(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 October 2001 (04.10.2001)

PCT

(10) International Publication Number WO 01/73444 A2

(51) International Patent Classification7: C07K 14/00, G06F 19/00

......

G01N 33/68,

Colin [GB/US]; The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (US).

- (21) International Application Number: PCT/GB01/01358
- (22) International Filing Date: 27 March 2001 (27.03.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/192,180

28 March 2000 (28.03.2000) US

- (71) Applicant (for all designated States except US): CAMBRIDGE UNIVERSITY TECHNICAL SERVICES LIMITED [GB/GB]; The Old Schools, Cambridge, Cambridgeshire CB2 1TS (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): FARNDALE, Richard, William [GB/GB]; 21 Hawthorne Road, Stapleford, Cambridge, Cambridgeshire CB2 5DU (GB). EMSLEY, Jonas [GB/GB]; Flat 1, 169A London Road, Leicester, Leicestershire LE2 1EG (GB). KNIGHT, Clive, Graham [GB/GB]; 238 Queen Edith's Way, Cambridge, Cambridgeshire CB1 8NL (GB). BARNES, Michael, John [GB/GB]; 229 Chesterton Road, Cambridge, Cambridgeshire CB4 1AN (GB). LIDDINGTON, Robert,

- (74) Agents: WALTON, Sean, M. et al.; Mewburn Ellis, York House, 23 Kingsway, London, Greater London WC2B 6HP
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: RECEPTOR/PEPTIDE CRYSTAL STRUCTURE FOR IDENTIFICATION OF INHIBITORS

(57) Abstract: The crystal structure of a collagen peptide in complex with integrin α2 I-domain is provided. Coordinates for the crystal structure are useful in designing novel molecules that can be tested for binding to the receptor and other I-domains and preferably ability to inhibit I-domain binding to ligand, and I-domain function. Regions of I-domains that undergo conformation change upon ligand binding are also identified and provided as targets for binding molecules such as antibodies. Molecules that inhibit the function of polypeptides comprising I-domains are of therapeutic potential in a number of diseases and disorders.

1

RECEPTOR/PEPTIDE CRYSTAL STRUCTURE FOR IDENTIFICATION OF INHIBITORS

Technical Field

5

10

The present invention relates to use of coordinates of peptide/receptor crystal structure in designing and obtaining molecules that inhibit protein I-domain interactions and function, especially collagen/receptor interaction, and are of therapeutic potential. The present invention relates to modulating platelet aggregation, adhesion and activation, as well as the adhesion, migration and phenotypic expression of many other cells, and inhibitors of collagen interaction with collagen receptors.

15

20

25

30

Background Art

Collagens and collagen-related peptides The collagens provide the vertebrate organism with tensile strength; they are the major protein component of skin, bone, cartilage and other connective tissue. Collagens, for example Type IV, provide a network of protein known as the basal lamina to which cells can attach and over which cells can migrate. Such structures are found beneath endothelial and epithelial cell layers in many locations. Deeper into tissues such as the epidermis or the intimal layer of the blood vessels, fibrous collagens such as Types I and III are found [2]. The structure and precise amino acid composition of the collagens varies with type. Each type is the product of a distinct gene or genes. What characterises a protein as a collagen is that it contains, substantially or in some part, a triple-helical structure in which three polypeptide chains, each helical in its own right, are wound around one another to

2

form a superhelix. A specific amino acid sequence, Gly-Pro-Hyp, (GPO in single-letter nomenclature) when repeated sufficiently can support triple-helical conformation. A related sequence, GPP, also adopts a triple-helical conformation.

The properties of these sequences which support triple-helical structure are:

- (i) the tight bends associated with the strained ring
 structure of the iminoacids proline and hydroxyproline,
 (ii) the presence of glycine at every third residue whose side chain, simply a hydrogen atom, positioned in the interior of the cylinder defined by the triple helix, is so small as to present no obstacle to the protein chains associating in this
 conformation, and
 - (iii) the capacity of the hydroxyproline residues in particular to support intra- or inter-chain hydrogen bonding, thus stabilising the helix.
- In long peptides, where such effects may be additive over many triplets of amino acids, substantial deviation from the GPO prototypic sequence still allows triple-helical structure.

 Thus, in Type I collagen, where the explicit triplet GPO comprises only around 10% of the primary sequence of the

 molecule, which is over three hundred triplets in length, the structure exhibits a melting temperature, i.e. the temperature at which the helix will unwind, in excess of 40°C, significantly higher than physiological temperatures. In nature, the helix and its higher order assembly, the collagen fibril, is further stabilised by cross-linking.

Synthetic peptides are known where, utilising a sequence of repeating GPP triplets or repeating GPO triplets,

3

significantly higher melting temperatures can be achieved. For example, peptides comprising $[GPO]_{10}$ melt at about 60° C [3], but $[GPO]_{5}$ melts at below 20° C [4-6].

Such synthetic peptides have found increasing application in 5 biomedical research, since they may have biological activity. For example, in cross-linked form the sequence [GPO] 10 will bind to a specific platelet receptor population, known as glycoprotein VI, on human platelets and activate them, most likely by stabilising these receptors in close proximity, 10 allowing proteins associated with their intracellular domains to interact [7-10]. Clustering of receptors in this way may be one mechanism by which signals, such as a change in phosphorylation state of intracellular proteins, may propagate within the platelet [10, 11]. This mechanism is thought to be 15 a key activatory step in haemostatic events leading to platelet aggregation, and in pathological events including thrombosis [12-14]. Thus the peptide containing the GPO motif, known as collagen-related peptide or CRP, provides a receptor-specific peptide useful in the study of platelet 20 activation [8].

Peptide motifs which support triple helical structure, i.e. GPO or GPP, can be used as flanking sequences which confer triple-helical structure upon other sequences from collagen, or indeed from other proteins, which would not otherwise adopt this conformation [15-18]. Such peptides allow the researcher to investigate the properties of small sequences from the primary structure of the collagen alpha chains, such as the alpha 1 chain from type I collagen, or the alpha 2 chain from type I collagen or the alpha 1 chains of type III collagen, whilst retaining the triple-helical structure which is crucial for cell-reactivity. Such investigations have allowed other

25

30

4

specific receptor-binding sequences to be identified.

One such is the sequence GFOGER, which binds to a further class of receptors, the integrins $\alpha 1\beta 1$ and $\alpha 2\beta 1$ [18].

5

10

15

The integrins

The integrins are expressed on the surface of cells, being widespread throughout the different tissues of the body, and their functions are manifold. Integrins are heterodimeric structures, comprising two subunits, designated α and β [19] Certain combinations of the 20 or so known α subunits with the 10 or so known β subunits are allowed, whilst many are excluded and do not occur in nature. Thus, at present, about 30 different integrins are known in man. Their selectivity for particular ligands derives primarily from the combination of subunits, but may be dependent also upon the activation state of the integrin [20, 21].

Some integrins mediate direct cell-cell contact, as between leukocytes, or between the cells forming a cell layer or 20 epithelium. Often, counter-receptors such as the cellular adhesion molecules (CAMS) may bind to such integrins [22]. This represents the model by which the β 2 integrins found upon the leukocyte surface mediate cell-cell contact. Commonly, integrins are found to bind to extracellular proteins of the 25 plasma (such as fibrinogen) or of the matrix (such as collagen or fibronectin). Very often, the amino acid sequences supporting interaction with integrins include an acidic residue such as D or E. Thus the sequence RGD can bind to the fibrinogen receptor, $\alpha IIb\beta 3$, the vitronectin receptor $\alpha v\beta 3$, to 30 the fibronectin receptor, $\alpha 5\beta 1$ and to certain other integrins [20]. Sequences elsewhere within the ligand may enhance and

5

provide further selectivity to this primary interaction.

Integrin α subunits can be described as having a modular structure, with seven consensus repeats in their extracellular domains [23]. Some of these, known as EF-hands, bind cations, Ca²+, for example, (although other divalent cations such as Zn²+, Co²+ or Mn²+ may serve the same purpose) which support the activity of the receptor. One property of the α IIb subunit of the fibrinogen receptor known to depend upon the presence of these divalent cations is the ability to associate with the β 3 subunit, essential for receptor function [24].

10

Integrin α subunits fall into two classes, those as described above and those which possess an additional protein module,

the inserted domain or I-domain, which is sometimes known as the A-domain because it adopts the same fold and may share other properties with the A-domains of the protein, von Willebrand factor.

The collagen-binding integrins, α1β1 and α2β1 contain I-domains [25]. These I-domains are crucial for the capacity of the integrin to bind collagen, which resides in a characteristic structure at one end of the domain which binds a divalent cation. Several species of cation can occupy this site, for example Mg²+ or Co²+ or Mn²+ [26]. In physiology it is likely that Mg²+ may be the ion present in this specialised binding structure, known as the metal ion dependent adhesion site or MIDAS. Because of its crucial role in mediating collagen binding, the I-domain MIDAS is the subject of close scrutiny in the field.

Protein domains are defined as stretches of sequence which

6

fold independently into the native conformation of the peptide, i.e. when separated from other regions of the parent protein. The I-domain, in suitably pure form, expressed, for example as a recombinant protein, can re-fold [26] into a structure which has the same capacity to bind cations in its MIDAS and the same capacity to bind ligands as the parent integrin [27]. For this reason, the $\alpha 2$ I-domain provides a ready model for studying the interaction of collagen with $\alpha 2\beta 1$.

10

A key question has been how the binding of ligand to the Idomain may alter its structure, which various techniques have
been applied to address. For example, suitable computer
algorithms allow fold prediction to be made, based upon the
known primary sequence and by analogy with other I-domains or
A-domains, which may provide an important input to this
process. Such algorithms might allow a proposed ligandbinding cleft to be visualised in 3-dimensions, and to be
compared with the known shape of the ligand. Often, suitable
algorithms provide an analysis of the charge density on the
surface of both the ligand and the proposed binding cleft, to
establish complementary sites which might provide the basis
for their interaction.

Previous work has elucidated the structure of the α2 I-domain in its free, unligated form [26]. The key feature of I domains and vWf A-domains is that they contain a characteristic assembly of five parallel and one anti-parallel beta-strands which form the stable platform of the structure.

This conformation, known as the dinucleotide-binding fold (or Rossman fold) is found in other proteins such as NAD hydrolase, guanine nucleotide-binding proteins and protein kinases. Common to all of these structures is that ligand

7

binding occurs at the C-terminal surface formed by these betastrands, although this has not hitherto been formally demonstrated. So it is with the integrin I-domains. This structure is linked by a series of peptide loops, several of which elaborate α -helices and at least one anti-parallel beta strand which substantially enclose the beta-sheet as they return to the base of the beta-sheet structure.

Another crucial feature of I-domains is that they possess an amino acid motif regarded as diagnostic of I-domains, having the sequence DxSxS, where x may represent any amino acid. These three amino acids, D151, S153 and S155, are present in the N-terminal loop arising from the first beta strand of the a2 I-domain. These, along with other oxygen-containing residues in nearby peptide loops, co-ordinate the metal ion and constitute the MIDAS.

In the case of $\alpha 2$ I-domain, beta-strand $\underline{5}$ elaborates above it a single turn of α -helix, known as the C-helix. A C-helix is known to exist in the $\alpha 1$ I-domain, and might be predicted in other, less well-characterised I-domains. This appears to obstruct the MIDAS in its un-ligated state. It seems very likely that similar structures may occur in other I-domains.

25 Structure determination

20

30

Structure prediction, based upon the primary sequence of a protein domain, although a useful adjunct to the research endeavour, needs to be confirmed by measurement. The procedures used for such purposes include nuclear magnetic resonance and X-ray crystallography. Each approach offers its own advantage: nuclear magnetic resonance allows the examination of proteins in aqueous media, and at temperatures

8

close to physiological. However, nuclear magnetic resonance requires that the proteins be synthesised during their expression from amino acids comprising atomic nuclei with unpaired spin, such as ¹⁵N or ¹³C, in their peptide or other bonds. Protons within the structure may need to be replaced by deuterons which do not resonate. This may present a significant difficulty, especially given that quite high protein concentration, such as 1 millimolar, and volume, such as 1 millilitre, may be needed to allow the analysis to proceed. Further, the magnetic resonance are critically-dependent upon the size of the target protein, so that structures larger than about 100 amino acids are difficult to obtain, because of limitations of the field strength and frequency of the instrument.

15

20

25

X-ray diffraction also suffers from practical constraints, the major drawback being that the protein under examination must crystallise under laboratory conditions to provide a crystal of sufficient size and homogeneity as to be useful for subsequent analysis. Suitable instruments include quite widespread laboratory-scale X-ray diffraction units, useful in the initial examination of the crystal, or the much larger-scale synchrotron devices. The choice of instrument is governed by the size of the crystal available and the spatial resolution required of the analysis.

In the crystallisation of two structures as a complex, further constraints emerge. Firstly, the complex must adopt an appropriate, presumably physiological, conformation.

30 Secondly, the association between the two species must be stable at solution temperatures. Thirdly, the dimensions of the complex must be such as to allow unit cells, i.e. the most fundamental level of organisation of the complex, to align in

9

an array which can form a crystal. Where the two species are of grossly different shapes or sizes, this may be a meaningful constraint. For example, the tropocollagen molecule, the triple helical structure comprising the intact α -chains of the collagen in question, may approximate to a rod about 300nm in length, whereas the I-domain of the integrin $\alpha 2\beta 1$ approximates to a sphere about 3nm diameter. It is unlikely that a complex formed from single copies of such disparate structures will crystallise, although complex formation might very well occur.

10

Disclosure of the Invention

The present invention is based on work in which a collagen peptide was produced as a trimer, and a crystal structure 15 obtained for the complex formed by binding of the peptide to integrin a2 I-domain. Coordinates for the crystal structure are useful in designing novel molecules that can be tested for binding to the receptor and other I-domains, and preferably ability to inhibit I-domain binding to ligand (e.g. collagen) 20 and function. Regions of I-domains that undergo conformational change upon ligand binding are also identified and provided as targets for binding molecules such as antibodies. Molecules that inhibit the function of polypeptides comprising I-domains are of therapeutic potential in a number of diseases and disorders. The coordinates of the 25 crystal structure for use in aspects and embodiments of the present invention are shown in Table 1. Specific contacts of additional interest are shown in Table 2. Details of interaction between peptide and receptor are shown in the 30 Figures, described below.

The coordinates of Table 1 provide a measure of atomic location in Angstroms. The coordinates are a relative set of

10

positions that define a shape in three dimensions. skilled person would recognise that it is possible that an entirely different set of coordinates having a different origin and/or axes could define a similar or identical shape. Furthermore, he would recognise that varying the relative 5 atomic positions of the atoms of the structure so that the root mean square deviation of residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of protein amino acid residues) is less than 1.5 Å (preferably less than 1.0 Å and 10 more preferably less than 0.5 Å) when superimposed on the coordinates provided in Table 1 for the residue backbone atoms, will generally result in a structure which is substantially the same as the structure of Table 1 in terms of both its structural characteristics and potency for structurebased drug design. Likewise he would recognise that changing 15 the number and/or positions of the water molecules of Table 1 will not generally affect the potency of the structure for structure-based drug design of I-domain inhibitors. Thus for the purposes described herein as being aspects of the present invention, it is optionally within the scope of the invention 20 if: the Table 1 coordinates are transposed to a different origin and/or axes; the relative atomic positions of the atoms of the structure are varied so that the root mean square deviation of residue backbone atoms is less than 1.5 Å (preferably less than 1.0 Å and more preferably less than 0.5 25 $m \AA)$ when superimposed on the coordinates provided in Table 1 for the residue backbone atoms; and/or the number and/or positions of water molecules is varied. Reference herein to the coordinates of Table 1 thus optionally includes the coordinates in which one or more individual values of Table 1 30 are varied in this way.

Also, the skilled person would recognise that modifications in

11

the $\alpha 2$ I-domain crystal structure due to e.g. mutations, additions, substitutions, and/or deletions of amino acid residues could account for variations in the atomic coordinates of the complex. Therefore, atomic coordinate data of the $\alpha 2$ I-domain modified so that a ligand that bound to the $\alpha 2$ I-domain would also be expected to bind to the modified $\alpha 2$ I-domain are, for the purposes described herein as being aspects of the present invention, optionally also within the scope of the invention. Reference herein to the coordinates of Table 1 thus optionally includes the coordinates modified in this way.

Furthermore, the Table 2 coordinates being derived from Table 1, reference herein to the coordinates of Table 2 optionally includes the coordinates in which one or more individual values of Table 2 are changed as a result of the abovementioned variation and/or modification of the coordinates of Table 1.

The crystal structure defined by the co-ordinates may be visualised and rendered by many molecular graphics programmes, suitable examples of which include MolView (T.J. Smith, Dept. Biology, Purdue University, In47907, USA), RasMol Molecular Graphics (Roger Sayle, Biomolecular Structures Group, Glaxo Wellcome Research & Development, Stevenage, Hertfordshire, UK), Swiss PDB Viewer (Glaxo Wellcome Experimental Research) or XtalView (D.J. McRee, (1992) J. Mol. Graphics, 10, 44-47). Many other software suites are available to the skilled researcher.

30

10

15

Modelling and refinement of crystallographic data can be performed using AMORE [30] and XtalView, or other suitable software, as noted in the Methods section below.

WO 01/73444

12

PCT/GB01/01358

The use in rational drug design of both the co-ordinates produced by these algorithms and the identity and chemical nature of the atoms involved in the interaction between I-domain and ligand, presented in Table 2, may involve use of interpretive software such as MCSS (Miranker, A. and Karplus, M., "Functionality Maps of Binding Sites: a Multiple Copy Simultaneous Search Method," Proteins: Structure, Function, and Genetics, 11 29-34 (1991)).

10

15

20

Use of these data in identification of chemical compounds which may be potential ligands or inhibitors of the I-domain:collagen interaction may utilise database searching software such as HOOK: A Program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site, (Eisen, M. B., et al., Proteins, 19 199-221 (1994)) or DOCK (Meng, E.C. et al., J. Comput. Chem. 13, 505-524 (1992)). Suitable databases of candidate ligands may include the ACD (Available Chemicals Directory; Molecular Design Limited Information Systems, San Leandro, CA, USA) or the NCI Drug Information System 3D Database (National Cancer Institute, USA).

A binding motif within collagen was previously identified, the
sequence GFOGER [17, 18]. As for the parent molecule, this
amino acid sequence adopts a triple helical conformation, when
flanked by suitable repeats of GPO or GPP triplets, and binds
to the integrin. Evidence for this is provided by the
observation that the sequence is inactive when flanked by
repetitive GAP motifs [18], so that non-helical structure is
adopted, rather than the GPP or GPO motifs described above
which support triple-helical conformation.

13

The structure of the candidate peptide is determined by the various requirements for co-crystallisation. If the flanking sequences of GPP or GPO are too long, then the dimensions of the triple-helix no longer match those of the I-domain, and crystallisation will be increasingly less likely, as outlined above. But it remains important that sufficiently long flanking sequences are present to maintain triple-helical structure even at the cold-room temperature (0-8EC, typically 4EC) used for crystallisation. Hence the extent of the flanking triplets is likely to be critical, being long enough to support triple-helical structure but not so long as to impede crystallisation.

A further consideration is that the peptide should be located

15 centrally upon the I-domain, so that the complex is
approximately symmetric, a property which favours
crystallisation.

In accordance with the present invention, a peptide has been synthesized comprising [GPO]₂GFOGER[GPO]₃ which has a melting temperature of about 22°C and allows co- crystallisation to proceed at cold-room temperatures, where 95% or more of the peptide is in triple-helical form (see Figure 1). This peptide forms a single turn of the triple-helix after assembly in trimer. Further, the disposition of two GPO triplets at the N-terminus of the peptide and three at the C-terminus allows the crucial glutamate (E) residue to be centrally located within the resultant triple-helix, favouring a symmetrical complex with the α 2 I-domain.

30

- 5

10

20

25

An important consideration in the design of this peptide is the chemical modification of charged groups at its amino-

14

terminus and carboxy-terminus. This has the effect of rendering the ends of the peptide neutral at physiological pH, so that electrostatic repulsion between adjacent chains within a triple-helix is minimised. This permits the peptide to assemble as a triple-helix at higher temperature, so facilitating the use of shorter peptide ligands, consistent with the dimensions of the receptor, in the crystallisation process. Several chemistries may be suitable. In the present case, acetylation of the N-terminal amino group and incorporation of a C-terminal amide achieved this purpose.

Methods useful in attempts to induce crystallisation are known in the art [28]. Crucial factors may be the inclusion of suitable buffers to maintain the appropriate charge of the protein and the peptide ligand; suitable detergents to maintain the conformation of the receptor; suitable polymers to increase the effective concentration of both receptor and ligand; suitable concentration of divalent cation to saturate the MIDAS; suitable concentration of peptide; precipitants to induce the gradual precipitation/crystallisation of the complex; that the crystallisation be performed at temperatures at which the peptide is triple-helical; glycerol to stabilize the I domain and act as a cryo-protectant during the flash freezing prior to data collection.

25

30

10

15

20

Once the crystallisation and X-ray diffraction data have been obtained, then the 3-dimensional co-ordinates of the atoms within the crystal may be deduced by the use of suitable computer algorithms. The resultant data set allows the construction of 3-dimensional models of the ligand in complex with the receptor, which offers to the researcher a fundamental understanding of the interaction between the two.

15

Knowledge of the structure of the ligand-I domain complex allows key processes to be established, such as a change in conformation in the receptor or ligand as the complex forms. Such information allows for the design of materials which interact with the receptor, most likely at the site of interaction, the MIDAS, but possibly elsewhere in the structure, for example in the C-Helix or near Helix $\alpha 7$. Such materials may be used to impede the activation process of the integrin, preventing collagen from binding to the receptor. In therapeutic use, such materials may be used to prevent cell contact with collagen, so impeding disease processes such as thrombosis, atherogenesis and metastasis.

10

15

20

25

30

In general aspects, the present invention is concerned with identifying or obtaining potential inhibitors of Integrin Idomain interaction with ligand (e.g. collagen) and/or function, and in preferred embodiments identifying or obtaining actual inhibitors of such interaction and/or function. Crystal structure information presented herein is useful in designing potential inhibitors and modelling them or their potential interaction with the I-domain of Integrin $\alpha 2\beta 1$ or other I-domain. Potential inhibitors may be synthesized and brought into contact with the relevant I-domain to test for ability to interact with the I-domain, ability to inhibit interaction of the I-domain with collagen or other ligand, or with a collagen peptide that binds the I-domain, and/or ability to affect I-domain or Integrin function. Actual inhibitors may be identified from among potential inhibitors synthesized following design and model work performed in silico. An inhibitor identified using the present invention may be formulated into a composition, for instance a composition comprising a pharmaceutically acceptable excipient, and may be used in manufacture of a medicament for

16

use in a method of treatment. These and other aspects and embodiments of the present invention are discussed below.

5

15

Table 2 provides details of contacts between the peptides and I-domain in the crystal structure. These too may be used in design of molecules that make similar contacts with the Idomain. Such molecules may be synthesised and tested for ability to interact with the I-domain, ability to inhibit interaction of the I-domain with collagen or with a collagen 10 peptide that binds the I-domain, and/or ability to affect Idomain or Integrin function.

Comparison of the structure of the I-domain crystallised with the triple-helical peptide and the I-domain crystal structure without the peptide identifies a number of changes in conformation in the I-domain on peptide binding, and consequently parts of the I-domain which may be targeted for inhibition. This is discussed further below.

In accordance with a first aspect of the present invention 20 there is provided a method of identifying a potential inhibitor of an I-domain-containing polypeptide, especially an integrin I-domain, e.g. selected from the group consisting of α 1, α 2, α 10, α 11, α D, α E, α L, α M and α X, preferably α 2 or α 1 and most preferably $\alpha 2$, the method comprising either (i) employing 25 a three-dimensional structure of the Integrin $\alpha 2$ I-domain as shown in Table 1 to design or select a potential inhibitor, (ii) designing or selecting a potential inhibitor that interacts with one or more points in the I-domain crystal 30 structure shown for the I-domain in Table 2, or (iii) designing or selecting a potential inhibitor that mimics one or more (and preferably three or more) points in the peptide structure shown for the peptide structure in Table 2.

WO 01/73444

In accordance with a further aspect of the present invention there is provided a method of identifying a potential inhibitor of an I-domain-containing polypeptide, especially an integrin I-domain, e.g. selected from the group consisting of $\alpha 1$, $\alpha 2$, $\alpha 10$, $\alpha 11$, αD , αE , αL , αM and αX , preferably $\alpha 2$ or $\alpha 1$ and most preferably $\alpha 2$, the method comprising the steps of:

17

PCT/GB01/01358

- (a) employing a three-dimensional structure of the Integrin $\alpha 2$ I-domain as shown in Table 1 to design or select a potential inhibitor;
- (b) synthesizing or providing said potential inhibitor; and
- (c) testing said potential inhibitor for ability to interact with an I-domain-containing polypeptide.

15

20

10

A potential inhibitor of an integrin or other I-domain containing polypeptide may be designed by modelling points of interaction between the trimerized collagen peptide and the α2β1 I-domain, for example as shown in Table 2. One or more electrostatic interactions and/or one or more hydrogen bonds and/or one or more hydrophobic interactions may be used in the modelling. In a preferred embodiment, all the I-domain points identified in Table 2 are employed in the design, and/or all the peptide points identified in Table 2.

25

30

Thus, in a further aspect the present invention provides a method of identifying a potential inhibitor of an I-domain-containing polypeptide, especially an integrin I-domain, e.g. selected from the group consisting of $\alpha 1$, $\alpha 2$, $\alpha 10$, $\alpha 11$, αD , αE , αL , αM and αX , preferably $\alpha 2$ or $\alpha 1$ and most preferably $\alpha 2$, the method comprising the steps of:

(a) designing or selecting a potential inhibitor that

18

WO 01/73444 PCT/GB01/01358

interacts with one or more points in the I-domain crystal structure shown for the I-domain in Table 2;

- (b) synthesizing or providing said potential inhibitor; and
- (c) testing said potential inhibitor for ability to interact with an I-domain-containing polypeptide.

5

In a further aspect the present invention provides a method of identifying a potential inhibitor of an I-domain-containing polypeptide, especially an integrin I-domain, e.g. selected from the group consisting of α1, α2, α10, α11, αD, αΕ, αL, αM and αX, preferably α2 or α1 and most preferably α2, the method comprising the steps of:

- (a) designing or selecting a potential inhibitor that
 15 mimics one or more points in the peptide structure shown for the peptide structure in Table 2;
 - (b) synthesizing or providing said potential inhibitor;and
- (c) testing said potential inhibitor for ability to 20 interact with an I-domain-containing polypeptide. Preferably, in step (a) the potential inhibitor mimics three or more spaced points in the peptide structure.
- Step (c) of each of the above aspects may comprise bringing said potential inhibitor into contact with the I-domain-containing polypeptide to determine ability of said potential inhibitor to inhibit (i) ability of the I-domain to interact with collagen or a collagen peptide or other ligand which binds the I-domain, and/or (ii) I-domain or I-domain-containing polypeptide function.

 The I-domain-containing polypeptide may be an integrin (e.g α2β1).

Integrin function may be measured in a number of different

19

PCT/GB01/01358

ways.

WO 01/73444

For instance, cells which express the integrin may be allowed to come into contact with a surface coated with a substrate known to bind the integrin. By illustration with reference to α2β1 Integrin as a preferred embodiment without limitation to the ability to employ other integrins and I-domains in embodiments of the present invention, cells, such as human or other platelets, or any cell type utilising $\alpha 2\beta 1$ as an adhesive receptor, or cells such as HT1080 cells which use 10 only $\alpha 2\beta 1$ as a receptor for collagen, may be allowed to settle upon the surface, and after suitable incubation time, e.g. from 10 minutes to 1 hour, or to 3 hours or longer, be washed from the surface [18]. Cells removed by this washing procedure may be quantitated, for example using an electronic 15 particle counter [18], a haemocytometer, or other suitable procedure, allowing the proportion of cells that is not removed by washing to be defined as adherent. Alternatively, such cells as remain, constituting adherent cells, may be quantitated directly, either by microscopical counting, or if 20 radiolabelled cells were used, then the amount of radioactivity remaining may be measured, or the cells may be stained using histochemical dyes and the amount of stain retained may be quantitated colorimetrically, or cells may be lysed using suitable detergent or other procedure, and the 25 enzymes released from the cells may then be quantitated colorimetrically as a measure of the adherent cell numbers [18]. Each of these, or other suitable procedure, allows the adhesion of cells via $\alpha 2\beta 1$ to be measured, which defines the function of the integrin. Such procedures are well-known to 30 those skilled in the art [refs 3,7,16,17,18,25,27].

In another variant of the procedure, similar surfaces coated

20

with substrate, such as peptide or collagen as defined above, may be used to support the adhesion of the purified integrin α2β1 or of the recombinant α2 I-domain. In these variants, the receptor or I-domain is suitably labelled, for example with biotin [18], or, if expressed as recombinant fusion protein, with a poly-His tag, or glutathione-S-transferase, or with a fluorescent dye or with any other suitable means of identification, each of which may readily be detected by routine methodology. Alternatively, the protein may be allowed to interact directly with a specific antibody, and its presence may then be detected immunologically. Such assays allow the extent to which the integrin or I-domain adheres to the substrate to be determined, which is a measure of integrin function.

15

10

Alternatively or additionally, step (c) of the above aspects may comprise the sub-steps of:

- (i) forming a complex of the I-domain-containing polypeptide and said potential inhibitor; and
- 20 (ii) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of said potential inhibitor to interact with the I-domain-containing polypeptide. Detailed structural information can then be obtained about the binding of the potential inhibitor to the I-domain-containing polypeptide, and in the light of this information adjustments can be made to the structure or functionality of the potential inhibitor, e.g. to improve binding to the polypeptide.
- A further aspect of the present invention (which may be used in the above-mentioned analysis sub-step (ii)) provides a method of analysing an I-domain-containing polypeptide complex comprising employing (i) X-ray crystallographic diffraction

21

data from the I-domain-containing polypeptide complex and (ii) atomic coordinate data according to Table 1 to generate a difference Fourier electron density map of the complex.

Therefore, an I-domain-containing polypeptide complex can be crystallised and analysed using X-ray diffraction methods, and a difference Fourier electron density map can be calculated based on the X-ray diffraction pattern of the complex and the solved structure for the I-domain of Table 1. Such a map can be used to determine whether and where a particular ligand binds to the I-domain and/or changes to the conformation of the I-domain.

Electron density maps can be calculated using programs such as those from the CCP4 computing package (Collaborative Computational Project 4. The CCP4 Suite: Programs for Protein Crystallography, Acta Crystallographica, D50 760-763, (1994)). For map visualisation and model building programs such as O (Jones et al., Acta Crystallographica, A47 110-119 (1991)). Structure factor data, which are derivable from atomic coordinate data (see e.g. Blundell et al., in Protein Crystallography, Academic Press, New York, London and San

25

30

15

20

Analysis of the changes in conformation of the $\alpha 2$ I-domain allows certain residues to be identified as becoming exposed upon ligand binding: residues E318 (at the N-terminal end of Helix $\alpha 7$) and D292 (close to the N-terminal end of Helix $\alpha 6$). Inhibitors of the I-domain and integrin function may be

Francisco, (1976)), are particularly useful for calculating

difference Fourier electron density maps.

identified by targeting a binding molecule to the regions of the I-domain including these amino acids, for example by generating antibodies or other binding molecules to sequences

22

comprising, for instance residues 315 to 320, or 288 to 295.

Certain parts of the I-domain, for example the C-helix, residues 284 to 288, also dramatically alter their conformation upon binding. These similarly provide a target to inhibit conformational change, with therapeutic potential.

Thus, in a further aspect the present invention provides a method of obtaining a potential inhibitor of an Integrin, the method comprising the steps of:

- (a) providing a peptide fragment of Integrin α2 I-domain, which peptide fragment contains the E318 residue (e.g. comprises residues 315-320), the D292 residue (e.g. comprises residues 288-295) or the residues 284-288;
 - (b) bringing the peptide fragment into contact with a test substance, such as an antibody molecule; and

15

(c) determining the ability of the peptide fragment to bind with the test substance.

A substance which binds the peptide, e.g. an antibody 20 molecule, is a potential inhibitor of integrin function, e.g. Integrin $\alpha 2\beta 1$ function. Ability of a potential inhibitor actually to inhibit may be determined as discussed elsewhere herein.

25 Similarly, the present invention provides for identifying a molecule that interacts with any part of the integrin I-domain identified by means of the crystal structure disclosed herein as making a contact with another part of the I-domain or the peptide in the crystal, or as altering in conformation on binding of the peptide.

Data presented in Table 1 allows identification of those residues and their corresponding co-ordinates within the

23

resting I-domain (Brookhaven Protein Database number laox, reference 26) which are critically involved in both its conformational change and ligand binding cleft. Thus, in the light of data presented in Table 1 and the additional disclosure herein, the resting I-domain co-ordinates [26] becomes a useful reference point for rational drug design. This allows certain surfaces, defined by the residues presented in Table 1, but whose resting co-ordinates are contained in laox, to be identified unambiguously as contributing to the latent ligand binding cleft. Hence an inhibitor may be designed to bind to the resting I-domain and so prevent it from binding ligand.

For other I-domains, regions corresponding to those identified for $\alpha 2$ I-domain as targets for antibody molecules are identified in accordance with the present invention as:

 αM : residues 301-304 (N-terminal end of Helix $\alpha 7$),

residues 272-284 (N-terminal end of Helix $\alpha6$);

 αL : residues 290-295 (N-terminal end of Helix $\alpha 7$),

20

25

30

residues 258-272 (N-terminal end of Helix α 6);

 α 1: residues 318-324 (N-terminal end of Helix α 7),

residues 292-298 (N-terminal end of Helix $\alpha 6$).

Thus, an antibody molecule or other binding molecule may be obtained, e.g. by making a peptide comprising or consisting of the above residues of any of the above regions and bringing the peptide into contact with a mixture containing potential binding molecules, determining binding to the peptide and selecting a binding molecule that binds. A binding molecule such as an antibody molecule may be tested for ability to bind and inhibit an I-domain, and may be employed as an inhibitor of a polypeptide comprising an I-domain for one or more

24

purposes as disclosed herein.

30

Specific residues can also be identified, such as T221 in $\alpha 2$ I-domain, linked to metal ion in the resting I-domain indirectly via a water molecule. Suitable inhibitors may be designed to bind T221 and prevent the metal ion from moving closer to become co-ordinated directly. Such inhibitors may be used to prevent subsequent ligand binding.

10 Comparison of the crystal structure of the integrin a2 Idomain in complex with the triple-helical collagen-like peptide with that of the free, uncomplexed, I-domain [26] allows regions of the I-domain to be identified which may be exposed in the free state, but which become hidden in the 15 complexed state. An example will be those areas of the surface of the I-domain which are obscured by the binding of the triple-helical peptide. These specific residues are identified in Table 2. Other such sites are remote from the binding cleft, and are revealed by conformational changes 20 which occur during the transition from the free to the complexed state. Such sites may also represent therapeutic targets: agents such as inhibitors or antibodies which bind to these critical exposed regions of the complexed integrin may block the transition to the resting conformation, so 25 maintaining the integrin in its active conformation.

The present invention allows such residues to be identified, and the co-ordinates of the I-domain surface in these regions to be used for rational drug design, as described above.

Alternatively, as noted, knowledge of these critical regions of the I-domain allows peptide sequences to be used to raise antibodies or other binding molecules by appropriate

25

methodology, for example against short peptide sequences derived from the I-domain or by DNA vaccination of nucleotide sequences corresponding to these regions of the I-domain. The utility of such inhibitors may be tested as described above, in suitable adhesion or other assays.

Reference to an Aantibody molecule@ describes an immunoglobulin whether natural or partly or wholly synthetically produced. The term also covers any polypeptide or protein having a binding domain which is, or is substantially homologous to, an antibody binding domain. Thus, antibody molecules for use in the present invention include fragments which comprise an antigen binding domain such as Fab, scFv, Fv, dAb, Fd and diabodies, all of which are well known in the art.

