1	4. (Amended) The system as described in claim 2, wherein the vessel
2	more preferably comprises endothelial cells from a mammal.
3	
4	6. (Amended) The method as described in claim 5, wherein the vessel
5	more preferably comprises endothelial cells from a mammal.
6	
7	7. (Added) The system as described in claim 1, further comprising
8	a means for controlling the pumps, and wherein the upstream pump and the
9	downstream pump are operatively connected with the means for controlling the
10	pumps.
11	
12	8. (Added) The system as described in claim 1, wherein the upstream
13	pump and the downstream pump are preferably out of phase with each other.
14	
15	9. (Added) The system as described in claim 1, further comprising
16	a chamber for receiving the vessel therein, and wherein the chamber further
17	comprises a means for controlling pressure.
18	
19	10. (Added) The system as described in claim 1, further comprising
20	a reservoir for retaining the fluid.
21	
22	11. (Added) A system for hemodynamic simulation, the system
23	comprising:
24	a fluid;
25	a vessel through which the fluid may be urged;
26	a chamber in which the vessel is received, the chamber further
27	including a means for controlling pressure;
28	a reservoir for retaining the fluid;
29	a plurality of pumps in fluid communication with the fluid; one
30	of the pumps urging the fluid through the vessel; and
31	a means for controlling the pumps, and wherein the pumps are
32	operatively connected with the means for controlling the pumps.
33	
34	12. (Added) The system as described in claim 11, wherein the means
35	for controlling the pumps comprises a motor, a cam, and a means for linking the
36	pumps.

13. (Added) The system as described in claim 12, wherein the means 1 for linking the pumps is adjustable, and wherein the pumps are preferably out of 2 phase with each other. 3 4 14. (Added) The system as described in claim 13, wherein the pumps 5 are more preferably out of phase with each other by between approximately ten and 6 approximately three hundred sixty degrees. 7 8 15. (Added) The system as described in claim 14, wherein the pumps 9 are most preferably out of phase with each other by approximately between ninety 10 and approximately one-hundred-eighty degrees. 11 12 16. (Added) The system as described in claim 12, wherein the means 13 for controlling the pumps is selected from the group consisting of a cam 14 mechanism; a multi-bar linkage mechanism; a solenoid; a stepper motor; an 15 electric motor; a linear ball actuator; a belt driven actuator; and a chain 16 driven actuator. 17 18 17. (Added) The system as described in claim 11, further comprising 19 a third pump, the third pump being connected to the chamber, and wherein when the 20 means for controlling pressure is applied to the chamber, pressure is exerted on 21 22 the vessel. 23 18. (Added) The system as described in claim 17, further comprising 24 a means for adjusting the downstream flow of the fluid between the vessel and the 25 reservoir. 26 27 19. (Added) The system as described in claim 18, further comprising 28 a steady flow pump, the steady flow pump being positioned between the reservoir 29 and one of the pumps. 30 31 20. (Added) The system as described in claim 19, further comprising 32 a means for filtering noise, the means for filtering noise being positioned 33 between the steady flow pump and the vessel. 34

35

36

21. (Added) The system as described in claim 16, wherein the means

1	for controlling the pumps further comprises a computer system.
2	
3	22. (Added) The system as described in claim 11, wherein the vessel
4	is chosen from the group consisting of mammalian blood vessels; models of
5	mammalian blood vessels; endothelial cells; osteocytes; chondrocytes; and muscle
6	cells.
7	
8	23. (Added) The system as described in claim 11, wherein the
9	plurality of pumps comprises:
10	an upstream pump in fluid communication with the fluid; the
11	upstream pump urging the fluid through the vessel in a pushing manner; and
12	a downstream pump in fluid communication with the fluid; the
13	downstream pump being downstream said upstream pump; the downstream pump urging
14	the fluid through the vessel in a pulling manner.
15	
16	24. (Added) The system as described in claim 11, wherein the
17	plurality of pumps comprises:
18	a pair of upstream pumps in fluid communication with the fluid.
19	
20	25. (Added) The system as described in claim 11, wherein the
21	plurality of pumps comprises:
22	an upstream pump in fluid communication with the fluid; the
23	upstream pump urging the fluid through the vessel in a pushing manner; and
24	an external pump, the external pump being operatively connected
25	to the chamber, wherein when the means for controlling pressure is applied to the
26	chamber, pressure is exerted on the vessel.
27	
28	26. (Added) The system as described in claim 11, wherein the
29	plurality of pumps comprises:
30	a downstream pump in fluid communication with the fluid; the
31	downstream pump, the downstream pump urging the fluid through the vessel; and
32	an external pump, the external pump being operatively connected
33	to the chamber, wherein when the means for controlling pressure is applied to the
34	chamber, pressure is exerted on the vessel.
35	
36	27. (Added) A system for hemodynamic simulation, the system

