Introduction to quantum computing

Bijan Chokoufe Nejad

Vortrag zur Vorlesung Informationstheorie

July 3, 2012

Table of contents

Cbits and Qbits

Motivation/Introduction
Classical computing
Hadamard-Transformation & Qbits

Basics of quantum computing

Universality of 2-Qbit gates Circuit diagrams & measurements

Simple applications

Computing with states Deutsch's problem

Cbits and Qbits

Why do we need/want a quantum computer?

End of *Moore's law* is within reach:

 $a = 0.543 \, \text{nm}$

Urge for technological progress needs new ideas.

Why do we need/want a quantum computer?

▶ 1994 Peter Shor introduced an quantum computing algorithm which can factorize numbers *N* in polynomial time

$$\mathcal{O}(\log N^3)$$

► The best known factoring algorithm on classical computers are superpolynomial:

$$\mathcal{O}\left(e^{C(\log N)^{\frac{1}{3}}(\log\log n)^{\frac{2}{3}}}\right)$$

- ► RSA encryption, which depends on the nonpolynomial factorization time, could be broken using quantum computers.
- Simulations of other quantum systems which are still poorly understood due to complexity.. and much more?

Cbits and Qbits

Avoiding ambiguities

Quantum computing (QC)

Quantum bits Qbits

Classical computing (CC)

Classical bits Cbits

Only two discrete values for each Cbit: 1,0.

Why should we use unitary operators?

Due to the unreasonable success of quantum mechanics and quantum field theories, e.g.

$$g_{\text{el. theor}} = 2,0023193048(8), \quad g_{\text{el. exp}} = 2,00231930436153(53),$$

we think that the time evolution of the universe is given by a unitary operator

$$U(t,t_0)=\mathsf{e}^{-\mathsf{i} H(t-t_0)}, \qquad |\Psi(t)
angle=U(t,t_0)\,|\Psi(t_0)
angle\,.$$

- For QC, we insist that a subblock of the unitary matrix is unitary and decoupled from the rest of the world.
 - → Experimental problems. Other topic.
- Unitarity also means conservation of probability, i.e. we stay on our Bloch sphere and don't lose states during computation.

Why should we use unitary operators?

Due to the unreasonable success of quantum mechanics and quantum field theories, e.g.

$$g_{\text{el, theor}} = 2,0023193048(8), \quad g_{\text{el, exp}} = 2,00231930436153(53),$$

we think that the time evolution of the universe is given by a unitary operator

$$U(t,t_0)=\mathrm{e}^{-\mathrm{i}H(t-t_0)},\qquad |\Psi(t)\rangle=U(t,t_0)\,|\Psi(t_0)\rangle\,.$$

- For QC, we insist that a subblock of the unitary matrix is unitary and decoupled from the rest of the world.
 - → Experimental problems. Other topic.
- Unitarity also means conservation of probability, i.e. we stay on our Bloch sphere and don't lose states during computation.

Classical computing

- ▶ Introduce Dirac notation: $|0\rangle_3 = |000\rangle$, $|7\rangle_3 = |111\rangle$.
- ► Here 1 and 0 represent physical systems with two unambiguously distinguishable states.
- ► For QC, only unitary operations are relevant. Classical counterpart: reversible operations.
- ▶ Only nontrivial reversible operation on one Cbit is NOT:

$$X:|x\rangle\mapsto |\tilde{x}\rangle;\quad \tilde{1}=0,\quad \tilde{0}=1.$$

▶ $X^2 = 1 \rightarrow X$ is reversible and it's own inverse.

Classical computing

- ▶ Introduce Dirac notation: $|0\rangle_3 = |000\rangle$, $|7\rangle_3 = |111\rangle$.
- ► Here 1 and 0 represent physical systems with two unambiguously distinguishable states.
- ► For QC, only unitary operations are relevant. Classical counterpart: reversible operations.
- Only nontrivial reversible operation on one Cbit is NOT:

$$X:|x\rangle\mapsto |\tilde{x}\rangle;\quad \tilde{1}=0,\quad \tilde{0}=1.$$

▶ $X^2 = 1 \rightarrow X$ is reversible and it's own inverse.

