株式会社フィジオテック 技術部小峰利夫 2023/07/11

python 刺激提示

ProbabilisticReversalLearning

ver 1.0.0

1. 動作推奨環境

1.1. OS

- Windows 10 pro/home または、Windows11 pro/home
- 非 s-mode (s-mode でないこと)
- 64bit OS
- Intel 64bit CPU
- メモリー 8 G- 16Gbyte
- 1.2. Windows10/11 でのタッチパネルによるマウスイベント
- Windows10では、タッチパネルのイベントはマウスのイベントに変換されます。『タッチパネルの長押し』についてはタッチパネルの反応を遅くするため、Windows10の設定で、『タッチパネル』『長押し』による右クリックは機能をオフにして下さい。

1.3. ハードウェア

- SurfaceGO (intel モデル 2022 購入)
- 給餌 / 給水装置

2. 関連ファイル

2.1.Psychopy3 本体

本システムでは、Psychopy が必要です、

現時点では(2023/06/16) では Psychopy version 2022.2.5 を使用しています。

Psychopy で、"Builder"を使用して刺激提示プログラムを作る方法と"Coder"を利用する方法があります。本プログラムでは、"Builder"を使用しています。

尚、Psychopy についてはインターネット上の情報をご覧ください。

2.2.プログラム本体/python スクリプト

- BuilderProbabilisticReservalLearning-pp20220205.psyexp: psychopy builder 刺激提示プログラム本体

2.3. python 刺激提示プログラム(P_Reversal_Learning フォルダ内)

- (LibFeeder フォルダ内) Feeder.py: 給餌装置 制御ライブラリプログラム
- (LibWin フォルダ内) MouseExit.py:画面終了ライブラリプログラム
- BuilderSession.py: psychopy 環境 制御プログラム
- TaskProbabilisticReversalLearning.py: ProbabilisticReversalLearning 制御プログラム
- PRL block loop.csv: 『ProbabilisticReversalLearning』を構成する cvs ファイル。
- PRL_trial_loop.csv: 正解/不正解時の画像を指定する cvs ファイル
- (Resouce フォルダ内) image フォルダ : この刺激提示で使用する画像ファイルを格納。

- (Resouce フォルダ内) sound フォルダ: この刺激提示で使用する音ファイルを格納。

2.4.フォルダ位置

Psychopy が実行できるフォルダ位置ならばどこでも構いません。

3. 動作システムの補足

3.1.Psychopy 座標系について

Psychopy 座標系は、Units という指定でスクリーン座標系の単位を示します。単位系によって扱いが違います。このシステムでは、『height』を使っています。『height』を指定するとスクリーンの垂直方向の中央を『0,0』座標、上側を『+1』下側を『-1』とし、水平方向は垂直方向の単位に合わせたものとなります。

4. [ProbabilisticReversalLearning]

正解と不正解が一定の確率で提示する『Reversal Learning』です。動物実験の場合、正解側に対して報酬などの『手がかり』を与えます。これに対して一定の割合で不正解側に対して『手がかり』を与えます。例えば80パーセントの場合、

- 正解側、『報酬による手がかり』を80%
- 不正解側、『報酬による手がかり』を20%

のように提示します。

4.1.課題実施例

4.2. ProbabilisticReversalLearning の指定 - PRL_block_loop.csv

\angle	Α	В	С	D	Е	F	G	Н	1	J	K	L
1	target_x_p	target_y_p	target_x_s	target_y_s	distractor_	distractor_	distractor_	distractor_	target_LR	correct_LF	trial_name	
2	-0.39	0	0.25	0.25	0.39	0	0.25	0.25	L	L	T_L_C_L_80)_PE
3	-0.39	0	0.25	0.25	0.39	0	0.25	0.25	L	L	T_L_C_L_80)_PE
4	-0.39	0	0.25	0.25	0.39	0	0.25	0.25	L	L	T_L_C_L_80)_PE
5	-0.39	0	0.25	0.25	0.39	0	0.25	0.25	L	L	T_L_C_L_80)_PE
6	-0.39	0	0.25	0.25	0.39	0	0.25	0.25	L	L	T_L_C_L_80)_PE
7	-0.39	0	0.25	0.25	0.39	0	0.25	0.25	L	L	T_L_C_L_80)_PE
8	-0.39	0	0.25	0.25	0.39	0	0.25	0.25	L	L	T_L_C_L_80)_PE

