

### Vollständig elastische teilelastische und vollständig unelastische Stöße zweier Massen in der Ebene

Adis Talic

Abdulkadir Bülbül



- 1. Problemstellung des Programms
- 2. Mathedokumentation
- 3. Programmvorstellung
- 4. Beispielablauf

Gliederung

Das Programm soll zwei homogene Körper mit kreisförmigem Querschnitt simulieren, wie die sich reibungsfrei in einem achteckigen Gebiet bewegen und gegeneinander oder an der Bande kollidieren.

### Problemstellung des Programms





### Beschreibung des Programmes

Masse  $1 = m_1$ 

Masse  $2 = m_2$ 

Anfangsposition Kreis  $1 = x_1(0)$ 

Anfangsposition Kreis  $2 = x_2(0)$ 

Körpermittelpunkt 1 =  $\overline{Z_1}$ 

Körpermittelpunkt  $2 = \overline{Z_2}$ 

Geschwindigkeit Kreis  $1 = v_1(0)$ 

Geschwindigkeit Kreis  $2 = v_2(0)$ 





### Beschreibung des Programmes

Zeitpunkt Kollision Ball  $1 = x_1(t^*)$ 

Zeitpunkt Kollision Ball 2 =  $x_2(t^*)$ 

Verbindungsvektor  $\overrightarrow{b} = Z_1 Z_2$ 





## Beschreibung des Programmes

Währen Stoß ausgeübte Kräfte auf:

Masse 
$$m_1 = \overrightarrow{F_1}$$

Masse 
$$m_2 = \overrightarrow{F_2}$$



### Kollisionsmodell 1 - Kollision mit der Bande

• Bei der Kollision mit der Bande ist der Stoßvektor  $\hat{\mathcal{G}}$  dem Normalvektor  $\hat{\mathcal{H}}$  der Bande entgegengesetzt. Deswegen zerlegen wir die Geschwindigkeit  $\vec{\mathcal{H}}$  in zwei Komponenten.

- Nach dem Stoß kehrt sich die Geschwindigkeitskomponente 📆 um.
- Vollelastischer Stoß:  $\overrightarrow{V_n} = -\overrightarrow{V_n}$   $\overrightarrow{V_n} = -\overrightarrow{V_n} + \overrightarrow{V_n}$
- ・ Teilelastischer Stoß ( Betrag verringert sich abhängig vom Faktor ε): ボニーをボ ゲニーをボーザ
- Total unelastischer Stoß:  $\overrightarrow{V_{11}} = 0$   $\overrightarrow{V_{1}} = \overrightarrow{V_{1}}$   $\overrightarrow{V} = \overrightarrow{V_{1}}$



### Kollisionsmodell 1 - Kollision mit der Bande

$$\nabla^2 = \nabla_{11} + \nabla_{22}$$

$$\nabla^2 = -2\nabla_{11} + \nabla_{22}$$

$$\nabla^2 = -2\nabla_{11} + \nabla_{22}$$





### Stoß zweier Scheiben

- Benötigt für den Stoß zweier Scheiben, ist einerseits der Verbindungsvektor  $\mathcal{J}$  der Massenmittelpunkte, die Geschwindigkeitsvektoren  $\mathcal{J}$  und die Schwerpunktgeschwindigkeit.
- Die Geschwindigkeitsvektoren  $\overrightarrow{U_1}$   $\overrightarrow{U_2}$  werden jeweils in zwei Komponenten unterteilt:

$$\overline{U_1} = \overline{U_1} + \overline{U_1}$$

$$\overline{U_2} = \overline{U_2} + \overline{U_2}$$

• Die Komponente kann mithilfe der Formel für orthogonale Projektion berechnet werden:

$$\frac{1}{\left|\left(\frac{a}{b} \cdot 5\right)\right|} \cdot \frac{1}{\left|\left(\frac{a}{b} \cdot 5\right|} \cdot \frac{1}{\left|\left(\frac{a}{b} \cdot 5\right|} \cdot \frac{1}{\left|\left(\frac{a}{b} \cdot 5\right|} \cdot \frac{1}{$$



### Stoß zweier Scheiben

• Den Verbindungsvektor berechnet man in Abhängigkeit der Körpermitten:

• Die Schwerpunktgeschwindigkeit ist dadurch, dass keine äußeren Kräfte einwirken, immer konstant, das heißt das der Vektor für alle Zeiten durch die Anfangsgeschwindigkeit festgelegt ist:

Die Geschwindigkeitsvektoren im Schwerpunktsystem (vor dem Stoß):

$$\overline{U_1} = \overline{V_1(H)} - \overline{V} - \overline{V} = \frac{m_2}{m_1 + m_2} (\overline{V_1}(H) - \overline{V_2}(H))$$

$$\overline{U_2} = \overline{U_2} = \frac{n_1}{m_1 + n_2} (\overline{U_2}) - \overline{U_1} (\overline{U_1})$$

T5.U6.2U23 Präsentationstitel 10



### Durch die

• Durch die errechneten Angaben von gerade eben können wir die eigentlichen Formeln zur Berechnung der Geschwindigkeitsvektoren ( nach dem Stoß) berechnen:

$$U_1 = -EU_{111} + U_{11}$$
 $U_2 = -EU_{112} + U_{21}$ 

• Damit können wir die Geschwindigkeit der Massen nach dem Stoß errechnen:

$$\vec{v} = \vec{v} + \vec{v}$$



# Programmvorstellung



### Beispiel 1

- Die Bälle prallen senkrecht auf einander ein
- Der Geschwindigkeitsvektor sowie die Geschwindigkeit nach dem Stoß muss berechnet werden

#### Simulation einfacher dynamischer Systeme

Projekt 2: Elastische, teilelastische und inelastische Stöße zweier Massen in der Ebene

#### Anwendung auf das Beispiel von Folie 18:

- Zwei identische Kreisscheiben mit Massen  $m_1 = m_2 = 1$  und Radien  $r_1 = r_2 = 2$  befinden sich zum Zeitpunkt t = 0 an den Positionen  $x_1(0) = (-11, 0)$  bzw.  $x_2(0) = (0, -11)$ .
- Sie bewegen sich mit Geschwindigkeiten  $\overrightarrow{v_1} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$  bzw.  $\overrightarrow{v_2} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$  auf einen Kollisionspunkt zu.







#### Beispiel1

Gesucht: 
$$\overrightarrow{u_1} = -\epsilon \overrightarrow{u_1}_{\parallel} + \overrightarrow{u_1}_{\perp} ; \overrightarrow{u_2} = -\epsilon \overrightarrow{u_2}_{\parallel} + \overrightarrow{u_2}_{\perp}$$

$$\frac{\overrightarrow{u}_{1}}{\overrightarrow{u}_{2}} = \frac{\overrightarrow{v}_{1}(\overrightarrow{t})}{\overrightarrow{v}_{1}(\overrightarrow{t})} - \overrightarrow{V}$$

$$\frac{\overrightarrow{v}_{2}}{\overrightarrow{v}_{1}} = \frac{\overrightarrow{v}_{2}(\overrightarrow{t})}{\overrightarrow{v}_{2}(\overrightarrow{t})} - \overrightarrow{V}$$

$$\frac{\overrightarrow{v}_{1}}{\overrightarrow{v}_{2}} = \frac{\cancel{v}_{1}(\overrightarrow{t})}{\cancel{v}_{1}(\overrightarrow{t})} + \frac{\cancel{v}_{2}}{\cancel{v}_{1}(\overrightarrow{t})} + \frac{\cancel{v}_{2}}{\cancel{v}_{2}(\overrightarrow{t})} = 1,5$$

$$\frac{\overrightarrow{u}_{1}}{\overrightarrow{v}_{2}} = \binom{3}{3} - \binom{\frac{3}{2}}{\frac{3}{2}} = \binom{\frac{3}{2}}{\frac{3}{2}} = 1,5$$

$$\frac{\overrightarrow{u}_{2}}{\overrightarrow{v}_{2}} = \binom{3}{3} - \binom{\frac{3}{2}}{\frac{3}{2}} = \binom{\frac{3}{2}}{\frac{3}{2}} = 1,5$$

$$\frac{\overrightarrow{v}_{1}}{\cancel{v}_{2}} = \binom{3}{3} - \binom{\frac{3}{2}}{\frac{3}{2}} = \binom{\frac{3}{2}}{\frac{3}{2}} = 1,5$$

$$\frac{\overrightarrow{u1}_{11}}{\overrightarrow{u1}_{11}} = \left(\frac{\overrightarrow{\frac{1}{2}}}{\cancel{b} \cdot \cancel{b}}\right) \cdot \overrightarrow{b}$$

$$\frac{\overrightarrow{u1}_{11}}{\cancel{b}} = \left(\frac{\frac{3}{2}}{\cancel{b}}\right) \cdot \frac{\cancel{2}\cancel{17}(3)}{\cancel{b}} \cdot \frac{\cancel{2}\cancel{17}(3)}{\cancel{2}\cancel{17}(3)} = \left(\frac{\frac{3}{2}}{\cancel{2}}\right) = \overrightarrow{u1}$$

