CS1101S

AY25/26 sem 1 aithub.com/iovvntls

01. yes

sets of numbers

 \mathbb{N} : natural numbers ($\mathbb{Z}_{\geq 0}$)

Z: integers ① : rational numbers

R: real numbers

C: complex numbers

basic properties of integers

closure (under addition and multiplication) $x + y \in \mathbb{Z} \land xy \in \mathbb{Z}$ commutativity $a + b = b + a \wedge ab = ba$ associativity a + b + c = a + (b + c) = (a + b) + cabc = a(bc) = (ab)cdistributivity a(b+c) = ab + actrichotomy $(a < b) \lor (a > b) \lor (a = b)$ transitive law $(a < b) \land (b < c) \implies (a < c)$

definitions

even/odd

n is even $\leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k$ $n \text{ is odd} \leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k+1$ prime/composite n is prime $\leftrightarrow n > 1$ and $\forall r, s \in \mathbb{Z}^+, n = rs \to (r = rs)$ $n) \vee (r = s)$ n is composite $\leftrightarrow n > 1$ and $\exists r, s \in \mathbb{Z}^+ s.t.n =$ rs and 1 < r < n and 1 < s < ndivisibility (d divides n) $d \mid n \leftrightarrow \exists k \in \mathbb{Z} \mid n = kd$ rationality r is rational $\leftrightarrow \exists a,b \in \mathbb{Z} \mid r = \frac{a}{b}$ and $b \neq 0$ floor/ceiling

[x]: smallest integer y such that y > xrules of inference

|x|: largest integer y such that y < x

elimination generalisation $p, \therefore p \vee q$ $p \vee q$; $\sim q$, $\therefore p$ specialisation transitivity $p \wedge q$, :. p $p \to q; \ q \to r; \ \therefore p \to r$

04. METHODS OF PROOF

Proof by Exhaustion/Cases

- 1. list out possible cases 1.1. Case 1: n is odd OR If n = 9, ...
- 1.2. Case 2: n is even OR If n = 16....
- 2. therefore ...

Proof by Contradiction

1. Suppose that ...

1.1. ¡proof¿

1.2. ... but this contradicts ...

2. Therefore the assumption that ... is false. Hence

Proof by Contraposition

- 1. Contrapositive statement: $\sim q \rightarrow \sim p$
- 2. let $\sim q$
- 2.1. ¡proof;
- 2.2. hence $\sim p$
- 3. $p \rightarrow q$

Proof by Construction

1. Let x = 3, y = 4, z = 5.

2. Then $x, y, z \in \mathbb{Z}_{\geq 1}$ and

 $x^{2} + y^{2} = 3^{2} + 4^{2} = 9 + 16 = 25 = 5^{2}$.

3. Thus $\exists x, y, z \in \mathbb{Z}_{\geq 1}$ such that $x^2 + y^2 = z^2$.

Proof by Induction

- 1. For each $n \in \mathbb{Z}_{\geq 1}$, let P(n) be the proposition "..."
- 2. (base step) P(1) is true because imanual method.
- 3. (induction step)
- 3.1. let $k \in \mathbb{Z}_{\geq 1}$ s.t. P(k) is true
- 3.2. Then . . .
- 3.3. proof that P(k+1) is true e.g. $P(k+1) = P(k) + term_{k+1}$
- 3.4. So P(k + 1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 1} P(n)$ is true by MI.

Proofs for Sets

Equality of Sets (A=B)

1. (⇒)

1.1. Take any $z \in A$.

1.2. ...

1.3. $\therefore z \in B$.

2. (\(\phi\))

2.1. Take any $z \in B$.

2.2. ...

2.3. $\therefore z \in A$.

Element Method

1. $A \cap (B \setminus C) = \{x : x \in A \land x \in (B \setminus C)\}$ (by def. of \cap) 2. = $\{x : x \in A \land (x \in B \land x \notin C)\}$ (by def. of \) 3. ...

4. = $(A \cap B) \setminus C$ (by def. of \)

Other Proofs

iff $(A \leftrightarrow B)$

1. (\Rightarrow) Suppose A.

1.1. ... ¡proof¿ ...

1.2. Hence $A \rightarrow B$

2. (\Leftarrow) Suppose B.

2.1. ... jproof; ...

2.2. Hence $B \rightarrow A$

02. COMPOUND STATEMENTS

operations

- $1 \sim$: negation (not) 2 ∧ : conjunction (and)
- 2 ∨ : disjunction (or) coequal to ∧

logical equivalence

- · identical truth values in truth table
- definitions

 $3 \rightarrow : if-then$

- · to show non-equivalence:
 - truth table method (only needs 1 row)
 - · counter-example method

conditional statements

hypothesis → conclusion

 $antecedent \rightarrow consequent$

- · vacuously true : hypothesis is false
- implication law : $p \to q \equiv \sim p \lor q$
- · common if/then statements:
- if p then a: $p \rightarrow a$
- p if q: $q \rightarrow p$
- p only if q: $p \rightarrow q$
- p iff q: $p \leftrightarrow q$

