Week 7 - solutions November 3, 2020

Exercise 1. To show that f(x) is o(g(x)) we need to show that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

On the other hand, to show that f(x) is not o(g(x)) we need to show that the limit above is non zero.

1. Show that 5x is $o(x^2)$.

$$\lim_{x \to \infty} \frac{5x}{x^2} = \lim_{x \to \infty} \frac{5}{x} = 0$$

2. Show that $2x^2$ is not $o(x^2)$.

$$\lim_{x \to \infty} \frac{2x^2}{x^2} = \lim_{x \to \infty} \frac{2}{1} = 2 \neq 0$$

3. Show that 1/x is o(x).

$$\lim_{x\to\infty}\frac{\frac{1}{x}}{x}=\lim_{x\to\infty}\frac{1}{x^2}=0$$

4. Show that if f(x) is o(g(x)), then f(x) is O(g(x)).

If f(x) is o(g(x)), then $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$. I.e.

$$\forall \epsilon > 0 \; \exists \delta > 0 \quad \forall x > \delta \quad \left| \frac{f(x)}{g(x)} \right| < \epsilon$$

$$\iff \forall \epsilon > 0 \; \exists \delta > 0 \quad \forall x > \delta \quad |f(x)| < \epsilon |g(x)|.$$

Choose any $\epsilon > 0$ and a corresponding δ such that the above inequality holds. Then

$$\forall x > \delta \quad |f(x)| < \epsilon |g(x)|$$

i.e. ϵ and δ are the witnesses to show that f(x) is O(g(x)).

Exercise 2. Which function below grows fastest when n goes to infinity?

$$\checkmark (\log_3(33))^{n-3}$$

- \bigcirc 3ⁿ
- $\bigcap n^{3\log_3(n)}$
- $\bigcap n^3 \log_3(n)$

Because $3 = \log_3(3^3) = \log_3(27) < \log_3(33)$ it follows that

$$\frac{(\log_3(33))^n}{3^n} = \left(\frac{\log_3(33)}{3}\right)^n$$

goes to infinity for $n \to \infty$. Because the constant factor $(\log_3(33))^{-3}$ does not affect the growth rate, it follows that $(\log_3(33))^{n-3}$ grows faster than 3^n .

Exercise 3. Consider the two statements below, where c and k are constants with $k \geq 2$:

$$n^k \ is \ O(k^n) \qquad \qquad (\log n)^k e^{(c+o(1))(\log n)^{1/3}(\log(\log(n)))^{2/3}} \ is \ e^{(c+o(1))(\log n)^{1/3}(\log(\log(n)))^{2/3}}.$$

- O They are both False.
- Only the first is True.
- Only the second is True.
- ✓ They are both True.

To easily (and informally) see that n^k is $O(k^n)$, recall Exercise 9 from the first week and write n as $k^{\log_k(n)}$ and n^k as $k^{k\log_k(n)}$, so that $\frac{k^n}{n^k} = \frac{k^n}{k^{k\log_k(n)}} = k^{n-k\log_k(n)}$; with $n-k\log_k(n)$ going to ∞ for $n \to \infty$ and $k \ge 2$, it follows that $\frac{k^n}{n^k}$ goes to ∞ for $n \to \infty$.

Just looking at the formulas for the second problem, one "immediately" sees that the factor $(\log n)^k$ gets swallowed up by the o(1) in the exponent, due to the presence of the "more powerful" $(\log n)^{1/3}$ $(\log(\log(n)))^{2/3}$ in the exponent. The cumbersome details are much less complicated than they look, but can be found below.

First simplify the two expressions by replacing $\log(n)$ by m, while writing (as customary) $\exp(x)$ for e^x :

$$m^k \exp((c+o(1))m^{1/3}(\log(m))^{2/3})$$
 is $\exp((c+o(1))m^{1/3}(\log(m))^{2/3})$.

As above, write $m^k = \exp(k \log(m))$, so $m^k \exp\left((c + o(1))m^{1/3}(\log(m))^{2/3}\right)$ becomes $\exp\left(k \log(m) + (c + o(1))m^{1/3}(\log(m))^{2/3}\right)$ which becomes

$$\exp\left(\left(c + \left(\frac{k \log(m)}{m^{1/3} (\log(m))^{2/3}}\right) + o(1)\right) m^{1/3} (\log(m))^{2/3}\right)$$

when using $k \log(m) = \left(\frac{k \log(m)}{m^{1/3}(\log(m))^{2/3}}\right) m^{1/3}(\log(m))^{2/3}$. For n and thus m going to ∞ , the term $\left(\frac{k \log(m)}{m^{1/3}(\log(m))^{2/3}}\right)$ goes to zero and is thus o(1); with o(1) + o(1) = o(1) the result follows.

