

Nội dung

- Chức năng tầng giao vận
- ❖ Giao thức TCP
 - Mô tả giao thức
 - Cấu trúc gói tin
 - Chức năng của giao thức
 - Địa chỉ cổng TCP
- Giao thức UDP
 - Nhu cầu sử dụng UDP
 - Cấu trúc gói tin
 - Chức năng
 - Địa chỉ cổng UDP
- ❖ Tổng kết

CHUONG 5

- CHỨC NĂNG TẦNG GIAO VẬN
- GIAO THỨC TCP
- GIAO THỨC UDP
- 4 TỔNG KẾT

Chức năng tầng giao vận

Cung cấp đường truyền logic giữa các ứng dụng

Chức năng tầng giao vận

Ghép kênh và phân kênh

Chức năng tầng giao vận

- ❖ Tầng mạng
 - Địa chỉ IP để xác định nơi gửi và nơi nhận
- ❖ Để phân biệt các gói tin của cùng một ứng dụng trên một máy
 - Số hiệu cổng: số 16 bít
 - Mỗi dịch vụ tầng ứng dụng được gán một cổng
- ❖ Socket = địa chỉ IP + số hiệu cổng

CHUONG 5

- CHỨC NĂNG TẦNG GIAO VẬN
- 2 GIAO THỨC TCP
- GIAO THỨC UDP
- 4 TỔNG KẾT

Giao thức TCP

- ❖ Mô tả giao thức
- Cấu trúc gói tin
- Chức năng của giao thức
- ❖Địa chỉ cổng TCP

Mô tả giao thức TCP

- Giao thức TCP (Transmission Control Protocol)
 - giao thức điều khiển truyền vận
 - Một trong các giao thức cốt lõi của bộ giao thức TCP/IP
 - Là giao thức lớp trung gian giữa giao thức IP tầng dưới và một giao thức ứng dụng tầng trên
 - Các ứng dụng trên các máy chủ được nối mạng có thể tạo các "kết nối" với nhau
 - Có thể trao đổi dữ liệu hoặc các gói tin
 - Đảm bảo chuyển giao dữ liệu tới nơi nhận tin cậy và đúng thứ tự

Mô tả giao thức TCP

- ❖ TCP làm nhiệm vụ của tầng giao vận
 - Phân chia dòng byte được gửi từ các ứng dụng tầng trên thành các segment có kích thước thích hợp
 - Thường dựa theo MTU của tầng truy nhập mạng
- Chuyến các gói tin thu được tới giao thức IP tầng dưới để gửi nó qua một liên mạng
- ❖ TCP kiểm tra để đảm bảo không có gói tin nào bị thất lạc bằng cách gán cho mỗi gói tin một số thứ tự (sequence number)
 - Đảm bảo dữ liệu được trao cho ứng dụng đích theo đúng thứ tự

Mô tả giao thức TCP

- Là giao thức hướng kết nối (Connection-Oriented protocol)
 - Kiểm soát được đường truyền: Thiết lập kết nối, duy trì và kết thúc kết nối
 - Dữ liệu truyền đi một cách tuần tự, nếu bên nhận nhận thành công thì phải gửi tín hiệu báo nhận ACK

Cấu trúc gói tin TCP

TCP segment bao gồm: Thông tin điều khiển (TCP header) và dữ liệu tầng ứng dụng

Cấu trúc gói tin TCP

- Soure port: Số hiệu cổng ứng dụng tại máy tính gửi
- ❖ Destination port: Số hiệu của cổng tại máy tính nhận
- ❖ Sequence number: Số thứ tự của gói tin
 - Nếu cờ SYN bật thì nó là số thứ tự của gói tin ban đầu và byte đầu tiên được gửi có số thứ tự này cộng thêm 1
 - Nếu không có cờ SYN thì đây là số thứ tự của byte đầu tiên
- Acknowledgement number: Nếu cờ ACK bật thì giá trị trường này chính là số thứ tự gói tin tiếp theo mà bên nhận cần
- Header length: Có độ dài 4 bit, quy định độ dài của phần header
- * Reserved (not used): Có giá trị là 0, dành cho tương lai