Comparison of the two forms of the integrin I-domain allows sites to be identified upon its surface which are hidden in the free integrin, and which are exposed only after complex with suitable ligand, for example the triple-helical peptide described above, Ac-(GPO)₂GFOGER(GPO)₃-NH₂. Such sites, when targeted by inhibitors may have two possible effects: if sufficiently close or within the binding cleft, they may inhibit ligand binding, but if sufficiently remote so as not to impede ligand binding, they may stabilise the integrin in its active conformation and so enhance ligand binding. Such activity may be identified by binding assays as described herein, and each class of agent, whether inhibitory or activatory towards integrin function, may have its own therapeutic use or other application.

20

25

30

Regions of interest within the $\alpha 2$ I-domain binding cleft are identified in Table 2, which also lists residues of the I-

26

domain (E318 and D292) which are exposed upon ligand binding and are not obscured by the triple-helical peptide.

A collagen peptide employed in testing for ability of a potential inhibitor to inhibit binding of the I-domain to the peptide may be a triple-helical peptide, of sequence GFOGER known to bind the $\alpha 2$ I-domain [18], or other sequence which binds to the I-domain, flanked by suitable repeats of GPO or GPP triplets to ensure triple-helical structure.

Alternatively, physiological substrates such as collagens, for example type I or type III or type IV or type VI or other collagens, readily coat and adhere to the surface of tissue culture dishes or 96-well plates, and are known to bind to α2β1. Alternatively, other substrates such as the

extracellular protein laminin, also known to bind the I-domain of $\alpha 2\beta 1$, may be used for the same purpose. Specificity of interaction in this and other assays may be verified by using antibodies against either the immobilised substrate or the receptor on the surface of cells under test.

20

15

In any aspect of the present invention a potential inhibitor that tests positive when brought into contact with the I-domain, that is fulfils one or more of the specified criteria, is considered an actual inhibitor.

25

30

Thus further aspects of the present invention provide methods of identifying and/or obtaining inhibitors of a polypeptide which contains an I-domain, especially an Integrin, which may be selected from the group consisting of $\alpha 1$, $\alpha 2$, $\alpha 10$, $\alpha 11$, αD , αE , αL , αM and αX , especially $\alpha 2$ or $\alpha 1$, most preferably $\alpha 2$.

Another aspect of the present invention provides a crystal of

27

 $\alpha 2$ I-domain complex having a space group $P2_12_12_1$, and unit cell dimensions of a = 42.0 Å, b = 48.4 Å, and c = 114.5 Å. Or more generally a = 42.0±0.2 Å, b = 48.4±0.2 Å, and c = 114.5±0.2 Å.

Alternatively or additionally, the present invention provides a crystal of $\alpha 2$ I-domain complex having the three dimensional atomic coordinates of Table 1.

10 Further aspects of the present invention provide (i) a computer system, intended to generate structures and/or perform rational drug design for I-domain-containing polypeptides or I-domain-containing polypeptide complexes, the system containing atomic coordinate data according to Table 1 or Table 2, and (ii) computer readable media for use in the computer system, having atomic coordinate data according to Table 1 or Table 2 recorded thereon.

20

25

30

By a "computer system" we mean the hardware means, software means and data storage means used to analyse atomic coordinate data. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means and data storage means. Desirably a monitor is provided to visualise structure data. The data storage means may be RAM or means for accessing computer readable media of the invention. Examples of such systems are microcomputer workstations available from Silicon Graphics Incorporated and Sun Microsystems running Unix based, Windows NT or IBM OS/2 operating systems.

By "computer readable media" we mean any media which can be read and accessed directly by a computer e.g. so that the

28

media is suitable for use in the above-mentioned computer system. Such media include, but are not limited to: magnetic storage media such as floppy discs, hard disc storage medium and magnetic tape; optical storage media such as optical discs or CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

By providing such a system or such computer readable media,

the atomic coordinate data can be routinely accessed to model

I-domain-containing polypeptides and complexes thereof, e.g.

using the molecular graphics programs discussed above.

Another aspect of the present invention provides an inhibitor of an I-domain identified or obtained by any method disclosed herein.

An inhibitor may be formulated into a composition comprising at least one additional component.

20

25

30

Following identification of an inhibitor it may be manufactured and/or used in preparation, i.e. manufacture or formulation, of a composition such as a medicament, pharmaceutical composition or drug. These may be administered to individuals.

Thus, the present invention extends in various aspects not only to an inhibitor as provided by the invention, but also a pharmaceutical composition, medicament, drug or other composition comprising such an inhibitor, a method comprising administration of such a composition to a patient, e.g. for treatment (which may include preventative treatment) of a disorder or disease, use of such an inhibitor in manufacture

29

of a composition for administration, e.g. for treatment of a disorder or disease, and a method of making a pharmaceutical composition comprising admixing such an inhibitor with a pharmaceutically acceptable excipient, vehicle or carrier, and optionally other ingredients.

Disorders and diseases which may be treated in accordance with aspects of the present invention include the thrombotic disorders, myocardial infarction and stroke, acute thrombosis associated with angioplasty and with coronary bypass grafting, and with liver fibrosis or thrombotic complication of liver necrosis each of which is prone to occur after hepatitis infection. Inhibition of platelet \$\alpha 2\beta 1\$ may be used to treat longer-term occlusion of arteries, restenosis which commonly occurs after angioplasty as well as atherogenesis as a consequence of arterial vascular smooth muscle cell migration from the medial to the intimal space. Collagen receptor antagonism may be used to provide a novel means of antiplatelet therapy, and to be of benefit in clinical situations where conventional anti-platelet therapy is also effective.

The integrin $\alpha 2\beta 1$, and the closely-related $\alpha 1\beta 1$, for which GFOGER-containing triple-helical peptide is also a ligand, are widely expressed in mammalian cells. These integrins each provide a means of adhesion and migration of cells over the underlying collagen-containing extracellular matrix, and as such, may be essential for the metastasis of tumour cells. Inhibitors of $\alpha 2$ and $\alpha 1$ I-domain function may be used to inhibit metastasis.

30

10

15

20

25

As discussed herein, the present invention will also apply to other I-domains, such as those of αL and αM , inhibition of which will lead to down-regulation of those aspects of

30

leukocyte function which depend upon cell adhesion.

Therapeutically, such aspects of the present invention may be used to prevent excessive leukocyte (both monocyte and neutrophil) infiltration across vascular endothelia which may result in excessive tissue necrosis in sepsis; inhibition may be valuable in controlling inflammation.

An inhibitor of a polypeptide (e.g. Integrin $\alpha 2\beta 1$) may be used in treatment of a disease or disorder in which the polypeptide has a role, and may be administered to any individual, human or non-human, in need thereof.

10

15

20

When an inhibitor according to the present invention is to be given to an individual, administration is preferably in a Aprophylactically effective amount@ or a "therapeutically effective amount" as the case may be, although prophylaxis may be considered therapy), this being sufficient to show benefit to the individual. The actual amount administered, and rate and time-course of administration, will depend on the nature and severity of what is being treated. Prescription of treatment, e.g. decisions on dosage etc., is within the responsibility of general practitioners and other medical doctors.

A composition may be administered alone or in combination with other treatments, either simultaneously or sequentially dependent upon the condition to be treated.

Pharmaceutical compositions according to the present
invention, and for use in accordance with the present
invention, may include, in addition to active ingredient, a
pharmaceutically acceptable excipient, carrier, buffer,
stabiliser or other materials well known to those skilled in

31

the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient. The precise nature of the carrier or other material will depend on the route of administration, which may be oral, or by injection, e.g. cutaneous, subcutaneous or intravenous.

Pharmaceutical compositions for oral administration may be in tablet, capsule, powder or liquid form. A tablet may include a solid carrier such as gelatin or an adjuvant. Liquid pharmaceutical compositions generally include a liquid carrier such as water, petroleum, animal or vegetable oils, mineral oil or synthetic oil. Physiological saline solution, dextrose or other saccharide solution or glycols such as ethylene glycol, propylene glycol or polyethylene glycol may be included.

10

15

20

30

For intravenous, cutaneous or subcutaneous injection, or injection at the site of affliction, the active ingredient will be in the form of a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pH, isotonicity and stability. Those of relevant skill in the art are well able to prepare suitable solutions using, for example, isotonic vehicles such as Sodium Chloride Injection, Ringer's Injection, Lactated Ringer's Injection.

25 Preservatives, stabilisers, buffers, antioxidants and/or other additives may be included, as required.

Examples of techniques and protocols mentioned above can be found in Remington=s Pharmaceutical Sciences, 16th edition, Osol, A. (ed), 1980.

The basis for considering that the principles established here for $\alpha 2$ I-domain will be applicable to other receptors is two-

32

fold. Firstly, the surface of the several I-domains under consideration is very similar. On these grounds alone it is anticipated that antagonists of $\alpha 2$ I-domain will also inhibit other I-domains. Secondly, experiment has demonstrated that this principle does extends to the $\alpha 1$ I-domain, since the triple-helical GFOGER-containing peptide supports adhesion of Ruggli cells mediated by $\alpha 1\beta 1$, and inhibits adhesion of these same cells to collagen and of the purified receptor to collagen [18]. Other collagen-binding I-domains $\alpha 10$, $\alpha 11$ are expected to follow suit.

Receptor antagonists of $\alpha 2$ I-domain provide for identification of antagonists of other I-domains, and the surface of the $\alpha 2$ I-domain embodied in Table 2 will provide valuable assistance in the model building exercise needed for rational drug design targeting these ubiquitous cellular adhesion receptors.

Further aspects and embodiments of the present invention will be apparent to those skilled in the art. The invention will now be illustrated further with reference to experimental support and use of aspects and embodiments of the invention.

Brief Description of Drawings

25 Figure 1 shows the melting curve for peptide Ac[GPO]₂GFOGER[GPO]₃-NH₂. The Figure shows the variation in optical rotation with temperature of a solution of the peptide, indicating the transition from triple helical to random coil conformation as temperature increases.

30

10

15

20

Figure 2 shows the structure of the $\alpha 2$ I-domain in complex with the triple helical synthetic peptide. Beta strands

33

within the I-domain are shown as broad arrows, and alphahelices as coiled ribbons. The backbones only of other loops of the I-domain and of the strands of the triple helical peptide are shown.

5

10

20

25

30

Figure 3 shows that interaction of $\alpha 2$ I-domain and peptide is confined to two strands of triple-helix. The Figure shows the surface of the $\alpha 2$ I-domain in complex with the triple helical synthetic peptide. The footprint of the triple helical peptide on the I-domain surface is shaded, and both sidechains and peptide carbonyls which interact with the I-domain are indicated by arrows.

Figure 4 shows that carbonyl groups on Middle and Trailing 15 strands of the triple-helix interact with I-domain Y185 and H258. Interactions are shown as dashed lines.

Figure 5 illustrates principal conformational changes in I-domain upon binding of peptide. The Figure shows the three-dimensional structure of the $\alpha 2$ I-domain in its resting, unligated form (grey) superimposed on the structure after ligation (dark) with triple-helical Ac-[GPO]₂GFOGER[GPO]₃-NH₂. The peptide is not shown. I-domain α -helices (with their numbers above them) are shown as coiled ribbons, and β -strands as broad arrows. Conformational changes are indicated by outlined arrows.

Figure 6 shows details of the $\alpha 2$ I-domain MIDAS after ligation with triple-helical Ac-[GPO]₂GFOGER[GPO]₃-NH₂. The peptide glutamate (E) is shown, along with the residues of the I-domain which also co-ordinate the metal ion in the ligated (peptide-bound) state of the I-domain. Amino acids of the I-

. 34

domain involved in metal ion co-ordination are indicated by letters (single amino-acid nomenclature) and numbers defining their position within the I-domain sequence. Interactions are indicated by dashed lines.

5

15

20

Experimental Support and Use of Aspects and Embodiments of the Invention

Design, Production and Analysis of a Triple Helical Peptide
that Binds and Crystallises with Integrin I Domain

The peptide Ac-(GPO)₂GFOGER(GPO)₃-NH₂ was synthesized (see below for materials and methods) and shown to adopt triple helical conformation, as demonstrated by the melting curve (Figure 1). This indicated that at cold-room temperature, i.e. below 10°C, more than 90 % of the peptide was in triple helical conformation, determined by optical polarimetry. Other methods such as circular dichroism may be used to provide further confirmation of the triple-helical state of the peptide.

Crystallisation of the Peptide of Example 1 and the I-domain of Integrin $\alpha 2$ and Determination of Atom Co-ordinates

25 Materials and methods are described below.

The co-ordinates of the atoms comprising:

- (i) the triple-helical structure of peptide $Ac-(GPO)_2GFOGER(GPO)_3-NH_2$,
- 30 (ii) the I-domain of the integrin $\alpha 2$ subunit, comprising residues 143 to 326 of the integrin sequence,
 - (iii) water molecules forming part of the crystal complex, and
 - (iv) a metal ion bridging the I-domain and collagen.

35

PCT/GB01/01358

are shown in Table 1.

WO 01/73444

The deduced 3-dimensional structure of the complex is shown in Figures 2 - 6.

5

The collagen-like peptide adopts its characteristic triple-helical structure with a 1-residue displacement between strands, these being in parallel rather than anti-parallel alignment. This allows us to define the strands as leading, middle and trailing, with the trailing strand being displaced towards the N-terminus of the triple-helix, relative to the middle strand, and the leading strand displaced towards the C-terminus of the trimeric structure. This is illustrated in Figure 2.

15

20

25

30

10

In turn, this allows the strands to be seen as non-equivalent; the environment of any specific amino acid is defined by its relationship with different amino acids in each adjacent strand, and so the structure is lacking in radial symmetry. The significance of this is that, if the amino acids interacting with the I-domain were confined to a single strand, any of the three strands could serve this function, and crystallisation would be unlikely, given that there would be three, non-equivalent peptide:I-domain complexes as a consequence of the stagger between the different strands.

If two strands engage the I-domain, then two of the three possible orientations of the helix will suffice (after axial rotation by 120° and translation of the helix by one residue) but the third orientation will be non-identical and unfavourable.

If three strands engage the I-domain, then a unique complex

36

will result.

Surprisingly, given that crystal formation of the $\alpha 2$ I-domain:peptide complex is observed, the second possibility proves to be the case. Complex formation could in principle occur in either of two conformations, therefore. The successful crystallisation shows that only one of the two possible orientations occurs within the complex is allowed and suggests that interaction between the ends of adjacent triple-helices within the crystal lattice favours one of the two possible complexes.

This helix:helix interaction is permitted by the unique overlap between the C-termini of triple-helical peptides in adjacent unit cells, which are related by a two-fold axis. This may be the cause of the bend seen in the complexed helix, although it is also possible that interactions of the triple-helix with the I-domain support this perturbation of the triple-helix linear structure.

20

25

30

10

15

Interaction with the I-domain is restricted to the middle and trailing strands. Multiple sites of interaction are shown in Figure 3. These include interactions of carbonyl groups from the peptide bonds of the triple helix with specific residues within the I-domain (some of which are shown in detail in Figure 4), as well as the key interactions of the middle strand E (which co-ordinates the metal ion) and R residue (which forms a salt-bridge with I-domain D219) and trailing strand F residue. An inhibitor of receptor interaction with collagen and/or function may inhibit one or more of these interactions, and this may be by making the interactions.

The changes in the $\alpha 2$ I-domain upon ligation by the GFOGER-

37

containing peptide may be summarised thus:

Upon complex formation between the I-domain and the collagenlike peptide, the C-Helix unwinds while the connecting loop coils up to form an extra turn of Helix $\alpha 6$.

Helix $\alpha 7$ undergoes a remarkable displacement upon ligand binding. This helix translates axially towards the base of the I-domain (the C-terminal end of the beta-sheet) by almost its own length, a distance of about 1 nm.

The residues responsible for co-ordinating the cation in the MIDAS are re-arranged, allowing the glutamate residue of the collagen sequence GFOGER to approach the apex of, and so complete, the octahedral co-ordination shell of the divalent cation.

An overview of these changes is shown in Figure 5.

The detail of these changes is provided as follows:

Comparison between the collagen-bound and unligated α2 I
domain shows that the central beta-sheet does not change its

conformation upon ligation (RMSD = 0.03 nM), providing a

convenient reference frame for structural comparison.

25

30

10

15

The structural changes on binding ligand may be described as follows. The metal ion moves 0.26 nm towards MIDAS Loop 2 in order to make a direct bond with T221. MIDAS Loop 1 follows the movement of the metal in order to maintain its direct bonds via S153 and S155. MIDAS Loop 3 undergoes a radical rearrangement: the sidechain of D254 moves laterally so that its direct bond to the metal is lost; the G255 peptide bond flips by 180E so that its C α moves \sim 0.4 nm away from the metal

38

ion; and E256 forms a new water-mediated bond to the metal. The outcome of these events is shown in Figure 6. The movement of Loop 1 towards Loop 3 brings the side chains of Y157 and H258 0.3 nm closer together such that they both fit into grooves of the triple helix.

10

15

20

25

The shift of Loop 1 and the rearrangement of Loop 3 trigger a reorganization of the C-helix and Helix α7. Loop 1 is packed against α 7 in the unliganded structure, and the large concerted movement of Loop 1 and Helix al appears to Asqueeze out@ the $\alpha 7$ helix, and it drops downwards by 1 nm. This movement breaks a partly buried salt bridge between E318 from $\alpha 7$ and R288 from the C-helix. The flip of Loop 3, which is packed closely against Helix $\alpha 6$, forces a rearrangement of the sidechain of the buried L296 that would create a close contact with L286 from the C-helix. In response to the steric pressure between these leucines, and the loss of the stabilizing E318-R288 salt-bridge, the C-helix unwinds while the connecting loop coils up to form an extra turn at the Nterminus of helix $\alpha 6$. The uncoiling of the C-helix produces a dramatic 180E rotation and shift of Y285, such that its hydroxyl oxygen moves by 1.7 nm from its location above the MIDAS motif to form a hydrogen bond with S316 at the top of the repositioned $\alpha 7$. By contrast, L286 moves 0.4 nm towards the collagen, where it makes van der Waals contacts with the trailing strand phenylalanine, and R288 moves 0.6 nm closer to the MIDAS motif, where it forms a water-mediated salt-bridge to D254.

30 Inhibition of any one or more of these structural changes may be used to inhibit receptor interaction with collagen and/or function. An inhibitor or receptor function may inhibit

39

totally or partially one or more of the conformational changes.

Discussion

5

10

15

20

25

30

Several notable features of the structure are revealed, which shed light upon the function of the I-domain as a dynamic piece of cellular machinery, capable of regulating cell function, and whose own function may be regulated by the cell. These conclusions arise from the comparison of the ligated and unligated structures of the $\alpha 2$ I-domain, detailed above.

Firstly, it appears that the role of the C-helix is to regulate ligand binding, since it controls access to the MIDAS. Secondly, the translation of Helix 7 upon ligand binding could serve either of two functions, to regulate the position of the C-helix from within the cell, i.e. to increase the affinity of the integrin, or to transmit signals from the ligated MIDAS to the body of the integrin and thence to the cell. Plausibly, the same molecular movement could serve both purposes.

This level of understanding supports several approaches to rational drug design, assuming that the therapeutic intent is to inhibit integrin function.

Firstly, small molecule analogues of collagen may be designed, of similar shape and charge distribution to the key residues of the sequence GFOGER, which bind to the complementary structure, the binding cleft of the α2 I-domain. Solution of the complex structure provided here enables establishment of the critical determinants of ligand binding, location of key atomic interactions and assignment of binding energies. This

40

information provides for in silico construction of integrin $\alpha 2\beta 1$ antagonists, preferably focussing upon the integrin MIDAS.

5 Secondly, molecules that inhibit the conformational changes described may be designed. For example, small molecule ligands may be designed for regions adjacent to the C-helix to stabilise it in the closed conformation so preventing ligand binding, as discussed already herein. This approach offers an alternative to direct antagonism of the MIDAS.

Similarly, the regions of the I-domain at the C-terminus of Helix $\alpha 7$ (close to the interface between the I-domain and the rest of the integrin $\alpha 2$ subunit) may be targeted. This enables design of small molecules which prevent translation of the helix from occurring, with the consequence of locking the integrin in its inactive conformation, preventing both collagen binding and inwards signal transduction from taking place.

20

25

30

15

Furthermore, the different integrins characterised to date parallel one another in both structure and function. Hence, the other I-domain-containing integrins, known at present to include $\alpha 1$, $\alpha 2$, $\alpha 10$, $\alpha 11$, αD , αE , αL , αM and αX , may be targetted in accordance with the present invention. For instance an inhibitor of $\alpha 2$ or $\alpha 1$ identified using the present invention may be tested for ability to inhibit one or more other integrins containing an I-domain. Additionally, the data presented here allow predictions to be made concerning the active (ligated) form of the integrin based upon the conformation of the resting integrin, or from primary sequence using the co-ordinates of known structures such as $\alpha 2$ I-domain

41

or αL I-domain as a model. Thus a region of an I-domain considered by analogy with the ligated $\alpha 2$ I-domain crystal structure information presented herein to be involved in ligand binding and/or involved in a conformational change on ligand binding, may be targeted, for instance by means of an antibody or other specific binding molecule.

These concepts may be extended to other, non-integrin proteins, such as von Willebrand factor, which contain I-domains and which might undergo activation in an analogous fashion.

The knowledge of the structural changes occurring in the integrin upon ligation presented here provides such proteins as targets for rational drug design.

Materials and Methods

10

15

20

25

30

Crystallization and data collection

Recombinant $\alpha 2-1$ domain and a synthetic collagen-like peptide, Ac-GPO)₂GFOGER(GPO)₃-NH₂, were produced [18, 26]. See also WO99/50281. Crystallization experiments were performed at 4EC using the sitting drop vapor diffusion method. Initial conditions were established using a 2 ml sample of protein in buffer 0.1 M Tris pH 7.5, 0.15M NaCl, 2 mM MgCl₂ (or MnCl₂) and peptide in 10 mM acetate pH 5.0 mixed in a ratio of 1:4 added to 2 ml of well solution consisting of 25 mM sodium cacodylate pH 6.5, 20% glycerol and 20-30% PEG 5K MME. Small bunched crystals appeared after 2-4 days and had flattened rod-like morphology with dimensions 0.025 x 0.025 x 0.1 mm³. The crystals adopt space group P2₁2₁2₁ with cell dimensions a = 4.2 nm, b = 4.84 nm, c = 11.45 nm. Crystal growth was dependent on

42

the presence and concentration of divalent cation but was unaffected by the cation species. Similar crystals grew in the presence of Mg2+, Mn2+, Co2+, Cd2+, Ni2+ and Zn2+ ions. Larger single crystals were rare and improved only marginally by making small changes in the cation concentration and the protein:peptide ratio. Data were collected at the Daresbury Synchrotron Radiation Source using a single crystal flash frozen in a cryo-stream of nitrogen at a temperature of 100 K. Data set Native I was collected from station 9.6 using the Quantum4 CCD detector to 0.25 nm resolution. This crystal was grown in 1 mM ZnCl₂ using a protein to triple helical peptide ratio of 1:2.5. A high resolution data set to 0.21 nm resolution (Native II) was subsequently collected on SRS station 7.2 using a MAR345 scanner. This crystal was grown in 1 mM CoCl₂ using a protein to peptide ratio of 1:1.6. Data were reduced with DENZO and scaled with SCALEPACK [29]. The overall I/sI for Native II is 12.0 (2.9 in 2.17-2.1 A shell) with an R_{merge} of 8.9% (34.4% in outer shell), an average redundancy of 2.9 and completeness of 98.2% in the range 20-2.1 A (14483 reflections).

Structure determination and refinement

10

15

20

25

30

Molecular replacement was performed on the Native I data set with AMORE [30] using the crystal structure of the uncomplexed $\alpha 2\text{-I}$ domain as the search model. A clear solution was found in the cross rotation function and subsequent translation function. The initial R_{WORK} was 52.0% with an R_{FREE} of 54.2%. A $2F_{\text{o}}\text{-}F_{\text{c}}$ electron density map calculated at 0.25 nm was of high quality with changes in the MIDAS motif readily apparent. Little density for the collagen peptide could be observed in the $2F_{\text{o}}\text{-}F_{\text{c}}$ or $F_{\text{o}}\text{-}F_{\text{c}}$ map at this stage. Several rounds of model building and refinement of the I domain using XTALVIEW [31]

43

resulted in greatly improved density for several regions of the domain which had undergone structural change. Following rebuilding of the I domain some density for the collagen peptide was apparent in the $2F_{\text{o}}\text{-}F_{\text{c}}$ and $F_{\text{o}}\text{-}F_{\text{c}}$ electron density maps. Solvent flattening using a molecular mask constructed to encompass the predicted peptide region provided unbiased improvement of the peptide electron density, and 24 alanine residues were inserted. At this stage the identification of hydroxyproline hydroxyl groups in the C-terminal GPO triplets allowed the correct assignment of the collagen chain direction. Identification of GFOGER sidechain density and the C-terminal ends of each chain allowed correct positioning of the leading, middle and trailing strands. Several rounds of model building and refinement allowed complete identification of the collagen peptides. At this stage data to 0.21 nm resolution became available from the native II data set showing an initial R_{WORK} of 38.6% and an R_{FREE} of 47.1% against the refined model. Further cycles of model building and refinement, including the insertion of 398 water molecules, gave a final R_{WORK} of 0.203 and R_{FREE} of 0.276 (5% of the reflections). The RMS deviations from ideal bond length and angles are 0.0006 nm and 1.41E. Good density is observed for I domain residues 142 to 326 and for all collagen residues, although the N-terminal GPO triplet of each strand is more mobile than the others. The coordinates and structure factors

have been deposited with the PDB (code assigned; 1dzi).

10

15

20

PCT/GB01/01358

References

WO 01/73444

- 1. WO99/50281
- 2. Barnes (1988) in Collagen, Vol 1: Biochemistry, M.E.
- 5 Nimni, Ed. CRC press: Boca Raton, Fl. p. 275-290.
 - 3. Knight et al. (1999) Cardiovasc. Res. 41:450-457.
 - 4. Werkmeister & Ramshaw (1991) Biochem. J. 274:895-898.
 - 5. Bella et al. (1994) Science 266:75-81.
 - 6. Yang et al. (1997) J. Biol. Chem. 272:28837-28840.
- 10 7. Morton et al. (1995) Biochem. J. 306:337-344.
 - 8. Kehrel et al. (1998) Blood 91:491-499.
 - 9. Gibbins et al. (1997) FEBS Lett. 413:255-259.
 - 10. Gibbins et al. (1996) J. Biol. Chem. 271:18095-18099.
 - 11. Erb et al. (1997) Biochemistry 36:7395-7402.
- 15 12. Sixma et al. (1997) Thromb. Haemost. 78:434-438.
 - 13. Moroi & Jung (1997) Thromb. Haemost. 78:439-444.
 - 14. Barnes et al. (1998) Curr. Opin. Haematol. 5:314-320.
 - 15. Fields et al. (1993) J. Biol. Chem. 268:14153-14160.
 - 16. Morton et al. (1997) J. Biol. Chem. 272:11044-11048.
- 20 17. Knight et al. (1998) J. Biol. Chem. 273:33287-33294.
 - 18. Knight et al. (2000) J. Biol. Chem. 275:35-40.
 - 19. Hynes (1992) Cell 69:11-25.
 - 20. Humphries (1990) J. of Cell Science 97:585-592.
 - 21. Kuhn K & Eble J (1994) Trends in Cell Biol. 4:256-261.
- 25 22. Casasnovas et al. (1997) Nature 387:312-315.
 - 23. Springer (1997) Proc. Natl. Acad. Sci. (USA) 94:65-72.
 - 24. Fujimura & Phillips (1983) J. Biol. Chem. **258**:10247-10252.
 - 25. Tuckwell et al. (1995) J. Cell Sci. 108:1629-1637.
- 30 26. Emsley et al. (1997) J. Biol. Chem. 272:28512-28517...
 - 27. Dickeson et al. (1997) J. Biol. Chem. 272:7661-7668.
 - 28. Ducruix & Giege (1992) in Crystallisation of nucleic acids and proteins: A practical approach. IRL press: Oxford.

- 29. Otwinowski (1993) in *Data collection and processing*, L. Sawyer, N. Isaacs, and S. Bailey, Ed. SDERC: Daresbury, UK. p. 59-62.
- 30. Navaza (1994) Acta Cryst. A50:157-163.
- 5 31. McRee (1999) J. Struct. Biol. 125:156-165.
 - All documents cited anywhere in this text are incorporated by reference.

15

20

PCT/GB01/01358 WO 01/73444

46

TABLE 1 - Co-ordinates of the crystal formed from the a2 Idomain and triple-helical peptide Ac-(GPO)2GFOGER(GPO)3-NH2 in complex.

The sequence of each molecular component of the crystal 5 complex is provided:

Fifteen consecutive lines define the amino acid sequence beginning with the N-terminal Alanine (ALA) of the recombinant I-domain, which contains 185 amino acid residues and is defined as A.

Two consecutive lines define the sequence of the 21 amino acids and C-terminal amide of the first chain of the triple helical peptide, defined as B.

Four further consecutive lines define identically the sequence of the second and third chains of the triple-helical peptide, defined as C and D.

Thirty-one lines show the water molecules (HOH) which are comprised within the structure of the complex as water of crystallisation, defined collectively as E.

One line defines the cobalt ion (CO) as F. 25

One line (CRYST1) defines the dimensions of the crystal cell, and its spacegroup.

Atoms comprising the crystal complex are listed sequentially, identified in Columns 1 and 2; Column 3 defines each specific atom within an amino acid residue; Column 4 defines the identity and position of the amino acid within the sequence,

WO 01/73444

10

47

PCT/GB01/01358

or of other chemical species such as water (HOH), and the chain (defined above as A, B, C, D, E or F) containing the specific atom; Columns 5, 6 and 7 provide the X, Y and Z coordinates respectively of the specific atom; Column 8 provides the occupancy, that is presence or absence for the purposes of analysis; Column 9 provides a parameter of thermal mobility known as the B-factor; Column 10 provides an alternative means of identifying the chain in which the atom resides, useful for certain computer software packages (A defines atoms as being within Chain A, the I-domain: CA, CB and CD identify atoms as residing within the triple-helical peptide chains, Collagen A, Collagen B or Collagen C: W defines an atom as belonging to water, and M as being the metal ion).

15 1 A 185 ALA LEU ILE ASP VAL VAL VAL VAL CYS ASP GLU SER ASN SEORES 2 A 185 SER ILE TYR CPR TRP ASP ALA VAL LYS ASN PHE LEU GLU SEORES 3 A 185 LYS PHE VAL GLN GLY LEU ASP ILE GLY PRO THR LYS THR SEORES 4 A 185 GLN VAL GLY LEU ILE GLN TYR ALA ASN ASN PRO ARG VAL SEQRES 5 A 185 VAL PHE ASN LEU ASN THR TYR LYS THR LYS GLU GLU MET 20 SEQRES 6 A 185 ILE VAL ALA THR SER GLN THR SER GLN TYR GLY GLY ASP SEQRES SEORES 7 A 185 LEU THR ASN THR PHE GLY ALA ILE GLN TYR ALA ARG LYS 8 A 185 TYR ALA TYR SER ALA ALA SER GLY GLY ARG ARG SER ALA SEORES 9 A 185 THR LYS VAL MET VAL VAL VAL THR ASP GLY GLU SER HIS SEQRES SEQRES 10 A 185 ASP GLY SER MET LEU LYS ALA VAL ILE ASP GLN CYS ASN 25 SEQRES 11 A 185 HIS ASP ASN ILE LEU ARG PHE GLY ILE ALA VAL LEU GLY SEQRES 12 A 185 TYR LEU ASN ARG ASN ALA LEU ASP THR LYS ASN LEU ILE SEQRES 13 A 185 LYS GLU ILE LYS ALA ILE ALA SER ILE PRO THR GLU ARG 14 A 185 TYR PHE PHE ASN VAL SER ASP GLU ALA ALA LEU LEU GLU SEQRES 30 SEQRES 15 A 185 LYS ALA GLY 22 GLY PRO HYP GLY PRO HYP GLY PHE HYP GLY GLU ARG GLY SEQRES 1 B 22 PRO HYP GLY PRO HYP GLY PRO HYP NHH SEORES 2 B 1 C 22 GLY PRO HYP GLY PRO HYP GLY PHE HYP GLY GLU ARG GLY SEORES 2 C 22 PRO HYP GLY PRO HYP GLY PRO HYP NHH SEQRES 1 D 22 GLY PRO HYP GLY PRO HYP GLY PHE HYP GLY GLU ARG GLY 35 SEQRES 2 D 22 PRO HYP GLY PRO HYP GLY PRO HYP NHH SEQRES SEORES SEQRES SEQRES 40 SEQRES SEQRES SEQRES SEQRES SEQRES 45 SEQRES

PCT/GB01/01358

WO 01/73444

SEQRES 11 E 400 SEQRES 12 E 400 13 E SEQRES 400 14 E 400 SEQRES 5 15 E SEQRES 400 SEQRES 16 E 400 SEQRES 17 E 400 SEORES 18 E 400 SEQRES 19 E 400 10 SEQRES 20 E 400 SEQRES 21 E 400 SEQRES 22 E 400 23 E 400 SEQRES 400 SEQRES 24 E 15 SEQRES 25 E 400 SEQRES 26 E 400 SEQRES 27 E 400 SEQRES 28 E 400 SEQRES 29 E 400 20 SEQRES 30 E 400 нон нон нон нон нон нон нон нон нон 31 E 400 SEQRES SEQRES 1 F 1 CO 48.377 114.545 90.00 90.00 90.00 P 21 21 21 CRYST1 41.994 25 11.648 -13.520 47.836 1.00 34.96 MOTA 1 CB ALA A 142 Α C 9.671 -12.738 49.142 1.00 34.94 Α ATOM 2 ALA A 142 8.835 -13.081 49.983 1.00 35.57 Α MOTA 3 0 ALA A 142 46.820 9.402 -13.644 1.00 35.53 Α N ALA A 142 MOTA 4 10.165 -13.735 48.096 1.00 34.99 Α 30 5 CA ALA A 142 MOTA 10.173 -11.504 49.092 1.00 33.30 Α 6 N LEU A 143 ATOM 9.763 -10.523 50.085 1.00 30.95 Α MOTA 7 CA LEU A 143 10.863 -10.384 51.155 1.00 30.60 Α LEU A 143 MOTA 8 CB -9.955 50.765 1.00 31.70 Α LEU A 143 12.286 CG ATOM 9 -8.444 50.664 Α 1.00 32.35 35 12.375 MOTA 10 CD1 LEU A 143 Α 13.275 -10.423 51.811 1.00 30.98 CD2 LEU A 143 MOTA 11 9.304 -9.133 49.630 1.00 29.03 Α ATOM 12 C LEU A 143 -8.776 49.845 1.00 28.59 Α 8.144 MOTA 0 LEU A 143 13 -8.354 48.992 1.00 26.76 Α 10.174 MOTA 14 N ILE A 144 9.788 -6.988 48.623 1.00 24.45 Α 40 MOTA 15 CA ILE A 144 -5.982 49.660 1.00 24.71 A ILE A 144 10.354 MOTA 16 CB -4.583 49.339 1.00 24.79 A MOTA CG2 ILE A 144 9.884 17 CG1 ILE A 144 9.898 -6.365 51.072 1.00 25.36 A MOTA 18 10.517 -5.520 52.173 1.00 25.41 A CD1 ILE A 144 **ATOM** 19 10.151 -6.446 47.238 45 1.00 22.83 Α ATOM 20 С ILE A 144 ILE A 144 11.317 -6.426 46.842 1.00 22.87 Α MOTA 21 0 ATOM 22 N ASP A 145 9.135 -5.980 46.520 1.00 19.93 Α 45.210 1.00 18.20 A 23 CA ASP A 145 9.330 -5.386 ATOM 8.371 -6.002 44.181 1.00 17.90 Α 24 CB ASP A 145 MOTA 8.865 -- 7.340 43.639 1.00 18.99 Α 50 ATOM 25 CG ASP A 145 10.071 -7.645 43.799 1.00 21.43 А ATOM 26 OD1 ASP A 145 8.056 -8.077 43.034 1.00 16.50 Α MOTA 27 OD2 ASP A 145 9.056 -3.886 45.363 1.00 17.28 Α С ASP A 145 ATOM 28 7.903 -3.463 45.478 1.00 16.93 Α ASP A 145 MOTA 29 0 10.120 -3.087 45.383 55 1.00 16.46 А VAL A 146 MOTA 30 N 9.981 -1.644 45.542 1.00 15.31 A MOTA 31 CA VAL A 146

