Deep Reinforcement Learning and its application to games

A/Prof Richard Yi Da Xu, Kelvin Deng Chen

richardxu.com

University of Technology Sydney (UTS)

September 4, 2019

Deep Reinforcement Learning

- A video from Google DeepMind's Deep Q-learning playing Atari Breakout: https://www.youtube.com/watch?v=TmPfTpjtdgg
- Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).
- code is also available
 https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner

N.B.

Apologies for those have seen it before

significance of this demo shows it's possible to use Neural Network to learn how to play a game, based on:

- sequences of screen images
- scores the game receives
- poal is to learn the best policy for actions to take

Surely you don't need a menu to learn how to play Atari. i.e., it's model-free!

Reinforcement Learning (RL)

Forget about the Neural network for a second, how is Reinforcement Learning (RL) different to conventional supervised learning?

- ▶ No data label like supervised learning, i.e., no "best-action-for-that-screen" label
- only reward signal
- feedback in delayed, not instantaneous
- data are not i.i.d., (consecutive frames are similar)
- agent's actions affects the subsequent data it receives.

Let's get started with some RL background.

Reinforcement Learning (RL)

another way to look at it:

- RL uses training information that evaluates the actions taken rather than instructs by giving correct actions.
- ▶ a need for active exploration: explicit trial-and-error search for good behavior.
- purely evaluative feedback indicates how good the action taken is, but not whether it is the best or the worst action possible.
- purely instructive feedback indicates correct action to take, independently of the action actually taken. supervised learning

Application of RLs

- marketing customer's attributes s, marketing actions a, customer signs up r
- drone control all avaiable sensor data a, controls s, not crashing r
- chatbot conversations to-date s, things that a robot will say a, customer satisfaction r

Markov Process

- one may start from python and generate sequences with transition probabilities to end up in DLS star. examples:
 - Python, Python, Python, TensorFlow, Keras, DLS star
 - Python, Python, Python, TensorFlow, TensorFlow, Keras, DRL, DRL RL, DLS star
 - Python, Python, TensorFlow, TensorFlow, Keras, DRL, DLS star
 - ▶ The question is: how we may able to measure "how good" each path? ...

Markov Reward Process

Let's add some rewards to being at each of the state:

What we care is the **total return** G_t : sum of **discounted** reward from time-step t

$$\textit{G}_{t} = \textit{R}_{t+1} + \gamma \textit{R}_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^{k} \textit{R}_{t+k+1} \qquad \text{where } \gamma \in [0,1]$$

note that G_t is a random variable exercise what happens when $\gamma = 0$ and $\gamma = 1$

Markov Random Process: Bellman Equation (new)

state value function V(s) of MRP is expected total return starting from state s

$$\begin{split} V(s) &= \mathbb{E}_{s_{t+1}, s_{t+2}, \dots, r_{t+1}, r_{t+2}, \dots} [G_t | s_t = s] \\ &= \mathbb{E}_{s_{t+1}, s_{t+2}, \dots, r_{t+1}, r_{t+2}, \dots} [R_{t+1} + \gamma \underbrace{\left(R_{t+2} + \gamma R_{t+3} + \dots\right)}_{G_{t+1}}] \end{split}$$

- ▶ $\mathbb{E}[.]$ needs the integrate over $(s_1, s_2, \dots \in \mathcal{S}, r_1, r_2, \dots \in \mathcal{R})$:
- \triangleright s_1, s_2, \ldots and r_1, r_2, \ldots are generated in the following fashion:

$$s_0 \rightarrow (s_1, r_1)$$
 $s_1 \rightarrow (s_2, r_2) \dots$

▶ for clarity, we let $s_t \rightarrow s_0$ and $s_{t+k} \rightarrow s_k$:

