EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

10237564

PUBLICATION DATE

08-09-98

APPLICATION DATE

28-02-97

APPLICATION NUMBER

09046267

APPLICANT: SANYO ELECTRIC CO LTD;

INVENTOR: NISHIO KOJI;

INT.CL.

: C22C 1/00 B22F 1/00 C22C 1/04

C22C 19/00 H01M 4/38

TITLE

: MANUFACTURE OF HYDROGEN

STORAGE ALLOY

ABSTRACT: PROBLEM TO BE SOLVED: To prevent the occurrence of oxidation of an alloy attendant on mechanical alloying treatment in a method for manufacture of a hydrogen storage alloy of AB₅ type or A₂B type, where nickel is contained in the element B, by means of mechanical alloying.

> SOLUTION: In this method for manufacture of a hydrogen storage alloy, a mixture 5 of electroless nickel plating solution and element A is put, together with balls 4, into a mill pot 2 set on a rotary table 10 of a high-speed planetary mill 1 and the mill pot is rotated at high speed to apply mechanical alloying treatment, by which the AB₅ type or A₂B type. hydrogen storage alloy powder is obtained. At this time, the element A means one or plural elements selected from Ca, Mg, La, and Mm(misch metal), and the element B means nickel or nickel a part of which is substituted by one or plural elements selected from Cr, Zn, Co, Mn, Al, and Fe.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-237564

(43)公開日 平成10年(1998)9月8日

(51) Int.Cl. ⁶	識別記号	FΙ	
C 2 2 C 1/0	0	C 2 2 C 1/0	00 N
B 2 2 F 1/0	0	B 2 2 F 1/0	00 E
C 2 2 C 1/0	4	C 2 2 C 1/0)4 B
19/0	0	19/0	00 F
H01M 4/3	8	H01M 4/3	88 A
		審査請求 未	k 請求 請求項の数5 OL (全 7 頁)
(21)出願番号	特願平9-46267	(71) 出願人 00	00001889
		=	洋電機株式会社
(22)出顧日	平成9年(1997)2月28日	*	医府守口市京阪本通2丁目5番5号
		(72)発明者 佐	遠藤 広一
		*	で 下分子 できまる できまる できまる 大田 大阪府守口市京阪本通2丁目5番5号 三
		¥	軍機株式会社内
		(72)発明者 西	讲 康一
		大	饭府守口市京阪本通2丁目5番5号 三
		拼	電機株式会社内
		(72)発明者 菔	谷 伸
		*	饭府守口市京阪本通2丁目5番5号 三
		消	電機株式会社内
		(74)代理人 弁	理士 西岡 伸秦
			最終頁に続く

(54) 【発明の名称】 水素吸蔵合金の製造方法

(57)【要約】

【課題】 B元素にニッケルを含むAB,型或いはA,B型の水素吸蔵合金をメカニカルアロイングによって製造する方法において、メカニカルアロイング処理に伴う合金の酸化を防止する。

【解決手段】 本発明に係る水素吸蔵合金の製造方法においては、高速遊星ミル1の回転テーブル10上に設置されたミルポット2に、ボール4と共に、無電解ニッケルメッキ液とA元素の粉末の混合物5を投入して、該ミルポットを高速回転させることによりメカニカルアロイング処理を施し、AB,型或いはA,B型の水素吸蔵合金粉末を得る。ここで、A元素は、Ca、Mg、La、及びMmの中から選ばれる1或いは複数の元素であり、B元素は、ニッケル或いは、その一部をCr、Zn、Co、Mn、Al及びFeの中から選ばれる1或いは複数の元素で置換したものである。

1

【特許請求の範囲】

【請求項1】 B元素にニッケルを含むAB,型或いは A,B型の水素吸蔵合金の製造方法であって、メカニカ ルアロイング用のミルポットに、無電解ニッケルメッキ 液とA元素の粉末を投入して、該ミルポットを髙速回転 させることによりメカニカルアロイング処理を施し、A B,型或いはA,B型の水素吸蔵合金粉末を得ることを特 徴とする水素吸蔵合金の製造方法。

