Documentation of MRs for Testing Constraint Checking Implementations

June 8, 2023

1 Symbol Conventions

For ease of narrative, in the following sections, we use D_0 and S_0 to denote data under checking and a constraint for checking in source test input, Rt_0 and Rl_0 to denote truth value and link set in the source test output. Similarly, we use D_1 , S_1 , Rt_1 and Rl_1 to denote corresponding variables in the follow-up test.

2 MR-Data

There are two different MRs in this part, and they only transform the data under checking and keep the constraint unchanged.

2.1 Link

Before introducing the MR-Data, let's talk more about links.

Links explain how a constraint is violated or satisfied. A link is composed of two parts: type and bindings. Type of a link is either vio or sat, indicating that this link is a violated link or a satisfied link respectively. Bindings of a link is a set of variable assignments, which can help explain how a constraint is violated or satisfied. For example, $l_1 :< vio, \{x = 1, y = 2\} >$ and $l_2 :< vio, \{x = 2, y = 2\} >$ are two different links. The type of l_1 is vio and the bindings of l_1 is $\{x = 1, y = 2\}$.

Then, we will define "cover" relation between two link sets. Let l_1 and l_2 be two links. We use $type(l_1)$ to denote the type of l_1 and $bindings(l_1)$ to denote the bindings of l_1 . If l_1 and l_2 have the same type and all the bindings of l_1 are also contained by l_2 , we say l_2 "covers" l_1 and denote it as $l_1 \leq l_2$. This is the definition of the cover relation between two links:

$$l_1 \leq l_2 \Leftrightarrow type(l_1) == type(l_2) \wedge bindings(l_1) \subseteq bindings(l_2)$$
 (1)

Further more, let $ls_1 = \{l_{11}, l_{12}, ..., l_{1n}\}$ and $ls_2 = \{l_{21}, l_{22}, ..., l_{2m}\}$ be two link sets. If for every link l_i in set ls_1 , there exists an link l_j in set ls_2 that satisfies $l_i \leq l_j$, then we say ls_2 "covers" ls_1 and denote it as $ls_1 \leq ls_2$. This is the definition of the cover relation between two link sets:

$$ls_1 \leq ls_2 \Leftrightarrow \forall \ l_i \in ls_1(\exists \ l_i \in ls_2(l_i \leq l_i)) \tag{2}$$

It is easy to see that \leq is partial order relation and the inclusion relation of link sets (\subseteq) is a special case of the cover relation (\leq), i.e. $ls_1 \subseteq ls_2 \Rightarrow ls_1 \leq ls_2$.

Besides that, we use var(l) and var(ls) to denote the set of the variables appeared in a link or a link set. And we use val(ls, x) to denote all the value assigned to the variable x.

To illustrate these concepts more clearly, let's look at the example in Fig. 1. In the example, $ls_1 \leq ls_2$, because the only link l_1 in ls_1 is also in ls_2 , i.e. $ls_1 \subseteq ls_2$. On the other hand, $l_1 \leq l_3$ and $l_2 \leq l_4$, so $ls_2 \leq ls_3$.

For more details of the rules for calculating links, please refer to the existing work [8].

Let:

$$\begin{aligned} l_1 &< vio, \{x = 1\} > \\ l_2 &< vio, \{y = 4\} > \\ l_3 &< vio, \{x = 1, y = 3\} > \\ l_4 &< vio, \{x = 2, y = 4\} > \\ ls_1 &= \{l_1\} \\ ls_2 &= \{l_1, l_2\} \\ ls_3 &= \{l_3, l_4\} \end{aligned}$$

$$ls_1 &\leqslant ls_2 \leqslant ls_3$$

$$var(ls_3) &= \{x, y\}$$

then:

Figure 1: An example of cover relation among link sets

 $val(ls_3, x) = \{1, 2\}$

2.2 Impact of data changes

Then, we talk about the impact of data changes.

According to the existing work [7], impact of data changes can be divided into two categories: inconsistency-incurring and inconsistency-hidden (also named as inc+/inc-). The inconsistency-incurring changes leads to more possibilities for incurring violation and inconsistency-hidden changes has the opposite effect. These two kinds of impacts of data changes depend on the constraint and can be derived from the constraint in a static way.

For example, constraint $S: \forall x \in X(not(\exists y \in Y(same(X,Y))))$ has the inconsistency-incurring changes set $\{<+,X>,<+,Y>\}$, which means if we add any element to X or Y, constraint s would tend to generate more violations.

