Designing a Probe Head for Extreme Environments

Turbulence Probe Design Considerations

William Fuller^{1,2} | Scott Allan² | Bogdan Hnat¹ | Peter Ryan² ¹The University of Warwick, Centre for Fusion, Space and Astrophysics, Coventry ²United Kingdom Atomic Energy Authority, Culham, Oxford

Internal stack

- Bolted together

MAST-U

- Spherical Tokamak
- Core temperatures up to 3keV (34 million °C)

- Cabling routed in coil winding channels
- Kapton insulation between coils and cables
- Common earthed shield for cables
- Spacer gives room for wiring

Reciprocating Probe system

0

increase strength

reduce breakages

Vent hole

Thick probe until near the tip

- Stepper motor slow drive to start position
- Pneumatically driven fast drive to plunge in/out of plasma at 4.5ms⁻¹ over 9cm

Ø2,9 ±0,05

Material Choices:

- Graphite Probes
- Boron Nitride Ceramic Shell
- PEEK Internals
- Stainless Steel Plug Housing, Screws

Vacuum Considerations:

- Void Breaking
- Vent Holes
- Pumping Pathways

- Mostly PEEK
- Notches to stop rotation

Asymmetric con-flats ensure one

Middle space raised for central

Needs to peak above the rest of the

Allows for same pin dimensions

reducing unique parts

way to fit the shell cap

pin

- Wide countersink for centring pins
- Stepped to match pins prevent plasma leakage

Thermal Expansion:

- Clearance of 0.4mm
- PEEK expanded by 0.7mm
- Clearance of 1.4mm for new design

WARWICK

THE UNIVERSITY OF WARWICK

Blue – Log-spaced for cross-correlations Green – Ball-Pen Probes $\Phi_{
m Plasma}$, $T_{
m e}$ Pink – 5-pin balanced probe $n_{\rm e}$, $T_{\rm e}$ Linear array filament stats

Red – Parallel Mach number