【請求項2】 B元素にニッケルを含むAB,型或いは アロイング用のミルボットに、無電解ニッケルメッキ液 と前記水素吸蔵合金粉末を投入して、該ミルポットを高 速回転させることによりメカニカルアロイング処理を施 すことを特徴とする水素吸蔵合金の製造方法。

【請求項3】 A元素は、Ca、Mg、La、及びMm の中から選ばれる1或いは複数の元素であり、B元素 は、ニッケル或いは、その一部をCr、Zn、Co、M n、A1及びFeの中から選ばれる1或いは複数の元素 で置換したものである請求項1又は請求項2に記載の水 素吸蔵合金の製造方法。

【請求項4】 メカニカルアロイング処理によって得ら れた合金粉末に焼結処理を施す請求項1乃至請求項3の 何れかに記載の水素吸蔵合金の製造方法。

【請求項5】 無電解ニッケルメッキ液には、還元剤が 含まれている請求項1乃至請求項4の何れかに記載の水 素吸蔵合金の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えばニッケルー 方法に関するものである。

[0002]

【従来の技術】一般に、ニッケルー水素電池の負極とし て用いられる水素吸蔵合金電極は、所定成分の水素吸蔵 合金の粉末に結着剤を加え、これを電極形状に成形する ことによって作製される。 ここで、水素吸蔵合金として は、例えばCaNi,等のAB,型水素吸蔵合金や、Mg ,Ni等のA,B型水素吸蔵合金が知られている。

【0003】この様な水素吸蔵合金の製造方法として、 合金構成元素を所定の組成比に応じて秤量混合し、この 40 混合物をミルポットに投入して、該ミルポットを髙速回 転させることによって、機械的加工及び強制混合による メカニカルアロイング処理を施し、水素吸蔵合金粉末を 得る方法が知られている(特開平5-9618号)。 尚、このメ カニカルアロイング処理は、合金粉末の酸化を防止する べく、不活性ガス雰囲気中で行なわれる。

[0004]

【発明が解決しようとする課題】しかしながら、従来の メカニカルアロイング処理を用いた水素吸蔵合金の製造 方法においては、ミルボット中の不純物が合金表面に付 50 蔵合金は非晶質の合金となるが、その後の焼結処理によ

着したり、ミルポットから合金粉末を取り出す際に合金 表面が空気と触れて、合金が酸化される虞れがあった。 この酸化によって水素吸蔵合金の水素吸収特性は劣化す ることになる。本発明の目的は、メカニカルアロイング 処理において合金が酸化される虞れのない水素吸蔵合金 の製造方法を提供することである。

[0005]

【課題を解決する為の手段】本発明に係る第1の水素吸 蔵合金の製造方法は、B元素にニッケルを含むAB,型 A,B型の水素吸蔵合金粉末を作製した後、メカニカル 10 或いはA,B型の水素吸蔵合金を製造するべく、メカニ カルアロイング用のミルポットに、無電解ニッケルメッ キ液とA元素の粉末を投入して、該ミルポットを高速回 転させることによりメカニカルアロイング処理を施し、 AB,型或いはA,B型の水素吸蔵合金粉末を得るもので

> 【0006】上記第1の水素吸蔵合金の製造方法におい ては、ミルポットが髙速回転することによって、A元素 の粉末の粒子表面にニッケルのメッキ層が形成されると 共に、これらの粒子どうしが衝突することによって、A 20 B,型或いはA,B型の非晶質の水素吸蔵合金粉末が得ら れる。ここでメカニカルアロイング処理はニッケルメッ キ液中で行なわれるので、合金表面が空気と触れる虞れ はなく、合金の酸化が防止される。又、ミルポットから 取り出す際の酸化も防止される。

【0007】本発明に係る第2の水素吸蔵合金の製造方 法は、B元素にニッケルを含むAB,型或いはA,B型の 水素吸蔵合金粉末を作製した後、メカニカルアロイング 用のミルボットに、無電解ニッケルメッキ液と前記水素 吸蔵合金粉末を投入して、該ミルポットを高速回転させ 水素電池の負極の材料として用いる水素吸蔵合金の製造 30 ることによりメカニカルアロイング処理を施すものであ る。

