Hyperbolic Three Manifold

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 21, 2024

Discrete Isometry Group

Hyperbolic Geometry

- M is hyperbolic if it admits a metric with sectional curvature -1.
- Equivalently, $M \cong \mathbb{H}^3/\Gamma$, where \mathbb{H}^3 is the hyperbolic space, Γ is a discrete group of isometry.

$$\mathbb{H}^3 = \{(x+iy,t) \in \mathbb{C} \times \mathbb{R}^+ | t > 0\}$$
$$ds^2 = \frac{dx^2 + dy^2 + dt^2}{t^2}$$

Hyperbolic horosphere

Definition (Horosphere)

A horosphere about ∞ in $\partial \mathbb{H}^3$ is a plane parallel to \mathbb{C} , consisting of points $\{(x+iy,c)\in\mathbb{C}\times\mathbb{R}\}$ where c>0 is a constant.

When an isometry is applied that takes ∞ to some $p \in \mathbb{C}$, a horosphere is taken to a Euclidean sphere tangent to p, which is a horosphere about p. A *horoball* is the region interior to a horosphere.

Hyperbolic horosphere

 ∞

The induced metric on a horosphere is Euclidean:

$$ds^{2} = \frac{dx^{2} + dy^{2} + dz^{2}}{z^{2}} = \frac{dx^{2} + dy^{2}}{c^{2}}$$

Discrete Isometry Group

Suppose an orientable 3-manifold M has a complete hyperbolic structure. Then the developing map $D: \tilde{M} \to \mathbb{H}^3$ is an isometric covering map, \mathbb{H}^3 is the universal cover of M. The deck transformations are then the elements of the holonomy group $\rho(\pi_1(M)) = \Gamma \leq PSL(2,\mathbb{C})$. M is homeomorphic to $M \cong \mathbb{H}^3/\Gamma$.

Discrete Isometry Group

Definition (Hyperbolic Isometry)

The isometry group of \mathbb{H}^3 is $PSL(2,\mathbb{C})$,

$$A=egin{pmatrix} a & b \ c & d \end{pmatrix}, \quad a,b,c,d\in\mathbb{C}, ad-bc=1.$$

the matrix is well-defined up to multiplication by $\pm Id$.

Definition (Conjugacy)

We say $A \in PSL(2,\mathbb{C})$ is *conjugate* to $B \in PSL(2,\mathbb{C})$ if there exists $U \in PSL(2,\mathbb{C})$ such that

$$A = UBU^{-1}$$
.

The *trace* of *A* is the trace of its normalized matrix:

$$\operatorname{tr}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d.$$

Möbius Transformation

Theorem

Apart from the identity, any element of $PSL(2,\mathbb{C})$ is exactly one of the following:

- elliptic which has two fixed point on $\partial \mathbb{H}^3$ and rotates about the geodesic axis between them in \mathbb{H}^3 , fixing the axis pointwisely.
- 2 parabollic, which has a single fixed point on $\partial \mathbb{H}^3$.
- **3** loxodromic, which has two fixed points on $\partial \mathbb{H}^3$, which dilates and rotates about the axis between them.

Parabolics and loxodromics have fixed points on $\partial \mathbb{H}^3$; elliptics have fixed points in the interior of \mathbb{H}^3 .

Möbius Transformation

Lemma

Apart from the identity, any element of $PSL(2,\mathbb{C})$ is exactly one of the following:

1 A is parabolic if and only if $tr(A) = \pm 2$, and if and only if A is conjugate to

$$z \mapsto z + 1$$
.

2 A is elliptic if and only if $tr(A) \in (-2,2) \subset \mathbb{R} \subset \mathbb{C}$, and if and only if A is conjugate to

$$z \mapsto e^{2i\theta}z$$
, $2\theta \neq 2n\pi$, $\forall n \in \mathbb{Z}$.

3 A is loxodromic if and only if $tr(A) \in \mathbb{C} - [-2, 2]$, and if and only if A is conjugate to

$$z \mapsto \zeta^2 z \quad |\zeta| > 1.$$

Kleinian Group

Definition (Kleinian Group)

A subgroup of $PSL(2,\mathbb{C})$ is said to be discrete if it contains no sequence of distinct elements converging to the identity element. A discrete subgroup of $PSL(2,\mathbb{C})$ is often called a *Kleinian group*.

