INTRODUÇÃO A SISTEMAS OPERACIONAIS DCE131 - Sistemas Operacionais

Atualizado em: 11 de maio de 2023

Departamento de Ciência da Computação

INTRODUÇÃO

Um computador moderno é um misto de dois grandes elementos

2

SISTEMA OPERACIONAL

Entre o hardware e o software, está o sistema operacional

O sistema operacional é um software, ou conjunto de softwares, cuja função é administrar e gerenciar os recursos de um sistema, desde componentes de hardware e sistemas de arquivos a programas de terceiros, estabelecendo a interface entre o computador e o usuário.

O principal objetivo de um sistema operacional é tornar a utilização do sistema (os softwares) eficiente

 Além disso, ele deve fazer o uso inteligente e eficiente do hardware disponível

TAREFAS DE UM SISTEMA OPERACIONAL

O propósito de um sistema operacional é propiciar um ambiente no qual o usuário possa executar programas de forma conveniente e eficiente.

Compreender as razões por trás do desenvolvimento dos sistemas operacionais nos dá uma melhor compreensão das tarefas que eles executam e como o fazem.

O sistema operacional deve garantir a operação correta do sistema de computação

O Gerenciamento eficiente dos recursos de hardware (e software)

Fios, placas, equipamentos de E/S e conectores

HARDWARE

Todo hardware atual é baseado na arquitetura de Von Neumann

- O Programas são armazenados no mesmo espaço que os dados
- O Possibilita a fácil manipulação de dados pelos programas

7

HARDWARE

Computadores atuais são tão potentes como aqueles dos anos 50 ou 60

- Mais memória
- O Maior poder de processamento
- Barramentos mais rápidos
- O Mesmo assim, ainda não resolvem problemas mais complexos

SISTEMA OPERACIONAL

Podemos considerar o sistema operacional como um alocador e gerenciador de recursos

- Processamento
 - Controlar quais processos s\(\tilde{a}\) executados, em que ordem e por quanto tempo
- Memória
 - Alocar diferentes trechos de memória para processos diferentes
 - Compartilhar memória entre processos
 - Fazer a comunicação entre registradores, memória primária e secundária
- Arquivos
 - Organizar e manter arquivos
 - Gerenciar árvore de arquivos
- Entrada e saída
 - Como estes dispositivos comunicam-se com o software
 - Usabilidade

SEGURANÇA E ISOLAMENTO

Um dos pontos mais críticos de um sistema operacional tem a ver com a segurança e o isolamento do sistema

Espaços de memória e de execução isolados para cada processo

- O Um processo não pode acessar o espaço reservado a outro
- Um programador só deve se preocupar com o espaço de memória do software que ele está desenvolvendo
- Este isolamento garante segurança

Sistemas baseados em UNIX possuem uma estrutura de diretórios tão eficiente que possibilitam a real implementação de um dispositivo multi-usuário

SISTEMA OPERACIONAL COMO UMA MÁQUINA VIRTUAL

Máquina virtual

Uma abstração de software que enxerga um sistema físico

Um sistema operacional funciona como uma máquina virtual para os usuários

E também para os desenvolvedores

Ele funciona como uma interface para que o software acesse o hardware

- Fornece primitivas de acesso ao hardware
- O Padroniza maneiras para realizar entrada e saída

CONCEITOS SOBRE SISTEMAS OPERACIONAIS

Nesta disciplina, vamos sempre utilizar alguns conceitos básicos

- 1. Processos, threads, programas e espaço de memória
- 2. Tabela e árvore de processos
- 3. Arquivo e sistema de arquivos
- 4. Chamadas de sistema

PROCESSO

Um processo é, de forma generalista, um programa em execução

Todo software ou programa rodando em um sistema operacional é um processo

Cada processo possui seu próprio espaço de endereçamento

- Espaço contíguo de RAM
- Pilha de execução
- O Dados e variáveis

PROCESSO - REGISTRADORES

Cada processo também possui um conjunto de registradores associado a ele

Os principais são

- Contador de programa
- Ponteiro para pilha de execução

estado do processo									
identificação do processo									
registrador PC									
registradores da UCP									
informações de escalonamento									
limites de memória									
informações de contabilização									
relação de arquivos abertos									

PROCESSO E PROGRAMA

Programa: é uma entidade estática e permanente, formado por um conjunto de instruções. Considerado passivo sob o ponto de vista do sistema operacional

Processo: entidade dinâmica e efêmera - altera seu estado à medida que avança sua execução

