Университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Моделирование»

Учебно-исследовательская работа УИР 3: «Исследование СМО произвольного вида»

Выполнили: студенты группы Р34112 Провоторов Александр Владимирович, Ганыс Герман Витальевич Преподаватель: Алиев Тауфик Измайлович

1. Цель работы

Исследование свойств простейших одно- и многоканальных СМО типа G/G/K/L с однородным потоком заявок с использованием системы имитационного моделирования GPSS при различных предположениях о параметрах структурно-функциональной организации и нагрузки в соответствии с заданной программой исследований.

2. Задание

В качестве исходной модели можно воспользоваться простейшей базовой моделью одноканальной СМО или моделью системы, выбранной в качестве наилучшей в УИР 2 (на усмотрение исследователя), задав в качестве параметров входящего потока заявок (среднее значение и коэффициент вариации интервалов между поступающими в систему заявками) значения, полученные в процессе обработки случайной последовательности в УИР 1. При этом необходимо скорректировать предлагаемую имитационную GPSS модель СМО типа G/G/K/L (файл smo.gps).

В процессе исследований необходимо оценить влияние на такие характеристики системы, как:

- длительность переходного процесса в системе;
- среднее время ожидания (пребывания) заявок в системе;
- вероятность потери заявок следующих параметров нагрузки и структуры:
 - ightharpoonup загрузки системы (в интервале от 0,1 до 0,9);
- ➤ характера потока поступающих в систему заявок (заданная трасса; аппроксимирующий поток; простейший поток);
 - ➤ законов распределения длительности обслуживания;
 - ➤ количества приборов в системе (от 1 до 3);
 - ➤ ёмкости накопителя.

Результаты исследований рекомендуется представлять в форме таблиц, примерная форма которых приведена ниже, и графиков, отражающих зависимости указанных характеристик от варьируемых параметров.

Указание: длительность переходного процесса измеряется в количестве заявок, прошедших через систему.

3. Проведенные исследования

3.1. Исходная модель

По результатам выполнения УИР 2 наилучшей моделью выбрана СИСТЕМА 2.

Pucyнoк 1. CMO CИСТЕМА 2

Вариант	Интенс. потока	Ср.длит. обслуж.	Вероятность занятия прибора					
	λ, 1/c	b, c	П1	П2	П3			
19	0,9	2	0,5	0,3	0,2			

И такие характеристики мы получили в итоге:

