

Eðlisfræði

Bekkir 5.Y og 5.Z

Leyfileg hjálpargögn:

Skriffæri, jöfnublað og reiknivél af gerðinni Casio fx-350ES PLUS $\hbox{ Petta próf er 8 spurningar, alls 105 stig.}$

Nafn:	bekkur:

	1511 & 151. 1 & 1 4 4 00.00	.2013
1.	Panos stendur í vagni sem rennur með hraðanum $v_0 = 16,0\mathrm{m/s}$ eftir núningslausum fleti. Í vagneru sex stórir steinar, hver með massann $m_s = 88\mathrm{kg}$. Vagninn hefur massann $m_v = 800\mathrm{kg}$ og panosar er $m_\mathrm{P} = 445\mathrm{kg}$. (a) (4%) Hver er skriðþungi (e. momentum) vagnsins ásamt innihaldi?	inum
	(b) (6%) Captain Marvel er að reyna ná Þanosi og þeytist að honum með hraðanum $v_M=200$ Þanosi dettur það snilldarráð í hug að kasta steinum frá borði til þess að auka hraðann sinn. Þarf Þanos að kasta hverjum stein með miklum hraða til þess að ná hraðanum $200\mathrm{m/s}$ og koveg fyrir að Captain Marvel nái honum og berji hann í spað?	Hvač
2.	Kubbur með massa $400\mathrm{g}$ hvílir á núningslausum láréttum fleti. Hann er festur við gorm með gorms $k=62\mathrm{N/m}$ og dreginn út um vegalengd $12\mathrm{cm}$ frá jafnvægisstöðu gormsins. Kubbnum er slepkyrrstöðu þannig að hann byrjar að sveiflast með einfaldri sveifluhreyfingu um jafnvægisstöðu sína (a) (4%) Finnið sveiflutíma kubbsins.	pt úi
	(b) (4%) Finnið hreyfilýsingu kubbsins, það er, finnið staðsetningu hans, $x(t)$, sem fall af tíma.	
	(c) (4%) Við hvaða tíma er hraði kubbsins mestur?	

(d) (4%) Hver er mesta hröðunin sem kubburinn verður fyrir á sveifluhreyfingunni?

3. Vatn streymir í vatnsröri
. Vatnsrörið liggur lárétt í hæðinni $h=1,2\,\mathrm{m}$ og fer úr því að hafa þvermál $a_1=4,5\,\mathrm{cm}$ niður í að hafa þvermál $a_2=1,4\,\mathrm{cm}$ eins og sjá má á mynd. Hraði vatnsins í breiðari endanum er $v_1=0,40\,\mathrm{m/s}$.

(a) (6%) Hver er hraði vatnsins, v_2 , í mjórri enda vatnsrörsins?

(b) (6%) Hver er þrýstingsmunurinn á milli breiðari og mjórri enda vatnsrörsins?

4. Byssukúlu með massa $m=4.8\,\mathrm{g}$ og hraða $v_1=400\,\mathrm{m/s}$ er skotið inn í kubb með massa $M=2.2\,\mathrm{kg}$ sem hvílir á láréttum fleti. Núningsstuðullinn milli kubbsins og flatarins er $\mu=0.10$. Kubburinn er festur við massalausa stöng og af lengd $\ell=50\,\mathrm{cm}$. Kerfið snýst um enda stangarinnar eftir hringferli eins og sýnt er á mynd.

(a) (8%) Finnið hornhraða kerfisins, ω_0 , rétt eftir að byssukúlan hefur stöðvast inni í kubbnum, t.d. með því að nota hverfiþungavarðveislu.

(b) (8%) Hversu langt ferðast kubburinn áður en núningur stöðvar hann? Svarið í radíönum og gráðum. Merkið inn á myndina staðsetningu þar sem kubburinn stöðvast.

- 5. Viserion, dreki Daenerys Targaryen, ætlar að bræða niður hluta ísveggsins. Ísveggurinn er 213 m hár og 91 m á þykkt. Til þess að færa her í gegnum vegginn þarf að bræða hringlaga gat sem hefur geisla 5,0 m.
 - (a) (6%) Hversu mikinn massa af ís þarf Viserion að bræða? (Eðlismassi íss er $917\,\mathrm{kg/m^3}$)

(b) (6%) Hitastig ísveggsins er iðulega um $-17\,^{\circ}$ C. Hversu mikla orku þarf til þess að bræða gat í vegginn af þessari stærð? (Eðlisvarmi íss er $2108\,\mathrm{J/kg}\,\mathrm{K}$ og bræðsluvarmi íss er $334\,\mathrm{kJ/kg}$)

6. Diskur með massa $m=1,2\,\mathrm{kg}$ og geisla $r=50\,\mathrm{cm}$ getur snúist um núningslausann, láréttan ás (sem stefnir út úr blaðinu). Á diskinn eru festir tveir kubbar eins og sjá má á mynd. Vinstra meginn er festur kubbur með massann $\frac{1}{2}m=0,60\,\mathrm{kg}$ en hægra meginn er festur kubbur með massann $m=1,2\,\mathrm{kg}$.

(a) (8%) Finnið hornhröðun kerfisins rétt eftir að því er sleppt úr kyrrstöðu.

(b) (8%) Notið orkuvarðveislu til þess að finna hornhraða kerfisins þegar þyngri massinn er í lægstu stöðu og sá léttari er í efstu stöðu.

- 7. Í tilrauninni Staðbylgjur á streng er lóðahengsli með heildarmassa $M=205\,\mathrm{g}$ fest með streng yfir massalausa trissu við hátalara. Hátalarinn er stilltur þannig að strengurinn titrar með tíðni $f_2=61\,\mathrm{Hz}$ þannig að annar eiginsveifluháttur strengsins sést. Lengd strengsins sem er á sveifluhreyfingu er $\ell=1,00\,\mathrm{m}$.
 - (a) (6%) Finnið massa bandsins m.

(b) (6%) Afl hátalarans er 50 W. Hver er hávaðinn í dB frá hátalaranum í 30 m fjarlægð frá honum?

8. Gegnheill kassi með allar hliðar jafnlangar, $\ell=0.50\,\mathrm{m}$, og með eðlismassa $\rho_k=650\,\mathrm{kg/m^3}$ flýtur úti á rúmsjó. Eðlismassi sjávar er $\rho_s=1027\,\mathrm{kg/m^3}$. (a) (6%) Finnið hæð kassans, y_0 , sem flýtur fyrir ofan yfirborð sjávar.

(b) (5%) **Bónusspurning:** Fugl með massa 9,0 kg sest á kassann svo að yfirborð hans lækkar. Þegar fuglinn flýgur af kassanum byrjar kassinn að sveiflast um jafnvægisstöðu sína með einfaldri sveifluhreyfingu þar sem $\omega^2 = \frac{\rho_s}{\rho_k} \frac{g}{\ell}$. Finnið hreyfilýsingu kassans, y(t).