Contrôle 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

QCM(4 points)

Entourer la bonne réponse

1- La norme de la résultante \vec{R} de deux vecteurs forces $\vec{F_1}$ et $\vec{F_2}$ (non nuls), colinéaires et de sens opposé est

a)
$$R = 0$$

b)
$$R = \sqrt{F_1^2 + F_2^2}$$
 c) $R = F_1 + F_2$ d) $R = |F_1 - F_2|$

c)
$$R = F_1 + F_2$$

d)
$$R = |F_1 - F_2|$$

2- Les composantes du vecteur force \vec{F}_1 sur le schéma ci-dessous sont :

a)
$$\vec{F}_1 = \begin{pmatrix} F_1 \\ 0 \end{pmatrix}$$

b)
$$\vec{F}_1 = \begin{pmatrix} F_1 \cdot \sin(\alpha) \\ F_1 \cdot \cos(\alpha) \end{pmatrix}$$

a)
$$\vec{F}_1 = \begin{pmatrix} F_1 \\ 0 \end{pmatrix}$$
 b) $\vec{F}_1 = \begin{pmatrix} F_1 \cdot \sin(\alpha) \\ F_1 \cdot \cos(\alpha) \end{pmatrix}$ c) $\vec{F}_1 = \begin{pmatrix} F_1 \cdot \cos(\alpha) \\ F_1 \cdot \sin(\alpha) \end{pmatrix}$

3- Le produit scalaire entre deux vecteurs colinéaires et de sens opposé est

- a) strictement positif
- b) nul
- c) strictement négatif

4- La norme du vecteur $\vec{V}_3 = \vec{V}_1 \wedge \vec{V}_2$, tel que : $(\vec{V}_1, \vec{V}_2) = \alpha$ est :

a)
$$V_3 = V_1 \cdot V_2 \cdot |\sin(\alpha)|$$

b)
$$V_3 = V_1 \cdot V_2 \cdot \cos(\alpha)$$

a)
$$V_3 = V_1 \cdot V_2 \cdot |\sin(\alpha)|$$
 b) $V_3 = V_1 \cdot V_2 \cdot \cos(\alpha)$ c) $V_3 = \sqrt{V_1^2 + V_2^2 + 2V_1 \cdot V_2 \cdot \cos(\alpha)}$

5- Le vecteur vitesse en coordonnées polaires s'écrit :

a)
$$\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$

a)
$$\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$
 b) $\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \rho \stackrel{\bullet}{\theta} \vec{u}_{\theta}$ c) $\vec{V} = \rho . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$

c)
$$\vec{V} = \rho . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$

6- Dans la base de **Frenet** l'abscisse curviligne élémentaire ds s'écrit :

a)
$$ds = R.\theta$$

a)
$$ds = R.\theta$$
 b) $ds = dV.dt$ c) $ds = R.d\theta$

c)
$$ds = R.d\theta$$

7- L'expression de l'abscisse curviligne s(t) est donnée par

a)
$$s(t) = \int_0^t a_T . dt$$
 b) $s(t) = \int_0^t v . dt$ c) $s(t) = \int_0^t a_N . dt$

b)
$$s(t) = \int_0^t v.dt$$

$$c) s(t) = \int_0^t a_N . dt$$

8- L'équation de la trajectoire dont les équations horaires sont $\begin{cases} x(t) = A\sin(\omega t) \\ y(t) = B\cos(\omega t) \end{cases}$

(Où A, B et ω sont des constantes positives $(A \neq B)$) est :

a)
$$x^2 + y^2 = 1$$

a)
$$x^2 + y^2 = 1$$
 b) $x^2 + y^2 = A^2 + B^2$ c) $\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$

c)
$$\frac{x^2}{A^2} + \frac{y^2}{B^2} =$$

A. Zellagui

C. Z. / / O.

Exercice 1	(4	points))
------------	----	---------	---

Les équations horaires d'un mouvement en coordonnées cartésiennes sont :

$$\begin{cases} x(t) = 1 + R\sin(\omega t) \\ y(t) = 2 + R\cos(\omega t) \end{cases}$$
 Où \omega et R sont des constantes.

1-Exprimer les composantes du vecteur vitesse \vec{V} en fonction du temps. Calculer sa norme.

2 Evenimentos acumosantes do vestava acedidadian	- an famation du tamens Calcular as norma
2- Exprimer les composantes du vecteur accélération	a en ionction du temps. Calculer sa norme.

3- Retrouver l'équation de la trajectoire y = f(x). Préciser sa nature et ses caractéristiques.

Exercice 2 (6 points)

Les composantes du vecteur position \vec{OM} en coordonnées cartésiennes sont données par :

$$\begin{cases} x(t) = ae^{\omega t} \cos(\omega t) \\ y(t) = ae^{\omega t} \sin(\omega t) \end{cases}$$
 a et ω sont des constantes positives.

1- Ecrire le vecteur position \vec{OM} en coordonnées polaires de base $(\vec{u}_{\rho}, \vec{u}_{\theta})$.

2- Exprimer en coordonnées polaires le vecteur vitesse \vec{V} . Calculer la norme de \vec{V} . On donne $\hat{\theta} = \omega$.

3- Exprimer en coordonnées polaires le vecteur accélération \vec{a} . Calculer la norme de \vec{a}

4- Exprimer les composantes a_T et a_N du vecteur accélération en base de Frenet. En déduire le rayon
de courbure Rc.
Exercice 3 Les parties I et II sont indépendantes (6 points)
I-1) Montrer que la vitesse en base de Frenet s'écrit $\vec{V} = R(t) \stackrel{\bullet}{\theta} . \vec{u}_T$.

I-2) En déduire l'écriture du vecteur accélération \vec{a} dans la base de Frenet.
II- On considère un point matériel M qui se déplace dans un plan avec une accélération donnée en
fonction du temps dans la base de Frenet par l'expression suivante :
$\vec{a} = \alpha \cdot \vec{u}_T + \beta t^2 \vec{u}_N$ (\alpha et \beta sont des constantes positives)
1) Déterminer les unités des constantes α et β . Justifier votre réponse.
2) Calculer l'abscisse curviligne $s(t)$ entre les instants $t_0 = 0$ et t . On donne : $v(t_0) = 0$ et $s(t_0) = 0$

- α^2

3) Montrer que le rayon de courbure de la trajectoire est donné	nar ·	R	$=\frac{\alpha^2}{}$
3) Montrer que le rayon de courbure de la trajectoire est donné	pui.	c	β