Electrotecnia

Oscar Perpiñán Lamigueiro

preliminares

Elementos del Circuito

sinusoidal

Recursos

Electrotecnia

Oscar Perpiñán Lamigueiro

http://oscarperpinan.github.io

Elementos del Circuito

Corriente alterna sinusoidal

Electricidad

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos de Circuito

sinusoidal

- ► La electricidad es un fenómeno físico asociado al movimiento de las cargas eléctricas.
- ► El aprovechamiento de la electricidad consiste en generar y canalizar el movimiento de las cargas eléctricas.
- ► El movimiento de las cargas eléctricas es la **corriente eléctrica**. Este movimiento se realiza mediante un trabajo, cuantificado por el **potencial**.

Intensidad de Corriente eléctrica

- ► Variación de la carga con el tiempo en la sección transversal de un conductor $i(t) = \frac{dq(t)}{dt}$
- Movimiento de electrones libres. Sin embargo, por convenio su sentido es positivo para el movimiento de las cargas positivas.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

sinusoidal

Principio de conservación de la carga

- Las lineas de corriente son cerradas (o solenoidales)
- Ley de Kirchhoff de las corrientes (LKC): la suma de las corrientes que llegan a un nudo es igual a la suma de las que salen.

$$i_1(t) - i_2(t) + i_3(t) - i_4(t) + i_5(t) = 0$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Circuito

_

Tensión. Diferencia de potencial

Trabajo realizado al mover una carga unidad entre dos puntos.

$$v = \frac{dW_e}{dq}$$

Si entre dos puntos A y B existe una diferencia de potencial, podemos escribir:

$$v_{AB} = v_A - v_B$$
$$v_{AB} = -v_{BA}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Eircuito

Corriente alterna sinusoidal

Principio de conservación de la energía

- ► La energía producida por un generador se consume por los receptores del circuito para producir trabajo (mecánico, químico, etc.) o calor.
- ▶ Ley de Kirchhoff de los Voltajes (LKV): la suma (con signo) de las tensiones a lo largo de un camino cerrado (circuito) es cero.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Circuito

nusoidal

Potencia eléctrica

► Trabajo realizado por unidad de tiempo

$$p(t) = \frac{dW_e}{dt} = v(t) \cdot \frac{dq(t)}{dt} = v(t) \cdot i(t)$$

▶ Un elemento del circuito absorbe (receptor) o entrega (generador) potencia según el sentido de tensión y corriente en sus terminales. Ejemplo: en el dipolo de la figura se absorbe potencia (p(t) > 0)

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Potencia y Energía

Oscar Perpiñán Lamigueiro

Electrotecnia

Conceptos preliminares

Elementos del Circuito

sinusoidal

Recursos

Energía es la capacidad para realizar un trabajo. Unidades Wh, kWh 1 kWh = 3.6 MJ

Potencia es la cantidad de trabajo efectuado *por unidad de tiempo*.

Unidades W, kW

Eficiencia y Rendimiento

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna inusoidal

Recursos

Eficiencia de un proceso es la relación entre la *potencia* de salida y la *potencia* de entrada a ese proceso.

Rendimiento de un proceso es la relación entre la *energía* de salida y la *energía* de entrada a ese proceso.

Elementos del Circuito

Corriente alterna sinusoidal

Elementos del Circuito Elementos Lineales

Elementos No Lineales Asociación de elementos pasivos

Corriente alterna sinusoidal

Generadores

- Generador de tensión: su tensión es independiente de la corriente (la corriente la fija el circuito)
 - Batería electroquímica
 - ► Inversor de electrificación rural a su salida

- ► Generador de corriente: su corriente es independiente de la tensión (la tensión la fija el circuito)
 - Inversor de conexión a red a su salida

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Elementos Lineales

Elementos No Lineales Asociación de elementos pasivos

orriente alterna

Resistencia

Produce una caída de tensión entre sus terminales directamente proporcional a la corriente que lo atraviesa.

$$V = R \cdot I$$

- La constante de proporcionalidad es el valor de la resistencia
- Su valor depende de resistividad del material, de la sección y de la longitud: $R = \rho \cdot \frac{L}{5}$

Electrotecnia

Oscar Perpiñán Lamigueiro

preliminare

Elementos del Circuito

Elementos Lineales

Elementos No Lineales Asociación de elementos pasivos

Corriente alterna sinusoidal

Resistencia

Disipa energía eléctrica produciendo calor:

$$p(t) = R \cdot i^2(t)$$

- ► Cortocircuito: resistencia nula (tensión nula)
- ► Circuito abierto: resistencia infinita (corriente nula).

