Конечные автоматы

Конечный автомат представляет собой хотя и абстрактную, но с функциональной точки зрения довольно точную модель дискретного (цифрового) вычислительного или управляющего процесса. Одной из основных областей применения конечных автоматов является моделирование так называемых реактивных систем. Реактивные или реагирующие — это системы, реагирующие на поток событий изменением состояний и выполнением действий при переходах из состояния в состояние. Основным источником, "генератором" потоков событий, является окружающая (по отношению к вычислителю, исполняющему программу реактивной системы) среда. В настоящее время возобновляется интерес к использованию конечных автоматов в программировании, например, в области логического управления и в объектно-ориентированном программировании. Они широко используются при программировании протоколов, игр и схем программируемой логики, при создании компиляторов. Достоинством конечных автоматов является возможность декомпозиции сложной задачи на более простые подзадачи.

Основным понятием предлагаемой теории конечных автоматов является понятие "внутреннее состояние" (в дальнейшем - "состояние"). Состояния рассматриваются как некоторые абстракции, вводимые в начале процесса алгоритмизации, например, путем однозначного сопоставления каждого из них с одним из физических состояний управляемого объекта, так как обычно функционирование производственных систем проявляется через изменение их состояний. При этом каждое состояние в алгоритме поддерживает объект в соответствующем состоянии, а переход в новое состояние в алгоритме приводит к переходу объекта в новое соответствующее состояние, что и обеспечивает процесс логического управления объектом. Состояния системы играют роль некоторой памяти о ее предыстории.

Определение. Конечным автоматом называется система $S = \{U, X, Y, \delta, \lambda\}$, где U, X, Y – конечные множества (алфавиты): $U = \{u_1, ..., u_m\}$ – алфавит входа, $X = \{x_1, ..., x_n\}$ – алфавит состояний, $Y = \{y_1, ..., y_r\}$ – алфавит выхода, а $\delta : X \times U \to X$, $\lambda : X \times U \to Y$ - функции, определенные на этих множествах: δ – правило перехода, λ – правило выхода. Если, кроме того, в автомате S выделено одно состояние, называемое начальным, то полученный автомат называется инициальным.

Поскольку функции δ и λ определены на конечных множествах, то их удобно задавать таблицами. Обычно две таблицы сводятся в одну таблицу $\delta \times \lambda : X \times U \to X \times Y$, называемую таблицей переходов автомата или просто автоматной таблицей. Другой распространенный и наглядный способ задания автомата — ориентированный мультиграф, называемый графом переходов или диаграммой переходов. Вершины графа соответствуют

состояниям; если $\delta(x_i, u_j) = x_k$ и $\lambda(x_i, u_j) = y_l$, то из x_i в x_k ведет ребро, на котором написаны u_j и y_l . Для любого графа переходов в каждой вершине x_i выполнены следующие условия, называемые условиями автоматности или корректности:

- 1. для любой входной буквы u_j имеется ребро, выходящее из x_i , на котором написано u_j (условие полноты);
- 2. любая буква u_j встречается только на одном ребре, выходящем из x_i (условие непротиворечивости или детерминированности).

Автомат S называется частичным или неполностью определенным, если хотя бы одна из его функций не полностью определена, т.е. для некоторых пар «состояние — вход» значения функций δ и λ не определены. В автоматной таблице неполная определенность автомата выражается в том, что некоторые ее клетки не заполнены — в них стоят прочерки. В графе частичного автомата в вершинах, где δ не определена, нарушено условие полноты.

На практике обычно рассматривают два типа автоматов — автомат Мили и Мура. Выход автомата Мура является функцией только текущего состояния $\lambda: X \to Y$, в то время, как выход автомата Мили является функцией как текущего состояния, так и начального внешнего воздействия $\lambda: X \times U \to Y$. Функцию выходов автомата Мура естественно считать одноаргументной функцией, которую называют функцией отметок (т.к. она каждому состоянию однозначно ставит в соответствие отметку - выход), и обозначают μ . В графе автомата Мура выход пишется не на ребрах, а при вершине.

Пример.

Автомат Мили задан таблицей переходов (таблица 1.1) и таблицей выходов (таблица 1.2). Число строк таблиц равно числу состояний автомата, число столбцов таблиц равно числу символов входного алфавита. В позиции первой таблицы записывают значения очередных состояний автомата $x_{i+1} \in X$, в которые он переходит для каждой пары $(x_i, u_j) \in (X \times U)$. В позиции второй таблицы записывают значения символов выходного алфавита $y_i \in Y$, которые генерирует автомат для каждой пары $(x_i, u_j) \in (X \times U)$.

Эти таблицы можно совместить в одну, в позициях которой записывают пары (x_{i+1}, y_i) для каждой пары (x_i, u_j) (таблица 1.3). На рисунке 1 представлен граф, соответствующий заданному автомату Мили. Описание эквивалентного автомата Мура представлено в таблице 1.4.

Таблица 1.1

Таблица 1.2

Таблица переходов $\delta : X imes U o X$				
текущее состояние $x \in X$	символы входного алфавита $u \in U$			
$\lambda \in \Lambda$	u_0	u_1		
<i>X</i> 0	<i>X</i> ₁	χ_0		
<i>x</i> ₁	x_1	χ_0		

Таблица выходов $\lambda: X imes U o Y$				
текущее состояние $x \in X$	символы входного алфавита $u \in U$			
$\lambda \in \Lambda$	u_0	u_1		
<i>X</i> 0	<i>y</i> 0	<i>y</i> 1		
<i>X</i> 1	<i>y</i> 0	<i>y</i> 0		

Таблица 1.3

Таблица 1.4

Автомат Мили $\delta \! imes \! \lambda \! : \! X \! imes \! U o \! X \! imes \! Y$				
текущее	символы входного алфавита			
состояние	$u \in U$			
<i>x</i> ∈ <i>X</i>	u_0	u_1		
x_0	x_1, y_0	x_0, y_1		
x_1	x_1, y_0	<i>x</i> ₀ , <i>y</i> ₀		

Автомат Мура $\delta: X \times U \to X \ , \lambda: X \to Y$					
текущее состояние	символы входного алфавита $u \in U$		выход		
<i>x</i> ∈ <i>X</i>	<i>u</i> ₀	u_1	<i>y</i> ∈ <i>Y</i>		
x_0	x_1	x_0	y 1		
<i>x</i> ₁	<i>x</i> ₁	x_0	<i>y</i> 0		

Рисунок 1 – Граф автомата Мили