SMT-based Flat Model-Checking for LTL with Counting

Anton Pirogov

26.10.2017

Contents

Preliminaries (counter systems, flatness, path schemas)

The logic lcLTL

Quantifier-free Presburger arithmetic

A tour through the translation

Counter systems

Kripke structure = Directed graph with labelled nodes and initial state

Counter system = Kripke structure + counters + edge guards and updates

Flat: Non-flat: $\begin{array}{c} a_{+=2} \\ \\ start \longrightarrow \begin{pmatrix} 0 \\ (x) \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ (y) \end{pmatrix} \longrightarrow \begin{pmatrix} 2 \\ (z) \end{pmatrix} \longrightarrow \begin{pmatrix} 2 \\ (x) \end{pmatrix} \longrightarrow \begin{pmatrix} 4 \\ (y,z) \end{pmatrix} \longrightarrow \begin{pmatrix} 4 \\ (y,z)$

Path schemas

Path schema = linear state sequence with non-overlapping (flat!) backloops

A finite set of path schemas fully describes all runs in the flat system S:

Path schemas

No finite set of path schemas can describe runs in arbitrary counter systems:

IcLTL syntax

$$\varphi := p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U} \left[\sum_{i=0}^{n} k_{i} \varphi \oplus k \right] \varphi$$

where $p \in AP, k_i, k \in \mathbb{Z}, n \in \mathbb{N}, \oplus \in \{<, \geq\}.$

Additional expressions as syntactic sugar:

$$\begin{aligned} \text{true} &:= p \vee \neg p & \text{false} &:= p \wedge \neg p \\ \\ & \varphi \mathbf{U} \psi := \varphi \mathbf{U} [1 \cdot \text{true} \geq 0] \psi \\ \\ & \mathbf{F} \varphi := \text{true} \mathbf{U} \varphi & \mathbf{G} \varphi := \neg \mathbf{F} \neg \varphi \end{aligned}$$

IcLTL semantics

$$(w,i) \models p$$

$$(w,i) \models \neg \varphi$$

$$(w,i) \models \varphi \wedge \psi$$

$$(w,i) \models \varphi \lor \psi$$

$$(w,i) \models \mathbf{X}\varphi$$

$$(w,i) \models arphi \mathbf{U} \left[\sum_{j=0}^n k_j \eta_j \oplus k
ight] \eta_j$$

$$:\Leftrightarrow \quad p\in \lambda(w(i))$$

$$:\Leftrightarrow \quad (w,i)\not\models\varphi$$

$$:\Leftrightarrow \quad (w,i) \models \varphi \text{ and } (w,i) \models \psi$$

$$:\Leftrightarrow \quad (w,i)\models\varphi \text{ or } (w,i)\models\psi$$

$$:\Leftrightarrow (w, i+1) \models \varphi$$

$$(w,i) \models \varphi \mathbf{U} \left[\sum_{l=0}^{n} k_{l} \eta_{l} \oplus k \right] \psi :\Leftrightarrow \exists_{l \geq i} : (w,l) \models \psi \text{ and } \forall_{i \leq m < l} : (w,m) \models \varphi$$

and
$$\sum_{j=1}^{n} k_j \cdot \#_{[i,l-1]}^{w}(\eta_j) \oplus k$$

IcLTL semantics

$$(w,i) \models p \qquad :\Leftrightarrow \quad p \in \lambda(w(i))$$

$$(w,i) \models \neg \varphi \qquad :\Leftrightarrow \quad (w,i) \not\models \varphi$$

$$(w,i) \models \varphi \land \psi \qquad :\Leftrightarrow \quad (w,i) \models \varphi \text{ and } (w,i) \models \psi$$

$$(w,i) \models \varphi \lor \psi \qquad :\Leftrightarrow \quad (w,i) \models \varphi \text{ or } (w,i) \models \psi$$

$$(w,i) \models \mathbf{X}\varphi \qquad :\Leftrightarrow \quad (w,i+1) \models \varphi$$

$$(w,i) \models \varphi \mathbf{U} \left[\sum_{j=0}^{n} k_{j}\eta_{j} \oplus k\right] \psi \quad :\Leftrightarrow \quad \exists_{l \geq i} : (w,l) \models \psi \text{ and } \forall_{i \leq m < l} : (w,m) \models \varphi$$

