Relações Binárias e Suas Propriedades Matemática Discreta

Prof. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

20 de outubro de 2020

Roteiro

Prévia

Relações Binárias (Revisão)

Notação

Relações Binárias em um Conjunto

Observações

Propriedades de Relações Binárias

Reflexividade

Simetria

Anti-Simetria

Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

2 of 67

Prévia

Requisitos

- Técnicas de Demonstração de Teoremas
- Propriedades / Manipulação Algébrica
- Conceitos de Teoria dos Conjuntos

Esta apresentação...

- Revê brevemente o conceito e notação de Relações Binárias
- Discute as propriedades relevantes para descrever Relações de Equivalência e Relações de Ordem Parcial

Roteiro

Prévia

Relações Binárias (Revisão)

Notação

Relações Binárias em um Conjunto

Observações

Propriedades de Relações Binárias

Reflexividade

Simetria

Anti-Simetria

Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

4 of 67

Definição

Sejam A, B dois conjuntos, uma relação binária de A em B é um subconjunto de $A \times B$.

Por partes:

• $A \times B$ denota o produto cartesiano de A por B, dado por $A \times B = \{(x, y) \mid x \in A \land y \in B\}$

Se
$$A = \{1, 2, 3\}$$
 e $B = \{a, b\}$, então $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

Definição

Sejam A, B dois conjuntos, uma relação binária de A em B é um subconjunto de $A \times B$.

Por partes:

- $A \times B$ denota o produto cartesiano de A por B, dado por $A \times B = \{(x, y) \mid x \in A \land y \in B\}$
- Cada subconjunto de A × B é uma relação de A em B.

Se
$$A = \{1, 2, 3\}$$
 e $B = \{a, b\}$, então $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

$$R_1 = \{(1, a), (1, b)\}$$
 é uma relação de A em B ...

Definição

Sejam A, B dois conjuntos, uma relação binária de A em B é um subconjunto de $A \times B$.

Por partes:

- $A \times B$ denota o produto cartesiano de A por B, dado por $A \times B = \{(x, y) \mid x \in A \land y \in B\}$
- Cada subconjunto de A × B é uma relação de A em B.

Se
$$A = \{1, 2, 3\}$$
 e $B = \{a, b\}$, então
 $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

$$R_2 = \{(1, b), (2, a), (1, a), (2, b)\}$$
 é uma relação de A em B ...

Definição

Sejam A, B dois conjuntos, uma relação binária de A em B é um subconjunto de $A \times B$.

Por partes:

- $A \times B$ denota o produto cartesiano de A por B, dado por $A \times B = \{(x, y) \mid x \in A \land y \in B\}$
- Cada subconjunto de A × B é uma relação de A em B.

Exemplo

Se
$$A = \{1, 2, 3\}$$
 e $B = \{a, b\}$, então
 $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

 $R_3 = \emptyset$ é uma relação de A em B ...

Definição

Sejam A, B dois conjuntos, uma relação binária de A em B é um subconjunto de $A \times B$.

Por partes:

- $A \times B$ denota o produto cartesiano de A por B, dado por $A \times B = \{(x, y) \mid x \in A \land y \in B\}$
- Cada subconjunto de A × B é uma relação de A em B.

Exemplo

Se
$$A = \{1, 2, 3\}$$
 e $B = \{a, b\}$, então
 $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

 $R_4 = A \times B$ é uma relação de A em B ...

Definição

Sejam A, B dois conjuntos, uma relação binária de A em B é um subconjunto de $A \times B$.

Por partes:

- $A \times B$ denota o produto cartesiano de A por B, dado por $A \times B = \{(x, y) \mid x \in A \land y \in B\}$
- Cada subconjunto de $A \times B$ é uma relação de A em B.

Exemplo

Se
$$A = \{1, 2, 3\}$$
 e $B = \{a, b\}$, então
 $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

Existem $2^6 = 64$ relações binárias diferentes de A em B.

Roteiro

Prévia

Relações Binárias (Revisão)

Notação

Relações Binárias em um Conjunto Observações

Propriedades de Relações Binárias

Reflexividade

Simetria

Anti-Simetria

Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

11 of 67

Definição

Sejam A, B dois conjuntos, uma relação binária de A em B é um subconjunto de $A \times B$.

Comumente estabelecemos que R é uma relação anotando que

• $R \subseteq A \times B$ tal que $R = \{(x, y) \mid \text{algumas condições a serem satisfeitas}\}$

Exemplo

$$R \subseteq A \times B$$
, tal que $R = \{(x, y) \mid x < y\}$.

Obs.: Para sabermos exatamente quais são os pares ordenados de R, é necessário conhecermos A, B e sabermos avaliar se cada par em A × B satisfazer as condições pedidas.

Definição

Sejam A, B dois conjuntos, uma relação binária de A em B é um subconjunto de $A \times B$.

Comumente estabelecemos que R é uma relação anotando que

• $R \subseteq A \times B$ tal que $R = \{(x, y) \mid \text{algumas condições a serem satisfeitas}\}$

$$R \subseteq A \times B$$
, tal que $R = \{(x, y) \mid x < y\}$.

