Diskretna matematika II - 2018/19

12. vaje - 14. maj 2019

- 1. Dokažite, da je $f(n) \leq n-1$ za vsak $n \geq 2$, kjer f(n) označuje največje število paroma ortogonalnih latinskih kvadratov reda n
- 2. Poiščite klično število in kromatično število za naslednje grafe:

- 3. *Požrešni algoritem (točkovnega) barvanja grafa* je definiran na naslednji način: točke grafa razporedimo v neko zaporedje, nato pa zapovrstjo barvamo vsako točko v zaporedju z najmanjšo barvo, ki je na voljo.
 - (a) Uporabite ta algoritem za barvanje grafa na sliki, najprej za zaporedje točk a, b, c, \ldots, h , nato pa še za zaporedje g, h, a, b, \ldots, f .

- (b) Utemeljite, zakaj vedno obstaja tako zaporedje točk grafa G, da z navedenim algoritmom dobimo barvanje s $\chi(G)$ barvami.
- 4. (a) Pokažite, da je kromatični polinom cikla na n točkah enak $\chi(C_n,t)=(t-1)^n+(-1)^n(t-1).$
 - (b) Narišite vse možnosti, ki jih imamo, da 3-cikel pobarvamo s tremi barvami. Izračunajte $\chi(C_3,3)$ in primerjajte rešitvi.
 - (c) Na koliko načinov lahko 5-cikel pobarvamo s tremi barvami?
 - (d) Na koliko načinov lahko 6-cikel pobarvamo z dvema barvama?
 - (e) S pomočjo podane enakosti pokažite, da so cikli sode dolžine dvodelni grafi, medtem ko cikli lihe dolžine niso dvodelni grafi.
- 5. Izračunajte kromatični polinom naslednjih grafov:

1

6. Pokažite da $t^4 - 4t^3 + 3t^2$ ni kromatični polinom nobenega grafa.