

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/800,167	03/12/2004	Douglas A. Cairns	4015-5161	9086
24112	7590	04/18/2007	EXAMINER	
COATS & BENNETT, PLLC 1400 Crescent Green, Suite 300 Cary, NC 27518			FOTAKIS, ARISTOCRATIS	
			ART UNIT	PAPER NUMBER
			2611	
SHORTENED STATUTORY PERIOD OF RESPONSE		MAIL DATE	DELIVERY MODE	
3 MONTHS		04/18/2007	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

SF

Office Action Summary	Application No.	Applicant(s)
	10/800,167	CAIRNS ET AL.
	Examiner	Art Unit
	Aristocratis Fotakis	2611

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 12 March 2004.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1 - 59 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1 - 12, 14 - 15, 19 - 23, 25 - 26, 28 - 51, 55 - 57, is/are rejected.
- 7) Claim(s) 13, 16 - 18, 24, 27, 52 - 54, and 58 - 59 is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 03/12/2004 is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) All. b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
- 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
- 3) Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date See Continuation Sheet
- 4) Interview Summary (PTO-413)
Paper No(s)/Mail Date. _____
- 5) Notice of Informal Patent Application
- 6) Other: _____

DETAILED ACTION

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

Claims 1 - 6, 9 – 11, 26, 30 – 31, 35 – 40, 42, 44 – 47, 51 and 56 – 57 are rejected under 35 U.S.C. 102(b) as being anticipated by Nielsen (US Pub 2002/0080863).

Re claims 1 and 35, Nielsen teaches of a method of determining received signal impairment correlations for use in received signal processing (Col 1, Lines 40 – 60), the method comprising: providing a model of received signal impairment correlations (#94, Fig.7) comprising one or more impairment terms (R_{IND} , R_{DEP} , Paragraph 0034) scaled by corresponding model fitting parameters (r_0 , $1 - r_0$); and adapting each of the model fitting parameters responsive to recurring measurements of the received signal impairment correlations (#46, Fig.4, Paragraph 0038 and Fig.7).

Art Unit: 2611

Re claims 2 and 44, Nielsen teaches of the one or more impairment terms scaled by corresponding model fitting parameters (claim 1) comprising providing a model that at least includes an interference impairment term scaled by a first fitting parameter (r_0) and a noise impairment term scaled by a second fitting parameter ($1 - r_0$) (equation in Paragraph 0035).

Re claim 3, Nielsen teaches of adapting each of the model fitting parameters as discussed above responsive to recurring measurements (Col 7, Paragraph 0044) of the received signal impairment correlations (see claim 1) comprising measuring received signal impairment correlations at each of one or more successive time instants (covariance matrices, Paragraph 0034) and fitting the model to measured received signal impairment correlations by adapting values of the first and second fitting parameters (r_0 optimizer, Fig.4, Paragraphs 0030 - 0032). It should be noted that the covariances are computed based on instantaneous time samples.

Re claim 4, Nielsen teaches of adapting each of the model fitting parameters responsive to recurring measurements of the received signal impairment correlations comprises, for fitting the model (see claim 3), determining the model fitting parameters as instantaneous fitting values (states, Fig.7, Paragraph 0040, Lines 8 - 16) obtained from successively determined instantaneous fitting values (#94, #96, Fig.7, Paragraph 0041).

Re claim 5, Nielsen teaches of the ($r(t)$, Fig.2) received signal being processed comprises a Wideband Code Division Multiple Access (WCDMA) signal (Paragraph, Lines 9 - 15), and wherein the model fitting parameters are adapted at successive time instants corresponding to WCDMA signal timeslots (n , chip index, Paragraph 0018, Lines 1 - 3) (see claim 3).

Re claims 6 and 45 - 46, Nielsen teaches of initializing the model by setting the first fitting parameter to zero ($r_0 = 0$, Fig.7, Paragraph 0043, Lines 1 - 10) and setting the second fitting parameter to a positive value (when $r_0 = 0$ then second parameter $1 - r_0$ is a positive "1" which is an estimate of received noise power).

