Chapter 3 Applications of Derivatives

3.5 Summary of Curve Sketching

EXAMPLE 1 Use the guidelines to sketch the curve $y = \frac{2x^2}{x^2 - 1}$. = $\pm (x)$

(A) Domain.
$$x^{2}-1=(x-1)(x+1)=0 \ge x=-1, x=1$$
is $(-\infty,-1) \cup (-1,1) \cup (1,\infty)$.

B Y-interc. d x- interc.

$$f(0) = 0$$
 $f(x) = 0$
 $f(x) = 0$

(C) Symmetries.

• Odd or even:
$$f(-x) = \frac{2(-x)^2}{(-x)^2 - 1} = \frac{2x^2}{x^2 - 1} = f(x)$$
Lo even.

D HAD VA.

HA:
$$\lim_{x\to\infty} \frac{2x^2}{x^2-1} = \frac{2}{1} = 2$$
 -> $y = z$ HA. $\lim_{x\to-\infty} \frac{2x^2}{x^2-1} = \frac{2}{1} = 2$ -> $y = z$ HA. $\lim_{x\to-\infty} \frac{2x^2}{x^2-1} = \frac{2}{1} = 2$ -> $\lim_{x\to-\infty} \frac{2x^2}{x^2-1} = \frac{2}{1} = 2$ -> $\lim_{x\to-\infty} \frac{2x^2}{x^2-1} = \frac{2}{1} = 2$

$$\frac{2x^{2}}{x^{2}-1} = \frac{2}{0^{+}} = +\infty$$

$$\frac{2x^{2}}{x^{2}-1} = \frac{2}{0^{+}} = +\infty$$

$$\frac{2x^{2}}{x^{2}-1} = \frac{2}{0^{+}} = +\infty$$

$$\frac{2x^{2}}{x^{2}-1} = \frac{2}{0^{-}} = -\infty$$

$$\frac{2x^{2}}{x^{2}-1} = \frac{2}{0^{-}} = -\infty$$

E Interv increase/decr.

$$\int_{-\infty}^{\infty} (x) = -\frac{4x}{(x^2-1)^2} = -\frac{4x}{(x-1)(x+1)^2} C.N.: 0, -1, 1$$

$$(x^{2}-1)^{2} \ge 0$$
 -> $f'(x) > 0$ when $-4x > 0$ when $> 1 < 0$

$$(x^2-1)^2 \ge 0$$
 -> $f'(x) < 0$ When -4x < 0
when > < > 0

(F)
$$\frac{\text{Max d Min.}}{\text{f }}$$
 on $(-\infty, 0)$ d $\frac{\text{f}}{\text{A}}$ on $(0, \infty)$
 $\Rightarrow x=0$ is a loc. $\frac{\text{Max.}}{\text{f}}$ on $\frac{\text{f}}{\text{f}}$ on $\frac{\text{f}}{\text{f$

G Concavity.

$$f''(x) = \frac{12x^2+4}{(x^2-1)^3} = \frac{12x^2+4}{(x-1)(x+1)^3}$$

$$x = 16 x = -1$$

factors	x 2]- 1	۷ % ۷	1	< ×
$(x-1)^3$	_	A	_		+
$(x+1)^3$	_		+		+
打"(2)	+	•	_	\	+

X	2 2	-1	< x <	0	L 2L L	1	4 x
7 (%)	+ 7	Ø	+ >	0	- 1/2	A	- 7
1"(2)	+ 🔰	Ø	- 1	*	$-\sqrt{y}$	3	+ 5
f(2)	ノ '	A		loc		\	\ \ <u>`</u>
·		Α.γ.		(6)=	•	' 1 · A	

Guidelines for Sketching a Curve.

- A. Find the domain of the function.
- **3.** Find the <u>y-intercept</u> and <u>x-intercept</u>, that is f(0) and when y=0.
- **C.** Search for <u>symmetries</u> in the function (facultative)
 - If f(x) = f(-x), then the function is even.
 - If -f(x) = f(-x), then the function is odd.
 - If f(x+p) = f(x), then the function repeats itself after a period p (it is periodic).
- **D.**Find the <u>asymptotes</u> of the function:
 - The <u>Horizontal</u> asymptotes.
 - The Vertical asymptotes.
- E. Find the intervals of increase and decrease.
- **F.** Find the <u>local maximum</u> and <u>minimum</u> values.
- **G**. Find the <u>concavity</u> and the <u>points of inflections</u>.
- H. Sketch.