Exploring White Matter Microstructure Differences Following Pediatric TBI

ACNN 2023

Florencia Ontiveros

The Social Cognition Adjustment and Neurodevelopment (SCAN) Lab

- Behavioral neuroimaging lab
- Utilize structural and functional neuroimaging to understand social and cognitive outcomes of pediatric chronic illness or brain injury

Dr. Kristen HoskinsonPrincipal Investigator

My Experience as an ADNiR Scholar

Data Analysis

- Preprocessing scans
- Statistics

Data Collection

- Neuropsychological assessment and survey administration
- MRI task training
- Obtain MRI data

Developing Skills

- Coding and scripting
- Development of new pipeline
- Writing and communication

Professional Development

Posters and talks

Traumatic Brain Injury (TBI)

- Falls, motor vehicle-traffic, and struck by/against events are among the leading causes
- Cause of almost half a million ER visits annually from children aged 0-14 years
- One of the most common cause of shearing of white matter pathways
- This puts children at increased risk of white matter degradation even years after injury

How does pediatric TBI affect white matter microstructure?

Neuroimaging of Mechanisms Subserving Cognitive and Social Outcomes in Childhood TBI

 Explores the effect of childhood TBI on cognitive and social development

•OI

- •N=24 (male=16, female=8)
- Mean age=11.65 yrs

•cmTBI

- •N=12 (male=9, female=3)
- Mean age=12.59 yrs

msTBI

- N=13 (male=9, female=4)
- Mean age= 11.30 yrs

Supported by Clinical and Translational Research Intramural Award, and the *Eunice Kennedy Shriver* National Institute for Child Health and Human Development (K01 HD083459)

Neuroimaging of Mechanisms Subserving Cognitive and Social Outcomes in Childhood TBI

Neuroimaging data acquired:

- T1- and T2-weighted structural
- DWI
- Resting state fMRI
- Task-based fMRI

Questionnaires:

- ABAS-3 (adaptive skills)
- CBCL (child behavior and emotions)
- BRIEF (executive function)
- Demographics

Tractography

Diffusion weighted imaging (DWI)

Random movement of water molecules

Tractography

Reconstruct tracts

White Matter Measures

- Fractional anisotropy (FA)
 - Measures fraction of the diffusion that is anisotropic
 - Ideally: greater FA, better integrity
- Mean diffusivity (MD)
 - Ideally: lower MD, better integrity

Freesurfer's TRACULA

- TRActs Constrained by UnderLying Anatomy
- Automatic reconstruction of 42 white matter pathways

Yendiki et al. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics.

Maffei et al. (2021). Using diffusion MRI data acquired with ultra-high gradients to improve tractography in routine-quality data. NeuroImage.

Yendiki et al. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics.

Maffei et al. (2021). Using diffusion MRI data acquired with ultra-high gradients to improve tractography in routine-quality data. NeuroImage.

Data Analysis

(preprocessing,
bedpostX, pathway
reconstruction)

Extract averaged measures

One-way ANOVA

Table 1. One-way ANOVAs between groups.

	Side	df	Mean Square	F	<i>p</i> -Value
FA					
cc	Central body	2	.001	.731	.487
	Parietal body	2	.002	1.09	.346
	Prefrontal body	2	.006	3.68	.033*
	Premotor body	2	.001	.361	.699
	Temporal body	2	.000	.151	.860
	Genu	2	.005	2.99	.060
	Rostrum	2	.007	2.42	.100
	Splenium	2	.012	6.55	.003**
MD					
СС	Central body	2	.000	4.95	.011*
	Parietal body	2	.000	6.90	.002**
	Prefrontal body	2	.000	3.15	.052
	Premotor body	2	.000	4.04	.024*
	Temporal body	2	.000	4.41	.018*
	Genu	2	.000	4.07	.024*
	Rostrum	2	.000	8.47	.001**
	Splenium	2	.000	7.94	.001**

Note. Abbreviations: FA = Fractional Anisotropy; CC = Corpus Callosum; MD = Mean Diffusivity. *the mean difference is significant at the 0.05 level.

Table 1. One-way ANOVAs of FA and MD measures on tracts of the CC.

^{**}the mean difference is significant at the 0.01 level

Data Analysis

Table 2. Significant FA and MD clusters.

	Side	Size (mm³)	Peak segment	F-Statistic	p-Value*
FA					
cc	Central body	60.8	50.00	2.15	<.04
	Genu	33.8	18.00	2.51	<.05
	Splenium	74.2	25.00	5.14	.005
		60.8	48.00	3.13	<.02
MD					
CC	Central body	70.9	51.00	3.35	<.03
		67.5	73.00	2.29	<.03
	Parietal body	84.4	34.00	3.47	.005
		67.5	89.00	3.69	<.02
		43.9	61.00	2.44	<.05
	Genu	84.4	32.00	2.36	<.01
		47.2	18.00	2.88	<.03
	Rostrum	57.4	19.00	3.12	<.02
		33.8	30.00	2.85	<.05
	Splenium	50.6	74.00	2.88	<.04

Note. Abbreviations: FA = Fractional Anisotropy; CC = Corpus Callosum; MD = Mean Diffusivity. *p-values represent cluster-wise corrected p-values.

Table 2. Significant group differences in FA and MD on tracts of the CC.

Figure 1. Left: Significant group differences in FA on areas of the central body of the CC (F=2.15, p<.04). msTBI differed with less FA from OI (t=2.51, p<.02), and cmTBI (t=2.01, p<.04). **Right:** Significant group differences in MD on regions of the central body of the CC (F=3.35, p<.03; F=2.29, p<.03).

Figure 2. Left: Significant group differences in FA on regions of the genu of the CC (F=2.51, p<.05). msTBI differed with less FA from OI (t=2.80, p=.005) and cmTBI (t=2.08, p<.02; t=2.36, p<.03). **Right:** Significant group differences in MD on regions of the genu of the CC (F=2.36, p<.01; F=2.88, p<.03).

Figure 3. Left: Significant group differences in FA on regions of the splenium of the CC (F=5.14, p=.005; F=3.13, p<.02). msTBI differed with less FA from OI (t=5.16, p<.01; t=2.85, p<.04), and cmTBI (t=4.66, p=.001). **Right:** Significant group differences in MD on regions of the splenium of the CC (F=2.88, p<.04).

So What?

- We found overall group differences in white matter integrity in areas of the Corpus Callosum
- msTBI group differed from both cmTBI and OI groups and may have sustained damage even years after injury
- Help in treatment and recovery

How could this manifest in behavior and executive function?

Further Analysis

- Relationship between white matter integrity and behavior
 - Abstract accepted for a poster presentation at Society for Neuroscience 2023
- Does white matter integrity differ among groups during a spatial working memory task?
 - Current undergraduate research thesis
- Incorporate this pipeline in ongoing and/or completed studies

Special Thanks

- Dr. Kristen R. Hoskinson Principal Investigator
- Dr. Whitney I. Mattson Research Scientist, Sr.
- Dr. Ruchika Prakash CCBBI Director
- Dr. Xiangrui Li CCBBI Assistant Director
- ADNiR Initiative
- SCAN Lab

Thank you

Florencia Ontiveros

CCBBI ADNiR Scholar

OSU email: ontiveros.6@buckeyemail.osu.edu