Deformation II

Space Deformation

Deformation function on ambient space

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

ullet Shape S deformed by applying f to points of S

$$S' = f(S)$$

$$f(x,y)=(2x,y)$$

Motivation

- Can be applied to any geometry
 - Meshes (= non-manifold, multiple components)
 - Polygon soups
 - Point clouds
 - Volumetric data

- Complexity decoupled from geometry complexity
 - Can pick the best complexity for required deformation

Required Properties

- Invariant to global operators
 - Global translation
 - Global rotation
- Smooth
- Efficient to compute
- "Intuitive deformation"?
 - Can pose constraints as in surface deformation

MLS Deformation

[Schaeffer et al. '06]

- 1. Handles p_i
- 2. Target locations \hat{p}_i
- 3. Find best affine transformation that maps p_i to \hat{p}_i

$$\min_{M,T} \sum_{i} \left| \left(M p_{i} + T \right) - \hat{p}_{i} \right|^{2}$$

4. Deform

$$f(v) = Mv + T$$

MLS Deformation

[Schaeffer et al. '06]

- 1. Handles p_i
- 2. Target locations \hat{p}_i
- 3. Find best affine transformation that maps p_i to \hat{p}_i
- $\min_{M,T} \sum_{i} \left| \frac{1}{\left| p_{i} v \right|} \left(M p_{i} + T \right) \hat{p}_{i} \right|^{2}$

4. Deform

$$f(v) = Mv + T$$

Closed form solution

Similarity Affine Transformations?

Similarity Transformations

- 1. Handles p_i
- 2. Target locations \hat{p}_i
- 3. Find best <u>similarity</u> transformation that maps p_i to \hat{p}_i
- 4. Deform

$$\min_{c,s,T} \sum_{i} \left| \frac{1}{\left| p_{i} - v \right|} \left(\begin{pmatrix} c & s \end{pmatrix} \begin{pmatrix} p_{x,i} & p_{y,i} \\ p_{y,i} & -p_{x,i} \end{pmatrix} + T \right) - \hat{\boldsymbol{p}}_{i} \right|^{2}$$

$$f(v) = Mv + T$$

Closed form solution

Rigid

Similarity Transformations?

Rigid Transformations

- 1. Handles p_i
- 2. Target locations \hat{p}_i
- 3. Find best <u>rigid</u> transformation that maps p_i to \hat{p}_i
- 4. Deform

$$\min_{c,s,T} \sum_{i} \left| \frac{1}{\left| p_{i} - v \right|} \left(\begin{pmatrix} c & s \end{pmatrix} \begin{pmatrix} p_{x,i} & p_{y,i} \\ p_{y,i} & -p_{x,i} \end{pmatrix} + T \right) - \hat{\underline{p}}_{i} \right|^{2}$$

 $c^2 + s^2 = 1$

$$f(v) = Mv + T$$

Closed form solution given best similarity

Comparison

Examples

Before After

Examples

Horse Giraffe

Limitations

Deforms all space - is not "shape aware"

The "Pants" Problem

Small Euclidean distance Large **geodesic** distance

The "Pants" Problem

Solution: Cages

- Enclose the shape in a "cage" $\Omega \subset \mathbb{R}^n$
- Deformation function defined only on cage

$$f:\Omega\to\mathbb{R}^n$$

New problem: how to build the cage?

Deformation with a Cage

or: Rules of the Game

$$S = \{x_1, x_2, \dots, x_n\}$$

Source polygon

$$x_i \rightarrow f_i$$

Target polygon

$$g(x) = ?$$
 Interior?

Example

Example

$$\mathbf{x}' = \sum_{i=1}^k w_i(\mathbf{x}) \mathbf{p}_i'$$

Required properties

Translation invariance (constant precision)

$$\sum_{i=1}^n w_i(x) = 1$$

Reproduction of identity (linear precision)

$$\sum_{i=1}^n w_i(x) x_i = x$$

$$g(x) = \sum_{i=1}^{n} w_i(x) f_i$$

Constant + linear precision = affine invariance

$$g_{Ax_{i}+T}(x) = \sum_{i} w_{i}(x)(Ax_{i} + T)$$

$$= A\sum_{i} w_{i}(x)x_{i} + T\sum_{i} w_{i}(x) =$$

$$x \qquad 1$$

$$= Ax + T$$

Required properties

Smoothness – at least C1

Interpolation (Lagrange property)

$$f(x_{j}) = f_{j}$$

$$w_{i}(x_{j}) = \delta_{ij}$$

Example: Mean Value Coords

[3D: Ju et al '05]

$$k_{i}(x) = \frac{\tan\left(\frac{\alpha_{i-1}}{2}\right) + \tan\left(\frac{\alpha_{i}}{2}\right)}{|x_{i} - x|}$$

$$w_i(x) = \frac{k_i(x)}{\sum_i k_i(x)}$$

Closed form!

