Machine Learning in Security

CS463/ECE424

University of Illinois

Definitions Spam Classification using Logistic Regression Anomaly Detection through Deep Learning Challenges for Machine Learning in Security

What is Machine Learning?

Traditional Programming

When we know how to do things


```
int addition (int a, int b)
{
    int r;
    r = a + b;
    return r;
}
```

What is Machine Learning?

Traditional Programming

What is Machine Learning?

A computer program is said to learn from **experience E** with respect to some class of **tasks T** and **performance measure P**, if its performance at tasks in T, as measured by P, improves with experience E.

-- Tom Mitchell, Machine Learning

Steps towards Designing a ML System

- Step 1: Choosing the Training Experience (i.e., training dataset)
- Step 2: Modeling the Transformation
- Step 3: Choosing the Input & Output Representations
- Step 4: Choosing a Transformation Function Approximation
- Step 5: Evaluation

When To Use Machine Learning?

- When patterns exist in the data
 - Even if we don't know what they are
- When we cannot pin down the functional relationships mathematically (in-closed form)
 - Else we would just code up the algorithm
- When we have lots of data
 - Labeled training sets are harder to come by than unlabeled data
 - Data is of high-dimension
- When we want to discover lower-dimension representations

Example: Spam Filtering

 Task T: classifying emails into two categories (spam, ham)

 Performance measure P: percent of emails correctly classified

Training Experience E: a database of emails

Step 1: Choosing the Training Dataset

- Training Dataset:
 - A database of emails
- What feedback can be provided to the learner?
 - A database of labeled emails
- How well does the training dataset represent the distribution of examples over which the final system performance P must be measured?
 - A database of labeled emails that <u>represent the distribution of all the emails</u>

Step 1: Choosing the Training Experience

Cats v.s. Dogs

Step 2: Modeling the Transformation

- Task T: classifying emails into 2 categories (Spam, Ham)
- Transformation (target) function $V: A \rightarrow B$
 - What's in the training examples?
 - A: Email contents (a collection of words)
 - What should be the output?
 - B: {Spam (1) , Ham (0)}

Step 3: Choosing the Input & Output Representations

- How do we represent the model inputs and outputs?
 - Inputs could be categorical, numerical, binary, sequential ...
 - We use code + math; they need "numbers"

Feature generation

- Abstract V: Email contents \rightarrow {0,1}
- Realized V': $\mathbf{x} = (x_1, x_2, ..., x_n) \mapsto y \in \{0,1\}$
 - $x_i \in \{0,1\}$ represents whether a word w_i is in the email

Feature selection

To simplify the model (save time, avoid overfitting...)

Step 4: Choosing the Transformation Function Approximation

Logistic Regression (1)

- $V': \mathbf{x} = (x_1, x_2, ..., x_n) \mapsto y \in \{0,1\}$
- How to design V'?
 - Step 1: Combine $x_1, x_2, ..., x_n$ to get a "spaminess" value
 - Step 2: Convert the "spaminess" value into a probability P(Spam)
 - o Conversion enables the classification use-case; else it is useful for regression
 - Step 3: Make predictions on y based on P(Spam)
 - e.g., y = 1 when P(Spam) > 0.5

Logistic Regression (2)

- Step 1: Combine $x_1, x_2, ..., x_n$ to get a "spaminess" value
 - Assume the existence of a weight vector $\mathbf{\theta} = (\theta_1, \theta_2, ..., \theta_n)$
 - We define spaminess as the linear transformation $\mathbf{\theta^T} \cdot \mathbf{x}$

Logistic Regression (3)

- Step 2: Convert the "spaminess" value into a probability P(Spam)
 - Logistic function

$$h_{\theta}(x) = g(\theta^T X) = \frac{1}{1 + e^{-\theta^T x}}$$

Plot of logistic function *g*

Logistic Regression (4)

Step 3: Make predictions on y based on P(Spam)

Logistic Regression: Training

- How do we determine the "best" value of θ ?
 - For a given θ and some labeled examples, how do we know whether θ is good enough? i.e., is the best predictor of spam vs. ham?
- Define a loss function (e.g., log loss)

$$\text{Log Loss} = \sum_{(x,y) \in D} -y \log(y') - (1-y) \log(1-y')$$

where:

- $(x,y) \in D$ is the dataset containing many labeled examples, which are (x,y) pairs.
- y is the label in a labeled example. Since this is logistic regression, every value of y must either be 0 or 1.
- y' is your model's prediction (somewhere between 0 and 1), given the set of features in x.