Exercise 4. Let f be arbitrary functions from \mathbf{N} to $\mathbf{R}_{>0}$.

Let g_1, g_2 be two functions from N to $\mathbb{R}_{>0}$ such that g_1 and g_2 are both $\Theta(f)$.

1. Show that the function $g_1 + g_2$ is $\Theta(f)$ or provide a counterexample.

The functions $g_i : \mathbf{N} \to \mathbf{R}_{>0}$, i = 1, 2 are $\Theta(f)$ for some function f, i.e. there exist $c_{i,j} > 0, k_i > 0$, for j = 1, 2, s.t.

$$\forall x > k_i \quad c_{i,1}|f(x)| \le |g_i(x)| \le c_{i,2}|f(x)|.$$

Let $k = \max\{k_i\}$. Then, for all x > k, $c_{1,1}|f(x)| \le |g_1(x)| \le c_{1,2}|f(x)|$ and $c_{2,1}|f(x)| \le |g_2(x)| \le c_{2,2}|f(x)|$, hence

$$(c_{1,1} + c_{2,1})|f(x)| \le |g_1(x)| + |g_2(x)| \le (c_{1,2} + c_{2,2})|f(x)|.$$

The triangle inequality tells us that $|g_1(x) + g_2(x)| \le |g_1(x)| + |g_2(x)|$, hence with $c_2 := c_{1,2} + c_{2,2}$, we have that

$$|g_1(x) + g_2(x)| \le c_2 |f(x)|.$$

So we have shown that $g_1 + g_2$ is O(f).

On the other hand, since $g_i : \mathbf{N} \to \mathbf{R}_{>0}$, we have $|g_1(x) + g_2(x)| = |g_1(x)| + |g_2(x)| = g_1(x) + g_2(x)$. It follows that, for $c_1 := c_{1,1} + c_{2,1}$,

$$c_1|f(x)| \le |g_1(x)| + |g_2(x)| = |g_1(x) + g_2(x)|.$$

So $g_1 + g_2$ is $\Omega(f)$.

Overall, we have shown that $g_1 + g_2$ is O(f) and $\Omega(f)$, therefore $g_1 + g_2$ is $\Theta(f)$.

2. Show that the function g_1g_2 is $\Theta(f^2)$ or provide a counterexample.

We use the same notation as in 1. and obtain that for all x > k

$$(c_{1,1}c_{2,1})f^2(x) \le |g_1(x)| \cdot |g_2(x)| \le (c_{1,2}c_{2,2})f^2(x).$$

Let $c_1 := c_{1,1}c_{2,1}$ and $c_2 := c_{1,2}c_{2,2}$. We use the observation that $|g_1(x)g_2(x)| = |g_1(x)||g_2(x)|$. Then for all x > k,

$$c_1 f^2(x) \le |(g_1 \cdot g_2)(x)| \le c_2 f^2(x),$$

i.e., $g_1 \cdot g_2$ is $\Theta(f^2)$.

Let g_3, g_4 be two functions from **N** to **R** such that g_3 and g_4 are both $\Theta(f)$.

3. Show that the function $g_3 + g_4$ is $\Theta(f)$ or provide a counterexample.

Here the functions g_3 , g_4 may take negative values. We can follow the reasoning in 1. to show that $g_3 + g_4$ is O(f). But there exist g_3 , g_4 s.t. $g_3 + g_4$ is not $\Omega(f)$. For instance, let $g_4(x) = -g_3(x)$. Then, $(g_3 + g_4)(x) = 0$ and so $\forall c > 0$, $\forall x > 0$ we have that $|g_3(x) + g_4(x)| = 0 < c|f(x)|$ for any function $f: \mathbf{N} \to \mathbf{R}_{>0}$. As a consequence $g_3 + g_4$ is not $\Omega(f)$ and the statement is false.

4. Show that the function g_3g_4 is $\Theta(f^2)$ or provide a counterexample.

Same proof as in 2., since we did not need the fact that $g_i : \mathbf{N} \to \mathbf{R}_{>0}$ in there.

