MA 106-2023-2 and MA110-2023-2 (1st half): Linear Algebra*

Rekha Santhanam**

Department of Mathematics, I.I.T. Bombay

February 20, 2024

This set of slides contains the material presented in my classes (Divisions 2 & 3) of MA106, and the first half of MA110 in Spring 2024 at IIT Bombay. The primary content was developed by me and my co-instructor**, Prof. Ananthnarayan Hariharan using the reference:

Linear Algebra and its Applications by G. Strang, 4th Ed., Thomson.

The topics covered are:

1. Linear Equations & Matrices

- (a) Linear Equations & Pivots
- (b) Matrices
- (c) Gaussian Elimination
- (d) Null Space & Column Space: Introduction

2. VECTOR SPACES

- (a) Vector Spaces & Subspaces
- (b) Linear Span & Independence
- (c) Basis & Dimension
- (d) Null Space, Column Space & Row Space
- (e) Linear Transformations

3. EIGENVALUE DECOMPOSITION

- (a) Eigenvalues & Eigenvectors
- (b) Diagonalization

4. Orthogonality & Projections

^{*}There maybe mild differences between the class slides and these. Please use with care

- (a) Orthogonality
- (b) Projection and Least Squares method
- (c) Gram-Schmidt Process and Applications.

APPENDIX I -DETERMINANTS

 ${\tt NOTE:}$ (i) The notation in these slides is the same as that discussed in class. (ii) Work out as many examples as you can.

Chapter 1. Linear Equations & Matrices

1.1 Linear Equations & Pivots

What is Linear Algebra?

Is (d, c) = (950, 0) the only solution of

$$d = -25c + 950$$
?

This equation has several solutions; (d, c) = (-300, 50), (700, 10), (945, 0.2), (-3450, -100), etc.

Are all these solutions **permissible?**

Definitely not (50, -300), (945, 0.2) or (3450, -100). Further assume delivery costs force the following linear relation on the number of deliveries

Then,
$$d = 10c + 250$$
.

Solve d = 10c + 250, d = -25c + 950 simultaneously to get (450, 20).

Key note: In general, we want all possible solutions to the given system, i.e., without any counlike the introductory example.

Solving equations, Example

Solve the system: (1) 2x + y = 5, (2) x + 2y = 4.

Elimination of variables: Eliminate x by $(2) - 1/2 \times (1)$ to get y = 1, or

Cramer's Rule (determinant):
$$y = \begin{vmatrix} 2 & 5 \\ 1 & 4 \\ 2 & 1 \\ 1 & 2 \end{vmatrix} = \frac{8-5}{4-1} = 1$$

In either case, back substitution gives x = 2

We could also solve for x first and use back substitution for y. Why?

Key Note: For a large system, say 100 equations in 100 variables, elimination method is preferred, since computing 101 determinants of size 100×100 is time-consuming.

Geometry of linear equations

Row method:

2x+y=5

and

x+2y=4

represent lines in \mathbb{R}^2 passing through $\boxed{(0,5)}$ and $\boxed{(5/2,0)}$ and through $\boxed{(0,2)}$ and $\boxed{(4,0)}$ respectively.

The intersection of the two lines is the unique point (2,1). Hence x=2 and y=1 is

the solution of above system of linear equations.

$$x \binom{2}{1} + y \binom{1}{2} = \binom{5}{4}.$$

We need to find a *linear combination* of the column vectors on LHS to produce the column vector on RHS.

Geometrically this is same as completing the parallelogram with given directions and diagonal.

What are our choices of x and y here?

Equations in 3 variables: Geometry

Row method

A linear equation in 3 variables represents a plane in a 3 dimensional space \mathbb{R}^3 .

Example: (1)

represents a plane passing through: (0,0,2), (0,3,0), (6,0,0).

Example: (2)

represents a plane passing through: (-2,1,0), (-1,-1,1), (2,-1,0).

In Example (2) we are looking for (x, y, z) such that $(x, y, z) \cdot (1, 2, 3) = 0$, i.e., plane (2) is the set of all vectors perpendicular to the vector (1,2,3).

4

Equations in 3 variables: Examples

Example 1: (1)
$$x + 2y + 3z = 6$$
 (2) $x + 2y + 3z = 0$.

The two equations represent planes with normal vector (1,2,3) and are parallel to each other. **Exercise**: Prove this.

How many solutions can we find? There are no solutions.

Example 2: (1)
$$x + 2y + 3z = 0$$
 (2) $-x + 2y + z = 0$

The two equations represent planes passing through (0,0,0).

The intersection is non-empty, i.e., the system has <u>at least</u> one solution.

In fact, the solution set is a line passing through the origin.

Exercise: Find all the solutions in the second example.

3 equations in 3 variables

• Solving 3 by 3 system by the **row method** means finding an intersection of three planes, say P_1, P_2, P_3 .

This is same as the intersection of a line L

(intersection of P_1 and P_2 , if they are non-parallel) with the plane P_3 .

- If the line L does not intersect the plane P_3 , then the linear system has no solution, i.e., the system is *inconsistent*. Same is true if P_1 and P_2 were parallel.
- If the line L is contained in the plane P_3 , then the system has infinitely many solutions.

In this case, every point of ${\it L}$ is a solution.

• **Exercise:** Workout some examples.

Column method:

Consider the 3×3 system:

x+2y+3z=2, -2x+3y=-5, -x+5y+2z=-4. Equivalently,

$$x \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} + y \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} + z \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \\ -4 \end{pmatrix}$$

We want a linear combination of the column vectors on LHS which is equal to RHS.

Observe: • x = 1, y = -1, z = 1 is a solution. **Q:** Is it unique?

• Since each column represents a vector in \mathbb{R}^3 from origin, we can find the solution geometrically, as in the 2×2 case.

5

Q: Can we do the same when number of variables are > 3?

Use other solving techniques to answer such questions.

Gaussian Elimination

Example: 2u + v + w = 5, 4u - 6v = -2, -2u + 7v + 2w = 9.

Algorithm: Eliminate u from last 2 equations by $(2) - \frac{4}{2} \times (1)$, and $(3) - \frac{-2}{2} \times (1)$ to get the *equivalent system:*

$$2u + v + w = 5$$
, $-8v - 2w = -12$, $8v + 3w = 14$

The coefficient used for eliminating a variable is called a *pivot*. The first pivot is 2. The second pivot is -8. The third pivot is 1. Eliminate v from the last equation to get an equivalent *triangular system*:

$$2u + v + w = 5$$
, $-8v - 2w = -12$, $1 \cdot w = 2$

Solve this triangular system by *back substitution*, to get the *unique solution* w=2, v=1, u=1.

Matrix notation ($A\vec{x} = \vec{b}$) for linear systems

Consider the system

$$2u + v + w = 5$$
, $4u - 6v = -2$, $-2u + 7v + 2w = 9$.
Let $\vec{x} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$ be the unknown vector, and $\vec{b} = \begin{pmatrix} 5 \\ -2 \\ 9 \end{pmatrix}$.

The coefficient matrix is $A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}$.

If we have m equations in n variables, then A has m rows and n columns, the column vector \vec{b} has size m, and the unknown vector \vec{x} has size n.

Notation: From now on, we will write \vec{x} as x and \vec{b} as b.

Elimination: Matrix form

Example: 2u + v + w = 5, 4u - 6v = -2, -2u + 7v + 2w = 9.

Forward elimination in the *augmented* matrix form [A|b]:

(NOTE: The last column is the constant vector b).

$$\begin{pmatrix} \mathbf{2} & 1 & 1 & | & 5 \\ 4 & -6 & 0 & | & -2 \\ -2 & 7 & 2 & | & 9 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{2} & 1 & 1 & | & 5 \\ 0 & -\mathbf{8} & -2 & | & -12 \\ 0 & 8 & 3 & | & 14 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 0 & -8 & -2 & | & -12 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}. \text{ Solution is: } x = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

6

Q: Is there a relation between 'pivots' and 'unique solution'?

Singular case: No solution

Example: 2u + v + w = 5, 4u - 6v = -2, -2u + 7v + w = 9.

Step 1 Eliminate u (using the 1st pivot 2) to get:

$$2u + v + w = 5$$
, $-8v - 2w = -12$, $8v + 2w = 14$

Step 2 : Eliminate v (using the 2nd pivot -8) to get:

$$2u + v + w = 5$$
, $-8v - 2w = -12$, $0 = 2$.

The last equation shows that there is no solution,

i.e., the system is inconsistent.

Geometric reasoning: In Step 1, notice we get two distinct parallel planes 8v + 2w = 12 and 8v + 2w = 14.

They have no point in common.

Note: The planes in the original system were not parallel, but in an equivalent system, we get two distinct parallel planes!

Singular Case: Infinitely many solutions

Example: 2u + v + w = 5, 4u - 6v = -2, -2u + 7v + w = 7.

Step 1 Eliminate u (using the 1st pivot 2) to get:

$$2u + v + w = 5$$
, $-8v - 2w = -12$, $8v + 2w = 12$

Step 2: Eliminate y (using the 2nd pivot -8) to get:

$$2u + v + w = 5$$
, $-8v - 2w = -12$, $0 = 0$.

There are only two equations. For every value of w, values for u and v are obtained by back-substitution, e.g, (1,1,2) or $\left(\frac{7}{4},\frac{3}{2},0\right)$. Hence the system has infinitely many solutions.

Geometric reasoning: In Step 1, notice we get two parallel planes -8v - 2w = 12 and 8v + 2w = 12.

They give the same plane. Hence we are looking at the intersection of the two planes, 2u + v + w = 5 and 8u + 2v = 12, which is a line.

Some things to think about

- What are all the ways two different lines can intersect? What are all possible ways three different lines can intersect?
- What are all the ways two different planes can intersect? What are all possible ways three different plane can intersect?
- What is (if any) the geometric significance of the equation x + y + z + w = 0?
- Does the elimination method change the system of equations?
- Why does the solution set remain same all through the elimination method?

Singular Cases: Matrix Form

Eg. 1 2u + v + w = 5, 4u - 6v = -2, -2u + 7v + w = 9.

$$\begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 4 & -6 & 0 & | & -2 \\ -2 & 7 & 1 & | & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 0 & -8 & -2 & | & -12 \\ 0 & 0 & 0 & | & 2 \end{pmatrix}.$$

No Solution! Why?

Eg 2. 2u + v + w = 5, 4u - 6v = -2, -2u + 7v + w = 7.

$$\begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 4 & -6 & 0 & | & -2 \\ -2 & 7 & 1 & | & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 0 & -8 & -2 & | & -12 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

Infinitely many solutions! Why?

Q: Is there a relation between pivots and number of solutions? THINK!

Choosing pivots: Two examples

Example 1:

$$-6v + 4w = -2$$
, $u + v + 2w = 5$, $2u + 7v - 2w = 9$.

Forward elimination in the *augmented* matrix form [A|b]:

$$\begin{pmatrix} \mathbf{0} & -6 & 4 & | & -2 \\ 1 & 1 & 2 & | & 5 \\ 2 & 7 & -2 & | & 9 \end{pmatrix}$$

Coefficient of u in the first equation is 0. To get a non-zero coefficient we exchange the first two equations, i.e, interchange the first two rows of the matrix and get

$$\begin{pmatrix} 1 & 1 & 2 & | & 5 \\ 0 & -6 & 4 & | & -2 \\ 2 & 7 & -2 & | & 9 \end{pmatrix}$$

Exercise: Continue using elimination method; find all solutions.

Choosing pivots: Two examples

Example 2: 3 equations in 3 unknowns (u, v, w)

0u + v + 2w = 1, 0u + 6v + 4w = -2, 0u + 7v - 2w = -9.

$$[A|b] = \begin{pmatrix} \mathbf{0} & \mathbf{1} & 2 & | & 1 \\ \mathbf{0} & 6 & 4 & | & -2 \\ \mathbf{0} & 7 & -2 & | & -9 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & \mathbf{1} & 2 & | & 1 \\ 0 & 0 & -\mathbf{8} & | & -8 \\ 0 & 0 & -16 & | & -16 \end{pmatrix}$$

Coefficient of u is 0 in every equation. The first pivot is 1 and we eliminate v from the second and third equations. Solve for w and v to get w = 1, and v = -1.

Note: (0,-1,1) is a solution of the system. So is (1,-1,1).

In general, (*, -1, 1) is a solution, for any real number *.

Observe: Unique solution is not an option. Why? This system has infinitely many solutions.

Q: Does such a system always have infinitely many solutions? **A:** Depends on the constant vector b.

Exercise: Find 3 vectors b for which the above system has (i) no solutions (ii) infinitely many solutions.

Summary: Pivots

- Can a pivot be zero? No (since we need to divide by it).
- If the first pivot (coefficient of 1st variable in 1st equation) is zero, then interchange it with next equation so that you get a non-zero first pivot. Do the same for other pivots.
- If the coefficient of the 1st variable is zero in every equation, consider the 2nd variable as 1st and repeat the previous step.
- Consider system of n equations in n variables.

The non-singular case, i.e. the system has **exactly** n pivots:

The system has a unique solution.

The singular case, i.e., the system has **atmost** n-1 pivots: The system has no solutions, i.e., it is inconsistent, or it will have infinitely many solutions, provided it is consistent.

1.2 MATRICES

What is a matrix?

A *matrix* is a collection of numbers arranged into a fixed number of rows and columns. If a matrix A has m rows and n columns, the size of A is $m \times n$.

The rows of
$$A$$
 are denoted $A_{1*}, A_{2*}, \dots, A_{m*}$, i.e., $A = \begin{pmatrix} A_{1*} \\ A_{2*} \\ \vdots \\ A_{m*} \end{pmatrix}$,

the columns are denoted $A_{*1}, A_{*2}, \dots, A_{*n}$, i.e.,

 $A = (A_{*1} \ A_{*2} \ \cdots \ A_{*n})$, and the (i, j)th entry is A_{ij} (or a_{ij}).

Operations on Matrices: Matrix Addition

Example 1. We know how to add two row or column vectors.

$$(1 \ 2 \ 3) + (-3 \ -2 \ -1) = (-2 \ 0 \ 2)$$
 (component-wise)

We can add matrices if and only if they have the same size,

and the addition is component-wise.

Example 2.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix} + \begin{pmatrix} -1 & -4 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -2 & 1 \\ 2 & 2 & 5 \end{pmatrix}$$

Thus

$$(A+B)_{i*} = A_{i*} + B_{i*}$$
 and $(A+B)_{*j} = A_{*j} + B_{*j}$

Linear Systems: Multiplying a Matrix and a Vector

One row at a time (dot product): The system

2u + v + w = 5, 4u - 6v = -2, -2u + 7v + 2w = 9 can be rewritten using dot product as follows:

Note: No. of columns of A = length of the vector x.

Multiplication of a Matrix and a Vector

Dot Product (row method): Ax is obtained by taking dot product of each row of A with x.

If
$$A = \begin{pmatrix} A_{1*} \\ A_{2*} \\ A_{3*} \end{pmatrix}$$
, then $\begin{vmatrix} Ax = \begin{pmatrix} A_{1*} \cdot x \\ A_{2*} \cdot x \\ A_{3*} \cdot x \end{pmatrix} \end{vmatrix}$

Linear Combinations (column method):

The column form of the system

$$2u + v + w = 5$$
, $4u - 6v = -2$, $-2u + 7v + 2w = 9$ is:

$$u \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix} + v \begin{pmatrix} 1 \\ -6 \\ 7 \end{pmatrix} + w \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

Thus Ax is a linear combination of columns of A, with the coordinates of x as weights, i.e., $Ax = uA_{*1} + vA_{*2} + wA_{*3}$.

An Example

Let
$$A = \begin{pmatrix} 1 & 3 & -3 & -1 \\ 1 & 2 & 0 & -2 \\ 1 & 0 & -2 & 0 \end{pmatrix}$$
, $x = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, and $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.
 $A_{1*} = \begin{pmatrix} 1 & 3 & -3 & -1 \end{pmatrix}$, $A_{2*} = \begin{pmatrix} 1 & 2 & 0 & -2 \end{pmatrix}$ $A_{3*} = ?$.

Then
$$A_{1*} \cdot x = ?$$
, $A_{2*} \cdot x = 0$, $A_{3*} \cdot x = 0$, hence $Ax = \begin{pmatrix} ? \\ ? \\ ? \end{pmatrix}$.

Q: What is Ae_1 ? **A:** The first column A_{*1} of A.

Exercise:

What should x be so that $Ax = A_{*j}$, the jth column of A?

Observe: No. of rows of Ax = No. of rows of A, and No. of columns of Ax = No. of columns of x.

Question: What can you say about the solutions of Ax = 0?

Operations on Matrices: Matrix Multiplication

Two matrices A and B can be multiplied if and only if

no. of columns of A = no. of rows of B.

If *A* is $m \times \underline{n}$ and *B* is $\underline{n} \times r$, then *AB* is $m \times r$.

Key Idea: We know how to multiply a matrix and a vector.

Column wise: Write *B* column-wise, i.e., let $B = (B_{*1} \ B_{*2} \ \cdots \ B_{*r})$. Then

$$AB = \begin{pmatrix} AB_{*1} & AB_{*2} & \cdots & AB_{*r} \end{pmatrix}$$

Note: Each B_{*j} is a column vector of length n. Hence, AB_{*j} is a column vector of length m. So, the size of AB is $m \times r$.

Operations on Matrices: Matrix Multiplication

Row wise: Write A row-wise, i.e., let A_{1*}, \ldots, A_{m*} be the rows of A. Then

$$AB = \begin{pmatrix} A_{1*} \\ \vdots \\ A_{m*} \end{pmatrix} B = \begin{pmatrix} A_{1*}B \\ \vdots \\ A_{m*}B \end{pmatrix}$$

Note: Each A_{i*} is a row vector of size $1 \times n$. Hence, $A_{i*}B$ is a row vector of size $1 \times r$. So, the size of AB is $m \times r$.

WORKING RULE:

The entry in the *i*th row and *j*th column of AB is the dot product of the *i*th row of A with the *j*th column of B, i.e., $(AB)_{ij} = A_{i*} \cdot B_{*j}$.

Properties of Matrix Multiplication

If A is $m \times n$, B is $n \times r$, C is $r \times l$.

- $(AB)_{ij} = A_{i*} \cdot B_{*j} = (ith \text{ row of } A) \cdot (jth \text{ column of } B)$
- jth column of $AB = A \cdot (jth \text{ column of } B)$, i.e., $(AB)_{*j} = AB_{*j}$.
- *i*th row of AB = (ith row of $A) \cdot B$, i.e., $(AB)_{i*} = A_{i*}B$.
- (associativity) (AB)C = A(BC). Why?
- (distributivity) A(B+C) = AB + AC. How to verify?

$$(B+C)D = BD + CD$$
. Why?

• (non-commutativity) $AB \neq BA$, in general. Why? Find examples.

Matrix Multiplication: Examples Examples:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (Identity)

- AB =??
- size of BA is $__\times__$
- $BA = \begin{pmatrix} 4 & 10 & 7 \\ 4 & 18 & 10 \end{pmatrix}$,
- and IA = A = AI.

Questions to think about

- What does having a column of zeros in the augmented system signify for the solution of the corresponding system of linear equations? How are the pivots and solution set related?
- Recall Ae_j picks out the j^{th} column. What matrix multiplication will pick out the i^{th} row of A.
- The system Ax = 0 always has a solution. What does Ax = 0 having unique or infinitely many solutions signify geometrically for A?

Matrix Multiplication: Examples Examples:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(Permutation)
$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} e_2 & e_1 & e_3 \end{pmatrix}$$

Then $AP = (Ae_2 \ Ae_1 \ Ae_3) = (A_{*2} \ A_{*1} \ A_{*3})$

Exercise: Find EA and PA.

Question: Can you obtain *EA* and *PA* directly from *A*? How?

Transpose A^T of a Matrix A

Defn. The *i*-th row of A is the *i*-th column of A^T , the transpose of A and vice-versa. Hence if $A_{ij} = a$, then $(A^T)_{ji} = a$.

Example: If $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 1 \end{pmatrix}$, then $A^T = \begin{pmatrix} 1 & 0 \\ 2 & -2 \\ 3 & 1 \end{pmatrix}$.

- If A is $m \times n$, then A^T is $n \times m$.
- If A is upper triangular, then A^T is lower triangular.
- $(A^T)^T = A$, $(A + B)^T = A^T + B^T$.
- $(AB)^T = B^T A^T$. Proof. Exercise.

Symmetric Matrix

Defn. If $A^T = A$, then A is called a *symmetric* matrix.

Note: A symmetric matrix is always $n \times n$.

Examples: $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are symmetric.

