Aula 11 — Grafos Hamiltonianos

Teoria dos Grafos — QXD0152

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 1° semestre/2021

Tópicos desta aula

- Ciclo hamiltoniano história, definições
- Condição necessária para existência de ciclo hamiltoniano
- Condições suficientes para existência de ciclo hamiltoniano

Introdução

O jogo do Sir William Rowan Hamilton

 Em 1857, Hamilton inventou um jogo no qual um jogador começa especificando um caminho com 5 vértices no grafo dodecaedro e um segundo jogador deve estendê-lo até formar um ciclo gerador do grafo.

Ciclos hamiltonianos

- Um ciclo gerador de um grafo é chamado ciclo hamiltoniano.
- Um grafo é hamiltoniano se possui um ciclo hamiltoniano.

 Consideramos apenas grafos simples dado que laços e arestas paralelas são irrelevantes nesse contexto.

Grafos bipartidos completos

• Que propriedades um grafo bipartido completo hamiltoniano dever ter?

Condição necessária

Teorema 11.1: Se G é um grafo hamiltoniano, então **para todo** subconjunto não-vazio $S \subseteq V(G)$, tem-se que $c(G - S) \le |S|$.

Teorema 11.1: Se G é um grafo hamiltoniano, então **para todo** subconjunto não-vazio $S \subseteq V(G)$, tem-se que $c(G - S) \le |S|$.

Demonstração:

• Seja G um grafo com um ciclo hamiltoniano C e seja $S \subseteq V(G)$, $S \neq \emptyset$.

Teorema 11.1: Se G é um grafo hamiltoniano, então **para todo** subconjunto não-vazio $S \subseteq V(G)$, tem-se que $c(G - S) \le |S|$.

- Seja G um grafo com um ciclo hamiltoniano C e seja $S \subseteq V(G)$, $S \neq \emptyset$.
- Note que sempre que o ciclo hamiltoniano C passa por um vértice de uma componente de G – S pela última vez, o próximo vértice de C pertence ao conjunto S, e cada entrada em S usa um vértice distinto.

Teorema 11.1: Se G é um grafo hamiltoniano, então **para todo** subconjunto não-vazio $S \subseteq V(G)$, tem-se que $c(G - S) \le |S|$.

- Seja G um grafo com um ciclo hamiltoniano C e seja $S \subseteq V(G)$, $S \neq \emptyset$.
- Note que sempre que o ciclo hamiltoniano C passa por um vértice de uma componente de G – S pela última vez, o próximo vértice de C pertence ao conjunto S, e cada entrada em S usa um vértice distinto.

Teorema 11.1: Se G é um grafo hamiltoniano, então **para todo** subconjunto não-vazio $S \subseteq V(G)$, tem-se que $c(G - S) \le |S|$.

Demonstração:

- Seja G um grafo com um ciclo hamiltoniano C e seja $S \subseteq V(G)$, $S \neq \emptyset$.
- Note que sempre que o ciclo hamiltoniano C passa por um vértice de uma componente de G – S pela última vez, o próximo vértice de C pertence ao conjunto S, e cada entrada em S usa um vértice distinto.

• Portanto, |S| é maior ou igual que o número de componentes de G - S.

Resultados imediatos

A contrapositiva do Teorema 11.1 nos dá a seguinte condição suficiente para um grafo ser **não-hamiltoniano**:

Corolário 11.2: Seja G um grafo. Se **existe** subconjunto não-vazio $S \subseteq V(G)$ tal que c(G - S) > |S|, então G não é hamiltoniano.

Resultados imediatos

A contrapositiva do Teorema 11.1 nos dá a seguinte condição suficiente para um grafo ser **não-hamiltoniano**:

Corolário 11.2: Seja G um grafo. Se **existe** subconjunto não-vazio $S \subseteq V(G)$ tal que c(G - S) > |S|, então G não é hamiltoniano.

 A remoção de um vértice de corte de um grafo separável desconecta o grafo em pelo menos duas componentes. Logo, obtemos:

Corolário 11.3: Se G contém um vértice de corte, então G não é hamiltoniano.

Teorema 11.1: Se G é um grafo hamiltoniano, então **para todo** subconjunto não-vazio $S \subseteq V(G)$, tem-se que $c(G - S) \le |S|$.

Teorema 11.1: Se G é um grafo hamiltoniano, então **para todo** subconjunto não-vazio $S \subseteq V(G)$, tem-se que $c(G - S) \le |S|$.

• Este grafo não satisfaz a condição necessária.

Teorema 11.1: Se G é um grafo hamiltoniano, então **para todo** subconjunto não-vazio $S \subset V(G)$, tem-se que $c(G - S) \leq |S|$.

Teorema 11.1: Se G é um grafo hamiltoniano, então **para todo** subconjunto não-vazio $S \subset V(G)$, tem-se que $c(G - S) \leq |S|$.

- Este grafo não tem um ciclo gerador. Se ele tivesse um ciclo gerador *C*, todas as arestas incidentes aos vértices de grau 2 estariam em *C*.
- Porém, isso implicaria o vértice central aparecer repetidamente no ciclo C.

Condições suficientes

Condição suficiente

- Em 1952, G. A. Dirac provou que um grafo G ter $\delta(G) \ge n/2$ é suficiente para ele ser hamiltoniano.
- De fato, para grafos arbitrários, este é o melhor limitante inferior, dado que há grafos com $\delta(G) < n/2$ que não são hamiltonianos.

Dirac

Condição suficiente

- Em 1952, G. A. Dirac provou que um grafo G ter $\delta(G) \ge n/2$ é suficiente para ele ser hamiltoniano.
- De fato, para grafos arbitrários, este é o melhor limitante inferior, dado que há grafos com $\delta(G) < n/2$ que não são hamiltonianos.

Dirac

• Exemplo: Grafos bipartidos completos $K_{p,q}$ com n vértices, n ímpar, tal que p = (n-1)/2 e q = (n+1)/2.

Condição suficiente

- Em 1952, G. A. Dirac provou que um grafo G ter $\delta(G) \ge n/2$ é suficiente para ele ser hamiltoniano.
- De fato, para grafos arbitrários, este é o melhor limitante inferior, dado que há grafos com $\delta(G) < n/2$ que não são hamiltonianos.

