偏微分方程数值解

孙天阳

中国科学技术大学数学科学学院

tysun@mail.ustc.edu.cn

2024年11月28日

目录

Part I 一维线性偏微分方程

Chapter 1

Fourier 级数和三角插值

1.1 三角插值

Chapter 2

模型方程-对流方程

2.1 对流方程的初值问题

考虑常系数的对流方程的初值问题

$$\begin{cases} u_t = u_x, & -\infty < x < \infty, t > 0 \\ u(x,0) = f(x), & -\infty < x < \infty \end{cases}$$

其中 f(x) 是一个光滑的 2π 周期的周期函数.

设 x = x(t) 是特征线, 特征线要满足

$$\frac{\mathrm{d}}{\mathrm{d}t}u(x(t),t) = 0$$

初值是一个谐波

一般情况的初值

对流方程初值问题的解的特性

解的特征线为直线,并且解沿着这些特征线保持不变,初值沿着特征线以有限速度传播.

2.2 对流方程的初值问题的有限差分方法——二层/单步格式

由于本问题是 2π 周期的, 所以将区域 $[0,2\pi]$ 用 J+1 个节点 x_i 均匀剖分, 即

$$x_j = j \cdot h, \quad j = 0, 1, \dots, J, \quad h = \frac{2\pi}{J}.$$

时间同样均匀剖分, 取时间步长为 Δt , 即

$$t_n = n \cdot \Delta t, \quad n = 0, 1, \dots, N.$$

将解 u(x,t) 在 (x,t) 平面上的格点 $P=(x_j,t_n)$ 处的值记为 $u_j^n=u(x_j,t_n)$,将近似值记为 $v_j^n\simeq u_j^n$. 由于 u 是 2π 周期的,所以我们可以期待 v 也是 2π 周期的,即 $v_j^n=v_{j+J}^n$.

2.2.1 方程的离散格式

显式格式:由己知层的函数值直接得到未知层的函数值、隐式格式、 多步格式

2.3 FTCS 格式

使用前差近似 u_t , 使用中心差近似 u_x , 并对空间使用记号 D_0 , 得到

$$u_t(x_j, t_n) \simeq \frac{v_j^{n+1} - v_j^n}{\Delta t}, \quad u_x(x_j, t_n) \simeq \frac{v_{j+1}^n - v_{j-1}^n}{2h} = D_0 v_j^n$$

代入对流方程并整理得到

$$u_t = u_x \Longrightarrow v_j^{n+1} = v_j^n + \frac{\Delta t}{2h}(v_{j+1}^n - v_{j-1}^n) = v_j^n + \Delta t D_0 v_j^n = (1 + \Delta t D_0) v_j^n =: Q v_j^n$$

此处我们用符号 Q 来记算子 $1 + \Delta t D_0$. 另外边值条件为

$$u(x,0) = f(x) \Longrightarrow v_j^0 = f(x_j) =: f_j, \quad j = 0, \dots, J.$$

初值是一个谐波

设

$$f(x) = \frac{1}{\sqrt{2\pi}} \hat{f}(\omega) e^{i\omega x} \Longrightarrow v_j^0 = f(x_j) = \frac{1}{\sqrt{2\pi}} \hat{f}(\omega) e^{i\omega x_j} =: \frac{1}{\sqrt{2\pi}} \hat{v}^0(\omega) e^{i\omega x_j}.$$

根据 FTCS 格式计算有

$$v_{j}^{1} = v_{j}^{0} + \frac{\Delta t}{2h}(v_{j+1}^{0} - v_{j-1}^{0}) = \frac{1}{\sqrt{2\pi}}\hat{v}^{0}(\omega) \left(e^{i\omega x_{j}} + \frac{\Delta t}{2h}e^{i\omega x_{j+1}} - \frac{\Delta t}{2h}e^{i\omega x_{j-1}}\right)$$

$$= \frac{1}{\sqrt{2\pi}}\hat{v}^{0}(\omega)e^{i\omega x_{j}} \left(1 + \frac{\Delta t}{2h}e^{i\omega h} - \frac{\Delta t}{2h}e^{-i\omega h}\right) = \frac{1}{\sqrt{2\pi}}\hat{v}^{0}(\omega)e^{i\omega x_{j}} \left(1 + ir\sin\xi\right)$$

这里我们使用了记号

$$r := \frac{\Delta t}{h}, \quad \xi := \omega h.$$

根据以上的计算我们可以发现, 如果初值 f 也就是 v^0 是一个频率为 ω 的谐波, 那么根据 FTCS 格式计算出的下一个时间层 v^1 也是一个频率为 ω 的谐波, 并且二者之间的振幅的关系为

$$\hat{v}^1(\omega) = \hat{v}^0(\omega)(1 + ir\sin\xi).$$

容易看出这个计算对任意 n 都对, 所以我们有关系

$$\hat{v}^{n+1}(\omega) = \hat{Q}\hat{v}^n(\omega) = \dots = \hat{Q}^{n+1}\hat{v}^0(\omega), \quad \hat{Q} := 1 + ir\sin\xi.$$

称复数 \hat{Q} 为算子 Q 的符号, 也称为格式 FTCS 的放大因子. 差分方程的解即为

$$v_j^n = \frac{1}{\sqrt{2\pi}} \hat{v}^n(\omega) e^{i\omega x_j} = \frac{1}{\sqrt{2\pi}} (1 + i\frac{\Delta t}{h} \sin(\omega h))^n \hat{f}(\omega) e^{i\omega x_j}.$$

前面的经验告诉我们解析解是

$$u_j^n = u(x_j, t_n) = f(x_j + t_n) = \frac{1}{\sqrt{2\pi}} \hat{f}(\omega) e^{i\omega x_j} e^{i\omega t_n}.$$

我们自然要研究当 Δt 和 h 趋于 0 时数值解 v_i^n 是否会收敛到解析解 u_i^n .

$$(1+\mathrm{i}\frac{\Delta t}{h}\sin(\omega h))^n = (1+\mathrm{i}\frac{\Delta t}{h}\omega h + \mathrm{i}\frac{\Delta t}{h}O(\omega^3 h^3))^n = (\mathrm{e}^{\mathrm{i}\omega\Delta t} + O(\omega^2\Delta t^2 + \omega^3\Delta t h^2))^n$$

$$= \mathrm{e}^{\mathrm{i}\omega t_n}(1+O(\omega^2\Delta t^2 + \omega^3\Delta t h^2))^n = \mathrm{e}^{\mathrm{i}\omega t_n}(1+nO(\omega^2\Delta t^2 + \omega^3\Delta t h^2)) = \mathrm{e}^{\mathrm{i}\omega t_n}(1+t_nO(\omega^2\Delta t + \omega^3 h^2))$$

小扰动

给定时间区间 [0,T], 给定空间区间 $[0,2\pi]$, 将时间划分为 J+1 份, 将空间划分为 N+1 份, 我们考虑这样一个小扰动

$$\hat{f}(\omega) = \begin{cases} 0, & \omega \neq \frac{N}{4} \\ \varepsilon, & \omega = \frac{N}{4} \end{cases}$$

则由前面的计算知道

$$\hat{v}^{J+1}(\frac{N}{4}) = \hat{Q}^{J+1}\hat{f}(\frac{N}{4}) = \varepsilon \left(1 + \mathrm{i}\frac{T}{J+1}\frac{N+1}{2\pi}\sin\left(\frac{2\pi}{N+1}\frac{N}{4}\right)\right)^{J+1} \sim \varepsilon \left(1 + \mathrm{i}\frac{T}{J+1}\frac{N+1}{2\pi}\right)^{J+1}$$

用我们更熟悉的 Δt 和 h 的记号来写就是

$$|\hat{v}^{J+1}(\frac{N}{4})|^2 \sim \varepsilon^2 |1 + \mathrm{i} \frac{\Delta t}{h}|^{2\frac{T}{\Delta t}} = \varepsilon^2 (1 + \frac{\Delta t^2}{h^2})^{\frac{T}{\Delta t}}$$

当 Δt 和 h 趋于零, 且二者的比值为定值时, 上式发散.

稳定性

在实际计算中, 误差是不可避免的.

定义 2.3.1. 考虑一种差分格式, 如果存在依赖于 T 的常数 K(T) 使得

$$\lim_{\Delta t, h \to 0} \sup_{0 \leqslant t_n \leqslant T} |\hat{Q}^n| \leqslant K(T)$$

则称该方法是无条件稳定的.

从上面的例子可以看到 FTCS 格式不是无条件稳定的. 可以选择特定的收敛方式如 $\Delta t = ch^2$ 其中 c>0 是常数, 此时

$$|\hat{Q}^n|^2 = (1 + \frac{\Delta t^2}{h^2} \sin^2 \omega h)^n \leqslant (1 + c\Delta t)^n \leqslant e^{cn\Delta t} = e^{cT}$$

但这种方法并不实用, 因为一方面 Δt 是 h 的二阶小量, 导致时间步长太多, 需要的计算量大; 另一方面增长因子为指数级, 在 T 较大时也会放大一些小的扰动.

