A Crash course to (The) Bighouse

Brock Palen brockp@umich.edu

CAEN Brown Bag, Oct 10th

Outline

- Resources
 - Configuration
 - Hardware
- 2 Architecture
 - ccNUMA
 - Altix 4700 Brick
 - Dual Fat Tree
 - cpu sets
 - NUMA Effects
- Software Performance
 - MPI Code
 - OpenMP Code

Hardware: bighouse

Bighouse

- bighouse is our Itanium SMP machine;
- Login: bighouse.engin.umich.edu
- Shares nyx's 6TB NFS file system
- Running SUsE Linux Enterprise Server
 10
- ProPack 5 from SGI

Software Performance

- Cache Coherency NonUniform Memory Access (ccNUMA)
- 16 CPU, 32 core Intel Itanium II's
- Measured 5.5 Gflop/cpu running 4 way
- 171.9 Gflop running 32 way
- 96 GB Ram
- Max 41 GB/s Aggregate Memory bandwidth
- NUMAlink4 3.2GByte/s, 1μ Second Latency

- Cache Coherency NonUniform Memory Access (ccNUMA)
- 16 CPU. 32 core Intel Itanium II's
- Measured 5.5 Gflop/cpu running 4 way
- 171.9 Gflop running 32 way
- Max 41 GB/s Aggregate Memory bandwidth
- NUMAlink4 3.2GByte/s, 1μ Second Latency

- Cache Coherency NonUniform Memory Access (ccNUMA)
- 16 CPU, 32 core Intel Itanium II's
- Measured 5.5 Gflop/cpu running 4 way
- 171.9 Gflop running 32 way
- 96 GB Ram
- Max 41 GB/s Aggregate Memory bandwidth
- NUMAlink4 3.2GByte/s, 1μ Second Latency

- Cache Coherency NonUniform Memory Access (ccNUMA)
- 16 CPU, 32 core Intel Itanium II's
- Measured 5.5 Gflop/cpu running 4 way
- 171.9 Gflop running 32 way
- 96 GB Ram
- Max 41 GB/s Aggregate Memory bandwidth
- NUMAlink4 3.2GByte/s, 1μ Second Latency

- Cache Coherency NonUniform Memory Access (ccNUMA)
- 16 CPU, 32 core Intel Itanium II's
- Measured 5.5 Gflop/cpu running 4 way
- 171.9 Gflop running 32 way
- 96 GB Ram
- Max 41 GB/s Aggregate Memory bandwidth
- NUMAlink4 3.2GByte/s, 1μ Second Latency

- Cache Coherency NonUniform Memory Access (ccNUMA)
- 16 CPU, 32 core Intel Itanium II's
- Measured 5.5 Gflop/cpu running 4 way
- 171.9 Gflop running 32 way
- 96 GB Ram
- Max 41 GB/s Aggregate Memory bandwidth
- NUMAlink4 3.2GByte/s, 1μ Second Latency

ccNUMA

NUMAlink 3.2GB/s

Altix 4700 Brick

Dual Fat Tree

Dual Fat Tree

Dual Fat Tree

What is MPI?

- Message Passing Interface
- DMP Distributed Memory Paralell
- Hard to Program, Uses Function calls
- Hardware is Cheap
- Scales to 1000's of CPUS (Bluegene/L)

- MPT SGI MPI-1/2 Implementation
- Makes Strong Use of NUMAlink
- Lots of Copy on Write

What is MPI?

- Message Passing Interface
- DMP Distributed Memory Paralell
- Hard to Program, Uses Function calls
- Hardware is Cheap
- Scales to 1000's of CPUS (Bluegene/L)

- MPT SGI MPI-1/2 Implementation
- Makes Strong Use of NUMAlink
- Lots of Copy on Write

What is MPI?

- Message Passing Interface
- DMP Distributed Memory Paralell
- Hard to Program, Uses Function calls
- Hardware is Cheap
- Scales to 1000's of CPUS (Bluegene/L)

- MPT SGI MPI-1/2 Implementation
- Makes Strong Use of NUMAlink
- Lots of Copy on Write

What is MPI?

- Message Passing Interface
- DMP Distributed Memory Paralell
- Hard to Program, Uses Function calls
- Hardware is Cheap
- Scales to 1000's of CPUS (Bluegene/L)

- MPT SGI MPI-1/2 Implementation
- Makes Strong Use of NUMAlink
- Lots of Copy on Write

What is MPI?

