Intro to Econometrics: Recitation 8

Gustavo Pereira

November 12, 2019

Roadmap for today

- Chapter 6 quick review:
 - Asymptotic order notation
 - ► The basic toolkit: CMT, delta method and limit theorems
- BH Chapter 7:
 - Asymptotic properties in the LP/LR model

Deterministic sequences

Consider the claim:

"The sequence $a_n = n^2$ diverges to infinity an order of magnitude faster than $b_n = n$ "

How do we make this rigorous?

Deterministic sequences

Consider the claim:

- ► How do we make this rigorous?
- " $|a_n b_n|$ gets large" is not a good idea; e.g. $a_n = 5n$, $b_n = n$

Deterministic sequences

Consider the claim:

- ► How do we make this rigorous?
- " $|a_n b_n|$ gets large" is not a good idea; e.g. $a_n = 5n$, $b_n = n$
- Let $r_n = \frac{a_n}{b_n}$:

Deterministic sequences

Consider the claim:

- ► How do we make this rigorous?
- " $|a_n b_n|$ gets large" is not a good idea; e.g. $a_n = 5n$, $b_n = n$
- Let $r_n = \frac{a_n}{b_n}$:
 - $ightharpoonup a_n \in O(b_n) \iff |r_n| \text{ is bounded}$

Deterministic sequences

Consider the claim:

- ► How do we make this rigorous?
- " $|a_n b_n|$ gets large" is not a good idea; e.g. $a_n = 5n$, $b_n = n$
- Let $r_n = \frac{a_n}{b_n}$:
 - $ightharpoonup a_n \in O(b_n) \iff |r_n| \text{ is bounded}$
 - $ightharpoonup a_n \in o(b_n) \iff |r_n| \to 0$

Deterministic sequences

Consider the claim:

- ► How do we make this rigorous?
- " $|a_n b_n|$ gets large" is not a good idea; e.g. $a_n = 5n$, $b_n = n$
- Let $r_n = \frac{a_n}{b_n}$:
 - ▶ $a_n \in O(b_n) \iff |r_n|$ is bounded
 - $ightharpoonup a_n \in o(b_n) \iff |r_n| \to 0$
- Note: we're assuming for simplicity that $b_n > 0$

- Convince yourself (or even better, give a proof) that:
 - $o(n^2)$
 - $\log(n) \in O(n)$
 - \circ $sin(n) \in O(1)$

- Convince yourself (or even better, give a proof) that:
 - $o(n^2)$
 - $\log(n) \in O(n)$
 - \circ $sin(n) \in O(1)$
- Also, for arbitrary (positive) x_n and y_n ,

- Convince yourself (or even better, give a proof) that:
 - $o(n^2)$
 - $\log(n) \in O(n)$
 - \circ $sin(n) \in O(1)$
- Also, for arbitrary (positive) x_n and y_n ,

- Convince yourself (or even better, give a proof) that:
 - $o(n^2)$
 - $\log(n) \in O(n)$
 - \circ $sin(n) \in O(1)$
- Also, for arbitrary (positive) x_n and y_n ,
 - **4** $x_n \in O(x_n)$ but the same doesn't hold for $o(x_n)$
 - **3** If $x_n \in O(An^2 + Bn + C)$, then $x_n \in O(n^2)$; moreover, $x_n \in o(n^3)$
 - * Similar fact for higher degree polynomials goes through

- Convince yourself (or even better, give a proof) that:
 - $o(n^2)$
 - $\log(n) \in O(n)$
 - \circ $sin(n) \in O(1)$
- Also, for arbitrary (positive) x_n and y_n ,

 - **3** If $x_n \in O(An^2 + Bn + C)$, then $x_n \in O(n^2)$; moreover, $x_n \in o(n^3)$
 - Similar fact for higher degree polynomials goes through
 - $x_n \in O(y_n)$ iff $x_n/y_n \in o(1)$; same for O(1)

