### **User Guides and Example Cases for Use of OpenSC**

### 1.1 Evaluation of Radiative Properties

To demonstrate the operational procedure of OpenSC, the total emissivity/absorptivity for mixture in various conditions is determined in this section. Fig. 1a shows the user interface for OpenSC and there are two options for the radiation calculations. Given with mixture conditions, which includes a source temperature  $(T_w)$ , a gas temperature  $(T_g)$ , a total absorptive optical thickness  $(P_gL)$ , an absorptive mole fraction of  $CO_2(X_{CO_2})$ , and a soot concentration thickness  $(f_vL)$ , the total emissivity/absorptivity can be obtained from a single-value calculation. It should be noted that even though the path-length L is not required as an input parameter, the user is asked to provide a value for L. This input is to remind the user that the absorptive optical thickness divided by the path-length does not exceed 1 atm (~100 kPa). Otherwise, there will be errors and the calculation will not be able to start. For single-value calculations, the computation is efficient and results can be obtained in less than a fraction of a second.

| Select   Value   Select   Minimum Value   Maximum Value   Number of Steps (>=2)                                                                                                                                 | Mixture Properties                     | Single ' | Value Calculation |        |               | Range Calculation |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|-------------------|--------|---------------|-------------------|-----------------------|
| Pathlength (m): 0 to 0.000001  Temperature (K): 300 to 2000  CO2/(CO2+H2O)  Mole Fraction: 0.0 to 1.0  Pressure Pathlength (kPa-m): 0 to 2000 (< Path Length x 1 atm)  Path Length (m): > 0  Source Temperature | Mixture Froperties                     | Select   | Value             | Select | Minimum Value | Maximum Value     | Number of Steps (>=2) |
| to 2000  CO <sub>2</sub> /(CO <sub>2</sub> +H <sub>2</sub> O)  Mole Fraction: 0.0 to 1.0  Pressure Pathlength (kPa-m): 0 to 2000 (< Path Length x 1 atm)  Path Length (m): > 0  Source Temperature              | Pathlength (m): 0 to                   | •        |                   |        |               |                   |                       |
| Mole Fraction: 0.0 to 1.0  Pressure Pathlength (kPa-m): 0 to 2000 (< Path Length x 1 atm)  Path Length (m): > 0  Source Temperature                                                                             |                                        | •        |                   |        |               |                   |                       |
| Path Length x 1 atm)  Path Length (m): > 0  Source Temperature                                                                                                                                                  | Mole Fraction: 0.0 to                  | •        |                   |        |               |                   |                       |
| Source Temperature                                                                                                                                                                                              | (kPa-m): 0 to 2000 (<                  | •        |                   |        |               |                   |                       |
|                                                                                                                                                                                                                 | Path Length (m): > 0                   | •        |                   | 0      |               |                   |                       |
| **************************************                                                                                                                                                                          | Source Temperature<br>(K): 300 to 1500 | •        |                   |        |               |                   |                       |

Fig. 1a. User interface of OpenSC.

The second option is a range calculation. The range calculation offers a capability to carry out parametric studies to understand the effect for different mixture conditions. An example for the determination of total emissivity for pure H<sub>2</sub>O at different gas temperature is provided in Fig. 1b. Since the total emissivity of H<sub>2</sub>O is of interest in this example, soot volume fraction and absorptive mole fraction of CO<sub>2</sub> are set to be zero. Source temperature is set to be the same as the gas temperature. By clicking the *Calculate* button, the calculation will execute and results for total emissivity will be displayed in the user interface. In order to facilitate further analysis on the radiative properties, the results obtained from either single-value or range calculation can be saved in an Excel spreadsheet by simply clicking the *Download Results to File* button. Generally, input parameters such as partial pressure for gaseous species and volume fraction of soot are not typically being obtained directly from fire design/protection engineering calculations. Therefore, a simple

algorithm is included in Appendix A to provide the relevant expressions for the conversion of species/soot mass into appropriate variables with correct units.

### Fill in Input Values: Total Pressure = 1 atm (101 kPa)

| Mr. ( D C                                                                            | Si     | ngle Value Calculation |        |               | Range Calculation |                       |
|--------------------------------------------------------------------------------------|--------|------------------------|--------|---------------|-------------------|-----------------------|
| Mixture Properties                                                                   | Select | Value                  | Select | Minimum Value | Maximum Value     | Number of Steps (>=2) |
| Soot Volume Fraction<br>Pathlength (m): 0 to<br>0.000001                             | •      | 0                      | 0      |               |                   |                       |
| Temperature (K): 300 to 2000                                                         | 0      |                        | •      | 300           | 2000              | 18                    |
| CO <sub>2</sub> /(CO <sub>2</sub> +H <sub>2</sub> O)<br>Mole Fraction: 0.0 to<br>1.0 | •      | 0                      | 0      |               |                   |                       |
| Pressure Pathlength<br>(kPa-m): 0 to 2000 (<<br>Path Length x 1 atm)                 | •      | 44.81                  | 0      |               |                   |                       |
| Path Length (m): > 0                                                                 | •      | 1                      | 0      |               |                   |                       |
| Source Temperature<br>(K): 300 to 1500                                               | •      | 300                    | 0      |               |                   |                       |

Calculate

Download Results to File

Fig. 1b. Inputs for the evaluation of pure H<sub>2</sub>O emissivity at different gas temperature (since the optical thickness is not evenly distributed, manual input is needed to handle calculations for 10 different optical thicknesses).

