

Gowin I²C_UART IP **User Guide**

IPUG925-1.0E, 04/15/2020

Copyright© 2020 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI®, LittleBee®, Arora, and the GOWINSEMI logos are trademarks of GOWINSEMI and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders, as described at www.gowinsemi.com. GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description
04/15/2020	1.0E	Initial version published.

Contents

	ontents	
Li	ist of Figures	iii
Li	ist of Tables	iv
	About This Guide	
•		
	1.1 Purpose	
	1.2 Related Documents	
	1.3 Terminology and Abbreviations	
_	1.4 Support and Feedback	
2	Overview	2
	2.1 Features	2
	2.2 Performance	2
	2.3 Resource Utilization	2
3	Signal Description	4
	3.1 System Signal	
	3.2 I ² C Signal	
	3.3 UART Signal	4
4	Parameter Configuration	5
5	Functional Description	6
	5.1 System Block Diagram	6
	5.2 Architecture	
	5.3 Registers	
	5.3.1 RHR Register	
	5.3.2 THR Register	8
	5.3.3 IER Register	8
	5.3.4 IIR Register	8
	5.3.5 LSR Register	
	5.3.6 MSR Register	
	5.3.7 MCR Register	
	5.3.8 FCR Register	
	5.3.9 TXLVL Register	
	5.3.10 RXLVL Register	
	5.3.11 DLL Register	
	<u> </u>	
	5.4 Operation Flow	11

5.5 Interface Timing5.5.1 UART Interface Timing	
5.5.2 I ² C Interface Register Write Timing	13
5.5.3 I ² C Interface Register Read Timing	13
5.5.4 I ² C Interface Read LSR/MSR Interrupt Cleared Timing	14
5.5.5 I ² C Interface Read RHR Interrupt Cleared Timing	14
5.5.6 I ² C Interface Write THR Interrupt Cleared Timing	15
Interface Configuration	16
Reference Design	18

IPUG925-1.0E ii

List of Figures

Figure 5-1 System Block Diagram	6
Figure 5-2 Architecture	7
Figure 5-3 UART Interface Timing	13
Figure 5-4 I ² C Interface Register Write Timing	13
Figure 5-5 I ² C Interface Register Read Timing	13
Figure 5-6 I ² C Interface Read LSR/MSR Interrupt Cleared Timing	14
Figure 5-7 I ² C Interface Read RHR Interrupt Cleared Timing	14
Figure 5-8 I ² C Interface Write THR Interrupt Cleared Timing	15
Figure 6-1 Open an Existing Project	16
Figure 6-2 I2C_UART Configuration Interface	17
Figure 63 I2C_UART Instantiation	17

IPUG925-1.0E iii

List of Tables

Fable 1-1 Abbreviations and Terminology	1
Table 2-1 Resource Utilization	3
Fable 3-1 System Signal	4
Fable 3-2 I ² C Signal	4
Table 3-3 UART Signal	4
Table 4-1 GUI Paramrter	5
Table 5-1 Gowin I ² C_UART IP Registers	7
Table 5-2 RHR Register	8
Table 5-3 THR Register	8
Table 5-4 IER Register	8
Fable 5-5 IIR Register	8
Table 5-6 LSR Register	9
Table 5-7 MSR Register	9
Table 5-8 MCR Register	10
Table 5-9 FCR Register	10
Table 5-10 TXLVL Register	11
Table 5-11 RXLVL Register	11
Table 5-12 DLL Register	11
Table 5-13 DLH Register	11

1 About This Guide 1.1 Purpose

1 About This Guide

1.1 Purpose

Gowin I²C_UART IP user guide provides the features and performance, functional description and reference design to help users learn the usage of Gowin I²C_UART IP.

1.2 Related Documents

The latest user guides are available on the GOWINSEMI Website. You can find related documents at www.gowinsemi.com

1.3 Terminology and Abbreviations

The terminology and abbreviations used in this manual are as shown in Table 1-1.

Table 1-1 Abbreviations and Terminology

Terminology and Abbreviations	Meaning
FPGA	Field Programmable Gate Array
I ² C	Inter-Integrated Circuit
UART	Universal Asynchronous Receiver/Transmitter

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly by the following ways.