Re claim 9, Nielsen teaches of providing a model of received signal impairment correlations comprises providing an interference correlation matrix scaled by a first model fitting parameter and a noise correlation matrix scaled by a second model fitting parameter (see claim 1), and wherein elements of the interference correlation in the model (#42, Fig.4) are determined from channel estimates (from #32, Fig.2) corresponding to one or more received signals of interest (Paragraph 0025).

Art Unit: 2611

Re claim 10, Nielsen teaches of adapting the model responsive to recurring measurements as discussed above by computing a plurality of channel estimates (vector h) over each one of repeating time slots (n, chip index, Paragraph 0018, Lines 1 - 3), measuring impairment correlations from the channel estimates (covariance matrices, Paragraph 0035), and calculating updated model fitting parameters (Fig.7, Paragraph 0043) for each slot based on the measured impairment correlations.

Re claim 11, Nielsen teaches of varying a channel estimate (multipath environment) across each slot such that measurements of the impairment correlations taken across the slot reflect changing fading conditions as a result of the changing channel estimation (Fig.2).

Re claim 26, Nielsen teaches of using the modeled signal impairment correlations from the model to generate at least one of RAKE combining weights (Fig 1, #14, Fig.4, #50) for RAKE combining (#16, Fig.1) despread values (#18, Fig.1) of a received signal corresponding to the model.

Re claim 30, Nielsen teaches of adapting each of the model fitting parameters responsive to recurring measurements of the received signal impairment correlations comprises updating the impairment terms of the model at successive time instants (see

claim 2) based on current channel estimates (see claim 10) and path delays (multipath delays) for a received signal of interest, and calculating updated model fitting parameters to fit the updated impairment terms to currently measured received signal impairments (see claim 10).

Re claims 31 and 42, Nielsen teaches of the model including an interference impairment term comprising an interference covariance matrix that is updated at each time instant based on current channel estimates (see claim 10), current RAKE finger delay assignments (#12, Fig.1), and current received signal path delays (multipath delays).

Re claim 36, Nielsen teaches of a receiver circuit (Fig.1 and 6) to determine received signal impairment correlations for use in received signal processing (Fig.1 – 7), the circuit comprising: an impairment correlation estimator (#40, Fig.4) configured to measure received signal impairment correlations (#44, #42) for a received signal of interest ($r(t)$, Fig.1); and one or more impairment modeling circuits (#50, Fig.4) configured to implement a model of received signal impairment correlations comprising one or more impairment terms (R_{IND} , R_{DEP} , Paragraph 0035) scaled by corresponding model fitting parameters (r_0 , $1 - r_0$), and to adapt each of the model fitting parameters responsive to recurring measurements of the received signal impairment correlations as

provided by the impairment correlation estimator (#46, Fig.4, Paragraph 0038 and Fig.7).

Re claim 37, Nielsen teaches of the receiver circuit further comprising a RAKE (Fig.1) combining (#16, Fig.1) weight generator (#50, Fig.4) configured to generate RAKE combining weights for RAKE combining despread samples (#20, Fig.1) of the received signal of interest ($r(t)$, Fig.1) based at least in part on the model of received signal impairment correlations (Paragraph 0043, Fig.7).

Re claims 38 and 51, Nielsen teaches of the receiver circuit further comprises a Signal-to-Interference Ratio (SIR) estimation circuit (#104, Fig.7) configured to estimate a SIR for the received signal of interest based at least in part on the model of received signal impairment correlations (Paragraphs 0045, 0046).