> 【0008】上記第2の水素吸蔵合金の製造方法におい ては、メカニカルアロイング処理によって、水素吸蔵合 金粉末の粒子表面にニッケルのメッキ層が形成され、と れらの粒子どうしが衝突することによって、合金組成に 変化が生じ、ニッケル量の多い表層部が形成されること になる。この表層部は触媒として作用し、水素吸蔵合金 の活性化を促す。

> 【0009】具体的構成において、A元素は、Ca、M g、La、及びMmの中から選ばれる1或いは複数の元 素であり、B元素は、ニッケル或いは、その一部をC r、Zn、Co、Mn、Al及びFeの中から選ばれる 1或いは複数の元素で置換したものである。この様に、 B元素としてのニッケルの一部を他の元素で置換すると とによって、合金の酸化及び分解が抑制され、水素吸蔵 合金のサイクル寿命が向上する。

> 【0010】又、具体的構成において、メカニカルアロ イング処理によって得られた合金粉末に焼結処理を施 す。メカニカルアロイング処理によって得られる水素吸

って合金の結晶化が促される。との結果、合金組成の均 質化が図られ、水素吸放出サイクルに伴う合金の相分離 が起こり難くなって、サイクル寿命が向上する。

【0011】更に具体的構成において、無電解ニッケル メッキ液には、還元剤が含まれている。該具体的構成に おいては、仮に水素吸蔵合金が酸化される要因が存在し たとしても、還元剤が酸化されることによって、水素吸 蔵合金の酸化が防止される。

[0012]

【発明の効果】本発明に係る水素吸蔵合金の製造方法に 10 る。 よれば、メカニカルアロイング処理において合金が酸化 される虞れがないので、所期の水素吸収特性を有する水 素吸蔵合金が得られる。

[0013]

【発明の実施の形態】以下、本発明の実施の形態につ き、図面に沿って具体的に説明する。本発明に係る水素 吸蔵合金の製造方法は、図1に示す従来より公知の髙速 遊星ミル(1)を用いて、ボールミリングによるメカニカ ルアロイングを行なうものである。即ち、回転テーブル (10)上に設置された Z r O₂製のミルポット(2)中に、 ZrO₂製のボール(4)を複数個投入すると共に、無電 解ニッケルメッキ液とCa粉末若しくはMg粉末との混 合物(5)を投入する。ここで、無電解ニッケルメッキ液 としては、塩化ニッケル、次亜リン酸ナトリウム及び塩 化アンモニウムを含む水溶液を採用する。尚、ミルポッ ト(2)の開口部には、〇リング(図示省略)を介して蓋 (3)が固定されており、ポット内部は液密状態となって いる。

【0014】図中に矢印で示す様に、回転テーブル(10) ルポット(2)を120~680rpmの速度で回転させ ることによって、Ca若しくはMg粒子の表面にニッケ ルのメッキ層が形成されると共に、これらの粒子どうし が衝突することによって、CaNi,合金若しくはMg, Ni合金の粉末が得られる。その後、ミルポット(2)か ら水素吸蔵合金粉末を取り出して、これに水洗及び乾燥 を施す。

【0015】又、本発明に係る他の水素吸蔵合金の製造 方法は、従来と同様の工程によってCaNi,合金若し くはMg、Ni合金の粉末を作製した後、図1に示すミ ルポット(2)中に、無電解ニッケルメッキ液及びボール (4)と共に投入して、該ミルポットを高速回転させる。 これによって、CaNi,合金若しくはMg,Ni合金の 粒子表面にニッケルのメッキ層が形成され、これらの粒 子どうしが衝突することによって、合金組成に変化が生 じ、ニッケル量の多い表層部が形成されることになる。 その後、ミルポット(2)から水素吸蔵合金粉末を取り出 して、これに水洗及び乾燥を施す。

【0016】尚、上記製造方法において、水素吸蔵合金 のA元素としてのCa若しくはMgに代えて、LaやM m(ミッシュメタル)を採用することが可能である。又、 B元素としてのニッケルは、その一部をCr、Zn、C o、Mn、Al或いはFeで置換することも可能であ

[0017]

