

표현(Representation)

실무형 인공지능 자연어 처리

4

TF-IDF (단어빈도-역문서빈도)

Term Frequency-Inverse Document Frequency

TF-IDF (Term Frequency-Inverse Document Frequency)

- 단어 빈도 역문서 빈도
- TDM 내 각 단어의 중요성을 가중치로 표현
- TDM을 사용하는 것보다 더 정확하게 문서비교가 가능

$$\mathsf{tfidf}(t,d,D) = \mathsf{tf}(t,d) \cdot \mathsf{idf}(t,D)$$

tf(d,t)	특정 문서 d에서의 특정 단어 t의 등장 횟수
df(t)	특정 단어 t가 등장한 문서의 수
idf(d, t)	df(t)의 역수

TF-IDF

$$\mathsf{tfidf}(t,d,D) = \mathsf{tf}(t,d) \cdot \mathsf{idf}(t,D)$$

tf(d,t)	특정 문서 d에서의 특정 단어 t의 등장 횟수
df(t)	특정 단어 t가 등장한 문서의 수
idf(d, t)	df(t)의 역수

TF	IDF	TF-IDF	설명
높	높	높	특정 문서에 많이 등장하고 타 문서에 많이 등장하지 않는 단어 (중요 키워드)
높	낮	-	특정 문서에도 많이 등장하고 타 문서에도 많이 등장하는 단어
낮	높	-	특정 문서에는 많이 등장하지 않고 타 문서에만 많이 등장하는 단어
낮	낮	낮	특정 문서에 많이 등장하지 않고 타 문서에만 많이 등장하는 단어

TF-IDF 가중치 계산

Variants of term frequency (tf) weight

weighting scheme	tf weight	
binary	0,1	
raw count	$f_{t,d}$	
term frequency	$\left f_{t,d} \middle/ \sum_{t' \in d} f_{t',d} ight $	
log normalization	$\log(1+f_{t,d})$	
double normalization 0.5	$0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$	
double normalization K	$K+(1-K)rac{f_{t,d}}{\max_{\{t'\in d\}}f_{t',d}}$	

Variants of inverse document frequency (idf) weight

weighting scheme	idf weight ($n_t = \{d \in D: t \in d\} $)
unary	1
inverse document frequency	$\log rac{N}{n_t} = -\log rac{n_t}{N}$
inverse document frequency smooth	$\log\!\left(\frac{N}{1+n_t}\right)$
inverse document frequency max	$\log\!\left(rac{\max_{\{t'\in d\}}n_{t'}}{1+n_t} ight)$
probabilistic inverse document frequency	$\log rac{N-n_t}{n_t}$

출처: https://en.wikipedia.org/wiki/Tf%E2%80%93idf

IDF에 로그를 사용하는 이유

총문서수	10,000	
	단어A	단어B
Freq	8	9
DF	0.0008	0.0009
IDF	7.1309	7.0131
변화율	1.6	5%
	단어C	단어D
Freq	단어C 8000	단어D 8001
Freq DF		
· ·	8000	8001

출처: https://en.wikipedia.org/wiki/Tf%E2%80%93idf

IDF에 로그를 사용하는 이유

출처: https://en.wikipedia.org/wiki/Tf%E2%80%93idf

TF-IDF 계산절차

예제 1 : 토큰 Index 생성

문서1 : d1 = "The cat sat on my face I hate a cat" 문서2 : d2 = "The dog sat on my bed I love a dog"

	Index
The	0
cat	1
sat	2
on	3
my	4
face	5
I	6
hate	7
a	8
dog	9
bed	10
lov	11

예제: TF 계산

 $f_{t,d}$ = 문서내 토큰 빈도

 $SUM(f_{td})$ = 문서내 전체 토큰빈도

문서1 : d1 = "The cat sat on my face I hate a cat" 문서2 : d2 = "The dog sat on my bed I love a dog"

문서1

	문서내 토큰 빈도	문서내 전체 토큰빈도	TF
The	1	10	0.1
cat	2	10	0.2
sat	1	10	0.1
on	1	10	0.1
my	1	10	0.1
face	1	10	0.1
I	1	10	0.1
hate	1	10	0.1
а	1	10	0.1
dog	0	10	0
bed	0	10	0
lov	0	10	0

