

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

FEBRUARY/MARCH 2009

MEMORANDUM

This memorandum consists of 13 pages.

1.1	$m_{BC} = \frac{1 - 0}{6 - 3}$ $m_{BC} = \frac{1}{3}$	✓ substitution into gradient formula ✓ answer (2)
1.2	$m_{AD} = m_{BC}$ $m_{AD} = \frac{1}{3} \qquad AB//BC$	$\checkmark m_{AC} = \frac{1}{3}$
	∴ Equation of AD is: $y = \frac{1}{3}x + c$	✓ substitution of (1; 6) into a straight line equation
	$6 = \frac{1}{3}(1) + c$ $c = \frac{17}{3}$ $\therefore y = \frac{1}{3}x + \frac{17}{3}$ OR	✓equation (3)
	$y - 6 = \frac{1}{3}(x - 1)$ $y - 6 = \frac{1}{3}x - \frac{1}{3}$ $y = \frac{1}{3}x + \frac{17}{3}$	✓ $m_{AC} = \frac{1}{3}$ ✓ substitution of (1; 6) into a straight line equation
		✓ equation (3)
1.3	$y = \frac{1}{3}x + \frac{17}{3}$ $t = \frac{1}{3}(7) + \frac{17}{3}$ $t = 8$	✓ substitution of x value into a straight line equation.
	OR	(2)
	$\frac{t-6}{7-1} = \frac{1}{3}$ $t-6=2$ $\therefore t=8$	

Copyright reserved

NCS – Memorandum

	NCS – Memorandum	,
1.4	$AD = \sqrt{(8-6)^2 + (-1-3)^2}$	✓ using distance formula
	$AD = \sqrt{40}$	
	$AD = 2\sqrt{10}$	✓ answer for AD
	BC = $\sqrt{(6-3)^2 + (1-0)^2}$	✓ answer for BC
	$BC = \sqrt{10}$	
	$AB = \sqrt{(6-0)^2 + (1-3)^2}$	
	$AB = \sqrt{40}$	✓ answer for AB
	$AB = 2\sqrt{10}$	(4)
1.5	$m_{AB} = \frac{6-0}{1-3}$	
	$m_{AB} = -3$	$\checkmark m_{AB} = -3$
	$m_{BC} = \frac{1-0}{6-3} = \frac{1}{3}$	
	$m_{AB}.m_{BC} = \frac{1}{3} \times -3$	$\checkmark m_{AB} \times m_{BC} = -1$
	3	MAB ~ MBC
	$AB \perp BC$	✓ conclusion
		(3)
1.6	Area of Quad ABCD = area of \triangle ADC + area of ABC	\checkmark formula for area of Δ
	$= \frac{1}{2} \left(2\sqrt{10} \right) \left(2\sqrt{10} \right) + \frac{1}{2} \left(\sqrt{10} \right) \left(2\sqrt{10} \right)$	
	= 20 + 10	$\frac{1}{2}(2\sqrt{10})(2\sqrt{10}) + \frac{1}{2}(\sqrt{10})(2\sqrt{10})$
	=30 square units	✓ answer
		(4)
	Or	
	Area of ABCD = $\frac{1}{2}$ (sum of parallel sides)× h	✓ formula for area of trapezium
		пароглан
	$=\frac{1}{2}(2\sqrt{10}+\sqrt{10})2\sqrt{10}$	$\checkmark \checkmark \frac{1}{2}(2\sqrt{10} + \sqrt{10})2\sqrt{10}$
	$=\sqrt{10}(3\sqrt{10})$	2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	= 30 square units	✓ Answer
		(4)
1.7	From 1.1	$\checkmark \tan \theta = \frac{1}{3}$
	$m_{BC} = \frac{1}{3}$	3
	1	
	$\tan \theta = \frac{1}{3}$	(0-10 420
	$\therefore \theta = 18,43^{\circ}$	$\checkmark \theta = 18,43^{\circ} $ (3)
		[21]