### 1.1.1 Emissivity

A total emissivity chart for pure H<sub>2</sub>O generated by OpenSC is presented in Fig. 2 for different optical thicknesses and with gas temperature ranging from 300 K to 2000 K. The relevant inputs for generating the numerical data for a specific absorptive optical thickness are provided in above (refer to Fig. 1b). In Fig. 2, it can be noticed that the total emissivity is a monotonic decreasing function of increasing gas temperature for small optical thickness. When the optical thickness becomes larger, the total emissivity first increases with increasing gas temperature in low temperature region and then decreases from its peak value with increasing gas temperature. The physical mechanism corresponding to the increase or decrease for the total emissivity can be attributed to the unique absorption characteristics associated with H<sub>2</sub>O at a specified gas temperature and pressure.

A total emissivity chart for pure  $CO_2$  and the relevant input file for a specific absorptive optical thickness are presented in Fig. 3a and 3b, respectively<sup>1</sup>. The total emissivity of  $CO_2$  is plotted for different absorptive optical thicknesses with gas temperature ranging from 300 K to 2000 K. The slight nonlinearity in the region of 700 K corresponds to the effect of the strong  $CO_2$  absorption band at 4.3  $\mu$ m. In comparison to the results shown in Fig. 2, the  $CO_2$  emissivity is lower than the  $H_2O$  emissivity and this is generally due to the weaker  $CO_2$  absorption bands.

<sup>&</sup>lt;sup>1</sup> Completed list of data are provided in Appendix A in this documentation for all example cases and the raw data can be downloaded from Verification folder.



Fig. 2. Calculated total emissivity of H<sub>2</sub>O using OpenSC.



Fig. 3a. Calculated total emissivity of CO<sub>2</sub> using OpenSC.

A total emissivity chart for pure soot is shown in Fig. 4a and the relevant input file is shown in Fig. 4b. The soot emissivity is plotted for different soot concentration thicknesses,  $f_{\nu}L$ , ranging from  $10^{-9}$  m to  $10^{-6}$  m for a wide range of gas temperature. As shown in the Fig. 4a, in contrast to the emissivity behavior of pure H<sub>2</sub>O and pure CO<sub>2</sub>, soot emissivity is a monotonic increasing function of increasing gas temperature and this is because of the inverse wavelength dependence of the soot's absorption coefficient. A high emissivity can thus be obtained with either larger value of soot concentration or larger gas temperature. As expected, when the soot concentration is high (i.e.,  $f_{\nu}L > 10^{-6}$  m), the soot emissivity approaches unity.

### Fill in Input Values: Total Pressure = 1 atm (101 kPa)

| Mr. D                                                                                | Sin    | ngle Value Calculation |        |               | Range Calculation |                       |
|--------------------------------------------------------------------------------------|--------|------------------------|--------|---------------|-------------------|-----------------------|
| Mixture Properties                                                                   | Select | Value                  | Select | Minimum Value | Maximum Value     | Number of Steps (>=2) |
| Soot Volume Fraction<br>Pathlength (m): 0 to<br>0.000001                             | •      | 0                      | 0      |               |                   |                       |
| Temperature (K): 300 to 2000                                                         | 0      |                        | •      | 300           | 2000              | 18                    |
| CO <sub>2</sub> /(CO <sub>2</sub> +H <sub>2</sub> O)<br>Mole Fraction: 0.0 to<br>1.0 | •      | 1                      | 0      |               |                   |                       |
| Pressure Pathlength<br>(kPa-m): 0 to 2000 (<<br>Path Length x 1 atm)                 | •      | 44.81                  | 0      |               |                   |                       |
| Path Length (m): > 0                                                                 | •      | 1                      | 0      |               |                   |                       |
| Source Temperature<br>(K): 300 to 1500                                               | •      | 300                    | 0      |               |                   |                       |

Calculate

Download Results to File

Fig. 3b. Inputs for the evaluation of pure CO<sub>2</sub> emissivity at different gas temperature (since the optical thickness is not evenly distributed, manual input is needed to handle calculations for 10 different optical thicknesses).



Fig. 4a. Calculated total emissivity of soot particulates using OpenSC.

In practical engineering calculations,  $H_2O$ ,  $CO_2$ , and/or soot particulates can simultaneously exist in a mixture. The total emissivity behavior associated with such mixture along a line of sight is limited in currently available literature except for those found in [13]. In order to provide a more comprehensive overview of mixture emissivity behavior to the reader, examples are generated by OpenSC to demonstrate the effect of different combination of gaseous species and soot particulates.