$$= \frac{(\cancel{\frac{1}{2}}}{\cancel{2}}) \cdot \frac{\cancel{2}\cancel{17}(3)}{\cancel{2}\cancel{17}(3)} \cdot \frac{\cancel{2}\cancel{17}(3)}{\cancel{2}\cancel{17}(3)} = \left(\frac{\frac{3}{2}}{\cancel{2}}\right) = \overrightarrow{u1}$$

$$= \frac{(\cancel{\frac{1}{2}}}{\cancel{2}}) \cdot \frac{\cancel{2}\cancel{17}(3)}{\cancel{2}\cancel{17}(3)} \cdot \frac{\cancel{2}\cancel{17}(3)}{\cancel{2}\cancel{17}(3)} = \left(\frac{\frac{3}{2}}{\cancel{2}}\right)$$

$$= 1,5$$

$$= 1,5$$

$$= 1,5$$

$$= 1,5$$

$$\frac{\overrightarrow{u}_{1}}{\overrightarrow{u}_{1}} = \frac{\overrightarrow{u}_{1}}{\overrightarrow{u}_{1}} - \frac{\overrightarrow{u}_{1}}{\overrightarrow{u}_{1}} 
\frac{\overrightarrow{u}_{1}}{\overrightarrow{u}_{1}} = \frac{\overrightarrow{u}_{1}}{\cancel{\frac{1}{2}}} - \frac{\overrightarrow{u}_{2}}{\cancel{\frac{1}{2}}} = \stackrel{(0)}{0}$$

$$\frac{\overrightarrow{u}_{1}}{\cancel{u}_{2}} = \frac{\overrightarrow{u}_{2}}{\cancel{\frac{1}{2}}} - \frac{\overrightarrow{u}_{2}}{\cancel{\frac{1}{2}}} = \stackrel{(0)}{0}$$



#### Fälle:

#### Vollständig elastischer Stoß

$$\frac{\overrightarrow{u_1}}{\overrightarrow{u_1}} = -\sqrt{\frac{\overrightarrow{u_1}}{u_1}} + \frac{\overrightarrow{u_1}}{u_1} = -\frac{\overrightarrow{u_1}}{u_1}$$

$$\frac{\overrightarrow{u_1}}{\overrightarrow{u_2}} = -\frac{\overrightarrow{u_1}}{u_2} = -\frac{\overrightarrow{u_1}}{u_2} = -\frac{\overrightarrow{u_1}}{u_2}$$

$$= -\frac{\overrightarrow{u_1}}{u_2} = -\sqrt{\frac{\overrightarrow{u_1}}{u_2}} + \frac{\overrightarrow{u_2}}{u_2} = -\frac{\overrightarrow{u_2}}{u_2}$$

$$\overline{\mathbf{u}_{\mathbf{\lambda}}} = -\overline{\mathbf{u}_{\mathbf{\lambda}}} = \begin{pmatrix} \frac{3}{\lambda} \\ -\frac{1}{\lambda} \end{pmatrix} = 1.5$$

#### Geschwindigkeit im Laborsystem

$$\frac{\overrightarrow{v}_1}{\overrightarrow{v}_1} = \frac{\overrightarrow{v}_1}{\overrightarrow{v}_1} + \frac{\overrightarrow{V}}{\overrightarrow{V}} = \frac{\binom{0}{3}}{\binom{3}{0}}$$

$$\frac{\overrightarrow{v}_1}{\overrightarrow{v}_2} = \frac{\cancel{v}_1}{\cancel{v}_2} + \frac{\cancel{V}}{\overrightarrow{V}} = \frac{\binom{3}{0}}{\binom{3}{0}}$$

#### teilelastischer Stoß

$$\frac{\overrightarrow{Q}_{1}}{\overrightarrow{Q}_{1}} = -\frac{\cancel{Q}_{1}}{\cancel{Q}_{1}} + \frac{\overrightarrow{Q}_{1}}{\cancel{Q}_{1}} = -\frac{\cancel{Q}_{1}}{\cancel{Q}_{1}}$$

$$\frac{\overrightarrow{Q}_{1}}{\overrightarrow{Q}_{1}} = -\frac{\cancel{Q}_{1}}{\cancel{Q}_{1}} + \frac{\overrightarrow{Q}_{1}}{\cancel{Q}_{1}} = -\frac{\cancel{Q}_{1}}{\cancel{Q}_{1}}$$