2.4 人工黏性

物理上的黏性, 也就是耗散性, 对应于数学上的偶数阶导数, 奇数阶导数对应于物理上的色散.

$$u_t = u_x + \sigma h u_{xx}$$

当 $h \to 0$ 时, 上述方程趋近于 $u_t = u_x$. 对 u_{xx} 用两个一阶的差分算子去近似

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} = \frac{v_{j+1}^n - v_{j-1}^n}{2h} + \sigma h \frac{v_{j+1}^n - 2v_j^n + v_{j-1}^n}{h^2} = D_0 v_j^n + \sigma h D_+ D_- v_j^n$$

$$v_j^{n+1} = v_j^n + \frac{\Delta t}{2h} (v_{j+1}^n - v_{j-1}^n) + \sigma \frac{\Delta t}{h} (v_{j+1}^n - 2v_j^n + v_{j-1}^n) = (1 + \Delta t D_0 + \sigma h \Delta t D_+ D_-) v_j^n$$

初值是一个谐波

前半部分的计算在此前已经熟悉, 只需要类似计算后半部分

$$\begin{split} v_{j+1}^0 - 2v_j^0 + v_{j-1}^0 &= v_j^0 (\mathrm{e}^{\mathrm{i}\omega h} - 2 + \mathrm{e}^{-\mathrm{i}\omega h}) = v_j^0 (\cos\omega h + \mathrm{i}\sin\omega h + \cos\omega h - \mathrm{i}\sin\omega h - 2) = -4v_0^j \sin^2\frac{\omega h}{2} \\ v_j^1 &= v_j^0 \left(1 + \mathrm{i}r\sin\xi - 4\sigma r\sin^2\frac{\xi}{2} \right) \Longrightarrow \hat{v}^{n+1} = \hat{Q}\hat{v}^n, \\ \hat{Q} &= 1 + ir\sin\xi - 4\sigma r\sin^2\frac{\xi}{2}, \\ r &= \frac{\Delta t}{h}, \\ \xi &= \omega h \end{split}$$

$$\begin{split} |\hat{Q}|^2 &= (1 - 4\sigma r \sin^2 \frac{\xi}{2})^2 + r^2 \sin^2 \xi \\ &= 1 - 8\sigma r \sin^2 \frac{\xi}{2} + 16\sigma^2 r^2 \sin^4 \frac{\xi}{2} + r^2 \sin^2 \xi \\ &= 1 - 8\sigma r \sin^2 \frac{\xi}{2} + 16\sigma^2 r^2 \sin^4 \frac{\xi}{2} + 4r^2 \sin^2 \frac{\xi}{2} (1 - \sin^2 \frac{\xi}{2}) \\ &= \left(16\sigma^2 r^2 - 4r^2\right) \sin^4 \frac{\xi}{2} + \left(4r^2 - 8\sigma r\right) \sin^2 \frac{\xi}{2} + 1 \\ |\hat{Q}|^2 - 1 &= \left(16\sigma^2 r^2 - 4r^2\right) \sin^4 \frac{\xi}{2} + \left(4r^2 - 8\sigma r\right) \sin^2 \frac{\xi}{2} \\ &= 4r \sin^2 \frac{\xi}{2} [(4\sigma^2 r - r) \sin^2 \frac{\xi}{2} + r - 2\sigma] \end{split}$$

如果我们要求 $|\hat{Q}|^2 - 1 \leq 0$, 即要求

$$(4\sigma^2r - r)\sin^2\frac{\xi}{2} + r - 2\sigma \leqslant 0$$

将上式看作关于 $\sin^2\frac{\xi}{2} \in [0,1]$ 的一次函数, 只需要对端点处的值加以限制, 等价于

$$r - 2\sigma \le 0$$
, $4\sigma^2 r - 2\sigma \le 0$

所以我们得到

$$|\hat{Q}|^2 - 1 \leqslant 0 \iff r \leqslant 2\sigma, \quad 2\sigma r \leqslant 1.$$

下面我们讨论两种特殊情况

- 若 $2\sigma \le 1$ 即要求 $16\sigma^2 \le 4$,则当 $4r^2 8\sigma r \le 0$ 即 $r \le 2\sigma$ 时, $|\hat{Q}|^2 \le 1$ 成立.
- 若 $2\sigma \geqslant 1$, 将 $\sin^4 \frac{\xi}{2}$ 放缩成为 $\sin^2 \frac{\xi}{2}$ 得到此时 $|\hat{Q}|^2 \leqslant 1$ 的一个充分条件是 $2\sigma r \leqslant 1$.

Lax-Friedrich 格式

取

$$\sigma = \frac{h}{2\Delta t} = \frac{1}{2r}, \quad r = \frac{\Delta t}{h}$$

此时

$$v_{j}^{n+1} = v_{j}^{n} + \frac{\Delta t}{2h}(v_{j+1}^{n} - v_{j-1}^{n}) + \frac{1}{2}(v_{j+1}^{n} - 2v_{j}^{n} + v_{j-1}^{n}) = \frac{1}{2}(v_{j+1}^{n} + v_{j-1}^{n}) + \frac{\Delta t}{2h}(v_{j+1}^{n} - v_{j-1}^{n})$$

与原有的 FTCS 格式

$$v_j^{n+1} = v_j^n + \frac{\Delta t}{2h}(v_{j+1}^n - v_{j-1}^n)$$

比较,相当于用 v_j^n 相邻两点的平均值来替代 v_j^n . 由前面的讨论知 Lax-Friedrich 格式无条件稳定.

Lax-Wendroff 格式

取

$$\sigma = \frac{r}{2} = \frac{\Delta t}{2h}$$

此时

$$v_j^{n+1} = v_j^n + \Delta t D_0 v_j^n + \frac{\Delta t^2}{2} D_+ D_- v_j^n.$$

我们还有另一种观点来理解 Lax-Wendroff 格式, 考虑泰勒展开

$$u(x,t+\Delta t) = u(x,t) + \Delta t u_t(x,t) + \frac{1}{2} \Delta t^2 u_{tt}(x,t) + \cdots$$

根据方程 $u_t = u_x$ 将对时间的导数转换为对空间的导数,得到

$$u(x,t+\Delta t) = u(x,t) + \Delta t u_x(x,t) + \frac{1}{2} \Delta t^2 u_{xx}(x,t) + \cdots$$

使用差分对导数进行近似, 我们得到

$$v_j^{n+1} = v_j^n + \Delta t D_0 v_j^n + \frac{\Delta t^2}{2} D_+ D_- v_j^n.$$

2.5 单步格式的收敛定理

考虑一般的差分近似

$$v_j^{n+1} = Qv_j^n, \quad Q = \sum_{\mu=-r}^s A_{\mu}(\Delta t, h)E^{\mu}, \quad v_j^0 = f_j$$

其中 A_{μ} 是 $\Delta t, h$ 的有理函数, r, s 是大于零的整数, 即我们使用 s+r+1 个值 $v_{j-r}^n, \cdots, v_{j+s}^n$ 来计算 v_j^{n+1} . 依旧考虑谐波解, 注意到 $E\mathrm{e}^{\mathrm{i}\omega x}=\mathrm{e}^{\mathrm{i}\omega h}\mathrm{e}^{\mathrm{i}\omega x}$, 我们得到

$$\hat{v}^{n+1}(\omega) = \hat{Q}\hat{v}^n(\omega), \quad \hat{Q} = \sum_{\mu=-r}^s A_{\mu} e^{i\mu\omega h},$$

我们假定初值 f(x) 可以被展开为傅里叶级数且 $f \in L^2$, 即

$$f(x) = \frac{1}{\sqrt{2\pi}} \sum_{\omega = -\infty}^{\infty} \hat{f}(\omega) e^{i\omega x}, \quad \sum_{\omega} |\hat{f}(\omega)|^2 < \infty.$$

为了差分近似我们需要使用 f(x) 在格点上的限制. 记格点函数的三角函数插值为

$$Int_N f = \frac{1}{\sqrt{2\pi}} \sum_{\omega = -\frac{N}{2}}^{\frac{N}{2}} \tilde{f}(\omega) e^{i\omega x},$$

我们额外假定

$$\lim_{N \to \infty} ||Int_N f - f|| = 0.$$

定理 2.5.1. 在有限时间区域 $0 \le t \le T$, 考虑 $\Delta t, h \to 0$ 时, 差分近似: 假设:

- (a) 初值 f 是 (分片连续) 可展开为 Fourier 级数 ($f \in L^2$) 且其三角插值收敛于 f.
- (b) 差分近似是稳定的, 即存在常数 K_s , 使得对于所有的 Δt 和 h 有:

$$\sup_{0 \le t_n \le T} |Q^n| \le K_s$$

(c) 差分近似是相容的, 即对于每个固定的 ω , 有:

$$\lim_{\Delta t, h \to 0} \sup_{\xi} |\hat{Q}^n(\xi) - e^{-iwt_n}| = 0$$

则: 差分近似解的三角插值收敛于微分方程的解, 即:

$$\lim_{\Delta t, h \to 0} \sup_{0 \le t_n \le T} ||u(\cdot, t_n) - \psi_N(\cdot, t_n)|| = 0$$

其中 $u(\cdot,t_n)$ 的表达式为:

$$u(\cdot, t_n) = \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} e^{iwx_j + t_n \hat{v}_n(\omega)} f(\omega)$$

差分近似解的三角插值为:

$$\psi_N = \frac{1}{\sqrt{2\pi}} \sum_{\omega = -\frac{N}{2}}^{\frac{N}{2}} e^{iwx_j} \hat{v}_n(\omega) f(\omega)$$

证明.

证明:设:

$$\sum_{\omega=-\infty}^{\infty} |f(\omega)|^2 = ||f||^2$$

取常数 M, 使得 $0 < M < \frac{N}{2}$, 则证明过程可以从这里展开.

2.6 CTCS 格式

使用中心差近似 u_t , 使用中心差近似 u_x , 得到

$$u_t(x_j, t_n) \simeq \frac{v_j^{n+1} - v_j^{n-1}}{2\Delta t}, \quad u_x(x_j, t_n) \simeq \frac{v_{j+1}^n - v_{j-1}^n}{2h} = D_0 v_j^n$$

代入对流方程并整理得到

$$u_t = u_x \Longrightarrow v_j^{n+1} = v_j^{n-1} + \frac{\Delta t}{h}(v_{j+1}^n - v_{j-1}^n) = v_j^{n-1} + r(v_{j+1}^n - v_{j-1}^n)$$

初值是一个谐波

$$\hat{v}^{n+1}(\omega) = \hat{v}^{n-1}(\omega) + 2ir\sin\xi\hat{v}^n(\omega)$$

这是一个数列的递推公式, 出现了相邻的三项, 系数均为与 n 无关的常数. 考虑特征方程

$$z^2 - 2ir\sin\xi z - 1 = 0$$

当 0 < r < 1 时,有两个不同的解

$$z_1 = ir \sin \xi + \sqrt{1 - r^2 \sin^2 \xi}, \quad z_2 = ir \sin \xi - \sqrt{1 - r^2 \sin^2 \xi}$$

由特征方程的理论知

$$\hat{v}^n(\omega) = \sigma_1 z_1^n + \sigma_2 z_2^n$$

其中 σ_1, σ_2 是与 n 无关的常数, 代入 n=0,1 的初值条件来得到. 但我们发现我们只知道

$$\hat{v}^0(\omega) = \hat{f}(\omega)$$

而 $\hat{v}^1(\omega)$ 的值不能由 CTCS 的递推关系得到. 实践中我们通过单步格式如 FTCS 来得到 $\hat{v}^1(\omega)$ 的值

$$\hat{v}^1(\omega) = (1 + ir\sin\xi)\hat{f}(\omega)$$

这样我们就得到了关于 σ_1, σ_2 的线性方程组

$$\begin{cases} \sigma_1 + \sigma_2 = \hat{f}(\omega) \\ \sigma_1 z_1 + \sigma_2 z_2 = (1 + ir \sin \xi) \hat{f}(\omega) \end{cases}$$