▶ In our favourite basis of the 2D vector space:

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad X = \sigma_X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

▶ On a pair of Cbits we can also permute or swap:

$$S_{10} |xy\rangle = |yx\rangle$$

➤ Or apply the controlled-NOT or cNOT C_{ij} (aka XOR). Apply NOT on target Cbit j iff the control Cbit i is true.

e.g.
$$C_{01} |xy\rangle = |x\rangle |(x+y) \mathsf{mod}_2\rangle$$

In matrix representation with the usual tensor product:

$$C_{01} = egin{bmatrix} \mathbb{1}_{2x2} & 0 \ 0 & \sigma_x \end{bmatrix} \quad \ket{00} = egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix}, \ket{01} = egin{bmatrix} 0 \ 1 \ 0 \ 0 \end{bmatrix}, ext{etc.}$$

In our favourite basis of the 2D vector space:

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad X = \sigma_X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

▶ On a pair of Cbits we can also permute or swap:

$$S_{10}|xy\rangle = |yx\rangle$$

➤ Or apply the controlled-NOT or cNOT C_{ij} (aka XOR). Apply NOT on target Cbit j iff the control Cbit i is true.

e.g.
$$C_{01} |xy\rangle = |x\rangle |(x+y) \text{mod}_2\rangle$$

In matrix representation with the usual tensor product:

$$C_{01} = \begin{bmatrix} \mathbb{1}_{2x2} & 0 \\ 0 & \sigma_x \end{bmatrix} \quad |00\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, |01\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \text{etc.}$$

Some more operators

Number operator

$$n|x\rangle = x|x\rangle$$
 $\tilde{n} = 1 - n$

With this, we can rewrite the cNOT as

$$C_{ij} = \tilde{n}_i + X_j n_i$$
 and construct $Z = \tilde{n} - n = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \sigma_Z$

Or by linear combination with the 1:

$$n = \frac{1}{2}(1 - \sigma_z)$$
 $\tilde{n} = \frac{1}{2}(1 + \sigma_z)$

Some more operators

Number operator

$$n|x\rangle = x|x\rangle$$
 $\tilde{n} = 1 - n$

With this, we can rewrite the cNOT as

$$C_{ij} = \tilde{n}_i + X_j n_i$$
 and construct $Z = \tilde{n} - n = \begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} = \sigma_Z$

Or by linear combination with the 1:

$$n=\frac{1}{2}(\mathbb{1}-\sigma_z)$$
 $\tilde{n}=\frac{1}{2}(\mathbb{1}+\sigma_z)$

(Walsh-) Hadamard-transformation

$$n=\frac{1}{2}(\mathbb{1}-\sigma_z)$$
 $\tilde{n}=\frac{1}{2}(\mathbb{1}+\sigma_z)$

Plugging this in:

$$C_{ij} = \tilde{n}_i + X_j n_i$$

$$= \frac{1}{2} \left\{ (1 + \sigma_z^i) + \sigma_x^j (1 - \sigma_z^i) \right\}$$

$$\stackrel{i \neq j}{=} \frac{1}{2} \left\{ (1 + \sigma_x^j) + \sigma_z^i (1 - \sigma_x^j) \right\}$$

Which makes it obvious that a swap $i \leftrightarrow j$ can be achieved by $X \leftrightarrow Z$.

The corresponding operator is the Hadamard transformation

$$H = \frac{1}{\sqrt{2}}(\sigma_X + \sigma_Z) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

(Walsh-) Hadamard-transformation

$$n=\frac{1}{2}(\mathbb{1}-\sigma_z)$$
 $\tilde{n}=\frac{1}{2}(\mathbb{1}+\sigma_z)$

Plugging this in:

$$C_{ij} = \tilde{n}_i + X_j n_i$$

$$= \frac{1}{2} \left\{ (1 + \sigma_z^i) + \sigma_x^j (1 - \sigma_z^i) \right\}$$

$$\stackrel{i \neq j}{=} \frac{1}{2} \left\{ (1 + \sigma_x^j) + \sigma_z^i (1 - \sigma_x^j) \right\}$$

Which makes it obvious that a swap $i \leftrightarrow j$ can be achieved by $X \leftrightarrow Z$.

The corresponding operator is the Hadamard transformation

$$H = \frac{1}{\sqrt{2}}(\sigma_X + \sigma_Z) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Applying the transformation

$$H = \frac{1}{\sqrt{2}}(\sigma_X + \sigma_Z)$$

Using $\sigma_x^2 = \sigma_z^2 = 1$ and $\sigma_x \sigma_z = -\sigma_z \sigma_x$ immediately follows:

$$H^{2} = \frac{1}{2} (1 + \sigma_{X} \sigma_{Z} + \sigma_{Z} \sigma_{X} + 1) = 1 \rightarrow H = H^{-1}$$

and

$$H\sigma_x H = \frac{1}{2} (\sigma_x + \sigma_z) (1 + \sigma_x \sigma_z) = \sigma_z, \qquad H\sigma_z H = \sigma_x$$

which is the wanted transformation.

Therefore

$$C^{ji} = S^{ij}C^{ij}S^{ij}$$
$$= (H^{i}H^{j})C^{ij}(H^{i}H^{j})$$

and we only need a product of two 1-Cbit operators to interchange control and target Cbit.

