Package 'WCM'

October 12, 2022

Type Package		
Title Water Cloud Model (WCM) for the Simulation of Leaf Area Index		
(LAI) and Soil Moisture (SM) from Microwave Backscattering		
Version 0.2.2		
Author Ujjwal Singh <ujjwalrsmt@gmail.com> Prashant K Srivastava <prashant.just@gmail.com)> Dharmendra Kumar Pandey <dkp@sac.isro.gov.in> Sumit Kumar Chaudhary <sumit.mathe@gmail.com> Dileep Kumar Gupta <dileepgupta85@gmail.com></dileepgupta85@gmail.com></sumit.mathe@gmail.com></dkp@sac.isro.gov.in></prashant.just@gmail.com)></ujjwalrsmt@gmail.com>		
Maintainer Ujjwal Singh <ujjwalrsmt@gmail.com></ujjwalrsmt@gmail.com>		
Description Retrieval the leaf area index (LAI) and soil moisture (SM) from microwave backscattering data using water cloud model (WCM) model . The WCM algorithm attributed to Pervot et al.(1993) <doi:10.1016 0034-4257(93)90053-z="">. The authors are grateful to SAC, ISRO, Ahmedabad for providing financial support to Dr. Prashant K Srivastava to conduct this research work.</doi:10.1016>		
License GPL (>= 3)		
Encoding UTF-8		
LazyData true		
RoxygenNote 7.0.2		
Imports pracma, stats, raster		
Suggests rmarkdown		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2020-04-01 14:00:08 UTC		
R topics documented:		
lai_inversion_lut 2 lut_wcm 2 sm_inversion_lut 3 wcm_sim 4		
Index		

2 lut_wcm

lai_inversion_lut

Inversion of LAI from look up table generated by WCM

Description

Inversion of LAI from look up table generated by WCM

Usage

```
lai_inversion_lut(img, lookuptable)
```

Arguments

img raster object

lookuptable Look up table simulated from 'wcm_sim' function

Value

```
a raster object (pixel value represents LAI)
```

Examples

```
radar <- raster::raster(ncol=10, nrow=10)
val <- seq(-12,-7, length.out=100)
radar[] <- val
A= -9.596695
B= -0.005331
C= -11.758309
D= 0.011344
lut <- lut_wcm(LAI=seq(1,6,0.1), SM=seq(0,.6,.01),coeff=c(A,B,C,D))
example(out_lai <- lai_inversion_lut(img = radar,lookuptable = lut))</pre>
```

lut_wcm

Look up table of WCM

Description

Look up table of WCM

Usage

```
lut_wcm(LAI, SM, coeff)
```

sm_inversion_lut 3

Arguments

LAI one dimensional row vector or a range of LAI value

SM one dimensionalrow vector or a range of SM value

coeff Generated A, B, C, D fitted coefficient for WCM using non linear least square

using in situ data

Value

look up table for WCM for given range of LAI and SM

Examples

```
A= -9.596695

B=-0.005331

C=-11.758309

D=0.011344

lookuptable <- lut_wcm(LAI=seq(1,6,0.1), SM=seq(0,.6,.01),coeff=c(A,B,C,D))
```

sm_inversion_lut

Inversion of SM from look up table generated by WCM

Description

Inversion of SM from look up table generated by WCM

Usage

```
sm_inversion_lut(img, lookuptable)
```

Arguments

img raster object

lookuptable Look up table simulated from 'wcm_sim' function

Value

```
a raster object (pixel value represents SM)
```

Examples

```
radar1 <- raster::raster(ncol=10, nrow=10)
val <- seq(-12,-7, length.out=100)
radar1[] <- val
A= -9.596695
B= -0.005331
C= -11.758309
D= 0.011344
lut1 <- lut_wcm(LAI=seq(1,6,0.1), SM=seq(0,.6,.01),coeff=c(A,B,C,D))
example(out_sm <- sm_inversion_lut(img = radar1,lookuptable = lut1))</pre>
```

4 wcm_sim

wcm_sim

Simulate backscattering coefficient using WCM model

Description

This function can be used to simulate the backscattering coefficient using WCM. This function can be called in nls function for generation of model coefficients (A,B,C,D).

Usage

```
wcm_sim(X, Y, theta, A, B, C, D)
```

Arguments

Χ	In situ LAI or vegetation descriptor
Υ	In situ SM soil moisture
theta	incident angle of Satellite sensor
A	fitted coefficient for WCM using non linear least squre using in situ data
В	fitted coefficient for WCM using non linear least squre using in situ data
С	fitted coefficient for WCM using non linear least squre using in situ data
D	fitted coefficient for WCM using non linear least squre using in situ data
wcm_sim	is simulated backscattering coefficient

Value

simulated backscattering coefficient

Examples

```
# For single value.

n <- wcm_sim(4, .3, 48.9, -9.596695, -0.005331, -11.758309, 0.011344)

#For list of value

X<-c(5.34, 4.34, 4.32, 4.12, 4.17, 3.58, 5.39, 5.66, 5.47, 5.73, 5.76, 5.93, 4.91, 5.36, 6.15, 4.56, 5.44, 6.54, 6.20, 6.34, 5.56, 5.88, 7.34, 5.74, 4.81, 5.73, 3.63, 4.61, 4.76, 4.02)

Y<-c(35.0, 26.0, 18.0, 13.0, 18.0, 22.0, 19.0, 16.5, 20.0, 24.0, 24.0, 21.0, 13.0, 22.0, 25.0, 24.0, 30.0, 23.0, 18.0, 17.6, 15.0, 17.0, 27.0, 22.0, 21.0, 15.0, 15.0, 18.0, 31.0, 10.0)

w<-c(-9.604, -11.648, -11.556, -11.556, -11.090, -10.444, -10.444, -10.042, -9.200, -9.750, -9.200, -9.200, -9.812, -9.972, -8.938, -9.200, -8.198, -7.722, -7.348, -7.348, -8.198, -10.082, -6.870, -8.104, -8.732, -7.830, -10.686, -10.964, -10.976, -10.976)

theta<-48.9

example(nlc<-nls.control(maxiter = 50000, tol = 1e-05, minFactor = 1/100000000000, printEval = FALSE, warnOnly = FALSE))

example(k<-nls(w~wcm_sim(X,Y,theta,A,B,C,D),control=nlc, start=list(A= 0.01,B=0.01,C=-21,D= 0.00014),trace = T))
```

wcm_sim 5

```
example(y<-predict(k))
n <- wcm_sim(X,Y,theta,-9.596695,-0.005331,-11.758309,0.011344)
```

Index

```
lai_inversion_lut, 2
lut_wcm, 2
sm_inversion_lut, 3
wcm_sim, 4
```