Website: www.gowinsemi.com
E-mail: support@gowinsemi.com

IPUG925-1.0E 1(18)

2 Overview 2.1 Features

2 Overview

I²C is a two-wire serial bus that is used to connect the micro-controller with its peripherals.

Universal Asynchronous Receiver/Transmitter (UART) is part of computer hardware that transmits data between serial and parallel communications.

In order to reduce the difficulty of system development and improve the speed of product development, Gowin I²C_UART IP is designed to realize the function of interface conversion between I²C and UART.

2.1 Features

- Supports data communication of one I²C and UART;
- I²C supports slave mode;
- UART supports 4-wire mode with 1 stop bit, no paity and 8 bit width;
- UART baud rate can be set flexibly by configuring registers;
- Supports interrupt;
- The depth is 64 bytes for UART transmitting FIFO;
- The depth is 64 bytes for UART receiving FIFO;
- The input clock must not be less than 10 times the input I²C data rate;
- Can be synthesized;
- The language is Verilog.

2.2 Performance

The frequency of Gowin I²C_UART IP depends on the clock frequency provided by the I²C Host and the maximum frequency supported by the IP on the selected chip.

2.3 Resource Utilization

Taking GW2A-LV18PG256C7/I6 as an example, the resource utilization is shown in Table 2-1. For application verification on other Gowin FPGAs, please pay attention to the post-release information.

IPUG925-1.0E 2(18)

2 Overview 2.3 Resource Utilization

Table 2-1 Resource Utilization

Part Number	Language	LUT4	REG
GW2A-LV18PG256C7/I6	Verilog	638	270

IPUG925-1.0E 3(18)

3 Signal Description 3.1 System Signal

3 Signal Description

3.1 System Signal

The definition of system signal is as shown in Table 3-1.

Table 3-1 System Signal

No.	Name	I/O	Description	Remarks
1	I_rst_n	1	Reset	The I/O of all the signals takes IP as
2	I_clk	I	Clock	reference.

3.2 I²C Signal

The definition of I²C signal is as shown in Table 3-2.

Table 3-2 I²C Signal

No.	Name	I/O	Description	Remarks
1	I_I2C_scl	I	I ² C clock	_
2	IO_I2C_sda	I/O	I ² C data	
3	O_I2C_irq_n	0	Interrupt request signal	

3.3 UART Signal

The definition of UART signal is as shown in Table 3-3.

Table 3-3 UART Signal

No.	Name	I/O	Description	Remarks
1	I_uart_rxd	1	Input serial data	The I/O of all the
2	O_uart_txd	0	Output serial data	signals takes IP as
3	O_uart_rts_n	0	Allow to transmit signal	reference.
4	I_uart_cts_n		Opposite port ready signal	

IPUG925-1.0E 4(18)

4 Parameter Configuration

The parameter configuration of Gowin $I^2C_UART\ IP$ is as shown in Table 4-1.

Table 4-1 GUI Paramrter

No.	Name	Range	Default Value	Description
1	I2C ADDR	7'h01~7'h7F	7'h01	I ² C slave address

IPUG925-1.0E 5(18)

5 Functional Description

5.1 System Block Diagram

I²C_UART IP is between I²C host and UART. It realizes data communication from I²C to UART. I²C host includes data, clock, interrupt signal. UART includes receiving data, transmitting data and flow control signal. I²C_UART includes reset and clock signals. The system block diagram is shown in Figure 5-1.

Figure 5-1 System Block Diagram

IPUG925-1.0E 6(18)

5 Functional Description 5.2 Architecture

5.2 Architecture

Figure 5-2 Architecture

The IP design includes I²C_interface_Timing_Ctrl, INTR_Ctrl, Param_Config, RX_FIFO_Ctrl, TX_FIFO_Ctrl, Status_Ctrl, UART_Interface_Timing_Ctrl modules.

