### 3.3 FX系列可编程控制器的基本指令

FX2N系列PLC共有27条基本指令,供设计者编制语句表使用,它与梯形图有严格的对应关系。

# 3.2 FX<sub>2N</sub> 系列PLC的基本逻辑指令

- 1. 逻辑取,驱动线圈和 LD/LDI/OUT
- 2. 触点串、并联指令 AND/ANI/OR/ORI
- 3. 电路块连接指令 ANB/ORB
- 4. 边沿检测触点指令 LDP/LDF/ANP/ANF/ORP/ORF (FX2N有)
- o 5. 堆栈指令 MPS/MRD/MPP
- o 6. 主控指令 MC/MCR
- o 7. 置位与复位指令 SET/RST
- o <u>8. 微分(脉冲)输出指令 PLS/PLF</u>
- 9.取反指令 INV
- o 10. 空操作指令,程序结束指令 NOP/END

# 1.逻辑取,驱动线圈和程序结束指令 LD/LDI/OUT/END

### 逻辑取及驱动线圈指令表

| 符号、名称  | 功能                 | 电路表示    | 操作元件             | 程序步                          |
|--------|--------------------|---------|------------------|------------------------------|
| LD 取   | 常开触点逻辑<br>运算起始     |         | X,Y,M,T,<br>C,S  | 1                            |
| LDI 取反 | 常闭触点逻辑<br>运算起始     |         | X,Y,M,T,<br>C,S  | 1                            |
| OUT 输出 | 线圈驱动               |         | Y, M, T, C,<br>S | Y,M:1,<br>特M:2,T:3,<br>C:3~5 |
| END结束  | 输入输出处理,<br>程序回到第0步 | [ END ] | 无                | 1                            |

# 2. 触点串、并联指令AND/ANI/OR/ORI

### 触点串并联指令表

| Î | 符号、名称 | 功能           | 电路表示   | 操作元件                | 程序步 |
|---|-------|--------------|--------|---------------------|-----|
| A | ND 与  | 常开触点<br>串联连接 |        | X, Y, M, S,<br>T, C | 1   |
| A | NI 与非 | 常闭触点<br>串联连接 | Y005 ) | X, Y, M, S,<br>T, C | 1   |
| 0 | R 或   | 常开触点<br>并联连接 | (Y005) | X, Y, M, S,<br>T, C | 1   |
| 0 | RI 或非 | 常闭触点<br>并联连接 | (Y005) | X, Y, M, S,<br>T, C | 1   |

# 3. 电路块连接指令 ANB/ORB

### 电路块连接指令表

| 符号、<br>名称   | 功能            | 电路表示   | 操作元件 | 程序步 |
|-------------|---------------|--------|------|-----|
| ORB电路<br>块或 | 串联电路的<br>并联连接 | (Y005) | 无    | 1   |
| ANB电路<br>块与 | 并联电路的<br>串联连接 | (Y005) | 无    | 1   |

### 7.边沿检测触点指令

# LDP/LDF/ANP/ANF/ORP/ORF

| 符号、名称         | 功能              | 电路表示   | 操作元件                | 程序步 |
|---------------|-----------------|--------|---------------------|-----|
| LDP取上升<br>沿脉冲 | 上升沿脉冲逻<br>辑运算开始 | ( M1 ) | X, Y, M, S,<br>T, C | 2   |
| LDF取下降<br>沿脉冲 | 下降沿脉冲逻<br>辑运算开始 | ( M1 ) | X, Y, M, S,<br>T, C | 2   |
| ANP与上升<br>沿脉冲 | 上升沿脉冲串<br>联连接   | ( M1 ) | X, Y, M, S,<br>T, C | 2   |
| ANF与下降<br>沿脉冲 | 下降沿脉冲串<br>联连接   | ( M1 ) | X, Y, M, S,<br>T, C | 2   |
| ORP或上升<br>沿脉冲 | 上升沿脉冲并<br>联连接   | ( M1 ) | X, Y, M, S,<br>T, C | 2   |
| ORF或下降<br>沿脉冲 | 下降沿脉冲并<br>联连接   | ( M1 ) | X, Y, M, S,<br>T, C | 2   |

