Stochastik I

Blatt 1

Aufgabe 1 (5 Punkte)

Zeigen Sie: Das Mengensystem \mathcal{F} aller endlichen Vereinigungen disjunkter halboffener Intervalle (a,b] mit $a,b\in\mathbb{R}^D$ ist ein Ring auf \mathbb{R}^D .

Aufgabe 2 (5 Punkte)

Es seien $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $A, B, A_n \in \mathcal{A}$ $(n \in \mathbb{N})$. Zeigen Sie folgende Eigenschaften des Maßes μ :

(a) $endliche\ Additivit \ddot{a}t$: Für disjunkte A und B gilt

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

(b)
$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$$

Unter welcher Voraussetzung kann man (b) umstellen zu

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)?$$

(c) Monotonie: Ist $A \subseteq B$, so folgt

$$\mu(A) \le \mu(B)$$
.

(d) $Sub-\sigma-Additivit \ddot{a}t$:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mu(A_n).$$

Aufgabe 3 (4 Punkte)

Sei Ω eine nicht-leere Menge, $\emptyset \neq \Omega' \subset \Omega$ und \mathcal{A} eine σ -Algebra auf Ω . Zeigen Sie ohne Verwendung von Aufgabe 4:

Das Mengensystem

$$\mathcal{A}|_{\Omega'} := \{A \cap \Omega' : A \in \mathcal{A}\}$$

ist eine σ -Algebra auf Ω' .

Aufgabe 4 (4+2=6 Punkte)

Es seien Ω_1 und Ω_2 nicht-leere Mengen und \mathcal{A}_2 eine σ -Algebra auf Ω_2 . Weiter sei $f:\Omega_1\to\Omega_2$ eine Abbildung. Beweisen Sie:

(a) Das Mengensystem

$$\sigma(f) := \{ f^{-1}(A_2) : A_2 \in \mathcal{A}_2 \}$$

ist eine σ -Algebra auf Ω_1 .

(b) Zeigen Sie Aufgabe 3 unter Verwendung von Aufgabe 4(a).