Таблица 2. Характеристики СИСТЕМА_2

Характеристика	Прибор	Расчетная формула	СИСТ. 2
	П1	$y_1 = \lambda_1 \mathbf{b}_1$	0,9000
Царпунка	П2	$y_2 = \lambda_2 \mathbf{b}_2$	0,5400
Нагрузка	П3	$y_3 = \lambda_3 \mathbf{b}_3$	0,3600
	Сумм.	$y = y_1 + y_2 + y_3$	1,8000
	П1	$\rho_1 = p_2 + p_5 + p_6 + p_8 + p_{10} + p_{11} + p_{12} + p_{13} + p_{14} + p_{16}$	
		$+ p_{17} + p_{18} + p_{19} + p_{20} + p_{21} + p_{22} + p_{23} + p_{24}$	0,7091
Загрузка	П2	$\rho_2 = p_3 + p_6 + p_7 + p_9 + p_{11} + p_{13} + p_{14} + p_{15} + p_{16} + p_{18} $ $+ p_{19} + p_{20} + p_{21} + p_{22} + p_{23} + p_{24}$	0,4539
	П3	$\rho_3 = p_4 + p_8 + p_9 + p_{12} + p_{14} + p_{15} + p_{17} + p_{19} + p_{20} + p_{22} + p_{23} + p_{24}$	0,2645
	Сумм.	$\rho = (\rho_1 + \rho_2 + \rho_3)/3$	0,4758
	П1	$\pi = p_{10} + p_{16} + p_{17} + p_{21} + p_{22} + p_{24}$	0,2119
	П2	$\pi = p_7 + p_{13} + p_{15} + p_{18} + p_{20} + p_{21} + p_{23} + p_{24}$	0,1591
Вероятность потери	П3	$\pi = p_4 + p_8 + p_{12} + p_{14} + p_{15} + p_{17} + p_{19} + p_{20} + p_{22} + p_{23} + p_{24}$	0,2418
	Сумм.	$\pi = p_4 + p_7 + p_8 + p_{10} + p_{12} + p_{13} + p_{14} + p_{15} + p_{16} + $ $p_{17} + p_{18} + p_{19} + p_{20} + p_{21} + p_{22} + p_{23} + p_{24}$	0,2043
	П1	$l_1 = p_5 + p_{11} + p_{12} + p_{18} + p_{19} + p_{23} + 2 \cdot (p_{10} + p_{16} + p_{17} + p_{21} + p_{22} + p_{24})$	0,6594
Длина очереди	П2	$l_2 = p_7 + p_{13} + p_{15} + p_{18} + p_{20} + p_{21} + p_{23} + p_{24}$	0,1591
•	П3	$1_3 = 0$	0,0000
	Сумм.	$1 = 1_1 + 1_2 + 1_3$	0,8185
	П1	$m_1 = p_2 + p_6 + p_8 + p_{13} + p_{14} + p_{20} + 2 \cdot (p_5 + p_{11} + p_{12} + p_{18} + p_{19} + p_{23}) + 3 \cdot (p_{10} + p_{16} + p_{17} + p_{21} + p_{22} + p_{24})$	1,3685
Число заявок находящихся в	П2	$m_2 = p_3 + p_6 + p_9 + p_{11} + p_{14} + p_{16} + p_{19} + p_{22} + 2 \cdot (p_7 + p_{13} + p_{15} + p_{18} + p_{20} + p_{21} + p_{23} + p_{24})$	0,6130
системе	П3	$m_3 = p_4 + p_8 + p_9 + p_{12} + p_{14} + p_{15} + p_{17} + p_{19} + p_{20} + p_{22} + p_{23} + p_{24}$	0,2645
	Сумм.	$m = m_1 + m_2 + m_3$	2,2460
	П1	$\lambda'_1 = (1 - \pi_1)\lambda_1$	0,3546
Произронито и ност	П2	$\lambda'_2 = (1 - \pi_2)\lambda_2$	0,2270
Производительность	П3	$\lambda'_3 = (1 - \pi_3)\lambda_3$	0,1365
	Сумм.	$\lambda' = \lambda'_1 + \lambda'_2 + \lambda'_3$	0,7182

Хар-ка	Прибор	Расчетная формула	СИСТ. 2
	П1	$\eta = 1 - \rho_1$	0,2909
Коэффициент	П2	$\eta = 1 - \rho_2$	0,5461
простоя	П3	$\eta = 1 - \rho_3$	0,7355
	Сумм.	$\eta = 1 - \rho$	0,5242

	П1	$w_1 = l_1 / \lambda'_1$	1,8593
Время ожидания	П2	$w_2 = l_2 / \lambda'_2$	0,7007
	П3	$w_3 = l_3 / \lambda'_3$	0,0000
	Сумм.	$w = 1/\lambda'$	1,1397
	П1	$u_1 = w_1 + b_1$	3,8593
Dnova unoficinatura	П2	$u_2 = w_2 + b_2$	2,3007
Время пребывания	П3	$u_3 = w_3 + b_3$	2,0000
	Сумм.	u = w + b	3,1397

3.2. Сравнение результатов, полученных с помощью имитационного моделирования и метода марковских процессов для СМО, выбранной в качестве наилучшей в УИР 2

Таблица 3. Сравнение характеристик

Vanagaranyaaray	Прибор	Метод марковских	Имитационное	Степень различия,
Характеристика	приоор	процессов	моделирование	%
	П1	0,709	0,753	5,8300
Darmyaya	П2	0,454	0,455	0,2418
Загрузка,	П3	0,265	0,201	31,5920
	Сумм.	0,476	0,470	1,2987
	П1	0,212	0,253	16,2119
Danagawaan wagany	П2	0,159	0,159	0,1882
Вероятность потери	П3	0,242	0,202	19,8929
	Сумм.	0,204	0,218	6,1706
	П1	0,659	0,757	12,8930
Пания опороди	П2	0,159	0,159	0,0629
Длина очереди	П3	0,000	0,000	0,0000
	Сумм.	0,819	0,916	10,6441
11	П1	1,369	1,804	24,1429
Число заявок	П2	0,613	0,730	16,0055
находящихся в системе	П3	0,265	0,360	26,5278
CHCICMC	Сумм.	2,246	2,970	24,3771
	П1	0,355	0,336	5,4745
Произродители мести	П2	0,227	0,227	0,0167
Производительность	П3	0,137	0,144	5,0089
	Сумм.	0,718	0,704	2,0069