Cấu trúc gói tin TCP

- Flags (Cò, hay Control bits): Bao gồm 6 bit cò, tương ứng với các cò:
 - URG: Cò cho trường Urgent pointer
 - ACK: Cò cho trường Acknowledgement
 - PSH: Hàm Push, chuyển dữ liệu ngay
 - RST: Thiết lập lại đường truyền
 - SYN: Đồng bộ lại số thứ tự
 - FIN: Không gửi thêm số liệu, kết thúc kết nối
- ❖ Window size: Số byte có thể nhận
 - Bắt đầu từ giá trị của trường báo nhận (ACK)
- Checksum: 16 bit kiểm tra cho cả phần header và dữ liệu (bắt buộc sd)
- Urgent pointer: Nếu cờ URG bật thì giá trị trường này chính là số từ 16 bit mà số thứ tự gói tin cần dịch trái.
- ❖ Options: Tùy chọn, nếu có thì độ dài là bội của 32 bit dữ liệu.
- ❖ Data: Có độ dài thay đổi, chứa dữ liệu của tầng ứng dụng

Cung cấp dịch vụ tin cậy: thiết lập, truyền dữ liệu và hủy kết nối

❖ Thiết lập kết nối

- Bắt tay ba bước (Three-way Handshaking)
 - Bước 1: A yêu cầu kết nối bằng cách gửi một gói tin TCP với cờ SYN =1 và chứa giá trị khởi tạo tuần tự X của client
 - Bước 2: B nhận được thông điệp SYN, nó gửi lại gói SYN với giá trị Y, đặt cờ ACK = 1 trong trường hợp sẵn sàng kết nối, giá trị ACK = (X + 1) để báo B đã nhận được giá trị X của tiến trình trạm gửi (máy A)
 - **Bước 3**: A trả lời lại gói SYN máy B bằng một thông báo trả lời ACK cuối cùng, với cờ ACK=1 và giá trị ACK = (Y+1).

❖ Bắt tay ba bước

❖ Truyền dữ liệu

- Truyền dữ liệu không lỗi (do có cơ chế sửa lỗi/truyền lại)
- Truyền các gói dữ liệu theo đúng thứ tự

Truyền lại các gói dữ liệu bị mất mát trên đường

❖ Cửa số trượt

❖ Kết thúc kết nối

- A gửi yêu cầu kết thúc kết nối với cờ FIN = 1
- Mặc dù nhận được yêu cầu kết thúc kết nối của A, B vẫn có thể tiếp tục truyền số liệu
- Khi B không còn số liệu để gửi và thông báo cho A bằng yêu cầu kết thúc kết nối với cờ FIN = 1 của mình
- Khi thực thể TCP đã nhận được thông điệp FIN và sau khi đã gửi thông điệp FIN của chính mình, kết nối TCP mới thực sự kết thúc

- ❖Điều khiển lỗi: phát hiện và sửa lỗi
 - Phát hiện phân đoạn (segment) bị hỏng, bị mất, sai thứ tự hoặc nhân đôi
 - Phát hiện lỗi trong TCP được thực hiện thông qua việc sử dụng 3 công cụ đơn giản: tổng kiểm tra (Checksum), xác nhận (ACK), và thời gian chờ (timeout)
 - TCP nguồn đặt một bộ định thời cho mỗi phân đoạn được gửi đi
 - Bộ định thời được kiểm tra định kỳ
 - Khi nó tắt, phân đoạn tương ứng được xem như bị hỏng hoặc bị mất và nó sẽ được truyền lại

- ❖ Điều khiển luồng
 - Điều khiển lượng dữ liệu gửi đi đảm bảo hiệu quả tốt, không làm quá tải các bên
- ❖ Các bên có cửa sổ kiểm soát:
 - **Rwnd:** bên nhận
 - Cwnd: cửa số kiểm soát tắc nghẽn
 - Lượng dữ liệu gửi đi < min(Rwnd, Cwnd)