Se tivermos
$$A = \{1,2,3\}$$
 e $B = \{0,2,5\}$, então $A \times B = \{(1,0),(1,2),(1,5),(2,0),(2,2),(2,5),(3,0),(3,2),(3,5)\}$

e então
$$R = \{(1,2), (1,5), (2,5), (3,5)\}$$

Definição

Sejam A, B dois conjuntos, uma relação binária de A em B é um subconjunto de $A \times B$.

Comumente estabelecemos que R é uma relação anotando que

• $R \subseteq A \times B$ tal que $R = \{(x, y) \mid \text{algumas condições a serem satisfeitas}\}$

$$R \subseteq A \times B$$
, tal que $R = \{(x, y) \mid x < y\}$.

Se tivermos
$$A = B = \mathbb{N}$$
, então

$$A \times B = \{(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), ...\}$$

e então
$$R = \{(0,1), (0,2), (1,2), (0,3), (1,3), (2,3), ...\}$$

Repare que...

- Toda relação é um conjunto
- Cada elemento de uma relação binária é um par ordenado

Exemplo

```
Sejam A = \{1, 2, 3\} e B = \{0, 2, 5\}, considere R = \{(1, 2), (1, 5), (2, 5), (3, 5)\}
```

Como $(1,2) \in R$, dizemos que 1 <u>está</u> relacionado com 2 por RComo $(2,1) \notin R$, dizemos que 2 <u>não está</u> relacionado com 1 por R

Alternativamente, podemos escrever 1 R2 e 2 \cancel{R} 1. Esta opção é mais interessante quando usamos um caractere especial para nomear a relação, a exemplo de $<,>,\leq,\geq,\subset,\subseteq,|,=,\equiv$, etc.

Roteiro

Prévia

Relações Binárias (Revisão)

Notação

Relações Binárias em um Conjunto

Observações

Propriedades de Relações Binárias

Reflexividade

Simetria

Anti-Simetria

Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

16 of 67

Relações Binárias em um Conjunto

Em casos de $R \subseteq A \times B$ com A = B, relacionamos elementos de A entre eles.

Definição

Seja A um conjunto, uma relação binária em A é um subconjunto de A × A.

Nós chegamos a comentar um exemplo desse tipo anteriormente...

$$R \subseteq A \times B$$
, tal que $R = \{(x, y) \mid x < y\}$.

Se tivermos
$$A = B = \mathbb{N}$$
, então

$$A \times B = \{(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), ...\}$$

e então
$$R = \{(0,1), (0,2), (1,2), (0,3), (1,3), (2,3), ...\}$$

Relações Binárias em um Conjunto

Em casos de $R \subseteq A \times B$ com A = B, relacionamos elementos de A entre eles.

Definição

Seja A um conjunto, uma relação binária em A é um subconjunto de A × A.

Nós chegamos a comentar um exemplo desse tipo anteriormente...

Exemplo

$$R \subseteq \mathbb{N} \times \mathbb{N}$$
, tal que $R = \{(x, y) \mid x < y\}$.

Se tivermos
$$A = B = \mathbb{N}$$
, Então...

$$\mathbb{N} \times \mathbb{N} = \{(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), ...\}$$

e então
$$R = \{(0,1), (0,2), (1,2), (0,3), (1,3), (2,3), ...\}$$

Obs.: Também pode-se anotar " $R \subseteq A \times A$ " **como** " $R \subseteq A^2$ ".

Relações Binárias em um Conjunto

Em casos de $R \subseteq A \times B$ com A = B, relacionamos elementos de A entre eles.

Definição

Seja A um conjunto, uma relação binária em A é um subconjunto de A × A.

Exercício

Considere estas relações no conjunto dos inteiros:

$$\rho_1 = \{(a,b) \mid a \le b\}
\rho_2 = \{(a,b) \mid a > b\}
\rho_3 = \{(a,b) \mid a = b \text{ ou } a = -b\}
\rho_6 = \{(a,b) \mid a = b + 1\}
\rho_6 = \{(a,b) \mid a + b \le 3\}$$

Quais destas relações contêm todos os pares da lista: (1,1),(1,2),(2,1),(1,-1),(2,2)?

Roteiro

Prévia

Relações Binárias (Revisão)

Notação

Relações Binárias em um Conjunto

Observações

Propriedades de Relações Binárias

Reflexividade

Simetria

Anti-Simetria

Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

20 of 67

Relações Binárias (Observações)

Assim como existem relações **binárias**, existem também relações **ternária**, **quaternárias**, etc...

Definição

Sejam $A_1, A_2, ..., A_n$ conjuntos, uma relação n-ária em $A_1, A_2, ..., A_n$ é um subconjunto de $A_1 \times A_2 \times ... \times A_n$.

Neste momento da disciplina, estamos interessados apenas nas relações binárias (com n = 2) em que $A_1 = A_2$.

Relações Binárias (Observações)

Caso seja necessário revisar melhor conceitos de requisito, abaixo há uma lista com alguns dos termos técnicos mais relevantes.

