(12)特許協力条約に基づいて公開された国際出版

10/518405

(19) 世界知的所有権機関 国際事務局

- 1 1000 BINDOO B BOOK 1000 BOOK BOOK 1000 1 1000 BOOK 1000 BOOK 1000 BOOK 1000 BOOK 1000 BOOK 1000 BOOK 1000 B

(43) 国際公開日 2003 年12 月31 日 (31.12.2003)

PCT

(10) 国際公開番号 WO 2004/000816 A1

(51) 国際特許分類⁷: **C07D 221/16**, 401/12, 405/12, 409/12, 491/048, A61K 31/473, 31/4741, 31/497, A61P 7/06, 15/00, 15/08, 15/10, 15/14, 19/10, 35/00, 43/00

(21) 国際出願番号:

PCT/JP2003/007799

(22) 国際出願日:

2003 年6 月19 日 (19.06.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2002-179088 2002年6月19日(19.06.2002) J

(71) 出願人(米国を除く全ての指定国について): 科研製薬 株式会社 (KAKEN PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒113-8650 東京都文京区本駒込2丁目28番 8号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 宮川 基則 (MIYAKAWA,Motonori) [JP/JP]; 〒607-8042 京都府 京都市 山科区 四ノ宮南河原町 1 4 番地 科研製薬株式会社 総合研究所内 Kyoto (JP). 隅田 雄治 (SUMITA,Yuji) [JP/JP]; 〒607-8042 京都府 京都市 山科区 四ノ宮南河原町 1 4 番地 科研製薬株式会社総合研究所内 Kyoto (JP). 古屋和行 (FURUYA,Kazuyuki) [JP/JP]; 〒607-8042 京都府 京都市 山科区 四ノ宮南河原町 1 4 番地 科研製薬株式会社総合研究所内 Kyoto (JP). 市川 清之進 (ICHIKAWA,Kiyonoshin) [JP/JP]; 〒607-8042 京都府 京都市 山科区 四ノ宮南河原町 1 4 番地 科研製薬株式会社総合研究所内 Kyoto (JP). 山本紀子 (YAMAMOTO,Noriko) [JP/JP]; 〒607-8042 京都府 京都市 山科区 四ノ宮南河原町 1 4 番地 科研製薬株式会社総合研究所内 Kyoto (JP). 花田 敬吾

(HANADA, Keigo) [JP/JP]; 〒607-8042 京都府 京都市山科区四ノ宮南河原町 1 4番地科研製薬株式会社総合研究所内 Kyoto (JP). 天野 世治 (AMANO, Seiji) [JP/JP]; 〒607-8042 京都府 京都市山科区四ノ宮南河原町 1 4番地科研製薬株式会社総合研究所内Kyoto (JP). 根地嶋宏昌 (NEJISHIMA, Hiroaki) [JP/JP]; 〒607-8042 京都府京都市山科区四ノ宮南河原町14番地科研製薬株式会社総合研究所内Kyoto (JP).

(74) 代理人: 社本 一夫 , 外(SHAMOTO,Ichio et al.); 〒 100-0004 東京都 千代田区 大手町二丁目 2番 1号 新大手町ビル2 0 6 区 ユアサハラ法律特許事務所 Tokyo (JP).

- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

(I)

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: ANDROGEN RECEPTOR AGONIST

(54) 発明の名称: アンドロゲン受容体アゴニスト

(57) Abstract: A nonsteroidal tetrahy-droquinoline derivative represented by the general formula (I): (I) (wherein R¹, R², X, Y, Z, and m are the same as defined in claim 1) or a salt of the derivative. They do not exert excessive activity on the prostate gland and have especially intensive androgen receptor agonistic activity on skeletal muscle tissues or bony tissues. Also provided is a medicine containing either of these as an active ingredient.

WO 2004/000816 A1 III

(57) 要約:

本発明は、前立腺に対して過剰な作用を示さず、また、骨格筋組織、骨組織に特に強いアンドロゲン受容体アゴニスト作用を示す非ステロイド性の一般式(I):

(R^1 、 R^2 、X、Y、Z及びmは請求項1で定義される通りである) で示されるテトラヒドロキノリン誘導体またはその塩、およびそれらを有効成分 として含有する医薬を提供する。

明細書

アンドロゲン受容体アゴニスト

5 技術分野

本発明は、前立腺に対して過剰な作用を示さず、また、骨格筋組織、骨組織に特に強いアンドロゲン受容体アゴニスト作用を示すテトラヒドロキノリン誘導体またはその塩およびそれらを含有する医薬に関する。

10 背景技術

15

アンドロゲンは C19 ステロイドの総称であり、男性の正常な性分化と発育、思春期における男性化、睾丸における初期の造精機能の活性化及び男性機能の維持に重要な性ホルモンである。アンドロゲンはその約 90%が精巣ライディッヒ細胞から、残り 10%は副腎から、主にテストステロンとして産生され、血中へ分泌される。テストステロンは標的細胞に取り込まれ、 5α -リダクターゼにより生物学的活性の強いジヒドロテストステロン(DHT)に変換され、テストステロンとともに男性の二次性徴発現(皮脂腺の増殖、ざ瘡、体毛の発生、声変り、顎鬚の発生)や外性器(陰茎、睾丸)、副性器(前立腺、精嚢腺)の発育、性的衝動と勃起の発現などに重要な役割を演じている。

20 一方、これらの主作用以外に、蛋白同化作用(骨格筋、骨量の増大、赤血球産 生亢進作用など)、ゴナドトロピン分泌抑制作用などの生殖器系以外の作用を有し 、アンドロゲン標的細胞は外・副性器組織に存在する他、脳、下垂体、筋組織、 骨、腎臓など多岐に分布している(N Engl J Med 334, 707-714, 1996)。

これらの役割に加えて、アンドロゲンは抗炎症作用を示すことが報告され、炎 25 症性細胞の増殖抑制や IL-6 等のサイトカイン産生を抑制することにより、関節炎 や自己免疫疾患を緩和することが今日明らかにされつつある (Ann Rheum Dis 55, 811-815, 1996)。

全てのアンドロゲン作用は標的細胞の核内に存在する分子量約10万のアンドロゲン受容体 (Androgen Receptor、以下ARという)を介して発現する。ARは

10

15

20

1988年にChang 及び Lubahn らによりその遺伝子がクローニングされ、エストロゲン、プロゲステロン、ミネラルコルチコイド及びグルココルチコイド受容体と構造が類似し、一群の核内ステロイド受容体ファミリーを形成することが明らかにされた(Science 240, 324-326、327-330、1988)。脂溶性に富むアンドロゲンは標的細胞膜を受動拡散により通過し、ARのホルモン結合領域に特異的かつ高親和性に結合して二量体を形成し、特定遺伝子の上流に存在するアンドロゲン応答性 DNA 領域(Androgen Response Element: ARE)に結合する。そして、標的遺伝子の転写が開始され、mRNA の発現が起こり、アンドロゲン作用を司る機能蛋白質が産生されて作用が発現する(Trend in Endocrinology and Metabolism 9, 317-324, 1998)。この機構において、ARに結合し、天然リガンドであるテストステロン等と同様の作用を発現させる化合物はアゴニストと定義づけられる。

ARアゴニストとして、テストステロンエステル及びその他の誘導体などのアンドロゲンステロイド製剤が、男子性腺機能低下症、消耗性疾患(悪性腫瘍、外傷、慢性腎疾患または熱傷由来)、骨粗鬆症などの治療に現在用いられている。

しかし、上記ステロイド製剤は、肝機能障害、胃腸障害などステロイド製剤特有の副作用の他に、男性患者特に高年齢者へ投与する場合には前立腺に対して過剰に作用するためにアンドロゲン依存性腫瘍(前立腺癌など)、前立腺肥大の発症や症状悪化を促す恐れがあり、また、女性患者へ投与する場合には声帯の変化(男性様の嗄声発現)、体躯部の多毛症、禿頭症、ざ瘡などの男性化作用が大きな問題であった。

従って、性腺機能低下症の治療には、前立腺に対して過剰な作用を示さず、副作用が少ない非ステロイド性ARアゴニストが望まれ、研究開発が進められているが、世界的に認知された化合物は未だ創製されていない。

25 また消耗性疾患、骨粗鬆症を適応疾患とした場合には、骨格筋組織、骨組織に対して特に強いARアゴニスト作用を示すものが望まれているが、このような化合物は未だ創製されていない。

発明の開示

15

本発明は、このようなARを介する疾患の予防および治療研究を鑑みてなされたものであり、本発明の目的は、アンドロゲンステロイド製剤などに見られる前立腺に対する過剰な作用を示さず、また、骨格筋組織、骨組織に対して特に強いARアゴニスト作用を示す非ステロイド性の新規化合物およびその塩を提供すること、さらにこれらを有効成分とする医薬を提供することにある。

本発明者らは、これらの課題を解決するため鋭意研究を行った結果、テトラヒドロキノリン誘導体の中で、特定の下記式(I)化合物(以下、「本発明化合物」という)が、前立腺に対して過剰作用せず、また、骨格筋組織、骨組織に対して特に強いARアゴニスト作用を示す化合物であることを見出し、本発明を完成するに至った。

すなわち、本発明の1態様によると、式(I)

(上記式(I)に示される番号 $1\sim10$ は、mが1の場合であり、mが0の場合は、番号3の位置がないので、番号 $4\sim10$ を $3\sim9$ として位置を示し、以下の説明に用いる)。

式中、R1は二トロ基またはシアノ基を表し、

XはCHまたはOを表し、XがCHの場合には破線は二重結合を表し、

mは0または1を表し、

Yは炭素数1~5のアルキル基及び炭素数3~7のシクロアルキル基からなる群 20 から選択される置換基で置換されていてもよい炭素数1~5のアルキレン基を表 し、

 R^2 は水素原子、炭素数 $1 \sim 5$ のアルキル基、炭素数 $3 \sim 7$ のシクロアルキル基または炭素数 $7 \sim 9$ のアラルキル基を表し、

Zは、-B-O-Q

[式中、Bは炭素数1~5のアルキル基及び炭素数3~7のシクロアルキル基からなる群から選択される置換基で置換されていてもよい炭素数1~5のアルキレン基を表し、Qは、水素原子;ハロゲン原子、水酸基、シアノ基及び炭素数1~5のアルコキシ基からなる群から選択される置換基で置換されてもよい炭素数1~5のアルキル基若しくは炭素数3~7のシクロアルキル基;または、置換基R³を有してもよいアリール基、ヘテロアリール基若しくは炭素数7~9のアラルキル基である

R³はフッ素原子で置換されても良い炭素数 1~5 のアルキル基、ハロゲン原子 、アリール基、ヘテロアリール基、ニトロ基、シアノ基、

、アリール基、ヘテロアリール基、ニトロ基、シアノ基、 10 $-A-R^4$ {式中、Aは、-CO-、 $-CO_2-$ 、-COS-、 $-CONR^5-$ 、 -O-, -OCO-, $-OSO_2-$, -S-, -SCO-, -SO-, $-SO_2 , -NR^{5}-, -NR^{5}CO-, -NR^{5}SO_{2}-, -NR^{5}CONH-, -NR^{5}CS$ NH-または-NR⁵COO-を表し(式中、R⁵は水素原子、炭素数1~5のア ルキル基、炭素数3~7のシクロアルキル基または炭素数7~9のアラルキル基 15 である)、R⁴は水素原子、フッ素原子で置換されても良い炭素数1~5のアルキ ル基、炭素数3~7のシクロアルキル基、ハロゲン原子またはR6で置換されてい てもよいアリール基若しくはヘテロアリール基(式中、 R^6 は炭素数 $1\sim 5$ のアル キル基、炭素数1~5のアルコキシ基またはハロゲン原子を表す)であり、ただ し、Aが-NR⁵-若しくは-CONR⁵-の場合にはR⁴とR⁵が一緒になって、 20 これらが結合しているN原子とともに、ピロリジン若しくはピペリジンを形成し ても良い) }、または-A'-(CH2)n-R⁴を表す{式中、A'は単結合、-CO -, -CO₂-, -COS-, -CONR^{5'}-, -O-, -OCO-, -OSO₂-, -S-, -SCO-, -SO-, -SO $_2$ -, -NR 5 , -, -NR 5 , CO-, -NR⁵ SO₂-、-NR⁵ CONH-、-NR⁵ CSNH-または-NR⁵ CO 25 〇-を表し(式中、R⁵ は水素原子、炭素数1~5のアルキル基、炭素数3~7 のシクロアルキル基または炭素数7~9のアラルキル基である)、nは1または2 の整数を表し、R^{4'}は水素原子、フッ素原子で置換されても良い炭素数1~5の アルキル基、炭素数3~7のシクロアルキル基、ハロゲン原子、水酸基、シアノ

基、炭素数 $1\sim 5$ のアルコキシ基、炭素数 $2\sim 5$ のアルキルアシルオキシ基、炭素数 $2\sim 5$ のアルコキシカルボニル基、 R^6 で置換されていてもよいアリール基若しくはヘテロアリール基(式中、 R^6 は炭素数 $1\sim 5$ のアルキル基、炭素数 $1\sim 5$ のアルコキシ基またはハロゲン原子を表す)、またはNR $^{7'}$ R $^{8'}$ (式中、 R^7 および $R^{8'}$ はそれぞれ独立して前記 $R^{5'}$ と同じ意味を表す、ただし、 $R^{7'}$ と $R^{8'}$ が一緒になって、これらが結合している窒素原子と共に、ピロリジン若しくはピペリジンを形成しても良い)を表す、ただし、 $R^{7'}$ と $R^{5'}$ の場合には $R^{4'}$ と $R^{5'}$ が一緒になって、これらが結合している-N (CH_2) $_n$ - と共に、ピロリジン若しくはピペリジンを形成しても良い}]、または

Zは、 $-(CH_2)_r$ -Wを表す [式中、rは $0\sim2$ の整数を表し、Wはp位に置換基 R^9 を有するフェニル基、置換基 R^{10} を有してもよいナフチル基または独立した $1\sim3$ 個の R^{11} で置換され

てもよいヘテロアリール基を表す(式中、 R^9 、 R^{10} 及び R^{11} は独立して前記 R^{3} と同じ意味を表す)

15 で示されるテトラヒドロキノリン誘導体またはその薬理学的に許容される塩、それらを有効成分として含有する医薬及びアンドロゲン受容体アゴニストに関する。

図面の簡単な説明

20 図中、白四角は、被験物質をいれない場合のデータであり、また、*:ORX対照に対し、危険率p<5%にて有意に増加、**:ORX対照に対し、危険率p</p>

図1は、本発明化合物(実施例1化合物)及びジヒドロテストステロン(DHT)の前立腺重量に及ぼす効果の比較を示すグラフである。

25 図 2 は、本発明化合物(実施例 1 化合物)及びDHTの大腿骨骨密度に及ぼす 効果の比較を示すグラフである。

図3は、本発明化合物(実施例1化合物)及びDHTの肛門挙筋重量に及ぼす 効果の比較を示すグラフである。

図4は、本発明化合物(実施例12及び65化合物)及びDHTの前立腺重量

に及ぼす効果の比較を示すグラフである。

図5は、本発明化合物(実施例12及び65化合物)及びDHTの大腿骨骨密度に及ぼす効果の比較を示すグラフである。

図6は、本発明化合物(実施例12及び65化合物)及びDHTの肛門挙筋重 5 量に及ぼす効果の比較を示すグラフである。

図7は、本発明化合物(実施例113及び114化合物)及びDHTの前立腺 重量に及ぼす効果の比較を示すグラフである。

図8は、本発明化合物(実施例113及び114化合物)及びDHTの大腿骨骨密度に及ぼす効果の比較を示すグラフである。

10 図 9 は、本発明化合物(実施例 1 1 3 及び 1 1 4 化合物)及び DHTの 肛門挙 筋重量に及ぼす効果の比較を示すグラフである。

図10は、経口投与による本発明化合物(実施例1化合物)及び皮下投与によるプロピオン酸テストステロン(TP)の前立腺重量に及ぼす効果の比較を示すグラフである。

15 図11は、経口投与による本発明化合物(実施例1化合物)及び皮下投与によるTPの大腿骨骨密度に及ぼす効果の比較を示すグラフである。

図12は、経口投与による本発明化合物(実施例1化合物)及び皮下投与によるTPの肛門挙筋重量に及ぼす効果の比較を示すグラフである。

図13は、経口投与による本発明化合物(実施例108化合物)及びメチルテ 20 ストステロン(MT)の前立腺重量に及ぼす効果の比較を示すグラフである。

図14は、経口投与による本発明化合物(実施例108化合物)及びMTの大 腿骨骨密度に及ぼす効果の比較を示すグラフである。

図15は、経口投与による本発明化合物(実施例108化合物)及びMTの肛門挙筋重量に及ぼす効果の比較を示すグラフである。

25 図16は、経口投与による本発明化合物(実施例129化合物)及びMTの前立腺重量に及ぼす効果の比較を示すグラフである。

図18は、経口投与による本発明化合物(実施例129化合物)及びMTの肛

25

門挙筋重量に及ぼす効果の比較を示すグラフである。

発明を実施するための最良の形態

本発明の他の態様によると、一般式(I)において、Yが-CH(CH $_3$)-CH $_2$ -または-C(CH $_3$) $_2$ -CH $_2$ -であり、XがCHであり、mが0であり、 R^2 が水素原子であり、Zが-CH $_2$ -O-Q(式中、Qは、炭素数 $1\sim 5$ のアルキル基を表す)であるテトラヒドロキノリン誘導体またはその薬理学的に許容される塩を提供する。

本発明の他の態様によると、一般式(I)において、Yが-CH(CH_3)- CH_2 ーまたは-C(CH_3) $_2$ - CH_2 -であり、mが0であり、 R^2 が水素原子 10 であり、Zが-W[式中、Wは独立した $1\sim3$ 個の R^{11} で置換されてもよいヘテ ロアリール基またはp位に置換基R 9 を有するフェニル基 ${3$ 中、R 11 およびR 9 は、独立してハロゲン原子、フッ素原子で置換されても良い炭素数1~5のアル キル基、ニトロ基、シアノ基、-A-R⁴(式中、Aは、-CO-、-CO2-、 -O-、-NHCO-若しくは-NHCONH-であり、R⁴は、水素原子また 15 はフッ素原子で置換されても良い炭素数1~5のアルキル基である)または-A $'-(CH_2)_n-R^4$ (式中、A'は、-CO-、 $-CO_2-$ 、-O-、-NHCO-若しくは-NHCONH-であり、 R^{4} は、水素原子、フッ素原子で置換され ても良い炭素数1~5のアルキル基、水酸基、ハロゲン原子若しくは炭素数1~ 5のアルコキシ基であり、nは1若しくは2の整数である)を表す}を表す]であ 20 る、テトラヒドロキノリン誘導体またはその薬理学的に許容される塩を提供する

本発明の他の態様によると、一般式(I)において、Yが一CH(CH_3) $-CH_2$ ーまたは-C(CH_3) $_2$ $-CH_2$ ーであり、mが0であり、 R^2 が水素原子であり、Zがp位に置換基 R^9 を有するフェニル基または置換基 R^{11} を有するヘテロアリール基 $\{$ 式中、 R^9 および R^{11} は、独立してハロゲン原子、 $-O-R^4$ または $-NHCO-R^4$ (式中、 R^4 は、水素原子またはフッ素原子で置換されても良い炭素数 $1\sim 5$ のアルキル基を表す)である $\}$ である、テトラヒドロキノリン誘導体またはその薬理学的に許容される塩を提供する。

本発明の他の態様によると、一般式(I)において、Yが一CH(CH $_3$)- CH $_2$ -または-C(CH $_3$) $_2$ -CH $_2$ -であり、mが0であり、R 2 が水素原子であり、Zがp位に置換基R 9 を有するフェニル基または置換基R 11 を有するヘテロアリール基{式中、R 9 およびR 11 が-NHCO-R 4 (式中、R 4 は、水素原子またはフッ素原子で置換されても良い炭素数 $1\sim 5$ のアルキル基を表す)である}である、テトラヒドロキノリン誘導体またはその薬理学的に許容される塩を提供する。

本発明化合物の式(I)における置換基について説明する。

「炭素数 $1 \sim 5$ のアルキル基」の具体例としては、メチル基、エチル基、n-1 プロピル基、イソプロピル基、n-1 チル基、イソプチル基、tert ーブチル基、sec ープチル基、n-1 ペンチル基、tert ーアミル基、3-1 メチルプチル基、ネオペンチル基などの直鎖または分枝鎖状のアルキル基があげられる。

「炭素数3~7のシクロアルキル基」の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基およびシクロヘプチル基などがあげられる。

「炭素数1~5のアルキレン基」の具体例としては、メチレン基、エチレン基、 テトラメチレン基、ペンタメチレン基などがあげられる。

「炭素数7~9のアラルキル基」の具体例としては、ベンジル基、フェネチル基 、フェニルプロピル基などがあげられる。

20 「アリール基」の具体例としては、フェニル基、ナフチル基(1-ナフチル基および2-ナフチル基)などがあげられる。

「ハロゲン原子」の具体例としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子などがあげられる。

「ヘテロアリール基」の具体例としては、2-ピリジル基、3-ピリジル基、4 25 -ピリジル基、2-ピラジニル基、2-ピロリル基、2-インドリル基、2-フ リル基、3-フリル基、2-チエニル基、3-チエニル基、2-ピロール基およ び3-ピロール基などがあげられる。

