

R3B Experiments with Final CALIFA Setup

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2094 – 390783311, BMBF 05P19W0FN1, 05P21W0FN1 and the FAIR Phase-0 program

Tobias Jenegger

PSI Seminar 07.06.2023

R3B Setup

CALIFA Status & Final Configuration

Physics in R3B with CALIFA

TUM Members:

Roman Gernhäuser, Lukas Ponnath, Philipp Klenze, Stefan Eder, Tobias Jenegger

Physics Program @ R3B

Reactions with Radioactive Relativistic Beams

Formation of Elements – Nucleosynthesis abundances - r-Process - fission feeding

Collective Excitations

- → Pygm dipol resonances
- → EOS ISGDR ACTAF
- → Neutron Skin thickness

Fig. 1: Nuclear chart showing the nucleosynthesis processes occurring during stellar burning (yellow), the s-process (orange) and the r-process (violet) (credit: EMMI, GSI/Different Arts)

Physics Program @ R3B

Single Particle Properties inside atomic nucleus

- → Nuclear Structure far off stability
- → Short Range Correlated (SRC) nucleons

Experimental Setup Requirements:

FAIR accelerator facility

$$\max \left| \frac{N-Z}{A} \right|$$

R3B Setup

R³B @ FAIR

R³B as part of the Facility for Antiproton and Ion Research (FAIR) in Darmstadt:

Reactions with Radioactive Relativistic Beams

Haik Simon – FAIR & Super-FRS – EPS 20190930

FAIR Construction Site

R3B Setup*

Measurement of γ/targetlike particles

* S444 Experiment, 2020

FAIR CALIFA Detector @ R³B

CALorimeter for the In Flight detection of y-rays and light charged p**A**rticles

Highly segmented detector:

→ good angular reconstruction/ doppler correction

Broad calorimetric energy measurements:

→ From 100 keV y-rays up to high energetic charged particles

Flexible running mode:

self/external triggering mode

CALIFA Configuration (S522, 2022)

IPhos: 480 crystals

- completely filled
- readout with Dual Range Preamps

Barrel: 1024 crystals

- half filled
- readout with Single Range (300/30 MeV) Preamps

SingleRange Preamplifier

SIMULTANEOUS

high energetic paricle measurement & gamma spectroscopy

high gain range

Gamma
threshold:
100 keV

proton

300/30

experiment dependent decision has to be taken beforehand!

Meanwhile in R³B Preparation ROOM

- Noise debugging
- Cable/connectors checking
- SR vs DR checks

Testing Gain

Raising the gain allows to measure down to the 122 keV peak!

Higher gain leads to better resolution (but reducing the energy-range) Lower threshold values are possible → crucial for **add-back** algorithm!

11

Add-Back Algorithm in CALIFA

User defines shape and size of cluster:

Sort the hit list according to their energy

- 1. create cluster centered around first hit
- 2. loop over all hits in list
- → if hit inside cluster add it and remove it from the list
- 3. Do this procedure until list is empty

Depending on how low we can get with the threshold we can addup or not!

ODSL Collaboration - Optimize Add-Back Algorithm with Al

Use the power or Machine Learning:

- → recognize the physics cases
- → optimize the cluster shapes (event by event)
- → give probability for fully contained physics event

Filling CALIFA Endcap - CEPA

CALIFA Endcap Phoswich Array

- Most forward section: $7^{\circ} \le \theta \le 19^{\circ}$
- 96 CsI crystals

Improves geometric acceptance for high beam energies drastically

p2p-reaction, 400 AMeV

p2p-reaction, 1200 AMeV

Filling CEPA

Mesytec MPRB-48 Dual Range Preamps

They get mounted on iPhos tiles -

Connected to iPhos APDs (32 channels)

Connected to CEPA APDs (16 channels)

CALIFA DAQ Status (S522, 2022)

Electronic Rack

- 8 Crates (each with 18 x FEBEX + Addon)
- 2 PCs (with Knipex+TRIXOR)
- 2 TDK Lambda
- 4 Exploder
- 1 "Overlord" Exploder
- 2 Slow Control PCs

Cables

- 32 SCSI data cables (iPhos)
- 64+2 SR data cables (Barrel)
- 48 LV power cables

+LV-Extension

Second Rack on each side needed!

