

NS4150 用户手册 V1.0

深圳市纳芯威科技有限公司 2011年05月

修改历史

日期	版本	作者	修改说明
		-	

目 录

1	功能	能说明	5
2	主要	要特性	5
3	应月	目领域	5
4	典型	型应用电路	5
5	极阳	限参数	6
6	电气	气特性	6
7	芯片	片管脚描述	7
	7.1	MSOP8 和SOP8 管脚分配图	
	7.2 7.3	管脚功能描述 芯片印章说明	
8	NS	4150 典型参考特性	8
9	NS4	4150 应用说明	10
ç	9.1	原理框图	10
9	9.2	工作原理	11
9	9.3	无需输出滤波器	11
9	9.4	上电,掉电噪声抑制	11
9	9.5	EMI增强技术	
9	9.6	CTRL引脚设置	11
9	9.7	效率	
9	9.8	保护电路	
ç	9.9	应用信息	12
10		芯片的封装	
1	0.1	MSOP-8 封装尺寸图	13
1	0.2	SOP-8 封装尺寸图	14

图目录

图 1 NS4150 典型应用图	5
图 2 MSOP8 和SOP8 管脚分配图(top view)	
图 3 印章说明	
图 4 NS4150 功能框图	
图 5 EMI测试频谱图	
图 6 差分和单端输入方式	12
图 7 磁珠与电容	
图 8 MSOP-8 封装尺寸图	13
图 9 SOP-8 封装尺寸图	14
* H =	
表目录	
表 1 芯片最大物理极限值	6
表 2 NS4150 电气特性表	6
表 3 NS4150 管脚描述	7
麦 4 丁作模式	11

1 功能说明

NS4150 是一款超低 EMI、无需滤波器 3W 单声道 D 类音频功率放大器。NS4150 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。

NS4150 内置过流保护、过热保护及欠压保护功能,有效地保护芯片在异常工作状况下不被损坏。并且利用扩频技术充分优化全新电路设计,高达 90%的效率更加适合于便携式音频产品。

NS4150 无需滤波器的 PWM 调制结构及增益内置方式减少了外部元件、PCB 面积和系统成本。 NS4150 提供 MSOP8 和 SOP8 封装,额定的工作温度范围为-40℃至 85℃。

2 主要特性

- 优异的全带宽 EMI 抑制能力
- 优异的"上电,掉电"噪声抑制
- 3W 输出功率(5V 电源、4Ω 负载)
- 0.1%THD(0.5W输出功率、3.6V电源)
- 无需滤波器 Class-D 结构
- 高达 90%的效率
- 高 PSRR: -80dB (217Hz)
- 低静态电流: 3mA (3.6V 电源、No load)
- 工作电压范围: 3.0V~5.25V
- 过流保护、过热保护、欠压保护
- MSOP8 和 SOP8 封装

3 应用领域

- MP3/PMP
- Mini 音箱
- 数码相框

4 典型应用电路

图1 NS4150 典型应用图

5 极限参数

表1 芯片最大物理极限值

梦	多数	最小值	最大值	单位
电源甲	违压 V _{DD}	-0.3	6.0	V
INP, INN,	CTRL引脚电压	-0.3	V _{DD} +0.3	V
最为	大结温		150	$^{\circ}\!\mathbb{C}$
存储剂	且度范围	-65	150	$^{\circ}$ C
引脚温度	(焊接 10 秒)		260	$^{\circ}\! \mathbb{C}$
封装热阻θ.	JA (MSOP8)		190	°C/W
封装热阻(O _{JA} (SOP8)		150	°C/W
工作温度范围		-40	85	$^{\circ}\!\mathbb{C}$
ESD 防护电压			+/-4000	V
I stale som	+IT		150	mA
Latch-up	-IT		-150	mA

注1: 在极限值之外或任何其他条件下,芯片的工作性能不予保证。

6 电气特性

限定条件:: TA=25℃(除非特别说明)

表2 NS4150 电气特性表

符号	参数	测试条件	最小值	标准值	最大值	单位
电学特性						
V _{OS}	输出失调电压	$V_{IN}=0V$, $V_{DD}=3.0V$ to 5.25V		5	20	mV
I_Q	静态电流	$V_{DD} = 3.6 V$, No load		3.0		mA
I_{SD}	关断电流	$V_{DD} = 3.6V$, CTRL=0V		0.1	10	μА
PSRR	电源抑制比	217Hz 20KHz			-80 -72	dB dB
CMRR	共模抑制比			-70		dB
f_{SW}	调制频率	$V_{\rm DD} = 3.0 \text{V to } 5.25 \text{V}$		400		kHz
工作特性						
P _O \$	输出功率	THD=10%, f=1kHz, $R_L = 4\Omega$, $V_{DD} = 5V$		2.8		W
		THD=1%, f=1kHz, $R_L = 4\Omega$, $V_{DD} = 5V$		2.0		W
		THD=10%, f=1kHz, $R_L = 8\Omega$, $V_{DD} = 5V$		1.7		W
		THD=1%, f=1kHz, $R_L = 8\Omega$, $V_{DD} = 5V$		1.3		W
THD	失真度	$V_{DD} = 3.6V, P_0 = 0.1W,$ $R_L = 8\Omega, f = 1kHz$		0.15		%
IHD		V_{DD} =3.6V, Po=0.5W, R_L =4 Ω , f=1kHz		0.1		%

