Линейная алгебра

Чепелин Вячеслав

Содержание

1	Лин	ейные отображения.	
	1.1	Основные определения. Теорема о ранге и дефекте линейных отображений	•
	1.2	Матрица лин. отображения. Координатный изоморфизм. Формула замены мат-	
		рицы линейного отображения при замене базиса	
	1.3	Инварианты линейного отображения	8
	1.4	Собственные числа и собственные векторы лин. оператора	12
	1.5	Оператор простой структуры (о.п.с). Проекторы. Спектральное разложение. Функ-	
		ция от диагонализированной матрицы.	15
	1.6	Комплексификация вещ. лин. пр-ва. Продолжение вещественного линейного опе-	
		ратора	22
	1.7	Минимальный многочлен линейного оператора. Теорема Кэли - Гамильтона	24
	1.8	Операторное разложение единицы. Корневое подпространство	28
	1.9	Нильпотентный оператор. Разложение Жордана	34
	1.10	Жорданова форма матрицы. Формула Фробениуса	39
	1.11	Функция оператора матрицы, приводимой к Жордановой форме	45
2	Тен	Тензоры.	
	2.1	Линейные формы (функционалы). Сопряженное (дуальное) пространство. Контр-	
		вариантный и ковариантный законы преобразования координат	48
	2.2	Два определения тензора. Линейное пространство тензоров. Многомерная матри-	
		ца тензоров.	54
	2.3	Произведение тензоров. Базис пространства тензоров. Свертка тензоров	56
	2.4	Транспонирование тензора. Симметричные, кососимметричные тензоры	60
	2.5	Операции симметрирования и альтернировании тензора	65
	2.6	р-формы. Внешнее произведение p форм	67
3	Евклидовы и унитарные пространства.		73
	3.1	Основные определения	73
	3.2	Процесс ортогонализация Грама-Шмидта. Орто-нормированный базис. Ортого-	
		нальное дополнение	75
	3.3	Матрица Грама и ее свойства. Ортогональные и унитарные матрицы	78
	3.4	Теорема Пифагора. Расстояние до линейного подпространства. Задача о пер-	
		пендикуляре(наилучшем приближении). Объем к-мерного параллелепипеда в п-	
		мерном пространстве	81

4 Информация о курсе

85

1 Линейные отображения.

1.1 Основные определения. Теорема о ранге и дефекте линейных отображений

<u>def:</u> U, V - линейные пространства над одним полем $K(\mathbb{R}, \mathbb{C})$.

 $A: U \to V$ называется **линейным гомоморфизмом**, если:

$$\forall \lambda \in K, \forall u_1, u_2 \in U : \mathcal{A}(u_1 + \lambda u_2) = \mathcal{A}(u_1) + \lambda \mathcal{A}(u_2)$$

Замечание 1: Мы будем писать Au, вместо A(u).

Замечание 2: Au, Bu это какие-то числа, поэтому мы можем складывать их и умножать на скаляр.

Замечание 3: $\mathcal{A}\mathbb{O}_U = \mathbb{O}_V$, частный случай $\lambda = 0$

Примеры:

- 1. О: это нулевое отображения $\forall u \in U : \mathbb{O}u = 0$
- 2. P_n пространство многочленов степени $\leq n$. $\mathcal{A} = \frac{d}{dx}$ дифференцирование.
- 3. ε тождественное отображение. $\varepsilon: U \to U: \forall u \in U: \varepsilon u = u$.

Введем операции:

1. $\lambda \in K : \mathcal{A}$ — линейное отображение. Введем операцию умножения:

$$\forall u \in U : (\lambda \mathcal{A})u = \lambda(\mathcal{A}u)$$

2. \mathcal{A}, \mathcal{B} — линейные отображение. Введем операцию сложения:

$$\forall u \in U : (\mathcal{A} + \mathcal{B})u = \mathcal{A}u + \mathcal{B}u$$

3. $\mathcal{B} \in L(U, W), \ \mathcal{A} \in L(W, V)$. Введем операцию произведения:

$$\forall u \in U : (\mathcal{A} \cdot \mathcal{B})u = \mathcal{A}(\mathcal{B}u)$$

 $\operatorname{Im} \mathcal{A} = \{v \in V : v = \mathcal{A}u | \forall u \in U\} - \underline{\text{ образ линейного отображения.}}$

Замечание: $\operatorname{Im} \mathcal{A}$ — линейное подпространство.

 $Ker \mathcal{A} = \{u \in U | \mathcal{A}u = 0\}$ — ядро линейного отображения.

 $rg\mathcal{A}=\dim\operatorname{Im}\mathcal{A}-$ ранг отображения

 $def \mathcal{A} = \dim \mathcal{K}er \mathcal{A} - \mathbf{д}e\mathbf{\varphi}e$ кт отображения.

Виды отображений:

- сюръекция, если $\operatorname{Im} \mathcal{A} = V \Leftrightarrow rg\mathcal{A} = \dim V$.
- инъекция, если $KerA = \{ \mathbb{O}_U \} \Leftrightarrow defA = 0.$
- ullet биекция или изоморфизм $\Leftrightarrow \begin{cases} \operatorname{Im} \mathcal{A} = V \\ \mathcal{K}er\mathcal{A} = \{\mathbb{O}_U\} \end{cases} \Leftrightarrow \begin{cases} rg\mathcal{A} = \dim V \\ def\mathcal{A} = 0 \end{cases}$
- эндоморфизмом или линейным оператором, когда U=V.

$$\mathcal{A} \in End(V) = End_K(v)$$

• автоморфизм это биекция + эндоморфизм.

$$\mathcal{A} \in Aut(V) = Aut_K(v)$$

Примеры:

- 1. P_n пространство многочленов степени не больше n. $\mathcal{A} = \frac{d}{dt} \mathcal{A} : P_n \to P_n$. не инъекция, не сюръекция, не изоморофизм, эндоморфизм и не автоморфизм
- 2. $U = K^n, V = K^m, A = (a_{ij})_{m \times n}, a_{ij} \in K, \forall u \in U : Au = A \cdot u.$

$$\operatorname{Im} \mathcal{A} = \left\{ y \in K^m \ \ \substack{y = \mathcal{A}x \\ \forall x \in K^n} \ \right\} = \operatorname{span}(A_1, \dots, A_n) - \operatorname{образ}$$
 матрицы.

$$y = A \cdot x = \sum_{i=1}^{n} A_i \cdot x_i$$

Давайте более подробно рассмотрим отображения:

1. сюръекция $\Leftrightarrow rg\mathcal{A} = \dim V = m$.

$$\mathcal{K}er\mathcal{A} = \{x \in K^n : Ax = \mathbb{O}\}$$
 — общее решение СЛОУ, ядро матрицы.

 $\dim \mathcal{K}er\mathcal{A} = \dim$ общего решения = n - rgA.

$$def \mathcal{A} = n - rgA - \partial e \phi e \kappa m$$
 матрицы.

- 2. инъекция $\Leftrightarrow def A = 0 \Leftrightarrow n rgA = 0 \Leftrightarrow rgA = n$.
- 3. биекция $\Leftrightarrow \begin{cases} rgA = n \\ rgA = m \end{cases} \Leftrightarrow n = m.$
- 4. эндоморфизм $\Leftrightarrow n = m \Leftrightarrow A_{n \times n}$.
- 5. автоморфизм $\Leftrightarrow rg\mathcal{A} = n, A_{n \times n} \Leftrightarrow \exists A^{-1}.$

Свойства произведения:

- 1. \mathcal{A}, \mathcal{B} изоморф. $\Rightarrow \mathcal{A} \cdot \mathcal{B}$ изоморфно.
- 2. $\mathcal{A}(\mathcal{B}_1 + \mathcal{B}_2) = \mathcal{A}\mathcal{B}_1 + \mathcal{A}\mathcal{B}_2$.
- 3. $\forall \lambda \in K : \mathcal{A}(\lambda \mathcal{B}) = (\lambda \mathcal{A})\mathcal{B} = \lambda(\mathcal{A} \cdot \mathcal{B}).$
- 4. $C \in L(\Omega, U) : A \cdot (B \cdot C) = (A \cdot B) \cdot C$

Ассоциативная унитальная алгебра.

Замечание 1. Если $\mathcal{A} \in L(U,V)$ — изоморфно $\Rightarrow \mathcal{A}^{-1}$ — взаимно обр. отображение.

Замечание 2. Если $\mathcal{A} \in End(V)$, а также изоморфизм $\Leftrightarrow \mathcal{A} \in Aut(V) \Leftrightarrow \mathcal{A}^{-1} \in End(V)$ обратный лин. оператор к \mathcal{A} .

<u>def:</u> $U_0 \subset U$ - линейное подпространство. $\mathcal{A} \in L(U,V)$

 $\mathcal{A}|_{U_0}: U_0 \to V$ сужение лин. отобр. на лин подпространство.

 $\forall u \in U_0 : \mathcal{A}_0 u = \mathcal{A} u.$

Если \mathcal{A} — изоморфизм, то тогда его сужение на U_0 будет линейным отображением между U_0 и $\operatorname{Im} \mathcal{A}_0$. И это будет тоже изоморфизм.

Теорема (о ранге и дефекте линейного отображения)

 $\forall \mathcal{A} \in L(U, V)$. Доказать dim $U = def \mathcal{A} + rg \mathcal{A}$.

Доказательство:

Пусть $U_0 = \mathcal{K}er \subset U$. Пусть $U_1 \subset U$, такое, что $U_0 \oplus U_1 = U$ — прямое дополнение. Возьму $\mathcal{A}_1 = \mathcal{A}|_{U_1} \in L(U_1, \operatorname{Im} \mathcal{A}_1)$.

 $\forall u \in U : \exists ! u = u_0 + u_1$, где $u_0 \in U_0$, $u_1 \in U_1$, по т. об определении прямой суммы. Тогда получаем, что:

$$\mathcal{A}u = \mathcal{A}u_0 + \mathcal{A}u_1 = \mathcal{A}u_1$$

Откуда $\operatorname{Im} \mathcal{A} = \operatorname{Im} \mathcal{A}_1, rg\mathcal{A} = rg\mathcal{A}_1.$

 $\mathcal{K}er\mathcal{A}_1\subset U_1$, а также $\mathcal{K}er\mathcal{A}_1\subset \mathcal{K}er\mathcal{A}=U_0\Rightarrow \mathcal{K}er\mathcal{A}_1=\{0\}\Rightarrow \mathcal{A}_1$ — инъективна $\Rightarrow \mathcal{A}_1$ изоморфно. Откуда получаем:

$$\dim U = \dim U_1 + \dim U_0 = rg\mathcal{A} + def\mathcal{A}$$

Q.E.D.

Следствие. (характеристика автоморфизма)

Если $\mathcal{A} \in Aut(V) \Leftrightarrow rg\mathcal{A} = \dim V \Leftrightarrow def\mathcal{A} = 0$ — условие обратимости линейного оператора.

1.2 Матрица лин. отображения. Координатный изоморфизм. Формула замены матрицы линейного отображения при замене базиса.

 $\mathcal{A} \in L(U,V)$ — линейное отображение.

Пусть есть $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ базис U, а также $\eta = (\eta_1, \eta_2, \dots, \eta_m)$ базис V.

$$u \in U \xleftarrow{\text{изоморфизм}} u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \in K^n; \ v \in V \xleftarrow{\text{изоморфизм}} v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix} \in K^m$$

$$\forall u \in U, v = \mathcal{A}u, : v = \mathcal{A}(\sum_{i=1}^{n} x_i \xi_i) = \sum_{i=1}^{n} x_i \mathcal{A}\xi_i$$

To есть Im $\mathcal{A} = span(\mathcal{A}\xi_1, \mathcal{A}\xi_2, \dots, \mathcal{A}\xi_n)$

$$rg\mathcal{A} = rg(\mathcal{A}\xi_1, \mathcal{A}\xi_2, \dots, \mathcal{A}\xi_n).$$

Теперь заметим, что $\mathcal{A}\xi_i \in V$, откуда:

$$A\xi_i = \sum_{j=1}^m a_{ji}\eta_j \stackrel{\text{коорд. изоморфизм}}{\longleftrightarrow} A_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix} \in K^m$$

Назовем $A=(A_1,\ldots,A_n)=(a_{ij})_{m\times n}-\underline{\text{матрицой линейного отображения}}\ \mathcal{A}$ на базисах $\xi,\eta.$

Замечание. Т.к. здесь координатный изоморфизм, то:

$$rg\mathcal{A} = rg(\mathcal{A}\xi_1, \dots, \mathcal{A}\xi_n) = rg(A_1, \dots, A_n) = rgA.$$

 $\underline{\mathbf{def:}}\ \mathcal{A} \in End(V): \mathcal{A}: V \to V - \underline{\mathbf{лин.}}\ \mathbf{onepatop}.$

Зафиксируем здесь один базис $e = e_1, \dots, e_n$. Получу:

$$\mathcal{A}e_i = \sum_{j=1}^n a_{ji}e_j \Leftrightarrow (\mathcal{A}e_1, \dots, \mathcal{A}e_n) = (e_1, \dots, e_n)\mathcal{A}$$

Тогда $A_{n \times n}$ — матрица линейного оператора.

Заметим, что теперь мы умеем:

$$\mathcal{A} \in L(U,V) \stackrel{\text{вз. однозначно}}{\longleftrightarrow} A \in M_{m \times n}$$

Утв. $L(U,V)\cong M_{m\times n}$ координатный изоморфизм линейных отображений

Доказательство:

У нас есть взаимно однозначное соответствие. Проверим линейность:

 $\forall \lambda \in K : \mathcal{A} + \lambda \mathcal{B} \stackrel{\text{проверить}}{\longrightarrow} A + \lambda B.$

$$(\mathcal{A} + \lambda \mathcal{B})\xi_i = \mathcal{A}\xi_i + \lambda \cdot \mathcal{B}\xi_i = \sum_{j=1}^m a_{ji}\eta_j + \lambda \sum_{j=1}^m b_{ji}\eta_j = \sum_{j=1}^m (a_{ji} + \lambda b_{ji}) \cdot \eta_j$$

А откуда уже видно нужное нам соответствие.

Q.E.D.

Утв. $\mathcal{A} \in L(W,V), \mathcal{B} \in L(U,W), \mathcal{AB} \in L(U,V)$. Пусть w - базис W, η - базис V, ξ - базис U. Тогда $\mathcal{AB} \leftrightarrow AB$ в базисах (ξ,η)

$$\mathcal{AB}\xi_{i} = \mathcal{A}(\mathcal{B}\xi_{i}) = \mathcal{A}(\sum_{k=1}^{p} b_{ki}w_{k}) = \sum_{k=1}^{p} b_{ki}\mathcal{A}(w_{k}) = \sum_{k=1}^{p} b_{ki}\sum_{j=1}^{m} a_{jk}\eta_{j} = \sum_{i=1}^{m} (\sum_{k=1}^{p} a_{jk}b_{ki})\eta_{j} = \sum_{i=1}^{m} (\sum_{k=1}^{p} a_{ik}b_{ki})\eta_{i} = \sum_{i=1}^{m} (\sum_{k=1$$

$$= \sum_{j=1}^{m} (AB)_{ji} \cdot \eta_j$$

Q.E.D.

Следствие: $\mathcal{A} \in L(U,V)$ - изоморфизм, A - матр в $\xi,\eta \Rightarrow A^{-1}$ - матр в $(\eta,\xi).$

Доказательство:

$$A \cdot A^{-1} = \varepsilon_V, \quad A^{-1} \cdot A = \varepsilon_U$$

 $AX = E_\eta, \quad XA = E_\xi$

B силу того, что \mathcal{A} — изоморфизм:

$$\dim U = \dim V = n, \quad rgA = n \Leftrightarrow \exists A^{-1}$$

$$X = A^{-1}$$

Q.E.D.

Утверждение: Пусть $\mathcal{A} \in L(U_{\varepsilon}, V_{\eta}), v = \mathcal{A}u$. Тогда $\mathbf{v} = A\mathbf{u}$, где \mathbf{v} и \mathbf{u} — координатные столбцы v и u соответственно.

Доказательство: С одной стороны, v можно разложить по базису V:

$$v = \sum_{j=1}^{m} \mathbf{v}_j \eta_j$$

 ${\bf C}$ другой стороны, v представим как результат отображения:

$$v = \mathcal{A}u = \sum_{i=1}^{n} \mathbf{u}_{i} \mathcal{A}\xi_{i} = \sum_{i=1}^{n} \mathbf{u}_{i} \sum_{j=1}^{m} a_{ji} \eta_{j} = \sum_{j=1}^{m} (\sum_{i=1}^{n} a_{ji} \mathbf{u}_{i}) \eta_{j} \Rightarrow \mathbf{v}_{j} = \sum_{i=1}^{n} a_{ji} \mathbf{u}_{i}$$

. Откуда получаем искомое: $v = Au \Leftrightarrow \mathbf{v} = A \cdot \mathbf{u}$. Последнее равенство называется координатной формой записи действия линейного отображения.

Q.E.D.

Теорема (формула замены матрицы лин. отобр. при замене базиса)

 $\mathcal{A} \in L(U,V)$ — линейное отображение.

 ξ, ξ' базисы U, а η, η' базисы V. Хотим поменять базисы на штрихованные и получить новую матрицу. Тогда ее можно получить так:

$$A' = T_{\eta \to \eta'}^{-1} A T_{\xi \to \xi'}$$

Воспользуемся данным рисунком, чтобы понять происходящее. Мы хотим найти матрицу \mathcal{A}' . Для этого, заметим, что преобразование \mathcal{A}' , это преобразование \mathcal{B} , потом примененное к нему преобразование \mathcal{C} . То есть:

$$A' = CAB$$

Заметим, что матрица \mathcal{B} , это матрица перехода из ξ в ξ' . Это так потому что у нас просто меняется базис (про саму матрицу перехода см. одноименный раздел). Матрица \mathcal{C} , это $T_{\eta'\to\eta}$. Откуда, исходя из двух утверждений сверху:

$$A' = T_{\eta' \to \eta} A T_{\xi \to \xi'} \Rightarrow A' = T_{\eta \to \eta'}^{-1} A T_{\xi \to \xi'}$$

Q.E.D.

