Computing the N-th term of a q-holonomic sequence^{1,2}

Sergey Yurkevich

Inria and University of Vienna

Monday 1st March, 2021

¹Joint work with Alin Bostan, arxiv.org/abs/2012.08656

²Slides available at homepage.univie.ac.at/sergey.yurkevich/data/Nthqhol_slides.pdf () () ()

Problem statement

(q-)holonomic sequences

Given a sequence $(u_n)_{n\geq 0}$ and $N\in\mathbb{N}$, we want to compute u_N as fast as possible.

 u_n lie in some field \mathbb{K} .

(q-)holonomic sequences

- u_n lie in some field \mathbb{K} .
- The sequence is given by some recurrence relation and initial conditions.

(q-)holonomic sequences

- u_n lie in some field \mathbb{K} .
- The sequence is given by some recurrence relation and initial conditions.
- \blacksquare By "fast" we mean with as few arithmetic operations in \mathbb{K} as possible.

Problem statement

(q-)holonomic sequences

- u_n lie in some field \mathbb{K} .
- The sequence is given by some recurrence relation and initial conditions.
- By "fast" we mean with as few arithmetic operations in \mathbb{K} as possible.
- Tremendous number of applications:
 - Algebraic complexity theory (e.g., evaluation of polynomials [Strassen, 1977])
 - Computations on real numbers (e.g., constants approximation [Chudnovsky², 1987])
 - Algorithmic number theory (e.g., Wilson primes search [Costa, Gerbicz, Harvey, 2014])
 - Effective algebraic geometry (e.g., counting points on curves [Harvey, 2014])
 - etc.

Holonomic (aka P-recursive) sequences

■ A sequence $(u_n)_{n\geq 0} \in \mathbb{K}$ is called *holonomic* if it satisfies a linear recurrence relation with polynomial coefficients:

$$c_r(n)u_{n+r}+\cdots+c_0(n)u_n=0 \qquad n\geq 0.$$

Holonomic (aka P-recursive) sequences

■ A sequence $(u_n)_{n\geq 0} \in \mathbb{K}$ is called *holonomic* if it satisfies a linear recurrence relation with polynomial coefficients:

$$c_r(n)u_{n+r}+\cdots+c_0(n)u_n=0 \qquad n\geq 0.$$

Examples:

(q-)holonomic sequences

- $u_n = q^n$ satisfies $u_{n+1} qu_n = 0$;
- $u_n = n!$ satisfies $u_{n+1} (n+1)u_n = 0$;
- $u_n = \sum_{k=0}^n {n \choose k}^2 {n+k \choose k}$ satisfies $(n+2)^2 u_{n+2} (11n^2 + 33n + 25) u_{n+1} (n+1)^2 u_n = 0$.

Holonomic (aka P-recursive) sequences

■ A sequence $(u_n)_{n\geq 0}$ ∈ \mathbb{K} is called *holonomic* if it satisfies a linear recurrence relation with polynomial coefficients:

$$c_r(n)u_{n+r}+\cdots+c_0(n)u_n=0 \qquad n\geq 0.$$

- Examples:
 - $u_n = q^n$ satisfies $u_{n+1} qu_n = 0$;
 - $u_n = n!$ satisfies $u_{n+1} (n+1)u_n = 0$;
 - $u_n = \sum_{k=0}^n {n \choose k}^2 {n+k \choose k}$ satisfies $(n+2)^2 u_{n+2} (11n^2 + 33n + 25) u_{n+1} (n+1)^2 u_n = 0$.
- Given $N \in \mathbb{N}$, one can compute u_N in $\tilde{O}(\sqrt{N})$ arithmetic operations [Strassen, 1977], [Chudnovsky², 1988]. Naive: O(N)

q-holonomic sequences

■ A sequence $(u_n)_{n\geq 0} \in \mathbb{K}$ is called *q-holonomic* if for some $q \in \mathbb{K}$ it satisfies a linear *q*-recurrence relation with polynomial coefficients:

$$c_r(q,q^n)u_{n+r}+\cdots+c_0(q,q^n)u_n=0 \qquad n\geq 0.$$

q-holonomic sequences

■ A sequence $(u_n)_{n\geq 0} \in \mathbb{K}$ is called *q-holonomic* if for some $q \in \mathbb{K}$ it satisfies a linear *q*-recurrence relation with polynomial coefficients:

$$c_r(q,q^n)u_{n+r}+\cdots+c_0(q,q^n)u_n=0 \qquad n\geq 0.$$

- Examples:
 - $u_n = q^n$ satisfies $u_{n+1} qu_n = 0$;
 - $u_n = [n]_q! = (1+q)\cdots(1+q+\cdots+q^{n-1})$ satisfies $(q-1)u_{n+1} (q^{n+1}-1)u_n = 0$;
 - $u_n = \sum_{k=0}^n 2^{k^2}$ satisfies $u_{n+2} (2^{2n+1} + 1)u_{n+1} + 2^{2n-1}u_n = 0$.

