Straubing, November 4, 2008

TEST-REPORT

No. 50255-081220-1 (Edition 1)

for

BM-CS5

Heart Rate Monitor with Transmitter

Applicant: BM innovations GmbH

Test Specifications: FCC Code of Federal Regulations,

CFR 47, Part 15,

Sections 15.205, 15.207, 15.215 and 15.249

Industry Canada Radio Standards

Specifications

RSS-Gen Issue 2, Section 7.2.2 and RSS-210 Issue 7, Sections 2.2, A2.9

(Category I Equipment)

Note:

The test data of this report is related only to the individual item which has been tested. This report shall not be reproduced except in full extent without the written approval of the testing laboratory.

Table of Contents

1	1 Description of the Equipment Under Test (EUT)						
2	2 Administrative Data						
3	3 Identification of the Test Laboratory						
4		Su	mmary	6			
5		Ор	eration Mode and Configuration of EUT	7			
6		Me	easurement Procedures	8			
	6.1	1	Bandwidth Measurements	8			
	6.2	2	Pulse Train Measurement	9			
	6.3	3	Radiated Emission Measurement 9 kHz to 30 MHz	10			
	6.4	4	Radiated Emission in Fully or Semi Anechoic Room	12			
	6.5	5	Radiated Emission at Open Field Test Site	14			
7		Ph	otographs Taken During Testing	15			
8		Te	st Results	20			
	8.1	1	Occupied Bandwidth	22			
	8.2	2	Bandwidth of the Emission	28			
	8.3	3	Designation of Emissions	33			
	8.4	4	Pulse Train Measurement	34			
	8.5	5	Restricted Bands of Operation	39			
	8.6	3	Radiated Emission Measurement 9 kHz to 30 MHz	41			
	8.7	7	Radiated Emission Measurement 30 MHz to 25 GHz				
	8.8	3	Exposure of Humans to RF Fields	47			
9		Re	ferenced Regulations	49			
10)	Revision History50					
11	1	Ch	arts taken during testing	51			

1 Description of the Equipment Under Test (EUT)

Type designation¹:
Parts²:
Serial numbers:
US100090
US100091
Manufacturer:
BM innovations GmbH
Type of equipment:
Version:
FCC ID:
Additional parts/accessories:

echnical data of EUT				
Application frequency range:	902 - 928 MHz			
Frequency range:	914.35 - 917.65 MHz			
Operating frequencies:	914.34 MHz 917.65 MHz			
Type of modulation:	GFSK			
Pulse train:	100 ms			
Pulse width:	0.51 ms	0.51 ms		
Number of RF-channels:	34			
Channel spacing:	100 kHz			
Designation of emissions ³ :	440KF1D			
Type of antenna:	Integrated on printed b	oard		
Size/length of antenna:	65 mm			
Connection of antenna:	detachable	⊠ not detachable		
Type of power supply:	Battery supply			
Specifications for power supply:	nominal voltage: minimum voltage: maximum voltage:	3.00 V 2.55 V 3.00 V		

¹ Type designation of the system if EUT consists of more than one part.

² Type designations of the parts of the system, if applicable.

³ Also known as "Class of Emission".

2 **Administrative Data**

Applicant (full address): BM innovations GmbH

> Mainburger Straße 3 D-85413 Hörgertshausen

Contact person: Mr. Richard Mayerhofer

Contract identification:

Application details

Receipt of EUT: October 27, 2008 Date(s) of test: October 2008

Mr. Richard Mayerhofer representing the applicant attended testings on October 27, 2008. Note(s):

Report details

Report number: 50255-081220-1

Edition: 1

Issue date: November 4, 2008

3 Identification of the Test Laboratory

Details of the Test Laboratory

Company name: Senton GmbH EMI/EMC Test Center

Address: Aeussere Fruehlingstrasse 45

D-94315 Straubing

Germany

Laboratory accreditation: DAR-Registration No. DAT-P-171/94-02

FCC test site registration number 90926 Industry Canada test site registration: 3050A-1

Contact person: Mr. Johann Roidt

Phone: (+49) (0)9421 5522-0 Fax: (+49) (0)9421 5522-99

Summary

Summary of test results

The tested sample complies with the requirements set forth in the

Code of Federal Regulations CFR 47, Part 15, Sections 15.205, 15.215 and 15.249

of the Federal Communication Commission (FCC) and the

Radio Standards Specifications RSS-210 Issue 7, Sections 2.2, A2.9 (Category I Equipment)

of Industry Canada (IC).

Responsible for test report:

Personnel involved in this report			
Laboratory Manager:			
	He Col		
	Mr. Johann Roidt		
Responsible for testing:			
	Skindl Martin		
	Mr. Martin Steindl		
Responsible for test report:	Mr. Martin Steindl		

5 Operation Mode and Configuration of EUT

Operation Modes

The applicant provided two test samples: one transmitting on the lowest, one transmitting on the highest channel.

Configuration of EUT

The EUT was configured as stand alone device.

List	List of ports and cables					
Port	Description	Classification ⁴	Cable type	Cable length		
	Not applicable					

List	List of devices connected to EUT				
Item	Description	Type Designation	Serial no. or ID	Manufacturer	
	Not applicable				

List	List of support devices				
Item	Description	Type Designation	Serial no. or ID	Manufacturer	
	Not applicable				

_

⁴ Ports shall be classified as ac power, dc power or signal/control port

6 Measurement Procedures

6.1 Bandwidth Measurements

Measurement Procedure:				
Rules and specifications:	CFR 47 Part 2, section 2.202(a) CFR 47 Part 15, section 15.215(c) IC RSS-Gen Issue 2, sections 4.6.1 and 4.6.2 IC RSS-210 Issue 7, section A1.1.3 ANSI C63.4, annex H.6			
Guide:	ANSI C63.4 / IC RSS-Gen Issue 2, sections 4.6.1 and 4.6.2			
Measurement setup:	☐ Conducted: See below ☐ Radiated: Radiated Emission in Fully or Semi Anechoic Room (6.4)			

If antenna is detachable bandwidth measurements shall be performed at the antenna connector (conducted measurement) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The RF output terminals are connected to a spectrum analyzer. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

If radiated measurements are performed the same test setups and instruments are used as with radiated emission measurements for the appropriate frequency range.

