	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1^- lpha}^{\# 1}$	$\sigma_{1^- \; lpha}^{$ #2}	$ au_1^{\#1}$ α	$ au_1^{\#2}$ α
$\sigma_{1}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{1}{k^2 r_5}$	$\frac{1}{\sqrt{2} \; (k^2 r_5 + k^4 r_5)}$	$\frac{i}{\sqrt{2} (kr_5 + k^3 r_5)}$	0	0	0	0
$\sigma_{1}^{\#2}$ † lphaeta	$\frac{1}{\sqrt{2} \; (k^2 r_5 + k^4 r_5)}$	$\frac{6k^2r_5+t_1}{2(k+k^3)^2r_5t_1}$	$\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	0	0	0	0
$ au_1^{\#1} \dagger^{lphaeta}$	$-\frac{i}{\sqrt{2} (kr_5 + k^3 r_5)}$	$-\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	$\frac{6k^2r_5+t_1}{2(1+k^2)^2r_5t_1}$	0	0	0	0
$\sigma_{1}^{\sharp 1}\dagger^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2 i k}{t_1 + 2 k^2 t_1}$
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$
$\tau_1^{\#1} + \alpha$	0	0	0	0	0	0	0
$\tau_{1}^{#2} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 r_5 + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-lpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}{}_{\alpha}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 r_5 + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	J 1/2	<u>t</u> 1 3	<u>i kt</u> 3	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{1}{3}ikt_1$	$\frac{k^2t_1}{3}$	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_{1}^{#2}$ † $^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\bar{l}kt_1$	0	0	0

Source constraints

SO(3) irreps	#
$\sigma_0^{\#1} == 0$	1
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_1^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	17

$\sigma_{2^{-}}^{#1} \dagger^{\alpha\beta\chi}$	$\tau_{2+}^{*1} + \alpha \beta$	$\sigma_{2^{+}}^{*1} \dagger^{lphaeta}$	
0	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	\sim 1	$\sigma_{2}^{\#1}{}_{lphaeta}$
0	$\frac{4k^2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$ au_{2}^{\#1}{}_{lphaeta}$
$\frac{2}{t_1}$	0	0	$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$

	Added source term: $\int f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$	$t_1 \partial^\alpha f^\lambda_{\ \alpha} \partial^\kappa f_{\lambda \kappa} + r_5 \partial_\alpha \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} - r_5 \partial_\theta \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa}$	$\frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda \alpha} + \frac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} + \frac{2}{3} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} -$	$\frac{1}{3}t_1\;\omega_{\theta^{ _K}}\partial^\kappa f^{ \theta}+\frac{2}{3}t_1\;\omega_{\theta^{ _K}}\partial^\kappa f^{ \theta}-t_1\;\omega_{ _\alpha}^{ \alpha}\partial^\kappa f^{ _\kappa}-t_1\;\omega_{ _\lambda}^{ \lambda}\partial^\kappa f^{ _\kappa}+$	$2t_1 \partial^{\alpha} f_{\kappa \alpha} \partial^{\kappa} f'_{,} - t_1 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{,} + \frac{1}{3} t_1 \omega_{,\theta \kappa} \partial^{\kappa} f^{,\theta} + \frac{4}{3} t_1 \omega_{,\kappa \theta} \partial^{\kappa} f^{,\theta} -$	$\frac{2}{3}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\theta} - \frac{1}{3}t_1\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\alpha\lambda} + t_1\omega_{\kappa\alpha}^{\alpha}\partial^\kappa f'_{\prime} + t_1\omega_{\kappa\lambda}^{\lambda}\partial^\kappa f'_{\prime} +$	$r_5 \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - \frac{1}{3} t_1 \partial^{\alpha} f_{ \theta \kappa} \partial^{\kappa} f_{ \alpha}^{\ \ \theta} -$	$r_5\partial_{\scriptscriptstyle i}\omega^{\kappa\lambda}_{\kappa}\partial^{\scriptscriptstyle i}\omega^{\alpha}_{\lambda\alpha}$ - $r_5\partial_{\alpha}\omega^{\alpha}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda}$ + $r_5\partial_{\theta}\omega^{\alpha}_{\lambda\alpha}\partial_{\kappa}\omega^{\kappa\lambda}$ -	$-t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_}}}}}}$	
--	--	---	---	--	--	---	---	--	---	--

_	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	0

$\omega_{0^{-}}^{*1}$ †	$f_{0+}^{#2}$ †	$f_{0+}^{#1}$ †	$\omega_{0^{+}}^{*1}$ †	
0	0	$-i\sqrt{2}kt_1$	$-t_1$	$\omega_{0}^{\#1}$
0	0	$-2 k^2 t_1$	$i\sqrt{2}kt_1$	$f_{0^{+}}^{#1}$
0	0	0	0	$f_{0+}^{#2}$
0	0	0	0	$\omega_{0^{ullet}}^{#1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t1</u> 2

Quadratic pole

? Pole residue:

Polarisations: 2

 $\frac{\text{Unitarity conditions}}{r_5 > 0 \&\& t_1 < 0 \mid\mid t_1 > 0}$

(No massive particles)