

(11) Publication number:

2000-252094

(43) Date of publication of application: 14.09.2000

(51)Int.CI.

HO5G 1/10

HO5G 1/32

(21)Application number: 11-056084

(71)Applicant: HITACHI MEDICAL CORP

(22)Date of filing:

03.03.1999

(72)Inventor: TAKAHASHI JUN

SAKAMOTO KAZUHIKO

(54) INVERTER TYPE X-RAY HIGH-VOLTAGE DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a device capable of safely obtaining the stabilized tube voltage waveform without overshooting the output voltage by switching the control gain so that a target value and the real output voltage of the direction current output voltage of a converter circuit coincide with each other, and controlling the output voltage while setting it at a value corresponding to each period of a series X-ray exposing operation and the load condition of the X-ray. SOLUTION: An X-ray control circuit 12 sets the exposing condition such as tube voltage, tube current, and exposing time. A converter control circuit 10 computes a deviation while inputting the target converter output voltage signal Vr1 corresponding to the set condition and the real output voltage Vc to a comparing means 26 of an output voltage adjusting unit 23. An X-ray control circuit 12 sends the status signal (X-ray exposing condition, operating condition) of a high-voltage device, and a gain switching means 14

obtains the optimal control gain in response to the status signal, and sets a proportional gain Kp and an integral gain Ki inside of the output voltage adjusting unit 23 and the proportional gain Kc inside of an input current adjusting unit 24 so as to control a converter circuit 1.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

REST AVAILABLE COPY

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

1/10

1/32

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2000-252094

(P2000-252094A)

(43) 公開日 平成12年9月14日(2000.9.14)

(51) Int. Cl. 7

H05G

識別記号

FΙ

テーマコート* (参考)

H05G 1/10

40092

1/32

/32

J

審査請求 未請求 請求項の数1 OL(全11頁)

(21)出願番号

特願平11-56084

(22)出願日

平成11年3月3日(1999.3.3)

FP03-0059-00WO-HF

03. 5.20

SEARCH REPORT

(71)出願人 000153498

株式会社日立メディコ

東京都千代田区内神田1丁目1番14号

(72)発明者 高橋 順

東京都千代田区内神田一丁目1番14号 株

式会社日立メディコ内

(72)発明者 坂本 和彦

東京都千代田区内神田一丁目1番14号 株

式会社日立メディコ内

Fターム (参考) 4C092 AA01 AB12 AB27 BB03 BB35

CC03 CC07 CC12 CD02 CE11

CF11 CF42 CG05

(54) 【発明の名称】インバータ式X線高電圧装置

(57) 【要約】

(修正有)

【課題】安定な管電圧波形が得られるインバータ式X線 高電圧装置を提供する。

「解決手段」交流電源を受電しこれを整流するコンバータ回路にパルス幅変調制御方式の昇圧型コンバータ回路を用い、このコンバータ回路の直流出力電圧をインバータ回路で高周波の交流に変換し、この交流電圧を高電圧変圧器で昇圧してこれを整流してX線管に印加する。前記コンバータ回路の直流出力電圧の目標値を入力してこれと前記コンバータ回路の実際の直流出力電圧が一致するように前記コンバータ回路を制御するコンバータ制御回路に、一連のX線曝射動作の各期間及びX線負荷条件に応じて前記コンバータ回路の直流出力電圧の目標値と前記コンバータ回路の直流出力電圧が一致するように制御するための制御ゲインとこの制御ゲインを切り換え手段とを設けた。

【特許請求の範囲】

【請求項1】

幅変調制御方式の昇圧型のコンバータ回路と、このコン バータ回路の直流出力電圧を高周波の交流に変換するイ ンバータ回路と、このインバータ回路の出力電圧を昇圧 する高電圧変圧器と、この高電圧変圧器の出力を整流す る高電圧整流回路と、この高電圧整流回路の出力電圧 (管電圧)を印加してX線を放射するX線管と、前記コ ンバータ回路の直流出力電圧の目標値を入力しこれと前 記コンバータ回路の実際の直流出力電圧が一致するよう に前記コンバータ回路を制御するコンバータ制御回路と を備えてなるインバータ式X線高電圧装置において、上 記コンバータ制御回路に、一連のX線曝射動作の各期間 及びX線の負荷条件に応じて前記コンバータ回路の直流 出力電圧の目標値と前記コンバータ回路の実際の直流出 力電圧が一致するように制御するための制御ゲインとこ の制御ゲインを切り換える切り換え手段とを備え、この 切り換え手段により前記制御ゲインを一連のX線曝射動 作の各期間及びX線の負荷条件に応じた値に設定して上 記コンバータ回路の出力電圧を制御することを特徴とす るインバータ式X線高電圧装置。

1

交流電源を受電しこれを整流するパルス

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、商用の交流電源を コンバータ回路で直流に変換し、その直流をインバータ 回路を用いて高周波の交流に変換し、その出力電圧を高 電圧変圧器で昇圧すると共に整流して直流の高電圧を発 生し、これをX線管に印加してX線を放射するインバー タ式X線高電圧装置に係り、特に上記コンバータ回路に 特開平7-263175号公報や特開平7-272891号公報に公開さ れている昇圧型の高力率コンバータ回路を用いた場合 に、該コンパータ回路の出力電圧をオーパーシュートさ せないで、安全で信頼性が高く、かつX線管に印加する 電圧の安定化を図ることができるインパータ式X線高電 圧装置に関する。

[0002]

【従来の技術】インバータ式X線高電圧装置は、一般 に、商用の交流電源からの交流電圧を交流リアクトルを 介してサイリスタまたはダイオードで構成された全波整 流回路を用いたコンバータ回路により直流電圧に変換 し、これを平滑コンデンサで平滑してインバータ回路に 入力する。このインバータ回路は、例えば特開昭63-190 556号広報に記載されているように、共振コンデンサと 高電圧変圧器の漏れインダクタンスとの共振現象を利用 してインバータ回路の位相差や周波数あるいはパルス幅 等を制御することにより負荷であるX線管に直流の高電 圧 (以下、管電圧と呼ぶ) を印加するものである。 すな わち、インパータ回路から出力された髙周波の交流電圧 を前記高電圧変圧器で昇圧し、これを高電圧整流回路で 直流に変換してX線管に印加する。インパータ制御回路

は、実際の管電圧を検出し、これと目標値を一致させる ためのインバータ回路の位相差や周波数あるいはパルス 幅を求めこれを制御する。管電流は、フィラメント加熱 回路でX線管のフィラメントの温度を調節することによ って制御する。このようなX線高電圧装置は、一般X線 撮影装置から循環器X線撮影装置、X線CT装置等に広く 適用されているが、最近の医用X線高電圧装置は性能面 だけでなく、設置面積の縮減、小型軽量化に対する要求 が益々強まる一方である。なかでも高電圧変圧器が装置 10 体積に占める割合は大きく、高電圧変圧器を小型化する ことが装置の小型化にとって特に有効であるために、イ ンバータの髙周波化を図ってきた。

【0003】しかし、この方法にも限界があり、更に装 置の小型化を図るためには、インパータ回路の電流を低 減して、このインバータ回路のスイッチング素子には電 流容量の小さいものを用い、同時に高電圧変圧器の巻数 比を小さくする必要がある。上記巻数比を小さくするこ とは、高電圧変圧器の漏れ磁束が一次巻線等に鎖交して 発生する渦電流損の損失低減に繋がるので該高電圧変圧 器の効率が向上し、これによってインパータ回路の電流 も低減し、そのスイッチング素子の電流容量低減にも効 果がある。

【0004】さらに、高電圧変圧器の漏れインダクタン スも低減でき、さらなる高周波化による高電圧変圧器の 小型化も期待できる。上記インバータ回路のスイッチン グ素子の電流容量と高電圧変圧器の巻数比は、前記イン パータ回路の入力電圧、すなわち上記交流電源電圧を全 波整流した電圧の大きさ(交流電源の線間電圧のピーク 値を最大値として、ほぼ0(Y)~線間電圧×√2(Y)の 範囲) で決まるため、前記スイッチング素子の電流容量 30 と高電圧変圧器の巻数比の低減によるインバータ回路と 高電圧変圧器の小型化には限界があった。そこで、この ような場合には、交流電源を昇圧する(例えば前記交流 電源電圧が200Vの場合には400Vに昇圧する)変圧器を前 記交流電源とコンバータ回路との間に接続して、この変 圧器の出力電圧を全波整流回路で整流してインバータ回 路に入力すれば良いが、前記交流電源電圧を昇圧する変 圧器には大容量のものが必要となるので装置の大型化と 大幅なコストアップを招き好ましくない。他の方法とし 40 ては、倍電圧整流回路を用いてインパータ回路の入力電 圧を高める方法があるが、これも全波整流時の2倍まで にしか昇圧することができないので、インバータ回路の 入力電圧をこれ以上高くして小型化するにしても限界が ある。

【0005】また、さらなる従来方式の課題として、従 来のサイリスタまたはダイオードで構成された全波整流 式のコンバータ回路を用いたインバータ式X線高電圧装 置には、力率の低下と電源高調波の問題がある。すなわ ち、コンバータ回路のサイリスタのゲート信号の位相が 50 交流電源電圧の位相に対して遅れ位相で与えられるため

わせた比例・積分制御等がよく用いられる。

に、前記交流電源の電流は電源電圧よりも位相が遅れ、 力率が低下していた。このため無効電力が大きく、交流 電源の設備容量はその分だけ大きくせざるを得ない。さ らに、前記交流電源の電流波形も歪み、高調波成分が多 く、これによって高調波電流の電源系統への流入、延い ては同電源系統に接続された他の機器への障害が及ぶこ ともあり、この対策に多くの費用を要するものとなって いた。そこで、上記したようなインバータ回路への入力 電圧に対する制約と電源高調波の問題を解決する手段と して、インバータ回路の入力電圧を所定の値まで高く し、かつ力率改善と電源高調波の低減ができる昇圧型高 カ率コンパータ回路を用いたインパータX線高電圧装置 か特開平7-263175号公報や特開平7-272891号公報に公開 されている。これらの公報には、インバータ回路の入力 電圧を高くすると共に、交流電源の電圧と電流の位相ず れを無くして力率改善と電源高調波の低減ができるパル ス幅変調制御(以下、PWM制御と略記)のフルブリッジ 型や混合ブリッジ型のコンバータ回路を用いたインバー 夕式X線高電圧装置が提案されている。

[0006]

【発明が解決しようとする課題】上述した経緯により、 上記特開平7-263175号公報や特開平7-272891号公報に公 開されている昇圧型の高力率コンパータが導入された。 これは、装置の小型・軽量化や力率改善及び電源高調波 の低減に対して大きな効果をもたらすものである。しか しながら、上記の方法を実際に高度な信頼性と安定性が 要求される医療用機器に適用する場合においては、以下 に述べるようなことへの配慮が不十分であった。

【0007】上記の昇圧型高力率コンバータ回路を医療 用X線高電圧装置に使用する場合、通常は電源投入後コ ンバータ回路の出力電圧を所定の値に設定し、その後、 インパータ回路を動作させて所定期間、X線を出力する というプロセスを経る。すなわち、コンバータ回路はほ ば無負荷状態でその出力電圧を設定値まで昇圧し、その 後コンバータ回路にはインバータ回路の動作開始と共に 負荷(最大100kW)が掛かり、そして所定の曝射時間を 経過した後、再び無負荷状態となる。このような動作の 中で、前記コンバータ回路を制御するコンバータ制御回 路は、高電圧装置全体をコントロールする操作卓におい て管電圧値、管電流値、曝射時間などのX線曝射条件が 設定されると、その条件から決められるコンバータ回路 の出力電圧指令値と該コンバータ回路の出力電圧検出値 (実際値) とを入力してこれらを比較し、この差をコン バータ回路の出力電圧の偏差値として、この偏差値がゼ 口となるようフィードバック制御を行う。上記コンバー 夕制御回路の制御系は、一般にコンバータ回路の出力電 圧の急激な上昇を抑制し安定化を図るために、比例制御 と積分制御(この積分制御は、コンパータ回路の出力電 圧の立ち上がり時間に大きく影響し、その値が大きいほ ど立ち上がりが高速となるように動作する)とを組み合

【0008】従来のサイリスタ制御方式では、コンバー 夕回路の出力電圧をゼロボルトから立ち上げて最終目標 値に設定する際、突入電流を防ぐために、例えば目標と なる値を徐々に(段階的にでもよい)高めて上記最終目 標値に近づけることにより、サイリスタの制御位相角を 徐々に大きくする一種のソフトスタート方式等を採用し ていた。そして、これにより一連の曝射動作を行うこと ができた。

【0009】このようなソフトスタート方式を上記アM 10 制御による昇圧型コンバータに適用した場合は以下のよ うな問題点が発生する。すなわち、コンパータ回路の出 力電圧をゼロボルトから目標値に設定する際、前記のソ フトスタート方式と同様の方式を採用すれば、突入電流 を防ぐことができ、安全にPMM制御昇圧型コンバータの 出力電圧を目標値に設定することは可能となるが、一 方、X線曝射終了時においては、コンバータ回路の出力 電圧がオーバーシュートを起こしてしまう場合がある。 これは、出力電力(管電圧×管電流)が大きい場合、X 20 線曝射期間において出力電圧は目標設定値より下がった 状態となっており、その状態でX線曝射が終了し無負荷 状態に移行すると、その瞬間、目標値以下の出力電圧を 目標値まで一気に持ち上げようとし、その結果、出力電 圧がオーバーシュートを起こしてしまうことがあり(昇 圧型コンバータは、理論的には無限大にまで昇圧可能で ある)、場合によってはコンバータ回路を構成するスイ ッチング素子を破壊させる恐れがある。曝射終了時にお けるこのような現象は、従来のサイリスタ方式などで も、出力電圧に若干のオーバーシュートが観測されてい 30 たが、理論的には無限大にまで昇圧可能である昇圧型コ ンバータと比較すると、それは僅かであり、動作上問題 となるレベルではなかった。そして、このことは、PWM 制御昇圧型コンバータ適用のX線高電圧装置の安全性や 信頼性の観点からも改善が強く望まれていたものであ

【0010】そこで、本発明の目的は、商用の交流電源 を直流に変換するコンバータ回路に特開平7-263175号公 報や特開平7-272891号等の公報に公開されているPWM制 御方式の昇圧型の高力率コンバータ回路を用いても、該 40 コンバータ回路の出力電圧をオーバーシュートさせるこ とがない、安全で信頼性が高く、安定な管電圧波形が得 られるインバータ式X線高電圧装置を提供することにあ

[0011]

【課題を解決するための手段】上記目的は、交流電源を 受電しこれを整流するパルス幅変調制御方式の昇圧型の コンバータ回路と、このコンバータ回路の直流出力電圧 を高周波の交流に変換するインパータ回路と、このイン バータ回路の出力電圧を昇圧する高電圧変圧器と、この 50 高電圧変圧器の出力を整流する高電圧整流回路と、この

高電圧整流回路の出力電圧(管電圧)を印加してX線を放射するX線管と、前記コンバータ回路の直流出力電圧の目標値を入力しこれと前記コンバータ回路の実際の直流出力電圧が一致するように前記コンバータ回路を制御するコンバータ制御回路とを備えてなるインバータ式X線高電圧装置において、上記コンバータ制御回路に、一連のX線曝射動作の各期間及びX線の負荷条件に応じて前記コンバータ回路の直流出力電圧の目標値と前記コンバータ回路の実際の直流出力電圧が一致するように制御するための制御ゲインとこの制御ゲインを切り換える切り換え手段とを備え、この切り換え手段により前記制御ゲインを一連のX線曝射動作の各期間及びX線の負荷条件に応じた値に設定して上記コンバータ回路の出力電圧を制御することによって達成される。

【0012】このように構成されたインバータ式X線高電圧装置は、コンバータ回路の制御ゲインを一連のX線曝射動作、すなわちX線曝射前のX線曝射準備期間、X線曝射期間、X線曝射終了後及びX線負荷の大きさに応じて最適な値に設定できるので、コンバータ回路の出力電圧はX線曝射準備の立ち上がり時のオーバーシュート、X線曝射期間の落ち込み、X線曝射終了時のオーバーシュート(跳ね上がり)のないものとなり、この直流電圧をインバータ回路に入力することにより、安全で信頼性が高く、安定な管電圧波形が得られるインバータ式X線高電圧装置とすることができる。

[0013]

【発明の実施の形態】以下、本発明の実施例を添付図面 に基づいて詳細に説明する。第1図は本発明によるイン バータ式X線高電圧装置の実施例を示す全体構成のプロ ック図である。このX線高電圧装置は、交流電源を受電 した後コンバータ回路で直流に変換し、該コンバータ回 路からの直流電圧をインバータ回路を用いて高周波の交 流電圧に変換し、この出力電圧を高電圧変圧器で昇圧し た後整流して直流の高電圧をX線管に供給してX線を放 射するもので、図に示すように、絶縁ゲート形パイポー ラトランジスタIGBT 16~21から構成されるコンバー 夕回路1と、インバータ回路2と、高電圧変圧器3と、 高電圧整流回路4と、高電圧ケーブル5と、XX線管6 と、管電圧検出器7と、電流検出器8a,8bと、平滑コ ンデンサ9と、ディジタル制御方式によるコンパータ制 御回路10と、同じくディジタル制御方式による管電圧 フィードバック制御回路11と、X線高電圧装置全体の 動きを制御するX線制御回路12と、交流リアクトル1 5a, 15b, 15cと、共振用コンデンサ22とを備え て構成される。

【0014】次に、上記構成要素の機能についてそれぞれ簡単に説明する。上記コンバータ回路1は、インバータ回路2へ直流電圧を供給する装置であり、50比または60比の交流商用電源電圧を整流すると共にコンデンサ等の平滑素子で平滑することによって直流電圧を得る

ようになっており、図1に示す実施例においては、IGBT を適用した昇圧機能を有する、特開平7-263175号公報や特開平7-272891号公報に公開されているPMM制御による高力率コンバータ回路が採用されている。インバータ回路2は、上記コンバータ回路1から出力された直流電圧を受電して高周波の交流電圧に変換すると共にX線管に印加する電圧(管電圧)を制御するものである。高電圧変圧器3は、上記インバータ回路2からの高周波の交流電圧を昇圧するもので、その一次巻線がインバータ回路2の出力側に接続されている。X線管6は、上記整流回路4からの出力電圧を高電圧ケーブル5を介してX線管に印加してX線を放射するもので、高電圧整流回路4の出力側に接続されている。

【0015】さらに、管電圧検出器7は、上記X線管6に印加される管電圧を検出して管電圧制御回路11への管電圧検出信号Vxを送出するものであり、上記整流回路4の出力側にてX線管6の入力側に接続されている。上記コンバータ制御回路10は、目標出力電圧信号Vr1と、コンバータ回路の出力電圧信号Vcと、上記電流検出20器8で検出した電流値(iu, iv)とを入力して上記コンバータ回路1の出力電圧を目標の値とし、かつ電流(iu, iv)を正弦波状にすると共に上記交流電源電圧との位相遅れがなくなるように上記コンバータ回路1へ制御信号S1を送出するものである。そして、上記管電圧制御回路11は、目標管電圧信号Vr2と上記管電圧検出器7で検出した管電圧検出信号Vxとを入力してそれらを比較演算し、それらの差がゼロとなるように上記インバータ回路2へ制御信号S2を送出するものである。

【0016】次に、本発明の要部であるコンバータ制御 30 回路10の構成について図2を用いて説明する。本実施 例におけるコンバータ制御回路10は、A/D変換器を内 蔵したマイクロコントローラを用いてディジタルフィー ドバック制御方式としている。このソフトウエアによる コンバータ制御回路10には、第一の比較手段26と、 比例調節手段28と、積分調節手段29等から構成され る出力電圧調節器23と、第二の比較手段27と、比例 調節手段30a等から構成される入力電流調節器24 と、パルス分配器25と、ゲイン切換手段14とが備え られている。本発明においては、このゲイン切換手段1 40 4によって、上記コンバータ制御回路10は、出力電圧 調節器23及び入力電流調節器24の制御ゲインを、コ ンバータ回路の出力電圧の設定時(X線曝射準備時)及 びX線曝射終了時とX線曝射時とで切り換え、双方に最 適な制御ゲインをX線曝射条件に応じて自由に選択でき る機能を有するものである。

【0017】次に、上記のような構成を有するインバータ式X線高電圧装置のコンバータ制御回路の具体的動作について詳細に説明する。先ず、X線曝射を行なおうとする際、X線制御回路12によって管電圧、管電流、曝50 射時間等の曝射条件が設定される。その後、X線制御回

路12よりコンバータ制御回路10ヘフィードバック制 御開始の指令が出されると、上記設定条件に応じた目標 のコンバータ出力電圧信号Vrlがコンバータ制御回路1 0内の出力電圧調節器23の第一の比較手段26に入力 される。また、これと同時にコンバータ回路の実際の出 力電圧を検出したコンバータ出力電圧信号Vcが第一の比 較手段26に入力され、上記目標コンバータ出力電圧信 号Vrlとの偏差が計算される。そして、上記第一の比較 手段26からの演算結果は比例調節手段28に入力さ れ、この比例調節手段28は、上記比較手段26で生成 された偏差ecleに比例ゲインKpを乗算し、これに前記偏 差ecleの積分値に積分ゲインKiを乗算した値を加えて電 流指令irを得る。続いて、コンバータ回路制御系の内側 には力率を向上させるため交流電源の相電圧と相電流を 一致させ、かつ前記相電流を正弦波に制御する入力電流 調整器24が設けられているので、上記出力電圧調整器 23内から送出される上記電流指令irは入力電流調節器 24に入力され、これにsin (ωt) とsin (ωt-2π/3) を乗算してu相とv相のそれぞれの電流指令iur, ivrを求 め、電流検出器8a、8bで検出した相電流iu及びivが上 記電流指令iur,ivrに一致するように、比較手段27 a, 27bで偏差を求め (iue, ive)、これに比例調節器 30のゲインIcを乗算して電流の制御量を求める。この ようにして求めた電流の制御量はパルス分配器25に送 出され、その処理結果に応じたコンバータ制御信号S1を 出力する。このコンバータ制御信号S1は、目標のコンバ ータ回路の出力電圧信号Vr1に応じてコンバータ回路1 の各スイッチIGBT 16~21のスイッチングのタイミン グを決定するものである。なお、本実施例の場合、三相 ある入力電流の内二相 (U相とV相) のみ検出し、これを フィードバック制御しているが、三相の内二相の動きが 決まれば残りの一つは必然的に決まることから、そのよ うにしている。以上の結果、上記コンパータ回路1は、 商用交流電源を受電してこれを整流する際、その出力電 圧を目標の出力電圧と一致させることができ、また入力 電流を正弦波状とし、かつその位相遅れがないようにし て力率を高くすることが可能となる。

【0018】続いて、このようなコンバータフィードバック制御装置10において、ゲイン切換手段14で制御ゲインを切り換える動作について説明する。 X線装置全体の動きを制御する X線制御回路12は、上記したように目標出力電圧信号Vrlだけでなく、高電圧装置のステータス信号をゲイン切換手段14に送出する。上記ステータス信号には、管電圧、管電流、曝射時間等の X線曝射条件、並びに高電圧装置が「コンバータ回路非動作中」、「コンバータ回路の出力電圧設定中(X線曝射準備中)」、「X線曝射中(インバータ動作中)」、「X線曝射をインバータ動作中)」、「X線曝射をフー連のプロセスにおける動作状況が含まれる。そして、上記ゲイン切換手段14は、上記ステータス信号

に応じて最適な制御ゲインを求め、出力電圧調節器23 内にある比例ゲインKp及び積分ゲインKi、さらに入力電 流調節器24内にある比例ゲインKcを設定する。医療用 X線高電圧装置の場合、X線負荷範囲が非常に広く、出 力電力で数百ワットから100kwまで三桁もの大きな変化 があることになり、X線曝射条件に応じた各ゲイン調整 が必要となるが、本装置ではソフトウエアによるディジ タル制御を用いているため、上記負荷条件に合わせた制 御ゲインのテーブルを用意する等の手段により比較的簡 10 単に対応することができる。以上に述べたような方法に より、X線曝射条件やX線高電圧装置の動作状況に応じ てコンバータ制御回路の制御ゲインを切り換えることが

【0019】上記のような制御ゲインを上記ステータス 信号に応じて切り換える手段を有すれば、上記のそれぞ れのステータスで最適な制御ゲインでコンバータ回路を 制御することができる。すなわち、上記無負荷状態では 僅かな制御量の変動に対しても出力電圧Vcが敏感に変化 するので、特に出力電圧Vcを立ち上げる際にはスイッチ 20 ング素子16~21に大きな負担のかかるオーバーシュ ートや突入電流を抑制するため、上記制御ゲインは比較 的低めに設定すれば、従来方式のように目標となる値Vr 0を徐々に高めて上記最終目標値V r に近づける手法は必 要としなくなる。一方、そのような低い制御ゲインを維 持したままインバータ回路2の動作を開始し、X線曝射 を始めると、応答速度が遅いためX線負荷(出力電力= 管電圧×管電流)が大きいほどコンバータ回路の出力電 圧は落ち込み、その後もしばらくは前記出力電圧を目標 値と一致させるのに時間がかかるだけでなく、さらに悪 30 い場合には十分なX線出力が得られなくなるほどまで前 記コンバータ回路の出力電圧Vcが落ち込んでしまう場合 もある。このような動作のコンパータ回路の出力電圧、 管電圧波形を図5に示す。この落ち込みを無くするため にコンパータ制御回路の制御ゲインを高く設定すると、 X線曝射終了時のインバータ回路3の動作停止時に、コ ンバータ回路2は無負荷状態となって、図3に示すよう に、コンパータ回路の出力電圧はオーバーシュートを起 こし、急激に上昇してコンパータ回路のスイッチング素 子IGBTの定格電圧を超えて、前記スイッチング素子を破 40 壊に至らしせしめる恐れが生じる。

【0020】このため、本発明では、X線曝射時においては非曝射時と比較して制御ゲイン(特に積分ゲインKi)を大きく設定することにより、負荷が重い場合でもVcの落ち込みを小さく抑えることが可能になる。さらに、X線曝射終了時においては、再び無負荷状態となるので上記制御ゲインを小さくすること(出力電圧Vcの立ち上げ時と同じ程度)により、曝射終了後のVcのオーバーシュートを防止することが可能となる。このように、ステータスに応じて制御ゲインを最適に設定すれば、図504に示すように、コンバータ回路の出力電圧は、X線曝

a

射前のX線曝射準備時とX線曝射終了時のオーバーシュートの抑制とX線曝射時の落ち込みが抑制され、この電圧をインバータ回路3の直流電源電圧として該インバータ回路3を制御することによって、目標管電圧に一致し、変動のない管電圧波形を得ることができる。つまり、従来は、コンバータ制御回路の制御ゲインを、コンバータ回路の無負荷時における出力電圧設定時(X線曝射準備時とX線曝射終了時)と負荷時のX線曝射状態という性質の異なった二つの状態に対して同一の値としていたが、本発明では前記ステータスに対応した値に切り換えることにより、コンバータ回路及びこのコンバータ回路の出力電圧を直流電源とするインバータ回路を安定に動作するようにしたものである。

【0021】以上、詳細に説明したように、本発明によれば、装置の小型・軽量化や力率改善及び電源高調波の低減に対して大きな効果をもたらすPMM制御昇圧型コンバータを適用したX線高電圧装置に対して従来方式を適用した場合には、特に曝射終了時において十分な安全性を確保できないという課題があったが、この点が解決されることになる。

【0022】なお、コンパータフィードバック制御装置10内において出力電圧調節器23には比例調節手段と積分調節手段とを組み合わせたもの、また入力電流調節器24では比例調節手段のみの構成として示したが、本発明はこれに限定するものではなく、上記の調節手段の内いずれかを省いたもの、あるいは更なる調節手段を組み合わせたものとしても良く、また、各調節手段のゲインの大きさはX線の負荷条件の大きさに応じて任意の最適な値に設定しても良い。また、本実施例は、三相電源を用いる場合としたが、これは単相電源を入力する装30置にも勿論適用可能である。その場合、電流検出器は一相のみを検出して制御すれば良く、図1に示した制御系よりも簡単に構成できる。

【0023】さらに、以上の実施例はディジタル制御を適用したものであるが、アナログ制御を用いる場合においても、例えば積分ゲインの切り換えを行なおうとすれば、オペアンプを用いた積分器のコンデンサをある時間において切り替える等の手段を設ければ実施可能である。なお、第1図においては、インバータ回路2の出力側に共振用のコンデンサ22を接続したものとして示したが、このコンデンサ22は、高電圧変圧器3の漏れインダクタンスの影響で高周波の電流が上記高電圧変圧器3の巻線に十分に流れないことを改善する目的で挿入してあり、上記の改善の必要のない場合には挿入しなくてもよい。

[0024]

【発明の効果】以上、説明したように本発明によれば、

装置の小型・軽量化や力率改善及び電源高調波の低減に対して大きな効果をもたらすPMM制御昇圧型コンパータを適用したX線高電圧装置において、前記コンパータ回路の制御ゲインをX線曝射動作の各プロセス毎に及びX線曝射条件に応じて、任意の最適な値に設定することによって、該コンパータ回路の出力電圧をオーバーシュートさせることのない、安全で信頼性が高く、安定な管電圧波形が得られるインパータ式X線高電圧装置を提供することができる。

10 【図面の簡単な説明】

【図1】本発明の実施例を示すインバータ式X線高電圧 装置の回路構成図である。

【図2】本発明の要部であるコンパータ制御回路である。

【図3】従来方式によるコンバータ回路の出力電圧及び 管電圧の波形図である。

【図4】本発明を適用した場合のコンバータ回路の出力 電圧及び管電圧の波形図である。

【図5】コンバータ制御回路の制御ゲインを切り換える 20 ことなく動作させた場合におけるコンバータ回路の出力 電圧及び管電圧の波形図である。

【符号の説明】

- 1 コンバータ回路
- 2 インバータ回路
- 3 高電圧変圧器
- 4 高電圧整流器
- 5 高電圧ケーブル
- 6 X線管
- 7 管電圧検出器
- 30 8a, 8b 電流検出器
 - 9 平滑コンデンサ
 - 10 コンバータ制御回路
 - 11 管電圧制御回路
 - 12 X線制御回路
 - 13 制御部
 - 14 制御ゲイン切換手段
 - 15a, 15b, 15c 交流リアクトル
 - 16~21 絶縁ゲート形パイポーラトランジスタIGBT
 - 22 共振用コンデンサ
- 10 23 出力電圧調節器
 - 24 入力電流調節器
 - 25 パルス分配器
 - 26 第一の比較手段
 - 27 第二の比較手段
 - 28 比例調節手段
 - 29 積分調節手段
 - 30 比例調節手段

[図1]

[図2]

【図3】

【図4】

【図5】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.