• contrapositive : $\sim q \rightarrow \sim p$ converse ≡ inverse $statement \equiv contrapositive$ • inverse : $\sim p \rightarrow \sim q$ • converse : $q \rightarrow p$

• r is a **necessary** condition for s: $\sim r \rightarrow \sim s$ and $s \rightarrow r$

• r is a **sufficient** condition for s: $r \rightarrow s$

necessary & sufficient : ↔

valid arguments

- · determining validity: construct truth table
- valid \leftrightarrow conclusion is true when premises are true
- syllogism : (argument form) 2 premises, 1 conclusion
- modus ponens : $p \rightarrow q$; p; $\therefore q$
- modus tollens : $p \to q$; $\sim q$; $\therefore \sim p$
- sound argument : is valid & all premises are true

fallacies

converse error	inverse erro
p o q	p o q
q	${\sim}p$
$\therefore p$	$\therefore \sim q$

03. QUANTIFIED STATEMENTS

- truth set of $P(x) = \{x \in D \mid P(x)\}$
- $P(x) \Rightarrow Q(x) : \forall x (P(x) \rightarrow Q(x))$
- $P(x) \Leftrightarrow Q(x) : \forall x (P(x) \leftrightarrow Q(x))$

relation between \forall , \exists , \land , \lor

- $\forall x \in D, Q(x) \equiv Q(x_1) \land Q(x_2) \land \cdots \land Q(x_n)$
- $\exists x \in D \mid Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \cdots \lor Q(x_n)$

05. SETS

notation

- set roster notation [1]: $\{x_1, x_2, \ldots, x_n\}$
- set roster notation [2]: $\{x_1, x_2, x_3, \dots\}$ • set-builder notation: $\{x \in \mathbb{U} : P(x)\}$

definitions

- equal sets : $A = B \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$ • $A = B \leftrightarrow (A \subseteq B) \land (A \supset B)$
- empty set, \emptyset : \emptyset \subseteq all sets
- subset : $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$

- proper subset : $A \subseteq B \leftrightarrow (A \subseteq B) \land (A \neq B)$ • power set of A : $\mathcal{P}(A) = \{X \mid X \subseteq A\}$
- $|\mathcal{P}(A)| = 2^{|A|}$, given that A is a finite set
- cardinality of a set, |A|: number of distinct elements
- singleton : sets of size 1
- disjoint : $A \cap B = \emptyset$

methods of proof for sets

- · direct proof
- · element method
- · truth table

boolean operations

- union: $A \cup B = \{x : x \in A \lor x \in B\}$
- intersection: $A \cap B = \{x : x \in A \land x \in B\}$
- complement (of B in A): $A \setminus B = \{x : x \in A \land x \notin B\}$
- complement (of B): \bar{B} or $B^c = U \backslash B$
 - set difference law: $A \backslash B = A \cap \bar{B}$

ordered pairs and cartesian products

- ordered pair : (x, y)
 - $(x, y) = (x', y') \leftrightarrow x = x'$ and y = y'
- · Cartesian product :
- $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$
- $\bullet |A \times B| = |A| \times |B|$
- ordered tuples : expression of the form (x_1, x_2, \dots, x_n)

06. FUNCTIONS

definitions

- function/map from A to B : assignment of each element of A to exactly one element of B.
 - $f: A \to B$: "f is a function from A to B"
 - $f: x \rightarrow y$: "f maps x to y"
 - domain of f = A
 - codomain of f = B
 - range/image of f = $\{f(x) : x \in A\}$
- $= \{ y \in B \mid y = f(x) \text{ for some } x \in A \}$
- identity function on A, $id_A : A \rightarrow A$
 - $id_A: x \to x$
 - range = domain = codomain = A
- (E6.1.24) $f \circ id_A = f$ and $id_A \circ f = f$ · well-defined function : every element in the domain is assigned to exactly one element in the codomain

equality of functions

- · same codomain and domain
- for all $x \in \text{codomain}$, same output

function composition

- $(q \circ f)(x) = q(f(x))$
- for $(q \circ f)$ to be well defined, codomain of f must be equal to the domain of q
- × commutative
- \checkmark associative (T6.1.26) $f \circ (g \circ h) = (f \circ g) \circ h$

image & pre-image

- for $f: A \to B$
- if $X \subseteq A$, image of X,
- $f(X) = \{y \in B : y = f(x) \text{ for some } x \in X\}$
- if $Y \subseteq B$, pre-image of Y, $f^{-1}(Y) = \{x \in A : y = f(x) \text{ for some } y \in Y\}$

injection & surjection

- surjective (onto) : codomain = range
 - $\forall y \in B, \exists x \in A (y = f(x))$
- surjective test: $\forall Y \subseteq B, Y \subseteq f(f^{-1}(Y))$
- injective : one-to-one
- $\forall x, x' \in A(f(x) = f(x') \Rightarrow x = x')$
- injective test: $\forall X \subseteq A, X \subseteq f^{-1}(f(X))$
- · bijective : both surjective & injective

inverse

- $\forall x \in A, \forall y \in B(f(x) = y \Leftrightarrow g(y) = x)$
- uniqueness of inverses (P2.6.16)
 - if q, q' are inverses of $f: A \to B$, then q = q'

