Probabilidad y variables aleatorias

¿Serán compatibles?

¿Es posible que dos eventos sean independientes y mutuamente excluyentes?

Elija todas las respuestas correctas.

- a. Si. La exclusión mutua no afecta a la independencia de eventos.
- 🔟 b. No. Si dos eventos A y B son mutuamente excluyentes la ocurrencia de uno afecta a al otro. 🕢
- c. No. Si dos eventos son mutuamente excluyentes no son independientes.
- d. Si. La independencia de eventos no afecta a la exclusión mutua.
- e. Si. Son conceptos compatibles.
- 🔟 f. No. La independencia de eventos es un concepto ligado a la simultaneidad de ocurrencias. 🧿

Respuesta correcta

Las respuestas correctas son:

No. La independencia de eventos es un concepto ligado a la simultaneidad de ocurrencias.,

No. Si dos eventos son mutuamente excluyentes no son independientes.,

No. Si dos eventos A y B son mutuamente excluyentes la ocurrencia de uno afecta a al otro.

Sea X una variable aleatoria discreta tal que:

$$P\{X=n\} = \frac{2}{5^n} \, \forall n \in \mathbb{N} \setminus \{0\}.$$

Libro: https://fcefyn.aulavirtual.unc.edu.ar/pluginfile.php/925448/question/questiontext/2635054/2/20802920/BixioRimoldi.pdf

Seleccione una:

- a. E{x}=5/8

 ✓
- b. Ninguna de las anteriores.
- \bigcirc c. $E\{x\}=3/2$
- d. E{x}=5/2

Respuesta correcta

La respuesta correcta es: E(x)=5/8

Respuesta:	: 0,5	\odot
La respues	sta correcta es: 0,5	
Cartas de col En un recinto	un par de cajas contienen cartas blancas	y rojas con la siguiente distribución:
Cajas co	n cartas.	
Caja 1 999 Caja 2 1 Total 1000 Luego, selecci blanco. ¿Cuál		también de manera aleatoria una carta dentro de la caja. Esta carta resulta de color de la primera caja?
Respuesta:	0,999	
A = { salidas B = { salidas Determine I	la probabilidad condicional P(A B)	
Exprese el r	esultado con dos dígitos decimales ti	runcados.
Respuesta:	0,66	$\bigcirc \bigcirc$
Para una va	ariable aleatoria X Gaussiana de r	media cero determine la "función de distribución acumulativa" $F_X(0)$
Respuesta:	0,5	\odot

Para una variable aleatoria X Gaussiana de media cero determine la "función de distribución acumulativa" F_X(0)

¿Será de esta caja?

En un recinto existen 4 cajas con diferentes cantidades de componentes. Cada caja contiene componentes buenos y defectuosos según el detalle del siguiente cuadro:

Distribución de

Componentes buenos y

defectuosos.

	Buenos	Defectuosos	Total H
Caja 1	1900	100	2000
Caja 2	300	200	500
Caja 3	900	100	1000
Caja 4	900	100	1000
Total V	4000	500	4500

Seleccionando de manera aleatoria la caja y luego extrayendo aleatoriamente un componente, resulta ser un componente defectuoso. ¿cuál es la probabilidad de que el mismo haya sido extraído de la caja 2?

Respuesta: 0,4

La respuesta correcta es: 0,615

P(A) = 0.500 or 50.0%

P(B) = 0.250 or 25.0%

P(A n B) = 0.250 or 25.0%

Respuesta:

La respuesta correcta es: 1

Diseño del receptor para observaciones en tiempo discreto

Completar con el texto faltante según corresponda:
Si se transmite una señal aleatoria discreta y en el receptor se la intenta recuperar exactamente, se usa el término
decisión
poder reconstruirla exactamente, usamos el término estimación
observación
transmitidos. De los dos métodos comunes de detección, el de máxima verosimilitud 📀 es el más simple, ya que considera
que los símbolos enviados son equiprobables ; en cambio, el método de máxima probabilidad a posteriori 💮 es óptimo en el sentido de
que minimiza la probabilidad de error.
máxima probabilidad a posteriori detección decisión decisión
máxima verosimilitud
THEATING VETOSITIALITY
Respuesta parcialmente correcta.
Ha seleccionado correctamente 4.
Estos son los términos más frecuentes en el estudio de detección de señal.
La respuesta correcta es:
Completar con el texto faltante según corresponda:
Si se transmite una señal aleatoria discreta y en el receptor se la intenta recuperar exactamente, se usa el término
[detección]. Si la señal transmitida es continua y se la trata de recuperar de la mejor forma posible pero sin poder reconstruirla exactamente, usamos el término [estimación]. El receptor dispone de una [observación] de
la señal recibida para realizar una [decisión] de los símbolos transmitidos. De los dos métodos comunes de detección, el
de [máxima verosimilitud] es el más simple, ya que considera que los símbolos enviados son equiprobables ; en cambio, el método
de [máxima probabilidad a posteriori] es óptimo en el sentido de que minimiza la probabilidad de error .
Marque todas las afirmaciones verdaderas.
Libro: https://fcefyn.aulavirtual.unc.edu.ar/pluginfile.php/925448/question/questiontext/2635058/2/20802955/BixioRimoldi.pdf
Seleccione una o más de una:
\square a. $Q(0)=1/2$ y $Q(\infty)=1$
b. Si $Z \sim N(0,1)$, $Pr\{Z \le z\} = Q(z)$.
$ extstyle \mathbb{Q}$ c. $Q(z)+Q(-z)=1$ $ extstyle extstyle$
d. La función Q puede utilizarse para expresar la probabilidad S Falso. La función Q también puede utilizarse para expresar
$Pr\{Z \ge x\}$, siempre y cuando Z posea distribución normal, la probabilidad de $Pr\{Z \ge x\}$ cuando Z posee otra media cero y varianza unitaria.
media 370 varianza.
Respuesta parcialmente correcta.
Ha seleccionado demasiadas opciones.
Paying la socción 2.3 "The Offunction" del Libra "Principles of Digital Communication: A top down appreach" - Pivio Rimaldi (nóg. 21)

Revisar la sección 2.3 "The Q function" del Libro "Principles of Digital Communication: A top-down approach" -Bixio Rimoldi (pág. 31)

La respuesta correcta es: Q(z) + Q(-z) = 1

Sea X una variable aleatoria (VA) que toma valores en el alfabeto $\Omega_x = \{x_1, x_2\}$. Sea la VA Y = X + N, donde N es una variable aleatoria gaussiana de media cero y varianza σ^2 , independiente de X. La expresión para el nivel de decisión (θ) cuando se utiliza el criterio MAP es el siguiente:

$$\theta = \frac{x_1+x_2}{2} + \frac{\sigma^2}{x_1-x_2}ln\bigg(\frac{p_x(x_2)}{p_x(x_1)}\bigg)$$

La respuesta correcta es: 0.92

Calcular el valor de θ que corresponde para $x_1=0$,9, $x_2=2$,8, considerando que la varianza es unitaria y que la probabilidad del símbolo x_2 es dos veces la del símbolo x_1 . Exprese el resultado con tres dígitos decimales redondeado.

Respuesta: 1,485
import numpy as np
x1 = 0.9 #cambien los valores no sean vergas
x2 = 2.8
$m = \Theta$
v2 = 1
px1 = 0.333
px2 = 0.666
tita = ((x1+x2)/2) + (v2/(x2-x1))*np.log(px1/px2) print(round(tita,2))
Para una variable Gaussian de media 1 y varianza 0.5, mediante la función Q(x) obtenga la P(x>0.002) Indique el resultado con dos dígitos decimales de precisión
Respuesta: 0,92

