2024-02-21

- 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
- 1. 若复数 z 与复数 $\frac{3+z}{2-z}$ 都是纯虚数, $\frac{1}{z}$ 是 z 的共轭复数,则 $\frac{1}{zz}$ = () A. 6 B. $\sqrt{6}$ C. $-\frac{3}{2}$ D. $-\frac{\sqrt{6}}{2}$
- 2. 若 $(4x-m)(x-2)^5$ 的展开式中的 x^3 的系数为 -600 ,则实数 m=() A. 8 B. 7 C. 9 D. 10
- 3. 已知函数 f(x) 的定义域为 $(-\infty,0) \cup (0,+\infty)$, 满足 f(|x|) = f(x) . 当 x < 0 时 $f(x) = (\frac{1}{x} x) \ln x^2$, 则 f(x) 的大致

- 4. 已知 $2\sin\beta \cos\beta + 2 = 0$, $\sin\alpha = 2\sin(\alpha + \beta)$,则 $\tan(\alpha + \beta) = ($) A. $\frac{\sqrt{5} 1}{2}$ B. $\frac{\sqrt{5} + 1}{2}$ C. $\frac{1}{3}$ D. $\frac{1}{2}$
- 5. 已知 F(c,0) 为椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的右焦点,直线 $y = \frac{\sqrt{3}}{2} b$ 与椭圆 E 交于 A、B 两点,若 $\triangle ABF$ 的周长等于 4c ,则椭圆 E 的离心率等于()A. $\frac{3}{4}$ B. $\frac{2}{3}$ C. $\frac{1}{4}$ D. $\frac{\sqrt{3}}{2}$
- 6. 已知数列 $\{a_n\}$ 为等比数列,公比为 $q(q \neq 1)$,前n项和为 S_n ,则" $S_2 > 0$ "是"数列 $\{S_{2n}\}$ 是单调递增数列"的
- () A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
- 7. 已知函数 $f(x) = x^3 + ax^2 + bx + c(a,b,c \in R)$, 若不等式 f(x) < 0 的解集为 $\{x \mid x < m+1, \exists x \neq m\}$,则函数 f(x) 的
- 极小值是 () A. $-\frac{1}{4}$ B. 0 C. $-\frac{4}{27}$ D. $-\frac{4}{9}$
- 8. 若数列 $\{a_n\}$ 的前 n 项和为 $S_n, 2S_n a_n = a_n^2 + 1 (n \in N^*, a_n > 0)$,则下列结论正确的是()
- A. $a_{2022}a_{2023} > 1$ B. $a_{2023} > \sqrt{2023}$ C. $S_{2023} < \sqrt{2022}$ D. $\frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3} + \dots + \frac{1}{S_{100}} < 19$
- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
- 9. 已知圆锥的侧面展开图是半径为 2 的半圆,则下列关于该圆锥的结论正确的是 ()
- A.体积等于 $\frac{\sqrt{3}}{3}\pi$ B.过顶点的截面面积最大值等于 2 C.外接球的体积等于 $\frac{32\sqrt{3}}{27}\pi$ D.内切球的表面积等于 2π
- 10. 已知抛物线 $C: y^2 = 4x$ 的焦点为F,点P在抛物线上,点Q(m,n),点P到点Q和到y轴的距离分别为
- d_1 、 d_2 ,则()A. 抛物线 C 准线方程为 y=-1 B. 若 m=n=1,则 $\triangle PQF$ 周长的最小值等于 3
- C. 若 $(m-3)^2 + n^2 = 1$,则 d_1 的最小值等于 2 D. 若 m-n=-4,则 $d_1 + d_2$ 的最小值等于 $\frac{5\sqrt{2}}{2} 1$
- 11. 投掷一枚质地不均匀的硬币, 己知出现正面向上的概率为p, 记A, 表示事件"在n 次投掷中, 硬币正面向上出现