PCT/GB01/01358

WO 01/73444

	ATOM	32	CB	VAL A	146	10.946	-1.092	46.615	1.00 16.68	A
	ATOM	33	CG1	VAL A	146	10.681	0.395	46.826	1.00 17.60	A
	MOTA	34	CG2	VAL A	146	10.780	-1.846	47.916	1.00 17.29	A
	MOTA	35	C	VAL A	146	10.231	-0.848	44.268	1.00 14.93	A
5	MOTA	36	0	VAL A	146	11.275	-0.984	43.630	1.00 14.75	A
	ATOM	37	N	VAL A	147	9.270	-0.002	43.916	1.00 13.85	A
	MOTA	38	CA	VAL A	147	9.385	0.846	42.741	1.00 13.06	A
	MOTA	39	CB	VAL A	147	8.215	0.624	41.751	1.00 14.12	A
	MOTA	40	CG1	VAL A	147	8.284	1.650	40.628	1.00 12.57	A
10	MOTA	41	CG2	VAL A	147	8.270	-0.797	41.184	1.00 13.32	A
	ATOM	42	C	VAL A	147	9.384	2.309	43.165	1.00 12.08	A
	MOTA	43	0	VAL A	147	8.431	2.784	43.791	1.00 12.23	A
	MOTA	44	N	VAL A	148	10.468	3.004	42.831	1.00 11.18	A
	MOTA	45	CA	VAL A		10.625	4.424	43.130	1.00 9.94	A
15	MOTA	46	CB	VAL A		12.106	4.779	43.401	1.00 10.37	A
	ATOM	47		VAL A		12.258	6.282	43.621	1.00 10.02	A -
	ATOM	48		VAL A		12.608	4.016	44.615	1.00 11.21	A
	ATOM	49	С	VAL A		10.144	5.254	41.942	1.00 10.76	A
	ATOM	50	0	VAL A		10.622	5.078	40.822	1.00 11.23	A
20	ATOM	51	N	VAL A		9.195	6.152	42.192	1.00 10.14	A
	MOTA	52	CA	VAL A		8.650	7.027	41.154	1.00 9.36	A
	ATOM	53	CB	VAL A		7.099	6.991	41.177	1.00 8.62	A
	MOTA	54		VAL A		6.523	7.938	40.130	1.00 6.99	A
0.5	MOTA	55		VAL A		6.617	5.553	40.929	1.00 5.19	A
25	MOTA	56	С	VAL A		9.186	8.421	41.493	1.00 10.37	A
	MOTA	57	0	VAL A		8.677	9.099	42.392	1.00 12.43	A
	MOTA	58	N	CYS A		10.207	8.844	40.757	1.00 8.87	A
	MOTA	59	CA	CYS A		10.890	10.108	41.027	1.00 9.53 1.00 7.66	A A
2.0	MOTA	60	CB	CYS A		12.389	9.812	41.159	1.00 7.88	A
30	MOTA	61	SG	CYS A		13.406	11.182 11.283	41.672 40.073	1.00 8.78	A
	MOTA	62	C	CYS A		10.678 11.035	11.229	38.895	1.00 10.33	A
	ATOM	63	o N	CYS A		10.115	12.356	40.618	1.00 10.33	A
	ATOM	64 65	CA	ASP A		9.822	13.591	39.890	1.00 9.11	A
35	ATOM	66	CB	ASP A		9.110	14.552	40.840	1.00 11.54	A
33	ATOM	67	CG	ASP A		8.410	15.689	40.129	1.00 11.85	A
	ATOM	68		ASP A		8.906	16.171	39.091	1.00 14.28	A
	MOTA MOTA	69		ASP A		7.357	16.113	40.634	1.00 12.34	A
	ATOM	70	C	ASP A		11.105	14.256	39.356	1.00 10.14	A
40	ATOM	71	0	ASP A		12.012	14.575	40.120	1.00 8.58	A
40	ATOM	72	N	GLU A		11.176	14.470	38.045	1.00 9.69	A
	ATOM	73	CA	GLU A		12.349	15.100	37.454	1.00 10.74	A
	ATOM	74	CB	GLU A		13.097	14.106	36.548	1.00 12.08	A
	ATOM	75	CG	GLU A		12.376	13.735	35.251	1.00 12.78	A
45	ATOM	76	CD	GLU A		13.161	12.738	34.402	1.00 13.97	A
	MOTA	77		GLU A		14.400	12.675	34.534	1.00 12.78	A
	ATOM	78		GLU A		12.540	12.024	33.588	1.00 14.91	A
	ATOM	79	C	GLU A		11.949	16.344	36.661	1.00 11.12	A
	ATOM	80	0	GLU A		12.709	16.830	35.823	1.00 11.48	A
50	ATOM	81	N	SER A		10.758	16.865	36.942	1.00 10.14	A
	MOTA	82	CA	SER A		10.266	18.048	36.252	1.00 9.70	A
	ATOM	83	CB	SER A		8.803	18.306	36.624	1.00 10.82	A
	ATOM	84	OG	SER A		8.654	18.418	38.025	1.00 7.53	A
	ATOM	85	c	SER A		11.128	19.264	36.589	1.00 10.23	A
55	ATOM	86	0	SER A		11.912	19.235	37.539	1.00 10.08	A
	MOTA	87	N	ASN A		10.976	20.327	35.801	1.00 8.89	A

	ATOM	88	CA	ASN A	A 154	11.760	21.548	35.973	1.00 9.70	A
	ATOM	89	CB	ASN A	A 154	11.320	22.621	34.959	1.00 9.07	A
	MOTA	90	CG	ASN A	A 154	11.755	22.300	33.524	1.00 12.54	. A
	MOTA	91	OD1	ASN I	A 154	12.534	21.373	33.284	1.00 13.50	A
5	MOTA	92	ND2	ASN A	A 154	11.262	23.084	32.568	1.00 11.08	A
	MOTA	93	С	ASN I	A 154	11.713	22.144	37.369	1.00 9.06	A
	MOTA	94	0	ASN Z	A 154		22.629	37.870	1.00 7.54	A
	ATOM	95	N		A 155	10.539	22.093	37.997	1.00 10.29	A
	MOTA	96	CA		A 155	10.352	22.672	39.327	1.00 9.98	A
10	MOTA	97	CB		A 155	8.874	22.642	39.710	1.00 9.88	A
	ATOM	98	OG		A 155	8.513	21.362	40.193	1.00 11.38	A
	ATOM	99	C		A 155	11.159	22.002	40.435	1.00 10.21	A
	ATOM	100	0		A 155	11.381	22.601	41.483	1.00 9.99	A
	ATOM	101	N		A 156	11.595	20.766	40.211	1.00 9.91	A
15	ATOM	102	CA		A 156	12.364	20.047	41.219	1.00 9.61	A
	ATOM	103	CB		A 156	12.462	18.546	40.861	1.00 8.85	A
	ATOM	104		ILE A		13.467	17.846	41.775	1.00 8.95 1.00 8.39	A A
	ATOM	105		ILE A		11.070	17.898	40.980	1.00 8.39 1.00 2.79	A
20	ATOM	106		ILE A		10.482	17.937	42.394 41.406	1.00 2.79	A
20	ATOM	107	C		A 156	13.761	20.647	40.439		A
	ATOM	108	0		A 156	14.466	20.922		1.00 9.93 1.00 8.74	A
	ATOM	109	N		A 157	14.140	20.849	42.667 43.028	1.00 9.40	A
	MOTA	110	CA		A 157	15.426 15.376	21.448 22.955	42.766	1.00 13.35	A
25	ATOM	111	CB CG		A 157 A 157	16.677	23.689	43.009	1.00 14.09	A
25	ATOM	112 113		TYR A		17.557	23.943	41.964	1.00 14.70	A
	ATOM ATOM	114	CE1	TYR I		18.757	24.621	42.182	1.00 15.23	A
	ATOM	115		TYR A		17.026	24.127	44.289	1.00 15.58	A
	ATOM	116	CE2	TYR A		18.222	24.802	44.520	1.00 14.41	A
30	ATOM	117	CZ		A 157	19.080	25.047	43.465	1.00 15.28	A
	ATOM	118	OH		A 157	20.258	25.725	43.687	1.00 14.42	A
	ATOM	119	C		A 157	15.662	21.217	44.523	1.00 9.98	A
	ATOM	120	0		A 157	14.727	21.322	45.318	1.00 8.35	A
	ATOM	121	N		A 158	16.903	20.875	44.924	1.00 10.14	A
35	ATOM	122	CD		A 158	17.241	20.924	46.358	1.00 8.97	A
	ATOM	123	CA		A 158	18.121	20.678	44.124	1.00 11.99	A
	ATOM	124	CB	CPR Z	A 158	19.218	21.139	45.071	1.00 10.42	A
	ATOM	125	ÇG	CPR A	A 158	18.726	20.604	46.372	1.00 10.37	A
	ATOM	126	С	CPR I	A 158	18.256	19.195	43.781	1.00 11.98	A
40	ATOM	127	0	CPR I	A 158	17.978	18.347	44.618	1.00 13.30	A
	ATOM	128	N	TRP A	A 159	18.695	18.879	42.569	1.00 13.37	A
	ATOM	129	CA	TRP I	A 159	18.816	17.481	42.177	1.00 14.62	A
	MOTA	130	CB	TRP I	A 159	19.273	17.364	40.716	1.00 13.17	A
	MOTA	131	CG	TRP 2	A 159	19.038	16.001	40.141	1.00 12.86	A
45	MOTA	132	CD2	TRP A	A 159	17.773	15.328	40.002	1.00 12.49	A
	ATOM	133	. CE2	TRP A	A 159	18.039	14.052	39.453	1.00 12.27	A
	MOTA	134	CE3	TRP A	A 159			40.286	1.00 12.37	A
	MOTA	135		TRP I			15.135	39.682	1.00 11.66	A
	MOTA	136		TRP A			13.960	39.269	1.00 10.69	A
50	ATOM	137		TRP I			13.122	39.183	1.00 12.98	A
	MOTA	138		TRP				40.019	1.00 12.83	A
	ATOM	139		TRP			13.490	39.471	1.00 12.43	A A
	ATOM	140	C		A 159			43.098	1.00 14.85 1.00 16.17	A A
CC	ATOM	141	0		A 159			43.352 43.603	1.00 16.17	A
55	ATOM	142	N		A 160			43.603	1.00 15.74	A
	MOTA	143	CA	ASP A	A 160	21.748	16.761	44.514	1.00 17.33	A

51 .

	MOTA	144	CB	ASP	A	160	22.715	17.808	45.077	1.00	20.00	. A
	MOTA	145	CG	ASP	A	160	23.797	18.194	44.090	1.00	25.18	A
	MOTA	146	OD1	ASP	A	160	24.384	19.282	44.269	1.00	28.54	A
	MOTA	147	OD2	ASP	A	160	24.071	17.414	43.148	1.00	25.23	A
5	ATOM	148	С	ASP	A	160	21.029	16.077	45.676	1.00	15.95	A
	ATOM	149	0	ASP	A	160	21.381	14.967	46.065	1.00	14.81	A
	ATOM	150	N	ALA	A	161	20.032	16.757	46.232	1.00	13.82	A
	ATOM	151	CA	ALA	A	161	19.265	16.213	47.342		13.97	A
	MOTA	152	CB	ALA	A	161	18.284	17.260	47.863	1.00	13.79	A
10	ATOM	153	C	ALA	A	161	18.513	14.963	46.897		13.98	A
	MOTA	154	0	ALA	A	161	18.370	14.005	47.660		13.02	A
	MOTA	155	N	VAL	A	162	18.033	14.973	45.658		14.83	A
	MOTA	156	CA	VAL	Α	162	17.303	13.826	45.128		14.59	A
	MOTA	157	CB	VAL			16.614	14.190	43.794		15.34	A
15	ATOM	158		VAL			15.829	12.991	43.254		14.23	A
	ATOM	159		VAL			15.679	15.372	44.011		13.44	A
	ATOM	160	С	VAL			18.236	12.621	44.934		14.98	A
	MOTA	161	0	VAL			17.923	11.511	45.365		15.96	A -
	MOTA	162	N	LYS			19.380	12.840	44.290		15.39	A
20	MOTA	163	CA	LYS			20.347	11.764	44.074		15.08	A -
	MOTA	164	CB	LYS			21.593	12.289	43.358		18.00	A
	MOTA	165	CG	LYS			21.405	12.638	41.892		21.39	A
	ATOM	166	CD	LYS			22.710	13.194	41.333		24.66	A
0.5	MOTA	167	CE	LYS			22.648	13.384	39.837		26.80	A
25	ATOM	168	NZ	LYS			23.850	14.103	39.348		29.83	A
	MOTA	169	C	LYS			20.781	11.158	45.409		14.49	A
	ATOM	170	0	LYS			20.870	9.936	45.553		11.86	A
	MOTA	171	N	ASN			21.067	12.020	46.380		13.30	A
2.0	MOTA	172	CA	ASN			21.494	11.555	47.691		13.86 13.54	A A
30	MOTA	173	CB	ASN			21.719	12.731 12.286	48.633 50.018		13.56	A
	MOTA	174	CG	ASN ASN			22.110	12.200	50.918		12.49	A
	MOTA	175		ASN			21.273 23.386	11.985	50.195		13.32	A
	ATOM	176 177	C	ASN			20.462	10.618	48.296		14.39	A
35	ATOM		0	ASN			20.797	9.564	48.847		14.01	A
33	ATOM	178 179	N	PHE			19.201	11.013	48.194		14.20	A
	ATOM		CA	PHE			18.123	10.202	48.721		13.04	A
	MOTA MOTA	180 181	CB	PHE			16.785	10.899	48.509		12.24	A
	ATOM	182	CG	PHE			15.613	10.061	48.911		11.89	A
40	ATOM	183		PHE	_		15.289	9.896	50.250		12.66	A
	ATOM	184		PHE			14.882	9.370	47.954		12.19	A
	MOTA	185		PHE			14.251	9.050	50.630		12.76	A
	ATOM	186		PHE			13.848	8.524	48.323		12.35	A
	ATOM	187	cz	PHE			13.536	8.363	49.664		11.87	A
45	MOTA	188	C	PHE			18.093	8.835	48.036		13.02	A
	ATOM	189	o	PHE			18.173	7.808	48.695		14.50	A
	ATOM	190	N	LEU			17.975	8.834	46.711		13.00	A
	ATOM	191	CA	LEU			17.925	7.594	45.937		13.67	A
	ATOM	192	СВ	LEU			18.004	7.911	44.445	1.00	12.12	A
50	ATOM	193	CG	LEU			16.904	8.863	43.968	1.00	12.57	A
	ATOM	194		LEU			17.103	9.207	42.508	1.00	9.74	A
	ATOM	195		LEU			15.552	8.217	44.203		11.27	A
	ATOM	196	C	LEU			19.077	6.681	46.319	1.00	14.74	A
	ATOM	197	0	LEU			18.899	5.488	46.561	1.00	15.55	A
55	ATOM	198	N	GLU			20.260	7.277	46.357	1.00	15.63	A
	ATOM	199	CA	GLU	A	167	21.496	6.606	46.700	1.00	17.13	A

D

	ATOM	200	CB	GLU	A	167	22.623	7.637	46.626	1.00	20.43	A
	ATOM	201	CG	GLU	Α	167	24.034	7.105	46.610	1.00	25.09	Α
	ATOM	202	CD	GLU	A	167	24.977	8.066	45.899	1.00	28.66	A
	MOTA	203	OE1	GLU	A	167	26.207	7.859	45.974	1.00	31.85	A
5	MOTA	204	OE2	GLU	A	167	24.482	9.024	45.254	1.00	29.06	A
	ATOM	205	С	GLU	A	167	21.410	5.993	48.095	1.00	16.74	A
	MOTA	206	0	GLU	Α	167	21.658	4.802	48.265	1.00	16.83	A
	ATOM	207	N	LYS	A	168	21.053	6.814	49.084	1.00	16.30	A
	MOTA	208	CA	LYS	A	168	20.936	6.373	50.480	1.00	15.74	A
10	MOTA	209	CB	LYS	Α	168	20.725	7.580	51.406	1.00	13.90	A
	ATOM	210	CG	LYS	A	168	21.932	8.493	51.548	1.00	14.49	A
	MOTA	211	CD	LYS	A	168	23.035	7.809	52.330	1.00	15.70	A
	ATOM	212	CE	LYS	A	168	24.143	8.773	52.698	1.00	16.32	A
	MOTA	213	NZ	LYS	A	168	24.818	9.345	51.512	1.00	14.90	A
15	ATOM	214	С	LYS	A	168	19.795	5.379	50.698	1.00	15.80	A
	ATOM	215	0	LYS	A	168	19.860	4.528	51.586	1.00	15.98	A
	MOTA	216	N	PHE	A	169	18.744	5.506	49.897	1.00	15.19	A
	ATOM	217	CA	PHE	A	169	17.602	4.615	50.011	1.00	15.65	A
	ATOM	218	СВ	PHE	A	169	16.452	5.097	49.112	1.00	12.98	A
20	ATOM	219	CG	PHE	Α	169	15.290	4.146	49.059	1.00	12.73	A
	ATOM	220	CD1	PHE	A	169	14.530	3.892	50.192	1.00	12.13	A
	MOTA	221	CD2	PHE	A	169	14.988	3.465	47.886		13.61	A
	ATOM	222	CE1	PHE	A	169	13.485	2.971	50.158	1.00	14.03	A
	MOTA	223	CE2	PHE	A	169	13.943	2.542	47.846		13.89	A
25	MOTA	224	CZ	PHE	A	169	13.193	2.294	48.983		12.36	A
	ATOM	225	C	PHE	A	169	18.022	3.198	49.618		16.17	A
	MOTA	226	0	PHE	A	169	17.779	2.245	50.354		15.90	A
	MOTA	227	N	VAL	A	170	18.664	3.066	48.462		17.23	A
	MOTA	228	CA	VAL	A	170	19.112	1.762	47.984		18.56	A
30	MOTA	229	CB	VAL	A	170	19.707	1.881	46.553		18.42	A
	MOTA	230	CG1	VAL	A	170	20.408	0.591	46.154		17.54	A
	MOTA	231	CG2	VAL	A	170	18.593	2.199	45.560		17.05	A
	MOTA	232	С	VAL	A	170	20.148	1.132	48.926		20.05	A
	MOTA	233	0	VAL	A	170	20.217	-0.090	49.058		20.58	A
35	MOTA	234	N	GLN	A	171	20.942	1.971	49.584		21.43	A
	MOTA	235	CA	GLN			21.973	1.504	50.511		22.80	A
	MOTA	236	CB	GLN			22.786	2.697	51.034		25.64	A
	MOTA	237	CG	GLN			24.255	2.721	50.617		27.27	A
	MOTA	238	CD	GLN			25.057	1.580	51.214		29.69	A
40	MOTA	239		GLN			25.020	1.346			31.25	A
	MOTA	240		GLN			25.794	0.864	50.367		29.08	A
	MOTA	241	С	GLN			21.389		51.698		22.06	A
	ATOM	242	0	GLN			21.986		52.182		19.91	A A
	MOTA	243	N	GLY			20.219	1.158	52.162		22.43 21.98	A
45	ATOM	244	CA	GLY				0.498	53.301		22.83	A
	ATOM	245	C	GLY			18.805	-0.749	52.975 53.862		21.01	A
	MOTA	246	0	GLY			18.207	-1.361	51.706		22.94	A
	MOTA	247	N	LEU			18.797	-1.141	51.304		23.99	A
EΛ	ATOM	248	CA	LEU			18.041	-2.315	50.000		22.59	A
50	MOTA	249	CB	LEU			17.292	-2.041 -0.875	49.986		21.28	A
	ATOM	250	CG	LEU			16.303	-0.873	48.580		21.26	A
	ATOM	251		LEU			15.742	-1.109	51.000		17.99	A
	ATOM	252		LEU			15.186 18.903	-3.555	51.132		25.00	A
55	MOTA	253	C	LEU		173	20.073	-3.333	50.772		23.71	A
23	MOTA	254	O N					-4.707	51.407		27.54	A
	MOTA	255	N	ASP	A	1/4	18.303	-3./0/	31.407	1.00	~/.J¤	•

	MOTA	256	CA .	ASP	A	174	18.973	-5.993	51.264	1.00	30.47	A
	ATOM	257	CB	ASP	A	174	18.435	-6.980	52.299		33.48	A
	ATOM	258	CG	ASP	A	174	19.424	-8.072	52.630	1.00	37.17	A
	MOTA	259	OD1	ASP	A	174	20.025	-8.635	51.691	1.00	38.86	A
5	MOTA	260	OD2	ASP	A	174	19.597	-8.372	53.831		38.36	A
	MOTA	261	С	ASP	A	174	18.590	-6.451	49.858		30.22	A
	ATOM	262	0	ASP	A	174	17.644	-7.216	49.677		29.33	A
	ATOM	263	N	ILE	A	175	19.328	-5.957	48.870		30.40	A
	ATOM	264	CA	ILE	A	175	19.066	-6.258	47.467		31.71	A
10	ATOM	265	CB	ILE	A	175	20.031	-5.453	46.570		31.30	A
	ATOM	266	CG2	ILE	A	175	19.507	-5.383	45.148		30.95	A
	MOTA	267	CG1	ILE	A	175	20.155	-4.027	47.112		31.50	A
	ATOM	268	CD1	ILE	A	175	18.828	-3.300	47.254		31.58	A
	ATOM	269	С	ILE	A	175	19.146	-7.747	47.123		32.27	A
15	ATOM	270	0	ILE	A	175	19.241	-8.594	48.009		33.75	A
	ATOM	271	N	GLY	A	176	19.089	-8.056	45.831		32.64	A
	MOTA	272	CA	GLY	A	176	19.143	-9.437	45.386		32.16	A
	MOTA	273	С	GLY	A	176	17.826	-9.910	44.790		31.98	A
	ATOM	274	0	GLY	A	176	16.761	-9.471	45.222		31.33	A
20	MOTA	275	N	PRO	A	177	17.866	-10.796	43.779		32.34	A
	MOTA	276	CD	PRO	A	177	19.062	-11.093	42.969		32.81	A
	MOTA	277	CA	PRO	A	177		-11.328	43.126		32.50	A
	ATOM	278	CB	PRO	A	177	17.237	-12.152	41.977		31.55	A
	MOTA	279	CG	PRO	A	177	18.462	-11.390	41.612		32.20	A
25	MOTA	280	С	PRO	A	177	15.762	-12.167	44.035		32.37	A
	MOTA	281	0	PRO	A	177	14.625	-12.478	43.673		33.30	A
	MOTA	282	N	THR	A	178	16.267	-12.536	45.209		32.01	A
	MOTA	283	CA	THR	A	178	15.493	-13.342	46.150		30.96	A
	MOTA	284	CB	THR	A	178	16.220	-14.650	46.484	1.00	30.93	A
30	MOTA	285	OG1	THR	A	178	17.517	-14.355	47.019		29.20	A
	ATOM	286	CG2	THR	A	178	16.363	-15.498	45.235	1.00	30.68	A
	MOTA	287	С	THR	A	178	15.213	-12.599	47.448		30.22	A
	MOTA	288	0	THR	Α	178	14.569	-13.126	48.355		31.00	A
	MOTA	289	N	LYS	A	179	15.710	-11.372	47.536		28.83	A
35	MOTA	290	CA	LYS	A	179	15.500	-10.549	48.716		27.14	A
	MOTA	291	CB	LYS	A	179	16.849	-10.160	49.321		27.31	A
	ATOM	292	CG	LYS	A	179	17.589	-11.369	49.871		27.60	A
	MOTA	293	CD	LYS	A	179	18.955	-11.561	49.240		27.00	A
	ATOM	294	CE	LYS	A	179		-10.827	50.025		28.86	A
40	MOTA	295	NZ	LYS				-11.054	49.489		30.25	A
	MOTA	296	С	LYS			14.692	-9.331	48.287		25.60	A
	MOTA	297	0	LYS			13.507		48.000		24.62	A
	MOTA	298	N	THR			15.314		48.221		23.79	A
	MOTA	299	CA	THR	A	180	14.580		47.795		22.88	A
45	MOTA	300	CB	THR			14.745		48.790		22.04	A
	MOTA	301		THR			14.234		50.070		23.16	A
	MOTA	302	CG2				13.979		48.304		20.65	A
	ATOM	303	С			180	15.002	-6.473	46.414		21.26	A
	MOTA	304	0	THR			16.191		46.130		21.51	A
50	MOTA	305	N			181	14.018		45.558		20.39	A
	ATOM	306	CA	GLN			14.282		44.215		19.27	A
	ATOM	307	CB			181	13.526		43.173		19.23	A
	ATOM	308	CG			181	14.235		42.766		21.63	A
	ATOM	309	CD	GLN			13.460	-8.635	41.738		22.21	A
55	MOTA	310		GLN			14.044	-9.370	40.946		25.69	A
	MOTA	311	NE2	GLN	A	181	12.139	-8.506	41.750	1.00	22.55	A

	MOTA	312	C.	GLN	A	181	13.836	-4.262	44.150	1.00 18.57	A
	MOTA	313	0	GLN	A	181	12.885	-3.870	44.829	1.00 17.74	A
	ATOM	314	N	VAL	A	182	14.522	-3.466	43.333	1.00 17.44	A
	MOTA	315	CA	VAL	A	182	14.201	-2.048	43.194	1.00 15.50	A
5	MOTA	316	CB	VAL	A	182	15.244	-1.160	43.911	1.00 15.13	A
	ATOM	317	CG1	VAL	A	182	14.778	0.284	43.913	1.00 15.79	A
	ATOM	318	CG2	VAL	A	182	15.482	-1.649	45.322	1.00 16.85	A
	MOTA	319	С	VAL	A	182	14.149	-1.584	41.737	1.00 15.79	A
	ATOM	320	0	VAL	A	182	15.072	-1.831	40.961	1.00 13.82	A
10	MOTA	321	N	GLY	A	183	13.062	-0.910	41.375	1.00 14.94	A
	ATOM	322	CA	GLY	A	183	12.928	-0.375	40.032	1.00 14.95	A
	MOTA	323	C	GLY	A	183	12.910	1.139	40.170	1.00 14.43	A
	MOTA	324	0	GLY	A	183	12.498	1.646	41.211	1.00 14.17	A
	MOTA	325	N	LEU	A	184	13.355	1.870	39.150	1.00 13.48	A
15	MOTA	326	CA	LEU	A	184	13.367	3.331	39.227	1.00 12.24	A
	MOTA	327	CB	LEU	A	184	14.798	3.846	39.406	1.00 11.95	A
	ATOM	328	CG	LEU	A	184	15.071	5.230	40.027	1.00 14.19	A
	MOTA	329	CD1	LEU	A	184	16.134	5.930	39.198	1.00 14.35	A
	ATOM	330	CD2	LEU	A	184	13.816	6.088	40.098	1.00 13.28	A
20	ATOM	331	С	LEU	A	184	12.745	3.986	37.993	1.00 11.99	A
	ATOM	332	0	LEU	A	184	13.199	3.790	36.866	1.00 12.60	A
	MOTA	333	N	ILE	A	185	11.693	4.758	38.221	1.00 11.44	A
	MOTA	334	CA	ILE	A	185	10.998	5.473	37.158	1.00 11.08	A
	ATOM	335	CB	ILE	A	185	9.489	5.055	37.103	1.00 10.82	A
25	ATOM	336	CG2	ILE	A	185	8.675	6.068	36.323	1.00 10.02	A
	ATOM	337	CG1	ILE	A	185	9.331	3.686	36.430	1.00 12.56	A
	ATOM	338	CD1	ILE	Α	185	10.111	2.547	37.081	1.00 12.60	A
	ATOM	339	С	ILE	A	185	11.125	6.968	37.473	1.00 11.40	A
	ATOM	340	0	ILE	A	185	11.068	7.363	38.634	1.00 11.46	A
30	MOTA	341	N	GLN	A	186	11.345	7.787	36.446	1.00 12.56	A
	MOTA	342	CA	GLN	A	186	11.438	9.236	36.623	1.00 11.76	A
	ATOM	343	CB	GLN	A	186	12.859	9.726	36.333	1.00 12.89	A
	ATOM	344	CG	GLN	A	186	13.867	9.145	37.316	1.00 14.23	A
	MOTA	345	CD	GLN	A	186	15.273	9.716	37.197	1.00 15.38	A
35	ATOM	346	OE1	GLN	A	186	16.206	9.170	37.771	1.00 15.74	A
	MOTA	347	NE2	GLN			15.426	10.819	36.466	1.00 17.29	A
	MOTA	348	С	GLN			10.397	9.886	35.701	1.00 10.97	A
	MOTA	349	0	GLN	A	186	10.150	9.404	34.593	1.00 9.90	A
	ATOM	350	N	TYR			9.785	10.973	36.158	1.00 9.31	A
40	MOTA	351	CA	TYR	A	187	8.718	11.603	35.383	1.00 8.51	A
	MOTA	352	CB	TYR			7.374		35.880	1.00 8.10	A
	MOTA	353	CG	TYR	A	187	6.958		37.238	1.00 6.73	A
	ATOM	354	CD1	TYR	Α	187	6.284		37.339	1.00 6.75	A
	ATOM	355		TYR			5.938		38.579	1.00 6.68	A
45	ATOM	356		TYR			7.274		38.418	1.00 7.94	A
	ATOM	357		TYR			6.932		39.671	1.00 9.48	A
	ATOM	358	CZ	TYR			6.267	12.685	39.742	1.00 9.10	A
	ATOM	359	OH	TYR			5.930		40.974	1.00 12.69	A
	MOTA	360	C			187	8.622		35.348	1.00 7.79	A
50	MOTA	361	0	TYR			9.178		36.177	1.00 8.04	A
	MOTA	362	N	ALA			7.865	13.600	34.367	1.00 8.62	A
	ATOM	363	CA	ALA			7.580	15.011	34.155	1.00 9.11	A
	ATOM	364	CB	ALA			8.734	15.698	33.428	1.00 9.39	A
	ATOM	365	С	ALA			6.323	14.985	33.290	1.00 8.41	A
55	ATOM	366	0	ALA			5.259		33.760	1.00 7.15	A
	ATOM	367	N	asn	A	189	6.434	15.386	32.027	1.00 9.04	A

	MOTA	368	CA	ASN	A	189	5.265	15.349	31.155	1.00	10.71	A
	MOTA	369	CB	ASN	A	189	5.574	15.979	29.785	1.00	11.19	A
	MOTA	370	CG	ASŃ	A	189	6.067	17.408	29.899	1.00	9.44	A
	MOTA	371	OD1	ASN	A	189	5.596	18.301	29.192	1.00	10.99	A
5	MOTA	372	ND2	ASN	A	189	7.024	17.631	30.783	1.00	7.94	A
	MOTA	373	C	ASN	A	189	4.870	13.886	30.978	1.00	10.65	A
	MOTA	374	0	ASN	A	189	3.688	13.550	30.898	1.00	10.97	A
	MOTA	375	N	ASN	A	190	5.877	13.020	30.957	1.00	11.36	A
	MOTA	376	CA	ASN	Α	190	5.672	11.590	30.776	1.00	14.30	A
10	MOTA	377	CB	ASN	Α	190	5.913	11.225	29.307	1.00	16.54	A
	MOTA	378	CG	ASN	Α	190	5.100	12.079	28.357	1.00	17.94	A
	ATOM	379	OD1	ASN	Α	190	3.880	11.970	28.302	1.00	22.49	A
	MOTA	380	ND2	ASN	Α	190	5.773	12.945	27.611	1.00	20.09	A
	ATOM	381	С	ASN	Α	190	6.626	10.785	31.661	1.00	14.69	A
15	ATOM	382	0	ASN	A	190	7.659	11.287	32.094	1.00	15.45	A
	MOTA	383	N	PRO	A	191	6.276	9.527	31.959	1.00	14.55	A
	ATOM	384	CD	PRO	Α	191	4.934	8.922	31.852	1.00	15.09	A
	ATOM	385	CA	PRO	A	191	7.157	8.705	32.795	1.00	14.77	A
	MOTA	386	CB	PRO	Α	191	6.179	7.780	33.506	1.00	15.27	A
20	ATOM	387	CG			191	5.153	7.532	32.434	1.00	14.75	A
	ATOM	388	С	PRO	A	191	8.167	7.927	31.944	1.00	14.27	A
	ATOM	389	0			191	7.879	7.576	30.800	1.00	12.84	A
	ATOM	390	N			192	9.347	7.675	32.502	1.00	14.02	A
	ATOM	391	CA			192	10.386	6.912	31.807	1.00	14.71	A
25	ATOM	392	СВ			192	11.442	7.842	31.188	1.00	15.69	A
	ATOM	393	CG			192	12.396	8.499	32.178	1.00	17.79	A
	ATOM	394	CD			192	13.298	9.518	31.477	1.00	18.65	A
	ATOM	395	NE			192	14.250	10.148	32.393	1.00	18.93	A
	ATOM	396	CZ			192	15.453	9.663	32.684	1.00	17.67	A
30	ATOM	397		ARG			15.868	8.535	32.127	1.00	18.74	A
- •	ATOM	398		ARG			16.241	10.304	33.540	1.00	16.64	A
	ATOM	399	С	ARG			11.062	5.941	32.766	1.00	13.25	A
	ATOM	400	ō	ARG			11.181	6.205	33.968	1.00	12.96	A
	ATOM	401	N			193	11.510	4.819	32.220	1.00	12.65	A
35	ATOM	402	CA	VAL			12.171	3.783	32.997	1.00	10.67	A
-	ATOM	403	СВ			193	11.864	2.386	32.410	1.00	10.91	A
	ATOM	404		VAL			12.505	1.298	33.264	1.00	11.42	A
	ATOM	405		VAL			10.364	2.178	32.321	1.00	11.64	A
	ATOM	406	C			193	13.690	3.961	33.025	1.00	11.35	A
40	ATOM	407		VAL			14.331		31.973	1.00	12.07	A
	ATOM	408	N			194	14.257	4.061	34.226	1.00		A
	ATOM	409	CA			194	15.706		34.378	1.00	8.60	A
	ATOM	410	CB			194	16.093		35.663	1.00	5.55	A
	ATOM	411		VAL			17.602	5.133	35.716	1.00	5.04	A
45	ATOM	412		VAL			15.393		35.697	1.00	2.79	A
	ATOM	413	C			194	16.179	2.724	34.467	1.00	8.86	A
	ATOM	414	ō			194	17.158	2.331	33.839	1.00	10.78	A
	ATOM	415	N			195	15.465	1.931	35.257	1.00	11.00	A
	ATOM	416	CA			195	15.754	0.507	35.386	1.00	13.26	A
50	ATOM	417	СВ			195	17.117		36.080	1.00	13.43	A
	ATOM	418	CG			195	17.210	0.742	37.510	1.00	14.88	A
	ATOM	419		PHE			16.588	0.049	38.543		16.46	A
	ATOM	420		PHE			17.997		37.831		15.15	A
	ATOM	421		PHE			16.756		39.875		16.97	A
55	ATOM	422		PHE			18.172		39.155		14.80	A
	ATOM	423	CZ			195	17.552	1.543	40.180		16.03	A
								=				