q-holonomic sequences

■ A sequence $(u_n)_{n\geq 0} \in \mathbb{K}$ is called *q*-holonomic if for some $q \in \mathbb{K}$ it satisfies a linear *q*-recurrence relation with polynomial coefficients:

$$c_r(q,q^n)u_{n+r}+\cdots+c_0(q,q^n)u_n=0 \qquad n\geq 0.$$

- Examples:
 - $u_n = q^n$ satisfies $u_{n+1} qu_n = 0$;
 - $u_n = [n]_q! = (1+q)\cdots(1+q+\cdots+q^{n-1})$ satisfies $(q-1)u_{n+1} (q^{n+1}-1)u_n = 0$;
 - $u_n = \sum_{k=0}^n 2^{k^2}$ satisfies $u_{n+2} (2^{2n+1} + 1)u_{n+1} + 2^{2n-1}u_n = 0$.
- Given $N \in \mathbb{N}$, one can compute u_N in $\tilde{O}(\sqrt{N})$ arithmetic operations [Bostan, Y., 2020]. Naive: O(N)

(Arithmetic) complexity basics

(a-)holonomic sequences

■ Arithmetic complexity means we count base operations $(+, -, \times, \div)$ in $\mathbb K$ at unit cost. Hence, in practice \mathbb{K} is a finite field.

(Arithmetic) complexity basics

(q-)holonomic sequences

- Arithmetic complexity means we count base operations $(+, -, \times, \div)$ in \mathbb{K} at unit cost. Hence, in practice \mathbb{K} is a finite field.
- $O(\cdot)$ stands for the big-Oh notation and $\tilde{O}(\cdot)$ is used to hide polylogarithmic factors in the argument.

(Arithmetic) complexity basics

(a-)holonomic sequences

- Arithmetic complexity means we count base operations $(+, -, \times, \div)$ in \mathbb{K} at unit cost. Hence, in practice \mathbb{K} is a finite field.
- $O(\cdot)$ stands for the big-Oh notation and $\tilde{O}(\cdot)$ is used to hide polylogarithmic factors in the argument.
- **M**(d) is the cost of multiplication of two polynomials in $\mathbb{K}[x]$ of degree d. It is known that $\mathbf{M}(d) = O(d \log d \log \log d) = \tilde{O}(d)$. (Using FFT) Naive: $O(d^2)$
- Given $P(x) \in \mathbb{K}[x]$ of degree d, one can evaluate P(x) at $a, a^2, \ldots, a^d \in \mathbb{K}$ simultaneously in complexity $O(\mathbf{M}(d))$. (Using Bluestein's trick) Naive: $O(d^2)$
- Two matrices in $\mathbb{K}^{n\times n}$ can be multiplied in complexity $O(n^{\omega})$, where the best current bound is $\omega < 2.3729$. Naive: $O(n^3)$

Main theorem

(a-)holonomic sequences

Theorem (Bostan, Y., 2020)

Let $q \in \mathbb{K} \setminus \{1\}$ and $N \in \mathbb{N}$. Let $(u_n)_{n > 0}$ be a q-holonomic sequence satisfying the recurrence

$$c_r(q,q^n)u_{n+r}+\cdots+c_0(q,q^n)u_n=0 \qquad n\geq 0,$$

and assume that $c_r(q, q^k)$ is nonzero for k = 0, ..., N. Then, u_N can be computed in $O(\mathbf{M}(\sqrt{N})) = \tilde{O}(\sqrt{N})$ operations in \mathbb{K} . Naive: O(N)

Main theorem

(a-)holonomic sequences

Theorem (Bostan, Y., 2020)

Let $q \in \mathbb{K} \setminus \{1\}$ and $N \in \mathbb{N}$. Let $(u_n)_{n > 0}$ be a q-holonomic sequence satisfying the recurrence

$$c_r(q,q^n)u_{n+r}+\cdots+c_0(q,q^n)u_n=0 \qquad n\geq 0,$$

and assume that $c_r(q, q^k)$ is nonzero for k = 0, ..., N. Then, u_N can be computed in $O(\mathbf{M}(\sqrt{N})) = \tilde{O}(\sqrt{N})$ operations in \mathbb{K} . Naive: O(N)

Theorem (Bostan, Y. 2020)

Under the assumptions of the theorem above, let d > 1 be the maximum of the degrees of $c_0(q, y), \ldots, c_r(q, y)$. Then, for any N > d, the term u_N can be computed in $O(r^{\omega}\sqrt{Nd} + r^2 \mathbf{M}(\sqrt{Nd}))$ operations in \mathbb{K} .