将 $r = \Delta t/h$ 取为常值, 当 $\xi = \omega h \ll 1$ 的时候

$$\mathrm{i} r \sin \xi = \mathrm{i} r \xi + \mathrm{i} r O(\xi^3) = \mathrm{i} \omega \Delta t + O(\omega^3 \Delta t^3).$$

$$\sqrt{1 - r^2 \sin^2 \xi} = 1 - \frac{1}{2} r^2 \sin^2 \xi + O(r^4 \sin^4 \xi) = 1 - \frac{1}{2} r^2 (\xi^2 + O(\xi^4)) + O(r^4 \xi^4)$$

$$z_1 = 1 + \mathrm{i} \omega \Delta t - \frac{1}{2} \omega^2 \Delta t^2 + O(\omega^3 \Delta t^3) = \mathrm{e}^{\mathrm{i} \omega \Delta t (1 + O(\omega^2 \Delta t^2))}, \quad z_2 = -\mathrm{e}^{-\mathrm{i} \omega \Delta t (1 + O(\omega^2 \Delta t^2))}$$

在不近似的情况下直接解线性方程组,得到

$$\begin{cases}
\sigma_1 = \left(\frac{1}{2} + \frac{1}{2\sqrt{1 - r^2 \sin^2 \xi}}\right) \hat{f}(\omega) \\
\sigma_2 = \left(\frac{1}{2} - \frac{1}{2\sqrt{1 - r^2 \sin^2 \xi}}\right) \hat{f}(\omega)
\end{cases}$$

所以只需要估计

$$\frac{1}{\sqrt{1-r^2\sin^2\xi}} = \frac{1}{1-\frac{1}{2}r^2\sin^2\xi + O(r^4\sin^4\xi)} = 1 + \frac{1}{2}r^2\sin^2\xi + O(r^4\sin^4\xi)$$

$$\sigma_1 = (1 + \frac{1}{4}r^2\xi^2 + O(r^2\xi^4))\hat{f}(\omega) = (1 + \frac{1}{4}\omega^2\Delta t^2 + O(\omega^4\Delta t^4))\hat{f}(\omega), \quad \sigma_2 = (-\frac{1}{4}\omega^2\Delta t^2 + O(\omega^4\Delta t^4))\hat{f}(\omega)$$
 这样一来

$$\hat{v}^{n}(\omega) = \hat{f}(\omega)(1 + O(\omega^{2}\Delta t^{2}))e^{i\omega t_{n}(1 + O(\omega^{2}\Delta t^{2}))} + (-1)^{n}\hat{f}(\omega)O(\omega^{2}\Delta t^{2})e^{-i\omega t_{n}(1 + O(\omega^{2}\Delta t^{2}))}$$

可以看到前半部分当 $\Delta t \to 0$ 时收敛于准确解 $\hat{u}^n(\omega) = \hat{f}(\omega) e^{i\omega t_n}$, 后半部分是模长不依赖于 t_n 且随着 Δt 的减小而减小的振荡, 我们称这部分为寄生解.

2.7 带源项的 PDE 初值问题

$$\begin{cases} u_t = u_x - au, & a > 0 \\ u(x,0) = f(x) \end{cases}$$

频率为 ω 的谐波解对应的准确解为

$$u = \frac{1}{\sqrt{2\pi}} \hat{f}(\omega) e^{i\omega(x+t)-at}$$
.

还是考虑 CTCS 格式

$$v_{j}^{n+1} = v_{j}^{n-1} + 2\Delta t D_{0} v_{j}^{n} - 2\Delta t a v_{j}^{n}, \quad \hat{v}^{n+1}(\omega) = \hat{v}^{n-1}(\omega) + 2\mathrm{i} r \sin \xi \hat{v}^{n}(\omega) - 2\Delta t a \hat{v}^{n}(\omega)$$

相应的特征方程为

$$z^2 - (2ir\sin\xi - 2\Delta ta)z - 1 = 0$$

解得

$$z_1 = ir\sin\xi - \Delta ta + \sqrt{(ir\sin\xi - \Delta ta)^2 + 1}, \quad z_2 = ir\sin\xi - \Delta ta - \sqrt{(ir\sin\xi - \Delta ta)^2 + 1}$$

下面考虑 $\omega = 0$ 的情况, 此时 $\xi = 0$. 并且我们要求 Δta 是一个小量

$$z_1 = -\Delta t a + \sqrt{(\Delta t a)^2 + 1} = -\Delta t a + 1 + \frac{1}{2} \Delta t^2 a^2 + O(\Delta t^4 a^4), \quad z_2 = -\Delta t a - 1 - \frac{1}{2} \Delta t^2 a^2 + O(\Delta t^4 a^4)$$

此时 σ_1, σ_2 需要满足的条件为

$$\sigma_1 + \sigma_2 = \hat{f}(0), \quad \sigma_1 z_1 + \sigma_2 z_2 = (1 - \Delta t a)\hat{f}(0)$$

解并估计得到

$$\sigma_1 = \frac{z_2 \hat{f}(0) + (\Delta t a - 1) \hat{f}(0)}{z_2 - z_1} \sim 1 + O(\Delta t^2 a^2), \quad \sigma_2 = \frac{(1 - \Delta t a) \hat{f}(0) - z_1 \hat{f}(0)}{z_2 - z_1} \sim O(\Delta t^2 a^2).$$

所以

$$\hat{v}^n(0) = \sigma_1 z_1^n + \sigma_2 z_2^n = \hat{f}(0)(1 + O(\Delta t^2 a^2))e^{-at_n(1 + O(\Delta t^2 a^2))} + \hat{f}(0)O(\Delta t^2 a^2)(-1)^n e^{at_n(1 + O(\Delta t^2 a^2))}$$

观察到 a>0 时寄生解随时间指数级增加. 我们对 CTCS 格式做一个改进

$$v_j^{n+1} = v_j^{n-1} + 2\Delta t D_0 v_j^n - \Delta t a (v_j^{n+1} + v_j^{n-1})$$

这时特征方程变为

$$(1 + \Delta ta)z^2 - 2ir\sin\xi z + \Delta ta - 1 = 0$$

2.8 迎风格式与 CFL 条件

考虑对流方程

$$u_t + au_x = 0,$$

我们知道它的特征线为

$$x - at = \text{const}$$

我们知道

$$u(x,t) = f(x - at) = u(x - at, 0)$$

也就是说解在 t_0 时刻在 x_0 处的值可以有初始时刻在 $x_0 - at_0$ 处的值决定. 我们称集合

$$D_P := \{x_0 - at_0\}$$

为点 $P = (x_0, t_0)$ 的依赖区域. 本例中依赖区域仅为一个点, 在其他方程中可以看到更复杂的情形.

对于差分方程同样能够讨论依赖区域这个概念,回忆 FTFS 格式的递推公式

$$v_j^{n+1} = v_j^n - ar(v_{j+1}^n - v_j^n)$$

可以看到点 $P = (x_i, t_n)$ 的数值依赖区域是

$$N_P := \left\{ x_i^0, x_{i+1}^0, \cdots, x_{i+n+1}^0 \right\}$$

可以总结出, D_P 在点的左侧还是右侧由 a 的正负决定, N_P 在点的左侧还是右侧由格式是 FS 还是 BS 还是 CS 决定. 一个非常自然的感觉是, 如果一个点的值理论上该由它左侧的值决定, 但我们却选了一个 N_P 在它的右边的格式, 那这个结果不可能好. 我们称

$$D_P \subset N_P$$

为 CFL 条件, 我们认为这是一个格式收敛或稳定的必要条件. 在 $u_t + au_x = 0$ 的例子中我们称 D_P 与 N_P 在点同一侧的格式为迎风格式. a>0 时迎风格式为 FTBS 格式, a<0 时迎风格式为 FTFS 格式. 相应的可以定义逆风格式. 要满足 CFL 条件首先要选择迎风格式而不是逆风格式, 其次, 我们以 a<0 为例, $D_P\subset N_P$ 等价于

$$x_0 - at_n \leqslant x_0 + n\Delta x \iff 0 < -ar \leqslant 1$$

这是 FTBS 格式的 CFL 条件. 相应 FTFS 格式的 CFL 条件为 $0 < ar \le 1$.

需要强调的是 CFL 条件仅仅为一个格式收敛或稳定的必要条件,一个反例是 FTCS 格式与蛙跳格式也就是 CTCS 格式有相同的 CFL 条件,但 FTCS 格式不稳定而蛙跳格式稳定.

2.9 BTCS 格式

使用后差近似 u_t , 使用中心差近似 u_x , 得到

$$u_t(x_j, t_n) \simeq \frac{v_j^n - v_j^{n-1}}{\Delta t}, \quad u_x(x_j, t_n) \simeq \frac{v_{j+1}^n - v_{j-1}^n}{2h}$$

代入对流方程并整理得到

$$u_t = u_x \Longrightarrow v_j^n = v_j^{n-1} + \frac{\Delta t}{2h} (v_{j+1}^n - v_{j-1}^n)$$

我们习惯已知层用 n, 未知层用 n+1, 所以改写一下得到

$$v_j^{n+1} = v_j^n + \frac{\Delta t}{2h} (v_{j+1}^{n+1} - v_{j-1}^{n+1})$$

这是一个隐式格式而不是显式格式, 类似于 y = f(x) 与 g(x,y) = 0 所确定的函数关系的区别.

$$-\frac{\Delta t}{2h}v_{j+1}^{n+1} + v_j^{n+1} + \frac{\Delta t}{2h}v_{j-1}^{n+1} = v_j^n$$

每两层之间的求解是一个线性方程组

$$\begin{pmatrix} 1 & -\frac{\Delta t}{2h} & 0 & \cdots & 0 & \frac{\Delta t}{2h} \\ \frac{\Delta t}{2h} & 1 & -\frac{\Delta t}{2h} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{\Delta t}{2h} & 1 & -\frac{\Delta t}{2h} \\ -\frac{\Delta t}{2l} & 0 & \cdots & 0 & \frac{\Delta t}{2l} & 1 \end{pmatrix} \begin{pmatrix} v_0^{n+1} \\ v_1^{n+1} \\ \vdots \\ v_N^{n+1} \end{pmatrix} = \begin{pmatrix} v_0^n \\ v_1^n \\ \vdots \\ v_N^n \end{pmatrix}$$

下面我们来计算放大因子

$$\hat{v}^{n+1}(\omega) = \hat{v}^{n}(\omega) + \frac{\Delta t}{2h} (e^{i\omega h} - e^{-i\omega h}) \hat{v}^{n+1}(\omega) \Longrightarrow \hat{v}^{n+1}(\omega) = \frac{1}{1 - ir\sin\xi} \hat{v}^{n}(\omega)$$
$$\hat{Q} = \frac{1}{1 - ir\sin\xi} \Longrightarrow |\hat{Q}|^{2} = \frac{1}{1 + r^{2}\sin^{2}\xi} \leqslant 1$$

所以 BTCS 格式是无条件稳定的.