Applying the transformation

$$H = \frac{1}{\sqrt{2}}(\sigma_X + \sigma_Z)$$

Using $\sigma_x^2 = \sigma_z^2 = 1$ and $\sigma_x \sigma_z = -\sigma_z \sigma_x$ immediately follows:

$$H^{2} = \frac{1}{2} (1 + \sigma_{x} \sigma_{z} + \sigma_{z} \sigma_{x} + 1) = 1 \rightarrow H = H^{-1}$$

and

$$H\sigma_x H = \frac{1}{2} (\sigma_x + \sigma_z) (1 + \sigma_x \sigma_z) = \sigma_z, \qquad H\sigma_z H = \sigma_x$$

which is the wanted transformation.

Therefore

$$C^{jj} = S^{ij}C^{ij}S^{jj}$$
$$= (H^{i}H^{j})C^{ij}(H^{i}H^{j})$$

and we only need a product of two 1-Cbit operators to interchange control and target Cbit.

Let the general state of n Qbits be any complex superposition of the 2^n different Cbits (classical or computational basis)

$$|\Psi\rangle = \sum_{0 \le x < 2^n} \alpha_x |x\rangle_n,$$

$$\sum_{0 \le x < 2^n} |\alpha_x|^2 = 1, \qquad \alpha_x \in \mathbb{C}$$

Keep in mind that

$$\begin{split} |\Psi\rangle &= |\psi\rangle \otimes |\phi\rangle = \left(\alpha_0 \left|0\right\rangle + \alpha_1 \left|1\right\rangle\right) \otimes \left(\beta_0 \left|0\right\rangle + \beta_1 \left|1\right\rangle\right) \\ &= \alpha_0\beta_0 \left|0\right\rangle_2 + \alpha_0\beta_1 \left|1\right\rangle_2 + \alpha_1\beta_0 \left|2\right\rangle_2 + \alpha_1\beta_1 \left|3\right\rangle_2 \\ \text{in general} &\neq \alpha_0 \left|0\right\rangle_2 + \alpha_1 \left|1\right\rangle_2 + \alpha_2 \left|2\right\rangle_2 + \alpha_3 \left|3\right\rangle_2 \end{split}$$

Let the general state of n Qbits be any complex superposition of the 2^n different Cbits (classical or computational basis)

$$|\Psi\rangle = \sum_{0 \le x < 2^n} \alpha_x |x\rangle_n,$$

 $\sum_{0 \le x < 2^n} |\alpha_x|^2 = 1, \qquad \alpha_x \in \mathbb{C}$

Keep in mind that

$$\begin{split} |\Psi\rangle &= |\psi\rangle \otimes |\phi\rangle = \left(\alpha_0 \left|0\right\rangle + \alpha_1 \left|1\right\rangle\right) \otimes \left(\beta_0 \left|0\right\rangle + \beta_1 \left|1\right\rangle\right) \\ &= \alpha_0\beta_0 \left|0\right\rangle_2 + \alpha_0\beta_1 \left|1\right\rangle_2 + \alpha_1\beta_0 \left|2\right\rangle_2 + \alpha_1\beta_1 \left|3\right\rangle_2 \\ \text{in general} &\neq \alpha_0 \left|0\right\rangle_2 + \alpha_1 \left|1\right\rangle_2 + \alpha_2 \left|2\right\rangle_2 + \alpha_3 \left|3\right\rangle_2 \end{split}$$

Let the general state of n Qbits be any complex superposition of the 2^n different Cbits (classical or computational basis)

$$|\Psi\rangle = \sum_{0 \le x < 2^n} \alpha_x |x\rangle_n,$$

$$\sum_{0 \le x < 2^n} |\alpha_x|^2 = 1, \qquad \alpha_x \in \mathbb{C}$$

Keep in mind that

$$\begin{split} |\Psi\rangle &= |\psi\rangle \otimes |\phi\rangle = \left(\alpha_0 \left|0\right\rangle + \alpha_1 \left|1\right\rangle\right) \otimes \left(\beta_0 \left|0\right\rangle + \beta_1 \left|1\right\rangle\right) \\ &= \alpha_0\beta_0 \left|0\right\rangle_2 + \alpha_0\beta_1 \left|1\right\rangle_2 + \alpha_1\beta_0 \left|2\right\rangle_2 + \alpha_1\beta_1 \left|3\right\rangle_2 \\ \text{in general} &\neq \alpha_0 \left|0\right\rangle_2 + \alpha_1 \left|1\right\rangle_2 + \alpha_2 \left|2\right\rangle_2 + \alpha_3 \left|3\right\rangle_2 \end{split}$$

Since $2 + 2 \neq 6$. The general 2-Qbit state doesn't have to be a product of 1-Qbit states which is called entanglement.

Basics of quantum computing

Reversible operations on Qbits

Now on a single Qbit, all unitary transformations are possible

$$uu^{\dagger} = u^{\dagger}u = 1$$

For *n* Qbits, we could imagine any 2^n -dimensional unitary transformation $U \in U(2^n)$.

Extend the classical, reversible operations (gates)

NOT SWAP CNOT

by linearity to all complex Qbits since $\{T_{rev}(n)\} \subset U(n)$.