Dual Range Preamplifiers

Physics at R3B with CALIFA

Physics Program @ R3B

 Physics program on exotic nuclei in inverse kinematics:

- kinematically complete measurements
- Key physics program: Quasi-Free Scattering Reactions

Quasi-Free Scattering Reactions

- p⁺ or e⁻ probe is used for sudden knockout of a nuclear constituent
- Can be approximated as two body scattering of free particles

- Gives direct access to single particle properties inside nuclei
- Allows to study in detail the nuclear shell structure and its evolution far off stability

Prof. Th. Kröll, Experimental Nuclear Physics, Lecture 9

→ for the study of QFS a dedicated experimental setup is needed

FAIR Quasi Free Scattering Analysis with Experiment S444/467 (2020)

12C(p,2p)11B reaction:

- → ¹2C beam
- proton like target

- 2 protons
 - ¹¹B fragment (spectator)

SETUP:

Beam energy: 400 AMeV

Beamtype: 12C

Beamtime: 3 hours

Target: CH₂ (12.29 mm)

Fragment Particle Identification

$$B*\rho = \frac{\beta*\gamma*M}{q}$$

Identification of the two correlated Protons

Gamma Spectrum of ¹¹B

Event Selection Criteria:

- ¹¹B fragment identification
- Two hits (protons) with $E_{hit} > 30 \text{ MeV}$
- $\theta 1 + \theta 2 < 90^{\circ}$
- $\Delta \phi = 180^{\circ} + 40^{\circ}$

Reconstruction of Inner Momenta

25

Correlations between Fragment

and Proton Pair

Proton Separation Energy of 12C

target

$$S_p = (\gamma - 1)m_p + \gamma(T_1 + T_2) - \beta \gamma(|p_1|\cos(\theta_1) + |p_2|\cos(\theta_2)) + T_{11B}$$

 S_p = Energy needed to remove one proton from the nucleus

In direct kinematics it would be:

12C(p,2p)11B Cross Section Measurements

Selection Cuts:

- → strict event selection in front of target
- \rightarrow 2 hits in CALIFA with E_{1/2} > 30 MeV
- $\rightarrow \Delta \phi = 180 + 40^{\circ}$
- \rightarrow Boron as Fragment (Z = 5)

CALIFA only 35% filled in forward region → large correction factors

Cross sectio	Cross sections im mbarn	
Target Reaction	CH_2	Carbon
$^{12}\mathrm{C}(p,2p)X$	81.5 ± 4.0	20.5 ± 1.9
$^{12}{\rm C}(p,2p)^{11}{\rm B}$	47.3 ± 3.3	11.1 ± 1.5
Source: Valerii Panin, Thesis 2012		

What else can we analyse with the S444 Experiment?

Total Reaction cross section – Lukas Ponnath

Survival Probability:
$$P_{surv} = \frac{N_2}{N_1} = e^{-N_t \cdot \sigma_R}$$

Exclude reactions in Setup: I

$$\frac{N_2^i/N_1^i}{N_2^o/N_1^o} = e^{-N_t \cdot \sigma_R}$$
Target-Out

Using the Transmission Method:

$$\sigma_{R} = -\frac{1}{N_{t}} \ln \left(\frac{N_{2}^{i}/N_{1}^{i}}{N_{2}^{o}/N_{1}^{o}} \right)$$

Comparing the two Setups

Setup - Lukas

Fine tuned acceptance corrections needed

S444 (2020) Setup → with carbon target

High acceptance:

- → charge measured right after target by TWIM Music
- \rightarrow no beam pipe (= no vacuum) restrictions

Convenient setup to compare with Lukas' results

Starting with Charge Changing Cross Section

Why not starting directly with total reaction cross section measurement?

Strong fluctuations, energy (or runwise) corrections to be done

What more?

12C-12C inelastic cross section

Doppler corrected spectrum: reaction in incoming ¹²C Laboratory system, spectrum: reaction in target ¹²C

Note: could instert here plot of gamma spectrum for eg. 400 amev, carbon target, doppler and not doppler corrected

Summary and Outlook

0 6 7

what does CALIFA detector stand for?

I'm sorry, but as of my knowledge cutoff in September 2021, I don't have any information about a detector called CALIFA. It's possible that it may be a relatively new development or a specialized detector within a specific field that I'm not aware of. If CALIFA refers to something other than a detector, please provide additional context, and I'll do my best to assist you.

Hopefully ChatGPT will know CALIFA soon!

Thank you!

CALIFA @ Technical University of Munich (TUM)

Roman Gernhäuser, Lukas Ponnath, Philipp Klenze, Stefan Eder, Tobias Jenegger