07. INDUCTION

mathematical induction

to prove that $\forall n \in \mathbb{Z}_{\geq m}(P(n))$ is true,

- base step: show that P(m) is true
- induction step: show that $\forall k \in \mathbb{Z}_{\geq m}(P(k) \Rightarrow P(k+1))$
 - induction hypothesis: assumption that P(k) is true

strong MI

to prove that $\forall n \in \mathbb{Z}_{\geq 0}(P(n))$ is true,

- base step: show that P(0), P(1) are true
- · induction step: show that

 $\forall k \in \mathbb{Z}_{\geq 0}(P(0) \cdots \wedge P(k+1) \Rightarrow P(k+2))$ is true. justification:

• $P(0) \wedge P(1)$ by base case

- $P(0) \wedge P(1) \rightarrow P(2)$ by induction with k=0
- $P(0) \wedge P(1) \wedge P(2) \rightarrow P(3)$ by induction with k=1
- we deduce that $P(0), P(1), \ldots$ are all true by a series of modus ponens

well-ordering principle

- every nonempty subset of $\mathbb{Z}_{\geq 0}$ has a smallest element.
- application: recursion has a base case

RECURSION

a sequence is **recursively defined** if the definition of a_n involves $a_0, a_1, \ldots, a_{n-1}$ for all but finitely many $n \in \mathbb{Z}_{\geq 0}$.

recursive definitions

e.g. recursive definition for Z

- 1. (base clause) $0 \in \mathbb{Z}_{\geq 0}$
- 2. (recursion clause) If $x \in \mathbb{Z}_{\geq 0}$, then $x + 1 \in \mathbb{Z}_{\geq 0}$
- 3. (minimality clause) Membership for $\mathbb{Z}_{\geq 0}$ can be demonstrated by (finitely many) successive applications of the clauses above

recursion vs induction

- · recursion to define the set
- · induction to show things about the set

well-formed formulas (WFF)

in propositional logic

define the set of WFF(Σ) as follows

- 1. (base clause) every element ρ of Σ is in WFF(Σ)
- 2. (recursion clause) if x, y are in WFF(Σ), then $\sim x$ and $(x \wedge y)$ and $(x \vee y)$ are in WFF(Σ)
- 3. (minimality clause) Membership for WFF(Σ) can be demonstrated by (finitely many) successive applications of the clauses above

08. NUMBER THEORY

divisibility

transitivity of divisibility

If $a \mid b$ and $b \mid c$, then $a \mid c$. closure lemma (non-standard name)

Let $a, b, d, m, n \in \mathbb{Z}$. If $d \mid m$ and $d \mid n$, then $d \mid am + bn$. division theorem

> $\forall n \in \mathbb{Z} \text{ and } d \in \mathbb{Z}^+, \exists !q, r \in \mathbb{Z} \text{ s.t.}$ n = dq + r and $0 \le r \le d$ $q = n \operatorname{div} d = \lfloor n/d \rfloor$ $r = n \mod d = n - dq$

base-b representation

of positive integer n is $(a_{\ell}a_{\ell-1}\dots a_0)_b$ where $\ell \in \mathbb{Z}_{>0}$ and $a_0, a_1, \ldots, a_\ell \in \{0, 1, \ldots, b-1\}$ s.t. $n = a_{\ell} \bar{b^{\ell}} + a_{\ell-1} b^{\ell-1} + \dots + a_0 b^0$ and $a_{\ell} \neq 0$

greatest common divisor

- if $m \neq 0$ and $n \neq 0$, then gcd(m, n) exists and is positive.
 - · gcd: Euclidean Algorithm
 - integer linear combination: Extended Euclidean Algorithm

Bezout's Lemma:

For all $m, n \in \mathbb{Z}$ with $n \neq 0$, there exist $s, t \in \mathbb{Z}$ such that gcd(m,n) = ms + nt. Euclid's Lemma:

Let $m, n \in \mathbb{Z}^+$. If p is prime and $p \mid mn$, then $p \mid m$ or $p \mid n$.

- (E8.4.3) $m \mod n = 0 \Leftrightarrow \gcd(m, n) = n$
- (L8.4.11) $\forall x, y, r \in \mathbb{Z}$,
- $x \mod y = r \Rightarrow \gcd(x, y) = \gcd(y, r)$

prime factorization theerem

· (aka Fundamental Theorem of Arithmetic): Every integer n > 2 has a unique prime factorization in which the prime factors are arranged in nondecreasing order.

modular arithmetic

 $n \mod d$ is always non-negative.