Timings

Computing the *N*-th term of $u_n = \sum_{k=0}^n q^{k^2} \in \mathbb{F}_p$, where $p = 2^{50} + 55$ is prime and $q \in \mathbb{F}_p$ randomly chosen.

(a-)holonomic sequences

■ Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.

(q-)holonomic sequences

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\deg P)$ operations.

(q-)holonomic sequences

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\deg P)$ operations.
- Our results imply that one can do better for large families of polynomials.

(q-)holonomic sequences

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\deg P)$ operations.
- Our results imply that one can do better for large families of polynomials.
- [Nogneng, Schost, 2018]: The truncated Jacobi theta function

$$\vartheta_{N}(x) := 1 + x + x^{4} + x^{9} + \dots + x^{N^{2}}$$

can be evaluated at $q \in \mathbb{K}$ in $\tilde{O}(\sqrt{N})$ arithmetic operations.

(q-)holonomic sequences

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\deg P)$ operations.
- Our results imply that one can do better for large families of polynomials.
- [Nogneng, Schost, 2018]: The truncated Jacobi theta function

$$\vartheta_N(x) := 1 + x + x^4 + x^9 + \dots + x^{N^2}$$

can be evaluated at $q \in \mathbb{K}$ in $\tilde{O}(\sqrt{N})$ arithmetic operations.

■ Also follows from our result: $\vartheta_N(q) = u_N$, where $u_n = \sum_{k=0}^n q^{k^2}$ is q-holonomic.

(q-)holonomic sequences

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\deg P)$ operations.
- Our results imply that one can do better for large families of polynomials.
- [Nogneng, Schost, 2018]: The truncated Jacobi theta function

$$\vartheta_N(x) := 1 + x + x^4 + x^9 + \dots + x^{N^2}$$

can be evaluated at $q \in \mathbb{K}$ in $\tilde{O}(\sqrt{N})$ arithmetic operations.

- Also follows from our result: $\vartheta_N(q) = u_N$, where $u_n = \sum_{k=0}^n q^{k^2}$ is q-holonomic.
- Same complexity and reasoning for $\prod_{i=0}^{N} (x-a^i)$, or g-Hermite polynomials, or $\prod_{i=1}^{\infty} (1-x^i)^3 \mod x^n$, etc.

Idea of the proof

Note that

(a-)holonomic sequences

$$c_r(q, q^n)u_{n+r} + \cdots + c_0(q, q^n)u_n = 0$$

can be translated into a first-order matrix-vector recurrence

$$\begin{bmatrix} u_{n+r} \\ \vdots \\ u_{n+1} \end{bmatrix} = \begin{bmatrix} -\frac{c_{r-1}(q,q^n)}{c_r(q,q^n)} & \cdots & -\frac{c_1(q,q^n)}{c_r(q,q^n)} & -\frac{c_0(q,q^n)}{c_r(q,q^n)} \\ 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix} \times \begin{bmatrix} u_{n+r-1} \\ \vdots \\ u_n \end{bmatrix} =: M(q^n) \times \begin{bmatrix} u_{n+r-1} \\ \vdots \\ u_n \end{bmatrix}.$$

Idea of the proof

Note that

(a-)holonomic sequences

$$c_r(q, q^n)u_{n+r} + \cdots + c_0(q, q^n)u_n = 0$$

can be translated into a first-order matrix-vector recurrence

$$\begin{bmatrix} u_{n+r} \\ \vdots \\ u_{n+1} \end{bmatrix} = \begin{bmatrix} -\frac{c_{r-1}(q,q^n)}{c_r(q,q^n)} & \cdots & -\frac{c_1(q,q^n)}{c_r(q,q^n)} & -\frac{c_0(q,q^n)}{c_r(q,q^n)} \\ 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix} \times \begin{bmatrix} u_{n+r-1} \\ \vdots \\ u_n \end{bmatrix} =: M(q^n) \times \begin{bmatrix} u_{n+r-1} \\ \vdots \\ u_n \end{bmatrix}.$$

Hence, u_N can be easily expressed in terms of the matrix g-factorial

$$M(q^{N-1})\cdots M(q)M(1) \in \mathbb{K}^{r\times r}$$
.

