An Brief Introduction to Machine Learning

Zahra Dehghanighobadi

Who are we?

- Artifical Intelligence and Society Group @ RUB
- Research on human-centric and trustworthy Al/ML

Muhammad Bilal Zafar

Zahra Dehghanighobadi

Elisabeth Kirsten

Defining Machine Learning

A computer program is said to learn from experience E with respect to some class of tasks T, and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

[Mitchell]

Defining Machine Learning

A computer program is said to learn from experience E with respect to some class of tasks T, and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

[Mitchell

Things to work out

- Task T
- Experience E
- Performance measure P

Task: Regression

- Task T: Given $\mathbf{x} \in \mathbb{R}^d$, predict $\hat{y} \in \mathbb{R}$
 - X: Age of a child, y: Their height
 - x: (time of day, month of year), y: Temperature

- Experience E: (x, y) pairs
 - Called training data

- Performance measure P
 - Mean squared error: $(y \hat{y})^2$

Learning Linear Regression

• Goal: Learn $y = f(\mathbf{x}) \in \mathbb{R}$

Steps

- 1. Specify the form of the function
- 2. Identify the parameters that you want to learn
- 3. Compute the loss with the parameters
- 4. Change parameters such that the loss decreases

$$(y - (wx + b))^2$$

wx + b

w, b

Next: Learning to classify

Regression to Classification

• Goal: Learn $y = f(\mathbf{x}) \in [0, 1, ..., K - 1]$

X₁

Steps

- 1. Specify the form of the function
- 2. Identify the parameters that you want to learn
- 3. Compute the loss with the parameters
- 4. Change parameters such that the loss decreases

wx + b = 0 specifies the decision boundary

w, b

Approximate 0-1 loss. Depends on the model

Task: Classification

- Task T: Given $\mathbf{x} \in \mathbb{R}^d$, predict $\hat{y} \in \{0,1,2,...\}$
 - x: Income, education, y: Creditworthiness
 - x: Image pixels, y: Cat or dog

- Experience E: (x, y) pairs
 - Called training data

- Performance measure P
 - Binary loss: $y \neq \hat{y}$

The Logistic Regression Model

- Simplest form with two classes $y \in [0,1]$
- Distance from boundary: $d(\mathbf{x}) = \mathbf{w}\mathbf{x} + b$

$$p(y = 1 \mid \mathbf{x}) = \frac{1}{1 - exp(-d(\mathbf{x}))}$$

• Goal is to maximize negative log likelihood: $y \log p(y = 1 \mid \mathbf{x}) + (1 - y) \log p(y = 0 \mid \mathbf{x})$

Detailed derivation and K>1 case in class + in ESLII Chapter 4.4

The case of non-linearly separable data

- Similar solution to regression
- Project the data to higher dimensional space
- Models like Kernel SVM

Kernel SVM description in **ESLII** Chapter 12

Datasets can get arbitrarily complex

Higher dimensional projections may not work as expected

What about neural networks

Neural Networks for Classification

- Same as regression (last lectures)
- Project data repeatedly via hidden layers

Details in **ESLII** Chapter 11

Measuring performance

- 0/1 accuracy: Fraction of points that are correct
- Balanced accuracy
 - Assume two classes, class 0 comprising of 99% of the data and class 1 1%
 - A constant classifier always predicting class 0 gets 99% accuracy!
 - Balanced accuracy gives equal weight to each class
- Confusion matrices

		Predicted Label		
		$\hat{y} = 1$	$\hat{y} = -1$	
True Label	y = 1	True positive	False negative	$P(\hat{y} \neq y y = 1)$ False Negative Rate
	y = -1	False positive	True negative	$P(\hat{y} \neq y y = -1)$ False Positive Rate
		$P(\hat{y} \neq y \hat{y} = 1)$ False Discovery Rate	$P(\hat{y} \neq y \hat{y} = -1)$ False Omission Rate	$P(\hat{y} \neq y)$ Overall Misclass. Rate

Same concept for multi-class accuracies & confusion matrices