Introduction

Unsupervised ML

- D Kneans Clustering
- 1 Hierarchical Clystering
- D Gaussian Mixture Models
- D Outlier/Novelty detection Algos
- & PCA / T-SNE / U-map

Tapics

- 3 Intro to Unsupervised ML
- 1 Case Study: Customer Segmentation
- D Clustoring
- Dunn Index
- D K-record Intro
- o Mathematical Josmulation of Korrang
- D Lloyd's Algo
- D Implementation of LLoyd's Algo
- Determining K
- 3 Home-work

Intro to Unsupervised ML

Regression
Features Labels Classification => Zxi, gi = xi ERd Binary 2 4: E 20,13 Features Labels > 2x;, ý; ; x; ∈ Rª 9; € 1k

* Unsupervised

Defamour D Coeak Clusters

Clustering

* Evend boist will peland to

estable charters

* Data points in a Cluster are Close Each Other

Evaluating (Husters

D No Ground Touth, hence we can't

Distance of Factorial

Distance of Factorial

Distance of Factorial

Command Hill Doing

Command Hill Doin

& Inter Cluster Distance

* Avg of All Pairs

* Distance among Goethest Pair

* Distance among Closest Pair

Symmony

Inter Cluster Distance Maximum

* Methods to Calculate Distance

D'Estance D'Estance D Low D

D'Manhattan Distance D Moderate D

D'Osine Similanity D High De

Dunn Index

Do 9 min, distance (1, 1)

* distance (i, j): Inter-Cluster Distance

Farthest point in cluster i and Cluster j

* distance k: Intra Cluster Distance

Jouthout pair

Q(1, 1) D Q13, Q12, Q23

min des

des < numerala

Des ETRA

or iorputs

d features

S, D

 $S_{1} \cup S_{2} \cup S_{3} \ni D \ni S_{n}$ $S_{1} \cap S_{2} \cap S_{3} \circ 0$ $S_{1} \cap S_{2} \circ 0 \circ S_{2} \cap S_{3}$ * K-means is a Centroid Based
algorithm where

C, D X,+ X2 + X3 -- Xn \in S,

Den (S,)

 $C_{1} = X_{1}^{2} = X_{1}^{2} = X_{1}^{2}$ $C_{1} = X_{1}^{2} = X_{1}^{2} = X_{1}^{2}$ $C_{1} = X_{1}^{2} = X_{1$

Condinality of

ith set

Objective Function

C1, C2, C3 --- Cm

max (Inter Cluster)
Distance
and

6 min (Inter Cluster)
Distance

Difficult to solve with Tradition

* thesisade tido:

LLoga's Algorithm

Simple
and
Easy to
Calculate
Doesn't
Guarantee

Best Solution