DB 2

14 - Query Optimization

Summer 2024

Torsten Grust Universität Tübingen, Germany

1 One Query — Millions of Plans

Q: Given a SQL query Q, what is the optimal (a reasonable)¹ plan to evaluate it? — **A:** It depends:

- Can we **simplify** (flatten, unnest) *Q*?
- How can we access the tables referenced in Q?
- How do CPU and (sequential, random) I/O cost compare?
- What is the **selectivity of the predicates** used in *Q*?
- Which plan operator implementations are applicable?
- Can we **regroup/reorder the joins** in *Q*?

¹ Here: focus on reducing the overall query evaluation time. The optimum is, generally, not reached.

Excerpt of the TPC-H Benchmark (at Scale Factor SF)

lineitem ($\approx SF \times 6 \times 10^6 \text{ rows}$)

c_custkeyc_namec_acctbalc_nationkey...cn

customer ($\approx SF \times 150000 \text{ rows}$)

n_nationkey n_name n_regionkey ...

nation (25 rows)

regionkey r_name ...

region (5 rows)

Q_{14} : Three-Way Join Against a TPC-H Instance

Price and quantity of parts orderd by customer #001:

- Above SQL syntax suggests the **join order** $(1 \bowtie 0) \bowtie c$.
- Commutativity and associativity of ⋈ enable the RDBMS to reorder the joins—based on estimated evaluation costs.
 - o ... unless we insist on the syntactic order. 🕿

Transform the input SQL query such that it features SELECT-FROM-WHERE (SFW) blocks of the following shape:

```
SELECT [DISTINCT] e, ..., e
FROM \triangle, ..., \triangle
[ WHERE p AND ... AND p]
[ GROUP BY g, ..., g
[ HAVING p AND ... AND p] ]
[ ORDER BY o, ..., o]
[ OFFSET n]
[ LIMIT m]

-- n, m \equiv integer literal -- n
```

• Query clauses in [...] may be missing.

Nested SQL queries suggest a (naïve, inefficient) nestedloop-style evaluation strategy. Consider:

```
1 SELECT o.o_orderkey
SELECT c.c name
FROM customer AS c,
                             FROM orders AS o
 (SELECT c.c_custkey
                                  FROM customer AS c
WHERE c.c_nationkey = t.n_nationkey
 AND strpos(c.c_address, t.n_name) > 0
                                  WHERE c.c_name = '...')
```

• 🗣 If possible, unnest 🛭 queries and "inline" into parent query $\Rightarrow \triangle$ can participate in join reordering.

Perform query unnesting on the level of

- the operator-based plan representation of the query, or
- the internal AST representation of SQL. Re 2:

```
SELECT e_1
FROM q_1,...,q_i
WHERE p_1
AND e_2 IN (SELECT e_3
FROM q_{i+1},...,q_n
WHERE p_3)

* Precondition: e_1 is key in the left-hand side query
```

² See *Unnesting Arbitrary Queries*, Thomas Neumann, Alfons Kemper. BTW 2015, Hamburg, Germany.

Processing a SQL query Q starts out with its FROM and WHERE clauses which describe a **join tree** over Q's inputs:

Given n join inputs, the number of possible **join tree shapes** is *huge*. Consider n = 3:

Shapes based on associativity and commutativity of ⋈.

1. A join of n+1 inputs \triangle requires n binary joins. The root \bowtie combines subtrees of k and n-k-1 joins $(0 \le k \le n-1)$:

of join tree shapes:

$$C_n = \sum_{k=0}^{n-1} C_k \times C_{n-k-1}$$

- 2. Orderings of the \triangle at the join tree leaf level: (n+1)!.
- Join algorithm choices (α available algorithms): α ⁿ.

 $^{^3}$ \mathcal{C}_n are the Catalan numbers, the number of ordered binary trees with n+1 leaves. $\mathcal{C}_0=1$.

