GenLabel: Mixup Relabeling Using Generative Models

-Summary-

Introduction

Questions

- Mix-up sometimes degrades performance for some failure scenarios
- 1. Manifold intrusion: mix-up sample from two classes intrudes manifold of a third class

Manifold intrusion

2. Naïve linear combination of two labels (linear labeling):

In some cases, linear combination $(\lambda y_1 + (1 - \lambda)y_2)$ does not achieve largest (classification) margin, while logistic labeling $(\rho y_1 + (1 - \lambda)y_2)$

$$(1-\rho)y_2$$
, where $\rho=rac{1}{1+\exp(-rac{2\left(\lambda-rac{1}{2}
ight)}{\sigma^2})}$, $\sigma>0$ does.

Sub-optimality of linear labeling

Recall: SVM achieves maximum margin by its algorithm

Introduction

Notation & Preliminaries

- Example : $z_i = (x_i, y_i)$, where $x_i \in \mathbb{R}^d$, $y_i \in [0,1]^k$ (one-hot encoding vector)
- Set of training data : $S = \{(x_i, y_i)\}_{i=1}^n$ (Define $X = \{x_i\}_{i=1}^n$)
- Gaussian mixture model (GM):
 - 1. Assume sample x (in class c) $\sim N(\mu_c, \Sigma_c)$ (i.e : $p_c(x) = p(x|y=c) = N(\mu_c, \Sigma_c)$)
 - 2. Use estimator $\widehat{\mu_c} = \text{sample mean in class } c$, $\widehat{\Sigma_c} = \text{sample covariance in class } c$
 - 3. GM model for k classes : $p(x) = \sum_{i=1}^{k} \mathbb{P}(y = e_i) N(\mu_i, \Sigma_i)$
- Kernel density estimator (KDE) with Gaussian kernel:
 - Gaussian KDE of class c distribution : $p_c(x) = \frac{1}{n_c} \sum_{i=1}^{n_c} N(x_i, h^2 \widehat{\Sigma}_c)$ where h = bandwidth, $\{x_i\}_{i=1}^{n_c}$ = set of samples in class c
- Manifold intrusion removal (Guo et al., 2019):
 - ightharpoonup Not use $x^{mix} = \lambda x_1 + (1 \lambda)x_2$ if the label of $x^{nn} \coloneqq argmin_{x \in X} d(x, x^{mix})$ is different from y_1 and y_2

Effect of Manifold intrusion removal / logistic labeling

Note

- Mix-up / Mix-up without-MI(Manifold intrusion removal): 38 datasets in OpenML
 - => 24 of 38 : positive accuracy difference
- Linear label / logistic label: 160 datasets in OpenML (after manifold intrusion removal)
 - => 87 of 160 : positive accuracy difference
- ➤ Manifold intrusion is causing accuracy drop in various real datasets
- > Linear labeling is sub-optimal for a large number of low-dimensional(<20) real datasets

GenLabel Algorithm

Idea for GenLabel

• Linear labeling y^{mix} does not offer good label for x^{mix} => requires some appropriate label for x^{mix} considering the given data.

• Algorithm Step:

- 1. Estimate class-conditional data distribution $p_c(x)$ for each class c using GM or KDE
- 2. Apply conventional mix-up data augmentation generating (x^{mix}, y^{mix})
- 3. Relabel y^{mix} to $y^{gen} \coloneqq softmax(\log p_1(x^{mix}), \log p_2(x^{mix}), ..., \log p_k(x^{mix}))$

Note:
$$y^{gen} = \sum_{c=1}^{k} \frac{p_c(x^{mix})}{\sum_{c'=1}^{k} p_{c'}(x^{mix})} e_c$$
 (rephrase)

GenLabel Algorithm – Generative model learns in input feature

Algorithm 1 GenLabel

Input Dataset $S = \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n$, learning rate η , loss ratio γ Output Trained discriminative model $f_{\theta}(\cdot)$