Other possibilities are e.g. Z or H.

Reversible operations on Qbits

Now on a single Qbit, all unitary transformations are possible

$$uu^{\dagger} = u^{\dagger}u = 1$$

For *n* Qbits, we could imagine any 2^n -dimensional unitary transformation $U \in U(2^n)$.

Extend the classical, reversible operations (gates)

NOT SWAP cNOT

by linearity to all complex Qbits since $\{T_{rev}(n)\}\subset U(n)$.

Other possibilities are e.g. Z or H.

- ▶ It is quite hard to construct an gate/transformation which acts on three quantum states or even more.
- '80 Toffoli has shown that AND and XOR can be made reversible by using 3-Cbit gates. The extra third Cbit is also called garbage.
- ▶ Based on this, '89 Deutsch expanded the concept to the whole Hilbert space. → Any unitary transformation can be performed using 3-Qbit gates.
- ▶ '94 DiVincenzo reduced it to 2-Qbit gates.

- ▶ It is quite hard to construct an gate/transformation which acts on three quantum states or even more.
- '80 Toffoli has shown that AND and XOR can be made reversible by using 3-Cbit gates. The extra third Cbit is also called garbage.
- ▶ Based on this, '89 Deutsch expanded the concept to the whole Hilbert space. → Any unitary transformation can be performed using 3-Qbit gates.
- '94 DiVincenzo reduced it to 2-Qbit gates.

- ▶ General idea: Decompose $U(N, \mathbb{C})$ into phases and rotations in $SO(N/2) \rightarrow SO(N)$.
- ▶ $U(N, \mathbb{C})$ is a Lie group (diff. manifold) with elements like

$$U_{\lambda} = \begin{bmatrix} \mathbb{1}_{6\mathsf{x}6} & & \\ & \cos\lambda & \mathrm{i}\sin\lambda \\ & \mathrm{i}\sin\lambda & \cos\lambda \end{bmatrix} = \mathbb{1}_{6\mathsf{x}6} \oplus U_{\lambda}^2 \neq \mathbb{1}_{4\mathsf{x}4} \otimes U_{\lambda}^2$$

which is a complex rotation in the plane of $|110\rangle$ and $|111\rangle$.

Using the concept of infinitesimal generators

$$U = e^{i\epsilon H} = 1 + i\epsilon H + \mathcal{O}(\epsilon^2)$$

and the Lie algebra of the group ($[\circ, \circ] : V \times V \to V$):

$$[H_i, H_j] = \sum_k f_{ijk} H_k$$

- ▶ General idea: Decompose $U(N, \mathbb{C})$ into phases and rotations in $SO(N/2) \rightarrow SO(N)$.
- ▶ $U(N, \mathbb{C})$ is a Lie group (diff. manifold) with elements like

$$U_{\lambda} = \begin{bmatrix} \mathbb{1}_{6\mathsf{x}6} & & \\ & \cos\lambda & \mathrm{i}\sin\lambda \\ & \mathrm{i}\sin\lambda & \cos\lambda \end{bmatrix} = \mathbb{1}_{6\mathsf{x}6} \oplus U_{\lambda}^2 \neq \mathbb{1}_{4\mathsf{x}4} \otimes U_{\lambda}^2$$

which is a complex rotation in the plane of $|110\rangle$ and $|111\rangle$.

Using the concept of infinitesimal generators

$$U = e^{i\epsilon H} = \mathbb{1} + i\epsilon H + \mathcal{O}(\epsilon^2)$$

and the Lie algebra of the group ($[\circ, \circ] : V \times V \to V$):

$$[H_i, H_j] = \sum_k f_{ijk} H_k$$

We may as well express each H_k as commutator of some H_i , H_i . For example

$$\begin{split} e^{i\epsilon H_3} &= e^{i\epsilon (i[H_1,H_2)]} & \left[e^{-X} e^{-Y} e^X e^Y = e^{[X,Y]} \right] \\ &\approx e^{-i\sqrt{\epsilon}H_1} e^{-i\sqrt{\epsilon}H_2} e^{i\sqrt{\epsilon}H_1} e^{i\sqrt{\epsilon}H_2} + \mathcal{O}(\epsilon^2) \end{split}$$

using the Baker-Campbell-Hausdorff formula, where

$$e^{\mathrm{i}\epsilon H_1} = \begin{bmatrix} \mathbb{1}_{4\times 4} & \\ & A(\epsilon) & \\ & A(\epsilon) \end{bmatrix} = \begin{bmatrix} \mathbb{1}_{2\times 2} & \\ & A(\epsilon) \end{bmatrix} \otimes \mathbb{1}_{2\times 2}$$

and $A(\epsilon) = \begin{bmatrix} \cos \epsilon & \sin \epsilon \\ -\sin \epsilon & \cos \epsilon \end{bmatrix}$. The rest is mere commutator algebra to obtain all of Deutsch's transformations.

