Generalized Inverse

• (<u>Full Rank Factorization</u>) $A_{p\times q}$ of rank r can always be factorized as $A=K_{p\times r}L_{r\times q}$, where K and L have full column and full row rank respectively.

 $A_{\text{left}}^{-1} = (A^{\top}A)^{-1}A^{\top}; A_{\text{right}}^{-1} = A^{\top}(AA^{\top})^{-1}.$

[Theorem] All idempotent matrices (except I) are singular.

[Theorem] For any idempotent matrix A, r(A) = tr(A).

[Theorem] Eigenvalues of idempotent matrices are either 0 or 1.

[Theorem] For a symmetric matrix A, if all its eigenvalues are 1 or 0, then A is idempotent.

· (Moore-Penrose inverse) Let A be an $m \times n$ matrix. If a matrix A^+ exists that satisfies (1) AA^+ is symmetric; (2) A^+A is symmetric; (3) $AA^+A = A$; (4) $A^+AA^+ = A^+$. A^+ is defined as a Moore-Penrose inverse of A.

[Theorem] Each matrix A has an A^+ . A=BC by full-rank factorization. Then $A^+=C^\top(CC^\top)^{-1}(B^\top B)^{-1}B^\top$.

• (Properties) (1) The Moore-Penrose inverse is unique. (2) $(A^{\top})^{+} = (A^{+})^{\top}$. (3) $r(A^{+}) = r(A)$. (4) If $A = A^{\top}$, then $A^{+} = (A^{+})^{\top}$. (5) If A is nonsingular, $A^{-1} = A^{+}$. (6) If A is symmetric idempotent, $A^{+} = A$. (7) If $r(A_{m \times n}) = m$, then $A^{+} = A^{\top}(AA^{\top})^{-1}$, $AA^{+} = I$, If $r(A_{m \times n}) = n$, then $A^{+} = (A^{\top}A)^{-1}A^{\top}$, $A^{+}A = I$. (8) The matrices

 AA^+ , A^+A , $I-AA^+$ and $I-A^+A$ are all symmetric idempotent.

· (Generalized inverse) Let A be an $m \times n$ matrix and the generalized inverse A-satisfies AA-A = A.

(Properties) (1) The M-P inverse is also a generalized inverse. (2) G-inverse may not be unique.

(3) Let X be $m \times n$, r(x) = k > 0. (a) $r(X^-) \ge k$; (b) X^-X and XX^- are idempotent; (c) $r(X^-X) = r(XX^-) = k$; (d) $X^-X = I$ if and only if r(X) = n; (e) $XX^- = I$ if and only if r(X) = m; (f) $tr(X^-X) = tr(XX^-) = k = r(X)$; (g) If X^- is any G-inverse of X, then $(X^-)^\top$ is a G-inverse of X^\top .

(4) Let $K = X(X^{T}X)^{-}X^{T}$, K is invariant for any G-inverse of $X^{T}X$.

(5) $X(X^{\mathsf{T}}X)^{-}X^{\mathsf{T}} = XX^{+}$.

(6) For $K = X(X^{\top}X)^{-}X^{\top}$. (a) $K = K^{\top}, K = K^{2}$ (Symmetric Idempotent); (b) $\operatorname{rank}(K) = \operatorname{rank}(X) = r \left(\operatorname{rank}(K) = \operatorname{tr}(K) = \operatorname{rank}(X)\right)$; (c) $KX = X; X^{\top}K = X^{\top}$; (d) $(X^{\top}X)^{-}X^{\top}$ is a G-inverse of X for any G-inverse of $X^{\top}X$; (e) $X(X^{\top}X)^{-}$ is a G-inverse of X^{\top} for any G-inverse of $X^{\top}X$.

• (Algorithm of Obtaining Generalized Inverse) Let $A \in \mathbb{R}^{n \times n}$ be a matrix of rank r, and $A_{11} \in \mathbb{R}^{r \times r}$. If A_{11} is invertible, then

 $\mathbf{G} = \begin{bmatrix} A_{11}^{-1} & O \\ O & O \end{bmatrix} \in \mathbb{R}^{n \times n} \text{ is a generalized inverse of A.}$

Distributions and Quadratic Forms

[Theorem] Let Y be a random vector with mean $\mu = E(Y)$ and $\Sigma = \text{Cov}(Y)$. Then, $E\left(Y^{\top}AY\right) = \text{tr}(A\Sigma) + \mu^{\top}A\mu$. [Theorem] Let $g_1(Y_1), \dots, g_m(Y_m)$ be m functions of the random vectors Y_1, \dots, Y_m respectively. If Y_1, \dots, Y_m are mutually independent, then g_1, \dots, g_m are mutually independent.

