Uncertainty Quantification for Machine Learning algorithms An introduction to Conformal Prediction

Claire Boyer Margaux Zaffran

25-04-2023

MASPIN Days at FEMTO-ST

Machine learning context

Quantile Regression

Split Conformal Prediction (SCP)

Jackknife/cross-val

Distribution shift

Learning scenarios

ML develops generic methods for solving different types of problems:

- Supervised learning
 Goal: learn from examples
- Unsupervised learning
 Goal: learn from data alone, extract structure in the data
- Reinforcement learning
 Goal: learn by exploring the environment (e.g. games or autonomous vehicle)

Learning scenarios

source: fidle-cnrs 2/44

Supervised learning

Supervised learning, more formally

• Supervised learning: given a training sample $(X_i, Y_i)_{1 \le i \le n}$, the goal is to "learn" a predictor f_n such that

$$f_n(X_i) \simeq Y_i$$
 and above all $f_n(X_{\text{new}}) \simeq Y_{\text{new}}$ prediction on training data of the prediction on test (unseen) data

Often

- (classification) $X \in \mathbb{R}^d$ and $Y \in \{-1, 1\}$
- (regression) $X \in \mathbb{R}^d$ and $Y \in \mathbb{R}$

How to measure the performance of a predictor?

- Loss function in general: $\ell(Y, f(X))$ measures the goodness of the prediction of Y by f(X)
- Examples:
 - (classification) Prediction loss: $\ell(Y, f(X)) = \mathbf{1}_{Y \neq f(X)}$
 - (regression) Quadratic loss: $\ell(Y, f(X)) = |Y f(X)|^2$
- The performance of a predictor f in regression is usually measured through the risk

$$\boxed{\mathsf{Risk}_{\ell}(f) = \mathbb{E}\Big[\ell\big(Y_{\mathsf{new}}, f(X_{\mathsf{new}})\big)\Big]}$$

- A minimizer f^* of the risk is called a Bayes predictor
 - (classification) $f^*(X) = \operatorname{argmax}_k \mathbb{P}(Y = k|X)$
 - (regression) $f^*(X) = \mathbb{E}[Y|X]$

Learning by minimizing the empirical risk

- We want to construct a predictor with a small risk
- ullet or an estimator of the Bayes predictor f^{\star}
- The distribution of the data is in general unknown, so is the risk
- Instead, given some training samples $(X_1, Y_1), \dots (X_n, Y_n)$, find the best predictor f that minimizes the empirical risk

$$\hat{\mathcal{R}}_n(f) := \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f(X_i)).$$

 Learning means retrieving information from training data by constructing a predictor that should have good performance on new data

There exist plenty of learners

 $see \ https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html$

On the importance of quantifying uncertainty

Pennsylvania LIVE: Donald Trump (R) is leading. An estimated 78 percent of votes have been counted. Where the vote could end up These estimates are calculated based on past election returns as well as votes counted in the presidential race so far, View details We estimate that 78 percent of the total votes cast have been counted. Breaking down the estimates Biden is favored to win the state, but Trump still has a chance to win. These are the most likely outcomes. Urban counties Counted votes | Estimates of final vote tally Lighter colors are less likely outcomes Trump Suburban counties 2.3M votes Rural counties The Washington Post 4 November 2020, 11:50 PM

Machine learning context

Quantile Regression

Split Conformal Prediction (SCP)

Jackknife/cross-val

Distribution shift

Reminder about quantiles

- Quantile level $\beta \in [0,1]$
- $Q_X(\beta) = \inf\{x \in \mathbb{R}^d, \mathbb{P}(X \le x) \ge \beta\} = \inf\{x \in \mathbb{R}^d, F_X(x) \ge \beta\}$
- $q_{\beta}(X_1,\ldots,X_n)=\lceil \beta \times n \rceil$ smallest value of (X_1,\ldots,X_n)