Let g be a function from N to $\mathbf{R}_{>0}$ such that g is O(f).

5. Show that 2^g is $O(2^f)$, or provide a counterexample.

Take g = 2n and f = n. We have that g is O(f), but $2^g = 2^{2n}$ and $2^f = 2^n$ so that $2^g = (2^f)^2$ and 2^g is not $O(2^f)$.

Exercise 5. Consider the two statements below, where k and ℓ are constants with $k > \ell \geq 2$ and $m \to \infty$:

$$\log_m(k)$$
 is $\Theta(\log_m(\ell))$ $k^{\log_\ell(m)}$ is $O(\ell^{\log_k(m)})$.

- O They are both false.
- \checkmark Only the first is true.
- Only the second is true.
- O They are both true.

Because $\log_m(x) = \frac{\log_2(x)}{\log_2(m)}$ both $\log_m(k)$ and $\log_m(\ell)$ are of order $\frac{1}{\log_2(m)}$; in particular $\log_m(k)$ is $\Theta(\log_m(\ell))$.

Writing $k = \ell^{\log_{\ell}(k)}$ and $\log_{k}(m) = \frac{\log_{\ell}(m)}{\log_{\ell}(k)}$ the comparison for the second problem is between $k^{\log_{\ell}(m)} = \ell^{\log_{\ell}(k)\log_{\ell}(m)}$ and $\ell^{\log_{k}(m)} = \ell^{\log_{\ell}(m)/\log_{\ell}(k)}$. Because $k > \ell \geq 2$ we find that $k^{\log_{\ell}(m)} = \ell^{c\log_{\ell}(m)} = m^{c}$ for the constant $c = \log_{\ell}(k) > 1$ and that $\ell^{\log_{k}(m)} = \ell^{(\log_{\ell}(m))/c} = m^{1/c}$. It follows that $k^{\log_{\ell}(m)}$ is not $O(\ell^{\log_{k}(m)})$.

Exercise 6. Consider the following two statements:

$$(f \text{ is } o(f))$$
 and $(f \text{ is } o(g) \text{ implies } f \text{ is } O(g)).$

- \checkmark Only the second is true.
- O They are both false.
- Only the first is true.

O They are both true.

The statement "f if o(f)" would imply that for any function f it is the case that $\lim_{x\to\infty}\frac{|f(x)|}{|f(x)|}=0$. That is cleary incorrect: for instance for the function f(x)=1 it is the case that $\lim_{x\to\infty}\frac{|f(x)|}{|f(x)|}=\frac{1}{1}=1$. Thus the first statement is not correct.

The statement "f is o(g)" implies that $\lim_{x\to\infty}\frac{|f(x)|}{|g(x)|}=0$, and thus that for any $\epsilon>0$ there exists an x_0 such that $\frac{|f(x)|}{|g(x)|}<\epsilon$ for all $x>x_0$, implying that $|f(x)|<\epsilon|g(x)|$ for all $x>x_0$, which in turn implies that f is O(g). Thus the second statement is correct.

Exercise 7. Given the two statements below, where d > 0 is an integer constant and a_i for all $i \in \mathbf{Z}$ are positive integers with $\max_{i \in \mathbf{Z}}(a_i) = D$ for a constant D > 0,

$$\sum_{i=0}^{n} a_i i^d \text{ is } \Theta(n^{d+1}) \qquad \qquad \sum_{i=0}^{d} a_i n^i \text{ is } \Theta(n^d)$$

- ✓ They are both true.
- Only the first is true.
- Only the second is true.
- O They are both false.

The first summation is a sum of d-th powers which behaves like a (d + 1)-st power of the summation bound, the second is just a polynomial of degree d and thus behaves like its highest order term.

Exercise 8. Construct two functions f and g from \mathbb{N} to $\mathbb{R}_{>0}$ such that f is not O(g) and g is not O(f) or prove that such functions are impossible to find.

For instance, consider the functions defined for any $n \in \mathbb{N}$ by

$$f(n) = \begin{cases} n! & \text{if } n \text{ is even,} \\ (n-1)! & \text{if } n \text{ is odd.} \end{cases} \text{ and } g(n) = \begin{cases} (n-1)! & \text{if } n \text{ is even,} \\ n! & \text{if } n \text{ is odd.} \end{cases}$$

We have that f is not O(g) because for any constant α , one can find an even integer $n > \alpha$ to obtain $f(n) = n! > \alpha \cdot (n-1)! = \alpha g(n)$. Similarly, g is not O(f).

