Table 1: Arithmetic operators

Operator	Description	Example
+	Addition - Adds values on either side of the	$\mathrm{a}+\mathrm{b}$ will give 30
	operator	
-	Subtraction - Subtracts right hand operand from	a - b will give -10
	left hand operand	
*	Multiplication - Multiplies values on either side of	a * b will give 200
	the operator	
/	Division - Divides left hand operand by right hand	$\mathrm{b}\ /\ \mathrm{a}\ \mathrm{will}\ \mathrm{give}\ 2$
	operand	
%	Modulus - Divides left hand operand by right hand	b % a will give 0
	operand and returns remainder	
**	Exponent - Performs exponential (power)	a**b will give 10 to the
	calculation on operators	power 20
//	Floor Division - The division of operands where the	9//2 is equal to 4 and
	result is the quotient in which the digits after the	9.0//2.0 is equal to 4.0
	decimal point are removed.	

Table 2: Comparison operators

Operator	Description	Example
==	Checks if the value of two operands are equal or	(a == b) is not true.
	not, if yes then condition becomes true.	
!=	Checks if the value of two operands are equal or not,	(a != b) is true.
	if values are not equal then condition becomes true.	
<>	Checks if the value of two operands are equal or not,	(a <> b) is true. This is
	if values are not equal then condition becomes true.	similar to $!=$ operator.
>	Checks if the value of left operand is greater than	(a > b) is not true.
	the value of right operand, if yes then condition	
	becomes true.	
<	Checks if the value of left operand is less than the	(a < b) is true.
	value of right operand, if yes then condition	
	becomes true.	
>=	Checks if the value of left operand is greater than	(a >= b) is not true.
	or equal to the value of right operand, if yes then	
	condition becomes true.	
<=	Checks if the value of left operand is less than or	$(a \le b)$ is true.
	equal to the value of right operand, if yes then	
	condition becomes true.	

Table 3: Assignment operators

	Table 3: Assignment operators	
Operator	Description	Example
=	Simple assignment operator, Assigns values from	c = a + b will assigne
	right side operands to left side operand	$\underline{\hspace{1cm}}$ value of a + b into c
+=	Add AND assignment operator, It adds right	c += a is equivalent to c
	operand to the left operand and assign the result to	= c + a
	left operand	
-=	Subtract AND assignment operator, It subtracts	c -= a is equivalent to c
	right operand from the left operand and assign the	= c - a
	result to left operand	
*=	Multiply AND assignment operator, It multiplies	c *= a is equivalent to c
	right operand with the left operand and assign the	= c * a
	result to left operand	
/=	Divide AND assignment operator, It divides left	c /= a is equivalent to c
	operand with the right operand and assign the	= c / a
	result to left operand	
%=	Modulus AND assignment operator, It takes	c % = a is equivalent to c
	modulus using two operands and assign the result	= c % a
	to left operand	
**=	Exponent AND assignment operator, Performs	c **= a is equivalent to c
	exponential (power) calculation on operators and	= c ** a
	assign value to the left operand	
//=	Floor Division and assigns a value, Performs floor	$\overline{ \mid c \mid / = a }$ is equivalent to c \mid
	division on operators and assign value to the left	= c // a
	operand	

Table 4: Logical Operators

Operator	Description	Example
and	Called Logical AND operator. If both the operands	(a and b) is true.
	are true then then condition becomes true.	
or	Called Logical OR Operator. If any of the two	(a or b) is true.
	operands are non zero then then condition becomes	
	true.	
not	Called Logical NOT Operator. Use to reverses the	not(a and b) is false.
	logical state of its operand. If a condition is true	
	then Logical NOT operator will make false.	

Table 5: Bitwise operators

Operator	Description	Example
&	Binary AND Operator copies a bit to the result if it	(a & b) will give 12 which
	exists in both operands.	is 0000 1100
	Binary OR Operator copies a bit if it exists in	(a b) will give 61 which
	${ m eather\ operand}.$	is 0011 1101
^	Binary XOR Operator copies the bit if it is set in	(a ^ b) will give 49 which
	one operand but not both.	is 0011 0001
~	Binary Ones Complement Operator is unary and	(~a) will give -61 which
	has the efect of 'flipping' bits.	is 1100 0011 in 2's
		complement form due to
		a signed binary number.
<<	Binary Left Shift Operator. The left operands value	m a << 2 will give 240
	is moved left by the number of bits specified by the	which is 1111 0000
	right operand.	
>>	Binary Right Shift Operator. The left operands	a>>2 will give 15 which
	value is moved right by the number of bits specified	is 0000 1111
	by the right operand.	

Table 6: Identity operators

Operator	Description	Example
is	Evaluates to true if the variables on either side of	x is y, here is results in 1
	the operator point to the same object and false	if $id(x)$ equals $id(y)$.
	otherwise.	
is not	Evaluates to false if the variables on either side of	x is not y, here is not
	the operator point to the same object and true	results in 1 if $id(x)$ is not
	otherwise.	equal to $id(y)$.

Table 7: Membership operators

Operator	Description	Example
in	Evaluates to true if it finds a variable in the	x in y, here in results in a
	specified sequence and false otherwise.	1 if x is a member of
		sequence y.
not in	Evaluates to true if it does not finds a variable in	x not in y, here not in
	the specified sequence and false otherwise.	results in a 1 if x is not a
		member of sequence y.