

DSA - Algorithms Number 1

Course Planning

Algorithms 1.Introduction 2.Number 1 3.Number 2 4.String 1 5.String 2 6.Array 1 7.Array 2 8 Matrix	2.Dynamic Array 3.LinkedList 4.Stack 5.Queue 6.HashTable 7.Tree	Algorithmic Approaches 1.Search Algorithms 2.Sort Algorithms 3.Dac Algorithms 4.Recursion 5.Sliding Window 6.Two Pointers 7.Fast & Slow 8 Cyclic Sort	Interview Practices 1.In-place Reversal 2.Two Heaps 3.Subsets 4.Modified BS 5.Bitwise XOR 6.Top 'K' Elements 7.K-way Merge
7.Array 2	7.Tree	7.Fast & Slow	7.K-way Merge
8.Matrix	8.Trie	8.Cyclic Sort	8.Knapsack Problem
9.DP 1	9.Directed Graph	9.Breadth First Search	9.Topological Sort
10.DP 2	10.Undirected Graph	10.Depth First Search	10.Mock Interview

Explanation

231. Power of Two Easy ☐ 1372 ☐ 221 ☐ Add to List ☐ Share Given an integer n , return true if it is a power of two. Otherwise, return false . An integer n is a power of two, if there exists an integer x such that $n == 2^x$. Example 1: Input: n = 1Output: true **Explanation:** $2^{0} = 1$ Example 2: **Input:** n = 16 Output: true **Explanation:** $2^4 = 16$ Example 3: Input: n = 3Output: false Example 4: Input: n = 4Output: true

Power of Two

First Theory

5 => can`t be represented

First Solution

Second Theory

Second Solution

Task 1 – Palindrome Number

9. Palindrome Number

Given an integer x, return true if x is palindrome integer.

An integer is a **palindrome** when it reads the same backward as forward. For example, 121 is palindrome while 123 is not.

Example 1:

Input: x = 121
Output: true

Example 2:

Input: x = -121
Output: false

Explanation: From left to right, it reads -121. From right to left, it becomes 121-.

Therefore it is not a palindrome.

Example 3:

Input: x = 10
Output: false

Explanation: Reads 01 from right to left. Therefore it is not a palindrome.

Example 4:

Task 2 – Power of Three

Task 3 – Power of Four

342. Power of Four Given an integer n , return true if it is a power of four. Otherwise, return false . An integer n is a power of four, if there exists an integer x such that $n == 4^x$. Example 1: **Input:** n = 16 Output: true Example 2: Input: n = 5Output: false Example 3: Input: n = 1Output: true **Constraints:** $-2^{31} \le n \le 2^{31} - 1$