CSE 4125: Distributed Database Systems

Chapter -3: Part E

Levels of Distributed Transparency

Distribution transparency for update application

Update Sub-tree

Example:

 $EMP_1 = SL_{DEPTNUM \le 10} PJ_{EMPNUM, NAME, MGRNUM, DEPTNUM}$ (EMP)

 $EMP_2 = SL_{DEPTNUM > 10} PJ_{EMPNUM, NAME, MGRNUM, DEPTNUM}$ (EMP)

 $EMP_3 = PJ_{EMPNUM, NAME, SAL, TAX}$ (EMP)

Which part of the tree will be effected if **DEPTNUM** is updated?

Example:

EMP1 = $SL_{\text{DEPTNUM} \le 10} PJ_{\text{EMPNUM, NAME, MGRNUM, DEPTNUM}}$ (EMP)

 $EMP2 = SL_{DEPTNUM > 10} PJ_{EMPNUM, NAME, MGRNUM, DEPTNUM} (EMP)$

 $EMP3 = PJ_{EMPNUM, NAME, SAL, TAX} (EMP)$

Which part of the tree will be effected if **DEPTNUM** is updated?

Objective

We analyze with an example the different levels of distribution transparency:

- Level 1: Fragmentation transparency.
- Level 2: Location transparency.
- Level 3: Local mapping transparency.

For an *update* application.

Scenario

Global schema:

EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)

Fragmentation schema:

```
EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)
```

 $EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)$

 $EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)$

 $EMP_4 = PJ_{EMPNUM. SAL. TAX. MGRNUM} SL_{DEPTNUM > 10} (EMP)$

Allocation schema:

EMP₁ @ site 1, 5; EMP₂ @ site 2, 6

 EMP_{3} @ site 3, 7; EMP_{4} @ site 4, 8

Assume, a **UPDTEMP** application:

Updating DEPTNUM from 3 to 15 where EMPNUM is 100.

Analyzing Level – 1 transparency

Hint:

Use global relation. No concept of fragments.

update EMPset DEPTNUM = 15where EMPNUM = 100.

Analyzing Level – 2 transparency

Hints:

Use fragments.

- -Use the concept of *update sub-tree*.
- -Follow the *effect of update*.

Hints: Use fragments. Use the *update sub-tree*. Follow the *effect of update*.

- > **Store** the necessary record from *fragments* to temporary variables.
- > <u>Insert</u> the records into the affected fragments from the temporary variables.
- **Delete** the records from the previous fragments.

```
EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)
EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)
EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)
EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)
```

EMP₁

EMPNUM	NAME	SAL	TAX
100	Smith	10000	1000

EMP₂

EMPNUM	MGRNUM	DEPTNUM
100	20	3

```
EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)
EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)
EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)
EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)
```

EMP₁

EMPNUM	NAME	SAL	TAX
100	Smith	10000	1000

EMPNUM	MGRNUM	DEPTNUM
100	20	,> 3
70		-152

EMP,

 $EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)$

 $EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)$

 $EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)$

 $EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)$

 EMP_1

F	M	1P	
_	1	"	2

EMPNUM	NAME	SAL	TAX
100	Smith	10000	1000

EMPNUM	MGRNUM	DEPTNUM
100	20	3

EMP₃

EMP₄

EMPNUM	NAME	DEPTNUM
		15

EMPNUM	SAL	TAX	MGRNUM

Effect of updating DEPTNUM =15 with EMPNUM = 100

```
EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)
EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)
EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)
EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)
```


Effect of updating DEPTNUM = 15 with EMPNUM = 100

 $EMP_1 = PJ_{EMPNUM, NAME, SAL, TAX} SL_{DEPTNUM \le 10} (EMP)$

 $EMP_2 = PJ_{EMPNUM, MGRNUM, DEPTNUM} SL_{DEPTNUM \le 10} (EMP)$

 $EMP_3 = PJ_{EMPNUM, NAME, DEPTNUM} SL_{DEPTNUM > 10} (EMP)$

 $EMP_4 = PJ_{EMPNUM, SAL, TAX, MGRNUM} SL_{DEPTNUM > 10} (EMP)$

EMP₁

	. 1	
1E	SAL	TAX
h	10000	1000

EMP₂

EMPNUM	MGRNUM	DEPTNUM
100	20	3

EMP₃

EMPNUM

EMPNUM	NAME	DEPTNUM
100	Smith	15

NAN

EMP₄

EMPNUM	SAL	TAX	MGRNUM
100	10000	1000	20

Effect of updating DEPTNUM = 15 with EMPNUM = 100

Hints: Use fragments. Use the *update sub-tree*. Follow the *effect of update*.

- \triangleright <u>Store</u> the necessary record from EMP_1 and EMP_2 to temporary variables.
- Insert the records into EMP_3 and EMP_4 from the temporary variables.
- \triangleright **Delete** the records from EMP_1 and EMP_2 .

Select NAME, SAL, TAX into \$NAME, \$SAL, \$TAX

from *EMP*₁

where EMPNUM = 100;

Select MGRNUM into \$MGRNUM

from EMP₂

where EMPNUM = 100;

Insert into *EMP*₃ (*EMPNUM*, *NAME*, *DEPTNUM*):

(100, \$NAME, 15);

Insert into EMP₄ (EMPNUM, SAL, TAX, MGRNUM):

(100, \$SAL, \$TAX, \$MGRNUM);

Delete EMP_1 where EMPNUM = 100;

Delete EMP_2 where EMPNUM = 100;

Analyzing Level – 3 transparency

Hints: Use fragments + locations. Follow the effect of update (like previous level), but this time locations will be considered.

- Store the necessary record from EMP_1 and EMP_2 from any of the corresponding sites to temporary variables.
- Insert the records into EMP_3 and EMP_4 at corresponding sites from the temporary variables.
- \triangleright **Delete** the records from EMP_1 and EMP_2 at corresponding sites.

```
Select NAME, SAL, TAX into $NAME, $SAL, $TAX
from EMP<sub>1</sub> at site 1
where EMPNUM = 100;
Select MGRNUM into $MGRNUM
from EMP_2 at site 2
where EMPNUM = 100;
Insert into EMP<sub>3</sub> (EMPNUM, NAME, DEPTNUM)
         at site 3: (100, $NAME, 15);
Insert into EMP<sub>3</sub> (EMPNUM, NAME, DEPTNUM)
         at site 7: (100, $NAME, 15);
Insert into EMP<sub>4</sub> (EMPNUM, SAL, TAX, MGRNUM)
         at site 4 : (100, $SAL, $TAX, $MGRNUM);
Insert into EMP<sub>4</sub> (EMPNUM, SAL, TAX, MGRNUM)
         at site 8 : (100, $SAL, $TAX, $MGRNUM);
Delete EMP_1 at site 1 where EMPNUM = 100;
Delete EMP_1 at site 5 where EMPNUM = 100;
Delete EMP_2 at site 2 where EMPNUM = 100;
Delete EMP_2 at site 6 where EMPNUM = 100;
```

Practice Problems/ Questions

a) For the example provided in the lecture slides, determine the effect of updating DEPTNUM = 5 where EMPNUM = 100 (assume, the record is initially found in EMP_3 and EMP_4 with DEPTNUM = 19).

b) Text book:

- Exercise: 3.2 (a, b, c) and 3.3
- c) Create your own scenario and analyze the different levels of distribution transparency for read-only and update application.