Number of possible join trees given n binary joins with $\alpha = 3$ implementation choices:

# of ▲ (n+1)	$\mathcal{C}_{\mathbf{n}}$	# of join trees
2	1	6
3	2	108
4	5	3240
5	14	136080
6	42	7384320
7	132	484989120
8	429	37829151360
9	1430	3404623622400
10	4862	347271609484800

• A search space of this size is impossible to fully explore for any query optimizer.

Join Plan Generation Through Dynamic Programming

- **Problem:** Find optimal query plan $opt[\{A_1,...,A_n\}]$ that joins n inputs $A_1,...,A_n$.
 - 1. Iteration 1: For each \triangle_j , find and memorize best 1-input plan $opt[\{\triangle_j\}]$ that accesses \triangle_j only.
 - 2. Iteration k > 1: Find and memorize best k-input plans that join $k \le n$ inputs by combining (for $1 \le i < k$)
 - the best i-input plans and i simple lookups in
 - the best (k-i)-input plans. $\int opt[\cdot]$ memo \checkmark

Bottom-Up Dynamic Programming (n = 3)


```
**Resible k-input Access/Join Plans**

**Index Scan A₁, Bitmap Scan A₂, A₂)

**Opt[{A₁}] ← prune({Seq Scan A₂, Index Scan A₂, Bitmap Scan A₂, A₂))

**Opt[{A₂}] ← prune({Seq Scan A₂, Index Scan A₂, Bitmap Scan A₂, A₂))

**Opt[{A₃}] ← prune({Seq Scan A₃, Index Scan A₃, Bitmap Scan A₃, A₃})

**Opt[{A₁,A₂}] ← prune(opt[{A₁}] ⊕ opt[{A₂}])

**Opt[{A₁,A₃}] ← prune(opt[{A₁}] ⊕ opt[{A₃}])

**Opt[{A₂,A₃}] ← prune(opt[{A₁}] ⊕ opt[{A₃}])

**Opt[{A₂,A₃}] ← prune(opt[{A₁}] ⊕ opt[{A₂,A₃}] ∪

**Opt[{A₂}] ⊕ opt[{A₁,A₂}]

**Opt[{A₃}] ⊕ opt[{A₃}]

**Opt[{A₃}]

**Opt[{A₃}] ⊕ opt[{A₃}]

**Opt[{A₃}]

**Opt[{A₃}] ⊕ opt[{A₃}]

**Opt[{A₃}] ⊕ opt[{A₃}]

**Opt[{A₃}] ⊕ opt[{A₃}]

**Opt[{A₃}]

**Opt[{A
```

 $prune(P) \equiv best (= minimal cost + interestingly ordered) plans in set P$

 $l \otimes r \equiv \{l \bowtie^{\text{nl}} r, r \bowtie^{\text{nl}} l, l \bowtie^{\text{mj}} r, r \bowtie^{\text{mj}} l, l \bowtie^{\text{hj}} r, r \bowtie^{\text{hj}} l\}$

- Access plan choices (access(·)):
 - Consider sequential/index scans if A is a base table, otherwise simply consume A's rows.
- Join plan choices (_ ⊛ _):
 - \circ Considers all viable join algorithms (given θ , available indexes, ...) and left/right input orders.
- Principle of Optimality (prune(·)): A globally optimal plan is built from optimal subplans. Thus:
 - \circ $\$ For each subset of $\{\Delta_1,...,\Delta_n\}$, memorize in $opt[\cdot]$
 - 1. ... its overall best plan and
 - 2. ... its best plan satisfying each interesting order.

(Bushy) Join Plan Generation: Pseudo Code


```
JoinPlan(\{ \Delta_1, ..., \Delta_n \}):
 foreach p \in \{\Delta_1, ..., \Delta_n\}
                                                                                  } 1-input plans
    | opt[{p}] \leftarrow prune(access(p));
                                                                       } k-input plans
 for k in 2,...,n
        foreach S \subseteq \{\Delta_1, ..., \Delta_n\} with |S| = k enumerate subsets
    \begin{array}{c} opt[S] \leftarrow \phi; \\ \textbf{foreach} \ T \subset S \ \text{with} \ T \neq \phi \quad \text{if} \\ opt[S] \leftarrow opt[S] \cup \{ opt[T] \quad opt[S \setminus T] \}; \\ opt[S] \leftarrow prune(opt[S]); \end{array} 
return opt[\{\Delta_1,...,\Delta_n\}];
```

access(·), prune(·) defined as above,
 r⋈a¬ builds all join algorithm choices (a ∈ {nl,mj,hj}).

