閉包作用素が定めるマトロイドについて

2025年10月7日20時12分更新

定義 1 E を有限集合とし、 $(E, \text{cl}: 2^E \to 2^E)$ を M と置くことにする。M が次の四条件 (CL1) から (CL4) を満たすとき、閉包作用素が定める E 上のマトロイドと M を呼び、cl をの閉包作用素と呼ぶ。

- (CL1) E の部分集合 X に対し、 $X \subset cl(X)$ である。
- (CL2) Eの部分集合 X に対し、cl(cl(X)) = cl(X) である。
- (CL3) E の部分集合 X と Y に対し、X \subset Y ならば cl(X) \subset cl(Y) である。
- (CL4) E の元 x と E の部分集合 X と $\operatorname{cl}(X \cup \{x\}) \setminus \operatorname{cl}(X)$ の元 y に対し、 $x \in \operatorname{cl}(X \cup \{y\}) \setminus \operatorname{cl}(X)$ である。

閉包族とフラット族が等しいことを見るのが目標である。

命題2 閉包作用素が定めるE上のマトロイドとMを考え、

$$\{F \in 2^E \mid \operatorname{cl}(F) = F\}$$

を % と置く。このとき (E, %) はフラット族が定めるマトロイドである。すなわち

- (F2) \mathfrak{F} の元月と月に対し、月 \cap 月 \in \mathfrak{F} である。
- (F3) \mathfrak{F} の元 F と $E\setminus F$ の元 e に対し、F を被覆し e を含むような \mathfrak{F} 元が存在する。 ここで \mathfrak{F} の元 F と G について、G が F を被覆するとは、 $F \subsetneq G$ かつ「 $F \subsetneq H \subset G$, $H \in \mathfrak{F}$ ならば H = G」が成り立つときをいう。

証明 (F1) について。(CL1) より $E \subset cl(E)$ なので、E = cl(E) である。ゆえに $E \in \mathfrak{F}$ 。

- (F2) について。 $F_1,F_2 \in \mathfrak{F}$ とする。すると (CL1) と (CL3) より $F_1 \cap F_2 \subset \operatorname{cl}(F_1 \cap F_2) \subset \operatorname{cl}(F_1) \cap \operatorname{cl}(F_2)$ であり、最右辺は $F_1 \cap F_2$ と等しい。ゆえに $\operatorname{cl}(F_1 \cap F_2) = F_1 \cap F_2$ であり、 $F_1 \cap F_2 \in \mathfrak{F}$ が従う。
- (F3) について。 $F \in \mathfrak{F}$, $e \in E \setminus F$ とする。 $\operatorname{cl}(F \cup \{e\})$ を G と置くとき,(CL2) より $G \in \mathfrak{F}$ であり,(CL1) より $e \in G$ かつ $F \nsubseteq G$ である。あとは G が F を被覆することを示せば (F3) の成立を確かめられる。 $F \nsubseteq H \subset G$, $H \in \mathfrak{F}$ とする。 $H \setminus F$ の元 x を一つ取ると, $x \in \operatorname{cl}(X \cup \{e\}) \setminus \operatorname{cl}(X)$ であるので,(CL4) より $e \in \operatorname{cl}(X \cup \{x\}) \setminus \operatorname{cl}(X)$ である。したがって $X \cup \{e\} \subset \operatorname{cl}(X \cup \{x\})$ であるので,

$$G \subset \operatorname{cl}(\operatorname{cl}(X \cup \{x\})) \qquad (\because (\operatorname{CL3}) \ \, \sharp \ \, \emptyset \, \circ)$$

$$= \operatorname{cl}(X \cup \{x\}) \qquad (\because (\operatorname{CL2}) \ \, \sharp \ \, \emptyset \, \circ)$$

 $\subset \operatorname{cl}(H)$ (∵(CL2) より。) = H (∵ $H \in \mathfrak{F}$ なので。)

と計算できるので、H = Gである。

証明終

命題 3 フラット族 $\mathfrak F$ が定めるマトロイド M を考え、 $\mathrm{cl}: 2^E \to 2^E$ を $\mathrm{cl}(X) = \bigcap_{\substack{F \in \mathfrak F: X \subset F}} F$ で定める。このとき (E,cl) は閉包作用素が定めるマトロイドである。

証明 (CL1) と (CL3) は定義から直ちに従う。

(CL2) について。(F2) はフラット族が有限交叉で閉じていることを意味しているので、すべての閉包はフラットであることに注意する。(すなわち $\operatorname{cl}(2^E) \subset \mathfrak{F}$ である。)すると E の部分集合 X に対し、 $\operatorname{cl}(X) \in \{F \in \mathfrak{F} \mid X \subset F\}$ となるので、 $\operatorname{cl}(\operatorname{cl}(X)) \subset \operatorname{cl}(X)$ であり、(CL3) より逆の包含も成立するので、 $\operatorname{cl}(\operatorname{cl}(X)) = \operatorname{cl}(X)$ である。

(CL4) について。 $X \in 2^E$, $x \in E$, $y \in cl(X \cup \{x\}) \setminus cl(X)$ とする。このとき $cl(X \cup \{x\})$ は,x を含み cl(X) を被覆するフラットである。なんとなれば,(F3) を用いて x を含み cl(X) を被覆するフラット G を取ると,cl(X) \subsetneq $cl(X \cup \{x\}) \subset G$ となるからである。ここで $y \in cl(X \cup \{x\}) \cap cl(X \cup \{y\})$ であるから,cl(X) \subsetneq $cl(X \cup \{x\}) \cap cl(X \cup \{y\})$ である。 $cl(X \cup \{x\})$ が cl(X) を被覆することから, $cl(X \cup \{x\}) \cap cl(X \cup \{y\})$ である。ゆえに $x \in cl(X \cap \{y\}) \setminus cl(X)$ である。