- Convince yourself (or even better, give a proof) that:
 - $o(n^2)$
 - $\log(n) \in O(n)$
 - \circ $sin(n) \in O(1)$
- Also, for arbitrary (positive) x_n and y_n ,

 - **3** If $x_n \in O(An^2 + Bn + C)$, then $x_n \in O(n^2)$; moreover, $x_n \in o(n^3)$
 - * Similar fact for higher degree polynomials goes through
 - $x_n \in O(y_n)$ iff $x_n/y_n \in o(1)$; same for O(1)

Deterministic sequences: results

Lemma

For any positive sequences x_n , y_n , z_n and w_n ,

• If $x_n \in o(z_n)$ and $y_n \in o(w_n)$, then

$$x_n y_n \in o(z_n w_n)$$

$$x_n + y_n \in o(z_n + w_n)$$

and the same holds for O

 $\textbf{ 1s } x_n \in o(z_n) \text{ and } y_n \in O(w_n), \text{ then }$

$$x_n y_n \in o(z_n w_n)$$

$$x_n + y_n \in O(z_n + w_n)$$

Deterministic sequences: results

Proof:

- ▶ First part of (1) follows from limit arithmetic
- ▶ First part of (2) is a consequence of the fact that $a_n \to 0$ and b_n bounded implies $a_n b_n \to 0$
- ▶ Second part of (1) and (2): use

$$\frac{x_{n} + y_{n}}{z_{n} + w_{n}} = \frac{x_{n}}{z_{n}} \frac{z_{n}}{z_{n} + w_{n}} + \frac{y_{n}}{w_{n}} \frac{w_{n}}{z_{n} + w_{n}}$$

the ratio $z_n/(z_n+w_n)\in[0,1]$ is bounded

Sequences of random variables

- Analogs: let X_n be a sequence of random variables and a_n a positive deterministic sequence
 - ▶ $X_n \in O_p(a_n)$ iff $\frac{X_n}{a_n}$ is *stochastically* bounded
 - $X_n \in o_p(a_n) \text{ iff } \frac{X_n}{a_n} \stackrel{p}{\to} 0$

Sequences of random variables

- Analogs: let X_n be a sequence of random variables and a_n a positive deterministic sequence
 - $ightharpoonup X_n \in O_p(a_n)$ iff $\frac{X_n}{a_n}$ is stochastically bounded
 - $X_n \in o_p(a_n) \text{ iff } \frac{X_n}{a_n} \stackrel{p}{\to} 0$
- Definition of stochastically bounded.

For every $\delta > 0$ there exists M_{δ} such that

$$\Pr\{|X_n| \le M_\delta\} > 1 - \delta$$

Sequences of random variables

- Analogs: let X_n be a sequence of random variables and a_n a positive deterministic sequence
 - $ightharpoonup X_n \in O_p(a_n)$ iff $\frac{X_n}{a_n}$ is stochastically bounded
 - $X_n \in o_p(a_n) \text{ iff } \frac{X_n}{a_n} \stackrel{p}{\to} 0$
- Definition of stochastically bounded.

For every $\delta > 0$ there exists M_{δ} such that

$$\Pr\{|X_n| \le M_\delta\} > 1 - \delta$$

ullet Result: lemma goes through with o and O replaced with o_p and O_p

Sequences of random variables: an useful result

Sequences of random variables: an useful result

A sequence (X_n) that converges in distribution is necessarily $O_p(1)$

- Proof. Let Y be st $X_n \stackrel{d}{\to} Y$. Denote F_Y and F_n the CDF of Y and X_n , respectively. Fix $\delta > 0$.
 - ▶ Let M_δ be such that

$$F_Y(M_\delta) - F_Y(-M_\delta) = \Pr\{Y \in (-M_\delta, M_\delta]\} > 1 - \frac{\delta}{2}$$

▶ In addition, we can choose M_δ st F_Y continuous at M_δ and $-M_\delta$ (why?)