Следствие: $A \in End(V)$. e, e' базисы V. $A' = T^{-1}AT$, где $T = T_{e \to e'}$.

<u>def:</u> квадратные матрицы A и B называются подобными, если \exists невырожденная матрица C, такая, что: $B = C^{-1}AC$.

Замечание: матрицы линейного оператора в разных базисах подобны (см. следствие выше).

1.3 Инварианты линейного отображения.

<u>Инвариатность</u> называется некоторое свойство объекта, которое не меняется при определенных действиях и преобразованиях.

 ${\cal A}$ - линейное отображение. Ранг и дефект инварианты относительно выбора базиса.

Пусть $A \in End(V)$. Пусть e_1, \ldots, e_n базис v.

Как мы знаем, $\exists ! D$ n-форма, такая что $D(e_1, \dots e_n) = 1$. Тогда **определитель линейного оператора**:

$$\det \mathcal{A} := \det(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = D(\mathcal{A}e_1, \dots, \mathcal{A}e_n)$$

Замечание: $\det \mathcal{A} = D(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = D(Ae_1, \dots, Ae_n) = \det A$ — определение определителя линейного оператора и матрицы соотносятся.

Теорема:

 $\forall \mathcal{A} \in End(V), \det \mathcal{A} = \det A.$

Возьмем $e=(e_1,\ldots,e_n)$ базис V. Тогда:

$$\mathcal{A} \overset{\text{вз. однозначно}}{\longleftrightarrow} A = (a_{ij})_{n \times n}$$

$$\det \mathcal{A} = D(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = D(\sum_{i=1}^n a_{i1}e_{i_1}, \dots, \sum_{i=1}^n a_{in}e_{i_n}) =$$

$$\overset{\text{тк } D - n \text{ форма}}{\longleftrightarrow} \det \mathcal{A} = \sum_{i_1=1}^n \dots \sum_{i_n=1}^n a_{i_11} \cdot \dots \cdot a_{i_nn} D(e_{i_1} \dots, e_{i_n}) =$$

$$= \sum_{\sigma \in S_n} a_{i_11} \cdot \dots \cdot a_{i_nn} \cdot (-1)^{\varepsilon(\sigma)} D(e_1, \dots, e_n) = \det A$$

Q.E.D.

Замечание: A и B подобные матрицы, то $\det A = \det B$.

Замечание: $\det \mathcal{A}$ инвариант линейного оператора, он не зависит от базиса.

Следствие 1: $\forall n$ - форма f на V, $\forall A \in End(V)$:

$$\forall \xi_1, \dots, \xi_n \in V : f(\mathcal{A}\xi_1, \dots, \mathcal{A}\xi_n) = \det Af(\xi_1, \dots, \xi_n)$$

Доказательство:

Возьмем $e = (e_1, \dots, e_n)$ базис $V. \mathcal{A} \stackrel{e}{\longleftrightarrow} A.$ Это значит, что мы берем матрицу линейного оператора в данном базисе.

$$f(\mathcal{A}e_1,\ldots,\mathcal{A}e_n) \stackrel{\text{из доказательства теоремы}}{=} \det Af(e_1,\ldots,e_n)$$

На самом деле $\alpha = f(e_1, \dots, e_n)$, поэтому:

$$\forall \xi_1, \dots, \xi_n : g(\xi_1, \dots, \xi_n) := f(\mathcal{A}\xi_1, \dots, \mathcal{A}\xi_n)$$

Заметим, что g - полилинейное, тк f полилин. и \mathcal{A} - лин. отобр. Также g - антисим, тк f - антисим. Откуда g - n-форма. Заметим интересный факт:

$$g(e_1, \dots, e_n) = f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = \det A \cdot f(e_1, \dots, e_n)$$

Откуда:

$$g(\xi_1, \dots, \xi_n) = g(e_1, \dots, e_n) D(\xi_1, \dots, \xi_n) = \det A \cdot \alpha D(\xi_1, \dots, \xi_n) = \det A \cdot f(\xi_1, \dots, \xi_n)$$
Q.E.D.

Замечание: Мы можем вывести 9-ое свойство определителя по-другому. Пусть $\mathcal{A} = A_{n \times n}$ — линейный оператор умножения. $f = D, B_j \in K^n$. Тогда:

$$det(AB_1,\ldots,AB_N) = \det A \cdot \det B$$

Следствие 2: $\mathcal{A}, \mathcal{B} \in End(V) \Rightarrow \det(\mathcal{AB}) = \det \mathcal{A} \cdot \det \mathcal{B}$

Пусть e - базис V. Тогда $\mathcal{A} \stackrel{e}{\longleftrightarrow} A, \mathcal{B} \stackrel{e}{\longleftrightarrow} B$. Также $\mathcal{AB} \stackrel{e}{\longleftrightarrow} AB$ по свойству. Откуда:

$$\det \mathcal{AB} = \det(AB) = \det A \cdot \det B = \det \mathcal{A} \cdot \det \mathcal{B}$$

Q.E.D.

Следствие 3: $\mathcal{A} \in Aut(V) \Leftrightarrow \det A \neq 0$. Причем $\det \mathcal{A}^{-1} = \frac{1}{\det \mathcal{A}}$

Доказательство:

$$\mathcal{A} \in Aut(V) \Leftrightarrow \begin{cases} \mathcal{A} \in End(V) \\ \text{изоморфизм} \end{cases} \Leftrightarrow \begin{cases} \mathcal{A} \in End(V) \\ def \mathcal{A} = \dim \mathcal{K}er \mathcal{A} = 0 \end{cases} \Leftrightarrow \begin{cases} \mathcal{A} \in End(V) \\ rg \mathcal{A} = n \end{cases} \Leftrightarrow \begin{cases} \mathcal{A} \stackrel{e}{\leftrightarrow} A, \det A \neq 0 \\ rg A = n \end{cases}$$

Мы знаем, что существует \mathcal{A}^{-1} . А также $\mathcal{A}\cdot\mathcal{A}^{-1}=\varepsilon$. Откуда по свойству 3 получаем, что $\det\mathcal{A}^{-1}=\frac{1}{\det\mathcal{A}}$

Q.E.D.

Следствие 4: $\det(\mathcal{A}\mathcal{A}^{-1}) = 1 = \det \mathcal{A} \cdot \det \mathcal{A}^{-1}$

Вспомним старое определение $trA = \sum_{i=1}^{n} a_{ii}$ - след матрицы.

Теорема (о tr подобных матриц)

Если A и B подобны, то trA = trB.

Доказательство:

A и B подобны $\Leftrightarrow \exists C : B = C^{-1}AC$. Пусть $C^{-1} = S = (s_{ij})$. Откуда:

$$trB = \sum_{i=1}^{n} b_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} s_{ij} (AC)_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} s_{ij} \cdot a_{jk} \cdot c_{ki} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} \sum_{i=1}^{n} c_{ki} s_{ij}$$

Заметим, что $(CS)_{kj}=\delta_{kj}$, где $\delta_{kj}=\begin{cases} 1, k=j \\ 0, k\neq j \end{cases}$. Так что получаем, что

$$trB = \sum_{i=1}^{n} a_{ii} = trA$$

Q.E.D.

Следствие: $\forall \mathcal{A} \in End(V) \Rightarrow tr(A) = trA'$, где A и A' матрицы оператора \mathcal{A} в базисе e и e' соответственно.

 $\underline{\mathbf{def:}}\ \mathcal{A} \in End(V), tr\mathcal{A} = trA - \mathbf{c}$ лед оператора.

Замечание: след оператора инвариантен из следствия выше.

<u>def:</u> Линейное подпространство $L \subset V$ называется <u>инвариантным</u> относительно линейного оператора $\mathcal{A} \in End(V)$, если $\forall v \in L, \mathcal{A}v \in L$.

Теорема 1:

 $L \subset V$ - линейное подпространство. L - инвариантно относительно $\mathcal{A} \in End(V)$. Тогда \exists базис пр-ва V матрица, такой что матрица оператора \mathcal{A} в этом базисе будет иметь $\mathit{cmynehuamuй}$ $\mathit{виd}$, при этом размерность $A^1 = k \times k$, $k = \dim L$.

$$A = \begin{pmatrix} A^1 & * \\ 0 & A^2 \end{pmatrix}$$

Доказательство:

 $L = span(e_1, \ldots, e_k)$ - базис L.

Дополним базис L до базиса $V: V = span(e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$.

Запишем матрицу A по определению:

$$\forall e_i \in L : \mathcal{A}e_i \in L \Rightarrow \mathcal{A}e_i = \sum_{j=1}^k a_{ji}e_j \leftrightarrow A_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ki} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Откуда
$$A = \begin{pmatrix} a_{11} & \dots & a_{1k} & * & \dots & * \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ a_{k1} & \dots & a_{k1} & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & * & \dots & * \end{pmatrix} \Rightarrow A^1 = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{k1} \end{pmatrix}$$

Q.E.D.

Теорема 2:

 $V = \bigoplus_{i=1}^{m} L_i, L_i$ инвариантны отн. $\mathcal{A}. \Rightarrow \exists$ базис пр-ва V, такое что м-ца оператора \mathcal{A} будет иметь блочно-диагональный вид:

$$\begin{pmatrix} A^1 & \dots & \dots & \mathbb{O} \\ \vdots & A^2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \dots & \dots & A^n \end{pmatrix}$$

Доказательство:

Пусть базис $V\stackrel{\text{по эквив. условию} \oplus}{=}$ объединение базисов L_i .

$$L_i = span(e_1^i, \dots, e_{k_i}^i), \dim L_i = k_i$$

Построим матрицу по определению. Не трудно заметить, что для каждого L_i из доказательства прошлой теоремы, все кроме соотв. строчек для L_i будет зануленно.

Q.E.D.

Замечание: $A_i \leftrightarrow A|_{L_i} \in End(L_i)$.

Теорема 3.

$$V=\bigoplus_{i=1}^m L_i,\ L_i$$
 инвариантны отн $\mathcal{A}\Rightarrow\operatorname{Im}\mathcal{A}=\bigoplus_{i=1}^m\operatorname{Im}\mathcal{A}|_{L_i},$ где $\mathcal{A}|_{L_i}\in L(L_i,V)$

Доказательство:

$$V = \bigoplus_{i=1}^m L_i \stackrel{\text{из т. об экв. опр. прямой суммы}}{\longleftrightarrow} \forall v \in V: \exists ! v = \sum_{i=1}^m v_i, v_i \in L_i$$

$$\forall v \in V : \operatorname{Im} A \ni Av = A \sum_{i=1}^{m} v_i = \sum_{i=1}^{m} Av_i \in \operatorname{Im} A|_{L_i}$$

Тогда всё, что нам осталось проверить это то, что наши пространства дизъюнкты. Но, если присмотреться к тому, что у нас написано, то у нас для любого вектора из $\operatorname{Im} \mathcal{A}$ существует лишь одно разложение через $\operatorname{Im} A|_{L_i}$, что соответствует эквивалентному определению прямой суммы.

Q.E.D.

1.4 Собственные числа и собственные векторы лин. оператора

 $\lambda \in K$ называется <u>собственным числом</u> $\mathcal{A} \in End(V)$, если $\exists v \in V, v \neq 0$. $\mathcal{A}v = \lambda v$. Такой v называют **собственным вектором** собственного числа λ .

$$\lambda \in K : \begin{cases} \mathcal{A}v = \lambda v \\ v \neq 0 \end{cases} \Leftrightarrow \begin{cases} (A - \lambda \varepsilon)v = 0 \\ v \neq 0 \end{cases} \Leftrightarrow \begin{cases} v \in \mathcal{K}er(A - \lambda \varepsilon) \\ v \neq 0 \end{cases} \Leftrightarrow$$

 $\Leftrightarrow v$ собственный вектор собственного числа $\lambda.$

 $V_{\lambda} = \mathcal{K}er(A - \lambda \varepsilon) -$ собственное подпространство \mathcal{A} соответств. с.ч. λ . Это мн-во всех с.в. V, отвечающим с.ч. λ и нулевой вектор.

 $\gamma(\lambda) = \dim V_{\lambda} - \underline{\text{геометрическая кратность}}.$

Свойства:

- 1. V_{λ} инвариантно относительно $(\mathcal{A} \lambda \varepsilon)$.
- 2. V_{λ} инвариантно относительно \mathcal{A} .
- 3. $\gamma(\lambda)$ инвариант относительно базиса.

Условие существования с.ч.:

 $\lambda \in K_{\mathcal{A}}$ - с.ч., v - с.в. $\Leftrightarrow \mathcal{K}er(A - \lambda \varepsilon)$ нетривиально $\Leftrightarrow def(A - \lambda \varepsilon) \neq 0 \Leftrightarrow rg(A - \lambda \varepsilon) \neq n \Leftrightarrow det(A - \lambda \varepsilon) = 0$

Тк определитель линейного оператора инвариантен, то:

$$\det(\mathcal{A} - \lambda \varepsilon) = 0 \Leftrightarrow \det(A - \lambda E) = 0$$

 $\underline{\mathbf{def:}}\ \chi(t) = \det(\mathcal{A} - t\varepsilon)$ - характеристический многочлен оператора $\mathcal{A}.$

Т.к. det оператора инвариантен $\chi(t) = \det(A - tE)$, где A - матрица линейного оператора \mathcal{A} в некотором базисе.

$$\chi(t) = \begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - t & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - t \end{vmatrix} = (-1)^n \cdot t^n + (-1)^{n-1} (trAt^{n-1}) + \dots + \det A$$

По теореме Виета: $\begin{cases} t_1 + \ldots + t_n = trA \\ t_1 \cdot \ldots \cdot t_n = \det A \end{cases}$ Заметим, что λ с.ч. $\mathcal{A} \Leftrightarrow \begin{cases} \lambda \in K \\ \chi(\lambda) = 0 \end{cases}$ - корень хар. мн.

Замечание. Если все корни хар. мн. $\in K \Rightarrow \begin{cases} \lambda_1 + \ldots + \lambda_n = trA \\ \lambda_1 \cdot \ldots \cdot \lambda_n = \det A \end{cases}$

<u>def:</u> <u>Спектром</u> оператора \mathcal{A} называется множество $\{(\lambda, \alpha(\lambda))\}, \alpha(\lambda)$ - кратность λ лин. оператора в хар. уравнении (*алгебраическая кратность*). Спектр это множество пар.

 $\underline{\mathbf{def:}}\ \mathbf{\Pi poctoй}\ \mathbf{cnektp}-$ все кратности - единички.

Теорема 1:

$$\forall \mathcal{A} \in End(V)$$
. $\forall \lambda$ с.ч. $\mathcal{A} : 1 \leq \gamma(\lambda) \leq \alpha(\lambda)$

Доказательство:

 λ с.ч. $\mathcal{A} \Leftrightarrow \mathcal{K}er(\mathcal{A} - \lambda \varepsilon) = V_{\lambda}$ не тривиально $\Leftrightarrow \gamma_1 = \dim V_{\lambda} \geq 1$.

Пусть $\dim V_{\lambda} = \gamma$, V_{λ} инвариантно относительно $\mathcal{A} \Rightarrow$ по т-ме 1 об инв. подпр. существует V такой, что матрица оператора \mathcal{A} будет иметь ступенчатый вид:

$$A = \begin{pmatrix} A^1 & * \\ 0 & A^2 \end{pmatrix}$$

$$\dim A^1 = \gamma \times \gamma, V = span(e_1, \dots, e_{\gamma}, e_{\gamma+1}, \dots, e_n)$$

При построении матрицы оператора \mathcal{A} :

$$\mathcal{A}e_i=\lambda e_i\leftrightarrow A_i=egin{pmatrix} \vdots\\0\\\lambda\\0\\\vdots\end{pmatrix}$$
 - λ - на i -ой строчке. Немного распишем:

$$\chi(t) = \det(A - tE) = \begin{vmatrix} A^1 - tE_{\gamma \times \gamma} & * \\ 0 & A^2 - tE_{(n-\gamma) \times (n-\gamma)} \end{vmatrix}^{\text{по 6-ому св-ву опр}} =$$

$$=|A^{1}-tE||A^{2}-tE|=\chi_{A^{1}}(t)\cdot\chi_{A^{2}}(t)=(\lambda-t)^{\gamma}\chi_{A_{2}}(t)\Rightarrow$$

 $\Rightarrow \lambda$ корень $\chi(t)$, причем кратность $\geq \gamma$, т.к λ может оказаться корнем χ_{A^2}

Q.E.D.

Теорема 2:

 $\lambda_1, \lambda_2, \ldots, \lambda_n$ попарно различные с.ч $\mathcal{A}, v_1, \ldots, v_n$ соответ. с.в.

 $\Rightarrow v_1, \dots, v_n$ — лин. независимы.

Доказательство:

Докажем по индукции:

База $m = 1 : \lambda_1, v_1 \Rightarrow$ лин. незав.

ИП: Пусть верно для m, докажем для m + 1:

От противного: Пусть $\lambda_1, \ldots, \lambda_m, \lambda_{m+1}$ попарно различные собственные числа.

 v_1,\dots,v_m - линейно независимы по ИП. v_1,\dots,v_m,v_{m+1} - линейно зависимы. Откуда: $v_{m+1}=\sum_{i=1}^m \alpha_i v_i$. С одной стороны:

$$\mathcal{A}v_{m+1} = \lambda_{m+1}v_{m+1} = \lambda_{m+1}\sum_{i=1}^{m} \alpha_i v_i$$

С другой стороны:

$$\mathcal{A}v_{m+1} = \mathcal{A}\sum_{i=1}^{m} \alpha_i v_i = \sum_{i=1}^{m} \alpha_i \mathcal{A}v_i = \sum_{i=1}^{m} \alpha_i \lambda_i v_i$$
$$\sum_{i=1}^{m} (\lambda_{m+1} - \lambda_i) a_i v_i = 0$$

Но мы знаем, что v_1, \ldots, v_m линейно независимы. Откуда эта линейная комбинация тривиальна, но с другой стороны, она такой быть не может, потому что $\exists \alpha_i \neq 0$, для которого v_i не равен нулю, а так же, исходя из того что искомые с.ч. попарно различны, то $\lambda_{m+1} - \lambda_i \neq 0$. Откуда комбинация нетривиальна.

