

4 - Linux File Systems

Marian Marinov CEO of 1H Ltd. mm@1h.com Stoyan Stoyanov System Administrator sto [at] softuni.bg

Agenda

- > File System Architecture
- Virtual File System Layer
- Directory Structure
- Mount operations

Agenda

- > File system types
 - > Local
 - Log-structured NAND
 - > Pseudo
 - > Network
 - > Cluster
 - Distributed

SOFTWARE File System Architecture

There is NO silver bullet!

There is NO DIRECTORY!

Super Blocks

107	2	1 _		_	_1	_
Г	1	TC	\mathbf{m}	O	\mathbf{a}	C

Link count

Owner's id

Group id

File size

Last access time

Last mod time

Last inode access time

Addresses of first 10 blocks

Single indirect ptr

Double indirect ptr

Triple indirect ptr

Soft/symlinks Hardlinks

Hard disk

what happens when we issue In /usr/bin/java /usr/test/java

In source destination

In -s source destination

DATA is never erased... it gets OVERWRITTEN!

Local File System

Network File System

Cluster File System

Cluster File System

"One DLM to rule them all, one DLM to mind them, one DLM to sync them all, and in the cluster, bind them"

Distributed File System

Virtual File System Layer

Virtual File System Layer

Introduced April 1992

VFS Caches

FUSE

Mounting

- ➤ Attaching a device into the directory tree
- ➤ Mount point a destination directory where a device is mounted
- Creates an entry in the kernel for each mounted device/dir
- >/proc/mounts
 /etc/fstab, /etc/mtab

Mounting - CMD

- >cat /proc/partitions
- >cat /proc/mounts
- >mount
- >umount
- >/etc/fstab

```
/dev/sdb2
                         defaults, noatime, nodiratime
                                                      00
                   ext4
/dev/sdb1
                         defaults, noatime, nodiratime
            /boot ext2
                                                      00
                         defaults
                                                      00
            /proc proc
proc
tmpfs
            /dev/shm tmpfs defaults
                                                      00
/home/hackman /fedora/home/hackman
                                             rw,bind,auto 00
                                      none
//10.2.0.11/share
                   /storage/beast
                                      cifs
user=hackman,password=p1r@tk3,uid=1000,gid=1000,noauto 0 0
```


Ext/2/3/4

- >First Linux FS MinixFS
- >And there we go....
 - >Ext April 1992, Linux 0.96c
 - **≻Ext2 January 1993**
 - >Ext3 November 2001
 - >Ext4 October 2006

MinixFS

- **►**Max. partition size 64MB
- >Max. file name size 14 chars
- **≻Ownership** uid, gid
- >Permissions user, group, others

- **►**Max. partition size 2GB
- >Max. file name size 255 chars
- **▶** No support for time stamps
 - **>**Access
 - > Inode modification
 - > Data modification

- Max. partition size 32TB
- >Max. file name size 255 chars
- >Max. file size 2TB
- **►**Max. Number of files 10¹⁸
- >FS Perms
- >Time stamps

- Max. partition size 32TB
- >Max. file name size 255 chars
- **≻Max. file size 2TB**
- **►Max.** Number of files 10¹⁸
- **>**Sub directory limit 32,000
- >Time stamps
- >Has Jurnal

- >Max. partition size 1EB
- **≻**Max. file name size 255 chars
- **≻Max. file size 2TB**
- Max. Number of files 10¹⁸
- **>** Sub directory limit 64,000
- > File space pre-allocation
- > File space delayed allocation

Ext/2/3

EXT2/3 FILE SYSTEM

ReiserFS

- >Introduced 2001
- > Metadata-only journaling
- **≻Online resizing (growth only)**
- >Tail packing, a scheme to reduce internal fragmentation.
- >Max. file size 1EB
- Max. number of files 2³²

ReiserFS

ReiserFS

XFS

- Introduced 2001
- Max file size 8 EB
- Max volume size 16 EB
- Online resize(growth only)
- Online defragmentation

Equally sized chunks

Allocation groups - AG

Logstructured File Systems Architecture

SOFTWARE UNIVERSITY

File Systems Architecture

Log-structured Log-structured **NAND File Systems**

	System requirement	JFFS2	YAFFS2	LogFS	UBIFS
1	Boot time	Poor	Good	Excellent	Good
2	I/O performance	Good	Good	Fair	Excellent
3	Resource usage	Fair	Excellent	Good	Fair
4	NAND device life expectancy	Good	Fair	N/A	Excellent
5	Tolerance for unexpected power-off	Good	Good	Poor	Good
6	Integrated in mainline	Yes	No	Yes	Yes

NILFS2 F2FS

Pseudo File Systems

- > procfs
- > sysfs
- debugfs
- > configfs
- > tmpfs
- > others

Pseudo File Systems

- debugfs is designed to provide Kernel Devs with simple way to push data into User space
- configfs is for creating, managing and destroying kernel objects from user-space
- Sysfs is for viewing and manipulating objects from user-space which are created and destroyed by kernel space

Pseudo File Systems

- procfs is the first FS to provide easy access to kernel-space from user-space
- tmpfs is a very fast in-memory file system

Network File Systems

- Network File System NFS v3/v4
- **Common Internet File System -** CIFS

Network File Systems

Network File Systems

Network File System

Cluster File System

Cluster File Systems

- > GFS, GFS2
- > OCFS2

Cluster File Systems - GFS2

Cluster File Systems - GFS2

Cluster File Systems - OCFS2

Cluster File Systems - OCFS2

Distributed File Systems

- > Hadoop
- Lustre
- > GlusterFS
- GFarm
- > FhgFS
- > PohmelFS
- Ceph
- > PVFS2

Hadoop

Hadoop

- Large block FS 64MB
- Write mostly FS
- Writes smaller then one block wait
- Adding/removing nodes requires restart of the cluster

GlusterFS

GlusterFS

GFarm

Client PC

Note PC

- -

GFarm

Linux Directory Structure

Linux Directory Structure

ROOT DIRECTORY OF THE ENTIRE FILE SYSTEM HIERARCHY PRIMARY HIERARCHY

/home/student/dir

/home/student/

/home/linuxgym

FILESYSTEM HIERARCHY STANDARD (FHS)

/usr/local/bin

/usr/local

/usr/local/games

Wikipedia - Comparison of file systems

Ext2 and OCFS2 on-disk layout

Ext2 on-disk layout

XFS on-disk structure

ReiserFS on-disk structure

RFSTool for Windows

XFS Scalability

BtrFS on-disk structure

NILFS2 the new kid on the block

Usenix paper on Log-Structured File Systems

Linux File Systems

THAT TIME AGAIN?

Yes, then we'll have a beer