Data Structures

16. Binary Tree

Binary Tree

- In a binary tree each node has at most two children
 - Allows to label the children as left and right

- Likewise, the two sub-trees are referred as
 - Left-hand subtree
 - Right-hand subtree

Binary Tree: Example

• Some variations on binary trees with five nodes

Binary Tree: Full Node

 A full node is a node where both the left and right sub-trees are non-empty trees

Full Binary Tree

- A full binary tree is where each node is:
 - A full node, or
 - A leaf node
- Full binary tree is also called proper binary tree, strictly binary tree or 2-tree

Complete (Or Perfect) Binary Tree

- A complete binary tree of height h is a binary tree where
 - All leaf nodes have the same depth h
 - All other nodes are full

Complete Binary Tree: Recursive Definition

- A binary tree of height h = 0 is perfect
- A binary tree with height h > 0 is perfect
 - If both sub-trees are prefect binary trees of height h − 1

Complete Binary Tree: Example

Complete binary trees of height h = 0, 1, 2, 3 and 4

Binary Tree: Properties (1)

- A complete binary tree with height h has ____ leaf nodes
- Figure out the answer.
- The number of nodes in a complete binary tree with height h is:

h h

Binary Tree: Properties (2)

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes

$$n = 2^{0} + 2^{1} + 2^{2} + \ldots + 2^{h} = \sum_{j=0}^{h} 2^{j} = 2^{h+1} - 1$$

Binary Tree: Properties (3)

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$

10-Tree

11

Binary Tree: Properties (4)

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A complete binary tree with n nodes has height log₂(n + 1) 1

$$n = 2^{h+1} - 1$$

 $2^{h+1} = n + 1$
 $h + 1 = log_2(n + 1)$
 $\Rightarrow h = log_2(n + 1) - 1$

Binary Tree: Properties (4)

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A complete binary tree with n nodes has height $log_2(n + 1) 1$
- Number n of nodes in a binary tree of height h is at least h+1 and at most 2^{h + 1} - 1

Almost (or Nearly) Complete Binary Tree

- Almost complete binary tree of height h is a binary tree in which
 - There are 2^d nodes at depth d for d = 1,2,...,h-1
 ➤ Each leaf in the tree is either at level h or at level h- 1
 - 2. The nodes at depth hare as far left as possible

Missing node towards the right

Almost (or Nearly) Complete Binary Tree

- Almost complete binary tree of height h is a binary tree in which
 - There are 2^d nodes at depth d for d = 1,2,...,h-1
 ➤ Each leaf in the tree is either at level h or at level h- 1
 - 2. The nodes at depth h are as far left as possible (Formal ?)

Missing node towards the right

Almost (or Nearly) Complete Binary Tree

Condition 2: The nodes at depth h are as far left as possible

- If a node p at depth h−1 has a left child
 - Every node at depth h−1 to the left of p has 2 children
- If a node at depth h−1 has a right child
 - It also has a left child

Not Almost Complete binary tree (condition 2 violated)

Full vs. Almost Complete Binary Tree

Neither Full nor Complete Almost Complete but not full neither Complete nor almost Full and Almost Complete Complete but Full

Almost Complete Binary Tree: Properties

- Total number of nodes n are between
 - Complete binary tree of height h-1, i.e., 2^h nodes
 - Complete binary tree of height h, i.e., 2^{h+1} -1 nodes
- Height h is the largest integer less than or equal to log₂(n)

(Completely) Balanced Binary Tree

Balanced binary tree

 For each node, the difference in height of the right and left sub-trees is no more than one

- Completely balance binary tree
 - Left and right sub-trees of every node have the same height

(Completely) Balanced Binary Tree

Balanced binary tree

- For each node, the difference in height of the right and left sub-trees is no more than one
- When a binary tree is balanced?
 - If every level above the lowest is "complete"
- Completely balance binary tree
 - Left and right sub-trees of every node have the same height

Balanced Binary Tree: Example

A balanced binary tree

An unbalanced binary tree

Examples

Full & balanced - All nodes have 0 or 2 children, level 3 - level 2 <= 1, (Not complete - last level nodes are not as far left as possible)

```
1 --- LEVEL 0

1 1 --- LEVEL 1

// //

1 1 1 --- LEVEL 2

- // - -

1 1 --- LEVEL 3

x x - -
```

Full, balanced & complete - All nodes have 0 or 2 children, 3 - 2 <= 1, last level nodes are
as far left as possible:

```
1 --- LEVEL 0

1 1 --- LEVEL 1

\( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \
```

Examples

Full - All nodes have 0 or 2 children (Unbalanced - 3 - 1 > 1, Not complete - level 1 has a node with 0 children):

```
1 --- LEVEL 0

1 1 --- LEVEL 1

/ \ -

1 1 --- LEVEL 2

/ \ - x x

1 1 --- LEVEL 3

- --
```

• Complete & balanced - Last level nodes are as far left as possible, 3 - 3 <= 1 (Not full - there is a level 2 node with 1 child):

23

Examples

• Balanced - 3 - 3 <= 1, (Not full - there is a level 2 node with 1 child, Not complete - last level nodes are not as far left as possible)

```
1 --- LEVEL 0

/ \
1 1 --- LEVEL 1

/\ /\ /\
1 1 1 1 --- LEVEL 2

/\ /\ /x /\
1 11 11 1 1 --- LEVEL 3

- -- -- x - -
```

Any Question So Far?

