MATHF-3001 — Théorie de la mesure Résolution des TPs

R. Petit

Année académique 2018 - 2019

1 Séance 1

Exercice 1.1. Soient (X, \mathcal{F}) un espace mesurable et $Y \subset X$. Mg $\mathcal{F}_Y := \mathcal{F} \cap Y$ est une σ -algèbre sur Y.

Exercice 1.2.

- 1. Soit X un ensemble fini. Décrire la σ-algèbre engendrée par la classe des parties finies de X. Que peut-on dire si X est fini ?
- 2. Dans X = [0, n], on considère $A = \{0\}$ et $B = \{\{0\}, \{1, 2\}\}$. Décrire $\sigma(A)$ et $\sigma(B)$.

Exercice 1.3. *Soient* X, Y *deux ensembles, et* $f: X \rightarrow Y$.

- 1. Si \mathcal{F} est une σ -algèbre sur Y, mq $\mathcal{A} := f^{-1}(\mathcal{F})$ est une σ -algèbre sur X.
- 2. Soit A une σ -algèbre sur X.
 - (a) $Mq \mathcal{F} := \{B \in \mathcal{P}(Y) \text{ s.t. } f^{-1}(B) \in \mathcal{A}\} \text{ est une } \sigma\text{-algèbre sur } Y.$
 - (b) Que peut-on dire de f(A)?

Exercice 1.4. Soient (X, A), (Y, B) espaces mesurables. Soit $\mathcal{F} \subset \mathcal{P}(Y)$. Si $\mathcal{B} = \sigma(\mathcal{F})$, mq $f: X \to Y$ est mesurable ssi $f^{-1}(\mathcal{F}) \subseteq A$.

Exercice 1.5.

- 1. Mq toute intersection (non-vide) de classes de Dynkin est une classe de Dynkin.
- 2. Mg pour tout $\mathfrak{F} \subset \mathfrak{P}(X)$ il existe une plus petite classe de Dynkin au sens de l'inclusion (notée $\lambda(\mathfrak{F})$).
- 3. Mq si $\mathbb D$ est une classe de Dynkin stable par intersections finies, alors $\mathbb D$ est une σ -algèbre.
- 4. Mq si $\mathfrak{F} \subset \mathfrak{P}(X)$ est stable par intersections finies, alors $\lambda(\mathfrak{F}) = \sigma(\mathfrak{F})$.

Exercice 2.1. Soient (X, \mathfrak{F}) un espace mesurable et μ une fonction additive sur \mathcal{A} à valeurs dans \mathbb{R}^+ . Mq les conditions suivantes sont équivalentes :

- 1. μ est σ-additive;
- 2. µ est continue à gauche;
- 3. µ est continue à droite.

Donner un exemple de mesure $\mu: \mathcal{A} \to [0, +\infty]$ qui ne satisfait pas le point 3. Que faut-il ajouter comme hypothèse pour ce résultat ?

Exercice 2.2. Soit X un ensemble non dénombrable et $A = \{A \in \mathcal{P}(X) \text{ s.t. A ou } A^{\complement} \text{ est dénombrable}\}$. Soit $\mu: A \to \{0,1\}$ où $\mu(A) = 0 \iff A$ est dénombrable. Mq μ est une mesure sur (X,A).

Exercice 2.3. Soit (X, A, \mathbb{P}) un espace de probabilité. Mq $\mathfrak{T} := \{A \in A \text{ s.t. } \mathbb{P}(A) \in \{0,1\}\}$ est une σ -algèbre.

Exercice 2.4. Soient (X, \mathcal{A}, μ) un espace mesuré, (Y, \mathcal{B}) un espace mesurable et $g: X \to Y$ une application mesurable. On pose :

$$\nu: \mathcal{B} \to [0, +\infty]: \mathcal{B} \mapsto \mu(g^{-1}(\mathcal{B})).$$

Mq ν est une mesure sur (Y, \mathcal{B}) .

Exercice 2.5. *Soit* (X, A) *un espace mesurable.*

- 1. Pour $x \in X$, $mq \delta_x$ est une mesure.
- 2. Mg si μ est une mesure sur (X, A) s.t. $\forall A \in A : \mu(A) = 0 \iff x \notin A \text{ alors } \exists C \geq 0 \text{ s.t. } \mu = C\delta_x$.

