P	arametry p	odstawow	re																				
Temper	ratura pocz	ątkowa	30																				
Temp	eratura kor	ńcowa	0,01																				
Współczy	ynnik wych	nładzania	0,99																				
	Typ ruchu		Swap																				
Kolejr	ność począt	tkowa	1, 2, 3,			Największ	ą wartość C	max uzysl	kano dla μ =	-0,8		Im więks	za Temp.Po	cz. tym wi	ększe Cma:	X		Im większa	a Temp.Ko	ńc. tym wi	ększe Cma	X	
	Cmax dl	a kolejnych	prób symulo	owanego wy	rżarzania		Cmax dla		prób symulo instancji ta0		żarzania		Cmax d		prób symulo instancji ta(owanego wy 051	żarzania		Cmax dl		prób symulo instancji ta0		yżarzania
stancja	ta011	ta021	ta051	ta101	ta120	μ	0,99	0,95	0,9	0,8	0,999	Temp. Pocz	10	30	300	1000	10000	Temp. Końc.	0,001	0,01	0,1	1	10
	1 728	2 373	4 217	12 375	28 682		4 217	4 287	4 513	4 722	4 286		4 331	4 217	4 189	4 295	4 198		4 148	4 217	4 207	4 283	4 350
	1 649	2 462	4 256	12 484	28 658		4 256	4 498	4 527	4 614	4 205		4 284	4 256	4 432	4 312	4 299		4 346	4 256	4 236	4 282	4 453
	1 711	2 564	4 200	12 360	28 445		4 200	4 317	4 576	4 519	4 268		4 233	4 200	4 273	4 271	4 355		4 351	4 200	4 255	4 335	4 580
	1 679	2 436	4 283	12 383	28 676		4 283	4 443	4 547	4 643	4 143		4 281	4 283	4 382	4 288	4 405		4 192	4 283	4 287	4 275	4 527
	1 668	2 478	4 243	12 465	28 490		4 243	4 369	4 529	4 690	4 167		4 276	4 243	4 209	4 483	4 401		4 247	4 243	4 262	4 235	4 362
	1 643	2 468	4 270	12 387	28 603		4 270	4 453	4 462	4 647	4 297		4 193	4 270	4 402	4 236	4 270		4 282	4 270	4 321	4 314	4 489
	1 696	2 467	4 186	12 397	28 650		4 186	4 527	4 532	4 551	4 223		4 264	4 186	4 177	4 180	4 281		4 149	4 186	4 444	4 312	4 504
	1 891	2 441	4 188	12 381	28 522		4 188	4 479	4 523	4 671	4 229		4 292	4 188	4 207	4 264	4 299		4 239	4 188	4 241	4 285	4 576
	1 752	2 477	4 254	12 360	28 607		4 254	4 401	4 602	4 637	4 183		4 206	4 254	4 314	4 246	4 368		4 241	4 254	4 264	4 285	4 399
	1 693	2 441	4 305	12 397	28 494	,	4 305	4 575	4 547	4 604	4 265		4 187	4 305	4 281	4 366	4 276	,	4 369	4 305	4 231	4 378	4 507
REDNIA	1 711	2 461	4 240	12 399	28 583	ŚREDNIA	4 240	4 435	4 536	4 630	4 227	ŚREDNIA	4 255	4 240	4 287	4 294	4 315	ŚREDNIA	4 256	4 240	4 275	4 298	4 475

	Cmax d	la kolejnych w	prób symulo instancji ta(żarzania		Cmax dla	a kolejnych į w	prób symulo instancji ta0	٠.	żarzania
Wersja	Α	В			Wersja	Α	В	С		
	4 210	4 289				4 275	4 362	4 866		
	4 253	4 381				4 255	4 194	5 036		
	4 238	4 117				4 177	4 274	5 060		
	4 298	4 142				4 214	4 465	4 979		
	4 282	4 236				4 245	4 209	4 596		
	4 425	4 204				4 224	4 176	4 819		
	4 283	4 199				4 399	4 298	4 630		
	4 238	4 289				4 183	4 181	4 921		
	4 400	4 427				4 245	4 328	4 926		
	4 437	4 316				4 315	4 241	4 879		
ŚREDNIA	4 306	4 260			ŚREDNIA	4 253	4 273	4 871		
Wersja A		kane jest no e je z prawdo		 algorytm		Jeśli nowy Ci iwnym razie	•			•
		kane jest no dopodobieńs rozwiązani	twem takin	 		leśli nowy Cr c jest inny , to	•		•	
					Wersja C - J	leśli nowy Cr Cmax jest	nax jest ider inny, to zam		•	. Jeśli nowy