$$\text{and } \sum_{j=1}^{n} k_{j} \cdot \#_{[i,l-1]}^{w}(\eta_{j}) \oplus k$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{P}\{\varphi\} \mathbf{P}\{\varphi, \eta\} \mathbf{P}\{\varphi\} \mathbf{P}\{\psi\} \dots \Rightarrow \mathsf{satisfied}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{P}\{\varphi\} \mathbf{P}\{\varphi\} \mathbf{P}\{\varphi\} \mathbf{P}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violate}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{P}\{\varphi\} \mathbf{P}\{\varphi\} \mathbf{P}\{\varphi\} \mathbf{P}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{P}\{\varphi\} \mathbf{P}\{\varphi\} \mathbf{P}\{\varphi\} \mathbf{P}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{P}\{\varphi\} \mathbf{P}\{\varphi\} \mathbf{P}\{\psi\} \mathbf{P}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{P}\{\varphi\} \mathbf{P}\{\psi\} \mathbf{P}\{\psi\} \mathbf{P}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{P}\{\psi\} \mathbf{P}\{\psi\} \mathbf{P}\{\psi\} \mathbf{P}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi, \eta\} \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \mathbf{V}\{\varphi\} \mathbf{V$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi, \eta\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \text{satisfied}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \dots \Rightarrow \varphi \mathbf{U}[2\eta > 0]\psi \qquad \Rightarrow \varphi \mathbf{U}[$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{v}\{\varphi\}\mathbf{v}\{\varphi,\eta\}\mathbf{v}\{\varphi\}\mathbf{v}\{\psi\}\dots \qquad \Rightarrow \text{ satisfied}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{v}\{\varphi\}\mathbf{v}\{\eta,\varphi\}\mathbf{v}\{\varphi\}\mathbf{v}\{\psi\}\dots \qquad \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{v}\{\varphi\}\mathbf{v}\{\varphi\}\mathbf{v}\{\varphi\}\mathbf{v}\{\psi\}\dots \qquad \Rightarrow \psi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{v}\{\varphi\}\mathbf{v}\{\varphi\}\mathbf{v}\{\varphi\}\mathbf{v}\{\psi\}\mathbf{v}\{\psi\}\dots \qquad \Rightarrow \psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \mathbf{v}\{\eta,\psi\}\dots & \mathbf{v}\{\eta,\psi\}\dots & \cdots & \cdots & \Rightarrow \psi \text{ violated} \end{bmatrix}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \mathbf{v}\{\eta,\psi\}\dots & \cdots & \cdots & \Rightarrow \psi \text{ violated} \end{bmatrix}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi, \eta\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \text{satisfied}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\varphi\} \mathbf{V}\{\psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

$$\Phi = \varphi \mathbf{U}[2\eta > 0]\psi \qquad w = \mathbf{V}\{\eta, \psi\} \dots \Rightarrow \varphi \mathbf{U}\psi \text{ violated}$$

Model-checking

Definition (Model-checking problems for IcLTL)

Let $\mathcal S$ be a counter system and φ an IcLTL formula. We say $\mathcal S$ is a *universal model* of φ and write $\mathcal S\models\varphi$, iff for all runs w in $\mathcal S$ we have $w\models\varphi$. We say $\mathcal S$ is an *existential model* of φ and write $\mathcal S\models_\exists\varphi$, iff there exists a run w in $\mathcal S$ such that $w\models\varphi$.

If
$$\mathcal{S}$$
 is flat: $\mathcal{S} \not\models \varphi \Leftrightarrow \mathcal{S} \models_\exists \neg \varphi \Leftrightarrow \varphi$

$$\exists n \in \mathbb{N}$$
, path schema $\mathcal{P} \in \mathcal{P}(\mathcal{S})$, run w in \mathcal{P} with $|S_{\mathcal{P}}| \leq n \land w \models \neg \varphi$

Flat model-checking ≈ bounded model-checking on path schemas (which are in general flat underapproximations!)

parameter specifies path schema size instead of run prefix length

Why flat model-checking?

Flat MC allows compact encoding of witnessing runs for formulas that require counter updates!

- ► Goal: Tool that performs flat model-checking
- Strategy:
- ▶ 1. \overline{MC} problem \rightarrow SAT problem of *Presburger arithmetic*
- ▶ 2. use generic solver to search for a solution
- ► SAT of quantifier-free(!) PA is in NP
- can often be solved quite well by modern SMT-solvers!