Let
$$a,b,c\in\mathbb{Z}$$
 and $n\in\mathbb{Z}^+$. congruence
$$a\equiv b\ (\bmod n)\Leftrightarrow a\bmod n=b\bmod n$$
 Then $\exists k\in\mathbb{Z}\big(a=nk+b$ and $n\mid (a-b)\big)$ reflexivity
$$a\equiv a\ (\bmod n)$$

```
symmetry
           a \equiv b \pmod{n} \to b \equiv a \pmod{n}
                            transitivity
a \equiv b \pmod{n} \land b \equiv c \pmod{n} \rightarrow a \equiv c \pmod{n}
```

addition & multiplication

If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$,

- (P8.6.6) $a + c \equiv (b + d) \pmod{n}$
- (P8.6.13) $ac \equiv bd \pmod{n}$

additive inverse

b is an additive inverse of $a \mod n \Leftrightarrow a + b \equiv 0 \pmod{n}$. b is an additive inverse of $a \mod n \Leftrightarrow b \equiv -a \pmod n$.

multiplicative inverse

b is a multiplicative inverse of $a \mod n \Leftrightarrow ab \equiv 1 \pmod n$.

- If b, b' are multiplicative inverses of a, then $b \equiv b' \pmod{n}$.
- exists $\Leftrightarrow \gcd(a, n) = 1$.
 - a, n are coprime
- to find multiplicative inverse: Euclidean Algorithm

09. EQUIVALENCE RELATIONS

relations

Let R be a relation from A to B and $(x, y) \in A \times B$. Then: xRu for $(x,y) \in R$ and xRy for $(x,y) \notin R$

- a relation from A to B is a subset of $A \times B$.
- a (binary) relation on set A is a relation from A to A. subset of A²
- inverse relation: $xR^{-1}y \Leftrightarrow yRx$

reflexivity, symmetry, transitivity

Let A be a set and R be a relation on A.

reflexive $\forall x \in A (xRx)$ symmetric $\forall x, y \in A (xRy \Rightarrow yRx)$ transitive $\forall x, y, z \in A (xRy \land yRz \Rightarrow xRz)$

- · equivalence relation: a relation that is reflexive, symmetric
- equivalence class: the set of all things equivalent to x

equivalence classes

Let A be a set and R be an equivalence relation on A.

- $[x]_R$: equivalence class of x with respect to R $\forall x \in A, [x]_R = \{y \in A : xRy\}$
- A/R: The set of all equivalent classes

$$A/R = \{[x]_R : x \in A\}$$
$$xRy \Rightarrow [x] = [y] \Rightarrow [x] \cap [y] \neq \emptyset$$

partitions

• a partition of a set A is a set \mathscr{C} of non-empty subsets of A such that

 $(\geq 1) \ \forall x \in A, \ \exists S \in \mathscr{C}(x \in S)$ $(<1) \ \forall x \in A, \ \forall S, S' \in \mathscr{C}(x \in S \land x \in S' \Rightarrow S = S')$

• components : elements of a partition · every partition comes from an equivalence relation partial orders

Let A be a set and R be a relation on A.

- R is antisymmetric if $\forall x, y \in A (xRy \land yRx \rightarrow x = y)$
- includes vacuously true cases (e.g. $xRy \Leftrightarrow x < y$)
- x and y are comparable if $\forall x, y \in A (xRy \vee yRx)$
- R is a (non-strict) partial order if R is reflexive. antisymmetric and transitive.

 - $x \prec y \Leftrightarrow x \preccurlyeq y \land x \neq y$ (NOT a partial order)
- Hasse diagram
- R is a (non-strict) total order if R is a partial order and xand y are comparable

min and max

Let \leq be a partial order on a set A, and $c \in A$.

- c is a minimal element if $\forall x \in A \ (x \le c \Rightarrow c = x)$
 - · nothing is strictly below it
- c is a maximal element if $\forall x \in A \ (c \leq x \Rightarrow c = x)$
 - · nothing is strictly above it
- c is the smallest element or minimum element if $\forall x \in a \ (c \leq x).$
- c is the largest element or maximum element if $\forall x \in a \ (x \leq c).$

linearization

Let A be a set and \leq be a partial order on A. Then there exists a total order \leq^* on A such that

$$\forall x, y \in A \ (x \leq y \Rightarrow x \leq^* y)$$

10A. COUNTING

permutations
$$P(n,r) = \frac{n!}{(n-r)!} \quad ({\rm also} \ _nP_r, P_r^n)$$

- multiplication/product rule: An operation of k steps can
- be performed in $n_1 \times n_2 \times \cdots \times n_k$ ways. • addition/sum rule: Suppose a finite set A equals the union of k distinct mutually disjoint subsets

$$A_1, A_2, \ldots, A_k$$
. Then

$$|A| = |A_1| + |A_2| + \dots + |A_k|$$

• difference rule: if A is a finite set and $B \subseteq A$, then

$$|A \backslash B| = |A| = |B|$$

• complement: $P(\bar{A}) = 1 - P(A)$

• inclusion/exclusion rule: $|A \cup B \cup C| =$ $|A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|$

permutations with indistinguishable objects

For n objects with n_k of type k indistinguishable from each other, the total number of distinguishable permutations

$$= \frac{n!}{n_1!n_2!\dots n_k!}$$

pigeonhole principle

For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if $k < \frac{n}{m}$, then there is some $y \in Y$ such that y is the image of at least k+1 distinct elements of X.

