The University Interscholastic League Number Sense Test • HS Regional • 2017

			Final	
	Contestant's Number		2nd	
	Read directions carefully DO No	OT UNFOLD THIS SHEET	1st	Initials
		NTIL TOLD TO BEGIN		1/11-1-11-1
	Directions: Do not turn this page until the person conduction 80 problems. Solve accurately and quickly as many as you conducted MENTALLY. Make no calculations with paper each problem. Problems marked with a (*) require approfive percent of the exact answer will be scored correct; all o	can in the order in which they appear. ALL PRO er and pencil. Write only the answer in the spa eximate integral answers; any answer to a starred ther problems require exact answers.	DBLEMS ARE 1 ce provided at the	TO BE e end of
	The person conducting this contest should explain these STC	e directions to the contestants. DP WAIT FOR SIGNAL!		
(1)	2017 — 910 =	(19) CMXVII — MXX ==	(Arabic N	umeral)
		. ,		·
	1997 + 1408 =			
(3)	910 ÷ 8 = (mixed number			
(4)	13.6 × 0.5 =	$(22) \sqrt{1936} = $		
(5)	$\frac{7}{25} = \underline{\hspace{1cm}}^9$	% (23) 4 yards — 5 feet + 9 inches =	=	inches
(6)	$\frac{3}{5} - 1\frac{1}{2} =$	(24) $(9 \times 10 + 20) \div 17$ has a rem	ainder of	
(7)	15% of 48 is	$(25) \ 3\frac{1}{4} \times 2\frac{3}{5} = \underline{\hspace{1cm}}$	(mixed n	umber)
(8)	$2 + 5 \times 9 - 14 \div (20 - 27) =$	_ (26) The sum of the solutions of 2	$ x+3 =5$ is _	
(9)	132 × 14 =	$(27) (\{p,l,u,s\} \cup \{m,i,n,u,s\}) \cap \{t,i,u,s\}) \cap \{t,i,u,s\}$		lements
*(10)	$7102 + 910 + 109 + 2017 = \underline{\hspace{1cm}}$	$(28) (3^4) + (2^4) - 1 = \underline{\hspace{1cm}}$		
(11)	1991 × 8 + 72 =			
(12)	27 ² =	(29) 8 is to 12 as 12 is to x. Find x.		
	15 ³ =	*(30) $23 \times 27 \times 58 =$		
	If 32 Ems cost \$43.84 then 4 Ems cost \$	(31) Find the simple interest on \$6		
(15)	The arithmetic mean of 27, 16, 9, and 40 is	$(32) 11\frac{2}{9}\% \text{ of } 81 = \underline{\hspace{1cm}}$	(đ	ecimal)
(16)	If 1 cm = 0.39" then 20 decimeters =	(33) If $x^{-1} = 4^{-2} + 2^{-3}$ then x	:=	
(17)	$\frac{4}{7} - \frac{3}{14} + \frac{5}{28} = $	$- (34) a = 4, a^2 + 10ab + 25b^2 = 81,$, and $b > 0$. b	=
(18)	The sum of the positive prime divisors of 70 is	_ (35) 123 base 10 is	in	ı base 4