Markov Random Process: Bellman Equation (new)

suppose we have a universal state value function V(.):

$$V(.) = \sum_{s_0} \Pr(s_0) \sum_{s_1, r_1} \Pr(s_1, r_1 | s_0) \sum_{s_2, r_2} \Pr(s_2, r_2 | s_1) \sum_{s_3, r_3} \dots \left[r_1 + \gamma (r_2 + \gamma r_3 + \dots) \right]$$

b however, we usually specify value of $v_{\pi}(s_0)$ to evaluate:

$$\begin{split} V(s_0) &= \sum_{s_1, r_1} \Pr(s_1, r_1 | s_0) \bigg(\underbrace{r_1 + \gamma}_{s_2, r_2} \underbrace{\sum_{s_2, r_2} \Pr(s_2, r_2 | s_1) \sum_{s_3, r_3} \dots \big[r_2 + \gamma (r_3 + \gamma r_4 + \dots \big]}_{V(s_1) \stackrel{\triangle}{=} \mathbb{E}[G_{t+1} | s_1]} \bigg) \\ &= \underbrace{\mathbb{E}_{s_1, r_1} \big[r_1 + \gamma V(s_1) | s_0 \big]}_{V(s_0) \stackrel{\triangle}{=} \mathbb{E}[G_{t} | s_0]} \\ &= \mathbb{E}_{s_1} \big[R_1 + \gamma V(s_1) | s_0 \big] \end{aligned}$$

$$= \mathbb{E}_{s_1} \big[R_1 + \gamma V(s_1) | s_0 \big] \text{ if } R_1 \text{ is deterministic}$$

Markov Random Process: Bellman Equation (new)

$$V(\mathbf{s}_0) = \mathbb{E}_{\mathbf{s}_1} \left[R_1 + \gamma V(\mathbf{s}_1) | \mathbf{s}_0 \right]$$

- Bellman equations: value of the current state, v(s) breaks up into (1) immediate and (2) future rewards.
- ightharpoonup state value function V(s) is written in a consecutive time steps
- difficult to estimate: because V(s) also depends on various other V(s') which occur at different times

Bellman Equation in matrix form

to simplify, making R_t deterministic

$$V(s_0) = \mathbb{E}_{s_1} \left[R_1 + \gamma V(s_1) | s_0 \right]$$

▶ say $s \in \{1, ..., n\}$:

$$\frac{V(s_0 = 1)}{v(1)} = \mathbb{E}_{s_1} \left[\underbrace{R_1(s_0 = 1)}_{R_1} + \gamma V(s_1) | s_0 = 1 \right]$$
$$V(s_0 = 2) = \mathbb{E}_{s_1} \left[R_1(s_0 = 2) + \gamma V(s_1) | s_0 = 2 \right]$$

take the first line.

$$\begin{split} v(1) &= \mathbb{E}_{s_1} \left[R_1 + \gamma V(s_1) | s_0 = 1 \right] \\ &= R_1 + \gamma \mathbb{E} \left[V(s_1) | s_0 = 1 \right] \\ &= R_1 + \gamma \left(\sum_{s_1 = 1}^n v(s_1) \Pr(1 \to s_1) \right) \\ &= R_1 + \gamma \left(\sum_{j = 1}^n v(j) \Pr(1 \to j) \right) \end{split}$$

$$\implies v(n) = R_n + \gamma \left(\sum_{j=1}^n v(j) \Pr(k \to j) \right)$$

Bellman Equation in matrix form (2)

$$v(k) = R_k + \gamma \left(\sum_{j=1}^n v(j) \operatorname{Pr}(k \to j) \right)$$

$$= R_k + \gamma \mathcal{P}_{k,:}^{\mathsf{T}} \mathbf{v}$$

$$\Rightarrow \mathbf{v} = \mathbf{R} + \gamma \mathcal{P} \mathbf{v}$$

$$\Rightarrow \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} R_1 \\ \vdots \\ R_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{1,1} & \dots & \mathcal{P}_{1,n} \\ \vdots & & \vdots \\ \mathcal{P}_{n,1} & \dots & \mathcal{P}_{n,n} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

the solution to MRP is straight forward:

$$\mathbf{v} = \mathbf{R} + \gamma \mathcal{P} \mathbf{v}$$
 $(I - \gamma \mathcal{P}) \mathbf{v} = R$
 $\mathbf{v} = (I - \gamma \mathcal{P})^{-1} R$

Markov Decision Process (MDP)

