Planificador de Hospedaje en Hoteles

Sistema de Optimización de Itinerarios

16 de junio de 2025

1. Introducción

Este sistema utiliza metaheurísticas para optimizar itinerarios de hoteles considerando:

- Presupuesto total
- Calidad (estrellas) de hoteles
- Preferencia por minimizar cambios de hotel
- Restricciones de destino y disponibilidad

2. Función Objetivo (Fitness)

Definida en fitness.py, evalúa soluciones mediante:

$$fitness = \alpha \times stars_norm + \beta \times (1 - cost_norm) + \gamma \times (1 - changes_norm)$$
 (1)

Donde:

$$stars_norm = \frac{\sum estrellas}{noches \times max_stars}$$

$$cost_norm = min\left(\frac{costo_total}{presupuesto}, 1\right)$$

$$changes_norm = \frac{cambios_hotel}{noches - 1}$$

3. Metaheurísticas Implementadas

3.1. Búsqueda en Profundidad (DFS)

Implementada en graph_explorer.py y graph_node.py.

- Estrategia: Búsqueda exhaustiva con backtracking
- Representación: Árbol donde cada nodo contiene:

class GraphNode:

night: int
hotel: Hotel

budget_left: float
stars_accum: int

path: List[Tuple[int, Hotel]]

■ Flujo:

- 1. Inicializa con todos los hoteles válidos para la primera noche
- 2. Expande nodos generando hijos válidos (presupuesto)
- 3. Ordena opciones por: estrellas \downarrow y relación estrellas/precio \downarrow
- 4. Mantiene la mejor solución completa
- Ventaja: Óptimo garantizado
- Limitación: Complejidad exponencial $O(h^n)$

3.2. Optimización por Colonia de Hormigas (ACO)

Implementada en aco_planner.py.

Itera n veces

Figura 1: Diagrama de flujo del algoritmo ACO

Ecuación de probabilidad:

$$P(i) = \frac{\tau_i \times \eta_i}{\sum_j \tau_j \times \eta_j}$$
 (2)

Donde:

- \bullet τ_i : Feromona en hotel i
- η_i : Heurística $\frac{\text{estrellas}_i}{\text{precio}_i}$
- Penalización por cambio: $\eta_i \times 0.8$ si $i \neq$ hotel anterior

Actualización de feromonas:

$$\begin{split} \tau_i^{(t+1)} &= (1-\rho) \times \tau_i^{(t)} + \Delta \tau_i \\ \Delta \tau_i &= \sum \text{fitness(soluciones que usan } i) \end{split}$$

3.3. Optimización por Enjambre de Partículas (PSO)

Implementada en pso_planner.py.

Itera n veces

Figura 2: Diagrama de flujo del algoritmo PSO

Ecuaciones de actualización:

$$v_{id}^{(t+1)} = w \cdot v_{id}^{(t)} + c_1 r_1 (p_{id} - x_{id}^{(t)}) + c_2 r_2 (g_d - x_{id}^{(t)})$$

$$P(\text{cambio}) = \frac{1}{1 + e^{-v_{id}^{(t+1)}}}$$

Mecanismos clave:

• Representación: Vector de índices de hoteles

• Reparación: Reemplazar hoteles que exceden presupuesto

• Sigmoide: Transforma velocidad a probabilidad de cambio

4. Comparativo de Algoritmos

Característica	DFS	ACO	PSO
Optimalidad	Garantizada	Heurística	Heurística
Complejidad temporal	$O(h^n)$	$O(n \cdot k \cdot h)$	$O(n \cdot p \cdot d)$
Espacio de búsqueda	Pequeños	Grandes	Grandes
Paralelización	Difícil	Alta	Muy Alta
Noches recomendadas	< 7	< 15	> 10
Sensibilidad a parámetros	Baja	Media	Alta

Cuadro 1: Comparativo de metaheurísticas

5. Conclusiones

■ DFS: Ideal para problemas pequeños con garantía de optimalidad

■ ACO: Balance óptimo entre exploración y explotación

■ PSO: Alto rendimiento en problemas grandes con paralelización

• Función fitness: Combina calidad, costo y estabilidad en métrica unificada