「炭素数 $1 \sim 5$ のアルコキシ基」の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-プトキシ基、イソプトキシ基、te

r t - τ t + τ + τ

「炭素数 2~5のアルキルアシルオキシ基」の具体例としては、アセトキシ基、 プロピオニルオキシ基、プチリルオキシ基、イソプチリルオキシ基、バレリルオ キシ基、イソバレリルオキシ基およびピバロイルオキシ基などの直鎖または分枝 鎖状のアルキルアシルオキシ基があげられる。

「炭素数 2~5のアルコキシカルボニル基」の具体例としては、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、およびsec-ブトキシカルボニル基などの直鎖または分枝鎖状のアルコキシカルボニル基があげられる。

「フッ素原子で置換されても良い炭素数 1~5のアルキル基」のフッ素原子置換アルキル基の具体例としては、トリフルオロメチル基、2, 2, 2-トリフルオロエチル基、テトラフルオロエチル基などがあげられる。

「フッ素原子で置換されても良い炭素数 1 ~ 5のアルコキシ基」のフッ素原子 置換アルコキシ基の具体例としては、トリフルオロメトキシ基、2, 2, 2 - ト リフルオロエトキシ基、テトラフルオロエトキシ基などがあげられる。

式(I)の化合物において、好ましい態様としては、以下のものがあげられる

mは0が好ましい。

15

20

25

Yの定義において、炭素数 $1\sim 5$ のアルキレン基に置換されてもよい置換基の数は $1\sim 3$ 個が好ましく、また、置換基の好ましい例は、メチル基、エチル基があげられる。Yの好ましい例は、Yが- CH (CH $_3$) - CH $_2$ - または- C (CH $_3$) - CH $_3$ - であげられる。

R²は、水素原子が好ましい。

 R^1 は、mが1の場合は9位(mが0の場合8位)に置換されることが好ましい。 R^1 の好ましい例はシアノ基である。

Zが-B-O-Qであるとき、XがCHが好ましく、Bは、炭素数1~5のア

25

ルキレン基または $1 \sim 3$ 個の置換基(メチル基、エチル基)で置換された炭素数 $1 \sim 5$ のアルキレン基が好ましく、 $-CH_2-$ がより好ましい、また、Qは、炭素数 $1 \sim 5$ のアルキル基が好ましい。この場合、 R^1 はニトロ基が好ましい。

Zが $-(CH_2)_r$ - Wであるとき、rが0であり、Wは独立した $1\sim3$ 個の R^{11} で置換されてもよいヘテロアリール基またはp位に置換基 R^9 を有するフェニル基 {式中、 R^{11} および R^9 は、独立してハロゲン原子、フッ素原子で置換されても良い炭素数 $1\sim5$ のアルキル基、ニトロ基、シアノ基、 $-A-R^4$ (式中、Aは、 $-CO-、-CO_2-、-O-、-NHCO-若しくは<math>-NHCONH-$ であり、 R^4 は、水素原子若しくはフッ素原子で置換されても良い炭素数 $1\sim5$ のアルキル基)または $-A^*-(CH_2)_n-R^4$ (式中、 A^* は、 $-CO-、-CO_2-、-O-、-NHCO-若しくは<math>-NHCONH-$ であり、 R^4 は、水素原子、フッ素原子で置換されても良い炭素数 $1\sim5$ のアルキル基、水酸基、ハロゲン原子若しくは炭素数 $1\sim5$ のアルコキシ基であり、nは 1 若しくは 2 の整数である)を表す}が好ましい。

15 上記へテロアリール基の好ましい例としてはピリジル基があげられる。

上記 R^9 及び R^{11} の具体例は、ハロゲン原子、メチル基、トリフルオロメチル基、ニトロ基、シアノ基、 $-OCH_2CH_2CI$ 、 $-CO_2Me$ 、-OMe、-OEt、 $-OCF_3$ 、 $-OCH_2OMe$ 、 $-OCH_2CH_2OH$ 、 $-OCH_2CH_2OH$ $-OCH_2CH_2OH$ $-OCH_2CH_2OH$ $-OCH_2OH$ $-OCH_2O$

 R^9 及び R^{11} は、ハロゲン原子、 $-O-R^4$ または $-NHCO-R^4$ (式中、 R^4 は、水素原子またはフッ素原子で置換されても良い炭素数 $1\sim 5$ のアルキル基を表す)がさらに好ましく、 $-NHCO-R^4$ (式中、 R^4 は、水素原子またはフッ素原子で置換されても良い炭素数 $1\sim 5$ のアルキル基を表す)がより好ましい。ここで、 $-O-R^4$ の例は、-OMe、-OE t、 $-OCF_3$ があげられる。また、 $-NHCO-R^4$ の例は、-NHCOMe、 $-NHCOCF_3$ 、-NHCOHがあげられる。

本発明化合物の好ましい化合物は以下のものである。

2-メトキシ-N-[2-メチル-2-(8-ニトロ-3a, 4, 5, 9b-テト

ラヒドロー 3 H - シクロペンタ [c] キノリンー 4 - イル) - プロピル] - 1 - ア セタミド、

4-プロモ-N- [2-メチル-2- (8-ニトロ-2, 3, 3 a, 4, 5, 9 b-ヘキサヒドロ-フロ [3, 2-c] キノリン-4-イル) -プロピル] ベン

5 ズアミド

20

25

N-[2-メチル-2-(8-ニトロ-2, 3, 3a, 4, 5, 9b-ヘキサヒ ドローフロ <math>[3, 2-c] キノリン-4-イル) -プロピル] -4-トリフルオ ロメトキシベンズアミド

N-[2-(8-シアノ-2, 3, 3a, 4, 5, 9b-ヘキサヒドローフロ[3,

10 2-c] キノリンー4-イル) -2-メチループロピル] -4-トリフルオロメトキシベンズアミド

 $N-[2-(8-シアノ-2, 3, 3a, 4, 5, 9b-\Lambda+サヒドローフロ[3, 2-c] キノリン-4-イル) <math>-2-$ メチループロピル] -4-エトキシベンズアミド

15 6-アセチルアミノ-N- [2-(8-シアノ-3a, 4, 5, 9b-テトラヒドロ-3H-シクロペンタ [c] キノリン-4-イル) -2-メチル-プロピル] ニコチンアミド

4-アセチルアミノ-N-[2-(8-シアノ-2, 3, 3a, 4, 5, 9b-ヘキサヒドロ-フロ[3, 2-c]キノリン-4-イル)-プロピル]ベンズアミド

式(I)で表される本発明の化合物において不斉炭素が存在する場合には、そのラセミ体、ジアステレオ異性体および個々の光学異性体のいずれも本発明に包含されるものであり、また幾何異性体が存在する場合には(E)体、(Z)体およびその混合物のいずれも本発明に包含されるものである。

式(I)で表される本発明化合物のテトラヒドロキノリン環は3つの不斉炭素をもつのでジアステレオ異性体が存在する。

本発明化合物の好ましい異性体は以下のものである。

(3aR*, 4S*, 9bS*) - 2-メトキシ-<math>N-[2-メチル-2-(8-1)]

15

トロー3 a, 4, 5, 9 b ーテトラヒドロー 3Hーシクロペンタ [c] キノリンー4ーイル)ープロピル]ー1ーアセタミド(実施例1の化合物)

 $(3aS^*, 4S^*, 9bS^*) - N - [2-メチル-2-(8-ニトロー2, 3, 3a, 4, 5, 9b-ヘキサヒドローフロ <math>[3, 2-c]$ キノリンー4ーイル) -プロピル] - 4-トリフルオロメトキシベンズアミド(実施例 65 の化合物) $(3aS^*, 4S^*, 9bS^*) - N - [2-(8-シアノ-2, 3, 3a, 4, 4s)]$

10 5,9 b -ヘキサヒドローフロ [3,2-c] キノリンー4 -イル)-2 -メチループロピル] -4 -トリフルオロメトキシベンズアミド(実施例1 1 3 0 化合物)

(3aR*, 4S*, 9bS*) - 6 - アセチルアミノ-N-[2-(8-シアノ-3a, 4, 5, 9b-テトラヒドロ-3H-シクロペンタ [c] キノリン-4-イル) - 2 - メチループロピル] ニコチンアミド (実施例 <math>108 の化合物)

(3aS*, 4R*, 9bS*) -4-アセチルアミノーN-[2-(8-シアノー20 2, 3, 3a, 4, 5, 9b-ヘキサヒドローフロ[3, 2-c]キノリンー4-イル) -プロピル] ベンズアミド(実施例129の化合物)

式(I)で表される本発明の化合物の塩としては、薬理学的に許容されるものであれば特に制限されず、例えば、フッ素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩などのハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩、

25 炭酸塩などの無機酸塩、メタンスルホン酸塩、トリフロオロメタンスルホン酸塩、エタンスルホン酸塩などの低級アルキルスルホン酸塩、ベンゼンスルホン酸塩、 p-トルエンスルホン酸塩などのアリールスルホン酸塩、酢酸塩、フマル酸塩、グリシン塩、アラニン塩、グルタミン酸塩、アスパラギン酸塩などのアミノ酸塩、ナトリウム塩、カリウム塩などのアルカリ金属塩などがあげられる。本発明

の化合物の溶媒和物も本発明に包含されるものであり、溶媒和物としてはアセトン、2-プタノール、2-プロパノール、エタノール、酢酸エチル、テトラヒドロフラン、ジエチルエーテルなどとの溶媒和物があげられる。

本発明のテトラヒドロキノリン誘導体は、以下に示す方法により製造すること 5 ができる。

[製造法1]

15

20

$$R^{1}$$
 (a)
 (b)
 (c)
 R^{1}
 (II)
 R^{2}
 (III)
 (III)

(式中、すべての記号は前記と同じであり、Bocはtertープトキシカルボ 10 二ル基を表す。)

式(I)で示される本発明化合物は、以下の工程 1、2 および3 の反応により 製造することができる。

(工程1) 本工程では式(a)、(b) および(c) で示される化合物を、酸存在下または非存在下不活性溶媒中反応させることにより式(II)で示される化合物を製造することができる。

式(a)、(b) および(c) で示される化合物は市販の試薬としてまたはそれから通常の化学反応により容易に誘導することにより入手できる。

本反応を具体的に説明すると、酸は有機酸、無機酸いずれも好ましく、たとえば酢酸、トリフルオロ酢酸、*p*ートルエンスルホン酸、塩酸、硫酸、四塩化スズ、四塩化チタン、三フッ化ホウ素ジエチルエーテル錯体、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリドなどが用いられる。酸は式(a)で示される化合物に対し触媒量~10当量用いるのが好ましい。反応溶媒としては本

反応を著しく阻害しない溶媒であればとくに限定されないが、ジクロロメタン、 クロロホルム、1, 2 ージクロロエタン、ヘキサン、ベンゼン、トルエン、ジオ キサン、テトラヒドロフラン、アセトニトリル、メタノール、エタノール、水ま たはこれらの混合溶媒などが好ましい。反応温度は-20~100℃が好ましく 、反応時間は5分~48時間が好ましい。

(工程2)本工程では、式(II)で示される化合物を酸で処理して脱保護することにより式(III)で示される化合物を製造することができる。

本反応を具体的に説明すると、酸は有機酸、無機酸いずれも好ましく、たとえば酢酸、トリフルオロ酢酸、ρートルエンスルホン酸、塩酸、硫酸などがあげられる。酸は式(II)で示される化合物に対し1~50当量用いるのが好ましい。反応溶媒としては本反応を著しく阻害しない溶媒であればとくに限定されないが、ジクロロメタン、クロロホルム、1,2ージクロロエタン、ヘキサン、ベンゼン、トルエン、ジオキサン、テトラヒドロフラン、アセトニトリル、メタノール、エタノール、水またはこれらの混合溶媒などが好ましい。反応温度は0~110℃が好ましく、反応時間は30分~24時間が好ましい。

(工程3)本工程では、式(III)で示される化合物と式(d)あるいは式(d)で示される化合物とを、塩基存在下または非存在下無溶媒または不活性溶媒中で反応させ、アミド結合を形成させることにより式(I)で示される化合物を製造することができる。

20 アミド結合を形成させる反応は公知であり、酸ハライドを用いる方法や縮合剤 などを用いる方法があげられる。

これらの反応を具体的に説明すると、酸ハライドを用いる方法は、式(d)で 示される酸ハライドと式(III)で示される化合物とを塩基存在下または非存 在下、無溶媒または不活性溶媒中で反応させてアミド化する方法である。塩基は 三級アミンが好ましく、たとえばトリエチルアミンおよびピリジンなどがあげら れる。式(d)で示される酸ハライドは式(III)で示される化合物に対して 1~10当量用いるのが好ましい。塩基は酸ハライドに対し1当量~大過剰量用 いるのが好ましい。反応溶媒としては、本反応を著しく阻害しない溶媒であれば とくに限定されないが、ジクロロメタン、クロロホルム、1,2~ジクロロエタ

ン、1, 1, 2, 2-テトラクロロエタン、トルエンおよびピリジンなどが好ましい。反応温度は $0\sim80$ ℃が好ましく、反応時間は30分 ~24 時間が好ましい。

縮合剤を用いる方法は、式(III)で示される化合物と式(d')で示される 化合物とを、2-クロロ-1,3-ジメチルイミダゾリニウムクロライド、ジシ 5 クロヘキシルカルボジイミドまたは1-エチル-3-(3-ジメチルアミノプロ ピル) カルボジイミドなどの縮合剤を用いて、塩基存在下または非存在下無溶媒 または不活性溶媒中で反応させる方法である。縮合剤は、式(d')で示される化 合物に対して1~2当量用いるのが好ましい。塩基は三級アミンが好ましく、た とえば4-メチルモルホリン、トリエチルアミンおよびピリジンなどがあげられ 10 る。塩基は式(d')で示される化合物に対して1当量~大過剰量用いるのが好ま しい。反応溶媒は、本反応を著しく阻害しない溶媒であればとくに限定されない が、N, N-ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラ ン、ジオキサン、ジクロロメタン、クロロホルムおよび1,2-ジクロロエタン などが好ましい。反応温度は0~150℃が好ましく、反応時間は1~48時間 15 が好ましい。

前述した製法で製造される本発明化合物は遊離化合物、その塩、その水和物もしくはエタノール和物などの各種溶媒和物または結晶多形の物質として単離精製される。本発明化合物の薬理学的に許容される塩は常法の塩形成反応により製造することができる。単離精製は抽出分別、結晶化、各種分画クロマトグラフィーなどの化学操作を適用して行われる。また光学異性体は適当な原料化合物を選択することにより、またはラセミ化合物のラセミ分割法により立体化学的に純粋な異性体に導くことができる。

本発明のテトラヒドロキノリン誘導体またはその塩は、優れたARアゴニスト 25 作用を有しており、それらを有効成分として用いて医薬またはARアゴニストと することができ、種々のAR関連疾患の予防および治療に広く適用することがで きる。

ARアゴニスト作用により以下の疾患の治癒が期待できる。

蛋白同化作用により治癒が期待できる疾患としては、たとえば、骨組織に強い

20

25

作用を示すことから、原発性骨粗鬆症(老人性、閉経後、若年性骨粗鬆症)及び 続発性骨粗鬆症(甲状腺機能亢進症、クッシング症候群(ステロイド投与による もの)、末端肥大症、性腺機能低下、骨形成不全症、低ホスファターゼ症若しくは 糖尿病に由来する骨粗鬆症または不動性骨粗鬆症)などがあげられ、筋組織に強 い作用を示すことから、手術後、悪性腫瘍、外傷、慢性腎疾患、熱傷、AIDS 感染等に由来する消耗性疾患などがあげられ、赤血球産生亢進作用を示すことか ら、造血機能障害及びその関連疾患、例えば、再生不良性貧血、溶血性貧血、鎌 状赤血球性貧血、特発性血小板減少性紫斑病、骨髄線維症、腎性貧血などがあげ られる。

10 また、性作用により治癒が期待できる疾患としては、たとえば、男子性腺機能低下症、男子性機能障害(インポテンス、造精機能障害による男性不妊症)、性分化異常症(男性半陰陽)、男性思春期遅発症、女性性器癌(癌に伴う疼痛を包含する)、乳癌、乳腺症、子宮内膜症および女性性機能障害などがあげられる。

本発明の医薬は、これらのAR関連疾患に対して広く適用することができ、ま 15 た、ここに例示されていない疾患に対しても、ARの機能調節が現在または将来 必要とされる場合であれば、本発明の医薬を適用することができる。

本発明の医薬は、有効成分に通常の製剤化に用いられる担体、賦形剤(担体、 賦形剤は、有機または無機の固体または液体いずれでもよい)、補助物質、安定化 剤、浸潤剤、乳化剤、緩衝剤、その他薬理学的に許容される各種添加剤を用いて 医薬組成物として調製することができ、投与経路に応じて適宜選択される剤型に することができる。

本発明の医薬は、経口または非経口により投与することができ、全身投与であっても局所投与であってもよい。

剤型も特に制限されず、例えば、錠剤、カプセル剤、糖衣錠、顆粒剤、細粒剤、 吸入剤、座剤、液剤、シロップ、ドライシロップ、懸濁剤、乳剤、ローション、 軟膏、貼付剤、スプレー剤、ゲル剤、点鼻剤、点眼剤、注射剤などがあげられる。

本発明の医薬のヒトへの投与量は、治療または予防の目的、患者の性別、体重、年齢、健康状態、疾患の種類や程度、剤型、投与経路、投与期間などの種々の条件により適宜決定する。本発明のテトラヒドロキノリン誘導体の1日当たりの

投与量として概ね0.01~100mg/kgの範囲である。

なお、本発明の医薬は、家畜、愛玩動物、飼育下または野生動物などの温血動物におけるアンドロゲン受容体を介する疾患の治療に使用しても良い。この場合の剤型および投与量はヒトに対する剤型および投与量を参考にして決定することができる。

実施例

5

以下に実施例をあげて本発明の化合物および製造法をさらに詳しく説明するが、本発明はこれらの記載によって限定的に解釈されるものではない。

なお、 1 H-NMRスペクトルは、テトラメチルシラン(TMS)を内部標準と 10 し、JNM-EX270型スペクトルメーター(270MHz、日本電子(株) 製)で測定し、 δ 値はppmで示した。

また、以下の構造式および表において、Me はメチル基、Et はエチル基、P r はプロピル基、Bu はブチル基、Ph はフェニル基、Bn はペンジル基、Ac はアセチル基を表す。

20 (便宜上、化学構造式においては絶対配置の片方のみ表示し、他方の絶対配置は 省略する。以下の化学構造式においても同様。)

(1) (3 a R^* , 4 S^* , 9 b S^*) -[2-メチル-2-(8-ニトロー3 a, 4, 5, 9 b - テトラヒドロー3 <math>H-シクロペンタ [c] キノリンー4ーイル) -プロピル]カルバミン酸 tertプチルエステル

4-ニトロアニリン16.2g、シクロペンタジエン11.7mlおよび(2,2ージメチル-3ーオキソープロピル)カルバミン酸 tert・プチルエステル2
 6gをアセトニトリル120mlに溶解し、トリフルオロ酢酸4.5mlを

25

0℃で加えた。室温で一晩撹拌した後、析出した結晶を濾取することにより標題 化合物 1 6. 8 g を得た。物性値を以下に示す。

 1 H-NMR(CDCl₃) δ :0.99(3H, s), 1.03(3H, s), 1.34(9H, s), 2.31-2.23(1H, m), 2.54-2.44(1H, m), 2.84-2.92(2H, m), 3.34-3.46(2H, m), 3.98(1H, d, J = 8.6Hz), 4.70(1H, m), 4.84(1H, brs), 5.74-5.77(1H, m), 5.94-5.98(1H, m),6.58(1H, d, J = 8.6Hz), 7.82-7.86(2H, m).

- (2) $(3 a R^*, 4 S^*, 9 b S^*)$ -2 メチル 2 (8 ニトロ 3 a, 4, 5, 9 b テトラヒドロ <math>-3 H シクロペンタ [c] キノリン -4 1 ープロピルアミン
- 10 (1)でえた化合物16.8gをテトラヒドロフラン100mlに溶解し、4N 塩酸-ジオキサン溶液50mlを加えた。50℃で3時間撹拌した後、溶媒を減 圧下留去した。残留物をエーテルで洗浄し、標題化合物15.2gを得た。物性 値を以下に示す。

¹H-NMR(CDCl₈) δ:1.17(3H, s), 1.24(3H, s), 2.22-2.27(1H, m), 2.37-2.47(1 H, m), 3.47(1H, dd, J = 7.3, 14.2Hz), 3.52(1H, brs), 4.00(1H, d, J = 8.6H z), 5.72-5.74(1H, m), 5.95-5.97(1H, m),6.38(1H, brs), 6.90(1H, d, J = 9.9H z), 7.45(1H, s), 7.77-7.81(2H, m), 8.01(1H, brs).

- (2)でえた化合物 1 5. 2 g およびトリエチルアミン 1 2 m 1 を N, N ジメチルホルムアミド 5 0 m 1 に溶解し、メトキシアセチルクロリド 4. 8 m 1 を加えた。室温で 5 時間撹拌した後、水および酢酸エチルを加えた。酢酸エチル層を水で洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去した。残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒 ヘキサン:酢酸エチル= 1
- 1 H-NMR(CDCl₈) δ :1.04(3H, s), 1.09(3H, s), 2.28(1H, dd, J=8.2, 15.5Hz), 2. 43-2.53(1H, m), 2.86(1H, dd, J=5.6, 14.5Hz), 3.29(1H, d, J=2.3Hz), 3.41(3 H, s), 3.66(1H, dd, J=8.6, 14.5Hz), 3.87(3H, s), 3.96(1H, d, J=8.6Hz), 4.8

:3) で精製し、標題化合物12.6gを得た。物性値を以下に示す。

9(1H, brs), 5.77(1H, brs), 5.97-5.99(1H, m), 6.60(1H, d, J=9.6Hz), 6.75(1H, brs), 7.83-7.87(2H, m).

