Sterownik ParaTNC

Instrukcja Obsługi, Instalacji i Napraw

Ważna dla wersji PCB:

C oraz C+

Ważna dla wersji oprogramowania: DF03

Mateusz Lubecki

Bielsko – Biała 2019, 2020

1. Wstęp

ParaTNC jest uniwersalnym sterownikiem stacji pracującej w systemie APRS (Automatic Packet Reporting System). W zależności od konfiguracji oprogramowania umożliwia pracę w jednym lub wielu z niżej wymienionych trybów:

- Modem TNC komunikujący się z komputerem PC przy użyciu protokołu KISS
- Retransmiter (digipeater) pakietów APRS ze ścieżka WIDE1-1
- Stacja pogodowa
- Telemetria systemów fotowoltaicznych Victron z protokołem VE.Direct

Sterownik został skonstruowany z myślą o pracy w środowisku obfitym w zakłócenia spowodowane przez silne pola wielkiej częstotliwości, wyładowania atmosferyczne i inne przejawy elektryczności statycznej. Konstrukcja obwodów elektronicznych sterownika zapewnia separację galwaniczną oraz tłumienie szkodliwych przepięć gdzie tylko jest to możliwe z punktu widzenia kosztów, praktyczności a przede wszystkim ograniczeń technicznych narzuconych przez przesyłane sygnały. Separacja mas i sygnałów dzieli sterownik ParaTNC na trzy obszary:

- Masa mikrokontrolera, zasilacza i układów pomocniczych.
- Masa radiotelefonu
- Masa anemometru, magistrali RS 485 oraz One Wire (termometr)

Sterownik ma również możliwość opcjonalnym pracy z wbudowanym układem nadawczo / odbiorczym Radiometrix BiM1H, będącym kompletnym, jednokanałowym radiotelefonem VHF o mocy pół wata (27dBm / 500mW). W tym przypadku masa radiotelefonu i czujników pogodowych musi zostać złączona przy pomocy zworki (rezystora zero omów) R42, znajdującym się na dolnej warstwie PCB w pobliżu gniazda DB-9.

Modem KISS umożliwia odbieranie i wysyłanie pakietów (ramek) APRS z podłączonego po porcie szeregowym komputera, bądź jakiegokolwiek innego urządzenia wspierającego ten protokół. Port szeregowy pracuje na standardowej prędkości 9600bps w typowej konfiguracji 8N1. Tryb KISS jest aktywny automatycznie po załączeniu zasilania i nie wymaga wysyłania żadnych poleceń inicjujących.

W chwili obecnej konfiguracja oprogramowania ParaTNC odbywa się na etapie jego kompilacji przez edycję pliku nagłówkowego 'station_config.h' zawierającego wszystkie parametry konfiguracyjne. Skompilowane oprogramowanie można wgrać do sterownika przy pomocy fabrycznego bootloadera i portu szeregowego RS232. Szczegółowy opis kompilacji a następnie ładowania oprogramowania sterownika jest przedstawiony w dalszej części instrukcji, w rozdziale.

2. Parametry charakterystyczne

Napięcie Zasilania: 11½ do 14V prądu stałego z uziemionym minusem

Pobór prądu:

- Bez załączonych czujników pogodowych: 30mA

Z załączonymi czujnikami pogodowymi: 110mA

Prędkość transmisji w kanale radiowym: 1200 bitów na sekundę

Modulacja używana w kanale radiowym: AFSK (zgodna z Bell 202)

Maksymalny rozmiar jednej ramki (pakietu) APRS: 512 bajtów1

3. Lista obsługiwanych czujników pogodowych

Mierzona wartość	Model / Producent	Magistrala	
Temperatura	Dallas DS18B20	Dallas OneWire	
Temperatura	Lufft (np. V200A / Ventus) ²	UMB Binary	
Temperatura	TE Connectivity MS5611 ³	I2C	
Temperatura	Bosh BME280	I2C	
Ciśnienie	Lufft (np. V200A / Ventus)	UMB Binary	
Ciśnienie	TE Connectivity MS5611	I2C	
Ciśnienie	Bosh BME280	I2C	
Wiatr	TX20	Własnościowe 'chińskie' OneWire	
Wiatr	Lufft V200A / Ventus	UMB Binary	
Wiatr	Davis 6410	Prędkość wiatru jako wyjście	
Wiatr	Dowolny anemometr mechaniczny	impulsów z kontaktronu. Kierunek wiatru jako rezystancja / napięcie z potencjometru.	
Wilgotność	DHT22 (czasami oznaczany AM2302)	Własnościowe 'chińskie' OneWire	
Wilgotność	Bosh BME280	I2C	

Tabela 1

Jeżeli podczas odbioru ramki APRS wyczerpana zostanie pojemność wewnętrznych buforów N/O wynosząca 512 bajtów, oprogramowanie zaprzestanie dalszego dekodowania, skasuje dotychczas odebraną treść oraz skasuje swój stan do oczekiwania na rozpoczęcie kolejnej ramki.