- now agent has actions
- **concept** of **policy** π : take a state s_t as input and decides and action a_t

$$\pi(a|s) = \Pr(A_t = a|S_t = s)$$

- a policy is time-invariant (or stationary) and stochastic
- next state for an agent, now also depends on its action taken:

$$\mathcal{P}^a_{s o s'} = \Pr(S_1 = s' | S_0 = s, A_0 = a)$$

- ightharpoonup multiple transition matrix \mathcal{P} each depends on the a taken
- once fixed π , MDP becomes MRP with transition probability $\mathcal{P}^{\pi}_{s \to s'}$:

$$\mathcal{P}^{\pi}_{s \to s'} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{s \to s'}$$

Markov Decision Process: Bellman Equation (new)

• given a policy π , state value function v(s) is expected total return starting from state s

$$egin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|s_{t} = s] \ &= \mathbb{E}_{\pi}\left[R_{t+1} + \gamma \underbrace{\left(R_{t+2} + \gamma R_{t+3} + \ldots\right)}_{G_{t+1}}
ight] \end{aligned}$$

- $ightharpoonup \mathbb{E}_{\pi}[.]$ needs the integrate over $(a_0, a_1, \dots \in \mathcal{A}, s_0, s_1, \dots \in \mathcal{S}, r_1, r_2, \dots \in \mathcal{R})$:
- then chain of changes are then:

$$s_0 \to a_0, \quad (s_0, a_0) \to (s_1, r_1), \quad s_1 \to a_1, \quad (s_1, a_1) \to (s_2, r_2), \quad \dots$$

▶ for clarity, we let $s_t \rightarrow s$ and $s_{t+1} \rightarrow s'$:

Markov Decision Process: Bellman Equation (new)

> suppose we have a **universal state value function** $V_{\pi}(.)$, i.e., no matter what the current state and action is:

$$\begin{aligned} v_{\pi}(.) &= \sum_{s_0} \Pr(s_0) \sum_{a_0} \pi(a_0|s) \sum_{s_1, r_1} \Pr(s_1, r_1|s_0, a_0) \sum_{a_1} \pi(a_1|s_1) \sum_{s_2, r_2} \Pr(s_2, r_2|s_1, a_1) \sum_{a_2} \cdots \sum_{s_3, r_3} \dots \\ & [r_1 + \gamma(r_2 + \gamma r_3 + \dots)] \end{aligned}$$

however, we do know the value $v_{\pi}(s_0)$:

$$\begin{split} V_{\pi}\left(s_{0}\right) &= \sum_{a_{0}} \pi(a_{0}|s) \sum_{s_{1}, r_{1}} \Pr(s_{1}, r_{1}|s_{0}, a_{0}) \bigg(r_{1} + \gamma \sum_{a_{1}} \pi(a_{1}|s_{1}) \sum_{s_{2}, r_{2}} \Pr(s_{2}, r_{2}|s_{1}, a_{1}) \sum_{a_{2}} \cdots \sum_{s_{3}, r_{3}} \cdots \left[r_{2} + \gamma(r_{3} + \gamma r_{4} + \dots) \right] \bigg) \\ & \qquad \qquad V_{\pi}\left(s_{1}\right) \stackrel{\triangle}{=} \mathbb{E}_{\pi}\left[G_{r_{1}}|s_{1}\right] \\ &= \sum_{a_{0}} \pi(a_{0}|s) \sum_{s_{1}, r_{1}} \Pr(s_{1}, r_{1}|s_{0}, a_{0}) (r_{1} + \gamma \mathbb{E}_{\pi}\left[G_{r_{1}}|s_{1}\right]) \end{split}$$

Bellman equation extends to Q(s, a)

summarise slides from before:

$$\begin{split} V_{\pi}(s) &= \sum_{a} \pi(a|s) \sum_{s',r'} \mathsf{Pr}(s',r'|s,a) \big(r' + \gamma v_{\pi}(s')\big) \\ &= \sum_{a} \pi(a|s) \sum_{s',r'} \mathsf{Pr}(s',r'|s,a) \big(r' + \gamma \mathbb{E}_{\pi}[G_{t+1}|s']\big) \\ &= \sum_{a} \pi(a|s) \mathbb{E}_{(s',r') \sim} \left[r' + \gamma v_{\pi}(s')\right] \end{split}$$

insert a to obtain Q function:

$$\begin{aligned} Q_{\pi}(\boldsymbol{s}, \boldsymbol{a}) &= \sum_{s', r'} \mathsf{Pr}(\boldsymbol{s}', r' | \boldsymbol{s}, \boldsymbol{a}) \big(r' + \gamma \boldsymbol{v}_{\pi}(\boldsymbol{s}') \big) \\ &= \sum_{s', r'} \mathsf{Pr}(\boldsymbol{s}', r' | \boldsymbol{s}, \boldsymbol{a}) \big(r' + \gamma \mathbb{E}_{\pi}[G_{t+1} | \boldsymbol{s}'] \big) \\ &= \mathbb{E}_{(\boldsymbol{s}', r') \sim} \left[r' + \gamma \boldsymbol{v}_{\pi}(\boldsymbol{s}') \right] \end{aligned}$$

- this version is called Bellman Expectation equation
- expectation equation is linear in V, so you can solve for V using simple linear algebra
- **Bellman** Expectation equation is usually used to evaluate a known policy π

Bellman equation extends to Q(s, a)

since any policy π works, then:

$$\begin{aligned} Q_{\pi_*}(s, a) &= \mathbb{E}_{(s', r') \sim} \left[r' + \gamma v_{\pi_*}(s') \right] \\ \text{or } Q_*(s, a) &= \mathbb{E}_{(s', r') \sim} \left[r' + \gamma v_*(s') \right] \end{aligned}$$

- this version is called Bellman Optimality Equation
- ▶ nonlinear (due to the max operation) in V, so there is no closed-form solution
- \blacktriangleright Bellman Expectation equation is usually used to evaluate a known policy π
- Many algorithms need to find the optimal solution (Q-learning, value iteration, policy iteration etc)
- \blacktriangleright optimality equation is used to learn the optimal policy π_*

Bellman optimality

we know best $V_*(s)$ must be the best action from an optimal (state, action) pair: $Q_*(s,a)$:

$$V_*(s) = \max_a Q_*(s, a)$$

and from before:

$$\begin{split} V_*(s) &= \max_{a} \frac{Q_*(s,a)}{\mathbb{E}_{(s',r')\sim}\left[r' + \gamma v_*(s')\right]} & \text{from last page} \\ &= \max_{a} \mathbb{E}_{\underbrace{(s',r')\sim}\left[r' + \gamma v_*(s')\right]} & \text{from last page} \\ &= \max_{a} \sum_{s',r'} \Pr(s',r'|s,a)(r' + \gamma v_*(s')) \\ &= \max_{a} \sum_{s',r'} \Pr(s',r'|s,a)(r' + \gamma \max_{a'} Q_*(s',a')) \\ &= \max_{a} \mathbb{E}_{(s',r')\sim}\left[r' + \gamma \max_{a'} Q_*(s',a')\right] \\ &= \max_{a} \mathbb{E}_{(s',r')\sim}\left[r' + \gamma \max_{a'} Q_*(s',a')\right] & \text{removed } \left|s \text{ for clarity} \right. \\ &\implies Q_*(s) = \mathbb{E}_{(s',r')\sim}\left[r' + \gamma \max_{a'} Q_*(s',a')\right] \end{split}$$

▶ also $r' \triangleq r'(s, \pi(s), s')$

Value Iteration

$$\begin{aligned} \textbf{loop} \forall s \in \mathbb{S} \\ \textbf{loop} \forall a \in \mathcal{A} \\ Q(s, a) &= \sum_{s' \in \mathbb{S}} \mathcal{P}^a_{s \rightarrow s'} \big[R(s, a, s') + \gamma V(s') \big] \\ V(s) &= \max_{a} Q(s, a) \\ \pi_*(S) &= \arg\max_{a} \sum_{s' \in \mathbb{S}} \mathcal{P}^a_{s \rightarrow s'} \big[R(s, a, s') + \gamma V(s') \big] \end{aligned}$$

- implicitly solve for the state values under an ideal policy
- no need to define an actual policy during the iterations (although "current" policy is computable each iteration)