2024-02-21

偶数次",则下列结论正确的是()A. $A_2 与 \overline{A_2}$ 是互斥事件 B. $P(A_2) = p^2$

C. $P(A_{n+1}) = (1-2p)P(A_n) + p$

- D. $P(A_{2n}) > P(A_{2n+2})$
- 三、填空题:本大题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.
- 13. 已知平面向量 $\vec{b} = (1,1), |\vec{a}| = 2, \vec{a}, \vec{b}$ 的夹角为90°,则 $|\vec{a}+2\vec{b}| = ...$
- 14. 已知函数 $f(x) = 2\sin(\omega x + \varphi) + 1(\omega > 0, -\frac{\pi}{2} < \varphi < \frac{\pi}{2})$ 的图象经过原点,若在 $(0,\pi)$ 上恰好有 3 个不同实数 $x_i(i=1,2,3)$ 使得对任意 x 都满足 $f(x) + f(2x_i x) = 2$,且对任意 α ,使得 f(x) 在 $(\alpha,\alpha + \frac{\pi}{3})$ 上不是单调函数,则 ω 的取值范围是
- 四、解答题: 本大题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.
- 15. 联合国教科文组织确定每年的 4 月 23 日为"世界读书日",以促进更多的人去阅读,享受阅读的乐趣. 为建设读书校园,提升校园的读书氛围,市教育局准备在全市义务教育四年级至九年级学段开展"读书月"活动,活动前,为了解学生的阅读情况,从四年级至九年级在校学生中随机问卷调查了 10000 人,得到他们在过去一个月中平均每天课外的阅读时间 t (单位:分钟),整理得到如右的频率分布直方图,已知这 10000 人的平均每天课外阅读时间的中

位数是 31.(1)求频率分布直方图中 m、n 的值;(2)若 t_0 为整数,将本次调查中平均每天课外阅读时间 $t \geq t_0$ 的学生选为"读书月"活动的宣传大使,教育局准备至少选出 1500 名"读书月"宣传大使,求 t_0 的最大值;

(3)为了进一步了解学生的课外阅读习惯受电子产品的影响,由频率分布直方图中平均阅读时间在[20,30)和 [30,40)两组学生中,按人数比例分配的分层抽样方法抽取了 100 名学生,已知[20,30)组的学生平均每天花在电子产品上的时间为 30 分钟,方差为 36, [30,40)组的学生平均每天花在电子产品上的时间为 20 分钟,方差为 16, 求抽取的 100 名学生每天花在电子产品上的时间的方差.

2024-02-21

16. 如图,在梯形 ABCD 中, AB//CD, $BD \perp CD$, AB = BD = 2CD = 2,将 $\triangle ABD$ 沿着 BD 折起到 $\triangle PBD$ 的位置,使得平面 PBC 一平面 BCD. (1) 证明: $PB \perp CD$; (2) 点 M 满足 $\overline{PM} = \lambda \overline{PD}(0 < \lambda < 1)$, 若二面角 C - BM - D 的余弦值为 $\frac{2}{3}$,求 λ .

- 17. 已知函数 $f(x) = \frac{\ln x \ln a}{x a}$. (1) 若 a = 1, 判断函数 f(x) 的单调性;
- (2) 若 $a \ge 1$, 证明: 对任意 $x \in (2a, +\infty), f(x) < \ln 2^{a-2\ln a}$.

18. 已知圆 $M:(x-2)^2+y^2=4$,点N(-2,0),P 是圆M上的动点,线段PN的中垂线与直线PM交于点Q,点Q的轨迹为曲线C. (1) 求曲线C的方程;(2) $A_1(-1,0),A_2(1,0)$,点E、F(不在曲线C上)是直线x=2上关于x轴对称的两点,直线AE、 A_2F 与曲线C分别交于点A、B(不与 A_1 、 A_2 重合),证明:直线AB 过定点.