Median regression

- The Bayes predictor depends on the chosen loss function
- Mean Absolute Error (MAE) $\ell(Y, Y') = |Y Y'|$
- Associated risk Risk $_{\ell}(f) = \mathbb{E}[|Y f(X)|]$
- Bayes predictor $f^* \in \operatorname{argmin} \operatorname{Risk}_{\ell}(f)$

$$f^*(X) = median[Y|X] = Q_{Y|X}(0.5)$$

Generalization: Quantile regression

- Quantile level $\beta \in [0,1]$
- Pinball loss

$$\ell_{\beta}(Y,Y') = \frac{\beta}{|Y-Y'|} \mathbb{1}_{\{|Y-Y'| \ge 0\}} + (1-\frac{\beta}{|Y|}) |Y-Y'| \mathbb{1}_{\{|Y-Y'| \le 0\}}$$

- Associated risk $\operatorname{Risk}_{\ell_{\beta}}(f) = \mathbb{E}\left[\ell_{\beta}(Y, f(X))\right]$
- Bayes predictor $f^* \in \underset{f}{\operatorname{argmin}} \operatorname{Risk}_{\ell_{\beta}}(f)$

$$f^{\star}(X) = Q_{Y|X}(\beta)$$

Figure 1: Pinball losses

Quantile regression

Warning

No theoretical guarantee with a finite sample

$$\mathbb{P}\left(Y \in \left[\hat{Q}_{Y|X}(\beta/2); \hat{Q}_{Y|X}(1-\beta/2)\right]\right) \neq 1-\beta$$

Machine learning context

Quantile Regression

Split Conformal Prediction (SCP)

Standard regression case

Conformalized Quantile Regression (CQR)

Generalization of SCP: going beyond regression

Jackknife/cross-val

Distribution shift

Quantifying predictive uncertainty

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- n training samples $(X_i, Y_i)_{i=1}^n$
- Goal: predict an unseen point Y_{n+1} at X_{n+1} with confidence
- How? Given a miscoverage level $\alpha \in [0,1]$, build a predictive set C_{α} such that:

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}_{\alpha}\left(X_{n+1}\right)\right\} \ge 1 - \alpha,\tag{1}$$

and \mathcal{C}_{α} should be as small as possible, in order to be informative.

SCP in regression

Training set Calibration set Tes

Algorithm

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm \hat{A} on your proper training set
- 3. On the calibration set, get prediction values with \hat{A}
- 4. Obtain a set of $n_{cal} + 1$ conformity scores:

$$S = \{S_i = |\hat{A}(X_i) - Y_i|, i \in \text{Cal}\} \cup \{+\infty\}$$
(+ worst-case scenario)

- 5. Compute the $1-\alpha$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
- 6. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{lpha}(X_{n+1}) = \left[\hat{A}(X_{n+1}) - q_{1-lpha}\left(\mathcal{S}
ight); \hat{A}(X_{n+1}) + q_{1-lpha}\left(\mathcal{S}
ight)
ight]$$

SCP in practice (splitting)

SCP in practice (training)

► Learn $\hat{\mu}$ on the training set

SCP in practice (calibration)

On the calibration set,

- ightharpoonup Predict with $\hat{\mu}$
- ► Get the residuals
- ► Compute the (1α) empirical quantile of the |residuals| \cup {+ ∞ }, noted $q_{1-\alpha}$ (residuals)

SCP in practice (prediction)

On the test set,

- ▶ Predict with $\hat{\mu}$
- ▶ Build $\widehat{\mathcal{C}}_{\alpha}(x)$: $[\widehat{\mu}(x) \pm q_{1-\alpha} \text{ (residuals)}]$

SCP in theory

Definition (Exchangeability)

 $(X_i, Y_i)_{i=1}^n$ are exchangeable if for any permutation σ of [1, n] we have:

$$\mathcal{L}\left(\left(X_{1},\,Y_{1}\right),\ldots,\left(X_{n},\,Y_{n}\right)\right)=\mathcal{L}\left(\left(X_{\sigma(1)},\,Y_{\sigma(1)}\right),\ldots,\left(X_{\sigma(n)},\,Y_{\sigma(n)}\right)\right),$$

where \mathcal{L} designates the joint distribution.

Examples of exchangeable sequences

- i.i.d. samples
- Gaussian samples w/ expectation $m\mathbb{1}_d$ and covariance $\gamma^2 \mathrm{Id}_d + c\mathbb{1}_{d \times d}$

SCP in theory, cont'd

This procedure enjoys the finite sample guarantee proposed and proved in Vovk et al. (2005) and Lei et al. (2018).

