AMoDSim: An Efficient and Modular Simulation Framework for Autonomous Mobility on Demand

A. Di Maria, A. Araldo, G. Morana and A. Di Stefano

Outline

Introduction
MoD in other simulators
Proposed Simulator
Case Study
Results and Analysis
Conclusions

AMoDSim

A Simulator for future generation ride sharing systems

- Motivation
- AMoDSim: Model and Architecture
- A case study

Introduction

Introduction

MoD in other simulators Proposed Simulator Case Study Results and Analysis Conclusions

A new era of Urban Transportation driven by ICT

- Connectivity (3G and 4G), smartphone apps
- \triangleright Emergence of *Ride Sharing* services **UPR UBER**
- Autonomous Mobility on Demand services (**AMoD**)

Need Of ...

- Efficient and Scalable algorithms to match requests to the available vehicles
- NP hard [1]
- **Simulation tools**

[1] J. Alonso-Mora, S. Samaranayake, et al. "On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment". PNAS, 114(3):462-467, 2017.

Mobility on Demand in other simulators

Introduction

MoD in other simulators

Proposed Simulator
Case Study
Results and Analysis
Conclusions

Yet another simulator... Why?

Case-Specific

- Built from scratch every time
- Not reusable
- Results not reproducible

Commercial

AMoDSim

- Not better but different goals
- Algorithm-oriented
- Open source
- Easy to use
- Massive simulation campaigns
- Ready-to-use algorithm performance results

Open source

- Difficult to setup
- Economic indicators? Detailed topology
- ► Detailed movement → **Overhead**

AMoDSim: the model

Introduction MoD in other simulators

Proposed Simulator (1/5)

Case Study Results and Analysis Conclusions

AMoDSim: time constraints

Introduction
MoD in other simulators

Proposed Simulator (2/5)

Case Study
Results and Analysis
Conclusions

Is feasible? (max extra-time)

Additional Cost: C1

Is feasible? (max extra-time)

Additional Cost: C2

AMoDSim: time constraints

Introduction
MoD in other simulators

Proposed Simulator (3/5)

Case Study
Results and Analysis
Conclusions

Additional Cost: C1

Additional Cost: C2

Additional Cost: C2

AMoDSim: sw architecture

Introduction
MoD in other simulators

Proposed Simulator (4/5)

Queue

level

Case Study
Results and Analysis
Conclusions

Queue

level

Queue

level

AMoDSim: sw architecture

Introduction
MoD in other simulators **Proposed Simulator (5/5)**

Case Study
Results and Analysis
Conclusions

Case Study: scenario

Introduction
MoD in other simulators
Proposed Simulator
Case Study
Results and Analysis
Conclusions

Requests Network 20 up to 640 per hour per km² Manhattan Grid that cover with Poissonian arrivals an area of 60 km² **Matching algorithms** Fleet Radio-Taxi and 500 up to 9000 vehicles Insertion-Heuristic Seat Runs 1800 simulations of 4h Single-seater up to 10-seater minibus

Introduction
MoD in other simulators
Proposed Simulator
Case Study

Results and Analysis (1/4)

Conclusions

Radio Taxi

- 320 requests per h per km²[1, 2]
- 2 K, 4-Seater vehicles

Ride Sharing

[2] J. Jaeyoung et al. Design and Modeling of Real-time Shared-Taxi Dispatch Algorithms. TRB 92nd Annual Meeting, 2013

Introduction
MoD in other simulators
Proposed Simulator
Case Study

Results and Analysis (2/4)

Conclusions

Vehicle Occupancy (Ride sharing)

Introduction
MoD in other simulators
Proposed Simulator
Case Study

Results and Analysis (3/4)

Conclusions

Per-person Waiting Time

Introduction
MoD in other simulators
Proposed Simulator
Case Study

Results and Analysis (4/4)

Conclusions

Computation Time & Memory Consumption

- 320 requests per h per km²
- 4-Seater vehicles

• 2 K, 4-Seater vehicles

- 320 requests per h per km²
- 2 K vehicles

Conclusions

Introduction
MoD in other simulators
Proposed Simulator
Case Study
Results and Analysis

Conclusions

Aim ...

- Accelerate research in future ride sharing systems
- Enable researchers to assess their solutions, verify and reproduce their results, comparing them on a common base

Hopes ...

 Researches will exploit the simulator and contribute to its evolution with proper code extensions as new requirements arise

Future works ...

Compare AMoDSim with other simulators

References

Introduction
MoD in other simulators
Proposed Simulator
Case Study
Results and Analysis
Conclusions

Get AMoDSim ©

https://github.com/admaria/AMoDSim

Contact us

Andrea Di Maria adimaria@auctacognitio.net

Andrea Araldo andrea.araldo@telecom-sudparis.eu

• Giovanni Morana gmorana@auctacognitio.net

• Antonella Di Stefano ad@dieei.unict.it

Q and A?

External References

Introduction
MoD in other simulators
Proposed Simulator
Case Study
Results and Analysis
Conclusions

Scenario related References:

- [1] J. Alonso-Mora, S. Samaranayake, et al. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. PNAS, 114(3):462–467, 2017.
- [2] J. Jaeyoung, R. Jayakrishnan, et al. Design and Modeling of Real-time Shared-Taxi Dispatch Algorithms. TRB 92nd Annual Meeting, 2013.
- [3] M. Hyland and H. Mahmassani. Dynamic Autonomous Vehicle Fleet Operations: Optimization-Based Strategies to Assign AVs to Immediate Traveler Demand Requests. Transport Res. C-Emer, 92:278–297, 2018 (Grid with static link travel time)
- [4] S. Robinson. Measuring bus stop dwell time and time lost serving stop with London ibus automatic vehicle location data. Transport Res Rec, 2352(1):68–75, 2013. (Acceleration/Deceleration)
- [5] J. Jung, R. Jayakrishnan, et al. Design and Modeling of Real-time Shared-Taxi Dispatch Algorithms. In TRB Annual Meeting, volume 8, 2013. (Poissonian Arrivals)
- [6] J. Elpern-Waxman. Transportation Terms: Dwell Time, 2017. (Boarding/Alighting)