Computation of the polynomial $Q(\theta)$ for a (y^2-x^3) -moment sequence with positive semidefinite M(3), without a measure.

Out[•]=

We do reverse engineering and generate a univariate sequence $\gamma = (\gamma_i)_{i < 18}$ of degree 18, such that the restriction of the Hankel matrix A_ γ to columns and rows indexed by 1,X^2,X^3,...,X^9 is positive definite, but the restriction to columns and rows X,X^2,...,X^9 is not recursively generate sequence, i.e., column X^8 is in the span of the previous ones, but X^9 is not. Then we generate a sequence $\beta = \{\beta_{i,j}\}_{i+j < 6}$ by $\beta_{i,j} = \gamma_{i,j}$. By the solution to the TMP on Y^2-X^3 (Corollary 4.3 in A. Zalar, The truncated Hamburger moment problems with gaps in the index set, Integ. Equ. Oper. Theory 93 (2021)), β will not have a (y^2-x^3)-supported representing measure.

First we generate a univariate sequence γ with 9 atoms 0,1/2,1/3,...,1/8.

```
\begin{split} \text{h[} & \text{H[} \gamma 0\_, \, \gamma 1\_, \, \gamma 2\_, \, \gamma 3\_, \, \gamma 4\_, \, \gamma 5\_, \, \gamma 6\_, \, \gamma 7\_, \, \gamma 8\_, \, \gamma 9\_, \, \gamma 10\_, \, \gamma 11\_, \, \gamma 12\_, \, \gamma 13\_, \, \gamma 14\_, \, \gamma 15\_, \\ & \qquad \qquad \qquad \gamma 16\_, \, \gamma 17\_, \, \gamma 18\_] = \text{HankelMatrix[} \{\gamma 0, \, \gamma 1, \, \gamma 2, \, \gamma 3, \, \gamma 4, \, \gamma 5, \, \gamma 6, \, \gamma 7, \, \gamma 8, \, \gamma 9\}, \\ & \qquad \qquad \{\gamma 9, \, \gamma 10, \, \gamma 11, \, \gamma 12, \, \gamma 13, \, \gamma 14, \, \gamma 15, \, \gamma 16, \, \gamma 17, \, \gamma 18\}]; \end{split}
```

```
\ln |2| = f[x_{-}] = H[1, x, x^{(2)}, x^{(3)}, x^{(4)}, x^{(5)}, x^{(6)}, x^{(7)}, x^{(8)}, x^{(9)},
         x^{(10)}, x^{(11)}, x^{(12)}, x^{(13)}, x^{(14)}, x^{(15)}, x^{(16)}, x^{(17)}, x^{(18)};
     F = f[0] + f[1/2] + f[1/3] + f[1/4] + f[1/5] + f[1/6] + f[1/7] + f[1/8];
In[4]:= MatrixForm[F]
```

Out[4]//MatrixForm=

1	8	481	372 149	12
	8	280	705 600	65
	481	372 149	12 852 473	4071
	280	705 600	65 856 000	497 87
	372 149	12 852 473	40 717 994 801	5 141 2
	705 600	65 856 000	497 871 360 000	139 403
	12 852 473	40 717 994 801	5 141 275 445 731	6 091 026
	65 856 000	497 871 360 000	139 403 980 800 000	351 298 0
	40 717 994 801	5 141 275 445 731	6 091 026 858 664 049	821 221 27
	497 871 360 000	139 403 980 800 000	351 298 031 616 000 000	98 363 448
	5 141 275 445 731	6 091 026 858 664 049	821 221 274 202 733 619	1 010 667 599
	139 403 980 800 000	351 298 031 616 000 000	98 363 448 852 480 000 000	247 875 891 16
	6 091 026 858 664 049	821 221 274 202 733 619	1010667599322175009601	15 488 077 72
	351 298 031 616 000 000	98 363 448 852 480 000 000	247 875 891 108 249 600 000 000	77116943900
	821 221 274 202 733 619	1 010 667 599 322 175 009 601	15 488 077 721 039 289 426 059	173 952 332 188
	98 363 448 852 480 000 000	247 875 891 108 249 600 000 000	7 711 694 390 034 432 000 000 000	174 901 228 765 98
	1 010 667 599 322 175 009 601	15 488 077 721 039 289 426 059	173 952 332 188 994 804 190 119 249	24 201 572 009 80
	247 875 891 108 249 600 000 000	7 711 694 390 034 432 000 000 000	174 901 228 765 980 917 760 000 000 000	48 972 344 054 474
	15 488 077 721 039 289 426 059	173 952 332 188 994 804 190 119 249	24 201 572 009 804 864 462 019 724 819	30 369 616 473 726 9
1	7711694390034432000000000	174 901 228 765 980 917 760 000 000 000	48 972 344 054 474 656 972 800 000 000 000	123 410 307 017 276 13

We increase the moment y_18 so that the restriction of A_y to columns/rows $X,...,X^9$ is not RG.

```
In[5]:= F[10, 10]] = F[10, 10]] + 1 / 10;
ln[6]:= N [NullSpace[F[{2, 3, 4, 5, 6, 7, 8, 9, 10}, {2, 3, 4, 5, 6, 7, 8, 9, 10}]]]
Out[6] = \{ \{ -0.0000248016, 0.000868056, -0.0126736, \} \}
        0.0998264, -0.456944, 1.21181, -1.71786, 1., 0.}
```

We check that the restriction of A_y to columns/rows 1,X^2, ..., X^9 is positive definite.

```
\label{eq:local_local_local_local_local} $$ \ln[7]:=$ PositiveDefiniteMatrixQ[F[{1, 3, 4, 5, 6, 7, 8, 9, 10}], {1, 3, 4, 5, 6, 7, 8, 9, 10}]] $$ $$ \label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_loca
Out[7]= True
```

Now we define the sequence $\beta = \{\beta_{i,j}\} = \{i+j \le 6\}$ by $\beta_{i,j} = \gamma_{i,j} = \gamma_{i,j$

```
In[8]:= (*Degree 0*)
      \beta00 = F[[1, 1]];
       (*Degree 1*)
      \beta10 = F[[3, 1]];
      \beta01 = F[[4, 1]];
      (*Degree 2*)
      \beta20 = F[[5, 1]];
      \beta11 = F[[6, 1]];
      \beta02 = F[[7, 1]];
       (*Degree 3*)
      \beta30 = F[[7, 1]];
      \beta21 = F[[8, 1]];
      \beta12 = F[[9, 1]];
      \beta03 = F[[10, 1]];
      (*Degree 4*)
      \beta40 = F[[9, 1]];
      \beta31 = F[[10, 1]];
      \beta22 = F[[10, 2]];
      \beta13 = F[[10, 3]];
      \beta04 = F[[10, 4]];
       (*Degree 5*)
      \beta50 = F[[10, 2]];
      \beta41 = F[[10, 3]];
      \beta32 = F[[10, 4]];
      \beta23 = F[[10, 5]];
      \beta14 = F[[10, 6]];
      \beta05 = F[[10, 7]];
       (*Degree 4*)
      \beta60 = F[[10, 4]];
      \beta51 = F[[10, 5]];
      \beta42 = F[[10, 6]];
      \beta33 = F[[10, 7]];
      \beta24 = F[[10, 8]];
      \beta15 = F[[10, 9]];
      \beta06 = F[[10, 10]];
```

We generate the matrix M(3).

```
In[36]:= M [ $00_,
                 β10_, β01_,
                 \beta20_, \beta11_, \beta02_,
                 \beta30 , \beta21 , \beta12 , \beta03 ,
                 \beta40_, \beta31_, \beta22_, \beta13_, \beta04_,
                 \beta50_, \beta41_, \beta32_, \beta23_, \beta14_, \beta05_,
                 \beta60_{,} \beta51_{,} \beta42_{,} \beta33_{,} \beta24_{,} \beta15_{,} \beta06_{,} =
               \{\{\beta00, \beta10, \beta01, \beta20, \beta11, \beta02, \beta30, \beta21, \beta12, \beta03\},\
                 \{\beta10, \beta20, \beta11, \beta30, \beta21, \beta12, \beta40, \beta31, \beta22, \beta13\},\
                 \{\beta01, \beta11, \beta02, \beta21, \beta12, \beta03, \beta31, \beta22, \beta13, \beta04\},\
                 \{\beta20, \beta30, \beta21, \beta40, \beta31, \beta22, \beta50, \beta41, \beta32, \beta23\},\
                 \{\beta 11, \beta 21, \beta 12, \beta 31, \beta 22, \beta 13, \beta 41, \beta 32, \beta 23, \beta 14\},\
                 \{\beta02, \beta12, \beta03, \beta22, \beta13, \beta04, \beta32, \beta23, \beta14, \beta05\},\
                  \{\beta30, \beta40, \beta31, \beta50, \beta41, \beta32, \beta60, \beta51, \beta42, \beta33\},\
                 \{\beta 21, \beta 31, \beta 22, \beta 41, \beta 32, \beta 23, \beta 51, \beta 42, \beta 33, \beta 24\},\
                 \{\beta 12, \beta 22, \beta 13, \beta 32, \beta 23, \beta 14, \beta 42, \beta 33, \beta 24, \beta 15\}
                 \{\beta03, \beta13, \beta04, \beta23, \beta14, \beta05, \beta33, \beta24, \beta15, \beta06\}
               };
```

