Assignment - 2

tid	Stemset
t,	ABCD
t2	ACDF
t3	ACDEGI
t4	ABDF
ts	BCG
to	DFG
to	ABGI
ts	CDFG
	1: 0 1 1

Transaction Database

1)	tid	A	B	C	D	Е	F	67
,	tı	1	1	1	1	0	0	0
	乜	1	0	1	1	0	1	0
	t3	1	0	ব	누	H	0	1
	t_4	1	1	0	ব	D	1	0
	55	©	1	৸	0	0	0	1
	t_6	0	0	0	1	O	1	1
	ta	1	1	0	0	0	O	1
	tg	0	0	1	1	0	1	1

Binary Database.

(2.)

		t C	z)			
A	В	C	Ď	E	P	G
t_1	4,	ti	ti	43	52	43
乜	t_4	女	t2		<i>t</i> ₄	t5
t_3	ts	tz	tz		t_6	t_6
4	如	ts	th		to	t_{2}
ţ	٦,	to	t_6			to
		8	to			
	Attatatata	A to to to	A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		A B C D E to	A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Vertical Database

Using minimum support 3, Apriori Algorithm find F(3). Sol There are 3 main steps - Count, Filtoury and Joining.

Step 1 -> Count Hems.

$$C_1 = 4 \text{lemsete} \quad \text{Count}$$
 $243 \quad 5$
 $283 \quad 4$
 $3c3 \quad 5$
 $203 \quad 6$
 $253 \quad 1 \rightarrow \text{nemove as it is not}$
 $253 \quad 4$
 $263 \quad 5$
 $4 \quad 4 \quad 5 \quad 5$

Step 2 > Filter Hems.

Step 3 -> Join Stems.

 c_2

→	Stemsets A B 3 A C 3 A D 3	Nount 3 3 4	
	<i>ZAF</i> 3 <i>ZAG</i> 3	2 2	
	{BC} {BD}	2 2	
	{BF} {BG}	2 2	Remove-lecause it
	2CD3 2CF3	4	did not meet the min. support of 3.
	₹ CG } ₹ DF }	<i>3</i>	
	20G3 2FG3	2.	

L₂
$$\rightarrow$$
 Stemut Rount $\{AB\}^2$ $\{AC\}^2$ $\{AB\}^3$ $\{AC\}^3$ $\{AC\}^4$ $\{AC\}^4$

(4.) flynowth using minimum support of 2.

Atemset Count (Greguese)

Frequency fathern set:

Stemset	Count (Greguenc
A	5
В	4
C	5
D	6
E	1
F	4
Gı	5

Awanging the temset in decreasing order of its counts.

Henret	Count
D	6
A	5
С	5
G1	5
В	4
F	4
E	1

Now as the minimum support is 2, we can eliminate (E) and will not include it in our set. The set L will look like $L = \frac{3}{2} D:6$, A:5, C:5, G:5, B:4, F:4?

This is frequent pattern set. After this we will create ordered item set.

tid	Gemeet	Ordered Stem
tı	¿A,B,C,D}	₹ D,A,C,B}
t_2	{A, C, D, F}	{D,A,C,F}
t3	{A,C,D,E,G}	{ D, A, C, G}
t4	₹4,8,D,F3	₹D, A, B, F}
ts	88, C, G3	{c, G,B}
te	20, F, G3	₹D,G,F}
tz	3 A,B,G3	{ A,G,B}
tg	{c,d,f,g}	{D, C, G, F}

① Inserting set for t,

\$\phi(1)\$

|
\$D(1)\$

|
\$A(2)\$

|
\$C(1)\$

|
\$B(1).

Inditional Pattorn Base:

Items | Conditional Pattern Base | Pattorn True: $\xi F_s^2 \rightarrow \xi(D,A,C:1), (D,A,B:1) \rightarrow \xi D:4\xi$ $\xi B_s^3 \rightarrow \xi(D,A,C:1), (D,A:1), \rightarrow - (C,G:1), (A,G:1)\xi$ $\xi G_s^3 \rightarrow \xi(D,A,C:1), (D,C:1), (C:1), (C:1), (C:1), (C:1), (D:1), (A:1)\xi$ $\xi G_s^3 \rightarrow \xi(D,A:3), (D:1)\xi \rightarrow \xi D:4\xi$ $\xi G_s^3 \rightarrow \xi(D:4)\xi \rightarrow \xi D:4\xi$

Given
$$x_1 = (0,3)$$
 $x_2 = (3,3)$ $x_3 = (0,0)$

1 -> SSE:

for
$$\alpha_i = || \alpha_i - C_i ||^2 = || (0,3) - (3.5,-1) ||^2$$

= $|| -3.5, 4 ||^2 = 12.25 + 16 = 28.25$

$$\begin{cases}
62 & 32 = ||(3,3) - (3.5,-1)||^2 = 0.25 + 16 = \underline{16.25} \\
62 & 33 = ||(0,0) - (3.5,-1)||^2 = 12.25 + 1 = \underline{13.25}
\end{cases}$$

$$SSE = SSE(\pi_4) + SSE(\pi_2) + SSE(\pi_3)$$

= $28.25 + 16.25 + 13.25$
= 57.75

The sum of squared errors for the intial cluster assignment is 57.75.

