

MediCar – How vehicles can navigate around using LLMs

1

Agenda

Milestone 1 Remote

Milestone 2 Onsite Cluj

Milestone 3 Onsite Mannheim

Overview Project Result

Next Steps

Research Goal 1: Handle Incidents

Can LLMs **simulate** the **impact** of **incidents** on routing graphs?

Research Goal 2: Prioritize Goods

Can LLMs be used for solving **routing** problems across **heterogeneous goods?**

Transport logistics platform for autonomous vehicles on clinic premises

Handling of requirements, time-sensitivity, incidents

Routing strategies + integration of LLMs

Simulation environment – University Hospital in Freiburg

Milestones

Milestone 1

Software architecture

NetworkX Graph

Software Architecture

NetworkX Graph

Milestone 2

Routing Algorithms

Ranking	Algorithm	Total Cost
1	A*	27,461.84
2	Dijkstra	27,461.84
3	Bellman-Ford	27,670.57

A* is the most efficient algorithm.

LLM - Few-Shot / Zero-Shot

Llama @ DWS

- Meta-model
- Open-source
- Lower latency on uniserver
- Improvement in performance

OpenAl Zero-Shot

- OpenAl model
- Relies on pre-existing knowledge and the given context
- > Task-diverse
- A small number of tokens is used

OpenAl Few-Shot

- OpenAl model
- Relies on the given context and a few examples of expected output to certain inputs
- More fine-tuned for certain tasks
- Larger number of tokens is used

Evaluation metrics for LLM

Goal: Increase Accuracy!

Usable Edges

Dataset:

112 events on edges:52 true, 60 false cases

Metrics:

- Accuracy
- Precision, Recall
- F1 score
- ROC AUC

Dynamic Edge Weights

Dataset (length dependent):

112 events on edges:43 true, 69 false cases

Metrics:

- Accuracy
- Precision, Recall
- F1 score
- ROC AUC

Geographic Position

Dataset:

• 10 events on nodes

Metrics:

- LLM Answers/ Explainable Results
- Accuracy
- Hallucination
 Coincidences

Function Calling

Dataset (1 node vs multiple nodes):

20 events on nodes:10 true, 10 false cases

Metrics:

Accuracy

Plotly Dash User Interface

MQTT Event Channel

Milestone 3

Dynamic Edge Weights

	Choose Model	Decide about impact- type	Decide about impact- value	Change Graph	Reroute Vehicles
Component	User	LLM #1	LLM #2	NetworkX	A*
Action	Choose model that supports dynamic edges (e.g., GPT-3.5 Few-shot Dynamic).	Let LLM decide whether the incident impacts the entire length of the edge or a point in between.	about the severity of the	Update weights from impacted edges in the graph. Publish changes.	Identify vehicles that need to be rerouted and broadcast a new updated route.

Geographic Node Representation

Action: "There is a radiation leak at *Klinik für Strahlenheilkunde*." **Context:** List of nodes with (x,y)-coordinates

Output ~

The radiation leak at Klinik für Strahlenheilkunde will directly affect the following nodes:

1. Klinik für Frauenheilkunde

Explanation: Close proximity to Klinik für Strahlenheilkunde, likely to experience increased traffic due to emergency response or evacuation procedures.

2. Dialysestation

Explanation: Close proximity to Klinik für Strahlenheilkunde, likely to experience increased traffic due to emergency response or evacuation procedures.

Geographic Node Representation

1) Named Nodes & Temp = 0

Metric	LLM / Ground Truth	Accuracy
Mean	2.64	0.4533
Min	0.6	0.2
Max	5	0.7333

2) Renamed Nodes & Temp = 0

Metric	LLM / Ground Truth	Accuracy
Mean	0.99	0.6667
Min	0.2	0.2
Max	2	0.8667

3) Hallucination Test

Function Calling

1 Instruct the LLM to determine if the event impacts multiple nodes or only the given one.

2 Define function to assess the impact.

function_call = auto

4 Evaluate the answers.

Project Results

Can Large Language Models simulate the impact of incidents on routing graphs?

1) Usable Edges

Ranking	Model	Accuracy
1	GPT 3.5 Few Shot	0.9151
2	GPT 3.5 Zero Shot	0.8393
3	Llama 2 Zero Shot	0.6607
4	Llama 2 Few Shot	0.5179

2) **Dynamic Edge Weights**

Ranking	Model	Accuracy
1	GPT 3.5 Few Shot	0.8428

3) Geographic Position

Ranking	Model	Accuracy
1	GPT 3.5 Zero Shot	0.6667

4) Function Calling

Ranking	Model	Accuracy
1	GPT 3.5 Zero Shot	0.9000

NEXT STEPS

Our path towards the final presentation

Research Goals **Handle Incidents Prioritize Goods Final Steps** Optimize Function Calling to Add **new LLM** to rank orders based Structure results Next steps improve accuracy on goods Finalize documentation **Include Edges** as Input to Function Serve high rank high-priority Wrap up findings orders first Calling Rational Optimize overall accuracy of Prefer high-stakes goods in case **Ensure reproducibility** incident detection of vehicle shortages and project impact

Thank You For Your Attention!

And This International Team Project!

