

Comment détecter le type d'éclairage utilisé via des images extraites ?

Ivanhoé Botcazou

i.botcazou@gmx.fr

Acquisition des images

10 keuros

Les données initiales

Image de 5 obtenues avec un éclairage LED

Image de 9 obtenues avec un éclairage INC

Quelle méthodologie mettre en place pour faire de la classification entre ces deux modes d'éclairages sachant que les numéros photographiés ne sont pas les mêmes ?

Pipeline traitement d'images

Threshold

Analyse particles

Slice	Count	Total Area	Average Size	%Area	Mean	Mode	Perim.	Major	Minor	Angle	Circ.	Solidity	Feret	FeretX	FeretY	FeretAngle	MinFeret	IntDen	Median	Skew	Kurt
51	14	38135	2723.929	2.909	86.579	90.857	143.953	40.540	34.827	44.695	0.793	0.929	42.544	858.857	539.286	93.464	34.439	309414.500	88.786	0.361	-0.429
52	17	39036	2296.235	2.978	85.498	89.000	117.339	34.356	29.124	59.768	0.845	0.946	35.832	832.647	566.412	128.696	28.844	270091.059	87.647	0.009	-0.707
53	21	39765	1893.571	3.034	76.327	77.762	97.960	28.346	24.376	44.345	0.882	0.954	30.363	778.905	581.095	124.770	24.119	204983.667	77.952	0.351	-0.730
54	17	39075	2298.529	2.981	89.418	93.059	118.134	34.364	29.340	72.186	0.856	0.930	35.800	773.176	568.824	117.800	29.034	268374.235	91.706	0.008	-0.955
55	12	38424	3202.000	2.932	95.396	100.833	160.796	46.497	40.197	54.031	0.854	0.974	48.290	840.667	468.583	122.271	39.527	378048.917	98.417	-0.317	-0.620
56	23	38961	1693.957	2.972	81.677	83.130	87.903	25.594	21.760	47.485	0.899	0.959	26.572	767.435	541.130	131.222	21.425	202191.435	83.435	0.045	-0.917
57	19	39300	2068.421	2.998	84.080	87.737	107.275	31.191	26.214	55.333	0.852	0.960	32.211	793.684	584.737	121.507	25.875	242080.053	86.053	-0.161	-0.892
58	16	38987	2436.688	2.974	91.299	95.188	125.593	35.954	30.880	59.398	0.865	0.961	37.252	774.875	592.500	120.585	30.399	278886.938	93.312	0.028	-0.820
91	202	153869	761.728	11.739	31.788	31.059	51.961	12.041	5.741	42.162	0.741	0.926	12.731	558.639	725.733	133.041	6.055	30685.743	31.762	1.049	0.351
92	215	152544	709.507	11.638	31.761	31.070	53.301	12.765	5.340	26.485	0.665	0.950	13.056	575.349	727.549	144.781	5.527	28725.953	31.758	0.737	-0.341
93	191	171693	898.916	13.099	30.782	30.147	62.317	13.709	6.228	34.633	0.638	0.928	14.716	580.832	696.147	138.987	6.595	34450.560	30.702	0.965	1.138
94	184	176410	958.750	13.459	30.855	30.114	61.621	14.539	6.327	38.455	0.662	0.926	15.339	569.038	716.022	132.934	6.592	37340.755	30.859	0.687	-0.220
95	187	156935	839.225	11.973	31.876	31.155	58.215	14.113	5.902	33.562	0.623	0.930	14.854	562.861	721.080	135.154	6.199	34046.460	31.834	1.120	1.077
96	184	152044	826.326	11.600	31.892	31.152	58.354	13.668	6.087	37.923	0.656	0.929	14.276	553.418	712.918	137.469	6.358	33508.424	31.864	0.863	-0.155
97	163	141994	871.129	10.833	32.977	32.123	56.505	12.818	6.204	34.677	0.727	0.944	13.410	542.847	734.055	140.424	6.416	36816.920	32.939	1.026	0.480
98	190	159277	838.300	12.152	31.918	31.374	57.624	13.976	6.130	42.127	0.653	0.923	15.035	566.274	705.053	139.641	6.429	34331.153	31.863	1.014	0.744

Data

Fiche méthode pour le logiciel Fiji

Display results and Summarize

Choix des features et distributions

Explication des features en lien avec les nuances de gris :

- Mean : Moyenne d'intensité de pixel dans les objets ou les régions mesurées.
- Mode : Valeur la plus fréquente de l'intensité des pixels dans les objets.
- IntDen (Integrated Density): La somme des valeurs d'intensité des pixels dans l'objet.
- Median : Médiane de l'intensité des pixels dans les objets.
- Skew (Skewness): Asymétrie de la distribution de l'intensité des pixels dans les objets.
- Kurt (Kurtosis): Mesure de la "pointedness" ou de l'aplatissement de la distribution de l'intensité des pixels.

Un problème de classification

Le choix des features en lien avec les différentes nuances de gris sont discriminantes au vu des distributions et des corrélations en lien avec la valeur cible (Led = 1, INC= 0)

Arbre de décision

Le choix d'un modèle de machine learning relativement simple tel qu'un « DecisionTreeClassifier(max_depth=2) » issue de la librairie Sklearn sous python répond au problème de classification. Il est robuste à la cross validation et donne 100 % de bonnes réponses pour la partie test du jeu de données.

