Definition 1. We assume that in every state of the Kripke structure, for every heap h, all objects are ordered by some total order $<_h$, such that there is some object o_h , such that (1) for all $o' <_h o_h$, the object o' is allocated (i.e., its <allocated> field is set to true), and (2) for all $o_h \leq_h o''$, the object o'' is not allocated. We introduce a unary function symbol allocate with the signature Heap o Object, $whose \ interpretation \ must \ adhere \ to \ \mathcal{I}(exttt{allocate})(h) = o_h.$ The (slightly prettified) rule is as follows: $\Gamma, \{U\} (v \neq \text{null} \land v = \text{allocate(heap)} \land C :: \text{exactInstance}(v) = \text{TRUE})$ $\Rightarrow \{U\}\{\text{heap} := \text{create(heap, v)}\}[s]\phi, \Delta$ $\Gamma \Rightarrow \{U\}[\mathtt{v} = \mathtt{C.allocate}(); \ \mathtt{s}|\phi,\Delta]$