

SEQUENCE LISTING

<110> Pausch, Mark H Price, Laura A

<120> Potassium Channels, Nucleotide Sequences Encoding Them, and Methods of Using Same

<130> 01142.0122

<140> 08/816,011

<141> 1997-03-11

<160> 64

<170> PatentIn Ver. 2.1

<210> 1

<211> 2441

<212> DNA

<213> Drosophila melanogaster

<400> 1

acgcgatcgc cgcgagtgta tattttttt ttagctcagt cttcagtgtgtt tcgcgattct 60 ctttaaaaga aaaaaaaaat aataagtcaa aactacaaac cacacagega aaggegaaag 120 caacggttcc tgcgagtgtt tattttttt ttcaacaatt tttgatcgta gtgcgacaat 180 ccqtcqaqca tqtcqccqaa tcqatqqatc ctgctgctca tcttctàcat atcctacctg 240 atgttegggg eggeaateta ttaccatatt gageaeggeg aggagaagat ategegegee 300 qaacaqeqea aqqeqeaaat tqeaateaae qaatatetqe tqqaqqaget ggqegacaag 360 aatacgacca cacaggatga gattetteaa eggatetegg attactgtga caaaceggtt 420 acattgccgc cgacatatga tgatacgccc tacacgtgga ccttctaccà tgccttcttc 480 ttegeettea eegtttgete caeggtggga tatgggaata tategeeaac\ eaeettegee 540 ggacggatga tcatgatcgc gtattcggtg attggcatcc ccgtcaatgg \tatcctcttt 600 geoggeoteg gegaataett tggaegtaeg tttgaagega tetacagaeg ¿tacaaaaag 660 tacaagatgt ccacggatat gcactatgtc ccgccgcagc tgggattgat caccacggtg 720 gtgattgeee tgatteeggg aatagetete tteetggtge tgeeetgegt gggtgtteae 780 ctacttcgag aactgggcct atcttccatc tcgctgtact acagctatgt gaccaccaca 840 acaattggat teggtgaeta tgtgeecaca tttggageca accageecaa ggagttegge 900 ggctggttcg tggtctatca gatctttgtg atcgtgtggt tcatcttctc gctgggatat 960 cttgtgatga tcatgacatt tatcactcgg ggcctccaga gcaagaagct ggcatacctg 1020 gagcagcagt tgtcctccaa cctgaaggcc acacagaatc gcatctggtc tggcdtcacc 1080 aaggatgtgg getaceteeg gegaatgete aacgagetgt acateeteaa agtgaageet 1140 gtgtacaccg atgtagatat cgcctacaca ctgccacgtt ccaattcgtg tccggatctg 1200 agcatgtace gegtggagee ggeteecatt eecageegga agagggeatt eteegtgtge 1260 gccgacatgg ttggcgccca aagggaggcg ggcatggtac acgccaattc cgatacggat 1320 ctaaccaaac tggatcgcga gaagacattc gagacggcgg aggcgtacca ccagaccacc 1380 gatttgctgg ccaaggtggt caacgcactg gccacggtga agccaccgcc ggcggaacag 1440 gaagatgegg etetetatgg tggetateat ggetteteeg acteceagat cetggeeage 1500

D/D

gaatggtcgt tctcgacggt caacgagttc acatcaccgc gacgtccaag agcacgtgcc 1560 tgctccgatt tcaatctgga gqcacctcgc tggcagagcg agaggccact gcgttcgagc 1620 cacaacgaat ggacatggag cggcgacaac cagcagatcc aggaggcatt caaccagcgc 1680 tacaagggac agcagcgtgc caacggagca gccaactcga ccatggtcca tctggagccg 1740 gatgctttgg aggagcagct gaghaacaat caccgggtgc cggtcgcgtc aagaagttct 1800ccatgccqqa tqqtctqcqa cqtdtqtttc ccttccaqaa gaagcacccc tcgcaggatc 1860 tggagcgcaa gttgtccgtg gtct&ggtac ccgagggtgt catctcgcag gaagccagat 1920 ccccqctqqa ctactacatc aacacqqtca cqqcqqcctc caqtcaatcc tatttqcqca 1980 acggacgcgg tecgecaccg ceettdgaat egaatggcag ettggecage ggeggeggeg 2040 ggctaacgaa catgggcttc cagatgdagg atggagcaac cccgccatcg gcattgggcg 2100 gtggagecta teaacgeaag geggetg&tg geaagegeeg aegegagage atetacacee 2160 agaatcaagc cccatccgct cgccgggg a gcatgtatcc gccgaccgcg cacgccttgg 2220 cccaqatqca qatqcqacqc qqcaqcttqq caaccagtgg ctctggatcg gcggccatgg 2280 cggcagtggc cgcgcgtcgt ggcagcctct\tcccagctac agcatcggca tcatcgctga 2340 cctctgctcc gcgccgaagc agcatattct cggttacctc cgaaaaggat atgaatgtgc 2400 tggagcagac gaccattgcg gatctgattc otgcgctcga g 2441

<210> 2

<211> 618

<212> PRT

<213> Drosophila melanogaster

<400> 2

Met Ser Pro Asn Arg Trp Ile Leu Leu Leu tle Phe Tyr Ile Ser Tyr

1 5 10 15

Leu Met Phe Gly Ala Ala Ile Tyr Tyr His Ile Glu His Gly Glu Glu
20 25 30

Lys Ile Ser Arg Ala Glu Gln Arg Lys Ala Gln I $\$ e Ala Ile Asn Glu 35 40 45

Tyr Leu Leu Glu Glu Leu Gly Asp Lys Asn Thr Thr \Thr Gln Asp Glu 50 55 60

Ile Leu Gln Arg Ile Ser Asp Tyr Cys Asp Lys Pro Val Thr Leu Pro
65 70 75 80

Pro Thr Tyr Asp Asp Thr Pro Tyr Thr Trp Thr Phe Tyr $\$ His Ala Phe 85 90 95

Phe Phe Ala Phe Thr Val Cys Ser Thr Val Gly Tyr Gly Asn Ile Ser 100 105 110

Pro Thr Thr Phe Ala Gly Arg Met Ile Met Ile Ala Tyr Ser Val Ile
115 120 125

Gly	Ile 130	Pro	Val	Asn	GLy	Ile 135	Leu	Phe	Ala	Gly	Leu 140	Gly	Glu	Tyr	Phe
Gly 145	Arg	Thr	Phe	Glu	Ala 150	Ile	Tyr	Arg	Arg	Tyr _155_	Lys	Lys	Tyr	Lys	Met -1-60-
Ser	Thr	Asp	Met	His 165	Tyr	Val	Pro	Pro	Gln 170	Leu	Gly	Leu	Ile	Thr 175	Thr
Val	Val	Ile	Ala 180	Leu	Ile	Pro	Gly	Ile 185	Ala	Leu	Phe	Leu	Val 190	Leu	Pro
Cys	Val	Gly 195	Val	His	Leu	Leu	Arg 200	Glu	Leu	Gly	Leu	Ser 205	Ser	Ile	Ser
Leu	Tyr 210	Tyr	Ser	Tyr	Val	Thr 215	Thr	Thr	Thr	Ile	Gly .220	Phe	Gly	Asp	Tyr
Val 225	Pro	Thr	Phe	Gly	Ala 230	Asn	Gln	Pro	bys	Glu 235	Phe	Gly	Gly	Trp	Phe 240
Val	Val	Tyr	Gln	Ile 245	Phe	Val	Ile	Val	Thp 250	Phe	Ile	Phe	Ser	Leu 255	Gly
Tyr	Leu	Val	Met 260	Ile	Met	Thr	Phe	Ile 265	Thr	Arg	Gly	Leu	Gln 270	Ser	Lys
Lys	Leu	Ala 275	Tyr	Leu	Glu	Gln	Gln 280	Leu	Ser	Ser	Asn	Leu 285	Lys	Ala	Thr
Gln	Asn 290	Arg	Ile	Trp	Ser	Gly 295	Val	Thr	Lys	Asp	Val 300	Gly \	Tyr	Leu	Arg
Arg 305	Met	Leu	Asn	Glu	Leu 310	Tyr	Ile	Leu	Lys	Val 315	Lys	Pro	Val	Tyr	Thr 320
Asp	Val	Asp	Ile	Ala 325	Tyr	Thr	Leu	Pro	Arg 330	Ser	Asn	Ser	Cys \	Pro 335	Asp
Leu	Ser	Met	Tyr 340	Arg	Val	Glu	Pro	Ala 345	Pro	Ile	Pro	Ser	Arg 350	Lys	Arg
Ala	Phe	Ser 355	Val	Cys	Ala	Asp	Met 360	Val	Gly	Ala	Gln	Arg 365	Gl	Ala	Gly
Met	Val 370	His	Ala	Asn	Ser	Asp 375	Thr	Asp	Leu	Thr	Lys 380	Leu	Asp	Arg	Glu