Sequences of random variables: an useful result

- Proof. Let Y be st $X_n \stackrel{d}{\to} Y$. Denote F_Y and F_n the CDF of Y and X_n , respectively. Fix $\delta > 0$.
 - ▶ Let M_δ be such that

$$F_Y(M_\delta) - F_Y(-M_\delta) = \Pr\{Y \in (-M_\delta, M_\delta]\} > 1 - \frac{\delta}{2}$$

- ▶ In addition, we can choose M_δ st F_Y continuous at M_δ and $-M_\delta$ (why?)
- Convergence in distribution implies $F_n(M_\delta) \to F_Y(M_\delta)$ and $F_n(-M_\delta) \to F_Y(-M_\delta)$

Sequences of random variables: an useful result

- Proof. Let Y be st $X_n \stackrel{d}{\to} Y$. Denote F_Y and F_n the CDF of Y and X_n , respectively. Fix $\delta > 0$.
 - ▶ Let M_δ be such that

$$F_Y(M_\delta) - F_Y(-M_\delta) = \text{Pr}\{Y \in (-M_\delta, M_\delta]\} > 1 - rac{\delta}{2}$$

- ▶ In addition, we can choose M_δ st F_Y continuous at M_δ and $-M_\delta$ (why?)
- Convergence in distribution implies $F_n(M_\delta) \to F_Y(M_\delta)$ and $F_n(-M_\delta) \to F_Y(-M_\delta)$
- Hence for n_0 sufficiently large, $F_n(M_\delta) > F_Y(M_\delta) \delta/4$ and $F_n(-M_\delta) < F_Y(-M_\delta) + \delta/4$ for all $n \ge n_0$

Sequences of random variables: an useful result

- Proof. Let Y be st $X_n \stackrel{d}{\to} Y$. Denote F_Y and F_n the CDF of Y and X_n , respectively. Fix $\delta > 0$.
 - ▶ Let M_δ be such that

$$F_Y(M_\delta) - F_Y(-M_\delta) = \Pr\{Y \in (-M_\delta, M_\delta]\} > 1 - \frac{\delta}{2}$$

- ▶ In addition, we can choose M_δ st F_Y continuous at M_δ and $-M_\delta$ (why?)
- Convergence in distribution implies $F_n(M_\delta) \to F_Y(M_\delta)$ and $F_n(-M_\delta) \to F_Y(-M_\delta)$
- Hence for n_0 sufficiently large, $F_n(M_\delta) > F_Y(M_\delta) \delta/4$ and $F_n(-M_\delta) < F_Y(-M_\delta) + \delta/4$ for all $n \ge n_0$
- That implies

$$\Pr\{|X_n| \le M_{\delta}\} \ge F_n(M_{\delta}) - F_n(-M_{\delta}) > 1 - \delta$$

The asymptotics toolkit

- You need to know the following by heart:
 - General results
 - **★** Continuous mapping theorem
 - ★ Slutzky's theorem
 - ★ Delta method
 - Results about averages
 - ★ Law of large numbers
 - * Central Limit Theorem

Continuous mapping theorem

- ullet Let F:U o V have a set of discontinuities U_0
- If $X_n \stackrel{d}{\to} X$ or $X_n \stackrel{p}{\to} X$, then $F(X_n) \to F(X)$ as long as

$$\Pr\{X\in \textit{U}_0\}=0$$

Slutzky's theorem

- If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} c$ where c is non-random, then

 - $2 X_n Y_n \stackrel{d}{\to} cX$
- These results follow from CMT, plus the fact that

$$(X_n,Y_n)\stackrel{d}{\to} (X,c)$$

provided that c is non-random.