We may as well express each H_k as commutator of some H_i , H_i . For example

$$\begin{split} e^{i\epsilon H_3} &= e^{i\epsilon (i[H_1,H_2)]} & \left[e^{-X} e^{-Y} e^X e^Y = e^{[X,Y]} \right] \\ &\approx e^{-i\sqrt{\epsilon}H_1} e^{-i\sqrt{\epsilon}H_2} e^{i\sqrt{\epsilon}H_1} e^{i\sqrt{\epsilon}H_2} + \mathcal{O}(\epsilon^2) \end{split}$$

using the Baker-Campbell-Hausdorff formula, where

$$e^{i\epsilon H_1} = \begin{bmatrix} \mathbb{1}_{4\times 4} & \\ & A(\epsilon) \\ & A(\epsilon) \end{bmatrix} = \begin{bmatrix} \mathbb{1}_{2\times 2} & \\ & A(\epsilon) \end{bmatrix} \otimes \mathbb{1}_{2\times 2}$$

and $A(\epsilon) = \begin{bmatrix} \cos \epsilon & \sin \epsilon \\ -\sin \epsilon & \cos \epsilon \end{bmatrix}$. The rest is mere commutator algebra to obtain all of Deutsch's transformations.

Since this was an first order calculation, we obtain the full unitary operation as

$$U_{\lambda} = (U_{\lambda/n})^n + \mathcal{O}(1/\sqrt{n})$$

similar to ordinary rotations. However this means that arbitrary, unitary transformations on *N* Qbits need infinitely many 2-Qbit gates or accepting a small error.

We might be better off just restricting ourselves to 2-Qbit gates and leaving the general case for future problems.

Since this was an first order calculation, we obtain the full unitary operation as

$$U_{\lambda} = \left(U_{\lambda/n}\right)^n + \mathcal{O}(1/\sqrt{n})$$

similar to ordinary rotations. However this means that arbitrary, unitary transformations on *N* Qbits need infinitely many 2-Qbit gates or accepting a small error.

We might be better off just restricting ourselves to 2-Qbit gates and leaving the general case for future problems.

Circuit diagrams

The initial state is on the left and the result after some transformation on the right.

Applying a 1-Qbit gate *u*.

$$|\Psi\rangle$$
 — U — $|\Psi\rangle$

Or an *n*-Qbit gate *U*.

$$|\Psi
angle$$
 —V —U — UV $|\Psi
angle$

Be aware of the order!

Making a von Neumann measurement of the *n*-Qbit state

$$|\Psi\rangle = \sum_{0 \le x < 2^n} \alpha_x |x\rangle_n$$

Collapse of the wave functions. From the measurement, we only get a probabilistic result.

No additional information may be gained.

Circuit diagrams

The initial state is on the left and the result after some transformation on the right.

$$\left|\psi\right\rangle \ \ \rule{0mm}{2mm} \ \ u \left|\psi\right\rangle$$

Applying a 1-Qbit gate u.

$$|\Psi\rangle$$
 — U — $U|\Psi\rangle$ Or an *n*-Qbit gate U .

Ψ> —v —u — uv Ψ> Be aware of the order! $\mathbf{P}_{n} = \sum a_{x} | x_{n} \qquad \mathbf{M}_{n} \qquad | x_{n} \qquad p = |a_{x}|^{2}$

Making a von Neumann measurement of the *n*-Qbit state

$$|\Psi\rangle = \sum_{0 \le x < 2^n} \alpha_x |x\rangle_n$$

Collapse of the wave functions. From the measurement, we only get a probabilistic result.

No additional information may be gained.

Any state can be expressed as

$$|\Psi\rangle_{n+1} = a_0 |0\rangle |\phi_0\rangle_n + a_1 |1\rangle |\phi_1\rangle_n \quad |a_0|^2 + |a_1|^2 = 1$$

which allows to formulate the generalized Born rule:

So unentangled states $|\Psi\rangle = |\psi\rangle |\phi\rangle$ correspond to $|\phi_0\rangle = |\phi_1\rangle$.

After the measurement, the state will be a product state.

Consequent application of 1-Qbit measurements gives the same result as the *n*-Qbit measurement.

→ Only 1-Qbit measurement gates

Any state can be expressed as

$$|\Psi\rangle_{n+1} = a_0 |0\rangle |\phi_0\rangle_n + a_1 |1\rangle |\phi_1\rangle_n \quad |a_0|^2 + |a_1|^2 = 1$$

which allows to formulate the generalized Born rule:

$$\begin{array}{c|c}
\hline
|\Psi\rangle = & a_0 |0\rangle |\Phi_0\rangle \\
+ & a_1 |1\rangle |\Phi_1\rangle
\end{array}
\qquad \begin{array}{c|c}
\hline
M \\
\hline
M \\
\hline
M \\
\hline
P = |a_x|^2
\end{array}$$

So unentangled states $|\Psi\rangle = |\psi\rangle |\phi\rangle$ correspond to $|\phi_0\rangle = |\phi_1\rangle$.