Copyright reserved

2.1	Midpoint $AB \left(\frac{-8+0}{2}; \frac{1+5}{2}\right)$	✓ substitution into midpoint formula (1)
2.2		✓ substitution into gradient formula ✓ $M_{AD} = \frac{-2}{1}$ ✓ substitution of (0; 5)in a straight line equation ✓ Answer (4)
2.3	$AM^{2} = (5-3)^{2} + (0+4)^{2}$ $AM^{2} = 2^{2} + 4^{2}$ $AM = \sqrt{20}$	✓ substitution into distance formula ✓ simplification ✓ answer
2.4	$(x+4)^{2} + (y-3)^{2} = (\sqrt{20})^{2}$ $(x+4)^{2} + (y-3)^{2} = 20$ $x^{2} + y^{2} + 8x - 6y + 5 = 0$	$(x+4)^{2}$ $(y-3)^{2}$ 20 4 answer (4)
2.5	AT = TK = 6 $CD \perp AK$ Therefore, ACKD is a kite since diagonal CD bisects diagonal AK at right angles.	✓AT = TK ✓ CD perpendicular to AK ✓ Kite ✓ reason
	OR $C\hat{A}D = 90^{\circ}$ $M_{KC}.M_{KD} = \frac{6}{-12}.\frac{6}{3} = -1$ $\therefore C\hat{K}D = 90^{\circ}$ $\Delta CAD \& \Delta CKD \text{ are right angles \& congruent}$ ACKD is a kite	(4) $M_{KC}.M_{KD} = \frac{6}{-12}.\frac{6}{3} = -1$ $\checkmark \Delta \text{ CAD & } \Delta \text{ CKD are right angles & congruent}$ $\checkmark \text{ ACKD is a kite}$ (4) [16]

3.1.1	$P'\left(-\sqrt{3};-2\right)$	\checkmark coordinates P'
3.1.2	$P'(-\sqrt{3};2)$	\checkmark coordinates P' (2)
3.2.1	$Q^{\prime}(2;2)$	$\checkmark \checkmark$ coordinates Q^{\prime}
3.2.2	9 V	(2) \checkmark coordinates P' \checkmark coordinates R' \checkmark coordinates S' (4)
3.2.3	P''(4;6)	✓✓ answer (2)
3.2.4	Not rigid. The shape remains the same, whilst the size changes.	✓ Not rigid ✓ explanation (2)
3.2.5	$(x; y) \rightarrow (y; -x)$ $(y; -x) \rightarrow (2y; -2x)$ $\therefore (x; y) \rightarrow (2y; -2x)$	$\checkmark (y; -x)$ $\checkmark \checkmark (2y; -2x)$ (3)
3.2.6		✓ squaring ✓ answer (2) [19]

4. 1	$x' = x\cos(135^\circ) - y\sin(135^\circ)$	✓ 135°
	$x' = -x\cos(155) + y\sin(155)$ $x' = -x\cos 45^\circ - y\sin 45^\circ$	✓ substitution
		2 30 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	$x' = x \left(\frac{-\sqrt{2}}{2} \right) - y \left(\frac{\sqrt{2}}{2} \right)$	
	$x' = -\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y$	\checkmark answer for x
	and	
	$y' = y\cos(135^\circ) + x\sin(135^\circ)$	
	$y' = -y\cos 45^\circ + x\sin 45^\circ$	
	$y' = y\left(-\frac{\sqrt{2}}{2}\right) + x\left(\frac{\sqrt{2}}{2}\right)$	
	$\sqrt{2}$ $\sqrt{2}$	
	$y' = -\frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2}x$	(C
		\checkmark answer for y
		(4)
4.2	$x' = -\frac{\sqrt{2}}{2}(2) - \frac{\sqrt{2}}{2}(4)$	
	$x' = -\sqrt{2} - 2\sqrt{2}$	
	$x' = -3\sqrt{2}$	
	$y' = -\frac{\sqrt{2}}{2}(4) + \frac{\sqrt{2}}{2}(2)$	
	$y' = -\sqrt{2}$	
	$\therefore M(-3\sqrt{2}; -\sqrt{2})$	$\checkmark x$ coordinates
	$M(-3\sqrt{2},-\sqrt{2})$	$\checkmark y$ coordinates
		(2)
		[6]

