中国科学技术大学 2019—2020学年第1学期考试试卷

考试科目: 算法基础 得分:
学生所在系:
(共 30 分, 每小题 5 分)
1. 已知, $f(n) = 2n^2 \log^2 n$, $g(n) = n^2$,请证明 $f(n) = \Omega(g(n))$ 。 2. 请问下述四个关键字中哪些可以取代 XX 从而使关键字序列: $n \in \mathbb{Z}$ (5)
a) 76 b) 79 c) 85 d) 91
3. 已知数组 A[1605]中存放了 605 个数据 (非整数),现在需要同时找出数组 A 中的最小值和最大值,请问最少需进行多少次元素间的比较? [3n]—2
a) 905 b) 906 c) 907 d) 908 e) 其它 发展。
4. 求解递归方程 $T(n) = 4T(n/3) + 5n$ 。 (给出推导过程) 5. 巳知 $T(0) = 0$, $T(1) = 2$, 对所有 $n > 1$, $T(n) = T(n/2) + T(n/5) + 2n$, 请求解 该递归方程。 (给出推导过程)
(给出推导过程)
6. 已知某棵红黑树 T共有 25 个内部结点,请问 T 的黑高度的最大值可以是多少? 其黑 高度的最小值可以是多少? 【注: 从某个结点 x 出发 (不含该结点) 到达叶结点的任意
$bh(y) \le 4$ 报度的 $bh(y) \le 4$ $bh(y) \ge 4$ $bh(y) \le 4$ $bh(y) \ge 4$ $bh(y) \le 4$ $bh(y) \ge 4$ $bh(y) \ge$
1. 现在要求出6个作时 4 4 5 1
的矩阵, $P[06] = (4, 20, 4, 30, 15, 10, 4)$ 请计算其最优的乘法次序,给出计算过程。 $m[i,j] = \int_{min}^{m} m[i,k] + m[k+j] + p[k+j] + p[k+j]$
2 /已知数组 $S[1m]$,对字符集 Σ 中的任一字符 x 定义如下的函数 $GS(x)$,
$GS(x) = \begin{cases} m & \text{if } 1 \leq 1 \leq m \leq 1 \\ m & \text{otherwise} \end{cases}$ 如果 x 在 S[1m-1] 中出现 如果 x 属于 Σ ,但 x 不在 S[1m-1] 中出现
Σ S[115]=(A, C, B, A, B, F, C, B, A, D, E, A, C, A, F); 字符集 Σ =(A, B, C, D, E, F, G, H), 求 Σ 中字符对应的 $GS(x)$ 函数值
2019—2020 学年第一学期 第1页(共2页) G 5 5 6 5 6 6 5 6 5 6 5 6 6 5 6 5 6 5 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6

3. 已知有如图 1 所示的 Fibonacci 堆,请给出在其上执行 EXTRACT-MIN 操作的过程和结果。 (请画图表示)

- - @ Dijkstra

三、问答题:

(共 10 分,每小题 5 分)

- 1. 请问是否存在两个函数 f(n) 和 g(n),使得 $f(n) \neq O(g(n))$ 且 $f(n) \neq \Omega(g(n))$? 如果存在,请给出函数,如果不存在,请加以证明。
- 2. 已知有n个数据组成的序列(数据非整数),这些数据可以相互比较大小,现在要求出其中的最长单调增子序列,请问该怎样做才能使所用的数据元素间比较次数最少? 分析你的方法所需的比较次数(只需说明方法和简单的分析,无需写算法)

四、算法设计:

(共 20 分, 每题 10 分)。

- 1. 设 G = (V, E) 是一个有向图,请设计算法判断图 G 中是否存在回路?要求算法的最坏情况时间复杂度为 O(|V| + |E|)。
- 2. 已知王先生共有 M 万元人民币的资金可用于投资。现在有 n 个投资项目可供其选择(假设所有投资项目的投资风险相同,投资时间长度也相同),这 n 个项目分别记作 A_1 , A_2 , A_3 , \dots , A_n , 其中项目 A_i 可以接纳的最大资金量是 V_i 万元,可获最大收益是 P_i 万元,如果对项目 A_i 的投资额小于 V_i 万元,其投次收益按实际投资比率计算。请设计算法,计算王先生投资这 n 个项目所能获得的最大投资收益,并分析算法的最坏情况时间复杂度。

