ИТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4.03

"Определение радиуса кривизны линзы по интерференционной картине колец Ньютона"

Группа: ОФ-3 ФПИ 1.1.1

Студенты: Стафеев И.А., Голованов Д.И.

Преподаватель: Середин А.А.

К работе допущен:

Работа выполнена:

Отчет принят:

1 Цель работы

Изучение интерференционной картины Колец Ньютона.

2 Задачи

Для достижения цели были поставлены следующие задачи:

- 1. Определение радиуса кривизны плоско-выпуклой линзы с помощью интерференционной картины колец Ньютона
- 2. Оценка спектральной полосы пропускания оптических фильтров.

3 Объект исследования

Интерференционная картина Колец Ньютона, возникающая при прохождении света через систему плосковыпуклой линзы и стеклянной пластины.

4 Методы экспериментального исследования

Для исследования используются следующие методы:

- 1. Наблюдение интерференционной картины при разных длинах волн ($\lambda_{blue}=435.8$ нм, $\lambda_{green}=546.1$ нм, $\lambda_{orange}=578.4$ нм, $\lambda_{red}=630$ нм);
- 2. Оптические измерения радиусов интерференционных колец с помощью микроскопа и камеры;
- 3. Анализ данных с использованием программного обеспечения для измерения и обработки результатов.

5 Рабочие формулы и исходные данные

1. Длины волн светофильтров

$$\lambda_{blue} = 435.8 \text{ HM}, \ \lambda_{green} = 546.1 \text{ HM}, \lambda_{orange} = 578.4 \text{ HM}, \ \lambda_{red} = 630 \text{ HM}$$
 (1)

2. Радиус кривизны линзы

$$R = \frac{r_m^2 - r_n^2}{(m-n)\lambda},\tag{2}$$

где m и n (m>n) - порядки интерференции, r_m и r_n - соответствующие радиусы темных колец на интерференционной картине, λ - длина волны.

3. Спектральная ширина линии

$$\Delta \lambda = \frac{\lambda^2}{\Delta} = \frac{2\lambda^2 R}{2r_{disappear}^2 + R\lambda},\tag{3}$$

где $r_{disappear}$ - расстояние от центра интерференционной картины до положения ее исчезновения

6 Измерительные приборы:

Таблица 1 — Измерительные приборы

№	Наименование
π/π	
1	Микроскоп
2	Цировая камера E3ISPM20000KPA
3	Раздел построения фигур в Altami Studio

7 Схема установки

Система для наблюдения интерференционной картины и измерения радиусов колец Ньютона представлена на рисунке 1. Прямые измерения производятся с помощью микроскопа и камеры, подключенной к компьютеру. В работе используется программа Altami Studio.

Рисунок 1 — Лабораторная установка

Цифрами на схеме обозначены:

- 1. ручки вертикального смещения тубуса (фокусировка);
- 2. источник света;
- 3. видеоокуляр;
- 4. плоско-выпуклая линза;
- 5. светофильтр с заданной длиной волны;
- 6. переключатель линз;
- 7. регулятор интенсивности света.

8 Прямые измерения

Таблица 2 — Фильтр $\lambda=435.8$ н
м, $r_{disappear}=5.106$ мм

Радус, мм \ № кольца	1	2	3	4
r_1	1.137	1.368	1.584	1.745
r_2	1.156	1.385	1.575	1.753
r_3	1.141	1.395	1.575	1.739
\overline{r}	1.145	1.383	1.578	1.746

Таблица 3 — Фильтр $\lambda = 546.1$ нм, $r_{disappear} = 4.883$ мм

Радус, мм \ № кольца	1	2	3	4
r_1	1.205	1.463	1.681	1.861
r_2	1.206	1.465	1.681	1.867
r_3	1.192	1.478	1.665	1.857
\overline{r}	1.201	1.469	1.676	1.862

Таблица 4 — Фильтр $\lambda = 578.4$ нм, $r_{disappear} = 4.280$ мм

Радус, мм \ № кольца	1	2	3	4
r_1	1.198	1.450	1.669	1.874
r_2	1.185	1.466	1.705	1.876
r_3	1.186	1.468	1.693	1.877
\overline{r}	1.190	1.461	1.689	1.876

Таблица 5 — Фильтр $\lambda = 630$ нм, $r_{disappear} = 5.118$ мм

Радус, мм \ № кольца	1	2	3	4
r_1	1.211	1.509	1.712	1.921
r_2	1.222	1.518	1.747	1.905
r_3	1.184	1.493	1.73	1.911
\overline{r}	1.206	1.507	1.73	1.912

9 Расчёт результатов косвенных измерений

С помощью МНК были построены аппроксимирующие прямые для зависимости квадрата радиуса темного кольца r^2 от порядкового номера кольца n при каждой длине волны. Например, для волны синего цвета уравнение имеет вид $r^2(n) = 0.58n + 0.74$. Все графики приведены в разделе 10. На основе графиков можно говорить о линейной зависимости $r^2(n)$.

