UMETNA INTELIGENCA

PROSTOR STANJ

Prostor stanj je:

- formalizem za predstavljanje problemov
- v obliki grafa, pri čemer
 - vozlišča ustrezajo problemskim situacijam
 - povezave ustrezajo dovoljenim akcijam

PREDSTAVITEV PROBLEMA

Problem je definiran s:

- prostorom stanj
- začetnim stanjem (lahko več)
- končnim stanjem (lahko več)

Reševanje problema zahteva preiskovanje grafa:

- rešitev problema je pot od začetnega do končnega stanja
- optimizacijske probleme predstavimo tako, da povezavam v grafu dodamo cene
- cena rešitve je vsota vseh povezav vzdolž rešitvene poti

NEINFORMIRANO PREISKOVANJE

Osnovni strategiji za sistematično preiskovanje prostora stanj:

- iskanje v globino
 - med alternativami izbere tisto, ki je najdlje od začetnega stanja
 - najbolje prilega rekurzivnemu stilu programiranja
 - nevarnost zankanja
 - ni nujno, da najprej najde najkrajšo pot
 - časovna zahtevnost reda $O(b^m)$, prostorska zahtevnost reda O(bm)
- iskanje v širino
 - med alternativami izbere tisto najbližjo začetnemu stanju
 - vedno najprej najde najkrajšo pot
 - moramo voditi množico poti-kandidatov
 - časovna zahtevnost reda $O(b^{d+1})$, prostorska zahtevnost reda $O(b^{d+1})$

b – faktor vejanja grafa

d – globina najbližjega končnega stanja

m – maksimalna globina prostora stanj

PRIMER - ISKANJE V GLOBINO (1/9)

PRIMER - ISKANJE V GLOBINO (2/9)

Open list: s 🛑 po vrsti obdelujemo

PRIMER - ISKANJE V GLOBINO (3/9)

Open list: a, b, c obdelano vozlišče odstranimo in dodamo njegove naslednike

PRIMER - ISKANJE V GLOBINO (4/9)

Open list: d, e, b, c anaslednike vozlišča 'a' smo dodali na začetek vrste

PRIMER - ISKANJE V GLOBINO (5/9)

Open list: e, b, c

PRIMER - ISKANJE V GLOBINO (6/9)

Open list: j, k, h, b, c

PRIMER - ISKANJE V GLOBINO (7/9)

Open list: k, h, b, c

PRIMER - ISKANJE V GLOBINO (8/9)

Open list: h, b, c

PRIMER - ISKANJE V GLOBINO (9/9)

Rešitev: s, a, e, k

SAMOSTOJNO DELO

Za spodnji graf z začetnim vozliščem *a* in s končnima vozliščema *g* in *h* določi zaporedje razvijanja vozlišč, če uporabljamo preiskovanje v globino.

PRIMER - ISKANJE V ŠIRINO (1/11)

PRIMER - ISKANJE V ŠIRINO (2/11)

Open list: s

PRIMER - ISKANJE V ŠIRINO (3/11)

Open list: a, b, c

PRIMER - ISKANJE V ŠIRINO (4/11)

Open list: b, c, d, e — naslednike vozlišča 'a' smo dodali na konec vrste

PRIMER - ISKANJE V ŠIRINO (5/11)

Open list: c, d, e, f, g

PRIMER - ISKANJE V ŠIRINO (6/11)

Open list: d, e, f, g, h, i

PRIMER - ISKANJE V ŠIRINO (7/11)

Open list: e, f, g, h, i

PRIMER - ISKANJE V ŠIRINO (8/11)

Open list: f, g, h, i, j, k, h

PRIMER - ISKANJE V ŠIRINO (9/11)

Open list: g, h, i, j, k, h, e

PRIMER - ISKANJE V ŠIRINO (10/11)

Open list: h, i, j, k, h, e

PRIMER - ISKANJE V ŠIRINO (11/11)

Rešitev: s, b, g

SAMOSTOJNO DELO

Za spodnji graf z začetnim vozliščem *a* in s končnima vozliščema *g* in *h* določi zaporedje razvijanja vozlišč, če uporabljamo preiskovanje v širino.