- I²C_interface_Timing_Ctrl: Realizes data communication with I²C host and completes I²C interface timing control and protocol parse;
- vINTR_Ctrl: Implement interrupt control function according to IP internal status;
- Param_Config: Receives the configuration parameters from the I²C host and delivers them to the corresponding module.
- RX FIFO Ctrl: Implements data buffer received from UART;
- TX_FIFO_Ctrl: Implements data buffer from I²C host;
- Status_Ctrl: Detect and count the internal interface status and working status of IP;
- UART_Interface_Timing_Ctrl: Implements data communication with UART and completes UART interface timing control and protocol parse.

5.3 Registers

The definition of Gowin I²C_UART IP registers is as shown in Table 5-1.

Table 5-1 Gowin I²C_UART IP Registers

No.	Name	Address(4 bits)	Default Value (8 bits)	Туре	Description
1	RHR	0x0	-	RO	Receive holding register
2	THR	0x0	-	WO	Transmit holding register
3	IER	0x1	0x00	R/W	Interrupt Enable Register
4	IIR	0x2	0x01	RO	Interrupt Identification Register

IPUG925-1.0E 7(18)

5 Functional Description 5.3 Registers

No.	Name	Address(4 bits)	Default Value (8 bits)	Туре	Description
5	LSR	0x3	0x60	RO	Line Status Register
6	MSR	0x4	0x10	RO	Modem Status Register
7	MCR	0x5	0x00	R/W	Modem Control Register
8	FCR	0x6	0x00	R/W	FIFO Control Register
9	TXLVL	0x7	0x00	RO	Number of valid data of transmitting FIFO
10	RXLVL	0x8	0x00	RO	Number of valid data of receiving FIFO
11	DLL	0x9	0x0F	R/W	UART frequency division register (lower 8 bits)
12	DLH	0xA	0x00	R/W	UART frequency division register (upper 8 bits)

5.3.1 RHR Register

The definition of RHR register is shown in Table 5-2.

Table 5-2 RHR Register

Address (4 bits)	Bit(s)	Default Value	Type	Description
0x0	Bit[7:0]	-	RO	Buffer data receiving from UART, 64 bytes depth.

5.3.2 THR Register

The definition of THR register is shown in Table 5-3.

Table 5-3 THR Register

Address (4 bits)	Bit(s)	Default Value	Туре	Description
0x0	Bit[7:0]	-	WO	Buffer data transmitting to UART, 64 bytes depth.

5.3.3 IER Register

The definition of IER register is shown in Table 5-4.

Table 5-4 IER Register

Address (4 bits)	Bit(s)	Default Value	Туре	Description
	Bit[7:4]	-	-	Reserved
	Bit[3]	0	WO	Modem status interrupt 0: Turning off; 1: enable
0x1	Bit[2]	0	WO	Receive line status interrupt. 0: Turning off; 1: enable
OXI	Bit[1]	0	wo	Transmit holding register interrupt. 0: Turning off; 1: enable
	Bit[0]	0	WO	Receive holding register interrupt. 0:Turning off; 1: enable

5.3.4 IIR Register

The definition of IIR register is shown in Table 5-5.

Table 5-5 IIR Register

Address (4 bits)	Bit(s)	Default Value	Туре	Description
0x2	Bit[7:3]	-	-	Reserved

IPUG925-1.0E 8(18)

5 Functional Description 5.3 Registers

Address (4 bits)	Bit(s)	Default Value	Туре	Description
	Bit[2:1]	00	RO	Interrupt Type: 11: Receive line status error interrupt (highest priority) 10: Receive holding register interrupt (second priority) 01: Transmit holding register interrupt (third priority) 00: Modem status interrupt (lowest priority)
	Bit[0]	1	RO	Interrupt status 0: Interrupt waiting; 1: No interruption waiting

5.3.5 LSR Register

The definition of LSR register is shown in Table 5-6.

