Drive Away Fraudsters With Driverless

Venkatesh Ramanathan

H2O World 2017, Mountain View, CA Dec 4-5, 2017

Agenda

Problem

Approach

Experiments

Conclusion

PROBLEM

Fraud Prevention @ PayPal

Robust feature engineering, machine learning and statistical models

Highly scalable and multi-layered infrastructure software

Superior team of data scientists, researchers, financial and intelligence analysts

Collusion Fraud – An Example Scenario

Collusion Fraud – An Example Scenario

PayPal asks seller for proof

Seller gives proof

PayPal Repays seller (Seller Protection)

PayPal incur loss

Buyer and seller split the money...

Images source:

Collusion Fraud

- What if there are many such buyers colluding with many such sellers?
- What if such buyers & sellers stay below the radar? (\$ Transaction < Threshold)?
- What if such sellers behave well with majority of the buyers & collude with a few?
- How do we detect if the buyers and sellers are legitimate or if they are colluding with each other?

Collusion Fraud

 Can we exploit network structure of fraudsters to solve collusion fraud?

APPROACH

Traditional ML vs End-to-End Learning

- Traditional ML –
 Significant human effort in engineering features & labelling
- End-to-End Learning –
 Use algorithm (such as
 Deep learning) to learn
 feature representations
 automatically
 - need tabular data

Approach

- Learn features from graphs & use Driverless AI to engineer additional features and build model.
- Feature learning on graphs is fairly new research area & its full potential has not been realized.
- Graph based feature learning helps to understand fraud network & thus prevent collusion and other organized crimes

Approach – Graph Based Representation Learning

- Idea
 - You shall know a word (node) by the company (neighbor) it keep(s)* (Firth, J. R. 1957)
- Word2Vec* Continuous feature representation for words
 - Suppose user searches for "hotel", we want to also match "motel"
 - One hot representation (discrete) motel [000000000000000] = 0
 - Build a dense vector to predict other words from context
 - Two algorithms Skip Gram (SG) (Predict context words from target) & Continuous Bag of Words (CBOW) (Predict target from context)
- Graph Based Representation Learning
 - Learn continuous feature representation for nodes
 - Representation incorporates community a node belong to & role they play

Algorithm - node2vec* Grover & Leskovec, 2016

- Node2Vec
 - s1, s2, s3, s4, u same community
 - u & s6 also play the role of hub
 - "neigborhood preserving" graph based objective function optimized using SGD
 - MLE optimization problem
 - BFS & DFS sampling to generate neigbhors


```
Algorithm 1 The node2vec algorithm.
LearnFeatures (Graph G = (V, E, W), Dimensions d, Walks per
  node r, Walk length l, Context size k, Return p, In-out q)
  \pi = \text{PreprocessModifiedWeights}(G, p, q)
  G'=(V,E,\pi)
  Initialize walks to Empty
  for iter = 1 to r do
     for all nodes u \in V do
        walk = node2vecWalk(G', u, l)
        Append walk to walks
   f = \text{StochasticGradientDescent}(k, d, walks)
  return f
node2vecWalk (Graph G' = (V, E, \pi), Start node u, Length l)
   Inititalize walk to [u]
  for walk\_iter = 1 to l do
     curr = walk[-1]
     V_{curr} = \text{GetNeighbors}(curr, G')
     s = \text{AliasSample}(V_{curr}, \pi)
     Append s to walk
  return walk
```

Implementation Framework

Raw Events

(HDFS)

Graph DB

Driverless AI (Feature Engineering + Model Training)

Node

Representation

Feature vector

node2vec

EXPERIMENTS

Datasets

- Training Data
 - Subset of 1 year transactions
 - 1.5 billion edges & 0.5 million nodes
- Test Data
 - 3 months
- # of features
 - 400 600

Environment & Tools

- Node2Vec Node representation learning
- Driverless AI Feature Engineering & Model Training
- Spark Data Preparation/Pre-processing
- Hardware GPU server
 - 4 Pascal 100 GPU
 - 160 cores CPUs
 - 1 TB RAM

Experiment

- Training time (subset of data) Driverless AI on GPU 6x faster
 - laptop (accuracy 1) ~ 2 hours
 - GPU (accuracy 1) 21 minutes; (accuracy 5) 58 minutes

Experiment

- Top 5 variables from DAI
- AUC 0.9477

CONCLUSIONS

Conclusions

- Graph based representation learning yield robust feature set for complex fraud patterns such as collusion fraud
- Driverless AI not only help to engineer additional features automatically but also significantly improve model training time (under 2 hours).
- Journey into DAI just beginning...
- Next steps
 - Evaluate Driverless Al results on out-of-time data sets.
 - Evaluate Driverless Al directly on raw data
 - Evaluate representation learning on edges and weighted graphs
 - Machine learning on graphs

Acknowledgements

Driverless Al Team @ H2O.ai