- notações usadas p/ definir conjuntos
- subconjuntos de um conjunto / conjunto das partes
- produto cartesiano
- par ordenado, tupla/n-upla ordenada

Além destes, uma boa compreensão de operações sobre conjuntos e princípios de contagem podem ser bastante úteis.

Roteiro

Prévia

Relações Binárias (Revisão)

Notação Relações Binárias em um Conjunto Observações

Propriedades de Relações Binárias Reflexividade

Simetria
Anti-Simetria
Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

23 of 67

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Reflexivas)

Uma relação binária R no conjunto A é **reflexiva se e somente se** todo elemento de A está relacionado consigo mesmo por R.

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_1 \subseteq A^2$ tal que $R_1 = \{(1, 1), (1, 2), (2, 2), (1, 3), (3, 3)\}$

Como A é finito e pequeno, podemos verificar se R₁ é reflexiva por exaustão

- Como $1 \in A$, precisamos ter $(1,1) \in R_1$.
- Como $2 \in A$, precisamos ter $(2,2) \in R_1$.
- Como $3 \in A$, precisamos ter $(3,3) \in R_1$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Reflexivas)

Uma relação binária R no conjunto A é reflexiva se e somente se todo elemento de A está relacionado consigo mesmo por R.

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_1 \subseteq A^2$ tal que $R_1 = \{(1, 1), (1, 2), (2, 2), (1, 3), (3, 3)\}$

Como A é finito e pequeno, podemos verificar se R₁ é reflexiva por exaustão

- Como 1 \in A, precisamos ter $(1,1) \in R_1$. \checkmark
- Como $2 \in A$, precisamos ter $(2,2) \in R_1$. \checkmark
- Como $3 \in A$, precisamos ter $(3,3) \in R_1$. \checkmark

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Reflexivas - Alternativa)

Uma relação binária R no conjunto A é reflexiva se e somente se

$$\forall x \in A, (x,x) \in R$$

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_1 \subseteq A^2$ tal que $R_1 = \{(1, 1), (1, 2), (2, 2), (1, 3), (3, 3)\}$

Como A é finito e pequeno, podemos verificar se R₁ é reflexiva por exaustão

- Como 1 \in A, precisamos ter $(1,1) \in R_1$. \checkmark
- Como $2 \in A$, precisamos ter $(2,2) \in R_1$. \checkmark
- Como $3 \in A$, precisamos ter $(3,3) \in R_1$. \checkmark

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Reflexivas - Alternativa)

Uma relação binária R no conjunto A é reflexiva se e somente se

$$\forall x \in A, (x,x) \in R$$

Exemplo

Seja A =
$$\{1,2,3\}$$
, considere $R_2 \subseteq A^2$ tal que $R_2 = \{(1,1),(1,2),(2,2),(3,2),(2,1)\}$

Como A é finito e pequeno, podemos verificar se R₂ é reflexiva por exaustão

- Como $1 \in A$, precisamos ter $(1,1) \in R_2$.
- Como $2 \in A$, precisamos ter $(2,2) \in R_2$.
- Como $3 \in A$, precisamos ter $(3,3) \in R_2$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Reflexivas - Alternativa)

Uma relação binária R no conjunto A é reflexiva se e somente se

$$\forall x \in A, (x,x) \in R$$

Exemplo

Seja A =
$$\{1,2,3\}$$
, considere $R_2 \subseteq A^2$ tal que $R_2 = \{(1,1),(1,2),(2,2),(3,2),(2,1)\}$

Como A é finito e pequeno, podemos verificar se R₂ é reflexiva por exaustão

- Como 1 \in A, precisamos ter $(1,1) \in$ R. \checkmark
- Como $2 \in A$, precisamos ter $(2,2) \in R$. \checkmark
- Como $3 \in A$, precisamos ter $(3,3) \in R$. \times

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Reflexivas - Alternativa)

Uma relação binária R no conjunto A é reflexiva se e somente se

$$\forall x \in A, (x,x) \in R$$

Exemplo

Considere $R_3 \subseteq \mathbb{Z}^2$ tal que $R_3 = \{(a,b) \mid a \text{ divide } b\}$

Como \mathbb{Z} é infinito, garantir que R_3 é reflexiva exige uma prova de generalização.

Neste caso, porém, temos um contra-exemplo: como $0 \in \mathbb{Z}$, precisaríamos ter $(0,0) \in R_3$, mas este não é o caso, pois uma das condições para que a divida b é termos $a \neq 0$.

Resumidamente, $0 \in \mathbb{Z}$, mas $(0,0) \notin R_3$. Portanto, R_3 não é reflexiva.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Reflexivas - Alternativa)

Uma relação binária R no conjunto A é reflexiva se e somente se

$$\forall x \in A, (x,x) \in R$$

Exemplo

Considere $R_4 \subseteq \mathbb{N}^* \times \mathbb{N}^*$ tal que $R_4 = \{(a,b) \mid a \text{ divide } b\}$

Como \mathbb{N}^* é infinito, garantir que R_4 é reflexiva exige uma prova de generalização.