² Czujniki meteorologiczne f-my Lufft obsługują uniwersalny protokół UMB, który jest niezależny od zakresu mierzonych parametrów i z punktu widzenia sterownika pracuje tak samo bez względu na konkretny typ i model podłączonego do magistrali urządzenia. Konfiguracja sprowadza się jedynie do podania identyfikatora urządzenia z którym ma być zestawiona komunikacja po protokole UMB, oraz numerów kanałów zawierających konkretne parametry.

Ponieważ czujniki na magistrali I2C są umieszczone w środku obudowy sterownika, służą one bardziej do pomiaru temperatury wewnątrz pomieszczenia / szafki telekomunikacyjnej w której się znajdują.

4. Widok ogólny zmontowanego sterownika

Ilustracja 1

Ilustracja 1 przedstawia widok zmontowanego sterownika ParaTNC umieszczonego w obudowie. Widoczna wersja nie obejmuje układu Radiometrix BiMH-1 stanowiącego kompletny moduł nadawczo – odbiorczy pracujący na częstotliwości 144.800MHz z mocą pół wata (500mW).

Ilustracja 2 przedstawia widok sterownika ParaTNC z opisem najważniejszych komponentów i ich rolą w układzie.

- Zworka uruchamiająca Bootloader (program ładujący). Zwarcie jej wyprowadzeń a następnie załączenie zasilania powoduje uruchomienie sterownika z pamięci ROM zawierającej program ładujący, umożliwiający przeprogramowanie pamięci Flash z poziomu komputera przy pomocy portu szeregowego RS232.
- 2. Złącze JTAG umożliwiające podłączenia debuggera / programatora.
- 3. Transceiver MAX485 obsługujący magistralę RS 485.
- 4. Pojemnościowy separator sygnałów Analog Devices ADUM1401ARWZ. Oddziela masę sterownika i jego zasilacza od masy magistrali RS 485 i czujników pogodowych.

- 5. Konwerter napięcie częstotliwość Analog Devices AD7740YRMZ oraz generator częstotliwości wzorcowej CFPS109-32K. Wraz z układami towarzyszącymi służy do separacji galwanicznej sygnału kierunku wiatru z anemometru.
- 6. Potencjometr regulacji poziomu sygnału audio z radiotelefonu do sterownika.
- 7. Przetwornica DC/DC z izolacją galwaniczną Traco Power TMA1205S. Obniża ona napięcie +12V do wartości +5V, które jest używane do zasilania wszystkich podzespołów po stronie "gorącej" tj. czujników meteorologicznych, interfejsu magistrali RS 485 itp.
- 8. Potencjometr regulacji poziomu sygnału audio ze sterownika do radiotelefonu.
- 9. Gniazdo RJ 45 portu szeregowego RS232.
- 10. Mikrokontroler STM32F100RB.
- 11. Moduł czujnika ciśnienia i wilgotności BME280
- 12. Gniazdo DB-9 do podłączenia radiotelefonu.
- 13. Układy 6N137 oraz PC817 służące do separacji sygnału prędkości z anemometru oraz magistrali Dallas One Wire

5. Opis złączy dostępnych na zewnątrz obudowy sterownika

5.1. Gniazdo Zasilania

Gniazdo zasilania to standardowy gniazdo DC (tzw. 'beczka') 5.5/2.5 milimetra z zewnętrznym minusem. Sterownik posiada zabezpieczenie przed odwrotną polaryzacją w postaci diody prostowniczej załączonej szeregowo zaraz za gniazdem. W przypadku zamiany dodatniego i ujemnego wyprowadzenia zasilacza sterownik nie uruchomi się.

5.2. Gniazdo RS232

Port szeregowy pracujący w standardzie RS232 został wyprowadzony na gniazdo RJ45 w standardzie Cisco. UWAGA!! Z tego powodu nie wolno podłączać tam kabla Ethernet ani żadnych urządzeń sieciowych typu przełączniki czy routery! Gotowy kabel – przejściówka z gniazda RJ 45 na standardowy DB-9 albo wersja z konwerterem USB można kupić za 15..20 złotych na Allegro. Szukać należy po frazie "Kabel konsolowy Cisco"

Ilustracja 2: Typowy kabel konsolowy CISCO z RJ45 na DB9

Rozszycie kabla po stronie sterownika jest przedstawione w tabeli 1. Warto przy tym pamiętać, że numeracja pinów we wtykach / gniazdach RJ – 45 nie jest jednoznaczna. W większości przypadków za pin pierwszy uważa się pierwszy z lewej, patrząc na wtyczkę RJ – 45 o strony styków i tak też przyjęto w tabeli 1. Nie zawsze jest to jednak regułą, gdyż Motorola w swojej nomenklaturze numerowała piny od strony blokady a nie od strony styków.

