

Introduction to the course

(Machine Learning)

Nazgul Rakhimzhanova

IITU 2021

OUTLINE

- Course Rules
- Syllabus and Evaluation criteria
- Intro to DS and ML
- Tools for DS
- Readings

COURSE RULES

- 1ST: Enjoy
- •2nd: Read -> Think -> Implement
- •3rd: Ask questions...But **before**, **think** once again
- •4th: Be responsible for your actions
- •5th: Cheating == Instant karma

COURSE RULES

- Your attendance == your grades
- Listen on Lectures implement on Labs ask questions on Practice Classes
- No re-explanations at Labs

COURSE RULES

You should/have/must read more than we ask code more than we ask analyze more than we ask comment more than we ask

COURSE CALENDAR

week	Mid Term (weeks 01-07)	End Term (weeks 08-14)	week
01	Intro: Data Science Area and open source tools for Data Science		08
02	NumPy package for data science	Sampling and Estimation	09
03	Pandas package for data science	Correlation and Covariance	10
04	Visualization with matplotlib	Hypothesis testing	11
05	Statistics: Distribution – Normal	Decision Tree	12
06	Exploratory Data Analysis (EDA)	Linear Regression	13
07	Summary for 6 weeks QA session	Summary for 6 weeks QA session	14
15	Course summary		

SYLLABUS: Resume

•Mid Term Week01-Week07:

- 5 graded lab works 01-05 (10 points each)
- 5 graded Quizzes 01-05 (4 points each)
- Mid Term task (30 points)
- Note! Laboratory work 00 and Quiz 00 are ungraded.

SYLLABUS: Resume

•End Term Week08 - Week14:

- 5 graded lab works 06-10 (10 points each)
- 5 graded Quizzes 06-10 (4 points each)
- End Term task (30 points)

WEEK STRUCTURE

•What questions do you have any about your Evaluation criteria's?

INTRO TO
Data Science
and
Machine Learning

- Data science Data science is a multidisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from structured and unstructured data.
- Data science is the same concept as data mining and big data: "use the most powerful hardware, the most powerful programming systems, and the most efficient algorithms to solve problems"

·Data Science is an art.

Types of Data Science:

- Descriptive Analytics (Business Intelligence): Get useful data in front of the right people in the form of dashboards, reports, and emails
- Predictive Analytics (Machine Learning): Put data science models continuously into production
- Prescriptive Analytics (Decision Science): Use data to help a company make decisions

The standard Data Science Workflow:

Data Collection: Compile data from different sources and store it for efficient access

Exploration and Visualization: Explore and visualize data through dashboards

Experimentation and Prediction: The buzziest topic in data science—machine learning!

Exploration and Visualization

Popular Dashboard Tools

Experimentation and Prediction

	Supervised Machine Learning	Unsupervised Machine Learning
Purpose	Makes predictions from data with labels and features	Makes predictions by clustering data with no labels into categories
Example	Recommendation systems, email subject optimization, churn prediction	Image segmentation, customer segmentation
	A B I D CONTROL WARRATION	

Data Engineer
Store and
maintain data
SQL/Java/Scala/Pyt
hon

Data Analyst
Visualize and
describe data
SQL + BI tools

Data Scientist

Build custom

models to drive

business

decisions

Python/SQL/R

Machine Learning Engineer
Write production-level code
to predict with data
Python/Java/R

Problems DA can solve

- Prediction: traffic, flood, disease, earthquakes, election outcome etc.
- Detection (classification): fraud, illegal immigrants, suspicious individuals etc.

Problems DA can solve

• Give me some examples for prediction tasks and classification tasks.

TOOLS for DS

- Python / Java / R / C++ / Scala
- SQL / NoSQL
- IDEs notebooks: Jupyter, Polynote and, Google Collab, Kaggle etc.
- BI tools (Power BI, Tableau)

TOOLS for this course

Jupyter Notebook https://jupyter.org/about

or

- https://colab.research.google.com/
- https://www.kaggle.com/notebooks/welcome

Install on your personal laptops

- -Python 3.8 (you can encounter some issues with 3.8 python)
- -Jupyter Lab, Jupyter Notebook (or Conda)
- -pip

What will you learn?

- •Jupyter notebook + Python for DS
- Basics of statistics for machine learning
- •Visualization tools
- Basics of classic machine learning

Readings

- https://jupyter.org/documentation
- Practical Statistics for Data Science, book by Peter Bruce, Andy Bruce, O'Reilly
- Python Data Science Handbook: Essential Tools for Working with Data, Book by Jacob T. VanderPlas
- Data Science from Scratch, Book by Joel Grus

Additional resources

• Khan academy