基于的模型

摘要

本文

针对问题一,

针对问题二,

针对问题三,

针对问题四,

关键词: 红外干涉法 多光束干涉 Snell 定律 菲涅耳公式

一、问题重述

1.1 问题背景

碳化硅作为第三代半导体材料的代表,因其优异的综合性能备受关注。碳化硅外延 层厚度是外延材料的关键参数,直接影响器件性能。因此,建立科学、准确、可靠的厚 度测试标准至关重要。红外干涉法是一种无损测量方法,其原理基于外延层与衬底因掺 杂载流子浓度不同而具有不同的折射率。红外光入射外延层后,部分光从外延层表面反 射,部分光从衬底表面反射回来,两束光在特定条件下产生干涉条纹。通过红外光谱的 波长、外延层折射率及入射角等参数,可确定外延层厚度。需要注意的是,外延层折射 率通常不是常数,与掺杂载流子浓度及红外光波长等因素相关。

1.2 问题提出

问题 1: 在考虑外延层和衬底界面只有一次反射、透射所产生的干涉条纹的情况下, 建立确定外延层厚度的数学模型。

问题 2: 根据问题一建立的确定外延层厚度数学模型,设计其对应的算法,根据提供的碳化硅晶圆片的光谱实测数据求出计算结果,并分析计算结果的可靠性。

问题 3: 光波在外延层和衬底界面可能发生多次反射和透射,形成多光束干涉。推导多光束干涉的必要条件及其对外延层厚度计算精度的潜在影响。基于多光束干涉的条件,分析提供的硅晶圆片测试结果是否出现多光束干涉,建立硅外延层厚度计算的数学模型和算法,并给出计算结果。若碳化硅晶圆片测试结果中也存在多光束干涉,影响厚度计算精度,提出消除多光束干涉影响的方法,并给出消除影响后的计算结果。

二、问题分析

- 2.1 问题一分析
- 2.2 问题二分析
- 2.3 问题三分析

三、模型假设

- 1. 假设光源为偏振光,振幅可调节
- 2.
- 3.

四、符号说明

表 1 符号说明详表

符号	说明	单位
A, B, C	柯西等式未知量符号表达式	-
$ heta_1$	入射角的角度	rad
$ heta_2$	折射角的角度	rad
θ_3	反射角的角度	rad
c	光速,取 299,792,458m/s	m/s
$ ilde{v}$	波数	m^{-1}
ν	光的频率	Hz
λ	光的波长	m
n_0	空气的折射率	-
n_1	外延层的折射率	-
n_2	碳化硅(SiC)的折射率	-
δ	相位差	m
R	反射率	%

注: 其他文章内使用但未在表内详细说明的符号将在使用时给出说明。

五、模型建立与求解

5.1 问题一	
5.1.1 模型建立	
5.1.2 问题求解	
5.1.3 求解结果	
5.2 问题二	
5.2.1 模型建立	
5.2.2 问题求解	
5.2.3 求解结果	
5.3 问题三	
5.3.1 模型建立	
5.3.2 问题求解	
5.3.3 求解结果	
	六、模型的分析与检验
6.1 误差分析	六、模型的分析与检验
6.1 误差分析6.2 灵敏度分析	六、模型的分析与检验
	六、模型的分析与检验 七、模型的评价
6.2 灵敏度分析	
6.2 灵敏度分析7.1 模型优点1.2.	
6.2 灵敏度分析7.1 模型优点1.	
6.2 灵敏度分析7.1 模型优点1.2.	
6.2 灵敏度分析7.1 模型优点1.2.3.	

7.3 改进方向

- 1.
- 2.

参考文献

- [1] 卓金武. MATLAB 在数学建模中的应用[M]. 北京: 北京航空航天大学出版社, 2011.
- [2] 司守奎, 孙玺菁. 数学建模算法与应用[M]. 2 版. 北京: 国防工业出版社, 2015.

附录 A 运行结果

1.1 点集合

表 2 数据 1

θ_1	波数 (cm ⁻¹)	反射率 (%)	波数 (cm ⁻¹)	反射率 (%)	波数 (cm ⁻¹)	反射率 (%)
	400.1569	31.2932	517.7933	33.8907	636.394	35.881
	832.6155	95.385	1012.445	4.67879	1085.727	9.43943
10°	1216.38	13.3879	1401.513	15.4973	1595.324	16.6738
	1836.865	17.5385	2079.851	17.9926	2322.356	18.1737
	2586.074	18.3814				
	400.1569	36.3367	519.7218	36.8981	639.7689	39.0793
	927.5925	99.9829	988.3392	8.82083	1088.137	10.7283
15°	1221.684	14.3203	1416.459	16.4243	1607.377	17.4551
	1866.756	18.3449	2089.976	18.7524	2389.37	18.6991
	2617.411	19.1469				

附录 B 文件列表

表 3 程序文件列表

文件名	功能描述	
code2.py	问题二程序代码	
code3.py	问题三程序代码	

附录 C 代码

3.1 问题 2 代码

print("Hello World")

3.2 问题 3 代码

print("Hello World")