Противоречие.

Q.E.D.

Следствие: $\lambda_1,\ldots,\lambda_m$ попарно различные с.ч. $\mathcal{A}\Rightarrow\bigoplus_{i=1}^m V_{\lambda_i}$, т.е V_{λ_i} дизъюнктны.

Доказательстсво:

$$\mathbb{O} = v_1 + \ldots + v_m, v_i \in V_{\lambda_i}$$

Если в сумме какой-то из векторов ненулевой, то это собственный вектор, а собственные вектора для различных с.ч. линейно независимы. Противоречие. Откуда все вектора в сумме нулевые, откуда подпространства дизъюнктны.

Теорема 3:

$$V = \bigoplus_{i=1}^m L_i, L_i$$
 инвариантно относительно $\mathcal{A} \in End(V)$

$$\Rightarrow \chi(t) = \det(\mathcal{A} - t\varepsilon) = \prod_{i=1}^{m} \chi_{\mathcal{A}_i}(t).$$

Доказательство:

Смотрим теорему 3 об инв. подпр. Матрица А - блочно-диагональная:

$$A = \begin{pmatrix} A^1 & \dots & \dots & \mathbb{O} \\ \vdots & A^2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \dots & \dots & A^n \end{pmatrix}$$

Тогда
$$\chi(t)=\det(A-tE)$$
 по 6-ому свойству опр.
$$\prod_{i=1}^m\det(A^i-tE)=\prod_{i=1}^m\chi_{A_{L_i}}(t)$$

Q.E.D.

1.5 Оператор простой структуры (о.п.с). Проекторы. Спектральное разложение. Функция от диагонализированной матрицы.

 $\mathcal{A} \in End(V)$ называется <u>оператором простой структуры</u> (о.п.с), если \exists базис пространства V такой, что матрица оператора \mathcal{A} в этом базисе имеет диаг. вид.

$$\Lambda = diag(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

Заметим, что в таком случае собственные числа оператора \mathcal{A} будут λ_i , а так же собственные вектора этих чисел - соотв. столбики (легко проверить умножением). Отсюда все корни характ. многочлена $\chi \in K \Leftrightarrow \sum_{\lambda\text{-c.ч.}\mathcal{A}} \alpha(\lambda) = n = \dim V$.

Теорема:

$$orall \mathcal{A} \in End(V),$$
 если \sum_{λ -с.ч. $\mathcal{A}} lpha(\lambda) = n,$ то тогда:

$$\mathcal A$$
 - о.п.с $\Leftrightarrow \forall \lambda$ - с.ч : $\gamma(\lambda) = \alpha(\lambda) \Leftrightarrow \sum_{\lambda$ -с.ч. $\mathcal A} \gamma(\lambda) = n = \dim V$

Доказательство:

$$\sum_{\lambda$$
-с.ч. $\mathcal{A}} \alpha(\lambda) = n \Leftrightarrow$ все корни $\chi \in K$, откуда \mathcal{A} - о.п.с.

 ${\mathcal A}$ о.п.с. $\Leftrightarrow \exists$ базис V такой, что матрица диагональна \Leftrightarrow

$$\Leftrightarrow V = \bigoplus_{\lambda - \text{c.q.}} V_{\lambda} \Leftrightarrow \sum_{\lambda - \text{c.q.}} \gamma(\lambda) = n = \dim V$$

Q.E.D.

Следствие. Если все корни характ. многочлена $\in K$, а также все $\alpha(\lambda) = 1$ (спектр простой), то \mathcal{A} - о.п.с.

 $\underline{\mathbf{def:}}\ A_{n\times n}$ называется **диагонализируемой**, если она подобна диагональной.

Теорема (критерий диагональности матрицы А)

это перепишется

A подобна диагональной \Leftrightarrow матрица о.п.с \mathcal{A} в нек. базисе

Доказательство:

 $\bullet \Rightarrow$

Пусть A - диагонализируемая \Leftrightarrow подобна диагональной $\Leftrightarrow \exists$ невырожд Т: $T^{-1}AT = \Lambda = diag(\lambda_1, \ldots, \lambda_n)$. V - линейное пространство над полем K. $e = (e_1, \ldots, e_n)$ - базис V.

Пусть A - матрица в базисе e. Тогда $Ae_j = \sum_{i=1}^n a_{ij} e_i.v = (v_1, \dots, v_n)$ - базис.

Откуда
$$v_1, \ldots, v_n = (e_1, \ldots, e_n) T_{e \to v} \Rightarrow \mathcal{A} \stackrel{v}{\longleftrightarrow} A' = T^{-1} A T = \Lambda$$

• $\not \in \mathcal{A}$ о.п.с, A - матрица в некотором базисе $e = (e_1, \dots, e_n)$. Возьму v_1, \dots, v_n - базис V, где v_i - собственный вектор \mathcal{A} . Заметим, что так как \mathcal{A} о.п.с, то такой базис существует

Теперь давайте возьмем матрицу перехода из $T_{e \to v}$. Тогда $\mathcal{A} \stackrel{v}{\longleftrightarrow} A' = T^{-1}AT = \Lambda \Rightarrow A$ подобна диагональной

Q.E.D.

Алгоритм поиска диагонального представления матрицы подобной диагональной:

- 1. найти спектр: если все корни $\chi \in K$, переходим к п2.
- 2. найти все $\gamma(\lambda)$, если $\forall \lambda$ с.ч $\gamma(\lambda) = \alpha(\lambda)$, то перейти к п3.
- 3. $T_{\text{KaH}} \to v = (v_1, \dots, v_n) \ T^{-1}AT = \Lambda$

 $\underline{\mathbf{def:}}\ V = \bigoplus_{i=1}^m L_i$. По теореме об равносильных условиях прямой суммы:

 $\forall v \in V : \exists! v = \sum_{i=1}^m v_i$, где $v_i \in L_i$. Возьму $P_i \in End(V)$, такие, что $P_i \cdot v = v_i \in L_i$.

Тогда такие P_i^{i-1} назовем **операторами проектирования** на подпр-во L_i .

Свойства операторов проектировния:

1. Im
$$P_i = L_i$$
, $\mathcal{K}er P_i = \bigoplus_{j \neq i} L_j$

$$2. P_i P_j = \mathbb{O}$$

$$3. \sum_{i=1}^{m} P_i = \varepsilon$$

4.
$$P_i^2 = P_i, (P_j^k = P_j,$$
где $k \in \mathbb{N})$ - идемпотентность

Они все тривиальны

Утверждение. Возьму множество операторов: $\{P_i\}_{i=1}^m, P_i \in End(V)$.

Пусть они удовлетворяют свойствам $2,3 \Rightarrow V = \bigoplus_{i=1}^{m} \operatorname{Im} P_{i}$. P_{i} это проектор на L_{i} .

Доказательство:

Мы знаем, что $P_iP_j=\mathbb{O}$, для $i\neq j$, а также $\sum\limits_{j=1}^m P_i=\varepsilon$. Откуда получаем, что:

$$P_{i} = P_{i}\varepsilon = P_{i}\sum_{j=1}^{m} P_{j} = \sum_{j=1}^{m} P_{j}P_{i} = P_{i}^{2}$$

A это значит, что $\forall v \in V : v = \varepsilon v = \sum_{i=1}^m P_i v \Rightarrow V = \sum_{i=1}^m \operatorname{Im} P_i$.

Осталось показать единственность разложения нуля:

$$\mathbb{O}=\sum_{i=1}^m v_i=\sum_{i=1}^m P_iw_i$$
, где $w_i\in V$

$$P_{j}\mathbb{O} = \mathbb{O} = P_{j} \sum_{i=1}^{n} P_{i}w_{i} = \sum_{i=1}^{n} P_{i}P_{j}w_{i} = P_{j}w_{j} = v_{j}$$

$$\Rightarrow v_j = \mathbb{O}, \forall j = 1 \dots m \; \Rightarrow$$
 дизъюнк. $\Rightarrow \bigoplus \operatorname{Im} P_i$

Q.E.D.

Замечание: Из определения проекторов следует, что они существуют и определены однозначно для данной прямой суммы.

Теорема (спектральное разложение о.п.с)

Дан $\mathcal{A} \in End(V)$. Тогда выполнено:

1)
$$\mathcal{A}-$$
 о.п.с. $\Rightarrow \mathcal{A}=\sum_{\lambda$ - с.ч. $\lambda P_{\lambda},P_{\lambda}$ — проектор на V_{λ} \forall с.ч. λ .

Такое разложение называется спектральным.

2)
$$V=\bigoplus_{i=1}^m L_i,\ P_i$$
 проекторы на $L_i.\ \mathcal{A}=\sum_{j=1}^m \lambda_i P_i\Rightarrow \mathcal{A}$ о.п.с, λ_i с.ч.

 $\operatorname{Im} P_i = L_i = V_{\lambda} (\text{соотвест. подпр-во})$

Доказательство:

1) \mathcal{A} о.п.с $\Leftrightarrow V = \bigoplus_{\lambda \text{ - c.ч}} V_{\lambda}$. Возьму P_{λ} проекторы на V_{λ} (исходя из определения -они существуют) Тогда давайте воспользуемся определением:

$$\forall v \in V : \exists ! v = \sum_{\lambda = c,q} v_{\lambda}$$
, где $v_{\lambda} \in V_{\lambda} : \mathcal{A}v = \mathcal{A}(\sum_{\lambda} v_{\lambda}) = \sum_{\lambda} \mathcal{A}v_{\lambda} = \sum_{\lambda} \lambda v_{\lambda} = \sum_{\lambda} \lambda P_{\lambda}v$

Откуда уже крайне очевидно получаем, что $\mathcal{A} = \sum_{\lambda} \lambda P_{\lambda}$.

2)
$$V=\bigoplus_{i=1}^m L_i$$
. Откуда по определению: $\forall v\in V:\exists!v=\sum_{i=1}^m v_i\in L_i=\mathrm{Im}\, P_i,\,v_i\neq 0$. Тогда

$$\mathcal{A}v_i = (\sum_{j=1}^m \lambda_j P_j)v_i = (\sum_{j=1}^m \lambda_j P_j)P_iv = v\sum_{j=1}^m \lambda_j P_j P_i$$

Теперь вспомним свойство, что при умножении двух различных операторов мы получаем О. Поэтому на самом деле наша сумма равна:

$$v\sum_{i=1}^{m} \lambda_j P_j P_i = v\lambda_i P_i P_i = v\lambda_i P_i = \lambda_i v_i$$

Хорошо, теперь вспомним, что изначально это было равно $\mathcal{A}v_i$. поэтому $\mathcal{A}v_i = \lambda_i v_i$, откуда получаем, что v_i с.в. \mathcal{A} отвечающий с.ч. λ_i .

Откуда получаем, что наше подмножество $V_{\lambda_i} \supseteq \operatorname{Im} P_i$ (потому что любой $v \in \operatorname{Im} P_i$ — собственный вектор).

Вспомним, что: $V=\bigoplus_{i=1}^m {
m Im}\, P_i\subseteq \bigoplus_{i=1}^m V_{\lambda_i},$ а как мы знаем $\bigoplus_{i=1}^m V_{\lambda_i}\subseteq V.$ Откуда, я получаю, что:

$$\bigoplus_{i=1}^{m} \operatorname{Im} P_{i} = \bigoplus_{i=1}^{m} V_{\lambda_{i}} \xrightarrow{\text{Tak kak } P_{i} \subseteq V_{\lambda_{i}}} \operatorname{Im} P_{i} = V_{\lambda_{i}}$$

Q.E.D.

Следствие (спектральное разложение диагонализируемой матрицы)

A диагонализируема $\Leftrightarrow \exists !\{P_i\}_{i=1}^m,$ такое, что $P_i\cdot P_j=\mathbb{O},\ i\neq j$ и $\sum\limits_{i=1}^m P_i=E,\ A=\sum\limits_{i=1}^m \lambda_i P_i$

Доказательство:

Очевидно следует из теоремы:

A диагонализируема \iff матрица $\mathcal A$ о.п.с. Либо можно считать $A=\mathcal A$ о.п.с. $\in End(K^n)$

Q.E.D.

Замечание. Матрица A подобна диагональной, то у нее есть диагональное представление:

$$T^{-1}AT = \Lambda = diag(\lambda_1 \dots \lambda_n), A = T\Lambda T^{-1}$$

А также у такой матрицы есть спектральное разложение:

$$A = \sum_{\lambda \in \mathcal{X}} \lambda P_{\lambda}$$

Просьба не путать эти две формулы!

СЕЙЧАС НАЧНЕТСЯ ЧТО-ТО СТРАШНОЕ

 $\underline{\mathbf{def:}}\ A_k = (a_{ij}^k)_{n \times n}$ - последовательность матриц $n \times n.$

Обозначают так: $(A_k)_{k=1}^{\infty}$ — последовательность матриц.

Раз это последовательность, то давайте введем на ней вот такой предел:

$$A = \lim_{n \to \infty} A_k = \forall i, j : a_{ij} = \lim_{k \to \infty} a_{ij}^k$$

Для лучшего понимания этого мира смотрите на приведенный ниже пример:

$$\lim_{k \to \infty} \begin{pmatrix} (1 + \frac{2}{k})^k & \sqrt[k]{k} \\ \frac{\sin\frac{\pi}{k}}{\frac{1}{k}} & \frac{1 - \cos\frac{\pi}{k}}{\frac{1}{k}} \end{pmatrix} = \begin{pmatrix} e^2 & 1 \\ \pi & 0 \end{pmatrix}$$

$$\underline{\operatorname{def:}}\ a_n \in R: \sum_{m=1}^\infty a_m = S \Leftrightarrow \exists \lim_{k \to \infty} \sum_{m=1}^k a_m = S,$$
 где $S_k = \sum_{m=1}^k a_m - \underline{\hspace{1cm}}$ частичная сумма ряда.

А саму такую конструкцию понятно называют рядом. Теперь давайте немного притронемся к матану:

$$\sum_{m=0}^{\infty} c_m x^m$$
 - ряды Тейлора - Маклорена.

 $x \in \mathbb{R}(\mathbb{C})$ — их область определения, |x| < R (или еще обозначается r) — **радиус сходимости**, $c_m \in \mathbb{R}(\mathbb{C})$. Причем эти c-шки на самом деле производные. (если интересно см. конспект по мат. анализу первый семестр)

Рассмотрим пример: Давайте разложим e^x , нам это позже понадобится:

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n, |x| < +\infty$$

В таком случае $c_m = \frac{f^{(m)}(0)}{m!}$.

Пусть $f(x) = \sum_{m=0}^{\infty} c_n x^n$. А давайте расширим на матрицы :)

<u>def:</u> $A_{n \times n} : f(A) = \sum_{m=0}^{\infty} c_m A^m$. Причем мы так же считаем частичные суммы и ищем их предел, но теперь просто ищем предел в матрицах.

Можно добавить параметр: $f(At) = \sum_{m=0}^{\infty} c_m A^m t^m$.

Теорема 1 (функция от диагонализируемой матрицы 1)

Пусть A — подобна диагональной. А также нам дана $f(x) = \sum_{m=0}^{\infty} c_m x^m, |x| < r.$

Тогда, если
$$\forall$$
 с.ч. $|\lambda| < r \Rightarrow \exists f(A)$ и $f(A) = Tf(\Lambda)T^{-1}$, где $f(\Lambda) = \begin{pmatrix} f(\lambda_1) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & f(\lambda_n) \end{pmatrix}$

Упрощу $\sum_{m=0}^k c_m A^m$. Мы знаем, что A - подобна диагональной $\Rightarrow A = T\Lambda T^{-1}$. Тогда:

$$A^{m} = (T\Lambda T^{-1})^{m} = T\Lambda T^{-1}T\Lambda T^{-1}\dots T\Lambda T^{-1} = T\Lambda^{m}T^{-1}$$

Теперь давайте подставим это в нашу сумму:

$$\sum_{m=0}^{k} c_m A^m = \sum_{m=0}^{k} c_m T \Lambda^m T^{-1} = T \left(\sum_{m=0}^{k} c_m \Lambda^m \right) T^{-1}$$

Теперь вспомним, что Λ^n диагональня, поэтому занесем сумму внутрь матрицы и получим:

$$T\left(\sum_{m=0}^{k} c_m \Lambda^m\right) T^{-1} = T\left(\begin{array}{ccc} \sum_{m=0}^{k} c_m \lambda_1^m & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \sum_{m=0}^{k} c_m \lambda_n^m \end{array}\right) T^{-1} =$$

Теперь вспомним, что \forall с.ч. $|\lambda| < r$, поэтому для них мы можем применить формулу, откуда:

$$\lim_{k \to \infty} \sum_{m=0}^{k} c_m A^m = \lim_{k \to \infty} T \begin{pmatrix} \sum_{m=0}^{k} c_m \lambda_1^m & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sum_{m=0}^{k} c_m \lambda_n^m \end{pmatrix} T^{-1} = T \begin{pmatrix} f(\lambda_1) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & f(\lambda_n) \end{pmatrix} T^{-1}$$
Q.E.D.

Теорема 2 (функция от диагонализируемой матрицы, 2-я формула)

Пусть A — подобна диагональной.