Logistic Regression: Training

- How do we determine the "best" value of θ ?
 - For a given θ and some labeled examples, how do we know whether θ is good enough? i.e., is the best predictor of spam vs. ham?
- Define a loss function (e.g., log loss)
 - Wrong predictions -> large loss
 - Correct predictions -> small loss
- Run **optimization algorithms** to find θ , minimize the loss
 - e.g., Stochastic Gradient Descent (SGD)

- Ground Truth
 - V: Email contents \rightarrow {0,1}
- Hold out Method
 - Randomly partitioned data into two independent sets: a test set, a training set
 - Use test set instead of training set when assessing accuracy
- Cross-validation (k-fold)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At i-th iteration, use D_i as test set and others as training set

Overfitting:

Cats v.s. Dogs

Overfitting:

Confusion Matrix:

	Predicted Spam	Predicted Ham
Spam	True Positive (TP)	False Negative (FN)
Ham	False Positive (FP)	True Negative (TN)

Summary: Designing a ML System

- Step 1: Choosing the Training Experience (i.e., training dataset)
- Step 2: Modeling the Transformation
- Step 3: Choosing the Input & Output Representations
- Step 4: Choosing a Transformation Function Approximation
- Step 5: Evaluation

DeepLog: Anomaly Detection through Deep Learning

- Anomaly Detection from System Logs
 - Identify abnormal system behavior from large volume of system logs
- Challenges
 - Large volume of data
 - Sequential data
 - Unstructured data
- Why deep learning?
 - Widely used for natural language processing (NLP)
 - Log can be viewed as a structured language!

Step 1: Choosing the Training Data (1)

- What data do we have?
 - Large volume of log entries from normal system execution path
 - A few log entries of known attacks

Step 1: Choosing the Training Data (2)

- What data should we use?
 - Training: normal logs
 - Testing: normal logs and attack logs
- Advantages:
 - Prevent overfitting
 - Test the system's behavior on <u>unseen attacks</u>
- Disadvantages:
 - May classify any unseen behaviors as attacks (i.e., false positives)

Step 2: Modeling the Transformation

- Outputs: normal (-) v.s. abnormal (+)
- Inputs: Log entries from OpenStack VM deletion task (unstructured)
 - t1 <u>Deletion of file1 complete</u>
 - t2 Took 0.61 seconds to deallocate network ...
 - t3 VM Stopped (Lifecycle Event)
- Structured representation:
 - Log key
 - Parameter value (e.g., t1, file1)

Step 3: Choosing the Input & Output Representations (1)

- The total number of distinct log keys is constant.
 - Log keys: $K = \{k_1, k_2, ..., k_n\}$
 - Parameter value vectors: (time interval, other parameter values)

log message (log key underlined)	log key	parameter value vector
t ₁ Deletion of file1 complete	k_1	$[t_1-t_0, \text{file1Id}]$
t ₂ Took 0.61 seconds to deallocate network	k_2	$[t_2-t_1,0.61]$
t ₃ VM Stopped (Lifecycle Event)	k_3	$[t_3-t_2]$

Table 1: Log entries from OpenStack VM deletion task.

Step 3: Choosing the Input & Output Representations (2)

- Representation of Inputs:
 - Log Keys: structured, sequential, nominal
 - Parameter Values: structured, sequential, numerical (e.g., time, duration) or nominal (e.g., process id)
 - Different log keys have different structures for parameter values
- How to combine the inputs of different structures?
 - Train multiple models

Step 3: Choosing the Input & Output Representations (3)

- Model 1: Log key anomaly detection model
 - Log keys: $K = \{k_1, k_2, ..., k_n\}$
 - Input: A window w of the h most recent log keys $w = \{m_{t-h}, ..., m_{t-2}, m_{t-1}\}$, where $m_i \in K$
 - Output: $Pr[m_t = k_i \mid w]$ for each $k_i \in K$, (i = 1, ..., n)

Step 3: Choosing the Input & Output Representations (4)

- Model 2: Parameter value anomaly detection models
 - View each parameter value vector sequence (for a log key) as a separate time series
 - Train a separate model for each distinct log key value to predict the next parameter value
- Two steps of detecting anomaly
 - Predict the the next log key and parameter values
 - Compare the prediction against the observed log entry
 - \circ Mark as anomaly if the probability for the observed log entry is low (not in the top g candidates)

