Registros

OdC - 2020

Flip - Flop tipo D

Un flip-flop puede mantener un estado binario indefinidamente (en tanto se alimente al circuito), hasta que una señal de entrada le indique que debe cambiar de estado.

Diagrama de señales

Dado que ahora podemos registrar datos en el tiempo, para mostrar el estado de un circuito es necesario agregar una dimensión: el tiempo.

Señal de reloj (clk):

$$T=rac{1}{f}$$
 T: Período f: Frecuencia

Registros

Un registro consiste en un grupo de flip-flops. Estos pueden contener, además, compuertas lógicas.

Las compuertas lógicas se utilizan para efectuar la transición de información entre los flip-flops.

Cada flip-flop puede almacenar un bit de información. Un registro de n bits consiste en un grupo de n flip-flops capaces de almacenar n bits de información binaria.

Ejercicio 1 (1/3)

Implementar un registro de entrada y salida en paralelo de 4 bits con flip-flops tipo D.

Ejercicio 1 (2/3)

Ejercicio 1 (3/3)

Ejercicio 2 (1/3)

Implementar un Shift Register unidireccional de 4* bits con flip-flops tipo D

Ejercicio 2 (2/3)

Ejercicio 2 (3/3)

Multiplexores

Un multiplexor es un circuito combinacional que selecciona información binaria de una de muchas líneas de entrada y la envía a **una sola línea de salida**.

Hay 2ⁿ líneas de entrada y n líneas de selección cuyas combinaciones de bits determinan cuál entrada se selecciona.

Un multiplexor de 2 líneas a 1 conecta una de dos fuentes de un bit a un destino común.

Implementar un Shift Register bidireccional de 4 bits mediante el uso de Flip-flops tipo D y multiplexores de 2 entradas. El comportamiento es el siguiente: cuando en la entrada DIR hay un cero, los datos ingresan por IN_0 y salen por OUT_0, en el caso en que DIR vale 1, los datos ingresan por IN_1 y salen por OUT_1.

Ejercicio 3 (inc.)

Ejercicio 3 - DIR = 0

Ejercicio 3 - DIR = 1

Implementar un registro paralelo de 4 bits que permita el intercambio (swapping) entre el par de bits más significativo y el par menos significativo de salida, utilizando Flip Flops tipo D y multiplexores de 2 entradas.

Funcionamiento: Cuando la señal swap está activa ('1'), se intercambian los dos bits más significativos con los dos bits menos significativos. Es decir, si la salida actual del registro es "1110" y swap = '1', en el próximo flanco ascendente del clk la salida del registro cambiará a "1011".

- Si la entrada swap está en '0': la entrada directa.
- Si la entrada **swap** está en '1': se inyecta en cada Flip Flop la salida del Flip Flop correspondiente para intercambiar los bits, según se indica en el enunciado.

Diseñar un Shift Register de 4 bits (con entradas y salidas de datos en serie y paralelo) con dos señales de control $\mathbf{C_1}$ y $\mathbf{C_0}$ tales que:

Si C_1C_0 = "00", el registro pone todas sus salidas a cero (reset).

Si C_1C_0 = "01", el registro desplaza 1 bit a la derecha.

Si C_1C_0 = "10", el registro mantiene la información.

Si C_1C_0 = "11", el registro carga información por su entrada en paralelo.

