

nano33BLE Sensor IoT Project

Visualization of Signals using Arduino, Node.js & storing signals in MongoDB & mining data using Python

Drone-IoT-Comsi, INJE University

2nd semester, 2021

Email: chaos21c@gmail.com

My ID

ID를 확인하고 github에 repo 만들기

AA01	김준수	AA13	조재윤
AA02	김현서	AA14	고태승
AA03	박영훈	AA15	이한글
AA04	박윤호	AA16	장세진
AA05	성은지	AA17	장태호
AA06	손윤우	AA18	정지원
AA07	오세윤	AA19	진우태
AA08	우승철	AA20	황혁준
AA09	윤현석	AA21	장이제
AA10	이예주	AA22	박상현
AA11	강지환	AA23	정은성
AA12	성인제	AA24	김경영

위의 id를 이용해서 github에 repo를 만드시오.

Option: ^{아두이노}응용 실습 과제 – AAnn

Public, README.md check

[Review]

- ◆ [wk12]
- Data Mining of IoT Data
- Multi-sensor circuits (cds-dht22)
- Complete your project
- Upload folder: aann-rpt12
- Use repo "aann" in github

wk12: Practice: aann-rpt12

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

```
제출폴더명: aann-rpt12

- 제출할 파일들

① iot_csv.ipynb

② iot_ison.ipynb

③ All *.js

④ public/All *.html

⑤ client_iot.html

⑥ public/data/All data (*.csv)

⑦ AAnn_s1000.csv
```


Purpose of AA

주요 수업 목표는 다음과 같다.

- 1. Node.js를 이용한 아두이노 센서 신호 처리
- 2. Plotly.js를 이용한 아두이노 센서 신호 시각화
- 3. MongoDB에 아두이노 센서 데이터 저장 및 처리

4. 저장된 IoT 데이터의 마이닝 (파이썬 코딩)

Layout [H S C]

1.2.4 Arduino hardware: nano, nano33

✓ Arduino Pro NANO

· ATmega168/328 microcontroller
· Input voltage: 7~12V
· 14 Digital I/O Pins (6 PWM outputs)
· 8 Analog Inputs
· 16KB Flash Memory
· 16Mhz Clock Speed

TX1 RX0 RST GND D2 D3 D4 D5 D6 D9 D10 D11 D12

NANO 33 BLE FC (E ROHE CONFLICTION ARDUINO SENSE ARDUINO CC

VUSB 3.3 V

VIN GND RST A7 A6 A5 A4 A3 A2 A1 A6 REF 3.3 V D13

- ✓ Arduino NANO33
- ◆ BLE IOT
- ◆ SENSOR

nano33BLE sensor

NANO 33 BLE SENSE

- Color, brightness, proximity and gesture sensor
- Digital microphone
- Motion, vibration and orientation sensor
- Temperature, humidity and pressure sensor
- Arm Cortex-M4 microcontroller and BLE module

https://t1.daumcdn.net/cfile/tistory/99D8E84E5F93D2B109

nano33BLE sensor

이미지 출처: https://circuitdigest.com/microcontroller-projects/arduino-nano-33-ble-sense-board-review-and-getting-started-guide

nano33BLE sensor

이미지 출처: https://www.etechnophiles.com/arduino-nano-33-ble-sense-pinout-introduction-specifications/

Layout [H S C]

Nono33 board

Sensor library

Arduino: serial monitor

npm update

```
D:\aann\aann-rpt13\nano33>npm update
> @serialport/bindings@9.2.7 install D:\aann\aann-rpt13\nano33\node modu
les\@serialport\bindings
> prebuild-install --tag-prefix @serialport/bindings@ || node-gyp rebuil
d
npm notice created a lockfile as package-lock.json. You should commit the
is file.
npm WARN cds dht22@1.0.0 No repository field.
+ socket.io@2.4.1
+ express@4.17.1
+ cors@2.8.5
+ mongoose@6.0.13
+ serialport@9.2.7
added 195 packages from 149 contributors and audited 195 packages in 18.
431s
18 packages are looking for funding
  run `npm fund` for details
found 0 vulnerabilities
D:\aann\aann-rpt13\nano33>
```


db33rgb.js

```
// Schema
   var iotSchema = new Schema({
26
       date : String,
       temperature : String,
27
       humidity: String,
28
       luminosity : String,
29
       pressure : String,
30
       r_ratio : String,
31
32
       g_ratio : String,
       b ratio : String
33
34
   });
```


