Using Spatial Transformers for Digit Identification

Scott Chow and Robert Cyprus

Motivation

Task: Identify digits and characters from images Issue:

- Words can be rotated or distorted in images.
- Standard Convolutional Neural Nets (CNN) do not deal with these distorted characters.

Primary Text of Interest

"Spatial Transformer Networks" (2016) by Jaderberg et al. at Google DeepMind,

Introduction to Spatial Transformers

Spatial Transformers "explicitly allows the spatial manipulation within the network."

Consists of three parts:

- a) Localization Network
- b) Grid Generator
- c) Sampler

Spatial Transformers: Localization Network

A function that takes in the input image and outputs the parameters of the transformation to be applied to the feature map.

Usually a fully-connected network or convolutional network.

Spatial Transformers: Grid Generator

We want to create a grid (G) that maps points from input image □ points on output

Using θ from Localization Network, compute modified grid, $T_{\theta}(G)$

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \mathcal{T}_{\theta}(G_i) = \mathbf{A}_{\theta} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix} = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$

Given the input image (U) and the grid of sampling points $T_{\theta}(G)$, compute the output image (V) by applying a sampling kernel k

$$V_{i}^{c} = \sum_{n=1}^{H} \sum_{m=1}^{W} U_{nm}^{c} k(x_{i}^{s} - m; \Phi_{x}) k(y_{i}^{s} - n; \Phi_{y}) \ \forall i \in [1 \dots H'W'] \ \forall c \in [1 \dots C]$$

Let's break this equation down...

STN: Sampler

Given the input image (U) and the grid of sampling points $T_{\theta}(G)$, compute the output image (V) by applying a sampling kernel k

 V_i^c

For the i-th pixel in the output image

Given the input image (U) and the grid of sampling points $T_{\theta}(G)$, compute the output image (V) by applying a sampling kernel k

$$V_i^c = \sum_{n=1}^{H} \sum_{m=1}^{W} U_{nm}^c$$

For the i-th pixel in the output image, Sum across each point of the input image

Given the input image (U) and the grid of sampling points $T_{\theta}(G)$, compute the output image (V) by applying a sampling kernel k

$$V_i^c = \sum_{n}^{H} \sum_{m}^{W} U_{nm}^c k($$
)k(

For the i-th pixel in the output image, Sum across each point of the input image **After applying the sampling kernel** *k*

Given the input image (U) and the grid of sampling points $T_{\theta}(G)$, compute the output image (V) by applying a sampling kernel k

$$V_{i}^{c} = \sum_{n=1}^{H} \sum_{m=1}^{W} U_{nm}^{c} k(x_{i}^{s} - m; \Phi_{x}) k(y_{i}^{s} - n; \Phi_{y})$$

For the i-th pixel in the output image, Sum across each point of the input image After applying the sampling kernel *k*

With kernel parameters:

$$(x_i, y_i) = i$$
-th point in $T_{\theta}(G)$
 $(\Phi_x, \Phi_y) = \text{parameters for sampling kernel}$

Given the input image (U) and the grid of sampling points $T_{\theta}(G)$, compute the output image (V) by applying a sampling kernel k

$$V_{i}^{c} = \sum_{n=1}^{H} \sum_{m=1}^{W} U_{nm}^{c} k(x_{i}^{s} - m; \Phi_{x}) k(y_{i}^{s} - n; \Phi_{y}) \ \forall i \in [1 \dots H'W'] \ \forall c \in [1 \dots C]$$

For the i-th pixel in the output image,
Sum across each point of the input image
Applying the sampling kernel *k*With kernel parameters:

 $(x_i, y_i) = i$ -th point in $T_{\theta}(G)$ $(\Phi_x, \Phi_y) = \text{parameters for sampling kernel}$

 $(\dot{\Phi}_{x'},\dot{\Phi}_{y'})$ = parameters for sampling kernel For all points in the output image (*H'W'*) and all image channels (*C*)

Incorporating Spatial Transformers into the Pipeline

"Spatial Transformers can be added into Convolutional Neural Network architecture at any point," creating a Spatial Transformer Network (STN)

Spatial Transformers learn via Back-propagation, thus very flexible in placement.

Extension: STNs between CNN Layers

"Spatial Transformers can be added into a Convolutional Neural Network architecture **at any point**," creating a Spatial Transformer Network (STN)

Authors briefly mention that we could add spatial transformers between CNN layers. To be explored...

STN Experiments

Data Set

Cluttered MNIST Data Set

Used subset of data: 10000 Training Set /1000 Test Set /1000 Validation Set

Hardware / Software Used

- Hardware
 - NVidia GTX 970 Graphics Card (3.5GB)
 - o Intel i5 6600K @ 3.5GHz
- Software
 - o Python 3.5
 - Tensorflow (GPU version)

Three Neural Net Designs

- Image □ CNN □ Digit
 - Classic digit identification methodology
 - Our control test and benchmark for digit identification
- Image □ STN □ CNN □ Digit
 - Used by Google Deepmind
- Image □ STN □ CNN □ STN □ CNN □ Digit
 - One type of our modified Neural Nets
 - We call this MSTN, for Multi-STN

Standard CNN For Digit Identification

Standard CNN For Digit Identification

CNN Design

STN Digit Identification Network

STN Digit Identification Network

STN Design

MSTN Digit Identification Network

Test Process of the Networks

- All 10,000 train images and 1,000 test images from Cluttered MNIST data set were used in each trial
- Each network training had 3 runs of 100, 200, 300, 400, and 500 epochs
- 50 iterations / epoch

Sampled STN Results

Harder Digits to Identify

Comparison of Network Results

Future Work

- Train/test our models with a larger data set
- More complex ConvNet Models for STN and main CNN

Questions?