Strahlensatz

Streckenverhältnisse auf den Strahlen

Die beiden Dreiecke $\triangle ABC$ und $\triangle ABD$ teilen sich die gemeinsame Grundseite \overline{AB} . Außerdem sind ihre Höhen gleich lang, denn die Gerade durch A und B verläuft parallel zur Geraden durch C und D. Damit sind die Dreiecke $\triangle ABC$ und $\triangle ABD$ – unabhängig von der in der Skizze vorhandenen Symmetrie – gleich groß.

Addiert man zu den beiden Dreiecken $\triangle ABC$ und $\triangle ABD$ jeweils noch die Fläche des Dreiecks $\triangle SBA$ hinzu, sieht man, dass auch die beiden Dreiecke $\triangle SBC$ und $\triangle SDA$ gleich groß sind. Also gelten für die Dreiecksflächen unter anderem folgende Verhältnisse:

$$\frac{|\triangle ABC|}{|\triangle SBC|} = \frac{|\triangle ABD|}{|\triangle SDA|} \quad \text{und} \quad \frac{|\triangle SBA|}{|\triangle SBC|} = \frac{|\triangle SBA|}{|\triangle SDA|}$$

Mit den Höhen \overline{BE} und \overline{AF} , lassen sich dann die Flächen auch durch die zugehörigen Produkte aus Grundlinie und Höhe ausdrücken:

$$|\triangle ABC| = \frac{\overline{AC} \cdot \overline{BE}}{2} \qquad |\triangle ABD| = \frac{\overline{BD} \cdot \overline{AF}}{2}$$

$$|\triangle SBC| = \frac{\overline{SC} \cdot \overline{BE}}{2} \qquad |\triangle SDA| = \frac{\overline{SD} \cdot \overline{AF}}{2}$$

$$|\triangle SBA| = \frac{\overline{SA} \cdot \overline{BE}}{2} \qquad |\triangle SBA| = \frac{\overline{SB} \cdot \overline{AF}}{2}$$

Das Einsetzen in die Flächengleichungen ergibt folgende Zusammenhänge:

$$\frac{|\triangle ABC|}{|\triangle SBC|} = \frac{|\triangle ABD|}{|\triangle SDA|} \quad \Rightarrow \quad \frac{\overline{AC} \cdot \overline{BE}}{\frac{2}{\overline{SC} \cdot \overline{BE}}} = \frac{\overline{BD} \cdot \overline{AF}}{\frac{2}{\overline{SD} \cdot \overline{AF}}} \quad \Rightarrow \quad \frac{\overline{AC}}{\overline{SC}} = \frac{\overline{BD}}{\overline{SD}}$$

$$\frac{|\triangle SBA|}{|\triangle SBC|} = \frac{|\triangle SBA|}{|\triangle SDA|} \quad \Rightarrow \quad \frac{\overline{SA} \cdot \overline{BE}}{\frac{2}{\overline{SC} \cdot \overline{BE}}} = \frac{\overline{SB} \cdot \overline{AF}}{\frac{2}{\overline{SD} \cdot \overline{AF}}} \quad \Rightarrow \quad \frac{\overline{SA}}{\overline{SC}} = \frac{\overline{SB}}{\overline{SD}}$$

Aus diesen Zusammenhängen lässt sich ein Dritter ableiten:

$$\frac{\overline{AC}}{\overline{SC}} = \frac{\overline{BD}}{\overline{SD}} \quad \Rightarrow \quad \frac{\overline{SD}}{\overline{SC}} = \frac{\overline{BD}}{\overline{AC}}$$

$$\frac{\overline{SA}}{\overline{SC}} = \frac{\overline{SB}}{\overline{SD}} \quad \Rightarrow \quad \frac{\overline{SD}}{\overline{SC}} = \frac{\overline{SB}}{\overline{SA}}$$

$$\Rightarrow \quad \frac{\overline{BD}}{\overline{AC}} = \frac{\overline{SB}}{\overline{SA}} \quad \Rightarrow \quad \frac{\overline{SA}}{\overline{AC}} = \frac{\overline{SB}}{\overline{BD}}$$

Streckenverhältnisse zwischen Strahlen und Parallelen

Ausgehend von der ursprünglichen Strahlensatzfigur verschiebt man den unteren Strahl, der durch die Punkte S und D gegeben ist, so weit parallel nach oben, bis er als Gerade genau durch den Punkt A, und den oberen Strahl, der durch die Punkte S und C gegeben ist, so weit parallel nach unten, bis er als Gerade genau durch den Punkt B verläuft:

Wendet man nun die oben bereits bewiesenen Verhältnisgleichungen auf die Strahlen an, die von Punkt C bzw. von Punkt D ausgehen, erhält man unter anderem:

$$\frac{\overline{SA}}{\overline{SC}} = \frac{\overline{GD}}{\overline{CD}}$$
 und $\frac{\overline{SB}}{\overline{SD}} = \frac{\overline{CH}}{\overline{CD}}$

Durch die beiden Parallelverschiebungen gilt außerdem $\overline{AB} = \overline{GD} = \overline{CH}$. Damit erkennt man, dass die rechten Seiten der Gleichungen übereinstimmen, und man erhält den Zusammenhang, der die Streckenverhältnisse zwischen Strahlen und Parallelen beschreibt:

$$\frac{\overline{SA}}{\overline{SC}} = \frac{\overline{AB}}{\overline{CD}} \quad \text{und} \quad \frac{\overline{SB}}{\overline{SD}} = \frac{\overline{AB}}{\overline{CD}} \quad \Rightarrow \quad \frac{\overline{AB}}{\overline{CD}} = \frac{\overline{SA}}{\overline{SC}} = \frac{\overline{SB}}{\overline{SD}}$$