

PHYSICS

Chapter 20

3rd SECONDARY

FUERZA ELÉCTRICA

¿De acuerdo al video, de qué trata la electricidad estática?

Es la propiedad que esta asociada a algunas partículas elementales, y que sirve para cuantificar las interacciones electromagnéticas en el universo, tal como la masa sirve para cuantificar las interacciones gravitacionales.

CARGA ELÉCTRICA

Tanto el ELECTRÓN como el PROTÓN, poseen esta propiedad y para diferenciarlos, usamos una convención de signos, tal que:

Para caracterizar esta propiedad, usamos una cantidad física

de naturaleza escalar denominada

CANTIDAD DE CARGA FI ÉCTRICA

Su unidad en el S.I. es el coulomb : C

CARGA ELÉCTRICA

SUBMULTIPLO	ESCRITURA	VALOR	
mili coulomb	mC	10 ⁻³ C	
micro coulomb	μC	10 ⁻⁶ C	
nano coulomb	nC	10 ⁻⁹ C	
pico coulomb	pC	10 ⁻¹² C	OLIVEROS

CUERPOS ELECTRIZADOS

Son aquellos que presentan una diferencia entre las cantidades de electrones y protones, tal que:

CUERPOS ELECTRIZADOS

Para determinar la cantidad de carga eléctrica de todo cuerpo electrizado, se usara:

VIDEO

¿Cómo se electriza o se carga eléctricamente un cuerpo?

ELECTRIZACIÓN

Es el (o los) proceso (s), mediante la cual un cuerpo que se encontraba neutralizado, se electriza o queda cargado eléctricamente.

FUERZA ELÉCTRICA

Es aquella que surge entre los cuerpos electrizados, presentando las siguientes características:

 I. Es de carácter atractiva o repulsiva, debido a los signos de los cuerpos electrizados.

ATRACCIÓN MUTUA

REPULSIÓN MUTUA

REPULSIÓN MUTUA

FUERZA ELÉCTRICA

II. Para cuerpos pequeños la fuerza esta dirigida a lo largo de la recta que une a los cuerpos electrizados.

FUERZA ELÉCTRICA

El módulo de esta fuerza para cuerpos electrizados pequeños, que se encuentran en el vacío (o en el aire), usamos:

 Q_1 + ---- $F_{Electrica}$ Q_2 (2)

$$F_{\text{Electrica}} = K_{\text{vac\'io}} \frac{|Q_1||Q_2|}{d^2}$$

Ley de Coulomb

Coeficiente de

K_{vacío}:

Coulomb para el vacío

$$K_{\text{vac\'io}} = 9.10^9 \frac{\text{N m}^2}{\text{C}^2}$$

 Q_1 y Q_2 : en coulomb (C)

d: en metros (m)

Mediante un proceso de electrización un cuerpo gana $5x10^{15}$ electrones. Determine la cantidad de carga eléctrica del cuerpo.

RESOLUCIÓN:

El cuerpo ha ganado $5x10^{15}$ electrones, por lo tanto $\#e^- > \#p^+$

El cuerpo esta electrizado de manera **NEGATIVA**.

Aplicamos:

$$Q^{Cuerpo} = \pm n|q_{e^-}|$$

$$Q^{Cuerpo} = -5x10^{15} \cdot 1,6x10^{-19}C$$

$$\therefore Q^{Cuerpo} = -8x10^{-4}C$$

Un cuerpo eléctricamente neutro pierde $6x10^{10}$ electrones. Determine la cantidad de carga eléctrica.

RESOLUCIÓN:

El cuerpo ha perdido 6x10¹⁰ electrones, por lo tanto

$$\#e^- < \#p^+$$

cuerpo esta electrizado de manera POSITIVA.

Aplicamos:

$$Q^{Cuerpo} = \pm \mathbf{n}|q_{e^-}|$$

$$Q^{Cuerpo} = +6x10^{10} \cdot 1,6x10^{-19}C$$
$$Q^{Cuerpo} = +9,6x10^{-9}C$$

$$\therefore Q^{Cuerpo} = +9,6nC$$

Determine el módulo de la fuerza eléctrica entre dos partículas cargadas con 12 µC y 3 mC, separadas 6 m.

RESOLUCIÓN:

Graficando el vector que representa a la fuerza eléctrica sobre Q_2 .

