Predicting Revenue from Search Engine Advertising Data

MATH2319 - Machine Learning Course Project

Ben Cole - s3412349

Print Date: 08/06/2019

Contents

1	Pha	se 1 - Introduction, Cleaning, and Exploration	2
	1.1	Outline	2
		1.1.1 Nature of the Data	2
	1.2	Data Processing	3
		1.2.1 Libraries	3
		1.2.2 Loading Data	4
		1.2.3 Classifying Data	4
		1.2.4 Descriptive Statistics	5
		1.2.5 Univariate Plots	10
		1.2.6 Multivariate Plots	17
2	Pha	se 2: Algorithm Implementation	29
	2.1	Overview	29
		2.1.1 Data Normalisation	29
	2.2	Feature Selection	30
	2.3	Performance Comparison	30
	2.4	Results	
		2.4.1 Discussion	30
	2.5		30
	26	References	30

1 Phase 1 - Introduction, Cleaning, and Exploration

1.1 Outline

The prescribed data set contained advertising metrics provided by a prominent search engine. The data contained several descriptive features pertaining to a range of information. Finally, the target feature was a measure of revenue associated with each of the observations.

The dataset was used to create a supervised machine learning model to predict values for the target feature. Phase 1 of this report contains the introduction, cleaning, and exploration of the dataset. Phase 2 contains the creation, training, and deployment of the machine learning algorithm.

1.1.1 Nature of the Data

The below is an exerpt from accompanying documentation about the dataset.

Features in this data set are as follows:

- · companyId: Company ID of record (categorical)
- · countryId: Country ID of record (categorical)
- deviceType: Device type of record (categorical corresponding to desktop, mobile, tablet)
- · day: Day of record (integer between 1 (oldest) and 30 for train, 31 and 35 (most recent) for test)
- · dow: Day of week of the record (categorical)
- price1, price2, price3: Price combination for the record set by the company (numeric)
- ad_area: area of advertisement (numeric)
- ad_ratio: ratio of advertisement's length to its width (numeric)
- · requests, impression, cpc, ctr, viewability: Various metrics related to the record (numeric)
- ratio1, ..., ratio5: Ratio characteristics related to the record (numeric)
- y (target feature): revenue-related metric (numeric)

1.1.1.1 Target Feature

The column/variable y was selected as the target feature in the dataset.

1.1.1.2 Descriptive Features

All other columns/variables in the dataset, as outlined above, were chosen as descriptive features.

1.2 Data Processing

1.2.1 Libraries

The following libraries were used in the below data processing and exploration.

```
library(pacman)
                                         ## for loading multiple packages
suppressMessages(p_load(character.only = T,
                         install = F,
                         c("tidyverse", ## thanks Hadley
                           "lubridate", ## for handling dates
                           "forcats", ## for categorial variables, not for felines
                          "zoo", ## some data cleaning capabilities
"lemon", ## add ons for ggplot
"rvest", ## scraping web pages
"knitr", ## knitting to RMarkdown
                           "kableExtra", ## add ons for knitr tables
                           "grid",
                                      ## for stacking ggplots
                           "gridExtra", ## also for stacking ggplots
                           "e1071", ## for skew and kurtosis
                           "janitor", ## cleaning colnames
                           "beepr",
                           "mlr"))) ## plays a beep tone
```

Table 1: Sample of Advertising Data Frame

Table 1. Cample of Navertioning Bata Frame										
case_id	companyld	countryld	deviceType	day	dow	price1	price2	price3	ad_area	ad_ratio
80057	43	68	1	12	Wednesday	0.00	0.00	0.0000	0.0001	1.00000
119763	43	43	1	18	Tuesday	0.01	0.18	0.3775	7.5000	0.83333
152300	43	77	5	22	Saturday	0.00	0.00	0.0000	0.0001	1.00000
192283	43	56	3	27	Thursday	0.00	0.00	0.0000	7.5000	0.83333
148537	95	234	1	21	Friday	0.01	0.40	0.7900	1.6000	0.15625
66777	159	98	1	10	Monday	0.00	0.00	0.0000	7.5000	0.83333
146704	95	234	1	21	Friday	1.86	3.97	7.9300	7.5000	0.83333
11676	159	75	1	3	Monday	0.10	0.19	0.3763	0.0001	1.00000
211793	43	13	3	30	Sunday	0.00	0.00	0.0000	7.5000	0.83333
116685	159	17	3	17	Monday	0.00	0.00	0.0000	0.0001	1.00000
213501	43	234	1	30	Sunday	0.06	0.11	0.3509	2.8080	0.12821
111622	95	77	2	17	Monday	0.05	0.05	0.0500	7.5000	0.83333
69833	43	166	2	11	Tuesday	5.85	5.85	5.8482	0.0001	1.00000
201110	159	190	3	28	Friday	0.00	0.00	0.0000	0.0001	1.00000
155551	43	57	3	22	Saturday	0.18	0.37	0.7602	6.5520	0.12363
8356	43	202	1	2	Sunday	0.00	0.00	0.0000	9.0000	1.00000
43836	43	75	3	7	Friday	1.49	2.80	5.6069	7.5000	0.83333
29062	95	234	2	5	Wednesday	0.05	0.63	1.2600	7.5000	0.83333
121480	43	13	3	18	Tuesday	0.71	0.92	1.8418	7.5000	0.83333
44627	95	234	3	7	Friday	0.05	2.08	4.1500	18.0000	2.00000

1.2.2 Loading Data

The prescribed data was made available in comma separated value file format.

```
advertising_train <- read_csv("advertising_train.csv")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_double(),
##
     dow = col_character()
## )
## See spec(...) for full column specifications.
sample_adv <- sample_n(advertising_train, 20)</pre>
kable_styling(kable(sample_adv[ , 1:(ncol(sample_adv)/2)],
                     caption = "Sample of Advertising Data Frame"),
              font_size = 8.5, latex_options = c("striped"),
              full_width = F)
kable_styling(kable(sample_adv[ , c(1, ((ncol(sample_adv)/2)+1):ncol(sample_adv))],
                     caption = "Sample of Advertising Data Frame (cont)"),
              font_size = 8.5, latex_options = c("striped"),
              full\ width = F)
```

1.2.3 Classifying Data

R and dplyr parse data files to guessed data types when loaded. Typically, columns with text are parsed as character type, columns with digits are parsed as numeric, and boolean columns are parsed as logical. Per the above feature definitions, the categorical data was re-classified as factors.

```
advertising_train$companyId <- as.factor(advertising_train$companyId)
advertising_train$countryId <- as.factor(advertising_train$countryId)</pre>
```

Table 2:	Sample of	Advertising	Data	Frame ((cont)

Table 2: Sample of Advertising Data Frame (cont)												
case_id	requests	impression	срс	ctr	viewability	ratio1	ratio2	ratio3	ratio4	ratio5	у	
80057	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.4866667	
119763	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2.4682927	
152300	74	74	0.3893	0.0270	1.0000	1.0000	0.1486	1.0000	0.0000	0.0000	8.9928571	
192283	255	255	0.0454	0.0235	0.8765	1.0000	0.6196	0.0000	0.2078	0.7882	1.2566667	
148537	6172	4387	0.7107	0.0014	0.3080	0.8632	0.5936	0.0424	0.5553	0.4023	0.5974495	
66777	433156	198504	0.0564	0.0049	0.6498	1.0000	0.9231	0.0614	0.1179	0.8205	0.1120485	
146704	15299	3141	0.4030	0.0060	0.2644	0.6469	0.6587	0.0688	0.2996	0.6316	0.5977643	
11676	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0825431	
211793	241	151	0.0258	0.0132	0.6096	1.0000	0.9801	0.0000	0.9338	0.0662	0.1099174	
116685	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0273556	
213501	4751	3434	0.0867	0.0090	0.2556	0.8427	0.6462	0.2199	0.4715	0.3087	0.5596208	
111622	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2681034	
69833	8256	119	0.0222	0.2353	1.0000	1.0000	0.3193	1.0336	0.0000	0.0000	0.0985474	
201110	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0640000	
155551	710	538	0.1144	0.0056	0.7140	0.7546	0.7175	0.0167	0.4963	0.4870	0.4890323	
8356	20261	20170	0.1521	0.0044	0.4138	1.0000	0.7132	0.0646	0.2429	0.6925	0.4245755	
43836	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3886010	
29062	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3426662	
121480	11793	4438	1.3703	0.0020	0.8515	0.8274	0.5865	0.0059	0.9051	0.0895	1.2953341	
44627	9910	5211	0.4961	0.0035	0.1346	0.6813	0.7540	0.0115	0.6402	0.3485	0.7812626	

```
advertising_train$deviceType <- as.factor(advertising_train$deviceType)
advertising_train$dow <- as.factor(advertising_train$dow)
sapply(advertising_train, class)</pre>
```

```
##
       case_id
                 companyId
                              countryId deviceType
                                                             day
                                                                          dow
                                           "factor"
##
     "numeric"
                  "factor"
                               "factor"
                                                       "numeric"
                                                                    "factor"
##
        price1
                    price2
                                 price3
                                            ad_area
                                                        ad_ratio
                                                                    requests
##
     "numeric"
                 "numeric"
                              "numeric"
                                          "numeric"
                                                       "numeric"
                                                                   "numeric"
##
    impression
                                    ctr viewability
                                                                      ratio2
                       срс
                                                          ratio1
                 "numeric"
                              "numeric"
                                                       "numeric"
                                                                   "numeric"
##
     "numeric"
                                          "numeric"
##
        ratio3
                    ratio4
                                 ratio5
##
     "numeric"
                 "numeric"
                              "numeric"
                                          "numeric"
```

1.2.4 Descriptive Statistics

1.2.4.1 Numeric Features

The below table outlines basic descriptive statistics about the centre and spread of the data for each of the numeric descriptive features, and numeric target feature. This table indicates that the numeric features each had distributions of different shapes and locations.

Table 3: Summary Statistics of Numeric Variables

	1				1	Tiorio variai		
Variable	Mean	Std Dev	Min	Q1	Median	Q3	Max	Number of NA
ad_area	4.724	6.273	0.000	0.000	0.000	7.500	36.000	0.000
ad_ratio	0.923	0.482	0.083	0.833	1.000	1.000	5.000	0.000
срс	0.178	0.707	0.000	0.000	0.016	0.125	132.534	0.000
ctr	0.033	0.093	0.000	0.000	0.002	0.012	2.000	0.000
day	15.791	8.386	1.000	9.000	16.000	23.000	30.000	0.000
impression	5,585.714	98,713.340	0.000	0.000	99.000	1,058.000	6,100,324.000	0.000
price1	0.438	1.281	0.000	0.000	0.010	0.190	14.690	0.000
price2	0.630	1.482	0.000	0.000	0.090	0.570	63.120	0.000
price3	0.932	1.840	0.000	0.000	0.295	0.986	78.900	0.000
ratio1	0.558	0.447	0.000	0.000	0.750	1.000	1.000	0.000
ratio2	0.491	0.414	0.000	0.000	0.627	0.896	1.027	0.000
ratio3	0.312	0.444	0.000	0.000	0.028	1.000	1.500	0.000
ratio4	0.131	0.240	0.000	0.000	0.000	0.164	1.077	0.000
ratio5	0.188	0.297	0.000	0.000	0.000	0.385	1.200	0.000
requests	8,678.997	122,347.229	0.000	0.000	147.000	1,633.000	6,701,924.000	0.000
viewability	0.378	0.366	0.000	0.000	0.332	0.716	7.000	0.000
У	0.847	1.391	0.000	0.150	0.419	0.959	47.060	0.000

```
Variable),
                             "Mean" = mean(Value, na.rm = T),
                             "Std Dev" = sd(Value, na.rm = T),
                             "Min" = min(Value, na.rm = T),
                             "Q1" = quantile(Value, 0.25, na.rm = T),
                             "Median" = median(Value, na.rm = T),
                             "Q3" = quantile(Value, 0.75, na.rm = T),
                             "Max" = max(Value, na.rm = T),
                             "Number of NA" = sum(is.na(Value)))
kable_styling(kable(summary_adv_num,
                    digits = 3, format.args = list(nsmall = 3,
                                                    scientific = F,
                                                   big.mark = ","),
                    caption = "Summary Statistics of Numeric Variables"),
              font_size = 8.5, latex_options = c("striped"),
              full_width = F)
```

1.2.4.2 Categorical and Non-Numeric Features

When examining the frequencies of individual levels of each Categorical (non-numeric) descriptive feature, variability was observed in companyId, countryId, and deviceType. Far less variability in frequencies was observed in dow, with Sunday being the only day of the week to return a markedly lower frequency.

```
## Warning: attributes are not identical across measure variables;
## they will be dropped
```

```
advertising_train_long_cat$Variable <- as.factor(advertising_train_long_cat$Variable)
advertising_train_long_cat$Value <- as.factor(advertising_train_long_cat$Value)
ggplot(advertising_train_long_cat) +
   geom_bar(aes(x = fct_infreq(Value),
               fill = Variable),
            show.legend = F, alpha = 2/3) +
   facet_rep_wrap(~Variable,
                  repeat.tick.labels = T,
                  scales = "free") +
   scale_y_continuous(labels = comma,
                      expand = c(0.01, 0),
                      "Count") +
   scale_x_discrete("Factor Value") +
   scale_fill_manual(values = c("blue4", "red3", "cyan3", "yellow3")) +
   labs(title = "Frequencies of each Value for each Categorical Variable") +
   theme_minimal() +
   theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank(),
         strip.background = element_rect(fill = "aliceblue",
                                         colour = NA))
```

Frequencies of each Value for each Categorical Variable


```
country_labels <- levels(fct_infreq(advertising_train$countryId))[c(seq(1,</pre>
                                                                          length(levels(fct_infreq(ad)
                                                                          ceiling(length(levels(fct_in))
ggplot(advertising_train) +
  geom_bar(aes(x = fct_infreq(countryId)),
            fill = "red3", alpha = 2/3) +
   scale_y_continuous(labels = comma,
                      expand = c(0.01, 0),
                      "Count") +
   scale_x_discrete(breaks = country_labels,
                    "countryId") +
   labs(title = "Frequency of observations for each \`countryId\`",
        subtitle = "(a categorical variable)",
        caption = "labels along x-axis are ID numbers and not numeric/double/ordinal/etc") +
   theme_minimal() +
   theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank())
```


1.2.5 Univariate Plots

1.2.5.1 Numeric Variables

```
ggplot(advertising_train_long_num) +
  geom_density(aes(x = Value),
               fill = "yellow",
                alpha = 1/3) +
  facet_rep_wrap(~Variable,
                  repeat.tick.labels = T,
                  scales = "free",
                  ncol = 3) +
  scale_y_continuous(labels = comma_format(accuracy = 0.1)) +
  labs(title = "Density Plots of each Numeric Variable",
       subtitle = "No transformations",
       x = "Variable",
       y = "Density")+
  theme_minimal() +
  theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank(),
         strip.background = element_rect(fill = "aliceblue",
                                         colour = NA))
```


Warning: Removed 1213004 rows containing non-finite values (stat_density).

1.2.5.2 Logarithmic Transformations

It was observed from the plots above that natural logarithmic transformations were applicable for descriptive features cpc, impression, and potentially ctr. Target feature y was also suitable for a logarithmic transformation.

Table 1. Cample of advertising	train Data Frama Afta	r Lagarithmia Transformations
Table 4: Sample of advertising	train Data Frame Afte	Logarimmic transformations

case_id	companyld	countryld	deviceType	day	dow	price1	price2	price3	ad_area	ad_ratio	requests	impression
4793	159	98	1	1	Saturday	0.00	0.00	0.000	0.0001	1.000	0	0
207441	159	57	2	29	Saturday	0.07	0.36	0.714	0.0001	1.000	7822	7016
27864	43	116	2	5	Wednesday	0.00	0.00	0.000	0.0001	1.000	0	0
103904	43	116	1	16	Sunday	0.06	0.27	0.547	0.0001	1.000	0	0
197928	43	22	2	28	Friday	0.00	0.00	0.000	0.0001	1.000	20	20
204185	159	200	2	29	Saturday	0.01	0.17	0.351	0.0001	1.000	1683	1644
46245	43	190	2	8	Saturday	0.79	0.79	0.794	0.0001	1.000	1318	72
34697	43	231	1	6	Thursday	0.00	0.00	0.000	0.0001	1.000	212	205
181205	40	95	2	26	Wednesday	0.00	0.00	0.000	0.0001	1.000	684	659
28964	40	107	1	5	Wednesday	0.00	0.00	0.000	0.0001	1.000	0	0
11896	43	226	1	3	Monday	0.03	80.0	0.296	7.5000	0.833	252	170
172059	95	234	2	24	Monday	0.01	0.10	0.290	7.5000	0.833	2641	1697
127999	159	200	2	19	Wednesday	0.00	0.00	0.000	0.0001	1.000	0	0
156782	40	22	2	22	Saturday	0.00	0.00	0.000	0.0001	1.000	1394	1140
211920	43	63	1	30	Sunday	0.00	0.00	0.000	0.0001	1.000	0	0
117027	43	56	3	17	Monday	0.00	0.00	0.000	7.5000	0.833	224	224
213836	43	56	2	30	Sunday	0.00	0.00	0.000	9.6000	3.750	1940	1925
75607	43	77	1	12	Wednesday	0.00	0.00	0.000	9.0000	1.000	0	0
58989	43	182	1	9	Sunday	0.00	0.00	0.000	7.5000	0.833	0	0
113848	159	190	3	17	Monday	0.02	0.14	0.410	0.0001	1.000	550	418

```
advertising_train <- mutate(advertising_train,</pre>
                             "ln_cpc" = log(cpc + 0.005),
                             "ln_ctr" = log(ctr + 0.005),
                             "ln_{impr}" = log(impression + 0.005),
                             "ln_req" = log(requests + 0.005),
                             "ln_y" = log(y + 0.005))
sample_adv <- sample_n(advertising_train, 20)</pre>
kable_styling(kable(sample_adv[ , 1 : floor(ncol(sample_adv)/2) ],
                     format.args = list(digits = 3),
                     caption = "Sample of advertising\\_train Data Frame After Logarithmic Transformations"
              font_size = 8.5, latex_options = c("striped"),
              full_width = F)
kable_styling(kable(sample_adv[ , c(1, seq(from = floor(ncol(sample_adv)/2)+1,
                                            to = ncol(sample_adv),
                                             by = 1))],
                     format.args = list(digits = 3),
                     caption = "Sample of advertising\\_train Data Frame After Logarithmic Transformation"
              font_size = 8.5, latex_options = c("striped"),
              full_width = F)
```

1.2.5.3 Comparison of Transformed Features to Normal Curve

As the logarithmic transformation resulted in infinite values, the data frame was trimmed to only include finite values. The finite data frame was then used to calculate the centre and spread of ln_cpc , ln_ctr , ln_impr , ln_req , and ln_y .

Table 5: Sample of advertising_train Data Frame After Logarithmic Transformations (cont)

					· · · · · · · · · · · · · · · · · · ·				-			(/		
case_id	срс	ctr	viewability	ratio1	ratio2	ratio3	ratio4	ratio5	у	In_cpc	In_ctr	ln_impr	In_req	ln_y
4793	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.04028	-5.298	-5.30	-5.30	-5.30	-3.095
207441	0.5009	0.0007	0.106	0.470	0.853	1.0000	0.0000	0.000	0.35515	-0.681	-5.17	8.86	8.96	-1.021
27864	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.02500	-5.298	-5.30	-5.30	-5.30	-3.507
103904	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.01705	-5.298	-5.30	-5.30	-5.30	-3.814
197928	0.0091	0.0500	0.909	1.000	1.000	1.0000	0.0000	0.000	0.33529	-4.262	-2.90	3.00	3.00	-1.078
204185	0.0692	0.0036	0.810	0.895	0.926	1.0000	0.0000	0.000	0.19189	-2.601	-4.76	7.40	7.43	-1.625
46245	0.0568	0.0139	1.000	0.986	0.931	1.0000	0.0000	0.000	0.08289	-2.784	-3.97	4.28	7.18	-2.432
34697	0.1156	0.0049	0.333	1.000	0.859	0.1902	0.0146	0.795	0.48889	-2.115	-4.62	5.32	5.36	-0.705
181205	0.4312	0.0015	0.675	1.000	0.680	1.0000	0.0000	0.000	0.35204	-0.830	-5.04	6.49	6.53	-1.030
28964	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.04413	-5.298	-5.30	-5.30	-5.30	-3.013
11896	0.0022	0.0059	0.423	1.000	0.306	0.0000	0.7412	0.259	0.00943	-4.934	-4.52	5.14	5.53	-4.238
172059	2.4878	0.0006	0.273	0.948	0.381	1.0000	0.0000	0.000	0.77020	0.913	-5.18	7.44	7.88	-0.255
127999	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.03396	-5.298	-5.30	-5.30	-5.30	-3.245
156782	0.0854	0.0009	0.782	1.000	0.976	1.0000	0.0000	0.000	0.04366	-2.404	-5.13	7.04	7.24	-3.023
211920	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.02605	-5.298	-5.30	-5.30	-5.30	-3.472
117027	0.0270	0.0268	0.904	1.000	0.714	0.0000	0.3571	0.643	0.75430	-3.442	-3.45	5.41	5.41	-0.275
213836	0.1148	0.0042	0.861	1.000	0.899	1.0005	0.0000	0.000	0.59947	-2.122	-4.69	7.56	7.57	-0.503
75607	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	0.16462	-5.298	-5.30	-5.30	-5.30	-1.774
58989	0.0000	0.0000	0.000	0.000	0.000	0.0000	0.0000	0.000	1.62222	-5.298	-5.30	-5.30	-5.30	0.487
113848	0.0182	0.0048	0.692	0.629	0.983	0.0383	0.3014	0.660	0.07742	-3.764	-4.63	6.04	6.31	-2.496

```
geom_density(aes(x = ln_cpc),
                fill = "yellow", alpha = 1/3) +
   stat_function(geom = "path", fun = dnorm,
                 n = 200, col = "red4", size = 1,
                 args = list(mean(finite_cpc$ln_cpc),
                              sd(finite_cpc$ln_cpc))) +
   geom_vline(xintercept = mean(finite_cpc$ln_cpc),
              col = "red4", size = 1) +
  ylab("Density") +
  theme_minimal() +
   theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank())
finite_ctr <- filter(advertising_train,</pre>
                     is.finite(ln_ctr))
p_ctr <- ggplot(finite_ctr) +</pre>
   geom_density(aes(x = ln_ctr),
                fill = "yellow", alpha = 1/3) +
   stat_function(geom = "path", fun = dnorm,
                 n = 200, col = "red4", size = 1,
                 args = list(mean(finite_ctr$ln_ctr),
                              sd(finite_ctr$ln_ctr))) +
   geom_vline(xintercept = mean(finite_ctr$ln_ctr),
              col = "red4", size = 1) +
  ylab("Density") +
  theme_minimal() +
   theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank())
finite_impr <- filter(advertising_train,</pre>
                      is.finite(ln_impr))
```

```
p_impr <- ggplot(finite_impr) +</pre>
   geom_density(aes(x = ln_impr),
                fill = "yellow", alpha = 1/3) +
   stat_function(geom = "path", fun = dnorm,
                 n = 200, col = "red4", size = 1,
                 args = list(mean(finite_impr$ln_impr),
                              sd(finite_impr$ln_impr))) +
   geom_vline(xintercept = mean(finite_cpc$ln_impr),
              col = "red4", size = 1) +
   vlab("Density") +
   theme_minimal() +
   theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank())
finite_req <- filter(advertising_train,</pre>
                     is.finite(ln_req))
p_req <- ggplot(finite_req) +</pre>
   geom_density(aes(x = ln_req),
                fill = "yellow", alpha = 1/3) +
   stat_function(geom = "path", fun = dnorm,
                 n = 200, col = "red4", size = 1,
                 args = list(mean(finite_req$ln_req),
                              sd(finite_req$ln_req))) +
   geom_vline(xintercept = mean(finite_cpc$ln_req),
              col = "red4", size = 1) +
   ylab("Density") +
   theme minimal() +
   theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank())
finite_y <- filter(advertising_train,</pre>
                   is.finite(ln_y))
p_y <- ggplot(finite_y) +</pre>
   geom_density(aes(x = ln_y),
                fill = "yellow", alpha = 1/3) +
   stat function(geom = "path", fun = dnorm,
                 n = 200, col = "red4", size = 1,
                 args = list(mean(finite_y$ln_y),
                              sd(finite_y$ln_y))) +
   geom_vline(xintercept = mean(finite_cpc$ln_y),
              col = "red4", size = 1) +
   ylab("Density") +
   theme_minimal() +
   theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank())
ln_vars_title <- textGrob("Logarithmic Transformed Features and Comparison to Normal Curve",</pre>
                           gp = gpar(fontface = "bold"))
```


The natural logarithmic transformations of impression and requests clearly approached a normal distribution. The transformed y target feature somewhat resembled a normal distribution, albeit less closely as compared to impression. Both cpc and ctr appeared to be bimodal distributions after logarithmic transformation, with ln_ctr inarguably so.

1.2.6 Multivariate Plots

After transformation, grouping the ln_ctr distribution by level within the companyId factor revealed several distinct distributions. The distribution for companyId == 43 still appeared bimodal, which possibly indicated a further dimension of the multivariate relationship.

Density Plots for Logarithmic Transformed `ctr` Grouped by `companyld`

Producing separate density plots for each level within deviceType suggested some trivariate relationship between ln_ctr, companyId, and deviceType. The effect of facetting by deviceType was particularly apparent when examining companyId == 43, yet it still did not yield Gaussian distributions.

As above for ln_ctr, grouping by companyId and facetting by deviceType revealed a multivariate relationship between aforementioned descriptive features and the transformed ln_cpc.

Each of the pricing features, (price1, price2, price3) were not suitably transformed by either logarithmic, square root, or cube root. Logarithmic transformations appeared to spread the data the most, but these transformations considerably diverged from a symmetrical normal distribution. Further grouping by deviceType did not reveal Gaussian distributions.

```
price_trans <- mutate(advertising_train,</pre>
                       "ln_price1" = log(price1),
                       "ln_price2" = log(price2),
                       "ln_price3" = log(price3))
p_price1_trans <- ggplot(price_trans) +</pre>
   geom_density(aes(x = ln_price1, fill = deviceType),
                alpha = 1/3) +
   labs(y = "Density") +
   theme_minimal() +
   theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank())
p_price2_trans <- ggplot(price_trans) +</pre>
   geom_density(aes(x = ln_price2, fill = deviceType),
                alpha = 1/3) +
   labs(y = "Density") +
   theme_minimal() +
   theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank())
p_price3_trans <- ggplot(price_trans) +</pre>
   geom_density(aes(x = ln_price3, fill = deviceType),
                alpha = 1/3) +
   labs(y = "Density") +
   theme minimal() +
   theme(panel.grid.major.x = element_blank(),
         panel.grid.minor.x = element_blank())
price_vars_title <- textGrob("Logarithmic Transformed Price Features",</pre>
                              gp = gpar(fontface = "bold"))
grid.arrange(price_vars_title,
             p_price1_trans, p_price2_trans,
             p_price3_trans,
             layout_matrix = matrix(c(1,
                                        2,
                                        2,
                                        3,
                                        3,
                                        3,
                                        4,
                                        4,
                                        4),
                                     ncol = 1,
                                      byrow = T)
```

- ## Warning: Removed 92892 rows containing non-finite values (stat_density).
- ## Warning: Removed 92804 rows containing non-finite values (stat_density).

Warning: Removed 92804 rows containing non-finite values (stat_density).

Logarithmic Transformed Price Features

Box-Cox transformations with a range of lamda values also did not convert the price features into distributions that resembled a normal curve.

```
boxcox <- function(x, lambda = 1) {</pre>
```

```
(x^{(lambda)} - 1 /
       (lambda))
}
box_grobs_2 <- list()</pre>
box_grobs_higher <- list()</pre>
for (i in 1:length(seq(0.025, 0.3, 0.025))) {
   j \leftarrow seq(0.025, 0.3, 0.025)[i]
   boxcox_price <- mutate(advertising_train,</pre>
                            "bc_price1" = boxcox(x = price1,
                                                   lambda = j),
                            "bc_price2" = boxcox(x = price2,
                                                   lambda = j),
                            "bc_price3" = boxcox(x = price3,
                                                   lambda = j))
   bc_colnames <- colnames(boxcox_price)[str_detect(colnames(boxcox_price), "bc_price")]</pre>
   for (k in bc_colnames) {
      m <- which(bc_colnames %in% k)</pre>
      box_grobs_2[[m]] <- ggplot(select(boxcox_price,</pre>
                                           k, deviceType)) +
         geom_density(aes(x = .data[[k]], fill = deviceType),
                        alpha = 1/3) +
         labs(title = paste("Lambda = ", j)) +
         ylab("Density") + xlab(k) +
         theme_minimal() +
         theme(panel.grid.major.x = element_blank(),
                panel.grid.minor.x = element_blank())
   }
   box_grobs_higher[[i]] <- box_grobs_2</pre>
}
density_by_lambda <- list()</pre>
for (i in 1:12) {
   density_by_lambda[[i]] <- do.call(what = grid.arrange,</pre>
                                         args = list(grobs = box_grobs_higher[[i]],
                                                      nrow = 1)
}
```


The remaining numeric features (ad_area, ad_ratio, day, ratio1, ratio2, ratio3, ratio4, ratio5, and viewability) were not able to be transformed to distributions that approached normal curves via root or logarithmic methods. Despite the accompanying documentation for the prescribed dataset, the ad_area and day may not strictly be classed as numeric/double variables. Considering the low range, ad_area could be intepreted as an identifier, and so categorical. The feature day, values 1 - 30, is better interpreted as an ordinal or time value. However, time series forecasting is outside the scope of this project, and so the day feature will be largely ignored from the model and only used for partitioning.

1.2.6.1 Data Normalisation

Considering each of the features span differing ranges, both in their raw and transformed applications, it was deemed necessary to normalise each. Normalising the data allowed for more

As outlined in Fundamentals of Machine Learning, the below formula was used for normalising the data:

$$a_{i}^{'} = \left(\frac{a_{i} - min(a)}{max(a) - min(a)}\right) \times (high - low) + low$$

Where a is the feature, whether descriptive or target, high is the highest value in the normalised data range, and low is the lowest value in the normalised data range. A range of 0 - 1 was chosen, so these values were used for low and high respectively.

```
normalise <- function(x) {
   x[is.infinite(x)] <- NA
   (((x - min(x, na.rm = T)) /
        (\max(x, \text{na.rm} = T) - \min(x, \text{na.rm} = T))) * (1 - 0) + 0)
}
num_feats <- select(advertising_train,</pre>
                     case_id,
                     which(sapply(advertising_train, class)=="numeric"))
for ( i in colnames(num_feats)) {
   newfeat <- paste0("norm_", i)</pre>
   advertising train[[newfeat]] <- normalise(num feats[[i]])
   advertising_train[[newfeat]][is.na(advertising_train[[newfeat]])] <- advertising_train[[i]]
}
sample_adv <- sample_n(advertising_train, 20)</pre>
kable_styling(kable(sample_adv[, 1:floor(ncol(sample_adv)/3)],
                     caption = "Sample of advertising\\_train Data Frame with Normalised Numeric Feat
                     format.args = list(digits = 2, scientific = F,
                                         big.mark = ",")),
              font_size = 8, latex_options = c("striped"),
              full_width = T)
kable_styling(kable(sample_adv[, c(1,
                                     seq(from = floor(ncol(sample_adv)/3)*1+1,
                                         to = floor(ncol(sample_adv)/3)*2,
                                         by = 1))],
                     caption = "Sample of advertising\\_train Data Frame with Normalised Numeric Feat
                     format.args = list(digits = 2, scientific = F,
                                         big.mark = ",")),
```

Table 6: Sample of advertising_train Data Frame with Normalised Numeric Features (1/3)

					<u> </u>						,	,		
case_id	companyldcountryle	d deviceType	day	dow	price1	price2	price3	ad_area	ad_ratio	requests	impression	п срс	ctr	viewability
160,149	43 56	2	23	Sunday	0.00	0.00	0.00	18.0000	0.50	518	518	0.0665	0.0193	0.649
54,420	43 189	1	9	Sunday	0.00	0.00	0.00	6.5520	0.12	380	380	0.0844	0.0026	0.173
106,830	43 75	2	16	Sunday	0.74	1.81	3.62	6.5520	0.12	6,360	4,550	0.1737	0.0075	0.586
53,278	43 234	3	9	Sunday	0.00	0.00	0.00	7.5000	0.83	98	98	0.4482	0.0102	0.747
34,914	43 77	1	6	Thursday	0.00	0.00	0.00	7.5000	0.83	269	269	0.2343	0.0037	0.381
71,305	43 191	1	11	Tuesday	0.79	0.79	0.79	0.0001	1.00	0	0	0.0000	0.0000	0.000
204,435	43 77	1	29	Saturday	0.09	0.23	0.45	6.5520	0.12	0	0	0.0000	0.0000	0.000
211,856	43 202	1	30	Sunday	0.02	0.08	0.34	18.0000	2.00	9,425	9,186	0.1551	0.0016	0.050
213,195	43 57	2	30	Sunday	1.19	1.19	1.19	7.5000	0.83	0	0	0.0000	0.0000	0.000
33,652	43 38	2	6	Thursday	0.32	0.64	1.29	7.5000	0.83	0	0	0.0000	0.0000	0.000
87,091	157 38	3	13	Thursday	0.01	0.40	0.01	7.5000	0.83	486	415	0.7468	0.0024	0.689
174,810	95 234	2	25	Tuesday	1.28	2.48	4.95	18.0000	2.00	1,965	481	0.9849	0.0021	0.207
140,282	159 190	2	20	Thursday	0.00	0.00	0.00	0.0001	1.00	0	0	0.0000	0.0000	0.000
2,565	43 110	1	1	Saturday	0.06	0.10	0.32	1.6000	0.16	0	0	0.0000	0.0000	0.000
199,296	95 38	3	28	Friday	0.02	0.19	0.37	7.5000	0.83	0	0	0.0000	0.0000	0.000
61,394	40 38	1	10	Monday	0.10	0.10	0.20	0.0001	1.00	8,627	6,439	1.0349	0.0006	0.534
113,497	43 202	1	17	Monday	0.00	0.00	0.00	18.0000	2.00	11,784	11,683	0.0798	0.0058	0.058
94,535	159 191	3	14	Friday	0.02	0.11	0.34	0.0001	1.00	53	52	0.0102	0.0192	0.882
8,791	43 139	2	2	Sunday	0.80	0.80	0.80	0.0001	1.00	164	5	0.0022	0.4000	1.000
89,673	43 179	2	14	Friday	2.26	2.26	2.26	0.0001	1.00	0	0	0.0000	0.0000	0.000

Table 7: Sample of advertising_train Data Frame with Normalised Numeric Features (2/3)

case_id	ratio1	ratio2	ratio3	ratio4	ratio5	У	In_cpc	In_ctr	In_impr	In_req	ln_y	norm_ca	ısen_oodm_da	y norm_pri	c en brm_pr	icenorm_price3
160,149	1.00	0.95	1.002	0.000	0.000	1.314	-2.638	-3.7	6.2	6.2	0.28	0.748	0.759	0.00000	0.0000	0.00000
54,420	1.00	0.89	0.495	0.018	0.487	0.273	-2.415	-4.9	5.9	5.9	-1.28	0.254	0.276	0.00000	0.0000	0.00000
106,830	0.61	0.97	1.000	0.000	0.000	0.886	-1.722	-4.4	8.4	8.8	-0.12	0.499	0.517	0.05037	0.0287	0.04592
53,278	1.00	0.56	0.204	0.214	0.582	4.646	-0.791	-4.2	4.6	4.6	1.54	0.249	0.276	0.00000	0.0000	0.00000
34,914	1.00	0.67	0.067	0.305	0.628	0.734	-1.430	-4.7	5.6	5.6	-0.30	0.163	0.172	0.00000	0.0000	0.00000
71,305	0.00	0.00	0.000	0.000	0.000	0.211	-5.298	-5.3	-5.3	-5.3	-1.53	0.333	0.345	0.05378	0.0125	0.00998
204,435	0.00	0.00	0.000	0.000	0.000	1.655	-5.298	-5.3	-5.3	-5.3	0.51	0.955	0.966	0.00613	0.0036	0.00575
211,856	0.93	0.75	0.100	0.124	0.777	0.182	-1.832	-5.0	9.1	9.2	-1.68	0.989	1.000	0.00136	0.0013	0.00430
213,195	0.00	0.00	0.000	0.000	0.000	2.038	-5.298	-5.3	-5.3	-5.3	0.71	0.996	1.000	0.08101	0.0189	0.01506
33,652	0.00	0.00	0.000	0.000	0.000	1.303	-5.298	-5.3	-5.3	-5.3	0.27	0.157	0.172	0.02178	0.0101	0.01641
87,091	0.93	0.69	0.000	0.906	0.094	1.295	-0.285	-4.9	6.0	6.2	0.26	0.407	0.414	0.00068	0.0063	0.00013
174,810	0.67	0.86	1.000	0.000	0.000	0.584	-0.010	-4.9	6.2	7.6	-0.53	0.816	0.828	0.08713	0.0393	0.06274
140,282	0.00	0.00	0.000	0.000	0.000	0.049	-5.298	-5.3	-5.3	-5.3	-2.91	0.655	0.655	0.00000	0.0000	0.00000
2,565	0.00	0.00	0.000	0.000	0.000	0.034	-5.298	-5.3	-5.3	-5.3	-3.25	0.012	0.000	0.00408	0.0016	0.00405
199,296	0.00	0.00	0.000	0.000	0.000	0.412	-5.298	-5.3	-5.3	-5.3	-0.87	0.931	0.931	0.00136	0.0030	0.00469
61,394	0.99	0.70	0.050	0.576	0.374	0.490	0.039	-5.2	8.8	9.1	-0.70	0.287	0.310	0.00681	0.0016	0.00253
113,497	1.00	0.88	0.041	0.159	0.799	0.458	-2.467	-4.5	9.4	9.4	-0.77	0.530	0.552	0.00000	0.0000	0.00000
94,535	1.00	1.00	0.058	0.942	0.000	0.276	-4.186	-3.7	4.0	4.0	-1.27	0.441	0.448	0.00136	0.0017	0.00430
8,791	1.00	0.60	1.000	0.000	0.000	0.011	-4.934	-0.9	1.6	5.1	-4.12	0.041	0.034	0.05446	0.0127	0.01012
89,673	0.00	0.00	0.000	0.000	0.000	1.443	-5.298	-5.3	-5.3	-5.3	0.37	0.419	0.448	0.15385	0.0358	0.02869

Table 8: Sample of advertising_train Data Frame with Normalised Numeric Features (3/3)

					0-							,	,		
case_id	norm_ad	_a rea m_ad	_ratiom_requesten_im	пр пезвію <u>п</u> сро	norm_ctr	norm_vi	ew abitity rati	ion1orm_rat	tio2corm_ra	tio ß orm_rat	io 4 orm_ra	itio 5 orm_y	norm_ln	_c po rm_In	_ctrorm_ln_imp
160,149	0.500	0.0847	0.00007730.00008	490.000502	0.0097	0.0927	1.00	0.92	0.668	0.000	0.000	0.02792	0.261	0.264	0.55
54,420	0.182	0.0082	0.00005670.00006	230.000637	0.0013	0.0248	1.00	0.87	0.330	0.017	0.406	0.00581	0.283	0.070	0.54
106,830	0.182	0.0082	0.00094900.00074	590.001311	0.0037	0.0837	0.61	0.94	0.667	0.000	0.000	0.01882	0.351	0.153	0.66
53,278	0.208	0.1525	0.00001460.00001	610.003382	0.0051	0.1068	1.00	0.55	0.136	0.199	0.485	0.09872	0.442	0.185	0.47
34,914	0.208	0.1525	0.00004010.00004	410.001768	0.0018	0.0545	1.00	0.66	0.045	0.283	0.524	0.01560	0.380	0.092	0.52
71,305	0.000	0.1864	0.00000000.00000	000.000000	0.0000	0.0000	0.00	0.00	0.000	0.000	0.000	0.00448	0.000	0.000	0.00
204,435	0.182	0.0082	0.00000000.00000	000.000000	0.0000	0.0000	0.00	0.00	0.000	0.000	0.000	0.03517	0.000	0.000	0.00
211,856	0.500	0.3898	0.00140630.00150	580.001170	0.0008	0.0072	0.93	0.73	0.066	0.115	0.647	0.00386	0.340	0.046	0.69
213,195	0.208	0.1525	0.00000000.00000	000.000000	0.0000	0.0000	0.00	0.00	0.000	0.000	0.000	0.04330	0.000	0.000	0.00
33,652	0.208	0.1525	0.00000000.00000	000.000000	0.0000	0.0000	0.00	0.00	0.000	0.000	0.000	0.02768	0.000	0.000	0.00
87,091	0.208	0.1525	0.00007250.00006	800.005635	0.0012	0.0984	0.93	0.67	0.000	0.841	0.078	0.02752	0.492	0.065	0.54
174,810	0.500	0.3898	0.00029320.00007	880.007431	0.0010	0.0296	0.67	0.84	0.667	0.000	0.000	0.01242	0.519	0.059	0.55
140,282	0.000	0.1864	0.00000000.00000	000.000000	0.0000	0.0000	0.00	0.00	0.000	0.000	0.000	0.00105	0.000	0.000	0.00
2,565	0.044	0.0148	0.00000000.00000	000.000000	0.0000	0.0000	0.00	0.00	0.000	0.000	0.000	0.00072	0.000	0.000	0.00
199,296	0.208	0.1525	0.00000000.00000	000.000000	0.0000	0.0000	0.00	0.00	0.000	0.000	0.000	0.00876	0.000	0.000	0.00
61,394	0.000	0.1864	0.00128720.00105	550.007809	0.0003	0.0763	0.99	0.68	0.033	0.535	0.312	0.01041	0.524	0.019	0.67
113,497	0.500	0.3898	0.00175830.00191	510.000602	0.0029	0.0083	1.00	0.86	0.028	0.148	0.666	0.00974	0.278	0.128	0.70
94,535	0.000	0.1864	0.00000790.00000	850.000077	0.0096	0.1261	1.00	0.97	0.038	0.875	0.000	0.00587	0.109	0.263	0.44
8,791	0.000	0.1864	0.00002450.00000	080.000017	0.2000	0.1429	1.00	0.58	0.667	0.000	0.000	0.00024	0.036	0.733	0.33
89,673	0.000	0.1864	0.00000000.00000	000.00000	0.0000	0.0000	0.00	0.00	0.000	0.000	0.000	0.03066	0.000	0.000	0.00

2 Phase 2: Algorithm Implementation

2.1 Overview

2.1.1 Data Normalisation

The data normalisation above led to infinite values when the untransformed value was 0. Imputing -inf and inf for NA is not strictly correct. To prevent this normalisation of

```
## [1] "case_id Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "companyId Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "countryId Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "deviceType Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "day Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "dow Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "price1 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "price2 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ad_area Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ad_ratio Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "requests Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "impression Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "cpc Number of Finite: 214128\nNumber of Finite: 214128"
```

```
## [1] "ctr Number of Finite: 214128\nNumber of Finite: 214128"
  [1] "viewability Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ratio1 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ratio2 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ratio3 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ratio4 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ratio5 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "y Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ln_cpc Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ln_ctr Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ln_impr Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "In req Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "ln_y Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_case_id Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_day Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm price1 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_price2 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_price3 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ad_area Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ad_ratio Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_requests Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm impression Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_cpc Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ctr Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm viewability Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ratio1 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm ratio2 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ratio3 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ratio4 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ratio5 Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_y Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ln_cpc Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ln_ctr Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ln_impr Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ln_req Number of Finite: 214128\nNumber of Finite: 214128"
## [1] "norm_ln_y Number of Finite: 214128\nNumber of Finite: 214128"
```

2.2 Feature Selection

2.3 Performance Comparison

2.4 Results

2.4.1 Discussion

2.4.1.1 Limitations and Improvements

2.5 Conclusions

2.6 References

- Kelleher J.D., Namee B.M., D'Arcy A., 2015, Fundamentals of Machine Learning for Predictive Data Analytics, Massachusetts Institute of Technology, USA.
- · Osborne J.W., 2010, Improving your data transformations: Applying the Box-Cox transformation, Practical Assessment,

Research & Evaluation, V.05 No.12, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.7417&rep=rep1&type=pdfhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.7417&rep=rep1&type=pdf