

Acta Crystallographica Section E

#### **Structure Reports**

#### **Online**

ISSN 1600-5368

# 2-[(*E*)-Methoxyimino]-2-{2-[(2-methyl-phenoxy)methyl]phenyl}ethanoic acid

## Rajni Kant, <sup>a\*</sup> Vivek K. Gupta, <sup>a</sup> Kamini Kapoor, <sup>a</sup> Chetan S. Shripanavar <sup>b</sup> and Kaushik Banerjee <sup>b</sup>

<sup>a</sup>X-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India, and <sup>b</sup>National Research Centre for Grapes, Pune 412 307, India Correspondence e-mail: rkvk.paper11@gmail.com

Received 3 July 2012; accepted 5 July 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma(C-C) = 0.002$  Å; R factor = 0.037; wR factor = 0.103; data-to-parameter ratio = 14.9.

In the title compound,  $C_{17}H_{17}NO_4$ , the dihedral angle between the two aromatic rings is 59.64 (5)°. The (methoxyimino)-ethanoic acid fragment is nearly perpendicular to the attached benzene ring [dihedral angle = 81.07 (4)°]. In the crystal, pairs of  $O-H\cdots O$  hydrogen bonds between carboxy groups link molecules into inversion dimers. In addition,  $\pi-\pi$  stacking interactions between inversion-related benzene rings are observed [centroid–centroid distance = 3.702 (1) Å].

#### **Related literature**

For the biological activities of kresoxim-methyl, see: Balba (2007); Cash & Cronan (2001); Ammermann *et al.* (2000). For a related structure, see: Chopra *et al.* (2004).

#### **Experimental**

Crystal data

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)  $T_{\min} = 0.947, T_{\max} = 1.000$  18021 measured reflections 3016 independent reflections 2446 reflections with  $I > 2\sigma(I)$   $R_{\rm int} = 0.031$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$   $wR(F^2) = 0.103$  S = 1.053016 reflections

202 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm Å}^{-3}$ 

**Table 1** Hydrogen-bond geometry (Å, °).

| $D-H\cdots A$        | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-H\cdots A$ |
|----------------------|------|-------------------------|-------------------------|---------------|
| $O1-H1\cdots O2^{i}$ | 0.82 | 1.82                    | 2.640 (2)               | 176           |

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

RK acknowledges the Department of Science and Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2509).

#### References

Ammermann, E., Lorenz, G., Schelberger, K., Mueller, B., Kirstgen, R. & Sauter, H. (2000). *Proceedings of the Brighton Crop Protection Conference – Pests and Diseases*, Vol. 2, pp. 541–548. Alton, Hampshire, England: BCPC Publications.

Balba, H. (2007). J. Environ. Sci. Health B, 42, 441-451.

Cash, H. & Cronan, J. M. Jr (2001). US Patent Appl. WO2001-US9649 20010323

Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2421–o2423.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2012). E68, o2425 [doi:10.1107/S1600536812030711]

### 2-[(*E*)-Methoxyimino]-2-{2-[(2-methylphenoxy)methyl]phenyl}ethanoic acid Rajni Kant, Vivek K. Gupta, Kamini Kapoor, Chetan S. Shripanavar and Kaushik Banerjee

#### Comment

The title compound is the acid metabolite of kresoxim-methyl, which is a systemic fungicide of strobilurin group with broad spectrum bio-efficacy against various diseases (Balba, 2007; Cash & Cronan, 2001; Ammermann *et al.*, 2000) of economically important agricultural crops.

In (I), all bond lengths and angles are normal and correspond to those observed in the related structure (Chopra *et al.*, 2004). The dihedral angle between the two aromatic rings is 59.64 (5)°. The (methoxyimino)ethanoic acid fragment is nearly perpendicular to the attached benzene ring [dihedral angle 81.07 (4)°]. In the crystal, O—H···O hydrogen bonds link pairs of molecules to form inversion dimers (Fig. 2). The crystal structure is further stabilized by  $\pi$ - $\pi$  interactions between the benzene ring (C11—C16) of the molecule at (x, y, z) and the benzene ring of an inversion related molecule at (1 - x, 1 - y, 1 - z)[centroid separation = 3.702 (1) Å, interplanar spacing = 3.547Å and centroid shift = 1.05 Å].

#### **Experimental**

Kresoxim-methyl (0.313 g, 0.001 mol) was dissolved in 5 ml acetone and to it 5 ml of 1 N NaOH solution was added. The reaction mixture was refluxed on a water bath at 343 K for 12 hrs, and then cooled. The compound was precipitated by neutralizing with 1 N HCl solution. The precipitated compound was dissolved in methanol and crystallized by the process of slow evaporation (m.p. 413 K).

#### Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C / O atoms, with O—H distance of 0.82 Å and C—H distances of 0.93–0.97 Å and with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(methyl C / O)$ .

#### **Computing details**

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2010); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

Acta Cryst. (2012). E68, o2425 Sup-1



**Figure 1**ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Acta Cryst. (2012). E**68**, o2425



Figure 2 The packing arrangement of molecules viewed down the a axis. The dotted lines show intermolecular O—H···O hydrogen bonds.

### 2-[(E)-Methoxyimino]-2-{2-[(2-methylphenoxy)methyl]phenyl}ethanoic acid

| tions |
|-------|
|       |
|       |
| ,     |

Acta Cryst. (2012). E**68**, o2425

T = 293 KBlock, colourless

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

Detector resolution: 16.1049 pixels mm<sup>-1</sup>

 $\omega$  scan

Absorption correction: multi-scan

(CrysAlis PRO; Oxford Diffraction, 2010)

 $T_{\min} = 0.947, T_{\max} = 1.000$ 

Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.037$ 

 $wR(F^2) = 0.103$ 

S = 1.05

3016 reflections 202 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier

map

 $0.3 \times 0.2 \times 0.1 \text{ mm}$ 

18021 measured reflections 3016 independent reflections

2446 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.031$ 

 $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 4.0^{\circ}$ 

 $h = -9 \rightarrow 9$ 

 $k = -10 \rightarrow 10$ 

 $l = -15 \rightarrow 15$ 

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0464P)^2 + 0.1581P]$ 

where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\rm max} = 0.001$ 

 $\Delta \rho_{\text{max}} = 0.21 \text{ e Å}^{-3}$ 

 $\Delta \rho_{\text{min}} = -0.14 \text{ e Å}^{-3}$ 

Extinction correction: *SHELXL97* (Sheldrick, 2008),  $Fc^*=kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$ 

Extinction coefficient: 0.129 (7)

Special details

**Experimental**. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | X             | y            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|---------------|--------------|--------------|-----------------------------|--|
| N1  | -0.04205 (15) | 0.76501 (15) | 0.14263 (9)  | 0.0411 (3)                  |  |
| O1  | 0.26565 (15)  | 0.52466 (14) | 0.04947 (10) | 0.0627 (4)                  |  |
| H1  | 0.3655        | 0.4611       | 0.0157       | 0.094*                      |  |
| O2  | 0.41631 (14)  | 0.69280 (13) | 0.05567 (9)  | 0.0545 (3)                  |  |
| O3  | -0.19671 (13) | 0.89490 (14) | 0.19809 (9)  | 0.0537 (3)                  |  |
| O4  | 0.29418 (13)  | 0.65865 (12) | 0.32961 (7)  | 0.0470(3)                   |  |
| C1  | 0.10574 (17)  | 0.79233 (16) | 0.14043 (10) | 0.0343 (3)                  |  |
| C2  | 0.27728 (18)  | 0.66279 (17) | 0.07790 (11) | 0.0389 (3)                  |  |
| C3  | -0.3626(2)    | 0.8742 (3)   | 0.18052 (16) | 0.0714 (5)                  |  |
| Н3А | -0.3753       | 0.8841       | 0.1056       | 0.107*                      |  |