Exercice 2.6. Soit (X, A) un espace mesurable. Mq la mesure de comptage est une mesure.

Exercice 2.7. Soit X un ensemble fini non-vide. Mq $\mu = \frac{|\cdot|}{|X|}$ est une mesure de proba sur $(X, \mathcal{P}(X))$.

Exercice 2.8. *Soit* (X, A) *un espace de mesure.*

- 1. Soit $(\mu_n)_{n\geqslant 0}$ une suite croissante de mesures sur (X,\mathcal{A}) . Mq $\mu:=\lim_{n\to+\infty}\mu_n$ est une mesure.
- 2. Soit $(\mu_n)_{n\geq 0}$ une suite de mesures. Est-ce que $\mu := \sum_{n\geq 0} \mu_n$ est une mesure?
- 3. Pour $n \ge 0$, on définit la mesure μ_n sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ par $\mu_n(A) = |A \cap [n, +\infty)|$.
 - $Mq \ \forall n \geqslant 0 : \mu_n$ est bien une mesure et que la suite $(\mu_n)_n$ est décroissante.
 - Est-ce que $\mu = \lim_{n \to +\infty} \mu_n$ est une mesure sur $(\mathbb{N}, \mathbb{P}(\mathbb{N}))$? Caractériser entièrement μ .

Exercice 2.9. Soient (X, A, μ) un espace mesuré et $(A_n)_{n\geqslant 0} \in A^{\mathbb{N}}$.

1. Mq:

$$\mu\left(\liminf_{n\to+\infty}A_n\right)\leqslant \liminf_{n\to+\infty}\mu(A_n).$$

2. $Si \exists n_0 \in \mathbb{N} \text{ s.t. } \mu\left(\bigcup_{n \geqslant n_0} A_n\right) \leqslant +\infty, mq$:

$$\mu\left(\limsup_{n\to+\infty}A_n\right)\geqslant\limsup_{n\to+\infty}\mu(A_n).$$

Exercice 2.10. Soit (X, A) un espace mesurable. Soient μ, ν deux mesures finies sur (X, A) telles que $\forall A \in A$:

$$\mu(A)\leqslant \tfrac{1}{2}\Rightarrow \mu(A)=\nu(A).$$
 1. Mq $\mu=\nu.$

- $2. \ Mq \ le \ r\'esultat \ est \ faux \ si \ l'in\'egalit\'e \ est \ chang\'ee \ en \ in\'egalit\'e \ stricte.$

Exercice 2.11. Soient (X, A) un espace mesurable et une partie stable par intersections finies $\mathfrak{F} \subset \mathfrak{P}(X)$ s.t. $\sigma(\mathfrak{F}) = A$. Si μ et ν sont deux mesures finies sur (X, A) telles que $\nu(X) = \mu(X)$ et $\mu = \nu$ sur \mathfrak{F} . Mq $\mu = \nu$.

Exercice 3.1. *Soient* \mathbb{B} *la tribu borélienne sur* \mathbb{R} *et* \mathcal{L} *la mesure de Lesbesgue sur* \mathbb{B} .

- 1. $Mq \ \forall x \in \mathbb{R} : \{x\} \in \mathbb{B}$.
- 2. $Mq \mathbb{Q} \in \mathbb{B} \ et \mathcal{L}(\mathbb{Q}) = 0.$
- 3. Mq une union non-dénombrable d'ensembles négligeables n'est pas nécessairement négligeable.
- $\text{4. Mq N} \in \mathbb{B} \text{ est un ensemble n\'egligeable ssi } \forall \epsilon > 0 : \exists U_\epsilon \text{ s.t. N} \subseteq U_\epsilon \text{ et } \mathcal{L}(U_\epsilon) < \epsilon.$

Exercice 3.2. Montrer qu'une droite E dans \mathbb{R}^2 est de mesure nulle pour \mathcal{L} .

Exercice 3.3. Pour $B \in \mathbb{B}^n$ et $\lambda > 0$, on définit $\lambda B = {\lambda b}_{b \in B}$.

