Big Data Computing Models Map-Reduce

What is Map-Reduce?

- **❖** Parallel Programming Models
 - ➤ Message passing
 - Independent tasks encapsulating local data, interact by exchanging messages
 - ➤ Shared memory
 - Tasks share a common address space and interact by reading and writing this space asynchronously
 - ➤ Data parallelization
 - Perform the same operations to a set of data
 - Also referred to as "Embarrassingly parallel"
- ❖ Map reduce is a form of data parallelization

What is Map-Reduce?

- ❖ Map-reduce makes parallel programming easier
 - Coarse grained data parallel computing
 - ➤ User only writes a mapper and a reducer
 - ➤ MapReduce system takes care of the rest
- ❖ Use functional programming model
 - > Function as an argument
 - ➤ Map/reduce (function (list))
 - Map (square (1 2 3 4 5)) = (1 4 9 16 25)
 - Reduce $(+(1\ 2\ 3\ 4\ 5)) = 15$

Example -- Word Count

❖ Map and reduce program

```
map (key, value):
    // key: document name; value: text of document
    for each word w in value: emit(w, 1)
reduce (key, values):
    // key: a word; values: the count of the word
    result = 0
    for each v in values: result += v
    emit in java mapreduce:
        setup(Context context);
    context.write (...);
```

- ➤ In a large document
 - Input to word count
 - Key: line number; value: text in the line

 $https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html\#Example:_WordCount_v2.0$

Map-Reduce Process

- ❖ Input
 - > A list of key/value pairs: list(key, val)
- ❖ User supplies two functions:
 - ightharpoonup Map-function (list(key, val)) \rightarrow list(key', val')
 - list(key', val') is a list of intermediate key-value pairs generated from mapping function
 - Original list and new list may not be in the same size
 - One key' may have many different values
 - \triangleright Reduce-function (list(key_i', val')) \rightarrow v_i, for all i
- *The execution framework handles everything else

- ❖ Master-Worker structure
 - ➤ MapReduce job is sent to the master node JobTracker
 - ▶ JobTracker
 - Coordinate the execution of the tasks
 - Distributes the mapper task to TaskTrackers
 - Starts the TaskTrackers with the tasks
 - Wait for TaskTrackers' results
 - » If some TaskTrakers have failed, redistribute the missed tasks
 - Determines reduce task allocation and sends TaskTrackers the tasks
 - » Give reducer the intermediate file locations and sizes to reducers
 - Wait for TaskTrackers' results
 - » If some TaskTrakers have failed, redistribute the missed tasks
 - Also periodically ping the TaskTrakers to keep track of their status

- ❖ Master-Worker structure
 - ➤ TaskTracker -- Map phase
 - Creates map task instances and runs them
 - Intermediate results are stored in a circular buffer in memory
 - When buffer is full, spill to local disk
 - Combiner combines intermediate results, sort them by key
 - Combiner mostly uses a hash function
 - Sends locations and sizes of intermediate files to the JobTracker
 - ➤ TaskTracker -- Reduce phase
 - Merger obtains intermediate results from mappers and merge them
 - Creates reduce task instances and runs them
 - Send the results to the JobTracker

- ❖ Master-Worker structure
 - > Final output
 - TaskTracker responds to job issuer about the completion of the task
 - Final output may go for next map-reduce task
 - In this case, programmer does not combine the output files into one
 - Simply passes the output files (same name) as input to another MapReduce call
 - Cannot have shuffling from reduce to next round map
 - ➤ Map-reduce input and output
 - Always files (or a nosql-DB) that are partitioned into blocks and distributed over multiple nodes

- Synchronization
 - > Reduce phase does not start till map phase is fully done
 - Choose to avoid complex issues in staring some reducers early
 - Use the idle workers to help speed up the remaining map phase
- ❖ When most subtasks (map or reduce) are done
 - > Slow workers significantly delay completion time
 - Bad disks w/ soft errors transfer data slowly
 - Worker failure
 - ➤ Use multiple workers to execute the remaining tasks to ensure completion
 - Anyway these workers are idle