- If A, B are symmetric, then AB may **NOT be symmetric.** In the above case, $AB = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$.
- If A and B are symmetric, then A + B is symmetric. Why?
- ullet If A is a $n \times n$ matrix , $A + A^T$ is symmetric. Why?
- For any $m \times n$ matrix B, BB^T and B^TB are symmetric. Why?

Exercise: If $A^T = -A$, we say that A is *skew-symmetric*. Verify if similar observations are true for skew-symmetric matrices.

Inverse of a Matrix

Defn. Given A of size $n \times n$, we say B is an inverse of A if AB = I = BA. If this happens, we say A is *invertible*.

- What would be the inverse of $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$?
- An inverse may not exist. Find an example. *Hint:* n = 1.
- An inverse of A, if it exists, has size $n \times n$.
- If the inverse of A exists, it is unique, and is denoted A^{-1} . Why unique? *Proof.* Let B and C be inverses of A.

$$\Rightarrow BA = I$$
 by definition of inverse.
 $\Rightarrow (BA)C = IC$ multiply both sides on the right by C .
 $\Rightarrow B(AC) = IC$ by associativity.
 $\Rightarrow BI = IC$ since C is an inverse of A .
 $\Rightarrow B = C$ by property of the identity matrix I .

• If A and B are invertible, what about AB? AB is invertible, with inverse $(AB)^{-1} = B^{-1}A^{-1}$.

Proof. Exercise.

- If A, B are invertible, what about A + B? A + B may not be invertible. Example: I + (-I) = (0).
- If A is invertible, what about A^T ? A^T is invertible with inverse $(A^T)^{-1} = (A^{-1})^T$. Proof. Use $AA^{-1} = I$. Take transpose.
- If A is symmetric and invertible then, is A^{-1} symmetric? Yes. *Proof.* Exercise!
- (Identity) $I^{-1} = I$.

Inverses and Linear Systems

- If A is invertible then the system Ax = b has a solution, for every constant vector b, namely $x = A^{-1}b$. Is this unique?
- Since x = 0 is always a solution of Ax = 0, if Ax = 0 has a non-zero solution, then A is not invertible by the last remark.
 - ullet If A is invertible, then the Gaussian elimination of A produces n pivots.

EXERCISE:

- 1. A diagonal matrix *A* is invertible if and only if (Hint: When are the diagonal entries pivots?)
- 2. When is an upper triangular matrix invertible?

• Since $AB = (AB_{*1} \ AB_{*2} \cdots AB_{*n})$ and $I = (e_1 \ e_2 \cdots e_n)$, if $B = A^{-1}$, then B_{*j} is a solution of $Ax = e_j$ for all j.

• Strategy to find A^{-1} : Let A be an $n \times n$ invertible matrix. Solve $Ax = e_1, Ax = e_2, \ldots, Ax = e_n$.

Solutions to Multiple Systems

Q: Let
$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$
, $b_1 = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$ $b_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$. Solve for $Ax = b_1$ and $Ax = b_2$.

Do we apply Gaussian Elimination on two augmented matrices?

Rephrased question: Let $B=\begin{pmatrix}b_1&b_2\end{pmatrix}$. Is there a matrix C such that AC=B, i.e., such that $AC_{*1}=b_1$, $AC_{*2}=b_2$?

$$[A|B] = \begin{pmatrix} 0 & 1 & -1 & | & -1 & 1 \\ 1 & 0 & 2 & | & 2 & 0 \\ 1 & 2 & 0 & | & 0 & 2 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 0 & 2 & | & 2 & 0 \\ 0 & 1 & -1 & | & -1 & 1 \\ 1 & 2 & 0 & | & 0 & 2 \end{pmatrix}$$

$$\xrightarrow{R_3 - R_1} \begin{pmatrix} 1 & 0 & 2 & | & 2 & 0 \\ 0 & \mathbf{1} & -1 & | & -1 & 1 \\ 0 & 2 & -2 & | & -2 & 2 \end{pmatrix} \xrightarrow{R_3 - 2R_2} \begin{pmatrix} 1 & 0 & 2 & | & 2 & 0 \\ 0 & 1 & -1 & | & -1 & 1 \\ 0 & 0 & 0 & | & 0 & 0 \end{pmatrix}$$

Q: Are $Ax = b_1$ and $Ax = b_2$ both consistent?

Q: Given matrices A, $B = \begin{pmatrix} b_1 & b_2 \end{pmatrix}$, is there a matrix C such that AC = B?

$$[A|B] = \begin{pmatrix} 0 & 1 & -1 & | & -1 & 1 \\ 1 & 0 & 2 & | & 2 & 0 \\ 1 & 2 & 0 & | & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 2 & | & 2 & 0 \\ 0 & 1 & -1 & | & -1 & 1 \\ 0 & 0 & 0 & | & 0 & 0 \end{pmatrix}$$

A solution to $Ax = b_1$ is $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, and to $Ax = b_2$ is $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

(Verify)! So $C = (e_3 \ e_2)$ works! Is it unique?

Revisit the question about matrix inverses. Can you find inverse of a matrix this way?

Finding inverse of matrix

STRATEGY: Let A be an $n \times n$ matrix. If v_1, v_2, \ldots, v_n are solutions of $Ax = e_1$, $Ax = e_2, \ldots, Ax = e_n$ respectively, then if it exists, $A^{-1} = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$.

If $Ax = e_j$ is not solvable for some j, then A is not invertible.

Thus, finding A^{-1} reduces to solving multiple systems of linear equations with the same coefficient matrix.

Consider the previous example, A. Is it invertible?

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Observe: In the above process, we used a *row exchange*: $R_1 \leftrightarrow R_2$ and *elimination using pivots*: $R_3 = R_3 - R_1$, $R_3 = R_3 - 2R_2$. Row operations can be achieved by left multiplication by special matrices.

1.3 GAUSSIAN ELIMINATION

Row Operations: Elementary Matrices

Example:
$$E\mathbf{x} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} u \\ v - 2u \\ w \end{pmatrix}.$$

If
$$A = (A_{*1} \ A_{*2} \ A_{*3})$$
, then $EA = (EA_{*1} \ EA_{*2} \ EA_{*3})$.

Thus, EA has the same effect on A as the row operation $R_2 \mapsto R_2 + (-2)R_1$ on the matrix A.

Note: *E* is obtained from the identity matrix *I* by the row operation $R_2 \mapsto R_2 + (-2)R_1$.

Such a matrix (diagonal entries 1 and atmost one off-diagonal entry non-zero) is called an *elementary* matrix.

Notation: $E := E_{21}(-2)$. Similarly define $E_{ij}(\lambda)$.

Row Operations: Permutation Matrices

Example:
$$P x = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} v \\ u \\ w \end{pmatrix}$$

If
$$A = (A_{*1} \ A_{*2} \ A_{*3})$$
, then $PA = (PA_{*1} \ PA_{*2} \ PA_{*3})$.

Thus PA has the same effect on A as the row interchange $R_1 \leftrightarrow R_2$.

Note: We get P from the I by interchanging first and second rows. A matrix is called a *permutation* matrix if it is obtained from identity by row exchanges (possibly more than one).

Notation: $P = P_{12}$. Similarly define P_{ij} .

Remark: Row operations correspond to multiplication by elementary matrices $E_{ij}(\lambda)$ or permutation matrices P_{ij} on the left.

Things to think about

- Complete the proofs left as exercise.
- Currently we can are unable to show that if AB = I then BA = I for square matrices A and B. Why so?
- ullet Can you rephrase what we proved about transposes as a property of the transpose function from the set of $m \times n$ matrices to $n \times m$ matrices?
 - Show that both Elementary matrices and Permutation matrices are invertible.
- Can you write down the precise inverse for a given elementary matrix or a permutation matrix.

Elementary Matrices: Inverses

For any $n \times n$ matrix A, observe that the row operations $R_2 \mapsto R_2 - 2R_1, R_2 \mapsto R_2 + 2R_1$ leave the matrix unchanged.

In matrix terms, $E_{21}(2)E_{21}(-2)A = IA = A$ since

$$E_{21}(-2) \ E_{21}(2) = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

• If
$$E_{21}(\lambda) = \begin{pmatrix} 1 & 0 & 0 \\ \lambda & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, what is your guess for $E_{21}(\lambda)^{-1}$? Verify.

• Let
$$P_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} e_2^T \\ e_1^T \\ e_3^T \end{pmatrix}$$
. What is P_{12}^T ? $P_{12}^T P_{12}$? P_{12}^{-1} ?

Permutation Matrices: Inverses

Notice that the row interchange $R_1 \leftrightarrow R_2$ followed by $R_1 \leftrightarrow R_2$ leaves a matrix unchanged.

In matrix terms, $P_{12}P_{12}A = IA = A$, since

$$P_{12}P_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

• Let P_{ij} be obtained by interchanging the *i*th and *j*th rows of *I*. Show that $P_{ij}^T = P_{ij} = P_{ij}^{-1}$.

• Let
$$P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} e_3^T \\ e_1^T \\ e_2^T \end{pmatrix}$$
. Show that $P = P_{12}P_{23}$. Hence, $P^{-1} = (P_{12}P_{23})^{-1} = P_{23}^{-1}P_{12}^{-1} = P_{23}^TP_{12}^T = P^T$.

Elimination using Elementary Matrices

Consider
$$\begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 5 \\ -2 \\ 9 \end{pmatrix} \quad (Ax = b)$$

Step 1 Eliminate u by $R_2 \mapsto R_2 + (-2)R_1$, $R_3 \mapsto R_3 + R_1$.

This corresponds to multiplying both sides on the left first by $E_{21}(-2)$ and then by $E_{31}(1)$. The equivalent system is:

$$E_{31}(1)E_{21}(-2)Ax = E_{31}(1)E_{21}(-2)b$$
, i.e.,
$$\begin{pmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 8 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 5 \\ -12 \\ 14 \end{pmatrix}.$$

Elimination using Elementary Matrices

Step 2 Eliminate v by $R_3 \mapsto R_3 + R_2$,

i.e., multiply both sides by $E_{32}(1)$ to get Ux = c,

where
$$U = E_{32}(1)E_{31}(1)E_{21}(-2)A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $c = E_{32}(1)E_{31}(1)E_{21}(-2)b = \begin{pmatrix} 5 \\ -12 \\ 2 \end{pmatrix}$.

Elimination changed A to an upper triangular matrix and reduced the problem to solving Ux = c.

Observe: The pivots of the system Ax = b are the diagonal entries of U.

Triangular Factorization

Thus (Ax = b) is equivalent to (Ux = c). where

$$E_{32}(1) E_{31}(1) E_{21}(-2) A = U$$

Multiply both sides by $E_{32}(-1)$ on the left:

$$E_{31}(1) E_{21}(-2) A = E_{32}(-1)U$$

Multiply first by $E_{31}(-1)$ and then $E_{21}(2)$ on the left:

$$A = E_{21}(2) E_{31}(-1) E_{32}(-1) U = LU$$

where U is upper triangular, which is obtained by forward elimination, with diagonal entries as pivots and $L = E_{21}(2) E_{31}(-1) E_{32}(-1)$.

Note that each $E_{ij}(a)$ is a *lower triangular*. Product of lower triangular matrices is lower triangular. In particular L is lower triangular, where

$$L = E_{21}(2) E_{31}(-1) E_{32}(-1) =$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \mathbf{2} & 1 & 0 \\ -\mathbf{1} & -\mathbf{1} & 1 \end{pmatrix}$$

Observe: L is lower triangular with diagonal entries 1 and below the diagonals are the multipliers.

(2, -1, -1) in the earlier example.

LU Decomposition

If A is an $n \times n$ matrix, with no row interchanges needed in the Gaussian elimination of A, then A = LU, where

- ullet U is an upper triangular matrix, which is obtained by forward elimination, with non-zero diagonal entries as pivots.
- ullet L is a lower triangular with diagonal entries 1 and with the multipliers needed in the elimination algorithm below the diagonals.
 - **Q:** What happens if row exchanges are required?

LU Decomposition: with Row Exchanges

Example: $A = \begin{pmatrix} 0 & 2 \\ 3 & 4 \end{pmatrix}$. A can not be factored as LU. (Why?) How to verify?

The 1st step in the Gaussian elimination of A is a row exchange.

$$P_{12} A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 0 & 2 \end{pmatrix}$$

Now elimination can be carried out without row exchanges.

- If A is an $n \times n$ non-singular matrix, then there is a matrix P which is a permutation matrix (needed to take care of row exchanges in the elimination process) such that $\overline{PA = LU}$, where L and U are as defined earlier. Why?
 - **Q:** What happens when A is an $m \times n$ matrix? **A:** Coming Soon!

Application 1: Solving systems of equations

Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -12 & -5 \\ 1 & -6 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -8 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

To solve Ax = b, we can solve two triangular systems Lc = b and Ux = c. Then Ax = LUx = Lc = b.

Take
$$b = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$
. First solve $\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$.

We get $c_1 = 1$, $-2c_1 + c_2 = 2 \Rightarrow c_2 = 4$, and similarly $c_3 = 0$.

Now solve
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -8 & 1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}.$$

We get w = 0, v = -1/2, u = 2.

Applications: 2. Invertibility of a Matrix

Let A be $n \times n$, P, L and U as before be such that PA = LU.

- P is invertible and $P^{-1} = P^T \Rightarrow A = P^{-1}LU$.
- L is lower triangular, with diagonal entries $1 \Rightarrow L$ is invertible.

Q: What is L^{-1} ? e.g., Try $L = E_{21}(2)E_{31}(-1)E_{32}(-1)$ first.

ullet The non-zero diagonal entries of U are the pivots of A.

Thus, A invertible $\Rightarrow A$ has n pivots

 \Rightarrow all diagonal entries of U are non-zero $\Rightarrow U$ is invertible.

Why? HINT: U^T is invertible.

Conversely, suppose U is invertible. Then A is invertible and has n pivots. Why? Moreover, $A^{-1} = \dots$

We have proved:

A is invertible $\Leftrightarrow U$ is invertible $\Leftrightarrow A$ has n pivots.

Computing the Inverse

Observe: $A = L U \Rightarrow A^{-1} = U^{-1} L^{-1}$.

Example: $A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{pmatrix}$ is invertible. Find A^{-1} .

If $A^{-1} = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}$, where x_i is the *i*-th column of A^{-1} , then $AA^{-1} = I$ gives three systems of linear equations

$$Ax_1 = e_1, \quad Ax_2 = e_2, \quad Ax_3 = e_3$$

where e_i is the *i*-th column of *I*. Since the coefficient matrix *A* is same in three systems, we can solve them simultaneously as follows:

Calculation of A^{-1} : Gauss-Jordan Method

Steps:
$$(A|I) \longrightarrow (U|L^{-1}) \longrightarrow (I|U^{-1}L^{-1}).$$

$$(A \mid e_1 \mid e_2 \mid e_3) = \begin{pmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 4 & -6 & 0 & | & 0 & 1 & 0 \\ -2 & 7 & 2 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\stackrel{R_2 - 2R_1}{\underset{R_3 + R_1}{\longrightarrow}} \begin{pmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & -8 & -2 & | & -2 & 1 & 0 \\ 0 & 8 & 3 & | & 1 & 0 & 1 \end{pmatrix}$$

$$\stackrel{R_3 + R_2}{\underset{R_1 - R_3}{\longrightarrow}} \begin{pmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & -8 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

$$\stackrel{R_2 + 2R_3}{\underset{R_1 - R_3}{\longrightarrow}} \begin{pmatrix} 2 & 1 & 0 & | & 2 & -1 & -1 \\ 0 & -8 & 0 & | & -4 & 3 & 2 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$

$$\stackrel{R_1 + \frac{1}{8}R_2}{\underset{R_1}{\longrightarrow}} \begin{pmatrix} 2 & 0 & 0 & | & 12/8 & -5/8 & -6/8 \\ 0 & -8 & 0 & | & -4 & 3 & 2 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$$
Divide by pivots $\longrightarrow \begin{pmatrix} 1 & 0 & 0 & | & 12/16 & -5/16 & -6/16 \\ 0 & 1 & 0 & | & 4/8 & -3/8 & -2/8 \\ 0 & 0 & 1 & | & -1 & 1 & 1 \end{pmatrix}$

$$= (I \mid U^{-1}L^{-1}) = (I \mid \mathbf{A}^{-1})$$

Echelon Form

Recall: If A is $n \times n$, then PA = LU, where P is a product of permutation matrices, L is lower triangular, U is upper triangular, and all of size $n \times n$.

Q: What happens when *A* is not a square matrix?

Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
. By elimination, we see: $A \rightarrow \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} = U$.

Thus A = LU, where $L = E_{21}(2)E_{31}(3)E_{32}(-1) = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{pmatrix}$.

If A is $m \times n$, we can find P, L and U as before. In this case, L and P will be $m \times m$ and U will be $m \times n$.

U has the following properties:

- 1. Pivots are the 1st nonzero entries in their rows.
- 2. Entries below pivots are zero, by elimination.
- 3. Each pivot lies to the right of the pivot in the row above.
- 4. Zero rows are at the bottom of the matrix.

U is called an *echelon form* of A.

What are all possible 2×2 echelon forms: Let \bullet = pivot entry.

$$\begin{pmatrix} \bullet & * \\ 0 & \bullet \end{pmatrix}$$
, $\begin{pmatrix} \bullet & * \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & \bullet \\ 0 & 0 \end{pmatrix}$, and $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Row Reduced Form

To obtain the row reduced form *R* of a matrix *A*:

- 1) Get the echelon form U. 2) Make the pivots 1.
- 3) Make the entries above the pivots 0.

Ex: Find all possible 2×2 row reduced forms.

Eg. Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
. Then $U = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Divide by pivots: $R_2/2$ gives $\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

By $R_1 = R_1 - 3R_2$, Row reduced form of A: $R = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

U and *R* are used to solve Ax = 0 and Ax = b.

1.4 Null Space and Column Space: Introduction

Null Space: Solution of Ax = 0

Let A be $m \times n$. Q: For which $x \in \mathbb{R}^n$, is Ax = 0?

The Null Space of A, denoted by N(A),

is the set of all vectors x in \mathbb{R}^n such that Ax = 0.

EXAMPLE 1: $A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$. Are the following in N(A)? $x = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$? $y = \begin{pmatrix} -5 \\ 0 \\ 0 \\ 1 \end{pmatrix}$? $z = \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \end{pmatrix}$?

$$x = \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \quad y = \begin{pmatrix} -5\\0\\0\\1 \end{pmatrix}, \quad z = \begin{pmatrix} -2\\0\\-1\\1 \end{pmatrix},$$

NOTE: x is in $N(A) \Leftrightarrow A_{1*} \cdot x = 0$, $A_{2*} \cdot x = 0$, and $A_{3*} \cdot x = 0$, i.e., x is perpendicular to every row of A.

Linear Combinations in N(A)

EXAMPLE 1 (contd.): If $A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$, then $x = \begin{pmatrix} -2 & 1 & 0 & 0 \end{pmatrix}^T$ and $y = \begin{pmatrix} -2 & 0 & -1 & 1 \end{pmatrix}^T$ are in N(A).

9: What about $x + y = \begin{pmatrix} -4 & 1 & -1 & 1 \end{pmatrix}^T$, $-3 \cdot x = \begin{pmatrix} 6 & -3 & 0 & 0 \end{pmatrix}^T$?

Remark: Let A be an $m \times n$ matrix, u, v be real numbers.

- The null space of A, [N(A)] contains vectors from \mathbb{R}^n ,
- If x, y are in N(A), i.e., Ax = 0 and Ay = 0, then A(ux + vy) = u(Ax) + v(Ay) = 0, i.e., ux + vy is in N(A).

i.e., a linear combination of vectors in N(A) is also in N(A).

Thus N(A) is closed under linear combinations.

Finding N(A)

Key Point: Ax = 0 has the same solutions as Ux = 0,

which has the same solutions as Rx = 0, i.e.,

$$N(A) = N(U) = N(R)$$

 $\boxed{N(A)=N(U)=N(R)}.$ **Reason:** If A is $m\times n$, and Q is an invertible $m\times m$ matrix, then N(A)=N(QA). (Verify this)!

Example 2:

For
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
, we have $Rx = \begin{pmatrix} \mathbf{1} & 2 & 0 & 2 \\ 0 & 0 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix}$.

Rx = 0 gives t + 2u + 2w = 0 and v + w = 0.

i.e.,
$$t = -2u - 2w$$
 and $v = -w$.

Null Space: Solution of Ax = 0

Rx = 0 gives t = -2u - 2w and v = -w,

t and v are dependent on the values of u and w.

u and w are free and independent, i.e., we can choose any value for these two variables.

