Markov Decision Processes: Discrete Stochastic Dynamic Programming

Peng Lingwei

July 28, 2019

Contents

4	Cha	pter4: Finite-Horizon Markov Decision Processes	2
	4.1	OPTIMALITY CRITERIA	2
		4.1.1 Some Preliminaries	2
		4.1.2 The Expected Total Reward Criterion	2
		4.1.3 Optimal Policies	3
	4.2	FINITE-HORIZON POLICY EVALUATION	3
	4.3	OPTIMALITY EQUATIONS AND THE PRINCIPLE OF OP-	
		TIMALITY	4
	4.4	OPTIMALITY OF DETERMINISTIC MARKOV POLICIES	6
	4.5	BACKWARD INDUCTION	7
	4.6	OPTIMALITY OF MONOTONE POLICIES	7
		4.6.1 Structured Policies	7
		4.6.2 Superadditive Functions	7
	4.7	Optimality of Monotone Policies	7
5	Infi	nite-Horizon Models: Foundations	8
	5.1	THE VALUE OF A POLICY	8
	5.2	MARKOV POLICIES	8
6	Dis	counted Markov Decision Problems	10
	6.1	POLECY EVALUATION	10
	6.2	OPTIMALITY EQUATIONS	10

Chapter4: Finite-Horizon Markov Decision Pro-4 cesses

OPTIMALITY CRITERIA 4.1

4.1.1Some Preliminaries

About MDP:

- 1. $\pi = (d_1, d_2, \dots, d_{N-1}, \dots) \in \Pi^{HR}$;
- 2. $h_N = (s_1, a_1, s_2, \dots, s_N)$
- 3. Rewards sequence: $\{r_1(s_1, a_1), r_2(s_2, a_2), \dots, r_{N-1}(s_{N-1}, a_{N-1}), r_N(s_N)\}$
 - $\pi \in \Pi^{HD}$, $\{r_1(X_1, d_1(h_1)), \dots, r_{N-1}(X_{N-1}, d_{N-1}(h_{N-1})), r_N(X_N)\}$
 - $\pi \in \Pi^{MD}$, $\{r_1(X_1, d_1(X_1)), \dots, r_{N-1}(X_{N-1}, d_{N-1}(X_{N-1})), r_N(X_N)\}$
- 4. $R = (R_1, R_2, ..., R_N)$, where $R_t = r_t(X_t, Y_t)$, and $|R_t| \le M < \infty$.
- 5. $\mathbb{P}_{R}^{\pi}(\rho_{1}, \rho_{2}, \dots, \rho_{N}) = \mathbb{P}^{\pi}\left[\left\{\left(s_{1}, a_{1}, \dots, s_{N}\right) : \left(r(s_{1}, a_{1}), \dots, r_{N}(s_{N})\right) = (\rho_{1}, \dots, \rho_{N})\right\}\right]$

Definition:

1. The random vairable U is stochastically greater than V:

$$\forall t \in \mathbb{R}, \quad P(V > t) \le P(U > t).$$

2. Probability distribution P_2 is stochastically greater than P_1 if:

$$\forall t \in \mathbb{R}, \quad \int_{t}^{\infty} p_1(t)dt \le \int_{t}^{\infty} p_2(t)dt.$$

3. The random vector $\vec{U} = (U_1, \dots, U_n)$ is stochastically greater than the random vector $\vec{V} = (V_1, \dots, V_n)$:

$$\forall f \in \{f : \mathbb{R}^n \to \mathbb{R} | \vec{v} \leq \vec{u} \Rightarrow f(\vec{v}) \leq f(\vec{u})\}, \quad \mathbb{E}[f(\vec{V})] \leq \mathbb{E}[f(\vec{U})]$$

4.1.2 The Expected Total Reward Criterion

The expected total reward criterion:

1.
$$\pi \in \Pi^{HR}$$
: $v_N^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} r_t(X_t, Y_t) + r_N(X_N) \right\}$.

2.
$$\pi \in \Pi^{HD}$$
: $v_N^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} r_t(X_t, d_t(h_t)) + r_N(X_N) \right\}$.

3. Discounted reward:
$$\pi \in \Pi^{HR}$$
,
$$v_{N,\lambda}^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} \lambda^{t-1} r_t(X_t, d_t(h_t)) + \lambda^{N-1} r_N(X_N) \right\}.$$

Taking the discount factor into account does not effect any theoretical results or algorithms in the finite-horizon case but might effect the decision maker's preference for policies.

