CIS 770: Formal Language Theory

Pavithra Prabhakar

Kansas State University

Spring 2016

• Machines so far: DFAs, NFAs, GNFAs, PDAs

- Machines so far: DFAs, NFAs, GNFAs, PDAs
 - Limitations on how much memory they can use: fixed amount of memory vs infinite memory
 - Limitations on how to access the memory: stack accessed only from the top
 - Limitations on what they can compute/decide: only regular languages or context free languages

- Machines so far: DFAs, NFAs, GNFAs, PDAs
 - Limitations on how much memory they can use: fixed amount of memory vs infinite memory
 - Limitations on how to access the memory: stack accessed only from the top
 - Limitations on what they can compute/decide: only regular languages or context free languages
- The complete machine?

- Machines so far: DFAs, NFAs, GNFAs, PDAs
 - Limitations on how much memory they can use: fixed amount of memory vs infinite memory
 - Limitations on how to access the memory: stack accessed only from the top
 - Limitations on what they can compute/decide: only regular languages or context free languages
- The complete machine?
 - No limitation on what they can compute?

- Machines so far: DFAs, NFAs, GNFAs, PDAs
 - Limitations on how much memory they can use: fixed amount of memory vs infinite memory
 - Limitations on how to access the memory: stack accessed only from the top
 - Limitations on what they can compute/decide: only regular languages or context free languages
- The complete machine?
 - No limitation on what they can compute?
 - No! There are far too many languages over $\{0,1\}$ than there are "machines" or programs

- Machines so far: DFAs, NFAs, GNFAs, PDAs
 - Limitations on how much memory they can use: fixed amount of memory vs infinite memory
 - Limitations on how to access the memory: stack accessed only from the top
 - Limitations on what they can compute/decide: only regular languages or context free languages
- The complete machine?
 - No limitation on what they can compute?
 - No! There are far too many languages over {0,1} than there are "machines" or programs (as long as machines can be represented digitally)
 - Come up with a model that describes all "conceivable" computation

Alonzo Church, Emil Post, and Alan Turing (1936)

Emil Post

Alan Turing

• Church (λ -calculus), Post (Post's machine), Turing (Turing machine) independently came up with formal definitions of mechanical computation

Alonzo Church, Emil Post, and Alan Turing (1936)

Emil Post

Alan Turing

- Church (λ -calculus), Post (Post's machine), Turing (Turing machine) independently came up with formal definitions of mechanical computation
- All equivalent!

Alonzo Church, Emil Post, and Alan Turing (1936)

Emil Post

Alan Turing

- Church (λ -calculus), Post (Post's machine), Turing (Turing machine) independently came up with formal definitions of mechanical computation
- All equivalent!
- In this course: Turing Machines

The 'aha' moment

The 'aha' moment

• Unrestricted memory: an infinite tape

- Unrestricted memory: an infinite tape
 - A finite state machine that reads/writes symbols on the tape

- Unrestricted memory: an infinite tape
 - A finite state machine that reads/writes symbols on the tape
 - Can read/write anywhere on the tape

- Unrestricted memory: an infinite tape
 - A finite state machine that reads/writes symbols on the tape
 - Can read/write anywhere on the tape
 - Tape is infinite in one direction only (other variants possible)

- Unrestricted memory: an infinite tape
 - A finite state machine that reads/writes symbols on the tape
 - Can read/write anywhere on the tape
 - Tape is infinite in one direction only (other variants possible)
- Initially, tape has input and the machine is reading (i.e., tape head is on) the leftmost input symbol.

- Unrestricted memory: an infinite tape
 - A finite state machine that reads/writes symbols on the tape
 - Can read/write anywhere on the tape
 - Tape is infinite in one direction only (other variants possible)
- Initially, tape has input and the machine is reading (i.e., tape head is on) the leftmost input symbol.
- Transition (based on current state and symbol under head):
 - Change control state
 - Overwrite a new symbol on the tape cell under the head
 - Move the head left, or right.

