Supporting Information:

Text S1: Vertical tectonic correction

A primary indicator of long-term tectonic stability is the elevation of previous interglacials, particularly the Last Interglacial from ~130-118 ka BP (MIS 5e). If MIS5e occurs within about 10 m of present sea level, the region is assumed to have been stable within 0.1 mm/year and any contribution to LGM sea levels is $\sim \pm 2$ m. Where these shorelines lie further from present sea level, their elevation $h_{\rm LIG}$ provide a first-order measure of long-term tectonic uplift rate

$$\dot{\Delta}\xi_T(\phi,t) = (h_{LIG} - \Delta\xi_{LIG})/T_{LIG}$$

where T_{LIG} is the age of MIS5e (125±5 ka) and $\Delta \zeta_{\text{LIG}}$ is the expected sea level in the absence of tectonics, assumed here to be at 5±5 m to allow for both the lesser ice during the LIG and the GIA spatial variability expected across far field sites (1–3). The tectonic correction and its accuracy at time t is

$$\begin{split} &\Delta \xi_T(\phi,t) = \dot{\Delta} \xi_T(\phi,t) \times t \\ &\sigma_h^2 = (\dot{\Delta} \xi_T / \sigma_t)^2 + (\sigma_{h(LIG)}^2 + \sigma_{\Delta \xi(LIG)}^2) / T_{LIG}^2 + (h_{LIG} - \Delta \xi_{LIG})^2 \sigma_{T(LIG)}^2 / T_{LIG}^4 \end{split}$$

The Huon Peninsula, Papua New Guinea, is an area of rapid uplift with the LIG reefs of earlier interglacial reefs at elevations of 1000 m and more with rates of uplift that vary with location (4). The Holocene data is from Sialum (Kwamba) with an uplift rate of 1.9 m ka⁻¹ (5), whereas the MIS3 data is from the Kanzarua and Bobongara sections with uplift rates of 2.8 and 3.4 m ka⁻¹ respectively (6). These are average rates over 100,000 years but at least in the case of Sialum the uplift rate over the past 6,000 years is consistent with that for the longer interval.

Tahiti, a relatively young volcanic load, is subject to subsidence from the loading of the lithosphere by the volcanic complex and, to a lesser degree, from the thermal contraction of a cooling lithosphere. The volcanic load is relatively young ($\sim 10^6$ years) and the relaxation time for the oceanic lithosphere for this region may be of the order of $\sim 10^7$ years (7), yielding a subsidence rate of about 0.1 mm/year or only about 1 m over 10,000 years. This is the value adopted here with an uncertainty of 50% (see (8) for a further discussion).

Barbados is a slowly uplifting and faulted island with MIS5e reefs at elevations from 60 to 24 m above present sea level (9). Onshore of the core sites this reef occurs at \sim 35 m but the offshore extension of the faults is unknown. We adopt this value here with an uncertainty of \pm 10 m.

Sea level estimates from within the large river deltas of Asia may be subject to subsidence from both compaction of the sediment subsequent to the formation of the sea-level marker as well as from the lithosphere-mantle response to the time-dependent sediment load. The first of these will be restricted to the delta region itself whereas the latter will extend beyond the confines of the delta and sea-floor fan. Calculations for a similar-scale Mississippi delta suggest that this is small beyond about 100 km of the load (10). Hence we have only used data from areas beyond the delta.

- 1. Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M (2009) Probabilistic assessment of sea level during the last interglacial stage. *Nature* 462:863–7.
- 2. Dutton A, Lambeck K (2012) Ice volume and sea level during the last interglacial. Science 337:216–9.
- 3. Lambeck K, Purcell A, Dutton A (2012) The anatomy of interglacial sea levels: The relationship between sea levels and ice volumes during the Last Interglacial. *Earth Planet Sci Lett* 315-316:4–11.
- 4. Chappell J (1974) Geology of Coral Terraces, Huon Peninsula, New Guinea: A Study of Quaternary Tectonic Movements and Sea-Level Changes. *Geol Soc Am Bull* 85:553–570.
- 5. Chappell J, Polach H (1991) Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. *Nature* 349:147–149.

- 6. Yokoyama Y, Esat TM, Lambeck K (2001) Last glacial sea-level change deduced from uplifted coral terraces of Huon Peninsula, Papua New Guinea. *Quat Int* 83-85:275–283.
- 7. Lambeck K (1981) Lithospheric response to volcanic loading in the Southern Cook Islands. *Earth Planet Sci Lett* 55:482–496.
- 8. Lambeck K, Yokoyama Y, Purcell T (2002) Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2. *Quat Sci Rev* 21:343–360.
- 9. Radtke U, Grün R, Schwarcz HP (1988) Electron spin resonance dating of the Pleistocene coral reef tracts of Barbados. *Quat Res* 29:197–215.
- 10. Simms AR, Lambeck K, Purcell A, Anderson JB, Rodriguez AB (2007) Sea-level history of the Gulf of Mexico since the Last Glacial Maximum with implications for the melting history of the Laurentide Ice Sheet. *Quat Sci Rev* 26:920–940.

Text S2: Bayesian partition modelling

Fig. S1 shows a simple example of the Bayesian partition methodology used to recover the ice volume equivalent sea level (esl) curves in this study. Data (the filled circles in (A) are given in the form of noisy estimates of esl as a function of time and the regression problem is to recover the underlying signal parameterized using a series of linear segments determined by a set of control points (blue squares). The Bayesian partition modelling provides an objective framework for signal reconstruction in which the complexity of the sought after curve is determined by the data itself rather than imposed at the outset. It is highly flexible since the position of the control points may vary in both the vertical (D) and horizontal (X) directions, with the exception of the first and last which may only vary in the vertical direction. In addition the number of control points, and consequently the number of linear segments in the esl curve, may also vary, and is adjusted as the algorithm progresses.

Allowing the number of unknowns to vary means that it would be meaningless to simply optimize the fit to the data because the data could always be fit perfectly by introducing as many linear segments as there are data. Instead Bayesian partition modelling provides a parsimonious estimation of the underlying signal through sampling of an *a posteriori* probability density function (PDF) on the unknowns (1, 2). The Bayesian framework requires definition of the usual data likelihood function and *a priori* PDF on the unknowns, the *a posteriori* PDF on the model parameters is then the product of the two according to Bayes's rule. Under the assumption that each datum d_i , is contaminated with independent Gaussian noise of known standard deviation σ_i , the likelihood function is the standard multi-dimensional Gaussian

$$p(\mathbf{d} \mid \mathbf{m}) = [2\pi^N \prod \sigma_i]^{-1/2} \exp \left\{ -\sum_{i=1}^N \frac{(d_i - g_i(\mathbf{m}))^2}{2\sigma_i^2} \right\},$$

where d represents the N-vector of data, m the k-vector of model parameters and $g_i(m)$ the height of the linear segment curve at the location of the ith-datum (Fig. S1(A)). The a priori PDF for the model parameters are chosen to be uniform between upper and lower bounds in all cases. For both the vertical and horizontal position of the control points the prior bounds are set to the corresponding limits of the data, and the number of control points set to a maximum of 10 in the example of Fig. S1, and to 40 for the esl data in the main body of the paper.

Bayes' rule is used to combine the likelihood and prior PDFs to give

$$p(\boldsymbol{m} \mid \boldsymbol{d}) \propto [2\pi^N \prod \sigma_i]^{-1/2} \exp\left\{-\sum_{i=1}^N \frac{(d_i - g_i(\boldsymbol{m}))^2}{2\sigma_i^2}\right\}, \text{ for } \boldsymbol{m} \in \mathcal{M}$$

which is the *a posteriori* PDF of the model parameters given the data. Here the model vector \mathbf{m} of control points has k unknowns, where k is itself an unknown. We call this a *trans-dimensional* inverse problem since the parameter space varies in dimension. Solution of the inverse problem provided by Bayesian partition modelling takes the form of an ensemble of model vectors, $\mathbf{m}_j (j = 1, ..., N_T)$, whose density is distributed according to the trans-dimensional *a posteriori* PDF $p(\mathbf{m} \mid \mathbf{d})$. The ensemble is generated using the birth-death Markov chain Monte Carlo algorithm of (3). In essence this involves a series of

random perturbations in each model parameter that are either accepted or rejected according to probabilistic decision rules. Once obeyed, these rules allow the Markov chain to relax to any targeted probability distribution. Transitions between models of different dimension (i.e. with different numbers of linear segments) are handled by proposing a 'birth' of a control point randomly in X, or 'death' of an existing control point, again following acceptance rules which ensure asymptotic convergence of the chain. Implementation requires choices to be made on the size of perturbations of each parameter that influences the rate of convergence and hence overall efficiency of the process. Other implementation details are given in (4), although here, as shown in Fig. S1(A), linear segments are used to create a continuous curve rather than zero-order polynomials which is more appropriate when data are expected to contain discontinuities.

In this Bayesian approach the entire ensemble is thought of as the 'solution' to the inverse problem, properties of which are then examined for inspection. For the example in Fig. S1(A)the resulting posterior ensemble is shown in Fig. S1(B)as a density plot, together with the ensemble mean which is taken as the average of the collected curves at each point along the X axis, and 95% confidence intervals. Here the ensemble comprises 10^6 linear segment-curves with between 1 and 7 segments. For this example the ensemble mean is a good recovery of the original signal (gray curve in Fig. S1(A)) and captures the major change points in the gradient. The two smallest gradient changes at locations X=5 and 8.5 are not recovered due to the relatively large noise on the data. Fig. S1(C)shows a histogram of the X positions of the control parameter (squares in Fig. S4-A) which provides an estimate of the probability density of the change points in the signal, i.e. the positions where the gradient changes. As with any PDF the width and height of the histogram indicates relative confidence that may be placed in the locations of the change points. In this example the four largest change points are recovered including two rather close in the range 6 < X < 7, which can be clearly discerned by the double peak of the histogram.

One of the advantages of Bayesian partition modeling is its ability to recover the resolvable signal in the data without imposing the number of degrees of freedom in the model, beyond that contained in choosing the prior. In this way the sampling approach avoids use of explicit data smoothing parameters which appear in optimization approaches and are often chosen in an ad hoc manner. Bayesian inference is also 'naturally parsimonious' in that models of higher dimension are not necessarily favored over those of lower dimension when fitting the data (see (5) for an explanation). In the above example, the effectiveness of natural parsimony is seen with a maximum number of control points chosen by the algorithm of just 7 with most models having only 5 segments. In this study the spatial mean model is extracted and taken as an estimate of the underlying signal from the noisy data. Uncertainty estimates, such as the 95% credible intervals (dotted curves in Fig. S1(B), light blue envelope in Fig. 4(B) of the main text) are obtained as a by-product of estimating the ensemble mean as a function of X and may also be a useful output, while uncertainty in the change point position is estimated by the widths of the peaks in histograms such as Fig. S1(C).

- 1. Denison DGT, Holmes CC, Mallick BK, Smith AFM (2002) *Bayesian Methods for Nonlinear Classification and Regression* (Wiley, Chichester), 296 pp.
- 2. Sambridge M, Gallagher K, Jackson A, Rickwood P (2006) Trans-dimensional inverse problems, model comparison and the evidence. *Geophys J Int* 167:528–542.
- 3. Geyer CJ, Møller J (1994) Simulation Procedures and Likelihood Inference for Spatial Point Processes. Scand J Stat 21:359–373.
- 4. Gallagher K et al. (2011) Inference of abrupt changes in noisy geochemical records using transdimensional changepoint models. *Earth Planet Sci Lett* 311:182–194.
- 5. MacKay DJC (2003) *Information Theory, Inference, and Learning Algorithms* (Cambridge University Press, Cambridge).

Supporting Information: Figures

Figure S1.

Illustration of Bayesian change point modeling methodology used in this study. (A) 100 synthetic noisy data points (dots) generated from the linear segment curve (gray) with Gaussian noise added. Model parameterization consists of a linear segment curve defined by control points (squares) whose vertical and horizontal position are variable. The Markov chain algorithm randomly adjusts these control parameters and also creates or destroys control points to sample the trans-dimensional posterior probability density function. (B) An estimate of the *a posteriori* PDF. The mean of the ensemble as a function of X provides an estimate of the underlying signal, whereas uncertainty estimates are obtained on the mean curve from 95% of the ensemble mass as a function of X. (C) A histogram of the control point positions in the ensemble, which provides information on the locations and uncertainty of the places where the gradient changes in the signal.

Figure S2.

A: The *esl* function for the two solutions (the preferred high-viscosity solution in blue and the low-viscosity solution in red) and the nominal esl function corresponding to the ice models that define the isostatic corrections in eqn 3 (yellow). B: The corrective term for the two solutions (same colors as in A). C: Histogram of the estimated gradient change positions for the *esl* solution corresponding to the high-viscosity solution. The widths of the peaks provide a measure of the uncertainty in the location of the change points.

Figure S3.

Predicted contours $\Delta \zeta_{rsl}(\phi,t) = \Delta \zeta_{esl}(\phi,t) \pm \varepsilon$ at two epochs, 6 and 20 ka BP (**A**, **B** and **C**, **D** respectively) for the two earth-model solutions (high-viscosity (**A** and **C**) and low-viscosity (**B** and **D**) for the lower mantle). For 6 ka $\varepsilon = 0.25$ m and for 20 ka $\varepsilon = 2.5\%$ of the equivalent sea level for that epoch. The data sites for this solution are also indicated. One approach to separating earth and ice parameters is to search for the 'dip-stick' sites where the glacio- and hydro-isostatic components cancel and $\Delta \zeta_{rsl}(\phi,t) = \Delta \zeta_{esl}(\phi,t)$ but the location of such contours do exhibit a dependence on both earth- and ice-parameters as well as varying through time. For example, for the high-viscosity model, Tahiti approximates a dip-stick response at 20 ka (**C**) but not at 6 ka (**A**) and Barbados approximates a dip-stick response for the low-viscosity (**B** and **D**) model but not for the high-viscosity model (**A** and **C**). Thus an *a priori* assumption that a particular site acts as a dip-stick has the potential to lead to erroneous model parameters.

Figure S4.

(A) Predicted sea level at five sites that have contributed to the far-field solution for the high-viscosity lower-mantle model and for the second iteration solution for the correction to the nominal esl function parameterized by 1,000 year means (it does not correspond exactly to the final solution illustrated in Fig. 4). This illustrates well the spatial variability in sea level that occurs within the far-field as a result of the earth-ocean response to the changing ice-water load. Of these sites, and for this ice-earth model parameter combination, Tahiti approximates most closely the ice-volume function over the entire period with the gravitational and deformational contributions from the ice sheets in the two hemispheres nearly cancelling out. The largest departure from this occurs within the Malacca Strait location offshore Malacca (site Hv7653 of (1)), which effectively is a far-inland site at times of sea level-lowstands, continuing a trend in spatial variability previously noted for the Sunda Shelf area (2). (The Sunda Shelf site corresponds to 18301-2 of (3)). (B) The same result but for the period about the time of MWP-1A. The most important difference between sites is the depth at which this event occurs but the amplitudes and rates also vary. The rapid change at this time, from 14.5 to 14 ka BP, is the result of changes in the Laurentide ice model derived from the inversion of sea level data from North America with a globally averaged contribution to sea level of ~19 m whereas, due to the elastic and gravitational factors, the local predicted variation ranges from ~14 m at Barbados (35 mm/year) to ~21 m at Tahiti (52 mm/year).

- 1. Geyh MA, Kudrass H-R, Streif H (1979) Sea-level changes during the late Pleistocene and Holocene in the Straits of Malacca. *Nature* 278:441–43.
- 2. Lambeck K, Yokoyama Y, Purcell T (2002) Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2. *Quat Sci Rev* 21:343–360.
- 3. Hanebuth T, Stattegger K, Grootes PM (2000) Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level Record. *Science* 288:1033–1035.

Table S1.

Summary of observational evidence for the last 35,000 years used in the analysis. For the corals the depth correction for growth range assumes (i) no geographic variability in growth range of a species, (ii) no time dependence of this growth range and (iii) the growth position is normally distributed about the average value of half the growth range. For Barbados most of the sampled corals included are *Acropora palmata* that have a well defined growth range of typically 3–7 m below mean sea level for Caribbean reefs (1) and the average growth position adopted for *A. palmata* is 5 ± 2.5 m below mean sea level. For *Porites asteroids* species a larger depth range of 8 ± 4 m has been adopted although colonies of this species can presently occur at greater depths (2). Age uncertainties σ_t have been introduced into the elevation uncertainties by adding $(d\Delta\xi/dt)\sigma_t$ in quadrature to the uncertainties of the height estimates, using σ_t estimates from the original observations. During the deglaciation phase the gradient $\Delta\xi/dt$ has been approximated by the average value for the sea level rise from 16.5 to 7 ka and will lead to an underestimation at times of very rapid change such as during MWP-1A. Where appropriate, all age data from the China and SE Asia region have been recalibrated using Calib61 of Reimer et al., 2009 (see reference in main text) and tidal corrections have been applied to reduce all data to a common datum of mean sea level.

- 1. Lighty RG, Macintyre IG, Stuckenrath R (1982) Acropora palmata reef framework: A reliable indicator of sea level in the western atlantic for the past 10,000 years. *Coral Reefs* 1:125–130.
- 2. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. *Nature* 342:637–642.

Obs. num.	Region	Site Location	Latitude (de	Longitude gree)	Age (ka)	RSL S	-	Sample type	Ref. num.
1		Tahiti	-17.45	210.45	7.210	-0.50	5.10	Coral	1 / 2
2	PACIFIC	Tahiti	-17.45	210.45	7.670	-4.10	5.10	Coral	1 / 2
3	OCEAN	Tahiti	-17.45	210.45	7.780	-5.60	5.10	Coral	1 / 2
4		Tahiti	-17.45	210.45	8.580	-18.80	5.10	Coral	1 / 2
5		Tahiti	-17.45	210.45	8.790	-14.50	5.10	Coral	1 / 2
6		Tahiti	-17.45	210.45	9.330	-22.80	5.10	Coral	1 / 2
7		Tahiti	-17.45	210.45	9.600	-25.10	5.10	Coral	1 / 2
8		Tahiti	-17.45	210.45	9.880	-27.80	5.20	Coral	1 / 2
9		Tahiti	-17.45	210.45	9.980	-30.10	5.20	Coral	1 / 2
10		Tahiti	-17.45	210.45	10.180	-36.50	5.20	Coral	1 / 2
11		Tahiti	-17.45	210.45	10.290	-34.40	5.20	Coral	1 / 2
12		Tahiti	-17.45	210.45	10.310	-34.50	5.20	Coral	1 / 2
13		Tahiti	-17.45	210.45	10.640	-42.30	5.20	Coral	1 / 2
14		Tahiti	-17.45	210.45	11.090	-43.30	5.20	Coral	1 / 2
15		Tahiti	-17.45	210.45	11.350	-51.30	5.20	Coral	1 / 2
16		Tahiti	-17.45	210.45	11.560	-57.30	5.20	Coral	1 / 2
17		Tahiti	-17.45	210.45	12.000	-52.50	10.10	Coral	1 / 2
18		Tahiti	-17.45	210.45	12.770	-60.40	10.10	Coral	1 / 2
19		Tahiti	-17.45	210.45	12.780	-61.00	10.10	Coral	1 / 2
20		Tahiti	-17.45	210.45	12.940	-61.50	10.10	Coral	1 / 2
21		Tahiti	-17.45	210.45	12.950	-63.90	5.30	Coral	1 / 2
22		Tahiti	-17.45	210.45	12.980	-63.00	10.10	Coral	1 / 2
23		Tahiti	-17.45	210.45	13.140	-64.10	10.10	Coral	1 / 2
24		Tahiti	-17.45	210.45	13.600	-67.10	10.10	Coral	1 / 2
25		Tahiti	-17.45	210.45	13.840	-70.00	5.30	Coral	1 / 2
26		Tahiti	-17.45	210.45	14.300	-83.20	5.30	Coral	1 / 2
27		Tahiti	-17.45	210.45	14.350	-98.60	5.30	Coral	1 / 2
28		Tahiti	-17.45	210.45	14.520	-94.20	10.20	Coral	1 / 2
29		Tahiti	-17.45	210.45	14.640	-100.20	5.30	Coral	1 / 2
30		Tahiti	-17.45	210.45	14.990	-99.20	10.20	Coral	1 / 2