 $\mathcal{A} \Rightarrow$ the location of next centroid can be calculated by taking mean of data points.

Sentroid =
$$\frac{\chi_1 + \chi_2 + \chi_3}{3} = \left(\frac{0 + 3 + 0}{3}, \frac{3 + 3 + 0}{3}\right) = (1, 2)$$
.

The centroid after ment iteration is $(1, 2)$.

Question 3

3.1

$$f_i(x) = f(x|\mu_i, \Sigma_i) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_i|^{\frac{1}{2}}} \exp\left\{-\frac{(x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)}{2}\right\}$$

Likelihood:

Log-likelihood:

$$P(\mathbf{D}|\boldsymbol{\theta}) = \prod_{j=1}^{n} f(\mathbf{x}_{j}) \qquad \ln P(\mathbf{D}|\boldsymbol{\theta}) = \sum_{j=1}^{n} \ln f(\mathbf{x}_{j}) = \sum_{j=1}^{n} \ln \left(\sum_{i=1}^{k} f(\mathbf{x}_{j}|\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) P(C_{i}) \right)$$

Log-likelihood value: -66.08363702694996

[Used the above formulas in a python code to calculate the value].

3.2 E-Step

Posterior Probability is given below for each data point:

Out[4]:

w_1_parameter w_2_parameter

Data Point				
1.0	0.996776	0.003224		
1.3	0.995731	0.004269		
2.2	0.990107	0.009893		
2.6	0.985656	0.014344		
2.8	0.982741	0.017259		
5.0	0.878040	0.121960		
7.3	0.453138	0.546862		
7.4	0.429964	0.570036		
7.5	0.407092	0.592908		
7.7	0.362622	0.637378		

3.3 M-Step

The means values are: [3.54310792 7.2636904]
The variance values are: [5.60786076 0.78572332]

The prior probability values are: [0.74818672 0.25181328]

Question 4

	sepal length (cm)	sepal width (cm)	species
0	5.1	3.5	0
1	4.9	3.0	0
2	4.7	3.2	0
3	4.6	3.1	0
4	5.0	3.6	0
145	6.7	3.0	2
146	6.3	2.5	2
147	6.5	3.0	2
148	6.2	3.4	2
149	5.9	3.0	2

150 rows × 3 columns

4.1

	sepal length (cm)	sepal width (cm)	species	cluster
0	5.1	3.5	0	2
1	4.9	3.0	0	2
2	4.7	3.2	0	2
3	4.6	3.1	0	2
4	5.0	3.6	0	2
145	6.7	3.0	2	1
146	6.3	2.5	2	0
147	6.5	3.0	2	1
148	6.2	3.4	2	1
149	5.9	3.0	2	0

150 rows × 4 columns

4.2 (a)

4.2 (b)

Silhouette Index: 0.44505256920836367

4.2(c)

If the Silhouette index is high(more closer to 1) for a particular clustering, it suggests that the clusters formed by the algorithm are distinct and well-separated based on the chosen features. In this case, the clustering assignment provides valuable insights as the k-Means produced clusters (not fully)partially align with the class labels.

Partial Alignment: The k-Means produces clusters that partially align with the class labels. Which means it may group some species correctly but not others. In this scenario, k-Means captures some of the underlying patterns in the class labels data but not all.

4.3

Yes. k=2 and 39 have silhouette index values greater than k=3, but k=2 has the highest value.

Silhouette index is a measure that helps assess the quality of clusters produced by a clustering algorithm. It quantifies how similar each data point is to its own cluster compared to other clusters. A high Silhouette score indicates that the clusters are well-separated and data points are tightly grouped within their respective clusters.

Hence, the one with the higher average Silhouette score is considered to perform better in terms of cluster quality.

4.4

The cluster assignment for both K-mediods and k-means are almost the same except very few datapoints. The cluster assignments here for Iris dataset has some outliers and clusters with non-spherical shapes. So K-mediods might be a better choice as compared to k means because it is more robust to outliers and can handle clusters of different shapes.

References -

- Gaussian-Mixtures.ipynb (Class Slides)
- https://numpy.org/doc/stable/reference/index.html
- https://pandas.pydata.org/docs/user-guide/10min.html
- https://scikit-learn.org/stable/tutorial/basic/tutorial.html
- https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
- https://scikit-learn-extra.readthedocs.io/en/stable/generated/sklearn extra.cluster.KMedoids.html
- https://scikit-learn.org/stable/auto-examples/cluster/plot-kmeans-silhouette-analysis.html
- https://matplotlib.org/stable/tutorials/introductory/pyplot.html
- https://seaborn.pydata.org/generated/seaborn.scatterplot.html