以下、実施例 1 と同様にして実施例 $2\sim2$ 5 に示す化合物を製造した。えられた化合物の物性値を表 $1\sim4$ に示す。

4x +/:: /si	Z	1 H-NMR(CDCl ₃) δ :
実施例	L	11-14WIN(CDC13) · .
番号		0 00 (477 11 7 0 C 10 071) 0 47 0 57/1TI
2		1.11(3H, s), 1.17(3H, s), 2.32(1H, dd, J=8.6, 13.9Hz), 2.47- 2.57(1H,
		m), 2.85-2.96(1H, m), 3.20(1H, dd, J=5.6, 14.2Hz), 3.38(1H, s),
	N.	3.81(1H, dd, J=8.6, 14.2Hz), 3.94(1H, d, J=7.6Hz), 4.99(1H, brs), 5.60-
		5.70(1H, m), 5.95-6.05(1H, m), 6.03(1H, d, J=8.2Hz), 7.75(1H, dd,
		J=4.9, 7.6Hz), 7.81-7.87(3H, m), 8.13(1H, d, J=7.9Hz), 8.33(1H, brs),
		8.55(1H, d, J=4.6Hz).
3		1.13(3H, s), 1.16(3H, s), 2.28-2.36(1H, m), 2.45-2.56(1H, m), 2.88-
		2.95(1H, m), 3.24(1H, dd, J=5.6, 14.2Hz), 3.38(1H, s), 3.85(1H, dd,
		J=7.6, 14.2Hz), 3.95(1H, d, J=8.3Hz), 4.89(1H, brs), 5.79(1H, brs),
	`N´	5.96(1H, brs), 6.51(1H, brs), 6.64(1H, d, J=7.3Hz), 7.38(1H, dd, J=5.2,
		7.9Hz), 7.83-7.86(2H, m), 8.06(1H, dt, J=7.9, 2.0Hz), 8.73(1H, dd,
		J=1.3, 4.6Hz), 8.93(1H, d, J=1.8Hz).
4		1.11(3H, s), 1.16(3H, s), 2.28-2.36(1H, m), 2.45-2.55(1H, m), 2.88-
		2.96(1H, m), 3.25(1H, dd, J=5.6, 14.2Hz), 3.37(1H, s), 3.80(1H, dd,
	N	J=7.6, 14.2Hz), 3.96(1H, d, J=7.6Hz), 4.81(1H, brs), 5.80(1H, brs),
		5.96(1H, brs), 6.41(1H, brs), 6.63(1H, d, J=9.2Hz), 7.55(2H, d,
	<u> </u>	J=5.9Hz), 7.75-7.89(2H, m), 8.73(2H, d, J=5.9Hz).
5		1.09(3H, s), 1.14(3H, s), 2.26-2.35(1H, m), 2.44-2.55(1H, m), 2.85-
		2.94(1H, m), 3.13(1H, dd, J=5.6, 14.2Hz), 3.38(1H, d, J=2.0Hz),
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.77(1H, dd, J=7.9, 14.2Hz), 3.96(1H, d, J=8.3Hz), 4.92 (1H, brs),
		5.77-5.79(1H, m), 5.96-6.00(1H, m), 6.50(1H, dd, J=1.7, 3.6Hz),
1		6.56(1H, t, J=6.9Hz), 6.63(1H, dd, J=2.3, 9.6Hz), 7.09(1H, d,
		J=3.6Hz), 7.44(1H, d, J=1.0Hz), 7.84(1H, s), 7.86(1H, dd, J=2.3,
<u> </u>	<u> </u>	9.6Hz).
6		1.09(3H, s), 1.14(3H, s), 2.33-2.36(1H, m), 2.46-2.50(1H, m), 2.89-
1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.96(1H, m), 3.19(1H, dd, J=5.6, 14.5Hz), 3.39(1H, s), 3.77(1H, dd, J=7.6 14.5Hz), 2.95(1H, dd, J=7.0Hz), 4.92(1H, brs), 5.79(1H, brs)
		J=7.6, 14.5Hz), 3.95(1H, d, J=7.9Hz), 4.92(1H, brs), 5.79(1H, brs), 6.24(1H, brs), 6.64(1H, d, J=9.2Hz), 7.08(1H, t)
		5.97(1H, brs), 6.24(1H, brs), 6.64(1H, d, J=9.2Hz), 7.08(1H, t,
L	1	J=4.9Hz), 7.47-7.50(2H, m), 7.84-7.87(2H, m).

実施例 番号	В	Q	¹H-NMR(CDCl₃) δ:
7	CH ₂	Ph	1.02(6H, s), 2.22-2.36(1H, m), 2.42-2.51(1H, m), 2.76-2.86(1H, m), 3.01(1H, dd, J=5.6, 14.5Hz), 3.17(1H, d, J=2.0Hz), 3.71(1H, dd, J=8.2, 14.5Hz), 3.90(1H, d, J=8.2Hz), 4.50(2H, s), 4.74(1H, brs), 5.74-5.77(1H, m), 5.95-5.98(1H, m), 6.55(1H, d, J=9.6Hz), 6.57-6.77(1H, m), 6.85 (2H, dd, J=1.0, 8.9Hz), 7.02(1H, t, J=7.3Hz), 7.23-7.30(3H, m), 7.85-7.88(2H, m).
8	CH₂	Bn	1.03(3H, s), 1.06(3H, s), 2.24-2.36(1H, m), 2.43- 2.52(1H, m), 2.84-2.88(1H, m), 2.95(1H, dd, J=5.9, 14.5Hz), 3.25(1H, dd, J=2.0Hz), 3.64(1H, dd, J=8.3, 14.5Hz), 3.94(1H, brs), 3.97(2H, d, J=3.3Hz), 4.56(2H, s), 4.82(1H, brs), 5.78(1H, brs), 5.97(1H, brs), 6.54(1H, d, J=8.6Hz), 6.81- 6.87(1H, m), 7.27-7.36(5H, m), 7.80-7.85(2H, m).

表3

野施列 R ¹⁰ Me			
9 Me (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-1.99(2H, m), 2.39(3H, s), 2.61-2.71(1H, m), 3.05(1H, dd, J=5.3, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.72-3.97(3H, m), 5.08(1H, d, J=6.9Hz), 5.47(1H, s), 6.31-6.37(1H, m), 6.67(1H, d, J=9.2Hz), 7.23(2H, d, J=7.9Hz), 7.51(2H, d, J=8.3Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz), 7.51(2H, d, J=8.3Hz), 7.92(1H, dd, J=5.3, 14.5Hz), 3.44(1H, d, J=2.0Hz), 3.72-3.81(1H, m), 3.09(1H, dd, J=5.3, 14.5Hz), 3.44(1H, d, J=2.0Hz), 3.72-3.81(1H, m), 6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz), 5.38(1H, s), 6.33-6.38(1H, m), 6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz), 3.43(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, d, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=6.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.	実施例	R ¹⁰	1 H-NMR δ :
2.71(1H, m), 3.05(1H, dd, J=5.3, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.72-3.97(3H, m), 5.08(1H, d, J=6.9Hz), 5.47(1H, s), 6.31-6.37(1H, m), 6.67(1H, d, J=9.2Hz), 7.23(2H, d, J=7.9Hz), 7.61(2H, d, J=8.3Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz), 7.61(2H, d, J=8.3Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz), 3.72-3.81(1H, m), 3.09(1H, dd, J=5.3, 14.5Hz), 3.44(1H, d, J=2.0Hz), 3.72-3.81(1H, m), 6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz), 5.38(1H, s), 6.33-6.38(1H, m), 6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz), 3.43(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=5.6, 14.5Hz), 3.43(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ :1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ :1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ :1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),	番号		
2.71(1H, m), 3.05(1H, dd, J=5.3, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.72-3.97(3H, m), 5.08(1H, d, J=6.9Hz), 5.47(1H, s), 6.31-6.37(1H, m), 6.67(1H, d, J=9.2Hz), 7.23(2H, d, J=7.9Hz), 7.61(2H, d, J=8.3Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 0	9	Me	(CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-1.99(2H, m), 2.39(3H, s), 2.61-
6.67(1H, d, J=9.2Hz), 7.23(2H, d, J=7.9Hz), 7.61(2H, d, J=8.3Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 0 F (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.01(2H, m), 2.62-2.71(1H, m), 3.09(1H, dd, J=5.3, 14.5Hz), 3.44(1H, d, J=2.0Hz), 3.72-3.81(1H, m), 3.63-3.95(1H, m), 5.09(1H, d, J=7.3Hz), 5.38(1H, s), 6.33-6.38(1H, m), 6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz). 1 1 Cl (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.92-1.99(2H, m), 2.62-2.68(1H, m), 3.10(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			2.71(1H, m), 3.05(1H, dd, J=5.3, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.72-
1 0 F (CDCl ₃) δ :1.10(3H, s), 1.15(3H, s), 1.93-2.01(2H, m), 2.62-2.71(1H, m), 3.09(1H, dd, J=5.3, 14.5Hz), 3.44(1H, d, J=2.0Hz), 3.72-3.81(1H, m), 3.86-3.95(1H, m), 5.09(1H, d, J=7.3Hz), 5.38(1H, s), 6.33- 6.38(1H, m), 6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz). 1 1 Cl (CDCl ₃) δ :1.10(3H, s), 1.15(3H, s), 1.92-1.99(2H, m), 2.62-2.68(1H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ :1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ :1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ :1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),	1		
F (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.01(2H, m), 2.62-2.71(1H, m), 3.09(1H, dd, J=5.3, 14.5Hz), 3.44(1H, d, J=2.0Hz), 3.72-3.81(1H, m), 3.86-3.95(1H, m), 5.09(1H, d, J=7.3Hz), 5.38(1H, s), 6.33- 6.38(1H, m), 6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz). 1 1 Cl (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.92-1.99(2H, m), 2.62-2.68(1H, m), 3.10(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			
3.09(1H, dd, J=5.3, 14.5Hz), 3.44(1H, d, J=2.0Hz), 3.72-3.81(1H, m), 3.86-3.95(1H, m), 5.09(1H, d, J=7.3Hz), 5.38(1H, s), 6.33- 6.38(1H, m), 6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz). 1 1 Cl (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.92-1.99(2H, m), 2.62-2.68(1H, m), 3.10(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			
3.86-3.95(1H, m), 5.09(1H, d, J=7.3Hz), 5.38(1H, s), 6.33- 6.38(1H, m), 6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz). 1 1 Cl (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.92-1.99(2H, m), 2.62-2.68(1H, m), 3.10(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),	10	F	
6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz). 1 1 Cl (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.92-1.99(2H, m), 2.62-2.68(1H, m), 3.10(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),		•	3.09(1H, dd, J=5.3, 14.5Hz), 3.44(1H, d, J=2.0Hz), 3.72-3.81(1H, m),
J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz). Cl			3.86-3.95(1H, m), 5.09(1H, d, J=7.3Hz), 5.38(1H, s), 6.33- 6.38(1H, m),
CI (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.92-1.99(2H, m), 2.62-2.68(1H, m), 3.10(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.5, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),	1		6.65(1H, d, J=8.9Hz), 7.07-7.14(2H, m), 7.70-7.76(2H, m), 7.92(1H, dd,
3.10(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.3Hz), 3.73-3.95(3H, m), 5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz).
5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.64(1H, d, J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),	11	CI	(CDCl ₃) 0:1.10(3H, s), 1.15(3H, s), 1.92-1.99(2H, m), 2.62-2.68(1H, m),
J=8.9Hz), 7.40(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			
9.2Hz), 8.19(1H, d, J=2.6Hz). 1 2 Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			5.08(1H, d, J=7.3Hz), 5.34(1H, s), 6.37-6.42(1H, m), 6.04(1H, d, J=2.6)
Br (CDCl ₃) δ:1.10(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.62-2.72(1H, m), 3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			
3.09(1H, dd, J=5.6, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),	- 10	De	9.2HZ), 8.19(1H, 0, J=2.0HZ).
5.09(1H, d, J=6.9Hz), 5.31(1H, s), 6.31-6.36(1H, m), 6.65(1H, d, J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). 1 3 I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),	1 2	DI	(CDCl ₃) 0 :1.10(3H, 8), 1.13(3H, 8), 1.93-2.02(2H, m), 2.02-2.72(1H, m), 2.00(1H, 44, I=2.0Hz), 2.73-3.06(3H, m)
J=8.9Hz), 7.58(4H, d, J=0.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz). I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			5.09(1H, dd, J=5.0, 14.5Hz), 5.45(1H, d, J=2.011z), 5.75-5.50(511, H), 5.00(1H, d, J=6.0Hz), 5.31(1H, e), 6.31-6.36(1H, m), 6.65(1H, d, J=6.0Hz)
J=2.6Hz). I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			1-8 0Hz) 7 58(4H d 1-0 9Hz) 7 92(1H dd 1=2.6 8 9Hz) 8 20(1H, d.
I (CDCl ₃) δ:1.00(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-1.97(1H, m), 2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			
2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),	1.3	I	
13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),		<u> </u>	2.59-2.65(1H, m), 3.29(1H, dd, J=6.6, 13.5Hz), 3.48(1H, dd, J=6.3,
6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H, m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			13.5Hz), 3.57(1H, d, J=2.0Hz), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz),
m), 7.95(1H, d, J=2.3Hz), 8.45(1H, t, J=6.3Hz). 1 4 Ph (CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ :1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.63(2H, d, J=8.6Hz), 7.83-7.88(3H,
3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			
3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d, J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),	1 4	Ph	(CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.90-1.97(2H, m), 2.63-2.70(1H, m),
J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-8.21(11H, m). 1 5 NO ₂ (CDCl ₃) δ:1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			3.11(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.76-4.01(3H, m), 5.10 (1H, d,
1 5 NO ₂ (CDCl ₃) δ :1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m), 3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			J=6.9Hz), 5.48(1H, s), 6.45(1H, d, J=8.9Hz), 6.69(1H, d, J=8.9Hz), 7.39-
3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d, J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),			
J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),	1 5	NO ₂	$(CDCl_3) \delta : 1.13(3H, s), 1.18(3H, s), 1.95-2.01(2H, m), 2.67-2.71(1H, m),$
J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz), 7.84-7.92(2H, m), 8.14(1H, d, J=2.3Hz), 8.26(2H, d, J=8.6Hz).			3.25(1H, dd, J=5.6, 14.5Hz), 3.49(1H, s), 3.72-3.96(3H, m), 5.08 (1H, d,
7.84-7.92(2H, m), 8.14(1H, d, J=2.3Hz), 8.26(2H, d, J=8.6Hz).			J=6.9Hz), 5.15(1H, s), 6.60(1H, s), 6.62(1H, s), 7.18(1H, d, J=7.6Hz),
		<u> </u>	7.84-7.92(2H, m), 8.14(1H, d, J=2.3Hz), 8.26(2H, d, J=8.6Hz).

表3の続き

22 0 10 101	. —	
16	CN	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.92-1.98(2H, m), 2.63-2.69(1H, m), 3.20(1H, dd, J=5.6, 14.5Hz), 3.46(1H, d, J=2.3Hz), 3.73-3.96(3H, m), 5.08(1H, d, J=6.9Hz), 5.18(1H, s), 6.54-6.57(1H, m), 6.62(1H, d, J=6.9Hz), 7.72(2H, d, J=8.3Hz), 7.84(2H, d, J=8.2Hz), 7.88(1H, dd, J=2.6, 9.2Hz), 8.15(1H, d, J=2.3Hz).
17	CF₃	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.93-2.02(2H, m), 2.63-2.69(1H, m), 3.16(1H, dd, J=5.6, 14.5Hz), 3.45(1H, d, J=2.0Hz), 3.73-3.96(3H, m), 5.09(1H, d, J=7.3Hz), 5.25(1H, s), 6.45-6.50(1H, m), 6.65(1H, d, J=6.3Hz), 7.17(1H, d, J=7.6Hz), 7.25(1H, d, J=8.3Hz), 7.69(1H, d, J=8.2Hz), 7.84(1H, d, J=8.2Hz), 7.92(1H, dd, J=2.6, 9.2Hz), 8.19(2H, d, J=2.3Hz).
18	CH₂Cl	(DMSO-d ₆) δ :1.01(3H, s), 1.05(3H, s), 1.64-1.72(1H, m), 1.96(2H, m), 2.64(1H, m), 2.26-3.31(1H, m), 3.50(1H, dd, J=6.6, 14.2Hz), 3.58(1H, s), 3.63-3.93(2H, m), 4.81(2H, s), 5.08(1H, d, J=9.2Hz), 6.88(1H, s), 6.89(1H, d, J=9.2Hz), 7.51(2H, d, J=7.9Hz), 7.83-7.94(4H, m), 8.40-8.44(1H, m).
19	OMe	(CDCl ₃) δ :1.09(3H, s), 1.15(3H, s), 1.93-1.98(2H, m), 2.61-2.67(1H, m), 3.04(1H, dd, J=5.3, 14.5Hz), 3.43(1H, d, J=1.7Hz), 3.72-3.81(1H, m), 3.84(3H, s), 3.86-3.97(2H, m), 5.08(1H, d, J=6.9Hz), 5.51(1H, s), 6.27-6.32(1H, m), 6.66(1H, d, J=8.9Hz), 7.68(2H, d, J=8.9Hz), 7.92 (1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz).
2 0	OEt	(CDCl ₃) δ :1.09(3H, s), 1.14(3H, s), 1.42(3H, t, J=6.9Hz), 1.92- 2.00(2H, m), 2.61-2.70(1H, m), 3.03(1H, dd, J=5.3, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.72-3.97(3H, m), 4.06(2H, q, J=6.9Hz), 5.08(1H, d, J=7.3Hz), 5.52(1H, s), 6.25-6.30(1H, m), 6.67(1H, d, J=8.9Hz), 6.89(2H, d, J=8.6Hz), 7.67(2H, d, J=8.6Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.3Hz).
2 1	SO ₂ F	(DMSO- d_6) δ :1.03(3H, s), 1.06(3H, s), 1.61-1.77(1H, m), 1.96- 1.99(1H, m), 2.59-2.66(1H, m), 3.32-3.39(1H, m), 3.52(1H, dd, J=5.9, 13.5Hz), 3.60(1H, s), 3.66-3.84(2H, m), 5.09(1H, d, J=7.3Hz), 6.89(1H, s), 6.90(1H, d, J=9.2Hz), 7.87(2H, dd, J=2.6, 9.2Hz), 7.95(1H, d, J=2.3Hz), 8.16(2H, d, J=6.5Hz), 8.25(2H, d, J=8.3Hz), 8.78(1H, t, J=5.9Hz).
2 2	CO₂H	(DMSO- d_6) δ :1.03(3H, s), 1.06(3H, s), 1.66-1.73(1H, m), 1.96- 1.99(1H, m), 2.63-2.66(1H, m), 3.28-3.42(1H, m), 3.51(1H, dd, J=6.3, 13.9Hz), 3.60(1H, s), 3.63-3.81(2H, m), 5.09(1H, d, J=6.9Hz), 6.88(1H, s), 6.90(1H, d, J=9.2Hz), 7.84-8.02(6H, m), 8.56(1H, t, J=6.3Hz), 13.17(1H, s).

実施例	Z	1 H-NMR δ :
番号		
2 3	OMe	(CDCl ₃) δ : 0.83(3H, s), 0.99(3H, s), 2.43(3H, s), 2.27-2.61 (5H, m), 3.74 (2H, t, J=6.3Hz), 3.82(1H, d, J=3.0Hz), 4.80(1H, dd, J=8.9, 14.4Hz), 6.41(2H, s), 6.59(1H, d, J=8.6Hz), 6.69(1H, s), 7.08(1H, d, J=1.6Hz), 7.20(1H, dd, J=2.0, 8.3Hz), 7.29(1H, d, J=8.3Hz), 7.69(2H, d, J=8.2Hz).
2 4		(DMSO-d ₆) δ : 0.99(3H, s), 1.02(3H, s), 1.64-1.79(1H, m), 1.91-1.99(1H, m), 2.56-2.62(1H, m), 3.24-3.46(2H, m), 3.58-3.63(1H, m), 3.75 (1H, q, J=8.3Hz), 5.02(1H, d, J=7.3Hz), 6.25(1H, s), 6.86(1H, d, J=8.6Hz), 7.30(1H, dd, J=1.7, 8.4Hz), 7.37(1H, s), 7.62(1H, d, J=8.3Hz), 7.84(1H, d, J=8.2Hz), 8.43(1H, t, J=5.6Hz).
2 5	CN	(CDCl ₃) δ : 1.11(3H, s), 1.15(3H, s), 1.93-2.02(2H, m), 2.65-2.68(1H, m), 3.06(1H, s), 3.17(1H, dd, J=5.6, 14.5Hz), 3.40(1H, s), 3.70-3.94(2H, m), 4.91(1H, s), 5.05(1H, d, J=6.9Hz), 6.60-6.64(1H, m), 6.65(1H, d, J=8.3Hz), 7.49-7.64(2H, m), 7.72(2H, d, J=8.3Hz), 7.84(2H, d, J=8.2Hz).