- **❖** Fault tolerance
 - ➤ Always assign one subtask to three workers
 - Even if all replicas fail ⇒ No results are generated ⇒ freed-up workers will re-execute the task
 - During a massive failure, lost 1600/1800 nodes, task finished fine
 - ➤ Do not handle master failure at this point
- When tasks fail
 - ➤ Map/Reduce functions sometimes fail for particular inputs
 - The worker sends the problem to the master node
 - Include sequence number of record being processed
 - > If master sees two failures for the same record
 - Give up the subtask and stop all worker replicas for the same record

- ❖ Mini Reducer
 - ➤ Programmer may specify a "Combiner" function that does data merging on a single node
 - ➤ Typically, the same code is used to implement both the combiner and the reduce function
 - > Example
 - Word count: Compute the cumulative count at each node
 - In order for this to work, the reduce function should be commutative and associative

- ❖ Important performance booster
 - ➤ Compress the mapper output to reduce the communication cost during shuffling
 - Tradeoff between compression/decompression cost and communication cost
 - Hadoop offers compression option

Evolution of Map Reduce Frameworks

What's New in MapReduce?

- ❖ Data parallel computation
 - ➤ In 80s, MIT developed the Connection Machine
 - Also called the thinking machine
 - The corresponding parallel programming paradigm is called data parallel programming (or more generally, the SIMD programming model)
 - Map (instructions (list))
 - ➤ In 80s, Teradata and Gamma project developed a new parallel database paradigm
 - Partition database row-wise and distribute partitions to nodes
 - Perform database operations in parallel in a cluster
 - ➤ What is new in MapReduce?

SIMD Programming

Programming model

How is MapReduce different from SIMD

- ➤ Define the basic data types
 - Can be scalar data type, or data structures
- > Define a special array of a basic data type
 - The special array is distributed over the computing nodes
 - E.g., in connection machine, it is called "shape"
 - E.g., shape data[N], sqdata[N];
- Computation is instruction based
 - Computation in MapReduce is task based, more coarse-grained
 - E.g., Map: sqdata[i] = square (data[i]);
 - E.g., Reduce: sum = +sqdata[i];
- Communication is specified based on array indices
 - Communication in MapReduce is specified by keys
 - E.g., data[i] = data[j] + data[j+1]

Issues in Hadoop -- No Loop

- ❖ MapReduce does not support iterative computing
 - ➤ And, fixed M-R-M-R flow (how about M-R-R-M)
- ❖ Multiple stages of MapReduce
 - ➤ User has to match I/O data files
 - Create two JobConf objects, first job has the normal input, but output to temp, for example, and second job has temp as input and produces the normal output file
 - > Or define job dependencies through jobControl object
 - Job job1 = new Job(...); Job job2 = new Job(...);
 - JobControl jbcntrl = new JobControl("jbcntrl"); jbcntrl.addJob(job1); jbcntrl.addJob(job2); job2.addDependingJob(job1);
 - jbcntrl.run();

Loop Example -- Page Ranking

- ❖ A common task for Google
- Definition
 - Given a page x, with inlink from pages $t_1, t_2, ..., t_n$
 - \blacksquare C(t_i): out degree of page t_i
 - **α**: probability of random jump
 - *N*: the total number of nodes in the graph

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

Example -- Page Ranking

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1-\alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

Iteration i

$$n_1(0.2) = 0.1$$

$$n_2(0.166)$$

$$n_3(0.166)$$

$$n_4(0.2)$$

Iteration i+1

$$n_1(0.066) = 0.033$$

$$0.033$$

$$0.033$$

$$0.033$$

$$0.033$$

$$0.033$$

$$0.0466$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

$$0.166$$

Page Ranking in Hadoop

- ❖ Page rank computation
 - \triangleright Stage 0: Process each page x
 - Map phase:
 - Initiate x's page rank, x.rank, to 1
 - Process page content, compute x.outlist (the list of x's outgoing links), and compute x.#links (the total number of outgoing links in x)
 - Compute $\frac{\text{credit}}{\text{credit}} = x.\text{rank} / x.\#\text{links}$
 - For each *url* in *x*.outlist, create an item < key=*url*, val=credit>
 - Reduce phase:
 - Each reducer will receive <key=y, value=credit> from all its inlinks
 - Compute the sum of credits and assign it to y.rank
 - Note: After reduce, there is no shuffle and exchange
 - v.rank is the output and is to be used in the next iteration