Policy Iteration

- ightharpoonup choose an arbitrary policy π'
- while before some stopping criteria:

$$\pi=\pi'$$
 compute the value function $V_{\pi}(1),\ldots V_{\pi}(n)$ using policy π :

$$V_{\pi}(s_0) = R(s,\pi(s_0)) + \gamma \sum_{s_1 \in \mathbb{S}} \mathcal{P}_{s_0 \to s_1}^{a_0} V_{\pi}(s_1)$$

improve the policy at each state:

$$\pi'(\textit{S}_0) = \operatorname*{arg\,max}_{\textit{a}_0} \left[\textit{R}(\textit{s}, \textit{a}_0) + \gamma \sum_{\textit{s}_1 \in \mathbb{S}} \mathcal{P}^{\textit{a}_0}_{\textit{s}_0 \rightarrow \textit{s}_1} \textit{V}_{\pi}(\textit{s}_1) \right]$$

- start a policy π_0 and iterate towards π_* , by estimating state value associated with the policy, and making changes to action choices
- after each policy iteration, re-calculate value function for that policy. means you also work with value functions measure actual policies

Policy Evaluation

• given π , let's work out how good is v^{π} :

$$\begin{split} V^{\pi}(s) &= \mathbb{E}_{\pi} \left[R_{l} | s_{l} = s \right] \\ &= \mathbb{E}_{\pi} \left[R_{l+1} + \gamma V^{\pi}(s_{l+1}) | s_{l} = s \right] \\ &= \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{\text{ss'}}^{a} \left[R_{\text{ss'}}^{a} + \gamma V^{\pi}(s') \right] \end{split}$$

Policy Improvement

- given you are in state s, instead of following $\pi(s)$, what if we choose **another** policy, such that $a \neq \pi(s)$:
- look at $Q^{\pi}(s, a)$, i.e., a value function for taking a particular action a, instead of average of all actions:

$$\begin{aligned} Q^{\pi}(s, a) &= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V^{\pi}(S_{t+1} | S_t = s, a_t = a) \right] \\ &= \sum_{s'} \mathcal{P}_{ss'}^{a} \left[R_{ss'}^{a} + \gamma V^{\pi}(s_{t+1}) \right] \end{aligned}$$

• a should be chosen iff $Q^{\pi}(s, a) > V^{\pi}(s)$

Policy Improvement thereom

- ▶ **if** choosing $a \neq \pi(s)$ implies $Q^{\pi}(s, a) \geq V^{\pi}(s)$ for s
- **b** then we choose policy π' for state s, and π for other $s' \neq s$
- ▶ this policy π' is at least as good as π , i.e., $V^{\pi'}(s) \geq V^{\pi}(s)$, i.e:

$$Q^{\pi}(s,a) > V^{\pi}(s) \implies V^{\pi'}(s) > V^{\pi}(s)$$

proof:

$$\begin{split} V^{\pi}(s) &\leq Q^{\pi}(s, \pi'(s)) &\quad \text{replace } s' \leftarrow \pi'(s) \\ &= \sum_{s'} \mathcal{P}_{ss'}^{\pi'(s)} \left[R_{ss'}^{\pi'(s)} + \gamma V^{\pi}(s_{t+1}) \right] &\quad \text{obvioulsy } \pi' \text{ gives different } s' \text{ than } \pi \\ &\equiv \mathbb{E}_{\pi'(s)} \left[R_{t+1} + \gamma V^{\pi}(S_{t+1}) | S_t = s \right] \\ &\leq \mathbb{E}_{\pi'(s)} \left[R_{t+1} + \gamma Q^{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_t = s \right] &\quad \text{apply recursively to } V^{\pi}(S_{t+1}) \\ &= \mathbb{E}_{\pi'(s)} \left[R_{t+1} + \gamma \mathbb{E}_{\pi'(s')} \left[R_{t+2} + \gamma V^{\pi}(S_{t+2}) \right] | S_t = s \right] \\ &\equiv \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma \mathbb{E}_{\pi'} \left[R_{t+2} + \gamma V^{\pi}(S_{t+2}) \right] | S_t = s \right] \\ &\vdots \\ &\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+1} + \dots | S_t = s \right] \\ &= V^{\pi'}(s) \end{split}$$

Policy Improvement thereom (2)

if apply this strategy to all states to get a new greedy policy:

$$\pi'(s) = \underset{a}{\operatorname{arg\,max}} \left[Q^{\pi}(s, a) \right] \implies V^{\pi'} \geq V^{\pi}$$

