

<u>Help</u>

sandipan_dey ~

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Syllabus</u> <u>Outline</u> <u>laff routines</u> <u>Community</u>

★ Course / Week 11: Orthogonal Projection, Low Rank Appro... / 11.2 Projecting a Vector ...

()

11.2.5 An Application: Rank-k Approximation

□ Bookmark this page

Previous

Week 11 due Dec 22, 2023 21:12 IST

11.2.5 An Application: Rank-k Approximation

Start of transcript. Skip to the end.

PROFESSOR: So the answer is that it's true.

Well, it'd better be true because otherwise

why have we been calling this a rank k approximation?

And this is the key insight.

If you have two subspaces of Rn, and S is a subspace of T,

0:00 / 0:00

X CC ▶ 2.0x

66

Video

Download video file

Transcripts

Homework 11.2.5.1

1/1 point (graded)

Let $U \in \mathbb{R}^{m imes k}$ and $V \in \mathbb{R}^{n imes k}$. Then the m imes n matrix UV^T has a rank of at most k.

TRUE

✓ Answer: TRUE

Answer: True

Again, we build on the insight that if $S, T \subset \mathbb{R}^m$ are subspaces and $S \subset T$, then $\dim(S) \leq \dim(T)$. Here $T = \mathcal{C}(\{U\})$ and $S = \mathcal{C}(UV^T)$.

Now, clearly rank $(U) = \dim(\mathcal{C}(U)) \le k$ since U is a $m \times k$ matrix. Let $y \in \mathcal{C}(UV^T)$. We will show that then $y \in C(U)$.

> $y \in C(UV^T)$ \Rightarrow < there exists a $x \in \mathbb{R}^n$ such that $y = UV^T x >$ $y = UV^Tx$ $\Rightarrow \langle z = V^T x \rangle$ y = Uz⇒ < Definition of column space > $y \in C(U)$.

Hence $\operatorname{rank}(UV^T = \dim(\mathcal{C}(UV^T)) \leq \dim(\mathcal{C}(U)) = \operatorname{rank}(U) \leq k$.

Submit

Answers are displayed within the problem

Homework 11.2.5.2

1 point possible (graded)

We discussed in this section that the projection of B onto the column space of A is given by $A(A^TA)^{-1}A^TB$. \square Calculator

compute $V=\left(A^TA\right)^{-1}A^TB$, then AV is an approximation to B that requires only m imes k matrix A and k imes n matrix V

To compute V, we can perform the following steps:

- Form $C = A^T A$.
- ullet Compute the LU factorization of C, overwriting C with the resulting L and U.
- Compute $V = A^T B$.
- Solve LX = V, overwriting V with the solution matrix X.
- Solve UX=V, overwriting V with the solution matrix X.
- Compute the approximation of B as $A \cdot V$ (A times V). In practice, you would not compute this approximation, but store $m{A}$ and $m{V}$ instead, which typically means less data is stored.

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>