	Cmax dl	a kolejnych	prób symulo	wanego wy	zarzania	
Instancja	ta011	ta021	ta051	ta101	ta120	7
	1 728	2 373	4 217	12 375	28 682	2, 3,)
	1 649	2 462	4 256	12 484	28 658	, 2,
	1 711	2 564	4 200	12 360	28 445	1
	1 679	2 436	4 283	12 383	28 676	N N
	1 668	2 478	4 243	12 465	28 490	RA.
	1 643	2 468	4 270	12 387	28 603	Ë
	1 696	2 467	4 186	12 397	28 650	KOLEINOŚĆ NEUTRALNA (1,
	1 891	2 441	4 188	12 381	28 522	ośc
	1 752	2 477	4 254	12 360	28 607	Z
	1 693	2 441	4 305	12 397	28 494	OLE
ŚREDNIA	1 711	2 461	4 240	12 399	28 583	~
Instancja	ta011	ta021	ta051	ta101	ta120	NET
	1 680	2 410	4 082	11 594	26 984	ž
Instancja	ta011	ta021	ta051	ta101	ta120	101
	1 736	2 426	4 170	11 939	27 538	Ž
	1 675	2 387	4 114	12 012	27 274	RZA
	1 721	2 397	4 184	12 106	27 290	Ş
	1 629	2 534	4 178	12 088	27 294	≨
	1 675	2 387	4 176	12 032	27 305	KOLEINOŚĆ NEH-a + WYŻARZANIE
	1 679	2 465	4 175	12 026	27 273	苗
	1 787	2 524	4 153	11 938	27 444	Ç
	1 698	2 513	4 137	12 012	27 247	loś
	1 711	2 450	4 254	11 850	27 157	ä
	1 667	2 430	4 061	12 034	27 392	KOL
ŚREDNIA	1 698	2 451	4 160	12 004	27 321	

	Cmax dl	a kolejnych w	prób symulo instancji ta0	٠,	żarzania	
Wersja	Swap	Insert				
	4 275	4 415				
	4 255	4 367				
	4 177	4 152				
	4 214	4 275				
	4 245	4 223				
	4 224	4 097				
	4 399	4 202				
	4 183	4 129				
	4 245	4 188				
	4 315	4 141				
ŚREDNIA	4 253	4 219				

Insert daie	niższe Cm	ax niż swap	. aczkolwiek	c różnica i	est minima	alna

	2.11071 01		rób symulowanego wyżarzania nstancji ta051	CZdS WYKC	Jily Wallia	się symulo		yzarzailia z	owah [2]	CZas Wyko	iliy vv alilla	się symulo	wanego wy	/ Lai Lai IIa L	
			iistaiicji tausi	instancja	ta011	ta021	ta051	ta101	ta120	instancja	ta011	ta021	ta051	ta101	ta120
Nersja	Swap	Insert			0.186	0.251	0.606	3.041	18.642		0.243	0.297	0.630	3.130	19.202
	4 275	4 415			0.195	0.244	0.587	3.027	18.727		0.172	0.245	0.603	3.113	19.220
	4 255	4 367			0.174	0.244	0.600	3.099	18.913		0.175	0.274	0.628	3.153	19.191
	4 177	4 152			0.193	0.256	0.593	3.038	19.018		0.168	0.270	0.598	3.086	19.266
	4 214	4 275			0.194	0.233	0.603	3.038	18.936		0.191	0.287	0.620	3.133	19.133
	4 245	4 223			0.168	0.249	0.605	3.040	18.687		0.174	0.275	0.598	3.135	19.201
	4 224	4 097						_							
	4 399	4 202			0.173	0.258	0.612	3.020	18.758		0.172	0.266	0.616	3.124	19.207
	4 183	4 129			0.166	0.241	0.591	3.088	18.880		0.172	0.256	0.620	3.103	19.606
	4 245	4 188			0.194	0.245	0.594	3.056	18.739		0.176	0.303	0.635	3.124	19.748
	4 315	4 141			0.167	0.263	0.595	3.054	18.848		0.175	0.257	0.636	3.130	19.815
REDNIA	4 253	4 219		ŚREDNIA	0.181	0.248	0.599	3.050	18.815	ŚREDNIA	0.182	0.273	0.618	3.123	19,359