STAT 305 Exam I Reference Sheet

Numeric Summaries

mean
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

population variance
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

population standard deviation
$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

sample variance
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \bar{x} \right)^2$$

sample standard deviation
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Functions

Quantile Function Q(p) For a univariate sample consisting of n values that are ordered so that $x_1 \le x_2 \le \ldots \le x_n$ and value p where $0 \le p \le 1$, let $i = \lfloor n \cdot p + 0.5 \rfloor$. Then the quantile function at p is:

$$Q(p) = x_i + (n \cdot p + 0.5 - i)(x_{i+1} - x_i)$$