Special solutions:

$$u = 1 \text{ and } w = 0, \text{ gives } x = \begin{pmatrix} -2 & 1 & 0 & 0 \end{pmatrix}^T.$$

 $u = 0 \text{ and } w = 1, \text{ gives } x = \begin{pmatrix} -2 & 0 & -1 & 1 \end{pmatrix}^T.$

The null space contains:

$$x = \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} -2u - 2w \\ u \\ -w \\ w \end{pmatrix} = u \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + w \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \end{pmatrix},$$

i.e., all possible linear combinations of the special solutions.

Rank of A

Ax = 0 always has a solution: the trivial one, i.e., x = 0.

Main Q1: When does Ax = 0 have a non-zero solution?

A: When there is at least one free variable,

i.e., not every column of R contains a pivot.

To keep track of this, we define:

(rank(A) = number of columns containing pivots in R).

If A is $m \times n$ and rank(A) = r, then

- $\operatorname{rank}(A) \leq \min\{m, n\}$.
- no. of dependent variables = r.
- no. of free variables = n r.
- Ax = 0 has only the 0 solution $\Leftrightarrow r = n$.
- $m < n \Rightarrow Ax = 0$ has non-zero solutions.

True/False: If $m \ge n$, then Ax = 0 has only the 0 solution.

rank(A) = number of dependent variables in the system Ax = 0.

Example:
$$R = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 when $A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$.

The no.of columns containing pivots in R is 2, \Rightarrow rank(A) = 2. R contains a 2×2 identity matrix, namely the rows and columns corresponding to the pivots.

This is the row reduced form of the corresponding submatrix $\begin{pmatrix} 1 & 3 \\ 2 & 8 \end{pmatrix}$ of A, which is invertible, since it has 2 pivots.

Thus, $[\operatorname{rank}(A) = r \Rightarrow A \text{ has an } r \times r \text{ invertible submatrix.}]$ State the converse. The converse is also true. Why?

Summary: Finding N(A) = N(U) = N(R)

Let A be $m \times n$. To solve Ax = 0, find R and solve Rx = 0.

1. Find free (independent) and pivot (dependent) variables: pivot variables: columns in R with pivots ($\leftrightarrow t$ and v). free variables: columns in R without pivots ($\leftrightarrow u$ and w).

- 2. No free variables, i.e., rank(A) = $n \Rightarrow N(A) = 0$.
- (a) If rank(A) < n, obtain a special solution: Set one free variable = 1, the other free variables = 0. Solve Rx = 0 to obtain values of pivot variables.
 - (b) Find special solutions for each free variable. N(A) = space of linear combinations of special solutions.
- This information is stored in a compact form in:

Null Space Matrix: Special solutions as columns.

Solving Ax = b

Caution: If $b \neq 0$, solving Ax = b may not be the same as solving Ux = b or Rx = b.

Example:
$$Ax = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix} \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = b.$$

Convert to Ux = c and then Rx = d

Convert to
$$0 : x = c$$
 and then $Rx = a$.
$$\begin{pmatrix} 1 & 2 & 3 & 5 & | & b_1 \\ 2 & 4 & 8 & 12 & | & b_2 \\ 3 & 6 & 7 & 13 & | & b_3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 5 & | & b_1 \\ 0 & 0 & 2 & 2 & | & b_2 - 2b_1 \\ 0 & 0 & -2 & -2 & | & b_3 - 3b_1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 3 & 5 & | & b_1 \\ 0 & 0 & \mathbf{2} & 2 & | & b_2 - 2b_1 \\ 0 & 0 & 0 & 0 & | & b_3 + b_2 - 5b_1 \end{pmatrix}$$

System is consistent $\Leftrightarrow b_3 + b_2 - 5b_1 = 0$, i.e., $b_3 = 5b_1 - b_2$

Solving Ax = b or Ux = c or Rx = d

Ax = b has a solution $\Leftrightarrow b_3 = 5b_1 - b_2$.

for example, there is no solution when $b = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}^T$.

Suppose $b = \begin{pmatrix} 1 & 0 & 5 \end{pmatrix}^T$. Then $[A|b] \rightarrow$

$$\begin{pmatrix} \mathbf{1} & 2 & 3 & 5 & | & b_1 \\ 0 & 0 & \mathbf{2} & 2 & | & b_2 - 2b_1 \\ 0 & 0 & 0 & | & b_3 + b_2 - 5b_1 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & 2 & 3 & 5 & | & 1 \\ 0 & 0 & \mathbf{2} & 2 & | & -2 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \mathbf{1} & 2 & 3 & 5 & | & 1 \\ 0 & 0 & \mathbf{1} & 1 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{1} & 2 & 0 & 2 & | & 4 \\ 0 & 0 & \mathbf{1} & 1 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Ax = b is reduced to solving $Ux = c = \begin{pmatrix} 1 & -2 & 0 \end{pmatrix}^T$, which is further reduced to solving $Rx = d = \begin{pmatrix} 4 & -1 & 0 \end{pmatrix}^T$. that is, we want to solve

$$\begin{pmatrix} \mathbf{1} & 2 & 0 & 2 \\ 0 & 0 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}$$

that is., t = 4 - 2u - 2w and v = -1 - w

Set the free variables u and w=0 to get t=4 and v=-1 A particular solution: $\mathbf{x}=\begin{pmatrix} 4 & 0 & -1 & 0 \end{pmatrix}^T$.

Exercise: Check it is a solution i.e., check Ax = b.

Observe: In Rx = d, the vector d gives values for the pivot variables, when the free variables are 0.

General Solution of Ax = b

From Rx = d, we get t = 4 - 2u - 2w and v = -1 - w, where u and w are free. Complete set of solutions to Ax = b:

$$\begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 4 - 2u - 2w \\ u \\ -1 - w \\ w \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ -1 \\ 0 \end{pmatrix} + u \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + w \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \end{pmatrix}.$$

To solve Ax = b completely, reduce to Rx = d. Then:

- 1. Find $x_{\text{NullSpace}}$, i.e., N(A), by solving Rx = 0.
- 2. Set free variables = 0, solve Rx = d for pivot variables. This is a particular solution: $x_{\text{particular}}$.
- 3. Complete solutions: $x_{\text{complete}} = x_{\text{particular}} + x_{\text{NullSpace}}$

Exercise: Verify geometrically for a 1×2 matrix, say $A = \begin{pmatrix} 1 & 2 \end{pmatrix}$. **Exercise:** Prove statement 3 for solutions of any Ax = b.

The Column Space of A **Q:** Does Ax = b have a solution? **A:** Not always.

Main Q2: When does Ax = b have a solution?

If Ax = b has a solution, then we can find numbers x_1, \ldots, x_n

such that
$$(A_{*1} \cdots A_{*n}) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 A_{*1} + \cdots + x_n A_{*n} = b$$
,

that is, b can be written as a linear combination of columns of A.

The *column space* of A, denoted C(A);

is the set of all linear combinations of the columns of A= $\{b \text{ in } \mathbb{R}^m \text{ such that } Ax = b \text{ is consistent}\}.$

Finding C(A): Consistency of Ax = b

Example: Let $A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$. Then Ax = b, where $b = \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}^T$, has a solution whenever $-5b_1 + b_2 + b_3 = 0$

- C(A) is a plane in \mathbb{R}^3 passing through the origin with normal vector $\begin{pmatrix} -5 & 1 & 1 \end{pmatrix}^T$.
- $c = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}^T$ is not in C(A) as Ax = c is inconsistent.
- $d = \begin{pmatrix} 1 & 0 & 5 \end{pmatrix}^T$ is in C(A) as Ax = d is consistent.

Exercise: Write b as a linear combination of the columns of A.

(A different way of saying: Solve Ax = b).

$$(1 \quad 0 \quad 5)^T = 4A_{*1} + (-1)A_{*3}.$$

Q: Can you write b as a different combination of A_{*1}, \ldots, A_{*4} ?

Linear Combinations in C(A)

Let A be an $m \times n$ matrix, u and v be real numbers.

- The column space of A, C(A) contains vectors from \mathbb{R}^m .
- If a, b are in C(A), i.e., Ax = a and Ay = b for some x, y in \mathbb{R}^n , then ua + vb =u(Ax)+v(Ay)=A(ux+vy)=Aw, where w=ux+vy. Hence, if $w=\begin{pmatrix} w_1 & \cdots & w_n \end{pmatrix}^T$, then $ua + vb = w_1 A_{*1} + \cdots + w_n A_{*n}$

i.e., a linear combination of vectors in C(A) is also in C(A).

Thus, C(A) is closed under linear combinations.

• If b is in C(A), then b can be written as a linear combination of the columns of A in as many ways as the solutions of Ax = b.

Summary: N(A) and C(A)

Remark: Let A be an $m \times n$ matrix.

- The null space of A, N(A) contains vectors from \mathbb{R}^n .
- $Ax = 0 \Leftrightarrow x \text{ is in } N(A)$.

- The column space of A, C(A) contains vectors from \mathbb{R}^m .
- If B is the nullspace matrix of A, then C(B) = N(A).
- Ax = b is consistent $\Leftrightarrow b$ is in $C(A) \Leftrightarrow b$ can be written as a linear combination of the columns of A. This can be done in as many ways as the solutions of Ax = b.
- Let A be $n \times n$. A is invertible $\Leftrightarrow N(A) = \{0\} \Leftrightarrow C(A) = \mathbb{R}^n$. Why?
- N(A) and C(A) are closed under linear combinations.

Chapter 2. VECTOR SPACES

2.1 VECTOR SPACES AND SUBSPACES

Vector Spaces: \mathbb{R}^n

We begin with \mathbb{R}^1 , \mathbb{R}^2 ,..., \mathbb{R}^n , etc., where \mathbb{R}^n consists of all column vectors of length n, i.e., $\mathbb{R}^n = \{x = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix}^T$, where x_1, \dots, x_n are in $\mathbb{R}\}$.

We can add two vectors, and we can multiply vectors by scalars, (i.e., real numbers). Thus, we can take linear combinations in \mathbb{R}^n .

EXAMPLES:

 \mathbb{R}^1 is the real line, \mathbb{R}^3 is the usual 3-dimensional space, and

 \mathbb{R}^2 is represented by the x-y plane; the x and y co-ordinates are given by the two components of the vector.

Vector Spaces: Definition

Defn. A non-empty set V is a vector space if it is closed under vector addition (i.e., if x, y are in V, then x + y must be in V) and scalar multiplication, (i.e., if x is in V, a is in \mathbb{R} , then a * x must be in V) satisfying a few axioms.

Equivalently, x, y in V, a, b in $\mathbb{R} \Rightarrow a * x + b * y$ must be in V.

- \bullet A vector space is a triple (V, +, *) with vector addition + and scalar multiplication *(see next reading slide).
- ullet The elements of V are called vectors and the scalars are chosen to be real numbers (for now).

- \bullet If the scalars are allowed to be complex numbers, then V is a *complex* vector space.
- **Primary Example:** \mathbb{R}^n . Under which operations.

Reading: Vector Spaces definition continued

Let x, y and z be vectors, a and b be scalars The vector addition and scalar multiplication are required to satisfy the following axioms:

- x + y = y + x Commutativity of addition
- (x + y) + z = x + (y + z) Associativity of addition
- There is a unique vector 0, such that x + 0 = x Existence of additive identity
- For each x, there is a unique -x such that x+(-x)=0 (Existence of additive inverse)
- 1 * x = x [Unit property]
- (a+b)*x = a*x + b*x, a*(x+y) = a*x + a*y (ab)*x = a*(b*x) [Compatibility]

Notation: For a scalar a, and a vector x, we denote a * x by ax.

Vector Spaces: Examples

- 1. $V = \{0\}$, the space consisting of only the zero vector.
- 2. $V = \mathbb{R}^n$, the *n*-dimensional space.
- 3. $V = \mathbb{R}^{\infty} = \text{sequences of real numbers, e.g., } x = (0, 1, 0, 2, 0, 3, 0, 4, \ldots), \text{ with componentwise addition and scalar multiplication.}$
- 4. $V = \mathcal{M}_{m \times n}$, the set of $m \times n$ matrices, with entry-wise + and *.
- 5. $V = \mathcal{P}$, the set of polynomials, e.g. $1 + 2x + 3x^2 + \cdots + 2023x^{2022}$, with term-wise + and *.
- 6. $V = \mathcal{C}[0,1]$, the set of continuous real-valued functions on the closed interval [0,1].e.g., x^2 , e^x are vectors in V. How about 1/x and 1/(x-5)? Are they vectors in V?

Vector addition and scalar multiplication are pointwise:

$$(f+g)(x) = f(x) + g(x)$$
 and $(a*f)(x) = af(x)$.

Subspaces: Definition and Examples

If V is a vector space, and W is a non-empty subset, then W is a *subspace* of V if:

$$x$$
, y in W , a , b in $\mathbb{R} \Rightarrow a*x+b*y$ are in W .

i.e., linear combinations stay in the subspace.

Examples:

- 1. $\{0\}$: The zero subspace and \mathbb{R}^n itself.
- 2. $\{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$ is not a subspace of \mathbb{R}^2 . Why?
- 3. The line x y = 1 is not a subspace of \mathbb{R}^2 . Why?

Exercise: A line not passing through the origin is not a subspace of \mathbb{R}^2 .

4. The line x - y = 0 is a subspace of \mathbb{R}^2 . Why?

Exercise: Any line passing through the origin is a subspace of \mathbb{R}^2 .

5. Let A be an $m \times n$ matrix.

The null space of A, N(A), is a subspace of \mathbb{R}^n .

The column space of A, C(A), is a subspace of \mathbb{R}^m .

Recall: They are both closed under linear combinations.

- 6. The set of 2×2 symmetric matrices is a subspace of \mathcal{M} . The set of 2×2 lower triangular matrices is also a subspace of \mathcal{M} .
 - **Q.** Is the set of invertible 2×2 matrices a subspace of \mathcal{M} ?
- 7. The set of convergent sequences is a subspace of \mathbb{R}^{∞} . What about the set of sequences convergent to 1?
- 8. The set of differentiable functions is a subspace of C[0,1]. Is the same true for the set of functions integrable on [0,1]? Create your own examples.
- 9. See the tutorial sheet for many more examples!

Exercise:(i) A subspace must contain the 0 vector!

(ii) Show that a subspace of a vector space is a vector space.

Examples: Subspaces of \mathbb{R}^2

What are the subspaces of \mathbb{R}^2 ?

- $V = \{ \begin{pmatrix} 0 & 0 \end{pmatrix}^T \}$.
- $V = \mathbb{R}^2$.

• What if *V* is neither of the above?

Example:

Suppose V contains a non-zero vector, say $v = \begin{pmatrix} -1 & 1 \end{pmatrix}^T$.

V must contain the entire line L: x + y = 0, i.e., all multiples of v.

Let V be a subspace of \mathbb{R}^2 containing $v_1 = \begin{pmatrix} -1 & 1 \end{pmatrix}^T$. Then V must contain the entire line L: x + y = 0.

If $V \neq L$, it contains a vector v_2 , which is not a multiple of v_1 , say $v_2 = \begin{pmatrix} 0 & 1 \end{pmatrix}^T$.

Observe:
$$A = \begin{pmatrix} v_1 & v_2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$$
 has two pivots,

- \Leftrightarrow *A* is invertible.
- \Leftrightarrow for any v in \mathbb{R}^2 , Ax = v is solvable,
- $\Leftrightarrow v \text{ is in } C(A),$
- $\Leftrightarrow v$ can be written as a linear combination of v_1 and v_2 .
- $\Rightarrow v \text{ is in } V, \text{ i.e., } V = \mathbb{R}^2$

To summarise: A subspace of \mathbb{R}^2 , which is non-zero, and not \mathbb{R}^2 , is a line passing through the origin. What happens in \mathbb{R}^3 ?

2.2 Linear Span and Linear Independence

Linear Span: Definition

Given a collection $S = \{v_1, v_2, \dots, v_n\}$ in a vector space V, the *linear span* of S, denoted Span(S) or Span (v_1, \dots, v_n) ,

is the set of all linear combinations of v_1, v_2, \ldots, v_n , i.e.,

Span(S) =
$$\{v = a_1v_1 + \cdots + a_nv_n, \text{ for scalars } a_1, \dots, a_n\}.$$

Let $\{v_1, \ldots, v_n\}$ be *n* vectors in \mathbb{R}^n , $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$.

Note:

- 1. If v_1, \ldots, v_n are in \mathbb{R}^m , Span $\{v_1, \ldots, v_n\} = C(A)$ for $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$, an $m \times n$ matrix. Thus v is in Span $\{v_1, \ldots, v_n\} \Leftrightarrow Ax = v$ is consistent.
- 2. Span $\{v_1, \ldots, v_n\} = \mathbb{R}^m \Leftrightarrow Ax = v$ is consistent for all $v \in \mathbb{R}^m \Leftrightarrow A$ has m pivots. This implies, $m \leq n$.

3. Let m=n. Then A is invertible $\Leftrightarrow A$ has n pivots $\Leftrightarrow Ax=v$ is consistent for every v in $\mathbb{R}^n \Leftrightarrow \operatorname{Span}\{v_1,\ldots,v_n\} = \mathbb{R}^n$.

Example: Span $\{e_1,\ldots,e_n\}=\mathbb{R}^n$.

Linear Span: Examples

Examples:

- 1. Span $\{0\} = \{0\}$.
- 2. If $v \neq 0$ is a vector, Span $\{v\} = \{av, \text{ for scalars } a\}$.

Geometrically (in \mathbb{R}^m): Span $\{v\}$ = the line in the direction of v passing through the origin.

- 3. Span $\left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} = \mathbb{R}^2$.
- 4. If A is $m \times n$, then Span $\{A_1, \ldots, A_n\} = C(A)$.
- 5. If v_1, \ldots, v_k are the special solutions of A, then Span $\{v_1, \ldots, v_k\} = N(A)$.

Remark: All of the above are subspaces.

Exercise: Span(S) is a subspace of V. Why?

6. Let
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 8 \\ 7 \end{pmatrix}$ and $v_4 = \begin{pmatrix} 5 \\ 12 \\ 13 \end{pmatrix}$. Is $v = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}^T$ in Span $\{v_1, v_2, v_3, v_4\}$?

Let
$$A = (v_1 \cdots v_4)$$
, and $b = (b_1 b_2 b_3)$.

Recall Ax = b is solvable $\Leftrightarrow 5b_1 - b_2 - b_3 = 0$.

$$\Rightarrow v$$
 is not in Span $\{v_1, v_2, v_3, v_4\}$,

and
$$w = \begin{pmatrix} 1 & 0 & 5 \end{pmatrix}^T = 4v_1 + (-1)v_3$$
 is in it.

Observe: $v_2 = 2v_1$ and $v_4 = 2v_1 + v_3$. Hence v_2 , v_4 are in Span $\{v_1, v_3\} \Rightarrow \text{Span}\{v_1, v_2, v_3, v_4\}$ = Span $\{v_1, v_3, \}$.

Thus,
$$C(A) = \text{the plane } P : (5x - y - z = 0) = \text{Span}\{v_1, v_3\}.$$

Question:

Is the **span** of two vectors in \mathbb{R}^3 always a plane?

7. Let
$$v_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 6 \\ 7 \\ 5 \end{pmatrix}$ and $v_4 = \begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix}$?.

Is $v = \begin{pmatrix} 4 & 3 & 5 \end{pmatrix}^T$ in Span $\{v_1, v_2, v_3, v_4\}$? If yes, write v as a linear combination of v_1, v_2, v_3 and v_4 .

Let $A = (v_1 \cdots v_4)$. The question can be rephrased as:

Question: Is v in C(A), i.e., is Ax = v solvable? If yes, find a solution.

Exercise: $Ax = \begin{pmatrix} a & b & c \end{pmatrix}^T$ is consistent $\Leftrightarrow 2a - b - c = 0$.

Observe and prove:

(i) that Span $\{v_1, v_2, v_3, v_4\} = C(A)$ is a plane! (ii) that v is in Span $\{v_1, v_2, v_3, v_4\}$ (and $w = \begin{pmatrix} 4 & 3 & 4 \end{pmatrix}^T$ is not).

Solve Ax = v using the row reduced form of A to get **particular** solution: $\begin{pmatrix} 4 & -1 & 0 & 0 \end{pmatrix}^T$ and $v = 4v_1 + (-1)v_2$.

Linear Independence: Example

With
$$v_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 6 \\ 7 \\ 5 \end{pmatrix}$ and $v_4 = \begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix}$

Observe: $v_3 = v_1 + v_2$ and $v_4 = -2v_1 + 2v_2$.

Hence v_3 and v_4 are in Span $\{v_1, v_2\}$.