Тогда A имеет спектральное разложение \sum_{λ - с.ч. λP_{λ} , где P_{λ} — проекторы. А также нам дана $f(x)=\sum_{k=0}^{\infty}c_{m}x^{m},\quad |x|< r.$

Тогда, если \forall с.ч. $|\lambda| < r$, то $\exists f(A)$, а так же $f(A) = \sum_{\lambda = \text{c.ч.}} f(\lambda) P_{\lambda}$.

Доказательство:

$$A^{m} = (\sum_{\lambda} \lambda P_{\lambda})^{m} = \sum_{\lambda} \lambda P_{\lambda} \sum_{\mu} \mu P_{\mu} \dots \sum_{\xi} \xi P_{\xi}$$

А теперь вспомним свойства проекторов. Когда я умножаю два разных проектора, я получаю ноль, откуда:

$$A^{m} = \sum_{\lambda} \lambda P_{\lambda} \sum_{\mu} \mu P_{\mu} \dots \sum_{\xi} \xi P_{\xi} = \sum_{\lambda} \lambda^{m} P_{\lambda}^{m} = \sum_{\lambda} \lambda^{m} P_{\lambda}$$

Значит: $\sum_{m=0}^k c_m A^m = \sum_{m=0}^k c_m \sum_{\lambda} \lambda^m P_{\lambda} = \sum_{\lambda} P_{\lambda} \sum_{m=0}^k \lambda^m c_m$. Теперь если я возьму предел, то я получу то, что мне нужно, потому что каждая лямбда < r, и поэтому я могу вместо них подставить $f(\lambda)$.

Q.E.D.

Экспонента:

А теперь давайте возьмем все c=1, а также вспомним, что мы можем протаскивать с собой параметр. Поэтому у нас получается новая формула:

 $f(A) = \lim_{k \to \infty} \sum_{m=0}^k t^m A^m$, а теперь вспомним наше разложение e-шки. А это именно оно и есть! Поэтому получаю:

$$e^{At} = f(At) = \lim_{k \to \infty} \sum_{m=0}^{k} t^m A^m$$

Или:

$$e^{At} = T \begin{pmatrix} e^{\lambda_1 t} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{\lambda_n t} \end{pmatrix} T^{-1} = \sum_{\lambda \text{-c.q.}} e^{\lambda t} P_{\lambda}$$

Свойства:

1.
$$(e^{At})' = Ae^{At} = e^{At}A$$
.

$$e^{(A_1+A_2)t} = e^{A_1t} \cdot e^{A_2t}$$

3.
$$e^{\mathbb{O}t} = E$$

Обратная:

$$A$$
 - подобна диагональной \forall с.ч. $\lambda \neq 0 \Rightarrow \exists A^{-1} = T \begin{pmatrix} \frac{1}{\lambda_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \frac{1}{\lambda_n} \end{pmatrix} T^{-1}$

Свойства:

1.
$$A^{-1} = \sum_{\lambda - c, q} \frac{1}{\lambda} P(\lambda)$$

2.
$$AA^{-1} = T\Lambda T^{-1}T\Lambda^{-1}T^{-1} = E$$

3.
$$AA^{-1} = (\sum \mu P_{\mu})(\sum \frac{1}{\lambda} P_{\lambda}) = \sum_{\lambda} \lambda \frac{1}{\lambda} P_{\lambda} = E$$

Корень:

Если A подобна диагональной и \forall с.ч. $\lambda \geq 0$, то взяв $m \in \mathbb{N}, m \geqslant 2$ мы можем ввести:

$$\sqrt[m]{A} = T \begin{pmatrix} \sqrt[m]{\lambda_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sqrt[m]{\lambda_n} \end{pmatrix} T^{-1}$$
, полагая $\sqrt[m]{\lambda} \geqslant 0$

Спектральное представление: $\sqrt[m]{A} = \sum_{\lambda \text{ c. ч.}} \sqrt[m]{\lambda} P_{\lambda}$.

1.6 Комплексификация вещ. лин. пр-ва. Продолжение вещественного линейного оператора

Давайте посмотрим какие линейные операторы мы уже изучили:

Пусть $\mathcal{A} \in End(V) \stackrel{e}{\longleftrightarrow} A, \, \chi(t)$ — корни характеристического многочлена. Он может быть:

- 1. Все корни $\in K$. $\sum_{\lambda c. 4} \alpha(\lambda) = n = \dim V$
 - ullet базис V из v_{λ} : $\forall \lambda: \ \alpha(\lambda) = \gamma(\lambda) \iff$ диагонализируема.
 - \exists базис V из v_{λ} : \exists с.ч. λ : $\gamma(\lambda) < \alpha(\lambda) \iff A$ жорданова форма.
- 2. Не все корни $\in K$. В таком случае вещ. V комплексифицируют.

<u>def:</u> V — линейное пространство над \mathbb{R} (вещ. лин. пр-во)

$$\forall x, y \in V \Rightarrow z = x + iy \in V_{\mathbb{C}} \quad V_{\mathbb{C}} = \{z = x + yi \mid \forall x, y \in V\}$$

Назовем $V_{\mathbb{C}}$ комплексификацией V.

Покажем некоторые свойства:

- 1. $\mathbb{O} \in V \leftrightarrow \mathbb{O} + i\mathbb{O} = \mathbb{O} \in V_{\mathbb{C}}$ существование нуля
- 2. $x \in V \leftrightarrow x + i\mathbb{O} = x \in V_c, V \subset V_{\mathbb{C}}$ говорим, что $V \subseteq V_{\mathbb{C}}$
- 3. $\forall z = x + iy$ существует обратное: -x + i(-y)

Заметим, что в таком случае $V_{\mathbb{C}}-$ <u>линейное пространство</u> над полем комплексных чисел.

Утв. Пусть e_1,\ldots,e_n - базис V. Докажем что e_1,\ldots,e_n — базис $V_{\mathbb C}.$

Доказательство:

Возьмем любой z и докажем, что его можно породить с помощью базиса:

$$z = x + iy = \sum_{j=1}^{n} x_j e_j + i \sum_{j=1}^{n} y_j e_j = \sum_{j=1}^{n} (x_j + iy_j) e_j$$

Откуда e - порождающий базис для $V_{\mathbb{C}}$. Докажем линейную независимость:

Для этого нам надо показать, что любая нулевая комбинация тривиальна:

$$\mathbb{O} = \sum_{j=1}^{n} (a_j + ib_j)e_j = \sum_{j=1}^{n} a_j e_j + i \sum_{j=1}^{n} b_j e_j \iff \begin{cases} \sum_{j=1}^{n} \alpha_j e_j = \mathbb{O} \\ \sum_{j=1}^{n} \beta_j e_j = \mathbb{O} \end{cases} \iff \begin{cases} \forall j : \alpha_j = 0 \\ \forall j : \beta_j = 0 \end{cases}$$

Откуда получили линейную независимость.

Замечание. Мы знаем, что $V \subset V_{\mathbb{C}}$. dim $V = \dim V_{\mathbb{C}} = n$, откуда наши пространства должны быть равны? Heт! Это было бы так, если бы не одно HO. V - линейное пространство над \mathbb{R} , а $V_{\mathbb{C}}$ - линейное пространство над \mathbb{C} , поэтому это не правда.

Благодаря верхней теореме мы можем сделать некоторые замечания:

$$x \underset{e}{\leftrightarrow} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, y \underset{e}{\leftrightarrow} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, z = x + iy \underset{e}{\leftrightarrow} \begin{pmatrix} x_1 + iy_1 \\ \vdots \\ x_n + iy_n \end{pmatrix}$$

 $\underline{\mathbf{def:}}\ z \in V_{\mathbb{C}}, \ \overline{z} = x - iy - \mathbf{conpяжeнный}\ \mathrm{вектор},\ z = x + iy, \quad x,y \in V$

Свойства:

- 1. $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$
- 2. $\overline{\lambda z} = \overline{\lambda} \overline{z}$
- 3. v_1,\dots,v_m лин. (не)зависимы $\Leftrightarrow \overline{v_1},\dots\overline{v_m}$ лин. (не)зависимы.
- 4. $rq(v_1 \dots v_m) = rq(\overline{v}_1 \dots \overline{v}_m)$

def: Возьму оператор $\mathcal{A} \in End(V)$. $\forall z \in V_{\mathbb{C}} : \mathcal{A}_{\mathbb{C}}z = \mathcal{A}x + i\mathcal{A}y$

Назову данную конструкцию <u>продолжением вещ. лин. оператора</u> \mathcal{A} на $V_{\mathbb{C}}$ вещественного пространства V.

Очевидно, что в таком случае $\mathcal{A}_{\mathbb{C}} \in End(V_{\mathbb{C}})$, т.к. \mathcal{A} — линейный оператор.

Утверждение: $A \in End(V)$, $e = (e_1, \dots, e_n)$ базис $V \implies V$ из теоремы сверху).

Тогда, если $\mathcal{A} \underset{e}{\leftrightarrow} A$, то $\mathcal{A}_{\mathbb{C}} \underset{e}{\leftrightarrow} A$

Доказательство:

По определению матричного оператора:

$$\mathcal{A}_{\mathbb{C}} \cdot e_j = \mathcal{A} \cdot e_j + i\mathcal{A}0 = \mathcal{A} \cdot e_j = \sum_{k=1}^n \alpha_{kj} e_k \iff A_j = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Q.E.D.

Свойства $\mathcal{A}_{\mathbb{C}}$:

1. $\chi_{\mathcal{A}}(t) \equiv \chi_{\mathcal{A}_{\mathbb{C}}}(t)$ — так как матрицы совпадают.

Замечание:

- 1) если $\lambda = \alpha + i\beta \in \mathbb{C}, \beta \neq 0$ корень $\chi(t) \Rightarrow \lambda$ с.ч. $\mathcal{A}_{\mathbb{C}}$, но не с.ч. \mathcal{A} .
- 2) если $\lambda=\alpha+i\beta\in\mathbb{C}$ корень $\chi\Rightarrow\overline{\lambda}=\alpha-i\beta$ тоже корень, причём той же кратности.
- $2. \ \forall z \in V_{\mathbb{C}} : \overline{A_{\mathbb{C}}z} = A_{\mathbb{C}}\overline{z}.$

$$\overline{A_{\mathbb{C}}z} = \overline{Ax + iAy} = Ax - iAy = A_{\mathbb{C}}\overline{z}$$

3. λ с.ч. $\mathcal{A}_{\mathbb{C}}, z$ - с. в , отвечающий $\lambda \Rightarrow \overline{\lambda}$ с.ч. $\mathcal{A}_{\mathbb{C}}, \overline{z}$ с.в., отвечающий $\overline{\lambda}$ $\mathcal{A}\overline{z} = \overline{\mathcal{A}_{\mathbb{C}}z} = \overline{\lambda}\overline{z} = \overline{\lambda} \cdot \overline{z}$.

4.
$$\gamma(\lambda) = \gamma(\overline{\lambda}), \dim V_{\lambda} = \dim V_{\overline{\lambda}}$$

Вернемся к тому старому разделению на случаи. Заметим, что если в таком случае мы возьмем наш третий случай и комплексифицируем, то для полученного оператора $A_{\mathbb{C}}$ мы получим, что он относится либо к первому варианту, либо ко второму.

1.7 Минимальный многочлен линейного оператора. Теорема Кэли - Гамильтона

 $\underline{\mathbf{def:}}\ \mathcal{A} \in End(V)$ - нормализованный многочлен $\psi(t)$ называется $\underline{\mathbf{aннулятором}}$ элемента $x \in V$, если $\psi(\mathcal{A})x = \mathbb{O}$.

А теперь на более понятном. Пусть у нас есть $\psi(t) = t^k + a_1 t^{k-1} \dots + a_{k+1} t^0$. Подставляя в него оператор получу: $\psi(\mathcal{A}) = \mathcal{A}^k + a_1 \mathcal{A}^{k-1} + \dots + a_{k+1} \varepsilon$. И такой оператор будет аннулятором x, если $\psi(\mathcal{A})x = \mathbb{O}$.

Замечание. $\psi(t) \neq 0$, потому что это нормализованный многочлен, его старший коэффициент равен 1.

 $\psi(t)=\prod_{\lambda \text{ - корень}}(t-\lambda)^{m(\lambda)}$ - так как это многочлен. Здесь $m(\lambda)$ — кратность корня λ . Перепишем на место t оператор:

$$\psi(\mathcal{A}) = \prod_{\substack{\lambda \text{- kodehb}}} (\mathcal{A} - \lambda \varepsilon)^{m(\lambda)}$$

<u>def:</u> Аннулятор элемента $x \in V$ наименьшей степени называется минимальным аннулятором элемента x.

Теорема: (о существовании и единственности минимального аннулятора)

- 1. $\forall x \in V \exists ! \psi(t)$ минимальный аннулятор x.
- 2. \forall другой аннулятор x: на минимальный аннулятор x.

Доказательство:

- 1. (a) Пусть $x = \mathbb{O}$, $\psi(t) = 1$, $\psi(A) = \varepsilon$, $\varepsilon x = \varepsilon \mathbb{O} = \mathbb{O}$
 - (b) Пусть $x \neq 0$. Посмотрю на $x, \mathcal{A}x, \mathcal{A}^2x, \dots, \mathcal{A}^mx$

Причем m такое, что $x, Ax, \dots A^{m-1}x$ - линейно независимы, а $x, Ax, \dots A^mx$ - зависимы. Такой набор собрать удастся, при этом $m \le n$.

$$\Rightarrow \exists ! c_0, c_1, \dots, c_{m-1} \in k$$
, такие, что $\mathcal{A}^m x = \sum\limits_{j=0}^{m-1} c_j \mathcal{A}^j x$

Откуда получаем, что $(\mathcal{A}^m - \sum_{j=0}^{m-1} c_j \mathcal{A}^j) x = \mathbb{O}$. Получил какой-то оператор, который при умножении на x дает \mathbb{O} . А это значит, аннулятор существует, причём аннулятор выше минимальный по построению.

Замечание: мы смотрим на многочлен с коэффицентами $1, c_{n-1}, \ldots, c_0$ — этот многочлен и есть наш минимальный аннулятор..

2. Пусть мой минимальный аннулятор это $\psi(t)$, а $\psi_1(t)$ другой аннулятор x.

Посмотрим на результат деления:

$$\psi_1(t) = a(t)\psi(t) + r(t)$$
 (οстаток), deg $r < \deg \psi$

Это значит, что подставляя в него ${\cal A}$ и умножая на x должно быть верно:

$$\psi_1(\mathcal{A})x = a(\mathcal{A})\psi(\mathcal{A})x + r(\mathcal{A})x$$

Ho $\psi_1(A)x = \mathbb{O}$, $\psi(A)x = \mathbb{O}$, поэтому $r(A)x = \mathbb{O}$, но что это значит?

Как мы знаем $\psi(t)$ - минимальный аннулятор. Так как $r(\mathcal{A})x=0$, то если $r(t)\not\equiv 0$, получаем, что это аннулятор, а тогда мы выбрали не минимальный аннулятор, т.к. $\deg \psi>\deg r$. Противоречие!

Откуда получаю, что $r \equiv 0 \Rightarrow \psi_1$ делится на минимальный оператор ψ .

Q.E.D.

<u>def:</u> Нормализованный многочлен $\varphi(t)$ называется аннулятором оператора \mathcal{A} , если:

$$\varphi(\mathcal{A}) \equiv \mathbb{O}, (\text{r.e.} \forall v \in V, \varphi(\mathcal{A})v = \mathbb{O})$$

 $\underline{\operatorname{def:}}$ минимальным многочленом оператора $\mathcal A$ называется аннулятор $\mathcal A$ наименьшей степени.

Теорема: (о существовании и единственности миним. многочлена оператора)

- 1. $\forall \mathcal{A} \in End(V)$: $\exists !$ минимальный многочлен.
- 2. \forall аннул. оператора $\mathcal A$ делится на миним. мн-н $\mathcal A$

Доказательство:

Пусть $e = (e_1, \ldots, e_n)$ - базис V. Построим $\psi_i(t)$ - минимальный аннулятор e_i

Возьму $\varphi(t)=$ H.О.К. $\{\psi_j\}_{j=1}^n$, где $j=1,\ldots,n$. Покажем, что φ аннулятор $\mathcal A$:

Как мы знаем $\forall v \in V, v = \sum_{i=1}^{n} v_i e_i$. Поэтому:

$$\varphi(\mathcal{A})v = \sum_{j=1}^{n} v_j \cdot \varphi(\mathcal{A}) \cdot e_j = \sum_{j=1}^{n} v_j \cdot (\psi_j(\mathcal{A}) \cdot \alpha_j(\mathcal{A}))e_j = \mathbb{O} \iff \varphi(\mathcal{A}) \equiv \mathbb{O}$$

То есть такой многочлен существует. Теперь докажем единственность:

Пусть $\varphi_a(t)$ другой аннулятор \mathcal{A} : Тогда $\forall j=1,\ldots,n: \varphi_a(\mathcal{A})e_j=0.$

Тогда φ_a аннулятор элемента e_j для любого j.

По теореме о линейном операторе мы знаем, что φ_a делится на ψ_j для любого j, то есть φ_a : φ .

Откуда я получаю, что φ_a степени хотя бы такой же, что φ . То есть φ_a хотя бы H.O.K.

Если мы предполагаем, что это многочлен минимальной степени, то он такой же степени, как и φ . При этом они оба делятся на H.O.K., а $\varphi = \text{H.O.K.}$ Так же их старшие коэффиценты равны. Поэтому: $\varphi_1 = \varphi$. Исходя из этого получаем, что такой многочлен единственный. Делимость получаем из того, что любой другой аннулятор оператора является аннулятором базисных векторов, откуда делится на каждый из них \Rightarrow делится на их HOK = минимальному.

Q.E.D.

Теорема (Кэли - Гамильтона)

 $\forall \mathcal{A} \in End(V)$ выполнено, что:

 $\chi(t) = \det(A - t\varepsilon)$ - аннулятор оператора \mathcal{A} .

