 510[-15\log 215 - 45\log 245] \\ 510*[-35\log 235 - 25\log 225] + 510[-15\log 215 - 45\log 245] \\ 510*[-35\log 235 - 25\log 225] + 510[-15\log 215 - 45\log 245] \\ 510*[-35\log 235 - 25\log 225] + 510[-15\log 235 - 25\log 235] \\ 510*[-35\log 235 - 25\log 235] + 510[-15\log 235] \\ 510*[-35\log 235 - 25\log 235] + 510[-15\log 235] \\ 510*[-35\log 235 - 25\log 235] + 510[-15\log 235] \\ 510*[-35\log 235 - 25\log 235] + 510[-15\log 235] \\ 510*[-35\log 235 - 25\log 235] + 510[-15\log 235] \\ 510*[-35\log 235 - 25\log 235] + 510[-15\log 235] \\ 510*[-35\log 235 - 25\log 235] + 510[-15\log 235] \\ 510*[-35\log 235 - 25\log 235] + 510[-15\log 235] \\ 510*[-35\log 235] + 510[-15\log 235] + 510[-15\log 235] \\ 510*[-35\log 235] + 510[-15\log 235] +$

A2:

 $610*[-46\log_2 46 - 26\log_2 26] + 410[-44\log_2 44] \\ 610*-46\log_2 46 - 26\log_2 26 + 410[-44\log_2 44] \\ = 0.5509$

$$GAIN(A1) = 0.61$$

$$GAIN(A2) = 0.125$$

$$GAIN(A3) = 0.41$$

A1

/ \Yes

True False

A2	A3	Classification
Hot	High	No
Hot	High	No
Cool	High	No
Hot	High	No
Hot	Normal	Yes

Step 01: Entropy Of Entire Data.

$$S\{1,-4\} =$$

$$-45\log_245 - 15\log_215 - 45\log_245 - 15\log_215$$

$$= 0.7219$$

Step 02: Entropy of all Attributes.

$$A2=$$

 $45*[-34 \log_2 34 - 14 \log_2 14] + 15*[-11 \log_2 11] \\ 45*[-34 \log_2 34 - 14 \log_2 14] + 15*[-11 \log_2 11] \\$

$$0.6490+0 = 0.6490$$

GAIN(A2)= $0.7219-0.6490 = 0.0729$

$$A3 =$$

 $45*[14log_214]+15[11log_211]$ $45*[14log_214]+15[11log_211]$ =0.4

$$GAIN(A3) = 0.4-0.7219 = 0.3219$$

$$GAIN(A2) = 0.0729$$

$$GAIN(A3) = 0.3219$$

A3

/ \No

Hot Cool

A3	Classification
High	No
High	No

High	No
Normal	Yes

Step 01: Entropy Of Entire Data.

$$S\{1,-3\}=$$
-34log₂34-14log₂14
= 0.8112

Step 02: Entropy of all Attributes.

$$GAIN(A3) = 0.8112 - 0 = 0.8112$$

Gini Same Data

Instance	A1	A2	A3	Classificatio
				n
1	True	Hot	High	No
2	True	Hot	High	No
3	False	Hot	High	Yes
4	False	Cool	Normal	Yes
5	False	Cool	Normal	Yes
6	True	Cool	High	No
7	True	Hot	High	No
8	True	Hot	Normal	Yes
9	False	Cool	Normal	Yes
10	False	Cool	High	Yes

Gini A1:

Gini A1(true) =
$$1-(4/5)2+(15)21-(4/5)2+(15)2$$
= 0.4
Gini A1(false) =
$$1-(5/5)21-(5/5)2$$
= 0
Gini A1(weighted avg) =
$$510*0.4+510*0510*0.4+510*0$$

```
= 0.2
Gini A2:
     Gini A2(hot) =
1-(2/5)2+(35)21-(2/5)2+(35)2
= 1.2
     Gini A2(cool) =
1-(4/5)2+(15)21-(4/5)2+(15)2
= 0.4
     Gini A2(weighted avg) =
510*1.2+510*0.4510*1.2+510*0.4
= 0.8
 Gini A3:
     Gini A3(high) =
1-(4/6)2+(26)21-(4/6)2+(26)2
= 0.666
     Gini A3(normal) =
1-(44)21-(44)2
=0
     Gini A3(weighted avg) =
610*0.666+410*0610*0.666+410*0
```

= 0.399

A1

/ \yes

True false

A2	A3	Classification
Hot	High	No

Hot	High	No
Cool	High	No
Hot	High	No
Hot	Normal	Yes

Gini A2:

Gini A2(Hot) =
$$1-(35)2+(15)21-(35)2+(15)2$$
= 0.68

Gini A2(cool) =
$$1-(1/5)21-(1/5)2$$
= 0.96

Gini A2(weighted avg) =
$$45*0.68+15*0.9645*0.68+15*0.96$$
= 0.73

Gini A3:

Gini A3(hot) =
$$1-(4/5)21-(4/5)2$$
= 0.36

Gini A3(cool) =
$$1-(1/5)21-(1/5)2$$
= 0.96

Gini A3(weighted avg) =
$$45*0.36+15*0.9645*0.36+15*0.96$$
= 0.48

Hot Cool

A3	Classification
High	No
High	No
High	No
Normal	Yes

Gini A3:

Gini A3(high) =
$$1-(3/3)21-(3/3)2$$
= 0
Gini A3(normal) =
$$1-(1/1)21-(1/1)2$$
= 0
Gini A3(weighted avg) =
$$34*0+14*034*0+14*0$$
= 0

A1
/ Yes
True False

Question NO 3

Column1	Column2	Column3	Column4	Column5
Weekend	Weather	Parents	Money	Decision
W1	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Tennis
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Tennis
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

D1 = Cinema = 6, D2 = Tennis = 4

Gain (Overall): -

 $-6/10.\log 2(6/10) - 4/10.\log 2(4/10) = 0.97$

Calculate the Entropy for the "Weather"

Gain_{sunny} = Entropy=
$$-(1/3 \cdot \log 2 (1/3) + 2/3 \cdot \log 2 (2/3)) = 0.918$$

Gain_{windy} = Entropy= $-(3/4 \cdot \log 2 (3/4) + 1/4 \cdot \log 2 (1/4)) = 0.811$
Gain_{rainy} = Entropy= $-(2/3 \cdot \log 2 (2/3) + 1/3 \cdot \log 2 (1/3)) = 0.918$

Calculate the weighted for the "Weather"

 $Gain_{weighted} = 3/10*0.918+4/10*0.811+3/10*0.918 = 0.875$

Information Gain for "Weather":

IGweather = 0.97-0.875 = 0.095

Calculate the Entropy for the "Parents"

Gain_{Yes} = Entropy=
$$-(5/5 \cdot \log 2 (5/5)) = 0$$

Gain_{No} = Entropy= $-(4/5 \cdot \log 2 (4/5) + 1/5 \cdot \log 2 (1/5)) = 0.722$

Calculate the weighted for the "Parents"

$$Gain_{weighted} = 5/10*0+5/10*0.722 = 0.875 = 0.361$$

Information Gain for "Parents":

IGparents = 0.97-0.722 = 0.248

Calculate the Entropy for the "Money"

Gain_{Poor} = Entropy=
$$-(3/3 \cdot \log 2 (3/3)) = 0$$

Gain_{Rich} = Entropy= $-(3/7 \cdot \log 2 (3/7) + 4/7 \cdot \log 2 (4/7)) = 0.985$

Calculate the weighted for the "Money"

$$Gain_{weighted} = 3/10*0+7/10*0.985 = 0.689$$

Information Gain for "Money":

IGmoney = 0.97-0.689 = 0.281

Gains: -

Gain(Weather) = 0.095 Gain(Parents) = 0.248 Gain(Money) = 0.281

Hence weather attribute has the highest gain so it's a root node

Column1	Column2	Column3
Parents	Money	Decision
Yes	Rich	Cinema
No	Poor	Cinema
No	Rich	Tennis
Yes	Rich	Cinema

Column1	Column2	Column3
Parents	Money	Decision
Yes	Rich	Cinema
No	Rich	Tennis
No	Rich	Tennis
0.14		
Column1	Column2	Column3
Parents	Money	Decision
Parents	Money	Decision

For Sunny: -

Gain (Overall): -

$$-1/3.\log 2(1/3) - 2/3.\log 2(2/3) = 0.918$$

Calculate the Gain for the "Parents"

Gain_{Yes} = Entropy=
$$-(1/1 \cdot \log 2 (1/1)) = 0$$

Gain_{No} = Entropy= $-(2/2 \cdot \log 2 (2/2)) = 0$

Calculate the weighted for the "Parents"

$$Gain_{weighted} = 1/3*0+2/3*0 = 0$$

Information Gain for "Parents":

IGmoney =
$$0.918-0 = 0.918$$

Calculate the Gain for the "Money"

$$Gain_{Rich} = Entropy = -(1/3 \cdot log2 (1/3) + 2/3 \cdot log2 (2/3)) = 0.918$$