#### Fill in Input Values: Total Pressure = 1 atm (101 kPa)

| Mr. d. D. d.                                                                         | Si     | ngle Value Calculation |        |               | Range Calculation |                       |
|--------------------------------------------------------------------------------------|--------|------------------------|--------|---------------|-------------------|-----------------------|
| Mixture Properties                                                                   | Select | Value                  | Select | Minimum Value | Maximum Value     | Number of Steps (>=2) |
| Soot Volume Fraction<br>Pathlength (m): 0 to<br>0.000001                             | •      | 0.00000001             | 0      |               |                   |                       |
| Temperature (K): 300 to 2000                                                         | 0      |                        | •      | 300           | 2000              | 18                    |
| CO <sub>2</sub> /(CO <sub>2</sub> +H <sub>2</sub> O)<br>Mole Fraction: 0.0 to<br>1.0 | •      | 0                      | 0      |               |                   |                       |
| Pressure Pathlength<br>(kPa-m): 0 to 2000 (<<br>Path Length x 1 atm)                 | •      | 0                      | 0      |               |                   |                       |
| Path Length (m): > 0                                                                 | •      | 1                      | 0      |               |                   |                       |
| Source Temperature<br>(K): 300 to 1500                                               | •      | 300                    | 0      |               |                   |                       |

Calculate

Download Results to File

Fig. 4b. Inputs for the evaluation of pure soot emissivity at different gas temperature (since the soot concentration is not evenly distributed, manual input is needed to handle calculations for 7 different soot concentrations).



Figs 5a. Calculated total emissivity of mixture consisted of water vapor and carbon dioxide with gas temperature evaluated at 500 K (left) and 1000 K (right) using OpenSC.

In Figs. 5a, the total emissivity of a mixture of  $H_2O$  and  $CO_2$  is plotted as a function of the absorptive mole fraction of  $CO_2$  with different absorptive optical thicknesses. A typical input file for the generation of the numerical data is shown in Fig. 5b. Two gas temperatures, 500 K and 1000 K, are considered in this example. In general, the mixture emissivity increases with increasing absorptive optical thickness and this emissivity behavior is independent of gas temperature. For different fraction of  $CO_2$ , it is interesting to see that  $CO_2$  addition to the mixture first increases and then decreases the mixture emissivity. The initial increases of the mixture emissivity in the region of low  $CO_2$  fraction is primarily due to the strong absorption effect from the fundamental band  $CO_2$  (4.3  $\mu$ m) and the overlapping effect associated with the

absortion band of  $H_2O$  (2.7 µm) and  $CO_2$  (2.7 µm) near the peak of Planck function for 1000 K (2.9 µm)<sup>2</sup>. A "small" amount of  $CO_2$  added to the mixture thus increase the mixture emissivity. However, as the  $CO_2$  concentration increases, the  $H_2O$  contribution to the mixture emissivity decreases and the mixture emissivity decreases toward the total emissivity of pure  $CO_2$  (refer to Fig. 3a). Fig. 6 shows the emissivity of mixture consisted of  $H_2O$ ,  $CO_2$ , and soot particulates and, as expected, the mixture emissivity generally increases with increasing soot concentration.

| M                                                                                    | Si     | ngle Value Calculation |        |               | Range Calculation |                       |
|--------------------------------------------------------------------------------------|--------|------------------------|--------|---------------|-------------------|-----------------------|
| Mixture Properties                                                                   | Select | Value                  | Select | Minimum Value | Maximum Value     | Number of Steps (>=2) |
| Soot Volume Fraction<br>Pathlength (m): 0 to<br>0.000001                             |        | 0                      | 0      |               |                   |                       |
| Temperature (K): 300 to 2000                                                         | 0      |                        |        | 500           | 1000              | 2                     |
| CO <sub>2</sub> /(CO <sub>2</sub> +H <sub>2</sub> O)<br>Mole Fraction: 0.0 to<br>1.0 |        | 1                      | 0      |               |                   |                       |
| Pressure Pathlength<br>(kPa-m): 0 to 2000 (<<br>Path Length x 1 atm)                 | 0      |                        |        | 0             | 1                 | 11                    |
| Path Length (m): > 0                                                                 | •      | 1                      | 0      |               |                   |                       |
| Source Temperature<br>(K): 300 to 1500                                               | •      | 300                    | 0      |               |                   |                       |

Fig. 5b. Inputs for the evaluation of mixture emissivity with different absorptive mole fraction of  $CO_2$  as a function of gas temperature.

### 1.1.2 Absorptivity

Total absorptivity is an important parameter that characterizes the total amount of energy being absorbed by a medium due to emission from another source. Fundamentally, the total absorptivity from non-gray gases can have a completely different behavior as compared to the total emissivity if the source temperature differs from the gas temperature. However, if the mixture is assumed to be gray, the total absorptivity is constrained to be equal to the total emissivity, an assumption generally invoked without any mathematical verification in many fire applications (for example, this practice is found in one of the most commonly used fire simulation codes<sup>3</sup> [25] certified by the U.S. Department of Energy). Since the effect of radiation is known to be not only important, but dominant in combustion/fire calculations. OpenSC can be used to obtain the total absorptivity of a mixture consisting of H<sub>2</sub>O, CO<sub>2</sub>, and/or soot particulates for different conditions and the obtained results can be used to assess the accuracy of the gray assumption of equal total absorptivity and total emissivity.

<sup>&</sup>lt;sup>2</sup> The peak of Planck function is determined from solving the Wien's displacement law with a gas temperature.

<sup>&</sup>lt;sup>3</sup> The fire simulation code is typically being used to predict the environment in a multi-compartment structure subjected to a fire and/or to simulate the impact of past or potential fires and smoke in a specific building environment by fire investigators, safety officials, engineers, architects, and builders.



Fig. 6. Calculated total emissivity of soot-gas mixture using OpenSC.