4.1.3 Optimal Policies

Definition:

- 1. Optimal policy $\pi^* : \forall \pi \in \Pi^{HR}, v_N^{\pi^*} \succeq v_N^{\pi}$.
- 2. ϵ -optimal policy, $\pi^* : \forall \pi \in \Pi^{HR}, v_N^{\pi_{\epsilon}^*} + \epsilon \succeq v_N^{\pi}$.
- 3. Optimal value: $v_N^* = \sup_{\pi \in \Pi^{HR}} v_N^{\pi}$.
- 4. We can get $v_N^{\pi^*} = v_N^*$ and $v_N^{\pi_{\epsilon}^*} + \epsilon > v_N^*$.
- 5. Considering initial state distribution P_1 : $v_N^{\pi,P_1} = \sum_{s \in S} v_N^{\pi}(s) P_1\{X_1 = s\}$.

Markov decision problem = Markov decision process + Optimality criteria

4.2 FINITE-HORIZON POLICY EVALUATION

- 1. $\pi = (d_1, d_2, \dots, d_{N-1}) \in \Pi^{HR}$
- 2. Define: $u_t^{\pi}(h_t) = \mathbb{E}_{h_t}^{\pi} \left\{ \sum_{n=t}^{N-1} r_n(X_n, Y_n) + r_N(X_N) \right\}, (u_t^{\pi} : H_t \to \mathbb{R}).$ And we define $u_N^{\pi}(h_N) = r_N(s_N).$
- 3. Finite horizon-policy evaluation algorithm $(\pi \in \Pi^{HD})$:

$$\hat{u}_{t}^{\pi}(h_{t}) = r_{t}(s_{t}, d_{t}(h_{t})) + \sum_{s' \in S} p_{t}(s'|s_{t}, d_{t}(h_{t})) \hat{u}_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), s'). \quad ((h_{t}, d_{t}(h_{t}), s') \in H_{t+1})$$

$$= r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \hat{u}_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), X_{t+1}) \right\}$$

Proof. Part proof with backward induction hypothesis $(u^{\pi}_{h_{t+1}} = \hat{u}^{\pi}_{h_{t+1}})$:

$$\begin{split} \hat{u}_{t}^{\pi}(h_{t}) = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ u_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), X_{t+1}) \right\} \\ = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \mathbb{E}_{h_{t+1}}^{\pi} \left\{ \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} \right\} \\ = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} \\ = & \mathbb{E}_{h_{t}}^{\pi} \left\{ r_{t}(s_{t}, d_{t}(h_{t})) + \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} = u_{t}^{\pi}(h_{t}) \end{split}$$

4. Finite horizon-policy evaluation algorithm ($\pi \in \Pi^{HR}$):

$$\hat{u}_t^{\pi}(h_t) = \sum_{a \in A_{s_t}} q_{d_t(h_t)}(a) \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) \hat{u}_{t+1}^{\pi}(h_t, a, s'). \right\}$$

5. Finite horizon-policy evaluation algorithm ($\pi \in \Pi^{MD}$):

$$\hat{u}_t^{\pi}(s_t) = r_t(s_t, d_t(s_t)) + \sum_{s' \in S} p_t(s'|s_t, d_t(s_t)) \hat{u}_{t+1}^{\pi}(s').$$

- 6. The computation complexity. There are K states and L actions, then:
 - If $\pi \in \Pi^{HD}$, then requiring $K \sum_{i=0}^{N-1} (KL)^i$ multiplications.
 - If $\pi \in \Pi^{MD}$, then requiring $(N-1)K^2L$ multiplications.

4.3 OPTIMALITY EQUATIONS AND THE PRINCIPLE OF OPTIMALITY

Optimality equations (Bellman equations or functional equations).

We start study this equation:

$$u_t^*(h_t) = \sup_{\pi \in \Pi^{HR}} u_t^{\pi}(h_t)$$

When minimizing costs instead of maximizing rewards, we sometimes refer to u_t^* as a **cost-to-go** function.

Definition 1. (Optimality equations).

$$\hat{u}_t(h_t) = \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) \hat{u}_{t+1}(h_t, a, s') \right\}, \quad s.t. \ \hat{u}_N(h_N) = r_N(s_N).$$
(1)

If A_{s_t} is finite, it can be replaced by max. Then, $\forall h_t, \hat{u}_t(h_t) = u_t^*(h_t)$.

