





















# ADS AD VIDEO COSOUN





www.aduni.edu.pe











# Razonamiento Matemático

Conteo de figuras

















# **OBJETIVOS**

- Desarrollar la habilidad visual para identificar las diferentes formas de las figuras.
- Conocer y aplicar diversos métodos a la hora contar figuras en un gráfico principal.

















# **CONTEO DE FIGURAS**

Por simple inspección

Por combinación

Por inducción





# MÉTODO POR SIMPLE INSPECCIÓN

Este método utiliza principalmente *la observación* para reconocer formas de las distintas figuras y a partir de una búsqueda sencilla se puede determinar lo solicitado en un problema.

#### Por ejemplo:

¿Cuántos triángulos se cuentan en total en el siguiente gráfico?









## Aplicación 1

¿Cuántos cuadriláteros se cuentan en total en el siguiente gráfico?



A) 9

**B**) 10

C) 12

D) 8

#### Resolución:

Nos piden: el número total de cuadriláteros que se pueden contar.

De la figura principal



∴ N.º de cuadriláteros en total es 10





# MÉTODO POR COMBINACIÓN

- Consiste en asignar dígitos o letras las regiones simples.
- Luego anotar las "combinaciones" de estos dígitos o letras que formen la figura solicitada en el problema.
- Del conteo final de estas "combinaciones", se obtendrá el total de figuras requeridas.

#### Por ejemplo:

¿Cuántos cuadriláteros se cuentan en total en el siguiente gráfico?



#### Nº cuadriláteros

De un dígito: solo la región 2  $\longrightarrow$  1

De 2 dígitos: (12);(23)  $\longrightarrow$  2

De 3 dígitos: (134)

∴ N.º de cuadriláteros en total es 4





## Aplicación 2

¿Cuántos triángulos se cuentan como máximo en el siguiente gráfico?



- A) 12
- B) 10
- C) 15
- D) 14

#### Resolución:

Nos piden: el máximo número de triángulos.

En la figura principal asignamos números a cada región simple.



#### N.º triángulos

De un dígito: 1; 2; 4; 5; 6. \_\_\_\_\_\_ 5

De 2 dígitos: (12);(45);(23);(34);(26);(64) 6

De 3 dígitos: (126);(456) \_\_\_\_\_ 2

De 4 dígitos: (2346) \_\_\_\_\_\_\_\_ 1

∴ N.º de triángulos en total es 14





# **MÉTODO POR INDUCCIÓN**

Con el método inductivo encontraremos fórmulas a determinadas formas de figuras, que luego en los problemas aplicaremos directamente.

# Por ejemplo:

¿Cuántos segmentos hay en total en la siguiente figura?

$$N^{\circ}$$
 de segmentos  $=\frac{n(n+1)}{2}$ 

#### Para resolverlo aplicamos inducción:

#### Total de segmentos

$$1 = \frac{1 \times 2}{2}$$

$$3 = \frac{2 \times 3}{2}$$

$$6 = \frac{3 \times 4}{2}$$





# Conteo de triángulos



 $N^{\circ}$  de triángulos  $=\frac{n(n+1)}{2}$ 

# Casos particulares







# Total de triángulos

$$1 = \frac{1 \times 2}{2}$$

$$3 = \frac{2 \times 3}{2}$$

$$6 = \frac{3 \times 4}{2}$$





#### Conteo de cuadriláteros

| 1 | 2 | 3 | 4 | ••• |  | <b>(m)</b> |
|---|---|---|---|-----|--|------------|
| 2 |   |   |   |     |  |            |
| 3 |   |   |   |     |  |            |
| : |   |   |   |     |  |            |
| n |   |   |   |     |  |            |

#### Nº de cuadriláteros

$$\frac{n(n+1)}{2} \times \frac{m(m+1)}{2}$$

#### Conteo de cuadrados

Si cada cuadrilátero simple es un cuadrado, entonces.

| 1   | 2 | 3 | 4 | ••• |  | <b>(m)</b> |
|-----|---|---|---|-----|--|------------|
| 2   |   |   |   |     |  |            |
| 3   |   |   |   |     |  |            |
| :   |   |   |   |     |  |            |
| (5) |   |   |   |     |  |            |

#### Nº de cuadrados

$$m \times n + (m-1)(n-1) + (m-2)(n-2) + \cdots$$

Hasta que al menos uno de los factores sea igual a la unidad.

#### **ANUAL SAN MARCOS 2021**





# **Aplicación 3**

Halle el número total de triángulos.



- B) 35
- C) 38
- D) 39

#### Resolución:

Nos piden: el número de triángulos.







# Aplicación 4

En la siguiente figura:



¿Cuántos cuadriláteros que no son cuadrados hay?

- A) 46
- B) 72
- **E**) 64
- D) 54

#### Resolución:

Nos piden: (Nº de cuadriláteros) — (Nº de cuadrados)

Del gráfico:

| 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|
| 2 |   |   |   |   |
| 3 |   |   |   |   |

| N° de ( | cuadr | rilátero | S |
|---------|-------|----------|---|
|---------|-------|----------|---|

$$\left(\frac{3\times4}{2}\right)\times\left(\frac{5\times6}{2}\right) = 90$$

| 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|
| 2 |   |   |   |   |
| 3 |   |   |   |   |

N° de cuadrados

$$(5 \times 3) + (4 \times 2) + (3 \times 1) = 26$$

∴  $N^{o}$  de cuadriláteros que no son cuadrados es 90 - 26 = 64

#### **ANUAL SAN MARCOS 2021**





# Aplicación 5

¿Cuántos cuadriláteros se cuentan en la figura mostrada?



A) 93



C) 86

D) 94

#### Resolución:

Nos piden: el número de cuadriláteros.

Del gráfico:

Nº cuadriláteros 2x3 4x5

$$\frac{2x3}{2}x\frac{4x5}{2} = 30$$



Nº cuadriláteros

$$\frac{6x7}{2} \times \frac{2x3}{2} = 63$$

Nº cuadriláteros

$$\frac{2x3}{2}x\frac{2x3}{2} = 9$$

 $N^{o}$  de cuadriláteros en total es 30 + 63 - 9 = 84





www.aduni.edu.pe





