Face, body and object representations in the dog and human brain

Magdalena Boch^{1,2}, Isabella C. Wagner¹, Sabrina Karl³, Ludwig Huber^{3*} & Claus Lamm^{1*}

¹ Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; ² Department of Cognitive Biology, University of Vienna, Vienna, Austria, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, 1210, Vienna, Austria; *equal author contributions

Social, Cognitive and Affective Neuroscience Unit

@ScanUnit

BACKGROUND

Humans and non-human primates: object responsive regions in inferiotemporal cortex (IT) and regions specialized for face and body perception¹.

Representational similarity analyses (RSA) revealed matching neural representations for animate vs. inanimate and face vs. body object categories².

But how did the (social) environment shape these neural bases? Dogs are long-standing close companions of humans³: this offers insights into the convergent evolution⁴ of object perception.

First study to investigate body perception: systematic exploration of facebody and animate-inanimate object perception in dogs & humans.

Do dogs and humans share similar neural underpinnings of face, body and everyday object processing?

STUDY DESIGN & ANALYSIS

- *N*= 15 pet dogs (♀: 11)
- Awake, unrestrained, trained⁵
- Mean: 7.8 years (*SD* = 2.23 years)
- 60% Border Collies
- *N*= 40 humans (♀: 22)
- Mean: 23 years (*SD* = 2.6 years)

- Two 5-min task runs
- 12 s blocks (à 5 images)
- Images are randomized across blocks
- 180 images and 6 trials per condition

UNIVARIATE ANALYSIS:

Activation during object perception: animacy, faces, bodies, everyday objects

REPRESENTATIONAL SIMILARITY ANALYIS (RSA)⁶:

Pattern similarity for animate objects, and conspecific bodies

Dog imaging data was convolved with a tailored dog HRF⁷ and human data with standard canonical human HRF. Imaging parameters dogs: multiband (MB) accelerated EPI sequence, TR/TE = 1000/38 ms, voxel size = 1.5 x 1.5 x 2 mm³, 24 axial slices, flip angle = 61°, interleaved; structural scan: MP-RAGE, TR/TE = 2100/3.13 ms, voxel size = 0.7 mm isotropic; **humans**: MB accelerated EPI sequence, TR/TE = 1200/34 ms, voxel size: 1.5 mm isotropic, flip angle = 66°, interleaved; structural scan: MP-RAGE, TR/TE = 2300/2.26 ms, voxel size: 0.9 mm isotropic

RESULTS

UNIVARIATE functional regions of interest (fROI) analysis*

Anatomical search spaces

caudal suprasylvian gyrus

extrastriate body area fusiform body area fusiform face area occipital face area

Humans: face and body sensitive regions (data run 2)

fusiform body area

fusiform face area

Dogs: primarily coding for animate stimuli (data run 2)

As expected, further sub-division in face and body sensitive regions.

*individual fROIs were defined based on task run 1 within each bilateral search space (A) and defined based on the contrasts faces / bodies > inanimate objects.

REPRESENTATIONAL SIMILARITY ANALYSIS

Increased sensitivity for animate stimuli but not between faces and bodies, except marginal gyrus.

CONCLUSION

Similar neural processes during animate vs. inanimate perception in dogs and humans, a crucial socio-cognitive skill

Only humans: additional sub-division into distinct face- and body-sensitive brain regions

Insights into differentially evolved sensory systems

Convergent evolution of neural processes underlying animate vs. inanimate perception, but divergent neural face and body representations.

REFERENCES: ¹Tsao et al. 2009, PNAS; ²Kriegeskorte et al., Neuron 2008; ³Bergström et al., Science 2020; ⁴Fitch et al., Neuron 2010; ⁵Karl et al., Behav. Res. Methods 2019; ⁶Kriegeskorte et al., Front. Syst. Neurosci 2008; ⁷Boch et al., Neuroimage 2021; ⁹Nitzsche; ⁹Kanwisher et al., Philos. *Trans. R. Soc. Lond., B, Biol. Sci* 2006; ¹⁰Peelen et al., *Nat. Rev. Neurosci.* 2007; ¹¹Czeibert et al., Biol. Futur 2019; ¹²Eickhoff et al, Neuroimage 2005; ¹³Tzourio-Mazoyer et al., Neuroimage 2002;

Pearson correlation

ANIMATE: Faces × Bodies > Everyday objects

R superior parietal lobule

R cerebellum, fusiform gyrus, LOC, medial PFC

Shared neural representation of animate objects in visual regions.

L insula, piriform lobe

Increased pattern similarity for conspecific bodies in body selective regions. Dogs: consistent representation in olfactory and limbic cortices for conspecific bodies.

Areas of activation were determined using the canine breed-averaged t2w atlas¹⁰ and labels from¹¹ for dogs and the Anatomy toolbox ¹² and AAL¹³ for humans. Images are accompanied with anatomical locations posterior (P), anterior (A), dorsal (D), ventral (V), left (L) and right (R). Display threshold for univariate: Cluster definining threshold: p < .005 / .001 (dogs/humans), probability threshold: p < .05 FWE corrected; RSA: Cluster defining threshold: p < .005 probability threshold: p < .05 FWE corrected (dogs), and whole-brain FWE (humans) using SnPM.

(x) magdalena.boch@univie.ac.at

@MagdalenaBoch

ccnu.univie.ac.at