

Mar 21, 2019

Working

#### PBMC Isolation 👄

Version :

PLOS One

Dannielle Moore<sup>1</sup>, Andre G Loxton<sup>2</sup>

<sup>1</sup>[1] DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; [2] South African Medical Research Council Centre for Tuberculosis Research; [3] Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, <sup>2</sup>[1] DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; [2]South African Medical Research Council Centre for Tuberculosis Research; [3]Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town

dx.doi.org/10.17504/protocols.io.yf2ftqe



#### **ABSTRACT**

This protocol includes the step-by-step protocol used to isolate human peripheral blood mononuclear cells (PBMCs) from fresh human whole peripheral blood using the Ficoll density gradient method. This method seperated cells based on sedimentation velocity and cellular density. Under centrifugal force, cells with a higher density compared to Ficoll-plaque (such as RBC and granulocytes) pass through the Ficoll layer and sediment at the bottom of the tube. However, cells with a lower density are unable to penetarte the media. Cells will a very low density (such as platelets) remain in suspension, while cells with a density similar to that of ficoll ( such as PBMCs) collect at the ficoll interface.

**EXTERNAL LINK** 

https://doi.org/10.1371/journal.pone.0213832

PROTOCOL STATUS

## Working

# GUIDELINES

Unless otherwise stated, sample processing was performed in a biosafety cabinet under sterile conditions. Following blood collection but prior to PBMC isolation, blood samples were stored on a roller at room temperature and processed within two hours of blood draw.

# MATERIALS

| NAME V                                     | CATALOG # ~ | VENDOR ~             |
|--------------------------------------------|-------------|----------------------|
| Falcon Tube (50 mL)                        |             | Fischer Scientific   |
| Disposable pasteur pipettes                | EA61.1      | Carl Roth            |
| Ficoll-Paque PLUS density gradient media   | 17144002    | Ge Healthcare        |
| 1x Phosphate-Buffered Saline               | 04-479Q     | Lonza                |
| Fetal Bovine Serum                         | SH30088.02  | HyClone              |
| Trypan Blue Solution 0.4% Sterile-filtered | T8154       | Sigma Aldrich        |
| Vac 9mL Sodium Heparin Green               | VGRV455051  | Lasec                |
| STEPS MATERIALS                            |             |                      |
| NAME ×                                     | CATALOG #   | <b>VENDOR</b> $\vee$ |
| Falcon Tube (50 mL)                        |             | Fischer Scientific   |
| Ficoll-Paque PLUS density gradient media   | 17144002    | Ge Healthcare        |
|                                            |             |                      |

| NAME Y                                     | CATALOG # | VENDOR V           |
|--------------------------------------------|-----------|--------------------|
| Falcon Tube (50 mL)                        |           | Fischer Scientific |
| 1x Phosphate-Buffered Saline               | 04-479Q   | Lonza              |
| 1x Phosphate-Buffered Saline               | 04-479Q   | Lonza              |
| 1x Phosphate-Buffered Saline               | 04-479Q   | Lonza              |
| Trypan Blue Solution 0.4% Sterile-filtered | T8154     | Sigma Aldrich      |
| Falcon Tube (50 mL)                        |           | Fischer Scientific |
|                                            |           |                    |

SAFETY WARNINGS

#### BEFORE STARTING

Collect human whole peripheral blood in Sodium Heparin tubes – This step is done by a professional healthcare worker in a medical examination room.

### 1 In a



decant 15 ml of



# 2 In a separate



dilute peripheral blood in 1:1 ratio with



to a max volume of 35mL (max starting volume of blood is  $\sim$ 18mL)

Note: if a larger volume of blood is required - the blood must be split across seperate falcon tubes and isolated PBMCs combined following isolation procedure, prior to cell counting

- Gently layer the diluted blood from step 2 onto the Ficoll from step 1.
  Following layering, secure and remove tubes from hood.
- 5 Centriguge at 400xg for © 00:25:00 at § 23 °C (Room temp) with the accelerator and brake OFF.
- 6 Following centrifugation, steralize tubes and return to hood for further processing.
- 7 Use a sterile Pasteur pipette to carefully remove (and discard) the upper plasma layer until 5cm above opaque PBMC band. In a circular motion, collect the PBMC band at the Ficoll interface and transfer into a new



Note: if a large volume of blood was processed and blood split into several tubes, collect and decant all PBMC bands into single tube.

8 Wash isolated PBMCs twice in **□20 ml** 



Centrifuge cell suspension at 400xg for  $\bigcirc$  00:10:00 at  $\S$  23 °C (Room temp) with the brake and accelerator set to max.

Q Dilute cells in 1:10 ratio with



and



Count the cells using haemocytometer and microscope. Record observed cell number and cell viability

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited