CLAIM AMENDMENTS:

This listing of claims will replace all prior versions and listing of claims in the application. Listing of the Claims:

Claims 1-4 (cancelled).

Claim 5 (currently amended): A compound-according to claim 1 of the formula IIb:

$$R^{2d}$$

$$R^{2a}$$

$$R^{2b}$$

(IIb)

wherein:

M is -CH- or -N-;

nc is 0, 1 or 2;

 R^{2c} is linked to a carbon atom of the 5-membered ring and is selected from hydrogen and methyl; R^{2d} is linked to a carbon atom of the 6-membered ring and is selected from hydrogen and fluoro; R^{2a} and R^{2b} are each independently selected from hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl, C_{1-3} alkyl, C_{1-3} alkoxy, C_{1-3} alkylsulphanyl, -NR 3a R 4a (wherein R^{3a} and R^{4a} , which may be the same or different, each represents hydrogen or C_{1-3} alkyl), and Q^1X^1

wherein Q¹ is selected from one of the following groups:

1) C₁₋₄alkyl-Q¹³-C(O)-C₁₋₄alkyl-Q¹⁴ wherein Q¹³ and Q¹⁴ are each independently selected from pyrrolidinyl, piperidinyl, piperazinyl,

wherein Q14 is linked to C1-6alkanoyl through a nitrogen atom;

2) Q² (wherein Q² is a 5-6-membered heterocyclic group selected from pyrrolidinyl, piperazinyl,

which heterocyclic group bears either one substituent selected from methylenedioxy or ethylenedioxy to form a bicyclic ring, or bears at least one substituent selected from C2.

4alkanoylC1-3alkyl and optionally bears a further 1 or 2 substituents selected from C2.

5alkenyl, C2-5alkynyl, C1-6fluoroalkyl, C1-6alkanoyl, C2-4alkanoylC1-3alkyl, aminoC1-6alkanoyl, C1-4alkylaminoC1-6alkanoyl, di(C1-4alkyl)aminoC1-6alkanoyl, C1-6fluoroalkanoyl, carbamoyl, di(C1-4alkyl)aminoC1-6alkyl, carbamoylC1-6alkyl, C1-6alkyl, C1-6alkyl, di(C1-4alkyl)carbamoylC1-6alkyl, C1-6alkyl, C1-6alkyl, di(C1-4alkyl)carbamoylC1-6alkyl, C1-6alkyl, C1-

3) C₁₋₅alkylQ² (wherein Q² is as defined herein); and X¹ is Oare as defined in claim 1;

and additionally wherein any C₁₋₅alkyl group in Q¹X¹- which is linked to X¹ may bear one or more substituents selected from hydroxy, halogeno and amino:

Za is -O- or -S-;

with the proviso that at least one of R^{2a} and R^{2b} is Q¹X¹ wherein Q¹ and X¹ are as defined herein in claim 1;

or a salt thereof.

Claim 6 (currently amended): A compound according to claim 5 wherein one of R^{2a} and R^{2b} is methoxy and the other is Q^1X^1 wherein X^1 is -Q-and Q^1 are as defined in claim 5. is selected from one of the following groups:

1) C₁₋₄alkyl-Q¹³-C(O)-C₁₋₄alkyl-Q¹⁴-wherein Q¹³ and Q¹⁴ are each independently selected from pyrrolidinyl, piperidinyl, piperazinyl,

wherein Q¹⁴-is linked to C₁₋₆alkanoyl through a nitrogen atom;

2) Q² (wherein Q² is a 5-6-membered heterocyclic group selected from pyrrolidinyl, piperidinyl, piperazinyl,

which heterocyclic group bears either one substituent selected from methylenedioxy or ethylenedioxy to form a bicyclic ring, or bears at least one substituent selected from C_2 4alkanoyl C_1 3alkyl and optionally bears a further 1 or 2 substituents selected from C_2 3alkenyl, C_2 3alkynyl, C_1 6fluoroalkyl, C_1 6alkanoyl, C_2 4alkanoyl C_1 3alkyl, amino C_1 6alkanoyl, C_1 4alkylamino C_1 6alkanoyl, di(C_1 4alkyl)amino C_1 6alkanoyl, C_1 6fluoroalkanoyl, carbamoyl, C_1 4alkylcarbamoyl, di(C_1 4alkyl)carbamoyl, carbamoyl C_1 6alkyl, C_1 4alkylcarbamoyl C_1 6alkyl, di(C_1 4alkyl)carbamoyl C_1 6alkyl, C_1 6alkylsulphonyl, C_1 6fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, C_1 4cyanoalkyl, C_1 4alkyl, C_1 4alkylamino, di(C_1 4alkylam

4alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6 membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));

3) C₁₋₅alkylQ² (wherein Q² is as defined herein);

4) C₁₋₄alkylW²C₁₋₄alkylQ² (wherein W² is as defined in claim 1 and Q² is as defined herein); 5) C₁₋₄alkylQ¹⁵(C₁₋₄alkyl)_j(W²)_kQ¹⁶ (wherein W² is as defined in claim 1, j is 0 or 1, k is 0 or 1, and Q¹⁵ and Q¹⁶ are each independently selected from a 5-6-membered heterocyclic group selected from pyrrolidinyl, piperidinyl, piperazinyl,

which heterocyclic group may bear either one substituent selected from methylenedioxy or ethylenedioxy to form a bicyclic ring, or may bear 1, 2 or 3 substituents selected from C2. 5alkenyl, C2 5alkynyl, C1 6fluoroalkyl, C1 6alkanoyl, C2 4alkanoylC1 3alkyl, aminoC1 6alkanoyl, C_{L-4}alkylaminoC_{L-6}alkanoyl, di(C_{L-1}alkyl)aminoC_{L-6}alkanoyl, C_{L-6}fluoroalkanoyl, carbamoyl, C_{L-} 4alkylcarbamoyl, di(C14alkyl)carbamoyl, carbamoylC16alkyl, C14alkylcarbamoylC16alkyl, $di(C_{\perp}$ alkyl)carbamoylC $_{\perp}$ 6alkyl, C_{\perp} 6alkylsulphonyl, C_{\perp} 6fluoroalkylsulphonyl, oxo. hydroxy. halogeno, cyano, C1 4cyanoalkyl, C1 4alkyl, C1 4hydroxyalkyl, C1 4alkoxy, C1 4alkoxy, C1 4alkoxy, C1 4alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋ 4alkyl)amino, Ct_4alkylaminoCt_4alkyl, di(Ct_4alkyl)aminoCt_4alkyl, Ct_4alkylaminoCt_4alkoxy, di(C₁₋₁alkyl)aminoC₁₋₁alkoxy and a group -(-O-)_f(C₁₋₁alkyl)_eringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group-with 1-2 heteroatoms, selected independently from O. S and N, which heterocyclic group may bear one or more substituents selected from C₁₋₄alkyl), with the proviso one or both of Q¹⁵ and Q¹⁶ must be a 5-6-membered heterocyclic group as defined herein which heterocyclic group bears either one substituent selected from methylenedioxy or ethylenedioxy to form a bicyclic ring, or bears at least one substituent selected from C24alkanoylC13alkyl and optionally bears 1 or 2 further

substituents selected from those defined herein);

6) C_{I-1}alkylQ¹⁵C_{I-1}alkanoylQ¹⁶ⁿ-wherein Q¹⁵ is as defined herein and Q¹⁶ⁿ is a 5-6-membered heterocyclic group selected from pyrrolidinyl, piperidinyl, piperazinyl.

wherein Q¹⁶ⁿ is linked to C₁₋₆alkanoyl through a nitrogen atom and wherein Q¹⁶ⁿ bears either one substituent selected from methylenedioxy or ethylenedioxy to form a bicyclic ring, or bears 1, 2 or-3 substituents selected from C2-salkenyl, C2-salkynyl, C1-6fluoroalkyl, C1-6alkanoyl, C2-4alkanoylC₁₋₃alkyl, aminoC₁₋₆alkanoyl, C₁₋₄alkylaminoC₁₋₆alkanoyl, di(C₁₋₄alkyl)aminoC₁₋ 6alkanoyl, C1-6fluoroalkanoyl, carbamoyl, C1-4alkylcarbamoyl, di(C1-1alkyl)carbamoyl, earbamoylC₁₋₆alkyl, C₁₋₄alkylcarbamoylC₁₋₆alkyl, di(C₁₋₄alkyl)carbamoylC₁₋₆alkyl, C₁₋ 6alkylsulphonyl, CL6fluoroalkylsulphonyl, oxo, hydroxy, halogeno, cyano, CL4cyanoalkyl, CL 4alkyl, C1 4hydroxyalkyl, C1 4alkoxy, C1 4alkoxyC1 4alkyl, C1 4alkylsulphonylC1 4alkyl, C1 4alkoxycarbonyl, C14aminoalkyl, C14alkylamino, di(C14alkyl)amino, C14alkylaminoC14alkyl, di(C1_alkyl)aminoC1_alkyl, C1_alkylaminoC1_alkoxy, di(C1_alkyl)aminoC1_alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_eringD (wherein f is 0 or 1, g is 0 or 1-and ring D is a 5-6-membered saturated or partially unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear one or more substituents selected from C₁₋₄alkyl); with the proviso that one or both of Q¹⁵ and Q¹⁶ⁿ must be a 5-6membered heterocyclic group as defined herein which heterocyclic group bears either one substituent selected from methylenedioxy or ethylenedioxy to form a bicyclic ring, or bears at least one substituent selected from C₂₋₄alkanoylC₁₋₃alkyl and optionally bears 1 or 2 further substituents selected from those defined herein: and additionally wherein any C1-salkyl, C2-salkenyl or C2-salkynyl group in Q1X1-which is linked to X1 may bear one or more substituents selected from hydroxy, halogeno and amino).

