Algoritmos de Ordenamiento Práctica 01

EDER AMPUERO HOWARD ARANZAMENDI **IOSE EDISON** PEREZ HENRRY ARIAS

Universidad Nacional San Agustín de Arequipa eampuero@unsa.edu.pe

haranzamendi@unsa.edu.pe

jperezma@unsa.edu.pe

hariasm@unsa.edu.pe

Arequipa August 20, 2022

Tabla de contenidos

Características Equipo usado para pruebas

2 Algoritmos **QUICK SORT** Merge Sort **Heap Sort** Tree Sort

Características del equipo

Se uso un único equipo con la misma data para todas las pruebas.

Información del sistema	
Fecha y hora ao	tuales: viernes, 19 de agosto de 2022, 07:38:36 p.m.
Nombre del	equipo: ALONSO
Sistema ope	erativo: Windows 10 Home Single Language 64 bits (10.0, compilación 19043)
	Idioma: español (configuración regional: español)
Fabricante del s	istema: TOSHIBA
Modelo del s	istema: Satellite L45-B
	BIOS: 1.20
Proc	esador: Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz (4 CPUs), ~2.4GHz
М	emoria: 8192MB RAM
Archivo de pagi	nación: 7329MB usados, 3461MB disponibles
Versión de I	DirectX: DirectX 12
Comprobar firmas digitales de los Laboratorios de calidad de hardware de Windows (WHQL)	

Figure: Características del equipo de pruebas

3/13

(UC) ALG ORD

QUICK SORT

Quicksort ha sido históricamente el algoritmo genérico de ordenamiento más rápido conocido en la práctica. Es un algoritmo recursivo del tipo "divide y vencerás", y fácil de implementar.

Costo computacional: Caso promedio tarda N x log N, en el peor caso puede llegar a tardar N^2 .

Figure: Quick Sort

Figure: Quick Sort

MERGE SORT

- Es un algoritmo recursivo bastante eficiente para ordenar un array.
- Usa la técnica de divide y vencerás, la cual consiste en dividir el problema en sub problemas del mismo tipo que a su vez se dividirán hasta que sean suficientemente pequeños o triviales
- Costo computacional: T(N) = Nlog2 N

Figure: Merge Sort

Figure: Merge Sort

HEAP SORT

HeapsortHeapsort (Williams, 1964)

En la práctica su coste es superior al de quicksort, ya que el factor constante multiplicativo del término nlogn es mayor.

Figure: Merge Sort

Figure: Heap Sort

TREE SORT

La clasificación de árbol es un algoritmo de clasificación que se basa en la estructura de datos del árbol de búsqueda binaria.

Figure: Tree Sort

Figure: Tree Sort

References

John Smith (2022) Publication title Journal Name 12(3), 45 – 678.

Annabelle Kennedy (2023) Publication title Journal Name 12(3), 45 – 678.

Fin

Preguntas? Comentarios?