This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Exhibit A

LABORATORY NOTEBOOK

Department <u>Chemical Engineering</u>.

Stanford University

Stanford, California

Ying Chang (650) 7239140 Rm 105 Staaffer W ocrylic family (Principles of polymenization G. Odian 3rd ed. Wiley Interscience)
(P.311)

nome polylarylicacia) polylmethacrylicacia) polyacrylionitrile polylrinyldenechloxide) water soluble ,

name poly(viny) autate)

water based paint

{ radical | Tonic porpuerization

chain polymerization

type of chain polymerization undergone by various unsat, monomers

Monomen

Eyre of initiation

Itiylene

Andical contionic anionic

+ - +

Thethylacylote, acrylote

Methylacyloritrie

Methylacyloritrie

Styrene, methylacyloritrie

Thethylacyloritrie

T

ibject Photapi	plymerization of N-iso	Propylacryanide	e (PNIPAAM)	23
	Teng, J. Liu P.C. Rieke	V		31 7845-50.
Initiator:	bo) ₃ s; cH2CH2CH2S-S- + NIPAAm/BisAAm UV, 2547m	-c-n-cH2CH3	N, N'(-diethylamini propylctvinethoxy DAPMS def 15, 16.	p)dithiocarbamoyl. p)sibue
3-chloropropyltv	reflux 18h 568 ck Hasle 19 SDC + WOWL asstowe imethoxysilane, 97th Aldric bchzctle-Cl. <43668	punified h -> se	educed distillation.	
SPDC: o chiumu, N'-diethyld		ldrich (C10-; 10375IC 24070 · [Carbama:	2)	ate,)
	HEN COD- CH3 CH2 = N-12-0-5-5-5- CH3 CH2 = N-12-0-5-5-	NH2-2	ip; sodium diethyla	R 21thio carbamate
Reaction: (CH3O)3 Si(CH	2)3-Cl + Na-5-80	S	(Qts)2N-C-6 TW=22531 Mp=75-98:1 Mygroscopic	ه.

Signed......Date.....

मार्थिक महार प्रमुख्य महित्र प्राप्त के प्रमुख्य महित्र के मिन्स के प्रमुख्य के मिन्स मिन्स मिन्स मिन्स मिन्स

(150 = 13.

should reverse

(Wary, 1995) CULTICE: bipy = 1:3 (== 10 mul) Mo: CULTICE

= 104: 3×104 (mol) = (00:1

= 0.019: 3x156,19x104 =102md:10tml = 0.01g = 0.04685 g = 0.71 == : 0.01g

What thickness means in this case

Assumption: density is coust = bulk material

d4=1,189 For PAC 5000 wt in 420.

1.189=WIAM +> dpac~1.37

(needed mole of) = Ahd (total weight) = 1 cm² x1.37 \((cm) = 0.019 x 10 h (nm) \)
monomers = 71 \(\in 2 \times \frac{1}{71} \times \frac{1}{2} \t

According to enis, we can greatly reduce the out of monomers from original recipe

2x: h=10+ poor him (=10 pm) > needed working = 2x105 mol (Good agreement !)

For DMF 40 1 ml. make 0.0 M acrylamide soln = 0.0 msl x 71 = 0.71 g) $6.01 = \frac{x \, \text{mol}}{10^{-3} \, \text{l}} \Rightarrow x = 10^{5} \, \text{mol} \, x = 10^{5} \, \text{mol} \,$

Roughly for DHF lowe acrylamide 0.00719 => about = 102M.

Better soln: 0.1 M > 10 ml DMF + 0.071 g, sanylamide good enough for cover the whole surface.

> C= C- C-NHZ HW=71,1

- C=C-E-NH-17W= 1787

CH2

CH2

CH2

CH2

CH2

CH2

Subject	Exp8	Function	nalized	Gel	Polyn	nevisati	9n			•	51
Ohjecti	ve: Repeat	protocal	exp7.	For	Nt2	hydrox	hoby)) 0400	of methad	rylamid	e
	;	o :		: :	:		: :	:			
	1 .	417-2			į.		:			:	
	CHz	CH-	эH		:		:	:		:	
	· · ·	cilz		:	:		i :	!		,	
HJA69 N-(3	- Rydroxy pu	opyl)metho	xvylania	le (a	1442-	01-3]	HW 143	2 mp	=67°	109 10	5\\ 5 \2
	•	:		•	loM						
H20	=c_eHz \concretectl	= FW 1=0 HO2	130.14 1073	HEMA	ù 10	me DMF	o. mol	= 1391	HEMA		
	+		a /m . a /	:				٥٦.			
:	-+ CULL)CR(by	ipyridyl)	CHE COLL	MW=44	1) 🔍	239) (्०.क <u>२</u> ३ m		:	-	
	+	2	bipyridyl		CHW=is	619) 1.0	89) (0.00	ob9 mol)3	. ,	
	Je:						•				•
•	16t			•			:				
	TTT	:							:		
now ma	terials.				:		:		: · .		
chlo	rophenyl pupy	l trimethoxy	Isilane E	Somin	100 in	ocetoni	z				
		Si (och3)					:				
			<i>I</i> 3 .		:		•		, ,	:	
	+ .			•	:						
	;			:	:		/		:		
	:	:		:	:		- !		:		٠.
		·			·· · · ·				•		
	:	. !	•	:	ī						
		:		· E	:						
					:				:		
		:							:		
•				•							
			. <u>.</u>	•							
		:		•			:		•		
		•		•			•				
10.1 10.2 1 *					C:-			•	De		

.

TIN

Signed......Date......

hyl

e

sample	hyp time(h)	hyp	backgd	fluorescein	hyp/bg	fluo/bg
e13-2	1	1244	88	6056	14.1	68.8
control 1	1				(·	
control 2	1	362	66	171	5.5	2.6
e13-2/contr	ol	3	1	35	3	27

		1,00	. 00,00	40-0/14-1	, -,	00. 0/2.0
sample	hyp time(h)	hyp	backgd	fluorescein	hyp/bg	fluore/bg
e13-2	17	1542	89	6529	17.3	73.4
control 1	17	339	101	140	3.4	1.4
control 2	17	404	95	148	4.3	1.6
e13-2/contro	ol .	4	1	45	5	50

sample	hyp time(h)	hyp	backgd	fluorescein	hyp/bg	fluore/bg
e13-2	40	2258	113	6706.2	20.0	59.3
control 1	40	225	94	99	2.4	1.1
control 2	40	318	93	114	3.4	1.2
e13-2/contro	ol .	8	1	63	7	52

experiment 13

report on

file: e13-fluor.xls (thin's chang)

pHEMA initiated by AIBN

Fluorescence measured by Marc Glazer

Experiment condition: AIBN20h)- pHEMA(20h 65c) - DNA probes-hybridization estimated pHEMA thickness: 5 nm (estimated by SI(100) ellipsometry; need further confirmed by XPS)

Comments for improvement: high standard deviation(ca 1500) -- surface film is not uniform enough -- ne long hybridization time

73 Subject..... (some as 13-10 13-41 57(00) 5,(100) 13-13 1,

.....Date.....

Signed.....