Assignment #9

머신러닝 이론과 실전 Due: November 15, 2021

- 1. LDA (linear discriminant analysis) 방법을 이용하여 앙상블 방법을 구현해 보고, 변수중요도를 계산하고자 합니다.
 - A. 데이터는 training 으로 'veh.dat'과 test 로 'vehtest.dat'를 사용합니다.
 - B. 기본 분류함수인 LDA 방법의 함수는 python 의 'sklearn.discriminant_analysis.LinearDiscriminantAnalysis' 를 사용합니다.
 - C. 앙상블 방법으로는 Bagging 과 Random feature ensemble 방법을 구현합니다. (직접 코딩 필요함)
 - D. 앙상블내 분류모형의 갯수는 B=101 을 사용합니다.
 - E. Random feature ensemble 을 사용할 때는 $m = \frac{p}{2}$ 을 사용합니다.
 - F. OOB 데이터를 이용한 변수중요도를 계산합니다.
 - G. 정확도 결과물은 test 데이터의 결과만 보입니다.
 - H. 결과물 예시는 아래에 있습니다.
 - (1) LDA bagging

```
Variable Importance:

X1: 23

X2: 45

X3: 10
```

Confusion	Matrix	(LDA -	- baggi	ng)
Actual Class	1 2	Pred 239	-	Class 2 14 53

```
Model Summary (LDA - bagging)
-----
Overall accuracy = .793
```

(2) LDA - random feature ensemble

Variable Importance: X1: 23 X2: 45

X3: 10

Confusion Matrix (LDA - random feature)

		Predicted	Class
		1	2
Actual	1	239	14
Class	2	12	153

Model Summary (LDA - random feature)
----Overall accuracy = .793