Examenul național de bacalaureat 2021 Proba E. c)

Matematică M mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Testul 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^2 - z - i = 1 + 2i + i^2 - 1 - i - i =$	3p
	=1+2i-1-1-2i=-1	2p
2.	$\Delta = 9 - 4(3 - n) = 4n - 3$	2p
	$\Delta > 0 \Leftrightarrow n > \frac{3}{4}$, deci $n = 1$	3p
3.	$2 + \log_5 x + \frac{1}{\log_5 x} = 4 \Rightarrow (\log_5 x - 1)^2 = 0$	3p
	$\log_5 x = 1$, deci $x = 5$, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În această mulțime există 45 de numere divizibile cu 2, 30 de numere divizibile cu 3 și 15 numere divizibile atât cu 2 cât și cu 3, deci sunt $45 + 30 - 15 = 60$ de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{60}{90} = \frac{2}{3}$	1p
5.	Distanța de la punctul C la dreapta AB este egală cu 2	2p
	$AB = 5 \Rightarrow \mathcal{A}_{\Delta ABC} = \frac{5 \cdot 2}{2} = 5$	3p
6.	$\sin(\pi - x) = \sin x$, $\cos(\pi - x) = -\cos x \Rightarrow E(x) = \operatorname{tg} 2x$, pentru orice $x \in \left(0, \frac{\pi}{4}\right)$	3p
	$E\left(\frac{\pi}{8}\right) = tg\frac{\pi}{4} = 1$	2p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$A + I_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A + I_3) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	=1+0+0-0-0-0=1	3 p
b)	$A \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	2p
	$A \cdot A \cdot A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_3$	3р

c)	Pentru $X = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$, obținem $A \cdot X = \begin{pmatrix} d & e & f \\ g & h & i \\ 0 & 0 & 0 \end{pmatrix}$ și $X \cdot A = \begin{pmatrix} 0 & a & b \\ 0 & d & e \\ 0 & g & h \end{pmatrix}$	2p
	$A \cdot X = X \cdot A \Rightarrow d = h = 0$, $g = 0$, $a = e = i$, $b = f$, deci $X = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} = aI_3 + bA + cA \cdot A$,	3 p
	unde a , b și c sunt numere reale	
2.a)	5*2 = 5-2 = 3	2p
	(5*2)*1=3*1= 3-1 =2	3p
b)	x * y = x - y = -(y - x) =	2p
	= y-x =y*x, pentru orice numere reale x și y , deci legea de compoziție "*" este comutativă	3 p
c)	$(a*b)+(b*c)= a-b + b-c \ge (a-b)+(b-c) =$	3 p
	= a-b+b-c = a-c = a*c, pentru orice numere reale a , b și c	2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{(2x-2)e^x - (x^2 - 2x + 1)e^x}{e^{2x}} = \frac{e^x (2x - 2 - x^2 + 2x - 1)}{e^{2x}} =$	3 p
	$= \frac{-x^2 + 4x - 3}{e^x} = \frac{-(x-1)(x-3)}{e^x}, \ x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 1 \text{ sau } x = 3$	2p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 1] \Rightarrow f$ este descrescătoare pe $(-\infty, 1]$, $f'(x) \ge 0$, pentru orice $x \in [1, 3] \Rightarrow f$ este crescătoare pe $[1, 3]$ și $f'(x) \le 0$, pentru orice $x \in [3, +\infty) \Rightarrow f$	3 p
	este descrescătoare pe $[3,+\infty)$	
c)	f este crescătoare pe [1,3], f este descrescătoare pe [3,+ ∞) și $f(3) = \frac{4}{e^3}$, deci $f(x) \le \frac{4}{e^3}$,	2p
	pentru orice $x \in [1, +\infty)$	
	$\left \frac{\left(x-1\right)^2}{e^x} \le 4e^{-3} \Rightarrow \left(x-1\right)^2 \le 4e^{x-3}, \text{ deci } x-1 \le 2e^{\frac{x-3}{2}}, \text{ pentru orice } x \in [1,+\infty) \right $	3p
2.a)	$\int_{0}^{2} f^{2}(x) dx = \int_{0}^{2} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{0}^{2} =$	3p
	$=\frac{4}{2}+2=4$	2p
b)	$\int_{0}^{1} \ln \sqrt{x+1} dx = \frac{1}{2} \int_{0}^{1} \ln (x+1) dx = \frac{1}{2} \int_{0}^{1} (x+1) \ln (x+1) dx = \frac{1}{2} (x+1) \ln (x+1) \left \frac{1}{0} - \frac{1}{2} \int_{0}^{1} dx = \frac{1}{2} \ln (x+1) dx = \frac{1}{2} \int_{0}^{1} \ln (x+1) dx = \frac{1}{2} \int_{0}$	3p
	$= \ln 2 - \frac{1}{2}x \Big _{0}^{1} = \ln 2 - \frac{1}{2}$	2p

c)	$F:[0,+\infty)\to\mathbb{R}, F(x)=\int_0^x e^{f(t)}dt$ derivabilă și $F'(x)=e^{f(x)}>0$, pentru orice $x\in[0,+\infty)$	2p
	F este strict crescătoare și continuă, $F(0) = 0$ și $F(2021) = \int_{0}^{2021} e^{\sqrt{t+1}} dt \ge \int_{0}^{2021} 1 dt = 2021$,	_
	deci există un singur $x \in [0, +\infty)$, pentru care $\int_{0}^{x} e^{f(t)} dt = 2021$	3р