

Mapping AACN Sub-Competencies Using Semantic Similarity Scores

Christopher I. Macintosh, PhD, RN
ALNI/NIWG Webinar
09/20/2024

Semantic Similarity Scores

Competency-Based Education

10 Domains

45 Competencies

204 Sub-Competencies

Map to Course Learning Outcomes

18 Courses

94 Learning Outcomes

Sentence Embeddings

Sparse Vectors

- [1 0 0 0]
- "Bag of Words"
- tf-idf
- BM25

Dense Vectors

- [3.9 2.7 7.6 1.2]
- BERT
- SBERT

Methods

Demo

Python code was run in a Jupyter Notebook on Google Colab.

File Preparation

4	Α	В
1	id	description
2	6075_01	Understand descriptive and inferential statistics and their underlying probabil
3	6075_02	Evaluate characteristics of data including shapes of distributions, variance, me
4	6075_03	Analyze the relationship between research questions, study design, data colle
5	6075_04	Synthesize statistical information and report results for both statistical and clir
6	6102_01	Review basic principles of perception, memory, human cognition and informat
7	6102_02	Identify how human capabilities and limitations relate to Healthcare safety and
8	6102_03	Review and practice methods in user needs assessment.
9	6102_04	Identify key principles of human-centered design.
10	6102_05	Apply pertinent sociotechnical elements of organizations, including workflow,
11	6102_06	Review and practice methods in usability assessment.

4	Α	В	С	D
1	id	description		
2	1.1e	Translate evidence from nursing science as well as other science	nces into	practic
3	1.1f	Demonstrate the application of nursing science to practice.		
4	1.1g	Integrate an understanding of nursing history in advancing n	ursing's inf	fluenc
5	1.2f	Synthesize knowledge from nursing and other disciplines to	inform ed	ucatio
6	1.2g	Apply a systematic and defendable approach to nursing pract	tice decisio	ons.
7	1.2h	Employ ethical decision making to assess, intervene, and eva	luate nurs	ing ca
8	1.2i	Demonstrate socially responsible leadership.		

Install Packages

Upload Data File & Read


```
# Import data from Excel workbook.
# There should be two sheets (Sheet1, Sheet2) with headings id & description.

import pandas as pd

DataFile = "LearningOutcomesSheet.xlsx"

df1 = pd.read_excel(DataFile, 'Sheet1')
df2 = pd.read_excel(DataFile, 'Sheet2')

# Add the ids and text chunks to lists.
Sheet1_id = df1.id.values.tolist()
Sheet1_text = df1.description.values.tolist()
Sheet2_id = df2.id.values.tolist()
Sheet2_text = df2.description.values.tolist()
```


Import the Model

```
from sentence_transformers import SentenceTransformer
# Models - https://huggingface.co/models?library=sentence-transformers
model = SentenceTransformer('all-mpnet-base-v2')
Downloading (...)a8e1d/.gitattributes: 100%
                                                                                      1.18k/1.18k [00:00<00
                                                                                       190/190 [00:00<00:00
Downloading (...) Pooling/config.json: 100%
Downloading (...)b20bca8e1d/README.md: 100%
                                                                                            10.6k/10.6k [00
                                                                                        571/571 [00:00<00:0
Downloading (...)0bca8e1d/config.json: 100%
                                                                                        116/116 [00:00<00:0
Downloading (...)ce_transformers.json: 100%
Downloading (...)e1d/data_config.json: 100%
                                                                                        39.3k/39.3k [00:00<(
Downloading pytorch model.bin: 100%
                                                                                  438M/438M [00:04<00:00,
                                                                                       53.0/53.0 [00:00<00:
Downloading (...)nce bert config.json: 100%
```


Create the Sentence Embeddings

```
[6] embeddings1 = model.encode(Sheet1_text)
embeddings2 = model.encode(Sheet2_text)
```


Calculate Cosine Similarity Scores

```
[7] from sentence_transformers.util import cos_sim

scores = cos_sim(embeddings1, embeddings2)

#scores
```


