Analyse 1

Exercice 1.1

1.a

$$P = \langle \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0 \rangle$$

$$NON(P) = \langle \exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y \leq 0 \rangle$$

P est fausse; contre-exemple: x = y = 0.

1.b

$$Q = \text{$\scriptscriptstyle \bullet$} \ \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y > 0 \ \text{$\scriptscriptstyle \bullet$}$$

$$NON(Q) = \langle \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y \leq 0 \rangle$$

$$Q$$
 est vraie $(y = 1 - x) : \forall x \in \mathbb{R}, x + (1 - x) > 0$

1.c

$$\operatorname{NON}(R)$$
 = « $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y \leq 0$ »

$$NON(R)$$
 est vraie car : $\forall x \in \mathbb{R}, x + (-x) \leq 0$

R est donc fausse

1.d

$$S= \ll \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x \ \, \text{``}$$

$$NON(S) = \langle \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^2 < x \rangle$$

$$S$$
 est vraie car $(x=-1)$: $\forall y \in \mathbb{R}, y^2 > -1$

2.a

$$\forall x \in \mathbb{R}, f(x) = 1$$

2.b

$$\exists x \in \mathbb{R}, f(x) \neq 1$$

2.c

$$\forall x \in \mathbb{R}, f(x) = f(0)$$

ou

$$\forall (x,y) \in \mathbb{R}^2, f(x) = f(y)$$

2.d

$$\exists (x,y) \in \mathbb{R}^2, f(x) \neq f(y)$$

Exercice 1.2

2.1

Soient x et y deux réels tels que x=y, on a $\forall \varepsilon>0, |x-y|=0<\varepsilon$

On a donc :
$$x = y \Longrightarrow \forall \varepsilon > 0, |x - y| < \varepsilon$$

Pour démontrer la réciproque, nous allons démontrer sa contraposée ; soient donc deux réels x et y inégaux $(x \neq y)$.

On pose $\varepsilon = |x - y| > 0$

On a alors : $|x - y| = \varepsilon \ge \varepsilon$

Ce qui démontre que $x \neq y \Longrightarrow \exists \varepsilon > 0, |x - y| \ge \varepsilon$

On a donc l'équivalence : $x = y \iff \forall \varepsilon > 0, |x - y| < \varepsilon$

2.2

La première implication est évidente :

$$\begin{aligned} x &\leq y \Longleftrightarrow x - y \leq 0 \\ &\Longrightarrow \forall \varepsilon > 0, x - y < \varepsilon \\ &\Longrightarrow \forall \varepsilon > 0, x < y + \varepsilon \end{aligned}$$

Soient x et y, deux réels tels que x > y.

On pose $\varepsilon = x - y$ qui est strictement positif.

On a alors $y + \varepsilon = x \le x$, donc :

$$x > y \Longrightarrow \exists \varepsilon > 0, x \ge y + \varepsilon$$

Cela démontre donc la contraposée de la réciproque, et donc l'équivalence.

2.3

Soient
$$(x,y) \in \mathbb{R}^2$$
 tels que : $\forall n \in \mathbb{N}^*, x \leq y < x + \frac{1}{n}$

Raisonnons par l'absurde et supposons que $x \neq y$ (et donc x < y).

Comme $\lim_{n\to\infty}\frac{1}{n}=0$, on sait que :

 $\exists n_o \in \mathbb{N}, \forall n \geq n_o, \frac{1}{n} \leq (y-x)$ ce qui implique que :

 $x+\frac{1}{n_o} \leq x + (y-x) = y$ ce qui infirme l'hypothèse et confirme donc que x=y .

Exercice 1.3

3.1

« La somme d'un nombre rationnel et d'un nombre irrationnel est irrationnelle. »

Cette affirmation est vraie.

On raisonne par l'absurde et on suppose que :

$$\exists x \in \mathbb{Q}, \exists y \in \mathbb{R} \setminus \mathbb{Q}, x + y \in \mathbb{Q}$$

On aurait alors y=(x+y)-x, différence de deux nombres rationnels qui est rationnelle ce qui contredit l'hypothèse. Donc :

$$\forall x \in \mathbb{Q}, \forall y \in \mathbb{R} \setminus \mathbb{Q}, x + y \in \mathbb{R} \setminus \mathbb{Q}$$

3.2

« La somme de deux nombres irrationnels positifs est irrationnelle. »

Cette affirmation est fausse.