Prova

Seja k um elemento qualquer de \mathbb{N}^* , precisamos provar que $(k,k) \in R_4$. Como k.1=k e $k \neq 0$, podemos aplicar a definição de divisibilidade para concluir que k divide k. Portanto, $(k,k) \in R_4$. Como provamos que $(k,k) \in R_4$ para um elemento qualquer de \mathbb{N}^* , isto vale para todo $k \in \mathbb{N}^*$. Portanto, R_4 é reflexiva.

Roteiro

Prévia

Relações Binárias (Revisão)

Notação Relações Binárias em um Conjunto Observações

Propriedades de Relações Binárias

Reflexividade

Simetria

Anti-Simetria

Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

31 of 67

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Simétricas)

Uma relação binária R no conjunto A é simétrica se e somente se para cada par $(a,b) \in R$ também temos que $(b,a) \in R$.

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_5 \subseteq A^2$ tal que $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$

Como A é finito e pequeno, podemos verificar se R₅ é simétrica por exaustão

- Como $(1,1) \in R_5$, precisamos ter que $(1,1) \in R_5$.
- Como $(1,2) \in R_5$, precisamos ter que $(2,1) \in R_5$.
- Como $(2,1) \in R_5$, precisamos ter que $(1,2) \in R_5$.
- Como $(1,3) \in R_5$, precisamos ter que $(3,1) \in R_5$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Simétricas)

Uma relação binária R no conjunto A é simétrica se e somente se para cada par $(a,b) \in R$ também temos que $(b,a) \in R$.

Exemplo

Seja A =
$$\{1,2,3\}$$
, considere $R_5 \subseteq A^2$ tal que $R_5 = \{(1,1),(1,2),(2,1),(1,3)\}$

Como A é finito e pequeno, podemos verificar se R₅ é simétrica por exaustão

- Como $(1,1) \in R_5$, precisamos ter que $(1,1) \in R_5$. \checkmark
- Como $(1,2) \in R_5$, precisamos ter que $(2,1) \in R_5$. \checkmark
- Como $(2,1) \in R_5$, precisamos ter que $(1,2) \in R_5$. \checkmark
- Como $(1,3) \in R_5$, precisamos ter que $(3,1) \in R_5$. \times

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Simétricas - Alternativa)

Uma relação binária R no conjunto A é simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ ((x,y) \in R \to (y,x) \in R)$$

Exemplo

Seja A = {1,2,3}, considere
$$R_5 \subseteq A^2$$
 tal que $R_5 = \{(1,1),(1,2),(2,1),(1,3)\}$

Como A é finito e pequeno, podemos verificar se R₅ é simétrica por exaustão

- Como $(1,1) \in R_5$, precisamos ter que $(1,1) \in R_5$. \checkmark
- Como $(1,2) \in R_5$, precisamos ter que $(2,1) \in R_5$. \checkmark
- Como $(2,1) \in R_5$, precisamos ter que $(1,2) \in R_5$. \checkmark
- Como $(1,3) \in R_5$, precisamos ter que $(3,1) \in R_5$. \times

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Simétricas - Alternativa)

Uma relação binária R no conjunto A é simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ ((x,y) \in R \to (y,x) \in R)$$

Exemplo

Considere $R_3 \subseteq \mathbb{Z}^2$ tal que $R_3 = \{(a,b) \mid a \text{ divide } b\}$

Como \mathbb{Z} é infinito, garantir que R_3 é simétrica exige uma prova de generalização.

Neste caso, porém, temos um contra-exemplo: $(1,2) \in R_3$, mas $(2,1) \notin R_3$.

Portanto, R₃ não é simétrica.

Obs. 1: Note que (por exemplo) $(1,-1) \in R_3$ e $(-1,1) \in R_3$, mas isso não torna R_3 simétrica. Importa apenas que há contra-exemplos.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Simétricas - Alternativa)

Uma relação binária R no conjunto A é simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ ((x,y) \in R \to (y,x) \in R)$$

Exemplo

Considere $R_3 \subseteq \mathbb{Z}^2$ tal que $R_3 = \{(a,b) \mid a \text{ divide } b\}$

Como \mathbb{Z} é infinito, garantir que R_3 é simétrica exige uma prova de generalização.

Neste caso, porém, temos um contra-exemplo: $(1,2) \in R_3$, mas $(2,1) \notin R_3$.

Portanto, R₃ não é simétrica.

Obs. 2: Este exemplo também garante que R₄ não é simétrica.

Relações Simétricas

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Simétricas - Alternativa)

Uma relação binária R no conjunto A é simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ ((x,y) \in R \to (y,x) \in R)$$

Exemplo

Considere $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a,b) \mid a+b \text{ \'e par }\}$

Como \mathbb{Z} é infinito, garantir que R_6 é simétrica exige uma prova de generalização.

Prova

Sejam c, d dois inteiros quaisquer (Instanciação), suponha que $(c,d) \in R_6$ (Hipótese. da Prova Direta).

Pela definição de R_6 , c + d é par.

Como c + d = d + c (Comutatividade da Soma), d + c também é par.

Pela definição de R_6 , temos que $(d,c) \in R_6$. Portanto, R_6 é simétrica.