The analyzer settings are specified by the test description of the appropriate test record(s).

6.2 Pulse Train Measurement

Measurement Procedure:				
Rules and specifications:	ecifications: CFR 47 Part 15, section 15.35(c) IC RSS-Gen Issue 2, section 4.5			
Guide:	ANSI C63.4			
Measurement setup:	☐ Conducted: See below (direct connection or via test fixture) ☐ Radiated: Radiated Emission in Fully or Semi Anechoic Room (6.4)			

If antenna is detachable pulse train measurements shall be performed at the antenna connector (conducted measurement). The RF output terminals are connected to a spectrum analyzer or to a diode detector in combination with an oscilloscope. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

If antenna is not detachable a test fixture may be used instead of direct connection to RF output terminals. If radiated measurements are performed similar test setups and instruments are used as with radiated emission measurements for the appropriate frequency range. However, the spectrum analyzer may be replaced by a diode detector connected to an oscilloscope.

6.3 Radiated Emission Measurement 9 kHz to 30 MHz

Measurement Procedure:				
Rules and specifications:	CFR 47 Part 15, sections 15.215(b) and 15.249(d) IC RSS-210 Issue 7, section A2.9(b)			
Guide:	ANSI C63.4			

Radiated emission in the frequency range 9 kHz to 30 MHz is measured using an active loop antenna. First the whole spectrum of emission caused by the equipment is recorded at a distance of 3 meters in a fully or semi anechoic room with the detector of the spectrum analyzer or EMI receiver set to peak. This configuration is also used for recording the spectrum of intentional radiators.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

If worst case emission of the EUT cannot be recorded with EUT in standard position and loop antenna in vertical polarization the EUT (or the radiating part of the EUT) is rotated by 90 degrees instead of changing the loop antenna to horizontal polarization. This procedure is selected to minimize the influence of the environment (e.g. effects caused by the floor especially with longer distances).

Final measurement is performed at a test distance D of 30 meters using an open field test site. In case the regulation requires testing at other distances, the result is extrapolated by either making measurements at an additional distance D of 10 meters to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). In cases of very low emissions measurements are performed at shorter distances and results are extrapolated to the required distance. The provisions of CFR 47 Part 15 sections 15.31(d) and (f)(2) apply. According to CFR 47 Part 15 section 15.209(d) final measurement is performed with detector function set to quasi-peak except for the frequency bands 9 to 90 kHz and 110 to 490 kHz where, for non-pulsed operation, average detector is employed.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
\boxtimes	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
\boxtimes	Test receiver	ESHS 10	860043/016	Rohde & Schwarz
\boxtimes	Preamplifier	CPA9231A	3393	Schaffner
\boxtimes	Loop antenna	HFH2-Z2	882964/1	Rohde & Schwarz
\boxtimes	Fully anechoic room	No. 2	1452	Albatross Projects
	Semi-anechoic room	No. 3	1453	Siemens
\boxtimes	Open field test site	EG 1	1450	Senton

6.4 Radiated Emission in Fully or Semi Anechoic Room

Measurement Procedure:				
Rules and specifications:	CFR 47 Part 15, sections 15.215(b) and 15.249 IC RSS-210 Issue 7, section A2.9			
Guide:	ANSI C63.4			

Radiated emission in fully or semi anechoic room is measured in the frequency range from 30 MHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33.

Measurements are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 100 kHz (below 1 GHz) or 1 MHz (above 1 GHz).

Testing up to 1 GHz is performed with a linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna"). For testing above 1 GHz horn antennas are used.

All tests below 18 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance is reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For final testing below 1 GHz an open field test-site is used and the plots recorded in the fully or semi anechoic room are indicated as prescans.

Fully or semi anechoic room

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
\boxtimes	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	EMI test receiver	ESPI7	101018	Rohde & Schwarz
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
\boxtimes	Preamplifier	CPA9231A	3393	Schaffner
	Preamplifier	R14601		Advantest
\boxtimes	Preamplifier 1-8 GHz	AFS3-00100800-32-LN	847743	Miteq
	Preamplifier 0.5-8 GHz	AMF-4D-005080-25-13P	860149	Miteq
\boxtimes	Preamplifier 8-18 GHz	ACO/180-3530	32641	CTT
	External Mixer	WM782A	845881/005	Tektronix
	Harmonic Mixer Accessories	FS-Z30	843389/007	Rohde & Schwarz
\boxtimes	Trilog broadband antenna	VULB 9163	9163-188	Schwarzbeck
\boxtimes	Horn antenna	3115	9508-4553	EMCO
	Horn antenna	3160-03	9112-1003	EMCO
	Horn antenna	3160-04	9112-1001	EMCO
\boxtimes	Horn antenna	3160-05	9112-1001	EMCO
\boxtimes	Horn antenna	3160-06	9112-1001	EMCO
\boxtimes	Horn antenna	3160-07	9112-1008	EMCO
	Horn antenna	3160-08	9112-1002	EMCO
	Horn antenna	3160-09	9403-1025	EMCO
	Horn antenna	3160-10	399185	EMCO
\boxtimes	Fully anechoic room	No. 2	1452	Albatross Projects
	Semi-anechoic room	No. 3	1453	Siemens

6.5 Radiated Emission at Open Field Test Site

Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, sections 15.215(b) and 15.249 IC RSS-210 Issue 7, section A2.9	
Guide:	ANSI C63.4	

Radiated emission at open field test site is measured in the frequency range 30 MHz to 1 GHz using a biconical antenna up to 300 MHz and a logarithmic periodic antenna above. The measurement bandwidth of the test receiver is set to 120 kHz with quasi-peak detector selected.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in the fully anechoic room. EUT is rotated all around and receiving antenna is raised and lowered within 1 meter to 4 meters to find the maximum levels of emission. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade.

