## **Chapter 8: Alcohols**

- Monoalcohol: is an organic compound consists of the elements (C,H&O) with general formula  $C_nH_{2n+2}O$  or  $C_nH_{2n+1}OH$  and hydroxyl functional group (-OH)
  - General molecular formula : (R-OH)

## • Classes of monoalcohol:

Alcohols

1° alcohol (RCH<sub>2</sub>OH): the C-atom that is attached to (OH) carries 2 H-atoms.

2° alcohol (RR'CHOH): the C-atom that is attached to (OH) carries 1 H-atom.

3°alcohol (RR'R"COH): the C-atom that is attached to (OH) carries no H-atoms.

### • **IUPAC Nomenclature:**

Alkane → Alkanol

 $CH_3OH$ : methanol (1<sup>0</sup>)

CH<sub>3</sub>- CH<sub>2</sub>OH: ethanol (1°)

CH<sub>3</sub>- CH<sub>2</sub>- CH<sub>2</sub>OH: 1-propanol (1°)

 $CH_3$ - CH-  $CH_3$ : 2-propanol (2°) OH

 $CH_3-CH-CH-CH_2-CH-CH_3: \ \ 4\text{-ethyl-5-methyl-2-hexanol} \ \ (2^o)$   $CH_3 \ \ C_2H_5 \qquad OH$ 

C<sub>6</sub>H<sub>5</sub>OH: phenol

C<sub>6</sub>H<sub>5</sub>-CH<sub>2</sub>-OH: phenyl methanol (benzyl alcohol)

- \* Isomers of alcohol: structural isomers (skeletal and positional)
- e.g butanol (C<sub>4</sub>H<sub>9</sub>OH):
- a.  $CH_3$   $CH_2$   $CH_2$  OH: 1-butanol (1°)
- b. CH<sub>3</sub>- CH<sub>2</sub>- CH- CH<sub>3</sub>: 2-butanol (2°) OH
- c. CH<sub>3</sub>-CH-CH<sub>2</sub>-OH: 2-methyl-1-propanol (1°) CH<sub>3</sub>
- d. CH<sub>3</sub>- C- OH: 2-methyl-2-propanol or tertiary butanol (3°) CH<sub>3</sub>
  - Positional isomers: (a & b), (c & d)
  - Skeletal isomers: (a & d), (b & d)
  - Ether: is an organic compound consists of the elements(C,H&O) with the general formula  $C_2H_{2n+2}O$  and the functional group -O- (ether group).
    - General molecular formula: (R-O-R')

-Nomenclature: Alkyl(R) Alkyl(R') ether

e.g CH<sub>3</sub>-O-CH<sub>3</sub>: dimethyl ether

C<sub>2</sub>H<sub>5</sub>-O-CH<sub>3</sub>: ethyl methyl ether

 $\text{CH}_3\text{-O-CH-CH}_3$ : (methyl ethyl) methyl ether or methyl isopropyl ether

 $CH_3$ 

 $CH_3\text{-}O\text{-}CH_2\text{-}CH\text{-}CH_3$  : methyl ( 2-methyl propyl) ether  $CH_3$ 

> Alcohol and ether admits functional isomers.

#### e.g. Isomers of C<sub>4</sub>H<sub>10</sub>O:

| Alcohol                                                                                                             | Ether                                                                   |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| a. CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> OH                                            | e. CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -O-CH <sub>3</sub> |
| b. CH <sub>3</sub> -CH <sub>2</sub> -CH-CH <sub>3</sub><br>OH                                                       | f. CH <sub>3</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH <sub>3</sub> |
| c. CH <sub>3</sub> -CH-CH <sub>2</sub> -OH CH <sub>3</sub> OH d. CH <sub>3</sub> -C-CH <sub>3</sub> CH <sub>3</sub> | g. CH <sub>3</sub> -CH-O-CH <sub>3</sub><br>CH <sub>3</sub>             |

e.g. a & e are functional isomers.

### • Physical properties:

**Hydrogen bond:** is the intermolecular force of attraction between H-atom of one molecule and the most electronegative element (F, O, N or Cl).

*N.B*: H with (F, N, O, or Cl) should be in the same functional group, bonded to each other.

- Alcohol has H-bond while ether does not.

- As no of C-atom or molar mass increases, Boiling point increases but solubility in water decreases. e.g CH<sub>3</sub>OH (B.pt= 65  $^{0}$ C) , C<sub>2</sub>H<sub>5</sub>OH (B.pt= 78.5  $^{0}$ C)
- As no. of branches increases, boiling point decreases, but solubility increases.

e.g. CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-OH (B.pt= 117 
$$^{0}\text{C})$$
 , CH<sub>3</sub>-CH-CH<sub>2</sub>-OH (B.pt= 108  $^{0}\text{C})$  CH<sub>3</sub>

- The presence of H-bond increases the boiling point and the solubility in water..

e.g. 
$$C_2H_5OH$$
 (B.pt = 78.5  $^{0}C$ ) but  $CH_3$ -O- $CH_3$  (B.pt = -25  $^{0}C$ )

|               | Boiling point | Solubility in water |
|---------------|---------------|---------------------|
| Molar mass(†) | <b>↑</b>      | <b>↓</b>            |
| Branch(†)     | <b>↓</b>      | 1                   |
| H-bond(↑)     | 1             | 1                   |

### • Chemical properties (Chemical Reactions):

- Common properties: Substitution and Esterification.
- Different properties: Mild Oxidation.

