CENTER FOR ECONOMIC BEHAVIOR & INEQUALITY

Solving an Aiyagari Model

NumEcon

Jeppe Druedahl

Introduction

Introduction

• Subject: Solve an Aiyagari model numerically (using Python)

• NumEcon module

- 1. Link to code
- 2. Link to notebooks

• Today:

1. Code: macro\Aiyagari.py

2. **Notebook:** macro\Aiyagari.ipynb

Plan

- 1. Introduction
- 2. Model
- 3. Solution algorithm
- 4. Example
- 5. Extensions

Model

Model

- **Households** (of measure 1):
 - 1. Own capital
 - 2. Supply labor (exogenous and stochastic)
 - 3. Consume
- Firms: Rent capital and hire labor to produce
- Prices are taken as given by households and firms
 - 1. r_t , rental rate on capital
 - 2. w_t , wage rate
- Net return factor on capital: $R_t \equiv 1 + r_t \delta$ where $\delta > 0$ is the depreciation rate

Households

Solve the following problem:

$$\begin{aligned} v_t(a_{t-1},z_t,u_t) &= \max_{\left\{c_{t+k}\right\}_{k=0}^{\infty}} \mathbb{E}_t \left[\sum_{k=0}^{\infty} \beta^k \frac{c_{t+k}^{1-\sigma}}{1-\sigma} \right] \\ \text{s.t.} \\ l_t &= \begin{cases} \frac{z_t - \pi \mu}{1-\pi} & \text{if } u_t = 0\\ \mu & \text{else} \end{cases} \\ a_t + c_t &= R_t a_{t-1} + w_t l_t \\ u_{t+1} &= \begin{cases} 1 & \text{with prob. } \pi\\ 0 & \text{else} \end{cases} \end{aligned}$$

given time paths for $\{R_t\}_{t=0}^{\infty}$ and $\{w_t\}_{t=0}^{\infty}$, and where $z_t \in \mathcal{Z}$ $(\mathbb{E}[z_t]=1)$ is a first order Markov process

Households (reformulation I)

Using **Bellman's Principle of Optiamality**, we can reformulate the problem as a recursive **Bellman equation**:

$$\begin{array}{rcl} v_t(a_{t-1},z_t,u_t) & = & \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t[v_{t+1}(a_t,z_{t+1},u_{t+1})] \\ & \text{s.t.} \\ & l_t & = & \begin{cases} \frac{z_t-\pi\mu}{1-\pi} & \text{if } u_t = 0 \\ \mu & \text{else} \end{cases} \\ & a_t + c_t & = & R_t a_{t-1} + w_t l_t \\ & u_{t+1} & = & \begin{cases} 1 & \text{with prob. } \pi \\ 0 & \text{else} \end{cases} \\ & a_t & \geq & 0 \end{array}$$

Households (reformulation II)

Defining **cash-on-hand** $m_t = R_t a_{t-1} + w_t I_t$ we have

$$v_t(m_t, z_t) = \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t[v_{t+1}(m_{t+1}, z_{t+1})]$$
 s.t.
$$a_t = m_t - c_t$$

$$u_{t+1} = \begin{cases} 1 & \text{with prob.} \pi \\ 0 & \text{else} \end{cases}$$

$$l_{t+1} = \begin{cases} \frac{z_{t+1} - \pi \mu}{1-\pi} & \text{if } u_{t+1} = 0 \\ \mu & \text{else} \end{cases}$$

$$m_{t+1} = R_{t+1} a_t + w_{t+1} l_{t+1}$$

$$a_t > 0$$

Denote the solution function for consumption by $c_t^*(m_t, z_t)$

Firms

- Production function: $Y_t = F(K_t, L_t) = f(k_t)L_t$ where F is neoclassical, $k_t = K_t/L_t$, and $f(k_t) = F(k_t, 1)$
- Maximize profits

$$\max_{K_t, L_t} f(k_t) L_t - r_t K_t - w_t L_t$$

The first order conditions imply

$$r(k_t) \equiv f'(k_t) = r_t$$

$$w(k_t) \equiv f(k_t) - f'(k_t)k_t = w_t$$

Definition: Stationary equilibrium

A stationary equilibrium is a set of quantities K^* and L^* , a cdf κ^* over a_{t-1} and z_t , a consumption function $c^*(m_t, z_t)$, and prices R^* and w^* such that