- 1: $\theta \leftarrow$ Random initial model parameter
- 2: $p_c(\mathbf{x}) \leftarrow$ Density estimated by generative model for input feature $\mathbf{x} \in X$, conditioned on class $c \in [k]$
- 3: for $(x_i, y_i), (x_j, y_j) \in S$ do
- 4: $(\boldsymbol{x}^{\text{mix}}, \boldsymbol{y}^{\text{mix}}) = (\lambda \boldsymbol{x}_i + (1 \lambda)\boldsymbol{x}_j, \lambda \boldsymbol{y}_i + (1 \lambda)\boldsymbol{y}_j)$
- 5: $\mathbf{y}^{\text{gen}} \leftarrow \sum_{c=1}^{k} \frac{p_c(\mathbf{x}^{\text{mix}})}{\sum_{c'=1}^{k} p_{c'}(\mathbf{x}^{\text{mix}})} \mathbf{e}_c$
- 6: $\theta \leftarrow \theta \eta \nabla_{\theta} \{ \gamma \cdot \ell_{CE}(\boldsymbol{y}^{gen}, f_{\theta}(\boldsymbol{x}^{mix})) + (1 \gamma) \cdot \ell_{CE}(\boldsymbol{y}^{mix}, f_{\theta}(\boldsymbol{x}^{mix})) \}$
- 7: end for

GenLabel algorithm when Generative model learns the density $(p_C(x))$ in the input feature

Note:

Generative model can be imperfect estimate on the data distribution. So, y^{gen} may be incorrect for some samples.

Solution: Use linear combination of y^{mix} , y^{gen} using fixed parameter $\gamma \in [0,1]$ (loss ratio)

GenLabel Algorithm – Generative model learns in latent feature

Algorithm 2 *GenLabel* (using generative models for the latent feature)

Input Dataset $S = \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n$, input feature set $X = \{\boldsymbol{x}_i\}_{i=1}^n$, learning rate η , loss ratio γ Output Trained discriminative model f_{θ} 1: $\theta \leftarrow$ Random initial parameter for model $f_{\theta} = f_{\theta}^{\text{cls}} \circ f_{\theta}^{\text{feature}}$ 2: $\phi \leftarrow$ Vanilla-trained parameter for model $f_{\phi} = f_{\phi}^{\text{cls}} \circ f_{\phi}^{\text{feature}}$

3: $p_c(z) \leftarrow \text{Density estimated by generative model for latent feature } z \in f_\phi^{\text{feature}}(X), \text{ conditioned on class } c \in [k]$

4: for $(x_i, y_i), (x_j, y_j) \in S$ do

5: $(\boldsymbol{x}^{\text{mix}}, \boldsymbol{y}^{\text{mix}}) \leftarrow (\lambda \boldsymbol{x}_i + (1 - \lambda) \boldsymbol{x}_j, \lambda \boldsymbol{y}_i + (1 - \lambda) \boldsymbol{y}_j)$

6: $\boldsymbol{z}^{\text{mix}} \leftarrow f_{\phi}(\boldsymbol{x}^{\text{mix}})$

7: $\boldsymbol{y}^{\text{gen}} \leftarrow \sum_{c=1}^{k} \frac{p_c(\boldsymbol{z}^{\text{mix}})}{\sum_{c'=1}^{k} p_{c'}(\boldsymbol{z}^{\text{mix}})} \boldsymbol{e}_c$

8: $\theta \leftarrow \theta - \eta \nabla_{\theta} \{ \gamma \cdot \ell_{CE}(\boldsymbol{y}^{gen}, f_{\theta}(\boldsymbol{x}^{mix})) + (1 - \gamma) \cdot \ell_{CE}(\boldsymbol{y}^{mix}, f_{\theta}(\boldsymbol{x}^{mix})) \}$

9: end for

GenLabel algorithm when Generative model learns the density $(p_{\mathcal{C}}(z))$ in the latent feature space

