Interpretable Features for Explaining Machine Learning Models

Mateusz Staniak, MI² Data Lab @ Warsaw University of Technology

Joint work with Przemysław Biecek

Leuven, 15 VII 2019

The need for interpretability

Before

5 years of web logs — ML

proved to be a more useful and timely indicator [of flu] than government statistics with their natural reporting lags

 Viktor Mayer-Schönberger and Kenneth Cukier , Big Data: A Revolution That Will Transform How We Live, Work and Think

After

WHAT WE CAN LEARN FROM THE EPIC FAILURE OF GOOGLE **FLU TRENDS**

wired.com/2015/10/can-learn-epic-failure-google-flu-trends/

Machine Learning models are vulnerable to:

• Biased training (and other data quality issues),

Concept drift,

Unmeasurable objectives (Fairness,

Lawfulness).

Females vs Male frequencies

Training data vs validation data Amazon scraps secret Al recruiting tool that 'didn't like women'

- Amazon ended job recruiting service that was reportedly biased against women
- It was created by Amazon's Edinburgh team in 2014 to automatically sort CVs
- The AI taught itself to downgrade resumes that included words like 'women's'

Types of Explanations

Intrinsic vs post-hoc

Intrinsic explanations are based on specific algorithm design

(model form, training explanations and model jointly).

