#### What is a Spline?

- A spline is a function that consisting of simple functions joined together.
- As with polynomial functions, splines are used to interpolate tabulated data as well as functions.
- A spline is different from a polynomial interpolation, which consists of a single well defined function that approximates a given shape; splines are normally piecewise polynomial.

#### What is a spline function?

Given  $(x_0,y_0)$ ,  $(x_1,y_1)$ , .....  $(x_n,y_n)$ , find the value of 'y' at a value of 'x' that is not given.



#### What is a spline function?



• A simple example is the **polygonal** function (or spline of degree 1), whose pieces are linear polynomials joined together to achieve **continuity**, as in figure. The points *t*<sub>0</sub>, *t*<sub>1</sub>, . . . , *t*<sub>n</sub> at which the function changes its character are termed **knots** in the theory of splines.

# Why Splines?

- Splines are used to approximate complex functions and shapes.
- Drawbacks of higher order polynomials in interpolating functions.
- Splines are normally piecewise polynomials so provides better approximation then polynomial interpolatings.

# Why Splines?

$$f(x) = \frac{1}{1 + 25x^2}$$

Table: Six equidistantly spaced points in [-1, 1]

| x    | $y = \frac{1}{1 + 25x^2}$ |
|------|---------------------------|
| -1.0 | 0.038461                  |
| -0.6 | 0.1                       |
| -0.2 | 0.5                       |
| 0.2  | 0.5                       |
| 0.6  | 0.1                       |
| 1.0  | 0.038461                  |



Figure: 5<sup>th</sup> order polynomial vs. exact function

# Why Splines?



Figure: Higher order polynomial interpolation is a bad idea

#### First Degree Splines

- Splines make use of partitions, which are a way of cutting an interval into a number of subintervals.
- The spline functions of degree 1 can be used for interpolation



#### First Degree Splines



A function S is called a **spline of degree 1** if:

- **1.** The domain of S is an interval [a, b].
- **2.** *S* is **continuous** on [*a*, *b*].
- **3.** There is a partitioning of the interval  $a = t_0 < t_1 < \cdots < t_n = b$  such that S is a linear polynomial on each subinterval  $[t_i, t_{i+1}]$ .

# First Degree Splines

$$f(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0), \qquad x_0 \le x \le x_1$$

$$= f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1), \qquad x_1 \le x \le x_2$$

$$\vdots$$

$$\vdots$$

$$= f(x_{n-1}) + \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} (x - x_{n-1}), \quad x_{n-1} \le x \le x_n$$

Note the terms of

$$\frac{f(x_{i}) - f(x_{i-1})}{x_{i} - x_{i-1}}$$

in the above function are simply slopes between  $x_{i-1}$  and  $x_i$ .



#### Example

The upward velocity of a rocket is given as a function of time in table.

Find the velocity at t=16 seconds using linear splines.

**Table**: Velocity as a function of time

| <i>t</i> (s) | v(t) (m/s) |  |  |  |  |  |  |
|--------------|------------|--|--|--|--|--|--|
| 0            | 0          |  |  |  |  |  |  |
| 10           | 227.04     |  |  |  |  |  |  |
| 15           | 362.78     |  |  |  |  |  |  |
| 20           | 517.35     |  |  |  |  |  |  |
| 22.5         | 602.97     |  |  |  |  |  |  |
| 30           | 901.67     |  |  |  |  |  |  |



**Figure**: Velocity vs. time data for the rocket example

#### Linear Splines

$$t_0 = 15, v(t_0) = 362.78$$

$$t_1 = 20, v(t_1) = 517.35$$

$$v(t) = v(t_0) + \frac{v(t_1) - v(t_0)}{t_1 - t_0} (t - t_0)$$

$$= 362.78 + \frac{517.35 - 362.78}{20 - 15} (t - 15) \xrightarrow{f(\text{range})} (t - 15)$$

$$v(t) = 362.78 + 30.913(t - 15)$$
At  $t = 16$ ,
$$v(16) = 362.78 + 30.913(16 - 15)$$

$$= 393.7 \text{ m/s}$$



A function Q is a **second-degree spline** if it has the following properties

A function Q is called a **spline of degree 2** if:

- **1.** The domain of Q is an interval [a, b].
- **2.** Q and Q' are continuous on [a, b].
- **3.** There are points ti (called **knots**) such that  $a = t0 < t1 < \cdots < tn = b$  and Q is a polynomial of degree at most 2 on each subinterval [ti, ti+1].