Exercise 9. Consider the following algorithm, which takes as input a sequence of n integers $a_1, a_2, ..., a_n$ and produces as output a matrix $M = \{m_{ij}\}$ where m_{ij} is the minimum term in the sequence of integers $a_i, a_{i+1}, ..., a_j$ for $j \ge i$ and $m_{ij} = 0$ otherwise.

```
initializ M so that m_{ij} = a_i if j \ge i and m_{ij} = 0 otherwise for i := 1 to n
for j := i + 1 to n
for k := i + 1 to j
m_{ij} := min(m_{ij}, a_k)
end for
end for
end for
return M = \{m_{ij}\} \{m_{ij} \text{ is the minimum term of } a_i, a_{i+1}, ..., a_j\}
```

1. Show that this algorithm uses $O(n^3)$ comparisons to compute the matrix M. The algorithm only makes comparisons in the line " $m_{ij} := min(m_{ij}, a_k)$ " (since determining the minimum is a comparison). Thus 1 comparison is made in each iteration of the three for-loops.

i can take on the values 1 to n (for i := 1 to n), thus i can take on n values.

j can take on the values i+1 to n (for j:=i+1 to n), thus j can take on n-i values, which is at

most n-1 values (when i=1).

k can take on the values i+1 to j (for k:=i+1 to j), thus j can take on j-i values, which is at most n-1 values (when i=1 and j=n).

The total number of comparisons is then the product of the (maximum) number of values for i, j and k in the for-loops.

Number of comparisons =
$$n \times (n-1) \times (n-1)$$

= $n(n-1)^2$
= $n(n^2 - 2n + 1)$
= $n^3 - 2n^2 + n$

Thus the number of comparisons is $n^3 - 2n^2 + n$, while $^3 - 2n^2 + n$ is $O(n^3)$.

2. Show that this algorithm uses $\Omega(n^3)$ comparisons to compute the matrix M. Using this fact and part (a), conclude that the algorithms uses $\Theta(n^3)$ comparisons. [Hint: Only consider the cases where $i \leq \frac{n}{4}$ and $j \geq \frac{3n}{4}$ in the two outer loops in the algorithm.] The number of comparisions is $n^3 - 2n^2 + n$, while $3 - 2n^2 + n$ is $\Omega(n^3)$.

Since the number of comparisons is $O(n^3)$ and $\Omega(n^3)$, the number of comparisons is also $\Theta(n^3)$.

Exercise 10. What is the largest n for which one can solve within a minute using an algorithm that requires f(n) bit operations, where each bit operation is carried out in 10^{-12} seconds, with these functions f(n)?

a. log n

Each bit operation is carried out in 10^{-12} seconds: $T = 10^{-12}$ seconds.

The algorithm can take at most 1 minute which contains 60 seconds, while there are $\frac{t}{T} = \frac{16}{10^{-12}} =$ 60×10^{12} possible bit operations in 60 seconds.

Algorithm requires f(n) = log n bit operations:

$$log~n = 60 \times 10^{12}$$

Note: The logarithm has base 2, because bits only have 2 possible values.

$$log_2 \ n = 60 \times 10^{12}$$

Let us take the exponential with base 2 of each side of the previous equation:

$$n = 2^{60 \times 10^{12}}$$

b. 1,000,000n

Each bit operation is carried out in 10^{-12} seconds: $T = 10^{-12}$ seconds.

The algorithm can take at most 1 minute which contains 60 seconds, while there are $\frac{t}{T} = \frac{16}{10^{-12}} =$ 60×10^{12} possible bit operations in 60 seconds.

Algorithm requires f(n) = 1,000,000n bit operations:

$$1,000,000n = 60 \times 10^{12}$$

$$n = 60 \times 10^6 = 60,000,000$$

Each bit operation is carried out in 10^{-12} seconds: $T = 10^{-12}$ seconds.

The algorithm can take at most 1 minute which contains 60 seconds, while there are $\frac{t}{T} = \frac{16}{10^{-12}} =$ 60×10^{12} possible bit operations in 60 seconds.

Algorithm requires $f(n) = n^2$ bit operations

$$n^2 = 60 \times 10^{12}$$

Take the square root of each side of the previous equation:

$$n = \sqrt{60 \times 10^{12}} \approx 7.745967 \times 10^6 = 7,745,967$$