Traffic Accident Analysis Dashboard

Total Accident												
Month Y	ear/	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Jan		126	90	107	97	97	105	107	97	101	119	89
Feb		98	99	94	102	88	72	100	70	87	93	97
Mar		104	112	101	105	111	97	110	92	113	115	100
Apr		115	115	106	86	72	101	113	102	88	98	0
May		134	109	114	109	102	105	107	99	91	107	0
Jun		111	105	107	93	90	99	97	104	77	91	0
Jul		107	100	89	97	93	94	116	111	96	85	0
Aug		94	110	126	106	101	124	113	112	105	98	0
Sep		104	89	109	83	99	92	93	97	106	91	0
Oct		121	91	117	94	104	125	117	96	74	102	0
Nov		119	135	118	107	108	95	104	112	99	85	0
Dec		120	122	112	108	86	95	115	129	98	111	0
Year Tot	tal	1353	1277	1300	1187	1151	1204	1292	1221	1135	1195	286

- Create the frame of the table with the years as the heading of the columns and the months as the heading of the rows.
- Use the SUMPRODUCT function to get the total number of accidents in the given year and month.
- Use the SUM function to get the total number of accidents in the year at the end of the table.

Data Visualization:

 Putting both the line chart and clustered column chart together into a combo chart allows us to see the whole picture of the total number of accidents that had happened over the years as well as the months.

Radar Chart								
from	to	Time	Time Single Mult		Pedestrian			
0:00	2:59	00:00 - 02:59	693	203	138			
3:00	5:59	03:00 - 05:59	456	246	114			
6:00	8:59	06:00 - 08:59	576	720	184			
9:00	11:59	09:00 - 11:59	655	874	253			
12:00	14:59	12:00 - 14:59	849	1072	181			
15:00	17:59	15:00 - 17:59	911	1226	258			
18:00	20:59	18:00 - 20:59	680	648	373			
21:00	23:59	21:00 - 23:59	725	342	223			

• The frame of the table was created with the crash type as column heading and time as row heading. The time of the day was divided into 8 groups, each group lasting 3 hours. COUNTIFS function was used to get the number of accidents that happened in each of the time groups and the different crash types.

Data Visualization

- Radar chart was chosen to present the time the accidents happened at and the
 different crash types. The time group can be spread around the radar so that it
 can easily tell whether most of the accidents that involve the different crash
 types happened at which time of the day.
- The time group with the greatest number of accidents can be easily seen on the chart at 15:00 17:59 hrs with both multiple crash type and single crash type and at 18:00 20:59 hrs with the pedestrian crash type.

Pie Chart					
	Gender	No. of accident			
	Male	9193			
	Female	3401			
	Road User	No. of accident			
	Driver	4434			
	Motorcyclist	1993			
	Pedestrian	1157			
Male	Passenger	1222			
	Cyclist	335			
	Motorcycle Pillion	29			
	Other	23			
Female	Driver	1452			
	Motorcyclist	1182			
	Pedestrian	560			
	Passenger	95			
	Cyclist	51			
	Motorcycle Pillion	45			
	Other	16			

• 2 tables were required to get the outer and inner doughnut chart. The 1st table contains the total number of male and female involved in the accident only, COUNTIF function was used to get the data. The 2nd table contains the breakdown of the road user from the male and female that were involved in the accident, SUMPRODUCT function was used to get the data for this table.

Data Visualization

- The doughnut chart is good for showing proportions, especially with 2 series.
 The proportion of male and female that were involved in the accidents can be easily referred to just by looking at the size of the slice of the inner doughnut chart.
- The outer doughnut chart shows the proportion of the type of road user that were involved in the accidents between male and female users.

Stacked Column Chart						
Year Vehicle	Bus	Rigid Truck	Articulated Truck			
2010	21	78	146			
2011	25	68	142			
2012	18	91	153			
2013	12	66	115			
2014	20	88	115			
2015	22	81	115			
2016	24	84	106			
2017	32	92	105			
2018	23	72	90			
2019	20	92	102			
2020	2	17	25			

 Headings for the columns are the type of heavy vehicles that were involved in the accidents, headings for the rows are the years. COUNTIFS function was used to extract the data into the table.

Data Visualization

• The stacked column chart is good for comparing parts of the whole data over time. The number of vehicles for every heavy vehicle type that were involved in the accidents can be easily compared to for every year.

Pau Chaut						
Bar Chart						
from	to	Age Group	No. of Acciden			
0	4	0-4	181			
5	9	5-9	142			
10	14	10-14	142			
15	19	15-19	1097			
20	24	20-24	1446			
25	29	25-29	1215			
30	34	30-34	956			
35	39	35-39	846			
40	44	40-44	905			
45	49	45-49	882			
50	54	50-54	751			
55	59	55-59	719			
60	64	60-64	686			
65	69	65-69	574			
70	74	70-74	513			
75	79	75-79	497			
80	84	80-84	473			
85	89	85-89	345			
90	94	90-94	178			
95	99	95-99	42			
100	104	100-104	2			

 All the age of the users that were involved in the accidents were divided into age group with 5 years a group starting from 0 to 100. Headings for the rows are the age group and heading for the column is number of accidents. COUNTIFS function was used to extract the data into the table.

Data Visualization

• The bar chart is good for comparing data across a category, it is used to compare the number of accidents across different age groups. The age group with the greatest number of accidents can be seen easily from the chart.

