

گزارشکار پروژه پایتون

درس اقتصاد مهندسی

فاطمه ایرجی / ۹۹۱۰۳۶۷۷

محمد مهدی مهری / ۹۹۱۰۹۹۳

متین خرازی / ۹۹۱۰۳۸۵۸

حنانه ملکوتی / ۹۹۱۰۰۹۰۳

علیرضا آزادی / ۴۰۰۱۰۳۱۱۹

سارا یادگاری / ۴۰۱۱۰۴۵۶۵

بهار ۱۴۰۳

فهرست

وابع اقتصاد مهندسی
حذف دادههای null با میانگین
پیشبینی حقوق کارکنان
نمودار داده حقوق کارکنان و مدل پیشبینی شده
پیش بینی قیمت هر واحد ماده اولیه ۱
پیش بینی هر واحد ماده اولیه ۲
نمودار قیمت هر واحد ماده اولیه ۲ و مدل پیشبینی شده
تابع نمایی
پیشبینی تقاضا
نمودار تقاضا و مدل پیشبینی شده
پیشبینی قیمت هر واحد محصول نهایی
نمودار قیمت هر واحد محصول نهایی و مدل پیشبینی
عواستهها
ع واستهها
خواسته ۲
خواسته ۳

توابع اقتصاد مهندسي

در این قسمت با توجه به اموزشهای داده شده در ویدئو کلاس حل تمرین، چهار تابع ساخته شدهاست که این توابع در توجه به فاکتورهای مربوطه تبدیل میکند. این توابع در توابع هر کدام از موارد A ،P ،F ، را به یک دیگر با توجه به فاکتورهای مربوطه تبدیل میکند. این توابع در قابع هر کدام از موارت ماژولار استفاده خواهند شد. این کد در فایل factors.py ذخیره شدهاست.

```
#Converts a future value (f) to a present value (p) using a
discount rate (i) and the number of periods (n).
def f to p (i, n, f):
factor = 1 / (1 + i) ** n
return f * factor
#Converts an annuity value (a) to a present value (p) using
a discount rate (i), growth rate (j), and number of periods
(n).
def a_to_p (i, j, n, a):
if i == j:
factor = n / (1 + i)
else:
factor = (1 - (((1 + j) ** n) * ((1 + i) ** -n))) / (i - j)
return a * factor
#Converts a present value (p) to an annuity value (a) using
a discount rate (i) and the number of periods (n).
def p_to_a (i, n, p):
factor = (i * ((1 + i) ** n)) / (((1 + i) ** n) - 1)
return p * factor
#Converts a present value (p) to a future value (f) using a
discount rate (i) and the number of periods (n).
def p_to_f (i, n, p):
factor = (1 + i) ** n
return p * factor
```

شرح تمرين

در این بخش هر یازده بخش خواسته شده، توضیح داده خواهد شد و خروجیها را در قالب شکل و عدد نشان می دهیم.

حذف دادههای null با میانگین

در این قسمت خواسته شده است که دادههای null مربوط به ستون salary را در جدول اکسل پر کنیم. این کار با از کتابخانه pandas و با میانگین گیری از سایر دادهها انجام می دهیم. دادهها برای سه سال گمشده به صورت زیر است.