Acta Cryst. (2012). E68, o2425 Sup-4

| Н3В  | -0.4704      | 0.9612       | 0.2203       | 0.107*     |
|------|--------------|--------------|--------------|------------|
| H3C  | -0.3529      | 0.7634       | 0.2039       | 0.107*     |
| C4   | 0.11852 (16) | 0.94464 (16) | 0.18597 (10) | 0.0343 (3) |
| C5   | 0.1139 (2)   | 1.07741 (19) | 0.11881 (13) | 0.0481 (4) |
| H5   | 0.1053       | 1.0687       | 0.0466       | 0.058*     |
| C6   | 0.1217 (2)   | 1.2226 (2)   | 0.15794 (16) | 0.0593 (5) |
| Н6   | 0.1148       | 1.3126       | 0.1128       | 0.071*     |
| C7   | 0.1399 (2)   | 1.2330 (2)   | 0.26406 (16) | 0.0589 (5) |
| H7   | 0.1464       | 1.3299       | 0.2908       | 0.071*     |
| C8   | 0.14853 (19) | 1.10001 (19) | 0.33090 (13) | 0.0489 (4) |
| H8   | 0.1627       | 1.1077       | 0.4023       | 0.059*     |
| C9   | 0.13653 (16) | 0.95487 (16) | 0.29377 (11) | 0.0364 (3) |
| C10  | 0.14079 (19) | 0.81417 (17) | 0.36887 (11) | 0.0418 (3) |
| H10A | 0.1558       | 0.8422       | 0.4399       | 0.050*     |
| H10B | 0.0240       | 0.8006       | 0.3734       | 0.050*     |
| C11  | 0.33196 (19) | 0.51830 (17) | 0.39422 (11) | 0.0400 (3) |
| C12  | 0.4895 (2)   | 0.37100 (18) | 0.35617 (12) | 0.0447 (3) |
| C13  | 0.5341 (2)   | 0.22787 (19) | 0.41993 (14) | 0.0551 (4) |
| H13  | 0.6382       | 0.1285       | 0.3965       | 0.066*     |
| C14  | 0.4296 (3)   | 0.2281 (2)   | 0.51667 (15) | 0.0596 (4) |
| H14  | 0.4637       | 0.1305       | 0.5579       | 0.072*     |
| C15  | 0.2752 (2)   | 0.3729 (2)   | 0.55158 (14) | 0.0568 (4) |
| H15  | 0.2033       | 0.3736       | 0.6165       | 0.068*     |
| C16  | 0.2255 (2)   | 0.5189 (2)   | 0.49049 (12) | 0.0486 (4) |
| H16  | 0.1205       | 0.6172       | 0.5144       | 0.058*     |
| C17  | 0.6052 (2)   | 0.3689 (2)   | 0.25175 (15) | 0.0647 (5) |
| H17A | 0.7198       | 0.2672       | 0.2458       | 0.097*     |
| H17B | 0.6334       | 0.4679       | 0.2484       | 0.097*     |
| H17C | 0.5369       | 0.3702       | 0.1940       | 0.097*     |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$   | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|-----|------------|-------------|-------------|-------------|-------------|--------------|
| N1  | 0.0358 (6) | 0.0487 (7)  | 0.0405 (6)  | -0.0196 (5) | -0.0022 (5) | -0.0041 (5)  |
| O1  | 0.0494 (6) | 0.0518 (6)  | 0.0893 (9)  | -0.0285(5)  | 0.0166 (6)  | -0.0286(6)   |
| O2  | 0.0408 (6) | 0.0539 (6)  | 0.0715 (7)  | -0.0260(5)  | 0.0106 (5)  | -0.0200(5)   |
| О3  | 0.0315 (5) | 0.0610(7)   | 0.0665 (7)  | -0.0183(5)  | 0.0021 (5)  | -0.0155(5)   |
| O4  | 0.0466 (6) | 0.0382 (5)  | 0.0395 (5)  | -0.0021(4)  | -0.0011 (4) | 0.0007 (4)   |
| C1  | 0.0342 (7) | 0.0385 (7)  | 0.0324(6)   | -0.0170(6)  | -0.0055(5)  | 0.0023 (5)   |
| C2  | 0.0377 (7) | 0.0420(7)   | 0.0407 (7)  | -0.0207(6)  | -0.0020(6)  | -0.0044(6)   |
| C3  | 0.0362 (8) | 0.0977 (14) | 0.0844 (13) | -0.0323(9)  | -0.0035(8)  | -0.0062 (11) |
| C4  | 0.0262 (6) | 0.0339 (7)  | 0.0411 (7)  | -0.0112(5)  | -0.0026(5)  | -0.0007(5)   |
| C5  | 0.0460(8)  | 0.0499 (8)  | 0.0516 (9)  | -0.0235(7)  | -0.0062(6)  | 0.0095 (7)   |
| C6  | 0.0512 (9) | 0.0417 (8)  | 0.0876 (13) | -0.0241(7)  | -0.0038(9)  | 0.0121 (8)   |
| C7  | 0.0440 (8) | 0.0402(8)   | 0.0953 (14) | -0.0206(7)  | -0.0037(8)  | -0.0142(8)   |
| C8  | 0.0375 (7) | 0.0466 (8)  | 0.0590 (9)  | -0.0127(6)  | -0.0045(6)  | -0.0178(7)   |
| C9  | 0.0252 (6) | 0.0352 (7)  | 0.0426 (7)  | -0.0063(5)  | -0.0023(5)  | -0.0067(5)   |
| C10 | 0.0391 (7) | 0.0404(7)   | 0.0357 (7)  | -0.0061(6)  | -0.0033(6)  | -0.0044(6)   |
| C11 | 0.0402 (7) | 0.0380(7)   | 0.0421 (8)  | -0.0139 (6) | -0.0136 (6) | 0.0015 (6)   |
| C12 | 0.0412 (7) | 0.0398 (7)  | 0.0526 (8)  | -0.0133(6)  | -0.0149(6)  | -0.0030(6)   |