Замечание $\det(A - A \cdot \varepsilon), t \in K$. Сюда не предполагается подставлять матрицу.

Доказательство:

Пусть есть базис e_1, \ldots, e_n . Тогда $\mathcal{A} \stackrel{e}{\longleftrightarrow} A$.

Пусть есть $\mu \in K$ - не корень $\chi(t)$, где $t \in K$. Посмотрим на $\chi(t) = \det(\mathcal{A} - tE)$. Как мы знаем: $\chi(\mu) \neq 0$, поэтому $\det(A - \mu E) \neq 0$. Откуда существует обратная матрица (по теореме об обратной матрице), тк A - не вырожденная:

$$\exists ! (A - \mu E)^{-1} = \frac{1}{\det(A - \mu E)} B = \frac{1}{\chi(\mu)} B$$

где B - матрица из алгебраических дополнений.

Наша матрица B выглядит примерно так: $\begin{pmatrix} \sum_{i=0}^{n-1} c_{11i}\mu^i & \dots & \sum_{i=0}^{n-1} c_{1ni}\mu^i \\ \vdots & \ddots & \vdots \\ \sum_{i=0}^{n-1} c_{n1i}\mu^i & \dots & \sum_{i=0}^{n-1} c_{nni}\mu^i \end{pmatrix}$

Давайте разложим нашу матрицу в сумму матриц так, что матрица B_k будет состоять из всех коэффицентов на k-ой позиции этих k функций:

$$B = \sum_{k=0}^{n-1} B_k \mu^k$$

Тогда вернемся к тому, что было:

$$(A - \mu E)^{-1} = \frac{1}{\chi(\mu)} \sum_{k=0}^{n-1} B_k \mu^k$$

Или домножим на $(A - \mu E)$ и получим:

$$E \cdot \chi(\mu) = (A - \mu E) \sum_{k=0}^{n-1} B_k \mu^k$$

Пусть $\chi(t) = \alpha_n t^n + \ldots + \alpha_0 t^0$. Давайте расскроем скобки, мы получим:

Теперь умножим каждый $E\alpha_i$ на A^i и сложим. Получится:

$$\sum_{k=0}^{n} \alpha_k A^k = AB_0 + A^2 B_1 - AB_0 + A^3 B_2 - A^2 B_1 + \ldots + A^n B_{n-1} - A^{n-1} B_{n-2} - A^n B_{n-1} = \mathbb{O}$$

$$\chi(A)=\mathbb{O}$$
 $\Rightarrow \chi$ аннулятор \mathcal{A} , т.к. $\chi_{\mathcal{A}}(t)=\chi_{A}(t)$. Q.Е.D.

Замечание: Очевидно, \forall матрицы $A_{n \times n}$ ее характеристический многочлен это аннулятор \mathcal{A} .

Следствие 1. $\forall \mathcal{A} \in End(V), \ \varphi$ - минимальный многочлен, тогда $\chi \ \vdots \ \varphi$ (из теоремы о минимальном мн-не.)

Следствие 1.5. $\deg \varphi \leq n$, т.к. $\deg \chi = n$ и $\chi : \varphi$.

Следствие 2. $\forall A \in End(V)$. Если $\deg \varphi = n = \deg \chi \Leftrightarrow \varphi \equiv \chi \cdot (-1)^n$

Теорема (о множестве корней характеристического многочлена)

 $\forall \mathcal{A} \in End(V)$ множество корней χ совпадает с множеством корней φ (без учета кратности)

Доказательство:

- 1. λ корень $\varphi \Rightarrow \lambda$ корень χ . Очевидно.
- 2. Пусть λ корень χ . Мы должны показать, что и у φ есть такой корень. Тогда есть 2 варианта:
 - (a) $\lambda \in K \Rightarrow \lambda$ с.ч. $\Rightarrow \exists u$ собственный вектор $\neq \mathbb{O}$

Так как u - собственный вектор, то $(A - \lambda \varepsilon)u = 0$

 $(t-\lambda)$ - минимальный аннулятор элемента u,φ - минимальный многочлен \Rightarrow аннулятор v, откуда φ $\,\colon\, (t-\lambda)\Rightarrow \lambda$ корень φ - победили

(b) $\lambda \not\in K \equiv \mathbb{R}$, т.е. λ - не собственное число. Прибегаем к комплексификации:

Для $\mathcal{A}_{\mathbb{C}}$ λ - корень. Как мы знаем $\chi_{\mathcal{A}_{\mathbb{C}}} \equiv \chi_{\mathcal{A}} = \chi$.

Тогда по пункту a это корень минимального многочлена в $\varphi_{\mathbb{C}}$.

Построим минимальный многочлен:

Пусть e_1, \ldots, e_n базис. $\mathcal{A} \stackrel{e}{\longleftrightarrow} A$. $\mathcal{A}_{\mathbb{C}} \stackrel{e}{\longleftrightarrow} A$. Начнем строить по определению минимальный многочлен. Для этого мы должны найти $\psi_i(t)$ - аннулятор e_i .

Выпишу: e_i , $\mathcal{A}_{\mathbb{C}}e_i$, ..., $\mathcal{A}_{\mathbb{C}}^k e_i$. Причем k такое, что e_i , $\mathcal{A}_{\mathbb{C}}e_i$, ..., $\mathcal{A}_{\mathbb{C}}^{k-1}e_i$ - линейно независимы, а e_i , $\mathcal{A}_{\mathbb{C}}e_i$, ..., $\mathcal{A}_{\mathbb{C}}^k e_i$ - зависимы. Заметим, что $\mathcal{A}_{\mathbb{C}}e_j = \mathcal{A}e_j$.

Поэтому по алгоритму построения мин. многочлена $\varphi_j=\varphi_j$ $_{\mathbb C}.$ А уже откуда λ корень φ - победили!

Q.E.D.

1.8 Операторное разложение единицы. Корневое подпространство.

Пусть у нас есть $\varphi(t)$ - многочлен над полем K (все его коэффициенты в K).

Пусть все его корни $\varphi \in K$. Тогда давайте разложим его в произведение корней:

$$\varphi(t) = \prod_{\lambda} (t - \lambda)^{m(\lambda)}$$

давайте теперь вынесем один из корней за скобки. Получим:

$$\varphi(t) = (t - \lambda)^{m(\lambda)} \cdot \prod_{\mu \neq \lambda} (t - \mu)^{m(\mu)}$$

Переобозначим $\varphi_{\lambda}(t) = \prod_{\mu \neq \lambda} (t - \mu)^{m(\mu)}$ и подставим:

$$\varphi(t) = (t - \lambda)^{m(\lambda)} \cdot \varphi_{\lambda}(t)$$

Возьмем P_{m-1} - множество всех многочленов над полем K степени $\leq m-1$.

Зафиксируем φ и λ и назовем **главным идеалом**, порожденным многочленом φ_{λ} :

$$I_{\lambda} = \{ p \in P_{n-1} | p : \varphi_{\lambda} \}$$

Очевидно I_λ линейное подпространство. Заметим, что p : $\varphi_\lambda \Leftrightarrow p(t) = a_\lambda(t) \cdot \varphi_\lambda(t)$

Поэтому на самом деле: $I_{\lambda}\cong\{a_{\lambda}\}=P_{m(\lambda)-1}$

Откуда dim $I_{\lambda} = m(\lambda)$.

Теорема:

$$P_{m-1} = \bigoplus_{\lambda \text{ - корень } \varphi} I_{\lambda}.$$

Доказательство:

1. Проверим дизъюнктность:

$$\mathbb{O} = \sum_{\lambda \text{ - корень } \varphi} p_{\lambda} \in I_{\lambda} = \sum_{\lambda} a_{\lambda}(t) \varphi_{\lambda}(t)$$

Зафиксируем какую-то λ и вынесем ее за скобки:

$$a_{\lambda}\varphi_{\lambda}(t) + \sum_{\mu \neq \lambda} a_{\mu}(t) \cdot \varphi_{\mu}(t)$$

Как мы знаем, для всех $\mu \neq \lambda : \varphi_{\mu} : (t - \lambda)^{m(\lambda)}$

А так же мы знаем, что $\varphi_{\lambda}(t)$ не делится на $(t-\lambda)^{m(\mu)}$

Откуда получаем, что a_λ і $(t-\lambda)^{m(\lambda)}.5$ A это значит, что $a_\lambda\equiv 0$

Откуда дизъюнктно.

2. Проверим размерность $\dim(\bigoplus_{\lambda} I_{\lambda}) = \sum_{\lambda} \dim I_{\lambda} = \sum_{\lambda} m(\lambda) = \dim P_{m-1}$, откуда прямая сумма.

Q.E.D.

Следствие 1: $\forall p \in P_{m-1} : \exists ! p = \sum_{\lambda} p_{\lambda}$, где $p_{\lambda}(t) = \alpha_{\lambda}(t) \cdot \varphi_{\lambda}(t)$, $\deg \alpha_{\lambda} \leq m(\lambda) - 1$.

В частности, $1 = \sum_{\lambda \text{ корень}} p_{\lambda}$ - полиномиальное разложение единицы

Замечание:

1. Пусть $\lambda \neq \mu$ - корни φ

$$p_{\lambda} \in I_{\lambda}, \ p_{\mu} \in I_{\mu}, \ p_{\lambda}p_{\mu} \vdots \varphi$$

$$p_{\lambda}(t) = \alpha_{\lambda} \varphi_{\lambda}(t), \ p_{\mu}(t) = \alpha_{\mu} \varphi_{\mu}(t)$$

$$p_{\lambda}(t)p_{\mu}(t) = \alpha_{\lambda}\varphi_{\lambda}(t)\alpha_{\mu}\varphi_{\mu}(t) \vdots \varphi$$

2. Пусть $\forall \lambda, \ m(\lambda) = 1,$ тогда $\varphi(t) = \prod_{\lambda} (t - \lambda).$

 $I_{\lambda}\ni p_{\lambda}=\alpha_{\lambda}\varphi_{\lambda},$ тогда $\alpha_{\lambda}=\mathrm{const.}$ Это можно понять так же из $0\leq \deg \alpha_{\lambda}\leq m(\lambda)-1=0$

Теорема (Лагранж)

Пусть $\forall \lambda : m(\lambda) = 1$, то есть $\varphi(t) = \prod_{\lambda} (t - \lambda)$. Тогда:

$$\forall p \in P_{m-1} : p(t) = \sum_{\lambda} \frac{p(\lambda)}{\varphi'(\lambda)} \cdot \varphi_{\lambda}(t)$$

Доказательство:

Возьму многочлен p и посмотрю значение в λ .

 $p(\lambda) = \sum_{\mu} p_{\mu}$ - я могу так разложить из следствия 1 (см. выше). Также заметим, что a_{μ} - константы. Тогда получается вот такая формула:

$$p(\lambda) = \sum_{\mu} p_{\mu} = \sum_{\mu} a_{\mu} \varphi_{\mu}(\lambda)$$

Заметим, что при $\mu \neq \lambda$ у нас заннуляется сумма, так что $p(\lambda) = a_{\lambda} \varphi_{\lambda}(\lambda)$.

Откуда получаю, что $\alpha_{\lambda} = \frac{p(\lambda)}{\varphi_{\lambda}(\lambda)}$.

Теперь про производную: $\varphi'(t) = ((t-\lambda)\cdot\varphi_{\lambda}(t))' = \varphi_{\lambda}(t) + (t-\lambda)\varphi'_{\lambda}(t)$

Зафиксируем λ . Получу, что в таком случае $\varphi'(\lambda) = \varphi_{\lambda}(\lambda)$. Откуда, если присмотреться, мы получаем формулу из теоремы.

Q.E.D.

Замечание. Эта теорема позволяет нам быстро искать $\alpha_{\lambda}(t)$, в случае всех m единиц, потому что в таком случае $\alpha_{\lambda}(t)$ - константа.

Следствие:
$$\forall \lambda : m(\lambda) = 1$$
: Пусть $1 = \sum_{\lambda} \frac{1}{\varphi'(\lambda)} \varphi_{\lambda}(t) = \sum_{\lambda} p_{\lambda}(t) \Rightarrow t = \sum_{\lambda} \lambda p_{\lambda}(t)$

Доказательство:
$$t=\sum_{\lambda} \frac{\lambda}{\varphi'(t)} \varphi_{\lambda}(t) = \sum_{\lambda} \lambda p_{\lambda}$$

Q.E.D.

Вернемся к операторам. Возьмем $\mathcal{A} \in End(V)$:

 $\varphi(t)$ минимальный многочлен, все корни $\varphi \in K(\Leftrightarrow$ все корни $\chi \in K$), то есть являются собственными числами.

$$\exists ! 1 = \sum_{\lambda \text{ - корни } \varphi} p_{\lambda}(t) - \underline{\text{полиномиальное разложение единицы}}.$$

$$\varepsilon = \sum_{\lambda} p_{\lambda}(\mathcal{A}), \, \varepsilon = \sum_{\lambda} P_{\lambda} - \underline{\text{ оператор разложения единицы}}.$$

Позамечаем некоторые интересные факты:

- 1. $P_{\lambda} \in End(V)$
- 2. Возьму $\lambda \neq \mu$. Замечу, что $p_{\lambda} \cdot p_{\mu} : \varphi$. Тогда $p_{\lambda}(t)p_{\mu}(t) = \alpha(t)\varphi(t)$, откуда: $\forall v \in V : P_{\lambda}P_{\mu}v = a(\mathcal{A})\varphi(\mathcal{A})v = \mathbb{O}$, из-за того, что φ минимальный многочлен.

Откуда $P_{\lambda}P_{\mu}$ - аннулятор ${\cal A}$ или $P_{\lambda}P_{\mu}={\mathbb O}$

3.
$$\Rightarrow$$
 $\begin{cases} \varepsilon = \sum_{\lambda} P_{\lambda} \\ P_{\lambda} \cdot P_{\mu} = 0 \end{cases} \Leftrightarrow P_{\lambda}$ - по теореме это проекторы на $\operatorname{Im} P_{\lambda}, \ V = \bigoplus \operatorname{Im} P_{\lambda}$

Такие проекторы называются <u>спектральными</u>. Это не те самые проекторы на V_{λ} . Пока что это проекторы на их собственные подпространства. Они обладают теми свойствами проекторов, что мы вывели до этого.

ЕСЛИ $\forall \lambda : m(\lambda) = 1$, тогда по следствию из теоремы Лагранжа, мы знаем:

$$\varepsilon = \sum_{\lambda} P_{\lambda}, \, \mathcal{A} = \sum_{\lambda} P_{\lambda} \cdot \lambda \Rightarrow \mathcal{A} \text{ о.п.с., } \lambda \text{ - с.ч } \mathcal{A}.$$

Откуда это будут проекторы на собственные подпространства.

Следствие: Т.е. \mathcal{A} о.п.с. достаточно удотворять: $\forall \lambda : m(\lambda) = 1$ в минимальном многочлене.

 $\underline{\mathbf{def:}}\ \mathcal{A} \in End(V),\ \lambda$ - с.ч. $\mathcal{A}.\ K_{\lambda}$ - корневое подпространство, если:

$$K_{\lambda}=\mathcal{K}er(\mathcal{A}-\lambda\varepsilon)^{m(\lambda)}$$
, где $m(\lambda)$ кратность λ в мин. многочлене φ . $\varphi(t)=\prod_{\lambda}(t-\lambda)^{m(\lambda)}$

Очевидно $V_{\lambda} \subseteq K_{\lambda}$.

Теорема (о корневом подпространстве)

- 1. K_{λ} инвариантно относительно \mathcal{A} .
- 2. Іт $P_{\lambda}=K_{\lambda}$, где $\varepsilon=\sum_{\lambda}P_{\lambda}$ оператор разложение единицы.

Называются образами спектров проекторов.

$$\Rightarrow \bigoplus_{\lambda} K_{\lambda} = V$$

$$3.\ (t-\lambda)^{m(\lambda)}$$
 - минимальный многочлен для $B=\mathcal{A}\Big|_{K_\lambda}\in End(K_\lambda)$

Доказательство:

1. Возьмем $v \in K_{\lambda} = \mathcal{K}er(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)}$

Заметим, что $(\mathcal{A}-\lambda \varepsilon)^{m(\lambda)}$ - многочлен от \mathcal{A} . Тогда:

$$\mathcal{A}(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)} = (\mathcal{A} - \lambda \varepsilon)^{m(\lambda)} \mathcal{A}$$

Умножим и левую и правую часть на v. Получим:

$$(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)}(\mathcal{A}v) = \mathcal{A}(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)}v = \mathbb{O}$$

Откуда $\mathcal{A}v \in \mathcal{K}er(\mathcal{A}-\lambda\varepsilon)^{m(\lambda)}=K_{\lambda}\Rightarrow K_{\lambda}$ инвариантно относительно \mathcal{A}

2. Вспомним, что: $\varepsilon = \sum_{\lambda} P_{\lambda}, \ P_{\lambda} = p_{\lambda}(\mathcal{A}), \ p_{\lambda}(t) = \alpha_{\lambda}(t) \cdot \varphi_{\lambda}(t)$

Пусть $v \in V$. Тогда посмотрим на:

$$(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)} \cdot P_{\mu} v =$$

Заменим P_{λ} по формуле:

$$= ((\mathcal{A} - \lambda \varepsilon)^{m(\lambda)} \cdot \alpha_{\lambda}(\mathcal{A}) \cdot \varphi_{\lambda}(\mathcal{A}))v =$$

Так как это все многочлены от \mathcal{A} , то они перестановочны:

$$= (\alpha_{\lambda}(\mathcal{A}) \cdot (\mathcal{A} - \lambda \varepsilon)^{m(\lambda)} \cdot \varphi_{\lambda}(\mathcal{A}))v = (\alpha_{\lambda}(\mathcal{A})\varphi(\mathcal{A}))v = 0$$

Так как $\varphi(A)v = 0$ (минимальный многочлен).