算法基础 2019-2020 学年第一学期期末考试参考答案

一、 基础题

- 3. (5 分) 答案: b 说明: 同时找出最小值和最大值,可以对元素两两成对处理,每次比较一对 元素,将较大的和当前最大值比较,较小的和当前最小值比较,因此每 2 个 元素需要 3 次比较。当元素个数 n 为奇数,先把一个元素设为最大值和最小 值的初值,剩下的元素成对处理,共需(n-1)/2×3=906次比较。
- 4. (5 分) 解: (主方法) 递归式 $T(n) = 4\left(\frac{n}{3}\right) + 5n$ 中,a = 4, b = 3, f(n) = 5n, $\log_3 4 > 1$,故存在某个常数 $\varepsilon > 0$,有 $f(n) = O(n^{\log_3 4 - \varepsilon})$,对应主定理的第 1 种情况,故 $T(n) = \Theta(n^{\log_3 4})$
- 5. (5分)解:

(方法一)代入法证明T(n) = O(n)

假设正常数c, 使得对所有m < n, 有 $T(m) \le cm$ 成立。

当n = 0时, $T(0) = 0 \le c \cdot 0$ 成立.

当n=1时,要使T(1)=2 ≤ c成立,需要c ≥ 2.

则
$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{5}\right) + 2n \le \frac{c}{2}n + \frac{c}{5}n + 2n = (\frac{7}{10}c + 1)n.$$

当 $\frac{7}{10}c+1 \le c$ 即 $c \ge 4$ 时, $T(n) \le cn$ 成立,故T(n) = O(n).

(方法二) 构造递归树如下

树高的上界为 $\log_2 n$,下界为 $\log_5 n$,

根据每一层的代价,求整棵树的代价的上下界.

上界:
$$T(n) \le 2n\left(1 + \frac{7}{10} + \left(\frac{7}{10}\right)^2 + \dots + \left(\frac{7}{10}\right)^{\log_2 n - 1}\right) + T(1) =$$

$$2n\frac{1-\left(\frac{7}{10}\right)^{\log_2 n}}{\frac{3}{10}} + 2 = \frac{20n}{3} \left[1 - \left(\frac{7}{10}\right)^{\log_2 n} \right] + 2$$

下界:
$$T(n) \ge 2n\left(1 + \frac{7}{10} + \left(\frac{7}{10}\right)^2 + \dots + \left(\frac{7}{10}\right)^{\log_5 n}\right) = 2n\frac{1 - \left(\frac{7}{10}\right)^{\log_5 n + 1}}{\frac{3}{10}} =$$

$$\frac{20n}{3} \left[1 - \left(\frac{7}{10} \right)^{\log_5 n + 1} \right]$$

(代入法 O(n)???)

6. (5 分) 解: $3 \le bh(x) \le 4$

上界:记黑高为bh(x),则红黑树的内部结点至少有 $2^{bh(x)}-1$ 个(所有结点

都是黑色且是满二叉树的情况),故 $2^{bh(x)}-1 \le 25$,可得 $bh(x) \le 4$.

下界: 设树高为h,则树的内部结点至多有 $2^h - 1$ 个,故 $2^h - 1 \ge 25$, $h \ge 5$,由于红黑树中,红结点的孩子必须是黑结点,故 $bh(x) \ge h/2 = 5/2$,故 $bh(x) \ge 3$.