Complete el siguiente texto con la representación matemática que corresponda.
Tres variables aleatorias U, V, W forman una cadena de Markov, $\qquad \qquad \qquad \bigcirc$, si la distribución de W dado U y V
es independiente de U : $P(w v,u) = P(w v)$ \bigcirc U, V, W forman una cadena de Markov si y sólo si U y W son independientes al
ser condicionadas en V : $P(u,w v) = P(u v)P(w v)$
Una característica importante de las cadenas de Markov es que se da en ambas direcciones. Es por ello que U -> V -> W
sólo si W -> V -> U ⊘ .
Sin embargo, si se tiene U -> W -> V (8) , no siempre es cierto que U -> V -> W (9) . Pero cuando si es cierto, se
establece que W es estadística suficiente para U .
U -> V -> W
Respuesta parcialmente correcta.
Ha seleccionado correctamente 5. Revisar la sección 2.5 "Irrelevance and sfficient statistic" del Libro "Principles of Digital Communication: A top-down approach" - Bixio Rimoldi
(pág. 41)
La respuesta correcta es:
Complete el siguiente texto con la representación matemática que corresponda.
Tres variables aleatorias U, V, W forman una cadena de Markov, $[U \rightarrow V \rightarrow W]$, si la distribución de W dado $U \cup V$ es independiente de U : $[P(w v,u) = P(w v)] \cdot U, V, W$ forman una cadena de Markov si y sólo si $U \cup W$ son independientes al ser condicionadas en V : $[P(u,w v) = V, W]$
P(u v)P(w v)]
Una característica importante de las cadenas de Markov es que se da en ambas direcciones. Es por ello que [U -> V -> W] si y sólo si [W -> V -> U].
Sin embargo, si se tiene [U -> V -> W], no siempre es cierto que [U -> W -> V]. Pero cuando si es cierto, se establece que W es
estadística suficiente para $\it U$.
Obtanga el valer de O/O) Indigas la respuesta con como consultar decimal
Obtenga el valor de Q(0). Indicar la respuesta con coma como separador decimal.
Respuesta: 0,5
Sea $Z \sim \mathcal{N}(m,\sigma^2)$. Elija la opción correcta para expresar para expresar la probabilidad $Pr\{Z \geq x\}$ a través de la función $Q(x)$.
lacksquare a. No se puede, Z no es una variable aleatoria normal estándar.
b. $Pr\{Z \ge x\} = Q(\frac{z-m}{z})$
\square c. $Pr\{Z \ge x\} = Q(\frac{x-m}{\sigma})$

En un test de hipótesis binario la observación es Y = 1 + Z si H = 0 y Y = -1 + Z si H = 1. El ruido Z tiene una función de distribución $f_z(z) = (1/2)exp(-|z|)$ y la probabilidad de las hipótesis son p(H = 0) = 0.4 y p(H = 1) = 0.6.

Seleccione una:

$$y \underset{\hat{H}=1}{\overset{\hat{H}=0}{\geq}} \frac{1}{2} ln \frac{0.4}{0.6}$$

$$\bigcirc \ \, \text{b.} \quad y-1 \underset{\hat{H}=0}{\overset{\hat{H}=1}{\geqslant}} 0$$

$$\bigcirc \text{ c. } \quad y \underset{\mathring{H}=0}{\overset{\mathring{H}=1}{\gtrless}} 0$$

En un test de hipótesis binario con hipótesis igualmente probables la observación es Y = 1 + Z si H = 0 y Y = -1 + Z si H = 1. El ruido Z tiene una función de distribución $f_z(z) = (1/2)exp(-|z|)$.

Se eccione una:

a.
$$y - 1 \underset{\hat{H}=0}{\overset{\hat{H}=1}{\geq}} 0$$

$$\bigcirc \ \, \text{c.} \quad y \underset{\hat{H}=0}{\overset{\hat{H}=1}{\gtrless}} \, 0 \\$$

d. Ninguna es correcta.

Suponga que la observación Y es binaria. Bajo la Hipótesis 0, Pr(Y = 1) = p, bajo la Hipótesis 1, Pr(Y = 0) = p, $(p \cdot Las dos hipótesigualmente probables. Indique cual de las siguientes expresiones corresponde al parámetro de Battacharrya <math>Z(p)$.

Seleccione una:

a.
$$Z(p) = \sqrt{4p(1-p)}$$
.

0 b.
$$Z(p) = \sqrt{2p(1-p)}$$
.

○ d.
$$Z(p) = \sqrt{p(1-p)}$$
.