Откуда $P_{\lambda}v \in \mathcal{K}er(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)} = K_{\lambda}$. Следовательно $\operatorname{Im} P_{\lambda} \subseteq K_{\lambda}$.

Теперь докажем, что они совпадают:

Возьму $\mu \neq \lambda$, а также $v \in K_{\lambda}$. Посмотрим на $P_{\lambda}v$:

$$P_{\mu}v = \alpha_{\mu}(\mathcal{A})\varphi_{\mu}(\mathcal{A})v =$$

Мы знаем, что в $\varphi_{\mu}(\mathcal{A})$ содержится множитель $(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)}$. Давайте его вынесем за скобки, получим:

$$\alpha_{\mu}(\mathcal{A})\varphi_{\mu}(\mathcal{A})v = \alpha_{\mu}(\mathcal{A})\beta_{\mu}(\mathcal{A})(\mathcal{A} - \lambda\varepsilon)^{m(\lambda)}v$$

Так как $v \in K_{\lambda} = \mathcal{K}er(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)}$, то $(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)}v = \mathbb{O}$, откуда $P_{\mu}v = \mathbb{O}$.

Откуда получаю, что $\forall v \in K_{\lambda}, v = \varepsilon v = \sum_{\mu} P_{\mu} v = P_{\lambda} v$. Следовательно $K_{\lambda} \subseteq \operatorname{Im} P_{\lambda}$, но мы уже сказали, что $\operatorname{Im} P_{\lambda} \subseteq K_{\lambda}$, поэтому $K_{\lambda} = \operatorname{Im} P_{\lambda}$.

Частный случай: если нет $\mu \neq \lambda$, т.е. λ — единственное с.ч. \mathcal{A} , то $\varphi(t) = (t - \lambda)^{m(\lambda)} \Rightarrow \varphi_{\lambda}(t) \equiv 1 \Rightarrow a_{\lambda}(t) \equiv 1 \Rightarrow \mathcal{P}_{\lambda} = \varepsilon \Rightarrow \operatorname{Im} \mathcal{P}_{\lambda} = V$.

С другой стороны, $K_{\lambda}=Ker(\mathcal{A}-\lambda\varepsilon)^{m(\lambda)}$, но $(\mathcal{A}-\lambda\varepsilon)^{m(\lambda)}$ это буквально $\varphi(\mathcal{A})=\mathbb{O}$, так что $K_{\lambda}=V=\operatorname{Im}\mathcal{P}_{\lambda}$.

3.
$$B = \mathcal{A}\Big|_{K_{\lambda}} \in End(K_{\lambda})$$

 $\forall v \in K_{\lambda} : (\mathcal{A} - \lambda \varepsilon)^{m(\lambda)} v = \mathbb{O}$, откуда получаем, что $\psi(t) = (t - \lambda)^{m(\lambda)}$ - аннулятор \mathcal{B} .

Хотим понять: минимальный ли это многочлен?

Предположим, что он не минимальный, тогда есть $\psi_i(t)$ - минимальный многочлен \mathcal{B} : $\deg \psi_i < \deg \psi$. Заметим, что любой аннулятор \mathcal{B} делится на минимальный многочлен, поэтому $\psi_i(t) = (t - \lambda)^k$, причем $k \leq m(\lambda) - 1$. Тогда заметим, что $\psi_1(t) = (\mathcal{A} - \lambda \varepsilon)^{m(\lambda) - 1}$ - тоже аннулятор \mathcal{B} .

Если мы покажем, что $\varphi_1(t) = \psi_1(t) \cdot \varphi_{\lambda}(t)$ - минимальный многочлен \mathcal{A} , тогда наш искомый минимальный многочлен не был минимальным. Как мы знаем:

$$\forall v \in V : \exists! v = \sum_{\mu} v_{\mu}$$
, где $v_{\mu} \in \operatorname{Im} P_{\mu} = K_{\mu}$

Покажем, что $\varphi_1(t)$ - минимальный многочлен:

$$\varphi_1(\mathcal{A})v = \psi_1(\mathcal{A})\varphi_{\lambda}(\mathcal{A})v = \psi_1(\mathcal{A})\varphi_{\lambda}(\mathcal{A})\sum_{\mu}v_{\mu} = \varphi_{\lambda}(\mathcal{A})\psi_1(\mathcal{A})v_{\lambda} + \sum_{\mu \neq \lambda}\psi_1(\mathcal{A})\varphi_{\lambda}(\mathcal{A})v_{\mu}$$

Как мы сказали выше: $\psi_1(t)$ - аннулятор B, откуда $\psi_1(\mathcal{A})v_{\lambda}=0$ (тк $v_{\lambda}\in K_{\lambda}$). Также как мы знаем в $\varphi_{\lambda}(\mathcal{A})$ содержится $(\mathcal{A}-\mu\varepsilon)^{m(\mu)}$. А $v_{\mu}\in K_{\mu}=\mathcal{K}er(\mathcal{A}-\mu\varepsilon)^{m(\mu)}$. То есть наш многочлен и вправду минимальный. То есть мы пришли к противоречию.

Откуда $(t-\lambda)^{m(\lambda)}$ - минимальный многочлен для \mathcal{B} .

Q.E.D.

Следствие 1: Очевидно, что тогда $1 \le m(\lambda) \le \dim(K_{\lambda})$.

Следствие 2:
$$\mathcal{A}$$
 - о.п.с $\Leftrightarrow \varphi(t) = \prod_{\lambda} (t-\lambda),$ т.е $\forall \lambda: m(\lambda) = 1,$ (все корни $\varphi \in K$)

Доказательство:

 \Rightarrow Пусть \mathcal{A} - о.п.с.. Тогда мы знаем, что:

$$V = \bigoplus_{\lambda - \mathrm{c.q}} V_{\lambda}, \lambda$$
 - корень $arphi$

 $(\mathcal{A}-\lambda\varepsilon)v=0\Rightarrow (t-\lambda)$ - минимальный аннулятор v, где v - собственный вектор. Мы знаем, что:

$$\forall v \in V : \exists! v = \sum_{\lambda} v_{\lambda}$$

Докажем, что $\varphi(t) = \prod_{\lambda} (t-\lambda)$ - минимальный многочлен:

$$\varphi(\mathcal{A}) \cdot v = \left(\prod_{\lambda} (\mathcal{A} - \lambda \varepsilon)\right) \sum_{\mu} v_{\mu} = 0$$

Это верно, потому что в это произведение входят анулляторы собственных подпространств $(t-\lambda)$, которые будут занулять каждое из слагаемых. Откуда это аннулятор $\mathcal A$. А так как корни характеристического и минимального совпадают по теореме о множестве корней характеристического многочлена, а так же потому что λ - собственные числа - получаем, что данный многочлен - минимальный.

 \Leftarrow Уже доказывали, смотрите **ЕСЛИ** над теоремой о корневом подпространстве.

Q.E.D.

1.9 Нильпотентный оператор. Разложение Жордана

!!! Не путать разложение жордана с жордановой формой матрицы !!!

 $\underline{\mathbf{def:}}\ B \in End(V)$ называется $\underline{\mathbf{нильпотентным}},$ если его минимальный многочлен $=t^{\nu},$

(т.е. $B^{\nu} = 0$), где ν - индекс нильпотентности.

Теорема (Разложение Жордана)

 $\forall \mathcal{A} \in End(V)$, все корни $\chi, \varphi \in K$. Надо доказать, что:

 $\mathcal{A}=\mathcal{D}+\mathcal{B}$, где \mathcal{D} - о.п.с, \mathcal{B} - нильпотентный, причем DB=BD.

Доказательство:

Возьмем оператор \mathcal{A} . У него есть $\varphi = \prod_{\lambda} (t-\lambda)^{m(\lambda)}$ - минимальный многочлен.

Разложим на операторы разложения единицы:

$$\varepsilon = \sum_{\lambda \text{ - корень } \varphi} P_{\lambda}$$

Позже мы этим воспользуемся.

Возьму $\mathcal{D}:=\sum_{\lambda}\lambda P_{\lambda}$ — очевидно, \mathcal{D} - о.п.с. (смотрите теоремы о.п.с).

Возьму $\mathcal{B} := \mathcal{A} - \mathcal{D}$. Все, что осталось проверить - нильпотентность \mathcal{B} .

Пусть $\nu = \max(m_{\lambda})$, где λ - корень φ . Тогда:

$$\mathcal{B}^{\nu} = \left(\mathcal{A} - \sum_{\lambda} \lambda P_{\lambda}\right)^{\nu} = \left(\mathcal{A} \sum_{\lambda} P_{\lambda} - \sum_{\lambda} \lambda P_{\lambda}\right)^{\nu} = \left(\sum_{\lambda} \left(\mathcal{A} - \lambda \varepsilon\right) P_{\lambda}\right)^{\nu}$$

Как мы помним $\forall \mu \neq \lambda : P_{\lambda} \cdot P_{\mu} = \mathbb{O}$, а также $P_{\lambda}^2 = P_{\lambda}$. Поэтому:

$$\left(\sum_{\lambda} (\mathcal{A} - \lambda \varepsilon) P_{\lambda}\right)^{\nu} = \sum_{\lambda} (\mathcal{A} - \lambda \varepsilon)^{\nu} P_{\lambda}$$

А как мы помним из определения $P_{\lambda} = a_{\lambda}(\mathcal{A})\varphi_{\lambda}(\mathcal{A})$. А также, так как $\nu = \max(m_{\lambda})$, то внутри каждой скобки есть множитель $(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)}$. Откуда \mathcal{B} и вправду нильпотентно.

Теперь докажем перестановочность. $\mathcal{BD} = \left(\mathcal{A} - \sum_{\lambda} \lambda P_{\lambda} \right) \sum_{\mu} \mu P_{\mu}$

А так как это многочлены от \mathcal{A} , то они перестановочны. Поэтому и получается наша перестановочность

Q.E.D.

Замечание: $\mathcal{AD} = \mathcal{DA}, \, \mathcal{AB} = \mathcal{BA}$

Теорема (единственность разложения Жордана):

 $\forall \mathcal{A} \in End(V)$. Доказать, что разложение Жордана единственно, то есть $\exists ! D, B$.

Доказательство:

Пусть у нас есть еще одно разложение Жордана: $\mathcal{A} = \mathcal{D}' + C$, $\mathcal{D}'C = C\mathcal{D}'$, где \mathcal{D}' - о.п.с, а C - нильпотентый оператор.

$$\mathcal{D}' = \sum_{\mu} \mu Q_{\mu}$$
, где Q_{μ} - проекторы.

Давайте разметим план доказательства:

- 1. Множество λ совпадает с множеством μ .
 - 1.1 Докажем, что $CQ_{\mu} = Q_{\mu}C$.
 - 1.2 Докажем, что $(\mathcal{A} \mu \varepsilon)^k Q_\mu = C^k Q_\mu$.
 - 1.3 Покажем для каждого μ аннуляторы ${\rm Im}\,Q_{\mu}.\ \psi_{\mu}=(t-\mu)^{k(\mu)}$
 - 1.4 Покажем, что произведение ψ_{μ} аннулятор $\mathcal{A}.$
 - 1.5 Покажем, что на самом деле это минимальный многочлен, откуда множество корней совпадет.
- 2. Докажем совпадение \mathcal{D} и \mathcal{D}' .

Начнем доказательство:

1.1 Возьмем μ . Докажем, что $CQ_{\mu} = Q_{\mu}C$

Посмотрим на $\mathcal{D}'Q_{\mu}$. Используя свойства проекторов, оно равно:

$$\mathcal{D}'Q_{\mu} = \left(\sum_{\xi} \xi Q_{\xi}\right) Q_{\mu} = \mu Q_{\mu}$$

Посмотрим на $Q_{\mu}\mathcal{D}'$. Используя свойства проекторов, оно равно:

$$Q_{\mu}\mathcal{D}' = Q_{\mu} \left(\sum_{\xi} \xi Q_{\xi} \right) = \mu Q_{\mu}$$

Откуда \mathcal{D}' и Q_{λ} - перестановочны.

Возьмем ξ, μ . Для них выполнено:

$$(\xi - \mu)Q_{\xi}CQ_{\mu} = \xi Q_{\xi}CQ_{\mu} - Q_{\xi}C\mu Q_{\mu}$$

Как мы только что доказали: $\mu Q_{\mu} = \mathcal{D}' Q_{\mu}$. Поэтому:

$$\xi Q_{\xi} C Q_{\mu} - Q_{\xi} C \mu Q_{\mu} = \mathcal{D}' Q_{\xi} C Q_{\mu} - Q_{\xi} C \mathcal{D}' Q_{\mu}$$

А так же мы только что доказали, что \mathcal{D}' и Q_μ перестановочны для любого $\mu.$ Откуда:

$$\mathcal{D}'Q_{\xi}CQ_{\mu} - Q_{\xi}C\mathcal{D}'Q_{\mu} = Q_{\xi}\mathcal{D}'CQ_{\mu} - Q_{\xi}C\mathcal{D}'Q_{\mu} = Q_{\xi}(\mathcal{D}'C - C\mathcal{D}')Q_{\mu}$$

А как мы знаем из определения жорданового разложения C и D' перестановочны. Это значит, что $D'C-CD'=\mathbb{O}.$ Откуда:

$$(\xi - \mu)Q_{\xi}CQ_{\mu} = \mathbb{O} = (\mu - \xi)Q_{\mu}CQ_{\xi}$$

То есть для $\xi \neq \mu: Q_\xi CQ_\mu = Q_\mu CQ_\xi = \mathbb{O}$ Теперь вернемся к тому, что мы изначально хотели - перестановочность C,Q_μ :

$$CQ_{\mu} = \varepsilon CQ_{\mu} = \left(\sum_{\xi} Q_{\xi}\right) CQ_{\mu}$$

Хочу использовать только что доказанный факт: $Q_{\xi}CQ_{\mu}=Q_{\mu}CQ_{\xi}$:

$$\left(\sum_{\xi} Q_{\xi}\right) C Q_{\mu} = \sum_{\xi} Q_{\mu} C Q_{\xi} = Q_{\mu} C \left(\sum_{\xi} Q_{\xi}\right) = Q_{\mu} C$$

Откуда $Q_{\mu}C=CQ_{\mu}$ — перестановочны.

1.2 Докажем, что $(A - \mu \varepsilon)^k Q_\mu = C^k Q_\mu$. Сначала посмотрим на случай k = 1:

$$(\mathcal{A} - \mu \varepsilon)Q_{\mu} = (\mathcal{D}' + C - \mu \varepsilon)Q_{\mu} = (\sum_{\xi} \xi Q_{\xi} + C - \mu)Q_{\mu}$$

Воспользуемся свойствами проекторов и получим, что:

$$(\sum_{\xi} \xi Q_{\xi} + C - \mu)Q_{\mu} = \mu Q_{\mu} + CQ_{\mu} - \mu Q_{\mu} = CQ_{\mu}$$

Воспользуемся индукцией:

База: k=1 доказана сверху.

Индукционный переход: Пусть выполнено $(\mathcal{A} - \mu \varepsilon)^k Q_\mu = C^k Q_\mu$, тогда выполнено: $(\mathcal{A} - \mu \varepsilon)^{k+1} Q_\mu = C^{k+1} Q_\mu$. Докажем:

$$(\mathcal{A} - \mu \varepsilon)^{k+1} Q_{\mu} = (\mathcal{A} - \mu \varepsilon)^{1} (\mathcal{A} - \mu \varepsilon)^{k} Q_{\mu} = (\mathcal{A} - \mu \varepsilon) C^{k} Q_{\mu} = C^{k} (\mathcal{A} - \mu \varepsilon) Q_{\mu} = C^{k+1} Q_{\mu}$$

1.3 Посмотрим на $(A - \mu \varepsilon)^k Q_\mu$. Как мы доказали в пункте 1.2 $(A - \mu \varepsilon)^k Q_\mu = C^k Q_\mu$. Как мы помним, C - нильпотентная, откуда есть k начиная с которого $(A - \mu \varepsilon)^k Q_\mu = 0$. Давайте для каждого μ введем свое $k(\mu)$ - минимальная степень, чтобы получился ноль. Из перестановочности $C^j Q, QC^j$ получаю, что $(A - \mu \varepsilon)^{k(\mu)} Q = Q(A - \mu \varepsilon)^{k(\mu)}$

То есть $Q_{\mu}(\mathcal{A}-\mu\varepsilon)^{k(\mu)}=(\mathcal{A}-\mu\varepsilon)^{k(\mu)}Q_{\mu}=C^{k(\mu)}Q_{\mu}=0$. Это значит, что любой вектор из $\operatorname{Im}Q_{\mu}$ применяя к нему $(\mathcal{A}-\mu\varepsilon)^{k(\mu)}$ будет получаться ноль. То есть многочлен $(t-\mu)^{k(\mu)}$ - минимальный аннулятор векторов из $\operatorname{Im}Q_{m}$.

Замечание: именно здесь применяется пункт 1.1.

1.4 Возьму $\psi = \prod_{\mu} (t - \mu)^{k(\mu)}$. Покажу, что это аннулятор \mathcal{A} .

 $\forall x:\exists !x=\sum_{\mu}x_{\mu},$ где $x_{\mu}\in \mathrm{Im}\,Q_{\mu}$ - по определению проекторов.

Подействуем на х нашим минимальным многочленом:

$$\psi(\mathcal{A})x = \left(\prod_{\mu} (\mathcal{A} - \mu\varepsilon)^{k(\mu)}\right) \sum_{\xi} x_{\xi} = \sum_{\xi} \left(q_{\xi} \cdot (\mathcal{A} - \xi)^{k(\xi)} \cdot x_{\xi}\right) = \mathbb{O}$$

Это ноль потому что каждое слагаемое в сумме ноль, а каждое слагаемое ноль, потому что в $\psi(\mathcal{A})$ входит множитель $(\mathcal{A} - \xi)^{k(\xi)}$ - аннулятор векторов из $\operatorname{Im} Q_{\mu}$.