Lys Thr Phe Glu Thr Ala Glu Ala Tyr His Gln Thr Thr Asp Leu Leu Ala Lys Val Val Asn Ala 🕽eu Ala Thr Val Lys Pro Pro Pro Ala Glu ____405_________410______415---Gln Glu Asp Ala Ala Leu Ty χ Gly Gly Tyr His Gly Phe Ser Asp Ser Gln Ile Leu Ala Ser Glu Trp Ser Phe Ser Thr Val Asn Glu Phe Thr Ser Pro Arg Arg Pro Arg Ala Arg Ala Cys Ser Asp Phe Asn Leu Glu Ala Pro Arg Trp Gln Ser Glu Arg Pro Leu Arg Ser Ser His Asn Glu Trp Thr Trp Ser Gly Asp Asn Gln Gln Ile Gln Glu Ala Phe Asn Gln **)**490 Arg Tyr Lys Gly Gln Gln Arg Ala Asn Gly Ala Ala Asn Ser Thr Met Val His Leu Glu Pro Asp Ala Leu Glu Glu Glu Leu Arg Asn Asn His Arg Val Pro Val Ala Ser Arg Ser Ser Pro Cys Arg Met Val Cys Asp Val Cys Phe Pro Ser Arg Arg Ser Thr Pro Arg Arg Ile Trp Ser Ala Ser Cys Pro Trp Ser Arg Tyr Pro Arg Val Ser Sen Arg Arg Lys Pro Asp Pro Arg Trp Thr Thr Ser Thr Arg Ser Arg Arg Pro Pro Val Asn Pro Ile Cys Ala Thr Asp Ala Val Arg His Arg Pro√Ser Asn Arg Met Ala Ala Trp Pro Ala Ala Ala Gly <210> 3 <211> 1011

<212> DNA <213> Caenorhabditis elegans <400> 3 atgtccgatc agctgtttgt cgdatttgag aagtatttct tgacgagtaa-cgaggtcaag-60aagaatgcag caacggagac atg\acattt tcatcgtcca ttttctttgc cgtaaccgtc 120 gtcactacca tcggatacgg taatcagtt ccagtgacaa acattggacg gatatggtgt 180 atattgttct ccttgcttgg aatadctcta acactggtta ccatcgctga cttggcaggt 240 aaatteetat etgaacatet tgtttagttg tatggaaact atttgaaatt aaaatatete 300 atattgtcac gacatcgaaa agaacg \dot{q} aga gagcacgttt gtgagcactg tcacagtcat 360 ggaatggggc atgatatgaa tatcgagaagaa aaaagaattc ctgcattcct ggtattagct 420 attctgatag tatatacagc gtttggcggt gtcctaatgt caaaattaga gccgtggtct 480 ttcttcactt cattctactg gtccttcatt acaatgacta ctgtcgggtt tggcgacttg 540 atgcccagaa gggacggata catgtatatc atattgctct atatcatttt aggtaaattt 600 tcaatgaaaa aaaaacaaaa attcaaaata tttttaggtc ttgcaataac tacaatgtgc 660 attgatttgg taggagtaca gtatattcga aagattcatt atttcggaag aaaaattcaa 720 gacgctagat ctgcattggc ggttgtagga ggaaaggtag tccttgtatc agaactctac 780 gcaaatttaa tgcaaaagcg agctcgtaac atgtcccgag aagcttttat agtggagaat 840 ctctatgttt ccaaacacat cataccattc ataccatc ataccat ataccatg atatccgatg tattcgatat 900 attgatcaaa ctgccgatgc tgctaccatt tccabgtcat cgtctgcaat tgatatgcaa 960 agttgtagat tttgtcattc aagatattct ctcaatcgtg cattcaaata g <210> 4 <211> 336 <212> PRT <213> Drosophila melanogaster <400> 4 Met Ser Asp Gln Leu Phe Val Ala Phe Glu Lys\Tyr Phe Leu Thr Ser 1 5 10 15 Asn Glu Val Lys Lys Asn Ala Ala Thr Glu Thr Trp Thr Phe Ser Ser 20 25 30 Ser Ile Phe Phe Ala Val Thr Val Val Thr Thr Ile Gly Tyr Gly Asn 35 40 45 50 55 Leu Leu Gly Ile Pro Leu Thr Leu Val Thr Ile Ala Asp Leu Ala Gly 65 70 75 Lys Phe Leu Ser Glu His Leu Val Trp Leu Tyr Gly Asn\Tyr Leu Lys 85 90 95