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos

Elementos del Circuito

Elementos Lineales

Asociación de elementos pasivos

Corriente alterna

Bobina o inductancia

- Cuando una corriente oscilante atraviesa un conductor arrollado se produce una tensión inducida que se opone a esta corriente (ley de Faraday y Lenz)
- La constante que liga la tensión en sus terminales con el cambio de la corriente es el valor de la inductancia

$$v(t) = L \cdot \frac{di(t)}{dt}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos

Elementos del Circuito

Elementos Lineales

Elementos No Lineales Asociación de elementos pasivos

Corriente alterna

Bobina o inductancia

- ► Almacena energía magnética.
- La bobina retrasa los cambios de la corriente respecto de la tensión.
- ▶ En circuitos de corriente continua es un cortocircuito.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Elementos Lineales

Elementos No Lineales Asociación de elemento pasivos

> Corriente alterna inusoidal

Condensador

- Condensador: dos placas metálicas separadas por una capa dieléctrica.
- ► Al aplicar tensión se produce una separación de cargas opuestas que se acumulan en cada placa.
- Capacidad: constante de proporcionalidad entre carga y tensión.

$$q(t) = C \cdot u(t)$$

► En el proceso de carga se produce una corriente eléctrica entre las dos placas.

$$i(t) = \frac{dq(t)}{d(t)} = C\frac{du(t)}{dt}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Elementos Lineales

Asociación de elementos pasivos

Corriente alterna

Condensador

- ► Almacena energía eléctrica
- Retrasa las variaciones de la tensión respecto de la corriente
- ► En un circuito de corriente continua se comporta como un circuito abierto.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminare

Elementos del Circuito

Elementos Lineales

Asociación de elementos pasivos

Corriente alterna inusoidal

Elementos del Circuito

Elementos Lineales

Elementos No Lineales

Asociación de elementos pasivos

Corriente alterna sinusoidal

Diodo

- Un diodo es un dispositivo electrónico que permite el paso de corriente a través de él a partir de una tensión de polarización.
- Cuando no conduce se comporta (idealmente) como un circuito abierto.
- Cuando conduce se comporta (idealmente) como un cortocircuito.

Electrotecnia

Oscar Perpiñán Lamigueiro

preliminares

Elementos del Circuito

Elementos Lineales
Elementos No Lineales

Asociación de elementos pasivos

Corriente alterna sinusoidal

Diodo

- Por tanto, puede ser utilizado como
 - ► Elemento de bloqueo (evitar que circule corriente por una parte del circuito en ciertas condiciones)
 - ► Elemento de protección (obligar a que la corriente circule por él, evitando que circule por otra rama paralela).

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

> Elementos del Circuito

Elementos I

Elementos No Lineales Asociación de elementos pasivos

Corriente alterna

Transistor

- Un transistor es un dispositivo electrónico con tres terminales que permite el paso de corriente entre dos de sus terminales cuando en el tercer terminal está polarizado adecuadamente.
- Cuando no conduce se comporta (idealmente) como un circuito abierto.
- Cuando conduce se comporta (idealmente) como un cortocircuito.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos

Elementos del Circuito

Elementos I

Elementos No Lineales
Asociación de elementos

Corriente alterna

Transistor

Por tanto, puede ser utilizado como:

- ► Elemento de conmutación (dirigir la circulación de corriente entre dos terminales controlando la señal en el tercer terminal)
- Elemento de amplificación (la señal entregada en el terminal de control es reproducida en la salida con mayor amplitud)