### Fill in Input Values: Total Pressure = 1 atm (101 kPa)

| Mr. ( D /                                                                            | Sin    | ngle Value Calculation |        |               | Range Calculation |                       |
|--------------------------------------------------------------------------------------|--------|------------------------|--------|---------------|-------------------|-----------------------|
| Mixture Properties                                                                   | Select | Value                  | Select | Minimum Value | Maximum Value     | Number of Steps (>=2) |
| Soot Volume Fraction<br>Pathlength (m): 0 to<br>0.000001                             | 0      |                        | •      | 0             | 0.0000001         | 2                     |
| Temperature (K): 300 to 2000                                                         | 0      |                        | •      | 300           | 2000              | 18                    |
| CO <sub>2</sub> /(CO <sub>2</sub> +H <sub>2</sub> O)<br>Mole Fraction: 0.0 to<br>1.0 |        | 10                     | 0      |               |                   |                       |
| Pressure Pathlength<br>(kPa-m): 0 to 2000 (<<br>Path Length x 1 atm)                 |        | 0.5                    | 0      |               |                   |                       |
| Path Length (m): > 0                                                                 | •      | 1                      | 0      |               |                   |                       |
| Source Temperature<br>(K): 300 to 1500                                               | 0      |                        | •      | 500           | 1500              | 3                     |

Calculate

Download Results to File

Fig. 7. Inputs for the evaluation of mixture emissivity and absorptivity as a function of gas temperature with 3 different source temperatures for 2 soot conditions.

### 1.1.3 Comparison between absorptivity and emissivity

Fig. 7 shows a typical input file for the determination of absorptivity and emissivity of mixture consisted of H<sub>2</sub>O, CO<sub>2</sub>, and/or soot particulates. In contrast to the evaluation of total emissivity, the source temperature is now important. For a gas mixture, the total emissivity and the total absorptivity as a function of gas temperature are plotted in Fig. 8. Three different source temperatures (500 K, 1000 K, and 1500 K) for the total absorptivity are considered in the example. Since the total emissivity is independent of source temperature, there is only one curve for the total emissivity. As shown in the figure, the total absorptivity is significantly different than the total emissivity both in terms of its numerical value and its dependence on the gas temperature. In general, the total absorptivity is an increasing function of gas temperature, which is completely opposite to the trend for the total emissivity. For the effect of source temperature, it can be noticed that lower source temperature typically leads to overall higher total absorptivity. Physically, this

trend is expected because the peak of the Planck function for lower source temperature is shifted to the more active absorption band for  $H_2O$  in the long wavelength region (4.7 µm and 6.3 µm). The total absorptivity for a soot-gas mixture is presented in Fig. 9. Note that the gas temperature has an effect on the total absorptivity only for a gas-soot mixture with a finite absorptive optical thickness ( $P_gL = 10$  kPa-m in Fig. 9). In the limit of a pure soot mixture, the total absorptivity is only a function of the source temperature.



Fig. 8. Absorptivity of gas mixture (no soot) at different source temperature (Emissivity of the same mixture is also plotted for comparison).



Fig. 9. Absorptivity of soot-gas mixture at different source temperature (Emissivity of the same mixture is also plotted for comparison).

Quantitatively, comparison between the total emissivity and the total absorptivity as shown in Fig. 8 and 9 demonstrates clearly that the two properties are different and have different dependence on mixture parameters. Therefore, the assumption of a gray medium with equal emissivity and absorptivity for the combustion products is not supported by fundamental physics and should not be applied for the evaluation of radiation effect for non-gray medium in fire design/safety protection calculations.

### **Appendix A: Expressions for Mass Conversion**

The authors notice that mass for species and soot are typically being provided in fire safety/design calculations. In order to facilitate the radiation calculation, three expressions are presented below to convert 1) species mass for H<sub>2</sub>O and CO<sub>2</sub> into partial pressure and 2) soot mass into soot volume fraction.

Assuming the total pressure of gaseous species to be 101.325 kPa, the partial pressure of H<sub>2</sub>O can be obtained from the ideal gas law

$$P_{H_2O} = \frac{n_{H_2O}RT_g}{V}$$

where R is the universal gas constant (8.3143 J/mol/K or 8.20562e-5 atm·m³/mol/K),  $T_g$  is the gas temperature (K), V is the volume of the mixture, and  $n_{H_2O}$  is the mole number of  $H_2O$  that can be evaluated by dividing the mass of  $H_2O$  by mole mass of  $H_2O$ 

$$n_{H_2O} = \frac{m_{H_2O}}{M_{H_2O}}$$

for which the unit of  $m_{H_2O}$  and  $M_{H_2O}$  is kg and kg/mol, respectively. For  $H_2O$ , the mole mass is taken to be 18.0153e-3 kg/mol.Similarly, the partial pressure of  $CO_2$  is given by

$$P_{CO_2} = \frac{m_{CO_2} R T_g}{M_{CO_2} V}$$

where the mole mass of CO<sub>2</sub> is taken to be 44.0088e-3 kg/mol. The soot volume fraction can be obtained from

$$f_v = \frac{m_{soot}}{V \rho_{soot}}$$

where  $m_{soot}$  is the mass of the soot and  $\rho_{soot}$  is the density of the soot that is taken to be 1800 kg/m<sup>3</sup>.

