ΔΕΥΤΕΡΗ ΕΡΓΑΣΙΑ- ΕΥΦΥΕΣ ΣΥΣΤΗΜΑ

Ελευθεριάδης Πέτρος 6044

1. Περιγραφή του προβλήματος που διαπραγματεύεται το ΕΣ

Στην τεχνητή νοημοσύνη, ένα **έμπειρο σύστημα** είναι ένα <u>υπολογιστικό σύστημα</u> το οποίο μιμείται την ικανότητα ενός εμπειρογνώμονα στη λήψη αποφάσεων. Στη συγκεκριμένη εργασία έχουμε ένα robot που ακολουθάει το τοίχο σε clockwise κίνηση. Το robot έχει γύρω από τη μέση του 24 αισθητήρες και η καθεμιά βοηθάει το robot στο να ξέρει πως να κινηθεί μέσω του ΕΣ. Οι κινήσεις που μπορεί να κάνει είναι

Move-Forward

Slight-Right-Turn

Sharp-Right-Turn

Slight-Left-Turn

Η δικιά μου εργασία θα ασχοληθεί με 7 μεταβλητές από τις 24, με το dataset του robot4.

2. Δημιουργία Δέντρων Αποφάσεων

1ο ΔΑ

Αφαίρεσα τη μεταβλητή V7, εφόσον δε χρησιμοποιούταν στο δέντρο από το J-45. Πήρα το 30% (410 instances) και τα έκανα test set. Στον αλγόριθμο αύξησα τα folds στα 10 γιατί εκεί είχα τα καλύτερα αποτελέσματα. Το reduced-error pruning το έκανα true όπως ζητήθηκε στην άσκηση.

Το training set ταξινόμησε σωστά το 94.37% ενώ το test set το 92.4%, διαφορά που θεώρησα ότι δεν ήταν αρκετή για να αλλάξω το δέντρο.

Στο δεύτερο ΔΑ αφαίρεσα και τη μεταβλητή V22 μαζί με την V7, καθώς η v22 στο δέντρο είναι από τα τελευταία και μη τοσο σημαντικά κλαδιά. Επίσης παρόλο που η ταξινόμηση του training set έπεσε στο 93,6%, το test set ανέβηκε στα 92,9%. Οπότε σε αυτό το ΔΑ έχουμε καλύτερη ομοιομορφία στα αποτελέσματα. Οι αλλαγές στον αλγόριθμο είναι οι ιδίες με το 1.

2.3. Αποτελέσματα μετρικών στο ΣΕΚ

METPHΣΕΙΣ 1ΟΥ Δ A (training set)

а

Accuracy	0.950682
Precision	0.934673
Sensitivity	0.946565
Specificity	0.953571
F_Measure	0.940582

b

Accuracy	0.986359
Precision	1.000000
Sensitivity	0.962963
Specificity	1.000000
F_Measure	0.981132

Accuracy	0.982310
Precision	0.839286
Sensitivity	0.854545
Specificity	0.990066
F_Measure	0.846847

d

Accuracy	0.967471
Precision	0.881988
Sensitivity	0.922078
Specificity	0.976220
F_Measure	0.901587

Weighted AVG Recall = 0.947

METPHΣΕΙΣ 2ΟΥ Δ A (training set)

а

Accuracy	0.944503
Precision	0.947368
Sensitivity	0.916031
Specificity	0.964413
F Measure	0.931436

b

Accuracy	0.986387
Precision	1.000000
Sensitivity	0.963173
Specificity	1.000000
F_Measure	0.981241

С

Accuracy	0.976963
Precision	0.714286
Sensitivity	1.000000
Specificity	0.975556
F Measure	0.833333

d

Accuracy	0.964948
Precision	0.902597
Sensitivity	0.879747
Specificity	0.981527
F_Measure	0.891026

2.3. Αποτελέσματα μετρικών στο ΣΕΛ

METPHΣΕΙΣ 1ΟΥ ΔΑ (test set)

G	
Accuracy	0.931873
Precision	0.923077
Sensitivity	0.912281
Specificity	0.945833
F_Measure	0.917647

b

Accuracy	0.982968
Precision	0.986755
Sensitivity	0.967532
Specificity	0.992218
F_Measure	0.977049

С

Accuracy	0.975669
Precision	0.733333
Sensitivity	0.647059
Specificity	0.989848
F_Measure	0.687500

d

Accuracy	0.958637
Precision	0.842105
Sensitivity	0.927536
Specificity	0.964912
F_Measure	0.882759

