3

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 ELECTROMAGNETIC WAVES & RADIATING SYSTEMS SEMESTER - 4

Time	:; 3 }	Hours		[Full Marks : 70
	٠.		Group - A	
			(Multiple Choice Type Questions)	
1.	Cho	ose th	ne correct alternatives for any ten of the following:	$10\times1=10$
	i) .	The	magnetic flux density \overrightarrow{B} and vector potential \overrightarrow{A} are relate	d as
	* ***	a)	$\vec{B} = \nabla \times \vec{A} \qquad b) \qquad \vec{A} = \nabla \times \vec{B}$	
		c)	$\vec{B} = \nabla \cdot \vec{A} \qquad \qquad d) \qquad \vec{A} = \nabla \cdot \vec{B}.$	
	ii)	A po	otential field is given by $V = 3x^2y - yz$. The electric field	at P (2, -1, 4) is
		a)	$12\overrightarrow{l} - 8\overrightarrow{f} \text{ V/m}$ b) $12\overrightarrow{l} - \overrightarrow{f} \text{ V/m}$	
		c)	$12\overrightarrow{7} + 8\overrightarrow{J} + \overrightarrow{k} \text{ V/m}$ d) $-12\overrightarrow{7} - 8\overrightarrow{J} -$	k V/m
	iii)	The	electric field lines & equipotential lines	
		a)	are parallel to each other	
	• .	b)	are one and the same	
		c)	cut each other orthogonally	
		d)	can be inclined to each other at any angle.	
	iv)	A tra	ansmission line of length $\frac{\lambda}{4}$ shorted at far end behaves like	
		a)	series resonant circuit b) parallel resona	nt circuit
		c)	pure inductor d) pure capacitor	• • • • • • •
	v)	Max	well's equation $\nabla \times \overrightarrow{H} = \overrightarrow{J} + \overrightarrow{D}$ represents	
		a)	Gauss's law in magnetism	
		b)	Kirchhoff's current law for direct current	
		c)	Biot-Savart law	
		d)	Generalized Ampere's circuital law.	
945	00.0	NA P		

¥.,,

		$e^{1} = 0$). The amplitu			MHz. The slab is Teflon ($\varepsilon_r = 2.1$, wave is				
		· ·		. **					
	a)	18·34 V/m	b)		36-68 V/m				
	c)	– 18-34 V/m	d)		- 36·68 V/m.				
vii)	If th	ne frequency of the in	neident wave incr	ėa	ses by a factor of 4, the depth to				
	whi	ch a wave penetrates a	a conducting mate	ria	1 7 8 4				
	a)	increases by a facto	or of 2 b)		increases by a factor of 4				
•	c)	decreases by a facto	or of 2 d)		decreases by a factor of 4.				
viii)	The MUF of transmission between two stations 500 km apart at f_{crit} = 9 MHz								
	and	minimum value of inc	cident angle $i = 45^{\circ}$	° is	en e				
	a)	0.7 MHz	b)		25-4 MHz				
å.	c)	12.7 MHz	d)	7	18 MHz.				
ix)	A aı	uarter-wave monopole	e antenna operatin	ø:	in air at a frequncy of 1 MHz must				
,		e an overall length (l)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ъ.					
	a)	<i>l</i> >> λ	b)	•	150 m				
•	c)	75 m	d)		ι << λ.				
			128	**.	The state of A are an abotion 50 XV of				
x)	The radiation resistance of a dipole, having a length of 4 cm, radiating 50 W of power at a frequency of 500 MHz is								
	pow				ne de la companya de La companya de la co				
	a)	3.5 Ω	b)		0.82 Ω				
A., .	c)	1.75 Ω		ī.	7.0 Ω.				
xi)	Ohr	n's law is obeyed by							
	a)	conduction current	b)		convection current				
	c)	conduction & conve	ction current d)		none of these.				
	,		en jaron en						
xii)	The direction of propagation of EM wave is obtained from								
	a)	E×H	b)		E.H				

24

5

Group - B

(Short Answer Type Questions)

Answer any three questions.

 $3 \times 5 = 15$

2. Define the term i) VSWR and ii) 'Reflection co-efficient' for transmission' line.

Explain the relationship between them.

- 3. Prove that $\nabla \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$. The symbols have usual meaning.
- 4. A 2m long lossless transmission line has an impedance of 300Ω . The velocity of propagation is 2.5×10^8 m/s. The load has an impedance of 300Ω with sending end voltage being 60V at 100 MHz. Find :
 - a) The phase constant
 - b) The load voltage
 - c) The load current
 - d) The load reflection coefficient &
 - e) Standing wave ratio.
- 5. Why is ionosphere important for radiowave propagation? Describe the different layers of ionosphere.
- 6. What do you mean by magnetic vector potential? Write down the Maxwell's equations for time varying electromagnetic fields, when the medium is lossless, linear, isotropic, homogeneous and source free.

24506-(IV)-B

Group - C

(Long Answer Type Questions)

		Answer any three questions. $3 \times 15 = 45$
7.	a)	Find the expression of Radiation resistance of a short electric dipole with uniform current distribution.
	b)	Define complex Poynting vector.
	c)	Explain the concept of skin depth & find out an expression for that.
3.	a)	Derive an expression for the input impedance Z_{in} of a lossless transmission line,
		in terms of relevant parameters, when the line is terminated in load impedance \boldsymbol{Z}_L .
	b)	Show that for a lossless transmission line the impedance of a line repeats over every $\frac{\lambda}{2}$ distance.
	c) .	A transmission line with air as dielectric has $Z_0 = 50\Omega$ and a phase constant of
		3 rad/m at 10 MHz. Find the inductance & capacitance of the line.
) .	a)	What is electromagnetic interference?
	b)	Why does the short wave radio signal propagate with very low attenuation at night? Describe the sky-wave propagation of EM waves. 3 + 6
	c)	What is fading? Briefly describe the diversity techniques to reduce the effect of fading. $1 + 3$
10.	a)	Obtain the Poynting theorem for the conservation of energy in an electromagnetic field and discuss the physical significance of each term in resulting equation. 6
	b)	In free space $E(z, t) = 50 \cos(\omega t - \beta z)$ V/m. Find the average power crossing a circular area of radius 5m in the plane $x = \text{constant}$.
	c)	Derive the equation of continuity for time varying fields.
11.	a)	State & explain Faraday's law.
en y tel	b)	Derive the induced emf when a stationary loop is in the time varying B fields. 4
	c)	Determine the magnetic field intensity at a point P due to a current carrying filamentary conductor AB carrying current I along Z axis with its upper and
		lower ends subtending angles α_1 and α_2 respectively.