Theorem

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable (or i.i.d.). SCP applied on $(X_i, Y_i)_{i=1}^n$ outputs an interval $\widehat{\mathcal{C}}_{\alpha}(X_{n+1})$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

If, in addition, the scores $\{S_i\}_{i\in\mathrm{Cal}}$ are almost surely distinct, then

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\} \leq 1 - \alpha + \frac{1}{n_{cal} + 1}.$$

 $m{\mathsf{X}}$ Marginal coverage: $\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{lpha}\left(X_{n+1}\right)|m{\mathsf{X}}_{n+1}=m{\mathsf{x}}\right\}\geq1-lpha$

Proof architecture of SCP guarantees

Lemma (Quantile lemma)

If $(U_1, \ldots, U_n, U_{n+1})$ are exchangeable, then for any $\beta \in]0,1[$:

$$\mathbb{P}\left(U_{n+1}\leq q_{\beta}(U_1,\ldots,U_n,+\infty)\right)\geq \beta.$$

Additionally, if $U_1, \ldots, U_n, U_{n+1}$ are almost surely distinct, then:

$$\mathbb{P}\left(U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, +\infty)\right) \leq \beta + \frac{1}{n+1}.$$

Note that when $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable,

- the scores $\{S_i\}_{i\in\mathrm{Cal}}\cup\{S_{n+1}\}$ are exchangeable,
- therefore applying the quantile lemma to the scores concludes the proof.

Proof of the quantile lemma

$$\begin{aligned} U_{n+1} &\leq q_{\beta}(U_1,\dots,U_n,+\infty) \Longleftrightarrow \frac{|\{i:U_i \leq U_{n+1}\}|}{n+1} \leq \beta \\ &\Longleftrightarrow \mathsf{rank}(U_{n+1}) \leq 1 + \beta(n+1) \end{aligned}$$
 Since $\mathsf{rank}(S_{n+1}) \sim \mathcal{U}(\{1,\dots,n+1\})$, one gets
$$\mathbb{P}\left(\mathsf{rank}(U_{n+1}) \leq 1 + \beta(n+1)\right) = \frac{\lfloor 1 + \beta(n+1) \rfloor}{n+1} \\ &\leq \frac{1 + \beta(n+1)}{n+1} = \beta + \frac{1}{n+1} \\ &\geq \beta \end{aligned}$$
 (still true w/ ties)

SCP: implementation details

Algorithm 1

Training set Calibration set Test set

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm \hat{A} on your proper training set
- 3. On the calibration set, get prediction values with \hat{A}
- 4. Obtain a set of $n_{cal} + 1$ conformity scores:

$$S = \{S_i = |\hat{A}(X_i) - Y_i|, i \in \text{Cal}\} \cup \{+\infty\}$$
 (+ worst-case scenario)

- 5. Compute the $1-\alpha$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
- 6. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \left[\widehat{\mathbf{A}}(X_{n+1}) - q_{1-\alpha}\left(\mathcal{S}\right); \widehat{\mathbf{A}}(X_{n+1}) + q_{1-\alpha}\left(\mathcal{S}\right)\right]$$

SCP: implementation details

Algorithm 2

Training set Calibration set Test set

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm \hat{A} on your proper training set
- 3. On the calibration set, get prediction values with \hat{A}
- 4. Obtain a set of n_{cal} conformity scores:

$$S = \{S_i = |\hat{A}(X_i) - Y_i|, i \in Cal\}$$

- 5. Compute the $(1-\alpha)\left(\frac{1}{n_{\rm cal}}+1\right)$ quantile of these scores, noted $q_{1-\alpha}\left(\mathcal{S}\right)$
- 6. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \left[\hat{\mathbf{A}}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \hat{\mathbf{A}}(X_{n+1}) + q_{1-\alpha}(\mathcal{S}) \right]$$

Standard mean-regression SCP is not adaptive

On the test set,

- ▶ Predict with $\hat{\mu}$
- ▶ Build $\widehat{\mathcal{C}}_{\alpha}(x)$: $[\widehat{\mu}(x) \pm q_{1-\alpha} \text{ (residuals)}]$