По формуле 2 был вычислен радиус кривизны R_{12} линзы с использованием радиусов первого и второго колец и радиус кривизны R_{34} с использованием радиусов третьего и четвертого колец. Пример вычисления при $\lambda=435.8$ нм:

$$R_{12} = \frac{r_2^2 - r_1^2}{\lambda} = \frac{(1.912689 - 1.311025) \text{ mm}^2}{435.8 \text{ HM}} = \frac{0.601664 \cdot 10^{-6} \text{ m}^2}{438.8 \cdot 10^{-9} \text{ M}} \approx 1.38 \text{ M}.$$

$$R_{34} = \frac{r_4^2 - r_3^2}{\lambda} = \frac{(3.048516 - 2.490084) \text{ mm}^2}{435.8 \text{ HM}} = \frac{0.558432 \cdot 10^{-6} \text{ m}^2}{438.8 \cdot 10^{-9} \text{ M}} \approx 1.28 \text{ M}.$$

Аналогичные вычисления были проведены для колец при других значениях λ . Результат вычислений показан в таблице 6.

Таблица 6 — Расчет радиуса кривизны линзы

\square лина волны λ , нм	Радиус <i>п</i> -го кольца				Радиус кривизны линзы	
Длина волны л, нм	r_1 , MM	r_2 , MM	r_3 , MM	r_4 , MM	R_{12} , м	R_{34} , M
435.8	1.145	1.383	1.578	1.746	1.38	1.28
546.1	1.201	1.469	1.676	1.862	1.31	1.21
578.4	1.190	1.461	1.689	1.876	1.24	1.15
630.0	1.206	1.507	1.730	1.912	1.30	1.05

$$\begin{split} R &= \overline{R} = \frac{(1.38+1.31+1.24+1.30)+(1.28+1.21+1.15+1.05)}{4+4} \text{ м} = 1.24 \text{ м} \\ S_{\overline{R}} &= \sqrt{\frac{\sum_{i=1}^{8} (R_i - \overline{R}^2)}{8(8-1)}} \approx 0.03 \text{ м}. \\ \Delta_{\overline{R}} &= t_{0.95,8} \cdot S_{\overline{R}} = 2.16 \cdot 0.03 \approx 0.08 \text{ м}. \end{split}$$

Поскольку для Altami Studio не указана ни погрешность, ни класс точности, положим погрешность измерительного прибора $\Delta_{ux}=0$, тогда абсолютная погрешность Δ_R будет равна случайной погрешности $\Delta_{\overline{R}}$ и доверительный интервал для R при уровне доверия 0.95 будет иметь вид $R=(1.24\pm0.08)$ м.

$$\varepsilon_R = \frac{0.08}{1.24} \cdot 100\% = 6\%$$

$$\begin{split} \overline{r}_{disappear} &= \tfrac{1}{4} \sum_{i=1}^{4} r_{disapperar_i} \approx 4.85 \text{ mm.} \\ S_{\overline{r}_{disappear}} &= \sqrt{\tfrac{\sum_{i=1}^{4} (r_{disapperar_i} - \overline{r}_{disappear})^2}{4(4-1)}} \approx 0.17 \text{ mm.} \\ \Delta_{\overline{r}_{disappear}} &= t_{0.95,4} \cdot S_{\overline{r}_{disappear}} = 3.18 \cdot 0.17 \text{ mm} = 0.54 \text{ mm} \end{split}$$

Аналогично абсолютная погрешность $\Delta_{r_{disappear}}$ будет равна случайной погрешности $\Delta_{\overline{r}_{disappear}}$ и доверительный интервал для $r_{disappear}$ при уровне доверия 0.95 будет иметь вид $r_{disappear} = (4.85 \pm 0.54)$ мм.

$$\varepsilon_{r_{disappear}} = \frac{0.54}{4.85} \cdot 100\% = 11\%.$$

Ширина пропускания светофильтра вычисляется по формуле 3. Пример вычисления для красного фильтра

$$\Delta \lambda_{red} = \frac{2\lambda_{red}^2 R}{2r_{dispansed}^2 + R\lambda_{red}} = \frac{2 \cdot (630 \text{ HM})^2 \cdot 1.24 \cdot 10^9 \text{ HM}}{2 \cdot (4.85 \cdot 10^6 \text{ HM})^2 + 630 \cdot 1.24 \cdot 10^9 \text{ HM}} \approx 21 \text{ HM}$$

 $\Delta \lambda_{red} = \frac{2\lambda_{red}^2 R}{2r_{disappear}^2 + R\lambda_{red}} = \frac{2 \cdot (630 \text{ hm})^2 \cdot 1.24 \cdot 10^9 \text{ нм}}{2 \cdot (4.85 \cdot 10^6 \text{ нм})^2 + 630 \cdot 1.24 \cdot 10^9 \text{ нм}} \approx 21 \text{ нм}.$ Тогда фильтр будет пропускать длины волны от $\lambda_{red} - \frac{1}{2} \Delta \lambda_{red}$ до $\lambda_{red} + \frac{1}{2} \Delta \lambda_{red}$, то есть от 619.5 нм до 640.5 нм (или же от 484 ТГц до 468 ТГц).