Re claim 39, Nielsen teaches of a wireless communication terminal for use in a wireless communication network (Fig.1) comprising: a radio front-end circuit (#24, Fig.1) configured to provide one or more received signals of interest corresponding to one or more antenna-received signals (Paragraph 0017); and a receiver circuit (Fig.1) configured to generate one or more RAKE combined signals by RAKE processing the one or more received signals of interest (fingers 12, Fig.1, Paragraph 0018); said

Art Unit: 2611

receiver circuit configured to calculate RAKE combining weights (#34, Fig.2) by: providing a model of received signal impairment for a received signal of interest comprising an interference impairment term scaled by a first fitting parameter and a noise impairment term scaled by a second fitting parameter (see claim 2); and measuring received signal impairment correlations at each of one or more successive time instants and, at each time instant, adapting values of the first and second fitting parameters to fit the model to measured received signal impairment correlations (see claim 3).

Re claim 40, Nielsen teaches of the receiver circuit configured to update the model at each time instant based on current channel estimates and path delays for a received signal of interest (see claim 10) such that instantaneous values of the first and second fitting parameters are calculated to fit current interference impairment and noise impairment terms to the measured received signal impairment correlations (see claim 4).

Re claim 47, Nielsen teaches of the receiver circuit configured to provide a model for each of one or more transmitted signals of interest (see claim 39).

Art Unit: 2611

Re claim 56, Nielsen teaches of a method of received signal processing (Fig.1 – 7) comprising: receiving one or more signals of interest ($r(t)$, Fig.1) during each of a succession of time slots (n , chip index, Paragraph 0018, Lines 1 - 3); generating channel estimates over each time slot (vector h); measuring impairment correlations for the one or more signals of interest based on the channel estimates (#46, Fig.4, Paragraph 0038 and Fig.7); updating each term of an impairment correlation model based on the measured impairment correlations (#110, #108, Fig.7); and generating in each time slot at least one of RAKE combining (#16, Fig.1) weights (#34, Fig.2) for combining despread values for the one or more signals of interest (#14, Fig.1), and signal quality measurements for the one or more signals of interest (#100, Fig.7) (Paragraphs 0043 - 0046).

Re claim 57, Nielsen teaches of updating each term of an impairment correlation model based on the measured impairment correlations comprises updating a modeled interference correlation matrix by updating a corresponding first scaling factor (r_0) and updating a modeled noise correlation matrix by updating a corresponding second scaling factor ($1 - r_0$)(Paragraph 0040, Fig.5 and #110, #108, Fig.7).

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

Claims 7, 25 and 33 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nielsen in view of Heikkila (US 6,771,690).

Nielsen teaches all the limitations of claim 1 except of providing a combined model for each of two or more received signals of interest.

Heikkila teaches of a method to minimize the mean-square-error of an estimate of an unknown parameter, such as a data symbol transmitted through a channel, such as a WCDMA channel. The method includes steps of (a) replacing a required multiplication of an input signal vector by an inverse covariance matrix, which is one of a total signal covariance matrix or an interference-plus-noise covariance matrix, by linear filtering (#22, Fig.3), wherein directly computed or estimated filter elements of a row or a column of the inverse covariance matrix, corresponding to time instant i, are used as linear filter coefficients; (b) forming a vector g(i) from the filter outputs, the vector g(i) being estimated element by element using the linear filter; and (c) using the vector g(i) in place of a vector that would have been obtained by directly multiplying the signal vector by the inverse covariance matrix. A summation junction (#26) is provided at the outputs of the pulse shape filters (#24) to provide a combined model of received signal impairment correlations for the two signals of interest (Fig.3).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to have used a multi antenna receiver for the benefit of increasing throughput, range and improved error rate performance.

Art Unit: 2611

Claims 8, 23, 32 and 43 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nielsen in view of Bottomley et al. ("Generalized RAKE Receiver for Interference Suppression", IEEE, August 2000).

Re claims 8 and 23, Nielsen teaches all the limitations of claim 1 except of providing a third fitting parameter included in the model of the received signal impairment correlation.

Bottomley teaches of a received signal ($r(t)$, Fig.2) being processed comprising a wireless communication network signal (WCDMA, Abstract), and wherein providing the model of received signal impairment correlations comprises providing a model that includes two or more of a same-cell interference impairment term (R_{MUI} , Fig.1 and equation 22) scaled by a first fitting parameter (E_I , Eq.22), a noise impairment term (R_n , Eq.22) scaled by a second fitting parameter (N_0), and an other-cell interference (R_{ISI} , Eq.22) impairment term scaled by a third fitting parameter (E_0) (Page 1539).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to have considered a third impairment term of other-cell interference scaled by a third fitting parameter to provide a more accurate signal impairment correlation measurement.

Re claims 32 and 43, Nielsen teaches all the limitations of claims 2, 10 and 31 and 40 except of the noise covariance matrix being based on an autocorrelation function of a received signal filter pulse.

Bottomley teaches of the autocorrelation function of the filtered noise (Eq.15 and Eq.27) of the noise covariance R_n .

It would have been obvious to one having ordinary skill in the art at the time the invention was made to have computed the autocorrelation function of the noise for the benefit of developing autocorrelation-independent weights (Page 1540, Col 2, Lines 1 – 2)

Claim 34 is rejected under 35 U.S.C. 103(a) as being unpatentable over Nielsen and Bottomley as applied to claim 32 above, and further in view of Zhang (US 7,167,723).

Nielsen and Bottomley teach all the limitations above except of the use of cross antennas.

Zhang teaches of a dual channel redundant wireless network link formed by a Redundant Fixed Wireless Network Link device where two wireless networking radio channel are separated by cross polarization of antenna at same radio frequency (Fig.2), or different radio frequency characteristics.

It would have been obvious to one having ordinary skill in the art at the time the invention was made to have used cross polarization antennas to minimize the cross interference between channels.

Claim 12 is rejected under 35 U.S.C. 103(a) as being unpatentable over Nielsen in view of Engstrom et al.(US Pub 2001/0036812).

Nielsen all the limitations of claim 11 except of the varying a channel estimate across each slot comprising interpolating channel measurements across the slot such that a channel estimate value is a function of relative positioning within the slot.

Engstrom teaches of bit error rate estimates are used for measuring link quality in a radio telecommunications system (Abstract, Lines 1 – 2). The channel estimates are interpolated according to the position of the symbols in the slot. (Eq 11, Paragraph 0055)

It would have been obvious to one having ordinary skill in the art at the time the invention was made to interpolate channel measurements across the slot such that a channel estimate value is a function of relative positioning within the slot to derive a link quality measurement (Abstract).

Claims 14, 15, 19, 41 and 55 are rejected under 35 U.S.C. 103(a) as being unpatentable over Smee et al (US Pub 2003/0031234).

Re claims 14 and 15, Nielsen teaches all the limitations of claim 10 except of estimating the noise power.

Smee teaches of a method and apparatus to compute the combiner coefficients for wireless communication systems for a space-time solution (Abstract, Lines 1 – 3). Smee teaches of summing selected diagonal elements of a measured impairment correlation matrix obtained by measuring the impairment correlations (Eq.19, Paragraph 0159, Lines 11 – 14) and subtracting components (Eq.20) from the summed diagonal elements to obtain an estimate of noise power comprises summing main diagonal elements corresponding to on-path RAKE fingers (Paragraph 0163) and subtracting a second value determined by summing main diagonal elements corresponding to off-path RAKE fingers (off-diagonal elements are zero, Paragraph 0175).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to estimate noise introduced to the transmitted signal by the channel (diagonal elements) to effectively decode the transmitted signal (Paragraph 0025).

Re claims 19 and 55, Nielsen teaches all the limitations of claim 10 and 39 as well as modeled interference and noise correlation matrices substantially match the measured impairment correlations (#108, Fig.7). However, Nielsen does not teach of performing a least squares fit of the model fitting parameters.

Smee teaches of calculating updated model fitting parameters based on the measured impairment correlations (Paragraph 0052) by performing a minimizing mean square error approach to allow weight combining on a per path basis (Paragraph 0048).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to perform a minimizing mean square error approach to allow weight combining on a per path basis.

Re claim 41, Nielsen teaches all the limitations of claim 40 except of the use of LSE process.