Formal Definition

Formal Definition

A Turing machine is $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\sf acc}, q_{\sf rej})$ where

• Q is a finite set of control states

Formal Definition

- Q is a finite set of control states
- ullet Σ is a finite set of input symbols

Formal Definition

- Q is a finite set of control states
- ullet Σ is a finite set of input symbols
- $\Gamma \supseteq \Sigma$ is a finite set of tape symbols. Also, a blank symbol $\sqcup \in \Gamma \setminus \Sigma$

Formal Definition

- Q is a finite set of control states
- ullet Σ is a finite set of input symbols
- $\Gamma \supseteq \Sigma$ is a finite set of tape symbols. Also, a blank symbol $\sqcup \in \Gamma \setminus \Sigma$
- $q_0 \in Q$ is the initial state

Formal Definition

- Q is a finite set of control states
- ullet Σ is a finite set of input symbols
- $\Gamma \supseteq \Sigma$ is a finite set of tape symbols. Also, a blank symbol $\sqcup \in \Gamma \setminus \Sigma$
- $q_0 \in Q$ is the initial state
- $q_{\mathsf{acc}} \in Q$ is the accept state

Formal Definition

- Q is a finite set of control states
- ullet Σ is a finite set of input symbols
- $\Gamma \supseteq \Sigma$ is a finite set of tape symbols. Also, a blank symbol $\sqcup \in \Gamma \setminus \Sigma$
- $q_0 \in Q$ is the initial state
- $q_{\mathsf{acc}} \in Q$ is the accept state
- $ullet q_{\mathsf{rej}} \in Q$ is the reject state, where $q_{\mathsf{rej}}
 eq q_{\mathsf{acc}}$

- Q is a finite set of control states
- ullet Σ is a finite set of input symbols
- $\Gamma \supseteq \Sigma$ is a finite set of tape symbols. Also, a blank symbol $\sqcup \in \Gamma \setminus \Sigma$
- $q_0 \in Q$ is the initial state
- $q_{\mathsf{acc}} \in Q$ is the accept state
- $ullet q_{\mathsf{rej}} \in Q$ is the reject state, where $q_{\mathsf{rej}}
 eq q_{\mathsf{acc}}$
- δ: Q × Γ → Q × Γ × {L, R} is the transition function.
 Given the current state and symbol being read, the transition function describes the next state, symbol to be written and direction (left or right) in which to move the tape head.

 $\delta(q_1,X)=(q_2,Y,\mathsf{L})$: Read transition as "the machine when in state q_1 , and reading symbol X under the tape head, will move to state q_2 , overwrite X with Y, and move its tape head to the left"

 $\delta(q_1, X) = (q_2, Y, L)$: Read transition as "the machine when in state q_1 , and reading symbol X under the tape head, will move to state q_2 , overwrite X with Y, and move its tape head to the left"

• In fact $\delta: (Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}.$

 $\delta(q_1, X) = (q_2, Y, L)$: Read transition as "the machine when in state q_1 , and reading symbol X under the tape head, will move to state q_2 , overwrite X with Y, and move its tape head to the left"

• In fact $\delta: (Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$. No transition defined after reaching q_{acc} or q_{rej}

 $\delta(q_1,X)=(q_2,Y,\mathsf{L})$: Read transition as "the machine when in state q_1 , and reading symbol X under the tape head, will move to state q_2 , overwrite X with Y, and move its tape head to the left"

- In fact $\delta: (Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$. No transition defined after reaching q_{acc} or q_{rej}
- Transitions are deterministic

 $\delta(q_1,X)=(q_2,Y,\mathsf{L})$: Read transition as "the machine when in state q_1 , and reading symbol X under the tape head, will move to state q_2 , overwrite X with Y, and move its tape head to the left"

- In fact $\delta: (Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$. No transition defined after reaching q_{acc} or q_{rej}
- Transitions are deterministic
- Convention: if $\delta(q, X)$ is not explicitly specified, it is taken as leading to q_{rej} , i.e., say $\delta(q, X) = (q_{\text{rej}}, \sqcup, \mathsf{R})$

The configuration (or "instantaneous description") contains all the information to exactly capture the "current state of the computation"

