

Systeme II

3. Die Datensicherungsschicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 15.05.2017

Dienste der Sicherungsschicht

- Situation der Sicherungsschicht
 - Die Bitübertragungsschicht überträgt Bits
 - Aber unstrukturiert und möglicherweise fehlerbehaftet
- Die Vermittlungsschicht erwartet von der Sicherungsschicht
 - Fehlerfreie Übermittlung
 - Übermittlung von strukturierten Daten
 - Datenpakete oder Datenströme
 - Störungslosen Datenfluss

A Fehlerkontrolle CoNe Freiburg

- Zumeist gefordert von der Vermittlungsschicht
 - Mit Hilfe der Frames
- Fehlererkennung
 - Gibt es fehlerhaft übertragene Bits?
- Fehlerkorrektur
 - Behebung von Bitfehlern
 - Vorwärtsfehlerkorrektur (Forward Error Correction)
 - Verwendung von redundanter Kodierung, die es ermöglicht Fehler ohne zusätzliche Übertragungen zu beheben
 - Rückwärtsfehlerkorretur (Backward Error Correction)
 - Nach Erkennen eines Fehlers, wird durch weitere Kommunikation der Fehler behoben

Fehlerkontrolle

Fehlererkennung

Fehlerkorrektur

Vorwärtsfehlerkorrektur Rückwärtsfehlerkorrektur

Verbindungsaufbau

- Nutzen von Verbindungen
 - Kontrolle des Verbindungsstatus
 - Korrektheit des Protokolls
 - Fehlerkontrolle
 - Verschiedene Fehlerkontrollverfahren vertrauen auf gemeinsamen Kontext von Sender und Empfänger
- Aufbau und Terminierung von Verbindungen
 - "Virtuelle Verbindungen"
 - Es werden keine Schalter umgelegt
 - Interpretation des Bitstroms
 - Kontrollinformationen in Frames
 - Besonders wichtig bei drahtlosen Medien
- Das Problem wird im Rahmen der Transportschicht ausführlich diskutiert
 - Vgl. Sitzungsschicht vom OSI-Modell

Flusskontrolle

- Problem: Schneller Sender und langsamer Empfänger
 - Der Sender lässt den Empfangspuffer des Empfängers überlaufen
 - Übertragungsbandweite wird durch sinnlosen
 Mehrfachversand (nach Fehlerkontrolle) verschwendet
- Anpassung der Frame-Sende-Rate an dem Empfänger notwendig

Langsamer Empfänger

Schneller Sender

Frames

- Wo fängt der Frame an und wo hört er auf?
- Achtung:
 - Die Bitübertragungsschicht kann auch Bits liefern, wenn der Sender tatsächlich nichts sendet
 - Der Empfänger
 - könnte das Rauschen auf dem Medium interpretieren
 - könnte die Folge 0000000.... liefern
 - Daten oder Kontrollinformation?

Frame-Anfang?

Frame-Ende?

Frame-Grenzen durch Paketlängen?

Idee: Ankündigung der Bitanzahl im Frame-Header

- Problem: Was, wenn die Frame-Länge fehlerhaft übertragen wird?
 - Der Empfänger kommt aus dem Takt und interpretiert neue, sinnlose Frames
 - Variable Frame-Größen mit Längeninformation sind daher kein gutes Konzept

Header und Trailer

- Header und Trailer
 - Zumeist verwendet man Header am Anfang des Frames, mitunter auch Trailer am Ende des Frames
 - signalisieren den Frame-Beginn und das Frame-Ende
 - tragen Kontrollinformationen
 - z.B. Sender, Empfänger, Frametypen, Fehlerkontrollinformation

Flag Bytes und Bytestopfen

Besondere "Flag Bytes" markieren Anfang und Ende eines Frames

- Falls diese Marker in den Nutzdaten vorkommen
 - Als Nutzdatenbyte mit Sonderzeichen (Escape) markieren
 - Bytestopfen (byte stuffing)
 - Falls Sonderzeichen und "Flag-Byte" erscheinen, dito,
 - etc., etc.