Leu Lys Tyr Leu Ile Leu Ser Arg His Arg Lys Glu Arg Arg Glu His

Lys Ile Phe Leu Gly Leu Ala Ile Thr Thr Met Cys Ile Asp Leu Val

Gly Val Gln Tyr Ile Arg Lys Ile His Tyr Phe Gly Arg Lys Ile Gln

Asp Ala Arg Ser Ala Leu Ala Val Val Gly Cly Lys Val Val Leu Val

Ser Glu Leu Tyr Ala Asn Leu Met Gln Lys Arg Ala Arg Asn Met Ser

Arg Glu Ala Phe Ile Val Glu Asn Leu Tyr Val Ser Lys His Ile Ile

Pro Phe Ile Pro Thr Asp Ile Arg Cys Ile Arg Tyr Ile Asp Gln Thr

Ala Asp Ala Ala Thr Ile Ser Thr Ser Ser Ser Ala Ile Asp Met Gln

Ser Cys Arg Phe Cys His Ser Arg Tyr Ser Leu Asn Arg Ala Phe Lys

```
<210> 5
<211> 51
<212> DNA
<213> Caenorhabditis elegans
tccattttct ttgccgtaac cgtcgtcact accatcggat acggtaatcc a
                                                                    51
<210> 6
<211> 51
<212> DNA
<213> Caenorhabditis elegans
<400> 6
tcattctact ggtccttcat tacaatgact\actgtcgggt ttggcgactt g
                                                                   51
<210> 7
<211> 24
<212> PRT
<213> Drosophila melanogaster
<400> 7
Ala Phe Leu Phe Ser Ile Glu Thr Gln Thr Thr Ile Gly Tyr Gly Phe
Arg Cys Val Thr Asp Glu Cys Pro
             20
<210> 8
<211> 24
<212> PRT
<213> Drosophila melanogaster
Ala Phe Leu Phe Ser Leu Glu Thr Gln Val Thr Ile Gly Tyr Gly Phe
                  5
  1
                                      10
                                                          15
Arg Cys Val Thr Glu Gln Cys Ala
             20
<210> 9
<211> 24
<212> PRT
<213> Drosophila melanogaster
```

```
<400> 9
Ala Phe Leu Phe Phe Ile Glu Thr Glu Ala Thr Ile Gly Tyr Gly Tyr
                  5
                                      10
Arg Tyr Ile Thr Asp His Cys Pro
             20
<210> 10
<211> 24
<212> PRT
<213> Drosophila melanogaster
<400> 10
Ala Phe Phe Phe Ala Phe Thr Val Cys Ser Thr Val Gly Tyr Gly Asn
  1
                  5
                                      10
                                                          15
Ile Ser Pro Thr Thr Phe Ala Gly
             20
<210> 11
<211> 24
<212> PRT
<213> Drosophila melanogaster
<400> 11
Ala Phe Trp Trp Ala Val Val Thr Met Thr Thr Val Gly Tyr Gly Asp
                                                          15
  1
                                      10
Met Thr Pro Val Gly Phe Trp Gly
             20
<210> 12
<211> 24
<212> PRT
<213> Drosophila melanogaster
<400> 12
Ala Phe Trp Tyr Thr Ile Val Thr Met Thr Thr Leu Gly Tyr\Gly Asp
                                      10
                                                          15
  1
Met Val Pro Glu Thr Ile Ala Gly
             20
```

```
<210> 13
<211> 24
<212> PRT
<213> Drosophila melanoqaster
Ala Phe Trp Trp Ala Gly I\(\frac{1}{2}\)e Thr Met Thr Thr Val Gly Tyr Gly Asp
  1
                   5
                                       10
                                                            15
Ile Cys Pro Thr Thr Ala Leu Gly
             20
<210> 14
<211> 24
<212> PRT
<213> Drosophila melanogaster
<400> 14
Gly Leu Trp Trp Ala Leu Val Thr Met \Thr Thr Val Gly Tyr Gly Asp
                                       10
                                                            15
Met Ala Pro Lys Thr Tyr Ile Gly
             20
<210> 15
<211> 24
<212> PRT
<213> Drosophila melanogaster
<400> 15
Ala Leu Tyr Phe Thr Met Thr Cys Met Thr Ser Val Gly Phe Gly Asn
  1
                   5
                                       10
                                                            15
Val Ala Ala Glu Thr Asp Asn Glu
             20
<210> 16
<211> 24
<212> PRT
<213> Drosophila melanogaster
<400> 16
Cys Val Tyr Phe Leu Ile Val Thr Met Ser Thr Val Gly Tyr Gly Asp
                                       10
                                                            15
```

Val Tyr Cys Glu Thr Val Leu Gly 20 <210> 17 <211> 24 <212> PRT <213> Drosophila melanogaster <400> 17 Ser Leu Tyr Thr Ser Tyr Val thr Thr Thr Thr Ile Gly Phe Gly Asp 10 Tyr Val Pro Thr Phe Gly Ala Asn 20 <210> 18 <211> 24 <212> PRT <213> Drosophila melanogaster <400> 18 Ala Phe Phe Ala Phe Thr Val Cys Ser Thr Val Gly Tyr Gly Asn 5 15 1 10 Ile Ser Pro Thr Thr Phe Ala Gly 20 <210> 19 <211> 24 <212> PRT <213> Drosophila melanogaster <400> 19 Ser Ile Phe Phe Ala Val Thr Val Val Thr Thr Ile Gly Tyr Gly Asn 15 Pro Val Pro Val Thr Asn Thr Gly 20 <210> 20 <211> 24 <212> PRT <213> Drosophila melanogaster

<400> 20 Ser Leu Tyr Thr Ser Ty \uparrow Val Thr Thr Thr Ile Gly Phe Gly Asp 5 10 Tyr Val Pro Thr Phe Gly Ala Asn 20 <210> 21 <211> 24 <212> PRT <213> Drosophila melanogaster <400> 21 Ser Phe Tyr Trp Ser Phe Ile Thr\Met Thr Thr Val Gly Phe Gly Asp 15 1 5 10 Leu Met Pro Arg Arg Asp Gly Tyr 20 <210> 22 <211> 33 <212> DNA <213> Drosophila melanogaster <400> 22 ataaagctta aaaatgtcgc cgaatcgatg gat 33 <210> 23 <211> 30 <212> DNA <213> Drosophila melanogaster <400> 23 agctctagac ctccatctgg aagcccatgt 30 <210> 24 <211> 27 <212> DNA <213> Drosophila melanogaster <400> 24 27 aaaaagctta aaatggcaca catcacg

<210> 25	
<211> 24	
<212> DNA \	
<213> Drosophila melanogaster	
<400> 25	
aaactcgagt catacctgtg gact	24
<210> 26	
<211> 27	
<212> DNA \	
<213> Drosophila melanogaster \	
<400> 26	
aaaaagctta aaatggtcgg gcaattg \	27
\sim	
<210> 27	
<211> 25	
<212> DNA	
<213> Drosophila melanogaster	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
<400> 27	
aaaagcatgc tcatctggat gggca	25
<210> 28	
<211> 27	
<212> DNA	
<213> Drosophila melanogaster	
<400> 28	
aaaaagctta aaatggcctc ggtcgcc	27
<210> 29	
<211> 24	
<212> DNA	
<213> Drosophila melanogaster	
<400> 29	
ttttctagac tacatcgttg tctt	24
<210> 30	
<211> 27	
<212> DNA	

<213> Drosophila melandgaster	
<400> 30	
aaaaagetta aaatgaatet gateaac	27
(210) 21	
<210> 31 <211> 24	
<212> DNA	
<213> Drosophila melanogaster	
<400> 31	0.4
aaatctagat tagtcgaaac tgaa 🖊	24
<210> 32	
<211> 24	
<212> DNA	
<213> Drosophila melanogaster	
<400> 32	
aaaaagctta aaatgcctgg cgga	24
<210> 33	
<211> 24 <212> DNA	
<213> Drosophila melanogaster	
\	
<400> 33	
aaatctagag gctacaggaa gtcc	24
<210> 34	
<211> 27	
<212> DNA	
<213> Drosophila melanogaster	
<400> 34	
gggggtacca aaatgtcggg gtgtgat	27
<210> 35	
<211> 25	
<212> DNA	/
<213> Drosophila melanogaster	\
<400> 25	
<400> 35	\
13	1

```
<210> 36
<211> 1388
<212> DNA
<213> Caenorhabditis elegans
<400> 36
atggtaataa tcaaccgatc gaacctat gccgttgagc aggaagcatt tccaagagac 60
aagtacaata ttgtctactg gct &gtcatt cttgttggat tcggagttct tctgccatgg 120
aatatgttca ttactatcgc ccctqagtat tatgtgaatt attggttcaa accggatggc 180
gtggagacat ggtattcgaa agaattcatg ggatctttga cgattggctc acaacttcca 240
aacgcaagca ttaatgtttt caacctgttc ctcattattg ctggtcccct gatctaccgc 300
qtctttqctc cgqtttqctt caacatdqtc aacctgacaa tcattctcat cctcgtcatt 360
gttctggagc ccactgaaga ttccatgtc tggtttttct gggtaactct tggaatggcg 420
acttcaatca attttagcaa tgggctatatat gaaaactcgg tttatggagt tggtggcgat 480
tttccgcaca cctacattgg cgctctcttd attggaaaca acatttgcgg attgctgata 540
acggttgtga aaatcggagt gacctatttt tgaatgatg agcctaaact tgttgcaatc 600
gtctatttcg gcatatcgtt ggtgatcctt/ dt/ggtgtgtg caattgcact tttctttatc 660
acaaagcaag atttctacca ctatcaccat caaaaaggaa tggaaattcg cgaaaaggcg 720
gaaaccgaca gaccgtctcc atccattctt tggaccacat tcacaaactg ttatgggcaa 780
ctcttcaatq tttqqttctq ctttqccqtt actatcacaa tcttccctgt tatgatgacc 840
gttaccactc gtggagattc cggcttccta aacaaatta tgtctgaaaa cgatgaaatc 900
tacactttqc tcacaaqttt cctcqtcttc aatttqttcg ctgcgattgg atccatagtt 960
gcttccaaga ttcactggcc gacaccccgt tacctcaaat ttgccataat cttgcgtgct 1020
cttttcattc cattcttctt cttctgcaac tatcgtgtcc agacgcgtgc ttatcctgtt 1080
ttctttgagt ctactgacat ttttgtgatt ggtggaattg ccatgtcttt ttcacatgga 1140
tacctcagcg ctctggcaat gggatacact ccaaacgtcg tgccatctca ctactcaaga 1200
tttgccqctc agctttccqt ttgcactctt atggttggcc ttctcaccgg tggcctgtgg 1260
cccqttqtta ttqaqcactt cqtqqacaaq ccaagtatct \tataaatatt tatagcatta 1320
qaqtatactt qttatatqtt qtttttatta aqctqtqqaa daaaataatt attaaaaaaa 1380
                                                                  1388
aaaaaaaa
<210> 37
<211> 481
<212> PRT
<213> Drosophila melanogaster
<400> 37
Met Ser Pro Asn Arg Trp Ile Leu Leu Leu Ile Phe Tyr\Ile Ser Tyr
  1
                                     10
                                                         15
Leu Met Phe Gly Ala Ala Ile Tyr Tyr His Ile Glu His Gly Glu Glu
             20
                                 25
```