❖ Kiểm soát tắc nghẽn

- Tắc nghẽn khi: quá nhiều cặp gửi/nhận trên mạng; truyền quá nhiều
 - Mất gói tin, thông lượng giảm, độ trễ tăng
- Nguyên lý kiểm soát tắc nghẽn
 - Bắt đầu chậm (start-slow): tăng tốc theo hàm mũ, đến một ngưỡng nào đó
 - Tránh tắc nghẽn: tăng theo hàm tuyến tính
 - Phát hiện tắc nghẽn: dựa trên gói tin bị mất

- ❖ Ý tưởng
 - Bắt đầu: *Cwnd* = 1
 - Khi nhận được ACK, tăng Cwnd lên gấp đôi
 - Tăng theo hàm mũ (2)
 - Tăng đến ngưỡng (threshold) thì chuyển sang trạng thái tránh tắc nghẽn

- Phản ứng của TCP khi tắc nghên
 - Phát hiện tắc nghẽn thì truyền lại (time out; nhiều gói tin cùng số hiệu)
 - Giảm threshsold xuống còn một nửa của Cwnd
 - Đặt Cwnd = 1
 - Bắt đầu slow-start

Các cổng TCP

- ❖ Số hiệu cổng (Port number) là một số 16 bit có giá trị trong khoảng từ 0 đến 65.535
 - Các số hiệu cổng từ 0 đến 1023 được gọi là các cổng thông dụng (well-known port) và là các cổng dành riêng

Port Number	Giao thức ứng dụng	Port Number	Giao thức ứng dụng
20	FTP (Data)	88	Kerberos
21	FTP (Control)	110	POP 3
23	Telnet	137	NETBIOS Name Service
25	SMTP	143	IMAP
53	DNS	161	SNMP
66	Oracle SQL*NET	179	BGP
70	Gopher	213	IPX
80	НТТР	49	Login Host Protocol

CHUONG 5

- CHỨC NĂNG TẦNG GIAO VẬN
- GIAO THỨC TCP
- 3 GIAO THỨC UDP
- 4 TỔNG KẾT

Giao thức UDP

- ❖ Nhu cầu sử dụng UDP
- ❖ Cấu trúc gói tin
- Chức năng
- ❖Địa chỉ cổng UDP

Nhu cầu sử dụng UDP

- Úng dụng lại đòi hỏi cần chuyển dữ liệu nhanh, có khả năng chịu lỗi cao như VoIP, Video Streaming, v.v.
 - Cần sử dụng các dịch vụ phi kết nối của UDP (User Datagram Protocol)

Ứng dụng	Giao thức ứng dụng	Giao thức giao vận
e-mai	SMTP	TCP
remote terminal access	Telnet	TCP
Web	HTTP	TCP
file transfer	FTP	TCP
streaming multimedia	giao thức riêng	TCP or UDP
	(e.g. RealNetworks)	
Internet telephony	giao thức riêng	
	(e.g., Vonage, Dialpad)	thường là UDP

Nhu cầu sử dụng UDP

- ❖ Các lý do sử dụng UDP:
 - Không thiết lập liên kết trước khi bắt đầu truyền dữ liệu
 - UDP luôn bắt đầu truyền dữ liệu mà không cần sự chuẩn bị nào về đường truyền, do đó, UDP không có thời gian trễ để thiết lập liên kết
 - Giao thức UDP rất đơn giản, không cần lưu lại trạng thái liên kết ở bên gửi và bên nhận
 - Phần header của phân đoạn dữ liệu đơn giản, ngắn (chỉ gồm 4 trường)
 - UDP cho phép gửi dữ liệu nhanh nhất, nhiều nhất có thể
 - Không có quản lý tắc nghẽn như TCP
 - Không được kiểm soát tốc độ truyền