# Appendix B – List of data for all cases

1) Data for Figure 2 (total emissivity for pure  $H_2O$ ):

| Gas<br>Temperature | 0.925    | 1.766    | 3.372    | 6.438    | 12.29   | 23.47   | 44.81   | 85.56   | 163.4   | 311.9   |
|--------------------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|
| K                  | kPa-m    | kPa-m    | kPa-m    | kPa-m    | kPa-m   | kPa-m   | kPa-m   | kPa-m   | kPa-m   | kPa-m   |
| 300                | 0.056221 | 0.074237 | 0.099141 | 0.13036  | 0.16582 | 0.21568 | 0.26187 | 0.30659 | 0.3365  | 0.36479 |
| 400                | 0.053881 | 0.076432 | 0.10489  | 0.14728  | 0.19935 | 0.26937 | 0.34916 | 0.42843 | 0.47856 | 0.52462 |
| 500                | 0.050864 | 0.072532 | 0.10264  | 0.14328  | 0.19587 | 0.26926 | 0.35468 | 0.44252 | 0.49636 | 0.54506 |
| 600                | 0.047591 | 0.068424 | 0.097892 | 0.1397   | 0.18924 | 0.26217 | 0.35062 | 0.44561 | 0.49346 | 0.54358 |
| 700                | 0.044196 | 0.066657 | 0.096038 | 0.13808  | 0.19667 | 0.27155 | 0.36425 | 0.47724 | 0.55216 | 0.62857 |
| 800                | 0.040771 | 0.062957 | 0.092884 | 0.13422  | 0.19247 | 0.26941 | 0.36464 | 0.47362 | 0.55477 | 0.63054 |
| 900                | 0.037287 | 0.058036 | 0.087625 | 0.128    | 0.18424 | 0.25981 | 0.35502 | 0.46178 | 0.54065 | 0.61855 |
| 1000               | 0.033811 | 0.053517 | 0.082401 | 0.12174  | 0.17763 | 0.25154 | 0.34594 | 0.45329 | 0.53163 | 0.60645 |
| 1100               | 0.030462 | 0.049503 | 0.077521 | 0.11618  | 0.1707  | 0.24322 | 0.33649 | 0.44581 | 0.52659 | 0.60718 |
| 1200               | 0.027288 | 0.045509 | 0.072468 | 0.11054  | 0.16338 | 0.23461 | 0.32658 | 0.43566 | 0.52048 | 0.60303 |
| 1300               | 0.024322 | 0.041375 | 0.067072 | 0.10412  | 0.15573 | 0.22566 | 0.31626 | 0.42347 | 0.51099 | 0.59451 |
| 1400               | 0.021603 | 0.037377 | 0.061682 | 0.097171 | 0.14781 | 0.21639 | 0.30556 | 0.41069 | 0.49943 | 0.58629 |
| 1500               | 0.01916  | 0.033792 | 0.056667 | 0.090493 | 0.1398  | 0.2069  | 0.29455 | 0.39818 | 0.48873 | 0.57976 |
| 1600               | 0.017004 | 0.030668 | 0.052118 | 0.084497 | 0.13189 | 0.19732 | 0.28328 | 0.38603 | 0.48023 | 0.57448 |
| 1700               | 0.015135 | 0.027909 | 0.047933 | 0.079051 | 0.12428 | 0.18785 | 0.27185 | 0.37374 | 0.47172 | 0.56917 |
| 1800               | 0.013539 | 0.025411 | 0.043988 | 0.073788 | 0.11714 | 0.17863 | 0.26033 | 0.36067 | 0.46009 | 0.56192 |
| 1900               | 0.012197 | 0.023109 | 0.040221 | 0.068345 | 0.11058 | 0.16981 | 0.24883 | 0.34624 | 0.44503 | 0.55018 |
| 2000               | 0.011084 | 0.020981 | 0.036635 | 0.062476 | 0.10464 | 0.16146 | 0.23745 | 0.33015 | 0.42818 | 0.53108 |