Dirac

• Exemplo: Grafos bipartidos completos $K_{p,q}$ com n vértices, n impar, tal que p = (n-1)/2 e q = (n+1)/2.

 Em 1960, Oisten Ore provou uma condição suficiente ainda mais geral que a de Dirac, que apresentamos a seguir.

Teorema 11.4 [Ore, 1960]: Seja G um grafo simples com $n \ge 3$ vértices. Se $d(u) + d(v) \ge n$, para todo par de vértices $u, v \in V(G)$ não adjacentes, então G é hamiltoniano.

Oisten Ore

Teorema 11.4 [Ore, 1960]: Seja G um grafo simples com $n \geq 3$ vértices. Se $d(u) + d(v) \geq n$, para todo par de vértices $u, v \in V(G)$ não adjacentes, então G é hamiltoniano.

Teorema 11.4 [Ore, 1960]: Seja G um grafo simples com $n \ge 3$ vértices. Se $d(u) + d(v) \ge n$, para todo par de vértices $u, v \in V(G)$ não adjacentes, então G é hamiltoniano.

Demonstração:

• **Prova por contradição.** Suponha, por absurdo, que exista um grafo não-hamiltoniano G de ordem $n \geq 3$ tal que $d_G(u) + d_G(v) \geq n$ para todo par u, v de vértices não adjacentes de G.

Teorema 11.4 [Ore, 1960]: Seja G um grafo simples com $n \geq 3$ vértices. Se $d(u) + d(v) \geq n$, para todo par de vértices $u, v \in V(G)$ não adjacentes, então G é hamiltoniano.

- **Prova por contradição.** Suponha, por absurdo, que exista um grafo não-hamiltoniano G de ordem $n \ge 3$ tal que $d_G(u) + d_G(v) \ge n$ para todo par u, v de vértices não adjacentes de G.
- Adicione a *G* o maior número de arestas possível de modo que o grafo resultante *H* continue não hamiltoniano.

Teorema 11.4 [Ore, 1960]: Seja G um grafo simples com $n \geq 3$ vértices. Se $d(u) + d(v) \geq n$, para todo par de vértices $u, v \in V(G)$ não adjacentes, então G é hamiltoniano.

- **Prova por contradição.** Suponha, por absurdo, que exista um grafo não-hamiltoniano G de ordem $n \ge 3$ tal que $d_G(u) + d_G(v) \ge n$ para todo par u, v de vértices não adjacentes de G.
- Adicione a G o maior número de arestas possível de modo que o grafo resultante H continue não hamiltoniano.
 - Ou seja, H é não-hamiltoniano maximal, o que significa que, adicionando qualquer nova aresta a H, ele se torna hamiltoniano.

Teorema 11.4 [Ore, 1960]: Seja G um grafo simples com $n \geq 3$ vértices. Se $d(u) + d(v) \geq n$, para todo par de vértices $u, v \in V(G)$ não adjacentes, então G é hamiltoniano.

- **Prova por contradição.** Suponha, por absurdo, que exista um grafo não-hamiltoniano G de ordem $n \ge 3$ tal que $d_G(u) + d_G(v) \ge n$ para todo par u, v de vértices não adjacentes de G.
- Adicione a G o maior número de arestas possível de modo que o grafo resultante H continue não hamiltoniano.
 - \circ Ou seja, H é **não-hamiltoniano maximal**, o que significa que, adicionando qualquer nova aresta a H, ele se torna hamiltoniano.
 - Note que $d_H(u) + d_H(v) \ge n$ para todo par de vértices não adjacentes $u, v \in V(H)$. Além disso, H não é um grafo completo. Why not?

• Como H não é completo, ele possui dois vértices x e y não adjacentes.

- Como *H* não é completo, ele possui dois vértices *x* e *y* não adjacentes.
- Então, H + xy é hamiltoniano. Além disso, todo ciclo hamiltoniano de H deve conter a aresta xy.

- Como H não é completo, ele possui dois vértices x e y não adjacentes.
- Então, H + xy é hamiltoniano. Além disso, todo ciclo hamiltoniano de H deve conter a aresta xy.
- Isso implica que H contém um (x, y)-caminho P que é hamiltoniano. Seja $P = (x = x_1, x_2, \dots, x_n = y)$.

- Como H não é completo, ele possui dois vértices x e y não adjacentes.
- Então, H + xy é hamiltoniano. Além disso, todo ciclo hamiltoniano de H deve conter a aresta xy.
- Isso implica que H contém um (x, y)-caminho P que é hamiltoniano. Seja $P = (x = x_1, x_2, \dots, x_n = y)$.
- Note que se $xx_i \in E(H)$, para $2 \le i \le n$, então $yx_{i-1} \notin E(H)$. (Why?)

- Como H não é completo, ele possui dois vértices x e y não adjacentes.
- Então, H + xy é hamiltoniano. Além disso, todo ciclo hamiltoniano de H deve conter a aresta xy.
- Isso implica que H contém um (x, y)-caminho P que é hamiltoniano. Seja $P = (x = x_1, x_2, \dots, x_n = y)$.
- Note que se $xx_i \in E(H)$, para $2 \le i \le n$, então $yx_{i-1} \notin E(H)$. (Why?)

• Se este não fosse o caso, $(x_1, x_i, x_{i+1}, \dots, x_n, x_{i-1}, x_{i-2}, \dots, x_1)$ é um ciclo hamiltoniano de H, o que é impossível.

• Portanto, para cada vértice de $\{x_2, x_3, \dots, x_n\}$ adjacente a x, existe um vértice de $\{x_1, x_2, \dots, x_{n-1}\}$ não adjacente a y.

- Portanto, para cada vértice de $\{x_2, x_3, \dots, x_n\}$ adjacente a x, existe um vértice de $\{x_1, x_2, \dots, x_{n-1}\}$ não adjacente a y.
- Contudo, isto significa que $d_G(y) \le (n-1) d_G(x)$.

