

AIC8800DC\DW射频测试说明

RF_TEST版本

版本号 v3.0

公司	爱科徽半导体(上海) AIC Semiconductor (Sh	
版本信息	日期	Release note
V1.0	2022年7月26日	
V2.0 V3.0	2022年9月28日 2023年4月23日	修改 Pwrofst、Userconfig 增加 DPD 校准,notch 滤波器
Sein		Confidential

YUAN WENQIAN

_	
-	
-	1 N/A

→.	工具介绍		3
<u> </u>	RF_TEST 测试指令		4
2.1	WIFI 部分		4
2.1.1	WiFi 测试指令		4
2.1.2			
2.1.3	读写 mac 地址		
2.1.4	TX power 设置		
2.1.5	信道功率补偿		9
2.1.6	userconfig 使用		
三. RI	F_TEST 编译说明		
	Seiniconduc	yor confidential	

YUAN WENQIAN

·. 工具介绍

适用于 linux (ubuntu /android)

fmacfw.bin用于正常模式,fmacfw_rf.bin用于测试模式

以下以ubuntu为例,用户界面输入测试命令: (以下命令均以 wlan0 为例,实际以 ifconfig 显示为准)格 AIC Semiconductor Confidential Application 式 wifi_test if_name command parameters

COMMAND:

二. RF_TEST测试指令

2.1 WIFI部分

2.1.1 WiFi测试指令

1. wifi_test wlan0 set_tx chan bw mode rate length \\ WiFi 发射测试开始

1-1-1: channel

	Chan_num
2.4G	ch1-ch13
<u>'</u>	

1-1-2: bandwidth

	bw
0	20M
1	40M

1-1-3: mode 和 rate 对应关系

_		1110 010 1,1	ハイル 1 deb / 付上 / C人人											
Ī		mode		rate										
	0	NON HT	0	1	2	3	4	5	6	7	8	9	10	11
			1M	2M	5.5M	11M	6M	9M	12M	18M	24M	36M	48M	54M
	2	HT MF		0-7										
				mcs0-7										
	4	VHT		0-9										
				mcs0-9										
	5	HE SU		0-11										
				•	•			mo	s0-11			•		

Length推荐值:

ποιιθειτ1π 11 Iπ.		
	20M	40M
B/NON-HT	1024	
HT/VHT/HE	4096	8192

eg: wifi_test wlan0 set_tx 1 0 2 7 4096

\\ 2412MHz,HT 20 MCS7,length4096

2. wifi_test wlan0 set_txstop no parameter

\\ WiFi发射测试停止

3. wifi_test wlan0 set_rx chan_num bw

\\ WiFi接收测试开始

chan_num (凡1-1-1 **channel**)

bw (见1-1-2 bandwidth)

eg: wifi_test wlan0 set_rx 1 0

\\ 2412MHz, bandwidth 20M

4. wifi_test wlan0 set_rxstop no parameter

\\ WiFi接收测试停止

5. wifi_test wlan0 get_rx_result no parameter

\\ WiFi 接收测试收到的包的个数

返回参数: 从 SET_RX 到 SET_RXSTOP 这段时间内接收到总的数据包的个数

wifi_test wlan0 set_txtone val

\\ tx单tone

val: 0 关闭

val: 1 val 打开 (1后面的参数范围-20-19)

0	关闭	no parameter					
1	打开	-201	0	1-19			
		负偏	中心偏点	正偏			

eg: wifi_test wlan0 set_txtone 1 1

\\打开正向偏1M

eg: wifi_test wlan0 set_txtone 0

\\关闭

7. wifi_test wlan0 set_notch val

\\优化边带抑制

	0	1	2	3
Notch	Notch off	Notch滤两边	Notch滤右边	Notch滤左边

and a service of the conduction of the conducti Note: notch 开启后,切换带宽需要重新配置 notch 设置,该配置会对 EVM 有一定程度 影响,需

2.1.2 晶体频偏校准指令

AIC8800MC/DC XTAL 电路内部提供了可变负载电容,最大支持负载电容为 7pF 的 crystal unit。若采用晶体负载电容大于 7pF,需要板上预留晶体负载电容。

本校准流程做如下假设: 晶体负载电容不大于 7pF;如果晶体负载电容大于 7pF, PCB 上已经刚好补齐 所缺部分负载电容。例如,晶体所需负载电容为 10pF, PCB 上给晶体两端都提供了一个 6pF 的片外电容(等效于 3Pf 负载电容)。

