

Concept-Aligned Sparse Autoencoders for Cross-Model and Cross-Modal **Interpretability**

"Scaling Interpretability across models"

Ali Nasiri-Sarvi • Hassan Rivaz • Mahdi S. Hosseini Concordia University • Mila-Quebec Al Institute

Sparse Autoencoders Make Neural Representations Interpretable

What if we want to understand the representation of multiple models?

SAEs Help... But Only One Model at a Time (comparing many gets expensive)

Scaling Problem

Thousands of neurons to analyze per model
Matching concepts by hand
Time-consuming, error-prone

Expert Bottleneck

Some domains require expert interpretation (e.g., medical)

High cost and slow progress

O(n²) Time Consumption

Each model needs (n-1) comparisons

Manual concept matching

Complexity explodes with models

SPARC: A unified solution

Sparse Autoencoders for Representation of Concepts

- Key idea: Build a single, shared interpretable latent space for multiple models
- Forces concept alignment directly through shared architecture
- Works across different model architectures and modalities (vision, language)

SPARC allows
direct comparison
across models and
modalities without
manual concept
matching

SPARC aligns the learned SAE Concepts

Before SPARC: The same latent index encodes different concepts in each stream (welding, roosters, random captions) → no shared meaning.

DINO

CLIP-Image

CLIP-Text

After Applying SPARC

After SPARC: The same latent index now retrieves the same concept (kittens) in all streams.

DINO

CLIP-Image

CLIP-Text