• when $V^{\pi'} = V^{\pi} \implies$, and we know,

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[R_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

we know:

$$V^{\pi'(s)} = \max_{a} \sum_{s'} \mathcal{P}^{a}_{ss'} \left[R^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

- a form of Bellman optimality equation
- ▶ therefore, $V^{\pi} = V^{\pi'} = V^*$

Bellman's equation: Three ways of solving it

$$\begin{split} V_\pi(s_0) &= \mathbb{E}_\pi \left[G_t | s_0 \right] \\ &- \text{could be approximated by Monte-carlo, i.e., sample } s_1, s_2, \dots \text{ and compute } G_t \\ &= \mathbb{E}_\pi \left[r(s_0, \pi(s_0), s_1) + \gamma V_\pi(s_1) \right] \\ &- \text{could be approximated by Temporal Difference} \\ &= \sum_{a_0} \pi(a_0 | s_0) \sum_{s_1} \mathcal{P}_{s_0 \to s_1}^{a_0} \left[r(s_0, \pi(s_0), s_1) + \gamma V_\pi(s_1) \right] \\ &- \text{could be solved exactly by Dynamic programming} \end{split}$$

Solve Bellman's equation using Temporal Difference

$$V_{\pi}(s_0) = \sum_{a_0} \pi(a_0|s_0) \sum_{s_1, r_1} \Pr(s_1, r_1|s_0, a_0) \big(r_1 + \gamma v_{\pi}(s_1)\big)$$

drop |s again for clarity:

$$V^{\pi}(s) = \mathbb{E}_{s'}\left[r(s, \pi(s), s') + \gamma V^{\pi}(s')\right]$$

$$\implies V^{\pi}(s) + \eta V^{\pi}(s) = V^{\pi}(s) + \eta \left(\mathbb{E}_{s'}\left[r(s, \pi(s), s') + \gamma V^{\pi}(s')\right]\right)$$

$$\implies V^{\pi}(s) = V^{\pi}(s) + \eta \left(\mathbb{E}_{s'}\left[r(s, \pi(s), s') + \gamma V^{\pi}(s')\right] - V^{\pi}(s)\right)$$

▶ instead of compute this expectation, in **each iteration** t, we sample a new state $\tilde{s'} \sim \Pr(s'|\ldots)$

$$V_{t+1}^{\pi}(s) = V_t^{\pi}(s) + \eta \left(r(s, \pi(s), \tilde{s'}) + \gamma V_t^{\pi}(\tilde{s'}) - V_t^{\pi}(s) \right)$$

note that the last equation is called temporal difference

Action-value (Q) function

- ▶ action-valued function $Q^{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a, \pi]$:
- lacktriangle expected total return starting from state s, taking action a, and then follow policy π
- Stochastic policy π:

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)}[Q^{\pi}(s, a)]$$

deterministic policy:

$$v^*(s) = \max_{a'} Q^*(s, a')$$

from before:

$$\begin{split} V^*(s) &= \max_{a} \left(\mathbb{E}_{s'} \left[r(s, a, s') + \gamma \underbrace{V^*(s')}_{a'} \middle| s \right] \right) \\ &= \max_{a} \underbrace{\left(\mathbb{E}_{s'} \left[r(s, a, s') + \gamma \left(\max_{a'} Q^*(s', a') \right) \middle| s \right] \right)}_{Q^*(s', a') \text{ by definition}} \end{split}$$

therefore:

$$Q^*(s, a) = \mathbb{E}_{s'}\left[r(s, a, s') + \gamma\left(\max_{a'} Q^*(s', a')\right) \middle| s, a\right]\right)$$

Action-value (Q) function

$$Q^*(s, a) = \mathbb{E}_{s'}\left[r(s, a, s') + \gamma \big(\max_{a'} Q^*(s', a')\big)\big|s, a\right]\right)$$

drop |s, a, let's solve this by temporal difference:

$$Q^{\pi}(s, a) = \mathbb{E}_{s'} \left[r(s, \pi(s), s') + \gamma \left(\max_{a'} Q^{\pi}(s', a') \right) \right]$$

$$\Rightarrow Q^{\pi}(s, a) + \eta Q^{\pi}(s, a) = Q^{\pi}(s, a) + \eta \left(\mathbb{E}_{s'} \left[r(s, a, s') + \gamma \left(\max_{a'} Q^{\pi}(s', a') \right) \right] \right)$$

$$\Rightarrow Q^{\pi}(s, a) = Q^{\pi}(s, a) + \eta \left(\mathbb{E}_{s'} \left[r(s, a, s') + \gamma \left(\max_{a'} Q^{\pi}(s', a') \right) \right] - Q^{\pi}(s, a) \right)$$

instead of compute this expectation, in **each iteration** t, we sample a new state $(\tilde{s'}, \tilde{a}) \sim \Pr(s', a| \dots)$.