### 4. 堆栈指令MPS/MRD/MPP

### 堆栈指令表

| 符号、<br>名称 | 功能 | 电路表示          | 操作元件 | 程序步 |
|-----------|----|---------------|------|-----|
| MPS进栈     | 进栈 | MPS   (Y004 ) | 无    | 1   |
| MRD读栈     | 读栈 | MRD (Y005 )   | 无    | 1   |
| MPP出栈     | 出栈 | MPP (Y006)    | 无    | 1   |

FX有11个存储中间运算结果的堆栈存储器1-11

如果是两条支路?

# 8.主控指令MC/MCR

# 主控触点指令表

| 符号、名称   | 功能          | 电路表示及操作元件             | 程序步 |
|---------|-------------|-----------------------|-----|
| MC主控    | 主控电路<br>块起点 |                       | 3   |
| MCR主控复位 | 主控电路<br>块终点 | Y或 M 不允许使用特M [MCR N0] | 2   |

N0:嵌套的级数 最多可以有N0-N7

### 5. 置位与复位指令SET/RST

### 置位与复位指令表

| 符号、名称 | 功能                               | 电路表示        | 操作元<br>件                       | 程序步                                      |
|-------|----------------------------------|-------------|--------------------------------|------------------------------------------|
| SET置位 | 令元件自保<br>持ON                     | [SET Y000]  | Y, M, S                        | Y, M: 1<br>S, 特M: 2                      |
| RST复位 | 令元件自保<br>持0FF或清除<br>数据寄存器<br>的内容 | [RST Y000 ] | Y, M, S, C<br>, D, V, Z,<br>积T | Y, M: 1;<br>S, 特M, C, 积T:2;<br>D, V, Z:3 |

置位将编程位元件强制置"1" 复位将编程位元件强制置"0",字元件清零

# 6.微分(脉冲)输出指令PLS/PLF

### 脉冲输出指令表

| 符号、名称        | 功能          | 电路表示           | 操作元件                | 程序步 |
|--------------|-------------|----------------|---------------------|-----|
| PLS上升沿<br>脉冲 | 上升沿微<br>分输出 | X000 PLS, M0 ] | Y, M(特<br>殊M除外)     | 2   |
| PLF下降沿<br>脉冲 | 下降沿微分输出     | X001<br>       | Y, M<br>(特殊M<br>除外) | 2   |

### 9.取反指令INV

### 逻辑运算结果取反指令表

| 符号、<br>名称 | 功能       | 电路表示         | 操作元件 | 程序步 |
|-----------|----------|--------------|------|-----|
| INV取反     | 逻辑运算结果取反 | X000 (Y000 ) | 无    | 1   |

对指令前面的逻辑运算结果取反

# 10. 空操作指令NOP程序结束指令END

| 符号、名称  | 功能  | 电路表示 | 操作元件 | 程序步 |
|--------|-----|------|------|-----|
| NOP空操作 | 无动作 | 无    | 无    | 1   |

| END结束 | 输入输出处理,程序回到第 <b>0</b><br>步 | 无 | 1 |
|-------|----------------------------|---|---|
|       |                            |   |   |

#### 逻辑取及线圈驱动指令LD、LDI、OUT



LD,取指令。表示一个与输入母线相连的常开接点指令。

LDI,取反指令。表示一个与输入母线相连的常闭接点指令。

OUT,线圈驱动指令

### 接点串联指令AND、ANI



AND,与指令。用于单个常开接点的串联。

ANI,与非指令。用于单个常闭接点的串联

OUT指令后,通过接点对 其它线圈使用OUT指令称 为纵接输出或连续输出

# 接点并联指令OR、ORI



OR,或指令,用于单个 常开接点的并联。

ORI,或非指令,用于 单个常闭接点的并联

# 串联电路块的并联连接指令ORB



两个或两个以上的接 点串联连接的电路叫 串联电路块。串联电 路块并联连接时,分 支开始用LD、LDI指 令,分支结果用ORB 指令。

# 并联电路块的串联连接指令ANB



两个或两个以上接点并 联的电路称为并联电路 块,分支电路并联电路 块与前面电路串联连接 时,使用ANB指令。分 <sup>新酮酶烘載</sup> 支的起点用LD、LDI指 令。