【実施例】

実施例1

① 本発明合金の作製

Mgの粉末10gと無電解ニッケルメッキ液45gを、 ZrO,ボールと共にZrO,ミルポットに投入する。と こで、無電解ニッケルメッキ液は、塩化ニッケル15 g、次亜リン酸ナトリウム5g及び塩化アンモニウム2 5gを含む水溶液である。そして、ミルポットの蓋を閉 20 じ、液密状態とする。続いてミルポットを600rpm の速度で1時間回転させ、メカニカルアロイングを施 す。 これによって、Mg, Ni合金の粉末(粒径:5~1 0μm)が得られることになる。その後、外気中にて、 ミルポットから合金粉末を取り出し、これに水洗及び乾 燥を施した後、外径20mm、長さ110mmの測定容 器に収容する。

【0018】 ② 比較用合金の作製

Mgの粉末9.1gとNiの粉末10.9g(何れも粒径 50乃至100μm)を混合し、これをZrOzボールと を60~340rpmの速度で回転させると同時に、ミ 30 共に、ZrO,ミルポットに投入する。そして、ミルポ ット内をアルゴンガス雰囲気として、ミルポットの蓋を 閉じ、液密状態とする。ミルポットを600rpmの速 度で1時間回転させ、メカニカルアロイングを施す。 こ れによって、Mg, Ni合金の粉末(粒径:5~10μ m)が得られることになる。その後、アルゴンガス雰囲 気のグローブボックス内でミルボットからMgzNi合 金粉末を取り出し、これを外径20mm、長さ110m mの測定容器に収容する。

【0019】30 試験

40 上記測定容器に収容された比較用合金及び本発明合金に 対し、下記表1に記載の条件で活性化を施した後、水素 吸収量及び酸素含有量を測定した。

[0020]

【表1】

6

5

活性化条件 真空引き温度 [℃] 印加水素圧力 [atm] 水素吸収時間 [min] 水素吸収量 (wt %) 酸素含有量 (wt %) 比較用合金 300 30 60 3.2 6 本発明合金 250 25 60 3.6 0.1

【0021】表1において、水素吸収量は、250℃、 吸収量を表わしている。又、酸素含有量は、合金中の酸 素含有量を酸素分析によって測定したものである。表1 から明らかな様に、本発明合金では、比較用合金よりも 低い真空引き温度と印加圧力の下、比較用合金と同じ時 間で活性化が終了(水素吸収量が飽和した状態)してい る。そして、本発明合金では、比較用合金よりも大きな 水素吸収量が得られ、然も、酸素含有量は大幅に減少し ている。

【0022】との様に、本発明合金において充分な水素 液を用いたメカニカルアロイングによって、水素吸蔵合 金であるMg, Ni合金が生成されることが裏付けられ る。即ち、メカニカルアロイングによって、Mg粒子の 表面にニッケルメッキ層が形成され、これらの粒子どう しが衝突して、Mg, Ni合金が得られるのである。

【0023】本発明合金において酸素含有量が大幅に減 少しているのは、メカニカルアロイング処理がニッケル メッキ液中で行なわれることによって、合金表面が空気 と触れることがなく、合金の酸化が防止されるためであ る。又、空気中でミルボットから取り出す際にも酸化が 30 0mmの測定容器に収容する。 防止されるからである。又、無電解ニッケルメッキ液 に、還元剤である次亜リン酸ナトリウムが含まれている ため、この次亜リン酸ナトリウムが酸化されることによ って、水素吸蔵合金の酸化が確実に防止される。

【0024】実施例2

* ① 本発明合金の作製

20atmの水素を水素吸蔵合金に印加したときの水素 10 CaNi,合金を得るべく、Caの粉末とNiの粉末を 秤量混合し、これを髙周波誘導溶解によって溶融せしめ て、CaNi,合金塊を作製する。そして、この合金塊 を粒径5~10μmに粉砕して、CaNi,合金の粉末 を得る。この様にして得られたСаNi,合金の粉末1 0gと無電解ニッケルメッキ液21gを、ZrOスボー ルと共にZr〇、ミルポットに投入する。ここで、無電 解ニッケルメッキ液は、塩化ニッケル7g、次亜リン酸 ナトリウム2g及び塩化アンモニウム12gを含む水溶 液である。そして、ミルポットの蓋を閉じ、液密状態と 吸収量が得られていることから、無電解ニッケルメッキ 20 する。続いてミルボットを600rpmの速度で1時間 回転させ、メカニカルアロイングを施す。その後、外気 中にて、ミルボットから合金粉末を取り出し、これに水 洗及び乾燥を施した後、外径20mm、長さ110mm の測定容器に収容する。