- 1. $Mq \ \forall \lambda > 0$, $B \in \mathbb{B}^n : \lambda B \in \mathbb{B}^n$.
- 2. $Mq \mathcal{L}(\lambda B) = \lambda^n \mathcal{L}(B)$.

Exercice 3.4 (Vrai ou Faux). *Justifier les affirmations suivantes :*

- 1. $Si \ E \subseteq \mathbb{R}^n$ est négligeable, alors \overline{E} est négligeable.
- 2. Il existe un ensemble non-mesurable sur \mathbb{R}^n de complémentaire de mesure extérieure de Lebesgue nulle.
- 3. Il existe des ensemble non-mesurables dont l'union est mesurable.
- 4. Si $A \subset \mathbb{R}^n$ satisfait $\mathcal{L}(\mathring{A}) = \mathcal{L}(\overline{A})$, alors A est mesurable.

Exercice 4.1. *Soit* $f:(X,A) \to \mathbb{R}$. Mq $si \ \forall q \in \mathbb{Q}: f^{-1}((q,+\infty)) \in A$, alors f est mesurable.

Exercice 4.2. *Mg les fonctions* f *et* g *sont mesurables sur* (\mathbb{R}, \mathbb{B}) .

Exercice 4.3. Soient (X, A) un espace mesurable et $(f_k)_{k\geqslant 0}$ une suite de fonctions mesurables de X dans \mathbb{R} . Mq l'ensemble $A \coloneqq \{x \in X \text{ s.t. } \lim_{k \to +\infty} f_k(x) \text{ existe}\}$ est mesurable.

Exercice 4.4. Soient $f: \mathbb{R} \to \mathbb{R}$ Borel-mesurable et $g: \mathbb{R} \to \mathbb{R}$ s.t. $g \neq f$ sur un ensemble D au plus dénombrable. Mq g est Borel-mesurable.

Exercice 4.5. Sur un espace mesurable (X, A), $mq \chi_A$ est mesurable $ssi A \in A$.

Exercice 4.6. Soient (X, A) un espace mesurable et $f: X \to \mathbb{R}$ une fonction mesurable. Mq f^+ et f^- sont mesurables.

Exercice 4.7.
$$Mq \ f: [0,1) \to [0,1): x \mapsto \begin{cases} 2x & \text{si } x \in [0,1/2) \\ 2x-1 & \text{si } x \in [1/2,1) \end{cases}$$
 est mesurable.

Mq pour tout $E \subseteq [0,1)$ mesurable : $\mathcal{L}(E) = \mathcal{L}(f^{-1}(E))$.

Exercice 4.8 (Vrai ou Faux). Justifier:

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ s.t. $f \circ f$ est mesurable. Alors f est mesurable.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ s.t. |f| est mesurable. Alors f est mesurable.
- 3. Soient $f: \mathbb{R} \to \mathbb{R}$ mesurable et $g: \mathbb{R} \to \mathbb{R}$ continue. Alors $g \circ f$ est mesurable.
- *4.* Si $f : \mathbb{R} \to \mathbb{R}$ est continue presque partout, alors f est mesurable.

Exercice 5.1. 1. Mq la relation \sim définie sur [0,1] par $x \sim y \iff x-y \in \mathbb{Q}$ est une relation d'équivalence.

2. On note $\hat{x} := \mathbb{R}/\sim$. On pose $F := \bigcup_{x \in \mathbb{R}} \rho(\hat{x})$ où $\rho(\hat{x})$ est un représentant de \hat{x} (ρ est bien définie par l'axiome du choix). Mq:

$$[0,1]\subseteq\bigcup_{\substack{q\in\mathbb{Q}\cap[-1,1]\\ -\hat{F}}}(F+q)\subseteq[-1,2].$$

- 3. $Mq \, si \, q_1 \neq q_2 \in \mathbb{Q} \cap [-1, 1]$, $alors \, (F + q_1) \cap (F + q_2) = \emptyset$.
- 4. Mq F n'est pas L-mesurable par l'absurde.