5.1	$\tan(180^\circ + x)\cos(360^\circ - x)$		
	$\sin(180^{\circ} - x)\cos(90^{\circ} + x) + \cos(540^{\circ} + x)\cos(-x)$		
	$-$ tan $x.(\cos x)$	$\sqrt{\tan x}$	
	$-\frac{1}{(\sin x).(-\sin x)-\cos x.\cos x}$	$\sqrt{\cos x}$	
	$\frac{\sin x}{\cos x}$	$\sqrt{-\sin x}$	
		$\sqrt{-\sin x}$ $\sqrt{-\cos x}$	
	$-\frac{1}{-\sin^2 x - \cos^2 x}$	$\sqrt{\cos x}$	
	$=\frac{\sin x}{-\left(\sin^2 x + \cos^2 x\right)}$	✓ simplification	
	$= -\sin x$	✓ answer	(8)
			(6)
5.2	$1-\cos 2x-\sin x$		
	$\sin 2x - \cos x$		
	$-\frac{1-(1-2\sin^2 x)-\sin x}{1-(1-2\sin^2 x)}$	$\sqrt{1-2\sin^2 x}$ $\sqrt{2\sin x \cdot \cos x}$	
	$-2\sin x.\cos x - \cos x$	28111.2.082	
	$= \frac{2\sin^2 x - \sin x}{1 + \sin x}$		
	$2\sin x.\cos x - \cos x$		
	$=\frac{\sin x(2\sin x-1)}{1+\cos^2 x}$	✓✓ factorisation	
	$\cos x(2\sin x - 1)$	V Tactorisation	
	$=\frac{\sin x}{x}$		
	$\cos x$		
	$=\tan x$	✓ answer	(5)
			[13]

6.1.1	cos 113°			
	$=\cos{(90^{\circ}+23^{\circ})}$		✓ reduction	
	$=$ - $\sin 23^{\circ}$			
	=-p		✓ answer	(2)
(10			(1:	(2)
6.1.2	cos 23°		✓ diagram ✓ answer	
	$=\sqrt{1-p^2}$	1	v answer	(2)
		p		(2)
		230		
	OR	$\sqrt{1-p^2}$		
	$\cos^2 23^\circ + \sin^2 23^\circ = 1$		OR	
			✓ identity	
	$\cos^2 23^\circ = 1 - p^2$		✓ answer	(2)
	$\cos 23^\circ = \sqrt{1 - p^2}$			(2)
6.1.3	sin 46°			
	= 2sin 23°.cos 23°		✓ expansion	
	$=2p\sqrt{1-p^2}$		✓ answer	(2)
6.2.1	1 V 1			(2)
0.2.1	_	†		
	$\sin \alpha = \frac{5}{13}$	N 12	✓ simplification	
		5 13	r	
	$y_{\alpha} = 5$ $r_{\alpha} = 13$		✓ diagram	
	$x_{\alpha} = -12$	-12		
	$\cos \alpha = -\frac{12}{12}$		✓ answer	(2)
	$\cos \alpha = -\frac{1}{13}$			(3)
6.2.2	3		✓ diagram	
	$\tan \beta = -\frac{3}{4}$	†		
	$y_{\beta} = 3 x_{\beta} = -4$	× 5		
	r=5	3 5		
	7 – 3	β		
	$\cos(\alpha + \beta)$	-4		
	$= \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$		✓ expansion	
			4	
	$= \left(-\frac{12}{13}\right) \left(-\frac{4}{5}\right) - \left(\frac{5}{13}\right) \left(\frac{3}{5}\right)$		$\sqrt{-\frac{4}{5}}$	
			3	
	$=\frac{48-15}{65}$		$\sqrt{\frac{3}{5}}$	
	$=\frac{33}{65}$			
	65		✓ answer	(5)
				(5)
L	ļ		+	

NCS – Memorandum

6.3	$\frac{1}{2}\cos x = 0.435$ $\cos x = 0.87$ $x = 29.54^{\circ} \text{ or } x = 330.46^{\circ}$	✓ simplification ✓ ✓ answers	(3) [17]
-----	--	---------------------------------	----------------------

QUESTION 7

7.1	$\frac{7}{\text{PB}} = \sin 18^{\circ}$	✓ ratio	
	$PB = \frac{7}{\sin 18^{\circ}}$		
	PB = 22,65 m (22,65247584)	✓ answer	(2)
7.2	$\frac{18}{PA} = \cos 23^{\circ}$	✓ ratio	
	$PA = \frac{18}{1}$		
	cos 23°	√ answer	
	PA = 19,55 m (19,55448679)		(2)
7.3	$AB^{2} = (22,65)^{2} + (19,55)^{2} - 2(22,65)(19,55) \cdot \cos 42^{\circ}$	✓ use of cosine rule	
	= 237,0847954	✓ substitution	
	AB = 15,40 m (15,3975581)	✓ 237,0847	
	AD – 13,40 III (13,37/3301)	✓ answer	(4)
			(4)
			[8]