19. 对于给定的奇数 $m(m \ge 3)$,设 A 是由 $m \times m$ 个实数组成的 m 行 m 列的数表,且 A 中所有数不全相同,A 中第 i 行第 j 列的数 $a_{ij} \in \{-1,1\}$,记 r(i) 为 A 的第 i 行各数之和,c(j) 为 A 的第 j 列各数之和,其中 $i,j \in \{1,2,\cdots,m\}$.记 $f(A) = \frac{m^2 - |r(1) + r(2) + \cdots + r(m)|}{2}$.设集合 $H = \{(i,j) | a_{ij} \cdot r(i) < 0, 或 a_{ij} \cdot c(j) < 0, i,j \in \{1,2,\cdots,m\}\}$ 或,记 H(A) 为集合 H 所含元素的个数. (1) 对以下两个数表 A_i , A_2 ,写出 $f(A_i)$, $H(A_i)$, $f(A_2)$, $H(A_2)$ 的值;

1	1	1	1	1	-1	-1	1	1	1	
1	1	1	1	-1	-1	1	1	1	-1	
1	1	1	-1	-1	1	1	1	-1	-1	
1	1	-1	-1	-1	1	1	-1	-1	-1	
1	-1	-1	-1	-1	1	-1	-1	-1	-1	
A_1					A2					

(2) 若 $r(1),r(2),\cdots,r(m)$ 中恰有s个正数, $c(1),c(2),\cdots,c(m)$ 中恰有t个正数.求

证: $H(A) \ge mt + ms - 2st$; (3) 当m = 5时, 求 $\frac{H(A)}{f(A)}$ 的最小值.

解答

- 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
- 1. 若复数 z 与复数 $\frac{3+z}{2-z}$ 都是纯虚数, $\frac{z}{z}$ 是 z 的共轭复数,则 $\frac{z}{z} = ($ A) A. 6 B. $\sqrt{6}$ C. $-\frac{3}{2}$ D. $-\frac{\sqrt{6}}{2}$
- 2. 若 $(4x-m)(x-2)^5$ 的展开式中的 x^3 的系数为 -600 ,则实数 m=(B) A. 8 B. 7 C. 9 D. 10
- 3. 已知函数 f(x) 的定义域为 $(-\infty,0) \cup (0,+\infty)$, 满足 f(|x|) = f(x) . 当 x < 0 时 $f(x) = (\frac{1}{x} x) \ln x^2$, 则 f(x) 的大致

- 4. 已知 $2\sin\beta \cos\beta + 2 = 0$, $\sin\alpha = 2\sin(\alpha + \beta)$, 则 $\tan(\alpha + \beta) = ($ D) A. $\frac{\sqrt{5} 1}{2}$ B. $\frac{\sqrt{5} + 1}{2}$ C. $\frac{1}{3}$ D. $\frac{1}{2}$
- 5. 已知 F(c,0) 为椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbf{1}(a > b > 0)$ 的右焦点,直线 $y = \frac{\sqrt{3}}{2}b$ 与椭圆 E 交于 A、B 两点,若 $\triangle ABF$ 的周长等于 4c ,则椭圆 E 的离心率等于(A) A. $\frac{3}{4}$ B. $\frac{2}{3}$ C. $\frac{1}{4}$ D. $\frac{\sqrt{3}}{2}$
- 6. 已知数列 $\{a_n\}$ 为等比数列,公比为 $q(q \neq 1)$,前n项和为 S_n ,则" $S_2 > 0$ "是"数列 $\{S_{2n}\}$ 是单调递增数列"的
- 7. 已知函数 $f(x) = x^3 + ax^2 + bx + c(a,b,c \in R)$,若不等式 f(x) < 0 的解集为 $\{x \mid x < m+1, \exists x \neq m\}$,则函数 f(x) 的

极小值是(C)A. $-\frac{1}{4}$ B. 0 C. $-\frac{4}{27}$ D. $-\frac{4}{9}$

8. 若数列 $\{a_n\}$ 的前 n 项和为 $S_n, 2S_n a_n = a_n^2 + 1 (n \in N^*, a_n > 0)$,则下列结论正确的是(D

(C) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

A. $a_{2022}a_{2023} > 1$ B. $a_{2023} > \sqrt{2023}$ C. $S_{2023} < \sqrt{2022}$ D. $\frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3} + \dots + \frac{1}{S_{100}} < 19$

- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
- 9. 已知圆锥的侧面展开图是半径为 2 的半圆,则下列关于该圆锥的结论正确的是(AC)

A.体积等于 $\frac{\sqrt{3}}{3}\pi$ B.过顶点的截面面积最大值等于 2 C.外接球的体积等于 $\frac{32\sqrt{3}}{27}\pi$ D.内切球的表面积等于 2π

10. 已知抛物线 $C: y^2 = 4x$ 的焦点为 F,点 P 在抛物线上,点 Q(m,n) ,点 P 到点 Q 和到 y 轴的距离分别为

 d_1 、 d_2 ,则(BD)A. 抛物线 C 准线方程为 y=-1 B. 若 m=n=1,则 $\triangle PQF$ 周长的最小值等于 3

C. 若 $(m-3)^2 + n^2 = 1$,则 d_1 的最小值等于 2 D. 若 m-n = -4,则 $d_1 + d_2$ 的最小值等于 $\frac{5\sqrt{2}}{2} - 1$

2024-02-21

key: 抛物线的准线l方程为x=-1,A错;

P在l上的设由为 $P_1,Q(1,1),则_{\Delta}PQF$ 的周长为1+|PQ|+|PF|

 $=1+|PQ|+|PP_1| \ge 1+|QQ_1| = 3, B$ $\Rightarrow 1$;

Q在圆 $M: (x-3)^2 + y^2 = 1$ 上, $\therefore d_1 \ge |PM| - |MQ| = |PM| - 1$

$$= \sqrt{(x-3)^2 + 4x} - 1 = \sqrt{x^2 - 2x + 9} - 1 \ge 2\sqrt{2} - 1, C^{\ddagger};$$

Q在直线y = x + 4上,如图, $d_1 + d_2 \ge |PP_2| + |PP_1| - 1$

$$= |PP_2| + |PF| - 1 \ge |FH| - 1 = \frac{5}{\sqrt{2}} - 1, D$$

11. 投掷一枚质地不均匀的硬币,己知出现正面向上的概率为p,记 A_n 表示事件"在n次投掷中,硬币正面向上出现

偶数次",则下列结论正确的是(ACD)A. A_2 与 $\overline{A_2}$ 是互斥事件 B. $P(A_2) = p^2$

C.
$$P(A_{n+1}) = (1-2p)P(A_n) + p$$

D.
$$P(A_{2n}) > P(A_{2n+2})$$

 $key: P(A_2) = C_2^0 p^0 (1-p)^2 + C_2^2 p^2 \neq p^2, \therefore A \forall f, B \ddagger;$

 $P(A_{n+1}) = P(A_n) \cdot (1-p) + (1-P(A_n)) \cdot p = (1-2p)P(A_n) + p, C$;

$$P(A_{2n+2}) = P(A_{2n}) \cdot ((1-p)^2 + p^2) + (1-P(A_{2n})) \cdot (1-p)p = (1-3p+2p^2)P(A_{2n}) + p-p^2$$

$$\therefore P(A_{2n+2}) - P(A_{2n}) = p(2p-3)P(A_{2n}) + p(1-p) < 0, D$$

三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.

12. 已知平面向量 $\vec{b} = (1,1), |\vec{a}| = 2, \vec{a}, \vec{b}$ 的夹角为90°,则 $|\vec{a} + 2\vec{b}| = 2\sqrt{3}$

13. 已知函数 $f(x) = 2\sin(\omega x + \varphi) + 1(\omega > 0, -\frac{\pi}{2} < \varphi < \frac{\pi}{2})$ 的图象经过原点,若在 $(0,\pi)$ 上恰好有 3 个不同实数

 $x_i(i=1,2,3)$ 使得对任意 x 都满足 $f(x)+f(2x_i-x)=2$,且对任意 α ,使得 f(x) 在 $(\alpha,\alpha+\frac{\pi}{3})$ 上不是单调函数,则 ω

的取值范围是______. $(3, \frac{19}{6}]$

14. 在等腰梯形 ABCD 中, AB = 2CD = 2 , $\angle DAB = \angle CBA = \frac{\pi}{3}$, O 为 AB 的中点.将 $\triangle BOC$ 沿 OC 折起,使点 B 到

