MA 3140: Statistical Inference

Dr. Sameen Naqvi
Department of Mathematics, IIT Hyderabad
Email id: sameen@math.iith.ac.in

Minimal Sufficiency

Minimal Sufficiency

Recall that in any given problem, numerous sufficient statistics are possible.

Problem: Which one to use?

Solution: The statistic which leads to maximum reduction of the data while still retaining all the information abut the parameter θ .

Minimal Sufficient Statistic (MSS)

- ▶ A statistic *T* is minimal sufficient, if
 - T is sufficient, and
 - if S is any other sufficient statistic, then T = g(S) for some function g.
- ▶ How to check if a statistic *T* is minimal sufficient?

Theorem - Lehmann and Scheffe (1950, 1955):

Let $f(\mathbf{x}, \theta)$ denote the joint pdf/pmf of \mathbf{X} . Suppose there exists a function $T(\mathbf{X})$ such that, for every two sample points \mathbf{x} and \mathbf{y} , the ratio $f(\mathbf{x}, \theta)/f(\mathbf{y}, \theta)$ does not depend on θ iff $T(\mathbf{x}) = T(\mathbf{y})$. Then, $T(\mathbf{X})$ is a MSS for θ .

Example 1

Let $X_1, \ldots, X_n \sim P(\lambda)$, $\lambda > 0$. Find the MSS for λ .

Solution: The joint pmf is

$$f(\mathbf{x}, \lambda) = \frac{e^{-n\lambda} \lambda^{\sum x_i}}{\prod\limits_{i=1}^{n} x_i!}$$
Therefore,
$$\frac{f(\mathbf{x}, \lambda)}{f(\mathbf{x}, \lambda)} = \frac{\prod\limits_{i=1}^{n} y_i!}{\prod\limits_{i=1}^{n} x_i!} \lambda^{\sum x_i - \sum y_i}$$

is independent of λ iff $\sum x_i = \sum y_i$.

Thus, we conclude that $T(X) = \sum X_i$ is minimal sufficient.

Example 2

Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, where both $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ are unknown. Find the MSS for μ and σ^2 .

Solution: The joint pdf is

$$\begin{split} f(\boldsymbol{x}, \mu, \sigma^2) &= \frac{1}{(\sigma\sqrt{2\pi})^n} e^{-\frac{\sum x_i^2}{2\sigma^2} + \frac{\mu\sum x_i}{\sigma^2} - \frac{n\mu^2}{2\sigma^2}} \\ \text{Therefore,} \quad \frac{f(\boldsymbol{x}, \mu, \sigma^2)}{f(\boldsymbol{y}, \mu, \sigma^2)} &= \frac{e^{-\frac{\sum x_i^2}{2\sigma^2} + \frac{\mu\sum x_i}{\sigma^2}}}{e^{-\frac{\sum y_i^2}{2\sigma^2} + \frac{\mu\sum y_i}{\sigma^2}}} \end{split}$$

is independent of μ and σ^2 iff $\sum X_i = \sum Y_i$ and $\sum X_i^2 = \sum Y_i^2$.

Thus, $(\sum X_i, \sum X_i^2)$ is minimal sufficient, or we can say that (\overline{X}, S^2) is minimal sufficient.

Remark

MSS is not unique.

Any 1-to-1 function of a MSS is also minimal sufficient.

Example:

Consider
$$X_1, ..., X_n \sim U(\theta, \theta + 1), -\infty < \theta < \infty$$
, $T_1(\mathbf{X}) = (X_{(1)}, X_{(n)})$ is MSS, and so is $T_2(\mathbf{X}) = (X_{(n)} - X_{(1)}, (X_{(1)} + X_{(n)})/2)$.

Recall

- In any problem there are, in fact, many sufficient statistics.
 - The complete sample is always sufficient.
 - Any one-to-one function of a sufficient statistic is a sufficient statistic.
- ▶ **Problem:** Can we determine whether one sufficient statistic is better than the other?
- **Solution:** Find a statistic that achieves the maximum data reduction while still retaining all the information about the parameter θ , i.e., find a MSS.
- Note: A MSS is not unique any one-to-one function of a MSS is a MSS.

Ancillary Statistic

Ancillary Statistic

- A statistic V(X) is said to be ancillary for θ if its distribution does not depend on the parameter θ .
 - lt does not contain any information about θ .
 - lts distribution is fixed and known, unrelated to the parameter.
- Paradoxically, an ancillary statistic, when used in conjunction with other statistics, sometimes does contain valuable information about θ .

Example 1: Uniform Ancillary Statistic

Let
$$X_1, \ldots, X_n \sim U(\theta, \theta + 1)$$
, $-\infty < \theta < \infty$.

 $X_{(1)}, \ldots, X_{(n)}$: order statistics from the sample.

Claim: $R = X_{(n)} - X_{(1)}$ is an ancillary statistic.

Proof: We know that cdf of each X_i is

$$F_{ heta}(x) = egin{cases} 0, & x \leq heta \ x - heta, & heta < x < heta + 1 \ 1, & heta + 1 \leq x. \end{cases}$$

Example 1 cont'd

The joint pdf of $X_{(1)}$ and $X_{(n)}$ is

$$g_{\theta}(x_{(1)}, x_{(n)}) = n(n-1)(x_{(n)} - x_{(1)})^{n-2}, \quad \theta < x_{(1)} < x_{(n)} < \theta + 1.$$

Make the transformation $R = X_{(n)} - X_{(1)}$ and $M = (X_{(1)} + X_{(n)})/2$.

So, the inverse transformation is $X_{(1)} = (2M - R)/2$ and $X_{(n)} = (2M + R)/2$ with Jacobian 1.

The joint pdf of R and M is

$$h_{\theta}(r, m) = n(n-1)r^{n-2}, \quad 0 < r < 1, \quad \theta + (r/2) < m < \theta + 1 - (r/2)$$

Example 1 cont'd

Thus the pdf of R is

$$h_{ heta}(r) = \int\limits_{ heta + (r/2)}^{ heta + 1 - (r/2)} n(n-1)r^{n-2}dm = n(n-1)r^{n-2}(1-r), \quad 0 < r < 1.$$

It can be clearly seen that the pdf is same for all θ .

Thus, the distribution of R does not depend on θ , and R is ancillary.

Thanks for your patience!