Template: The Pumping Lemma for Regular Languages

Sigrid Ewert

April 28, 2020

Consider	the	language
----------	-----	----------

$$\mathcal{L} = \{\ldots\}$$
.

We want to prove that \mathcal{L} is not regular.

Suppose \mathcal{L} is regular. According to the pumping lemma for regular languages, there exists an n such that for every $x \in \mathcal{L}$ with $|x| \geq n$, x can be written uvw for some u, v and w with $|uv| \leq n$, |v| > 0, and for any $m \geq 0$, $uv^m w \in \mathcal{L}$.

Let n be the integer in the statement of the pumping lemma.

Choose x so that $|x| \geq n$.

Complete the proof.

r =_____.

Then uv =______.

This implies that w =______.

Moreover, v =

According to the lemma, $uv^mw \in \mathcal{L}$ for every $m \geq 0$. Consider

$$uv^m w = \dots$$

= ...

= ...

For $m = \underline{\hspace{1cm}}$		$, uv^m w \not\in \mathcal{L},$
since		
This contradicts the lemma,	therefore our assumption that $\mathcal L$ is regular is	wrong.
		$8 \ mark(s)$