Откуда ψ аннулятор \mathcal{A} .

1.5 Как мы знаем минимальный многочлен делится на минимальные аннуляторы векторов, откуда φ делится на каждое ψ_{λ} , откуда делится на HOK = ψ . Также мы только что доказали, что ψ аннулятор \mathcal{A} , откуда ψ делится на φ . А раз ψ делится на φ и φ делится на ψ , то $\psi \equiv \varphi$ - минимальный аннулятор. Из этого следует, что множество λ и множество μ совпадает.

Замечание: совпадение λ и μ еще не говорит нам о том, что $\mathcal{D}' = \mathcal{D}$.

2. $k(\lambda) = m(\lambda)$ из того, что совпали ψ, φ .

$$(\mathcal{A} - \mu \varepsilon)^{m(\lambda)} Q_{\lambda} = Q_{\lambda} (\mathcal{A} - \mu \varepsilon)^{m(\lambda)} = \mathbb{O}$$

Откуда векторы из $\operatorname{Im} Q_m \subseteq \operatorname{\mathcal{K}er}(\mathcal{A} - \lambda \varepsilon)^{m(\lambda)} = K_{\lambda}$. Но мы помним, что $\bigoplus_{\lambda} K_{\lambda} = V$ и $\bigoplus_{\lambda} \operatorname{Im} Q_{\lambda} = V$, откуда они совпадают. Откуда $\mathcal{D} = \mathcal{D}'$.

Q.E.D.

Теорема:

Разложение Жордана $\mathcal{A} = D + B$. Тогда $\chi_{\mathcal{A}} \equiv \chi_{\mathcal{D}}$

Доказательство:

По теореме о о.п.с у ${\mathcal A}$ и ${\mathcal D}$ совпадает множество корней.

Но нам надо теперь понять что-то про степени. $\nu = \max(m(\lambda)); \mathcal{B}^{\nu} = \mathbb{O}.$ Тогда:

$$(\mathcal{A} - \mu \varepsilon)^{\nu} = (\mathcal{A} - \mu \varepsilon)^{\nu} - \mathcal{B}^{\nu} t^{\nu} = (\mathcal{A} - \mu \varepsilon - \mathcal{B}t)((\mathcal{A} - \mu \varepsilon)^{\nu-1} + (\mathcal{A} - \mu \varepsilon)^{\nu-2}\mathcal{B}t + \ldots + (\mathcal{B}t)^{\nu-1})$$

Так как $\mathcal B$ - многочлен от $\mathcal A$, то мы можем так разложить

Возьмем μ не корень. Посчитаем определители. С одной стороны это: $\det(A - \mu \varepsilon)^{\nu} = (\chi_{\mathcal{A}})^{\nu}$ - не зависит от t. С другой стороны это:

$$\det(A - \mu \varepsilon)^{\nu} = \det(A - \mu \varepsilon - \mathcal{B}t) \det((A - \mu \varepsilon)^{\nu-1} + (A - \mu \varepsilon)^{\nu-2} \mathcal{B}t + \dots + (\mathcal{B}t)^{\nu-1})$$

Тут два многочлена зависящих от t (оба не нули, иначе μ - корень).

Заметим, что слева многочлен нулевой степени t. Когда произведение двух многочленов от t дает в произведении многочлен нулевой степени? Когда это многочлены нулевой степени. Откуда это константы

Давайте посчитаем эти константы. Подставим в первый многочлен t=1, а во второй подставим t=0. Получим:

$$(\chi_{\mathcal{A}}(\mu))^{\nu} = \chi_{\mathcal{D}}(\mu)(\chi_{\mathcal{A}}(\mu))^{\nu-1})$$

Откуда $\chi_{\mathcal{A}}(\mu) = \chi_{\mathcal{D}}(\mu)$. Получили, что в любой точке - не корне, у нас совпадение многочленов. В корнях они оба зануляются, откуда $\chi_{\mathcal{A}} \equiv \chi_{\mathcal{D}}$.

Q.E.D.

Следствие 1: $\mathcal{A} = \mathcal{B} + \mathcal{D} \Rightarrow \det \mathcal{A} = \det \mathcal{D}$

Следствие 2: $\forall \mathcal{A} : \alpha(\lambda) = \dim K_{\lambda}$

Доказательство:

 $\mathcal{A}=\mathcal{D}+\mathcal{B}$ - разложение Жордана. $\chi_{\mathcal{A}}\equiv\chi_{\mathcal{D}}$ из теоремы.

 $D = \sum_{\lambda} \lambda P_{\lambda}$, \mathcal{D} - о.п.с. \forall с.ч λ : $\alpha(\lambda) = \gamma(\lambda)$, а теперь вспомним, что проекторы это с одной стороны проекторы на K_{λ} , а с другой стороны на собственные подпространства \mathcal{D} V_{λ} .

Q.E.D.

1.10 Жорданова форма матрицы. Формула Фробениуса.

Возьмем какое-то λ и рассмотрим сужение. Введем некоторые локальные обозначения:

$$K = K_{\lambda} = \mathcal{K}er(A - \lambda)^{m(\lambda)}, B = (\mathcal{A} - \lambda \varepsilon)\Big|_{K}, m = m(\lambda), \alpha = \alpha(\lambda), \gamma = \gamma(\lambda).$$

Возьмем $K_r = \mathcal{K}er(B^r) = \mathcal{K}er((\mathcal{A} - \lambda \varepsilon)^r), r = 1, \ldots, m : K_\lambda = K_1 \subseteq K_2 \subseteq \ldots \subseteq K_m = K$. Заметим, что m - минимальная степень, когда он зануляется. Докажем, что там строгое включение:

Доказательство:

Пусть существует: $K_r \equiv K_{r+1}$. $\mathcal{K}erB^r = \mathcal{K}erB^{r+1}$. Тогда по теореме о ранге и дефекте:

$$rgB^r = rgB^{r+1}$$
, $\operatorname{Im} B^{r+1} \subseteq \operatorname{Im} B^r \Rightarrow \operatorname{Im} B^{r+1} = \operatorname{Im} B^r$

Что это значит? Пусть $X=\operatorname{Im} B^r$. Тогда $BX=X,\quad B^2X=X,\quad \dots\quad, B^mX=X.$

Вспомним, что $B^m=0$, откуда X=0, но в таком случае (так как r от 1 до m-1, то мы нашли число r< m, что $B^r=0$. Но такого не может быть, так как m - минимальная степень, чтобы оператор занулился. Противоречие. Откуда все K_i различны.

Q.E.D.

Доказали, что включения строгие. А теперь объясним все на рисунке, а позже введем более формальную терминологию:

Рассмотрим такое K, что его ранг 24. И давайте сопоставим точкам на рисунке базисные вектора. Тогда у K_1 будет 6 базисных векторов, у K_2 будет 11 и так далее. Тогда давайте введем новое определение: \overline{K}_5 , такое подпространство, что $(KB+K_4)\oplus\overline{K}_5=K$. Возьму оттуда первый базисный вектор. Назову его j_5 . На картинке вы можете это отчетливо видеть. Тогда возьму $j_4=Bj_5,\ j_3=Bj_4,\ j_2=Bj_3,\ j_1=Bj_2$. Причем заметим, что в таком случае $j_i\in K_i$.

Такие j_5, j_4, j_3, j_2, j_1 мы будем называть **<u>циклическим базисом</u>** длины 5, а j_4, j_3, j_2, j_1 будут называться **присоединенными**.

Пока упустим, почему эти векторы линейно независимы, это потом докажется. Давайте сузим наш оператор до $S = span(j_1, \ldots, j_5)$ и попытаемся понять: какая будет матрица оператора. Заметим, что $K_1 = V_{\lambda}$, откуда мы знаем, что j_1 - собственный вектор, соответствующий собственному числу λ , то есть $Aj_1 = \lambda j_1$. $j_1 = Bj_2$, то есть $Aj_2 = j_1 + \lambda j_2$. Таким образом получаю, что моя матрица будет:

$$\begin{pmatrix} \lambda & 1 & 0 & 0 & 0 \\ 0 & \lambda & 1 & 0 & 0 \\ 0 & 0 & \lambda & 1 & 0 \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{pmatrix}$$

Такая матрица называется **жордановой клеткой**, порожденной циклическим базисом размерности 5. Обозначается $J_5(\lambda) = \lambda E + I_5$, где I_5 - матричка из единиц на диагонали, расположенной выше главной. По-другому еще называется **блок нижнего уровня**.

Давайте теперь возьмем все такие циклические базисы (столбики) одной высоты и объединим их. Получатся <u>башни</u>. Или более формально башня - подпространство, порожденное циклическими базисами одной длины. У башни есть <u>опорные подпространства</u> (основание башни), а так же у каждой башни есть <u>крыша</u>. Они подписаны на рисунках сверху. Башни мы будем обозначать τ_h , где h высота башни. То есть на данном рисунке присутствуют башни $\tau_1, \tau_3, \tau_4, \tau_5$, но не присутствует башня τ_2 .

Замок Жордана, возвышающийся над живописными холмами Прованса, хранит немало тайн. Говорят, что в 15 веке в нем жил загадочный алхимик по имени Пьер. Местные жители часто видели странное зеленоватое свечение в окнах замка по ночам...

Так о чем это я? Вся эта конструкция величается **ЗАМКОМ ЖОРДАНА**. А если у нас $\alpha(\lambda) = \gamma(\lambda) = \dim V_{\lambda}$, то наш замок будет просто полоской, поэтому мы его будем называть деревней Жордана.

Так вот матрица, соответствующая этой K_{λ} , выраженной через циклические базисы:

$$\begin{pmatrix} J_5(\lambda) & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & J_4(\lambda) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & J_4(\lambda) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & J_4(\lambda) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & J_3(\lambda) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & J_3(\lambda) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & J_1(\lambda) \end{pmatrix} = J(\lambda)$$

Называется **блоком верхнего уровня**, причем m - размер самой большой клетки. При этом, если раскрыть все J, то получится:

Теперь мы приходим к **матрице в форме Жордана**, она состоит блоков верхнего уровня, соответствующих собственных чисел

$$J = \begin{pmatrix} J(\lambda) & & & \\ & J(\mu) & & \\ & & \ddots & \\ & & & J(\xi) \end{pmatrix}$$

 $T=T_{ ext{кан} o ext{жорд. базис}}=$ объединение всех циклических базисов. И если A - матрица \mathcal{A} , то: $T^{-1}AT=J$.

А ТЕПЕРЬ НА ЯЗЫКЕ МАТЕМАТИКИ:

$$B = (A - \lambda \varepsilon)\Big|_{K}$$
. Введу $K_1 \subset K_2 \subset \ldots \subset K_r \subset \ldots \subset K_m = K$, где $K_r = \mathcal{K}erB^r$.

Введем временное обозначение:

$$z_0 = BK = \operatorname{Im} B$$

$$z_1 = BK + K_1$$

$$\vdots$$

$$z_r = BK + K_r$$

$$\vdots$$

$$z_m = BK + K_m = K$$

Заметим, что в таком случае: $z_0 \subseteq z_1 \subseteq \ldots \subseteq z_m$, а также $z_{r+1} = z_r \oplus \overline{K}_{r+1}$, где \overline{K}_r - опорное подпространство. Тогда заметим вот такую формулу:

$$K = z_m = BK + K_m = z_{m-1} \oplus \overline{K}_m = BK \oplus \overline{K}_1 \oplus \overline{K}_2 \oplus \ldots \oplus \overline{K}_m$$

Прямую сумму K_{λ} называют **прямой суммой опорных подпространств**.

Теорема:

$$\forall r: 1 \leq r \leq m-1$$
 будет выполнено: $B^rK = B^{r+1}K \oplus B^r\overline{K}_{r+1} \oplus B^r\overline{K}_{r+2} \oplus \ldots \oplus B^r\overline{K}_m$

Доказательство:

Пусть $x_* \in K$. Тогда существует и единственно представление в прямой сумме опорных подпространств и BK:

$$x_* = Bx + x_1 + x_2 + \ldots + x_n$$
, где $x_j \in \overline{K}_j$

Теперь умножим правую и левую часть на B^r :

$$B^{r}x_{*} = B^{r+1}x + B^{r}x_{1} + \ldots + B^{r}x_{r} + \ldots + B^{r}x_{m}$$

Заметим, что в таком случае все x_i , где $j \le r$ уйдут, потому что $x_i \in \overline{K}_i$, то есть $B^j x_i = 0$.

$$B^r K = B^{r+1} K + B^r \overline{K}_{r+1} + B^r \overline{K}_{r+2} + \ldots + B^r \overline{K}_m$$

Осталось проверить дизъюнктность, то есть проверить тривиальность разложения нуля:

$$\mathbb{O} = B^{r+1}x + B^r x_{r+1} + \ldots + B^r x_m = B^r (Bx + x_{r+1} + \ldots + x_m)$$

Заметим, что то, что находится внутри скобок находится в $\mathcal{K}erB^r \subset z_r = BK \oplus \overline{K}_1 \oplus \ldots \oplus \overline{K}_r$. Откуда существует единственное разложение через эту прямую сумму:

$$Bx + x_{r+1} \dots + x_m = By + x_1 + \dots + x_r$$

Но, как мы помним BK и \overline{K}_j - дизъюнктны из прямой суммы опорных пространств и ${\rm Im}\, B=BK$. То есть $x_1=x_2=\ldots=x_m=0$. Откуда получаем, что Bx тоже ноль, откуда разложение нуля - тривиально.

Q.E.D.

Следствие:

$$K = \overline{K}_1 \oplus \ldots \oplus \overline{K}_m \oplus B\overline{K}_2 \oplus \ldots \oplus B\overline{K}_m \oplus B^2\overline{K}_3 \oplus \ldots \oplus B^{m-1}\overline{K}_m$$

Доказательство:

$$K = BK \oplus \overline{K}_1 \dots \oplus \overline{K}_m$$

$$BK = B^2K \oplus B\overline{K}_2 \dots \oplus B\overline{K}_m$$

$$\vdots$$

$$B^{m-1}K = B^mK \oplus B^{m-1}\overline{K}_m = B^{m-1}\overline{K}_m$$

Подставьте рекурсивно и получите все, что нам надо.

Q.E.D.

Тогда из этого следствия наше корневое подпространство K можно представить вот так:

 $\underline{\mathbf{def:}}$ Если $\overline{K}_r \neq \{0\}$, то тогда: $\overline{K}_r \oplus B\overline{K}_r \oplus \ldots \oplus B^{r-1}\overline{K}_r = \tau_r$ - называется $\underline{\mathbf{башней}}$ высоты r.

Заметим, что l-ый этаж башни - $B^{r-l}K_r$.

Если $\overline{K_r}=\{\mathbb{O}\}\Rightarrow$ башни высоты r нет.

Покажем, что каждый этаж башни имеет одну и ту же размерность, которая называется шириной башни.

Теорема (о размерности башни)

Все этажи башни высоты r имеют одну и ту же dim (называем ее шириной d_r)

$$\dim \overline{K}_r = \dim B\overline{K}_r = \dots = \dim B^{r-1}\overline{K}_r = d_r.$$

Доказательство:

 $\forall j=1,\ldots,r-1: B^j: \overline{K}_r \to B^j \overline{K}_r$. Покажем, что \overline{K}_r и $B^j \overline{K}_r$ — изоморфные пространства. (Тогда у нас сразу совпадут dim и не надо будет ничего доказывать).

Заметим, что у нашего отображения уже есть сюръективность (потому что мы буквально сужаем, то куда переводит наше отображение). Значит, чтобы доказать изоморфность нам нужна инъективность. А что такое инъективность? Это то, что $\exists x_1, x_2 \in \overline{K}_r$, что $B^j x_1 = B^j x_2 \Leftrightarrow$

 $B^{j}(x_{1}-x_{2})=0$. То есть если мы покажем тривиальность ядра B^{j} , то тогда наша функция будет инъективной:

Пусть $x \in \mathcal{K}erB^j$ и $x \in \overline{K}_r$, тогда $x \in \mathcal{K}erB^j \cap \overline{K}_r = K_j \cap \overline{K}_r$. А как мы знаем $K_j \cap \overline{K}_r = \{0\}$. Если бы был x в их пересечении, то тогда $x \in \mathcal{K}erB^j = K_j$ и $x \in \overline{K}_r$. Но как мы знаем x находится именно в \overline{K}_r , поэтому $B^{r-1}x \neq 0$, но как я сказал ранее: $x \in \mathcal{K}erB^j$. Противоречие.

То есть это значит, что $x \in \{0\} \Leftrightarrow x = 0$, откуда ядро тривиально, наша функция инъективна, а из этого уже следует изоморфность, то есть биекция.

Q.E.D.

Следствие 1.
$$\sum_{r=1}^n d_r = \gamma(\lambda) = \dim V_\lambda$$
.

Следствие 1.5.
$$\sum_{r=1}^{m} r \cdot d_r = \alpha(\lambda) = \dim K_{\lambda}$$

Следствие 2. (Теорема Фробениуса.)

$$d_r = rqB^{r-1} - 2rqB^r + rqB^{r+1}$$

Доказательство:

$$B^rK = B^{r+1}K \oplus B^r\overline{K}_{r+1} \oplus \ldots \oplus B^r\overline{K}_m$$

Введем обозначение $p_r := \dim \operatorname{Im} B^r = \dim B^r K = rgB^r$. Тогда:

$$p_r - p_{r+1} = d_{r+1} + d_{r+2} + \ldots + d_m$$

Давайте напишем разности:

$$p_0 - p_1 = d_1 + d_2 + \ldots + d_m$$

 $p_1 - p_2 = d_2 + \ldots + d_m$
 \vdots
 $p_{m-1} - p_m = d_m$

А теперь получаем, что $d_1 = p_0 - 2p_1 + p_2$, $d_2 = p_1 - 2p_2 + p_3$, а откуда если заметить, то мы получаем нужную мне формулу!