$$\frac{\overrightarrow{Q}_{1}}{\overrightarrow{Q}_{1}} = -\frac{\cancel{Q}_{1}}{\cancel{Q}_{1}} + \frac{\cancel{Q}_{1}}{\cancel{Q}_{1}} = -\frac{\cancel{Q}_{1}}{\cancel{Q}_{1}}$$

$$\frac{\overrightarrow{Q}_{1}}{\cancel{Q}_{1}} = -\frac{\cancel{Q}_{1}}{\cancel{Q}_{1}} + \frac{\cancel{Q}_{1}}{\cancel{Q}_{1}} = 0.75$$

$$\frac{\overrightarrow{Q}_{1}}{\cancel{Q}_{1}} = -\frac{\cancel{Q}_{1}}{\cancel{Q}_{1}} + \frac{\cancel{Q}_{1}}{\cancel{Q}_{1}} = 0.75$$

$$\frac{\overrightarrow{Q}_{1}}{\cancel{Q}_{1}} = -\frac{\cancel{Q}_{1}}{\cancel{Q}_{1}} + \frac{\cancel{Q}_{1}}{\cancel{Q}_{1}} = 0.75$$

#### Geschwindigkeit im Laborsystem

$$\frac{\overrightarrow{v_1}}{v_1} = \frac{\overrightarrow{v_1}}{v_1} + \overrightarrow{V} = \underbrace{\left(\frac{3}{4}\right)}_{=2,25}^{=0,75}$$

$$= \underbrace{\overrightarrow{v_1}}_{v_2} + \overrightarrow{V} = \underbrace{\left(\frac{3}{4}\right)}_{=0,75}^{=2,25}$$

$$= \underbrace{0,75}_{=0,75}$$

#### Vollständig inelastischer Stoß

$$\frac{\overrightarrow{u_1}}{=0} = 0$$

$$\frac{\overrightarrow{u_1}}{=0} = 0$$

$$\frac{\overrightarrow{u_1}}{=0} = 0$$

$$\frac{\overrightarrow{u_2}}{=0} = 0$$

$$\overline{\mathbf{u}_{\mathbf{x}'}} = ()$$

#### Geschwindigkeit im Laborsystem

$$\frac{1}{\sqrt{1}} = \frac{3}{\sqrt{1}} + \sqrt{1} = \frac{3}{2} \left(\frac{1}{1}\right)^{1} = \frac{1.5}{1.5}$$

$$\frac{1}{\sqrt{2}} = \frac{3}{2} \left(\frac{1}{1}\right)^{1} = \frac{1.5}{1.5}$$

$$\frac{3}{\sqrt{2}} = \frac{3}{2} \left(\frac{1}{1}\right)^{1} = \frac{1.5}{1.5}$$

### Beispiel 2

- Der zweite Ball ist in Ruhe
- Der
   Geschwindigkeitsvektor
   sowie die Geschwindigkeit
   nach dem Stoß muss
   berechnet werden

#### Simulation einfacher dynamischer Systeme

Projekt 2: Elastische, teilelastische und inelastische Stöße zweier Massen in der Ebene

#### Beispiel: Scheibe 2 anfangs in Ruhe

- Aus dem Diagramm unten lesen wir ab:  $\overrightarrow{x_1}(0) = (-14, 1, 0), \ \overrightarrow{v_1}(0) = (3, 0, 0), \ \overrightarrow{x_2}(0) = (0, 0, 0), \ \overrightarrow{v_2}(0) = (3, 0, 0) \text{ sowie } r_1 = r_2 = 2.$
- Zum Stoßzeitpunkt ergibt sich für den Verbindungsvektor  $\vec{b}$  die Gleichung  $\|\vec{b}\|^2 = (b_1)^2 + (-1)^2 = 16$  mit der Lösung  $b_1 = \sqrt{15}$ .