1. wifi_test wlan0 set_xtal_cap val

val: 十进制有符号数

eg: wifi_test wlan0 set_xtal_cap -2

2. wifi_test wlan0 set_xtal_cap_fine val

val: 十进制有符号数

eg: wifi_test wlan0 set_xtal_cap_fine 10

3. wifi_test wlan0 set_freq_cal val val 十六进制绝对值

eg: wifi_test wlan0 set_freq_cal 1a

4. wifi_test wlan0 set_freq_cal_fine val val: 十六进制绝对值

eg: wifi_test wlan0 set_freq_cal_fine 16

5. wifi_test wlan0 get_freq_cal no parameter

\\晶体频偏粗调,默认值16(0x10), 范围0-31(0x00~0x1F)

八 负向频偏, 降低内部负载由容

晶体频偏细调,默认值31(0x1F), 范围0-63 (0x00~0x3F)

\\ 正向频偏,提高内部负载电容

\\ 写晶体频偏校准粗调值到efuse\flash

\写晶体频偏校准粗调值 0x1A 到 efuse\flash

\\写晶体频偏校准细调值到efuse\flash

\\ 写晶体频偏校准细调值0x16到efuse\flash

\\ 读频偏值

粗调校准流程:

- ①判断 frequency offset (Δf) 极性, Δf >0,setxtalcap 4,反之,setxtalcap -4;
- (2)判断 frequency offset (Δf) 极性, Δf >0,setxtalcap 2,反之,setxtalcap -2;
- ③判断 frequency offset (Δf) 极性, Δf >0,setxtalcap 1,反之,setxtalcap -1;细调校准流程:
- ①判断 frequency offset (Δf) 极性, Δf>0, setxtalcapfine 16, 反之, setxtalcapfine -16;
- ②判断 frequency offset (Δf) 极性, Δf>0, setxtalcapfine 8, 反之, setxtalcapfine -8;
- ③判断 frequency offset (Δf) 极性, Δf>0, setxtalcapfine 4, 反之, setxtalcapfine -4;
- 4)判断 frequency offset (Δ f) 极性, Δ f>0,setxtalcapfine 2,反之,setxtalcapfine -2;
- (5)判断frequency offset (Δf) 极性, Δf >0,setxtalcapfine 1,反之,setxtalcapfine -1;

Note: 校准频偏指令对应参数均为十进制相对值,即相对默认值偏移值,输入指令后会返回配置后频偏实际参数,且以十六进制显示。写入efuse或flash的频偏校准值为十六进制绝对值

读写mac地址 2.1.3

1. wifi_test wlan0 set_mac_addr

\\写WiFi MAC地址到efuse(2次)或flash(重复)

eg: wifi_test wlan0 set_mac_addr 88 00 11 22 33 44

\\写WiFi MAC地址

2. wifi_test wlan0 get_mac_addr no parameter

\\ 读WiFi MAC地址

3. wifi_test wlan0 set_bt_mac_addr

\\写BT MAC地址到efuse(2次)或flash(重复)

eg: wifi_test wlan0 set_bt_mac_addr 0A 1C 6B C6 96 7E \\写BT MAC地址

4. wifi_test wlan0 get_bt_mac_addr no parameter

\\ 读BT MAC地址

A ATTENDED TO CONTINUE TO CONT Note: 如果wifi还需要同时支持p2p, softap, 两颗芯片的mac地址需要至少相差4。

TX power设置

1. wifi test wlan0 set power val

\\功率设置

val: 十进制

eg: wifi_test wlan0 set_power 16 \\设置WiFi所有Rate的TX power 为16dBm

Note: 在evm达标的范围内设置power。

\\切换功率设置模式 2. wifi_test wlan0 rdwr_pwrmm val val: 0: rdwr pwrlvl设置模式, 1: set power设置模式

3. wifi_test wlan0 rdwr_pwrlvl band mod idx val

\\设置不同模式速率的功率

val: 十进制

4-1-1: band

1 1 1 0 00110			
	band		mod
		11b+11a/g	0
2.4G	1	11n/11ac	1
		11ax	2

Rate Group

Fmt\ldx	0	1	2	3	4	5	6	7	8	9	10	11
11b+11a/g	1M	2M	5.5M	11M	6M	9M _	12M	18M	24M	36M	48M	54M
11n/ac	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9		
11ax	MCS0	MCS1	MCS2	MCS3	MCS4	MC\$5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11

pwrlvl 共有两种设置方法:

- ▶ 设置其中一个 Rate 的方法: eg: wifi_test wlan0 rdwr_pwrlvl 1 0 3 18 \\设置2.4G 11b+11a/g模式11M的TX power为18dBm
- ▶ 设置一组中多个 Rate 的方法: eg. wifi_test wlan0 rdwr_pwrlvl 1 1 15 15 15 15 15 14 14 14 13 13 \\设置2.4G 11n/ac模式下 MCS0-MCS9的发射功率分为15dBm 15 dBm 15 dBm 15 dBm 14 dBm 14 dBm 14 dBm 13 dBm 13 dBm

