CSc 8530 Parallel Algorithms

Spring 2019

February 5th, 2019

Worst-case analysis

- Let Q be a problem that we can solve in T(n) with P(n) processors
- Parallel cost: C(n) = T(n)P(n)
- The parallel algorithm can be converted to a sequential algorithm that runs in O(C(n))
- More generally, we can simulate a single step in O(P(n)/p) sub-steps:
 - In sub-step 1: simulate processors [1, p]
 - In sub-step 2: simulate processors [p+1,2p], etc.
- We can simulate the entire process in O(T(n)P(n)/p)

Work-time (WT) paradigm

- The work-time (WT) paradigm provides a two-level description of parallel algorithms
 - Upper level suppresses specific details
 - Lower level follows a general scheduling principle
- Upper Level: Describe the algorithm in terms of a sequence of time units
 - Each time unit may include any number of concurrent operations
- Work: total number of operations
- For convenience, at this level we can use a pardo statement
 - for $l \le i \le u$ pardo {statement(s)}
 - All the statements, for all valid indices, are executed concurrently

WT Scheduling Principle

WT vs. lower-level pseudocode

```
ALGORITHM 1.7 (Sum)
Input: n = 2^k numbers stored in an array A.
Output: The sum S = \sum_{i=1}^n A(i)
begin
1. for 1 \le i \le n pardo
Set B(i) := A(i)
2. for h = 1 to \log n do
for 1 \le i \le n/2^k pardo
Set B(i) := B(2i-1) + B(2i)
3. Set S := B(1)
```

WT pseudocode

ALGORITHM 1.8

(Sum Algorithm for Processor Ps)

Input: An array A of size $n = 2^k$ stored in the shared memory. The initialized local variables are (1) the order n: (2) the number p of processors, where $p = 2^n \le n$, and (3) the processor number s. Output: The sum of the elements of A stored in the shared variable S. The array A retains its original value.

begin 1. for j = 1 to $l = \frac{n}{p}$ do Set B(l(s-1)+j): = A(l(s-1)+j) 2. for h = 1 to $\log n$ do 2.l. if $(k-h-q \ge 0)$ then for $j = 2^{k-h-q}(s-1)+1$ to $2^{k-h-q}s$ do Set B(j): = B(2j-1)+B(2j) 2.2. else $\{if(s \le 2^{k-h})$ then $Set B(s): = B(2s-1)+B(2s)\}$ 3. if (s = 1) then set S: = B(1) end

Lower-level pseudocode

Work vs. cost

- If a parallel algorithm runs in T(n) with a total of W(n) operations
 - \bullet Can be simulated in $O(\frac{W(n)}{p} + T(n))$ on a p-processor PRAM
 - The cost is $C_p(n) = T_p(n)p = O(W(n) + T(n)p)$
- Work and cost coincide asymptotically for $p = O(\frac{W(n)}{T(n)})$
- Otherwise they differ:
 - Work is independent of the number of processors
 - Cost is measured relative to the number of available processors
 - Cost ≥ Work due to inefficient processor utilization
- ullet For computing the sum of n numbers:
 - Work: O(n), running time: $O(\log(n))$
 - Cost: $C_p(n) = O(n + p \log(n))$
 - With n processors, the cost is $O(n \log (n))$, not O(n) (Why?)
 - We cannot use all the processors at all time steps, so the cost is higher than the total work

Optimality notions

- A sequential algorithm is **time optimal** iff its running time $T^*(n)$ cannot be improved asymptotically
- Two notions of optimality for parallel algorithms:
 - Weak: a WT presentation level algorithm is optimal iff $W(n) = \Theta(T^*(n))$
 - The total number of operations (not the running time) of the parallel algorithm is asymptotically equivalent to the sequential one
 - Strong: The running time T(n) cannot be improved by any other parallel algorithm

Algorithmic techniques

- Designing parallel algorithms involves additional challenges compared to sequential methods
- We will now review some basic techniques for breaking down a problem into parallel chunks
- The example problems will often arise as sub-problems in more complicated applications

Balanced trees

- We have already encountered balanced binary trees
 - e.g., for summing the values of an array
- **General strategy:** build a balanced binary tree on the input elements and traverse the tree forwards and backwards
- ullet An internal node u usually holds information about the data stored in the leaves of the subtree rooted at u
 - This strategy is useful when we can calculate this information quickly