Q-Learning: recursively:

$$Q(s, \tilde{a}) = Q(s, \tilde{a}) + \eta \left(\underbrace{r(s, \tilde{a}, \tilde{s'}) + \gamma \left(\max_{\substack{a' \\ a'}} Q(\tilde{s'}, a')\right) - Q(s, \tilde{a})}_{V}\right)$$

let $\eta = 1$:

$$Q(s, \tilde{a}) = r(s, \tilde{a}, \tilde{s'}) + \gamma (\max_{s'} Q(\tilde{s'}, a'))$$

Q-Learning algorithm

```
Require: choice of \gamma Rewards matrix R

1: Q \leftarrow \mathbf{0}

2: for each episode do

3: randomise initiate state s_0

4: while goal state not reached do

5: select (a, s') \sim \Pr(a, s'|.)

6: compute \max_{a'} Q(s', a')

7: Q(s, a) \leftarrow r(s, a, s') + \gamma \left(\max_{a'} Q(s', a')\right)

8: s_l \leftarrow S_{l+1}

9: end while

10: end for
```

Q and V functions

- if $a = \arg\max_a Q^{\pi}(s, a)$, then by setting $\pi'(a|s) = 1$, this policy is at least as good as π regardless of what π is
- if $Q^{\pi}(s, a) > V^{\pi}(s)$, then a is better than average since,

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[Q^{\pi}(s,a)]$$

• obviously, we should increase $\pi(a|s)$ if $Q^{\pi}(s,a) > V^{\pi}(s)$

Q-Learning example

We took the example from the Markov Reward Process example earlier:

- ▶ there is small immediate rewards by going from one module to another
- you get a final large reward by becoming DLS star
- \triangleright in this special example, a = s', i.e., the action is to turn into the next state (module of studies).
- assume equal probabilities for all edges.

Q-Learning example: episode 1

before

after

- s ~ Pr(s|.) = 1, i.e, Keras
- at s=1, it has **allowable actions**: go to state $\{3,4,5\}$, i.e., $a\in\{3,4,5\}$
- $(a, s') \sim Pr(a, s'|.) = (5, 5)$
- ▶ at s' = 5, it has allowable actions: $a' \in \{1, 5\}$:

$$Q(s, a) = r(s, a, s') + \gamma \left(\max_{a'} Q(s', a') \right)$$

$$= R(1, s' = 5) + 0.5 \max_{a'} [Q(s' = 5, 1), Q(s' = 5, 5)]$$

$$= 100 + 0.5 \times 0 = 100$$

▶ set $s \leftarrow s' \implies s = 5$, i.e., goal state, end

	$S\downarrow,A\rightarrow$	RL(0)	Ke(1)	Py(2)	TF(3)	DRL(4)	DLS*(5)
Q =	RL(0)	(0	0	0	0	0	0
	Ke(1)	0	0	0	0	0	100
	_Py(2)	0	0	0	0	0	0
	TF(3)	0	0	0	0	0	0
	DRL(4)	0	0	0	0	0	0
	DLS*(5)	(0	0	0	0	0	0 /

