

CD4060BMS

CMOS 14 Stage Ripple-Carry Binary Counter/Divider and Oscillator

FN3317 Rev 0.00 December 1992

Features

- High Voltage Type (20V Rating)
- Common Reset
- 12MHz Clock Rate at 15V
- · Fully Static Operation
- · Buffered Inputs and Outputs
- · Schmitt Trigger Input Pulse Line
- · Standardized, Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- · 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Oscillator Features

- · All Active Components on Chip
- · RC or Crystal Oscillator Configuration
- RC Oscillator Frequency of 690kHz Min. at 15V

Applications

- Control counters
- Timers
- Frequency Dividers
- · Time Delay Circuits

Description

CD4060BMS consists of an oscillator section and 14 ripple carry binary counter stages. The oscillator configuration allows design of either RC or crystal oscillator circuits. A RESET input is provided which resets the counter to the all O's state and disables the oscillator. A high level on the RESET line accomplishes the reset function. All counter stages are master slave flip-flops. The state of the counter is advanced one step in binary order on the negative transition of $\emptyset I$ (and \emptyset_0). All inputs and outputs are fully buffered. Schmitt trigger action on the input pulse line permits unlimited input pulse rise and fall times.

The CD4060BMS is supplied in these 16 lead outline packages:

Braze Seal DIP H4W
Frit Seal DIP H1F
Ceramic Flatpack H6W

Pinout

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) ... -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs ... -0.5V to VDD +0.5V DC Input Current, Any One Input ... ± 10 mA Operating Temperature Range ... -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) ... -65°C to +150°C Lead Temperature (During Soldering) ... ± 265 °C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ja}	θ_{ic}
Ceramic DIP and FRIT Package	80°C/W	θ _{jc} 20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD		
For TA = -55°C to +100°C (Package Type		
For TA = +100°C to +125°C (Package T	ype D, F, K)	Derate
	ity at 12mW/ ^o	
Device Dissipation per Output Transistor .		100mW
For TA = Full Package Temperature Rar	nge (All Pack	age Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (I	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND		1	+25°C	-	10	μА
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V		1	+25°C	0.53	-	mA
(Excluding pins 9 & 10)	IOL10	VDD = 10V, VOUT = 0.5V		1	+25°C	1.4	-	mA
	IOL15	5 VDD = 15V, VOUT = 1.5V		1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V		1	+25°C	-	-0.53	mA
(Excluding pins 9 & 10)	IOH5B	VDD = 5V, VOUT = 2.5V		1	+25°C	-	-1.8	mA
	IOH10	VDD = 10V, VOUT = 9.5V		1	+25°C	-	-1.4	mA
	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2 VI	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDE	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	VDD = 5V, VOH > 4.5V, VOL < 0.5V		+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	VDD = 5V, VOH > 4.5V, VOL < 0.5V		+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being implemented.

^{3.} For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS			
PARAMETER	SYMBOL	CONDITIONS (NOTES 1, 2)	GROUP A SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	740	ns	
Input Pulse Operation øI to Q4	TPLH1		10, 11	+125°C, -55°C	-	999	ns	
Propagation Delay TP		VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns	
QN to QN + 1	TPLH2		10, 11	+125°C, -55°C	-	270	ns	
Propagation Delay	TPHL3	TPHL3 VDD = 5V, VIN = VDD or GND	9	+25°C	-	360	ns	
RESET			10, 11	+125°C, -55°C	-	486	ns	
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns	
	TTLH		10, 11	+125°C, -55°C	-	270	ns	
Maximum Input Pulse	FØI	VDD = 5V VIN = VDD or GND	9	+25°C	3.5	-	MHz	
Frequency			10, 11	+125°C, -55°C	2.59	-	MHz	

NOTES:

- 1. VDD = 5V, CL = 50pF, RL = 200K
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	IDD VDD = 5V, VIN = VDD or GND		-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
(Excluding pins 9 & 10)				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
(Excluding pins 9 & 10)				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
(Excluding pins 9 & 10)				-55°C	4.2	-	mA
Output Current	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
(Source) (Excluding pins 9 & 10)				-55°C	ı	-0.64	mA
Output Current	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
(Source) (Excluding pins 9 & 10)				-55°C	1	-2.0	mA
Output Current	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	ı	-0.9	mA
(Source) (Excluding pins 9 & 10)				-55°C	-	-1.6	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	MITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
(Source) (Excluding pins 9 & 10)				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V
Drive Current at Pin 9	IOL	VDD = 5V, VO = .4V	3	+25°C	0.16	-	mA
Oscillator Design		VDD = 10V, VO = .5V	3	+25°C	0.42	-	mA
		VDD = 15V, VO = 1.5V	3	+25°C	-1.0	-	mA
Drive Current at Pin 9	IOH	VDD = 5V	1, 2, 3	+25°C	-	16	mA
Oscillator Design		VDD = 10V	1, 2, 3	+25°C	-	42	mA
		VDD = 15V	1, 2, 3	+25°C	-	1.0	mA
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	300	ns
Input Pulse øI to Q4	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	200	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	100	ns
QN to QN + 1	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	160	ns
RESET		VDD = 15V	1, 2, 3	+25°C	-	100	ns
Transition Time	TTHL TTLH	VDD = 10V	1, 2, 3	+25°C	-	100	ns
		VDD = 15V	1, 2, 3	+25°C	-	80	ns
Maximum Input Pulse	FØI	VDD = 10V	1, 2, 3	+25°C	8	-	MHz
Frequency		VDD = 15V	1, 2, 3	+25°C	12	-	MHz
Minimum RESET Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	120	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	60	ns
		VDD = 15V	1, 2, 3	+25°C	-	40	ns
Minimum Input Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	100	ns
Width F = 100kHz		VDD = 10V	1, 2, 3	+25°C	-	40	ns
1 - 100K112		VDD = 15V	1, 2, 3	+25°C	-	30	ns
RC Operation RX Max	RX	VDD = 5V, CX = 10μF	2, 3	+25°C	-	20	ΜΩ
		VDD = 10V, CX = 50μF	2, 3	+25°C	-	20	MΩ
		VDD = 15V, CX = 10μF	2, 3	+25°C	-	10	MΩ
RC Operation CX Max	CX	VDD = 5V, RX = 500kΩ	2, 3	+25°C	-	1000	μF
		VDD = 10V, RX = 300kΩ	2, 3	+25°C	-	50	μF
		VDD = 15V, RX = 300kΩ	2, 3	+25°C	-	50	μF
Maximum Oscillator	$RX = 5k\Omega$	VDD = 10V	2, 3	+25°C	530	810	ns
Frequency (Note 4)	CX = 15pF	VDD = 15V	2, 3	+25°C	690	940	ns
RC Operation Variation	CX = 200pF	VDD = 5V	2, 3	+25°C	18	25	kHz
of Frequency	RS = 560K RX = 50k	VDD = 10V	2, 3	+25°C	20	26	kHz
(Unit-to-Unit)	r∧ - 30K	VDD = 15V	2, 3	+25°C	21.1	27	kHz
Variation of Frequency	CX = 200pF	5V to 10V	2, 3	+25°C	-	2	kHz
with Voltage Change (Same Unit)	RS = 560K RX = 50k	10V to 15V	2, 3	+25°C	1	1	kHz

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. RC Oscillator applications are not recommended at supply voltages below 7V for RX < $50k\Omega$.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

						LIMITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	\pm 1.0 μ A
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre	e Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1	1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1	1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Group B Subgroup B-5		1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	1 - 7, 9, 10, 13 - 15	8, 11, 12	16			
Static Burn-In 2 Note 1	1 - 7, 9, 10, 13 - 15	8	11, 12, 16			
Dynamic Burn-In Note 1	-	8, 12	16	1 - 7, 9, 10, 13 - 15	11	-
Irradiation Note 2	1 - 7, 9, 10, 13 - 15	8	11, 12, 16			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K±5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = 10V ± 0.5V

Logic Diagram

Typical Performance Curves

FIGURE 1. TYPICAL N-CHANNEL OUTPUT LOW SINK CURRENT CHARACTERISTICS

FIGURE 3. TYPICAL P-CHANNEL OUTPUT HIGH (SOURCE)
CURRENT CHARACTERISTICS

FIGURE 5. TYPICAL PROPAGATION DELAY TIME (QN TO QN+1) AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 2. MINIMUM N-CHANNEL OUTPUT LOW (SINK)
CURRENT CHARACTERISTICS

FIGURE 4. MINIMUM P-CHANNEL OUTPUT HIGH (SOURCE)
CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL PROPAGATION DELAY TIME (Ø1 TO Q4 OUTPUT) AS A FUNCTION OF LOAD CAPACITANCE

Typical Performance Curves (Continued)

FIGURE 7. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 8. TYPICAL DYNAMIC POWER DISSIPATION AS A FUNCTION OF INPUT FREQUENCY

Test Circuits

FIGURE 9. DYNAMIC POWER DISSIPATION TEST CIRCUIT

FIGURE 10. TYPICAL RC CIRCUIT

Test Circuits (Continued)

FIGURE 11. TYPICAL CRYSTAL CIRCUIT

Chip Dimensions and Pad Layout

Dimension in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

METALLIZATION: Thickness: 11kÅ - 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

© Copyright Intersil Americas LLC 1999. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

