Vysoké učení technické v Brně Fakulta informačních technologií

TEORIE OBVODŮ

2014/2015

Semestrální projekt

Príklad 1 - variant B

Stanovte napätie U_{R7} a prúd I_{R7}. Použite metódu postupného zjednodušovania obvodu.

Zadané hodnoty:

U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$ m R_4\left[\Omega ight]$	$R_5 [\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_7[\Omega]$
95	650	730	340	330	410	830	340	220

Schéma zapojenia:

1. Vypočítame paralelnú hodnotu rezistorov R5, R6:

$$R_{5,6} = \frac{R_5 * R_6}{R_5 + R_6} = \frac{410 * 830}{410 + 830} = 274,4355\Omega$$

2. Transfigurujeme rezistory $R_2\,,\,R_3\,,\,R_4$ na hviezdu :

$$R_a = \frac{R_2 * R_3}{R_2 + R_3 + R_4} = \frac{730 * 340}{1400} = 177,2857\Omega$$

$$R_b = \frac{R_2 * R_4}{R_2 + R_3 + R_4} = \frac{730 * 330}{1400} = 172,0714\Omega$$

$$R_c = \frac{R_3 * R_4}{R_2 + R_3 + R_4} = \frac{340 * 330}{1400} = 80,1429\Omega$$

3. Sériovo spojíme rezistory Ra a R1, Rb a R56, Rc a R7:

$$\begin{split} R_{a1} &= R_a + R_1 = 650 + 177,2851 = 827,2851\Omega \\ R_{b5,6} &= R_{5,6} + R_b = 274,4355 + 172,0714 = 446,5069\Omega \\ R_{c7} &= R_7 + R_c = 340 + 80,1429 = 420,1429\Omega \end{split}$$

4. Paralelne spojíme rezistory $R_{\rm b5,6}\,$ a $R_{\rm c7}$:

$$R_{bc567} = \frac{R_{c7} * R_{b56}}{R_{c7} + R_{b56}} = \frac{420,1429 * 446,5069}{420,1429 + 446,5069} = 216,4619\Omega$$

5. Vypočítame celkový odpor v obvode:

$$R_{ekv} = R_{bc567} + R_{a1} + R_8 = 446,5069 + 827,2851 + 220 = 1263,7477\Omega$$

6. Vypočítame prúd prechádzajúci obvodom:

$$I = \frac{U}{R_{ekv}} = \frac{95}{1263,7477} = 0,0752A$$

7. Dopočítame ostatné neznáme veličiny:

$$U_{Rbc567} = I * R_{bc567} = 0.0752 * 216,4619 = 16,2714V$$

$$IR_7 = \frac{U_{Rbc567}}{R_{c7}} = \frac{16,2714}{420,1429} = 0,0387A$$

$$U_{R7} = IR_7 * R_7 = 0.0387 * 340 = 13.1682V$$

Príklad 2 - variant A

Stanovte napätie U_{R3} a prúd I_{R3} . Použite metódu Theveninovej vety.

Zadané hodnoty:

U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$
50	525	620	210	530	130	150

Schéma zapojenia:

1. Vypočítame odpor R_i:

a.)

Tento obvod najprv musíme zjednodušiť pomocou transfigurácie na hviezdu. Odpor $R_i\,$ je odpor medzi svorkami A a B.

$$R_a = \frac{R_1 * R_4}{R_1 + R_4 + R_6} = \frac{525 * 530}{1205} = 230,9129\Omega$$

$$R_b = \frac{R_1 * R_6}{R_1 + R_4 + R_6} = \frac{525 * 150}{1205} = 65,3527\Omega$$

$$R_c = \frac{R_6 * R_4}{R_1 + R_4 + R_6} = \frac{150 * 530}{1205} = 65,9751\Omega$$

b.)

Vypočítame odpor R_i:

$$R_i = R_a + \frac{(R_b + R_2) * (R_c + R_5)}{R_b + R_c + R_2 + R_5} = 230,9129 + \frac{(65,3527 + 620) * (65,9751 + 130)}{65,3527 + 65,9751 + 620 + 130} = 383,3103\Omega$$

2. Vypočítame výsledný odpor bez R₃:

$$R_{12456} = R_6 + \frac{(R_1 + R_4) * (R_2 + R_5)}{R_1 + R_2 + R_4 + R_5} = 150 + \frac{(525 + 530) * (620 + 130)}{525 + 620 + 530 + 130} = 588,3657\Omega$$

3. Vypočítame prúd I_x:

$$I_x = \frac{U}{R_{12456}} = \frac{50}{588,3657} = 0,0849A$$

4. Vypočítame napätie U celkového odporu bez R₃:

$$U_{R1245} = I_x * R_{1245} = 0.0849 * 438,3657 = 37,2172V$$

5. Vypočítame prúdy pretekajúce obvodom:

$$I_1 = \frac{U_{R1245}}{R_1 + R_4} = \frac{37,2172}{1055} = 0,0353A$$

$$I_2 = \frac{U_{R1245}}{R_2 + R_5} = \frac{37,2172}{750} = 0,0496A$$

6. Vypočítame napätie U_i :

$$U_i = I_2 * R_2 - I_1 * R_1 = 30,752 - 18,5325 = 12,2195V$$

7. Nakreslíme náhradnú schému zapojenia:

8. Vypočítame I_{R3} a U_{R3} :

$$I_{R3} = \frac{U_i}{R_i + R_3} = \frac{12,2195}{383,3103 + 210} = 0,0206A$$

$$U_{R3} = I_{R3} * R_3 = 0.0206 * 210 = 4.3251V$$

Príklad 3 - variant A

Stanovte napätie U_{R5} a prúd I_{R5}. Použite metódu uzlových napätí (UA,UB,UC).

Zadané hodnoty:

$U_1[V]$	$U_2[V]$	I[A]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$
120	90	0,7	530	490	650	390	320	120

Schéma zapojenia:

1. Vyjadríme rovnice pre jednotlivé uzly:

1:
$$I_{R1} - I - I_{R3} - I_{R2} = 0$$

2:
$$I + I_{R3} + I_{R6} - I_{R5} = 0$$

3:
$$I_{R5} - I_{R4} - I_{R6} = 0$$

2. Vyjadríme jednotlivé prúdy:

$$I_{R1} = \frac{U_1 - U_A}{R_1}$$

$$I_{R2} = \frac{U_A}{R_2}$$

$$I_{R3} = \frac{U_A - U_B}{R_3}$$

$$I_{R4} = \frac{U_C}{R_4}$$

$$I_{R5} = \frac{U_B - U_C}{R_5}$$

$$I_{R6} = \frac{U_C - U_B + U_2}{R_6}$$

3. Vyjadrené prúdy dosadíme do rovníc:

1:
$$\frac{U_1 - U_A}{R_1} - I - \frac{U_A - U_B}{R_3} - \frac{U_A}{R_2} = 0$$

2:
$$I + \frac{U_A - U_B}{R_3} + \frac{U_C - U_B + U_2}{R_6} - \frac{U_B - U_C}{R_5} = 0$$

3:
$$\frac{U_B - U_C}{R_5} - \frac{U_C}{R_4} - \frac{U_C - U_B + U_2}{R_6} = 0$$

4. Riešime rovnice o troch neznámych:

1:
$$\frac{120-U_A}{530} - 0.7 - \frac{U_A - U_B}{650} - \frac{U_A}{490} = 0$$

2:
$$0.7 + \frac{U_A - U_B}{650} + \frac{U_C - U_B + 90}{120} - \frac{U_B - U_C}{320} = 0$$

3:
$$\frac{U_B - U_C}{650} - \frac{U_C}{390} - \frac{U_C - U_B + 90}{120} = 0$$

Výsledky rovníc:

$$U_A = -24,748 V$$

$$U_B = 219,895 V$$

$$U_C = 126,206 V$$

5. Vypočítame I_{R5} a U_{R5}:

$$I_{R5} = \frac{U_B - U_C}{R_5} = \frac{219,895 - 126,206}{320} = 0,2928 A$$

$$U_{R5} = I_{R5} * R_5 = 0.2928 * 320 = 93.696 V$$

Príklad 4 - variant B

Pre napájacie napätie platí : $u=U*\sin(2\pi ft)$.

Vo vzťahu pre napätie $u_{L2} = U_{L2} * sin(2\pi ft + \phi L2)$, určite $|U_{L2}|$ a $\phi L2$. Použite metódu zjednodušovania obvodu.

Zadané hodnoty:

I	U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	L ₁ [mH]	L ₂ [mH]	C ₁ [F]	C ₂ [F]	f [Hz]
	35	160	220	270	480	420	440	170	85

Schéma zapojenia:

1. Vypočítame uhlovú rýchlosť:

$$\omega = 2\pi * f = 2\pi * 85 = 534,0710 \ rad/s$$

2. Odpory cievok a kondenzátorov :

$$XC_1 = \frac{-1}{\omega C_1} j = \frac{-1}{534,0710 * 440 * 10^{-6}} = -j4,2553 \Omega$$
$$XC_2 = \frac{-1}{\omega C_2} j = \frac{-1}{534,0710 * 170 * 10^{-6}} = -j11,0132 \Omega$$

$$XL_1 = \omega * L_1 * j = 534,0710 * 480 * 10^{-3} * j = j256,3541 \Omega$$

$$XL_2 = \omega * L_2 * j = 534,0710 * 420 * 10^{-3} * j = j224,3098 \Omega$$

3. Spojíme sériové zapojenie R₂ a X_{C1}, R₃ a X_{C2}:

$$Z_1 = R_2 + X_{C1} = 220 + (-j4,2553) = 220 - j4,2553 \Omega$$

$$Z_2 = R_3 + X_{C2} = 270 + (-j11,0132) = 270 - j11,0132 \Omega$$

4. Spojíme paralelne zapojenia Z_2 a X_{L2} , a vypočítané Z_3 so Z_1 :

$$Z_3 = \frac{Z_2 * X_{L2}}{Z_2 + X_{L2}} = \frac{(270 - j11,0132) * (j224,3098)}{270 - j11,0132 + j224,3098} = 114,6436 + j133,0255$$

$$Z_4 = \frac{Z_3 * Z_1}{Z_3 + Z_1} = \frac{(114,6436 + j133,0255) * (220 - j4,2553)}{(114,6436 + j133,0255) + (220 - j4,2553)} = 95,7130 + j49,2725 \Omega$$

5. Dopočítame výslednú impedanciu obvodu:

$$Z = Z_4 + R_1 + X_{L1} = (95,7130 + j49,2725) + 160 + j256,3541$$

= 256,1394 + j305,5756 Ω

6. Vypočítame prúd tečúci obvodom:

$$I = \frac{U}{Z} = \frac{35}{256,1394 + j305,5756} = 0,5639 - j0,0673 A$$

7. Vypočítame napätie U_{Z4}:

$$U_{Z4} = I * Z_4 = 0,5639 - j 0,0673 * (95,7130 + j49,2725) = 8,7332 - j3,6919 V$$

8. Vypočítame I_{L2} a U_{L2}:

$$I_{L2} = \frac{U_{Z4}}{X_{L2}} = \frac{8,7332 - j3,6919}{j224,3098} = -0,0165 - j0,0389 A$$

$$U_{L2} = I_{L2} * X_{L2} = -0.0165 - j0.0389 * j224.3098 = 8.7324 - j3.6919 \text{ V}$$

9. Vypočítame |U_{L2}| a φL2:

$$|UL2| = \sqrt{Rm^2 + I^2} = \sqrt{8,7324^2 + 3,6919^2} = 9,4808 V$$

$$\varphi L2 = \arctan \frac{I}{Rm} = \arctan \frac{-3,6919}{8,7324} = -0,3999 rad \rightarrow -22,9081$$
 °

Príklad 5 - variant A

Pre napájacie napätie platí : $u_L=U_1*\sin(2\pi ft)$, $u_2=U_2*\sin(2\pi ft)$. Vo vzťahu pre napätie $u_{C1}=U_{C1}*\sin(2\pi ft+\phi C1)$, určite $|U_{C1}|$ a $\phi C2$. Použite metódu zjednodušovania obvodu.

Zadané hodnoty:

$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	L_1	L_2	C ₁ [F]	C ₂ [F]	f [Hz]
					[mH]	[mH]			
35	55	125	140	180	120	100	200	105	70

Schéma zapojenia:

1. Vypočítame uhlovú rýchlosť

$$\omega = 2\pi * f = 2\pi * 70 = 439,8230 \ rad/s$$

2. Odpory cievok a kondenzátorov:

$$XC_{1} = \frac{-1}{\omega C_{1}} j = \frac{-1}{439,823 * 200 * 10^{-6}} = -j11,3682 \Omega$$

$$XC_{2} = \frac{-1}{\omega C_{2}} j = \frac{-1}{439,823 * 105 * 10^{-6}} = -j21,6538 \Omega$$

$$XL_{1} = \omega * L_{1} * j = 439,823 * 120 * 10^{-3} * j = j52,7788 \Omega$$

$$XL_{2} = \omega * L_{2} * j = 439,823 * 100 * 10^{-3} * j = j43,9823 \Omega$$

3. Zostavíme rovnice pre jednotlivé prúdy:

$$I_a: I_a R_1 + X_{C1} * (I_a - I_b) + R_2 * (I_a - I_b) + X_{C2} * (I_a - I_c) + U_1 = 0$$

$$I_b$$
: $I_b X_{L1} + X_{C1} * (I_b - I_a) + R_2 * (I_b - I_a) + X_{L2} * (I_b - I_c) = 0$

$$I_c$$
: $I_c R_3 + X_{C2} * (I_c - I_a) + X_{L2} * (I_c - I_b) + U_2 = 0$

4. Do rovníc dosadíme známe hodnoty:

$$125I_a - j11,3682 * (I_a - I_b) + 140 * (I_a - I_b) - j21,6538 * (I_a - I_c) + 35 = 0$$

$$I_b j 52,7788 - j 11,3682 * (I_b - I_a) + 140 * (I_b - I_a) + j 43,9823 * (I_b - I_c) = 0$$

$$180 I_c - j21,6538 * (I_c - I_a) + j43,9823 * (I_c - I_b) + 55 = 0$$

5. Vypočítame sústavu rovníc:

$$I_a = -0.2307 + j0.0469 A$$

$$I_b = -0.1853 + j0.0793 A$$

$$I_c = -0.0776 - j0.0406 A$$

6. Vypočítame U_{C1} a ϕC_1 :

$$U_{C1} = (I_b - I_a) * X_{C1} = ((-0.1853 + j0.0793) - (-0.2307 + j0.0469)) * (-j11.6538)$$

$$= 0.3673 - j0.5153V$$

$$|U_{C1}| = \sqrt{Im_{Uc1} + Re_{Uc1}} = \sqrt{0.3673 + 0.5153} = 0.6328 V$$

$$\varphi C_1 = \arctan \frac{Im_{Uc1}}{Re_{Uc1}} = \frac{-5153}{0,3673} = -0,9515 \ rad \rightarrow 119,4232^{\circ}$$

Príklad 6 - variant A

Zostavte diferenciálnu rovnicu popisujúcu chovanie obvodu na obrázku, upravte ju dosadením hodnôt parametrov. Vypočítajte analytické riešenie $i_L = f(t)$. Skontrolujte dosadením do zostavenej rovnice.

Zadané hodnoty:

U[V]	R [Ω]	L[mH]	$I_{L}(0)[V]$
20	10	40	9

Schéma zapojenia:

1.Vyjadríme U_L pomocou kirchiffovho zákona, dosadíme do axiómu :

14

$$U_L = U - U_R$$

$$i'_{L} = \frac{1}{L} * (U - U_{R}) = \frac{1}{L} * (U - R * i_{L})$$

$$L*i_L+R*i_L=U$$

2. Dosadíme do rovnice:

$$40i_L^{'} + 10i_L = 20$$

3. Vypočítame λ:

$$\lambda = -\frac{1}{4}$$

4. Očakávaný tvar:

$$i_L(t) = c(t) * e^{\lambda t} = c(t) * e^{-\frac{1}{4}t}$$

5. Riešime rovnicu:

5.1 Derivujeme i_L

$$i'_{L} = c'(t) * e^{-\frac{1}{4}t} + c(t) * e^{-\frac{1}{4}t} * (-\frac{1}{4})$$

5.2 Dosadíme hodnotu i_L a i'_L, zjednodušíme :

$$40 c'(t) * e^{-\frac{1}{4}t} - 10c(t) * e^{-\frac{1}{4}t} + 10c(t) * e^{-\frac{1}{4}t} = 20$$

$$40c'(t) * e^{-\frac{1}{4}t} = 20$$

$$c'(t) * e^{-\frac{1}{4}t} = 0,5$$

$$c'(t) = \frac{0,5}{e^{-\frac{1}{4}t}}$$

$$c'(t) = 0.5 * e^{\frac{1}{4}t}$$

5.3 Integrujeme c'(t):

$$\int c'(t)dt = \int 0.5 * e^{\frac{1}{4}t}dt$$

$$c(t) + k1 = 0.5 * e^{\frac{1}{4}t} * \frac{1}{\frac{1}{4}} + K2$$

$$c(t) = 2 * e^{\frac{1}{4}t} + k$$

5.4 Dosadíme c(t) do očakávaného riešenia:

$$i_L(t) = \left(2 * e^{\frac{1}{4}t} + k\right) * e^{-\frac{1}{4}t}$$

$$i_L(t) = 2 + k * e^{-\frac{1}{4}t}$$

5.5 Dosadíme počiatočnú podmienku i_L a dopočítame konštantu k:

$$9 = 2 + k * e^{-\frac{1}{4}t}$$

$$9 = 2 + k * e^{-\frac{1}{4}0}$$

$$9 = 2 + k$$

$$k = 9 - 2 = 7$$

6. Výsledok:

$$i_L(t) = 2 + 7 * e^{-\frac{1}{4}t}$$

7. Skúška výsledku:

$$i_L = 2 + 7 * e^{-\frac{1}{4}t}$$

$$i'_L = 7 * e^{-\frac{1}{4}t} * (-\frac{1}{4})$$

$$40 * \left(7 * e^{-\frac{1}{4}t} * \left(-\frac{1}{4}\right)\right) + 10 * \left(2 + 7 * e^{-\frac{1}{4}t}\right) = 20$$

$$-70 * e^{-\frac{1}{4}t} + 20 + 70 * e^{-\frac{1}{4}t} = 20$$

$$20 = 20$$

Tabuľka výsledkov

Príklad č.	Variant zadania	Výsl	edok
1	В	$U_{R7} = 13,1682 V$	$I_{R7} = 38,7 \ mA$
2	Α	$U_{R3} = 4,3251 V$	$I_{R3} = 20,6 mA$
3	Α	$U_{R5} = 93,6960 V$	$I_{R5} = 292,8 mA$
4	В	$ U_{L2} = 9,4808 V$	$\varphi_{L2} = -22,9081^{\circ}$
5	А	$ U_{C1} = 0,6328 V$	$\varphi_{C1} = 119,4232^{\circ}$
6	А	$i_L(t) = 2 + 7e^{-\frac{1}{4}t}$	