Page Ranking in Hadoop

- ❖ Page rank computation
 - ➤ Stage *i*:
 - Map phase: (only distribute each rank received)
 - Need x.rank, x.outlist and x.#links
 - » x.rank is from the previous round
 - » x.outlist and x.#links has been generated in the first round
 - Compute credit = x.rank / x.#links
 - For each *url* in *x*.outlist, create an item <key=*url*, val=credit>
 - Reduce phase
 - Same as Stage 0
 - > Termination check
 - No change of page rank for all pages

Issues in Hadoop -- No Loop

- ❖ MapReduce does not support iterative computing
 - User has to do it outside MapReduce ⇒ Inefficient solution
- Haloop MapReduce
 - > Provide new constructs for expressing loops
 - $D_{i+1} = f(D_i, L)$
 - D_{i+1} : reducer output of the *i*-th iteration, which will be the mapper input of the (i+1)-th iteration

Why inefficient?

- L: invariant data, does not change over the iterations
 - In Hadoop, they were in memory and would be gone after one MR
- > Termination
 - Programmer defines the termination condition
 - E.g., $D_{i+1} = D_i$, or $|D_{i+1} D_i| < \epsilon$, or reach a certain bound, or ...

Issues in Hadoop -- No Loop

Haloop MapReduce

- > Workers maintain cache and local files
 - Cache the reducer outputs (D_{i-1}) , which will be the input of the mapper in the next iteration What are these in the page rank program?
 - Cache the invariant data (*L*) in the first iteration to allow reusing in later iterations What are these in the page rank program?
 - Perform local termination evaluation
 - Master sends the evaluation criteria with the reduce tasks
 - Send the evaluation result to Master

> Master

- Repeats the map-reduce program
- Coordinate the check of termination condition
 - Master acts as the single node reducer

Issues in Hadoop -- Data Placement

- ❖ Data placement problem
 - > Sample problem: Join
 - Get the list of names and emails of customers with transaction \$ amount > \$1000 (for targeted customer retention)
 - Customer info table
 - » Sorted by C.custId
 - Sales transaction table
 - » Sorted by transaction time
 - » Sorted by trans
 - > HDFS
 - Does not allow users to specify how the input files should be partitioned and placed
 - ➤ Improved systems: Hadoop++, Liah, CoHadoop, ...

SELECT C.name, C.email FROM Customers C, Sales S WHERE C.custId = S.custId AND S.amount > 1000 AND S.date BETWEEN "12/1/15" AND "12/25/15";

Issues in Hadoop -- Data Placement

- Hadoop
 - ➤ Data are partitioned according to the original input file order and placed on multiple nodes at random
 - Need to first perform MapReduce to align the keys in the two files

SELECT C.name, C.email FROM Customers C, Sales S WHERE C.custId = S.custId AND S.amount > 1000 AND S.date BETWEEN "12/1/15" AND "12/25/15";

Dataset B

O Different join keys

Issues in Hadoop -- Data Placement

- ❖ Hadoop++
 - ➤ Data are pre-partitioned into splits
 - User can determine which key to use for pre-partitioning (e.g. custId in the example)
 - A Trojan index describes each split
 - Tree based indexing of splits (key range, #records, ...)
 - Stored on disk, allow easy cache in memory
 - Not available in Hadoop

After prepartition: Data with the same keys are placed in the same split (e.g., custID given by user)

FROM Customers C, Sales S WHERE C.custId = S.custId AND S.amount > 1000 AND S.date BETWEEN "12/1/15" AND "12/25/15";

SELECT C.name, C.email

Issues in Hadoop -- Data Placement

- ❖ Hadoop++
 - ➤ For PageRank example
 - Many links from a page are in the same domain
 - ⇒ Partition the links by domain name instead of by the entire url
 - \Rightarrow Can greatly reduce shuffling cost for each iteration

Issues in Hadoop -- Data Placement

- CoHadoop
 - ➤ Data are pre-partitioned based on the key (like Hadoop++)
 - ➤ Also support co-location for multiple datasets
 - Use a locator group concept
 - A data object can have a locator number
 - Multiple data objects with the same locator number are in one locator group and are co-located (blocks with the same key range are placed on the same node)

