Поиск границ радужки методом круговых проекций

Баженов Андрей Александрович

Московский физико-технический институт

Курс: Автоматизация научных исследований (практика, В.В. Стрижов)/Группа 821 Эксперт, консультант: И.А. Матвеев

Поиск границ

Цель исследования

Применение метода круговых проекций яркости для понижения размерности в задаче обработки изображений.

Задача

Построить алгоритм нахождения приблизительных границ элементов глаза на чёрно-белых фотографиях.

Круговые проекции яркости

 $ec{x}$ — точка изображения $b(ec{x})$ — яркость в точке $ec{g}(ec{x}) = \nabla b(ec{x})$

 $v_U(ec x)$ — индикатор принадлежности границе $\Pi_U(r)$ — усредненное значение индикатора по кругу радиуса r

Литература

Обзор алгоритмов обнаружения радужки

- 1. A. Nithya and C. Lakshmi. Iris Recognition Techniques: A Literature Survey. 2015
- K. Bowyer, K. Hollingsworth, and P. Flynn. Image Understanding for Iris Biometrics: A Survey. 2008

Описание метода круговых проекций

1. I. A. Matveev. Detection of iris in image by interrelated maxima of brightness gradient projections. 2010

Задача нахождения границ радужки

Задана выборка растровых изображений:

$$\mathcal{M} = \{(M(i), P_{\mathsf{R}}(i), I_{\mathsf{R}}(i))\}_{i=1}^n.$$

Требуется построить алгоритм

$$f: M \mapsto (P_{\mathsf{R}}, I_{\mathsf{R}}).$$

Рассматриваются модели вида

$$f = \varphi \circ \Pi$$
,

П — процедура подсчета круговых проекций,

$$\varphi(t) = \sigma_k \left(W_k^T \sigma_{k-1} \left(\dots \sigma_1 \left(W_1^T t \right) \dots \right) \right).$$

Задача оптимизации

$$f_0 = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^n L\left(\widehat{P}_{\mathsf{R}}(i), P_{\mathsf{R}}(i)\right) + L\left(\widehat{I}_{\mathsf{R}}(i), I_{\mathsf{R}}(i)\right).$$

Обработка круговых проекций

Зависимость круговой проекции от радиуса

Гипотеза

Значения $P_{\rm R}$ и $I_{\rm R}$ являются точками локальных максимумов функции $\Pi_U(r)$.

Для выделения максимумов и их обработки используются линенйные, сверточные и реккурентные нейронные сети, обучаемые по метрике MSE.

Вычислительный эксперимент

Цель

Сравнить модели по параметрам:

- 1. Точность решения;
- 2. Скорость работы.

Обучаемые модели

Архитектуры для обработки временных рядов:

- 1. Рекурсивные сети;
- 2. Сверточные сети.

Простейшие модели:

- 1. Полносвязная сеть;
- 2. Эвристический алгоритм.

Результаты эксперимента

Результаты эксперимента

Архитектура	Число	Средняя	Доверительный
	параметров	ошибка, %	интервал
Полносвязная	166402	2.21	2.15-2.24
Сверточная	56831	1.39	1.32-1.47
Сверточная	17655	1.48	1.39-1.58
Реккурентная	14962	1.77	1.45-2.05

При меньшем числе параметров модели, точность сверточной и реккурентной моделей выше.