After the measurement, the state will be a product state.

Consequent application of 1-Qbit measurements gives the same result as the *n*-Qbit measurement.

→ Only 1-Qbit measurement gates.

State preparation

If Qbits are realized by atoms, $|0\rangle$ might be the lowest-energy state and $|1\rangle$ the first excited.

 $\rightarrow |0\rangle_n$ could be realized by cooling down.

For the general case, $|0\rangle_n$ can always be realized with measurement gates:

NOT is applied if $|\psi\rangle = |1\rangle$.

Simple applications

We want to compute a number f(x) represented by m-bit integers from a given number x represented by n-bit integers.

We need n + m Qbits, the input and the output register:

$$U_f(|x\rangle_n|0\rangle_m) = |x\rangle_n|f(x)\rangle_m$$

So the input remains in its initial state. With the Hadamard transformation $H = \frac{1}{\sqrt{2}}(\sigma_X + \sigma_Z)$ we can make a trick:

$$(H \otimes H)(|0\rangle \otimes |0\rangle) = (H|0\rangle) (H|0\rangle)$$

$$= \frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle + |1\rangle)$$

$$= \frac{1}{2} (|0\rangle_2 + |1\rangle_2 + |2\rangle_2 + |3\rangle_2)$$

which generalizes clearly: $H^{\otimes n} |0\rangle_n = \frac{1}{2^{n/2}} \sum_{0 \le x \le 2^n} |x\rangle_n$

Dual-register architecture

We want to compute a number f(x) represented by m-bit integers from a given number x represented by n-bit integers.

We need n + m Qbits, the input and the output register:

$$U_f(|x\rangle_n|0\rangle_m)=|x\rangle_n|f(x)\rangle_m$$

So the input remains in its initial state. With the Hadamard transformation $H = \frac{1}{\sqrt{2}}(\sigma_x + \sigma_z)$ we can make a trick:

$$\begin{split} (H\otimes H)(|0\rangle\otimes|0\rangle) &= (H|0\rangle) \, (H|0\rangle) \\ &= \frac{1}{2} \, (|0\rangle + |1\rangle) \, (|0\rangle + |1\rangle) \\ &= \frac{1}{2} \, (|0\rangle_2 + |1\rangle_2 + |2\rangle_2 + |3\rangle_2) \end{split}$$

which generalizes clearly: $H^{\otimes n} |0\rangle_n = \frac{1}{2^{n/2}} \sum_{0 < x < 2^n} |x\rangle_n$.

Quantum parallelism

25/32

$$H^{\otimes n} \ket{0}_n = \frac{1}{2^{n/2}} \sum_{0 \le x < 2^n} \ket{x}_n$$

The *n*-fold Hadamard transformation gives an equally weighted superposition of all possible inputs.

$$\rightarrow U_{f}\left(H^{\otimes n}\otimes\mathbb{1}_{m}\right)\left|0\right\rangle _{n}\left|0\right\rangle _{m}=\frac{1}{2^{n/2}}\sum_{x}\left|x\right\rangle _{n}\left|f(x)\right\rangle _{m}$$

If we had $|0\rangle_{100}$ in the input and apply a hundred Hadamard gates before applying U_f , we get a state containing 2^{100} evaluations of f. This is called quantum parallelism.

But there is no way to find out what this state is

By applying measurement gates, we get with equal probability a certain $|x_0\rangle |f(x_0)\rangle$, similar to a Monte Carlo simulation.

Cbits and Qbits Basics of quantum computing Simple applications

Quantum parallelism

$$H^{\otimes n} |0\rangle_n = \frac{1}{2^{n/2}} \sum_{0 \le x < 2^n} |x\rangle_n$$

The *n*-fold Hadamard transformation gives an equally weighted superposition of all possible inputs.

$$\rightarrow U_f \left(H^{\otimes n} \otimes \mathbb{1}_m \right) \left| 0 \right\rangle_n \left| 0 \right\rangle_m = \frac{1}{2^{n/2}} \sum_{x} \left| x \right\rangle_n \left| f(x) \right\rangle_m$$

If we had $|0\rangle_{100}$ in the input and apply a hundred Hadamard gates before applying U_f , we get a state containing 2^{100} evaluations of f. This is called quantum parallelism.

But there is no way to find out what this state is.

By applying measurement gates, we get with equal probability a certain $|x_0\rangle |f(x_0)\rangle$, similar to a Monte Carlo simulation.

Easy way to avoid this problem: Copy the result and measure many times.

But the no-cloning theorem states, there is no unitary transformation which takes $|\psi\rangle_n |0\rangle_n \rightarrow |\psi\rangle_n |\psi\rangle_n$.