### 1) **Substitution Reactions**:

a) ROH + PCl<sub>5</sub> 
$$\rightarrow$$
 RCl + HCl + POCl<sub>3</sub>
PhosphorusPentachloride Chloroalkane phosphorous oxytrichloride
e.g CH<sub>3</sub>-CH<sub>2</sub>-OH + PCl<sub>5</sub>  $\rightarrow$  CH<sub>3</sub>-CH<sub>2</sub>-Cl + HCl + POCl<sub>3</sub>

b) 
$$ROH + SOCl_2 \rightarrow RCl + HCl + SO_2$$
  
Thionyl chloride

e.g. 
$$CH_3$$
- $CHOH + SOCl_2 \rightarrow CH_3$ - $CH$ - $Cl + HCl + SO_2$ 
 $CH_3$ 
 $CH_3$ 

## 2) Esterification Reaction: $H2SO4/\Delta$

#### **Hydrolysis of ester:**

<sup>\*</sup> Forward rxn is esterification, while backward rxn is hydrolysis.

<sup>\*</sup> Characteristics of the rxn: slow-reversible - athermic.

### **Percent yield of esterification:**

Alcohol + Carboxylic acid Ester + water

t<sub>0</sub>: 
$$n(alcohol)_0$$
  $n(acid)_0$   $0$   $0$ 
 $t_{eq.:} n(alcohol)_0 - x$   $n(acid)_0 - x$   $x$   $x$ 

% yield =  $\frac{n(actual)}{n(theoritical)} \times 100$ 

=  $\frac{n(ester)teq}{n(ester)\max} \times 100$ 

=  $\frac{x}{n(\lim iting)} \times 100$ 

- $\triangleright$  % yield of esterification in case of equimoler :  $1^0(67\%)$ ,  $2^0(60\%)$ ,  $3^0(1-5\%)$
- > % yield of esterification in case of non-equimoler increases, since according to le chatelier's principle, the excess amount of the reagent shifts the rxn forward toward forming more actual amount.

#### *Notes:*

- Heating the mixture doesn't affect the % yield of the rxn at equilibrium, because it is athermic.
- To increase the rate of esterification: 1. Increase T 2. Use catalyst 3. Increase the concentration of reactants.
- To increase the yield of esterification:
  - 1. Remove water molecules from the rxn medium by using a dehydrating agent (e.g sulfuric acid)
  - 2. Increase the amount of the excess reagent.

Note: Replacing carboxylic acid by their derivatives acid anhydride or acylchloride gives higher yield since the reaction becomes complete.

#### Role of:

- $H_2SO_4$ :
- In small amount: is a catalyst increases the rate of the reaction.
- In high concentrated amount: in addition to catalyst, it is a dehydrating agent, eliminates water from the rxn ⇒ the rxn displaces forward ⇒ n(ester)<sub>actual</sub> increases => yield increases.



- Heating: to increase the rate of the rxn, since T is akinetic factor.
- <u>Reflux heating</u>: To extend the time of heating to increase the rate of esterification without losing any of the reaction components by condensining their vapors and get them back to the reaction medium..
- <u>Anti-bombing stones</u>: regulate boiling by decreasing the inside pressure to avoid the bombing of the apparatus.

## 3) Mild Oxidation:

\*Mild oxidation: is an oxidation process takes place without breaking down the C-Chain.

#### *Ways of mild oxidation*:

- A. Catalytic oxidation  $(+ O_2 /Cu)$
- B. Catalytic Dehydrogenation (-H<sub>2</sub>/Cu + heat)
- C. Oxidation by oxidizing agent (KMnO<sub>4</sub>, K<sub>2</sub>Cr<sub>2</sub>O<sub>7, ....)</sub>

Note: Mild oxidation allows identifying the class of an alcohol.

| Class of alcohol | Product of mild oxidation | Continuous mild oxidation |
|------------------|---------------------------|---------------------------|
| 10               | Aldehyde                  | Carboxylic acid           |
| $2^{0}$          | Ketone                    | non                       |
| $3^0$            | non                       | non                       |

### A) Catalytic oxidation:

RCH<sub>2</sub>OH + 
$$\frac{1}{2}$$
O<sub>2</sub>  $\xrightarrow{\text{H2O}}$  R-C-H +  $\frac{1}{2}$ O<sub>2</sub>  $\xrightarrow{\text{R}}$  R-C-OH

