The communication between the ground and satellite is separated into packets. This document specifies the form and function of these packets.

Packet Protocol

Detailed Description of Communication Packet

Revision: 1.1.0

Bradley Davis

Table of Contents

L Packet Header	2
1.1 Multipacket Additional Header	. 2
	-
2 Commands	2

1 Packet Header

The function of the packet header is to convey the recipient, sender, and type of each packet. Specific command IDs for specific recipients use multipacket as the command is transferring a file larger than one packet can fit. See command lists for which ones are multipacket.

The header is two bytes long. The first byte contains the recipient, sender, and command ID, see bit allocation in table 1. The second byte is the length of the packet in number of dwords (32b), including header. The choice of dwords allows packet lengths up to $2^8 \cdot 32b = 1024B$, usable data is 1022B. A packet might require padding at the end of the body to increase the body length to a multiple of single dwords, this padding should be zeros.

Table 1: Packet Header First Byte

Bit index	7	6	5	4	3	2	1	0
Function	Sender			Recipient			Command ID	
	0x0: Gro	ound		0x0: ADCS				
	0x1: Cou	ugSat-1		0x1: IFJR			Up to 4	
	0x2: CougSat-2			0x2: IHU			commands per	
	0x3: CougSat-3			0x3: PMIC			recipient	
	0x4: Cou	ugSat-4		0x4: RCS				
	0x5: CougSat-5 0x6: CougSat-6			0x5: Pay	load 1	See <u>Section 2</u>		
				0x6: Payload 2				for list of
	0x7: Cou	ugSat-7		0x7: Pay	load 3		commands	

1.1 Multipacket Additional Header

For a multipacket, there are an additional two bytes appended to the packet header. These represent a 16b long serial number for the packet. By analyzing the serial numbers of all packets received for a multipacket, the recipient can figure which packets were lost and request those specific packets from the sender.

Detailed Description of Communication Packet

2 Packet Body

The packet body takes two distinct forms: a single packet, or multipacket. The different forms are described below.

2.1 Single Packet

In a single packet, the data directly follows the packet header. This data is specific to the command, this data is described in <u>section 3</u> under each command.

2.2 Multipacket

The function of a multipacket is to transfer data that is longer than a single packet can support. The primary uses of a multipacket are images and processor binaries. Every packet, except the last packet, will be completely full. There is a low chance that the last packet is also completely full. From the file size given in the first packet and the knowledge on the length of packets, the recipient can immediately figure the number of packets it is going to receive and how full the last packet is going to be.

2.1.1 First Packet

The first packet provides details on the file being transferred, including length and file name. The first 4 bytes represents the file length as an unsigned integer, file sizes are limited to $2^{32}b\approx 4GB$. The next several bytes, until a null character is reached, represents the filename as a string. Immediately following the null character is the start of the file.

2.1.2 Second to $(n-1)^{th}$ Packet

The second and onward packet, to one before the last, just contains the data of the file.

2.1.2 nth Packet

The last packet also contains just the data of the file; however, there is a likely possibility that this packet will not be completely full. If so, the same padding rules apply as normal packets: add padding until the body is an even multiple of dwords. Once this packet is received, or communication times out, the recipient will identify which packets were lost in transmission and request them again using their serial numbers

2.1.3 Lost Packet Request

If a packet is lost, the recipient will send a request for retransmission of that specific packet. The body of this message will be a byte to indicate lost packets (0xFF) and the serial numbers of lost packets sequentially appended. If number of lost packets exceeds the number that fit in a single packet, send additional requests. Once

all packets are accounted for, send a multipacket transfer success message and began assembling packets.

3 Commands

Every command has a specific format which is detailed here. In the byte table, the first two byte are the packet header outlined in <u>section 1</u>.

3.1 ADCS

3.2 IFJR

3.3 IHU

3.3.1 Telemetry

A telemetry packet is prepared and sent by the IHU with command ID 0, see table XX. This packet contains data on every subsystem of the satellite bus (no payload). This packet is remade and sent at regular intervals during the IHU's periodic event. A request for a telemetry packet is normally not required.