Proof:

If
$$U(|\psi\rangle |0\rangle) = |\psi\rangle |\psi\rangle$$
 $U(|\phi\rangle |0\rangle) = |\phi\rangle |\phi\rangle$, we get from linearity

$$U(a|\psi\rangle + b|\phi\rangle)|0\rangle = a U|\psi\rangle|0\rangle + b U|\phi\rangle|0\rangle$$
$$= a|\psi\rangle|\psi\rangle + b|\phi\rangle|\phi\rangle$$

and if *U* clones arbitrary inputs:

$$U(a|\psi\rangle + b|\phi\rangle)|0\rangle = a^{2}|\psi\rangle|\psi\rangle + b^{2}|\phi\rangle|\phi\rangle + ab|\psi\rangle|\phi\rangle + ba|\phi\rangle|\psi$$

Easy way to avoid this problem: Copy the result and measure many times.

But the no-cloning theorem states, there is no unitary transformation which takes $|\psi\rangle_n |0\rangle_n \rightarrow |\psi\rangle_n |\psi\rangle_n$.

Proof:

If
$$U(|\psi\rangle |0\rangle) = |\psi\rangle |\psi\rangle$$
 $U(|\phi\rangle |0\rangle) = |\phi\rangle |\phi\rangle$, we get from linearity

$$U(a|\psi\rangle + b|\phi\rangle)|0\rangle = a U|\psi\rangle|0\rangle + b U|\phi\rangle|0\rangle$$

= $a|\psi\rangle|\psi\rangle + b|\phi\rangle|\phi\rangle$

and if *U* clones arbitrary inputs:

$$U(a|\psi\rangle + b|\phi\rangle)|0\rangle = a^{2}|\psi\rangle|\psi\rangle + b^{2}|\phi\rangle|\phi\rangle + ab|\psi\rangle|\phi\rangle + ba|\phi\rangle|\psi\rangle$$

Easy way to avoid this problem: Copy the result and measure many times.

But the no-cloning theorem states, there is no unitary transformation which takes $|\psi\rangle_n |0\rangle_n \rightarrow |\psi\rangle_n |\psi\rangle_n$.

Proof:

If
$$U(|\psi\rangle |0\rangle) = |\psi\rangle |\psi\rangle$$
 $U(|\phi\rangle |0\rangle) = |\phi\rangle |\phi\rangle$, we get from linearity

$$U(a|\psi\rangle + b|\phi\rangle)|0\rangle = a U|\psi\rangle|0\rangle + b U|\phi\rangle|0\rangle$$

= $a|\psi\rangle|\psi\rangle + b|\phi\rangle|\phi\rangle$

and if *U* clones arbitrary inputs:

$$egin{aligned} U(a\ket{\psi}+b\ket{\phi})\ket{0} &= \emph{a}^2\ket{\psi}\ket{\psi}+\emph{b}^2\ket{\phi}\ket{\phi} \ &+ \emph{ab}\ket{\psi}\ket{\phi}+\emph{ba}\ket{\phi}\ket{\psi} \end{aligned}$$

There are more clever things one can do in QC. Especially if one is interested in relations between different f(x).

Let's take an 1-Qbit input and an 1-Qbit output register. In the basis $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$, there are four possible distinct functions $f_i(x)$:

$$U_{f_0} = \mathbb{1}_{4 imes 4}, \quad U_{f_1} = C_{io}, \quad U_{f_2} = C_{io} X_o, \quad U_{f_3} = X_o$$
 $x = 0 \quad x = 1$
 $f_0 \quad 0 \quad 0$
 $f_1 \quad 0 \quad 1 \quad U_f\left(\ket{x}\ket{y}\right) = \ket{x}\ket{(y+f(x))} \mathsf{mod}_2$
 $f_2 \quad 1 \quad 0$

Pretend, we have a black box that executes one U_f but we are not told which one. What can we learn?

Deutsch's problem

If we want to know if f is constant (f(0) = f(1)), satisfied by f_0 and f_3 , ...

On a classical computer, we have to run U_f twice and compare results.

On a quantum computer, we may apply some additional transformations.

