1. 牵课题研究意义

立体匹配技术就是通过匹配两幅或者多幅图像来获得视差图。

火星车

人流检测

我国嫦娥三号巡航车立体视觉系统

2. 立体匹配基础理论

Overview of a stereo vision system

视差理论---视差与深度成反比

Disparity and depth

$$\frac{b}{Z} = \frac{(b + x_T) - x_R}{Z - f} \longrightarrow Z = \frac{b \cdot f}{x_R - x_T} = \frac{b \cdot f}{d}$$

 $X_R - X_T$ is the disparity

立体匹配算法分类

局部匹配算法

- 匹配窗
- 特征

全局匹配算法---图割算法

$$E = E_{data} + E_{smooth}$$

全局匹配算法优点:

- > 可以获得稠密的视差图
- > 低纹理的准确匹配

3. 国向外研究现状

国外在计算机立体视觉上的研究开展较早

➤ Roy最早在1998年将图割算法应用于立体匹配。

➤ Kolmogorov (科莫多罗夫) 改进的图割算法

基于图像分割的立体匹配

假设分割区域块内的视差变化是平滑的。将不同分割块视为网 络图中的一个节点。

- 通过分割减少了匹配基元,使得运算速度更快。
- 有效地处理大块低纹理区域。
- 能够很好的解决的边界模糊。

分割块

视差图

朱代先,使用双目立体视觉的方法进行基于SIFT特征的工件自动定位、识别与抓取。

顾骋等,为实现统计实时人流,基于绝对误差累积(SAD)提出一种基于立体视觉的人头检测算法。

工件定位

人流统计

实时立体匹配技术

- ◆图像分割 <==> 保边滤波器
- ◆添加并行硬件等手段

Table 3: Runtime evalutaion for benchmark stereo images.

Data Set	Disparity	CPU time	GPU time	speed up
	Range	(s)	(ms)	
Tsukuba	15	2.12	70	30
Venus	19	2.96	109	27
Teddy	59	8.78	312	28.1
Cones	59	8.76	308	28.5

基于最小生成树的立体匹配

- ▶ 局部约束-->最小生成树-->全局约束
- > 代价聚合过程只需要两次遍历避免迭代运算

双边滤波与代价聚合

$$C_d^A(p) = \sum_{q} \exp(-\frac{|p,q|}{\sigma_S}) \exp(-\frac{|I(p)-I(q)|}{\sigma_R}) C_d(q)$$

$$C_d^A(p) = \sum_q S(p,q)C_d(q) = \sum_q \exp(-\frac{D(p,q)}{\sigma})C_d(q)$$

总结和展望

- > 结合机器学习算法进行基于目标的整体匹配
- ▶综合性的算法
- ▶超远距离的匹配
- ▶进一步研究人眼的成像原理从生物学中得到启示