# TEMA 2

ОТБОР ПРИЗНАКОВ Понижение размерности

- С ростом размерности данных растет вычислительная сложность, а также и сложность визуализации.
- При изучении объектов, каждый из который характеризуется большим количеством признаков, часто возникает необходимость описать эти объекты значительно меньшим числом признаков, сохранив при этом как можно больше важной информации об объектах.
- Отбор наиболее значимых признаков.
- Понижение размерности пространства признаков.
- Уменьшение объема исходных данных, сохраняя полезную информацию.

### Цели

- Удаление лишних (нерелевантных) признаков
- Повышение качества решения поставленной задачи
- Уменьшение стоимости данных
- Увеличение скорости последующего анализа
- Повышение интерпретируемости моделей

### Сокращение числа переменных

- при массовом пошиве одежды используются размер, полнота, рост.
- Ввести искусственные переменные (факторы).
- Например, по одной из формул
- полнота = (длина окружности груди длиной окружности талии)/2.

### Сокращение числа переменных

Две переменные: рост ста людей в дюймах и сантиметрах.

- Дублирование информации.
- Одну переменную отбрасываем.
- Сокращение данных.

Значения одной переменной вычисляются по значениям другой с помощью линейного преобразования.

 Линейная зависимость между переменными ⇔ коэффициент корреляции между ними равен единице.

### • Факторный анализ

- отыскание скрытых, но объективно существующих закономерностей, которые определяются воздействием внутренних и внешних причин на изучаемый процесс;
- сжатие информации путем описания процесса при помощи общих факторов или главных компонент, число которых значительно меньше количества первоначально взятых признаков;
- выявление и изучение статистической связи признаков с факторами или главными компонентами.

#### • Кластерный анализ

- разбить изучаемую совокупность объектов на группы схожих, близких в некотором смысле объектов, называемых кластерами.

#### • Многомерное шкалирование

- использование мер различия между объектами

# Факторный анализ

### По целям исследования

- **EFA**, **Эксплораторный** (разведочный) факторный анализ пытается выявить внутреннюю структуру довольно широкого набора переменных.
  - Априорное допущение исследователя состоит в том, что любые признаки (переменные) могут ассоциироваться с любым фактором. Наиболее распространенная форма факторного анализа. В ней отсутствует предварительная теория, и используются факторные нагрузки, чтобы интуитивно понять факторную структуру данных.
- CFA, Конфирматорный (подтверждающий) факторный анализ пытается определить, соответствует ли количество факторов и нагрузки измеряемых переменных (признаков, индикаторов) тому, что ожидается, на основе предварительной теории.
  - Интегрирован в моделирование структурными уравнениями SEM.

# Факторный анализ

- Главными целями факторного анализа:
- (1) *сокращение* числа переменных (редукция данных), EFA;
- (2) определение структуры взаимосвязей между переменными, т.е. классификация переменных, СГА.
- Поэтому факторный анализ используется или как метод сокращения данных или как метод классификации.

# Факторный анализ как метод редукции данных

- Позволяет свести большое количество исходных *переменных* к значительно меньшему числу факторов, каждый из которых объединяет исходные переменные, имеющие сходный смысл.
- Каждый фактор интерпретируется как некоторая общая причина взаимосвязи группы переменных.

# Сокращение переменных

- исходные переменные (не все) заменяют на меньшее число новых искусственных переменных
- новые переменные называют главными факторами / главными компонентами.
- далее работают с факторами, а не с исходными переменными (признаками).
- Основные понятия факторного анализа: фактор скрытая переменная и факторная нагрузка корреляция между исходной переменной и фактором.

# Измерение неизмеримого или факторный анализ как поиск латентных (скрытых) переменных, не поддающихся непосредственному измерению (CFA)

- Отношение пациента к своему доктору?
- Удовлетворенность сортом кофе?
- Как определить степень депрессии человека?
- Степень приверженности курению?
- Лояльность торговой марке?
- Вероятность разорения фирмы в течение следующего года?

## ПРОЦЕДУРА ФАКТОРНОГО АНАЛИЗА

- Подготовка исходной матрицы
  - Очистка данных, Обработка выбросов
  - Стандартизация
- ВЫБОР факторной модели
- Факторизация, ИЗВЛЕЧЕНИЕ важных признаков: первичных компонент/факторов
- ВРАЩЕНИЕ факторов
- Оценка факторный значений и ИНТЕРПРЕТАЦИЯ факторов



# Извлечение факторов. Факторизация

- Метод главных компонент (РСА)
- Общий факторный анализ (PFA)
  - Методы вращения
  - Максимального правдоподобия

- Нелинейные методы
  - Нейронные сети
  - SVM

### Факторизация

### РСА, Метод главных компонент

- Ищет набор факторов, способных объяснить всю (общую и уникальную) дисперсию в наборе переменных.
- Предпочитается для целей сокращения данных.
- Используется в EFA эксплораторный (разведочный) факторный анализ

### **РFA**, общий факторный анализ

- Ищет наименьшее количество факторов, способных объяснить общую дисперсию (корреляцию) набора переменных.
- Используется в CFA конфирматорный факторный анализ.