 Post-hoc explanations are concerned with an already trained model (model is never re-fitted, only predictions are used).

```
lm(formula = m2.price ~ ., data = apartments)
Residuals:
          1Q Median
-247.5 -202.8 -172.8 381.4 469.0
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   5020.1391
                              682.8721
                     -0.2290
construction.year
surface
                     -10.2378
floor
                     -99.4820
                     -37.7299
                                15.8440 -2.381
                                                  0.0174
no.rooms
                     17.2144
districtBielany
                                                  0.6705
districtMokotow
                    918.3802
                                39.4386 23.286 < 2e-16
districtOchota
                    926.2540
                                40.5279 22.855
                                                 < 2e-16
districtPraga
                    -37.1047
                                40.8930 -0.907
                                                  0.3644
districtSrodmiescie 2080.6110
                                40.0149 51.996 < 2e-16 ***
districtUrsus
                     29.9419
                                39.7249
                                        0.754
                                                  0.4512
districtUrsynow
                    -18.8651
                                39.7565 -0.475
                                                  0.6352
districtWola
                     -16.8912
                                39.6283 -0.426
                                                  0.6700
districtZoliborz
                                40.4099 22.024 < 2e-16 ***
                    889.9735
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Model-agnostic Approach

	Definition	Example	Comments
Model-agnostic explanations	Do not use knowledge about the specific algorithm	Permutation- based variable importance	Do not require model re-fitting
Model-specific explanations	Assume that a specific algorithm was used to fit the model	Average minimum depth in a random forest	Can be more accurate

Local vs Global Explanations

- Local explanations are concerned with a single observation and its prediction.
- Global explanations are concerned with the model as a whole.

Global explanations are often aggregation of local explanations (e.g. mean).

Local Explanations

Approaches to Local Explanations

- What-If analysis (marginal response of the model when changing a single variable for a single observation):
 - Ceteris Paribus profiles (Individual Conditional Expectation).
- Local surrogate models (fitting an interpretable model locally original paper: LIME, 2016):
 - LIME and its modifications (aLIME, k-LIME, localSurrogate),
 - LIVE and localModel (versions of LIME developed at MI2 Data Lab).
- Example-based explanations
 - Contrastive explanations
 - Prototypes and criticism
- Prediction decomposition (attributing additive scores to features).
 - EXPLAIN,
 - Shapley Values,
 - Break Down and iBreakDown (methods connected to Shapley Values developed at MI2 Data Lab)

Local Interpretable Modelagnostic Explanations

M. T. Ribeiro, S. Singh, C. Guestrin, "«Why Should I Trust You?»: Explaining the Predictions of Any Classifier", Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016

Optimization problem:

$$\mathcal{L}(f,g,\pi_x) = \sum_{z,z' \in \mathcal{Z}} \pi_x(z) \left(f(z) - g(z') \right)^2$$

- f is the explained model,
- g is the explanation model,
- z is a interpretable representation of x,
- \blacksquare π is a distance measure (a kernel).

LIME explanations

https://github.com/marcotcr/lime

X ₁	 X _p
M	 0.11
F	 -0.25
U	 0.887

	У
f(x)	0.8 7
	0.1 4
	0.5 4

Z_1	 Z _p
$X_1 = M$	 X _p <
$X_1 = F, U$	 0.2 X _p < 0.2
$X_1 = F, U$	 $X_p > 0.2$

— 1		— р
$X_1 = M$		X _p < 0.2
$X_1 = F, U$		$X_p > 0.2$
$X_1 = M$		$X_p > 0.2$
		•••
$X_1 = F, U$	•••	X _p < 0.2

	Z_1	 Z _p
	$X_1 = M$	 $X_p < 0.2$
) \	$X_1 = F, U$	 $X_p > 0.2$
3) ^	$X_1 = M$	 $X_p > 0.2$
	$X_1 = F, U$	 $X_p < 0.2$

X ₁	•••	X _p
M		0.111
F		1.27
M		0.887
•••		
F		-0.2

4) f(x)

f(x) 0.93 0.77 0.122 ...

0.64

	Z ₁	•••	Z _p
5)	$X_1 = M$		X _p < 0.2
J	$X_1 = F, U$		$X_{p} > 0.2$
	$X_1 = M$		$X_{p} > 0.2$

	$X_1 = F, U$		X _p < 0.2

f(x) 0.93 0.77 0.122

0.64

g(z)

0.90

0.81

0.07

. . .

0.641

Some remarks on LIME for tabular data

- Most of the work so far focused on step 2) the sampling:
 - Laugel et al. 2018: the neighbourhood must include the decision boundary,
 - Adhikari et a. 2018: the neighbourhood must include enough data points from both classes,
 - Tan et al. 2019: sampling introduces significant uncertainty.
- For image or text step **3)** is trivial, but for tabular data and non-trivial interpretable input spaces, the inverse transformation is a problem.
- For tabular data, step **1**) is important, but often features are not transformed. It is not clear, what should be considered an interpretable feature.

Existing Approaches for Tabular Data

Discretized features

- lime library (Python)
 - Marco Tulio Ribeiro

https://github.com/marcotcr/lime

lime package (R)Thomas Lin Pedersen

https://github.com/thomasp85/lime

Continuous features

• iml package (R) – Christoph Molnar (JOSS, 2018)

 live package (R) – Mateusz Staniak (R Journal, 2018)

Variable	N	Estimate		р
fixed_acidity	2000		0.14 (0.14, 0.15)	<0.001
volatile_acidity	2000		-1.43 (-1.46, -1.40)	<0.001
citric_acid	2000		-0.66 (-0.69, -0.63)	<0.001
residual_sugar	2000		0.00 (-0.00, 0.01)	0.9
chlorides	2000		-2.57 (-2.71, -2.43)	<0.001
free_sulfur_dioxide	2000		0.00 (0.00, 0.00)	<0.001
total_sulfur_dioxide	2000		0.00 (0.00, 0.00)	<0.001
density	2000		-25.69 (-28.09, -23.30)	<0.001
рН	2000	i	-0.82 (-0.85, -0.79)	<0.001
sulphates	2000	■	2.56 (2.53, 2.60)	<0.001
alcohol	2000		0.20 (0.19, 0.20)	<0.001
(Intercept)			30.32 (27.93, 32.71)	<0.001
		-20100 102030		

A New Approach:

Use our knowledge about the model behaviour

Partial Dependence Plots

Ceteris Paribus Profiles

Summary

- Explanations of individual predictions rely on good interpretable features.
- For tabular data, the notion of an interpretable feature is not clear.
- We propose a method of creating interpretable features based on conditional behaviour of the model. It is implemented in R package localModel.

References

- Biecek, P., 2018. DALEX: explainers for complex predictive models, Journal of Machine Learning Research 19(84):1–5, 2018.
- Goodman, B., Flaxman, S., 2017. European Union regulations on algorithmic decision-making and a "right to explanation." Al Magazine 38, 50. https://doi.org/10.1609/aimag.v38i3.2741
- Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E., 2013. Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. arXiv:1309.6392 [stat].
- Lundberg, S.M., Lee, S.-I., 2017. A Unified Approach to Interpreting Model Predictions, Advances in Neural Information Processing Systems 30. Curran Associates, Inc., pp. 4765–4774.

References

- Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Explainable",
 2019. https://christophm.github.io/interpretable-ml-book/.
- Ribeiro, M.T., Singh, S., Guestrin, C., 2016. "Why Should I Trust You?": Explaining the Predictions of Any Classifier.
- Robnik-Šikonja, M., Bohanec, M., 2018. Perturbation-Based Explanations of Prediction Models, in: Zhou, J., Chen, F. (Eds.), Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent.

 Springer International Publishing, Cham, pp. 159–175. https://doi.org/10.1007/978-3-319-90403-0_9
- Staniak, M., Biecek, P., 2018. Explanations of model predictions with live and breakDown packages. Mateusz Staniak and Przemysław Biecek, The R Journal (2018) 10:2, pages 395-409.
- Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences." arXiv Preprint arXiv:1706.07269. (2017)

References

- T. Laugel, X. Renard, M.-J. Lesot, C. Marsala, i M. Detyniecki, "Defining Locality for Surrogates in Post-hoc Interpretablity", arXiv:1806.07498 [cs, stat], cze. 2018
- A. Adhikari, D. M. J. Tax, R. Satta, i M. Fath, "Example and Feature importance-based Explanations for Black-box Machine Learning Models", arXiv:1812.09044 [cs], grudz. 2018.
- D. Alvarez-Melis i T. S. Jaakkola, "On the Robustness of Interpretability Methods", arXiv:1806.08049 [cs, stat], cze. 2018.
- H. Fen, Tan, K. Song, M. Udell, Y. Sun, i Y. Zhang, "Why should you trust my interpretation? Understanding uncertainty in LIME predictions", arXiv:1904.12991 [cs, stat], kwi. 2019.
- Molnar, C., Bischl, B., Casalicchio, G., 2018. iml: An R package for Interpretable Machine Learning. JOSS 3, 786. https://doi.org/10.21105/joss.00786