Cyclus, an agent-based fuel cycle simulator Brief Overview

Jin Whan Bae, Kathryn Huff

University of Illinois at Urbana-Champaign

May 21, 2018

ILLINOIS

Agent-based Framework

- · Cyclus is agent-based, which means it's very modular
- User can develop / plug in facilities
 - User can 'design' their own fuel cycle
 - Highly customizable

Figure 1: Modular Design of Cyclus

Timestep Execution

A simplified explanation: Each timestep:

¹Decision phase is planned to be added in the next release.

General Info

• Written in: C++, Python

• Input file: xml, json, python

• Output file: .sqlite, .hdf5

Terminology

- Archetypes: A collection of logic and behavior which can be configured into a prototype which can then be instantiated in simulation as a agent. Archetypes are represented as C++ classes that inherit from the base cyclus::Agent class. (e.g. Reactor module, Sink module)
- Prototypes: Archetype + parameters (e.g. Reactor with input-defined name, cycle time, assembly size, core size etc)
- **Agents**: Every single 'entity' in play during simulation (Region, Institution, Facility)

Terminology

- Region: The group agent that is a collection of institutions (Can manage / control regions)
- Institution: Agent that manages facilities (Can deploy, decommission facilities)
- Facility: The agent that 'trades' and does calculations (Trades material and transmutes, separates)

Extensions - Archetypes

Since Cyclus is an extensible framework, anyone can develop a new archetype and plug-and-play. (Institution, region, facility otherwise.)

- Cycamore: Sink, Storage, Recipe Reactor, Fuelfab, Enrichment, Source, DeployInst, Mixer, Separations, GrowthRegion
- *D3ploy: Demand-driven deployment Institution (NEUP 16-10512)
- *CYBORG: Reactor depletion analysis tool using ORIGEN
- *CYCLASS: Fuelfab and Reactor depletion using neural network.
- *CYDER: A CYclus Disposal Environment and Repository object.
- *CORRM: Continuous On-line Reprocessing Reactor Module.
- *Pyre: Pyroprocessing module with non-proliferation metrics
- *Peddler: Simulate trucks and transport material between facilities.
- And more..

^{*} Third party module in active development.

Extensions - Analysis / Drivers

There are other tools to help visualization / output data analysis of Cyclus.

- RICKSHAW: Automated stochastic driver for Cyclus
- Cymetric: Extracts important fuel cycle metrics
- Analysis: Collection of functions to extract metrics (e.g. natU usage, trade between two facilities, etc.)
- Cycmap: GIS visualization tool for Cyclus
- Cyclist: GUI for Cyclus (DEPRACATED)

Installation - Binary

Better, more thorough explanations are in fuelcycle.org

- Windows: N/A
- MacOS: conda install -c conda-forge cyclus cycamore
- Linux: conda install cyclus cycamore

Installation - Build from Source

All source files are open-source, and available on Github. github.com/cyclus/cyclus and github.com/cycamore/cycamore has the source files, and guides

- Olone repository (git clone [url])
- Install dependency (see github guide README)
- python install.py

Installation - TroubleShooting

Look for your error message or make a new post in the following Cyclus communities:

- Github Issue in github.com/cyclus/cyclus
- 2 Cyclus google user group
- 3 Email jbae11@illinois.edu (me)

- Ontrol: Simulation Definition
- 2 Archetypes: List of available archetypes
- § Facility: Facility prototypes define parameters of archetypes
- 4 Region: Region agents
- § Institution: Institution agents (inside Region definition)
- 6 Recipe: recipe definitions


```
<control>
    <duration>2280</duration>
    <startmonth>1</startmonth>
    <startyear>1970</startyear>
    <decay>manual</decay>
</control>
```

Archetypes


```
<name>Source</name>
<name>Sink</name>
 <name>Reactor</name>
lib>agents</lib>
<name>NullRegion</name>
>agents>
<name>NullInst</name>
<name>DeployInst</name>
<name>Separations</name>
```

Facility - Cycamore::Separations

```
La Hague Model from Schneider & Marignac -->
<name>LA HAGUE</name>
     <feed commods> <val>cooled french uox waste</val> </feed commods>
     <feed commod prefs> <val>20.0</val> </feed commod prefs>
     <throughput>91600</throughput>
     <leftover commod>lahague raffinate</leftover commod>
     <leftoverbuf_size>91600</leftoverbuf_size>
          <buf size>91600</buf size>
             <comp>Pu</comp> <eff>.998</eff>
          <buf size>91600</buf size>
             <comp>U</comp> <eff>.998</eff>
      </item>
```


Facility - Cycamore::Reactor

Region


```
<region>
<name>Poland</name>
    <name>Poland government</name>
        <val>CHOCZEWO</val>
          <val>NONAME</val>
          <val>780</val>
          <val>720</val>
```

```
<recipe>
  <name>natl u recipe</name>
  <basis>mass
  <nuclide>
    <id>U235</id>
    <comp>0.711</comp>
  </nuclide>
  <nuclide>
    <id>U238</id>
    <comp>99.289</comp>
  </nuclide>
</recipe>
```

- 1 User can generate input file from database
 - Reactor Specifications
 - Facility deploy / decom times
 - Spent fuel recipe
- Sensitivity study using external driver (e.g. RAVEN)
- **3** Simple automation / modification of input file

Example - French Transition
Example - Predicting the past (U.S.)
Standardized Verification Paper

Output

Cyclus records all transactions between Facilities and other metrics unique to each archetype, such as:

- Cycamore::Reactor Power generation per timestep
- Cycamore::Enrichment SWU per timestep

Example Workflow

This workflow was used in the paper Synergistic Spent Nuclear Fuel Dynamics Within the European Union (in ANS 2017 Winter meeting, journal publication pending).

