PDE HOMEWORK 8

TOMMENIX YU
ID: 12370130
STAT 31220
DUE FRI MAY 19TH, 2023, 11PM

Discussed with classmates.

Exercise 1.

Proof.

1.

Plug in we have

$$c\sqrt{a}u = cv = \Delta v = \Delta\sqrt{a}u = \nabla\cdot\left[\nabla\sqrt{a}u + \sqrt{a}\nabla u\right] = \left(\Delta\sqrt{a}\right)u + 2\left(\nabla\sqrt{a}\right)\nabla u + \sqrt{a}\Delta u$$
$$= \left(\Delta\sqrt{a}\right)u + 2\left(\frac{\nabla a}{2\sqrt{a}}\right)\nabla u + \frac{a\cdot\Delta u}{\sqrt{a}} = \left(\Delta\sqrt{a}\right)u + \frac{1}{\sqrt{a}}(\nabla\cdot a\nabla u) = \left(\Delta\sqrt{a}\right)u$$

thus $c=\frac{\Delta\sqrt{a}}{\sqrt{a}}$ satisfies the condition. Check that it is true.

2.

Plug in we have

$$\begin{split} \nabla \cdot a \nabla \frac{v}{w} &= \nabla a \cdot \nabla \frac{v}{w} + a \cdot \nabla \left[\frac{w \nabla v - v \nabla w}{w^2} \right] \\ &= \nabla a \cdot \nabla \frac{v}{w} + a \frac{w \Delta v + \nabla v \nabla w - v \Delta w - \nabla v \nabla w}{w^2} + a \frac{2w \nabla w [w \nabla v - v \nabla w]}{w^4} \\ &= \nabla a \cdot \nabla \frac{v}{w} + a \frac{cvw - cwv}{w^2} + a \frac{2\nabla w}{w} \nabla \frac{v}{w} = \left(\nabla a - a \frac{2\nabla w}{w} \right) \nabla \frac{v}{w} \end{split}$$

thus to make above 0 we only need to make

$$\nabla a - a \frac{2\nabla w}{w} = 0 \Rightarrow a = w^2.$$

Thus $a = w^2$.

3.

Note that for $w = \sqrt{a}$, then we plug in $c = \frac{\Delta\sqrt{a}}{\sqrt{a}}$ from part 1 to get

$$\frac{\Delta\sqrt{a}}{\sqrt{a}}\sqrt{a} = cw = \Delta w = \Delta\sqrt{a}$$

so w is indeed a solution of (2). Thus, assume that v is a solution to (2), and we've shown \sqrt{a} is a solution of (2), by part 2 we know $\frac{v}{w} = \frac{v}{\sqrt{a}}$ is a solution of (1), since here $a = w^2$ exactly.

This, plus what we've done in part 1, shows that for $v = \sqrt{au}$, we have: u is a solution of (1) $\iff v$ is a solution of (2).

This, plus the boundary condition (which interchanges alike, since both 0), means that for $v = \sqrt{au}$, $c = \frac{\Delta\sqrt{a}}{\sqrt{a}}$, we have:

$$\begin{cases} \nabla \cdot a \nabla u = 0 & U \\ u = 0 & \partial U \end{cases} \iff \begin{cases} -\Delta v + cv = 0 & U \\ v = 0 & \partial U \end{cases}$$

and thus the 2 problems has "same" solutions up to \sqrt{a} . But if we can show continuity and coercivity, then by Lax-Milgram we know that the system on left attains unique solution, which is 0. So we define

$$B[u,v] := \int a\nabla u \nabla v dx \quad \left(= -\int \nabla \cdot (a\nabla u) \, v dx \right)$$

and get

• Continuity:

$$B[u, v] \le ||a||_{\infty} ||\nabla u||_{2} ||\nabla v||_{2} \le C ||\nabla u||_{H^{1}} ||\nabla v||_{H^{1}}$$

by what the norm is.

• Coercivity: Use Holder and then Poincare to get

$$B[u, u] \ge a_0 ||\nabla u||^2 \ge a_0 ||u||^2$$
.

Thus we can apply Lax Milgram and see that the solution is unique.

Alternatively, just note we can define $A := \operatorname{diag}(a, a, \dots, a)$ and then the operator becomes $\nabla \cdot a \nabla = \nabla \cdot A \nabla$ is elliptic, then use maximum principle on the set U to get that the unique solution is 0.

