Number Systems

Number Systems

-		Unique <u>Digits</u>
Binary	{0,1}	2
Octal	{0,1,2,3,4,5,6,7}	8
Decimal	{0,1,2,3,4,5,6,7,8,9}	10
Hexadecimal	{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}	16

Are these the only representations? → No, Just those commonly related to Computer Science

What does a number represent and how can it be written?

$$456_{10}$$
 = 456 Base 10 = $4x10^2$ + $5x10^1$ + $6x10^0$
 456_{10} = $4x10^2$ + $5x10^4$ + $6x10^4$
 456_{10} = 400 50 6 = 456

In Base 10 every position represents a power of 10.

Scientific Notation

Many different ways to represent the same thing

The above definition provides the key to the representation of a number in another Base as well as it's equivalence!

Equivalence

Integer Representations

Example converting base 10 to base 16 requires converting by powers to the Base 16

Positions
$$\rightarrow$$
 16² 16¹ 16⁰
 456_{10} = 256 192 8
 $1x16^2$ 12x16¹ 8x16⁰
 $1x16^2$ Cx16¹ 8x16⁰ = 1C8₁₆
= 1C8 Base 16
 $1C8_{16}$ = 1x16² Cx16¹ 8x16⁰
 $1x16^2$ 12x16¹ 8x16⁰
 $1x16^2$ 12x16¹ 8x16⁰
256 192 8 = 456₁₀

Example converting base 10 to base 2 requires converting by powers to the Base 2

Positions
$$\rightarrow$$
 2/8 2/7 2/6 2/5 2/4 2/3 2/2 2/1 2/0 456₁₀ = 256 128 64 0 0 8 0 0 0 0 1x2^8 1x2^7 1x2^6 0x2^5 0x2^4 1x2^3 0x2^2 0x2^1 0x2^0 = 111001000₂ 456₁₀ = 256 + 128 + 64 + 8 = 111001000₂

Example converting base 10 to base 8 requires converting by powers to the Base 8

Positions
$$\rightarrow$$
 8² 8¹ 8⁰
 $456_{10} =$ 448 8 0
 $7*8^2$ 1x8¹ 0x8⁰ = 710₈

Memorize

Decimal	Binary	Octal	Hex
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

456 ₁₀ =	1 0001	C 1100	8 1000	Base 16 Base 2	1C8 111001000
	111 7	001 1	000 0	Base 2 Base 8	111001000 710

Easy to convert between the power of 2 Bases

Procedures \rightarrow Convert Base 10 to Base 16 then Base 2 then Base 2 to Base 8