Byte Offset	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07
0x0000	0x28	0x31	Mode	IHU Temp	Current Time			
0x0008		SD C	Card Used	Size		Reset Count	Error Status	ADCS Temp
0x0010		Lati	tude		Longitude			
0x0018	Roll		Pitch		Yaw		X PWM Out	
0x0020	Y PWM Out		Z PWM Out		X Current		Y Current	
0x0028	Z Current		IFJR Temp	PMIC Temp	Batt A Temp	Batt B Temp	3.3V A Temp	3.3V B Temp
0x0030	PV 0 Temp	PV 1 Temp	PV 2 Temp	PV 3 Temp	PV 4 Temp	PV 5 Temp	PV 6 Temp	PV 7 Temp
0x0038	MPPT 0 Temp	MPPT 1 Temp	MPPT 2 Temp	MPPT 3 Temp	MPPT 4 Temp	MPPT 5 Temp	MPPT 6 Temp	MPPT 7 Temp
0x0040	PV 0 Voltage		PV 0 Current		PV 1 Voltage		PV 1 Current	
0x0048	PV 2 Voltage		PV 2 Current		PV 3 Voltage		PV 3 Current	
0x0050	PV 4 Voltage		PV 4 Current		PV 5 Voltage		PV 5 Current	
0x0058	PV 6 Voltage		PV 6 Current		PV 7 Voltage		PV 7 Current	
0x0060	Battery A Voltage		Battery A Current		Battery B Voltage		Battery B Current	

0x0068	_	ulator A age	3.3V Regulator A Current		3.3V Regulator B Voltage		3.3V Regulator B Current	
0x0070	PR_3.3V-0) Current	PR_3.3V-1 Current		PR_3.3V-2 Current		PR_3.3V-3 Current	
0x0078	PR_3. Curi	3V-4 rent	PR_3.3V-5 Current PR_3.3V-6 (Current	PR_3.3V-7 Current		
0x0080	PR_3.3V-8	3 Current	PR_3.3V-9 Current		PR_3.3V-10 Current		PR_3.3V-11 Current	
0x0088	PR_3.3V-12		PR_BATT-0		PR_BATT-1		PR_BATT-2	
OX0000		rent	Current		Current		Current	
0x0090	PR_BATT-3		PR_BATT-4		PR_BATT-5		PR_BATT-6	
	Curi	rent	Current		Current		Current	
0x0098	PV_3.3-0 Current		PV_3.3-1 Current		PV_3.3-2 Current		PV_3.3-3 Current	
0x00A0	.0 PR_BH-0 Current		PR_BH-1 Current		PR_DEPLOY		PV Switching	
OXOOAO	FI_DI I-O	Current	FI_DITFI CUIT EIT		Current		Sto	ite ¹
0x00A8	CHICH AMICODO STOLE.						Energy Level	
0x00B0	RCS	RX	TX	Amp	DV D	X Power RX Sign		nal to
0.0000	Temp	Temp	Temp	Temp	NA FO	JWEI	Noise Ratio	
0x00B8	Bad Packet Count RX Center Freq			uency	TX Ce	enter Freq	uency	
0x00C0	TX Po	ower	TX Amplifier Voltage					

¹ See PMIC switching states for conversion details

- 3.4 PMIC
- 3.5 RCS
- 3.6 Payload 1
- 3.7 Payload 2
- 3.8 Payload 3

4 Units

When a number is sent down, it is raw byte data that needs to be reassembled and converted to appropriate units. Below is a list of all numbers transferred and how to convert their byte data to a real number. Unless otherwise specified, these conversion factors are used for every value of the appropriate type.

4.1 Voltage

Unsigned 16b integer with $100\mu \frac{V}{LSB} = 0V \ to \ 6.55V$

4.2 Current

Signed 16b integer with 150 $\mu \frac{A}{LSB} = \pm 4.92A$

4.3 Power

Unsigned 16b integer with 250 $\mu \frac{W}{LSB} = 0W \ to \ 6.4W$

4.4 Energy

Unsigned 8b integer with $500 \frac{J}{LSB} = 0J \text{ to } 127kJ$

4.5 Latitude and Longitude

Signed 32b integer with $10\mu \frac{min}{LSB} = \pm 358^{\circ}$

4.6 Time

Unsigned 32b integer, UNIX Epoch time

4.7 Temperature

Signed 8b integer with $1\frac{^{\circ}\mathrm{C}}{_{LSB}} = -128~to~127^{\circ}\mathrm{C}$

4.8 Euler Angles

Unsigned 16b integer with $2^{16} = 360^{\circ}$

4.9 Decibels

Signed 16b integer with $1m\frac{dB}{LSB}=\pm32.8dB$

4.10 Unitless

Unsigned integer (variable bit length) with $1\frac{ul}{LSB}$

