22 September 2023 09:59

But we know
$$\alpha \beta = 1$$
 $\Rightarrow \alpha (n) = n$ $\Rightarrow \alpha (n) = n$

But we know $\alpha \beta = 1$ $\Rightarrow \alpha (n) = n$

But we know $\alpha \beta = 1$ $\Rightarrow \alpha (n) = n$

But we know $\alpha \beta = 1$ $\Rightarrow \alpha (n) = n$

But we know $\alpha \beta = 1$ $\Rightarrow \alpha (n) = n$

But we know $\alpha \beta = 1$ $\Rightarrow \alpha (n) = n$

Similarly $\alpha (n$

g> Let $\alpha = \beta \gamma$ in $\leq n$ where β and γ are disjoint. Λ if β mores i then $\alpha^{k}(i) = \beta^{l}(i)$ $f \neq 0$ $Ans: - \alpha(i) = \beta^{k}(i) = \beta(\gamma(i)) = \beta(i)$ $Ans: - \beta^{k}(i) = \beta^{k}(i) \dots [using industrian]$

Aus:-
$$\alpha(i) = \beta(i) = \beta(\tau(i)) = \beta(\tau($$

If x and β are cycles in S_n and if $\exists i$ mored by both x and y and if x and y then y show that y = y and y

Ans:
$$- \propto = \beta \Upsilon$$

$$\propto = (\beta_1 \beta_2 - \beta_1)(\Upsilon, \Upsilon_2 - T_k) \qquad \Upsilon(12 \qquad \Upsilon+k) = (12 - (12 - (12 - 12 + k)))$$

$$\approx (12 - (12 - (12 - 12 + k))) \qquad \Upsilon = 1$$

$$\approx (12 - (12$$

Factorizations into Disjoint Cycles!

Theorem: Every permutation at Sn is either a cycle or a disjoint product of cycle

Definition. A complete factorization of a permutation of is a fortanization of day and as a product of disjoint cycles which contains one 1-cycle(1) for every; fixed by ox.

Theorem: - Let de Su and let d= B, Br. - Bt be a complete factorization is unque for the into disjoint cycles. This factorization is unque for the order in valid the factor occurs

B> x is a permetation of \(\green \), 2, ..., 9} defined by \(\alpha(i) = 10 - i. Write \)

A as a product of disjoint cycles

$$Awi- X= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

S) How movey $\alpha \in S_N$ are there with $\alpha^2 = 1$?

Ans:- (ij) $\forall i, j \in X \rightarrow \binom{n}{2}$ (i j) $(Y \leq S) \forall i, i, r, s \in X \rightarrow \binom{n}{2} \binom{n^2}{2}$

$$\geq \left(\prod_{i=0}^{W_2} \binom{v^{-2i}}{2} \right)$$

Even and Odd Permutahous:

Theorem: - Every permutation acsn is a product of transpositions Proof: (a, a2. . ak) = (a, ak) (a, a16-1) (a, a2)

Definition: A permutation XES is even if it is a product of an even number of transpositions otherwise it is odd.

Lemma: - If k, l > 0 then

(ab) (ac, ... ckbd, ... dx) = (ac, ... ck) (bd, ... de) (ab) (ac, --- C/c) (bd, --- de) = (ac, --- C/c bd, --- de)