Step 3: Choosing the Input & Output Representations (5)

- Two steps of detecting anomaly
 - Predict the the next log key and parameter values
 - Compare the prediction against the observed log entry
 - \circ Mark as anomaly if the probability for the observed log entry is low (not in the top g candidates)

Step 3: Choosing the Input & Output Representations (6)

Step 4: Choosing a Transformation Function Approximation

- Long Short-Term Memory (LSTM) Network
 - Has the capability of remembering previous inputs
 - Suitable for sequential data
 - A gentle walk through on LSTM networks (optional, 25 minutes): https://www.youtube.com/watch?v=WCUNPb-5EYI

Step 5: Evaluation – Log Key Model (1)

- Hadoop-Distributed File System (HDFS) Dataset
 - System logs generated by map-reduce jobs on more than 200 Amazon's
 EC2 nodes
 - Labeled by domain experts
 - Log entries are grouped into sessions

Log	Number of sessions		n: Number
data set	Training data (if needed)	Test data	of log keys
HDFS	4,855 normal;	553,366 normal;	29
	1.638 abnormal	15,200 abnormal	

DeepLog does not use the abnormal training data

Step 5: Evaluation – Log Key Model (2)

	Predicted as Normal	Predicted as Abnormal
Normal	552,533 (True Negative)	833 (False Positive)
Abnormal	619 (False Negative)	14581 (True Positive)

- Precision = True Positive / (True Positive + False Positive) = 94.60%
- Recall = True Positive / (True Positive + False Negative) = 95.93%

Step 5: Evaluation – Parameter Value Model

OpenStack Log Dataset

- Run VM-related tasks
- Inject anomalies at different execution points

Mean-squared error (MSE)
 between the parameter value
 vector and the prediction output
 vector from DeepLog

Challenges for Machine Learning in Security

Outlier Detection

- High Cost of Errors
- Semantic Gap
- Diversity with Data
- Difficulties with Evaluations

Case Study: Outlier Detection

- ML needs large number of representatives for each class
 - What happens when P(Spam) is very small?

Not good at finding previously unknown malicious activities

High Cost of Errors

- **Example:** suppose a system generates
 - 1,000,000 audit records per day;
 - 10 audit records per intrusion;
 - Two intrusions per day.
- Intrusion: *I*, Alarm: *A*
- Detection rate: P(A|I) = 99.9%
- False alarm rate: $P(A| \neg I) = 0.02\%$
- Given a detected record, what's the probability that the record represents a true intrusion?

$$P(I|A) = \frac{P(A|I)P(I)}{P(A|I)P(I) + P(A|I)(1 - P(I))} = 9\%$$

S. Axelsson, "The Base-Rate Fallacy and Its Implications for the Difficulty of Intrusion Detection," in *Proc. ACM Conference on Computer and Communications Security*, 1999.

Semantic Gaps

 Difficult to transfer results into actionable report for the network operator

 Difficult to find the difference between "abnormal activity" and attacks

- Not interpretable! Unclear what the system learned
 - What do false positives and false negatives mean?
 - What features are used to produce correct results?

Diversity with Data and Concept Drift

Large variability in network traffic over short time intervals

P. Gill, M. Arlitt, Z. Li, and A. Mahanti, "YouTube Traffic Characterization: A View From the Edge," in *Proc. ACM SIGCOMM Internet Measurement Conference*. 2008.

Difficulties with Evaluations

Lack of (reliable) "ground truth"

Outdated datasets

 Highly sensitive information (e.g., network traffic can include personal communications and business secrets)

Difficulties with simulation and anonymization

Reading

- [1] Androutsopoulos, Ion, et al. "An evaluation of naive bayesian anti-spam filtering." arXiv preprint cs/0006013 (2000).
- [2] Du, Min, et al. "DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning." *Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security*. ACM, 2017.
- [3] Sommer, Robin, and Vern Paxson. "Outside the closed world: On using machine learning for network intrusion detection." *Security and Privacy (SP), 2010 IEEE Symposium on.* IEEE, 2010.

Discussion Questions

- How can you attack the spam filtering model we discussed?
 - Can you get around the filtering and send a spam to a user's inbox?
 - Can you trick the algorithm to filter a ham email?

 Do you think ML will replace human analysts in detecting security threats? Why or why not?