第四章 二元关系 复习

@gylidian

最后修改时间: 2019/1/10 07:18

有序对

由两个客体 x 和 y, 按照一定的顺序组成的

二元组称为 **有序对**,记作<x,y>

有序对性质

有序性 <x,y>≠<y,x> (当x≠y时) <x,y> 与 <u,v> 相等的充分必要条件是 <x,y>=<u,v> <=> x=u ∧ y=v

笛卡儿积的性质

不适合交换律 $A \times B \neq B \times A$ $(A \neq B, A \neq \emptyset, B \neq \emptyset)$ 不适合结合律 $(A \times B) \times C \neq A \times (B \times C)$ $(A \neq \emptyset, B \neq \emptyset)$ 对于并或交运算满足分配律

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$(B \cup C) \times A = (B \times A) \cup (C \times A)$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$(B \cap C) \times A = (B \times A) \cap (C \times A)$$

若A或B中有一个为空集,则 $A \times B$ 就是空集.

$$A \times \emptyset = \emptyset \times B = \emptyset$$

若|A|=m, |B|=n, 则 $|A\times B|=mn$

定义 如果一个集合满足以下条件之一:

- (1) 集合非空,且它的元素都是有序对
- (2) 集合是空集

则称该集合为一个二元关系, 简称为关系, 记作R. 如 $< x,y> \in R$, 可记作xRy; 如果 $< x,y> \notin R$, 则记作 $x \not \in Y$ 实例: $R=\{<1,2>,< a,b>\}$, $S=\{<1,2>,a,b\}$.

R是二元关系,当a, b不是有序对时,S不是二元关系根据上面的记法,可以写 1R2, aRb, a
ightharpoonup c 等.

从A到B的关系与A上的关系

定义 设A,B为集合, $A \times B$ 的任何子集所定义的二元 关系叫做从A到B的二元关系,当A=B时则叫做A上 的二元关系.

例4 A={0,1}, B={1,2,3}, R₁={<0,2>}, R₂=A×B, R₃= \emptyset , R₄={<0,1>}. 那么 R₁, R₂, R₃, R₄是从 A 到 B 的二元关系, R₃和R₄同时也是 A上的二元关系. 计数

|A|=n, $|A\times A|=n^2$, $A\times A$ 的子集有 2^{n^2} 个. 所以 A上有 2^{n^2} 个不同的二元关系.

例如 |A|=3,则 A上有=512个不同的二元关系.

A上重要关系的实例

设 A 为任意集合,

Ø是A上的关系,称为空关系

 E_A , I_A 分别称为全域关系与恒等关系,定义如下:

$$E_A = \{\langle x, y \rangle | x \in A \land y \in A\} = A \times A$$
$$I_A = \{\langle x, x \rangle | x \in A\}$$

例如, A={1,2}, 则

$$E_A$$
={<1,1>,<1,2>,<2,1>,<2,2>}
 I_A ={<1,1>,<2,2>}

小于等于关系 L_A ,整除关系 D_A ,包含关系 R_{\subset} 定义:

 L_A ={ $\langle x,y \rangle | x,y \in A \land x \leq y$ }, $A \subseteq \mathbb{R}$, R为实数集合 D_B ={ $\langle x,y \rangle | x,y \in B \land x$ 整除y},

B⊆Z*, Z*为非0整数集

 $R_{\subset}=\{\langle x,y\rangle | x,y\in A \land x\subseteq y\}, A$ 是集合族.

类似的还可以定义大于等于关系,小于关系,大于 关系,真包含关系等等.

关系的表示

$$A = \{1,2,3,4\},$$

R={<1,1>,<1,2>,<2,3>,<2,4>,<4,2>},

R的关系矩阵 M_R 和关系图 G_R 如下:

$$M_R = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}$$

关系的运算

定义域、值域和域

$$domR = \{ x \mid \exists y \ (\langle x,y \rangle \in R) \}$$

$$ranR = \{ y \mid \exists x \ (\langle x,y \rangle \in R) \}$$

$$fldR = domR \cup ranR$$

例1
$$R=\{<1,2>,<1,3>,<2,4>,<4,3>\}$$
,则 $dom R=\{1,2,4\}$ $ran R=\{2,3,4\}$ $fld R=\{1,2,3,4\}$

逆与合成

$$R^{-1} = \{ \langle y, x \rangle \mid \langle x, y \rangle \in R \}$$

$$R \circ S = |\langle x, z \rangle \mid \exists \ y \ (\langle x, y \rangle \in R \land \langle y, z \rangle \in S) \ \}$$

例2
$$R=\{<1,2>,<2,3>,<1,4>,<2,2>\}$$

 $S=\{<1,1>,<1,3>,<2,3>,<3,2>,<3,3>\}$
 $R^{-1}=\{<2,1>,<3,2>,<4,1>,<2,2>\}$
 $R\circ S=\{<1,3>,<2,2>,<2,3>\}$
 $S\circ R=\{<1,2>,<1,4>,<3,2>,<3,3>\}$

利用图示 (不是关系图) 方法求合成

$$R \circ S = \{ <1,3>, <2,2>, <2,3> \}$$

 $S \circ R = \{ <1,2>, <1,4>, <3,2>, <3,3> \}$

关系基本运算的性质

定理1 设F是任意的关系,则

- \cdot (1) $(F^{-1})^{-1}=F$
- (2) $dom F^{-1} = ran F$, $ran F^{-1} = dom F$

定理2 设F, G, H是任意的关系, 则

- $(1) (F \circ G) \circ H = F \circ (G \circ H)$
- (2) $(F \circ G)^{-1} = G^{-1} \circ F^{-1}$

就是说,满足结合律 然后—前—后 变 —后-1—前-1

A上关系的幂运算

设R为A上的关系,n为自然数,则R的n次幂定义为:

- (1) $R^0 = \{\langle x, x \rangle \mid x \in A \} = I_A$
- $(2) R^{n+1} = R^n \circ R$

例3 设 $A=\{a,b,c,d\}$, $R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle\}$, 求R的各次幂, 分别用矩阵和关系图表示. 解R与 R^2 的关系矩阵分别为

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} M^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

同理, $R^0=I_4$, R^3 和 R^4 的矩阵分别是:

$$\boldsymbol{M}^{0} = \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix} \quad \boldsymbol{M}^{3} = \begin{bmatrix} 0 & \mathbf{1} & 0 & \mathbf{1} \\ \mathbf{1} & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{M}^{4} = \begin{bmatrix} \mathbf{1} & 0 & \mathbf{1} & 0 \\ 0 & \mathbf{1} & 0 & \mathbf{1} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

因此 $M^4=M^2$, 即 $R^4=R^2$. 因此可以得到 · · · · $R^2=R^4=R^6=...$, $R^3=R^5=R^7=...$

 R^0 , R^1 , R^2 , R^3 ,...的关系图如下图所示

幂运算的性质

定理3 设A为n元集, R是A上的关系, 则存在自然数 s 和 t, 使得 $R^s = R^t$.

定理4 设 R 是 A 上的关系, $m, n \in \mathbb{N}$, 则

- (1) $R^m \circ R^n = R^{m+n}$
- (2) $(R^m)^n = R^{mn}$

关系的性质

自反 任取一个A中的元素x,如果都有**<x,x>**在R中,那么就成R在A上是自反的 **反自反** 任取一个A中的元素x,如果都有<x,x>**不在**R中,那么就成R在A上是反自反的

在关系矩阵上的表示,

自反:**主对角线**上的元素**都是1** 反自反:主对角线上的元素都是0

在关系图上的表示,

自反:每一个顶点**都有环** 反自反:每一个顶点都没有环

对称性: 关系矩阵关于主对角线对称 <x,y> <y,x>

反对称性:关系矩阵关于主对角线不对称或者非主对角线上元素全部为0

传递: 如果<a,b>, <b,c>是R的元素,那么<a,c>是R的元素

	自反	反自反	对称	反对称	传递
表达式	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R^{\circ}R\subseteq R$
关系	主对	主对角	矩阵是对称	若r _{ij} =1,且	对M2中1
矩阵	角线	线元素	矩阵	<i>i≠j</i> ,则r _{ii} =	所在位置,
	元素	全是0		0	M中相应
	全是1				位置都是1
关系图	每个	每个顶	如果两个顶	如果两点	如果顶点
	顶点	点都没	点之间有边,	之间有边,	x_i 连通到
	都有	有环	是一对方向	是一条有	$ x_k, 则从 x_i $
	环		相反的边	向边(无双	到 x, 有边
			(无单边)	向边)	***

关系的闭包

定义 设R是非空集合A上的关系,R的自反(对称或传递)闭包是A上的关系R′,使得R′满足以下条件:

- (1) R'是自反的(对称的或传递的)
- (2) $R \subseteq R'$
- (3)对A上任何包含R的自反(对称或传递) 关系 R'' 有 R'⊆R''.
- 一般将 R 的自反闭包记作 r(R), 对称闭包记作 s(R), 传递闭包记作 t(R).

闭包的构造方法

定理1 设R为A上的关系,则有

$$(1) r(R) = R \cup R^0$$

(2)
$$s(R) = R \cup R^{-1}$$

(3)
$$t(R) = R \cup R^2 \cup R^3 \cup ...$$

说明:

- 对于有穷集合A(|A|=n)上的关系,(3)中的并最多不超过 R^n .
- 若 R是自反的,则 r(R)=R; 若 R是对称的,则 s(R)=R; 若 R是传递的,则 t(R)=R.

设关系R, r(R), s(R), t(R)的关系矩阵分别为M, M_r , M_s 和 M_t , 则

$$M_r = M + E$$

$$M_s = M + M'$$

$$M_t = M + M^2 + M^3 + \dots$$

E 是和 M 同阶的单位矩阵, M' 是 M 的转置矩阵. 注意在上述等式中矩阵的元素相加时使用逻辑加. 例1 设 $A=\{a,b,c,d\}$, $R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle$, $\langle d,b\rangle\}$, R和 r(R), s(R), t(R)的关系图如下图所示.

偏序关系

定义 非空集合A上的自反、反对称和传递的关系,称为A上的偏序关系,记作<. 设<为偏序关系,如果<x,y> \in <,则记作x<y,读作x"小于或等于"y.

实例:整数集和小于等于关系构成偏序集<Z,<>,幂集P(A)和包含关系构成偏序集<P(A),<math>R_<>.

实例

集合A上的恒等关系 I_A 是A上的偏序关系. 小于或等于关系, 整除关系和包含关系也是相应 集合上的偏序关系.

偏序集的哈斯图

利用偏序自反、反对称、传递性简化的关系图

特点:

每个结点**没有环**,

两个连通的结点之间的**序关系**通过**结点水平位置的高低**表示,放在后面的元素画得越高

具有覆盖关系的两个结点之间连边

<mark>求一个偏序集的盖住关系</mark>

1. 去掉所有<x,x>

2. 再破坏掉传递性:<mark>若<x,y>, <y,z>, <x,z> 都在,则去掉 <x,z></mark>

剩下的就是COV(A) 也就是盖住关系

例4 <{1, 2, 3, 4, 5, 6, 7, 8, 9}, $R_{\underline{\text{*}}}$ ><P({a, b, c}), $R_{\underline{\text{*}}}$ >