## 2) Data for Figure 3a (total emissivity for pure CO<sub>2</sub>):

| Gas         |          |          |          |          |          |          |         |         |         |         |
|-------------|----------|----------|----------|----------|----------|----------|---------|---------|---------|---------|
| Temperature | 0.925    | 1.766    | 3.372    | 6.438    | 12.29    | 23.47    | 44.81   | 85.56   | 163.4   | 311.9   |
| K           | kPa-m    | kPa-m    | kPa-m    | kPa-m    | kPa-m    | kPa-m    | kPa-m   | kPa-m   | kPa-m   | kPa-m   |
| 300         | 0.049394 | 0.064503 | 0.081808 | 0.098032 | 0.11846  | 0.1353   | 0.15193 | 0.17065 | 0.18007 | 0.19282 |
| 400         | 0.045798 | 0.059345 | 0.074573 | 0.090302 | 0.10599  | 0.12378  | 0.14216 | 0.16177 | 0.17438 | 0.19194 |
| 500         | 0.046668 | 0.059137 | 0.072684 | 0.087199 | 0.10181  | 0.11839  | 0.13331 | 0.1508  | 0.16413 | 0.17931 |
| 600         | 0.04999  | 0.061967 | 0.07506  | 0.089064 | 0.10008  | 0.11633  | 0.13066 | 0.14803 | 0.16086 | 0.175   |
| 700         | 0.053462 | 0.0658   | 0.079628 | 0.094225 | 0.10968  | 0.12782  | 0.14356 | 0.16046 | 0.17529 | 0.19205 |
| 800         | 0.055604 | 0.068065 | 0.082579 | 0.098565 | 0.11249  | 0.13214  | 0.14721 | 0.16549 | 0.18064 | 0.19516 |
| 900         | 0.055997 | 0.06789  | 0.082487 | 0.099086 | 0.11268  | 0.1331   | 0.14981 | 0.16767 | 0.18235 | 0.1977  |
| 1000        | 0.054826 | 0.066175 | 0.080559 | 0.096901 | 0.11485  | 0.13621  | 0.15478 | 0.17136 | 0.18512 | 0.20163 |
| 1100        | 0.052575 | 0.063795 | 0.077903 | 0.094402 | 0.11459  | 0.13693  | 0.15713 | 0.17456 | 0.1893  | 0.20425 |
| 1200        | 0.049707 | 0.061075 | 0.074884 | 0.092125 | 0.11241  | 0.1355   | 0.1571  | 0.17571 | 0.19246 | 0.20927 |
| 1300        | 0.04654  | 0.057962 | 0.071389 | 0.088866 | 0.10891  | 0.13244  | 0.15512 | 0.1744  | 0.19186 | 0.20785 |
| 1400        | 0.043263 | 0.054371 | 0.0673   | 0.084005 | 0.10444  | 0.12808  | 0.15151 | 0.17092 | 0.1874  | 0.20295 |
| 1500        | 0.039989 | 0.050474 | 0.062824 | 0.078526 | 0.099334 | 0.12277  | 0.14656 | 0.16591 | 0.18128 | 0.19727 |
| 1600        | 0.036794 | 0.046617 | 0.058361 | 0.073474 | 0.093881 | 0.11685  | 0.14062 | 0.16    | 0.17562 | 0.1915  |
| 1700        | 0.033734 | 0.043054 | 0.054192 | 0.069016 | 0.088331 | 0.11062  | 0.13401 | 0.15362 | 0.17041 | 0.18535 |
| 1800        | 0.03085  | 0.039864 | 0.050406 | 0.064864 | 0.082876 | 0.10433  | 0.12706 | 0.14694 | 0.16399 | 0.17823 |
| 1900        | 0.02817  | 0.037014 | 0.046978 | 0.060699 | 0.07765  | 0.098185 | 0.12001 | 0.13976 | 0.15549 | 0.16952 |
| 2000        | 0.025705 | 0.034438 | 0.043847 | 0.056337 | 0.072741 | 0.092311 | 0.11307 | 0.13151 | 0.14568 | 0.15867 |

## 3) Data for Figure 4a (total emissivity for pure soot):

| Gas         |           |           |           |          |          |          |          |
|-------------|-----------|-----------|-----------|----------|----------|----------|----------|
| Temperature | 1.00E-09  | 5.00E-09  | 1.00E-08  | 5.00E-08 | 1.00E-07 | 5.00E-07 | 1.00E-06 |
| К           |           |           |           |          |          |          |          |
| 300         | 0.0005459 | 0.0027293 | 0.0054586 | 0.027293 | 0.053773 | 0.2359   | 0.405    |
| 400         | 0.0007278 | 0.0036391 | 0.0072782 | 0.036391 | 0.071107 | 0.29843  | 0.49165  |
| 500         | 0.0009098 | 0.0045489 | 0.0090977 | 0.045106 | 0.087717 | 0.35458  | 0.56271  |
| 600         | 0.0010917 | 0.0054586 | 0.010917  | 0.053773 | 0.10424  | 0.405    | 0.62148  |
| 700         | 0.0012737 | 0.0063684 | 0.012737  | 0.06244  | 0.12012  | 0.4506   | 0.67044  |
| 800         | 0.0014556 | 0.0072782 | 0.014556  | 0.071107 | 0.13587  | 0.49165  | 0.71149  |
| 900         | 0.0016376 | 0.008188  | 0.016376  | 0.079457 | 0.15106  | 0.52894  | 0.74616  |
| 1000        | 0.0018195 | 0.0090977 | 0.018195  | 0.087717 | 0.16609  | 0.56271  | 0.77562  |
| 1100        | 0.0020015 | 0.010008  | 0.020015  | 0.095977 | 0.18062  | 0.59346  | 0.8008   |
| 1200        | 0.0021835 | 0.010917  | 0.021835  | 0.10424  | 0.19496  | 0.62148  | 0.82243  |
| 1300        | 0.0023654 | 0.011827  | 0.023654  | 0.11224  | 0.20888  | 0.64703  | 0.84111  |
| 1400        | 0.0025474 | 0.012737  | 0.025474  | 0.12012  | 0.22257  | 0.67044  | 0.85731  |
| 1500        | 0.0027293 | 0.013647  | 0.027293  | 0.12799  | 0.2359   | 0.69182  | 0.87142  |
| 1600        | 0.0029113 | 0.014556  | 0.029113  | 0.13587  | 0.24898  | 0.71149  | 0.88377  |
| 1700        | 0.0030932 | 0.015466  | 0.030932  | 0.14354  | 0.26174  | 0.72953  | 0.89461  |
| 1800        | 0.0032752 | 0.016376  | 0.032752  | 0.15106  | 0.27425  | 0.74616  | 0.90417  |
| 1900        | 0.0034571 | 0.017286  | 0.034571  | 0.15857  | 0.28648  | 0.76148  | 0.91263  |
| 2000        | 0.0036391 | 0.018195  | 0.036391  | 0.16609  | 0.29843  | 0.77562  | 0.92013  |