Характеристика	Прибор	Метод марковских	Имитационное	Степень различия,
ларактеристика	приоор	процессов	моделирование	%
	П1	0,291	0,247	17,7733
Коэффициент	П2	0,546	0,545	0,2018
простоя	П3	0,736	0,799	7,9474
	Сумм.	0,524	0,530	1,1503
	П1	1,859	2,010	7,4975
Рима оминация	П2	0,701	0,701	0,0428
Время ожидания	П3	0,000	0,000	0,0000
	Сумм.	1,140	1,300	12,3308
	П1	3,859	4,009	3,7341
D	П2	2,301	2,703	14,8835
Время пребывания	П3	2,000	2,000	0,0000
	Сумм.	3,140	3,300	4,8576

Как мы видим, исходя из моделирования, в основном, результаты незначительно колеблются относительно Метода Марковских процессов, однако в случае больших отклонений можно предположить, что количество итераций для подсчета результатов было не настолько велико (10 миллионов в случае GPSS) или были сделаны незначительные ошибки, связанные с невнимательностью, поэтому, к примеру, параметр загрузки отличается на 31%, что является довольно большим значением.

3.3. Исследование влияния законов распределения интервалов между заявками на среднее время ожидания, пребывания заявок в системе и вероятность потерь

3.3.1.Описание моделей – вариантов организации системы

Таблица 4. Описание исследуемых вариантов организации системы

Номер Вариант	a	1	2	3	4	5	6	7	8	9
Количество при	боров	3	3	3	3	3	3	3	3	3
Емкость накопи	теля	3	3	3	3	3	3	3	3	3
Интервалы между	Ср. значение	14,093	14,093	14,093	14,093	14,093	14,093	14,093	14,093	14,093
заявками входящего потока	Вид потока	П	Т	A	П	Т	A	П	Т	A
Длительность обслуживания	Ср. значение	13,831	13,831	13,831	8,842	8,842	8,842	4,484	4,484	4,484
заявок	Коэф. вариации	1	3,126	3,109	1	3,126	3,109	1	3,126	3,109

3.3.2. Результаты исследования влияния распределения интервалов простейшего потока

Таблица 5. Результаты исследования влияния распределения интервалов простейшего потока

Исх.данные	(вариант	K	Е	поток	a	b	КВ			
1):		3	2+1	прост.	14,093	13,831	1			
Заявок	Потери	Вер-ть	П(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	0	0,00	0,00	0,54	0,30	8,89	-	7,92	4,91	61,98
20	1	0,05	0,00	0,35	0,22	7,01	21,13	8,08	3,54	43,83
50	2	0,04	20,00	0,34	0,28	7,86	12,08	10,16	2,82	27,72
100	7	0,07	75,00	0,38	0,29	11,99	52,51	29,22	5,73	19,60
200	11	0,06	21,43	0,32	0,28	10,29	14,12	26,82	3,72	13,86
500	32	0,06	16,36	0,34	0,29	10,91	5,97	25,05	2,20	8,77
1000	67	0,07	4,69	0,34	0,29	10,47	4,03	24,25	1,50	6,20
5000	411	0,08	22,69	0,37	0,30	11,35	8,45	23,22	0,64	2,77
10000	796	0,08	3,16	0,37	0,30	11,40	0,39	22,81	0,45	1,96
50000	4095	0,08	2,89	0,37	0,30	11,61	1,90	23,64	0,21	0,88
100000	8109	0,08	0,99	0,37	0,30	11,64	0,22	23,56	0,15	0,62
500000	40549	0,08	0,01	0,37	0,30	11,74	0,89	23,82	0,07	0,28

Таблица 6. Результаты исследования влияния распределения интервалов в потоке

Исх.данн	ые (вариант	K	Е	поток	a	b	КВ			
2):		3	2+1	трасса	14,093	13,831	3,126			
Заявок	Потери	Вер-ть	П(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	4	0,40	-	1,47	0,53	12,12	-	8,16	5,06	61,98