Therefore, Span
$$\{v_1,v_2\}$$
 = Span $\{v_1,v_2,v_3,v_4\}$
= $C(A)$ = the plane $P:(2x-y-z=0)$.

Question: Is the span of two vectors in \mathbb{R}^3 always a plane?

A: Not always. If v is a multiple of w, then $\text{Span}\{v,w\} = \text{Span}\{w\}$, which is a line through the origin or zero.

Question: If v and w are not on the same line through the origin? **A:** Yes. v, w are examples of *linearly independent vectors*.

Linear Independence: Definition

The vectors v_1, v_2, \ldots, v_n in a vector space V, are linearly independent if $(a_1v_1 + \cdots + a_nv_n = 0 \Rightarrow$ Equivalently, for every nonezero $(a_1, \ldots, a_n)^T$ in \mathbb{R}^n ,

we have
$$a_1v_1 + \cdots + a_nv_n \neq 0$$
 in V .

The vectors v_1, \ldots, v_n are *linearly dependent* if they are not linearly independent. i.e., we can find $(a_1, \ldots, a_n)^T \neq 0$ in \mathbb{R}^n , such that $a_1v_1 + \cdots + a_nv_n = 0$ in V.

Observe: When
$$V = \mathbb{R}^m$$
, if $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$, then $\begin{pmatrix} Ax = x_1v_1 + \cdots + x_nv_n = 0 \text{ has a non-trivial solution,} \end{pmatrix}$

 $\Leftrightarrow N(A) \neq 0 \Leftrightarrow v_1, \dots, v_n$ are linearly **dependent** and

$$Ax = x_1v_1 + \cdots + x_nv_n = 0$$
 has only the **trivial** solution

 $\Leftrightarrow N(A) = 0 \Leftrightarrow v_1, \dots, v_n$ are linearly **independent**.

Linear Independence: Remarks

Remarks/Examples:

- 1. The zero vector 0 is not linearly independent. Why?
- 2. If $v \neq 0$, then it is linearly independent. Why?
- 3. v, w are not linearly independent \Leftrightarrow one is a multiple of the other \Leftrightarrow (for $V = \mathbb{R}^m$) they lie on the same line through the origin.
- 4. More generally, v_1, \ldots, v_n are not linearly independent \Leftrightarrow one of the v_i 's can be written as a linear combination of the others, i.e., v_i is in Span $\{v_j : j = 1, \ldots, n, j \neq i\}$.
- 5. Let A be $m \times n$. Then $\operatorname{rank}(A) = n \Leftrightarrow N(A) = 0 \Leftrightarrow A_{*1}, \dots, A_{*n}$ are linearly independent.

In particular, if A is $n \times n$, A is invertible $\Leftrightarrow A_{*1}, \dots, A_{*n}$ are linearly independent.

Example: e_1, \ldots, e_n are linearly independent vectors in \mathbb{R}^n .

Linear Independence: Example

Example: Are the vectors $v_1 = \begin{pmatrix} 2 & 2 & 2 \end{pmatrix}^T$, $v_2 = \begin{pmatrix} 4 & 5 & 3 \end{pmatrix}^T$, $v_3 = \begin{pmatrix} 6 & 7 & 5 \end{pmatrix}^T$ and $v_4 = \begin{pmatrix} 4 & 6 & 2 \end{pmatrix}^T$ linearly independent?

For
$$A = \begin{pmatrix} v_1 & \cdots & v_4 \end{pmatrix}$$
, reduced form $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

A has only 2 pivots $\Rightarrow N(A) \neq 0$, so v_1, v_2, v_3, v_4 are not independent. A non-trivial linear combination which is zero is $(1)v_1 + (1)v_2 + (-1)v_3 + (0)v_4$, or $(2)v_1 + (-2)v_2 + (0)v_3 + (1)v_4$.

• More generally, if v_1, \ldots, v_n are vectors in \mathbb{R}^m , then

$$A = (v_1 \cdots v_n)$$
 is $m \times n$.

If m < n, then $rank(A) < n \Rightarrow N(A) \neq 0$. Thus

In \mathbb{R}^m , any set with more than m vectors is linearly dependent.

Summary: Vector Spaces, Span and Independence

- **Vector space**: A triple (V, +, *) which is closed under + and * with some additional properties satisfied by + and *.
 - ullet Subspace: A non-empty subset W of V closed under linear combinations.

Let $V = \mathbb{R}^m$, v_1, \dots, v_n be in V, and $A = (v_1 \cdots v_n)$.

- For v in V, v is in Span $\{v_1, \ldots, v_n\} \Leftrightarrow Ax = v$ is consistent
- v_1, \ldots, v_n are linearly independent

 $\Leftrightarrow N(A) = 0 \Leftrightarrow \operatorname{rank}(A) = n.$

- In particular, with n = m, A is invertible
- $\Leftrightarrow Ax = v$ is consistent for every v
- $\Leftrightarrow \operatorname{Span}\{v_1,\ldots,v_n\} = \mathbb{R}^n \Leftrightarrow \operatorname{rank}(A) = n$
- $\Leftrightarrow N(A) = 0 \Leftrightarrow v_1, \dots, v_n$ are linearly independent.
- If Span $\{v_1, \ldots, v_n\}$ = \mathbb{R}^m , then $m \leq n$, and any subset of \mathbb{R}^m with more than m vectors is dependent.

2.3 Basis and Dimension

Basis: Introduction

Let
$$v_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 6 \\ 7 \\ 5 \end{pmatrix}$, $v_4 = \begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix}$, and $A = (v_1 \ v_2 \ v_3 \ v_4)$. Can $C(A) = \text{Span}\{v_1, v_2, v_3, v_4\}$

be spanned by less than 4 vectors?

Note: $v_3 = v_1 + v_2$ and $v_4 = -2v_1 + 2v_2 \Rightarrow C(A) = \text{Span}\{v_1, v_2\}.$

Observe:

ullet The span of only v_1 or only v_2 is a line. Clearly v_1 is not on the line spanned by v_2 and vice versa.

Thus, $\{v_1, v_2\}$ is a minimal spanning set for C(A).

- v_1 and v_2 are linearly independent and span C(A).
- If v is in C(A) = Span $\{v_1, v_2\}$, then v_1, v_2, v are linearly dependent. Why?

Thus, $\{v_1, v_2\}$ is a maximal linearly independent set in C(A).

Any such set of vectors gives a *basis* of C(A).

Basis: Definition

Defn. A subset \mathcal{B} of a vector space V, is said to be a *basis* of V, if it is linearly independent and $Span(\mathcal{B}) = V$.

Theorem: For any subset S of a vector space V, the following are equivalent:

- \bullet S is a maximal linearly independent set in V
- S is linearly independent and Span(S) = V.
- \bullet S is a minimal spanning set of V.

Note: Every vector space V has a basis.

Examples:

- By convention, the empty set is a basis for $V = \{0\}$.
- $\left\{ \begin{pmatrix} -1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$ is a basis for \mathbb{R}^2 .
- $\{e_1, \ldots, e_n\}$ is a basis for \mathbb{R}^n , called the standard basis.
- A basis of \mathbb{R} is just $\{1\}$.

Basis: Remarks

• Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis for V and v a vector in V.

 $\operatorname{Span}(\mathcal{B}) = V \Rightarrow v = a_1v_1 + \cdots + a_nv_n \text{ for scalars } a_1, \dots, a_n.$

Linear independence \Rightarrow this expression for v is unique. Thus

Every $v \in V$ can be uniquely written as a linear combination of $\{v_1, \dots, v_n\}$.

Exercise: Prove this.

Q: Is the basis of a vector space unique? **A:** No.

e.g. $\{e_1, e_2\}$ is a basis for \mathbb{R}^2 , so is $\{\begin{pmatrix} -1 & 1 \end{pmatrix}^T, \begin{pmatrix} 0 & 1 \end{pmatrix}^T \}$, and so are the columns of any 2×2 invertible matrix.

EXERCISE: Find two different basis of \mathbb{R}^3 .

The number of vectors in each basis of \mathbb{R}^3 is 3. Why?

RECALL: If v_1, \ldots, v_n span \mathbb{R}^m , then $m \leq n$, and

if they are linear independent, then $n \leq m$.

Coordinate Vector: Definition

• Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis for V and v a vector in V.

 $\operatorname{Span}(\mathcal{B}) = V \Rightarrow v = a_1v_1 + \cdots + a_nv_n \text{ for scalars } a_1, \dots, a_n.$

Linear independence \Rightarrow this expression for v is unique. Thus

Every $v \in V$ can be *uniquely* written as a linear combination of $\{v_1, \ldots, v_n\}$.

Exercise: Prove this!

Definition: If $v = a_1v_1 + \cdots + a_nv_n$, then $(a_1, \dots, a_n)^T \in \mathbb{R}^n$ is called the *coordinate vector* of v w.r.t. \mathcal{B} , denoted $[v]_{\mathcal{B}}$.

Note: $[v]_{\mathcal{B}}$ depends not only on the basis \mathcal{B} , but also the order of the elements in \mathcal{B} .

Question:

How does $[v]_{\mathcal{B}}$ change, if \mathcal{B} is rewritten as $\{v_2, v_1, v_3, \dots, v_n\}$?

Dimension of a Vector Space

Question: The number of vectors in each basis of \mathbb{R}^3 is 3. Why?

Recall: If v_1, \ldots, v_n span \mathbb{R}^m , then $m \leq n$, and

if they are linear independent, then $n \leq m$.

Defn.: More generally, if $v_1, \ldots v_m$ and w_1, \ldots, w_n are both basis of V, then m = n. This is called the *dimension* of V. Thus

 $\left(\dim(V) = \text{number of elements in a basis of } V.\right)$

Examples: • $\dim(\{0\}) = 0$.

- $\dim(\mathbb{R}^n) = n$.
- A line through origin in \mathbb{R}^3 is of the form $\mathbf{L} = \{tu \mid t \in \mathbb{R}\}$ for some u in $\mathbb{R}^3 \setminus \{0\}$. A basis for \mathbf{L} is $\{\dots\}$, and $\dim(\mathbf{L}) = \dots$.
 - The dimension of a plane (P) in \mathbb{R}^3 is 2. Why?
 - A basis for \mathbb{C} as a vector space over \mathbb{R} is $\{1, i\}$.

A basis for \mathbb{C} as a *complex* vector space is $\{1\}$.

i.e., $dim(\mathbb{C}) = 2$ as a \mathbb{R} -vector space and 1 as a \mathbb{C} -vector space.

Thus, dimension depends on the choice of scalars!

Basis: Remarks

Let dim (V) = n, $S = \{v_1, \ldots, v_k\} \subseteq V$.

Recall: A basis is a minimal spanning set.

In particular, if $\operatorname{Span}(S) = V$, then $k \ge n$, and S contains a basis of V, i.e., there exist $\{v_{i_1}, \dots, v_{i_n}\} \subseteq S$ which is a basis of V.

Example: The columns of a 3×4 matrix A with 3 pivots span \mathbb{R}^3 . Hence the columns contain a basis of \mathbb{R}^3 .

RECALL: A basis is a maximal linearly independent set.

In particular, if S is linear independent, then $k \le n$, and S can be extended to a basis of V, i.e., there exist w_1, \ldots, w_{n-k} in V such that $\{v_1, \ldots, v_k, w_1, \ldots, w_{n-k}\}$ is a basis of V.

Example: The columns of a 3×2 matrix A with 2 pivots has linearly independent columns, and hence can be extended to a basis of \mathbb{R}^3 .

Summary: Basis and Dimension

- A basis of a vector space V is a linearly independent subset \mathcal{B} which spans V.
- \bullet A basis is a maximal linearly independent subset of V
 - \Rightarrow any linearly independent subset in V can be extended to a basis of V.
- \bullet A basis is a minimal spanning set of V
 - \Rightarrow every spanning set of V contains a basis.
- ullet The number of elements in each basis is the same, and the dimension of V.

dim(V) = number of elements in a basis of V.

- $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for $V \Leftrightarrow \text{every } v \in V \text{ can be uniquely written as a linear combination of } \{v_1, \dots, v_n\}.$
 - dim $(\mathbb{R}^n) = n$, and the set $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis of \mathbb{R}^n $\Leftrightarrow A = (v_1 \cdots v_n)$ is invertible.

Example: A basis for \mathbb{R}^2

Pick $\mathbf{v}_1 \neq 0$. Choose \mathbf{v}_2 , not a multiple of \mathbf{v}_1 . For any \mathbf{v} in \mathbb{R}^2 , there are unique scalars a and b such that $\mathbf{v} = a\mathbf{v}_1 + b\mathbf{v}_2$.

e.g., pick $\mathbf{v}_1 = (1, -1)^T$, $\mathbf{v}_2 = (0, 1)^T$, and let $\mathbf{v} = (1, 1)^T$.

Thus the lines a = 0 and b = 0 give a set of

axes for \mathbb{R}^2 ,

and ${\bf v} = {\bf v}_1 + 2{\bf v}_2$.

With this basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$, the coordinates of \mathbf{v} will be $[\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Basis and Coordinates

A basis for $\mathcal{M}_{2\times 2}$, the vector space of 2×2 matrices , (called *standard the basis of* \mathcal{M}), is $\mathcal{B} = \{e_{11}, e_{12}, e_{21}, e_{22}\}$, where

$$e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

(Verify this!) Hence $\dim(\mathcal{M}_{2\times 2})=4$.

Every 2×2 matrix $A = (a_{ij})$ can be written uniquely as

$$A = a_{11}e_{11} + a_{12}e_{12} + a_{21}e_{21} + a_{22}e_{22}.$$

Thus, the coordinate vector of A with respect to \mathcal{B} is

$$[A]_{\mathcal{B}} = (a_{11}, a_{12}, a_{21}, a_{22})^T$$

Note: $[A]_{\mathcal{B}}$ completely determines A, once we fix \mathcal{B} , and order the elements in \mathcal{B} .

Since dim $(\mathcal{M}_{2\times 2})=4$, once we fix a basis, we will need 4 coordinates to describe each matrix.

Exercise: Find two bases (other than the standard one) and the dimension of $\mathcal{M}_{m \times n}$. Find $[e_{11}]_{\mathcal{B}}$ in both cases.

Coordinate Vectors: Examples

- 1. Consider the basis $\mathcal{B} = \{v_1 = (1, -1)^T, v_2 = (0, 1)^T\}$ of \mathbb{R}^2 , and $v = (1, 1)^T$. Note that $v = 1v_1 + 2v_2$. Hence, the coordinate vector of v w.r.t. \mathcal{B} is $[v]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
- 2. **Exercise:** Show that $\mathcal{B} = \{1, x, x^2\}$ is a basis of \mathcal{P}_2 (called the *standard basis* of \mathcal{P}_2). The coordinate vector of $v = 2x^2 3x + 1$ w.r.t. \mathcal{B} is $[v]_{\mathcal{B}} = (1, -3, 2)^T$.
- 3. **Exercise:** Show that $\mathcal{B}' = \{1, (x-1), (x-1)^2, (x-1)^3\}$ is a basis of \mathcal{P}_3 . HINT: Taylor expansion.

Let $\mathcal B$ be the standard basis of $\mathcal P_3$. Then $[x^3]_{\mathcal B}=(_, _, _, _, _)^T$, and $[x^3]_{\mathcal B'}=(_, _, _, _, _)^T$.

Recall: To write the coordinates, we have a to fix a basis \mathcal{B} , and fix the order of elements in it!

2.4 NULL SPACE, COLUMN SPACE AND ROW SPACE

Subspaces Associated to a Matrix

Associated to an $m \times n$ matrix A, we have four subspaces:

- The **column space** of A: $C(A) = \text{Span}\{A_{*1}, \dots A_{*n}\} = \{v : Ax = v \text{ is consistent}\} \subseteq \mathbb{R}^m$.
- The **null space** of A: $N(A) = \{x : Ax = 0\} \subseteq \mathbb{R}^n$.
- The row space of $A = \text{Span}\{A_{1*}, \dots, A_{m*}\} = C(A^T) \subseteq \mathbb{R}^n$.
- The left null space of $A = \{x : x^T A = 0\} = N(A^T) \subseteq \mathbb{R}^m$.

Question: Why are the row space and the left null space subspaces?

Recall: Let U be the echelon form of A, and R its reduced form.

Then
$$N(A) = N(U) = N(R)$$
.

Observe: The rows of U(and R) are linear combinations of the rows of A, and vice versa \Rightarrow their row spaces are same, i.e.,

$$C(A^T) = C(U^T) = C(R^T).$$

We compute bases and dimensions of these special subspaces.

An Example

We illustrate how to find a basis and the dimension of the Null Space N(A), the Column Space C(A), and the Row Space $C(A^T)$ by using the following example.

Let
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
.

Recall:

- The reduced form of A is $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
- The 1st and 2nd are pivot columns \Rightarrow rank(A) = 2.
- $v = \begin{pmatrix} a & b & c \end{pmatrix}^T$ is in $C(A) \Leftrightarrow Ax = v$ is solvable $\Leftrightarrow 2a b c = 0$.
- We can compute special solutions to Ax = 0. The number of special solutions to Ax = 0 is the number of free variables.

The Null Space: N(A)

For
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
, reduced form $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
$$N(A) = \begin{cases} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} -c + 2d \\ -c - 2d \\ c \\ d \end{pmatrix} = c \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 2 \\ -2 \\ 0 \\ 1 \end{pmatrix} \end{cases}.$$

$$= \operatorname{Span} \left\{ w_1 = \begin{pmatrix} -1 & -1 & 1 & 0 \end{pmatrix}^T, w_2 = \begin{pmatrix} 2 & -2 & 0 & 1 \end{pmatrix}^T \right\}.$$

 w_1 , w_2 are linearly independent (Why?)

 $\Rightarrow \mathcal{B} = \{w_1, w_2\}$ forms a basis for $N(A) \Rightarrow \dim(N(A)) = 2$.

A basis for N(A) is the set of special solutions.

 $\overline{\dim(N(A))} = \text{no. of free variables = no. of variables - rank}(A)$ $\dim(N(A))$ is called $\operatorname{nullity}(A)$.

Show: $w = (-3, -7, 5, 1)^T$ is in N(A). Find $[w]_{\mathcal{B}}$.

The Column Space: C(A)

For
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
, reduced form $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Write $A = (v_1 \ v_2 \ v_3 \ v_4)$ and $R = (w_1 \ w_2 \ w_3 \ w_4)$.

Recall: Relations between the column vectors of A are the same as the relations between column vectors of R.

 $\Rightarrow Ax = v_3$ has a solution has the same solution as $Rx = w_3$, and $Ax = v_4$ has a same solution as $Rx = w_4$.

Particular solutions are $(1,1,0,0)^T$ and $(-2,2,0,0)^T$ respectively $\Rightarrow v_3 = v_1 + v_2$, $v_4 = -2v_1 + 2v_2$.

Observe:

- v_1 and v_2 correspond to the pivot columns of A.
- $\{v_1, v_2\}$ are linearly independent. Why?
- $C(A) = \text{Span}\{v_1, \dots, v_4\} = \text{Span}\{v_1, v_2\}.$

Thus $\mathcal{B} = \{v_1, v_2\}$ is a basis of C(A). **Q:** What is $[v_i]_{\mathcal{B}}$?

The Rank-Nullity Theorem

More generally, for an $m \times n$ matrix A,

- Let $\operatorname{rank}(A) = r$. The r pivot columns are linearly independent since their reduced form contains an $r \times r$ identity matrix.
- Each non-pivot column A_{*j} of A can be written as a linear combination of the pivots columns, by solving $Ax = A_{*j}$. Thus

A basis for
$$C(A)$$
 is given by the pivot columns of A .

$$\dim(C(A)) = \text{no. of pivot variables} = \text{rank}(A).$$

ullet A basis for N(A) is given by the special solutions of A. Thus

$$\int dim(N(A)) = no.$$
 of free variables = nullity(A).

RANK-NULLITY THEOREM: Let A be an $m \times n$ matrix. Then

$$\dim(C(A)) + \dim(N(A)) = \text{no. of variables} = n$$

The Row Space: $C(A^T)$

Recall: If
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
, then $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Recall: R is obtained from A by taking non-zero scalar multiples of rows and their sums $\Rightarrow C(R^T) = C(A^T)$.

Observe: The non-zero rows of R will span $C(A^T)$, and they contain an identity submatrix \Rightarrow they are linearly independent.

Thus, the non-zero rows of R form a basis for $C(R^T) = C(A^T)$.

Exercise: Give two different basis for $C(A^T)$.

Since the number of non-zero rows of R = number of pivots of A, we have:

dim
$$C(A^T)$$
= no. of pivots of $A = rank(A)$.