· (Multivariate Normal Distribution) (a) Probability density function (p.d.f) of $Y_{n\times 1} \sim N(\mu, \Sigma)$:

$$f_Y(y) = |\Sigma|^{-\frac{1}{2}} (2\pi)^{-\frac{p}{2}} e^{-\frac{1}{2} [(y-\mu)^{\top} \Sigma^{-1} (y-\mu)]}$$

(b) Moment generating function of $Y_{p\times 1} \sim N(\mu, \Sigma)$:

$$M_Y(t) = e^{t^{\mathsf{T}} \mu + \frac{1}{2} t^{\mathsf{T}} \Sigma}.$$

$$\mathsf{G} = \left(\begin{array}{cc} \mathsf{O} & \mathsf{O}^{\mathsf{T}} \\ \mathsf{O} & \mathsf{P}\left\{\frac{1}{\mathsf{N}}\right\} \end{array}\right) \quad \mathsf{H} :$$

Let B be a constant matrix and c be a constant vector.

$$BY + c \sim N\left(B\mu + c, B\Sigma B^{\top}\right)$$

(c) Marginal distribution, Conditional Distribution and independence.

$$Y = \left[\begin{array}{c} Y_1 \\ Y_2 \end{array} \right] \sim N \left[\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right), \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array} \right) \right],$$

1. $Y_1 \sim N(\mu_1, \Sigma_{11})$.

2. $Y_1 \mid Y_2 = y_2 \sim N\left(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}\left(y_2 - \mu_2\right), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\right)$

3. Y_1 and Y_2 are independent iff $\Sigma_{12} = 0$.

· (Non-Central χ^2 distribution) The density function of $u \sim \chi^2_{(n)}$, a central χ^2 distribution, is

$$f(u) = \frac{u^{\frac{1}{2}n - 1}e^{-\frac{1}{2}u}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}$$

Let $x \sim N(0, I_n)$, then $x^\top x \sim \chi^2_{(n)}$. Let $x \sim N(\mu, I_n)$, then $u = x^\top x \sim \chi^2_{(n,\lambda)}$, where $\lambda = \frac{1}{2}\mu^\top \mu$ is a non-centered parameter and the density function of $\chi^2_{(n,\lambda)}$ is

$$f(u) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \frac{u^{\frac{1}{2}n+k-1}e^{-\frac{1}{2}u}}{2^{\frac{1}{2}n+k}\Gamma(\frac{1}{2}n+k)}, \quad u > 0, \lambda \ge 0.$$

Define $\lambda^k = 1$ when $\lambda = 0$ and k = 0. The moment generating function of $u \sim \chi^2_{(n-\lambda)}$ is

$$(1-2t)^{-\frac{n}{2}}e^{-\lambda[1-(1-2t)^{-1}]}$$

When $\lambda=0$, the above M.G.F is $(1-2t)^{-\frac{n}{2}}$ which is precisely the M.G.F of $\chi^2_{(n)}$.

- (Non-Central F distribution) Let $u_1 \sim \chi^2_{(p_1,\lambda)}$ and $u_2 \sim \chi^2_{(p_2,0)}$. And u_1 is independent of u_2 . Then

$$w = \frac{u_1/p_1}{u_2/p_2} \sim F_{(p_1, p_2, \lambda)}$$

Let $z \sim N(\mu, 1)$ and $u \sim \chi^2_{(n)}$. And z is independent of u. Then,

$$t = \frac{z}{\sqrt{u/n}} \sim \text{Non-central } t \text{ distribution.}$$

[Theorem] A symmetric matrix A is positive definite if and only if there exists a nonsingular matrix P such that A = P'P. [Lemma] The M.G.F of $x^T A x$ is

$$M_{x^{\top}Ax}(t) = |I - 2tA\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2}\mu^{\top} \left[I - (I - 2tA\Sigma)^{-1}\right] \Sigma^{-1}\mu}.$$