CQR (Romano et al., 2019)

Algorithm 1

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train two algorithms $\widehat{QR}_{\alpha/2}$ and $\widehat{QR}_{1-\alpha/2}$ on the proper training set
- 3. Obtain a set of $n_{\text{cal}} + 1$ conformity scores S: $S = \{S_i = \max\left(\widehat{QR}_{\alpha/2}(X_i) Y_i, Y_i \widehat{QR}_{1-\alpha/2}(X_i)\right), i \in \text{Cal}\} \cup \{+\infty\}$
- 4. Compute the $1-\alpha$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
- 5. For a new point X_{n+1} , return $\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = [\widehat{QR}_{\alpha/2}(X_{n+1}) q_{1-\alpha}(\mathcal{S}); \widehat{QR}_{1-\alpha/2}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})]$

CQR (Romano et al., 2019)

Algorithm 2

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train two algorithms $\widehat{QR}_{\alpha/2}$ and $\widehat{QR}_{1-\alpha/2}$ on the proper training set
- 3. Obtain a set of n_{cal} conformity scores S: $S = \{S_i = \max\left(\widehat{QR}_{\alpha/2}(X_i) Y_i, Y_i \widehat{QR}_{1-\alpha/2}(X_i)\right), i \in Cal\} \cup \{\pm\infty\}$
- 4. Compute the $(1-\alpha)\left(\frac{1}{n_{\rm cal}}+1\right)$ quantile of these scores, noted $q_{1-\alpha}\left(\mathcal{S}\right)$
- 5. For a new point X_{n+1} , return $\widehat{C}_{\alpha}(X_{n+1}) = [\widehat{QR}_{\alpha/2}(X_{n+1}) q_{1-\alpha}(\mathcal{S}); \widehat{QR}_{1-\alpha/2}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})]$

CQR in practice

Randomly split the data to obtain a proper training set and a calibration set. Keep the test set.

CQR in practice (training)

CQR in practice (calibration)

- Predict with $\widehat{QR}_{\alpha/2}$ and $\widehat{QR}_{1-\alpha/2}$
- ► Compute the scores $S = \{S_i\}_{Cal} \cup \{+\infty\}$
- ► Get the (1α) empirical quantile of the S_i , noted $q_{1-\alpha}(S)$

$$\hookrightarrow$$
 $S_i := \max \left\{ \widehat{QR}_{\alpha/2}(X_i) - Y_i, Y_i - \widehat{QR}_{1-\alpha/2}(X_i) \right\}$

CQR in practice (prediction)

▶ Build

$$\widehat{C}_{\alpha}(x) = \left[\widehat{QR}_{\alpha/2}(x) - q_{1-\alpha}(S); \widehat{QR}_{1-\alpha/2}(x) + q_{1-\alpha}(S)\right]$$

CQR in theory

This procedure enjoys the finite sample guarantee proposed and proved in Romano et al. (2019).

Theorem

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable (or i.i.d.). CQR on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{\mathcal{C}}_{\alpha}(X_{n+1})$ such that:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\}\geq 1-\alpha.$$

If, in addition, the scores $\{S_i\}_{i\in\mathrm{Cal}}$ are almost surely distinct, then

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)\right\} \leq 1 - \alpha + \frac{1}{n_{cal} + 1}.$$

Proof: application of the quantile lemma.

$$m{\mathsf{X}}$$
 Marginal coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right) | \underline{X_{n+1} = \mathbf{\mathsf{X}}}\right\} \geq 1 - \alpha$

SCP in general

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm \hat{A} on your proper training set
- 3. On the calibration set, obtain $n_{\text{cal}}+1$ conformity scores $\mathcal{S}=\{S_i=\mathbf{s}\,(X_i,Y_i),i\in\text{Cal}\}\cup\{+\infty\}$ Ex 1: $\mathbf{s}\,(X_i,Y_i)=|\hat{A}(X_i)-Y_i|$ in regression with standard scores Ex 2: $\mathbf{s}\,(X_i,Y_i)=\max\left(\widehat{QR}_{\alpha/2}(X_i)-Y_i,Y_i-\widehat{QR}_{1-\alpha/2}(X_i)\right)$ in CQR
- 4. Compute the $1-\alpha$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
- 5. For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{lpha}(X_{n+1}) = \{ y \text{ such that } \mathbf{s} \left(\hat{A}(X_{n+1}), y \right) \leq q_{1-lpha}\left(\mathcal{S} \right) \}$$

⇒what is important is the definition of the conformity scores

SCP: what choices for the regression scores?