5

10

20

実施例1-(2) でえられた($3aR^*$, $4S^*$, $9bS^*$) -2-メチルー2-(8-二トロ-3a, 4, 5, 9b-テトラヒドロ-3H-シクロペンタ [c] キノリン-4-イル)-プロピルアミン100mg、エトキシ酢酸0.04m1をN, N-ジメチルホルムアミド3m1に溶解し、4-メチルモルホリン0.1m1、1-ヒドロキシベンゾトリアゾール60.0mgおよび1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩90.0mgを加えた。室温で2時間撹拌した後、水および酢酸エチルを加えた。酢酸エチル層を水で洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去した。残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒 ヘキサン:酢酸エチル=1:2)

15 で精製し、標題化合物 8 0. 0 mgを得た。物性値を以下に示す。

¹H-NMR(CDCl₃) δ:1.04(3H, s), 1.09(3H, s), 1.23(3H, t, J=6.9Hz), 2.25-2.33(1H, m), 2.43-2.53(1H, m), 2.82-2.89(1H, m), 2.98(1H, dd, J=5.5, 14.2Hz), 3.29(3H, s), 3.56(1H, q, J=6.9Hz), 3.66(1H, dd, J=8.3, 14.2Hz), 3.91(3H, s), 3.96(1H, d, J=6.3Hz), 4.90(1H, brs), 5.78(1H, brs), 5.97(1H, brs), 6.60(1

H. d. J=9.6Hz), 6.81(1H, brs), 7.83-7.86(2H, m).

以下、実施例26と同様にして実施例27~131に示す化合物を製造した。え られた化合物の物性値を表5~14に示す。

実施例 番号	В	Q	¹H-NMR
2 7	CH₂	Н	(CDCl ₃) δ :1.05(3H, s), 1.09(3H, s), 2.28(1H, dd, J=7.9, 14.5Hz), 2.43-2.52(1H, m), 2.58(1H, t, J=5.0Hz), 2.83-2.92(1H, m), 3.00(1H, dd, J=5.6, 14.5Hz), 3.31(1H, d, J=2.3Hz), 3.67(1H, dd, J=8.3, 14.5Hz), 3.94(1H, d, J=8.3Hz), 4.11(2H, d, J=5.0Hz), 4.87(1H, brs), 5.76-5.78(1H, m), 5.96-5.98(1H, m), 6.59(1H, d, J=9.6Hz), 6.84 (1H, brs), 7.81(1H, d, J=3.3Hz), 7.83(1H, s).
2 8	CH(Me)	Ме	(CDCl ₃) δ :1.04(3H, s), 1.09(3H, s), 1.46(3H, d, J=6.9Hz), 2.24-2.35(1H, m), 2.41-2.54(1H, m), 2.84-3.02(3H, m), 3.26(1H, d, J=14.5Hz), 3.38 (3H, d, J=4.6Hz), 3.59(1H, dd, J=8.3, 14.9Hz), 3.74(1H, q, J=6.9Hz), 3.96(1H, d, J=7.6Hz), 4.88 (1H, brs), 5.77(1H, brs), 5.96-5.98(1H, m), 6.61(1H, d, J=9.6Hz), 7.21(1H, brs), 7.83-7.86 (1H, m).

Profession 1		Try yran (CDCI) 8.
実施例	Z	1 H-NMR (CDCl ₃) δ :
番号		
2 9	-	1.12(3H, s), 1.18(3H, s), 1.94-2.02(2H, m), 2.64-2.73(1H, m),
		3.12(1H, dd, J=5.3, 14.2Hz), 3.45(1H, d, J=2.0Hz), 3.73-3.96(3H, m),
		5.08(1H, d, J=7.3Hz), 5,37(1H, s), 6.65(1H, d, J=8.9Hz), 7.45(1H, dd,
1 1	N	J=4.6, 6.6Hz), 7.82-7.88(1H, m), 7.93(1H, dd, J=3.0, 9.2Hz), 8.14(1H,
		d, J=7.6Hz), 8.20(1H, d, J=2.3Hz), 8.27-8.34 (1H, m), 8.55(1H, d,
		J=5.0Hz).
3 0	· · · · · ·	1.12(3H, s), 1.17(3H, s), 1.93-2.02(2H, m), 2.64-2.73(1H, m),
		3.18(1H, dd, J=5.3, 14.5Hz), 3.47(1H, s), 3.73-3.96(3H, m), 5.10(1H,
		d, J=6.9Hz), 5.28(1H, s), 6.57-6.62(1H, m), 6.64(1H, d, J=9.2Hz),
	\ \\	7.39(1H, m), 7.90(1H, dd, J=2.6, 8.9Hz), 8.09(1H, d, J=7.9Hz),
		8.18(1H, d, J=2.6Hz), 8.74(1H, brs), 8.96(1H, brs).
3 1		1.12(3H, s), 1.17(3H, s), 1.93-2.02(2H, m), 2.67-2.70(1H, m),
		3.17(1H, dd, J=5.6, 14.5Hz), 3.44(1H, s), 3.76-3.96(3H, m), 5.10(1H,
		d, J=6.9Hz), 5.17(1H, s), 6.51(1H, m), 6.64(1H, d, J=8.9Hz), 7.57(2H,
		d, J=5.6Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, s), 8.75(2H, d,
		J=4.3Hz).
3 2		1.09(3H, s), 1.14(3H, s), 1.92-2.01(2H, m), 2.62-2.72(1H, m),
	0	3.04(1H, dd, J=5.6, 14.5Hz), 3.45(1H, d, J=2.0Hz), 3.73-3.95(3H, m),
		5.10(1H, d, J=6.9Hz), 5.32(1H, s), 6.50-6.52(1H, m), 6.64(1H, d,
	""	J=8.9Hz), 7.10(1H, d, J=3.3Hz), 7.16-7.23(1H, m), 7.45(1H, d,
		J=1.0Hz), 7.93(1H, dd, J=2.6, 8.9Hz), 8.21(1H, d, J=2.6Hz).
3 3		1.10(3H, s), 1.15(3H, s), 1.92-2.01(2H, m), 2.62-2.69(1H, m),
	s_	3.08(1H, dd, J=5.6, 14.5Hz), 3.46(1H, d, J=2.0Hz), 3.73-3.96(3H, m),
		5.10(1H, d, J=6.9Hz), 5.29(1H, s), 6.20(1H, m), 6.65(1H, d, J=8.9Hz),
1		7.08(1H, dd, J=3.6, 5.0Hz), 7.17(1H, d, J=7.6Hz), 7.49-7.15(1H, m),
		7.93(1H, dd, J=2.6, 8.9Hz), 8.21(1H, d, J=2.3Hz).
		1

表7
$$O_2N \longrightarrow O$$

$$N \longrightarrow N$$

				1
実施例	\mathbb{R}^4	R⁵	n	1 H-NMR (DMSO-d ₆) δ :
番号	ĺ			
3 4	Me	H	0	1.02(3H, s), 1.06(3H, s), 1.62-1.77(1H, m), 1.95-2.01(1H, m),
				2.60-2.66(1H, m), 2.80(3H, d, J=4.6Hz), 3.38-3.41(1H, m),
1				3.52(1H, dd, J=5.9, 13.5Hz), 3.60(1H, s), 3.63-3.84(2H, m),
				5.09(1H, d, J=7.3Hz), 6.88(1H, s), 6.90(1H, d, J=8.9Hz), 7.84-
				7.96(6H, m), 8.50-8.57(2H, m).
3 5	Pri	H	0	1.02(3H, s), 1.05(3H, s), 1.17(6H, d, J=6.6Hz), 1.62-1.73(1H, m),
				1.96-1.99(1H, m), 2.63-2.66(1H, m), 3.28-3.37(1H, m), 3.51(1H,
				dd, J=6.3, 13.5Hz), 3.59(1H, s), 3.63-3.84(2H, m), 4.06-4.16(1H,
•				m), 5.09(1H, d, J=6.9Hz), 6.88(1H, s), 6.90(1H, d, J=8.9Hz),
[1	7.84-7.99(6H, m), 8.33(2H, d, J=7.6Hz), 8.51(1H, m).
3 6	Pr ⁱ	H	1	0.89(6H, d, J=6.6Hz), 1.02(3H, s), 1.06(3H, s), 1.61-1.77(1H, m),
				1.80-1.98(2H, m), 2.60-2.70(1H, m), 3.09(2H, t, J=6.3Hz), 3.28-
				3.39(1H, m), 3.52(1H, dd, J=6.3, 13.5Hz), 3.59(1H, s), 3.63-
]		1	3.88(2H, m), 5.09(1H, d, J=6.9Hz), 6.88(1H, s), 6.90(1H, d,
			1	J=8.9Hz), 7.84-7.99(6H, m), 8.50(1H, t, J=5.9Hz), 8.58(1H, t,
1				J=5.6Hz).
3 7	$\overline{}$	Н	0	0.55-0.61(2H, m), 0.64-0.74(2H, m), 1.02(3H, s), 1.05(3H, s),
	'		ŀ	1.65-1.73(1H, m), 1.95-1.98(2H, m), 2.63-2.66(1H, m), 2.82-
			1	2.89(1H, m), 3.27-3.39(1H, m), 3.51(1H, dd, J=5.9, 13.9Hz),
				3.59(1H, s), 3.63-3.84(2H, m), 5.09(1H, d, J=6.9Hz), 6.88(1H, s),
			<u> </u>	6.90(1H, d, J=8.9Hz), 7.84-7.99(6H, m), 8.48-8.56(2H, m).
38	Y	H	0	1.02(3H, s), 1.05(3H, s), 1.27-1.39(4H, m), 1.59-1.81(7H, m),
				1.96-1.98(1H, m), 2.63-2.66(1H, m), 3.28-3.39(1H, m), 3.51(1H,
1			l	dd, J=6.3, 13.9Hz), 3.59(1H, s), 3.63-3.81(3H, m), 5.09(1H, d,
	İ	i	1	J=6.9Hz), 6.88(1H, s), 6.90(1H, d, J=9.2Hz), 7.84-7.95(6H, m),
				8.31(1H, d, J=7.9Hz), 8.50(1H, t, J=5.6Hz).
3 9	CF ₃	H	1	1.03(3H, s), 1.06(3H, s), 1.65-1.73(1H, m), 1.95(1H, m), 2.63(1H,
		1		m), 3.34-3.39(1H, m), 3.52(1H, dd, J=5.9, 13.5Hz), 3.60(1H, s),
}	1			3.66-3.80(2H, m), 4.08-4.14(2H, m), 5.09(1H, d, J=6.9Hz),
	1		i	6.88(1H, s), 6.90(1H, d, J=8.9Hz), 7.84-7.95(6H, m), 8.52-
				8.54(1H, m), 9.22(1H, t, J=5.9Hz).
4 0	OMe	Н	0	1.02(3H, s), 1.05(3H, s), 1.65-1.76(1H, m), 1.95-1.98(1H, m),
		ĺ	1	2.63-2.66(1H, m), 3.28-3.37(1H, m), 3.51(1H, dd, J=5.9, 13.5Hz),
1				3.59(1H, s), 3.63-3.83(2H, m), 3.71(3H, s), 5.09(1H, d, J=7.3Hz),
				6.88(1H, s), 6.90(1H, d, J=9.2Hz), 7.80-7.95(6H, m), 8.52(1H, t,
				J=6.3Hz), 11.88(1H, s).

表7の続き

4 1	ОМе	Н	2	1.02(3H, s), 1.06(3H, s), 1.65-1.73(1H, m), 1.96 (1H, m), 2.64(1H, m), 3.26-3.42(1H, m), 3.45(3H, s), 3.59(1H, s), 3.66-3.81(2H, m), 5.09(1H, d, J=6.9Hz), 6.88(1H, s), 6.90(1H, d, J=9.2Hz), 7.84-7.94(6H, m), 8.51(1H, m), 8.65(1H, m).
4 2	CN	Н	1	1.03(3H, s), 1.06(3H, s), 1.66-1.77(1H, m), 1.96-1.99(1H, m), 2.64-2.67(1H, m), 3.29-3.37(1H, m), 3.52(1H, dd, J=6.3, 13.9Hz), 3.60(1H, s), 3.67-3.84(2H, m), 4.34(2H, d, J=5.6Hz), 5.09(1H, d, J=7.3Hz), 6.88(1H, s), 6.90(1H, d, J=8.9Hz), 7.87(1H, dd, J=2.6, 9.2Hz), 7.94(6H, s), 8.49-8.56(1H, m), 9.32(1H, t, J=5.6Hz).
4 3	Me	Me	0	1.02(3H, s), 1.05(3H, s), 1.61-1.77(1H, m), 1.96-1.99(1H, m), 2.63-2.66(1H, m), 2.88(3H, s), 2.99(3H, s), 3.28-3.39(1H, m), 3.51(1H, dd, J=6.3, 13.5Hz), 3.59(1H, s), 3.63-3.83(2H, m), 5.09(1H, d, J=7.3Hz), 6.88(1H, s), 6.90(1H, d, J=8.9Hz), 7.47(2H, d, J=7.9Hz), 7.84-7.95(4H, m), 8.46-8.51(1H, m).
4 4	-(CH ₂) ₄ -		0	1.02(3H, s), 1.05(3H, s), 1.69-1.98(8H, m), 2.63-2.66(1H, m), 3.23-3.30(2H, m), 3.37-3.88(5H, m), 5.09(1H, d, J=7.3Hz), 6.88(1H, s), 6.90(1H, d, J=9.2Hz), 7.58(2H, d, J=8.3Hz), 7.84-7.99(4H, m), 8.47-8.52(1H, m).

実施例 番号	В	Q	1 H-NMR(CDCl ₃) δ :
4 5	CH ₂	Me	1.05(3H, s), 1.10(3H, s), 1.86-2.00(2H, m), 2.61-2.70 (1H, m), 2.90(1H, dd, J=5.6, 14.5Hz), 3.37(1H, d, J=2.0Hz), 3.42(3H, s), 3.69-3.80(1H, m), 3.89(3H, s), 3.89-3.92(1H, m), 5.12(1H, d, J=7.3Hz), 5.26(1H, s), 6.60(1H, d, J=8.9Hz), 6.77(1H, brs), 7.92(1H, dd, J=2.6, 8.9Hz), 8.23(1H, d, J=2.6Hz).
4 6	CH ₂	Ph	1.02(6H, s), 1.88-1.97(2H, m), 2.53-2.59(1H, m), 2.95(1H, dd, J=5.3, 14.5Hz), 3.21(1H, d, J=2.0Hz), 3.71-3.94(3H, m), 4.51(2H, s), 5.04(1H, d, J=6.9Hz), 5.09(1H, s), 6.58(1H, d, J=8.9Hz), 6.77(1H, brs), 6.85 (2H, d, J=7.9Hz), 7.02(1H, t, J=7.3Hz), 7.23-7.29(2H, m), 7.94(1H, dd, J=2.6, 8.9Hz), 8.24(1H, d, J=2.3Hz).

表 9

実施例	A	n	R ⁴	1 H-NMR δ :
番号				
4 7			Et	(CDCl ₃) δ :1.10(3H, s), 1.15(3H, s), 1.23(3H, t, J=7.6Hz), 1.93-2.02(2H, m), 2.61-2.73(3H, m), 3.05(1H, dd, J=5.3, 14.5Hz), 3.43(1H, d, J=2.0Hz), 3.73-3.98(3H, m), 5.08(1H, d, J=6.9Hz), 5.48(1H, s), 6.33-6.38(1H, m), 6.67(1H, d, J=9.2Hz), 7.25(2H, d, J=7.3Hz), 7.64(2H, d, J=8.3Hz), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.7Hz).
4 8	Pr			(CDCl ₃) δ :1.10(3H, s), 1.15(3H, s), 1.24(6H, t, J=6.9Hz), 1.97(1H, m), 2.66(1H, m), 2.91-3.08(1H, m), 3.43(1H, s), 3.75-3.99(3H, m), 5.08(1H, d, J=6.6Hz), 5.49(1H, s), 6.36(1H, m), 6.65-6.69(1H, m), 7.26(3H, d, J=3.0Hz), 7.65(2H, d, J=7.9Hz), 7.92(1H, dd, J=2.6, 8.6Hz), 8.20(1H, s).
4 9	単結合	1	ОН	(DMSO- d_6) δ :1.01(3H, s), 1.04(3H, s), 1.65-1.72(1H, m), 1.94-1.97(1H, m), 2.61-2.64(1H, m), 3.26- 3.39(1H, m), 3.50(1H, dd, J=6.3, 13.9Hz), 3.58(1H, s), 3.66-3.80(2H, m), 4.45(2H, d, J=5.6Hz), 5.08(1H, d, J=6.9Hz), 5.29(1H, t, J=5.6Hz), 6.88(1H, s), 6.89(1H, d, J=9.2Hz), 7.38(2H, d, J=7.9Hz), 7.81 (2H, d, J=7.9Hz), 7.88(1H, s), 7.94(1H, s), 8.34(1H, s).
5 0	単結合	1	OAc	(DMSO-d ₆) δ :1.01(3H, s), 1.05(3H, s), 1.61-1.72(1H, m), 1.95-2.02(1H, m), 2.08(3H, s), 2.60-2.69(1H, m), 3.26-3.34(1H, m), 3.50(1H, dd, J=6.3, 13.9Hz), 3.58(1H, s), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 5.12(2H, s), 6.89(2H, d, J=9.2Hz), 7.43(2H, d, J=7.9Hz), 7.82-7.95(4H, m), 8.40(1H, t, J=5.9Hz).
5 1	СО	0	· Me	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.93-1.99(2H, m), 2.62(3H, s), 2.63-2.70(1H, m), 3.15(1H, dd, J=5.3, 14.5Hz), 3.45(1H, d, J=2.0Hz), 3.73-3.95(3H, m), 5.09(1H, d, J=6.9Hz), 5.30(1H, s), 6.49-6.54(1H, m), 6.65(1H, d, J=9.2Hz), 7.81(2H, d, J=8.3Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 7.99(2H, d, J=8.6Hz), 8.19(1H, d, J=2.3Hz).

表9の続き

AX J VJ NYL	_			
5 2	CO ₂	0	Me	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.93-2.02(2H, m), 2.63-2.73(1H, m), 3.13(1H, dd, J=5.3, 14.5Hz), 3.46(1H, d, J=2.0Hz), 3.73-3.90(3H, m), 3.94(3H, s), 5.10(1H, d, J=7.3Hz), 5.31(1H, s), 6.44-6.49(1H, m), 6.65(1H, d, J=8.9Hz), 7.78(2H, d, J=8.3Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.09(2H, d, J=8.3Hz), 8.20(1H, d, J=2.3Hz).
5 3	CO ₂	0	Et	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.40(3H, t, J=7.3Hz), 1.94-2.03(2H, m), 2.67-2.73(1H, m), 3.11 (1H, dd, J=5.6, 14.5Hz), 3.44(1H, brs), 3.76- 3.79(1H, m), 3.83-3.97(2H, m), 4.04(2H, q, J=7.3Hz), 5.11(1H, d, J=7.3Hz), 5.31(1H, s), 6.30- 6.40(1H, m), 6.67(1H, d, J=8.9Hz), 7.77(2H, d, J=8.3Hz), 7.95(1H, dd, J=2.6, 8.9Hz), 8.10(2H, d, J=8.3Hz), 8.21(1H, brs).
5 4	CO ₂	2	CI	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.94-2.02(2H, m), 2.67-2.70(1H, m), 3.13(1H, dd, J=5.3, 14.5Hz), 3.44(1H, brs), 3.64-3.96(5H, m), 4.59(3H, t, J=5.6Hz), 5.10(1H, d, J=7.3Hz), 5.29(1H, s), 6.36-6.43(1H, m), 6.66(1H, d, J=9.2Hz), 7.79(2H, d, J=8.3Hz), 7.93(1H, dd, J=2.3, 9.2Hz), 8.12(2H, d, J=8.3Hz), 8.21(1H, d, J=2.3Hz).
5 5	CO ₂	2	OMe	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.94-2.03(2H, m), 2.67-2.70(1H, m), 3.12(1H, dd, J=5.3, 14.5Hz), 3.42(3H, s), 3.44(1H, brs), 3.73(1H, t, J=4.6Hz), 3.76-3.82(1H, m), 3.92(1H, q, J=7.9Hz), 4.49(2H, t, J=4.6Hz), 5.10(1H, d, J=7.3Hz), 5.30(1H, s), 6.30-6.41(1H, m), 6.66(1H, d, J=8.9Hz), 7.77(2H, d, J=8.6Hz), 7.94(1H, dd, J=2.6, 8.9Hz), 8.12(2H, d, J=8.6Hz), 8.21(1H, d, J=2.6Hz).
5 6	CO ₂	2	NMe₂	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.94-2.03(2H, m), 2.34(6H, s), 2.64-2.66(1H, m), 2.73(2H, t, J=5.6Hz), 3.12(1H, dd, J=5.6, 14.2Hz), 3.44(1H, s), 3.73-3.82(1H, m), 3.88-3.96(2H, m), 4.45(2H, t, J=5.6Hz), 5.10(1H, d, J=7.3Hz), 5.31(1H, s), 6.37-6.39(1H, m), 6.67(1H, d, J=8.9Hz), 7.76(2H, d, J=8.3Hz), 7.94(1H, dd, J=2.6, 8.9Hz), 8.10(2H, d, J=8.3Hz), 8.22(1H, d, J=2.6Hz).
5 7	COS	0	Et	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.36(3H, t, J=7.6Hz), 1.94-2.02(2H, m), 2.63-2.73(1H, m), 3.09 (1H, q, J=7.6Hz), 3.11-3.15(1H, m), 3.43(1H, brs), 3.75-3.82(1H, m), 3.87-3.97(2H, m), 5.10(1H, d, J=6.9Hz), 5.29(1H, s), 6.30-6.40(1H, m), 6.66(1H, d, J=8.9Hz), 7.78(2H, d, J=8.6Hz), 7.74(1H, dd, J=2.6, 8.9Hz), 8.00(2H, d, J=8.6Hz), 8.22(1H, d, J=2.6Hz).

