INTEGRATION

Definition

Basic concept of integration, integration by parts. All formula. Method of substitution, Special formula, Properties of definite integration and related problems.

PROBLEMS

1. Proof the following formulas:

$\int \tan x dx$	$\int \cot x dx$	$\int \sec x dx$
$\int \cos e c x dx$	$\int \frac{1}{x^2 + a^2} dx$	$\int \frac{1}{x^2 - a^2} dx$
$\int \frac{1}{a^2 - x^2} dx$	$\int \frac{f'(x)}{f(x)} dx$	$\int \frac{1}{\sqrt{x}} dx$

2. Evaluate the followings:

$\int x \left(x^2 + x - 1\right) dx$	$\int \left(e^x - 5a^x + 2\right) dx$	$\int \frac{x + 2\sqrt{x} + 7}{\sqrt{x}} dx$
$\int \frac{1}{\sqrt{x}} dx$	$\int \left(\frac{1-\sin x}{1+\sin x}\right) dx$	$\int \frac{\sin x + \cos x}{\sqrt{(1 + \sin 2x)}} dx$
$\int \frac{dx}{x^2 + 5x + 6} dx$	$\int \sin^2 x dx$	$\int \cos^2 x dx$
$\int \sin^4 x dx$	$\int \cos^4 x dx$	$\int (\cos^4 x - \sin^4 x) dx$

3. Method of Substitution:

$\int \sin^3 x dx$	$\int \cos^3 x dx$	$\int \sin^5 x dx$
$\int \cos^5 x dx$	$\int \sin^4 x \cos^3 x dx$	$\int \frac{\sin x + \cos x}{\sqrt{(1 + \sin 2x)}} dx$
$\int \frac{e^x(1+x)}{\cos^2(xe^x)} dx$	$\int \frac{dx}{\left(1+x^2\right)^{\frac{3}{2}}} dx$	$\int \cos^7 x dx$

4. UV formula: Evaluate (a)
$$\int e^{ax} \sin bx \, dx$$

(b)
$$\int e^{ax} \cos bx \, dx$$
 (c) $\int x^2 \sin 2x \, dx$

(c)
$$\int x^2 \sin 2x \, dx$$

Definite Integration:

Evaluate:

$\int_{0}^{2} \frac{dx}{16 - x^2}$	$\int_{0}^{\frac{\pi}{4}} \cos^{2}\theta d\theta$	$\int_0^1 \frac{\tan^{-1} x \ dx}{1+x^2}$
$\int_{0}^{\frac{\pi}{2}} \cos^{7}\theta d\theta$	$\int_{0}^{3} \frac{dx}{(3+x^{2})^{\frac{3}{2}}}$	$\int_{0}^{1} \frac{dx}{\left(1+x^{2}\right)\sqrt{1-x^{2}}}$

Definite Integration: Properties related problem

$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} dx \qquad \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \cot x} \qquad \int_{0}^{1} \frac{\sqrt{\sin x} \, dx}{\sqrt{\sin x} + \sqrt{\cos x}}$$

- 7. Applications:
 - (a) Find the area of a circle by using integration.
 - (b) Find the area of an ellipse by using integration.