The configuration (or "instantaneous description") contains all the information to exactly capture the "current state of the computation"

$$X_1X_2\cdots X_{i-1}qX_i\cdots X_n$$

Includes the current state

The configuration (or "instantaneous description") contains all the information to exactly capture the "current state of the computation"

$$X_1X_2\cdots X_{i-1}qX_i\cdots X_n$$

• Includes the current state: q

The configuration (or "instantaneous description") contains all the information to exactly capture the "current state of the computation"

$$X_1X_2\cdots X_{i-1}qX_i\cdots X_n$$

- Includes the current state: q
- Position of the tape head

The configuration (or "instantaneous description") contains all the information to exactly capture the "current state of the computation"

$$X_1X_2\cdots X_{i-1}qX_i\cdots X_n$$

- Includes the current state: q
- ullet Position of the tape head: Scanning $i^{ ext{th}}$ symbol X_i

Configurations

The configuration (or "instantaneous description") contains all the information to exactly capture the "current state of the computation"

$$X_1X_2\cdots X_{i-1}qX_i\cdots X_n$$

- Includes the current state: q
- ullet Position of the tape head: Scanning $i^{ ext{th}}$ symbol X_i
- Contents of all the tape cells till the rightmost nonblank symbol. This is will always be finitely many cells.

Configurations

The configuration (or "instantaneous description") contains all the information to exactly capture the "current state of the computation"

$$X_1X_2\cdots X_{i-1}qX_i\cdots X_n$$

- Includes the current state: q
- ullet Position of the tape head: Scanning $i^{ ext{th}}$ symbol X_i
- Contents of all the tape cells till the rightmost nonblank symbol. This is will always be finitely many cells. Those symbols are $X_1X_2\cdots X_n$, where $X_n\neq \sqcup$ unless the tape head is on it.

Special Configurations

• Start configuration: $q_0 X_1 \cdots X_n$, where the input is $X_1 \cdots X_n$

Special Configurations

- Start configuration: $q_0X_1\cdots X_n$, where the input is $X_1\cdots X_n$
- Accept and reject configurations: The state q is q_{acc} or q_{rej}, respectively

Special Configurations

- Start configuration: $q_0X_1\cdots X_n$, where the input is $X_1\cdots X_n$
- Accept and reject configurations: The state q is $q_{\rm acc}$ or $q_{\rm rej}$, respectively. These configurations are halting configurations, because there are no transitions possible from them.

Definition

We say one configuration (C_1) yields another (C_2) , denoted as $C_1 \vdash C_2$, if one of the following holds.

• If $\delta(q, X_i) = (p, Y, L)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-2}pX_{i-1}YX_{i+1}\cdots X_n$$

Definition

We say one configuration (C_1) yields another (C_2) , denoted as $C_1 \vdash C_2$, if one of the following holds.

• If $\delta(q, X_i) = (p, Y, L)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-2}pX_{i-1}YX_{i+1}\cdots X_n$$

Boundary Cases:

• If i = 1 then

Definition

We say one configuration (C_1) yields another (C_2) , denoted as $C_1 \vdash C_2$, if one of the following holds.

• If $\delta(q, X_i) = (p, Y, L)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-2}pX_{i-1}YX_{i+1}\cdots X_n$$

Boundary Cases:

• If i = 1 then $qX_1X_2 \cdots X_n \vdash pYX_2 \cdots X_n$

Definition

We say one configuration (C_1) yields another (C_2) , denoted as $C_1 \vdash C_2$, if one of the following holds.

• If $\delta(q, X_i) = (p, Y, L)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-2}pX_{i-1} YX_{i+1}\cdots X_n$$

Boundary Cases:

- If i = 1 then $qX_1X_2 \cdots X_n \vdash pYX_2 \cdots X_n$
- If i = n and $Y = \sqcup$ then

Definition

We say one configuration (C_1) yields another (C_2) , denoted as $C_1 \vdash C_2$, if one of the following holds.

• If $\delta(q, X_i) = (p, Y, L)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-2}pX_{i-1}YX_{i+1}\cdots X_n$$

Boundary Cases:

- If i = 1 then $qX_1X_2 \cdots X_n \vdash pYX_2 \cdots X_n$
- If i=n and $Y=\sqcup$ then $X_1\cdots X_{n-1}qX_n\vdash X_1\cdots pX_{n-1}$

Definition

We say one configuration (C_1) yields another (C_2) , denoted as $C_1 \vdash C_2$, if one of the following holds.

