1 Question 3

1 Question 3

In what sense is $\mathcal{O}_P(1) = \mathcal{O}_P(1)$? Is $\mathcal{O}_P(1) = \mathcal{O}_p(1)$?

We say that a sequence of random variables, X_n , is $\mathcal{O}_P(1)$ if $X_n \stackrel{p}{\to} 0$. We say that X_n is $\mathcal{O}_P(1)$ if X_n is tight. Since we have that

$$X_n = \mathcal{O}_P(1) \implies X_n \stackrel{d}{\to} 0$$

and

$$X_n \stackrel{d}{\to} X \implies X_n = \mathcal{O}_P(1),$$

(where X is a random variable) we have,

$$X_n = \mathcal{O}_P(1) \implies X_n = \mathcal{O}_P(1).$$

In this sense,

$$o_P(1) = \mathcal{O}_P(1).$$

However, the converse is not true in general. For instance, realize that $X_n \stackrel{d}{\to} X$ is a sufficient condition for tightness, but not for convergence in probability. Only when X is a constant does it imply convergence in probability, but even then, X must equal 0 for $X_n = \mathcal{O}_P(1)$.

An even stronger statement can be said though: in general, tightness does not imply convergence in distribution, and therefore does not imply convergence in probability. Consider, a sequence of random variables, X_n , where $X_{2n} \sim U[0,1]$, and $X_{2n+1} \sim U[2,3]$. It is obvious that X_n does not converge in distribution. However, it is tight. To prove this, take $M_{\epsilon} = 3$. Then, we have

$$\sup \Pr(|X_n| > 3) < \epsilon, \forall \epsilon > 0.$$

Thus, $X_n = \mathcal{O}_P(1)$, but $X_n \neq \mathcal{O}_P(1)$.

2 Question 7

To prove this, notice first that it is essentially Jensen's Inequality with conditional expectations. Thus, we will need the Chordal Slope Lemma. Also, (after defining $c := \mathbf{E}[Y|X]$) the following objects will be helpful:

$$\Delta_{+,h(c)} := \frac{f(c+h) - f(c)}{h}$$

$$\Delta_{-,h(c)} := \frac{f(c) - f(c-h)}{h}$$

$$D_{+}(c) := \lim_{h \downarrow 0} \Delta_{+,h(c)}$$

$$D_{-}(c) := \lim_{h \downarrow 0} \Delta_{-,h(c)},$$

3 Question 11 2

where f is a convex function. It is also easy to see by the Chordal Slope Lemma that $D_{-}(c)$ and $D_{+}(c)$ are bounded below and above respectively by $\Delta_{-,h(c)}$ and $\Delta_{+,h(c)}$.

Next, select an $m \in [D_{-}(c), D_{+}(c)]$, and define

$$L(x) := f(c) + m(x - c).$$

We we now want to show that $L(x) \leq f(x)$. There are three cases: when c > x, c = x, and when c < x. From this point on, we will replace the previous convex function f with another convex function, call it ϕ .

First consider c = x. The inequality holds trivially.

Next, take c > x = c - h. Notice that since $m \in [D_{-}(c), D_{+}(c)]$, we get:

$$m \ge \frac{\phi(c) - \phi(x)}{c - x}$$
$$\phi(c) + m(x - c) \le \phi(x)$$
$$L(x) \le \phi(x).$$

For the last case, take c < x = c - h. Just like above, we get:

$$m \le \frac{\phi(x) - \phi(c)}{x - c}$$
$$\phi(c) + m(x - c) \le \phi(x)$$
$$L(x) \le \phi(x).$$

Thus, $L(x) \leq \phi(x)$.

Next, take, x = Y and recall that c := E[Y|X]. We have that

$$L(Y) \leq \phi(Y)$$

$$0 \leq \phi(Y) - L(Y)$$

$$0 \leq \mathbf{E}[\phi(Y) - L(Y)|X] \qquad 3)$$

$$0 \leq \mathbf{E}[\phi(Y)|X] - \mathbf{E}[L(Y)|X] \qquad 1)$$

$$\mathbf{E}[L(Y)|X] \leq \mathbf{E}[\phi(Y)|X]$$

$$\mathbf{E}[\phi(\mathbf{E}[Y|X])|X] + \mathbf{E}[mY|X] - \mathbf{E}[m\mathbf{E}[Y|X]|X] \leq \mathbf{E}[\phi(Y)|X] \qquad 1)$$

$$\phi(\mathbf{E}[Y|X]) + m\mathbf{E}[Y|X] - m\mathbf{E}[Y|X] \leq \mathbf{E}[\phi(Y)|X] \qquad 1) \& 2)$$

$$\phi(\mathbf{E}[Y|X]) \leq \mathbf{E}[\phi(Y)|X].$$

And thus, our result has been obtained. The steps above can be justified from two properties of conditional expectation (the steps have been labeled accordingly). Namely: 1) $\mathbf{E}[Y+Z|X] = \mathbf{E}[Y|X] + \mathbf{E}[Z|X]$; 2) If Y = f(X), then $\mathbf{E}[Y|X] = f(X)$; and 3) we know that if $\Pr(0 \le Y) = 1$, then $\Pr(0 \le \mathbf{E}[Y|X]) = 1$.