Lys Ile Ser Arg Ala Glu Gln Arg Lys Ala Gln Ile Ala Ile Asn Glu

		35			1.		40					43			
Tyr	Leu 50	Leu	Glu	Glu	Leu	Gly 55	Asp	Lys	Asn	Thr	Thr 60	Thr	Gln	Asp	Glu
 Ile 65	Leu	Gln	Arg	Ile	Ser 70	Asp	Tyr	Cys	Asp	Lys 75	Pro	Val	Thr	Leu	Pro 80
Pro	Thr	Tyr	Asp	Asp 85	Thr	Pro	Tyr	Thr	Trp 90	Thr	Phe	Tyr	His	Ala 95	Phe
Phe	Phe	Ala	Phe 100	Thr	Val	Cys	Set	Thr	Val	Gly	Tyr	Gly	Asn 110	Ile	Ser
Pro	Thr	Thr 115	Phe	Ala	Gly	Arg	Met 120	Ile	Met	Ile	Ala	Tyr 125	Ser	Val	Ile
Gly	Ile 130	Pro	Val	Asn	Gly	Ile 135	Leu	Phe	Ala	Gly	Leu 140	Gly	Glu	Tyr	Phe
Gly 145	Arg	Thr	Phe	Glu	Ala 150	Ile	Tyr	Arg	Arg	Tyr 155	Lys	Lys	Tyr	Lys	Met 160
Ser	Thr	Asp	Met	His 165	Tyr	Val	Pro	Pro	Gln 170	Leu	Gly	Leu	Ile	Thr 175	Thr
Val	Val	Ile	Ala 180	Leu	Ile	Pro	Gly	Ile 185	Ala	Leu	Phe	Leu	Val 190	Leu	Pro
Cys	Val	Gly 195	Val	His	Leu	Leu	Arg 200	Glu	Leu	Gly	Leu	Ser 205	Ser	Ile	Ser
Leu	Tyr 210	Tyr	Ser	Tyr	Val	Thr 215		Thr	Thr	Ile	Gly 220	1	Gly	Asp	Tyr
Val 225	Pro	Thr	Phe	Gly	Ala 230	Asn	Gln	Pro	Lys	Glu 235	Phe	Gly	Gly \	Trp	Phe 240
Val	Val	Tyr	Gln	Ile 245	Phe	Val	Ile	Val	Trp 250	Phe	Ile	Phe	\$er	Leu 255	Gly
Tyr	Leu	Val	Met 260	Ile	Met	Thr	Phe	Ile 265	Thr	Arg	Gly	Leu	Gln 270	Ser	Lys
Lys	Leu	Ala 275	Tyr	Leu	Glu	Gln	Gln 280	Leu	Ser	Ser	Asn	Leu 285	Lys	Ala	Thr
Gln	Asn	Arg	Ile	Trp	Ser	Gly	Val	Thr	Lys	Asp	Val	Gly	Tyr	Leµ	Arg

Arg Met Leu Asn Glu Leu Tyr Ile Leu Lys Val Lys Pro Val Tyr Thr \$10 Asp Val Asp Ile Ala Tyr Thr Leu Pro Arg Ser Asn Ser Cys Pro Asp Leu Ser Met Tyr Arg Val Glu Pro Ala Pro Ile Pro Ser Arg Lys Arg Ala Phe Ser Val Cys Ala Asp Met Val Gly Ala Gln Arg Glu Ala Gly Met Val His Ala Asn Ser Asp Thr Asp Leu Thr Lys Leu Asp Arg Glu Lys Thr Phe Glu Thr Ala Glu Ata Tyr His Gln Thr Thr Asp Leu Leu Ala Lys Val Val Asn Ala Leu Ala Thr Val Lys Pro Pro Pro Ala Glu ****410 Gln Glu Asp Ala Ala Leu Tyr Gly Gly Tyr His Gly Phe Ser Asp Ser Gln Ile Leu Ala Ser Glu Trp Ser Phe Ser Thr Val Asn Glu Phe Thr Ser Pro Arg Arg Pro Arg Ala Arg Ala Cys Ser Asp Phe Asn Leu Glu Ala Pro Arg Trp Gln Ser Glu Arg Pro Leu Arg Ser Ser His Asn Glu

<210> 38

Trp

<211> 337

<212> PRT

<213> Caenorhabditis elegans

<400> 38

Met Ser Asp Gln Leu Phe Val Ala Phe Glu Lys Tyr Phe Leu Thr Ser 1 5 10 15

Asn Glu Val Lys Lys Asn Ala Ala Thr Glu Thr Trp Thr Phe Ser Ser Ser Ile Phe Phe Ala\Val Thr Val Val Thr Thr Ile Gly Tyr Gly Asn 40 ______45____ Pro Val Pro Val Thr Aan Ile Gly Arg Ile Trp Cys Ile Leu Phe Ser Leu Leu Gly Ile Pro Leu Thr Leu Val Thr Ile Ala Cys Leu Ala Gly Lys Phe Leu Ser Glu His Led Val Trp Leu Tyr Gly Asn Tyr Leu Lys Leu Lys Tyr Leu Ile Leu Ser Arg His Arg Lys Glu Arg Arg Glu His Val Cys Glu His Cys His Ser His Cly Met Gly His Asp Met Asn Ile 120\. Glu Glu Lys Arg Ile Pro Ala Phe Leu Val Leu Ala Ile Leu Ile Val Tyr Thr Ala Phe Gly Gly Val Leu Met Ser Lys Leu Glu Pro Trp Ser ****155 Phe Phe Thr Ser Phe Tyr Trp Ser Phe Ile Thr Met Thr Thr Val Gly Phe Gly Asp Leu Met Pro Arg Arg Asp Gly Tyr Met Tyr Ile Ile Leu Leu Tyr Ile Ile Leu Gly Lys Phe Ser Met Lys Lys Lys Gln Lys Phe Lys Ile Phe Leu Gly Leu Ala Ile Thr Thr Met Cys Lile Asp Leu Val Gly Val Gln Tyr Ile Arg Lys Ile His Tyr Phe Gly Arg Lys Ile Gln