• If $\delta(q, X_i) = (p, Y, L)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-2}pX_{i-1} Y X_{i+1}\cdots X_n$$

Boundary Cases:

- If i = 1 then $qX_1X_2 \cdots X_n \vdash pYX_2 \cdots X_n$
- If i=n and $Y=\sqcup$ then $X_1\cdots X_{n-1}qX_n\vdash X_1\cdots pX_{n-1}$
- If $\delta(q, X_i) = (p, Y, R)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-1}Y_pX_{i+1}\cdots X_n$$

Definition

We say one configuration (C_1) yields another (C_2) , denoted as $C_1 \vdash C_2$, if one of the following holds.

• If $\delta(q, X_i) = (p, Y, L)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-2}pX_{i-1} YX_{i+1}\cdots X_n$$

Boundary Cases:

- If i = 1 then $qX_1X_2 \cdots X_n \vdash pYX_2 \cdots X_n$
- If i=n and $Y=\sqcup$ then $X_1\cdots X_{n-1}qX_n\vdash X_1\cdots pX_{n-1}$
- If $\delta(q, X_i) = (p, Y, R)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-1} Y_pX_{i+1}\cdots X_n$$

Boundary Case:

• If i = n then

Definition

We say one configuration (C_1) yields another (C_2) , denoted as $C_1 \vdash C_2$, if one of the following holds.

• If $\delta(q, X_i) = (p, Y, L)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-2}pX_{i-1} YX_{i+1}\cdots X_n$$

Boundary Cases:

- If i = 1 then $qX_1X_2 \cdots X_n \vdash pYX_2 \cdots X_n$
- If i=n and $Y=\sqcup$ then $X_1\cdots X_{n-1}qX_n\vdash X_1\cdots pX_{n-1}$
- If $\delta(q, X_i) = (p, Y, R)$ then

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n\vdash X_1X_2\cdots X_{i-1} Y_pX_{i+1}\cdots X_n$$

Boundary Case:

Computations

Definition

We say ${\rm C}_1\vdash^*{\rm C}_2$ if the machine can move from ${\rm C}_1$ to ${\rm C}_2$ in zero or more steps.

Computations

Definition

We say $\mathrm{C_1}\vdash^*\mathrm{C_2}$ if the machine can move from $\mathrm{C_1}$ to $\mathrm{C_2}$ in zero or more steps. i.e., $\mathrm{C_1}=\mathrm{C_2}$ or there exist $\mathrm{C_1'},\ldots,\mathrm{C_n'}$ such that $\mathrm{C_1}=\mathrm{C_1'}$, $\mathrm{C_2}=\mathrm{C_n'}$ and $\mathrm{C_i'}\vdash\mathrm{C_{i+1}'}$

Definition

A Turing machine M accepts w iff $q_0w\vdash^*\alpha_1q_{\rm acc}\alpha_2$, where α_1,α_2 are some strings. In other words, the machine M when started in its intial state and with w as input, reaches the accept state.

Definition

A Turing machine M accepts w iff $q_0w\vdash^*\alpha_1q_{\rm acc}\alpha_2$, where α_1,α_2 are some strings. In other words, the machine M when started in its intial state and with w as input, reaches the accept state.

Note: The machine may not read all the symbols in w. It may pass back and forth over some symbols of w several times. Finally, w may have been completely overwritten.

Definition

A Turing machine M accepts w iff $q_0w\vdash^*\alpha_1q_{\rm acc}\alpha_2$, where α_1,α_2 are some strings. In other words, the machine M when started in its intial state and with w as input, reaches the accept state.

Note: The machine may not read all the symbols in w. It may pass back and forth over some symbols of w several times. Finally, w may have been completely overwritten.

Definition

For a Turing machine M, define $L(M) = \{w \mid M \text{ accepts } w\}$.

Definition

A Turing machine M accepts w iff $q_0w\vdash^*\alpha_1q_{\rm acc}\alpha_2$, where α_1,α_2 are some strings. In other words, the machine M when started in its intial state and with w as input, reaches the accept state.

Note: The machine may not read all the symbols in w. It may pass back and forth over some symbols of w several times. Finally, w may have been completely overwritten.

Definition

For a Turing machine M, define $L(M) = \{w \mid M \text{ accepts } w\}$. M is said to accept or recognize a language L if L = L(M).

