

Bibliografia básica:

Arango HG. Bioestatística: teórica e computacional. 3ªed. Rio de Janeiro: Guanabara Koogan; 2011.

SPIEGEL, Murray Ralph; FARIA, Alfredo Alves De Probabilidade e estatística. São Paulo, SP: McGraw-Hill, 1978.

Histograma

- Adequado para ilustrar o comportamento de valores agrupados em classes.
- É um gráfico de colunas composto por vários retângulos adjacentes, representando a tabela de frequência.
- As classes são colocadas no eixo horizontal e as frequências no eixo vertical.
- Número de classes ajustável, tal como vimos anteriormente.

DADOS QUANTITATIVOS DISCRETOS

A tabela abaixo apresenta a altura, em cm, dos enfermeiros da UTI do Hospital de Pouso Alegre (2014).

172	168	180	195	169	164	160	162	180	171
165	168	166	175	178	168	170	159	160	170

Faça o histograma

OBS: Dados fictícios

Tabela de frequências.

Tabela 2: altura, em cm, dos enfermeiros da UTI do Hospital de Pouso Alegre, 2014.

Altura	fa	fA	fr	fR
157-164	5	5	25%	25%
165-172	10	15	50%	75%
173-180	4	19	20%	95%
181-188	-	19	-	95%
189-196	1	20	5%	100%
Total	20	-	100%	-

Histograma.

Figura 2: altura, em cm, dos enfermeiros da UTI do Hospital de Pouso Alegre, 2014.

Histograma.

Figura 2: altura, em cm, dos enfermeiros da UTI do Hospital de Pouso Alegre, 2014.

É HORA DE PRATICAR!

É HORA DE PRATICAR EM CASA!

Gere um Histograma das alturas, pesos e idades.

Organização Gráfica dos Dados

Existe uma grande variedade de gráficos, os mais comuns, que constam da maior parte dos programas computacionais gráficos de uso doméstico são:

- Gráfico circular, tipo torta, pizza ou *pie*;
- Gráfico de barras ou bar line;
- Histograma;
- Gráfico de linhas;
- Gráfico do tipo diagrama de caixas, ou box plot;
- Gráfico de ramos e folhas, ou stem-and-leaf;
- Gráfico de dispersão.

Diagrama de Barras

- Usado para apresentar variáveis qualitativas e quantitativas discretas;
- As barras do diagrama podem ser verticais ou horizontais;
- Variáveis qualitativas ilustrar comparações entre categorias;
- Variáveis quantitativas barras do diagrama devem ser verticais.

EXEMPLO 6: DADOS QUALITATIVOS

A tabela abaixo mostra a procedência dos técnicos de manutenção do hospital de Petrópolis. A coleta de dados foi realizada em 2014.

Tabela 1: Procedência dos técnicos do hospital de Petrópolis, 2014

Procedência	fa	fA	fr	fR
BA	2	2	0,04	0,04
GO	1	3	0,02	0,06
MG	21	24	0,42	0,48
MS	2	26	0,04	0,52
MT	1	27	0,02	0,54
PR	1	28	0,02	0,56
SP	22	50	0,44	1
Total	50	-	1	-

O gráfico de barras verticais é uma boa opção para dados qualitativos.

Figura 1: Procedência dos técnicos do hospital de Petrópolis, 2014

É HORA DE PRATICAR EM CASA!

Gere um gráfico de barras verticais (colunas) que relacione o tipo sanguíneo com a frequência absoluta (fa).

Gere um gráfico de barras verticais (colunas) que relacione o tipo de fumo com a frequência absoluta (fa).

Gráfico de Setores

- Usado para representar variáveis qualitativas;
- Cada categoria corresponderá a uma divisão ou a um setor de um círculo;
- Geralmente utilizado quando se pretende comparar o total de cada categoria com o conjunto total;
- Neste tipo de gráfico, um círculo de raio qualquer vai representar 100% dos dados (360º).

Baseado na tabela abaixo, construa o gráfico de setores do consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira em 2014.

Tabela de consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira, 2014

Líquidos	fa	fA	fr	fR
Água	24	24	0,5000	0,5000
Nada	17	41	0,3542	0,8542
Refrigerante	7	48	0,1458	1,0000
	48	-	1,0000	-

Baseado na tabela abaixo, construa o gráfico de setores do consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira em 2014

Tabela de consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira, 2014							
Líquido	fa	fA	fr	fR			
Água	24	24	50%	50%			
Nada	17	41	35%	85%			
Refrigerante	7	48	15%	100%			
Total	48	-	100%	-			

$$\begin{array}{ccc}
1 & \rightarrow 360^{\circ} \\
0,5 & \rightarrow \theta
\end{array}$$

$$\theta = \frac{0.5 \times 360^{\circ}}{1}$$

$$\theta = 180^{\circ}$$

Baseado na tabela abaixo, construa o gráfico de setores do consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira em 2014.