Counterexample:

Just take easy 1d Helmholtz equation say $\Delta u + u = 0$ on $U = (0, \pi)$. Then u = 0 and $u = \sin x$ are two different solutions that vanishes on the boundary, thus we are done.

Exercise 2.

Proof.

So let's just do integration by parts and see what's different.

Formally, if we want $f = -\Delta u + u$ then they'd better be the same with respect to all test functions in H^1 , so we compute

$$\int_{U} -\Delta uv + uv dx = \int_{U} \nabla u \nabla v + uv dx - \int_{\partial U} \nabla uv dx = \int_{U} \nabla u \nabla v + uv dx + \int_{\partial U} \frac{1}{\alpha(x)} uv dx$$

where the second integral is justified in the sense that on the boundary u, v are their trace. So we just define the bilinear form

$$B[u,v] := \int_{U} \nabla u \nabla v + uv dx + \int_{\partial U} \frac{1}{\alpha(x)} uv dx$$

and declare that u is a weak solution to the problem if

$$B[u,v] = \int_{U} f v dx$$

for all $v \in H^1$.

Now we try to show existence and uniqueness of this by Lax-Milgram, which gives us both at once.

To show continuity, we note that from Holder and bound on traces (5.5, Theorem 1)

$$B[u,v] \leq ||\nabla u||_2 \cdot ||\nabla v||_2 + ||u||_2 \cdot ||v||_2 + \frac{C'}{\alpha_0} ||\nabla u||_{H^1} \cdot ||\nabla v||_{H^1} \leq C||\nabla u||_{H^1} \cdot ||\nabla v||_{H^1}$$
 and thus we're done.

For coercivity, we note that the boundary integral is positive so

$$B[u, u] = \int_{U} |\nabla u|^{2} + u^{2} dx + \int_{\partial U} \frac{u^{2}}{\alpha(x)} dx \ge ||u||_{H^{1}}$$

and thus we're also done. Now Lax Milgram gives us unique solution directly.

Exercise 3.

Proof.

Step 1:

We introduce the cut-off function ζ . Let the support of u be U. The good thing about a compactly supported u is that we do not have to worry about the unboundedness of the derivative of ζ anymore: we can just fix some small enough $\delta > 0$ such that ζ is 1 on V, where

$$V := \left\{ x \in U \middle| \operatorname{dist}(x, \partial U) \ge \delta \right\}.$$

Because we can pick fixed δ , we just use $\nabla \zeta$ is bounded below.

Step 2:

Define

$$\alpha + \beta := \int \nabla u \nabla v + c(u)v dx = \int f v =: \gamma$$

for $f \in L^2$.

Note that from here, if we are justified to let $v = \Delta u$ then we do integral by part and everything will just follow. The only issue is that that's not legal since what we're proving is just that $u \in H^2$, so we go through the toil below.

Step 3:

Since we cannot define Δu , how about let's just do finite difference? We define

$$v := -D_k^{-h} \left(\zeta^2 D_k^h u \right)$$

for k fixed such that what we really want is $v = \partial_k^2 u$, heuristically. Here the notation means

$$D_k^h u(x) = \frac{u(x + he^k) - u(x)}{h}$$

so we need h small enough, but not as strict as we need for the general case since u is defined outside it's support, and we'll left to choose h small for later in bounding β . So we have $v \in H_0^1$ just because everything in it's definition is H^1 .

Step 4:

We get our result here. To prove H^2 we try to find it's second weak derivative and show that it is H_0^2 bounded. Note that we've half constructed it already with finite sums, now we really do the calculations.

By Evans 5.8.2 (or just Cauchy Schwartz) to get

$$\int v^2 = \int \left| D_k^{-h} \zeta^2 D_k^h u \right|^2 \le C \int_U \left| \nabla \left(\zeta^2 D_k^h u \right) \right|^2.$$

We have

$$\alpha = -\int_{U} \nabla u \cdot \nabla \left(D_{k}^{-h} \zeta^{2} D_{k}^{h} u \right) dx \stackrel{discrete ibp}{=} \int_{U} D_{k}^{h} (\nabla u) \cdot \nabla (\zeta^{2} D_{k}^{h} u) dx$$
$$= \int_{U} (D_{k}^{h} \nabla u) \cdot \nabla (\zeta^{2} D_{k}^{h} u) dx$$

which is the bad term with two derivatives, not caring about whether discrete or ∇ . So we can only use ellipticity.

