Aprendizaje por refuerzo-Introducción

Fernando Lozano

Universidad de los Andes

24 de enero de 2023

• Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.
- No existe un maestro o supervisor.

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.
- No existe un maestro o supervisor.
- Agente debe aprender de su experiencia.

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.
- No existe un maestro o supervisor.
- Agente debe aprender de su experiencia.

• Agente que aprende a jugar ajedrez.

- Agente que aprende a jugar ajedrez.
- Ambiente:

- Agente que aprende a jugar ajedrez.
- Ambiente: Tablero

- Agente que aprende a jugar ajedrez.
- Ambiente: Tablero, oponente.

- Agente que aprende a jugar ajedrez.
- Ambiente: Tablero, oponente.
- Acciones:

- Agente que aprende a jugar ajedrez.
- Ambiente: Tablero, oponente.
- Acciones: Jugadas válidas en cada configuración posible del tablero.
- Meta:

- Agente que aprende a jugar ajedrez.
- Ambiente: Tablero, oponente.
- Acciones: Jugadas válidas en cada configuración posible del tablero.
- Meta: Aprender política que tenga alta probabilidad de ganar.

- Agente que aprende a jugar ajedrez.
- Ambiente: Tablero, oponente.
- Acciones: Jugadas válidas en cada configuración posible del tablero.
- Meta: Aprender política que tenga alta probabilidad de ganar.
 - ▶ Jugada a realizar en cada configuración posible del tablero.

 S_t S_{t+1} S_{t+1} S_{t+1} S_{t+1} S_{t+1}

 S_t

 S_t

 S_0 ... S_t S_{t+1} ... S_T

 S_0 ... S_t S_{t+1} ... S_T

• S_T es estado terminal, se gana o pierde la partida.

- S_T es estado terminal, se gana o pierde la partida.
- Problema de asignación de crédito:

- S_T es estado terminal, se gana o pierde la partida.
- Problema de asignación de crédito:
 - Qué jugadas influyeron más/menos para ganar o perder?

 $V(S_T)$

$$V(S_{t+1}) \qquad \cdots \qquad V(S_T)$$

Función de valor

• $V(S_t)$ dice que tan valioso es este estado con respecto a la meta que se quiere lograr.

Función de valor

- $V(S_t)$ dice que tan valioso es este estado con respecto a la meta que se quiere lograr.
- Estimar valores de $V(S_t)$ a partir de la experiencia adquirida al interactuar con el ambiente.

Función de valor

- $V(S_t)$ dice que tan valioso es este estado con respecto a la meta que se quiere lograr.
- Estimar valores de $V(S_t)$ a partir de la experiencia adquirida al interactuar con el ambiente.
- Una posibilidad:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[V(S_{t+1}) - V(S_t) \right]$$

• Dilema exploración/explotación:

- Dilema exploración/explotación:
 - ightharpoonup Explotación: Escoger jugadas que llevan a estados con estimativos de V más grandes:

- Dilema exploración/explotación:
 - ightharpoonup Explotación: Escoger jugadas que llevan a estados con estimativos de V más grandes: puede ignorar mejores jugadas.

- Dilema exploración/explotación:
 - ightharpoonup Explotación: Escoger jugadas que llevan a estados con estimativos de V más grandes: puede ignorar mejores jugadas.
 - Exploración: Ensayar jugadas diferentes:

- Dilema exploración/explotación:
 - ightharpoonup Explotación: Escoger jugadas que llevan a estados con estimativos de V más grandes: puede ignorar mejores jugadas.
 - ► Exploración: Ensayar jugadas diferentes: No adquiere experiencia suficiente sobre los estados.

- Dilema exploración/explotación:
 - ightharpoonup Explotación: Escoger jugadas que llevan a estados con estimativos de V más grandes: puede ignorar mejores jugadas.
 - ► Exploración: Ensayar jugadas diferentes: No adquiere experiencia suficiente sobre los estados.

- Dilema exploración/explotación:
 - ► Explotación: Escoger jugadas que llevan a estados con estimativos de V más grandes: puede ignorar mejores jugadas.
 - ► Exploración: Ensayar jugadas diferentes: No adquiere experiencia suficiente sobre los estados.
- Aproximación de funciones (e.g. redes neuronales).

• Programa que aprende a jugar juego de tablero o videojuego.

- Programa que aprende a jugar juego de tablero o videojuego.
- Robot que aprende a navegar en un ambiente.

- Programa que aprende a jugar juego de tablero o videojuego.
- Robot que aprende a navegar en un ambiente.
- Control de ascensores en el ML.

- Programa que aprende a jugar juego de tablero o videojuego.
- Robot que aprende a navegar en un ambiente.
- Control de ascensores en el ML.
- Control de semáforos para optimizar tiempos de viaje.

- Programa que aprende a jugar juego de tablero o videojuego.
- Robot que aprende a navegar en un ambiente.
- Control de ascensores en el ML.
- Control de semáforos para optimizar tiempos de viaje.
- Gestión de energía en microredes.