31	Tahiti	-17.45	210.45	15.150	-102.20	10.20	Coral	1 / 2
32	Tahiti	-17.45	210.45	15.180	-103.10	10.20	Coral	1 / 2
33	Tahiti	-17.45	210.45	15.510	-105.50	10.20	Coral	1 / 2
34	Tahiti	-17.45	210.45	16.020	-112.00	5.40	Coral	1 / 2
35	Kiritimati	1.98	202.52	0.090	-0.10	0.10	Coral	3
36	Kiritimati	1.98	202.52	0.090	-0.10	0.10	Coral	3
37	Kiritimati	1.98	202.52	0.119	-0.10	0.10	Coral	3
38	Kiritimati	1.98	202.52	0.184	-0.10	0.10	Coral	3
39	Kiritimati	1.98	202.52	0.591	-0.00	0.10	Coral	3
40	Kiritimati	1.98	202.52	0.607	-0.10	0.10	Coral	3
41	Kiritimati	1.98	202.52	0.610	-0.00	0.10	Coral	3
42	Kiritimati	1.98	202.52	0.614	-0.00	0.10	Coral	3
43	Kiritimati	1.98	202.52	0.644	-0.00	0.10	Coral	3
44	Kiritimati	1.98	202.52	0.675	-0.00	0.10	Coral	3
45	Kiritimati	1.98	202.52	0.723	-0.00	0.10	Coral	3
46	Kiritimati	1.98	202.52	0.749	-0.10	0.10	Coral	3
47	Kiritimati	1.98	202.52	1.059	-0.00	0.10	Coral	3
48	Kiritimati	1.98	202.52	1.123	0.10	0.10	Coral	3
49	Kiritimati	1.98	202.52	1.280	-0.10	0.10	Coral	3
50	Kiritimati	1.98	202.52	1.408	-0.30	0.10	Coral	3
51	Kiritimati	1.98	202.52	1.432	-0.00	0.10	Coral	3
52	Kiritimati	1.98	202.52	1.467	0.20	0.10	Coral	3
53	Kiritimati	1.98	202.52	1.477	0.10	0.10	Coral	3
54	Kiritimati	1.98	202.52	1.490	0.00	0.10	Coral	3
55	Kiritimati	1.98	202.52	1.496	-0.00	0.10	Coral	3
56	Kiritimati	1.98	202.52	1.540	0.10	0.10	Coral	3
57	Kiritimati	1.98	202.52	1.565	0.10	0.10	Coral	3
58	Kiritimati	1.98	202.52	1.571	0.20	0.10	Coral	3
59	Kiritimati	1.98	202.52	1.583	0.00	0.10	Coral	3
60	Kiritimati	1.98	202.52	1.599	-0.00	0.10	Coral	3
61	Kiritimati	1.98	202.52	1.599	0.10	0.10	Coral	3
62	Kiritimati	1.98	202.52	1.628	-0.20	0.10	Coral	3
63	Kiritimati	1.98	202.52	1.644	-0.00	0.10	Coral	3
64	Kiritimati	1.98	202.52	1.668	-0.00	0.10	Coral	3
65	Kiritimati	1.98	202.52	1.717	0.20	0.10	Coral	3
66	Kiritimati	1.98	202.52	1.727	-0.00	0.10	Coral	3
67	Kiritimati	1.98	202.52	1.734	0.10	0.10	Coral	3
68	Kiritimati	1.98	202.52	1.740	0.10	0.10	Coral	3
69	Kiritimati	1.98	202.52	1.773	0.00	0.10	Coral	3
70	Kiritimati	1.98	202.52	1.775	-0.10	0.10	Coral	3
71	Kiritimati	1.98	202.52	1.778	-0.10	0.10	Coral	3
72	Kiritimati	1.98	202.52	1.815	0.20	0.10	Coral	3
73	Kiritimati	1.98	202.52	1.832	-0.20	0.10	Coral	3
74	Kiritimati	1.98	202.52	1.836	-0.00	0.10	Coral	3
75	Kiritimati	1.98	202.52	1.841	-0.10	0.10	Coral	3
76	Kiritimati	1.98	202.52	1.856	-0.00	0.10	Coral	3
77	Kiritimati	1.98	202.52	1.868	0.00	0.10	Coral	3
78 70	Kiritimati	1.98	202.52	1.880	-0.00	0.10	Coral	3
79	Kiritimati Visitimati	1.98	202.52	1.880	0.10	0.10	Coral	3
80	Kiritimati Visitimati	1.98	202.52	1.896	0.00	0.10	Coral	3
81	Kiritimati Viritimati	1.98	202.52	1.898	-0.10	0.10	Coral	3
82	Kiritimati Viritimati	1.98	202.52	1.919	-0.00	0.10	Coral	3
83	Kiritimati Viritimati	1.98	202.52	1.923	0.00	0.10	Coral	3
84 85	Kiritimati Kiritimati	1.98 1.98	202.52 202.52	1.945 1.951	0.10 -0.10	0.10 0.10	Coral Coral	3
03	Kiituinau	1.98	202.32	1.731	-0.10	0.10	Corai	3

86	Kiritimati	1.98	202.52	2.004	0.10	0.10	Coral	3
87	Kiritimati	1.98	202.52	2.190	-0.00	0.10	Coral	3
88	Kiritimati	1.98	202.52	2.223	0.00	0.10	Coral	3
89	Kiritimati	1.98	202.52	2.351	-0.10	0.10	Coral	3
90	Kiritimati	1.98	202.52	2.486	0.00	0.10	Coral	3
91	Kiritimati	1.98	202.52	2.507	-0.00	0.10	Coral	3
92	Kiritimati	1.98	202.52	2.531	-0.10	0.10	Coral	3
93	Kiritimati	1.98	202.52	2.612	-0.10	0.10	Coral	3
94	Kiritimati	1.98	202.52	2.624	0.10	0.10	Coral	3
95	Kiritimati	1.98	202.52	2.734	-0.10	0.10	Coral	3
96	Kiritimati	1.98	202.52	2.749	-0.10	0.10	Coral	3
97	Kiritimati	1.98	202.52	2.749	0.10	0.10	Coral	3
98	Kiritimati	1.98	202.52	2.794	-0.10	0.10	Coral	3
99	Kiritimati	1.98	202.52	2.803	0.10	0.10	Coral	3
100	Kiritimati	1.98	202.52	2.810	-0.10	0.10	Coral	3
101	Kiritimati	1.98	202.52	2.813	-0.10	0.10	Coral	3
102	Kiritimati	1.98	202.52	2.825	0.10	0.10	Coral	3
103	Kiritimati	1.98	202.52	2.837	-0.10	0.10	Coral	3
104	Kiritimati	1.98	202.52	2.936	-0.20	0.10	Coral	3
105	Kiritimati	1.98	202.52	2.985	0.00	0.10	Coral	3
106	Kiritimati	1.98	202.52	3.000	-0.20	0.10	Coral	3
107	Kiritimati	1.98	202.52	3.204	-0.10	0.10	Coral	3
108	Kiritimati	1.98	202.52	3.220	-0.00	0.10	Coral	3
109	Kiritimati	1.98	202.52	3.329	0.00	0.10	Coral	3
110	Kiritimati	1.98	202.52	3.550	0.20	0.10	Coral	3
111	Kiritimati	1.98	202.52	3.550	-0.00	0.10	Coral	3
112	Kiritimati	1.98	202.52	3.582	-0.10	0.10	Coral	3
113	Kiritimati	1.98	202.52	3.632	0.10	0.10	Coral	3
114	Kiritimati	1.98	202.52	3.685	-0.10	0.10	Coral	3
115	Kiritimati	1.98	202.52	3.704	-0.10	0.10	Coral	3
116	Kiritimati	1.98	202.52	3.797	0.30	0.10	Coral	3
117	Kiritimati	1.98	202.52	3.816	-0.20	0.10	Coral	3
118	Kiritimati	1.98	202.52	3.865	0.10	0.10	Coral	3
119	Kiritimati	1.98	202.52	3.878	-0.10	0.10	Coral	3
120	Kiritimati	1.98	202.52	3.908	-0.20	0.10	Coral	3
121	Kiritimati	1.98	202.52	3.925	0.10	0.10	Coral	3
122	Kiritimati	1.98	202.52	3.932	0.10	0.10	Coral	3
123	Kiritimati	1.98	202.52	4.131	-0.20	0.10	Coral	3
124	Kiritimati	1.98	202.52	4.138	0.20	0.10	Coral	3
125	Kiritimati	1.98	202.52	4.175	-0.20	0.10	Coral	3
126	Kiritimati	1.98	202.52	4.210	-0.10	0.10	Coral	3
127	Kiritimati	1.98	202.52	4.217	-0.10	0.10	Coral	3
128	Kiritimati	1.98	202.52	4.243	-0.10	0.10	Coral	3
129	Kiritimati	1.98	202.52	4.277	0.10	0.10	Coral	3
130	Kiritimati	1.98	202.52	4.303	-0.00	0.10	Coral	3
131	Kiritimati	1.98	202.52	4.389	-0.10	0.10	Coral	3
132	Kiritimati	1.98	202.52	4.426	-0.10	0.10	Coral	3
133	Kiritimati	1.98	202.52	4.467	-0.10	0.10	Coral	3
134	Kiritimati	1.98	202.52	4.614	-0.00	0.10	Coral	3
135	Kiritimati	1.98	202.52	4.676	-0.00	0.10	Coral	3
136	Kiritimati	1.98	202.52	4.682	-0.10	0.10	Coral	3
137	Kiritimati	1.98	202.52	4.703	0.10	0.10	Coral	3
138	Kiritimati	1.98	202.52	4.712	0.00	0.10	Coral	3
139	Kiritimati	1.98	202.52	4.776	0.20	0.10	Coral	3
140	Kiritimati	1.98	202.52	5.137	0.20	0.10	Coral	3
-	•	<u>-</u>	I.	. !	•		•	•

141		Kiritimati	1.98	202.52	5.160	0.00	0.10	Coral	3
142		Kiritimati	1.98	202.52	5.255	0.00	0.10	Coral	3
143		Christchurch	-43.50	172.67	0.639	-0.50	1.00	Sediment	4
144	NEW	Christchurch	-43.50	172.67	4.232	-0.50	1.00	Sediment	4
145	ZEALAND	Christchurch	-43.50	172.67	6.636	0.90	2.00	Sediment	4
146	EEI IEI II (B	Christchurch	-43.50	172.67	7.027	-0.20	2.10	Sediment	4
147		Christchurch	-43.50	172.67	7.462	-5.30	2.50	Sediment	4
148		Christchurch	-43.50	172.67	7.619	-5.30	3.10	Sediment	4
149		Christchurch	-43.50	172.67	8.240	-9.30	2.80	Sediment	4
150		Christchurch	-43.50	172.67	8.261	-11.30	2.80	Sediment	4
151		Christchurch	-43.50	172.67	8.364	-8.80	2.20	Sediment	4
152		Christchurch	-43.50	172.67	8.385	-9.60	2.80	Sediment	4
153		Christchurch	-43.50	172.67	8.572	-15.40	2.30	Sediment	4
154		Christchurch	-43.50	172.67	8.729	-14.90	2.30	Sediment	4
155		Christchurch	-43.50	172.67	8.855	-18.20	2.40	Sediment	4
156		Christchurch	-43.50	172.67	8.950	-12.50	2.20	Sediment	4
157		Christchurch	-43.50	172.67	9.111	-15.50	2.20	Sediment	4
158		Christchurch	-43.50	172.67	9.219	-26.20	2.20	Sediment	4
159		Christchurch	-43.50	172.67	9.362	-23.20	2.90	Sediment	4
160		Christchurch	-43.50	172.67	9.495	-25.60	2.20	Sediment	4
161		Christchurch	-43.50	172.67	10.259	-24.20	2.50	Sediment	4
162		Christchurch	-43.50	172.67	10.538	-24.90	2.00	Sediment	4
163		Christchurch	-43.50	172.67	10.695	-28.30	2.30	Sediment	4
164		Christchurch	-43.50	172.67	11.151	-31.60	4.70	Sediment	4
165		South Neck Beach	-43.29	147.33	1.275	-0.50	0.50	Sediment	5
166	TASMANIA,	South Neck Beach	-43.29	147.33	2.000	-0.60	0.50	Sediment	5
167	VICTORIA	South Neck Beach	-43.29	147.33	2.726	-0.90	0.50	Sediment	5
168	& NSW	South Neck Beach	-43.29	147.33	4.094	-1.20	0.50	Sediment	5
169		South Arm Beach	-43.02	147.33	4.279	-0.90	0.50	Sediment	5
170		South Neck Beach	-43.29	147.33	6.235	-1.60	0.50	Sediment	5
171		Port Melbourne	-37.75	144.97	9.461	-22.00	5.00	In-situ tree stump	6
172		Batemans Bay	-35.70	150.18	2.390	1.80	0.30	Sediment	7
173		Batemans Bay	-35.70	150.18	2.506	1.80	0.30	Sediment	7
174		Batemans Bay	-35.70	150.18	2.540	1.30	0.30	Sediment	7
175		Batemans Bay	-35.70	150.18	2.840	1.80	0.30	Sediment	7
176		Batemans Bay	-35.70	150.18	2.852	1.80	0.30	Sediment	7
177		Batemans Bay	-35.70	150.18	3.610	1.00	0.30	Sediment	7
178		Moruya	-35.93	150.10	6.822	0.50	5.00	Sediment	8
179		Moruya	-35.93	150.10	8.919	-17.00	5.00	Sediment	8
180		Moruya	-35.93	150.10	10.039	-31.00	5.00	Sediment	8
181		Moruya	-35.93	150.10	11.370	-45.00	5.00	Sediment	8
182		Sydney Shelf	-33.72	151.75	20.400	-125.00	5.00	Sediment	9
183		Ceduna	-32.11	133.65	1.255	-0.20	0.40	Sediment	10
184	SOUTH	Ceduna	-32.11	133.65	1.306	0.40	0.40	Sediment	10
185	AUSTRALIA	Ceduna	-32.11	133.65	3.004	0.40	0.40	Sediment	10
186		Ceduna	-32.11	133.65	3.491	0.40	0.40	Sediment	10
187		Ceduna	-32.11	133.65	3.606	0.40	0.40	Sediment	10
188		Ceduna	-32.11	133.65	5.177	-0.20	0.40	Sediment	10
189		Ceduna	-32.11	133.65	5.502	-0.30	0.40	Sediment	10
190		Ceduna	-32.11	133.65	6.131	-0.60	0.40	Sediment	10
191		Ceduna	-32.11	133.65	6.930	-0.60	0.40	Sediment	10
192		Port Lincoln	-34.70	135.94	2.056	-0.10	0.40	Sediment	10
193		Port Lincoln	-34.70	135.94	2.177	0.90	0.40	Sediment	10
194		Port Lincoln	-34.70	135.94	2.424	0.90	0.40	Sediment	10

195	Port Lincoln	-34.70	135.94	2.473	0.60	0.40	Sediment	10
196	Port Lincoln	-34.70	135.94	2.624	0.40	0.40	Sediment	10
197	Port Lincoln	-34.70	135.94	2.801	0.40	0.40	Sediment	10
198	Port Lincoln	-34.70	135.94	2.928	0.10	0.40	Sediment	10
199	Port Lincoln	-34.70	135.94	3.017	0.40	0.40	Sediment	10
200	Port Lincoln	-34.70	135.94	3.081	1.00	0.40	Sediment	10
201	Port Lincoln	-34.70	135.94	3.260	0.30	0.40	Sediment	10
202	Port Lincoln	-34.70	135.94	3.452	1.40	0.40	Sediment	10
203	Port Lincoln	-34.70	135.94	3.862	0.70	0.40	Sediment	10
204	Port Lincoln	-34.70	135.94	4.015	-0.10	0.40	Sediment	10
205	Port Lincoln	-34.70	135.94	4.092	0.40	0.40	Sediment	10
206	Port Lincoln	-34.70	135.94	4.396	1.40	0.40	Sediment	10
207	Port Lincoln	-34.70	135.94	4.584	0.80	0.40	Sediment	10
208	Port Lincoln	-34.70	135.94	5.213	0.70	0.40	Sediment	10
209	Port Lincoln	-34.70	135.94	5.442	0.40	0.40	Sediment	10
210	Port Franklin	-33.73	136.93	1.996	1.60	0.60	Sediment	10
211	Port Franklin	-33.73	136.93	3.491	1.40	1.40	Sediment	10
212	Port Franklin	-33.73	136.93	3.939	2.10	0.60	Sediment	10
213	Port Franklin	-33.73	136.93	4.659	0.90	0.60	Sediment	10
213	Port Franklin	-33.73	136.93	5.994	1.20	0.60	Sediment	10
214 215	Port Franklin	-33.73	136.93	6.481	0.50	0.60	Sediment	10
	Redcliff Belperio	-32.69	137.87	1.245	0.70	0.60	Sediment	10
	Redcliff Belperio	-32.69	137.87	1.336	0.70	0.60	Sediment	10
	Redcliff Belperio	-32.69	137.87	1.386	0.70	0.60	Sediment	10
	-	-32.69		1.537	0.70	0.80	Sediment	10
	Redcliff Belperio		137.87	1.640	0.90	0.30	Sediment	10
	Redcliff Belperio	-32.69 -32.69	137.87 137.87	1.672	-0.10	0.30	Sediment	10
	Redcliff Belperio	-32.69		2.202	-0.10	0.50	Sediment	10
	Redcliff Belperio Redcliff Belperio		137.87					10
	-	-32.69	137.87	2.226	0.70	0.30	Sediment Sediment	10
	Redcliff Belperio	-32.69	137.87	2.699	1.20	0.40		
	Redcliff Belperio	-32.69	137.87	2.788	1.20	0.80	Sediment	10
	Redcliff Belperio	-32.69	137.87	3.503	0.60	0.30	Sediment	10
	Redcliff Belperio	-32.69	137.87	4.015	0.60	0.30	Sediment	10
	Redcliff Belperio	-32.69	137.87	5.936	2.50	0.70	Sediment	10
	Redcliff Belperio	-32.69	137.87	5.959	2.20	0.30	Sediment	10
	Redcliff Belperio	-32.69	137.87	6.525	2.30	0.50	Sediment	10
	Redcliff Belperio	-32.69	137.87	8.447	-4.20	0.80	Sediment	10
232	Port Pirie	-33.16	138.01	0.430	-0.00	0.70	Sediment	10
233	Port Pirie	-33.16	138.01	0.484	-0.40	0.30	Sediment	10
234	Port Pirie	-33.16	138.01	0.923	-0.60	0.20	Sediment	10
235	Port Pirie	-33.16	138.01	1.066	0.90	0.20	Sediment	10
236	Port Pirie	-33.16	138.01	1.075	0.30	0.20	Sediment	10
237	Port Pirie	-33.16	138.01	1.215	1.20	1.40	Sediment	10
238	Port Pirie	-33.16	138.01	1.512	-0.60	0.30	Sediment	10
239	Port Pirie	-33.16	138.01	1.608	1.50	0.20	Sediment	10
240	Port Pirie	-33.16	138.01	1.704	1.20	0.20	Sediment	10
241	Port Pirie	-33.16	138.01	1.821	1.90	0.20	Sediment	10
242	Port Pirie	-33.16	138.01	2.080	0.90	0.20	Sediment	10
243	Port Pirie	-33.16	138.01	2.208	1.20	0.20	Sediment	10
244	Port Pirie	-33.16	138.01	2.318	1.10	0.20	Sediment	10
245	Port Pirie	-33.16	138.01	2.349	1.10	0.20	Sediment	10
246	Port Pirie	-33.16	138.01	2.731	0.80	0.20	Sediment	10
247	Port Pirie	-33.16	138.01	3.061	1.20	0.20	Sediment	10
248	Port Pirie	-33.16	138.01	3.273	-0.10	0.20	Sediment	10
249	Port Pirie	-33.16	138.01	3.548	1.10	0.20	Sediment	10

250	Port Pirie	-33.16	138.01	3.638	1.60	0.20	Sediment	10
251	Port Pirie	-33.16	138.01	3.913	1.40	0.20	Sediment	10
252	Port Pirie	-33.16	138.01	4.270	1.40	0.20	Sediment	10
253	Port Pirie	-33.16	138.01	4.377	1.40	0.20	Sediment	10
254	Port Pirie	-33.16	138.01	4.478	0.90	0.20	Sediment	10
255	Port Pirie	-33.16	138.01	4.572	1.30	0.20	Sediment	10
256	Port Pirie	-33.16	138.01	5.370	2.60	0.20	Sediment	10
257	Port Pirie	-33.16	138.01	5.472	2.30	0.20	Sediment	10
258	Port Pirie	-33.16	138.01	6.177	1.60	0.20	Sediment	10
259	Port Pirie	-33.16	138.01	6.430	1.10	0.20	Sediment	10
260	Port Pirie	-33.16	138.01	6.641	2.10	0.20	Sediment	10
261	Port Pirie	-33.16	138.01	6.984	2.10	0.20	Sediment	10
262	Port Pirie	-33.16	138.01	7.561	-0.40	0.30	Sediment	10
263	Port Wakefield	-34.13	138.09	1.135	-0.40	0.50	Sediment	10
264	Port Wakefield	-34.13	138.09	1.185	1.20	0.50	Sediment	10
265	Port Wakefield	-34.13	138.09	1.972	-0.40	0.50	Sediment	10
266	Port Wakefield	-34.13	138.09	2.449	0.70	0.50	Sediment	10
267	Port Wakefield	-34.13	138.09	2.966	0.70	0.50	Sediment	10
268	Port Wakefield	-34.13	138.09	3.145	-0.00	0.50	Sediment	10
269	Port Wakefield	-34.13	138.09	3.414	1.10	0.50	Sediment	10
270	Port Wakefield	-34.13	138.09	3.606	1.30	0.50	Sediment	10
271	Port Wakefield	-34.13	138.09	3.709	1.70	0.50	Sediment	10
272	Port Wakefield	-34.13	138.09	3.862	0.10	0.50	Sediment	10
273	Port Wakefield	-34.13	138.09	7.951	-3.10	0.50	Sediment	10
274	Port Gawler	-34.64	138.46	0.825	1.10	0.50	Sediment	10
275	Port Gawler	-34.64	138.46	2.288	-0.20	0.50	Sediment	10
276	Port Gawler	-34.64	138.46	4.796	0.60	0.50	Sediment	10
277	Port Gawler	-34.64	138.46	7.091	1.40	0.50	Sediment	10
278	Port Gawler	-34.64	138.46	7.409	-1.20	0.20	Sediment	10
279	Port Gawler	-34.64	138.46	7.556	0.00	0.50	Sediment	10
280	Fisherman Bay	-33.43	137.88	1.456	0.30	0.30	Sediment	10
281	Fisherman Bay	-33.43	137.88	1.772	1.10	0.40	Sediment	10
282	Fisherman Bay	-33.43	137.88	2.008	1.30	0.40	Sediment	10
283	Fisherman Bay	-33.43	137.88	2.104	1.30	0.40	Sediment	10
284	Fisherman Bay	-33.43	137.88	2.473	1.50	0.50	Sediment	10
285	Fisherman Bay	-33.43	137.88	3.004	0.90	0.50	Sediment	10
286	Fisherman Bay	-33.43	137.88	3.273	0.90	0.60	Sediment	10
287	Fisherman Bay	-33.43	137.88	3.465	1.60	0.60	Sediment	10
288	Fisherman Bay	-33.43	137.88	4.054	1.40	0.70	Sediment	10
289	Fisherman Bay	-33.43	137.88	4.219	3.80	0.70	Sediment	10
290	Fisherman Bay	-33.43	137.88	4.497	3.10	0.80	Sediment	10
291	Fisherman Bay	-33.43	137.88	4.821	3.80	0.80	Sediment	10
292	Mambray Creek	-32.85	137.91	0.743	0.90	0.20	Sediment	10
293	Mambray Creek	-32.85	137.91	1.056	0.20	0.30	Sediment	10
294	Mambray Creek	-32.85	137.91	1.155	0.40	0.30	Sediment	10
295	Mambray Creek	-32.85	137.91	1.821	0.60	0.40	Sediment	10
296	Mambray Creek	-32.85	137.91	1.960	0.90	0.40	Sediment	10
297	Red Cliff Burne	-32.83	137.80	1.772	0.30	0.40	Sediment	10
297	Red Cliff Burne	-32.70	137.80	2.436	0.50	0.40	Sediment	10
298	Red Cliff Burne	-32.70	137.80	4.345	1.80	0.80	Sediment	10
300	Red Cliff Burne	-32.70	137.80	4.672	0.30	0.80	Sediment	10
300	Red Cliff Burne Red Cliff Burne	-32.70 -32.70	137.80	4.672	0.50	0.80	Sediment	10
301	Red Cliff Burne Red Cliff Burne				0.50	0.90	Sediment	10
302	Red Cliff Burne Wood Point	-32.70	137.80	5.104 0.369	0.90		Sediment Sediment	10 10
303	Wood Point Wood Point	-33.33	137.86		1.10	0.20	Sediment Sediment	10
J 304	I wood Poliit	-33.33	137.86	1.215	1.10	0.30	Scument	10

