Ford-Fulkerson Algorithm

Shusen Wang

Problem with the naïve algorithm

• The amount of max flow is 2.

Maximum Flow

Problem with the naïve algorithm

- The amount of max flow is 2.
- The amount of blocking flow is 1.

• Once a bad path is selected, the naïve algorithm cannot make corrections.

Not Maximum Flow

Ford-Fulkerson Algorithm

Reference

• L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics, 8: 399–404, 1956.

Initialization

Original Graph

Residual Graph

Iteration 1: Find an augmenting path

Found path $s \rightarrow v_1 \rightarrow v_4 \rightarrow t$.

Iteration 1: Find an augmenting path

Found path $s \to v_1 \to v_4 \to t$. (Bottleneck capacity = 3.)

Iteration 1: Update residuals

Iteration 1: Update residuals

Iteration 1: Remove saturated edges

Iteration 1: Add a backward path

Add path $t \to v_4 \to v_1 \to s$ with capacity = 3. (Allow "undoing".)

Iteration 2: Find an augmenting path

Found path $s \rightarrow v_1 \rightarrow v_3 \rightarrow t$.

Iteration 2: Find an augmenting path

Found path $s \to v_1 \to v_3 \to t$. (Bottleneck capacity = 1.)

Iteration 2: Update residuals

Iteration 2: Update residuals

Iteration 2: Remove saturated edges

Iteration 2: Add a backward path

Add path $t \rightarrow v_3 \rightarrow v_1 \rightarrow s$ with capacity = 1.

Iteration 2: Add a backward path

Add path $t \rightarrow v_3 \rightarrow v_1 \rightarrow s$ with capacity = 1.

Iteration 2: Add a backward path

Add path $t \rightarrow v_3 \rightarrow v_1 \rightarrow s$ with capacity = 1.

Iteration 3: Find an augmenting path

Iteration 3: Find an augmenting path

Found path $s \rightarrow v_2 \rightarrow v_4 \rightarrow v_1 \rightarrow v_3 \rightarrow t$.

Iteration 3: Find an augmenting path

Found path $s \to v_2 \to v_4 \to v_1 \to v_3 \to t$. (Bottleneck capacity = 1.)

Iteration 3: Update residuals

Iteration 3: Update residuals

Iteration 3: Remove saturated edges

Iteration 3: Add a backward path

Add backward path $t \rightarrow v_3 \rightarrow v_1 \rightarrow v_4 \rightarrow v_2 \rightarrow s$ with capacity = 1.

Iteration 3: Add a backward path

Iteration 3: Add a backward path

Iteration 4: Find an augmenting path

Cannot find any path from source to sink.

End of Procedure

Original Graph

Residual Graph

End of Procedure

Flow = Capacity - Residual.

End of Procedure

Worst-Case Time Complexity

A bad case for Ford-Fulkerson algorithm

• The amount of the max flow is 200.

A bad case for Ford-Fulkerson algorithm

- The amount of the max flow is 200.
- Ford-Fulkerson algorithm may take 200 iterations to find the max flow.

Initialization

Original Graph

Residual Graph

Iteration 1: Find an augmenting path

Found path $s \rightarrow v_1 \rightarrow v_2 \rightarrow t$. (Bottleneck capacity = 1.)

Iteration 1: Update residuals

Iteration 1: Update residuals

Iteration 1: Remove saturated edges

Iteration 1: Add backward path

Add backward path $t \rightarrow v_2 \rightarrow v_1 \rightarrow s$ with capacity = 1.

Now, the amount of flow is 1

Iteration 2: Find an augmenting path

Found path $s \rightarrow v_2 \rightarrow v_1 \rightarrow t$. (Bottleneck capacity = 1.)

Iteration 2: Update residuals

Found path $s \rightarrow v_2 \rightarrow v_1 \rightarrow t$. (Bottleneck capacity = 1.)

Iteration 2: Update residuals

Found path $s \rightarrow v_2 \rightarrow v_1 \rightarrow t$. (Bottleneck capacity = 1.)

Iteration 2: Remove saturated edges

Iteration 2: Add backward path

Add backward path $t \rightarrow v_1 \rightarrow v_2 \rightarrow s$ with capacity = 1.

Now, the amount of flow is 2

Slow improvement...

In every iteration, the amount of flow increases by 1.

Worst-Case Iteration Complexity

- Each iteration increases the amount of flow by at least 1.
- Thus, #Iterations ≤ MaxFlow.

- In our example, each iteration increases the flow by only 1.
- Thus, #Iterations = MaxFlow.

In sum, the worst-case #Iterations is equal to MaxFlow.

Worst-Case Time Complexity

- Let m be the number of edges.
- It takes O(m) time to find a path in unweighted graph. (Ignore the weights in the residual graph.)
- Thus, the per-iteration time complexity is O(m).

Worst-Case Time Complexity

- Let m be the number of edges.
- It takes O(m) time to find a path in unweighted graph. (Ignore the weights in the residual graph.)
- Thus, the per-iteration time complexity is O(m).

- Let the maximum flow be f.
- The worst-case time complexity is $O(f \cdot m)$.
- (In practice, the time complexity is not so bad.)

Summary

Ford-Fulkerson Algorithm

1. Build a residual graph; initialize the residuals to the capacities.

Ford-Fulkerson Algorithm

- 1. Build a residual graph; initialize the residuals to the capacities.
- 2. While augmenting path can be found:
 - a. Find an augmenting path (on the residual graph.)
 - b. Find the bottleneck capacity x on the augmenting path.
 - c. Update the residuals. (residual \leftarrow residual -x.)
 - d. Add a backward path. (Along the path, all edges have weights of x.)

Ford-Fulkerson Algorithm

- 1. Build a residual graph; initialize the residuals to the capacities.
- 2. While augmenting path can be found:
 - a. Find an augmenting path (on the residual graph.)
 - b. Find the bottleneck capacity x on the augmenting path.
 - c. Update the residuals. (residual \leftarrow residual -x.)
 - d. Add a backward path. (Along the path, all edges have weights of x.)

Time complexity: $O(f \cdot m)$. (f is the max flow; m is #edges.)

Thank You!