# CS528 Energy Efficient Task Scheduling

A Sahu

Dept of CSE, IIT Guwahati

A Sahu

#### **Outline**

- Power Aware
- Task with Hard Deadlines
- Energy Efficiency
- Energy Efficient Scheduling
- Real Time Tasks

# Power Aware Scheduling Vs Energy Aware Scheduling

- Power Budget should not exceed
  - Minimized
  - Monthly Expenses: CAP ===> Solution is EMI
  - Power CAP: If your system have 100 design, at any instance of time you should not run things above 100W
    - Suppose you have 3KW wiring in your home, you have 3 AC with each of 1.5KW rating, At a given time, you can run maximum of 2 AC.
- Total energy budget should not exceed
  - Battery capcity, mah (mobile), AH (UPS)
  - Minimized: EC
  - Power and Time

#### **Speed Matters or Not: I**

Assume it is raining, need to go to L1 to C1 of IITG

urgently



- Assume rain drops are falling vertically, uniformly and you need to walk/run horizontally
- Do you get wetter if you run or walk in the rain?
- Physics answer: Speed does not matter
  - Surface area cover by your body by traveling from L1 to C1 is same, it does not depend on speed

#### **Speed Matters or Not: II**

- Assume you have an Royal Enfield Bullet, you need to go from IITG to GS road, 30KM in 1 hours
- Petrol consumption is almost same at any speed. Example it 2ml/minute at 10kmph and 2.1ml/minute at 100kmph.
- How to save petrol?
  - Sol: Go at higher controllable speed



#### **Speed Matters or Not: II**

- Assume you have an Bike, you need to go from IITG to GS road, 30KM in 1 hours
- Petrol consumption is exponentially/quadratic increasing with speed. Example it 2ml/minute at 10kmph and 20ml/minute at 100kmph.
- How to save petrol?
  - Sol: Go at slower speed to meet the deadline
  - Above example 30kmph
  - Critical Speed



#### **Power and Energy Consumptions**

- CPU: dynamic power P<sub>d</sub> = C<sub>ef</sub> \* V<sub>dd</sub><sup>2</sup> \* f
  - -C<sub>ef</sub>: switch capacitance, V<sub>dd</sub>: supply voltage
  - -f: processor freq  $\rightarrow$  linear related to  $V_{dd}$ P  $\alpha$  f<sup>3</sup>
  - Battery Powered System Reduce Energy usage

$$E = P. t \alpha f^3 t$$

- Execution time t is inverse to f, t  $\alpha$  1/f So E  $\alpha$  f<sup>2</sup>

#### **Power Aware Scheduling**

Static slack: uniformly slow down all tasks



#### **Energy Aware Scheduling**

- E= P \* T, More refined model P= Ps + k
   f^3
- Suppose f=[0:1].
- $E = (Ps+kf^3)*T/f = T*[Ps/f + k.f^2]$
- Min at dE/df=0,  $-Ps*1/(f^2)+2.k.f=0$

$$\rightarrow$$
 2kf=Ps/(f^2)  $\rightarrow$  f^3 =Ps/2.k

$$\rightarrow f_c = \sqrt[3]{\frac{Ps}{2.k}}$$

#### **Full consumption of Splendor**

- P= 5+50f^3
- Distance to travel 30km in 60 minutes deadline
  - -Fc=0.368399

Fuel Consumption of Spelender



#### **Full consumption of Bullet**

- P= 200+20f^3
- Distance 30km in 60 minutes



#### **Problems of Energy Efficiency**

- Laptop Problem
  - Given the energy budget, maximize number of Job
  - Given the Budget money maximize your satisfaction
    - Go to Restaurant with Rs 100. Choose Items to fill you stomach with your budget.
  - Given Rs 20 for going from IITG to Airport
    - Go to Jhalukbari using IIT G bus freely, Take another public bus pay Rs 20 to reach Airport.
  - Given Rs 10: not possible, you need to walk...:)
  - Given Rs 600 how to go: Hire Taxi
  - Given Rs 20000 how to go: Hire BMW/Mercedes along with many other cars for security personals

#### **Problems of Energy Efficiency**

- Server Problem
  - Budget is not constraints, minimize budget but do all the work (get all the items)
  - I want to Take all item of Thela/Bora..How much I need to pay? ---Bargaining

## Server Problem Example : $P_{\infty}|p_{i},d_{i}|\Sigma E_{i}$

- We have infinite processors
- Processor can be run at speed f=[0:1],  $PC=\alpha f^3$
- N Tasks with deadlines, Task arrived at time 0, preemption not allowed, p<sub>i</sub> at f=1
- Execution time task t<sub>j</sub> at freq f =e<sub>j</sub>(t<sub>j</sub>,f)=p<sub>j</sub>/f;
- Energy consumption task  $t_j$  at freq f =E\*time=PC(f)\* $e_j(t_j,f)$ =  $\alpha$  f<sup>3</sup>  $p_j/f$  =  $\alpha$  f<sup>2</sup>  $p_j$
- We want to execute all the tasks, and minimize the sum of EC of all the tasks

# Server Problem Example : $P_{\infty}|p_{i},d_{j}|\Sigma E_{i}$

- We want to execute all the tasks, and minimize the sum of EC of all the tasks
- Solution
  - Select one processor for each of the tasks and total of N processors
  - Run the task at lowest feasible speed to meet the deadline  $f_j=p_j/d_j$
- This gives (optimal) minimum ΣΕ<sub>i</sub>
  - Total EC =  $\Sigma E_j = \Sigma \alpha f_j^2 p_j$
  - As (a+b)<sup>2</sup> > a<sup>2</sup>+b<sup>2</sup> : running two task on one processor with higher speed consume higher energy

# **Laptop Problem Example : P<sub>∞</sub>,E<sub>b</sub>|p<sub>j</sub>,d<sub>j</sub>|ΣU<sub>j</sub>**

- We have infinite processors
- Processor can be run at speed f=[0:1],  $PC=\alpha f^3$
- N Tasks with deadlines, Task arrived at time 0, preemption not allowed, p<sub>i</sub> at f=1
- Execution time task t<sub>j</sub> at freq f =e<sub>j</sub>(t<sub>j</sub>,f)=p<sub>j</sub>/f;
- Energy consumption task  $t_j$  at freq f =E\*time=PC(f)\* $e_j(t_j,f)$ =  $\alpha$  f<sup>3</sup>  $p_j/f$  =  $\alpha$  f<sup>2</sup>  $p_j$
- We want to execute maximum number of the tasks before deadline given the energy budget

### Laptop Problem Example : $P_{\infty}$ , $E_b | p_j$ , $d_j | \Sigma U_j$

- We want to execute maximum number of the tasks before deadline given the energy budget
- Solution:
  - Sort the tasks based on bare minimum energy requirement  $E_i=\alpha f_i^2 p_i$
  - Select the maximum number of task from this set
- Given N item with weight w<sub>1</sub>, w<sub>2</sub>, ....w<sub>N</sub>: the weight is critical/min energy required of the task
- Select Maximum number of item given the Budget of Knapsack. 0-1 Knapsack Problem
- NPC and Pseudo polynomial time algorithm exist using Dynamic Programming.