NEINFORMIRANO PREISKOVANJE

Iterativno poglabljanje

- iskanje v globino z omejeno globino, ki jo iterativno podaljšujemo
 - kombinira prednosti iskanja v globino in iskanja v širino
 - pomnilniško manj zahtevno
 - vedno najprej najde najkrajšo pot
 - časovna zahtevnost reda $O(b^d)$, prostorska zahtevnost reda O(bd)

b – faktor vejanja grafa

d – globina najbližjega končnega stanja

PRIMER – Iterativno poglabljanje (1/17)

PRIMER – Iterativno poglabljanje (2/17)

PRIMER – Iterativno poglabljanje (3/17)

PRIMER – Iterativno poglabljanje (4/17)

PRIMER – Iterativno poglabljanje (5/17)

PRIMER – Iterativno poglabljanje (6/17)

PRIMER – Iterativno poglabljanje (7/17)

PRIMER – Iterativno poglabljanje (8/17)

PRIMER – Iterativno poglabljanje (9/17)

PRIMER – Iterativno poglabljanje (10/17)

PRIMER – Iterativno poglabljanje (11/17)

PRIMER – Iterativno poglabljanje (12/17)

PRIMER – Iterativno poglabljanje (13/17)

PRIMER – Iterativno poglabljanje (14/17)

PRIMER – Iterativno poglabljanje (15/17)

PRIMER – Iterativno poglabljanje (16/17)

PRIMER – Iterativno poglabljanje (17/17)

Rešitev: s, b, g

SAMOSTOJNO DELO

Za spodnji graf z začetnim vozliščem *a* in s končnima vozliščema *g* in *h* določi zaporedje razvijanja vozlišč, če uporabljamo iterativno poglabljanje.

HEVRISTIČNO PREISKOVANJE

Če je prostor stanj velik, nam grozi kombinatorična eksplozija.

Moramo se zadovoljiti s preiskovanjem skromne podmnožice celotnega prostora stanj.

Uporabljamo hevristične ocene za omejevanje in usmerjanje iskanja v smeri najbolj obetavnega vozlišča.

Kot hevristična cenilka služi funkcija f(n), ki ocenjuje "težavnost" vozlišča n.

HEVRISTIČNO PREISKOVANJE

g(n) je cena najboljše poti od začetnega vozlišča do vozlišča n

h(n) je ocena cene optimalne poti od vozlišča n do končnega vozlišča

Požrešno usmerjeno iskanje: f(n) = h(n)(Greedy best-first search)

A*: f(n) = g(n) + h(n)

DOPUSTNOST

- algoritem je dopusten (admissable), če vedno najde optimalno rešitev, če ta obstaja
- predpostavimo, da je za vsako vozlišče n v prostoru stanj $h^*(n)$ cena optimalne poti od n do najbližjega končnega vozlišča
- algoritem A^* , ki uporablja hevristično funkcijo h(n), tako da je za vsak n

$$h(n) \leq h^*(n)$$

je dopusten.

- vsaka hevristična funkcija h(n), ki ne precenjuje razdalje do cilja, je dopustna.
- trivialna, a neuporabna hevristična funkcija h(n) = 0 spremeni A^* v iskanje v širino

Primer - požrešno iskanje (1/7)

	h(n) = 1	Razda	lja po zra	ačni	liniji do	mest	аВ
A	366	F	176	М	241	S	253
В	0	G	77	N	234	Т	329
С	160	Н	151	0	380	U	80
D	242	I	226	P	100	V	199
E	161	L	244	R	193	Z	374

Primer - požrešno iskanje (2/7)

	h(n) = 1	Razda	lja po zra	ačni	liniji do	mest	a B
A	366	F	176	М	241	s	253
В	0	G	77	N	234	Т	329
С	160	Н	151	0	380	U	80
D	242	I	226	Р	100	V	199
E	161	L	244	R	193	Z	374

Primer - požrešno iskanje (3/7)

Primer - požrešno iskanje (4/7)

Primer - požrešno iskanje (5/7)

Primer - požrešno iskanje (6/7)

Primer - požrešno iskanje (7/7)

SAMOSTOJNO DELO

Za spodnji graf z začetnim vozliščem *a* in s končnima vozliščema *g* in *h* določi zaporedje razvijanja vozlišč, če uporabljamo požrešno iskanje s hevristično oceno iz spodnje tabele:

a	b	c	d	e	f	g	h
8	2	4	3	9	12	0	0

PRIMER A* (1/9)

	h(n) = 1	Razda	lja po zra	ačni	liniji do	mest	a B
A	366	F	176	М	241	Ø	253
В	0	G	77	N	234	Т	329
С	160	Н	151	0	380	U	80
D	242	I	226	Р	100	V	199
E	161	L	244	R	193	Z	374

PRIMER A* (2/9)

	h(n) = 1	Razda	lja po zra	ačni	liniji do	mest	ta B
A	366	F	176	М	241	S	253
В	0	G	77	N	234	Т	329
С	160	Н	151	0	380	U	80
D	242	I	226	Р	100	V	199
E	161	L	244	R	193	Z	374

PRIMER A* (3/9)

PRIMER A* (4/9)

PRIMER A* (5/9)

PRIMER A* (6/9)

PRIMER A* (7/9)

PRIMER A* (8/9)

PRIMER A* (9/9)

$PRIMER - A^* (1/9)$

	s	a	b	c	d	е	f	g	h	i	j	k	1
h(n)	6	5	9	4	10	2	10	0	1	12	12	0	0

ali je h(n) dopustna?

