# Formulating Machine Learning Problems for Satellite Imagery (and solving them)

Valentina Staneva, Data Scientist, eScience Institute

- Discussion on different ML formulations of satellite imagery problems
- Overview of popular computer vision tasks and how they have been addressed with the recent deep learning advances
  - demystify some jargon
  - provide references to Python implementations
- Go through a couple of example notebooks
- Steps for building our own training datasets

# Supervised Learning

X n, Y n



Find f to minimize the expected loss(f(X), Y).



#### Source:

https://setscholarsanalytics.podia.com/applied-machine-learning-using-python-classification-with-iris-dataset

## Supervised Learning for Satellite Imagery

#### What are X and Y?

- **Images:** Collection of images with corresponding labels
  - o categories: rural/urban, cloud/no cloud, snow/cloud, etc.
  - Image pairs: other modalities, other sensors, other time stamps, other resolutions
- **Pixels:** One (or more) image with each pixel labeled to be a certain class (land cover segmentation)
- Regions: represented by bounding boxes, polygons, or masks
  - Labels for each pixel
  - Labels only for objects of interest

# Supervised Learning for Satellite Imagery

## Popular Computer Vision Tasks



Source: Deep Learning for Generic Object Detection: A survey, Liu et al

## Image Classification

#### Approach 1:

Extract features & apply scikit-learn classifiers

## Approach 2:

- Use Convolutional Neural Networks on the full images
  - There exist pretrained models which can be used as a starting point
    - VGG, ResNet, MobileNet
  - Easy implementation in Keras
  - Image augmentation
    - Rotation
    - **Translation**
    - Affine transformation (nadir)
    - Resolution/blur
    - Light, color
    - Cloud occlusion





































#### **Evaluation:**

- Standard classification metrics apply:
  - Accuracy, precision, recall, F1 score

## **Object Detection**

## How can we identify more than one object in an image?

## Approach 1:

Split into small windows and classify each window

- hopefully only one object falls into the small window
- too expensive to apply classification to each small window

## Approach 2:

- 1) propose regions (using a small network)
- 2) classify only those regions, combine bounding boxes
- Faster RCNN (Region Conv. Neural Networks)
- Yolov3 (You Only Look Once)
- SSD (Single Shot Detector)



Blue Boxes: False Positives; Green Boxes: True Positives

https://github.com/tensorflow/models/tree/master/research/object\_detection https://github.com/ggwweee/keras-yolo3

**Evaluation:** mean Average Precision (mAP)

## Semantic Segmentation

X\_i - image, Y\_i - mask

## Approach 1:

Pixel by pixel classification (assume independence)

## Approach 2:

- Fully convolutional neural networks (keep pixels together)
- U-net (developed for biomedical imaging, works with little training data)
- Easy Implementation in keras

#### **Evaluation:**

- Evaluation based on standard metrics (like pixel accuracy, F1 scores): no geometric information
- Intersection/total area, boundary F1 scores



Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

Source: Fully Convolutional Networks for Semantic Segmentation, Long et. al.



Source: U-net architecture

## Mask RCNN

## X\_i - image, Y\_i - mask

## Approach 1:

Segment directly

## Approach 2:

- Detect bounding box
- Segment within bounding box

https://github.com/matterport/Mask\_RCNN



Model predicting mask segmentations and bounding boxes for ships in a satellite image

Source: <a href="https://towardsdatascience.com/mask-r-cn">https://towardsdatascience.com/mask-r-cn</a> n-for-ship-detection-segmentation-a1108b5a083

# **Example Notebooks**

## Kaggle Airbus Ship Detection Challenge

Segmentation with U-net

https://www.kaggle.com/valcoder/ship-detection-using-keras-u-net

Segmentation with Mask RCNN

https://www.kaggle.com/valcoder/mask-r-cnn-ship-detection-minimum-viable-model-1



Model predicting mask segmentations and bounding boxes for ships in a satellite image

Source: <a href="https://towardsdatascience.com/mask-r-cnn-for-ship-detection-segmentation-a1108b5a083">https://towardsdatascience.com/mask-r-cnn-for-ship-detection-segmentation-a1108b5a083</a>

## **Data Preparation**

## **Getting data into the right format for Machine Learning:**

- Chipping images and preserving labels
- Geospatial coordinates 
  ⇔ pixel coordinates
- Mask ⇔ boundary coordinates ⇔ geospatial coordinates
- Overlapping geospatial regions on geotiff images
- Merging chips for mapping

#### Tools:

- <u>rasterio</u>, <u>geopandas</u>, <u>shapely</u>
- <u>robosat</u>

#### **Special Formats:**

- COCO (Common Objects in Context) format
- Slippy Map Format (from OSM)
- <u>Run Length Encoding</u> for storing masks