	MOTA	424	.C	PHE .	A 195	14:608	-0.180	36.109	1.00 13.40	A
	MOTA	425	0	PHE .	A 195	13.945	0.435	36.938	1.00 14.78	A
	MOTA	426	N	ASN .	A 196	14.333	-1.434	35.755	1.00 14.32	A
	MOTA	427	CA	ASN .	A 196	13.245	-2.179	36.392	1.00 13.90	A
5	MOTA	428	CB	ASN .	A 196	12.531	-3.082	35.378	1.00 15.25	A
	ATOM	429	CG	ASN .	A 196	11.710	-2.302	34.371	1.00 17.15	A
	MOTA	430	OD1	ASN .	A 196	11.128	-1.270	34.700	1.00 19.15	A
	MOTA	431	ND2	ASN .	A 196	11.642	-2.805	33.137	1.00 16.10	A
	MOTA	432	С	ASN .	A 196	13.737	-3.040	37.549	1.00 13.87	A
10	ATOM	433	0	ASN .	A 196	14.926	-3.048	37.878	1.00 13.98	A
	MOTA	434	N	LEU .	A 197	12.810	-3.765	38.162	1.00 13.49	A
	MOTA	435	CA		A 197	13.131	-4.655	39.275	1.00 14.75	A
	MOTA	436	CB	LEU .	A 197	11.855	-5.361	39.768	1.00 12.51	A
	MOTA	437	CG	LEU .	A 197	10.737	-4.523	40.416	1.00 13.99	. A
15	ATOM	438		LEU .		9.439	-5.328	40.476	1.00 13.87	Α
	MOTA	439		LEU .		11.162	-4.096	41.815	1.00 14.46	A
	MOTA	440	С	LEU .	A 197	14.128	-5.696	38.776	1.00 15.08	A
	MOTA	441	0	LEU .	A 197	14.957	-6.197	39.532	1.00 15.32	A
	MOTA	442	N		A 198	14.017	-5.983	37.482	1.00 17.33	A
20	MOTA	443	CA	ASN .	A 198	14.813	-6.963	36.739	1.00 20.71	A
	MOTA	444	CB	ASN .	A 198	14.026	-7.383	35.493	1.00 21.97	A
	MOTA	445	CG		A 198	13.523	-8.790	35.571	1.00 24.43	A
	ATOM	446		ASN .		12.727	-9.226	34.735	1.00 24.41	A
	MOTA	447		ASN .		13.986	-9.525	36.575	1.00 26.72	A
25	MOTA	448	С		A 198	16.200	-6.532	36.261	1.00 21.07	A
	MOTA	449	0		A 198	17.111	-7.353	36.151	1.00 20.61	A
	MOTA	450	N		A 199	16.336	-5.252	35.947	1.00 22.19	A
	MOTA	451	CA		A 199	17.572	-4.705	35.400	1.00 23.60	A
	MOTA	452	CB		A 199	17.479	-3.182	35.299	1.00 22.21	A
30	MOTA	453	OG1		A 199	16.295	-2.830	34.575	1.00 20.93	A
	MOTA	454		THR .		18.696	-2.628	34.580	1.00 20.97	A
	MOTA	455	C		A 199	18.902	-5.048	36.060	1.00 25.62	A
	ATOM	456	0		A 199	19.775	-5.637	35.426	1.00 25.51	A
2 -	ATOM	457	N		A. 200	19.066	-4.678	37.323	1.00 28.07	A A
35	ATOM	458	CA		A 200	20.326	-4.929	37.996	1.00 30.24 1.00 29.51	A
	ATOM	459	CB		A 200	20.790	-3.649	38.695	1.00 25.51	A
	ATOM	460	CG		A 200	21.093	-2.566	37.686	1.00 25.36	A
	ATOM	461		TYR .		20.342	-1.393 -0.440	37.638 36.638	1.00 23.36	A
4.0	ATOM	462 463		TYR .		20.563 22.078	-2.762	36.715	1.00 25.72	·A
40	ATOM			TYR .		22.303	-1.823	35.715	1.00 25.09	A
	MOTA	464	CEZ		A 200	21.543	-0.669	35.680	1.00 23.72	A
	MOTA	465	OH		A 200	21.755	0.238	34.671	1.00 24.44	A
	MOTA	466	C		A 200	20.385	-6.118	38.932	1.00 32.84	A
4 =	MOTA	467 468	0		A 200	19.412	-6.472	39.593	1.00 34.10	A
45	MOTA	469	Ŋ		A 200	21.566	-6.724	38.964	1.00 35.33	A
	ATOM ATOM	470	CA		A 201	21.846	-7.911	39.752	1.00 37.85	A
	ATOM	471	CB		A 201	22.921	-8.736	39.041	1.00 38.62	A
					A 201	22.840	-8.683	37.511	1.00 40.89	A
50	MOTA MOTA	472 473	CG CD		A 201	23.303	-7.334	36.957	1.00 41.42	A
50	ATOM	474	CE		A 201	23.243	-7.290	35.435	1.00 41.97	A
	ATOM	475	NZ		A 201	23.243	-5.999	34.902	1.00 40.92	A
	ATOM	476	C		A 201	22.297	-7.620		1.00 38.43	A
	ATOM	477	0		A 201	21.700	-8.111	42.141	1.00 38.87	A
55	ATOM	478	N		A 202	23.353	-6.825	41.323	1.00 39.09	A
55	ATOM	479	CA		A 202	23.881	-6.506	42.643	1.00 39.33	A
					-					

	MOTA	480	CB	THR	A	202	25.406	-6.698	42.692	1.00	39.50	A
	ATOM	481	OG1	THR	A	202	26.042	-5.675	41.916	1.00	39.36	A
	ATOM	482	CG2	THR	A	202	25.787	-8.062	42.131	1.00	38.99	A
	MOTA	483	С	THR	A	202	23.576	-5.092	43.112	1.00	39.86	A
5	ATOM	484	۰ ٥	THR	A	202	23.195	-4.222	42.328	1.00	40.54	A
	MOTA	485	N	LYS	A	203	23.766	-4.880	44.408	1.00	39.50	A
	ATOM	486	CA	LYS	A	203	23.531	-3.598	45.053	1.00	39.14	A
	ATOM	487	CB	LYS	A	203	23.718	-3.775	46.561	1.00	39.00	A
	ATOM	488	CG	LYS	Α	203	23.223	-2.641	47.432	1.00	38.99	Α
10	ATOM	489	CD	LYS	Α	203	23.210	-3.101	48.881	1.00	38.85	A
	ATOM	490	CE	LYS	Α	203	22.743	-2.017	49.823	1.00	38.65	A
	ATOM	491	NZ	LYS	Α	203	22.657	-2.540	51.210	1.00	39.40	Α
	ATOM	492	C	LYS			24.495	-2.540	44.516	1.00	39.51	A
	ATOM	493	0	LYS			24.171	-1.350	44.462	1.00	39.55	Α
15	ATOM	494	N	GLU			25.681	-2.990	44.118	1.00	39.07	Α
	MOTA	495	CA	GLU			26.715	-2.110	43.582	1.00	38.48	Α
	ATOM	496	CB	GLU			28.023	-2.886	43.406	1.00		A
		497	CG	GLU			27.969	-4.318	43.910	1.00		A
	ATOM		CD	GLU			27.896	-4.399	45.421		40.43	A
20	MOTA	498		GLU			27.004	-5.107	45.943		39.63	A
20	MOTA	499		GLU			28.740	-3.756	46.085	1.00		A
	ATOM	500	OE2					-1.538	42.234		37.65	A
	ATOM	501	C	GLU			26.295	-0.326	42.019	1.00		A
	ATOM	502	0	GLU			26.323			1.00		A
0.5	MOTA	503	N	GLU			25.917	-2.429	41.326			
25	MOTA	504	CA	GLU			25.496	-2.043	39.989		36.06	A
	ATOM	505	CB	GLU			25.192	-3.298	39.176	1.00		A
	MOTA	506	CG	GLU			26.288	-4.343	39.278	1.00		A
	ATOM	507	CD	GLU			25.919	-5.646	38.607		41.30	A
	MOTA	508	OE1				25.768	-5.656	37.368	1.00		A
30	MOTA	509	QE2	GLU			25.778	-6.660	39.324		42.41	A
	ATOM	510	С	GLU	A	205	24.267	-1.144	40.046		34.97	A
	MOTA	511	0	GLU	A	205	23.984	-0.402	39.102	1.00		A
	ATOM	512	N	MET	A	206	23.542	-1.209	41.158		33.42	A
	ATOM	513	CA	MET	A	206	22.349	-0.396	41.333		32.37	A
35	MOTA	514	CB	MET	A	206	21.351	-1.094	42.260		32.31	A
	ATOM	515	CG	MET	A	206	20.103	-0.266	42.541		31.24	A
	MOTA	516	SD	MET	A	206	18.839	-1.174	43.439	1.00	31.05	A
	MOTA	517	CE	MET	A	206	18.222	-2.247	42.128	1.00	30.66	A
	MOTA	518	C	MET	A	206	22.694	0.978	41.891		32.05	A
40	ATOM	519	0	MET	A	206	22.024	1.960	41.576		32.40	A
	MOTA	520	N	ILE	Α	207	23.726	1.044	42.730	1.00	31.87	A
	ATOM	521	CA	ILE	A	207	24.159	2.317	43.307	1.00	31.74	A
	ATOM	522	CB	ILE	A	207	25.070	2.111	44.543	1.00	33.09	A
	ATOM	523	CG2	ILE	A	207	25.792	3.411	44.893	1.00	32.55	A
45	ATOM	524	CG1	ILE	A	207	24.226	1.642	45.730	1.00	33.77	A
	ATOM	525	CD1	ILE	A	207	23.174	2.655	46.162	1.00	34.33	A
	MOTA	526	С	ILE	A	207	24.926	3.092	42.248	1.00	30.68	A
	MOTA	527	0	ILE	A	207	24.890	4.325	42.210	1.00	29.86	A
	ATOM	528	N	VAL	Α	208	25.623	2.355	41.391	1.00	30.42	A
50	ATOM	529	CA	VAL			26.381	2.964	40.311	1.00	31.48	A
	ATOM	530	CB			208	27.281	1.918	39.612	1.00	31.48	A
	MOTA	531		VAL			27.992	2.544	38.432	1.00	32.42	Α
	ATOM	532		VAL			28.301		40.602	1.00	31.32	A
	MOTA	533	C			208	25.383	3.547	39.305		32.02	Α
55	MOTA	534	o			208	25.626	4.595	38.706		33.11	A
	ATOM	535	Ŋ	ALA			24.253	2.869	39.135		32.28	Α
	A. OP	233	-1		••			_,,,,,				-

	MOTA	536	CA	ALA	A	209	23.223	3.329	38.211	1.00	32.70	A
	ATOM	537	CB	ALA	A	209	22.272	2.191	37.880	1.00	32.73	A
	ATOM	538	C	ALA	Α	209	22.451	4.496	38.813	1.00	32.58	Α
	ATOM	539	0	ALA	A	209	21.990	5.384	38.095	1.00	33.82	A
5	ATOM	540	N	THR	A	210	22.321	4.488	40.136	1.00	32.14	A
	MOTA	541	CA	THR	A	210	21.607	5.535	40.855	1.00	32.31 .	Α
	ATOM	542	CB	THR	A	210	21.264	5.069	42.302	1.00	33.35	Α
	ATOM	543	OG1	THR	A	210	20.037	4.328	42.288	1.00	33.29	A
	ATOM	544	CG2	THR	A	210	21.126	6.255	43.243	1.00	33.92	A
10	ATOM	545	С	THR	Α	210	22.400	6.839	40.916	1.00	32.17	A
	ATOM	546	0	THR	A	210	21.841	7.925	40.749	1.00	32.64	A
	ATOM.	547	N	SER	Α	211	23.702	6.730	41.153	1.00	30.78	A
	MOTA	548	CA	SER	A	211	24.557	7.908	41.247	1.00	29.00	A
	MOTA	549	CB	SER	A	211	25.908	7.527	41.856	1.00	28.21	Α
15	MOTA	550	OG	SER	A	211	26.634	6.686	40.979	1.00	27.75	A
	MOTA	551	C	SER	A	211	24.784	8.578	39.896	1.00	27.56	A
	MOTA	552	0	SER	A	211	25.278	9.697	39.833	1.00	27.13	A
	MOTA	553	N	GLN	A	212	24.431	7.892	38.815	1.00	28.19	A
	MOTA	554	CA	GLN	A	212	24.613	8.452	37.479	1.00	27.49	A
20	MOTA	555	CB	GLN	Α	212	25.237	7.412	36.544	1.00	30.62	A
	MOTA	556	CG	GLN	A	212	26.642	6.967	36.924	1.00	34.70	A
	MOTA	557	CD	GLN	A	212	27.162	5.863	36.023	1.00	36.58	A
	MOTA	558	OE1	GLN	A	212	27.340	6.057	34.821	1.00	38.55	A
	ATOM	559	NE2	GLN	A	212	27.402	4.694	36.599	1.00	38.36	A
25	MOTA	560	С	GLN	Α	212	23.318	8.954	36.849	1.00	25.98	A
	ATOM	561	0	GLN	A	212	23.321	9.377	35.692	1.00	26.21	A
	ATOM	562	N	THR	A	213	22.210	8.910	37.589	1.00	23.91	A
	MOTA	563	CA	THR	A	213	20.937	9.365	37.023	1.00	21.37	A
	ATOM	564	CB	THR	Α	213	19.722	8.884	37.870	1.00	22.04	A
30	ATOM	565	OG1	THR	Α	213	18.516	9.079	37.118	1.00	20.11	A
	ATOM	566	CG2	THR	A	213	19.618	9.662	39.185	1.00	20.81	A
	ATOM	567	C	THR	A	213	20.908	10.889	36.884	1.00	19.19	A
	MOTA	568	0	THR	A	213	21.407	11.608	37.746		19.45	Α
	ATOM	569	N	SER	A	214	20.330	11.371	35.789		17.46	A
35	MOTA	570	CA	SER	A	214	20.249	12.809	35.516	1.00	15.88	A
	MOTA	571	CB	SER	A	214	20.904	13.102	34.170	1.00	17.30	A
	MOTA	572	OG	SER	A	214	20.408	12.205	33.192	1.00	17.87	A
	ATOM	573	C	SER	A	214	18.816	13.343	35.500	1.00	13.83	A
	MOTA	574	0	SER	A	214	17.867	12.577	35.390		13.38	A
40	MOTA	575	N	GLN	A	215	18.669	14.662	35.604		13.31	A
	MOTA	576	CA	GLN	A	215	17.346	15.291	35.599		11.72	A
	MOTA	577	CB	GLN	A	215	17.325	16.517	36.523	1.00	8.11	A
	MOTA	578	CG			215	15.926	17.142	36.665	1.00	8.56	A
	MOTA	579	CD	GLN			15.882	18.365	37.572	1.00	8.42	A
45	MOTA	580	OE1	GLN			14.814	18.935	37.815	1.00	7.13	A
	MOTA	581	NE2	GLN			17.041	18.775	38.076		10.20	A
	MOTA	582	C	GLN			16.951	15.720	34.186		12.51	A
	MOTA	583	0			215	17.490	16.687	33.658		11.99	A
	MOTA	584	N			216	16.015	15.008	33.569		13.04	A
50	ATOM	585	CA			216	15.602	15.363	32.216		14.05	A
	MOTA	586	CB			216	14.882	14.195	31.536		15.39	A
	MOTA	587	CG			216	15.804	13.142	30.955		18.06	A
	ATOM	588		TYR			15.354	12.272	29.966		19.67	A
	MOTA	589		TYR			16.192	11.298	29.423		21.91	A
55	MOTA	590		TYR			17.124	13.013	31.392		19.95	A
	ATOM	591	CE2	TYR	A	216	17.967	12.047	30.859	1.00	20.95	A

	ATOM	592	CZ	TYR	A	216	17.493	11.192	29.874	1.00 22.84	A
	ATOM	593	OH	TYR	A	216	18.318	10.228	29.341	1.00 26.01	A
	MOTA	594	С	TYR	A	216	14.731	16.612	32.113	1.00 14.20	A
	MOTA	595	0	TYR	A	216	14.634	17.202	31.042	1.00 13.97	A
5	MOTA	596	N	GLY	A	217	14.098	17.017	33.211	1.00 13.36	A
	MOTA	597	CA	GLY	A	217	13.253	18.201	33.167	1.00 12.97	A
	MOTA	598	C	GLY	A	217	11.888	17.993	32.527	1.00 12.66	A
	ATOM	599	0	GLY	A	217	11.501	16.870	32.222	1.00 12.59	A
	MOTA	600	N	GLY	A	218	11.155	19.087	32.330	1.00 12.62	A
10	MOTA	601	CA	GLY	A	218	9.830	19.012	31.737	1.00 12.30	A
	MOTA	602	С	GLY	A	218	8.964	20.163	32.223	1.00 12.00	A
	ATOM	603	0	GLY	A	218	9.017	20.515	33.402	1.00 12.24	A
	MOTA	604	N	ASP	A	219	8.164	20.749	31.332	1.00 11.18	A
	MOTA	605	CA	ASP	A	219	7.321	21.878	31.709	1.00 10.02	A
15	MOTA	606	CB	ASP	A	219	7.130	22.830	30.516	1.00 11.41	A
	ATOM	607	CG	ASP	A	219	6.441	22.173	29.324	1.00 12.87	A
	MOTA	608	OD1	ASP	A	219	6.287	22.858	28.292	1.00 14.29	A
	ATOM	609	OD2	ASP	A	219	6.053	20.992	29.406	1.00 12.54	A
	ATOM	610	С	ASP	A	219	5.971	21.502	32.312	1.00 9.50	A
20	MOTA	611	0	ASP	A	219	5.110	22.362	32.522	1.00 7.36	A
	ATOM	612	N	PEA	A	220	5.795	20.212	32.587	1.00 9.79	A
	ATOM	613	CA	LEU	A	220	4.571	19.696	33.199	1.00 9.49	A
	ATOM	614	CB	LEU	A	220	3.662	19.065	32.148	1.00 9.54	A
	ATOM	615	CG	LEU	A	220	2.915	19.975	31.180	1.00 11.66	A
25	ATOM	616	CD1	LEU	A	220	2.134	19.116	30.186	1.00 9.54	A
	ATOM	617	CD2	LEU	A	220	1.985	20.892	31.970	1.00 9.87	A
	ATOM	618	С	LEU	A	220	4.951	18.629	34.218	1.00 9.13	A
	ATOM	619	0	LEU	A	220	5.960	17.957	34.050	1.00 8.03	. A
	ATOM	620	N	THR	A	221	4.142	18.475	35.265	1.00 9.46	A
30	MOTA	621	CA	THR	A	221	4.398	17.468	36.301	1.00 8.93	A
	ATOM	622	CB	THR	A	221	4.666	18.134	37.666	1.00 8.64	A
	MOTA	623	OG1	THR	A	221	5.695	19.117	37.506	1.00 9.50	A
	MOTA	624	CG2	THR	A	221	5.119	17.105	38.702	1.00 7.39	A
	ATOM	625	C	THR	A	221	3.177	16.559	36.404	1.00 8.53	A
35	ATOM	626	0	THR	A	221	2.223	16.841	37.135	1.00 8.33	A
	MOTA	627	N	ASN	A	222	3.198	15.472	35.647	1.00 8.72	A
	MOTA	628	CA	ASN	A	222	2.086	14.536	35.654	1.00 10.94	A
	ATOM	629	CB	ASN	A	222	1.851	14.007	34.235	1.00 10.58	A
	ATOM	630	CG	ASN	A	222	1.276	15.072	33.302	1.00 9.81	A
40	ATOM	631	OD1	asn	A	222	1.610	15.132	32.116	1.00 11.30	A
	MOTA	632	ND2	ASN	A	222	0.401	15.907	33.835	1.00 8.55	A
	ATOM	633	С	ASN	A	222	2.364	13.399	36.631	1.00 11.86	A
	ATOM	634	0	asn	A	222	2.607	12.261	36.236	1.00 13.30	A
	MOTA	635	N	THR	A	223	2.319	13.733	37.916	1.00 12.19	A
45	MOTA	636	CA	THR	A	223	2.575	12.783	38.993	1.00 12.73	A
	MOTA	637	CB	THR	A	223	2.471	13.486	40.370	1.00 13.31	A
	MOTA	638	OG1	THR	A	223	3.541	14.429	40.506	1.00 12.62	A
	MOTA	639	CG2	THR	A	223	2.537	12.470	41.508	1.00 12.94	A
	MOTA	640	С	THR	A	223	1.661	11.563	39.004	1.00 13.25	A
50	MOTA	641	0			223	2.132	10.427	39.102	1.00 14.41	A
	ATOM	642	N	PHE	A	224	0.356	11.788	38.904	1.00 11.80	A
	MOTA	643	CA	PHE	A	224	-0.579	10.674	38.939	1.00 10.73	A
	MOTA	644	CB			224	-1.961	11.199	39.308	1.00 10.15	A
	ATOM	645	CG			224	-1.977	11.869	40.644	1.00 8.46	A
55	MOTA	646		PHE			-1.826	13.249	40.750	1.00 6.48	A
	MOTA	647	CD2	PHE	A	224	-2.000	11.104	41.811	1.00 8.25	A

	MOTA	648	CE1	PHE	A	224	-1.688	13.857	41.995	1.00	4.99	A
	MOTA	649	CE2	PHE	A	224	-1.863	11.704	43.058	1.00	8.12	A
	MOTA	650	CZ	PHE	A	224	-1.704	13.090	43.148	1.00	5.58	A
	MOTA	651	С	PHE	A	224	-0.582	9.820	37.678	1.00	10.20	A
5	ATOM	652	0	PHE	A	224	-0.927	8.639	37.718	1.00	9.26	A
	ATOM	653	N	GLY	A	225	-0.167	10.406	36.563	1.00	10.24	A
	ATOM	654	CA	GLY	A	225	-0.079	9.633	35.341	1.00	9.66	A
	ATOM	655	С	GLY	A	225	1.059	8.643	35.535	1.00	10.12	A
	ATOM	656	0	GLY	A	225	0.958	7.479	35.143	1.00	10.28	A
10	MOTA	657	N	ALA	A	226	2.143	9.107	36.159	1.00	9.46	A
	MOTA	658	CA	ALA	A	226	3.312	8.263	36.426	1.00	8.28	A
	MOTA	659	CB	ALA	A	226	4.473	9.119	36.924	1.00	7.03	A
	MOTA	660	С	ALA	A	226	3.004	7.169	37.447	1.00	9.17	A
	MOTA	661	0	ALA	A	226	3.409	6.013	37.281	1.00	10.19	A
15	MOTA	662	N	ILE	A	227	2.309	7.541	38.516	1.00	9.78	A
	MOTA	663	CA	ILE	A	227	1.941	6.584	39.550	1.00	9.72	A
	ATOM	664	CB	ILE	A	227	1.149	7.271	40.688	1.00	10.17	A
	ATOM	665	CG2	ILE	A	227	0.449	6.220	41.559	1.00	8.49	A
	MOTA	666	CG1	ILE	A	227	2.102	8.141	41.520	1.00	5.96	A
20	MOTA	667	CD1	ILE	A	227	1.422	8.912	42.637	1.00	4.20	A
	MOTA	668	C	ILE	A	227	1.086	5.510	38.901	1.00	10.73	A
	MOTA	669	0	ILE	A	227	1.295	4.316	39.119	1.00	9.03	A
	MOTA	670	N	GLN	A	228	0.141	5.952	38.077	1.00	13.02	A
	ATOM	671	CA	GLN	A	228	-0.755	5.054	37.361	1.00	15.61	A
25	MOTA	672	CB	GLN	A	228	-1.747	5.880	36.528	1.00	20.26	A
	MOTA	673	CG	GLN	A	228	-2.777	5.082	35.738	1.00	22.92	A
	MOTA	674	CD	GLN	A	228	-3.870	5.971	35.157	1.00	26.27	A
	MOTA	675	OE1	GLN	A	228	-4.806	6.365	35.853		26.95	A
	MOTA	676	NE2	GLN	A	228	-3.745	6.304	33.879	1.00	28.79	A
30	MOTA	677	C	GLN	A	228	0.046	4.106	36.472	1.00	15.48	A
	MOTA	678	0	GLN	A	228	-0.303	2.940	36.338	1.00	14.93	A
	MOTA	679	N	TYR	A	229	1.130	4.606	35.883	1.00	17.26	A
	MOTA	680	CA	TYR	A	229	1.979	3.794	35.016		17.37	A
	MOTA	681	CB	TYR	A	229	2.998	4.667	34.274		20.45	A
35	ATOM	682	CG	TYR	A	229	4.128	3.858	33.669		21.99	A
	MOTA	683	CD1	TYR	A	229	3.983	3.231	32.430		23.54	A
	MOTA	684	CE1	TYR	A	229	4.985	2.394	31.923		23.85	A
	MOTA	685	CD2	TYR			5.306	3.637	34.385		24.04	A
	MOTA	686	CE2	TYR			6.311	2.803	33.891		24.50	A
40	ATOM	687	CZ	TYR			6.146	2.183	32.662		25.44	A
	MOTA	688	OH	TYR			. 7.140	1.345	32.189		25.30	A
	MOTA	689	C			229	2.734	2.732	35.810		16.60	A
	MOTA	690	0			229	2.780	1.565	35.417		15.96	A
	MOTA	691	N	ALA			3.338	3.148	36.918		14.62	A
45	MOTA	692	CA	ALA			4.101	2.235	37.760		14.49	A
	MOTA	693	CB			230	4.723	2.993	38.917		11.62	A
	MOTA	694	C	ALA			3.211	1.109	38.281		14.68	A
	ATOM	695	0	ALA			3.644	-0.039	38.384		14.61	A
	MOTA	696	N	ARG			1.968	1.449	38.606		14.64	A
50	ATOM	697	CA			231	1.001	0.475	39.099		16.45	A
	MOTA	698	CB	ARG			-0.317	1.174	39.469		18.66	A
	ATOM	699	CG			231	-1.423	0.214	39.908		22.57	A
	ATOM	700	CD			231	-2.787	0.889	40.034		24.72	A
	MOTA	701	NE			231	-3.701	0.479	38.968		27.48	A A
55	ATOM	702	CZ	ARG			-3.796	1.080	37.786		29.16	A
	MOTA	703	NHl	ARG	Α	231	-3.039	2.134	37.506	1.00	31.61	A

	ATOM	704	NH2	ARG	A	231	-4.639	0.618	36.875	1.00 2	8.80	A
	ATOM	705	С	ARG	A	231	0.720	-0.574	38.027	1.00 1	6.48	A
	ATOM	706	0	ARG	A	231	0.720	-1.778	38.295	1.00 1	6.36	A
	MOTA	707	N	LYS	A	232	0.491	-0.092	36.809	1.00 1	6.71	A
5	MOTA	708	CA	LYS	A	232	0.172	-0.929	35.663	1.00 1	.7.22	A
	ATOM	709	CB	LYS			-0.400	-0.064	34.536	1.00 1	9.84	A
	ATOM	710	CG	LYS	A	232	-1.869	-0.315	34.226	1.00 2	2.04	A
	MOTA	711	CD	LYS	A	232	-2.329	0.535	33.048	1.00 2	4.75	A
	ATOM	712	CE	LYS	A	232	-3.755	0.200	32.631	1.00 2		A
10	ATOM	713	NZ	LYS	A	232	-4.201	1.048	31.488	1.00 2	5.38	A
	ATOM	714	С	LYS	A	232	1.293	-1.784	35.087	1.00 1		A
	ATOM	715	0	LYS	A	232	1.034	-2.900	34.635	1.00 1		A
	MOTA	716	N	TYR	A	233	2.528	-1.282	35.101	1.00 1	7.41	A
	ATOM	717	CA	TYR	A	233	3.649	-2.024	34.512	1.00 1	5.33	A
15	ATOM	718	CB	TYR	A	233	4.139	-1.307	33.244	1.00 1	6.24	A
	ATOM	719	CG	TYR	A	233	3.065	-1.019	32.218	1.00 1	6.40	A
	MOTA	720	CD1	TYR	A	233	2.234	0.091	32.342	1.00 1	6.16	A
	ATOM	721	CE1	TYR	A	233	1.233	0.355	31.404	1.00 1	6.64	A
	ATOM	722	CD2	TYR	A	233	2.873	-1.867	31.129	1.00 1		A
20	ATOM	723	CE2	TYR	A	233	1.879	-1.616	30.185	1.00 1		A
	MOTA	724	CZ	TYR	A	233	1.062	-0.502	30.329	1.00 1	7.98	A
	MOTA	725	OH	TYR	A	233	0.083	-0.252	29.395	1.00 1		A
	MOTA	726	С	TYR	A	233	4.879	-2.300	35.377	1.00 1		A
	ATOM	727	0	TYR	A	233	5.531	-3.329	35.212	1.00 1		A
25	MOTA	728	N	ALA	A	234	5.213	-1.380	36.275	1.00 1		A
	ATOM	729	CA	ALA	A	234	6.407	-1.524	37.105	1.00 1		A
	ATOM	730	CB	ALA	A	234	6.546	-0.319	38.020	1.00 1		A
	ATOM	731	C	ALA	Α	234	6.524	-2.815	37.914	1.00 1		A
	ATOM	732	0	ALA			7.635	-3.227	38.264	1.00 1		A
30	ATOM	733	N	TYR			5.392	-3.448	38.211	1.00 1		A
	MOTA	734	CA	TYR	A	235	5.388	-4.697	38.976	1.00 1		A
	MOTA	735	CB	TYR			4.434	-4.600	40.176	1.00 1		A
	ATOM	736	CG	TYR			4.647	-3.390	41.068	1.00 1		A
	MOTA	737		TYR			4.002	-2.179	40.800		8.56	A
35	MOTA	738	CE1				4.206	-1.055	41.605		8.57	A
	ATOM	739		TYR			5.508	-3.454	42.172		9.88	A
	MOTA	740		TYR			5.721	-2.337	42.985		9.49	A
	MOTA	741	CZ	TYR			5.067	-1.137	42.697		9.85	A
	MOTA	742	ОН	TYR			5.276	-0.031	43.504		6.17	A
40	MOTA	743	С	TYR			4.976		38.120	1.00 1		A
	MOTA	744	0	TYR			4.813	-7.005	38.633	1.00 1		A
	MOTA	745	N	SER			4.803		36.819	1.00 1		A
	MOTA	746	ÇA	SER			4.406		35.937	1.00 1		A
	ATOM	747	CB	SER			4.101		34.537	1.00 1		A
45	MOTA	748	OG	SER			5.278		33.897	1.00 1		A
	MOTA	749	C	SER			5.499		35.854	1.00 1		A
	ATOM	750	0	SER			6.672		36.110	1.00 1		A
	ATOM	751	N	ALA			5.114		35.502	1.00 1		A
- C	MOTA	752	CA	ALA				-10.138	35.394	1.00 2		A
50	ATOM	753	CB	ALA				-11.426	34.961	1.00 2		A
	ATOM	754	C	ALA				-9.759	34.399	1.00 1		A
	MOTA	755	0	ALA				-10.100	34.598	1.00 2		A
	ATOM	756	N	ALA			6.827		33.337	1.00 1		A N
EC	ATOM	757	CA	ALA			7.804		32.331	1.00 1		A
55	ATOM	758	CB	ALA			7.097		31.173	1.00 1		A
	MOTA	759	С	ALA	A	238	8.887	-7.709	32.913	1.00 1	0.35	A

											_
	ATOM	760	0			238	10.042	-7.760	32.487	1.00 16.90	A
	ATOM	761	N			239	8.514	-6.875	33.885	1.00 17.63	A
	MOTA	762	CA	SER	A	239	9.465	-5.954	34.514	1.00 16.36	A
	MOTA	763	CB	SER	A	239	8.742	-4.711	35.040	1.00 16.10	A
5	MOTA	764	OG	SER	A	239	8.150	-3.987	33.978	1.00 13.99	A
	ATOM	765	C	SER	A	239	10.257	-6.594	35.654	1.00 16.21	A
	MOTA	766	0	SER	A	239	11.139	-5.960	36.233	1.00 14.92	A
	MOTA	767	N	GLY	A	240	9.939	-7.847	35.971	1.00 17.34	A
	ATOM	768	CA	GLY	A	240	10.641	-8.549	37.034	1.00 19.06	A
10	ATOM	769	C	GLY	A	240	9.887	-8.734	38.343	1.00 19.17	A
	MOTA	770	0	GLY	A	240	10.481	-9.135	39.349	1.00 18.10	A
	ATOM	771	N	GLY	A	241	8.587	-8.447	38.336	1.00 19.87	A
	ATOM	772	CA	GLY	A	241	7.785	-8.589	39.544	1.00 21.03	A
	ATOM	773	С	GLY	А	241	7.571	-10.037	39.955	1.00 23.23	A
15	MOTA	774	0	GLY	A	241	7.305	-10.891	39.101	1.00 20.87	A
	ATOM	775	N			242	7.683	-10.313	41.258	1.00 23.63	A
	MOTA	776	CA			242		-11.667	41.781	1.00 25.27	A
	ATOM	777	CB			242		-11.984	42.824	1.00 25.03	A
	MOTA	778	CG			242		-11.754	42.341	1.00 24.85	A
20	MOTA	779	CD			242		-10.684	43.178	1.00 26.43	A
20		780	NE			242		-11.200	44.466	1.00 27.59	A
	ATOM		CZ			242		-10.450	45.457	1.00 28.68	A
	MOTA	781					11.724	-9.134	45.325	1.00 28.64	A
	MOTA	782	NH1						46.583	1.00 20.04	A
25	MOTA	783	NH2			242		-11.021		1.00 26.63	A
25	ATOM	784	C			242		-11.897	42.387		
	ATOM	785	0			242		-10.967	42.853	1.00 25.37	A
	MOTA	786	N			243		-13.160	42.383	1.00 28.15	A
	ATOM	787	CA			243		-13.586	42.881	1.00 31.23	A
	MOTA	788	CB			243		-15.095	42.676	1.00 32.92	A
30	MOTA	789	CG	ARG				-15.917	43.430	1.00 36.39	A
	MOTA	790	CD	ARG	A	243		-17.386	43.486	1.00 38.87	A
	MOTA	791	NE	ARG	A	243		-17.908	42.151	1.00 42.37	A
	MOTA	792	CZ	ARG	A	243		-17.979	41.183	1.00 43.39	A
	ATOM	793		ARG			6.807	-17.568	41.399	1.00 43.57	A
35	MOTA	794	NH2	ARG	A	243		-18.454	39.995	1.00 44.19	A
	MOTA	795	C	ARG	A	243	4.083	-13.271	44.337	1.00 31.11	A
	MOTA	796	0	ARG	A	243	3.090	-12.608	44.634	1.00 31.87	A
	MOTA	797	N	SER	A	244	4.915	-13.768	45.240	1.00 32.34	A
	MOTA	798	CA	SER	A	244	4.706	-13.605	46.671	1.00 33.36	A
40	MOTA	799	CB	SER	A	244	5.399	-14.751	47.400	1.00 34.95	A
	MOTA	800	OG	SER	A	244	6.798	-14.710	47.156	1.00 37.15	A
	MOTA	801	С	SER	A	244	5.173	-12.290	47.286	1.00 32.42	A
	MOTA	802	0	SER	A	244	4.932	-12.045	48.472	1.00 34.13	A
	ATOM	803	N	ALA	A	245	5.830	-11.449	46.495	1.00 30.06	A
45	ATOM	804	CA	ALA	A	245	6.360	-10.184	46.995	1.00 27.25	A
	ATOM	805	CB	ALA	A	245	7.360	-9.617	45.989	1.00 26.52	A
	ATOM	806	С	ALA	A	245	5.334	-9.111	47.359	1.00 25.79	A
	ATOM	807	0	ALA	Α	245	4.293	-8.978	46.720	1.00 26.17	A
	ATOM	808	N			246	5.650	-8.351	48.404	1.00 24.39	A
50	MOTA	809	CA			246	4.809		48.863	1.00 22.15	A
	ATOM	810	CB			246	5.113		50.335	1.00 22.79	A
	ATOM	811		THR			4.507	-7.857	51.196	1.00 20.97	A
	ATOM	812		THR			4.590	-5.500	50.680	1.00 23.06	A
	ATOM	813	C			246	5.160	-6.068	47.968	1.00 22.02	A
55	MOTA	814	0			246	6.339		47.733	1.00 21.73	A
J J	ATOM	815	N			247	4.140	-5.381	47.466	1.00 20.19	A
	MION	013	44	0	^	411	4.140	3.301			