1° alcohol limitig Aldehyde excess (alkanal) 0

e.g. step 1: CH<sub>3</sub>-CH<sub>2</sub>-OH +  $\frac{1}{2}$ O<sub>2</sub>  $\xrightarrow{\text{Cu}}$  CH<sub>3</sub> - C-H + H<sub>2</sub>O

step 2: CH<sub>3</sub> - C-H +  $\frac{1}{2}$ O<sub>2</sub>  $\xrightarrow{\text{CH}_3}$  CH<sub>3</sub> - C-OH (Continuous mild oxidation)

over all : CH<sub>3</sub>-CH<sub>2</sub>-OH + O<sub>2</sub>  $\xrightarrow{\text{CH}_3}$  CH<sub>3</sub> - C-OH + H<sub>2</sub>O

ethanoic acid

## For 2ºalcohol:

RR'CHOH + 
$$\frac{1}{2}$$
O<sub>2</sub>  $\xrightarrow{\text{Cu}}$   $R - C - R' + \text{H}_2\text{O}$ 

ketone
(Alkanone)

e.g CH<sub>3</sub>-CH(CH<sub>3</sub>)-OH + 
$$\frac{1}{2}$$
O<sub>2</sub>  $\xrightarrow{\text{Cu}}$  CH<sub>3</sub>-  $\overset{\text{C}}{\text{C}}$  -CH<sub>3</sub> + H<sub>2</sub>O propanone

## For 3ºalcohol:

$$RR'R''C-OH + \frac{1}{2}O_2 \longrightarrow no rxn$$

## B) Catalytic Dehydrogenation:

# For 10 alcohol:

RH<sub>2</sub>OH 
$$\xrightarrow{Cu}$$
  $\xrightarrow{R-C-H+H_2}$  Aldehyde

e.g CH<sub>3</sub>CH<sub>2</sub>OH 
$$\xrightarrow{\text{Cu}}$$
 CH<sub>3</sub>  $\xrightarrow{\text{C}}$  H + H<sub>2</sub>

# For 2ºalcohol:

RR'CH-OH
$$\frac{\text{Cu}}{300^{\circ}\text{C}} \text{ R- C-R' + H}_{2}$$
2° alcohol

Ketone

# For 3ºalcohol:

RR'R''C-OH 
$$\xrightarrow{\text{Cu}}$$
 no rxn

C) Oxidation by oxidant: 
$$(\operatorname{Cr}_2 \operatorname{O}_7^{2-}/\operatorname{Cr}^{3+})$$
 &  $(\operatorname{Mn} \operatorname{O}_4^{2-}/\operatorname{Mn}^{2+})$ 

$$RCH_2OH + oxidant \longrightarrow RCHO + Oxidant \longrightarrow RCOOH$$
Limiting excess

# For 1ºalcohol:

RCH<sub>2</sub>OH + 
$$Cr_2O_7^{2-}$$
 RCHO +  $Cr^{3+}$   
1° alcohol limiting aldehyde

Balanced: 
$$3RCH_2OH + Cr_2O_7^{2-} + 8H^+ \longrightarrow 3RCHO + 2Cr^{3+} + 7H_2O$$
(Limiting amount) (aldehyde)

e.g 
$$3 \text{ CH}_3\text{CH}_2\text{OH} + \text{Cr}_2\text{O}_7^{2-} + 8\text{H}^+ \longrightarrow 3 \text{ CH}_3\text{CHO} + 2 \text{ Cr}^{3+} + 7 \text{ H}_2\text{O}$$

Balanced: 
$$3 \text{ RCH}_2\text{OH} + 2\text{Cr}_2\text{O}_7^2 + 16\text{H}^+ \longrightarrow 3 \text{ RCOOH} + 4 \text{ Cr}^{3+} + 11 \text{ H}_2\text{O} \text{ (continuous mild oxidation)}$$

e.g 
$$3 \text{ CH}_3\text{CH}_2\text{OH} + 2\text{Cr}_2\text{O}_7^{2-} + 16\text{H}^+ \longrightarrow 3 \text{ CH}_3\text{COOH} + 4 \text{ Cr}^{3+} + 11\text{H}_2\text{O}$$

## For 2ºalcohol:

RR'CHOH + 
$$Cr_2O_7^{2-}$$
 RCOR' +  $Cr^{3+}$   
2° alcohol ketone

Balanced: 
$$3RR'CHOH + Cr_2O_7^{2-} + 8H^+ \longrightarrow 3RCOR' + 2Cr^{3+} + 7H_2O$$

e.g 
$$3 \text{ CH}_3\text{CH}(\text{CH}_3)\text{OH} + \text{Cr}_2\text{O}_7^{2-} + 8\text{H}^+ \longrightarrow 3 \text{ CH}_3\text{COCH}_3 + 2 \text{ Cr}^{3+} + 7\text{H}_2\text{O}$$

## For 3ºalcohol:

RR'R''C-OH + 
$$Cr_2 O_7^{2-}$$
 no rxn

#### **Note:**

- Esterification needs an experimental reflux heating since alcohol is volatile.
- All mild oxidation needs experimental distillation to get the aldyhyde or the ketone formed since they are volatile compounds.
- Continues mild oxidation needs an experimental reflux heating since the aldehyde formed from the first mild oxidation is volatile.
  - \* Volatile : has low boiling point