GenLabel Algorithm - Variant (used for image datasets)

```
Algorithm 3 GenLabel (learning generative/discriminative models at the same time)
```

```
Input Data D, mix function mix(·), learning rate \eta, loss ratio \gamma, memory ratio \beta, batch size B, max iteration T
Output Trained model f_{\theta} = f_{\theta}^{\text{cls}} \circ f_{\theta}^{\text{feature}}
     \theta \leftarrow Random initial model parameter,
                                                                                                 \pi \leftarrow \text{Permutation of } [B]
      (\mu_c^{(0)}, \Sigma_c^{(0)}) \leftarrow (0, I_d) \text{ for } c \in [k]
      for iteration t = 1, 2, \dots, T do
            \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^B \leftarrow \text{Randomly chosen batch samples in } D
            for class c \in [k] do
                  S_c \leftarrow \{i : \mathbf{y}_i = \mathbf{e}_c\}
                 \mu_c^{(t)} \leftarrow \frac{1}{|S_c|} \sum_{i \in S_c} f_{\theta}^{\text{feature}}(\boldsymbol{x}_i), \qquad \mu_c^{(t)} \leftarrow (1-\beta)\mu_c^{(t)} + \beta\mu_c^{(t-1)}
                                                                                                                                                                                                  GM parameter
                  \Sigma_c^{(t)} \leftarrow \frac{1}{|S_c|} \sum_{i \in S_c} (f_{\theta}^{\text{feature}}(x_i) - \mu_c^{(t)}) (f_{\theta}^{\text{feature}}(x_i) - \mu_c^{(t)})^T
                                                                                                                                                                                                            update
                 \Sigma_c^{(t)} \leftarrow \frac{1}{d} \operatorname{trace}(\Sigma_c^{(t)}) I_d, \qquad \Sigma_c^{(t)} \leftarrow (1 - \beta) \Sigma_c^{(t)} + \beta \Sigma_c^{(t-1)}
            end for
            for sample index i \in [B] do
                  (\boldsymbol{x}_i^{\text{mix}}, \boldsymbol{y}_i^{\text{mix}}) \leftarrow \text{mix}((\boldsymbol{x}_i, \boldsymbol{y}_i), (\boldsymbol{x}_{\pi(i)}, \boldsymbol{y}_{\pi(i)}))
                 p_c \leftarrow \det(\boldsymbol{\Sigma}_c^{(t)})^{-1/2} \exp\{-(f_{\theta}^{\text{feature}}(\boldsymbol{x}_i^{\text{mix}}) - \boldsymbol{\mu}_c^{(t)})^T (\boldsymbol{\Sigma}_c^{(t)})^{-1} (f_{\theta}^{\text{feature}}(\boldsymbol{x}_i^{\text{mix}}) - \boldsymbol{\mu}_c^{(t)})\} \text{ for } c \in [k]
                c_1 \leftarrow \arg\min_{c \in [k]} p_c, \qquad c_2 \leftarrow \arg\min_{c \in [k] \setminus \{c_1\}} p_c
y_i^{\text{gen}} \leftarrow \frac{p_{c_1}}{p_{c_1} + p_{c_2}} e_{c_1} + \frac{p_{c_2}}{p_{c_1} + p_{c_2}} e_{c_2}
Use top-2 classes only
            end for
            \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \sum_{i \in [B]} \nabla_{\boldsymbol{\theta}} \{ \gamma \cdot \ell_{\text{CE}}(\boldsymbol{y}_{i}^{\text{gen}}, f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}^{\text{mix}})) + (1 - \gamma) \cdot \ell_{\text{CE}}(\boldsymbol{y}_{i}^{\text{mix}}, f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}^{\text{mix}})) \}
     end for
```

- Update GM model parameters μ_c , Σ_c at each batch training
- Use only top-2 classes c_1 , c_2 satisfying $p_{c_1} \ge p_{c_2} \ge p_c$ for $c \in [k] \{c_1, c_2\}$

Note:

 Σ_c is approximated as a multiple of identity matrix.

GenLabel Effect – Manifold intrusion / Margin reduction

Effect : Manifold intrusion / margin reduction

- Perform experiment using 9-class gaussian / Two-circle datasets
- (b), (c) represents original top 1-label of mixed points for y^{mix} (b) and y^{gen} (c) (Note: top 1-label: $y^{top-1} = argmax_{c \in [k]} y_c$ where $y = [y_1, ..., y_k]$
- GenLabel algorithm helps to reduce manifold intrusions and guide the classifier to have a larger margin compared to vanilla / mix-up training

GenLabel Analysis – Margin reduction

What is the relationship between GenLabel and logistic labeling? (for gaussian data)

Proposition 1

Consider a binary classification problem when the class-conditional data distribution is $(x|y=0) \sim N(0,\sigma^2)$ and $(x|y=1) \sim N(1,\sigma^2)$. Let $x^{mix}=\lambda$ be the mixed point generated by mix-up. For small $\sigma>0$, the label of x^{mix} for mix-up and GenLabel are

$$y^{mix} = \lambda$$
, $y^{gen} = \frac{1}{1 + \exp(-\frac{(\lambda - \frac{1}{2})}{\sigma^2})}$

Note

• When GM is used as generative model, then GenLabel is the same as softmax labeling

$$y^{gen} = softmax(-\frac{(x^{mix} - \mu_1)^2}{2\sigma_1^2}, ..., -\frac{(x^{mix} - \mu_k)^2}{2\sigma_k^2})$$

GenLabel still preserves adversarial robustness?