Roteiro

Prévia

Relações Binárias (Revisão)

Notação Relações Binárias em um Conjunto Observacões

Propriedades de Relações Binárias

Reflexividade

Anti-Simetria

Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

38 of 67

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas)

Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

Observações:

- A anti-simetria é independente da simetria. Estas propriedades não contrariam nem impedem uma à outra.
- Intuitivamente, a anti-simetria é um tipo de simetria restrita que admite exclusivamente a simetria de pares do tipo (x, x) na relação.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas)

Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

Exemplo

Seja A = {1,2,3}, considere
$$R_5 \subseteq A^2$$
 tal que $R_5 = \{(1,1),(1,2),(2,1),(1,3)\}$

- Como $(1,1) \in R_5$, mas 1 = 1, não há o que verificar neste caso.
- Como $(1,2) \in R_5$ e $1 \neq 2$, precisamos ter que $(2,1) \notin R_5$.
- Como $(2,1) \in R_5$ e $2 \neq 1$, precisamos ter que $(1,2) \notin R_5$.
- Como $(1,3) \in R_5$ e $1 \neq 3$, precisamos ter que $(3,1) \notin R_5$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas)

Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_5 \subseteq A^2$ tal que $R_5 = \{(1, 1), (1, 2), \textcolor{red}{(2, 1)}, (1, 3)\}$

- Como (1,1) ∈ R₅, mas 1 = 1, não há o que verificar neste caso. √
- Como $(1,2) \in R_5$ e $1 \neq 2$, precisamos ter que $(2,1) \notin R_5$. \times
- Como $(2,1) \in R_5$ e $2 \neq 1$, precisamos ter que $(1,2) \notin R_5$.
- Como $(1,3) \in R_5$ e $1 \neq 3$, precisamos ter que $(3,1) \notin R_5$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas)

Uma relação binária R no conjunto A é anti-simétrica se e somente se para cada par $(a,b) \in R$ com $a \neq b$, tem-se que $(b,a) \notin R$.

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_5 \subseteq A^2$ tal que $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$

- Como (1,1) ∈ R₅, mas 1 = 1, não há o que verificar neste caso. √
- Como $(1,2) \in R_5$ e $1 \neq 2$, precisamos ter que $(2,1) \notin R_5$. \times
- Como $(2,1) \in R_5$ e $2 \neq 1$, precisamos ter que $(1,2) \notin R_5$. \times
- Como (1,3) ∈ R₅ e 1 ≠ 3, precisamos ter que (3,1) ∉ R₅. √

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas - Alternativa 1)

Uma relação binária R no conjunto A é anti-simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ (((x,y) \in R \land x \neq y) \rightarrow (y,x) \notin R)$$

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_5 \subseteq A^2$ tal que $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$

- Como (1,1) ∈ R₅, mas 1 = 1, não há o que verificar neste caso. √
- Como $(1,2) \in R_5$ e $1 \neq 2$, precisamos ter que $(2,1) \notin R_5$. \times
- Como $(2,1) \in R_5$ e $2 \neq 1$, precisamos ter que $(1,2) \notin R_5$. \times
- Como $(1,3) \in R_5$ e $1 \neq 3$, precisamos ter que $(3,1) \notin R_5$. \checkmark

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas - Alternativa 2)

Uma relação binária R no conjunto A é anti-simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ ((x,y) \in R \to (x \neq y \to (y,x) \notin R))$$

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_5 \subseteq A^2$ tal que $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$

- Como (1,1) ∈ R₅, então, como 1 = 1, não há o que verificar. √
- Como $(1,2) \in R_5$, então, como $1 \neq 2$, precisamos ter que $(2,1) \notin R_5$. \times
- Como $(2,1) \in R_5$, então, como $2 \neq 1$, precisamos ter que $(1,2) \notin R_5$. \times
- Como $(1,3) \in R_5$, então, como $1 \neq 3$, precisamos ter que $(3,1) \notin R_5$. \checkmark

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas - Alternativa 3)

Uma relação binária R no conjunto A é anti-simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ ((x,y) \in R \land (y,x) \in R) \rightarrow x = y)$$

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_5 \subseteq A^2$ tal que $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$

Como A é finito e pequeno, podemos verificar se R_5 é anti-simétrica por exaust \tilde{ao}

- Como $(1,1) \in R_5$ e $(1,1) \in R_5$, precisamos verificar se 1 = 1. \checkmark
- Como $(1,2) \in R_5$ e $(2,1) \in R_5$, precisamos verificar se 1 = 2. \times
- Como $(2,1) \in R_5$ e $(1,2) \in R_5$, precisamos verificar se 2 = 1. \times
- Como $(1,3) \in R_5$, mas $(3,1) \notin R_5$, não há nada a verificar. \checkmark

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas - Alternativa 4)

Uma relação binária R no conjunto A é anti-simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ ((x,y) \in R \rightarrow ((y,x) \in R \rightarrow x = y))$$

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_5 \subseteq A^2$ tal que $R_5 = \{(1, 1), (1, 2), (2, 1), (1, 3)\}$

- Como $(1,1) \in R_5$, então, como $(1,1) \in R_5$, precisamos verificar se 1=1. \checkmark
- Como $(1,2) \in R_5$, então, como $(2,1) \in R_5$, precisamos verificar se 1 = 2. \times
- Como $(2,1) \in R_5$, então, como $(1,2) \in R_5$, precisamos verificar se $2=1. \times 10^{-5}$
- Como $(1,3) \in R_5$, então, como $(3,1) \notin R_5$, não há nada a verificar. \checkmark

Qual definição usar?

