

DTM-based filtrations

Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi, Raphaël Tinarrage, Yuhei Umeda

Usual pipeline of persistent homology

Let $M \subset \mathbb{R}^n$ be a compact set, and $X \subset \mathbb{R}^n$ a finite set.

Denote by $H_i(M)$ the i^{th} singular homology group of M in a finite field k.

$$H_0(M) = k$$
 $H_1(M) = k$ $H_i(M) = 0, i \ge 2$

Problem: estimate $H_i(M)$ from X.

Assumption: the Hausdorff distance $d_H(M,X)$ is small.

Čech filtration

For every $t \geq 0$, define $X^t = \bigcup_{x \in X} \overline{B}(x,t)$, the t-neighborhood of X.

The family $(X^t)_{t\geq 0}$ is called the Čech filtration associated to X. We have inclusion maps $i_s^t: X^s \to X^t$ for every $0 \leq s \leq t$.

$$X^{t}$$
, $t = 0$

$$t = 0.05$$

Applying the homology functor H_i we obtain a persistence module $((H_i(X^t))_{t\geq 0}, ((i_s^t)_*)_{t\geq s\geq 0}).$

Persistence diagram

This persistent module can be summarized via its persistence diagram.

Persistence diagram

Theorem (Stability of persistent homology): The bottleneck distance between these persistence diagrams is upper bounded by the Hausdorff distance $d_H(X, M)$.

This also holds for the interleaving distance between the (set) filtrations and the interleaving distance between the persistence modules.

Persistence diagram

Issue: if X contains outliers, $d_H(M,X)$ is large, and so may be the interleaving and bottleneck distance.

 \boldsymbol{X} , a sample of \boldsymbol{M} with outliers

A measure-theoretic point of view

However, X still contains information about M.

Define:

- \bullet μ the Hausdorff measure restricted to M (submanifold),
- $\nu = \frac{1}{|X|} \sum_{x \in X} \delta_x$ the empirical measure on X.

Goal: build filtrations from probability measures which are stable with respect to W_2 .

Weighted Čech filtrations

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^+$ (called the weight function).

For every
$$t \geq 0$$
, define $V^t[X,f] = \bigcup_{x \in X} \overline{B}(x,t-f(x))$

The family $V[X, f] = (V^t[X, f])_{t>0}$ is called the weighted Čech filtration.

$$t \mapsto t - f(x)$$

Weighted Čech filtrations

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^+$ (called the weight function).

For every
$$t \geq 0$$
, define $V^t[X, f] = \bigcup_{x \in X} \overline{B}(x, \sqrt{t^2 - f(x)^2})$

The family $V[X, f] = (V^t[X, f])_{t>0}$ is called the weighted Čech filtration.

[Buchet et al. SODA 2015]

Weighted Čech filtrations

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^+$ (called the weight function). Let p > 1.

For every
$$t \geq 0$$
, define $V^t[X, f, p] = \bigcup_{x \in X} \overline{B}(x, (t^p - f(x)^p)^{\frac{1}{p}})$

The family $V[X, f, p] = (V^t[X, f, p])_{t \ge 0}$ is called the weighted Čech filtration.

[Buchet et al. SODA 2015]

How to choose the function f

We want f to take high values far from ${\cal M}$

i.e. high on low density areas

And small values close to M i.e. on small on high density areas

lacksquare Choose the distance to measure $d_{\mu,m}$

How to choose the function f

Definition (DTM): Let μ be a probability measure.

For every $x \in \mathbb{R}^n$ and $t \in [0, 1)$, define

$$\delta_{\mu,t}(x) = \inf\{r \ge 0, \mu(\overline{B}(x,r)) > t\}.$$

Let $m \in [0, 1[$. The DTM μ of parameter m is the function:

$$d_{\mu,m}: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$x \longmapsto \sqrt{\frac{1}{m} \int_0^m \delta_{\mu,t}^2(x) dt}$$

How to choose the function f

Theorem [Chazal et al. 2014]: Let μ, ν be two probability measures, and $m \in (0,1)$. Then

$$||d_{\mu,m} - d_{\nu,m}||_{\infty} \le m^{-\frac{1}{2}} W_2(\mu, \nu).$$

DTM-filtration

Definition: Let μ be a probability measure, $m \in [0,1)$ and $p \ge 1$.

the DTM-filtration is the weighted Čech filtration V[X,f,p] with:

- $X = \operatorname{supp}(\mu)$
- $f = d_{\mu,m}$

It is denoted $W[\mu, m, p]$.