二、计算题

```
1. (10分)
                \mathbf{m}[\mathbf{i}, \mathbf{j}] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{ m[i, k] + m[k+1, j] + p_{i-1} p_k p_j & \text{if } i < j \end{cases}
因为P[0...6] = (4, 20, 4, 30, 15, 10, 4)
故A1:4*20, A2:20*4, A3:4*30, A4:30*15, A5:15*10, A6:10*4
P0=4, P1=20, P2=4, P3=30, P4=15, P5=10, P6=4
m[1, 1] = 0, m[2, 2] = 0, m[3, 3] = 0, m[4, 4] = 0, m[5, 5] = 0, m[6, 6] = 0
m[1, 2] = m[1, 1] + m[2, 2] + POP1P2 = 4 * 20 * 4 = 320
m[2, 3] = m[2, 2] + m[3, 3] + P1P2P3 = 20*4*30 = 2400 k=2
m[3, 4] = m[3, 3] + m[4, 4] + P2P3P4 = 4*30*15 = 1800 k=3
m[4, 5] = m[4, 4] + m[5, 5] + P3P4P5 = 30*15*10=4500
                                                          k=4
m[5, 6] = m[5, 5] + m[6, 6] + P4P5P6 = 15*10*4=600
m[1,3] = min(
        m[1, 1]+m[2, 3]+P0P1P3 = 2400+4*20*30=4800
        m[1, 2] + m[3, 3] + P0P2P3 = 320 + 4*4*30 = 800
)
m[2,4] = min(
        m[2, 2]+m[3, 4]+P1P2P4 = 1800+20*4*15=3000
                                                                k=2
        m[2, 3]+m[4, 4]+P1P3P4 = 2400+20*30*15=11400
)
m[3,5] = min(
        m[3, 3] + m[4, 5] + P2P3P5 = 4500 + 4*30*10 = 5700
        m[3, 4]+m[5, 5]+P2P4P5 = 1800+4*15*10=2400
                                                               k=4
)
m[4,6] = min(
        m[4, 4] + m[5, 6] + P3P4P6 = 600 + 30 * 15 * 4 = 2400
        m[4, 5] + m[6, 6] + P3P5P6 = 4500 + 30 * 10 * 4 = 5700
)
m[1,4] = min(
        m[1, 1] + m[2, 4] + P0P1P4 = 3000 + 4 \times 20 \times 15 = 4200
        m[1, 2]+m[3, 4]+P0P2P4 = 320+1800+4*4*15=2360
        m[1, 3] + m[4, 4] + P0P3P4 = 800 + 4*30*15 = 2600
)
m[2,5] = min(
        m[2, 2]+m[3, 5]+P1P2P5 = 2400+20*4*10=3200 k=2
        m[2,3]+m[4,5]+P1P3P5 = 2400+4500+20*30*10=12900
```

```
m[2, 4] + m[5, 5] + P1P4P5 = 3000 + 20 * 15 * 10 = 6000
)
m[3,6] = min(
        m[3,3]+m[4,6]+P2P3P6 = 2400+4*30*4=2880
        m[3, 4]+m[5, 6]+P2P4P6 = 1800+600+4*15*4=2640
        m[3, 5]+m[6, 6]+P2P5P6 = 2400+4*10*4=2560 k=5
)
m[1,5]=min(
      m[1, 1]+m[2, 5]+P0P1P5=3200+4*20*10=4000
      m[1, 2]+m[3, 5]+P0P2P5=320+2400+4*4*10=2880 k=2
      m[1,3]+m[4,5]+P0P3P5=800+4500+4*30*10=6500
      m[1, 4] + m[5, 5] + P0P4P5 = 2360 + 4*15*10 = 2960
)
m[2, 6] = min(
      m[2, 2]+m[3, 6]+P1P2P6=2560+20*4*4=2880 k=2
      m[2,3]+m[4,6]+P1P3P6=2400+2400+20*30*4=7200
      m[2, 4]+m[5, 6]+P1P4P6=3000+600+20*15*4=4800
      m[2, 5] + m[6, 6] + P1P5P6 = 3200 + 20*10*4 = 4000
)
m[1, 6] = min(
      m[1, 1] + m[2, 6] + P0P1P6 = 2880 + 4 \times 20 \times 4 = 3200
      m[1, 2]+m[3, 6]+P0P2P6=320+2560+4*4*4=2944 k=2
      m[1,3]+m[4,6]+P0P3P6=800+2400+4*30*4=3680
      m[1, 4]+m[5, 6]+P0P4P6=2360+600+4*15*4=3200
      m[1, 5] + m[6, 6] + P0P5P6 = 2880 + 4*10*4 = 3040
)
```


所以最优乘法次序应该为(A1A2)(((A3A4)A5) A6)。

2. (10 分) 若 x 在 S[1..m-1]中,GS(x)表示自 S[m-1]起从右往左数第 GS(x)个数 是第一个等于 x 的数;若 x 不在 S[1..m-1]中,GS(x)=m。字符集对应的 GS(x)函数值如下:

X	A	В	С	D	Е	F	G	Н
GS(x)	1	7	2	5	4	9	15	15

3. (10分)

Step 1: 将最小结点的孩子变为根节点

Step 2: 合并根为 24 和根为 18 的结点

Step 3: 合并根为 17 和根为 38 的结点

4. (10分)

方法一: 使用 Bellman-Ford 算法

使用 Bellman-Ford 算法,利用对边的松弛操作来降低最短路径

- B: 4 AB / AFGEB
- C: 6 ABC
- D: -5 AFD
- E: -11 AFGE
- F: -7 AF
- G: -9 AFG
- H: -16 AFGEH

方法二: 利用 Johnson 算法求解

构造一个新结点 S,且令 S 到图中所有点的距离都为 0,然后使用 Bellman-Ford 算法求出 S 到图中所有点的距离。

如上图,每个结点内部标记的数据即是 $h(v) = \delta(s, v)$ 的值。

利用 h(v)函数计算图中点对间新的路径长度 $\widehat{w}(u,v) = w(u,v) + h(u) - h(v)$.

