This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLEAN VERSION OF ALL PENDING CLAIMS

A method for making a transistor containing a gate I. (Twice amelided) dielectric structure, comprising: providing a gate conductor; providing a channel and providing, herween the gate conductor and the channel, an oxide layer of the gate dielectric structure by an in-sith steam generation process. 2. (Cancelled) The method of claim 1, wherein the transistor is a thin film 3. (Amended) transistor. 4. (Cancelled) 5. (Amended) The method of claim 3, wherein the in-situ steam generation process is performed at a temperature ranging from about 600 to about 900 degrees Celsius. 6. The method of claim 1, wherein the in-situ steam generation process is performed at a pressure ranging from about 100 millitors to about 760 tors. 7. The method of claim 1, wherein the in-situ steam generation process is performed for a time sufficient to deposit an oxide thickness of about 10 to about 200 angstroms. 8. (Amended) The method of claim 28, further including annealing the oxide layer in a nitric oxide atmosphere. 9. (Twice amended) A method for making a SONOS device, comprising:

3

App. No. 10/079472

Bfe

providing a channel region;

providing a first oxide layer on the channel region by an in-situ steam generation

process;

providing a nitride layer on the first oxide layer; and

providing a second oxide layer on the nitride layer.

- 10. (Cancelled)
- 11. (Cancelled)
- 12. The method of claim 9, wherein the in-situ steam generation process is performed at a temperature ranging from about 750 to about 1050 degrees Celsius.
- 13. The method of claim 9, wherein the in-situ steam generation process is performed at a pressure ranging from about 100 millitors to about 760 tors.
- 14. The method of claim 9, wherein the in-situ steam generation process is performed for a time sufficient to deposit an oxide thickness of about 10 to about 200 angstroms.
- 15. The method of claim 9, further including annealing the oxide layer in a nitric oxide atmosphere.
 - 16. (Cancelled)
 - 17. (Cancelled)
 - 18. (Cancelled)
 - 19. (Cancelled)

20. (Amended) The method of claim 27, further including annealing the oxide layer in a nitric oxide atmosphere.

21. (Amended) A method for making a gate dielectric structure for a SONOS device, comprising:

providing silicon;

providing an oxide layer of a gate dielectric structure on the silicon by in-situ steam generation, the oxide layer having a thickness of about 10 to about 200 angstroms; and

annealing the oxide layer in a nitric oxide atmosphere.

22. (Amended) A method for making a gate dielectric structure for a thin film transistor or a SONOS device, comprising:

providing a gate conductor

providing a channel region; and

providing, between the gate conductor and the channel region, an oxide layer of a gate dielectric structure by an in-situ steam generation process performed at a temperature ranging from about 600 to about 1050 degrees Celsius, a pressure ranging from about 100 millitorr to about 760 torr, and for a time sufficient to deposit an oxide thickness of about 10 to about 200 angstroms.

23. (Amended) A thin film transistor containing a gate dielectric structure made by a method comprising:

providing a gate conductor;

providing a channel region; and

providing, between the gate conductor and the channel region, an oxide layer of the gate dielectric structure on the channel region by an in-situateam generation process.

By

A SONOS semiconductor device made by a method 24. (Twice amended) comprising: providing a channel region; providing a first oxide layer on the channel region by an in-situ steam generation process; providing a nitride layer on the first oxide layer; and providing a second oxide layer on the nitride layer. An integrated circuit containing a thin film transistor with a 25. (Amended) ate dielectric structure made by a method comprising: providing a gate conductor providing a channel; and providing, between the gate conductor and the channel, an oxide layer of the gate dielectric structure by an in-situ steam generation process. An integrated circuit containing a SONOS semiconductor 26. (Twice amended) device made by a method comprising: providing a silicon wafer or silicon layer; providing a first oxide layer on the silicon wafer or silicon layer by an in-situ steam generation process; providing a nitride layer on the first oxide layer; and providing a second oxide layer on the nitride layer. The method of claim 1, wherein the transistor is a SONOS transistor. 27. (New) The method of claim 3, wherein the transistor is a SONOS transistor. 28. (New)

29. (New) The method of claim 3, wherein the transistor comprises a floating

gate.

30. (New) The method of daim 21, wherein the silicon is a surface of a silicon

wafer.

- 31. (New) The method of claim 21, wherein the silicon comprises polysilicon.
- 32. (New) The transistor of claim 23, wherein the transistor comprises a

floating gate.

33. (New) The integrated circuit of claim 25, wherein the transistor comprises a

floating gate.

34. (New) The transistor of claim 27 wherein the gate conductor comprises

mctal.