문서2

	문서내 토큰 빈도	문서내 전체 토큰빈도	TF
The	1	10	0.1
cat	0	10	0
sat	1	10	0.1
on	1	10	0.1
my	1	10	0.1
face	0	10	0
I	1	10	0.1
hate	0	10	0
а	1	10	0.1
dog	2	10	0.2
bed	1	10	0.1
love	1	10	0.1

10 페이지

예제: IDF 계산

문서1 : d1 = "The cat sat on my face I hate a cat" 문서2 : d2 = "The dog sat on my bed I love a dog"

$$\log rac{N}{n_t} = -\log rac{n_t}{N}$$

N = 문서수 $n_t = 토큰이 등장한 문서수$

	문서수	토큰이 등장한 문서수	IDF
The	2	2	0
cat	2	1	0.301
sat	2	2	0
on	2	2	0
my	2	2	0
face	2	1	0.301
I	2	2	0
hate	2	1	0.301
a	2	2	0
dog	2	1	0.301
bed	2	1	0.301
love	2	1	0.301

예제:TF-IDF 계산

문서1: d1 = "The cat sat on my face I hate a cat" 문서2: d2 = "The dog sat on my bed I love a dog"

문서1

	TF	IDF	TF-IDF
The	0.1	0	0
cat	0.2	0.301	0.060
sat	0.1	0	0
on	0.1	0	0
my	0.1	0	0
face	0.1	0.301	0.301
I	0.1	0	0
hate	0.1	0.301	0.301
а	0.1	0	0
dog	0	0.301	0.301
bed	0	0.301	0.301
lov	0	0.301	0.301

문서2

	TF	IDF	TF-IDF
The	0.1	0	0
cat	0	0.301	0
sat	0.1	0	0
on	0.1	0	0
my	0.1	0	0
face	0	0.301	0.301
I	0.1	0	0
hate	0	0.301	0.301
a	0.1	0	0
dog	0.2	0.301	0.601
bed	0.1	0.301	0.301
love	0.1	0.301	0.301

5 n-Gram

n-Gram 이란?

- 복수개(n개) 단어를 보는냐에 따라 unigram, bigram, trigram 등 으로 구분
- 제한적으로 문맥을 표현할 수 있음

n-Gram 이란?

an adorable little boy is spreading smile

- unigrams: an, adorable, little, boy, is, spreading, smiles
- bigrams: an adorable, adorable little, little boy, boy is, is spreading, spreading smiles
- trigrams: an adorable little, adorable little boy, little boy is, boy is spreading, is spreading smiles
- 4-grams: an adorable little boy, adorable little boy is, little boy is spreading, boy is spreading smiles

n-Gram 한계

- n의 크기는 trade-off 문제
 - 1보다는 2를 선택하는 것이 대부분 언어 모델 성능을 높일 수 있음
 - o n을 너무 크게 선택하면 n-gram 이 unique 할 확률이 높아 등장수가 낮을 확률이 높음. (OOV, Out of Vocabulary 문제가 발생할 수 있음)
 - n을 너무 작게 하면 카운트는 잘되지만 정확도가 떨어질 수 있음. n은 최대 5를 넘지 않도록 권장

- Unigram Bigram Trigram
Perplexity 962 170 109

스탠포드에 3,800만개 단어 토큰을 n-Gram으로 학습한 결과

- n-Gram 카운트가 0인 경우
 - o n-Gram 이 모든 단어를 커버 할 수 없기 때문에 Out of Vocabulary 문제가 발생할수 있음

적용 분야(Domain)에 맞는 코퍼스의 수집

- 분야(Domain)에 따라 단어들의 확률 분포는 다름
 (금융 분야는 금융 관련 용어가 많이 등장하고, 마케팅은 관련 용어가 많이 등장할 것임)
- 분야에 적합한 코퍼스를 사용하면 언어 모델의 성능이 높아질 수 있음
 (훈련에 사용되는 코퍼스에 따라 언어 모델의 성능이 달라짐 이는 언어 모델의 약점으로 분류되기도함)

Google Books Ngram Viewer

Google Books Ngram Viewer

https://books.google.com

감사합니다.

Insight campus Sesac