Recall: dim $C(A^T) = \operatorname{rank}(A^T)$. Thus,

$$\operatorname{rank}(A^T) = \operatorname{dim} (C(A^T)) = \operatorname{rank}(A)$$

Extra Reading: The Left Null Space - $N(A^T)$

The no. of columns of A^T is m.

By Rank-Nullity Theorem, $rank(A^T) + dim(N(A^T)) = m$.

Hence:

$$\dim(N(A^T)) = m - \operatorname{rank}(A).$$

EXERCISE: Complete the example by finding a basis for $N(A^T)$. $A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$,

reduced form
$$R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
.

Question. Can you use R to compute the basis for $N(A^T)$? Why not?

A. Need the reduced form of A^T which is $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

2.5 Linear Transformations

Matrices as Transformations: Examples

Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then $A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$. Let $\mathbf{x} = (2,1)^T$. What is $\mathbf{A}x$? How does A transform x?

A reflects vectors across the X-axis.

Let $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Then $B \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$. If $\mathbf{x} = (-1, 0.5)^T$, then $\mathbf{B}x = (0.5, -1)^T$. How does B transform x?

B reflects vectors across the line $x_1 = x_2$.

9: Do reflections preserve scalar multiples? Sums of vectors?

Matrices as Transformations: Examples

•
$$P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$
 transforms $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to $Px = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 + x_2}{2} \end{pmatrix}$.

P transforms the vector $\begin{pmatrix} -1\\1 \end{pmatrix}$ to the origin.

Question: Geometrically, how is P transforming the vectors?

Answer: Projects onto the line $x_1 = x_2$.

Question: What happens to sums of vectors when you project them? What about scalar multiples?

Question: Understand the effect of $P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ on e_1 and e_2 and interpret what P represents geometrically!

Matrices as transformations: Examples

Let
$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) \\ \sin(45^\circ) & \cos(45^\circ) \end{pmatrix}$$
.

How does Q transform the standard basis vectors \mathbf{e}_1 and \mathbf{e}_2 ?

Q: What does the transformation $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto Qx$ represent geometrically?

Rotations also map sum of vectors to sum of their images and a scalar multiple of a vector to the scalar multiple of its image.

Matrices as Transformations

• An $m \times n$ matrix A transforms a vector x in \mathbb{R}^n into the vector Ax in \mathbb{R}^m . Thus T(x) = Ax defines a function $T : \mathbb{R}^n \to \mathbb{R}^m$.

43

ullet The domain of T is \dots . The codomain of T is \dots .

• Let $b \in \mathbb{R}^m$. Then b is in $C(A) \Leftrightarrow Ax = b$ is consistent $\Leftrightarrow T(x) = b$, i.e., b is in the image (or range) of T.

Hence, the range of T is \dots

Example: Let $A=\begin{pmatrix}2&4&6&4\\2&5&7&6\\2&3&5&2\end{pmatrix}$. Then T(x)=Ax is a function with domain \mathbb{R}^4 ,

codomain \mathbb{R}^3 , and range equal to $C(A) = \{(a,b,c)^T \mid 2a-b-c=0\} \subseteq \mathbb{R}^3$.

Question: How does T transform sums and scalar multiples of vectors?

Ans. Nicely! For scalars a and b, and vectors x and y,

T(ax + by) = A(ax + by) = aAx + bAy = aT(x) + bT(y). Thus

T takes linear combinations to linear combinations.

Linear Transformations

Defn. Let V and W be vector spaces.

ullet A linear transformation from V to W is a function $T:V\to W$ such that for $x,y\in V$, scalars a and b,

T(ax + by) = aT(x) + bT(y)

- i.e., T takes linear combinations of vectors in V to the linear combinations of their images in W.
 - \bullet If T is also a bijection, we say T is a linear isomorphism.
 - The *image* (or *range*) of T is defined to be $C(T) = \{ y \in W \mid T(x) = y \text{ for some } x \in V \}.$
 - The *kernel* (or *null space*) of T is defined as $N(T) = \{x \in V \mid T(x) = 0\}.$

Main Example: Let A be an $m \times n$ matrix. Define T(x) = Ax.

- This defines a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$.
- The image of T is the column space of A, i.e., C(T) = C(A).
- The kernel of T is the null space of A, i.e., N(T) = N(A).

Linear Transformations: Examples

Which of the following functions are linear transformations?

• $g: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $g(x_1, x_2, x_3)^T = (x_1, x_2, 0)^T$

$$ag(x) + bg(y) = ag\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + bg\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} ax_1 \\ ax_2 \\ 0 \end{pmatrix} + \begin{pmatrix} by_1 \\ by_2 \\ 0 \end{pmatrix} = \begin{pmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ 0 \end{pmatrix} = g(ax + by)$$
 is a

linear transformation.

Exercise: Find N(g) and C(g).

• $h : \mathbb{R}^3 \to \mathbb{R}^3$ defined as $h(x_1, x_2, x_3)^T = (x_1, x_2, 5)^T$.

Note: $h(0+0) \neq h(0) + h(0)$.

Observe: A linear transformation must map $0 \in V$ to $0 \in W$.

• $f: \mathbb{R}^2 \to \mathbb{R}^4$ defined by $f(x_1, x_2)^T = (x_1, 0, x_2, x_2^2)^T$.

Note: f transforms the Y-axis in \mathbb{R}^2 to $\{(0,0,y,y^2)^T \mid y \in \mathbb{R}\}.$

Observe: A linear transformation must transform a subspace of V into a subspace of W.

• $S: \mathcal{M}_{2\times 2} \to \mathbb{R}^4$ defined by $S\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a, b, c, d)^T$ is a linear transformation.

Observe: S is also a bijection, and hence an isomorphism!

S is onto $\Rightarrow C(S) = \mathbb{R}^4$, and $S(A) = S(B) \Rightarrow A = B$,

i.e., S is one-one. In particular, $N(S) = \{0\}$.

Show that the following functions are linear transformations.

 $T: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ defined by $T(x_1, x_2, ...) = (x_1 + x_2, x_2 + x_3, ...,)$.

Exercise: What is N(T)?

 $S: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ defined by $S(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$.

Exercise: Find C(S), and a basis of N(S).

Let $T: \mathcal{P}_2 \to \mathcal{P}_1$ be $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$.

Exercise: Show that dim (N(T)) = 1, and find C(T).

Let $D: \mathcal{C}^{\infty}([0,1]) \to \mathcal{C}^{\infty}([0,1])$ defined as $Df = \frac{df}{dx}$.

Exercise: Is $D^2 = D \circ D$ linear? What about D^3 ?

Exercise: What is N(D)? $N(D^2)$? $N(D^k)$?

Question: Is integration linear?

Observe: Images and null spaces are subspaces!

Of which vector space?

Properties of Linear transformations

Let $\mathcal{B} = \{v_1, \dots, v_n\} \subseteq V$, $T: V \to W$ be linear, and $T(\mathcal{B}) = \{T(v_1), \dots, T(v_n)\}$. Then:

- T(au + bv) = aT(u) + bT(v). In particular, T(0) = 0.
- N(T) is a subspace of V. Why? C(T) is a subspace of W. Why?
- If $Span(\mathcal{B}) = V$, is $Span\{T(\mathcal{B})\} = W$? Note: It is C(T).

Conclusion: (i) If dim (V) = n, then dim (C(T)) < n.

(ii) T is onto \Leftrightarrow Span $\{T(\mathcal{B}\}) = C(T) = W$.

• $T(u) = T(v) \Leftrightarrow u - v \in N(T)$.

Conclusion: T is one-one $\Leftrightarrow N(T) = 0. \bullet$ If $\mathcal{B} \subseteq V$ is linearly independent, is $\{T(\mathcal{B})\} \subseteq V$

W linearly independent? **Hint:** $a_1T(v_1) + \cdots + a_nT(v_n) = 0 \Rightarrow a_1v_1 + \cdots + a_nv_n \in N(T)$.

• $S:U\to V,\,T:V\to W$ are linear $\Rightarrow T\circ S:U\to W$ is linear. **Exercise:** Show that $N(S)\subset N(T\circ S)$.

How are $C(T \circ S)$ and C(T) related?

Isomorphism of vector spaces

Recall: A linear map $T:V\to W$ is an *isomorphism* if T is also a bijection. **Notation:** $V \simeq W$.

Ques: If $T: V \to W$ is an isomorphism, is $T^{-1}: W \to V$ linear?

Recall: T is one-one $\Leftrightarrow N(T) = 0 \& T$ is onto $\Leftrightarrow C(T) = W$.

Thus T is an isomorphism $\Leftrightarrow N(T) = 0$ and C(T) = W.

Example: If V is the subspace of convergent sequences in \mathbb{R}^{∞} , then $L:V\to\mathbb{R}$ given by $L(x_1, x_2, ...) = \lim_{n \to \infty} (x_n)$ is linear.

What is N(L)? C(L)? Is L one-one or onto?

Exercise: Given $A \in \mathcal{M}_{m \times n}$, let T(x) = Ax for $x \in \mathbb{R}^n$.

Then T is an isomorphism $\Leftrightarrow m = n$ and A is invertible.

Exercise: In the previous examples, identify linear maps which are one-one, and those which are onto.

Example: $S\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a, b, c, d)^T$ is an isomorphism since N(S) = 0 and $C(S) = \mathbb{R}^4$. Thus $\mathcal{M}_{2\times 2}\simeq \mathbb{R}^4$. What is S^{-1} ?

Linear Maps and Basis

• Consider $S: \mathcal{M}_{2\times 2} \to \mathbb{R}^4$ given by $S\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a, b, c, d)^T$. Recall that $\{e_{11}, e_{12}, e_{21}, e_{22}\}$ is a basis of $\mathcal{M}_{2\times 2}$

such that $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ae_{11} + be_{12} + ce_{21} + de_{22}$.

Observe that $S(e_{11}) = e_1, S(e_{12}) = e_2, S(e_{21}) = e_3, S(e_{22}) = e_4.$

Thus, $S(A) = aS(e_{11}) + bS(e_{12}) + cS(e_{21}) + dS(e_{22}) = ae_1 + be_2 + ce_3 + de_4 = (a, b, c, d)^T$.

General case:

If $\{v_1,\ldots,v_n\}$ is a basis of V, $T:V\to W$ is linear, $v\in V$, then $v=a_1v_1+\cdots a_nv_n\Rightarrow$ $T(v) = a_1 T(v_1) + \cdots + a_n T(v_n)$. Why? Thus,

T is determined by its action on a basis,

i.e., for any n vectors w_1, \ldots, w_n in W (not necessarily distinct), there is unique linear transformation $T: V \to W$ such that $T(v_1) = w_1, \dots, T(v_n) = w_n$.

Finite-dimensional Vector Spaces

Important Observation: Let dim (V) = n, and $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis of V. Define $T: V \to \mathbb{R}^n$ by $T(v_i) = e_i$.

e.g., If
$$v = v_1 + v_n$$
, $T(v) = ?$ If $v = 3v_2 - 5v_3$, $T(v) = ?$ If $v = a_1v_1 + \cdots + a_nv_n$, $T(v) = ?$

Thus $T(v) = [v]_{\mathcal{B}}$.

Is T a linear transformation? What is N(T)? What is C(T)?

Conclusion: [If dim (V) = n, then $V \simeq \mathbb{R}^n$.

Question: Is $\mathcal{P}_3 \simeq \mathcal{M}_{2\times 2}$?

Key point: Composition of isomorphisms is an isomorphism, and inverse of an isomorphism is an isomorphism.

Exercise: Find 3 isomorphisms each from \mathcal{P}_3 to \mathbb{R}^4 , and $\mathcal{M}_{2\times 2}$ to \mathbb{R}^4 .

Linear maps from \mathbb{R}^n to \mathbb{R}^m

Example:
$$T(e_1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \ T(e_2) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ T(e_3) = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$$

defines a linear map $T: \mathbb{R}^3 \to \mathbb{R}^2$.

If
$$x = (x_1, x_2, x_3)^T$$
, then $T(x) = T(x_1e_1 + x_2e_2 + x_3e_3) = (x_1, x_2, x_3)^T$

$$x_1T(e_1) + x_2T(e_2) + x_3T(e_3) = x_1\begin{pmatrix} 3\\1 \end{pmatrix} + x_2\begin{pmatrix} 2\\-1 \end{pmatrix} + x_3\begin{pmatrix} -5\\0 \end{pmatrix}$$
, i.e., $T(x) = Ax$, where $A = Ax$

$$\begin{pmatrix} 3 & 2 & -5 \\ 1 & -1 & 0 \end{pmatrix}. \ \mathbf{Q:} \ A_{*j} = ?$$

If
$$x = (x_1, x_2, x_3)^T$$
, then $T(x) = Ax$, where $A = \begin{pmatrix} 3 & 2 & -5 \\ 1 & -1 & 0 \end{pmatrix}$, i.e., $A_{*j} = T(e_j)$.

General case: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear, then

for $x = (x_1, \dots, x_n)^T$ in \mathbb{R}^n ,

$$T(x) = x_1 T(e_1) + \cdots + x_n T(e_n) = Ax,$$

where
$$A = (T(e_1) \cdots T(e_n)) \in \mathcal{M}_{m \times n}$$
, i.e., $A_{*j} = T(e_j)$.

Defn. A is called the standard matrix of T. Thus

Linear transformations from \mathbb{R}^n to \mathbb{R}^m

are in one-one correspondence with $m \times n$ matrices.

Question : Can you imitate this if V and W are not \mathbb{R}^n and \mathbb{R}^m ?

Matrix Associated to a Linear Map: Example

 $S: \mathcal{P}_2 \to \mathcal{P}_1$ given by $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$ is linear.

Question: Is there a matrix associated to S?

Expected size: 2×3 . Why?

Idea: Construct an associated linear map $\mathbb{R}^3 \to \mathbb{R}^2$.

Use coordinate vectors! Fix bases $\mathcal{B} = \{1, x, x^2\}$ of \mathcal{P}_2 , and $\mathcal{C} = \{1, x\}$ of \mathcal{P}_1 to do this.

Identify $f = a_0 + a_1 x + a_2 x^2 \in \mathcal{P}_2$ with $[f]_{\mathcal{B}} = (a_0, a_1, a_2)^T \in \mathbb{R}^3$,

and $S(f) \in \mathcal{P}_1$ with $[S(f)]_{\mathcal{C}} = (a_1, 4a_2)^T \in \mathbb{R}^2$.

The associated linear map $S': \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $S'(a_0, a_1, a_2)^T = (a_1, 4a_2)^T$, i.e., $S'([f]_{\mathcal{B}}) = [S(f)]_{\mathcal{C}}$, i.e.,

S' is defined by $S'(e_1) = (0,0)^T$, $S'(e_2) = (1,0)^T$, $S'(e_3) = (0,4)^T \Rightarrow$ the standard matrix of S' is $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

9: How is A related to S?

Observe: $A_{*1} = [S(1)]_{\mathcal{C}}$, $A_{*2} = [S(x)]_{\mathcal{C}}$, $A_{*3} = [S(x^2)]_{\mathcal{C}}$. **Example:** The matrix of $S(a_0 + a_0)$ $a_1x + a_2x^2 = a_1 + 4a_2x$, w.r.t. the bases $\mathcal{B} = \{1, x, x^2\}$ of \mathcal{P}_2 and $\mathcal{C} = \{1, x\}$ of \mathcal{P}_1 is $A = \{1, x\}$ $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$ and $A_{*1} = [S(1)]_{\mathcal{C}}, A_{*2} = [S(x)]_{\mathcal{C}}, A_{*3} = [S(x^2)]_{\mathcal{C}}.$

Matrix Associated to a Linear Map

General Case: If $T:V\to W$ is linear, then the matrix of T w.r.t. the ordered bases $\mathcal{B} = \{v_1, \dots, v_n\}$ of V, and $\mathcal{C} = \{w_1, \dots, w_m\}$ of W, denoted $[T]_{\mathcal{C}}^{\mathcal{B}}$, is

$$A = ([T(v_1)]_{\mathcal{C}} \cdots [T(v_n)]_{\mathcal{C}}) \in \mathcal{M}_{m \times n}.$$

Example: Projection onto the line $x_1 = x_2$

$$P\begin{pmatrix}x_1\\x_2\end{pmatrix}=\begin{pmatrix}\frac{x_1+x_2}{2}\\\frac{x_1+x_2}{2}\end{pmatrix} \text{ has standard matrix } \begin{pmatrix}1/2 & 1/2\\1/2 & 1/2\end{pmatrix}.$$
 This is the matrix of P w.r.t. the standard basis.

Question: What is $[P]^{\mathcal{B}}_{\mathcal{B}}$ where $\mathcal{B} = \{(1,1)^T, (-1,1)^T\}$?

Conclusion: The matrix of a transformation depends on the chosen basis. Some are better than others!

Chapter 3. EIGENVALUE DECOMPOSITION.

3.1 Eigenvalues Eigenvectors

Eigenvalues and Eigenvectors: Motivation

• Solve the differential equation for *u*: du/dt = 3u.

The solution is $u(t) = ce^{3t}$, $c \in \mathbb{R}$. With initial condition u(0) = 2, the solution is $u(t) = 2e^{3t}.$

• Consider the system of linear 1st order differential equations (ODE) with constant coefficients:

$$du_1/dt = 4u_1 - 5u_2,$$
 $du_2/dt = 2u_1 - 3u_2,$

How does one find the solution?

• Write the system in matrix form
$$du/dt = Au$$
, where $u(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix}$, $A = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}$.

ullet Assuming the solution is $u(t)=e^{\lambda t}\,v,$ where $v=inom{x}{y}\in\mathbb{R}^2,$ we need to find λ and v.

Eigenvalues and Eigenvectors: Definition

We have $u'_1 = 4u_1 - 5u_2$, $u'_2 = 2u_1 - 3u_2$, where $u_1(t) = e^{\lambda t} x$, $u_2(t) = e^{\lambda t} y$ $\lambda e^{\lambda t} x = 4e^{\lambda t} x - 5e^{\lambda t} y.$ $\lambda e^{\lambda t} u = 2e^{\lambda t} x - 3e^{\lambda t} u$

Cancelling $e^{\lambda t}$, we get

Eigenvalue problem: Find λ and $v = (x, y)^T$ satisfying

$$4x - 5y = \lambda x, \qquad 2x - 3y = \lambda y.$$

In the matrix form, it is $Av = \lambda v$. This equation has two unknowns, λ and v.

If there exists a λ such that $Av=\lambda v$ has a non-zero solution v, then λ is called an eigenvalue of A and all *nonzero* v satisfying $Av=\lambda v$ are called eigenvectors of A associated to λ .

Question: How many eignevalues can A have? How do we find them & the associated eigenvectors? Reduce the number of unknowns!

Eigenvalues and Eigenvectors: Solving $Ax = \lambda x$

- Rewrite $Av = \lambda v$ as $(A \lambda I)v = 0$.
- λ is an eigenvalue of A
 - \Leftrightarrow there is a nonzero v in the nullspace of $A \lambda I$
 - $\Leftrightarrow N(A \lambda I) \neq 0$, i.e., dim $(N(A \lambda I)) \geq 1$,
 - $\Leftrightarrow A \lambda I$ is not invertible
 - $\Leftrightarrow \det(A \lambda I) = 0.$
- $det(A \lambda I)$ is a polynomial in the variable λ of degree n. Hence it has at most n roots \Rightarrow A has at most n eigenvalues.
- $det(A \lambda I)$ is called the **characteristic polynomial** of A.
- If λ is an eigenvalue of A, then the nullspace of $A \lambda I$ is called the **eigenspace** of A associated to eigenvalue λ .

Question: When is 0 an eigenvalue of A? What are the corresponding eigenvectors?

Eigenvalues and Eigenvectors: Example

TO SUMMARISE: An eigenvalue of A is a root (in \mathbb{R}) of its characteristic polynomial. Any non-zero vector in the corresponding eigenspace is an associated eigenvector.

Recall: The ODE system we want to solve is

$$u_1' = 4u_1 - 5u_2,$$
 $u_2' = 2u_1 - 3u_2,$

The solutions are $u_1(t) = e^{\lambda t} x, u_2(t) = e^{\lambda t} y$, where $(x, y)^T$ is a solution of:

$$\begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \qquad (Av = \lambda v)$$

The characteristic polynomial of A is $\det(A - \lambda I)$

$$= \det \begin{pmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{pmatrix} = (4 - \lambda)(-3 - \lambda) + 10 = \lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2)$$

The eigenvalues of A are $\lambda_1 = -1$, $\lambda_2 = 2$.

Eigenvalues and Eigenvectors: Example

Eigenvectors v_1 and v_2 associated to $\lambda_1 = -1$ and $\lambda_2 = 2$ respectively are in:

$$N(A - \lambda_1 I) = N(A + I)$$
, and $N(A - \lambda_2 I) = N(A - 2I)$.