Deutsch's problem

$$U_{f}(H \otimes H)(X \otimes X)(|0\rangle|0\rangle)$$

$$= U_{f}(H \otimes H)(|1\rangle|1\rangle)$$

$$= U_{f}\frac{1}{2}(|0\rangle - |1\rangle)(|0\rangle - |1\rangle)$$

$$= \frac{1}{2}\left(U_{f}|00\rangle - U_{f}|10\rangle - U_{f}|01\rangle + U_{f}|11\rangle\right)$$

$$= \frac{1}{2}\left(|0f(0)\rangle - |1f(1)\rangle - |0\tilde{f}(0)\rangle + |1\tilde{f}(1)\rangle\right)$$

$$\tilde{f}(x) = (1 + f(x)) \text{mod}_{2}. \text{ So for } f(0) = f(1) \text{ we have }$$

$$\frac{1}{2}(|0\rangle - |1\rangle)\left(|f(0)\rangle - |\tilde{f}(0)\rangle\right)$$

$$f(0) \neq f(1)$$

$$\frac{1}{2}(|0\rangle + |1\rangle)\left(|f(0)\rangle - |\tilde{f}(0)\rangle\right)$$

Cbits and Qbits

Deutsch's problem

$$\begin{split} U_f\left(H\otimes H\right)\left(X\otimes X\right)\left(\left|0\right\rangle\left|0\right\rangle\right) \\ &= U_f\left(H\otimes H\right)\left(\left|1\right\rangle\left|1\right\rangle\right) \\ &= U_f\frac{1}{2}\left(\left|0\right\rangle - \left|1\right\rangle\right)\left(\left|0\right\rangle - \left|1\right\rangle\right) \\ &= \frac{1}{2}\bigg(U_f\left|00\right\rangle - U_f\left|10\right\rangle - U_f\left|01\right\rangle + U_f\left|11\right\rangle\bigg) \\ &= \frac{1}{2}\bigg(\left|0f(0)\right\rangle - \left|1f(1)\right\rangle - \left|0\tilde{f}(0)\right\rangle + \left|1\tilde{f}(1)\right\rangle\bigg) \\ \text{where } \tilde{f}(x) = (1+f(x))\text{mod}_2. \text{ So for } f(0) = f(1) \text{ we have} \\ &\qquad \qquad \frac{1}{2}\big(\left|0\right\rangle - \left|1\right\rangle\big)\left(\left|f(0)\right\rangle - \left|\tilde{f}(0)\right\rangle\right) \\ \text{and for } f(0) \neq f(1) \\ &\qquad \qquad \frac{1}{2}\big(\left|0\right\rangle + \left|1\right\rangle\big)\left(\left|f(0)\right\rangle - \left|\tilde{f}(0)\right\rangle\right) \end{split}$$

So with one more Hadamard transform on the input, we get

$$(H \otimes \mathbb{1}) U_f (H \otimes H) (X \otimes X) (|0\rangle |0\rangle) =$$

$$\begin{cases} |1\rangle \frac{1}{\sqrt{2}} \Big(|f(0)\rangle - \Big| \tilde{f}(0) \Big\rangle \Big), & f(0) = f(1) \\ |0\rangle \frac{1}{\sqrt{2}} \Big(|f(0)\rangle - \Big| \tilde{f}(0) \Big\rangle \Big), & f(0) \neq f(1) \end{cases}$$

The input register tells us in a single run if f(0) = f(1) or not. But we lost every information what value f(0) or f(1) actually is.

f(x) could characterize any two-valued property of the output of an subroutine. E.g. the millionth bit in the expansion of $\sqrt{2+x}$.

Deutsch's problem becomes the nontrivial question of wether the millionth bits of $\sqrt{2}$ and $\sqrt{3}$ agree or not.

So with one more Hadamard transform on the input, we get

$$\begin{split} & (H\otimes\mathbb{1})\ U_f\left(H\otimes H\right)\left(X\otimes X\right)\left(\left|0\right\rangle\left|0\right\rangle\right) = \\ & \left\{\left|1\right\rangle\frac{1}{\sqrt{2}}\bigg(\left|f(0)\right\rangle - \left|\tilde{f}(0)\right\rangle\right), \quad f(0) = f(1) \\ & \left|0\right\rangle\frac{1}{\sqrt{2}}\bigg(\left|f(0)\right\rangle - \left|\tilde{f}(0)\right\rangle\right), \quad f(0) \neq f(1) \end{split}$$

The input register tells us in a single run if f(0) = f(1) or not. But we lost every information what value f(0) or f(1) actually is.

f(x) could characterize any two-valued property of the output of an subroutine. E.g. the millionth bit in the expansion of $\sqrt{2+x}$.

Deutsch's problem becomes the nontrivial question of wether the millionth bits of $\sqrt{2}$ and $\sqrt{3}$ agree or not.

Conclusion

- Quantum gates are represented by unitary transformations
- Quantum computing allows completely new algorithms
- Important topics which haven't been covered:
 - Experimental realization
 - Shor algorithm
 - Quantum-error correction
 - Elaboration of entanglement
 - Grover-Search algorithm

Conclusion

- Quantum gates are represented by unitary transformations
- Quantum computing allows completely new algorithms
- Important topics which haven't been covered:
 - Experimental realization
 - Shor algorithm
 - Quantum-error correction
 - Elaboration of entanglement
 - Grover-Search algorithm

Literature

N. David Mermin Quantum Computer Science.

David P. DiVincenzo

Two-bit gates are universal for quantum computation Phys. Rev. A 51, 1995 1015-1022