Reconstructive Sequence-Graph Network for Video Summarization

苏伊阳

2022.12.10

[1] Zhao B, Li H, Lu X, et al. Reconstructive Sequence-Graph Network for Video Summarization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2793–2801.

研究背景

目前,许多视频摘要是基于RNN的方法,这种方法会将视频数据转换为帧序列,并利用序列中的时间依赖性来总结视频,但是,基于RNN的方法能够捕获局部邻域依赖,但通常无法处理全局长距离依赖,并且容易被噪声干扰。

一般来说,一个镜头中的帧记录了一个特定的活动,并随着时间的推移而平滑变化,对于剪辑之后的视频,<mark>多跳关系</mark>在镜头之间频繁发生。在这种情况下,局部和全局依赖关系对于理解视频内容都很重要。

研究背景

本文提出了一种重构序列图网络(RSGN),将帧和镜头分层编码为序列和图,其中帧级依赖(局部依赖关系)由长短期记忆(LSTM)编码,镜头级依赖(全局依赖关系)由图卷积网络(GCN)编码。 镜头是帧与视频之间的中间状态,由几个连续的帧组成。

- > 镜头内的帧适合用RNN建模为时间序列,因为它们很短,且随时间平稳变化。
- 不同镜头之间信息差异很大,使得相邻镜头之间的关系不像帧那样紧密,对于编辑后的视频来说,相邻镜头的内容甚至没有明显的时间依赖性,将视频镜头建模为一个完整的图更为合适。

贡献点:

- 设计了序列图模型,利用LSTM和GCN分层捕获镜头内时间依赖和镜头间依赖,有效地避免镜头位置距离造成的干扰。
- 摘要的图模型被构造为重构器,以一种无监督的方式优化生成器,并保留视频内容和镜头级依赖关系。
- 在数据集上验证,性能较好。

图卷积神经网络GCN

图: G=(V, E) 表示图结构 (有向图或无向图), V 表示节点的集合, E 表示边的集合

$$H^{(l+1)} = \sigma\left(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}\right)$$

$$\tilde{A} = A + I$$

$$\tilde{D}_{ii} = \sum_{j} \tilde{A}_{ij}$$

图卷积计算公式

 $H^{(l+1)} = f(H^{(l)}, A) = \sigma(AH^{(l)}W^{(l)})$ A是邻接矩阵,H为所有节点的特征向量矩阵,W是卷积的参数 $H^{(0)} = X \in \mathbb{R}^{n \times d}$

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 5 & 5 & 5 & 5 \\ 1 & 1 & 1 & 1 & 1 \\ 5 & 5 & 5 & 5 & 5 \\ 3 & 3 & 3 & 3 & 3 \end{bmatrix}$$

$$A \qquad \qquad H \qquad \qquad AH$$

存在问题

AH 只获得了某个节点的邻居信息,而 忽略了节点本身信息

$$H^{(l+1)}=\sigmaig(ilde{A}H^{(l)}W^{(l)}ig)$$
 矩阵 A 没有归一化,这样经过多层卷积后向量的值会很大。

Image

Feature

 $H^{(l+1)} = \sigma \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$

$$\widetilde{A} = A + I$$

$$\widetilde{D}_{ii} = \sum_{j} \widetilde{A}_{ij}$$

图积神经网络GCN

卷积神经网络CNN

■ 设计了序列图模型,利用LSTM和GCN分层捕获镜头内时间依赖和镜头间依赖,有效地避免镜头位置距离造成的干扰。

单个视频的帧: $\{f_1, f_2, \cdots, f_n\}$

镜头边界: $\{b_0, b_1, \cdots, b_m\}$ $b_0 = 1, b_m = n$

第i个镜头的帧: $\{f_{b_{i-1}+1}, f_{b_{i-1}+2}, \cdots, f_{b_i}\}$

$$h_t = \text{B}iLSTM(f_t, h_{t-1}), t \in [b_{i-1} + 1, b_i],$$

 h_{bi} 最后一帧的隐藏特征,编码了第i个镜头的前向后向的时序依赖 $h_{bi} = s_i$

Shot-Level Graph Encoder

$$G = (V, E)$$
 V表示图的节点,E表示图的边 $V = \{s_1, s_2, \dots, s_m\}$ $E = \{E_{11}, \dots, E_{ij}, \dots, E_{mm}\}$

使用不相似度作为边的权重,相似的镜头不需要共享信息,因为已经有相似的语义特征,而差异巨大的镜头需要更多交互,以全面建模整个视频。

点乘
$$e_{ij} = -\phi(s_i)^{\mathrm{T}} \varphi(s_j)$$
.

