On the waveform Shape of Brain oscillations

Scott Cole
13 December 2018
PhD Defense
Voytek Lab
Neurosciences Graduate Program
UC San Diego

Parkinson's Disease (PD) and Deep Brain Stimulation (DBS)

How does DBS modify neural activity to improve motor symptoms?

Motor cortical recordings in PD patients

DBS

Electrocorticography

How does DBS affect electrical activity in motor cortex?

Analyzing motor cortical beta oscillations

Phase-amplitude coupling in PD

Review

Dynamic Network Communication as a Unifying Neural Basis for Cognition, Development, Aging, and Disease

Bradley Voytek and Robert T. Knight

Lizarazu, 2017

Jirsa & Muller, 2013, Front. Comp. Neuro.

2 periodic components (beta, high gamma)

1 periodic component (nonsinusoidal) beta

No high gamma "fuzz" signature of spiking

Are sharp waveforms a prominent contributor to the PAC metric?

Could sharpness be caused by gamma rhythms?

High PAC is a consequence of sharp beta oscillations

What does a sharp oscillation reflect?

- 1. Field potentials: spatiotemporal summations of synaptic currents
- 2. Sharp transients: synchronous synaptic activity

DBS → Less sharp beta oscillations

Coupled spiking and synaptic input

Synchronous synaptic input

Outline

- 1. Beta waveform sharpness as biomarker for Parkinson's Disease
- 2. Framework to study neural oscillation waveform shape
- 3. Relationship between waveform shape and neuronal activation patterns

Waveform shape beyond "sharpness"

Hippocampal theta

Spike-wave discharge

Slaght et al., 2004, J Neuro

Cortical slow oscillation

Simulations

Mazzoni et al., 2015, PLoS Comp Bio

Somers & Kopell, 1993, Biol Cybern

"Fourier fallacy"

Neuroscience 121 (2003) 233-252

ARE THE ELECTROENCEPHALOGRAMS MAINLY RHYTHMIC? ASSESSMENT OF PERIODICITY IN WIDE-BAND TIME SERIES

T. H. BULLOCK,* M. C. McCLUNE AND J. T. ENRIGHT

Department of Neurosciences, School of Medicine and Neurobiology Unit 0240, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Although the principal peaks in the two spectra agree most of the time, quite often a peak in the power spectrum accompanies no periodicity peak and some periodicity peaks have no power spectral peak. The Fourier spectrum is not a reliable indication of rhythms. EEG samples from patients

"Fourier fallacy" in daily temperature fluctuation

Complementary methods to the Fourier transform?

Outline

1. Beta waveform sharpness as biomarker for Parkinson's Disease

- 2. Framework to study neural oscillation waveform shape
- 3. Relationship between waveform shape and neuronal activation patterns

Cycle-by-cycle analysis

reak tille	Amplitude	renou	rusyiii	ptayiii
0.12	2.9	105	0.43	0.51
0.21	1.7	89	0.34	0.5
0.31	1.9	99	0.4	0.49
0.4	2.2	82	0.32	0.52
0.5	2.2	109	0.4	0.58
0.61	2.2	108	0.44	0.57

Peak time Amplitude Period rdeym nteym

C - 2				*** 202			
Voltage (mV)		\bigvee	$\sqrt{}$	\bigwedge	f	$f \setminus$	f
-2 0.0	0.1	0.2	0.3 Time	0.4 e (s)	0.5	0.6	0.7

Oscillation detection

Oscillation feature accuracy

Benefits of cycle-by-cycle approach

- Quantifies waveform symmetries
- 2. Appropriate segments only
- 3. Time-resolved measurements
- 4. Direct measurements of amplitude and frequency
 - a. Not confounded by oscillation presence
 - b. More sensitive to changes

What might waveform shape reflect?

Outline

- 1. Beta waveform sharpness as biomarker for Parkinson's Disease
- 2. Framework to study neural oscillation waveform shape
- 3. Relationship between waveform shape and neuronal activation patterns

Extracellular recordings: rat hippocampus (CA1)

Online data source: CRCNS (hc3 dataset; Mizuseki et al., 2014, F1000 Research)

Spike-field coupling (SFC)

Hippocampal theta is asymmetric

Hippocampal theta asymmetry & behavior

- ↑ asymmetry, ↑ memory encoding (Trimper et al., 2014, Hippocampus)
- asymmetry ~ location representation (Amemiya & Redish, 2018, Cell Reports)

Rat <u>currently in</u> neuron place field

Rat <u>heading to</u> neuron place field

Hypothesis:

Waveform shape contains information of local spiking patterns.

Firing rates

Neuron A

Neuron B

Neuron A

Neuron B

Synchrony

Sequence

Theta asymmetry ~ neuronal firing rates

Spike-field coupling & waveform shape

Waveform symmetry indexes relative subpopulation activations

Increased interneuronal synchrony during asymmetric theta oscillations

Theta asymmetry ~ neuronal sequence

Theta asymmetry correlates with CA1 neuronal firing patterns

Neuron A

Neuron B

Neuron A

Neuron B

Summary

- 1. Beta waveform sharpness as biomarker for Parkinson's Disease
 - Cole et al., 2017, J Neurosci
- 2. Framework to study neural oscillation waveform shape
 - Cole & Voytek, 2018a, bioRxiv, Cole & Voytek, 2017, Trends in Cog. Sci.
- 3. Relationship between waveform shape and neuronal activation patterns
 - Cole & Voytek, 2018b, bioRxiv

Outlook: Neural oscillation waveform shape

- More examples of information in waveform shape
 - O Decreased bicoherence of mu rhythms in Schizophrenia (Bartz et al., 2018, NeuroImage)
- Analysis of spatial patterns in waveform shape
 - Multivariate convolutional sparse coding (Dupre La Tour et al., 2018, Arxiv; Agarwal et al., 2014, Science)
- Cycle-by-cycle spectral coupling (Lopes Dos Santos et al., 2018, Neuron)
- Probabilistic oscillation detection (Andrew Watrous, in prep.)