## 4) Data for Figure 5a (total emissivity for mixture of H<sub>2</sub>O and CO<sub>2</sub> for fixed gas temperature at 500 K):

| Mole Absorptive Fraction of CO2 | 1        | 10       | 50      | 100     | 300    | 500     |
|---------------------------------|----------|----------|---------|---------|--------|---------|
|                                 | kPa-m    | kPa-m    | kPa-m   | kPa-m   | kPa-m  | kPa-m   |
| 0                               | 0.053385 | 0.17901  | 0.36959 | 0.46354 | 0.5332 | 0.58508 |
| 0.1                             | 0.064849 | 0.2165   | 0.42824 | 0.53369 | 0.6072 | 0.65849 |
| 0.2                             | 0.069523 | 0.22045  | 0.42354 | 0.53145 | 0.6098 | 0.66241 |
| 0.3                             | 0.071243 | 0.21858  | 0.41473 | 0.52207 | 0.604  | 0.65934 |
| 0.4                             | 0.071501 | 0.21402  | 0.40244 | 0.5078  | 0.5948 | 0.65337 |
| 0.5                             | 0.07081  | 0.20703  | 0.38645 | 0.48861 | 0.5821 | 0.64396 |
| 0.6                             | 0.069286 | 0.19738  | 0.36687 | 0.4646  | 0.564  | 0.62914 |
| 0.7                             | 0.066848 | 0.18492  | 0.34323 | 0.43563 | 0.5367 | 0.6057  |
| 0.8                             | 0.063273 | 0.16933  | 0.31195 | 0.39824 | 0.4982 | 0.56854 |
| 0.9                             | 0.057907 | 0.14835  | 0.26203 | 0.33289 | 0.4343 | 0.50319 |
| 1                               | 0.048105 | 0.097631 | 0.13642 | 0.15569 | 0.1775 | 0.19296 |

## 5) Data for Figure 5a (total emissivity for mixture of H<sub>2</sub>O and CO<sub>2</sub> for fixed gas temperature at 1000 K):

| Mole Absorptive Fraction of CO2 | 1        | 10      | 50      | 100     | 300     | 500     |
|---------------------------------|----------|---------|---------|---------|---------|---------|
|                                 | kPa-m    | kPa-m   | kPa-m   | kPa-m   | kPa-m   | kPa-m   |
| 0                               | 0.035942 | 0.15741 | 0.364   | 0.48014 | 0.61203 | 0.66983 |
| 0.1                             | 0.051684 | 0.20028 | 0.40998 | 0.52488 | 0.6521  | 0.7039  |
| 0.2                             | 0.05916  | 0.20177 | 0.403   | 0.51467 | 0.64142 | 0.69338 |
| 0.3                             | 0.062686 | 0.19904 | 0.39227 | 0.50007 | 0.62605 | 0.67889 |
| 0.4                             | 0.064289 | 0.19443 | 0.37811 | 0.48145 | 0.60805 | 0.66197 |
| 0.5                             | 0.064778 | 0.18818 | 0.36086 | 0.45927 | 0.58701 | 0.64201 |
| 0.6                             | 0.064425 | 0.18004 | 0.34105 | 0.43344 | 0.5611  | 0.61717 |
| 0.7                             | 0.063324 | 0.1697  | 0.31856 | 0.40401 | 0.52733 | 0.5844  |
| 0.8                             | 0.061561 | 0.15665 | 0.29048 | 0.36688 | 0.48134 | 0.53892 |
| 0.9                             | 0.059214 | 0.13933 | 0.24646 | 0.30502 | 0.41315 | 0.46854 |
| 1                               | 0.056172 | 0.1097  | 0.15762 | 0.17543 | 0.201   | 0.21414 |