For more details of the derivation rules for two impact of data changes, please refer to the existing work [7].

2.3 MR-Data 1

Now we can elaborate on our MR-Data 1 as follow:

MR-Data 1: If $Rt_0 == F$, we apply any change with an inconsistency-incurring impact on S_0 to D_0 to obtain D_1 . Then, in the follow-up execution, Rt_1 should still be F and Rl_1 should satisfy the condition: $Rl_0 \leq Rl_1$.

MR-Data 1 indicates that if Rt_0 is F, an inconsistency-incurring change applied to D_0 can only lead to more violations of the whole constraint and the original inconsistencies still exists and would not be removed in the follow-up execution. That's why Rt_1 is still F and Rl_1 covers the Rl_0 .

Fig. 2 has shown an example of MR-Data 1. In the example, the source output Rt_0 is F. We apply an inconsistency-incurring impact change $<+, C_1>$ to D_0 to obtain D_1 for follow-up execution. Then, Rt_1 is still F which is the same as the Rt_0 , and Rl_1 covers the Rl_0 , i.e. $Rl_0 \leq Rl_1$. That is, the output of the follow-up execution satisfies MR-Data 1.

2.4 MR-Data 2

MR-Data 2 is the other side of MR-Data 1:

MR-Data 2: If $Rt_0 == T$, we apply any change with an inconsistency-hidden impact on S_0 to obtain D_1 . Then, in the follow-up execution, Rt_1 should still be T and Rl_1 should satisfy

Figure 2: An example of MR-Data 1

the condition: $Rl_0 \leq Rl_1$.

Similar to MR-Data1, MR-Data 2 indicates that if Rt_0 is T, an inconsistency-hidden change applied to D_0 can only lead to fewer violations, in other words, more satisfaction. That's why Rt_1 is still T and Rl_1 covers the Rl_0 .

Figure 3: An example of MR-Data 2

Fig. 3 has shown an example of MR-Data 2. In the example, the source output Rt_0 is T. We apply an inconsistency-hidden impact change $< +, C_1 >$ to D_0 to obtain D_1 for follow-up execution. Then, Rt_1 is still T which is the same as the Rt_0 , and Rl_1 covers the Rl_0 , i.e. $Rl_0 \leq Rl_1$. That is, the output of the follow-up execution satisfies MR-Data 2.

3 MR-Cons

There are nine different MRs in this part, and they only transform the constraint for checking and keep the data unchanged.

3.1 MR-Cons 1

MR-Cons 1: If the root of the constraint S_0 is $\forall v \in C$, we transform it to $\exists v \in C$ to obtain S_1 . Then, in the follow-up execution, Rt_1 and Rl_1 should satisfy different conditions according to the following 3 cases:

- Case 1: If Rt_0 is T, Rt_1 should be T and $val(Rl_1, v) == C$.
- Case 2: If Rt_0 is F and $val(Rt_0, v) == C$, Rt_1 should be F and Rt_1 should be empty.
- Case 3: If Rt_0 is F and $val(Rt_0, v) \subset C$, Rt_1 should be T and $val(Rt_1, v) == C val(Rt_0, v)$.

Figure 4: An example of MR-Cons 1

MR-Cons 1 exploits symmetrical relationship between \forall and \exists . The root node is calculated with many branches that take truth value T or F depending on different values of the variable v. The branches with the truth value F will become violated links for \forall , and the branches with the truth value T will become satisfied links for \exists . The values of the variable v in the two cases are the entire set of the matched data pattern C.

Fig. 4 has shown an example of MR-Cons 1. In the example, the root of the source constraint S_0 is \forall . We transform it to \exists to obtain S_1 for follow-up execution. Since Rt_0 is F and $val(Rt_0, v_1) = \{2\} \subset C_1 = \{1, 2\}$, this is the case 3 of MR-Cons 1. Therefore, Rt_1 should be T and $val(Rt_1, v_1)$ should be $C_1 - val(Rt_0, v_1) = \{1\}$. And that's exactly what happened in the follow-up output, which indicates that it satisfies MR-Cons 1.

3.2 MR-Cons 2

MR-Cons 2 is the other side of MR-Cons 1 and can be elaborated on as follow:

MR-Cons 2: If the root of the constraint S_0 is $\exists v \in C$, we transform it to $\forall v \in C$ to obtain S_1 . Then, in the follow-up execution, Rt_1 and Rl_1 should satisfy different conditions according to the following 3 cases:

- Case 1: If Rt_0 is F, Rt_1 should be F and $val(Rl_1, v) == C$.
- Case 2: If Rt_0 is T and $val(Rt_0, v) == C$, Rt_1 should be T and Rt_1 should be empty.
- Case 3: If Rt_0 is T and $val(Rt_0, v) \subset C$, Rt_1 should be F and $val(Rt_1, v) == C val(Rt_0, v)$.