このテーブルの1行が1トライアルで使用されます。

4.2.1. 『Psychopy-Builder Loop』によるランダム

『Psychopy-Builder Loop』の設定で、『loop type: random』を指定しています。これにより 『block_loop.csv』の1行-1トライアルがランダムで選択されます。但しこのランダムは『出現回数が 同じ』ランダムとなります。『完全なランダム』にする場合には『loop type: fullRandom』を選択して下さい。

4.2.2. 『block loop.csv』各項目

target_x_pos-0.42: 正解側の刺激提示の座標 x ポジションtarget_y_pos-0.33375: 正解側の刺激提示の座標 y ポジション

target_x_size0.25: 正解側の刺激提示のxサイズtarget_y_size0.25: 正解側の刺激提示のyサイズ

distractor_x_pos0.24625: 不正解側の刺激提示の座標 x ポジションdistractor_y_pos-0.33375: 不正解側の刺激提示の座標 y ポジション

distractor_x_size0.25: 不正解側の刺激提示の x サイズdistractor_y_size0.25: 不正解側の刺激提示の y サイズtarget_L_RL: 正解画像位置の記号(L か R か)

correct_L_R L : 正解位置の記号(L か R か) trial_name T_L_C_L_80_PERCENT : トライアル名

4.2.3. trial name について

:トライアル名。

例えば、T_L_C_L_80_PERCENT の場合、

T L => Target が L

C L => correct か L

80 PERCENT=> target が correct の確率が 80%

上記と一緒に反転のTLCR80 PERCENTの場合、

 $T L => Target <math>\mathcal{D}^{\zeta} L$

C R => correct か R

80 PERCENT=> target が correct の確率が 80%(T L C R が 20%)

4.2.4. 『ProbabilisticReversalLearning』の割合

『ProbabilisticReversalLearning』の割合はこのファイルの行の数で決まります。Target / Correct を80%にする場合、例えば全体の行数(トライアルの数)20 とします。この 20 トライアル中、

- 8トライアルを、T_L_C_L_80_PERCENT
- 2トライアルを、T_L_C_R_80_PERCENT
- 8トライアルを、TRCR80 PERCENT
- 2トライアルを、T_R_C_L_80_PERCENT

を準備します。これを『loop type: random』とすることで、Target が左側/右側に提示する割合を均等に、Correct が左側/右側になる割合を均等に、正解/不正解での手がかり提示(報酬)が80パーセントとすることができます。

4.3. ProbabilisticReversalLearning の指定 - PRL_trial_loop.csv

このテーブルの1行がcsvで指定するファイルを使用しトライアルを行います。

4.3.1. 『Psychopy-Builder Loop』によるランダム

『Psychopy-Builder Loop』の設定で、『loop type: random』を指定しています。これにより『trial_loop.csv』の1行-1トライアルがランダムで選択されます。但しこのランダムは『出現回数が同じ』ランダムとなります。『完全なランダム』にする場合には『loop type: fullRandom』を選択して下さい。

4.3.2. 『PRL_trial_loop.csv』各項目

TRIAL 1 : トライアルの名前

target_image A.png : ターゲットイメージの画像ファイルの指定。

dist_image B.png : ディストラクタイメージの画像ファイルの指定。

block_csv PRL_block_loop.csv: 『ProbabilisticReversalLearning』の csv 指定。

画像ファイルは『Resource/image』フォルダ内に置きます。 複数行指定すると途中で条件を変更することができます。

- 5. Psychopy-Builder の起動と『ProbabilisticReversalLearning』の実行
 - 5.1.Psychopy-Builder の起動

Windows メニューより、Psychopy-Builder を起動します。次のようなウィンドウが開きます。

5.2. 『ProbabilisticReversalLearning』の読み込みと実行

5.2.1. 『ProbabilisticReversalLearning』の読み込み

Psychopy-Builder のウィンドウの中の以下のアイコンを選択し、ファイルをロードします。

ファイル名は、『BuilderProbabilisticReservalLearning-pp20220205.psyexp』です。

5.2.2. 『ProbabilisticReversalLearning』の実行

Psychopy-Builder のウィンドウの中の以下のアイコンを選択し、実行します。

5.3.起動時ダイアログボックス

起動時に以下のようなダイアログボックスが開きます。

5.3.1. 各パラメータ

- participant (参加者 ID):参加者 ID を設定します。デフォルトではランダムで指定されます。
- session: ioHubServer に指定される値。 現状では 001 のまま運用します。
- wait_first_sec:トライアル開始前、一度ウェイトを入れることができます。ここで指定した時間 (秒)が使われます。
- reward_serial_COM: 給餌装置を使う場合 COM を指定して下さい。使用しない場合は'None'(一文字目は大文字)を指定します。
- trans_pos_x,y size_x,y: 刺激提示の位置およびサイズの補正を指定します。この値については、 『7.2 Psychopy-Builder 『Experiment settings』による設定』を参照して下さい。
- mouse_cursor: 0 の場合、マウスカーソルは表示されません。1 の場合マウスカーソルは表示されません。