 $W[\mu, m, p] = (W^t[\mu, m, p])_{t \ge 0}$ with:

$$W^{t}[\mu, m, p] = \bigcup_{x \in \text{supp}(\mu)} \overline{B}(x, (t^{p} - d_{\mu, m}(x)^{p})^{\frac{1}{p}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

$$t = 0, 0$$

Usual Čech
$$\cup \overline{B}(x,t)$$

DTM-filtration,
$$p=1$$

$$W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$$

DTM-filtration, p=2 $W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$

DTM-filtration,
$$p=30$$

$$W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

$$t = 0, 1$$

Usual Čech $\cup \overline{B}(x,t)$

DTM-filtration,
$$p=1$$

$$W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$$

DTM-filtration,
$$p=2$$

$$W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$$

DTM-filtration,
$$p=30$$

$$W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

$$t = 0, 2$$

Usual Čech $\cup \overline{B}(x,t)$

DTM-filtration,
$$p=1$$

$$W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$$

DTM-filtration,
$$p=2$$

$$W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$$

DTM-filtration,
$$p=30$$

$$W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

$$t = 0, 3$$

Usual Čech $\cup \overline{B}(x,t)$

DTM-filtration,
$$p=1$$

$$W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$$

DTM-filtration, p=2 $W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$

DTM-filtration,
$$p=30$$

$$W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

$$t = 0, 4$$

Usual Čech $\cup \overline{B}(x,t)$

DTM-filtration,
$$p=1$$

$$W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$$

DTM-filtration, p=2 $W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$

DTM-filtration,
$$p=30$$

$$W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

t = 0, 5

Usual Čech $\cup \overline{B}(x,t)$

DTM-filtration, p=1 $W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$

DTM-filtration, p=2 $W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$

DTM-filtration,
$$p=30$$

$$W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

t = 0, 6

Usual Čech $\cup \overline{B}(x,t)$

DTM-filtration, p=1 $W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$

DTM-filtration, p=2 $W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$

DTM-filtration,
$$p=30$$

$$W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

t = 0, 7

Usual Čech $\cup \overline{B}(x,t)$

DTM-filtration, p=1 $W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$

DTM-filtration, p=2 $W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$

DTM-filtration,
$$p=30$$

$$W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

t = 0, 8

Usual Čech $\cup \overline{B}(x,t)$

DTM-filtration, p=1 $W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$

DTM-filtration, p=2 $W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$

DTM-filtration,
$$p=30$$

$$W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

$$t = 0, 9$$

Usual Čech $\cup \overline{B}(x,t)$

DTM-filtration, p=1 $W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$

DTM-filtration, p=2 $W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$

DTM-filtration, p=30 $W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$

 $\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$

t = 1, 0

Usual Čech $\cup \overline{B}(x,t)$

DTM-filtration, p=1 $W^t[\mu,m,p] = \cup \overline{B}(x,t-d_{\mu,m}(x))$

DTM-filtration, p=2 $W^t[\mu,m,p] = \cup \overline{B}(x,(t^2-d_{\mu,m}(x)^2)^{\frac{1}{2}})$

DTM-filtration,
$$p=30$$

$$W^t[\mu,m,p]=\cup \overline{B}(x,(t^{30}-d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

$$\begin{array}{l} \mu = \text{empirical measure on } X \\ m = 0.1 \end{array}$$

Usual Čech $\cup \overline{B}(x,t)$

0.5

DTM-filtration, p=2

$$W^{t}[\mu, m, p] = \cup \overline{B}(x, (t^{2} - d_{\mu,m}(x)^{2})^{\frac{1}{2}})$$

DTM-filtration, p = 1

$$W^{t}[\mu, m, p] = \cup \overline{B}(x, t - d_{\mu, m}(x))$$

DTM-filtration, p = 30

$$W^{t}[\mu, m, p] = \bigcup \overline{B}(x, (t^{30} - d_{\mu,m}(x)^{30})^{\frac{1}{30}})$$

A stability result

Case
$$p=1$$
: $W^t[\mu,m,p]=\cup \overline{B}(x,t-d_{\mu,m}(x))$

Define $c(\mu, m, p) = \sup_{x \in \text{supp}(\mu)} d_{\mu, m}(x)$.

Note: c is small if the measure μ is close to the Hausdorff measure restricted to a submanifold.

Theorem: Let μ, ν be probability measures. Let ν' be any probability measure with compact support included in $\operatorname{supp}(\nu)$. The interleaving distance between the (set) filtrations $W[\mu, m, p]$ and $W[\nu, m, p]$ is bounded by:

$$m^{\frac{1}{2}}W_2(\mu,\nu') + m^{\frac{1}{2}}W_2(\nu',\nu) + c(\mu,m,p) + c(\nu',m,p)$$

A stability result

Case
$$p > 1$$
: $W^t[\mu, m, p] = \cup \overline{B}(x, (t^p - d_{\mu, m}(x)^p)^{\frac{1}{p}})$

Define
$$c(\mu, m, p) = \sup_{x \in \text{supp}(\mu)} d_{\mu, m}(x) + 2(1 - \frac{1}{p}) \text{diam}(\text{supp}(\mu)).$$

Note: c is small if the measure μ is close to the Hausdorff measure rectricted to a submanifold.

Theorem: Let μ, ν be probability measures. Let ν' be any probability measure with compact support included in $\mathrm{supp}(\nu)$. The interleaving distance between the (set) filtrations $W[\mu, m, p]$ and $W[\nu, m, p]$ is bounded by:

$$m^{\frac{1}{2}}W_2(\mu,\nu') + m^{\frac{1}{2}}W_2(\nu',\nu) + c(\mu,m,p) + c(\nu',m,p)$$

Conclusion

The DTM-filtrations $W[\mu, m, p]$ are Wassertein stable close to a submanifold.

Jupyter notebook available on my webpage http://pages.saclay.inria.fr/raphael.tinarrage/

Thank you!