Quantifying Frontal EEG Asymmetry

Michael Ballantyne, Ty Gregg, Charlie Ramser, Ally Warner

EEG Asymmetry in Neuroscience

Emotional differences

 For our experiment they are looking at the difference between high anxiety and low anxiety groups.

Examples

- The asymmetry has been said to be a emotional moderator and mediator
- Asymmetries have also been associated with risk of depression

EEG Data

- For each individual there are 129 channels.
 - One reference channel.
- Eight minutes of data at a sampling rate of 250 Hz.
 - Four minutes with eyes open.
 - Four minutes with eyes closed.
- Our code takes channels from the left and the right, transforms them and "averages".

Sample from the raw EEG data.

Alpha Score

- Our GOAL
- Frontal lobe differences occur for waves with 8-13 hz frequencies.

Create a score from this set of values

Why Apply a Window?

- Reduces spectral leakage.
- Makes different signals more distinguishable.

Hamming Window

 Hamming and Hann windows are moderate windows and find a good balance between the trade off's of windowing.

Overlapping Windows

Non-overlapping windows

50% overlap.

75% overlap.

Window Lengths

- Must use a power of 2 samples for efficient fast fourier transform.
- Need to transform enough samples to obtain sufficient frequency resolution.
- Want data to be weighted evenly, even in the face of windowing.
- Fast fourier transform assumes periodic behavior, and a smaller window will appear more periodic.

Interpreting the Fast Fourier Transform

- Fast fourier transform returns coefficients of sin and cosine terms.
- Each coefficient indicates the amplitude of the given component.
- Which values of the frequency spectrum represent the amplitude of a frequency of interest?

Fast Fourier Transform Example

Another FFT Example...

1 amp 3.2 hz, 1 amp 3.5hz, 2 amp 16 hz

When Sampling Rate and window Length Don't Match

- The previous examples assumed the same window length as sampling frequency, and had 1hz long buckets.
- Using twice as many samples as our sampling frequency we'd have 1/2 hz buckets
- bucket = frequency * (samples/sampling rate) + 1

Calculating Asymmetry

- Why do we square the bucket values?
 - Alpha power is typically analyzed in μV²
- Score the participants using a ratio.
 - In(Right alpha score) In(Left alpha score) or
 - In(Right alpha score/Left alpha score)
 - The distribution of the alpha values is less skewed and less kurtosis, therefore making the data more normal.
 - Hypothesis tests can be more accurately run on normal distributions.

Overview of Analysis

- Extract specific channels for the right and left brain.
- Create properly sized and spaced windows.
- Apply Hamming window.
- Apply Fourier Transform.
- Average transformed windows for right and left side.
- Extract alpha values.
- Calculate ratio of the alpha scores.