РСА - главные компоненты

**PFA** - главные факторы

Ковариационная матрица или Корреляционная матрица – по диагонали 1.

Корреляционная матрица, По диагонали общности – h2 *квадраты* множественной корреляции

Используется в EFA

Используется в CFA

Если исходные данные **стандартизированы** Ковариационная матрица = Корреляционная матрица

| Количество<br>"компонент"=количеству<br>переменных               | Ищется наименьшее количество<br>"факторов", объясняющих вариацию. |
|------------------------------------------------------------------|-------------------------------------------------------------------|
| Количество главных компонент (факторов) отбирается по критериям. | Отбор факторов зависит от поставленной задачи.                    |
| Легко реализуется                                                | Пользоваться специализированными<br>библиотеками                  |

Имеется набор признаков

$$\boldsymbol{X}^{T} = (X_{1}, X_{2}, \dots, X_{p})$$

#### PCA

Найти 
$$Y_k = a_{k1} X_1 + a_{k2} X_2 + ... + a_{kk} X_k$$

Количество главных компонент (факторов) равно количеству исходных признаков (переменных). k=p

### PFA

 ${m F}^{{\scriptscriptstyle T}} = (F_{1,} F_{2,} ... F_k)\;\;$  - факторы (общие факторы, латентные факторы ) k < p

$$X_i = a_{i1}F_1 + a_{i2}F_2 + a_{ik}F_k + U_i$$
  $i=1,...,p$ 

Количество факторов меньше количества исходных признаков.

### Анализ главных компонент

Определим понятие главной компоненты. Пусть имеется k признаков  $X_1, \ldots, X_k$ . Первой главной компонентой  $Y_1$  называется сохраняющая расстояние между точками линейная комбинация исходных признаков

$$Y_1 = \alpha_{11}X_1 + \ldots + \alpha_{k1}X_k,$$

где коэффициенты  $\alpha_{11},\ldots,\alpha_{k1}$  выбираются таким образом, чтобы дисперсия  $D(Y_1)=\lambda_1$  была максимальной. Это соответствует тому, что по первой главной компоненте индивиды должны отличаться наибольшим образом.

Вторая главная компонента также является линейной комбинацией исходных признаков:

$$Y_2 = \alpha_{12}X_1 + \ldots + \alpha_{k2}X_k,$$

где коэффициенты  $\alpha_{12}, \ldots, \alpha_{k2}$  выбираются таким образом, что компоненты  $Y_1$  и  $Y_2$  некоррелированы, а дисперсия  $D(Y_2) = \lambda_2$  является максимальной из всех линейных комбинаций, некоррелированных с  $Y_1$ , то есть вторая компонента должна нести наибольшую новую информацию, не имеющую отношения к первой главной компоненте. Аналогично строятся остальные главные компоненты

$$Y_j = \sum_{i=1}^k \alpha_{ij} X_i, \ j = 1, \dots, k.$$

Суммарная дисперсия остается неизменной:

$$V = D(X_1) + \dots D(X_k) = \lambda_1 + \dots + \lambda_k.$$

### Анализ главных компонент

Рассмотрим случайный вектор  $X_{1}, X_{2}, ..., X_{k}$ 

Задача 1. Найти  $Y_1 = a_{11} X_1 + a_{12} X_2 + ... + a_{1k} X_k$  такую, что  $D(Y_1)$  максимальна. Дополнительное условие 1:  $\vec{a_1} \, \vec{a_1}^T = 1$  , где  $\vec{a_1} = (a_{11}, a_{12}, ..., a_{1k})$ 

Задача 2. Найти  $Y_2 = a_{21}X_1 + a_{22}X_2 + ... + a_{2k}X_k$  такую, что  $D(Y_2)$  максимальна.

Дополнительное условие 2.1:  $\vec{a}_2 \vec{a}_2^T = 1$  , где  $\vec{a}_2 = (a_{21}, a_{22}, ..., a_{2k})$ 

Дополнительное условие 2.2:  $corr(Y_2, Y_1) = 0$ 

Задача k. Найти  $Y_k = a_{k1}X_1 + a_{k2}X_2 + ... + a_{kk}X_k$  такую, что  $D(Y_k)$  максимальна.

Дополнительное условие k.1:  $\vec{a}_k \vec{a}_k^T = 1$ , где  $\vec{a}_k = (a_{k1}, a_{k2}, ..., a_{kk})$ 

Дополнительное условие k.2:  $corr(Y_k, Y_1)=0$ 

Дополнительное условие k.3:  $corr(Y_k, Y_2)=0$ 

...

Дополнительное условие k.k:  $corr(Y_k, Y_{k-1})=0$ 

### РСА – ЛИНЕЙНЫЙ МЕТОД

# Алгоритм 1. Решение оптимизационной задача

В основе метода главных компонент - максимизация дисперсии, то есть поиск осей максимальных изменений входных данных.



- Максимизация дисперсии минимизация расстояний до прямой.
- То есть решается «регрессионная» задача.

# PCA не является линейной регрессией (МНК)



### **PCA**

Алгоритм 2. Использование ковариационной матрицы. В методе главных компонент задача снижения размерности сводится к нахождению собственных чисел и собственных векторов КОВАРИАЦИОННОЙ или КОРРЕЛЯЦИОННОЙ матрицы исходных признаков.

- Если переменная одна, то мерой разброса ее значений является дисперсия – средний квадрат отклонений от среднего значения этой переменной. Мера изменчивости.
- Мерой линейной зависимости двух переменных служит ковариация. Мера совместной изменчивости двух случайных величин.
- Для многомерных данных используется ковариационная матрица. Обобщение дисперсии на случай многомерных случайных величин.

### Ковариация

 Ковариация является мерой совместной изменчивости двух случайных величин (мерой линейной зависимости).

$$Cov(X_i, X_j) = E\left[\left(X_i - E(X_i)\right) \cdot \left(X_j - E(X_j)\right)\right] = E(X_i X_j) - E(X_i) \cdot E(X_j)$$

если Xi=Xj - дисперсия

$$Cov(X_i, X_i) = Var(X_i)$$

матрицей ковариации векторов  $\mathbf{X}, \mathbf{Y}$  называется:

$$\Sigma = \operatorname{cov}(\mathbf{X}, \mathbf{Y}) = \mathbb{E}\left[ (\mathbf{X} - \mathbb{E}\mathbf{X})(\mathbf{Y} - \mathbb{E}\mathbf{Y})^{\top} \right],$$

то есть

$$\Sigma = (\sigma_{ij})$$
.

где

$$\sigma_{ij}=\operatorname{cov}(X_i,Y_j)\equiv \mathbb{E}\left[(X_i-\mathbb{E}X_i)(Y_j-\mathbb{E}Y_j)
ight],\;i=1,\ldots,n,\;j=1,\ldots,m.$$
 $\mathbb{E}$  — математическое ожидание.

**Коэффициент корреляции**— параметр, который характеризует степень линейной взаимосвязи между двумя выборками, рассчитывается по формуле:

$$r_{xy} = \frac{\sum (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \cdot \sum (y_i - \overline{y})^2}}$$

Пусть центрированные случайные величины  $x_1,...,x_r$  - исходные признаки, A - их ковариационная матрица. A - симметрична, следовательно, все ее собственные числа вещественны. Обозначим их  $\lambda_1,...,\lambda_r$  в порядке убывания. Предположим, что все собственные числа различны и положительны. Для большинства практических задач это предположение обычно верно.

Математическое ожидание центрированной случайной величины равно нулю. Ковариация центрированных случайных

Величин  $Cov(X_i, X_j) = E(X_i X_j)$ 



Для описания формы случайного вектора необходима ковариационная матрица.

для описания формы распределений недостаточно только ее дисперсий по осям, у всех трех случайных величин одинаковые мат.ожидания и дисперсии, а их проекции на оси в целом окажутся одинаковы!

Ковариационная матрица является обобщением дисперсии на случай многомерных случайных величин - она так же описывает форму (разброс) случайной величины, как и дисперсия.

### Ковариационная матрица

- По диагонали дисперсия
- Попарные ковариации

$$egin{bmatrix} V_a & C_{ab} & C_{ac} & C_{ad} \ C_{ab} & V_b & C_{bc} & C_{bd} \ C_{ac} & C_{bc} & V_c & C_{cd} \ C_{ad} & C_{bd} & C_{cb} & V_d \end{bmatrix}$$

# Principal Component Analysis (PCA)



Ковариационная матрица.