	•				1	Ī	i	Ī	Ī
305		Wood Point	-33.33	137.86	1.588	1.00	0.30	Sediment	10
306		Wood Point	-33.33	137.86	1.872	1.20	0.40	Sediment	10
307		Wood Point	-33.33	137.86	2.263	1.40	0.40	Sediment	10
308		Wood Point	-33.33	137.86	2.712	2.50	0.50	Sediment	10
309		Wood Point	-33.33	137.86	3.952	1.30	0.70	Sediment	10
310		Wood Point	-33.33	137.86	4.534	1.60	0.80	Sediment	10
311		Wood Point	-33.33	137.86	5.561	2.50	0.90	Sediment	10
312		Abrolhos	-28.68	113.83	1.058	0.50	2.10	Coral	11 / 12
313	WESTERN	Abrolhos	-28.68	113.83	2.335	0.70	2.10	Coral	11 / 12
314	AUSTRALIA	Abrolhos	-28.68	113.83	3.226	0.70	2.10	Coral	11 / 12
315		Abrolhos	-28.68	113.83	3.831	0.80	2.10	Coral	11 / 12
316		Abrolhos	-28.68	113.83	3.867	1.00	2.10	Coral	11 / 12
317		Abrolhos	-28.68	113.83	5.825	1.50	2.10	Coral	11 / 12
318		Abrolhos	-28.68	113.83	6.323	0.80	2.00	Coral	11 / 12
319		Abrolhos	-28.68	113.83	6.832	1.60	2.10	Coral	11 / 12
320		Abrolhos	-28.68	113.83	6.919	1.40	2.10	Coral	11 / 12
321		Abrolhos	-28.68	113.83	6.309	0.20	0.50	Coral	11 / 12
322		Abrolhos	-28.68	113.83	6.714	-1.20	0.50	Coral	11 / 12
323		Abrolhos	-28.68	113.83	7.099	-2.30	1.00	Coral	11 / 12
324		Abrolhos	-28.68	113.83	7.842	-5.00	1.00	Coral	11 / 12
325		Abrolhos	-28.68	113.83	7.996	-10.70	1.00	Coral	11 / 12
326		Abrolhos	-28.68	113.83	8.119	-7.50	3.00	Coral	11 / 12
327		Abrolhos	-28.68	113.83	8.619	-14.20	3.00	Coral	11 / 12
328		Abrolhos	-28.68	113.83	8.990	-17.10	3.00	Coral	11 / 12
329		Abrolhos	-28.68	113.83	9.345	-19.80	3.00	Coral	11 / 12
330		Abrolhos	-28.68	113.83	9.610	-23.60	3.00	Coral	11 / 12
331		Abrolhos	-28.68	113.83	9.800	-24.40	3.10	Coral	11 / 12
332		Swan River	-31.95	115.85	9.240	-20.00	2.50	Sediment	13
333		Bonaparte_3	-12.12	127.93	28.330	-118.30	7.80	Sediment	14 / 15
334		Bonaparte_3	-12.12	127.93	29.580	-118.40	7.80	Sediment	14 / 15
335		Bonaparte_3	-12.12	127.93	29.070	-118.60	7.80	Sediment	14 / 15
336		Bonaparte_3	-12.12	127.93	29.980	-118.90	7.80	Sediment	14 / 15
337		Bonaparte_4	-12.17	128.00	19.720	-112.80	5.40	Sediment	14 / 15
338		Bonaparte_4	-12.17	128.00	21.690	-119.10	3.70	Sediment	14 / 15
339		Bonaparte_4	-12.17	128.00	28.280	-117.40	4.00	Sediment	14 / 15
340		Bonaparte_5	-12.18	128.02	16.980	-109.10	5.40	Sediment	14 / 15
341		Bonaparte_5	-12.18	128.02	19.120	-117.30	2.90	Sediment	14 / 15
342		Bonaparte_5	-12.18	128.02	19.740	-117.30	2.90	Sediment	14 / 15
343		Bonaparte_5	-12.18	128.02	19.670	-117.30	2.90	Sediment	14 / 15
344		Bonaparte_5	-12.18	128.02	20.480	-118.20	2.90	Sediment	14 / 15
345		Bonaparte_Gb1	-11.92	124.48	21.980	-129.00	5.00	Sediment	14 / 15
346		Bonaparte_V229	-11.96	123.84	20.520	-133.00	5.00	Sediment	14 / 15
347		Grub Reef	-18.63	147.43	7.740	-2.80	1.00	Coral	16 / 17
348	QUEENSLAND	Grub Reef	-18.63	147.43	7.970	-3.80	2.00	Coral	16 / 17
349	&	Grub Reef	-18.63	147.43	8.170	-4.50	2.00	Coral	16 / 17
350	NORTHERN	Grub Reef	-18.63	147.43	8.400	-6.20	2.00	Coral	16 / 17
351	TERRITORY	Grub Reef	-18.63	147.43	8.710	-8.70	2.00	Coral	16 / 17
352		Grub Reef	-18.63	147.43	9.180	-15.50	2.00	Coral	16 / 17
353		Grub Reef	-18.63	147.43	9.610	-27.70	4.00	Coral	16 / 17
354		Grub Reef	-18.63	147.43	12.290	-43.70	4.00	Coral	16 / 17
355		Inner-Cleveland Bay	-19.20	146.90	1.922	-0.30	3.70	Coral	18
356		Inner-Cleveland Bay	-19.20	146.90	2.640	0.60	3.90	Coral	18
357		Inner-Cleveland Bay	-19.20	146.90	6.621	1.70	3.90	Coral	18
358		Inner-Cleveland Bay	-19.20	146.90	7.175	1.70	3.80	Coral	18
359		Inner-Cleveland Bay	-19.20	146.90	8.203	-2.90	3.80	Coral	18

1 1		1	1		l	1	i	
360	Inner-Cleveland Bay	-19.20	146.90	8.725	-5.60	4.30	Coral	18
361	Inner-Cleveland Bay	-19.20	146.90	9.025	-5.80	4.40	Coral	18
362	Outer-Cleveland Bay	-18.90	146.98	1.712	-0.60	4.40	Coral	18
363	Outer-Cleveland Bay	-18.90	146.98	4.308	0.90	3.90	Coral	18
364	Outer-Cleveland Bay	-18.90	146.98	8.964	-8.90	4.50	Coral	18
365	Fantome Island	-18.67	146.52	2.562	0.30	0.30	Coral-microatoll	19
366	Fantome Island	-18.67	146.52	2.567	0.40	0.30	Coral-microatoll	19
367	Fantome Island	-18.67	146.52	4.842	0.60	0.30	Coral-microatoll	19
368	Fantome Island	-18.67	146.52	6.132	1.00	0.30	Coral-microatoll	19
369	Fantome Island	-18.67	146.52	6.345	0.90	0.30	Coral-microatoll	19
370	Great Palm Island	-18.72	146.60	5.061	0.90	0.30	Coral-microatoll	19
371	Great Palm Island	-18.72	146.60	5.758	0.90	0.30	Coral-microatoll	19
372	Great Palm Island	-18.72	146.60	6.321	0.80	0.30	Coral-microatoll	19
373	Pioneer Bay	-18.60	146.48	2.541	0.20	0.30	Coral-microatoll	19 / 17
374	Pioneer Bay	-18.60	146.48	2.588	0.30	0.20	Coral-microatoll	19 / 17
375	Pioneer Bay	-18.60	146.48	3.168	0.40	0.30	Coral-microatoll	19 / 17
376	Pioneer Bay	-18.60	146.48	3.875	0.50	0.20	Coral-microatoll	19 / 17
377	Pioneer Bay	-18.60	146.48	3.177	0.30	0.20	Coral-microatoll	19 / 17
378	Pioneer Bay	-18.60	146.48	3.947	0.50	0.20	Coral-microatoll	17
379	Pioneer Bay	-18.60	146.48	4.812	0.60	0.30	Coral-microatoll	19 / 17
380	Pioneer Bay	-18.60	146.48	5.459	0.50	0.20	Coral-microatoll	19 / 17
381	Pioneer Bay	-18.60	146.48	5.601	0.90	0.30	Coral-microatoll	19 / 17
382	Pioneer Bay	-18.60	146.48	5.850	0.60	0.20	Coral-microatoll	17
383	Pioneer Bay	-18.60	146.48	5.889	0.80	0.20	Coral-microatoll	17
384	Pioneer Bay	-18.60	146.48	5.896	0.70	0.20	Coral-microatoll	17
385	Pioneer Bay	-18.60	146.48	5.994	1.10	0.20	Coral-microatoll	19 / 17
386	Pioneer Bay	-18.60	146.48	6.074	1.00	0.20	Coral-microatoll	19 / 17
387	Pioneer Bay	-18.60	146.48	6.086	0.90	0.20	Coral-microatoll	19 / 17
388	Pioneer Bay	-18.60	146.48	6.113	0.60	0.20	Coral-microatoll	17
389	Pioneer Bay	-18.60	146.48	6.147	1.00	0.20	Coral-microatoll	19 / 17
390	Pioneer Bay	-18.60	146.48	6.170	0.70	0.20	Coral-microatoll	19 / 17
391	Pioneer Bay	-18.60	146.48	6.222	1.30	0.20	Coral-microatoll	19 / 17
392	Pioneer Bay	-18.60	146.48	6.242	1.00	0.20	Coral-microatoll	17
393	Pioneer Bay	-18.60	146.48	6.305	0.80	0.20	Coral-microatoll	19 / 17
394	Pioneer Bay	-18.60	146.48	6.427	0.90	0.20	Coral-microatoll	19 / 17
395	Pioneer Bay	-18.60	146.48	6.476	0.90	0.20	Coral-microatoll	19 / 17
396	Pioneer Bay	-18.60	146.48	6.488	0.80	0.20	Coral-microatoll	19 / 17
397	Pioneer Bay	-18.60	146.48	6.538	0.80	0.20	Coral-microatoll	19 / 17
398	Pioneer Bay	-18.60	146.48	6.582	0.80	0.20	Coral-microatoll	19 / 17
399	Pioneer Bay	-18.60	146.48	6.625	0.60	0.20	Coral-microatoll	19 / 17
400	Dunk Island	-17.94	146.14	5.316	0.40	0.30	Coral-microatoll	19
401	Dunk Island	-17.94	146.14	6.094	0.70	0.30	Coral-microatoll	19
402	Dunk Island	-17.94	146.14	6.136	0.30	0.30	Coral-microatoll	19
403	Dunk Island	-17.94	146.14	6.523	0.90	0.30	Coral-microatoll	19
404	Goold	-18.17	146.16	0.356	0.20	0.30	Coral-microatoll	19 / 17
405	Goold	-18.17	146.16	3.193	0.60	0.30	Coral-microatoll	19 / 17
406	Goold	-18.17	146.16	5.128	0.50	0.30	Coral-microatoll	19 / 17
407	Goold	-18.17	146.16	5.412	0.70	0.30	Coral-microatoll	19 / 17
408	Goold	-18.17	146.16	5.418	1.00	0.30	Coral-microatoll	19 / 17
409	Goold	-18.17	146.16	5.973	0.90	0.30	Coral-microatoll	19 / 17
410	Goold	-18.17	146.16	6.068	1.20	0.30	Coral-microatoll	19 / 17
411	Goold	-18.17	146.16	6.703	1.30	0.30	Coral-microatoll	19 / 17
412	Magnetic Island	-19.15	146.87	0.360	0.20	0.20	Coral-microatoll	19 / 17
413	Magnetic Island	-19.15	146.87	3.260	0.60	0.30	Coral-microatoll	19 / 17
414					,			

415	Magnetic Island	-19.15	146.87	5.268	0.40	0.30	Coral-microatoll	19 / 17
416	Magnetic Island	-19.15	146.87	5.481	1.00	0.30	Coral-microatoll	19 / 17
417	Magnetic Island	-19.15	146.87	5.498	0.70	0.30	Coral-microatoll	19 / 17
418	Magnetic Island	-19.15	146.87	5.942	0.90	0.30	Coral-microatoll	19 / 17
419	Magnetic Island	-19.15	146.87	6.034	0.70	0.30	Coral-microatoll	19 / 17
420	Magnetic Island	-19.15	146.87	6.079	1.20	0.30	Coral-microatoll	19 / 17
421	Magnetic Island	-19.15	146.87	6.103	0.30	0.30	Coral-microatoll	19 / 17
422	Magnetic Island	-19.15	146.87	6.519	0.90	0.30	Coral-microatoll	19 / 17
423	Magnetic Island	-19.15	146.87	6.663	1.30	0.30	Coral-microatoll	19 / 17
424	Yule Point	-16.57	145.52	1.059	0.30	0.30	Coral-microatoll	19
425	Yule Point	-16.57	145.52	1.193	0.60	0.30	Coral-microatoll	19
426	Yule Point	-16.57	145.52	3.894	1.00	0.30	Coral-microatoll	19
427	Yule Point	-16.57	145.52	5.072	1.20	0.30	Coral-microatoll	19
428	Yule Point	-16.57	145.52	5.083	0.70	0.30	Coral-microatoll	19
429	Camp Island	-19.87	147.88	1.156	0.50	0.30	Coral-microatoll	19
430	Camp Island	-19.87	147.88	5.767	0.70	0.30	Coral-microatoll	19
431	Camp Island	-19.87	147.88	6.646	0.90	0.30	Coral-microatoll	19
432	Stone Island	-20.03	148.27	6.026	1.10	0.30	Coral-microatoll	19
433	Stone Island	-20.03	148.27	6.046	0.60	0.30	Coral-microatoll	19
434	Stone Island	-20.03	148.27	6.583	1.00	0.30	Coral-microatoll	19
435	Stone Island	-20.03	148.27	6.741	1.10	0.30	Coral-microatoll	19
436	King Island	-14.10	144.33	4.367	0.60	0.30	Coral-microatoll	19
437	King Island	-14.10	144.33	4.386	0.40	0.30	Coral-microatoll	19
438	King Island	-14.10	144.33	5.789	0.40	0.30	Coral-microatoll	19
439	King Island	-14.10	144.33	5.850	0.80	0.30	Coral-microatoll	19
440	Flinders Island	-14.18	144.26	6.380	0.20	0.30	Coral-microatoll	19
441	Flinders Island	-14.18	144.26	6.447	0.20	0.30	Coral-microatoll	19
442	Legatt Island	-14.18	144.67	5.067	0.30	0.30	Coral-microatoll	in 16 / 20
443	Legatt Island	-14.55	144.67	5.597	0.60	0.30	Coral-microatoll	in 16 / 20
444	Legatt Island	-14.55	144.67	6.028	0.90	0.30	Coral-microatoll	in 16 / 20
445	Houghton	-14.52	144.97	4.274	0.60	0.30	Coral-microatoll	in 16 / 20
446	Houghton	-14.52	144.97	5.251	1.20	0.30	Coral-microatoll	in 16 / 20
447	Houghton	-14.52	144.97	5.889	0.80	0.30	Coral-microatoll	in 16 / 20
448	Houghton	-14.52	144.97	6.558	1.00	0.30	Coral-microatoll	in 16 / 20
449	Myall Reef	-14.32	145.50	5.146	0.10	0.30		
450							Coral-microatoll	in 16 / 20
451	Myall Reef	-16.08	145.50 145.50	5.683	0.50 0.30	0.30	Coral-microatoll Coral-microatoll	in 16 / 20 in 16 / 20
451	Myall Reef Noble Island	-16.08		6.489	1.00	0.30	Coral-microatoll	
		-14.50	144.77	6.376		0.30		in 16 / 20
453	Noble Island	-14.50	144.77	6.602	0.80	0.30	Coral-microatoll	in 16 / 20
454	Nymph Island	-14.65	145.25	3.348	1.20	0.30	Coral-microatoll Coral-microatoll	in 16 / 20
455	Nymph Island	-14.65	145.25	3.393	1.40	0.30		in 16 / 20
456	Nymph Island	-14.65	145.25	5.458	1.00	0.30	Coral-microatoll	in 16 / 20
457	Yam Island	-9.90	142.77	5.237	0.50	0.30	Coral-microatoll	21
458	Yam Island	-9.90	142.77	6.120	0.50	0.30	Coral-microatoll	21
459	Yam Island	-9.90	142.77	6.658	0.70	0.30	Coral-microatoll	21
460	Yam Island	-9.90	142.77	6.701	0.30	0.30	Coral-microatoll	21
461	Warraber Island	-10.21	142.82	5.334	1.00	0.30	Coral-microatoll	21
462	Warraber Island	-10.21	142.82	5.936	0.80	0.30	Coral-microatoll	21
463	Warraber Island	-10.21	142.82	6.063	0.70	0.30	Coral-microatoll	21
464	Hammond Island	-10.56	142.18	6.910	1.00	0.30	Coral-microatoll	21
465	Arafura Sill	-10.65	137.58	12.200	-53.00	3.00	Sediment	22
466	Edward River	-18.75	147.27	3.324	0.70	0.50	Sediment	23
467	Edward River	-18.75	147.27	5.691	1.10	0.50	Sediment	23
468	Edward River	-18.75	147.27	5.924	1.20	0.50	Sediment	23
469	Karumba	-17.42	140.83	0.868	0.40	0.50	Sediment	23

450			1 15 10	1.40.00		0.60	0.50		I
470		Karumba	-17.42	140.83	1.947	0.60	0.50	Sediment	23
471		Karumba	-17.42	140.83	3.196	1.40	0.50	Sediment	23
472		Karumba	-17.42	140.83	4.472	1.90	0.50	Sediment	23
473		Karumba	-17.42	140.83	6.380	2.30	0.50	Sediment	23
474		Port McArthur	-15.78	136.67	5.808	1.20	0.60	Coral	23
475		Capricorn Channel	-22.88	152.51	16.800	-110.00	5.00	Sediment	11 / 12
476		Huon Peninsula	-6.11	147.62	7.782	-4.20	5.40	Coral	24 / 25
477	PAPUA	Huon Peninsula	-6.11	147.62	8.163	-7.10	5.40	Coral	24 / 25
478	NEW	Huon Peninsula	-6.11	147.62	8.300	-8.30	5.40	Coral	24 / 23
479	GUINEA	Huon Peninsula	-6.11	147.62	8.465	-11.90	5.40	Coral	24 / 2:
480		Huon Peninsula	-6.11	147.62	8.495	-14.90	5.40	Coral	24 / 2:
481		Huon Peninsula	-6.11	147.62	8.516	-10.50	5.40	Coral	24 / 2:
482		Huon Peninsula	-6.11	147.62	8.763	-13.80	5.40	Coral	24 / 2:
483		Huon Peninsula	-6.11	147.62	9.132	-19.60	5.40	Coral	24 / 2:
484		Huon Peninsula	-6.11	147.62	9.513	-21.50	5.40	Coral	24 / 2:
485		Huon Peninsula	-6.11	147.62	9.561	-23.60	5.40	Coral	24 / 2:
486		Huon Peninsula	-6.11	147.62	9.565	-26.90	5.40	Coral	24 / 25
487		Huon Peninsula	-6.11	147.62	9.843	-30.40	5.40	Coral	24 / 2
488		Huon Peninsula	-6.11	147.62	9.901	-28.10	5.40	Coral	24 / 2
489		Huon Peninsula	-6.11	147.62	9.950	-29.70	5.40	Coral	24 / 2
490		Huon Peninsula	-6.11	147.62	10.035	-33.20	5.40	Coral	24 / 2
491		Huon Peninsula	-6.11	147.62	10.199	-41.40	5.40	Coral	24 / 2
492		Huon Peninsula	-6.11	147.62	10.228	-32.70	5.40	Coral	24 / 2
493		Huon Peninsula	-6.11	147.62	10.325	-36.80	5.40	Coral	24 / 2
494		Huon Peninsula	-6.11	147.62	10.492	-38.50	5.40	Coral	24 / 2
495		Huon Peninsula	-6.11	147.62	10.504	-41.00	5.40	Coral	24 / 2
496		Huon Peninsula	-6.11	147.62	10.630	-40.10	5.40	Coral	24 / 2
497		Huon Peninsula	-6.11	147.62	10.776	-45.20	5.40	Coral	24 / 2
498		Huon Peninsula	-6.11	147.62	11.132	-47.40	5.40	Coral	24 / 2
499		Huon Peninsula	-6.11	147.62	11.406	-49.30	5.50	Coral	24 / 2
500		Huon Peninsula	-6.11	147.62	12.280	-53.80	5.50	Coral	24 / 2
501		Huon Peninsula	-6.11	147.62	12.628	-61.80	5.50	Coral	24 / 2
502		Huon Peninsula	-6.11	147.62	12.651	-54.30	5.50	Coral	24 / 2
503		Huon Peninsula	-6.11	147.62	12.998	-63.80	5.50	Coral	24 / 2
504		Huon Peninsula	-6.11	147.62	31.529	-70.30	3.50	Coral	25
505		Huon Peninsula	-6.11	147.62	31.997	-76.80	5.30	Coral	25
506		Huon Peninsula	-6.11	147.62	32.262	-70.60	5.50	Coral	25
507		Huon Peninsula	-6.11	147.62	32.600	-68.70	3.70	Coral	25
508		Huon Peninsula	-6.11	147.62	34.100	-63.00	3.90	Coral	25
509		Huon Peninsula	-6.11	147.62	34.800	-63.40	2.40	Coral	25
510		Sunda-18262-3	9.25	107.99	11.670	-56.50	3.00	Sediment	26 / 2
511	SUNDA	Sunda-18262-3	9.25	107.99	12.970	-64.20	3.00	Sediment	26 / 2
512	SHELF	Sunda-18262-3	9.25	107.99	13.080	-64.40	3.00	Sediment	26 / 2
513		Sunda-18265-2	9.39	107.75	10.902	-49.30	3.00	Sediment	26 / 2
514		Sunda-18299-1	4.53	108.83	15.410	-104.80	3.00	Sediment	26 / 2
515		Sunda-18300-2	4.36	108.65	14.350	-91.60	3.00	Sediment	26 / 2
516		Sunda-18300-2	4.36	108.65	14.350	-95.30	3.00	Sediment	26 / 2
517		Sunda-18300-2	4.36	108.65	14.720	-93.20	3.00	Sediment	26 / 2
518		Sunda-18300-2	4.36	108.65	14.730	-95.30	3.00	Sediment	26 / 2
519		Sunda-18300-2	4.36	108.65	14.750	-95.20	3.00	Sediment	26 / 2
520		Sunda-18300-2	4.36	108.65	14.760	-95.00	3.00	Sediment	26 / 2
521		Sunda-18300-2	4.36	108.65	15.290	-93.10	3.00	Sediment	26 / 2
		Sunda-18301-2	4.36	108.65	14.320	-95.80	3.00	Sediment	26 / 2
577		5unua-16501-2	7.50	100.03	14.520	-75.00	5.00	Scament	20/2
522 523		Sunda-18301-2	4.36	108.65	14.340	-95.80	3.00	Sediment	26 / 2