years	2003	2010	2013
salary	76003	76003	76003

1.dealing with missing values

```
In [1]: import pandas as pd
         import numpy as np
from factors import *
        from sklearn.linear_model import LinearRegression
In [2]: file_path = 'data.xlsx'
In [3]: data_frame = pd.read_excel(file_path)
In [4]: # fills missing values in the 'Salary' column with the mean salary
        mean_Salary = data_frame['Salary'].mean()
        data_frame['Salary'].fillna(mean_Salary, inplace=True)
In [5]: data_frame.head(10)
Out[5]:
            Years Salary material 1 material 2 demand
         0 1990 39343 0 200 000000 89 600000
         1 1991 46205.0 212.000000 92.662500
         2 1992 37731.0 224.720000 95.807250
                                               101 1451.0
         4 1994 39891.0 252.495392 102.345626 95 1718.5
         5 1995 56642.0 267.645116 105.739927
                                                  96 1844.0
         6 1996 60150.0 283.703822 109.217795
                                                 95 1969 5
         7 1997 54445.0 300.726052 112.779099
                                                  92 2095.0
         8 1998 64445.0 318.769615 116.423489
                                                 92 2220.5
         9 1999 57189.0 337.895792 120.150370
                                                  87 2346.0
In [6]: data_frame.to_excel('New_data.xlsx')
```

دادههای جدید را در یک فایل اکسل با نام New_data ذخیره می کنیم و باقی سؤالها را با این داده انجام می دهیم.

پیشبینی حقوق کارکنان

در این قسمت با توجه به اموزشهای داده شده در ویدئو کلاس حل تمرین، یک مدل رگرسیون خطی را با توجه سالها و دستمزدها که بهصورت ۷، ۲ تعریفشدهاند فیت می کنیم و سپس دستمزدها برای سالهای 2023 تا 2050 پیشبینی می کنیم.

2.Predict Salary

خروجی این مدل بهصورت زیر میشود:

	index	Salary
0	2023	119794.784091
1	2024	122370.771390
2	2025	124946.758690
3	2026	127522.745989
4	2027	130098.733289
5	2028	132674.720588
6	2029	135250.707888
7	2030	137826.695187
8	2031	140402.682487
9	2032	142978.669786
10	2033	145554.657086
11	2034	148130.644385
12	2035	150706.631684
13	2036	153282.618984
14	2037	155858.606283
15	2038	158434.593583
16	2039	161010.580882
17	2040	163586.568182
18	2041	166162.555481
19	2042	168738.542781
20	2043	171314.530080
21	2044	173890.517380
22	2045	176466.504679
23	2046	179042.491979
24	2047	181618.479278
25	2048	184194.466578
26	2049	186770.453877
27	2050	189346.441176

نمودار داده حقوق کارکنان و مدل پیشبینی شده

در این قسمت با استفاده از کتابخانه matplotlib، نمودار شامل دادههای حقوق کارکنان و خط رگرسیون بهدست امده، بهصورت زیر است. همچنین دقت مدل بهدست امده، تقریباً برابر با 0.91094

است.

پیشبینی قیمت هر واحد ماده اولیه ۱

در این قسمت، قیمت هر واحد ماده ی اولیه ۱ برای سالهای آینده را میخواهیم به دست آوریم. همان طور که گفته شده است، این قیمت در سال بعد برابر است با قیمت سال قبل ضرب در جمع نرخ بهره و تورم یک درصد. بنابراین با استفاده از حلقه for این قیمت را برای سالهای آینده به دست می اوریم.

4.Predict Price Material 1

خروجی این پیشبینی بهصورت زیر میشود:

	index	material 1	11	2034	2597.096383			
0	2023	1368.117977	12	2035	2752.922165			
1	2024	1450.205055	13	2036	2918.097495			
2	2025	1537 217358	14	2037	3093.183345			
3	2026	1629 450400	15	2038	3278.774346			
4	2020	1727 217424	16	2039	3475.500807			
			17	2040	3684.030855			
5	2028	1830.850469	18	2041	3905.072706			
6	2029	1940.701498	19	2042	4139.377069			
7	2030	2057.143587	20	2043	4387.739693			
8	2031	2180.572203	21	2044	4651.004074	24 25	2047	5539.420269 5871.785485
9	2032	2311.406535	22	2045	4930.064319	26	2048	6224.092614
10	2033	2450.090927	23	2046	5225.868178	27	2050	6597.538171