Given  $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}), (x_n, y_n)$ , fit quadratic splines through the data. The splines

are given by

$$f(x) = a_1 x^2 + b_1 x + c_1, x_0 \le x \le x_1$$

$$= a_2 x^2 + b_2 x + c_2, x_1 \le x \le x_2$$
.

 $= a_n x^2 + b_n x + c_n, \qquad x_{n-1} \le x \le x_n$ 

$$X_{n-1} \le X \le X_n$$



Find  $a_i$ ,  $b_i$ ,  $c_i$ , i = 1, 2, ..., n

Each quadratic spline goes through two consecutive data points

$$a_{1}x_{0}^{2} + b_{1}x_{0} + c_{1} = f(x_{0})$$

$$a_{1}x_{1}^{2} + b_{1}x_{1} + c_{1} = f(x_{1})$$

$$\vdots$$

$$a_{i}x_{i-1}^{2} + b_{i}x_{i-1} + c_{i} = f(x_{i-1})$$

$$a_{i}x_{i}^{2} + b_{i}x_{i} + c_{i} = f(x_{i})$$

$$\vdots$$

$$\vdots$$

$$a_{n}x_{n-1}^{2} + b_{n}x_{n-1} + c_{n} = f(x_{n-1})$$

$$a_{n}x_{n}^{2} + b_{n}x_{n} + c_{n} = f(x_{n})$$



This condition gives 2n equations

The first derivatives of two quadratic splines are continuous at the interior points.

For example, the derivative of the first spline

$$a_1 x^2 + b_1 x + c_1$$
 is  $2a_1 x + b_1$ 

The derivative of the second spline

$$a_2 x^2 + b_2 x + c_2$$
 is  $2a_2 x + b_2$ 

and the two are equal at  $x = x_1$  giving

$$2a_1x_1 + b_1 = 2a_2x_1 + b_2$$

$$2a_1x_1 + b_1 - 2a_2x_1 - b_2 = 0$$



Similarly at the other interior points,

$$2a_2x_2 + b_2 - 2a_3x_2 - b_3 = 0$$

.

.

$$2a_i x_i + b_i - 2a_{i+1} x_i - b_{i+1} = 0$$

•

.

$$2a_{n-1}x_{n-1} + b_{n-1} - 2a_nx_{n-1} - b_n = 0$$



We have (n-1) such equations. The total number of equations is (2n) + (n-1) = (3n-1).

We can assume that the first spline is linear, that is  $a_1 = 0$  Not ideal solution, in this example, this is used for a demonstration purpose.

Instead: we can use boundary conditions: i.e. set f'(x0)=0; f'(xn)=0.

This gives us '3n' equations and '3n' unknowns. Once we find the '3n' constants, we can find the function at any value of 'x' using the splines,

$$f(x) = a_1 x^2 + b_1 x + c_1, x_0 \le x \le x_1$$

$$= a_2 x^2 + b_2 x + c_2, x_1 \le x \le x_2$$

$$\cdot$$

 $= a_n x^2 + b_n x + c_n, \qquad x_{n-1} \le x \le x_n$ 



#### Quadratic Spline Example

The upward velocity of a rocket is given as a function of time. Using quadratic splines

- a) Find the velocity at t=16 seconds
- b) Find the acceleration at t=16 seconds
- c) Find the distance covered between t=11 and t=16 seconds

**Table :** Velocity as a function of time

| t (s) | v(t) (m/s) |
|-------|------------|
| 0     | 0          |
| 10    | 227.04     |
| 15    | 362.78     |
| 20    | 517.35     |
| 22.5  | 602.97     |
| 30    | 901.67     |