Issues in Hadoop

- Minor issue
 - ➤ Does not perform well on heterogeneous clusters
 - Hadoop attempts to distribute loads evenly
 - E.g., divide a data file evenly across the nodes
 - If the physical nodes have different computing capacity
 - The scheduler will reschedule the tasks for slow nodes to fast nodes
 - Require data movement from slow nodes to fast nodes
 - If partitioning of the data can go by the computing capacity
 - All nodes will progress in a similar rate
 - Easy to fix
 - E.g., using virtual nodes to make the system homogeneous
 - > This can also be considered as a data placement problem

Issues in Hadoop

- *Require detailed programming
 - ➤ Does not support SQL ⇒ Need detailed coding for some standard DB operations
 - E.g., select, join, group-by, ...
 - Complaints mainly from the DB community
 - **Solution**
 - Provide standard DB operations on top of MapReduce
 - E.g., Hive, Pig, Shark, ...
 - Hive (HQL), originally by Facebook, then shifted to Apache
 - Pig (Pig Latin), originally by Yahoo, then shifted to Apache
 - Shark: Hive on Spark

Pig

- Pig: http://incubator.apache.org/pig
 - Developed by Yahoo!, now open source
 - ➤ Use Pig Latin, a dataflow language
 - Why not SQL?
 - Too complex to achieve efficient large data processing
 - Eliminate the non-common constructs, suitable for almost all commonly used queries
 - > Support a fully-nestable data model
 - More natural and flexible than relational DB's flat tuples
 - Avoids expensive joins as much as possible
 - E.g., (yahoo , { finance email news } Similar to the data model of some NoSQL DB systems

Hadoop Variants So Far

- ❖ Hive, Pig
 - ➤ Provide a high level language ⇒ Easier to program
 - ➤ Provide tools to transform the high level code to map reduce code
 - ➤ These systems are built on top of Hadoop ⇒ Still have the same problems as in Hadoop
- ❖ Haloop, Hadoop++
 - ➤ Manipulate data placement
 - > Still on top of Hadoop
- ❖ How about completely change Hadoop
 - > Spark

Spark

- Developed
 - > By Matei Zaharia at Berkely as his PhD work
 - > Then open sourced by Apache
- ❖ Major concept
 - > RDD: Resilient Distributed Dataset
 - In Hadoop, datasets are stored as files on disk (HDFS)
 - Input/output datasets for a job have to be disk files
 - Data used crossed jobs are subsequently disk files
 - In Spark, each dataset is represented as an RDD
 - A Spark operation takes input RDDs and create output RDDs
 - RDD is in memory, distributed over multiple nodes
 - Persistent RDDs also have corresponding HDFS copies on disk
 - » Asynchronously written to disk

Spark RDD

- ❖ Persist RDD
 - Call "persist" or "cache" methods to mark the RDD
 - By default, the RDD will be removed after the workflow
 - Can also call "unpersist" method to remove it
 - The persist RDD will be retained in memory
 - \blacksquare \Rightarrow Allows future operations to reuse the RDD
 - ⇒ Much faster than disk accesses
 - \Rightarrow Even if no loop support \Rightarrow No performance problem
 - If memory is abundant, 30-100 folds of speedup
 - Can choose different storage levels
 - (MEMORY_ONLY, DISK_ONLY, MEMORY_AND_DISK, etc.)
 - MEMORY AND DISK
 - Move some RDD partitions to disk when memory is full
 - Use LRU policy

Spark RDD

- RDD serialization
 - ➤ Hadoop persistent objects are writable
 - Has de/serialization costs
 - > RDD avoids serialization (in memory)
 - Can be serialized as desired
 - Spark supports both java and kryo serialization (kryo does not support all data types, but is much faster)
- ❖ No replication
 - > Spark gives up RDD replication
 - RDD is immutable once created, read only
 - RDD uses logging to achieve resilience

Spark RDD

- *RDD resilience
 - ➤ No replication in RDD
 - Replication is not scalable in both computation performance and storage requirement (persistent RDDs are stored in HDFS)
 - Lineage: log the operations performed on RDDs
 - Represented by DAG
 - Nodes in DAG: RDDs; Edges in DAG: Spark operations
 - ➤ Data recovery: RDD + lineage
 - A lost partition of an RDD can be recomputed automatically
 - Original RDD would have been an HDFS file
 - Operations has to be coarse grained to avoid logging overhead
 - ➤ Checkpoint RDDs
 - Prevent from having long lineage chains