【0025】② 比較用合金の作製

上記本発明合金と同様に、Caの粉末とNiの粉末を秤 量混合し、これを髙周波誘導溶解によって溶融せしめ て、CaNi、合金塊を作製する。そして、この合金塊 を5~10 µmに粉砕した後、外径20mm、長さ11

【0026】30 試験

上記測定容器に収容された比較用合金及び本発明合金に 対し、下記表2に記載の条件で活性化を施した。

[0027]

【表2】

	活性化条件		
	真空引き温度 [*C]	印加水素圧力 [atm]	水素吸収時間 [min]
比較用合金	80	20	20
本発明合金	60	10	10

【0028】表2から明らかな様に、本発明合金では、 比較用合金よりも低い真空引き温度、2分の1の印加圧 力の下、比較用合金の2分の1の時間で活性化が終了し ている。

【0029】との様に、本発明合金において、比較用合 金よりも活性化が容易となっているのは、本発明のメカ ニカルアロイング処理によって、CaNis合金の粒子

うしが衝突することによって、合金組成に変化が生じ、 ニッケル量の多い表層部が形成されるからであり、この 表層部が触媒として作用し、CaNi,合金の活性化を 促すのである。

【0030】実施例3

① 本発明合金の作製

CaNi,M。,A合金(M:Fe、Cr、Cu、Zn、

表面にニッケルのメッキ層が形成され、これらの粒子ど 50 Mn、Al、又はCo)の粉末10gと、無電解ニッケ

ルメッキ液21gを、ZrO,ボールと共にZrO,ミル ポットに投入する。ここで、無電解ニッケルメッキ液 は、塩化ニッケル7g、次亜リン酸ナトリウム2g及び 塩化アンモニウム12gを含む水溶液である。そして、 ミルポットの蓋を閉じ、液密状態とする。続いてミルボ ットを600rpmの速度で20分間回転させ、メカニ カルアロイングを施す。その後、外気中にて、ミルボッ トから合金粉末を取り出し、これに水洗及び乾燥を施し た後、外径20mm、長さ110mmの測定容器に収容

【0031】② 比較用合金の作製

CaNi,合金の粉末10gと、無電解ニッケルメッキ 液21gを、ZrO゚ボールと共にZrO゚ ミルポットに 投入する。ここで、無電解ニッケルメッキ液は、塩化ニ米 *ッケル7g、次亜リン酸ナトリウム2g及び塩化アンモ ニウム12gを含む水溶液である。そして、ミルポット の蓋を閉じ、液密状態とする。続いてミルポットを60 0rpmの速度で20分間回転させ、メカニカルアロイ ングを施す。その後、外気中にて、ミルポットから合金 粉末を取り出し、これに水洗及び乾燥を施した後、外径 20mm、長さ110mmの測定容器に収容する。

8

【0032】3 試験

上記測定容器に収容された比較用合金及び本発明合金に 10 対し、下記表3に記載の条件で活性化を施し、その後、 下記表4 に記載の水素吸収放出条件で寿命試験を行なっ た。その結果を下記表5に示す。

[0033]

【表3】

	活性化条件		
	真空引き温度 [℃]	印加水菜圧力 [atm]	水素吸収時間 [min]
比較用合金 (CaNi ₅)	60	10	10
本発明合金 (Ca - Ni - M)	60	10	10

M: Fe, Cr, Cu, Zn, Mn, Al, Co

[0034]

※ ※【表4】

CaNi 4.8 M 0.2	吸収温度	吸収圧力	放出温度	放出圧力
M = Fe, Cr, Cu, Zn, Mn, Al, Co	50℃	20atm	50℃	真空引き
CaNi ₅ (比較例)	50℃	20atm	50℃	真空引き

信用ガス:20ppmO 2+H2

[0035] 【表5】

<事合計論 は 思 >

- A THE WORLD	維持率(100サイクル後)
CaNi ₅ (比較例)	0.85
CaNi 4.8 Fe _{0.2}	0.87
CaNi 4.8 Cr 0.2	0.88
CaNi 4.8 Cu _{0.2}	0.86
CaNi 4.8 Zn _{0.2}	0.86
CaNi 4.8 Mn 0.2	0.91
CaNi 4.8 Al 0.2	0.92
CaNi 4.8 Co _{0.2}	0.9