پیشبینی هر واحد ماده اولیه ۲

در این قسمت، قیمت هر واحد ماده ی اولیه ۲ برای سالهای آینده را میخواهیم به دست آوریم. برای این کار، ارزش قیمتهای داده شده را با استفاده از تابع f_t to_p که ان را در فایل توابع اقتصاد مهندسی داشتیم، به سال ارزش قیمتهای داده شده را با استفاده از تابع گفته سؤال این ارزشها به صورت نزولی اند. سپس مدل رگرسیون خطی را بر روی ان فیت می کنیم و بعد ارزشها را برای سالهای آینده پیش بینی می کنیم. صورت سؤال قیمت هر واحد ماده ی اولیه ۲ را برای سالهای آینده خواسته است. بنابراین با استفاده از تابع p_t p_t این ارزشها را به صورت قیمت در می اوریم.

5.Predict Price Material 2

```
In [24]: m2 = data_frame2['material 2'].values
In [25]: from factors import f_to_p
In [26]: #calculating the present value of the material 2
          material2_price_predict_first = []
           for n,f in enumerate(m2) :
               m2_price = f_to_p(.05, n, f)
material2_price_predict_first.append(m2_price)
          material2_price_predict_first = np.array(material2_price_predict_first)
In [27]: X1 = data_frame2['Years'].values.reshape(-1,1)
Y1 = material2_price_predict_first.reshape(-1,1)
In [28]: model1 = LinearRegression()
In [29]: model1.fit(X1,Y1)
Out[29]: r LinearRegression
           LinearRegression()
In [30]: intercept1 = model1.intercept_[0]
    coefficient1 = model1.coef_[0][0]
In [31]: #predicting the price of material 2 for years 2023 to 2050
          predict_price_material2 = []
          for year in range(2023, 2051) :
               number = (intercept1 + coefficient1 * year)
               predict_price_material2.append(number)
In [32]: #calculating the future value of the material 2
material2_price_predict_last = {}
           for n,p in enumerate(predict_price_material2) :
               material2_price_predict_last[n+2023] = p_to_f(.05, n+33, p)
          #material2_price_predict_last
In [33]: material2_price_predict_df = pd.DataFrame.from_dict(material2_price_predict_last , orient='index', columns=['material 2']).reset
```

پیشبینی این مدل بهصورت زیر میشود:

	index	material 2
0	2023	225.393644
1	2024	229.571306
2	2025	233.603251
3	2026	237.464462
4	2027	241.127785
5	2028	244.563780
6	2029	247.740555
7	2030	250.623598
8	2031	253.175594
9	2032	255.356231
10	2033	257.121992
11	2034	258.425938
12	2035	259.217475
13	2036	259.442100
14	2037	259.041144
15	2038	257.951487
16	2039	256.105262
17	2040	253.429535
18	2041	249.845973
19	2042	245.270480
20	2043	239.612824
21	2044	232.776225
22	2045	224.656935
23	2046	215.143774
24	2047	204.117656
25	2048	191.451066
26	2049	177.007523
27	2050	160.640999

نمودار قیمت هر واحد ماده اولیه ۲ و مدل پیشبینی شده در این قسمت با استفاده از کتابخانه matplotlib، نمودار شامل دادههای قیمت هر واحد ماده ی اولیه ۲ و خط رگرسیون بهدست امده، به صورت زیر است. همچنین دقت مدل بهدست امده، برابر با ۱ است.

6. Visualization Predicted Price Material 2

تابعنمايي

اوریم. برای این کار در این قسمت خروجی تابع داده شده، که تقاضا ضریب از ان است را به درست می درست کرده، و با استفاده از کتابخانه exponential_factorیک ستون جدید در فایل اکسل به نام اوریم.دست می این ضریب را به exp و تابع exp

exponential_factor
5.19E-18
5.09E-18
4.99E-18
4.89E-18
4.79E-18
4.70E-18
4.60E-18
4.51E-18
4.42E-18
4.33E-18
4.25E-18
4.16E-18
4.08E-18
4.00E-18
3.92E-18
3.84E-18
3.77E-18
3.69E-18
3.62E-18
3.55E-18
3.48E-18
3.41E-18
3.34E-18
3.28E-18
3.21E-18
3.15E-18
3.08E-18
3.02E-18
2.96E-18
2.91E-18

2.85E-18	
2.79E-18	
2.74E-18	

7.demand factor column

داده جدید را در New_data ذخیره می کنیم.