3 Question 11

To answer this question, we are going to need to prove the following fact: that independence of X and Y implies that $\mathbf{E}[Y|X] = \mathbf{E}[Y]$, which is a constant.

4 Question 15

Consider the definition of conditional expectation. Since all we are given is that the first moment for Y exists, we have to work from the following definition: $\mathbf{E}[Y|X]$ is any $m^*(X)$ with $\mathbf{E}[|m^*(X)|] < \infty$ such that for any Borel set B in $\mathcal{B} \subset \mathbb{R}^k$,

$$\mathbf{E}[(Y - m^*(X))\mathbb{1}_{\{X \in B\}}] = 0.$$

Working from this definition, we can obtain our result. First, let $m^*(X) = \mathbf{E}[Y]$ and B an arbitrary Borel set, then test to see if it solves the following:

$$\begin{split} \mathbf{E}[(Y-m^*(X))\mathbb{1}_{\{X\in B\}}] &= 0 \\ \mathbf{E}[(Y-\mathbf{E}[Y])\mathbb{1}_{\{X\in B\}}] &= \mathbf{E}[\mathbf{E}[Y]]\mathbf{E}[\mathbb{1}_{\{X\in B\}}] \\ \mathbf{E}[Y\mathbb{1}_{\{X\in B\}}] &= \mathbf{E}[\mathbf{E}[Y]]\mathbf{E}[\mathbb{1}_{\{X\in B\}}] \\ \mathbf{E}[Y]\mathbf{E}[\mathbb{1}_{\{X\in B\}}] &= \mathbf{E}[Y]\mathbf{E}[\mathbb{1}_{\{X\in B\}}] \\ \mathbf{E}[Y]\mathbf{E}[\mathbb{1}_{\{X\in B\}}] &= \mathbf{E}[Y]\mathbf{E}[\mathbb{1}_{\{X\in B\}}] \\ \mathbf{E}[Y]\mathbf{P}\{X\in B\} &= \mathbf{E}[Y]\mathbf{P}\{X\in B\}. \end{split}$$

Since E[Y] works above, and $E[Y|X] := m^*(X)$ we have that E[Y|X] = E[Y]. Thus, E[Y|X] is equal to a constant with probability one, and that constant is E[Y].

4 Question 15

We are given that $E[Y|X] = X'\beta$, and that $Y = X'\beta + U$. This implies that E[U|X] = 0. To see this take the conditional expectation of $Y = X'\beta + U$:

$$\mathbf{E}[Y|X] = \mathbf{E}[X'\beta + U|X]$$

$$\mathbf{E}[Y|X] = \mathbf{E}[X'\beta|X] + \mathbf{E}[U|X]$$

$$\mathbf{E}[Y|X] = X'\beta + \mathbf{E}[U|X].$$
2)

And since we are given that $E[Y|X] = X'\beta$, it is immediate that:

$$\mathbf{E}[U|X] = 0.$$

As in Question 7, the steps above can be justified from two properties of conditional expectation (the steps have been labeled accordingly). Namely: 1) $\mathbf{E}[Y+Z|X] = \mathbf{E}[Y|X] + \mathbf{E}[Z|X]$; and 2) If Y = f(X), then $\mathbf{E}[Y|X] = f(X)$.

Although this implies that U is mean independent of X, it does not imply independence. Notice that because Y takes values in $\{0,1\}$, we have that Y|X is Bernoulli with $p = \mathbf{E}[Y|X]$, i.e.

$$Var[Y|X] = \mathbf{E}[Y|X](1 - \mathbf{E}[Y|X]).$$

We can also observe that $Var[U|X] = Var[Y|X] = \mathbf{E}[Y|X](1 - \mathbf{E}[Y|X])$. And since it is given that $\mathbf{E}[Y|X] = X'\beta$, we have that:

$$Var[U|X] = X'\beta(1 - X'\beta)$$

which does depend on X.