COMP2010 Data Structures and Algorithms

Lecture 12: B+-Trees (Part 1)

Department of Computer Science & Technology
United International College

Contents

- Why B+ Tree?
- B+ Tree Introduction
- Searching, Insertion, and Deletion in B+ Tree

Motivation

- AVL tree with N nodes is an excellent data structure for searching, indexing, etc.
 - The Big-Oh analysis shows most operations finishes within O(logN) time
- The theoretical conclusion works as long as the entire structure can fit into the main memory
- When the data size is too large and has to reside on disk, the performance of AVL tree may deteriorate rapidly

A Practical Example

- A 500-MIPS (Million Instructions Per Second) machine, with 7200 RPM (Revolutions Per Minute) hard disk
- ◆ 500 million instruction executions, and approximately 120 disk accesses (磁盘存取) each second
- The machine is shared by 20 users
 - ◆ Thus for each user, can handle 120/20=6 disk access/sec
- A database with 10,000,000 (10 millions) items,
 - 256 bytes/item (assume it doesn't fit in main memory)
 - The typical searching time for one user
 - In AVL tree, a successful search at least needs log_{base 2} 10,000,000 = 24 disk access,
 - Takes around 24/6=4 sec.
 - This way is too slow!!
- We want to reduce the number of disk access to a very small constant

From Binary to M-ary

- Idea: allow a node in a tree to have many children
 - Less disk access = smaller tree height = more branching
- As branching increases, the depth decreases
- An M-ary tree allows M-way branching
 - Each internal node has at most M children
- A complete M-ary tree has height that is roughly log_MN instead of log₂N
 - if M = 20, then $\log_{20} 2^{20} < 5$
 - Thus, we can speedup the search significantly

M-ary Search Tree

- Binary search tree has one key to decide which of the two branches to take
- M-ary search tree needs M-1 keys to decide which branch to take

- M-ary search tree should be balanced in some way too
 - We don't want an M-ary search tree to degenerate to a linked list, or even a binary search tree
 - Thus, require that each node is at least ½ full!

B⁺ Tree

- A B+-tree of order M (M>=3) is an M-ary tree with the following properties:
 - The data items are stored in leaves
 - 2. The **root** is either a leaf or has between **two** and **M** children
 - The non-leaf (internal) nodes store up to M-1 keys to guide the searching; key *i* represents the smallest key in subtree *i+1*
 - All non-leaf nodes (except the root) have between $\lceil M/2 \rceil$ and M children ($\lceil M/2 \rceil$ represents the smallest integer greater than or equal to M/2, e.g., $\lceil 5/2 \rceil = \lceil 2.5 \rceil = 3$)
 - 5. All leaves are at the same depth and have between \[\textsup L/2 \] and \[\textsup L \] data items, for some \(\textsup L \) (usually \(\textsup < M, \) but we will assume \(M=L \) in most examples)

Note that there are various definitions of B-trees, but mostly in minor ways. The above definition is one of the popular forms.

Keys in Internal Nodes

- Which keys are stored at the internal nodes?
 - There are several ways to do it. Different books adopt different conventions.

- We will adopt the following convention:
 - ♦ key i in an internal (non-leaf) node is the smallest key in its i+1 subtree (i.e. right subtree of key i)

Even following this convention, there is no unique B+-tree for the same set of records (data items).

B⁺ Tree Example 1 (M=L=5)

Figure 4.62 B-tree of order 5

- Records (data items) are stored at the leaves (we only show the keys here)
- Since L=5, each leaf has between 3 and 5 data items (as $\lceil 5/2 \rceil = 3$)
- Since M=5, each non-leaf (possibly except root) nodes has between 3 to 5 children
- Requiring nodes to be half full guarantees that the B+ tree does not degenerate into a simple binary tree

B⁺ Tree Example 2 (M=L=4)

- We can still talk about left and right child pointers
- E.g. the left child pointer of N is the same as the right child pointer of J
- We can also talk about the left subtree and right subtree of a key in internal nodes

