Обратная матрица

Квадратная матрица ${\bf B}$ называется *обратной матрицей* по отношению к квадратной матрице ${\bf A}$, если ${\bf B}{\bf A}={\bf A}{\bf B}={\bf E}$. Обратную матрицу обычно обозначают ${\bf A}^{-1}$.

Теорема (об обратной матрице)

- 1. Обратная матрица ${\bf A}^{-1}$ существует тогда и только тогда, когда матрица ${\bf A}$ является невырожденной.
- 2. Если обратная матрица A^{-1} существует, то она единственна.

Свойства обратной матрицы

Обратная матрица обладает следующими свойствами:

- 1) $\mathbf{E}^{-1} = \mathbf{E}$,
- 2) $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$,
- 3) $(\lambda \mathbf{A})^{-1} = (1/\lambda) \mathbf{A}^{-1}$,
- 4) $(\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}}$,
- 5) $(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$.

Нахождение обратной матрицы методом элементарных преобразований

Пусть требуется найти обратную матрицу невырожденной матрицы $\bf A$. Так как матрица $\bf A$ невырожденная, то по теореме об элементарных преобразованиях матриц существует последовательность элементарных преобразований строк такая, что в результате их применения к матрице $\bf A$ получается единичная матрица $\bf E$, т.е., если $\bf L_1$, $\bf L_2$,..., $\bf L_N$ — матрицы этих преобразований, то $\bf L_N$... $\bf L_2$ $\bf L_1$ $\bf A$ = $\bf E$, откуда следует, что искомая обратная матрица $\bf A^{-1}$ = $\bf L_N$... $\bf L_2$ $\bf L_1$.

Избежать трудоёмкого процесса построения матриц \mathbf{L}_1 , \mathbf{L}_2 ,..., \mathbf{L}_N с их последующим перемножением можно следующим образом:

- 1) записать расширенную матрицу $[A \mid E]$ матрицу A с приписанной к ней справа единичной матрицей E;
- 2) следуя доказательству третьей части теоремы об элементарных преобразованиях матриц, выполнять преобразования строк расширенной матрицы до тех пора, пока расположенная слева матрица ${\bf A}$ не будет преобразована в единичную матрицу ${\bf E}$. Когда процесс преобразования матрицы ${\bf A}$ в единичную матрицу ${\bf E}$ будет завершён, в расширенной матрице справа на месте расположенной единичной матрицы будет находиться обратная матрица ${\bf A}^{-1}$.

Математическое обоснование описанного выше процесса выглядит следующим образом:

$$\mathbf{L}_{N} \dots \mathbf{L}_{2} \mathbf{L}_{1} [\mathbf{A} \mid \mathbf{E}] = [\mathbf{L}_{N} \dots \mathbf{L}_{2} \mathbf{L}_{1} \mathbf{A} \mid \mathbf{L}_{N} \dots \mathbf{L}_{2} \mathbf{L}_{1} \mathbf{E}] = [\mathbf{E} \mid \mathbf{L}_{N} \dots \mathbf{L}_{2} \mathbf{L}_{1}] = [\mathbf{E} \mid \mathbf{A}^{-1}].$$

Определитель

Определителем квадратной матрицы А называется число

$$|\mathbf{A}| = \sum_{\{\alpha\}} N(\alpha_1, \alpha_2, ..., \alpha_n) a_{1\alpha_1} a_{2\alpha_2} ... a_{n\alpha_n},$$

где суммирование ведётся по всем возможным перестановкам последовательности $\{\alpha_1,\alpha_2,...,\alpha_n\}$, а множитель $N(\alpha_1,\alpha_2,...,\alpha_n)$ равен (+1), если количество беспорядков в последовательности $\{\alpha_1,\alpha_2,...,\alpha_n\}$ чётное, и равен (-1) в противном случае.

Если в формуле вычисления определителя сгруппировать все слагаемые, содержащие элементы из i-й строки, то получится выражение, состоящее из n слагаемых:

$$|\mathbf{A}| = a_{i1}(...) + a_{i2}(...) + ... + a_{in}(...)$$
.

23.11.2017 21:48:31 стр. 1 из 2

Величина в скобках, на которую умножается элемент a_{ij} , обозначается A_{ij} и называется алгебраическим дополнением элемента a_{ij} . Таким образом, формула для вычисления определителя принимает вид

$$|\mathbf{A}| = a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in} = \sum_{i=1}^{n} a_{ij}A_{ij}$$
.

Эта формула называется разложением определителя по элементам *i*-й строки. Рассуждая аналогично, можно получить формулу разложения определителя по элементам *j*-го столбца

$$|\mathbf{A}| = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{i=1}^{n} a_{ij}A_{ij}.$$

Свойства определителя

Определитель матрицы обладает следующими свойствами:

- 1) $|\mathbf{A}^{\mathrm{T}}| = |\mathbf{A}|$;
- 2) если элементы i-й строки матрицы \mathbf{A} имеют вид $a_{ij} = b_{ij} + c_{ij}$, то определитель матрицы $|\mathbf{A}| = |\mathbf{A}_b| + |\mathbf{A}_c|$, где \mathbf{A}_b и \mathbf{A}_c матрицы, совпадающие с матрицей \mathbf{A} , за исключением i-й строки, элементы которой равны b_{ij} и c_{ij} соответственно;
- 3) $|\ell^{\mathrm{I}}(\mathbf{A})| = \lambda |\mathbf{A}|, |\ell^{\mathrm{II}}(\mathbf{A})| = |\mathbf{A}|, |\ell^{\mathrm{III}}(\mathbf{A})| = |\mathbf{A}|, |\ell^{\mathrm{IV}}(\mathbf{A})| = -|\mathbf{A}|;$
- 4) если в матрице **A** имеется нулевая строка, то $|\mathbf{A}| = 0$;
- 5) если в матрице **A** имеются две одинаковые строки, то $|\mathbf{A}| = 0$;

6)
$$\sum_{i=1}^{n} a_{ij} A_{kj} = 0$$
 при $i \neq k$;

7)
$$|\mathbf{A}| = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} M_{ij}$$
, T.e. $A_{ij} = (-1)^{i+j} M_{ij}$,

где величина M_{ij} называется минором элемента a_{ij} и равна определителю матрицы, получающейся из исходной матрицы \mathbf{A} вычёркиванием i -й строки и j -го столбца.

23.11.2017 21:48:31