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \{ y \text{ such that } \mathbf{s} (\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(\mathcal{S}) \}$$

	Standard SCP	Locally weighted SCP	CQR
	Vovk et al. (2005)	Lei et al. (2018)	Romano et al. (2019)
s (X, Y)	$ \hat{A}(X) - Y $	$\frac{ \hat{A}(X) - Y }{\hat{\rho}(X)}$	$\max(\widehat{QR}_{\alpha/2}(X) - Y, \\ Y - \widehat{QR}_{1-\alpha/2}(X))$
$\widehat{\mathcal{C}}_{lpha}(x)$	$\left[\hat{\mathbf{A}}(x) \pm q_{1-\alpha}\left(\mathcal{S}\right)\right]$	$\left[\hat{A}(x) \pm q_{1-\alpha}(S)\hat{\rho}(x)\right]$	$\widehat{QR}_{\alpha/2}(x) - q_{1-\alpha}(\mathcal{S});$ $\widehat{QR}_{1-\alpha/2}(x) + q_{1-\alpha}(\mathcal{S})]$
Visu.	2	2 2 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
√	black-box around a	black-box around a	adaptive
	"usable" prediction	"usable" prediction	
Х	not adaptive	limited adaptiveness	no black-box around a "usable" prediction

SCP in classification

- $Y_i \in \{1, \dots, C\}$ (C classes)
- $\hat{A}(X) = (\hat{p}_1(X), \dots, \hat{p}_C(X))$ (estimated probabilities)
- Score of the *i*-th calibration point: $S_i = 1 (\hat{A}(X_i))_{Y_i}$
- For a new point X_{n+1} , return

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \{ y \text{ such that } s(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(\mathcal{S}) \}$$

SCP in classification in practice

Ex:
$$Y_i \in \{\text{"dog"}, \text{"tiger"}, \text{"cat"}\}$$
, with $\alpha = 0.1$

Scores on the calibration set

Cal_i	dog	dog	dog	tiger	tiger	tiger	tiger	cat	cat	cat
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.15	0.15	0.20	0.15	0.15	0.25	0.20
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.60	0.55	0.50	0.45	0.40	0.35	0.45
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.25	0.30	0.30	0.40	0.45	0.40	0.35
Si	0.05	0.1	0.15	0.40	0.45	0.50	0.55	0.55	0.6	0.65

$$\begin{array}{ll} \bullet & q_{1-\alpha}(\mathcal{S}) = 0.65 & \lceil 0.9 \times (10+1) \rceil = 10 \\ \bullet & \hat{A}(X_{new}) = (0.05, 0.60, 0.35) \\ & \hookrightarrow & s(\hat{A}(X_{new}), \text{ "dog"}) = 0.95 & \text{"dog"} \notin \mathcal{C}_{\alpha}(X_{new}) \\ & \hookrightarrow & s(\hat{A}(X_{new}), \text{ "tiger"}) = 0.40 \leq q_{1-\alpha}(\mathcal{S}) & \text{"tiger"} \in \mathcal{C}_{\alpha}(X_{new}) \\ & \hookrightarrow & s(\hat{A}(X_{new}), \text{"cat"}) = 0.65 \leq q_{1-\alpha}(\mathcal{S}) & \text{"cat"} \in \mathcal{C}_{\alpha}(X_{new}) \end{array}$$

•
$$C_{\alpha}(X_{new}) = \{\text{"tiger", "cat"}\}$$

SCP in classification in practice

Ex:
$$Y_i \in \{\text{"dog"}, \text{"tiger"}, \text{"cat"}\}$$
, with $\alpha = 0.1$

Scores on the calibration set

Cal_i	dog	dog	dog	tiger	tiger	tiger	tiger	cat	cat	cat
$\hat{\rho}_{\text{dog}}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.05	0.10	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.70	0.25	0.30	0.30
$\hat{ ho}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.25	0.65	0.60	0.55
S_i	0.05	0.1	0.15	0.15	0.20	0.25	0.30	0.35	0.40	0.45