			_	
Table	5-6	LSR	Regi	ister

Address (4 bits)	Bit(s)	Default Value	Туре	Description
	Bit[7]	-	-	Reserved
	Bit[6]	1	RO	THR/TSR data status 0: THR or TSR has data to transmit; 1: Both THR and TSR are null
	Bit[5]	1	RO	THR data status 0: THR has data to transmit 1: THR is null
0x3	Bit[4]	0	RO	Communication interrupt 0: No communication interrupt 1: Communication interrupt detected (data transmission at low, including start bit, data bit and stop bit), clear after read
	Bit[3]	0	RO	Frame error; 0: No frame error; 1: frame error detected (stop bit missed), clear after read
	Bit[2]	-	-	Reserved
	Bit[1]	0	RO	Overrun error; 0: No overrun error; 1: RHR register data overrun, clear after read
	Bit[0]	0	RO	RHR data status 0: No data 1: At least one data is stored in RHR

5.3.6 MSR Register

The definition of MSR register is shown in Table 5-7.

Table 5-7 MSR Register

Address (4 bits)	Bit(s)	Default Value	Туре	Description
0x4	Bit[7:5]	-	-	Reserved
	Bit[4]	Х	RO	Allow to transmit (active-high)
	Bit[3:1]	-	-	Reserved
	Bit[0]	0	RO	CTS signal status indicator (active-high), clear after read

Note!

IPUG925-1.0E 9(18)

5 Functional Description 5.3 Registers

X means the signal value is determined by the status of the input signal.

5.3.7 MCR Register

The definition of MCR register is shown in Table 5-8.

Table 5-8 MCR Register

Address (4 bits)	Bit(s)	Default Value	Туре	Description
	Bit[7:3]	-	-	Reserved
0x5	Bit[2]	0	R/W	Receiving and transmitting loopback 0: Normal 1: Loopback on
	Bit[1]	0	R/W	Requset to transmit 0: Drive RTS high; 1: Drive RTS Low
	Bit[0]	-	-	Reserved

5.3.8 FCR Register

The definition of FCR register is shown in Table 5-9.

Table 5-9 FCR Register

Address (4 bits)	Bit(s)	Default Value	Туре	Description
0x6	Bit[7:6]	00	R/W	Receive holding register interrupt trigger (triggered when the number of data in FIFO is greater than or equal to the following values) 00: 8 bytes; 01: 16 bytes; 10: 32 bytes; 11: 48 bytes;
	Bit[5:4]	00	R/W	Transmit holding register interrupt trigger (triggered when the free space in the FIFO is greater than or equal to the following values): 00: 8 bytes; 01: 16 bytes; 10: 32 bytes; 11: 48 bytes;
	Bit[3]	-	-	Reserved
	Bit[3]	0	R/W	Reset and transmit FIFO. 0: No reset and transmit FIFO; 1: Reset and transmit FIFO
	Bit[1]	0	R/W	Reset and receive FIFO. 0: No reset and receive FIFO; 1: Reset and receive FIFO
	Bit[0]	0	R/W	FIFO enable 0: Disable and receive FIFO;

IPUG925-1.0E 10(18)

5 Functional Description 5.4 Operation Flow

Address (4 bits)	Bit(s)	Default Value	Type	Description
				1: Enable and receive FIFO;

5.3.9 TXLVL Register

The definition of TXLVL register is shown in Table 5-10.

Table 5-10 TXLVL Register

Address (4 bits)	Bit(s)	Default Value	Type	Description
	Bit[7]	-	-	Reserved
0x7	Bit[6:0]	0x00	RO	Number of valid data of TX FIFO Range: 0 ~ 64

5.3.10 RXLVL Register

The definition of RXLVL register is shown in Table 5-11.

Table 5-11 RXLVL Register

Address (4 bits)	Bit(s)	Default Value	Type	Description
	Bit[7]	-	-	Reserved
0x8	Bit[6:0]	0x00	RO	Number of valid data of RX FIFO Range: 0 ~ 64

5.3.11 DLL Register

The definition of DLL register is shown in Table 5-12.

Table 5-12 DLL Register

Address (4 bits)	Bit(s)	Default Value	Type	Description
0x9	Bit[7:0]	0x0F	R/W	UART frequency division register (lower 8 bits)

5.3.12 DLH Register

The definition of DLH register is shown in Table 5-13.

Table 5-13 DLH Register

Address (4 bits)	Bit(s)	Default Value	Type	Description
0xA	Bit[7:0]	0x00	R/W	UART frequency division
				register (upper 8 bits)

Note!