db33rgb.js

```
// process data using parser
 87
     parser.on('data', (data) => { // call back when data is received
         readData = data.toString(); // append data to buffer
 88
         firstcommaidx = readData.indexOf(',');
 89
         secondcommaidx = readData.indexOf(',',firstcommaidx+1);
 90
         thirdcommaidx = readData.indexOf(',',secondcommaidx+1);
91
         fourthcommaidx = readData.indexOf(',',thirdcommaidx+1);
 92
         fifthcommaidx = readData.indexOf(',',fourthcommaidx+1);
93
         sixthcommaidx = readData.indexOf(',',fifthcommaidx+1);
 94
 95
         // parsing data into signals
 96
         if (readData.lastIndexOf(',') > firstcommaidx && firstcommaidx > 0) {
 97
             temp = readData.substring(firstcommaidx + 1, secondcommaidx);
 98
             humi = readData.substring(secondcommaidx + 1, thirdcommaidx);
 99
             lux = readData.substring(thirdcommaidx + 1, fourthcommaidx);
100
101
             pres = readData.substring(fourthcommaidx + 1, fifthcommaidx);
             rr = readData.substring(fifthcommaidx + 1, sixthcommaidx);
102
             gg = readData.substring(sixthcommaidx + 1, readData.indexOf(',',sixthcommaidx+1));
103
             bb = readData.substring(readData.lastIndexOf(',')+1);
104
```


db33rgb.js

```
dStr = getDateString();
109 mdata[0]=dStr; // Date
110 mdata[1]=temp; // temperature data
111 mdata[2]=humi; // humidity data
112 mdata[3]=lux; // luminosity data
113 mdata[4]=pres; // pressure data
114 mdata[5]=rr; // r_ratio
115 mdata[6]=gg;  // g_ratio
    mdata[7]=bb; // b_ratio
116
117 //console.log(mdata);
118 var iotData = new Sensor({date:dStr, temperature:temp, humidity:humi, luminosity:lux, pressure:pres,
        r_ratio:rr, g_ratio:gg, b_ratio:bb});
119
   // save iot data to MongoDB
120
    iotData.save(function(err,data) {
121
122
        if(err) return handleEvent(err);
        data.info(); // Display the information of iot data on console.
123
124
    1)
```

Layout [H S C]

```
D:\aann\aann-rpt13\nano33>node db33rgb
mongo db connection OK.
iotInfo: Current date: 2021-11-19 15:55:08.449, Temp: 24.3, Humi: 39.4, Lux: 98, Pres: 1010.8,
R: 32.5, G: 33.7, B: 33.7
iotInfo: Current date: 2021-11-19 15:55:13.491, Temp: 24.4, Humi: 39.3, Lux: 98, Pres: 1010.8,
R: 32.5, G: 33.7, B: 33.7
iotInfo: Current date: 2021-11-19 15:55:18.533, Temp: 24.4, Humi: 39.3, Lux: 98, Pres: 1010.8,
R: 32.5, G: 33.7, B: 33.7
iotInfo: Current date: 2021-11-19 15:55:23.575, Temp: 24.4, Humi: 39.3, Lux: 98, Pres: 1010.8,
R: 32.5, G: 33.7, B: 33.7
iotInfo: Current date: 2021-11-19 15:55:28.616, Temp: 24.4, Humi: 39.4, Lux: 98, Pres: 1010.8,
R: 32.5, G: 33.7, B: 33.7
iotInfo: Current date: 2021-11-19 15:55:33.659, Temp: 24.4, Humi: 39.3, Lux: 98, Pres: 1010.8,
R: 32.5, G: 33.7, B: 33.7
iotInfo: Current date: 2021-11-19 15:55:38.701, Temp: 24.4, Humi: 39.3, Lux: 98, Pres: 1010.8,
R: 32.5, G: 33.7, B: 33.7
iotInfo: Current date: 2021-11-19 15:55:43.742, Temp: 24.3, Humi: 39.3, Lux: 98, Pres: 1010.8,
R: 32.9, G: 32.9, B: 34.2
iotInfo: Current date: 2021-11-19 15:55:48.784, Temp: 24.4, Humi: 39.3, Lux: 98, Pres: 1010.8,
R: 32.9, G: 32.9, B: 34.2
iotInfo: Current date: 2021-11-19 15:55:53.826, Temp: 24.4, Humi: 39.3, Lux: 8, Pres: 1010.8, R
: 44.4, G: 33.3, B: 22.2
iotInfo: Current date: 2021-11-19 15:55:58.868, Temp: 24.4, Humi: 39.4, Lux: 98, Pres: 1010.8,
R: 32.5, G: 33.7, B: 33.7
```


express33rgb.js

```
// Schema
   var iotSchema = new Schema({
   date : String,
25
26
   temperature : String,
27
   humidity : String,
28
    luminosity : String,
29
   pressure : String,
30
    r ratio : String,
     g_ratio : String,
31
32
    b ratio : String
33
   });
34 var Sensor = mongoose.model("Sensor", iotSchema); // sensor data model
```