Crank-Nicolson 格式

思想是将方程分成两部分,每部分用不同的格式来近似,这里我们一半用 FTCS 一半用 BTCS

$$\frac{v_j^n - v_j^{n-1}}{\Delta t} \simeq u_t = u_x = \frac{1}{2}u_x + \frac{1}{2}u_x \simeq \frac{1}{2}\frac{v_{j+1}^n - v_{j-1}^n}{2h} + \frac{1}{2}\frac{v_{j+1}^{n+1} - v_{j-1}^{n+1}}{2h}$$

$$\Longrightarrow (I - \frac{\Delta t}{2}D_0)v_j^{n+1} = (I + \frac{\Delta t}{2}D_0)v_j^n \Longrightarrow \hat{Q} = \frac{2 + ir\sin\xi}{2 - ir\sin\xi}, \quad |\hat{Q}| = 1$$

该格式也是无条件稳定的, 且对所有的频率 ω , 放大因子 \hat{Q} 的模长不变.

θ -方法

Crank-Nicolson 格式的直接推广, 将系数 $\frac{1}{2}$ 和 $\frac{1}{2}$ 替换为 $1-\theta$ 和 θ , 其中 $0 \le \theta \le 1$.

$$(I - \theta \Delta t D_0) v_j^{n+1} = (I + (1 - \theta) \Delta t D_0) v_j^n, \quad \hat{Q} = \frac{1 + ir(1 - \theta) \sin \xi}{1 - ir\theta \sin \xi}$$

$$\hat{Q} = \frac{1 + ir(1 - \theta) \sin \xi}{1 - ir\theta \sin \xi} = \frac{(1 + ir(1 - \theta) \sin \xi)(1 + ir\theta \sin \xi)}{1 + r^2\theta^2 \sin^2 \xi} = \frac{1 - r^2\theta(1 - \theta) \sin^2 \xi + ir \sin \xi}{1 + r^2\theta^2 \sin^2 \xi}$$

$$|\hat{Q}|^2 = \frac{(1 - r^2\theta(1 - \theta) \sin^2 \xi)^2 + r^2 \sin^2 \xi}{1 + 2r^2\theta^2 \sin^2 \xi + r^4\theta^4 \sin^4 \xi} = \frac{1 - 2r^2\theta(1 - \theta) \sin^2 \xi + r^4\theta^2(1 - \theta)^2 \sin^4 \xi + r^2 \sin^2 \xi}{1 + 2r^2\theta^2 \sin^2 \xi + r^4\theta^4 \sin^4 \xi}$$

$$|\hat{Q}|^2 - 1 = \frac{-2r^2\theta \sin^2 \xi + r^4\theta^2 \sin^4 \xi - 2r^4\theta^3 \sin^4 \xi + r^2 \sin^2 \xi}{1 + 2r^2\theta^2 \sin^2 \xi + r^4\theta^4 \sin^4 \xi}$$

$$|\hat{Q}|^2 - 1 = \frac{r^2 \sin^2 \xi}{(1 + r^2\theta^2 \sin^2 \xi)^2} (-2\theta + r^2\theta^2 \sin^2 \xi - 2r^2\theta^3 \sin^2 \xi + 1)$$

$$|\hat{Q}|^2 - 1 = \frac{r^2 \sin^2 \xi}{(1 + r^2\theta^2 \sin^2 \xi)^2} (1 - 2\theta)(1 + r^2\theta^2 \sin^2 \xi)$$

当 $\theta \ge \frac{1}{2}$, 即隐式格式占据优势时, 格式为无条件稳定的.

2.10 截断误差

以 FTCS 格式为例, 此时截断误差为

$$T(x_j, t_n) = \frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{u_{j+1}^n - u_{j-1}^n}{2h} - (u_t(x_j, t_n) - u_x(x_j, t_n)) = \frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{u_{j+1}^n - u_{j-1}^n}{2h}$$

泰勒展开,有

$$u_j^{n+1} = u(x_j, t_{n+1}) = u(x_j, t_n) + u_t(x_j, t_n) \Delta t + \frac{1}{2} u_{tt}(x_j, t_n + \theta \Delta t) \Delta t^2$$

$$u_{j+1}^n = u(x_{j+1}, t_n) = u(x_j, t_n) + u_x(x_j, t_n) h + \frac{1}{2} u_{xx}(x_j, t_n) h^2 + \frac{1}{6} u_{xxx}(x_j + \eta h, t_n) h^3$$

$$u_{j-1}^n = u(x_{j-1}, t_n) = u(x_j, t_n) - u_x(x_j, t_n) h + \frac{1}{2} u_{xx}(x_j, t_n) h^2 - \frac{1}{6} u_{xxx}(x_j + \xi h, t_n) h^3$$

代入得

$$T(x_j, t_n) = u_t(x_j, t_n) + O(\Delta t) - u_x(x_j, t_n) + O(h^2) = O(\Delta t + h^2)$$

定义 2.10.1. 若 $T_j^n = O(h^p + (\Delta t)^q)$, 则称该方法为对空间 p 阶、对时间 q 阶精度.

定义 2.10.2. 若 p > 0 且 q > 0, 则称该格式是相容的.

再以加黏性项修正的 FTCS 格式为例, 此时

$$\begin{split} T_j^n &= \frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{u_{j+1}^n - u_{j-1}^n}{2h} - \sigma h \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2} \\ u_{j+1}^n - 2u_j^n + u_{j-1}^n &= h^2 u_{xx}(x_j, t_n) + \frac{h^4}{12} u_{xxxx}(x_j, t_n) + O(h^6) \\ u_{j+1}^n - u_{j-1}^n &= 2h u_x(x_j, t_n) + \frac{h^3}{3} u_{xxx}(x_j, t_n) + O(h^5) \\ u_j^{n+1} - u_j^n &= \Delta t u_t(x_j, t_n) + \frac{1}{2} (\Delta t)^2 u_{tt}(x_j, t_n) + O((\Delta t)^3) \\ T_j^n &= \frac{1}{2} \Delta t u_{tt}(x_j, t_n) + O((\Delta t)^2) - \frac{h^2}{6} u_{xxx}(x_j, t_n) + O(h^4) - \sigma h u_{xx}(x_j, t_n) - \frac{\sigma h^3}{12} u_{xxxx}(x_j, t_n) + O(h^5) \\ T_j^n &= \frac{1}{2} \Delta t u_{tt}(x_j, t_n) - \sigma h u_{xx}(x_j, t_n) + O(h^2 + (\Delta t)^2) \end{split}$$

因为

$$u_t = u_x \Longrightarrow u_{tt} = u_{xt} = u_{xx}$$

所以如果 $2\sigma h=\Delta t,$ 则 $T_j^n=O(h^2+(\Delta t)^2),$ 否则 $T_j^n=O(h+\Delta t).$ 再以 FTFS 格式为例, 此时截断误差为

$$T_j^n = \frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{u_{j+1}^n - u_j^n}{h} = \frac{1}{2}u_{tt}(x_j, t_n)\Delta t + O((\Delta t)^2) - \frac{1}{2}u_{xx}(x_j, t_n)h + O(h^2)$$

所以如果 $\Delta t = h$, 则 $T_j^n = O(h^2 + (\Delta t)^2)$, 否则 $T_j^n = O(h + \Delta t)$.

2.11 整体误差

定义整体误差

$$e_j^n := v_j^n - u_j^n$$

为近似值与真值之间的差. 以 FTFS 格式为例

$$v_j^{n+1} = v_j^n + \frac{\Delta t}{h}(v_{j+1}^n - v_j^n), \quad u_j^{n+1} = u_j^n + \frac{\Delta t}{h}(u_{j+1}^n - u_j^n) + \Delta t T_j^n.$$

两式做差得到

$$e_j^{n+1} = e_j^n + \frac{\Delta t}{h}(e_{j+1}^n - e_j^n) - \Delta t T_j^n = r e_{j+1}^n + (1-r)e_j^n - \Delta t T_j^n, \quad e_j^0 = 0.$$

取 $E^n = \max_j |e_j^n|, \overline{T} = \max_{j,n} |T_j^n|,$ 讨论当 $0 < r \le 1$ 时的情况,

$$|e_i^{n+1}| \leqslant (1-\lambda)E^n + \lambda E^n + \Delta t\overline{T} = E^n + \Delta t\overline{T} \Longrightarrow E^{n+1} \leqslant E^n + \Delta t\overline{T}.$$

递归使用上式,得到

$$E^{n+1} \leqslant E^n + \Delta t \overline{T} \leqslant E^{n-1} + 2\Delta t \overline{T} \leqslant \dots \leqslant E^0 + (n+1)\Delta t \overline{T} = (n+1)\Delta t \overline{T}.$$

2.12 基于 PDE 的积分形式的有限差分格式的构造

用节点

$$0 = x_0 < x_1 < \cdots < x_{J-1} < x_J = 1$$

将 [0,1] 均匀分成 J 个小区域, 用节点

$$0 = t_0 < t_1 < \dots < t_{N-1} < t_N = T$$

将 [0,T] 均匀分成 N 个小区域.