	MOTA	816	CA	LYS	A	247	4.345	-4.246	46.574	1.00 1	9.02	A
	ATOM	817	CB	LYS	A	247	3.193	-4.161	45.573	1.00 1	9.65	A
	MOTA	818	CG	LYS	A	247	3.074	-5.343	44.614	1.00 2	1.06	A
	MOTA	819	CD	LYS	A	247	1.889	-5.127	43.680	1.00 2	3.15	A
5	MOTA	820	CE	LYS	A	247	1.777	-6.205	42.612	1.00 2	4.77	A
	ATOM	821	NZ	LYS	A	247	0.745	-5.834	41.592	1.00 2	5.30	A
	MOTA	822	С	LYS	A	247	4.477	-2.906	47.296	1.00 1	7.94	A
	ATOM	823	0	LYS	Α	247	3.604	-2.517	48.074	1.00 1	6.18	A
	MOTA	824	N	VAL	Α	248	5.569	-2.200	47.015	1.00 1	5.60	A
10	MOTA	825	CA	VAL	A	248	5.823	-0.895	47.611	1.00 1	4.60	A
	MOTA	826	CB	VAL	A	248	7.005	-0.934	48.606	1.00 1	2.63	A
	MOTA	827	CG1	VAL	A	248	7.176	0.427	49.239	1.00 1	2.28	A
	MOTA	828	CG2	VAL	Α	248	6.775	-2.000	49.686	1.00 1	4.36	A
	MOTA	829	С	VAL	A	248	6.179	0.128	46.525	1.00 1	3.82	A
15	ATOM	830	0	VAL	Α	248	6.907	-0.190	45.581	1.00 1	4.75	A
	ATOM	831	N			249	5.664	1.348	46.665	1.00 1	3.36	A
	MOTA	832	CA			249	5.958	2.432	45.721	1.00 1	2.42	A
	ATOM	833	CB			249	4.715	2.834	44.922	1.00 1	2.10	A
	ATOM	834	CG			249	5.019	3.890	43.854	1.00 1	2.46	A
20	ATOM	835	SD			249	3.586	4.612	43.039	1.00 1	6.07	· A
	ATOM	836	CE			249	3.108	3.259	41.935	1.00 1	7.64	A
	ATOM	837	C	MET			6.451	3.636	46.518	1.00 1	2.45	A
	ATOM	838	ō			249	5.857	3.991	47.538	1.00 1	3.01	A
	ATOM	839	N	VAL			7.539	4.252	46.060	1.00 1	1.98	A
25	MOTA	840	CA			250	8.115	5.412	46.738	1.00 1		A
	ATOM	841	CB	VAL			9.590	5.139	47.159	1.00 1	1.37	A
	MOTA	842	CG1	VAL			10.140	6.308	47.953	1.00 1		Α
	ATOM	843		VAL			9.670	3.869	47.978		9.66	A
	ATOM	844	C	VAL			8.075	6.626	45.805	1.00 1	0.65	А
30	ATOM	845	0	VAL			8.809	6.692	44.814		9.79	A
•	ATOM	846	N	VAL			7.217	7.587	46.128		8.23	A
	ATOM	847	CA	VAL			7.069	8.776	45.303	1.00	8.84	A
	MOTA	848	CB	VAL			5.578	9.163	45.195		7.93	A
	ATOM	849	CG1	VAL			5.393	10.275	44.192		8.30	A
35	ATOM	850		VAL			4.768	7.950	44.791		6.06	A
-	ATOM	851	C			251	7.870	9.954	45.846		7.73	A
	ATOM	852	0	VAL			7.661	10.400	46.974		8.35	A
	MOTA	853	N	VAL			8.798	10.447	45.040	1.00	7.77	A
	ATOM	854	CA	VAL			9.636	11.572	45.435	1.00	7.58	A
40	ATOM	855	CB	VAL			11.122		45.185	1.00	8.48	A
	ATOM	856		VAL			12.009		45.785	1.00	8.93	A
	ATOM	857		VAL				9.880		1.00	8.20	A
	MOTA	858	C			252	9.219		44.599		7.83	A
	ATOM	859	0	VAL			9.455	12.822		1.00	8.22	A
45	MOTA	860	N			253	8.602		45.247		7.14	A
	MOTA	861	CA			253	8.124	14.956			6.30	A
	ATOM	862	CB			253	6.795			1.00	4.22	A
	ATOM	863		THR			6.307				6.07	A
	MOTA	864		THR			5.751	14.116			5.03	A
50	MOTA	865	C			253	7.907	16.163			6.67	A
	ATOM	866	ō			253	7.897		46.667		8.59	A
	MOTA	867	N	ASP			7.726	17.336			8.22	A
	MOTA	868	CA			254	7.501	18.559			7.68	A
	MOTA	869	СВ			254	8.158	19.756			6.78	A
55	ATOM	870	CG			254	7.714	19.897			9.84	A
	ATOM	871		ASP			6.727	19.230			8.18	A
							• • • • • • • • • • • • • • • • • • • •	•				

PCT/GB01/01358

			,									
	MOTA	872	OD2	ASP	Α	254	8.340	20.680	42.714	1.00	9.72	A
	MOTA	873	С	ASP	A	254	5.998	18.811	45.796	1.00	7.73	A
	ATOM	874	0	ASP	A	254	5.589	19.837	46.339	1.00	6.75	A
	ATOM	875	N	GLY	A	255	5.188	17.874	45.314	1.00	7.48	A
5	ATOM	876	CA	GLY	Α	255	3.745	17.'981	45.441	1.00	8.81	A
	ATOM	877	С	GLY	Α	255	3.033	18.954	44.517	1.00	10.43	A
	ATOM	878	0	GLY	Α	255	1.849	19.212	44.697	1.00	11.40	A
	ATOM	879	N	GLU	A	256	3.734	19.480	43.521	1.00	10.74	A
	ATOM	880	CA	GLU	Α	256	3.141	20.438	42.590	1.00	10.42	A
10	ATOM	881	СВ	GLU	А	256	4.080	21.634	42.434	1.00	10.18	A
	ATOM	882	CG	GLU	A	256	3.510	22.804	41.657	1.00	10.67	A
	ATOM	883	CD	GLU	A	256	4.526	23.916	41.501	1.00	12.63	A
	ATOM	884	OE1	GLU	Α	256	5.582	23.679	40.871	1.00	11.76	A
	ATOM	885	OE2	GLU	Α	256	4.275	25.024	42.018	1.00	17.05	A
15	ATOM	886	C	GLU	A	256	2.873	19.802	41.224	1.00	11.06	A
	ATOM	887	0			256	3.612	20.028	40.267	1.00	9.35	A
	ATOM	888	N			257	1.800	19.019	41.142	1.00	11.83	A
	ATOM	889	CA			257	1.429	18.336	39.908	1.00	12.36	A
	ATOM	890	СВ			257	0.797	16.983	40.238	1.00	13.41	A
20	ATOM	891	OG			257	-0.402	17.165	40.973	1.00	15.55	A
	ATOM	892	C			257	0.449	19.130	39.055	1.00	12.39	A
	ATOM	893	ō			257	-0.123	20.119	39.500	1.00	11.98	A
	ATOM	894	N			258	0.259	18.678	37.819	1.00	13.45	A
	ATOM	895	CA			258	-0.676	19.313	36.904	1.00	13.92	A
25	ATOM	896	CB			258	-0.047	19.496	35.514	1.00	14.39	A
	ATOM	897	CG			258	0.973	20.588	35.446	1.00	15.31	A
	ATOM	898		HIS			0.856	21.893	35.100	1.00	16.93	A
	ATOM	899		HIS			2.297	20.399	35.783	1.00	15.95	A
	ATOM	900		HIS			2.949	21.540	35.648	1.00	17.37	A
30	ATOM	901		HIS			2.099	22.463	35.236	1.00	15.99	A
	ATOM	902	C	HIS			-1.928	18.444	36.781	1.00	14.43	A
	ATOM	903	0	HIS			-3.002	18.940	36.428	1.00	14.21	A
	ATOM	904	N	ASP	A	259	-1.788	17.152	37.081	1.00	13.61	A
	ATOM	905	CA	ASP	Α	259	-2.916	16.228	36.972	1.00	14.20	A
35	MOTA	906	СВ	ASP	A	259	-2.536	15.034	36.076	1.00	14.11	A
	ATOM	907	CG	ASP	A	259	-1.374	14.212	36.632	1.00	14.29	A
	ATOM	908	OD1	ASP	Α	259	-0.966	14.438	37.791	1.00	12.82	A
	ATOM	909	OD2	ASP	Α	259	-0.878	13.323	35.905	1.00	12.48	A
	ATOM	910	C	ASP	A	259	-3.499	15.713	38.296	1.00	14.24	A
40	MOTA	911	0	ASP	A	259	-3.927	14.557	38.384	1.00	13.26	A
	ATOM	912	N	GLY	Α	260	-3.531	16.575	39.309	1.00	13.52	A
	ATOM	913	CA	GLY	A	260	-4.072	16.190	40.601	1.00	15.49	A
	ATOM	914	C	GLY	A	260	-5.550	15.814	40.601	1.00	17.20	A
	ATOM	915	0	GLY	A	260	-6.059	15.265	41.584	1.00	17.99	A
45	ATOM	916	N	SER	A	261	-6.255	16.100	39.515	1.00	17.56	A
	ATOM	917	CA	SER	Α	261	-7.672	15.764	39.453	1.00	20.43	A
	ATOM	918	CB			261	-8.303	16.341	38.183	1.00	19.97	A
	ATOM	919	OG	SER	A	261	-7.769	15.726	37.025	1.00	22.72	A
	ATOM	920	С	SER	Α	261	-7.880	14.246	39.485	1.00	21.99	A
50	ATOM	921	0			261	-8.981	13.769	39.766	1.00	23.07	A
	ATOM	922	N	MET	A	262	-6.817	13.494	39.211	1.00	22.29	A
	ATOM	923	CA			262	-6.880	12.038	39.193	1.00	22.48	A
	ATOM	924	CB			262	-5.974	11.494	38.087	1.00	23.03	A
	ATOM	925	CG			262	-6.258	12.065	36.708	1.00	24.64	A
55	ATOM	926	SD			262	-5.131	11.417	35.452	1.00	27.40	A
	ATOM	927	CE	MET	A	262	-3.565	11.957	36.091	1.00	27.77	A

	ATOM	928	C	MET	A	262	-6.492	11.387	40.523		22.57	A
	MOTA	929	0	MET	A	262	-6.538	10.168	40.655		23.23	A
	MOTA	930	N	LEU	A	263	-6.107	12.197	41.502	1.00	23.04	A
	MOTA	931	CA	LEU	A	263	-5.707	11.694	42.817		23.03	A
5	ATOM	932	CB	LEU	A	263	-5.775	12.839	43.840		22.96	A
	MOTA	933	CG	LEU	A	263	-5.290	12.652	45.285	1.00	22.74	A
	ATOM	934	CD1	LEU	A	263	-5.364	13.999	45.984		24.94	A
	ATOM	935	CD2	LEU	A	263	-6.134	11.637	46.038		23.03	A
	MOTA	936	С	LEU	A	263	-6.552	10.511	43.310		22.95	A
10	ATOM	937	0	LEU	A	263	-6.071	9.376	43.398		23.38	A
	ATOM	938	N	LYS	A	264	-7.807	10.799	43.642		22.68	A
	ATOM	939	CA	LYS	A	264	-8.761	9.811	44.154		22.38	A
	ATOM	940	CB	LYS	A	264	-10.162	10.429	44.161		22.83	A
	ATOM	941	CG	LYS	A	264	-11.251	9.581	44.782		23.74	A
15	MOTA	942	CD	LYS	A	264	-11.152	9.568	46.291		25.46	A
	MOTA	943	CE	LYS	A	264	-12.536	9.481	46.904		27.18	A
	MOTA	944	NZ	LYS	A	264	-13.317	8.347	46.335		27.63	A
	MOTA	945	C	LYS	A	264	-8.793	8.513	43.352		21.28	A
	ATOM	946	0	LYS	A	264	-8.706	7.417	43.913		19.95	A
20	ATOM	947	N	ALA			-8.925	8.651	42.037		20.39	A
	MOTA	948	CA	ALA			-8.991	7.508	41.136		18.47	A
	MOTA	949	CB	ALA			-9.264	7.989	39.715		19.33	A
	ATOM	950	С	ALA			-7.742	6.637	41.153		17.32	A
	MOTA	951	0	ALA			-7.838	5.412	41.229		16.33	A
25	ATOM	952	N	VAL			-6.573	7.267	41.079		15.33	A
	ATOM	953	CA	VAL			-5.312	6.530	41.063		14.14	A
	ATOM	954	CB	VAL			-4.163	7.449	40.580		15.25	A
	ATOM	955		VAL			-2.822	6.744	40.713		12.74	A
	ATOM	956		VAL			-4.412	7.845	39.122		14.35	A
30	ATOM	957	С	VAL			-4.953	5.907	42.417		13.82	A
	MOTA	958	0	VAL			-4.544	4.744	42.493		11.03	A
	ATOM	959	N			267	-5.123	6.679	43.483		13.92	A
	ATOM	960	CA			267	-4.820	6.203	44.826		14.29	A
	ATOM	961	CB			267	-4.981	7.353	45.849		13.44	A
35	ATOM	962		ILE			-4.768	6.845	47.269		12.64	A
	ATOM	963		ILE			-3.994	8.475	45.503		13.65	A
	ATOM	964		ILE			-2.565	8.013	45.313		12.83	A
	ATOM	965	C	ILE			-5.708	5.019	45.220		15.77	A
4.0	ATOM	966	0			267	-5.248	4.081	45.869		14.63	A
40	ATOM		N	ASP			-6.976	5.064	44.820		17.07	A
	ATOM	968	CA	ASP			-7.908	3.985	45.133		18.52	A
	MOTA	969	CB			268	-9.293		44.567		21.82	A
	ATOM	970	CG			268	-10.330		45.646		24.24	A
4 ==	MOTA	971		ASP			-10.429	3.674	46.566		27.22	A
45	MOTA	972		ASP			-11.055	5.532	45.566		25.15	A
	ATOM	973	С			268	-7.408	2.681	44.530		18.70	A
	ATOM	974	0			268	~7.378	1.642	45.195		17.59	A
	MOTA	975	N			269	-7.017		43.260 42.571		17.82 17.98	A N
E 0	MOTA	976	CA			269	-6.520	1.559			19.75	A A
50	MOTA	977	CB			269	-6.177	1.894	41.121 40.299		24.17	A
	MOTA	978	CD			269	-7.371 -7.025	2.329 2.532	38.839		27.38	A A
	ATOM	979	CD			269	-7.025		38.133		31.17	A
	ATOM	980		GLN GLN			-6.679 -7.112	3.773	38.377		28.54	A
55	MOTA	981	C NEZ			269	-5.295	1.005	43.282		16.45	A
23	MOTA	982						-0.207	43.487		13.95	A
	MOTA	983	0	GTIM	A	269	-5.183	-0.207	77.40/	1.00	13.33	A

	ATOM	984	N	CYS	A	270	-4.378	1.896	43.657	1.00	14.73	A
	MOTA	985	CA	CYS	A	270	-3.175	1.478	44.359	1.00	15.16	A
	ATOM	986	CB	CYS	A	270	-2.299	2.688	44.709	1.00	14.54	A
	ATOM	987	SG	CYS	A	270	-1.455	3.488	43.295		12.41	A
5	ATOM	988	C	CYS	A	270	-3.570	0.730	45.627	1.00	15.14	A
	ATOM	989	0	CYS	A	270	-2.974	-0.294	45.957	1.00	15.57	A
	ATOM	990	N	ASN	A	271	-4.587	1.228	46.329	1.00	17.79	A
	ATOM	991	CA	ASN	A	271	-5.042	0.577	47.556	1.00	18.54	A
	ATOM	992	CB	ASN	A	271	-6.154	1.383	48.240	1.00	18.69	A
10	ATOM	993	CG	ASN	A	271	-5.628	2.595	48.997	1.00	19.21	A
	ATOM	994	OD1	ASN	A	271	-4.474	2.628	49.423	1.00	19.65	A
	MOTA	995	ND2	ASN	A	271	-6.485	3.586	49.188	1.00	18.35	A
	MOTA	996	C	ASN	A	271	-5.534	-0.843	47.297	1.00	19.85	A
	ATOM	997	0	ASN	A	271	-5.217	-1.756	48.054	1.00	19.38	A
15	ATOM	998	N	HIS	A	272	-6.298	-1.034	46.225	1.00	20.77	A
	ATOM	999	CA	HIS	A	272	-6.816	-2.361	45.898	1.00	22.45	Α
	ATOM	1000	CB	HIS	A	272	-7.961	-2.240	44.894	1.00	26.64	A
	MOTA	1001	CG	HIS	A	272	-9.210	-1.673	45.494	1.00	30.29	A
	MOTA	1002	CD2	HIS	A	272	-9.798	-0.464	45.353	1.00	31.55	A
20	ATOM	1003	ND1	HIS	A	272	-9.955	-2.355	46.432	1.00	32.65	A
	MOTA	1004	CE1	HIS	A	272	-10.947	-1.588	46.847	1.00	32.98	A
	ATOM	1005	NE2	HIS	A	272	-10.874	-0.433	46.208	1.00	33.31	A
	ATOM	1006	С	HIS	A	272	-5.756	-3.337	45.398	1.00	21.74	A
	ATOM	1007	0	HIS	A	272	-5.947	-4.549	45.475	1.00	21.48	A
25	MOTA	1008	N	ASP	A	273	-4.644	-2.811	44.883	1.00	20.99	A
	MOTA	1009	CA	ASP	A	273	-3.536	-3.650	44.420	1.00	19.25	A
	MOTA	1010	CB	ASP	A	273	-2.721	-2.943	43.330	1.00	18.34	A
	MOTA	1011	CG	ASP	A	273	-3.410	-2.952	41.979	1.00	18.54	A
	ATOM	1012	OD1	ASP	A	273	-4.474	-3.584	41.851	1.00	18.73	A
30	MOTA	1013	OD2	ASP	A	273	-2.883	-2.326	41.039	1.00	19.50	A
	MOTA	1014	C	ASP	A	273	-2.628	-3.923	45.617	1.00	18.38	A
	ATOM	1015	0	ASP	A	273	-1.597	-4.586	45.497	1.00	17.39	A
	ATOM	1016	N	ASN	A	274	-3.025	-3.395	46.771	1.00	18.11	A
	MOTA	1017	CA	ASN	A	274	-2.276	-3.552	48.013	1.00	17.29	A
35	MOTA	1018	CB	ASN	A	274	-2258	-5.016	48.450	1.00	18.34	A
	MOTA	1019	CG	ASN	A	274	-3.650	-5.565	48.681	1.00	20.60	A
	MOTA	1020	OD1	ASN	A	274	-4.483	-4.927	49.331	1.00	20.94	A
	MOTA	1021	ND2	ASN	A	274	-3.912	-6.754	48.154	1.00	22.78	A
	MOTA	1022	C	ASN	A	274	-0.855	-3.037	47.889	1.00	16.90	A
40	MOTA	1023	0	ASN	A	274	0.104	-3.725	48.249	1.00	16.67	A
	MOTA	1024	N	ILE	A	275	-0.725	-1.819	47.375	1.00	16.97	A
	MOTA	1025	CA	ILE	A	275	0.583	-1.194	47.210	1.00	15.59	A
	ATOM	1026	CB	ILE	A	275	0.693	-0.453	45.855	1.00	14.51	A
	MOTA	1027	CG2	ILE	A	275	2.027	0.279	45.764	1.00	13.97	A
45	ATOM	1028	CG1	ILE	A	275	0.563	-1.442	44.699	1.00	14.72	A
	MOTA	1029	CD1	ILE	A	275	0.834	-0.824	43.342	1.00	13.73	A
	MOTA	1030	C	ILE	A	275	0.829	-0.189	48.335	1.00	15.36	A
	ATOM	1031	0	ILE	A	275	0.092	0.789	48.475	1.00	14.71	A
	ATOM	1032	N	LEU	A	276	1.856	-0.446	49.143	1.00	15.48	A
50	ATOM	1033	CA	LEU	A	276	2.217	0.448	50.240	1.00	15.30	A
	MOTA	1034	CB	LEU	A	276	3.178	-0.248	51.204	1.00	17.87	A
	ATOM	1035	CG	LEU	A	276	2.627	-1.353	52.108	1.00	20.34	A
	ATOM	1036	CD1	LEU	A	276	1.537	-0.773	52.994	1.00	22.51	A
	MOTA	1037	CD2	LEU	A	276	2.091	-2.504	51.268	1.00	21.16	A
55	ATOM	1038	C	LEU	A	276	2.906	1.652	49.619	1.00	14.60	A
	ATOM	1039	0	LEU	A	276	3.788	1.482	48.777	1.00	16.04	A

67

2.859 50.036 1.00 13.49 MOTA 1040 N ARG A 277 2.524 Α 3.101 4.074 49.463 1.00 12.06 MOTA 1041 CA ARG A 277 1042 ARG A 277 2.026 4.855 48.698 1.00 10.92 Α ATOM CB 1043 CG ARG A 277 1.334 4.078 47.586 1.00 6.86 Α MOTA 1.00 5 0.192 4.898 46.985 6.96 Α MOTA 1044 CD ARG A 277 6.18 ARG A 277 -0.789 5.303 47.992 1.00 Α MOTA 1045 NE ARG A 277 -1.687 4.492 48.543 1.00 7.31 MOTA 1046 CZ NH1 ARG A 277 -2.537 4.955 49.452 1.00 6.68 A MOTA 1047 1.00 7.09 -1.748 3.217 48.182 A MOTA 1048 NH2 ARG A 277 50.414 10 MOTA C ARG A 277 3.788 5.050 1.00 11.97 A 1049 MOTA 1050 0 ARG A 277 3.225 5.453 51.431 1.00 13.23 Α 5.435 50.057 1.00 10.69 ATOM 1051 N PHE A 278 5.009 Α 6.409 50.826 1.00 11.20 Α ATOM 1052 CA PHE A 278 5.767 50.983 1.00 9.58 6.000 MOTA 1053 CB PHE A 278 7.239 Α 1.00 11.91 4.944 52.027 15 ATOM 1054 CG PHE A 278 7.484 Α 7.231 3.603 51.759 1.00 12.77 ATOM 1055 CD1 PHE A 278 A 1.00 12.69 7.985 5.293 53.280 Α MOTA 1056 CD2 PHE A 278 52.727 1.00 12.09 CE1 PHE A 278 2.620 Α MOTA 1057 7.475 4.318 54.251 1.00 13.27 MOTA 1058 CE2 PHE A 278 8.230 Α 20 7.974 2.978 53.969 1.00 11.23 Α MOTA 1059 czPHE A 278 ATOM 7.717 50.042 1.00 11.02 1060 С PHE A 278 5.718 Α 5.787 7.718 48.808 1.00 12.54 ATOM 1061 0 PHE A 278 A 1.00 10.43 8.822 50.758 ATOM 1062 N **GLY A 279** 5.587 Α 10.121 1.00 10.44 **GLY A 279** 5.579 50.114 Α ATOM 1063 CA 25 ATOM 1064 С **GLY A 279** 6.841 10.824 50.572 1.00 10.00 Α 1.00 8.22 MOTA 1065 O **GLY A 279** 7.000 11.069 51.767 ILE A 280 7.741 11.135 49.641 1.00 9.32 Α ATOM 1066 N 1.00 9.006 11.800 49.976 8.94 Α ATOM 1067 CA ILE A 280 ILE A 280 10.210 11.086 49.297 1.00 9.74 Α ATOM 1068 CB 30 11.635 49.851 1.00 6.76 A MOTA 1069 CG2 ILE A 280 11.518 10.104 9.564 49.484 1.00 7.75 Α CG1 ILE A 280 MOTA 1070 10.002 9.104 50.927 1.00 8.44 Α CD1 ILE A 280 MOTA 1071 8.982 13.258 49.511 1.00 9.08 Α MOTA 1072 С ILE A 280 ILE A 280 9.072 13.540 48.314 1.00 8.74 Α ATOM 1073 0 35 ATOM 1074 N ALA A 281 8.890 14.183 50.461 1.00 8.56 Α 1.00 ATOM 1075 CA ALA A 281 8.813 15.606 50.132 9.58 Α 51.255 1.00 9.06 Α MOTA CB ALA A 281 8.092 16.351 1076 49.793 1.00 MOTA 1077 C ALA A 281 10.112 16.335 9.24 Α ATOM 1078 0 ALA A 281 10.994 16.500 50.631 1.00 9.20 A 40 16.773 48.544 1.00 9.69 ATOM 1079 N VAL A 282 10.202 A VAL A 282 11.334 17.544 48.058 1.00 11.46 Α ATOM 1080 CA 17.337 46.539 1.00 12.19 11.549 Α ATOM 1081 CB VAL A 282 1.00 10.75 12.695 18.198 46.046 A ATOM 1082 CG1 VAL A 282 CG2 VAL A 282 11.823 15.861 46.245 1.00 12.21 A **ATOM** 1083 45 18.986 48.306 1.00 12.35 MOTA С VAL A 282 10.899 A 1084 19.629 47.444 1.00 12.44 MOTA VAL A 282 10.298 Α 1085 0 1.00 12.18 19.473 49.509 MOTA LEU A 283 11.173 Α 1086 N 1.00 12.59 20.829 49.898 ATOM 1087 CA **LEU A 283** 10.808 Α 1.00 11.98 **LEU A 283** 9.432 20.839 50.584 Α MOTA 1088 CB 50 20.217 49.972 1.00 11.80 ATOM 1089 CG **LEU A 283** 8.169 Α 7.058 20.286 51.002 1.00 10.46 A CD1 LEU A 283 MOTA 1090 48.698 1.00 11.27 20.940 Α CD2 LEU A 283 7.747 **ATOM** 1091 11.852 21.323 50.892 1.00 13.20 A ATOM 1092 C LEU A 283 51.565 1.00 13.05 **LEU A 283** 12.496 20.515 Α MOTA 1093 0 55 12.028 22.641 50.977 1.00 15.10 A ATOM 1094 N GLY A 284 1095 CA GLY A 284 12.973 23.191 51.931 1.00 16.65 MOTA

	ATOM	1096	C	GLY	A	284	14.057	24.118	51.408	1.00	18.34	A
	MOTA	1097	0	GLY	A	284	14.597	24.927	52.163	1.00	17.39	A
	MOTA	1098	N	TYR	A	285	14.379	24.007	50.126	1.00	19.40	A
	ATOM	1099	CA	TYR	A	285	15.424	24.829	49.528	1.00	21.96	A
5	ATOM	1100	CB	TYR	A	285	16.262	23.973	48.591	1.00	22.25	A
	MOTA	1101	CG	TYR	A	285	16.946	22.812	49.285	1.00	25.63	A
	ATOM	1102	CD1	TYR	A	285	18.230	22.950	49.816	1.00	25.35	A
	ATOM	1103	CE1	TYR	A	285	18.878	21.869	50.420	1.00	27.84	A
	MOTA	1104	CD2	TYR	A	285	16.321	21.564	49.383	1.00	24.77	A
10	MOTA	1105	CE2	TYR	A	285	16.958	20.483	49.983	1.00	25.71	A
	ATOM	1106	CZ	TYR	Α	285	18.236	20.639	50.498	1.00	27.19	A
	MOTA	1107	ОН	TYR	A	285	18.880	19.567	51.081	1.00	28.61	A
	ATOM	1108	С	TYR	A	285	14.863	26.032	48.781	1.00	22.57	A
	ATOM	1109	0	TYR	A	285	15.523	27.062	48.669	1.00	24.02	A
15	ATOM	1110	N	LEU	A	286	13.645	25.896	48.268	1.00	23.97	A
	ATOM	1111	CA	LEU	Α	286	12.991	26.984	47.553	1.00	24.44	A
	ATOM	1112	CB	LEU	А	286	12.109	26.433	46.424	1.00	23.78	A
	ATOM	1113	CG	LEU	А	286	12.733	25.452	45.424	1.00	23.33	A
	ATOM	1114		LEU			11.768	25.238	44.268	1.00	22.08	A
20	MOTA	1115	CD2	LEU	А	286	14.052	25.995	44.895	1.00	23.54	A
	ATOM	1116	C	LEU			12.130	27.754	48.550	1.00	25.62	A
	ATOM	1117	0	LEU			11.432	27.158	49.367	1.00	25.02	A
	ATOM	1118	N	ASN			12.185	29.079	48.484	1.00	28.24	A
	ATOM	1119	CA	ASN			11.414	29.924	49.391	1.00	28.80	A
25	ATOM	1120	CB	ASN			12.072	31.298	49.505	1.00	30.42	A
	ATOM	1121	CG	ASN	A	287	11.674	32.030	50.769	1.00	31.82	A
	ATOM	1122	OD1	ASN	Α	287	10.490	32.180	51.072	1.00	32.26	Α
	ATOM	1123	ND2	ASN	Α	287	12.667	32.496	51.513	1.00	33.25	A
	ATOM	1124	С	ASN	Α	287	9.980	30.085	48.901	1.00	29.54	A
30	MOTA	1125	0	ASN	Α	287	9.740	30.651	47.833	1.00	29.75	A
	ATOM	1126	N	ARG	Α	288	9.029	29.594	49.688	1.00	29.81	A
	ATOM	1127	CA	ARG			7.614	29.677	49.331	1.00	30.68	A
	ATOM	1128	СВ	ARG	A	288	7.063	28.285	49.002	1.00	30.29	A
	ATOM	1129	CG	ARG	Α	288	7.722	27.568	47.834	1.00	27.73	A
35	MOTA	1130	CD	ARG	Α	288	6.856	26.381	47.427	1.00	28.24	A
	ATOM	1131	NE	ARG	A	288	7.279	25.765	46.173	1.00	26.45	A
	ATOM	1132	cz	ARG	Α	288	8.232	24.846	46.075	1.00	27.37	A
	ATOM	1133	NH1	ARG	Α	288	8.866	24.430	47.164	1.00	26.30	A
	MOTA	1134	NH2	ARG	Α	288	8.550	24.342	44.888	1.00	26.61	A
40	ATOM	1135	С	ARG	Α	288	6.798	30.267	50.477	1.00	31.67	A
	MOTA	1136	0	ARG			7.298	30.396	51.591	1.00	31.76	· А
	ATOM	1137	N	ASN	Α	289	5.544	30.621	50.196	1.00	33.77	A
	ATOM	1138	CA	ASN	Α	289	4.646	31.176	51.212	1.00	35.84	A
	ATOM	1139	CB	ASN	Α	289	3.265	31.491	50.624	1.00	36.52	A
45	ATOM	1140	CG	ASN	Α	289	3.293	32.598	49.611	1.00	37.86	A
	ATOM	1141	OD1	ASN	Α	289	3.777	33.697	49.883	1.00	39.91	A
	ATOM	1142	ND2	ASN	Α	289	2.753	32.325	48.431	1.00	38.60	A
	ATOM	1143	С	ASN	A	289	4.429	30.146	52.310	1.00	36.64	A
	ATOM	1144	0	ASN	A	289	5.315	29.358	52.642	1.00	37.87	A
50	MOTA	1145	N	ALA	A	290	3.220	30.165	52.861	1.00	36.43	A
	ATOM	1146	CA	ALA	A	290	2.815	29.225	53.894	1.00	35.71	A
	ATOM	1147	СВ	ALA			2.333	29.970	55.133	1.00	35.62	A
	MOTA	1148	С	ALA	A	290	1.673	28.423	53.275	1.00	35.14	A
	ATOM	1149	0	ALA	A	290	1.576	27.210	53.458	1.00	34.29	A
55	MOTA	1150	N	LEU	A	291	0.820	29.120	52.527	1.00	34.35	A
	ATOM	1151	CA	LEU	A	291	-0.315	28.498	51.857	1.00	33.93	A

PCT/GB01/01358

	ATOM	1152	CB	LEU	A	291	-1.304	29.563	51.378	1.00 34.50	A
	ATOM	1153	CG	LEU	A	291	-2.443	29.050	50.486	1.00 35.78	A
	MOTA	1154	CD1	LEU	Α	291	-3.223	27.957	51.211	1.00 35.87	A
	ATOM ·	1155	CD2	LEU	Α	291	-3.358	30.205	50.108	1.00 35.64	A
5	ATOM	1156	С	LEU	Α	291	0.151	27.672	50.665	1.00 33.30	A
	ATOM	1157	0	LEU			-0.473	26.670	50.309	1.00 33.11	A
	ATOM	1158	N	ASP	А	292	1.241	28.109	50.041	1.00 32.39	A
	ATOM	1159	CA	ASP			1.795	27.401	48.898	1.00 30.79	A
	ATOM	1160	CB	ASP			2.782	28.298	48.144	1.00 31.69	A
10	ATOM	1161	CG	ASP			2.084	29.335	47.269	1.00 32.74	A
10	ATOM	1162	OD1				2.768	30.243	46.753	1.00 33.80	A
	MOTA	1163		ASP			0.854	29.237	47.084	1.00 32.42	A
			C	ASP			2.493	26.144	49.395	1.00 29.78	A
	MOTA	1164					2.436	25.104	48.754	1.00 29.16	A
1 ~	MOTA	1165	0			292		26.247	50.548	1.00 29.30	A
15	MOTA	1166	N	THR			3.143			1.00 28.64	A
	ATOM	1167	CA			293	3.842	25.109	51.132		
	ATOM	1168	CB	THR			4.788	25.548	52.273	1.00 29.16	A
	MOTA	1169	OG1	THR			5.832	26.379	51.747	1.00 29.06	A
	MOTA	1170	CG2	THR			5.409	24.330	52.942	1.00 29.62	A
20	MOTA	1171	C			293	2.836	24.104	51.691	1.00 28.42	A
	MOTA	1172	0	THR			3.013	22.890	51.556	1.00 28.33	A
	ATOM	1173	N	LYS	A	294	1.781	24.614	52.319	1.00 27.12	A
	ATOM	1174	CA	LYS	A	294	0.754	23.753	52.894	1.00 25.88	A
	ATOM	1175	CB	LYS			-0.296	24.585	53.631	1.00 27.50	A
25	ATOM	1176	CG	LYS	A	294	-0.503	24.160	55.074	1.00 31.01	A
	ATOM	1177	CD	LYS	A	294	0.711	24.528	55.925	1.00 32.77	A
	ATOM	1178	CE	LYS	A	294	0.624	23.964	57.345	1.00 32.54	A
	ATOM	1179	NZ	LYS	A	294	1.096	22.554	57.413	1.00 34.00	A
	ATOM	1180	C	LYS	Α	294	0.070	22.922	51.815	1.00 23.90	A
30	ATOM	1181	0	LYS	Α	294	-0.100	21.713	51.960	1.00 22.61	A
	ATOM	1182	N	ASN	Α	295	-0.329	23.575	50.732 ⁻	1.00 21.38	A
	ATOM	1183	CA	ASN	A	295	-0.992	22.870	49.646	1.00 21.12	Α
	ATOM	1184	CB	ASN	A	295	-1.479	23.863	48.594	1.00 23.57	A
	ATOM	1185	CG	ASN	А	295	-2.890	24.347	48.870	1.00 26.26	A
35	MOTA	1186	OD1	ASN	Α	295	-3.860	23.616	48.666	1.00 28.01	A
	ATOM	1187		ASN			-3.010	25.581	49.347	1.00 27.75	A
	ATOM	1188	С	ASN			-0.077	21.825	49.020	1.00 18.46	A
	ATOM	1189	0	ASN			-0.547	20.788	48.554	1.00 16.78	A
	ATOM	1190	N	LEU			1.226	22.098	49.018	1.00 15.33	A
40	ATOM	1191	CA	LEU			2.191	21.153	48.469	1.00 14.78	A
-0	ATOM	1192	CB	LEU			3.571	21.809	48.321	1.00 14.17	A
	ATOM	1193	CG	LEU			3.720	22.917	47.271	1.00 15.83	A
	MOTA	1194		LEU			5.130	23.495	47.336	1.00 13.92	A
	MOTA	1195		LEU			3.424	22.359	45.877	1.00 15.72	A
4 =						296	2.288	19.937	49.391	1.00 13.30	A
45	MOTA	1196	C					18.798	48.939	1.00 13.73	A
	MOTA	1197	0	LEU			2.190		50.681	1.00 13.73	A
	MOTA	1198	N			297	2.479	20.184		1.00 13.90	A
	ATOM	1199	CA			297	2.578	19.107	51.664		
г.	ATOM	1200	CB			297	2.704	19.667	53.099	1.00 13.20	A
50	ATOM	1201		ILE			2.581	18.539	54.120	1.00 10.79	A
	ATOM	1202		ILE			4.041	20.389	53.263	1.00 13.18	A
	MOTA	1203		ILE			4.169	21.157	54.579	1.00 13.83	, A
	MOTA	1204	С			297	1.336	18.229	51.601	1.00 13.43	A
	MOTA	1205	0			297	1.426	16.999	51.647	1.00 14.67	A
55	MOTA	1206	N			298	0.173	18.867	51.498	1.00 13.02	A
	MOTA	1207	CA	LYS	Α	298	-1.089	18.147	51.435	1.00 14.37	A

