Parallelized Particle-in-Cell Method for Plasma Simulation

CS 205

Kevin Howarth, Aditi Memani, Hari Raval, Taro Spirig

Motivation

Simulating Particles: Naive Approach

Goal:

Simulate Particle Trajectories

Initial Approach:

- Solve this problem as an N-body problem
- Coulomb Force tells us the exact force on 2 charged particles given their position

Problem:

- O(N²) runtime due to consideration of all binary interactions
- Fusion problems can have up to 10¹⁸ particles / m³!

Simulating Particles: Particle-in-Cell Approach

• (Same) Goal:

Simulate Particle Trajectories

Robust Approach:

- Avoid considering binary interactions among all particles
- Perform work only once on each particle
- Particle-in-Cell algorithm

Analysis:

- O(N) runtime that still simulates motion of particles
- Scales with the number of particles in interesting plasmas

Applications of Particle-in-Cell (PIC)

- PIC can describe complicated physics in fusion plasmas
- XGC is the Princeton Plasma Physics Laboratory's PIC code

PIC is used for cutting-edge research!

A property heatmap inside a tokamak simulated by XGC Source: insidehpc.com

Mathematical Model

Mathematical Model

1. Interpolate from Particles to Mesh

2. Solve Discrete Poisson Equation on Mesh

$$abla^2 \phi = -\boldsymbol{\rho}, \qquad \nabla \phi = \boldsymbol{E}$$

3. Interpolate from Mesh back to Particles

4. Time-step Particle Locations

$$\frac{d\overline{v}}{dt} = q\mathbf{E}(\overline{x}), \qquad \frac{d\overline{x}}{dt} = \overline{\imath}$$

Parallelization

Parallelization

Why?

- In real applications, consider a lot of particles
- Increase in grid points increase in accuracy
- PIC algorithm is a good candidate for parallelization

• What?

- PIC algorithm considers each particle separately when interpolating and time-stepping
- Limiting factor on number of grid points: solution of the discrete Poisson equation

How?

- First focus: shared memory model using openMP
 - Limitations to using shared memory
 - Future considerations: distributed memory using MPI

Analysis

Analysis

Compare runtime scaling across 3 key factors:

- Dimensions of the mesh grid
- Maximum number of particles analyzed at once
- Optimal thread count for the parallel regions

Explore parallelized interpolation methods

- Distance Based Interpolation
- Bilinear Interpolation
- Piecewise Quadratic Interpolation (M4)

Speedup

Compare Sequential and Parallelized Algorithms

Thank You