پیشبینی تقاضا

حال مدل رگرسیون خطی را بر روی این ضریب بهدست امده و تقاضاها فیت می کنیم و مقدار پیشبینی شده تقاضا را در سال ۲۰۲۳ تا ۲۰۵۰ بهدست می اوریم. این تقاضا را در سال ۲۰۲۳ تا ۲۰۵۰ بهدست می اوریم. این تقاضا را در سال ۲۰۲۳ تا ۲۰۵۰ بهدست می اوریم.

خروجی این مدل بهصورت زیر میشود:

	index	demand
0	2023	55.655541
1	2024	54.618177
2	2025	53.601354
3	2026	52.604666
4	2027	51.627714
5	2028	50.670106
6	2029	49.731461
7	2030	48.811401
8	2031	47.909561
9	2032	47.025577
10	2033	46.159098
11	2034	45.309777
12	2035	44.477273
13	2036	43.661253
14	2037	42.861392
15	2038	42.077370
16	2039	41.308872
17	2040	40.555591
18	2041	39.817226
19	2042	39.093482
20	2043	38.384069
21	2044	37.688703
22	2045	37.007107
23	2046	36.339007
24	2047	35.684136
25	2048	35.042232
26	2049	34.413039
27	2050	33.796305

نمودار تقاضا و مدل پیشبینی شده نمودار شامل دادههای تقاضا و خط رگرسیون بهدست امده، بهصورت زیر است. همچنین دقت مدل بهدست امده، تقریباً برابر با 0.984957 است.

9. Visualization Predicted demand

```
In [49]: #model3.predict(X3)
In [50]: plt.scatter( data_frame2['Years'] , data_frame2['demand'] )
         plt.plot( data_frame2['Years'] , model3.predict(X3) , c = 'green')
         plt.show()
          100
           90
           80
           70
           60
              1990
                    1995
                           2000
                                 2005
                                       2010
                                              2015
In [51]: score3 = model3.score(X3,Y3)
In [52]: score3
Out[52]: 0.9849573838479752
```

پیشبینی قیمت هر واحد محصول نهایی

در این قسمت هم مثل قسمتهای قبل بر روی داده قیمت مدل رگرسیون خطی فیت می کنیم و سپس برای سالهای ۲۰۲۳ تا ۲۰۵۰ قیمت را پیش بینی می کنیم.

10.Predict Price

خروجی این مدل بهصورت زیر میشود:

	Years	price
0	2023	5358.0
1	2024	5483.5
2	2025	5609.0
3	2026	5734.5
4	2027	5860.0
5	2028	5985.5
6	2029	6111.0
7	2030	6236.5
8	2031	6362.0
9	2032	6487.5
10	2033	6613.0
11	2034	6738.5
12	2035	6864.0
13	2036	6989.5
14	2037	7115.0
15	2038	7240.5
16	2039	7366.0
17	2040	7491.5
18	2041	7617.0
19	2042	7742.5
20	2043	7868.0
21	2044	7993.5
22	2045	8119.0
23	2046	8244.5
24	2047	8370.0
25	2048	8495.5
26	2049	8621.0
27	2050	8746.5

نمودار قیمت هر واحد محصول نهایی و مدل پیشبینی نمودار شامل دادههای قیمت محصول نهایی و خط رگرسیون بهدست امده، بهصورت زیر است. همچنین دقت

مدل بهدست امده، تقريباً برابر با 0.999965 است.

11. Visualization Predicted price

خواستهها

خواسته ۱

در این قسمت میخواهیم ببینیم که این روند تا چه سالی سودده خواهد بود.

