Week5 CNN

Tutor: Email:

Tutorial:

Code: https://github.com/Jinxu-Lin/COMP5329

Convolutional Neural Network

Convolution

- Convolution operation
- Popular filters/kernels in Computer Vision
- Convolutional layer
- Stride and Padding
- Pooling layer

Convolution Operation

$$(f * g)(x) = \int_{-\infty}^{\infty} f(t)g(x - t)dt$$

• Refer to this link to see example: (https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1)

Convolution Operation

- Before Neural Network why does this operation matter?
 - Traditional Computer Vision (CV) goes around the act of designing the filters so that it can extract desirable features.
 - 1st question: "What features do I want to extract?" e.g Key points, edges, blurr.etc.
 - 2nd question: "How do I extract them?" e.g Kalman filter, Gaussian filter, etc.

Convolution Operation

- Before Neural Network why does this operation matter?
 - Traditional Computer Vision (CV) goes around the act of designing the filters so that it can extract desirable features.
 - 1st question: "What features do I want to extract?" e.g Key points, edges, blurr.etc.
 - 2nd question: "How do I extract them?" e.g Kalman filter, Gaussian filter, etc.

Popular filters/kernels

Edge Detection Filters

```
    Horizontal 1 1 1 1
    0 0 0
    -1 -1 -1
```

Vertical
-1 0 1
-1 0 1
-1 0 1
-1 0 1

•

Popular filters/kernels

- What is the problem?
 - Manually design the convolution filters is an exhaustive task
 - Not effective enough as some features are not easily to understand to human eyes.
 - How to arrange the orders of filters to achieve the best results
- We need something stronger and less dependent on human!!!!
 - Actually, it is just a set of filters whose parameters are optimized via training of neural network.
 - Make the parameters of convolution as the parameters of neural networks

Multi-channels with 1 filters

- Previously, we know how to apply the filter on gray image. How about color image (multi-channels)?
- Multi-channels input: conduct convolution separately
- 1 filters: 1 channels of output
- Result of each input channels: Add

Multi-filters: Multi channels of output

0 0 0 0 0 0 0

 Previous examples are just for illustration for dealing with multiple input channels and multiple filters. In CNN, we will employ the multi-channel filters like image below:

-		er W1 (3x3x3)	Output Volume (3x3x2)
	v1[:, 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	,:,0] -1 0	o[:,:,0] 1 0 -3
	0 1 -1 1		-6 1 1
0 0 1 1 0 0 0 -1	-1 0 -1 1	1 0	4 -3 1
		,:,1]	0[:,:,1]
0 1 0 1 1 1 0	0 1 -	-1 0	-1 -6 -4
0 0 2 0 1 0 0	0 -1 -1 0) –1	-2 -3 -4
0 0 0 0 0 0 0 1	-1 0 -1 0	0	-1 -3 -3
x[-,:,1] w0[:		,:,2]	
000000	1 0 -1 0) 1	
0 1 1 1 2 0 0 1	0 1 0) 1	
0 8 2 1 1 2 8	-1 1 0 -	-1 0	
0 1 2 0 0 2 0 Bias	b0 (1x1x1) Bias	b1 (1x1x1)	
		,:,0]	
0 2 0 1 2 0 0	0		
0 9 0 0 9 0 0		Turn fil	14
Two filters			
0 0 0 0 0 0		Stride	=2
0 2 0 2 0 2 0			_
0 0 1 2 1 0		Zero-p	adding=1
0 1 0 2 2 1 0			
0 2 0 2 0 0 0			
0 0 0 1 1 2 0			

- The number of channels of the output = the number of filters
- The number of channels of the input = the number of channels in each filter

- Filter: (input_channels, output_channels, width, height)
- Filter: (number of channels in each filter, the number of filters, width, height)

- How it will benefit the neural network training?
 - Help to reduce trainable parameters
 - Help the model to focus on local features which might benefit the prediction
 - Keep the trainable parameters the same with different size of images

- Number of trainable parameters are equal to the number of parameters of filters.
- Number of trainable parameters \sim number of previous channels * size of filters * number of filters
 - d: the number of previous channels
 - w: is the width of filter
 - h: is the size of filter
 - k: the number of filters
 - The trainable parameters of each layer: $n_t = ((d*w*h) + 1)*k$

- The trainable parameters of each layer: $n_t = ((d*w*h) + 1)*k$
- Example:
 - Given image (3,32,32), we want to achieve the neural in the next layer has the shape of (100,32,32)
 - We have:
 - The input size: $3 \times 32 \times 32 = 3072$; The output size $100 \times 32 \times 32 = 102400$
 - Linear Operation: Y = X*W + B, where W have the shape of 3072*102400 = 314572800 ~ 314m parameters

- Example: given image (3,32,32), we want to achieve the neural in the next layer has the shape of (100,32,32)
 - Convolution: We need the Convolution layer with size (100, 3, 3) with padding=1 and stride=1 to transform from (3,32,32) to (100,32,32).
 - We have the number of trainable parameters is : $n_t = ((d \times w \times h) + 1) \times k = ((3 \times 3 \times 3) + 1) \times 100 = 1000$
- Comparison
 - MLP: 314572800 parameters V.S. CNN: 1000 parameters

- Benefit of reducing trainable parameters:
 - It means the model is much faster to train
 - We can stack much more number of layers (in MLP only 1 or 2 layers, in CNN we can stack 20 - 50 layers).
 - Reduce the model complexity -> reduce overfitting

Output Shape after Convolution

- Stride: s; Padding: p;
- Output size:

$$OS_{H} = \frac{H - H_{k} + P * 2}{S} + 1$$

$$OS_W = \frac{W - W_k + P * 2}{S} + 1$$

Pooling layer

Exam-style Question

Code

Code

- ./materials/Week5_CNN/Week5_CNN.ipynb
- ./ResNet/Models/cnn.py
- ./ResNet/Models/resnet.py