Figure 5: An example of MR-Cons 2

Fig. 5 has shown an example of MR-Cons 2. In the example, the root of the source constraint S_0 is \exists . We transform it to \forall to obtain S_1 for follow-up execution. Since Rt_0 is F, this is the case 1 of MR-Cons 2. Therefore, Rt_1 should be F and $val(Rt_1, v_1)$ should be the same $C_1 = \{1, 2\}$. And that's exactly what happened in the follow-up output, which indicates that it satisfies MR-Cons 2.

3.3 MR-Cons 3

Before we introduce more MRs, let's talk more about the links of binary quantifier.

Let $S: f_l$ op f_r be a constraint, where op is a binary quantifier (e.g. and, or, implies) and f_l/f_r is the left/right sub-constraint of op. According to the rules of link generation [8], the links of S (denoted as ls) is one of the following 5 cases:

- (1). ls is empty.
- (2). ls only contains links from left sub-constraint (denoted as ls_{fl}).
- (3). ls only contains links from right sub-constraint (denoted as ls_{f_r}).
- (4). ls is the union of ls_{f_l} and ls_{f_r}
- (5). ls is the cartesian product of ls_{f_1} and ls_{f_r} .

For the convenience of description, we use the flag(ls, S) to denote these cases. For example, if flag(ls, S) == 2, it means links composition of constraint S is case (2) above, i.e. ls only contains links from its left sub-constraint.

Now we can explain our MR-Cons 3 as follows:

MR-Cons 3: If the root of the constraint S_0 is and, which can be in form of f_1 and f_2 , we transform it to f_1 or f_2 to obtain S_1 . Then, in the follow-up execution, Rt_1 and Rl_1 should satisfy different conditions according to the following 8 cases:

- Case 1: If Rt_0 is T and $flag(Rl_0, S_0) == 1$, Rt_1 should be T and $flag(Rl_1, S_1) == 1$.
- Case 2: If Rt_0 is T and $flag(Rl_0, S_0) == 2$, Rt_1 should be T and $flag(Rl_1, S_1) == 2$.
- Case 3: If Rt_0 is T and $flag(Rl_0, S_0) == 3$, Rt_1 should be T and $flag(Rl_1, S_1) == 3$.
- Case 4: If Rt_0 is T and $flag(Rl_0, S_0) == 5$, Rt_1 should be T and $flag(Rl_1, S_1) == 4$.
- Case 5: If Rt_0 is F and $flag(Rl_0, S_0) == 4$, Rt_1 should be F and $flag(Rl_1, S_1) == 5$.
- Case 6: If Rt_0 is F and $flag(Rl_0, S_0) == 2$, either $Rt_1 == F \wedge flag(Rl_1, S_1) == 2$, or $Rt_1 == T \wedge (flag(Rl_1, S_1) == 1 \vee flag(Rl_1, S_1) == 3)$.
- Case 7: If Rt_0 is F and $flag(Rl_0, S_0) == 3$, either $Rt_1 == F \wedge flag(Rl_1, S_1) == 3$, or $Rt_1 == T \wedge (flag(Rl_1, S_1)) == 1 \vee flag(Rl_1, S_1) == 2$.
- Case 8: If Rt_0 is F and $flag(Rl_0, S_0) == 1$, either $Rt_1 == F \wedge flag(Rl_1, S_1) == 1$, or $Rt_1 == T \wedge (flag(Rl_1, S_1) == 1 \vee flag(Rl_1, S_1) == 2 \vee flag(Rl_1, S_1) == 3)$.

Figure 6: An example of MR-Cons 3

Fig. 6 has shown an example of MR-Cons 3. In the example, the root of the source constraint S_0 is and. We transform it to or to obtain S_1 for follow-up execution. Since Rt_0 is T and Rl_0 only contains the variables from the left sub-constraint, i.e. $flag(Rl_0, S_0) == 2$, this is the case 2 of MR-Cons 3. Therefore, Rt_1 should be F and Rl_1 should only contain the variables from the left sub-constraint, i.e. $flag(Rl_1, S_1) == 2$. And that's exactly what happened in the follow-up output, which indicates that it satisfies MR-Cons 3.