Determine el valor de Q(0.01) con 3 decimales

Respuesta:

0,496

(x)

La respuesta correcta es: 0.496

from scipy.special import erf
import numpy as np

```
def Q_function(x):
       return 0.5 * (1 - erf(x / np.sqrt(2)))
m = 1 \# media
v = 0 # varianza
x = 0.01
q_value = Q_function(x)
print("Q({}) = {:.15f}".format(x, q_value))
  Complete el texto con los conceptos correspondientes:
  Si se tienen m hipótesis posibles, H = \{0, 1, ..., m-1\} , para
                                                                               minimizar
                                                                                                        MAP
                                                   \bigcirc \hat{H}(y) = \operatorname{argmin}_{y \in H} f_{Y|H}(y|i) P_H(i) donde f_{Y|H}(.|i) corresponde a la función de
  decisión
                                          \odot de la variable Y cuando la hipótesis es i, y P_H(i) es la
                                                                                                                                             de la hipótesis
         densidad de probabilidad
                                                                                                                   probabilidad
  Cuando todas las hipótesis tienen igual probabilidad, la regla
                                                                                                       o se convierte en una regla
                                                                                MAP
                    ML
                                           \widehat{H}(y) = argmin A_{y \in H}. 
                                                        yεY

  a cada

                                                                                                                                   S . Esto puede ser descrito
  La función de decisión \,\hat{H}\, asigna una
  por las
                   regiones de decisión
                                                 \bigcirc R_{i,i} las cuales consisten de todos los valores de y para los cuales
                                                                                                                                       ^H(y)=i
  ⊘ .
                                                                       \odot como P=1-\int_{R_i}f_{Y|H}(y|i)\,dy donde el término de la integral representa la
  Si H=i\, es posible definir la
                                         probabilidad de error
  probabilidad de decidir correctamente
  Respuesta parcialmente correcta.
  Ha seleccionado correctamente 10.
  Revisar la sección 2.2.2 "m-ary hypothesis testing" del Libro "Principles of Digital Communication: A top-down approach" - Bixio Rimoldi (pág. 30)
  La respuesta correcta es:
  Complete el texto con los conceptos correspondientes:
  Si se tienen m hipótesis posibles, H = \{0, 1, ..., m-1\}, para [minimizar] la probabilidad de error se establece la regla de decisión [MAP]
  \hat{H}(y) = \operatorname{argmin}_{y \in H} f_{Y|H}(y|i) P_H(i) \text{ donde } f_{Y|H}(.|i) \text{ corresponde a la función de [densidad de probabilidad] de la variable } Y \text{ cuando la hipótesis es } i, y \ P_H(i) \text{ es}
  la [probabilidad] de la hipótesis i.
  Cuando todas las hipótesis tienen igual probabilidad, la regla [MAP] se convierte en una regla [ML] \hat{H}(y) = argminA_{y \in H}
  La función de decisión \hat{H} asigna una [i \epsilon H ] a cada [y \epsilon Y]. Esto puede ser descrito por las [regiones de decisión] R_i, las cuales consisten de todos los valores de
  y para los cuales [^H(y)=i].
  Si H=i es posible definir la [probabilidad de error] como P=1-\int_{R_i}f_{Y|H}(y|i)\,dy donde el término de la integral representa la [probabilidad de decidir
  correctamente]
```

