

Kwangwoon University Machine Learning Study STG Team C

Principal Component Analysis

- : The most popular dimensionality reduction algorithm
- : Linear transformation
- : The point is {Variance}

2D scatter plot

Accuracy Cost	Low	High
Low	Meaningless	PROFIT!
High	Meaningless	Good

PCA: Principal Component

SVD?

PCA: Singular Value Decomposition

PCA: Projecting Down to *d* Dimensions

3D to **2D** Conversion

PCA: Projecting Down to *d* Dimensions

$$X d$$
-proj = $X \cdot W d$

3D to **2D** Conversion

PCA: Projecting Down to *d* Dimensions

Recovered MNIST data From **154-d** to **784-d**

X recovered = X d-proj · WT d

Recovered MNIST data From **154-d** to **784-d**

Limited resources

PCA: Incremental, Random and Kernel approach

Mini batch method

PCA: Incremental, Random and Kernel approach

```
def _fit_truncated(self, X, n_components, svd_solver):
    """Fit the model by computing truncated SVD (by ARPACK or randomized)
    on X.
    """
    n_samples, n_features = X.shape
```

Random PCA == Truncated SVD

Time complexity comparison

PCA with full SVD: $O(m * n^2) + O(n^3)$

PCA with Truncatted SVD: $O(m * d^2) + O(d^3)$

Welcome back, Kernel Trick!

$$\mathbf{x}=(x_1,x_2,x_3)^T \ \mathbf{y}=(y_1,y_2,y_3)^T$$

Assume that we need to map x and y to **9-d space**.

$$\mathbf{x}=(x_1,x_2,x_3)^T \ \mathbf{y}=(y_1,y_2,y_3)^T$$

Assume that we need to map x and y to **9-d space**.

$$\phi(\mathbf{x}) = (x_1^2, x_1x_2, x_1x_3, x_2x_1, x_2^2, x_2x_3, x_3x_1, x_3x_2, x_3^2)^T \ \phi(\mathbf{y}) = (y_1^2, y_1y_2, y_1y_3, y_2y_1, y_2^2, y_2y_3, y_3y_1, y_3y_2, y_3^2)^T$$

Time complexity: O(n²)

$$\phi(\mathbf{x})^T\phi(\mathbf{y})=\sum_{i,j=1}^3 x_ix_jy_iy_j$$

Time complexity: O(n)

$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^d$$

$$k(\mathbf{x},\mathbf{y}) = e^{-\gamma \|\mathbf{x}-\mathbf{y}\|^2}, \gamma > 0$$

Polynomial

Radial Basis

$$egin{aligned} \sum_{j=1}^k w_{ij} ec{x}_j &pprox ec{x}_i \ \end{pmatrix} &pprox ec{x}_i \ \end{pmatrix} = \left\| ec{x}_i - \sum_{j=1 top j
eq i}^k w_{ij} ec{x}_j
ight\|^2 \ & ext{s.t.} \quad \sum_{j=1 top j
eq i}^k w_{ij} = 1 \end{aligned}$$

$$egin{aligned} \mathbf{min} & arepsilon_i(\mathbf{w}) = \left\| \overrightarrow{x_i} - \sum_{\substack{j=1 \ j
eq i}}^k w_{ij} \overrightarrow{x_j}
ight\|^2 \ & ext{s.t.} & \sum_{\substack{j=1 \ j
eq i}}^k w_{ij} = 1 \ & \mathbf{min} & arepsilon_i(\mathbf{w}) = \left\| \overrightarrow{x_i} - \sum_{\substack{j=1 \ j
eq i}}^k w_{ij} \overrightarrow{x_j}
ight\|^2 = \mathbf{w}_i^T \mathbf{G}_i \mathbf{w}_i \ & ext{s.t.} & \sum_{\substack{j=1 \ i
eq i}}^k w_{ij} = 1 = \mathbf{1}^T \mathbf{w}_i \end{aligned}$$

$$\min \;\;\; arepsilon_i(\mathbf{w}) = \left\| \overrightarrow{x_i} - \sum_{\substack{j=1 \ j
eq i}}^k w_{ij} \overrightarrow{x_j}
ight\|^2 = \mathbf{w}_i^T \mathbf{G}_i \mathbf{w}_i$$

s.t.
$$\sum_{j=1 \atop i \neq j}^k w_{ij} = 1 = \mathbf{1}^T \mathbf{w}_i$$

s.t.
$$\sum_{j=1 \atop j \neq i}^k w_{ij} = 1 = \mathbf{1}^T \mathbf{w}_i$$

Lagrangian Function L
 $L(\mathbf{w}_i, \lambda) = \mathbf{w}_i^T \mathbf{G}_i \mathbf{w}_i - \lambda \left(\mathbf{1}^T \mathbf{w}_i - 1\right)$

Partial differentiation

$$\mathbf{v}_i - \lambda \mathbf{1}, \quad (\mathbf{G}_i =$$

$$egin{aligned} rac{\partial L}{\partial \mathbf{w}_i} &= \left(\mathbf{G}_i + \mathbf{G}_i^T\right) \mathbf{w}_i - \lambda \mathbf{1}, & \left(\mathbf{G}_i = \mathbf{G}_i^T\right) \ &= 2 \mathbf{G}_i \mathbf{w}_i - \lambda \mathbf{1} \ &= 0 \end{aligned}$$

$$\therefore \mathbf{w}_i = rac{\lambda}{2} \mathbf{G}_i^{-1} \mathbf{1}$$

$$\min \hspace{0.1cm} \Phi(\mathbf{Y}) = \sum_{i=1}^m \left\| ec{y}_i - \sum_{j=1 top j
eq i}^k w_{ij} ec{y}_j
ight\|^2$$

 $O(m \log(m) n \log(k))$ for finding the k nearest neighbors

O(mnk^3) for optimizing the weights

O(dm^2) for constructing the low-dimensional representations

Other Dimensionality Reduction Techniques

- MDS: Multidimensional Scaling
- Isomap
- t-SNE: t-Distributed Stochastic Neighbor Embedding
- LDA: Linear Discriminant Analysis (Actually a classification algorithm)

수고하셨습니다

Jiwoon Lee @metr0jw https://metr0jw.studio/