[Lemma] If A and V are symmetric and V is positive definite, then AV has eigenvalues 0 and 1 implies that AV is idempotent. [Lemma] If A is $n \times n$ symmetric idempotent matrix of rank r, then A has r eigenvalues equal to 1 and n-r eigenvalues equal to 0. (Properties of eigenvalues) (1) For certain function $g(A), g(\lambda)$ is an eigenvalue of g(A). (2) If (I-A) is nonsingular, then $1/(1-\lambda)$ is an eigenvalue of $(I-A)^{-1}$. (3) If $-1 < \lambda < 1$, then $1/(1-\lambda)$ can be represented by the series $\frac{1}{1-\lambda} = 1 + \lambda + \lambda^2 + \lambda^3 + \cdots$ Correspondingly, if all eigenvalues of A satisfying $-1 < \lambda < 1$, then $(I-A)^{-1} = I + A + A^2 + A^3 + \cdots$ (4) If A is any $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$, then $|A| = \prod_{i=1}^n \lambda_i$ and $\operatorname{tr}(A) = \sum_{i=1}^n \lambda_i$

[Theorem] Let $x_{n\times 1} \sim N(\mu, \Sigma)$ and let A be symmetric. Then, $q = \mathbf{x}^{\top} A \mathbf{x}$ follows $\chi^2_{(r,\lambda)}$ with r being the rank of A and $\lambda = \frac{\mu^{\top} A \mu}{2}$ if and only of $A\Sigma$ is idempotent. • (Properties of normal random vector) (1) $E(\mathbf{x}^{\mathsf{T}} A \mathbf{x}) = \operatorname{tr}(A \Sigma)$ $+\mu^{\top}A\mu$. (2) $Cov(x, x^{\top}Ax) = 2\Sigma A\mu$. (3) $Var(x^{\top}Ax) = 2tr[(A\Sigma)^2]$ $+4\mu^{\mathsf{T}} A \Sigma A \mu$. (5) $\operatorname{Cov}(\boldsymbol{x}^{\mathsf{T}} A_1 \boldsymbol{x}, \boldsymbol{x}^{\mathsf{T}} A_2 \boldsymbol{x}) = 2 \operatorname{tr}(A_1 \Sigma A_2 \Sigma) + 4\mu^{\mathsf{T}} A_1$ $\Sigma A_2 \mu$. (6)Cov $(x, x^T A x) = 2\Sigma A \mu$. [Theorem] Let $x \sim N_n(\mu, \Sigma)$. Then $x^{\top}Ax$ and Bx are distributed independently if and only if $B\Sigma A = 0$. [Theorem] Let $x \sim N(\mu, \Sigma)$. Then $x^{\top}Ax$ and $x^{\top}Bx$ are distributed independently if and only if $B\Sigma A = 0$ (or equivalently, $A\Sigma B = 0$). **Theorem** Let $x \sim N(\mu, V)$ and let A_i be $n \times n$ symmetric matrix of rank k_i , for $i = 1, 2, \dots, p$. Denote $A = \sum_{i=1}^{p} A_i$, which is symmetric with rank k. Then $\mathbf{x}^{\mathsf{T}} A_i \mathbf{x} \sim \chi^2_{(k_i, \frac{1}{2}\mu^{\mathsf{T}} A_i \mu)}$. $\mathbf{x}^{\mathsf{T}} A_i \mathbf{x}$ are pairwise independent and $x^T A x$ is $\chi^2_{(k,\frac{1}{2}\mu^T A \mu)}$, if and only if (I): any 2 of (a) A_iV idempotent, for all i; (b) $A_iVA_i = 0$ for all i < j; (c) AV is idempotent; are true; or (II): (c) is true and (d) $k = \sum_{i=1}^{p} k_i$; or(III): (c) is true and (e) $A_1V, \dots, A_{p-1}V$ are indempotent and A_nV is non-negative definite.

[Corollary] (Cochran's Theorem) $x \sim N(0, I_n)$ and A_i is symmetric of

rank r_i for $i = 1, \dots, p$ with $\sum_{i=1}^p A_i = I_n$, then $x^T A_i x$ are distributed independently as $\chi^2_{r_i}$ if and only if $\sum_{i=1}^p r_i = n$.

