Advanced Spark Features

Matei Zaharia

UC Berkeley

www.spark-project.org

Motivation

You've now seen the core primitives of Spark: RDDs, transformations and actions

As we've built applications, we've added other primitives to improve speed & usability

» A key goal has been to keep Spark a small, extensible platform for *research*

These work seamlessly with the existing model

Process distributed collections with functional operators, the same way you can for local ones

```
val points: RDD[Point] = // ...
var clusterCenters = new Array[Point](k)

val closestCenter = points.map {
  p => findClosest(clusterCenters, p)
}
...
```

Process distributed collections with functional operators, the same way you can for local ones

```
val points: RDD[Point] = // ...
var clusterCenters = new Array[Point](k)

val closestCenter = points.map {
  p => findClosest(clusterCenters, p)
}
...
```

Two foci for extension: collection storage & layout, and interaction of functions with program

Process distributed collections with functional operators, the same way you can for local ones

```
val points: RDD[Point] = // ...
var clusterCenters = new Array[Point](k)

val closestCenter = points.map {
  p => findClosest(clusterCenters, p)
}
...
How should this be split across nodes?
```

Two foci for extension: collection storage & layout, and interaction of functions with program

Process distributed collections with functional operators, the same way you can for local ones

```
val points: RDD[Point] = // ...
var clusterCenters = new Array[Point](k)

val closestCenter = points.map {
   p => findClosest(clusterCenters, p)
}
How should this variable be shipped?
```

Two foci for extension: collection storage & layout, and interaction of functions with program

Outline

Broadcast variables

Accumulators

Controllable partitioning

Data layout

Extending Spark

Motivation

Normally, Spark closures, including variables they use, are sent separately with each task

In some cases, a large read-only variable needs to be shared *across* tasks, or across operations

Examples: large lookup tables, "map-side join"

Example: Join

```
// Load RDD of (URL, name) pairs
val pageNames = sc.textFile("pages.txt").map(...)
// Load RDD of (URL, visit) pairs
val visits = sc.textFile("visits.txt").map(...)
val joined = visits.join(pageNames)
                                      Shuffles both pageNames
                                       and visits over network
           pages.txt
                                           A-E
                                           F-J
                                           K-O
            visits.txt
                                           P-T
                                           U-Z
                                  Reduce tasks
                    Map tasks
```

Alternative if One Table is Small

```
val pageNames = sc.textFile("pages.txt").map(...)
val pageMap = pageNames.collect().toMap()
val visits = sc.textFile("visits.txt").map(...)
val joined = visits.map(v \Rightarrow (v.1, (pageMap(v.1), v.2)))
                                             block of visits.txt
                              visits.txt
      pages.txt
                  master
     pageMap sent along
                                            result
                                      map
      with every task
```

Better Version with Broadcast

```
val pageNames = sc.textFile("pages.txt").map(...)
val pageMap = pageNames.collect().toMap()
val bc = sc.broadcast(pageMap)
                                         Type is Broadcast[Map[...]]
val visits = sc.textFile("visits.txt").map(...)
val joined = visits.map(v \Rightarrow (v._1, (bc.value(v._1), v._2)))
                                           Call .value to access value
                              visits.txt
                                                         bc
       pages.txt
                                                         bc
                   master
    Only sends pageMap
                                            result
                                      map
     to each node once
```

Broadcast Variable Rules

Create with sparkcontext.broadcast(initialval)

Access with .value inside tasks

» First task to do so on each node fetches the value

Cannot modify value after creation

» If you try, change will only be on one node

Scaling Up Broadcast

250 Communication Iteration time (s) 150 150 50 Computation 50 0 60 30 10 90 **Number of machines**

Cornet P2P broadcast

[Chowdhury et al, SIGCOMM 2011]

Cornet Performance

[Chowdhury et al, SIGCOMM 2011]

Outline

Broadcast variables

Accumulators

Controllable partitioning

Extending Spark

Motivation

Often, an application needs to aggregate multiple values as it progresses

Accumulators generalize MapReduce's counters to enable this

Usage

```
val badRecords = sc.accumulator(0)
                                         Accumulator[Int]
val badBytes = sc.accumulator(0.0)
                                         Accumulator[Double]
records.filter(r => {
  if (isBad(r)) {
    badRecords += 1
    badBytes += r.size
    false
  } else {
    true
}).save(...)
printf("Total bad records: %d, avg size: %f\n",
  badRecords.value, badBytes.value / badRecords.value)
```

Accumulator Rules

Create with sparkContext.accumulator(initialval)

- "Add" to the value with += inside tasks
 - » Each task's effect only counted once
- Access with .value, but only on master
 - » Exception if you try it on workers

Custom Accumulators

Define an object extending AccumulatorParam[T], where T is your data type, and providing:

- » A zero element for a given T
- » An addInPlace method to merge in values

```
class Vector(val data: Array[Double]) {...}

implicit object VectorAP extends AccumulatorParam[Vector] {
  def zero(v: Vector) = new Vector(new Array(v.data.size))

  def addInPlace(v1: Vector, v2: Vector) = {
    for (i <- 0 to v1.data.size-1) v1.data(i) += v2.data(i)
    return v1
  }

  Now you can use sc.accumulator(new Vector(...))</pre>
```

Another Common Use

Outline

Broadcast variables

Accumulators

Controllable partitioning

Extending Spark

Motivation

Recall from yesterday that network bandwidth is ~100× as expensive as memory bandwidth

One way Spark avoids using it is through locality-aware scheduling for RAM and disk

Another important tool is controlling the partitioning of RDD contents across nodes

Example: PageRank

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

```
val links = // RDD of (url, neighbors) pairs
var ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
  val contribs = links.join(ranks).flatMap {
    case (url, (links, rank)) =>
        links.map(dest => (dest, rank/links.size))
  }
  ranks = contribs.reduceByKey(_ + _).mapValues(.15 + .85*_)
}
```

PageRank Execution

links and ranks are repeatedly joined

Each join requires a full shuffle over the network

» Hash both onto same nodes

Solution

Pre-partition the links RDD so that links for URLs with the same hash code are on the same node

New Execution

How it Works

Each RDD has an optional Partitioner object

Any shuffle operation on an RDD with a Partitioner will respect that Partitioner

Any shuffle operation on two RDDs will take on the partitioner of one of them, if one is set

Otherwise, by default use HashPartitioner

Examples

pages.join(visits).reduceByKey(...)

Output of join is already partitioned

pages.join(visits).map(...).reduceByKey(...)

map loses knowledge about partitioning

pages.join(visits).mapValues(...).reduceByKey(...)

map

join

reduceByKey

PageRank Performance

Why it helps so much: links RDD is much bigger in bytes than ranks!

Telling How an RDD is Partitioned

Use the .partitioner method on RDD

```
scala> val a = sc.parallelize(List((1, 1), (2, 2)))
scala> val b = sc.parallelize(List((1, 1), (2, 2)))
scala> val joined = a.join(b)

scala> a.partitioner
res0: Option[Partitioner] = None

scala> joined.partitioner
res1: Option[Partitioner] = Some(HashPartitioner@286d41c0)
```

Custom Partitioning

Can define your own subclass of Partitioner to leverage domain-specific knowledge

Example: in PageRank, hash URLs by domain name, because may links are internal

Outline

Broadcast variables

Accumulators

Controllable partitioning

Extending Spark

Extension Points

Spark provides several places to customize functionality:

Extending RDD: add new input sources or transformations

spark.cache.class: customize caching

spark.serializer: customize object storage

What People Have Done

New RDD transformations (sample, glom, mapPartitions, leftOuterJoin, rightOuterJoin)

New input sources (DynamoDB)

Custom serialization for memory and bandwidth efficiency

Why Change Serialization?

Greatly impacts network usage

Can also be used to improve memory efficiency

- » Java objects are often larger than raw data
- » Most compact way to keep large amounts of data in memory is SerializingCache

Spark's default choice of Java serialization is very simple to use, but very slow

» High space & time cost due to forward compatibility

Serializer Benchmark: Time

Serializer Benchmark: Space

Better Serialization

You can implement your own serializer by extending spark. Serializer

But as a good option that saves a lot of time, we recommend Kryo (code.google.com/p/kryo)

- » One of the fastest, but minimal boilerplate
- » Note: Spark currently uses Kryo 1.x, not 2.x

Using Kryo

```
class MyRegistrator extends spark.KryoRegistrator {
 def registerClasses(kryo: Kryo) {
    kryo.register(class0f[Class1])
    kryo.register(class0f[Class2])
System.setProperty(
  "spark.serializer", "spark.KryoSerializer")
System.setProperty(
  "spark.kryo.registrator", "mypkg.MyRegistrator")
System.setProperty( // Optional, for memory usage
  "spark.cache.class", "mypkg.SerializingCache")
val sc = new SparkContext(...)
```

Impact of Serialization

Saw as much as 4× space reduction and 10× time reduction with Kryo

Simple way to test serialization cost in your program: profile it with jstack or hprof

We plan to work on this further in the future!

Codebase Size

Spark core: 14,000 LOC

RDD ops: 1600

Scheduler: 2000

Block store: 2000

Networking: 1200

Accumulators: 200

Broadcast: 3500

Interpreter: 3300 LOC

Hadoop I/O: 400 LOC Mesos runner: 700 LOC

Standalone runner: 1200 LOC

Conclusion

Spark provides a variety of features to improve application performance

- » Broadcast + accumulators for common sharing patterns
- » Data layout through controlled partitioning

With in-memory data, the bottleneck often shifts to network or CPU

You can do more by hacking Spark itself – ask us if interested!