3.4 MR-Cons 4

MR-Cons 4: If the root of the constraint S_0 is or, which can be in form of f_1 or f_2 , we transform it to f_1 and f_2 to obtain S_1 . Then, in the follow-up execution, Rt_1 and Rl_1 should satisfy different conditions according to the following 8 cases:

- Case 1: If Rt_0 is F and $flag(Rl_0, S_0) == 1$, Rt_1 should be F and $flag(Rl_1, S_1) == 1$.
- Case 2: If Rt_0 is F and $flag(Rl_0, S_0) == 2$, Rt_1 should be F and $flag(Rl_1, S_1) == 2$.
- Case 3: If Rt_0 is F and $flag(Rl_0, S_0) == 3$, Rt_1 should be F and $flag(Rl_1, S_1) == 3$.

- Case 4: If Rt_0 is F and $flag(Rl_0, S_0) == 5$, Rt_1 should be F and $flag(Rl_1, S_1) == 4$.
- Case 5: If Rt_0 is T and $flag(Rl_0, S_0) == 4$, Rt_1 should be T and $flag(Rl_1, S_1) == 5$.
- Case 6: If Rt_0 is T and $flag(Rl_0, S_0) == 2$, either $Rt_1 == T \land flag(Rl_1, S_1) == 2$, or $Rt_1 == F \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 3)$.
- Case 7: If Rt_0 is T and $flag(Rl_0, S_0) == 3$, either $Rt_1 == T \land flag(Rl_1, S_1) == 3$, or $Rt_1 == F \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 2)$.
- Case 8: If Rt_0 is T and $flag(Rl_0, S_0) == 1$, either $Rt_1 == T \land flag(Rl_1, S_1) == 1$, or $Rt_1 == F \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 2 \lor flag(Rl_1, S_1) == 3)$.

Figure 7: An example of MR-Cons 4

Fig. 7 has shown an example of MR-Cons 4. In the example, the root of the source constraint S_0 is or. We transform it to and to obtain S_1 for follow-up execution. Since Rt_0 is F and Rl_0 only contains the variables from the right sub-constraint, i.e. $flag(Rl_0, S_0) == 3$, this is the case 3 of MR-Cons 4. Therefore, Rt_1 should be F and Rl_1 should only contain the variables from the right sub-constraint, i.e. $flag(Rl_1, S_1) == 3$. And that's exactly what happened in the follow-up output, which indicates that it satisfies MR-Cons 4.

3.5 MR-Cons 5

MR-Cons 5: If the root of the constraint S_0 is or, which can be in form of f_1 or f_2 , we transform it to f_1 implies f_2 to obtain S_1 . Then, in the follow-up execution, Rt_1 and Rl_1 should satisfy different conditions according to the following 8 cases:

- Case 1: If Rt_0 is F and $flag(Rl_0, S_0) == 1$, Rt_1 should be T and $flag(Rl_1, S_1) == 1$.
- Case 2: If Rt_0 is F and $flag(Rl_0, S_0) == 2$, Rt_1 should be T and $flag(Rl_1, S_1) == 2$.
- Case 3: If Rt_0 is F and $flag(Rl_0, S_0) == 3$, Rt_1 should be T and $flag(Rl_1, S_1) == 1$.
- Case 4: If Rt_0 is F and $flag(Rl_0, S_0) == 5$, Rt_1 should be T and $flag(Rl_1, S_1) == 2$.
- Case 5: If Rt_0 is T and $flag(Rl_0, S_0) == 4$, Rt_1 should be T and $flag(Rl_1, S_1) == 3$.

- Case 6: If Rt_0 is T and $flag(Rl_0, S_0) == 3$, Rt_1 should be T and $flag(Rl_1, S_1) == 3 \lor flag(Rl_1, S_1) == 4$.
- Case 7: If Rt_0 is T and $flag(Rl_0, S_0) == 2$, either $Rt_1 == T \land flag(Rl_1, S_1) == 1$, or $Rt_1 == F \land (flag(Rl_1, S_1) == 2 \lor flag(Rl_1, S_1) == 5)$.
- Case 8: If Rt_0 is T and $flag(Rl_0, S_0) == 1$, either $Rt_1 == T \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 2)$, or $Rt_1 == F \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 3)$.