•
$$q_{1-\alpha}(S) = 0.45$$

$$\lceil 0.9 \times (10+1) \rceil = 10$$

•
$$\hat{A}(X_{new}) = (0.05, 0.60, 0.35)$$

 $\hookrightarrow s(\hat{A}(X_{new}), \text{"dog"}) = 0.95$

$$\text{``dog''}\notin\mathcal{C}_{\alpha}(X_{new})$$

$$\hookrightarrow s(\hat{A}(X_{new}), \text{ "tiger"}) = 0.40 \le q_{1-\alpha}(S)$$
 "ti
$$\hookrightarrow s(\hat{A}(X_{new}), \text{ "cat"}) = 0.65$$
 "

"tiger"
$$\in \mathcal{C}_{\alpha}(X_{new})$$

$$C(X) = \int \text{"timor"}$$

$$\text{``cat''}\notin\mathcal{C}_{\alpha}(X_{new})$$

•
$$C_{\alpha}(X_{new}) = \{$$
 "tiger" $\}$

SCP in classification: comments on the naive version

- Facts about the previous method
 - prediction sets with the smallest average size
 - undercover hard subgroups
 - overcover easy ones
- Other types of scores can be used to improve the conditional coverage (as in regression with CQR or localized)

SCP in classification: Adaptive Prediction Sets

- 1. Sort in decreasing order $\hat{p}_{\sigma_i(1)}(X_i) \geq \ldots \geq \hat{p}_{\sigma_i(C)}(X_i)$
- 2. $S_i = \sum_{k=1}^{\sigma_i^{-1}(Y_i)} \hat{p}_{\sigma_i(k)}(X_i)$ (sum of the estimated probabilities associated to classes at least as large as that of the true class Y_i)
- 3. Return the classes $\sigma_{\text{new}}(1), \dots, \sigma_{\text{new}}(r^*)$ where

$$r^\star = rg \max_{1 \leq r \leq \mathcal{C}} \left\{ \sum_{k=1}^r \hat{p}_{\sigma_{\mathsf{new}}(k)}(X_{\mathsf{new}}) < q_{1-lpha}(\mathcal{S})
ight\} + 1$$

SCP in classification in practice: Adaptive Prediction Sets

Ex:
$$Y_i \in \{\text{"dog"}, \text{"tiger"}, \text{"cat"}\}$$
, with $\alpha = 0.1$

Scores on the calibration set

Cal_i	dog	dog	dog	tiger	tiger	tiger	tiger	cat	cat	cat
$\hat{p}_{\text{dog}}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.10	0.25	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.75	0.40	0.30	0.30
$\hat{\rho}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.15	0.35	0.60	0.55
Si	0.95	0.90	0.85	0.85	0.80	0.75	0.75	0.75	0.60	0.55

- $q_{1-\alpha}(S) = 0.95$
- Ex 1: $\hat{A}(X_{new}) = (0.05, 0.45, 0.5), r^* = 2$ $C_{\alpha}(X_{new}) = \{ \text{"tiger", "cat"} \}$
- Ex 2: $\hat{A}(X_{new}) = (0.03, 0.95, 0.02), r^* = 1$ $\mathcal{C}_{\alpha}(X_{new}) = \{\text{``tiger''}\}$

Split Conformal prediction: summary

- Simple procedure which
 - ullet quantifies the uncertainty of a predictive model \hat{A}
 - by returning predictive regions
- Adapted to any predictive algorithm (neural nets, random forests...)
- Distribution-free as long as the data are exchangeable (and so are the scores)
- Finite-sample guarantees
- Marginal theoretical guarantee over the joint distribution of (X, Y), and not conditional, i.e., no guarantee that $\forall x \in \mathbb{R}$:

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right) \middle| X_{n+1} = x\right\} \ge 1 - \alpha.$$

(despite some heuristics)

Challenges

• Conditional coverage

- (Previous Sec.)
- Computational cost vs. statistics power (Next Sec.: Jackknife)
- Exchangeability

