PH2 Mark Scheme – January 2008

Question			Marking details	Marks Available
1	(a)	(i)	$Q = It (1) [or by impl] = 2.9 \times 10^5 C ((unit)) (1)$	2
		(ii)	Energy = VIt [or equiv. or by impl.] (1) Energy = 3.5 MJ (1) [e.c.f. on Q]	2
	(b)	(i)	$I = 20 \text{ A } (1) \text{ [or by impl, or } \Sigma I \text{]}$ time = 4 hours (1)	2
		(ii)	I. $V = E - Ir(1)$ [or equiv. or 'lost volts' = 0.40 V] V = 11.6 V(1)	2
			II. Greater 'lost volts' or 3 V extra 'lost' (1) Smaller terminal p.d. (1) [or terminal p.d. now 8.6 V]	2
				[10]
2.	(a)		$I = \frac{\Delta Q}{\Delta t} \text{ [or equiv.](1) or No of e's } = \frac{\Delta Q}{e} \text{ or flow rate } = \frac{I}{e}$ No passing through per second = 1.9 × 10 ²¹ s ⁻¹ (1)	2
	(b)		$I = nAve (1) [or by impl.]$ $n = 18 \times 10^{28} \text{ m}^{-3} (1) [or by impl.]$ $v = 0.052 \text{ m s}^{-1} (1) [e.c.f. on factor of 3]$	3
	(c)		 v is a vector, mean speed a scalar [accept: v directed along wire; mean speed not directed] v<< mean speed mean speed [almost entirely] due to randon [thermal] motion 	2
	(d)	(i) (ii)	the same n is [also] the same (1) [throughout wire].	1
			v is greater in the thinner portion – at least partial justification (1)	2
				[10]

Question			Marking details	Marks Available
3	(a)	(i)	$R = \frac{\rho l}{A} (1) \text{ [or by impl.]}$ $A = \pi \left(\frac{0.12 \times 10^{-3}}{2} \right)^2 (1) \left[= 1.14 \times 10^{-8} \text{ m}^2 \right]$	
			$R = 22.5 \Omega$ (1) [e.c.f. on slips of factor of 2 in radius]	3
		(ii)	$\frac{1}{R} = \sum_{i=1}^{7} \frac{1}{R_i} \text{ [or equiv or by impl.] (1) or } R_{\text{Tot}} = \frac{R_{\text{strand}}}{7} \text{ [or by impl.]}$	
			$R_{\text{Tot}} = 3.2 \Omega (1) \text{ [e.c.f. on } R_{\text{strand}} \text{]}$	2
		\ /	Treat as one conductor with 7 times the c.s.a. [or accept calculation]	1
	<i>(b)</i>	(i)	$P = I^2R$ (1) [or $P = IV$ and $V = IR$]	
			So $P = I^2 \frac{\rho l}{A}$ (1) [use of ρ formula must be clear].	2
		(ii)	$\left(\frac{P}{l}\right)_{X} = \frac{\rho I^{2}}{\pi (d/2)^{2}}; \left(\frac{P}{l}\right)_{Y} = \frac{\rho (2I)^{2}}{\pi (2d/2)^{2}} [\text{or equiv.}] (1)$	
			Same $\frac{P}{I}$ for X and Y (1) [Awarded only if recognisable attempt at	
			correct reasoning]	2
				[10]
4.	(a)	(i)	80, 120, 80	1
		(ii)	Protons and neutrons in nucleus [accept centre of atom] and electrons outside nucleus / in orbitals / orbiting	1
		(iii)	202 in top box (1); and 80 in bottom box(1)	2
	(b)	(i)	I. $E = \frac{hc}{\lambda}$ (1) or $E = hf$ and $f = \frac{c}{\lambda}$; $E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{254 \times 10^{-9}}$ (1)	2
			II. Output power = 13 W (1) [or Power emitted = Energy emitted per second.]	
			$\therefore 1.7 \times 10^{19} \text{ photons s}^{-1}. (1)[\text{e.c.f. on power}]$	2
		(ii)	Downward arrow shown between -8.8 and -16.6×10^{-19} J levels.	1
		(iii)	254 is in the ultraviolet. [Accept λ too small or λ not between 400 and 700 nm]	1
				[10]