20	8	0,40	0,00	1,66	0,49	18,27	50,70	24,09	10,56	43,83
50	19	0,38	5,00	1,85	0,57	21,57	18,11	29,59	8,20	27,72
100	35	0,35	7,89	1,68	0,63	20,18	6,46	29,52	5,79	19,60
200	75	0,38	7,14	1,78	0,66	25,05	24,16	32,97	4,57	13,86
500	179	0,36	4,53	1,64	0,67	23,00	8,21	32,61	2,86	8,77
1000	392	0,39	9,50	1,73	0,67	25,60	11,33	35,66	2,21	6,20
5000	2038	0,41	3,98	1,76	0,67	26,39	3,09	36,13	1,00	2,77
10000	4151	0,42	1,84	1,77	0,67	27,02	2,36	37,09	0,73	1,96
50000	20776	0,42	0,10	1,79	0,67	27,55	1,97	37,02	0,32	0,88
100000	41583	0,42	0,07	1,79	0,67	27,60	0,18	37,15	0,23	0,62
500000	208024	0,42	0,05	1,80	0,67	27,69	0,33	37,18	0,10	0,28

Таблица 7. Результаты исследования влияния распределения интервалов аппр. потока

Исх.данн	ые (вариант	K	Е	поток	a	b	КВ			
1):		3	2+1	аппр.	14,093	13,831	3,109			
Заявок	Потери	Вер-ть	Π(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	8	0,80	-	1,75	0,67	9,48	-	14,46	8,96	61,98
20	17	0,85	6,25	2,18	0,80	14,98	58,01	20,52	8,99	43,83
50	40	0,80	5,88	2,42	0,76	20,89	39,51	24,93	6,91	27,72
100	79	0,79	1,25	2,54	0,81	26,03	24,62	28,85	5,66	19,60
200	154	0,77	2,53	2,57	0,82	28,95	11,19	32,23	4,47	13,86
500	397	0,79	3,12	2,62	0,87	31,86	10,05	34,10	2,99	8,77
1000	794	0,79	0,00	2,62	0,87	33,69	5,75	36,06	2,24	6,20
5000	3994	0,80	0,60	2,67	0,87	35,08	4,14	37,70	1,05	2,77
10000	8039	0,80	0,64	2,68	0,87	36,04	2,72	38,92	0,76	1,96
50000	40306	0,81	0,28	2,69	0,88	36,56	1,44	39,29	0,34	0,88
100000	80739	0,81	0,16	2,69	0,88	37,09	1,47	39,74	0,25	0,62
500000	404164	0,81	0,12	2,69	0,88	37,42	0,87	40,03	0,11	0,28

Рисунок 2. Зависимость характеристик СИСТЕМА_2 от вида потока

Как мы видим, характер потока имеет большое значение на производительность самой системы. Если же в случае Марковского потока, очередь хотя-бы каким-либо образом оптимизирована и среднее время ожидания (11,75) примерно равно среднему времени обрабатывания 1 заявки (13,83), то в остальных случаях ситуация драматичнее из-за того, что в УИР1 был задан абсолютно случайный поток, без зависимостей и периодичностей. Если же мы возьмем аппроксимацию из того потока, то ситуация станет еще плачевнее и вместо 27,69 мы получим уже 37,42. Соответственно из-за случайности и неопределенности потока растут и очереди, а также и вероятности потерь, так как в один момент может не быть совсем заявок, а в другой они навалились горой и приборы перегружены.

Таблица 8. Соотношение начала стабильных результатов с Вариантом

B4	При 50
B5	При 200
B6	При 500

Таблица 9. Результаты исследования влияния распределения интервалов простейшего потока

