Claim: Let A be a square matrix and \vec{v}, \vec{u} vectors such that

$$\vec{v}^{\mathsf{T}} A \vec{u} = 0.$$

Then given a non-fixing quarter rotation Q, we have

$$adj(A)Q\vec{v} = \vec{u}.$$

We want to show that $\vec{v}^{\top}Aadj(A)Q\vec{v}=0$. Note that $Aadj(A)=\det(A)I_n$. So if $\det(A)=0$, we are done. If $\det(A)\neq 0$, we can divide both sides by the determinant and show that $\vec{v}^{\top}Q\vec{v}=0$.

Let $\{\vec{b}_1, \ldots, \vec{b}_n\}$ be an orthonormal basis for k^n . Then Q satisfies $\vec{b}_i^{\top} Q \vec{b}_i = 0$ for all $1 \leq i \leq n$.

Write $\vec{v} = \sum_{i=1}^{n} s_i \vec{b}_i$. Then

$$\vec{v}^{\top} Q \vec{v} = \sum_{i=1}^{n} \sum_{j=1}^{n} s_i \vec{b}_i^{\top} Q s_j \vec{b}_j.$$

We already know that $s_i \vec{b}_i^{\top} Q s_i \vec{b}_i = 0$ for all $1 \leq i \leq n$. We wish to show that for each $s_i \vec{b}_i \top Q s_j \vec{b}_j$, there is an $s_k \vec{b}_k^{\top} Q s_\ell \vec{b}_\ell$ that cancels it out... actually I think we need Q to be even and to have the same number of 1's and -1's. For example

$$Q = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$