RIVERWORLD BEINGS

Characterisation of the population of beings of Riverworld.

Riverworld is a fictional planet and the setting for a series of sci-fi books written by Philip José Farmer.

Riverworld is an artificial environment where all humans (and pre-humans) ever born who died after reaching 5 years old are reconstructed.

Most of the resurrected awaken in a body equivalent to that of their 25 year old selves, in perfect health and free of any previous genetic or acquired defects.

A friend of mine made fun of the book concept and claimed half of the beings ressucitated would be prehistorical.

This project is proving him wrong.

Definitions

- Begining of mankind: Homo Erectus, -1500K, assuming all beings on Riverworld can walk
- End of mankind: 2016. In the book, all people die in 1983 after interacting with an alien civilisation.
- Child Mortality CM: death of infants and children under the age of 5
- Infant Mortality IM: death of infants and children under the age of 1
- Life Expectancy LE: average time a being is expected to live
- \bullet Life Adult Expectancy LAE: average time a being is expected to live if he reachs 5 years old

Datas

- Dataset compiled amongst considered sources:
 - until now, conservative estimations for pre modern times : ./data/population-min.csv
 - until now, optimistic estimations for pre modern times : ./data/population-max.csv
 - until now, average estimations for pre modern times: ./data/population-avg.csv
 - including 2070 projections ./data/population-future.csv
- The dataset consists of Point In Times (PIT)
- For each PIT, these metrics are available: year, beings count in millions, LE, LAE, CM and continental proportions
- Depending on sources, CM, IM, LE and/or LAE are provided or not. Some datas have been extrapolated. Underlying model: LE = CM * 5/2 + LAE * (1 CM)
- Case of beings count in prehistorical times :
 - \circ Beings counts estimation flucuates a lot. They can go as low as 1K individuals up to 100K
 - We have 3 milestones in our dataset : -1500K (lower paleolithic), -50K (higher paleolithic) and -10K (beginning of history)
 - For -10K, the poulation count is within the magnitude of the millions according to most of the sources. We kept the McEvedy estimation of 4 millions.
 - For -50K, we kept the higher estimation of Jean-Pierre Bocquet-Appel from his study of upper paleolithical meta populations in Europe. He found 15K individuals in the Aurignacien (-30K). Wordlwide, we estimated, as a minimum, we timed this result by 5. As a maximum by 10.
 - \circ For -1500K, we've assumed the population could not be higher than in -50K. We assumed the population at that time would be the population of -50K / 2.
- Case of LE et CM for prehistorical times :
 - As for beings counts, the *LE* estimations vary greatly
 - The Kaplan study suggest hunter gatherer modern societies tell us how prehistoric men lived and died. The study suggests the ALE is around 50 years and the CM around 0.5
 - \circ For reference, the CM of 1900 is 0.4 and the Scheidel estimation of Classic Rome CM is 0.5

Calculus

- Linearity in between PITs:
 - The underlying assumption is that the PIT metrics evolve linearly in between two PITs
 - This assumption can be considered true from -1500K to 1700, from 1700 to 1900, from 1900 to 1950 and from 1950 to today
 - The PIT resolution in the dataset is consistent with this observation
 - We then assume numerical midpoint integration is a reasonable estimation
- For the period PIT 1 => PIT 2
- AB yx = Amount of Beings for year x
- Elapsed Time ET = y2 y1
- Average Amount of Beings for Period AABP = (AB y2 + AB y1) / 2
- LAE for Period $LAEP = (LAE \ y1 + LAE \ y2) / 2$
- Proportion of Adult Beings To Be for Period PABTBP = 1 ((CM y1 + CM y2) / 2)
- Thus Amount of Beings who were Born for Period ABP = ET * AABP / LAEP
- ullet Thus Amount of Adult Beings who were Born for Period AABP=ET*AABP*PABTBP/LEP
- Another calculus method is to use a simple model of population growth:
 - $AB \ y1 = Ce^{(r * y1)} \text{ and } AB \ y2 = Ce^{(r * y2)}$
 - By integration, ABP = ET * (AB y2 AB y1) / (ln(AB y2) ln(AB y1)) / LEP
 - This method proved to be very similar to the naïve numerical integration we selected (cf Report Figure 6)

Results

- The last report : ./output/(min|max|future)/report.pdf
- The last plots: ./output

Sources

- https://en.wikipedia.org/wiki/Human evolution
- https://ourworldindata.org/child-mortality
- https://ourworldindata.org/infant-mortality
- https://en.wikipedia.org/wiki/Life expectancy#Variation over time
- https://en.wikipedia.org/wiki/World population#Past population
- https://ourworldindata.org/world-population-growth
- http://www.unm.edu/~hkaplan/KaplanHillLancasterHurtado 2000 LHEvolution.pdf
- https://en.wikipedia.org/wiki/Prehistoric_demography
- https://en.wikipedia.org/wiki/World population estimates
- http://www.evolhum.cnrs.fr/bocquet/jas2005.pdf
- https://www.princeton.edu/~pswpc/pdfs/scheidel/040901.pdf
- $\bullet \ \underline{https://scholarspace.manoa.hawaii.edu/bitstream/handle/10125/17288/AP-v47n2-190-209.pdf } \\$
- https://ourworldindata.org/world-population-growth
- http://www.math.hawaii.edu/~ramsey/People.html

Install

- pip install --upgrade pip
- pip install -r requirements.txt --user
- Fonts used in this project : ./resources/fonts
- PDF dependencies :

mac:brew cask install wkhtmltopdflinux:apt-get install wkhtmltopdf

Run

- Configuration is loaded from config.ini
- python riverworld.py min|max|avg|future
- all at once: python riverworld.py min; python riverworld.py max; python riverworld.py avg; python riverworld.py future

Credits

- Author: Lucas Mouilleron, http://lucasmouilleron.com
- Thanks to : Jean-Benoît Bourron, Romain Charlassier

RESULTS

Dataset used : population-avg.csv

Main Results

Metric	Value
Total beigns ever born	66.2 billions
Total adult beigns ever born	18.4 billions
Proportion of alive beings amongst all beings ever born	11.1%
Median year of adult beings ever born	1000
Median year of beings ever born	1

Proportion Of Adult Beings Amongst All Adults Ever Born

Sub Population	Value
Me	1.51070252156e-09% (1)
Asians	$52\%~(9.69\mathrm{e}{+09})$
Paloelithical era	$6.8\% \ (1.3e+09)$
Neolithical era	$5.9\%~(1.1\mathrm{e}{+09})$
-10K until the birh of Jesus Christ	$15.2\%~(2.8\mathrm{e}{+09})$
Classical Athens (508 BC - 322 BC) (with civil rights)	$0.001\%~(1.5\mathrm{e}{+05})$
Classical Athens (508 BC - 322 BC)	$0.007\%~(1.2\mathrm{e}{+06})$
Roman Republic (509 BC - 27 BC)	$0.021\%~(3.9\mathrm{e}{+06})$
Western Roman Empire (27 BC - 476 AD)	$3.2\%~(5.9\mathrm{e}{+08})$
After WWII	$22\% \ (4.2e+09)$

Adult Beings Results

All Beings Results