表9の続き

12 0 V) 1190				
5 8	cos	1	CF₃	(CDCl ₃) δ:1.12(3H, s), 1.17(3H, s), 1.94-2.02(2H, m), 2.67-2.73(1H, m), 3.15(1H, dd, J=5.3, 14.5Hz), 3.44(1H, d, J=2.0Hz), 3.73-3.95(5H, m), 5.10(1H, d, J=7.3Hz), 5.24(1H, s), 6.43-6.48(1H, m), 6.65(1H, d, J=9.2Hz), 7.83(2H, d, J=8.6Hz), 7.93(1H, dd, J=2.6, 9.2Hz), 8.03(2H, d, J=8.6Hz), 8.20(1H, d, J=7.6Hz).
5 9	cos	2	ОН	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.91-2.02(2H, m), 2.67-2.69(1H, m), 2.89(1H, t, J=5.6Hz), 3.12(1H, dd, J=5.6, 14.5Hz), 3.31(2H, t, J=5.9Hz), 3.44(1H, brs), 3.73-3.82(1H, m), 3.85-3.96(4H, m), 5.10(1H, d, J=6.9Hz), 5.28(1H, s), 6.41-6.44(1H, m), 6.66(1H, d, J=9.2Hz), 7.79(2H, d, J=8.6Hz), 7.94(1H, dd, J=2.3, 9.2Hz), 8.02(2H, d, J=8.6Hz), 8.21(1H, d, J=2.3Hz).
6 0	COS	2	NMe ₂	(CDCl ₃) δ :1.12(3H, s), 1.17(3H, s), 1.93-2.02(2H, m), 2.32(6H, s), 2.61(1H, t, J=6.6Hz), 2.67-2.70(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.44(1H, s), 3.73-3.82(1H, m), 3.87-3.96(4H, m), 5.10(1H, d, J=6.9Hz), 5.28(1H, s), 6.30-6.39(1H, m), 6.66(1H, d, J=9.2Hz), 7.77(2H, d, J=8.3Hz), 7.94(1H, dd, J=2.6, 9.2Hz), 8.02(2H, d, J=8.3Hz), 8.22(1H, d, J=2.6Hz).
6 1	O	0	Н	(CDCl ₃) δ :1.09(3H, s), 1.17(3H, s), 1.91-2.00(2H, m), 2.60-2.70(1H, m), 2.99(1H, dd, J=5.0, 14.5Hz), 3.39(1H, d, J=1.7Hz), 3.74-3.99(3H, m), 5.03(1H, d, J=7.3Hz), 5.34(1H, s), 6.48(1H, dd, J=5.0, 8.3Hz), 6.56-6.62(3H, m), 7.42(2H, d, J=8.6Hz), 7.72(1H, dd, J=2.6, 8.9Hz), 7.92(1H, brs), 8.06(1H, d, J=2.3Hz).
6 2	0	0	Pr ⁱ	(CDCl ₃) δ :1.09(3H, s), 1.14(3H, s), 1.34(6H, d, J=6.3Hz), 1.97(2H, dd, J=7.6, 16.5Hz), 2.64-2.67(1H, m), 3.02(1H, dd, J=5.3, 14.5Hz), 3.42(1H, s), 3.72-3.98(3H, m), 4.55-4.64(1H, m), 5.08(1H, d, J=6.6Hz), 5.52(1H, s), 6.26(1H, m), 6.67(1H, d, J=9.2Hz), 6.88(2H, d, J=9.2Hz), 7.66(2H, d, J=8.9Hz), 7.93(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.3Hz).
6 3	0	2	Ме	(CDCl ₃) δ:1.03(3H, t, J=7.3Hz), 1.09(3H, s), 1.14(3H, s), 1.75-1.85(2H, m), 1.92-2.01(2H, m), 2.64-2.67(1H, m), 3.02(1H, dd, J=5.0, 14.5Hz), 3.42(1H, s), 3.72-3.98(5H, m), 5.08(1H, d, J=7.3Hz), 5.52(1H, s), 6.27(1H, m), 6.67(1H, d, J=8.9Hz), 6.90 (2H, d, J=8.9Hz), 7.67(2H, d, J=8.9Hz), 7.93(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.3Hz).
6 4	0	2	Et	(CDCl ₃) δ:0.97(3H, t, J=7.3Hz), 1.09(3H, s), 1.14(3H, s), 1.41-1.52(2H, m), 1.72-1.79(2H, m), 1.92-2.01(2H, m), 2.64-2.67(1H, m), 3.03(1H, dd, J=5.3, 14.9Hz), 3.42(1H, s), 3.73-3.98(5H, m), 5.08(1H, d, J=6.9Hz), 5.53(1H, s), 6.29(1H, brs), 6.67(1H, d, J=8.9Hz), 6.90(2H, d, J=8.9Hz), 7.67 (2H, d, J=8.9Hz), 7.92(1H, dd, J=2.3, 8.9Hz), 8.19(1H, d, J=2.3Hz).

表9の続き

6 5	0	0	CF₃	(CDCl ₃) δ :1.11(3H, s), 1.16(3H, s), 1.93-2.01(2H, m), 2.62-2.68(1H, m), 3.11(1H, dd, J=5.3, 14.5Hz), 3.44(1H, d, J=2.0Hz), 3.73-3.81(1H, m), 3.86- 3.95(2H, m), 5.09(1H, d, J=6.9Hz), 5.32(1H, s), 6.36-6.41(1H, m), 6.65(1H, d, J=8.9Hz), 7.27(2H, d, J=8.3Hz), 7.78(2H, d, J=8.6Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz).
6 6	0	1	ОМе	(CDCl ₃) δ :1.09(3H, s), 1.14(3H, s), 1.92-1.99(2H, m), 2.64-2.69(1H, m), 3.03(1H, dd, J=5.0, 14.5Hz), 3.42(1H, d, J=2.0Hz), 3.46(3H, s), 3.72-3.98(3H, m), 5.08(1H, d, J=6.9Hz), 5.20(2H, s), 5.48(1H, s), 6.28(1H, m), 6.66(1H, d, J=8.9Hz), 7.05(2H, d, J=8.9Hz), 7.68(2H, d, J=8.9Hz), 7.92(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz).
6 7	0	2	Cl	(CDCl ₃) δ :1.10(3H, s), 1.15(3H, s), 1.92-1.99(2H, m), 2.65-2.67(1H, m), 3.06(1H, dd, J=5.3, 14.5Hz), 3.43(1H, s), 3.73-3.96(5H, m), 4.24-4.32(2H, m), 5.08(1H, d, J=6.9Hz), 5.48(1H, s), 6.31-6.36(1H, m), 6.66(1H, d, J=8.9Hz), 6.93(1H, d, J=8.9Hz), 7.70 (2H, d, J=8.9Hz), 7.92(1H, dd, J=2.6, 9.2Hz), 8.19(1H, d, J=2.3Hz).
6 8	0	2	ОМе	(CDCl ₃) δ :1.09(3H, s), 1.14(3H, s), 1.92-1.99(2H, m), 2.64-2.67(1H, m), 3.02(1H, dd, J=5.3, 14.5Hz), 3.43(1H, s), 3.45(3H, s), 3.74-3.98(5H, m), 4.13-4.16(2H, m), 5.09(1H, d, J=6.9Hz), 5.50(1H, s), 6.23-6.25(1H, m), 6.67(1H, d, J=8.9Hz), 6.94(2H, d, J=8.6Hz), 7.67(2H, d, J=8.9Hz), 7.93(1H, dd, J=2.6, 9.2Hz), 8.20(1H, d, J=2.6Hz).
6 9	O	2	OAc	(CDCl ₃) δ :1.10(3H, s), 1.15(3H, s), 1.97(2H, dd, J=7.3, 16.8Hz), 2.10(3H, s), 2.65-2.67(1H, m), 3.04(1H, dd, J=5.3, 14.9Hz), 3.42(1H, s), 3.46(3H, s), 3.73-3.98(3H, m), 4.18-4.21(2H, m), 4.41- 4.44(2H, m), 5.08(1H, d, J=6.9Hz), 5.48(1H, s), 6.27(1H, m), 6.66(1H, d, J=8.9Hz), 6.93(2H, d, J=8.6Hz), 7.69(2H, d, J=8.9Hz), 7.93(1H, dd, J=2.3, 8.9Hz), 8.20(1H, d, J=2.3Hz).
7 0	0	2	_N_	(DMSO-d ₆) δ :1.01(3H, s), 1.04(3H, s), 1.65-1.99(6H, m), 2.63(1H, m), 3.09-3.30(2H, m), 3.36-3.99(12H, m), 4.42(1H, m), 5.08(1H, d, J=7.3Hz), 6.93(2H, d, J=9.2Hz), 7.06(1H, d, J=8.9Hz), 7.84-7.94(3H, m), 8.32(1H, d, J=2.3Hz).
7 1	осо	0	Me	(DMSO-d ₆) δ :1.01(3H, s), 1.05(3H, s), 1.61-1.73(1H, m), 1.95-1.98(1H, m), 2.28(3H, s), 2.62-2.66(1H, m), 3.26-3.33(1H, m), 3.50(1H, dd, J=6.3, 13.9Hz), 3.58(1H, s), 3.63-3.83(2H, m), 5.08(1H, d, J=7.3Hz), 6.89(2H, d, J=9.2Hz), 7.21(2H, d, J=8.6Hz), 7.84-7.95(4H, m), 8.42(1H, t, J=6.3Hz).

表9の続き

1X 0 47 119 11	_			
7 2	S	0	Me	(CDCl ₃) δ :1.10(3H, s), 1.15(3H, s), 1.92-2.01(2H, m), 2.49(3H, s), 2.61-2.71(1H, m), 3.05(1H, dd, J=5.3, 14.5Hz), 3.42(1H, d, J=2.0Hz), 3.72-3.97(3H, m), 5.08(1H, d, J=7.9Hz), 5.44(1H, s), 6.30-6.35(1H, m), 6.66(1H, d, J=8.9Hz), 7.24(2H, d, J=8.6Hz), 7.63(2H, d, J=8.6Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.3Hz).
7 3	NH	0	Н	(DMSO-d ₆) δ :0.99(3H, s), 1.01(3H, s), 1.63-1.78(1H, m), 1.90-2.00(1H, m), 2.61-2.67(1H, m), 3.21(1H, dd, J=6.3, 13.5Hz), 3.38-3.50(3H, m), 3.54(1H, s), 3.70-3.82(2H, m), 5.07(1H, d, J=6.9Hz), 5.56(2H, brs), 6.53(2H, d, J=8.6Hz), 6.88(2H, d, J=8.6Hz), 7.58(2H, d, J=8.3Hz), 7.86(1H, dd, J=2.3, 9.2Hz), 7.94(1H, s).
7 4	NH	0	Me	(CDCl ₃) δ :1.07(3H, s), 1.13(3H, s), 1.84-2.00(2H, m), 2.59-2.69(1H, m), 2.85(3H, s), 3.00(1H, dd, J=5.3, 14.9Hz), 3.42(1H, d, J=1.6Hz), 3.65-3.97(3H, m), 4.16(1H, brs), 5.07(1H, d, J=6.9Hz), 5.67(1H, s), 6.24-6.29(1H, m), 6.54(2H, d, J=8.6Hz), 6.66(1H, d, J=8.9Hz), 7.58(2H, d, J=8.6Hz), 7.91(1H, dd, J=2.6, 9.2Hz), 8.18(1H, d, J=2.3Hz).
7 5	NMe	0	Me	(DMSO-d ₆) δ :0.97(3H, s), 1.01(3H, s), 1.64-1.71(1H, m), 1.94-2.00(1H, m), 2.56-2.66(1H, m), 3.17(3H, s), 3.20-3.27(1H, m), 3.21(3H, s), 3.44-3.47(1H, m), 3.53-3.58(1H, m), 3.61-3.68(1H, m), 3.72-3.81(1H, m), 5.06(1H, d, J=13.5Hz), 6.87(1H, d, J=13.5Hz), 7.17(2H, d, J=7.3Hz), 7.24(2H, d, J=7.3Hz), 7.65-7.77(2H, m), 7.86(1H, d, J=9.2Hz), 7.94(1H, s), 8.12(1H, brs).
7 6	NHCO	0	Me	(DMSO-d ₆) δ :1.01(3H, s), 1.04(3H, s), 1.68(1H, q, J=10.6Hz), 1.82-2.00(1H, m), 2.06(3H, s), 2.60-2.70(1H, m), 3.27(1H, dd, J=6.6, 13.5Hz), 3.49(1H, dd, J=6.6, 13.5Hz), 3.57(1H, s), 3.66(1H, t, J=6.6Hz), 3.69(1H, q, J=7.9Hz), 5.08(1H, d, J=16.2Hz), 6.89(2H, d, J=8.9Hz), 7.63(2H, d, J=8.6Hz), 7.80(2H, d, J=8.6Hz), 7.86(2H, dd, J=2.6, 8.9Hz), 7.95(1H, d, J=2.6Hz), 8.26(1H, t, J=6.3Hz), 10.15(1H, s).
7 7	NHCO	0	Bu ^t	(CDCl ₃) δ :1.09(3H, s), 1.15(3H, s), 1.75(9H, s), 1.91-2.01(1H, m), 2.61-2.71(1H, m), 3.07(1H, dd, J=5.6, 14.5Hz), 3.44(1H, s), 3.72-3.80(1H, m), 3.84-3.95(2H, m), 5.07(1H, d, J=6.9Hz), 5.47(1H, s), 6.94-6.54(1H, m), 6.64(2H, d, J=8.9Hz), 7.53(1H, s), 7.58(2H, d, J=8.9Hz), 7.68(2H, d, J=8.9Hz), 7.89(1H, dd, J=2.6, 8.9Hz), 8.17(1H, d, J=2.6Hz).

表9の続き

7 8	NHCO		CF₃	(DMSO-d ₆) δ :1.01(3H, s), 1.04(3H, s), 1.65-1.76(1H, m), 1.90-2.01(1H, m), 2.61-2.70(1H, m), 3.22(1H, dd, J=6.6, 14.3Hz), 3.56-3.77(4H, m), 4.96(1H, d, J=7.3Hz), 6.68(1H, d, J=8.9Hz), 7.65(1H, d, J=8.9Hz), 7.74(1H, dd, J=2.6, 9.2Hz), 7.79(2H, d, J=8.9Hz), 7.88-7.94(2H, m), 10.30(1H, s).
7 9	NHCO	1	ОН	(DMSO-d ₆) δ :1.01(3H, s), 1.04(3H, s), 1.65-1.75(1H, m), 1.95-2.03(1H, m), 2.60-2.67(1H, m), 3.28(1H, dd, J=5.9, 13.2Hz), 3.49(1H, dd, J=5.9, 13.2Hz), 3.58(1H, s), 3.63-3.68(1H, m), 3.75-3.83(1H, m), 4.00(2H, d, J=5.9Hz), 5.08(1H, d, J=6.9Hz), 5.69 (1H, t, J=5.9Hz), 6.89(1H, d, J=9.6Hz), 7.76-7.79(4H, m), 7.86(1H, dd, J=2.6, 9.2Hz), 7.94(1H, brs), 8.27(1H, t, J=6.9Hz), 9.87(1H, s).
8 0	NHCO	1	ОМе	(DMSO-d ₆) δ :1.04(3H, s), 1.06(3H, s), 1.62-1.72(1H, m), 1.90-2.00(1H, m), 2.12(1H, s), 2.56-2.65(1H, m), 3.30-3.80(5H, m), 4.67(2H, s), 5.08(1H, d, J=6.9Hz), 6.89(2H, d, J=9.2Hz), 7.64(2H, d, J=8.9Hz), 7.83(2H, d, J=7.9Hz), 7.81-7.88(1H, m), 7.91(1H, s), 8.30(1H, brs), 10.31(1H, s).
8 1	NHCO	1	OAc	(DMSO-d ₆) δ :1.02(3H, s), 1.05(3H, s), 1.65-1.76(1H, m), 1.95-2.05(1H, m), 2.63-2.69(1H, m), 3.29(1H, dd, J=6.3, 13.9Hz), 3.34(3H, s), 3.50(1H, dd, J=6.3, 13.9Hz), 3.59(1H, s), 3.63-3.69(1H, m), 3.75-3.84 (1H, m), 5.09(1H, d, J=7.3Hz), 6.71-6.73(1H, m), 7.38(1H, m), 7.78-7.93(4H, m), 7.95-7.97(2H, m), 8.31(1H, t, J=5.9Hz), 10.38(1H, s).
8 2	NHCO	0	Q _F	(DMSO-d ₆) δ :1.03(3H, s), 1.05(3H, s), 1.65-1.75(1H, m), 1.90-2.00(1H, m), 2.60-2.70(1H, m), 3.30-3.40 (1H, m), 3.51(1H, dd, J=7.3, 13.5Hz), 3.60(2H, s), 3.63-3.69(1H, m), 3.76-3.83(1H, m), 5.09(1H, d, J=6.9Hz), 6.89(2H, d, J=9.2Hz), 7.37(2H, d, J=8.9Hz), 7.40(2H, d, J=8.9Hz), 7.95(1H, d, J=2.6Hz), 8.04(2H, d, J=5.6Hz), 8.07(2H, d, J=5.6Hz), 7.91(1H, s), 8.31(1H, brs), 10.46(2H, s).
8 3	NHCO	0	Ô	(DMSO-d ₆) δ :1.01(3H, s), 1.04(3H, s), 1.64-1.72(1H, m), 1.90-2.00(1H, m), 2.60-2.70(1H, m), 3.25-3.30 (1H, m), 3.49(1H, dd, J=6.3, 13.5Hz), 3.58(1H, s), 3.60-3.70(1H, m), 3.74-3.84(1H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(2H, d, J=8.9Hz), 7.69-7.88(8H, m), 7.95(1H, d, J=2.3Hz), 9.97(1H, s).
8 4	NHC00	0	Buʻ	(CDCl ₃) δ :1.09(3H, s), 1.15(3H, s), 1.51(9H, s), 1.97(1H, dd, J=7.6, 16.8Hz), 2.61-2.71(1H, m), 3.04 (1H, dd, J=5.3, 14.5Hz), 3.43(1H, s), 3.73-3.80(1H, m), 3.86-3.96(2H, m), 5.08(1H, d, J=7.3Hz), 5.48(1H, s), 6.30-6.36(1H, m), 6.67(2H, d, J=8.9Hz), 7.41(2H, d, J=8.9Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.20(1H, d, J=2.6Hz).

表9の続き

8 5	NHCONH	0	Et .	(DMSO-d ₆) δ :1.01(3H, s), 1.03(3H, s), 1.05(3H, t, J=6.6Hz), 1.69(1H, q, J=9.6Hz), 1.94-2.00(1H, m), 2.60-2.70(1H, m), 3.11(2H, dt, J=12.9, 6.6Hz), 3.26(1H, dd, J=6.3, 13.5Hz), 3.49(1H, dd, J=6.3, 13.5Hz), 3.63-3.69(1H, m), 3.79(1H, t, J=6.6Hz), 5.08(1H, d, J=7.3Hz), 6.19(1H, t, J=6.6Hz), 6.88 (2H, d, J=9.6Hz), 7.44(2H, d, J=8.6Hz), 7.74(2H, d, J=8.6Hz), 7.86(1H, dd, J=2.6, 9.6Hz), 7.95(1H, d, J=2.6Hz), 8.18(1H, d, J=6.3Hz), 8.69(1H, s).
8 6	NHCSNH	0	Ме	(DMSO-d ₆) δ :0.89(3H, s), 0.99(3H, s), 1.64-1.75(1H, m), 1.94-1.97(1H, m), 2.09(3H, s), 2.60-2.66(1H, m), 3.21(1H, dd, J=6.3, 13.5Hz), 3.35-3.51(2H, m), 3.54(1H, s), 3.62-3.67(1H, m), 3.78(1H, q, J=7.9Hz), 5.07(1H, d, J=7.9Hz), 5.61(1H, brs), 6.53(1H, d, J=8.3Hz), 6.87(2H, d, J=8.9Hz), 7.58(1H, d, J=8.3Hz), 7.85(1H, dd, J=2.6, 9.2Hz), 7.94(1H, d, J=2.6Hz).