Figure 2: Green circles and blue boxes represent files and software processes,

CSV to Cyclus input file

- Python script to parse through CSV file (reactor name, start / decom date, power output, etc)
- Use Jinja template to construct input file (Python script fills curly brackets)

```
<facilitv>
  <!-- {{ country }} -->
            type }} -->
  <name>{{ reactor name }}</name>
  <config>
    <Reactor>
      <fuel inrecipes> <val>uox fuel recipe</val>
                                                          </fuel inrecipes>
      <fuel outrecipes> <val>uox used fuel recipe</val>
                                                          </fuel outrecipes>
      <fuel incommods> <val>uox</val>
                                                          </fuel incommods>
      <fuel outcommods> <val>uox waste</val>
                                                          </fuel_outcommods>
      <fuel prefs>
                        <val>1.0</val>
                                                          </fuel prefs>
      <cvcle time>18</cvcle time>
      <refuel time>2</refuel time>
      <assem size>{{assem size}}</assem size>
      <n assem core>{{ n assem core}}</n assem core>
      <n assem batch>{{n assem batch}}</n assem batch>
      <power cap>{{capacity}}</power cap>
    </Reactor>
  </config>
</facility>
```

Output analysis

- Python script to query and process output data
- Use Jupyter notebook to organize / visualize output

Output - regional analysis

- The user can separate analysis by regions
- Concept of children-parent: each facility has a parent Institution, and each Institution has a parent Region.

Figure 3: Power generation is separated by region.

Output - regional analysis

- The user can separate analysis by regions
- Concept of children-parent: each facility has a parent Institution, and each Institution has a parent Region.

Figure 4: Waste output mass is separated by their origin region.

Output - Prototype analysis

- The user can separate analysis by prototype
- User can see how much power is from SFRs compared to PWRs.

Figure 5: Power generation is separated by prototype (SFR, PWR).

Output - Prototype analysis

- The user can separate analysis by prototype
- User can see how much fuel is from which facility.

Figure 6: Fuel production is separated by production facility.

Sensitivity Study

Breeding ratio sensitivity study can be done by simply changing the SFR output fuel recipe in the input file.

Figure 7: Breeding Ratio affect on total reprocessing.

Sensitivity Study

Lifetime extension sensitivity study can be done by adding the lifetime of the pwrs and adjusting SFR deployment accordingly.

Predicting the past - U.S

Work done by undergraduate researcher Gyutae Park at the University of Illinois - Urbana Champaign.

- Import database to construct Cyclus simulation
- 2 'Predict the past' fuel usage, power generated
- 3 Demonstrate GIS capabilities of Cyclus

Example Workflow

Similar workflow has been used for this analysis study.

Figure 9: Green circles and blue boxes represent files and software processes, respectively, in the computational workflow.

Results - Fuel into reactors

Figure 10: Cumulative fuel into U.S. reactors over time.

Results - Natural Uranium usage

Figure 11: Cumulative natural uranium consumption in the U.S. over time.

Results - Power generated

Figure 12: Nuclear Power generated simulated by Cyclus

Figure 13: Nuclear power generation data from NEI $^{\rm 3}$

 $^{^3} US$ Nuclear Generating Statistics. (n.d.). Retrieved from https://www.nei.org/Knowledge-Center/Nuclear-Statistics/US-Nuclear-Power-Plants/US-Nuclear-Generating-Statistics

Results - GIS

Figure 14: Interactive map of U.S. reactors and fuel cycle facilities. Lines show transactions between two facilities.

Example - French Transition
Example - Predicting the past (U.S.)
Standardized Verification Paper

Standardized Verification of fuel cycle modeling

- 2016 paper on comparing ORION, VISION, DYMOND, MARKAL.
- Transition scenario from once-through to closed

Results - Deployed reactor capacities

Fig. 4. Deployed reactor capacities at the end of each year.

Figure 15: Deployed reactor capacities from paper. ⁵

Figure 16: Deployed reactor capacities from CYCLUS.

⁵Feng, B., B. Dixon, E. Sunny, A. Cuadra, J. Jacobson, N. R. Brown, J. Powers, A. Worrall, S. Passerini, and R. Gregg. Standardized Verification of Fuel Cycle Modeling. Annals of Nuclear Energy 94 (August 2016): 300312. https://doi.org/10.1016/j.anucene.2016.03.002.