- Avoid generating costly Cartesian products: don't form joins between inputs w/o join predicate (_ θ _ = true).
- Generate **left-deep** join plans only: right join input (NL⋈: inner input) is a scan over base table *T*.
 - o Admits use of Index Nested Loop Join.
 - Straightforward Volcano-style execution (reset inner).

The query optimizer explores the vast plan search space to find the **optimal** ("best", "cheapest") plan.

- Typically, RDBMSs measure **plan cost** in terms of *total* execution time (time until last result row delivered).
- These total plan costs are estimated before plan execution begins (EXPLAIN: ... cost=c₁...c₂← ...).
- A **cost model**—measured in abstract "space\$"—reflects the true costs (measured in *ms*, CPU time, # I/O ops, ...) of plans p_1 , p_2 :

 $\operatorname{space}(p_1) < \operatorname{space}(p_2) \Rightarrow \operatorname{true} \operatorname{cost}(p_1) < \operatorname{true} \operatorname{cost}(p_2)$

EXPLAIN shows estimated costs (unit: space\$) and
cardinalities (# of rows):

```
QUERY PLAN

startup cost total cost

Hash Join (cost=299.00..15443.31 rows=505183 width=50)

cardinality
```

- run cost ^{def} total cost startup cost⁴ (not shown).
- Optimizer decisions are based on estimated total cost.

⁴ To implement set enable_ $\langle op \rangle$ = off, PostgreSQL sets the operator's **startup cost** to 10¹⁰ ($\equiv \infty$).

Cost Model Configuration

Model Configuration	Default	Description
seq_page_cost	1.0	I/O cost of one sequential page access
random_page_cost	4.0	I/O cost of one random page access
cpu_tuple_cost	0.01	CPU cost to process a heap file row
<pre>cpu_index_tuple_cost</pre>	0.005	CPU cost to process an index leaf entry
cpu_operator_cost	0.0025	CPU function/operator evaluation cost
<pre>parallel_tuple_cost</pre>	0.1	Cost of passing one row worker→leader
_parallel_setup_cost	1000.0	Cost of spawning a parallel worker

- Parameters are configurable:
 - Seek cost, thus random_page_cost » seq_page_cost. But...
 - o ... if DB fits in RAM, random_page_cost = seq_page_cost
 may be more appropriate.

Given an occurrence of Seq Scan with arguments

- in: input table,
- pred: (optional) filter predicate on in,
- expr: SELECT clause expression(s),

how does PostgreSQL derive startup_cost and total_cost?

```
in QUERY PLAN total_cost

Seq Scan on public.indexed i (cost=0.00..22.75 rows=100 width=4)
Output: (a + 1) ← expr ↑ ↑
Filter: (i.a <= 100) ← pred startup_cost #rows(out)
```


Cost calculation depends on the following parameters, mostly available in PostgreSQL's internal pg_* meta data tables:

Parameter	Description	Available as
<pre>#rows(in)</pre>	# rows (cardinality) of table <i>in</i>	pg_class.reltuples
<pre>#pages(in)</pre>	# pages in heap file of <i>in</i>	pg_class.relpages
sel(pred)	selectivity of filter <i>pred</i> ⁵	see below

- Meta data like #rows(in), #pages(in) and others are updated whenever the system performs an ANALYZE run on table in.
- Predicate selectivity sel(pred) is estimated based on sampled table data and the syntactic structure of pred.