Diseño de receptor para canales de tiempo continuo

Seleccione una o más de una:
$oxed$ a. La única forma de implementar una operación de tipo $\int r(t)b^*(t)dt$ es a través de la utilización de un filtro apareado.
$ riangleq$ b. Para obtener una implementación de $\int r(t)b^*(t)dt$ la salida del filtro apareado debe ser muestreada. \odot
\square c. La respuesta al impulso del filtro apareado es $h(t)=b^*(T-t)$, siendo T un parámetro seleccionado de manera \bigcirc Verdadero. que $h(t)$ sea causal.
\square d. La salida de un filtro apareado se expresa como $y(t)=\int r(\alpha)b^*(t-\alpha)d\alpha$, siendo $r(t)$ la entrada al receptor y $b(t)$ una función $\psi_j(t)$ o $w_j(t)$.
Complete el texto con los siguientes conceptos según corresponda:
$N(t)$ es el ruido gausiano \odot con densidad espectral de potencia \odot $N_0/2$ si para un conjunto
finito de funciones $g_1(lpha),,g_k(lpha),$
$Z_i = \int N(\alpha)g_i(\alpha)d\alpha$ $i=1,2,k$
es un conjunto de variables aleatorias conjuntamente gausianas 💮 de media cero y covarianza
$cov(Z_i,Z_j)=E[Z_iZ_j^*]=rac{N_0}{2}\int g_i(t)g_j^*(t)dt=rac{N_0}{2}$
Es decir que, si $g_1(t),,g_k(t)$ es un conjunto de funciones \bigcirc ortonormales realmente valuadas \bigcirc , $Z=(Z_1,,Z_k)^T$
es un vector aleatorio con distribución gausiana 💮 de media cero y componentes
independientes e igualmente distribuidas \odot de varianza $\sigma^2 = \frac{N_0}{2}$.
independientes e igualmente distribuidas \odot de varianza $\sigma^2 = \frac{N\alpha}{2}$.
independientes e igualmente distribuidas \odot de varianza $\sigma^2 = \frac{N\alpha}{2}$. Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \leq t \leq 1$ $2-t 1 < t \leq 2$ 0 otherwise
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t \qquad 0 \leq t \leq 1 \\ 2-t \qquad 1 < t \leq 2$
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \leq t \leq 1 \\ 2-t 1 < t \leq 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \leq t \leq 1 \\ 2-t 1 < t \leq 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector Nota: la correlación entre dos señales de tiempo continuo puede calcularse numéricamente aproximando la integral numérica mediante la
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \leq t \leq 1 \\ 2-t 1 < t \leq 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \leq t \leq 1 \\ 2-t 1 < t \leq 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector Nota: la correlación entre dos señales de tiempo continuo puede calcularse numéricamente aproximando la integral numérica mediante la regla del rectángulo $\int_t^{t+\Delta t} f(x) dx \simeq f(t) \Delta t$ import numpy as np
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \leq t \leq 1 \\ 2-t 1 < t \leq 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector Nota: la correlación entre dos señales de tiempo continuo puede calcularse numéricamente aproximando la integral numérica mediante la regla del rectángulo $\int_t^{t+\Delta t} f(x) dx \simeq f(t) \Delta t$
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \leq t \leq 1 \\ 2-t 1 < t \leq 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector Nota: la correlación entre dos señales de tiempo continuo puede calcularse numéricamente aproximando la integral numérica mediante la regla del rectángulo $\int_t^{t+\Delta t} f(x) dx \simeq f(t) \Delta t$ import numpy as np def correlador (signal, T):
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \leq t \leq 1 \\ 2-t 1 < t \leq 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector Nota: la correlación entre dos señales de tiempo continuo puede calcularse numéricamente aproximando la integral numérica mediante la regla del rectángulo $\int_t^{t+\Delta t} f(x) dx \simeq f(t) \Delta t$ import numpy as np def correlador(signal,T): $t = \text{np.arange}(0,2+\text{T,T})$ waveform = np.zeros(len(t)) for i in range(len(t)):
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \le t \le 1 \\ 2-t 1 < t \le 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector Nota: la correlación entre dos señales de tiempo continuo puede calcularse numéricamente aproximando la integral numérica mediante la regla del rectángulo $\int_t^{t+\Delta t} f(x) dx \simeq f(t) \Delta t$ import numpy as np def correlador(signal,T): $t = \text{np.arange}(0,2+T,T)$ waveform = np.zeros(len(t)) for i in range(len(t)): if $t[i] <= 1$:
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \le t \le 1 \\ 2-t 1 < t \le 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector Nota: la correlación entre dos señales de tiempo continuo puede calcularse numéricamente aproximando la integral numérica mediante la regla del rectángulo $\int_t^{t+\Delta t} f(x) dx \simeq f(t) \Delta t$ import numpy as np def correlador (signal, T): $t = \text{np.arange}(0,2+\text{T,T})$ waveform = np.zeros(len(t)) for i in range(len(t)): if $t[i] \le 1$: waveform[i] = t[i]
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \le t \le 1 \\ 2-t 1 < t \le 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector Nota: la correlación entre dos señales de tiempo continuo puede calcularse numéricamente aproximando la integral numérica mediante la regla del rectángulo $\int_t^{t+\Delta t} f(x) dx \simeq f(t) \Delta t$ import numpy as np def correlador(signal,T): $t = \text{np.arange}(0,2+T,T)$ waveform = np.zeros(len(t)) for i in range(len(t)): if $t[i] <= 1$:
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \le t \le 1 \\ 2-t 1 < t \le 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector Nota: la correlación entre dos señales de tiempo continuo puede calcularse numéricamente aproximando la integral numérica mediante la regla del rectángulo $\int_t^{t+\Delta t} f(x) dx \simeq f(t) \Delta t$ import numpy as np def correlador(signal,T): $t = \text{np.arange}(0,2+T,T)$ waveform = np.zeros(len(t)): $\text{if } t[i] <= 1:$ $\text{waveform}[i] = t[i]$ else: $\text{waveform}[i] = 2 - t[i]$ $\text{min_len} = \text{len}(\text{signal}) \text{ if len}(\text{signal}) < \text{len}(\text{waveform}) \text{ else len}(\text{waveform})$
Implemente mediante una función un correlador de la señal recibida con una forma de onda triangular dada por: $t 0 \le t \le 1 \\ 2-t 1 < t \le 2 \\ 0 \text{otherwise}$ La función tiene dos parámetros: la señal recibida representada por un vector, y el intervalo de tiempo entre elementos consecutivos de dicho vector $ \text{Nota: la correlación entre dos señales de tiempo continuo puede calcularse numéricamente aproximando la integral numérica mediante la regla del rectángulo \int_t^{t+\Delta t} f(x) dx \simeq f(t) \Delta t $

```
corr += signal[i] * waveform[i]
return corr*T
```

