IN1013 Databases Entity-Relationship Model

Vitaly Aksenov Vladimir Stankovich

Data Modelling Concepts

Introduction: Conceptual Modelling 🏖

- Two most common data models:

 - Entity-Relationship (ER) Model (Object based)
 Relational Data Model (Record based)
 also: Object Oriented, Object-Relational, XML data model etc.
- Top-down approach to DB design uses ER:
 entities, relationships,

 - attributes & constraints
- Original: ER modelling
- Subsequently: Enhanced ER modelling (EER)

Main Terminology

- Entity
 - "thing"; artefact; object (in the Java / C++ sense);
 - noun
- Attribute
 - characteristic; property of an entity; "variable";
 - adjective
- Relationship
 - association among entities;
 - verb

Relationship vs. RDB / Entity vs. RDB

- A relationship (in ER modelling) describes the connection between two or more entities (often a verb)
- A **relation** (in a RDB) is a table, or a set of tuples (rows)
- Both entities and relationships in the ER can map to relations in the Relational DB
- Not all relationships in the ER map to relations in the Relational DB
- A Relation in the RDB does not always map to an Entity in the Entity-Relationship Model

ADVICE: Don't think about tables when designing ER/EER model

Entity

- An Entity is a 'thing' or 'object' in the real world that is distinguishable from all other objects
- Real (concrete) entity types:
 - e.g. Person, Book, Property
- Abstract entity types:
 - o e.g. Viewing, Loan, Booking, Renting

Person

Book

Viewing

Relationship

- A Relationship is an association among one or more entities
- Relationship has a name that describes its function (usually a verb)
- Example:

a relationship called *Has* is a relation between Branch and Staff

Semantic net - Individual Entities

ER diagrams - Entity Types

Recursive Relationship

A recursive relationship has the *same entity* participating *more than once in different roles*

We may use **role names** to indicate the role that entities play in a relationship

Role names may be associated through more than one relationship

Attributes

Attribute

- property or characteristic of an entity or relationship
- o similar to a column in relational model
- o e.g., Staff attributes: staffNo, name, position, salary

Attribute domain

- the set of permitted values for the corresponding attribute
- A fully developed data model has to include the domains of each attribute in the ER model
- We list these attributes in the ER diagram of our conceptual model

Attribute Types

- Simple attribute composed of a single component
 - e.g., position, salary, propertyType
- Composite attribute composed of multiple components
 - e.g., address (street, town, postcode), guestName (firstName, lastName)
- Single-valued attribute holds a single value for each occurrence of an entity
 - e.g., postcode
- Multi-valued attribute holds multiple values for each occurrence of entity type
 - e.g., branchTelNumber (more than one occurrence from the same domain)
- Derived attribute attribute associated with an entity is not stored individually, but derived from other attributes (in different entities)
 - e.g., branchViewRate (avg number of viewings per property in any branch)

Entity Types

- Strong entity existence does not depend on existence of another entity type
 - o contains its own primary key
- Weak entity dependent on the existence of another entity
 - o does not have sufficient attributes to form a primary key

Relationship Example

Constraints on Entities & Relationships

- Multiplicity the main constraint that exists on a relationship
 Defines the number of participants in a relationship
 - the number of instances of one entity that are associated with one instance of a related entity
 - o represents policies (*business rules*) established by user / company
- Cardinality the maximum number of entity occurrences of the related entity type
- Participation whether all or only some entity occurrences participate in the relationship or not
- Multiplicity = Participation & Cardinality

Multiplicity for Binary Relationships

Branch

- One to one (1:1)
 exactly one of each entity in the relationship
 exactly one Manager manages each and every
- Branch

Manager

- One to many (1:*)

 one Room can hold many Modules... but each Module is taught in only one room one Hotel has many Rooms ... but each Room belongs to only one Hotel

Manages

Hotel		► Has	Room
-hoteIID{PK}	1	*	-roomNo

Multiplicity for Binary Relationships

- Many to many (*:*)
 - one Student can take many Modules; and one Module has many Students enrolled on it
 - one Newspaper can advertise many Properties, and one Property can be advertised by many newspapers
- Multiplicity notation (maxEnd1:maxEnd2)

Multiplicity in Diagrams

- (1:1) Each branch is managed by
 1 member of staff; A member of staff can manage 0 or 1 branch
- (1:*) Each property for rent is overseen by <u>0 or 1</u> member of staff; Each member of staff oversees <u>0 or more</u> properties for rent
- (*:*) Each property for rent is advertised in
 O or more newspapers; Each newspaper advertises 1 or more properties for rent

Staff	Manages ►	Branch
staffNo	11 01	branchNo

Staff	Oversees ►		PropertyForRent
staffNo	01	0*	propertyNo

Newspaper	Advertises ►		PropertyForRent
newspaperName	0*	1*	propertyNo

Multiplicity = Participation & Cardinality

- Each end of the relationship is denoted as (min..max)
 - min Participation max Cardinality
- Mandatory participation: All entity occurrences of the appropriate type must participate in the relationship
 - e.g. every branch must have a manager
- **Optional participation**: Some entity occurrences of the appropriate type participate in the relationship

