

CC1 - Cinématique

- Aucun document n'est autorisé
- Toute réponse doit être complètement justifiée (précision des notations, détail des calculs : produits vectoriels, dérivée de vecteurs, etc.).

Énoncé

On considère le mouvement d'un cerceau (S) de centre O_2 et de rayon b par rapport au repère fixe R = (O, :

Figure 1 – Roue sur plan

On définit le repère intermédiaire $R_1=(O_1,\mathbf{x_1},\mathbf{y_1},\mathbf{z_1})$ de la manière suivante :

- O_1 se déplace sur l'axe $(O, \mathbf{x_1})$, de telle sorte que : $\mathbf{OO_1} = h(t)\mathbf{x}$.
- $\bullet x_1 = x$
- $\mathbf{y_1}$ et $\mathbf{z_1}$ sont tels que : $(\mathbf{y}, \mathbf{y_1}) = (\mathbf{z}, \mathbf{z_1}) = \alpha(t)$ mesuré autour de $(O_1, \mathbf{x_1})$.

De plus, le repère $R_2 = (O_2, \mathbf{x_2}, \mathbf{y_2}, \mathbf{z_2})$ est lié au solide (S) et tel que : $\mathbf{O_1O_2} = b\mathbf{y_1}$ et $(\mathbf{x_1}, \mathbf{x_2}) = (\mathbf{y_1}, \mathbf{y_2}) = \phi(t)$ mesuré autour de $(O_2, \mathbf{z_2})$.

On considère enfin un point P de (S) tel que : $O_2P = bx_2$

- 1. Représenter les différentes figures de changement de base.
- 2. Calculer $\Omega(R_2/R_1)$ et $\Omega(R_1/R)$.
- 3. Calculer $\Omega(R_2/R)$.
- 4. Calculer $\mathbf{V}(P \in R_2/R)$ par dérivation du vecteur position.
- 5. Calculer $\mathbf{V}(P \in R_2/R)$ par composition des vitesses.
- 6. Calculer $\Gamma(P \in R_2/R)$.