Исх.дан	ные	K	Е	поток	a	b	КВ			
(вариант	r 4):	3	2+1	прост.	14,093	8,842	1			
Заявок	Потери	Вер-ть	П(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	0	0,00	0,00	0,40	0,19	7,20	-	12,61	7,81	61,98
20	0	0,00	0,00	0,23	0,14	4,65	35,42	11,63	5,10	43,83
50	0	0,00	0,00	0,18	0,19	3,95	15,05	13,58	3,77	27,72
100	3	0,03	0,00	0,19	0,20	5,06	28,04	16,87	3,31	19,60
200	7	0,04	16,67	0,14	0,19	4,06	19,76	15,46	2,14	13,86
500	17	0,03	2,86	0,15	0,19	4,62	13,79	18,29	1,60	8,77
1000	36	0,04	5,88	0,15	0,19	4,37	5,50	17,21	1,07	6,20
5000	174	0,03	3,33	0,17	0,20	4,72	8,13	19,58	0,54	2,77
10000	349	0,03	0,29	0,17	0,20	4,99	5,61	20,10	0,39	1,96
50000	1764	0,04	1,09	0,17	0,20	4,91	1,62	19,82	0,17	0,88
100000	3450	0,03	2,21	0,16	0,20	4,87	0,82	19,70	0,12	0,62
500000	17673	0,04	2,45	0,17	0,20	4,96	2,01	19,97	0,06	0,28

Таблица 10. Результаты исследования влияния распределения интервалов в потоке

Исх.дан	ные	K	Е	поток	a	b	КВ			
(вариант	г 5):	3	2+1	трасса	14,093	8,842	3,126			
Заявок	Потери	Вер-ть	П(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	4	0,40	-	1,54	0,37	13,33	-	16,00	9,92	61,98
20	4	0,20	50,00	1,29	0,41	10,23	23,32	11,28	4,94	43,83
50	8	0,16	20,00	1,23	0,48	10,17	0,58	15,16	4,20	27,72
100	21	0,21	31,25	1,32	0,52	13,70	34,75	21,28	4,17	19,60
200	43	0,22	2,38	1,20	0,54	12,46	9,03	21,60	2,99	13,86
500	104	0,21	3,26	1,09	0,54	11,82	5,17	21,13	1,85	8,77
1000	220	0,22	5,77	1,14	0,54	12,37	4,68	21,63	1,34	6,20
5000	1163	0,23	5,73	1,19	0,55	12,90	4,25	21,96	0,61	2,77
10000	2389	0,24	2,71	1,20	0,55	13,19	2,29	22,27	0,44	1,96
50000	11958	0,24	0,11	1,22	0,55	13,48	2,21	22,39	0,20	0,88
100000	23917	0,24	0,00	1,23	0,56	13,59	0,79	22,42	0,14	0,62
500000	119984	0,24	0,33	1,24	0,56	13,69	0,74	22,61	0,06	0,28

Таблица 11. Результаты исследования влияния распределения интервалов аппр. потока

Исх.дан	ные	K	Е	поток	a	b	КВ			
(вариант	г 6):	3	2+1	аппр.	14,093	8,842	3,109			
Заявок	Потери	Вер-ть	П(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	7	0,70	-	1,64	0,62	5,72	-	7,63	4,73	61,98
20	13	0,65	7,14	1,97	0,72	9,84	71,93	13,61	5,96	43,83
50	32	0,64	1,54	2,38	0,71	13,03	32,50	15,51	4,30	27,72
100	68	0,68	6,25	2,51	0,78	17,56	34,75	20,18	3,96	19,60
200	132	0,66	2,94	2,33	0,85	14,42	17,90	16,90	2,34	13,86
500	345	0,69	4,55	2,49	0,86	18,97	31,55	20,92	1,83	8,77
1000	681	0,68	1,30	2,44	0,85	18,42	2,88	20,79	1,29	6,20
5000	3540	0,71	3,96	2,48	0,82	21,54	16,91	24,09	0,67	2,77
10000	7103	0,71	0,32	2,49	0,83	21,82	1,34	24,32	0,48	1,96
50000	35669	0,71	0,43	2,50	0,83	22,09	1,20	24,67	0,22	0,88
100000	71541	0,72	0,28	2,51	0,83	22,44	1,59	24,93	0,15	0,62
500000	358461	0,72	0,21	2,51	0,83	22,72	1,23	25,29	0,07	0,28

Как мы видим по графику, на аппроксимирующем распределении все также потери, длина очереди и среднее время ожидания многократно превышают эти характеристики. Однако, что логично, при меньшей загрузке самой системы, в целом производительность этой системы возрастает, поэтому и потери равны не 0.81, а 0.72.