(36)	The perimeter of a rectangle with a width of 4 yds and an area of 18 yds ² isyds	(58) The length of the minor axis of $16x^2 + 25y^2 = 400$ is		
(37)	$22 \times 16 + 56 \times 32 =$	(59) The first four digits of the decimal for $\frac{15}{330}$ is 0		
	How many positive natural numbers less than or equal to 30 are relatively prime to 30?	*(60) $6\frac{3}{4} \times 60006 \div 18 =$		
(39)	If $5x - 3y = 2$ and $x - y = 1$ then $x = $	(61) If $7^{(x)} = 16,807$ then $7^{(x+1)} =$		
*(40)	$\sqrt{9201017} = $	(62) $\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \cdot a + b + c + d = \underline{\qquad}$		
(41)	$27^2 - 18^2 =$	(63) Change 0.4212121 6 to a base 10 fraction.		
(42)	The sides of a triangle are 10", 5", and $5\sqrt{3}$ ". The smallest angle of the triangle is degrees	(64) The Cartesian coordinate (-1, $\sqrt{3}$) in polar coordinate form is (r, θ) . Find $\theta \in QH$.		
(43)	Let $3(i)^4(i)^5 = a\sqrt{b}$. Find $a + b$.	(65) $F(x) = 9x - 10$. $G(x) = 20x + 17$. $G(-F(1)) =$		
	Let P, Q, & R be the roots of $x^3 + 3x^2 - 11x = 18$. Find $(P + Q + R)(PQR)$.	(66) $\cos^2(\frac{5\pi}{6}) - \sin^2(\frac{5\pi}{6}) = $		
(45)	Find the measure of a central angle of a regular	(67) Let vector a = (11, 60). Find a .		
(46)	decagon degrees Let $(a^{-5}b^3) \times (a^4b^{-2}) \div (a^{-1}b^{-1}) = a^mb^n$. Find $m + n$	(68) The edge of a cube with a lateral surface area of 9 sq. inches is inches		
(47)	$217_8 + 721_8 - 172_8 = $ 8	(69) 2357 ₈ ÷ 7 ₈ has a remainder of8		
(48)	The sum of the reciprocals of all of the positive integral divisors of 26 is	*(70) $8^4 \times 32^3 \div 16^2 =$		
(49)	If $\frac{5!4!}{6!} = \frac{(x-1)!}{(x-2)!}$, then $x = $	(72) 112 × 118 + 9 =		
	$12 \times 24 \times 36 \times 48 =$	(73) Let $f(x) = \frac{x^2}{6} + \frac{x}{3} + 1$. Find $f'(-2)$.		
(51)	The number of distinct diagonals of a regular nonagon is	(74) The first four digits of the decimal for $\frac{3}{4}$ base 7 is 0 in base 7.		
(52)	$\log_3(81) \div \log_3(27) =$	(75) If $f(x) = 9 - \frac{10 + 20x}{17}$, then $f^{-1}(5) = $		
(53)	579 × 123 =	(76) The range of $y = \sqrt[4]{3-2x}$ is $y \ge $		
(54)	If (x, y) is the midpoint of the segment with endpoints of $(2, 8)$ and $(6, 1)$, then $x + y = $	(77) $11^{12} \div 13$ has a remainder of		
(55)	Four pennies are flipped. The odds of three heads and one tail being face up is (proper fraction)	(78) The Greatest Integer Function is written as $f(x) = [x]$. Find $3\pi \times \frac{\sqrt{5} - 1}{2}$.		
(56)	Truncate $3\sqrt{5}$ to the nearest tenth.	The second of th		
(57)	Y varies indirectly with X and $Y = 10$ when $X = 2$.	(79) How many triangles can be formed using any three vertices of a regular dodecagon?		
	Find Y when $X = 6$.	*(80) $\sqrt[3]{2222222} =$		

University Interscholastic League - Number Sense Answer Key HS • Regional • 2017 *number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like 2 it cannot be written as a repeating decimal

(1)	1,1	

$$(19) - 103$$

(3)
$$113\frac{3}{4}$$

$$(21) - 30$$

(4)
$$6.8, \frac{34}{5}, 6\frac{4}{5}$$

$$(39)$$
 $-.5, -\frac{1}{2}$

(6)
$$-.9, -\frac{9}{10}$$

(63)
$$\frac{51}{70}$$

(7)
$$7.2, \frac{36}{5}, 7\frac{1}{5}$$

(25)
$$8\frac{9}{20}$$

$$(26) - 3$$

$$(44) - 54$$

(66) .5,
$$\frac{1}{2}$$

(68) 1.5,
$$\frac{3}{2}$$
, $1\frac{1}{2}$

$$(48) \ \frac{21}{13}, 1\frac{8}{13}$$

(71) 1.5,
$$\frac{3}{2}$$
, $1\frac{1}{2}$

550,502

$$(33) \ \frac{16}{3}, 5\frac{1}{3}$$

$$(73) - \frac{1}{3}$$

(17)
$$\frac{15}{28}$$

$$(52) \ \frac{4}{3}, 1\frac{1}{3}$$

$$(75) \ \ 2.9, \frac{29}{10}, 2\frac{9}{10}$$

(54) 8.5,
$$\frac{17}{2}$$
, $8\frac{1}{2}$

$$(55) \cdot \frac{1}{3}$$

(56) 6.7,
$$\frac{67}{10}$$
, $6\frac{7}{10}$

(57)
$$\frac{10}{3}$$
, $3\frac{1}{3}$