Weighted AVG Recall = 0.929

METPHΣΕΙΣ 2ΟΥ Δ A (test set)

a		
а		
а		

Accuracy	0.936430

Precision	0.944785	
Sensitivity	0.900585	
Specificity	0.962185	
F_Measure	0.922156	
b		
Accuracy	0.982885	
Precision	0.986577	
Sensitivity	0.967105	
Specificity	0.992218	
F_Measure	0.976744	
С		
Accuracy	0.977995	
Precision	0.681818	
Sensitivity	0.882353	
Specificity	0.982143	
F_Measure	0.769231	
d		
Accuracy	0.960880	
Precision	0.853333	
Sensitivity	0.927536	
Specificity	0.967647	
F Measure	0.888889	

Weighted AVG Recall = 0.929

3. Υλοποίηση σε CLIPS

3.1. Εξαγωγή κανόνων από WEKA

Παρατηρώντας το γράφημα του δέντρου από το WEKA, βλέπουμε ότι το δέντρο έχει 14 φύλλα. Αυτό σημαίνει ότι θα πρέπει να δημιουργήσουμε 14 κανόνες που το καθένα χωρίζει μια μεταβλητή στα δυο και ταξινομεί τα instances σε μια από τις 4 ομάδες.

Υπολογίζουμε όλους τους κανόνες που καταλήγουν σε ένα φύλλο από την αρχή του δέντρου ώστε να είναι σωστό. Αυτό θα γίνει με λογικό AND

Οι τιμές στις οποίες χωρίζονται οι μεταβλητές φαίνονται στο γράφημα παραπάνω.

3.2. Περιγραφή υλοποίησης των κανόνων σε CLIPS

Δημιούργησα 14 κανόνες a1-a14 και το καθένα έχει συνθήκες ενωμένες με λογικό AND ώστε να ταξινομείται στο class όπως και στο weka. Για να πετύχω αυτό, χρησιμοποίησα τη συνάρτηση test πχ (test (<= ?v15 0.9)) είναι η μονή συνθήκη του πρώτου κανόνα και ταξινομεί τα instances που την ικανοποιούν στο class 2. Παρομοίως γίνονται και τα υπόλοιπα.

Ο τρόπος που έκανα τη μέτρηση είναι ο εξής. Έχω δημιουργήσει 16 global μεταβλητές οπού η καθεμιά αντιπροσωπεύει μια θέση του confusion matrix.

Για παράδειγμα

?*was1got1* αντιπροσωπεύει τον αριθμό των instances που ήταν class 1 και ταξινομήθηκαν στο 1 ?*was1got2* αντιπροσωπεύει τον αριθμό των instances που ήταν class 1 και ταξινομήθηκαν στο 2 ?*was3got1* αντιπροσωπεύει τον αριθμό των instances που ήταν class 3 και ταξινομήθηκαν στο 1 Κλπ.

Όταν ενεργοποιείται ένας από τους 14 κανόνες, δημιουργεί στο RHS ένα fact τύπου result(was ?class)(got x) οπού ?Class είναι το class που είναι το instance και x δείχνει το class στο οποίο θα ταξινομηθεί σύμφωνα με το δέντρο.

Για τα νέα facts αυτά δημιούργησα 16 rules(για κάθε global μεταβλητη) που το καθένα παίρνει το "was" και "got" του κάθε instance και αυξάνει την αντίστοιχη global μεταβλητή.

Έτσι, στο τέλος έχουμε 16 νούμερα που αντιπροσωπεύουν το confusion matrix και μπορούμε να κάνουμε τις μετρήσεις που θέλουμε.

3.3. Αλλαγές και «ρύθμιση» του ΕΣ με βάση το σύνολο εκπαίδευσης

Για να βελτιώσω το σύστημα κοίταξα στο δέντρο να δω ποιοι κανόνες είχαν τη χειρότερη απόδοση.

Αυτοί όπως φαίνεται από το γράφημα είναι οι κανόνες 6, 11 & 12 (από αριστερά προς τα δεξιά) η αλλιώς στο κώδικα οι a6, a11 και α12

Ο α6 έχει 21/5, ο α11 έχει 23/8 και ο α12 έχει 44/7.

Εκτύπωσα στο clips αυτά τα instances για κάθε κανόνα ώστε να βρω διαφορές μεταξύ τους και να τις χωρίσω καλυτέρα.

Ο α6 ταξινομεί όλα στο class 4. Παρόλα αυτά βρήκα μια διαφορά μεταξύ στιγμιότυπων του 1 και 4 στη μεταβλητή v15 στη τιμή 0,919. Όποτε έσπασα το κανόνα α6 σε α6pt1 και α6pt2 στη τιμή αυτή. Το πρώτο ταξινομεί στο class 4 και το δεύτερο στο class 1, κερδίζοντας ετσι 3 instances πάνω στη διαγώνιο του confusion matrix

Ο a11 ταξινομεί όλα στο class 1. Υπάρχουν όμως μέσα σε αυτά κάποια instances του class 3. Κι εδώ βρήκα διαφορά μεταξύ των δυο στη μεταβλητή v15. Οπότε όπως και στο α6, έσπασα το α11 σε 2 κανόνες στη τιμή ?v15=1.332 κερδίζοντας 6 στιγμιότυπα στη διαγώνιο του matrix.