Full Rank Model

· (Properties of the least squares estimate) Given the least squares estimate, we define the vector of residuals as $\hat{\varepsilon} = Y - X\hat{\beta}$ = [I - H]Y where $H = X(X^{T}X)^{-1}X^{T}$. (1) The hat matrix H is symmetric idempotent; (2) $X^{\mathsf{T}}\hat{\epsilon} = 0$; (3) $\hat{Y}^{\mathsf{T}}\hat{\epsilon} = 0$; (4) I - H is symmetric idempotent; (5) $E(\hat{\beta}) = \beta_0$ (unbiased estimate); (6) $Cov(\hat{\beta}) = (X^{T}X)^{-1}\sigma^{2}$; (7) $tr(I_{n} - H) = n - p$; (8) $\hat{\varepsilon}^{\mathsf{T}}\hat{\varepsilon} = \operatorname{tr}(YY^{\mathsf{T}}(I - H)); (9) E(YY^{\mathsf{T}}) = \sigma^{2}I + X\beta\beta^{\mathsf{T}}X^{\mathsf{T}}; (10)$ $\hat{\sigma}^2 = \hat{\varepsilon}^{\mathsf{T}} \hat{\varepsilon} / (n - p)$ is an unbiased estimate of σ^2 , that is $E(\frac{\hat{\varepsilon}^{\mathsf{T}} \cdot \hat{\varepsilon}}{n - p}) = \sigma^2$. · The weighted least squars estimator is defined as the minimizer of $(Y - X\beta)^{\mathsf{T}} \Sigma^{-1} (Y - X\beta)$; $\tilde{\beta} = \varepsilon (X^{\mathsf{T}} \Sigma^{-1} X)^{-1} X^{\mathsf{T}} \Sigma^{-1} Y$. Note $E(\tilde{\boldsymbol{\beta}}) = \boldsymbol{\beta}_0$ and $Cov(\tilde{\boldsymbol{\beta}}) = \varepsilon(\boldsymbol{X}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1}$. · To find the BLUE of $t^{\mathsf{T}}\beta$ is to determine λ such that $\lambda^{\mathsf{T}}Y$ is unbiased for $t^{\mathsf{T}}\beta$ and has minimum variance among all the linear unbiased estimates. (hence $\lambda^{\top}X = t^{\top}$) The BLUE of $t^{\top}\beta$ is $t^{\top}(X^{\top}\Sigma^{-1}X)^{-1}X^{\top}\Sigma^{-1}Y$ with variance $t^{\top}(X^{\top}\Sigma^{-1}X)^{-1}t$. [Theorem] $W = \lambda^{\top} \Sigma \lambda$ is minimized if $\lambda^{\top} = t^{\top} (X^{\top} \Sigma^{-1})$ $(X)^{-1}X^{\top}\Sigma^{-1}$ subject to the constraint that $X^{\top}\lambda = t$. $\cdot \operatorname{Cov}(X,Y) = E[\operatorname{Cov}(X,Y \mid Z)] + \operatorname{Cov}(E(X \mid Z), E(Y \mid Z)).$ [Lemma] If $M = \left[\begin{array}{c} X^\top \\ Z^\top \end{array} \right] \left[\begin{array}{cc} X & Z \end{array} \right] = \left[\begin{array}{cc} X^\top X & X^\top Z \\ Z^\top X & Z^\top Z \end{array} \right] = \left[\begin{array}{cc} A & B \\ B^\top & D \end{array} \right],$ $W = (D - B^{T} A^{-1} B)^{-1} = \left[Z^{T} Z - Z^{T} X (X^{T} X)^{-1} X^{T} Z \right]^{-1},$

$$M^{-1} = \begin{bmatrix} A^{-1} + A^{-1}BWB^{T}A^{-1} & -A^{-1}BW \\ WB^{T}A^{-1} & W \end{bmatrix}$$
$$= \begin{bmatrix} -A^{-1}B \\ I \end{bmatrix} W \begin{bmatrix} -B^{T}A^{-1} & I \end{bmatrix} + \begin{bmatrix} A^{-1} & 0 \\ 0 & 0 \end{bmatrix}.$$