取控制体 $\Omega_j^n = [t_n, t_{n+1}] \times [x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}]$

在 Ω_i^n 上对函数 $u_t + au_x$ 进行积分, 得到

$$\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} u^{n+1}(x) - u^n(x) dx + a \int_{t_n}^{t_{n+1}} u_{j+\frac{1}{2}}(t) - u_{j-\frac{1}{2}}(t) dt = 0$$

到此是精确成立的. 用不同的数值积分公式对上述方程中的积分做近似, 得到不同的有限差分格式. 对于第一个积分, 因为积分区间中有一个整节点, 所以用中点公式

$$\int_{x_{-1}}^{x_{1}} f(x) dx = \Delta x \cdot f(x_{0}) + \frac{(\Delta x)^{3}}{24} f''(\xi), \quad x_{0} = \frac{x_{-1} + x_{1}}{2}, \xi \in (x_{-1}, x_{1})$$

应用到我们这个具体的式子上就是

$$\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} u^{n+1}(x) - u^n(x) dx = h(u_j^{n+1} - u_j^n) + \frac{h^3}{24} (u_{xx}^{n+1} - u_{xx}^n)(\xi), \quad \xi \in (x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}})$$

对于第二个积分, 如果希望最后是显式, 就要只包含一个与时间相关的端点, 所以我们使用

$$\int_{a}^{b} f(x)dx = (b-a)f(a) + \frac{1}{4}(b-a)^{2}f'(\xi), \quad \xi \in (a,b)$$

应用到我们这个具体的式子上就是

$$\int_{t_n}^{t_{n+1}} (u_{j+\frac{1}{2}}(t) - u_{j-\frac{1}{2}}(t)) dt = \Delta t (u_{j+\frac{1}{2}}^n - u_{j-\frac{1}{2}}^n) + \frac{1}{4} \Delta t^2 (u_{j+\frac{1}{2}} - u_{j-\frac{1}{2}})_t(\eta), \quad \eta \in (t_n, t_{n+1})$$

将两个式子合并到一起,整理得到

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{a}{h} (u_{j+\frac{1}{2}}^n - u_{j-\frac{1}{2}}^n) + \frac{a\Delta t}{4h} (u_{j+\frac{1}{2}} - u_{j-\frac{1}{2}})_t(\eta) + \frac{h^2}{24\Delta t} (u_{xx}^{n+1} - u_{xx}^n)(\xi) = 0$$

上式中还是出现了函数 u 在半格点处的值, 因为我们希望将整格点处的值作为需要求解的量, 所以

$$\begin{split} u_{j}^{n} &= u_{j+\frac{1}{2}}^{n} - \frac{h}{2} u_{x}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{8} u_{xx}^{n}(x_{j+\frac{1}{2}}) - \frac{h^{3}}{48} u_{xxx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}), \\ u_{j+1}^{n} &= u_{j+\frac{1}{2}}^{n} + \frac{h}{2} u_{x}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{8} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{3}}{48} u_{xxx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}), \\ u_{j+\frac{1}{2}}^{n} &= \frac{1}{2} (u_{j+1}^{n} + u_{j}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}), \quad u_{j-\frac{1}{2}}^{n} &= \frac{1}{2} (u_{j}^{n} + u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j-\frac{1}{2}}) + O(h^{4}) \\ u_{j+\frac{1}{2}}^{n} - u_{j-\frac{1}{2}}^{n} &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{xx}^{n}(x_{j-\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{xx}^{n}(x_{j-\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{xx}^{n}(x_{j-\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + O(h^{4}) \\ &= \frac{1}{2} (u_{j+1}^{n} - u_{j-1}^{n}) - \frac{h^{2}}{4} u_{xx}^{n}(x_{j+\frac{1}{2}}) + \frac{h^{2}}{4} u_{x$$

代入得

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{a}{2h}(u_{j+1}^n - u_{j-1}^n) + O(h^2) + O(\Delta t) + O(h^2) = 0$$

所以我们得到差分方程

$$\frac{v_j^{n+1} - v_j^n}{\Delta t} + \frac{a}{2h}(v_{j+1}^n - v_{j-1}^n) = 0$$

这其实就是 FTCS 格式, 从上面的推导也可以看出该格式的截断误差为 $O(h^2+\Delta t)$ 阶的. 取时空区域 $\Omega_j^n=[t_{n-1},t_{n+1}]\times[x_{j-\frac12},x_{j+\frac12}]$ 为控制区域

$$\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} (u^{n+1} - u^{n-1}) \mathrm{d}x$$

2.13 变系数对流方程

$$u_t + a(x,t)u_x = 0$$
$$\frac{\mathrm{d}t}{\mathrm{d}x} = a(x,t) \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t}u(x(t),t) = 0.$$

Chapter 3

扩散方程

3.1 常系数扩散方程初值问题

$$\begin{cases} u_t = u_{xx}, & -\infty < x < \infty, t > 0 \\ u(x,0) = f(x), & -\infty < x < \infty \end{cases}$$

3.2 待定系数法构造高阶逼近

均匀网格

非均匀网格

3.3 变系数扩散方程

3.3.1 非守恒型扩散方程

FTCS 格式

$$v_j^{n+1} = (I + b_j^n \Delta t D_+ D_-) v_j^n = v_j^n + b_j^n (v_{j+1}^n - 2v_j^n + v_{j-1}^n)$$

算放大因子

算截断误差

$$T_j^n = O(h^2 + \Delta t)$$

算整体误差

假设
$$B=\max_{j,n}b_j^n, \bar{T}=\max_{j,n}T_j^n, E^n=\max_j|e_j^n|$$

$$E^{n+1} \leqslant E^n + T\Delta t \leqslant E^0 + \bar{T}(n+1)\Delta t$$

BTCS 格式

θ 方法

最终的格式应该有相容性、收敛性、稳定性,有效的,先不讲高效哪种方法好其实与 b(x,t) 的行为有关. 截断误差在哪点都一样,主要看好不好算

3.3.2 守恒型扩散方程

物理意义,热流量守恒 考虑方程的守恒性质,使用积分形式构造有限差分格式,取时空区域 Ω_j^n

Chapter 4

偏微分方程初值问题的适定性

解存在, 唯一, 稳定 先总结前面的解的特点, 再看怎么得到适定性的定义

4.1 适定性定义

4.2 一维常系数标量偏微分方程

4.3 一维常系数一阶偏微分方程组

4.4 一维常系数抛物型偏微分方程组

4.5 一般常系数微分方程组

4.6

Chapter 5

有限差分方法的基本性质

本章主要针对一般的偏微分方程的初值问题

$$\begin{cases} \mathcal{L}u = g, & -\infty < x < \infty, t > 0 \\ u(x, t_0) = f(x), & -\infty < x < \infty, \\ f(x) = f(x + 2\pi), & -\infty < x < \infty \end{cases}$$

其中 $\mathcal L$ 是时空偏微分算子. 考虑其一般的差分格式 $Lv_j^n=g_j^n$ 的相容性、收敛性和稳定性.

5.1 截断误差与差分方法的精度

定义 5.1.1. 对于满足 $\mathcal{L}u=g$ 的任意光滑函数 u(x,t), 称

$$T_i^n = Lu_i^n - g_i^n$$

为差分格式 $Lv_j^n=g_j^n$ 在 (x_j,t_n) 处的局部截断误差. 其反映了差分方程对源方程的近似程度.

定义 5.1.2. 若截断误差

$$T_i^n = Lu_i^n - g_i^n = O((\Delta x)^p + (\Delta t)^q),$$

则称差分格式 $Lv_j^n=g_j^n$ 对空间是 p 阶、对时间是 q 阶精度的.

5.2 差分方法的相容性

5.3 差分方法的收敛性

5.4 稳定性

5.5 LAX 定理

5.6 偏微分方程的耗散性、色散性

我们以方程 $u_t + au_x = 0$ 为例, 设谐波 $u(x,t) = e^{i(kt+\omega x)}$ 是方程的解, 代入得

$$ik + ia\omega = 0 \Longrightarrow k = -a\omega$$

称为 $u_t + au_x = 0$ 的色散关系. 一般情况下 $k = k(\omega) = \alpha + bi$ 是复数, PDE 的谐波解为

$$u(x,t) = e^{-bt}e^{i(at+\omega x)}$$

- 其振幅 e-bt 可能随时间衰减,这种现象称为"耗散".
- 谐波传播的波速为

$$c_e = -\frac{\alpha}{\omega} = -\frac{\operatorname{Re}(k)}{\omega}$$

若 $c_e > 0$, 则谐波从左向右传播, 若 $c_e < 0$, 则谱波从右向左传播. 当 $u_t + au_x = 0$ 时 $c_e = a$.

- 如果色散关系 $k = k(\omega)$ 是 ω 的线性函数,则不同波数的谐波传播的波速是相同的,整体波形保持不变. 若 $k = k(\omega)$ 是 ω 的非线性函数,则不同波数的谐波传播的波速是不同的,整体波形随时间发生变化,相应的物理现象称为"色散".
- 放大因子

$$\lambda_e \triangleq \frac{u(x, t + \Delta t)}{u(x, t)} = e^{ik\Delta t} = e^{-b\Delta t}e^{i\alpha\Delta t} = |\lambda_e|e^{i\varphi_e},$$

称 $|\lambda_e| = e^{-b\Delta t}$ 为 λ_e 的模, 称 $\varphi_e = \alpha \Delta t$ 为 λ_e 的幅角. λ_e 体现了谐波解的随时间变化特征.

不同波数的谐波的传播和振幅特性是 PDE 的解的性质的一个重要组成部分. 若有谐波振幅无限增长,则该 PDE 的解是不稳定的.

定义 5.6.1. 若 PDE 的谐波解的振幅不随时间增长, 且至少有一个谱波的振幅是衰减的, 则称该 PDE 具有耗散性, 其解是稳定的. 若 PDE 的所有谱波解的振幅既不增长, 也不衰减, 则称该 PDE 是**泛耗散**的, 其解是稳定的. 若非上述两种情况, 则称该 PDE 是**逆耗散**的, 其解不稳定.

定义 5.6.2. 若 PDE 的不同波数的谐波以不同的速度传播, 则称该 PDE 具有色散性. 若谐波的传播速度与波数无关, 则称该 PDE 是无色散的.

例 5.6.3. 讨论 $u_t + au_x = 0$ 的耗散性、色散性, 其中 a 是常数.

解.

例 5.6.4. 讨论 $u_t + cu_{xxx} = 0$ 的耗散性、色散性, 其中 c 是常数.

解.

5.7 差分方程的耗散性、色散性

5.8 MPDE 方法

Chapter 6

书面作业

6.1 第一次书面作业

- **1.1.1.** 证明方程 (1.1.8) 和 (1.1.9) 对于 L_2 内积和范数成立.
- **1.1.2.** 设 f 是具有傅里叶级数的实函数

$$f(x) = \frac{1}{\sqrt{2\pi}} \sum_{\omega = -\infty}^{\infty} \hat{f}(\omega) e^{i\omega x}.$$

证明

$$S_N = \frac{1}{\sqrt{2\pi}} \sum_{\omega = -N}^{N} \hat{f}(\omega) e^{i\omega x}$$

对所有 N 都是实数.