Exercice 5.2 (Ensemble triadique de Cantor). *Pour* $k \ge 0$, *on pose* :

$$A_k \coloneqq \bigcup_{\alpha \in \{0,2\}^k} \left(\sum_{i=1}^k \frac{\alpha_i}{3^i} \right) + [0,3^{-k}].$$

On définit l'ensemble triadique de Cantor par $\mathscr{C}\coloneqq\bigcap_{k\geqslant 0}A_k.$

- 1. $Mq \ \forall k \geqslant 0$: A_k est formé de 2^k intervalles fermés disjoints deux à deux et $\mathcal{L}(A_k) = (2/3)^k$.
- 2. Mq & est un borélien non vide et de mesure de Lebesgue nulle.
- 3. Mq le développement infini en base 3 est unique ssi les chiffres de la décomposition (notés $a_k : [0,1] \to \{0,1,2\}$ pour le kème chiffre) sont soit 0 soit 2. Mq $x \in \mathscr{C} \iff \forall k \geqslant 0 : a_k(x) \neq 1$.
- 4. En déduire que \mathscr{C} est en bijection avec [0,1].

Exercice 5.3. On définit la bijection $f = \theta^{-1}$ (inverse de la bijection ci-dessus).

- 1. Mq f est strictement croissante et est non-continue.
- 2. Soit $E \subset [0,1]$ un ensemble non-mesurable au sens de Lebesgue. Mq f(E) est \mathcal{L} -mesurable mais non Borélien.

Exercice 6.1. Soient $X \neq \emptyset$, $\alpha \in X$ et $\mathcal{A} = \mathcal{P}(X)$. Dans l'espace mesuré $(X, \mathcal{A}, \delta_{\alpha})$, montrons que pour $f: X \to \mathbb{R}^+$ mesurable :

$$\int_X f d\delta_{\alpha} = f(\alpha).$$

Exercice 6.2. Sur l'espace mesurable (\mathbb{R}, \mathbb{B}) , on définit la mesure de Lebesgue \mathcal{L} et la mesure μ suivante :

$$\mu:\mathbb{B}\to\overline{\mathbb{R}}^+:B\mapsto\sum_{k\in B\cap\mathbb{Z}}\frac{1}{1+(k+1)^2}.$$

Déterminer si les fonctions suivantes sont intégrables :

$$f(x) = \begin{cases} +\infty & si \ x = 0 \\ \ln|x| & si \ 0 < |x| < 1 \\ 0 & sinon \end{cases}$$

$$g(x) = \begin{cases} \frac{1}{x^2 - 1} & si \ |x| < 1 \ et \ x \in \mathbb{Q} \\ \frac{1}{\sqrt{|x|}} & si \ |x| < 1 \ et \ x \in \mathbb{Q}^{\mathbb{C}} \\ \frac{1}{x^2} & si \ |x| \geqslant 1 \end{cases}$$

$$h(x) \equiv 1$$

pour les mesures \mathcal{L} et μ comme défini ci-dessus (pour f et h).

Exercice 6.3. Soient (X, \mathcal{A}, μ) un espace mesuré et $(f_k)_{k \ge 1}$ une suite de fonctions mesurables telles que :

$$f_1 \geqslant f_2 \geqslant f_3 \geqslant \ldots \geqslant 0.$$

On définit $f\coloneqq \lim_{k\to +\infty} f_k$ la limite point par point. Mq si $f_1\in L^1(X,\mathcal{A},\mu)$, alors :

$$\lim_{k \to +\infty} \int_{X} f_k \, d\mu = \int_{X} f \, d\mu.$$

Donner un contre-exemple avec $f_1 \notin L^1(X, A, \mu)$.

