Introto Reural Networks

BA865 – Mohannad Elhamod

Auto-Encoders

Auto-Encoder

- Given an input, we want to learn a representation (i.e., code, embedding)
- This embedding is the compressed version of the data. It contains the "essential" information in the image.
- The embedding should be sufficient to obtain the desired reconstruction.

Auto-Encoder

- Given an input, we want to learn a representation (i.e., code, embedding)
- This embedding is the compressed version of the data. It contains the "essential" information in the image.
- The embedding should be sufficient to obtain the desired reconstruction.

Auto-Encoder

- The embedding is essentially a compressed form of the image.
- It is a <u>non-linear</u> dimensionality reduction method.

Linear vs nonlinear dimensionality reduction

The Error Function

- The error is the <u>"reconstruction loss"</u>
 - The MSE between the input and the output.

loss =
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$$

Joseph Rocca

The Auto-Encoder as a Generator

 Once the model is trained, we could use the decoder to generate new content!

Variational Auto-Encoder

- What if I want the embedding to follow a nice Gaussian distribution
- Demo

loss =
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)] = ||\mathbf{x} - d(z)||^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)]$$

Joseph Rocca

Variational Auto-Encoder

 Consequently, a traversal of the latent space would lead to smoother transitions in the reconstructed data.

Variational Auto-Encoder

 Consequently, a traversal of the latent space would lead to smoother transitions in the reconstructed data.

Manipulating The Embedding

- Traversing the embedded space in certain specific directions will lead to interesting changes in the image:
 - Age, hair color, etc.
- This is similar to the concept of directionality in word embeddings.

Zhang et al.

Manipulating The Embedding

- You could even interpolate between images (<u>Demo</u>).
 - Or even styling an image (<u>Demo</u>)

Karras et al.

Image Modification

- Instead of reconstructing the image, you could modify it (e.g., BW to colored).
- The loss here would be simply the error between the original colored image and the generated colored image (e.g., MSE).

Image Modification

Sketch2pix

IMAGE COLORING

Before After

Semantic segmentation

Note: some of these models are more complex than just an autoencoder. But the main idea of embedding/encoding applies

Debugging Neural Nets

Results are bad?

- Check against a benchmark!
 - paperswithcode.com
 - kaggle.com
- Are you overfitting or underfitting?

How do I improve my results?

- Best way: Get more GOOD data
 - If not, clean-up existing data.
- Are you overfitting or underfitting?
 - Overfitting: get more data, use a less complex model, regularization, or transfer learning.
 - <u>Underfitting:</u> get a more complex model.
- Keep it simple!
 - Start with a simple model, simple data, simple code.
 - Test by component (e.g., loss, forward pass, etc.).
 - Test by example (e.g., outliers).