### Можно показать, что

- Собственные векторы ковариационной матрицы соответствуют направлению максимальной изменчивости.
- Геометрически набор собственных векторов является матрицей поворота перехода от одного базиса к другому.
- Собственные числа соответствуют масштабированию исходных признаков по каждой из осей.

### РСА. С чего начать?

- Подготовить данные. Без выбросов.
- Стандартизировать переменные.
- Проверить применимость метода главных компонент.
- Определить количество главных компонент (факторов).

# Методы определения числа факторов

Сколько собственных чисел больше 1?

• Сколько собственных чисел больше 0.8?

• График каменистая осыпь

# Графический метод определения количества факторов



# Определение числа факторов

- Анализ главных компонент, анализируется ковариационная (или корреляционная) матрица
- Собственные числа == дисперсии главных компонент (Eugenvalues)

- Полная дисперсия (= числу переменных)
- Объясненная дисперсия (70%, 80%, 90%)

# Анализ главных компонент. Определение числа факторов:

- Собственные значения сортируются в порядке убывания, для чего обычно отбирается столько факторов, сколько имеется собственных значений, превосходящих по величине единицу.
- Собственные векторы, соответствующие этим собственным значениям, образуют факторы; элементы собственных векторов получили название факторной нагрузки.

Их можно понимать как коэффициенты корреляции между соответствующими переменными и факторами.

### ПРИМЕР 1.

|      | L     | M    | P     | A      | V     |
|------|-------|------|-------|--------|-------|
| 1970 | 68.90 | 1060 | 7.80  | 5.50   | 25.30 |
| 1975 | 68.10 | 1101 | 9.50  | 15.30  | 28.00 |
| 1980 | 67.60 | 1147 | 10.10 | 30.20  | 30.00 |
| 1985 | 69.20 | 1204 | 10.00 | 44.50  | 23.50 |
| 1990 | 69.20 | 1602 | 9.80  | 58.60  | 18.00 |
| 1995 | 64.60 | 1893 | 5.50  | 93.30  | 38.40 |
| 1998 | 67.00 | 2777 | 6.20  | 122.00 | 29.60 |

Данные о средней продолжительности жизни и сопутствующих факторах.

Признаки: L средняя продолжительность жизни; M количество чиновников; A количество автомобилей; P доходы бедных; V объемы продажи водки. Вклад первого фактора равен 72%.

#### Стандартизируем переменные.

В этом случае ковариационная матрица совпадает с корреляционной.

|    |               | ${ m L}$ | $\mathbf{M}$ | P     | Α     | V     |
|----|---------------|----------|--------------|-------|-------|-------|
|    | $\overline{}$ | 1.00     | -0.50        | 0.77  | -0.60 | -0.93 |
| Еф | $\mathbf{M}$  | -0.50    | 1.00         | -0.70 | 0.95  | 0.30  |
|    | Ρ             | 0.77     | -0.70        | 1.00  | -0.67 | -0.68 |
|    | A             | -0.60    | 0.95         | -0.67 | 1.00  | 0.37  |
|    | V             | -0.93    | 0.30         | -0.68 | 0.37  | 1.00  |

### Корреляционная матрица.

|   | 1     | 2     | 3     | 4     | 5      |
|---|-------|-------|-------|-------|--------|
| 1 | 3.60  | 1.09  | 0.24  | 0.05  | 0.02   |
| 2 | 72.00 | 93.80 | 98.70 | 99.63 | 100.00 |

Собственные числа и суммарный вклад компонент в общую дисперсию.

При восстановлении переменных по m главным компонентам, меньшему количества исходных признаков k, значения признаков могут восстанавливаться с ошибками. Чем больше вклад используемых в восстановлении главных компонент, тем меньше ошибки восстановления.

# Вычисление коэффициентов главных компонент

Пусть признаки  $X = (X_1, \ldots, X_k)^T$  центрированы  $EX_i = 0$  и имеют ковариационную матрицу  $\Sigma = EXX^T$ . Обозначим через  $A_i$  собственные векторы матрицы  $\Sigma$ , соответствующие собственным числам  $\lambda_i$ 

определим главную компоненту как

$$Y_j = A_j^T X = \sum_{i=1}^k a_{ij} X_i.$$

Для всех главных компонент справедливо выражение

$$Y = \left[ egin{array}{c} Y_1 \\ \cdot \\ Y_k \end{array} 
ight] = \left[ egin{array}{c} A_1^T X \\ \cdot \\ A_k^T X \end{array} 
ight] = \mathcal{A}^T X, \;\; ext{откуда} \;\; X = \mathcal{A} Y.$$