UART baud rate = input clock frequency/frequency division register value (DLH+DLL), and frequency division register value is not less than 10.

5.4 Operation Flow

5.4.1 Initialization Flow

- 1. After power on, the I²C host needs to configure the IP parameters, the recommended sequence is as follows:
 - a). MCR
 - b). FCR
 - c). DLL
 - d). DLH
 - e). IER

IPUG925-1.0E 11(18)

5 Functional Description 5.4 Operation Flow

2. I²C host can communicate with UART according to read/write operation flow.

5.4.2 Write Operation Flow

Disable Interrupt Write Operation

When transmit holding register interrupt is disabled, the write operation flow from I²C host is as follows:

- 1. The I²C host reads the current FIFO buffer status by the TXLVL register.
- 2. When the transmit FIFO has enough space, the I²C host can write data through the THR register.

Enable Interrupt Write Operation

When transmit holding register interrupt is enabled, the write operation flow from I²C host is as follows:

- 1. After receiving the interrupt signal from the I²C slave, the I²C host reads the current interrupt from the IIR register.
- 2. If the interrupt is from transmit holding register, the I²C host can write data to the THR register.

5.4.3 Read Operation Flow

Disable Interrupt Read Operation

When receive holding register interrupt is disabled, the read operation flow from I²C host is as follows:

- 1. The I²C host reads the current FIFO buffer status the RXLVL register.
- 2. When the receive FIFO has enough space, the I²C host can write data through RHR register.

Enable Interrupt Read Operation

When receive holding register interrupt is enabled, the read operation flow from I²C host is as follows:

- 1. After receiving the interrupt signal from the I²C slave, the I²C host reads the current interrupt from the IIR register.
- 2. If the interrupt is from receive holding register, the I²C host can read data from RHR register.

IPUG925-1.0E 12(18)

5 Functional Description 5.5 Interface Timing

5.5 Interface Timing

5.5.1 UART Interface Timing

Figure 5-3 UART Interface Timing

5.5.2 I²C Interface Register Write Timing

Figure 5-4 I²C Interface Register Write Timing

Note!

- W: Write operation; 0: Valid;
- X: Don not care about the bit;
- A3~A0: Register address, 4 bits.
- The input clock must not be less than 10 times the input I2C data rate.

5.5.3 I²C Interface Register Read Timing

Figure 5-5 I²C Interface Register Read Timing

Note!

- W: Write operation; 0: Valid;
- R: Read operation; 1: Valid
- X: Don not care about the bit;
- A3~A0: Register address, 4 bits.

IPUG925-1.0E 13(18)

5 Functional Description 5.5 Interface Timing

5.5.4 I²C Interface Read LSR/MSR Interrupt Cleared Timing

Figure 5-6 I²C Interface Read LSR/MSR Interrupt Cleared Timing

5.5.5 I²C Interface Read RHR Interrupt Cleared Timing

Figure 5-7 I²C Interface Read RHR Interrupt Cleared Timing

IPUG925-1.0E 14(18)

5 Functional Description 5.5 Interface Timing

5.5.6 I²C Interface Write THR Interrupt Cleared Timing

Figure 5-8 I²C Interface Write THR Interrupt Cleared Timing

IPUG925-1.0E 15(18)

6 Interface Configuration

In "Tools" menu bar of the Gowin software interface, it can start the IP Core Generator tool and complete IP call and configuration.

1. Start Gowin Software and open a project, as shown in Figure 6-1;

Figure 6-1 Open an Existing Project

2. Select "Tools > IP Core Generator > I2C_UART", then click "OK" to generate I2C_UART Module, as shown in Figure 6-2.

IPUG925-1.0E 16(18)

*** Country *** Co

Figure 6-2 I2C_UART Configuration Interface

3. Instantiate the "I2C_UART" module as shown in Figure 6--3.

Figure 6--3 I2C_UART Instantiation

Synthesize, P&R, download bitstream file to FPGA chip to implement Gowin I^2C_UART IP function.

IPUG925-1.0E 17(18)

7 Reference Design

See Gowin I^2C_UART reference design for details at Gowinsemi website.

IPUG925-1.0E 18(18)