- Message Passing Interface
- DMP Distributed Memory Paralell
- Hard to Program, Uses Function calls
- Hardware is Cheap
- Scales to 1000's of CPUS (Bluegene/L)

- MPT SGI MPI-1/2 Implementation
- Makes Strong Use of NUMAlink
- Lots of Copy on Write

What is MPI?

- Message Passing Interface
- DMP Distributed Memory Paralell
- Hard to Program, Uses Function calls
- Hardware is Cheap
- Scales to 1000's of CPUS (Bluegene/L)

- MPT SGI MPI-1/2 Implementation
- Makes Strong Use of NUMAlink
- Lots of Copy on Write

What is MPI?

- Message Passing Interface
- DMP Distributed Memory Paralell
- Hard to Program, Uses Function calls
- Hardware is Cheap
- Scales to 1000's of CPUS (Bluegene/L)

- MPT SGI MPI-1/2 Implementation
- Makes Strong Use of NUMAlink
- Lots of Copy on Write

What is MPI?

- Message Passing Interface
- DMP Distributed Memory Paralell
- Hard to Program, Uses Function calls
- Hardware is Cheap
- Scales to 1000's of CPUS (Bluegene/L)

- MPT SGI MPI-1/2 Implementation
- Makes Strong Use of NUMAlink
- Lots of Copy on Write

What is MPI?

The Challenger

MPI Perfromance/HPL

OpenMP

- Shared Memory Parallel
- Easy to Program, Uses Pragmas
- Hardware is Expensive and Proprietary
- Can Solve Any Problem (DMP or SMP)
- Scaling Issues, Hybrid Programming
- More important with Dual/Quad/Many Core CPU's

OpenMP

- Shared Memory Parallel
- Easy to Program, Uses Pragmas
- Hardware is Expensive and Proprietary
- Can Solve Any Problem (DMP or SMP)
- Scaling Issues, Hybrid Programming
- More important with Dual/Quad/Many Core CPU's

- Shared Memory Parallel
- Easy to Program, Uses Pragmas
- Hardware is Expensive and Proprietary
- Can Solve Any Problem (DMP or SMP)
- Scaling Issues, Hybrid Programming
- More important with Dual/Quad/Many Core CPU's

- Shared Memory Parallel
- Easy to Program, Uses Pragmas
- Hardware is Expensive and Proprietary
- Can Solve Any Problem (DMP or SMP)
- Scaling Issues, Hybrid Programming
- More important with Dual/Quad/Many Core CPU's

- Shared Memory Parallel
- Easy to Program, Uses Pragmas
- Hardware is Expensive and Proprietary
- Can Solve Any Problem (DMP or SMP)
- Scaling Issues, Hybrid Programming
- More important with Dual/Quad/Many Core CPU's

- Shared Memory Parallel
- Easy to Program, Uses Pragmas
- Hardware is Expensive and Proprietary
- Can Solve Any Problem (DMP or SMP)
- Scaling Issues, Hybrid Programming
- More important with Dual/Quad/Many Core CPU's

OpenMP Fork and Join

OpenMP Performance/dgemm 36,621 MByte

- NUMA Memory Placement dlook(1) dplace(1) cpuset(1)
- Example Cpuset OH NO SWAP
- Memory placement ccNUMA Knows where to put memory (numa_hit numa_miss)
- Example stream.c measures memory bandwidth

- NUMA Memory Placement dlook(1) dplace(1) cpuset(1)
- Example Cpuset OH NO SWAP
- Memory placement ccNUMA Knows where to put memory (numa_hit numa_miss)
- Example stream.c measures memory bandwidth

- NUMA Memory Placement dlook(1) dplace(1) cpuset(1)
- Example Cpuset OH NO SWAP
- Memory placement ccNUMA Knows where to put memory (numa_hit numa_miss)
- Example stream.c measures memory bandwidth

- NUMA Memory Placement dlook(1) dplace(1) cpuset(1)
- Example Cpuset OH NO SWAP
- Memory placement ccNUMA Knows where to put memory (numa_hit numa_miss)
- Example stream.c measures memory bandwidth

Questions

Questions?

Questions?

http://cac.engin.umich.edu/resources/bighouse.html cac-support@umich.edu