Assignment 4

Sujal - AI20BTECH11020

Download all python codes from

https://github.com/sujal100/ Probability_and_Random_variable/tree/main/ exercise_4/codes

and latex codes from

https://github.com/https://github.com/sujal100/ Probability_and_Random_variable/blob/main /exercise_4/exercise_4_main_tex.tex

1 PROBLEM [GATE(2012)CS-63]

An automobile plant contracted to buy shock absorbers from two suppliers *X* and *Y*. *X* supplies 60% and *Y* supplies 40% of the shock absorbers. All shock absorbers are subjected to a quality test. The ones that pass the quality test are considered reliable. Of X's shock absorbers, 96% are reliable. Of Y's shock absorbers, 72% are reliable.

The probability that a randomly chosen shock absorber, which is found to be reliable, is made by *Y* is (A) 0.288 (B) 0.334 (C) 0.667 (D) 0.720

2 SOLUTION

2	SOLUTION	
- X -	0.96	reliable
0.6	0.04	faulty
0.4	0.72	reliable
~ Y.	0.28	faulty

	Refer to probability that product	Result
Pr(X=1)	from supplier X	0.6
Pr(Y=1)	from supplier X	0.4
Pr(R=1)	is reliable	
Pr(R=0)	is faulty	
Pr(R=1/X=1)	from supplier X is reliable	0.96
Pr(R=1/Y=1)	from supplier Y is reliable	0.72

TABLE 0: probability of random variables.

Let Consider, Bernoulli random variables say X, Y and R. Required probability is Pr(Y = 1|R = 1).So,

$$Pr(Y = 1|R = 1) = \frac{Pr(Y = 1, R = 1)}{Pr(R = 1)}$$

$$= \frac{Pr(Y = 1)Pr(R = 1/Y = 1)}{Pr(X = 1)Pr(R = 1/X = 1) + Pr(Y = 1)P(R = 1/Y = 1)}$$
(2.0.1)
(2.0.2)

$$= \frac{(0.4)(0.72)}{(0.6)(0.96) + (0.4)(0.72)} = 0.334 \tag{2.0.3}$$

Hence (B) is correct option.

Fig. 0: Theoretical Vs Simulation