- · A function from a finite set to a smaller finite set cannot be injective.
- · presentation:
 - There are m jobject M_i (pigeons) and n jobject N_i
 - · Thus, by Pigeonhole Principle, ...

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} \text{ (also } C(n,r), \, {}_{n}C_{r}, \, C_{n,r}, \, {}^{n}C_{r})$$

$$r\text{-combinations from } n \text{ elements with } \mathbf{repetition}$$

$$= \binom{r+n-1}{r}$$

pascal's formula

Suppose
$$n,r\in\mathbb{Z}^+$$
 with $r\le n$. Then $\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$

binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

binomial coefficient: $\binom{n}{k}$

10B. PROBABILITY

probability

Let S be a sample space. For all events A and B in S, a probability function P satisfies the following axioms:

- 1. 0 < P(A) < 1
- 2. $P(\emptyset) = 0$ and P(S) = 1
- 3. $(A \cap B = \emptyset) \Rightarrow [P(A \cup B) = P(A) + P(B)]$
- 4. $P(\bar{A}) = 1 P(\bar{A})$
- 5. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

expected value

For possible outcomes a_1, a_2, \ldots, a_n which occur with probabilities p_1, p_2, \dots, p_n , the **expected value** is $\sum_{k=1}^{n} = a_k p_k$

- linearity of expectation
 - E[X+Y] = e[X] + E[Y]
 - $E\left[\sum_{i=1}^{n} c_i \cdot X_i\right] = \sum_{i=1}^{n} (c_i \cdot E[X_i])$

conditional probability

The conditional probability of A given B,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

probability tree:

$$P(B_1) = \frac{1}{3} B_1$$

$$P(B_2 \mid B_1^c) \longrightarrow B_2 \to P(B_1^c \cap B_2) = \dots$$

$$P(B_1^c) = \frac{2}{3} B_1^c \longrightarrow P(B_2^c \mid B_1^c) \longrightarrow B_2^c \to P(B_1^c \cap B_2^c) = \dots$$

Bayes' theorem

Suppose a sample space S is a union of mutually disjoint events B_1, B_2, \ldots, B_n and A is an event in S. For $k \in \mathbb{Z}$ and $1 \le k \le n$,

$$P(B_k \mid A) = \frac{P(A|B_k) \cdot P(B_k)}{\sum\limits_{i=1}^{n} \left(P(A|B_i) \cdot P(B_i) \right)}$$

application of Bayes' theorem

$$P(B_1 \mid A) = \frac{P(A|B_1) \cdot P(B_1)}{P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2)}$$

Let A be the event that the person test positive for a disease. B_1 : the person actually has the disease.

 B_2 : the person does not have the disease.

true positives: $P(B_1 \mid A)$ false negatives: $P(\bar{A} \mid B_1)$ false positives: $P(A \mid B_2)$ | true negatives: $P(\bar{A} \mid B_2)$

independent events

$$A$$
 and B are **independent** iff $P(A \cap B) = P(A) \cdot P(B)$

A, B and C are pairwise independent iff

- 1. $P(A \cap B) = P(A) \cdot P(B)$
- 2. $P(B \cap C) = P(B) \cdot P(C)$
- 3. $P(A \cap C) = P(A) \cdot P(C)$
- A, B and C are mutually independent iff
- 1. A, B and C are pairwise independent
- **2.** $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$

11. GRAPHS

 mathematical structures used to model pairwise relations between objects

directed graph

types of graphs

undirected graph

- denoted by G = (V, E), comprising
 - nonempty set of *vertices/nodes*, $V = \{v_1, v_2, \dots, v_n\}$
 - a set of *edges*, $E = \{e_1, e_2, \cdots, e_k\}$
- $e = \{v, w\}$ for an undirected edge E incident on vertices v and w

directed graph

- denoted by G = (V, E), comprising
 - nonempty set V of vertices
 - a set E of directed edges (ordered pair of vertices)
- e = (v, w) for an directed edge E from vertex v to vertex

simple graph

· undirected graph with no loops or parallel edges

complete graph

• a complete graph on n vertices, n > 0, denoted K_n , is a simple graph with n vertices and exactly one edge connecting each pair of distinct vertices

bipartite graph

- · a simple graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V
- complete bipartite graph: $K_{m,n}$
 - bipartite graph on two disjoint sets U and V such that every vertex in U connects to every vertex in V
 - denoted $K_{m,n}$ where |U|=m, |V|=n

subgraph of a graph

H is a subgraph of $G \Leftrightarrow$

- every vertex in H is also a vertex in G
- every edge in H is also an edge in G
- every edge in H has the same endpoints as it has in G

degree

- **degree** of v, deg(v) = number of edges incident on v
- total degree of G = sum of the degrees of all vertices of G total degree of $G = 2 \times$ (number of edges of G)
- (C10.1.2) the total degree of a graph is even
- (P10.1.3) in any graph there are an even number of vertices of odd degree

trails, paths and circuits

Let G be a graph; let v and w be vertices of G.