Exercice 6.4. Supposons $\mu(X) \lneq +\infty$. Soit $(f_k)_{k\geqslant 0}$ une suite de fonctions mesurables positives sur X telles que $f_k \xrightarrow[k \to +\infty]{CVU \ sur \ X} f$. Mq $si \ \forall k\geqslant 0$: $f_k \in L^1(X,\mathcal{A},\mu)$, alors:

$$f \in L^1(X, \mathcal{A}, \mu) \qquad \text{et} \qquad \lim_{k \to +\infty} \int_X f_k \, d\mu = \int_X f \, d\mu.$$

Exercice 6.5. On définit pour $k \ge 0$:

$$\alpha_k \coloneqq \int_0^k \left(1 - \frac{x}{k}\right)^k exp(x/2) \, dx \qquad \text{ et } \qquad \beta_k \coloneqq \int_0^k \left(1 + \frac{x}{k}\right)^k exp(-2x) \, dx.$$

 $\textit{Calculer} \ \alpha \coloneqq \lim_{k \to +\infty} \alpha_k \ \textit{et} \ \beta \coloneqq \lim_{k \to +\infty} \beta_k.$

Exercice 6.6. Soit $f \in L^1(X, \mathcal{A}, \mu)$. Mq:

$$\forall \epsilon > 0: \exists \delta > 0 \, \text{s.t.} \, \forall A \in \mathcal{A}: \mu(A) < \delta \Rightarrow \int_{A} |f| \, d\mu < \epsilon.$$

Exercice 7.1. *Soit* $f : [a, b] \rightarrow \mathbb{R}$ *bornée. Mq :*

1. si f est Riemann-intégrable, alors f est Lebesgue-intégrable et :

$$\int_{\alpha}^{b} f(x) dx = \int_{[a,b]} f d\mathcal{L}.$$

2. les fonctions h et H définies ci-dessous sont bien définies et $h \le f \le H$ sur [a,b]:

$$h(x) = \lim_{\delta \to 0} \inf_{|y-x| < \delta} f(y),$$

$$H(x) = \lim_{\delta \to 0} \sup_{|y-x| < \delta} f(y).$$

- 3. f est continue en x ssi H(x) = h(x).
- 4. H et h sont Lebesgue-mesurables et :

$$\int_{[\mathfrak{a},b]} H \, d\mathcal{L} = \inf_P U(f;P) \qquad \text{et} \qquad \int_{[\mathfrak{a},b]} h \, d\mathcal{L} = \sup_P L(f;P).$$

5. En déduire que f est Riemann-intégrable ssi l'ensemble des discontinuités de f est négligeable.

Exercice 7.2.

1. Mq si $f: [a, +\infty) \to \mathbb{R}$ est Riemann-intégrable et bornée sur[a, b] pour tous b > a, alors:

$$\int_{[\alpha,+\infty)} f \, d\mathcal{L} = \int_{\alpha}^{+\infty} f(x) \, dx.$$

2. Mq si $f:[a,b] \to \mathbb{R}$ est Riemann-intégrable et bornée sur [c,b] pour tous $c \in (a,b)$, alors :

$$\int_{[a,b]} f \, d\mathcal{L} = \int_a^b f(x) \, dx.$$

Exercice 7.3. \mathbb{Q} *est dénombrable donc* $\mathbb{Q} \cap [0,1]$ *l'est aussi. Donc* $\mathbb{Q} \cap [0,1] = \{q_k\}_{k \geqslant 0}$. *Pour* $k \geqslant 0$, *on définit :*

$$f_k:[0,1]\to\mathbb{R}:x\mapsto\begin{cases}1 & \textit{si}\ x\in\{q_\ell\}_{\ell=0}^k\\0 & \textit{sinon}.\end{cases}$$

1. $Mq \ \forall k \geqslant 0$: f_k est Riemann-intégrable et déterminer:

$$\int_0^1 f_k(x) dx.$$

- 2. $Mq f_k \xrightarrow[k \to +\infty]{\text{CVS sur } [0,1]} f$. Que peut-on en déduire?
- 3. Mq f est Lebesgue-intégrable et vérifier les hypothèses du théorème de la convergence dominée.