5.4.トライアル開始時とトライアル終了

実際のトライアル『ProbabilisticReversalLearning』の始まる前と後には、以下のようなシーケンスが挿入されています。

6. 『ProbabilisticReversalLearning』のシーケンス

6.1.以下に『ProbabilisticReversalLearning』の1トライアル中のシーケンスを示します

実験開始

6.2. シーケンスの一覧

- warning シーケンス: タッチ後は1秒のウェイトあり
- stimuli_AB シーケンス
- ITI シーケンス
- extraITI シーケンス
 - 6.2.1. 各シーケンスの内、『warning、stimuli_AB』でタッチが行われなかった場合、 time_over となり、以降のシーケンスが非実行となります。time_over で非実行となる シーケンスは、以下の通りです。
 - warning シーケンス (time_over で非実行)
 - stimuli_AB シーケンス time_over で非実行
 - ITI シーケンス 実行
 - extraITI シーケンス (incorrect/timeover で実行)

7. 環境設定について

7.1.環境設定の内容

パソコンにより異なる設定が必要な場合、『python 刺激提示プログラム』に埋め込むのは不便です。 例えば給餌装置のシリアル通信ポート番号がパソコンにより異なります。環境設定はこのような場合パソコン毎に設定することでプログラムに変更を加えなくても制御することができます。本プログラムでは、Psychopy-Builder の『Experiment settings』による制御とプログラム内設定ファイルの両方を利用しています。

7.2.Psychopy-Builder『Experiment settings』による設定

Psychopy-Builder が持つ標準の機能です。呼び出すには、Psychopy-Builder ウィンドウの、歯車マークを選びます。

ここでは主な項目を解説します。

- 『Screen』タブ内、『Units』: Units はスクリーン座標系の単位を示します。ここでは必ず『hight』 を指定して下さい。Psychopy での座標系については、『3.1 Psychopy 座標系について』をご覧下さい。
- 『Screen』タブ内、『Color』: バックグラウンドのカラーを指定します。RGB それぞれをしてい します。 値は、各色 256 階調に対して、最小値『0』は『-1』、中央値『128』は『0』、最大値 『255』は『1』と表現されます。例えばは黒は『-1,-1,-1』、中間グレーは『0,0,0』、白は『1,1,1』 となります。
- 『Data』タブ内、『Data filename』: 記録するときのファイル名を指定します。デフォルトでは、『data』フォルダ内に、participant 指定、このアプリケーション名、日付となります。ここで指定する文字列を変更するとファイル名を変更できます。
- 『Basic』タブ内、『Experiment info』内、『Feeder_serial_port: COM8』: この指定により給餌装置のシリアルポートを指定できます。また、シリアルポートを使わない場合には'None'(頭が大文字)を指定して下さい。
- 『Basic』タブ内、『Experiment info』内、『trans_pos_x:-0.0234』 『Basic』タブ内、『Experiment info』内、『trans_pos_y:-0.02205』 刺激提示の中央位置を調整します。デフォルト値は。SurfaceGO(intel モデル 2022 購入)に合わせてあります。
- 『Basic』タブ内、『Experiment info』内、『trans_x_size: 0.5』 『Basic』タブ内、『Experiment info』内、『trans_y_size: 0.5』 中央位置からの拡大(あるいは縮小)の割合を示します。1 より小さい場合、縮小となります。デ

フォルト値は 0.5 で半分に縮小されます。

- 『Basic』タブ内、『Experiment info』内、『mouse_visible:0』 マウスカーソルの表示をしない場合には'0'を指定します。マウスカーソルを表示する場合は'1' を指定します。

7.3.プログラム内設定ファイルによる設定

プログラム内コードを変更する場合は、Psychopy-Coder を使用します。Psychopy-Coder の使い方については web サイト Psychopy.org などをご覧下さい。

- 6.3.1. 給餌装置の設定(給水タイプへの変更)
 - (LibFeeder フォルダ内) Feeder.py: 内、クラス『class ParamFeeder』内、self.feeder_device_drink = False を True に指定します。給餌装置が drink 系の場合 true を指定します。そうでない場合 false を指定します。
- 6.3.2. 『ProbabilisticReversalLearning』トライアル開始前、給餌装置の動作の確認
 - 『BuilderProbabilisticReservalLearning-pp20220205.psyexp』 builder 内、『reward test』ルーチン内、『code_reward_test』コード内、『End Routine』タブ内のコードで、currentTask.feeder.feed(1);