Tabela de consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira, 2014								
Líquido	fa	fA	fr	fR				
Água	24	24	50%	50%				
Nada	17	41	35%	85%				
Refrigerante	7	48	15%	100 %				
Total	48	-	100%	-				

Figura 1 - consumo de líquidos durante as refeições dos alunos da Escola Manoel Moreira, 2014

 $1 \rightarrow 360^{\circ}$

 $0,5 \rightarrow 180^{\circ}$

 $0,3542 \rightarrow 128^{\circ}$

 $0,1458 \rightarrow 52^{\circ}$

É HORA DE PRATICAR EM CASA!

Gere um gráfico de pizza que apresente as categorias de cada tipo sanguíneo em setores.

Diagrama de Dispersão

- É a melhor maneira de visualizar o relacionamento entre duas variáveis;
- A representação gráfica é feita no mesmo sistema de coordenadas, em que uma das variáveis é colocada no eixo x e outra no eixo y;
- O gráfico de dispersão é utilizado para interpretar o relacionamento entre duas variáveis (direção, forma e intensidade do relacionamento).

EXEMPLO 8 - PESO (KG) EM FUNÇÃO DA ALTURA(M) DE UM GRUPO DE 85 INDIVÍDUOS

Eu tenho uma correlação representada pela ligação entre duas variáveis: altura e peso. À medida que a altura aumenta, o peso também aumenta.

Obviamente, eu tenho casos extremos: pessoas baixas com mais peso e, pessoas altas com menos peso.

EXEMPLO 8 - PESO (KG) EM FUNÇÃO DA ALTURA(M) DE UM GRUPO DE 85 INDIVÍDUOS

Observe que existe uma concentração de pontos próxima à reta.

Através da regressão linear, foi descoberta essa reta. Essa reta representa todos os pontos do gráfico de dispersão ("bolinhas") com o menor erro possível. Existe uma correlação positiva (de 0 a 1), que é de 0.67, ou seja, altura aumentou, peso aumentou.

É HORA DE PRATICAR EM CASA!

Gere um gráfico de dispersão que relacione altura x peso.

EXEMPLO 8 - PESO (KG) EM FUNÇÃO DA ALTURA(M) DE UM GRUPO DE 36 HOMENS

EXEMPLO 8 - PESO (KG) EM FUNÇÃO DA ALTURA(M) DE UM GRUPO DE 49 MULHERES

Observe que a distribuição dos pontos é bastante homogênea em toda a área do gráfico. Isso quer dizer que não existe uma correlação entre a variável x e a variável y, visto que não existe uma concentração de pontos em determinada região do gráfico. Portanto, x e y são variáveis independentes, sem dependência entre si.

EXEMPLO 10 - É HORA DE PRATICAR EM 1 | X | Excel : : : : : :

Segundo especialistas, a durabilidade de uma bateria, em média, é de 2 a 3 anos, mas pode variar conforme os cuidados do proprietário. Os dados a seguir (Tabela 1) especifica a 'vida útil' de 40 baterias de carros similares, registrada até o décimo de um ano. O teste simula a utilização da bateria, acelerando seu desgaste de modo a criar uma réplica da simulação real. As baterias têm a garantia de três anos. Os resultados da durabilidade são apresentados a seguir:

Tabela 1. Vida útil das baterias de carro.

							2,6			
3,1	3,3	3,8	3,1	4,7	3,7	2,5	4,3	3,4	3,6	
2,9	3,3	3,9	3,1	3,3	3,1	3,7	4,4	3,2	4,1	
1,9	3,4	4,7	3,8	3,2	2,6	3,9	3,0	4,2	3,5	

Construa um diagrama de ramos e folhas Construa uma tabela de frequências com 6 classes Represente o histograma

Recursos Computacionais

Alguns dos mais comuns disponíveis atualmente são:

- Matlab;
- Microsoft Excel;
- Microsoft Graph;
- CorelDraw Graphic;
- STATISTICA;
- SPSS;
- MINITAB;
- BioEstat.

Rosimara Salgado

Professora Coordenadora do NEaD

rosimara@inatel.br