Results - LWRs retired and SFRs started up each year

Figure 17: LWRs retired and SFRs started up each year from paper ⁷

Figure 18: LWRs retired and SFRs started up each year from CYCLUS

⁷Feng, B., B. Dixon, E. Sunny, A. Cuadra, J. Jacobson, N. R. Brown, J. Powers, A. Worrall, S. Passerini, and R. Gregg. Standardized Verification of Fuel Cycle Modeling. Annals of Nuclear Energy 94 (August 2016): 300312. https://doi.org/10.1016/j.anucene.2016.03.002.

Results - Annual fresh fuel loading rates

Fig. 7. Annual fresh fuel loading rates (first cores and reload fuel).

Figure 19: Annual fresh fuel loading rates from paper ⁹

Figure 20: Annual fresh fuel loading rates from CYCLUS.

⁹Feng, B., B. Dixon, E. Sunny, A. Cuadra, J. Jacobson, N. R. Brown, J. Powers, A. Worrall, S. Passerini, and R. Gregg. Standardized Verification of Fuel Cycle Modeling. Annals of Nuclear Energy 94 (August 2016): 300312. https://doi.org/10.1016/j.anucene.2016.03.002.

Results - Inventory of discharged UNF in mandatory cooling storage

Fig. 8. Inventory of discharged UNF in mandatory cooling storage.

Figure 21: Inventory of discharged UNF in mandatory cooling storagefrom paper. ¹¹

Figure 22: Inventory of discharged UNF in mandatory cooling storagefrom CYCLUS.

¹¹Feng, B., B. Dixon, E. Sunny, A. Cuadra, J. Jacobson, N. R. Brown, J. Powers, A. Worrall, S. Passerini, and R. Gregg. Standardized Verification of Fuel Cycle Modeling. Annals of Nuclear Energy 94 (August 2016): 300312. https://doi.org/10.1016/j.anucene.2016.03.002.

Results - Inventory of discharged and cooled UNF waiting for reprocessing

Fig. 9. Inventory of discharged and cooled UNF waiting for reprocessing.

Figure 23: Inventory of discharged and cooled UNF waiting for reprocessing from paper. ¹³

Figure 24: Inventory of discharged and cooled UNF waiting for reprocessing from CYCLUS.

¹³Feng, B., B. Dixon, E. Sunny, A. Cuadra, J. Jacobson, N. R. Brown, J. Powers, A. Worrall, S. Passerini, and R. Gregg. Standardized Verification of Fuel Cycle Modeling. Annals of Nuclear Energy 94 (August 2016): 300312. https://doi.org/10.1016/j.anucene.2016.03.002.

Results - Annual reprocessing rate

Figure 25: Annual reprocessing ratefrom paper. ¹⁵

Figure 26: Annual reprocessing ratefrom CYCLUS.

¹⁵Feng, B., B. Dixon, E. Sunny, A. Cuadra, J. Jacobson, N. R. Brown, J. Powers, A. Worrall, S. Passerini, and R. Gregg. Standardized Verification of Fuel Cycle Modeling. Annals of Nuclear Energy 94 (August 2016): 300312. https://doi.org/10.1016/j.anucene.2016.03.002.

Results - Inventory of unused TRU recovered from UNF

Fig. 6. Inventory of unused TRU recovered from UNF (measured at end of year).

Figure 27: Inventory of unused TRU recovered from UNFfrom paper. ¹⁷

Figure 28: Inventory of unused TRU recovered from UNFfrom CYCLUS.

¹⁷Feng, B., B. Dixon, E. Sunny, A. Cuadra, J. Jacobson, N. R. Brown, J. Powers, A. Worrall, S. Passerini, and R. Gregg. Standardized Verification of Fuel Cycle Modeling. Annals of Nuclear Energy 94 (August 2016): 300312. https://doi.org/10.1016/j.anucene.2016.03.002.

Benchmark Conclusions

- Excellent agreement for most metrics
 - Reactor deployment
 - Presh fuel loading
 - 3 Discharged UNF in cooling stage
 - 4 Discharged and cooled UNF waiting
 - 6 Annual reprocessing rate
- Non-agreement for Inventory of unused TRU

Possible sources of error

- Fraction batches (CYCLUS has discrete batches)
- 2 timestep (CYCLUS default timestep is a month user can change)
- 3 CYCLUS material buffers leading to analysis error
- 4 Error in analysis

Cyclus is a performant, expanding fuel cycle simulator that holds promise for future applications. It demonstrated its capability to:

- · 'Predict the past'
- Model dynamic transition scenarios
- Perform sensitivity studies
- Visualize important, dynamic fuel cycle metrics

Future Work Ongoing

Cycamore is adequate for rough analyses, but more accurate modules or additional tools would increase analysis fidelity

- Dynamic archetype parameters (e.g. refuel_time changing in time or sampled from a distribution)
- In-module depletion (i.e. Using in-module SERPENT Reduced-order-model)
- Demand-driven deployment ¹⁸

¹⁸NEUP 16-10512

Before We Start Running Simulations Output and Examples Conclusion

Thank you.