Calcular el valor del producto interno entre las señales $\langle \beta_2(t), \psi_1(t) \rangle$ integrando entre 1 y 2.

$$\beta_2(t) = 2t - 4$$

 $\psi_1(t) = -\sqrt{3}t + 2\sqrt{3}$

```
import sympy as sp

# Defino la variable simbólica
t = sp.symbols('t')

# Defino las dos señales
beta2 = 2*t - 4
psi1 = -sp.sqrt(3)*t + 2*sp.sqrt(3)

# Calculo el producto interno
inner = sp.integrate(beta2 * psi1, (t, 1, 2))

# Muestro el resultado numérico
print("resultado =", float(inner.evalf()))
```

A través del procedimiento de Gram-Schmidt de ortonormalización encontrar una base ortonormal para el espacio generado por los vectores $\alpha_1=(1,0,1,1)^T, \alpha_2=(2,1,0,1)^T, \alpha_3=(1,0,1,-2)^Ty\alpha_4=(2,0,2,-1)^T$

Seleccione una:

- $\bigcirc \ \, \text{a.} \quad \, \phi_1 = (-\tfrac{1}{\sqrt{3}},0,\tfrac{1}{\sqrt{3}},\tfrac{1}{\sqrt{3}}), \, \, \phi_2 = (\tfrac{1}{\sqrt{3}},\tfrac{1}{\sqrt{3}},0,-\tfrac{1}{\sqrt{3}}), \, \, \phi_3 = (\tfrac{1}{\sqrt{6}},0,\tfrac{1}{\sqrt{6}},\tfrac{2}{\sqrt{6}}) \, \, \text{y} \, \, \phi_4 = (0,0,0,0)$
- Ob. $\phi_1 = (0, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), \ \phi_2 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, 0), \ \phi_3 = (\frac{2}{\sqrt{6}}, 0, \frac{2}{\sqrt{6}}, \frac{2}{\sqrt{6}}) \ y \ \phi_4 = (0, 0, 0, 0)$
- o. Ningua es correcta.
- $\bullet \ \ \, \mathrm{d.} \quad \phi_1 = (\tfrac{1}{\sqrt{3}},0,\tfrac{1}{\sqrt{3}},\tfrac{1}{\sqrt{3}}) \, , \, \, \phi_2 = (\tfrac{1}{\sqrt{3}},\tfrac{1}{\sqrt{3}},-\tfrac{1}{\sqrt{3}},0) \, , \, \, \phi_3 = (\tfrac{1}{\sqrt{6}},0,\tfrac{1}{\sqrt{6}},-\tfrac{2}{\sqrt{6}}) \, \, \mathrm{y} \, \, \phi_4 = (0,0,0,0) \, \, \odot \, \, \,) \, \,$

