基礎物理学 B 第2回確認テスト問題

I. ある領域 $\mathcal V$ をまたいで置かれている棒磁石が作る磁場密度 B(r) を考える。 $\mathcal V$ の境界をなす閉曲面を $\mathcal S$ 、 $\mathcal S$ の 外向き単位法線ベクトルを n として、<u>物理法則も考慮した上で</u>、 $\mathcal S$ を貫く磁束として正しいものを <u>すべて</u> 答えよ。ただし、真空の透磁率を μ_0 とする。

選択肢 A:

(a)
$$\frac{1}{\mu_0} \oint_{\mathcal{S}} \boldsymbol{B}(\boldsymbol{r}) \cdot d\boldsymbol{r}$$
 (b) $-\frac{1}{\mu_0} \oint_{\mathcal{S}} \boldsymbol{B}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (c) $\frac{1}{\mu_0} \oint_{\mathcal{S}} \boldsymbol{B}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (d) $-\frac{1}{\mu_0} \oint_{\mathcal{S}} \boldsymbol{B}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (e) 0 (f) $\oint_{\mathcal{S}} \boldsymbol{B}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (g) $-\oint_{\mathcal{S}} \boldsymbol{B}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (h) $\oint_{\mathcal{S}} \boldsymbol{B}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (i) $-\oint_{\mathcal{S}} \boldsymbol{B}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$

II. \underline{r} 電流が電流密度 i(r) で分布している領域内のある <u>閉曲面</u> S を考え、S の外向き単位法線ベクトルを n と する。物理法則も考慮した上で、S を貫く電流として正しいものを すべて 答えよ。

選択肢 B:

(a)
$$\oint_{S} \mathbf{i}(\mathbf{r}) \cdot d\mathbf{r}$$
 (b) $-\oint_{S} \mathbf{i}(\mathbf{r}) \cdot d\mathbf{r}$ (c) $\oint_{S} \mathbf{i}(\mathbf{r}) \cdot \mathbf{n} dS$ (d) $-\oint_{S} \mathbf{i}(\mathbf{r}) \cdot \mathbf{n} dS$ (e) 0

III. 定常電流が電流密度 i(r) で分布している領域内のある曲面 S を考え、S の外向き単位法線ベクトルを n、S の境界をなす閉曲線を C とする。定常電流が作る磁場 H(r) に関して、以下の問に答えよ。ただし、真空の透磁率を μ_0 とする。

1. S を貫く電流の 定義として 正しいものを答えよ。

2. \mathcal{C} に沿った線積分の向き(微小変位ベクトル dr の向き)として正しいのはどちらか答えよ。

3. 物理法則も考慮した上で、 $\mathcal C$ に沿った磁場の線積分として正しいものを すべて 答えよ。

選択肢 C:

(a)
$$\oint_{\mathcal{C}} \boldsymbol{H}(\boldsymbol{r}) \cdot d\boldsymbol{r}$$
 (b) $-\oint_{\mathcal{C}} \boldsymbol{H}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (c) $\oint_{\mathcal{C}} \boldsymbol{H}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (d) $-\oint_{\mathcal{C}} \boldsymbol{H}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (e) $\int_{\mathcal{S}} \boldsymbol{H}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (f) $-\int_{\mathcal{S}} \boldsymbol{H}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (g) $\int_{\mathcal{S}} \boldsymbol{H}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (h) $-\int_{\mathcal{S}} \boldsymbol{H}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (i) $\mu_0 \oint_{\mathcal{C}} \boldsymbol{H}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (j) $-\mu_0 \oint_{\mathcal{C}} \boldsymbol{H}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (k) $\mu_0 \oint_{\mathcal{C}} \boldsymbol{H}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (l) $-\mu_0 \oint_{\mathcal{C}} \boldsymbol{H}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (m) $\mu_0 \int_{\mathcal{S}} \boldsymbol{H}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (n) $-\mu_0 \int_{\mathcal{S}} \boldsymbol{H}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (o) $\mu_0 \int_{\mathcal{S}} \boldsymbol{H}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (p) $-\mu_0 \int_{\mathcal{S}} \boldsymbol{H}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (r) $\oint_{\mathcal{C}} \boldsymbol{i}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (s) $-\oint_{\mathcal{C}} \boldsymbol{i}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (t) $\oint_{\mathcal{C}} \boldsymbol{i}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (u) $-\oint_{\mathcal{C}} \boldsymbol{i}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (v) $-\int_{\mathcal{S}} \boldsymbol{i}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (w) $-\int_{\mathcal{S}} \boldsymbol{i}(\boldsymbol{r}) \cdot d\boldsymbol{r}$ (x) $\int_{\mathcal{S}} \boldsymbol{i}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (y) $-\int_{\mathcal{S}} \boldsymbol{i}(\boldsymbol{r}) \cdot \boldsymbol{n} \, dS$ (z) 0

選択肢 D:

