Introduction to R

Sean Hellingman

Data Visualization and Manipulation through Scripting (ADSC1010) shelling man@tru.ca

Fall 2024

Topics

- Introduction
- User Interface
- 4 R packages
- Operations in R

- 6 Workspace and Important Base Functions
- Getting Help
- Exercises and References

Introduction

- R is a programming language for statistical computing and graphics
 - R is software is open source unlike some other statistical software.
 - R can be downloaded at https://www.r-project.org/.
- RStudio is an integrated development environment for R
 - RStudio will be used in this course.
 - Can be downloaded at https://posit.co/download/rstudio-desktop/.
 - Please install R before RStudio, otherwise RStudio will not work.

User Interface I

R Console

• Can give R direct instructions via the R console.

R script

- A text file containing a set of commands and comments.
- Can create an R script, with the file extension '.R'.
- Used to run a sequence of commands in R.
- Other types of scripts such as R markdown files can be created.
- Good idea to save your script or R markdown file periodically.

Environment

- Where variables are created and stored.
- Serves as a Workspace.

User Interface II

- History
 - Stores the code that has been ran.
 - Next to the Environment tab.
- Working Directory
 - R scripts are stored here by default.
 - Can be important when importing data.
 - Permanently change working directory:
 Tools ⇒ Global Options ⇒ General ⇒ Default working directory
 - Temporarily change working directory:
 Session ⇒ Set working directory ⇒ Choose Directory
 - The working directory resets to the default when RStudio restarts.

Base R & R packages

- Base R
 - Contains some basic functions and visualization tools.
 - The base R functions contain only a tiny fraction of what is actually available.
- R packages
 - A package is essentially a suite of related functions that were created by one or more R users.
 - Currently over 19000 R packages availbe at https://cran.r-project.org/.
- Some packages we will use:
 - dplyr for data manipulation.
 - tidyr for reshaping data.
 - ggplot2 for creating visualisations.

Initializing R packages

- Use install.packages("package_name") in the console to install R packages on your own machine.
 - Example: install.packages("ggplot2") to install ggplot2.
- Use library(package_name) to initializing already installed packages.
 - Example: library(ggplot2) to load ggplot2.
- To install the package if it isn't already installed and then initialize it after installation:

```
if(!require(package_name)) install.packages("package_name")
library(package_name)
```

Arithmetic Operations

- Order of arithmetic operations (BEDMAS) applies in R.
- Basic operations:

Operation	Description
+	Addition
_	Subtraction
*	Multiplication
/	Division
^	Exponent
%%	Modulus (Remainder from division)
%/%	Integer Division

• # is used to add comments to R scripts.

Relational Operators

• Relational operators are used to compare between values:

Operation	Description
<	Less than
>	Greater than
<=	Less than or equal to
>=	Greater than or equal to
==	Equal to
!=	Not equal to

Assigning Variables

- The operators =, <-, and -> can be used to assign values to variables
 - If we want to assign x = 2; x=2, x<-2, and 2->x are equivalent.
 - Common convention is to use <- but feel free to use =.
- Variable naming conventions
 - Try to use meaningful names.
 - Periods and underscores are allowed in variable names.

Displaying Output

- R will display the outputs of unassigned calculations
 - $\exp(3)$ would compute e^3 (approximately) and display the result.
- R suppresses the output of assigned calculations
 - x < -exp(3) would compute e^3 and store the result in x but would not display anything.
 - To see that value of x we would need to run print(x) or just x.

Workspace (Environment)

- Use ls() or objects() to generate a list of objects in the workspace.
- Use rm() to remove/delete objects from the current workspace
 - The call rm(x,y,z) will remove the variables x, y, and z from the workspace.
 - The call rm(list=ls()) will remove all objects from the workspace.
 - Can also click the broom symbol at the top of the workspace to remove all of the objects.
 - The workspace is automatically cleared when RStudio is exited.

Some Important Functions

Function	Description
exp(x)	Computes the exponential function e^x .
log(x,base=exp(1))	Computes the logarithm of x,
	by default natural logarithm (e) .
sqrt(x)	Computes the square root of a numeric data object.
factorial(x)	Computes the factorial of a positive integer x.
sin(x)	Computes the sine of x in radians.
	(similar for cosine(x) ect.).
abs(x)	Computes the absolute value of x.

Useful R Resources

- Use ? to learn more about how a function works.
 - For example, ?sqrt would produce a brief explanation of the sqrt function in a separate window.
 - You can also go to the Help tab and search for the function or command you need help with.
- It may be more useful to use Google
 - https://stackoverflow.com/
 - https://www.r-bloggers.com/

Exercise 1

- What are the final values of x and y after following this sequence of commands:
 - x <- 6
 - x^2
 - x <- 2*x-1
 - x + 3
 - x <- -3*x
 - y < -x/2
- Next, use R to confirm your answers.

References & Resources

Douglas, A., Roos, D., Mancini, F., Couto, A., & Lusseau, D. (2023).
 An introduction to R. Retrieved from https://intro2r.com/