B+ Tree in Practical Usage

- Each internal node/leaf is designed to fit into one I/O block of data. An I/O block usually can hold quite a lot of data. Hence, an internal node can keep a lot of keys, i.e., large M. This implies that the tree has only a few levels and only a few disk accesses can accomplish a search, insertion, or deletion.
- B+-tree is a popular structure used in commercial databases. To further speed up the search, the first one or two levels of the B+-tree are usually kept in main memory.
- The disadvantage of B+-tree is that most nodes will have less than M-1 keys most of the time. This could lead to severe space wastage. Thus, it is not a good dictionary structure for data in main memory.
- The textbook calls the tree B-tree instead of B+-tree. In some other textbooks, B-tree refers to the variant where the actual records are kept at internal nodes as well as the leaves. Such a scheme is not practical. Keeping actual records at the internal nodes will limit the number of keys stored there, and thus increasing the number of tree levels.

Searching Example

Suppose that we want to search for the key K.
The path traversed is shown in bold.

Searching Algorithm

Let x be the input search key.

- Start the searching at the root
- If we encounter an internal node v, search (linear search or binary search) for x among the keys stored at v
 - If $x < K_{min}$ at v, follow the left child pointer of K_{min}
 - If $K_i \le x < K_{i+1}$ for two consecutive keys K_i and K_{i+1} at v, follow the left child pointer of K_{i+1}
 - If $x \ge K_{max}$ at v, follow the right child pointer of K_{max}
- If we encounter a leaf v, we search (linear search or binary search) for x among the keys stored at v. If found, we return the entire record; otherwise, report not found.

Insertion Procedure

- Suppose that we want to insert a key K and its associated record (data item).
- Search for the key K using the search procedure
- This will bring us to a leaf node x
- Insert K into x
 - Splitting (instead of rotations in AVL trees) of nodes is used to maintain properties of B+-trees when the leaf node contains too many data items after the insertion [next slide]

Insertion into a Leaf

- If leaf x contains < L keys, then insert K into x (at the correct position in node x)</p>
- If x is already full (i.e. containing L keys). Split x
 - Cut x off from its parent
 - Insert K into x, pretending x has space for K. Now x has L+1 keys.
 - After inserting K, split x into 2 new leaves x_L and x_R , with x_L containing the $\lfloor (L+1)/2 \rfloor$ (that is, $\lceil L/2 \rceil$) smallest keys, and x_R containing the remaining $\lceil (L+1)/2 \rceil$ (that is, $L+1-\lceil L/2 \rceil$) keys. Let J be the minimum key in x_R
 - Make a copy of J to be the parent of x_L and x_R , and insert the copy together with its child pointers into the old parent of x.

Inserting into a Non-full Leaf (M=4, L=3)

Search for O.

Insert O and maintain the order.

Splitting a Leaf: Inserting T

Search for T.

Insert T and the B+-tree condition is violated.

Splitting Example 1

Split the leaf and distribute the keys.

Make S the parent of the two new leaves.

Insert S into the parent.

Maintain the order of keys and child pointers.

Splitting Example 2 (M = 4, L=3)

Search for M.

Insert M and the B+-tree condition is violated.

Cont'd

Split the leaf and distribute the keys.

Make L the parent of the two new leaves.

However, we cannot just insert L into the parent as it is already full.

=> Need to split the internal node

Splitting an Internal Node

To insert a key K into a full internal node x:

- Cut x off from its parent
- Insert K and its left and right child pointers into x, pretending there is space. Now x has M keys.
- Split x into 2 new internal nodes x_L and x_R , with x_L containing the $(\lceil M/2 \rceil 1)$ smallest keys, and x_R containing the $\lfloor M/2 \rfloor$ largest keys. Note that the $(\lceil M/2 \rceil)$ th key J is not placed in x_L or x_R
- Make J the parent of x_L and x_R , and insert J together with its child pointers into the old parent of x.

Example: Splitting Internal Node (M=4)

Insert L and its child pointers into the parent.

Split the parent.

The key J becomes the parent of the two new internal nodes.

Insert J into the next parent.

Cont'd

Split the parent.

The key J becomes the parent of the two new internal nodes.

Insert J into the next parent.

Termination

- Splitting will continue as long as we encounter full internal nodes
- If the split internal node x does not have a parent (i.e. x is a root), then create a new root containing the key J and its two children

Example: Split the root node