	ATOM	1208	СВ	LYS	A	298	-2.245	19.114	51.175	1.00	15.32	A
	MOTA	1209	CG	LYS	A	298	-3.565	18.420	50.872		17.06	A
	MOTA	1210	CD	LYS	A	298	-4.742	19.363	51.029	1.00	18.40	A
	MOTA	1211	CE	LYS	A	298	-4.571	20.626	50.198	1.00	19.78	A
5	MOTA	1212	NZ	LYS	A	298	-5.760	21.518	50.326		20.25	A
	MOTA	1213	С	LYS	A	298	-1.101	17.054	50.372		13.87	A
	ATOM	1214	0	LYS	A	298	-1.484	15.920	50.652		14.22	A
	MOTA	1215	N			299	-0.685	17.394	49.155		14.10	A
	MOTA	1216	CA	GLŲ	A	299	-0.666	16.411	48.078		13.13	A
10	MOTA	1217	CB	GLU	A	299	-0.296	17.056	46.737		13.37	A
	MOTA	1218	CG	GLU	A	299	-0.391	16.065	45.571		14.38	A
	ATOM	1219	CD	GLU	A	299	-0.037	16.669	44.227		13.17	A
	ATOM	1220	OE1	GLU	A	299	1.136	16.562	43.805		13.60	A
	MOTA	1221	QE2	GLU	A	299	-0.936	17.257	43.595		13.39	A
15	MOTA	1222	C			299	0.317	15.289	48.369		11.75	A
	ATOM	1223	0	GLU	A	299	0.023	14.121	48.134		12.23	A
	ATOM	1224	N	ILE	A	300	1.486	15.636	48.885		11.21	A
	ATOM	1225	CA			300	2.480	14.616	49.168	1.00	9.40	A
	ATOM	1226	CB			300	3.817	15.251	49.613	1.00	9.90	A
20	ATOM	1227	CG2	ILE	A	300	4.856	14.164	49.842	1.00	7.33	A
	MOTA	1228	CG1	ILE			4.306	16.222	48.531	1.00	9.03	A
	MOTA	1229	CD1	ILE	A	300	5.517	17.046	48.922		10.70	A
	MOTA	1230	C	ILE	A	300	1.980	13.633	50.222		10.09	A
	MOTA	1231	0			300	2.172	12.425	50.084	1.00	9.54	A
25	MOTA	1232	N			301	1.332	14.143	51.268		10.44	A
	MOTA	1233	CA			301	0.805	13.280	52.324		10.83	A
	MOTA	1234	CB			301	0.377	14.111	53.546		11.26	A
	MOTA	1235	CG			301	1.514	14.819	54.281	1.00	9.39	A
	MOTA	1236	CD			301	1.026	15.364	55.618	1.00	8.55	A
30	ATOM	1237	CE			301	2.156	16.015	56.411	1.00	8.26	A
	ATOM	1238	NZ			301	1.803	16.140	57.858	1.00	8.59	A
	ATOM	1239	С			301	-0.393	12.476	51.812		10.73	A
	ATOM	1240	0			301	-0.679	11.382	52.300		10.91	A
	ATOM	1241	И			302	-1.087	13.033	50.828	1.00	9.99	A
35	ATOM	1242	CA			302	-2.250	12.389	50.232	1.00	9.05	A
	ATOM	1243	CB			302	-3.002	13.389	49.348	1.00	7.59	A
	ATOM	1244	C			302	-1.846	11.170	49.414	1.00	8.86	A
	MOTA	1245	0			302	-2.646	10.265	49.199	1.00	8.67	A A
4.0	ATOM	1246	N			303	-0.600	11.151	48.960	1.00	9.67	A
40	ATOM	1247	CA			303	-0.083	10.041	48.166 47.291	1.00		A
	ATOM	1248	CB			303	1.121	10.510 9.326	46.599	1.00		A
	ATOM	1249		ILE			1.770				11.14	A
	ATOM	1250		ILE			0.644	12.236	46.258 45.465		10.23	A
4 -	ATOM	1251		ILE			1.781		49.080		11.36	A
45	ATOM	1252	C			303	0.357 0.172	8.890 7.715	48.760	1.00		A
	ATOM	1253	0			303	0.172	9.233	50.225		11.53	A
	MOTA	1254	N			304	1.402	8.225	51.162		11.59	A
	MOTA	1255	CA			304 304	2.190	8.885	52.274		11.10	A
EΛ	ATOM	1256	CB			304		7.391	51.757		12.66	A
50	MOTA	1257	C				0.271 -0.883	7.818	51.806		13.35	A
	ATOM	1258	O N			304 305	0.617	6.189	52.203		13.47	A
	MOTA	1259	CA			305	~0.348	5.297	52.825		14.24	A
	ATOM	1260	CB			305	0.188	3.863	52.845		12.61	A
55	ATOM	1261	OG			305	0.188	3.295	51.553		15.04	A
55	ATOM	1262	C				-0.598	5.755	54.259		14.09	A
	ATOM	1263	L	JEK	A	305	-0.536	5.755	J-1.2J	2.00	,	••

	ATOM	1264	0	SER	A	305	0.227	6.451	54.850	1.00	13.19	А
	ATOM	1265	N	ILE	A	306	-1.739	5.361	54.814	1.00	14.63	A
	MOTA	1266	CA	ILE	A	306	-2.082	5.711	56.189	1.00	15.34	A
	MOTA	1267	CB	ILE	A	306	-3.601	5.980	56.316	1.00	16.66	A
5	MOTA	1268	CG2	ILE	Α	306	-3.960	6.292	57.758	1.00	15.49	A
	MOTA	1269	CG1	ILE	A	306	-3.997	7.141	55.400	1.00	16.61	A
	ATOM	1270	CD1	ILE	A	306	-5.497	7.343	55.272	1.00	17.56	A
	MOTA	1271	С	ILE	A	306	-1.690	4.523	57.076	1.00	15.24	A
	MOTA	1272	0	ILE	A	306	-1.898	3.374	56.695	1.00	14.01	A
10	MOTA	1273	N	PRO	A	307	-1.102	4.774	58.263	1.00	15.58	A
	MOTA	1274	CD	PRO	A	307	-0.741	3.622	59.105	1.00	15.34	A
	MOTA	1275	CA	PRO	Α	307	-0.734	6.032	58.931	1.00	15.50	A
	ATOM	1276	CB	PRO	A	307	-0.091	5.558	60.231	1.00	15.22	A
	MOTA	1277	CG	PRO	A	307	-0.732	4.223	60.473	1.00	16.17	A
15	MOTA	1278	C	PRO	A	307	0.233	6.893	58.118	1.00	14.70	A
	MOTA	1279	0	PRO	Α	307	1.327	6.450	57.770	1.00	14.97	A
	MOTA	1280	N	THR	A	308	-0.166	8.127	57.837	1.00	14.00	A
	ATOM	1281	CA	THR	A	308	0.670	9.037	57.063	1.00	13.42	A
	ATOM	1282	CB	THR	A	308	-0.014	10.400	56.895	1.00	12.26	A
20	MOTA	1283	OG1	THR	A	308	-1.382	10.200	56.525	1.00	11.53	A
	ATOM	1284	CG2	THR	A	308	0.681	11.214	55.811	1.00	11.72	A
	MOTA	1285	С	THR	A	308	2.015	9.246	57.744	1.00	13.18	A
	MOTA	1286	0	THR	A	308	3.048	9.305	57.084	1.00	12.83	A
	MOTA	1287	N	GLU	A	309	1.982	9.366	59.068	1.00	13.59	A
25	ATOM	1288	CA	GLU	Α	309	3.178	9.567	59.879	1.00	16.27	A
	ATOM	1289	CB	GLU	A	309	2.800	9.547	61.369	1.00	18.18	A
	MOTA	1290	CG	GLU	A	309	3.854	8.954	62.303	1.00	22.15	A
	ATOM	1291	CD	GLU	A	309	5.121	9.782	62.391	1.00	25.47	A
	ATOM	1292	OE1	GLU	A	309	6.111	9.287	62.974	1.00	27.57	A
30	ATOM	1293	OE2	GLU	Α	309	5.130	10.926	61.890	1.00	26.88	A
	MOTA	1294	С	GLU	A	309	4.268	8.531	59.618	1.00	16.07	A
	ATOM	1295	0	GLU	A	309	5.455	8.827	59.734	1.00	15.96	A
	ATOM	1296	N	ARG	A	310	3.865	7.316	59.275	1.00	17.19	A
	ATOM	1297	CA	ARG	A	310	4.831	6.253	59.032	1.00	18.70	A
35	MOTA	1298	CB	ARG	A	310	4.242	4.898	59.428	1.00	22.99	A
	ATOM	1299	CG	ARG	A	310	4.005	4.714	60.917	1.00	28.37	A
	MOTA	1300	CD	ARG	A	310	3.387	3.353	61.180	1.00	32.66	A
	ATOM	1301	NE	ARG	A	310	3.293	3.045	62.605	1.00	36.84	A
	MOTA	1302	CZ	ARG	A	310	2.722	1.948	63.089	1.00	37.07	A
40	ATOM	1303	NHl	ARG	A	310	2.191	1.057	62.261	1.00	39.09	A
	ATOM	1304	NH2	ARG	A	310	2.685	1.739	64.397	1.00	39.15	A
	ATOM	1305	C	ARG	A	310	5.308	6.170	57.592	1.00	17.16	A
	ATOM	1306	0	ARG	A	310	6.280	5.469	57.303	1.00	17.79	A
	ATOM	1307	N	TYR	A	311	4.645	6.883	56.691	1.00	14.11	A
45	MOTA	1308	CA	TYR	A	311	5.031	6.817	55.285	1.00	13.57	A
	ATOM	1309	CB	TYR	A	311	3.943	6.083	54.490	1.00	12.91	A
	MOTA	1310	CG	TYR	A	311	3.664	4.697	55.016	1.00	13.42	A
	MOTA	1311	CD1	TYR	A	311	2.685	4.482	55.986	1.00	16.46	A
	MOTA	1312	CE1	TYR	A	311	2.490	3.224	56.547	1.00	16.91	A
50	MOTA	1313	CD2	TYR	A	311	4.438	3.615	54.615	1.00	14.44	A
	MOTA	1314	CE2	TYR	A	311	4.257	2.360	55.168		16.71	A
	ATOM	1315	CZ	TYR	A	311	3.283	2.169	56.138		18.56	A
	MOTA	1316	OH	TYR	A	311	3.131	0.927	56.718	1.00	21.20	A
	MOTA	1317	С	TYR	A	311	5.332	8.157	54.629		12.97	A
55	ATOM	1318	0	TYR	A	311	5.315	8.268	53.401		12.31	A
	MOTA	1319	N	PHE	A	312	5.623	9.166	55.443	1.00	12.60	A

72

MOTA 1320 CA PHE A 312 5.917 10.496 54.930 1.00 12.48 Α СВ PHE A 312 4.688 11.402 55.097 1.00 12.89 A MOTA 1321 PHE A 312 4.973 12.862 54.860 1.00 13.09 A ATOM 1322 CG 53.585 1.00 11.61 A CD1 PHE A 312 4.861 13.409 MOTA 1323 13.681 55.907 1.00 12.16 Α 5 MOTA CD2 PHE A 312 5.389 1324 14.744 53.353 1.00 12.83 A MOTA 1325 CE1 PHE A 312 5.159 CE2 PHE A 312 5.691 15.022 55.685 1.00 13.25 Α MOTA 1326 15.555 54.402 1.00 13.34 Α 5.576 MOTA CZPHE A 312 1327 55.624 1.00 12.93 А 11.150 MOTA 1328 С PHE A 312 7.110 56.853 1.00 13.06 A 10 PHE A 312 7.212 11.127 ATOM 1329 0 11.721 54.833 1.00 12.17 A ATOM PHE A 313 8.016 1330 N PHE A 313 12.432 55.385 1.00 12.08 Α 9.168 ATOM CA 1331 11.466 56.118 1.00 12.85 A CB PHE A 313 10.118 ATOM 1332 10.426 55.244 1.00 14.22 Α MOTA 1333 CG PHE A 313 10.760 11.835 10.749 54.428 1.00 14.31 A 15 MOTA 1334 CD1 PHE A 313 CD2 PHE A 313 10.315 9.108 55.274 1.00 14.25 A MOTA 1335 12.465 9.773 53.656 1.00 15.02 A CE1 PHE A 313 ATOM 1336 8.126 54.505 1.00 14.36 10.938 Α ATOM 1337 CE2 PHE A 313 12.015 8.459 53.695 1.00 13.62 A MOTA 1338 CZPHE A 313 20 PHE A 313 9.903 13.257 54.330 1.00 12.75 A MOTA 1339 C PHE A 313 9.659 13.099 53.127 1.00 12.22 Α ATOM 1340 0 54.785 1.00 11.08 Α 10.784 14.149 MOTA 1341 N ASN A 314 53.892 1.00 10.49 MOTA CA ASN A 314 11.543 15.024 Α 1342 ATOM 1343 CB **ASN A 314** 12.032 16.250 54.671 1.00 12.41 А 17.332 53.771 1.00 11.22 A 25 ATOM 1344 CG ASN A 314 12.615 13.747 1.00 12.26 17.227 53.308 Α MOTA 1345 OD1 ASN A 314 53.526 1.00 10.25 Α 18.381 MOTA 1346 ND2 ASN A 314 11.837 53.238 1.00 10.74 14.293 Α ATOM 1347 С ASN A 314 12.717 53.890 1.00 8.98 13.532 Α MOTA 1348 0 ASN A 314 13.433 51.940 1.00 10.78 Α 30 VAL A 315 12.897 14.534 ATOM 1349 N 13.900 51.152 1.00 10.36 Α MOTA 1350 CA VAL A 315 13.952 1.00 9.40 A 14.458 49.711 ATOM 1351 CB VAL A 315 13.967 1.00 9.49 49.741 15.962 A CG1 VAL A 315 14.196 MOTA 1352 15.053 13.774 48.898 1.00 11.21 Α ATOM 1353 CG2 VAL A 315 51.748 1.00 10.97 A 35 15.354 14.051 C VAL A 315 ATOM 1354 13.185 51.566 1.00 11.43 Α 16.208 MOTA 1355 0 VAL A 315 52.460 1.00 12.23 Α 15.146 ATOM 1356 N SER A 316 15.587 15.403 53.068 1.00 12.04 Α 16.893 ATOM 1357 CA SER A 316 16.903 53.090 1.00 10.52 A MOTA 1358 CB SER A 316 17.167 17.393 51.771 1.00 16.34 Α 40 1359 OG SER A 316 17.337 ATOM 54.481 1.00 11.85 Α 14.855 MOTA 1360 C SER A 316 17.022 1.00 10.15 A SER A 316 18.048 15.045 55.131 ATOM 1361 0 ATOM 1362 N ASP A 317 15.982 14.171 54.949 1.00 11.31 Α 13.611 56.299 1.00 10.43 A MOTA 1363 CA ASP A 317 15.970 45 MOTA 14.572 13.793 56.901 1.00 8.97 A 1364 CB ASP A 317 13.410 14.504 58.372 1.00 11.08 Α MOTA 1365 CG **ASP A 317** OD1 ASP A 317 13.452 13.672 59.003 1.00 12.28 Α ATOM 1366 MOTA 1367 OD2 ASP A 317 15.488 12.844 58.893 1.00 7.73 Α ATOM 1368 С ASP A 317 16.364 12.134 56.286 1.00 10.67 Α 50 MOTA 0 ASP A 317 15.505 11.260 56.203 1.00 11.01 Α 1369 11.863 56.366 1.00 10.77 Α MOTA 1370 N **GLU A 318** 17.666 56.351 1.00 12.17 10.489 Α MOTA 1371 CA **GLU A 318** 18.172 10.484 56.131 1.00 12.51 Α ATOM 1372 CB GLU A 318 19.696 11.110 54.810 1.00 11.53 A GLU A 318 20.129 MOTA 1373 CG 55 21.635 11.139 54.623 1.00 12.31 A CD GLU A 318 ATOM 1374 22.093 11.729 53.627 1.00 13.78 Α ATOM OE1 GLU A 318 1375

	ATOM	1376	OE2	GLU	A	318	22.364	10.573	55.462	1.00	13.40	A
	MOTA	1377	С	GLU	A	318	17.835	9.698	57.612	1.00	12.49	A
	MOTA	1378	0	GLU	A	318	17.821	8.468	57.593	1.00	13.32	A
	ATOM .	1379	N	ALA	A	319	17.576	10.397	58.712	1.00	13.21	A
5	ATOM	1380	CA	ALA	A	319	17.231	9.730	59.965	1.00	12.18	A
	ATOM	1381	CB	ALA	A	319	17.169	10.737	61.101		10.58	A
	ATOM	1382	С	ALA	A	319	15.878	9.054	59.789		12.66	A
	MOTA	1383	0	ALA	A	319	15.727	7.859	60.056	1.00	13.04	A
	ATOM	1384	N	ALA	A	320	14.895	9.826	59.337		12.52	A
10	ATOM	1385	CA	ALA	A	320	13.557	9.300	59.109		11.74	A
	ATOM	1386	CB	ALA	A	320	12.618	10.420	58.663		12.20	A
	ATOM	1387	С	ALA	A	320	13.613	8.210	58.050		10.80	A
	ATOM	1388	0	ALA	A	320	12.840	7.259	58.095		11.42	A
	ATOM	1389	N	LEU	A	321	14.519	8.351	57.086		12.37	A
15	ATOM	1390	CA	LEU	A	321	14.663	7.341	56.033		11.66	A
	ATOM	1391	CB	LEU	A	321	15.769	7.737	55.049		11.52	A
	ATOM	1392	CG			321	16.168	6.650	54.039		11.08	A
	MOTA	1393		LEU			14.991	6.348	53.135		11.70	A
	ATOM	1394		LEU			17.374	7.100	53.224	1.00	9.59	A
20	ATOM	1395	С	LEU	A	321	14.996	5.979	56.647		12.69	A
	MOTA	1396	0			321	14.381	4.963	56.313		11.66	A
	MOTA	1397	N			322	15.984	5.958	57.539		14.23	A
	ATOM	1398	CA	LEU			16.382	4.720	58.201		13.49	A
	ATOM	1399	CB	LEU	A	322	17.680	4.922	58.983		14.50	A
25	ATOM	1400	CG			322	19.004	4.955	58.223		13.92	A
	ATOM	1401		LEU			20.113	5.395	59.171		14.87	A
	ATOM	1402		LEU			19.297	3.564	57.643		13.58	A
	ATOM	1403	С	LEU			15.296	4.255	59.165		15.38	A
	ATOM	1404	0	LEU			15.114	3.054	59.381		15.20	A
30	ATOM	1405	N	GLU			14.578	5.210	59.747		15.18	A
	ATOM	1406	CA	GLU			13.518	4.887	60.693		18.29	A
	MOTA	1407	CB	GLU			13.138	6.116	61.518		18.66	A
	ATOM	1408	CG	GLU			12.001	5.857	62.490		21.49	A
2 -	ATOM	1409	CD	GLU			11.437	7.128	63.089		24.28	A
35	ATOM	1410	OE1				10.674	7.831	62.393		22.67	A
	MOTA	1411		GLU			11.765	7.429	64.259		27.85	A
	ATOM	1412	C	GLU			12.257	4.365	60.026		18.63	A
	ATOM	1413	0	GLU			11.669	3.392	60.479		19.52	A
4.0	ATOM	1414	N	LYS			11.843	5.022	58.952 58.264		21.79	A
40	ATOM	1415	CA	LYS			10.620	4.646			21.79	A A
	MOTA	1416	CB	LYS			9.922	5.917 6.890	57.780		21.15	A
	MOTA	1417		LYS			9.671		58.926 58.522		20.19	A
	ATOM	1418	CD			324	8.868	8.984			20.66	A
4 =	ATOM	1419	CE			324	8.583				23.09	A
45	ATOM	1420	NZ	LYS			7.690	10.134 3.645	57.126		23.43	A
	ATOM	1421	C	LYS			10.791		57.126		23.43	A
	MOTA	1422	0	LYS			10.040		56.254		25.84	A
	MOTA	1423	N	ALA ALA			11.770 12.021	2.961	55.138		27.84	A
50	MOTA	1424	CA					3.746	53.890		26.82	A
50	MOTA MOTA	1425 1426	CB C	ALA		325	12.364 13.175	2.044	55.510		30.67	A
		1425	0	ALA			13.175	1.541	54.647		32.48	A
	MOTA MOTA	1427	N	GLY			13.346		56.811		33.73	A
		1428	CA			326	14.417		57.314		36.36	A
55	MOTA MOTA	1430	C			326	14.545	-0.348	56.630		37.69	A
J J		1430		GLY			14.039	-1.339	57.197		38.55	A
	MOTA	エダンエ	OIT	GHI	м	220	14.039	-1.333	3	1.00	50.55	

	ÁTOM	1432	OT2	GLY	A	326	15.140	-0.415	55.530	1.00	38.84	A
	TER	1422		OT 17	ъ	-	27.024	31.838	46.808	1 00	46.99	CA
	ATOM	1433	C	GLY		1	25.970	32.170	47.352		47.64	CA
_	ATOM	1434	0	GLY		1					48.37	CA
5.	MOTA	1435	N	GLY		1	28.053	29.559	47.038			
	ATOM	1436	CA	GLY		1	28.019	30.960	47.548		47.58	CA
	ATOM	1437	N	PRO	В	2	27.344	32.250	45.570		45.71	CA
	MOTA	1438	CD	PRO	В	2	28.729	32.222	45.063		45.50	CA
	MOTA	1439	CA	PRO	В	2	26.500	33.098	44.719		44.55	CA
10	ATOM	1440	CB	PRO	В	2	27.520	34.005	44.055	1.00	44.60	CA
	ATOM	1441	CG	PRO	В	2	28.640	33.039	43.793	1.00	45.19	CA
	ATOM	1442	C	PRO	В	2	25.681	32.303	43.689	1.00	42.88	CA
	ATOM	1443	0	PRO	В	2	26.113	32.125	42.547	1.00	43.57	CA
	ATOM	1444	N	HYP	В	3	24.480	31.829	44.077	1.00	40.90	CA
15	ATOM	1445	CD	HYP	В	3	23.853	31.959	45.404	1.00	39.90	CA
	ATOM	1446	CA	HYP		3	23.620	31.053	43.172	1.00	37.74	CA
	ATOM	1447	СВ		В	3	22.372	30.790	44.019	1.00	38.68	CA
	ATOM	1448	CG	НҮР		3	22.917	30.779	45.414		39.07	CA
		1449	C	нүр		3	23.287	31.766	41.864		34.90	CA
20	ATOM		0		В	3	23.009	32.965	41.852		34.40	CA
20	ATOM	1450						30.851	46.427		38.93	CA
	ATOM	1451	OD	HYP		3	21.922	31.014	40.767		30.95	CA
	MOTA	1452	N	GLY		4	23.312	31.583	39.470		26.85	CA
	ATOM	1453	CA	GLY		4	23.008				24.34	CA
٥.	ATOM	1454	C	GLY		4	21.622	32.197	39.402			CA
25	ATOM	1455	0	GLY		4	20.841	32.078	40.344		23.22	CA
	ATOM	1456	N	PRO		5	21.286	32.870	38.295		22.36	
	ATOM	1457	CD	PRO		5	22.104	33.084	37.086		22.48	CA
	ATOM	1458	CA	PRO		5	19.966	33.493	38.150		21.43	CA
	MOTA	1459	CB	PRO		5	20.144	34.374	36.920		22.25	CA
30	MOTA	1460	CG	PRO		5	21.075	33.559	36.076		23.04	CA
	MOTA	1461	С	PRO		5	18.867	32.455	37.959		19.31	CA
	MOTA	1462	0	PRO	В	5	19.131	31.347	37.498		17.49	CA
	ATOM	1463	N	HYP	В	6	17.619	32.798	38.320		18.67	CA
	ATOM	1464	CD	HYP	В	6	17.170	34.008	39.031		18.03	CA
35	MOTA	1465	CA	HYP	В	6	16.516	31.841	38.152		17.47	CA
	MOTA	1466	CB	HYP	В	6	15.343	32.512	38.872		18.15	CA
	MOTA	1467	CG	HYP	В	6	16.002	33.485	39.813	1.00	17.95	CA
	MOTA	1468	C	HYP	В	6	16.223	31.664	36.666	1.00	17.02	CA
	ATOM	1469	0	HYP	В	6	16.597	32.516	35.851	1.00	13.78	CA
40	ATOM	1470	OD	HYP	В	6	16.366	32.917	41.063	1.00	17.03	CA
	ATOM	1471	N	GLY	В	7	15.554	30.567	36.315	1.00	16.69	CA
	ATOM	1472	CA	GLY	В	7	15.211	30.333	34.921	1.00	17.54	CA
	ATOM	1473	С	GLY	В	7	14.116	31.297	34.496	1.00	18.10	CA
	ATOM	1474	0	GLY	В	7	13.595	32.034	35.331	1.00	18.65	CA
45	ATOM	1475	N	PHE		8	13.768	31.308	33.211	1.00	18.05	CA
	ATOM	1476	CA	PHE		8	12.724	32.201	32.719	1.00	20.44	CA
	ATOM	1477	СВ	PHE		8	12.758	32.294	31.191	1.00	24.57	CA
	ATOM	1478	CG	PHE		8	13.366	33.569	30.675		28.99	CA
	ATOM	1479		PHE		8	14.744	33.782	30.745		31.01	CA
50	ATOM	1480		PHE		8	12.559	34.566	30.132		30.61	CA
50	ATOM	1481		PHE		8	15.310	34.969	30.276		31.21	CA
	ATOM	1482		PHE		8	13.112	35.753	29.662		33.13	CA
	ATOM	1483	CZ	PHE		8	14.494	35.956	29.735		33.64	CA
	ATOM	1484	C	PHE		8	11.334	31.758	33.160		20.03	CA
55	ATOM	1485	0	PHE		8	11.090	30.575	33.386		21.24	CA
JJ	ATOM	1486	N	HYP		9	10.401	32.714	33.285		19.18	CA
	AION	7.300	TA	****	2	,	10.101				_	

	MOTA	1487	CD	HYP	В	9	10.596	34.152	33.031	1.00 19.09	CA
	MOTA	1488	CA	HYP	В	9	9.023	32.425	33.704	1.00 18.49	CA
	MOTA	1489	CB	HYP	В	9	8.354	33.804	33.689	1.00 18.16	CA
	ATOM	1490	CG	HYP	В	9	9.528	34.762	33.877	1.00 19.48	CA
5	MOTA	1491	С	HYP	В	9	8.338	31.436	32.754	1.00 17.86	CA
	ATOM	1492	0	HYP	В	9	8.523	31.503	31.539	1.00 16.69	CA
	ATOM	1493	OD	HYP	В	9	9.934	34.942	35.228	1.00 19.21	CA
	MOTA	1494	N	GLY	В	10	7.549	30.523	33.315	1.00 18.32	CA
	MOTA	1495	CA	GLY	В	10	6.853	29.534	32.510	1.00 16.17	CA
10	MOTA	1496	С	GLY	В	10	5.674	30.093	31.732	1.00 17.31	CA
	MOTA	1497	0	GLY	В	10	5.255	31.237	31.942	1.00 16.56	CA
	MOTA	1498	N	GLU	В	11	5.127	29.273	30.839	1.00 18.09	CA
	MOTA	1499	CA	GLU	В	11	4.001	29.678	30.009	1.00 19.81	CA
	MOTA	1500	CB	GLU	В	11	4.092	29.010	28.631	1.00 23.10	CA
15	ATOM	1501	CG	GLU	В	11	5.378	29.311	27.853	1.00 27.78	CA
	MOTA	1502	CD	GLU	В	11	5.602	30.797	27.595	1.00 31.41	CA
	MOTA	1503	OE1	GLU	В	11	6.604	31.130	26.918	1.00 33.15	CA
	MOTA	1504	OE2	GLU	В	11	4.791	31.631	28.065	1.00 32.81	CA
	ATOM	1505	С	GLU		11	2.644	29.363	30.633	1.00 19.40	CA
20	ATOM	1506	0	GLU		11	2.560	28.777	31.715	1.00 17.55	CA
	ATOM	1507	N	ARG		12	1.590	29.763	29.927	1.00 18.86	CA
	ATOM	1508	CA	ARG		12	0.205	29.562	30.345	1.00 17.24	CA
	ATOM	1509	CB	ARG		12	-0.716	30.084	29.241	1.00 20.84	CA
	ATOM	1510	CG	ARG		12	-2.198	29.983	29.527	1,00 24.57	CA
25	ATOM	1511	CD	ARG		12	-3.024	30.038	28.231	1.00 28.77	CA
20	ATOM	1512	NE	ARG		12	-2.686	31.166	27.361	1.00 30.12	CA
	ATOM	1513	CZ	ARG		12	-1.675	31.176	26.496	1.00 30.49	CA
	ATOM	1514		ARG		12	-0.889	30.115	26.372	1.00 32.79	CA
	ATOM	1515		ARG		12	-1.441	32.249	25.756	1.00 29.66	CA
30	ATOM	1516	C	ARG		12	-0.100	28.080	30.613	1.00 15.45	CA
50	ATOM	1517	0	ARG		12	0.424	27.194	29.939	1.00 13.71	CA
	MOTA	1518	N	GLY		13	-0.961	27.818	31.588	1.00 13.54	CA
	MOTA	1519	CA	GLY		13	-1.306	26.445	31.911	1.00 13.61	CA
	ATOM	1520	C	GLY		13	-2.249	25.800	30.908	1.00 14.71	CA
35	ATOM	1521	0	GLY		13	-2.823	26.492	30.060	1.00 12.72	CA
55	ATOM	1522	N	PRO		14	-2.421	24.464	30.969	1.00 15.39	CA
	ATOM	1523	CD	PRO		14	-1.663	23.508	31.797	1.00 14.36	CA
	MOTA	1524	CA	PRO		14	-3.315	23.753	30.047	1.00 14.99	CA
	ATOM	1525	СВ	PRO		14	-3.052	22.279	30.369	1.00 14.60	CA
40	ATOM	1526	CG	PRO		14	-1.631	22.288	30.905	1.00 15.31	CA
-0	MOTA	1527	C	PRO		14	-4.775	24.130	30.301	1.00 15.89	CA
	ATOM	1528	0	PRO		14	-5.107		31.335	1.00 15.18	CA
	ATOM	1529	N	HYP		15	-5.668	23.795	29.357	1.00 16.77	CA
	ATOM	1530	CD	HYP		15		23.164	28.046	1.00 15.95	CA
45	MOTA	1531	CA	HYP		15	-7.084	24.123	29.546	1.00 17.68	CA
43		1532		HYP		15	~7.709	23.788	28.191	1.00 18.28	CA
	MOTA	1533	CB CG	HYP		15	-6.821	22.717	27.647	1.00 16.55	CA
	MOTA						-7.689	23.310	30.683	1.00 10.33	CA
	ATOM	1534	C	HYP HYP		15 15	-7.169	22.259	31.053	1.00 18.88	CA
50	ATOM	1535	0			15	-7.169 -6.966	22.239	26.236	1.00 17.79	CA
	MOTA	1536	OD N	HYP				23.810	31.239	1.00 17.73	CA
	ATOM	1537	N	GLY		16	-8.785 -9.434	23.810	32.333	1.00 20.37	CA
	MOTA	1538	CA	GLY		16	-9.434 -10.233	23.116	31.862	1.00 21.79	CA
	ATOM	1539	C	GLY		16	-10.233	21.755	30.661	1.00 22.72	CA
55	MOTA	1540	0	GLY		16	-10.466 -10.666		32.792	1.00 22.43	CA
55	MOTA	1541	N	PRO		17	-10.666 -10.472	21.057	34.252	1.00 24.17	CA
	MOTA	1542	CD	PRO	B	17	-10.472	21.137	J7.636	m. VV 44.73	CA.