心到平面 B'CD 的距离为______. 4π , $\frac{3\sqrt{13}}{13}$

key:由已知得OB' = OA = OC = OD, $\therefore O$ 是三棱锥B' - ADC的外接球的球心, $\therefore S_{\sharp} = 4\pi$

取*OC*的中点*E*,则*OC* \perp 平面*B'DE*, $ED = EB' = \frac{\sqrt{3}}{2}$

 $\therefore B'D = \frac{\sqrt{3}}{2}, \therefore \triangle B'DE$ 是正三角形,

$$\therefore \frac{1}{3} \cdot \frac{1}{2} \cdot 1 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = V_{B'-OCD} = V_{O-B'CD} = \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \sqrt{1 - \frac{3}{16}} \cdot d_{O \to B'CD} \stackrel{\text{def}}{=} d_{O \to B'CD} = \frac{3}{\sqrt{13}}$$

四、解答题: 本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

2024-02-21

- 15. 联合国教科文组织确定每年的 4 月 23 日为"世界读书日",以促进更多的人去阅读,享受阅读的乐趣. 为建设读书校园,提升校园的读书氛围,市教育局准备在全市义务教育四年级至九年级学段开展"读书月"活动,活动前,为了解学生的阅读情况,从四年级至九年级在校学生中随机问卷调查了 10000 人,得到他们在过去一个月中平均每天课外的阅读时间 t (单位:分钟),整理得到如右的频率分布直方图,已知这 10000 人的平均每天课外阅读时间的中位数是 31. (1) 求频率分布直方图中 m、n 的值:
- (2)若 t_0 为整数,将本次调查中平均每天课外阅读时间 $t \ge t_0$ 的学生选为"读书月"活动的宣传大使,教育局准备至少选出 1500 名"读书月"宣传大使,求 t_0 的最大值;

(3)为了进一步了解学生的课外阅读习惯受电子产品的影响,由频率分布直方图中平均阅读时间在[20,30)和 [30,40)两组学生中,按人数比例分配的分层抽样方法抽取了 100 名学生,已知[20,30)组的学生平均每天花在电子产品上的时间为 30 分钟,方差为 36, [30,40)组的学生平均每天花在电子产品上的时间为 20 分钟,方差为 16, 求抽取的 100 名学生每天花在电子产品上的时间的方差.

【小问 1 详解】由题意中位数是 31,则 $0.1+0.17+10\times m+0.03=0.5$,所以 m=0.02,

 $\mathbb{Z} 0.1 + 0.17 + 0.2 + 0.3 + 0.1 + 10n = 1$: n = 0.013.

【小问2详解】通过直方图可知第85百分位数 x₀落在第[40,50)组,

 $0.1+0.17+0.2+0.3+\left(x_{0}-40\right)\times0.013=0.85$,解得 $t_{0}\approx46.15$,因为 $t_{0}\in\mathbf{Z}$,所以 $t_{0}=46$,

【小问 3 详解】按分层抽样在[20,30)组抽取 40 人记为 x_1, x_2, \dots, x_{40} ,

则
$$\frac{1}{40}$$
 $\left(x_1^2 + x_2^2 + \dots + x_{40}^2\right) - 900 = 36, \therefore x_1^2 + x_2^2 + \dots + x_{40}^2 = 936 \times 40$,

在[30,40)组抽取 60人,记为 $y_1, y_2 \cdots y_{60}$,

同理可得
$$y_1^2 + y_2^2 + \dots + y_{60}^2 = 416 \times 60$$
, 平均值为 $\overline{x} = \frac{40 \times 30 + 60 \times 20}{100} = 24$,

:抽取的 100 名学生每天花在电子产品上的时间的方差

$$S^2 = \frac{1}{100}(936 \times 40 + 416 \times 60) - 24^2 = 624 - 576 = 48$$
.

