In an experiment with photoelectric effect, the stopping potential,

- is  $\left(rac{1}{e}
  ight)$  times the maximum kinetic energy of the emitted photoelectrons
- increases with increase in the intensity of the incident light
- decreases with increase in the intensity of the incident light
- increases with increase in the wavelength of the incident light

Q 2 UV light of  $4.13~\rm eV$  is incident on a photosensitive metal surface having work function  $3.13~\rm eV$ . The maximum kinetic energy of ejected photoelectrons will be:

- A 4.13 eV
- B 1 eV
- C 7.26 eV
- D 3.13 eV

A proton, an electron and an alpha particle have the same energies. Their de-Broglie wavelengths will be compared as:

$$oldsymbol{\mathbb{C}}$$
  $\lambda_{
m e} > \lambda_{lpha} > \lambda_{
m p}$ 

$$oldsymbol{ ext{D}} \lambda_{ ext{p}} < \lambda_{ ext{e}} < \lambda_{lpha}$$

In photoelectric experiment energy of  $2.48~\rm eV$  irradiates a photo sensitive material. The stopping potential was measured to be  $0.5~\rm V$ . Work function of the photo sensitive material is :

- A 1.98 eV
- 📵 1.68 eV
- 2.48 eV
- D 0.5 eV

Which of the following statement is not true about stopping potential  $(V_0)$  ?

- It depends upon frequency of the incident light.
- It is 1/e times the maximum kinetic energy of electrons emitted.
- It increases with increase in intensity of the incident light.
- It depends on the nature of emitter material.

Given below are two statements: one is labelled as Assertion  $\bf A$  and the other is labelled as Reason R.

Assertion A: Number of photons increases with increase in frequency of light.

Reason R: Maximum kinetic energy of emitted electrons increases with the frequency of incident radiation.

In the light of the above statements, choose the most appropriate answer from the options given below:

- $oldsymbol{A}$  is not correct but  $oldsymbol{R}$  is correct.
- f A is correct but  ${f R}$  is not correct.
- Both  ${f A}$  and  ${f R}$  are correct and  ${f R}$  is the correct explanation of  ${f A}$ .
- Both  ${f A}$  and  ${f R}$  are correct and  ${f R}$  is NOT the correct explanation of  ${f A}$ .

The de Broglie wavelengths of a proton and an  $\alpha$  particle are  $\lambda$  and  $2\lambda$  respectively. The ratio of the velocities of proton and  $\alpha$  particle will be :

A 8:1

B 1:2

C 1:8

 $\bigcirc$  4:1

When a metal surface is illuminated by light of wavelength  $\lambda$ , the stopping potential is 8~V. When the same surface is illuminated by light of wavelength  $3\lambda$ , stopping potential is 2~V. The threshold wavelength for this surface is:

- $\bigcirc$  3 $\lambda$
- **B** 9λ
- $\bigcirc$  5 $\lambda$
- $\bigcirc$  4.5 $\lambda$

When UV light of wavelength  $300~\mathrm{nm}$  is incident on the metal surface having work function  $2.13~\mathrm{eV}$ , electron emission takes place. The stopping potential is :

(Given  $hc = 1240 \, eV \, nm$ )

- A 4 V
- B 2 V
- **O** 4.1 V
- D 1.5 V

The work function of a substance is  $3.0\,\mathrm{eV}$ . The longest wavelength of light that can cause the emission of photoelectrons from this substance is approximately;

- A 215 nm
- 400 nm
- **6** 414 nm
- D 200 nm

The work functions of Aluminium and Gold are  $4.1~{\rm eV}$  and and  $5.1~{\rm eV}$  respectively. The ratio of the slope of the stopping potential versus frequency plot for Gold to that of Aluminium is

- A 1.5
- B 1.24
- **C** 1
- **D** 2

The ratio of de-Broglie wavelength of an  $\alpha$  particle and a proton accelerated from rest by the same potential is  $\frac{1}{\sqrt{m}}$ , the value of m is -

- A 2
- **B** 16
- **C** 8
- **D** 4

Q 13
The ratio of wavelengths of proton and deuteron accelerated by potential  $V_p$  and  $V_d$  is 1 :  $\sqrt{2}.$  Then the ratio of  $V_p$  to  $V_d$  will be :

 $\bigcirc$   $\sqrt{2}:1$ 

The light of two different frequencies whose photons have energies 3.8 eV and 1.4 eV respectively, illuminate a metallic surface whose work function is 0.6 eV successively. The ratio of maximum speeds of emitted electrons for the two frequencies respectively will be:

- A 1:1
- B 2:1
- **C** 4:1
- D 1:4

A moving proton and electron have the same de-Broglie wavelength. If K and P denote the K.E. and momentum respectively. Then choose the correct option:

- A  $K_p < K_e$  and  $P_p = P_e$
- $\mathbb{B}$   $K_p = K_e$  and  $P_p = P_e$
- $\bigcirc$   $K_p < K_e$  an  $P_p < P_e$
- $\mathbb{D}$  K<sub>p</sub> > K<sub>e</sub> and P<sub>p</sub> = P<sub>e</sub>

In a photoelectric experiment, increasing the intensity of incident light:

- increases the number of photons incident and also increases the K.E. of the ejected electrons
- increases the frequency of photons incident and increases the K.E. of the ejected electrons
- increases the frequency of photons incident and the K.E. of the ejected electrons remains unchanged
- increases the number of photons incident and the K.E. of the ejected electrons remains unchanged

An electron moving with speed v and a photon moving with speed c, have same D-Broglie wavelength. The ratio of kinetic energy of electron to that of photon is:

$$\frac{3c}{v}$$

$$\frac{v}{3c}$$

$$\frac{v}{2c}$$

An  $\alpha$  particle and a proton are accelerated from rest by a potential difference of 200V. After this, their de Broglie wavelengths are  $\lambda_{\alpha}$  and  $\lambda_{\rm p}$  respectively. The ratio  $\frac{\lambda_p}{\lambda_{\alpha}}$  is :

- A 8
- B 2.8
- 7.8
- D 3.8

019

Given below are two statements:

Statement I: Two photons having equal linear momenta have equal wavelengths.

Statement II: If the wavelength of photon is decreased, then the momentum and energy of a photon will also decrease.

In the light of the above statements, choose the correct answer from the options given below.

- A Statement I is false but Statement II is true
- Both Statement I and Statement II are false
- Both Statement I and Statement II are true
- Statement I is true but Statement II is false

In a photoelectric effect experiment, the graph of stopping potential V versus reciprocal of wavelength obtained is shown in the figure. As the intensity of incident radiation is increased:



- A Slope of the straight line get more steep
- B Graph does not change
- Straight line shifts to left
- Straight line shifts to right

A particle moving with kinetic energy E has de Broglie wavelength  $\lambda$ . If energy  $\Delta$ E is added to its energy, the wavelength become  $\lambda$ /2. Value of  $\Delta$ E, is :

- A E
- B 3E
- © 2E
- D 4E

Q 22 If a source of power 4kW produces  $10^{20}$  photons/second, the radiation belongs to a part of the spectrum called

lacksquare X -rays

B ultraviolet rays

microwaves

 $\bigcirc$   $\gamma$  - rays

A Laser light of wavelength 660 nm is used to weld Retina detachment. If a Laser pulse of width 60 ms and power 0.5 kW is used the approximate number of photons in the pulse are:

[Take Planck's constant h =  $6.62 \times 10^{-34}$  Js]

- $\triangle$  10<sup>20</sup>
- **B** 10<sup>18</sup>
- C 10<sup>22</sup>
- D 10<sup>19</sup>

A particle A of mass m and initial velocity v collides with a particle B of mass m/2 which is at rest. The collision is head on, and elastic. The ratio of the de-Broglie wavelengths  $\lambda_A$  to  $\lambda_B$  after the collision is:

$$\frac{\lambda_A}{\lambda_B} = \frac{1}{3}$$

$$rac{\lambda_A}{\lambda_B}=2$$

$$\frac{\lambda_A}{\lambda_B} = \frac{2}{3}$$

$$rac{\lambda_A}{\lambda_B} = rac{1}{2}$$

An X-ray tube is operated at 1.24 million volt. The shortest wavelength of the produced photon will be:

m A 10 $^{-2}$  nm

 $^{\,}$  10 $^{-1}$  nm

 $^{\circ}$  10 $^{-3}$  nm

 $^{-4}\,{
m nm}$ 

A particle of mass 4M at rest disintegrates into two particles of mass M and 3M respectively having non zero velocities. The ratio of de-Broglie wavelength of particle of mass M to that of mass 3M will be:

- A 1:3
- B 3:1
- 1: $\sqrt{3}$
- 1:1

A particle is travelling 4 time as fast as an electron. Assuming the ratio of de-Broglie wavelength of a particle to that of electron is 2 : 1, the mass of the particle is :

- $\frac{1}{16}$  times the mass of e<sup>-</sup>
- B 8 times the mass of e
- 16 times the mass of e
- $\frac{1}{8}$  times the mass of e<sup>-</sup>

Two identical photocathodes receive the light of frequencies  $f_1$  and  $f_2$  respectively. If the velocities of the photo-electrons coming out are  $v_1$  and  $v_2$  respectively, then

$$igwedge v_1-v_2=\left[rac{2h}{m}(f_1-f_2)
ight]^{rac{1}{2}}$$

$$v_1^2 + v_2^2 = rac{2h}{m}[f_1 + f_2]$$

$$\bigcirc$$
  $v_1+v_2=\left[rac{2h}{m}(f_1+f_2)
ight]^{rac{1}{2}}$ 

$$v_1^2 - v_2^2 = rac{2h}{m}[f_1 - f_2]$$

The de-Broglie wavelength of a proton and  $\alpha$ -particle are equal. The ratio of their velocities is :

A 4:2

**B** 4:3

**C** 4:1

D 1:4

A photoelectric surface is illuminated successively by monochromatic light of wavelengths  $\lambda$  and  $\frac{\lambda}{2}$ . If the maximum kinetic energy of the emitted photoelectrons in the second case is 3 times that in the first case, the work function of the surface is .

$$\frac{hc}{3\lambda}$$

$$\frac{hc}{2\lambda}$$

$$\frac{hc}{\lambda}$$

$$\frac{3 hc}{\lambda}$$