**Figure :** Velocity vs. time data for the rocket example

#### Solution

$$v(t) = a_1 t^2 + b_1 t + c_1, \quad 0 \le t \le 10$$

$$= a_2 t^2 + b_2 t + c_2, \quad 10 \le t \le 15$$

$$= a_3 t^2 + b_3 t + c_3, \quad 15 \le t \le 20$$

$$= a_4 t^2 + b_4 t + c_4, \quad 20 \le t \le 22.5$$

$$= a_5 t^2 + b_5 t + c_5, \quad 22.5 \le t \le 30$$

Let us set up the equations

# Each Spline Goes Through Two Consecutive Data Points

$$v(t) = a_1 t^2 + b_1 t + c_1,$$

$$0 \le t \le 10$$

$$a_1(0)^2 + b_1(0) + c_1 = 0$$

$$a_1(10)^2 + b_1(10) + c_1 = 227.04$$



#### Each Spline Goes Through Two Consecutive Data Points

| t    | v(t)   |
|------|--------|
| S    | m/s    |
| 0    | 0      |
| 10   | 227.04 |
| 15   | 362.78 |
| 20   | 517.35 |
| 22.5 | 602.97 |
| 30   | 901.67 |

$$a_{2}(10)^{2} + b_{2}(10) + c_{2} = 227.04$$

$$a_{2}(15)^{2} + b_{2}(15) + c_{2} = 362.78$$

$$a_{3}(15)^{2} + b_{3}(15) + c_{3} = 362.78$$

$$a_{3}(20)^{2} + b_{3}(20) + c_{3} = 517.35$$

$$a_{4}(20)^{2} + b_{4}(20) + c_{4} = 517.35$$

$$a_{4}(22.5)^{2} + b_{4}(22.5) + c_{4} = 602.97$$

$$a_{5}(22.5)^{2} + b_{5}(22.5) + c_{5} = 602.97$$

$$a_{5}(30)^{2} + b_{5}(30) + c_{5} = 901.67$$

# Derivatives are Continuous at Interior Data Points

$$v(t) = a_1 t^2 + b_1 t + c_1, 0 \le t \le 10$$

$$= a_2 t^2 + b_2 t + c_2, 10 \le t \le 15$$

$$\frac{d}{dt} \left( a_1 t^2 + b_1 t + c_1 \right) \Big|_{t=10} = \frac{d}{dt} \left( a_2 t^2 + b_2 t + c_2 \right) \Big|_{t=10}$$

$$\left( 2a_1 t + b_1 \right) \Big|_{t=10} = \left( 2a_2 t + b_2 \right) \Big|_{t=10}$$

$$2a_1 (10) + b_1 = 2a_2 (10) + b_2$$

$$20a_1 + b_1 - 20a_2 - b_2 = 0$$

# Derivatives are Continuous at Interior Data Points

At t=10 
$$2a_1(10) + b_1 - 2a_2(10) - b_2 = 0$$
 At t=15 
$$2a_2(15) + b_2 - 2a_3(15) - b_3 = 0$$
 At t=20 
$$2a_3(20) + b_3 - 2a_4(20) - b_4 = 0$$
 At t=22.5 
$$2a_4(22.5) + b_4 - 2a_5(22.5) - b_5 = 0$$

