- We will Staft by Stadying 4 tyles:
- 1) General BPSK and then a special Case where P=1 called PRK.
- 21 MPSK and then a Special Case Where M=4 Called QPSK

*MPSK:

- -, M symbols each will be assisted a phase $\Psi \in \{0, \frac{2\pi}{M}, \frac{4\pi}{M}, \frac{6\pi}{M}, -\cdots, (M-1)\frac{2\pi}{M}\}$
- -Amplitiude is Constant For all Symbols.

.
$$\chi(6) = A \cos(\omega_{c} t + \theta_{c} + \frac{2\pi(m-1)}{M})$$
, $M = 1, 2, 3, \dots, M$

La Above expression can be written as: Cos(A+B) = Cos(A) Cos(B) - sin(A) Sin(B)

$$\mathcal{X}(t) = \underbrace{ACos(\frac{2\pi(m-1)}{M})}_{The Place Comp} Cos(\omega_{ct} + \theta_{c}) - \underbrace{ASin(\frac{2\pi(m-1)}{M})}_{The Place Comp} Sin(\omega_{ct} + \theta_{c})$$

. Above expression means that we can use the inphase & quadrature components implementation at Tx & Rx instead

of directly changing the ocilator Phase for each symbol "simplifies design complexity"

★Consttelation diagram:

- orthogral basis functions:

$$\varphi_{i} = \sqrt{\frac{2}{\pi}} \cos(\omega_{c} t + \theta_{c})$$
 $0 \leq t \leq T$

$$\varphi_{z} = \sqrt{\frac{2}{\tau}} \operatorname{Sin}(\omega_{c} + \theta_{c})$$
 of $t \leq \tau$

- each vector (5, 52, ..., 5,) has a Length of VI A and
- ere(34 A2 I

$$E_{m} = A^{2} \frac{T}{2} ,$$

* Probability of error:

- Assume that error can occure between only adjacent symbols:

$$\therefore \simeq 10 \left(\frac{d_{min}}{\sqrt{2}N_0} \right)$$

$$\simeq 10 \left(\frac{2\sqrt{E}}{\sqrt{2}N_0} \right) \sin \left(\frac{\pi}{N} \right)$$

. 6=1: S,(t) = A Cos(wet+ 8e)

b=-1: Sz(t)=ACos(Wct+8c+4)

 $\cdot \int_{12}^{2} = \frac{1}{\sqrt{16}} \int_{0}^{\infty} S_{r}(\xi) S_{r}(\xi) d\xi = Cos(\Psi)$

· Same as BPSK but 4=T ~ Siz=-1 "antipodal"

. b = 1 : S, (t) = A Cos(wet + Oc)

b=-1: S2(6) = A Cos(web+Oc+TT)

= - A Cos(wit+Oc)

. x(t) = A6 Cos (wct + 8c)

= Em , Piz , dmin :

 $E_{AV_{3}} = \frac{1}{2}(E_{1} + E_{2}) = A^{2} \frac{T}{2}$

· Pin = Cos(4)

.dmin= 2 VE Sin(Y)

Em, Piz, dmin:

·Enus = A2 I

. dmin = 2/E = 2A/I

S=-VE

A Cos(Wet +0c)

∗Pe:

#Pe:

. Pe = $Q\left(\frac{dmin}{\sqrt{2N_0}}\right) = Q\left(\frac{2\sqrt{E_0}}{\sqrt{2N_0}}\right)$

 $\sqrt[4]{e} = Min \frac{E_b}{N_0} = \frac{1}{4} \left[Q^{-1} (10^5) \right]^2$

Tp=9.58

★ Tx:

≞Τχ:

*Rx:

. Special case of MPSK "M=4, Yij = I , gray coded"

• $\mathcal{X}(t) = \frac{A}{\sqrt{2}} b_E \cos(\omega_{ct} + \theta_c) = \frac{A}{\sqrt{2}} b_o \sin(\omega_{ct} + \theta_c)$

We could've used equation to but this is more efficient.

.x(6) = A be + j A bo 6 A { 1+j, 1-j, -1+j, -1-j}

Em , Piz , dmin :

·5,=<+是压,+是压>

· E = A T + A T = A T = E

. Pii = { }

. Jmin = S, - Sy = <0, 2 A JZ > -> : dmin = AVT = VZE

*Pe:

. Assume that error can occure between only adjacent symbols:

.. Pe=2 P { Falls in one of its a diacent]

= 2 Pepek " each two adjacent symbols are PRK"

~2の(症)

other Variants of PSK

-Non-cohelent detection can't be used with ordinary PSK because we Put info in the Phase.

-Also a Phase Shif of 18° Can happen in ordinary PSK which makes the sideless in the spectfum bisser causing inteferance.

- So a number of Variants was developed to overcome these Problems.

(DPSK)

Differiential encoding Prior to PSK facilites

No detection, messager is in Phase difference
between two Sucssive Symbols.

 π when bind $\mathcal{X}(E) = A Cos(\omega_{c} + \theta_{c} + \Psi_{n})$, $\Psi_{n} = \Psi_{n-1} + \Delta \Psi$

_DBPSK:

encode binary sel { da} using differiatel encoding

∽ Tx:

-Rx: Jetection of Absence of noise, and asume Oc is slowly varing between 2 succive symbols.

x: Laxo((a,b)

	_							
W	0	1	2	3	ч	5	6	7
۹,۱		ا ار	٥	/ °	71	°	, l	z^{1}
94	14	ع اد	30 (2 د	o 4	o 6	» B 4	0
64	1	1	-1	1	1	-1	-1	-1
Ψ.	0	0	π	0	6	π	π	π
	NC	NC	tossie	+03312	NC	to 331e	NC	NC

Coatsic?

physe difference when both ellen Bodd bits tobbles

- Prevents odd & even bits from Frigring to Jether 69

Shifting the odd Stream one bit (half Symbol)

- ex: compare OPSK & OQPSK Phase I=00 11 10 01

944 [11, 10, 01, 00] V=ta(탈[판, 판, 판, 5판]

 \rightarrow 64 Shifting bo, we exssure that one bit at most is charging \sim $\Delta \Psi_{\text{max}} = \pm \frac{\pi T}{2}$

(# OBSK)

→ limit Phase difference to ±135° → better Performance in Fading chamel

- non-coherent reciver.

-take symbol from X

and next symbol from +

_,ex: I,=|| 00 0| 10

and so on -