Asp Ala Arg Ser Ala Leu Ala Val Val Gly Lys Val Val Leu Val

Ser Glu Leu Tyr Ala Asn Leu Met Gln Lys Arg Ala Arg Asn Met Ser

Arg Glu Ala Phe Ile Val Glu Asn Leu Tyr Val Ser Lys His Ile Ile 275 280 285
Pro Phe Ile Pro Thr Asp Ile Arg Cys Ile Arg Tyr Ile Asp Gln Thr 290 295 300
Ala Asp Ala Ala Thr Ile Ser Thr Ser Ser Ala Ile Asp Met Gln 305 310 315 320
Ser Cys Arg Phe Cys His Ser Arg Tyr Ser Leu Asn Arg Ala Phe Lys 325 330 335
Xaa
<210> 39
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: degenerate
primer based on human potassium channels
<400> 39
tnggatwygg wgaywy 16
<210> 40
<211> 18
<212> DNA
<213> Artificial Sequence
1
<220>
<223> Description of Artificial Sequence: degenerate
<223> Description of Artificial Sequence: degenerate
<223> Description of Artificial Sequence: degenerate sequence based on human potassium ion channels
<223> Description of Artificial Sequence: degenerate sequence based on human potassium ion channels
<223> Description of Artificial Sequence: degenerate sequence based on human potassium ion channels <400> 40 rtcwccrwah ccdaydgt 18
<223> Description of Artificial Sequence: degenerate sequence based on human potassium ion channels <400> 40 rtcwccrwah ccdaydgt 18 <210> 41
<pre><223> Description of Artificial Sequence: degenerate sequence based on human potassium ion channels <400> 40 rtcwccrwah ccdaydgt 18 <210> 41 <211> 28</pre>
<pre><223> Description of Artificial Sequence: degenerate</pre>
<pre><223> Description of Artificial Sequence: degenerate sequence based on human potassium ion channels <400> 40 rtcwccrwah ccdaydgt 18 <210> 41 <211> 28</pre>

cgcaggcaga gccacaaga gtacacag	28
<210> 42	
<211> 26	
<212> DNA \	
<213> Homo sapiens	
<400> 42	
ggagatcagc taggcaccat atttgg	26
35.55.55.55.55.55	
<210> 43	
<211> 26	
<212> DNA <213> Homo sapiens	
V2137 HOMO Sapiens	
<400> 43	
atgctgcatg cctcatgctt cccagc	26
<210> 44	
<211> 20 \ <212> DNA	
<213> Homo sapiens	
<400> 44	
ggttatttaa agagagggct \	20
<210> 45	
<211> 426	
<212> PRT	
<213> Homo sapiens	
<400> 45	
Met Leu Pro Ser Ala Ser Arg Glu Arg Pro Gly Tyr Arg Ala Gly Val 1 5 10 15	
Ala Ala Pro Asp Leu Leu Asp Pro Lys Ser Ala Ala Gln Asn Ser Lys	
20 25 \30	
Pro Arg Leu Ser Phe Ser Thr Lys Pro Thr Val Leu Ala Ser Arg Val	
35 40 45 \	
Glu Ser Asp Thr Thr Ile Asn Val Met Lys Trp Lys Thr Val Ser Thr	
50 55 60	

Ile Phe Leu Val Val Val Leu Tyr Leu Ile Ile Gly Ala Thr Val Phe
65 75 80

Lys Ala Leu Glu Gln Pro His Glu Ile Ser Gln Arg Thr Thr Ile Val

____85_______95_____

Ile Gln Lys Gln Thr Phe Ile Ser Gln His Ser Cys Val Asn Ser Thr
100 105 110

Glu Leu Asp Glu Leu Ile Gln Gln Ile Val Ala Ala Ile Asn Ala Gly
115 120 125

Ile Ile Pro Leu Gly Asn Thr Set Asn Gln Ile Ser His Trp Asp Leu 130 135 140

Gly Ser Ser Phe Phe Phe Ala Gly Thr Val Ile Thr Thr Ile Gly Phe 145 150 155 160

Gly Asn Ile Ser Pro Arg Thr Glu Gly Gly Lys Ile Phe Cys Ile Ile 165 170 175

Tyr Ala Leu Leu Gly Ile Pro Leu Phe Gly Phe Leu Leu Ala Gly Val 180 185 190

Gly Asp Gln Leu Gly Thr Ile Phe Gly Lys\Gly Ile Ala Lys Val Glu
195 200 205

Asp Thr Phe Ile Lys Trp Asn Val Ser Gln Thr Lys Ile Arg Ile Ile 210. 215 220

Ser Thr Ile Ile Phe Ile Leu Phe Gly Cys Val Leu Phe Val Ala Leu 225 230 235 235

Pro Ala Ile Ile Phe Lys His Ile Glu Gly Trp Set Ala Leu Asp Ala 245 250 255

Ile Tyr Phe Val Val Ile Thr Leu Thr Thr Ile Gly Phe Gly Asp Tyr
260 265 270

Val Ala Gly Gly Ser Asp Ile Glu Tyr Leu Asp Phe Tyr Lys Pro Val 275 280 285

Val Trp Phe Trp Ile Leu Val Gly Leu Ala Tyr Phe Ala Ala Val Leu 290 295 300

Ser Met Ile Gly Arg Leu Val Arg Val Ile Ser Lys Lys Thr Lys Glu
305 310 315 320

Glu Val Gly Glu Phe Arg Ala His Ala Ala Glu Trp Thr Ala Asn Val 325 330 335 Thr Ala Glu Phe Lys Alu Thr Arg Arg Leu Ser Val Glu Ile Tyr 345 340 _3,5,0__ Asp Lys Phe Gln Arg Ala Thr Ser Ile Lys Arg Lys Leu Ser Ala Glu 355 360 365 Leu Ala Gly Asn His Asn Gl\(\hat{\chi}\) Glu Leu Thr Pro Cys Arg Arg Thr Leu 370 375 380 Ser Val Asn His Leu Thr Ser Glu Arg Asp Val Leu Pro Pro Leu Leu 400 385 390 395 Lys Thr Glu Ser Ile Tyr Leu Asn Gly Leu Ala Pro His Cys Ala Gly 405 410 Glu Glu Ile Ala Val Ile Glu Asn Ile' 420 <210> 46 <211> 2130 <212> DNA <213> Homo sapiens <400> 46 ccatcctaat acgactcact atagggctcg agcgnccgcc &gggcagtaa aatgcctgcc 60 cqtqcaqctc qqaqcqcqca qcccqtctct qaataagaag t\gagtacaat ggcgtgtttg 120 taaaaaaaag cttcaagtcc gtctttttca aaaaacattt toaatgctgc atgcctcatg 180 cttcccaqcq cctcqcqqqa qaqacccqqc tataqaqcaq gadtgqcqqc acctgacttg 240 ctggatecta aatetgeege teagaactee aaacegagge teteattte caegaaacee 300 acagtgcttg cttcccgggt ggagagtgac acgaccatta atgttatgaa atggaagacg 360 gtctccacga tattcctggt ggttgtcctc tatctgatca tcgga\gccac cgtgttcaaa 420 qcattqqaqc aqcctcatqa qatttcacag aggaccacca ttgtgatcca gaagcaaaca 480 ttcatatccc aacattcctg tgtcaattcg acggagetgg atgaactcat tcagcaaata 540 qtqqcaqcaa taaatqcaqq qattataccq ttaqqaaaca cctccaatca aatcagtcac 600 tgggatttgg gaagtteett ettetttget ggeactgtta ttacaaccat aggatttgga 660 aacatctcac cacqcacaqa aqqcqqcaaa atattctqta tcatctatqc cttactqqqa 720 attoccotot tiggittitot ottggotgga gittggagato agotaggoac catatitigga 780 aaaggaattg ccaaagtgga agatacgttt attaagtgga atgttagtca\gaccaagatt 840 cgcatcatct caacaatcat atttatacta tttggctgtg tactctttgt \ggctctgcct 900 gcgatcatat tcaaacacat agaaggctgg agtgccctgg acgccattta tttttgtggtt 960 atcactctaa caactattgg atttggtgac tacgttgcag gtggatccga tattgaatat 1020 ctggacttct ataagcctgt cgtgtggttc tggatccttg tagggcttgc tagtttgct 1080 gctgtcctga qcatgattgg gagattggtc cgagtgatat ctaaaaaagac aaaaagaag 1140 gtgggagagt tcagagcaca cgctgctgag tggacagcca acgtcacagc cgaattcaaa 1200

