Tema 6: Teletráfico en redes de datos

April 25, 2023

RSTC
Redes y Servicios de Telecomunicación

This work is licensed under a "CC BY-NC-SA 4.0" license.

Contenido

- Introducción
- 2 Sistema M/G/1
 - No Markoviano
 - Tiempo medio de espera en cola
 - Ejemplos distribuciones servicio
 - M/M/1 como caso peor
- Redes de Colas
 - Distribución salida M/M/1
 - Redes de Jackson

Hemos visto colas M/M/1

con tiempos:

- de llegada exponenciales $t_l \sim Exp(\lambda)$
- de servicio exponenciales $t_s \sim Exp(\mu)$

Hemos visto colas M/M/1

con tiempos:

- de llegada exponenciales $t_l \sim Exp(\lambda)$
- de servicio exponenciales $t_s \sim Exp(\mu)$

Pero, ¿y si el tiempo de servicio t_s sigue otra distribución?

RSTC curso 2022-2023 Tema 6 April 25, 2023 4

Hemos visto colas M/M/1

con tiempos:

- de llegada exponenciales $t_l \sim Exp(\lambda)$
- de servicio exponenciales $t_s \sim Exp(\mu)$

Pero, ¿y si el tiempo de servicio t_s sigue otra distribución?

• sistema M/G/1

RSTC curso 2022-2023 Tema 6 April 25, 2023 4 / 24

Hemos estudiado una sola cola

Pero, ¿y si hay más colas?

RSTC curso 2022-2023 Tema 6 April 25, 2023

Hemos estudiado una sola cola

Pero, ¿y si hay más colas?

• redes de Jackson

Contenido

- Introducción
- 2 Sistema M/G/1
 - No Markoviano
 - Tiempo medio de espera en cola
 - Ejemplos distribuciones servicio
 - M/M/1 como caso peor
- Redes de Colas
 - Distribución salida M/M/1
 - Redes de Jackson

Sistema M/G/1

RSTC curso 2022-2023 Tema 6 April 25, 2023 7 / 24

Sistema M/G/1: No Markoviano

Tiempo de servicio sigue una distribución general $t_s \sim G(\mu)$.

Para modelar como cadena de Markov es necesario que

• tiempo estancia en estado $t_i \sim Exp(\nu_i)$.

4 U > 4 @ > 4 E > 4 E > E 990

RSTC curso 2022-2023

¹Por ejemplo, $G(\mu) = U(\frac{1}{2\mu}, \frac{2}{3\mu})$

Sistema M/G/1: No Markoviano

Veamos si se cumple que $t_i \sim Exp(\nu_i)$:

$$\mathbb{P}(t_i > \tau) = \mathbb{P}(\min\{t_l, t_s\} > \tau) = \mathbb{P}(t_l > \tau)\mathbb{P}(t_s > \tau)$$
$$= \left(1 - \frac{\tau}{\mu}\right)e^{-\mu\tau} \neq e^{-\nu_i\tau} \quad (1)$$

 $\text{con } t_s \sim G(\mu) = U\left(\frac{1}{2\mu}, \frac{2}{3\mu}\right), \ \tau \in \left\lceil \frac{1}{2\mu}, \frac{2}{3\mu}\right\rceil.$

Podemos obtener el tiempo medio de espera en cola $\mathbb{E}[W(t)]$ de un $\mathsf{M}/\mathsf{G}/1$.

Veamos lo que espera un usuario nuevo:

- **①** $\mathbb{E}[Q(t)]\frac{1}{\mu}$ en cola ; y
- $oldsymbol{@}$ la media del tiempo residual R del que se está sirviendo.

$$\mathbb{E}[W(t)] = \mathbb{E}[Q(t)] \frac{1}{\mu} + \mathbb{E}[R(t)]$$

$$\implies \mathbb{E}[(W(t))] = \frac{\mathbb{E}[R(t)]}{1 - \rho}$$

Interpretación gráfica de tiempo residual en cada instante R(t):

RSTC curso 2022-2023 Tema 6 April 25, 2023 11 / 24

² La media del tiempo residual corresponde con el promedio de áreas.

$$\mathbb{E}[R(t)] = \lim_{t \to \infty} \int_0^t R(\tau) d\tau$$
$$= \lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{N(t)} \frac{t_{s,i}^2}{2}$$

RSTC curso 2022-2023 Tema 6 April 25, 2023 12 / 24

Multiplicando y dividiendo por N(t):

$$\begin{split} \mathbb{E}[R(t)] &= \lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{N(t)} \frac{t_{s,i}^2}{2} \\ &= \frac{1}{2} \left(\lim_{t \to \infty} \frac{N(t)}{t} \right) \left(\lim_{t \to \infty} \frac{1}{N(t)} \sum_{i=1}^{N(t)} t_{s,i}^2 \right) \\ &= \frac{1}{2} \cdot \lambda \cdot \mathbb{E}[t_s^2] \end{split}$$

con $t_{s,i}$ la realización de la v.a. del tiempo de servicio para el usuario i.

1 | 7 | 1 | 7 | 2 | 7 |

Lema (Fórmula de Pollaczek-Khintchine)

El tiempo medio de espera en cola de en un sistema M/G/1 es

$$\mathbb{E}[W(t)] = \frac{\lambda \mathbb{E}[t_s^2]}{2(1-\rho)} \tag{2}$$

con t_s la v.a. del tiempo de servicio que sigue una distribución G.

