Logic in Computer Science Assignment 3

10185101210 陈俊潼

November 2020

1 Prove

Prove the following theorems with deduction rules.

1.1
$$\forall x (P(x) \rightarrow \neg Q(x)) \vdash \neg (\exists x (P(x) \land Q(x)))$$

Proof:

	1	$\forall x (P(x) \to \neg Q(x))$	premise
	2	$\exists x (P(x) \land Q(x))$	assumption
x_0	3	$P(x_0) \wedge Q(x_0)$	assumption
	4	$P(x_0)$	$\wedge e_1 \ 3$
	5	$Q(x_0)$	$\wedge e_2 \ 3$
	6	$P(x_0) \to \neg Q(x_0)$	∀e 1
	7	$\neg Q(x_0)$	\rightarrow e 6
	8		¬i 5,7
	9		$\exists e \ 2, 3 - 8$
	10	$\neg(\exists x(P(x) \land Q(x)))$	$\neg i\ 2,9$

1.2
$$\forall x (P(x) \leftrightarrow x = b) \vdash P(b) \land \forall x \forall y (P(x) \land P(y) \rightarrow x = y)$$

Proof:

	1	$\forall (P(x) \to x = b)$	premise
	2	$\forall (x = b \to P(x))$	premise
	3	b = b	=i
	4	$b = b \to P(b)$	$\forall e \ 2$
	5	P(b)	\rightarrow e 4
x_0	6	$P(x_0) \to x_0 = b$	∀e 1
y_0	7	$P(y_0) \to y_0 = b$	∀e 1
	8	$P(x_0) \wedge P(y_0)$	assumption
	9	$P(x_0)$	∧e ₁ 8
	10	$x_0 = b$	\rightarrow e 6
	11	$P(y_0)$	∧e ₂ 8
	12	$y_0 = b$	\rightarrow e 7
	13	$x_0 = y_0$	= e 10, 12
	14	$P(x_0) \wedge P(y_0) \to x_0 = y_0$	\rightarrow i $8, 9-13$
	15	$\forall y (P(x_0) \land P(y) \to x_0 = y)$	$\forall i \ 7-14$
	16	$\forall x \forall y (P(x) \land P(y) \to x = y)$	$\forall i \ 6-15$
	17	$P(b) \land \forall x \forall y (P(x) \land P(y) \to x = y)$	$\wedge i\ 5, 16$