Create the Dataframes

```
import numpy as np

scores_df = pd.DataFrame(scores.numpy(), index = Sheet1_id, columns = Sheet2_id)
scores_df
transposed_df = scores_df.transpose()
#transposed_df
```


Package Needed for Excel Formatting

Export & Format Excel File

```
#outcome_subcomp_df.to_excel(r'C:\\Users\\u0396993\\Documents\\junk\\Outcomes Competencies Cosig
# Set the path and name for the Excel workbook to create.
#OutputFile = "C:\\Users\\u0396993\\Documents\\junk\\BYU LearningOutcomesSheet NONPF CosignSimi
OutputFile = os.path.split(DataFile)[0] + "\\CosineSimilarity " + os.path.split(DataFile)[1]
# Determine column letters from column numbers
# https://stackoverflow.com/questions/29351492/how-to-make-a-continuous-alphabetic-list-python-4
def char_label(n, chars):
   indexes = []
   while n:
        residual = n % len(chars)
       if residual == 0:
           residual = len(chars)
        indexes.append(residual)
       n = (n - residual)
       n = n // len(chars)
    indexes.reverse()
   label = ''
   for i in indexes:
        label += chars[i-1]
   return label
```


Report Export

1	Α	В	С	D	E	F	G
1	Max	0.63429	0.593366	0.496755	0.637035	0.558848	0.680161
2							
3							
4							
5							
6							
7							
8							
9							
10							
11	▼	1.1e 🔻	1.1f ▼	1.1g ▼	1.2f ▼	1.2g ▼	1.2h ▼
12	6075_01	0.242619	0.242537	0.083644	0.256615	0.152138	0.135329
13	6075_02	0.191225	0.259362	0.038059	0.169479	0.138805	0.196994
14	6075_03	0.290611	0.330244	0.135825	0.309459	0.165707	0.221509
15	6075 04	0.499546	0.484639	0.201059	0.533047	0.305241	0.415217

1	А	В	С	D	E	F	G	
1	Max	0.379485	0.483886	0.48953	0.706458	0.377264	0.597427	(
2								
3								
4								
5								
6								
7								
8								
9								
10								
11		6075_01	6075_02	6075_03	6075_04	6102_01	6102_02	(
12	1.1e	0.242619	0.191225	0.290611	0.499546	0.194392	0.309305	(
13	1.1f	0.242537	0.259362	0.330244	0.484639	0.310396	0.346097	(
14	1.1g	0.083644	0.038059	0.135825	0.201059	0.194547	0.293129	
15	1 2f	0.256615	0.169479	0.309459	0.533047	0.28638	0.41715	(

Sort Scores to Find Suggested Mappings

10		
11	₩	1.1e -↓
12	6700_02	0.63429
13	6701_04	0.601287
14	6805_01	0.579072
15	6700_01	0.532913
16	6880_01	0.53009
17	6881_04	0.521259
18	6881_01	0.520016
10	C700 04	0.516477

Demo Files

 Files for the demo can be found at <u>https://github.com/cmcntsh/SemanticSimilarityReport_ALNI_NIWG</u>
 2024-09

References

- American Association of Colleges of Nursing. (2021). The essentials: Core competencies for professional nursing education. https://www.aacnnursing.org/Portals/0/PDFs/Publications/Essentials-2021.pdf
- Celik, T. (2022). The beginner's guide to text embeddings. Deepset. Retrieved October 27, 2023 from https://www.deepset.ai/blog/the-beginners-guide-to-text-embeddings
- Hugging Face. (n.d.). sentence-transformers/all-mpnet-base-v2. Hugging Face. Retrieved June 5 from https://huggingface.co/sentence-transformers/all-mpnet-base-v2
- Nguyen, I. (2021). What is text Vectorization? Everything you need to know. Deepset. Retrieved October 27, 2023 from https://www.deepset.ai/blog/what-is-text-vectorization-in-nlp
- Nichite, P. (2022, August 6). Sentence transformers: Sentence embedding, sentence similarity, semantic search, and clustering code [Video]. https://www.youtube.com/watch?v=OlhNZg4gOvA
- Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. Conference on Empirical Methods in Natural Language Processing,

