Risoluzione del compito n. 3 (Gennaio 2021/2)

PROBLEMA 1

Trovate tutte le soluzioni (z, w), con $z, w \in \mathbb{C}$, del sistema

$$\begin{cases} |z| - \mathrm{i}w = \mathrm{i}z - |w| \\ \left|\frac{w}{z}\right| = \left|\frac{z}{w}\right| = |zw| . \end{cases}$$

Dalla seconda equazione (che poi sono due) si ricava

$$\left|\frac{w}{z}\right| = \left|\frac{z}{w}\right| \quad \Rightarrow \quad \begin{cases} z, w \neq 0 \\ |z| = |w| \end{cases}$$

e quindi

$$\left|\frac{w}{z}\right| = |zw| \iff \frac{|w|}{|z|} = |z||w| \iff 1 = |z|^2$$

perciò |z| = |w| = 1. A questo punto la prima equazione dà

$$2 = \mathbf{i}(z+w) \iff z+w = -2\mathbf{i}$$
.

Ora possiamo procedere in vari modi: il più veloce è osservare che

$$|z + w| = |-2i| = 2$$

ma per la disuguaglianza triangolare $2=|z+w|\leq |z|+|w|=1+1=2$, dunque la disuguaglianza è un'uguaglianza e sappiamo che ciò accade se e solo se i due numeri hanno lo stesso argomento (sono sulla stessa semiretta dall'origine, nel piano di Gauß). Allora z e w sono multipli di -2i lunghi 1, ossia z=w=-i che è la sola soluzione del sistema. In alternativa si può ricavare che se z=x+iy allora w=-z-2i=-x-(2+y)i, ma

$$\begin{cases} |z| = 1 \\ |w| = 1 \end{cases} \Rightarrow \begin{cases} x^2 + y^2 = 1 \\ x^2 + (2+y)^2 = 1 \end{cases} \Rightarrow \begin{cases} x^2 + y^2 = 1 \\ 4 + 4y = 0 \end{cases}$$

da cui y = -1 e x = 0 e di nuovo $z = -\mathbf{i}$ e $w = -z - 2\mathbf{i} = -\mathbf{i}$.

PROBLEMA 2

Considerate la funzione $e^x(2x^2 - 3x + 2) - \sqrt{e}$.

- a) Calcolatene i limiti agli estremi del dominio.
- b) Determinate gli intervalli di monotonia di f e i punti di massimo e/o minimo locale.
- c) Deducete quanti sono gli zeri di f.
- d) Determinate gli intervalli di concavità e convessità di f.
- e) Disegnate il grafico di f.

La funzione f è definita su tutto \mathbb{R} , e abbiamo facilmente

$$\lim_{x \to -\infty} f(x) = -\sqrt{\mathbf{e}} \;, \qquad \lim_{x \to +\infty} f(x) = +\infty \;.$$

Dato che $f'(x)=\mathrm{e}^x(2x^2+x-1)$ si annulla in -1 e 1/2, è negativa in]-1,1/2[e positiva nel resto, la funzione cresce strettamente in $]-\infty,-1]$ e in $[1/2,+\infty[$ e decresce strettamente in [-1,1/2]. In particolare è iniettiva in ciascuno di questi intervalli. I punti -1 e 1/2 sono rispettivamente di massimo locale e di minimo locale. Dato che f(1/2)=0 ed f è decrescente da -1 a 1/2, necessariamente $f(-1)=7/\mathrm{e}-\sqrt{\mathrm{e}}>0$, mentre a $-\infty$ il limite è negativo, dinque vi è uno e un solo zero di f in $]-\infty,-1]$. Poi come abbiamo detto f(1/2)=0, quindi per la stretta monotonia non vi sono altri zeri di f né in [-1,1/2[né in $]1/2,+\infty[$, quindi in totale f ha due zeri. Abbiamo poi $f''(x)=\mathrm{e}^x(2x^2+5x)$ che si annulla in -5/2 e 0 ed è negativa fra questi due numeri, positiva all'esterno, pertanto f è strettamente convessa in $]-\infty,-5/2]$ e in $[0,+\infty[$ e strettamente concava in [-5/2,0].

PROBLEMA 3

Considerate le tre funzioni

$$f(x) = \cos(2x + x^2)$$
, $g(x) = e^{2x + x^2}$, $h(x) = \sin(2x + 5x^2)$.

- a) Scrivete lo sviluppo di Taylor di ordine 3 e centrato in $x_0 = 0$ di f(x).
- Scrivete lo sviluppo di Taylor di ordine 3 e centrato in $x_0 = 0$ di g(x).
- Scrivete lo sviluppo di Taylor di ordine 3 e centrato in $x_0 = 0$ di h(x). Calcolate $\lim_{x\to 0} \frac{f(x) g(x) + h(x)}{x^3}$.
- Calcolare al variare di $\, lpha \in \mathbb{R} \,$ il limite $\, \lim_{x o 0^+} rac{f(x) g(x) + h(x) + lpha x^3}{\sigma^4} \, .$

