Exercice 1

On considère deux bobines plates circulaires (C_1) et (C_2) , de centres respectifs O_1 et O_2 , de rayons respectifs R_1 et R_2 , et comportant respectivement N_1 et N_2 spires. On suppose que $R_2 << R_1$ et que $N_2 < N_1$. Les bobines plates (C_1) et (C_2) sont parcourues par les courants d'intensités respectives I_1 et I_2 .

Rappels (exercice 2 du TD 1):

Une bobine plate parcourue par un courant électrique crée un champ d'induction magnétique dont la direction est l'axe de la bobine plate.

Pour une bobine plate de centre O et de rayon R, constituée par N spires circulaires et parcourue par un courant d'intensité I, le module du champ d'induction magnétique créé au point O

Figure 1

par la bobine plate est donnée par l'expression :
$$B(O) = I \mu_0 \frac{N}{2R}$$

1) Calculer les inductances propres L_1 et L_2 , respectivement de (C_1) et (C_2)

L'inductance propre de C₁;
$$L_1 = \frac{\phi_{11}}{I_1}$$

Le flux Φ_{11} à travers C_1 du champ $\vec{\textit{B}}_1$ créé par C_1

$$\phi_{11}=N_1\,\phi_{1-spire1}=N_1\iint_{S_1}\overrightarrow{B_1}\cdot\overrightarrow{dS_1}=N_1\,\iint_{S_1}B_1\,dS_1$$

- \bullet S₁ est la surface du disque limité par une spire du circuit (C₁), orientée par le courant d'intensité I₁ conformément à la règle du tire-bouchon.
- •Le champ \vec{B}_1 créé par le circuit C_1 et la surface S_1 sont orientés par le courant d'intensité I_1 conformément à la règle du tire-bouchon par conséquent le champ \vec{B}_1 et le vecteur unitaire associé à S_1 sont colinéaires et ont même sens (\vec{B}_1 . $d\vec{S} = B dS$)
- Etant donné que le rayon d'une bobine plate est relativement petit, on suppose qu'en tout point de la surface S_1 le champ \vec{B}_1 est uniforme et égal au champ créé par C_1 en son centre O_1 Par conséquent, le flux à travers une spire de C_1 du champ \vec{B}_1 est :

$$\phi_{1spire1} = I_1 \ \mu_0 \frac{N_1}{2R_1} \pi R_1^2$$

Le flux Φ_{11} , à travers la bobine plate, du champ \vec{B}_1 est : $\phi_{11} = I_1 \mu_0 \frac{N_1^2}{2} \pi R_1$

Le coefficient d'inductance propre de la bobine plate C_1 : $L_1 = \frac{\phi_{11}}{I_1} = \mu_0 \frac{N_1^2 \pi R_1}{2}$

De la même façon on détermine l'inductance propre de la bobine plate C_2 , et on trouve :

$$L_2 = \frac{\phi_{22}}{I_2} = \mu_0 \frac{N_2^2 \pi R_2}{2}$$

Corrigé-exe1et2-TD2

- 2) Calculer leur inductance mutuelle M dans les cas suivants et discuter son signe selon le sens des courants dans les cas suivants :
- a) (C₂) est dans le plan de (C₁) tel que son centre O₂ est confondu avec O₁ (figure 2).

$$M = \frac{\phi_{12}}{I_1} = \frac{\phi_{21}}{I_2}$$

On calcule le flux Φ_{12} à travers C_2 du champ $\vec{\textit{B}}_1$ créé par C_1 :

$$\phi_{12} = N_2 \iint_{S_2} \overrightarrow{B_1} \, (M \in S_2) \, . \, \, \overrightarrow{n_2} \, dS_2 \approx N_2 \iint_{S_2} \overrightarrow{B_1} \, (O_1) \, . \, \, \overrightarrow{n_2} \, dS_2 = I_1 \frac{N_1 \, N_2 \mu_0}{2 R_1} (\vec{e}_z \, . \vec{e}_z) \iint_{S_2} dS_2$$

$$\phi_{12} = I_1 \frac{N_1 N_2 \,\mu_0 \pi R_2^2}{2R_1} = I_1 \frac{N_1 N_2 \,\mu_0 \pi R_2^2}{2R_1}$$

Soit
$$M = \frac{\phi_{12}}{I_1} = \mu_0 \frac{N_1 N_2 \pi R_2^2}{2R_1}$$

si on inverse le sens de I_1 ou celui de I_2 , M<0

Figure 2

b) (C₂) est parallèle à (C₁). Les deux bobines (C₁) et (C₂) ont même axe qui passe par O₁ et O₂. On donne O₁O₂ = d avec d >> R₁ Le flux Φ_{12} à travers C₂ du champ \vec{B}_1 créé par C₁:

$$\begin{split} \phi_{12} &= N_2 \iint_{S_2} \overrightarrow{B_1} (M \in S_2). \ \overrightarrow{n_2} \, dS_2 \\ &\approx N_2 \iint_{S_2} \overrightarrow{B_1} (O_2). \ \overrightarrow{n_2} \, dS_2 \\ &= I_1 \frac{N_1 N_2 \mu_0 R_1^2}{2 (d^2 + R_1^2)^{3/2}} (\vec{e}_z . \vec{e}_z) \iint_{S_2} dS_2 \\ &= I_1 \frac{N_1 N_2 \mu_0 R_1^2 \pi R_2^2}{2 (d^2 + R_1^2)^{3/2}} \\ &= I_1 \frac{N_1 N_2 \mu_0 R_1^2 \pi R_2^2}{2 (d^2 + R_1^2)^{3/2}} \\ &= I_1 \frac{N_1 N_2 \mu_0 R_1^2 \pi R_2^2}{2 d^3} \end{split}$$

Où S_2 est la surface du disque limité par une spire du circuit (C_2) , orientée par le courant d'intensité I_2 conformément à la règle du tire-bouchon.

d>>R1 et d>>R2 : (d²+ R1²)
$$\,\approx d^2$$

$$M\approx\frac{\mu_0\,\pi\,R_1^2R_2^2}{2d^3} \text{ si on inverse le sens de } I_1 \text{ ou celui de } I_2 \text{ , } M\approx\text{-}\frac{\mu_0\,\pi\,R_1^2R_2^2}{2d^3} <0$$

Corrigé-exe1et2-TD2