16. 如图,在梯形 ABCD 中, AB//CD, $BD \perp CD$, AB = BD = 2CD = 2,将 $\triangle ABD$ 沿着 BD 折起到 $\triangle PBD$ 的位置,使得平面 PBC \triangle 平面 BCD. (1)证明: $PB \perp CD$; (2)点 M 满足 $\overline{PM} = \lambda \overline{PD}(0 < \lambda < 1)$,若二面角 C - BM - D 的余弦值为 $\frac{2}{3}$,求 λ .

【小问1详解】过D作 $DN \perp BC$, 垂足为N,

因为平面 BCD 上平面 PBC, 平面 BCD 个平面 PBC = BC, DN 二平面 BCD, 所以 DN 上平面 PBC,

2024-02-21

因为PB \subset 平面PBC, 所以 $DN \perp PB$,

因为 $PB \perp BD$, $BD \cap DN = D$, 所以 $PB \perp$ 平面BCD,

因为CD \subset 平面BCD,所以 $PB \perp CD$.

【小问2详解】由(1)可知PB 上平面BCD,又BD 上CD,

以 B 为坐标原点,以 \overrightarrow{BD} 、 \overrightarrow{DC} 、 \overrightarrow{BP} 的方向分别为 x 轴、y 轴、z 轴正方向建立空间直角坐标系,

则
$$D(2,0,0)$$
, $C(2,1,0)$, $P(0,0,2)$,

$$\overrightarrow{BC} = (2,1,0)$$
, $\overrightarrow{BM} = \overrightarrow{BP} + \overrightarrow{PM} = \overrightarrow{BP} + \lambda \overrightarrow{PD} = (0,0,2) + \lambda (2,0,-2) = (2\lambda,0,2-2\lambda)$,

设平面
$$BCM$$
 的一个法向量 $\vec{n}=(x,y,z)$,由 $\left\{ \overrightarrow{BC} \cdot \vec{n}=0 \atop \overrightarrow{BM} \cdot \vec{n}=0 \right\} \left\{ \begin{array}{l} 2x+y=0 \\ \lambda x+\left(1-\lambda\right)z=0 \end{array}, \Leftrightarrow x=-1$ 得 $\vec{n}=\left(-1,2,\frac{\lambda}{1-\lambda}\right)$

平面 \overrightarrow{BDM} 的一个法向量可取 $\overrightarrow{m} = (0.1,0)$,

因为二面角C-BM-D的余弦值为 $\frac{2}{3}$,

所
$$\left|\cos \vec{m}, \vec{n}\right| = \left|\frac{\vec{m} \cdot \vec{n}}{\left|\vec{m}\right| \left|\vec{n}\right|}\right| = \frac{2}{\sqrt{5 + \left(\frac{\lambda}{1 - \lambda}\right)^2}} = \frac{2}{3},$$
解得 $\frac{\lambda}{1 - \lambda} = 2$,所以 $\lambda = \frac{2}{3}$.

- 17. 已知函数 $f(x) = \frac{\ln x \ln a}{x a}$. (1) 若 a = 1, 判断函数 f(x) 的单调性;
- (2) 若 $a \ge 1$, 证明: 对任意 $x \in (2a, +\infty), f(x) < \ln 2^{a-2\ln a}$.

(1)
$$\text{M}: \ \text{ln} f'(x) = \frac{\frac{x-1}{x} - \ln x}{(x-1)^2} > 0 \Leftrightarrow 0 < 1 - \frac{1}{x} - \ln x \text{ id } \beta p(x)$$

$$\mathbb{U}p'(x) = \frac{1}{x^2} - \frac{1}{x} = \frac{1 - x}{x^2} > 0 \iff 0 < x < 1, :: p(x)_{\text{max}} = p(1) = 0$$

 $\therefore f'(x) < 0, \therefore f(x)$ 在 $(0,1), (1,+\infty)$ 上递减

(2) 证明: 由
$$f'(x) = \frac{\frac{x-a}{x} - (\ln x - \ln a) \cdot 1}{(x-a)^2} > 0 \Leftrightarrow 0 < 1 - \frac{a}{x} - \ln x + \ln a$$
记为 $q(x)$

$$\mathbb{M}q'(x) = \frac{a}{x^2} - \frac{1}{x} = \frac{a - x}{x^2} < 0(\because x > 2a),$$

$$\overrightarrow{\text{mi}}q(a) = 0, :: f'(x) < 0, :: f(x) < f(2a) = \frac{\ln 2}{a}$$