Example: prefix sums

- Let $S = \{x_1, x_2, \dots, x_n\}$ be an n-element set
- Let * be a binary associate operation (e.g., sum or product)
- A prefix sum is the partial sum defined by:

$$s_i = x_1 * x_2 * \dots * x_i, 1 \le i \le n$$

- The **prefix sums** are the n partial products s_1 to s_n
- A trivial sequential algorithm can compute s_i from s_{i-1} as $s_i = s_{i-1} * x_i$
 - Clearly, this algorithm is O(n)

Example: prefix sums

- We can use a balanced binary tree to compute the prefix sums in $O(\log{(n)})$
- We compute pairwise * operations during the forward pass
- Each internal node will hold the sum of the elements stored in the leaves of its subtree
- During the backward pass, we compute the prefix sums at each level of the tree

ALGORITHM 2.1

(Prefix Sums)

Input: An array of $n = 2^k$ elements $(x_1, x_2, ..., x_n)$, where k is a nonnegative integer.

Output: The prefix sums s_i , for $1 \le i \le n$.

begin

- 1. if n = 1 then $\{set \ s_1 : = x_1; exit\}$
- 2. for $1 \le i \le n/2$ pardo

Set
$$y_i$$
: = $x_{2i-1} * x_{2i}$

3. Recursively, compute the prefix sums of $\{y_1, y_2, \dots, y_{n/2}\}$, and store them in $z_1, z_2, \dots, z_{n/2}$.

4. for $1 \le i \le n$ pardo

{i even :
$$set s_i$$
: = $z_{i/2}$
i = 1 : $set s_1$: = x_1
i odd > 1 : $set s_i$: = $z_{(i-1)/2} * x_i$ }

end

- First time unit: we compute $y_1 = x_1 * x_2$, etc.
- Second: $y'_1 = y_1 * y_2$ and $y'_2 = y_3 * y_4$
- Third: $y''_1 = y'_1 * y'_2$
- **Fourth:** We generate the prefix sum of the *n* elements

- **Fifth:** generate z'_1 and z'_2 from y'_1 and y'_2 , resp.
- Sixth: z_1 to z_4 from y_1 to y_4
- **Seventh:** compute s_i for each i using the z and x values

- For inputs of size $n=2^k$, this algorithm requires 2^k+1 time units
 - ullet We move up the k-level binary tree in the forward step
 - And down k steps in the backward step
- The algorithm can run in-place
 - \bullet In the sense that the y and z variables can be mapped to each other
- It is straightforward to show that this algorithm has:
 - Running time:
 - Work:

- For inputs of size $n=2^k$, this algorithm requires 2^k+1 time units
 - ullet We move up the k-level binary tree in the forward step
 - ullet And down k steps in the backward step
- The algorithm can run in-place
 - \bullet In the sense that the y and z variables can be mapped to each other
- It is straightforward to show that this algorithm has:
 - Running time:
 - $T(n) = O(\log(n))$
 - Work:

- For inputs of size $n=2^k$, this algorithm requires 2^k+1 time units
 - ullet We move up the k-level binary tree in the forward step
 - ullet And down k steps in the backward step
- The algorithm can run in-place
 - \bullet In the sense that the y and z variables can be mapped to each other
- It is straightforward to show that this algorithm has:
 - Running time:
 - $T(n) = O(\log(n))$
 - Work:
 - W(n) = O(n)

- Proof by induction:
- The base case k=0 is handled by step 1 of the algorithm
- Assume the algorithms works for $n=2^k$
- ullet We will prove it computes the prefix sums for $n=2^{k+1}$
- The variables $z_1, z_2, \ldots, z_{n/2}$ hold the prefix sums of the sequence $\{y_1, y_2, \ldots, y_{n/2}\}$
- In particular,

$$z_j = y_1 * y_2 * \dots y_j$$

= $x_1 * x_2 * \dots x_{2i-1} * x_{2i}$

• Thus, $z_j = s_{2j}$ for $1 \le j \le n/2$

- Proof by induction:
- If i is even, then $s_i = z_{i/2}$
- If i is odd (and > 1):

$$s_i = s_{2j+1}$$

$$= s_{2j} * x_{2j+1}$$

$$= z_{(i-1)/2} * x_i$$

 All cases are handled appropriately, thus the algorithm works correctly for all inputs