- Programa que aprende a jugar juego de tablero o videojuego.
- Robot que aprende a navegar en un ambiente.
- Control de ascensores en el ML.
- Control de semáforos para optimizar tiempos de viaje.
- Gestión de energía en microredes.
- Programa que aprende a armar rompecabezas.

- Programa que aprende a jugar juego de tablero o videojuego.
- Robot que aprende a navegar en un ambiente.
- Control de ascensores en el ML.
- Control de semáforos para optimizar tiempos de viaje.
- Gestión de energía en microredes.
- Programa que aprende a armar rompecabezas.
- Control óptimo.

- Programa que aprende a jugar juego de tablero o videojuego.
- Robot que aprende a navegar en un ambiente.
- Control de ascensores en el ML.
- Control de semáforos para optimizar tiempos de viaje.
- Gestión de energía en microredes.
- Programa que aprende a armar rompecabezas.
- Control óptimo.
- Banco central dirige economía hacia una meta específica.

- Programa que aprende a jugar juego de tablero o videojuego.
- Robot que aprende a navegar en un ambiente.
- Control de ascensores en el ML.
- Control de semáforos para optimizar tiempos de viaje.
- Gestión de energía en microredes.
- Programa que aprende a armar rompecabezas.
- Control óptimo.
- Banco central dirige economía hacia una meta específica.

• Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.
- No existe un maestro o supervisor.

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.
- No existe un maestro o supervisor.
- Agente debe aprender de su experiencia.

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.
- No existe un maestro o supervisor.
- Agente debe aprender de su experiencia.
- Debe lidiar con incertidumbre con respecto al ambiente.

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.
- No existe un maestro o supervisor.
- Agente debe aprender de su experiencia.
- Debe lidiar con incertidumbre con respecto al ambiente.
- Acciones correctas dependen de resultados de acciones pasadas:

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.
- No existe un maestro o supervisor.
- Agente debe aprender de su experiencia.
- Debe lidiar con incertidumbre con respecto al ambiente.
- Acciones correctas dependen de resultados de acciones pasadas: planeación.

- Aprendizaje de un agente que interactúa con el ambiente en el que está inmerso.
- Agente busca lograr una meta, a través de una serie de acciones.
- No existe un maestro o supervisor.
- Agente debe aprender de su experiencia.
- Debe lidiar con incertidumbre con respecto al ambiente.
- Acciones correctas dependen de resultados de acciones pasadas: planeación.
- Efectos de acciones en el medio ambiente no pueden ser predichas por completo: Agente debe monitorear el ambiente.

• Agente.

- Agente.
- Ambiente en el que está inmerso el agente

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy):

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.
 - Mapeo de percepción del ambiente a acciones.

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.
 - Mapeo de percepción del ambiente a acciones.
 - Reglas de asociación estímulo-respuesta.

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.
 - Mapeo de percepción del ambiente a acciones.
 - Reglas de asociación estímulo-respuesta.
 - Aprendizaje:

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.
 - Mapeo de percepción del ambiente a acciones.
 - Reglas de asociación estímulo-respuesta.
 - ► Aprendizaje: Identificar buenas políticas.

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.
 - Mapeo de percepción del ambiente a acciones.
 - Reglas de asociación estímulo-respuesta.
 - ► Aprendizaje: Identificar buenas políticas.
- Función de recompensas:

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.
 - Mapeo de percepción del ambiente a acciones.
 - Reglas de asociación estímulo-respuesta.
 - ► Aprendizaje: Identificar buenas políticas.
- Función de recompensas:
 - ▶ Define la meta del problema de aprendizaje.

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.
 - Mapeo de percepción del ambiente a acciones.
 - ▶ Reglas de asociación estímulo-respuesta.
 - ► Aprendizaje: Identificar buenas políticas.
- Función de recompensas:
 - ▶ Define la meta del problema de aprendizaje.
 - Mapeo de par estado-acción a un número que indica la deseabilidad del estado resultante.

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.
 - Mapeo de percepción del ambiente a acciones.
 - Reglas de asociación estímulo-respuesta.
 - ► Aprendizaje: Identificar buenas políticas.
- Función de recompensas:
 - ▶ Define la meta del problema de aprendizaje.
 - Mapeo de par estado-acción a un número que indica la deseabilidad del estado resultante.
 - ▶ Objetivo del agente es maximizar la recompensa total que recibe a lo largo del tiempo.

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.
 - Mapeo de percepción del ambiente a acciones.
 - ▶ Reglas de asociación estímulo-respuesta.
 - ► Aprendizaje: Identificar buenas políticas.
- Función de recompensas:
 - ▶ Define la meta del problema de aprendizaje.
 - Mapeo de par estado-acción a un número que indica la deseabilidad del estado resultante.
 - ▶ Objetivo del agente es maximizar la recompensa total que recibe a lo largo del tiempo.
 - ▶ Agente no puede modificar la recompensa.