Question			Marking details	Marks Available
5	(a)		Target [accept metal] hit by electrons (1). Target [or decelerating electron(s)] emits X-rays (1)	2
	<i>(b)</i>	(i)	$34 \times 10^{-12} \text{ m or } 38 \times 10^{-12} \text{ m [accept } 39 \times 10^{-12} \text{ m]}$	1
		(ii)	$\lambda_{\min} = 15.5 \ [\pm 0.5] \times 10^{-12} \ \text{m} \ (1)$ $V = 80 \ \text{kV} \ (1) \ [\text{e.c.f. on slips} \ \text{in } \lambda_{\min}]$	2
		(iii)	I. Continuous spectrum labelled 'background' II. Decelerating electrons [or equiv] emit e-m rad ⁿ .	1 1
	(c)		 X-rays penetrate matter. Denser matter [e.g. bone] not penetrated as much [or absorbs more]. X-rays affect photographic plate [so image can be formed] 	
			 Sharp shadows cast because of short λ. 	3
				[10]

Que	Question		Marking details	Marks Available
6	(a)		N.B. The diagram requirement could be satisfied by either a photo- emissive cell in a circuit or a negatively charged gold-leaf electroscope with a suitable metal surface (e.g. a zinc plate) Emissive surface shown on a diagram (1) Suitably placed detector shown on diagram (1) Light or u-v illuminating surface either shown on diagram or stated in words. (1) Potentials correct (1) [i.e. cell correct way round or no cell, or negative p.d. or negatively charged electroscope] What is observed (1) [i.e. current registered or leaf falls].	5
	(b)	(i)	I. [emitted] electron II. [incident] photon	1 1
		(ii)	1 electron takes energy from 1 photon [or equiv. or by impl.] (1) ϕ is the [minimum] energy electron needs to escape surface. (1) So electron's ['left over'] energy is less than photon's [by ϕ]. (1)	3
	(c)	(i)	Vertical axis labelled $\frac{1}{2}mv_{\text{max}}^2/10^{-19}$ J [or equiv.] with scale (1) Points correctly plotted (1)	2
		(ii)	Graph line (1). 4.5×10^{14} Hz or 4.6×10^{14} Hz. (1)	2
		(iii)	$3.0 [\pm 0.4] \times 10^{-19} $ J	1
		(iv)	$h = \text{slope of graph [or by impl.] (1)}$ $h = \frac{(1.21 - 0.13) \times 10^{-19}}{(6.38 - 4.74) \times 10^{14}} \text{ Js [or equiv.] [N.B. Method mark] (1)}$ $= 6.6 \times 10^{-34} \text{ Js ((unit)) (1)}$	3
		(v)	[e.c.f. on slips in 10 ⁿ] Intensity [at a given frequency] doesn't affect individual photon energies. (1) Intensities don't have to be the same [because Einstein's equn involves individual photon energies] (1).	2
				[20]

Question			Marking details	Marks Available
7	(a)	(i)	$\frac{V_{\text{R}}}{V_{\text{Tot}}} = \frac{R}{R_{\text{Tot}}} \text{ [or equiv] } \mathbf{or} I = 20 \text{ mA (1)}$ So $\frac{V_{\text{CD}}}{6} = \frac{50}{300} \mathbf{or} V_{\text{CD}} = 0.02 \times 50 \text{ V (1)}$	2
		(ii)	6 300 2.0 3.0 4.0 5.0 ½ for each correct box, rounded down.	2
	(b)		Any arrangement which drives current through coil (1). Meters correctly placed (1). Potential divider used correctly (2) [Potential divider used as rheostat → (1)]	4
	(c)	(i)	3.3 [±0.3] V [if justified by drawn graph]	1
		(ii)	I. $12.5 \pm 0.5 \Omega$ II. $16 - 17 \Omega$	1 1
		(iii)	Graph drawn with horizontal line starting from $V = 0$ (1) bends upwards [> ~ 3 V] from 'earlier' straight line. (1)	2
		(iv)	 I. [Free] electrons collide with ions (1) [accept atoms / lattice] raising random energy (1) of ions and free electrons [or making ions vibrate more vigorously, or equiv.] II. mean drift velocity reduced or [free] electrons collide more often with ions. 	2
		(v)	I. $R_{25} = 12.5 \Omega (1) \text{ [e.c.f. from } (c)(\text{ii})\text{I.]}$ $R_0 = \frac{R_\theta}{1 + \alpha \theta} \text{ [correct re-arrangement at any stage] [=11.26 \Omega] (1)}$	
			[Accept starting with R_{θ} , R_0 and θ and finishing with α . 2 nd mark only awarded if comment made about consistency]	2
			II. $R_0 = 11.3 \ \Omega$, $R_\theta = 16.7 \ \Omega$ [e.c.f. from $(c)(ii)I.$] (1) $\theta = 109 \ [\pm 5] \ ^{\circ}C \ (1)$	2
				[20]