Spark Operations

- **❖** Map-Reduce operations
 - ➤ map (func)
 - > reduce(func)
 - > collect()
 - Similar to reduce, with one reducer
 - Returns all the elements of the dataset at the driver (master)
 - > count()
 - Not available in Hadoop
 - Returns the number of elements in the dataset

Spark Operations

- ❖ Add some DB operations
 - > join(another-dataset)
 - ➤ groupby(column)
 - ➤ filter(func)
 - Similar to select (new dataset is a subset of source dataset)
 - func defines the selection criteria (func returns true/false)
- ❖ Add some Set operations
 - > union(another-dataset)
 - ➤ intersection(another-dataset)
 - distinct()
 - Returns a new dataset that contains the distinct elements of the source dataset (remove duplicates)

Spark Operations

- * Task
 - ➤ Unit operation
- **❖** Stage:
 - A sequence of tasks that does not have shuffle and exchange in between (e.g., map, filter, union, intersection)
 - ➤ Does not enforce synchronous operations
 - Workers can run asynchronously for operations in a stage
 - ➤ Otherwise, same as Hadoop, synchronous execution

Spark Operations

- ❖ In Hadoop
- N = #HDFS blocks for the dataset; M = #keys from mapper
- N mappers, M reducers, C cores
- ➤ Output of each mapper is sorted and divided into M objects
- ➤ There are N*M objects to be shuffled
- ❖ In Spark
 - ➤ Initially, the same as Hadoop
 - Later: Output of mappers on the same core are merged
 - There are only C*M objects to be shuffled
 - This optimization is hardware dependent, but does not burden the user (since shuffle phase is anyway hidden from the user)
 - Note: Mini combiner in Hadoop is different, only merge data entries generated from the same mapper

Spark Data Placement

- RDD partitioning
 - ➤ Default: by hashing (HashPartitioner)
 - ➤ User can define data partitioning and co-location
- Partitioner object
 - Can specify the partition rules
 - Similar to Hadoop++
 - Each RDD can specify an optional Partitioner object
 - Two RDDs share the same Partitioner are co-located
 - Similar to locator in CoHadoop
 - Partitioner does not have to have partition rules, just for co-location

Spark

- ❖ Cluster architecture is the same as Hadoop
 - ➤ Driver = Master in Hadoop
 - Defines and invokes actions on RDDs
 - Tracks the RDDs' lineage
 - ➤ Workers
 - Store RDD partitions
 - Perform RDD transformations

Spark

- ❖ Difference from Hadoop
 - > Storage: Spark has in-memory store
 - Spark uses in-memory persistent storage
 - Also have copies on HDFS for persistent RDDs
 - ➤ No RDD replication
 - Resilience is via lineage logging
 - Computation: Spark has a more flexible model
 - Support loop, and can have any M-R combinations
 - Provide more operators, rather than just map and reduce
 - Support co-location and placement specification
 - ➤ Overall
 - ⇒ Fix many problems in Hadoop
 - ⇒ Offer the RDD solution ⇒ Unique in MapReduce evolution

Spark Performance Page rank example Links Ranks Links: RDD indexed by url (url, neighbors) (url, rank) ■ Value: outgoing links **↓**↓ join > Ranks: RDD indexed by url Contribs ■ Value: page ranking reduce > Computation requires Ranks, repeated join of Links+Ranks **↓**↓ join Contribs, 150 reduce 100 Ranks, 50 Hadoop Basic Spark with Spark co-location

References

- MapReduce
 - ➤ MapReduce: Simplified data processing on large clusters
 - ➤ Parallel data processing with MapReduce: A survey
- Improvements
 - ➤ HaLoop: Efficient iterative data processing on large clusters
 - ➤ CoHadoop: Flexible Data Placement and Its Exploitation in Hadoop
 - ➤ Building a highlevel dataflow system on top of MapReduce: The Pig experience
 - ➤ Hive: A warehousing solution over a MapReduce framework
- Spark
 - > Spark: Cluster computing with working sets
 - ➤ Resilient distributed datasets: A fault-tolerant abstraction for inmemory cluster computing