A que você preferir entre estas. Elas são equivalentes.

Recomendações:

- Alternativa 2 p/ provas exaustivas
- Alternativa 1 ou Alternativa 3 p/ provas de generalização ou contra-provas.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas - Alternativa 2)

Uma relação binária R no conjunto A é anti-simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ ((x,y) \in R \rightarrow (x \neq y \rightarrow (y,x) \notin R))$$

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_7 \subseteq A^2$ tal que $R_7 = \{(1, 2), (1, 3), (2, 2), (3, 2)\}$

- Como $(1,2) \in R_7$, então, como $1 \neq 2$, precisamos ter que $(2,1) \notin R_7$. \checkmark
- Como $(1,3) \in R_7$, então, como $1 \neq 3$, precisamos ter que $(3,1) \notin R_7$. \checkmark
- Como (2,2) ∈ R₇, então, como 2 = 2, não há o que verificar. √
- Como $(3,2) \in R_7$, então, como $3 \neq 2$, precisamos ter que $(2,3) \notin R_7$. \checkmark

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas - Alternativa 1)

Uma relação binária R no conjunto A é anti-simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ (\ (\ (x,y) \in R \ \land \ x \neq y\) \rightarrow (y,x) \notin R\)$$

Exemplo

Considere $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a,b) \mid a+b \text{ \'e par }\}$

Como $\mathbb Z$ é infinito, garantir que R_6 é anti-simétrica exige uma prova de generalização.

Neste caso, porém, temos um contra-exemplo: $(1,3) \in R_6$ e $1 \neq 3$, mas $(3,1) \in R_6$.

Portanto, R₆ não é anti-simétrica.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Anti-Simétricas - Alternativa 3)

Uma relação binária R no conjunto A é anti-simétrica se e somente se

$$\forall x \in A, \ \forall y \in A, \ (\ (\ (x,y) \in R \ \land \ (y,x) \in R \) \rightarrow x = y \)$$

Exemplo

Considere $R_8 \subseteq \mathbb{N}^2$ tal que $R_8 = \{(a,b) \mid a \leq b\}$

Como \mathbb{N} é infinito, garantir que R_8 é anti-simétrica exige uma prova de generalização.

Prova

- 1. Sejam c, d naturais quaisquer (Instanciação),
- **2.** Por Prova Direta, suponha que $(c, d) \in R_8$ e $(d, c) \in R_8$.
- **3.** Pela definição de R_8 , isso significa que $c \le d$ e $d \le c$.
- **4.** Isso nos permite concluir que c = d.
- 5. Portanto, R₈ é anti-simétrica.

Roteiro

Prévia

Relações Binárias (Revisão)

Notação Relações Binárias em um Conjunto Observacões

Propriedades de Relações Binárias

Reflexividade Simetria Anti-Simetria

Transitividade

Sumário e Observações Tipos Especiais de Relações Binária

Exercícios

51 of 67

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Transitivas)

Uma relação binária R no conjunto A é **transitiva se e somente se** sempre que $(a,b) \in R$ e $(b,c) \in R$, então também temos $(a,c) \in R$.

Exemplo

Seja A = {1,2,3}, considere R
$$_9 \subseteq A^2$$
 tal que R $_9 = \{(1,1),(1,3),(3,1)\}$

- Como $(1,1) \in R_9$ e $(1,3) \in R_9$, precisamos ter que $(1,3) \in R_9$.
- Como (1,3) ∈ R₉ e (3,1) ∈ R₉, precisamos ter que (1,1) ∈ R₉.
- Como $(3,1) \in R_9$ e $(1,1) \in R_9$, precisamos ter que $(3,1) \in R_9$.
- Como $(3,1) \in R_9$ e $(1,3) \in R_9$, precisamos ter que $(3,3) \in R_9$.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Transitivas)

Uma relação binária R no conjunto A é **transitiva se e somente se** sempre que $(a,b) \in R$ e $(b,c) \in R$, então também temos $(a,c) \in R$.

