Adversarial Machine Learning

Machine Learning Course - CS-433 Nov 16, 2022 Nicolas Flammarion

Some input examples are hard for humans

- Some examples might be challenging for a human
- NNs typically have no problem with them
- However, NNs are not robust in their decisions

Dog or mop?

Adversarial examples: small perturbations which cause a misclassification with a high confidence

Source: Z. Kolter, A. Madry, NeurIPS'18 tutorial on adversarial robustness

NNs have difficulties with imperceptible but very specific input known as adversarial examples

- → Security problem: consider a self-driving car and stop sign detection
- → We don't understand how these models generalize and react to distribution shifts

Standard risk vs. adversarial risk

Classification problem: $(X, Y) \sim \mathcal{D}$, Y with range $\{-1, 1\}$

Standard risk: average zero-one loss over X

$$R(f) = \mathbb{E}_{\mathscr{D}} \left[1_{f(X) \neq Y} \right] = \mathbb{P}_{\mathscr{D}} \left[f(X) \neq Y \right]$$

Adversarial risk: average zero-one loss over small, worst-case perturbations of \boldsymbol{X}

$$R_{\varepsilon}(f) = \mathbb{E}_{\mathscr{D}} \left[\max_{\hat{x}, \|\hat{x} - X\| \le \varepsilon} 1_{f(\hat{x}) \ne Y} \right]$$

Adversarial vulnerability raises many questions

$$R_{\varepsilon}(f) = \mathbb{E}_{\mathcal{D}} \left[\max_{\hat{x}, \|\hat{x} - X\| \le \varepsilon} 1_{f(\hat{x}) \ne Y} \right]$$

- Threat model:
 - How should we define the adversary power?
 - What norm shall we consider? ℓ_{∞} , ℓ_2 , ℓ_1 , ℓ_0 , ...
 - Other set of perturbations?
- If $R(f) \leq \delta$, then how large can $R_{\varepsilon}(f)$ be?

Adversarial vulnerability raises many questions

- How can we compute an adversarial example?
- Which access do we have to the model to attack it?
- How can we design a classifier f so that it is robust? Related: given a non-robust classifier, can I somehow make it robust?
- Why are neural networks non-robust?

Generating adversarial examples

Task: given an input (x, y) and a model $f: \mathcal{X} \to \{-1,1\}$, find an input \hat{x} , such that

(a)
$$\|x - \tilde{x}\| \le \varepsilon$$

(b) the model f makes a mistake on it

Trivial case: x is already misclassified

nothing to do

General case: x is correctly classified

i.e., $\hat{x} \in B_x(\varepsilon) \cap \{x', f(x') = -y\}$

Generating adversarial examples amounts to maximizing the classification loss w.r.t the inputs

Find an adversarial example by solving

$$\max_{\hat{x}, ||\hat{x} - x|| \le \varepsilon} 1_{f(\hat{x}) \ne y}$$

Optimization problem with respect to the inputs

Problem: optimizing the indicator function $1_{f(\hat{x})\neq y}$ is difficult:

- 1. The indicator function 1 is not continuous
- 2. The NN prediction f outputs the discrete class values $\{-1,1\}$

Generating adversarial examples amounts to solving a constrained optimization problem

Solution:

- 1. Use instead a smooth classification loss ℓ (e.g., logistic or hinge loss)
- 2. Consider the output g of the NN before classification (i.e., f(x) = sign(g(x)))

Main idea: replace the difficult problem over the indicator by a smooth problem

$$\max_{\hat{x}, \|\hat{x} - x\| \le \varepsilon} 1_{f(\hat{x}) \ne y} \longrightarrow \max_{\hat{x}, \|\hat{x} - x\| \le \varepsilon} \ell(yg(\hat{x}))$$

Reminder: decreasing, margin-based (i.e., dependent on $y \cdot g(x)$) classification losses

Generating adversarial examples: white-box case

How to solve $\max_{\hat{x},||\hat{x}-x|| \leq \varepsilon} \ell(yg(\hat{x}))$ in the **white-box** case, i.e., if we know the model g?

Compute its gradient:
$$\nabla_x \mathcal{E}(yg(x)) = y\underline{\mathcal{E}'(yg(x))} \nabla_x g(x)$$

 ≤ 0 since classification loss are decreasing

We should move in the direction $\propto -y \nabla_x g(x)$

Interpretation: f(x) = sign(g(x))

- If y=1, we want to decrease g(x) and follow $-\nabla_x g(x)$
- If y = -1, we want to increase g(x) and follow $\nabla_x g(x)$

 \triangle Why using ℓ , and not directly minimizing $yg(\hat{x})$?

→ It won't extend to multi-class classification and to robust training.

Generating adversarial examples: taking into account the constraints

We can linearize the loss $\tilde{\ell}(x) := \ell(yg(x))$ to derive an iteration:

$$\max_{\|\hat{x}-x\| \le \varepsilon} \tilde{\ell}(\hat{x}) \approx \max_{\|\hat{x}-x\| \le \varepsilon} \tilde{\ell}(x) + \nabla_x \tilde{\ell}(x)^T (\hat{x} - x)$$

$$= \tilde{\ell}(x) + \max_{\|\hat{x}-x\| \le \varepsilon} \nabla_x \tilde{\ell}(x)^T (\hat{x} - x)$$

$$= \tilde{\ell}(x) + \max_{\|\delta\| \le \varepsilon} \nabla_x \tilde{\ell}(x)^T \delta$$

- We need to maximize the inner product under a norm constraint, i.e. find the optimal local update
- This is a simple problem for which we can get a closed-form solution depending on the norm used to measure the perturbation size $\|\delta\|$

Generating adversarial examples: one-step attack

Problem:

$$\max_{\|\delta\| \le \varepsilon} \nabla_{x} \tilde{\mathcal{E}}(x)^{T} \delta$$

$$\hat{x} = x - \varepsilon y \cdot \frac{\nabla_x g(x)}{\|\nabla_x g(x)\|_2}$$

- Solution for the ℓ_{∞} norm: $\delta_{\infty}^{\star} = \varepsilon \cdot \text{sign}(\nabla_{x} \tilde{\ell}(x)) = -\varepsilon y \cdot \text{sign}(\nabla_{x} g(x))$
 - $\Rightarrow \hat{x} = x \varepsilon y \cdot \text{sign}(\nabla_x g(x))$
 - → Fast Gradient Sign Method
 [Goodfellow et al., 2014]

Generating adversarial examples: multi-step attack

These updates can be done iteratively and combined with a projection Π on the feasible set (i.e., ℓ_2/ℓ_∞ balls here)

Projected Gradient Descent:

• ℓ_2 norm:

$$\begin{split} \delta^{t+1} &= \Pi_{B_2(\varepsilon)} \left[\delta^t + \alpha \cdot \frac{\nabla \tilde{\ell}(x+\delta^t)}{\|\nabla \tilde{\ell}(x+\delta^t)\|_2} \right], \\ \text{where } \Pi_{B_2(\varepsilon)}(\delta) &= \begin{cases} \varepsilon \cdot \delta / \|\delta\|_2, & \text{if } \|\delta\|_2 \geq \varepsilon \\ \delta, & \text{otherwise} \end{cases} \end{split}$$

• ℓ_{∞} norm:

$$\delta^{t+1} = \Pi_{B_{\infty}(\varepsilon)} \left[\delta^t + \alpha \cdot \operatorname{sign}(\nabla \tilde{\ell}(x + \delta^t)) \right],$$
 where $\Pi_{B_{\infty}(\varepsilon)}(\delta)_i = \begin{cases} \varepsilon \cdot \operatorname{sign}(\delta_i), & \text{if } |\delta_i| \geq \varepsilon \\ \delta_i, & \text{otherwise} \end{cases}$

Reminder: ℓ_p norms

Different ℓ_p norms have different geometry

The difference is especially pronounced in high dimensions!

Visualizations of different \mathcal{C}_p adversarial examples

The choice of the norm leads to different properties of the resulting adversarial perturbations: e.g. ℓ_{∞} are **dense** and ℓ_{0} are **sparse**

Source: Towards Evaluating the Robustness of Neural Networks, Carlini et al., 2018

What perturbations do we even want to be robust to?

⇒ a lot of research on formulating the "right" perturbation set!

White-box attacks: implementation

- For a neural network, the gradients $\nabla_x g(x)$ can also be computed by **backpropagation** (note: they are taken w.r.t. **inputs**, not parameters!)
- Modern deep learning frameworks readily support this
 - → lab #10 (implement Fast Gradient Sign Method on MNIST in PyTorch)
- Now: what **if we don't know** g(x)? i.e., can we still run an attack if we don't know how to compute $\nabla_x g(x)$?