Soient $x=1+\sqrt{2}$ et $y=2-\sqrt{2}$ qui sont deux nombres irrationnels strictement positifs et x+y=3

« La racine carrée d'un nombre irrationnel positif est irrationnelle. »

Cette affirmation est fausse car le carré du nombre irrationnel $\sqrt{2}$ est rationnel $\sqrt{2}^2=2$

Exercice 1.4

 $(b) \Longrightarrow (a)$ est évident car $\mathbb{N} \subset \mathbb{Q}$.

Démontrons $(a) \Longrightarrow (b)$.

Soit $n \in \mathbb{N}$ tel que $\sqrt{n} \in \mathbb{Q}$.

On peut donc écrire \sqrt{n} sous la forme d'une fraction irréductible $\sqrt{n} = \frac{p}{q}$ avec $p \in \mathbb{N}, q \in \mathbb{N}^*$; p et q sont donc premier entre eux $(\exists (\alpha, \beta) \in \mathbb{Z}^2, \alpha p + \beta q = 1)$.

On a alors $p^2 = nq^2$.

q divisant nq^2 , il divise p^2 ; et donc $p=\alpha p^2+\beta pq$. Le seul diviseur commun à p et q étant 1, on a q=1 et donc $p=p^2$ carré parfait.

Exercice 1.5

5.1.a

$$E = \{x \in \mathbb{R} \mid \cos(x) + x > 0\}$$

E est minoré par -1 mais n'est pas majoré car $\forall x > 1, \cos(x) + x > 0$ et donc $]1; +\infty[\subset E]$.

E n'est donc pas borné.

5.1.b

$$E = \{\cos(x) + x, x \in \mathbb{R}^+\}$$

$$\forall x \in \mathbb{R}^+, \cos(x) + x \ge -1 + 0$$

E est donc minoré par -1. On peut cependant être plus précis ; la fonction $x + \cos(x)$ étant croissante sur \mathbb{R} , sa borne inférieure est la valeur à l'origine et donc :

$$\inf(E) = 1$$

5.1.c

$$E = \{\cos(x) + x, x \in \mathbb{R}^+\}$$

En'est pas majoré car $\lim_{x\to +\infty}\cos(x)+x=+\infty$

5.2.a

$$E = \mathbb{Q} \cap [-7; 4[$$

E est minoré par 7 qui lui appartient et est donc son plus petit élément.

5.2.b

$$E = \mathbb{Q} \cap [-7; 4[$$

E est majoré par 4 qui ne lui appartient pas. $\mathbb Q$ étant dense dans $\mathbb R$ l'est aussi dans [-7;4[et ne possède donc pas de plus grand élément (on peut le démontrer par l'absurde).

5.2.c

 \mathbb{R}_{-}^* n'admet pas de plus grand élément.

On le démontre par l'absurde : supposons que M soit le plus grand élément.

On a M<0 et donc $\frac{M}{2}$ qui appartient à \mathbb{R}_{-}^* est strictement supérieur à M ce qui est en contradiction avec le fait que M est le plus grand élément de E

5.3.a

$$E = \left\{ n \in \mathbb{N} \mid n^2 + 9 > n \right\}$$

La fonction $f(x) = x^2 - x + 9$ n'admet pas de racine réelle et est donc strictement positive.

Il en résulte et donc $E=\mathbb{N}$ qui a 0 comme plus petit élément.

5.3.b

$$E = \left\{ n \in \mathbb{N} \mid n^2 + 9 < n \right\} = \emptyset$$
 et n'adment donc pas de plus petit élément.

5.3.c

$$E = \{n \in \mathbb{N} \mid n^2 + 9 > n\} = \mathbb{N}$$
 n'admet pas de plus grand élément.