6.2 第二次书面作业

1.2.1. 推导估计

$$\left| \left(D - \frac{\partial^3}{\partial x^3} \right) e^{i\omega x} \right|$$

其中 $D = D_+^3, D_-D_+^2, D_+^2D_-, D_+^3, D_-, D_0D_+D_-.$

- **1.2.2.** 差分算子 D_+ 和 D_0 都近似 $\partial/\partial x$, 但它们有不同的范数. 解释为什么这不构成矛盾.
- **1.5.1.** 表述并证明定理 1.3.1 和 1.3.3 在二维空间下的推广形式.
- **1.5.2.** 在一个矩形网格上, 计算 $\|D_{+x_j}\|_h$, $\|D_{-x_j}\|_h$, $\|D_{0x_j}\|_h$, 其中 j=1,2, 网格大小在 x_j 方向为 $h_j, j=1,2$.

补充作业: 证明:参考书 1 中 P26 的定理 1.3.3 中公式 (1.3.4); 以及当 N 为奇数时,写出 P26 页相应的定理 1.3.2,并证明之.

6.3 第三次书面作业

- **2.1.1.** 图 2.1.4 和 2.1.5 中解的收敛性较慢. 解释原因, 并在定理 2.1.1 的证明中找出对于该示例哪一项 I、II 或 III 较大.
- **2.1.2.** 修改格式 (2.1.11) 使其逼近 $u_t = -u_x$. 证明条件 (2.1.14) 和 (2.1.15) 在该情况下对于稳定性也是必要的.
- **2.1.3.** 在方程 (2.1.11) 中选择 σ 使得 Q 仅使用两个网格点. 稳定性条件是什么?

作业—20240926: 针对方程 $u_t + u_x = 0$, 导出其解的依赖区; 其显式格式的数值解的依赖区; 以及 CFL 条件.

6.4 第四次书面作业

2.3.1. 证明当 $\theta \ge \frac{1}{5}$ 时, 如下 θ 格式是无条件稳定的.

$$(I - \theta k D_0) v_i^{n+1} = (I + (1 - \theta)k D_0) v_i^n, \quad j = 0, 1, \dots, N.$$
(2.3.5)

证明.

$$\begin{split} \hat{Q} &= \frac{1 + \mathrm{i} r (1 - \theta) \sin \xi}{1 - \mathrm{i} r \theta \sin \xi} = \frac{(1 + \mathrm{i} r (1 - \theta) \sin \xi) (1 + \mathrm{i} r \theta \sin \xi)}{1 + r^2 \theta^2 \sin^2 \xi} = \frac{1 - r^2 \theta (1 - \theta) \sin^2 \xi + \mathrm{i} r \sin \xi}{1 + r^2 \theta^2 \sin^2 \xi} \\ |\hat{Q}|^2 &= \frac{(1 - r^2 \theta (1 - \theta) \sin^2 \xi)^2 + r^2 \sin^2 \xi}{1 + 2r^2 \theta^2 \sin^2 \xi + r^4 \theta^4 \sin^4 \xi} = \frac{1 - 2r^2 \theta (1 - \theta) \sin^2 \xi + r^4 \theta^2 (1 - \theta)^2 \sin^4 \xi + r^2 \sin^2 \xi}{1 + 2r^2 \theta^2 \sin^2 \xi + r^4 \theta^4 \sin^4 \xi} \\ |\hat{Q}|^2 - 1 &= \frac{-2r^2 \theta \sin^2 \xi + r^4 \theta^2 \sin^4 \xi - 2r^4 \theta^3 \sin^4 \xi + r^2 \sin^2 \xi}{1 + 2r^2 \theta^2 \sin^2 \xi + r^4 \theta^4 \sin^4 \xi} \\ |\hat{Q}|^2 - 1 &= \frac{r^2 \sin^2 \xi}{(1 + r^2 \theta^2 \sin^2 \xi)^2} (-2\theta + r^2 \theta^2 \sin^2 \xi - 2r^2 \theta^3 \sin^2 \xi + 1) \\ |\hat{Q}|^2 - 1 &= \frac{r^2 \sin^2 \xi}{(1 + r^2 \theta^2 \sin^2 \xi)^2} (1 - 2\theta) (1 + r^2 \theta^2 \sin^2 \xi) \end{split}$$

当 $\theta \ge \frac{1}{2}$, 即隐式格式占据优势时, 格式为无条件稳定的.

2.4.1. 在推导精度阶次时, 使用了围绕某点 (x_*, t_*) 的泰勒展开. 证明 (x_*, t_*) 可以任意选择, 特别是, 它不必是网格点.

证明. 不妨设在 (x_i, t_n) 展开的局部截断误差为

$$T_j^n = f(x_j, t_n) h^p + g(x_j, t_n) k^q + O(h^{p+1} + k^{q+1}) = O(h^p + k^q)$$

其中 h 和 k 分别为空间步长和时间步长, 另取附近的一点 (x_*, t_*) 满足

$$|x_j - x_*| \le Ch, \quad |t_n - t_*| \le Ck$$

那么

$$f(x_j, t_n) = f(x_*, t_*) + O(h) + O(k)$$
$$g(x_j, t_n) = g(x_*, t_*) + O(h) + O(k)$$

在 (x_*, t_*) 展开的局部截断误差为

$$T_{j_*}^{n_*} = [f(x_*, t_*) + O(h) + O(k)]h^p + [g(x_*, t_*) + O(h) + O(k)]k^q + O(h^{p+1} + k^{q+1})$$

$$= f(x_*, t_*)h^p + g(x_*, t_*)k^q + O(h^{p+1} + k^{q+1}) = O(h^p + k^q)$$

因此, 挑选某个具体的点(甚至不要求是格点)进行 Taylor 展开并不影响最终的结果.

2.4.2. 证明跳蛙格式 (2.2.1) 和 Crank-Nicholson 格式 (2.3.3) 的精度为 (2,2). 尽管有相同的精度 阶次, 但可以预期某一种格式比另一种更精确. 为什么会这样?

补充作业 1: 针对 $u_t + au_x = 0$,a 为常数,基于其积分形式构造时间 1 阶、空间 3 阶的有限差分格式.

补充作业 2: 试构造 $U_t + A \cdot U_x = 0$ 的迎风格式; 其中 $U = (u, v)^T$,

$$A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

6.5 第五次书面作业

2.5.2. 证明方程 (2.5.21) 中的 θ 格式在 $\theta \ge \frac{1}{2}$ 时是无条件稳定的.

2.5.3. 推导应用于 $u_t = u_{xx}$ 的后向欧拉法和 Crank-Nicholson 方法的截断误差. 证明其分别为 $\mathcal{O}(h^2 + k)$ 和 $\mathcal{O}(h^2 + k^2)$. 尽管如此, 在某些时刻, 对于本节中的示例, 后向欧拉法更精确. 解释这一悖论.

补充作业 1: 针对 $u_t = u_{xx} + f(x,t), (x,t) \in \bar{D} = [0,1] \times [0,T]$ 的积分形式,构造以格点处的函数为未知数的有限差分格式,并导出其截断误差.

补充作业 2: 针对 $u_t = u_{xx}$, 基于其在控制体 $\Omega_j^n = [t_{n-1}, t_{n+1}] \times \left[x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right]$ 上的积分形式, 构造 以函数的网格平均为未知数的有限差分格式, 并给出精度.

6.6 第六次书面作业

4.1.1. 假设我们希望在 $0 \le t \le 2$ 的区间内求解问题 (4.1.13), 并允许解有 1% 的相对误差. 给出允许的舍入误差的界限.

4.2.1. 考虑微分方程

$$\frac{\partial u}{\partial t} = \sum_{j=0}^{4} a_j \frac{\partial^j u}{\partial x^j}.$$

推导与方程 (4.2.2) 对应的良定性条件. 如果 Re $a_4 < 0$, 该问题是否总是良定的?

4.3.1. 对于哪些矩阵 A, B,系统

$$u_t = Au_x + Bu$$

是能量守恒的 $[\mathbb{P}, \|u(\cdot, t)\| = \|u(\cdot, 0)\|$?

补充作业 1: 试证:(均匀剖分)用 u 在三个点: $x_{j\pm 1}=(j\pm 1)h, x_j=jh$ 处的函数值的线性组合是无法得到 u_{xx} 的 3 阶或高于 3 阶的近似.

补充作业 2: 针对偏微分方程: $u_t = ((0.1 + \sin^2 x)u_x)_x$, 构造 (2,2) 阶精度的有限差分格式.

6.7 第七次书面作业

4.4.1. 证明存在正数常数 δ , K 使得抛物系统 $u_t = Au_{xx}$ 的解满足

$$||u(\cdot,t)||^2 + \delta \int_0^t ||u_x(\cdot,\xi)||^2 d\xi \leqslant K ||u(\cdot,0)||^2.$$
(4.4.9)

证明. 考虑谐波解

$$u(x,t) = \frac{1}{\sqrt{2\pi}} e^{iwx} \hat{u}(w,t), \quad u(x,0) = f(x) = \frac{1}{\sqrt{2\pi}} e^{iwx} \hat{f}(w)$$

代入方程得到

$$\begin{cases} \hat{u}_t = -w^2 A \hat{u}, \\ \hat{u}(w,0) = \hat{f}(w) \end{cases} \Rightarrow \hat{u}(w,t) = e^{-w^2 A t} \hat{f}(w)$$

易得

$$||u(\cdot,t)||^2 = |\hat{u}(w,t)|^2, \quad ||u_x(\cdot,t)||^2 = w^2|\hat{u}(w,t)|^2$$

原式等价于

$$|\hat{u}(w,t)|^2 + \delta w^2 \int_0^t |\hat{u}(w,\xi)|^2 \, d\xi \le K |\hat{u}(w,0)|^2$$

对 $|\hat{u}(w,t)|^2$ 关于时间求导, 得到

$$\partial_t |\hat{u}(w,t)|^2 = 2\langle \hat{u}, \hat{u}_t \rangle = \langle \hat{u}, -w^2 A \hat{u} \rangle + \langle -w^2 A \hat{u}, \hat{u} \rangle = \langle \hat{u}, -w^2 (A + A^*) \hat{u} \rangle$$

易知对于抛物方程, 存在 $\delta > 0$ 使得 $A + A^* \ge \delta I$, 代入得

$$\partial_t |\hat{u}(w,t)|^2 = \langle \hat{u}, -w^2(A+A^*)\hat{u} \rangle \le -\delta w^2 |\hat{u}(w,t)|^2$$

因此

$$0 \ge \int_0^t \left(\partial_t |\hat{u}(w,\xi)|^2 + \delta w^2 |\hat{u}(w,\xi)|^2 \right) d\xi = |\hat{u}(w,t)|^2 - |\hat{u}(w,0)|^2 + \delta w^2 \int_0^t |\hat{u}(w,\xi)|^2 d\xi$$
 取 $K = 1$ 即可得证.