Exemplo

Seja A = {1,2,3}, considere R₉
$$\subseteq$$
 A² tal que R₉ = {(1,1),(1,3),(3,1)}

- Como $(1,1) \in R_9$ e $(1,3) \in R_9$, precisamos ter que $(1,3) \in R_9$. \checkmark
- Como $(1,3) \in R_9$ e $(3,1) \in R_9$, precisamos ter que $(1,1) \in R_9$. \checkmark
- $Como(3,1) \in R_9 \ e(1,1) \in R_9$, precisamos ter que $(3,1) \in R_9$. \checkmark
- Como $(3,1) \in R_9$ e $(1,3) \in R_9$, precisamos ter que $(3,3) \in R_9$. \times

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Transitivas - Alternativa)

Uma relação binária R no conjunto A é transitiva se e somente se

$$\forall x \in A, \ \forall y \in A, \ \forall z \in A, \ (((x,y) \in R \land (y,z) \in R) \rightarrow (x,z) \in R)$$

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_9 \subseteq A^2$ tal que $R_9 = \{(1, 1), (1, 3), (3, 1)\}$

- Como $(1,1) \in R_9$ e $(1,3) \in R_9$, precisamos ter que $(1,3) \in R_9$. \checkmark
- Como $(1,3) \in R_9$ e $(3,1) \in R_9$, precisamos ter que $(1,1) \in R_9$. \checkmark
- Como (3,1) ∈ R₉ e (1,1) ∈ R₉, precisamos ter que (3,1) ∈ R₉. √
- Como $(3,1) \in R_9$ e $(1,3) \in R_9$, precisamos ter que $(3,3) \in R_9$. \times

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Transitivas - Alternativa)

Uma relação binária R no conjunto A é transitiva se e somente se

$$\forall x \in A, \ \forall y \in A, \ \forall z \in A, \ (((x,y) \in R \land (y,z) \in R) \rightarrow (x,z) \in R)$$

Exemplo

Seja
$$A = \{1, 2, 3\}$$
, considere $R_{10} \subseteq A^2$ tal que $R_{10} = \{(1, 1), (1, 3), (3, 1), (3, 3)\}$

Como A é finito e pequeno, podemos verificar se R_{10} é transitiva por exaustão

- Como $(1,1) \in R_{10}$ e $(1,3) \in R_{10}$, precisamos ter que $(1,3) \in R_{10}$. ✓
- Como $(1,3) \in R_{10}$ e $(3,1) \in R_{10}$, precisamos ter que $(1,1) \in R_{10}$. \checkmark
- Como $(3,1) \in R_{10}$ e $(1,1) \in R_{10}$, precisamos ter que $(3,1) \in R_{10}$. \checkmark
- Como $(3,1) \in R_{10}$ e $(1,3) \in R_{10}$, precisamos ter que $(3,3) \in R_{10}$. \checkmark

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Transitivas - Alternativa)

Uma relação binária R no conjunto A é transitiva se e somente se

$$\forall x \in A, \ \forall y \in A, \ \forall z \in A, \ (((x,y) \in R \land (y,z) \in R) \rightarrow (x,z) \in R)$$

Exercício

Verifique se as relações abaixo em A = $\{1, 2, 3, 4\}$ *são transitivas:*

$$\rho_1 = \{(1,2), (2,3), (3,4)\}
\rho_2 = \{(1,2), (2,3), (3,4), (1,3), (2,4)\}
\rho_3 = \{(1,2), (2,3), (3,4), (1,3), (2,4), (1,4)\}$$

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Transitivas - Alternativa)

Uma relação binária R no conjunto A é transitiva se e somente se

$$\forall x \in A, \ \forall y \in A, \ \forall z \in A, \ (((x,y) \in R \land (y,z) \in R) \rightarrow (x,z) \in R)$$

Exercício

Verifique se as relações abaixo em A = $\{1, 2, 3, 4\}$ *são transitivas:*

$$\rho_1 = \{(1,2), (2,3), (3,4)\} \times \\
\rho_2 = \{(1,2), (2,3), (3,4), (1,3), (2,4)\} \times \\
\rho_3 = \{(1,2), (2,3), (3,4), (1,3), (2,4), (1,4)\}$$

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Transitivas - Alternativa)

Uma relação binária R no conjunto A é transitiva se e somente se

$$\forall x \in A, \ \forall y \in A, \ \forall z \in A, \ (((x,y) \in R \land (y,z) \in R) \rightarrow (x,z) \in R)$$

Exemplo

Considere $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a,b) \mid a+b \text{ \'e par }\}$

Como \mathbb{Z} é infinito, garantir que R_6 é transitiva exige uma prova de generalização.

Prova

- 1. Sejam c, d, e inteiros quaisquer (Instanciação),
- **2.** Por Prova Direta, suponha que $(c, d) \in R_6$ e $(d, e) \in R_6$.
- **3.** Pela definição de R_6 , isso significa que c + d é par e d + e é par.
- **4.** Portanto, existem inteiros k, l tais que c + d = 2k e d + e = 2l
- **5.** Então (c+d) + (d+e) = 2k + 2l ...

Definição (Relações Transitivas - Alternativa)

Uma relação binária R no conjunto A é transitiva se e somente se

$$\forall x \in A, \ \forall y \in A, \ \forall z \in A, \ (((x,y) \in R \land (y,z) \in R) \rightarrow (x,z) \in R)$$

Exemplo

Estamos provando que $R_6 \subseteq \mathbb{Z}^2$ tal que $R_6 = \{(a,b) \mid a+b \text{ \'e par }\}$ \'e transitiva.

Prova

- 1. Sejam c, d, e inteiros quaisquer (Instanciação),
- **2.** Por Prova Direta, suponha que $(c, d) \in R_6$ e $(d, e) \in R_6$.
- **3.** Pela definição de R_6 , isso significa que c+d é par e d+e é par.
- **4.** Portanto, existem inteiros k, l tais que c + d = 2k e d + e = 2l
- **5.** Então (c+d) + (d+e) = 2k + 2l
- 6. c + 2d + e = 2k + 2l
- 7. c + e = 2k + 2l 2d = 2.(k + l d)
- **8.** Como k, l, d são inteiros, k + l d é um número inteiro.
- **9.** Logo, c + e é um número par, o que significa que $(c, e) \in R_6$.
- **10.** Portanto, R₆ é transitiva.

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição (Relações Transitivas - Alternativa)

Uma relação binária R no conjunto A é transitiva se e somente se

$$\forall x \in A, \ \forall y \in A, \ \forall z \in A, \ (((x,y) \in R \land (y,z) \in R) \rightarrow (x,z) \in R)$$

Exemplo

Considere $R_{11} \subseteq \mathbb{Z}^2$ tal que $R_{11} = \{(a,b) \mid a+b \text{ \'e impar }\}$

Como \mathbb{Z} é infinito, garantir que R_{11} é transitiva exige uma prova de generalização.

Neste caso, porém, temos um contra-exemplo:

$$(1,2) \in R_{11} \ e (2,1) \in R_{11}, \ \textit{mas} \ (1,1) \notin R_{11}.$$

Portanto, R₁₁ não é transitiva.

Roteiro

Prévia

Relações Binárias (Revisão)

Notação

Relações Binárias em um Conjunto

Observações

Propriedades de Relações Binárias

Reflexividade

Simetria

Anti-Simetria

Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

61 of 67

Sumário e Observações

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição

Uma relação binária R no conjunto A é:

- reflexiva sse $\forall x \in A, (x, x) \in R$
- simétrica sse $\forall x \in A, \ \forall y \in A, \ ((x,y) \in R \to (y,x) \in R)$
- anti-simétrica sse $\forall x \in A, \ \forall y \in A, \ (\ (\ (x,y) \in R \ \land \ x \neq y\) \rightarrow (y,x) \notin R\)$
- transitiva sse $\forall x \in A, \forall y \in A, \forall z \in A, (((x,y) \in R \land (y,z) \in R) \rightarrow (x,z) \in R)$

Lembre-se:

- Pequenas mudanças na definição de uma relação podem impactar suas propriedades.
- Verifique as propriedades como se fossem completamente independentes.
- É possível satisfazer a estas propriedades por vacuidade.

Sumário e Observações

Estas propriedades são exclusivas às relações binárias do tipo $R \subseteq A \times A$.

Definição

Uma relação binária R no conjunto A é:

- reflexiva sse $\forall x \in A, (x, x) \in R$
- simétrica sse $\forall x \in A, \ \forall y \in A, \ ((x,y) \in R \to (y,x) \in R)$
- anti-simétrica sse $\forall x \in A, \ \forall y \in A, \ (\ (\ (x,y) \in R \ \land \ x \neq y\) \rightarrow (y,x) \notin R\)$
- transitiva sse $\forall x \in A, \forall y \in A, \forall z \in A, (((x,y) \in R \land (y,z) \in R) \rightarrow (x,z) \in R)$

Exemplo

Para qualquer conjunto A, a relação $\emptyset \subseteq A \times A$ é simétrica, anti-simétrica e transitiva. Além disso, se $A = \emptyset$, a relação \emptyset também será reflexiva.

Roteiro

Prévia

Relações Binárias (Revisão)

Notação

Relações Binárias em um Conjunto

Observações

Propriedades de Relações Binárias

Reflexividade

Simetria

Anti-Simetria

Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

64 of 67

Tipos Especiais de Relações Binárias

Na sequência, nos aprofundaríamos em dois tipos de relações binárias:

Definição

Uma relação binária R no conjunto A é uma relação de equivalência se e somente se R é reflexiva, simétrica, e transitiva.

Definição

Uma relação binária R no conjunto A é uma relação de ordem parcial se e somente se R é reflexiva, anti-simétrica, e transitiva.

Portanto, para provar que uma dada relação é de equivalência ou de ordem parcial, são necessárias três sub-provas, uma para cada propriedade relevante.

Roteiro

Prévia

Relações Binárias (Revisão)

Notação

Relações Binárias em um Conjunto

Observações

Propriedades de Relações Binárias

Reflexividade

Simetria

Anti-Simetria

Transitividade

Sumário e Observações

Tipos Especiais de Relações Binárias

Exercícios

66 of 67

Tipos Especiais de Relações Binárias

Exercício

Nós definimos 11 relações R_i , $1 \le i \le 11$ na seção intitulada "Propriedades de Relações Binárias". Verifique se cada R_i satisfaz às demais propriedades que não avaliamos para ela.

Faça o mesmo para as relações ρ_1, ρ_2, ρ_3 definidas no exercício da seção "Transitividade".