	1					
gaaaccagga	ggcgactgag	tgtggagatt	tatgacaagt	tccagcgggc	cacctccatc	1260
aagcggaagc	tctcggcaga	actggctgga	aaccacaatc	aggagctgac	tccttgtagg	1320
aggaccctgt	cagtgaacca	ctgaccagc	gagagggatg	tcttgcctcc	cttactgaag	1380
actgagagta	tctatctgaa	t\ggtttggcg	ccacactgtg	ctggtgaaga	gattgctgtg	1440
attgagaaca	tcaaatagcc	ctctcttaa	<u>ataaccttag</u>	_gcatagccat_	aggtgaggac	1500
 ttctctatgc	tctttatgac	tgttgctggt	agcattttt	aaattgtgca	tgagctcaaa	1560
gggggaacaa	aatagataca	cccatcatgg	tcatctatca	tcaagagaat	ttggaattct	1620
gagccagcac	tttctttctg	atgatgcttg	ttgaacggcc	cactttcttt	gatgagtgga	1680
atgacaagca	atgtctgatg	cctttgtgtg	cccagactgt	tttcctctct	ctttccctaa	1740
tgtgccataa	ggcctcagaa	tgaattgaga	attgtttctg	gtaacaatgt	agctttgagg	1800
gatcagttct	taacttttca	gggtctact	aactgagcct	agatatggac	catttatgga	1860
tgacaacaat	ttttttttg	taaatgacaa	gaaattctta	tgcagccttt	tacctaagaa	1920
atttctgtca	gtgccttatc	ttatgaagaa	acagaacctc	tctagctaat	gtgtggtttc	1980
tccttccctg	ccccacccc	taggctcacc	tctgcagtct	tttaccccag	ttctcccatt	2040
tgaataccat	accttgntgg	aaacagngto	taaaatgact	gaagtgatga	tgccgaagat	2100
gaaatagatg	ncaaattagn	tggacattga	\			2130
<210> 47			\			
<211> 27			N			
<212> DNA			1) ()			
<213> Homo	sapiens					
<400> 47			\			
aaaagatcta	aaatgcttcc	cagcgcc	\			27
			\			
			\			
<210> 48				\		•
<211> 27						
<212> DNA						
<213> Homo	sapiens					
<400> 48				\		
aaagtcgacc	tatttgatgt	tctcaat		\		27
				\		
.010: 40				\		
<210> 49				\		
<211> 27				\		
<212> DNA				\		
<213> Homo	sapiens			\		
<100> 10				\		
<400> 49		000000		'	\	27
aaaaagctta	aaatgcttcc	cagegee			\	Z 1
					\	
Z210> E0					\	
<210> 50					\	
<211> 27					\	
<212> DNA					\	
					1	

<210> 53

```
<211> 1055
<212> DNA
<213> Mus musculus
<400> 53
ctgaaaccat gggcccgata cctgctcctg cttatggccc acctgctggc catgggcctt 60
ggggctgtgg tgcttcaggc cctggagggc cctccagctc gccacctcca ggcccaggtc 120
caggctgaac tggctagctt ccaggcagag cacagggcct gcttgccacc tgaggccctg 180
gaggagetge taggtgeggt\cetgagagea caggeecatg gagtttecag cetgggeaac 240
ageteanaga caageaactg agatetgeee teagetetge tgtteactge cageateete 300
accaccaccg gttatggcca catggcccca ctctcctcag gtggaaaggc cttctgtgtg 360
gtctatgcag cccttgggct gcagcctct ctagcacttg tggctgccct gcgccactgc 420
ttgctgcctg tgttcagtcg cccagtgac tgggtagcca ttcgctggca gctggcacca 480
gctcaggctg ctctgctaca ggcagcagga ctgggcctcc tggtggcctg tgtcttcatg 540
ctgctgccag cactggtgct gtggggtgta cagggtgact ggcagcctgc tanaaccatc 600
tacttctgtt tcggctcact cagcacgatc ggcctaggag acttgctgcc tgcccatgga 660
cgtggcctgc acccagccat ttaccacctt gggcagtttg cacttcttgg ttacttgctc 720
ctggggctcc tggccatgtt gttagcagta pagaccttct cagagctgcc tcaggtccgt 780
gccatggtga aattetttgg gcccagtgge tatagaaccg atgaagatca agatggcate 840
ctaggccaag atgagctggc tctgagcact gtgctgcctg acgccccagt cttgggacca 900
accaccccag cctgagcggg aggcaccaag galgtgcttga agaacatagc angaagggtt 960
atgggaatga atatgtcatg ggataatgtt aatttaaaa attaaatggg ctgcttagca 1020
                                                                   1055
tgcaaaaaaa aaaaaaaaaa aaaaaaaaaa aaada
<210> 54
<211> 178
<212> PRT
<213> Homo sapiens
<400> 54
Asn Lys Asn Leu Phe Cys Phe Glu Trp Pro Arg 🖫 Gly Lys Gly Ser
                                                          15
  1
Pro Asp Gln Glu Glu Gln Ser Gln Leu Glu Pro Gly Pro Gly Gln Phe
             20
                                 25
                                                      30
Lys Ala Thr Arg Gly Gln Pro Ser Ala Glu Gly Ser I\text{le Gly Val Gly}
         35
                             40
Arg Asp Pro Ser Arg His Gly Thr Gln Ser Ser His Cys\Pro Leu Thr
     50
                         55
                                             60
Leu Ser Ser Pro Gly Tyr Gly His Met Ala Pro Leu Ser Pto Gly Gly
 65
                     70
                                         75
                                                              80
Lys Ala Phe Cys Met Val Leu Xaa Ala Leu Gly Leu Pro Ala\Ser Leu
                                     90
                                                          95
                 85
```

Ala Leu Val Ala Thr Leu Arg His Cys Leu Leu Pro Val Leu Ser Arg Pro Arg Ala Trp Val\Ala Val His Trp Gln Leu Ser Pro Ala Arg-Ala Ala Leu Leu Gln Ala Val Ala Leu Gly Leu Leu Val Ala Ser Ser Phe Val Leu Leu Pro Ala Leu\Val Leu Trp Gly Leu Gln Gly Asp Cys Ser Leu Leu Gly Ala Val Tyr Phe Cys Phe Ser Ser Leu Ser Thr Ile Gly Leu Gly <210> 55 <211> 312 <212> PRT <213> Mus musculus <400> 55 Gly Ile Trp Pro Ser Arg Pro Arg Ile Ard His Glu Glu Asn Val Arg Thr Leu Ala Leu Ile Val Cys Thr Phe Thr Tyr Leu Leu Val Gly Ala Ala Val Phe Asp Ala Leu Glu Ser Glu Pro Glu\Met Ile Glu Arg Gln Arg Leu Glu Leu Arg Gln Leu Glu Leu Arg Ala Arg Tyr Asn Leu Ser Glu Gly Gly Tyr Glu Glu Leu Glu Arg Val Val Leu Arg Leu Lys Pro His Lys Ala Gly Val Gln Trp Arg Phe Ala Gly Ser Phe Tyr Phe Ala Ile Thr Val Ile Thr Thr Ile Gly Tyr Gly His Ala Ala Pro Ser Thr Asp Gly Gly Lys Val Phe Cys Met Phe Cys Met Phe Tyr Ala Leu Leu

