SOLUÇÕES DOS EXERCÍCIOS

REPRESENTAÇÃO DE SINAIS

1)

a)
$$\omega = 0.628 \text{ rad/s}$$
 Vmed = 1 V Vef = 5.1 V

b)
$$\omega = 0.628 \text{ rad/s}$$
 Vmed = 5 V Vef = 5,77 V

c)
$$\omega$$
 = ? rad/s Vmed = 0 V Vef = 229,8 V

d)
$$\omega$$
 = ? rad/s Vmed = 206,9 V Vef = 229,8 V

e)
$$\omega$$
 = ? rad/s Vmed = 0 V Vef = 162,5 V

RUDIMENTOS DE ELECTRICIDADE E MAGNETISMO

2.1) T = 10 ms
$$f = 100 \text{ Hz}$$
 $\omega = 628,3 \text{ rad/s}$

2.3)
$$v(t) = 20mV \ t \in [0; 2,5] \ v(t) = -20mV \ t \in [2,5; 7,5] \ depois repete$$

3.1) T = 9 ms
$$f = 111,1 \text{ Hz}$$
 $\omega = 698,1 \text{ rad/s}$

3.3) Onda triangular que varia entre 18mA e -18mA.

4) É uma demonstração

5 e 6) São explicações teóricas

ANÁLISE DE CIRCUITOS

- **13)** F; F; V; F
- **14)** Req = 53 Ω
- **15**) E = 200 Wh
- **16)** lamp = 20A ou -20A consoante o sentido arbitrado
- 17) F; F; F; V
- 18) F; F; V; F
- **19)** Req = $4,16 \Omega$
- **20)** $lamp_max = 50 mA$
- **21)** U = 24 V P = 24 W
- **22.1)** Va = 27 V
- **22.2)** $R = 12,5 K\Omega$
- **22.3)** Ir = 1,6 mA I_{4r} = 0,4 mA
- **22.4)** P = 0,144 W
- 23) Curto-circuitando Vb e Vc

 $I_{RA} = 0.92 \text{ A}$ $I_{RB} = -0.62 \text{ A}$ $I_{RC} = 0.3 \text{ A}$ (Atenção o sinal depende do sentido arbitrado)

Curto-circuitando Va e Vc

$$I_{RA} = -1.2 \text{ A}$$
 $I_{RB} = 2.15 \text{ A}$ $I_{RC} = 0.95 \text{ A}$

Curto-circuitando Va e Vb

$$I_{RA} = -0.47 \text{ A}$$
 $I_{RB} = -0.68 \text{ A}$ $I_{RC} = -1.15 \text{ A}$

Total

$$I_{RA} = -0.75 \text{ A}$$
 $I_{RB} = 0.85 \text{ A}$ $I_{RC} = 0.1 \text{ A}$

24)
$$R_{TH} = 2 k\Omega$$
 $V_{TH} = 12 V$

$$I_{0,1k} = 5.7 \text{ mA}$$
 $I_{2k} = 3 \text{ mA}$ $I_{3k} = 2.4 \text{ mA}$ $I_{6k} = 1.5 \text{ mA}$

25)
$$R_{TH} = 4.5 \text{ k}\Omega$$
 $V_{TH} = 2 \text{ V}$

26)
$$R_{TH} = 8,33 \text{ k}\Omega$$
 $V_{TH} = 33,33 \text{ V}$

27.1)
$$I_{R5\Omega} = -4,92 \text{ A}$$
 $I_{R4\Omega} = -5,02 \text{ A}$ $I_{R2\Omega} = -2,5 \text{ A}$ $I_{R10\Omega} = 2,5 \text{ A}$

$$P_{R5\Omega} = 121 \text{ W} P_{R4\Omega} = 100.8 \text{ W}$$

$$P_{R5\Omega} = 121 \text{ W}$$
 $P_{R4\Omega} = 100.8 \text{ W}$ $P_{R2\Omega} = 12.5 \text{ W}$ $P_{R10\Omega} = 62.5 \text{ W}$

28.1)
$$R_{TH} = 4.7 \Omega$$

$$V_{TH} = 16.7 \text{ V}$$
 $I_{R2\Omega} = 2.5 \text{ A}$

28.2)
$$R_{TH} = 4.7 \Omega$$
 $I_N = 3.2 A$ $I_{R2\Omega} = 2.5 A$

$$I_{N} = 3.2 A$$

$$I_{R2O} = 2.5 A$$

28.3) Fonte de corrente em C. Aberto
$$I_1 = 0.85$$
 A

Fonte de tensão em C. Circuito $I_2 = 1,56 \text{ A}$

$$I = 2,41 A$$

Atenção que os 2,5 A podem não dar bem igual mas isso tem a ver com arredondamentos.

CORRENTE ALTERNADA

29) I = 15,6 A
$$\angle 0^0$$
 Z = 2 Ω Q = 0 VAR

$$Z = 2 \Omega$$

$$Q = 0 VAR$$

30) I = 1,55 A
$$\angle 50^{0}$$
.7 U_R = 69,75 V U_C = 85,25 V

$$U_R = 69.75 \text{ V}$$

$$U_{c} = 85,25 \text{ V}$$

$$Q = 132 VAR$$

$$P = 108 \text{ W}$$
 $Q = 132 \text{ VAR}$ $S = 170,5 \text{ VA } E = 206 \text{ Wh}$

31) I = 1,86 A
$$\angle$$
-68⁰.2 U_R = 37,2 V U_L = 186 V U_C = 93 V

$$U_R = 37,2 \text{ V}$$

$$U_1 = 186 \text{ V}$$

$$U_{c} = 93 \text{ V}$$

33) I = 0,75 A
$$\angle 37^0$$

34) I = 5,8 A
$$\angle$$
-20⁰

35.1)
$$X_L = 8 \Omega$$

36.1) Será ligada uma resistência em série com o receptor.