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos

Circuito

Elementos Li

Elementos No Lineales

Asociación de elementos

Corriente alterna

Elementos del Circuito

Elementos Lineales Elementos No Lineales

Asociación de elementos pasivos

Corriente alterna sinusoidal

Elementos Lineales

Asociación de elementos pasivos

Corriente alterna sinusoidal

ecursos

Misma corriente por todos los elementos: la tensión se reparte

$$R_s = \sum_i R_i$$

$$L_s = \sum_i L_i$$

$$\frac{1}{C_s} = \sum_i \frac{1}{C_i}$$

Conexión en paralelo

Misma tensión aplicada a todos los elementos: la corriente se reparte

$$\begin{array}{l} \frac{1}{R_p} = \sum_i \frac{1}{R_i} \\ \frac{1}{L_p} = \sum_i \frac{1}{L_i} \\ C_p = \sum_i C_i \end{array}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos

lementos del ircuito

Elementos Lineales

Asociación de elementos pasivos

Corriente alterna

Elementos del Circuito

Corriente alterna sinusoidal

Elementos del Circuito

Corriente alterna sinusoidal
Conceptos Fundamentales
Cálculo Fasorial
Desfase Tensión - Corriente
Potencia
Trifásica

Onda sinusoidal

$$y(t) = Y_o \cdot \sin(\omega \cdot t + \theta)$$

- $ightharpoonup Y_o$ valor máximo de la onda.
- $\omega = \frac{2 \cdot \pi}{T}$: pulsación (radianes/segundo)
- T: periodo de la onda (segundos)
- $ightharpoonup f = \frac{\omega}{2 \cdot \pi} = \frac{1}{T}$: frecuencia (Hz)

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminare

Elementos d Circuito

Corriente alterna inusoidal

Conceptos Fundamentales Cálculo Fasorial

Desfase Tensión - Corriente Potencia

Trifásica

Fase

$$y(t) = Y_o \cdot \sin(\omega \cdot t + \theta)$$

- \triangleright θ : fase (radianes o grados)
 - ► Es el argumento de la onda para t=0
 - ► Tomando una onda como referencia, si la fase es 0°, se dice que están en fase con la onda de referencia.
 - ▶ Si la fase es positiva, se dice que la onda adelanta respecto a la referencia.

Electrotecnia

Oscar Perpiñán Lamigueiro

preliminare

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales Cálculo Fasorial

Desfase Tensión - Corriente

Trifásica

Señales en Cuadratura

- Cuando el desfase entre dos señales es de 90° $(\theta_I \theta_U = \pi/2)$, se dice que están en cuadratura.
- ► El paso por cero de una señal coincide con el paso por el máximo/mínimo de la otra señal.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos de Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales

Cálculo Fasorial

Desfase Tensión - Corriente

Trifásica

Valor medio y valor eficaz

Valor medio

$$Y_m = \frac{1}{T} \int_0^T y(t)$$

$$Y_m = \frac{1}{T} \int_0^T Y_o \cdot \sin(\omega \cdot + \theta) dt = 0$$

Valor eficaz

$$Y = \sqrt{\frac{1}{T} \cdot \int_0^T y^2(t)}$$

$$Y = \sqrt{\frac{1}{T} \cdot \int_0^T (Y_o \cdot \sin(\omega \cdot t + \theta))^2 dt} = \frac{Y_o}{\sqrt{2}}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna

Conceptos Fundamentales Cálculo Fasorial

> otencia rifásica

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales Cálculo Fasorial Desfase Tensión - Corriente Potencia Trifásica

Representación fasorial

- Un fasor es un número complejo que representa una señal sinusoidal para simplificar cálculos.
- ► El módulo del fasor es el valor eficaz. El argumento es la fase.
- Descartamos pulsación: No se puede emplear cuando hay frecuencias diferentes en un mismo circuito.