Solving (A+I)v=0, i.e., $\begin{pmatrix} 5 & -5 \\ 2 & -2 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}=0$, we get $N(A+I)=\left\{\begin{pmatrix} y \\ y \end{pmatrix}\mid y\in\mathbb{R}\right\}$ and hence $v_1=\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector associated to $\lambda_1=-1$.

Similarly, solving (A-2I)v=0 gives $N(A-2I)=\left\{\begin{pmatrix} \frac{5y}{2}\\ y\end{pmatrix}\mid y\in\mathbb{R}\right\}$. In particular, $v_2=\begin{pmatrix} 5\\ 2\end{pmatrix}$ is an eigenvector associated to $\lambda_2=2$.

Thus, the system du/dt = Au has two special solutions $e^{-t}v_1$ and $e^{2t}v_2$.

Reading Slide - Complete Solution to ODE

Note: When two functions satisfy du/dt = Au, then so do their linear combinations.

Complete solution:
$$u(t) = c_1 e^{-t} v_1 + c_2 e^{2t} v_2$$
, i.e., $\binom{u_1(t)}{u_2(t)} = c_1 e^{-t} \binom{1}{1} + c_2 e^{2t} \binom{5}{2}$.

i.e.
$$u_1(t) = c_1 e^{-t} + 5c_2 e^{2t}$$
, $u_2(t) = c_1 e^{-t} + 2c_2 e^{2t}$.

If we put initial conditions (IC) $u_1(0) = 8$ and $u_2(0) = 5$, then

$$c_1 + 5c_2 = 8$$
, $c_1 + 2c_2 = 5 \Rightarrow c_1 = 3$, $c_2 = 1$.

Hence the solution of the original ODE system with the given IC is

$$u_1(t) = 3e^{-t} + 5e^{2t}, \quad u_2(t) = 3e^{-t} + 2e^{2t}.$$

Finding Eigenvalues: Examples

In some cases it is easy to find the eigenvalues.

Example: $A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$ is diagonal. Characteristic polynomial $(3 - \lambda)(2 - \lambda)$.

Eigenvalues: $\lambda_1 = 3$, $\lambda_2 = 2$.

Eigenvectors: $(A - 3I)v_1 = 0 \Rightarrow Av_1 = 3v_1$.

Can take $v_1 = e_1$

Similarly, an eigenvector associated to λ_2 is $v_2 = e_2$

Further, \mathbb{R}^2 has a basis consisting of eigenvectors of A: $\{e_1, e_2\}$.

Special case: If A is a diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$, then

Eigenvalues: $\lambda_1, \dots, \lambda_n$

Eigenvectors: e_1, \dots, e_n , which form a basis for \mathbb{R}^n .

Finding Eigenvalues: Examples

Example: Projection onto the line x = y: $P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$. $v_1 = \begin{pmatrix} 1 & 1 \end{pmatrix}^T$ projects onto itself $\Rightarrow \lambda_1 = 1$ with eigenvector v_1 . $v_2 = \begin{pmatrix} 1 & -1 \end{pmatrix}^T \mapsto 0 \Rightarrow \lambda_2 = 0$ with eigenvector v_2 . Further, $\{v_1, v_2\}$ is a basis of \mathbb{R}^2 .

Question: Do a collection of eigenvectors always form a basis of \mathbb{R}^n ?

A: No! **Example:** For $c \in \mathbb{R}$, let $A = \begin{pmatrix} c & 1 \\ 0 & c \end{pmatrix}$.

Characteristic Polynomial: $det(A - \lambda I) = (c - \lambda)^2$.

Eigenvalues: $\lambda = c$.

Eigenvectors: $(A - I)v = 0 \Rightarrow v = (1 \ 0)^T$

Question: Is it unique? Eigenspace of A is 1 dimensional \Rightarrow

 \mathbb{R}^2 has no basis of eigenvectors of A.

Think: What is the advantage of a basis of eigenvectors?

Similarity and Eigenvalues

Defn. The $n \times n$ matrices A and B are similar,

if there exists an invertible matrix P such that $P^{-1}AP = B$.

Observe: If $B = P^{-1}AP$, then (i) det(A) = det(B), and

(ii) $B^n = P^{-1}A^nP$ for each n.

Theorem: If A and B are similar, then they have the same characteristic polynomial. In particular, they have the same eigenvalues, det(A) = det(B) and det(B) = det(B).

Proof. Given: $B = P^{-1}AP$. prove: $det(A - \lambda I) = det(B - \lambda I)$.

Note: It is enough to prove that $A - \lambda I$ and $B - \lambda I$ are similar!

Indeed, $B - \lambda I = P^{-1}AP - \lambda P^{-1}P$ = $P^{-1}(A - \lambda I)P$.

Ques: Why care?

Write $\det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$. Compare constant coeff.: $\det(A) = \lambda_1 \cdots \lambda_n = \det(B)$; Compare coeff. of λ^{n-1} : Sum of diagonal entries $= a_{11} + \cdots + a_{nn} = \operatorname{Trace}$ of $A = \lambda_1 + \ldots + \lambda_n = \operatorname{Trace}$ of B.

Ques: How are eigenvalues of A and B related?

Summary: Eigenvalues and Characteristic Polynomial

Let A be $n \times n$.

- 1. The *characteristic polynomial* of A is $det(A \lambda I)$ (of degree n) and its roots are the eigenvalues of A.
- 2. For each eigenvalue λ , the associated *eigenspace* is $N(A \lambda I)$. To find it, solve $(A \lambda I)v = 0$. Any non-zero vector in $N(A \lambda I)$ is an *eigenvector* associated to λ .

- 3. If A is a diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$, then its eigenvalues are $\lambda_1, \dots, \lambda_n$ with associated eigenvectors e_1, \dots, e_n respectively.
- 4. Write $det(A \lambda I) = (\lambda_1 \lambda) \cdots (\lambda_n \lambda)$ and expand.

Trace of
$$A = a_{11} + \cdots + a_{nn}$$
 (sum of diagonal entries)
= $\lambda_1 + \cdots + \lambda_n$

$$\det(A) = \lambda_1 \cdots \lambda_n$$

THUS: If $\lambda_1, \ldots, \lambda_n$ are real numbers, then Tr(A) = sum of eigenvalues, and $\det(A) = \text{product of eigenvalues}$.

3.2 DIAGONALIZABILITY

Diagonizability: Introduction

Note: Finding roots of characteristic polynomials (and hence eigenvalues) is difficult in general.

For $n \ge 5$, no formula exists for roots. (Abel, Galois)

For n = 3, 4, formulae for root exist, but not easy to use.

Defn. An $n \times n$ matrix A is diagonalizable if A is similar to a diagonal matrix Λ , i.e., there is an invertible matrix P and a diagonal matrix Λ such that $P^{-1}AP = \Lambda$.

Importance of Diagonalizability:

Let the $n \times n$ matrix A be diagonalizable, i.e., $P^{-1}AP = \Lambda$, where P is invertible and Λ is diagonal. If this happens,

- The eigenvalues of A are the diagonal entries of Λ ,
- \bullet det(A) is the product of the diagonal entries of Λ , and
- Trace(A) = sum of the diagonal entries of Λ .
- Other Information: e.g., what is $Trace(A^n)$?

Diagonalization: Example

Example: $A = \begin{pmatrix} 1 & 5 & 6 \\ 0 & 2 & -4 \\ 0 & 0 & 3 \end{pmatrix}$ is triangular.

$$\det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(3 - \lambda).$$
 Eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$.

Note: If A is triangular, its eigenvalues are on the diagonal

Eigenvectors: $v_1 = e_1$, $v_2 = \begin{pmatrix} 5 & 1 & 0 \end{pmatrix}^T$, $v_3 = \begin{pmatrix} -7 & -4 & 1 \end{pmatrix}^T$. (**How?**)Further, $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 . Hence $P = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$ is invertible, and $AP = \begin{pmatrix} Av_1 & Av_2 & Av_3 \end{pmatrix} = \begin{pmatrix} Av_1 & Av_2 & Av_3 \end{pmatrix}$

$$\begin{pmatrix} v_1 & 2v_2 & 3v_3 \end{pmatrix} = P\Lambda$$
, where $\Lambda = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix}$. Thus $P^{-1}AP = \Lambda$, i.e., A is diagonalizable.

Example: If $\mathcal{B} = \{v_1, v_2, v_3\}$, and T(v) = Av, then $[T]_{\mathcal{B}}^{\mathcal{B}} = \dots$

Eigenvalue Decomposition (EVD)

Question: What is the advantage of a basis of \mathbb{R}^n consisting of eigenvectors?

Let A be an $n \times n$ matrix with n eigenvectors v_1, \ldots, v_n , associated to eigenvalues $\lambda_1, \ldots, \lambda_n$. If $\mathcal{B} = \{v_1, \ldots, v_n\}$ is a basis of \mathbb{R}^n , then the matrix $P = (v_1 \cdots v_n)$ is invertible.

Moreover, $AP = A (v_1 \cdots v_n) = (Av_1 \cdots Av_n) = (\lambda_1 v_1 \cdots \lambda_n v_n) = P\Lambda$, where $\Lambda =$ $\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$. Therefore $P^{-1}AP = \Lambda$, i.e., A is similar to a diagonal matrix.

Thus: Eigenvectors diagonalize a matrix

Eigenvalue Decomposition (EVD): Let A be diagonalizable.

With notation as above, we have $A = P\Lambda P^{-1}$.

This is called as the eigenvalue decompostion (EVD) of A.

Diagonizability and Eigenvectors

Theorem A is diagonalizable \Leftrightarrow A has n linearly independent eigenvectors. In particular, \mathbb{R}^n has a basis consisting of eigenvectors of A.

Proof. (\Leftarrow): Done! To prove (\Rightarrow), assume $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ is an invertible matrix such

that
$$P^{-1}AP = \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
. Then $AP = P\Lambda$, i.e. $(Av_1 \ldots Av_n) = (\lambda_1 v_1 \ldots \lambda_n v_n)$.

Therefore v_1, \ldots, v_n are eigenvectors of A. They are linearly independent since P is invertible.

Question: Is every matrix is diagonalizable? **A:** No.

Examples: $Q = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ no eigenvalues (over \mathbb{R})! $P = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ not enough eigenvectors!

Diagonalizability: Summary

Thus: If an $n \times n$ matrix A has n linearly independent eigenvectors v_1, \ldots, v_n , then A is diagonalizable. Moreover, if $\lambda_1, \ldots, \lambda_n$ are the corresponding eigenvalues, then $P^{-1}AP =$ Λ , where the diagonalizing matrix is $P = (v_1 \cdots v_n)$, and the diagonal matrix is $\Lambda =$

$$\begin{pmatrix} \lambda_1 & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
, i.e., $P^{-1}AP = \Lambda$, where

The diagonal entries of Λ are eigenvalues of A and

The columns of P are corresponding eigenvectors of A.

The EVD of A is $A = P\Lambda P^{-1}$.

Note: P need not be unique, e.g., replace v_1 by $2v_1$, etc.

When is A Diagonalizable?

Ans: When A has n linearly independent eigenvectors. Ques: When does A have n linearly independent eigenvectors?

• If v_1, \ldots, v_r are eigenvectors of A associated to <u>distinct</u> eigenvalues $\lambda_1, \ldots, \lambda_r$, then v_1, \ldots, v_r are linearly independent.

Proof. Suppose v_1, \ldots, v_r are linearly dependent. Choose a linear relation involving minimum number of v_i 's, say

(1) $a_1v_1 + \cdots + a_tv_t = 0$. $(1 < t \le r, t \text{ is minimal, } a_i \ne 0)$

Apply A to get $a_1\lambda_1v_1 + \cdots + a_t\lambda_tv_t = 0$ (2)

 $\lambda_1(1)-(2)$ gives $a_2(\lambda_1-\lambda_2)v_2+\cdots+a_t(\lambda_1-\lambda_t)v_t=0$,

which contradicts the minimality of t.

• If A has n distinct eigenvalues, then A is diagonalizable.

Proof. If v_1, \ldots, v_n are eigenvectors associated to distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, then $\{v_1, \ldots, v_n\}$ is linearly independent.

Then $P=\begin{pmatrix} v_1 & \dots & v_n \end{pmatrix}$ is invertible, and $P^{-1}AP=\Lambda$ as seen earlier. Hence A is diagonalizable. \square

Reading Slide - **Eigenvalues of** AB and A+B

• If λ is an eigenvalue of A, μ is an eigenvalue of B, is $\lambda\mu$ an eigenvalue of AB?

False Proof. $ABx = A(\mu x) = \mu(Ax) = \lambda \mu x$.

This is false since A and B may not have same eigenvector x.

• Example: $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

The eigenvalues of A and B are 0,0 and that of AB are 1,0.

• Eigenvalues of A + B are NOT $\lambda + \mu$.

In above example, $A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ has eigenvalues 1, -1.

• If A and B have same eigenvectors associated to λ and μ , then $\lambda\mu$ and $\lambda + \mu$ are eigenvalues of AB and A+B respectively.

Question: When do A and B have the same eigenvectors?

Extra Reading: Simultaneous Diagonalizability

Assume A and B are diagonalizable. Then A and B have same eigenvector matrix S if and only if AB = BA.

Proof. (\Rightarrow) Assume $S^{-1}AS = \Lambda_1$ and $S^{-1}BS = \Lambda_2$, where Λ_1 and Λ_2 are diagonal matrices. Then $AB = (S\Lambda_1S^{-1})(S\Lambda_2S^{-1}) = S(\Lambda_1\Lambda_2)S^{-1}$ and $BA = S(\Lambda_2\Lambda_1)S^{-1}$. Since $\Lambda_1\Lambda_2 = \Lambda_2\Lambda_1$, we

get
$$AB = BA$$
.

(Part of \Leftarrow) Assume AB = BA. If $Ax = \lambda x$, then $ABx = B(Ax) = B(\lambda x) = \lambda Bx$. If Bx = 0, then x is an eigenvector of B, associated to $\mu = 0$. If $Bx \neq 0$, then x and Bx both are eigenvectors of A, associated to λ .

Special case: Assume all the eigenspaces of A are one dimensional. Then $Bx = \mu x$ for some scalar $\mu \Rightarrow x$ is an eigenvector of B. We will not prove the general case.

Eigenvalues of A^k

• If $Av = \lambda v$, then $A^2v = A(Av) = A(\lambda v) = \lambda(Av) = \lambda^2 v$. Similarly $A^kv = \lambda^k v$ for any $k \ge 0$.

Thus if v is an eigenvector of A with associated eigenvalue λ , then v is also an eigenvector of A^k with associated eigenvalue λ^k for $k \geq 0$. If A is invertible, then $\lambda \neq 0$. Hence, the same also holds for k < 0 since $A^{-1}v = \lambda^{-1}v$.

ullet If A is diagonalizable , then $P^{-1}AP=\Lambda$ is diagonal where columns of P are eigenvectors of A.

Since $(P^{-1}A^kP) = \Lambda^k$, which is diagonal, we see that A^k is diagonalizable, and the eigenvectors of A^k are same as eigenvectors of A. Similarly, the same also holds for k < 0 if A is invertible.

Question: What is the EVD of A^k .

Reading Slide - Application: Fibonacci Numbers

Let $F_0 = 0$, $F_1 = 1$ and $F_k = F_{k-1} + F_{k-2}$ for $k \ge 2$ define the Fibonacci sequence. What is the kth term?

If
$$u_k = \begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}$$
, then $\begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_k \\ F_{k-1} \end{pmatrix}$, i.e., $u_k = Au_{k-1}$ for $n \ge 1$, where $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow u_k = A^k u_0$ for $k \ge 1$.

Characteristic polynomial of A: $\lambda^2 - \lambda - 1$; Eigenvalues: $\lambda_1 = \frac{1 + \sqrt{5}}{2}$, $\lambda_2 = \frac{1 - \sqrt{5}}{2}$.

There are 2 distinct eigenvalues \Rightarrow the associated eigenvectors x_1 and x_2 are linearly independent $\Rightarrow \{x_1, x_2\}$ is a basis for \mathbb{R}^2 .

Write
$$u_0 = c_1 x_1 + c_2 x_2$$
. Then $u_k = A^k u_0 = A^k (c_1 x_1 + c_2 x_2)$
$$= c_1 A^k x_1 + c_2 A^k x_2 = c_1 \left(\frac{1 + \sqrt{5}}{2}\right)^k x_1 + c_2 \left(\frac{1 - \sqrt{5}}{2}\right)^k x_2.$$

9: Find x_1 , x_2 , c_1 and c_2 and get the exact formula for F_k .

An Application: Predator-Prey Model

Let the owl and rat populations at time k be O_k and R_k respectively. Owls prey on the rats, so if there are no rats, the population of owls will go down by 50%. If there are no owls to prey on the rats, then the rat population will increase by 10%.

In particular, let us assume the rat and owl populations dependence is given as follows:

$$O_{k+1} = 0.5O_k + 0.4R_k$$

 $R_{k+1} = -pO_k + 1.1R_k$

The term -p calculates the rats preyed by the owls.

Thus, if
$$P_k = \begin{pmatrix} O_k \\ R_k \end{pmatrix}$$
 and $A = \begin{pmatrix} 0.5 & 0.4 \\ -p & 1.1 \end{pmatrix}$, then $P_{k+1} = AP_k$ for all k . In particular, $P_k = A^k P_0$.

Exercise: If we start with a certain initial population of owls and rats, how many will be there in, say, 50 years, i.e., given P_0 , what is P_{50} ? What is the steady state, i.e., what is $\lim_{k\to\infty} P_k$?

An Application: Steady State

Suppose we have a system where the current state u_k depends on the previous one u_{k-1} linearly, i.e., $u_k = Au_{k-1}$. Then observe that $u_k = A^k u_0$. The steady state of the system is $u_{\infty} = \lim_{k \to \infty} (u_k)$. How do we find this?

- If u_0 is an eigenvector of A associated to λ , then $u_k = \lambda^k u_0$.
- Let v_1, \ldots, v_r be eigenvectors of A associated respectively to $\lambda_1, \ldots, \lambda_r$. If $u_0 \in \operatorname{Span}\{v_1, \ldots, v_r\}$, i.e., $u_0 = c_1v_1 + \cdots + c_rv_r$ for scalars c_1, \ldots, c_r , then $u_k = A^ku_0 = c_1A^kv_1 + \cdots + c_rA^kv_r = c_1\lambda_1^kv_1 + \cdots + c_r\lambda_r^kv_r$. In particular, if A is diagonalizable, then there is a basis of \mathbb{R}^n of eigenvectors of A. Hence, this is applicable to every $u_0 \in \mathbb{R}^n$.

Let A be diagonalizable, and u_k represent population.

- Under what conditions will there be a population explosion?
- What conditions will force the population to become extinct?
- When does it stabilise (to a non-zero value)?

Hint: Depends on $|\lambda_i|$.

Extra Reading: Complex Eigenvalues

Example: Rotation by 90^o in \mathbb{R}^2 is given by $Q = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. It has no real eigenvectors since rotation by 90^o changes the direction.

Q has eigenvalues, but they are not real. $det(Q - \lambda I) = \lambda^2 + 1 \Rightarrow \lambda_1 = i$ and $\lambda_2 = -i$, where $i^2 = -1$. Let us compute the eigenvectors.

$$(Q-iI)x_1 = \begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} x_1 = 0 \Rightarrow x_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix}, (Q+iI)x_2 = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} x_2 = 0 \Rightarrow x_2 = \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

The eigenvalues, though imaginary, are distinct, hence eigenvectors are linearly independent.

If
$$P = \begin{pmatrix} x_1 & x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$$
, then $P^{-1}QP = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.

Conclusion: We need complex numbers \mathbb{C} even if we are working with real matrices. Over \mathbb{C} , an $n \times n$ matrix A always has n eigenvalues.

Reason: Fundamental theorem of Algebra

Every polynomial over $\mathbb C$ of degree n has n roots in $\mathbb C$.

Chapter 4. Orthogonality and Projections

4.1 ORTHOGONALITY

Inner product on \mathbb{R}^n

Defn. Define the **inner product** (dot product) of two vectors $v, w \in \mathbb{R}^n$ as $v \cdot w = v^T w$ For v, w in \mathbb{R}^n and c in \mathbb{R}

- $\bullet \ v \cdot w = v^T w = v_1 w_1 + \dots + v_n w_n = w^T v = w \cdot v.$
- (Bilinearity)

$$(v+w) \cdot z = (v+w)^T z = v^T z + w^T z = v \cdot z + w \cdot z$$

 $cv \cdot w = (cv)^T w = c(v^T w) = v^T (cw) = v \cdot cw.$

• $v \cdot v = v^T v \ge 0$ and $v^T v = 0$ if and only if v = 0.