Proof. The proof is in two parts.

Let arbitrary $\pi' = (d'_1, d'_2, \dots, d'_{N-1}) \in \Pi^{HR}$.

Step1:

First, we have $u_N^{\pi'}(h_N) = \hat{u}_N(h_N) = u_N^*(h_N)$.

Then, because we take the operation sup, we reasonably have $\hat{u}_{N-1}(h_{N-1}) \ge u_{N-1}^*(h_{N-1})$.

Assuming that $\forall h_t \in H_t$, and t = n + 1, ..., N, we have $\hat{u}_t(h_t) \geq u_t^*(h_t)$.

$$\begin{split} \hat{u}_n(h_n) &= \sup_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(h_n, a, s') \right\} \\ &\geq \sup_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^*(s_n, a, s') \right\} \\ &\geq \sum_{a \in A_{s_n}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\} \\ &\geq u_n^{\pi'}(h_n) \end{split}$$

Which means that, $\forall \pi \in \Pi^{HR}, \hat{u}_n(h_n) \geq u_n^{\pi}(h_n)$.

Step2:

 $\forall \epsilon$, we can construct $\pi' \in \Pi^{HR}$ for which: $u_n^{\pi'}(h_n) + (N-n)\epsilon \geq \hat{u}_n(h_n)$. To do this, construct a policy $\pi' = (d'_1, d'_2, \dots, d'_{N-1}) \in \Pi^{HR}$ by choosing $d_n(h_n)$ to satisfy

$$\sum_{a \in A_{S_t}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(s_n, a, s') \right\} + \epsilon \ge \hat{u}_n(h_n).$$

First, we have $u_N^{\pi'}(h_N) = u_N(h_N)$. Then, we assume that $u_t^{\pi'}(h_t) + (N-t)\epsilon \ge u_t(h_t)$ for $t = n+1, \ldots, N$.

$$u_n^{\pi'}(h_n) = \sum_a q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\}$$

$$\geq \sum_a q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(s_n, a, s') \right\} - (N - n - 1)\epsilon$$

$$\geq \hat{u}_n(h_n) - (N - n)\epsilon$$

Step3: $u_n^*(h_n) + (N-n)\epsilon \ge u_n^{\pi'}(h_n) + (N-n)\epsilon \ge u_n(h_n) \ge u_n^*(h_n)$. The lefting question is

$$\int_{a \in A_{s_n}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\} da$$

Theorem 1. Suppose $u_t^*, t = 1, ..., N$ are solutions of the optimality equation (max version). Then we can construct a corresponding policy $\pi^* = (d_1^*, d_2^*, ..., d_{N-1}^*) \in \Pi^{HD}$ satisfies

$$d_t^*(h_t) \in \arg\max_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$

for $t = 1, \ldots, N - 1$. Then

1.
$$u_t^{\pi^*}(h_t) = u_t^*(h_t), \quad h_t \in H_t.$$

2.
$$v_N^{\pi^*}(s) = v_N^*(s), \quad s \in S.$$

Proof. Clearly, $u_N^{\pi^*}(h_n) = u_N^*(h_n), h_n \in H_n$. We assume that $u_{n+1}^{\pi^*}(h_{n+1}) = u_{n+1}^*(h_{n+1}),$

$$u_n^*(h_n) = \max_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^*(h_n, a, s') \right\}$$

$$= r_n(s_n, d_n^*(h_n)) + \sum_{s' \in S} p_n(s'|s_n, d_n^*(h_n)) u_{n+1}^*(h_n, d_n^*(h_n), s')$$

$$= r_n(s_n, d_n^*(h_n)) + \sum_{s' \in S} p_n(s'|s_n, d_n^*(h_n)) u_{n+1}^{\pi^*}(h_n, d_n^*(h_n), s')$$

$$= u_n^{\pi^*}(h_n)$$

Theorem 2. Let $\epsilon > 0$ be arbitrary and suppose $u_t^*, t = 1, \ldots, N$ are solutions of the optimality equation (sup version, a is continuous). Then we can construct a corresponding policy $\pi^{\epsilon} = (d_1^{\epsilon}, d_2^{\epsilon}, \ldots, d_{N-1}^{\epsilon}) \in \Pi^{HD}$ satisfies

$$\left\{ r_t(s_t, d_t^{\epsilon}) + \sum_{s' \in S} p_t(s'|s_t, d_t^{\epsilon}) u_{t+1}^*(h_t, d_t^{\epsilon}, s') \right\} + \frac{\epsilon}{N-1}$$

$$\geq \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$

for $t = 1, \dots, N - 1$. Then

1.
$$u_t^{\pi^{\epsilon}}(h_t) + (N-t)\frac{\epsilon}{N-1} \ge u_t^*(h_t), \quad h_t \in H_t.$$