Exercice 1.6

6.1

 \mathbb{R}_{-}^{*} est majoré par 0 et admet donc une borne supérieure négative ou nulle. On démontre aisément que tout nombre strictement négatif n'est pas un majorant et donc que $\sup(\mathbb{R}_{-}^{*})=0$

6.2

Comme $\forall x \in \mathbb{R}_{+}^{*}, x-1 < x, \mathbb{R}_{+}^{*}$ n'a pas de minorant et donc pas de borne inférieure.

6.3

Soit
$$E = \bigcup_{n \in \mathbb{N}} [2n; 2n + 1[$$

E n'est pas majoré et n'admet pas de borne supérieure.

E est minoré par 0 qui lui appartient et est donc sa borne inférieure : $\inf(E)=0$

6 4

Soit
$$E = \bigcup_{n \in \mathbb{Z}} [2n; 2n + 1]$$

E n'est ni majoré ni minorée et n'admet donc ni borne supérieure ni borne inférieure.

Soit
$$F = \bigcup_{n \in \mathbb{N}^*} \left[\frac{1}{2n+1}; \frac{1}{2n} \right[$$

F est majoré par $\frac{1}{2}$ et minoré par 0 qui constituent ses bornes supérieure et inférieure.

Exercice 1.7

$$A \subset \mathbb{R}, A \neq \emptyset$$

$$-A = \{-a, a \in A\}$$

-A est majoré/minoré/borné si et seulement si A est minoré/majoré/borné et si elles existent on a:

$$\sup(-A) = -\inf(A)$$
 et $\inf(A) = -\sup(A)$

Exercice 1.7 bis

Soit $A \subset \mathbb{R}$ tel que :

$$\exists (a,b) \in \mathbb{R}^2, \left\{ \begin{smallmatrix} b > a > 0 \\ A \subset [a,b] \end{smallmatrix} \right.$$

Soit
$$B = \left\{ \frac{1}{x}, x \in A \right\}$$

Par construction $B \subset \left[\frac{1}{b}; \frac{1}{a}\right]$ et est donc borné.

A étant borné, il admet des bornes inférieure et supérieure.

$$\sup(B) = \frac{1}{\inf(A)} \text{ et } \inf(B) = \frac{1}{\sup(A)}$$

Exercice 1.25

Soient U une partie dense de \mathbb{R} et a b deux réels tels que a < b.

Soit $n \in \mathbb{N}^*$.

On définit les intervalles $I_k=]a+k\frac{b-a}{n};a+(k+1)\frac{b-a}{n}[,k\in\{0,...,n-1\}$

Les intervalles I_k constituent n ouverts disjoints inclus dans a; b[.

$$U \cap]a; b[\supset U \cap \left(\bigcup_{0 \le k < n} I_k \right) = \bigcup_{0 \le k < n} \left(U \cap I_k \right)$$

Les intervalles étant disjoints, les ensembles $U \cap I_k$ le sont également et donc :

$$\operatorname{card}\!\left(\mathop{\cup}_{0 \leq k < n} \left(U \cap I_k \right) \right) = \sum_{0 \leq k < n} \operatorname{card}\!\left(U \cap I_k \right)$$

Par définition de la densité de U dans \mathbb{R} , $U\cap I_k\neq\emptyset$; il en résulte que le cardinal ci-dessus est supérieur ou égal à n.

Donc: $\forall n \in \mathbb{N}, \operatorname{card}(U \cap]a; b[) \geq n$

L'ensemble $U \cap a; b[$ est donc infini.

Exercice 1.27

Soit U l'ensemble des nombres rationnels ayant, dans leur écriture sous forme de fraction irréductible, un dénominateur impair.

Soit un intervalle ouvert I =]a; b[de \mathbb{R} .

Démontrons que $I \cap U \neq \emptyset$

 \mathbb{Q} étant dense dans \mathbb{R} , il existe deux nombres rationnels x et y (avec x < y) appartenant à I.

Que x ou y appartiennent ou non à U, on peut les écrire sous la forme : $x=\frac{\alpha}{2m}$ et $y=\frac{\beta}{2n}$ avec $(\alpha,\beta)\in\mathbb{Z}^2$ et $(m,n)\in\mathbb{N}^{*^2}$.