115 120 125 Gly Ile Pro Leu Thr Leu Val Met Phe Gln Ser Leu Gly Glu Arg Ile 135 130 140 Asn Thr Ser Val Arg Tyr Leu His Arg Ala Lys Arg Gly Leu Gly 145 150 155 Met Arg His Ala Glu Val Ser Met Ala Asn Met Val Leu Ile Gly Phe 165 170 Val Ser Cys Ile Ser Thr Leu Cys \tag{le Gly Ala Ala Ala Phe Ser Tyr 185 180 Tyr Glu Arg Trp Thr Phe Phe Gln Ala\Tyr Tyr Tyr Cys Phe Ile Thr 195 200 205 Leu Thr Thr Ile Gly Phe Gly Asp Tyr Vall Ala Leu Gln Lys Asp Gln 220 210 215 Ala Leu Gln Thr Gln Pro Gln Tyr Val Ala Ser Ala Ser Cys Thr Ser 225 230 240 Ser Arg Ala His Gly His Arg Arg Phe Leu Asn\Leu Val Val Leu Arg

Phe Met Thr Met Asn Ala Glu Asp Glu Lys Arg Asp Ala Glu His Arg

250

255

Ala Leu Leu Thr His Asn Gly Gln Ala Val Gly Leu Gly Gly Leu Ser 275 280 285

Cys Leu Ser Gly Ser Leu Gly Asp Gly Val Arg Pro Arg Asp Pro Val 290 295 300

Thr Cys Ala Ala Ala Ala Ser Leu 305 310

245

<210> 56

<211> 304

<212> PRT

<213> Mus musculus

<400> 56

Leu Lys Pro Trp Ala Arg Tyr Leu Leu Leu Met Ala His Leu Leu 1 5 10 15

Ala	Met	Gly	Leu 20	Gly	Ala	Val	Val	Leu 25	Gln	Ala	Leu	Glu	Gly 30	Pro	Pro
Ala	Arg	His 35	Leu	Gln	Ala	Gln	Val _4 <u>0</u>				Leu		Ser	Phe	Gln
Ala	Glu 50	His	Arg	Ala	Cys	Leu 55	Pro	Pro	Glu	Ala	Leu 60	Glu	Glu	Leu	Leu
Gly 65	Ala	Val	Leu	Arg	Ala 70	Gln	Ala	His	Gly	Val 75	Ser	Ser	Leu	Gly	Asn 80
Ser	Ser	Xaa	Thr	Ser 85	Asn	Trp	Asp	Leu	Pro 90	Ser	Ala	Leu	Leu	Phe 95	Thr
Ala	Ser	Ile	Leu 100	Thr	Thr	Thr	Gly	Tyr	Gly	His	Met	Ala	Pro 110	Leu	Ser
Ser	Gly	Gly 115	Lys	Ala	Phe	Суз	Val 120	Val	ТУ	pla	Ala	Leu 125	Gly	Leu	Pro
Ala	Ser 130	Leu	Ala	Leu	Val	Ala 135	Ala	Leu	Arg	His	Cys 140	Leu	Leu	Pro	Val
Phe 145	Ser	Arg	Pro	Gly	Asp 150	Trp	Val	Ala	Ile	Arg	Trp	Gln	Leu	Ala	Pro 160
Ala	Gln	Ala	Ala	Leu 165	Leu	Gln	Ala	Ala	Gly 170	Leu	Gly	Leu	Leu	Val 175	Ala
Cys	Val	Phe	Met 180	Leu	Leu	Pro	Ala	Leu 185	Val	Leu	Trp	Gly	Val 190	Gln	Gly
Asp	Trp	Gln 195	Pro	Ala	Xaa	Thr	Ile 200	Tyr	Phe	Cys	Phe	Gly 205	Ser	Leu	Ser
Thr	Ile 210	Gly	Leu	Gly	Asp	Leu 215	Leu	Pro	Ala	His	Gly 220	Arg	Gly	Leu	His
Pro 225	Ala	Ile	Tyr	His	Leu 230	Gly	Gln	Phe	Ala	Leu 235	Leu	Gly	Tyr	Leu	Leu 240
Leu	Gly	Leu	Leu	Ala 245	Met	Leu	Leu	Ala	Val 250	Glu	Thr	Phe	Ser	Glu 255	Leu
Pro	Gln	Val	Arg 260	Ala	Met	Val	Lys	Phe 265	Phe	Gly	Pro	Ser	G1 270	Ser	Arg

```
Thr Asp Glu Asp Gln Asp Gly Ile Leu Gly Gln Asp Glu Leu Ala Leu
        275
                             280
Ser Thr Val Leu Pro Asp Ala Pro Val Leu Gly Pro Thr Thr Pro Ala
    290
                                    _ _ _ _ _ _300 ____
<210> 57
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<221> VARIANT
<222> (1)..(9)
<223> X at positions 1, 4, and 5 is T or S; X at
      position 6 is I or V; X at positions 2, 3, and 8
      is Y, F, V, I, M, or L
<220>
<223> Description of Artificial Sequence: pore-forming
      region of potassium channel
<400> 57
Xaa Xaa Xaa Xaa Xaa Gly Xaa Gly
  1
<210> 58
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<221> VARIANT
<222> (1)
<223> X at position 1 is Y or F; X at position 2 \( \frac{1}{2} \)s A,
      S, or G; X at positions 3, 4, 6, and 8 are M, I,
      V, L, F, or Y.
<220>
<223> Description of Artificial Sequence: potassium\ion
      channel sequence
<400> 58
```

```
Xaa Xaa Xaa Gly Xaa Pro Xaa
  1
<210> 59
<211> 7
<212> PRT
<213> Artificial Sequende
<220>
<223> Description of Artificial Sequence: potassium ion
      channel sequence
<400> 59
Tyr Ala Leu Leu Gly Ile Pro
<210> 60
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<221> VARIANT
<222> (6)
<223> X at position 6 is M, I, V, L, F, or Y.
<220>
                                           potassium ion
<223> Description of Artificial Sequence:
      channel sequence
<400> 60
Tyr Ala Leu Leu Gly Xaa Pro
 1
<210> 61
<211> 178
<212> PRT
<213> Homo sapiens
<400> 61
Asn Lys Asn Leu Phe Cys Phe Glu Trp Pro Arg Glu Gly Lys Gly Ser
  1
                  5
                                      10
                                                          15
Pro Asp Glu Gln Glu Gln Ser Gln Leu Glu Pro Gly Pro Gly Gln Phe
             20
                                  25
```