- walk (from v to w): a finite alternating sequence of adjacent vertices and edges of G.
 - e.g. $v_0e_1v_1e_2\dots v_{n-1}e_nv_n$
 - length of walk: the number of edges. n
- ullet a **trivial walk** from v to v consists of the single vertex v
- trail (from v to w): a walk from v to w that does not contain a repeated edge
- path (from v to w): a trail that does not contain a repeated vertex
- · closed walk: walk that starts and ends at the same vertex
- circuit/cvcle: an undirected graph G(V, E) where
 - $V = \{x_1, x_2, \dots, x_n\}$
 - $E = \{\{x_1, x_2\}, \{x_2, x_3\}, \dots, \{x_{n-1}, x_n\}, \{x_n, x_1\}\}$
 - $n \in \mathbb{Z}_{\geq 3}$
- · aka a closed walk that does not contain a repeated edge
- simple circuit/cycle: does not have any other repeated vertex except the first and last
- (an undirected graph is) cyclic if it contains a loop/cycle

connectedness

- vertices v and w are connected $\Leftrightarrow \exists$ a walk from v to w
- graph G is connected $\Leftrightarrow \forall$ vertices $v, w \in V, \exists$ a walk from v to w

connected component

- · a connected subgraph of the largest possible size
- graph H is a connected component of graph $G \Leftrightarrow$
 - 1. H is a subgraph of G
 - 2. H is connected
 - 3. no connected subgraph of G has H as a subgraph and contains vertices or edges that are not in H

Euler circuit

- · Euler circuit: a circuit that contains every vertex and traverses every edge of G exactly once
- · Eulerian graph: graph that contains an Euler circuit

T10.2.3

Euler circuit \Leftrightarrow connected and every vertex has positive even degree

T10.2.4

Eulerian graph ⇔ every vertex has positive even degree

• Euler trail (from v to w): a sequence of adjacent edges and vertices that starts at v, ends at w, and passes through every vertex of G at least once, and traverses every edge of G exactly once.

C10.2.5

 \exists Euler trail \Leftrightarrow *G* is connected; v, w have odd degree; all other vertices of G have positive even degree

Hamiltonian circuit

- Hamiltonian circuit (for G): a simple circuit that includes every vertex of G.
 - does not need to include all the edges of G (unlike Euler circuit)
- · Hamilton(ian) graph: contains a Hamiltonian circuit
- If G is a Hamiltonian circuit, then G has subgraph H
 - 1. H contains every vertex of G
 - 2. H is connected
 - 3. H has the same number of edges as vertices
 - 4. every vertex of *H* has degree 2

matrix representations of graphs

- equal matrices ⇔ A and B are the same size and $a_{ij} = b_{ij}$ for all $i = 1, 2, \dots, m$ and $i = 1, 2, \dots, n$
- square matrix: equal number of rows and columns
- main diagonal: all entries $a_{11}, a_{22}, \ldots, a_{nn}$
- symmetric matrix $\Leftrightarrow \forall i, j \in \mathbb{Z}_{\leq n}^+(a_{ij} = a_{ji})$

adjacency matrix

The adjacency matrix of a **directed graph** *G* is the $n \times n$ matrix $A = (a_{ij})$ over the set of non-negative integers such that

$$a_{ij} = \text{number of arrows from } v_i \text{ to } v_j \ \forall i, j = 1, 2, \ldots, n$$

$$A = \begin{bmatrix} v_1 & 1 & 0 & 0 \\ v_2 & 1 & 1 & 0 & 0 \\ v_2 & 1 & 1 & 0 & 0 \end{bmatrix}$$

The adjacency matrix of an **undirected graph** *G* is the $n \times n$ matrix $A = (a_{ij})$ over the set of non-negative integers such that

$$a_{ij}$$
 = number of **edges** from v_i to $v_j \ \forall i, j = 1, 2, \dots, n$

 $A = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ v_2 & 0 & 0 & 0 & 1 \\ v_3 & 0 & 2 & 0 & 0 \\ v_4 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$

identity matrix

The $n \times n$ identity matrix,

$$I_n = (\delta_{ij}) = egin{cases} 1, & ext{if } i = j \ 0. & ext{if } i
eq j \end{cases} ext{ for all } i, j = 1, 2, \dots, n$$

matrix multiplication

scalar product

$$\begin{bmatrix} a_{i1} \ a_{i2} \ \dots \ a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

matrix product

Let
$$A=(a_{ij})$$
 be an $m imes k$ matrix and $B=(b_{ij})$ be a $k imes n$ matrix with real entries.
$$AB=(c_{ij})=\sum_{r=1}^k a_{ir}b_{rj}$$

× commutative
 √ associative

nth power of a matrix

For any $n \times n$ matrix **A**, the powers of A are defined as follows:

$$A^0 = I$$
 where I is the $n \times n$ identity matrix $A^n = AA^{n-1} \quad \forall n \in \mathbb{Z}_{\geq 1}$

counting walks of length N

number of walks of length n from v_i to v_j = the ij-th entry of A^n

isomorphism

graph isomorphism (≅) is an equivalence relation.