Demostración:

$$\mathbb{E}[W(t)] = \frac{\mathbb{E}[R(t)]}{1-\rho} = \frac{\frac{1}{2}\lambda \mathbb{E}[t_s^2]}{1-\rho} = \frac{\lambda \mathbb{E}[t_s^2]}{2(1-\rho)}$$

(□) (□) (□) (□) (□)

RSTC curso 2022-2023 Tema 6 April 25, 2023 14/24

Sistema M/G/1: Ejemplos distribuciones servicio

Ejemplo: supongamos un tiempo de servicio $t_s \sim Exp(\mu)$.

$$\mathbb{E}[t_s^2] = \int_0^\infty \tau^2 \mu e^{-\mu \tau} d\tau$$

$$= \int_0^\infty \left[-\tau^2 e^{-\mu \tau} \right]_{\tau=0}^\infty - \int_0^\infty -e^{-\mu \tau} 2\tau d\tau$$

$$= \int_0^\infty 2\tau e^{-\mu \tau} d\tau$$

$$= \int_{partes}^\infty \frac{2}{\mu^2}$$

Usando Pollaczek-Khintchine tenemos

$$\mathbb{E}[W(t)] = \frac{\lambda \mathbb{E}[t_s^2]}{2(1-\rho)} = \frac{\rho}{\mu(1-\rho)}$$

la expresión que vimos para M/M/1.

RSTC curso 2022-2023 Tema 6 April 25, 2023 15 / 24

Sistema M/G/1: Ejemplos distribuciones servicio

Ejemplo: supongamos un tiempo de servicio $t_s \sim U(0, \frac{2}{\mu})$.

$$\mathbb{E}[t_s^2] = \int_0^{\frac{2}{\mu}} \tau^2 \frac{1}{2/\mu} d\tau$$
$$= \frac{\mu}{2} \left[\frac{\tau^3}{3} \right]_{\tau=0}^{\frac{2}{\mu}}$$
$$= \frac{4}{3\mu^2}$$

Usando Pollaczek-Khintchine tenemos

$$\mathbb{E}[W(t)] = \frac{\lambda \mathbb{E}[t_s^2]}{2(1-\rho)} = \frac{2}{3} \frac{\rho}{\mu(1-\rho)}$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ り Q ○

Sistema M/G/1: Ejemplos distribuciones servicio

Otra manera de ver el momento de segundo orden es sabiendo que

$$\mathbb{E}[t_s^2] = \operatorname{Var}[t_s] + \mathbb{E}^2[t_s]$$

Ejemplo:

•
$$t_s \sim Exp(\mu) \implies \mathbb{E}[t_s^2] = \frac{1}{\mu^2} + \frac{1}{\mu^2}$$
;

•
$$t_s \sim U\left(0, \frac{2}{\mu}\right) \implies \mathbb{E}[t_s^2] = \frac{1}{12}\left(\frac{2}{\mu} - 0\right)^2 + \frac{1}{\mu^2} = \frac{4}{3\mu^2}.$$

que coincide con las expresiones anteriores.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ト りゅぐ

RSTC curso 2022-2023 Tema 6 April 25, 2023

Sistema M/G/1: M/M/1 como caso peor

El tiempo medio de servicio $\mathbb{E}[T(t)]$ es pesimista en un M/M/1.

Ejemplo (arriba): el tiempo medio total es menor³ en una uniforme.

RSTC curso 2022-2023 Tema 6 April 25, 2023 18

 $^{^3}$ Tomamos $\mu=1$ [usuario/sec].

Redes de Colas

Redes de Colas

Podemos estudiar cómo modelar una red de colas (e.g., routers).

con $p_{2,3}$ la probabilidad de ir de la cola 2 a la 3.

RSTC curso 2022-2023 Tema 6 April 25, 2023 20 / 24

Redes de Colas

Las llegadas λ_i a la cola i se averiguan usando probabilidades $p_{i,j}$.

Ejemplo:

$$\lambda_3 = p_{1,3}\lambda_{1,o} + p_{2,3}\lambda_{2,o}$$

con $\lambda_{i,o}$ la tasa de salidas de la cola i.

RSTC curso 2022-2023 Tema 6 April 25, 2023 21 / 24

Redes de Colas: Distribución salida M/M/1

Lema (Tiempo entre salidas)

En un sistema M/M/1 el tiempo entre salidas y llegadas siguen la misma distribución. Es decir, se cumple:

$$t_e \sim Exp(\lambda)$$

 $t_l \sim Exp(\lambda)$

Demostración:

$$\begin{split} F_{t_e}(\tau) &= \pi_0 \mathbb{P}(t_l + t_s \le \tau) + (1 - \pi_0) \mathbb{P}(t_s \le \tau) \\ &= (1 - \rho) \int_0^\tau f_{t_l + t_s}(t) \ dt + \rho e^{-\mu \tau} = (1 - \rho) \int_0^\tau f_{t_l} * f_{t_s}(t) \ dt + \rho e^{-\mu \tau} \\ &= (1 - \rho) \int_0^\tau \int_0^t f_{t_l}(t - \theta) f_{t_s}(\theta) \ d\theta \ dt + \rho e^{-\mu \tau} \\ &= (1 - \rho) \int_0^\tau \int_0^t e^{-\lambda(t - \theta)} e^{-\mu \theta} \ d\theta \ dt + \rho e^{-\mu \tau} = \dots = 1 - e^{-\lambda \tau} \end{split}$$

Redes de Colas: Distribución salida M/M/1

Ejemplo (cont.): sabiendo que $\lambda_{i,o} = \lambda_i$ en la red de colas de abajo tendríamos que

$$\lambda_3 = p_{1,3}\lambda_1 + p_{2,3}\lambda_2$$

= $p_{1,3}\lambda_1 + p_{2,3}(1 - p_{1,3})\lambda_1$

RSTC curso 2022-2023 Tema 6 April 25, 2023 23 / 24

Referencias I

Pablo Serrano Yáñez-Mingot and José Alberto Hernández Gutiérrez, Una introducción amable a la teoría de colas, 2023.