Kleinian Group

Definition (Properly Discontinuous)

The action of a group $G \leq PSL(2,\mathbb{C})$ on \mathbb{H}^3 is properly discontinuous if for every closed ball $B \subset \mathbb{H}^3$, the set $\{\gamma \in G | \gamma(B) \cap B \neq \emptyset\}$ is a finite set.

Definition (Free)

The action of a group $G \leq PSL(2,\mathbb{C})$ on \mathbb{H}^3 is *free* if the identity element of G is the only element to have a fixed point in \mathbb{H}^3 .

The action of G is free if and only if G contains no elliptics.

Theorem

The action of a group $G \leq PSL(2,\mathbb{C})$ on \mathbb{H}^3 is free and properly discontinuous if and only if \mathbb{H}^3/G is a 3-manifold with a complete hyperbolic structure and with covering projection $\mathbb{H}^3 \to \mathbb{H}^3/G$.

Kleinian Group

face-pairing correspond to holonomy isometries:

$$T_E = rac{i}{\sqrt{\omega}} egin{pmatrix} 1 & 1 \ 1 & -\omega^2 \end{pmatrix}$$
 $T_S = egin{pmatrix} 1 & \omega \ 0 & 1 \end{pmatrix}$ $T_N = egin{pmatrix} 2 & -1 \ 1 & 0 \end{pmatrix}$

Figure: A fundamental domain of $\mathbb{S}^3 - K$, figure-8 knot K.

Elementary Groups

Definition (Elementary Groups)

A subgroup $G \leq PSL(2,\mathbb{C})$ is *elementary* if one of the following holds.

- The union of all fixed points on $\partial \mathbb{H}^3$ of all non-trivial elements of G is a single point on $\partial \mathbb{H}^3$.
- ② The union of all fixed points on $\partial \mathbb{H}^3$ of all non-trivial elements of G consists of exactly two points on $\partial \mathbb{H}^3$.
- **3** There exists $x \in \mathbb{H}^3$ such that for all $g \in G$, g(x) = x.

Elementary Groups

Proposition (Discrete Elementary Subgroup)

Let G be a discrete nontrivial elementary subgroup of $PSL(2,\mathbb{C})$ without elliptics. Then either

- the union of fixed points of nontrivial elements of G is a single point on $\partial \mathbb{H}^3$, G is isomorphic to \mathbb{Z} or $\mathbb{Z} \times \mathbb{Z}$, and G is generated by parabolics (fixing the same point on $\partial \mathbb{H}^3$), or
- ② the union of fixed points of nontrivial elements of G consists of two points on $\partial \mathbb{H}^3$, G is isomorphic to \mathbb{Z} , and G is generated by a single loxodromic leaving invariant the line between fixed points.

Thick and Thin Parts

Definition (rank-1, rank-2 cusps)

Suppose G is an infinite elementary discrete group in $PSL(2,\mathbb{C})$ fixing a single point on $\partial \mathbb{H}^3$. Let H be the closed horoball of height 1:

$$H = \{(x, y, z) | z \ge 1\}$$

G is isomorphic to \mathbb{Z} or $\mathbb{Z} \times \mathbb{Z}$.

- If $G \cong \mathbb{Z}$, the quotient of the horoball H/G is homeomorphic to the space $A \times [1, \infty)$, where A is an annulus, or cylinder. We say H/G is a rank-1 cusp.
- If $G \cong \mathbb{Z} \times \mathbb{Z}$, H/G is homeomorphic to $T \times [1, \infty)$, where T is a Euclidean tours. We say H/G is a rank-2 cusp.

Thick and Thin Parts

Definition (Injective Radius)

Suppose M is a complete hyperbolic 3-manifold and $x \in M$. The *injective radius* of x, denoted injrad(x), is defined to be the supremal radius r such that a metric r-ball around x is embedded.