Frames durch Bit-Sequenzen/Bitstopfen

- Bytestopfen verwendet das Byte als elementare Einheit
 - Das Verfahren funktioniert aber auch auf Bitebene
- Flag Bits und Bitstopfen (bit stuffing)
 - Statt flag byte wird eine Bit-Folge verwendet
 - z.B.: 01111110

- Wenn der Sender eine Folge von fünf 1er senden möchte, wird automatisch eine 0 in den Bitstrom eingefügt
 - Außer bei den Flag Bits
- Der Empfänger entfernt eine 0 nach fünf 1ern

Originale Nutzdate (a) 011011111111111111110010

Nach dem Bitstopfen (b

Nach der "Entstopfung"

(c) 011011111111111111110010

01111110

Frames durch Code-Verletzung

- Möglicher Spielraum bei Bitübertragungsschicht bei der Kodierung von Bits auf Signale
 - Nicht alle möglichen Kombination werden zur Kodierung verwendet
 - Zum Beispiel: Manchester-Kodierung hat nur tief/hoch und hoch/tief-Übergang
- Durch "Verletzung" der Kodierungsregeln kann man Start und Ende des Rahmens signalisieren
 - Beispiel: Manchester Hinzunahme von hoch/hoch oder tief/tief
 - Selbsttaktung von Manchester gefährdet?
- Einfache und robuste Methode
 - z.B. verwendet in Ethernet
 - Kosten? Effiziente Verwendung der Bandbreite?

Fehlerkontrolle

Aufgaben

- Erkennung von Fehlern (fehlerhafte Bits) in einem Frame
- Korrektur von Fehlern in einem Frame
- Jede Kombination dieser Aufgaben kommt vor
 - Erkennung ohne Korrektur
 - Löschen eines Frames ohne weiter Benachrichtigung (drop a frame)
 - Höhere Schichten müssen sich um das Problem kümmern
 - Korrektur ohne Erkennung
 - Es werden bestmöglich Bitfehler beseitigt, möglicherweise sind aber noch Fehler vorhanden
 - Sinnvoll, falls Anwendung Fehler tolerieren kann
 - Beispiel: Tonübertragung
 - Prinzipiell gerechtfertigt, weil immer eine positive Restfehlerwahrscheinlichkeit bleibt

Redundanz

- Redundanz ist eine Voraussetzung für **Fehlerkontrolle**
- Ohne Redundanz

- Ein Frame der Länge m kann mögliche Daten repräsentieren
- Jede davon ist erlaubt
- Ein fehlerhaftes Bit ergibt einen neuen Dateninhalt

Redundanz

Hyade

Myriade

- Kernidee:
 - Einige der möglichen Nachrichten sind verboten
 - Um dann 2^m legale Frames darzustellen
 - werden mehr als 2^m mögliche Frames benötigt
 - Also werden mehr als m Bits in einem Frame benötigt
 - Der Frame hat also Länge n > m
 - r = m n sind die redundanten Bits
 - z.B. Im Header oder Trailer
- Nur die Einschränkung auf erlaubte und verbotene (legal/illegal) Frames ermöglicht die Fehlerkontrolle

Einfachste Redundanz:

Das Paritätsbit

$$\begin{array}{c} \downarrow \\ \times_{1} \oplus \times_{2} \oplus \times_{3} \oplus C = \begin{cases} 1 & odd \\ 0 & even \end{cases} \end{array}$$

Eine einfache Regel um ein redundantes Bit zu erzeugen

$$(d.h. n=m+1)$$

Parität

- Odd parity
 - Eine Eins wird hinzugefügt, so dass die Anzahl der 1er in der Nachricht ungerade wird (ansonsten eine Null)
- Even parity
 - Eine Eins wird hinzugefügt, so dass die Anzahl der 1er in der Nachricht gerade wird (ansonsten wird eine Null hinzugefügt)
- Beispiel:
 - Originalnachricht ohne Redundanz: 01101011001
 - Odd parity: 011010110011
 - Even parity: 011010110010

Der Nutzen illegaler Frames

- Der Sender sendet nur erlaubte Frames
- In der Bitübertragungsschicht könnten Bits verfälscht werden
- Hoffnung:
 - Legale Frames werden nur in illegale Nachrichten verfälscht
 - Und niemals ein legaler Frame in einen anderen Legalen
- Notwendige Annahme
 - In der Bitübetragungsschicht werden nur eine bestimmte Anzahl von Bits verändert
 - z.B. k Bits pro Frame
 - Die legalen Nachrichten sind verschieden genug, um diese Frame-Fehlerrate zu erkennen