Delta method

ullet If μ is non-random,

$$\sqrt{n}(X_n-\mu)\stackrel{d}{\to} Z$$

and g is differentiable at μ , then

$$\sqrt{n}(g(X_n)-g(\mu))\stackrel{d}{\rightarrow} g'(\mu)Z$$

- Remarks.
 - ullet No assumption about normality is needed for Z.
 - The theorem goes through in the multivariate case
 - ★ Example: $F(\gamma_1, \gamma_2) = \gamma_1 \gamma_2$

• Let $\{X_i\}$ be sampled iid from some distribution. Denote

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

13 / 22

• Let $\{X_i\}$ be sampled iid from some distribution. Denote

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• Law of large numbers. If $\{X_i\}$ are sampled iid from distribution with finite mean, then

$$\bar{X}_n \stackrel{p}{\to} X_1$$

• Let $\{X_i\}$ be sampled iid from some distribution. Denote

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• Law of large numbers. If $\{X_i\}$ are sampled iid from distribution with finite mean, then

$$\bar{X}_n \stackrel{p}{\to} X_1$$

• Central limit theorem. If $\{X_i\}$ are sampled iid from distribution with finite mean μ and variance σ^2 ,

$$\sqrt{n}\left(\bar{X}_n-\mu\right)\stackrel{d}{
ightarrow}Z\sim N(0,\sigma^2)$$

• Remark. If X_i have finite mean and variance, the central limit theorem gives a bound on the rate of convergence of \bar{X}_n

- Remark. If X_i have finite mean and variance, the central limit theorem gives a bound on the rate of convergence of \bar{X}_n
- In fact:

$$\bar{X}_n - \mu = \frac{1}{\sqrt{n}} \left[\sqrt{n} (\bar{X}_n - \mu) \right] = O_p(n^{-1/2}) O_p(1) = O_p(n^{-1/2})$$

- Remark. If X_i have finite mean and variance, the central limit theorem gives a bound on the rate of convergence of \bar{X}_n
- In fact:

$$\bar{X}_n - \mu = \frac{1}{\sqrt{n}} \left[\sqrt{n} (\bar{X}_n - \mu) \right] = O_p(n^{-1/2}) O_p(1) = O_p(n^{-1/2})$$

• Hence (with finite second moments) the convergence of \bar{X}_n to μ is no slower than $n^{-1/2}$ goes to 0.

OLS asymptotics: the linear projection model

- Consider the following assumptions:
 - (1) (y_i, x_i) sampled iid
 - (2) $(y_i^2) < \infty$
 - (2') $(y_i^4) < \infty$
 - (3) $(\|x_i\|^2) < \infty$
 - (3') $(\|x_i\|^4) < \infty$
 - (4) $[x_i x_i']$ positive definite
- Notation:

$$[x_i x_i'] =: Q_{xx}$$

$$[x_iy_i] =: Q_{xy}$$

OLS asymptotics: the linear projection model

- Results:
 - Under (1), (2), (3) and (4), OLS is consistent for the population projection coefficient:

$$\hat{\beta} = \left(\sum_{i=1}^{n} x_i x_i'\right)^{-1} \sum_{i=1}^{n} x_i y_i \stackrel{p}{\rightarrow} \beta := Q_{xx}^{-1} Q_{xy}$$

② Under (1), (2'), (3') and (4), OLS is asymptotically normal:

$$\sqrt{n}\left[\left(\sum_{i=1}^{n}x_{i}x_{i}'\right)^{-1}\sum_{i=1}^{n}x_{i}y_{i}-\beta\right]\stackrel{d}{\to}N\left(0,Q_{xx}^{-1}\Omega Q_{xx}^{-1}\right)$$

- \star β is again the population projection coefficient
- ★ $\Omega = [u_i^2 x_i x_i']$
- * $u_i := y_i x_i' \beta$
- Notation:

$$V_{\beta} = Q_{xx}^{-1} \Omega Q_{xx}^{-1}$$

- Consider the following assumptions:
 - (1) (y_i, x_i) sampled iid
 - (2) $(y_i^2) < \infty$
 - (3) $(\|x_i\|^2) < \infty$
 - (4) $[x_i x_i']$ positive definite
 - (5) $(y_i|x_i) = x_i'\beta$
- Assumptions (1), (2), (3), (4) and (5) are called the linear regression model