Таблица 12. Соотношение начала стабильных результатов с Вариантом

B4	При 50
B5	При 100
B6	При 200

Таблица 13. Результаты исследования влияния распределения интервалов простейшего потока

Исх.данні	ые	K	Е	поток	a	b	КВ			
(вариант	7):	3	2+1	прост.	14,093	4,48	1			
Заявок	Потери	Вер-ть	П(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	0	0,00	-	0,21	0,10	3,28	-	8,75	5,42	61,98
20	0	0,00	0,00	0,10	0,08	1,82	44,66	5,81	2,55	43,83
50	0	0,00	0,00	0,05	0,14	1,16	35,98	7,56	2,09	27,72
100	0	0,00	0,00	0,04	0,10	1,15	0,95	7,22	1,42	19,60
200	1	0,01	0,00	0,04	0,10	1,16	0,52	10,38	1,44	13,86
500	3	0,01	20,00	0,04	0,10	1,30	11,93	11,37	1,00	8,77
1000	8	0,01	33,33	0,04	0,10	1,26	2,70	10,09	0,63	6,20
5000	51	0,01	27,50	0,05	0,10	1,38	9,52	10,09	0,28	2,77
10000	106	0,01	3,92	0,05	0,10	1,34	3,04	10,13	0,20	1,96
50000	565	0,01	6,60	0,04	0,10	1,31	2,02	9,89	0,09	0,88
100000	1077	0,01	4,69	0,04	0,10	1,28	2,06	9,71	0,06	0,62
500000	5511	0,01	2,34	0,04	0,10	1,28	0,47	9,66	0,03	0,28

Таблица 14. Результаты исследования влияния распределения интервалов в потоке

Исх.данны	ые	K	Е	поток	a	b	КВ			
(вариант 8	3):	3	2+1	трасса	14,093	4,48	1			
Заявок	Потери	Вер-ть	Π(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	0	0,00	-	0,38	0,30	2,00	-	3,20	1,99	61,98
20	0	0,00	0	0,24	0,28	1,29	35,76	2,57	1,13	43,83
50	1	0,02	0	0,32	0,31	2,27	76,67	7,62	2,11	27,72
100	4	0,04	100,00	0,42	0,33	3,38	48,77	9,82	1,92	19,60
200	7	0,04	12,50	0,37	0,34	2,96	12,40	9,12	1,26	13,86
500	17	0,03	2,86	0,33	0,34	2,92	1,25	9,48	0,83	8,77
1000	35	0,04	2,94	0,30	0,34	2,61	10,64	8,88	0,55	6,20
5000	260	0,05	48,57	0,40	0,35	3,37	28,86	10,24	0,28	2,77
10000	513	0,05	1,35	0,40	0,35	3,37	0,12	10,34	0,20	1,96
50000	2572	0,05	0,27	0,39	0,35	3,32	1,48	10,32	0,09	0,88
100000	5066	0,05	1,52	0,39	0,35	3,31	0,21	10,28	0,06	0,62
500000	25795	0,05	1,84	0,39	0,35	3,33	0,39	10,37	0,03	0,28

Таблица 15. Результаты исследования влияния распределения интервалов аппр. потока

Исх.даннь	ые	K	Е	поток	a	b	КВ			
(вариант 9	9):	3	2+1	аппр	14,093	4,48	1			
Заявок	Потери	Вер-ть	П(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	5	0,50	-	1,54	0,59	4,05	-	5,06	3,13	61,98
20	9	0,45	10,00	1,58	0,58	4,94	22,00	6,36	2,79	43,83
50	24	0,48	6,67	1,93	0,62	7,52	52,42	9,49	2,63	27,72
100	45	0,45	6,25	1,93	0,66	7,98	6,09	9,46	1,85	19,60
200	99	0,50	10,00	2,10	0,70	10,04	25,84	11,68	1,62	13,86
500	230	0,46	7,07	1,96	0,72	8,64	13,94	10,92	0,96	8,77
1000	500	0,50	8,70	2,04	0,71	9,73	12,58	12,14	0,75	6,20
5000	2541	0,51	1,64	2,05	0,71	9,71	0,19	12,34	0,34	2,77
10000	5162	0,52	1,57	2,06	0,71	9,94	2,39	12,63	0,25	1,96

50000	25623	0,51	0,72	2,05	0,72	9,84	1,06	12,24	0,11	0,88
100000	51258	0,51	0,02	2,05	0,72	9,85	0,09	12,27	0,08	0,62
500000	256817	0,51	0,21	2,05	0,73	9,86	0,16	12,29	0,03	0,28