Nr wyprowadzenia gniazda RJ 45	Funkcja
3	RS232 TX – transmisja sterownik → PC
4 i 5	Masa (wspólna z masą zasilania)
6	RS232 RX – transmisja PC → sterownik
7	Opcjonalne zasilanie +5V załączane zworką koło gniazda

Tabela 2: Rozkład wyprowadzeń gniazda konsolowego RJ 45

W Tabeli 2 znajduje się schemat połączeń kabla konsolowego RJ 45 na wtyk żeński DB – 9 przy założeniu użycia kabla sieciowego typu skrętka i zarobieniu wtyku RJ 45 zgodnie ze standardem 'EIA-568-B', to jest w kolejności zaczynając od biało pomarańczowy – pomarańczowy – biało zielony, niebieski itd. Zgodnie z ilustracją 3

Kolor	Pin wtyki RJ 45	Pin wtyku DB-9	Rola w sterowniku
BIAŁO POMARAŃCZOWY	1		brak
POMARAŃCZOWY	2		brak
BIAŁO ZIELONY	3	2	TX Sterownik → PC
NIEBIESKI	4	5	Masa
BIAŁO NIEBIESKI	5	5	Masa
ZIELONY	6	3	RX PC → Sterownik
BIAŁO BRĄZOWY	7	4	Opcjonalne zasilanie +5V
BRĄZOWY	8		brak

Tabela 3

Ilustracja 3

Napięcie +5V podawane na pin numer 4 służy tylko i wyłącznie do zasilania odbiornika Byonics GPS5 lub innego kompatybilnego. Obecnie oprogramowanie ParaTNC nie obsługuje pracy jako tracker, dlatego napięcie to powinno być zawsze wyłączone.

5.3. Gniazdo do podłączenia radiotelefonu

Radiotelefon podłącza się do gniazda męskiego DB-9. Jest ono zgodne wstecz ze standardem modemów Muel TNC-2 i podobnych. Dokłady opis wyprowadzeń jest przedstawiony w tabeli

Pin wtyku DB-9	Znaczenie
3	Wejście audio z radia
4	PTT – Wyjście OD
5	Wyjście audio do radia
7	Masa
9	Odwrócony sygnał PTT

Pin 4 i 9 są wyjściami typu Otwarty Dren bez podciągania. W stanie aktywnym są zwierane do masy, w stanie nie-aktywnym pozostają w stanie wysokiej impedancji. Pin 4 jest aktywny podczas nadawania ramki i służy do przełączania radiotelefonu z odbioru do nadawania. Pin 9 jest odwrotnością sygnału z pinu 4 i jest aktywny podczas odbioru a w momencie przejścia w tryb nadawania przełącza się stan w wysokiej impedancji.

Sygnały audio są separowane przy pomocy transformatorów audio o impedancji uzwojeń wynoszącej 600 omów (rezystancja 66 omów). Składowa stała na wejściu sygnału z radiotelefonu jest blokowana przez kondensator elektrolityczny o pojemności 220 uF skierowany plusem w stronę gniazda.

Uwaga! Składowa stała na wejściu sygnału audio z radiotelefonu (podawana przez radiotelefon) nie może być większa niż 5V, chwilowo do 10V

Wyjście sygnału do radiotelefonu 'po stronie gorącej', tj po stronie radiotelefonu nie jest wyposażone w żaden kondensator blokujący składową stałą. Jeżeli wejście sygnałowe w radiotelefonie jest to wejście na poziomie mikrofonowym, na którym jest jednocześnie obecne napięcie stałe do zasilania, bądź polaryzacji wkładki mikrofonowej, to kabel połączeniowy musi być wyposażony w dodatkowy kondensator blokujący do napięcie.

Uwaga! Brak blokowania składowej stałej będzie skutkował przepływem prądu stałego przez uzwojenie transformatora audio i obciążenie układów połączonego radiotelefonu.

Zastosowane transformatory separujące audio mają dość niską rezystancję i takie obciążenie może uniemożliwić poprawną pracę podłączonego radiotelefonu. Dodatkowo może spowodować powstanie stałego namagnesowania transformatora audio, które docelowo pogorszy parametry jego pracy i zwiększy zniekształcenia sygnału.

W przypadku stwierdzenia, że używany radiotelefon podaje napięcie stałe na wejście mikrofonowe należy użyć kondensatora elektrolitycznego o wartości nie mniejszej niż 100uF z plusem zwróconym w stronę radia.

Radiotelefony przewoźne (mobilowe) marki Motorola, takie jak GM340, GM350, GM300 posiadają wejście mikrofonowe, które jest tak naprawdę wejściem liniowym, w którym ten problem nie występuje.

Tabele 4 i 5 zawiera rozszycie kabla połączeniowego pomiędzy sterownikiem ParaTNC a radiotelefonami Motorola z serii Waris / Radius / Ariane (GM340, GM360, GM300, GM350) oraz serią Jedi (MC2100)

- 5.4. Gniazdo anemometru (4 pinowe)
- 5.5. Gniazdo akcesoryjne i termometru (8 pinowe)
- 6. Opis złączy wewnętrznych dostępnych na PCB
- 7. Używanie bootloadera to wgrywania oprogramowania do sterownika