Acta Cryst. (2012). E68, o2425

| C13 | 0.0567 (9)  | 0.0359 (8)  | 0.0712 (11) | -0.0129 (7) | -0.0236 (8) | -0.0008 (7) |  |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|--|
| C14 | 0.0768 (12) | 0.0452 (9)  | 0.0666 (11) | -0.0306(9)  | -0.0266(9)  | 0.0139 (8)  |  |
| C15 | 0.0678 (11) | 0.0583 (10) | 0.0534 (9)  | -0.0341(9)  | -0.0124(8)  | 0.0092(8)   |  |
| C16 | 0.0478 (8)  | 0.0471 (8)  | 0.0485 (9)  | -0.0165 (7) | -0.0082(7)  | 0.0018 (7)  |  |
| C17 | 0.0535 (10) | 0.0515 (10) | 0.0675 (11) | -0.0022 (8) | 0.0010(8)   | -0.0043(8)  |  |

### Geometric parameters (Å, °)

| Geometric parameters (A, °) |             |               |             |
|-----------------------------|-------------|---------------|-------------|
| N1—C1                       | 1.2784 (16) | C7—H7         | 0.9300      |
| N1—O3                       | 1.3880 (14) | C8—C9         | 1.3875 (19) |
| O1—C2                       | 1.2910 (16) | C8—H8         | 0.9300      |
| O1—H1                       | 0.8200      | C9—C10        | 1.4994 (19) |
| O2—C2                       | 1.2228 (16) | C10—H10A      | 0.9700      |
| O3—C3                       | 1.4391 (18) | C10—H10B      | 0.9700      |
| O4—C11                      | 1.3791 (16) | C11—C16       | 1.379 (2)   |
| O4—C10                      | 1.4305 (15) | C11—C12       | 1.4006 (19) |
| C1—C4                       | 1.4901 (17) | C12—C13       | 1.388 (2)   |
| C1—C2                       | 1.4921 (18) | C12—C17       | 1.495 (2)   |
| C3—H3A                      | 0.9600      | C13—C14       | 1.378 (2)   |
| С3—Н3В                      | 0.9600      | C13—H13       | 0.9300      |
| С3—Н3С                      | 0.9600      | C14—C15       | 1.368 (2)   |
| C4—C5                       | 1.3859 (19) | C14—H14       | 0.9300      |
| C4—C9                       | 1.3948 (18) | C15—C16       | 1.387 (2)   |
| C5—C6                       | 1.383 (2)   | C15—H15       | 0.9300      |
| C5—H5                       | 0.9300      | C16—H16       | 0.9300      |
| C6—C7                       | 1.374 (3)   | C17—H17A      | 0.9600      |
| C6—H6                       | 0.9300      | C17—H17B      | 0.9600      |
| C7—C8                       | 1.378 (2)   | C17—H17C      | 0.9600      |
| C1 N1 02                    | 111 46 (11) | C0 C0 C10     | 120.26 (12) |
| C1—N1—O3                    | 111.46 (11) | C8—C9—C10     | 120.26 (13) |
| C2—01—H1                    | 109.5       | C4—C9—C10     | 121.31 (11) |
| N1—03—C3                    | 108.63 (11) | O4—C10—C9     | 108.75 (10) |
| C11—O4—C10                  | 116.98 (10) | O4—C10—H10A   | 109.9       |
| N1—C1—C4                    | 126.66 (12) | C9—C10—H10A   | 109.9       |
| N1—C1—C2                    | 115.03 (11) | O4—C10—H10B   | 109.9       |
| C4—C1—C2                    | 118.13 (10) | C9—C10—H10B   | 109.9       |
| 02—C2—O1                    | 124.35 (12) | H10A—C10—H10B | 108.3       |
| 02—C2—C1                    | 119.61 (11) | O4—C11—C16    | 123.67 (12) |
| 01—C2—C1                    | 116.04 (11) | O4—C11—C12    | 115.46 (12) |
| O3—C3—H3A                   | 109.5       | C16—C11—C12   | 120.87 (13) |
| ОЗ—СЗ—НЗВ                   | 109.5       | C13—C12—C11   | 117.19 (14) |
| НЗА—СЗ—НЗВ                  | 109.5       | C13—C12—C17   | 121.54 (14) |
| O3—C3—H3C                   | 109.5       | C11—C12—C17   | 121.27 (13) |
| H3A—C3—H3C                  | 109.5       | C14—C13—C12   | 122.24 (15) |
| H3B—C3—H3C                  | 109.5       | C14—C13—H13   | 118.9       |
| C5—C4—C9                    | 119.87 (12) | C12—C13—H13   | 118.9       |
| C5—C4—C1                    | 118.75 (12) | C15—C14—C13   | 119.49 (15) |
| C9—C4—C1                    | 121.37 (11) | C15—C14—H14   | 120.3       |
| C6—C5—C4                    | 120.78 (15) | C13—C14—H14   | 120.3       |
| C6—C5—H5                    | 119.6       | C14—C15—C16   | 120.20 (16) |