Ο a12 δεν είχε κάποιες διαφορές για να μπορέσω να το βελτιώσω. Αν κέρδιζα κάποια στιγμιότυπα, θα έχανα από αλλού οπότε δε το πείραξα.

Για να μπορέσω να περάσω τα δεδομένα ως είσοδο στο πρόγραμμα, άλλαξα το delimeter από κόμμα σε tab μέσω excel ώστε να μπορέσω να χρησιμοποιήσω τη συνάρτηση "explode\$".

3.4. Αποτελέσματα μετρικών στο ΣΕΚ

Αρχικό πρόγραμμα CLIPS

Confusion Matrix - (χωρίς βελτιώσεις)

a	b	С	d	< classifed as
372	0	9	12	а
6	339	0	7	b
8	0	47	0	С
12	0	0	141	d

Μετρήσεις

Το confusion matrix είναι ίδιο με αυτό του WEKA οπότε οι μετρήσεις παραμένουν ίδιες:

	٠	

Accuracy	0.931873
Precision	0.923077
Sensitivity	0.912281
Specificity	0.945833
F_Measure	0.917647

b

Accuracy	0.982968
Precision	0.986755
Sensitivity	0.967532
Specificity	0.992218
F_Measure	0.977049

С

Accuracy	0.975669
Precision	0.733333
Sensitivity	0.647059
Specificity	0.989848
F_Measure	0.687500

d

Accuracy	0.958637
Precision	0.842105
Sensitivity	0.927536
Specificity	0.964912
F_Measure	0.882759

Βελτιωμένο πρόγραμμα CLIPS

Confusion Matrix Βελτιωμένου

а	b	С	d	< classifed as
375	0	9	9	а
6	339	0	7	b
1	0	54	0	С
12	0	0	141	d

Μετρήσεις

а

u	
Accuracy	0.961175
Precision	0.951777
Sensitivity	0.954198
Specificity	0.966071
F_Measure	0.952986

b

Accuracy	0.986359
Precision	1.000000
Sensitivity	0.963068
Specificity	1.000000
F_Measure	0.981187

С

Accuracy	0.989507
Precision	0.857143
Sensitivity	0.981818
Specificity	0.989978
F_Measure	0.915254

d

Accuracy	0.970619
Precision	0.898089
Sensitivity	0.921569
Specificity	0.980000
F_Measure	0.909677

3.5. Αποτελέσματα μετρικών στο ΣΕΛ

Αρχικό πρόγραμμα CLIPS

Confusion Matrix - (χωρίς βελτιώσεις)

170	1 11 11			
а	b	С	d	< classifed as
156	2	4	9	а
2	147	0	3	b
6	0	11	0	С
5	0	0	64	d

Μετρήσεις

Και στο ΣΕΛ το confusion matrix είναι ίδιο με αυτό του WEKA οπότε κι εδώ οι μετρήσεις είναι ίδιες:

Accuracy	0.931873
Precision	0.923077
Sensitivity	0.912281
Specificity	0.945833
F_Measure	0.917647

b

Accuracy	0.982968
Precision	0.986755
Sensitivity	0.967532
Specificity	0.992218
F_Measure	0.977049

С

Accuracy	0.975669
Precision	0.733333
Sensitivity	0.647059
Specificity	0.989848
F_Measure	0.687500

d

Accuracy	0.958637
Precision	0.842105
Sensitivity	0.927536
Specificity	0.964912
F_Measure	0.882759

Βελτιωμενο προγραμμα CLIPS

Confusion Matrix Βελτιωμενου

а	b	С	d	< classifed as
158	2	5	6	а
2	147	0	3	b
3	0	14	0	С
5	0	0	64	d

Μετρήσεις

а

<u>~</u>	
Accuracy	0.943765
Precision	0.940476
Sensitivity	0.923977
Specificity	0.957983
F_Measure	0.932153

b

Accuracy	0.982885
Precision	0.986577
Sensitivity	0.967105
Specificity	0.992218
F_Measure	0.976744

С

Accuracy	0.980440
Precision	0.736842
Sensitivity	0.823529
Specificity	0.987245
F_Measure	0.777778

d

Accuracy	0.966184
Precision	0.876712
Sensitivity	0.927536
Specificity	0.973913
F Measure	0.901408

4. Υλοποίηση σε FuzzyCLIPS

4.1. Ορισμός ασαφών μεταβλητών και των ασαφών τιμών/συνόλων τους.