を加えます。これによりトライアル開始前に給餌装置の動作確認を行うことができます。 但し、予め給餌装置の USB ケーブルの接続が必要になります。このため現在デフォルトではコードとしては埋め込んでいません。

- 6.3.3. 『TaskProbabilisticReversalLearning.py』のパラメータ 『ParamProbabilisticReversalLearning』
 - warning シーケンス時、刺激提示位置・サイズの設定

self.warning $_x_pos = 0.0$

self,warning__y_pos = 0.0

 $self.warning_x_size = 0.25$

self, warning $_y$ size = 0.25

- Timeout までの時間(秒) self.touch limit sec = 900
- ITI の時間(秒) self.ITI_duration_sec=3 extra ITI の時間(秒)
- self.ITI_Extra_duration_sec = 5.0

6.3.4. 正解/不正解時の音について

『TaskProbabilisticReversalLearning.py』の『class Seq_reward_ITI』に音の定義が行われています。サウンドについては、Psychopy の Sound - for audio playback をご覧下さい。

7. 出力ファイル

出力ファイルは『BuilderProbabilisticReservalLearning-pp20220205.psyexp』が含まれるフォルダの『data』フォルダに作られます。

7.1. ファイルの種類。

一回の『experiment』で、3つのファイルが作成されます。

- 『.csv』ファイル : このファイルが記録データとなります。

- 『.psyda』ファイル : この記録データのバイナリ形式のファイルです。Psychopy のライブラリ関数で読み込むことができます。出力形式を補正し再出力する時に使います。

- 『.log』ファイル : 現在は使用しませんが、全体の流れを知ることができます。

7.2. 記録時間について

刺激提示提示の表示時間の単位は秒で、『experiment』開始からの経過時間となります(トライアルが変わっても時間はリセットされません)。

マウスの時間の単位は秒で、各シーケンスからの経過時間となります。

7.3. 出力ファイルパラメータ(主な項目)

target_image :正解の画像のファイル名

dist_image : 不正解の画像のファイル名

block csv : このトライアルで使用した PRL 設定ファイル

(添付のファイルでは、正解よる手がかりが80パーセントのもの)

target_LR : 正解画像位置の記号(L か R か)

例えば、正解画像を左側にする場合には"L"と記録される。

correct_LR : 正解位置の記号(L か R か)

例えば、正解場所を左側にする場合には"L"と記録される。

trial_name :トライアル名。

例えば、T_L_C_L_80_PERCENT の場合、

 $T_L => Target \, \cancel{D}^s L$ $C_L => correct \, \cancel{D}^s L$

80_PERCENT=> target が correct の確率が 80%

上記と一緒に反転のTLCR80 PERCENTの場合、

 $T_L = > Target \, \mathcal{D}^{\underline{s}} L$

C_R => correct が R

80_PERCENT=> target が correct の確率が 80%(T_L_C_R が 20%)

trials.thisN : トライアル回数。トライアルを行う度に1カウント。

trials.thisIndex :『block loop.csv』でのインディックス

selected : 選択した画像(target か distractor か)

responseTime :レスポンスタイム。タッチした時の時間(刺激提示からのオフセット時間)

correct : correct O True/False
omission : omission O True/False

rewad_count : リワード回数

image_stimuli_A.started : stimuli_A 表示 start 時間(sec)

image_stimuli_A.mouse.time : stimuli_A マウス時間 (刺激提示からのオフセット時間)

image_stimuli_B.started : stimuli_B 表示 start 時間(sec)

image_stimuli_B.mouse.time : stimuli_B マウス時間 (刺激提示からのオフセット時間)

image_stimuli_A.mouse.time または、image_stimuli_A.mouse.time の選択した方をresponseTime として記録される。

7.4. 出力ファイルパラメータ(一覧)

