Алгоритмы и структуры данных

Коченюк Анатолий

27 сентября 2020 г.

0.1 Введение

курс будет идти 4 семестра.

1 лекций + 1 практика в неделю

баллы: практика – выходишь к доске и делаешь задание.

практика – до 30 баллов

0-25 — по 5 баллов 25-40 — по 3 балла 40+ — по 1 баллу

лабораторные: 50 баллов

экзамен: в каком-то виде будет. до 20 баллов.

Глава 1

І курс

1.1 Алгоритмы

Алгоритм: входные данные \to \to выходные данные входной массив $a[0\dots n-1]$, выходная сумма $\sum a_i$ $S = 0 \qquad \qquad \backslash \qquad 1$ for $i = 0 \dots n-1 \backslash \qquad 1+2n$ $S+=a[i] \qquad \backslash \qquad 3n$ $print(S) \qquad \backslash \qquad 1$

Модель вычислений.

RAM - модель. симулирует ПК. За единицу времени можно достать/положить в любое место памяти.

Время работы (число операций) В примере выше T(n) = 3 + 5n

мотивация: 3 становится мальньким, а 5 – не свойство алгоритма

$$T(n) = O(n)$$

$$f(n) = O(g(n)) \iff \exists n_0, c \quad \forall n \geqslant n_0 \quad f(n) \leqslant c \cdot g(n)$$

$$n_0 = 4, c = 6$$
 $3 + 5n \leqslant 6n, n \geqslant 4$ $3 \leqslant n$

$$f(n) = \Omega(g(n)) \iff --||--f(n) \geqslant cg(n)$$

$$3 + 5n = \Omega(n)$$
 $n_0 = 1, c = 1$

```
3 + 5n \geqslant n, n \geqslant 1
T(n) = O(n), T(n) = \Omega(n) \iff T(n) = \Theta(n)
          for i = 0 \dots n-1
                for j = 0 \dots n-1
-O(n^2)
          for i = 0 \dots n-1
                for j = 0 ... i-1
\sum_{i=0}^{n-1} i = \sum_{i=0}^{n \cdot (n-1)} = \Theta(n^2)
          i=1
          while i\cdot i<n
                i++
          i=1
          while i < n
                i=i\cdot \cdot 2
O(\sqrt{n}), O(\ln n)
          f(n):
                if n=0
                else
                     f(n-1)
n рекурсивных вызовов O(n)
          f(n):
                if n=0
                else
                     f(n/2)
                     f(n/2)
2^{\ln n} = n
если добавить третий вызов: 2^{\log_2 n} = n^{\log_2 3}
```

4

ГЛАВА 1. І КУРС

1.2 Сортировки

1.2.1 Сортировка вставками

Берём массив, идём слева направо: берём очередной элемент и двигаем в влево, пока он не упрётся

```
for i = 0 .. n-1
    j=i
    while j>0 and a[j]<a[j-1]
        swap(a[j-1], a[j])
        j--</pre>
```

Докажем, что алгоритм работает. по индукции. Если часть отсортирована и мы рассматриваем новый элемент, то он будет двигаться, пока не вставиться на своё место и массив снова будет отсортированным.

```
Если массив отсортирован (1,2,\ldots,n) – O(n)
```

Если нет(n, n-1, ..., 1), то $O(n^2)$

Рассматривать мы дальше будем худшие случаи.

1.2.2 Сортировка слияниями

Слияние: из двух отсортированных массивов делает один отсортированный.

как найти перви элемент. Он наименьший, значит либо самый левые в массиве a, либо в массиве b. Мы забыли нужный первый элемент и свели к такой же задаче поменьше.

```
merge(a,b):
    n = a.size()
    m = b.size()
    i=0, j=0
    while i<n or j<m:
        if j==m or (i<n and a[i]<b[j]):
            c[k++] = a[i++]
        else
            c[k++] = b[j++]
    return c</pre>
```

O(n+m)

Сортировка: берём массив, делим его пополам, рекурсивно сортируем левую и правую часть, а потом сольём их в один отсортированный массив.

```
sort(a):
    n = a.size()
```

```
if n<=1:
    return a
al = [0, .. n/2-1]
ar = [n/2 .. n-1]
al = sort(al)
ar = sort(ar)
return merge(al, ar)</pre>
```

порядка n рекурсивных массивов.

$$T(n) = 2 \cdot T(\frac{n}{2}) + n$$

красиво и понятно:

математически и хардкорно: по индукции $T(n) \leq \ln n$

База: n=1 – не взять из-за логарифма, но можоно на маленькие n не обращать внимания

Переход:

$$T(n) = 2T(\frac{n}{2}) + n \leqslant 2 \cdot \frac{n}{2} \ln \frac{n}{2} + n = n(\ln n - 1) + n = n \ln n + n(1 - 1) \leqslant \ln n$$