- Agente.
- Ambiente en el que está inmerso el agente→ representación del estado del ambiente.
- Política (policy): Determina qué debe hacer el agente en una situación dada.
 - Mapeo de percepción del ambiente a acciones.
 - ▶ Reglas de asociación estímulo-respuesta.
 - ► Aprendizaje: Identificar buenas políticas.
- Función de recompensas:
 - ▶ Define la meta del problema de aprendizaje.
 - Mapeo de par estado-acción a un número que indica la deseabilidad del estado resultante.
 - ▶ Objetivo del agente es maximizar la recompensa total que recibe a lo largo del tiempo.
 - ▶ Agente no puede modificar la recompensa.

• Función de valor:

- Función de valor:
 - Recompensa total que el agente puede esperar acumular comenzando en un estado dado.

- Función de valor:
 - Recompensa total que el agente puede esperar acumular comenzando en un estado dado.
 - ▶ Especifica qué estados son deseables a largo plazo.

- Función de valor:
 - Recompensa total que el agente puede esperar acumular comenzando en un estado dado.
 - ▶ Especifica qué estados son deseables a largo plazo.
 - Depende de las acciones que son probables en ese estado y de los estados resultantes de esas acciones.

- Función de valor:
 - Recompensa total que el agente puede esperar acumular comenzando en un estado dado.
 - ▶ Especifica qué estados son deseables a largo plazo.
 - Depende de las acciones que son probables en ese estado y de los estados resultantes de esas acciones.
 - Se usa para modificar la política.

- Función de valor:
 - Recompensa total que el agente puede esperar acumular comenzando en un estado dado.
 - ▶ Especifica qué estados son deseables a largo plazo.
 - Depende de las acciones que son probables en ese estado y de los estados resultantes de esas acciones.
 - Se usa para modificar la política.
- Modelo del ambiente:

- Función de valor:
 - Recompensa total que el agente puede esperar acumular comenzando en un estado dado.
 - ▶ Especifica qué estados son deseables a largo plazo.
 - Depende de las acciones que son probables en ese estado y de los estados resultantes de esas acciones.
 - Se usa para modificar la política.
- Modelo del ambiente:
 - ► Simula el comportamiento del ambiente.

- Función de valor:
 - Recompensa total que el agente puede esperar acumular comenzando en un estado dado.
 - Especifica qué estados son deseables a largo plazo.
 - Depende de las acciones que son probables en ese estado y de los estados resultantes de esas acciones.
 - Se usa para modificar la política.
- Modelo del ambiente:
 - ▶ Simula el comportamiento del ambiente.
 - Dado un estado y una acción, modelo predice recompensa y estado siguientes.

• Ambiente no puede ser modificado arbitrariamente por el agente.

- Ambiente no puede ser modificado arbitrariamente por el agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:

- Ambiente no puede ser modificado arbitrariamente por el agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
 - Agente recibe representación del estado del ambiente $s_t \in \mathcal{S}$

- Ambiente no puede ser modificado arbitrariamente por el agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
 - Agente recibe representación del estado del ambiente $s_t \in \mathcal{S}$
 - 2 Selecciona acción $a_t \in \mathcal{A}(s_t)$.

- Ambiente no puede ser modificado arbitrariamente por el agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
 - **1** Agente recibe representación del estado del ambiente $s_t \in \mathcal{S}$
 - ② Selecciona acción $a_t \in \mathcal{A}(s_t)$.
 - **3** Recibe recompensa $r_{t+1} \in \mathbb{R}$

- Ambiente no puede ser modificado arbitrariamente por el agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
 - Agente recibe representación del estado del ambiente $s_t \in \mathcal{S}$
 - **2** Selecciona acción $a_t \in \mathcal{A}(s_t)$.
 - ${\color{red} \bullet}$ Recibe recompensa $r_{t+1} \in \mathbb{R}$ y pasa a estado $s_{t+1} \in \mathcal{S}$

- Ambiente no puede ser modificado arbitrariamente por el agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
 - Agente recibe representación del estado del ambiente $s_t \in \mathcal{S}$
 - 2 Selecciona acción $a_t \in \mathcal{A}(s_t)$.
- Mapeo estado → probabilidad de seleccionar acción

- Ambiente no puede ser modificado arbitrariamente por el agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
 - Agente recibe representación del estado del ambiente $s_t \in \mathcal{S}$
 - 2 Selecciona acción $a_t \in \mathcal{A}(s_t)$.
- Mapeo estado → probabilidad de seleccionar acción: política (policy).

- Ambiente no puede ser modificado arbitrariamente por el agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
 - Agente recibe representación del estado del ambiente $s_t \in \mathcal{S}$
 - 2 Selecciona acción $a_t \in \mathcal{A}(s_t)$.
- Mapeo estado → probabilidad de seleccionar acción: política (policy).

$$\pi_t(s,a)$$

- Ambiente no puede ser modificado arbitrariamente por el agente.
- Ambiente y agente interactúan en pasos t = 1, 2, ...:
 - **1** Agente recibe representación del estado del ambiente $s_t \in \mathcal{S}$
- Mapeo estado → probabilidad de seleccionar acción: política (policy).

$$\pi_t(s, a) = \mathbf{P}\left[a_t = a \mid s_t = s\right]$$