	MOTA	1543	CA	PRO	3 17	-11.446	19.874	32.434	1.00 26.22	CA
	ATOM	1544	CB	PRO	3 17	-11.562	19.126	33.758	1.00 26.53	CA
	ATOM	1545	ÇG	PRO :	B 17	-11.556	20.225	34.768	1.00 25.15	CA
	ATOM	1546	C	PRO I	3 17	-12.803	20.235	31.847	1.00 27.93	CA
5	MOTA	1547	0	PRO :	3 17	-13.339	21.315	32.107	1.00 27.72	CA
	ATOM	1548	N	HYP :	3 18	-13.371	19.335	31.032	1.00 29.77	CA
	ATOM	1549	CD	HYP I	3 18	-12.833	18.023	30.625	1.00 29.92	CA
	ATOM	1550	CA	HYP :	B 18	-14.679	19.591	30.420	1.00 30.56	CA
	ATOM	1551	CB	HYP :	3 18	-15.021	18.263	29.747	1.00 30.75	CA
10	MOTA	1552	CG	HYP :	3 18	-13.678	17.690	29.426	1.00 30.63	CA
	ATOM	1553	С	HYP :	B 18	-15.705	19.957	31.477	1.00 31.35	CA
	MOTA	1554	0	HYP :	3 18	-15.523	19.677	32.662	1.00 32.13	CA
	MOTA	1555	OD	HYP I	3 18	-13.134	18.149	28.197	1.00 31.27	CA
	ATOM	1556	N	GLY I	3 19	-16.780	20.603	31.051	1.00 32.29	CA
15	MOTA	1557	CA	GLY I	3 19	-17.829	20.951	31.990	1.00 32.48	CA
	MOTA	1558	C	GLY :	3 19	-18.840	19.817	31.903	1.00 33.06	CA
	MOTA	1559	0	GLY I	3 19	-18.815	19.070	30.926	1.00 31.96	CA
	MOTA	1560	N	PRO I	3 20	-19.723	19.649	32.896	1.00 34.64	CA
	MOTA	1561	CD	PRO I	3 20	-19.991	20.482	34.080	1.00 34.66	CA
20	MOTA	1562	CA	PRO I	3 20	-20.694	18.555	32.792	1.00 34.86	CA
	MOTA	1563	CB	PRO 1	3 20	-21.571	18.748	34.025	1.00 34.62	CA
	MOTA	1564	CG	PRO I	3 20	-21.457	20.218	34.307	1.00 35.11	CA
	MOTA	1565	C	PRO I	3 20	-21.476	18.610	31.477	1.00 35.93	CA
	MOTA	1566	0	PRO 1	3 20	-21.684	19.689	30.917	1.00 35.62	CA
25	MOTA	1567	N	HYP I	3 21	-21.915	17.443	30.973	1.00 36.92	CA
	MOTA	1568	CD	HYP I	3 21	-21.636	16.123	31.566	1.00 37.42	CA
	MOTA	1569	CA	HYP I	3 21	-22.684	17.306	29.723	1.00 37.36	CA
	ATOM	1570	СВ	HYP I	3 21	-23.146	15.844	29.760	1.00 37.79	CA
	MOTA	1571	CG	HYP I	3 21	-22.011	15.169	30.442	1.00 38.04	CA
30	ATOM	1572	C	HYP I	3 21	-23.851	18.280	29.636	1.00 37.37	CA
	ATOM	1573	0	HYP I	3 21	-24.393	18.515	28.554	1.00 37.88	CA
	MOTA	1574	OD	HYP I	3 21	-20.938	14.807	29.569	1.00 39.73	CA
	ATOM	1575	N	NHH I	3 22	-24.252	18.843	30.764	1.00 37.11	CA
	TER									
35	ATOM	1576	C	GLY (2. 1	35.293	30.667	43.820	1.00 42.71	CB
	MOTA	1577	0	GLY (2 1	35.319	30.946	42.621	1.00 42.96	CB
	MOTA	1578	N	GLY (1	35.242	32.981	44.701	1.00 43.02	CB
	MOTA	1579	CA	GLY (1	35.861	31.634	44.838	1.00 42.85	CB
	MOTA	1580	N	PRO (2	34.789	29.507	44.263	1.00 42.50	CB
40	MOTA	1581	CD	PRO (2	34.909	28.933	45.614	1.00 42.71	CB
	MOTA	1582	CA	PRO (34.218	28.530	43.333	1.00 41.69	CB
	ATOM	1583	CB	PRO (33.847	27.366	44.247	1.00 42.23	CB
	ATOM	1584	CG	PRO (34.875	27.450	45.329	1.00 42.25	CB
	MOTA	1585	C	PRO (32.993	29.123	42.640	1.00 41.38	CB
45	MOTA	1586	0	PRO (32.420	30.109	43.113	1.00 40.38	CB
	MOTA	1587	N	HYP (32.576	28.538	41.506	1.00 41.08	CB
	MOTA	1588	CD	HYP (33.085	27.350	40.795	1.00 41.06	CB
	MOTA	1589	CA	HYP (31.395	29.105	40.841	1.00 39.79	CB
	MOTA	1590	CB	HYP (31.311	28.320	39.532	1.00 40.33	CB
50	MOTA	1591	CG	HYP (31.925	26.997	39.886	1.00 41.40	CB
	MOTA	1592	C	HYP (30.151	28.938	41.710	1.00 38.06	СВ
	ATOM	1593	0	HYP (30.065	28.007	42.517	1.00 36.78	CB
	MOTA	1594	OD	HYP		31.010	26.058	40.447	1.00 40.66	CB
	ATOM	1595	N	GLY (29.199	29.851	41.550	1.00 36.06	CB
55	MOTA	1596	CA	GLY		27.978	29.787	42.330	1.00 33.48	CB
•	MOTA	1597	С	GLY (C 4	27.149	28.549	42.031	1.00 31.26	CB

	ATOM.	1598	0	GLY	С	4	27.274	27.958	40.957	1.00	29.93	СВ
	ATOM	1599	N	PRO	С	5	26.288	28.130	42.972	1.00	29.27	CB
	MOTA	1600	CD	PRO	C	5	25.996	28.786	44.260	1.00	29.55	CB
	MOTA	1601	CA	PRO	С	5	25.439	26.951	42.789	-1.00	27.57	CB
5	ATOM	1602	CB	PRO	С	5	24.900	26.705	44.190	1.00	29.16	CB
	MOTA	1603	CG	PRO	С	5	24.708	28.101	44.691	1.00	29.18	CB
	ATOM	1604	С	PRO	С	5	24.325	27.240	41.782	1.00	24.50	CB
	ATOM	1605	0	PRO	С	5	23.970	28.397	41.554	1.00	23.77	CB
	ATOM	1606	N	HYP		6	23.769	26.190	41.162	1.00	23.07	CB
10	ATOM	1607	CD	HYP	С	6	24.191	24.781	41.263	1.00	23.05	CB
	MOTA	1608	CA	нүр		6	22.693	26.336	40.177	1.00	22.11	CB
	ATOM	1609	СВ	нүр		6	22.223	24.903	39.975	1.00	22.93	CB
	ATOM	1610	CG	нүр		6	23.502	24.157	40.067	1.00	24.04	CB
	ATOM	1611	С		С	6	21.562	27.253	40.621	1.00	20.21	CB
15	ATOM	1612	ō	НҮР		6	21.185	27.275	41.790	1.00	19.92	CB
	MOTA	1613	OD	HYP		6	24.272	24.224	38.878	1.00	25.59	CB
	ATOM	1614	N	GLY		7	21.020	28.004	39.673	1.00	18.24	СВ
	ATOM	1615	CA	GLY		7	19.929	28.908	39.982	1.00	18.08	CB
	MOTA	1616	C	GLY		7	18.631	28.158	40.205	1.00	16.18	CB
20	ATOM	1617	o	GLY		7	18.453	27.058	39.687		15.68	CB
20	ATOM	1618	N	PHE		8	17.736	28.753	40.991		16.45	CB
	MOTA	1619	CA	PHE		8	16.433	28.162	41.297		15.97	СВ
	MOTA	1620	СВ	PHE		8	15.684	29.024	42.326		19.10	CB
	ATOM	1621	CG	PHE		8	16.405	29.201	43.641		22.85	СВ
25	ATOM	1622		PHE		В	17.639	29.847	43.705		25.50	СВ
27	ATOM	1623		PHE		8	15.823	28.769	44.827		25.25	СВ
	ATOM	1624		PHE		В	18.275	30.069	44.936		26.15	СВ
	ATOM	1625			С	8	16.450	28.984	46.062		26.74	СВ
	ATOM	1626	CZ	PHE		8	17.676	29.634	46.115		25.84	СВ
30	ATOM	1627	C	PHE		8	15.580	28.067	40.025		13.88	СВ
30	ATOM	1628	o	PHE		8	15.840	28.758	39.043	1.00	9.98	CB
	MOTA	1629	N	HYP		9	14.556	27.192	40.026		13.66	СВ
	ATOM	1630	CD	HYP		9	14.269	26.169	41.046		12.78	СВ
	ATOM	1631	CA	HYP		9	13.678	27.034	38.858		12.96	CB
35	MOTA	1632	CB	HYP		9	12.718	25.924	39.289		13.91	СВ
-	MOTA	1633	CG	HYP		9	13.551	25.116	40.242		14.02	СВ
	MOTA	1634	C	HYP		9	12.943	28.350	38.612		12.77	CB
	ATOM	1635	o	HYP		9	12.730	29.123	39.543		12.44	СВ
	ATOM	1636	OD	HYP		9	14.426	24.210	39.593		14.70	СВ
40	MOTA	1637	N	GLY		10	12.557		37.369		11.71	CB
± 0	MOTA	1638	CA	GLY		10	11.855	29.845	37.076		13.31	CB
	ATOM	1639	C	GLY		10	10.401	29.830	37.520		13.58	СВ
	ATOM	1640	ō	GLY		10	9.823	28.767	37.734		13.71	СВ
	MOTA	1641	N	GLU		11	9.814		37.667		14.37	СВ
45	ATOM	1642	CA	GLU		11	8.422	31.147	38.076		15.28	СВ
10	ATOM	1643	CB	GLU		11	7.982	32.612	37.999		16.41	СВ
	ATOM	1644	CG	GLU		11	8.639	33.530	39.015		16.23	CB
	ATOM	1645	CD	GLU		11	8.383	33.087	40.441		16.67	СВ
	ATOM	1646		GLU		11	9.296	32.503	41.064	1.00	18.10	CB
50	ATOM	1647		GLU		11	7.262	33.310	40.935		17.35	СВ
50	ATOM	1648	C	GLU		11	7.505	30.313	37.187		15.50	CB
	ATOM	1649	0	GLU		11	7.720	30.211	35.979		13.06	СВ
	ATOM	1650	N	ARG		12	6.480	29.719	37.793		17.27	CB
	MOTA	1651	CA	ARG		12	5.523	28.903	37.054		18.14	CB
55	ATOM	1652	СВ	ARG		12	4.729	28.023	38.020		20.84	CB
	ATOM	1653	CG	ARG		12	3.932	26.932	37.347		23.28	СВ
			_		_							

	ATOM	1654	CD	ARG	С	12	3.098	26.164	38.356	1.00 25.19	· CB
	ATOM	1655	NE	ARG	С	12	2.324	25.099	37.725	1.00 25.98	CB
	MOTA	1656	CZ	ARG	C	12	1.444	24.341	38.371	1.00 27.02	CB
	MOTA	1657	NH1	ARG	С	12	1.229	24.535	39.665	1.00 26.61	CB
5	MOTA	1658	NH2	ARG	С	12	0.780	23.390	37.728	1.00 26.52	СВ
	ATOM	1659	C	ARG	С	12	4.586	29.843	36.299	1.00 18.11	CB
	ATOM	1660	0	ARG	С	12	4.235	30.912	36.807	1.00 18.92	CB
	ATOM	1661	N	GLY	С	13	4.198	29.459	35.086	1.00 16.77	CB
	MOTA	1662	CA	GLY	С	13	3.317	30.300	34.297	1.00 15.62	CB
10	ATOM	1663	С	GLY	C	13	2.003	30.595	34.998	1.00 16.24	CB
	ATOM	1664	0	GLY	С	13	1.769	30.107	36.105	1.00 15.03	CB
	ATOM	1665	N	PRO	С	14	1.128	31.412	34.388	1.00 16.73	CB
	MOTA	1666	CD	PRO	С	14	1.348	32.224	33.174	1.00 16.28	СВ
	ATOM	1667	CA	PRO		14	-0.162	31.736	35.007	1.00 16.91	CB
15	ATOM	1668	CB	PRO		14	-0.526	33.065	34.359	1.00 17.54	CB
	ATOM	1669	CG	PRO		14	-0.009	32.879	32.957	1.00 17.17	СВ
	ATOM	1670	C	PRO		14	-1.190	30.646	34.702	1.00 16.45	СВ
	ATOM	1671	ō	PRO		14	-0.983	29.820	33.820	1.00 13.87	СВ
	ATOM	1672	N	HYP		15	-2.313	30.637	35.433	1.00 17.28	СВ
20	MOTA	1673	CD	HYP		15	-2.597	31.470	36.615	1.00 17.85	СВ
20		1674	CA	HYP		15	-3.370	29.639	35.224	1.00 16.58	CB
	MOTA			HYP		15	-4.470	30.097	36.174	1.00 18.24	СВ
	ATOM	1675	CB				-3.696	30.684	37.300	1.00 18.18	СВ
	MOTA	1676	CG	HYP		15		29.580	33.784	1.00 15.70	CB
2.5	ATOM	1677	C	HYP		15	-3.863	30.612	33.734	1.00 15.70	СВ
25	MOTA	1678	0	HYP		15	-4.031			1.00 19.41	CB
	ATOM	1679	OD	HYP		15	-3.209	29.719	38.215	1.00 15.59	CB
	ATOM	1680	N	GLY		16	-4.088	28.363	33.292		CB
	MOTA	1681	CA	GLY		16	-4.586	28.171	31.943	1.00 12.51	
	ATOM	1682	C	GLY		16	-6.038	28.619	31.839	1.00 13.38	CB
30	ATOM	1683	0	GLY		16	-6.658	28.942	32.861	1.00 10.23	CB
	MOTA	1684	N	PRO		17	-6.616	28.637	30.624	1.00 12.36	CB
	ATOM	1685	CD	PRO		17	-5.984	28.233	29.354	1.00 12.72	СВ
	MOTA	1686	CA	PRO		17	-8.003	29.056	30.396	1.00 13.23	CB
	MOTA	1687	CB	PRO		17	-8.023	29.337	28.900	1.00 14.02	СВ
35	MOTA	1688	CG	PRO		17	-7.154	28.252	28.377	1.00 10.82	CB
	ATOM	1689	C	PRO		17	-9.041	28.003	30.791	1.00 13.57	CB
	MOTA	1690	0	PRO		17	-8.714	26.821	30.965	1.00 11.15	CB
	MOTA	1691	N	HYP		18	-10.313	28.425	30.926	1.00 12.83	СВ
	MOTA	1692	CD	HYP	С	18	-10.797	29.804	30.744	1.00 11.99	CB
40	MOTA	1693	ÇA	HYP	С	18	-11.418	27.532	31.298	1.00 13.95	СВ
	MOTA	1694	CB	HYP	С	18	-12.636	28.460	31.291	1.00 11.62	CB
	MOTA	1695	CG	HYP	С	18	-12.048	29.793	31.565	1.00 12.88	СВ
	MOTA	1696	C	HYP	С	18	-11.569	26.406	30.279	1.00 14.31	CB
	MOTA	1697	0	HYP	С	18	-11.328	26.611	29.093	1.00 15.44	CB
45	MOTA	1698	OD	HYP	С	18	-11.810	30.040	32.943	1.00 13.37	CB
	MOTA	1699	N	GLY	С	19	-11.968	25.227	30.742	1.00 14.55	CB
	MOTA	1700	CA	GLY	С	19	-12.143	24.102	29.846	1.00 13.79	CB
	ATOM	1701	С	GLY	С	19	-13.352	24.277	28.942	1.00 14.74	CB
	MOTA	1702	0	GLY	C	19	-14.112	25.234	29.098	1.00 13.65	CB
50	ATOM	1703	N	PRO	С	20	-13.564	23.368	27.980	1.00 15.70	CB
	ATOM	1704	CD	PRO	С	20	-12.694	22.250	27.562	1.00 15.16	CB
	ATOM	1705	CA	PRO	С	20	-14.725	23.500	27.093	1.00 16.72	CB
	ATOM	1706	СВ	PRO	С	20	-14.347	22.622	25.912	1.00 15.89	CB
	ATOM	1707	CG	PRO		20	-13.562	21.518	26.567	1.00 17.28	CB
55	ATOM	1708	С	PRO		20	-16.004	23.036	27.774	1.00 17.49	CB
	ATOM	1709	0	PRO		20	-15.962	22.474	28.870	1.00 18.83	CB

		•								
	MOTA	1710	N	HYP C	21	-17.171	23.285	27.139	1.00 18.90	CB
	MOTA	1711	CD	HYP C	21	-17.323	24.107	25.924	1.00 20.00	CB
	MOTA	1712	CA	HYP C	21	-18.489	22.895	27.667		CB
	ATOM	1713	CB	HYP C	21	-19.455	23.295	26.540	1.00 20.77	CB
5	MOTA	1714	CG	HYP C	21	-18.797	24.467	25.957	.1.00 19.53	CB
	MOTA	1715	C	HYP C	21	-18.536	21.401	27.950	1.00 20.63	CB
	ATOM	1716	0	HYP C	21	-17.942	20.627	27.218	1.00 20.57	CB
	ATOM	1717	OD	HYP C	21	-19.098	25.673	26.637	1.00 21.66	CB
	ATOM	1718	N	NHH C	22	-19.227	20.988	29.001	1.00 19.10	CB
10	TER									
	ATOM	1719	С	GLY D	1	31.268	34.798	43.143	1.00 52.14	CC
	ATOM	1720	0	GLY D	1	30.268	35.506	43.021	1.00 52.89	. CC
	ATOM	1721	N	GLY D	1	31.780	33.147	44.952	1.00 53.28	CC
	ATOM	1722	CA	GLY D	1	31.873	34.570	44.517	1.00 52.57	CC
15	ATOM	1723	N	PRO D	2	31.857	34.209	42.087	1.00 51.43	CC
	ATOM	1724	CD	PRO D	2	33.111	33.443	42.215	1.00 51.55	CC
	MOTA	1725	CA	PRO D	2	. 31.448	34.287	40.676	1.00 50.79	CC
	ATOM	1726	CB	PRO D	2	32.376	33.279	40.005	1.00 51.06	CC
	ATOM	1727	CG	PRO D	2	33.628	33.426	40.796	1.00 51.42	CC
20	ATOM	1728	С	PRO D	2	29.960	33.984	40.413	1.00 49.69	CC
	ATOM	1729	0	PRO D	2	29.157	33.928	41.336	1.00 49.54	CC
	ATOM	1730	N	HYP D	3	29.577	33.803	39.135	1.00 48.62	CC
	MOTA	1731	CD	HYP D	3	30.283	34.328	37.950	1.00 48.82	CC
	MOTA	1732	CA	HYP D	3	28.171	33.508	38.814	1.00 46.31	CC
25	MOTA	1733	СВ	HYP D	3	27.945	34.309	37.538	1.00 47.40	CC
	ATOM	1734	CG	HYP D	3	29.259	34.142	36.847	1.00 48.30	CC
	ATOM	1735	С	HYP D	3	27.806	32.037	38.623	1.00 43.31	CC
	ATOM	1736	0	HYP D	3	28.461	31.308	37.872	1.00 43.51	CC
	ATOM	1737	OD	HYP D	3	29.400	32.904	36.166	1.00 49.71	CC
30	MOTA	1738	N	GLY D	4	26.746	31.608	39.301	1.00 40.44	CC
	MOTA	1739	CA	GLY D	4	26.299	30.234	39.171	1.00 36.00	CC
	ATOM	1740	C	GLY D	4	25.518	30.054	37.881	1.00 32.49	CC
	ATOM	1741	0	GLY D	4	25.111	31.040	37.265	1.00 31.46	CC
	MOTA	1742	N	PRO D	5	25.300	28.809	37.433	1.00 30.10	CC
35	ATOM	1743	CD	PRO D	5	25.830	27.545	37.974	1.00 30.57	CC
	ATOM	1744	CA	PRO D	5	24.553	28.569	36.197	1.00 27.85	CC
	MOTA	1745	CB	PRO D	5	24.874	27.112	35.883	1.00 28.49	CC
	ATOM	1746	CG	PRO D	5	25.011	26.512	37.237	1.00 29.90	CC
	MOTA	1747	С	PRO D	5	23.051	28.822	36.347	1.00 25.42	CC
40	MOTA	1748	0	PRO D	5	22.496	28.711	37.440	1.00 24.50	CC
	ATOM	1749	N	HYP D	6	22.378	29.174	35.240	1.00 23.36	CC
	ATOM	1750	CD	HYP D	6	22.987	29.406	33.920	1.00 22.17	CC
	ATOM	1751	CA	HYP D	6	20.935	29.453	35.210	1.00 21.50	CC
	MOTA	1752	СВ	HYP D	6	20.696	29.920	33.771	1.00 21.57	CC
45	ATOM	1753	CG	HYP D	6	22.059	30.432	33.343	1.00 23.24	CC
	ATOM	1754	C	HYP D	6	20.116	28.209	35.546	1.00 19.47	CC
	MOTA	1755	0	HYP D	6	20.454	27.110	35.120	1.00 19.29	CC
	ATOM	1756	αo	HYP D	6	22.348	31.750	33.794	1.00 24.53	CC
	ATOM	1757	N	GLY D	7	19.044	28.381	36.309	1.00 17.93	CC
50	MOTA	1758	CA	GLY D	7	18.216	27.240	36.666	1.00 17.76	CC
	ATOM	1759	С	GLY D	7	17.295	26.813	35.535	1.00 16.59	CC
	MOTA	1760	0	GLY D	7	17.386	27.333	34.422	1.00 14.21	CC
	MOTA	1761	N	PHE D	8	16.415	25.854	35.804	1.00 16.53	CC
	ATOM	1762	CA	PHE D	8	15.476	25.406	34.778	1.00 15.90	CC
55	MOTA	1763	CB	PHE D	8	14.733	24.132	35.199	1.00 14.16	CC
	ATOM	1764	CG	PHE D	8	15.528	22.869	35.040	1.00 12.37	CC

	MOTA	1765	CD1	PHE	D	8	16.339	22.405	36.070	1.00 12.14	· CC
	MOTA	1766	CD2	PHE	D	8	15.428	22.116	33.875	1.00 9.69	CC
	MOTA	1767	CE1	PHE	D	8	17.037	21.197	35.945	1.00 12.19	CC
	MOTA	1768	CE2	PHE	D	8	16.120	20.910	33.737	1.00 10.35	CC.
5	MOTA	1769	CZ	PHE	D	8	16.924	20.448	34.771	1.00 8.89	CC
	MOTA	1770	С	PHE	D	8	14.430	26.485	34.574	1.00 15.73	CC
	ATOM	1771	0	PHE	D	8	14.135	27.252	35.490	1.00 16.97	CC
	MOTA	1772	N	HYP	D	9	13.882	26.584	33.358	1.00 16.42	CC
	MOTA	1773	CD	HYP	D	9	14.495	26.153	32.089	1.00 18.36	CC
10	ATOM	1774	CA	HYP	D	9	12.847	27.596	33.117	1.00 16.58	CC
	MOTA	1775	CB	HYP	D	9	12.654	27.534	31.609	1.00 17.03	CC
	MOTA	1776	CG	HYP		9	14.036	27.243	31.136	1.00 17.77	CC
	ATOM	1777	C	HYP		9	11.599	27.148	33.887	1.00 15.93	CC
	MOTA	1778	0	HYP		9	11.501	25.982	34.293	1.00 15.10	CC
15	ATOM	1779	OD	HAb		9	14.095	26.856	29.776	1.00 21.73	CC
	MOTA	1780	N	GLY		10	10.653	28.055	34.094	1.00 13.77	cc
	ATOM	1781	CA	GLY		10	9.453	27.691	34.831	1.00 13.02	CC
	MOTA	1782	C	GLY		10	8.510	26.738	34.109	1.00 12.42	CC
	MOTA	1783	0	GLY		10	8.501	26.687	32.878	1.00 12.88	CC
20	ATOM	1784	N	GLU		11	7.720	25.974	34.863	1.00 11.80	CC
	MOTA	1785	CA	GLU		11	6.754	25.051	34.260	1.00 12.74	CC
	ATOM	1786	CB	GLU		11	6.389	23.913	35.220	1.00 10.65	CC
	ATOM	1787	CG	GLU		11	7.500	22.914	35.476	1.00 10.47	CC
٥-	ATOM	1788	CD	GLU		11	7.058	21.735	36.342	1.00 9.64	CC
25	ATOM	1789		GLU		11	7.903	21.213	37.093	1.00 10.29	CC
	ATOM	1790		GLU		11	5.884	21.318	36.268	1.00 7.01	CC
	MOTA	1791	C	GLU		11	5.475	25.810	33.898	1.00 13.76	CC
	ATOM	1792	0	GLU		11	5.269	26.942	34.341	1.00 13.67 1.00 14.12	cc
2.0	ATOM	1793	N	ARG		12	4.615	25.188	33.098	1.00 14.12	CC
30	ATOM	1794	CA	ARG		12	3.356	25.828	32.709 31.710	1.00 14.39	CC
	MOTA	1795	CB	ARG		12	2.601	24.958	30.569	1.00 16.49	CC
	MOTA	1796	CG	ARG		12	3.451	24.479 23.601	29.646	1.00 19.21	CC
	MOTA	1797	CD	ARG		12	2.655 3.525	22.833	28.762	1.00 22.96	CC
35	ATOM	1798	NE CZ	ARG ARG		12 12	3.096	21.868	27.963	1.00 21.61	CC
33	ATOM ATOM	1799 1800		ARG		12	1.806	21.563	27.940	1.00 22.39	, CC
	ATOM	1801		ARG		12	3.954	21.199	27.207	1.00 23.45	CC
	MOTA	1802	C	ARG		12	2.508	25.990	33.959	1.00 13.43	CC
	MOTA	1803	0	ARG		12	2.670	25.239	34.916	1.00 13.31	CC
40	MOTA	1804	И	GLY		13	1.602	26.961	33.948	1.00 12.98	CC
10	MOTA	1805	CA	GLY		13	0.750	27.170	35.104	1.00 11.53	CC
	MOTA	1806	C	GLY				26.006			CC
	MOTA	1807	0	GLY		13	-0.260	25.078	34.538		CC
	ATOM	1808	N	PRO		14		26.016	36.464		CC
45	ATOM	1809	CD	PRO		14	-1.005	27.064	37.497		CC
	MOTA	1810	CA	PRO		14	-1.890	24.933	36.764		CC
	ATOM	1811	СВ	PRO		14	-2.364	25.275	38.174		CC
	MOTA	1812	CG	PRO		14		26.762	38.187		CC
	ATOM	1813	С	PRO		14	-3.039	24.923	35.755		CC
50	ATOM	1814	0	PRO		14	-3.289	25.928	35.082	1.00 12.39	CC
	ATOM	1815	N	HYP		15		23.789	35.632		CC
	ATOM	1816	CD	HYP		15		22.531	36.385	1.00 14.38	CC
	ATOM	1817	CA	HYP		15		23.708	34.684	1.00 13.05	CC
	ATOM	1818	CB	НУР		15		22.315	34.942		CC
55	ATOM	1819	CG	HYP		15		21.541	35.488	1.00 13.87	CC
	ATOM	1820	C	HYP		15		24.811	34.990	1.00 12.80	CC
	-	-									

	ATOM	1821	0	HYP	D	15	-5.971	25.268	36.130	1.00	12.18	CC
	MOTA	1822	OD	HYP	D	15	-3.452	20.982	34.490	1.00	15.74	CC
	MOTA	1823	N	GLY	D	16	-6.623	25.237	33.973	1.00	13.68	CC
	MOTA	1824	CA	GLY	D	16	-7.619	26.277	34.165	1.00	13.35	CC
5	MOTA	1825	С	GLY	D	16	-8.887	25.737	34.808	100	15.22	CC
	ATOM	1826	0	GLY	D	16	-9.015	24.529	35.002	1.00	14.14	CC
	ATOM	1827	N	PRO	D	17	-9.858	26.604	35.130	1.00	16.78	CC
	ATOM	1828	CD	PRO	D	17	-9.857	28.062	34.923	1.00	15.74	CC
	ATOM	1829	CA	PRO	D	17	-11.110	26.166	35.760	1.00	17.75	CC
10	ATOM	1830	СВ	PRO	D	17	-11.840	27.484	36.045	1.00	17.60	CC
	MOTA	1831	CG	PRO	D	17	-10.729	28.522	36.051	1.00	17.99	CC
	ATOM	1832	С	PRO	D	17	-11.945	25.237	34.884	1.00	18.61	CC
	MOTA	1833	0	PRO	D	17	-11.758	25.172	33.667	1.00	18.40	CC
	ATOM	1834	N	HYP	D	18	-12.876	24.489	35.498	1.00	19.66	CC
15	ATOM	1835	CD	HYP		18	-13.157	24.363	36.939	1.00	19.82	CC
	ATOM	1836	CA	HYP		18	-13.720	23.580	34.715	1.00	19.63	CC
	ATOM	1837	CB	HYP		18	-14.608	22.924	35.778	1.00	21.13	CC
	ATOM	1838	CG	нүр		18	-13.760	22.991	37.010	1.00	20.32	CC
	ATOM	1839	С	HYP		18	-14.529	24.432	33.746	1.00	18.79	CC
20	ATOM	1840	0	HYP		18	-14.809	25.592	34.033	1.00	18.95	CC
	ATOM	1841	OD	HYP		18	-12.787	21.962	37.083	1.00	23.21	CC
	ATOM	1842	N	GLY		19	-14.893	23.863	32.602	1.00	18.88	CC
	ATOM	1843	CA	GLY		19	-15.668	24.613	31.631	1.00	18.26	CC
	ATOM	1844	C	GLY		19	-17.104	24.824	32.078	1.00	18.68	CC
25	ATOM	1845	0	GLY		19	-17.477	24.399	33.174	1.00	16.61	CC
	ATOM	1846	N	PRO		20	-17.938	25.502	31.265		19.16	CC
	ATOM	1847	CD	PRO		20	-17.561	26.245	30.055	1.00	19.89	CC
	MOTA	1848	CA	PRO		20	-19.342	25.752	31.604	1.00	20.26	CC
	MOTA	1849	CB	PRO	D	20	-19.732	26.886	30.660	1.00	20.83	CC
30	MOTA	1850	CG	PRO	D	20	-18.412	27.463	30.179	1.00	20.62	CC
	ATOM	1851	С	PRO	D	20	-20.162	24.491	31.300	1.00	21.06	CC
	MOTA	1852	0	PRO	D	20	-19.697	23.616	30.577	1.00	20.72	CC
	ATOM	1853	N	HYP	D	21	-21.378	24.377	31.859	1.00	21.33	CC
	MOTA	1854	CD	HYP	D	21	-21.927	25.146	32.992	1.00	21.67	CC
35	MOTA	1855	CA	HYP	D	21	-22.215	23.189	31.590	1.00	21.74	CC
	ATOM	1856	CB	HYP	D	21	-23.468	23.451	32.440	1.00	22.13	CC
	ATOM	1857	CG	HYP	D	21	-22.878	24.155	33.631	1.00	21.33	CC
	MOTA	1858	С	HYP	D	21	-22.551	23.036	30.094	1.00	21.48	CC
	ATOM	1859	0	HYP	D	21	-22.726	24.026	29.378	1.00	22.03	CC
40	MOTA	1860	OD	HYP	D	21	-22.228	23.265	34.516	1.00	23.21	CC
	MOTA	1861	N	NHH	D	22	-22.657	21.806	29.613	1.00	20.91	CC
	TER											
	ATOM	1862	0	нон	E	401	16.330	14.217	61.265	1.00	7.27	W
	MOTA	1863	0	нон	E	402	19.752	18.951	37.584	1.00	15.74	W
45	MOTA	1864	0	нон	E	403	2.016	10.266	32.905	1.00	23.77	W
	ATOM	1865	0	нон	E	404	4.266	11.763	34.068	1.00	9.44	W
	MOTA	1866	0	нон	E	405	10.519	11.274	32.006	1.00	21.51	W
	ATOM	1867	0	нон	E	406	1.504	12.266	29.042	1.00	21.77	W
	ATOM	1868	0	нон	E	407	20.908	16.308	36.153	1.00	17.64	W
50	MOTA	1869	0	нон	E	408	17.091	20.929	39.613	1.00	12.14	W
	MOTA	1870	0	нон	E	409	8.326	-0.946	34.265	1.00	26.84	W
	ATOM	1871	. 0	нон	E	410	10.585	22.363	46.723	1.00	11.87	W
	MOTA	1872	0	нон	E	411	25.378	10.794	55.016	1.00	24.26	W
	ATOM	1873	0	нон	E	412	20.406	16.105	51.398	1.00	11.61	W
55	MOTA	1874	0	нон	E	413	16.878	25.139	38.620		14.37	W
	MOTA	1875	0	HOH	E	414	-0.842	16.913	58.285	1.00	16.87	W

	MOTA	1876	0	нон	E	415	10.411	24.807	49.914	1.00	52.97	W
	MOTA	1877	0	HOH	E	416	13.368	22.460	47.864	1.00	18.07	W
	MOTA	1878	0	нон	E	417	13.150	11.289	62.240	1.00	47.74	W
	ATOM	1879	0	нон	E	418	1.303	-6.147	47.976	1.00	16.49	M
5	MOTA	1880	0	нон	E	419	8.599	13.854	30.673	1.00	18.89	W
	MOTA	1881	0	нон	E	420	10.232	-2.382	37.701	1.00	14.49	W
	ATOM	1882	0	нон			-3.601	4.030	52.968	1.00	15.10	W
	ATOM	1883	0	нон			5.410	-7.210	42.591	1.00	21.64	W
	ATOM	1884	0	нон			3.279	-9.212	44.213	1.00	29.74	W
10	ATOM	1885	0			424	-16.951	19.401	35.082	1.00	34.19	W
	MOTA	1886	ō	нон			-1.522	17.595	32.378	1.00	24.97	W
	MOTA	1887	0	нон			8.884	13.210	58.870	1.00	25.98	W
	ATOM	1888	o	нон			11.250	14.511	57.508		10.37	W
	ATOM	1889	0			428	-2.929	10.128	32.874		37.15	W
15	MOTA	1890	0	нон			-2.009	12.948	33.369		17.55	W
13		1891	0			430	-5.571	16.309	35.097		32.24	W
	MOTA		0	НОН			-4.389	33.187	33.783		18.95	W
	MOTA	1892		нон			15.969	10.887	53.476		32.71	W
	ATOM	1893	0				14.711	22.985	29.797		54.65	w
20	MOTA	1894	0	HOH				-4.755	31.380		28.71	W.
20	MOTA	1895	0	HOH			4.779		50.214		28.66	W
	MOTA	1896	0	HOH			-5.058	10.030			30.05	W
	ATOM	1897	0	HOH			-16.040	29.691	30.628		29.62	W
	ATOM	1898	0			437	-7.659	20.017	35.921			W
0.5	ATOM	1899	0	НОН			7.624	5.929	62.247		18.95	
25 .	MOTA	1900	0	HOH			5.101	33.897	32.954		15.88	W
	MOTA	1901	0	нон			20.979	6.175	33.371		32.22	W
	MOTA	1902	0	нон			-6.393	32.120	30.613		29.97	W
	MOTA	1903	0	нон			23.467	19.968	39.168		40.58	W
	MOTA	1904	0	HOH			15.123	6.339	30.675		22.32	W
30	ATOM	1905	0	нон			-2.185	1.475	51.922		30.14	W
	MOTA	1906	0	HOH				-11.187	38.112		33.83	W
	MOTA	1907	0	нон	E	446	9.709	29.020	43.378		47.17	W
	MOTA	1908	0	HOH	Ε	447	9.022	20.434	54.535		39.15	W
	MOTA	1909	0	нон	E	448	18.161	0.376	56.588		41.53	W
35	MOTA	1910	0	HOH	E	449	1.292	37.093	34.663		39.13	W
	MOTA	1911	0	HOH	E	450	-5.218	28.339	39.373		20.28	W
	MOTA	1912	0	HOH	E	451	-18.990	23.798	35.404	1.00	22.93	W
	ATOM	1913	0	HOH	Ε	452	15.022	35.511	35.405	1.00	34.37	W
	MOTA	1914	0	нон	E	453	11.191	32.962	36.498	1.00	14.69	W
40	ATOM	1915	0	HOH	E	454		-4.887	52.120			W
	MOTA	1916	0	нон	E	455	1.460	-6.101	37.435	1.00	20.27	W
	MOTA	1917	0	HOH	E	456	2.850	-3.540	37.375	1.00	21.11	W
	ATOM	1918	0	HOH	E	457	-0.387	-3.197	40.345	1.00	22.30	W
	ATOM	1919	0	нон	E	458	17.628	33.001	33.070	1.00	28.12	W
45	MOTA	1920	0	нон	Ė	459	20.718	33.705	32.843	1.00	47.02	W
	MOTA	1921	0	нон	E	460	12.058	-13.328	39.611	1.00	28.23	W
	ATOM	1922	0	нон	E	461	19.085	-13.047	45.158	1.00	36.96	W
	ATOM	1923	0	нон	E	462	25.263	12.268	35.569	1.00	33.88	W
	ATOM	1924	0	нон	E	463	1.677	-5.057	32.759	1.00	35.05	W
50	ATOM	1925	0	нон	E	464	13.210	-5.412	32.844	1.00	19.95	W
	ATOM	1926	0			465	20.199		34.558	1.00	23.92	W
	ATOM	1927	0			466	10.903		29.019	1.00	22.99	W
	ATOM	1928	0			467	12.411			1.00	18.47	W
	ATOM	1929	0			468	18.494			1.00	36.00	W
55	MOTA	1930	0			469	0.713			1.00	32.15	W
	ATOM	1931	0			470	4.495		54.370	1.00	27.53	W
				_								

