

This exam paper must not be removed from the venue

Venue	
Seat Number	
Student Number	
Family Name	
First Name	

School of Information Technology and Electrical Engineering **EXAMINATION**

Semester Two Final Examinations, 2020

INFS	7903 Relational Database Systems		
	This paper is for St Lucia Campus students.		
Examination Duration:	120 minutes	For Examiner	Use Only
Reading Time:	10 minutes	Question	Mark
Exam Conditions:		·	
Set start and completion time for all students e.g. a 2 hour exam, starts at 8am, ends at 10am			
Paper-based exam (on-campus exam only)			
This is a Closed Book examination - no written materials permitted			
Casio FX82 series or UQ ap	oproved (labelled)		
Materials Permitted In The	e Exam Venue:		
(No electronic aids are pe	rmitted e.g. laptops, phones)		
None			
Materials To Be Supplied	To Students:		
None			
Instructions To Students:			
Additional exam materials (eg. answer booklets, rough paper) will be provided upon request.			
Please answer all questions on the examination paper			
Total marks: 100 (to be sca	led down to 60)		

Question 1 [5 marks] An *Employee* relation contains the following fields:

```
EID: integer, Ename: string, Email: string, Salary: real
```

Both *EID* and *Email* are unique fields and can be regarded as candidate keys. In your opinion, which field is a more suitable primary key for the *Employee* relation? List at least four reasons to justify your answer.

Question 2 [7 marks] Consider the following relations in a *Hotel* database:

```
Hotel (<a href="HotelNo">HotelNo</a>, Address)

Room (<a href="RoomNo">RoomNo</a>, HotelNo</a>, Type, Capacity, Price)

Booking (<a href="RoomNo">RoomNo</a>, HotelNo</a>, Date, NumberOfGuests)
```

2.1) [3 marks] Assume the *Type* field in relation *Room* is defined as *CHAR(6)*, and its value must be one of 'Single', 'Double', or 'Family'. Write the SQL statement to CREATE DOMAIN RoomType that enforces this constraint.

2.2) [4 marks] Write the SQL statement to define an assertion that ensures the number of guests in a room cannot exceed the room capacity.

Question 3 [4 marks] There are typically two methods to implement the multiple-disk organization: **data partitioning** and **data mirroring**. Briefly explain each method, and analyse the pros and cons of data mirroring compared with data partitioning.

Question 4 [5 marks] Consider a file which has N = 30,000 *Movie* records. A B+ tree index is constructed on the primary key *MovieID* (integer, 4 bytes), and stored on a disk with the following configuration:

- Block size (B) = 500 bytes
- Block pointer size (P) = 6 bytes

Each tree node is approximately 60% full on average. What is the height of the B+ tree? Show your calculation process and result.

Question 5 [9 marks] Consider the B+ tree as shown in the figure below, where the tree nodes are labelled as N_1 , N_2 , ..., N_{11} . Assume the following rule applies for redistributing keys after a leaf node split: **Two keys** stay in the old leaf node and the remaining keys move to a new leaf node.

5.1) [4 marks] What is the minimum number of tree nodes that must be visited to answer the query: "Get all records with the key greater than 30 and less than 51"? List all the visited tree nodes.

5.2) [5 marks] Show the updated B+ tree after inserting an entry with key "3". For simplicity, you can show only the updated or newly-created tree nodes.

Question 6 [8 marks] Consider the following *Student* relation with N = 500 records:

Student (SID, SName, Email, Age, Gender, GPA)

SID is the primary key. The *Gender* field has two distinct values: Female and Male, and the *GPA* field has seven distinct values: 1, 2, 3, 4, 5, 6, 7.

6.1) [2 marks] What is the selectivity of "SID = 1234"? Show your calculation process and result.

6.2) [2 marks] Assume that the *Student* records are evenly distributed on the *Gender* field. What is the selectivity of "*Gender* = Female"? Show your calculation process and result.

6.3) [4 marks] Assume that *Student* records are distributed as follows on the *GPA* field: 10% with GPA = 1; 10% with GPA = 2; 15% with GPA = 3; 20% with GPA = 4; 30% with GPA = 5; 10% with GPA = 6; 5% with GPA = 7. What is the estimated number of *Student* records satisfying "GPA > 4"? Show your calculation process and result.

Question 7 [10 marks] Consider two relations $R(\underline{A}, B, C)$ and $S(\underline{D}, E, A)$. Field A is the primary key of relation R, and field D is the primary key of relation S. Field A in relation S is a foreign key that references relation R. R and S are stored on a disk with block size = 1000 bytes. Relation R contains 200,000 records with each record occupying 50 bytes. Relation S contains 10,000 records with each record occupying 20 bytes. Consider R * S (natural join). Let S be the outer relation and R be the inner relation.

7.1) [4 marks] Assume that the size of available memory is 52 blocks. Estimate the number of block accesses using the **block nested-loop join** strategy. Show your calculation process and result.

7.2) [6 marks] Assume that R is unsorted, and a multi-level index is constructed on the primary key A. Each index entry occupies 20 bytes. Estimate the number of block accesses using the **single-loop join** strategy with the index. Show your calculation process and result.

Question 8 [13 marks] Consider the following relations:

Employee (EID, EName, Age, Salary)
Department (DID, DName, Budget, Manager)
Works (EID, DID, DateFrom, DateTo)

Given the following SQL query:

SELECT E.EName, E.Salary
FROM Employee E, Department D, Works W
WHERE E.EID = W.EID AND D.DID = W.DID AND D.Manager = 'Peter';

The initial query tree is illustrated as below:

8.1) [3 marks] Based on the above initial query tree, show the equivalent query tree after pushing down selection operators.

Question 9 [8 marks] Query optimization is very important in a DBMS. 9.1) [3 marks] What are the main components of a query execution plan?
9.2) [5 marks] Briefly describe the cost-based query optimization , and list at least three cost factors typically considered in cost-based query optimization.
Question 10 [15 marks] Consider concurrency control and recovery techniques used in a relational database system.
10.1) [3 marks] Briefly explain each of the following anomalies that might occur during transaction execution:

- Dirty read
- Unrepeatable read

10.2) [4 marks] Two-Phase Locking (2PL) is widely used for concurrency control in a DBMS. Briefly explain the basic 2PL protocol.
10.3) [2 marks] Timeout is a mechanism for handling deadlocks. Briefly explain the pros and cons of short timeout compared with long timeout .
10.4) [4 marks] Briefly explain the write-ahead logging (WAL) protocol.
10.5) [2 marks] What are the problems of a no-steal/force buffer management policy
in terms of system efficiency?

Question 11 [6 marks] Consider the following schedule that is generated by some concurrency control protocol for executing two transactions T1 and T2:

```
S = T1:W(X), T2:R(Y), T1:R(Y), T2:R(X), T1:Commit, T2:Commit
```

For each of the following concurrency control protocols:

- State if the protocol allows schedule S, that is, allows the actions to occur in exactly the order shown in schedule S;
- Clearly explain the reason why schedule S is allowed or not allowed under that protocol.
- 11.1) [2 marks] Under the Basic 2PL protocol

11.2) [2 marks] Under the Strict 2PL protocol

11.3) [2 marks] Under the Conservative 2PL protocol

Question 12 [10 marks] For each of the following schedules:

- Construct a precedence graph;
- Determine if the schedule is **conflict serializable**;
- Show the equivalent serial schedule.

12.1) [5 marks] R1 (X); W1 (X); R3 (X); R2 (X); W3 (X)

12.2) [5 marks] R3 (X); R2 (X); W3 (X); R1 (X); W1 (X)

END OF EXAMINATION