

Arhitectura sistemelor de calcul

- Prelegerea 6 -

Extensii. Cicluri. Clasificare

Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

- 1. Extensii
 - 1. Extensii seriale
 - 2. Extensii paralele
- 2. Cicluri
- 3. Clasificarea sistemelor digitale

Sisteme digitale

- Considerăm un element teoretic de bază: sistemul digital
- Fie V un alfabet finit şi n, m 2 numere naturale. Se numeşte sistem digital o structură S = (X, Y, f), unde $X = V^n, Y = V^m, f: X \to Y$
- Funcţia f se numeşte funcţie de transfer
- Reprezentarea grafică a sistemelor digitale este următoarea:

Sisteme digitale

- \triangleright Vom lucra cu sisteme digitale binare, pentru care $V = \{0,1\}$
- Un exemplu sunt circuitele combinaţionale, corespunzătoare funcţiilor booleene deja studiate

Extensii

Fie $S_1 = (X_1, Y_1, f_1)$, $S_2 = (X_2, Y_2, f_2)$ 2 sisteme digitale, unde $X_1 = \{0,1\}^n$, $Y_1 = X_2 = \{0,1\}^m$, $Y_2 = \{0,1\}^p$.

Se numeşte *extensie serială* sistemul S=(X,Y,f), unde $X=X_1,Y=Y_2$ şi $f\colon X\to Y, f=f_2\circ f_1$

Extensii

Fie $S_1 = (X_1, Y_1, f_1), S_2 = (X_2, Y_2, f_2)$ 2 sisteme digitale.

Se numeşte *extensie paralelă* sistemul $S = (X_1 \times X_2, Y_1 \times Y_2, f)$, unde $f: X_1 \times X_2 \to Y_1 \times Y_2, f(x,y) = (f_1(x), f_2(y))$

Exemplu

Fie sistemele digitale $S_1 = (X_1, Y_1, f_1)$, $S_2 = (X_2, Y_2, f_2)$ definite mai jos:

> Întrebare: Care sunt extensiile serială, respectiv paralelă?

Cicluri

- Pentru creşterea gradului de complexitate al sistemelor digitale se defineşte noţiunea de *ciclu*.
- Fie sistemul digital $S_1 = (X \times X_1, Y \times Y_1, h)$, unde $X_1 = Y_1, h = (f, f_1)$ $f: X \times X_1 \to Y; f_1: X \times X_1 \to Y_1$

ightharpoonup Considerăm sistemul digital şi mulţimile $X, X_1 = Y_1, Y$ exprimate n, p, r respectiv m biţi

Cicluri

- \triangleright Prin conectarea lui Y_1 la $X_1(X_1=Y_1)$ se obţine un ciclu
- Noul sistem devine = (X, Y, g), unde g: $X \to Y, g(x) = f(x, f_1(x, y))$

> f_1 se numeşte funcţie de tranziţie şi verifică definiţia recursivă $y = f_1(x, f_1(x, y))$

Cicluri

- ightharpoonup Apare o variabilă internă (pe p biţi), care ia valori în mulţimea $Q=X_1=Y_1$
- $\triangleright Q$ se numeşte *stare internă* sau pe scurt *stare*
- > În funcție de stare, funcțiile devin

$$f: X \times Q \rightarrow Y; f_1: X \times Q \rightarrow Q$$

 $\succ f$ se numește funcție de tranziție ; f_1 se numește funcție de stare

Clasificare

- Considerăm un sistem fără cicluri un 0-DS
- ➤ Se defineşte recursiv un system *n-DS* ca un sistem (n-1)-DS la care se adaugă un ciclu peste toate cele n-1 cicuri existente

- ✓ 0-DS : circuite combinaţionale (fără autonomie)
- ✓ 1-DS: circuite cu memorie (prezintă autonomie pe spaţiul stărilor)
- ✓ 2-DS: automate finite (prezintă autonomie pe tipul de comportare)
- ✓ 3-DS: procesoare (prezintă autonomie pe interpretarea stărilor interne)
- ✓ calculatoare

Referințe bibliografice

[AAT] A. Atanasiu, Arhitectura calculatorului

Schemele [Xilinx - ISE] au fost realizate folosind

http://www.xilinx.com/tools/projnav.htm