Ground plane

Test instruments used:

Used	Туре		Model	Serial No. or ID	Manufacturer
\boxtimes	EMI receiver		ESVP	881120/024	Rohde & Schwarz
\boxtimes	Biconical antenna	EG 1	HK 116	842204/001	Rohde & Schwarz
\boxtimes	Log. per. antenna	EG 1	HL 223	841516/023	Rohde & Schwarz
\boxtimes	Open field test site		EG 1	1450	Senton

7 Photographs Taken During Testing

Test setup for radiated emission measurement 9 kHz - 30 MHz

Test setup for radiated emission measurement (fully anechoic room)

Test setup for radiated emission measurement (open field test site)

Test setup for radiated emission measurement (open field test site) - continued -

8 Test Results

FCC CFR 47 Parts 2 and 15				
Section(s)	Test	Page	Result	
2.1046(a)	Conducted output power		Not applicable	
2.202(a)	Occupied bandwidth	22	Recorded	
15.215(c)	Bandwidth of the emission	28	Test passed	
2.201, 2.202	Class of emission	33	Calculated	
15.35(c)	Pulse train measurement for pulsed operation	34	Recorded	
15.205(a)	Restricted bands of operation	39	Test passed	
15.207	Conducted AC powerline emission 150 kHz to 30 MHz		Not applicable	
15.205(b) 15.249	Radiated emission 9 kHz to 30 MHz	41	Test passed	
15.205(b) 15.215(b) 15.249	Radiated emission 30 MHz to 10 GHz	44	Test passed	

IC RSS-Gen Issue 2			
Section(s)	Test	Page	Result
4.8	Transmitter output power (conducted)		Not applicable
4.6.1	Occupied Bandwidth	22	Recorded
3.2(h), 8	Designation of emissions	33	Calculated
4.5	Pulsed operation	34	Recorded
7.2.2	Transmitter AC power lines conducted emissions 150 kHz to 30 MHz		Not applicable
5.5	Exposure of Humans to RF Fields	47	Exempted from SAR and RF evaluation

IC RSS-210 Issue 7				
Section(s)	Test	Page	Result	
2.2(a)	Restricted bands and unwanted emission frequencies	39	Test passed	
2.2(b)(c), 2.6 A2.9	Unwanted emissions 9 kHz to 30 MHz	41	Test passed	
2.2(b)(c), 2.6 A2.9	Unwanted emissions 30 MHz to 10 GHz	44	Test passed	

8.1 Occupied Bandwidth

Rules and specifications:	CFR 47 Part 2, section 2.202(a) ANSI C63.4, annex H.6		
Guide:	ANSI C63.4		
Description:	The occupied bandwidth according to CFR 47 Part 2, section 2.202(a), is measured as the 99% emission bandwidth, i.e. below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5% of the total mean power radiated by a given emission.		
	The occupied bandwidth according to ANSI C63.4, annex H.6; is measured as the frequency range defined by the points that are 26 dB down relative to the maximum level of the modulated carrier.		
	The resolution bandwidth of the spectrum analyzer shall be set to a value greater than 5.0% of the allowed bandwidth. If no bandwidth specifications are given, the following guidelines are used:		
	Fundamental frequency	Minimum resolution bandwidth	
	9 kHz to 30 MHz	1 kHz	
•	30 MHz to 1000 MHz 10 kHz		
	1000 MHz to 40 GHz 100 kHz		
	The video bandwidth shall be at least three times greater than the resolution bandwidth.		
Measurement procedure:	Bandwidth Measurements (6.1)		

Occupied Bandwidth (99 %):

Comment: Lowest frequency
Date of test: October 27, 2008

Test site: Fully anechoic room, cabin no. 2

Date: 27.OCT.2008 14:23:23

Occupied Bandwidth (99 %): 440 kHz

Occupied Bandwidth (99 % - continued):

Comment: Highest frequency
Date of test: October 27, 2008

Test site: Fully anechoic room, cabin no. 2

Date: 27.OCT.2008 14:35:44

Occupied Bandwidth (99 %): 416 kHz

Occupied Bandwidth (continued)

Rules and specifications:	IC RSS-Gen Issue 2, section 4.6.1
Guide:	IC RSS-Gen Issue 2, section 4.6.1
Description:	If not specified in the applicable RSS the occupied bandwidth is measuredas the 99% emission bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is also recorded. The span between the two recorded frequencies is the occupied bandwidth.
Measurement procedure:	Bandwidth Measurements (6.1)

Occupied Bandwidth (99 %):

Comment: Lowest frequency
Date of test: October 27, 2008

Test site: Fully anechoic room, cabin no. 2

Date: 27.OCT.2008 14:23:23

Occupied Bandwidth (99 %): 440 kHz

Occupied Bandwidth (99 %):

Comment: Highest frequency
Date of test: October 27, 2008

Test site: Fully anechoic room, cabin no. 2

Date: 27.OCT.2008 14:35:44

Occupied Bandwidth (99 %): 416 kHz

8.2 Bandwidth of the Emission

Rules and specifications:	CFR 47 Part 15, section 15.215(c)	CFR 47 Part 15, section 15.215(c)		
Guide:	ANSI C63.4	ANSI C63.4		
Description:	The 20 dB bandwidth of the emission is measured as the frequency range defined by the points that are 20 dB down relative to the maximum level of the modulated carrier. For intentional radiators operating under the alternative provisions to the general emission limits the requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation. The resolution bandwidth of the spectrum analyzer shall be set to a value greater than 5.0% of the allowed bandwidth. If no bandwidth			
	specifications are given, the following			
	Fundamental frequency	Minimum resolution bandwidth		
	9 kHz to 30 MHz	1 kHz		
	30 MHz to 1000 MHz	30 MHz to 1000 MHz 10 kHz		
	1000 MHz to 40 GHz 100 kHz			
	The video bandwidth shall be at lea resolution bandwidth.	The video bandwidth shall be at least three times greater than the resolution bandwidth.		
Measurement procedure:	Bandwidth Measurements (6.1)	Bandwidth Measurements (6.1)		