⁵ sel(pred) $\in \{0,...,1\}$ with sel(pred) = 0 = no row satisfies filter pred.


```
typically = 0 →
startup_cost \( \pm \) startup_cost(\( pred \) + startup_cost(\( expr \) \)
                             decode heap row evaluate filter
cpu_run_cost = #rows(in) × (cpu_tuple_cost + run_cost(pred))
                + #rows(in) × sel(pred) × run_cost(expr)
                     = #rows(out) evaluate SELECT clause
disk_run_cost # #pages(in) x seq_page_cost
         sequentially read entire input heap file
total_cost = startup_cost + cpu_run_cost + disk_run_cost
                                       = run_cost
```


Modeling the cost for an Index Scan has to reflect that two data structures (heap file & B+Tree) are involved:

```
idx in QUERY PLAN

Index Scan using indexed_a on indexed i (cost=0.42..443.12 rows=10885 ...

Output: (c + '1'::numeric) ← expr
Index Cond: (i.a <= 10000) ← pred #rows(out)
```

The model separately accounts for

- 1. the B+Tree descent (startup of the Index Scan),
- 2. the index leaf level scan, and
- heap file access (clustered vs. non-clustered).

Cost model parameters:

Parameter	Description	Available as
<pre>#rows(in) #pages(in) sel(pred)</pre>	<pre># rows (cardinality) of table in # pages in heap file of in selectivity of filter pred</pre>	<pre>pg_class.reltuples pg_class.relpages see below</pre>
h(idx) #rows(idx) #pages(idx) corr(idx)	height of B+Tree <i>idx</i> # leaf entries in index <i>idx</i> # pages in leaf level of <i>idx</i> ≈ clustering factor for index <i>idx</i>	<pre>bt_metap(•) pg_class.reltuples pg_class.relpages pg_stats.correlation</pre>

- $corr(idx) \in \{-1.0,...,1.0\}$ characterizes how much the physical orderings of index leaves and heap file deviate.
 - \circ After CLUSTER in ON idx, we have corr(idx) = 1.0.

Cost of Index Scan (B+Tree Descent)

- B+Tree height $h = log_{2 \times o}(\#rows(idx))$
- ⇒ # of key comparisons during B+Tree descent 1:

$$\lceil \log_2(2 \times o) \times h \rceil = \lceil \log_2(\#rows(idx)) \rceil$$

binary search in inner B+Tree
node with fan-out $F = 2 \times o$

```
startup\_cost 	ext{ = } 
startup\_cost(pred) + startup\_cost(expr) 
+ ([log₂(#rows(idx))] + (h + 1) × 50) × cpu\_operator\_cost 
B 	ext{ + • } index node processing
```

Cost of Index Scan (Leaf Level Scan)

The index leaf level (sequence set) scan ② incurs CPU as well as I/O cost that contribute to the overall run_cost:

of pages • in scanned range B+Tree leaves not clustered index_IO_cost = [sel(pred) × #pages(idx)] × random_page_cost

Heap file accesses 3 incur additional CPU and I/O costs (no I/O cost if we perform an Index Only Scan):

• The more **clustered** the index, the cheaper the heap I/O. Linearly interpolate between the clustered and non-clustered scenarios:

```
heap_I0_cost = unclustered_I0_cost + corr(idx)^2 \times (clustered_I0_cost - unclustered_I0_cost)^{\pm} \approx clustering factor \in \{0,...,1\}
```

Cost of Index Scan 🗈 ([Non-]Clustered Heap File Access)

Index Correlation (Clustering Factor)

Given ordered index idx over column A with values $a_1 \le a_2 \le \cdots \le a_n$, where $pos(a_i) \in \{1,...,n\}$ gives the position of a_i in the heap file for A.⁶

Index Correlation corr(idx) ∈ {-1,...,1} measures how far [pos(a₁),...,pos(aₙ)] deviates from [1,...,n], i.e., idx's clustering degree:

$$corr(idx) = \frac{n \times (\Sigma_{i=1\dots n} i \times pos(a_i)) - (\Sigma_{i=1\dots n} i)^2}{n \times (\Sigma_{i=1\dots n} i \times i) - (\Sigma_{i=1\dots n} i)^2}$$

⁶ After CLUSTER USING idx, we have $pos(a_i) = i$ and thus corr(idx) = 1.