Second										
S22	525		Sunda-18302-2	4.16	108.58	14.100	-87.20	3.00	Sediment	26 / 27
Samala-18305-2	526		Sunda-18302-2	4.16	108.58	14.150	-87.90	3.00	Sediment	26 / 27
Sunda-18305-2	527		Sunda-18302-2	4.16	108.58	14.310	-87.10	3.00	Sediment	26 / 27
Sunda-1830-2	528		Sunda-18305-2	4.29	109.08	18.230	-110.70	3.00	Sediment	26 / 27
Same	529		Sunda-18305-2	4.29	109.08	18.840	-114.10	3.00	Sediment	26 / 27
S33	530		Sunda-18305-2	4.29	109.08	19.250	-114.10	3.00	Sediment	26 / 27
S33	531		Sunda-18307-2	3.63	108.53	16.295	-105.20	3.00	Sediment	26 / 27
Same	532			3.63	108.53	18.410	-109.30	3.00	Sediment	26 / 27
SST	533		Sunda-18308-2	3.30	108.79	14.280	-80.30	3.00	Sediment	26 / 27
Singlane	534		Sunda-18308-2	3.30	108.79	14.320	-80.30	3.00	Sediment	26 / 27
Single	535		Sunda-18309-2	3.47	108.69	14.340	-84.80	3.00	Sediment	26 / 27
Same	536		Sunda-18309-2	3.47	108.69	14.350	-84.80	3.00	Sediment	26 / 27
Singard Color	537		Sunda-18310-2	3.54	108.54	15.940	-104.90	3.00		26 / 27
Singard Color	538		Sunda-18322-2	2.31	107.63	13.440	-70.70	3.00	Sediment	26 / 27
SINGAPORE	539		LCK	1.45	103.72	1.787	-0.80	0.70	Sediment	28 / 29
S42		SINGAPORE								28 / 29
S42 NIE	541									
S43	542			1.35						28 / 29
SBU	543		NIE	1.35	103.65	5.772	3.10	0.40	Sediment	28 / 29
SBU	544		SBU	1.45	103.72	1.740	1.00	0.40	Sediment	28 / 29
SAT	545		SBU	1.45	103.72	7.545	-1.10	0.70	Sediment	28 / 29
548 SBU 1.45 103.72 7.923 -3.60 0.40 Sediment 28/29 549 SEK 1.40 103.98 0.073 0.60 0.40 Sediment 28/29 550 SEK 1.40 103.98 1.299 -0.40 0.40 Sediment 28/29 551 SEK 1.40 103.98 4.510 1.70 0.40 Sediment 28/29 552 SEK 1.40 103.98 4.612 1.70 0.40 Sediment 28/29 553 GAM 1.38 104.28 6.870 0.30 0.40 Sediment 28/29 554 Semakau 1.21 103.77 6.750 1.20 0.40 Sediment 28/29 555 Semakau 1.21 103.77 7.030 0.80 0.40 Sediment 28/29 557 Semakau 1.21 103.77 7.045 1.00 0.40 Sediment 28/29 55	546		SBU	1.45	103.72	7.554	-2.10	0.70	Sediment	28 / 29
SEK	547		SBU	1.45	103.72	7.585	-1.60	0.70	Sediment	28 / 29
550 SEK 1.40 103.98 1.299 -0.40 0.40 Sediment 28/29 551 SEK 1.40 103.98 4.510 1.70 0.40 Sediment 28/29 552 SEK 1.40 103.98 4.612 1.70 0.40 Sediment 28/29 553 GAM 1.38 104.28 6.870 0.30 0.40 Sediment 28/29 554 Semakau 1.21 103.77 6.750 1.20 0.40 Sediment 28/29 555 Semakau 1.21 103.77 7.030 0.80 0.40 Sediment 28/29 557 Semakau 1.21 103.77 7.030 0.80 0.40 Sediment 28/29 558 Semakau 1.21 103.77 7.045 1.00 0.40 Sediment 28/29 559 Semakau 1.21 103.77 8.256 -9.60 1.20 Sediment 28/29	548		SBU	1.45	103.72	7.923	-3.60	0.40	Sediment	28 / 29
551 SEK 1.40 103.98 4.510 1.70 0.40 Sediment 28/29 552 SEK 1.40 103.98 4.612 1.70 0.40 Sediment 28/29 553 GAM 1.38 104.28 6.870 0.30 0.40 Sediment 28/29 554 Semakau 1.21 103.77 6.750 1.20 0.40 Sediment 28/29 555 Semakau 1.21 103.77 6.910 1.40 0.40 Sediment 28/29 556 Semakau 1.21 103.77 7.030 0.80 0.40 Sediment 28/29 557 Semakau 1.21 103.77 7.045 1.00 0.40 Sediment 28/29 558 Semakau 1.21 103.77 8.256 -9.60 1.20 Sediment 28/29 560 Geylang 1.31 103.87 6.106 2.20 0.40 Sediment 28/29	549		SEK	1.40	103.98	0.073	0.60	0.40	Sediment	28 / 29
552 SEK 1.40 103.98 4.612 1.70 0.40 Sediment 28/29 553 GAM 1.38 104.28 6.870 0.30 0.40 Sediment 28/29 554 Semakau 1.21 103.77 6.750 1.20 0.40 Sediment 28/29 555 Semakau 1.21 103.77 7.030 0.80 0.40 Sediment 28/29 556 Semakau 1.21 103.77 7.045 1.00 0.40 Sediment 28/29 557 Semakau 1.21 103.77 7.045 1.00 0.40 Sediment 28/29 558 Semakau 1.21 103.77 8.256 -9.60 1.20 Sediment 28/29 559 Semakau 1.21 103.77 8.256 -9.060 1.20 Sediment 28/29 560 Geylang 1.31 103.87 6.106 2.20 0.40 Sediment 28/29 <t< td=""><td>550</td><td></td><td>SEK</td><td>1.40</td><td>103.98</td><td>1.299</td><td>-0.40</td><td>0.40</td><td>Sediment</td><td>28 / 29</td></t<>	550		SEK	1.40	103.98	1.299	-0.40	0.40	Sediment	28 / 29
553 GAM 1.38 104.28 6.870 0.30 0.40 Sediment 28/29 554 Semakau 1.21 103.77 6.750 1.20 0.40 Sediment 28/29 555 Semakau 1.21 103.77 7.030 0.80 0.40 Sediment 28/29 557 Semakau 1.21 103.77 7.045 1.00 0.40 Sediment 28/29 558 Semakau 1.21 103.77 8.256 -9.60 1.20 Sediment 28/29 559 Semakau 1.21 103.77 8.556 -10.40 1.20 Sediment 28/29 560 Geylang 1.31 103.87 6.106 2.20 0.40 Sediment 28/29 561 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28/29 561 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28/29	551		SEK	1.40	103.98	4.510	1.70	0.40	Sediment	28 / 29
554 Semakau 1.21 103.77 6.750 1.20 0.40 Sediment 28 / 29 555 Semakau 1.21 103.77 6.910 1.40 0.40 Sediment 28 / 29 556 Semakau 1.21 103.77 7.035 1.00 0.40 Sediment 28 / 29 557 Semakau 1.21 103.77 7.045 1.00 0.40 Sediment 28 / 29 558 Semakau 1.21 103.77 8.256 -9.60 1.20 Sediment 28 / 29 560 Geylang 1.31 103.87 6.106 2.20 0.40 Sediment 28 / 29 561 Geylang 1.31 103.87 6.410 1.20 0.70 Sediment 28 / 29 561 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28 / 29 562 Geylang 1.31 103.87 6.820 0.00 0.60 Sediment 28 /	552		SEK	1.40	103.98	4.612	1.70	0.40	Sediment	28 / 29
555 Semakau 1.21 103.77 6.910 1.40 0.40 Sediment 28 / 29 556 Semakau 1.21 103.77 7.030 0.80 0.40 Sediment 28 / 29 557 Semakau 1.21 103.77 7.045 1.00 0.40 Sediment 28 / 29 558 Semakau 1.21 103.77 8.556 -9.60 1.20 Sediment 28 / 29 560 Geylang 1.31 103.87 6.106 2.20 0.40 Sediment 28 / 29 561 Geylang 1.31 103.87 6.410 1.20 0.70 Sediment 28 / 29 562 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28 / 29 563 Geylang 1.31 103.87 6.820 -0.60 Sediment 28 / 29 564 Geylang 1.31 103.87 6.822 -1.10 1.20 Sediment 28 / 29	553		GAM	1.38	104.28	6.870	0.30	0.40	Sediment	28 / 29
556 Semakau 1.21 103.77 7.030 0.80 0.40 Sediment 28/29 557 Semakau 1.21 103.77 7.045 1.00 0.40 Sediment 28/29 558 Semakau 1.21 103.77 8.256 -9.60 1.20 Sediment 28/29 559 Semakau 1.21 103.77 8.556 -10.40 1.20 Sediment 28/29 560 Geylang 1.31 103.87 6.106 2.20 0.40 Sediment 28/29 561 Geylang 1.31 103.87 6.410 1.20 0.70 Sediment 28/29 561 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28/29 563 Geylang 1.31 103.87 6.705 0.00 0.60 Sediment 28/29 564 Geylang 1.31 103.87 7.025 -0.40 0.60 Sediment 28/29 <td>554</td> <td></td> <td>Semakau</td> <td>1.21</td> <td>103.77</td> <td>6.750</td> <td>1.20</td> <td>0.40</td> <td>Sediment</td> <td>28 / 29</td>	554		Semakau	1.21	103.77	6.750	1.20	0.40	Sediment	28 / 29
557 Semakau 1.21 103.77 7.045 1.00 0.40 Sediment 28/29 558 Semakau 1.21 103.77 8.256 -9.60 1.20 Sediment 28/29 559 Semakau 1.21 103.77 8.256 -10.40 1.20 Sediment 28/29 560 Geylang 1.31 103.87 6.106 2.20 0.40 Sediment 28/29 561 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28/29 562 Geylang 1.31 103.87 6.705 0.00 0.60 Sediment 28/29 563 Geylang 1.31 103.87 6.705 0.00 0.60 Sediment 28/29 564 Geylang 1.31 103.87 7.025 0.00 0.60 Sediment 28/29 565 Geylang 1.31 103.87 7.025 0.40 0.60 Sediment 28/29 <td>555</td> <td></td> <td>Semakau</td> <td>1.21</td> <td>103.77</td> <td>6.910</td> <td>1.40</td> <td>0.40</td> <td>Sediment</td> <td>28 / 29</td>	555		Semakau	1.21	103.77	6.910	1.40	0.40	Sediment	28 / 29
558 Semakau 1.21 103.77 8.256 -9.60 1.20 Sediment 28/29 559 Semakau 1.21 103.77 8.556 -10.40 1.20 Sediment 28/29 560 Geylang 1.31 103.87 6.106 2.20 0.40 Sediment 28/29 561 Geylang 1.31 103.87 6.410 1.20 0.70 Sediment 28/29 562 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28/29 563 Geylang 1.31 103.87 6.00 0.60 Sediment 28/29 564 Geylang 1.31 103.87 6.820 -0.60 0.40 Sediment 28/29 565 Geylang 1.31 103.87 7.022 1.00 1.20 Sediment 28/29 566 Geylang 1.31 103.87 7.043 0.10 0.40 Sediment 28/29 <td< td=""><td>556</td><td></td><td>Semakau</td><td>1.21</td><td>103.77</td><td>7.030</td><td>0.80</td><td>0.40</td><td>Sediment</td><td>28 / 29</td></td<>	556		Semakau	1.21	103.77	7.030	0.80	0.40	Sediment	28 / 29
559 Semakau 1.21 103.77 8.556 -10.40 1.20 Sediment 28/29 560 Geylang 1.31 103.87 6.106 2.20 0.40 Sediment 28/29 561 Geylang 1.31 103.87 6.410 1.20 0.70 Sediment 28/29 562 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28/29 563 Geylang 1.31 103.87 6.705 0.00 0.60 Sediment 28/29 564 Geylang 1.31 103.87 6.820 -0.60 0.40 Sediment 28/29 565 Geylang 1.31 103.87 7.025 -0.40 0.60 Sediment 28/29 566 Geylang 1.31 103.87 7.025 -0.40 0.60 Sediment 28/29 567 Geylang 1.31 103.87 7.092 -1.90 0.60 Sediment 28/29 <	557		Semakau	1.21	103.77	7.045	1.00	0.40	Sediment	28 / 29
560 Geylang 1.31 103.87 6.106 2.20 0.40 Sediment 28/29 561 Geylang 1.31 103.87 6.410 1.20 0.70 Sediment 28/29 562 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28/29 563 Geylang 1.31 103.87 6.705 0.00 0.60 Sediment 28/29 564 Geylang 1.31 103.87 6.820 -0.60 0.40 Sediment 28/29 565 Geylang 1.31 103.87 6.822 1.10 1.20 Sediment 28/29 566 Geylang 1.31 103.87 7.025 -0.40 0.60 Sediment 28/29 567 Geylang 1.31 103.87 7.092 -1.90 0.60 Sediment 28/29 569 Geylang 1.31 103.87 7.100 0.40 0.40 Sediment 28/29 <td>558</td> <td></td> <td>Semakau</td> <td>1.21</td> <td>103.77</td> <td>8.256</td> <td>-9.60</td> <td>1.20</td> <td>Sediment</td> <td>28 / 29</td>	558		Semakau	1.21	103.77	8.256	-9.60	1.20	Sediment	28 / 29
561 Geylang 1.31 103.87 6.410 1.20 0.70 Sediment 28 / 29 562 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28 / 29 563 Geylang 1.31 103.87 6.705 0.00 0.60 Sediment 28 / 29 564 Geylang 1.31 103.87 6.820 -0.60 0.40 Sediment 28 / 29 565 Geylang 1.31 103.87 6.822 1.10 1.20 Sediment 28 / 29 566 Geylang 1.31 103.87 7.025 -0.40 0.60 Sediment 28 / 29 567 Geylang 1.31 103.87 7.043 0.10 0.40 Sediment 28 / 29 568 Geylang 1.31 103.87 7.092 -1.90 0.60 Sediment 28 / 29 569 Geylang 1.31 103.87 7.100 0.40 0.40 Sediment 28	559		Semakau	1.21	103.77	8.556	-10.40	1.20	Sediment	28 / 29
562 Geylang 1.31 103.87 6.456 1.20 0.70 Sediment 28 / 29 563 Geylang 1.31 103.87 6.705 0.00 0.60 Sediment 28 / 29 564 Geylang 1.31 103.87 6.820 -0.60 0.40 Sediment 28 / 29 565 Geylang 1.31 103.87 6.822 1.10 1.20 Sediment 28 / 29 566 Geylang 1.31 103.87 7.025 -0.40 0.60 Sediment 28 / 29 567 Geylang 1.31 103.87 7.043 0.10 0.40 Sediment 28 / 29 568 Geylang 1.31 103.87 7.092 -1.90 0.60 Sediment 28 / 29 569 Geylang 1.31 103.87 7.100 0.40 0.40 Sediment 28 / 29 570 Geylang 1.31 103.87 7.120 -0.40 0.40 Sediment 28	560		Geylang	1.31	103.87	6.106	2.20	0.40	Sediment	28 / 29
563 Geylang 1.31 103.87 6.705 0.00 0.60 Sediment 28 / 29 564 Geylang 1.31 103.87 6.820 -0.60 0.40 Sediment 28 / 29 565 Geylang 1.31 103.87 6.822 1.10 1.20 Sediment 28 / 29 566 Geylang 1.31 103.87 7.025 -0.40 0.60 Sediment 28 / 29 567 Geylang 1.31 103.87 7.043 0.10 0.40 Sediment 28 / 29 568 Geylang 1.31 103.87 7.092 -1.90 0.60 Sediment 28 / 29 569 Geylang 1.31 103.87 7.100 0.40 0.40 Sediment 28 / 29 570 Geylang 1.31 103.87 7.120 -0.40 0.40 Sediment 28 / 29 571 Geylang 1.31 103.87 7.275 -2.50 0.60 Sediment 2	561		Geylang	1.31	103.87	6.410	1.20	0.70	Sediment	28 / 29
564 Geylang 1.31 103.87 6.820 -0.60 0.40 Sediment 28 / 29 565 Geylang 1.31 103.87 6.822 1.10 1.20 Sediment 28 / 29 566 Geylang 1.31 103.87 7.025 -0.40 0.60 Sediment 28 / 29 567 Geylang 1.31 103.87 7.043 0.10 0.40 Sediment 28 / 29 568 Geylang 1.31 103.87 7.092 -1.90 0.60 Sediment 28 / 29 569 Geylang 1.31 103.87 7.100 0.40 0.40 Sediment 28 / 29 570 Geylang 1.31 103.87 7.120 -0.40 0.40 Sediment 28 / 29 571 Geylang 1.31 103.87 7.175 0.20 0.40 Sediment 28 / 29 572 Geylang 1.31 103.87 7.275 -2.50 0.60 Sediment 2	562		Geylang	1.31	103.87	6.456	1.20	0.70	Sediment	28 / 29
565 Geylang 1.31 103.87 6.822 1.10 1.20 Sediment 28 / 29 566 Geylang 1.31 103.87 7.025 -0.40 0.60 Sediment 28 / 29 567 Geylang 1.31 103.87 7.043 0.10 0.40 Sediment 28 / 29 568 Geylang 1.31 103.87 7.092 -1.90 0.60 Sediment 28 / 29 569 Geylang 1.31 103.87 7.100 0.40 0.40 Sediment 28 / 29 570 Geylang 1.31 103.87 7.120 -0.40 0.40 Sediment 28 / 29 571 Geylang 1.31 103.87 7.175 0.20 0.40 Sediment 28 / 29 572 Geylang 1.31 103.87 7.275 -2.50 0.60 Sediment 28 / 29 573 Geylang 1.31 103.87 7.350 -3.50 0.60 Sediment 2	563		Geylang	1.31	103.87	6.705	0.00	0.60	Sediment	28 / 29
566 Geylang 1.31 103.87 7.025 -0.40 0.60 Sediment 28/29 567 Geylang 1.31 103.87 7.043 0.10 0.40 Sediment 28/29 568 Geylang 1.31 103.87 7.092 -1.90 0.60 Sediment 28/29 569 Geylang 1.31 103.87 7.100 0.40 0.40 Sediment 28/29 570 Geylang 1.31 103.87 7.120 -0.40 0.40 Sediment 28/29 571 Geylang 1.31 103.87 7.175 0.20 0.40 Sediment 28/29 572 Geylang 1.31 103.87 7.275 -2.50 0.60 Sediment 28/29 573 Geylang 1.31 103.87 7.350 -3.50 0.60 Sediment 28/29 574 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28/29 <	564		Geylang	1.31	103.87	6.820	-0.60	0.40	Sediment	28 / 29
567 Geylang 1.31 103.87 7.043 0.10 0.40 Sediment 28/29 568 Geylang 1.31 103.87 7.092 -1.90 0.60 Sediment 28/29 569 Geylang 1.31 103.87 7.100 0.40 0.40 Sediment 28/29 570 Geylang 1.31 103.87 7.120 -0.40 0.40 Sediment 28/29 571 Geylang 1.31 103.87 7.175 0.20 0.40 Sediment 28/29 572 Geylang 1.31 103.87 7.275 -2.50 0.60 Sediment 28/29 573 Geylang 1.31 103.87 7.350 -3.50 0.60 Sediment 28/29 574 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28/29 575 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28/29 <	565		Geylang	1.31	103.87	6.822	1.10	1.20	Sediment	28 / 29
568 Geylang 1.31 103.87 7.092 -1.90 0.60 Sediment 28 / 29 569 Geylang 1.31 103.87 7.100 0.40 0.40 Sediment 28 / 29 570 Geylang 1.31 103.87 7.120 -0.40 0.40 Sediment 28 / 29 571 Geylang 1.31 103.87 7.175 0.20 0.40 Sediment 28 / 29 572 Geylang 1.31 103.87 7.275 -2.50 0.60 Sediment 28 / 29 573 Geylang 1.31 103.87 7.350 -3.50 0.60 Sediment 28 / 29 574 Geylang 1.31 103.87 7.401 -2.70 0.40 Sediment 28 / 29 575 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28 / 29 576 Geylang 1.31 103.87 7.520 -3.20 0.40 Sediment <td< td=""><td>566</td><td></td><td>Geylang</td><td>1.31</td><td>103.87</td><td>7.025</td><td>-0.40</td><td>0.60</td><td>Sediment</td><td>28 / 29</td></td<>	566		Geylang	1.31	103.87	7.025	-0.40	0.60	Sediment	28 / 29
569 Geylang 1.31 103.87 7.100 0.40 0.40 Sediment 28 / 29 570 Geylang 1.31 103.87 7.120 -0.40 0.40 Sediment 28 / 29 571 Geylang 1.31 103.87 7.175 0.20 0.40 Sediment 28 / 29 572 Geylang 1.31 103.87 7.275 -2.50 0.60 Sediment 28 / 29 573 Geylang 1.31 103.87 7.350 -3.50 0.60 Sediment 28 / 29 574 Geylang 1.31 103.87 7.401 -2.70 0.40 Sediment 28 / 29 575 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28 / 29 576 Geylang 1.31 103.87 7.520 -3.20 0.40 Sediment 28 / 29 577 Geylang 1.31 103.87 7.545 -2.10 0.40 Sediment <td< td=""><td>567</td><td></td><td>Geylang</td><td>1.31</td><td>103.87</td><td>7.043</td><td>0.10</td><td>0.40</td><td>Sediment</td><td>28 / 29</td></td<>	567		Geylang	1.31	103.87	7.043	0.10	0.40	Sediment	28 / 29
570 Geylang 1.31 103.87 7.120 -0.40 0.40 Sediment 28 / 29 571 Geylang 1.31 103.87 7.175 0.20 0.40 Sediment 28 / 29 572 Geylang 1.31 103.87 7.275 -2.50 0.60 Sediment 28 / 29 573 Geylang 1.31 103.87 7.350 -3.50 0.60 Sediment 28 / 29 574 Geylang 1.31 103.87 7.401 -2.70 0.40 Sediment 28 / 29 575 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28 / 29 576 Geylang 1.31 103.87 7.520 -3.20 0.40 Sediment 28 / 29 577 Geylang 1.31 103.87 7.545 -2.10 0.40 Sediment 28 / 29 578 Geylang 1.31 103.87 7.595 -2.20 0.40 Sediment <t< td=""><td>568</td><td></td><td>Geylang</td><td>1.31</td><td>103.87</td><td>7.092</td><td>-1.90</td><td>0.60</td><td>Sediment</td><td>28 / 29</td></t<>	568		Geylang	1.31	103.87	7.092	-1.90	0.60	Sediment	28 / 29
571 Geylang 1.31 103.87 7.175 0.20 0.40 Sediment 28 / 29 572 Geylang 1.31 103.87 7.275 -2.50 0.60 Sediment 28 / 29 573 Geylang 1.31 103.87 7.350 -3.50 0.60 Sediment 28 / 29 574 Geylang 1.31 103.87 7.401 -2.70 0.40 Sediment 28 / 29 575 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28 / 29 576 Geylang 1.31 103.87 7.520 -3.20 0.40 Sediment 28 / 29 577 Geylang 1.31 103.87 7.545 -2.10 0.40 Sediment 28 / 29 578 Geylang 1.31 103.87 7.595 -2.20 0.40 Sediment 28 / 29	569		Geylang	1.31	103.87	7.100	0.40	0.40	Sediment	28 / 29
572 Geylang 1.31 103.87 7.275 -2.50 0.60 Sediment 28 / 29 573 Geylang 1.31 103.87 7.350 -3.50 0.60 Sediment 28 / 29 574 Geylang 1.31 103.87 7.401 -2.70 0.40 Sediment 28 / 29 575 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28 / 29 576 Geylang 1.31 103.87 7.520 -3.20 0.40 Sediment 28 / 29 577 Geylang 1.31 103.87 7.545 -2.10 0.40 Sediment 28 / 29 578 Geylang 1.31 103.87 7.595 -2.20 0.40 Sediment 28 / 29	570		Geylang	1.31	103.87	7.120	-0.40	0.40	Sediment	28 / 29
573 Geylang 1.31 103.87 7.350 -3.50 0.60 Sediment 28 / 29 574 Geylang 1.31 103.87 7.401 -2.70 0.40 Sediment 28 / 29 575 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28 / 29 576 Geylang 1.31 103.87 7.520 -3.20 0.40 Sediment 28 / 29 577 Geylang 1.31 103.87 7.545 -2.10 0.40 Sediment 28 / 29 578 Geylang 1.31 103.87 7.595 -2.20 0.40 Sediment 28 / 29	571		Geylang	1.31	103.87	7.175	0.20	0.40		28 / 29
574 Geylang 1.31 103.87 7.401 -2.70 0.40 Sediment 28 / 29 575 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28 / 29 576 Geylang 1.31 103.87 7.520 -3.20 0.40 Sediment 28 / 29 577 Geylang 1.31 103.87 7.545 -2.10 0.40 Sediment 28 / 29 578 Geylang 1.31 103.87 7.595 -2.20 0.40 Sediment 28 / 29	572		Geylang	1.31	103.87	7.275	-2.50	0.60		28 / 29
575 Geylang 1.31 103.87 7.505 -2.20 0.40 Sediment 28 / 29 576 Geylang 1.31 103.87 7.520 -3.20 0.40 Sediment 28 / 29 577 Geylang 1.31 103.87 7.545 -2.10 0.40 Sediment 28 / 29 578 Geylang 1.31 103.87 7.595 -2.20 0.40 Sediment 28 / 29			· -							
576 Geylang 1.31 103.87 7.520 -3.20 0.40 Sediment 28 / 29 577 Geylang 1.31 103.87 7.545 -2.10 0.40 Sediment 28 / 29 578 Geylang 1.31 103.87 7.595 -2.20 0.40 Sediment 28 / 29			· -							
577 Geylang 1.31 103.87 7.545 -2.10 0.40 Sediment 28 / 29 578 Geylang 1.31 103.87 7.595 -2.20 0.40 Sediment 28 / 29			· -							
578 Geylang 1.31 103.87 7.595 -2.20 0.40 Sediment 28 / 29			· -							
			· -							
579 Geylang 1.31 103.87 7.780 -3.60 0.60 Sediment 28/29										
	579		Geylang	1.31	103.87	7.780	-3.60	0.60	Sediment	28 / 29