- 1. The prices are determined by optimal firm behavior, i.e.
 - $R^*=1+r(K^*/L^*)-\delta$ and $w^*=w(K^*/L^*)$
- 2. $c^*(\bullet)$ solve the household problem given constant prices R^* and w^*
- 3. κ^* is the invariant cdf over a_{t-1} and z_t implied by the solution to the household problem
- 4. The labor market clears, i.e. $L^* = \int I_t d\kappa$
- 5. The capital market clears, i.e. $K^* = \int a_{t-1} d\kappa$

Definition: Transition path

A transition path given an initial cdf κ_{-1} , is paths of quantities K_t and L_t , cdfs κ_t , consumption functions $c_t(m_t, z_t)$, and prices R_t and w_t such that for all t

- 1. The prices are determined by optimal firm behavior, i.e. $R_t = 1 + r(K_t/L_t) \delta$ and $w_t = w(K_t/L_t)$
- 2. $c_t(\bullet)$ solve the household problem given paths for R_t and w_t
- 3. κ_t are cdfs over a_{t-1} and z_t implied by the solutions to the household problem
- 4. The labor market clears, i.e. $L_t = \int I_t d\kappa$
- 5. The capital market clears, i.e. $K_t = \int a_{t-1} d\kappa$

Solution algorithm

Solve household problem: Stationary equilibrium

- Infinite horizon: $R_t = R^*, \forall t \text{ and } w_t = w^*, \forall t$
- Goal: We need to find $c^*(m_t, z_t)$
- Dynamic programming: The most easy way to solve the household problem is with the endogenous grid point method
- Optimal consumption behavior implies:
 - 1. **Interior solution:** If $a_t = m_t c^*(m_t, z_t) > 0$ then the Euler-equation is necessary and sufficient,

$$c_t^{-\rho} = \beta R^* \mathbb{E}_t[c_{t+1}^{-\rho}] \Rightarrow c_t = (\beta R^* \mathbb{E}_t[c_{t+1}^{-\rho}])^{-\frac{1}{\rho}}$$

- 2. Constrained solution: Else $c^*(m_t, z_t) = m_t$
- Fundamental idea: Start from from a guess on the consumption function, update using the Euler-equation, and iterate until convergence

Endogenous grid point method

1. Choose tolerance $\epsilon > 0$ and define the following grids:

1.1
$$\mathcal{G}_a = \{a^0, a^1, \dots, a^{\#_a}\}$$

1.2 $\mathcal{G}_m = \{m^0, m^1, \dots, m^{\#_m}\}$
1.3 $\mathcal{Z} = \{z^0, z^1, \dots, z^{\#_z}\}$

- 2. **Goal:** Find $c^*(m^i, z^j)$, $\forall (m^i, z^j) \in \mathcal{G}_m \times \mathcal{Z}$.
- 3. Initial guess: $c_n^*(m^i, z^j) = m^i$ for n = 0
- 4. **Update guess:** For each z^j in \mathcal{Z} do:
 - $4.1 \ \mathsf{Compute} \ q^k = \beta R^* \mathbb{E}_t [\left(c_n^* (R^\star a^k + w^* \mathit{I}_{t+1}, z^j) \right)^{-\rho}], \forall a^k \in \mathcal{G}_a$
 - 4.2 Compute $\tilde{c}^k = \left(q^k\right)^{-\frac{1}{\rho}}$ and $\tilde{m}^k = a^k + c^k, \forall k \in \{1, \dots, \#_a\}$
 - 4.3 Create linear interpolant where $\{0, \tilde{m}^1, \tilde{m}^2, \dots, \tilde{m}^{\#_a}\}$ is the *x*-values, and $\{0, \tilde{c}^1, \tilde{c}^2, \dots, \tilde{c}^{\#_a}\}$ is the *y*-values
 - 4.4 Use the interpolant to find $c_{n+1}^*(m^i, z^j), \forall (m^i, z^j) \in \mathcal{G}_m \times \mathcal{Z}$
- 5. If $\max_{(m^i,z^j)\in\mathcal{G}_m\times\mathcal{Z}}|c_{n+1}^*(m^i,z^j)-c_n^*(m^i,z^j)|>\epsilon$ return to step 4, else stop

