#Output Side Economics: Single input single output production function worked out problem complete solution. Author: Bijesh Mishra.

restart;

Digits := 3;

$$Digits := 3$$
 (1)

Quadratic Production Function:

x := x; c1 := 2512; c2 := 180; c3 := -1.5; c4 := 0; p := p; r := r; b := 0; Y := Y; # Y is the LHS of the production function.

x := x; c1 := 2512; c2 := 180; c3 := -1.5; c4 := 0; p := 2; r := 2000; b := 0; Y := Y; # Y is the LHS of the production function.

$$x := x$$
 $c1 := 2512$
 $c2 := 180$
 $c3 := -1.5$
 $c4 := 0$
 $p := 2$
 $r := 2000$
 $b := 0$
 $Y := Y$
(2)

 $quad := c1 \cdot x + c2 \cdot x^2 + c3 \cdot x^3 + c4 - Y;$

I substracted Y from the production function for easier calculation of inverse function.

$$quad := -1.5 x^3 + 180 x^2 - Y + 2512 x$$
 (3)

Cobb Douglas Production Function:

Z := Z; m := m;

change values here to change the Cobb Douglas function equation given by eq. 3. and change eq. 6 to "cobb" to run optimization using cobb douglas production function with two input and onw output.

$$Z := Z$$

$$m := m$$
(4)

 $cobb := Z \cdot x^m - Y;$

Cobb Douglas Production Function. I substracted Y from the production function for easier calculation of inverse function.

$$cobb := Zx^m - Y \tag{5}$$

Variable cost := $r \cdot x$; *Total Cost* := *Variable cost* + b;

$$Variable\ cost := 2000\ x$$

$$Total_Cost := 2000 x \tag{6}$$

Change Production Function:

y := cobb; #quad or cobb.

$$y := Zx^m - Y \tag{7}$$

LHS := Y; # this is y of the production function. I addressed this issue by substracting Y from the production faction manually. But Maple should have better code that this. xStar := solve(y = 0, x);

$$xStar := e^{\frac{\ln\left(\frac{Y}{Z}\right)}{m}}$$
(8)

Variable Cost Function:

Variable cost Star := eval(Variable cost, x = xStar);

#Minimum cost of producing a given level of output is equivalent to $K \cdot Y^{\left(\frac{1}{m}\right)}$ and K is constant.

Variable_cost_Star := 2000 e
$$\frac{\ln\left(\frac{Y}{Z}\right)}{m}$$

Variable_cost_Star);

Variable_not_properties on the properties of t

 $Cobb \ simple := simplify(Variable \ cost \ Star);$

#For Cobb Douglas Production function. Quadratic Function might not need simplification.

$$Cobb_simple := 2000 \left(\frac{Y}{Z}\right)^{\frac{1}{m}}$$
 (10)

Comparative Static # Not given in Note.