Как мы видим, при параметре загрузки 0.3с, характеристики системы меняются таким образом, что время ожидания составляет не более 9.86с, что говорит о том, что практически каждая новопришедшая заявка обрабатывается почти сразу же (исходя из того, что а = 14.093с). Очереди как раз скапливаются тогда, когда потоком идет сразу много заявок, тогда хвост в виде 0.247с начинает накапливаться, что, при переполнении очереди может приводить к очередям. С учетом распределения в аппроксимированном потоке, который является худшим в данном случае, можно сделать вывод о том, что в некоторые моменты времени заявки переполняют очередь, а в другие моменты система простаивает.

Таблица 16. Соотношение начала стабильных результатов с Вариантом

B4	При 100
B5	При 200
B6	При 500

По совокупности 3-х пунктов можно сделать вывод о том, что с уменьшением параметра загрузки, система начинает работать быстрее, но, кроме этого, можно сделать вывод о зависимости установления режима функционирования и о текущем параметре. Чем меньше параметр загрузки, тем больше должен быть объем потока, поступающего в систему, чтобы она вошла в режим, (близкий к) установившемуся. Также можно сделать вывод о том, что чем сложнее функция распределения потока, тем больше будут очереди, время ожидания и количество потерь, поскольку скапливание большого количества заявок (из-за того, что параметр «а» - всего лишь усредненное значение), приводит к перегрузки системы.

Поскольку коэффициент вариации при Экспоненциальном распределении равен 1, а при гиперэкспоненциальном, коим была задана трасса и аппроксимация, в 3 раза выше, то и характеристики системы, соответственно, получились больше, что приводит нас к выводу о том, что чем меньше коэффициент вариации, тем меньше время ожидания и очереди.

3.4. Исследование влияния емкости накопителя среднее время ожидания, пребывания и вероятность потерь

3.4.1. Описание моделей – вариантов организации системы

Так как наибольший процент потерь присутствовал в модели с Аппроксимирующим потоком и загрузкой равной 0,9, то мы приняли решение проводить эксперимент с увеличением накопителя именно для нее.

Таблица 17. Описание исследуемых вариантов организации системы

Номер варианта		2_1	2_2	2_3
Количество приборов		3	3	3
Емкость накопителя	4+2	8+4	16+8	
Интервалы между заявками входящего	Интервалы между заявками входящего Ср. значение			
потока	Вид потока	аппр.	аппр.	аппр.
Длительность обслуживания заявок	Ср. значение	13,831	13,831	13,831
длительность оослуживания заявок	Коэфф. Вариации	3,109	3,109	3,109

Таблица 18. Результаты исследования влияния размера буффера

Исх.дани	ные	K	Е	поток	a	b	КВ			
(вариант	1):	3	4+2	аппр.	14,093	13,831	3,109			
Заявок	Потери	Вер-ть	П(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	8	0,80	-	3,28	0,70	12,06	-	15,24	9,45	61,98
20	16	0,80	0,00	4,18	0,81	21,69	79,87	26,71	11,71	43,83
50	39	0,78	2,50	4,86	0,75	34,63	59,64	39,82	11,04	27,72
100	79	0,79	1,28	5,27	0,81	48,05	38,77	52,53	10,30	19,60
200	152	0,76	3,80	5,30	0,85	52,81	9,90	55,47	7,69	13,86
500	395	0,79	3,95	5,52	0,88	64,87	22,82	66,42	5,82	8,77
1000	789	0,79	0,13	5,52	0,88	67,10	3,45	68,48	4,24	6,20
5000	3979	0,80	0,86	5,62	0,88	73,85	10,06	75,20	2,08	2,77
10000	8006	0,80	0,60	5,62	0,88	75,37	2,05	76,50	1,50	1,96