Analysis setting

- d-dimensional gaussian dataset : $(x|y=0) \sim N(-e_1,\frac{\Sigma}{\sigma_1^2})$ and $(x|y=1) \sim N\left(e_1,\frac{\Sigma}{\sigma_2^2}\right)$ where $\Sigma_{ij}=1$ for i=j and $\Sigma_{ij}=\tau$ for $i\neq j$ (for $\tau\in(-1,1)$)
- Consider the loss function : $l(\theta, (x, y)) = h(f_{\theta}(x)) yf_{\theta}(x)$ where $h(w) = \log(1 + \exp(w))$ [logistic regression]
- $L_n^{gen}(\theta, S) = \frac{1}{n^2} \sum_{i,j=1}^n \mathbb{E}_{\lambda}[l(\theta, z_{ij}^{gen})]$ where $z_{ij}^{gen} = (x_{ij}^{mix}, y_{ij}^{gen})$
- $L_n^{adv}(\theta, S) = \frac{1}{n} \sum_{i=1}^n \max_{\|\delta_i\|_2 \le \epsilon \sqrt{d}} l(\theta, (x_i + \delta_i, y_i))$
- Assumptions required for proof
 - 1. $\tau \notin \{-\frac{1}{d-1}, -\frac{1}{d-2}\}$
 - 2. $\sigma_2 = c\sigma_1$ with $2 \sqrt{3} < c < 2 + \sqrt{3}$

Lemma 1

The second order Taylor approximation of the GenLabel loss under analysis setting is given by

$$\tilde{L}_n^{gen}(\theta, S) = L_n^{std}(\theta, S) + R_1^{gen}(\theta, S) + R_2^{gen}(\theta, S) + R_3^{gen}(\theta, S)$$

where

$$R_1^{gen}(\theta, S) = \frac{1}{n} \sum_{i=1}^n A_{\sigma_1, c, \tau, d}^i \left(h' \left(f_{\theta}(x_i) \right) - y_i \right) \nabla f_{\theta}(x_i)^T \mathbb{E}_{r_x \sim D_x} [r_x - x_i]$$

$$R_2^{gen}(\theta, S) = \frac{1}{2n} \sum_{i=1}^n B_{\sigma_1, c, \tau, d}^i h''^{(f_{\theta}(x_i))} \nabla f_{\theta}(x_i)^T \mathbb{E}_{r_x \sim D_x} [(r_x - x_i)(r_x - x_i)^T] \nabla f_{\theta}(x_i)$$

$$R_3^{gen}(\theta, S) = \frac{1}{2n} \sum_{i=1}^n B_{\sigma_1, c, \tau, d}^i \left(h' \left(f_{\theta}(x_i) \right) - y_i \right) \mathbb{E}_{r_x \sim D_x} \left[(r_x - x_i)^T \nabla^2 f_{\theta}(x_i) (r_x - x_i) \right]$$

And, $A^i_{\sigma_1,c,\tau,d}$ and $B^i_{\sigma_1,c,\tau,d}$ are two constants

Theorem 1

Consider the logistic regression setting having $f_{\theta}(x) = \theta^T x$ where $\theta \in \Theta = \{\theta \in \mathbb{R}^d : (2y_i - 1)f_{\theta}(x_i) \ge 0 \text{ for all } i = 0 \}$

1,2, ..., n}. suppose there exists a constant $c_X > 0$ such that $||x_i||_2 > c_x$ for all $i \in \{1,2..n\}$. Then, for large σ_1 , we have

$$\tilde{L}_{n}^{mix}(\theta, S) > \tilde{L}_{n}^{gen}(\theta, S) \ge \frac{1}{n} \sum_{i=1}^{n} \tilde{l}_{adv} \left(\delta_{gen}, (x_i, y_i) \right)$$

Where $\delta_{gen} = R \cdot c_x A^i_{\sigma_1,c,\tau,d}$ with $R = \min_{i \in \{1,\dots,n\}} |\cos(\theta,x_i)|$ and $A^i_{\sigma_1,c,\tau,d}$ is constant

