W3 – 5.1/5.2 Graphing Trig Functions MHF4U

Ly Complete the following table of values for the function $f(x) = \sin(x)$ and $g(x) = \csc(x)$. Use special triangles, the unit circle, or a calculator to find values for the function. Then graph both functions on the same grid. Draw asymptotes where necessary.

x	F(100) 9	E(05) 9(21)	
0	0	wind.	+
$\frac{\pi}{6}$	7	2	*
$\frac{2\pi}{6} = \frac{\pi}{3}$ $\frac{3\pi}{3} = \frac{\pi}{3}$	1/3	13	
$\frac{3\pi}{6} = \frac{\pi}{2}$	1	11	才
$\frac{\frac{6}{6} = \frac{2}{2}}{\frac{4\pi}{6} = \frac{2\pi}{3}}$	13/2	造	
5π	15 -10	2	₩
$\frac{6\pi}{6} = \pi$	0	und.	李
$\frac{7\pi}{6}$	-12	-5	*
$\frac{8\pi}{2}$	-13	- 53	
$\frac{9\pi}{6} = \frac{3\pi}{2}$	-)		*
$\frac{10\pi}{6} = \frac{5\pi}{3}$	-13	1-23	
$\frac{11\pi}{6}$	-1	1-2	4
$\frac{12\pi}{6} = 2\pi$	0	unal.	年

2) Complete the following table of values for the function $f(x) = \cos(x)$ and $g(x) = \sec(x)$. Use special triangles, the unit circle, or a calculator to find values for the function. Then graph both functions on the same grid. Draw asymptotes where necessary.

x	4(x) 10(00) 3(x)
0	
$\frac{\pi}{6}$	
$\frac{2\pi}{6} = \frac{\pi}{3}$	
$\frac{3\pi}{6} = \frac{\pi}{2}$	
$\frac{4\pi}{6} = \frac{2\pi}{3}$	
$\frac{5\pi}{6}$	
$\frac{6\pi}{6} = \pi$	
$\frac{7\pi}{6}$	
$\frac{8\pi}{6} = \frac{4\pi}{3}$	
$\frac{9\pi}{6} = \frac{3\pi}{2}$	
$\frac{10\pi}{6} = \frac{5\pi}{3}$	
$\frac{11\pi}{6}$	
$\frac{12\pi}{6} = 2\pi$	

3) Complete the following table of values for the function $f(x) = \tan(x)$. Use the quotient identity to find y-values.

x	f(x)
0	0 (2)
$\frac{\pi}{6}$	
$\frac{2\pi}{6} = \frac{\pi}{3}$	
$\frac{3\pi}{6} = \frac{\pi}{2}$	
$\frac{4\pi}{6} = \frac{2\pi}{3}$	
$\frac{5\pi}{6}$	
$\frac{6\pi}{6} = \pi$	
$\frac{7\pi}{6}$	
$\frac{8\pi}{6} = \frac{4\pi}{3}$	
$9\pi = 3\pi$	7
$\frac{6}{0\pi} = \frac{2}{5\pi}$	
11π	
$\frac{6}{2\pi} = 2\pi$	

- 4) A lighthouse with a rotating beam is located 1200 meters south of a coastal cliff that runs west to east.
- a) Determine a relation for the distance from the lighthouse to the point where the light strikes the cliff in terms of the angle of rotation x.

b) Determine an exact expression for this distance when $x = \frac{7\pi}{12}$

5) A variant on the carousel at a theme park is the swing ride. Swings are suspended from a rotating platform and move outward to form an angle x with the vertical as the ride rotates. The angle is related to the radial distance,

in meters, from the center of rotation; the acceleration, $g=9.8~\rm m/s^2$, due to gravity; and the speed, v, in meters per second, of the swing, according to the formula

$$\cot x = \frac{rg}{v^2}$$

Determine the angle x for a swing located 3.5 meters from the center of rotations and moving at 5.4 m/s, to the nearest hundredth of a radian.

Explain the difference between $\csc\frac{1}{\sqrt{2}}$ and $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Answer Key

See posted solutions for #1-3

4)a)
$$d = 1200 \sec x$$
 b) $\frac{2400\sqrt{2}}{1-\sqrt{3}}$

5) 0.70

The cosecant function is the reciprocal of the sine function. For sin⁻¹, the -1 is NOT an exponent but instead a notation meaning the opposite operation of sine. The sine function takes an angle for an input and gives a ratio as an output. sin⁻¹ takes a ratio for an input and gives the angle as an output.