8.1	2 - y y g 1 - 1 - 1 - 1 - 1 - 1 - 2 - 2 - 1 - 2 - 2	tan graph ✓ shape ✓ asymptotes ✓ intercepts Sine graph ✓ shape ✓ intercepts ✓ period	(6)
8.2	$\sin 2x = \frac{1}{2} \tan x$ $2 \sin x \cdot \cos x = \frac{\sin x}{2 \cos x}$ $4 \sin x \cdot \cos^2 x - \sin x = 0$ $\sin x (4 \cos^2 x - 1) = 0$ $\sin x = 0$ $x = 0^{\circ} \text{ or } 180^{\circ}$ $\cos x = \pm \frac{1}{2}$ $x = 60^{\circ}; -60^{\circ} \text{ or } 120^{\circ}$	✓ equating ✓ 2.sinx.cosx ✓ $\frac{\sin x}{2\cos x}$ ✓ simplification ✓ factorisation ✓ $\sin x = 0$ ✓ $x = 0^{\circ}$ or 180° ✓ $\cos^2 x = \frac{1}{4}$ ✓ $\cos x = \pm \frac{1}{2}$ ✓ answers	(10)
8.3	$\{x \mid -60^{\circ} < x < 0^{\circ}\} \cup \{x \mid 60^{\circ} < x < 90^{\circ}\} \cup \{x \mid 120^{\circ} < x < 180^{\circ}\}$ OR $x \in (-60^{\circ}; 0^{\circ}) \cup (60^{\circ}; 90^{\circ}) \cup (120^{\circ}; 180^{\circ})$ OR $-60^{\circ} < x < 0^{\circ} \text{ or } 60^{\circ} < x < 90^{\circ} \text{ or } 120^{\circ} < x < 180^{\circ}$	√√√ answers	(3) [19]

Copyright reserved

Q020110113	
_ 1	✓ expansion
$-\frac{3\sin^2 x + 3\cos^2 x + \cos^2 x}{1}$	✓ identity
$-\frac{3(\sin^2 x + \cos^2 x) + \cos^2 x}{3(\sin^2 x + \cos^2 x) + \cos^2 x}$	
1	✓ simplification
$= \frac{1}{3 + \cos^2 x}$	
	\checkmark answer(s) (4)
	[4]

OUESTION 10

10.1	TION 10				√√mean
10.1	Mean = $\frac{5500}{10}$ = 550	(2)			
10.2	σ = 69,03 kilocalor	ies (done by	calculator)		✓✓✓✓ standard deviation
	OR				(4)
	x	$(x-\overline{x})$	$(x_i - \overline{x})^2$		$\checkmark \checkmark (x_i - \overline{x})^2$
	440	-110	12100		
	520	-30	900		
	480	-70	4900		
	560	10	100		
	615	65	4225		
	550	0	0		
	620	70	4900		
	680	130	16900		
	545	-5	25		
	490	-60	3600		47650
	Sum		47650		✓sum = 47650
	$\sigma^2 = \frac{47650}{10}$				
	10 = 4765				
	$\sigma = 69,03$				✓answer
10.3	Snack foods have a snack foods is 69,00 breakfast cereals is	✓snack foods			
				se of the snack food.	✓ explanation (2) [8]

11.1				
	Height (in cms)	Frequency	Cumulative Frequency	✓✓ answers in cumulative frequency column
	$118 \le h < 127$	16	16	(2)
	$\frac{116 \le h < 127}{127 \le h < 136}$	26	42	(2)
			84	
	$136 \le h < 145$	42		
	$145 \le h < 154$	54	138	
	$154 \le h < 163$	26	164	
	$163 \le h < 172$	22	186	
	$172 \le h < 181$	14	200	
11.2	250 200 150 100 100 110 120 130 He	140 150 1	60 170 180 190	✓ cumulative totals ✓ points at upper limits of intervals ✓ curve (3)
11.3	Lower quartile ≈ 138 cms Median ≈ 148 cms Upper quartile ≈ 158 cms			read off ogive (3)
11.4	100 120 140	- 160 180	200	✓ minimum and maximum values ✓ quartiles and median ✓ whiskers (3)
11.5	The heights of players are spread fa			✓ spread evenly (1)
11.6	100 players fall in this height interv	al.		✓ 100 (1)
				[13]

TOTAL: 150