- Consider the following assumptions:
 - (1) (y_i, x_i) sampled iid

(2')
$$(y_i^4) < \infty$$

- (3') $(\|x_i\|^4) < \infty$
- (4) $[x_i x_i']$ positive definite
- (5) $(y_i|x_i) = x_i'\beta$
- Assumptions (1), (2), (3), (4) and (5) are called the linear regression model
- Again (2') and (3') are required for asymptotic normality

- Consider the following assumptions:
 - (1) (y_i, x_i) sampled iid
 - (2) $(y_i^2) < \infty$
 - (2') $(y_i^4) < \infty$
 - (3) $(\|x_i\|^2) < \infty$
 - (3') $(\|x_i\|^4) < \infty$
 - (4) $[x_i x_i']$ positive definite
 - (5) $(y_i|x_i) = x_i'\beta$
 - (6) $\mathbf{V}[y_i|x_i] \equiv \sigma^2$
- Assumptions (1), (2), (3), (4) and (5) are called the linear regression model
- Again (2') and (3') are required for asymptotic normality
- If (6) is assumed, we have the homoskedastic linear regression model

• Finite sample variance of OLS:

$$\hat{\beta} = (X'X)^{-1}X'Y \implies \mathbf{V}(\hat{\beta}|X) = (X'X)^{-1}X'\mathbf{V}(Y|X)X(X'X)^{-1}$$

• Finite sample variance of OLS:

$$\hat{\beta} = (X'X)^{-1}X'Y \implies \mathbf{V}(\hat{\beta}|X) = (X'X)^{-1}X'\mathbf{V}(Y|X)X(X'X)^{-1}$$

• V(Y|X) is a diagonal matrix. Why?

• Finite sample variance of OLS:

$$\hat{\beta} = (X'X)^{-1}X'Y \implies \mathbf{V}(\hat{\beta}|X) = (X'X)^{-1}X'\mathbf{V}(Y|X)X(X'X)^{-1}$$

- V(Y|X) is a diagonal matrix. Why?
- Denote $D = \mathbf{V}(Y|X)$. Hansen defines:

$$V_{\hat{\beta}} = (X'X)^{-1}X'DX(X'X)^{-1}$$

• Finite sample variance of OLS:

$$\hat{\beta} = (X'X)^{-1}X'Y \implies \mathbf{V}(\hat{\beta}|X) = (X'X)^{-1}X'\mathbf{V}(Y|X)X(X'X)^{-1}$$

- V(Y|X) is a diagonal matrix. Why?
- Denote $D = \mathbf{V}(Y|X)$. Hansen defines:

$$V_{\hat{\beta}} = (X'X)^{-1}X'DX(X'X)^{-1}$$

This is not the same thing as

$$V_{\beta} = Q_{xx}^{-1}[u_i^2 x_i x_i'] Q_{xx}^{-1}$$

• Finite sample variance of OLS:

$$\hat{\beta} = (X'X)^{-1}X'Y \implies \mathbf{V}(\hat{\beta}|X) = (X'X)^{-1}X'\mathbf{V}(Y|X)X(X'X)^{-1}$$

- V(Y|X) is a diagonal matrix. Why?
- Denote $D = \mathbf{V}(Y|X)$. Hansen defines:

$$V_{\hat{\beta}} = (X'X)^{-1}X'DX(X'X)^{-1}$$

• This is not the same thing as

$$V_{\beta} = Q_{xx}^{-1}[u_i^2 x_i x_i']Q_{xx}^{-1}$$

It is true however that

$$nV_{\hat{\beta}} \stackrel{p}{\rightarrow} V_{\beta}$$

(why?)