Network socket/DB server : port=3000

Express server : port=3030

node db33rgb

node express33rgb

```
문제 출력 디버그콘솔
iotInfo: Current date: 2021-11-19 15:57:24.581, Temp: 24.4, Humi: 39.4, Lux: 97, Pres: 1010.8,
R: 32.1, G: 33.3, B: 34.6
iotInfo: Current date: 2021-11-19 15:57:29.623, Temp: 24.4, Humi: 39.4, Lux: 97, Pres: 1010.8,
R: 32.1, G: 33.3, B: 34.6
iotInfo: Current date: 2021-11-19 15:57:34.665, Temp: 24.4, Humi: 39.4, Lux: 97, Pres: 1010.8,
R: 32.1, G: 33.3, B: 34.6
iotInfo: Current date: 2021-11-19 15:57:39.708, Temp: 24.4, Humi: 39.4, Lux: 97, Pres: 1010.8,
R: 32.1, G: 33.3, B: 34.6
iotInfo: Current date: 2021-11-19 15:57:44.749, Temp: 24.4, Humi: 39.4, Lux: 97, Pres: 1010.8,
R: 32.9, G: 32.9, B: 34.2
iotInfo: Current date: 2021-11-19 15:57:49.792, Temp: 24.4, Humi: 39.4, Lux: 97, Pres: 1010.8,
R: 32.9, G: 32.9, B: 34.2
iotInfo: Current date: 2021-11-19 15:57:54.833, Temp: 24.5, Humi: 39.5, Lux: 97, Pres: 1010.8,
R: 32.9, G: 32.9, B: 34.2
iotInfo: Current date: 2021-11-19 15:57:59.876, Temp: 24.4, Humi: 39.4, Lux: 97, Pres: 1010.8,
R: 32.9, G: 32.9, B: 34.2
```

```
382 package.json
2021-11-19 오후 03:35 〈DIR〉 public
4개 파일 65,008 바이트

4개 디렉터리 2,403,824,119,808 바이트 남음

D:\aann\aann-rpt13\nano33>node express33rgb
Express_IOT is running at port:3030, CORS powered !
mongo db connection OK.
```

mongo shell

```
> show dbs
admin
               0.000GB
config
           0.000GB
int
               0.015GB
iot10
               0.000GB
iot33rgb211119 0.000GB
local
                0.000GB
test
               0.000GB
> use iot33rgb211119
switched to db iot33rgb211119
> show collections
sensors
> db.sensors.count()
> db.sensors.find().sort({ id:-1}).limit(5)
{ "id" : ObjectId("61974c2139d363e662ef451b"), "date" : "2021-11-19 16:02:57.350", "temperature" : "24.5", "humidity" : "39.6", "luminosity" : "97
", "pressure" : "1010.9", "r ratio" : "32.9", "g ratio" : "32.9", "b ratio" : "34.2", " v" : 0 }
{ "id" : ObjectId("61974c1c39d363e662ef4519"), "date" : "2021-11-19 16:02:52.309", "temperature" : "24.4", "humidity" : "39.4", "luminosity" : "97
", "pressure" : "1010.9", "r ratio" : "32.1", "g ratio" : "33.3", "b ratio" : "34.6", " v" : 0 }
{ "id" : ObjectId("61974c1739d363e662ef4517"), "date" : "2021-11-19 16:02:47.266", "temperature" : "24.4", "humidity" : "39.5", "luminosity" : "97
 ", "pressure" : "1010.8", "r ratio" : "32.9", "g ratio" : "32.9", "b ratio" : "34.2", "  v" : 0 }
{ "_id" : ObjectId("61974c1239d363e662ef4515"), "date" : "2021-11-19 16:02:42.225", "temperature" : "24.4", "humidity" : "39.5", "luminosity" : "97
 ', "pressure" : "1010.8", "r_ratio" : "32.9", "g_ratio" : "32.9", "b_ratio" : "34.2", "__v" : 0 }
  "_id" : ObjectId("61974c0d39d363e662ef4513"), "date" : "2021-11-19 16:02:37.183", "temperature" : "24.4", "humidity" : "39.6", "luminosity" : "97
", "pressure" : "1010.8", "r_ratio" : "32.9", "g_ratio" : "32.9", "b_ratio" : "34.2", "__v" : 0 }
```

http://localhost:3030/client_signal.html

IoT Signal from Arduino

Real-time Signals

on Time: 2021-11-23 16:41:49.935

Signal (온도,습도, 조도, 기압, (R, G, B)): 23.7,31.8,98,1009.3, (32.9,32.9,34.2)

http://localhost:3030/client_33.html

Real-time Weather Station from nano 33 BLE sensors

on Time: 2021-11-23 16:45:06.581

→ 압력 그래프를 4번째 axis로 추가!