【0036】表5において、維持率は、水素吸放出サイ クルの初期における水紫吸収量を1としたときの、10

ら明らかな様に、ニッケルの一部を他の元素で置換する ことによって維持率が改善されている。これは、ニッケ ルの一部を他の元素で置換することによって、水素吸蔵 合金の水素吸放出における酸化及び分解が抑制され、サ イクル寿命が向上するためである。

【0037】実施例4

① 本発明合金の作製

CaNi,合金の粉末10gと、無電解ニッケルメッキ 40 液21gを、ΖΓΟ,ボールと共にΖΓΟ,ミルポットに 投入する。ことで、無電解ニッケルメッキ液は、塩化ニ ッケル7g、次亜リン酸ナトリウム2g及び塩化アンモ ニウム12gを含む水溶液である。そして、ミルポット の蓋を閉じ、液密状態とする。続いてミルポットを60 0rpmの速度で1時間回転させ、メカニカルアロイン グを施す。その後、外気中にて、ミルポットから合金粉 末を取り出し、これに水洗及び乾燥を施した後、該合金 粉末をペレット状に成形し、該ペレットに対し、不活性 ガス雰囲気中で800℃、2時間の焼結処理を施す。と 〇サイクル後の水素吸収量の比を表わしている。表5か 50 の様にして得られた焼結合金ペレットを、外径20m

10

m、長さ110mmの測定容器に収容する。

【0038】② 比較用合金の作製

CaNi,合金の粉末10gと、無電解ニッケルメッキ液21gを、ZrO,ボールと共にZrO,ミルポットに投入する。ここで、無電解ニッケルメッキ液は、塩化ニッケル7g、次亜リン酸ナトリウム2g及び塩化アンモニウム12gを含む水溶液である。そして、ミルポットの蓋を閉じ、液密状態とする。続いてミルポットを600rpmの速度で1時間回転させ、メカニカルアロイングを施す。その後、外気中にて、ミルポットから合金粉*10

*末を取り出し、これに水洗及び乾燥を施した後、外径20mm、長さ110mmの測定容器に収容する。

【0039】 ② 試験

上記測定容器に収容された比較用合金及び本発明合金に対し、下記表6に記載の条件で活性化を施し、その後、下記表7に記載の水素吸収放出条件で寿命試験を行なった。その結果を下記表8に示す。

[0040]

【表6】

	活 性 化 条 件		
	真空引き温度 [℃]	印加水素圧力 [atm]	水素吸収時間 [min]
比較用合金(CaNi ₅)	60	10	10
本発明合金(CaNi 焼結)	60	10	10

[0041]

※ ※【表7】

	吸収温度	吸収圧力	放出温度	放出圧力
CaNi ₅ 烷結合金	50℃	20atm	50℃	真空引き
CaNi ₅ (比較例)	50℃	20atm	50℃	真空引き

使用ガス:20ppmO₂+H₂

【0042】 【表8】

	維持率 (100サイクル後)
CaNi ₅ (比較例)	0.85
CaNi ₅ 焼結合金	0.89

【0043】表8から明らかな様に、焼結合金では維持率が向上している。これは、メカニカルアロイング処理によって作製された非晶質の合金粉末が、その後の焼結処理によって、合金組成の均質化が図られ、水素吸放出サイクルに伴う合金の相分離が起こり難くなって、サイクル寿命が向上したものである。

【0044】上記実施の形態及び実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記

載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、 特許請求の範囲に記載の技術的範囲内で種々の変形が可 30 能であることは勿論である。

【図面の簡単な説明】

【図1】本発明のメカニカルアロイング処理工程を表わす一部破断斜視図である。

【符号の説明】

- (1) 髙速遊星ミル
- (10) 回転テーブル
- (2) ミルポット
- (3) 蓋
- (4) ボール
- 40 (5) 無電解ニッケルメッキ液と水素吸蔵合金粉末の混合物

【図1】

フロントページの続き

(72)発明者 米津 育郎

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(72)発明者 西尾 晃治

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内