Note: 多个Rate的设置方法时需要将改模式下的所有速率都设置进去。

4. wifi_test wlan0 rdwr_pwrlvl 0

\\读取功率增益档位,写0或不写均实现读功能

2.1.5 信道功率补偿

1. wifi_test wlan0 rdwr_pwrofst band ch ofst

\\ 设置信道补偿

5-1-1: band\ch\ofst 对应关系表

	** * *****			
	band		ch	ofst
		CH1~CH4	0	-3~3
2.4G	1	СН5~СН9	1	-3~3
		CH10~CH13	2	-3~3

eg. wifi_test wlan0 rdwr_pwrofst 1 1 2

\\设置 CH5~CH9 信道补偿为 2

ofst 为带符号偏移值,步进为 1,对应功率变化 1dbm,最大 3,最小-3,可通过调整响应信道补偿值来优化信道功率差异。

Note: pwrofst 后面不带参数可直接显示当前发射功率增益档位配置信息。

2. wifi_test wlan0 rdwr_efuse_pwrofst band ch ofst \\ 写信道补偿值到efuse(2次)或flash(重复)

5-2-1: band\ch\ofst 对应关系表

	band		ch	ofst
		CH1~CH4	0	-3~3
2.4G	1	СН5~СН9	1	-3~3
		CH10~CH13	2	-3~3

eg. wifi_test wlan0 rdwr_efuse_pwrofst 1 2 1

\\写2.4G CH10~CH13校准值到efuse

Note: efpwrofst 0 或者后不加参数能读取 efuse 中信道功率补偿值。

userconfig 使用 2.1.6

1. aic_userconfig.txt 文档使用:

随固件一起 cp 到 /lib/firmware/下,更改文档内参数后掉电重新上电生效 enable = 0 文档不生效, enable = 1 文档生效, 默认为1 (参数意义可以详见上述2.1.4、2.1.5)

OFDM Rate 分类

## end o o o o o o	V1 txpwr_nable= sss=20 fdmlow fdm640 fdm102 xpwr_og fst_ena fst_char fst_char fst_char	lvl 1 yrate_2 qam_2 qam_2 4qam fst ble=1 n_1_4= n_5_9=	2g4=20 g4=16 2g4=16 _2g4=1			J /		20220126 x:121					
OFDM 1	Rate 分	·类						. (30				
	OFDM-LowRate					OFDM-64QAM			OFDM-256QAM		OFDM-1024QAM		
	BPSK 1/2	BPSK 3/4	QPSK 1/2	QPSK 3/4	16QAM 1/2	16QAM 3/4	64QAM 2/3	64QAM 3/4	64QAM	256QAM 3/4	256QAM	1024QAM 3/4	1024QAM 5/6
11a/g	6M	9M	1/2 12M	18M	24M	36M	48M	54M	5/6	3/4	5/6	3/4	3/0
11n	MCS0		MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7				
11ac	MCS0		MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9		
11ax	MCS0		MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11

#V2

#txpwr_lvl

enable=1

lvl_11b_11ag_1m_2g4=20

lvl_11b_11ag_2m_2g4=20

lvl_11b_11ag_5m5_2g4=20

lvl 11b 11ag 11m 2g4=20

lvl_11b_11ag_6m_2g4=20

lvl_11b_11ag_9m_2g4=20

lvl_11b_11ag_12m_2g4=20

lvl_11b_11ag_18m_2g4=20

lvl_11b_11ag_24m_2g4=18 lvl_11b_11ag_36m_2g4=18

lvl_11b_11ag_48m_2g4=16

lvl_11b_11ag_54m_2g4=16

lvl_11n_11ac_mcs0_2g4=20

lvl_11n_11ac_mcs1_2g4=20

lvl_11n_11ac_mcs2_2g4=20

lvl_11n_11ac_mcs3_2g4=20

lvl_11n_11ac_mcs4_2g4=18

lvl_11n_11ac_mcs5_2g4=18

lvl_11n_11ac_mcs6_2g4=16

lvl_11n_11ac_mcs7_2g4=16

lvl_11n_11ac_mcs8_2g4=16

lvl_11n_11ac_mcs9_2g4=16


```
lvl_11ax_mcs0_2g4=20
lvl_11ax_mcs1_2g4=20
lvl_11ax_mcs2_2g4=20
lvl_11ax_mcs3_2g4=20
lvl_11ax_mcs4_2g4=18
lvl_11ax_mcs5_2g4=18
                                                                                                                                                                                er and an analysis of the second of the seco
lvl_11ax_mcs6_2g4=16
lvl_11ax_mcs7_2g4=16
lvl_11ax_mcs8_2g4=16
lvl_11ax_mcs9_2g4=16
lvl_11ax_mcs10_2g4=15
lvl_11ax_mcs11_2g4=15
# txpwr_loss
loss enable=0
loss_value=2
# txpwr_ofst
ofst_enable=0
ofst_chan_1_4=0
ofst_chan_5_9=0
ofst_chan_10_13=0
ofst_chan_36_64=0
ofst_chan_100_120=0
ofst_chan_122_140=0
ofst_chan_142_165=0
# xtal cap
xtal_enable=0
xtal_cap=24
xtal_cap_fine=31
```

