SPHERIC Beijing International Workshop 17-20 October 2017

An SPH Numerical Wave-Current Tank

M. He, H.S. Wang, X.F. Gao, W.H. Xu, Y. Shi Oct. 20th, 2017

Contents

1. Background

2. Wave & Current Generations

3. Validations

4. Future Work

Background

Ocean dynamic factors

Background

Literature review

1) SPH numerical wave tank (NWT)

Altomare et al. (2017) Coast Eng Wen et al. (2016) Appl Ocean Res Liu et al. (2015) Coastal Eng

2) SPH numerical current tank (NCT)

Pahar et al. (2017) *J Hydrol*Tan et al. (2015) *J Hydro-environ Res*Federico et al. (2012) *Eur J Mech B-Fluid*

3) SPH numerical wave-current tank (NWCT)

Few

Background

Suggested SPH NWCT

Wave making

$$V_{w} = \frac{\partial X_{w}}{\partial t} = \frac{\omega}{Q} \left[2\eta - \eta_{w} + DX_{w} \right]$$

$$Q = \frac{4\sinh^2(kd)}{2kd + \sinh(2kd)} \quad D = \sum_{n=1}^{\infty} \frac{4\sinh^2(k_nd)}{2k_nd + \sinh(2k_nd)}$$

Wave absorbing

$$\frac{\mathrm{d}\boldsymbol{v}_{i}}{\mathrm{d}t} = -\sum_{j=1}^{N} m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}} + \Pi_{ij} \right) \nabla_{i} W_{ij} + \boldsymbol{g} - \boldsymbol{\mu}_{s} \boldsymbol{v}_{i}$$

$$\mu_s = \alpha_s \frac{x - x_s}{l_s}; \quad x_s < x < x_s + l_s$$

Hirakuchi et al., (1990) Coast Eng J

Current generation

Federico et al., (2012) Eur J Mech B-Fluid

$$\begin{cases} u_{in} = u_{out} = U \cos \theta \cdot \zeta \\ w_{in} = -w_{out} = U \sin \theta \cdot \zeta \end{cases}$$
 Velocity
$$p_{in} = p_{out} = \rho_0 g (d - z)$$
 Pressure

Ramp function:

$$\zeta = \begin{cases} 1, & t > t_0 \\ t/t_0, & t \le t_0 \end{cases} \qquad t_0 = \frac{U}{D} \left(\frac{c_0}{g}\right)^2$$

Wave following current: U > 0; Wave opposing current: U < 0

Current generation

$$\begin{cases} x' - x = -\left(x_{out} - x_{in} + \frac{8\Delta p}{\tan \theta}\right) \\ z' + z = -8\Delta p \end{cases}$$

Wave following current: $x_{out} > x_{in}$

Wave opposing current: $x_{out} < x_{in}$

Rigid-lid treatment:

$$w = 0$$
; $t \le t_0$

$$t_0 = \frac{U}{D} \left(\frac{c_0}{g}\right)^2$$

Without "rigid-lid treatment"

With "rigid-lid treatment"

Validations

Measurement points	
Wave gauge	x = 3L
Velocity probes	x = 3L $z_1 = 3 \text{ cm}$ $z_2 = 6 \text{ cm}$ $z_9 = 27 \text{ cm}$

Wave parameters	
Н	2.34 cm
T	1.0 s
d	0.30 m
L	1.373 m

Current parameters	
U	8 cm/s
D	0.3 m
θ	45 deg

Validations (Wave-alone)

Snap shot

Multi-frame observation

Validations (Current-alone)

Velocity comparison (Target V_x = 8 cm/s)

Validations (Wave following current)

Wave profile comparison

Velocity distribution comparison

Future Work

- 1) Validation on wave opposing current
- 2) Convergence check
- 3) Optimizations of θ and D

4) Finding the effective region

Thanks for listening!

We appreciate any comments and suggestions! Email: minghe@tju.edu.cn

Acknowledgments:

NSFC (Grant No. 51709201)

Open Fund from the SLCOE, DUT (Grant No. LP1705)

Potential SPH NWCTs

1) Wave paddle + Trailing structure

2) Internal wavemaker + Lateral velocity inlet/outlet

SPH Model

Governing equations (vvendiand

kornol)

$$\begin{cases} \frac{d\rho_{i}}{dt} = \sum_{j} m_{j} \mathbf{u}_{ij} \cdot \nabla_{i} W_{ij} \\ \frac{d\mathbf{u}_{i}}{dt} = -\sum_{j} m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}} + \Pi_{ij} \right) \nabla_{i} W_{ij} + \mathbf{g} \\ p = B \left[\left(\frac{\rho}{\rho_{0}} \right)^{\gamma} - 1 \right] \\ \frac{d\mathbf{r}_{i}}{dt} = \mathbf{u}_{i} - \varepsilon \sum_{j} \frac{m_{j} \mathbf{u}_{ij}}{\overline{\rho}_{ij}} W_{ij} \end{cases}$$

Density filter (Every 30 time steps)

$$\rho_i = \sum_j m_j \frac{W_{ij}}{\sum_j \frac{m_j}{\rho_j} W_{ij}}$$

Solid boundary treatment

Dynamic Boundary Condition (DBC)
(Dalrymple and Knio, 2001)
(Ren et al., 2015) *APOR*