(Last Sec.: distribution shift)

Machine learning context

Quantile Regression

Split Conformal Prediction (SCP)

Jackknife/cross-val

Distribution shift

Full conformal prediction

Method: for a candidate (X_{new}, y) ,

- 1. Train the algorithm \hat{A}_y on $\{(X_1, Y_1), \dots, (X_n, Y_n)\} \cup \{(X_{\text{new}}, y)\}$
- 2. Scores

$$\mathcal{S}^{(\mathsf{train})} = \left\{ s(\hat{\mathcal{A}}_y(X_i), Y_i) \right\} \cup \left\{ s(\hat{\mathcal{A}}_y(X_{\mathsf{new}}), y) \right\}$$

- 3. $y \in \mathcal{C}_{\alpha}(X_{\text{new}})$ if $s(\hat{A}_{y}(X_{\text{new}}), y) \leq q_{1-\alpha}(\mathcal{S})$
- ✓ Theoretical guarantees (provided that \hat{A} handles exchangeable training data in a symmetric way)
- Computationally costly: not used in practice

Jackknife: naive predictive interval

Based on leave-one-out (LOO) residuals

- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Train \hat{A}_{-i} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO scores $S = \left\{ |\hat{A}_{-i}(X_i) Y_i| \right\}_i \cup \{+\infty\}$ (in standard reg)
- Train \hat{A} on \mathcal{D}_n
- Build the predictive interval: $\left[\hat{A}(X_{n+1}) \pm q_{1-lpha}(\mathcal{S})\right]$

Warning

No guarantee on the prediction of \hat{A} with scores based on $(\hat{A}_{-i})_i$

Jackknife+ (Barber et al., 2021)

Based on leave-one-out (LOO) residuals

- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Train \hat{A}_{-i} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO predictions (in standard reg) $\mathcal{S}_{\mathsf{up}/\mathsf{down}} = \left\{ \hat{A}_{-i}(X_{n+1}) \pm |\hat{A}_{-i}(X_i) Y_i| \right\}_i \cup \{\pm \infty\}$
- ullet Build the predictive interval: $\left[q_{lpha/2}(\mathcal{S}_{\mathsf{down}});q_{1-lpha/2}(\mathcal{S}_{\mathsf{up}})
 ight]$

Theorem

If $\mathcal{D}_n \cup (X_{new}, Y_{new})$ are exchangeable and the algorithm treats the data points symmetrically, then $\mathbb{P}(Y_{new} \in \mathcal{C}_{\alpha}(X_{new})) \geq 1 - 2\alpha$.

CV+ (Barber et al., 2021)

Train	Train	Cal	Test
Train	Cal	Train	Test
Cal	Train	Train	Test

- Based on cross-validation residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- 1. Split \mathcal{D}_n into K folds F_1, \ldots, F_K
- 2. Train \hat{A}_{-F_k} on $\mathcal{D}_n \setminus F_k$
- 3. Cross-val predictions (in standard reg) $S_{\text{up/down}} = \left\{ \left\{ \hat{A}_{-F_k}(X_{n+1}) \pm |\hat{A}_{-F_k}(X_i) Y_i| \right\}_{i \in F_k} \right\}_k \cup \{\pm \infty\}$
- 4. Build the predictive interval: $[q_{\alpha}(\mathcal{S}_{\mathsf{down}}); q_{1-\alpha}(\mathcal{S}_{\mathsf{up}})]$

Theorem

Under data exchangeability and algorithm symmetry, then $\mathbb{P}(Y_{new} \in \mathcal{C}_{\alpha}(X_{new})) \geq 1 - 2\alpha - \min\left(\frac{2(1-1/K)}{n/K+1}, \frac{1-K/n}{K+1}\right) \geq 1 - 2\alpha - \sqrt{2/n}.$

Machine learning context

Quantile Regression

Split Conformal Prediction (SCP)

Jackknife/cross-val

Distribution shift

- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman,L. (2018). Distribution-Free Predictive Inference for Regression.Journal of the American Statistical Association.
- Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002). Inductive Confidence Machines for Regression. In *Machine Learning: ECML 2002*. Springer.
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. *Advances in Neural Information Processing Systems*, 32.

References ii

Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.