UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO DE CIÊNCIA DA COMPUTAÇÃO PROGRAMAÇÃO DE COMPUTADORES

LABORATÓRIO 19

APLICAÇÕES DOS LAÇOS DE REPETIÇÃO

EXERCÍCIOS DE REVISÃO

VOCÊ DEVE ACOMPANHAR PARA OBTER INFORMAÇÕES COMPLEMENTARES

1. Escreva um programa que utilize um **vetor de caracteres** e um **laço** para ler uma palavra por vez até que a palavra "pronto" seja encontrada. O programa deve então mostrar o número de palavras digitadas (sem contar pronto). Um exemplo de execução é mostrado abaixo.

Digite palavras (pronto para parar):
Aprender C++ é uma aventura
A linguagem acomoda vários paradigmas de programação
Você está pronto para aprendê-la?
Foram digitadas um total de 14 palavras.

Dica: inclua o arquivo de cabeçalho <cstring> e use a função strcmp() para fazer o teste de comparação.

2. Escreva um programa para ler uma matriz 3x2, como a mostrada no exemplo abaixo, e armazenar a sua transposta em uma matriz 2x3. Construa uma função para exibir a matriz transposta.

Matriz 3x2:

1	7		
3	5		
4	6		

Transposta 2x3:

1	3	4
7	5	6

VOCÊ DEVE FAZER OS EXERCÍCIOS PARA FIXAR O CONTEÚDO

1. Escreva um programa que ache a média dos elementos de uma matriz (vetor bidimensional) com 5 linhas e 5 colunas. A matriz deve ser inicializada no programa para os 25 valores inteiros dados abaixo.

38	51	50	56	98
17	65	25	62	54
23	23	64	45	92
41	39	19	68	87
65	10	12	22	13

2. Escreva um programa que utilize um laço para calcular o resultado da expressão abaixo para os valores de n_i dados na tabela. Para isso armazene a tabela em um vetor e processe o vetor com um laço.

$$\sum_{i=0}^{9} n_i$$

n_0	n_1	n_2	n_3	n_4	n_5	n_6	n_7	n_8	n 9
0	1	0	0	1	0	1	1	n ₈	1

3. Escreva um programa que use laços aninhados para produzir a seguinte saída:

\$ \$\$\$ \$\$\$\$\$ \$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$

4. Escreva um programa que peça ao usuário para entrar com um caractere. O programa deve usar uma **função** cujo único propósito é exibir 20 vezes na tela o caractere recebido como argumento, formando uma linha. Crie o programa principal e a função de forma a obter o seguinte resultado:

EXERCÍCIOS DE APRENDIZAGEM

VOCÊ DEVE ESCREVER PROGRAMAS PARA REALMENTE APRENDER

1. Escreva um programa que utilize **laços for aninhados** para calcular e mostrar a soma das colunas de um vetor bidimensional 4x4, como mostrado no exemplo abaixo. A matriz deve ser inicializada no momento da sua declaração.

3	1	5	5
1	5	5	6
2	3	4	5
4	9	1	8

A soma das colunas é: 10 18 15 24

2. Você está vendendo o livro "C++ só do bom". Escreva um programa que use um **vetor bidimensional** para armazenar o número de livros vendidos mensalmente durante três anos.

O programa deve usar um laço para perguntar sobre o número de vendas de cada mês, exibindo o nome do mês (use um vetor de const char * inicializado para os nomes dos meses). Mostre o total de vendas em cada ano e o total geral dos três anos.

```
Digite o número de livros vendidos no 1º ano:
Janeiro: 30
Fevereiro: 45
...

Digite o número de livros vendidos no 2º ano:
Janeiro: 40
Fevereiro: 48
...

Digite o número de livros vendidos no 3º ano:
Janeiro: 40
Fevereiro: 48
...

Total de vendas
10 ano: 565
20 ano: 450
30 ano: 320

Nos três anos foram vendidos 1335 livros.
```

3. Uma matriz é um vetor de vetores. Sendo assim se usarmos a notação de vetor com matrizes, o resultado deve ser um vetor, correto? Por exemplo, considere a matriz abaixo.

```
int mat[2][3] =
{
     {1,2,3},
     {4,5,6}
};
```

Podemos exibir o elemento na posição (0,0) da matriz através de mat[0][0], mas o que acontece se mandarmos exibir apenas mat[0]?

Para descobrir, crie um programa que exiba na tela:

- mat[0][0]
- mat[0]
- &mat[0][0]
- 4. Construa uma função para exibir um vetor de inteiros de tamanho qualquer. Passe mat[0] da questão anterior para essa função. Se nossa teoria de que uma matriz é um vetor de vetores estiver correta, a função não deve fazer diferença entre mat[0] e um vetor normal.
- 5. Construa uma matriz estática 16x16 para armazenar os caracteres da tabela ASCII. Construa laços aninhados para preencher a matriz com os caracteres de código 0 a 255. Os caracteres de código 0 a 15 devem ficar na primeira coluna da matriz, de código 16 a 31 na segunda coluna e assim por diante.

Em seguida, pergunte ao usuário qual região da tabela ele tem interesse, crie uma matriz dinâmica para guardar apenas a região (retangular) especificada e copie os caracteres correspondentes da matriz estática para a matriz dinâmica. Por fim exiba a matriz dinâmica.

```
Entre com as coordenadas da região de interesse

De : (4,1)
Até: (7,8)

A Q a q
B R b r
C S c s
D T d t
E U e u
F V f v
G W g w
H X h x
```

Sugestão: implemente a matriz dinâmica usando as duas soluções vistas em sala.