import numpy as np

```
# Vectores originales
alpha_1 = np.array([1, 0, 1, 1], dtype=float)
alpha_2 = np.array([2, 1, 0, 1], dtype=float)
alpha_3 = np.array([1, 0, 1, -2], dtype=float)
alpha_4 = np.array([2, 0, 2, -1], dtype=float)
# Ortonormalización
basis = gram_schmidt([alpha_1, alpha_2, alpha_3, alpha_4])
# Mostrar resultados
print("Base ortonormal:")
for i, vec in enumerate(basis, 1):
     print(f"u_{i} =", np.round(vec, 4))
 Indique cual de las siguientes expresiones corresponde al test MAP que se realiza en un receptor con canal AWGN.
 Seleccione una:
  \bigcirc a. Selectionar la \hat{H}_j que minimice \int r(t)w_i^*(t)dt - \frac{||w_j||^2}{2} + \frac{N_0}{2}lnP_H(j).
  ● b. Ninguna es correcta. ②
  \bigcirc c. Selectionar la \hat{H}_i que maximice ||y-c_j||^2-N_0lnP_H(j).
  \bigcirc d. Selectionar la \hat{H}_{j} que maximice +\frac{||e_{j}||^{2}}{2}-\frac{N_{0}}{2}lnP_{H}(j).
  Calcular el valor de la norma de la señal ||\alpha_1(t)|| integrando entre 1 y 2:
   \alpha_1(t) = -2t + 4
  Respuesta:
                1.1547
                                                       0
```

import numpy as np

return -2*t + 4

def f(t):

print(norma)

a = 1 b = 2

from scipy.integrate import quad

Pass a lambda function to square the result of f(t) norma = np.sqrt(quad(lambda t: f(t)**2, a, b)[0])

Se dispone de un alfabeto de símbolos reales con modulación 6-PAM, $A = \{0, 1, 2, 3, 4, 5\}$. Un decodificador ML los selecciona de acuerdo al criterio de mínima distancia. El receptor realiza una detección incorrecta si la observación real y aparece fuera de su región de decodificación: este caso se da si el ruido real Z es mayor que d/2, donde $d = c_i - c_{i-1}$, para i = 1,2,...,5. Se considera que la potencia de ruido está normalizada.

- A) Imprimir en pantalla el valor numérico de P(5), la probabilidad de error en la detección suponiendo que se transmitió el símbolo de amplitud 5.
- B) Repetir el ejercicio A) esta vez imprimiendo debajo el valor numérico de P(3).

Sugerencia: para que el sistema pueda validar los resultados, imprimir solo valores numéricos **redondeados** a dos decimales, por ejemplo la salida del código debería tener esta forma:

0.10

0.20

```
import numpy as np
import math

def Q(x):
    return 0.5 * math.erfc(x / np.sqrt(2))
d = 1
umbral = d / 2

p5 = Q(umbral)
print(round(p5, 2))

p3 = 2 * Q(umbral)
print(round(p3, 2))
```

Los siguientes parámetros pertenecen a una sonda espacial con rumbo al planeta Mercurio

```
P_T = 14,9 \ watt

\lambda = 0,13 \ m

G_T = 575,44

G_R = 1380000

d = 1600000 \ Km

T_N = 13,5 \ kelvin

R_b = 117,6 \ kbps BPSK
```

Calcule la relación $\frac{\xi}{N_c}$ (relación energía por bit / densidad espectral de potencia de ruido)

La respuesta correcta es: 22583,86

```
import math
from scipy.stats import norm
import numpy as np
```

```
kb=1.381e-23 #Constante de Boltzmann
def BER(pt, lda, gt, gr, d, tn, rb):
    d = d * 1000
    rb = rb * 1000
    epsilon = ((1 / rb) * gt * gr * pt) / ((((4 * 3.14 * d) / lda) ** 2) * kb * tn)
    return epsilon
print(BER(14.9,0.13,575.44 ,1.38e6 ,1.6e6,13.5 ,117.6))#Cambiar datos no sean vergas
```