Definition (ε -thin part and ε -thick part)

Let M be a complete hyperbolic 3-manifold, and let $\varepsilon > 0$. Define the ε -thin part of M, denoted as $M^{<\varepsilon}$ to be

$$M^{<\varepsilon} = \{x \in M | \text{injrad}(x) < \varepsilon/2\}.$$

Similarly, the ε -thick part, denoted as $M^{>\varepsilon}$ is defined to be

$$M^{>\varepsilon} = \{x \in M | \text{injrad}(x) > \varepsilon/2\}.$$

Thick and Thin Parts

Theorem (Structure of Thin Part)

There exists a universal constant $\varepsilon_3 > 0$ such that for $0 < \varepsilon < \varepsilon_3$, the ε -thin part of any complete, orientable, hyperbolic 3-manifold M consists of tubes around short geodesics, rank-1 cusps, and/or rank-2 cusps.

Figure: $M^{<\varepsilon}$ is a collection of cusps and tubes. $\sup \varepsilon_3$ is Margulis constant.

Finite Volume

Theorem

A hyperbolic 3-manifold M has finite volume if and only if M is closed (compact without boundary), or M is homeomorphic to the interior of a compact manifold \overline{M} with torus boundary components.

The complement of any knot or link in \mathbb{S}^3 with a hyperbolic structure must have finite hyperbolic volume.

Definition (Ideal Tetrahedron)

An *ideal tetrahedron* is a tetrahedron in \mathbb{H}^3 with all four vertices on $\partial \mathbb{H}^3$.

Figure: Hyperbolic ideal tetrahedron.

Given an ideal tetrahedron, e is one edge, the two vertices are 0 and ∞ , the 3rd vertex is 1, then the 4-th vertex is at z(e). z(e) is an invariant of the edge e.

Figure: Hyperbolic ideal tetrahedron.

Suppose edge invariance $z(e_1) = z$, then for e_2 edge $(1, \infty)$, apply Möbius transformation

$$w\mapsto \frac{w-1}{z-1}, \quad (0,1,\infty,z)\mapsto \left(\frac{-1}{z-1},0,\infty,1\right)^{(e_1)}$$

thus
$$z(e_2) = \frac{1}{1-z}$$
.

Figure: Hyperbolic ideal tetrahedron.

Suppose edge invariance $z(e_1) = z$, then for e_3 edge (z, ∞) , apply Möbius transformation

thus
$$z(e_3) = \frac{z-1}{z}$$

 $w\mapsto \frac{w-z}{-z}, \quad (0,1,\infty,z)\mapsto \left(1,\frac{1-z}{-z},\infty,\emptyset\right)^{(e_1)}$ thus $z(e_3) = \frac{z-1}{z}$.

Figure: Hyperbolic ideal tetrahedron.

Draw altitudes from 1 and z(e) to e, the perpendicular feet are p and q respectively. The signed distance from p to q is

$$\int_p^q \frac{dy}{y} = \ln|z(e)| - \ln 1 = \ln|z(e)|.$$

Hence

In z(e) = (signed distance between altitudes) + i(dihedral angle at <math>e)

Figure: An ideal tetrahedron with three vertices $0,1,\infty$ in the half-space model is determined by the position $z\in\mathbb{C}\cup\{\infty\}$ of the fourth vertex. A horosphere centered at the ideal vertex intersects the tetrahedron in a Euclidean triangle uniquely determined up to similarities.

Figure: At each vertex we have a Euclidean triangle: each vertex of the triangle has a complex angle z. We can assign the complex angles to the edges through the vertex. The argument is the dihedral angle of the edge.

Decorated Ideal Tetrahdron

Given an ideal tetrahedron, intersect the horspheres about $0, 1, \infty$ and z(e) with the ideal tetrahedron to obtain a decorated ideal tetrahedron. Each horosphere is orthogonal to three edges through the horosphere center. The spherical triangle corner angles equal to the corresponding dihedral angles.