9

Exercice 8.1. *Soit* (X, A, μ) *un espace mesuré.*

1. Si $\mu(X) \lessgtr +\infty$, mq si p et q sont des réels tels que $1 \leqslant q \lessgtr p \lessgtr +\infty$, alors :

$$L^{\infty}(X,\mathcal{A},\mu)\subseteq L^{p}(X,\mathcal{A},\mu)\subset L^{q}(X,\mathcal{A},\mu)\subset L^{1}(X,\mathcal{A},\mu).$$

2. Considérons la fonction suivante :

$$u: \mathbb{R} \to \mathbb{R}: x \mapsto egin{cases} x^{rac{-1}{q}} & \textit{si } x \geqslant 1 \\ 0 & \textit{sinon}. \end{cases}$$

 $Mq u \in L^p(\mathbb{R}) \setminus L^q(\mathbb{R}).$

3. Considérons la fonction suivante :

$$v: \mathbb{R} \to \mathbb{R}: x \mapsto egin{cases} x^{\frac{-1}{p}} & \textit{si } x \in (0, 1] \\ 0 & \textit{sinon}. \end{cases}$$

 $Mq u \in L^q(\mathbb{R}) \setminus L^p(\mathbb{R}).$

Exercice 8.2 (Inégalité de Chebycshev). Soient (X, \mathcal{A}, μ) un espace mesuré et $f: X \to [0, +\infty)$ une application mesurable. Mq

$$\forall \alpha>0: \mu\left(\left\{x\in X \text{ s.t. } f(x)\geqslant\alpha\right\}\right)\leqslant \frac{1}{\alpha}\left\lceil f\,d\mu.\right\rceil$$

De plus, si $\Phi: \mathbb{R}^+ \to \mathbb{R}^+$ est une application mesurable croissante, alors :

$$\forall \alpha > 0: \mu\left(\left\{x \in X \text{ s.t. } f(x) \geqslant \alpha\right\}\right) \leqslant \frac{1}{\Phi(\alpha)} \int \Phi(f(x)) \, d\mu(x).$$

Exercice 8.3. Soient (X, A, μ) un espace mesuré et $f: X \to \mathbb{R}$ une application mesurable.

1. Mq:

$$\lim_{\mathfrak{p}\to +\infty}\inf \|f\|_{L^{\mathfrak{p}}}\geqslant \|f\|_{L^{\infty}},$$

et donner un exemple où l'inégalité est infinie à gauche et finie à droite.

- 2. Supposions qu'il existe $q \in [1, +\infty)$ s.t. $f \in L^q(X)$.
 - (a) Mq f est finie μ-ae.
 - (b) Supposons que $0 \leq \|f\|_{L^{\infty}} \leq +\infty$. Mq si $\mathfrak{p} \in (\mathfrak{q}, +\infty)$, alors :

$$\|f\|_{L^{p}} \leq \|f\|_{L^{\infty}}^{1-\frac{q}{p}} \cdot \|f\|_{L^{q}}^{\frac{q}{p}}$$

et en déduire que :

$$\limsup_{p\to+\infty} \|f\|_{L^p} \leqslant \|f\|_{L^\infty}.$$

(c) Conclure.

Exercice 8.4 (Inégalité d'interpolation). Soient (X,\mathcal{A},μ) un espace mesuré, $1\leqslant p\leqslant r\leqslant q\leqslant +\infty$ et

$$\theta \in (0,1)$$
 tels que :

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}.$$

 $r \quad p \quad q$ $\textit{Mq si } u \in L^p(X,\mathcal{A},\mu) \cap L^q(X,\mathcal{A},\mu), \textit{alors } u \in L^r(X,\mathcal{A},\mu) \textit{ et } :$

$$\|u\|_{L^r} \leqslant \|u\|_{L^p}^{\theta} \cdot \|u\|_{L^q}^{1-\theta}$$
.

Remarque : En corolaire de ce théorème, on déduit que si $f \in L^1 \cap L^\infty$ (i.e. si f est μ -intégrable et essentiel-lement bornée), alors $f \in L^p$ pour tout p. Et ça, c'est chouette.