Упорядочим собственные числа по убыванию:  $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$ . Соберем все собственные вектора в одну ортогональную матрицу

$$\mathcal{A} = [A_1, \dots, A_k] = \begin{bmatrix} a_{11}, & \dots, & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1}, & \dots, & a_{kk} \end{bmatrix}, \quad \mathcal{A}^T \mathcal{A} = I = \begin{bmatrix} 1, & \dots, & 0 \\ \vdots & \ddots & \vdots \\ 0, & \dots, & 1 \end{bmatrix}$$

|   | 1     | 2     | 3     | 4     | 5     |
|---|-------|-------|-------|-------|-------|
| 1 | 0.47  | -0.38 | 0.30  | 0.50  | -0.54 |
| 2 | -0.43 | -0.54 | -0.03 | 0.54  | 0.48  |
| 3 | 0.48  | -0.04 | -0.85 | 0.17  | 0.13  |
| 4 | -0.45 | -0.47 | -0.38 | -0.33 | -0.57 |
| 5 | -0.41 | 0.59  | -0.20 | 0.57  | -0.35 |

### Собственные векторы.

|      | 1     | 2     | 3     | 4     | 5     |
|------|-------|-------|-------|-------|-------|
| 1970 | 0.60  | 0.47  | 2.01  | 0.17  | -0.06 |
| 1975 | 0.54  | 0.71  | -0.16 | 0.66  | 0.89  |
| 1980 | 0.37  | 0.79  | -1.28 | 0.67  | 0.36  |
| 1985 | 0.72  | -0.34 | -0.46 | -0.11 | -2.02 |
| 1990 | 0.66  | -1.30 | -0.23 | -1.41 | 0.98  |
| 1995 | -1.59 | 1.02  | -0.04 | -1.23 | -0.21 |
| 1998 | -1.31 | -1.34 | 0.16  | 1.26  | 0.07  |

Значения главных компонент

 Матрица собственных векторов ковариационной (или корреляционной) является матрицей перехода от исходных переменных к главным компонентам.

### Интерпретация

Корреляция  $\beta_{ij} = \operatorname{cor}(X_i, Y_j)$  между признаком  $X_i$  и главной компонентой  $Y_j$  называется факторной нагрузкой.

|              | 1     | 2     | 3     | 4     | 5     |
|--------------|-------|-------|-------|-------|-------|
| L            | 0.90  | -0.40 | 0.15  | 0.11  | -0.07 |
| $\mathbf{M}$ | -0.82 | -0.56 | -0.02 | 0.12  | 0.07  |
| Ρ            | 0.90  | -0.04 | -0.42 | 0.04  | 0.02  |
| A            | -0.85 | -0.49 | -0.19 | -0.07 | -0.08 |
| V            | -0.77 | 0.61  | -0.10 | 0.12  | -0.05 |

Матрица факторных нагрузок

факторные нагрузки - коэффициенты корреляции между признаками и факторами Признаки: L средняя продолжительность жизни; M количество чиновников; A количество автомобилей; P доходы бедных; V объемы продажи водки. Вклад первого фактора равен 72%.

Значения в i-й строке и j-м столбце соответствуют коэффициенту корреляции между i-м признаком и j-й главной компонентой. Чем больше первый фактор, тем больше продолжительность жизни и доходы бедных, меньше чиновников и автомобилей и не много водки фактор какого-то благополучия.

# Факторные нагрузки Главные компоненты

Корреляция  $\beta_{ij} = cor(X_i, Y_j)$  между признаком  $X_i$  и главной компонентой  $Y_j$  называется факторной нагрузкой.

#### факторные нагрузки

|                         | Factor 1 | Factor 2 |
|-------------------------|----------|----------|
| L                       | 0.896    | -0.398   |
| M                       | -0.815   | -0.564   |
| P                       | 0.905    | -0.045   |
| A                       | -0.847   | -0.486   |
| V                       | -0.772   | 0.613    |
| Дисп.гл.комп. $\lambda$ | 3.60     | 1.06     |
| вклад в дисп.           | 72%      | 21.8%    |

#### Значения факторов

| годы | $f_1$  | $f_2$  |
|------|--------|--------|
| 1970 | 0.600  | 0.465  |
| 1975 | 0.540  | 0.710  |
| 1980 | 0.375  | 0.790  |
| 1985 | 0.724  | -0.339 |
| 1990 | 0.662  | -1.301 |
| 1995 | -1.587 | 1.019  |
| 1998 | -1.314 | -1.345 |

