

Algoritmia Aplicada

Departamento de Inovação, Ciência e Tecnologia

Laboratório 2

Análise de Algoritmos

1. Considere a função F seguinte:

```
FUNÇÃO F (N) 
 IF N \le 1 
 THEN RETURN (A[1]) 
 ELSE RETURN (MAX (F(N-1) , A[N] ))
```

FUNÇÃO MAX
$$(X, Y)$$

IF $X \ge Y$
THEN RETURN (X)
ELSE RETURN (Y)

- a) Diga o que faz a função F.
- b) Calcule T(1), T(2), T(6) e T(n).
- 2. Mostre que $(n+1)^2 = O(n^2)$.

3. Considere o algoritmo seguinte:

```
ALGORITMO ANÁLISE
DO FOR I=1 TO N-1
DO FOR J=1 TO N-1
IF X[J] > X[J+1]
THEN TEMP \leftarrow X[J]
X[J] \leftarrow X[J+1]
X[J+1] \leftarrow TEMP
```

- a) O que faz o algoritmo? Considere que X= [16,14,12,10,8] e N=5.
- b) Calcule T(n) para o melhor caso.
- c) Idem para o pior caso.
- d) Mostre que $T(n) = O(n^2)$, considerando o pior caso.

4. Considere o seguinte procedimento escrito em pseudocódigo:

Procedimento MISTERIO (A, X, N, SUC)

- 1. SUC \leftarrow false
- 2. I **←**1
- 3. DO WHILE (NOT SUC) AND I <=N
- 4. IF A[I] = X
- 5. THEN SUC \leftarrow true
- 6. ELSE I ←I +1

RETURN

- a) Diga o que faz o procedimento MISTERIO. Considere que A=[10, 8, 6, 4, 2], N=5 e X=1.
- b) Indique qual o pior caso de execução do procedimento e calcule T(n) para esse caso.
- c) Indique qual o melhor caso de execução do procedimento e calcule T(n) para esse caso.
- d) Calcule T(n) para o caso médio.