OLS asymptotics: estimating the limiting variance

We know that the limiting variance of OLS in the LPM is

$$V_{\beta} = Q_{xx}^{-1} \Omega Q_{xx}^{-1}$$

• A valid estimator for $\Omega = [u_i^2 x_i x_i']$ is

$$\hat{\Omega} = \frac{1}{n} \sum_{i=1}^{n} \hat{u}_i^2 x_i x_i'$$

ullet One estimator for V_eta is

$$\hat{V}_{\beta}^{\mathsf{HC0}} = \hat{Q}_{\mathsf{xx}}^{-1} \hat{\Omega} \hat{Q}_{\mathsf{xx}}^{-1}$$

• One object of interest in the LRM is

$$m(x) = [y_i|x] = x'\beta$$

20 / 22

• One object of interest in the LRM is

$$m(x) = [y_i|x] = x'\beta$$

• How does one estimate this function? Reasonable candidate is:

$$\hat{m}(x) = x'\hat{\beta}$$

• One object of interest in the LRM is

$$m(x) = [y_i|x] = x'\beta$$

• How does one estimate this function? Reasonable candidate is:

$$\hat{m}(x) = x'\hat{\beta}$$

Note that for fixed x.

$$\sqrt{n}(\hat{m}(x) - m(x)) = x'\sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\rightarrow} N(0, x'V_{\beta}x)$$

so that

$$\left(x'\hat{V}_{\beta}x\right)^{-1/2}\sqrt{n}[\hat{m}(x)-m(x)]\overset{d}{
ightarrow}N(0,1)$$

• One object of interest in the LRM is

$$m(x) = [y_i|x] = x'\beta$$

• How does one estimate this function? Reasonable candidate is:

$$\hat{m}(x) = x'\hat{\beta}$$

Note that for fixed x.

$$\sqrt{n}(\hat{m}(x) - m(x)) = x'\sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\rightarrow} N(0, x'V_{\beta}x)$$

so that

$$\left(x'\hat{V}_{\beta}x\right)^{-1/2}\sqrt{n}[\hat{m}(x)-m(x)]\stackrel{d}{\to}N(0,1)$$

That motivates the approximation

$$\hat{m}(x) \approx N\left(m(x), \frac{1}{n}x'\hat{V}_{\beta}x\right)$$

• Suppose you expect to obtain one additional data point: (y_{n+1}, x_{n+1})

- Suppose you expect to obtain one additional data point: (y_{n+1}, x_{n+1})
- How would you predict y_{n+1} ? Quadratic loss function implies best prediction is

$$y_{n+1}^* = [y_i|x_{n+1}] = m(x_{n+1}) = x'_{n+1}\beta$$

- Suppose you expect to obtain one additional data point: (y_{n+1}, x_{n+1})
- How would you predict y_{n+1} ? Quadratic loss function implies best prediction is

$$y_{n+1}^* = [y_i|x_{n+1}] = m(x_{n+1}) = x'_{n+1}\beta$$

• The above is infeasible; use plug-in estimate $\hat{m}(x)$

$$\tilde{y}_{n+1} = x'_{n+1}\hat{\beta}$$

- Suppose you expect to obtain one additional data point: (y_{n+1}, x_{n+1})
- How would you predict y_{n+1} ? Quadratic loss function implies best prediction is

$$y_{n+1}^* = [y_i|x_{n+1}] = m(x_{n+1}) = x'_{n+1}\beta$$

• The above is infeasible; use plug-in estimate $\hat{m}(x)$

$$\tilde{y}_{n+1} = x'_{n+1}\hat{\beta}$$

Forecast error is

$$\tilde{e}_{n+1} = y_{n+1} - x'\hat{\beta} = x'\beta + e_i - x'\hat{\beta} = e_{n+1} + x'(\beta - \hat{\beta})$$

- ▶ The true regression has an error e_{n+1}
- ▶ In addition to that, there is an estimation noise coming from $\hat{\beta}$ being different than β

• Finite sample variance of e_{n+1} :

$$[\hat{e}_{n+1}^2|x_{n+1}] = \sigma^2(x_{n+1}) + x'_{n+1}V_{\hat{\beta}}x_{n+1}$$

• Can we build a confidence interval for the forecast?