$$\overline{Y} = Y \cdot e^{j\theta}$$

$$\overline{Y} = Y \cdot (\cos(\theta) + j \cdot \sin(\theta))$$

$$\overline{Y} = Y/\underline{\theta}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

preliminare

Elementos de Eircuito

orriente alterna nusoidal opceptos Fundamentales

Cálculo Fasorial Desfase Tensión - Corr

Potencia Trifásica

Impedancia

$$\bar{I} = I/\underline{\theta_I}$$

$$\overline{U} = U/\underline{\theta_U}$$

$$\overline{U} = \overline{Z} \cdot \overline{I}$$

$$\overline{Z} = \frac{\overline{U}}{\overline{I}}$$

$$\overline{Z} = \frac{U}{I} / \theta_U - \theta_I = \begin{cases} Z = \frac{U}{I} \\ \theta_Z = \theta_U - \theta_I \end{cases}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminare

Elementos del Circuito

> orriente alterna nusoidal

Cálculo Fasorial

Desfase Tensión - Corriente

Trifásica

Impedancia de los Elementos: Resistencia

$$\overline{Z}_R = R = R/0$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna

Cálculo Fasorial

Desfase Tensión - Corrient

Trifásica

Impedancia de los Elementos: Inductancia

Electrotecnia

Oscar Perpiñán Lamigueiro

preliminares

Elementos del Circuito

Corriente alterna inusoidal

Conceptos Fundamentales

Cálculo Fasorial

Desfase Tensión - Corrient

Potencia Trifásica

Poguroos

Impedancia de los Elementos: Condensador

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna

Conceptos Fundamentales

Cálculo Fasorial

Desfase Tensión - Cor

Potencia Trifásica

Impedancia Genérica

$$\overline{Z} = R + jX$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos
preliminares

Elementos del Circuito

Corriente alterna

Cálculo Fasorial

Desfase Tensión - Corriente Potencia

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales Cálculo Fasorial Desfase Tensión - Corriente

Potencia

Trifásica

Convenio de signos para Desfase

► En general, la tensión es origen de fases ($\theta_V = 0$).

$$\theta_Z = \theta_U - \theta_I$$

$$\theta_I = \theta_V - \theta_Z = -\theta$$

La corriente está retrasada respecto de la tensión un ángulo $\theta = \theta_Z$:

$$u(t) = U_o \cdot \sin(\omega \cdot t)$$

$$i(t) = I_o \cdot \sin(\omega \cdot t - \theta)$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Cálculo Fasorial

Desfase Tensión - Corriente

itencia

Circuito Resistivo

Un circuito resistivo no desfasa (tensión y corriente en fase).

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales Cálculo Fasorial

Desfase Tensión - Corriente Potencia

Trifásica

Circuito Inductivo puro

Un circuito inductivo puro genera señales en cuadratura y retrasa la corriente.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales
Cálculo Fasorial

Desfase Tensión - Corriente

otencia

Trifásica

Circuito Capacitivo puro

Un circuito capacitivo puro genera señales en cuadratura y adelanta la corriente.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales
Cálculo Fasorial
Desfase Tensión - Corriente

otencia

...

Circuito Inductivo con pérdidas

Un circuito inductivo retrasa la corriente.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Eircuito

Corriente alterna sinusoidal

Conceptos Fundamentales
Cálculo Fasorial

Desfase Tensión - Corriente

otencia

Trifásica

Circuito Capacitivo con pérdidas

Un circuito capacitivo adelanta la corriente.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales Cálculo Fasorial

Desfase Tensión - Corriente Potencia

Trifásica

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales Cálculo Fasorial Desfase Tensión - Corriente

Potencia

Trifásica

Circuito Resistivo

- Fluctúa al doble de frecuencia.
- Es siempre positiva.

$$p(t) = Ri^2(t) = \frac{u^2(t)}{R}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminare

Elementos de Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales
Cálculo Fasorial

Decface Tención - Corriente

Potencia

Circuito Inductivo puro

- Fluctúa al doble de frecuencia.
- Pasa por los ceros de tensión y corriente.
- ► Su valor medio es nulo.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos o Circuito

Corriente alterna

Cálculo Fasorial

Desfase Tensión - Corrient

Potencia

Trifásica

Circuito Capacitivo puro

- Fluctúa al doble de frecuencia.
- Pasa por los ceros de tensión y corriente.
- ► Su valor medio es nulo.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos

Elementos de Circuito

Corriente alterna sinusoidal

Cálculo Fasorial

Desfase Tensión - Corriente

Potencia

Trifásica

Circuito Inductivo con pérdidas

Su valor medio es positivo, de valor $UI \cos \theta$.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna

Conceptos Fundamentales
Cálculo Fasorial

Potencia

Trifásica

Circuito Capacitivo con pérdidas

Su valor medio es positivo, de valor $UI \cos \theta$.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Calculo Fasorial

Potencia

Trifásica

Triángulo de Potencias

Potencia Activa

$$P = U \cdot I \cdot \cos(\theta) = R \cdot I^2$$

► Potencia Reactiva

$$Q = U \cdot I \cdot \sin(\theta) = X \cdot I^2$$

► Potencia Aparente

$$\overline{S} = P + jQ = \overline{U} \cdot \overline{I}^*$$

 $|S| = U \cdot I$
 $\theta_S = \theta_Z = \theta$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Cálculo Fasorial

Desfase Tensión - Corriente

Potencia Trifásica

Potencia de elementos: Resistencia

$$\theta = 0 \Rightarrow \begin{cases} P_R = RI^2 \\ Q_R = 0 \\ S_R = P_R \end{cases}$$

- Consume potencia activa
- ► No consume potencia reactiva

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales

Cálculo Fasorial

Potencia Trifórica

Trifásica

Potencia de elementos: Inductancia

$$\theta = \pi/2 \Rightarrow \begin{cases} P_L = 0 \\ Q_L = \omega L I^2 \\ \overline{S}_L = \omega L I^2 / \pi/2 \end{cases}$$

- No consume potencia activa
- ightharpoonup Consume potencia reactiva (Q > 0)

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales
Cálculo Fasorial

Potencia

Trifásica

Potencia de elementos: Condensador

$$\theta = -\pi/2 \Rightarrow \begin{cases} P_L = 0 \\ Q_C = -\omega C U^2 \\ \overline{S}_C = \omega C U^2 / -\pi/2 \end{cases}$$

- No consume potencia activa
- Genera potencia reactiva (Q < 0)

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Cálculo Fasorial

Derface Tención - Corriente

Potencia

Trifásica

Teorema de Boucherot

► En un circuito con múltiples elementos, la potencia aparente total es la suma de las potencias aparentes individuales.

$$\overline{S} = \sum_{i=1}^{n} S_i$$

$$P + jQ = \sum_{i=1}^{n} (P_i + jQ_i)$$

La potencia activa (reactiva) total es la suma de las potencias activas (reactivas) individuales.

$$P = \sum_{i=1}^{n} P_{i}$$
$$Q = \sum_{i=1}^{n} Q_{i}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna inusoidal

Conceptos Fundamentales Cálculo Fasorial

Potencia Trifásica

Trifásica

Compensación de reactiva

► El factor de potencia, $cos(\theta)$, representa la aportación de potencia activa dentro de la potencia aparente.

$$P = S \cos \theta$$

- Sean dos sistemas con misma tensión y potencia activa, y factores de potencia $\cos \theta_1 > \cos \theta_2$.
- ► El sistema 2 requiere **mayor sección** de cable para transportar la misma potencia activa.

$$\left(\frac{P}{U\cos\theta_1} = I_1\right) < \left(I_2 = \frac{P}{U\cos\theta_2}\right)$$

El sistema 2 requiere mayor potencia aparente (generador mayor) para alimentar la misma potencia activa.

$$\left(\frac{P}{\cos\theta_1} = S_1\right) < \left(S_2 = \frac{P}{\cos\theta_2}\right)$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

orriente alterna nusoidal

onceptos Fundamentales

'álculo Fasorial

Potencia Trifásica

Compensación de reactiva

- Comúnmente, el factor de potencia es inductivo (máquinas eléctricas industriales).
- ► La red debe suministrar potencia reactiva inductiva (influye en secciones de líneas y tamaños de generadores)
- Es necesario mejorar localmente el factor de potencia. Solución común: utilizar bancos de condensadores como suministradores de potencia reactiva.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales
Cálculo Fasorial