Idea of the proof

Note that

(a-)holonomic sequences

$$c_r(q, q^n)u_{n+r} + \cdots + c_0(q, q^n)u_n = 0$$

can be translated into a first-order matrix-vector recurrence

$$\begin{bmatrix} u_{n+r} \\ \vdots \\ u_{n+1} \end{bmatrix} = \begin{bmatrix} -\frac{c_{r-1}(q,q^n)}{c_r(q,q^n)} & \cdots & -\frac{c_1(q,q^n)}{c_r(q,q^n)} & -\frac{c_0(q,q^n)}{c_r(q,q^n)} \\ 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix} \times \begin{bmatrix} u_{n+r-1} \\ \vdots \\ u_n \end{bmatrix} =: M(q^n) \times \begin{bmatrix} u_{n+r-1} \\ \vdots \\ u_n \end{bmatrix}.$$

Hence, u_N can be easily expressed in terms of the matrix g-factorial

$$M(q^{N-1})\cdots M(q)M(1) \in \mathbb{K}^{r\times r}$$
.

 \Rightarrow New problem: Given $M(x) \in \mathbb{K}[x]^{r \times r}$, compute $M(q^{N-1}) \cdots M(q) M(1)$ fast.

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$M(q^{N-1})\cdots M(q)M(1)$$

in $O(M(\sqrt{N}))$ arithmetic operations.

(a-)holonomic sequences

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$M(q^{N-1})\cdots M(q)M(1)$$

in $O(M(\sqrt{N}))$ arithmetic operations.

(q-)holonomic sequences

Note: The naive algorithm has O(N) complexity. Assume that $N = s^2$ for $s \in \mathbb{N}$.

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$M(q^{N-1})\cdots M(q)M(1)$$

in $O(M(\sqrt{N}))$ arithmetic operations.

(q-)holonomic sequences

Note: The naive algorithm has O(N) complexity. Assume that $N = s^2$ for $s \in \mathbb{N}$.

Main algorithm (matrix q-factorial)

 $M = s^2$

(1) (Baby-step) Compute q, q^2, \dots, q^{s-1} ; deduce the coefficients of the polynomial matrix $P(x) := M(a^{s-1}x) \cdots M(ax)M(x)$.

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$M(q^{N-1})\cdots M(q)M(1)$$

in $O(M(\sqrt{N}))$ arithmetic operations.

(q-)holonomic sequences

Note: The naive algorithm has O(N) complexity. Assume that $N = s^2$ for $s \in \mathbb{N}$.

Main algorithm (matrix q-factorial)

 $M = s^2$

(1) (Baby-step) Compute q, q^2, \dots, q^{s-1} ; deduce the coefficients of the polynomial matrix $P(x) := M(q^{s-1}x) \cdots M(qx)M(x)$. Divide-and-Conquer $\Rightarrow O(M(s))$

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$M(q^{N-1})\cdots M(q)M(1)$$

in $O(M(\sqrt{N}))$ arithmetic operations.

(q-)holonomic sequences

Note: The naive algorithm has O(N) complexity. Assume that $N = s^2$ for $s \in \mathbb{N}$.

Main algorithm (matrix q-factorial)

 $M = s^2$

- (1) (Baby-step) Compute q, q^2, \dots, q^{s-1} ; deduce the coefficients of the polynomial matrix $P(x) := M(q^{s-1}x) \cdots M(qx)M(x)$. Divide-and-Conquer $\Rightarrow O(M(s))$
- (2) (Giant-step) Compute $Q := q^s, Q^2, \dots, Q^{s-1}$, and evaluate (the entries of) P(x)simultaneously at 1, Q, \ldots, Q^{s-1} .

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$M(q^{N-1})\cdots M(q)M(1)$$

in $O(M(\sqrt{N}))$ arithmetic operations.

(q-)holonomic sequences

Note: The naive algorithm has O(N) complexity. Assume that $N = s^2$ for $s \in \mathbb{N}$.