- Portanto, para cada vértice de $\{x_2, x_3, \dots, x_n\}$ adjacente a x, existe um vértice de $\{x_1, x_2, \dots, x_{n-1}\}$ não adjacente a y.
- Contudo, isto significa que $d_G(y) \le (n-1) d_G(x)$.
- O que implica, $d_G(y) + d_G(x) \le n 1$, contradizendo o fato de que $d_G(y) + d_G(v) \ge n$.
- Portanto, G é hamiltoniano.

Observação

- O limitante dado no Teorema anterior é apertado.
- Exemplo: Seja $n=2k+1\geq 3$ um inteiro. Seja G o grafo obtido identificando um vértice de uma cópia do K_{k+1} e um vértice de outra cópia do K_{k+1} . Para n=7, o grafo G é exibido abaixo.

Observação

- O limitante dado no Teorema anterior é apertado.
- Exemplo: Seja $n=2k+1\geq 3$ um inteiro. Seja G o grafo obtido identificando um vértice de uma cópia do K_{k+1} e um vértice de outra cópia do K_{k+1} . Para n=7, o grafo G é exibido abaixo.

- Certamente, G não é hamiltoniano pois possui um vértice de corte. Além disso, se u, v são vértices não adjacentes de G, então d(u) = d(v) = k e d(u) + d(v) = 2k = n 1.
- Portanto, o limitante do teorema anterior não pode ser melhorado.

Teorema 11.5 [Dirac, 1952]: Seja G um grafo simples com $n \ge 3$ vértices. Se $\delta(G) \ge n/2$, então G é hamiltoniano.

Teorema 11.5 [Dirac, 1952]: Seja G um grafo simples com $n \ge 3$ vértices. Se $\delta(G) \ge n/2$, então G é hamiltoniano.

Demonstração:

• Seja G um grafo simples com $n \ge 3$ vértices. Suponha que $\delta(G) \ge n/2$.

Teorema 11.5 [Dirac, 1952]: Seja G um grafo simples com $n \ge 3$ vértices. Se $\delta(G) \ge n/2$, então G é hamiltoniano.

- Seja G um grafo simples com $n \ge 3$ vértices. Suponha que $\delta(G) \ge n/2$.
- Note que se $G \cong K_n$, então certamente G é hamiltoniano. Portanto, podemos supor que G não é completo.

Teorema 11.5 [Dirac, 1952]: Seja G um grafo simples com $n \ge 3$ vértices. Se $\delta(G) \ge n/2$, então G é hamiltoniano.

- Seja G um grafo simples com $n \ge 3$ vértices. Suponha que $\delta(G) \ge n/2$.
- Note que se $G \cong K_n$, então certamente G é hamiltoniano. Portanto, podemos supor que G não é completo.
- Sejam $u, v \in V(G)$ dois vértices não adjacentes. Então,

$$d(u)+d(v)\geq \frac{n}{2}+\frac{n}{2}=n.$$

Teorema 11.5 [Dirac, 1952]: Seja G um grafo simples com $n \ge 3$ vértices. Se $\delta(G) \ge n/2$, então G é hamiltoniano.

Demonstração:

- Seja G um grafo simples com $n \ge 3$ vértices. Suponha que $\delta(G) \ge n/2$.
- Note que se $G \cong K_n$, então certamente G é hamiltoniano. Portanto, podemos supor que G não é completo.
- Sejam $u, v \in V(G)$ dois vértices não adjacentes. Então,

$$d(u)+d(v)\geq \frac{n}{2}+\frac{n}{2}=n.$$

Pelo teorema 11.4, G é hamiltoniano.

Corolário

Com o auxílio do Teorema 11.4, obtemos a seguinte condição suficiente para que um grafo tenha um caminho hamiltoniano.

Corolário 11.6: Seja G um grafo de ordem $n \ge 2$. Se $d(u) + d(v) \ge n - 1$, para quaisquer dois vértices não adjacentes $u, v \in V(G)$, então G contém um caminho hamiltoniano.

Corolário

Com o auxílio do Teorema 11.4, obtemos a seguinte condição suficiente para que um grafo tenha um caminho hamiltoniano.

Corolário 11.6: Seja G um grafo de ordem $n \ge 2$. Se $d(u) + d(v) \ge n - 1$, para quaisquer dois vértices não adjacentes $u, v \in V(G)$, então G contém um caminho hamiltoniano.

Demonstração:

• Seja G um grafo de ordem $n \ge 2$. Suponha que $d_G(u) + d_G(v) \ge n - 1$, para quaisquer dois vértices não adjacentes $u, v \in V(G)$.

Corolário

Com o auxílio do Teorema 11.4, obtemos a seguinte condição suficiente para que um grafo tenha um caminho hamiltoniano.

Corolário 11.6: Seja G um grafo de ordem $n \ge 2$. Se $d(u) + d(v) \ge n - 1$, para quaisquer dois vértices não adjacentes $u, v \in V(G)$, então G contém um caminho hamiltoniano.

- Seja G um grafo de ordem $n \ge 2$. Suponha que $d_G(u) + d_G(v) \ge n 1$, para quaisquer dois vértices não adjacentes $u, v \in V(G)$.
- Seja H = G ∨ K₁ a junção de G e K₁, onde w é o vértice de H que não pertence a G.

• Então $d_H(u) + d_H(v) \ge n + 1$ para todo par de vértices não adjacentes $u, v \in V(H)$.

- Então $d_H(u) + d_H(v) \ge n + 1$ para todo par de vértices não adjacentes $u, v \in V(H)$.
- Como a ordem de H é n + 1, segue do Teorema 11.4 que H é hamiltoniano. Seja C um ciclo hamiltoniano de H.

- Então $d_H(u) + d_H(v) \ge n + 1$ para todo par de vértices não adjacentes $u, v \in V(H)$.
- Como a ordem de H é n + 1, segue do Teorema 11.4 que H é hamiltoniano. Seja C um ciclo hamiltoniano de H.
- Removendo w de C, obtemos um caminho hamiltoniano em G.

Fecho hamiltoniano

Teorema 11.7 [Bondy e Chvátal, 1976]: Sejam u e v vértices não adjacentes em um grafo G de ordem n tal que $d(u)+d(v) \ge n$. Então, G+uv é hamiltoniano se e somente se G é hamiltoniano.