580		Geylang	1.31	103.87	7.840	-4.10	0.40	Sediment	28 / 29
581		Geylang	1.31	103.87	7.875	-2.10	0.40	Sediment	28 / 29
582		Geylang	1.31	103.87	7.880	-2.90	0.60	Sediment	28 / 29
583		Geylang	1.31	103.87	7.895	-3.70	0.40	Sediment	28 / 29
584		Geylang	1.31	103.87	7.975	-3.30	0.40	Sediment	28 / 29
585		Geylang	1.31	103.87	7.987	-5.20	0.60	Sediment	28 / 29
586		Geylang	1.31	103.87	8.000	-2.50	0.60	Sediment	28 / 29
587		Geylang	1.31	103.87	8.100	-5.20	0.60	Sediment	28 / 29
588		Geylang	1.31	103.87	8.155	-4.20	0.40	Sediment	28 / 29
589		Geylang	1.31	103.87	8.165	-5.10	0.40	Sediment	28 / 29
590		Geylang	1.31	103.87	8.170	-6.90	0.70	Sediment	28 / 29
591		Geylang	1.31	103.87	8.175	-7.40	0.60	Sediment	28 / 29
592		Geylang	1.31	103.87	8.185	-3.00	0.40	Sediment	28 / 29
593		Geylang	1.31	103.87	8.225	-5.40	0.60	Sediment	28 / 29
594		Geylang	1.31	103.87	8.230	-3.70	0.40	Sediment	28 / 29
595		Geylang	1.31	103.87	8.300	-6.80	0.70	Sediment	28 / 29
596		Geylang	1.31	103.87	8.410	-5.40	0.60	Sediment	28 / 29
597		Geylang	1.31	103.87	8.450	-7.30	0.60	Sediment	28 / 29
598		Geylang	1.31	103.87	8.465	-8.10	0.60	Sediment	28 / 29
599		Geylang	1.31	103.87	8.470	-8.60	0.40	Sediment	28 / 29
600		Geylang	1.31	103.87	8.505	-6.80	0.70	Sediment	28 / 29
601		Geylang	1.31	103.87	8.560	-8.60	0.40	Sediment	28 / 29
602		Geylang	1.31	103.87	8.610	-8.10	0.60	Sediment	28 / 29
603		Geylang	1.31	103.87	8.795	-8.80	0.70	Sediment	28 / 29
604		Geylang	1.31	103.87	8.795	-8.80	0.70	Sediment	28 / 29
605		Malay_1	3.15	101.45	4.530	2.60	1.00	Mangrove	30
606	MALAYSIA	Malay_2	3.15	101.47	4.618	2.30	1.00	Mangrove	30
607		Malay_3	2.98	101.50	6.024	2.00	0.90	Mangrove	30
608		Malay_3	2.98	101.50	6.096	2.10	0.90	Mangrove	30
609		Malay_3	2.98	101.50	6.101	3.20	1.00	Mangrove	30
610		Malay_3	2.98	101.50	6.346	2.90	1.00	Mangrove	30
611		Malay_6	3.72	103.27	4.436	1.70	0.90	Mangrove	30
612		Malay_7	2.52	101.77	0.979	-1.60	0.90	Mangrove	31
613		Malay_8	2.42	101.97	1.060	-1.50	0.90	Mangrove	31
614		Malay_15	2.32	102.08	6.821	0.30	0.90	Mangrove	31
615		Malay_16	1.53	103.47	7.140	-0.00	0.60	Mangrove	31
616		Malay_16	1.53	103.47	7.516	0.20	0.60	Mangrove	31
617		Malay_18	2.37	102.00	7.865	-4.70 5.00	1.00	Mangrove	31
618 619		Malay_20	2.42 2.42	101.93 101.93	8.044 8.262	-5.90 -6.70	1.00 1.10	Mangrove	31 31
620		Malay_22 Malay_22	2.42	101.93	8.374	-8.40	1.10	Mangrove Mangrove	31
621		Malay_22	2.42	101.93	8.915	-13.60	1.60	Mangrove	32
622		Malay_Hv7665	2.57	101.50	31.500	-66.00	5.00	Mangrove/in-situ?	32
623		Tioman	2.75	101.30	1.833	1.10	0.70	Mangrove	32
624		Tioman	2.75	104.25	2.445	1.60	0.70	Mangrove	32
625		Tioman	2.75	104.25	3.328	0.90	0.70	Mangrove	33 / 34
626		Tioman	2.75	104.25	4.647	1.70	0.70	Mangrove	33 / 34
627		Pattani	6.83	100.25	3.035	1.10	0.50	Mangrove	35
628	THAILAND	Satting_Pra	7.50	100.23	7.178	-1.40	0.50	Mangrove	36 / 37
629	THILAND	Satting_Pra	7.50	100.17	7.178	-0.70	0.50	Mangrove	36 / 37
630		Pattalung	7.60	100.17	7.739	-0.70 -4.70	0.50	Mangrove	36 / 37
631		TNTH	7.75	100.17	7.787	-4.70 -4.00	0.90	Mangrove	38
632		TNTH	7.75	100.17	8.349	-6.70	0.90	Mangrove	39
633		TNTH	7.75	100.17	7.787	-4.00	0.60	Mangrove	40
634		TNTH	7.75	100.17	8.352	-6.70	0.60	Mangrove	40
1			ı			2.,0	,	··	

			_						_
635		Phuket	7.75	98.41	2.224	1.30	0.50	Mangrove	41
636		Phuket	7.75	98.41	2.483	1.50	0.50	Mangrove	41
637		Phuket	7.75	98.41	3.468	1.60	0.50	Mangrove	41
638		Phuket	7.75	98.41	3.582	1.50	0.50	Mangrove	41
639		Phuket	7.75	98.41	4.667	1.80	0.50	Mangrove	41
640		Phuket	7.75	98.41	4.674	1.80	0.50	Mangrove	41
641		Phuket	7.75	98.41	4.714	1.80	0.50	Mangrove	41
642		Phuket	7.75	98.41	5.559	1.80	0.50	Mangrove	41
643		Phuket	7.75	98.41	6.052	1.90	0.50	Mangrove	41
644		Phuket	7.75	98.41	6.673	2.00	0.50	Mangrove	41
645		Phuket	7.75	98.41	6.785	2.00	0.50	Mangrove	41
646		Prachuab	11.75	99.75	3.544	1.50	0.70	Mangrove	41
647		Prachuab	11.75	99.75	4.677	2.00	0.70	Mangrove	41
648		Ca_Na	11.33	108.84	2.057	2.70	0.60	Washover, gastropod	42
649	VIETNAM	Ca_Na	11.33	108.84	2.075	1.70	0.60	Backshore, bivalve	42
650		Ca_Na	11.33	108.84	3.555	1.20	0.60	Beachrock, coral	42
651		Ca_Na	11.33	108.84	3.915	1.30	0.60	Beachrock, coral	42
652		Ca_Na	11.33	108.84	4.110	1.80	0.60	Beachrock, coral	42
653		Ca_Na	11.33	108.84	5.677	2.70	0.40	Bachridge, bivalve	42
654		Ca_Na	11.33	108.84	5.711	2.40	0.60	Backshore, coral	42
655		Ca_Na	11.33	108.84	5.948	2.90	0.60	Backshore, coral	42
656		Ca_Na	11.33	108.84	6.032	3.30	0.70	Beachridge, coral	42
657		Ca_Na	11.33	108.87	6.237	1.80	0.60	Beachrock, coral	42
658		Ca_Na	11.33	108.87	6.409	1.00	0.30	Beachrock, bivalve	42
659		Ca_Na	11.33	108.87	7.070	2.10	0.60	Beachrock, coral	42
660		Dawuzhuang	39.71	117.49	7.625	-1.10	0.70	Oyster reef	43
661	BOHAI,	Biaokou	39.33	117.58	6.270	0.00	0.70	Oyster reef	43
662	SOUTH	Yingcheng	39.20	117.78	1.650	-1.80	0.70	Oyster reef	43
663	YELLOW	Beitang	39.11	117.72	1.445	-1.00	0.70	Oyster reef	43
664	&	C05	39.59	120.80	10.197	-36.30	3.80	Brackish - lagoon mud	44
665	EAST	Qianmiaozhuang	39.45	117.84	5.325	0.00	1.50	Chenier	45
666	CHINA	Changzhuang	39.25	117.10	4.020	-0.40	1.50	Chenier	45
667	SEAS	Laolangtuozi	39.23	117.19	0.850	0.00	1.50	Chenier	45
668		Laolangtuozi	39.23	117.19	1.245	0.60	1.50	Chenier	45
669		Dongsuncun	39.02	117.44	7.160	0.90	1.50	Chenier	45
670		Qikou	38.72	117.57	2.525	0.90	1.50	Chenier	45
671		Mapengkou	38.71	117.54	2.095	-1.30	1.50	Chenier	45
672		Mapengkou	38.71	117.54	2.490	0.10	1.50	Chenier	45
673		S3	38.02	118.85	9.834	-20.40	2.00	Brakish - shell fragments	46
674		H9602	37.80	118.91	9.538	-18.80	1.80	Brackish - L. Coccinea	47
675		H9602	37.80	118.91	9.724	-18.40	1.80	Marine - shell fragments	47
676		DH4-1	37.02	126.47	7.609	-2.70	3.00	Brackish	48
677		H80-18	37.00	123.52	12.732	-71.90	7.80	Brackish Intertidal	49
678		YSDP103	34.48	125.48	14.182	-77.30	8.40		50
679 680		QC2 QC2	34.30 34.30	122.27 122.27	12.638 13.305	-66.10 -68.50	6.70 6.90	Salty marsh Salty marsh	51 40
681		QC2 CC-04	36.30	122.27	15.135	-86.50	8.60	Brackish	40
682		JS_QF	33.52	119.72	1.181	-0.20	0.60	Brackish/freshwater marsh	52
683		JS_QF JS_QF	33.52	119.72	2.529	-0.20	0.60	Brackish/freshwater marsh	52
684		JS_QF JS_QF	33.52	119.72	6.115	1.30	1.50	Organic silt/clay of tidal flat	52
685		JS_QF JS_QF	33.52	119.72	7.413	0.60	1.50	Organic silt/clay of tidal flat	52
686		JS_QF JS_QF	33.52	119.72	8.539	-3.50	0.60	Brackish/freshwater marsh	52
687		JS_QF JS_YC	33.38	120.12	6.420	1.10	1.50	Organic silt/clay of tidal flat	53
688		JS_YC	33.38	120.12	7.689	0.20	1.50	Organic silt/clay of tidal flat	53
689		JS_YC	33.38	120.12	7.854	-0.90	1.50	Organic silt/clay of tidal flat	53
007		35_10	1 33.36	120.12	, .054	-0.70	1.50	organic one one or tidal flat	33

									•
690		JS_FN	33.78	119.80	7.182	0.20	1.50	Organic silt/clay of tidal flat	53
691		JS_FN	33.78	119.80	7.329	0.60	1.50	Organic silt/clay of tidal flat	52
692		JS_FN	33.78	119.80	7.578	2.10	0.50	Ostrea in silt/clay	52
693		Yancheng	33.38	120.12	7.669	-3.60	1.00	Shells in shell ridge	54
694		Wenzhou	28.05	120.67	3.350	-0.40	0.50	Shells in beach sands	54
695		Wenzhou	28.05	120.67	9.471	-19.50	1.90	Shells in beach sands	54
696		KS-5	33.69	127.19	15.857	-101.20	10.40	Pitar Sulfureum - intertidal flat	55
697		KS-3	33.54	127.00	24.038	-136.40	13.70	P. Amurensis - brackish	55
698		YZ_ECS0702	31.00	122.67	11.950	-56.30	5.80	Plant material - tidal flat	56
699		YZ_ECS0702	31.00	122.67	12.231	-53.40	5.50	Plant material - tidal flat	56
700		Pingtan	25.52	119.73	3.761	1.40	1.10	Shell-ridge conglomerate	33 / 34
701	SOUTH	Pingtan2	25.52	119.78	5.991	-1.10	1.00	Shell-ridge conglomerate	33 / 34
702	CHINA	Putian	25.20	119.45	4.490	2.20	1.20	Shell-ridge conglomerate	33 / 34
703		Liyu Outian	25.10	119.05	1.520	0.70	1.00	Beachrock	34 / 57
704		Sea_floor	24.67	118.87	9.444	-25.60	2.70	Shells in beach sands	34 / 57
705		Dongshan	23.60	117.30	4.608	2.90	1.10	Shells in beach sands	34 / 57
706		Zhangpu	24.07	117.63	1.907	1.40	1.00	Shells in beach sands	34 / 58
707		Zhangpu	24.07	117.63	2.746	1.20	1.00	Beachrock	34 / 58
708		Longhai	24.40	117.85	1.821	0.30	1.10	Shell-ridge conglomerate	34 / 58
709		Longhai	24.40	117.85	1.936	1.00	0.90	Brackish/freshwater marsh	34 / 58
710		Longhai	24.40	117.85	2.349	2.40	1.10	Shells in beach sands	34 / 58
711		Longhai	24.40	117.85	3.369	1.40	1.80	Ostrea in living position	34 / 58
712		Longhai	24.40	117.85	3.624	1.50	1.80	Ostrea in living position	34 / 58
713		Longhai	24.40	117.85	4.147	2.30	1.10	Beachrock	34 / 58
714		Longhai	24.40	117.85	4.851	2.20	1.00	Shells in beach sands	34 / 52
715		Han14	23.53	119.53	3.757	-0.60	0.40	Shells in beach sands	57
716		Fengkuei	23.53	119.53	1.852	1.30	1.00	Shells in beach sands	34 / 59
717		Chihkan	23.67	119.58	1.881	1.30	1.00	Shells in beach sands	34 / 59
718		Chihkan	23.67	119.58	5.110	2.00	1.00	Shells in beach sands	34 / 59
719		Lintou	23.55	119.63	3.949	1.90	1.00	Shells in beach sands	34 / 59
720		Lintou	23.55	119.63	5.468	1.90	1.00	Shells in beach sands	34 / 59
721		Kupoyu	23.72	119.55	0.790	1.20	1.00	Shells in beach sands	34 / 59
722		Sokang	23.53	119.60	1.714	1.10	1.00	Shells in beach sands	34 / 59
723		Chinglo	23.60	119.65	4.749	1.90	1.00	Shells in beach sands	34 / 59
724		Tashihpi	23.60	119.58	1.970	1.10	1.00	Shells in beach sands	34 / 59
725		Paikeng	23.63	119.65	5.135	2.20	1.00	Shells in beach sands	34 / 59
726		KWG-307	23.42	117.02	1.942	0.70	1.10	Shell-ridge conglomerate	34 / 57
727		KWG-327	23.42	117.02	2.349	2.10	1.10	Shell-ridge conglomerate	34 / 57
728		CG-442	23.42	117.02	2.394	1.80	1.10	Shell-ridge conglomerate	34 / 57
729		CG-444	23.42	117.02	2.905	0.70	0.30	Beachrock	34 / 57
730		CG-446	23.42	117.02	3.941	0.70	1.10	Shell-ridge conglomerate	34 / 57
731		KWG-328	23.42	117.02	5.502	1.30	1.10	Shell-ridge conglomerate	34 / 57
732		KWG-557	22.77	115.37	1.294	0.70	0.50	Ostrea in living position	34 / 57
733		CG-459	22.77	115.37	3.226	1.20	1.10	Shell-ridge conglomerate	34 / 57
734		KWG-308	22.97	116.23	3.541	-0.50	0.30	Shells in beach sands	34 / 57
735		KWG-310	22.97	116.23	3.564	2.20	1.10	Shell-ridge conglomerate	34 / 57
736		CG-unknown	22.58	114.92	1.762	0.70	0.40	Brackish/freshwater marsh	34 / 57
737		KWG-556	22.58	114.90	2.422	1.50	0.30	Beachrock	34 / 57
738		KWG-145	22.58	114.90	4.421	0.20	1.00	Shell-ridge conglomerate	34 / 57
739		Dapeng Shenzhen	22.45	114.50	2.149	0.80	0.30	Shells in beach sands	33 / 34
740		Dapeng Shenzhen	22.45	114.50	3.609	-0.30	1.60	Organic silt/clay of subtidal flat	60
741		Dapeng Shenzhen	22.45	114.50	4.866	-1.90	1.60	Organic silt/clay of subtidal flat	61
742		HN01	18.72	109.30	0.912	-1.00	1.00	beachrock	34
742	HAINAN	HN01	18.72	109.30	1.119	0.20	0.50	Brackish/freshwater marsh	34
744		HN01	18.72	109.30	5.059	0.20	1.00	Beachrock	34
/		111101	10.72	107.30	5.059	0.00	1.00	Deachiock	J-4