Potencia

Trifásica

Compensación de reactiva

Sea una carga de potencia activa P y potencia reactiva Q. Supongamos que se desea mejorar el factor de potencia a $\cos \theta' > \cos \theta$:

$$Q' = P \tan \theta'$$

$$Q_c = Q - Q' = P \tan \theta - P \tan \theta'$$

$$Q_c = \omega C U^2$$

$$C = \frac{P(\tan \theta - \tan \theta')}{\omega U^2}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Cálculo Fasorial

Potencia

Trifásica

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales Cálculo Fasorial Desfase Tensión - Corriente Potencia Trifásica

Motivación de los sistemas trifásicos

- La potencia instantánea de un sistema monofásico es pulsante. En un sistema trifásico la potencia instantánea es constante, evitando vibraciones y esfuerzos en las máquinas.
- ▶ Para transportar una determinada potencia la masa de conductor necesaria es un 25% en un trifásico que en un monofásico.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna

Conceptos Fundamentales Cálculo Fasorial Desfase Tensión - Corriente

Potencia Trifásica

Generación de un sistema trifásico

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna

Cálculo Fasorial

Dorface Tención Corriente

Desfase Tensión - Corriente

Trifásica

Receptores

► Tensión simple o de fase: la existente entre una fase y el neutro.

- Tensión compuesta o de línea (por defecto): la existente entre dos fases.
- Un receptor puede estar conectado en estrella (punto común) o en triángulo.
- Un receptor puede ser equilibrado (las tres impedancias que lo componen son idénticas) o desequilibrado.
- Cuando el receptor es equilibrado la corriente que circula por el neutro es nula.

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos

Elementos del Circuito

Corriente alterna sinusoidal

conceptos Fundamentales Cálculo Fasorial Desfase Tensión - Corriente

Desfase Tensión - Corrie: Potencia

Trifásica

Fase y línea

Receptor en Estrella (cuatro hilos, 3F+1N)

$$V_L = \sqrt{3} \cdot V_F$$

$$I_F = I_L$$

$$P = 3 \cdot V_F I_F \cos(\theta) = \sqrt{3} V_L I_L \cos(\theta)$$

Electrotecnia

Oscar Perpiñán Lamigueiro

preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Cálculo Fasorial

Desfase Tensión - Corriente

Trifásica

Fase y línea

Receptor en Estrella (cuatro hilos, 3F+1N)

$$V_L = \sqrt{3} \cdot V_F$$

$$I_F = I_L$$

$$P = 3 \cdot V_F I_F \cos(\theta) = \sqrt{3} V_L I_L \cos(\theta)$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Cálculo Fasorial

Desfase Tensión - Corriente

Trifásica

Fase y línea

Receptor en Triangulo (tres hilos, 3F)

$$V_L = V_F$$

$$I_F = \frac{I_L}{\sqrt{3}}$$

$$P = 3 \cdot V_F \cdot I_F \cos(\theta) = \sqrt{3} V_L I_L \cos(\theta)$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos

Elementos del Circuito

Corriente alterna sinusoidal

Cálculo Fasorial

Desfase Tensión - Corriente

Trifásica

Compensación de Reactiva

Para mejorar el factor de potencia en un sistema trifásico equilibrado se deben emplear **tres condensadores conectados en triángulo**:

$$C_{\triangle} = \frac{P(\tan\theta - \tan\theta')}{3\omega U^2}$$

Electrotecnia

Oscar Perpiñán Lamigueiro

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Conceptos Fundamentales Cálculo Fasorial

Desfase Tensión - Corrie Potencia

Trifásica

Conceptos preliminares

Elementos del Circuito

Corriente alterna sinusoidal

Bibliografía

Electrotecnia

Oscar Perpiñán Lamigueiro

preliminares

Elementos del Circuito

Siriusorua

- ► **Fraile Mora**, **J**.: *Circuitos Eléctricos*. Ed. Prentice Hall.
- ► **Hayt, W. y Kemmerly, J**: Análisis de circuitos en ingeniería. Ed. Mc. Graw Hill.
- C. K. Alexander; M. N. O. Sadiku, Ed. McGraw-Hill.
- ► Tú verás