10/30/23, 7:25 PM Quiz: Review quiz

Review quiz

Started: Oct 30 at 7:21pm

Quiz Instructions

Question 1	5 pts
Which of the following is the correct statement about scatterplot matrix?	
Its main weakness is that we cannot use density estimation techniques.	
 Its main weakness is that the number of plots increases quickly as we have more feat (dimensions). 	tures
 Scatterplot matrix should be avoided because it does not work for high dimensions. 	

Question 2	5 pts
What is the key assumption of dimensionality reduction process?	
The data distribution can usually be approximated using a low-dimensional subspace.	
 We can always find a good low-dimensional representation of the dataset, regardless the data is distributed. 	of how
The data is more or less uniformly distributed across the whole space.	

Question 3	5 pts
Which is the correct explanation of the first principal component in PCA?	
The first PC is the axis of the largest variance in the data.	

10/30/23, 7:25 PM Quiz: Review quiz

 \bigcirc The first PC may not be orthogonal to some of the subsequent PCs.

	5 pts
Given the following data points, calculate its covariance matrix corresponds to the first principal component. Write down the focomponent. For example if the first principal component is [x,	irst coordinate of the
(0, 2)	
(2, 6)	
(1, 4)	
(2, 5)	
(-1, -1)	
You can calculate them by hand, but numpy also provides functions for the covariance matrix and eigenvector & eigenvalues.	ctions for calculating the
https://docs.scipy.org/doc/numpy-1.13.0/reference/general (https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy://docs.scipy.org/doc/numpy- https://docs.scipy.org/doc/numpy- 1.13.0/reference/generated/numpy.linalg.eig.html (https://docs.scipy.org/doc/numpy-1.13.0/reference/generated	umpy.cov.html)
-0.421	