実施例	Z	1 H-NMR δ :
番号		
8 7		(CDCl ₃) δ:1.10(3H, s), 1.16(3H, s), 1.92-2.01(2H, m), 2.63- 2.73(1H,
	OBr	m), 3.04(1H, dd, J=5.6, 14.9Hz), 3.44-3.52(1H, m), 3.73-3.96(3H, m),
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5.11(1H, d, J=6.9Hz), 5.23(1H, s), 6.45(1H, d, J=3.6Hz), 6.48-
		6.53(1H, m), 6.63(1H, d, J=9.2Hz), 7.05(1H, d, J=3.3Hz), 7.93(1H,
ļ ·		dd, J=2.6, 8.9Hz), 8.22(1H, d, J=2.3Hz).
8 8		(CDCl ₃) δ :1.08(3H, s), 1.13(3H, s), 1.91-2.01(2H, m), 2.63- 2.71(1H,
	- 🐟	m), 3.01(1H, dd, J=7.3, 14.9Hz), 3.44-3.52(1H, m), 3.76-3.93(3H, m),
		5.10(1H, d, J=6.9Hz), 5.35(1H, s), 5.97(1H, m), 6.57(1H, d, J=0.9Hz),
	<u></u> ~o	6.64(1H, d, J=8.9Hz), 7.44(1H, s), 7.91-7.94(2H, m), 8.21(1H, d,
ł	}	J=2.6Hz).
8 9		(DMSO-d ₆) δ :1.02(3H, s), 1.05(3H, s), 1.61-1.72(1H, m), 1.95-
09		1.99(1H, m), 2.64(1H, m), 3.32(1H, dd, J=6.6, 17.8Hz), 3.34(3H, s),
		3.50(1H, dd, J=6.3, 13.9Hz), 3.59(1H, s), 3.66-3.88(2H, m), 5.09(1H,
1	N Me	d, J=7.3Hz), 6.88(1H, s), 6.89(1H, d, J=8.9Hz), 7.34(1H, d, J=8.3Hz),
1		[0, J=7.5HZ], 0.00(1H, S), 0.09(1H, U, J=0.5HZ), 7.54(1H, U, J=0.5HZ), 1.54(1H, U, J=0.5HZ), 7.05(1H, U, J=0.5HZ), 2.09(1H, U, J=0.5HZ), 7.05(1H, U, J=0
		7.86(1H, dd, J=2.6, 9.2Hz), 7.95(1H, d, J=2.3Hz), 8.08(1H, dd, J=2.0,
		7.9Hz), 8.48(1H, t, J=6.3Hz), 8.87(1H, d, J=1.7Hz).
9 0	1	(DMSO-d ₆) δ :1.02(3H, s), 1.05(3H, s), 1.61-1.76(1H, m), 1.96-
		1.99(1H, m), 2.62-2.65(1H, m), 3.29-3.40(1H, m), 3.50(1H, dd, J=6.3,
	N CI	13.9Hz), 3.61(1H, d, J=2.0Hz), 3.63-3.81(2H, m), 5.09(1H, d,
	'' 0'	J=7.3Hz), 6.88(1H, s), 6.89(1H, d, J=9.2Hz), 7.64(1H, d, J=8.3Hz),
		7.86(2H, dd, J=2.6, 8.9Hz), 7.95(1H, d, J=2.3Hz), 8.24(1H, dd, J=2.3,
	<u> </u>	8.3Hz), 8.63(1H, t, J=6.3Hz), 8.83(1H, d, J=2.6Hz).
9 1		(DMSO-d ₆) δ :0.98(3H, s), 1.01(3H, s), 1.63-1.71(1H, m), 1.93-
		1.96(1H, m), 2.60-2.62(1H, m), 3.24(1H, dd, J=6.6, 13.9Hz), 3.44(1H,
	N OH	dd, J=5.9, 13.5Hz), 3.55(1H, s), 3.63-3.68(1H, m), 3.78(1H, dd, J=7.6,
	"	15.8Hz), 5.08(1H, d, J=7.3Hz), 6.34(1H, d, J=9.6Hz), 6.85(1H, s),
1		6.88(1H, d, J=9.2Hz), 7.85-7.88(1H, m), 7.95(1H, d, J=2.3Hz),
	<u></u>	8.02(1H, d, J=2.3Hz), 8.10-8.12(1H, m), 11.97(1H, s).

表10の続き

9 2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(DMSO-d ₆) δ :0.99(3H, s), 1.02(3H, s), 1.64-1.71(1H, m), 1.94(1H, m), 2.60(1H, m), 3.23-2.28(1H, m), 3.46(1H, dd, J=6.3, 13.9Hz), 3.56(1H, s), 3.66-3.80(2H, m), 5.08(1H, d, J=7.3Hz), 6.85(1H, s), 6.88(1H, d, J=9.2Hz), 7.30(1H, d, J=8.9Hz), 7.79(1H, dd, J=2.0, 8.9Hz), 7.86(1H, dd, J=2.6, 9.2Hz), 7.95(1H, d, J=2.3Hz), 8.17(1H, s), 8.35(1H, m), 13.75(1H, brs).
9 3	N Me	(DMSO-d ₆) δ :1.02(3H, s), 1.04(3H, s), 1.61-1.76(1H, m), 1.85-1.99(1H, m), 2.59(3H, s), 2.66(1H, m), 3.30-3.40(1H, m), 3.51-3.83(4H, m), 5.08(1H, d, J=7.3Hz), 6.87(1H, s), 6.89(1H, d, J=9.2Hz), 7.87(1H, dd, J=2.6, 9.2Hz), 7.95(1H, d, J=2.3Hz), 8.62(1H, s), 8.75(1H, t, J=6.6Hz), 9.05(1H, s).

表
$$1.1$$
 O_2N O_2N

	_ 10	TY AD (ODOL) &.
実施例	R ¹⁰	1 H-NMR(CDCl ₃) δ :
番号		
9 4	Me	0.92(3H, s), 0.95(3H, s), 1.83-1.92(2H, m), 2.30(3H, s), 2.52(1H, m), 2.74(1H, dd, J=4.6, 14.5Hz), 3.08(1H, d, J=2.0Hz), 3.46(1H, d, J=15.5Hz), 3.53(1H, d, J=15.5Hz), 3.66-3.92(3H, m), 4.97(1H, d, J=7.3Hz), 5.11(1H, s), 5.60(1H, m), 6.55(1H, d, J=9.2Hz), 7.03(4H, s), 7.92(1H, dd, J=2.6, 8.9Hz), 8.22(1H, d, J=2.3Hz).
9 5	Br	0.97(6H, s), 1.84-1.93(2H, m), 2.49-2.59(1H, m), 2.77(1H, dd, J=5.0, 14.5Hz), 3.07(1H, d, J=2.0Hz), 3.44(1H, d, J=15.2Hz), 3.51(1H, d, J=15.2Hz), 3.68-3.92(3H, m), 4.98(1H, d, J=7.3Hz), 5.05(1H, s), 5.62(1H, m), 6.53(1H, d, J=8.9Hz), 7.04(2H, d, J=8.3Hz), 7.33(1H, d, J=8.3Hz), 7.92(1H, dd, J=2.6, 8.3Hz), 8.23(1H, d, J=2.6Hz).
9 6	CF ₃	0.98(6H, s), 1.85-1.94(2H, m), 2.51-2.61(1H, m), 2.81(1H, dd, J=5.0, 14.5Hz), 3.13(1H, d, J=2.0Hz), 3.59(2H, s), 3.65-3.92(3H, m), 4.98(1H, d, J=69z), 5.071H, s), 5.641H, m), 6.55(H, d, J=9.2Hz), 7.31(2H, d, J=7.9Hz), 7.50(2H, d, J=8.3Hz), 7.92(1H, dd, J=2.6, 8.9Hz), 8.21(1H, d, J=2.3Hz).

etz trei	Z	1 H-NMR δ :
実施例	L	11-141414 0 .
番号		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 7	OCF ₃	(CDCl ₃) δ : 1.11(3H, s), 1.14(3H, s), 2.27-2.35(1H, m), 2.46-2.59(1H, m), 2.84-2.96(1H, m), 3.20(1H, dd, J=5.6, 14.5Hz), 3.30(1H, d, J=1.7Hz), 3.80(1H, dd, J=7.9, 14.5Hz), 3.91(1H, d, J=8.6Hz), 5.77(1H, brs), 5.89(1H, brs), 6.33(1H, brs), 6.68(1H, d, J=8.3Hz), 7.21(1H, s), 7.24-7.28(4H, m), 7.75(1H, d, J=8.9Hz).
98	NHCOH	(DMSO-d ₆) δ : 0.99(3H, s), 1.01(3H, s), 2.12-2.27(2H, m), 2.81-2.87(1H, m), 3.26-3.48(3H, m), 3.88(1H, d, J=8.2Hz), 5.71(1H, brs), 5.96(1H, brs), 6.86(1H, d, J=8.6Hz), 7.22(1H, dd, J=1.7, 9.9Hz), 7.30(1H, s), 7.63(2H, d, J=8.9Hz), 7.78(2H, d, J=8.9Hz), 7.83(1H, s), 8.23-8.31(1H, m), 11.20(1H, brs).
9 9	NHAC	(CDCl ₃) δ : 1.09(3H, s), 1.13(3H, s), 2.24-2.34(1H, m), 2.47-2.56(1H, m), 2.96(3H, s), 3.16(1H, dd, J=5.6, 14.5Hz), 3.30(1H, d, J=1.7Hz), 3.78(1H, dd, J=7.9, 14.5Hz), 3.89(1H, d, J=8.9Hz), 5.77(1H, brs), 5.87(1H, brs), 6.45-6.50(1H, m), 6.67(1H, d, J=8.6Hz), 7.12-7.22(2H, m), 7.54-7.73(5H, m), 8.01(1H, s).
100		(DMSO-d ₆) δ : 1.01(3H, s), 1.03(3H, s), 2.19-2.36(2H, m), 2.79-2.89(1H, m), 3.30(1H, dd, J=6.6, 13.5Hz), 3.38(1H, d, J=1.7Hz), 3.49(1H, dd, J=6.3, 13.5Hz), 3.90(1H, d, J=8.3Hz), 5.70(1H, d, J=5.3Hz), 5.99(2H, brs), 6.86(1H, d, J=8.6Hz), 7.22(1H, dd, J=2.0, 8.6Hz), 7.30(1H, s), 7.47-7.52(1H, m), 8.14-8.18(1H, m), 8.53-8.58(1H, m), 8.69(1H, dd, J=1.7, 4.6Hz), 8.97(1H, d, J=2.0Hz).
101	N Me	(CDCl ₃) δ : 1.09(3H, s), 1.14(3H, s), 2.26-2.37(1H, m), 2.47-2.56(1H, m), 2.61(3H, s), 2.84-2.94(1H, m), 3.22(1H, dd, J=5.6, 14.2Hz), 3.33(1H, d, J=2.0Hz), 3.79(1H, dd, J=7.3, 14.2Hz), 3.91-4.02(1H, m), 4.57(1H, s), 5.75-5.79(1H, m), 5.87-5.89(1H, m), 6.55-6.59(1H, m), 6.65(1H, d, J=8.9Hz), 7.17-7.25(2H, m), 7.96(1H, dd, J=2.3, 7.9Hz), 8.44(1H, d, J=2.3Hz).
102	N CI	(CDCl ₃) δ : 1.10(3H, s), 1.14(3H, s), 2.26-2.34(1H, m), 2.46-2.56(1H, m), 3.25(1H, dd, J=5.9, 14.2Hz), 3.31(1H, d, J=1.9Hz), 3.77(1H, dd, J=7.6, 14.2Hz), 3.90(1H, d, J=8.3Hz), 5.78(1H, brs), 5.89(1H, brs), 6.48(1H, brs), 6.65(1H, d, J=8.9Hz), 7.18(1H, s), 7.21(1H, d, J=2.0Hz), 7.41(1H, d, J=8.3Hz), 8.02(1H, dd, J=2.3, 8.3Hz), 8.70(1H, d, J=2.6Hz).

表12の続き

24 1 2 4	····	
103	NOH	(DMSO- d_6) δ : 0.96(3H, s), 0.99(3H, s), 2.25-2.49(2H, m), 2.73-2.89(1H, m), 3.20(1H, dd, J=6.3, 13.5Hz), 3.39-3.45(1H, m), 3.87(1H, d, J=7.3Hz), 5.69(1H, d, J=5.3Hz), 5.95-6.00(2H, m), 6.33(1H, d, J=9.6Hz), 6.85(1H, d, J=8.3Hz), 7.21(1H, dd, J=1.7, 8.3Hz), 7.30(1H, s), 7.85(1H, dd, J=2.3, 9.6Hz), 8.00(1H, d, J=2.3Hz), 8.07-8.10(1H, m), 11.95(1H, brs).
104	OMe	(DMSO- d_6) δ : 0.97(3H, s), 1.00(3H, s), 2.17-2.34(2H, m), 2.73-2.89(1H, m), 3.18-3.29(2H, m), 3.37-3.44(1H, m), 3.39-3.47(3H, s), 3.86-3.89(1H, m), 5.69(1H, d, J=5.9Hz), 5.96-5.99(2H, m), 6.38(1H, d, J=9.6Hz), 6.85(1H, d, J=8.3Hz), 7.21(1H, dd, J=1.7, 8.3Hz), 7.30(1H, s), 7.86(1H, dd, J=2.6, 9.6Hz), 8.05-8.09(1H, m), 8.34(1H, d, J=2.6Hz).
105	NOEt	(DMSO-d ₆) δ : 0.96(3H, s), 1.01(3H, s), 1.23(3H, t, J=6.9Hz), 2.18-2.29(2H, m), 2.73-2.89(1H, m), 3.11-3.28(2H, m), 3.44(1H, dd, J=6.3, 13.9Hz), 3.86-3.98(3H, m), 5.69(1H, d, J=5.3Hz), 5.97-6.00(2H, m), 6.34(1H, d, J=14.8Hz), 6.85(1H, d, J=8.3Hz), 7.22(1H, dd, J=2.0, 8.6Hz), 7.35(1H, s), 7.85(1H, dd, J=2.6, 9.6Hz), 8.08(1H, brs), 8.33(1H, d, J=2.3Hz).
1.06	N O CF3	(CDCl ₃) δ : 1.08(3H, s), 1.12(3H, s), 2.28-2.34(1H, m), 2.46-2.55(1H, m), 2.84-2.94(1H, m), 3.20(1H, dd, J=6.3, 14.8Hz), 3.48(1H, d, J=6.9Hz), 3.63(1H, dd, J=1.3, 13.2Hz), 3.90(1H, d, J=8.6Hz), 4.50(1H, brs), 4.53-4.67(2H, m), 5.77(1H, d, J=4.6Hz), 5.89(1H, d, J=4.6Hz), 6.32-6.37(1H, m), 6.57-6.64(2H, m), 7.16-7.21(2H, m), 7.58(1H, dd, J=2.6, 9.9Hz), 8.02(1H, d, J=2.6Hz).
107	N O OMe	(DMSO- d_6) δ : 0.97(3H, s), 1.00(3H, s), 2.26-2.35(2H, m), 2.76-2.83(1H, m), 3.18-3.26(1H, m), 3.29(3H, s), 3.44(1H, dd, J=6.3, 13.5Hz), 3.87(1H, d, J=6.6Hz), 5.27(2H, s), 5.69(1H, d, J=5.3Hz), 5.96-5.99(2H, m), 6.44(1H, dd, J=3.0, 9.6Hz), 6.85(1H, d, J=8.6Hz), 7.21(1H, dd, J=2.0, 8.6Hz), 7.30(1H, s), 7.90(1H, dd, J=2.6, 9.6Hz), 8.17(1H, brs), 8.31(1H, d, J=2.3Hz).
108	NHAC	(CDCl ₃) δ : 1.09(3H, s), 1.14(3H, s), 2.23(3H, s), 2.24-2.34(1H, m), 2.47-2.58(1H, m), 2.87-2.93(1H, m), 3.22(1H, dd, J=5.6, 14.2Hz), 3.31(1H, s), 3.77(1H, dd, J=9.9, 13.2Hz), 3.90(1H, d, J=8.3Hz), 4.56(1H, brs), 5.78(1H, brs), 5.88(1H, brs), 6.48(1H, brs), 6.66(1H, d, J=8.6Hz), 7.18(1H, s), 7.21(1H, s), 8.03(1H, dd, J=2.3, 8.9Hz), 8.25(1H, d, J=8.6Hz), 8.32(1H, brs), 8.65(1H, d, J=2.0Hz).
109	N Me	(CDCl ₃) δ : 1.10(3H, s), 1.15(3H, s), 2.26-2.35(1H, m), 2.47-2.60(1H, m), 2.65(3H, s), 2.84-2.94(1H, m), 3.25(1H, dd, J=5.9, 14.2Hz), 3.32(1H, d, J=1.7Hz), 3.75(1H, dd, J=7.9, 14.2Hz), 3.90(1H, d, J=8.3Hz), 5.78(1H, brs), 5.90(1H, brs), 6.64(1H, d, J=8.3Hz), 7.19-7.23(2H, m), 8.01(1H, brs), 8.37(1H, d, J=1.0Hz), 9.21(1H, d, J=1.3Hz).

表12の続き

110	TX TX	(DMSO-d ₆) δ : 0.97(3H, s), 0.99(3H, s), 2.18-2.34(2H, m), 2.76-2.86(1H, m), 3.14(1H, dd, J=5.9, 13.5Hz), 3.48(1H, dd, J=6.3, 13.5Hz), 3.87(1H, d, J=7.6Hz), 5.69(1H, d, J=5.4Hz), 5.96-5.99(2H, m), 6.06(1H, dd, J=2.6, 5.6Hz), 6.83-6.91(3H, m), 7.21(1H, dd, J=2.0, 8.6Hz), 7.30(1H, s), 7.83-7.93(1H, m), 11.42(1H, brs).
111	Me N	(CDCl ₃) δ : 1.06(3H, s), 1.09(3H, s), 2.24-2.33(1H, m), 2.47-2.58(1H, m), 2.81-2.91(1H, m), 3.00(1H, dd, J=5.6, 14.5Hz), 3.28(1H, d, J=2.0Hz), 3.77(3H, s), 3.85(1H, d, J=15.8Hz), 5.76(1H, d, J=4.6Hz), 5.86-5.88(1H, m), 6.04-6.09(1H, m), 6.53(1H, dd, J=1.6, 4.0Hz), 6.65-6.71(2H, m), 7.16-7.20(2H, m), 7.26(1H, s).
1 1 2	~~	(CDCl ₃) δ : 1.08(3H, s), 1.12(3H, s), 2.25-2.33(1H, m), 2.47-2.57(1H, m), 2.83-2.94(1H, m), 3.17(1H, dd, J=5.9, 14.2Hz), 3.32(1H, d, J=2.0Hz), 3.72(1H, dd, J=7.9, 14.5Hz), 3.90(1H, d, J=7.6Hz), 5.75-5.80(1H, m), 5.89-5.93(1H, m), 6.50(1H, dd, J=1.7, 3.3Hz), 6.54(1H, brs), 6.64(1H, d, J=9.3Hz), 7.09(1H, dd, J=0.7, 3.6Hz), 7.19-7.22(2H, m), 7.43(1H, dd, J=1.0, 1.7 Hz).

		les are s
実施例	Z	1 H-NMR δ :
番号		
113		(CDCl ₃) δ: 1.10(3H, s), 1.14(3H, s), 1.94-2.03(2H, m), 2.64-
0		2.67(1H, m), 3.10(1H, dd, J=5.6, 14.5Hz), 3.37(1H, d, J=2.0Hz),
		3.70- 3.78(1H, m), 3.84-3.94(2H, m), 4.97(1H, brs), 5.05(1H, d,
<u> </u>	OCF ₃	J=6.9Hz), 6.35(1H, brs), 6.66(1H, d, J=8.6Hz), 7.26-7.29(3H, m),
	CC. 3	7.55(1H, s), 7.75(2H, d, J=8.9Hz).
114		$(CDCl_3) \delta$: 1.08(3H, s), 1.13(3H, s), 1.42(3H, t, J=6.9Hz), 1.93-
1 1 4	\	2.03(2H, m), 2.62-2.65(1H, m), 3.03(1H, dd, J=5.3, 14.5Hz),
		2.03(2H, III), 2.02-2.03(1H, III), 3.03(1H, IIII, J-3.3, 14.3112),
	L/Acr.	3.36(1H, d, J=2.0Hz), 3.70-3.78(1H, m), 3.84-3.94(2H, m),
	OEt	4.01(2H, q, J=6.9Hz), 5.04(1H, d, J=7.3Hz), 5.13(1H, s), 6.21-
		6.26(1H, m), 6.67(1H, d, J=8.6Hz), 6.90(2H, d, J=8.9Hz),
		7.27(1H, dd, J=2.0, 8.6Hz), 7.54(1H, d, J=2.0Hz), 7.66(2H, d,
		J=8.9Hz).
115		$(CDCl_3) \delta$: 1.09(3H, s), 1.14(3H, s), 1.93-2.05(2H, m), 2.02(3H,
		s), 2.63-2.66(1H, m), 3.05(1H, dd, J=5.6, 14.9Hz), 3.37(1H, d,
		J=2.0Hz), 3.73-3.78(1H, m), 3.89(2H, dd, J=7.9, 16.2Hz),
	NHAc	5.04(1H, d, J=6.4Hz), 5.07(1H, s), 6.32-6.35(1H, m), 6.67 (1H, d,
		J=8.6Hz), 7.29(1H, d, J=2.0Hz), 7.38(1H, brs), 7.55-7.59(3H, m),
		7.67(2H, d, J=8.9Hz).
116		(CDCl ₃) δ: 1.09(3H, s), 1.15(3H, s), 1.92-2.02(2H, m), 2.61-
	O_Br	2.71(1H, m), 3.05(1H, dd, J=5.6, 14.5Hz), 3.39(1H, d, J=1.7Hz),
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.71-3.94(3H, m), 4.88(1H, s), 5.07(1H, d, J=6.9Hz), 6.45(1H, d,
	\ <u>\</u>	J=4.0Hz),6.51(1H, brs), 6.64(1H, d, J=8.6Hz), 7.05(1H, d,
		J=4.0Hz), 7.28(1H, dd, J=2.0, 8.6Hz), 7.56(1H, d, J=2.0Hz).
117		$(CDCl_3) \delta$: 1.09(3H, s), 1.14(3H, s), 1.93-2.03(2H, m), 2.60-
1 * * '		2.69(1H, m), 3.07(1H, dd, J=5.6, 14.5Hz), 3.37(1H, d, J=2.0Hz),
		3.40-3.93(3H, m), 4.36(1H, d, J=7.9Hz), 4.42(1H, d, J=7.9Hz),
	0^CF ₃	5.40-3.93(3H, M), 4.30(1H, U, 3-7.31LL), 4.7-(1H, U, 3-7.31LL), 5.05(4H, 4, 1-6.0Hz), 6.20(1H, m), 6.67(4H, 4, 1-9.6Hz)
1		5.05(1H, d, J=6.9Hz), 6.30(1H, m), 6.67(1H, d, J=8.6Hz),
	1	6.97(1H, dd, J=2.3, 6.9Hz), 7.29(2H, d, J=2.0Hz), 7.54(1H, d,
		J=1.3Hz), 7.71(2H, dd, J=2.0, 6.6Hz).
118	1.	(DMSO-d ₆) δ : 0.99(3H, s), 1.02(3H, s), 1.68-1.76(1H, m), 1.91-
	1 Y >	2.10(1H, m), 2.62-2.72(1H, m), 3.21-3.50(4H, m), 3.62-3.66(2H,
1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	m), 3.72 (2H, t, J=4.6Hz), 5.01(1H, t, J=7.3Hz), 6.25(1H, brs),
		6.85 (1H, d, J=8.6Hz), 6.98(2H, d, J=8.9Hz), 7.31(1H, dd, J=2.0,
1		8.6Hz), 7.36(1H, d, J=2.0Hz), 7.81(2H, d, J=8.6Hz), 8.21(1H,
		brs).