Ως ασαφείς μεταβλητές αποφάσισα να κάνω τις v3 και v15. Και οι δυο τιμές αυτές θα μπορούν να πάρουν 2 τιμές small και big. Small του v15 σημαίνει από 0 έως 0.9 και big από 0.9 εως 5. Οσο για το v3, small σημαίνει από 0 εως 1,649 και big από 1,649 έως 5.

4.2. Περιγραφή αλλαγών στους κανόνες-Δημιουργία Ασαφούς ΕΣ (ΑΣΕΣ)

Δημιούργησα ένα νέο deftemplate "fuzzification" το οποίο περιέχει τα δυο fuzzy slots συν τα υπόλοιπα slots που είχε το data. Πρώτα δημιουργούνται τα data και μετά έχω φτιάξει ένα rule "fuzzify" που παίρνει data sto LHS και δημιουργεί τα "fuzzification" στο RHS τα οποία όπως προανέφερα περιέχουν τα fuzzy slots.

Όσο για τις άλλες αλλαγές στα rules έγιναν τα εξής:

```
Το (test(>?v15 0.9)) μετατράπηκε σε (v15fuzzy big)
Το (test(<=?v15 0.9)) μετατράπηκε σε (v15fuzzy small)
Το (test(>?v3 1.649)) μετατράπηκε σε (v3fuzzy big)
Το (test(<=?v3 1.649)) μετατράπηκε σε (v3fuzzy small)
```

Επίσης διέγραψα το κανόνα α14 ώστε να μη χρειαστεί να χρησιμοποιήσω τη μεταβλητή ν15 ξανά επειδή θα δυσκόλευε πολύ τον ορισμό της.

4.3. Αλλαγές και «ρύθμιση» του ΑΣΕΣ με βάση το ΣΕΚ

Κάνοντας διάφορες αλλαγές στις τιμές των big και small στο v3 & στο v15 παρατήρησα ότι είχα τα καλυτέρα αποτελέσματα δίνοντας τις εξής τιμές:

```
v15)
(small (0 1) (1 0))
(big (0.9 0.1) (5 1)
V3)
(small (0 1) (1.8 0))
```

(big (1.6 0.1) (5.1 1))

Ωστόσο εξαιτίας της ασάφειας στο κάποιοι κανόνες ενεργοποιήθηκαν παραπάνω από μια φορές. Επίσης η απόδοση δεν ήταν πολύ καλή (αυτό θα φανεί και στις μετρήσεις)

4.4. Αποτελέσματα μετρικών στο ΣΕΚ

а			
н			

-	
Accuracy	0.819641
Precision	0.709865
Sensitivity	0.899510
Specificity	0.769585
F_Measure	0.793514

b

Accuracy	0.756374
Precision	0.908840
Sensitivity	0.593863
Specificity	0.934653
F_Measure	0.718341

С

Accuracy	0.945231
Precision	0.494737
Sensitivity	0.824561
Specificity	0.952096
F_Measure	0.618421

d

Accuracy	0.904627
Precision	0.141176
Sensitivity	0.300000
Specificity	0.928361
F_Measure	0.192000

4.5. Αποτελέσματα μετρικών στο ΣΕΛ

а

Accuracy	0.794549
Precision	0.687225
Sensitivity	0.852459
Specificity	0.758503

F_Measure	0.760976
b	
Accuracy	0.744235
Precision	0.877778
Sensitivity	0.612403
Specificity	0.899543
F_Measure	0.721461
	·
С	
Accuracy	0.949686
Precision	0.387097
Sensitivity	0.705882
Specificity	0.958696
F_Measure	0.500000
	<u> </u>
d	
Accuracy	0.899371
Precision	0.128205
Sensitivity	0.263158
Specificity	0.925764
F Measure	0.172414

5. Σύγκριση Συστημάτων, Γενικές παρατηρήσεις και Συμπεράσματα.

Όπως φαίνεται στις παραπάνω μετρήσεις το ΑΣ ΕΣ ήταν χειρότερο στην απόδοση από το απλό ΕΣ. Ο λόγος βρίσκεται στην ασάφεια των μεταβλητών και ειδικότερα στο σημείο που αλλάζει το fuzzy name μπορούν να γίνουν πολλά λάθη. Ειδικά στη μεταβλητή d για παράδειγμα είχαμε πολύ χειρότερη επίδοση. Το απλό ΕΣ δεν έχει τέτοια προβλήματα αφού όλα είναι αριθμητικά και ο διαχωρισμός είναι εμφανής.

Παρόλα αυτά το Ασαφές Ευφυές Σύστημα έχει πλεονεκτήματα που δεν έχει το απλό. Η δυνατότητα να περιγράφει ένα εύρος τιμών με ένα όνομα προσφέρει στην εύκολη ανάγνωση και κατανόηση του συστήματος και των αποτελεσμάτων.