J. A. Bondy

Vašek Chvátal

Teorema 11.7 [Bondy e Chvátal, 1976]: Sejam u e v vértices não adjacentes em um grafo G de ordem n tal que $d(u)+d(v) \ge n$. Então, G+uv é hamiltoniano se e somente se G é hamiltoniano.

Teorema 11.7 [Bondy e Chvátal, 1976]: Sejam u e v vértices não adjacentes em um grafo G de ordem n tal que $d(u)+d(v) \ge n$. Então, G+uv é hamiltoniano se e somente se G é hamiltoniano.

Demonstração:

• Sejam $u \in v$ vértices não adjacentes em um grafo G de ordem n tal que $d(u) + d(v) \ge n$.

Teorema 11.7 [Bondy e Chvátal, 1976]: Sejam u e v vértices não adjacentes em um grafo G de ordem n tal que $d(u)+d(v) \ge n$. Então, G+uv é hamiltoniano se e somente se G é hamiltoniano.

- Sejam $u \in v$ vértices não adjacentes em um grafo G de ordem n tal que $d(u) + d(v) \ge n$.
- Se G é hamiltoniano, então certamente G + uv é hamiltoniano. Assim, precisamos apenas verificar o inverso.

Teorema 11.7 [Bondy e Chvátal, 1976]: Sejam u e v vértices não adjacentes em um grafo G de ordem n tal que $d(u)+d(v) \ge n$. Então, G+uv é hamiltoniano se e somente se G é hamiltoniano.

 Seja G + uv um grafo hamiltoniano e suponha, por absurdo, que G não é hamiltoniano.

Teorema 11.7 [Bondy e Chvátal, 1976]: Sejam u e v vértices não adjacentes em um grafo G de ordem n tal que $d(u)+d(v) \ge n$. Então, G+uv é hamiltoniano se e somente se G é hamiltoniano.

- Seja G + uv um grafo hamiltoniano e suponha, por absurdo, que G não é hamiltoniano.
- Isso implica que todo ciclo hamitoniano em G + uv contém a aresta uv e, assim, G contém um (u, v)-caminho hamiltoniano P.

Teorema 11.7 [Bondy e Chvátal, 1976]: Sejam u e v vértices não adjacentes em um grafo G de ordem n tal que $d(u)+d(v) \ge n$. Então, G+uv é hamiltoniano se e somente se G é hamiltoniano.

- Seja G + uv um grafo hamiltoniano e suponha, por absurdo, que G não é hamiltoniano.
- Isso implica que todo ciclo hamitoniano em G + uv contém a aresta uv e, assim, G contém um (u, v)-caminho hamiltoniano P.
- O restante desta prova é idêntico à prova do Teorema 11.4. Chegaremos ao fato de que $d(u) \le (n-1) d(v)$, contradizendo o fato de que $d_G(u) + d_G(v) \ge n$.
- Portanto, concluímos que G é Hamiltoniano.

Teorema 11.7 [Bondy e Chvátal, 1976]: Sejam u e v vértices não adjacentes em um grafo G de ordem n tal que $d(u)+d(v) \ge n$. Então, G+uv é hamiltoniano se e somente se G é hamiltoniano.

- Seja G + uv um grafo hamiltoniano e suponha, por absurdo, que G não é hamiltoniano.
- Isso implica que todo ciclo hamitoniano em G + uv contém a aresta uv e, assim, G contém um (u, v)-caminho hamiltoniano P.
- O restante desta prova é idêntico à prova do Teorema 11.4. Chegaremos ao fato de que $d(u) \le (n-1) d(v)$, contradizendo o fato de que $d_G(u) + d_G(v) \ge n$.
- Portanto, concluímos que G é Hamiltoniano.

O Teorema 11.7 inpirou a definição de fecho de um grafo, apresentada a seguir.

O fecho de um grafo simples G com n vértices, denotado por C(G), é o grafo simples obtido a partir de G adicionando arestas entre pares de vértices não-adjacentes de G cuja soma dos graus seja pelo menos n, até que não reste nenhum par com tal propriedade.

O fecho de um grafo simples G com n vértices, denotado por C(G), é o grafo simples obtido a partir de G adicionando arestas entre pares de vértices não-adjacentes de G cuja soma dos graus seja pelo menos n, até que não reste nenhum par com tal propriedade.

A seguir, provamos que o fecho é uma operação bem definida em grafos.
 Ou seja, o mesmo grafo é obtido independentemente da ordem em que as arestas são adicionadas ao grafo inicial.

Teorema 11.9: Seja G um grafo simples de ordem n. Se G_1 e G_2 são grafos obtidos recursivamente ligando pares de vértices não adjacentes de G cuja soma de graus é pelo menos n até que nenhum tal par exista, então $G_1 = G_2$.

Teorema 11.9: Seja G um grafo simples de ordem n. Se G_1 e G_2 são grafos obtidos recursivamente ligando pares de vértices não adjacentes de G cuja soma de graus é pelo menos n até que nenhum tal par exista, então $G_1 = G_2$.

Demonstração:

• Suponha que G_1 é o grafo obtido adicionando as arestas e_1, e_2, \ldots, e_r a G nesta ordem e que G_2 é obtido a partir de G adicionando as arestas f_1, f_2, \ldots, f_s nesta ordem.

Teorema 11.9: Seja G um grafo simples de ordem n. Se G_1 e G_2 são grafos obtidos recursivamente ligando pares de vértices não adjacentes de G cuja soma de graus é pelo menos n até que nenhum tal par exista, então $G_1 = G_2$.

- Suponha que G_1 é o grafo obtido adicionando as arestas e_1, e_2, \ldots, e_r a G nesta ordem e que G_2 é obtido a partir de G adicionando as arestas f_1, f_2, \ldots, f_s nesta ordem.
- Suponha, por absurdo, que $G_1 \neq G_2$. Então $E(G_1) \neq E(G_2)$.

Teorema 11.9: Seja G um grafo simples de ordem n. Se G_1 e G_2 são grafos obtidos recursivamente ligando pares de vértices não adjacentes de G cuja soma de graus é pelo menos n até que nenhum tal par exista, então $G_1 = G_2$.