Et donc :
$$y-x=rac{\beta m-\alpha n}{2mn}>rac{1}{2mn+1}$$

On en déduit que : $\exists \gamma \in \mathbb{Z}, \frac{\gamma}{2mn+1} \in [x;y].$

2mn+1 étant impair, tous ses diviseurs le sont également ; la forme réduite de $z=\frac{\gamma}{2mn+1}$ a donc un dénominateur impair ; donc $z\in U$ ce qui démontre la densité de U dans $\mathbb R$

Exercice 1.29

Soit
$$A = \left\{ q \in \mathbb{Q}, q^2 < 2 \right\}$$

Si on considère A comme sous-ensemble de \mathbb{R} , il est majoré par $\sqrt{2}$ et l'on démontre aisément que c'est sa borne supérieure car de par la densité de \mathbb{Q} dans \mathbb{R} , $\forall \varepsilon > 0$, $\left(\sqrt{2} - \varepsilon\right)$ n'est pas un majorant.

Si on considère A comme un sous-ensemble de \mathbb{Q}, A est majoré mais ne possède pas de borne supérieure car $\sqrt{2} \notin \mathbb{Q}$

Exercice 2.1

1.1

Soit $\alpha > 0$

$$\lim_{n \to +\infty} \frac{1}{n^{\alpha}} = \lim_{n \to +\infty} e^{-\alpha \ln(n)} = 0$$

1.2

Soit
$$a \in]-1;1[$$

Si a=0, la limite est évidente.

Supposons $a \neq 0$

$$\begin{split} \lim_{n \to +\infty} |a^n| &= \lim_{n \to +\infty} |a|^n \\ &= \lim_{n \to +\infty} e^{n \ln(|a|)} \\ &= 0 \ \text{car} \ \ln(|a|) < 0 \end{split}$$

Et donc :
$$\lim_{n\to+\infty}a^n=0$$

1.3

On a (« le suivant moins le premier sur la raison moins un »):

$$u_n = \sum_{k=0}^{n} a^k = \frac{a^{n+1} - 1}{a - 1}$$

Et donc:

$$\lim_{n\to +\infty} u_n = \frac{1}{1-a}$$

Exercice 2.2

2.1.a

$$\exists l \in \mathbb{R}, \forall \varepsilon > 0, \exists n \in \mathbb{N}, \forall k \geq n, |u_k - l| < \varepsilon$$

Exercice 2.6

$$\begin{split} 0 & \leq |u_n| = \left| \frac{\sin(n^2) + \arctan(n)}{n^2 + 1} \right| \\ & \leq \frac{\left| \sin(n^2) \right| + \left| \arctan(n) \right|}{n^2 + 1} \\ & \leq \frac{1 + \frac{\pi}{2}}{n^2 + 1} \end{split}$$

Ce qui démontre que $\left(u_{n}\right)_{n\in\mathbb{N}}$ converge vers 0 par le théorème des gendarmes.

exercice 3.1

1.a

Soit
$$\varepsilon > 0$$
,

On pose
$$\mu = \min(1, \frac{\varepsilon}{7})$$

alors

$$\begin{split} \forall x \in [1-\mu; 1+\mu], |-x^3-(-1)| &= |\ 1-x^3| \\ &= |(1-x)\big(1+x+x^2\big) \\ &= |1-x| \cdot |1+x+x^2| \\ &\leq \mu \cdot 7 \ \text{ car } \ x \in [0;2] \\ &\leq \varepsilon \end{split}$$

Donc:

$$\forall \varepsilon > 0, \exists \mu > 0, \forall x \in [1 - \mu; 1 + \mu], |1 - x^3| \le \varepsilon$$

Ce qui est la définition de la limite de $-x^3$ en 1.

1.b

Soit $\varepsilon > 0$

On pose
$$\mu=\min\left(\frac{1}{2},\frac{\varepsilon}{4}\right)$$

$$\forall x\in[1-\mu;1+\mu], |\frac{x}{x-2}-(-1)|=|\frac{2x-2}{x-2}|$$

$$\leq\frac{2\mu}{|x-2|}\leq\frac{2\mu}{\frac{1}{2}}\ \mathrm{car}\ x\in\left[-\frac{3}{2};-\frac{1}{2}\right]$$

$$\leq4\mu$$

$$\leq\varepsilon$$