Claim 7 (original): A compound according to claim 5 wherein one of R^{2a} and R^{2b} is methoxy and the other is Q^1X^1 wherein X^1 is -O- and Q^1 is

 C_{1-4} alkyl- Q^{13} -C(O)- C_{1-4} alkyl- Q^{14} wherein Q^{13} and Q^{14} are each independently selected from pyrrolidinyl, piperidinyl, piperazinyl,

wherein Q^{14} is linked to C_{1-6} alkanoyl through a nitrogen atom.

Claim 8 (original): A compound according to claim 5 wherein one of R^{2a} and R^{2b} is methoxy and the other is Q^1X^1 wherein X^1 is -O- and Q^1 is selected from one of the following groups:

1) Q² (wherein Q² is a 5-6-membered heterocyclic group selected from pyrrolidinyl, piperazinyl,

which heterocyclic group bears either one substituent selected from methylenedioxy or ethylenedioxy to form a bicyclic ring, or bears one substituent selected from C_2 -4alkanoyl C_{1-3} alkyl; and

2) C₁₋₅alkylQ² (wherein Q² is as defined herein).

Claim 9 (original): A compound according to claim 7 or claim 8 wherein R^{2a} is methoxy.

Claim 10 (currently amended): A compound according to claim 5-claim 1 selected from:

- 7-{[1-(acetylmethyl)piperidin-4-yl]methoxy}-6-methoxy-4-[(3-methyl-1*H*-indol-5-yl)oxy]quinazoline,
- 7-{[1-(acetylmethyl)piperidin-4-yl]methoxy}-6-methoxy-4-[(2-methyl-1*H*-indol-6-yl)oxy]quinazoline,
- 7-{[1-(acetylmethyl)piperidin-4-yl]methoxy}-6-methoxy-4-[(2-methyl-1*H*-indol-5-

- yl)oxy]quinazoline,
- 6-methoxy-4-[(3-methyl-1*H*-indol-5-yl)oxy]-7-{[1-(pyrrolidin-1-ylacetyl)piperidin-4-yl]methoxy}quinazoline,
- 6-methoxy-4-[(2-methyl-1*H*-indol-6-yl)oxy]-7-{[1-(pyrrolidin-1-ylacetyl)piperidin-4-yl]methoxy}quinazoline,
- 6-methoxy-4-[(2-methyl-1*H*-indol-5-yl)oxy]-7-{[1-(pyrrolidin-1-ylacetyl)piperidin-4-yl]methoxy}quinazoline,
- 6-methoxy-4-[(2-methyl-1*H*-indol-5-yl)oxy]-7-[2-(tetrahydro-5*H*-[1,3]dioxolo[4,5-*c*]pyrrol-5-yl)ethoxy]quinazoline,
- 6-methoxy-4-[(3-methyl-1H-indol-5-yl)oxy]-7-[2-(tetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrol-5-yl)ethoxy]quinazoline,
- 4-[(2,3-dimethyl-1H-indol-5-yl)oxy]-6-methoxy-7-[2-(tetrahydro-5H-[1,3]dioxolo[4,5-c]pyrrol-5-yl)ethoxy]quinazoline,
- 4-[(4-fluoro-2-methyl-1*H*-indol-5-yl)oxy]-6-methoxy-7-[2-(tetrahydro-5*H*-[1,3]dioxolo[4,5-*c*]pyrrol-5-yl)ethoxy]quinazoline,
- 7-{2-[4-(acetylmethyl)piperazin-1-yl]ethoxy}-4-[(2,3-dimethyl-1*H*-indol-5-yl)oxy]-6-methoxyquinazoline,
- 7-{2-[4-(acetylmethyl)piperazin-1-yl]ethoxy}-6-methoxy-4-[(3-methyl-1*H*-indol-5-yl)oxy]quinazoline,
- 7-{2-[4-(acetylmethyl)piperazin-1-yl]ethoxy}-6-methoxy-4-[(2-methyl-1*H*-indol-5-yl)oxy]quinazoline,
- 7-{2-[4-(acetylmethyl)piperazin-1-yl]ethoxy}-4-[(4-fluoro-2-methyl-1*H*-indol-5-yl)oxy]-6-methoxyquinazoline,
- 6-methoxy-4-[(2-methyl-1*H*-indol-5-yl)oxy]-7-{2-[4-(pyrrolidin-1-ylacetyl)piperazin-1-yl]ethoxy}quinazoline,
- 7-{[1-(acetylmethyl)piperidin-4-yl]oxy}-6-methoxy-4-[(2-methyl-1*H*-indol-6-yl)oxy]quinazoline,
- 7-{[1-(acetylmethyl)piperidin-4-yl]oxy}-6-methoxy-4-[(2-methyl-1*H*-indol-5-yl)oxy]quinazoline, and