要证:
$$f(x) < \ln 2^{a-2\ln a} (x > 2a)$$
,只要证明: $\frac{\ln 2}{a} \le (a-2\ln a)\ln 2\cdots(*)$

$$\Leftrightarrow 0 < a - 2 \ln a - \frac{1}{a} i \exists \exists r(a) (a \ge 1)$$

则
$$r'(a) = 1 - \frac{2}{a} + \frac{1}{a^2} = \frac{(a-1)^2}{a^2} \ge 0$$
, $\therefore r(a) \ge r(1) = 0$. \therefore (*)成立,证毕

18. 已知圆 $M: (x-2)^2 + y^2 = 4$,点N(-2,0),P是圆M上的动点,线段PN的中垂线与直线PM交于点Q,点Q

的轨迹为曲线 C. (1) 求曲线 C 的方程; (2) $A_1(-1,0)$, $A_2(1,0)$, 点 E、F (不在曲线 C 上) 是直线 x=2 上关于 x 轴对称的两点,直线 A_1E 、 A_2F 与曲线 C 分别交于点 A 、 A_3 (不与 A_3 、 A_4 重合),证明:直线 A_3B 过定点.

(1) 解: 由己知得 |QM| + |MP| = |QP| = |QN| |QN| - |QM| = |MP| = 2 or, |QM| - |QN| = |QM| - |QP| = |MP| = 2, |QN| - |QM| = 2

 $\therefore Q$ 的轨迹曲线C的方程为 $x^2 - \frac{y^2}{3} = 1$

(2) 证明: 设E(2,t)(t>0),则F(2,-t)

则
$$l_{A_1E}: x = \frac{3}{t}y - 1$$
代入 C 方程得: $(\frac{9}{t^2} - \frac{1}{3})y^2 - \frac{6}{t}y = 0$, $\therefore A(\frac{27 + t^2}{27 - t^2}, \frac{18t}{27 - t^2})$,

$$l_{A_2F}: x = -\frac{1}{t}y + 1$$
代入*C*方程得: $(\frac{1}{t^2} - \frac{1}{3})y^2 - \frac{2}{t}y = 0$, $\therefore B(\frac{-3 - t^2}{3 - t^2}, \frac{6t}{3 - t^2})$

$$\therefore k_{AB} = \frac{\frac{18t}{27 - t^2} - \frac{6t}{3 - t^2}}{\frac{27 + t^2}{27 - t^2} - \frac{-3 - t^2}{3 - t^2}} = \frac{6t}{t^2 - 9}$$

19. 对于给定的奇数 $m(m \ge 3)$,设 A 是由 $m \times m$ 个实数组成的 m 行 m 列的数表,且 A 中所有数不全相同,A 中第 i 行第 j 列的数 $a_{ij} \in \{-1,1\}$,记 r(i) 为 A 的第 i 行各数之和, c(j) 为 A 的第 j 列各数之和, 其中 $i,j \in \{1,2,\cdots,m\}$.记 $f(A) = \frac{m^2 - |r(1) + r(2) + \cdots + r(m)|}{2}$.设集合 $H = \{(i,j) | a_{ij} \cdot r(i) < 0, \text{或} a_{ij} \cdot c(j) < 0, i,j \in \{1,2,\cdots,m\}\}$,记 H(A) 为集合 H(A) 为 H(A) 为集合 H(A) 和 H(A) 为集合 H(A) 和 H(A) 为集合 H(A) 和 H(A) 和 H(A) 为集合 H(A) 和 H(A) 和

所含元素的个数. (1) 对以下两个数表 A_1 , A_2 , 写出 $f(A_1)$, $H(A_1)$, $f(A_2)$, $H(A_2)$ 的值;

