Approfondimento 3.1

La Definizione 3.12 è compatta, ma non è autocontenuta, visto che utilizza concetti di teoria dei grafi. Possiamo evitare questo ricorso con qualche definizione ausiliaria. Estendiamo per prima cosa la funzione di transizione δ a

$$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q).$$

Intuitivamente, $\hat{\delta}(q,a_1\cdots a_n)$ rappresenta l'insieme di stati che possono essere raggiunti a partire da q consumando $a_1\cdots a_n$. Useremo la definizione di ϵ -chiusura, che sarà definita a pag. 61. Definiamo $\hat{\delta}(q,x)$ per induzione su |x|, la lunghezza di x:

$$\hat{\delta}(q, \epsilon) = \epsilon - clos(q)
\hat{\delta}(q, xa) = \epsilon - clos(P),$$

dove $P = \{ p \in Q \mid \exists r \in \hat{\delta}(q, x) \text{ e } p \in \delta(r, a) \}.$

In modo equivalente alla Definizione 3.12 possiamo ora dire che un NFA $N=(\Sigma,Q,\delta,q_0,F)$ accetta la stringa x sse esiste $p\in F$ con $p\in \hat{\delta}(q_0,x)$.

La funzione estesa $\hat{\delta}$ è utile soprattutto per condurre alcune dimostrazioni, come vedremo.