

Limitations of D latches propagation of a value through the latch is dependent on the time period of the clock and is hence hard to predict edge triggered flip-flops soln. Logic: at each dock vising edge, each flip flop takes or input and gives a output implemented: 2 step process using 2 oppositely enabled latches (master-slave) active low latch active high latch so in: use an active low version of the lateh note: |atch| = |evel-sensitive| (0/P changes When enable is 1) $f(p-f(op) = edge-triggered (tve(o \rightarrow 1) or -ve(1 \rightarrow 0))$ assumed to be -> symbol: D
on control input

flip-flop

latch

•	D flip flop: Q = D at rising edge of C
,	D flip flop: Q = D at rising edge of C J-k flip flop: Q = 1 if j us asserted Jatre of C Q: D if k is asserted Q toggles is J&k are asserted
	T C
•	T flip-flop: a toggles if T:1 at re of

Registers = multiple D flip flops

storus multibit signals

"fundamental sequential component"