1	1	1	1	1		-1	-1	1	1	1
1	1	1	1	-1		-1	1	1	1	-1
1	1	1	-1	-1		1	1	1	-1	-1
1	1	-1	-1	-1		1	1	-1	-1	-1
1	-1	-1	-1	-1		1	-1	-1	-1	-1
A_1					•	A_2				

- (2) 若 $r(1), r(2), \dots, r(m)$ 中恰有s个正数, $c(1), c(2), \dots, c(m)$ 中恰有t个正数.求证: $H(A) \ge mt + ms 2st$;
- (3) 当m = 5时,求 $\frac{H(A)}{f(A)}$ 的最小值.

(1)
$$\Re: A_1: r(1) = 5, r(2) = 3, r(3) = 1, r(4) = -1, r(5) = -3, \therefore f(A_1) = \frac{25 - |5 + 3 + 1 - 1 - 3|}{2} = 10,$$

$$c(1) = 5, c(2) = 3, c(3) = 1, c(4) = -1, c(5) = -3, \therefore H(A_1) = 1 + 2 + 2 + 1 + 1 + 2 + 2 + 1 = 12$$

$$A_2: r(1) = 1, r(2) = 1, r(3) = 1, r(4) = -1, r(5) = -3, \therefore f(A_2) = \frac{25 - |1 + 1 + 1 - 1 - 3|}{2} = 12$$

$$c(1) = 1, c(2) = 1, c(3) = 1, c(4) = -1, c(5) = -3, \therefore H(A_2) = 2 + 2 + 2 + 2 + 1 + 2 + 2 + 2 + 2 + 1 = 18$$

- (2) 证明: 由 $a_{ii} \cdot r(i) \cdot a_{ii} \cdot c(j) = a_{ii}^2 \cdot r(i)c(j) < 0$
- $:: r(1), r(2), \dots, r(m)$ 中恰有s个正数, $c(1), c(2), \dots, c(m)$ 中恰有t个正数,
- ∴ $H(A) \ge m(m-t) + t(m-s) (m-t)(m-s) = ms + mt 2st$, \overline{w}
- (3) 解:由已知得数表A中的每个数变为其相反数,或交换两行(列),H(A), f(A)的值不变,
- :: m为奇数, $a_{ii} \in \{-1,1\}, :: r(1), r(2), \dots, r(m); c(1), c(2), \dots, c(m)$ 均不为0

设 $r(1), r(2), \dots, r(5)$ 中恰有 $s(s \le 5)$ 个正数, $c(1), c(2), \dots, c(5)$ 中恰有 $t(t \le 5)$ 个正数,

- ①当 $s \in \{0,5\}$ 或 $t \in \{0,5\}$,不妨设s = 0, r(i) < 0($i = 1,2,\dots,5$)
- $\therefore H(a) \ge a \therefore \frac{H(A)}{f(A)} \ge 1;$
- ②由①设 $s \in \{0,5\}$,且 $t \notin \{0,5\}$.若 $s \in \{2,3\}$,or, $t \in \{2,3\}$,不妨设s = 2,

则由(2)得 $H(A) \ge 5t + 10 - 4t = 10 + t \ge 11$

$$\overline{\text{mif}}f(A) = \frac{25 - |r(1) + r(2) + \dots + r(5)|}{2} \le 12(:|r(1) + r(2) + \dots + r(5)| \le |1 + 1 - 5 - 5 - 5| = 13), : \frac{H(A)}{f(A)} \ge \frac{11}{12}$$

③若 $s,t \in \{1,4\}$,若 $s \neq t$,则 $\{s,t\} = \{1,4\}$,由(2)得: $H(A) \ge 25 - 8 = 17$

$$\overrightarrow{\text{mi}}f(A) \le 12, \therefore \frac{H(A)}{f(A)} \ge \frac{17}{12}$$

 $\Xi s = t \in \{1,4\}$,不妨设s = t = 1,不妨设 $a_{11} = 1$,且第一行比 -1 多,第1列比 -1 多,则 $H(A) \ge 8$, $f(A) \le 9$,