Example: Mean Value Coords

MV - Limitations

Back to the pants problem

MV negative on concave polygons

MV - Limitations

Other leg moves in opposite (!) direction

Barycentric Coords

Additional property required:

$$w_i(x) \ge 0$$

Mean value coords only positive on convex polygons

[Joshi et al '07]

Solve for $w_i(x)$:

$$\nabla^2 w_i(x) = 0$$

subject to: w_i linear on the boundary and

$$w_{i}(x_{j}) = \delta_{ij}$$

Why does it work?

HC use resistance distances

Properties:

- All required properties
 - Smooth, translation + rotation invariant

Positive everywhere

No closed form, need to solve a PDE

Limitations

- Affine invariant
- Wasn't that a required property??

$$g_F(x) = \sum_{i=1}^n w_i(x) f_i$$

$$g_F(x) = \sum_{i=1}^n w_i(x) f_i$$
 , $g_{A(F)}(x) = A(g(x))$

Affine Invariance is Evil

(for deformation anyway)

Green Coordinates [Lipman et al '08]

Coordinates also depend on faces!

Green Coordinates

- Closed form
- Harmonic
- Conformal in 2D, quasi-conformal in 3D
- Not interpolating

Cauchy-Green Coordinates

[Weber et al. '09]

Work with complex coordinates instead of real

Can derive Green coords much easier

Can find other families of coords

Complex Bary Coords

All real bary coords schemes are affine invariant

$$g(x) = \sum_{i=1}^{n} w_i(x) f_i \qquad x_i, f_i, x \in \mathbb{R}^2$$

$$w_i(x) \in \mathbb{R}$$

Define complex bary coords

$$g(z) = \sum_{i=1}^{n} w_i(z) f_i \qquad z_i, f_i, z \in C$$

$$w_i(z) \in C$$

Deformation with Complex Bary Coords

 $w_i(z)$ Complex Bary Coords Function

Deformation with Complex Bary Coords

$$g(z) = \sum_{i=1}^{n} w_i(z) f_i$$

Discrete Cauchy-Green Coordinates

Smooth case:

$$g(z) = \frac{1}{2\pi i} \oint_{S} \frac{1}{w - z} f(w) dw$$

S is polygon \rightarrow integrate over edges:

$$g(z) = \frac{1}{2\pi i} \sum_{i=1}^{n} \oint_{e_i} \frac{1}{w - z} f(w) dw$$

Closed form expression

$$g(z) = \sum_{i=1}^{n} w_i(z) f_i$$

Better Coordinates?

→ A conformal map of interior

"Best" conformal map?

Variational Cauchy Coordinates

Find best $u_1,...,u_n$ such that

$$g_u(z) = \sum_{j=1}^n C_j(z)u_j$$

Is optimal

 \rightarrow Minimize energy functional on g

Szegö Coordinates

Goal: Best fit to target polygon

$$E(g) = \oint_{S} \left| g(w) - f(w) \right|^{2} ds$$

$$= \oint_{S} \left| \sum_{j=1}^{n} C_{j}(w) u_{j} - f(w) \right|^{2} ds$$

Szegö Coordinates

Goal: Best fit to target polygon

$$E(g) = \oint_{S} |g(w) - f(w)|^{2} ds$$

$$= \oint_{S} \left| \sum_{j=1}^{n} C_{j}(w) u_{j} - f(w) \right|^{2} ds$$

Solve: Sample boundary \rightarrow Linear equations in u_j

Szegö Coordinates - Comparison

Source

Cauchy-Green

Szegö

Point-to-Point Coordinates

Goal: Free user from the cage

$$E(g) = \sum_{k=1}^{p} \left| g(r_k) - f_k \right|^2$$

$$+\lambda^2 \int_{g} \left| g''(w) \right|^2 ds$$

Solve: Sample boundary

 \rightarrow Linear equations in u_j

Limitations

- Conformal not always best large scales
 - Isometric?

- Constructing a cage hard in 3D
 - Cage-less?

References

- "On Linear Variational Surface Deformation Methods" [Botsch & Sorkine '08]
- Tutorial: "Interactive Shape Modeling and Deformation" [Sorkine & Botsch '09]
- "Image deformation using moving least squares" [Schaefer et al '06]
- "Mean Value Coordinates for Closed Triangular Meshes" [Ju et al '05]
- "Harmonic coordinates for character articulation" [Joshi et al '07]
- "Green Coordinates" [Lipman et al '08]
- "Complex Barycentric Coordinates with Applications to Planar Shape Deformation"
 [Weber et al. '09]
- Excellent webpage on barycentric coordinates: http://www.inf.usi.ch/hormann/barycentric/

Thank you!

