Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -1000.000 -1200.000 -1400.000 Radiell fart m/s -1600.000 -1800.000 -2000.000 -2200.000 -2400.000 1000 ò 2000 3000 4000 5000 6000 7000

Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 6.80e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) det finnes noe jern i kjernen

STJERNE B) stjernas luminositet er 10 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE C) massen til stjerna er 8 solmasser og den fusjonerer hydrogen i kjernen

STJERNE D) stjernas luminositet er 1/10 av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE E) stjerna er 10 milliarder år gammel, men har bare levd1/10av levetida si

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 1.020e+07 kg/m3̂ og temperatur 19 millioner K.

Kjernen i stjerne B har massetet
thet 6.355e+06 kg/m3̂ og temperatur 38 millioner K.

Kjernen i stjerne C har massetet
thet 3.003e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne D har massetet
thet 3.859e+06 kg/m3̂ og temperatur 29 millioner K.

Kjernen i stjerne E har massetet
thet 3.911e+06 kg/m3̂ og temperatur 29 millioner K.

Filen 1K/1K.txt

Påstand 1: denne stjerna er nærmest oss

Påstand 2: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

Påstand 3: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig større enn den tilsynelatende størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet $4.660\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 31.19 millioner K.

Kjernen i stjerne B har massetet
thet 2.832e+05 kg/m3̂ og temperatur 29.78 millioner K.

Kjernen i stjerne C har massetet
thet 1.512e+05 kg/m3̂ og temperatur 33.33

millioner K.

Kjernen i stjerne D har massetet
thet $3.032\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 25.01 millioner K.

Kjernen i stjerne E har massetet
thet 2.416e+05 kg/m3̂ og temperatur 19.89 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_.png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 123.05 dager etter første observasjon.

0.93

0.88

0.88

0.73

0.68

0.2480 0.2490 0.2500 0.2510 0.2520 0.2530 0.2540 0.2550

Bølgelengde (nm) minus 656nm

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 2.37 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tromsø som ligger i en avstand av 1400 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 98.80730 km/t.

Filen 3E.txt

Tog1 veier 30700.00000 kg og tog2 veier 36000.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 465 km/s.

Filen 4E.txt

Massen til gassklumpene er 5400000.00 kg.

Hastigheten til G1 i x-retning er 36600.00 km/s.

Hastigheten til G2 i x-retning er 42780.00 km/s.

Filen 4G.txt

Massen til stjerna er 57.30 solmasser og radien er 1.27 solradier.