1872				_		_	-			
147	745		HN01	18.72	109.30	6.835	-1.00	1.00	Shells in shell ridge	34
1806	746		HN02	20.03	110.33	1.504	0.50	1.50	Organic silt/clay of tidal flat	34
1806	747		HN03	21.83	112.00	1.566	0.20	1.00	Beachrock	34
159	748		HN04	19.62	110.73	1.808	0.00	1.00	Shell-ridge conglomerate	34
1952 11073 2214 0.00 1.00 Shell-in-beach sands 34	749		HN04	19.62	110.73	1.944	0.00	1.00	Beachrock	34
1752 HN06	750		HN04	19.62	110.73	2.070	0.00	1.00	Beachrock	34
1754 HN05	751		HN04	19.62	110.73	2.214	0.00	1.00	Shells in beach sands	34
1756	752		HN04	19.62	110.73	3.010	0.70	1.00	Shell-ridge conglomerate	34
1806	753		HN05	21.45	110.78	2.028	1.00	1.00	Shell-ridge conglomerate	34
1757	754		HN05	21.45	110.78	6.281	-2.00	1.00	Shell-ridge conglomerate	34
18.28	755		HN06	18.28	109.45	2.461	-0.50	1.00	Beachrock	34
1806	756		HN06	18.28	109.45	3.701	1.00	0.50	Coral reef	34
759	757		HN06	18.28	109.45	4.198	1.00	1.00	Beachrock	34
760	758		HN06	18.28	109.45	4.264	1.30	1.00	Beachrock	34
Total	759		HN06	18.28	109.45	4.527	1.00	1.00	Beachrock	34
1806	760		HN06	18.28	109.45	4.652	-0.40	1.00	Beachrock	34
1806	761		HN06	18.28	109.45	4.948	1.00	1.00	Beachrock	34
764	762		HN06	18.28	109.45	5.430	-0.50	1.00	Shell-ridge conglomerate	34
765	763		HN06	18.28	109.45	5.707	0.30	1.00	Coral sand	34
766	764		HN06	18.28	109.45	5.761	-0.30	1.00	Coral sand	34
1806	765		HN06	18.28	109.45	5.952	0.00	1.00	Coral sand	34
768	766		HN06	18.28	109.45	6.272	-0.40	1.00	Beachrock	34
19.79	767		HN06	18.28	109.45	6.497	-0.30	1.50	Organic silt/clay of tidal flat	34
T70	768		HN06	18.28	109.45	7.286	-0.70	1.00	Beachrock	34
771	769		HN09	19.73	110.00	3.348	0.50	0.50	Ostrea in living position	34
T772	770		HN10	19.52	109.57	3.512	1.00	0.50	Coral reef	34
T773	771		HN10	19.52	109.57	5.096	0.00	1.00	Coral sand	34
774 HN13 18.23 109.50 1.289 0.00 0.50 Ostrea in living position 34 775 HN13 18.23 109.50 2.879 0.30 1.00 Shells in beach sands 34 776 HN13 18.23 109.50 3.955 1.00 1.00 Shell-ridge conglomerate 34 777 HN13 18.23 109.50 4.121 0.00 1.00 Beachrock 34 778 HN13 18.23 109.50 4.279 0.00 1.00 Beachrock 34 779 HN13 18.23 109.50 4.505 0.20 1.00 Coral sand 34 780 HN14 18.80 110.43 6.486 -0.60 0.50 Lagoonal organic sediment 34 781 HN16 19.13 108.68 7.958 -6.00 3.00 Organic silt/clay of subtidal flat 34 782 HN16 19.13 108.68 7.958 -6.00 3.00	772		HN11	19.90	109.67	3.485	0.50	1.00	Shell-ridge conglomerate	34
T75	773		HN12	21.18	110.38	4.403	-0.50	0.50	Lagoonal organic sediment	34
776 HN13 18.23 109.50 3.955 1.00 1.00 Shell-ridge conglomerate 34 777 HN13 18.23 109.50 4.121 0.00 1.00 Beachrock 34 778 HN13 18.23 109.50 4.279 0.00 1.00 Shells in beach sands 34 779 HN14 18.80 110.43 6.486 -0.60 0.50 Lagoonal organic sediment 34 780 HN14 18.80 110.43 6.486 -0.60 0.50 Lagoonal organic selfment 34 781 HN16 19.13 108.68 7.958 -6.00 3.00 Organic silt/clay of subtidal flat 34 782 HN16 19.13 108.68 7.958 -6.00 3.00 Organic silt/clay of subtidal flat 34 783 HND6 18.28 109.45 8.113 -6.40 1.50 Organic silt/clay of subtidal flat 34 784 Bengal Fan 1 20.61 89.79 29.	774		HN13	18.23	109.50	1.289	0.00	0.50	Ostrea in living position	34
777 HN13 18.23 109.50 4.121 0.00 1.00 Beachrock 34 778 HN13 18.23 109.50 4.279 0.00 1.00 Shells in beach sands 34 779 HN13 18.23 109.50 4.279 0.00 1.00 Coral sand 34 780 HN14 18.80 110.43 6.486 -0.60 0.50 Lagoonal organic sediment 34 781 HN15 20.00 110.35 7.646 -4.50 3.00 Organic silt/clay of subtidal flat 34 782 HN16 19.13 108.68 7.958 -6.00 3.00 Organic silt/clay of subtidal flat 34 783 HN06 18.28 109.45 8.113 -6.40 1.50 Organic silt/clay of subtidal flat 34 784 Bengal Fan 1 20.61 89.79 24.476 -133.00 3.00 Sediment 62 785 INDIAN Bengal Fan 2 20.66 89.81	775		HN13	18.23	109.50	2.879	0.30	1.00	Shells in beach sands	34
778 HN13 18.23 109.50 4.279 0.00 1.00 Shells in beach sands 34 779 HN13 18.23 109.50 4.505 0.20 1.00 Coral sand 34 780 HN14 18.80 110.43 6.486 -0.60 0.50 Lagoonal organic sediment 34 781 HN16 19.13 108.68 7.958 -6.00 3.00 Organic silt/clay of subtidal flat 34 782 HN16 19.13 108.68 7.958 -6.00 3.00 Organic silt/clay of subtidal flat 34 783 HN06 18.28 109.45 8.113 -6.40 1.50 Organic silt/clay of subtidal flat 34 784 Bengal Fan 1 20.61 89.79 24.476 -133.00 3.00 Sediment 62 785 INDIAN Bengal Fan 1 20.61 89.79 29.213 -133.00 3.00 Sediment 62 786 SUB- Bengal Fan 2 20.66	776		HN13	18.23	109.50	3.955	1.00	1.00	Shell-ridge conglomerate	34
779 HN13 18.23 109.50 4.505 0.20 1.00 Coral sand 34 780 HN14 18.80 110.43 6.486 -0.60 0.50 Lagoonal organic sediment 34 781 HN15 20.00 110.35 7.646 -4.50 3.00 Organic silt/clay of subtidal flat 34 782 HN16 19.13 108.68 7.958 -6.00 3.00 Organic silt/clay of subtidal flat 34 783 HN06 18.28 109.45 8.113 -6.40 1.50 Organic silt/clay of subtidal flat 34 784 Bengal Fan 1 20.61 89.79 24.476 -133.00 3.00 Sediment 62 785 INDIAN Bengal Fan 1 20.61 89.79 29.213 -133.00 3.00 Sediment 62 785 INDIAN Bengal Fan 2 20.66 89.81 19.459 -128.00 3.00 Sediment 62 786 SUB- Bengal Fan 3	777		HN13	18.23	109.50	4.121	0.00	1.00	Beachrock	34
Triangle	778		HN13	18.23	109.50	4.279	0.00	1.00	Shells in beach sands	34
781 HN15 20.00 110.35 7.646 -4.50 3.00 Organic silt/clay of subtidal flat 34 782 HN16 19.13 108.68 7.958 -6.00 3.00 Organic silt/clay of subtidal flat 34 783 HN06 18.28 109.45 8.113 -6.40 1.50 Organic silt/clay of tidal flat 34 784 Bengal Fan 1 20.61 89.79 24.476 -133.00 3.00 Sediment 62 785 INDIAN Bengal Fan 1 20.61 89.79 29.213 -133.00 3.00 Sediment 62 786 SUB- Bengal Fan 2 20.66 89.81 19.459 -128.00 3.00 Sediment 62 787 CONTINENT Bengal Fan 3 20.69 89.78 21.922 -125.00 3.00 Sediment 62 788 Rameswaran Island 9.30 79.17 6.051 1.40 0.40 Sediment 63 790 Rameswaran Island <td>779</td> <td></td> <td>HN13</td> <td>18.23</td> <td>109.50</td> <td>4.505</td> <td>0.20</td> <td>1.00</td> <td>Coral sand</td> <td>34</td>	779		HN13	18.23	109.50	4.505	0.20	1.00	Coral sand	34
782 HN16 19.13 108.68 7.958 -6.00 3.00 Organic silt/clay of subtidal flat 34 783 HN06 18.28 109.45 8.113 -6.40 1.50 Organic silt/clay of subtidal flat 34 784 Bengal Fan 1 20.61 89.79 24.476 -133.00 3.00 Sediment 62 785 INDIAN Bengal Fan 1 20.61 89.79 29.213 -133.00 3.00 Sediment 62 786 SUB- Bengal Fan 2 20.66 89.81 19.459 -128.00 3.00 Sediment 62 787 CONTINENT Bengal Fan 3 20.69 89.78 21.922 -125.00 3.00 Sediment 62 788 Bengal Fan 3 20.69 89.78 23.788 -125.00 3.00 Sediment 62 789 Rameswaran Island 9.30 79.17 6.051 1.40 0.40 Sediment 63 791 Rameswaran Island <t< td=""><td>780</td><td></td><td>HN14</td><td>18.80</td><td>110.43</td><td>6.486</td><td>-0.60</td><td>0.50</td><td>Lagoonal organic sediment</td><td>34</td></t<>	780		HN14	18.80	110.43	6.486	-0.60	0.50	Lagoonal organic sediment	34
783 HN06 18.28 109.45 8.113 -6.40 1.50 Organic silt/clay of tidal flat 34 784 Bengal Fan 1 20.61 89.79 24.476 -133.00 3.00 Sediment 62 785 INDIAN Bengal Fan 1 20.61 89.79 29.213 -133.00 3.00 Sediment 62 786 SUB- Bengal Fan 2 20.66 89.81 19.459 -128.00 3.00 Sediment 62 787 CONTINENT Bengal Fan 3 20.69 89.78 21.922 -125.00 3.00 Sediment 62 788 Bengal Fan 3 20.69 89.78 23.788 -125.00 3.00 Sediment 62 789 Rameswaran Island 9.30 79.17 6.051 1.40 0.40 Sediment 63 790 Rameswaran Island 9.30 79.17 6.165 1.20 0.40 Sediment 63 791 Rameswaran Island 9.30	781		HN15	20.00	110.35	7.646	-4.50	3.00	Organic silt/clay of subtidal flat	34
Rameswaran Island	782		HN16	19.13	108.68	7.958	-6.00	3.00	Organic silt/clay of subtidal flat	34
TREE TRDIAN Bengal Fan 1 20.61 89.79 29.213 -133.00 3.00 Sediment 62	783		HN06	18.28	109.45	8.113	-6.40	1.50	Organic silt/clay of tidal flat	34
786 SUB- Bengal Fan 2 20.66 89.81 19.459 -128.00 3.00 Sediment 62 787 CONTINENT Bengal Fan 3 20.69 89.78 21.922 -125.00 3.00 Sediment 62 788 Bengal Fan 3 20.69 89.78 23.788 -125.00 3.00 Sediment 62 789 Rameswaran Island 9.30 79.17 6.051 1.40 0.40 Sediment 63 790 Rameswaran Island 9.30 79.17 6.165 1.20 0.40 Sediment 63 791 Rameswaran Island 9.30 79.17 6.492 1.40 0.40 Sediment 63 792 Rameswaran Island 9.30 79.17 7.048 1.40 0.40 Sediment 63 793 Rameswaran Island 9.30 79.17 7.304 1.00 0.40 Sediment 63 794 Zone_A_Akurala 6.13 80.06 5.632	784		Bengal Fan 1	20.61	89.79	24.476	-133.00	3.00	Sediment	62
787 CONTINENT Bengal Fan 3 20.69 89.78 21.922 -125.00 3.00 Sediment 62 788 Bengal Fan 3 20.69 89.78 23.788 -125.00 3.00 Sediment 62 789 Rameswaran Island 9.30 79.17 6.051 1.40 0.40 Sediment 63 790 Rameswaran Island 9.30 79.17 6.165 1.20 0.40 Sediment 63 791 Rameswaran Island 9.30 79.17 7.048 1.40 0.40 Sediment 63 792 Rameswaran Island 9.30 79.17 7.048 1.40 0.40 Sediment 63 793 Rameswaran Island 9.30 79.17 7.304 1.00 0.40 Sediment 63 794 Zone_A_Akurala 6.13 80.06 5.334 0.90 0.50 Sediment 64 795 Zone_A_Akurala 6.13 80.06 5.632 0.90	785	INDIAN	Bengal Fan 1	20.61	89.79	29.213	-133.00	3.00	Sediment	62
788 Bengal Fan 3 20.69 89.78 23.788 -125.00 3.00 Sediment 62 789 Rameswaran Island 9.30 79.17 6.051 1.40 0.40 Sediment 63 790 Rameswaran Island 9.30 79.17 6.165 1.20 0.40 Sediment 63 791 Rameswaran Island 9.30 79.17 6.492 1.40 0.40 Sediment 63 792 Rameswaran Island 9.30 79.17 7.048 1.40 0.40 Sediment 63 793 Rameswaran Island 9.30 79.17 7.304 1.00 0.40 Sediment 63 794 Zone_A_Akurala 6.13 80.06 5.334 0.90 0.50 Sediment 64 795 Zone_A_Akurala 6.13 80.06 5.632 0.90 0.50 Sediment 64 796 Zone_A_Akurala 6.13 80.06 6.200 1.00 0.50	786	SUB-	Bengal Fan 2	20.66	89.81	19.459	-128.00	3.00	Sediment	62
789 Rameswaran Island 9.30 79.17 6.051 1.40 0.40 Sediment 63 790 Rameswaran Island 9.30 79.17 6.165 1.20 0.40 Sediment 63 791 Rameswaran Island 9.30 79.17 6.492 1.40 0.40 Sediment 63 792 Rameswaran Island 9.30 79.17 7.048 1.40 0.40 Sediment 63 793 Rameswaran Island 9.30 79.17 7.304 1.00 0.40 Sediment 63 794 Zone_A_Akurala 6.13 80.06 5.334 0.90 0.50 Sediment 64 795 Zone_A_Akurala 6.13 80.06 5.632 0.90 0.50 Sediment 64 796 Zone_A_Akurala 6.13 80.06 6.200 1.00 0.50 Sediment 64 797 Zone_A_Akurala 6.13 80.06 6.358 1.00 0.50 Sed	787	CONTINENT	Bengal Fan 3	20.69	89.78	21.922	-125.00	3.00	Sediment	62
790 Rameswaran Island 9.30 79.17 6.165 1.20 0.40 Sediment 63 791 Rameswaran Island 9.30 79.17 6.492 1.40 0.40 Sediment 63 792 Rameswaran Island 9.30 79.17 7.048 1.40 0.40 Sediment 63 793 Rameswaran Island 9.30 79.17 7.304 1.00 0.40 Sediment 63 794 Zone_A_Akurala 6.13 80.06 5.334 0.90 0.50 Sediment 64 795 Zone_A_Akurala 6.13 80.06 5.632 0.90 0.50 Sediment 64 796 Zone_A_Akurala 6.13 80.06 6.200 1.00 0.50 Sediment 64 797 Zone_A_Akurala 6.13 80.06 6.358 1.00 0.50 Sediment 64 798 Zone_A_Akurala 6.13 80.06 6.569 0.50 0.50 Sedime	788		Bengal Fan 3	20.69	89.78	23.788	-125.00	3.00	Sediment	62
791 Rameswaran Island 9.30 79.17 6.492 1.40 0.40 Sediment 63 792 Rameswaran Island 9.30 79.17 7.048 1.40 0.40 Sediment 63 793 Rameswaran Island 9.30 79.17 7.304 1.00 0.40 Sediment 63 794 Zone_A_Akurala 6.13 80.06 5.334 0.90 0.50 Sediment 64 795 Zone_A_Akurala 6.13 80.06 5.632 0.90 0.50 Sediment 64 796 Zone_A_Akurala 6.13 80.06 6.200 1.00 0.50 Sediment 64 797 Zone_A_Akurala 6.13 80.06 6.358 1.00 0.50 Sediment 64 798 Zone_A_Akurala 6.13 80.06 6.569 0.50 0.50 Sediment 64	789		Rameswaran Island	9.30	79.17	6.051	1.40	0.40	Sediment	63
792 Rameswaran Island 9.30 79.17 7.048 1.40 0.40 Sediment 63 793 Rameswaran Island 9.30 79.17 7.304 1.00 0.40 Sediment 63 794 Zone_A_Akurala 6.13 80.06 5.334 0.90 0.50 Sediment 64 795 Zone_A_Akurala 6.13 80.06 5.632 0.90 0.50 Sediment 64 796 Zone_A_Akurala 6.13 80.06 6.200 1.00 0.50 Sediment 64 797 Zone_A_Akurala 6.13 80.06 6.358 1.00 0.50 Sediment 64 798 Zone_A_Akurala 6.13 80.06 6.569 0.50 0.50 Sediment 64	790		Rameswaran Island	9.30	79.17	6.165	1.20	0.40	Sediment	63
793 Rameswaran Island 9.30 79.17 7.304 1.00 0.40 Sediment 63 794 Zone_A_Akurala 6.13 80.06 5.334 0.90 0.50 Sediment 64 795 Zone_A_Akurala 6.13 80.06 5.632 0.90 0.50 Sediment 64 796 Zone_A_Akurala 6.13 80.06 6.200 1.00 0.50 Sediment 64 797 Zone_A_Akurala 6.13 80.06 6.358 1.00 0.50 Sediment 64 798 Zone_A_Akurala 6.13 80.06 6.569 0.50 0.50 Sediment 64	791		Rameswaran Island	9.30	79.17	6.492	1.40	0.40		63
794 Zone_A_Akurala 6.13 80.06 5.334 0.90 0.50 Sediment 64 795 Zone_A_Akurala 6.13 80.06 5.632 0.90 0.50 Sediment 64 796 Zone_A_Akurala 6.13 80.06 6.200 1.00 0.50 Sediment 64 797 Zone_A_Akurala 6.13 80.06 6.358 1.00 0.50 Sediment 64 798 Zone_A_Akurala 6.13 80.06 6.569 0.50 0.50 Sediment 64	792		Rameswaran Island	9.30	79.17	7.048	1.40	0.40		63
795 Zone_A_Akurala 6.13 80.06 5.632 0.90 0.50 Sediment 64 796 Zone_A_Akurala 6.13 80.06 6.200 1.00 0.50 Sediment 64 797 Zone_A_Akurala 6.13 80.06 6.358 1.00 0.50 Sediment 64 798 Zone_A_Akurala 6.13 80.06 6.569 0.50 0.50 Sediment 64			Rameswaran Island							
796 Zone_A_Akurala 6.13 80.06 6.200 1.00 0.50 Sediment 64 797 Zone_A_Akurala 6.13 80.06 6.358 1.00 0.50 Sediment 64 798 Zone_A_Akurala 6.13 80.06 6.569 0.50 0.50 Sediment 64										
797 Zone_A_Akurala 6.13 80.06 6.358 1.00 0.50 Sediment 64 798 Zone_A_Akurala 6.13 80.06 6.569 0.50 0.50 Sediment 64										
798 Zone_A_Akurala 6.13 80.06 6.569 0.50 0.50 Sediment 64										
799 Zone_B_Dadalla 6.04 80.18 5.454 0.60 0.50 Sediment 64										
	799		Zone_B_Dadalla	6.04	80.18	5.454	0.60	0.50	Sediment	64

800		Zone_B_Dadalla	6.04	80.18	5.785	0.50	0.50	Sediment	64
801		Zone_C_Mihiripenna	6.01	80.26	5.738	0.80	0.50	Sediment	64
802		Zone_D_Aranwala	5.97	80.38	5.855	0.70	0.50	Sediment	64
803		Zone_E_Pallikkudawa	6.02	80.79	5.773	1.10	0.50	Sediment	64
804		Zone_E_Pallikkudawa	6.02	80.79	5.936	0.80	0.50	Sediment	64
805	MALDINES	Maldives Rasdhoo	4.30	72.98	0.445	0.70	1.50	Coral	65
806	MALDIVES	Maldives Rasdhoo	4.30	72.98	1.470	-0.90	1.50	Coral	65
807	&	Maldives Rasdhoo	4.30	72.98	1.780	0.80	1.50	Coral	65
808	COCOS	Maldives Rasdhoo	4.30	72.98	3.475	0.10	1.50	Coral	65
809	ISLANDS	Maldives Rasdhoo	4.30	72.98	3.815	-1.40	1.50	Coral	65
810		Maldives Rasdhoo	4.30	72.98	4.115	-2.70	1.50	Coral	65
811		Maldives Rasdhoo	4.30	72.98	4.595	0.30	1.50	Coral	65
812		Maldives Rasdhoo	4.30	72.98	6.125	-0.40	1.50	Coral	65
813		Maldives Rasdhoo	4.30	72.98	6.450	-1.20	1.50	Coral	65
814		Maldives Rasdhoo	4.30	72.98	7.030	-0.40	3.00	Coral	65
815		Maldives Rasdhoo	4.30	72.98	7.205	-0.90	3.00	Coral	65
816		Maldives Rasdhoo	4.30	72.98	7.280	-2.40	3.00	Coral	65
817		Maldives Rasdhoo	4.30	72.98	7.295	-3.40	3.00	Coral	65
818		Maldives Rasdhoo	4.30	72.98	7.520	-1.90	3.00	Coral	65
819		Maldives Rasdhoo	4.30	72.98	7.680	-6.40	3.00	Coral	65
820		Maldives Rasdhoo	4.30	72.98	7.700	-7.90	3.00	Coral	65
821		Maldives Rasdhoo	4.30	72.98	7.725	-4.90	3.00	Coral	65
822		Maldives Rasdhoo	4.30	72.98	7.725	-4.90	3.00	Coral	65
823		Maldives Rasdhoo	4.30	72.98	8.050	-10.90	3.00	Coral	65
824		Maldives Rasdhoo	4.30	72.98	8.060	-9.40	3.00	Coral	65
825		Maldives Rasdhoo	4.30	72.98	8.110	-8.40	3.00	Coral	65
826		Maldives Rasdhoo	4.30	72.98	8.125	-11.70	3.00	Coral	65
827		Maldives Rasdhoo	4.30	72.98	8.235	-14.20	3.00	Coral	65
828		Maldives Rasdhoo	4.30	72.98	8.290	-17.70	3.00	Coral	65
829		Maldives Rasdhoo	4.30	72.98	8.400	-14.70	3.00	Coral	65
830		Maldives Rasdhoo	4.30	72.98	8.405	-17.70	3.00	Coral	65
831		Maldives Rasdhoo	4.30	72.98	8.555	-16.90	3.00	Coral	65
832		Maldives Rasdhoo	4.30	72.98	21.000	-125.00	5.00	Coral	65
833		Maldives Maalhosmadulu	5.27	73.03	2.095	0.50	0.30	Coral	66
834		Maldives Maalhosmadulu	5.27	73.03	2.104	0.50	0.30	Coral	66
835		Maldives Maalhosmadulu	5.27	73.03	3.445	0.30	0.30	Coral	66
836		Maldives Maalhosmadulu	5.27	73.03	3.930	0.90	1.50	Coral	66
837		Maldives Maalhosmadulu	5.27	73.03	4.368	0.70	1.50	Coral	66
838		Maldives Maalhosmadulu	5.27	73.03	4.600	1.30	1.50	Coral	66
839		Maldives Maalhosmadulu	5.27	73.03	5.026	0.90	1.50	Coral	66
840		Maldives Maalhosmadulu	5.27	73.03	6.060	-0.40	1.50	Coral	66
841		Maldives Maalhosmadulu	5.27	73.03	6.328	-0.80	1.50	Coral	66
842		Maldives Maalhosmadulu	5.27	73.03	6.440	-0.10	1.50	Coral	66
843		Maldives Maalhosmadulu	5.27	73.03	6.589	-1.60	1.50	Coral	66
844		Maldives Maalhosmadulu	5.27	73.03	6.918	-1.50	3.00	Coral	66
845		Maldives Maalhosmadulu	5.27	73.03	6.935	-1.20	3.00	Coral	66
846		Maldives Maalhosmadulu	5.27	73.03	6.973	-0.60	3.00	Coral	66
847		Maldives Maalhosmadulu	5.27	73.03	7.138	-1.60	3.00	Coral	66
848		Maldives Maalhosmadulu	5.27	73.03	7.231	-2.60	3.00	Coral	66
849		Maldives Maalhosmadulu	5.27	73.03	7.244	-1.70	3.00	Coral	66
850		Maldives Maalhosmadulu	5.27	73.03	7.266	-2.50	3.00	Coral	66
851		Maldives Maalhosmadulu	5.27	73.03	7.280	-3.30	3.00	Coral	66
852		Maldives Maalhosmadulu	5.27	73.03	7.424	-3.10	3.00	Coral	66
853		Maldives Maalhosmadulu	5.27	73.03	7.424	-4.50	3.00	Coral	66
854		Maldives Maalhosmadulu	5.27	73.03	7.441	-4.30	3.00	Coral	66

1	İ		1		•	ı	i	•	
855		Maldives Maalhosmadulu	5.27	73.03	7.793	-7.50	3.00	Coral	66
856		Maldives Maalhosmadulu	5.27	73.03	8.071	-8.60	3.00	Coral	66
857		Maldives Maalhosmadulu	5.27	73.03	8.097	-9.60	3.00	Coral	66
858		Maldives Maalhosmadulu	5.27	73.03	8.136	-10.30	3.00	Coral	66
859		Maldives Feydhoo	-0.69	73.14	2.826	0.50	0.40	Coral	67
860		Cocos Pulu	-12.14	96.92	1.900	0.40	0.30	Coral	68
861		Cocos Pulu	-12.14	96.92	3.132	1.00	0.30	Coral	68
862		Cocos West Island	-12.18	96.82	0.916	0.20	0.20	Coral	68
863		Cocos West Island	-12.18	96.82	2.611	0.50	0.20	Coral	68
864		Cocos West Island	-12.18	96.82	2.801	0.50	0.20	Coral	68
865		Cocos West Island	-12.18	96.82	2.826	0.50	0.20	Coral	68
866		Cocos West Island	-12.18	96.82	2.851	0.50	0.20	Coral	68
867		Cocos West Island	-12.18	96.82	3.170	0.40	0.20	Coral	68
868		Cocos West Island	-12.18	96.82	3.221	0.50	0.20	Coral	68
869		Cocos West Island	-12.18	96.82	3.439	0.60	0.30	Coral	68
870		Cocos West Island	-12.18	96.82	3.503	0.70	0.30	Coral	68
871		Cocos South Island	-12.20	96.91	3.913	0.20	0.30	Coral	68
872		Reunion	-21.08	55.23	0.800	2.40	2.50	Coral	69
873	WESTERN	Reunion	-21.08	55.23	2.900	0.50	2.50	Coral	69
874	INDIAN	Reunion	-21.08	55.23	6.900	-7.90	2.50	Coral	69
875	OCEAN	Reunion	-21.08	55.23	7.400	-10.10	2.50	Coral	69
876	&	Reunion	-21.08	55.23	8.000	-11.10	2.50	Coral	69
877	SOUTH	Seychelles	-4.68	55.52	3.740	0.70	2.50	Coral	69
878	AFRICA	Seychelles	-4.68	55.52	4.110	-1.70	2.50	Coral	69
879		Seychelles	-4.68	55.52	4.289	-1.90	2.50	Coral	69
880		Seychelles	-4.68	55.52	4.685	1.40	2.50	Coral	69
881		Seychelles	-4.68	55.52	7.200	-7.80	2.50	Coral	69
882		Seychelles	-4.68	55.52	8.200	-6.70	2.50	Coral	69
883		Mayotte	-12.80	45.27	9.170	-28.80	0.50	Sediment	70
884		Mayotte	-12.80	45.27	9.640	-34.70	2.00	Sediment	70
885		Mayotte	-12.80	45.27	9.725	-34.70	2.00	Sediment	70
886		Mayotte	-12.80	45.27	11.080	-58.50	1.00	Sediment	70
887		Mayotte	-12.80	45.27	11.375	-60.00	0.50	Sediment	70
888		Mayotte	-12.80	45.27	11.405	-59.30	0.50	Sediment	70
889		Mayotte	-12.80	45.27	11.635	-60.50	0.50	Sediment	70
890		Mayotte	-12.80	45.27	12.035	-61.50	0.50	Sediment	70
891		Mayotte	-12.80	45.27	1.500	2.20	2.50	Coral	69
892		Mayotte	-12.80	45.27	2.660	-2.20	0.50	Coral	69
893		Mayotte	-12.80	45.27	3.700	0.10	2.50	Coral	69
894		Mayotte	-12.80	45.27	6.950	-6.80	0.50	Coral	69
895		Mayotte	-12.80	45.27	7.200	-3.80	2.50	Coral	69
896		Mayotte	-12.80	45.27	7.305	-9.00	1.00	Coral	69
897		Mayotte	-12.80	45.27	7.965	-9.00	1.00	Coral	69
898		Mayotte	-12.80	45.27	8.200	-5.90	2.50	Coral	69
899		Mayotte	-12.80	45.27	8.200	-8.10	2.50	Coral	69
900		Mayotte	-12.80	45.27	8.600	-13.20	2.50	Coral	69
901		Mayotte	-12.80	45.27	9.110	-18.50	2.50	Coral	69
902		Mayotte	-12.80	45.27	16.900	-123.00	3.00	Coral	69
903		Mayotte	-12.80	45.27	17.100	-123.00	3.00	Coral	69
904		Mayotte	-12.80	45.27	18.200	-123.00	3.00	Coral	69
905		Natal	-28.47	32.40	8.993	-18.00	2.00	Sediment	71
906		Natal	-28.47	32.40	9.068	-18.00	2.00	Sediment	71
907		Natal	-28.47	32.40	9.219	-18.00	2.00	Sediment	71
908		Natal	-28.47	32.40	9.373	-29.00	3.00	Sediment	71
909		Natal	-28.47	32.40	9.849	-28.00	3.00	Sediment	71

910		Natal	-28.47	32.40	9.979	-28.00	3.00	Sediment	71
910		Natal	-28.47	32.40	10.793	-28.00 -44.00	3.00	Sediment	71
912		Natal	-28.47	32.40	10.904	-36.00	3.00	Sediment	71
913		Natal	-28.47	32.40	11.581	-48.00	3.00	Sediment	71
914		Cape St Francis	-34.19	24.83	17.078	-102.00	10.00	Sediment	71
915		Cape St Francis	-34.19	24.83	20.042	-110.00	10.00	Sediment	71
916		Barbados	13.04	300.45	0.726	1.20	2.70	A. palmate	72 / 73
917	CARRIBEAN	Barbados	13.04	300.45	8.934	-22.90	2.80	A. palmate	72 / 73
918		Barbados	13.04	300.45	8.936	-22.20	2.80	A. palmate	72 / 73
919		Barbados	13.04	300.45	9.155	-26.10	2.80	A. palmate	72 / 73
920		Barbados	13.04	300.45	9.618	-30.90	2.90	A. palmate	72 / 73
921		Barbados	13.04	300.45	9.922	-31.20	2.90	A. palmate	72 / 73
922		Barbados	13.04	300.45	9.930	-19.50	2.90	A. palmate	72 / 73
923		Barbados	13.04	300.45	10.571	-39.00	2.90	A. palmate	72 / 73
924		Barbados	13.04	300.45	10.808	-40.40	2.90	A. palmate	72 / 73
925		Barbados	13.04	300.45	11.078	-42.10	2.90	A. palmate	72 / 73
926		Barbados	13.04	300.45	11.391	-55.90	2.90	A. palmate	72 / 73
927		Barbados	13.04	300.45	11.392	-54.50	2.90	A. palmate	72 / 73
928		Barbados	13.04	300.45	11.511	-56.20	2.90	A. palmate	72 / 73
929		Barbados	13.04	300.45	11.512	-55.80	2.90	A. palmate	72 / 73
930		Barbados	13.04	300.45	12.002	-59.10	3.00	A. palmate	72 / 73
931		Barbados	13.04	300.45	12.170	-59.50	3.00	A. palmate	72 / 73
932		Barbados	13.04	300.45	12.203	-59.40	3.00	A. palmate	72 / 73
933		Barbados	13.04	300.45	12.798	-62.40	3.00	A. palmate	72 / 73
934		Barbados	13.04	300.45	12.844	-64.30	3.00	A. palmate	72 / 73
935		Barbados	13.04	300.45	12.993	-65.80	3.00	A. palmate	72 / 73
936		Barbados	13.04	300.45	13.088	-67.40	3.00	A. palmate	72 / 73
937		Barbados	13.04	300.45	13.179	-67.90	3.00	A. palmate	72 / 73
938		Barbados	13.04	300.45	13.555	-71.30	3.00	A. palmate	72 / 73
939		Barbados	13.04	300.45	13.574	-71.60	3.00	A. palmate	72 / 73
940		Barbados	13.04	300.45	13.578	-71.80	3.00	A. palmate	72 / 73
941		Barbados	13.04	300.45	13.632	-72.10	3.00	A. palmate	72 / 73
942		Barbados	13.04	300.45	14.082	-91.00	3.00	A. palmate	72 / 73
943		Barbados	13.04	300.45	14.255	-93.20	3.10	A. palmate	72 / 73
944		Barbados	13.04	300.45	14.295	-92.00	3.10	A. palmate	72 / 73
945		Barbados	13.04	300.45	14.396	-95.10	3.10	A. palmate	72 / 73
946		Barbados Barbados	13.04	300.45	14.408	-95.00	3.10	A. palmate	72 / 73
947 948			13.04 13.04	300.45	14.539	-96.50 -93.90	3.10	A. palmate	72 / 73
949		Barbados Barbados	13.04	300.45 300.45	14.573 17.580	-109.60	3.10 3.30	A. palmate A. palmate	72 / 73 72 / 73
950		Barbados	13.04	300.45	18.116	-109.00	3.30	A. palmate	72 / 73
950 951		Barbados	13.04	300.45	18.116	-109.00	3.30	A. palmate A. palmate	72 / 73
952		Barbados	13.04	300.45	18.176	-109.70	3.30	A. palmate	72 / 73
953		Barbados	13.04	300.45	18.218	-109.80	3.30	A. palmate A. palmate	72 / 73
954		Barbados	13.04	300.45	18.408	-105.60	3.30	A. palmate	72 / 73
955		Barbados	13.04	300.45	18.448	-105.60	3.30	A. palmate A. palmate	72 / 73
956		Barbados	13.04	300.45	18.549	-110.90	3.30	A. palmate A. palmate	72 / 73
957		Barbados	13.04	300.45	18.716	-113.10	3.30	A. palmate	72 / 73
958		Barbados	13.04	300.45	18.746	-113.10	3.30	A. palmate	72 / 73
959		Barbados	13.04	300.45	18.783	-111.40	3.30	A. palmate	72 / 73
960		Barbados	13.04	300.45	18.806	-113.30	3.30	A. palmate	72 / 73
961		Barbados	13.04	300.45	19.075	-113.30	3.30	A. palmate	72 / 73
962		Barbados	13.04	300.45	19.392	-106.00	3.30	A. palmate	72 / 73
963		Barbados	13.04	300.45	19.518	-100.00	3.30	A. palmate	72 / 73
964		Barbados	13.04	300.45	19.708	-107.30	3.30	A. palmate	72 / 73
90 4		Darvauus	13.04	300.43	19.700	-100.00	3.30	A. painiate	12/13

ĺ	965	Barbados	13.04	300.45	30.147	-85.60	4.10	A. palmate	72 / 73
	966	Barbados	13.04	300.45	30.225	-86.00	4.10	A. palmate	72 / 73
	967	Barbados	13.04	300.45	30.242	-86.60	4.10	A. palmate	72 / 73
	968	Barbados	13.04	300.45	30.298	-86.60	4.20	A. palmate	72 / 73

- 1. Bard E, Hamelin B, Delanghe-Sabatier D (2010) Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. *Science* 327:1235–7.
- 2. Deschamps P et al. (2012) Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago. *Nature* 483:559–64.
- 3. Woodroffe CD, McGregor H V., Lambeck K, Smithers SG, Fink D (2012) Mid-Pacific microatolls record sea-level stability over the past 5000 yr. *Geology* 40:951–954.
- 4. Gibb JG (1986) A New Zealand regional Holocene eustatic sea level curve and its application for determination of vertical tectonic movements. *Bull R Soc New Zeal* 24:377–395.
- 5. Cochran U, Wilson K (2007) *Tasmanian Paleotsunami Project Institute of Geological and Nuclear Science Consultancy Report* 222 (Wellington, New Zealand), 67pp.
- 6. Gill ED (1967) Quaternary shoreline research in Australia and New Zealand. Aust J Sci 31:106–111.
- 7. Switzer AD, Sloss CR Jones BG, Bristow CS (2010) Geomorphic evidence for mid-late Holocene higher sea level from southeastern Australia. *Quat Int* 221:13–22.
- 8. Thom BG, Roy PS (1983) Sea level change in New South Wales over the past 15000 years. *Australian Sea Levels in the Last 15000 Years: A Review*, ed. Hopley D (James Cook Univ), pp 3–26.
- 9. Ferland MA, Roy PS, Murray-Wallace CV (1995) Glacial lowstands on the outer continental shelf of Southeastern Australia. *Quat Res* 44:294–299.
- 10. Belperio AP, Harvey N, Bourman RP (2002) Spatial and temporal variability in the Holocene sea-level record of the South Australian coastline. *Sediment Geol* 150:153–16.
- 11. Eisenhauer A et al. (1993) Holocene sea-level determination relative to the Australian continent: U/Th (TIMS) and ¹⁴C (AMS) dating of coral cores from the Abrolhos Islands. *Earth Planet Sci Lett* 114:529–547.
- 12. Collins LB, Zhao J-X, Freeman H (2006) A high precision record of mid-late Holocene sea-level events from emergent coral pavements in the Houtman Abrolhos Islands, southwest Australia, *Quat Int* 145:78–85.
- 13. Brown RG (1983) Sea level history over the past 15000 years along the Western Australian Coastline. Australian Sea Levels in the Last 15000 Years: A Review, ed. Hopley D (James Cook Univ, Townsville), pp, 29–36.
- 14. Yokoyama Y, Lambeck K, De Deckker P, Johnston P, Fifield L (2000) Timing of the Last Glacial Maximum from observed sea-level minima. *Nature* 406:713–6.
- 15. De Deckker P, Yokoyama Y (2009) Micropalaeontological evidence for Late Quaternary sea-level changes in Bonaparte Gulf, Australia. *Glob Planet Change* 66:85–92.
- 16. Lambeck K, Nakada M (1990) Late Pleistocene and Holocene sea-level change along the Australian Coast. *Palaeogeogr Palaeoclimatol Palaeoecol* 89:143–176.
- 17. Zwartz D (1995) *The Recent History of the Antarctic Ice Sheet: Constraints from Sea-level Change* (PhD Thesis, Australian National University, Canberra).
- 18. Horton BP et al. (2007) Reconstructing Holocene sea-level change for the Great Barrier Reef using subtidal foraminifera. *J Foramin Res* 37:327–343.
- 19. Chappell J, Chivas A, Wallensky E, Polach HA, Aharon P (1983) Holocene palaeo-environmental changes, central to north Great Barrier Reef inner zone. *BMR J Aust Geol Geop* 8:223–235.
- 20. Lambeck K (2002) Sea-Level Change from Mid-Holocene to Recent Time: An Australian Example with Global Implications. *Ice Sheets, Sea Level and the Dynamic Earth*, eds Mitrovica JX, Vermeersen B (American Geophysical Union, Washington DC), pp 33–50.
- 21. Woodroffe CD, Kennedy DM, Hopley D, Rasmussen C, Smithers SG (2000) Holocene reef growth in Torres Strait. *Mar Geol* 170:331–346.
- 22. McCulloch MT, De Deckker P, Chivas AR (1989) Strontium isotope variations in single ostracod valves from the Gulf of Carpentaria, Australia: a palaeoenvironmental indicator. *Geochim Cosmochim Acta* 53:1703–1720.
- 23. Rhodes EG (1980) *Modes of Holocene coastal progradation. Gulf of Carpentaria* (PhD Thesis, Australian National University, Canberra).
- 24. Chappell J, Polach H (1991) Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. *Nature* 349:147–149.
- 25. Yokoyama Y, Esat TM, Lambeck K (2001) Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the last ice age. *Earth Planet Sci Lett* 193:579–587.