- Suponha que G_1 é o grafo obtido adicionando as arestas e_1, e_2, \ldots, e_r a G nesta ordem e que G_2 é obtido a partir de G adicionando as arestas f_1, f_2, \ldots, f_s nesta ordem.
- Suponha, por absurdo, que $G_1 \neq G_2$. Então $E(G_1) \neq E(G_2)$.
- Deste modo, podemos assumir que existe uma primeira aresta $e_i = xy$ na sequência e_1, e_2, \ldots, e_r que não pertence a G_2 .

• Seja H o grafo obtido antes da inserção da aresta e_i . Ou seja, se i=1, então H=G; caso contrário, $H=G+\{e_1,e_2,\ldots,e_{i-1}\}$.

- Seja H o grafo obtido antes da inserção da aresta e_i . Ou seja, se i=1, então H=G; caso contrário, $H=G+\{e_1,e_2,\ldots,e_{i-1}\}$.
- Então, H é um subgrafo de G_2 e x e y são não-adjacentes em H.

- Seja H o grafo obtido antes da inserção da aresta e_i . Ou seja, se i=1, então H=G; caso contrário, $H=G+\{e_1,e_2,\ldots,e_{i-1}\}$.
- Então, H é um subgrafo de G_2 e x e y são não-adjacentes em H.
- Como $d_H(x) + d_H(y) \ge n$, segue que $d_{G_2}(x) + d_{G_2}(y) \ge n$, o que produz uma contradição.

- Seja H o grafo obtido antes da inserção da aresta e_i . Ou seja, se i=1, então H=G; caso contrário, $H=G+\{e_1,e_2,\ldots,e_{i-1}\}$.
- Então, H é um subgrafo de G_2 e x e y são não-adjacentes em H.
- Como $d_H(x) + d_H(y) \ge n$, segue que $d_{G_2}(x) + d_{G_2}(y) \ge n$, o que produz uma contradição.
- Portanto, G₁ = G₂, o que implica que o fecho é uma operação bem-definida em grafos.

Repetidas aplicações do Teorema 11.7 nos dão o seguinte resultado.

Teorema 11.10: Um grafo simples é hamiltoniano se e somente se seu fecho é hamiltoniano.

Repetidas aplicações do Teorema 11.7 nos dão o seguinte resultado.

Teorema 11.10: Um grafo simples é hamiltoniano se e somente se seu fecho é hamiltoniano.

Corolário 11.11: Seja G um grafo simples com $n \geq 3$ vértices. Se C(G) é completo, então G é hamiltoniano.

Repetidas aplicações do Teorema 11.7 nos dão o seguinte resultado.

Teorema 11.10: Um grafo simples é hamiltoniano se e somente se seu fecho é hamiltoniano.

Corolário 11.11: Seja G um grafo simples com $n \ge 3$ vértices. Se C(G) é completo, então G é hamiltoniano.

- **Observação:** Agora temos uma condição necessária e suficiente para testar se um grafo tem ciclo hamiltoniano.
 - Porém, ela não ajuda muito, porque requer que testemos se outro grafo é hamiltoniano!

Grafo de Petersen

Teorema 11.13: O grafo de Petersen não é hamiltoniano.

Teorema 11.13: O grafo de Petersen não é hamiltoniano.

Demonstração:

• Seja P o grafo de Petersen. Suponha, por absurdo que P é hamiltoniano. Então, P possui um ciclo hamiltoniano $C = (v_1, v_2, \dots, v_{10}, v_1)$.

Teorema 11.13: O grafo de Petersen não é hamiltoniano.

- Seja P o grafo de Petersen. Suponha, por absurdo que P é hamiltoniano. Então, P possui um ciclo hamiltoniano $C = (v_1, v_2, \dots, v_{10}, v_1)$.
- Como P é cúbico, v₁ é adjacente a exatamente um dos vértices v₃, v₄,..., v₉.

Teorema 11.13: O grafo de Petersen não é hamiltoniano.

- Seja P o grafo de Petersen. Suponha, por absurdo que P é hamiltoniano. Então, P possui um ciclo hamiltoniano $C = (v_1, v_2, \dots, v_{10}, v_1)$.
- Como P é cúbico, v₁ é adjacente a exatamente um dos vértices v₃, v₄,..., v₉.
- Contudo, como a cintura de P é igual a 5, concluímos que v_1 só pode ser adjacente a um dos vértices v_5 , v_6 e v_7 . Além disso, por causa da simetria entre v_5 e v_7 , podemos supor, sem perda de generalidade, que v_1 é adjacente apenas a v_5 ou a v_6 .

Teorema 11.13: O grafo de Petersen não é hamiltoniano.

- Seja P o grafo de Petersen. Suponha, por absurdo que P é hamiltoniano. Então, P possui um ciclo hamiltoniano $C = (v_1, v_2, \dots, v_{10}, v_1)$.
- Como P é cúbico, v_1 é adjacente a exatamente um dos vértices v_3, v_4, \ldots, v_9 .
- Contudo, como a cintura de P é igual a 5, concluímos que v₁ só pode ser adjacente a um dos vértices v₅, v₆ e v₇. Além disso, por causa da simetria entre v₅ e v₇, podemos supor, sem perda de generalidade, que v₁ é adjacente apenas a v₅ ou a v₆.
- Temos então dois casos a considerar.

• Caso 1: v_1 é adjacente a v_5 . Neste caso, v_{10} é adjacente a exatamente um dos vértices v_4 e v_6 , o que resulta em um ciclo C_4 . Contradição, pois P tem cintura S.

- Caso 1: v_1 é adjacente a v_5 . Neste caso, v_{10} é adjacente a exatamente um dos vértices v_4 e v_6 , o que resulta em um ciclo C_4 . Contradição, pois P tem cintura S.
- Caso 2: v_1 é adjacente a v_6 . Neste caso, v_{10} é adjacente a exatamente um dos vértices v_4 e v_5 . Como P não contém ciclos de tamanho 4, o vértice v_{10} tem que ser adjacente a v_4 .