http://localhost:3030/client_33rgb.html

Real-time Ambient Colors from nano 33 BLE sensors

on Time: 2021-11-23 16:45:36.833

http://localhost:3030/client_33iot.html

MongoDB database visualization by AA00

Time series: Multiple data from nano 33 ble sensor

작업 폴더 구조 [2021-project]

[2021-project] IoT data mining in Colab

[Practice]

- ◆ [wk13]
- > IoT Project: nano33ble
- Multi-sensor circuits)
- Complete your project
- Upload folder: aann-rpt13
- Use repo "aann" in github

wk13: Practice: aann-rpt13

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

```
제출폴더명 : aann-rpt13
```

- 제출할 파일들

- ① iot_nano33_csv.ipynb
- ② iot_nano33_json.ipynb
- ③ All *.js
- 4 public/All *.html

2021 AA team project nano33BLE sensor

LSM9DS1, 9축 IMU센서: acc, gyro, mag

자이로 스코프 측정, 이미지 출처 https://www.mauroalfieri.it/elettronica/arduino-nano-33-ble-giroscopio-lsm9ds1.html

https://fishpoint.tistory.com/4438

LSM9DS1, 9축 IMU센서: acc, gyro, mag

- * 9축 IMU 센서 신호 마이닝
 - 1. MongoDB
 - 2. Express server
 - 실시간 모니터링
 - DB 모니터링
 - 3. data mining using Colab
 - 4. Deep learning?

모션 인식(9-축 IMU)

일상활동 인식(3축 가속도)

['Downstairs',
'Jogging',
'Sitting',
'Standing',
'Upstairs',
'Walking']

--- ACC_XYZ, 4s: classification report for test data ---

		precision	recall	f1-score	support
	0	0.93	0.83	0.87	249
	1	0.99	0.97	8.98	864
	2	8.97	0.97	0.97	144
	3	0.96	0.95	8.95	130
	4	0.87	0.92	0.89	297
	5	0,96	0.99	0.97	1961
accur	acy			0.96	2745
macro	avg	0.95	0.94	8.94	2745
weighted	avg	0.96	0.96	0,96	2745

Arduino nano33 BLE

Classification of gestures
using ACC
in Tensorflow 2.x
& TinyML/TF-Lite

Data 모으기

119 X 6 (ax,ay,az, gx,gy,gz)

DL architecture

DL-model

```
from tensorflow.keras import layers
```

```
# TF2 functional API
 # CONVID & MIP
 inputs = keras.Input(shape=(119.6), name='gesture')
 x = layers.Conv1D(128, 3, padding='causal',activation='relu')(inputs) # 32.
 x = layers.Conv1D(64, 3, padding='causal', activation='relu')(x) # 16
 x = layers.GlobalAveragePooling1D()(x) # New features (714 => 16 or 64)
 x = layers.Dense(128, activation='relu')(x)
 x = layers.Dense(64, activation='relu')(x)
 outputs = layers.Dense(NUM_GESTURES, activation='softmax')(x)
 model_conv = keras.Model(inputs=inputs, outputs=outputs, name='gesture_model2')
 model_conv.compile(optimizer='rmsprop', loss='mse', metrics=['accuracy'])
# train the model
history = model conv.fit(inputs train2, outputs train, epochs=500, batch size=16
                   validation_data=(inputs_validate2, outputs_validate))
```

Layer (type)	Output Shape	Param #
gesture (InputLayer)	[(None, 119, 6)]	0
conv1d (Conv1D)	(None, 119, 128)	2432
conv1d_1 (Conv1D)	(None, 119, 64)	24640
global_average_pooling1d (GI	(None, 64)	0
dense_3 (Dense)	(None, 128)	8320
dense_4 (Dense)	(None, 64)	8256
dense_5 (Dense)	(None, 3)	195

DL-model testing

Real-time testing


```
13:24:06.140 -> punch: 0.996470
13:24:06.140 -> ccw: 0.000000
13:24:06.140 -> cw: 0.003530
13:24:06.140 ->
13:24:10.197 -> punch: 0.000095
13:24:10.197 -> ccw: 0.000000
13:24:10.197 -> cw: 0.999905
13:24:10.197 ->
13:24:13.193 -> cw: 0.000000
13:24:13.193 -> ccw: 1.000000
13:24:13.193 -> cw: 0.000000
```

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.nodejs.org/ko Node.js
- https://plot.ly/ plotly
- https://www.mongodb.com/ MongoDB
- ✓ http://www.w3schools.com

 By w3schools.com
- http://www.github.com GitHub

Target of this class

Real-time Weather Station from nano 33 BLE sensors

on Time: 2020-09-09 10:27:17.321