Comment:

Date of test:

Test site:

Lowest frequency
October 27, 2008
Fully anechoic room, cabin no. 2

Date: 27.0CT.2008 14:26:21

Permitted frequency band:	902 - 928 MHz	
20 dB bandwidth:	448 kHz	
Carrier frequency stability: Maximum frequency tolerances:	☐ specified	⊠ not specified
Bandwidth of the emission:		within permitted frequency band⁵: ⊠ yes □ no
Test Result:	Test passed	

⁵ If a frequency stability is not specified, it is recommended that the fundamental emission is kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Comment: Highest frequency
Date of test: October 27, 2008
Test site: Fully anechoic room, cabin no. 2

Date: 27.0CT.2008 14:35:21

Permitted frequency band:	902 - 928 MHz	
20 dB bandwidth:	440 kHz	
Carrier frequency stability: Maximum frequency tolerances:	specified	⊠ not specified
Bandwidth of the emission:		within permitted frequency band ⁶ : ☑ yes ☐ no
Test Result:	Test passed	

⁶ If a frequency stability is not specified, it is recommended that the fundamental emission is kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

8.3 Designation of Emissions

Rules and specifications:	CFR 47 Part 2, sections 2.201 and 2.202 IC RSS-Gen Issue 2, sections 3.2(h) and 8	
Guide:	ANSI C63.4 / TRC-43	

Type of modulation:	Frequency Shift Keying (FSK)
---------------------	------------------------------

B _n = Necessary Bandwidth	B _n = 2DK + B		
D = Peak deviation	D = 95 kHz		
K = Overall numerical factor	K = 1		
B = Modulation rate	B = 125 kHz = 250 kbps		
Calculation:	$B_n = 2 \cdot (95 \text{ kHz}) \cdot 1 + 2 \cdot (125 \text{ kHz}) = 440 \text{ kHz}$		

Designation of Emissions:

8.4 Pulse Train Measurement

Rules and specifications:	CFR 47 Part 15, section 15.35(c) IC RSS-Gen Issue 2, section 4.5	
Guide:	ANSI C63.4	
Measurement procedure:	Pulse Train Measurement (6.2)	

Comment:	
Date of test:	October 27, 2008
Test site:	Fully anechoic room, cabin no. 2

Total Pulse Train:

Date: 27.OCT.2008 15:56:14

Worst case 0.1 second interval:

Date: 27.OCT.2008 15:55:38

Calculation of pulse train correction:

TX-On-Time (worst case):	T _{on}	=	0.510 ms
Pulse Train Time:	T_{pt}	=	100 ms
Period Time:	T _{period}	=	100 ms
Pulse Train Correction:	C _{pt}	=	20 · Log(T _{on} / T _{period}) dB
		=	-45.8 dB
Puse Train Correction used	$C_{pt,\;used}$	=	-20 dB

Total Pulse Train:

Date: 27.OCT.2008 15:56:40

Worst case 0.1 second interval:

Date: 27.OCT.2008 16:02:59

Calculation of pulse train correction:

TX-On-Time (worst case):	T _{on}	=	0.510 ms
Pulse Train Time:	T_{pt}	=	100 ms
Period Time:	T _{period}	=	100 ms
Pulse Train Correction:	C _{pt}	=	20 · Log(T _{on} / T _{period}) dB
		=	-45.8 dB
Puse Train Correction used	$C_{pt,\;used}$	=	-20 dB

8.5 Restricted Bands of Operation

Rules and specifications:	CFR 47 Part 15, section 15.205(a) IC RSS-210 Issue 7, section 2.2(a)	
Guide:	ANSI C63.4	
Limit:	Only spurious emissions are permitted in any of the frequency bands listed in CFR 47 Part 15, section 15.205(a) or IC RSS-210 Issue 7, section 2.2(a).	
Measurement procedure:	Radiated Emission in Fully or Semi Anechoic Room (6.4)	

Comment:	
Date of test:	October 27, 2008
Test site:	Fully anechoic room, cabin no. 2
Test distance:	3 meters

Test Result:	Test passed	
--------------	-------------	--

Date: 27.OCT.2008 14:28:10

Date: 27.OCT.2008 14:33:35

Test Result: Test passed

8.6 Radiated Emission Measurement 9 kHz to 30 MHz

Rules and specifications:	CFR 47 Part 15, sections 15.215(b) and 15.249(d) IC RSS-210 Issue 7, section A2.9(b)			
Guide:	ANSI C63.4			
Limit:	Frequency of Emission (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance d (meters)
	0.009 - 0.490	2400/F(kHz)	67.6 - 20 · log(F(kHz))	300
	0.490 - 1.705	24000/F(kHz)	87.6 - 20 · log(F(kHz))	30
	1.705 - 30.000	30	29.5	30
	Additionally, the level of any unwanted emissions shall not exceed the level of the fundamental emission.			xceed the level
Measurement procedure:	Radiated Emission Measurement 9 kHz to 30 MHz (6.3)			

Test Result: Test passed	
--------------------------	--

Comment:	Lowest frequency
Date of test:	October 27, 2008
Test site:	Open field test site

Test Result: Test passed	
--------------------------	--

No emissions above noise level detected

Sample calculation of final values:

Extrapolation Factor (dB) = $(Log(d) - Log(d_1)) \cdot Extrapolation Factor (dB/decade)$ Final Value (dB μ V/m) = Reading Value d₁ (dB μ V) + Correction Factor (dB/m) + Extrapolation Factor (dB) + Pulse Train Correction (dB)

Note: Extrapolation factor (dB) and final value (dBµV/m) are relating to distance d.

Comment:	Highest frequency
Date of test:	October 27, 2008
Test site:	Open field test site

Test Result:	Test passed
--------------	-------------

No emissions above noise level detected

Sample calculation of final values:

Extrapolation Factor (dB) = $(Log(d) - Log(d_1)) \cdot Extrapolation Factor (dB/decade)$ Final Value (dB μ V/m) = Reading Value d₁ (dB μ V) + Correction Factor (dB/m) + Extrapolation Factor (dB) + Pulse Train Correction (dB)

Note: Extrapolation factor (dB) and final value (dBµV/m) are relating to distance d.

8.7 Radiated Emission Measurement 30 MHz to 10 GHz

Rules and specifications:	CFR 47 Part 15, sections 15.215(b) and 15.249 IC RSS-210 Issue 7, section A2.9		
Guide:	ANSI C63.4		
Limit:	Frequency of Emission (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)
	30 - 88	100	40.0
	88 - 216	150	43.5
	216 - 960	200	46.0
	Above 960	500	54.0
	Additionally, the level of any unwanted emissions shall not exceed the level of the fundamental emission.		
Measurement procedures:	Radiated Emission in Fully or Semi Anechoic Room (6.4) Radiated Emission at Open Field Test Site (6.5)		

Test Result:	Test passed

 Comment:
 Lowest frequency

 Date of test:
 October 27, 2008

 October 28, 2008

 Test site:
 Frequencies ≤ 1 GHz: Frequencies > 1 GHz: Fully anechoic room, cabin no. 2

 Test distance:
 3 meters

Test Result:	Test passed	
--------------	-------------	--

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
914.390	horizontal	Quasi-Peak	64.9	26.3		91.2	94.0	2.8
1828.000	vertical	Peak	12.8	31.4	-20.0	24.2	54.0	29.8
3658.000	horizontal	Peak	13.5	38.3	-20.0	31.7	54.0	22.3
5215.400	vertical	Peak	9.7	34.7	-20.0	24.4	54.0	29.7
5485.200	horizontal	Peak	8.9	34.9	-20.0	23.8	54.0	30.2
7227.100	vertical	Peak	8.4	39.0	-20.0	27.4	54.0	26.6
7316.400	horizontal	Peak	12.1	39.1	-20.0	31.1	54.0	22.9
8228.800	horizontal	Peak	17.3	43.2	-20.0	40.5	63.5	23.0
9143.200	vertical	Peak	10.4	43.8	-20.0	34.2	63.5	29.3
9146.800	horizontal	Peak	18.3	43.8	-20.0	42.1	63.5	21.4

Sample calculation of final values:

Final Value (dB μ V/m) = Reading Value (dB μ V) + Correction Factor (dB/m) + Pulse Train Correction (dB)

 Comment:
 Highest frequency

 Date of test:
 October 27, 2008

 October 28, 2008

 Test site:
 Frequencies ≤ 1 GHz: Open field test site Frequencies > 1 GHz: Fully anechoic room, cabin no. 2

 Test distance:
 3 meters

Test Result:	Test passed	
--------------	-------------	--

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
917.660	horizontal	Quasi-Peak	67.6	26.2		93.8	94.0	0.2
3676.000	horizontal	Peak	13.4	38.3	-20.0	31.7	54.0	22.3
5508.000	vertical	Peak	11.1	34.9	-20.0	26.0	54.0	28.0
7344.600	horizontal	Peak	13.1	39.1	-20.0	32.2	54.0	21.9
8257.600	horizontal	Peak	16.8	43.2	-20.0	40.0	63.5	23.5
9175.600	vertical	Peak	11.2	43.8	-20.0	35.1	63.5	28.4
9179.200	horizontal	Peak	20.5	43.8	-20.0	44.3	63.5	19.2

Sample calculation of final values:

Final Value (dB μ V/m) = Reading Value (dB μ V) + Correction Factor (dB/m) + Pulse Train Correction (dB)

8.8 Exposure of Humans to RF Fields

Rules and specifications:	IC RSS-Gen Issue 2, section 5.5
Guide:	IC RSS-102 Issue 2, section 2.5

Exposure of Humans to RF Fields	Applicable	Declared by applicant	Measured	Exemption	
The antenna is					
detachable					
The conducted output power (CP in watts) is measured at the antenna connector:					
$CP = \dots$ W					
The effective isotropic radiated power (EIRP in watts) is calculated using					
the numerical antenna gain: $G = \dots$ \mathbf{W}					
\Box the field strength ⁷ in V/m: $FS = \dots V/m$					
$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = \dots \mathbf{W}$					
with:			_		
Distance between the antennas in m: $D = $ m					
□ not detachable					
A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by ⁷ :					
$EIRP = \frac{(FS \cdot D)^2}{30} \Rightarrow EIRP = 656.3 \cdot 10^{-6} \text{ W}$					
with:					
Field strength in V/m: $FS = 93.8 \text{ dB}\mu\text{V/m}$ $= 46.8 \cdot 10^{-3} \text{ V/m}$			\boxtimes		
Distance between the two antennas in m: $D = 3 \text{ m}$			\boxtimes		
Selection of output power					
The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):					
$TP = 656.3 \cdot 10^{-6} \text{ W}$					

Test Report No. 50255-081220-1 (Edition 1)

⁷ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

Exposure of Humans to RF Fields (continued)	Applicable	Declared by applicant	Measured	Exemption
Separation distance between the user and the transmitting device is				
☑ less than or equal to 20 cm ☐ greater than 20 cm		\boxtimes		
Transmitting device is				
☐ in the vicinity of the human head ☐ body-worn		\boxtimes		
SAR evaluation				
SAR evaluation is required if the separation distance between the user and the device is less than or equal to 20 cm.				
☐ The device operates from 3 kHz up to 1 GHz inclusively and its source-based time-averaged output power is less than, or equal to 200 mW for General Public Use and 1000 mW for Controlled Use.				
☐ The device operates above 1 GHz up to 2.2 GHz inclusively and its source-based time-averaged output power is less than, or equal to 100 mW for General Public Use and 500 mW for Controlled Use.				
☐ The device operates above 2.2 GHz up to 3 GHz inclusively and its source-based time-averaged output power is less than, or equal to 20 mW for General Public Use and 100 mW for Controlled Use.				
☐ The device operates above 3 GHz up to 6 GHz inclusively and its source-based time-averaged output power) is less than, or equal to 10 mW for General Public Use and 50 mW for Controlled Use.				
☐ SAR evaluation is documented in test report no				
RF exposure evaluation				
RF exposure evaluation is required if the separation distance between the user and the device is greater than 20 cm.				
∑ The device operates below 1.5 GHz and its e.i.r.p. is equal to or less than 2.5 W.				
☐ The device operates at or above 1.5 GHz and the e.i.r.p. of the device is equal to or less than 5 W.				
RF exposure evaluation is documented in test report no				

9 Referenced Regulations

All tests were performed with reference to the following regulations and standards:

-		
CFR 47 Part 2	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)	October 1, 2007
CFR 47 Part 15	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)	September 20, 2007
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	December 11, 2003 (published on January 30, 2004)
RSS-Gen	Radio Standards Specification RSS-Gen Issue 2 containing General Requirements and Information for the Certification of Radiocommunication Equimpment, published by Industry Canada	June 2007
RSS-210	Radio Standards Specification RSS-210 Issue 7 for Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, published by Industry Canada	June 2007
RSS-310	Radio Standards Specification RSS-310 Issue 1 for Low Power Licence-Ecempt Radiocommunication Devices (All Frequency Bands): Category II Equipment, published by Industry Canada	September 2005
RSS-102	Radio Standards Specification RSS-102 Issue 2: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	November 2005
ICES-003	Interference-Causing Equipment Standard ICES-003 Issue 4 for Digital Apparatus, published by Industry Canada	February 7, 2004
CISPR 22	Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment – Radio Disturbance Characteristics – Limits and Methods of Measurement"	1997
CAN/CSA- CEI/IEC CISPR 22	Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment	2002
TRC-43	Notes Regarding Designation of Emission (Including Necessary Bandwidth and Classification), Class of Station and Nature of Service, published by Industry Canada	October 9, 1982

10 Revision History

Revisio	Revision History						
Edition	Date	Issued by	Modifications				
1	04.,11.08	Martin Steindl (cj)	First Edition				

11 Charts taken during testing

Radiated Emission Test 9 kHz - 30 MHz acc. to FCC Part 15 Subpart C (FAR)

Model: Heart Rate Monitor BM-C	S5
Serial no.:	
Applicant:	
BM innovations GmbH	
Test site:	
Fully anechoic room, cabi	n no. 2
Tested on:	
Test distance 3 metres	
Date of test:	Operator:
10/27/2008	M. Steindl
Test performed:	File name:
by hand	default.emi
Datastan	

Comment:

- 3 V battery supply
- Transmitting on lowest frequency (pulsed)

Detector:

Peak

List of values:
10 dB Margin
50 Subranges

 Result:
 Project file:

 50255-81220-1
 50255-81220-1

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)

	acc. to 1 cc 1	art 15 Gubpart G (1 Art)	
Model: Heart Rate Monitor BM-C Serial no.: Applicant: BM innovations GmbH	S5	Comment: - 3 V battery supply - Transmitting on lowest frequency (pulsed)	
Test site: Fully anechoic room, cab Tested on: Test distance 3 metres Horizontal Polarization	in no. 2		
Date of test: 10/27/2008	Operator: M. Steindl		
Test performed: automatically	File name: default.emi		
Detector: Peak		List of values: 10 dB Margin	50 Subranges
dBµV/m		Limit1: FCC 15.209 (3 m)	Transducer: VL
			1 1

Result: Prescan

Project file:

50255-81220-1

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: Heart Rate Monitor BM-CS	55
Serial no.:	
Applicant:	
BM innovations GmbH	
Test site:	
Fully anechoic room, cabin	no. 2
Tested on:	
Test distance 3 metres Vertical Polarization	
Date of test:	Operator:
10/27/2008	M. Steindl
Test performed:	File name:
automatically	default.emi
Detector:	

Result:

Prescan

Comment:

- 3 V battery supply
- Transmitting on lowest frequency (pulsed)

Project file:

50255-81220-1

Radiated Emission Test 1 GHz - 4 GHz acc. to FCC Part 15 Subpart C (FAR)

	acc. to FCC	Part 15 Subpart C (FAR)
Model: Heart Rate Monitor BM-CS5 Serial no.: Applicant: BM innovations GmbH Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization Date of test: 10/27/2008 M. Steindl Test performed: automatically Gefault.emi		Comment: - 3 V battery supply - Transmitting on lowest frequency (pulsed)
Detector: Peak		List of values: Selected by hand
dBμV/m 80 75 70		Limit1: FCC 15.209 (3 m) Transducer: EMCO 3115
C.E.		

 Result:
 Project file:

 50255-81220-1
 50255-81220-1

Radiated Emission Test 1 GHz - 4 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: Heart Rate Monitor BM-CS5				
Serial no.:				
Applicant:				
BM innovations GmbH				
Test site:				
Fully anechoic room, cab	Fully anechoic room, cabin no. 2			
Tested on:				
Test distance 3 metres Vertical Polarization				
Date of test:	Operator:			
10/27/2008	M. Steindl			
Test performed: File name:				
automatically	default.emi			
Detector:				
D1.				