Figure 8: An example of MR-Cons 5

Fig. 8 has shown an example of MR-Cons 5. In the example, the root of the source constraint S_0 is or. We transform it to *implies* to obtain S_1 for follow-up execution. Since Rt_0 is F and Rl_0 is the cartesian product of the links of left sub-constraint and the links of right sub-constraint, i.e. $flag(Rl_0, S_0) == 5$, this is the case 4 of MR-Cons 5. Therefore, Rt_1 should be T and Rl_1 should only contain the variables from the left sub-constraint, i.e. $flag(Rl_1, S_1) == 2$. And that's exactly what happened in the follow-up output, which indicates that it satisfies MR-Cons 5.

3.6 MR-Cons 6

MR-Cons 6: If the root of the constraint S_0 is *implies*, which can be in form of f_1 *implies* f_2 , we transform it to f_1 or f_2 to obtain S_1 . Then, in the follow-up execution, Rt_1 and Rl_1 should satisfy different conditions according to the following 8 cases:

- Case 1: If Rt_0 is F and $flag(Rl_0, S_0) == 1$, Rt_1 should be T and $flag(Rl_1, S_1) == 1$.
- Case 2: If Rt_0 is F and $flag(Rl_0, S_0) == 2$, Rt_1 should be T and $flag(Rl_1, S_1) == 2$.
- Case 3: If Rt_0 is F and $flag(Rl_0, S_0) == 3$, Rt_1 should be T and $flag(Rl_1, S_1) == 1$.
- Case 4: If Rt_0 is F and $flag(Rl_0, S_0) == 5$, Rt_1 should be T and $flag(Rl_1, S_1) == 2$.
- Case 5: If Rt_0 is T and $flag(Rl_0, S_0) == 4$, Rt_1 should be T and $flag(Rl_1, S_1) == 3$.
- Case 6: If Rt_0 is T and $flag(Rl_0, S_0) == 3$, Rt_1 should be T and $flag(Rl_1, S_1) == 3 \lor flag(Rl_1, S_1) == 4$.
- Case 7: If Rt_0 is T and $flag(Rl_0, S_0) == 2$, either $Rt_1 == T \land flag(Rl_1, S_1) == 1$, or $Rt_1 == F \land (flag(Rl_1, S_1) == 2 \lor flag(Rl_1, S_1) == 5)$.

• Case 8: If Rt_0 is T and $flag(Rl_0, S_0) == 1$, either $Rt_1 == T \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 2)$, or $Rt_1 == F \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 3)$.

Figure 9: An example of MR-Cons 6

Fig. 9 has shown an example of MR-Cons 6. In the example, the root of the source constraint S_0 is *implies*. We transform it to or to obtain S_1 for follow-up execution. Since Rt_0 is T and Rl_0 is the union of the links of left sub-constraint and the links of right sub-constraint, i.e. $flag(Rl_0, S_0) == 4$, this is the case 5 of MR-Cons 6. Therefore, Rt_1 should be T and Rl_1 should only contain the variables from the right sub-constraint, i.e. $flag(Rl_1, S_1) == 3$. And that's exactly what happened in the follow-up output, which indicates that it satisfies MR-Cons 6.

3.7 MR-Cons 7

MR-Cons 7: If the root of the constraint S_0 is and, which can be in form of f_1 and f_2 , we transform it to f_1 implies f_2 to obtain S_1 . Then, in the follow-up execution, Rt_1 and Rl_1 should satisfy different conditions according to the following 8 cases:

- Case 1: If Rt_0 is T and $flag(Rl_0, S_0) == 1$, Rt_1 should be T and $flag(Rl_1, S_1) == 1$.
- Case 2: If Rt_0 is T and $flag(Rl_0, S_0) == 2$, Rt_1 should be T and $flag(Rl_1, S_1) == 1$.
- Case 3: If Rt_0 is T and $flag(Rl_0, S_0) == 3$, Rt_1 should be T and $flag(Rl_1, S_1) == 3$.
- Case 4: If Rt_0 is T and $flag(Rl_0, S_0) == 5$, Rt_1 should be T and $flag(Rl_1, S_1) == 3$.
- Case 5: If Rt_0 is F and $flag(Rl_0, S_0) == 4$, Rt_1 should be T and $flag(Rl_1, S_1) == 2$.
- Case 6: If Rt_0 is F and $flag(Rl_0, S_0) == 2$, Rt_1 should be T and $flag(Rl_1, S_1) == 2 \lor flag(Rl_1, S_1) == 4$.
- Case 7: If Rt_0 is F and $flag(Rl_0, S_0) == 3$, either $Rt_1 == T \land flag(Rl_1, S_1) == 1$, or $Rt_1 == F \land (flag(Rl_1, S_1) == 3 \lor flag(Rl_1, S_1) == 5)$.
- Case 8: If Rt_0 is F and $flag(Rl_0, S_0) == 1$, either $Rt_1 == T \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 3)$, or $Rt_1 == F \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 2)$.