Black-box attacks: query-based gradient estimation

There are different assumptions on the knowledge about the model f:

- score-based: we can query the model scores $g(x) \in \mathbb{R}$
- decision-based: we can query only the predicted class $f(x) \in \{-1,1\}$

In score-based case, we can approximate the gradient via a finite difference formula:

$$\nabla_{x} g(x) \approx \sum_{i=1}^{d} \frac{g(x + \alpha e_{i}) - g(x)}{\alpha} e_{i}$$

Remark: similar techniques can be adapted to the decision-based case (if x is close to the decision boundary)

Black-box attacks via transfer attacks

Alternative approach: transfer attacks

- 1. train a **similar** surrogate model $\hat{f} \approx f$ on **similar** data
- 2. transfer the resulting white-box adversarial perturbation from \hat{f} to f
- Success depends on how similar the model architecture and data are
- If we are allowed to query f given some **unlabeled** inputs $\{x_n\}_{n=1}^N$ we can obtain $\{x_n, f(x_n)\}_{n=1}^N$ and learn \hat{f} based on that (known as **model stealing**)
 - → can facilitate transfer attacks

Black-box attacks: summary

General takeaway: black-box attacks are of practical concern but:

- Query-based methods often require a lot of queries (10k-100k), particularly decision-based attacks → easy to restrict access for the attacker!
- Obtaining a surrogate model \hat{f} can be costly and success is not guaranteed
- The final missing ingredient: physically realizable attacks

Physically realizable attacks

To be applied in practice, adversarial examples need to satisfy some further requirements:

- invariance under JPEG compression (for images input directly in a digital format)
- invariance under photographic distortions (for real-world adversarial examples captured by a camera)
- invariance under different camera angles (for a moving camera, e.g., on a self-driving car)
- → a surge of papers on how to take these requirements into account

Source: Robust Physical-World Attacks on Deep Learning Visual Classification (CVPR 2018)

How do we train robust models?

Now we know how to generate adversarial examples

We will see that we can just train on them to obtain robust models

- → known as adversarial training
- Standard training: the goal is to minimize the standard risk:

$$\min_{\theta} R(f_{\theta}) = \mathbb{E}_{\mathcal{D}} \left[1_{f(X) \neq Y} \right]$$

Adversarial training: the goal is to minimize the adversarial risk:

$$\min_{\theta} R_{\varepsilon}(f_{\theta}) = \mathbb{E}_{\mathcal{D}} \left[\max_{\hat{x}, \|\hat{x} - X\| \le \varepsilon} 1_{f(\hat{x}) \ne Y} \right]$$

Adversarial training: formulation

Goal:

$$\min_{\theta} R_{\varepsilon}(f_{\theta}) = \mathbb{E}_{\mathcal{D}} \left[\max_{\hat{x}, \|\hat{x} - X\| \le \varepsilon} 1_{f(\hat{x}) \ne Y} \right]$$

- The data distribution ${\mathscr D}$ is unknown \to approximate it by a sample average
- The classification loss is non-continuous → use a smooth loss

This results in the following robust optimization problem:

$$\min_{\theta} \frac{1}{N} \sum_{n=1}^{N} \max_{\hat{x}_n, \|x_n - \hat{x}_n\| \le \varepsilon} \mathcal{E}(y_n g_{\theta}(\hat{x}_n))$$

Interpretation: minimize the risk on adversarial examples

Adversarial training: algorithm

$$\min_{\theta} \frac{1}{N} \sum_{n=1}^{N} \max_{\hat{x}_n, \|x_n - \hat{x}_n\| \le \varepsilon} \ell(y_n g_{\theta}(\hat{x}_n))$$

Adversarial training: at each iteration t:

- 1. For each x_n , approximate $\hat{x}_n^\star \approx \arg\max_{\|x_n \hat{x}_n\| \le \varepsilon} \ell(y_n g_\theta(\hat{x}_n))$ via the **PGD attack**
- 2. Do a gradient descent step w.r.t. θ using $\frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} \mathcal{E}(y_n g_{\theta}(\hat{x_n}^{\star}))$ Note you are using \hat{x}_n^{\star} and not x_n

Adversarial training: discussion

Good news:

- Adversarial training is a state-of-the-art approach for robust classification!
- Adversarial training leads to more interpretable gradients $\nabla_x \mathcal{E}(yg_\theta(x))$
- The algorithm is fully compatible with SGD

 → you will explore it in lab #10
 (adversarial training of a CNN on MNIST)

Source: Robustness May Be at Odds with Accuracy (ICLR 2019)

Adversarial training: discussion

Bad news:

- Increased computational time: proportionally to the number of PGD steps
- Robustness-accuracy tradeoff: using a too large ε leads to worse standard accuracy (right)

Deep ConvNet on CIFAR-10

Source: Robustness May Be at Odds with Accuracy (ICLR 2019)

Key question: so why do adversarial examples exist?

We can conceptualize it with a simple model

Consider
$$x \in \mathbb{R}^d$$
, $y \sim \mathcal{U}(\{-1,1\})$, $Z_i \sim \mathcal{N}(0,1)$:

- Robust features: $x_1 = y + Z_1$
- . Non-robust features: $x_i = y\sqrt{\frac{\log d}{d-1}} + Z_i$ for $i \in \{2,\dots,d\}$

We'll see that when $d \to \infty$:

- standard risk can be arbitrarily small
- adversarial risk can be arbitrarily large

Value of the robust feature x_1

Value of a non-robust feature x_i

Model is only using the robust feature x_1

MLE:
$$\underset{\hat{y} \in \{\pm 1\}}{\text{max}} p(\hat{y} \mid x_1) = \underset{\hat{y} \in \{\pm 1\}}{\text{arg}} \underset{\hat{y} \in \{\pm 1\}}{\text{max}} \frac{p(x_1 \mid \hat{y})p(\hat{y})}{p(x_1)} = \underset{\text{arg max}}{\text{arg max}} \underset{\hat{y} \in \{\pm 1\}}{\text{pressure}} p(x_1 \mid \hat{y})$$

assuming

p(y = 1) = p(y = 2)

Standard risk: $\int_0^\infty \frac{1}{\sqrt{2\pi}} e^{-0.5(x+1)^2} dx \approx 0.16 \rightarrow \text{good but not perfect!}$

Model is using both robust and non-robust features (I)

Let's derive MLE using **all** features using the shortcut notation $x_i = ya_i + Z_i$:

$$\arg \max_{\hat{y} \in \{\pm 1\}} p(\hat{y} \mid x) = \arg \max_{\hat{y} \in \{\pm 1\}} \prod_{i=1}^{d} p(x_i \mid \hat{y})$$

$$= \arg \max_{\hat{y} \in \{\pm 1\}} \sum_{i=1}^{d} \log p(x_i \mid \hat{y})$$

$$= \arg \max_{\hat{y} \in \{\pm 1\}} \sum_{i=1}^{d} \log \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x_i - \hat{y}a_i)^2}$$

$$= \arg \max_{\hat{y} \in \{\pm 1\}} \sum_{i=1}^{d} (x_i - \hat{y}a_i)^2$$

$$= \arg \max_{\hat{y} \in \{\pm 1\}} \sum_{i=1}^{d} (x_i^2 - 2x_i \hat{y}a_i + \hat{y}^2 a_i^2) = \arg \max_{\hat{y} \in \{\pm 1\}} \hat{y} \sum_{i=1}^{d} x_i a_i$$

Model is using both robust and non-robust features (II)

The MLE expression we maximize over $\hat{y} \in \{-1,1\}$ becomes:

$$\hat{y} \sum_{i=1}^{d} x_i a_i = \hat{y} y \left(\sum_{i=1}^{d} a_i^2 \right) + \hat{y} \sum_{i=1}^{d} a_i Z_i = \hat{y} y (1 + \log(d)) + \hat{y} Z,$$

where
$$Z := \sum_{i=1}^{d} a_i Z_i \sim \mathcal{N}(0, 1 + \log d)$$

Scaling by $1/(1 + \log d)$, the MLE expression results in:

$$y\hat{y} + \hat{y}Z$$
 with $Z \sim \mathcal{N}(0, 1/(1 + \log d))$

Conclusion: when the dimension $d \to \infty$, $\hat{y}Z \to 0$ and standard risk $\to 0$

Interpretation: using the non-robust features improves standard risk!

What about adversarial risk?

• The adversary can use tiny ℓ_{∞} - perturbations

$$\varepsilon = 2\sqrt{\frac{\log d}{d-1}} \ (\to 0 \text{ when } d \to \infty)$$

Optimal adversarial strategy:

$$\hat{x}_1 = \left(1 - 2\sqrt{\frac{\log d}{d-1}}\right)y + Z_1 \text{ (almost unaffected)}$$

$$\hat{x}_i = -\sqrt{\frac{\log d}{d-1}}y + Z_i \text{ (completely flipped!)}$$

- Adversarial risk $R_{\varepsilon}(f)$ will become ≈ 1 (due to non-robust x_i) although standard risk R(f) is 0!
- But: only using the robust feature x_1 leads to $R_{\varepsilon}(f) \approx R(f) = 0.16$
 - → tradeoff between accuracy and robustness