Calculate the weighted for the "Money"

Gain_{weighted} =0/3*0+3/3*0.918 = 0.918Information Gain for "Money":

IGmoney = 0.918-0.918 = 0

Hence Parents attribute has the highest gain so it's a root node

Money	Decision
Rich	Cinema

For Windy: -

Gain (Overall): -

$$-3/4.\log 2(3/) - 1/4.\log 2(1/4) = 0.811$$

Calculate the Gain for the "Parents"

Gain_{Yes} = Entropy=
$$-(2/2 \cdot \log 2 (2/2)) = 0$$

Gain_{No} = Entropy= $-(1/2 \cdot \log 2 (1/2) + (1/2 \cdot \log 2 (1/2))) = 1$

Calculate the weighted for the "Parents"

$$Gain_{weighted} = 2/4*0+2/4*1 = 0.5$$

Information Gain for "Parents":

$$IGmoney = 0.811-0.5 = 0.311$$

Calculate the Gain for the "Money"

Gain_{Rich} = Entropy=
$$-(2/3 \cdot \log 2 (2/3) + 1/3 \cdot \log 2 (1/3)) = 0.918$$

Gain_{Poor} = Entropy= $-(1/1 \cdot \log 2 (1/1)) = 0$

Calculate the weighted for the "Money"

$$Gain_{weighted} = 1/4*0+3/4*0.918 = 0.688$$

Information Gain for "Money":

$$IGmoney = 0.811-0.688 = 0.123$$

Hence Money attribute has the highest gain so it's a root node

For Rainy: -

Gain (Overall): -

 $-2/3.\log 2(2/3) - 1/3.\log 2(1/3) = 0.918$

Calculate the Gain for the "Parents"

Gain_{No} = Entropy= $-(1/1 \cdot \log 2 (1/1)) = 0$ Gain_{Yes} = Entropy= $-(2/2 \cdot \log 2 (2/2)) = 0$

Calculate the weighted for the "Parents"

 $Gain_{weighted} = 2/3*0+1/3*0 = 0$

Information Gain for "Parents":

IGmoney = 0.918-0 = 0.918

Calculate the Gain for the "Money"

Gain_{Poor} = Entropy=
$$-(1/2 \cdot \log 2 (1/2) + 1/2 \cdot \log 2 (1/2)) = 1$$

Gain_{Rich} = Entropy= $-(1/1 \cdot \log 2 (1/1)) = 0$

Calculate the weighted for the "Money"

$$Gain_{weighted} = 1/3*0+2/3*1 = 0.66$$

Information Gain for "Money":

$$IGmoney = 0.918-0.66 = 0.258$$

Hence Parents attribute has the highest gain so it's a root node

GINI: -

GINI: Weather: -

$$GINI_{sunny} = 1 - ((1/3)^2 + (2/3)^2) = 0.44$$

 $GINI_{Windy} = 1 - ((3/4)^2 + (1/4)^2) = 0.375$

$$GINI_{Rainy} = 1 - ((2/3)^2 + (1/3)^2) = 0.44$$

Weighted for the "Weather"

$$GINI_{Weighted} = 3/10 * 0.44 + 4/10 * 0.375 + 3/10 * 0.44 = 0.414$$

GINI: Parents: -

GINI_{Yes} = 1-
$$((5/5)^2+(0/5)^2)$$
 = 0
GINI_{No} = 1- $((4/5)^2+(1/5)^2)$ = 0.32

Weighted for the "Parents"

$$GINI_{Weighted} = 5/10 * 0 + 5/10 * 0.32 = 0.16$$

GINI: Money: -

$$GINI_{Rich} = 1 - ((3/7)^2 + (4/7)^2) = 0.489$$

 $GINI_{Poor} = 1 - ((3/3)^2 + (0/3)^2) = 0$

Weighted for the "Money"

$$GINI_{Weighted} = 7/10 * 0.489 + 3/10 * 0 = 0.343$$

In GINI, we take lowest attribute so Parents is a root node.

Weather	Money	Decision
Sunny	Rich	Tennis
Rainy	Rich	Tennis
Windy	Poor	Cinema
Windy	Rich	Tennis
Sunny	Rich	Tennis

In Parents (Yes) all decisions are cinema so we are not splitting it further now split Parents (No) further to calculate decision.