- Resources required:
- Step 1 takes O(1) (sequential) time
- ullet Steps 2 and 4 take O(1) (parallel) time
 - With O(n) operations per step
- Thus, the running time and work satisfy the following recurrences:

$$T(n) = T\left(\frac{n}{2}\right) + a$$
$$W(n) = W\left(\frac{n}{2}\right) + bn$$

where a and b are constants

Their respective solutions are:

$$T(n) = O(\log n) \qquad \qquad \text{We reduce T(n) by half in each step}$$

$$W(n) = O(n) \qquad \text{The sum at each level decreases geometrically}$$

Non-recursive prefix-sum algorithm

- The previous algorithm was recursive
- We can easily develop a non-recursive, yet still parallel version
- ullet Here, we use auxiliary arrays B(h,j) (forward values) and C(h,j) (backward values) to simplify data storage
- Where $0 \le h \le \log(n)$ and $1 \le j \le n/2^h$
- ullet For simplicity of analysis, we assume $n=2^k$, for some k

ALGORITHM 2.2

```
(Nonrecursive Prefix Sums)
```

```
Input: An array A of size n = 2^k, where k is a nonnegative integer. Output: An array C such that C(0, j) is the jth prefix sum, for 1 \le j \le n.
```

begin

1. for
$$1 \le j \le n$$
 pardo
Set $B(0,j) := A(j)$
2. for $h = 1$ to $\log n$ do

for
$$1 \le j \le n/2^h$$
 pardo

Set
$$B(h, j)$$
: = $B(h - 1, 2j - 1) * B(h - 1, 2j)$

3. for
$$h = \log n$$
 to 0 do
for $1 \le j \le n/2^h$ pardo
 $\begin{cases} j \text{ even } & : \text{Set } C(h, j) := C\left(h+1, \frac{j}{2}\right) \\ j = 1 & : \text{Set } C(h, 1) := B(h, 1) \\ j \text{ odd } > 1 : \text{Set } C(h, j) := C\left(h+1, \frac{j-1}{2}\right) * B(h, j) \end{cases}$

end

- Similar to the problem of summing an individual array
- In the non-recursive version, we store all intermediate values in an auxiliary array

Here, we recurse forwards and backwards

Recursive vs. non-recursive versions

```
ALGORITHM 2.1
(Prefix Sums)
Input: An array of n = 2^k elements (x_1, x_2, ..., x_n), where k is a
nonnegative integer.
Output: The prefix sums s_i, for 1 \le i \le n.
begin
  I. if n = 1 then \{set s_1 : = x_1; exit\}
  2. for 1 \le i \le n/2 pardo
          Set y_i := x_{2i-1} * x_{2i}
  3. Recursively, compute the prefix sums of {y1, y2, ..., yn/2}, and
  store them in z_1, z_2, \dots, z_{n/2}.
  4. for 1 \le i \le n parde
         li even
                          : set s_i := z_{i/2}
         i = 1
                          : set s_1 := x_1
         i \ odd > 1 : set \ s_i := z_{(i-1)/2} * x_i}
```

Recursive

```
ALGORITHM 2.2
 (Nonrecursive Prefix Sums)
 Input: An array A of size n = 2^k, where k is a nonnegative integer.
 Output: An array C such that C(0, j) is the jth prefix sum, for 1 \le
 i \le n.
 begin
   l. for 1 \le i \le n pardo
           Set B(0, j): = A(j)
   2. for h = 1 to \log n do
           for 1 \le i \le n/2^h pardo
              Set B(h, j) := B(h - 1, 2j - 1) * B(h - 1, 2j)
   3. for h = \log n to 0 do
          for 1 \le j \le n/2^h pardo
               \{j \text{ even } : \text{Set } C(h, j) := C(h + 1, \frac{j}{2})\}
              j = 1 : Set C(h, 1): = B(h, 1)

j \text{ odd } > 1 : Set C(h, j): = C(h + 1, \frac{j-1}{2}) * B(h, j)
end
```

Non-recursive

Review

- Building a balanced (binary) tree is a fundamental technique
- One of the most useful in parallel processing
- Other example problems:
 - Broadcasting a value to all processors
 - Compacting the labeled elements of an array
- Can be generalized to non-binary trees
 - ullet Example: computing the maximum of n elements