Comment:

- 3 V battery supply
- Transmitting on lowest frequency (pulsed)

Detector:

Peak

List of values:
Selected by hand

 Result:
 Project file:

 50255-81220-1
 50255-81220-1

Radiated Emission Test 3.95 GHz - 5.85 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: Heart Rate Monitor BM-CS	55		
Serial no.:			
Applicant:			
BM innovations GmbH			
Test site:			
Fully anechoic room, cabin	no. 2		
Tested on:			
Test distance 3 metres Horizontal Polarization			
Date of test:	Operator:		
10/27/2008 M. Steindl			
Test performed:	File name:		
automatically	default.emi		

Comment:

- 3 V battery supply
- Transmitting on lowest frequency (pulsed)

Detector:

Peak

List of values:
Selected by hand

Result: Project file: 50255-81220-1

Radiated Emission Test 3.95 GHz - 5.85 GHz acc. to FCC Part 15 Subpart C (FAR)

	acc. to 1 CC	art 13 Subpart C (1 Art)
Model: Heart Rate Monitor BM-CS5 Serial no.: Applicant: BM innovations GmbH Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Vertical Polarization Date of test: Operator:		Comment: - 3 V battery supply - Transmitting on lowest frequency (pulsed)
10/27/2008	M. Steindl	
Test performed: automatically	File name: default.emi	
Detector:		List of values:
Peak		10 dB Margin 50 Subranges
dBµV/m		Limit1: FCC 15.209 (3 m) Transducer: EMCO 3160

Result:
Prescan

Project file:
50255-81220-1

Radiated Emission Test 5.85 GHz - 8.2 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: Heart Rate Monitor BM-CS5	Comment: - 3 V battery supply			
Serial no.:				
Applicant	- Transmitting on lowest frequency (pulsed)			
Applicant: BM innovations GmbH				
Test site: Fully anechoic room, cabin no. 2				
Tested on: Test distance 3 metres				
Horizontal Polarization				
Date of test: Operator: 10/27/2008 M. Steindl				
Test performed: File name: automatically default.emi				
Detector: Peak	List of values: Selected by hand			
dBμV/m	Limit1: FCC 15.209 (3 m) Transducer: EMCO 3160			
80				
75				
70				
65				
60				
55				
50	*			
45	when to ame with the property of the property			
40				
35				
30				
25				
20				
15				
10				
5				
0				
5850 6000	7000 8000 820 MH			

Project file:

50255-81220-1

Result:

Prescan

Radiated Emission Test 5 85 GHz - 8 2 GHz

Model:	Comment:
Heart Rate Monitor BM-CS5	- 3 V battery supply
Serial no.: 	- Transmitting on
Applicant: BM innovations GmbH	lowest frequency (pulsed)
Fest site: Fully anechoic room, cabin no. 2	
Tested on:	
Test distance 3 metres Vertical Polarization	
Date of test: Operator: 10/27/2008 M. Steindl	
Test performed: File name: automatically default.emi	
Detector: Peak	List of values: Selected by hand
BμV/m	Limit1: FCC 15.209 (3 m) Transducer: EMCO 3160
80	Elitiki. 1 GG 13.203 (5 III) Transducer. Elvied 5 100
75	
70	·
65	
60	
55	
50	
45 mm which was the same of th	
40	·
35	

 MHz Project file: Result: Prescan 50255-81220-1

Radiated Emission Test 8.2 GHz - 10 GHz acc. to FCC Part 15 Subpart C (FAR)

Comment:

- 3 V battery supply
- Transmitting on lowest frequency (pulsed)

8200 10000
MHz

Result: Project file: 50255-81220-1

Radiated Emission Test 8.2 GHz - 10 GHz acc. to FCC Part 15 Subpart C (FAR)

	acc. to FCC Part	15 Subpart C (FAR)		
Model: Heart Rate Monitor BM-CS5 Serial no.: Applicant: BM innovations GmbH Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 1 meter Vertical Polarization Date of test: 10/27/2008 M. Steindl Test performed: automatically Gefault.emi		Comment: - 3 V battery supply - Transmitting on lowest frequency (pulsed)		
Detector Peak	or:	List of values: 10 dB Margin 50 Subranges		
dBµV/m 80 75 70 65 60 55 50 45 40		Limit1: FCC 15.209 (1 m) Transducer: EMCO 3160		
35 30 25 20				
15		+		

 Result:
 Project file:

 50255-81220-1
 50255-81220-1

10000

MHz

10

5

0

8200

Radiated Emission Test 9 kHz - 30 MHz acc. to FCC Part 15 Subpart C (FAR)

Model: Heart Rate Monitor BM-C	S5			
Serial no.:				
Applicant:				
BM innovations GmbH				
Test site:				
Fully anechoic room, cabi	n no. 2			
Tested on:				
Test distance 3 metres				
Date of test:	Operator:			
10/27/2008	M. Steindl			
Test performed:	File name:			
by hand	default.emi			
Datastan				

Comment:

- 3 V battery supply
- Transmitting on highest frequency (pulsed)

Detector:

Peak

List of values:
10 dB Margin
50 Subranges

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)

Model:			
Heart Rate Monitor BM-CS5			
Serial no.:			
Applicant:			
BM innovations GmbH			
Test site:			
Fully anechoic room, cabir	ı no. 2		
Tested on:			
Test distance 3 metres			
Horizontal Polarization			
Date of test: Operator:			
10/27/2008 M. Steindl			
Test performed: File name:			
automatically default.emi			
Detector:			

Comment:

- 3 V battery supply
- Transmitting on highest frequency (pulsed)

Detector:

Peak

List of values:
10 dB Margin

50 Subranges

Result:
Prescan

Project file: 50255-81220-1

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: Heart Rate Monitor B	M-CS5	
Serial no.:		
Applicant: BM innovations Gmbl	Н	
Test site: Fully anechoic room,	cabin no. 2	
Tested on: Test distance 3 metre Vertical Polarization	es	
Date of test: 10/27/2008	Operator: M. Steindl	
Test performed: automatically	File name: default.emi	
Detector: Peak		