Теорема 1 (Мастер-теорема).
$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
 Если без $f(n) = O(n^{\log_b a - \varepsilon})$, то $a^{\log_b^n} = n^{\log_b a}$ Если без $f(n) = O(n^{\log_b a + \varepsilon})$, тогда $T(n) = O(f(n))$ Если без $f(n) = O(n^{\log_b a})$, то $T(n) = n^{\ln_b a} \cdot \ln n$

1.3 Структуры данных

Структура, которая хранит данные

Операции: структура данных определляется операциями, которые она умеет исполнять

Массив:

- get(i) (return a[i])
- put(i,v) (a[i] = v)

Время работы на каждую операцию

1.3.1 Двоичная куча

Куча:

- храним множество (x < y)
- insert(x) $A = A \cup \{x\}$
- remove min()

Варианты:

- 1. Массив
 - insert(x) a[n++] = x (O(1))
 - remove min() (O(n))

```
j=0
for i=1 .. n-1
    if a[i] < a[j]: j=i
swap(a[j], a[n-1])
return a[--n]</pre>
```

- 2. Отсортированный массив (по убыванию)
 - remove_min()

```
return a[--n]
```

• insert(x)

```
a[n++] = x
i=n-1
while i >0 and a[i-1]<a[i]
    swap(a[i], a[i-1])
    i--</pre>
```

3. Куча. Двоичное дерево, каждого элемента – 2 ребёнка. У каждого есть один родитель (кроме корня). В каждый узел положим по элементу. Заполняется по слоям. Правило: у дети больше родителя. Минимум в корне – удобно находить.

Занумеруем все элементы слева направо. Из узла і идёт путь в 2i+1 и 2i+2

```
insert(x)
    a[n++] = x
    i=n-1
    while i>0 and a[i]<a[(i-1)/2]
        swap(a[i], a[(i-1)/2])
        i = (i-1)/2</pre>
```

 $O(\log n)$

Идея убирания минимума: поставить вверх вместо минимума последний элемент и сделать просеивание вниз.

1.3.2 Сортировка Кучей (Heap Sort)

```
sort(a):
    for i = 1 .. n-1: insert(a[i])
    for i = 1 .. n-1: remove_min()

heap_sort(a)
    for i = 0 .. n-1
        sift_up(i)
    for i = n-1 .. 0
        swap(a[0], a[i])
        sift_down(0, i) // i -- размер кучи
```

1.4 Быстрая сортировка

1.4.1 Рандомизированные алгоритмы

Алгоритм: Пусть есть массив и все элементы различны. Давайте выберем случайный элемент Поделим массив на две части: < x и $\geqslant x - O(n)$

Рекурсивно запускаем от каждого куска.

```
a // глобальный массив sort(1, r):
    x = a[random(1..r-1)]
    if r-l =1:
        return
    m=1
```

```
for i = 1 .. r-1:
    if a[i] < x:
        swap(a[i],a[m])
        m++
sort(1,m)
sort(m,r)</pre>
```

Вместо изучения худшего случая рандомизированного алгоритма мы изучаем мат ожидание.

```
E(T(n))
E(x) = \sum t \cdot p(x = t)
```

Покажем, что мат ожидание времени работы нашего алгоритма $O(n \log n)$

Подход №1: посмотрим. был массив, поделили на две части, от каждой части запустились. каждая часть примерно $\frac{n}{2}$ $T(n) = n + 2T(\frac{n}{2})$ $O(n \log n)$

Скорее всего поделимся не ровно пополам.

Подход №2: поделим на 3 части. средняя — хорошая часть, выбрав элемент в которой части получаются $\leqslant \frac{2}{3}n$. Каждый третий раз пилим пополам примерно. $E(T(n)) \leqslant 3 \cdot \log_{\frac{3}{2}} n = O(\log n)$

Определение 1. К-я порядковая статистика: ровно k элементов меньше выбранного.

Сортировкой: $O(n \log n)$

Можно быстрее: Аогоритм Хоара

Возьмём массив a, выберем случайный элемент x. Распилим массив на 2 куска : $< x, \geqslant x$

Если знаем k, которое ищем, то выбираем одну часть и смотрим там.

```
a // глобальный массив
find(l, r, k): // l<=k<r
    x = a[random(l..r-1)]
    if r-l = 1: // l=k, r = k+1
        return
    m=l
    for i = l .. r-1:
        if a[i]<x:
            swap(a[i],a[m])
            m++
    if k<m:
        find(l,m,k)
```

else:

find(m,r,k)

1.5 Алгоритм Блют-Флойд-Пратт-Ривест-Тарьян

Разобьём массив на блоки по 5 элементов. $\frac{n}{5}$ блоков. В каждом блоке выбираем медиану. Выбираем медиану среди всех медиан. Если брать медиану из медиан, то это будет неплохой средний элемент

$$T(n)=n+T(\tfrac{n}{5})+T(\tfrac{7n}{10})=O(n)$$

$$T(n) \leqslant c \cdot n$$

$$T(n) \le n + c \cdot \frac{n}{5} + c \cdot \frac{7n}{10} = n \left(1 + \frac{9}{10} \cdot c \right) < c \cdot n$$
 $10 \le c$