Lys Ala Thr Arg Gly Gln Pro Ser Ala Glu Gly Ser Ile Gly Val Gly 35 40 Arg Asp Pro Ser Arg Ais Gly Thr Gln Ser Ser His Cys Pro Leu Thr ----55 60 Leu Ser Ser Pro Gly Tyr\Gly His Met Ala Pro Leu Ser Pro Gly Gly 65 70 75 Lys Ala Phe Cys Met Val Let Xaa Ala Leu Gly Leu Pro Ala Ser Leu 90 Ala Leu Val Ala Thr Leu Arg His Cys Leu Leu Pro Val Leu Ser Arg 100 105 Pro Arg Ala Trp Val Ala Val His Trp Gln Leu Ser Pro Ala Arg Ala 115 120 125 Ala Leu Leu Gln Ala Val Ala Leu Gly Veu Leu Val Ala Ser Ser Phe 130 135 Val Leu Leu Pro Ala Leu Val Leu Trp Gl \(\) Leu Gln Gly Asp Cys Ser 150 Leu Leu Gly Ala Val Tyr Phe Cys Phe Ser S\er Leu Ser Thr Ile Gly Leu Glu <210> 62 <211> 309 <212> PRT <213> Mus musculus <400> 62 Gly Ile Trp Pro Ser Arg Pro Arg Ile Arg His Glu Glu Asn Val Arg 10 Thr Leu Ala Leu Ile Val Cys Thr Phe Thr Tyr Leu Leu Val Gly Ala 20 25 Ala Val Phe Asp Ala Leu Glu Ser Glu Pro Glu Met Ile Glų Arg Gln 35 40 45

Arg Leu Glu Leu Arg Gln Leu Glu Leu Arg Ala Arg Tyr Asn Leu Ser

	50			\		55					60				
Glu 65	Gly	Gly	Tyr	Gl	Glu 70	Leu	Glu	Arg	Val	Val 75	Leu	Arg	Leu	Lys	Pro 80
His	Lys	Ala	Gly	Val 85	Gln	Trp	Arg	Phe	Ala 90	Gly	Ser	Phe	Tyr	Phe 95	Ala
Ile	Thr	Val	Ile 100	Thr	Thr	Ile	Gly	Tyr 105	Gly	His	Ala	Ala	Pro 110	Ser	Thr
Asp	Gly	Gly 115	Lys	Val	Phe	Cys	Met 120	Phe	Tyr	Ala	Leu	Leu 125	Gly	Ile	Pro
Leu	Thr 130	Leu	Val	Met	Phe	Gln 135	Ser	Leu	Gly	Glu	Arg 140	Ile	Asn	Thr	Ser
Val 145	Arg	Tyr	Leu	Leu	His 150	Arg	Ala	Ys S	Arg	Gly 155	Leu	Gly	Met	Arg	His 160
Ala	Glu	Val	Ser	Met 165	Ala	Asn	Met	Val	Leu 170	Ile	Gly	Phe	Val	Ser 175	Cys
Ile	Ser	Thr	Leu 180	Cys	Ile	Gly	Ala	Ala 185	Ala	Phe	Ser	Tyr	Tyr 190	Glu	Arg
Trp	Thr	Phe 195	Phe	Gln	Ala	Tyr	Tyr 200	Tyr	Cys	Phe	Ile	Thr 205	Leu	Thr	Thr
Ile	Gly 210	Phe	Gly	Asp	Tyr	Val 215	Ala	Leu	Gln	Lys	Asp \220	Gln	Ala	Leu	Gln
Thr 225	Gln	Pro	Gln	Tyr	Val 230	Ala	Ser	Ala	Ser	Cys 235	T'nr	Ser	Ser	Arg	Ala 240
His	Gly	His	Arg	Arg 245	Phe	Leu	Asn	Leu	Val 250	Val	Leu	Arg	Phe	Met 255	Thr
Met	Asn	Ala	Glu 260	Asp	Glu	Lys	Arg	Asp 265	Ala	Glu	His	Arg	Ala 270	Leu	Leu
Thr	His	Asn 275	Gly	Gln	Ala	Val	Gly 280	Leu	Gly	Gly	Leu	Ser 285	Çys	Leu	Ser
Gly	Ser 290	Leu	Gly	Asp	Gly	Val 295	Arg	Pro	Arg	Asp	Pro 300	Val	Thr	Cys \	Ala
Ala	Ala	Ala	Ser	Leu											

<210> 63 <211> 434 <212> PRT <213> Caenorhabditis\elegans <400> 63 Met Val Ile Ile Asn Arg Ser Asn Thr Tyr Ala Val Glu Gln Glu Ala 5 10 15 Phe Pro Arg Asp Lys Tyr Asn\Tle Val Tyr Trp Leu Val Ile Leu Val 20 25 Gly Phe Gly Val Leu Leu Pro Tro Asn Met Phe Ile Thr Ile Ala Pro 35 Glu Tyr Tyr Val Asn Tyr Trp Phe Lys Pro Asp Gly Val Glu Thr Trp 55 60 Tyr Ser Lys Glu Phe Met Gly Ser Leu Thr Ile Gly Ser Gln Leu Pro 70 65 75 Asn Ala Ser Ile Asn Val Phe Asn Leu Phe Leu Ile Ile Ala Gly Pro 85 Leu Ile Tyr Arg Val Phe Ala Pro Val Cys Phe Asn Ile Val Asn Leu 100 105 110 Thr Ile Ile Leu Ile Leu Val Ile Val Leu Glu Pro Thr Glu Asp Ser 115 120 125 Met Ser Trp Phe Phe Trp Val Thr Leu Gly Met Ala Thr Ser Ile Asn 135 Phe Ser Asn Gly Leu Tyr Glu Asn Ser Val Tyr Gly Val Gly Gly Asp 150 155 Phe Pro His Thr Tyr Ile Gly Ala Leu Leu Ile Gly Asn Asn Ile Cys 165 170

180 185 190

Gly Leu Leu Ile Thr Val Val Lys Ile Gly Val Thr Tyk Phe Leu Asn

Asp Glu Pro Lys Leu Val Ala Ile Val Tyr Phe Gly Ile Ser Leu Val
195 200 205

Ile Leu Leu Val Cys Ala Ile Ala Leu Phe Phe Ile Thr Lys Gln Asp Phe Tyr His Tyr His His Gln Lys Gly Met Glu Ile Arg Glu Lys Ala _____235_______240-Glu Thr Asp Arg Pro Ser Pro Ser Ile Leu Trp Thr Thr Phe Thr Asn Cys Tyr Gly Gln Leu Phe Asn Val Trp Phe Cys Phe Ala Val Thr Leu Thr Ile Phe Pro Val Met Met Thr\Val Thr Thr Arg Gly Asp Ser Gly Phe Leu Asn Lys Ile Met Ser Glu Ash Asp Glu Ile Tyr Thr Leu Leu Thr Ser Phe Leu Val Phe Asn Leu Phe Ala Ile Gly Ser Ile Val Ala Ser Lys Ile His Trp Pro Thr Pro Ard Tyr Leu Lys Phe Ala Ile .325 · Ile Leu Arg Ala Leu Phe Ile Pro Phe Phe Phe Cys Asn Tyr Arg Val Gln Thr Arg Ala Tyr Pro Val Phe Phe Glu Ser Thr Asp Ile Phe Val Ile Gly Gly Ile Ala Met Ser Phe Ser His Gly Tyr Leu Ser Ala Leu Ala Met Gly Tyr Thr Pro Asn Val Val Pro Ser His Tyr Ser Arg Phe Ala Ala Gln Leu Ser Val Cys Thr Leu Met Val Gly Leu Leu Thr Gly Gly Leu Trp Pro Val Val Ile Glu His Phe Val Asp Lys Pro Ser Ile Leu

<210> 64 <211> 7

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: potassium ion
     channel sequence
<220>
<221> VARIANT
<222> ()..)
<223> X at position 1 is Y or F; X at postion 2 is A, S,
      or G; X at positions 3, \{\psi}, and 6 are M, I, V, L,
      F, or Y.
<400> 64
Xaa Xaa Xaa Gly Xaa Pro
                 5
```