2.
$$v_N^{\pi^{\epsilon}}(s) + \epsilon = v_N^*(s), \quad s \in S.$$

The proof is analogous.

4.4 OPTIMALITY OF DETERMINISTIC MARKOV POLICIES

Theorem 3. Let $u_t^*(h_t)$ is the solution of the optimality equations, then:

- 1. $\forall t = 1, ..., N, u_t^*(h_t)$ depends on h_t only through s_t .
- 2. $\forall \epsilon > 0$, there exists an ϵ optimal policy which is deterministic and Markov.
- 3. if a is reachable, then there exists an optimal policy which is deterministic Markov.

Proof. First, we have $\forall h_{N-1} \in H_{N-1}, a_{N-1} \in A_{S_{N-1}}, u_N^*(h_N) = u_N^*(s_N) = r_N(s_N)$. Then, we assume that $\forall n = t+1, \ldots, N, u_n^*(h_n) = u_n^*(s_n)$.

$$u_t^*(h_t) = \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s'=S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$
$$= \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s'=S} p_t(s'|s_t, a) u_{t+1}^*(s') \right\}$$
$$= u_t^*(s_t)$$

We have established that

$$v_N^*(s) = \sup_{\pi \in \Pi^{HR}} v_N^{\pi}(s) = \sup_{\pi \in \Pi^{MD}} v_N^{\pi}(s), \quad s \in S$$

Proposition 1. Assume S is finite or countable, and that

- 1. A_s is finite for each $s \in S$, or
- 2. As is compact; $p_t(s'|s,a), r_t(s,a)$ is continuous in a, and $|r_t(s,a)| \leq M < \infty$
- 3. A_s is compact; $r_t(s, a)$ is upper semicontinuous in a; and $|r_t(s, a)| \leq M < \infty$; $p_t(s'|s, a)$ is lower semi-continuous in a.

Then there exists a deterministic Markovian policy which is optimal. (Which means that sup is reachable.)

4.5 BACKWARD INDUCTION

The terms "backward induction" and "dynamic programming" are synonymous. Key assumption: optimal action is obtainable.

Definition 2. (The backward induction algorithm).

- 1. $\forall s \in S$, let $\hat{u}_N(s) = r_N(s)$.
- 2. t = N 1:1, we calculate that

$$\forall s \in S, \hat{u}_t(s) = \max_{a \in A_s} \left\{ r_t(s, a) + \sum_{s' \in S} p_t(s'|s, a) \hat{u}_{t+1}(s') \right\}$$

4.6 OPTIMALITY OF MONOTONE POLICIES

4.6.1 Structured Policies

4.6.2 Superadditive Functions

Definition 3. Let X and Y be partially ordered sets and $g: X \times Y \to \mathbb{R}$. We say g is **superadditive** if for $x^+ \geq x^-$ and $y^+ \geq y^-$, we have

$$g(x^+, y^+) + g(x^-, y^-) \ge g(x^+, y^-) + g(x^-, y^+)$$

If the reverse inequality above holds, g(x,y) is said to be **subadditive**. If superadditive function g is twice differentiable, we have $\frac{\partial^2 g(x,y)}{\partial x \partial y} \geq 0$.

Lemma 1. Let

$$f(x) = \max_{y} \left\{ y \in \arg \max_{y' \in Y} g(x, y') \right\}$$

If g is a superadditive function, then f(x) is monotone nondecreasing in x.