Smee teaches of calculating updated model fitting parameters based on the measured impairment correlations (Paragraph 0052) by performing a minimizing mean square error approach to allow weight combining on a per path basis (Paragraph 0048).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to perform a minimizing mean square error approach to allow weight combining on a per path basis.

Claims 20 – 22 and 49 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nielsen in view of Love et al. (US Pub 2004/0253955).

Nielsen teaches all the limitations of claim 1 except of maintaining different state values for one or more of the model fitting parameters, so that scaling of the corresponding impairment terms is state dependent.

Love teaches of a wireless communications device (#100, Fig.1) including a primary radio frequency branch (#134) and a diversity branch (#136), which is enabled (*active state*) (HSDPA, Paragraph 0018) and disabled (*inactive*) to balance performance and *power* consumption. Diversity mode operation of the device is controlled, for example, based on one or more of an estimated channel quality indicator (channel estimation), data reception (WCDMA, Paragraph 0018), data rate, state or mode of the station, estimated signal to noise ratio of a pilot signal (*control information from the base station*), battery power level, distance from a serving cell, among other factors (Abstract).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to have used a diversity branch with active and inactive states to reduce power consumption where changes in the channel estimation according to the pilot sent from the base station would result in different impairment terms.

Claims 28 – 29, 48 and 50 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nielsen in view of Taylor et al. (US 7,092,452).

Re claim 28, Nielsen teaches all the limitations of claim 1 except of a combining model corresponding to two or more transmit diversity signals received as signals of interest.

Taylor teaches of a digital receiver automatically detecting and non-coherently demodulating a multiplicity of interfering digitally modulated signals transmitted simultaneously at approximately the same carrier frequency. The receiver includes one or more antenna inputs (e.g., polarization and/or space diverse), a parameter estimator module, and a multiuser detector for estimating the data transmitted by each interfering signals and adapted to operate with at least one of a MUD algorithm with partially quantized prior information and a MUD algorithm based on prewhitened data (Abstract). The multiuser detector module is configured to operate with the low complexity linear MMSE algorithm and includes a combiner module coupled to the turbo MUD, and is adapted to combine recomputed bit estimates output by the turbo MUD with quantized bit values on a next iteration (Col 3, Lines 25 – 50).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to have transmitted diversity signals to the receiver to provide a more accurate model and overcoming the effects of fading outages, and circuit failures.

Re claims 29, 48 and 50, Nielsen and Taylor teach all the limitations of claim 28 and 47. Nielsen does not teach of solving for model fitting parameters associated with each signal of interest corresponding to each transmit antenna.

As discussed above in claim 28, Taylor teaches of diversity (CDMA) and the combiner module in the multiuser detector module. The Parameter Estimator (#20, Fig.1) generates outputs that occur once per snapshot and contain parameter estimates

Art Unit: 2611

for each frame of data in that snapshot. These parameter estimates include estimated signature waveforms (#30) for each diversity port (p), frame (m), and active user. The outputs also include an estimated noise power (#26), which is a scalar that represents the average power of the noise and a training sequence index (#28) which is a pointer to the location of the training sequence in each frame of the snapshot (#15).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to have solved for model fitting parameters associated with each signal of interest for allowing multiple users to operate in the same communication channel that would accurately separate co-channel signals and reduce complex processing (Col 2, Lines 38 – 41).

Allowable Subject Matter

Claims 13, 16 – 18, 24, 27, 52 – 54, and 58 – 59 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

Art Unit: 2611

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Aristocratis Fotakis whose telephone number is (571) 270-1206. The examiner can normally be reached on Monday - Thursday 7 - 5.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Chieh Fan can be reached on (571) 272-3042. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

AF

CHIEH M. FAN
SUPERVISORY PATENT EXAMINER

Continuation of Attachment(s) 3). Information Disclosure Statement(s) (PTO/SB/08), Paper No(s)/Mail Date :03/12/2004, 05/24/2004, 11/10/2004, 03/29/2006, 05/04/2006.