Let $G = (V_G, E_G)$ and $G' = (V_{G'}, E_{G'})$ be two graphs. $G \cong G' \Leftrightarrow \text{there exist bijections } g: V_G \to V_G' \text{ and }$ $h:E_G o E_G'$ that preserve the edge-edgepoint functions of G and G' in the sense that $\forall v \in V_G$ and $e \in E_G$, v is an endpoint of $e \Leftrightarrow q(v)$ is an endpoint of h(e).

planar graph

- a graph that can be drawn on a two-dimensional plane without edges crossing.
 - divides a plane into regions/faces (includes 'outside' the graph)

Euler's formula:

For a connected planar simple graph G = (V, E) with e = |E| and v = |V| and f faces, f = e - v + 2

Kuratowski's Theorem

A finite graph is planar \Leftrightarrow does not contain a subgraph that is a subdivision of the complete graph K_5 or the complete bipartite graph K_3

trees

- tree ⇔ graph that is circuit-free and connected
 - (L10.5.4) If G is a connected graph with n vertices and n-1 edges, then G is a tree.
- trivial tree: graph that comprises a single vertex
- forest ⇔ graph is circuit-free and not connected · a group of trees
- terminal vertex: a vertex of degree 1
- internal vertex: a vertex of degree greater than 1

rooted trees

- rooted tree: a tree in which there is one vertex that is distinguished from the others and is called the root.
- level (of a vertex): the number of edges along the unique path between it and the root
- height (of a rooted tree): the maximum level of any vertex of the tree
- · children, parent, siblings, ancestor, decendant

binary tree

- binary tree: a rooted tree in which every parent has at most 2 children
 - at most one left child and at most one right child
- full binary tree: a binary tree in which every parent has exactly 2 children
- (left/right) **subtree**: Given any parent v in a binary tree T, the binary tree whose root is the (left/right) child of v, whose vertices consist of the left child of v and all its descendants, and whose edges consist of all those edges of *T* that connect the vertices of the left subtree.

T10.6.1: Full Binary Tree Theorem

If T is a full binary tree with k internal vertices, then T has a total of 2k + 1 vertices and has k + 1 terminal vertices.

binary tree traversal

Breadth-First Search (BFS) · starts at the root

- · visits its adjacent vertices
- · visits the next level

Depth-First Search (DFS)

- pre-order
 - current vertex \rightarrow left subtree \rightarrow right subtree
- left subtree → current vertex → right subtree
- post-order
 - left subtree → right subtree → current vertex

pre-order DFS in-order DFS post-order DFS F-B-A-D-C-E-G-I-H A-B-C-D-E-F-G-H-I A-C-E-D-B-H-I-G-F

spanning trees

- spanning tree (for a graph G): a subgraph of G that contains every vertex of G and is a tree.
 - w(e) weight of edge e
 - w(G) total weight of G
- · weighted graph: each edge has an associated positive real number weight
 - · total weight: sum of the weights of all edges
- minimum spanning tree: least possible total weight compared to all other spanning trees

Kruskal's algorithm

For a connected weighted graph *G* with *n* vertices:

- 1. initialise T to have all the vertices of G and no edges.
- 2. let E be the set of all edges in G; let m=0
- 3. while (m < n 1)
- 3.1. find and remove the edge e in E of least weight
- 3.2. if adding e to the edge set of T does not produce a circuit:
 - i. add e to the edge set of T
 - ii. set m=m+1

Prim's algorithm

For a connected weighted graph G with n vertices:

- 1. pick any vertex v of G and let T be the graph with this
- 2. Let V be the set of all vertices of G except v
- 3. for (i = 0 to n 1)
- 3.1. find the edge e in G with the least weight of all the edges connected to T. let w be the endpoint of e.
- 3.2. add e and w to the edge and vertex sets of T
- 3.3. delete w from v

LOGICAL EQUIVALENCES		SET IDENTITIES			
commutative laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$	commutative laws	$A \cap B = B \cap A$	$A \cup B = B \cup A$
associative laws	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	associative laws	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
distributive laws	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	distributive laws	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
identity laws	$p \wedge true \equiv p$	$p \lor false \equiv p$	identity laws	$A \cap U = A$	$A \cup \emptyset = A$
idempotent laws	$p \wedge p \equiv p$	$p \lor p \equiv p$	idempotent laws	$A \cap A = A$	$A \cup A = A$
universal bound laws	$p \lor true \equiv true$	$p \land false \equiv false$	universal bound laws	$A \cap \emptyset = \emptyset$	$A \cup U = U$
negation laws	$p \lor \sim p \equiv true$	$p \land \sim p \equiv false$	complement laws	$A \cap \overline{A} = \emptyset$	$A \cup \overline{A} = U$
double negation law	$\sim (\sim p) \equiv p$		double complement law	$\overline{(\overline{A})} = A$	_
absorption laws	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$	absorption laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
De Morgan's Laws	$\sim (p \lor q) \equiv \sim p \land \sim q$	$\sim (p \land q) \equiv \sim p \lor \sim q$	De Morgan's Laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