- Caso 1: v_1 é adjacente a v_5 . Neste caso, v_{10} é adjacente a exatamente um dos vértices v_4 e v_6 , o que resulta em um ciclo C_4 . Contradição, pois P tem cintura S.
- Caso 2: v₁ é adjacente a v₆. Neste caso, v₁₀ é adjacente a exatamente um dos vértices v₄ e v₅. Como P não contém ciclos de tamanho 4, o vértice v₁₀ tem que ser adjacente a v₄.
 - Como P é cúbico e não contém ciclos de tamanho 3 ou 4, o vértice v₉ deve ser adjacente a exatamente um dos vértices v₃, v₄ ou v₅. Contudo, cada uma destas escolhas gera um ciclo de tamanho menor do que 5 em P ou gera um vértice com grau maior que três. Contradição.
- Portanto, *P* não é hamiltoniano. ■

Definição

- Dado um grafo G, seja $U \subseteq V(G)$.
- Dizemos que *U* é um conjunto independente ou conjunto estável de *G* se quaisquer dois vértices de *U* são **não-adjacentes**.
- O número de vértices de um conjunto independente máximo em um grafo G é chamado número de independência de G e é denotado por $\alpha(G)$.
- Exemplos:

$$\circ \ \alpha(K_{r,s}) = \max\{r,s\}$$

$$\circ \ \alpha(C_n) = \lfloor \frac{n}{2} \rfloor$$

$$\circ \ \alpha(K_n) = 1$$

Teorema 11.14 [Chvátal e Erdös, 1972]: Seja G um grafo simples com $n \geq 3$ vértices. Se $\kappa(G) \geq \alpha(G)$, então G é hamiltoniano.

Paul Erdös

Teorema 11.14 [Chvátal e Erdös, 1972]: Seja G um grafo simples com $n \geq 3$ vértices. Se $\kappa(G) \geq \alpha(G)$, então G é hamiltoniano.

Teorema 11.14 [Chvátal e Erdös, 1972]: Seja G um grafo simples com $n \geq 3$ vértices. Se $\kappa(G) \geq \alpha(G)$, então G é hamiltoniano.

Demonstração:

• Seja G um grafo simples com $n \ge 3$ vértices. Suponha que $\kappa(G) \ge \alpha(G)$. Se $\alpha(G) = 1$, então G é completo e, portanto, hamiltoniano.

Teorema 11.14 [Chvátal e Erdös, 1972]: Seja G um grafo simples com $n \geq 3$ vértices. Se $\kappa(G) \geq \alpha(G)$, então G é hamiltoniano.

- Seja G um grafo simples com $n \ge 3$ vértices. Suponha que $\kappa(G) \ge \alpha(G)$. Se $\alpha(G) = 1$, então G é completo e, portanto, hamiltoniano.
- Então, suponha que $\alpha(G)=k\geq 2$. Como $\kappa(G)\geq \alpha(G)=k\geq 2$, temos que G é 2-conexo (contém um ciclo). Seja C um ciclo mais longo em G.

Teorema 11.14 [Chvátal e Erdös, 1972]: Seja G um grafo simples com $n \geq 3$ vértices. Se $\kappa(G) \geq \alpha(G)$, então G é hamiltoniano.

- Seja G um grafo simples com $n \ge 3$ vértices. Suponha que $\kappa(G) \ge \alpha(G)$. Se $\alpha(G) = 1$, então G é completo e, portanto, hamiltoniano.
- Então, suponha que $\alpha(G) = k \ge 2$. Como $\kappa(G) \ge \alpha(G) = k \ge 2$, temos que G é 2-conexo (contém um ciclo). Seja C um ciclo mais longo em G.
- Suponha, por absurdo, que *C* não é hamiltoniano.

Teorema 11.14 [Chvátal e Erdős, 1972]: Seja G um grafo simples com $n \ge 3$ vértices. Se $\kappa(G) \ge \alpha(G)$, então G é hamiltoniano.

- Seja G um grafo simples com $n \ge 3$ vértices. Suponha que $\kappa(G) \ge \alpha(G)$. Se $\alpha(G) = 1$, então G é completo e, portanto, hamiltoniano.
- Então, suponha que $\alpha(G) = k \ge 2$. Como $\kappa(G) \ge \alpha(G) = k \ge 2$, temos que G é 2-conexo (contém um ciclo). Seja C um ciclo mais longo em G.
- Suponha, por absurdo, que *C* não é hamiltoniano.
- Como δ(G) ≥ κ(G) = k e todo grafo com δ(G) ≥ 2 possui um ciclo de comprimento pelo menos δ(G) + 1, temos que C tem pelo menos k + 1 vértices.

• Seja H uma componente de G - V(C).

- Seja H uma componente de G V(C).
- Note que o ciclo C tem pelo menos k vértices com arestas para a componente H. Caso contrário, poderíamos remover menos do que k vértices de C com arestas para H, desconectando o grafo, contradizendo $\kappa(G)=k$. Sejam u_1,\ldots,u_k k vértices de C com arestas para H, em sentido horário.

Para i = 1,..., k, seja a_i o vértice imediatamente consecutivo a u_i no ciclo C. Se quaisquer dois vértices a_i e a_j forem adjacentes, então conseguimos construir um novo ciclo mais longo que C usando a aresta a_ia_j, a porção de C que vai de a_i até u_j e de a_j até u_i, e ainda um (u_i, u_j)-caminho que passa por H.

Se a_i tiver um vizinho em H, então podemos desviar para H entre u_i e a_i em C.

- Se a_i tiver um vizinho em H, então podemos desviar para H entre u_i e a_i em C.
- Deste modo, podemos concluir que nenhum vértice a_i tem um vizinho em H. Portanto, $\{a_i,\ldots,a_k\}$ mais um vértice de H formam um conjunto independente de tamanho k+1, contradizendo $\alpha(G)=k$.

- Se ai tiver um vizinho em H, então podemos desviar para H entre ui e ai em C.
- Deste modo, podemos concluir que nenhum vértice a_i tem um vizinho em H. Portanto, $\{a_i,\ldots,a_k\}$ mais um vértice de H formam um conjunto independente de tamanho k+1, contradizendo $\alpha(G)=k$.
- Portanto, C é um ciclo hamiltoniano.