Um processo é uma instância de um programa em execução

- O Quando em execução, este compete por recursos de hardware
 - Tempo de processamento
 - Memória
 - Acesso a disco
 - Entrada e saída

TABELA DE PROCESSOS

Armazena as informações relacionadas a um processo

O Seu espaço de endereçamento e seus registradores

Úteis para realizar o gerenciamento de recursos

Quais recursos estão em uso por quais processos

Estrutura resumida de visualização das informações relacionadas aos processos

TABELA DE PROCESSOS

VISUALIZAÇÃO DA TABELA DE PROCESSOS

top - 19:18:23 up 27 days, 10:47, 1 user, load average: 0.00, 0.00, 0.00
Tasks: 115 total, 1 running, 112 sleeping, 1 stopped, 1 zomble
Cpu(s): 0.2%us, 0.0%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 1025646k total, 509988k used, 515660k free, 114612k buffers
Swap: 1951856k total, 40252k used, 1911604k free, 185928k cached

PID	USER	PR	ΝI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
15117	iago	20	0	2308	1128	852	R	1	0.1	0:13.32	top
1	root	20	0	2844	1688	544	S	0	0.2	0:01.14	init
2	root	15	-5	0	0	0	S	0	0.0	0:00.00	kthreadd
3	root	RT	-5	0	0	0	S	0	0.0	0:00.04	migration/0
4	root	15	-5	0	0	0	S	0	0.0	0:00.14	ksoftirqd/0
5	root	RT	-5	0	0	0	S	0	0.0	0:00.00	watchdog/0
6	root	RT	-5	0	0	0	S	0	0.0	0:00.04	migration/1
7	root	15	-5	0	0	0	S	0	0.0	0:00.08	ksoftirqd/1
8	root	RT	-5	0	0	0	S	0	0.0	0:00.00	watchdog/1
9	root	15	-5	0	0	0	S	0	0.0	0:04.86	events/0
10	root	15	-5	0	0	0	S	0	0.0	0:04.88	events/1
11	root	15	-5	0	0	0	S	0	0.0	0:00.00	khelper
46	root	15	-5	0	0	0	S	0	0.0	0:01.98	kblockd/0
47	root	15	-5	0	0	0	S	0	0.0	0:00.50	kblockd/1
50	root	15	-5	0	0	0	S	0	0.0	0:00.00	kacpid
51	root	15	-5	0	0	0	S	0	0.0	0:00.00	kacpi_notify
130	root	15	-5	0	0	0	S	0	0.0	0:00.00	kseriod
170	root	20	0	0	0	0	S	0	0.0	0:00.58	pdflush
171	root	20	0	0	0	0	S	0	0.0	0:09.00	pdflush
172	root	15	-5	0	0	0	S	0	0.0	0:01.68	kswapd0
213	root	15	-5	0	0	0	S	0	0.0	0:00.00	aio/0
214	root	15	-5	0	0	0	S	0	0.0	0:00.00	aio/1
878	www-data	20	0	26392	13m	4512	S	0	1.3	0:07.36	apache2
923	www-data	20	0	30512	17m	4412	S	0	1.7	0:05.30	apache2
1430	root	15	-5	0	0	0	S	0	0.0	0:00.00	ksuspend usbd
1431	root	15	-5	0	0	0	S	0	0.0	0:00.00	khubd
1525	root	15	-5	0	0	0	S	0	0.0	0:40.56	ata/0
1526	root	15	-5	0	0	0	S	0	0.0	0:00.06	ata/1
1527	root	15	-5	0	0	0	S	0	0.0	0:00.00	ata aux
2081	www-data	20	0	30544	17m	4436	S	0	1.7		apache2

VISUALIZAÇÃO DA TABELA DE PROCESSOS

ÁRVORE DE PROCESSOS

Conceito de processo pai e processo filho

O Pai é quem cria

ESTADOS DE UM PROCESSO

Pronto: Está esperando seu tempo de execução

Executando: Está na CPU

Bloqueado: Processo em estado de espera

 Aguardando a realização de uma entrada/saída ou de uma chamada remota

ARQUIVOS E SISTEMA DE ARQUIVOS

Um arquivo é um conjunto de dados salvo em disco

Um **sistema de arquivos** é um conjunto de estruturas lógicas que permite acesso e controle dos arquivos gravados em disco

O Estruturas lógicas são construídas diretamente em software

CHAMADAS DE SISTEMA

Conjunto de instruções extendidas fornecidas por um sistema operacional

Modo usuário: Conjunto restrito de instruções

Modo núcleo: Conjunto estendido de instruções

 Instruções mais próximas do hardware

