

Particle MCMC for Inference in State-Space Models

Jimmy Lin¹ Supervisor: Prof. Chris Sherlock¹

¹Lancaster University

State-Space Models

In State-Space Modelling, we consider two random variables: $\{X_t\}_{t\geq 0}$, the latent variable, this is a Markov process which we do not observe. $\{Y_t\}_{t\geq 1}$ the observed variable, this is dependent on the Markov process. This is formalised as follows,

$$X_{0} \sim \mu(x_{0}),$$

$$X_{t}|(X_{t-1} = x_{t-1}) \sim f(x_{t}|x_{t-1}, \theta),$$

$$Y_{t}|(X_{t} = x_{t}) \sim g(y_{t}|x_{t}, \theta).$$
(1)

This leads to two major questions,

- **Filtering**: What is the latent variable at current time given as new observations are made, $p(x_T|y_{1:T},\theta)$?
- Parameter Inference: Can we make inference on the parameter values θ , $\pi(\theta)$?

These problems are mostly intractable, thus we use **Monte Carlo** methods to make inferences on these distributions.

Stochastic Volatility

One area which we can apply this is within finance, where we model the log-volatility as a latent Markov process X and log-returns as Y such that.

$$X_t | (X_{t-1} = x_{t-1}) \sim \mathcal{N}(\gamma x_t, \sigma^2),$$

$$Y_t | (X_t = x_t) \sim \mathcal{N}(0, \exp(x_t)).$$
(2)

Below is a simulation over 100 time periods. Red represents log-returns and blue represents log-volatility.

Bootstrap Filter

One way to approach **filtering** is with an algorithm known as bootstrap filter. This is described as follows,

- 1. Initialise particles by sampling $x_0^{(i)} \sim \mu(x_0)$,
- 2. Set $t \leftarrow 1$,
- 3. Propagate particles by sampling $\tilde{x}_t^{(i)} \sim f(\tilde{x}_t | x_{t-1}^{(i)})$,
- **4. Assign weights** by calculating $\tilde{w}_t^{(i)} = g(y_t|x_t^{(i)})$ and normalise to $w_t^{(i)} \propto \tilde{w}_t^{(i)}$ where $\sum_i w_t^{(i)} = 1$,
- 5. **Resample** the particles with probability $w_t^{(i)}$ corresponding to particle $\tilde{x}_t^{(i)}$ to obtain $x_t^{(i)}$,
- 6. Set $t \leftarrow t + 1$ and repeat until t > T after this step.

Dangers of Resampling

In the bootstrap filter, (multinomial) resampling can be wasteful when weights are nearly uniform. For example, if $\{w_t^{(i)}\}_{i=1}^n=1/n$, approximately **37% of particles are lost**. A simple solution is to monitor the effective sample size (ESS) and resample only when it falls below a threshold.

Particle MCMC

To approach the **parameter inference** problem, we use method known as the particle marginal Metropolis-Hastings (PMMH) algorithm, which we can use to obtain $p(x_{1:T}, \theta|y_{1:T})$.

Define u as an auxiliary random variables generated by a **particle filter** $q_*(u|\theta)$ which contains particles $x_{1:T}^{1:n}$ and ancestor indices from resampling $a_{1:T}^{1:n}$. Each iteration of the PMMH algorithm can be described as follows.

- 1. Set parameters from previous iterations, $\theta \leftarrow \theta_{i-1}, u \leftarrow u_{i-1}, x_{1:T} \leftarrow x_{i-1,1:T}$
- 2. Propose a new parameter θ from proposal $q(\theta'|\theta)$,
- 3. Sample u' from $q(u'|\theta')$ and estimate $\hat{\pi}(\theta'; u')$,
- 4. Sample k' from $q(k'|u',\theta')$, find the backwards path associated with $x_T^{(k')}$ denote the full path $x_{1:T}'$.
- 5. Calculate acceptance probability,

$$\alpha(\theta, u; \theta', u') = 1 \wedge \frac{\hat{\pi}(\theta'; u')q(\theta|\theta')}{\hat{\pi}(\theta; u)q(\theta'|\theta)},$$

6. Generate $U \sim \text{Unif}(0,1)$. If $U \leq \alpha$, we accept the move: Set $\theta_i \leftarrow \theta', u_i \leftarrow u', x_{i,1:T} \leftarrow x'_{1:T}$. Else, we reject the move: Set $\theta_i \leftarrow \theta, u_i \leftarrow u, x_{i,1:T} \leftarrow x_{1:T}$.

Empirical Experiment

We test the PMMH algorithm on the stochastic volatility model with parameters $\theta = \{\gamma, \log \sigma\} = \{0.95, -1\}$. We set $\theta_0 = \{0.5, 0\}$, used **random walk proposal** $q(\theta'|\theta) \sim \mathcal{N}(\theta, h\mathbf{I})$ with h = 0.005. Each particle filter runs with n = 500 particles, and we ran this over 10,000 iterations.

After removing burn-in samples b=100, we obtain the following plots. On the left is the joint likelihood for $p(\theta|y_{1:T})$. On the right plot is the latent variables posterior $p(x_{1:T}|y_{1:T})$ with red line denoting the true latent trajectory.

Further Work

- **Filtering**: Improve propagation by considering future observed value.
- Parameter Inference: Explore implementing the algorithm within a Gibbs sampling framework

References

[Fearnhead and Sherlock, 2025] Fearnhead, P. and Sherlock, C. (2025).

MCMC for State Space Models.

In Handbook of Markov Chain Monte Carlo Volume 2.