Question 1 (Chebyshev's Inequality). Let (X, \mathcal{A}, μ) be a measure space, let $f: X \to [0, \infty)$ be measurable, and let $\alpha > 0$. Prove that if $g: [0, \infty) \to (0, \infty)$ is non-decreasing, then

$$\mu(\{x \in X \mid f(x) \ge \alpha\}) \le \frac{1}{g(\alpha)} \int_X (g \circ f) \, d\mu.$$

Question 2 (Convergence in Mean). Let (X, \mathcal{A}, μ) be a measure space, let $f \in L_1(X, \mu)$, and let $(f_n)_{n\geq 1} \subseteq L_1(X, \mu)$. Recall it is said that $(f_n)_{n\geq 1}$ converges to f in $L_1(X, \mu)$ if $\lim_{n\to\infty} \|f_n - f\|_1 = 0$. In the case that μ is a probability measure, this is also known as *convergence in mean*.

- a) Prove that if $(f_n)_{n\geq 1}$ converges to f in $L_1(X,\mu)$, then $(f_n)_{n\geq 1}$ converges to f in measure.
- b) Give an example of a finite measure μ , an $f \in L_1(X, \mu)$, and $(f_n)_{n\geq 1} \subseteq L_1(X, \mu)$ such that $(f_n)_{n\geq 1}$ converges to f in measure, $(f_n)_{n\geq 1}$ converges to f pointwise, but $(f_n)_{n\geq 1}$ does converges to f in $L_1(X, \mu)$. Prove your example satisfies the desired conditions.
- c) Give an example of a finite measure μ , an $f \in L_1(X,\mu)$, and $(f_n)_{n\geq 1} \subseteq L_1(X,\mu)$ such that $(f_n)_{n\geq 1}$ converges to f in $L_1(X,\mu)$ but $(f_n)_{n\geq 1}$ does converges to f pointwise almost everywhere. Prove your example satisfies the desired conditions.

Question 3. Let (X, \mathcal{A}) be a measurable space and let $\mu, \nu : \mathcal{A} \to [0, \infty]$ be measures. Define $\mu + \nu : \mathcal{A} \to [0, \infty]$ by $(\mu + \nu)(A) = \mu(A) + \nu(A)$ for all $A \in \mathcal{A}$. It is elementary to verify that $\mu + \nu$ is a measure. Prove that if $f: X \to \mathbb{C}$ is measurable with respect to (X, \mathcal{A}) , then f is integrable with respect to $\mu + \nu$ if and only if f is integrable with respect to μ and with respect to ν . Moreover, when f is integrable, prove that

$$\int_X f d(\mu + \nu) = \int_X f d\mu + \int_X f d\nu.$$

Question 4. Let (X, \mathcal{A}, μ) be a measure space and let $f: X \to [0, \infty]$ be a measurable function. Recall the function $\nu: \mathcal{A} \to [0, \infty]$ defined by

$$\nu(A) = \int_{A} f \, d\mu$$

for all $A \in \mathcal{A}$ is a measure.

a) Prove for all measurable functions $g: X \to [0, \infty]$ that

$$\int_X g \, d\nu = \int_X f g \, d\mu.$$

b) Prove that if f is integrable, then for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $A \in \mathcal{A}$ and $\mu(A) < \delta$ then $\nu(A) < \epsilon$.

Question 5. Let $f: \mathbb{R} \to \mathbb{C}$ be a Lebesgue integrable function and let $g: \mathbb{R} \to \mathbb{C}$ be an essentially bounded Lebesgue integrable function.

- a) For each $y \in \mathbb{R}$, let $f_y : \mathbb{R} \to \mathbb{C}$ be the Lebesgue integrable function where $f_y(x) = f(x y)$ for all $x \in \mathbb{R}$. Prove for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $|y| < \delta$ then $||f f_y||_1 < \epsilon$.
- b) Let $f * q : \mathbb{R} \to \mathbb{C}$ be defined by

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y)g(y) \, d\lambda(y).$$

Prove that f * g is well-defined and uniformly continuous on \mathbb{R} .

Question 6. Let (X, \mathcal{A}, μ) be a measure space.

a) (The Generalized Dominated Convergence Theorem) Let g and $(g_n)_{n\geq 1}$ be non-negative integrable functions such that $\lim_{n\to\infty}g_n(x)=g(x)$ for almost every $x\in X$. Let f and $(f_n)_{n\geq 1}$ be measurable functions such that $|f_n|\leq g_n$ for all $n\in\mathbb{N}$ and $\lim_{n\to\infty}f_n(x)=f(x)$ for almost every $x\in X$. Prove that if

$$\lim_{n \to \infty} \int_X g_n \, d\mu = \int_X g \, d\mu \qquad \text{then} \qquad \lim_{n \to \infty} \|f - f_n\|_1 = 0.$$

b) Let $p \in [1, \infty)$ and let f and $(f_n)_{n \ge 1}$ be elements of $L_p(X, \mu)$ such that $\lim_{n \to \infty} f_n(x) = f(x)$ for almost every $x \in X$. Prove that

$$\lim_{n\to\infty}\|f-f_n\|_p=0\qquad\text{if and only if}\qquad\lim_{n\to\infty}\|f_n\|_p=\|f\|_p\,.$$

Question 7. Let (X, \mathcal{A}, μ) be a measure space and let $1 \leq q .$

- a) Prove that if μ is finite and $f \in \mathcal{L}_p(X,\mu)$, then $f \in \mathcal{L}_q(X,\mu)$. (Hint: consider $s = \frac{p}{q} \in (1,\infty)$ and its conjugate.)
- b) Prove that if $f: X \to \mathbb{C}$ is measurable, then $\|f\|_p \le \max\{\|f\|_q, \|f\|_r\}$. (Hint: when $r \ne \infty$ and, $f \in \mathcal{L}_r(X,\mu) \cap \mathcal{L}_q(X,\mu)$, show that $|f|^{\frac{q(r-p)}{r-q}} \in \mathcal{L}_{\frac{r-q}{r-p}}(X,\mu)$ and $|f|^{\frac{r(p-q)}{r-q}} \in \mathcal{L}_{\frac{r-q}{p-q}}(X,\mu)$.)