GINI: Weather: -

GINI_{sunny} = 1-
$$((2/2)^2+(0/2)^2)$$
 = 0
GINI_{Windy} = 1- $((1/2)^2+(1/2)^2)$ = 0.5
GINI_{Rainy} = 1- $((1/1)^2+(0/1)^2)$ = 0

Weighted for the "Weather"

$$GINI_{Weighted} = 2/5 * 0 + 2/5 * 0.5 + 1/5 * 0 = 0.2$$

GINI: Money: -

$$GINI_{Rich} = 1 - ((4/4)^2 + (0/4)^2) = 0$$

 $GINI_{Poor} = 1 - ((1/1)^2 + (0/1)^2) = 0$

Weighted for the "Money"

$$GINI_{Weighted} = 4/5 * 0 + 1/5 * 0 = 0$$

In GINI, we take lowest attribute so Money is a root node.

Rainy	Tennis
Windy	Tennis
Sunny	Tennis
Column1	Column2
Weather	Decision

Now It cannot be split more so now draw a decision tree of GINI algorithm.

The final Graph will be look like this

Unsupervised

Question NO 1

Point	Distance from Centroid 1 (2,6)	Distance from Centroid 2 (5,10)	Distance from Centroid 3 (6,11)	Assigned Cluster
A1 (2,10)	4	3	4.123106	Cluster 2
A2 (2,6)	6) 0 5		6.403124	Cluster 1
A3 (11,11)	10.29563	6.082763	5	Cluster 3
A4 (6,9)	5	1.414214	2	Cluster 2
A5 (6,4)	4.472136	6.082763	7	Cluster 1
A6 (1,2)	,2) 4.123106 8.944272		10.29563	Cluster 1
A7 (5,10)	.10) 5 0 1.414214		1.414214	Cluster 2
A8 (4,9)	3.605551	1.414214	2.828427	Cluster 2
A9 (10,12)	10	5.385165	4.123106	Cluster 3
A10 (7,5)	5.09902	5.385165	6.082763	Cluster 1
A11 (9,11)	8.602325	4.123106	3	Cluster 3
A12 (4,6)	2	4.123106	5.385165	Cluster 1
A13 (3,10)	4.123106	2	3.162278	Cluster 2
A14 (3,8)	2.236068	2.828427	4.242641	Cluster 1
A15 (6,11)	6.403124	1.414214	0	Cluster 3

Centroid 1=(2,6) is associated with cluster 1.

Centroid 2=(5,10) is associated with cluster 2.

Centroid 3=(6,11) is associated with cluster 3

In cluster 1, we have 6 points i.e. A2 (2,6), A5 (6,4), A6 (1,2), A10 (7,5), A12 (4,6), A14 (3,8). To calculate the new centroid for cluster 1, we will find the mean of the x and y coordinates of each point in the cluster. Hence, the new centroid for cluster 1 is (3.833, 5.167).

In cluster 2, we have 5 points i.e. A1 (2,10), A4 (6,9), A7 (5,10), A8 (4,9), and A13 (3,10). Hence, the new centroid for cluster 2 is (4, 9.6)

In cluster 3, we have 4 points i.e. A3 (11,11), A9 (10,12), A11 (9,11), and A15 (6,11). Hence, the new centroid for cluster 3 is (9, 11.25).

Question NO 2

Point	Distance from Centroid 1 (3.833, 5.167)	Distance from centroid 2 (4, 9.6)	Distance from centroid 3 (9, 11.25)	Assigned Cluster
A1 (2,10)	5.169	2.040	7.111	Cluster 2
A2 (2,6)	2.013	4.118	8.750	Cluster 1
АЗ (11,11)	9.241	7.139	2.016	Cluster 3
A4 (6,9)	4.403	2.088	3.750	Cluster 2
A5 (6,4)	2.461	5.946	7.846	Cluster 1
A6 (1,2)	4.249	8.171	12.230	Cluster 1
A7 (5,10)	4.972	1.077	4.191	Cluster 2
A8 (4,9)	3.837	0.600	5.483	Cluster 2
A9 (10,12)	9.204 6.462		1.250	Cluster 3
A10 (7,5)	3.171	5.492	6.562	Cluster 1
A11 (9,11)	7.792	5.192	0.250	Cluster 3
A12 (4,6)	0.850	3.600	7.250	Cluster 1
A13 (3,10)	4.904	1.077	6.129	Cluster 2
A14 (3,8)	2.953	1.887	6.824	Cluster 2
A15 (6,11)	6.223	2.441	3.010	Cluster 2

In cluster 1, we have 5 points i.e. A2 (2,6), A5 (6,4), A6 (1,2), A10 (7,5), and A12 (4,6). To calculate the new centroid for cluster 1, we will find the mean of the x and y coordinates of each point in the cluster. Hence, the new centroid for cluster 1 is (4, 4.6).