Ciclos hamiltonianos em grafos linha

Definição: Grafo linha L(G)

• O grafo linha de um grafo G é o grafo L(G) = (E(G), A) em que A é o conjunto de todos os pares de arestas adjacentes de G.

• Exercício: Faça uma figura de $L(K_4)$ e $L(K_5)$.

Caracterização de grafos linha

Teorema 11.15 [Beineke, 1970]: Um grafo G é isomorfo ao grafo linha de algum grafo se e somente se nenhum dos nove subgrafos abaixo é isomorfo a um subgrafo induzido de G.

Lowell W. Beineke

Definição: Circuito dominante

- Um circuito C em um grafo G é um circuito dominante se toda aresta de G ou pertence a C ou é adjacente a uma aresta de C.
- Exemplo: Ache um circuito dominante no grafo abaixo.

Caracterização de grafos linha hamiltonianos

Frank Harary

Crispin Nash-Williams

- Vamos inicialmente provar a condição suficiente.
- Se $G = K_{1,\ell}$, $\ell \geq 3$, então L(G) é hamiltoniano dado que $L(G) = K_{\ell}$.

- Vamos inicialmente provar a condição suficiente.
- Se $G = K_{1,\ell}$, $\ell \geq 3$, então L(G) é hamiltoniano dado que $L(G) = K_{\ell}$.
- Suponha então que G contém um circuito dominante $C = (v_1, v_2, \dots, v_t, v_1)$.

- Vamos inicialmente provar a condição suficiente.
- Se $G = K_{1,\ell}$, $\ell \geq 3$, então L(G) é hamiltoniano dado que $L(G) = K_{\ell}$.
- Suponha então que G contém um circuito dominante $C = (v_1, v_2, \dots, v_t, v_1)$.
- Note que basta mostrar que existe uma ordenação S: e₁, e₂,..., e_m das m arestas de G tal que quaisquer duas arestas consecutivas sejam adjacentes.
 - \circ Esta ordenação corresponde a um ciclo hamiltoniano em L(G).

Construção da ordenação S:

• Inicie a construção da ordenação S selecionando, em qualquer ordem, todas as arestas de G incidentes em v_1 que não sejam arestas de C, seguidas pela aresta v_1v_2 .

Construção da ordenação S:

- Inicie a construção da ordenação S selecionando, em qualquer ordem, todas as arestas de G incidentes em v_1 que não sejam arestas de C, seguidas pela aresta v_1v_2 .
- Para cada $i \in \{2, \dots, t-1\}$, selecione, em qualquer ordem, todas as arestas de G incidentes no vértice v_i que não sejam arestas de C e que não sejam arestas previamente selecionadas, seguidas pela aresta $v_i v_{i+1}$.

Construção da ordenação S:

- Inicie a construção da ordenação S selecionando, em qualquer ordem, todas as arestas de G incidentes em v_1 que não sejam arestas de C, seguidas pela aresta v_1v_2 .
- Para cada $i \in \{2, \dots, t-1\}$, selecione, em qualquer ordem, todas as arestas de G incidentes no vértice v_i que não sejam arestas de C e que não sejam arestas previamente selecionadas, seguidas pela aresta $v_i v_{i+1}$.
- A ordenação $\mathcal S$ é completada pela adição da aresta $v_t v_1$.

• Como C é um circuito dominante de G, toda aresta de G aparece exatamente uma vez em S.

- Como C é um circuito dominante de G, toda aresta de G aparece exatamente uma vez em S.
- Além disso, arestas consecutivas de $\mathcal S$ assim como a primeira e a última arestas de $\mathcal S$ são adjacentes em $\mathcal G$.

- Como C é um circuito dominante de G, toda aresta de G aparece exatamente uma vez em S.
- Além disso, arestas consecutivas de $\mathcal S$ assim como a primeira e a última arestas de $\mathcal S$ são adjacentes em $\mathcal G$.
- Isso conclui a prova da suficiência. Temos que provar agora a condição necessária.

Teorema 11.16 [Harary e Nash-Williams, 1965]: Seja G um grafo sem vértices isolados. Então, L(G) é hamiltoniano se e somente se $G = K_{1,\ell}$, para algum $\ell \geq 3$, ou G contém um circuito dominante.

Suponha que L(G) é hamiltoniano e que G não é uma estrela K_{1,ℓ}.
 Vamos mostrar que G contém um circuito dominante.

Teorema 11.16 [Harary e Nash-Williams, 1965]: Seja G um grafo sem vértices isolados. Então, L(G) é hamiltoniano se e somente se $G = K_{1,\ell}$, para algum $\ell \geq 3$, ou G contém um circuito dominante.

- Suponha que L(G) é hamiltoniano e que G não é uma estrela K_{1,ℓ}.
 Vamos mostrar que G contém um circuito dominante.
- Como L(G) é hamiltoniano, existe uma ordenação $\mathcal{S}: e_1, e_2, \ldots, e_m$ das m arestas de G tal que e_i e e_{i+1} são arestas adjacentes de G, assim como as arestas e_m e e_1 .

Teorema 11.16 [Harary e Nash-Williams, 1965]: Seja G um grafo sem vértices isolados. Então, L(G) é hamiltoniano se e somente se $G = K_{1,\ell}$, para algum $\ell \geq 3$, ou G contém um circuito dominante.

- Suponha que L(G) é hamiltoniano e que G não é uma estrela K_{1,ℓ}.
 Vamos mostrar que G contém um circuito dominante.
- Como L(G) é hamiltoniano, existe uma ordenação $S: e_1, e_2, \ldots, e_m$ das m arestas de G tal que e_i e e_{i+1} são arestas adjacentes de G, assim como as arestas e_m e e_1 .
- Para $i \in \{1, ..., m-1\}$, seja v_i o vértice de G incidente nas arestas e_i e e_{i+1} .
- Como G não é uma estrela, existe um menor inteiro j_1 maior que 1 tal que $v_{j_1} \neq v_1$. Temos que $v_{j_1-1} = v_1$ e que os vértices v_{j_1-1} e v_{j_1} incidem em e_{j_1} . Assim, $e_{j_1} = v_1v_{j_1}$.