Aplicamos "Ley de Coulomb":

$$F_{\text{Electrica}} = K_{\text{vacio}} \frac{|Q_1||Q_2|}{d^2}$$

$$F_{\text{Electrica}} = \left(9x10^9 \frac{\text{N.}m^2}{\text{C}^2}\right) \frac{(12x10^{-6}\text{C})(3x10^{-3}\text{C})}{(6m)^2}$$

$$F_{\text{Electrica}} = \left(9x10^9 \frac{\text{N.}m^2}{\text{C}^2}\right) \frac{36x10^{-9}\text{C}^2}{36m^2}$$

$$\therefore \mathbf{F}_{\mathbf{Electrica}} = \mathbf{9N}$$

HELICO | PRACTICE

Determine la distancia de separación entre dos partículas cargadas con $4x10^{-3}C$ y $8x10^{-5}C$, respectivamente, si se repelen con una fuerza eléctrica de módulo 160 N.

RESOLUCIÓN:

Graficando el vector que representa a la fuerza eléctrica sobre Q_2 .

Aplicamos "Ley de Coulomb":

Reemplazando:
$$F_{Electrica} = K_{vacio} \frac{|Q_1||Q_2|}{d^2}$$

$$160 \text{ N} = \left(9x10^9 \frac{\text{N.} m^2}{\text{C}^2}\right) \frac{(4x10^{-3}\text{C})(8x10^{-5}\text{C})}{d^2}$$

$$160 \text{ N} = \left(9x10^9 \frac{\text{N.}m^2}{\text{C}^2}\right) \frac{32x10^{-8}\text{C}^2}{d^2}$$

$$d^2 = \frac{9x32x10m^2}{160}$$

$$\therefore d = 3\sqrt{2} m$$

Del gráfico mostrado, determine la distancia d si los cuerpos se atraen con una fuerza eléctrica de módulo igual a 20 N.

 $Q_1 = -5\mu C$ $Q_2 = 4mC$ d = ? $Q_2 = 4mC$

RESOLUCIÓN:

Graficando el vector que representa a la fuerza eléctrica sobre Q_2 .

Aplicamos "Ley de Coulomb":

$$\mathbf{F}_{\text{Electrica}} = \mathbf{K}_{\text{vacio}} \frac{|Q_1||Q_2|}{d^2}$$

$$20 \text{ N} = \left(9x10^9 \frac{\text{N.}m^2}{\text{C}^2}\right) \frac{(5x10^{-6}\text{C})(4x10^{-3}\text{C})}{d^2}$$

$$20 \text{ N} = \left(9x10^9 \frac{\text{N.}m^2}{\text{C}^2}\right) \frac{20x10^{-9}\text{C}^2}{d^2}$$

$$d^2 = \frac{9x20m^2}{20}$$

$$\therefore d = 3 m$$

En el laboratorio de física el profesor dispone de dos esferitas idénticas, igualmente electrizadas, si al realizar las mediciones se obtiene que la fuerza de repulsión es igual a 10 N. ¿Cuál es la cantidad de carga "Q" de las esferitas?

RESOLUCIÓN:

Graficando el vector que representa a la fuerza eléctrica sobre Q_2 .

(2)
$$F_{Electrica} = 10 \text{ N}$$

Aplicamos "Ley de Coulomb":

$$\mathbf{F}_{\text{Electrica}} = \mathbf{K}_{\text{vacio}} \frac{|Q_1||Q_2|}{d^2}$$

$$10 \text{ N} = \left(9x10^9 \frac{\text{N.}m^2}{\text{C}^2}\right) \frac{\text{Q}^2}{(6m)^2}$$
$$10 \text{ N} = \left(9x10^9 \frac{\text{N.}m^2}{\text{C}^2}\right) \frac{\text{Q}^2}{36m^2}$$

$$\frac{36x10C^2}{9x10^9} = Q^2$$
$$4x10^{-8} = Q^2$$

$$4x10^{-8} = 0^2$$

$$\therefore Q = 2x10^{-4} C$$

VELICO | PRÁCTUREGO del proceso de electrización por frotamiento entre un paño de lana con uma varilla de plástico y entre un pañuelo de seda con una varilla de vidrio, quedan electrizados como se muestra:

Completar el texto indicando si las varillas gana o pierden electrones

La varilla de plástico _____ electrones, mientras que la varilla de vidrio ____ electrones.

La varilla de plástico gana los electrones del paño de lana

La varilla de vidrio pierde los electrones y se los transfiere al pañuelo de seda

Se agradece su colaboración y participación durante el tiempo de la clase.

