REPUBLIQUE ISLAMIQUE DE MAURITANIE Ministère de l'Education Nationale Direction des Examens et des Concours

Sciences physiques session complémentaire 2017

Honneur Fraternité Justice Série : Sciences de la nature

Durée: 4H

Exercice 1 (5pts)

1. Reproduire sur votre copie le tableau suivant et compléter le.

(2pts)

Formules semi-développées	Noms	Fonctions	
(A) 10 1 10 10 10 10 10 10 10 10 10 10 10 1	Propanoate de 1-méthyl-propyle		
(B) CH3CH5CH5C-C-C-CH5CH5CH3		4 (1)	
(C) CH3CH(CH3)-CH2C-CI	* * * * * * * * * * * * * * * * * * * *	10	
(D) CH3C-NH-CH2CH3			

2. Donner les noms et les fonctions des composés organiques qui ont permis d'obtenir les (1pts) composés B et C.

3. Ecrire les équations des réactions permettant d'obtenir les composés A, B et C. (1,5pts)

4. L'une des molécules des composés organiques qui ont permis d'obtenir les composés A, B,C et D est une molécule chirale. La quelle ? Donner ses deux énantiomères. (0,5pts)

Exercice 2 (4pts)

Toutes les expériences sont réalisées à 25°C.

On considère les acides A_1H , A_2H et A_3H dont les solutions aqueuses sont respectivement S_1 , S_2 et S3. On dose, séparément, un volume Va = 20 mL, de chacune de ces solutions avec la même

solution aqueuse d'hydroxyde de sodium de concentration molaire C_B. Le volume de la base ajoutée à l'équivalence est noté VBE.

Les données et les résultats des mesures

effectuées sont consignés dans le tableau suivant:

Solution	51	52	53
Concentration molaire	C ₁	$C_2 = 2C_3$	C_3
pH initial	3,4	2,0	2,0
V _{BE} en mL	10	20	10

1. Ecrire l'équation bilan de la réaction d'un acide AH avec l'hydroxyde de sodium.

2.1 Trouver la relation entre les concentrations C_1 et C_2 d'une part et les concentrations C_1 et (1pts) C₃ d'autre part.

2.2 Déduire que A3H est l'acide le plus fort.

(0,5pts)

3 On procède à la dilution au dixième des solutions S1, S2 et S3 de façon à obtenir respectivement les solutions S_1 ', S_2 ' et S_3 '. Les résultats Solution de la mesure du pH des solutions obtenues sont consignés pH 3,9 dans le tableau ci-contre:

3.1 Montrer que la variation du pH d'une solution d'un acide fort dilué au dixième est égale à 1. En déduire que A3H est un acide fort.

3.2 Justifier que les acides A_1H et A_2H sont des acides faibles.

(0,5pts) (0,5pts)

3.3 Calculer les concentrations molaires C_3 et C_8 . En déduire les valeurs de C_1 et de C_2 .

(1pts)

Baccalauréat de Sciences Physiques Session Complémentaire 2017 Série Sciences de la nature

Exercice 3 (6pts)

Un faisceau homocinétique de particules de charge positive q, de masse m, pénètre dans une chambre à vide par un petit trou O avec la vitesse \vec{V}_0 (voir figure).

- 1. Dans une première expérience on crée dans la chambre un champ électrique uniforme $\vec{E} = \vec{E} \vec{j}$
- 1.1. Etablir l'équation de la trajectoire. Représenter son allure. (1pts)
- 1.2. Soit $\vec{V_i}$ La vitesse des particules à la sortie du champ \vec{E} .

Déterminer les coordonnées de $\vec{V_1}$. En déduire l'expression de $\tan\alpha_1$ en fonction de q, m, E, / et V_0 (α_1 étant la déviation angulaire subie par les particules).

(1pts)

(1pts)

(1pts)

1.3. Exprimer le quotient $\frac{q}{mV_0^2}$ en fonction de E, /et α_1 (α_1 petit).

- 2. Dans une deuxième expérience on crée dans la chambre un champ magnétique uniforme d'intensité B tel que \vec{B} = $\vec{B}\vec{k}$
- 2.1. Montrer que chaque particule décrit un arc de cercle $s = \widehat{OM}$ de rayon r selon un mouvement uniforme. Représenter l'allure de la trajectoire.
- 2.2. La déviation angulaire α_2 est suffisamment petite pour dire que s=1.

Exprimer alors le quotient $\frac{q}{mV_0}$ en fonction de α_2 , B et /.

3. Calculer V_0 puis la charge massique $\frac{q}{m}$ d'une particule.

Données : $E=10^4 V/m$; $B=2.10^{-2} T$; $\alpha_1=\alpha_2=0.096 rad$; /=0,2m.

Exercice 4 (5pts)

On prendra $\pi^2=10$

Un solénoïde S comprend N=500 spires, réparties régulièrement sur une longueur /=40cm. A l'intérieur du solénoïde S, on place une petite bobine b comportant 50 spires circulaires de rayon 4cm chacune.

1 Un courant continu d'intensité I=0,6A parcourt le fil conducteur du solénoïde 5. Donner les caractéristiques du vecteur champ magnétique Bcrée à l'intérieur du solénoïde.

Faire un schéma sur lequel on précisera le sens du courant et du champ magnétique.

On donne $\mu_0 = 4\pi \cdot 10^{-7}$ S.I.

(1pts)

- 2 L'intensité du courant devient nulle en 0,04s.
- 2.1 Quelle est la variation du flux à travers la bobine, pendant cet intervalle de temps?
 (0,75pts)

2.2 Quelle est pendant la rupture du courant, la valeur moyenne de la force électromotrice induite à travers la bobine ? (0,75pts)

3 Les variations de l'intensité du courant en fonction du temps sont maintenant conformes aux indications du graphe.

3.1Déterminer les diverses valeurs prises par la force électromotrice induite à travers la bobine dans les différents intervalles de temps :

 $t_1 \in [0;4], t_2 \in [4;8]; t_3 \in [8;12] \text{ et } t_4 \in [12;18]$ (1,5pts)

3.2 Représenter graphiquement ces variations en fonction du temps. (1pts)

128

Série Sciences de la nature Baccalauréat de Sciences Physiques Session Complémentaire 2017