Proof. Let corresponding numbers: (x^+,y^+) and (x^-,y^-) , where $y^+=f(x^+)$ and $y^-=f(x^-)$. We assume that $x^+>x^-$, but $y^+\leq y^-$,then:

- 1. By the definition of f(x), we have $g(x^-, y^-) \ge g(x^-, y^+)$.
- 2. By the definition of supperadditive, we have $g(x^+, y^-) + g(x^-, y^+) \ge g(x^-, y^-) + g(x^+, y^+)$.
- 3. Then we have $g(x^+, y^-) \ge g(x^+, y^+)$, which contradicts with the definition of f.

4.7 Optimality of Monotone Policies

Leaving...

5 Infinite-Horizon Models: Foundations

- S is finite or countable.
- stationary policy: $d^{\infty} = (d, d, ...)$

5.1 THE VALUE OF A POLICY

1. Expected total reward of policy $\pi \in \Pi^{HR}$:

$$v^{\pi}(s) = \lim_{n \to \infty} \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{N} r(X_{t}, Y_{t}) \right\} = \lim_{n \to \infty} v_{n+1}^{\pi}(s)$$
 (2)

If the limit exists and when interchanging the limits and expectation is valid, we have

$$v^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{\infty} r(X_t, Y_t) \right\}$$
 (3)

2. Expected total discounted reward of policy $\pi \in \Pi^{HR}$:

$$v_{\lambda}^{\pi}(s) = \lim_{n \to \infty} \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{n} \lambda^{t-1} r(X_{t}, Y_{t}) \right\}$$
 (4)

For $0 \le \lambda \le 1$, the limits exists when $\sup_{s \in S} \sup_{a \in A_s} |r(s,a)| = M < \infty$. When the limit exists and interchaining the limit and expectation are valid, we have

$$v_{\lambda}^{\pi}(s) = \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{\infty} \lambda^{t-1} r(X_{t}, Y_{t}) \right\}$$
 (5)

3. Average reward or gain of policy $\pi \in \Pi^{HR}$:

$$g^{\pi}(s) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{n} r(X_{t}, Y_{t}) \right\} = \lim_{n \to \infty} \frac{1}{n} v_{n+1}^{\pi}(s)$$
 (6)

If the limit doesn't exist, we define:

$$g_-^\pi(s) = \liminf_{n \to \infty} \frac{1}{n} v_{n+1}^\pi(s), \quad g_+^\pi(s) = \limsup_{n \to \infty} \frac{1}{n} v_{n+1}^\pi(s).$$

5.2 MARKOV POLICIES

Theorem 4. $\forall \pi = (d_1, d_2, \ldots) \in \Pi^{HR}$. Then, for each $s_1 \in S_1$, $\exists \pi' = (d'_1, d'_2, \ldots) \in \Pi^{MR}$, satisfying

$$\forall t, \quad P^{\pi'} \left\{ X_t = s', Y_t = a | X_1 = s_1 \right\} = P^{\pi} \left\{ X_t = s', Y_t = a | X_1 = s_1 \right\}$$
 (7)

Proof. We construct the randomized Markov decision rule $d'_t \in \pi'$ by

$$q_{d'(s')}(a) = P^{\pi} \{ Y_t = a | X_t = s', X_1 = s_1 \}$$

Then,

$$P^{\pi'}\{Y_t = a | X_t = s'\} = P^{\pi'}\{Y_t = a | X_t = s', X_1 = s_1\} = P^{\pi}\{Y_t = a | X_t = s', X_1 = s_1\}$$

We use indunction method. Clearly the theorem holds with t=1. We assume that the theorem holds for $t=1,2,\ldots,n-1$. Then,

$$\begin{split} P^{\pi}\left\{X_{n} = s'|X_{1} = s_{1}\right\} &= \sum_{s \in S} \sum_{a \in A_{s}} P^{\pi}\left\{X_{n-1} = s, Y_{n-1} = a|X_{1} = s_{1}\right\} p(s'|s, a) \\ &= \sum_{s \in S} \sum_{a \in A_{s}} P^{\pi'}\left\{X_{n-1} = s, Y_{n-1} = a|X_{1} = s_{1}\right\} p(s'|s, a) \\ &= P^{\pi'}\left\{X_{n} = s'|X_{1} = s_{1}\right\} \\ P^{\pi'}\left\{X_{n} = s', Y_{n} = a|X_{1} = s_{1}\right\} &= P^{\pi'}\left\{Y_{n} = a|X_{n} = s'\right\} P^{\pi'}\left\{X_{n} = s'|X_{1} = s_{1}\right\} \\ &= P^{\pi}\left\{Y_{n} = a|X_{n} = s', X_{1} = s_{1}\right\} P^{\pi}\left\{X_{n} = s'|X_{1} = s_{1}\right\} \\ &= P^{\pi}\left\{X_{n} = s', Y_{n} = a|X_{1} = s_{1}\right\} \end{split}$$

Note that, in the above theorem, π' depends on the initial state X_1 . When the state at decision epoch 1 is chosen according to a probability distribution, then π' is depended on the distribution intead of $X_1 = s_1$.