Note: U01 使用第一种(#V1)方案,U02 使用第二种(#V2)方案。

三.RF TEST编译说明

- 1. sudo cp *.bin /lib/firmware/aic8818/
- 2. make 编译驱动生成aic8818 fdrv.ko
- 3. 插入 usb 板子, 按下 pwrkey
- 4. 输入 lsusb, 在 ubuntu 上能看到 ID 为a69c:8800dc 的设备
- 5. sudo insmod fullmac/aic8818_fdrv.ko testmode=1 (如果要从测试模式切换回正常模式,请rmmod wifi 驱动后重新上电执行 sudo insmod fullmac/aic8818_fdrv.ko testmode=0) 322726
- 6. 运行 aicrf test

Note:

8800DC/DW dpd校准

Fw bin文件所在路径需要有写入权限!!!

sudo insmod aic_load_fw.ko testmode=4 sudo insmod aic8800_fdrv.ko

- 1) testmode=4启动后,加载驱动,自动生成文件aic_dpdresult_8800dc.bin,卸载驱动
- 2) testmode=1加载驱动,射频测试,卸载驱动
- 3) testmode=0进入正常模式

testmode=4切到 testmode=0/1 芯片可以不掉电,只重新卸载加载驱动 testmode=0/1之间切换需要芯片重新上电,卸载加载驱动

例子1: 可以连上 cable 测试

```
set tx 1 1 2 7 4096
                     // chan:1 bw:20m mode:2 rate:mcs7 length:4096byte
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$ aicrf_test wlan0 set_tx 1 1 2 7 1500
set_tx:
done
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$ aicrf_test wlan0 set_txstop
set_txstop:
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$
```

例子 2: 可以连上 cable 测试

// chan:14 bw:40m 开始接收 set_rx 14 1

//停止接收 set_rxstop

H 1 秒内收到722个包,537 个正确 get_rx_result :

```
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$ aicrf_test wlan0 set_rxstop
set_rxstop:
done
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$ aicrf_test wlan0 get_rx_result
get_rx_result:
done: getrx fcsok=537, total=722
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$
```

例子3:

设置频偏校准:

set_xtal_cap 1 后晶体的寄存器值为 0x19, 设置为-1 后晶体的值为 0x18, 经过校准后, 最后一次显示的 值就是校准完后需要配置的值。

```
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$ aicrf_test wlan0 set_xtal_cap 1
set xtal cap:
done:xtal cap: 0x19
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$ aicrf_test wlan0 set_xtal_cap -1
set xtal cap:
done:xtal cap: 0x18
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$
```


将校准后的值设置到硬件 efuse 里去:

例子 4: mac 地址的 efuse 写,写完后读取一下:

```
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$ aicrf_test wlan0 get_mac_addr
get_mac_addr:
done: get macaddr = 0 : 0 : 0 : 0 : 0
aic@ubuntu:~/work/0706_aic_rftest_v8.2_combo/driver/rwnx_drv$
```

注 1:

以上是以 usb 平台为例, sdio 平台也类似, 需要将 driver/rwnx_drv/fullmac/Makefile 的 CONFIG_USB_SUPPORT=n, CONFIG_SDIO_SUPPORT=y。用户空间的 aicrf_test 在客户平台上运行即可。

注 2:

Ubuntu 平台建议做一下网络重命名规则,这样子 lsusb 后 aic8800 的芯片会显示成 wlan0,否则会用 mac 地址进行了重命名。

```
1 cp /lib/udev/rules.d/80-net-setup-link.rules /etc/udev/rules.d/
```

然后执行如下命令,修改刚才复制过来的80-net-setup-link.rules文件:

```
1 | sudo vim /etc/udev/rules.d/80-net-setup-link.rules
```

如下图所示,将箭头所指的ID_NET_NAME改成ID_NET_SLOT即可。

```
# do not edit this file, it will be overwritten on update

SUBSYSTEM!="net", GOTO="net_setup_link_end"

IMPORT{builtin}="path_id"

ACTION=="remove", GOTO="net_setup_link_end"

IMPORT{builtin}="net_setup_link"

NAME=="", ENV{ID_NET_NAME}!="", NAME="$env{ID_NET_NAME}"

LABEL="net_setup_link_end"
```