 - e.g. some, but not all, employees manage branches if min > 0, mandatory participation, otherwise optional
- Cardinality constraints show how many relationships per entity (max number)

 - if both sides have max=1 1:1 cardinality
 if both sides have max>1 M:N cardinality
 otherwise 1:N or N:1 cardinality, depending on which side has max > 1

Example 1: Multiplicity, Cardinality, Participation

- The multiplicity (1..4) can be interpreted as follows:

 the '1' represents the participation and indicates that one module must be taught by at least one lecturer (minimum)

 the '4' represents the cardinality and indicates that one module can be taught by
 - up to four lecturers (maximum)
- (1..4) for each instance of *Module* entity type

 there must be at least 1 lecturer but no more than 4 different lecturers
- (1..1) for each instance of *Lecturer* entity type there must be exactly 1 module

- Let's consider the relationship Manages
 - o a Staff member may manage 0 or max 1 Branch
 - o a *Branch* must be managed by 1 *Staff* member
- Let's consider the relationship Has
 - o a *Branch* may have 1 or more staff members
 - a Staff member does not have to be attached to a Branch and if they are can be attached to only one Branch

Summary of Multiplicity Constraints CITY UNIVERSITY

Alternative ways to represent multiplicity constraints	Meaning
01 11 (or just 1) 0* (or just *) 1* 510 0, 3, 6–8	Zero or one entity occurrence Exactly one entity occurrence Zero or many entity occurrences One or many entity occurrences Minimum of 5 up to a maximum of 10 entity occurrences Zero or three or six, seven, or eight entity occurrences

Multiplicity in UML

• Examples of ends

—— One —— Mandatory

— Many — Optional

Examples of connections

+----One-to-many

One-to-one

ER Diagram Example

Modelling data

Finsbury library stores data about their book collection, borrowers and loans.

The library can have a number of copies of each book, each copy being identified by its issue_No. The library needs to keep details of the date copies were purchased and the purchase price; purch_date and purch_price. Books are identified by their ISBN and the library also needs to keep details of the Authors name, the Publisher and the book's publication date; author_name, publisher, pub_date.

To help readers the library keeps details of Authors; author_name, date_of_birth, and a short biography.

Borrowers are identified by a borrower_id and details of their name and address are kept.

When a borrower borrows books the date they borrow a book is stored as is the date they return the book.

ER Diagram Example

Book

ISBN (PK)	author_name	publisher	pub_date
3781934748	JK Rowling	Bloomsbury	26/06/1997
3954756389	Charles Dickens	null	16/08/1853

Copy

Issue_no (PK)	purch_date	purch_price	ISBN
6372827387	12/03/2015	9.99	3781934748
7329373872	15/04/2016	11.99	3781934748
1349284933	19/02/2001	6.99	3954756389

To help readers the library keeps details of Authors; author_name, date_of_birth, and a short biography.

ER Diagram Example

ER Diagram Example

Borrowers are identified by a borrower_id and details of their name and address are kept.

When a borrower borrows books the date they borrow a book is stored as is the date they return the book.

Naive representation

Copy

Issue_no (PK) 1262528 Borrower_id1 3748493

Borrower_id2 846389 Borrower_id3 3948493 Borrower_id4 ... 5683023

•••••

OR

Borrower

Borrower_id (PK)

Issue_no1

Issue_no2

Issue_no3

Issue_no4

•••••

Copy

Issue_no (PK)	purch_date	purch_price	ISBN
6372827387	12/03/2015	9.99 [—] -	3781934748
7329373872	15/04/2016	11.99	3781934748
1349284933	19/02/2001	6.99	3954756389

Borrower

Borrower_id (PK)	Borrower_name	Borrower_address
2738748929 3732832929	Chris Smart Charles Watson	Northampton Square EC1V 0HB Seckforde St, EC1V 2HS

Loan

Borrower_no (PK)
27387489 2 9
3732832929
3732832929

ER Diagram Example

Copy

Issue_no (PK)	purch_date	purch_price	ISBN
6372827387	12/03/2015	9.99 [—] -	3781934748
7329373872	15/04/2016	11.99	3781934748
1349284933	19/02/2001	6.99	3954756389

Borrower

Borrower_id (PK)	Borrower_name	Borrower_address
2738748929	Chris Smart	Northampton Square EC1V 0HB
3732832929	Charles Watson	Seckforde St, EC1V 2HS

Loan

Issue_no (PK)	Borrower_no (PK)	Load_date (PK)
63728 2 7387	2738748929	13/06/2019
7329373872	3732832929	21/06/2019
6372827387	3732832929	04/07/2019
6372827387	2738748929	15/08/2019

ER Diagram Example

ER Diagram Example

To help readers the library keeps reviews of books; reviewer, review_date, review_text.

Entity/attribute questions

- Is the primary key sufficient to uniquely identify a single instance in all circumstances?
- Should an attribute be nullable?

Relationship questions

Before you draw the relationship

- Is the relationship identifying?
- If the primary key of the parent entity (the one end) should be part of the primary key of the child entity (the many end) then it is an identifying relationship

After you draw the relationship

- Is the relationship mandatory or optional?
- Check both ends of the relationship