Recall (second order taylor approximation of $L_n^{adv}(\theta, S)$, Zhang et al., 2021) [under logistic regression setting]

- 1. $\tilde{l}_{adv}(\eta, (x, y)) = l(\theta, (x, y)) + \eta |g(x^T \theta) y| \cdot ||\theta||_2 + \frac{\eta^2}{2} g(x^T \theta) (1 g(x^T \theta)) \cdot ||\theta||_2^2$ where $g(s) = \frac{e^s}{1 + e^s}$ is logistic function
- 2. The second order Taylor approximation of $L_n^{adv}(\theta, S)$ is $\frac{1}{n}\sum_{i=1}^n \tilde{l}_{adv}\left(\epsilon\sqrt{d}, (x_i, y_i)\right)$, where $x \in \mathbb{R}^d$ and $y \in \{0,1\}$

Experiment

- Dataset $S = \{(x_i^+, +1), (x_i^-, -1)\}_{i=1}^{20}$, where $x_i^+ \sim N([+1, 0], \frac{1}{100}I_2), x_i^- \sim N([-1, 0], \frac{1}{100}I_2)$
- Obviously, $\theta = (10,0)$ achieves minimum loss (or $\phi = 0$, when $\theta = (10\cos\phi, 10\sin\phi)$
- Perform logistic regression and scan each losses for $\phi \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, adversarial attack size = δ_{gen}
- Result : GenLabel loss is strictly smaller than mix-up loss -> coincide with Thm1

Theorem 2

Consider the FC ReLU network setting having $f_{\theta}(x) = \beta^T \sigma \left(W_{N-1} \cdots \left(W_2 \sigma(W_1 X) \right) \right)$, where σ : ReLU function, W_i : parameter matrix, β : parameter vector, and $\theta = (W_1, ..., W_{N-1}, \beta) \in \Theta = \left\{ \theta \in \mathbb{R}^d : (2y_i - 1)f_{\theta}(x_i) \geq 0 \text{ for all } i = 1, 2, ..., n \right\}$. Suppose there exists a constant $c_X > 0$ such that $||x_i||_2 > c_X$ for all $i \in \{1, 2...n\}$. Then, for large σ_1 , we have

$$\tilde{L}_{n}^{mix}(\theta, S) > \tilde{L}_{n}^{gen}(\theta, S) \ge \frac{1}{n} \sum_{i=1}^{n} \tilde{l}_{adv} \left(\delta_{gen}, (x_{i}, y_{i}) \right)$$

Where $\delta_{gen} = R \cdot c_x A^i_{\sigma_1,c,\tau,d}$ with $R = \min_{i \in \{1,\dots,n\}} |\cos(\nabla f_{\theta}(x_i),x_i)|$ and $A^i_{\sigma_1,c,\tau,d}$ is constant

Recall (second order taylor approximation of $L_n^{adv}(\theta,S)$, Zhang et al., 2021) [under FC ReLU network setting]

 $\tilde{l}_{adv}(\delta, (x, y)) = l(\theta, (x, y)) + \delta |g(x^T \theta) - y| \cdot ||\nabla f_{\theta}(x)||_2 + \frac{\delta^2 d}{2} |h''(f_{\theta}(x))| \cdot ||\nabla f_{\theta}(x)||_2^2$ where $g(s) = \frac{e^s}{1 + e^s}$ is logistic function

Experimental results – Generalization performance

accuracy(GenLabel(CV)) - accuracy(mix-up)

Note : α is mix-up hyper

parameter (i.e : $\lambda \sim Beta(\alpha, \alpha)$)

Dataset: 109 OpenML dataset Algorithm: logistic regression

Statistics of the accuracy of GenLabel and baselines

Mixup+GenLabel (CV) versus	Vanilla	Adamixup	Mixup	Mixup + exclude MI	Generative Classifier (GM)
Higher (> 0.5%) On-par (within 0.5%) Lower (< -0.5%)	37.6 % 31.2% 31.2%	46.8 % 25.7% 27.5%	59.6 % 17.4% 23.0%	16.5%	44.0 % 23.9% 32.1%

Experimental results – Generalization performance (logistic)