Last Equation  $a_1 = 0$ 

# Final Set of Equations

| [ 0 | 0  | 1 | 0    | 0  | 0 | 0    | 0  | 0 | 0          | 0    | 0 | 0          | 0    | 0] | $a_1$                            |   | $\begin{bmatrix} 0 \end{bmatrix}$ |
|-----|----|---|------|----|---|------|----|---|------------|------|---|------------|------|----|----------------------------------|---|-----------------------------------|
| 100 | 10 | 1 | 0    | 0  | 0 | 0    | 0  | 0 | 0          | 0    | 0 | 0          | 0    | 0  | $b_1$                            |   | 227.04                            |
| 0   | 0  | 0 | 100  | 10 | 1 | 0    | 0  | 0 | 0          | 0    | 0 | 0          | 0    | 0  | $c_1$                            |   | 227.04                            |
| 0   | 0  | 0 | 225  | 15 | 1 | 0    | 0  | 0 | 0          | 0    | 0 | 0          | 0    | 0  | $a_2$                            |   | 362.78                            |
| 0   | 0  | 0 | 0    | 0  | 0 | 225  | 15 | 1 | 0          | 0    | 0 | 0          | 0    | 0  | $b_2$                            |   | 362.78                            |
| 0   | 0  | 0 | 0    | 0  | 0 | 400  | 20 | 1 | 0          | 0    | 0 | 0          | 0    | 0  | $c_2$                            |   | 517.35                            |
| 0   | 0  | 0 | 0    | 0  | 0 | 0    | 0  | 0 | 400        | 20   | 1 | 0          | 0    | 0  | $a_3$                            |   | 517.35                            |
| 0   | 0  | 0 | 0    | 0  | 0 | 0    | 0  | 0 | 506.25     | 22.5 | 1 | 0          | 0    | 0  | $b_3$                            | = | 602.97                            |
| 0   | 0  | 0 | 0    | 0  | 0 | 0    | 0  | 0 | 0          | 0    | 0 | 506.25     | 22.5 | 1  | $c_3$                            |   | 602.97                            |
| 0   | 0  | 0 | 0    | 0  | 0 | 0    | 0  | 0 | 0          | 0    | 0 | 900        | 30   | 1  | $a_4$                            |   | 901.67                            |
| 20  | 1  | 0 | - 20 | -1 | 0 | 0    | 0  | 0 | 0          | 0    | 0 | 0          | 0    | 0  | $b_4$                            |   | 0                                 |
| 0   | 0  | 0 | 30   | 1  | 0 | - 30 | -1 | 0 | 0          | 0    | 0 | 0          | 0    | 0  | $c_4$                            |   | 0                                 |
| 0   | 0  | 0 | 0    | 0  | 0 | 40   | 1  | 0 | <b>-40</b> | -1   | 0 | 0          | 0    | 0  | $a_5$                            |   | 0                                 |
| 0   | 0  | 0 | 0    | 0  | 0 | 0    | 0  | 0 | 45         | 1    | 0 | <b>-45</b> | -1   | 0  | $b_5$                            |   | 0                                 |
|     | 0  | 0 | 0    | 0  | 0 | 0    | 0  | 0 | 0          | 0    | 0 | 0          | 0    | 0  | $\left\lfloor c_5 \right\rfloor$ |   |                                   |

# Coefficients of Spline

| i | $a_i$   | $b_i$   | $C_i$   |
|---|---------|---------|---------|
| 1 | 0       | 22.704  | 0       |
| 2 | 0.8888  | 4.928   | 88.88   |
| 3 | -0.1356 | 35.66   | -141.61 |
| 4 | 1.6048  | -33.956 | 554.55  |
| 5 | 0.20889 | 28.86   | -152.13 |

#### Final Solution

$$v(t) = 22.704t, 0 \le t \le 10$$

$$= 0.8888t^{2} + 4.928t + 88.88, 10 \le t \le 15$$

$$= -0.1356t^{2} + 35.66t - 141.61, 15 \le t \le 20$$

$$= 1.6048t^{2} - 33.956t + 554.55, 20 \le t \le 22.5$$

$$= 0.20889t^{2} + 28.86t - 152.13, 22.5 \le t \le 30$$



#### Velocity at a Particular Point

a) Velocity at t=16

$$v(t) = 22.704t, 0 \le t \le 10$$

$$= 0.8888t^{2} + 4.928t + 88.88, 10 \le t \le 15$$

$$= -0.1356t^{2} + 35.66t - 141.61, 15 \le t \le 20$$

$$= 1.6048t^{2} - 33.956t + 554.55, 20 \le t \le 22.5$$

$$= 0.20889t^{2} + 28.86t - 152.13, 22.5 \le t \le 30$$

$$v(16) = -0.1356(16)^{2} + 35.66(16) - 141.61$$
$$= 394.24 \text{ m/s}$$