Таблица 19. Результаты исследования влияния размера буффера

Исх.данны	ые (вариант	K	Е	поток	a	b	КВ			
2_2):		3	8+4	аппр.	14,093	13,831	3,109			
Заявок	Потери	Вер-ть	П(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	7	0,70	-	6,62	0,79	17,62	-	19,46	12,06	61,98
20	13	0,65	7,14	7,90	0,81	25,27	43,38	28,09	12,31	43,83
50	38	0,76	16,92	9,65	0,77	53,04	109,91	58,20	16,13	27,72
100	77	0,77	1,32	10,58	0,82	77,73	46,55	83,16	16,30	19,60
200	151	0,76	1,95	10,94	0,85	95,74	23,17	99,80	13,83	13,86
500	395	0,79	4,64	11,37	0,88	124,65	30,20	127,40	11,17	8,77
1000	787	0,79	0,38	11,48	0,88	129,32	3,75	130,78	8,11	6,20
5000	3988	0,80	1,35	11,60	0,87	152,61	18,01	153,01	4,24	2,77
10000	7995	0,80	0,24	11,62	0,89	151,80	0,53	152,00	2,98	1,96

Исх.данные (вариант		K	Е	поток	a	b	КВ			
2_3):		3	16+8	аппр.	14,093	13,831	3,109			
Заявок	Потери	Вер-ть	П(%)	Длина	Загрузка	Ср.вр.ож.	O(%)	СКО	Дов.инт.(0.95)	Д(%)
		потери		очер.				вр.ож.		
10	3	0,30	-	11,42	0,82	23,09	-	25,08	15,55	61,98
20	12	0,60	100,00	14,99	0,77	40,39	74,90	41,14	18,03	43,83
50	33	0,66	10,00	18,34	0,77	68,45	69,48	72,15	20,00	27,72
100	74	0,74	12,12	20,43	0,84	114,49	67,25	119,99	23,52	19,60
200	148	0,74	0,00	21,76	0,85	153,61	34,17	158,57	21,98	13,86
500	394	0,79	6,49	22,86	0,88	224,73	46,30	229,08	20,08	8,77
1000	785	0,79	0,38	23,21	0,88	243,53	8,37	246,06	15,25	6,20
5000	3983	0,80	1,48	23,54	0,87	304,13	24,89	304,92	8,45	2,77
10000	7995	0,80	0,36	23,59	0,89	305,81	0,55	306,21	6,00	1,96

По полученным графикам можно сделать вывод о том, что увеличение очереди не является панацеей для уменьшения потерь. Увеличение буфера, в целом, помогает, поскольку сама возможность отказать меньшему количеству заявок позволяет нам повысить производительность системы за счет того, что приборы чаще будут заняты делом даже в том, случае, когда был отказ в обработке «хвоста» и к моменту принятия следующей заявки, поступление уже кончилось. В таком случае все еще будет возможность обработать большее количество заявок.

Как мы видим, максимальные вероятности потерь одинаковы во всех случаях, когда система пришла в стационарный режим. Длина очереди и среднее время ожидания стремятся соответственно к l и l*b. Что логично, в эксперименте общий объем буфера увеличивался в 2 раза и характеристики росли соответственно почти в 2 раза, практически линейно.

B2_1	При 500
B2_2	При 500
B2_3	При 500

Как мы видим, порог вхождения в стационарное состояние не изменился и остался на уровне 500, как и при емкости 2+1, что значит, что даже и при общей емкости 3 накопитель можно считать неограниченным (то есть даже при общей емкости накопителя равной 172, система все-равно переходит в стационарный режим при 500 заявках).

4. Вывод

В результате исследований можно сформулировать некоторые свойства, присущие нашей системе:

- 1. Структурные параметры, а точнее, емкость накопителя влияют на режим функционирования системы, а точнее: При увеличении емкости накопителя длительность переходного режима увеличивается (представлено на таблицах 5.4-5.7 и соответствующих рисунках). Также незначительно уменьшается процент потерянных заявок для большого количество, и заметно уменьшается для малого количества, поскольку у системы больше возможностей хранить и не терять заявки.
- 2. При общей емкости накопителя >= 3 нашу емкость можно считать бесконечной и увеличение ее размера перестает влиять на длительность переходного режима и характеристики системы
- 3. Нагрузка непосредственно влияет на длительность переходного режима, чем выше нагрузка, тем длительнее переходной режим для системы из УИР 2. Аналогично нагрузка влияет и на время ожидания/пребывания и вероятность потерь.
- 4. Характер потока поступления влияет на исследуемые характеристики системы, поскольку при коэффициенте вариации из УИР1 и трассы и аппроксимирующего потока из УИР1 системе было сложнее справиться с потоком и чаще возникали потери, а также повышались время ожидания/пребывания.