Veränderung der Frames durch Bitfehler

Angenommen die folgenden Frames sind erlaubt: 0000, 0011, 1100,

Hamming-Distanz

- Der "Abstand" der erlaubten Nachrichten zueinander war immer zwei Bits
- Definition: Hamming-Distanz
 - Seien $x = x_1, ..., x_n$ und $y = y_1, ..., y_n$ Nachrichten
 - Dann sei d(x,y) = die Anzahl der 1er Bits in x XOR y
- Intuitiver: die Anzahl der Positionen, in denen sich x und y unterscheiden

Hamming-Distanz

Die Hamming-Distanz ist eine Metrik

- Symmetrie
 - d(x,y) = d(y,x)
- Dreiecksungleichung:

•
$$d(x,y) \le d(x,z) + d(z,y)$$

- Identität

$$d(x,x) = 0 \text{ und}$$

$$d(x,y) = 0 \text{ gdw. } x = y$$

Beispiel:

- x = 0011010111
- y= 0110100101
- x XOR y= 0101110010
- d(x,y) = 5

Hamming-Distanz von Nachrichtenmengen

Die Hamming-Distanz einer Menge von (gleich langen) Bit-Strings S ist:

$$d(S) = \min_{x,y \in S, x \neq y} d(x,y)$$

- d.h. der kleinste Abstand zweier verschiedener Wörter in S

Beispiel:

Ein Abstand ist 1!

Erkennung und Korrektur mit Hamming-Distanzen

- 1. Fall d(S) = 1
 - Keine Fehlerkorrektur
 - Legale Frames unterscheiden sich in nur einem Bit
- 2. Fall d(S) = 2
 - Dann gibt es nur x, $y \in S$ mit d(x,y) = 2
 - Somit ist jedes u mit d(x,u) = 1 illegal,
 - wie auch jedes u mit d(y,u) = 1

- 1-Bit-Fehler
 - können immer erkannt werden
 - aber nicht korrigiert werden

Erkennung und Korrektur mit Hamming-Distanzen

- 3. Fall d(S) = 3
 - Dann gibt es nur x, $y \in S$ mit d(x,y) = 3
 - Jedes u mit d(x,u) = 1 illegal und d(y,u) > 1

- Falls u empfangen wird, sind folgende Fälle denkbar:
 - x wurde gesendet und mit 1 Bit-Fehler empfangen
 - y wurde gesendet und mit 2 Bit-Fehlern empfangen
 - Etwas anderes wurde gesendet und mit mindestens 2 Bit-Fehlern empfangen
- Es ist also wahrscheinlicher, dass x gesendet wurde, statt y

Erkennung und Korrektur mit Hamming-Distanzen

- Um d Bit-Fehler zu erkennen ist eine Hamming-Distanz von d+1 in der Menge der legalen Frames notwendig
- Um d Bit-Fehler zu korrigieren, ist eine Hamming-Distanz von 2d+1 in der Menge der legalen Frames notwendig

Codebücher und Kodierungen

- Die Menge der legalen Frames S ∈ {0,1}ⁿ wird das Code-Buch oder einfach Kodierung genannt.
 - Die Rate R eines Codes S ist definiert als
 - Die Rate charakterisiert die Effizienz des Codes

$$R_S = \frac{\log |S|}{n}$$

Parily
$$\frac{m-1}{m} = 1-\frac{1}{m}$$

- Die Distanz δ des Codes S ist definiert als
 - charakterisiert die Fehlerkorrektur oder Fehlererkennungsmöglichkeiten

$$\delta_S = \frac{d(S)}{n}$$

- Gute Codes haben hohe Raten und hohe Distanz
 - Beides lässt sich nicht zugleich optimieren

Block-Codes

- Block-Codes kodieren k Bits Originaldaten in n kodierte Bits
 - Zusätzlich werden n-k Symbole hinzugefügt
 - Binäre Block-Codes können höchstens bis zu t Fehler in einem Code-Wort der Länge n mit k Originalbits erkennen, wobei (Gilbert-Varshamov-Schranke):

$$\frac{2^{n}}{2^{n}} = 2^{n-k} \ge \sum_{i=0}^{t} {n \choose i}$$

- Das ist eine theoretische obere Schranke
- Beispiele
 - Bose Chaudhuri Hocquenghem (BCH) Codes
 - basierend auf Polynomen über endlichen Körpern (Galois-Körpern)
 - Reed Solomon Codes
 - Spezialfall nichtbinärer BCH-Codes

m-dimensional Hypnwsiold

00000

$$\frac{d}{d} = \frac{1}{2}$$

$$\frac{d}{d} = \frac{$$

Dorchanesse ist n

$$\binom{y}{2} = \frac{n(n-1)}{2}$$

FREIBL

A Fehlerkontrolle CoNe Freiburg

- Zumeist gefordert von der Vermittlungsschicht
 - Mit Hilfe der Frames
- Fehlererkennung
 - Gibt es fehlerhaft übertragene Bits?
- Fehlerkorrektur
 - Behebung von Bitfehlern
 - Vorwärtsfehlerkorrektur (Forward Error Correction)
 - Verwendung von redundanter Kodierung, die es ermöglicht Fehler ohne zusätzliche Übertragungen zu beheben
 - Rückwärtsfehlerkorretur (Backward Error Correction)
 - Nach Erkennen eines Fehlers, wird durch weitere Kommunikation der Fehler behoben

Fehlerkontrolle

Fehlererkennung

Fehlerkorrektur

Vorwärtsfehlerkorrektur Rückwärtsfehlerkorrektur 3

Faltungs-Codes

- Faltungs-Codes (Convolutional Codes)
 - Daten und Fehlerredundanz werden vermischt.
 - k Bits werden auf n Bits abgebildet
 - Die Ausgabe hängt von den k letzten Bits und dem internen Zustand ab.

Beispiel

Faltungs-Kodierer

Trellis-Diagramm

Dekodierung der Faltungs-Codes: Algorithmus von Viterbi

- Dynamische Programmierung
- Zwei notwendige Voraussetzungen für Dekodierung
 - (für den Empfänger) unbekannte Folge von Zuständen
 - beobachtete Folge von empfangenen Bits (möglicherweise mit Fehler)
- Der Algorithmus von Viterbi bestimmt die warscheinlichste Folge von Zuständen, welches die empfangenen Bits erklärt
 - Hardware-Implementation möglich

Dekodierung (I)

Dekodierung (II)

Dekodierung (III)

Dekodierung (IV)

Turbo-Codes

- Turbo-Codes sind wesentlich effizienter als Faltungs-Codes
 - bestehen aus zwei Faltungs-Codes welche abwechselnd mit der Eingabe versorgt werden.
 - Die Eingabe wird durch eine Permutation (Interleaver) im zweiten Faltungs-Code umsortiert

Turbo-Codes

- Beispiel:
 - UMTS Turbo-Kodierer
- Dekodierung von Turbo-Codes ist effizienter möglich als bei Faltungscodes
- Kompensation von Bursts

Interleavers

- Fehler treten oftmals gehäuft auf (Bursts)
 - z.B.: Daten: 0123456789ABCDEF 74 11+3 1062 55
 - mit Fehler: 0 1 2 3 WWW? 9 A B C D E F
- Dann scheitern klassische Kodierer ohne Interleavers
 - Nach Fehlerkorrektur (zwei Zeichen in Folge reparierbar):

012345?789ABCDEF

- Interleaver:
 - Permutation der Eingabekodierung:

0 1 2 3 4 5 6 7 8 9 A B

- z.B. Row-column Interleaver:

048C159D26AE37BF

- mit Fehler: 048C/?????6AE37BF

- Rückpermutiert: 0 ? 3 4 ? 6 7 8 ? A B C D ? F

- nach FEC: 0123456789ABCDEF

Fehlererkennung: CRC

- Effiziente Fehlererkennung: Cyclic Redundancy Check (CRC)
- Praktisch häufig verwendeter Code
 - Hoher Fehlererkennungsrate
 - Effizient in Hardware umsetzbar
- Beruht auf Polynomarithmetik im Restklassenring Z₂
 - Zeichenketten sind Polynome
 - Bits sind Koeffizienten des Polynoms

$$0+0=0$$

 $1+0=1$
 $0+1=1$
 $1+1=0$

$$0.0 = 0$$
 $0.1 = 0$
 $1.0 = 0$
 $1.1 = 1$