Q-Learning example: episode 2, Iteration 1

- \triangleright $s \sim \Pr(s|.) = 3$
- at s=3, it has allowable actions: go to state $\{1,2\}$, i.e., $a\in\{1,2\}$
- ightharpoonup $(a, s') \sim \Pr(a, s'|.) = (1, 1)$
- ▶ at s' = 1, it has allowable actions: $a' \in \{3, 4, 5\}$:

$$O(s, a) = r(s, a, s') + \gamma \left(\max_{a'} Q(s', a') \right)$$

= $R(3, 1) + 0.5 \max[Q(1, 3), Q(1, 4), Q(1, 5)]$
= $1 + 0.5 \times 100 = 51$

▶ set $s \leftarrow s' \implies s = 1$, i.e., **not** a goal state, keep on going

before

after

Q-Learning example: episode 2, Iteration 2

before

$S\downarrow,A\rightarrow$	В	L(0)	Ke(1)	Py(2)	TF(3)	DRL(4)	DLS*(5)	
RL(0)	1	0	0	0	0	0	0	1
Ke(1)		0	0	0	0	0	100	
Q = Py(2)		0	0	0	0	0	0	
TF(3)		0	51	0	0	0	0	
DRL(4)		0	0	0	0	0	0	
DLS*(5)	/	0	0	0	0	0	0	/

after

- s = 1 from previous iteration
- at s=1, it has allowable actions: go to state $\{3,4,5\}$, i.e., $a\in\{3,4,5\}$
- $ightharpoonup (a, s') \sim \Pr(a, s'|.) = (5, 5)$
- ▶ at s' = 5, it has allowable actions: $a' \in \{1, 5\}$:

$$Q(s, a) = r(s, a, s') + \gamma \left(\max_{a'} Q(s', a')\right)$$

$$Q(1, 5) = R(1, 5) + 0.5 \max[Q(5, 1), Q(5, 5)]$$

$$= 100 + 0.5 \times 0 = 100$$

▶ set $s \leftarrow s' \implies s = 5$, i.e., goal state, end

the state-action table gets updated until convergence.

On the setting of Atari

- the states are far too many!
- ▶ need a **function approximator** to estimate the action-value function, $Q(s, a|\theta) \approx Q^*(s, a)$
- guess what? Deep Neural Network helps!

Represent Q(s, a) using neural networks

➤ The figure below represents a row of the Q function table earlier:

 $\mathsf{Conv}\: [\mathsf{16}] \to \mathsf{ReLU} \to \mathsf{Conv}\: [\mathsf{32}] \to \mathsf{ReLU} \to \mathsf{FC}\: [\mathsf{256}] \to \mathsf{ReLU} \to \mathsf{FC}\: [|\mathsf{A}|]$

these are **not** softmax functions.

abstracted algorithm for Deep Q-Learning

Require: Initialize an empty replay memory **Require:** Initialize the DQN weights θ

1: for each episode do

2: **for** t = 1, ... T **do**

3: with probability ϵ select \tilde{a} random action

otherwise, select:

$$\tilde{a} = \max_{a} \left(Q^*(s, a | \theta) \right)$$

5: perform \tilde{a} and receive rewards r_t and state s'.

add tuple (s, \tilde{a}, r_t, s') into replay memory

7: Sample a mini-batch of tuples (s_i, a_i, r_i, s'_i) from the replay memory

and perform stochastic gradient descent on the DQN, based on the loss function:

$$\left(\underbrace{r_j + \gamma\big(\max_{a'} Q(s_j', a'|\theta^-)\big)}_{y_j} - Q(s_j, a_j|\theta)\right)^2$$

9: end for 10: end for

innovation

- freeze parameters of target network $Q(s_i', a'|\theta^-)$ for fixed number of iterations
- while updating the online network $Q(s; a; \theta_i)$ by gradient descent

double Deep Q-Leanring

 \triangleright same values θ both to select and to evaluate an action:

$$y_j = r_j + \gamma \left(\max_{a'} Q(s'_j, a'|\theta) \right)$$
$$= r_j + \gamma \left(Q(s'_j, \arg\max_{a} Q(s'_j, a, \theta)|\theta) \right)$$

- more likely to select overestimated values
- resulting in overoptimistic value estimates
- the solution is:

$$y_j = r_j + \gamma \left(\max_{a'} Q(s'_j, \arg\max_{a} Q(s'_j, a, \theta) | \theta') \right)$$

- ightharpoonup still estimating value of policy according to current values defined by heta
- \blacktriangleright use second set of weights θ' to **fairly** evaluate value of this policy

In summary

- CNN and RNN are two of the building blocks in Deep Learning
- People have been putting them into many existing machine learning frameworks, and have generated many interesting stuff
- but there is plenty still needs to be explored!