Exercice 9.1. Soient (X, \mathcal{A}, μ) un espace mesuré, $p \in [1, +\infty)$, $(f_k)_{k\geqslant 0} \in L^{p\mathbb{N}}$ s.t. $f_k \xrightarrow[k \to +\infty]{} f$. Mq les deux assertions suivantes sont équivalentes :

a)
$$\|\mathbf{f} - \mathbf{f}_{\mathbf{k}}\|_{L^p} \xrightarrow[\mathbf{k} \to +\infty]{} 0.$$

b)
$$f \in L^p \ et \|f_k\|_{L^p} \xrightarrow[k \to +\infty]{} \|f\|_{L^p}.$$

Exercice 9.2 (Lemme de Brézis-Lieb). Soient X un ouvert de \mathbb{R}^n , $\mathfrak{p} \in [1, +\infty)$ et $(\mathfrak{u}_k)_{k\geqslant 0} \in L^p(X, \mathcal{B}(X), \mathcal{L})^\mathbb{N}$ où \mathcal{L} est la mesure de Lebesgue sur X. On suppose que $(\mathfrak{u}_k)_k$ est bornée dans L^p et que $\mathfrak{u}_k \xrightarrow[k \to +\infty]{\mathcal{L}\text{-}ae} \mathfrak{u}$. Montrons que $\mathfrak{u} \in L^p(X)$ et :

$$\lim_{k \to +\infty} \left(\! \left\| u_k \right\|_{L^p}^p - \! \left\| u - u_k \right\|_{L^p}^p \right) = \! \left\| u \right\|_{L^p}^p.$$

1. Pour tout $\varepsilon > 0$, mq $\exists C_{\varepsilon} = C(\varepsilon, p) > 0$ s.t. $\forall \alpha, b \in \mathbb{R}$:

$$\left\|\alpha+b\right|^p-\left|\alpha\right|^p-\left|b\right|^p\right|\leqslant \epsilon |\alpha|^p+C_\epsilon |b|^p\,.$$

2. $\lambda \epsilon > 0$ fixé, on pose :

$$f_k^\epsilon \coloneqq \left(\left\| u_k \right|^p - \left| u - u_k \right|^p - \left| u \right|^p \right| - \epsilon \left| u_k - u \right|^p \right)^+.$$

Calculer:

$$\lim_{k\to+\infty}\int f_k^\varepsilon\,d\mathcal{L}.$$

3. Conclure.

Exercice 9.3. *Soit* $p \in [1, +\infty)$ *. Montrer les affirmations suivantes :*

- 1. L'espace des fonctions simples est dense dans $L^p(\mathbb{R}^n)$.
- 2. L'espace des fonctions en escalier est dense dans $L^p(\mathbb{R}^n)$.
- 3. L'espace des fonctions continues à support compact $C_c^0(\mathbb{R}^n)$ est dense dans $L^p(\mathbb{R}^n)$.
- 4. Si $f \in L^p(\mathbb{R}^n)$ et $h \in \mathbb{R}^n$, alors :

$$\|f(\cdot+h)-f(\cdot)\|_{L^p} \xrightarrow[|h|\to+\infty]{} 0.$$

Que dire du cas $p = +\infty$?

Exercice 10.1. Soient (X, \mathcal{A}, μ) un espace mesuré, $(f_k)_{k\geqslant 0}$ suite d'applications mesurables de X dans \mathbb{R} et $p\in [1,+\infty]$. Justifier les affirmations suivantes :

- 1. La convergence μ -ae n'implique pas la convergence en L^p , sauf si la suite $(f_k)_k$ est bornée par $g \in L^p$.
- 2. La convergence en L^p implique la convergence en mesure.
- 3. La convergence μ -ae n'implique pas la convergence en mesure, sauf si $\mu(X) \leq +\infty$.
- 4. La convergence en mesure n'implique pas la convergence μ -ae, mais seulement la convergence μ -ae d'une sous-suite.
- 5. La convergence en mesure n'implique pas la convergence en L^p , sauf si la suite $(f_k)_k$ est bornée par $g \in L^p$.
- 6. La convergence presque uniforme implique la convergence en mesure.
- 7. La convergence μ -ae n'implique pas la convergence presque uniforme.
- 8. Si $\mu(X) \leq +\infty$, la convergence μ -ae implique la convergence presque uniforme.

Exercice 11.1. On considère l'espace mesuré $([0,1]^2, \mathcal{M}, \mu)$ avec $\mu = \mathcal{L}_1 \times \#$ où # est la mesure de comptage. On pose $\Delta \coloneqq \{(x,x)\}_{x \in [0,1]}$. Calculer :

$$\int_{[0,1]} \left(\int_{[0,1]} \chi_{\Delta}(x,y) \, d\mathcal{L} \right) d\#$$

et

$$\int_{[0,1]} \left(\int_{[0,1]} \chi_{\Delta}(x,y) \, d\# \right) d\mathcal{L}$$

Ceci contredit-il le théorème de Tonelli (Fubini pour les fonctions positives)?

