Inteligência Artificial

Aula 03 – Aprendizado Supervisionado

Hierarquia de aprendizado

Aprendizado Supervisionado

 Conjunto de dados rotulados por um "supervisor"

 Objetivo é predizer a resposta para observações futuras (predição)

Aprendizado Supervisionado

- Iniciamos com um conjunto de dados rotulados
- 2. Dividimos em 2 subconjuntos: **treinamento** e **teste**
- 3. Treinamos um algoritmo com os dados de treinamento (gerando um modelo)
- 4. Avaliamos o modelo com os dados de teste

Aprendizado Supervisionado

Conjunto de dados

- Obtidos a partir de alguma fonte ou banco de dados
 - Pode haver várias operações e manipulações para se obter um conjunto de dados
 - Bancos de dados → Arquivos CSV

Conjunto de dados

• Divide-se o conjunto em treinamento e teste

Treinamento	Teste	
80%	20%	

Treinamento

 Com os dados de treinamento, constrói-se um modelo de aprendizado de máquina

Treinamento Teste

Teste

 Execução do modelo treinado com dados novos e desconhecidos

Treinamento Teste

Bibliotecas Python

- Pandas
 - Manipulação de CSV
 - Tratamento dos conjuntos de dados
- Scikit-Learn
 - Divisão de subconjuntos (treinamento e teste)
 - Algoritmos de Machine Learning
 - Avaliação e métricas de desempenho

Conjuntos de dados

- Machine Learning Data Repository UC Irvine
 - http://archive.ics.uci.edu/ml/index.php
- Kaggle
 - Competições práticas promovidas por empresas
 - https://www.kaggle.com/
- OpenML
 - https://www.openml.org/

Python 3

- mkdir MLtads
- cd MLtads
- python3 -m venv .venv
- Para ativar o ambiente virtual source .venv/bin/activate (Linux) .venv\Scripts\activate (Windows)
 - v v a i v (3 a i 2 p a 3 (a a a 2 v a a a (v i i i a a v i s)
- Após ativação do ambiente virtual:
- pip3 install ipython ipykernel pandas scikit-learn

VS Code

Jupyter notebook support, interactive programming and computing that supports Intellisense, de...

Disable Uninstall V Switch to Pre-Release Version

Exemplo

Pima Indians Diabetes Database

id	pregnant	glucose	bp	skin	insulin	bmi	pedigree	age	label
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

Pima Indians Diabetes Database

diabetes.csv

```
Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome
6,148,72,35,0,33.6,0.627,50,1
1,85,66,29,0,26.6,0.351,31,0
8, 183, 64, 0, 0, 23.3, 0.672, 32, 1
1,89,66,23,94,28.1,0.167,21,0
0,137,40,35,168,43.1,2.288,33,1
5,116,74,0,0,25.6,0.201,30,0
3,78,50,32,88,31,0.248,26,1
10,115,0,0,0,35.3,0.134,29,0
2,197,70,45,543,30.5,0.158,53,1
8,125,96,0,0,0,0.232,54,1
4,110,92,0,0,37.6,0.191,30,0
10,168,74,0,0,38,0.537,34,1
10,139,80,0,0,27.1,1.441,57,0
1,189,60,23,846,30.1,0.398,59,1
5, 166, 72, 19, 175, 25.8, 0.587, 51, 1
7,100,0,0,0,30,0.484,32,1
0,118,84,47,230,45.8,0.551,31,1
7,107,74,0,0,29.6,0.254,31,1
1,103,30,38,83,43.3,0.183,33,0
1,115,70,30,96,34.6,0.529,32,1
3,126,88,41,235,39.3,0.704,27,0
8,99,84,0,0,35.4,0.388,50,0
7, 196, 90, 0, 0, 39.8, 0.451, 41, 1
9,119,80,35,0,29,0.263,29,1
11,143,94,33,146,36.6,0.254,51,1
10, 125, 70, 26, 115, 31.1, 0.205, 41, 1
7,147,76,0,0,39.4,0.257,43,1
```

Pipeline

Pipeline

Avaliação

• Exemplo de entrada:

id	pregnant	glucose	bp	skin	insulin	bmi	pedigree	age	label
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

• Supondo que o algoritmo fez a seguinte predição:

id	prediction	
0	1	/
1	1	X
2	0	X
3	0	/
4	1	/

Acurácia: 60%

Exercício

Leitura e manipulação dos dados

Importação dos dados

```
import pandas
df = pandas.read_csv("diabetes.csv")
```

Preparação dos dados

```
# todas as colunas do conjunto
df.columns

# seleciona uma coluna específica (Outcome)
df['Outcome']

# seleciona todas as colunas exceto Outcome
df.loc[:, df.columns != 'Outcome']
```

Leitura e manipulação dos dados

Separação dos conjuntos de treinamento e teste

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y)
```

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

Treinamento e obtenção do modelo

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report

clf = LogisticRegression() # instância do algoritmo

clf.fit(X_train, y_train) # treinamento do modelo
```

Leitura e manipulação dos dados

Teste e avaliação do modelo

```
y_pred = clf.predict(X_test) # obtém coluna de predições
print(clf.score(X_test, y_test))
print(classification_report(y_test, y_pred))
```

Exercício

- Crie um modelo de aprendizado supervisionado para classificar espécies de flores do conjunto de dados Iris Dataset, (pesquie-o no repositório UCI Machine Learning Repository).
- Utilize a implementação do Scikit-Learn para três algoritmos distintos:
 - Regressão Logística
 - Árvore de Decisão
 - Random Forest
- Execute um pipeline completo e avalie o desempenho desses modelos.