proven:

number theory

- E1.1 the product of 2 consecutive odd numbers is always odd.
- E1.5 the difference between 2 consecutive squares is always odd
- E1.4 the sum of any 2 even integers is even
- T4.6.1 there is no greatest integer
- T8.2.8 there are infinitely many prime numbers
- T4.3.1 for all positive integers a and b, if a|b, then a < b.
- P4.6.4 for all integers n, if n^2 is even then n is even
- T4.2.1 all integers are rational numbers
- T4.2.2 the sum of any 2 rational numbers is rational
- E1.7 there exist irrational numbers p and q such that p^q is rational
- T4.7.1 $\sqrt{2}$ is irrational.
- T4.3.2 the only divisors of 1 are 1 and -1.

divisibility

- L8.1.5 Let $d, n \in \mathbb{Z}$ with $d \neq 0$. Then $d \mid n \Leftrightarrow n/d \in \mathbb{Z}$
- L8.1.9 Let $d, n \in \mathbb{Z}$. If $d \mid n$, then $-d \mid n$ and $d \mid -n$ and $-d \mid -n$
- L8.1.10 Let $d, n \in \mathbb{Z}$. If $d \mid n$ and $d \neq 0$, then |d| < |n|
- L8.2.5 **Prime Divisor Lemma** (non-standard name):
- Let $n \in \mathbb{Z}_{\geq 2}$. Then n has a prime divisor.
- P8.2.6 sizes of prime divisors:
- Let n be a composite positive integer. Then n has a prime divisor $p \leq \sqrt{n}$.

base-b representation

• T8.3.13 - $\forall n \in \mathbb{Z}^+, \exists ! \ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \ldots, a_\ell \in \{0, 1, \ldots, b-1\}$ such that ithe definition of base-b representation; holds.

logic

• T3.2.1 - negation of a universal statement:

- $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \mid \sim P(x)$
- T3.2.2 negation of an existential statement:
 - $\sim (\exists x \in D \mid P(x)) \equiv \forall x \in D, \sim P(x)$

sets

- T5.1.14 there exists a unique set with no element. It is denoted by ∅.
- E5.3.7 for all $A, B: (A \cap B) \cup (A \setminus B) = A$
- T5.3.11(1) let A, B be disjoint finite sets. Then $|A \cup B| = |A| + |B|$
- T5.3.11(2) let A_1, A_2, \ldots, A_n be pairwise disjoint finite sets. Then $|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|$
- T5.3.12 Inclusion-Exclusion Principle:
 - for all finite sets A and B, $|A \cup B| = |A| + |B| |A \cap B|$

induction

- L7.3.19 If $x \in \mathsf{WFF}^+(\Sigma)$, then assigning false to all elements of Σ makes xevaluate to false.
- T7.3.20 $\sim (\forall x \in \mathsf{WFF}(\Sigma), \exists y \in \mathsf{WFF}^+(\Sigma), y \equiv x) \equiv x$ $\exists x \in \mathsf{WFF}(\Sigma) \ \forall y \in \mathsf{WFF}^+(\Sigma) \ y \not\equiv x \text{ aka} \sim (\mathsf{not}) \text{ must be included in the}$ definition of WFF.

relations

- E9.2.11 The equality relation R on a set A has equivalence classes of the form $[x] = \{y \in A : x = y\} = \{x\} \text{ where } x \in A$
- T9.3.4 Let R be an equivalence relation on a set A. Then A/R is a partition of
- T9.3.5 If \mathscr{C} is a partition of A, then there is an equivalence relation of R on A such that $A/R = \mathscr{C}$.
- L9.5.5 Consider a partial order \leq on set A.
 - · A smallest element is minimal.

There is at most one smallest element.

graphs

CET IDENTITIES

- L10.2.1 Let G be a graph.
 - L10.2.1a If G is connected, then any two distinct vertices of G can be connected by a path
 - L10.2.1b If vertices v and w are part of a circuit in G and one edge is removed from the circuit, then there still exists a trail from v to w in G.
 - L10.2.1c If G is connected and G contains a circuit, then an edge of the circuit can be removed without disconnecting G.
- L10.5.1 Any non-trivial tree has at least one vertex of degree 1.
- T10.5.2 Any tree with n vertices (n > 0) has n 1 edges.
- L10.5.3 If G is any connected graph, C is any circuit in G, and one of the edges of C is removed from G, then the graph that remains is still connected.
- L10.5.4 If G is a connected graph with n vertices and n-1 edges, then G is a
- T10.6.1 If T is a full binary tree with k internal vertices, then T has a total of 2k + 1 vertices and has k + 1 terminal vertices.
- T10.6.2 For non-negative integers h, if T is any binary tree with height h and tterminal vertices, then $t < 2^h$.
- P10.7.1 -
 - 1. Every connected graph has a spanning tree.
 - 2. Any two spanning trees for a graph have the same number of edges

abbreviations

- L lemma
- E example
- P proposition
- T theorem