Exercice 11.2. *Soit la fonction suivante :*

$$f:[-1,1]^2\to\mathbb{R}:(x,y)\mapsto\begin{cases} \frac{xy}{(x^2+y^2)^2} & \textit{si}\ (x,y)\neq (0,0)\\ 0 & \textit{sinon}. \end{cases}$$

- 1. Vérifier que f est Lebesgue-mesurable.
- 2. Calculer:

$$I := \int_{[-1,1]} \int_{[-1,1]} f(x,y) \, dx \, dy$$

et:

$$J := \int_{[-1,1]} \int_{[-1,1]} f(x,y) \, dy \, dx.$$

3. La fonction f est-elle intégrable sur $[-1, 1]^2$?

Exercice 11.3. *Soit l'espace mesuré* $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \#)$ *. On définit :*

$$f: \mathbb{N} \times \mathbb{N} \to [-1, 1]: (\mathfrak{m}, \mathfrak{n}) \mapsto \begin{cases} 1 & \textit{si } \mathfrak{m} = \mathfrak{n} \\ -1 & \textit{si } \mathfrak{m} = \mathfrak{n} + 1 \\ 0 & \textit{sinon}. \end{cases}$$

- 1. f est-elle $\# \otimes \#$ intégrable?
- 2. Calculer:

$$\int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) d\#(m) d\#(n) \qquad et \qquad \int_{\mathbb{N}} \int_{\mathbb{N}} f(m,n) d\#(n) d\#(m).$$

3. Le résultat est-il compatible avec le théorème de Fubini?

Exercice 11.4. Déterminer la valeur de :

$$J = \int_0^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x.$$

Exercice 12.1. Soient (X, A, μ) , un espace mesuré et $g: X \to \mathbb{R}^+$, une application mesurable. On définit la mesure $v := g \cdot \mu$. Mq si $f: X \to \mathbb{R}^+$ est une application mesurable, alors :

$$\int_X f d\nu = \int_X f g d\mu.$$

En conclure que le résultat est valable pour $f \in L^1(\nu)$.

Exercice 12.2 (Dérivées de Radon-Nikodym). Soient μ, ν et m des mesures finies sur (X, \mathcal{A}) . Montrer les affirmations suivantes :

1. $Si \mu \ll m \ et \nu \ll m$, $alors \mu + \nu \ll m \ et$:

$$\frac{d(\mu+\nu)}{dm} \stackrel{\text{m-ae}}{=} \frac{d\mu}{dm} + \frac{d\nu}{dm}.$$

2. $Si \mu \ll \nu et \nu \ll m$, alors $\mu \ll m et$:

$$\frac{d\mu}{dm} \stackrel{\text{m-ae}}{=} \frac{d\mu}{d\nu} \frac{d\nu}{dm}.$$

3. $Si \nu \ll \mu et \mu \ll \nu$, alors:

$$\frac{d\mu}{d\nu} \stackrel{\text{m-ae}}{=} \frac{d\nu}{d\mu}^{-1}.$$

4. $Si \nu \ll \mu$ et f est ν -intégrable, alors :

$$\int f\,d\nu = \int f \frac{d\nu}{d\mu}\,d\mu.$$

Exercice 12.3. Pour i=1,2, soient μ_i, ν_i mesures finies sur (X,\mathcal{A}) avec $\mu_i \ll \nu_i$. Posons $\nu \coloneqq \nu_1 \times \nu_2$ et $\mu \coloneqq \mu_1 \otimes \mu_2$ les mesures produits sur $(X \times X, \mathcal{A} \otimes \mathcal{A})$. Montrer les affirmations suivantes :

1. $\mu \ll \nu$.

2.

$$\frac{d\mu}{d\nu}(x,y)\stackrel{\nu\text{-ae}}{=} \frac{d\mu_1}{d\nu_1}(x)\frac{d\mu_2}{d\nu_2}(y).$$