SimMIM: a Simple Framework for Masked Image Modeling

- Finding what is important with masked image modeling
- Similar to BERT style pretraining but for images
 - Fill in the blank

Masked language modeling

Masked image modeling

Primary Findings

- Directly learning to regress all masked pixels can very powerful
- Not necessary to do more complicated setups with patch classification
- Not necessary to use a heavy decoder, single linear layer is fine
- Need a much higher masking rate than in language
 - o in language models 15% is usually a good baseline, in vision models they found it useful to go all the way up to 80%
- Quality of prediction isnt really that important
 - Can train a larger decoder head at a higher resolution that yields better inpainting but doesnt transfer to new tasks any better

Results

Mask	Masked	Mask	Top-1
Type	patch size	ratio	acc (%)
square	32	$0.11(2\times2)$	82.6
	32	0.25 (3×3)	82.5
	32	$0.44(4 \times 4)$	82.5
	16/32	0.4	82.7/82.7
block-wise	16/32	0.6	82.6/82.6
	16/32	0.8	82.4/82.5
	4/8/16/32	0.4	81.9/82.0/82.4/82.9
	4/8/16/32	0.6	82.0/82.1/82.7/82.8
random	4/8/16/32	0.8	82.1/82.4/82.8/82.4
	64	0.1	82.6
	64	0.2	82.6
	32	0.1	82.7
	32	0.2	82.8
random	32	0.3	82.8
	32	0.4	82.9
	32	0.5	83.0
	32	0.6	82.8
	32	0.7	82.7
	32	0.8	82.4
	32	0.9	82.4

Head	#params	Training costs	Top-1 acc (%)
Linear	89.9M	1×	82.8
2-layer MLP	90.9M	$1.2 \times$	82.8
inverse Swin-T	115.2M	$1.7 \times$	82.4
inverse Swin-B	174.8M	$2.3 \times$	82.5

Table 2. Ablation on different prediction heads. A simple linear layer performs the best with lower training costs.

Results

Prediction method doesn't really matter and you can predict tiny images and get similar results

Image size	6^2	12^{2}	24^{2}	48^{2}	96^{2}	1922
U						(1/1)
Top-1 acc (%)	82.3	82.7	82.8	82.7	82.8	82.8

Table 3. Ablation on different prediction resolutions. A moderately large resolution (no less than 1/16 all perform well.

Scope to predict	Top-1 acc (%)
masked area	82.8
full image	81.7

Loss	Pred. Resolution	Top-1 acc (%)
	Classification	
8-bin	192^{2}	82.7
8-bin	48^{2}	82.7
256-bin	192^{2}	N/A
256-bin	48^{2}	82.3
iGPT cluster	192^{2}	N/A
iGPT cluster	48^{2}	82.4
BEiT	-	82.7
	Regression	
ℓ_2	192^{2}	82.7
smooth- ℓ_1	192^{2}	82.7
ℓ_1	192^{2}	82.8
ℓ_1	48^{2}	82.7
ℓ_1	6^2	82.3