Find stationary equilibrium

- 1. Guess on R^*
- 2. Calculate $w^* = w(r^{-1}(R^* 1 + \delta))$
- 3. Solve the infinite horizon household problem
- 4. Simulate a panel of N households for T periods
- 5. Calculate $k = \frac{1}{N} \sum a_T$ (from final period)
- 6. Calculate $\hat{R} = 1 + r(k) \delta$
- 7. If for some tolerance ι

$$\left|R^* - \hat{R}\right| < \iota$$

then stop, otherwise return to step 1 and update guess appropriately

Solve household problem: Transition path

- Transition path: We need to find a path of consumption functions, $c_t^*(m_t, z_t)$ for $t \in \{1, 2, ..., \mathcal{T}\}$
 - 1. Assume known paths for R_t and w_t
 - 2. Set $c_{\mathcal{T}+1}(m_{\mathcal{T}+1}, z_{\mathcal{T}+1}) = c^*(m_{\mathcal{T}+1}, z_{\mathcal{T}+1})$
 - 3. Solve backwards $\mathcal T$ periods using dynamic programming like in "update guess" bullet in the slide "Endogenous grid point method".

Find transition path

- 1. Guess on $\{R_t\}_{t=0}^{\mathcal{T}}$, $R_t = R^*, \forall t \geq \mathcal{T}/2$ and $R_0 = 1 + r(\frac{1}{N} \sum_{i=1}^{N} a_{-1}) \delta$
- 2. Calculate $\{w_t\}_{t=0}^{\mathcal{T}} = \{w(r^{-1}(R_t 1 + \delta))\}_{t=0}^{\mathcal{T}}$
- 3. Solve the household problem along the transition path
- 4. Simulate a panel of N households along the transition path
- 5. Calculate $\{k_t\}_{t=0}^{\mathcal{T}} = \{\frac{1}{N} \sum_{i=1}^{N} a_{t-1}\}_{t=0}^{\mathcal{T}}$
- 6. Calculate $\{\tilde{R}_t\}_{t=0}^{\mathcal{T}} = \{1 + r(k_t) \delta\}_{t=0}^{\mathcal{T}}$
- 7. If for some tolerance ι

$$\max_{t \in \{0,1,2,\dots,\mathcal{T}\}} \left| R_t - \tilde{R}_t \right| < \iota$$

then stop, otherwise return to step 2 with $\{R_t\}_{t=0}^{\mathcal{T}} = \{0.9R_t + 0.1\tilde{R}_t\}_{t=0}^{\mathcal{T}}$

Example

Calibration

1.
$$f(k_t) = k_t^{\alpha}$$
 (Cobb-Douglas)

- 2. $\beta = 0.96$
- 3. $\sigma = 4$
- 4. $\alpha = 1/3$
- 5. $\delta = 0.08$
- 6. $\pi = 0.05$
- 7. $\mu = 0.15$
- 8. $z \in \{0.9, 1.1\}$ with $\Pr[z_j | z_j] = 0.9$

Consumption functions

Stationary distribution of a_t^*

Transition paths (from $a_t^* \cdot 0.95$)

Extensions

Potential extensions

- Note: Like a Ramsey model, but with heterogeneity on the household side
- Easy to look at steady state welfare effects of various policies (taxes, social security etc.)
 - ... including distributional effects
- Extensions:
 - 1. Government (taxes and spending)
 - 2. Endogenous labor supply
 - 3. Multiple assets (incl. housing)
 - 4. More complex uncertainty
 - 5. Aggregate uncertainty

Aggregate uncertainty

- Aggregate uncertainty is particularly challenging
- Problem: Future prices will be a function of the whole distribution
 of households over idiosyncratic states ⇒ should be a state in the
 household problem...

Solution: The Krussel-Smith method

- Add aggregate capital as state in household problem instead of the distribution of households over idiosyncratic states
- Assume households believe future aggregate capital is a known parametric function of current aggregate capital and pure aggregate states (e.g. technology)
- 3. Adjust the parameters in the belief function until no systematic errors is made when simulating assuming these beliefs
- ⇒ an approximate rational expectations equilibrium is found