 $\Delta \lambda_{blue} = 10$ нм; фильтр пропускает длины волн от 430.8 нм до 440.8 нм (от 696 ТГц до 681 ТГц).

 $\Delta \lambda_{areen} = 15$ нм; фильтр пропускает длины волн от 538.6 нм до 553.6 нм (от 557 Т Γ ц до 542 Т Γ ц).

 $\Delta \lambda_{orange} = 17$ нм; фильтр пропускает длины волн от 569.9 нм до 586.9 нм (от 526 Т Γ ц до 511 Т Γ ц).

$$\begin{split} \frac{d}{dR}\Delta\lambda &= \frac{d}{dR} \; \frac{2\lambda^2 R}{2r_{disappear}^2 + R\lambda} = \frac{4\lambda^2 r_{disappear}^2}{(R\lambda + 2r_{disappear}^2)^2} \\ \frac{d}{dr} \; \frac{2\lambda^2 R}{2r_{disappear}^2 + R\lambda} &= \frac{-8\lambda^2 R}{(2r^2 + \lambda R)^2} \\ \Delta_{\Delta\lambda} &= \sqrt{\left(\left(\frac{d(\Delta\lambda)}{dR}\Delta_R\right)^2 + \left(\frac{d(\Delta\lambda)}{dr}\Delta_r\right)^2}\right)} \end{split}$$

По этим формулам получается $\Delta_{\Delta\lambda_{blue}}=2$ нм, $\Delta_{\Delta\lambda_{green}}=4$ нм, $\Delta_{\Delta\lambda_{orange}}=4$ нм, $\Delta_{\Delta\lambda_{red}}=5$ нм. Относительные погрешности равны $\varepsilon_{\Delta\lambda_{blue}} = \frac{2}{10} \cdot 100\% = 20\%, \ \varepsilon_{\Delta\lambda_{green}} = \frac{4}{15} \cdot 100\% = 27\%, \ \varepsilon_{\Delta\lambda_{orange}} = 100\%$

 $\frac{4}{17} \cdot 100\% = 24\%, \ \varepsilon_{\Delta \lambda_{red}} = \frac{5}{21} \cdot 100\% = 24\%.$

Рисунок 2 — График зависимости $r^2(n)$ при длине волны $\lambda=438.5$ нм

Рисунок 3 — График зависимости $r^2(n)$ при длине волны $\lambda=546.1$ нм

Рисунок 4 — График зависимости $r^2(n)$ при длине волны $\lambda=578.4$ нм

Рисунок 5 — График зависимости $r^2(n)$ при длине волны $\lambda=630$ нм

11 Окончательные результаты

$$\begin{split} R &= (1.24 \pm 0.08) \text{ m}; \ \varepsilon_R = 6\%; \ \alpha = 0.95 \\ r_{disappear} &= (4.85 \pm 0.54) \text{ mm}; \ \varepsilon_{r_{disappear}} = 11\%; \ \alpha = 0.95 \\ \Delta \lambda_{blue} &= (10 \pm 2) \text{ mm}; \ \varepsilon_{\Delta \lambda_{blue}} = 20\%; \ \alpha = 0.95 \end{split}$$

$$\Delta\lambda_{green}=(15\pm4)~\text{HM};~\varepsilon_{\Delta\lambda_{green}}=27\%;~\alpha=0.95$$

$$\Delta\lambda_{orange}=(17\pm4)~\text{HM};~\varepsilon_{\Delta\lambda_{orange}}=24\%;~\alpha=0.95$$

$$\Delta\lambda_{red}=(21\pm5)~\text{HM};~\varepsilon_{\Delta\lambda_{red}}=24\%;~\alpha=0.95$$

12 Выводы и анализ результатов работы

В ходе выполнения лабораторной работы была изучена интерференционная картина колец Ньютона, на основе которой были определены радиус кривизны линзы и полосы пропускания оптических фильтров. Был построен график зависимости квадрата радиуса темных колец интерференционной картины $r^2(n)$ от порядкового номера кольца, подтвердивший линейную зависимость этих величин.

Были построены доверительные интервалы для радиуса кривизны линзы и расстояние до нулевой видности интерференционной картины от ее центра. В обоих случаях относительная погрешность получилась умеренная (6% и 11% соответственно). На погрешность могли повлиять как программная аппаратура (например, из-за особенностей монитора компьютера точно вычислить место с нулевой видностью однозначно не получается), так и человеческий фактор (неточное определение центра интерференционной картины и построение окружностей для вычисления радиусов колец).

Для спектральных полос пропускания оптических фильтров (синего, зеленого, оранжевого и красного) также были построены доверительные интервалы. Относительная погрешность получилась высокая (20%-27%) из-за влияния умеренных погрешностей радиуса кривизны линзы и расстояния до нулевой видности.