	ATOM	1932	0	HOH E 471	4.455	16.672	59.168	1.00 33.94	W
	MOTA	1933	0	HOH E 472	-7.327	18.714	30.650	1.00 75.20	W
	MOTA	1934	0	HOH E 473	-15.390	28.107	33.235	1.00 23.19	W
	MOTA	1935	0	HOH E 474	-25.202	16.177	24.609	1.00 30.95	W
5	ATOM	1936	0	HOH E 475	7.128	18.700	40.698	1.00 16.55	W
	ATOM	1937	0	HOH E 476	23.267	16.273	48.985	1.00 56.29	W
	ATOM	1938	0	HOH E 477	28.423	-0.449	48.099	1.00 28.46	W
	ATOM	1939	0	HOH E 478	18.290	5.977	30.269	1.00 35.16	W
	ATOM	1940	0	HOH E 479	-2.932	19.947	46.633	1.00 37.58	W
10	ATOM	1941	0	HOH E 480	-6.995	14.103	33.192	1.00 41.98	W
-	MOTA	1942	0	HOH E 481	19.155	28.681	30.733	1.00 41.30	W
	ATOM	1943	Ó	HOH E 482	8.752	19.818	28.348	1.00 18.61	W
	ATOM	1944	0	HOH E 483		-10.940	38.730	1.00 25.60	W
	ATOM	1945	0	HOH E 484	-9.232	12.028	47.636	1.00 29.15	W
15	ATOM	1946	0	HOH E 485	25.768	-2.672	34.238	1.00 19.91	W
13	ATOM	1947	0	HOH E 486	-9.793	8.985	29.027	1.00 47.04	W
	ATOM	1948	0	HOH E 487	36.629	34.002	46.802	1.00 36.63	W
	ATOM	1949	o	HOH E 488	-10.031	3.831	41.340	1.00 23.32	W
			0	HOH E 489	3.698	-8.671	31.566	1.00 26.69	w
20	ATOM	1950		HOH E 490		-15.407	49.734	1.00 42.23	W
20	ATOM	1951	0			-11.244	43.332	1.00 54.06	W
	MOTA	1952	0	HOH E 491			56.623	1.00 59.17	W
	ATOM	1953	0	HOH E 492	2.252	-3.277		1.00 39.17	W
	ATOM	1954	0	HOH E 493	-0.813	20.662	43.718		
	MOTA	1955	0	HOH E 494	27.179	32.232	34.060	1.00 33.41	W
25	ATOM	1956	0	HOH E 495	9.702	16.259	28.490	1.00 30.80	W
	MOTA	1957	0	HOH E 496	-5.273	5.984	51.412	1.00 26.74	W
	ATOM	1958	0	HOH E 497	12.811	20.705	25.466	1.00 36.98	W
	ATOM	1959	0	HOH E 498	4.397	-2.916	59.475	1.00 45.37	W
	MOTA	1960	0	HOH E 499	21.810	20.049	42.888	1.00 25.48	W
30	ATOM	1961	0	HOH E 500	29.335	-5.682	39.527	1.00 29.98	W
	MOTA	1962	0	HOH E 501	-4.035	1.559	59.722	1.00 48.77	W
	MOTA	1963	0	HOH E 502	24.853	-4.028	51.970	1.00 29.73	W
	MOTA	1964	0	HOH E 503	8.735	12.981	27.657	1.00 25.99	W
	MOTA	1965	0	HOH E 504	4.608	5.432	66.221	1.00 39.32	W
35	MOTA	1966	0	HOH E 505	8.157	26.632	37.716	1.00 19.09	W
	MOTA	1967	0	HOH E 506	19.925	21.667	40.974	1.00 30.96	W
	MOTA	1968	0	HOH E 507	21.123	21.624	38.019	1.00 57.54	W
	MOTA	1969	0	HOH E 508	19.670	4.586	54.357	1.00 18.45	W
	MOTA	1970	0	HOH E 509	16.405	2.164	52.694	1.00 15.67	W
40	MOTA	1971	0	HOH E 510	17.181	3.240	55.387	1.00 20.43	W
	MOTA	1972	0	HOH E 511	10.379	22.476	43.820	1.00 10.33	W
	MOTA	1973	0	HOH E 512	-5.658		37.515	1.00 9.41	W
	MOTA	1974	0	HOH E 513	-0.352	11.410	31.231	1.00 22.75	W
	MOTA	1975	0	HOH E 514	-1.032	-6.393	39.369	1.00 71.81	W
45	MOTA	1976	0	HOH E 515	12.801	14.283	61.993	1.00 43.75	W
	ATOM	1977	0	HOH E 516	0.335	-7.160	34.633	1.00 43.12	W
	MOTA	1978	0	HOH E 517	18.740	9.195	34.517	1.00 21.42	W
	ATOM	1979	0	HOH E 518	21.092	26.747	46.523	1.00 37.98	W
	ATOM	1980	0	HOH E 519	-0.634	-5.353	30.779	1.00 31.44	W
50	MOTA	1981	0	HOH E 520	9.702	29.614	29.819	1.00 39.63	W
	ATOM	1982	0	HOH E 521	2.103	31.457	25.374	1.00 60.68	W
	ATOM	1983	0	HOH E 522	21.839	23.414	46.265	1.00 27.45	W
	ATOM	1984	0	HOH E 523	-1.829	-6.665	43.612	1.00 38.69	W
	MOTA	1985	0	HOH E 524	-16.318	15.309	29.036	1.00 29.84	W
55	ATOM	1986	0	HOH E 525	12.381	9.143	26.968	1.00 35.75	W
	ATOM	1987	0	HOH E 526	-9.464	13.244	43.157	1.00 15.14	W
		-							

	ATOM	1988	0	HOH E 527	1.957	19.483	58.941	1.00 44.43	W
	MOTA	1989	0	HOH E 528	-7.641	5.258	33.722	1.00 42.72	W
	MOTA	1990	0	HOH E 529	9.446	17.350	65.141	1.00 58.61	W
	MOTA	1991	O.	HOH E 530	26.874	39.005	45.593	1.00 38.89	W
5	MOTA	1992	0	HOH E 531	21.700	9.818	32.431	1.00 29.79	W
	ATOM	1993	0	HOH E 532	19.909	37.845	37.897	1.00 45.65	W
	MOTA	1994	0	HOH E 533	-4.483	18.944	32.657	1.00 29.09	W
	MOTA	1995	0	HOH E 534	5.879	18.842	61.111	1.00 25.87	W
	MOTA	1996	0	HOH E 535	14.645	-14.638	53.958	1.00 34.91	W
10	MOTA	1997	0	HOH E 536	10.758	23.693	29.607	1.00 39.53	W
	MOTA	1998	0	HOH E 537	14.338	29.236	52.072	1.00 23.79	W
	MOTA	1999	0	HOH E 538	-1.741	9.523	54.031	1.00 15.67	W
	ATOM	2000	0	HOH E 539	37.974	28.457	47.538	1.00 37.53	W
	ATOM	2001	0	HOH E 540	-4.043	22.878	40.941	1.00 24.51	W
15	ATOM	2002	0	HOH E 541	-10.067	3.093	33.051	1.00 39.04	W
	ATOM	2003	0	HOH E 542	23.692	16.947	40.249	1.00 37.69	W
	ATOM	2004	0	HOH E 543	-14.538	18.262	36.711	1.00 25.98	W
	ATOM	2005	0	HOH E 544	-21.782	25.567	27.128	1.00 22.21	W
	ATOM	2006	0	HOH E 545	-6.512	24.664	43.761	1.00 24.02	W
20	MOTA	2007	0	HOH E 546	0.663	-12.626	51.997	1.00 21.29	W
	MOTA	2008	0	HOH E 547	5.183	-4.422	55.353	1.00 28.59	W
	ATOM	2009	0	HOH E 548	15.427	-11.562	53.600	1.00 41.82	W
	MOTA	2010	0	HOH E 549	-6.105	0.971	34.469	1.00 33.69	W
	MOTA	2011	0	HOH E 550	24.009	14.010	45.618	1.00 31.33	W
25	MOTA	2012	0	HOH E 551	28.845	1.189	53.843	1.00 25.92	M
	MOTA	2013	0	HOH E 552	22.693	-2.757	30.748	1.00 39.50	W
	ATOM	2014	0	HOH E 553	14.366	8.993	63.904	1.00 27.99	W
	ATOM	2015	0	HOH E 554	-2.851	7.676	50.104	1.00 6.24	W
	ATOM	2016	0	HOH E 555	-21.496	18.740	25.299	1.00 37.92	M
30	ATOM	2017	0	HOH E 556	-4.586	-0.965	54.920	1.00 32.72	W
	MOTA	2018	0	HOH E 557	28.684	7.487	39.407	1.00 38.90	W
	ATOM	2019	Ο.	HOH E 558	-4.261	27.809	42.326	1.00 38.34	W
	MOTA	2020	0	HOH E 559	27.593	12.602	39.403	1.00 33.36	W
	MOTA	2021	0	HOH E 560	5.408	21.728	39.073	1.00 18.41	W
35	MOTA	2022	0	HOH E 561	4.934	33.417	35.974	1.00 41.20	W
	ATOM	2023	0	HOH E 562	20.940	-9.117	33.600	1.00 37.49	W
	ATOM	2024	0	HOH E 563	25.023	4.235	34.909	1.00 32.12	W
	MOTA	2025	0	HOH E 564	~7.915	31.142	34.213	1.00 20.84	W
	MOTA	2026	0	HOH E 565	25.443	21.564	41.029	1.00 29.81	W
40	ATOM	2027	0	HOH E 566	7.224	3.183	57.981	1.00 18.29	W
	MOTA	2028	0	HOH E 567	-11.011	17.891	38.676	1.00 54.99	W
	MOTA	2029	0	HOH E 568	27.552	-6.668	34.568	1.00 57.12	W
	ATOM	2030	0	HOH E 569	-9.431	19.864	28.498	1.00 33.60	W
	ATOM	2031	0	HOH E 570	-9.953	33.734	35.439	1.00 38.58	W
45	MOTA	2032	0	HOH E 571	15.884	-3.180	55.349	1.00 42.47	W
	MOTA	2033	0	HOH E 572	9.077	20.453	25.079	1.00 34.23	W
	MOTA	2034	0	HOH E 573	27.196	8.842	33.494	1.00 28.68	W
	MOTA	2035	0	HOH E 574	3.622	-14.068	39.777	1.00 40.01	W
	MOTA	2036	0	HOH E 575	22.780	-6.705	48.821	1.00 35.65	W
50	MOTA	2037	0	HOH E 576	20.461	14.459	53.991	1.00 7.42	W
	ATOM	2038	0	HOH E 577	27.952	24.030	44.546	1.00 49.20	W
	MOTA	2039	0	HOH E 578	2.048		43.059	1.00 38.93	W
	MOTA	2040	0	HOH E 579	18.772	13.735	50.322	1.00 14.30	W
~-	MOTA	2041	0	HOH E 580	28.890	4.103	47.890	1.00 39.36	W
55	ATOM	2042	0	HOH E 581	16.438	0.081	60.966	1.00 45.15	W
	MOTA	2043	0	HOH E 582	6.734	26.793	26.473	1.00 55.90	M

	MOTA	2044	0	HOH E 583	1.207	4.137	65.627	1.00 45.41	W
	MOTA	2045	0	HOH E 584			55.828	1.00 55.37	W
	MOTA	2046	0	HOH E 585		-6.427	38.603	1.00 31.68	W
	MOTA	2047	Ø	HOH E 586			40.456	1.00 20.37	W
5	MOTA	2048	0	HOH E 587		-15.206	53.910	1.00 36.75	W
	ATOM	2049	0	HOH E 588	10.278	12.294	61.398	1.00 49.20	W
	MOTA	2050	0	HOH E 589	23.956	15.507	34.852	1.00 41.12	W
	MOTA	2051	0	нон в 590			29.704	1.00 50.39	W
	MOTA	2052	0	HOH E 591	28.619	-2.738	54.840	1.00 60.38	W
10	MOTA	2053	0	HOH E 592	16.294	-17.370	59.916	1.00 37.59	W
	MOTA	2054	0	нон E 593		17.196	40.746	1.00 51.31	W
	MOTA	2055	0	HOH E 594	19.730	-17.598	48.544	1.00 40.50	W
	ATOM	2056	0	HOH E 595	1.326	0.954	59.482	1.00 34.91	W
	MOTA	2057	0	HOH E 596	-9.799	9.892	37.138	1.00 33.55	W
15	MOTA	2058	0	HOH E 597	-0.061	-9.253	45.965	1.00 50.81	W
	MOTA	2059	0	HOH E 598	-9.383	16.434	31.738	1.00 80.11	W
	MOTA	2060	0	HOH E 599	28.769	8.640	42.670	1.00 43.27	W
•	MOTA	2061	0	HOH E 600	-0.063	-14.933	49.352	1.00 49.59	W
	MOTA	2062	0	HOH E 601	-3.092	19.360	39.749	1.00 10.48	W
20	MOTA	2063	0	HOH E 602			44.138	1.00 33.04	W
	MOTA	2064	0	HOH E 603	16.517	-5.223	41.821	1.00 13.16	W
	MOTA	2065	0	HOH E 604	13.725	-15.908	43.046	1.00 50.39	W
	MOTA	2066	0	HOH E 605	-8.398	-0.815	36.648	1.00 44.78	W
	MOTA	2067	0	HOH E 606	-11.723	16.827	35.869	1.00 45.21	M
25	MOTA	2068	0	HOH E 607	21.277	-5.651	56.343	1.00 29.34	M
	MOTA	2069	0	HOH E 608	0.385	28.090	25.264	1.00 30.39	W
	MOTA	2070	0	HOH E 609	22.972	36.785	37.710	1.00 61.85	W
	MOTA	2071	0	HOH E 610	-22.932	23.819	37.010	1.00 35.16	W
	MOTA	2072	0	HOH E 611	-0.053	32.476	43.573	1.00 47.38	W
30	MOTA	2073	0	HOH E 612	16.349	-4.295	32.442	1.00 11.94	W
	MOTA	2074	0	HOH E 613	8.944	17.294	55.291	1.00 38.30	W
	MOTA	2075	0	HOH E 614	-12.696	5.454	42.347	1.00 24.01	W
	ATOM	2076	0	HOH E 615	9.177	8.214	28.044	1.00 14.97	W
	MOTA	2077	0	HOH E 616	0.445	33.900	38.846	1.00 49.81	M
35	MOTA	2078	0	HOH E 617	21.274	-2.650	56.811	1.00 51.42	W
	ATOM	2079	0	HOH E 618	-10.014	10.985	40.675	1.00 19.46	W
	MOTA	2080	0	HOH E 619	-0.454	23.829	44.924	1.00 45.60	M
	MOTA	2081	0	HOH E 620	11.214		21.651	1.00 43.14	W
	MOTA	2082	0	HOH E 621	0.405	-9.345	49.102	1.00 29.74	M
40	MOTA	2083	0	HOH E 622	12.410	20.925	30.282	1.00 32.22	W
	MOTA	2084	0	HOH E 623	1.346	-7.579	51.489	1.00 37.32	W
	ATOM	2085	0	HOH E 624	0.952	-1.848	62.790	1.00 40.55	M
	MOTA	2086	0	HOH E 625	25.065	35.727	35.689	1.00 49.74	W
	MOTA	2087	0	HOH E 626	-0.370	-8.630	31.015	1.00 29.03	W
45	MOTA	2088	0	HOH E 627	-16.728	15.876	25.532	1.00 30.88	W
	MOTA	2089	0	HOH E 628	6.938	-5.411	53.020	1.00 42.93	W
	MOTA	2090	0	HOH E 629	24.380	1.854	32.909	1.00 47.21	W
	MOTA	2091	0	HOH E 630	-8.097	-0.898	58.999	1.00 26.17	W
	MOTA	2092	0	HOH E 631	6.349	26.620	30.559	1.00 19.66	W
50	MOTA	2093	0	HOH E 632	-2.843	-4.402	37.498	1.00 36.21	W
	MOTA	2094	0	HOH E 633	-11.910	13.215	48.308	1.00 38.00	W
	MOTA	2095	0	HOH E 634	-3.324		37.394	1.00 38.68	W
	MOTA	2096	0	HOH E 635	24.398	-13.158		1.00 43.76	W
	MOTA	2097	0	HOH E 636	-8.198			1.00 27.11	W
55	MOTA	2098	0	HOH E 637	-8.309	2.465	36.126	1.00 41.61	W
	ATOM	2099	0	HOH E 638	11.803	20.581	62.626	1.00 35.46	W

			_		10 045	10 004	E0 E06	1.00 45.01	W
	MOTA	2100	0	HOH E 639	10.945	19.084	58.586		
	MOTA	2101	0	HOH E 640	24.849	29.419	47.628	1.00 43.17	W
	MOTA	2102	0	HOH E 641	29.935	-2.937	50.468	1.00 46.17	W
	MOTA	2103	0	HOH E 642	-13.168	15.458	33.377	1.00 44.29	W
5	ATOM	2104	0	HOH E 643	30.171	-8.396	50.663	1.00 44.09	W
	MOTA	2105	0	HOH E 644	-3.800	-10.918	49.026	1.00 42.03	W
	MOTA	2106	0	HOH E 645	-11.802	13.503	31.227	1.00 32.17	W
	ATOM	2107	0	HOH E 646	25.724	15.828	32.256	1.00 47.08	W
	MOTA	2108	0	HOH E 647	23.197	36.930	41.760	1.00 59.31	W
10	ATOM	2109	0	HOH E 648	6.297	13,476	62.219	1.00 20.21	W
10	ATOM	2110	0	HOH E 649	26.923	39.279	48.907	1.00 38.82	W
		2111	o	HOH E 650	-11.912	28.753	27.748	1.00 15.52	W
	ATOM	2112	0	HOH E 651	-1.841	0.730	55.015	1.00 34.19	W
	MOTA					19.363	43.124	1.00 35.99	W
	ATOM	2113	0	HOH E 652	27.087		51.478	1.00 42.93	w
15	MOTA	2114	0	HOH E 653	-5.759	32.720			W
	ATOM	2115	0	HOH E 654	2.519	-7.426	58.675	1.00 44.06	
	MOTA	2116	0	HOH E 655	19.199	36.052	31.423	1.00 50.09	W
	MOTA	2117	0	HOH E 656	36.482	33.963	37.970	1.00 29.85	W
_	MOTA	2118	0	HOH E 657	17.605	38.239	35.191	1.00 49.64	W
20	ATOM	2119	0	HOH E 658	-6.132	-1.762	40.679	1.00 58.90	W
	MOTA	2120	0	HOH E 659	16.738	-12.983	56.218	1.00 26.39	W
	ATOM	2121	0	HOH E 660	30.120	2.212	50.795	1.00 47.95	W
	MOTA	2122	0	HOH E 661	-2.330	32.018	54.211	1.00 22.05	W
	ATOM	2123	0	HOH E 662	26.040	10.878	43.103	1.00 58.31	M
25	ATOM	2124	0	HOH E 663	12.297	13.980	28.533	1.00 28.23	W
	ATOM	2125	0	HOH E 664	29.821	12.619	35.702	1.00 36.51	M
	MOTA	2126	0	HOH E 665	-4.617	-1.126	50.876	1.00 38.50	W
	MOTA	2127	0	HOH E 666	24.545	-0.669	55.100	1.00 32.21	W
	ATOM	2128	0	HOH E 667	-7.088	31.748	54.539	1.00 38.30	W
30	ATOM	2129	0	HOH E 668	28.885	15.172	42.351	1.00 38.33	W
	MOTA	2130	0	HOH E 669	-10.569	21.693	38.518	1.00 38.74	W
	ATOM	2131	0	HOH E 670	21.244	5.913	29.116	1.00 61.57	W
	ATOM	2132	0	HOH E 671	-5.925	23.682	38.495	1.00 35.75	W
	ATOM	2133	0	HOH E 672	-5.893	25.939	47.728	1.00 31.91	W
35	ATOM	2134	0	HOH E 673		-10.124	59.049	1.00 47.84	W
55	ATOM	2135	0	HOH E 674	-7.727	-4.136	55.451	1.00 24.28	W
	MOTA	2136	0	HOH E 675		-12.031	31.037	1.00 26.07	W
		2137	0	HOH E 676	6.482	12.323	23.254	1.00 41.15	W
	MOTA		0	HOH E 677	28.692	38.404	43.002	1.00 53.47	W
40	ATOM	2138	0	HOH E 678	8.274	3.989	68.327	1.00 29.04	W
40	MOTA	2139				-15.917	62.867	1.00 30.26	W
	MOTA	2140	0	HOH E 679	25.612		48.272	1.00 68.00	w
	ATOM	2141	0	HOH E 680		4.058	68.632	1.00 29.34	w
	ATOM	2142	0	HOH E 681	12.405			1.00 23.34	พ
	MOTA	2143	0	HOH E 682	16.645		28.767	1.00 46.50	W
45	MOTA	2144	0	HOH E 683	4.557	0.245	60.083		
	MOTA	2145	0	HOH E 684	23.005	-9.610	47.006	1.00 39.61	W
	MOTA	2146	0	HOH E 685	-15.268		28.052	1.00 56.53	W
	MOTA	2147	0	HOH E 686	-3.271		30.463	1.00 32.99	W
	ATOM	2148	0	HOH E 687	-1.210		58.568	1.00 67.47	W
50	MOTA	2149	0	HOH E 688	27.788		47.975	1.00 40.99	W
	ATOM	2150	0	HOH E 689	2.086		35.942	1.00 27.35	W
	MOTA	2151	0	HOH E 690	10.069		70.673	1.00 49.43	W
	MOTA	2152	0	HOH E 691		-14.655	49.191	1.00 49.35	W
	MOTA	2153	0	HOH E 692	19.982	-16.815	59.582	1.00 56.16	W
55	MOTA	2154	0	HOH E 693	20.800		40.253	1.00 48.20	W
	MOTA	2155	0	HOH E 694	24.030	6.818	32.263	1.00 50.91	W

	MOTA	2156	0	нон н	695	-1.111	27.060	46.541	1.00 17.67	7 W
	ATOM	2157	0	HOH F	696	-27.078	18.341	26.678	1.00 55.01	L W
	ATOM	2158	0	HOH I	697	-10.231	0.457	56.323	1.00 33.31	L W
	MOTA	2159	0	HOH I	698	4.275	-2.353	63.270	1.00 40.77	7 W
5	MOTA	2160	0	HOH F	699	28.449	24.425	47.948	1.00 32.19	e w
	MOTA	2161	0	HOH E	700	30.889	38.367	39.277	1.00 54.24	W W
	MOTA	2162	0	HOH F	701	6.516	33.704	54.312	1.00 24.50) W
	MOTA	2163	0	HOH E	702	9.479	32.909	53.611	1.00 53.53	B W
	MOTA	2164	0	HOH F	703	9.352	29.832	54.842	1.00 34.81	L W
10	ATOM	2165	0	HOH E	704	26.759	36.138	40.043	1.00 30.98	3 W
	ATOM	2166	0	HOH E	705	29.458	-6.695	53.369	1.00 47.75	S W
	MOTA	2167	0	HOH E	706	5.033	-10.973	29.828	1.00 27.71	L W
	MOTA	2168	0	HOH E	707	27.793	-9.749	35.681	1.00 31.20) W
	ATOM	2169	0	HOH E	708	31.071	-1.537	53.144	1.00 32.97	7 W
15	ATOM	2170	0	нон в	709	-3.807	22.472	44.590	1.00 46.35	5 W
	MOTA	2171	0	HOH E	710	-4.795	-7.128	44.799	1.00 28.48	B W
	ATOM	2172	0	HOH E	711	-12.586	1.440	45.045	1.00 36.39	W
	ATOM	2173	0	HOH E	712	-5.260	3.802	61.612	1.00 40.65	W W
	ATOM	2174	0	HOH E	713	29.964	1.189	35.812	1.00 34.49	W
20	ATOM	2175	0	HOH E	714	-2.343	-12.035	40.222	1.00 69.00) W
	ATOM	2176	0	HOH E	715	9.302	23.483	53.331	1.00 44.74	. W
	ATOM	2177	0	нон в	716	-2.242	-2.626	62.126	1.00 38.70) W
	ATOM	2178	0	нон в	717	-7.275	0.894	52.443	1.00 54.44	. W
	ATOM	2179	0	HOH E	718	-8.110	15.858	43.753	1.00 42.70	W (
25	ATOM	2180	0	HOH E	719	26.788	-8.036	52.120	1.00 40.32	. W
	ATOM	2181	0	HOH E	720	6.407	3.434	64.438	1.00 28.31	W
	ATOM	2182	0	HOH E	721	-5.768	15.496	29.504	1.00 39.40	W
	ATOM	2183	0	нон Е	722	31.860	30.480	48.051	1.00 35.91	. W
	ATOM	2184	0	нон в	723	-2.018	-11.813	46.456	1.00 40.13	W
30	ATOM	2185	0	HOH E	724	-14.067	13.952	45.904	1.00 30.17	W
	ATOM	2186	0	HOH E	725	11.597	22.036	22.756	1.00 43.20	W
	ATOM	2187	0	нон Е	726	12.253	25.948	27.576	1.00 42.36	W
	ATOM	2188	0	нон Е	727	0.693	-4.936	60.187	1.00 55.60	W W
	ATOM	2189	0	нон Е	728	3.595	14.524	25.741	1.00 30.29	W
35	ATOM	2190	0	нон Е	729	29.954	37.854	47.035	1.00 52.60	W
	ATOM	2191	0	нон Е	730	-2.366	30.916	41.868	1.00 55.38	W W
	ATOM	2192	0	нон в	731	8.713	-11.641	36.683	1.00 30.73	W
	ATOM	2193	0	нон в		0.761	-5.195	53.384	1.00 38.64	. W
	ATOM	2194	0	нон Е	733	31.365	26.739	47.933	1.00 31.61	. W
40	MOTA	2195	0	нон в	734	7.345	16.504	26.173	1.00 64.82	. W
	ATOM	2196	0	нон в	735	10.677	0.163	68.748	1.00 36.34	W
	ATOM	2197	0	нон в	736	27.161	35.880	32.022	1.00 33.61	. W
	MOTA	2198	0	нон Е	737	-13.094	10.266	30.707	1.00 43.14	. W
	ATOM	2199	0	нон в		-10.853	17.032	27.531	1.00 38.09	W
45	MOTA	2200	0	нон Е	739	3.458	16.325	42.437	1.00 7.40	W
	ATOM	2201	0	нон Е			-12.771	41.970	1.00 43.59	W
	ATOM	2202	0	нон Е		-1.559	2.106	29.784	1.00 31.14	W
	ATOM	2203	0	нон в		12.165	-12.601	53.138	1.00 28.68	W
	ATOM	2204	0	нон Е		-7.457	9.069	33.302	1.00 55.50	W
50	ATOM	2205	0	нон Е		38.921		46.548	1.00 26.37	w
	ATOM	2206	o	нон Е			-10.683	32.696	1.00 39.32	
	ATOM	2207	ō	нон в		22.495	18.359	51.539	1.00 63.86	
	MOTA	2208	o	нон Е		2.309		37.405	1.00 44.56	
	ATOM	2209	0	нон в		27.912		45.245	1.00 46.22	
55	ATOM	2210	0	нон Е		-5.769		31.499	1.00 57.12	
	ATOM	2211	o	нон Е		-9.792	14.584	34.747	1.00 49.85	
			-			2		•		-

	MOTA	2212	0	HOH	E	751	-11.874	-1.486	58.793			W	
	MOTA	2213	0	HOH	E	752	27.694	25.282	40.488		33.06	W	
•	ATOM	2214	0	HOH	E	753	-4.429	3.543	33.226		55.03	W	
	ATOM	2215	0	HOH	E	754	9.486	26.613	30.244		28.82	W	
· 5	ATOM	2216	0	HOH	E	755	16.245	21.348	27.760		49.05	W	
	MOTA	2217	0	HOH	E	756	5.957	-12.920	38.184		55.64	M	
	MOTA	2218	0	HOH	E	757	-1.395	-3.051	52.384		36.76	M	
	MOTA	2219	0	HOH	E	758	-23.397	28.050	27.312	1.00	49.99	W	
	MOTA	2220	0	HOH	E	759	-3.913	17.130	47.667		40.93	W	
10	ATOM	2221	0	HOH	E	760	8.477	-3.858	56.162	1.00	32.91	W	
	ATOM	2222	0	HOH	E	762	26.500	-4.882	49.324	1.00	61.66	M	
	ATOM	2223	0	HOH	E	763	3.962	17.618	26.722	1.00	44.99	W	
	ATOM	2224	0	HOH	E	764	-7.442	30.127	37.158	1.00	47.35	W	
	ATOM	2225	0	HOH	E	765	-9.170	1.976	59.674	1.00	40.00	W	
15	MOTA	2226	0	HOH	E	766	1.556	-9.249	54.896	1.00	46.10	W	
	ATOM	2227	0	нон	E	767	23.553	11.164	30.150	1.00	57.11	W	
	MOTA	2228	0	HOH	E	768	-6.304	-9.029	42.535	1.00	34.59	W	
	ATOM	2229	0	HOH	E	769	12.201	26.847	52.874	1.00	44.51	W	
	ATOM	2230	0	HOH	Ε	770	8.167	36.689	53.755	1.00	42.84	M	
20	MOTA	2231	0	HOH	E	771	7.844	25.653	40.709	1.00	11.73	M	
	ATOM	2232	0	HOH	E	772	10.893	-0.048	52.560	1.00	29.20	M	
	ATOM	2233	0	HOH	E	773	5.664	0.278	57.220	1.00	21.93	W	
	ATOM	2234	0	нон	E	774	5.263	27.600	45.159	1.00	20.60	W	
	MOTA	2235	0	HOH	E	775	17.170	-3.453	39.193	1.00	18.37	M	
25	ATOM	2236	0	нон	E	776	-2.126	-9.071	34.451	1.00	27.96	M	
	ATOM	2237	0	нон	E	777	26.372	-0.053	36.568	1.00	32.03	W	
	MOTA	2238	0	HOH	E	778	11.643	-4.518	55.330	1.00	27.32	W	
	ATOM	2239	0	нон	E	779	-7.701	28.135	54.948	1.00	37.66	W	
	ATOM	2240	0	нон	E	780	7.009	19.440	56.694	1.00	45.06	W	
30	ATOM	2241	0	нон	Ε	781	-2.535	-3.002	65.200	1.00	44.49	W	
	ATOM	2242	0	HOH	E	782	29.850	-8.720	55.997	1.00	33.80	M	
	ATOM	2243	0	нон	E	783	29.002	-1.110	38.096	1.00	49.80	W	
	ATOM	2244	0	нон	E	784	2.629	-11.502	38.153	1.00	20.48	W	
	ATOM	2245	0	нон	E	785	8.170	-2.889	59.317	1.00	55.76	W	
35	MOTA	2246	0	нон	E	786	-7.757	7.231	36.343	1.00	44.27	W	
	MOTA	2247	0	нон		787	29.509	41.574	42.391	1.00	30.71	W	
	MOTA	2248	0	нон	E	788	12.321	5.000	73.438	1.00	39.23	W	
	MOTA	2249	0	нон	E	789	9.077	-0.805	56.886	1.00	49.68	W	
	MOTA	2250	0	нон	E	790	20.165	3.781	31.501	1.00	56.66	W	
40	MOTA	2251	0	нон	E	791	9.932	0.809	61.593	1.00	51.39	M	
	MOTA	2252				792	-5.760	35.496	52.936	1.00	48.89	W	
	MOTA	2253	0			793	6.379	23.275	56.289	1.00	34.66	W	
	MOTA	2254	0			794	-8.872	27.821	51.823	1.00	45.23	W	
	MOTA	2255	0			795	12.375	13.901	24.850	1.00	36.05	W	
45	MOTA	2256	0			796		10.904	25.421	1.00	36.51	W	
	ATOM	2257		нон			24.045		31.107	1.00	27.65	W	
	ATOM	2258	0	нон				-13.823	59.823	1.00	36.61	W	
	ATOM	2259				799		-1.958	66.429	1.00	34.14	W	
	MOTA	2260		нон				27.903	50.321	1.00	38.54	W	
50	MOTA	2261		нон					55.259		49.82	W	
	TER		-		_								
	HETATM	2262	СО	CO	F	400	7.161	20.051	38.857	1.00	17.95	М	
	TER			-									
	END												

Table 2 - Interactions between the $\alpha 2$ I-domain surface and the triple-helical peptide.

The table shows the co-ordinates of both the receptor and ligand surfaces, defined by identifiable interactions between the two. The interacting residue is indicated as (A) or (M), according to Table 1, representing I-domain or metal ion, respectively, or as (D) or (C), according to Table 1, representing middle or trailing strand, respectively, of the triple-helical peptide. Interacting atoms within the amino acid residue are identified according to Table 1. Hydrophobic interactions, more diffuse in nature are identified by residue number and chain only, not be co-ordinates.

Integrin a2-I do	nain Co-o	rdinates	GFOGER peptide Co-ordinates (Å)				
Residue (chain) Atom	x	У	z	Residue (chain) Atom	x	У	z
Electrostatic Interactions:							
D219 (A) OD1	6.287	22.858	28.292	R12 (D) NH1	1.806	21.563	27.940
D219 (A) OD2	6.053	20.992	29.406	R12 (D) NH2	3.954	21.199	27.207
Co ²⁺ (M)	7.161	20.051	38.857	E11 (D) OE1	7.903	21.213	37.093
Hydrogen bonds:							
N154 (A) ND2	11.262	23.084	32.568	O9 (D) OH	14.095	26.856	29.776
N154 (A) C=0	12.723	22.629	37.870	O9 (C) OH	14.426	24.210	39.593
N154 (A) N	10.976	20.327	35.801	E11(D) OE2	5.884	21.318	36.268
Y157 (A) OH	20.258	25.725	43.687	06 (C) C=0	24.272	24.224	38.878
D219 (A) C=O	5.110	22.362	32.522	R12 (D) N	4.615	25.188	33.098
T221 (A) OH	5.695	19.117	37.506	E11 (D) OE1	7.903	21.213	37.093
H258 (A) NE2	2.099	22.463	35.236	R12 (D) C=0	2.670	25.239	34.916
H258 (A) C=O	-3.002	18.940	36.428	O15 (D) OH	-3.452	20.982	34.490
Hydrophobic Contacts:							
Y157 (A)				F9 (C)			
Q215 (A)				F9 (D)			
N154 (A)				F9 (D)	ļ		
L286 (A)				F9 (C)		<u> </u>	

Residues E318 (A) and D292 (A) become more exposed upon ligand binding.

Residues L286 (A) and Co^{2+} (M) become exposed and contact ligand.

15

90

Claims

1. A method of identifying a potential inhibitor of an I-domain-containing polypeptide, the method comprising the step of employing a three-dimensional structure of the Integrin $\alpha 2$ I-domain as shown in Table 1 to design or select a potential inhibitor.

- A method of identifying a potential inhibitor according to claim 1, wherein the potential inhibitor is designed or selected to inhibit conformational changes to the C-helix and/or Helix α7 of the Integrin α2 I-domain.
- 3. A method of identifying a potential inhibitor of an Idomain-containing polypeptide, the method comprising the step
 of designing or selecting a potential inhibitor that interacts
 with one or more points in the I-domain crystal structure
 shown for the I-domain in Table 2.
- 4. A method of identifying a potential inhibitor of an I-domain-containing polypeptide, the method comprising the step of designing or selecting a potential inhibitor that mimics one or more points in the peptide structure shown for the peptide structure in Table 2.

25

5. A method of identifying a potential inhibitor according to any one of claims 1 to 4, the method comprising the further steps of:

synthesizing or providing said potential inhibitor; and testing said potential inhibitor for ability to interact with an I-domain-containing polypeptide.

6. A method of identifying a potential inhibitor according

91

to claim 5, wherein the testing step includes bringing said potential inhibitor into contact with an I-domain-containing polypeptide to determine the ability of said potential inhibitor to inhibit (i) the ability of the I-domain to interact with collagen or a collagen peptide or other ligand which binds the I-domain, and/or (ii) I-domain or I-domain-containing polypeptide function.

- 7. A method of identifying a potential inhibitor according to claim 5, wherein testing step includes the sub-steps of:
 - (i) forming a complex of the I-domain-containing polypeptide and said potential inhibitor; and
 - (ii) analysing said complex by X-ray crystallography or NMR spectroscopy to determine the ability of said potential inhibitor to interact with the I-domain-containing polypeptide.
 - 8. A method of identifying a potential inhibitor according to any one of claims 1 to 7, wherein the I-domain-containing polypeptide is an integrin.

20

25

15

- 9. A method of obtaining a potential inhibitor of an integrin, the method comprising the steps of:
- (a) providing a peptide fragment of integrin $\alpha 2$ I-domain, which peptide fragment contains the E318 residue, the D292 residue, or the residues 284-288;
- (b) bringing the peptide fragment into contact with a test substance; and
- (c) determining the ability of the peptide fragment to bind with the test substance.

30

10. A method of obtaining a potential inhibitor according to claim 9, wherein the test substance is an antibody molecule.

92

- 11. A method of analysing an I-domain-containing polypeptide complex comprising employing (i) X-ray crystallographic diffraction data from the I-domain-containing polypeptide complex and (ii) atomic coordinate data according to Table 1 to generate a difference Fourier electron density map of the complex.
- 12. A crystal of $\alpha 2$ I-domain complex having a space group $P2_12_12_1$, and unit cell dimensions of a = 42.0 Å, b = 48.4 Å, and c = 114.5 Å.
- 13. A crystal of $\alpha 2$ I-domain complex having the three dimensional atomic coordinates of Table 1.
- 15 14. A computer system, intended to generate structures and/or perform rational drug design for I-domain-containing polypeptides or I-domain-containing polypeptide complexes, the system containing atomic coordinate data according to Table 1 or Table 2.

20

10

- 15. Computer readable media for use in the computer system of claim 14, having atomic coordinate data according to Table 1 or Table 2 recorded thereon.
- 25 16. An inhibitor of an I-domain-containing polypeptide which is identified or obtained by any one of methods 1 to 10.
 - 17. The inhibitor of claim 16 for treatment of a disorder or disease.

30

18. Use of the inhibitor of claim 16 in the manufacture of a pharmaceutical composition for the treatment of a disorder or disease.

93

19. A method of making a pharmaceutical composition comprising admixing the inhibitor of claim 16 with a pharmaceutically acceptable excipient, vehicle or carrier.

5

10

20. A method of treating a disease or disorder in which an I-domain-containing polypeptide has a role, comprising administering an effective amount of an inhibitor of the I-domain-containing polypeptide to an individual, the inhibitor being identified or obtained by any one of methods 1 to 10.

Figure 1

2/6

Figure 2

Figure 3

Non-binding (Leading) strand of triple-helix

Triple-helix Middle and Trailing strand interactions with I-domain

Figure 4

Figure 5

Figure 6