Accuracy on selected OpenN								
Methods \ OpenML Dataset ID	36	61	721	778	817	830	855	869
Generative classifier (GM)	89.75±0.00	95.56±0.00	78.33±0.00	89.47±0.00	60.00±0.00	78.67±0.00	65.33±0.00	73.33±0.00
Mixup	88.98 ± 0.78	88.00 ± 1.09	79.33 ± 0.82	95.00 ± 1.53	60.00 ± 0.00	76.27 ± 1.31	66.00 ± 1.74	71.73 ± 3.79
Mixup + Excluding MI	89.21 ± 0.52	93.33 ± 0.00	79.67 ± 0.67	95.00 ± 1.53	61.33 ± 2.67	78.13 ± 1.36	66.40 ± 1.37	72.00 ± 3.55
Mixup + GenLabel (GM)	92.21 ± 0.58	96.00 ± 1.67	81.00 ±1.33	97.11 ±0.98	64.00 ± 5.33	86.13 ±1.36	66.40 ± 2.88	76.27 ± 3.17
Mixup + GenLabel (KDE)	92.64 ± 0.26	96.00 ± 0.89	79.67 ± 1.25	96.05 ± 0.83	66.67 ± 5.96	77.33 ± 4.84	67.60 ±0.90	74.53 ± 3.99
Mixup + GenLabel (CV)	92.55 ± 0.15	96.44 ±1.09	80.33 ± 1.63	96.05 ± 1.86	65.33 ± 4.99	84.53 ± 1.81	67.33 ± 2.76	73.87 ± 2.13
•								
Methods \ OpenML Dataset ID	885	907	915	925	938	1006	40710	40981
Methods \ OpenML Dataset ID Generative classifier (GM)	885 95.00±0.00	907 47.50±0.00	915 42.11±0.00	925 90.72±0.00	938 92.31±0.00	1006 77.78±0.00	40710 69.23±0.00	40981 73.91±0.00
, .		<u> </u>	<u> </u>					
Generative classifier (GM)	95.00±0.00	47.50±0.00	42.11±0.00	90.72±0.00	92.31±0.00	77.78±0.00	69.23±0.00	73.91±0.00
Generative classifier (GM) Mixup	95.00±0.00 94.50±1.00	47.50±0.00 44.67±3.14	42.11±0.00 46.11±3.08	90.72±0.00 92.99±1.37	92.31±0.00 90.77±5.76	77.78±0.00 80.00±0.00	69.23±0.00 68.13±0.70	73.91±0.00 74.78±0.56
Generative classifier (GM) Mixup Mixup + Excluding MI	95.00±0.00 94.50±1.00 94.50±1.00	47.50±0.00 44.67±3.14 44.00±4.06	42.11±0.00 46.11±3.08 47.79±3.37	90.72±0.00 92.99±1.37 93.20±1.40	92.31±0.00 90.77±5.76 89.23±6.15	77.78±0.00 80.00±0.00 77.33±4.31	69.23±0.00 68.13±0.70 68.57±1.12	73.91±0.00 74.78±0.56 74.69±0.84
Generative classifier (GM) Mixup Mixup + Excluding MI Mixup + GenLabel (GM)	95.00±0.00 94.50±1.00 94.50±1.00 97.00 ±1.00	47.50±0.00 44.67±3.14 44.00±4.06 47.83±3.56	42.11±0.00 46.11±3.08 47.79±3.37 46.74±7.37	90.72±0.00 92.99±1.37 93.20±1.40 93.61±0.77	92.31±0.00 90.77±5.76 89.23±6.15 98.46 ±3.08	77.78±0.00 80.00±0.00 77.33±4.31 81.33±1.09	69.23±0.00 68.13±0.70 68.57±1.12 69.67±0.54	73.91±0.00 74.78±0.56 74.69±0.84 75.07±1.08

Methods \ OpenML Dataset ID	3	223	312	313	346	463	753	834
Vanilla Mixup Mixup + GenLabel (GM)	43.36 ± 14.10	1 11.12±4.33 0 11.16±5.22 5 13.99 ±6.63	$2 \mid 23.40 \pm 9.82$	14.22 ± 3.73	42.92±12.29 40.83±11.90 52.92 ±12.79	68.80 ± 12.04	29.42 ± 6.03	15.20 ± 3.91
Methods \ OpenML Dataset ID	952	954	978	987	988	1022	1045	1059
Mixup	31.38±3.12	69.32±5.02	34.89 ± 11.32	67.82±14.56	50.35±12.41 53.54±10.91 63.76 ±9.89	41.25±12.11	59.88 ± 14.38	67.18 ± 25.48