4.4.2. 如果系统更改为 $u_t = Au_{xx} + Bu_x + Cu$, 其中 B 是 Hermitian 矩阵, C 是反 Hermitian 矩阵, 那么对于相同的常数 δ , K, 方程 (4.4.9) 是否依然成立?

证明. 考虑谱波解

$$u(x,t) = \frac{1}{\sqrt{2\pi}} e^{iwx} \hat{u}(w,t), \quad u(x,0) = f(x) = \frac{1}{\sqrt{2\pi}} e^{iwx} \hat{f}(w)$$

代入方程得到

$$\begin{cases} \hat{u}_t = -w^2 A \hat{u} + iw B \hat{u} + C \hat{u}, \\ \hat{u}(w,0) = \hat{f}(w) \end{cases} \Rightarrow \hat{u}(w,t) = e^{(-w^2 A + iw B + C)t} \hat{f}(w)$$

易得

$$||u(\cdot,t)||^2 = |\hat{u}(w,t)|^2, \quad ||u_x(\cdot,t)||^2 = w^2|\hat{u}(w,t)|^2$$

原式等价于

$$|\hat{u}(w,t)|^2 + \delta w^2 \int_0^t |\hat{u}(w,\xi)|^2 d\xi \le K |\hat{u}(w,0)|^2$$

对 $|\hat{u}(w,t)|^2$ 关于时间求导, 得到

$$\partial_t |\hat{u}(w,t)|^2 = 2\langle \hat{u}, \hat{u}_t \rangle = \langle \hat{u}, (-w^2 A + iwB + C)\hat{u} \rangle + \langle (-w^2 A + iwB + C)\hat{u}, \hat{u} \rangle$$
$$= \langle \hat{u}, -w^2 (A + A^*)\hat{u} \rangle + iw\langle \hat{u}, (B - B^*)\hat{u} \rangle + \langle \hat{u}, (C + C^*)\hat{u} \rangle$$

易知对于抛物方程, 存在 $\delta > 0$ 使得 $A + A^* \ge \delta I$, 再由条件得 $B = B^*, C = -C^*$, 代入得

$$\partial_t |\hat{u}(w,t)|^2 = \langle \hat{u}, -w^2(A+A^*)\hat{u} \rangle \le -\delta w^2 |\hat{u}(w,t)|^2$$

因此

$$0 \ge \int_0^t \left(\partial_t |\hat{u}(w,\xi)|^2 + \delta w^2 |\hat{u}(w,\xi)|^2 \right) d\xi = |\hat{u}(w,t)|^2 - |\hat{u}(w,0)|^2 + \delta w^2 \int_0^t |\hat{u}(w,\xi)|^2 d\xi$$

取 $K = 1$ 即可得证.

4.5.1. 考虑一阶系统 $u_t = Au_x$. 是否可能满足 Petrovskii 条件 (4.5.8) 对于某个常数 $\alpha > 0$ 成立但对于 $\alpha = 0$ 不成立?

证明. 代入谱波解可以得到 $\hat{P}(i\omega) = i\omega A$. 假设存在 $\alpha > 0$, 对所有的 ω,λ 是 $\hat{P}(i\omega)$ 的特征值, 有

$$\operatorname{Re} \lambda \leq \alpha$$

$$\operatorname{Re} \lambda = \operatorname{Re} \lambda(\hat{P}(i\omega)) = \operatorname{Re} \lambda(i\omega A) = -\omega \operatorname{Im} \lambda(A) \le \alpha$$

由于 ω 的任意性知 $\operatorname{Im} \lambda(A) = 0$, 因此 $\alpha = 0$ 也成立.

4.5.2. 为系统

$$u_t = \begin{bmatrix} 1 & 10 \\ 0 & 2 \end{bmatrix} u_x$$

导出满足方程 (4.5.14) 和 (4.5.15) 的矩阵 $\hat{H}(\omega)$.

证明. 代入谱波解可以得到

$$\hat{P}(i\omega) = i\omega \begin{bmatrix} 1 & 10 \\ 0 & 2 \end{bmatrix}, \quad \hat{P}^*(i\omega) = -i\omega \begin{bmatrix} 1 & 0 \\ 10 & 2 \end{bmatrix}$$

我们假设

$$\hat{H}(\omega) = \begin{bmatrix} a & c \\ \bar{c} & b \end{bmatrix}$$

这样可以得到:

$$\hat{H}(\omega)\hat{P}(i\omega) + \hat{P}^*(i\omega)\hat{H} = \begin{bmatrix} 0 & 10a + c \\ -10a - \bar{c} & 10(\bar{c} - c) \end{bmatrix}$$

我们取 $a=1, c=-10, \alpha=0$ 即可满足 (4.5.15). 取 b=200, K=201 有

$$\hat{H}(\omega) - K^{-1}I = \begin{bmatrix} \frac{200}{201} & -10\\ -10 & \frac{199}{200} \end{bmatrix} > 0, \quad KI - \hat{H}(\omega) = \begin{bmatrix} 200 & 10\\ 10 & 1 \end{bmatrix} > 0$$

这样就满足 (4.5.14), 最终得到的 $\hat{H}(\omega)$ 为

$$\hat{H}(\omega) = \begin{bmatrix} 1 & -10 \\ -10 & 200 \end{bmatrix}$$

HW 3.1.2 证明以下用于逼近方程

$$v_t + av_x = \nu v_{xx}$$

解的差分格式是无条件稳定的.

1.
$$u_k^{n+1} + \frac{R}{2}\delta_0 u_k^{n+1} - r\delta^2 u_k^{n+1} = u_k^n$$

2.
$$u_k^{n+1} + \frac{R}{4}\delta_0 u_k^{n+1} - \frac{r}{2}\delta^2 u_k^{n+1} = u_k^n - \frac{R}{4}\delta_0 u_k^n + \frac{r}{2}\delta^2 u_k^n$$

证明. 代入谱波解可以得到 $v_j^n = \frac{1}{\sqrt{2\pi}} \hat{v}^n(w) e^{iwx_j}$, 得到

$$\left[1 + iR\sin(wh) + 4r\sin^2\left(\frac{wh}{2}\right)\right]\hat{v}^{n+1}(w) = \hat{v}^n(w)$$

因此

$$\hat{Q} = \frac{1}{1 + iR\sin(wh) + 4r\sin^2(\frac{wh}{2})}$$
$$|\hat{Q}|^2 = \frac{1}{(1 + 4r\sin^2(\frac{wh}{2}))^2 + (R\sin(wh))^2} \le 1$$

无条件稳定.

补充作业: 试证: 若对于任意 ω , 存在常数 α , 使得 $\hat{P}(i\omega) + \hat{P}^*(i\omega) \leq 2\alpha I$; 则该偏微分方程组的初值问题 (1) 是 Well-Posed.

Part II

二维线性偏微分方程

Chapter 7

二维线性偏微分方程的初值问题

7.1 二维常系数对流方程的初值问题

考虑二维常系数对流方程的初值问题

$$\begin{cases} u_t + au_x + bu_y = 0, & (x, y) \in (-\infty, \infty) \times (-\infty, \infty), \ t > 0 \\ u(x, y, 0) = f(x, y), & (x, y) \in (-\infty, \infty) \times (-\infty, \infty) \end{cases}$$

其中 a,b 为常数, u(x,y,t), f(x,y) 对 x,y 分别为 2π 周期的周期函数.

方程性质

• 方程适定性: 代入 $u(x,y,t) = \frac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i}(kx + \omega_x x + \omega_y y)}$, 得到

$$k = -a\omega_x - b\omega_y \implies u(x, y, t) = \frac{1}{\sqrt{2\pi}} e^{i(-a\omega_x t - b\omega_y t + \omega_x x + \omega_y y)}$$

方程适定的条件为 $a,b \in \mathbb{R}$.

- 准确解为 u(x,y,t) = f(x-at,y-bt), 即沿 x 方向以速度 a 传播, 沿 y 方向以速度 b 传播.
- 准确解在 (x^*, y^*, t^*) 处的依赖区域为 $(x^* at^*, y^* bt^*)$.
- 特征线为直线

$$x(t) = x_0 + at$$
, $y(t) = y_0 + bt$.

网格剖分

在 x, y, t 方向均采用等距均匀剖分, 并且要满足稳定性条件

$$\Delta t = cfl \times \min(\Delta x, \Delta y).$$

有限差分格式

• 可以使用差商 ≈ 导数。如: FTBS 格式

$$v_{jk}^{n+1} = v_{jk}^{n} - \frac{a\Delta t}{\Delta x}(v_{j,k}^{n} - v_{j-1,k}^{n}) - \frac{b\Delta t}{\Delta y}(v_{j,k}^{n} - v_{j,k-1}^{n})$$

- 也可以使用前面针对一维问题采用的其他方法构造有限差分格式。如:
 - Lax-Friedrich 格式:

$$v_{jk}^{n+1} = \frac{1}{4} \left(v_{j-1,k}^n + v_{j+1,k}^n + v_{j,k-1}^n + v_{j,k+1}^n \right) - \frac{a\Delta t}{2\Delta x} \left(v_{j+1,k}^n - v_{j-1,k}^n \right) - \frac{b\Delta t}{2\Delta y} \left(v_{j,k+1}^n - v_{j,k-1}^n \right) - \frac{a\Delta t}{2\Delta x} \left(v_{j+1,k}^n - v_{j-1,k}^n \right) - \frac{b\Delta t}{2\Delta y} \left(v_{j,k+1}^n - v_{j,k-1}^n \right) - \frac{a\Delta t}{2\Delta x} \left(v_{j+1,k}^n - v_{j-1,k}^n \right) - \frac{b\Delta t}{2\Delta y} \left(v_{j,k+1}^n - v_{j,k-1}^n \right) - \frac{a\Delta t}{2\Delta x} \left(v_{j+1,k}^n - v_{j-1,k}^n \right) - \frac{b\Delta t}{2\Delta y} \left(v_{j,k+1}^n - v_{j,k-1}^n \right) - \frac{a\Delta t}{2\Delta x} \left(v_{j+1,k}^n - v_{j-1,k}^n \right) - \frac{b\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) - \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k}^n \right) + \frac{a\Delta t}{2\Delta y} \left(v_{j+1,k}^n - v_{j+1,k$$

