

インタラクティブなロボットアプリケーションの プロトタイピング用ツールキット

http://bit.ly/wiss2010-matereal

加藤 淳, 坂本 大介, 五十嵐 健夫

JST ERAO 五十嵐デザインインターフェースプロジェクト 東京大学情報理工学系研究科 五十嵐研究室

materealとは...

ユーザの指示に従って実世界のタスクをこなすアプリケーションを楽に開発する(=realとmateになる)ためのツールキット

- ・対象とするロボット:
 - 遠隔操作できる
 - 床面や机上など、 平面上を動き回れる

materealの機能

天井カメラとマーカーで位置認識

平面上での<u>移動・物押しタ</u> スクを指示できるAPI

指示のシーケンスを組み立 てられる<u>タスク管理</u>API

関連研究

ロボットの単体開発

環境側センサも含めた開発

点

硘

トタイピング適性

位置認識

- 天井カメラとARToolKitマーカー
 - ロボットと物体の二次元座標を一挙に取得
 - 安価

- ・既存手法
 - ロボットのみ測位(物体認識は別)
 - Simultaneous Localization and Mapping
 - ・事前に環境地図を提供
 - 高価
 - ・モーションキャプチャ

位置認識

// マーカー検出と座標計算

MarkerDetector md = new MarkerDetector();
md.put(new NapMarker("hiro.patt"), robot);
md.start();

// 位置情報の取得

Location location = md.getLocation(robot);

移動・物押しタスク

// 移動

```
Move move = new Move(x, y);
if (move.assign(robot)) {
    move.start();
}
```

// 物押し

```
Push push = new Push(e, x2, y2);
if (push.assign(robot2)) {
   push.start();
}
```


ベクトル場による移動

[Igarashi et al. 2010]

移動以外のタスク

- 筆の上げ下ろし (LEGO Shodo)
- ・カメラ撮影 (ネットタンサー)
- 掃除(ルンバ)
- etc.

タスク管理

これまでに挙げた機能だけで、ユーザの 指示に従ってロボットに一つのタスクを 実行させるプログラムは書ける。

- エンドユーザの指示に従ってインタラク ティブにタスクの動作順序を変えたい。
 - 料理、服たたみ、etc.
- ・複数台のロボットに同時に作業させたい。
 - 味噌汁を作りながらお茶を淹れる、etc.

タスク管理

- ・動作主とタスクのペアをノード とする図式表現を生成、実行
- フローコントロールも可能

- イベントドリブンプログラミング
 - ・タスクの実行順序は自己管理
- 並列処理プログラミング
 - ・デッドロックなど多くの面倒事

タスク管理

// アクティビティ図を作成

ActivityDiagram ad = new ActivityDiagram();

// ノードを追加

Action a = new Action(robot, GoForward()); Action b = new Action(robot, Stop()); ad.add(a); ad.add(b);

// エッジを追加

ad.addTransition(new TimeoutTransition(a, b, 7000));

// 実行

ad.setInitialNode(a);
ad.start();

materealの活用例

自転車で走るロボ

ピンチジェスチャ による移動指示UI

スケッチによる タスク指示UI

マルチタッチ マルチロボ操作

移動スピーカー

LEGO書道

調理手順指示UI

And it's your turn!

?

まとめ

ユーザの指示に従って実世界のタスクを 実行できるアプリケーションを簡単にプロトタイピングできるツールキットを開 発した。

※本プロジェクトは2008年12月から2009年8月まで、情報処理推進機構2008年 度下期未踏IT人材育成発掘事業(未踏本体)の支援を受けて開発が進められま した。

未来ビジョン

- ツールキットを多くの人に使ってもらって、て、色んなロボットアプリケーションを作ってほしいです。
- それが、「ロボット」が身近になる第一 歩だと思います。

未来ビジョン(裏)

実用的なロボットアプリケーションとは:

人の「実世界に関して<u>こうなってほしい</u>」 という意志を、コンピュータの力を借りて 実行するアプリケーション

• 例:

- 掃除: 部屋はこう掃除してほしい

- 料理: 素材はこう料理してほしい

- 洗濯物畳み: 洗濯物はこう畳んでほしい

思考実験

- ・ Amazonに商品を発注した。数日後、商品がポストに入っていた。
- 誰がポストに商品を入れた?

思考実験の結果?

- ・ Amazonに商品を発注した。数日後、商品がポストに入っていた。
- 誰がポストに商品を入れた?

「佐川の人が届けてくれたに違いない」

思考実験の結果

- Amazonの入力インタフェースは
 Human-Computer Interactionのみで、実装
 レイヤーはユーザから隠されている。
- ・常識の枠を取り払えばAmazonはロボット アプリケーションと見分けがつかない。

- ・ 「佐川の人が届けてくれたに違いない」
 - 「ロボットが配達したのかもしれない」

逆転の発想

・ロボットとは:

自分の意志を代わりに実行してくれる実装

・人間も実装の一種と考えることができる。

new 持ってこい(new おひるごはん(), 俺.getLocation() /* おなかへった */).assign(だれでもいいから).start();

1時間前 Keitai Mailから ☆お気に入り ★返信 ☆ 削除

未来ビジョン

- materealは人とロボットを区別しない。
 - 人とロボットを統一的に扱うツールキットへ。
- 応用例:
 - Human-Robot Collaboration
 - ・調理の加減を判断できる人間クラス
 - Human-Controlling Interface
 - ・LEGO書道俺書道
 - ・校庭に大きな絵を描く
 - 耳を引っ張る歩行誘導デバイス[Yuichiro et al. 2009]との連携?

まとめ(再掲)

ユーザの指示に従って実世界のタスクを 実行できるアプリケーションを簡単にプロトタイピングできるツールキットを開 発した。

※本プロジェクトは2008年12月から2009年8月まで、情報処理推進機構2008年 度下期未踏IT人材育成発掘事業(未踏本体)の支援を受けて開発が進められま した。