

Departamento de Lenguajes y Sistemas Informáticos E.T.S. de Ingeniería Informática Universidad de Granada

Profesores:

José Luis Garrido Bullejos Manuel Noguera García (teoría) Carlos Rodríguez Domínguez (prácticas)

Temario de Teoría

1. Introducción a los Sistemas Distribuidos

Conceptos. Características y objetivos. Paradigmas de aplicaciones distribuidas. Un modelo de referencia de computación distribuida.

2. Comunicación y Sincronización en Sistemas Distribuidos Sistemas de paso de mensajes. Comunicación Cliente/Servidor. Citas.

3. Coordinación

Tiempo lógico. Relojes lógicos. Algoritmos distribuidos de coordinación.

4. Middlewares

Comunicación en middlewares. Clasificación y tipos de middlewares. Middlewares básicos (RPC de Sun y RMI de Java).

5. Sistemas Cliente/Servidor

Modelos Cliente/Servidor de n-etapas y configuraciones. Modelos Peer-to-Peer. Modelos funcional y de comportamiento. Diseño.C omputación Móvil y Cloud

6. Aplicaciones distribuidas y cliente/servidor

Arquitectura y metodología de desarrollo. Replicación. Otros *middlewares* avanzados (*CORBA*, *SOA* y Espacios de Tuplas). Sistemas abiertos.

Temario de Prácticas

- Diseño e implementación de sistemas y aplicaciones distribuidas Cliente/Servidor y P2P con diferentes soportes:
 - Llamadas a Sistemas Operativos.
 - Herramientas de programación: RPC de SUN.
 - Lenguaje de programación: RMI de Java.
 - Servicios web y dispositivos móviles.
 - Publish-Subscribe

Evaluación

- Evaluación continua: control por tema y/o entrega de ejercicios de problemas planteados
- **Examen final**: 5/6 preguntas cortas y/o ejercicios de problemas.
- Calificación: 40% Teoría + 10% Portafolio (clase) +
 50% Prácticas. Se aprueba superando al menos el 50% de cada parte.
- Prerrequisitos Recomendados: Sistemas Operativos I

Bibliografía

- Coulouris, G.F. et al: Distribuited Systems Concepts and Design.
 (4/e) Addison-Wesley, 2005.
- 2. Liu M.L.: *Distributed Computing Concepts and Applications*. Addison-Wesley, 2003.
- 3. Bacon, J.: Concurrent Systems: An Integrated Approach to Operating Systems, Distributed Systems and Databases (Open University Edition). Addison-Wesley, 2002.
- 4. Andrews, G.A.: Concurrent Programming Principles and Practice.
 The Benjamin/Cummings Publishing Company, 1991.
- 5. Orfali, R.: Client/Server Programming with Java and CORBA. Wiley & Sons, 1996.

Profesor	Horario	Lugar
Manuel Noguera	M: 10 – 13h X: 10 – 13h	Despacho 22, 3ª planta (<i>ETSIIT</i>)
José Luis Garrido	X: 10 – 14h	Despacho 12, 3ª planta (<i>ETSIIT</i>)
Carlos Rodríguez	L: 11 – 14h J: 11 – 14h	Despacho 1-I15, 1 ^a planta (<i>CITIC</i>)

- (confirmar por email)
 - Consultar Webs:
 - http://lsi.ugr.es/lsi/mnoguera; http://www.ugr.es/~mnoguera
 - http://lsi.ugr.es/~jlgarrid
 - http://lsi.ugr.es/lsi/crodriguez; http://www.ugr.es/~carlosrodriguez

Desarrollo de Sistemas Distribuidos

Tema 1 Introducción a los Sistema Distribuidos

Contenidos

- 1. Disciplinas relacionadas
- 2. Clasificación y definición
- 3. Características y objetivos
- 4. Paradigmas de aplicaciones distribuidas
- 5. Modelos de referencia

Disciplinas relacionadas

Clasificación Sistemas Distribuidos - Hardware

Modelos de Programación Concurrente - Software

Memoria Distribuida

Modelo Genérico para tipos de Sistemas Distribuidos Hw & Sw (Adaptación del Modelo de Enslow)

Definición de Sistema Distribuido

Conjunto de computadoras autónomas, pero enlazadas por una red y con software diseñado para producir y facilitar una computación integrada

Definición de Sistema Distribuido

Sistema en el que los componentes localizados en computadores, conectados en red, comunican y coordinan sus acciones únicamente mediante el paso de mensajes

Colección de computadoras independientes que se presentan ante los usuarios como un único sistema coherente

- Aspecto hardware: Los computadores son independientes
- Aspecto software: los usuarios piensan que existe un único sistema

1. Compartición de recursos

- Recurso 0 hardware a software
 - En sistemas distribuidos, los recursos son gestionados por programas que ofrecen una interfaz de comunicación y se ejecutan en diferentes dispositivos de cómputo
- Tendencia actual al control descentralizado: groupware
- Políticas y métodos de manejo con requisitos comunes:
 - Mismo esquema de denominación (e.g. Universal Resource Identifier o URI)
 - Asociación de nombres de recursos a direcciones de comunicación
 - Coordinación acceso concurrente por consistencia

