ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Assigned Date: Fourth Week Due Date: First class of 5th week

P2. a) To implement the function using only NAND gates, we can first write the canonical SOP expression for the function. Then by drawing its K-map, we can see that this SOP is already the simplest one. By using De Morgan's theorem to replace the ANDs and OR by NANDs and by implementing the NOT gates by NAND gates, we can obtain the following circuit:

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Assigned Date: Fourth Week Due Date: First class of 5th week

b) To implement the function using only NOR gates, we can first write the canonical POS expression for the function. Then by drawing its K-map, we can see that this POS is already the simplest one. By using De Morgan's theorem to replace the ORs and AND by NORs and by implementing the NOT gates by NOR gates, we can obtain the following circuit:

P3. a)

$$\begin{array}{c|cccc}
a & 0 & 1 \\
\hline
1 & 1 \\
\end{array}$$

$$f = 1$$

b) No simplification

$$G(a,b)=a'b+ab'$$

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Assigned Date: Fourth Week Due Date: First class of 5th week

c)

ab						
c \	00	01	11	10		
0	1		1			
1		1		1		

$$f = \bar{a} \bar{b} \bar{c} + \bar{a}bc + a\bar{b}c + ab\bar{c}$$

d)

$$H(A,B,C) = A'C+AB'+AC'$$

 $H(A,B,C)=A'C+B'C+AC'$

e)

$$F = C' + A'D' + B'D'$$

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Assigned Date: Fourth Week Due Date: First class of 5th week

f)

$$f = ab\overline{c} + a\overline{b}c + \overline{b}\overline{c}d + bcd$$

P4. a)

b)

$$F=c+a'b$$

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Assigned Date: Fourth Week Due Date: First class of 5th week

c)

$$F = b'd' + ab + ac' + bc'd$$

P5. (a) The truth table:

X1	X0	Y1	Y0	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

(b) By K-map, the simplest POS expression is

Cpr E 281 HW04 SOLUTION ELECTRICAL AND COMPUTER ENGINEERING

IOWA STATE UNIVERSITY

Assigned Date: Fourth Week Due Date: First class of 5th week

$$f = (x_1 + y_1').(x_1' + y_1).(x_0 + y_0').(x_0' + y_0).$$

P6. (a) f = abd + bcd + acd + abc

ab				
cd	00	01	11	10
00 01	0	0	0	0
01	0	0	1	0
11	0			П
10	0	0	1	0

(b) f = (a+b).(c+d).(a+c).(a+d).(b+c).(b+d)

(c) For the expression in part (b), Cost = 21 (4 AND, 1 OR, 16 inputs). For the expression in part (c), Cost = 25 (6 OR, 1 AND, 18 inputs)