Define **length** (or norm) of v in \mathbb{R}^n to be $||v|| = \sqrt{v \cdot v}$.

Henceforth we will use $v^T w$ directly to write the dot product.

Reading: Length of a vector in \mathbb{R}^3 and \mathbb{R}^n

Let v = (2, 3, 2). By Pythagoras theorem, $||v|| = \sqrt{||(2, 3, 0)||^2 + ||(0, 0, 2)||^2}$

$$=\sqrt{2^2+3^2+2^2}=\sqrt{17}.$$
 (2,0,0)

Generalize by induction: Let
$$v = (x_1, \dots, x_n)^T \in \mathbb{R}^n$$
. Define $||v|| = \sqrt{||(x_1, \dots, x_{n-1}, 0)||^2 + ||(0, 0, \dots, x_n)||^2} = \sqrt{x_1^2 + \dots + x_{n-1}^2 + x_n^2} = \sqrt{v^T v}$.

The length in \mathbb{R}^n is compatible with the vector space structure. Let $v,w\in\mathbb{R}^n$ and $c\in\mathbb{R}$. Then,

- $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.
- $\|cv\| = |c|\|v\|$ $\|v + w\| \le \|v\| + \|w\|$ (Triangle Inequality)

Orthogonal vectors in \mathbb{R}^n

We say vectors v and w in \mathbb{R}^n are orthogonal (perpendicular) if they satisfy the Pythagoras theorem that is, $||v||^2 + ||w||^2 = ||v - w||^2$

$$||v||^{2} + ||w||^{2} = (v - w)^{T}(v - w)$$

$$= (v^{T} - w^{T})(v - w)$$

$$= v^{T}v - w^{T}v - v^{T}w + w^{T}w$$

$$= ||v||^{2} - 2v^{T}w + ||w||^{2} \text{ (since } w^{T}v = v^{T}w \text{)}$$

Therefore, v and w are defined to be orthogonal if

 $v^T w =$

Think! What can be said about Span $\{v\}$ and Span $\{w\}$ when v and w are orthogonal to each other in \mathbb{R}^3 ?

Orthogonal and Orthonormal Sets

Defn. A set of *non-zero* vectors $\{v_1, \dots, v_k\} \subset \mathbb{R}^n$, is said to be an **orthogonal set** if $v_i^T v_j = 0$ for all $i, j = 1, \dots, i \neq j$.

Examples:
$$\{(1,3,1),(-1,0,1)\}\subset\mathbb{R}^3$$
, $\{(2,1,0,-1),(0,1,0,1),(-1,1,0,-1)\}\subseteq\mathbb{R}^4$, $\Big\{(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}),(\frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}})\Big\}\subseteq\mathbb{R}^3$, $\{e_1,\cdots,e_n\}\subseteq\mathbb{R}^n$.

Of these, the last two examples have all unit vectors (vectors of length one).

Defn. An orthogonal set $\{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ with all unit vectors, i.e., $\|\bar{v}_i\| = 1$ for all i, is called an **orthonormal set**.

Note: If $\{v_1, \dots, v_k\}$ is an orthogonal set, then $\{u_1, \dots, u_k\}$ is orthonormal, for $u_i = v_i/||v_i||$. **Exercise:** If $S = \{v_1, \dots, v_k\}$ is an orthogonal set, then v_k is orthogonal to each $v \in \text{Span}\{v_1, \dots, v_{k-1}\}$.

Orthogonality and Linear Independence

Theorem: An orthogonal set in \mathbb{R}^n is linearly independent. *Proof.* Let $\{v_1, \dots, v_k\}$ be an orthogonal set in \mathbb{R}^n , i.e. $v_i \neq 0$ and $v_i^T v_j = 0$ for $i \neq j$. Note that for i = j, $v_i^T v_i = ||v_i||^2 \neq 0$. Assume for some $a_1, \dots, a_k \in \mathbb{R}$,

$$a_{1}v_{1} + a_{2}v_{2} + \dots + a_{k}v_{k} = 0$$

$$\Rightarrow (a_{1}v_{1} + a_{2}v_{2} + \dots + a_{k}v_{k})^{T}v_{1} = 0 \cdot v_{1} = 0$$

$$\Rightarrow (a_{1}v_{1}^{T} + a_{2}v_{2}^{T} + \dots + a_{k}v_{k}^{T}) v_{1} = 0$$

$$\Rightarrow a_{1}v_{1}^{T}v_{1} + a_{2}v_{2}^{T}v_{1} + \dots + a_{k}v_{k}^{T}v_{1} = 0$$

$$\Rightarrow a_{1}||v_{1}||^{2} = 0$$

$$\Rightarrow a_{1} = 0 \text{ since } v_{1} \neq 0$$

Similarly, we get $a_2 = \cdots = a_n = 0$. Hence $\{v_1, \cdots, v_k\}$ is linearly independent. **True/False:** Any matrix whose columns form an orthogonal set is invertible. Give example

Matrices with Orthogonal Columns

Let $A = [v_1 \cdots v_n]$ be $m \times n$. If $\{v_1, \dots, v_n\}$ form an orthonormal set in \mathbb{R}^m , then

$$A^T A = \begin{pmatrix} v_1^T \\ \vdots \\ v_n^T \end{pmatrix} \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix} = \begin{pmatrix} v_1^T v_1 & \dots & v_1^T v_n \\ \vdots & & \vdots \\ v_n^T v_1 & \dots & v_n^T v_n \end{pmatrix} = I_n.$$

Defn. A square matrix A whose column vectors form an orthonormal set is called an orthogonal matrix.

If $Q = [u_1 \cdots u_n]$ is an orthogonal matrix, then

- $\{u_1, \ldots, u_n\}$ is an orthonormal set (by definition)
- $Q^TQ = I = QQ^T$ Why?
- $||Qv|| = \sqrt{(Qv)^T (Qv)} = \sqrt{v^T Q^T Qv} = \sqrt{v^T x} = ||v||.$
- \Rightarrow the only (real) eigenvalues of Q, if they exist, are ± 1 .
- Row vectors of Q are orthonormal since $QQ^T = I$.

Orthogonal Matrices: Examples

Examples: 1. $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. 2. $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

Orthogonal Basis

Defn. A basis $\mathcal{B} = \{v_1, \dots, v_k\}$ of a subspace V of \mathbb{R}^n is an orthogonal basis if it is an orthogonal set, i.e., $v_i^T v_j = 0$ for $i \neq j$.

Furthermore, if $||v_i|| = 1$ for each i, then \mathcal{B} is an orthonormal basis (or o.n.b.) of V.

Example: Consider the bases of \mathbb{R}^2 : $\mathcal{B}_1 = \{w_1 = (8,0)^T, w_2 = (6,3)^T\}$,

$$\mathcal{B}_2 = \{(8,0)^T, (0,3)^T\} \text{ and } \mathcal{B}_3 = \left\{ \left(\frac{8}{\sqrt{8^2 + 0^2}}, 0\right)^T, \left(0, \frac{3}{\sqrt{0^2 + 3^2}}\right)^T \right\}.$$

Then \mathcal{B}_1 is not orthogonal, \mathcal{B}_2 is an orthogonal basis, but not an orthonormal basis, and \mathcal{B}_3 is an orthonormal basis of \mathbb{R}^2 .

Note: If $\{u_1, \ldots, u_k\} \subseteq \mathbb{R}^n$ is an orthonormal set, then it is an o.n.b. of $V = \text{Span}\{u_1, \ldots, u_k\}$.

Importance of Orthogonal Basis

Example: The set $\mathcal{B} = \{v_1 = (-1,1)^T, v_2 = (1,1)^T\}$ is a orthogonal basis of \mathbb{R}^2 .

• Find
$$[v]_{\mathcal{B}} = (a, b)^T$$
: $v = av_1 + bv_2 = a(-1, 1)^T + b(1, 1)^T$

$$v_1^T v = (-1, 1)v = a(-1, 1)(-1, 1)^T = 2a = a||v_1||^2$$

Then
$$a = \frac{v_1^T v}{2} = \frac{v_1^T v}{||v_1||^2}$$
 and $b = \frac{v_2^T v}{2} = \frac{v_2^T v}{||v_2||^2}$

General Case: If $\mathcal{B} = \{v_1, \dots, v_n\}$ is an o.n.b of V, then $[v]_{\mathcal{B}} = (c_1, \dots, c_n)^T$, where $c_j = v_j^T v$. Moreover, if $T: V \to V$ is linear, and $[T]_{\mathcal{B}}^{\mathcal{B}} = [a_{ij}]$, then

$$[T]_{\mathcal{B}}^{\mathcal{B}} = ([T(v_1)]_{\mathcal{B}} \cdots [T(v_n)]_{\mathcal{B}}) \Rightarrow a_{ij} = \overline{\phantom{a_{ij}}}$$

Think!

When does T map orthogonal sets to orthogonal sets?

Orthogonal Basis and Projections

Every subspace of \mathbb{R}^n has an orthogonal basis.

To construct one, we can start with any basis and modify it (Gram-Schmidt process). First we see what happens in \mathbb{R}^2 .

To construct an orthogonal basis in \mathbb{R}^n , we need to know how to find $\operatorname{proj}_{v_1}(v_2)$ in \mathbb{R}^n .

Orthogonal Projections in \mathbb{R}^n

If $v(\neq 0), w \in \mathbb{R}^n$, then $\operatorname{proj}_v(w)$, is a multiple of v and $w - \operatorname{proj}_v(w)$ is orthogonal to v. Thus

$$\begin{aligned} & \mathbf{proj}_v w &= av \text{ for some } a \in \mathbb{R} \\ v^T(w - \mathbf{proj}_v w) &= 0 \\ v^T w - v^T a v = 0 &\Leftrightarrow a = \frac{v^T w}{v^T v} \end{aligned}$$

Therefore
$$volume \operatorname{proj}_v(w) = \left(\frac{v^T w}{v^T v}\right) v.$$

Example. If $w = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ and $v = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T$, then the orthogonal projection of w on $\mathrm{Span}\{v\}$ is given by $\mathrm{proj}_v(w) = \begin{pmatrix} v^Tw \\ v^Tv \end{pmatrix} v = \frac{6}{14} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

60

Application: This can be used to "solve" an inconsistent system of equations.

Linear Least Squares and Projections

Suppose system Ax = b is inconsistent, i.e. $b \notin C(A)$. The error E = ||Ax - b|| is the distance from b to $Ax \in C(A)$.

 $C^{(A)}$ We want the least square solution \hat{x} which minimizes E, i.e., we want to find \hat{b} closest to b such that $A\hat{x} = \hat{b}$ is a consistent system.

Therefore, $\hat{b} = \operatorname{proj}_{C(A)}(b)$ and $A\hat{x} = \hat{b}$. The error vector $e = b - A\hat{x}$ must be perpendicular to C(A),

which is also the row space of A^T .

So, e must be in the left null space of A, $N(A^T)$, i.e.,

$$A^{T}(b - A\hat{x}) = 0 \text{ or } A^{T}A\hat{x} = A^{T}b$$

Therefore, to find \hat{x} , we need to solve $A^T A \hat{x} = A^T b$.

Linear Least Squares and Projections

Let A be $m \times n$. Then $A^T A$ is a symmetric $n \times n$ matrix.

$$\bullet \left[N(A^T A) = N(A) \right].$$

Proof. $Ax = 0 \Rightarrow A^T Ax = 0$. So, $N(A) \subseteq N(A^T A)$.

For the other inclusion, take $x \in N(A^TA)$.

$$A^TAx = 0 \Rightarrow x^T(A^TAx) = (Ax)^T(Ax) = ||Ax||^2 = 0$$

 $\Rightarrow Ax = 0$,i.e., $x \in N(A)$.

- ullet Since $N(A)=N(A^TA)$, by rank-nullity theorem, $\mathrm{rank}(A)=n-\mathrm{dim}\ (N(A))=\mathrm{rank}(A^TA)$.
- A has linearly independent columns \Leftrightarrow rank $(A) = n \Leftrightarrow$ rank $(A^TA) = n \Leftrightarrow A^TA$ is invertible.
- If $\operatorname{rank}(A) = n$, then the least square solution of Ax = b is given by $A^T A \hat{x} = A^T b \Rightarrow (\hat{x} = (A^T A)^{-1} A^T b)$ and the orthogonal proj. of b on C(A) is $(\hat{b} = A\hat{x} = Pb)$, where $(P = A(A^T A)^{-1} A^T b)$ is the projection matrix. Ques: Is $P^2 = P$?

Linear Least Squares: Example

Example: Find the least square solution to the system

$$\begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{pmatrix} x = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} \quad (Ax = b)$$

We need to solve $A^TA\hat{x} = A^Tb$. Now $A^Tb = \begin{pmatrix} -4\\11 \end{pmatrix}$ and $A^TA = \begin{pmatrix} 6&-11\\-11&22 \end{pmatrix}$.

$$[A^T A \mid A^T b] = \begin{pmatrix} 6 & -11 & | & -4 \\ -11 & 22 & | & 11 \end{pmatrix} \to \begin{pmatrix} 6 & -11 & | & -4 \\ 0 & 11/6 & | & 11/3 \end{pmatrix}.$$

Therefore $\hat{x_2} = 2$, and $\hat{x_1} = 3$.

Exercise: Find the projection matrix P, and check that $Pb = A\hat{x}$.

Reading Slide: Linear Least Squares: Application

Mooke's Law states that displacement x of the spring is directly proportional to the load (mass) applied, i.e., m = kx.

A student performs experiments to calculate spring constant k. The data collected says for loads 4,7,11 kg applied, the displacement is 3,5,8 inches respectively. Hence we have:

$$\begin{pmatrix} 3 \\ 5 \\ 8 \end{pmatrix} k = \begin{pmatrix} 4 \\ 7 \\ 11 \end{pmatrix} \qquad (ak = b).$$

Clearly the data is inconsistent.

Allowing for various errors, how do we find an estimate for k?

The method of least squares allows us to find a consistent system "close" to this one! **Exercise**: Estimate k using the method of least squares.

Reading Slide: Line of Best Fit: Example

Question: We want to find the best line y = C + Dx which fits the given data and gives least square error.

Data: (x,y) = (-2,4), (-1,3), (0,1), and (2,0).

The system
$$\begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \\ 0 \end{pmatrix} \quad (Ax = b)$$

is inconsistent

Find the least square solution by solving $A^T A \hat{x} = A^T b$.

Question: Find the best quadratic curve $y = C + Dx + Ex^2$ which fits the above data and gives least square error.

Hint. The first row of the matrix A in this case will be $\begin{bmatrix} 1 & -2 & 4 \end{bmatrix}$.

Gram-Schmidt Process

If the set of vectors v_1, \ldots, v_r in \mathbb{R}^n are linearly independent, then we can find an orthonormal set of vectors q_1, \ldots, q_r such that $\text{Span}\{v_1, \ldots, v_r\} = \text{Span}\{q_1, \ldots, q_r\}$.

First find an orthogonal set.

Let $w_1 = v_1$, $w_2 = v_2 - \text{proj}_{w_1}(v_2)$. Then $w_1 \perp w_2$ and $\text{Span}\{v_1, v_2\} = \text{Span}\{w_1, w_2\}$.

Let $c_1w_1 + c_2w_2$ be the projection of v_3 on Span $\{w_1, w_2\}$. Then $(v_3 - c_1w_1 - c_2w_2) \perp w_1$ and $(v_3 - c_1w_1 - c_2w_2) \perp w_2$. $\Rightarrow w_1^T(v_3 - c_1w_1 - c_2w_2) = 0 \Rightarrow c_1w_1 = \text{proj}_{w_1}(v_3)$ and similarly $c_2w_2 = \text{proj}_{w_2}(v_3)$. Therefore,

$$w_3 = v_3 - \mathbf{proj}_{\mathbf{Span}\{w_1, w_2\}}(v_3) = v_3 - \left(\frac{w_1^T v_3}{\|w_1\|^2}\right) w_1 - \left(\frac{w_2^T v_3}{\|w_2\|^2}\right) w_2.$$

$$\left[extsf{Span}\{v_1, v_2, v_3\} = extsf{Span}\{w_1, w_2, w_3\} ext{ and } w_1^T w_3 = 0, w_2^T w_3 = 0.
ight]$$

By induction,

$$\begin{split} w_r := v_r - \mathbf{proj}_{\mathrm{Span}\{w_1, \dots w_{r-1}\}}(v_r) &= v_r - \mathbf{proj}_{w_1}(v_r) - \mathbf{proj}_{w_2}(v_r) - \dots - \mathbf{proj}_{w_{r-1}}(v_r) \\ &= v_r - \frac{w_1^T v_r}{\|w_1\|^2} w_1 - \frac{w_2^T v_r}{\|w_2\|^2} w_2 - \dots - \frac{w_{r-1}^T v_r}{\|w_{r-1}\|^2} w_{r-1} \end{split}$$

Now take $q_1 = \frac{w_1}{\|w_1\|}$, $q_2 = \frac{w_2}{\|w_2\|}$, ..., $q_r = \frac{w_r}{\|w_r\|}$. Then $\{q_1, \ldots, q_r\}$ is an orthonormal set and $W = \text{Span}\{v_1, \ldots, v_r\} = \text{Span}\{w_1, \ldots, w_r\} = \text{Span}\{q_1, \ldots, q_r\}$.

In particular, $\{q_1, q_2, \dots, q_r\}$ is an orthonormal basis for W.

Exercise: Show that if $\{w_1, \ldots, w_r\}$ is an orthogonal set, then

$$\left[\operatorname{proj}_{\operatorname{Span}\{w_1,...w_{i-1}\}}(v_i) = \operatorname{proj}_{w_1}(v_i) + \operatorname{proj}_{w_2}(v_i) + \cdots + \operatorname{proj}_{w_{i-1}}(v_i).\right]$$

Gram-Schmidt Method: Example

Q: Let
$$S = \left\{ v_1 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} -5 \\ 1 \\ 5 \\ -7 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 8 \end{pmatrix} \right\}$$
 and $W = \operatorname{Span}(S)$. Find an orthonor-

mal basis for W.

Exercise: First verify that $\{v_1, v_2, v_3\}$ are linearly independent. (Check that rank of $(v_1 \ v_2 \ v_3)$ is 3). Hence S is a basis of W. Use Gram-Schmidt method: $w_1 = v_1$, $w_2 = v_2 - \left(\frac{w_1^T v_2}{\|w_1\|^2}\right) w_1$

$$\Rightarrow w_2 = v_2 - \left(\frac{-15 + 1 - 5 - 21}{9 + 1 + 1 + 9}\right) w_1 = v_2 - \left(\frac{-40}{20}\right) w_1 = v_2 + 2w_1 = \begin{pmatrix} 1 & 3 & 3 & -1 \end{pmatrix}^T.$$

Observe: $v_1, v_2 \in \text{Span}\{w_1, w_2\}, w_1, w_2 \in \text{Span}\{v_1, v_2\} \Rightarrow \text{Span}\{v_1, v_2\} = \text{Span}\{w_1, w_2\}.$

Recall $w_1 = \begin{pmatrix} 3 & 1 & -1 & 3 \end{pmatrix}^T$, $w_2 = \begin{pmatrix} 1 & 3 & 3 & -1 \end{pmatrix}^T$, and $v_3 = \begin{pmatrix} 1 & 1 & -2 & 8 \end{pmatrix}^T$. (Check $w_1^T w_2 = 0$).

$$\begin{aligned} & \text{Now } w_3 = v_3 - \left(\frac{w_1^T v_3}{\|w_1\|^2}\right) w_1 - \left(\frac{w_2^T v_3}{\|w_2\|^2}\right) w_2 = v_3 - \left(\frac{3+1+2+24}{20}\right) w_1 - \left(\frac{1+3-6-8}{20}\right) w_2 \\ & \Rightarrow \quad w_3 = \begin{pmatrix} 1\\1\\-2\\8 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 3\\1\\-1\\3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1\\3\\3\\-1 \end{pmatrix} = \begin{pmatrix} -3\\1\\1\\3 \end{pmatrix}. \end{aligned}$$

Check $w_1^Tw_3=0=w_2^Tw_3$ and $\text{Span}\{v_1,v_2,v_3\}=\text{Span}\{w_1,w_2,w_3\}$. Hence $\{w_1,w_2,w_3\}$ is an orthogonal basis of W. An orthonormal basis for W is $\left\{\frac{1}{\sqrt{20}}w_1,\frac{1}{\sqrt{20}}w_2,\frac{1}{\sqrt{20}}w_3\right\}$.