In cluster 2, we have 7 points i.e. A1 (2,10), A4 (6,9), A7 (5,10), A8 (4,9), A13 (3,10), A14 (3,8), and A15 (6,11). Hence, the new centroid for cluster 2 is (4.143, 9.571)

In cluster 3, we have 3 points i.e. A3 (11,11), A9 (10,12), and A11 (9,11). Hence, the new centroid for cluster 3 is (10, 11.333).

Point Distance from Centroid 1 (4, 4.6)		Distance from centroid 2 (4.143, 9.571)	d 2 Distance from centroid 3 (10 11.333)	
A1 (2,10)	5.758	2.186	8.110	Cluster 2
A2 (2,6)	2.441	4.165	9.615	Cluster 1
АЗ (11,11)	9.485	7.004	1.054	Cluster 3
A4 (6,9)	4.833	1.943	4.631	Cluster 2
A5 (6,4)	2.088	5.872	8.353	Cluster 1
A6 (1,2)	3.970	8.197	12.966	Cluster 1
A7 (5,10)	5.492	0.958	5.175	Cluster 2
A8 (4,9)	4.400	0.589	6.438	Cluster 2
A9 (10,12)	9.527	6.341	0.667	Cluster 3
A10 (7,5)	3.027	5.390	7.008	Cluster 1
A11 (9,11) 8.122		5.063	1.054	Cluster 3
A12 (4,6)	1.400	3.574	8.028	Cluster 1
A13 (3,10)	5.492	1.221	7.126	Cluster 2
A14 (3,8)	3.544	1.943	7.753	Cluster 2
A15 (6,11)	6.705	2.343	4.014	Cluster 2

In cluster 1, we have 5 points i.e. A2 (2,6), A5 (6,4), A6 (1,2), A10 (7,5), and A12 (4,6). To calculate the new centroid for cluster 1, we will find the mean of the x and y coordinates of each point in the cluster. Hence, the new centroid for cluster 1 is (4, 4.6).

In cluster 2, we have 7 points i.e. A1 (2,10), A4 (6,9), A7 (5,10), A8 (4,9), A13 (3,10), A14 (3,8), and A15 (6,11). Hence, the new centroid for cluster 2 is (4.143, 9.571)

In cluster 3, we have 3 points i.e. A3 (11,11), A9 (10,12), and A11 (9,11). Hence, the new centroid for cluster 3 is (10, 11.333).

Park

K-Mean Algorithm:

1st Data set:

A,(2,10), A2 (2,5), A3 (4,8) B.(3,1), B2 (2,6), B3 (6,4) CI(1,2), C2 (4,4).

	Section 2					cluster	
	Pata	points	D's	tance	Christer		cluster (ne
			2/10	311	1 2		Diplomatical designation of the second
A	9,	10	D	9.2	4.9	1	
AL	2	5	8.6	4.8	4.8	2	
A ₃	4	8	4.8	6.4	9.86		
BI	3	1	9.6	0	2-2	2	
B2.	2	6	8	5.4	8.9	. 2	
B3	6	14	7.2	4-2	6.8	2	
9	1	12	9.9	3.3	0	3	150. b
Cı	4	9	2.6	8.5	9.85		
						AND DESCRIPTION OF THE PERSON NAMED IN COLUMN	The second secon

New so centroid.

8 = (2+3+2+6/4, 5+1+6+4/4) (3-28,4) (= (1,2)

		-					
					D	ate	
Data p A1 2 A2 2 A3 4 B1 3 B2 2 B3 6 C1 1 C2 4	oints 10 10 5 8 1 6 4 2 9	3.33 9 5.1 7.9 3.4 9.6 7.2 6.3 9.3	Distance 3.25 4 9.5 9.5 9.5 4.00 5.15 4.6	9.9 4.8 8.6 3.3 5.3	clustur	Nev 1 2 1 3 2 2 2 3	cluster
New centroid $A = (2+4+4 3 , 10+8+9/3)$ $A = (33,9) $							
P	ata pr	ont	13. Dist	ance 3.3 5	2 1.5 9.8	(S)1 Cluster	New Clarker
AL AS	2 4 3	5 8	7·4 3·4 9·6	2.6 5.8 5.0	4.7 8.5 2.6	2 1 3	2 1 3
82 G Cr	2 6 1	6 4 2 9	4.3 4.3 3.1	5.8 5.8 7.81	5.8	3	2 3
		1		PAK	1		