Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 3. 18. marca i później

Zadania

- 1. (a) Zmienna losowa X ma gęstość f(x)=2x dla $x\in[0,1]$. Obliczyć gęstość zmiennej $Y=X^2$.
 - (b) Zmienna losowa X ma gęstość $f(x)=1.5\cdot \sqrt{x}$ dla $x\in [0,1]$. Wyznaczyć gęstość zmiennej $Y=X^2$.
 - (c) Niech $X \sim U[-2, 2]$. Znaleźć rozkład (gęstość) zmiennej Y = |X|.
 - (d) Dla $X \sim U[-1, 1]$ wyznaczyć rozkłady zmiennych $Y = X^3$, $Z = X^2$.
- 2. Czy prawdą jest, że 13. dzień miesiąca powiązany jest z piątkiem? (1 stycznia 1601 31 grudnia 2000)

ZAŁOŻENIA: rok numer n jest jest przestępny jeżeli $n \equiv_4 0$, pod warunkiem, że $n \not\equiv_{100} 0$; dodatkowo – jeżeli $n \equiv_{400} 0$ (czyli rok 2000), to wcześniejszy warunek jest nieważny. Ile razy w 400-letnim cyklu 13-tym dniem miesiąca był poniedziałek, wtorek, . . . , niedziela?

Mówimy, że zmienne X,Y są niezależne, wtedy gdy – w wypadku dyskretnym – spełniony jest warunek $P(X=x_i,Y=y_k)=P(X=x_i)\cdot P(Y=y_k)$. W wypadku ciągłym warunek jest następujący: $\forall x,y\in\mathbf{R}\ f(x,y)=f_X(x)\cdot f_Y(y)$.

- 3. Zmienna X ma rozkład $B(n_1, p)$ a zmienna Y rozkład $B(n_2, p)$. Zmienne są niezależne. Wykazać, że zmienna Z = X + Y ma rozkład $B(n_1 + n_2, p)$.
- 4. Niezależne zmienne losowe X,Y mają rozkład Poissona z parametrami λ_1 i λ_2 . Wykazać, że zmienna Z=X+Y ma rozkład Poissona z parametrem $\lambda_1+\lambda_2$.
- 5. $\Omega = (0,5)$. \mathcal{F} (σ -ciało zdarzeń) jest takie, że $(1,3) \in \mathcal{F}$, $(2,4) \in \mathcal{F}$. Wymienić (wyznaczyć) wszystkie elementy rodziny \mathcal{F} .
- 6. Ω, \mathcal{F} jak w zadaniu 5. Podać przykład funkcji $X:\Omega\to\mathbf{R},$ która nie jest zmienną losową.
- 7. Zmienna losowa (X,Y) ma gęstość postaci f(x,y)=15 x^2y na obszarze ograniczonym prostymi y=0, x=0, y=2-2x. Wyznaczyć gęstość brzegową $f_1(x)$ oraz wartość oczekiwaną EX.
- 8. Dwuwymiarowa gęstość zmiennej (X,Y) to f(x,y) = 6xy, dla 0 < x < 2, $0 < y < 1 \frac{1}{2}x$. Znaleźć gęstości brzegowe $f_1(x), f_2(y)$ zmiennych X, Y.
- 9. Czytelnie i starannie bez korzystania z notatek napisać wielkie i małe greckie litery: alfę α , betę β , (d)zetę ζ , etę η , lambdę λ , chi χ , ksi ξ , fi ϕ , rho ρ , sigmę σ .
- 10. Niech X będzie zmienną o rozkładzie geometrycznym ($X \sim \text{Geom}(p)$). Udowodnić, że $\mathrm{E}(X) = \frac{1}{p}, \ \mathrm{V}(X) = \frac{1-p}{p^2}.$
- 11. Na obszarze $[0,2] \times [0,1]$ określona jest zmienna losowa o gęstości $f(x,y=x\,y)$. Czy zmienne brzegowe X,Y są niezależne?
- 12. Na obszarze ograniczonym punktami (0,0),(0,1),(1,0) określona jest zmienna losowa o gęstości $f(x,y=24\ xy)$. Czy zmienne brzegowe X,Y są niezależne?