Acta Cryst. (2012). E68, o2425 sup-6

| C4—C5—H5     | 119.6        | C14—C15—H15     | 119.9        |
|--------------|--------------|-----------------|--------------|
| C7—C6—C5     | 119.48 (15)  | C16—C15—H15     | 119.9        |
| C7—C6—H6     | 120.3        | C11—C16—C15     | 120.01 (14)  |
| C5—C6—H6     | 120.3        | C11—C16—H16     | 120.0        |
| C6—C7—C8     | 120.08 (14)  | C15—C16—H16     | 120.0        |
| C6—C7—H7     | 120.0        | C12—C17—H17A    | 109.5        |
| C8—C7—H7     | 120.0        | C12—C17—H17B    | 109.5        |
| C7—C8—C9     | 121.32 (15)  | H17A—C17—H17B   | 109.5        |
| C7—C8—H8     | 119.3        | C12—C17—H17C    | 109.5        |
| C9—C8—H8     | 119.3        | H17A—C17—H17C   | 109.5        |
| C8—C9—C4     | 118.43 (13)  | H17B—C17—H17C   | 109.5        |
|              |              |                 |              |
| C1—N1—O3—C3  | 169.20 (13)  | C1—C4—C9—C8     | 179.72 (11)  |
| O3—N1—C1—C4  | -2.39 (18)   | C5—C4—C9—C10    | 179.60 (12)  |
| O3—N1—C1—C2  | -177.26 (11) | C1—C4—C9—C10    | -0.97(18)    |
| N1—C1—C2—O2  | 167.44 (13)  | C11—O4—C10—C9   | 173.59 (11)  |
| C4—C1—C2—O2  | -7.90(19)    | C8—C9—C10—O4    | -121.94 (13) |
| N1—C1—C2—O1  | -11.62 (19)  | C4—C9—C10—O4    | 58.76 (15)   |
| C4—C1—C2—O1  | 173.04 (12)  | C10—O4—C11—C16  | 3.11 (19)    |
| N1—C1—C4—C5  | -96.47 (16)  | C10—O4—C11—C12  | -176.49(11)  |
| C2—C1—C4—C5  | 78.27 (16)   | O4—C11—C12—C13  | 178.86 (12)  |
| N1—C1—C4—C9  | 84.09 (17)   | C16—C11—C12—C13 | -0.8 (2)     |
| C2—C1—C4—C9  | -101.17 (14) | O4—C11—C12—C17  | -0.6(2)      |
| C9—C4—C5—C6  | -1.8 (2)     | C16—C11—C12—C17 | 179.77 (14)  |
| C1—C4—C5—C6  | 178.77 (13)  | C11—C12—C13—C14 | 0.1 (2)      |
| C4—C5—C6—C7  | 1.9 (2)      | C17—C12—C13—C14 | 179.57 (15)  |
| C5—C6—C7—C8  | -0.6(2)      | C12—C13—C14—C15 | 0.6(2)       |
| C6—C7—C8—C9  | -0.9(2)      | C13—C14—C15—C16 | -0.6(2)      |
| C7—C8—C9—C4  | 1.1 (2)      | O4—C11—C16—C15  | -178.85 (13) |
| C7—C8—C9—C10 | -178.26 (13) | C12—C11—C16—C15 | 0.7(2)       |
| C5—C4—C9—C8  | 0.29 (18)    | C14—C15—C16—C11 | 0.0(2)       |
|              |              |                 |              |

### Hydrogen-bond geometry (Å, °)

| D— $H$ ··· $A$          | <i>D</i> —H | $H\cdots A$ | D··· $A$  | <i>D</i> —H··· <i>A</i> |
|-------------------------|-------------|-------------|-----------|-------------------------|
| O1—H1···O2 <sup>i</sup> | 0.82        | 1.82        | 2.640 (2) | 176                     |

Symmetry code: (i) -x+1, -y+1, -z.

Acta Cryst. (2012). E68, o2425 sup-7