QR Factorization

Let $A = \begin{pmatrix} v_1 & \cdots & v_r \end{pmatrix}$ be an $n \times r$ matrix of rank r. Then v_1, \ldots, v_r are linearly independent vectors in \mathbb{R}^n . By the Gram-Schmidt method, we get an orthonormal basis $\{q_1, \ldots, q_r\}$ of C(A), where $q_i = \frac{w_i}{\|w_i\|}$ and $w_1 = v_1$, and for k > 1,

$$w_k = v_k - \left(\frac{w_1^T v_k}{\|w_1\|^2}\right) w_1 - \dots - \left(\frac{w_{k-1}^T v_k}{\|w_{k-1}\|^2}\right) w_{k-1}.$$

Let $Q = (q_1 \dots q_r)$. How are A and Q related?

Note that $\mathrm{Span}\{v_1,\ldots,v_k\}=\mathrm{Span}\{w_1,\ldots,w_k\}=\mathrm{Span}\{q_1,\ldots,q_k\}$ for all k. If $v_k=c_1q_1+\ldots+c_kq_k$, then $c_1=q_1^Tv_k, \quad c_2=q_2^Tv_k, \quad \ldots, \quad c_k=q_k^Tv_k$. Thus Hence $v_k=(q_1^Tv_k)q_1+\ldots+(q_k^Tv_k)q_k$.

$$v_k = (q_1^T v_k)q_1 + \ldots + (q_k^T v_k)q_k$$
 for each k .

Therefore

$$(v_1 \quad v_2 \quad \dots \quad v_r) = (q_1 \quad q_2 \quad \dots \quad q_r) \begin{pmatrix} q_1^T v_1 & q_1^T v_2 & & q_1^T v_r \\ 0 & q_2^T v_2 & & q_2^T v_r \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & q_r^T v_r \end{pmatrix}$$

i.e. (A = QR), where the columns of Q form an orthonormal set and R is an invertible $r \times r$ matrix. Question: Why is R invertible?

This is called QR-factorization of A.

ullet If A is invertible $n \times n$, then A = QR, where A = QR is an orthogonal matrix and A = R is an invertible upper triangular matrix, both are A = R matrices. Added remark: If A = R in least squares method has linearly independent columns, then A = R factorization is useful in computing it.

Diagonalizing Symmetric Matrices: Example

Example: Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
. Then $A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{bmatrix}$ and

$$\det(A - \lambda I) = (1 - \lambda)[(1 - \lambda)^2 - 1] - 1[1 - \lambda - 1] + 1[1 - (1 - \lambda)]$$
= $(3 - \lambda)\lambda^2$ Eigenvalues: $\lambda_1 = 3, \lambda_2 = 0, \lambda_3 = 0$

$$\det(A - \lambda I) = (1 - \lambda)[(1 - \lambda)^2 - 1] - 1[1 - \lambda - 1] + 1[1 - (1 - \lambda)]$$

$$= (3 - \lambda)\lambda^2 \quad \text{Eigenvalues: } \lambda_1 = 3, \lambda_2 = 0, \lambda_3 = 0.$$

$$\text{To find } N(A - 3I), \text{ solve } A - 3I = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

N(A) is the plane x + y + z = 0. Hence, the associated eigenvectors are $v_1 = (1, 1, 1)^T$, $v_2 = (-1, 0, 1)^T$ and $v_3 = (0, -1, 1)^T$.

Example: $A = Q\Lambda Q^T$

A has eigenvalues $\lambda_1 = 3, \lambda_2 = 0, \lambda_3 = 0$ with associated eigenvectors $v_1 = (1, 1, 1)^T$, $v_2 = (-1, 0, 1)^T$ and $v_3 = (0, -1, 1)^T$. Note that v_2 and v_3 are linearly independent in N(A). Observe $v_1^T v_2 = 0 = v_1^T v_3$.

How do we get an orthogonal Q such that $A = Q\Lambda Q^T$, where Λ is diagonal with entries 3, 0, 0 on the diagonal?

Steps: 1. Let $u_1 = v_1/\|v_1\|$.

- 2. Start with the basis $\{v_2, v_3\}$ of N(A), and apply the Gram-Schimdt process to get an orthonormal basis $\{u_2, u_3\}$ for N(A). Note that u_2 and u_3 are eigenvectors of A associated to $\lambda = 0$, and are linearly independent since they are non-zero orthogonal vectors.
- 3. Then $Q = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ is orthogonal, and $Q^{-1}AQ = \Lambda$.
- 4. Since $Q^{-1} = Q^T$, $A = Q\Lambda Q^T$.

Diagonalizing Symmetric Matrices

Let A be a symmetric matrix, which is diagonalizable. Then there is an orthogonal matrix Q, and a diagonal matrix Λ such that $A = Q\Lambda Q^T$.

Observe: Eignevectors corresponding to distinct eigenvalues are orthogonal.

Proof. Let λ and μ be distinct eigenvalues of A with associated eigenvectors v and w repectively. Now, $\lambda(v^T w) = (\lambda v)^T w = (Av)^T w = v^T (A^T w) = v^T (Aw) = \mu(v^T w)$.

Since $\lambda \neq \mu$, this implies $v^T w = 0$, proving the result.

Step 1: Find the eigenvalues and the respective eigenvectors.

Step 2: Use Gram-Schmidt process to get an orthogonal basis for each eignespace.

Theorem: (Real Spectral Theorem)

Every symmetric matrix (with real entries) is diagonalizable, and hence decomposes as above.

Appendix 1: Determinants

Reading Slide - Determinants: Key Properties

Let A and B $n \times n$, and c a scalar.

- True/False: det(A + B) = det(A) + det(B).
- True/False: det(cA) = c det(A).
- det(AB) = det(A)det(B).
- $\det(A) = \det(A^T)$.
- If A is orthogonal, i.e., $AA^T = I$, then det(A) =
- If $A = [a_{ij}]$ is triangular, then det(A) = ...
- A is invertible $\Leftrightarrow \det(A) \neq 0$. If this happens, then $\det(A^{-1}) = \dots$
- If $B = P^{-1}AP$ for an invertible matrix P, i.e., A and B are similar, then $det(B) = \dots$
- If A is invertible, and d_1, \ldots, d_n are the pivots of A, then $det(A) = \ldots$.

Reading Slide - Determinants: Defining Properties

Defn.The determinant function det : $M_{n\times n}(\mathbb{R}) \to \mathbb{R}$ can be defined (uniquely) by its three basic properties.

- $\det(I) = 1$.
- The sign of determinant is reversed by a row exchange. Thus, if $B = P_{ij}A$, i.e., B is obtained from A by exchanging two rows, then det(B) = -det(A). In particular, $det(I) = 1 \Rightarrow det(P_{ij}) = -1$.
- det is linear in each row separately, i.e. , we fix n-1 row vectors, say v_2, \dots, v_n , then det $\begin{pmatrix} & v_2 & \cdots & v_n \end{pmatrix}^T : \mathbb{R}^n \to \mathbb{R}$ is a linear function.
- I.e., for c, d in \mathbb{R} , and vectors u and v, if $A_{1*} = cu + dv$, we have $\det \begin{pmatrix} cu + dv & A_{2*} & \cdots & A_{n*} \end{pmatrix}^T = c \det \begin{pmatrix} u & A_{2*} & \cdots & A_{n*} \end{pmatrix}^T + d \det \begin{pmatrix} v & A_{2*} & \cdots & A_{n*} \end{pmatrix}^T$. There are n such equations (for n choices of rows).

Reading Slide - Determinants: Induced Properties

1. If two rows of A are equal, then $\det(A) = 0$.

Proof. Suppose i-th and j-th rows of A are equal, i.e., $A_{i*} = A_{j*}$, then $A = P_{ij}A$.

Hence $\det(A) = \det(P_{ij}A) = -\det(A) \Rightarrow \boxed{\det(A) = 0}$.

- **2.** If B is obtained from A by $R_i \mapsto R_i + aR_j$, then $\det(B) = \det(A)$.
- 3. If A is $n \times n$, and its row echelon form U is obtained without row exchanges, then det(U) = det(A).

Q: What happens if there are row exchanges? Exercise!

4. If A has a zero row, then det(A) = 0.

Proof: Let the *i*th row of A be zero, i.e., $A_{i*} = 0$.

Let B be obtained from A by $R_i = R_i + R_j$, i.e., $B = E_{ij}(1)A$. Then $B_{i*} = B_{j*}$.

Exercise: Complete the proof.

Reading Slide - Determinants: Special Matrices

- 5. If $A = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}$ is diagonal, then $\det(A) = a_1 \cdots a_n$. (Use linearity).
- 6. If $A = (a_{ij})$ is triangular, then $det(A) = a_{11} \dots a_{nn}$.

Proof. If all a_{ii} are non-zero, then by elementary row operations, A reduces to the diagonal matrix $\begin{pmatrix} a_{11} & & \\ & \ddots & \\ & & a_{nn} \end{pmatrix}$ whose determinant is $a_{11} \cdots a_{nn}$.

If at least one diagonal entry is zero, then elimination will produce a zero row $\Rightarrow \det(A) = 0$.

Reading Slide - Formula for Determinant: 2×2 case

Write (a, b) = (a, 0) + (0, b), the sum of vectors in coordinate directions. Similarly write (c, d) = (c, 0) + (0, d). By linearity,

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix}.$$

For an $n \times n$ matrix, each row splits into n coordinate directions, so the expansion of det(A) has n^n terms.

However, when two rows are in same coordinate direction, that term will be zero, e.g.,

$$\begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} = 0, \quad \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} = 0, \quad \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} = - \begin{vmatrix} c & 0 \\ 0 & b \end{vmatrix} = -bc \Rightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

The non-zero terms have to come in different columns. So, there will be n! such terms in the $n \times n$ case.

Reading Slide - Formula for Determinant: $n \times n$ case

For $n \times n$ matrix $A = (a_{ij})$,

$$\det(A) = \sum_{\text{all permutations } P} (a_{1\alpha_1} \dots a_{n\alpha_n}) \det(P).$$

The sum is over n! permutations of numbers $(1,\ldots,n)$. Here a permutation (i_1,i_2,\ldots,i_n) of $(1,2,\ldots,n)$ corresponds to the product of permutation matrices $P=\begin{bmatrix}e_{i_1}^T\\\vdots\\e_{i_n}^T\end{bmatrix}$. Then

det(P) = +1 if the number of row exchanges in P needed to get I is even, and -1 if it is odd.

Reading Slide - Cofactors: 3×3 Case

$$\begin{aligned} \det(A) &= \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ &= a_{11} \, a_{22} \, a_{33} \, (1) + a_{11} \, a_{23} \, a_{32} \, (-1) + a_{12} \, a_{21} \, a_{33} \, (-1) \\ &\quad + a_{12} \, a_{23} \, a_{31} \, (1) + a_{13} \, a_{21} \, a_{32} \, (1) + a_{13} \, a_{22} \, a_{31} \, (-1) \\ &= a_{11} (a_{22} a_{33} - a_{23} a_{32}) - a_{12} (a_{21} a_{33} - a_{23} a_{31}) \\ &\quad + a_{13} (a_{21} a_{32} - a_{22} a_{31}) \\ &= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} (-1) \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \\ &= a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13} \, \text{ where,} \end{aligned}$$

$$C_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}, \quad C_{12} = (-1) \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}, \quad C_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Reading Slide - Cofactors: $n \times n$ Case

Let C_{1j} be the coefficient of a_{1j} in the expansion

$$\det(A) = \sum_{\text{all permutations } P} (a_{1\alpha_1} \, \dots \, a_{n\alpha_n}) \det(P)$$

Then
$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + \ldots + a_{1n}C_{1n}$$
 where,

$$C_{1j} = \sum a_{2\beta_2} \dots a_{n\beta_n} \det(P)$$

$$= (-1)^{1+j} \det \begin{bmatrix} a_{21} & a_{2(j-1)} & a_{2(j+1)} & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n(j-1)} & a_{j+1} & a_{nn} \end{bmatrix}$$

$$= (-1)^{1+j} \det(M_{1j}),$$

where M_{1j} is obtained from A by deleting the 1st row and j^{th} column.

Extra Reading Slides - Determinants

The following set of slides contain some extra reading material on determinants for interested students of MA110 (Spring 2024)/ MA106 (Spring 2024).

$$det(AB) = det(A) det(B)$$
 (Proof)

7.
$$\det(AB) = \det(A)\det(B)$$

Proof. We may assume that B are invertible. Else, $\operatorname{rank}(AB) \leq \operatorname{rank}(B) \neq n \Rightarrow \operatorname{rank}(AB) \neq n \Rightarrow AB$ is not invertible.

Hint: For fixed B, show that the function d defined by

$$d(A) = \det(AB)/\det(B)$$

satisfies the following properties

- (a) d(I) = 1.
- (b) If we interchange two rows of A, then d changes its sign.
- (c) d is a linear function in each row of A.

Then *d* is the unique determinant function det and det(AB) = det(A) det(B).

Determinants of Transposes (Proof)

8.
$$\det(A) = \det(A^T)$$

Proof. With U, L, and P, as usual write $PA = LU \Rightarrow A^T P^T = U^T L^T$ Since U and L are triangular, we get $det(U) = det(U^T)$ and $det(L) = det(L^T)$.

Since $PP^T = I$ and $det(P) = \pm 1$, we get $det(P) = det(P^T)$.

Thus
$$det(A) = det(A^T)$$
.

Determinants and Invertibility (Proof)

9. A is invertible if and only if $det(A) \neq 0$.

By elimination, we get an upper triangular matrix U, a lower triangular matrix L with diagonal entries 1, and a permutation matrix P, such that PA = LU.

Observation 1: If A is singular, then det(A) = 0.

This is because elimination produces a zero row in U and hence $det(A) = \pm det(U) = 0$.

Observation 2: If A is invertible, then $det(A) \neq 0$.

This is because elimination produces n pivots, say d_1, \ldots, d_n , which are non-zero. Then U is upper triangular, with diagonal entries $d_1, \ldots, d_n \Rightarrow \det(A) = \pm \det(U) = \pm d_1 \cdots d_n \neq 0$.

Thus we have: A invertible \Rightarrow $det(A) = \pm (product of pivots).$

Exercise: If AB is invertible, then so are A and B.

Exercise: A is invertible if and only if A^T is invertible.

Determinant: Geometric Interpretation (2 \times 2)

Invertibility: Very often we are interested in knowing when a matrix is invertible. Consider $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then A is invertible if and only if A has full rank.

If a, c both are zero then clearly $\operatorname{rank}(A) < 2 \Rightarrow A$ is not invertible. Assume $a \neq 0$, else, interchange rows. The row operations $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \xrightarrow{R_2 - c/aR_1} \begin{bmatrix} a & b \\ 0 & d - cb/a \end{bmatrix}$ show that A is invertible if and only if $d - cb/a \neq 0$, i.e., $ad - bc \neq 0$.

AREA: The area of the parallelogram with sides as vectors v=(a,b) and w=(c,d) is equal to ad-bc. Thus,

 $A 2 \times 2$ matrix A is singular \Leftrightarrow

its columns are on the same line

⇔ the area is zero.

Determinant: Geometric Interpretation

- Test for invertibility: An $n \times n$ matrix A is invertible $\Leftrightarrow \det(A) \neq 0$.
- n-dimensional volume: If A is $n \times n$, then $|\det(A)| =$ the volume of the box (in n-dimensional space \mathbb{R}^n) with edges as rows of A.

Examples: (1) The volume (area) of a line in $\mathbb{R}^2 = 0$.

- (2) The determinant of the matrix $A = \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}$ is $\boxed{-4}$.
- (3) Let's compute the volume of the box (parallelogram) with edges as rows of A or columns of A.

=4

Expansion along the i-th row (Proof)

If C_{ij} is the coefficient of a_{ij} in the formula of det(A), then

 $\det(A) = a_{i1} C_{i1} + \ldots + a_{in} C_{in}$, where C_{ij} is determined as follows:

By i-1 row exchanges on A, get the matrix $B=\begin{pmatrix} A_{i*} & A_{1*} & ... & A_{(i-1)*} & A_{(i+1)*} & ... & A_{n*} \end{pmatrix}^T$ Since $\det(A)=(-1)^{i-1}\det(B)$, we get

$$C_{ij}(A) = (-1)^{i-1}C_{1j}(B) = (-1)^{i-1}(-1)^{j-1}\det(M)$$

where M is obtained from B by deleting $1^{\rm st}$ row and $j^{\rm th}$ column. Here M is obtained from B by deleting its first row, and j-th column, and hence from A by deleting i-th row and j-th column. Write M as M_{ij} . Then $C_{ij} = (-1)^{i+j} \det(M_{ij})$

Expansion along the j-th column (Proof)

Note that $C_{ij}(A^T) = C_{ji}(A)$.

Hence, if we write $A^T = (b_{ij})$, then

$$\det(A) = \det(A^{T})
= b_{j1} C_{j1}(A^{T}) + \dots + b_{jn} C_{jn}(A^{T})
= a_{1j} C_{1j}(A) + \dots + a_{nj} C_{nj}(A)$$

This is the expansion of det(A) along j-th column of A.

Applications: 1. Computing A^{-1}

If $C = (C_{ij})$: cofactor matrix of A, then $A C^T = \det(A) I$

i.e.,
$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} C_{11} & \dots & C_{n1} \\ \vdots & \ddots & \vdots \\ C_{1n} & \dots & C_{nn} \end{bmatrix} = \begin{bmatrix} \det(A) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \det(A) \end{bmatrix}$$

Proof. We have seen that $a_{i1}C_{i1} + \ldots + a_{in}C_{in} = \det(A)$. Now $a_{11}C_{21} + a_{12}C_{22} + \ldots + a_{1n}C_{2n} = \det(A)$.

$$\det\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{11} & \dots & a_{1n} \\ a_{31} & \dots & a_{3n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} = 0. \quad \text{Similarly, if } i \neq j, \text{ then } a_{i1}C_{j1} + a_{i2}C_{j2} + \dots + a_{in}C_{jn} = 0. \quad \Box$$

Remark. If A is invertible, then $A^{-1} = \frac{1}{\det(A)}C^T$.

For n > 4, this is *not* a good formula to find A^{-1} .

Use elimination to find A^{-1} for $n \ge 4$.

 $This\ formula\ is\ of\ theoretical\ importance.$

Applications: 2. Solving Ax = b

Cramer's rule: If A is invertible, the Ax = b has a unique solution.

$$x = A^{-1}b = \frac{1}{\det(A)} C^T b = \frac{1}{\det(A)} \begin{bmatrix} C_{11} & \cdots & C_{n1} \\ \vdots & & \vdots \\ C_{1n} & \cdots & C_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

Hence
$$x_j = \frac{1}{\det(A)}(b_1C_{1j} + b_2C_{2j} + \dots + b_nC_{nj}) = \frac{1}{\det(A)}\det(B_j),$$

where B_j is obtained by replacing j^{th} column of A by b, and $det(B_j)$ is computed along the j^{th} column.

Remark: For n > 4, use elimination to solve Ax = b.

Cramer's rule is of theoretical importance.

Applications: 3. Volume of a box

Assume the rows of A are mutually orthogonal. Then

$$AA^{T} = \begin{pmatrix} A_{1*} \\ \vdots \\ A_{n*} \end{pmatrix} ((A_{1*})^{T} \dots (A_{n*})^{T}) = \begin{pmatrix} l_{1}^{2} & 0 \\ & \ddots & \\ 0 & l_{n}^{2} \end{pmatrix}$$

where $l_i = \sqrt{(A^i)^T \cdot A^i}$ is the length of A^i . Since $\det(A) = \det(A^T)$,

we get
$$|\det(A)| = l_1 \cdots l_n$$

Since the edges of the box spanned by rows of A are at right angles, the volume of the box

= the product of lengths of edges

 $= |\det(A)|.$

Applications: 4. A Formula for Pivots

Observation: If row exchanges are not required, then the first k pivots are determined by the top-left $k \times k$ submatrices \widetilde{A}_k of A.

Example. If
$$A = [a_{ij}]_{3\times 3}$$
, then $\widetilde{A}_1 = (a_{11})$, $\widetilde{A}_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ and $\widetilde{A}_3 = A$.

Assume the pivots are d_1, \ldots, d_n , obtained without row exchange. Then

- $\det(\widetilde{A}_1) = a_{11} = d_1$
- $\det(\widetilde{A}_2) = d_1 d_2 = \det(A_1) d_2$
- $\det(\widetilde{A}_3) = d_1 d_2 d_3 = \det(A_2) d_3 \ etc.,$
- If $\det(\widetilde{A}_k) = 0$, then we need a row exchange in elimination.
- Otherwise the k-th pivot is $d_k = \det(\widetilde{A}_k)/\det(\widetilde{A}_{k-1})$