## 6) Data for Figure 6 (total emissivity for mixture consisted of $H_2O$ , $CO_2$ , and soot):

| Gas         | 1.00E-  | 5.00E-  | 1.00E-  | 5.00E-  | 1.00E-  | 5.00E-  | 1.00E-  |
|-------------|---------|---------|---------|---------|---------|---------|---------|
| Temperature | 09      | 09      | 08      | 08      | 07      | 07      | 06      |
| К           |         |         |         |         |         |         |         |
| 300         | 0.35802 | 0.35947 | 0.3613  | 0.37614 | 0.39438 | 0.52338 | 0.64106 |
| 400         | 0.39795 | 0.39981 | 0.40214 | 0.42106 | 0.44364 | 0.59286 | 0.71687 |
| 500         | 0.38705 | 0.38944 | 0.39243 | 0.41633 | 0.44452 | 0.61979 | 0.75314 |
| 600         | 0.37578 | 0.3787  | 0.38236 | 0.41121 | 0.44507 | 0.64317 | 0.78258 |
| 700         | 0.3835  | 0.38692 | 0.3912  | 0.42474 | 0.46337 | 0.67964 | 0.81861 |
| 800         | 0.37913 | 0.38307 | 0.38802 | 0.42655 | 0.4703  | 0.70501 | 0.84367 |
| 900         | 0.37006 | 0.37454 | 0.38017 | 0.42356 | 0.4724  | 0.72435 | 0.86237 |
| 1000        | 0.36212 | 0.36718 | 0.37352 | 0.42197 | 0.47618 | 0.7437  | 0.87966 |
| 1100        | 0.35255 | 0.35822 | 0.36534 | 0.4192  | 0.4787  | 0.76117 | 0.89435 |
| 1200        | 0.34165 | 0.34797 | 0.35589 | 0.41551 | 0.48045 | 0.77679 | 0.90673 |
| 1300        | 0.32971 | 0.3367  | 0.34548 | 0.41089 | 0.48144 | 0.79074 | 0.91712 |
| 1400        | 0.31689 | 0.3246  | 0.33426 | 0.40564 | 0.48201 | 0.80328 | 0.92587 |
| 1500        | 0.30336 | 0.31181 | 0.3224  | 0.39999 | 0.48208 | 0.81447 | 0.93325 |
| 1600        | 0.28932 | 0.29853 | 0.31008 | 0.39411 | 0.48192 | 0.8246  | 0.93955 |
| 1700        | 0.27499 | 0.28498 | 0.29751 | 0.38798 | 0.48159 | 0.83374 | 0.94498 |
| 1800        | 0.26061 | 0.27141 | 0.28494 | 0.38182 | 0.48129 | 0.8421  | 0.94972 |
| 1900        | 0.24643 | 0.25804 | 0.27259 | 0.376   | 0.48115 | 0.84978 | 0.95393 |
| 2000        | 0.23265 | 0.24508 | 0.26066 | 0.37067 | 0.48131 | 0.85688 | 0.95771 |

## 7) Data for Figure 8 (total emissivity and absorptivity for a $H_2O$ and $CO_2$ mixture):

| Gas         |            | Absorptivity | Absorptivity | Absorptivity |
|-------------|------------|--------------|--------------|--------------|
| Temperature | Emissivity | 500K         | 1000K        | 1500K        |
| К           |            |              |              |              |
| 300         | 0.20837    | 0.16306      | 0.12899      | 0.099572     |
| 400         | 0.21433    | 0.19031      | 0.14128      | 0.10603      |
| 500         | 0.20703    | 0.20703      | 0.15031      | 0.11098      |
| 600         | 0.20265    | 0.21946      | 0.15749      | 0.11468      |
| 700         | 0.20321    | 0.24296      | 0.16718      | 0.11984      |
| 800         | 0.20172    | 0.26028      | 0.17638      | 0.12409      |
| 900         | 0.19589    | 0.26765      | 0.18258      | 0.12724      |
| 1000        | 0.18818    | 0.27801      | 0.18818      | 0.13021      |
| 1100        | 0.18027    | 0.29104      | 0.19373      | 0.1333       |
| 1200        | 0.17182    | 0.30757      | 0.20013      | 0.13616      |
| 1300        | 0.16228    | 0.31651      | 0.20564      | 0.13829      |
| 1400        | 0.15185    | 0.32376      | 0.2098       | 0.13976      |
| 1500        | 0.1414     | 0.32821      | 0.2129       | 0.1414       |
| 1600        | 0.13163    | 0.33388      | 0.21528      | 0.14194      |
| 1700        | 0.12268    | 0.33971      | 0.21724      | 0.14285      |
| 1800        | 0.11432    | 0.34427      | 0.21906      | 0.14359      |
| 1900        | 0.10624    | 0.34742      | 0.22094      | 0.14412      |
| 2000        | 0.098286   | 0.34962      | 0.22304      | 0.14438      |

## 8) Data for Figure 9 ((total emissivity and absorptivity for a $H_2O$ , $CO_2$ , and soot mixture):

| Gas         |            | Absorptivity | Absorptivity | Absorptivity |
|-------------|------------|--------------|--------------|--------------|
| Temperature | Emissivity | 500K         | 1000K        | 1500K        |
| К           |            |              |              |              |
| 300         | 0.19995    | 0.23781      | 0.27641      | 0.31638      |
| 400         | 0.20214    | 0.26353      | 0.28702      | 0.32217      |
| 500         | 0.1916     | 0.27931      | 0.29507      | 0.32655      |
| 600         | 0.18442    | 0.29082      | 0.30177      | 0.32982      |
| 700         | 0.1823     | 0.3129       | 0.31062      | 0.3345       |
| 800         | 0.17863    | 0.32918      | 0.31867      | 0.33827      |
| 900         | 0.17128    | 0.33581      | 0.32383      | 0.34104      |
| 1000        | 0.16266    | 0.34536      | 0.32875      | 0.3437       |
| 1100        | 0.15439    | 0.35749      | 0.33401      | 0.34651      |
| 1200        | 0.14604    | 0.37293      | 0.33975      | 0.3491       |
| 1300        | 0.13696    | 0.38121      | 0.34468      | 0.35104      |
| 1400        | 0.1273     | 0.38788      | 0.34855      | 0.35241      |
| 1500        | 0.11782    | 0.39194      | 0.35154      | 0.35372      |
| 1600        | 0.1091     | 0.39721      | 0.35386      | 0.35458      |
| 1700        | 0.1012     | 0.40264      | 0.35574      | 0.35552      |
| 1800        | 0.093859   | 0.40688      | 0.35738      | 0.35633      |
| 1900        | 0.086828   | 0.40979      | 0.35899      | 0.35693      |
| 2000        | 0.08004    | 0.41182      | 0.36075      | 0.3573       |