表13の続き

27.104		
119	OAc	(CDCl ₃) δ : 1.09(3H, s), 1.13(3H, s), 1.93-2.05(2H, m), 2.10 (1H, s), 2.60-2.70(1H, m), 3.50(1H, dd, J=5.3, 14.5Hz), 3.37(1H, d, J=2.0Hz), 3.70-3.78(1H, m), 3.85-3.93(2H, m), 4.20(2H, t, J=4.6Hz), 4.43(1H, t, J=7.3Hz), 5.05(1H, d, J=6.9Hz), 6.28-6.31(1H, m), 6.68(1H, d, J=8.6Hz), 6.93(2H, d, J=8.9Hz), 7.27(1H, dd, J=2.0, 8.6Hz), 7.54(1H, d, J=2.0Hz), 7.68(2H, d, J=8.6Hz).
120	N CI	(CDCl ₃) δ : 1.11(3H, s), 1.15(3H, s), 1.93-2.04(2H, m), 2.62-2.72(1H, m), 3.18(1H, dd, J=5.6, 14.5Hz), 3.40(1H, d, J=2.0Hz), 3.70-3.94 (3H, m), 4.48(1H, brs), 5.06(1H, d, J=7.3Hz), 6.55-6.59(1H, m), 6.64(1H, d, J=8.6Hz), 7.24(1H, d, J=2.0Hz), 7.41(1H, d, J=8.4Hz), 7.52(1H, d, J=1.7Hz), 8.04(1H, dd, J=2.6, 8.6Hz), 8.72(1H, d, J=2.3Hz).
121	NOEt	(CDCl ₃) δ : 1.08(3H, s), 1.12(3H, s), 1.36(3H, t, J=6.6Hz), 1.92-2.00(2H, m), 2.63-2.66(1H, m), 3.05(1H, dd, J=5.3, 14.5Hz), 3.33(1H, d, J=6.6Hz), 3.36(1H, s), 3.73-4.05(5H, m), 5.05(1H, d, J=6.9Hz), 6.34-6.42(1H, m), 6.64(1H, d, J=8.3Hz), 7.25-7.28 (1H, m), 7.35-7.39(1H, m), 7.55-8.21(3H, m).
1 2 2	N O CF3	(CDCl ₃) δ: 1.08(3H, s), 1.13(3H, s), 1.91-1.98(2H, m), 2.63 (1H, m), 3.10(1H, dd, J=5.6, 14.5Hz), 3.31-3.37(1H, m), 3.73-4.05 (3H, m), 4.57-4.67(2H, m), 5.05(1H, d, J=6.9Hz), 6.42-6.64(2H, m), 7.52(1H, s), 7.61(1H, dd, J=2.7, 9.9Hz), 7.85-8.22(4H, m).
123	NHAC	(DMSO- d_6) δ : 1.01(3H, s), 1.03(3H, s), 1.69-1.77(1H, m), 1.92-1.95(1H, m), 2.11(3H, s), 2.56-2.63(1H, m), 3.25-3.40(1H, m), 3.44-3.49 (2H, m), 3.59-3.65(1H, m), 3.72-3.80(1H, m), 5.03(1H, d, J=7.3Hz), 6.27(1H, s), 6.86(1H, d, J=8.6Hz), 7.31(1H, dd, J=2.0, 8.6Hz), 7.37(1H, s), 8.12(1H, d, J=8.9Hz), 8.91(1H, dd, J=2.3, 8.9Hz), 8.42(1H, t, J=6.3Hz), 8.75(1H, d, J= 2.0Hz), 10.76(1H, s).
124	O NHAC	(DMSO- d_6) δ : 1.47(6H, s), 2.01(3H, s), 3.20-3.28(2H, m), 3.33(2H, m), 3.72-3.81(4H, m), 4.94(1H, d, J=5.3Hz), 6.23(1H, d, J=3.6Hz), 7.07(1H, d, J=3.3Hz), 7.79-7.84(1H, m), 7.97(1H, dd, J=1.6, 8.6Hz), 8.15(1H, d, J=8.9Hz), 8.35(1H, s), 8.55(1H, t, J= 1.7Hz), 11.08(1H, s).
1 2 5	NMe	(CDCl ₃) δ : 1.11(3H, s), 1.16(3H, s), 1.93-2.05(2H, m), 2.60-2.67(4H, m), 3.14(1H, dd, J=5.6, 14.5Hz), 3.39(1H, s), 3.70-3.96(2H, m), 5.05(1H, d, J=7.3Hz), 6.65(1H, d, J=8.6Hz), 7.28(1H, d, J=6.9Hz), 7.55(1H, s), 8.02(1H, brs), 8.37(1H, s), 9.21(1H, s).

表14

			lyr angen &.
実施例	Y	Z	1 H-NMR δ :
番号	1		
126			(CDCl ₃) δ : 1.13(3H, d, J=7.3Hz), 1.80-2.00(4H, m), 2.58
			(1H, dq, J=3.3, 8.3Hz), 3.40-3.44(1H, m), 3.53-3.60(1H, m),
	н^н	L.A.	3.74-3.91(3H, m), 4.07(2H, q, J=7.3Hz), 4.94(1H, d,
		OEt	J=7.3Hz), 6.28(1H, t, J=6.3Hz), 6.64(1H, d, J=8.6Hz),
	i		6.91(2H, d, J=8.9Hz), 7.28 (1H, dd, J=2.0, 8.6Hz), 7.56(1H, d,
			J=2.0Hz), 7.71(2H, d, J=8.9Hz).
127			(DMSO-d ₆) δ : 1.60-1.96(4H, m), 2.06(3H, s), 2.55-2.67 (1H,
121	< /l>	\	m), 3.42(2H, dd, J=6.6, 12.5Hz), 3.53-3.75(3H, m), 4.95(1H,
	.X.		d, J=7.6Hz), 6.55(1H, s), 6.67(1H, d, J=8.6Hz), 7.31(1H, dd,
[нн	NHAc	J=2.0, 8.6Hz), 7.40(1H, d, J=2.0Hz), 7.64 (2H, d, J=8.6Hz),
!			7.79(2H, d, J=8.6Hz), 8.44(1H, t, J=5.6Hz), 10.1(1H, s).
<u> </u>			7./9(21) \$ 1.14(2)] 1 1 COLE 1.42(2) + 1-6 OU2
1 2 8			(CDCl ₃) δ : 1.14(3H, d, J=6.9Hz), 1.43(3H, t, J=6.9Hz),
	X		1.85-1.95(3H, m), 2.66(1H, dq, J=3.0, 9.6Hz), 3.24(1H, dd,
•	H Me	OF:	J=3.0, 9.6Hz), 3.32(1H, ddd, J=2.6, 5.3, 14.5Hz), 3.73-
		OEt	3.89(2H, m), 3.98(1H, ddd, J=4.6, 8.3, 14.5Hz), 4.07(2H, q,
			J=6.9Hz), 5.01(1H, d, J=7.6Hz), 6.36(1H, brs), 6.71(1H, d,
}			J=8.6Hz), 6.91(2H, t, J=8.9Hz), 7.27(1H, dd, J=2.0, 8.6Hz),
			7.54(1H, d, J=2.0Hz), 7.70(2H, d, J=8.9Hz).
129			(DMSO-d ₆) δ : 0.99(3H, d, J=6.6Hz), 1.71(1H, q, J=
1	\sim		10.6Hz), 1.84-1.91(2H, m), 2.60-2.66(1H, m), 3.39-3.48 (3H,
	H Me	NHAC	m), 3.51-3.64(1H, m), 3.74(1H, q, J=8.2Hz), 4.99(1H, d,
1		i i i i i	J=7.3Hz), 6.50(1H, s), 6.75 (1H, d, J=8.6Hz), 7.32(1H, dd,
			J=1.7, 8.9Hz, 7.39(1H, s), 7.64(2H, d, $J=8.9Hz$), 7.81(2H, d,
			J=8.9Hz), 8.44(1H, t, J=5.6Hz), 10.1(1H, s).
1 3 0			(CDCl ₃) δ : 1.17(3H, d, J=6.9Hz), 1.86-2.05(3H, m), 2.68
			(1H, q, J= 5.9Hz), 3.27(1H, dd, J=3.0, 9.9Hz), 3.42(1H, ddd,
	H Me		J=2.6, 5.3, 14.8Hz), 3.73-4.00(3H, m), 5.02 (1H, d, J=7.6Hz),
		N	5.83(1H, s), 6.69(2H, d, J=8.3Hz), 6.76(1H, brs), 7.28(1H, dd,
			J=2.0, 8.6Hz), 7.39-7.43(2H, m), 7.55 (1H, d, J=2.0Hz),
	1		8.13(1H, d, J= 8.3Hz).
131	 		(CDCl ₃) δ : 1.14(3H, d, J=6.9Hz), 1.38(3H, t, J=7.3Hz),
121	\ /		1.84-2.00(3H, m), 2.65(1H, q, J=9.9Hz), 3.23(1H, dd, J=2.6,
	H Me		10.2Hz), 3.31-3.36(1H, m), 3.72-3.96(4H, m), 4.03(2H, q,
1	H Me	N OEt	
		52.	6.52(1H, d, J=9.6Hz), 6.67(1H, d, J=8.3Hz), 7.28(1H, dd,
			0.32(1H, 0, J=9.0HZ), 0.07(1H, 0, J=0.3HZ), 7.20(1H, 00,
1	Į		J=2.0, 8.3Hz), 7.55(1H, s), 7.56(1H, dd, J=2.6, 8.3Hz),
		<u> </u>	8.13(1H, d, J= 2.6Hz).

次に、本発明化合物の有用性を下記の試験例により説明するが、本発明はこれ らの記載によって限定的に解釈されるものではない。

[試験例1] ラットアンドロゲン受容体(ラットAR)に対する競合的結合試験 ラットAR画分の調製:11 週齢の雄性 SD ラットを精巣摘出後、3日目に前立 腺を摘出、氷冷した ET 緩衝液(10mM Tris,1mM EDTA,5mM DTT,10mM モリプデン酸ナトリウム,pH7.4)中に回収した。前立腺を細切し、ET 緩衝液を加え、ホモジナイザーを用いてホモジナイズした。このホモジネートを 100,000×g、60 分、4℃で超遠心分離した上清をラットAR画分(以下ARFという)とした。

10 結合試験: ³H-テストステロン(以下 ³H-T という)を ET 緩衝液で希釈調製し、ジヒドロテストステロン(DHT)は ³H-T (2.5nM)の最高濃度の 400 倍濃度 (最終濃度 1 μ M)となるように調製した。 ³H-T 調製液を、DHT 添加、無添加 および各濃度の試験化合物を添加した 1.5ml チューブに加え、さらに 200 μ g A R F を加えて最終容量を 100 μ l とした。 4℃で 2 時間インキュベート後、0.05% デキストラン T70−1.0%活性炭素溶液 300 μ l を加えて、氷中でさらに 15 分間インキュベートして未結合の ³H-T を吸着除去した。 4℃、2,500 rpm、5 分間遠心分離後、その上清 275 μ l を液体シンチレーションバイアルに採り、クリアゾル 2m l を加え撹拌、静置後、液体シンチレーションカウンターで ³H 放射活性を測定した。

20 相対的結合阻害率の算出:以下の式から本発明化合物の結合阻害率(%)を算出し、その濃度-結合阻害曲線のプロピット(probit)解析により 50%阻害濃度(I C₅₀)を算出した。

結合阻害率(%)=100×[1-(a-c)/(b-c)]

a:本発明化合物添加サンプルの放射活性(³H-T+化合物)

b:本発明化合物無添加サンプルの放射活性(⁸H-T のみ:総結合量)

c:DHT添加サンプルの放射活性(⁸H-T+DHT:非特異的結合量)

相対的結合阻害率 (RBA:Relative Binding Affinity) は以下の式より求めた (Endocrinology 138, 863-870, 1997)。

RBA=100 imes(ハイドロキシフルタミドの IC_{50})/(本発明化合物の IC_{50})

上記より求めた本発明化合物のRBAを表15に示す。 表15

試験化	RBA	
実施例	1	1076
実施例	1 2	94
実施例	2 0	161
実施例	2 6	1005
実施例	5 2	162
実施例	6 6	344
実施例	76	503
実施例	7 9	210
実施例	113	58
実施例	114	55
実施例	115	389
ハイドロキシ	ンフルタミド	100

5 ハイドロキシフルタミドの結合阻害率を 100 としたRBAを求めた結果、本発 明化合物は非常に強い結合阻害活性を示した。

[試験例2] 精巣摘出(ORX) ラットでの前立腺、肛門挙筋および大腿骨骨密度に対する効果

12 週齢雄 SD ラットを精巣摘出後、翌日より実施例1の化合物(3、10、30m g/kg)およびDHT(0.1、1、10 mg/kg)を1日1回週5日で4週間連続皮下投与した。実施例化合物およびDHTはジメチルスルホキシドに溶解後、オリーブ油で10倍希釈して、各濃度の溶液を調製し試験に用いた。OR X対照群には、ジメチルスルホキシドをオリーブ油で10倍希釈したものを試験に用いた。精巣摘出せず、開腹手術して閉じたものを偽手術対照群として用いた。最終投与日の翌日に、腹側前立腺および肛門挙筋の湿重量の測定と右大腿骨骨密度のDE XA法(二重エネルギーX線吸収法)による測定を行い、実施例1の化合物のinvivoでの効果を評価した。

結果を表16及び図1~3に示す。

表16

試験化合物	前立腺重量	大腿骨骨密度	肛門挙筋重量
	(mg/100g 体重)	(mg/cm²)	(mg/100g 体重)
偽手術対照群	103±23	122±4	61±9
ORX 対照群	8±1	114±5	35 ± 4
ORX+実施例 1 3mg/kg	41±8**	116 ± 6	56士7**
0RX+実施例 1 10mg/kg	61±10**	119±3	65±6**
ORX+実施例 1 30mg/kg	82±10**	122±1**	71 ± 4**
ORX+DHT 0.1mg/kg	38±7**	114 ± 6	39±9
ORX+DHT 1mg/kg	100±9**	115±4	58±5**
ORX+DHT 10mg/kg	166±26**	122±3**	78±6**

平均值(Mean) ± SD *p<0.05, **p<0.01 on Dunnett's t-test.

5 実施例1の化合物は用量依存的に大腿骨骨密度を増加させ、30mg/kg で偽手術対照群と同レベルまで増加させる有意な効果が見られた。同様に実施例1の化合物は用量依存的に肛門挙筋重量を増加させ、3mg/kg から有意な効果が見られた。前立腺重量は30mg/kg で偽手術対照群の約80%であった。

一方DHTは、10mg/kgで有意な大腿骨骨密度及び肛門挙筋重量の増加が認められたが、前立腺重量は偽手術対照群の約 160%に腫脹した。

これらの結果から実施例1の化合物は、前立腺に対しては天然アンドロゲンに 見られるような過剰作用を示さないこと、また、特に骨組織及び筋肉組織に強い 増殖作用を示す化合物であることが明らかとなった。

[試験例3] 精巣摘出(ORX) ラットでの前立腺、肛門挙筋および大腿骨骨密 15 度に対する効果

12 週齢雄 SD ラットを精巣摘出後、翌日より実施例 1 2、6 5 の化合物(30m g/kg)およびDHT (0.1、1、10 mg/kg)を1日1回週5日で4週間連続皮下投与した。実施例化合物およびDHTはジメチルスルホキシドに溶解後、オリーブ油で10倍希釈して、各濃度の溶液を調製し試験に用いた。OR X 対照群には、

ジメチルスルホキシドをオリーブ油で10倍希釈したものを試験に用いた。精巣 摘出せず、開腹手術して閉じたものを偽手術対照群として用いた。最終投与日の 翌日に、腹側前立腺および肛門挙筋の湿重量の測定と右大腿骨骨密度のDEXA 法(二重エネルギーX線吸収法)による測定を行い、実施例12、65の化合物 の in vivo での効果を評価した。

結果を表17及び図4~6に示す。

表17

5

		/ min tot tot eller	n- BBンド休子 目
試験化合物	前立腺重量	大腿骨骨密度	肛門挙筋重量
	(mg/100g 体重)	(mg/cm²)	(mg/100g 体重)
偽手術対照群	104±14	121±4	61±4
ORX 対照群	9±1	114±5	37±4
ORX+実施例 12 30mg/kg	36±6**	122±5*	54±5**
ORX+実施例 65 30mg/kg	69±10**	120±5*	67±6**
ORX+DHT 0.1mg/kg	34±11**	114±6	37±6
ORX+DHT 1mg/kg	81±15**	115±4	47±3**
ORX+DHT 10mg/kg	146±16**	122±3*	80±5**

Mean \pm SD *p<0.05, **p<0.01 on Dunnett's t-test.

10

20

実施例12の化合物は有意な大腿骨骨密度、肛門挙筋重量の増加効果を示した。このとき、前立腺重量は偽手術対照群の約35%であった。また、実施例65の化合物も有意な大腿骨骨密度、肛門挙筋重量の増加効果を示した。このとき、前立腺重量は偽手術対照群の約70%であった。

15 一方DHTは、10mg/kg で有意な大腿骨骨密度増加及び 1mg/kg で有意な肛門 挙筋重量の増加が認められたが、前立腺重量は 10mg/kg で偽手術対照群の約 14 5%に腫脹した。

これらの結果から実施例12および65の化合物は、前立腺に対しては天然アンドロゲンに見られるような過剰作用を示さないこと、また、特に骨組織及び筋肉組織に強い増殖作用を示す化合物であることが明らかとなった。

10

[試験例4] 精巣摘出(ORX) ラットでの前立腺、肛門挙筋および大腿骨骨密度に対する効果

12 週齢雄 SD ラットを精巣摘出後、翌日より実施例113、114の化合物(30mg/kg)およびDHT(10mg/kg)を1日1回週5日で4週間連続皮下投与した。実施例化合物およびDHTはジメチルスルホキシドに溶解後、オリーブ油で10倍希釈して、各濃度の溶液を調製し試験に用いた。OR X対照群には、ジメチルスルホキシドをオリーブ油で10倍希釈したものを試験に用いた。精巣摘出せず、開腹手術して閉じたものを偽手術対照群として用いた。最終投与日の翌日に、腹側前立腺および肛門挙筋の湿重量の測定と右大腿骨骨密度のDE XA法(二重エネルギーX線吸収法)による測定を行い、実施例113、114の化合物のin vivoでの効果を評価した。

結果を表18及び図7~9に示す。

表18

試験化合物	前立腺重量	大腿骨骨密度	肛門挙筋重量
	(mg/100g体重)	(mg/cm²)	(mg/100g体重)
偽手術対照群	144±27	152±9	68±7
0RX 対照群	14±4	139 ± 7	37±5
ORX+実施例 113 30mg/kg	59±16**	148±3*	65±6**
ORX+実施例 114 30mg/kg	86±17**	150±8**	66±11**
ORX+DHT 10mg/kg	199±27**	148±5*	89±7**

15 Mean \pm SD *p<0.05, **p<0.01 on Dunnett's t-test.

20

実施例113の化合物は有意な大腿骨骨密度、肛門挙筋重量の増加効果を示した。このとき、前立腺重量は偽手術対照群の約40%であった。また、実施例114の化合物も有意な大腿骨骨密度、肛門挙筋重量の増加効果を示した。このとき、前立腺重量は偽手術対照群の約60%であった。

5 一方DHTは、10mg/kgで有意な大腿骨骨密度増加及び有意な肛門挙筋重量の 増加が認められたが、前立腺重量は偽手術対照群の約140%に腫脹した。

これらの結果から実施例113および114の化合物は、前立腺に対しては天然アンドロゲンに見られるような過剰作用を示さないこと、また、特に骨組織及び筋肉組織に強い増殖作用を示す化合物であることが明らかとなった。

10 [試験例 5] 精巣摘出(ORX) ラットでの経口投与による前立腺、肛門挙筋および大腿骨骨密度に対する効果

12週齢雄性SD系ラットを精巣摘出し、翌日より実施例1の化合物(100mg/10m1/kg)を1日1回週5日で4週間連続経口投与した。また陽性対照としてプロピオン酸テストステロン(TP)(10mg/kg)を1日1回週5日で連続皮下投与した。試験化合物は0.5%メチルセルロース溶液を溶媒として懸濁し、TPはジメチルスルホキシドに溶解後、オリーブ油で10倍希釈して試験に用いた。ORX対照群には、ジメチルスルホキシドをオリーブ油で10倍希釈したものを試験に用いた。精巣摘出せず、開腹手術して閉じたものを偽手術対照群として用いた。最終投与日の翌日に、腹側前立腺および肛門挙筋の湿重量の測定と右大腿骨骨密度のDEXA法(二重エネルギーX線吸収法)による測定を行い、実施例1の化合物のin vivoでの効果を評価した。結果を表19及び図10~12に示す。

表19

20

試験化合物	前立腺重量	大腿骨骨密度	肛門挙筋重量
	(mg/100g 体重)	(mg/cm ²)	(mg/100g 体重)
偽手術対照群	151±74	134±5	81±8
ORX 対照群	17±3	126±5	51±5
ORX+実施例1(PO)100mg/kg	117±23**	135±6*	87±5**
ORX+TP(sc) 10mg/kg	204±29**	135±8**	88±9**

Mean \pm SD *p<0.05, **p<0.01 on Dunnett's t-test.