η	效率	Po=0.6W, $R_L = 8\Omega$, $V_{DD} = 3.6V$, $f=1kHz$		90		%
VIH	CTRL 输入 高电平		1.2		Vdd	V
VIL	CTRL 输入 低电平		0		0.2	V
t_{ST}	启动时间			30		ms
$t_{ m WK}$	唤醒时间		35			ms
$t_{ m SD}$	关断时间		80			ms

7 芯片管脚描述

7.1 MSOP8 和SOP8 管脚分配图

图2 MSOP8 和 SOP8 管脚分配图(top view)

7.2 管脚功能描述

表3 NS4150 管脚描述

管脚号	符号	功能描述
1	CTRL	工作模式控制
2	Bypass	内部共模电压旁路电容
3	INP	正相音频输入
4	INN	反相音频输入
5	VoN	反相音频输出
6	VCC	电源输入
7	GND	地
8	VoP	正相音频输出

7.3 芯片印章说明

图3 印章说明

NS: 代表公司商标

4150: 代表产品型号 4150 YYWW: 代表封装年周号

8 NS4150 典型参考特性

NS4150 应用说明

9.1 原理框图

图4 NS4150 功能框图

9.2 工作原理

NS4150 是一款超低 EMI、无需滤波器 3W 单声道 D 类音频功率放大器。在 5V 电源下,能够向 4Ω 负载提供 3W 的功率,并具有高达 90%的效率。

NS4150 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。

NS4150 无需滤波器的 PWM 调制结构及增益内置方式减少了外部元件数目、PCB 面积和系统成本,利用扩展频谱技术充分优化全新电路设计。芯片内置过流保护、过热保护和欠压保护功能,在异常工作条件下关断芯片,有效地保护芯片不被损坏,当异常条件消除后,NS4150 自动恢复工作。

9.3 无需输出滤波器

NS4150 采用无需输出滤波器的 PWM 调制方式,省去了传统 D 类放大器的 LC 滤波器,提高了效率,提供了一个更小面积,更低成本的实现方案。

9.4 上电,掉电噪声抑制

NS4150 内置上电,掉电噪声抑制电路,有效地消除了系统在上电、下电、唤醒和关断操作时可能出现的瞬态噪声。

9.5 EMI增强技术

NS4150 内置 EMI 增强技术。 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。如图 6 所示。

图5 EMI测试频谱图

9.6 CTRL引脚设置

通过设置 CTRL 引脚的电平值,可以设置 NS4150 的工作模式,如表 4 所示。

表4 工作模式

74: — II DCF (
CTRL	Mode				
Н	Open				
L	Shutdown				

9.7 效率

NS4150 利用扩展频谱技术充分优化全新 D 类放大器的电路设计,以提高效率。最高可达 90%的效率 更加适合于便携式音频产品。

9.8 保护电路

当芯片发生输出引脚与电源或地短路,或者输出之间的短路故障时,过流保护电路会关断芯片以防止芯片被损坏。短路故障消除后,NS4150自动恢复工作。当芯片温度过高时,芯片也会被关断。温度下降后,NS4150继续正常工作。当电源电压过低时,芯片同样会被关断,电源电压恢复后,芯片会再次启动。

9.9 应用信息

电源去耦电容

电源端加适当的去耦电容可以确保器件的高效率及最佳的 THD 性能,同时为得到良好的高频瞬态性能,希望电容的 ESR 值要尽量小。一般使用 1μ F 的陶瓷电容将 V_{DD} 旁路到地。去耦电容在布局上应尽可能的靠近芯片的 V_{DD} 放置。如果希望更好地滤除低频噪声,则需要根据具体应用添加一个 10μ F 或更大的去耦电容。

增益设置和输入电阻

NS4150 内部集成反馈电阻为 300k, 增益 Av=300k/Rin, Rin 为外接输入电阻。输入滤波器

音频信号通过隔直电容和输入电阻输入到 NS4150 的 INP 与 INN。输入电容 Cin 与输入电阻 Rin 构成一个高通滤波器。截止频率为 $fc=1/(2\pi RinCin)$ 。实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz-150Hz 的低频语音,因此采用大的电容并不能够改善系统的性能。除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致 pop 噪声出现,因此,小的耦合电容可以减少该噪声。

图6 差分和单端输入方式

磁珠与电容

NS4150 在没有磁珠、 电容的情况下, 对 60cm 的音频线, 仍可满足 FCC 标准要求。在输出音频线过长或器件布局靠近 EMI 敏感设备时,建议使用磁珠、电容。磁珠及电容要尽量靠近芯片放置。

图7 磁珠与电容

Nsiway 12

10 芯片的封装

10.1 MSOP-8 封装尺寸图

图8 MSOP-8 封装尺寸图

10.2 SOP-8 封装尺寸图

SYMBOL	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
Α	_	_	1.75	
A1	0.10	_	0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	_	0.48	
bl	0.38	0.41	0.43	
с	0.21		0.26	
cl	0.19	0.20	0.21	
D	4.70	4.90	5.10	
E	5.80	6.00	6.20	
El	3.70	3.90	4.10	
e		1.27BSC		
h	0.25	_	0.50	
L	0.50	_	0.80	
Ll		1.05BSC	2	
9	0	_	8°	
	60*60		95*130	
L/F载体尺寸	80*8	0 1	112*169	
(mil)	90*90 10		00*158	
İ	80*112(双载体)			

图9 SOP-8 封装尺寸图

声明:深圳市纳芯威科技有限公司保留在任何时间,并且没有通知的情况下修改产品资料和产品规格的权利,本手册的解释权归深圳市纳芯威科技有限公司所有,并负责最终解释。