Discrete Probability Distributions

อ.ปรัชญ์ ปิยะวงศ์วิศาล

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

Topics

- Types of RV
- Probability Distribution
- Discrete Probability Distributions
 - Bernoulli
 - Geometric
 - Binomial
 - Poisson

Probability and Statistics for Engineering @ RMUTL 0.11%00

Probability Distribution

• เราเรียกลักษณะการกระจายตัวของกราฟ PMF/PDF ของ X ว่า

"การแจกแจงของ X"Distribution of X

• การแจกแจงที่สำคัญ/พบได้ทั่วไปจะมีชื่อเรียก เช่น:

Probability Distribution

Ex: ให้ X เป็นตัวแปรสุ่มที่เป็นค่า IQ ของคนไทย
 X มีการแจกแจงแบบ Normal
 X~Normal(100, 16²)

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

Probability Distribution

- Q: เราจะทราบว่า X มีการแจกแจงแบบใด ได้อย่างไร?
- พิจารณา:
 - การทดลองสุ่มอะไร ? มี assumption (เงื่อนไขเบื้องต้น) อะไรบ้าง ?
 - ค่าของ X คืออะไร ? มีค่าเป็นอะไรได้บ้าง ?
 - parameter ของการแจกแจงคือ ?
 - การแจกแจงของความน่าจะเป็นเป็นอย่างไร ? (ดูจาก PMF, PDF, CDF)

Probability and Statistics for Engineering @ RMUTL 0.11%00

Well-Known Probability Distributions

- Discrete
 - Bernoulli
 - Geometric
 - Binomial
 - Poisson
 - Discrete Uniform
 - Zipf

- Continuous
 - Uniform
 - Exponential
 - Gaussian (Normal)
 - Beta
 - Gamma
 - Student's t
 - · Chi-Squared

More distributions: https://en.wikipedia.org/wiki/List_of_probability_distributions

Probability and Statistics for Engineering @ RMUTL ช.ปรัชญ์

1) Bernoulli Distribution

 $X \sim Bernoulli(p)$

- การทดลองสุ่ม:
- ค่าของ X คือ:
- parameter ของการแจกแจง:

1) Bernoulli Distribution

• PMF ของการแจกแจงแบบ Bernoulli

- E[X] =
- Var(X) =

Probability and Statistics for Engineering @ RMUTL อ.ปรัชญ์

2) Geometric Distribution

 $X \sim Geometric(p)$

- การทดลองสุ่ม:
- ullet ค่าของ X คือ:
- parameter ของการแจกแจง:

2) Geometric Distribution

• PMF ของการแจกแจงแบบ Geometric

- E[X] =
- Var(X) =

Probability and Statistics for Engineering @ RMUTL อ.ปรัชญ์

2) Geometric Distribution

• Ex: นาย A ตั้งพาสเวิร์ดด้วยตัวเลข 2 หลัก (00-99) หากนาย B ใช้วิธีเดาสุ่มเลข 2 หลักไปเรื่อยๆ โดยไม่จำว่าเคยเดาเลขไหนไปแล้วบ้าง จงหาความน่าจะเป็นที่นาย B เดาพาสเวิร์ดถูกภายใน 3 ครั้ง

2) Geometric Distribution

• Ex2: นาย A ตั้งพาสเวิร์ดด้วยตัวเลข 2 หลัก (00-99) หากนาย B ใช้วิธีเดาสุ่มเลข 2 หลักไปเรื่อยๆ โดยไม่จำว่าเคยเดาเลขไหนไปแล้วบ้าง จงหาความน่าจะเป็นที่นาย B เดาพาสเวิร์ดถูกภายใน 100 ครั้ง

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

3) Binomial Distribution

 $X \sim Binomial(n, p)$

- การทดลองสุ่ม:
- ullet ค่าของ X คือ:
- parameter ของการแจกแจง:

3) Binomial Distribution

• PMF ของการแจกแจงแบบ Binomial

- E[X] =
- Var(X) =

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

ที่มาของ Binomial PMF

• Ex: โยนเหรียญเที่ยงตรง 3 ครั้ง ให้ X เป็นจำนวนครั้งที่เหรียญออก H จงหา PMF ของ X

Binomial Exercise

- Ex2: ในเกม gacha ผู้เล่นกดสุมตัวละครได้ โดยในการสุมแต่ละครั้งมีโอกาสที่จะได้ตัว rare 6% หาก ผู้เล่นกดสุม 10 ครั้ง จงหาความน่าจะเป็นที่จะ:
 - ไม่ได้ตัว rare เลย
 - ได้ 2 ตัว rare
 - ได้อย่างน้อย 1 ตัว rare

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

Binomial Exercise

• Ex2 (ต่อ)

4) Poisson Distribution

 $X \sim Poisson(\lambda)$

- การทดลองสุ่ม:
- ค่าของ X คือ:
- parameter ของการแจกแจง:

Probability and Statistics for Engineering @ RMUTL ข.ปรัชญ์

4) Poisson Distribution

• PMF ของการแจกแจงแบบ Poisson

- E[X] =
- Var(X) =

4) Poisson Distribution

• Ex: Call Center แห่งหนึ่งมีลูกค้าโทรเข้ามาโดยเฉลี่ย 5 คนต่อชั่วโมง หากจำนวนลูกค้ามีการแจงแจง แบบ Poisson จงหาความน่าจะเป็นที่ในช่วงเวลา 2 ชั่วโมงจะมีลูกค้าโทรเข้ามา 8 คนพอดี

Probability and Statistics for Engineering @ RMUTL പിഷ്ടൂ

ความสัมพันธ์ระหว่าง Binomial(n,p) และ $Poisson(\lambda)$

การแจกแจงของ X \sim Binomial(n,p) จะลู่เข้าสู่ $Poisson(\lambda=np)$ เมื่อ $n o\infty$ และ p o 0

- นั่นคือ เราสามารถประมาณค่า Binomial ด้วย Poisson ได้ เมื่อ n เยอะมากๆ และ p น้อยมากๆ
- ullet เช่น ให้ X \sim Binomial(100000,0.01) จงหา $P_X(80000)$

Probability and Statistics for Engineering @ RMUTL പിഴ്ചറ്റ