ابتدا تمام دادههایی که در قسمتهای قبل پیشبینی کردیم را با هم ترکیب میکنیم تا در غالب یک دیتا فریم آن را داشته باشیم و ستونهای مورد نیاز را فقط نگه میداریم.

حال این جدول را با جدول دادههای اولیه قبل از پیشبینی ترکیب میکنیم.

حال باید سود هر سال را بهدست آوریم. میدانیم که هزینهی تمام شده بهازای خرید ماد هی اولیه 2 بستگی به تعداد تقاضا دارد بهطوری که اگر میزان تقاضا بیشتر از 60 باشد 18 درصد تخفیف، اگر بین 40 تا خود عدد 60 باشد 10 درصد تخفیف، اگر میزان تقاضا بین 20 تا خود عدد 40 باشد 5 درصد تخفیف و اگر تقاضا کمتر یا مساوی 20 باشد تخفیف نمی گیرد.

پس یک تابع تعریف می کنیم که با توجه به میزان تقاضا درصد تخفیف را خروجی دهد.

```
In [69]: #Defines a discount function based on demand
def discount(demand):
    if demand > 60:
        discount_rate = 0.18
    elif demand > 40 and demand <= 60:
        discount_rate = 0.1
    elif demand > 20 and demand <= 40:
        discount_rate = 0.05
    else:
        discount_rate = 0
    return discount_rate</pre>
```

حال یک ستون جدید به اسم New Price material 2 تعریف می کنیم و بر روی هر سطر قیمت جدید ماده اولیه ۲ را به دست می آوریم و در این ستون جدید ذخیره می کنیم.

a.	L							
i	ndex	Years	Salary	material 1	material 2	demand	price	New Price material 2
0	0	1990	39343.000000	200.000000	89.600000	103.000000	1200.0	73.472000
1	1	1991	46205.000000	212.000000	92.662500	104.000000	1375.0	75.983250
2	2	1992	37731.000000	224.720000	95.807250	101.000000	1451.0	78.561945
3	3	1993	43525.000000	238.203200	99.034819	99.000000	1593.0	81.208551
4	4	1994	39891.000000	252.495392	102.345626	95.000000	1718.5	83.923414
56	23	2046	179042.491979	5225.868178	215.143774	36.339007	8244.5	204.386586
57	24	2047	181618.479278	5539.420269	204.117656	35.684136	8370.0	193.911773
58	25	2048	184194.466578	5871.785485	191.451066	35.042232	8495.5	181.878513
59	26	2049	186770.453877	6224.092614	177.007523	34.413039	8621.0	168.157147
60	27	2050	189346.441176	6597.538171	160.640999	33.796305	8746.5	152.608949

حال که همه هزینهها و قیمتها را داریم سود را محاسبه میکنیم.

سود بهصورت زیر محاسبه میشود:

تقاضا imes قیمت هر واحد ماده اولیه 1-1 تقاضا imes قیمت هر واحد ماده اولیه 2-1 حقوق کارکنان -1 تقاضا 1-1 قیمت هر واحد ماده اولیه 1-1

برای این که ببینیم تا کجا سودده بوده است باید ببینیم تا چه سالی سود مثبت بوده است و بعد از آن صفر یا منفی شدهاست.