36.2) R =
$$4,3 \Omega$$

37)
$$R = 31.7 \Omega$$

38.3) C = 146,7
$$\mu$$
F I_C = 10,605 A Ligado em paralelo

38.4)
$$I_T = 10,605 \text{ A}$$
 Q = 0 VAR P=S= 2439,15 W (VA)

39)
$$E_T = 222,24 \text{ KWh}$$

40.1) Ligado em paralelo

40.2) I =
$$71.2 \text{ A} \angle -27^0$$

41.2)

42) Pactiva e dissipada igual à de 41.1 mas com uma corrente total inferior.

43) I = 41 A
$$\angle$$
-29⁰

DÍODOS

44)

45) C)

47.1)
$$I_{aberto} = 4.3 \text{ V}$$
 $I_{fechado} = 6 \text{ V}$

48.1) Rectificador meia onda Vmax =
$$10 * \sqrt{2} - 0.7$$
 Vmin = 0

Forma de onda da corrente igual à da tensão Imax =
$$\frac{(10*\sqrt{2}-0.7)}{100}$$
 Imin = 0

48.2) A forma de onda da corrente é igual porque os elementos estão em série. A forma de onda da tensão é o que falta na forma de onda da tensão em R obedendo à lei das malhas de kirchoff.

48.3)
$$V_{inversa} = -10 * \sqrt{2}$$

48.4)
$$V_R = 10 * \sqrt{2} - 0.7$$
 Imax = $\frac{(10*\sqrt{2}-0.7)}{100}$

49.1)
$$V_c = 10 * \sqrt{2} - 0.7 = 13.44$$

49.2)
$$V_{\text{medo}} = 10 * \sqrt{2} - 0.7 = 13.44$$

49.3)
$$V_{inv} = 28.3 \text{ V}$$

- 51) Circuito limitador. Semi-ciclo positivo corta em 2V o negativo é igual ao original
- 52) Circuito fixador. Sinusóide com valor mínimo em 0 e valor máximo = 2 * Vmax
- **53)** Circuito multiplicador. 5*Vmax (com díodos ideais). Senão forem ideais 5*Vmax-5*0.7.
- **54)** Entre 3V-6V a luminosidade da lâmpada vai aumentando. Entre 6V-9V a luminosidade da lâmpada mantém-se.

55)

- **56)** I) 5.1 V
- II) 7.5 V
- 57) A) 40.14 V
- 50 V
- 10.7V

- B) 39.44 V
- 49.3 V
- 10V

- **58)** 1) 3.3 V
- 2) 4.65 V
- 3) 0 V
- 4) 4.65 V (5 diodo ideal)

59) C)

60)

TRANSÍSTORES

61.1)

- a) Zona Activa $I_B = 60\mu A$
- b) Zona de Corte V_{EB} = 1V (Polarização inversa) I_C = 0A V_{CE} = 12V
- c) Zona de Saturação V_{CE} = 0.2V
- $V_{BE} = 0.6V$
- $I_C = 5mA$

61.2)

- a) Defeituoso : $V_{CE} = 0V$ (Saturação) e $V_{BE} = 1V$ (Corte)
- b) Zona de Saturação V_{BE} = 0.6V I_{C} = 12mA V_{CE} = 0V
- c) Zona de Corte $V_{CE} = -5V$

61.3)

- a) Zona de saturação : V_{CE} = 0V V_{BE} = 0.6V I_{C} = 0.5mA I_{B} = 4.4mA
- b) Zona de Activa V_{BE} = 0.6V I_B = $10\mu A$ V_{CE} = 1V I_E = 1.01mA V_E = 1.01V
- c) Defeituoso $V_{CE} = 0V e I_B = 0A$
- **62.1)** $V_0 = 0V$ (saturação)
- **62.2)** $R_1 \le 37 \text{ K}\Omega$

62.3) $V_0 = 12V (I_C = 0A)$ Transistor ao corte

63.2) aproximadamente 335 lux

FETs

64.1) $V_{GS} = 0.5V \ (V_{DS} = 5V; I_D = 0mA)$

$$V_{GS} = 3V (4V; 1mA)$$

$$V_{GS} = 4V \ (V_{DS} = 2.8V; 2.2mA)$$

65.1) $I_D = 4mA$

65.2) $R_{DS} = 0.25 \text{ K}\Omega$

66.1) V_D < 2V

66.2) $I_D = 450 \mu A$

67) $R_D = 10 KΩ$ $R_S = 5 KΩ$

68.1) $R_D = 12.25 K\Omega$

68.2) $R_{DS} = 0.25 \text{ K}\Omega$

69) $I_D = 18mA$

70.1) $R_S = 104.2K\Omega$

70.2) $R_{DS} = 1.05 K\Omega$

71.1) $V_{DS} = 2V$

71.2) I_D = 2.5mA

71.3) $\Delta I_D = 1.1 \text{mA}$

71.4) $V_{GS} = 0V R_{DS} = 200\Omega$

$$V_{GS} = -3V R_{DS} = 800\Omega$$

72) $V_{GS} = -5V$ $V_{DS} = 0V$ $I_D = 625\mu A$

FONTES DE ALIMENTAÇÃO

76.1) Rectificador de meia-onda porque o período é de 20ms.

76.2) 4.24 V

76.3) 40%

77.1) 5V

77.2) recta que passa pelos seguintes pontos (5.1;0) e (5;3)

77.3) 0.033Ω

77.4) 0.025V