7-{[]-(acetylmethyl)piperidin-4-yl]oxy}-4-[(4-fluoro-2-methyl-1*H*-indol-5-yl)oxy]-6-methoxyquinazoline,

and salts or a salt thereof.

Claim 11 (currently amended): A compound according to <u>claim 5 -claim 1</u> selected from:

- 4-[(4-fluoro-2-methyl-1*H*-indol-5-yl)oxy]-6-methoxy-7-[2-(tetrahydro-5*H*-[1,3]dioxolo[4,5-*c*]pyrrol-5-yl)ethoxy]quinazoline,
- 7-{2-[4-(acetylmethyl)piperazin-1-yl]ethoxy}-6-methoxy-4-[(2-methyl-1*H*-indol-5-yl)oxy]quinazoline, and
- 7-{2-[4-(acetylmethyl)piperazin-1-yl]ethoxy}-4-[(4-fluoro-2-methyl-1*H*-indol-5-yl)oxy]-6-methoxyquinazoline,

and salts or a salt-thereof.

Claim 12 (currently amended): A compound according to any one of claims 5, 10 and 11 the preceding claims in the form of a pharmaceutically acceptable salt.

Claim 13 (currently amended; withdrawn): A process for the preparation of a compound according to <u>claim 5-claim-1</u> of the formula I or salt thereof which comprises:

(a) the reaction of a compound of the formula III:

$$(R^2)_m$$
 N
 H

(III)

(wherein R² and m are as defined in <u>claim 5</u>-claim 1 and L¹ is a displaceable moiety), with a compound of the formula IV:

$$C$$
 $(R^{1})_{n}$
 ZH

(IV)

(wherein ring C, R¹, Z and n are as defined in claim 5-claim 1) optionally followed by the addition of a substituent on a heterocyclic ring of R¹ or R²;

(b) for compounds of formula I and salts thereof wherein at least one R^2 is R^5X^1 or Q^1X^1 wherein R^5 and Q^1 are as defined in claim 5-claim 1, and X^1 is -O-, -S-, -OC(O)- or -NR¹⁰- (wherein R^{10} independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) the reaction of a compound of the formula V:

$$(R^{2})_{s} \xrightarrow{R} H$$

$$HX^{1} \xrightarrow{H} H$$

$$N \xrightarrow{H} H$$

(V)

(wherein ring C, Z, R^1 , R^2 and n are as defined in <u>claim 5 claim 1</u> and X^1 is as defined in this section and s is an integer from 0 to 2) with one of the compounds of the formulae VIa-b:

$$R^5-L^1$$
 (VIa)

$$Q^1$$
- L^1 (VIb

(wherein R⁵ and Q¹ are as defined in claim 5-claim 1 and L¹ is as defined herein);

(c) for compounds of the formula I and salts thereof wherein at least one R^2 is R^5X^1 or Q^1X^1 wherein R^5 and Q^1 are as defined in claim 5-claim 1, and X^1 is -O-, -S-, -OC(O)- or -NR¹⁰- (wherein R^{10} represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) the reaction of a compound

of the formula VII:

$$(R^2)_s$$
 N
 H
 N
 H

(VII)

with one of the compounds of the formulae VIIIa-b:

$$R^{5}-X^{1}-H$$
 (VIIIa)
 $Q^{1}-X^{1}-H$ (VIIIb)

(wherein R^1 , R^2 , R^5 , Q^1 , ring C, Z and n are as defined in claim 5 claim 1, L^1 and s are as defined herein and X^1 is as defined in this section;