	index	Years	Salary	material 1	material 2	demand	price	New Price material 2	profit
48	15	2038	158434.593583	3278.774346	257.951487	42.077370	7240.5	232.156339	-1504.126589
49	16	2039	161010.580882	3475.500807	256.105262	41.308872	7366.0	230.494736	-9819.926295
50	17	2040	163586.568182	3684.030855	253.429535	40.555591	7491.5	228.086582	-18422.593016
51	18	2041	166162.555481	3905.072706	249.845973	39.817226	7617.0	237.353674	-27814.671743
52	19	2042	168738.542781	4139.377069	245.270480	39.093482	7742.5	233.006956	-36988.974506
53	20	2043	171314.530080	4387.739693	239.612824	38.384069	7868.0	227.632182	-46465.427902
54	21	2044	173890.517380	4651.004074	232.776225	37.688703	7993.5	221.137414	-56250.562906
55	22	2045	176466.504679	4930.064319	224.656935	37.007107	8119.0	213.424088	-66351.429998
56	23	2046	179042.491979	5225.868178	215.143774	36.339007	8244.5	204.386586	-76775.616023
57	24	2047	181618.479278	5539.420269	204.117656	35.684136	8370.0	193.911773	-87531.262071
58	25	2048	184194.466578	5871.785485	191.451066	35.042232	8495.5	181.878513	-98627.082397
59	26	2049	186770.453877	6224.092614	177.007523	34.413039	8621.0	168.157147	-110072.384452
0	27	2050	189346.441176	6597.538171	160.640999	33.796305	8746.5	152.608949	-121877.090065

تا سال 2037 سودده بوده است چون بعد از این سال سود منفی میشود.

با توجه به این جدول تا سال ۲۰۳۷ سود مثبت بوده است و بعد از این تاریخ سود منفی بوده است پس تا سال ۲۰۲۳ سودده بوده است.

خواسته ۲

این ذینفع میخواهد ۲۰ درصد از ۲۵ درصد سود خود را از سال ۲۰۲۲ تا ۲۰۳۲ پسانداز کند. نرخ بهره نیز ۵ درصد است.

پس ابتدا مقدار سود هر سالهاش را که می خواهد پسانداز کند را به دست می آوریم و در ستون saved ذخیره می کنیم. و مقدار آن را در سال صفر به دست می آوریم که از تابع f_{to_p} در فایل factors استفاده می کنیم.

Question2

مقدار ارزش فعلی مقدار سودی که این شخص میخواهد ذخیره کند 1725861.56677 میباشد. حال باید مقدار ثابت را در سالهای ۲۰۲۲ تا ۲۰۳۲ به دست آوریم. پس از تابع p_to_a در فایل توابع استفاده می کنیم.

```
In [81]: n = 2032 - 2022 + 1
saving = p_to_a(i, n, PV)

In [82]: #Calculating the annuity value (saving) for the period from 2022 to 2032 using the present value (PV)
saving

Out[82]: 207774.56088996632

ابن شخص باید از سال 2022 تا 2032 مقدار ثابت 20774.56 دلار پس انداز کند.
```

این شخص باید از سال ۲۰۲۲ تا ۲۰۳۲ مقدار ثابت ۲۰۷۷۴٫۵۶ دلار پسانداز کند.

خواسته ۳

برای این که ببینیم اگر شخصی بخواهد در سال 2022 این شرکت را خریداری کند، با چه قیمتی شرکت را بخرد تا حداقل 250000 دلار(در سال پایه) به او سود دهد، باید ابتدا تمامی سودها را به سال پایه و عدار خرید شرکت را در سال پایه بهدست آوریم. نرخ بهره نیز ۵ درصد است.

Question3

```
In [96]: #This loop calculates the future value (FV) of the profits using a discount rate (i) of 5%.
    i = 0.05
    FV = 0
    for n,p in enumerate(table["profit"]):
        FV += p_to_f(i, 32 - n , p)

In [97]: FV

Out[97]: 8223629.348578641

In [98]: profit = 250000

In [99]: #The expected profit is given as 250,000.
    #The final price is calculated by subtracting the expected profit from the future value (FV)
    price = FV - profit

In [100]: price
Out[100]: 7973629.348578641
```

خريد اين شخص بايد7973629.348دلار باشد تا 250000دلار در سال پايه سود كند.

خرید این شخص باید۷۹۷۳۶۲۹,۳۴۸دلار باشد تا ۲۵۰۰۰۰دلار در سال پایه سود کند.