Now we use result proven in class that D_k^h and ∇ commutes to get

$$\int_{U} (D_{k}^{h} \nabla u) \cdot \nabla (\zeta^{2} D_{k}^{h} u) dx = \int_{U} \zeta D_{k}^{h} \nabla u \cdot \zeta D_{k}^{h} \nabla u dx + \int_{U} 2 \nabla \zeta \cdot \zeta D_{k}^{h} \nabla u \cdot D_{k}^{h} u dx$$

where we use elliptic to deal with the first, and good bad ε argument to deal with the second, i.e. since $\nabla \zeta$ and ζ are bounded

$$\int_{U} 2\nabla \zeta \cdot \zeta D_{k}^{h} \nabla u \cdot D_{k}^{h} u dx = C_{1} \int_{U} (\varepsilon D_{k}^{h} \nabla u) \frac{D_{k}^{h} u}{\varepsilon} dx \leq C_{2} \left(\varepsilon^{2} ||D_{k}^{h} \nabla u||_{2}^{2} + \frac{||D_{k}^{h} u||_{2}^{2}}{\varepsilon^{2}} \right)$$

and we pick $C_2 \varepsilon^2 \le \frac{1}{2}$ to put that term in the elliptic term, and $\frac{C_2}{\varepsilon^2}$ is just a constant so we get:

$$\frac{1}{2} \int_{U} \left| \zeta D_{k}^{h} \nabla u \right|^{2} \leq C \left(\left| \nabla u \right|^{2} + \left| D_{k}^{h} u \right|^{2} \right) + \left| \beta \right|.$$

Now we bound β . Writing things out we have

$$\beta = \int c(u)v dx = -\int c(u)D_k^{-h} \left(\zeta^2 D_k^h u\right) dx \stackrel{discrete ibp}{=} \int c_k^h (u)D_k^h u D_k^h u dx$$

where $c_k^h(u) \to c'(u)$ as we take limit later since it is smooth, so for small h it is close to c'(u), in particular positive after taking the limit. So we have

$$\beta \leq C_3||D_k^h u||_2^2.$$

But we can use the same good bad ε trick again to bound γ :

$$\gamma = \int_{U} f v dx \le C_4 \left(\frac{1}{\varepsilon^2} ||f||_2^2 + \varepsilon^2 ||v||_2^2 \right)$$

where we only need to estimate $||v||_2^2$, for which we use Theorem 3 in 5.8.2 (or painfully write out quotient and then bound both terms)

$$\int_{U} \left| D_{k}^{-h} \left(\zeta^{2} D_{k}^{h} u \right) \right|^{2} dx \leq C_{5} \int_{V} |D_{k}^{h} u|^{2} + \zeta^{2} |D_{k}^{h} \nabla u|^{2} dx \leq C_{6} \left(|D_{k}^{h} u|^{2} + |D_{k}^{h} \nabla u|^{2} \right)$$

so ok we pick $C_6 \varepsilon^2 = \frac{1}{4}$ to control the terms and combine estimates on α , β , γ to get the final estimate:

$$\frac{1}{4} \int_{U} \zeta^{2} |D_{k}^{h} \nabla u|^{2} \le C \left(||f||_{2}^{2} + ||u||_{2}^{2} + ||D_{k}^{h} u||_{2}^{2} \right)$$

where C is independent of h, which is the only important thing that matters here. Also, what does it matter if we use $|D_k^h \nabla u|^2$ or $|\nabla u|^2$ so we just replace with that (or 5.8.2 to be rigorous).

Now take $h \to 0$ by Evans 5.8.2 Theorem 3(ii) we can pass the limit and get

$$\int_{U} \zeta^{2} |\partial_{k} \nabla u|^{2} \leq C \left(||f||_{2}^{2} + ||u||_{H_{0}^{1}(U)}^{2} \right)$$

so ok that's inconveniently a square there but we can bound the square root by Cauchy-type estimates and get:

$$||u||_{H^2(U)} \lesssim C \left(||f||_2 + ||u||_{H^1_0(U)}\right)$$

and thus we are done.