We generate the block B(4) of the extension M(4).

```
In[37]:= B[\beta 00_{},
                β10_, β01_,
                \beta20_, \beta11_, \beta02_,
                \beta30_, \beta21_, \beta12_, \beta03_,
                \beta40_, \beta31_, \beta22_, \beta13_, \beta04_,
                \beta50_, \beta41_, \beta32_, \beta23_, \beta14_, \beta05_,
                \beta60_{,} \beta51_{,} \beta42_{,} \beta33_{,} \beta24_{,} \beta15_{,} \beta06_{,}
                \beta70_{,} \beta61_{,} \beta52_{,} \beta43_{,} \beta34_{,} \beta25_{,} \beta16_{,} \beta07_{,} =
                 \{\beta40, \beta31, \beta22, \beta13, \beta04\},\
                 \{\beta50, \beta41, \beta32, \beta23, \beta14\},\
                 \{\beta41, \beta32, \beta23, \beta14, \beta05\},\
                 \{\beta60, \beta51, \beta42, \beta33, \beta24\},\
                 \{\beta 51, \beta 42, \beta 33, \beta 24, \beta 15\},\
                 \{\beta42, \beta33, \beta24, \beta15, \beta06\},\
                 \{\beta70, \beta61, \beta52, \beta43, \beta34\},\
                 \{\beta61, \beta52, \beta43, \beta34, \beta25\},\
                 \{\beta52, \beta43, \beta34, \beta25, \beta16\},\
                 \{\beta43, \beta34, \beta25, \beta16, \beta07\}
               };
```

We compute the smallest C (4) in the extension M (4).

```
ln[38]:= Cblock [\theta_{,}, \phi_{,}, \psi_{,}] = Transpose [B[\beta00, \phi_{,}, \psi_{,}]]
                    \beta10, \beta01,
                    \beta20, \beta11, \beta02,
                    \beta30, \beta21, \beta12, \beta03,
                    \beta40, \beta31, \beta22, \beta13, \beta04,
                    \beta50, \beta41, \beta32, \beta23, \beta14, \beta05,
                    β60, β51, β42, β33, β24, β15, β06,
                    \beta42, \beta33, \beta24, \beta15, \beta06, \theta, \phi, \psi] [{1, 2, 3, 4, 5, 6, 8, 9, 10}, {1, 2, 3, 4, 5}]].
              Inverse [ (M[\beta00,
                     β10, β01,
                     \beta20, \beta11, \beta02,
                     \beta30, \beta21, \beta12, \beta03,
                     \beta40, \beta31, \beta22, \beta13, \beta04,
                     \beta50, \beta41, \beta32, \beta23, \beta14, \beta05,
                     \beta60, \beta51, \beta42, \beta33, \beta24, \beta15, \beta06] [
                    \{1, 2, 3, 4, 5, 6, 8, 9, 10\}, \{1, 2, 3, 4, 5, 6, 8, 9, 10\}])].
               (B[β00,
                    β10, β01,
                    \beta20, \beta11, \beta02,
                    \beta30, \beta21, \beta12, \beta03,
                    \beta40, \beta31, \beta22, \beta13, \beta04,
                    \beta50, \beta41, \beta32, \beta23, \beta14, \beta05,
                    β60, β51, β42, β33, β24, β15, β06,
                    \beta42, \beta33, \beta24, \beta15, \beta06, \theta, \phi, \psi] [{1, 2, 3, 4, 5, 6, 8, 9, 10}, {1, 2, 3, 4, 5}]);
```

We compute the quadratic polynomial Q (θ) = Q2 θ^2 + Q1 θ + Q0 determining the existence of a flat extension.

```
In[39]:= hatC = Simplify[Cblock[\theta, \phi, \psi]];
       hankelEQ =
          Simplify[{hatC[4, 2] - hatC[3, 3], hatC[5, 2] - hatC[4, 3], hatC[5, 3] - hatC[4, 4]}];
       stheta = Simplify[Solve[{hankelEQ[[1]] == 0, hankelEQ[[2]] == 0}, \{\phi, \psi\}, Reals]];
        Length[stheta];
       critpoly = Simplify[hankelEQ[[3]] /. stheta[[1]]]
Out[43]=
       -16257024
```

The polynomial Q (θ) is a constant -16257024. Hence, a flat extension does not exist.