## EECE 2322 – Embedded Design, Enabling Robotics

#### Homework #1

Assigned Wednesday, Sept. 4, 2024. Due: Monday, Sept. 16 by 11:59pm on Canvas

4 Problems, 100 points Total

Show your work!

### Problem 1 (8 points)

The Mars rover Perseverance just discovered an ancient clock partially sticking out of the sand near its landing site – definitive proof that a technologically advanced civilization once existed on the Red Planet. Scientists have concluded that it is a 12-hour clock remarkably similar to clocks on Earth. The clock is shown in the figure below with the clock hands in the position corresponding to 3 o'clock on an Earth clock.

Question for you to answer: From the numbers on the clock determine how many fingers were on each hand of the ancient Martians. (Other evidence showed that they possessed two arms with hands at the ends of each arm).



The ancient Martians had four fingers on each hank. They use a base eight system which sugests that they had eight total fingers.

### Problem 2 (32 points total, 8 points each)

Translate each pair of numbers into 8-bit two's complement binary numbers and add them. The sum will be an 8-bit two's complement number. Indicate:

- i. Whether or not the answer is correct
- ii. If a carry occurred
- iii. If and overflow occurred
- a. 44 + 8
- b. 20 + -70
- c. 50 + 86
- d. 0xA0 + 0xBE

A. LIU => 00101100

Comp => 11 0100 11

110 10100

THU HOLOLOO Comp. 000 110011

ES => 1111001100

THIS CONTROL

TO COLOUD = \$2

THE CONTROL

THE C

15.
20 => 000 10100

Comp => 111 01011

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70 := 70

-70

i. on onet par pro vago ocon

i. the one son is coursel

i. the one son is coursel

20 11001110 010001000 = 136

11001110 010000111

1100110 01000111

1100110 01000111

1100110 01000111

1100110 01000111

1100110 0100111

1100110 0100111

1100110 0100110

1100110 0100111

1100110 0100111

1100110 0100111

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

1100110 0100110

11001

D. AD= 160 => 10100000 BE=100=> 101/1/10

Comp=> 0100000

160 01100000 comp 0101/101

+100 0100000 comp 0101/100 = 94

i. The answer is not consol

ii. a cary did occur

iii. an overflow did occur

#### Problem 3 (30 points, 10 points each)

Simplify each of the following Boolean equations (4 points). State the theorem(s) and axiom(s) used for each step of the simplification (3 points). Sketch a combinational logic circuit from each simplified

equation (3 points).

a. 
$$Y = A\bar{B}C + A\bar{B}\bar{C}$$

b. 
$$Y = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}BC$$

c. 
$$Y = \overline{(AB)} + A + B + C$$



# Problem 4 (30 points)

What is the output **Y** and the logic state at point **Z** of this circuit for each of the given inputs (A, B, C, and D).



| Inputs |   |   |   | Point | Output |
|--------|---|---|---|-------|--------|
| Α      | В | С | D | Z     | Υ      |
| 0      | 0 | 0 | 0 | Į     | 6      |
| 0      | 1 | 1 | 1 | (     | \      |
| 0      | 0 | 1 | 0 |       | 9      |
| 1      | 0 | 1 | 1 | \     |        |