

CSE211 - Formal Languages and Automata Theory

FLAT_U4L12_DTIME and NTIME classes for Formal Language

Dr. P. Saravanan
School of Computing
SASTRA Deemed to be University

Complexity

- A problem is decidable if there is an algorithm
- How to measure the complexity of program
- The set P is the set of problems or languages that can be decided by a Turing machine or some model of computation in polynomial time

Time Complexity:

The number of steps during a computation

Space Complexity:

Space used during a computation

What we use

- Henceforth, we only consider decidable languages and deciders.
- Our computational model is a Turing Machine.
- Time: the number of computation steps a TM machine makes to decide on an input of size n.
- Space: the maximum number of tape cells a TM machine takes to decide on a input of size n.

$$L = \{a^n b^n : n \ge 0\}$$

For string of length n

time needed for acceptance: O(n)

COMPLEXITY CLASSES

DEFINITION – TIME COMPLEXITY CLASS TIME(t(n))

Let $t : \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. TIME $(t(n)) = \{L(M) \mid M \text{ is a decider running in time } O(t(n))\}$

- TIME(t(n)) is the class (collection) of languages that are decidable by TMs, running in time O(t(n)).
- $\mathsf{TIME}(n) \subset \mathsf{TIME}(n^2) \subset \mathsf{TIME}(n^3) \subset \ldots \subset \mathsf{TIME}(2^n) \subset \ldots$
- Examples:
 - $\{0^k 1^k \mid k \ge 0\} \in TIME(n^2)$
 - $\{0^k 1^k \mid k \ge 0\} \in \mathsf{TIME}(n \log n)$ (next slide)
 - $\{w \# w \mid w \in \{0, 1\}^*\} \in \mathsf{TIME}(n^2)$

Language class: DTIME(n)

A Deterministic Turing Machine accepts each string of length n in time O(n)

DTIME(n) $\{a^nb^n: n \ge 0\}$ $\{ww\}$

In a similar way we define the class

for any time function:
$$T(n)$$

Examples:
$$DTIME(n^2), DTIME(n^3),...$$

Example: The membership problem for context free languages

 $L = \{w : w \text{ is generated by grammar } G\}$

$$L \in DTIME(n^3)$$
 (CYK - algorithm)

Polynomial time

Theorem:
$$DTIME(n^k) \subset DTIME(n^{k+1})$$

$$DTIME(n^{k+1})$$
 $DTIME(n^k)$

Polynomial time algorithms: $DTIME(n^k)$

Represent tractable algorithms:

For small k we can compute the result fast

NTIME

- In computational complexity theory, the complexity class NTIME(f(n)) is the set of decision problems that can be solved by a non-deterministic Turing machine
- It runs in time O(f(n)). Here O is the big O notation, f is some function, and n is the size of the input (for which the problem is to be decided).

NTIME

This means that there is a non-deterministic machine which, for

- a given input of size n,
- will run in time O(f(n)) (i.e. within a constant multiple of f(n), for n greater than some value), and
- will always "reject" the input if the answer to the decision problem is "no" for that input,
- while if the answer is "yes" the machine will "accept" that input for at least one computation path

Space constraints

The space available to the machine is not limited, although it cannot exceed O(f(n)), because the time available limits how much of the tape is reachable.