5 実施例1の化合物はTPと同様ORXラットの大腿骨骨密度、及び肛門挙筋重量を有意に増加させ、偽手術対照群と同等まで回復させた。一方、実施例1の化合物を投与したラットの前立腺重量は偽手術対照群の約75%を示したのに対し、TPは偽手術対照群の約125%まで増加させた。

これらの結果から実施例1の化合物は、経口投与においても上記皮下投与と同 10 様な結果を示し、前立腺に対してはTPに見られるように過剰作用を示さず、ま た、特に骨組織及び筋肉組織に強い増殖作用を示すことがわかった。

現在研究開発されている非ステロイド性ARアゴニストは、経口投与した場合体内吸収が悪く、静脈または筋肉注射剤として適用されているが、注射剤として適用される場合、苦痛や通院などにより患者に負担をきたすため、実施例1の化合物は、患者に負担なく経口投与できる点で優れている。

[試験例6] 精巣摘出(ORX) ラットでの経口投与による前立腺、肛門挙筋および大腿骨骨密度に対する効果

12週齢雄性SD系ラットを精巣摘出し、翌日より実施例108の化合物(30mg/5m1/kg)を1日1回週7日で4週間連続経口投与した。また陽性対照としてメチルテストステロン(MT)(100mg/5m1/kg)を1日1回週7日で連続経口投与した。試験化合物は0.5%メチルセルロース溶液を溶媒として懸濁し、試験に用いた。ORX対照群には、0.5%メチルセルロース

溶液(5ml/kg)を投与した。精巣摘出せず、開腹手術して閉じたものを偽手術対照群として用いた。最終投与日の翌日に、腹側前立腺および肛門挙筋の湿重量の測定と右大腿骨骨密度のDEXA法(二重エネルギーX線吸収法)による測定を行い、実施例108の化合物のin vivoでの効果を評価した。結果を表20及び図13~15に示す。

表20

5

15

20

試験化合物	前立腺重量	大腿骨骨密度	肛門挙筋重量
	(mg/100g体重)	(mg/cm²)	(mg/100g体重)
偽手術対照群	95±20	114±4	55±8
ORX 対照群	8±2	134±6	36 ± 5
ORX+実施例 108 30mg/kg	67±13**	141±6**	61±6**
ORX+MT 100mg/kg	117±18**	146±5**	65±8**

Mean \pm SD *p < 0.05, **p < 0.01 on Dunnett's t-test.

実施例108の化合物はMTと同様ORXラットの大腿骨骨密度、及び肛門挙 10 筋重量を有意に増加させ、偽手術対照群と同等まで回復させた。一方、実施例1 08の化合物を投与したラットの前立腺重量は偽手術対照群の約70%を示した のに対し、MTは偽手術対照群の約120%まで増加させた。

これらの結果から実施例108の化合物は、経口投与において、前立腺に対してはMTに見られるように過剰作用を示さず、また、特に骨組織及び筋肉組織に強い増殖作用を示すことがわかった。

現在研究開発されている非ステロイド性ARアゴニストは、経口投与した場合体内吸収が悪く、静脈または筋肉注射剤として適用されているが、注射剤として適用される場合、苦痛や通院などにより患者に負担をきたすため、実施例108の化合物は、患者に負担なく経口投与できる点で優れている。

[試験例7] 精巣摘出(ORX) ラットでの経口投与による前立腺、肛門挙筋および大腿骨骨密度に対する効果

12週齢雄性SD系ラットを精巣摘出し、翌日より実施例129の化合物(30mg/5m1/kg)を1日1回週7日で4週間連続経口投与した。また陽性対照としてメチルテストステロン(MT)(100mg/5m1/kg)を1日1回週7日で連続経口投与した。試験化合物は0.5%メチルセルロース溶液を溶媒として懸濁し、試験に用いた。ORX対照群には、0.5%メチルセルロース溶液を溶媒として懸濁し、試験に用いた。ORX対照群には、0.5%メチルセルロース溶液(5m1/kg)を投与した。精巣摘出せず、開腹手術して閉じたものを偽手術対照群として用いた。最終投与日の翌日に、腹側前立腺および肛門挙筋の湿重量の測定と右大腿骨骨密度のDEXA法(二重エネルギーX線吸収法)による測定を行い、実施例129の化合物のin vivoでの効果を評価した。結果を表21及び図16~18に示す。

表21

5

10

15

20

試験化合物	前立腺重量	大腿骨骨密度	肛門挙筋重量
	(mg/100g体重)	(mg/cm²)	(mg/100g体重)
偽手術対照群	126±19	151±6	61±6
ORX 対照群	9 ± 2	138 ± 6	37±3
ORX+実施例 129 30mg/kg	109±66**	145±5**	66±6**
ORX+MT 100mg/kg	143±63**	149±6**	63±5**

Mean \pm SD *p<0.05, **p<0.01 on Dunnett's t-test.

実施例129の化合物はMTと同様ORXラットの大腿骨骨密度、及び肛門挙筋重量を有意に増加させ、偽手術対照群と同等まで回復させた。一方、実施例129の化合物を投与したラットの前立腺重量は偽手術対照群の約85%を示したのに対し、MTは偽手術対照群の約115%まで増加させた。

これらの結果から実施例129の化合物は、経口投与において、前立腺に対してはMTに見られるように過剰作用を示さず、また、特に骨組織及び筋肉組織に強い増殖作用を示すことがわかった。

現在研究開発されている非ステロイド性ARアゴニストは、経口投与した場合体内吸収が悪く、静脈または筋肉注射剤として適用されているが、注射剤として

適用される場合、苦痛や通院などにより患者に負担をきたすため、実施例129 の化合物は、患者に負担なく経口投与できる点で優れている。

以下に本発明化合物の製剤例を示すが、処方はこれらに限定されるものではない。

「製剤例1] 錠剤

下記の処方にしたがって、1錠あたり有効成分2mgを含有する錠剤を調製した。

	実施例1の化合物	2 m g
10	澱粉	48mg
	乳糖	$30\mathrm{mg}$
	結晶セルロース	15mg
	メチルセルロース	$3\mathrm{m}\mathrm{g}$
	ステアリン酸マグネシウム	$2\mathrm{m}\mathrm{g}$
15	全量	100mg

[製剤例2] カプセル剤

下記の処方にしたがって、1錠あたり有効成分2mgを含有する100mgの 混合成分をカプセルに充填してカプセル剤を調製した。

	実施例1の化合物	2 m g
20	澱粉	38mg
	乳糖	$50 \mathrm{mg}$
	結晶セルロース	8mg
	ステアリン酸マグネシウム	$2\mathrm{mg}$
	全量	100mg

25

産業上の利用可能性

本発明のテトラヒドロキノリン誘導体およびそれを有効成分とする医薬は、アンドロゲンステロイド製剤に見られる前立腺に対する過剰な作用を示さず、ARアゴニスト作用を示すことができる。また、骨格筋組織、骨組織に特に強いAR

アゴニスト作用を示すことができる。従って、本発明化合物は、種々のARアゴニスト作用が有効と考えられる疾患の予防および治療を行うことができ、性腺機能低下症の予防、治療においては、前立腺に対する作用が適度であり、また副作用がより少ないものとして適用でき、また消耗性疾患、骨粗鬆症の予防、治療においては、骨格筋組織、骨組織などの標的組織に対して強い作用が期待できる。

請求の範囲

1. 式(I)

5

$$R^1$$
 N
 N
 N
 Z
 Z
 Z

式中、R1はニトロ基またはシアノ基を表し、

XはCHまたはOを表し、XがCHの場合には破線は二重結合を表し、mは0または1を表し、

Yは炭素数 $1\sim5$ のアルキル基及び炭素数 $3\sim7$ のシクロアルキル基からなる群 から選択される置換基で置換されていてもよい炭素数 $1\sim5$ のアルキレン基を表 し、

 R^2 は水素原子、炭素数 $1 \sim 5$ のアルキル基、炭素数 $3 \sim 7$ のシクロアルキル基または炭素数 $7 \sim 9$ のアラルキル基を表し、

Zは、-B-O-Q

15 [式中、Bは炭素数1~5のアルキル基及び炭素数3~7のシクロアルキル基からなる群から選択される置換基で置換されていてもよい炭素数1~5のアルキレン基を表し、Qは、水素原子;ハロゲン原子、水酸基、シアノ基及び炭素数1~5のアルコキシ基からなる群から選択される置換基で置換されてもよい炭素数1~5のアルキル基若しくは炭素数3~7のシクロアルキル基;または、置換基R³20を有してもよいアリール基、ヘテロアリール基若しくは炭素数7~9のアラルキル基である、

R³はフッ素原子で置換されても良い炭素数 1~5 のアルキル基、ハロゲン原子、アリール基、ヘテロアリール基、ニトロ基、シアノ基、

-A-R⁴ {式中、Aは、-CO-、-CO₂-、-COS-、-CONR⁵-、 -O-, -OCO-, $-OSO_2-$, -S-, -SCO-, -SO-, $-SO_2-$ NH-または-NR⁵COO-を表し(式中、R⁵は水素原子、炭素数1~5のア ルキル基、炭素数3~7のシクロアルキル基または炭素数7~9のアラルキル基 である)、R4は水素原子、フッ素原子で置換されても良い炭素数1~5のアルギ ル基、炭素数3~7のシクロアルキル基、ハロゲン原子またはR6で置換されてい てもよいアリール基若しくはヘテロアリール基(式中、 R^6 は炭素数 $1\sim 5$ のアル キル基、炭素数1~5のアルコキシ基またはハロゲン原子を表す)であり、ただ し、Aが-NR5-若しくは-CONR5-の場合にはR4とR5が一緒になって、 10 これらが結合しているN原子とともに、ピロリジン若しくはピペリジンを形成し ても良い) }、または-A'-(CH₂),-R^{4'}を表す{式中、A'は単結合、-CO -, $-CO_2$ -, -COS-, $-CONR^{5'}$ -, -O-, -OCO-, $-OSO_2$ -, -S-, -SCO-, -SO-, -SO $_2$ -, -NR 5 '-, -NR 5 'CO-, -NR⁵ SO₂-、-NR⁵ CONH-、-NR⁵ CSNH-または-NR⁵ CO O-を表し(式中、 R^5 は水素原子、炭素数 $1\sim5$ のアルキル基、炭素数 $3\sim7$ のシクロアルキル基または炭素数7~9のアラルキル基である)、nは1または2 の整数を表し、 R^4 は水素原子、フッ素原子で置換されても良い炭素数 $1 \sim 5$ の アルキル基、炭素数3~7のシクロアルキル基、ハロゲン原子、水酸基、シアノ 基、炭素数1~5のアルコキシ基、炭素数2~5のアルキルアシルオキシ基、炭 20 素数2~5のアルコキシカルポニル基、R⁶で置換されていてもよいアリール基 若しくはヘテロアリール基(式中、 R^{6} は炭素数 $1\sim 5$ のアルキル基、炭素数 1~5のアルコキシ基またはハロゲン原子を表す)、またはNR 7 R 8 (式中、R 7 'およびR8'はそれぞれ独立して前記R5'と同じ意味を表す、ただし、R7'とR8 ·が一緒になって、これらが結合している窒素原子と共に、ピロリジン若しくは 25 ピペリジンを形成しても良い)を表す、ただし、A'が-NR^{5'}-若しくは-C ONR^{5'}-の場合にはR^{4'}とR^{5'}が一緒になって、これらが結合している-N-(CH2)n-と共に、ピロリジン若しくはピペリジンを形成しても良い}]、または Zは、一(CH₂), -Wを表す

[式中、rは $0\sim2$ の整数を表し、Wはp位に置換基R9を有するフェニル基、置換基R10を有してもよいナフチル基または独立した $1\sim3$ 個のR11で置換されてもよいヘテロアリール基を表す(式中、R9、R10及びR11は独立して前記R3と同じ意味を表す)

- 5 で示されるテトラヒドロキノリン誘導体またはその薬理学的に許容される塩。 2. Yが-CH(CH_3)-CH $_2$ -または-C(CH_3) $_2$ - CH_2 -であり、XがCHであり、mが0であり、 R^2 が水素原子であり、Zが-CH $_2$ -O-Q(式中、Qは、炭素数 $1\sim 5$ のアルキル基を表す)である、請求項 1 に記載のテトラヒドロキノリン誘導体またはその薬理学的に許容される塩。
- 3. Yが-CH (CH₃) -CH₂-または-C (CH₃)₂-CH₂-であり、mが0であり、R²が水素原子であり、Zが-W[式中、Wは独立した1~3個のR¹¹で置換されてもよいヘテロアリール基またはp位に置換基R⁹を有するフェニル基 {式中、R¹¹およびR⁹は、独立してハロゲン原子、フッ素原子で置換されても良い炭素数1~5のアルキル基、ニトロ基、シアノ基、-A-R⁴ (式中、A は、-CO-、-CO₂-、-O-、-NHCO-若しくは-NHCONH-であり、R⁴は、水素原子またはフッ素原子で置換されても良い炭素数1~5のアルキル基である)または-A'-(CH₂)_n-R⁴ (式中、A'は、-CO-、-CO₂-、-O-、-NHCO-若しくは-NHCONH-であり、R⁴ は、水素原子、フッ素原子で置換されても良い炭素数1~5のアルキル基、水酸基、ハロゲン原子若しくは炭素数1~5のアルコキシ基であり、nは1若しくは2の整数である)を表す}を表す]である、請求項1に記載のテトラヒドロキノリン誘導体またはその薬理学的に許容される塩。
- 4. Zが p位に置換基 R^9 を有するフェニル基または置換基 R^{11} を有するヘテロアリール基{式中、 R^9 および R^{11} は、独立してハロゲン原子、 $-O-R^4$ または $-NHCO-R^4$ (式中、 R^4 は、水素原子またはフッ素原子で置換されても良い炭素数 $1\sim 5$ のアルキル基を表す)である}である、請求項 3 に記載のテトラヒドロキノリン誘導体またはその薬理学的に許容される塩。
 - 5. Zがp位に置換基R 9 を有するフェニル基または置換基R 11 を有するヘテロアリール基 $\{$ 式中、R 9 およびR 11 が-NHCO-R 4 (式中、R 4 は、水素原子ま

たはフッ素原子で置換されても良い炭素数 1~5のアルキル基を表す)である} である、請求項 3 に記載のテトラヒドロキノリン誘導体またはその薬理学的に許容される塩。

- 6. 請求項1~5のいずれか1項に記載のテトラヒドロキノリン誘導体またはその薬理学的に許容される塩を有効成分として含有する医薬。
 - 7. アンドロゲン受容体アゴニストである請求項6に記載の医薬。
 - 8. 消耗性疾患または骨粗鬆症の予防または治療に用いることができる請求項7に記載の医薬。
 - 9. 男子性腺機能低下症、男子性機能障害、性分化異常症、男性思春期遅発症、
- 10 女性性器癌、乳癌、乳腺症、子宮内膜症および女性性機能障害からなる群から選択される疾患の予防または治療に用いることができる請求項7に記載の医薬。
 - 10. 造血機能障害及びその関連疾患の予防または治療に用いることができる請求項7に記載の医薬。
- 11. 消耗性疾患または骨粗鬆症を予防または治療する方法であって、そのよう な予防又は治療を必要とする哺乳動物に、そのような疾患の予防又は治療に有効 な量の請求項1~5のいずれか1項に記載のテトラヒドロキノリン誘導体または その薬理学的に許容される塩を投与することを含む方法。
- 12. 男子性腺機能低下症、男子性機能障害、性分化異常症、男性思春期遅発症、女性性器癌、乳癌、乳腺症、子宮内膜症および女性性機能障害からなる群から 20 選択される疾患を予防または治療する方法であって、そのような予防又は治療を 必要とする哺乳動物に、そのような疾患の予防又は治療に有効な量の請求項1~ 5のいずれか1項に記載のテトラヒドロキノリン誘導体またはその薬理学的に許 容される塩を投与することを含む方法。
- 13. 造血機能障害及びその関連疾患を予防または治療する方法であって、その 25 ような予防又は治療を必要とする哺乳動物に、そのような疾患の予防又は治療に 有効な量の請求項1~5のいずれか1項に記載のテトラヒドロキノリン誘導体ま たはその薬理学的に許容される塩を投与することを含む方法。

図10

図11

International application No.
PCT/JP03/07799

Int.C	CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D221/16, C07D401/12, C07D405/12, C07D409/12, C07D491/048,					
A61R3	1K31/473, A61K31/4741, A61K31/497, A61P7/06, A61P15/00, A61P15/08, 1P15/10, A61P15/14, A61P19/10, A61P35/00, A61P43/00					
According to 1	ccording to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS	SEARCHED					
	cumentation searched (classification system followed by 7 CORPACE (12 CORPACE)		70491/049			
	:1 ⁷					
	5/10, A61P15/14, A61P19/10, A					
Documentatio	on searched other than minimum documentation to the	extent that such documents are included	in the fields searched			
Documentatio	n segened one: that minimum documentation to the					
Electronic data	ta base consulted during the international search (name	e of data base and, where practicable, sear	ch terms used)			
	S(STN), CAOLD(STN), REGISTRY(,			
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
Х	WO 01/27086 A1 (Kaken Pharma	ceutical Co., Ltd.),	1-10			
	19 April, 2001 (19.04.01), Full text; particularly, Clai	mg: page 19:				
	example 57	ms; page 19,	3			
	& AU 200075589 A &	EP 1221439 A1				
	& KR 2002056901 A	CN 1378535 A				
A	WO 98/34111 A1 (TREGA BIOSCI 06 August, 1998 (06.08.98), Full text	ENCES, INC.),	1-10			
		us 5925527 A				
		NZ 337046 A				
)			
Further	documents are listed in the continuation of Box C.	See patent family annex.				
	Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to					
considere	ed to be of particular relevance	understand the principle or theory under	erlying the invention			
date	ocument but published on or after the international filing	considered novel or cannot be consider	red to involve an inventive			
	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be a compared to the		claimed invention cannot be			
	eason (as specified) at referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	documents, such			
means	at published prior to the international filing date but later	combination being obvious to a person "&" document member of the same patent if				
than the p	priority date claimed		<u> </u>			
	te of the actual completion of the international search 07 August, 2003 (07.08.03) Date of mailing of the international search report 19 August, 2003 (19.08.03)					
	ne and mailing address of the ISA/ Japanese Patent Office Authorized officer					
		Telephone No.				

International application No. PCT/JP03/07799

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet) This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. X Claims Nos.: 11-13 because they relate to subject matter not required to be searched by this Authority, namely: Claims 11-13 pertain to a method for treatment of the human body by therapy and thus relate to a subject matter for which this International Searching Authority is not required to search. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Observations where unity of invention is lacking (Continuation of item 3 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: The additional search fees were accompanied by the applicant's protest. **Remark on Protest** No protest accompanied the payment of additional search fees.

国際調査報告

Δ	発明の属する分野の分類	(国際特許分類	(IPC))	
Δ.	707177777 7 '07 77 27 77 77 78	(E) DY 13 KI ZY MA	\	

Int. C1' C07D221/16, C07D401/12, C07D405/12, C07D409/12, C07D491/048, A61K31/473, A61K31/4741, A61K31/497, A61P7/06, A61P15/00, A61P15/08, A61P15/10, A61P15/14, A61P19/10, A61P35/00, A61P43/00

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int. C1' C07D221/16, C07D401/12, C07D405/12, C07D409/12, C07D491/048, A61K31/473, A61K31/4741, A61K31/497, A61P7/06, A61P15/00, A61P15/08, A61P15/10, A61P15/14, A61P19/10, A61P35/00, A61P43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CAPLUS (STN), CAOLD (STN), REGISTRY (STN)

C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
X	WO 01/27086 A1 (科研製薬株式会社) 2001. 04. 19, 全文、特に、請求の範囲、第19頁、実施例57 & AU 200075589 A & EP 1221439 A1 & KR2002056901 A & CN 1378535 A	1-10	
A	WO 98/34111 A1 (TREGA BIOSCIENCES, INC.) 1998. 08. 06, 全文 & AU 9855928 A & US 5925527 A & EP 983507 A1 & NZ 337046 A	1-10	

□ C欄の続きにも文献が列挙されている。

| | パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

07.08.03

国際調査報告の発送日

19.08.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

東京都千代田区館が関三丁目4番3号

特許庁審査官(権限のある職員) 新 留 素 子 4P 2939

電話番号 03-3581-1101 内線 3490

第 I 欄 請求の範囲の一部の調査ができないときの意見(第 1 ページの 2 の続き) 法第 8 条第 3 項(P C T 1 7 条 (2) (a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作 成しなかった。
1. x 請求の範囲 <u>11-13</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
2. 請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. □ 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。 .
3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の約付のあった次の請求の範囲のみについて作成した。
4. U 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に配載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意 □ 追加調査手数料の納付と共に出願人から異議申立てがあった。 □ 追加調査手数料の納付と共に出願人から異議申立てがなかった。