Design a TM to accept the language $L = \{0^n 1^n \mid n > 0\}$

Design a TM to accept the language $L = \{0^n 1^n \mid n > 0\}$

```
High level description
On input string w
    while there are unmarked 0s, do
        Mark the left most 0
        Scan right till the leftmost unmarked 1;
            if there is no such 1 then crash
        Mark the leftmost 1
    done
    Check to see that there are no unmarked 1s;
        if there are then crash
    accept
```


Accepts input 0011: q₀0011 ⊢

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash AAq_1B1 \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash AAq_1B1 \vdash AABq_11 \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash AAq_1B1 \vdash AABq_11 \vdash AAq_2BB \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash AAq_1B1 \vdash AABq_11 \vdash AAq_2BB \vdash Aq_2ABB \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash AAq_1B1 \vdash AABq_11 \vdash AAq_2BB \vdash Aq_2ABB \vdash AAq_0BB \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash AAq_1B1 \vdash AABq_11 \vdash AAq_2BB \vdash Aq_2ABB \vdash AAq_0BB \vdash AABq_3B \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash AAq_1B1 \vdash AABq_11 \vdash AAq_2BB \vdash Aq_2ABB \vdash AAq_0BB \vdash AABq_3B \vdash AABBq_3 \sqcup \vdash$

• Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash AAq_1B1 \vdash AABq_11 \vdash AAq_2BB \vdash Aq_2ABB \vdash AAq_0BB \vdash AABq_3B \vdash AABBq_3 \sqcup \vdash AABB \sqcup q_{acc} \sqcup$

Example 1: TM for $\{0^n 1^n | n > 0\}$

- Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash AAq_1B1 \vdash AABq_11 \vdash AAq_2BB \vdash Aq_2ABB \vdash AAq_0BB \vdash AABq_3B \vdash AABBq_3 \sqcup \vdash AABB \sqcup q_{acc} \sqcup$
- Rejects input 00: $q_000 \vdash Aq_10 \vdash A0q_1 \sqcup \vdash$

Example 1: TM for $\{0^n 1^n | n > 0\}$

- Accepts input 0011: $q_00011 \vdash Aq_1011 \vdash A0q_111 \vdash Aq_20B1 \vdash q_2A0B1 \vdash Aq_00B1 \vdash AAq_1B1 \vdash AABq_11 \vdash AAq_2BB \vdash Aq_2ABB \vdash AAq_0BB \vdash AABq_3B \vdash AABBq_3 \sqcup \vdash AABB \sqcup q_{acc} \sqcup$
- Rejects input 00: $q_000 \vdash Aq_10 \vdash A0q_1 \sqcup \vdash A0 \sqcup q_{\text{rej}} \sqcup$

Example: $\{0^{n}1^{n} \mid n > 0\}$

Formal Definition

The machine is $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}})$ where

The machine is $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where

$$\bullet \ \ Q = \{q_0, q_1, q_2, q_3, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}$$

The machine is $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}})$ where

- $Q = \{q_0, q_1, q_2, q_3, q_{acc}, q_{rej}\}$
- ullet $\Sigma = \{0,1\}$, and

The machine is $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where

- $Q = \{q_0, q_1, q_2, q_3, q_{\mathsf{acc}}, q_{\mathsf{rej}}\}$
- \bullet $\Sigma = \{0,1\},$ and $\Gamma = \{0,1,A,B,\sqcup\}$

The machine is $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where

- $Q = \{q_0, q_1, q_2, q_3, q_{acc}, q_{rej}\}$
- $\Sigma = \{0, 1\}$, and $\Gamma = \{0, 1, A, B, \sqcup\}$
- ullet δ is given as follows

$$\delta(q_0,0) = (q_1,A,R)$$
 $\delta(q_0,B) = (q_3,B,R)$
 $\delta(q_1,0) = (q_1,0,R)$ $\delta(q_1,B) = (q_1,B,R)$
 $\delta(q_1,1) = (q_2,B,L)$ $\delta(q_2,0) = (q_2,0,L)$ $\delta(q_2,A) = (q_0,A,R)$
 $\delta(q_3,B) = (q_3,B,R)$ $\delta(q_3,\sqcup) = (q_{acc},\sqcup,R)$

In all other cases, $\delta(q, X) = (q_{rej}, \sqcup, R)$.