Experimental results – Generalization performance (FC ReLU)

Accuracy on selected	OpenML datasets
----------------------	-----------------

•								
Methods \ OpenML Dataset ID	719	770	774	804	818	862	900	906
Vanilla	71.62±5.55	65.58±11.38	59.34±5.16	81.44±8.45	87.56±19.75	81.51±6.06	61.00±1.62	2 53.74±2.21
Mixup	70.89 ± 5.47	65.26 ± 11.11	59.80±5.04	80.05±10.22	88.17 ± 15.68	80.40±5.51	60.99±2.05	$5 53.74 \pm 2.51$
Mixup+Excluding MI	71.62 ± 5.55	64.15 ± 9.62	59.50±7.09	80.05±10.22	88.49 ± 15.56	79.21±8.03	60.74 ± 2.31	53.50 ± 2.31
Generative classifier (GM)	67.90 ± 6.00	51.69 ± 10.93	49.22±6.03	71.59±10.21	82.66 ± 18.41	67.62 ± 10.23	57.50±6.31	48.26 ± 3.02
Mixup+GenLabel (GM)	73.10 ±7.66	66.69 ±11.06	59.95 ±5.28	81.57 ±9.57	89.15 ±17.40	82.70 ±7.56	61.24 ±2.49	54.21 ±4.75
Methods \ OpenML Dataset II	908	949	956	1011	1014	1045	1055	1075
Methods \ OpenML Dataset II Vanilla	908 54.00±1.70		956 68.90±2.52	1011 96.14±3.46		<u> </u>	<u>'</u>	1075 92.35±2.23
	<u> </u>	85.69±0.46			80.55±0.25	94.53±1.96	<u>'</u>	
Vanilla	54.00±1.70	85.69±0.46 85.69±0.46	68.90±2.52	96.14±3.46	80.55±0.25 80.55±0.25	94.53±1.96 94.53±1.96	78.77±4.36 78.77±4.36	92.35±2.23
Vanilla Mixup	54.00±1.70 55.00±1.95	85.69±0.46 85.69±0.46 85.69±0.46	68.90±2.52 69.88±4.01 69.88±4.01	96.14±3.46 96.14±3.46	80.55±0.25 80.55±0.25 80.55±0.25	94.53±1.96 94.53±1.96 94.53±1.96	78.77±4.36 78.77±4.36	92.35±2.23 92.35±2.23

Robust accuracy under FGSM attack on openML dataset

Methods \ OpenML Dataset ID	312	715	718	723	797	806	837	866
Vanilla Mixup Mixup+GenLabel (GM)	54.22±14.88 66.23±11.75 82.09 ±0.08	44.10±3.27	40.29±3.27	41.39±3.45	32.79±3.31 38.70±3.24 55.10 ±0.73	35.99±2.78	30.60±1.92	45.80 ± 1.67
M d d) 0 M D ((B)	1 0=4	0.00	1		1	1		
Methods \ OpenML Dataset ID	871	909	917	1038	1043	1130	1138	1166

Experimental results – Generalization/robustness for image data

Generalization and robustness performances on real image datasets

Methods	MN	IST	CIFA	R-10	CIFA	R-100	TinyImag	eNet-200
	Robust	Clean	Robust	Clean	Robust	Clean	Robust	Clean
Vanilla	48.17 ± 13.1	99.34 ± 0.03	16.89 ± 0.98	94.57 ± 0.25	17.19 ± 0.20	74.48 ± 0.28	13.19 ± 0.19	58.13 ± 0.09
AdaMixup	-	99.32 ± 0.05	-	95.45 ± 0.13	-	-	-	-
Mixup	55.44 ± 1.80	99.27 ± 0.03	11.65 ± 1.96	95.68 ± 0.06	18.44 ± 0.45	77.65 ± 0.30	14.91 ± 0.48	59.46 ± 0.30
Mixup+GenLabel	56.54 ± 1.03	99.36 ± 0.06	14.32 ± 1.23	96.09 ± 0.01	19.58 ± 0.71	78.04 ± 0.21	15.34 ± 0.30	59.78 ± 0.09
Manifold mixup	55.56 ± 1.53	99.32 ± 0.04	18.14 ± 1.88	94.78 ± 0.49	19.25 ± 0.61	78.61 ± 0.17	14.78 ± 0.28	59.87 ± 0.63
Manifold mixup+GenLabel	56.62 ± 1.31	99.37 ± 0.07	18.91 ± 1.26	95.10 ± 0.10	19.28 ± 1.04	78.99 ± 0.54	15.19 ± 0.22	60.02 ± 0.25

Robust accuracy was analyzed under AutoAttack (Croce, 2020)

GenMix

Is the linear combination of two examples are good way for data augmentation?