• A seguir, seja j_2 (se ele existir) o menor inteiro maior que j_1 tal que $v_{j_2} \neq v_{j_1}$. Logo, temos que $v_{j_2-1} = v_{j_1}$ e os vértices v_{j_2-1} e v_{j_2} incidem em e_{j_2} . Assim, $e_{j_2} = v_{j_1}v_{j_2}$.

- A seguir, seja j_2 (se ele existir) o menor inteiro maior que j_1 tal que $v_{j_2} \neq v_{j_1}$. Logo, temos que $v_{j_2-1} = v_{j_1}$ e os vértices v_{j_2-1} e v_{j_2} incidem em e_{j_2} . Assim, $e_{j_2} = v_{j_1}v_{j_2}$.
- Continuando desta maneira, nós finalmente chegamos em um vértice v_{j_t} tal que $e_{j_t} = v_{j_t-1}v_{j_t}$, onde $v_{j_t} = v_{m-1}$.

- A seguir, seja j_2 (se ele existir) o menor inteiro maior que j_1 tal que $v_{j_2} \neq v_{j_1}$. Logo, temos que $v_{j_2-1} = v_{j_1}$ e os vértices v_{j_2-1} e v_{j_2} incidem em e_{j_2} . Assim, $e_{j_2} = v_{j_1}v_{j_2}$.
- Continuando desta maneira, nós finalmente chegamos em um vértice v_{j_t} tal que $e_{j_t} = v_{j_t-1}v_{j_t}$, onde $v_{j_t} = v_{m-1}$.
- Como toda aresta de G aparece exatamente uma vez em S e como $1 < j_1 < j_2 < \cdots < j_t = m-1$, esta construção produz uma trilha

$$T = (v_1, e_{j_1}, v_{j_1}, e_{j_2}, v_{j_2}, \dots, v_{j_{t-1}}, e_{j_t}, v_{j_t} = v_{m-1})$$

com as propriedades: (i) toda aresta de G é incidente a um vértice de T e (ii) nem e_1 nem e_m é uma aresta de T.

Seja w um vértice de G incidente a ambos e_1 e e_m . A seguir, consideramos quatro possíveis casos.

1. $w = v_1 = v_{m-1}$. Então T é um circuito dominante de G.

- 1. $w = v_1 = v_{m-1}$. Então T é um circuito dominante de G.
- 2. $w=v_1$ e $w\neq v_{m-1}$. Como e_m é incidente a w e v_{m-1} , segue que $e_m=v_{m-1}w=v_{m-1}v_1$. Assim, $C=\left(T,e_m,v_1\right)$ é um circuito dominante de G.

- 1. $w = v_1 = v_{m-1}$. Então T é um circuito dominante de G.
- 2. $w = v_1$ e $w \neq v_{m-1}$. Como e_m é incidente a w e v_{m-1} , segue que $e_m = v_{m-1}w = v_{m-1}v_1$. Assim, $C = (T, e_m, v_1)$ é um circuito dominante de G.
- 3. $w = v_{m-1}$ e $w \neq v_1$. Como e_1 é incidente a w e v_1 , temos que $e_1 = wv_1 = v_{m-1}v_1$. Assim, $C = (T, e_1, v_1)$ é um circuito dominante de G.

- 1. $w = v_1 = v_{m-1}$. Então T é um circuito dominante de G.
- 2. $w=v_1$ e $w\neq v_{m-1}$. Como e_m é incidente a w e v_{m-1} , segue que $e_m=v_{m-1}w=v_{m-1}v_1$. Assim, $C=(T,e_m,v_1)$ é um circuito dominante de G.
- 3. $w = v_{m-1}$ e $w \neq v_1$. Como e_1 é incidente a w e v_1 , temos que $e_1 = wv_1 = v_{m-1}v_1$. Assim, $C = (T, e_1, v_1)$ é um circuito dominante de G.
- 4. $w \neq v_{m-1}$ e $w \neq v_1$. Como e_m é incidente a w e v_{m-1} , segue que $e_m = v_{m-1}w$. Como e_1 é incidente a w e v_1 , temos que $e_1 = wv_1$. Assim, $v_1 \neq v_{m-1}$ e $C = (T, e_m, w, e_1, v_1)$ é um circuito dominante de G.

Corolário

Teorema 11.16 [Harary e Nash-Williams, 1965]: Seja G um grafo sem vértices isolados. Então, L(G) é hamiltoniano se e somente se $G = K_{1,\ell}$, para algum $\ell \geq 3$, ou G contém um circuito dominante.

Consequência direta:

Teorema 11.17: Se G é um grafo euleriano ou hamiltoniano, então L(G) é hamiltoniano.

(1) Mostre que o grafo abaixo não é hamiltoniano.

- (2) Prove que o grafo hipercubo Q_n é hamiltoniano, para todo $n \ge 2$.
- (3) Prove que todo grafo simples k-regular com 2k 1 vértices é hamiltoniano.
- (4) Um grafo G é dito **hipo-hamiltoniano** se G não é hamiltoniano mas G_v é hamiltoniano, para todo vértice $v \in V(G)$. Mostre que o grafo de Petersen é hipo-hamiltoniano.

- (5) Para todo vértice v do grafo de Petersen P, mostre que existe um caminho hamiltoniano começando em v.
- (6) Prove que se G[X, Y] é um grafo bipartido hamiltoniano, então |X| = |Y|.
- (7) Desenho o grafo linha L(G) do grafo abaixo e mostre que ele tem um ciclo hamiltoniano.

(8) Prove que o grafo linha de um grafo G tem um caminho hamiltoniano se e somente se G tem uma trilha T tal que toda aresta de G que não está em T é incidente a um vértice de T.

- (5) Prove que \overline{C}_n é hamiltoniano, para $n \geq 5$.
- (5) O grafo subdivisão de um grafo G é o grafo obtido a a partir de G removendo cada aresta uv de G e adicionando um novo vértice w de grau 2 mais as arestas uw e vw. É verdade que se o grafo subdivisão de um grafo G é hamiltoniano, então G é euleriano? Prove que sua resposta é verdadeira.

FIM