Decorated Ideal Tetrahedron

Given a decorated ideal tetrahedron, the dihedral angles are

$$(0,\infty)$$
 : α $(1,z)$: α'
 $(1,\infty)$: β $(0,z)$: β'
 (z,∞) : γ $(0,1)$: γ'

The intersection between the horoball with the ideal tetrahedron is a Euclidean Δ :

$$\alpha + \beta + \gamma = \pi \quad \Delta_{\infty}$$

$$\alpha + \beta' + \gamma' = \pi \quad \Delta_{0}$$

$$\beta + \gamma' + \alpha' = \pi \quad \Delta_{1}$$

$$\gamma + \alpha' + \beta' = \pi \quad \Delta_{z}$$

$$\alpha' + \beta' + \gamma' = \pi,$$

$$(\alpha, \beta, \gamma) = (\alpha', \beta', \gamma').$$

By the Möbius transformation $w\mapsto 1/(w-1)$, vertex 1 is mapped to ∞ ,

$$(0,1,\infty,z)\mapsto (-1,\infty,0,1/(z-1)),$$

composed with a planar rigid motion to align the original Δ_1 with the original Δ_{∞} , $w\mapsto (1-z)w+1$,

$$(-1,\infty,0,1/(z-1))\mapsto (z,\infty,1,0)$$

namely $0 \leftrightarrow z$ and $1 \leftrightarrow \infty$, Then

$$e_1(0,\infty)\leftrightarrow e_1'(z,1)$$

$$e_2(1,\infty) \leftrightarrow e_2(\infty,1)$$

$$e_3(z,\infty) \leftrightarrow e_3'(0,1)$$

The Euclidean triangles Δ_0 , Δ_1 , Δ_∞ and Δ_z are all similar, one can be mapped to another by Möbius transformation, this implies $z(e_k) = z(e_k')$

$$z(e_1) = z$$
 $z(e_2) = \frac{1}{1-z}$ $z(e_3) = \frac{z-1}{z}$

$$z(e_1)z(e_2)z(e_3) = -1$$

$$1-z(e_1)+z(e_1)z(e_3) = 0$$
 $z(e_3) = \frac{z-1}{z}$

Figure: Edge invariances.

Consistency & Completeness Equations

Hyperbolic Ideal Triangulation

Definition (Triangulation)

Let $\Delta_1, \ldots, \Delta_n$ be identical copies of the standard oriented 3-simplex. A triangulation \mathcal{T} is a partition of the 4n faces of the tetrahedra into 2n pairs, and for each pair a simplicial isometry between two faces. The triangulation is *oriented* if the simplicial isometries are orientation-reversing. If we glue the tretrahedra along the simplicial isometries we get a topological space X. Let M be X minus the vertices of the triangulation: we say that τ is an *ideal triangulation* for M.

Hyperbolic Ideal Triangulation

Figure: A truncated tetrahedron.

Proposition

If \mathcal{T} is oriented then M is a topological 3-manifold, homeomorphic to the interior of a compact oriented manifold with boundary.

Proof.

To prove M is a manifold, we only need to check that a point $x \in e$ has a neighborhood homeomorphic to an open ball. A cycle of tetrahedra is attached to e, and since \mathcal{T} is oriented we are certain that a neighborhood of x is a cone over a 2-sphere and not over a projective plane.

Hyperbolic Ideal Triangulation

Figure: A truncated tetrahedron.

Proof.

If we truncate the tetrahedron before gluing them, we get a compact manifold $N\subset M$ with boundary such that

$$M \setminus N \cong \partial N \times [0,1).$$

Therefore M is homeomorphic to int(N).

Hyperbolic Structure - Consistency equation

Let \mathcal{T} be an oriented ideal triangulation with tetrahedra $\Delta_1, \ldots, \Delta_n$ of a 3-manifold M, where each Δ_i is ideal hyperbolic tetrahedron. The bijection between two ideal triangles is realised by a unique hyperbolic isometry.

We glue h tetrahedra around each edge e. Let z_1, z_2, \ldots, z_h be the complex moduli associated to the edges of the h tetrahedra incident to e. The sum of dihedra angles equals to 2π , and the product of the complex moduli equals to 1.

Hyperbolic Structure - Consistency Condition

Figure: The consistency equation.

The consistency equations are (assuming $\mathfrak{Im}(z_i) > 0$ for all i),

$$z_1 z_2 \dots z_h = 1$$

$$\arg(z_1) + \arg(z_2) + \dots + \arg(z_h) = 2\pi$$

Consistency Equation

Gluing of ideal tetrahedra. Fix an edge e of the gluing, and let T_1 be a tetrahedron with vertices $0,1,\infty,z(e_1)$, where e_1 running from 0 to ∞ is glued to e; then glue T_2 with $0,1,\infty,z(e_2)$ to T_1 e_2 running from 0 to ∞ is glued to e, the fourth vertex is at $z(e_1)z(e_2)$. Repeat this procedure. The fourth vertex of the final tetrahedron will be at

$$z(e_1)z(e_2)\cdots z(e_n)$$
.

