

Sample Paper-03 (solved) Mathematics Class - XI

Time allowed: 3 hours Maximum Marks: 100

General Instructions:

a) All questions are compulsory.

- b) The question paper consists of 26 questions divided into three sections A, B and C. Section A comprises of 6 questions of one mark each, Section B comprises of 13 questions of four marks each and Section C comprises of 7 questions of six marks each.
- c) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- d) Use of calculators is not permitted.

Section A

- 1. Name the locus of points (M), the sum of whose distance from two given points is a constant
- **2.** Check whether the three points (2, 0), (5, 3), (2, 6) are collinear.
- 3. Write the condition so that the equation $ax^2 + ay^2 + bx + cy + d = 0$ represents a circle.
- **4.** Find the domain of the function $f(x) = \frac{1}{\sqrt{2-x^2}}$
- 5. If $A = \{ y = \sin x, 0 \le x < \frac{\pi}{4} \}$ and $B = \{ y = \cos x, 0 \le x < \frac{\pi}{4} \}$ then what is $(A \cap B)$
- **6.** What is the maximum value of a if $a = 1 \sin x$

Section B

7. If
$$f(x) = x^3 - x$$
; $\phi(x) = \sin 2x$ Find the value $f[\phi(\frac{\pi}{12})]$

8. If
$$\tan A = \frac{m}{m+1}$$
 and $\tan B = \frac{1}{2m+1}$ prove that $\tan A + \tan B + \tan A \tan B = 1$

9. If
$$f: R \to R$$
 is defined as follows: $f(x) = \begin{cases} 1 & \text{if } x \in Q \\ -1 & \text{if } x \notin Q \end{cases}$ Find $f(\sqrt{3}, f(3), f(\sqrt{3}+1))$

10. Prove that the equation

$$sin\theta = x + \frac{1}{x}$$
 is impossible if x is real

11. Find the domain of the function for which $f(x) = \phi(x)$; if $f(x) = 3x^2 + 1$, and $\phi(x) = 7x - 1$

- **12.** Find the limit $\lim_{x\to 0} \frac{1-\cos x}{x}$
- 13. Solve $2\sin^2 x + 14\sin x \cos x + 50\cos^2 x = 26$
- **14.** Find the inverse of the function $f(x) = x^2 x + 1$, $x > \frac{1}{2}$
- **15**. Find the vertex, axis, Focus, Directrix and latus rectum of the parabola $8y^2 + 24x 40y + 134 = 0$
- **16.** Express $\frac{7-4i}{3+2i}$ in the form a+ib
- **17.** Solve the inequality (x-2)((x-3) > 0
- **18.** Find the general value of x if $\tan 5x = \frac{1}{\tan 2x}$
- **19**. In a single throw of 2 dies what is the probability of getting a prime number on each die.

Section C

- **20.** How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that odd digits are in odd places and even digits are in even places.
- 21. Two engineers go for an interview for two vacancies in the same grade. The probability of engineer 1 (E1) getting selected is $\frac{1}{3}$ and that of engineer 2 (E2) is $\frac{1}{5}$. Find the probability that only one of them will be selected.
- 22. How many numbers are there between 1 and 1000(both included) that are not divisible by 2, 3, and 5?
- 23. Differentiate $\sin x$ from the first principle w.r.t. x
- **24**. Find the sum of *n* terms of the series 12+16+23+33+46...
- **25**. Find the equation of a circle whose diameter is the line joining the points (x_1, y_1) and (x_2, y_2)
- **26**. Calculate the mean deviation about the mean from the following data
 - x_i 5 7 9 10 12 15
 - f_i 14 6 2 2 2 4