Relevant Review from Lecture: Sufficiency

U is a sufficient statistic for θ if and only if: $L(y_1, ..., y_n | \theta) = g(U, \theta) \times h(y_1, ..., y_n)$. It is mandatory for $g(U, \theta)$ to be a function that contains θ (it cannot be a constant) whereas $h(y_1, ..., y_n)$ just needs to be a function without θ .

Relevant Review from Lecture: Completeness

A statistic U is complete if and only if every function g(U) such that $\mathbb{E}(g(U)) = 0, \forall \theta$ implies that g(U) = 0 almost everywhere (a.e). There are two methods:

- 1. **Definition.** Use this when the support depends on θ and/or when you need to prove $Y_{(1)} = \min\{Y_1,...,Y_n\}$ or $Y_{(n)} = \max\{Y_1,...,Y_n\}$ is complete. Method: set $\mathbb{E}(g(\hat{\theta})) = \int g(y)f_{\hat{\theta}}(y)dy$ to equal 0 and then prove $g(\theta) = 0$.
- 2. Exponential family. When the support does not depend on θ , the distribution may belong to the exponential family (in fact, many common distributions do!) This also proves sufficiency, so it's highly efficient. Method: prove the distribution has the form: $f(y|\theta) = e^{p(\theta)k(y) + q(\theta) + s(y)}$ and therefore $U = \sum_{i=1}^n k(y_i)$ is sufficient and complete.

Relevant Review from Lecture: Rao-Blackwell Theorem

If $\hat{\theta}$ is an **unbiased** estimator for θ and U is a **sufficient** statistic for θ and contains $\hat{\theta}$, then $\mathbb{E}(\hat{\theta}|U) = \hat{\theta}$ is the MVUE (Minimum Variance Unbiased Estimator). Prove that U (the sufficient statistic) is also complete to prove it's the UMVUE Unique Minimum Variance Unbiased Estimator). There are two common procedures:

- 1. If the distribution is known, i.e., exponential, gamma, normal... Then you should:
 - i. Find an unbiased estimator U_1
 - ii. Find a sufficient estimator U_2

Then $\mathbb{E}(U_1|U_2)=U_1$ is the MVUE. (For UMVUE, U_2 should be complete.)

- 2. If the distribution is not known, then you should:
 - i. Find a sufficient estimator U
 - ii. Find a function g(x) such that g(U) is an unbiased estimator for θ .

Then $\mathbb{E}(g(U)|U) = g(U)$ is the MVUE. (For UMVUE, U must also be complete.)

Disclaimer: STA260 covers extensive material. Tutorials serve as additional aids, but they cannot cover every question type.

Question 1

Let $Y_1, ..., Y_n$ be a random sample with the following probability density function:

$$f(y) = \begin{cases} \frac{y}{\theta} e^{\frac{-y^2}{2\theta}} & y > 0\\ 0 & \text{otherwise.} \end{cases}$$

Where $\theta > 0$. Find the sufficient statistic using the factorization theorem, and provide $g(u,\theta)$ and $h(y_1,...,y_n)$.

Question 2

Let $Y_1,...,Y_n$ be a random sample from a population density function:

$$f(y) = \begin{cases} \frac{3y^2}{\theta^3} & 0 \le y \le \theta \\ 0 & \text{otherwise.} \end{cases}$$

Show that $Y_{(n)} = \max\{Y_1,...,Y_n\}$ is complete.

Question 3

Let $Y_1,...,Y_n$ be a random sample from a Bernoulli(p) distribution. Find the MVUE of $(1-p)^2$.

Question 4

Let $Y_1,...,Y_n$ be a random sample from a $Gamma(2,\beta)$ distribution. Find the UMVUE of $\beta(\beta+2)$.

Continuous Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Uniform	$f(y) = \frac{1}{\theta_2 - \theta_1}; \theta_1 \le y \le \theta_2$	$\frac{\theta_1+\theta_2}{2}$	$\frac{(\theta_2 - \theta_1)^2}{12}$	$\frac{e^{t\theta_2} - e^{t\theta_1}}{t(\theta_2 - \theta_1)}$
Normal	$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{1}{2\sigma^2}\right)(y-\mu)^2\right]$ $-\infty < y < +\infty$	μ	σ^2	$\exp\left(\mu t + \frac{t^2\sigma^2}{2}\right)$
Exponential	$f(y) = \frac{1}{\beta} e^{-y/\beta}; \beta > 0$ $0 < y < \infty$	β	$oldsymbol{eta}^2$	$(1-\beta t)^{-1}$
Gamma	$f(y) = \left[\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right] y^{\alpha - 1} e^{-y/\beta};$ $0 < y < \infty$	αβ	$lphaeta^2$	$(1-\beta t)^{-\alpha}$
Chi-square	$f(y) = \frac{(y)^{(v/2)-1}e^{-y/2}}{2^{v/2}\Gamma(v/2)};$ $y^2 > 0$	v	2ν	$(1-2t)^{-\nu/2}$
Beta	$f(y) = \left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\right] y^{\alpha - 1} (1 - y)^{\beta - 1};$ $0 < y < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	does not exist in closed form

Discrete Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Binomial	$p(y) = \binom{n}{y} p^{y} (1-p)^{n-y};$ $y = 0, 1, \dots, n$	np	np(1-p)	$[pe^t + (1-p)]^n$
Geometric	$p(y) = p(1-p)^{y-1};$ y = 1, 2,	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Hypergeometric	$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}};$ $y = 0, 1, \dots, n \text{ if } n \le r,$ $y = 0, 1, \dots, r \text{ if } n > r$	$\frac{nr}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	
Poisson	$p(y) = \frac{\lambda^{y} e^{-\lambda}}{y!};$ $y = 0, 1, 2, \dots$	λ	λ	$\exp[\lambda(e^t-1)]$
Negative binomial	$p(y) = {y-1 \choose r-1} p^r (1-p)^{y-r};$ y = r, r+1,	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$