- (d) for compounds of the formula I and salts thereof wherein at least one R^2 is R^5X^1 or Q^1X^1 wherein X^1 is as defined in <u>claim 5-claim-1</u>, R^5 is C_{1-5} alkyl R^{113} , wherein R^{113} is selected from one of the following nine groups:
- 1) $X^{19}C_{1-3}$ alkyl (wherein X^{19} represents -O-, -S-, -SO₂-, -NR¹¹⁴C(O)- or -NR¹¹⁵SO₂- (wherein R¹¹⁴ and R¹¹⁵ which may be the same or different are each hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂. ₃alkyl);
- 2) $NR^{116}R^{117}$ (wherein R^{116} and R^{117} which may be the same or different are each hydrogen, C_1 . 3alkyl or C_{1-3} alkoxy C_{2-3} alkyl);
- 3) $X^{20}C_{1-5}alkylX^5R^{22}$ (wherein X^{20} represents -O-, -S-, -SO₂-, -NR¹¹⁸C(O)-, -NR¹¹⁹SO₂- or -NR¹²⁰- (wherein R¹¹⁸, R¹¹⁹, and R¹²⁰ which may be the same or different are each hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and X^5 and R^{22} are as defined in claim 5-claim-1);
- 4) R²⁸ (wherein R²⁸ is as defined in <u>claim 5</u>-claim 1);
- 5) $X^{21}R^{29}$ (wherein X^{21} represents -O-, -S-, -SO₂-, -NR¹²¹C(O)-, -NR¹²²SO₂-, or -NR¹²³- (wherein R¹²¹, R¹²², and R¹²³ which may be the same or different are each hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined in <u>claim 5 elaim 1</u>);

6) $X^{22}C_{1-3}$ alkyl R^{29} (wherein X^{22} represents -O-, -S-, -SO₂-, -NR¹²⁴C(O)-, -NR¹²⁵SO₂- or -NR¹²⁶-(wherein R¹²⁴, R¹²⁵ and R¹²⁶ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂. ₃alkyl) and R^{29} is as defined in <u>claim 5-claim-1</u>);

- 7) R²⁹ (wherein R²⁹ is as defined in claim 5-claim-1);
- 8) $X^{22}C_{1-4}$ alkyl R^{28} (wherein X^{22} and R^{28} are as defined in claim 5-claim 1); and
- 9) $R^{54}(C_{1-4}alkyl)_q(X^9)_rR^{55}$ (wherein q, r, X^9 , R^{54} and R^{55} are as defined in <u>claim 5-claim 1</u>);
- Q^1 is C_{1-5} alkyl Q^{27} wherein Q^{27} is selected from one of the following six groups:
- 1) Q¹³-C(O)-C₁₋₄alkylQ¹⁴ (wherein Q¹³ and Q¹⁴ are as defined in <u>claim 5</u>-claim 1);
- 2) W¹Q² (wherein W¹ and Q² are as defined in claim 5-claim 1);
- 3) Q² (wherein Q² is as defined in <u>claim 5-claim 1</u>);
- 4) W²C₁₋₄alkylQ² (wherein W² and Q² are as defined in claim 5-claim 1);
- 5) $Q^{15}(C_{1-4}alkyl)_i(W^2)_kQ^{16}$ (wherein W^2 , j, k, Q^{15} and Q^{16} are as defined in <u>claim 5-claim 1</u>);
- 6) $Q^{15}C_{1-4}$ alkanoyl Q^{16n} (wherein Q^{15} and Q^{16n} are as defined in <u>claim 5</u>-claim 1); the reaction of a compound of the formula IX:

$$(R^2)_s$$
 L^1 - $C_{1.5}$ alkyl- X^1
 H
 N
 H

(IX)

(wherein X^1 , R^1 , R^2 , ring C, Z and n are as defined in <u>claim 5 -claim 1</u> and L^1 and s are as defined herein) with one of the compounds of the formulae Xa-b:

$$R^{113}$$
-H (Xa)

$$Q^{27}-H (Xb)$$

(wherein R^{113} and Q^{27} are as defined herein) optionally followed by the addition of a substituent on a heterocyclic ring of R^1 or R^2 ;

and when a salt of a compound of formula I is required, reaction of the compound obtained with an acid or base whereby to obtain the desired salt.

Claim 14 (**currently amended**): A pharmaceutical composition which comprises a compound of the <u>formula IIb formula I</u> as defined in <u>claim 5 claim 1</u> or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable excipient or carrier.

Claim 15 (cancelled)

Claim 16 (**currently amended**; **withdrawn**): A method for producing an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of <u>formula IIb</u> <u>formula I</u> as defined in <u>claim 5</u> <u>elaim I</u> or a pharmaceutically acceptable salt thereof.