STAT 515-04: Beta random variables

Luc Rey-Bellet

University of Massachusetts Amherst

luc@math.umass.edu

October 16, 2025

Beta Random Variables

Beta Random Variables

A random variable Y is an beta random variable with parameters $\alpha>0$ and $\beta>0$ if the PDF is

$$f(y) = \frac{y^{\alpha-1}(1-y)^{\beta-1}}{B(\alpha,\beta)}$$
 for $0 \le y \le 1$

where

$$B(\alpha,\beta) = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} \, dy = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

The normalization $B(\alpha, \beta)$ is called the beta function. (see https://en.wikipedia.org/wiki/Beta_function for a proof).

See also

https://homepage.divms.uiowa.edu/~mbognar/applets/beta.html for a good online calculator

Mean and Variance of beta random variables

Mean and Variance

If Y is beta random variable with parameters $\alpha > 0$ and $\beta > 0$ then

$$E[Y] = \frac{\alpha}{\alpha + \beta}$$
 $V(Y) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

Using the normalization of the beta distribution

$$\begin{split} E[Y] &= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 y y^{\alpha - 1} (1 - y)^{\beta - 1} dy \\ &= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 y^{\alpha + 1 - 1} (1 - y)^{\beta - 1} dy \\ &= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha + 1)\Gamma(\beta)}{\Gamma(\alpha + \beta + 1)} = \frac{\alpha}{\alpha + \beta} \end{split}$$

Examples

- Suppose that the random variable X has a $\operatorname{Beta}(\alpha, \beta)$ distribution with parameters $\alpha = 2$ and $\beta = 3$.
 - What is the pdf?
 - ② Compute the mean $\mathbb{E}[X]$ and variance Var(X).
 - **3** Find the probability P(X < 0.5).

What is the beta RV good for?

- The beta random variable is supported on the interval [0,1] so it is good to model random phenomena taking values on an interval. If a random variable Z takes value in the interval [c,d] then $\frac{Z-c}{d-c}$ takes value in [0,1] so we can always renormalize the interval.
 - ▶ Special case $\alpha = \beta = 1$ then f(y) = 1 and so Y is uniform.
 - Special case $\alpha = 2, \beta = 1$ then $f(y) = \frac{1}{2}y$.
 - ▶ Special case $\alpha = 2, \beta = 1$ then f(y) = y(1 y)
- If $\alpha = \beta$ the distribution is symmetric around 1/2.
- If $\alpha < \beta$ then f has a peak for small y.
- If $\alpha > \beta$ then f has a peak for large y (close to 1).
- $y_{max} = \frac{(\alpha-1)}{(\alpha-1)+(\beta-1)}$

Amazon marketplace

Since Y takes values in [0,1], the beta random variable is good at describing random proportions or random probabilities

Example: Amazon seller marketplace rankings: You want to buy a certain item on Amazon Marketplace where you have several vendors.

- Vendor 1 has 18 positive rating and 2 negative rating (90%).
- Vendor 2 has 180 positive ratings and 20 negative ratings (90%)

Build a probabilistic model for Y = rating:

Vendor 1: $\alpha=18$, $\beta=2$. Then we have

$$E[Y_1] = \frac{\alpha}{\alpha + \beta} = \frac{9}{10}$$
 $V(Y) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} = \frac{9}{10} \frac{1}{10} \frac{1}{21}$

Vendor 2: $\alpha=180$, $\beta=20$. Then we have

$$E[Y_2] = \frac{\alpha}{\alpha + \beta} = \frac{9}{10}$$
 $V(Y) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} = \frac{9}{10} \frac{1}{10} \frac{1}{201}$

The variance of Y_2 is 10 times smaller!