Figure 10: An example of MR-Cons 7

Fig. 10 has shown an example of MR-Cons 7. In the example, the root of the source constraint S_0 is and. We transform it to implies to obtain S_1 for follow-up execution. Since Rt_0 is F and Rl_0 only contains the variables from the left sub-constraint, i.e. $flag(Rl_0, S_0) == 2$, this is the case 6 of MR-Cons 7. Therefore, Rt_1 should be T and $flag(Rl_1, S_1)$ should be either 2 or 4. And in the follow-up output, Rl_1 is the union of the links of left-constraint and the links of right-constraint, i.e. $flag(Rl_1) == 4$, which indicates that it satisfies MR-Cons 7.

3.8 MR-Cons 8

MR-Cons 8: If the root of the constraint S_0 is *implies*, which can be in form of f_1 *implies* f_2 , we transform it to f_1 and f_2 to obtain S_1 . Then, in the follow-up execution, Rt_1 and Rl_1 should satisfy different conditions according to the following 8 cases:

- Case 1: If Rt_0 is F and $flag(Rl_0, S_0) == 1$, Rt_1 should be F and $flag(Rl_1, S_1) == 1$.
- Case 2: If Rt_0 is F and $flag(Rl_0, S_0) == 2$, Rt_1 should be F and $flag(Rl_1, S_1) == 1$.
- Case 3: If Rt_0 is F and $flag(Rl_0, S_0) == 3$, Rt_1 should be F and $flag(Rl_1, S_1) == 3$.
- Case 4: If Rt_0 is F and $flag(Rl_0, S_0) == 5$, Rt_1 should be F and $flag(Rl_1, S_1) == 3$.
- Case 5: If Rt_0 is T and $flag(Rl_0, S_0) == 4$, Rt_1 should be F and $flag(Rl_1, S_1) == 2$.
- Case 6: If Rt_0 is T and $flag(Rl_0, S_0) == 2$, Rt_1 should be F and $flag(Rl_1, S_1) == 2 \lor flag(Rl_1, S_1) == 4$.
- Case 7: If Rt_0 is T and $flag(Rl_0, S_0) == 3$, either $Rt_1 == F \land flag(Rl_1, S_1) == 1$, or $Rt_1 == T \land (flag(Rl_1, S_1) == 3 \lor flag(Rl_1, S_1) == 5)$.
- Case 8: If Rt_0 is T and $flag(Rl_0, S_0) == 1$, either $Rt_1 == F \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 3)$, or $Rt_1 == T \land (flag(Rl_1, S_1) == 1 \lor flag(Rl_1, S_1) == 2)$.

Fig. 11 has shown an example of MR-Cons 8. In the example, the root of the source constraint S_0 is *implies*. We transform it to and to obtain S_1 for follow-up execution. Since Rt_0 is T and Rl_0 only contains the variables from the right sub-constraint, i.e. $flag(Rl_0, S_0) == 3$, this is the case 7 of MR-Cons 8. In the follow-up output, Rt_1 is F and Rl_1 is empty, i.e. $flag(Rl_1, S_1) == 1$, which satisfies the assertion condition of case 7, and therefore, satisfies MR-Cons 8.

Figure 11: An example of MR-Cons 8

3.9 MR-Cons 9

MR-Cons 9: If the root of the constraint S_0 is *implies*, which can be in form of f_1 *implies* f_2 , we transform it to f_2 *implies* f_1 to obtain S_1 . Then, in the follow-up execution, Rt_1 and Rl_1 should satisfy different conditions according to the following 8 cases:

- Case 1: If Rt_0 is F and $flag(Rl_0, S_0) == 1$, Rt_1 should be T and $flag(Rl_1, S_1) == 1$.
- Case 2: If Rt_0 is F and $flag(Rl_0, S_0) == 2$, Rt_1 should be T and $flag(Rl_1, S_1) == 2$.
- Case 3: If Rt_0 is F and $flag(Rl_0, S_0) == 3$, Rt_1 should be T and $flag(Rl_1, S_1) == 3$.
- Case 4: If Rt_0 is F and $flag(Rl_0, S_0) == 5$, Rt_1 should be T and $flag(Rl_1, S_1) == 4$.
- Case 5: If Rt_0 is T and $flag(Rl_0, S_0) == 4$, Rt_1 should be F and $flag(Rl_1, S_1) == 5$.
- Case 6: If Rt_0 is T and $flag(Rl_0, S_0) == 2$, either $Rt_1 == F \wedge flag(Rl_1, S_1) == 2$, or $Rt_1 == T \wedge (flag(Rl_1, S_1) == 1 \vee flag(Rl_1, S_1) == 3)$.
- Case 7: If Rt_0 is T and $flag(Rl_0, S_0) == 3$, either $Rt_1 == F \wedge flag(Rl_1, S_1) == 3$, or $Rt_1 == T \wedge (flag(Rl_1, S_1) == 1 \vee flag(Rl_1, S_1) == 2)$.
- Case 8: If Rt_0 is T and $flag(Rl_0, S_0) == 1$, either $Rt_1 == F \wedge flag(Rl_1, S_1) == 1$, or $Rt_1 == T \wedge (flag(Rl_1, S_1) == 1 \vee flag(Rl_1, S_1) == 2 \vee flag(Rl_1, S_1) == 3)$.

Fig. 12 has shown an example of MR-Cons 9. In the example, the root of the source constraint S_0 is *implies*. We switch its two sub-formulas to obtain S_1 for follow-up execution. Since Rt_0 is T and Rl_0 is empty, i.e. $flag(Rl_0, S_0) == 1$, this is the case 8 of MR-Cons 9. In the follow-up output, Rt_1 is T and Rl_1 only contains the variables from the left sub-constraint, i.e. $flag(Rl_1, S_1) == 2$, which satisfies the assertion condition of case 8, and therefore, satisfies MR-Cons 9.

4 MR-All

There are two different MRs in this part, and they transform the data under checking and the constraint simultaneously.

Figure 12: An example of MR-Cons 9

4.1 Positive quantifier and negative quantifier

Let's start with an in-depth analysis of the quantifier (e.g. \forall , \exists , and, or) in the constraint. A constraint's quantifiers can be divided into two parts: positive and negative, according to their impact to the whole constraint. A positive quantifier supports the root's violation or satisfaction while a negative quantifier supports it in the opposite way. It means if a positive quantifier is F under given data, the whole constraint tends to be F while if a positive quantifier is F, the whole constraint tends to be T. In brief, a positive quantifier with T or a negative quantifier with F or a negative quantifier with T contributes to the whole constraint taking the truth value of T; a positive quantifier with T or a negative quantifier with T contributes to the whole constraint taking the truth value of F.

Let us consider the example in the Fig. 13. In the figure, quantifiers colored with green stands for positive quantifiers and quantifiers colored with red stands for negative quantifiers. Quantifier not in constraint S is positive, which means if it is T, it tends to make S be T, while if it is F, it tends to make S be F.

In definitions, only the quantifier that is transitively through *implies* from the left or *not* from the root can reverse its supporting direction initialized to be positive, which has been clearly illustrated in Fig. 13.

4.2 Constraint transformation

Since we want to transform both the data part and constraint part at the same time, we need to control the transformation impact. We control to insert a new formula which naturally requires new data being added into the data part. We propose two kinds of transformations: AND-Transformation and OR-Transformation. AND-Transformation means linking a quantifier with a newly added and, which links to a newly added constraint as another branch. Similarly, OR-Transformation means linking quantifier with a newly added or. Note that the choice of the linking node and the newly added constraint can be arbitrary which means there are a lot of instances of these two kinds of transformation even for the same constraint. Fig 13 has clearly shown an example of two kinds of transformations.

4.3 MR-All 1

Now, we can elaborate on our MR-All 1 using concepts above:

Figure 13: An example of constraint transformation

MR-All 1: If $Rt_0 == F$, we apply AND-Transformation to any positive quantifier or apply OR-Transformation to any negative quantifier in S_0 to obtain D_1 and S_1 . Then, in the follow-up execution, Rt_1 should still be F and Rl_1 should satisfy the condition: $Rl_0 \leq Rl_1$.

MR-All 1 indicates that AND-Transformation to any positive quantifier or OR-Transformation when Rt_0 is a kind of inconsistency-incurring change for input, which would lead to more violations and make the Rt_0 still be F and Rl_1 cover Rl_0 .