Figure: Gluing equation.

Consistency Equation

Theorem (Consistency Equation)

Let M³ admit a topological ideal triangulation such that each ideal tetrahedron has a hyperbolic structure. The hyperbolic structures on the ideal tetrahedra induce a hyperbolic structure on the gluing, M, if and only if for each edge e,

$$\prod z(e_i) = 1 \quad \sum \arg(z(e_i)) = 2\pi,$$

where the product and sum are over edges that glue to e.

Figure: Gluing equation.

Our goal is to construct a *complete finite-volume* hyperbolic metric on M. If M has such a metric the link of very ideal vertex of \mathcal{T} is a triangulated torus and identifies a cusp of M. Namely, M is the interior of a compact 3-manifold N bounded by some tori.

Every boundary torus $T \subset \partial N$ is triangulated by \mathcal{T} . Every triangle in T is the truncation triangle of some Δ_i and hence inherits the complex moduli of the three adjacent edges of Δ_i , thus it has a Euclidean structure well-defined up to similarities. The triangle Euclidean structure determines a Euclidean structure of the torus T.

Figure: Completeness equation. $\mu(\gamma) = -w_{30}w_{29}w_{25}w_{24}w_{23}w_{19}w_{20}$

Definition $(\mu \text{ homomorphism})$

Pick $\gamma \in \pi_1(T)$, define $\mu(\gamma) \in \mathbb{C}^*$ to be $(-1)^{|\gamma|}$ times the product of all the complex moduli that γ encounters at its right side with $|\gamma|$ being the number of edges of γ .

Figure: Completeness equation $\mu(\gamma)$.

Proposition

The element $\mu(\gamma)$ is well-defined and $\mu: \pi_1(T) \to \mathbb{C}^*$ is a homomorphism.

Proof.

Two different paths for γ are related by moves in the figure. This move does not affect $\mu(\gamma)$ since $w_1w_2w_3=-1$ and the product of the moduli around a vertex is +1. The map μ is clearly a homomorphism.

Let $C(T) \subset M$ be a closed collar of the torus T in N, intersected with M, which is diffeomorphic to $T \times [0, +\infty)$.

Proposition

The following facts are equivalent:

- **1** the homomorphism μ is trivial,
- 2 there is a Euclidean structure on T that induces all the moduli,
- \odot the manifold C(T) is complete and contains a truncated cusp.

Let T be a flat torus, γ is a path. $v_i \in \gamma$, the incident edges on the right side are $e_{i,0}, \ldots, e_{i,n}$, the complex angle between $e_{i,j}$ and $e_{i,j+1}$ is $w_{i,j}$

$$w_{i,j} = \frac{|e_{i,j+1}|}{|e_{i,j}|} e^{\sqrt{-1}\theta_{i,j}}$$

therefore

$$\prod_{i,j} w_{i,j} = \prod_{i,j} \frac{|e_{i,j+1}|}{|e_{i,j}|} e^{\sqrt{-1}\theta_{i,j}} = e^{\sqrt{-1}\sum_{i,j}\theta_{i,j}} = e^{\sqrt{-1}(\sum_i \pi - k_i)} = (-1)^{|\gamma|}$$

Let τ be a straight line on T homotopic to γ , γ and τ bound a flat annulus, by Gauss-Bonnet, we obtain $\sum_i k_i = 0$.

Corollary

The hyperbolic manifold M is complete if and only if μ is trivial for every torus $T \subset \partial N$.

Proposition

Let $\mathcal T$ be an ideal triangulation of $M=\operatorname{int}(N)$ with n tetrahedra and ∂N consisting of c tori. If a point $z=(z_1,\ldots,z_n)$ with $\operatorname{Im}(z_i)>0$ satisfies the n consistency equations and the 2c completeness equations, then M admits a finite-volume complete hyperbolic metric.