

Determinante.

Martes 22 de octubre

Ejercicio 1. Calcular el determinante de las siguientes matrices.

$$A = \begin{pmatrix} 4 & 7 \\ 5 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} -3 & 2 & 4 \\ 1 & -1 & 2 \\ -1 & 4 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 5 & 1 & 1 \\ 1 & 1 & 2 & 5 \end{pmatrix}.$$

Ejercicio 2. Dados escalares $\lambda_1, \ldots, \lambda_n$, definimos la matríz de *Vandermonde*:

$$\mathbf{V} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_1^{n-1} & \cdots & \lambda_n^{n-1} \end{pmatrix}.$$

Probar (por inducción) que $\det(\mathtt{V}) = \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i)$. Luego

- (a) Dado $\lambda \in \mathbb{R} \{0\}$ consideramos la sucesión $\exp(\lambda) \colon \mathbb{N} \to \mathbb{R}$ tal que $\exp(\lambda)_n = \lambda^{n-1}$. Probar que el subconjunto $S_1 = \{\exp(\lambda_1), \exp(\lambda_2), \dots, \exp(\lambda_n)\}$ de $\mathbb{R}^{\mathbb{N}}$ es LI si y sólo si $\lambda_j \neq \lambda_i$ para todo $j \neq i$. Notar que esto prueba que en $\mathbb{R}^{\mathbb{N}}$ hay un subconjunto LI que tiene la misma cantidad de elementos que \mathbb{R} . En concreto: $\{\exp(\lambda) \colon \lambda \in \mathbb{R} \{0\}\}$.
- (b) En el espacio vectorial $\mathbb{R}^{\mathbb{R}}$ consideramos el subconjunto $\mathbb{S}_2=\{e^{\lambda_1 x},e^{\lambda_2 x},\dots,e^{\lambda_n x}\}$. Probar que \mathbb{S}_2 es LI si y sólo si $\lambda_j\neq\lambda_i$ para todo $j\neq i$.

Ejercicio 3. Probar por inducción que si a_0, \ldots, a_{n-1} son elementos de K, entonces

$$\det\begin{pmatrix} t & 0 & 0 & \cdots & 0 & a_0 \\ -1 & t & 0 & \cdots & 0 & a_1 \\ 0 & -1 & t & \cdots & 0 & a_2 \\ \vdots & & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & t + a_{n-1} \end{pmatrix} = t^n + a_{n-1}t^{n-1} + \cdots + a_1t + a_0.$$

Ejercicio 4. Determinar para qué valores de $c \in \mathbb{R}$ las siguientes matrices son invertibles.

$$A = \begin{bmatrix} 0 & c & -c \\ -1 & 2 & -1 \\ c & -c & c \end{bmatrix}, \qquad B = \begin{bmatrix} 4 & c & 3 \\ c & 2 & c \\ 5 & c & 4 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & c & -1 \\ c & 1 & 1 \\ 0 & 1 & c \end{bmatrix}.$$

Ejercicio 5. Sean A, B y C matrices $n \times n$, tales que det A = -1, det B = 2 y det C = 3. Calcular $\det(A^2BC^TB^{-1})$ y $\det(B^2C^{-1}AB^{-1}C^T)$.

Ejercicio 6. Calcular el determinante de las siguientes matrices.

$$A = \begin{bmatrix} -2 & 3 & 2 & -6 \\ 0 & 4 & 4 & -5 \\ 5 & -6 & -3 & 2 \\ -3 & 7 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & -1 & 2 & 0 & 0 \\ 3 & 1 & 4 & 0 & 0 \\ 2 & -1 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & -1 & 4 \end{bmatrix}.$$

Práctico 7

Ejercicio 7. Probar que si k_1, \ldots, k_n son elementos de K, entonces

$$\det\begin{pmatrix} \frac{1+k_1}{k_1} & \frac{k_2}{k_2} & \frac{k_3}{k_3} & \cdots & k_n \\ \frac{k_1}{k_1} & \frac{k_2}{k_2} & \frac{1+k_3}{k_3} & \cdots & k_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{k_1}{k_1} & \frac{k_2}{k_2} & \frac{k_3}{k_3} & \cdots & \frac{1+k_n}{k_n} \end{pmatrix} = 1 + k_1 + k_2 + \cdots + k_n.$$

Ejercicio 8. Una matriz A compleja $n \times n$ se dice antisimétrica si $A^t = -A$.

- 1. Probar que si n es impar y A es antisimétrica, entonces det(A) = 0.
- 2. Para cada n par encontrar una matriz A antisimétrica $n \times n$ tal que $\det(A) \neq 0$.
- \star Ejercicio 9. El Ejercicio 2 (a) muestra que $\mathbb{R}^{\mathbb{N}}$ es monstruoso. En este ejercicio mostramos que es mas monstruoso aún. Consideramos en $\mathbb{R}^{\mathbb{N}}$ el siguiente subespacio:

$$\mathbb{R}^{\oplus \infty} = \{a \colon \mathbb{N} \to \mathbb{R} | \text{ existe } N \in \mathbb{N} \text{ tal que } a_n = 0 \text{ para todo } n \geq N \}.$$

- (a) Para cada $k \in \mathbb{N}$ consideramos $\mathbf{e^k} \in \mathbb{R^N}$ dado por $\mathbf{e^k}_n = \delta_{k,n} = \begin{cases} 1, & \text{si } n = k, \\ 0, & \text{si } n \neq k. \end{cases}$ Probar que $\{\mathbf{e^k} \colon k \in \mathbb{N}\}$ es una base (podría decirse canónica) de $\mathbb{R}^{\oplus \infty}$.
- (b) Sea M el subespacio de $\mathbb{R}^{\mathbb{N}}$ generado por el subconjunto linealmente independiente S_1 del **Ejercicio 2 (a)**. Probar que $\mathbb{M} \cap \mathbb{R}^{\oplus \infty} = 0$. Por lo tanto $\mathbb{R}^{\mathbb{N}}$ contiene una suma directa de subespacios $\mathbb{M} \oplus \mathbb{R}^{\oplus \infty}$, donde el primero tiene una base con $|\mathbb{R}|$ -elementos y el segundo una base con $|\mathbb{N}|$ -elementos.