HMM Inference

- Decoding: most likely sequence of hidden states
 - Viterbi algorithm

- Evaluation: prob. of observing an obs. sequence
 - Forward Algorithm (very similar to Viterbi)

- Marginal distribution: prob. of a particular state
 - Forward-Backward

Decoding Problem

Given $\mathbf{w} = \mathbf{w}_1 \dots \mathbf{w}_T$ and HMM $\boldsymbol{\theta}$, what is "best" parse $\mathbf{y}_1 \dots \mathbf{y}_T$?

Several possible meanings of 'solution'

- 1. States which are individually most likely
- 2. Single best state sequence

We want **sequence** $y_{1...}y_{T}$, such that P(y|w) is maximized

$$y^* = argmax_v P(y|w)$$

Most Likely Sequence

- Problem: find the most likely (Viterbi) sequence under the model
 - Given model parameters, we can score any sequence pair

```
NNP VBZ NN NNS CD NN . Fed raises interest rates 0.5 percent .
```

 $P(Y_{1:T+1,W_{1:T}}) = q(NNP|<s>,<s>) q(Fed|NNP) P(VBZ|<s>,NNP) P(raises|VBZ) P(NN|NNP,VBZ).....$

■ In principle, we're done – list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)

```
NNP VBZ NN NNS CD NN \implies logP = -23 per sequence

NNP NNS NN NNS CD NN \implies logP = -29

NNP VBZ VB NNS CD NN \implies logP = -27
```

|Y|[⊤] tag sequences!

Finding the Best Trajectory

- Brute Force: Too many trajectories (state sequences) to list
- Option 1: Beam Search

- A beam is a set of partial hypotheses
- Start with just the single empty trajectory
- At each derivation step:
 - Consider all continuations of previous hypotheses
 - Discard most, keep top k
- Beam search works ok in practice
 - ... but sometimes you want the optimal answer
 - ... and there's often a better option than naïve beams

State Lattice / Trellis (Bigram HMM)

<s>></s>	<s></s>	<s>></s>	<s>></s>	(S>)	<s></s>
N	N	N	N	N	N
\bigcirc	\bigcirc	\bigcirc	V	\bigcirc	\bigcirc
J	J	J	J	J	J
D	D	D	D	D	D
(/s>)	(/s>	(/s)		(/s>	(/s>)
<\$>	Fed	raises	interest	rates	

State Lattice / Trellis (Bigram HMM)

Dynamic Programming (Bigram)

• Decoding:
$$\vec{y}^* = \arg \max_{\vec{y}} P(\vec{y} | \vec{w}) = \arg \max_{\vec{y}} P(\vec{w}, \vec{y})$$

= $\arg \max_{\vec{y}} \prod_{t=1}^{T+1} q(y_t | y_{t-1}) \prod_{t=1}^{T} e(w_t | y_t)$

- First consider how to compute max
- Define $\delta_i(y_i) = \max_{y_{[1:i-1]}} P(y_{[1..i]}, w_{[1..i]})$
 - probability of **most likely** state sequence ending with tag y_i , given observations w_1 , ..., w_i

$$\begin{split} \delta_{i}(y_{i}) &= \max_{y[1:i-1]} e(w_{i} \mid y_{i}) q(y_{i} \mid y_{i-1}) P(y_{[1..i-1]}, w_{[1..i-1]}) \\ &= e(w_{i} \mid y_{i}) \max_{y_{i-1}} q(y_{i} \mid y_{i-1}) \max_{y[1:i-2]} P(y_{[1..i-1]}, w_{[1..i-1]}) \\ &= e(w_{i} \mid y_{i}) \max_{y_{i-1}} q(y_{i} \mid y_{i-1}) \delta_{i-1}(y_{i-1}) \end{split}$$

Viterbi Algorithm for Bigram HMMs

- Input: w₁,...,w_T, model parameters q() and e()
- Initialize: $\delta_0(\langle s \rangle) = 1$
- For k=1 to T do
 - For (y') in all possible tagset

$$\delta_i(y') = e(w_i \mid y') \max_{y} q(y'|y) \delta_{i-1}(y)$$

Return

$$\max_{y'} q(|y')\delta_T(y')$$

returns only the optimal value keep backpointers

Viterbi Algorithm for Bigram HMMs

- Input: w₁,...,w_T, model parameters q() and e()
- Initialize: $\delta_0(\langle s \rangle, \langle s \rangle) = 1$
- For k=1 to T do
 - For (y') in all possible tagset

$$\delta_{i}(y') = e(w_{i} | y') \max_{y} q(y'| y) \delta_{i-1}(y)$$

$$bp_{i}(y') = e(w_{i} | y') \arg \max_{y} q(y'| y) \delta_{i-1}(y)$$

- Set $y_T = \arg \max q(</s>|y')\delta_T(y')$
- For k=T-1 to 1 do
 - Set $y_k = bp_k(y_{k+1})$

• Return y[1..T]

Time: $O(|Y|^2T)$ Space: O(|Y|T)

Viterbi Algorithm for Bigram HMMs

Remember: $\delta_i(y)$ = probability of most likely tag seq ending with y at time i

Terminating Viterbi

Terminating Viterbi

How did we compute δ^* ?

$$Max_{s'} \delta_{T-1}(y') * P_{trans} * P_{obs}$$

Now Backchain to Find Final Sequence

Time: $O(|Y|^2T)$ Space: O(|Y|T)

Linear in length of sequence

Example

Fish sleep.

Example: Bigram HMM

Data

- A two-word language: "fish" and "sleep"
- Suppose in our training corpus,
 - "fish" appears 8 times as a noun and 5 times as a verb
 - "sleep" appears twice as a noun and 5 times as a verb
- Emission probabilities:
 - Noun
 - P(fish | noun) : 0.8
 - P(sleep | noun) : 0.2
 - Verb
 - P(fish | verb): 0.5
 - P(sleep | verb) : 0.5

Viterbi Probabilities

0 1 2 3

start

verb

noun

end

start 1

verb 0

noun 0

end 0

Token 1: fish

Token 1: fish

Token 3: end

State Lattice / Trellis (Trigram HMM)