- 26. Hanebuth T, Stattegger K, Grootes PM (2000) Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level Record. *Science* 288:1033–1035.
- 27. Hanebuth TJJ, Stattegger K, Bojanowski A (2009) Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited. *Glob Planet Change* 66:76–84.
- 28. Bird MI et al. (2007) An inflection in the rate of early mid-Holocene eustatic sea-level rise: A new sea-level curve from Singapore. *Estuar Coast Shelf Sci* 71:523–536.
- 29. Bird MI et al. (2010) Punctuated eustatic sea-level rise in the early mid-Holocene. *Geology* 38:803–806.
- 30. Kamaludin BH (2001) *Holocene sea-level changes in Kelang and Kuantan, Peninsular Malaysia* (PhD Thesis, University of Durham, UK), pp 290.
- 31. Geyh MA, Kudrass H-R, Streif H (1979) Sea-level changes during the late Pleistocene and Holocene in the Straits of Malacca. *Nature* 278:441–43.
- 32. Tjia HD, Fujii S, Kigoshi K (1983) Holocene shorelines of Tioman island in the South China Sea. *Geol Mijnbouw* 62:599–604.
- 33. Huang Z, Li P, Zhang Z, Zong Y (1986) Changes of sea level in south China coast since the Late Pleistocene. *China Sea-level Changes*, ed. the IGCP 200 China Working Group (China Ocean Press, Beijing), pp 178–194.
- 34. Zong Y (2004) Mid-Holocene sea-level highstand along the Southeast Coast of China. Quat Int 117:55–67.
- 35. Tiyapunte S, Theerarungsikul N (1988) *The geology of map sheet Amphoe Nongjik and Changwat Pattani* (Geological Survey of Malaysia, Bangkok), pp 71.
- 36. Chaimanee N, Tiyapirach S, Jongkanjanasoonthorn Y (1985) *Quaternary Geology of Satting Pra and Khao Chaison areas* (Geological Survey of Malaysia, Bangkok), pp 59.
- 37. Chaimanee N, Jongkanjanasoonthorn Y, Kenvises S, Theerarungsikul N (1985) Quaternary geology of Sanam-chai and Pattalung area (Geological Survey of Malaysia, Bangkok), pp 61.
- 38. Thiramongkol N (1984) Geomorphology of the lower Central Plain Thailand. *Proceedings of the 3rd meeting of the working group of river and coastal plain* (Department of Geology, Chulalongkorn University, Bangkok) pp 103–17.
- 39. Sinsakul S (1990) Evidence of sea level changes in the coastal areas of Thailand: a review. *Workshop on global environmental change, Chiang Mai, Thailand*. Economic and Social Commission for Asia and the Pacific-Coordination of Joint Prospecting of Mineral Resources in Offshore Areas of Asia (ESCAP-CCOP).
- 40. Horton BP et al. (2005) Holocene sea levels and palaeoenvironments, Malay-Thai Peninsula, southeast Asia. *Holocene* 15:1199–1213.
- 41. Scoffin TP, Le Tissier MDA (1998) Late Holocene sea level and reef-flat progradation, Phuket, South Thailand. *Coral Reefs* 17:273–76.
- 42. Michelli M (2008) Sea-level changes, coastal evolution and paleoceanography of coastal waters in SE Vietnam since the mid Holocene, pp 318.
- 43. Wang HF, Pei YD, Liu HM, Fan CF, Wang H (2011) Holocene oyster reefs: spatial and temporal distribution and sea level indicators in Bohai Bay. *Geological Bulletin of China*, 30:1396–1404.
- 44. Wang M, Zhuang Z, Ge S (2000) Sediment characteristics of the shallow buried paleo-channels in the north-central Liaodong Bay and their negative effects on nautical engineering. *Journal of Oceanography of Huanghai and Bohai Seas* 18.2:18–24.
- 45. Su SW, Shang ZW, Wang F, Wang H (2011) Holocene cheniers: spatial and temporal distribution and sea level indicators in Bohai Bay. *Geological Bulletin of China* 30:1382–1395.
- 46. Zhuang ZY et al. (1999) Division and Environmental Evolution of Late Quaternary Marine Beds of S~3 Hole in the Bohai Sea. *Mar Geol Quat Geol* 19:27–36.
- 47. Saito Y et al. (2000) Delta progradation and chenier formation in the Huanghe (Yellow River) delta, China. *J Asian Earth Sci* 18:489–497.
- 48. From conference papers by Zheng (1991) as interpreted by Sun Y.
- 49. Jin JH, Chough SK (1998) Partitioning of transgressive deposits in the southeastern Yellow Sea: a sequence stratigraphic interpretation. *Mar Geol* 149:79–92.
- 50. From conference papers by Yang and Xu (1996), as interpreted by Sun Y.
- 51. Kim JM, Kucera M (2000) Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15,000 years. *Quat Sci Rev* 19:1067–1085.
- 52. Zhao X ed. (1996) China Sea-level Change (Shandong Scientific and Technological Press, Jinan), pp 464.
- 53. Zhuang Z, Li P (1986) Holocene marine transgression in Laizhou Bay. *China Sea-level Change* (China Ocean Press, Beijing), pp 91–97.
- 54. Wang Z (1991) The marine transgression of Zhejiang Province, China. *Quaternary Coastline Changes in China*, eds Qin Y, Zhao S (China Ocean Press, Beijing), pp 143–156.
- 55. Suk BC (1989) Quaternary sedimentation processes, structures and sea level changes in the East China Sea, the Yellow Sea and the Korea-Tsushima Strait regions (PhD Thesis, University of Tokyo, Japan).

- 56. Liu J et al. (2010) ECS 0702 Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last similar to 13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years. *Quat Sci Rev* 29:2424–2438.
- 57. Zong Y (1992) Postglacial stratigraphy and sea-level changes in the Han River Delta, China. *J Coastal Res* 8:1–28.
- 58. Chen C, Huang B, Wang M (1982) The chronology of Holocene stratigraphy in Fujian coast. *Taiwan Strait 1*, pp 64–73.
- 59. Chen Y, Liu T (1996) Sea-level changes in the last several thousand years, Penghu Islands, Taiwan Strait. *Quat Res* 45:254–262.
- 60. Liu C, Cao M (1987) The chenier plains of China. *International Geomorphology 1986*, *Part I.*, ed. Gardiner V (Wiley, New York), pp 1269–1279.
- 61. Kim JM, Kennett JP (1998) Paleoenvironmental changes associated with the Holocene marine transgression, Yellow Sea (Hwanghae). *Mar Micropaleontol* 34:71–89.
- 62. Wiedicke M, Kudrass H-R, Hübscher C (1999) Oolitic beach barriers of the last Glacial sea-level lowstand at the outer Bengal shelf. *Mar Geol* 157:7–18.
- 63. Banerjee PK (2000) Holocene and Late Pleistocene relative sea level fluctuations along the east cost of India. *Mar Geol* 167:243–260.
- 64. Katupotha J, Fujiwara K (1988) sea level change on the southwest and south coasts of Sri Lanka. *Palaeogeogr Palaeoclimatol Palaeoecol* 68:189–203.
- 65. Gishler E, Hudson JH, Pisera A (2008) Quaternary reef growth and sea level in the Maldives (Indian Ocean). *Mar Geol* 250:104–113.
- 66. Kench PS, Smithers SG, McLean RF, Nichol SL (2009) Holocene reef growth in the Maldives: Evidence of a mid-Holocene sea-level highstand in the central Indian Ocean. *Geology* 37:455–458.
- 67. Woodroffe CD (2005) Late Quaternary sea-level highstands in the central and eastern Indian Ocean: A review. *Glob Planet Change* 49:121–138.
- 68. Woodroffe CD, McLean RF, Smithers SG, Lawson EM (1999) Atoll reef-island formation and response to sea-level change: West Island, Cocos-Keeling Islands. *Mar Geol* 160:85–104.
- 69. Camoin GF, Montaggioni LF, Braithwaite CJR (2004) Late glacial to post glacial sea levels in the Western Indian Ocean. *Mar Geol* 206:119–146.
- 70. Zinke J et al. (2003) Postglacial flooding history of Mayotte Lagoon (Comoro Archipelago, southwest Indian Ocean). *Mar Geol* 194:181–196.
- 71. Ramsay PJ, Cooper JAG (2002) Late Quaternary Sea-Level Change in South Africa. *Quat Res* 57:82–90.
- 72. Bard E, Hamelin B, Fairbanks RG (1990) U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. *Nature* 346:456–458.
- 73. Peltier WR, Fairbanks RG (2006) Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. *Quat Sci Rev* 25:3322–3337.

Table S2.

Earth and esl parameter results for the first and second iteration solutions for effective earth-model parameters. For the latter the corrective $\delta \zeta_{esl}$ has been attributed to the North American ice sheet for the LGM and late-glacial period and to Antarctica for the Holocene.

distributed between the two hemispheres according to the option (iii). The other options for the distribution of the incremental ice yield identical results and the E parameters are insensitive to this choice. These solutions are for 1000 year bin sizes for the parameterization of the $\delta \xi_{\rm esl}$ but solutions for E with smaller bin sizes, likewise, are insensitive to this choice, although solutions with 500 year bin sizes result in a reduced variance ($\Psi_{\rm min}^2 = 2.64$ for the first iteration high-viscosity lower-mantle model compared with 2.88) indicating that there is higher resolution esl information in the solutions corresponding to Fig. 3 of main text.

Earth parameter	High-viscosity	y lower-mantle	Low-viscosity	lower-mantle
-	1 st iteration	2 nd iteration	1 st iteration	2 nd iteration
H(km)	50	50	57	65
$\eta_{\rm um}$ (x10 ²⁰ Pa s)	1.5	1.25	1.5	1.5
$\eta_{\rm lm}$ (x10 ²² Pa s)	7.0	5.0	0.2	0.2

 Ψ_{min}^{2} 2.88 2.86 2.82

Table S3.Best estimates of the ice-volume equivalent sea-level function (*esl*) (column 3) and its accuracy estimate (2 sigma) (column 4). The nominal *esl* function corresponding to the starting ice model is given in column 2.

	nominal esl		
time (ka)	<u>(m)</u>	esl (m)	sigma esl
0	0	0	0.0
0.122	-0.21	-0.16	0.07
0.192	-0.21	-0.16	0.07
0.296	-0.21	-0.16	0.07
0.365	-0.21	-0.16	0.07
0.435	-0.21	-0.16	0.07
0.504	-0.21	-0.17	0.07
0.574	-0.21	-0.17	0.07
0.643	-0.21	-0.17	0.07
0.712	-0.21	-0.18	0.07
0.782	-0.21	-0.18	0.07
0.851	-0.21	-0.19	0.07
0.921	-0.21	-0.19	0.07
0.990	-0.21	-0.2	0.07
1.060	-0.21	-0.2	0.07
1.129	-0.22	-0.2	0.07
1.199	-0.22	-0.21	0.07
1.268	-0.23	-0.21	0.07
1.372	-0.23	-0.22	0.07
1.442	-0.24	-0.22	0.07
1.511	-0.24	-0.23	0.07
1.581	-0.25	-0.23	0.07
1.650	-0.25	-0.24	0.07
1.720	-0.26	-0.24	0.07
1.789	-0.26	-0.24	0.07
1.859	-0.27	-0.25	0.07
1.928	-0.28	-0.25	0.07
1.997	-0.28	-0.26	0.07
2.067	-0.29	-0.26	0.07
2.136	-0.29	-0.27	0.07
2.206	-0.3	-0.27	0.07
2.275	-0.3	-0.27	0.07
2.345	-0.33	-0.28	0.07

2.414	-0.38	-0.29	0.07
2.484	-0.42	-0.32	0.07
2.553	-0.47	-0.35	0.07
2.623	-0.52	-0.38	0.07
2.692	-0.56	-0.41	0.07
2.762	-0.61	-0.44	0.07
2.831	-0.65	-0.47	0.07
2.901	-0.7	-0.51	0.07
2.970	-0.74	-0.54	0.07
3.039	-0.79	-0.57	0.07
3.109	-0.83	-0.6	0.07
3.178	-0.88	-0.63	0.07
3.248	-0.93	-0.67	0.07
3.317	-0.97	-0.7	0.07
3.387	-1.02	-0.73	0.07
3.456	-1.06	-0.76	0.07
3.526	-1.11	-0.8	0.07
3.595	-1.15	-0.83	0.07
3.665	-1.2	-0.86	0.07
3.734	-1.26	-0.89	0.07
3.803	-1.32	-0.93	0.07
3.873	-1.38	-0.96	0.07
3.942	-1.44	-0.99	0.07
4.012	-1.5	-1.02	0.07
4.081	-1.56	-1.06	0.07
4.151	-1.61	-1.09	0.07
4.220	-1.67	-1.12	0.07
4.290	-1.73	-1.15	0.07
4.359	-1.79	-1.19	0.07
4.429	-1.85	-1.22	0.07
4.498	-1.91	-1.25	0.07
4.568	-1.97	-1.28	0.07
4.637	-2.03	-1.32	0.07
4.707	-2.09	-1.36	0.07
4.776	-2.15	-1.43	0.07
4.845	-2.21	-1.52	0.07
4.915	-2.26	-1.6	0.07
4.984	-2.32	-1.69	0.07
5.054	-2.38	-1.77	0.07
5.123	-2.44	-1.86	0.07
5.193	-2.5	-1.94	0.07
5.262	-2.56	-2.03	0.07
5.332	-2.62	-2.11	0.07
5.401	-2.68	-2.2	0.07
5.470	-2.74	-2.28	0.07
5.540	-2.8	-2.37	0.07
5.609	-2.86	-2.45	0.07

5.679	-2.91	-2.54	0.07
5.748	-2.97	-2.62	0.07
5.818	-3.03	-2.71	0.07
5.887	-3.09	-2.79	0.07
5.957	-3.15	-2.88	0.07
6.026	-3.23	-2.96	0.07
6.096	-3.33	-3.05	0.07
6.165	-3.43	-3.13	0.07
6.235	-3.53	-3.22	0.07
6.304	-3.63	-3.3	0.07
6.373	-3.73	-3.39	0.07
6.443	-3.83	-3.47	0.07
6.512	-3.93	-3.56	0.07
6.582	-4.04	-3.64	0.07
6.651	-4.14	-3.73	0.07
6.721	-4.24	-3.81	0.07
6.790	-4.34	-4.01	0.14
6.860	-4.76	-4.46	0.14
6.929	-5.24	-4.93	0.14
6.999	-5.71	-5.39	0.14
7.068	-6.19	-5.86	0.07
7.138	-6.66	-6.32	0.07
7.207	-7.14	-6.78	0.07
7.277	-7.61	-7.25	0.14
7.346	-8.09	-7.71	0.14
7.415	-8.54	-8.17	0.07
7.485	-9	-8.64	0.07
7.554	-9.45	-9.1	0.14
7.624	-9.9	-9.57	0.14
7.693	-10.35	-10.03	0.14
7.763	-10.81	-10.49	0.22
7.832	-11.26	-10.96	0.22
7.902	-11.72	-11.43	0.22
7.971	-12.39	-11.97	0.22
8.040	-13.07	-12.57	0.22
8.110	-13.75	-13.17	0.29
8.179	-14.43	-13.78	0.43
8.249	-15.11	-14.53	0.43
8.318	-15.79	-15.39	0.29
8.388	-16.47	-16.26	0.22
8.457	-17.19		0.22
8.527	-18.25	-17.99	0.36
8.596	-19.32	-18.86	0.58
8.70	-20.92	-20.16	0.79
8.805	-22.52	-21.46	1.08
8.978	-25.19		2.23
9.082	-26.75	-26.87	1.15

9.187	-28.24	-28.77	1.23
9.291	-29.72	-30.59	2.02
9.395	-31.2	-32.18	2.67
9.499	-32.68	-33.35	2.74
9.603	-34.16	-34.17	1.15
9.708	-35.75	-35.28	1.3
9.812	-37.44	-36.5	1.66
9.916	-39.12	-37.87	1.59
10.020	-40.81	-39.28	1.51
10.124	-42.49	-40.69	1.44
10.229	-44.17	-42.1	1.66
10.333	-45.59	-43.5	1.95
10.437	-46.83	-44.92	2.31
10.541	-48.07	-46.39	2.38
10.645	-49.31	-48.04	2.09
10.749	-50.55	-49.92	1.8
10.854	-51.79	-51.92	1.23
10.958	-53.03	-54.02	0.87
11.062	-54.28	-56.15	1.23
11.166	-55.53	-58.2	1.73
11.270	-56.78	-59.56	1.3
11.375	-58.03	-60.49	0.72
11.479	-59.28	-61.11	0.58
11.583	-60.39	-61.43	0.65
11.687	-61.31	-61.73	0.5
11.791	-62.24	-62.02	0.43
11.896	-63.16	-62.3	0.5
12.000	-64.08	-62.58	0.65
12.104	-64.67	-62.88	0.72
12.208	-65.25	-63.24	0.94
12.312	-65.83	-63.81	1.23
12.417	-66.41	-64.75	1.3
12.521	-66.99	-65.89	1.3
12.625	-67.57	-67.06	1.15
12.729	-68.15	-68.22	1.08
12.833	-68.76	-69.38	0.94
12.937	-69.42	-70.54	0.87
13.042	-70.08	-71.71	0.87
13.146	-70.74	-72.87	0.87
13.250	-71.4	-74.03	0.94
13.354	-72.06	-75.19	1.01
13.458	-72.74	-76.36	1.15
13.563	-73.42	-77.52	1.37
13.667	-74.1	-78.71	1.44
13.771	-74.78	-80.19	1.87
13.875	-75.46	-82.67	2.38
13.979	-76.17	-86.14	2.09

14.084	-76.93	-89.74	1.51
14.188	-82.05	-93.34	1.01
14.292	-87.98	-96.94	0.87
14.396	-91.66		1.15
14.500	-95.14	-103.1	2.09
14.605	-96.23	-102.66	2.38
14.709	-96.76	-101.48	1.37
14.813	-97.29	-100.29	2.31
14.917	-97.82	-99.44	3.24
15.021	-98.36	-99.5	3.24
15.125	-99.01	-100.39	3.24
15.203	-100.03	-101.82	3.53
15.334	-101.05	-103.96	2.88
15.438	-102.06	-106.7	3.68
15.542	-103.08	-109.1	5.91
15.646	-104.1	-111.08	5.62
15.751	-105.13	-112.84	4.97
15.855		-114.53	4.25
15.959	-107.25	-116.18	3.6
16.063	-107.23	-117.79	3.32
16.167	-109.36	-119.3	3.17
16.272	-110.41	-120.66	2.88
16.376	-111.41	-121.9	2.88
16.480	-112.39	-122.9	3.24
16.584	-113.04	-123.45	3.32
16.688	-113.63	-123.61	3.24
16.792	-114.21	-123.59	2.96
16.897	-114.79	-123.51	2.74
17.001	-115.37	-123.42	2.52
17.105	-115.95	-123.31	2.23
17.209	-116.54	-123.19	2.02
17.313	-117.12	-123.07	1.87
17.418	-117.7		1.73
17.522	-118.28		1.73
17.626	-118.84		1.95
17.730	-119.3		2.09
17.834	-119.77		2.02
17.939	-120.23		1.87
18.043	-120.7		1.73
18.147	-121.16		1.51
18.251	-121.62	-122.52	1.44
18.355	-122.09	-122.7	1.51
18.460	-122.56	-123.01	1.44
18.564	-123.02	-123.44	1.37
18.668	-123.49	-123.95	1.23
18.772	-123.95	-124.5	1.23
18.876	-124.42	-125.07	1.08

18.980	-125.41	-125.65	1.08
19.085	-126.42	-126.23	1.15
19.189	-127.42	-126.81	1.3
19.293	-128.43	-127.41	1.51
19.397	-129.43	-128.02	1.66
19.501	-130.43	-128.66	1.59
19.606	-131.44	-129.34	1.3
19.710	-132.44	-130.04	1.08
19.814	-133.45		1.37
19.918	-134.45	-131.44	1.73
20.022	-135.35	-132.11	2.02
20.127	-135.85		1.95
20.231		-133.32	1.87
20.335	-136.82		1.8
20.439	-137.3		1.66
20.543	-137.77		1.59
20.648	-138.24	-134.28	1.59
20.786	-138.86	-134.18	1.66
20.925	-139.48	-134.04	1.59
21.064	-139.66	-133.9	1.59
21.203	-139.31	-133.76	1.59
21.342	-138.96	-133.62	1.51
21.481	-138.61	-133.47	1.44
21.620	-138.27	-133.33	1.44
21.759	-137.94	-133.19	1.44
21.898	-137.61	-133.04	1.44
22.037	-137.27	-132.9	1.37
22.176	-136.92	-132.76	1.3
22.419	-136.29	-132.51	1.3
22.558	-135.93	-132.37	1.3
22.697	-135.57	-132.23	1.3
22.836	-135.21	-132.08	1.3
22.974	-134.86	-131.94	1.3
23.113	-134.59	-131.8	1.3
23.252	-134.35	-131.66	1.23
23.391	-134.1	-131.51	1.15
23.530	-133.85	-131.37	1.15
23.669	-133.61	-131.23	1.15
23.808	-133.36	-131.09	1.15
23.947	-133.12	-130.94	1.15
24.086	-132.87	-130.8	1.23
24.225	-132.63	-130.66	1.23
24.364	-132.39	-130.52	1.3
24.503	-132.15	-130.38	1.3
24.641	-131.91	-130.23	1.3
24.780	-131.67	-130.09	1.3
24.919	-131.44	-129.95	1.3

25.058	-131.12	-129.81	1.3
25.197	-130.69	-129.67	1.3
25.336	-130.25	-129.52	1.3
25.475	-129.82	-129.38	1.37
25.614	-129.39	-129.24	1.44
25.753	-128.95	-129.1	1.44
25.892	-128.5	-128.95	1.44
26.065	-127.95	-128.78	1.44
26.239	-127.42	-128.6	1.51
26.413	-126.9	-128.42	1.51
26.586	-126.68	-128.24	1.59
26.760	-126.74	-128.07	1.59
26.934	-126.89	-127.89	1.66
27.107	-126.68	-127.71	1.8
27.281	-126.25	-127.53	1.8
27.455	-125.82	-127.36	1.87
27.628	-125.26	-127.18	1.87
27.802	-124.67	-127	1.95
27.976	-124.07	-126.82	1.95
28.149	-123.48	-126.65	2.02
28.323	-122.88	-126.47	2.09
28.497	-122.28	-126.29	2.16
28.670	-121.31	-126.12	2.23
28.844	-120.33	-125.94	2.23
29.017	-119.34	-125.76	2.31
29.191	-118.35	-125.57	2.38
29.365	-117.36	-125.17	2.67
29.538	-115.81	-123.92	4.4
29.712	-112.3	-120.9	6.13
29.886	-108.87	-115.37	6.78
30.059	-105.48	-108.53	3.6
30.233	-102.12	-101.67	2.38
30.407	-98.76	-94.82	5.26
30.580	-95.39	-88.78	6.78
30.754	-92.03	-85.1	5.84
30.928	-88.69	-83.24	5.05
31.101	-85.36	-82.23	4.61
31.275	-82.03	-81.48	4.33
31.449	-78.73	-80.8	4.04
31.622	-75.46	-80.13	3.75
31.796	-72.22	-79.46	3.46
31.970	-69.01	-78.8	3.24
32.143	-69.25	-78.13	3.03
32.317	-70.21	-77.46	2.96
32.490	-71.18	-76.8	2.81
32.803	-72.93	-75.6	2.88
32.977	-73.9	-74.94	2.96

33.150	-73.98	-74.27	3.1
33.324	-73.92	-73.61	3.24
33.498	-73.86	-72.95	3.46
33.671	-73.79	-72.31	3.68
33.845	-73.73	-71.68	3.89
34.019	-73.68	-71.07	4.18
34.192	-73.61	-70.46	4.4
34.366	-73.56	-69.85	4.69
34.540	-73.5	-69.24	5.12
34.713	-73.44	-68.63	5.41
34.783	-73.41	-68.39	5.55