The machine is $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}})$ where

•
$$Q = \{q_0, q_1, q_2, q_3, q_{acc}, q_{rej}\}$$

•
$$\Sigma = \{0,1\}$$
, and $\Gamma = \{0,1,A,B,\sqcup\}$

ullet δ is given as follows

$$\delta(q_0,0) = (q_1,A,R)$$
 $\delta(q_0,B) = (q_3,B,R)$
 $\delta(q_1,0) = (q_1,0,R)$ $\delta(q_1,B) = (q_1,B,R)$
 $\delta(q_1,1) = (q_2,B,L)$ $\delta(q_2,0) = (q_2,0,L)$ $\delta(q_2,A) = (q_0,A,R)$
 $\delta(q_3,B) = (q_3,B,R)$ $\delta(q_3,\sqcup) = (q_{acc},\sqcup,R)$

In all other cases, $\delta(q, X) = (q_{\text{rej}}, \sqcup, R)$. So for example, $\delta(q_0, 1) = (q_{\text{rej}}, \sqcup, R)$.

Design a TM to accept the language $L = \{0^n 1^n 2^n \mid n > 0\}$

Design a TM to accept the language $L = \{0^n 1^n 2^n \mid n > 0\}$

```
High level description
On input string w
    while there are unmarked Os, do
        Mark the left most 0
        Scan right to reach the leftmost unmarked 1;
            if there is no such 1 then crash
        Mark the leftmost 1
        Scan right to reach the leftmost unmarked 2;
            if there is no such 2 then crash
        Mark the leftmost 2
    done
    Check to see that there are no unmarked 1s or 2s;
        if there are then crash
    accept
```


e.g.: $q_0001122\vdash^* A0Bq_31C2$

e.g.: $q_0001122\vdash^* A0Bq_31C2 \vdash^* q_3A0B1C2$

e.g.: $q_0001122\vdash^*A0Bq_31C2\vdash^*q_3A0B1C2\vdash Aq_00B1C2$

e.g.: $q_0001122 \vdash^* A0Bq_31C2 \vdash^* q_3A0B1C2 \vdash Aq_00B1C2$ $\vdash^* AAq_0BBCC$

e.g.: $q_0001122\vdash^* A0Bq_31C2 \vdash^* q_3A0B1C2 \vdash Aq_00B1C2 \vdash^* AAq_0BBCC \vdash^* AABBCCq_4 \sqcup$

e.g.: $q_0001122\vdash^*A0Bq_31C2\vdash^*q_3A0B1C2\vdash Aq_00B1C2$ $\vdash^*AAq_0BBCC\vdash^*AABBCCq_4\sqcup\vdash AABBCC\sqcup q_{acc}\sqcup$

 \bullet Only halting configurations are those with state $q_{\rm acc}$ or $q_{\rm rej}$

- ullet Only halting configurations are those with state $q_{
 m acc}$ or $q_{
 m rej}$
- A Turing machine may keep running forever on some input

- ullet Only halting configurations are those with state $q_{
 m acc}$ or $q_{
 m rej}$
- A Turing machine may keep running forever on some input
- Then the machine does not accept that input

- ullet Only halting configurations are those with state $q_{
 m acc}$ or $q_{
 m rej}$
- A Turing machine may keep running forever on some input
- Then the machine does not accept that input
- So two ways to not accept: reject or never halt

- ullet Only halting configurations are those with state $q_{
 m acc}$ or $q_{
 m rej}$
- A Turing machine may keep running forever on some input
- Then the machine does not accept that input
- So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M) and M halts on every input

- ullet Only halting configurations are those with state $q_{
 m acc}$ or $q_{
 m rej}$
- A Turing machine may keep running forever on some input
- Then the machine does not accept that input
- So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M) and M halts on every input

Deciding a language is more than recognizing it.

- ullet Only halting configurations are those with state $q_{
 m acc}$ or $q_{
 m rej}$
- A Turing machine may keep running forever on some input
- Then the machine does not accept that input
- So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M) and M halts on every input

Deciding a language is more than recognizing it. There are languages which are recognizable, but not decidable.