Intuition - GenMix

- How about making new mixing data points using generative models?
- Make new mixing data x^{mix} that satisfy $p_i(x^{mix})$: $p_j(x^{mix}) = (1 \lambda)$: λ for arbitrary defined $\lambda \in [0,1]$
- Suggested two types of generative model: GM / GAN
- Goal : find virtual data x^{mix} which satisfy (for small margin ϵ)

$$\left| \frac{p_j(x^{mix})}{p_i(x^{mix}) + p_j(x^{mix})} - \lambda \right| \le \epsilon$$

- Perform manifold intrusion removal : remain x^{mix} only when $\min\{p_i(x^{mix}), p_j(x^{mix})\} \ge p_l(x^{mix})$ for all $l \in [k] \{i, j\}$
- Train model with data set $D \cup D_{mixup}$

GenMix-Algorithm

Algorithm 4 GenMix

```
Input Training data D, Number of augmented data n_{\text{aug}}, likelihood-ratio margin \varepsilon > 0, mixing coefficient \lambda \in [0, 1]
Output Trained model f(\cdot), Augmented data D_{\text{mixup}}
   p_c \leftarrow Data distribution of class c learned by generative model
   D_{\text{mixup}} \leftarrow \{\}
   for classes i \in [k] and j \in [k] \setminus \{i\} do
        n \leftarrow 0
        while n < n_{\text{aug}} do
            Find point x satisfying \left|\frac{p_j(x)}{p_i(x)+p_j(x)} - \lambda\right| \leq \varepsilon
            p_{\ell} \leftarrow p_{\ell}(\boldsymbol{x}) \text{ for } \ell \in [k]
            if \min\{p_i, p_j\} \ge p_\ell \quad \forall \ell \in [k] \setminus \{i, j\} then
                D_{\text{mixup}} \leftarrow D_{\text{mixup}} \cup \{(x, \frac{p_i}{p_i + p_j} e_i + \frac{p_j}{p_i + p_j} e_j)\}
                n \leftarrow n + 1
            end if
        end while
    end for
    f \leftarrow \text{model training with } D \cup D_{\text{mixup}}
```


← How to find this?

GM case:

Equivalent to solve $|\log \frac{p_j(x)}{n_i(x) + n_i(x)}| \cong \lambda$

(Has closed form solution applying quadratic discriminant analysis)

GAN case: (assume spherical gaussian noise model, and use Conditional GAN)

- $p_c(x) \cong \exp(-d(x, M_c))$ where M_c is generated manifold of class c
- Equivalent to solve $\min_{x} \left(d(x, M_j) d(x, M_i) \log \left(\frac{1}{\lambda} 1 \right) \right)^2$
- Above problem can be solved using Gradient Descent

$$\min_{\delta} \left| d(x+\delta, M_j) - d(x+\delta, M_i) - \log(\frac{1}{\lambda} - 1) \right|^2 : d(x+\delta, m_c^*) \gg d(x, x+\delta)$$

 $for \ c \in \{i,j\}$, where $m_c^* = argmin_{m \in M_c} d(x,m)$ and x is a random initial point.

Note: $d(x, M_c)$ is measured by inverting generator of the GAN

GenMix-Results

Classification error comparison with other methods

Schemes / Datasets	Circle (2D)	Circle (3D)	MNIST 7/9 (n _{train} =500)
Vanilla Training Mixup Manifold-mixup GenMix+GAN	8.60 ± 4.84 7.98 ± 2.94 7.34 ± 1.43 4.90 ± 0.12	1.40 ± 0.54 5.22 ± 1.99 0.94 ± 0.75 0.22 ± 0.06	3.88 ± 0.53

- (a): mid point generated by GenMix+GAN
- (b), (c): decision boundary for GenMix+GAN/ vanilla mix-up

Comparison between generative-model based mix-up(GenMix +GAN) and vanilla mix-up

