

X Math Crash-Course for Machine Learning 1

Machine Learning 1: Foundations

Billy Joe Franks (TUK)

Can you follow?

$$rg \min_{b \in \mathbb{R}, lpha \in \mathbb{R}^d} rac{1}{2} lpha^T K lpha + c \mathbf{1}^T \hat{\mathbf{1}} (\mathbf{y} \circ K lpha + b \mathbf{1})$$
 $K := X X^T$
 $\mathbf{1}(x) := \max(0, 1 - x)$

Math used in Machine Learning

Machine Learning mostly requires

- Linear Algebra
- Multivariate Calculus
- Optimization

Linear Algebra & Analysis

We will recap the following topics in Linear Algebra and Analysis

- Vectors & Matrices
- Scalar Product & Projection
- Dimension Theorem
- Eigenvalues & Eigenvectors
- Matrix Decompositions
- Gradient
- ▶ Jacobian & Hessian Matrix

Vectors

In ML1 we represent vectors as $\mathbf{v} \in \mathbb{R}^d$.

$$\mathbf{v} = \left(\begin{array}{c} v_1 \\ \vdots \\ v_d \end{array}\right)$$

The transpose of a vector is

$$\mathbf{v}^{\top} := (v_1, \dots, v_d)$$

Matrices

Similarly for a matrix $A \in \mathbb{R}^{m \times n}$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & \ddots & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, A^{\top} := \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & & \ddots & \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

We denote with A_{i} the i-th row of the matrix and with A_{ij} the i-th column of the matrix.

Scalar Product

The scalar product for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$ is defined as:

$$\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{v}^{\top} \mathbf{w} := \sum_{i=1}^{d} v_i w_i.$$

The scalar product is a bilinear form, it fulfills the following properties.

Proof is left as an exercise.

Projection

Let $||\mathbf{v}|| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{\mathbf{v}^\top \mathbf{v}}$ be the norm of a vector.

Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d \setminus \{0\}$. The scalar projection of \mathbf{v} onto \mathbf{w} is defined as $\Pi_w(\mathbf{v}) := \frac{\mathbf{w}^\top \mathbf{v}}{\|\mathbf{w}\|}$.

Figure: Geometrical illustration of the scalar projection. Given the vectors \mathbf{v} and \mathbf{w} , here $\Pi_w(v)$ is the scalar projection of \mathbf{v} onto \mathbf{w} .

Matrix Multiplication

For the following matrices C = AB if

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{pmatrix}$$

then
$$\mathbf{C} = \left(egin{array}{cccc} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{array}
ight)$$
 where

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

for i = 1, ..., m and j = 1, ..., p.

Matrices as Functions

A Matrix $A \in \mathbb{R}^{m \times n}$ defines a function

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 with $v \mapsto Av$

In particular this function is linear as:

- $ightharpoonup A(\mathbf{v} + \mathbf{w}) = A\mathbf{v} + A\mathbf{w}$ (vector addition)
- $\lambda A \mathbf{v} = A \lambda \mathbf{v}$ (scalar multiplication)

Proof left as an exercise. Define two important sets:

$$Ker(A) := \{ \mathbf{v} : A\mathbf{v} = \mathbf{0} \} \subseteq \mathbb{R}^n$$

$$Im(A) := \{ \mathbf{w} : A\mathbf{v} = w \} \subseteq \mathbb{R}^m$$

Intuitively, multiplying by a matrix transforms a vector to another one. Important to note that this transformation is linear. It could be a rotation or for example a stretching.

Vector Space

Let $W \subseteq \mathbb{R}^d$. W is a vector space iff

- $ightharpoonup \forall \mathbf{v}, \mathbf{w} \in W : \mathbf{v} + \mathbf{w} \in W$
- $ightharpoonup \forall \mathbf{w} \in W, \lambda \in \mathbb{R} : \lambda \mathbf{w} \in W$

Any set $X \subseteq \mathbb{R}^d$ can be extended to a vector space and we call this extension the span span(X).

Dimension

Let $W \subseteq \mathbb{R}^d$ be a vector space. We call dim(W) the minimal number n such that there exist vectors $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n$ such that for any $\mathbf{w} \in W$ there exist $\lambda_1, \lambda_2 \dots \lambda_n$ with

$$\mathbf{w} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdots + \lambda_n \mathbf{v}_n.$$

If this holds then $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n$ form a basis of W. Such a basis always exists and vectors can be removed or added to complete a basis.

Dimension Theorem

Let $V \subseteq \mathbb{R}^d$ be a vector space and $f: V \to \mathbb{R}^q$ be a linear function then the following holds:

$$\dim V = \dim (\ker(f)) + \dim(\operatorname{im}(f))$$

Proof:

- ► Let *B* be a basis of ker(f).
- ▶ Complete B with A to be a basis of V where $A \cap B = \{\}$
- $\hat{f}(A) = \{f(a) \mid a \in A\}$ is a basis of im(f) as the restriction $f': span(A) \to f(span(A))$ of f onto span(A) is injective $(ker(f') = \mathbf{0})$ clearly surjective and as $f(B) = \mathbf{0}$
- $\qquad \mathsf{dim} \; V = |A| + |B| = \mathsf{dim}(\mathsf{im}(f)) + \mathsf{dim}(\mathsf{ker}(f))$