Figure 14: An example of MR-All 1

Fig. 14 has shown an example of MR-All 1. In the example, the source output Rt_0 is F. We apply AND-Transformation by inserting a newly and node above a positive quantifier not for follow-up execution. Then, Rt_1 is still F which is the same as the Rt_0 , and Rl_1 covers the Rl_0 , i.e. $Rl_0 \leq Rl_1$. That is, the output of the follow-up execution satisfies MR-All 1.

4.4 MR-All 2

MR-All 2 is the other side of MR-All 1:

MR-All 2: If $Rt_0 == T$, we apply OR-Transformation to any positive quantifier or apply AND-Transformation to any negative quantifier in S_0 to obtain D_1 and S_1 . Then, in the follow-up execution, Rt_1 should still be T and Rl_1 should satisfy the condition: $Rl_0 \leq Rl_1$.

Figure 15: An example of MR-All 2

Fig. 15 has shown an example of MR-All 2. In the example, the source output Rt_0 is T. We apply OR-Transformation by inserting a newly and node above a positive quantifier not for follow-up execution. Then, Rt_1 is still T which is the same as the Rt_0 , and Rl_1 covers the Rl_0 , i.e. $Rl_0 \leq Rl_1$. That is, the output of the follow-up execution satisfies MR-All 2.

5 MR-CCT

If more internal states can be observed, e.g., CCT status like substantial parts accessible in existing work [10], we can additional design MRs with respect to measure the impact for such detailed CCT statuses under different transformations between source and follow-up executions.

5.1 CCT and SCCT

Normally, a constraint for checking can be expanded to a Consistency Computation Tree (CCT) based on both its static constraint structure and the current data under checking. SCCT [10] is substantial parts in CCT, which is the minimum set of nodes contributing to the link generation. Fig. 16 has shown an example of CCT and SCCT . In the figure, the nodes colored with purple are SCCT nodes and the links of this constraint is entirely up to them. By comparing the SCCT in the source output and the follow-up output through different transformations, we can desgin the MR-CCT.

In the next section, we will use $SCCT_0$ and $SCCT_1$ to denote the set of SCCT nodes in the source output and follow-up output separately.

5.2 MR-CCT 1

MR-CCT 1 uses the transformation similar to MR-Data 1 and can be elaborated on as follow:

Figure 16: An example of CCT and SCCT

MR-CCT 1: If $Rt_0 == F$, we apply any change with an inconsistency-incurring impact on S_0 to D_0 to obtain D_1 . Then, in the follow-up execution, $SCCT_1$ should contain $SCCT_0$, i.e. $SCCT_0 \subseteq SCCT_1$.

MR-CCT 1 indicates that inconsistency-incurring changes applied to data will cause SCCT to become larger and cover the original SCCT. In fact, $SCCT_0 \subseteq SCCT_1$ is another expression of $l_0 \leq l_1$.

Figure 17: An example of MR-CCT 1

Fig. 17 has shown an example of MR-CCT 1. Both $SCCT_0$ and $SCCT_1$ have been colored with orange in the figure. In the example, the source output Rt_0 is T. We apply an inconsistency-incurring impact change $\langle +, C_1 \rangle$ to D_0 to obtain D_1 for follow-up execution. Then, in the follow-up output, $SCCT_1$ contains all the nodes in the $SCCT_0$, i.e. $SCCT_0 \subseteq SCCT_1$, which can be vividly seen in the figure. That is, the output of the follow-up execution satisfies MR-CCT 1.

5.3 MR-CCT 2

Similarly, if we use the transformation mentioned in MR-All 1, then we can derive the MR-CCT 2:

MR-CCT 2: If $Rt_0 == F$, we apply AND-Transformation to any positive quantifier or apply OR-Transformation to any negative quantifier in S_0 to obtain D_1 and S_1 . Then, in the follow-up execution, if the newly added nodes in $SCCT_1$ are ignored, $SCCT_1$ should contain $SCCT_0$, i.e. $SCCT_0 \subseteq SCCT_1$.

Figure 18: An example of MR-CCT 2

Fig. 18 has shown an example of MR-CCT 2. Both $SCCT_0$ and $SCCT_1$ have been colored with orange in the figure. In the example, the source output Rt_0 is F. We apply AND-Transformation by inserting a newly and node above a positive quantifier not for follow-up execution. Then, in the follow-up output, $SCCT_1$ contains all the nodes in the $SCCT_0$, i.e. $SCCT_0 \subseteq SCCT_1$, which can be vividly seen in the figure. That is, the output of the follow-up execution satisfies MR-CCT 2.