Main algorithm (matrix q-factorial)

$$N = s^2$$

- (1) (Baby-step) Compute q, q^2, \dots, q^{s-1} ; deduce the coefficients of the polynomial matrix $P(x) := M(q^{s-1}x) \cdots M(qx)M(x)$. Divide-and-Conquer $\Rightarrow O(M(s))$
- (2) (Giant-step) Compute $Q := q^s, Q^2, \dots, Q^{s-1}$, and evaluate (the entries of) P(x)simultaneously at 1, Q, \ldots, Q^{s-1} . Bluestein's trick $\Rightarrow O(\mathbf{M}(s))$

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$M(q^{N-1})\cdots M(q)M(1)$$

in $O(M(\sqrt{N}))$ arithmetic operations.

(q-)holonomic sequences

Note: The naive algorithm has O(N) complexity. Assume that $N = s^2$ for $s \in \mathbb{N}$.

Main algorithm (matrix q-factorial)

$$N = s^2$$

- (1) (Baby-step) Compute q, q^2, \dots, q^{s-1} ; deduce the coefficients of the polynomial matrix $P(x) := M(q^{s-1}x) \cdots M(qx)M(x)$. Divide-and-Conquer $\Rightarrow O(M(s))$
- (2) (Giant-step) Compute $Q := q^s, Q^2, \dots, Q^{s-1}$, and evaluate (the entries of) P(x)simultaneously at 1, Q, \ldots, Q^{s-1} . Bluestein's trick $\Rightarrow O(\mathbf{M}(s))$
- (3) Return the product $P(Q^{s-1}) \cdots P(Q)P(1)$.

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$M(q^{N-1})\cdots M(q)M(1)$$

in $O(M(\sqrt{N}))$ arithmetic operations.

(q-)holonomic sequences

Note: The naive algorithm has O(N) complexity. Assume that $N = s^2$ for $s \in \mathbb{N}$.

Main algorithm (matrix q-factorial)

$$N = s^2$$

- (1) (Baby-step) Compute q, q^2, \ldots, q^{s-1} ; deduce the coefficients of the polynomial matrix $P(x) := M(q^{s-1}x) \cdots M(qx)M(x)$. Divide-and-Conquer $\Rightarrow O(M(s))$
- (2) (Giant-step) Compute $Q := q^s, Q^2, \dots, Q^{s-1}$, and evaluate (the entries of) P(x) simultaneously at $1, Q, \dots, Q^{s-1}$. Bluestein's trick $\Rightarrow O(M(s))$
- (3) Return the product $P(Q^{s-1})\cdots P(Q)P(1)$.

Main takeaways

(q-)holonomic sequences

- The fast computation of the N-th term in a sequence has important consequences and many applications.
- Given a q-holonomic sequence, we can compute its N-th term faster than naively: $O(\mathbf{M}(\sqrt{N})) = \tilde{O}(\sqrt{N})$ instead of O(N).

$\mathbb{K} = \mathbb{Q}$: Bit complexity

(q-)holonomic sequences

- If q is an integer, the arithmetic complexity model is replaced by the bit-complexity model.
- $\mathbf{M}_{\mathbb{Z}}(n)$ denotes the cost of multiplication of two integers of bitsize n.
- It is now known that $\mathbf{M}_{\mathbb{Z}}(n) = O(n \log n) = \tilde{O}(n)$ [Harvey, van der Hoeven].
- Let B be the bitsize of q and $(u_n)_{n>0}$ q-holonomic. Naively, u_N can be computed in $\tilde{O}(N^3B)$. We can do better (using binary splitting):

Theorem (Bostan, Y. 2020)

Let $q \in \mathbb{Q} \setminus \{1\}$ and $N \in \mathbb{N}$. Let $(u_n)_{n \geq 0}$ be a q-holonomic sequence satisfying the recurrence

$$c_r(q,q^n)u_{n+r}+\cdots+c_0(q,q^n)u_n=0 \qquad n\geq 0,$$

and assume that $c_r(q, q^k)$ is nonzero for k = 0, ..., N. The term u_N can be computed in $\tilde{O}(N^2B)$ bit operations, where B is the bitsize of g.

Computation of several terms

(q-)holonomic sequences

Theorem (Bostan, Y. 2020)

Under the assumptions of the main theorem, let $N_1 < N_2 < \cdots < N_s = N$ be positive integers, where $s \leq \sqrt{N}$. Then, the terms u_{N_1}, \ldots, u_{N_n} can be computed altogether in $O(\mathbf{M}(\sqrt{N})\log N)$ operations in \mathbb{K} .