$PRIMER - A^* (2/9)$

	s	a	b	С	d	е	f	g	h	i	j	k	1
h(n)	6	5	9 8	4	10	2	10 8	0	1	12	12	0	0

$PRIMER - A^* (3/9)$

	s	a	b	С	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - A^* (4/9)$

	s	a	b	С	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - A^* (5/9)$

	s	a	b	С	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - A^* (6/9)$

	s	a	b	С	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - A^* (7/9)$

	s	a	b	С	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - A^* (8/9)$

 \mathbf{s}

6

h(n)

a

5

$PRIMER - A^* (9/9)$

 \mathbf{s}

6

h(n)

a

5

SAMOSTOJNO DELO

Za spodnji graf z začetnim vozliščem *a* in s končnima vozliščema *g* in *h* določi zaporedje razvijanja vozlišč, če uporabljamo A* s hevristično oceno iz spodnje tabele:

a	b	c	d	e	\mathbf{f}	g	h
8	2	4	3	9	12	0	0

Izboljšave algoritma A*

Težava algoritma A* je prevelika poraba pomnilnika.

Izboljšave porabijo manj pomnilnika, a še vedno zagotavljajo optimalnost rešitve.

Iterative-deepening A* (IDA*):

• namesto povečevanja globine iskanja, povečuje vrednost hevristične ocene f(n)

Recursive best first search (RBFS):

- shrani vrednosti vseh otrok na trenutni poti
- išče do meje sobratov
- pri vračanju si zapomni f vrednost najboljšega lista
- na podlagi zapomnjene f vrednosti ve, katere veje so perspektivne

PRIMER RBFS (1/13)

h(n) = Razdalja po zračni liniji do mesta B											
A	366	F	176	М	241	Ø	253				
В	0	G	77	N	234	Т	329				
С	160	Н	151	0	380	U	80				
D	242	I	226	Р	100	V	199				
E	161	L	244	R	193	Z	374				

PRIMER RBFS (2/13)

	h(n) = Razdalja po zračni liniji do mesta B											
А	366	F	176	М	241	S	253					
В	0	G	77	N	234	Т	329					
С	160	Н	151	0	380	U	80					
D	242	I	226	P	100	V	199					
E	161	L	244	R	193	Z	374					

PRIMER RBFS (3/13)

PRIMER RBFS (4/13)

PRIMER RBFS (5/13)

PRIMER RBFS (6/13)

PRIMER RBFS (7/13)

PRIMER RBFS (8/13)

PRIMER RBFS (9/13)

PRIMER RBFS (10/13)

PRIMER RBFS (11/13)

PRIMER RBFS (12/13)

PRIMER RBFS (13/13)

SAMOSTOJNO DELO

Za spodnji graf z začetnim vozliščem *a* in s končnima vozliščema *g* in *h* določi zaporedje razvijanja vozlišč, če uporabljamo RBFS s hevristično oceno iz spodnje tabele:

a	b	c	d	e	f	g	h
8	2	4	3	9	12	0	0

$PRIMER - IDA^* (1/13)$

	s	a	b	c	d	е	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (2/13)$

	s	a	b	с	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (3/13)$

$$^{\circ}$$
 0+6 = 6 Meja $f(n) = 6$

	s	a	b	с	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (4/13)$

	s	a	b	С	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (5/8)$

	s	a	b	c	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (6/13)$

$$_{\text{S}}$$
 0+6=6 Meja $f(n) = 8$

	Ø	a	b	С	d	e	f	හ	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (7/13)$

	Ø	a	b	С	d	e	f	හ	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (8/13)$

	s	a	b	с	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (9/13)$

	s	a	b	c	d	е	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (10/13)$

	s	a	b	С	d	e	f	g	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (11/13)$

S
$$_{0+6=6}$$
 Meja $f(n) = 9$

	ø	a	b	С	d	e	f	හ	h	i	j	k	1
h(n)	6	5	8	4	10	2	8	0	1	12	12	0	0

$PRIMER - IDA^* (12/13)$

 \mathbf{s}

6

h(n)

a

5

$PRIMER - IDA^* (13/13)$

 \mathbf{s}

6

h(n)

a

5

SAMOSTOJNO DELO

Za spodnji graf z začetnim vozliščem *a* in s končnima vozliščema *g* in *h* določi zaporedje razvijanja vozlišč, če uporabljamo IDA* s hevristično oceno iz spodnje tabele:

a	b	c	d	e	f	g	h
8	2	4	4	9	12	0	0