Corollary 1. $\forall \mathcal{D}_1 \sim X_1, \pi \in \Pi^{HR}, \exists \pi' \in \Pi^{MR} \text{ for which}$

$$P^{\pi'} \{ X_t = s', Y_t = a \} = P^{\pi} \{ X_t = s', Y_t = a \}$$

Noting that

$$v_N^{\pi}(s) = \sum_{t=1}^{N-1} \sum_{s' \in S} \sum_{a \in A_{s'}} r(s', a) P^{\pi} \left\{ X_t = s', Y_t = a | X_1 = s_1 \right\}$$

$$+ \sum_{s' \in S} \sum_{a \in A_{s'}} r_N(s') P^{\pi} \left\{ X_N = s', Y_N = a | X_1 = s_1 \right\}$$

$$v_{\lambda}^{\pi}(s) = \sum_{t=1}^{\infty} \sum_{s' \in S} \sum_{a \in A_{s'}} \lambda^{t-1} r(s', a) P^{\pi} \left\{ X_t = s', Y_t = a | X_1 = s_1 \right\}$$
(8)

6 Discounted Markov Decision Problems

Assumptions in this chapter:

- 1. Stationary rewards and transition probabilities; r(s, a) and p(s'|s, a) do not vary from decision epoch to decision epoch.
- 2. Bounded rewards; $|r(s, a)| \leq M < \infty$.
- 3. Discount factor λ .
- 4. Discrete state spaces.

6.1 POLECY EVALUATION

$$v_{\lambda}^{*}(s) = \sup_{\pi \in \Pi^{HR}} v_{\lambda}^{\pi}(s) = \sup_{\pi \in \Pi^{MR}} v_{\lambda}^{\pi}(s)$$

Let $\pi = (d_1, d_2, \ldots) \in \Pi^{MR}$, then

$$v_{\lambda}^{\pi}(s_1) = \mathbb{E}_{s_1}^{\pi} \left\{ \sum_{t=1}^{\infty} \lambda^{t-1} r(X_t, Y_t) \right\} = r_{d_1} + \lambda P_{d_1} v_{\lambda}^{\pi' = \{d_2, d_3, \dots\}}$$

Let $d^{\infty} = (d, d, ...)$, then $v_{\lambda}^{d^{\infty}}(s_1) = r_d(s_1) + \lambda P_d v_{\lambda}^{d^{\infty}}$. Let $\forall v \in V, L_d v = r_d + \lambda P_d v$, then $v_{\lambda}^{d^{\infty}} = L_d v_{\lambda}^{d^{\infty}}$, which means $v_{\lambda}^{d^{\infty}}$ is a fixed point of L_d in V.

Theorem 5. Suppose $0 \le \lambda < 1$. Then $\forall d^{\infty}$ with $d \in D^{MR}$, $\vec{v}_{\lambda}^{d^{\infty}}$ is the unique solution in V of $\vec{v} = r_d + \lambda P_d \vec{v}$, and $\vec{v}_{\lambda}^{d^{\infty}} = (I - \lambda P_d)^{-1} r_d$.

Proof. Key theorem: $||P_d|| = 1$ and $\sigma(\lambda P_d) \le ||\lambda P_d|| = \lambda \le 1$, then $(I - \lambda P_d)^{-1}$ exists.

$$\vec{v} = (I - \lambda P_d)^{-1} r_d = \sum_{t=1}^{\infty} \lambda^{t-1} P_d^{t-1} r_d = \vec{v}_{\lambda}^{d^{\infty}}$$

Lemma 2. 1. $\vec{u} \succ \vec{0} \Rightarrow (I - \lambda P_d)^{-1} \vec{u} \succ \vec{u} \succ \vec{0}$

2.
$$\vec{u} \succeq \vec{v} \Rightarrow (I - \lambda P_d)^{-1} \vec{u} \succeq (I - \lambda P_d)^{-1} \vec{v}$$

3.
$$\vec{u} \succeq \vec{0} \Rightarrow \vec{u}^T (I - \lambda P_d)^{-1} \succeq \vec{u}^T$$

6.2 OPTIMALITY EQUATIONS

Optimality equations or Bellamn equations:

$$v(s) = \sup_{a \in A_s} \left\{ r(s, a) + \sum_{s' \in S} \lambda p(s'|s, a) v(s') \right\}$$

Lemma 3. $\forall v \in V, 0 \leq \lambda < 1, \sup_{d \in D^{MD}} \{r_d + \lambda P_d v\} = \sup_{d \in D^{MR}} \{r_d + \lambda P_d v\}$

Proof. First, $D^{MD} \subset D^{MR}$, so $\sup_{d \in D^{MD}} \{r_d + \lambda P_d v\} \leq \sup_{d \in D^{MR}} \{r_d + \lambda P_d v\}$. Second, $\forall d^{MR} \in D^{MR}$,

$$\sum_{a \in A_s} q_{d^{MR}}(a) \left[r(s,a) + \sum_{s' \in S} \lambda p(s'|s,a) v(s') \right] \leq \sup_{a \in A_s} \left\{ r(s,a) + \sum_{s' \in S} \lambda p(s'|s,a) v(s') \right\}$$

which means,

$$r_{d^{MR}} + \lambda P_{d^{MR}}v \preceq \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_dv \right\} \Rightarrow \sup_{d \in D^{MR}} \left\{ r_d + \lambda P_dv \right\} \preceq \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_dv \right\}$$

Definition 4. (Bellman operator).

$$\forall v \in V, \mathcal{L}v = \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_d v \right\} \tag{9}$$

If the supremum is attained for all $v \in V$, we define L by

$$\forall v \in V, Lv = \max_{d \in D^{MD}} \{ r_d + \lambda P_d v \}$$
 (10)

Theorem 6. Suppose there exists a $v \in V$ for which

1.
$$v \succeq \mathcal{L}v \Rightarrow v \succeq v_{\lambda}^*$$
;

2.
$$v \leq \mathcal{L}v \Rightarrow v \leq v_{\lambda}^*$$
;

3.
$$v = \mathcal{L}v \Rightarrow v$$
 is unique and $v = v_{\lambda}^*$.

Proof. First, we proof 1. $\forall \pi = (d_1, d_2, \ldots) \in \Pi^{MR}$.

$$v \succeq \sup_{d \in D^{MD}} \{r_d + \lambda P_d v\} = \sup_{d \in D^{MR}} \{r_d + \lambda P_d v\}$$
$$\succeq r_{d_1} + \lambda P_{d_1} v = \sum_{t=1}^n (\lambda P^{\pi})^{k-1} r_{d_t} + (\lambda P^{\pi})^n v$$
$$v - v_{\lambda}^{\pi} \succeq (\lambda P^{\pi})^n v - \sum_{t=n+1}^{\infty} (\lambda P^{\pi})^{t-1} r_{d_t}$$
$$\succeq -\lambda^n \|v\|_{\infty} \cdot \vec{e} - \lambda^n \cdot \frac{M}{1-\lambda} \cdot \vec{e}$$

Because r is bounded, so $\forall \epsilon, \exists N$, when $n \geq N$, we have

$$v \succeq v_{\lambda}^{\pi} - \epsilon \cdot \vec{e}$$

$$v \succeq \sup_{\pi \in \Pi^{MR}} v_{\lambda}^{\pi} = \sup_{\pi \in \Pi^{HR}} v_{\lambda}^{\pi} = v_{\lambda}^{*}$$

Second, we proof 2.

If $v \leq \mathcal{L}v$, by definition of sup, we have

$$\forall \epsilon, \exists d \in D^{MD}, v \leq r_d + \lambda P_d v + \epsilon \cdot \vec{e}$$

$$\Rightarrow v \leq (I - \lambda P_d)^{-1} (r_d + \epsilon \cdot \vec{e}) = v_\lambda^{d^\infty} + (1 - \lambda)^{-1} \epsilon \cdot \vec{e} \leq \sup_{\pi \in \Pi^{HR}} v_\lambda^{\pi} + (1 - \lambda)^{-1} \epsilon \cdot \vec{e}$$