- Verbindungsvektor wurde nicht gegeben
- Selbe Schritte wie beim ersten Beispiel

Deiopiel 2

$$||\vec{b}||^{2} = (bn)^{2} + \vec{b}|^{2} = (rx + rz)^{2}$$

$$16 = (bn)^{2} + 1^{2}$$

$$b_{1} = \sqrt{15}$$

$$b_{2} = \sqrt{15}$$

$$b_{3} = \sqrt{15}$$

$$b_{4} = \sqrt{15}$$

$$b_{5} = (45) = 3.872$$

$$||\vec{b}||^{2} = -e^{-\frac{1}{12}} + e^{-\frac{1}{12}}$$

$$||\vec{b}||^{2} = -e^{-\frac{1}{12}} + e^{-\frac{1}{12}} + e^{-\frac{1}{12}}$$

$$||\vec{b}||^{2} = -e^{-\frac{1}{12}} + e^{-\frac{1}{12}} + e^{-\frac{1}{12$$

Einschen der Weste

$$\frac{1.3 + 1.6}{1 + 1} = \frac{3}{2} = 1.5$$
 $\frac{1.3 + 1.6}{1 + 1} = \frac{3}{2} = 1.5$ 
 $\frac{1.3 + 1.6}{1 + 1.6} = \frac{3}{2} = 1.5$ 
 $\frac{1.3 + 1.5}{1.2} = \frac{1.5}{2} = \frac{1.5}{2}$ 
 $\frac{1.5}{1.5} = \frac{1.5}{1.5}$ 
 $\frac{1.5}{1.5} = -1.5$ 

$$\frac{1}{11} = \frac{\begin{pmatrix} \frac{3}{2} \\ \frac{1}{6} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{45} \\ -1 \end{pmatrix}}{\begin{pmatrix} \frac{1}{45} \\ -1 \end{pmatrix}} \cdot \begin{pmatrix} \frac{1}{45} \\ -1 \end{pmatrix} \cdot \begin{pmatrix} \frac{3}{2} \\ -1 \end{pmatrix} \cdot \begin{pmatrix} \frac{3}{2$$

$$\frac{U_{21}}{=} = \frac{U_{2}}{U_{2}} - \frac{U_{21}}{2}$$

$$= \frac{3}{2} - \frac{45}{32}$$

$$= \frac{3}{3\sqrt{15}} - 0.082$$

$$= \frac{3}{3\sqrt{15}} = -0.262$$

• Vollatandia elactocher offold

$$\begin{array}{lll}
U_1 &= -1 \cdot U_{2||} + U_{1|} &= -1 \cdot U_{2||} + U_{1|} &= -1 \cdot U_{2||} \\
&= -1 \cdot \left( \frac{U_1}{52} \right) + \left( \frac{3}{52} \right) \\
&= -1 \cdot \left( \frac{U_2}{52} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{52} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{52} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{52} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{52} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{52} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{3}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{U_2}{32} \right) + \left( \frac{U_2}{32} \right) \\
&= -1 \cdot \left( \frac{U_2}{32} \right) + \left( \frac{U_2}{32} \right) + \left( \frac{U_2}{32} \right)$$

$$\frac{G_{1}}{G_{4}} = \frac{G_{1}G_{2}}{G_{4}} = -0.603$$

$$= -0.603$$

$$= -0.603$$

$$= -0.603$$

Seochwindigheit in Laborayoten
$$\overline{V'_{1}} = \overline{U'_{1}} + \overline{V} = \begin{pmatrix} \frac{39}{64} \\ \frac{9\sqrt{167}}{64} \end{pmatrix} + \begin{pmatrix} \frac{3}{2} \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{57}{64} \\ \frac{9\sqrt{167}}{64} \end{pmatrix} = 0.644$$

$$\overline{V'_{2}} = \overline{U'_{2}} + \overline{V} = \begin{pmatrix} \frac{39}{64} \\ \frac{9\sqrt{167}}{64} \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{3}{2} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{39}{64} \\ \frac{9\sqrt{15}}{64} \\ 0 \end{pmatrix} = -0.644$$

$$= \frac{1}{2} \cdot \begin{pmatrix} \frac{45}{52} \\ \frac{2\sqrt{45}}{32} \end{pmatrix} + \begin{pmatrix} \frac{3}{32} \\ \frac{2\sqrt{45}}{32} \end{pmatrix}$$

$$= \begin{pmatrix} 45 \\ 64 \\ -345 \\ 64 \end{pmatrix} + \begin{pmatrix} 3 \\ 32 \\ 32 \end{pmatrix}$$

$$(12)' = \begin{pmatrix} 39 \\ 64 \\ -475 \\ 64 \end{pmatrix} = -01544$$

$$\frac{\sqrt{2}}{\sqrt{2}} = \sqrt{2} + \sqrt{2} = \begin{pmatrix} \frac{39}{64} \\ \frac{485}{64} \\ \frac{9}{64} \end{pmatrix} = 2.109$$

$$= -0.544$$

• Vollationing inelasticates that
$$\begin{aligned}
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} + \frac{1}{12} = -121 \\
& = -0 \cdot \frac{1}{12} = -1$$