Implementar un conformador de onda basado en una base ortonormal a desplazamientos múltiplos de T de la familia de raiz de coseno realizado. Sección 5.5 del libro de Bixio

Proveer una función:

def raiz_coseno_rea|zado(simbo|os, Beta, T, tt):

return signal_added,signal

con los siguiente argumentos:

- · símbolos: lista de símbolos de un alfabeto M-PAM
- · Beta: exceso de ancho de banda
- T: periodo de símbolo
- · tt: intervalo de tiempo

La función retorna:

- signal_added: la forma de onda resultante de los símbolos transmitidos
- signal: matriz (lista) de mxn donde m es la cantidad de símbolos y n el intervalo de tiempo

Ayuda: Si se grafica las salidas de la función se obtendrían señales similares a las mostradas en la figura 5.7 del libro de Bixio (pag. 172)

```
import numpy as np

def rrcosfilter(t, beta, Ts,iT):
     return 1/np.sqrt(Ts) * np.sinc((t-iT)/Ts) * np.cos(np.pi*beta*(t-iT)/Ts) /
(1 - (2*beta*(t-iT)/Ts) ** 2)

def raiz_coseno_realzado(simbolos, Beta, T, tt):
    sum_sig = 0
    signal = []

for i in range(len(simbolos)):
    signal.append(simbolos[i]*rrcosfilter(tt,Beta,T,i*T))
        sum_sig = sum_sig + signal[i]
    #plt.plot(tt,output[i])
    return sum_sig,signal
```

Los siguientes parámetros permiten calcular el bit error rate para una modulación antipodal (por ejemplo BPSK)

```
\begin{split} P_T = & \text{Potencia de señal transmitida} \quad [watts] \\ \lambda &= & \text{Longitud de onda de la portadora} \quad [m] \\ G_T = & \text{Ganancia de la antena transmisora} \\ G_R = & \text{Ganancia de la antena receptora} \\ d &= & \text{distancia} \quad [Km] \\ T_N = & \text{Temperatura de ruido del receptor} \quad [kelvin] \\ R_b = & \text{bit rate} \quad [kbps] \end{split}
```

Escriba una función en python3 BER(pt,lda,gt,gr,d,tn,rb) que devuelva el bit error rate (BER) Exprese el resultado con con 4 decimales (para su corrección automática)

Ayuda:

incluya la librería numpy para acceder a la función sqrt()

incluya la librería scipy para acceder a la función Q

"from scipy.stats import norm"

```
import numpy as np
from scipy.stats import norm
kb=1.381e-23
def BER(pt,lda,gt,gr,d,tn,rb):
    arg=(1/(rb*1000)*(gt*gr*pt)/((4*3.14*d*1000/lda)**2*tn*kb))
    return(np.round(norm.sf(np.sqrt(2*arg)),4))
```

Este ejercicio está basado en el ejemplo 3.10, ubicado en la página 106 del libro Principles of Digital Communication: A top-down approach - Bixio Rimoldi. La señalización se conoce como Single-Shot QAM

Realizar un conformador de onda con:

$$\phi_1(t) = \sqrt{\frac{2}{T}}cos(2\pi f_c t)$$

$$\phi_2(t) = \sqrt{\frac{2}{T}}sin(2\pi f_c t)$$

$$con \ t \in [0,T]$$

Considerando que $2f_cT$ es un entero. Las componentes del código $c_i=(c_{i,1},c_{i,2})$ toma valores en un alfabeto discreto de la forma $\{\pm a,\pm 3a...,\pm (m-1)a\}$

El programa debe generar la forma de onda para el código de entrada c_i , esto es:

$$w_i(t) = c_{i,1}\phi_1(t) + c_{i,2}\phi_2(t)$$

La forma de onda tiene $f_c=1$ y se genera con un muestreo $\Delta t=0.1$

```
def waveformer(c, T=1, fc=1, delta_t=0.1):
```

```
def phi1(t):
    return np.sqrt(2/T) * np.cos(2 * np.pi * fc * t)

def phi2(t):
    return np.sqrt(2/T) * np.sin(2 * np.pi * fc * t)

c1, c2 = c

num = int(T / delta_t) + 1
t = np.linspace(0, T, num)

w = c1 * phi1(t) + c2 * phi2(t)

return w
```