

CS208: Applied Privacy for Data Science Introduction to Differential Privacy

School of Engineering & Applied Sciences
Harvard University

February 8, 2022

Attacks on Aggregate Stats

For releasing d population proportions on a dataset of size n:

Questions:

- If we allow error greater than \sqrt{d}/n , can we prevent these attacks?
- Can we reason about unforeseen attacks?

Goals of Differential Privacy

- Utility: enable "statistical analysis" of datasets
 - e.g. inference about population, ML training, useful descriptive statistics

- Privacy: protect individual-level data
 - against "all" attack strategies, auxiliary info.

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: effect of each individual should be "hidden"

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Sex	Blood	•••	HIV?	q_1	
F	В	•••	Υ	a_1	
M	Α	•••	N	q_2	
M	0	•••	N	a_2	TY THE
M	0	•••	Υ	a_3	
F	Α	•••	N		
M	В	•••	Υ	mechanism •	adversary

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

Simple approach: random noise

- Very little noise needed to hide each person as $n \to \infty$.
- Note: this is just for one query

DP for one query/release

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: for all x, x' differing on one row, and all q

Distribution of $M(x,q) \approx_{\varepsilon}$ Distribution of M(x',q)

DP for one query/release

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: for all x, x' differing on one row, and all q

 $\forall \text{ sets } T, \qquad \Pr[M(x,q) \in T] \lesssim (1+\varepsilon) \cdot \Pr[M(x',q) \in T]$

DP for one query/release

[Dwork-McSherry-Nissim-Smith '06]

Def: M is ε -DP if for all x, x' differing on one row, and all q

 $\forall \text{ sets } T, \qquad \Pr[M(x,q) \in T] \leq e^{\varepsilon} \cdot \Pr[M(x',q) \in T]$

(Probabilities are (only) over the randomness of M.)

The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]

• Very little noise needed to hide each person as $n \to \infty$.

The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]

• Very little noise needed to hide each person as $n \to \infty$.

The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]

- Let $\mathcal X$ be a data universe, and $\mathcal X^n$ a space of datasets.
 - This is the Bounded DP setting: n known and public.
- For $x, x' \in \mathcal{X}^n$, write $x \sim x'$ if x and x' differ on ≤ 1 row.
- For a query $q: \mathcal{X}^n \to \mathbb{R}$, the global sensitivity is $\Delta q = \mathrm{GS}_q = \max_{x \sim x'} |q(x) q(x')|$.
- The Laplace distribution with scale s, Lap(s):
 - Has density function $f(y) = e^{-|y|/s}/2s$.
 - Mean 0, standard deviation $\sqrt{2} \cdot s$.

Theorem: $M(x,q) = q(x) + \text{Lap}(\Delta q/\varepsilon)$ is ε -DP.

Calculating Global Sensitivity

1.
$$\mathcal{X} = \{0,1\}, q(x) = \sum_{i=1}^{n} x_i, \Delta q = 0$$

2.
$$\mathcal{X} = \mathbb{R}, \ q(x) = \sum_{i=1}^{n} x_i, \Delta q =$$

3.
$$X = [0,1], q(x) = mean(x_1, x_2, ..., x_n), \Delta q =$$

4.
$$\mathcal{X} = [0,1], \ q(x) = \text{median}(x_1, x_2, ..., x_n), \Delta q =$$

5.
$$X = [0,1], q(x) = \text{variance}(x_1, x_2, ..., x_n), \Delta q =$$

Q: for which of these queries is the Laplace Mechanism "useful"?