Comment:

- 3 V battery supply
- Transmitting on highest frequency (pulsed)

Result:
Prescan

Project file: 50255-81220-1

Radiated Emission Test 1 GHz - 4 GHz acc. to FCC Part 15 Subpart C (FAR)

		1
Model: Heart Rate Monitor E Serial no.: Applicant: BM innovations Gmb		Comment: - 3 V battery supply - Transmitting on highest frequency (pulsed)
Test site: Fully anechoic room Tested on: Test distance 3 metr Vertical Polarization	, cabin no. 2	
Date of test: 10/27/2008 Test performed: automatically	Operator: M. Steindl File name: default.emi	
Detector: Peak		List of values: Selected by hand
dBµV/m		Limit1: FCC 15.209 (3 m) Transducer: EM

Radiated Emission Test 1 GHz - 4 GHz acc. to FCC Part 15 Subpart C (FAR)

			, ,	
Model: Heart Rate Monitor BM	-CS5		Comment: - 3 V battery supply	
Serial no.: Applicant: BM innovations GmbH			Transmitting on highest frequency (pulsed)	3)
Test site: Fully anechoic room, ca	abin no. 2			
Tested on: Test distance 3 metres Horizontal Polarization				
Date of test: 10/27/2008	Operator: M. Steindl			
Test performed: automatically	File name: default.emi			
Detector: Peak			List of values: Selected by hand	
dBμV/m		,	Limit1: FCC 15.209 (3 m)	Transducer: E

 Result:
 Project file:

 Prescan
 50255-81220-1

Radiated Emission Test 3.95 GHz - 5.85 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: Heart Rate Monitor BM-CS5	
Serial no.:	
Applicant:	
BM innovations GmbH	
Test site:	
Fully anechoic room, cabin no. 2	
Tested on:	
Test distance 3 metres Horizontal Polarization	
Date of test:	Operator:
10/27/2008	M. Steindl
Test performed:	File name:
automatically	default.emi
Detector:	

Comment:

- 3 V battery supply
- Transmitting on highest frequency (pulsed)

Detector:

Peak

List of values:

10 dB Margin

50 Subranges

Result:
Prescan

Project file:
50255-81220-1

Radiated Emission Test 3.95 GHz - 5.85 GHz acc. to FCC Part 15 Subpart C (FAR)

Model: Heart Rate Monitor BM-CS5	
Serial no.:	
Applicant:	
BM innovations GmbH	
Test site:	
Fully anechoic room, cabin no. 2	
Tested on:	
Test distance 3 metres Vertical Polarization	
Date of test:	Operator:
10/27/2008	M. Steindl
Test performed:	File name:
automatically	default.emi
Datastar:	

Comment:

- 3 V battery supply
- Transmitting on highest frequency (pulsed)

Detector:

Peak

List of values:
10 dB Margin
50 Subranges

Result:
Prescan

Project file:
50255-81220-1

Radiated Emission Test 5.85 GHz - 8.2 GHz acc. to FCC Part 15 Subpart C (FAR)

	acc. 10 FCC	Fait 15 Subpart C (FAR)	
Model: Heart Rate Monitor BM-CS5 Serial no.: Applicant: BM innovations GmbH Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization Date of test: Operator:		Comment: - 3 V battery supply - Transmitting on highest frequency (pulsed)	
Test performed: automatically	M. Steindl File name: default.emi		
Detector: Peak		List of values: Selected by hand	
dBμV/m 80		Limit1: FCC 15.209 (3 m) Transduce	:: EMCO 316

 Result:
 Project file:

 Prescan
 50255-81220-1

Radiated Emission Test 5.85 GHz - 8.2 GHz

acc. to FCC Part 15 Subpart C (FAR)			
Model: Heart Rate Monitor BM-CS5	Comment: - 3 V battery supply		
Serial no.:			
	- Transmitting on highest frequency (pulsed)		
Applicant: BM innovations GmbH	Ingliest requeries (paised)		
Test site: Fully anechoic room, cabin no. 2			
Tested on:			
Test distance 3 metres Vertical Polarization			
Date of test: Operator: 10/27/2008 M. Steindl			
Test performed: File name: automatically default.emi			
Detector: Peak	List of values: Selected by hand		
dBμV/m 80	Limit1: FCC 15.209 (3 m) Transducer: EMCO 3160		
75			
70			
65			
60			
55			
50			
45 mm love man in many many many	ma		
40			
35			
30			

 MHz Project file: Result: Prescan 50255-81220-1

Radiated Emission Test 8.2 GHz - 10 GHz acc. to FCC Part 15 Subpart C (FAR)

Comment:

- 3 V battery supply
- Transmitting on highest frequency (pulsed)

Result:
Prescan

Project file:
50255-81220-1

Radiated Emission Test 8.2 GHz - 10 GHz acc. to FCC Part 15 Subpart C (FAR)

Model:		Comment:				
	Rate Monitor BM-CS5	- 3 V battery supply				
Serial no.: Applicant: BM innovations GmbH		- Transmitting on highest frequency (pulsed)				
				Test sit	e: anechoic room, cabin no. 2	
				Tested		
	listance 1 meter al Polarization					
Date of	·					
10/27	/2008 M. Steindl rformed: File name:	_				
1	natically default.emi					
Detecto	or:	List of values:				
Peak		10 dB Margin 50 Subranges				
dBμV/r	n	Limit1: FCC 15.209 (1 m) Transducer: EMCO 3160				
80						
75		· 				
70		· 				
65						
65		1				
60						
55		÷ *				
50		in the state of th				
	MAND MANNEY AND MANNEY MANNEY	WWW. All Drown D. A. C. D. C.				
45						
40		·				
35		<u> </u>				
30						
25	<u> </u>	<u>i</u>				
20	ļ					
15						
10		+				
5		<u></u>				
0						
	200	100				
D "		MH				
Result:		Project file:				

50255-81220-1

Prescan