得到新路径图如下所示:

利用 Dijkstra 算法寻找上图中 A 到其余结点的最短路径。过程如下:

其中结点内部黑色的值表示(新图中)该点到点 A 的最短距离,红色值表示结点被访问的顺序。

由上图可知 A 到各点的最短路径,结合原图可知 A 到各点最短路径长度:

A--->B: 最短路径为 A-B 或者 A-F-G-E-B, 最短路径长度为 4

A——>C: 最短路径为 A-B-C, 最短路径长度为 6

A——>D: 最短路径为 A-F-D, 最短路径长度为-5

A--->E: 最短路径为 A-F-G-E, 最短路径长度为-11

A--->F: 最短路径为 A-F, 最短路径长度为-7

A——>G: 最短路径为 A-F-G, 最短路径长度-9

A——>H: 最短路径为 A-F-G-E-H, 最短路径长度为-16

三、问答题

1. (5分)

存在, 如 $f(n) = \sin n$, $g(n) = \cos n$.

2. (5分)

方法一: 转化为 LCS 问题求解

设序列为 L= $\langle a1,a2,...,an \rangle$, 先将该序列按递增序列排序得到新的序列为 X= $\langle b1,b2,...,bn \rangle$, 显然 X 与 L 的最长公共子序列即为 L 的最长递增子序列。 时间复杂度分析:利用快速排序或归并排序对序列 L 排序,时间复杂度为 O(nlgn),对两个长度都为 n 的序列求最长公共子序列,时间复杂度为 $O(n^2)$,所以总的时间复杂度为 $O(n^2)$ 。

方法二: 动态规划法求解

}

最后只需再遍历一次 dp 数组找到最大值的下标并利用 pre 找出最长递增序列即可。

时间复杂度分析:该算法有两层循环,复杂度为O(n²)。

四、算法设计

1. (10分)

方法一: 深度优先遍历

对图进行深度优先遍历,如果在遍历的过程中发现一条深度遍历路线中有结点第二次被访问到,那么有环。可以用一个变量标记某结点的访问状态:未访问过,正在访问(其后结点还没有全部访问),访问过(其后结点都已经访问过),然后判断每一个结点的深度遍历路线即可。

采用邻接表存储,只需存储 e 条边和 n 个结点,每个结点和每个边都只会访问一次,故最坏时间复杂度为O(n+e).

方法二: 拓扑排序

方法是重复删除一个入度为 0 的顶点,将该顶点从图中删除并将该结点及其所有的出边从图中删除(即该结点指向的结点的入度减 1),最终若图中所有点都被删除则没有环路,否则存在环。

同样采用邻接表存储,遍历所有边求各个顶点入度的时间复杂度为O(e),即边的个数。找出入度为0的结点的时间复杂度是O(n)。遍历所有边删除入度为0的结点的出边的复杂度为O(e)。故总的时间复杂度为O(n+e)。

具体算法如下:

设原图为G

初始: 求每个顶点的入度 degree

并将入度为 0 的顶点加入到队列 queue 中

while (queue 不为空)

tmp_u = queue.top()

for tmp u 到达的每个顶点 v

删除边(tmp_u, v), v.degree--

if (v.degree==0) queue.push(v)

queue.pop()

将顶点 tmp_u 从图 G 中删除

if (G 为空) 不存在环

else 存在环

(注: 如果采用邻接矩阵存储则时间复杂度为0(n²))

2. (10分)

该问题的实质为分数背包:n 件物品,背包承重:M ,物品价值: P_i ,物品重量为 V_i

算法思路为: 先按 P_i/V_i (单位万元收益) 对项目进行排序, 然后采用贪心算法, 优先选择收益较高的项目;

GREEDY-PROJECT(n,M,A) //A 为结构体, 里面有 P, V, w 属性

for i=1 to n

A[i].w=A[i].P/A[i].V

sort(A) //按 A[i].w 的大小对 A 数组进行降序排序

ans=0

for j=1 to n

if(M>A[i].V)

ans+= A[i].P

M=A[i].V

else

ans+= A[i].P * M/A[i].V

break

return ans

上述算法的时间复杂度为排序的时间+O(n) 排序算法可使用快速排序算法,其最坏情况的时间复杂度为 O(n²) 使用归并排序算法和堆排序算法,其最坏情况的时间复杂度为 O(nlgn)