- ❖ UDP được định nghĩa trong RFC 768
- Ghép kênh/phân kênh và kiểm tra lỗi
 - UDP lấy thông tin từ tiến trình ứng dụng, gắn vào số hiệu cổng nguồn và cổng đích sử dụng cho việc ghép kênh/phân kênh
 - Thêm vào 2 trường thông tin nhỏ khác (length, và checksum) và chuyển đoạn dữ liệu kết quả xuống tầng liên mạng
- Cung cấp cơ chế kiểm tra lỗi nhưng không thực hiện việc khôi phục được các lỗi

Cấu trúc gói tin

- Source Port: Số hiệu cổng nguồn, là số hiệu của tiến trình gửi tin đi
- ❖ Destination Port: Số hiệu cổng đích, là số hiệu của tiến trình sẽ nhận gói tin
- ❖ Length: Tổng chiều dài của segment, tính cả phần header.
- Checksum: Là phần kiểm tra lỗi. UDP sẽ tính toán phần kiểm tra lỗi tổng hợp trên phần header, phần dữ liệu
- ❖ Data: Phần dữ liệu 2 bên gửi cho nhau

Địa chỉ cổng UDP

Port Number	Giao thức ứng dụng	Port Number	Giao thức ứng dụng
7/UDP	Echo	68/UDP	Bootpc (Client)
9/UDP	Discard	69/UDP	TFTP
11/UDP	Users (Active users)	111/UDP	RPC – Remote Procedure Call
13/UDP	Daytime	123/UDP	NTP – Nework Time Protocol
17/UDP	Quote	161/UDP	SNMP
19/UDP	Chargen	162/UDP	SNMP (trap)
53/UDP	Domain	•••	
67/UDP	Bootps (Server)		

Tổng kết

❖Q & A

Tổng kết

Q&A

Câu hỏi ôn tập

- 1. Trình bày chức năng của tầng Transport trong mô hình TCP/IP
- 2. Hãy mô tả ngắn gọn về các dịch vụ và các giao thức tầng Transport trong mạng Internet
- 3. Khái niệm: Socket, Multiplexing, Demultiplexing? Chỉ rõ socket dùng trong giao thức TCP và UDP là gì?
- 4. Chức năng của giao thức UDP là gì? Trình bày cấu trúc gói tin UDP. Giao thức UDP thường sử dụng cho các ứng dụng nào trên Internet
- 5. Chức năng điều khiển luồng của giao thức TCP được thể hiện ở những trường nào trong cấu trúc gói tin của nó? Hấy giải thích cụ thể
- 6. Chức năng điều khiển kết nối của giao thức TCP được thể hiện ở những trường nào trong cấu trúc gói tin của nó? Hãy giải thích cụ thể
- 7. Trình bày các kỹ thuật dùng để điều khiển tắc nghẽn (congestion control) của giao thức TCP?

BÀI TẬP

- 8. What can you say about the TCP segment in which the value of the control field is one of the following:
 - **a.** 000000
 - **b.** 000001
 - c. 010001
 - **d**. 000100
 - e. 000010
 - f. 010010
- 9. The following is a dump of a TCP header in hexadecimal format.

(05320017 00000001 00000000 500207FF 00000000)₁₆

- a. What is the source port number?
- **b.** What is the destination port number?
- c. What the sequence number?
- d. What is the acknowledgment number?
- e. What is the length of the header?
- f. What is the type of the segment?
- g. What is the window size?

BÀI TẬP

10. The following is a dump of a UDP header in hexadecimal format.

0045DF000058FE20

- **a.** What is the source port number?
- **b.** What is the destination port number?
- **c.** What is the total length of the user datagram?
- **d.** What is the length of the data?
- **e.** Is the packet directed from a client to a server or vice versa?
- **f.** What is the client process?

BÀI TẬP

- 5. A TFTP server residing on a host with IP address 130.45.12.7 sends a message to a TFTP client residing on a host with IP address 14.90.90.33. What is the pair of sockets used in this communication?
- **6**. Answer the following questions:
 - a. What is the minimum size of a UDP datagram?
 - b. What is the maximum size of a UDP datagram?
 - c. What is the minimum size of the process data that can be encapsulated in a UDP datagram?
 - d. What is the maximum size of the process data that can be encapsulated in a UDP datagram?