### 取脉冲指令LDP、LDF



Y1

5 OUT

- o LDP取脉冲上升沿, 指在输入信号的上升 沿接通一个扫描周期
- o LDF取脉冲下降沿, 指在输入信号的下降 沿接通一个扫描周期

# 与脉冲指令ANDP、ANDF



# 或脉冲指令ORP、ORF



### 多重输出指令MPS、MRD、MPP





- o MPS, 进栈指令
- o MRD, 读栈指令
- o MPP,出栈指令
- o 这三条指令是无操作 元件指令,都为一个 程序步长。这组指令 用于多输出电路。可 将连接点先存储,用 于连接后面的电路。

# 多重输出指令MPS、MRD、MPP



### 主控及主控复位指令MC、MCR



- o MC为主控指令,用于公 用串联接点的连接
- o MCR叫主控复位指令,即 MC的复位指令。
- 在编程时,经常遇到多个 线圈同时受一个或一组接 点控制。如果在每个线圈 的控制电路中都串入同样 的接点,将多占用存贮单 元,应用主控指令可以解 决这一问题

### 主控及主控复位指令MC、MCR



# 取反指令INV



o 该指令用于运算结果的取反。当执行该指令时,将INV指令之前存在的如LD、LDI等指令的运算结果反转

# 置位与复位指令SET、RST



SET为置位指令,使动作保持

RST为复位指令,使操作复位

# 脉冲输出指令PLS、PLF



PLS指令在输入信号上升沿产 生脉冲输出

PLF在输入信号下降沿产生脉 冲输出



## 空操作指令NOP

NOP为空操作指令,该指令是一条无动作、无目标元件占一个程序步的指令。空操作指令使该步序作空操作。用NOP指令替代己写入指令,可以改变电路。在程序中加入NOP指令,在改动或追加程序时可以减少步序号的改变。执行完清除用户存储器的操作后,用户存储器的内容全部变为空操作指令。

### 程序结束指令END

END是一条无目标元件占一个程序步的 指令。PLC反复进行输入处理、程序运算、 输出处理,若在程序最后写入END指令,则 END以后的程序步就不再执行,直接进行输 出处理。在程序调试过程中,按段插入END 指令,可以顺序扩大对各程序段动作的检查。 采用END指令将程序划分为若干段,在确认 处于前面电路块的动作正确无误之后, 依次 删去END指令。要注意的是在执行END指令 时,也刷新监视时钟。

#### 部分指令回顾: 触点串、并联指令AND/ANI/OR/ORI

## 示例



# 使用注意事项:连续输出



### 回顾. 电路块连接指令 ANB/ORB

### 指令编程规则

并联电路块1

并联电路块2

并联电路块3



### 回顾: 电路块连接指令 ANB/ORB



#### 回顾: 堆栈指令MPS/MRD/MPP

### 用法示例: 电路块和堆栈指令





#### 回顾: 边沿检测触点指令和微分脉冲输出

### 用法示例



### 回顾: 主控指令MC/MCR

### 示例



MCR N0 M100 临时母线

### 8.主控指令MC/MCR



### 可编程控制器编程的基本原则

水平不垂直

线圈右边无接点

左大右小, 上大下小

双线圈输出不可用

# 水平不垂直



梯形图的接点应画在水平线上,不能画在垂直分支上

# 线圈右边无接点



不能将接点画在线圈右边,只能在接点的右 边接线圈

# 左大右小, 上大下小



有串联电路并联时,应将接点最多的那个串 联回路放在梯形图最上面。有并联电路相串联时, 应将接点最多的并联回路放在梯形图的最左边。

## 双线圈输出不可用



图3.38 双线圈输出

如果在同一程序 中同一元件的线圈使 用两次或多次,则称 为双线圈输出。这时 前面的输出无效,只 有最后一次才有效, 一般不应出现双线圈 输出。