Quantifier-free Presburger arithmetic

A minimalistic syntax:

$$\varphi := \tau \le \tau \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

$$\tau := c \mid c \cdot x \mid \tau + \tau$$

We can write formulas like: $3 \cdot x + 4 \cdot y \le -7 \cdot z \lor \neg(x \le 10)$

We **cannot** multiply variables: $x \cdot y \le 7$

We can also write: $x_2 \in \{3,5\} \land \forall_{i \in [0,1]} : x_i = 0 \lor x_{i+1} > 1$

Which can be expanded to: $((x_2 \le 3 \land 3 \le x_2) \lor (x_2 \le 5 \land 5 \le x_2))$ $\land ((x_0 \le 0 \land 0 \le x_0) \lor 2 \le x_1)$

$$\wedge ((x_1 \leq 0 \wedge 0 \leq x_1) \vee 2 \leq x_2)$$

Overview of the translation

- ▶ Input: Counter system S, lcLTL formula Φ , $n \in \mathbb{N}$
- Encoding is a matrix of variables
- Encode constraints (run + path schema)
- Enforce valid state sequences and edges
- ▶ Label each position with sat. subformulas Φ
- Output: A witnessing run, if found

First glimpse of the encoding I

First glimpse of the encoding II

Under the hood: A simple example

Part that encodes the loops in the path schema:

$$\begin{split} & |\mathsf{Count}_{n-1} = 0 \quad \wedge \\ \forall_{i \in [0,n-1]}: \quad & |\mathsf{Count}_i \geq 0 \quad \wedge \quad \big(|\mathsf{Type}_i = - \iff \mathsf{ICount}_i = 1\big) \\ \forall_{i \in [0,n-2]}: \quad & |\mathsf{Type}_i = \triangleleft \quad \Rightarrow \quad |\mathsf{Count}_i > 1 \\ \forall_{i \in [1,n-1]}: \big(|\mathsf{Type}_i \in \{-, \triangleright\} \quad \Rightarrow \quad |\mathsf{Type}_{i-1} \in \{-, \triangleleft\}\big) \\ & \wedge \big(|\mathsf{Type}_i \in \{+, \triangleleft\} \quad \Rightarrow \quad |\mathsf{Type}_{i-1} \in \{+, \triangleright\} \quad \wedge \; |\mathsf{Count}_i = \mathsf{ICount}_{i-1}\big) \end{split}$$

(Complete formula: ≈ 3 pages in similar style...)

A second glimpse: Labelling $\mathbf{U}[\ldots]$ and respecting guards

A second glimpse: Labelling $\mathbf{U}[\ldots]$ and respecting guards

ulDelta₂ $\Phi = 0$ allPhi $\Phi = \bot$ glDelta₂ $\Phi = 4$

Summary - bag of tricks and upper bounds

- constraint invariance
- ► forced loop unrollings
- ▶ information propagation
- exploit distributivity
- use knowledge about the counter system (lengths of loops)
- ▶ Result: formula size and number of variables is **linear** in *n*!

Variables

$$(8+|\Phi|+3u+c)n+u(\hat{l}+1)+g\hat{l} \overset{\hat{l}\leq n,u\leq |\Phi|}{\in} \mathcal{O}((|S|+|\Phi|)\cdot n)$$

Formula size

$$\mathcal{O}(n \cdot (|E| + |\Phi| + |L| + u + c + g) + \hat{l} \cdot (u + g)) \stackrel{\hat{l} \le n, u \le |\Phi|}{\subseteq} \mathcal{O}((|S| + |\Phi| + |L|) \cdot n)$$

Summary - bag of tricks and upper bounds

- constraint invariance
- forced loop unrollings
- information propagation
- exploit distributivity
- use knowledge about the counter system (lengths of loops)
- ▶ Result: formula size and number of variables is **linear** in *n*!

Variables:

$$(8 + |\Phi| + 3u + c)n + u(\hat{l} + 1) + g\hat{l} \stackrel{\hat{l} \le n, u \le |\Phi|}{\in} \mathcal{O}((|S| + |\Phi|) \cdot n)$$

Formula size:

$$\mathcal{O}(n \cdot (|E| + |\Phi| + |L| + u + c + g) + \hat{l} \cdot (u + g)) \stackrel{\hat{l} \le n, u \le |\Phi|}{\subseteq} \mathcal{O}((|S| + |\Phi| + |L|) \cdot n)$$

Implemented prototype

- flat-checker available on GitHub
 (https://github.com/apirogov/flat-checker)
- Implemented in Haskell, using Z3 SMT solver
- Command line interface
- Counter system input as file with graph in DOT-format
- Correctly identified all 52 falsifiable formulas in Problem 1 of RERS Challenge 2017!