TRIAL	正解/不正解/PRL設定ファイルのセット名
target_image	正解の画像
dist_image	不正解の画像
block_csv	このトライアルで使用したPRL設定ファイル
target_x_pos	正解刺激提示位置x
target_y_pos	正解刺激提示位置y
target_x_size	正解刺激提示サイズx
target_y_size	正解刺激提示サイズy
distractor_x_pos	不正解刺激提示位置x
distractor_y_pos	不正解刺激提示位置y
distractor_x_size	不正解刺激提示サイズx
distractor_y_size	不正解刺激提示サイズy
target_LR	正解画像位置の記号(L か R か)
correct_LR	正解位置の記号(L か R か)
trial_name	トライアル名
trials_session.thisRepN	現在は未使用(常にゼロ)
trials_session.thisTrialN	現在は未使用(常にゼロ)
trials_session.thisN	現在は未使用(常にゼロ)
trials_session.thisIndex	現在は未使用(常にゼロ)
trials_loop.thisRepN	現在は未使用(常にゼロ)
trials_loop.thisTrialN	正解/不正解/PRL設定ファイルのセットの回数
trials_loop.thisN	正解/不正解/PRL設定ファイルのセットの回数
trials_loop.thisIndex	『PRL_trial_loop.csv』でのインディックス
trials.thisRepN	現在は未使用(常にゼロ)
trials.thisTrialN	トライアル回数
trials.thisN	トライアル回数
trials.thisIndex	『block_loop.csv』でのインディックス
selected	選択した画像(targetかdistractorか)
responseTime	レスポンスタイム
correct	correct の True/False
omission	omissionの True/False
rewad_count	リワード回数

(続き-1)

polygon_warning_square.started	warning_square 表示start時間(sec)
polygon_warning_square.stopped	warning_square 表示stop(sec)
polygon_warning_square.x_pos	warning_square 表示位置(x)
polygon_warning_square.y_pos	warning_square 表示位置(y)
polygon_warning_square.x_size	warning_square 表示サイズ(x)
polygon_warning_square.y_size	warning_square 表示サイズ(y)
polygon_warning_square.mouse.x	warning_square マウス(x)
polygon_warning_square.mouse.y	warning_square マウス(y)
polygon_warning_square.mouse.leftButton	warning_square マウス ボタン
polygon_warning_square.mouse.midButton	warning_square マウス ボタン
polygon_warning_square.mouse.rightButton	warning_square マウス ボタン
polygon_warning_square.mouse.time	warning_square マウス 時間
polygon_warning_square.mouse.clicked_name	warning_square マウス 選択図形
polygon_warning_square_blank.started	warning_square ブランクstart時間(sec)
polygon_warning_square_blank.stopped	warning_squareブランクstop(sec)
image_stimuli_A.started	stimuli_A 表示start時間(sec)
image_stimuli_A.stopped	stimuli_A 表示stop(sec)
image_stimuli_A.x_pos	stimuli_A 表示位置(x)
image_stimuli_A.y_pos	stimuli_A 表示位置(y)
image_stimuli_A.x_size	stimuli_A 表示サイズ(x)
image_stimuli_A.y_size	stimuli_A 表示サイズ(y)
image_stimuli_A.mouse.x	stimuli_A マウス(x)
image_stimuli_A.mouse.y	stimuli_A マウス(y)
image_stimuli_A.mouse.leftButton	stimuli_A マウス ボタン
image_stimuli_A.mouse.midButton	stimuli_A マウス ボタン
image_stimuli_A.mouse.rightButton	stimuli_A マウス ボタン
image_stimuli_A.mouse.time	stimuli_A マウス 時間
image_stimuli_A.mouse.clicked_name	stimuli_A マウス 選択図形
image_stimuli_B.started	stimuli_B 表示start時間(sec)
image_stimuli_B.stopped	stimuli_B 表示stop(sec)
image_stimuli_B.x_pos	stimuli_B 表示位置(x)
image_stimuli_B.y_pos	stimuli_B 表示位置(y)
image_stimuli_B.x_size	stimuli_B 表示サイズ(x)
image_stimuli_B.y_size	stimuli_B 表示サイズ(y)

(続き-2)

image_stimuli_B.mouse.leftButton stimuli_B マウス ボタン image_stimuli_B.mouse.midButton stimuli_B マウス ボタン stimuli Bマウス ボタン image_stimuli_B.mouse.rightButton image_stimuli_B.mouse.time stimuli_B マウス 時間 image_stimuli_B.mouse.clicked_name stimuli_B マウス 選択図形 polygon_reward_ITI.started reward_ITI ブランク start時間(sec) reward ITI ブランク stop時間(sec) polygon_reward_ITI.stopped polygon_extra_ITI.started extra_ITI ブランク start時間(sec) polygon_extra_ITI.stopped extra_ITI ブランク stop時間(sec) 参加者ID participant session session reward_serial_COM リワードシリアルポート wait_first_sec 最初のウェイト時間(sec) trans_pos_x 刺激提示座標補正x 刺激提示座標補正y trans_pos_y trans_size_x 刺激提示サイズ補正x 刺激提示サイズ補正y trans_size_y マウスカーソル mouse cursor date 日付 expName 名前 PsychoPyバージョン psychopyVersion frameRate フレームレート