图卷积GCN: $R = ReLU(ESW_G)$,

高斯
$$e_{ij} = \exp\left\{-\phi(s_i)^{\mathrm{T}}\varphi(s_j)\right\}$$
.

$$E = (e_{ij})_{m \times m}$$

$$S = [\tau(s_1); \tau(s_2); \dots; \tau(s_m)]$$

$$ig|$$
拼接 $e_{ij} = W_e^{ ext{T}}ig[\phi(oldsymbol{s}_i), arphiig(oldsymbol{s}_jig)ig]$.

$$R = [r_1; r_2; \cdots; r_m]$$
 编码了镜头间的关系

 W_{ϕ} W_{φ} 是linear embedding function $\phi(\cdot)$,, $\varphi(\cdot)$ 的参数

被选为关键镜头的概率是由 镜头特征及其与整个视频内 容的关系共同决定的。

$$p_i = \text{Sigmoid}(\mathbf{W}_p[\tau(\mathbf{s}_i), r_i] + b_p),$$

$$\alpha_i = \text{Bernoulli}(p_i), \ i = 1, 2, \dots, m.$$

 $\alpha_i \in \{0, 1\}$

■ 摘要的图模型被构造为重构器,以一种无监督的方式优化生成器,并保留**视频内容**和**镜头级依赖**关系。

选择的镜头的索引 $K = \{k_j\}_{j=1}^{m'}$

as表示镜头s标注的重要性分数或者GCN输出的概率

$$G'=(V',E')$$
 V' 表示摘要图的节点, E' 表示摘要图的边 $V'=\{s_{k_1},s_{k_2},\cdots,s_{k_{m'}}\}$ $E'=\{E_{k_1,k_1},\cdots,E_{k_i,k_j},\cdots,E_{k_{m'},k_{m'}}\}$ 点乘 $e_{ij}=-\phi(s_i)^{\mathrm{T}}\varphi(s_j)$. 图卷积 GCN : $R'=\mathrm{Re}LU(E'S'W_{G'})$, $E=(e_{ij})_{m\times m}$ $S=[\tau'(s_{k_1});\tau'(s_{k_2});\cdots;\tau'(s_{k_{m'}})]$ 拼接 $e_{ij}=W_e^{\mathrm{T}}[\phi(s_i),\varphi(s_j)]$. $R'=[r'_{k_1};r'_{k_2};\cdots;r'_{k_{m'}}]$ 编码了摘要 镜头间的关 $W'_{\phi}W'_{\phi}$ 是linear embedding function $\phi(\cdot)$, $\varphi(\cdot)$ 的参数

监督损失: $l^p = \frac{1}{m} \| \boldsymbol{p} - \boldsymbol{g} \|_2^2$, 损失函数: $\mathcal{L}(\boldsymbol{\theta}) = l^p + l^r - J$, $\nabla_{\boldsymbol{\theta}} J = \frac{1}{n} \sum_{i=1}^n \sum_{i=1}^m \left(l^c + l^d \right)_j \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\alpha_i | \boldsymbol{s}_i, \boldsymbol{r}_i)$,

正则项: $l^r = \left(\frac{1}{m}\sum_{i=1}^m p_i - \varepsilon\right)^2$, 重构器倾向于选择更多的镜头来增加奖励

实验

- 数据集
- ➤ **SumMe**:包含25个视频,时长从1.5分钟到6.5分钟不等。每个视频由15-18个用户注释,包括帧级别的 重要性评分和基于镜头的视频摘要。
- ➤ Tvsum: 有50个视频, 时长从2分钟到10分钟不等。每个视频由20个用户用镜头级别的重要性评分注释。
- 预处理 采用GoogLeNet的pool5层进行帧特征提取,维数为1024。另外,利用KTS内核时间分割将每个视频分割 成镜头

TABLE 5
The Results With Different Training Settings on the SumMe and TVsum Datasets

Datasets Approaches	SumMe			TVsum		
	Canonical	Augmented	Transfer	Canonical	Augmented	Transfer
SUM-GAN [25]	0.387	0.417	_	0.508	0.589	_
DR-DSN [52]	0.414	0.428	0.424	0.576	0.584	0.578
vsLSTM [47]	0.376	0.416	0.407	0.542	0.579	0.569
dppLSTM [47]	0.386	0.429	0.418	0.547	0.596	0.587
SUM - GAN_{sup} [25]	0.417	0.436	_	0.563	0.612	_
$DR-DSN_{sup}$ [52]	0.421	0.439	0.426	0.581	0.598	0.589
H-RNN [49]	0.421	0.438	_	0.579	0.619	_
HSA-RNN [50]	0.423	0.421	_	0.587	0.598	_
re-SEQ2SEQ [48]	0.425	0.449	_	0.603	0.639	_
VASNet [7]	0.424	0.425	0.419	0.589	0.585	0.547
$RSGN_{uns}$	0.423	0.436	0.412	0.580	0.591	0.597
RSGN	0.450	0.457	0.440	0.601	0.611	0.600

Fig. 3. The summarization results of RSGN and RSGN $_{uns}$. The images are sampled from the summaries generated by RSGN. The curves denote the distributions of importance scores. The gray curves depict the ground truth score, while the red/blue curves depict the score predicted by the supervised/unsupervised model, respectively.

Q&A