1	comprising:
2	a fluid;
3	a vessel through which the fluid may be urged;
4	a chamber in which the vessel is received, the chamber further
5	including a means for controlling pressure;
6	a reservoir for retaining the fluid;
7	a plurality of pumps in fluid communication with the fluid; one
8	of the pumps urging the fluid through the vessel; and
9	a means for controlling the pumps, comprising a motor, a cam, and a
10	means for linking the pumps with each other, the pumps being operatively
11	connected with the means for controlling the pumps, the means for linking the
12	pumps being adjustable, the pumps preferably being out of phase with each other.
13	
14	28. (Added) The system as described in claim 27, wherein the
15	plurality of pumps comprise:
16	an upstream pump in fluid communication with the fluid; the
17	upstream pump urging the fluid through the vessel in a pushing manner; and
18	a downstream pump in fluid communication with the fluid, the
19	downstream pump being downstream of the upstream pump, the downstream pump urging
20	the fluid through the vessel in a pulling manner;
21	and the system further comprising a third pump, the third pump operatively
22	connected to the means for controlling the pumps, the third pump being connected
23	to the chamber, and wherein when the means for controlling pressure is applied
24	to the chamber, pressure is exerted on the vessel.
25	
26	29. (Added) The system as described in claim 28, wherein the vessel
27	is chosen from the group consisting of mammalian blood vessels; models of
28	mammalian blood vessels; endothelial cells; osteocytes; chondrocytes; and muscle
29	cells.
30	
31	30. (Added) The system as described in claim 27, wherein the
32	plurality of pumps comprise:
33	a pair of upstream pumps in fluid communication with the fluid.
34	
35	31. (Added) The system as described in claim 27, wherein the
36	plurality of pumps comprise:

plurality of pumps comprise:

1	an upstream pump in fluid communication with the fluid; the
2	upstream pump urging the fluid through the vessel in a pushing manner; and
3	an external pump, the external pump being operatively connected
4	to the chamber, wherein when the means for controlling pressure is applied to the
5	chamber, pressure is exerted on the vessel.
6	
7	32. (Added) The system as described in claim 27, wherein the
8	plurality of pumps comprise:
9	a downstream pump in fluid communication with the fluid; the
10	downstream pump urging the fluid through the vessel in a pulling manner; and
11	an external pump, the external pump being operatively connected
12	to the chamber, wherein when the means for controlling pressure is applied to the
13	chamber, pressure is exerted on the vessel.
14	
15	33. (Added) A method for simulating biomechanical stimuli, the
16	method comprising the steps of:
17	providing a fluid;
18	providing a vessel through which the fluid may be urged;
19	providing a chamber for receiving the vessel therein, the
20	chamber further including a means for controlling pressure;
21	providing an upstream pump in fluid communication with the
22	fluid, the upstream pump urging the fluid through the vessel in a pushing manner;
23	and
24	providing a downstream pump in fluid communication with the
25	fluid, the downstream pump urging the fluid through the vessel in a pulling
26	manner.
27	
28	34. (Added) The method as described in claim 33, further comprising
29	the step of providing a third pump, the third pump being connected to the
30	chamber.
31	
32	35. (Added) The method as described in claim 34, further comprising
33	the step of applying the means for controlling pressure to the chamber, thereby
34	exerting pressure on the vessel.
35	
36	36. (Added) The method as described in claim 33, wherein the vessel

is chosen from the group consisting of mammalian blood vessels; models of mammalian blood vessels; endothelial cells; osteocytes; chondrocytes; and muscle cells.

37. (Added) The method as described in claim 35, further comprising the step of providing a means for controlling the pumps, wherein the upstream pump and the downstream pump are operatively connected with the means for controlling the pumps.

 38. (Added) The method as described in claim 37, wherein the means for controlling the pumps comprises a motor, a cam, and a means for linking the upstream pump with the downstream pump.

39. (Added) The method as described in claim 38, wherein the means for linking the upstream pump and the downstream pump is adjustable, and wherein the upstream pump and the downstream pump are preferably out of phase with each other.

40. (Added) The method as described in claim 39, wherein the upstream pump and the downstream pump are more preferably out of phase with each other by between approximately ten and approximately three hundred sixty degrees.

41. (Added) The method as described in claim 40, wherein the upstream pump and the downstream pump are most preferably out of phase with each other by approximately between ninety and approximately one-hundred-eighty degrees.

42. (Added) The method as described in claim 41, wherein the means for controlling the pumps is selected from the group consisting of a cam mechanism; a multi-bar linkage mechanism; a solenoid; a stepper motor; an electric motor; a linear ball actuator; a belt driven actuator; and a chain driven actuator.

43. (Added) The method as described in claim 42, further comprising the step of providing a reservoir for retaining the fluid, the reservoir being in fluid communication with the vessel.

1	44. (Added) The method as described in claim 43, further comprising
2	the step of providing a means for adjusting the downstream flow of the fluid
3	between the vessel and the reservoir.
4	
5	45. (Adad) The method as described in claim 44, further comprising
6	the step of providing a steady flow pump, the steady flow pump being positioned
7	between the reservoir and the upstream pump.
8	
9	46. (Added) The method as described in claim 45, further comprising
10	the step of providing a means for filtering noise, the means for filtering noise
11	being positioned between the steady flow pump and the vessel.
12	
13	47. (Added) The method as described in claim 46, wherein the means
14	for controlling the pumps further comprises a computer system.
15	
16	48. (Added) The method as described in claim 33, wherein the
17	biomechanical stimuli are chosen from the group consisting of wall shear stress,
18	circumferential strain, pulsatile pressure, transmural pressure, and biologically
19	active agents.
20	
21	49. (Added) A method for hemodynamic simulation, the method
22	comprising the steps of:
23	providing a fluid;
24	providing a vessel through which the fluid may be urged;
25	providing a chamber in which the vessel is received, the
26	chamber further including a means for controlling pressure;
27	providing a reservoir for retaining the fluid;
28	providing a plurality of pumps in fluid communication with the
29	fluid, wherein one said pumps urges the fluid through the vessel; and
30	providing a means for controlling the pumps, comprising a
31	motor, a cam, and a means for linking the pumps with each other, the pumps being
32	operatively connected with the means for controlling the pumps, the means for
33	linking the pumps being adjustable, the pumps preferably being out of phase with
34	each other.
35	
36	50. (Added) The system as described in claim 49, wherein the vessel

is chosen from the group consisting of mammalian blood vessels; models of mammalian blood vessels; endothelial cells; osteocytes; chondrocytes; and muscle cells.

5

51. (Added) The method as described in claim 49, further comprising:

providing an upstream pump in fluid communication with the
fluid; the upstream pump urging the fluid through the vessel in a pushing manner;
and

providing a downstream pump in fluid communication with the fluid, the downstream pump being downstream of the upstream pump, the downstream pump urging the fluid through the vessel in a pulling manner; and

providing a third pump, the third pump operatively connected to the means for controlling the pumps, the third pump being connected to the chamber, and wherein when the means for controlling pressure is applied to the chamber, pressure is exerted on the vessel.

52. (Added) The method as described in claim 49, further comprising:

providing a pair of upstream pumps in fluid communication with
the fluid.

53. (Added) The method as described in claim 49, further comprising:

providing an upstream pump in fluid communication with the
fluid; the upstream pump urging the fluid through the vessel in a pushing manner;
and

providing an external pump, the external pump being operatively connected to the chamber, wherein when the means for controlling pressure is applied to the chamber, pressure is exerted on the vessel.

- 54. (Added) The method as described in claim 49, further comprising:

 providing a downstream pump in fluid communication with the
 fluid; the downstream pump urging the fluid through the vessel in a pulling
 manner; and
- providing an external pump, the external pump being operatively connected to the chamber, wherein when the means for controlling pressure is applied to the chamber, pressure is exerted on the vessel.