- Lax-Wendroff 格式:

$$\begin{split} v_{jk}^{n+1} = & v_{jk}^n - \frac{a\Delta t}{2\Delta x}(v_{j+1,k}^n - v_{j-1,k}^n) - \frac{b\Delta t}{2\Delta y}(v_{j,k+1}^n - v_{j,k-1}^n) \\ & + \frac{a^2\Delta t^2}{2\Delta x^2}(v_{j+1,k}^n - 2v_{jk}^n + v_{j-1,k}^n) + \frac{b^2\Delta t^2}{2\Delta y^2}(v_{j,k+1}^n - 2v_{jk}^n + v_{j,k-1}^n) \\ & + \frac{ab\Delta t^2}{4\Delta x\Delta y}(v_{j+1,k+1}^n - v_{j-1,k+1}^n - v_{j+1,k-1}^n + v_{j-1,k-1}^n) \end{split}$$

• 积分方法:

积分区域取
$$[x_{j-1/2,j+1/2}] \times [y_{k-1/2,k+1/2}] \times [t_n,t_{n+1}]$$
:

$$\begin{split} & \int_{y_{k-1/2}}^{y_{k+1/2}} \int_{x_{j-1/2}}^{x_{j+1/2}} u(x,y,t_{n+1}) \, dx \, dy - \int_{y_{k-1/2}}^{y_{k+1/2}} \int_{x_{j-1/2}}^{x_{j+1/2}} u(x,y,t_n) \, dx \, dy \\ & + \int_{t_n}^{t_{n+1}} \int_{y_{k-1/2}}^{y_{k+1/2}} au(x_{j+1/2},y,t) - au(x_{j-1/2},y,t) \, dy \, dt \\ & + \int_{t_n}^{t_{n+1}} \int_{x_{j-1/2}}^{x_{j+1/2}} bu(x,y_{k+1/2},t) - bu(x,y_{k-1/2},t) \, dx \, dt = 0 \end{split}$$

• 可以得到:

$$v_{jk}^{n+1} = v_{jk}^n - \frac{a\Delta t}{\Delta x}(v_{j+1,k}^n - v_{j-1,k}^n) - \frac{b\Delta t}{\Delta y}(v_{j,k+1}^n - v_{j,k-1}^n)$$

或

$$v_{jk}^{n+1} = v_{jk}^{n} + \frac{a\Delta t}{\Delta x}(v_{j,k}^{n} - v_{j-1,k}^{n}) - \frac{b\Delta t}{\Delta y}(v_{j,k}^{n} - v_{j,k-1}^{n}) \quad (FTCS)$$

$$\Rightarrow v_{jk}^{n+1} = v_{jk}^n - \frac{a\Delta t}{\Delta x}(v_{j,k}^n - v_{j-1,k}^n) - \frac{b\Delta t}{\Delta y}(v_{j,k}^n - v_{j,k-1}^n) \quad (FTBS)$$

7.2 二维变系数对流方程的初值问题

7.3 二维常系数扩散方程的初值问题

Chapter 8

作业

CHAPTER 8. 作业 57

8.1 第八次书面作业

例 5.8.3 分析差分格式 (5.8.21)-(5.8.22) 的一致性和稳定性。

解答: 将 $u_{jk}^{n+1/2}$ 从方程 (5.8.21) 代入方程 (5.8.22),可以很容易看出差分格式 (5.8.21)-(5.8.22) 在 Δt 上是二阶准确的。一个更为复杂的计算(请记住,不需要考虑 Δt^3 和 Δt^4 阶的项)表明,该格式在 $\mathcal{O}(\Delta x^2) + \mathcal{O}(\Delta y^2)$ 上也是准确的。参见作业 HW5.8.5。(我们应该记住,这些计算应由计算机完成,而不是我们。)

为了分析差分格式 (5.8.21)-(5.8.22) 的稳定性, 我们对两个方程取离散傅里叶变换, 注意到

$$\hat{u}^{n+1} = \left(1 - iR_y \sin \eta - 2R_y^2 \sin^2 \frac{\eta}{2}\right) \hat{u}^{n+1/2}$$
(5.8.23)

$$= \left(1 - iR_y \sin \eta - 2R_y^2 \sin^2 \frac{\eta}{2}\right) \left(1 - iR_x \sin \xi - 2R_x^2 \sin^2 \frac{\xi}{2}\right) \hat{u}^n, \tag{5.8.24}$$

并使用一维 Lax-Wendroff 格式的分析来得出,当且仅当 $\max\{|R_x|,|R_y|\} \le 1$ 时, $|\rho(\xi,\eta)|^2$ 小于或等于 1。因此,差分格式 $(5.8.21)^-(5.8.22)$ 在 $\mathcal{O}(\Delta t^2) + \mathcal{O}(\Delta x^2) + \mathcal{O}(\Delta y^2)$ 阶上是准确的且条件稳定的,因此差分格式 $(5.8.21)^-(5.8.22)$ 是条件收敛的,准确阶为 $\mathcal{O}(\Delta t^2) + \mathcal{O}(\Delta x^2) + \mathcal{O}(\Delta y^2)$ 。

补充作业 1: 分析偏微分方程 $u_t + u_x - \nu_2 u_{xx} + \mu_3 u_{xxx} = 0$ 的耗散性、色散性.

解. 取谐波 $u(x,t) = e^{i(\omega x + kt)}$, 代入 PDE 得到

$$ik + i\omega - \nu_2(i\omega)^2 + \mu_3(i\omega)^3 = 0 \Longrightarrow k = -\omega + \mu_3\omega^3 + i\nu_2\omega^2 =: \alpha(\omega) + i\beta(\omega)$$

耗散性看 $\beta(\omega)$, 色散性看 $\alpha(\omega)/\omega$, 所以我们得出结论

- 当 ν₂ 大于零、等于零、小于零时, PDE 分别是具有耗散性的、没有耗散性的、逆耗散的.
- 当 μ_3 等于零、不等于零时, PDE 分别是无色散的、有色散的.

补充作业 2: 用两种方法分析偏微分方程 $u_t = u_{xx}$ 的 FTCS 格式的耗散性和色散性.

解法一. 由上一题可知 PDE 具有耗散性, 但是没有色散性. 接下来分析 FTCS 格式的性质

$$v_j^{n+1} = (1 - 2\frac{\Delta t}{\Delta x^2})v_j^n + \frac{\Delta t}{\Delta x^2}(v_{j+1}^n + v_{j-1}^n), \quad \lambda = 1 - 4\frac{\Delta t}{\Delta x^2}\sin^2\frac{\omega \Delta x}{2}, \quad \lambda_e = e^{-\omega^2 \Delta t}.$$

因为放大因子 λ 没有虚部, 所以 FTCS 格式无色散. 当 $\Delta t/\Delta x^2 \leqslant \frac{1}{2}$ 时, FTCS 格式是耗散的. 下面 我们比较偏微分方程的放大因子 λ_e 与 FTCS 格式的放大因子 λ 之间的关系, 泰勒展开得到

$$\lambda = 1 - \omega^2 \Delta t + \frac{\omega^4 \Delta x^2 \Delta t}{12} + O(\omega^6 \Delta x^4 \Delta t), \quad \lambda_e = 1 - \omega^2 \Delta t + \frac{\omega^4 \Delta t^2}{2} + O(\omega^6 \Delta t^3).$$

当 $\Delta t/\Delta x^2 < \frac{1}{6}$ 时, 数值逆耗散. 当 $\frac{1}{6} \leqslant \Delta t/\Delta x^2 \leqslant \frac{1}{2}$ 时, 数值正耗散. 方法无数值色散.

CHAPTER 8. 作业 58

解法二. 使用 MPDE 方法. 假设 u(x,t) 是与差分格式等价的 PDE 的精确解, 则有

$$0 = \frac{u_j^{n+1} - u_j^n}{\Delta t} - \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta x^2} = u_t + \frac{\Delta t}{2} u_{tt} + \frac{\Delta t^3}{6} u_{ttt} + \dots - u_{xx} - \frac{\Delta x^2}{12} u_{xxxx} - \frac{\Delta x^4}{360} u_{xxxxxx} + \dots$$

整理得

$$u_t - u_{xx} + \frac{\Delta t}{2} u_{tt} - \frac{\Delta x^2}{12} u_{xxxx} + \frac{\Delta t^3}{6} u_{ttt} - \frac{\Delta x^4}{360} u_{xxxxx} + \dots = 0$$
 (*)

对 (*) 式关于 t 求导得到

$$u_{tt} - u_{xxt} + \frac{\Delta t}{2} u_{ttt} - \frac{\Delta x^2}{12} u_{xxxxt} + \dots = 0$$

对(*)式关于 x 求导两次得到

$$u_{xxt} - u_{xxxx} + \frac{\Delta t}{2} u_{xxtt} - \frac{\Delta x^2}{12} u_{xxxxx} + \dots = 0$$

用这两个式子消去 u_{tt}, u_{xxt} 得到

$$u_t - u_{xx} + (\frac{\Delta t}{2} - \frac{\Delta x^2}{12})u_{xxxx} - \frac{\Delta t^2}{12}u_{ttt} - \frac{\Delta t^2}{4}u_{xxtt} + \frac{\Delta x^2 \Delta t}{24}u_{xxxxt} + (\frac{\Delta x^2 \Delta t}{24} - \frac{\Delta x^4}{360})u_{xxxxx} + \dots = 0$$

将方程的时间 t 的导数转化为空间 x 的导数的过程中, 不会出现关于 x 的奇数阶项, 因此色散关系中 k 的实部为零, 所以 FTCS 格式无色散. 由于原 PDE 也是无色散的, 因此无数值色散. 对于耗散性, 我们考虑最多与 Δt 或 Δx^2 同量级的量, 也就是上式的前三项, 代入谐波解得到

$$k = i(\omega^2 + \omega^4(\frac{\Delta t}{2} - \frac{\Delta x^2}{12}))$$

当 $0 < r \le \frac{1}{2}$ 时,FTCS 格式是耗散的。数值耗散需要与 PDE 比较,由 ω^4 的系数决定,当 $0 < r < \frac{1}{6}$ 时,数值逆耗散。当 $\frac{1}{6} \le r \le \frac{1}{2}$ 时,数值正耗散。