Per l'ultimo punto conviene calcolare direttamente gli sviluppi di ordine 4. Osserviamo che sia $2x+x^2$ che $2x+5x^2$ sono infinitesimi di ordine 1, pertanto $o(2x+ax^2)^k=o(x^k)$. Abbiamo velocemente

$$f(x) = 1 - \frac{(2x+x^2)^2}{2} + \frac{(\cdots)^4}{24} + o(\cdots)^4$$

$$= 1 - 2x^2 - 2x^3 - \frac{x^4}{2} + \frac{16x^4}{24} + o(x^4) = 1 - 2x^2 - 2x^3 + \frac{x^4}{6} + o(x^4)$$

$$g(x) = 1 + (2x+x^2) + \frac{(\cdots)^2}{2} + \frac{(\cdots)^3}{6} + \frac{(\cdots)^4}{24} + o(\cdots)^4$$

$$= 1 + 2x + x^2 + 2x^2 + 2x^3 + \frac{x^4}{2} + \frac{8x^3}{6} + \frac{12x^4}{6} + \frac{16x^4}{24} + o(x^4)$$

$$= 1 + 2x + 3x^2 + \frac{10x^3}{3} + \frac{19x^4}{6} + o(x^4)$$

$$h(x) = (2x + 5x^2) - \frac{(\cdots)^3}{6} + o(\cdots)^4 = 2x + 5x^2 - \frac{4x^3}{3} - 10x^4 + o(x^4)$$

Allora

$$f(x) - g(x) + h(x) = -\frac{20x^3}{3} - 13x^4 + o(x^4)$$

pertanto

$$\lim_{x \to 0} \frac{f(x) - g(x) + h(x)}{x^3} = \lim_{x \to 0} \frac{-\frac{20x^3}{3} - 13x^4 + o(x^4)}{x^3} = -\frac{20}{3}$$

е

$$\begin{split} \lim_{x \to 0^+} \frac{f(x) - g(x) + h(x) + \alpha x^3}{x^4} &= \lim_{x \to 0^+} \frac{\left(\alpha - \frac{20}{3}\right) x^3 - 13 x^4 + o(x^4)}{x^4} \\ &= \begin{cases} +\infty & \text{se } \alpha > 20/3 \\ -13 & \text{se } \alpha = 20/3 \\ -\infty & \text{se } \alpha < 20/3. \end{cases} \end{split}$$

PROBLEMA 4

Considerate la funzione integrale $F(x) = \int_0^x \left(2 - \frac{\sin(2t)}{t}\right) dt$.

- a) Calcolate $\lim_{x\to 0} \frac{F(x)}{x^3}$.
- b) Posto $a_n = F(1/n)$, determinate il carattere della serie $\sum a_n$.
- c) Posto $b_n=F(n^\beta)$, determinate per quali valori dell'esponente $\beta\in\mathbb{R}$ risulta convergente la serie $\sum_n b_n$.

Posto per il momento $f(x)=2-\frac{\sin(2x)}{x}$, di modo che $F(x)=\int_0^x f(t)\,dt$, osserviamo intanto che

$$f(x) = 2 - \frac{2x - 8x^3/6 + o(x^4)}{x} = \frac{4x^2}{3} + o(x^3)$$

e in particolare $f(x) \to 0$ per $x \to 0$. Allora conviene estendere f ponendo

$$f(x) = \begin{cases} 2 - \frac{\sin(2x)}{x} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

ed f risulta continua in zero. Allora $F(x) \to 0$ per $x \to 0$, per il teorema della media (o mille altri motivi) dunque il limite $F(x)/x^3$ si presenta nella forma 0/0 e possiamo applicare il Teorema di de l'Hôpital. Ricordando che per il Teorema fondamentale del calcolo F'(x) = f(x), abbiamo

$$\lim_{x \to 0} \frac{F(x)}{x^3} = \lim_{\substack{x \to 0 \\ H}} \frac{f(x)}{3x^2} = \lim_{x \to 0} \frac{4x^2/3 + o(x^3)}{3x^2} = \frac{4}{9}.$$

Da questo segue che F è un infinitesimo di ordine 3 con parte principale $4x^3/9$, ossia

$$F(x) = \frac{4x^3}{9} + o(x^3)$$
.

In particolare

$$a_n = F(1/n) = \frac{4}{9n^3} + o(1/n^3)$$

(che è una quantità positiva almeno per n grande), quindi applichiamo il criterio del confronto asintotico fra a_n e $1/n^3$ ottenendo che $\sum_n a_n$ ha lo stesso carattere di $\sum_n 1/n^3$, che converge. Per b_n il discorso è più articolato: se $\beta>0$ abbiamo che $n^\beta\to+\infty$ e visto che la funzione integranda va a 2 per $x\to+\infty$ anche $b_n\to+\infty$ e la serie diverge positivamente. Se $\beta=0$ il termine b_n è costante e non nullo (positivo) quindi la serie diverge positivamente. Invece per $\beta<0$, analogamente al caso di a_n , la serie $\sum_n b_n$ ha lo stesso carattere di $\sum_n n^{3\beta}=\sum_n 1/n^{-3\beta}$, che converge se e solo se $-3\beta>1$ ossia $\beta<-1/3$, mentre (essendo a termini positivi) diverge positivamente per gli altri valori di $\beta<0$. In conclusione la serie converge per $\beta<-1/3$ e diverge positivamente per $\beta\geq-1/3$. Il caso a_n corrispondeva a $\beta=-1$.