2. Sistema abierto

- Determina si el sistema puede ser ampliado de varias formas
- Hace referencia tanto al hardware como software
- Unix, primer sistema abierto:
 - Desarrolladores de aplicaciones tienen acceso a todos los servicios del Sistema Operativo
 - Vendedores de hardware y gestores de sistemas ya que el sistema puede ser ampliado
 - Vendedores software y usuarios ya que es independiente del hardware
- La utilización de protocolos estándares ("Inter Process
 Communication" o IPC) de comunicación incrementa el ámbito
 de los sistemas abiertos

3. Concurrencia

- Concurrencia y paralelismo surgen naturalmente en sistemas distribuidos:
 - Actividades independientes de los usuarios
 - Independencia de recursos hardware
 - Localización de procesos en diferentes computadoras

4. Escalabilidad

- El software de sistema y aplicación no debería cambiar cuando el sistema aumenta
- El trabajo que implica el procesamiento de una única petición para acceder a un recurso compartido debe ser independiente del tamaño de la red
- En todo caso, las disminuciones de rendimiento del sistema deben ser moderada
- Principal desafío: diseñar el software del sistema distribuido de forma que permanezca efectivo. Técnicas a aplicar:
 - Replicación de datos
 - Utilización de cachés
 - Despliegue de servicios
 - Sistemas abiertos: introducción de servicios y reimplementación de los existentes, independencia de proveedores

5. Tolerancia a fallos:

- El diseño se basa en dos propuestas:
 - Redundancia hardware
 - Recuperación software
- Cara a fallos hardware un SD proporciona un alto nivel de disponibilidad (medida tiempo que está disponible para su uso)
- Las redes hasta el momento no han sido redundantes y, por tanto, se busca un diseño seguro

6. Transparencia:

- SD como un todo
- Es el principal objetivo en el diseño del software del sistema
- Formas de transparencia básicas:
 - Acceso: mismas operaciones sobre entidades locales y remotas
 - Localización: entidades accedidas sin importar localización
 - Concurrencia: operaciones concurrentes sobre la misma entidad sin interferir

6. Transparencia:

- Formas de transparencia avanzadas:
 - Replicación: existencia de varias instancias de una misma entidad sin conocimiento por parte del programa o usuario.
 Copia de los archivos más usados en los diferentes servidores sin ser advertido por los usuarios
 - Fallo: ocultación fallos hardware y software
 - Migración: movimiento de entidades sin afectar a programas ni usuarios
 - Rendimiento: reconfiguración del sistema según carga
 - Escalabilidad: no cambia la estructura del sistema cuando éste o las aplicaciones se amplían

Aplicaciones paralelas de alto rendimiento:

- Decrementan el tiempo de respuesta
- Ventaja de escalabilidad de SD frente a sistemas multiprocesador o multicore
- Se pueden clasificar en cuanto al grano del paralelismo (tiempo de computación entre comunicaciones):
 - Grano grueso ("large- or coarse-grain")
 - Grano medio ("medium-grain")
 - Grano fino ("fine-grain")
- Grano medio y grueso adecuado para SD débilmente acoplados

Aplicaciones tolerantes a fallos:

- Incrementan fiabilidad ("reliability") y
 disponibilidad
- SD potencialmente seguros debido a la propiedad de fallo parcial:
 - Cuanto más débilmente acoplado más fiabilidad
- Seguridad mediante la replicación de funciones o datos de las aplicaciones

Aplicaciones con especialización funcional:

- Aplicación como colección de servicios (e.g. SO Amoeba)
- Forma natural de diseñar estas aplicaciones con implementaciones alternativas: centralizada, distribuida, replicada
- Proporcionan alto rendimiento y seguridad
- Unos servicios de pueden comunicar con otros
- Fácil escalabilidad

Aplicaciones inherentemente distribuidas:

- Groupware: sistema basado en computadoras que soporta grupos de personas implicadas en tareas comunes y que proporciona una interfaz a un entorno compartido interactivo
- Ejemplos más claros y exitosos:
 - Correo electrónico
 - Workflow: Software de gestión de flujos de trabajo

- Modelo de referencia: "Marco de trabajo abstracto para la comprensión de las relaciones más relevantes entre las entidades de un determinado entorno" [SOA-OASIS 06]
- Objetivo: Desarrollar arquitecturas específicas o concretas, utilizando estándares consistentes o especificaciones que soporten el entorno en cuestión
- **Elementos:** Conjunto mínimo de conceptos, axiomas y relaciones en un dominio particular; independiente de estándares, tecnologías, implementaciones u otros detalles concretos específicos

Sistemas de Empresa:

- Establecen requisitos y líneas de trabajo más allá de la utilización de la tecnología.
- Pueden ser:
 - Centralizados
 - Distribuidos: las actividades se realizan en diferentes lugares

Sistemas de Aplicación:

- Proporcionan soporte automatizado al sistema de empresa
- Tecnologías de la información haciendo uso de los siguientes componentes:
 - Datos
 - Programas
 - Interfaces de usuario
- Configuraciones centralizadas producen cuellos de botella en rendimiento y disponibilidad
- Inconveniente: diseño de aplicaciones distribuidas es una tarea compleja debido a decisiones difíciles en cuanto a la elección de nuevas tecnologías de redes y servicios

Sistemas de Aplicación:

Configuración común:

Plataforma de Computación Distribuida:

- Las aplicaciones distribuidas dependen de diversas tecnologías: computadoras, redes, servicios de ficheros,...
- Se proporcionan dos tipos de servicios: servicios de red y de soporte a aplicaciones

– Servicios de red:

- Nivel más bajo de servicios: transferencia de información
- Arquitectura de red que describe componentes físicos, funciones realizadas por componentes e interfaces entre estos
- Modelo de referencia OSI desarrollado como estándar

Plataforma de Computación Distribuida:

- Servicios de soporte a aplicaciones:
 - Responsables del nivel más alto de interconectividad entre aplicaciones
 - Se llevan cabo a través de:
 - Emuladores de terminal
 - Sistemas Cliente/Servidor basados en el modelo conceptual de interacción entre procesos que se ejecutan asíncronamente y posiblemente en diferentes computadoras, los cuales pueden ser consumidores de servicios (clientes) o suministradores de éstos (servidores)
 - » Su construcción requiere solucionar cuestiones técnicas y de gestión
 - » RPC ("Remote Procedure Call") es el mecanismo básico
 - » Computación Cliente/Servidor = Computación distribuida siguiendo el modelo Cliente/Servidor

Plataforma de Computación Distribuida:

- Servicios de soporte a aplicaciones:
 - Se llevan a cabo a través de:
 - Sistemas de Gestión Distribuida de Datos y Transacciones:
 - » Versión sofisticada de sistema cliente/servidor que permite almacenar, acceder y manipular de forma distribuida datos manteniendo la integridad
 - » Niveles de transparencia: lectura (localización), actualizaciones (replicación), ejecución de transacciones (concurrencia) y fallos
 - Sistemas Operativos Distribuidos:
 - » Sintetizan y amplían servicios de soporte a aplicaciones
 - Funcionalidades: total transparencia, selección de servicio y encaminamiento automáticos

Sistemas abiertos:

- Interoperatividad: sistemas pueden trabajar entre sí a través de interfaces bien definidas
- Portabilidad: mover un sistema a otro entorno, i.e.,
 desligar aplicaciones de plataformas
- Integración: facilitar la utilización de un sistema
 proporcionando acceso uniforme a usuarios finales
- Ejemplos: OSF's DCE, OMG's Corba

Gestión y soporte:

- Relacionado con herramientas y técnicas para administrar un SD
- Gestión aborda:
 - Cómo manejar y soportar tecnologías de computación distribuida
 - Cómo emplear estas tecnologías para mejorar los procesos de gestión

Gestión y soporte:

- Soporte aborda las siguientes cuestiones:
 - Selección hardware/software
 - Configuración, instalación y mantenimiento
 - Copias de seguridad y recuperación de datos
 - Detección y corrección de fallos
 - Reconfiguración de los componentes de la aplicación en diferentes sitios
 - Administración de seguridad

RM-ODP ("Reference Model for Open Distributed Processing"):
ISO/IEC 10746

Modelo de referencia que proporciona un marco de trabajo para la estandarización del Procesamiento Distribuido Abierto, soporta distribución, independencia de plataforma y tecnología, y portabilidad, además de una arquitectura de empresa

- Los principales elementos son:
 - Un enfoque de modelado de objetos para la especificación del sistema
 - Especificación a través de puntos de vista separados, pero relacionados
 - Definición de una infraestructura de sistema que proporciona transparencia en la distribución para aplicaciones
 - Un marco de evaluación para el estudio de la correspondencia de sistemas al estándar RM-ODP

- Contiene cuatro recomendaciones básicas y estándares:
 - Introducción: ámbito, justificación, explicación de conceptos clave y arquitectura general
 - Bases: definición de conceptos y marco de análisis para normalización
 - Arquitectura: especificación de las características que califican a un SD como abierto, también define puntos de vista, subdivisión del sistema y la relación entre sus componentes
 - Semántica arquitectónica: contiene la formalización de los conceptos de modelado interpretando conceptos en términos de construcciones de diferentes técnicas estándar de descripción formal

- Un punto de vista ("viewpoint") es una subdivisión de la especificación de un sistema. Cada uno de los siguientes puntos de vista utiliza los mismos conceptos básicos:
 - Empresa: propósito, ámbito y políticas del sistema que describen los requisitos de negocio y cómo alcanzarlos
 - Información: semántica de la información y su procesamiento
 - Computacional: descomposición funcional del sistema en objetos que interaccionan a través de interfaces
 - Ingeniería: mecanismos y funciones para soportar interacciones distribuidas entre objetos
 - Tecnología: elección de tecnologías para procesamiento,
 funcionalidad y presentación de la información

Puntos de vista para la especificación del sistema y entorno:

