Exercises 3

in minimal polynomial = (2-1)(2+1)

= 2=1

+ char. poly.

Yes: minimal poly Char poly.

EXERCISE: If is an eigendu of A.

EXERLISE: If is an eigendu of A.

Then is also a vost of

There winded polynomed of A.

2) Let A be on non matrix with reclentries.

Suppose a tib one Complex eigenvalues of A.

Suppose Retij one eigenventors com. to a tib

Jor A.

Where a b ER

2, y C R.

Then { z, = q is li in IR?

Proof: First notice that 2+iy, 2-iy

we become they corresponding to

distint eigenvalue axib, a-ib.

To show: {x, y} is link?

1 3)

Suppose C_1 such C_2 \underline{y} $\underline{-e}$ for some C_1 , C_2 $\in \mathbb{R}$.

To show: $C_1 = C_2 = 0$

Let as chose $k_1 = \frac{c_1 + c_2 i}{2}$, $k_2 = \frac{c_1 + c_2 i}{2}$.

Consider

$$k_{1}(2+iy)+k_{2}(2-iy)$$

= $(k_{1}+k_{2}) \times +(k_{1})(k_{1}-k_{2}) \times y$

= $(2+k_{2}) \times +(k_{1})(k_{1}-k_{2}) \times y$

= $(2+k_{1}) \times +(k_{1})(k_{1}-k_{2})$

:. {21, 2} is l.i in R?

EXERCISE: Suppr atib, Ltid one

Complex cigenventurs of a real matrix Amen
(but not real)

X let 2 ± 14, 2 ± 140 be their Corresponding

Prixerentors 1 A.

Suppor { I I I I J = I I I J ou l.i. in Ch Then { 2, 5, 2, 2} li in Rn. (Prove it!)

3 find
$$e^{At}$$
 where $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$

Solin Let
$$B = At = \begin{bmatrix} 2t & t & 0 \\ 0 & 2t & t \\ 0 & 0 & 3t \end{bmatrix}$$

Eigenslu of B one 3t, 3t, 3t.

Let
$$f(B) = e^{B}$$
 $\tau(B) = \langle \sigma I + \alpha \rangle B + \langle \sigma Z B^{2} \rangle$
 $f(\lambda) = e^{\lambda}$ $\gamma(\lambda) = \langle \sigma + \alpha \rangle \lambda + \langle \sigma Z \lambda^{2} \rangle$
 $f'(\lambda) = e^{\lambda}$ $\gamma'(\lambda) = \langle \sigma + \alpha \rangle \lambda + \langle \sigma Z \lambda^{2} \rangle$
 $f''(\lambda) = e^{\lambda}$ $\gamma''(\lambda) = 2\langle \sigma Z \rangle$

Now
$$f(B) = \gamma (B)$$
At $\lambda = 3t$, $f(\lambda) = \gamma(\lambda)$

$$f'(\lambda) = \delta(\lambda)$$

$$f''(\lambda) = \gamma(\lambda)$$

$$\Rightarrow f(3t) \simeq \gamma(3t)$$

$$\Rightarrow f(3t) \simeq \gamma(3t)$$

$$\Rightarrow e^{3t} = \alpha_0 + \alpha_1 + \alpha_2 + \alpha_1 + \alpha_2 + \alpha_2 + \alpha_1 + \alpha_2 +$$

$$f(3t) = r'(3t)$$

$$\Rightarrow e^{3t} = x_1 + 2x_2 2t$$

$$\Rightarrow f'(3t) = r'(3t)$$

$$\Rightarrow e^{3t} = 2x_2 \Rightarrow x_2 = \frac{2}{2}$$

$$\Rightarrow (2t - 3t) = x_1$$

$$\Rightarrow (3t - 6t) = x_2$$

$$\Rightarrow (3t - 6t) = x_1$$

$$\Rightarrow (3t - 6t) = x_2$$

$$\Rightarrow (3t - 2x_2) = x_1$$

$$\Rightarrow (2t - 3t) = x_1$$

$$\Rightarrow (2t - 3t) = x_2$$

$$\Rightarrow (3t - 3t) = x_2$$

$$\Rightarrow (3t - 3t) = x_1$$

$$\Rightarrow (3t - 3t) = x_2$$

$$\Rightarrow (3t - 3t) = x_1$$

$$\Rightarrow (3t - 3t) = x_2$$

$$\Rightarrow (3t - 3t) = x_2$$

$$\Rightarrow (3t - 3t) = x_2$$

$$\Rightarrow (3t - 3t) = x_1$$

$$\Rightarrow (3t - 3t) = x_2$$

$$\Rightarrow (3t - 3t$$

Theorem: Charatization of orthogonal matrices

A real nxn matrix A is orthogonal ($AA^{t=I}$)

its Column Netrs C_1 , --> c_2 (& also row)

vectors R_1 , --, R_2) from an orthonormal system

in C_i , C_i = C_i

D

Theorem Characterization for Unitary matrices).

An nxn complex matrix A y unitary

ith column vectors C_{1} ,— C_{2} (& also row)

vectors R_{1} —, R_{2}) form an orthonormal system

ie) C_{1} , C_{2} = C_{k} C_{j} = C_{k} =