Замечание: Такое равенство в теореме не очень удобно, потому что B - суженное изображение. todo: дописать формулу с практики

Пусть $\overline{K}_r = span(g_1, g_2, \ldots, g_d)$ - на рисунке это показано точечками. Давайте к этим векторам будем применять наше отображение. Сначала получим Bg_1, \ldots, Bg_d , а в теореме о размерности башни мы доказали, что у нас изоморфны \overline{K}_r и $B\overline{K}_r$, то есть мы получили еще один базис, только теперь $B\overline{K}_r$. Будем так проделывать и получим, что у нас базис $B^i\overline{K}_r$ это B^ig_1, \ldots, B^ig_d .

<u>def:</u> <u>Циклическим базисом</u>, порожденным вектором длины r называются $g_p, Bg_p, \ldots, B^{r-1}g_p$. В таком случае $Bg_p, \ldots, B^{r-1}g_p$ называют **присоединенными**.

$$S = span(B^{r-1}g_p = j_1, B^{r-2}g_p = j_2, \dots, g_p = j_p).$$

Как мы помним из рассуждений наверху в самом начале этого параграфа:

$$A\Big|_{S} \stackrel{j}{\longleftrightarrow} \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{pmatrix}$$

$$\tau_r = \bigoplus_{p=1}^{d_r} S_p, \quad K_\lambda = \bigoplus_{r=1}^{m(\lambda)} \tau_r(\lambda)$$

 $V = \bigoplus_{\lambda \text{ - c.ч.}} K_{\lambda} = \bigoplus_{\lambda \text{ - c.ч.}} \bigoplus_{r}^{m(\lambda)} \bigoplus_{p}^{d_{r}} S_{p,\lambda,r}$ - объединение всех базисов называется **Жордановым базисом**.

1.11 Функция оператора матрицы, приводимой к Жордановой форме.

$$f(x) = \sum_{m=0}^{\infty} c_m x^m, |x| < r$$

$$f(A) = \sum_{m=0}^{\infty} c_m A^m, \ |\lambda| < r$$
 - все случайные числа.

Как мы знаем, матрицу можно привести к жордановой форме: $A = TJT^{-1}$.

$$J = \begin{pmatrix} J(\lambda) & \dots & \dots & 0 \\ \vdots & J(\mu) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & J(\xi) \end{pmatrix}$$

Давайте посчитаем функцию от матрицы А:

$$f(A) = f(TJT^{-1}) = T \begin{pmatrix} f(J(\lambda)) & \dots & \dots & 0 \\ \vdots & f(J(\mu)) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & f(J(\xi)) \end{pmatrix} T^{-1}$$

Посмотрим на блок высшего уровня. Он состоит из клеток:

$$J(\lambda)=egin{pmatrix} K_1&\ldots&\ldots&0\ dots&K_2&\ddots&dots\ dots&\ddots&\ddots&dots\ 0&\cdots&\cdots&K_k \end{pmatrix}$$
, где K_i - жорданова клетка.

Тогда
$$f(J(\lambda)) = \begin{pmatrix} f(K_1) & \dots & \dots & 0 \\ \vdots & f(K_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & f(K_{ind}) \end{pmatrix}$$

Посмотрим ситуацию для одной клетки. $J_k = \lambda E + I_k$.

$$(\lambda E + I_k)^m = \sum_{j=0}^m C_m^j \lambda^{m-j} (I_k)^j$$

Теперь мы можем показать соответствующую матрицу (туда была добавлена t):

$$A_{w}^{K} + w =$$

$$A_{w}^{K} +$$

Теперь посмотрим $f(J_k t) = \sum_{m=0}^{\infty} c_m J_k^m t^m =$

$$= \left(\sum_{m=0}^{\infty} C_m t^m \right)_{m}^{m} = \sum_{\substack{1 \leq m \leq 1 \\ 1 \leq m \leq 1}} C_m t^m \left(\lambda t^m \right)_{m=1}^{m-1} \left(\lambda t^m \right)_{m=2}^{m-1} \left(\lambda t^m \right)_{m=2}^{m-1}$$

У ряда мы можем брать производную сколько угодно раз (факт из математического анализа) (от функции в которую подставлен λt)

Откуда наша страшная формула равна
$$f(\lambda t) = \begin{pmatrix} f(\lambda t) & \frac{t}{1!}f'(\lambda t) & \frac{t^2}{2!}f^{(2)}(\lambda t) & \dots & \\ 0 & f(\lambda t) & \frac{t}{1!}f'(\lambda t) & \ddots & \dots \\ \vdots & \ddots & \ddots & \ddots & \dots \end{pmatrix}$$

Пример:

$$\begin{pmatrix}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{pmatrix}$$

$$f(x) = \cos x$$
, $f'(x) = -\sin x$, $f^{(2)}(x) = -\cos x$, $f^{(3)}(x) = \sin x$

$$f'(J_k t) = -\sin \lambda t$$

$$\cos(J_4 t) = \begin{pmatrix} \cos \lambda t & \frac{t}{1!}(-\sin \lambda t) & \frac{t^2}{2!}(-\cos \lambda t) & \frac{t^3}{3!}(\sin \lambda t) \\ \vdots & \cos \lambda t & \frac{t}{1!}(-\sin \lambda t) & \frac{t^2}{2!}(-\cos \lambda t) \\ \vdots & \ddots & \cos \lambda t & \frac{t}{1!}(-\sin \lambda t) \\ 0 & \dots & \cos \lambda t \end{pmatrix}$$

2 Тензоры.

2.1 Линейные формы (функционалы). Сопряженное (дуальное) пространство. Контрвариантный и ковариантный законы преобразования координат.

 $\underline{\mathbf{def:}}\ V$ - линейное пространство над полем $K,\ f:V o K$ - линейная:

$$\forall \lambda \in K : \forall v_1, v_2 \in V : f(v_1 + \lambda v_2) = f(v_1) + \lambda f(v_2)$$

Такое f называется **линейной формой** или **функционалом**.

Примеры:

- 1. $\overline{b}=const: \forall \overline{a}:\in V_3: f(\overline{a})=(\overline{a},\overline{b})$ очевидно линейная форма
- 2. $A_{n \times n} : f(A) = tr(A)$ очевидно линейная.
- 3. $p \in P, \ t_0 \in k$ фикс. $f(p) = \frac{p^{(m)}t_0}{m!}$ линейная форма.
- 4. $f \in \mathbf{C}(\mathbf{R})$ бесконечномерное линейное пр-во. $\delta(f) = f(0)$ дельта-функция Дирака.

 f_1, f_2 - линейные формы. Введем операции:

- 1. Сложение: $(f_1 + f_2)(v) = f_1(v) + f_2(v)$
- 2. Умножение на скаляр: $(\lambda f_1)(v) = \lambda f_1(v)$

Очевидно существует ноль и противоположные. Откуда выполнены аксиомы 1-8, откуда линейное пространство.

 $V^* = \{f : V \to K$ - линейная форма $\}$ - называется **сопряженное** пр-во к V или **дуальное**.

Возьмем V, зафиксируем e_1, \ldots, e_n - базис.

 $\forall X \in V: X \in \sum_{i=1}^n x_i e_i = x^i e_i$ - вспоминаем правило Энштейна из первого семестра. Тогда:

$$X \stackrel{e}{\longleftrightarrow} \begin{pmatrix} x^1 \\ x^2 \\ \vdots \\ x^n \end{pmatrix} = x$$

$$f(X) = f(x^i e_i) = x^i f(e_i) = x^i a_i$$
, где $f(e_i) = a_i \in K$. $f(X) = a_1 x^1 + a_2 x^2 + \ldots + a_n x^n$. $f \leftrightarrow a = (a_1, \ldots, a_n)$ строка. $V^* = (K^n)^T$.

Откуда $\dim V^* = n.$ Это взаимооднозначное соответствие, оно очевидно линейно, откуда это изоморфизм.

То есть теперь на самом деле функции описываются строками — значениями на базисных векторах.

Пример:

Возьмем и посмотрим на скалярное произведение в V_3 , $\bar{b} = const. \ \forall X \in V_3, \ f(\bar{X}) = (\bar{X}, \bar{b}).$

$$f(\bar{i}) = (\bar{i}, \bar{b}) = b_1, f(\bar{j}) = (\bar{j}, \bar{b}) = b_2, f(\bar{k}) = (\bar{k}, \bar{b}) = b_3$$

$$\bar{X} = a_1 \bar{i} + a_2 \bar{j} + a_3 \bar{k}$$

$$f(\bar{X}) = a_1b_1 + a_2b_2 + a_3b_3$$
, у нас строка $f \leftrightarrow (b_1, b_2, b_3)$

 $\mathbf{def:}\ V,\ e = (e_1, \dots, e_n)$ базис.

 $\forall x \in V : w^i(x) = x^i - i$ -ая координата вектора x относительно базиса e.

 w^{i} называется **координатной функцией**.

Не трудно заметить, что w^i - линейная форма $\in V^*$.

Теорема 1: (о базисе V^*)

Доказать w^1, \ldots, w^n - базис V^* .

Доказательство:

Докажем порождаемость:

$$\forall f \in V^* : \forall x \in V : f(x) = x^i a_i = w^i(x) a_i$$
, где $a_i \in K$ — порождаемое

Докажем линейную независимость, показав единственность разложения нуля:

 $\mathbb{O} = \alpha_i w^i$, где $\alpha_i \in K$. Посмотрим на $\forall x \in V : \alpha_i w^i(x) = \mathbb{O}$.

Пусть $x = e_j$ для j = 1, ..., n. Как мы знаем, для $i \neq j : w^i(e_j) = 0$. Тогда $\alpha_i w^i(e_j) = \alpha_j = 0$, $\forall j \Rightarrow$ лин. независим.

Q.E.D.

Следствие: w^i координатные формы относительно базиса $e \Rightarrow \forall f \in V^* : f = a_i w^i$, т.е $a = (a_1, \ldots, a_n)$ координаты f в базисе $w = (w^1, \ldots, w^n)$ пространства V^* .

Доказательство:

$$\forall f \in V^*, \forall x \in V : f(x) = x^i a_i = w^i(x) a_i = (a_i w^i)(x) \Leftrightarrow f = a_i w^i.$$

Q.E.D.

<u>def:</u> w^1, \ldots, w^n называется **сопряженным** (дуальным) к базису e пространства V.

Очевидно $w^j(e_i) = \delta^i_j$.

Теорема 2:

 \forall базиса w'^1, \dots, w'^n пространства V^* .

 \exists базис e'_1, \dots, e'_n пространства V такой, что w' базис, сопряженный к e'. То есть w'^i координаты формы относительно e'.

Доказательство:

Пусть e_1, \ldots, e_n базис V. Тогда, как мы говорили ранее: w^1, \ldots, w^n координатные функции относительно e, базис V^* сопряженный к e.

Возьмем w'. Так как он базис и w базис, то:

$$w' = wT_{w \to w'}$$

 $(T_{w\to w'})^T=S=(S^i_j)_{n\times n}$. Заметим, что S невырожденная, т.к. T матрица перехода. Строки матрицы S — это координаты элементов нового базиса w' в старом базисе (w).

$$(w'^1, \dots, w'^n) = (w^1, \dots, w^n) T_{w \to w'}$$

Давайте все транспонируем:

$$\begin{pmatrix} w'^1 \\ \vdots \\ w'^n \end{pmatrix} = (T_{w \to w'})^T \begin{pmatrix} w^1 \\ \vdots \\ w^n \end{pmatrix} = S \begin{pmatrix} w^1 \\ \vdots \\ w^n \end{pmatrix}$$

Пусть $S^{-1} =: T = (t^i_j)_{n \times n}$ — невырожденная, то если думать о ней как о $T_{e \to e'}$, получим, что e' = eT базис в пр-ве V.

Осталось показать, что w' будет сопряженным к e', т.е. показать $w'^i(x) = x'^i$, $x = x'^i e'_i$, для всех $x \in V$. Тк w'^i - линейная форма, то:

$$w'^{i}(x'^{i}e'_{j}) = x'^{j}w'^{i}(e'_{j})$$

Теперь, давайте заметим, что $w'^i = S_k^i w^k$, $e'_i = t_i^m e_m$. Откуда

$$w'^{i}(e'_{i}) = S^{i}_{k}w^{k}(t^{m}_{i}e_{m}) = S^{j}_{k}t^{m}_{i}w^{k}(e_{m}) = S^{i}_{m}t^{m}_{i} = (ST)^{i}_{i} =$$

Q.E.D.

Следствие. e, e' базисы V, w, w' сооответственные сопряженные базисы к e, e' в V^* .

$$T = T_{e \to e'}, S = T^{-1}$$

$$\Rightarrow \forall x \in V : \forall f \in V^* : x' = Sx, a' = aT$$
, где a - разложение f в базисе.

Доказательство:

 $T = T_{e \to e'}$ и мы уже знаем, что $x' = T_{e' \to e} x = Sx$

 $(T_{w \to w'})^T = S$. Как мы знаем из матрицы перехода:

$$a^T = T_{w \to w'}(a')^T$$

Откуда:

$$a = a'(T_{w \to w'})^T = a'S$$

А уже отсюда получаем, что $a' = aS^{-1} = aT$.

Q.E.D.

Замечание от Славы. Очень удобно менять базис, когда у нас один из базисов канонический. А также, зная матрицу перехода $T_{w\to w'}$ мы уже знаем матрицу перехода из $T_{e\to e'}=((T_{w\to w'})^T)^{-1}$

Преобразование координат, согласованных по тому же закону, что и базис: a' = aT

Преобразование координат, согласованных по противоположному закону: x' = Sx

<u>def:</u> Преобразование координат векторов пространства V происходит по закону, противоположному преобразованию базисов — называется **контрвариантным**, а координаты векторов пространства V называются **контрвариантыми** (индексы координат пишутся вверху).

<u>def:</u> Преобразование координат векторов пространства V происходит по тому же закону, что преобразование базисов в пространстве V (т.е. согласованно) называется <u>ковариантным</u> преобразованиям. Координаты векторов пространства V^* называется <u>ковариантным</u> (индексы пишутся внизу).

Позамечаем интересные факты:

 $\forall f \in V^* \leftrightarrow (a_1, \dots, a_n), a_j = f(e_j)$ - каждой функции, как и говорилось ранее, на заданном базисе, я могу сопоставить a. Поэтому возьму n функций и векторов, и захочу посчитать значение каждой функции в каждой точке :

$$\forall f^1, \dots f^n \in V^* : f^j \stackrel{w}{\longleftrightarrow} a^j = (a_1^j, \dots, a_n^j)$$

$$\forall x_1, \dots, x_n \in V : x_i \stackrel{e}{\longleftrightarrow} x_i = \begin{pmatrix} x_i^1 \\ \vdots \\ x_i^n \end{pmatrix}$$

Хочу посчитать вот такую вот страшную матрицу (значение каждой функции в каждой точке):

$$(f^{j}(x_{i}))_{n \times n} = \begin{pmatrix} f^{1}(x_{1}) & f^{1}(x_{2}) & \dots & f^{1}(x_{n}) \\ f^{2}(x_{1}) & f^{2}(x_{2}) & \dots & f^{2}(x_{n}) \\ \vdots & \ddots & \ddots & \vdots \\ f^{n}(x_{1}) & f^{n}(x_{2}) & \dots & f^{n}(x_{n}) \end{pmatrix} = f^{j}(x_{i}) = a^{j}x_{i} =$$

$$=\begin{pmatrix} a_1^1 & \dots & \dots & a_n^1 \\ a_1^2 & \ddots & \ddots & a_n^2 \\ \vdots & \ddots & \ddots & \vdots \\ a_1^n & \dots & \dots & a_n^n \end{pmatrix} \cdot \begin{pmatrix} x_1^1 & \dots & \dots & x_n^1 \\ x_1^2 & \ddots & \ddots & x_n^2 \\ \vdots & \ddots & \ddots & \vdots \\ x_1^n & \dots & \dots & x_n^n \end{pmatrix} = \begin{pmatrix} f^1 \\ f^2 \\ \vdots \\ f^n \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}$$
 - лаконичная запись!

Интересный факт, который идет из такого произведения:

$$\begin{pmatrix} w^1 \\ w^2 \\ \vdots \\ w^n \end{pmatrix} \cdot (e_1 e_2 \dots e_n) = E$$

 $\underline{\mathbf{def:}}\ V^{**} = (V^*)^*\ \underline{\mathbf{дважды}\ \mathbf{conpяженнoe}}\ \mathrm{пространствo}.$

 $\forall f \in V^*$. Пусть $x \in V$:

$$x''(f) = f(x). \ x'' : V^* \to K.$$

 $\forall \lambda \in K: \forall f^1, f^2 \in V^*$

$$"x"(\lambda f^1 + f^2) = (\lambda f^1 + f^2)(x) = \lambda f^1(x) + f^2(x) = \lambda_1"x"(f^1) + "x"(f^2)$$

 \Rightarrow "x" линейное отображение \Rightarrow "x" $\in (V^*)^*$

Дальше у "x" будут упускаться :))

Теорема 3 (О естественном изоморфизме)

Естественный - не зависит от введения базиса.

 $V\cong V^{**}$

Доказательство:

 $\forall x \in V \to "x" \in V^{**}$. Назовем это отображение φ .

Покажем, что наше взаимооднозначное сопоставление линейно.

$$x_1 + \lambda x_2 \in V : x_1 \to "x_1", x_2 \to "x_2"$$

 $\forall f \in V^*$: " $x_1 + \lambda x_2$ " $(f) = f(x_1 + \lambda x_2) = f(x_1) + \lambda f(x_2) = "x_1$ " $(f) + \lambda$ " x_2 "(f). Откуда φ линейно.

Покажем, что φ , это изоморфизм.

Пусть e_1, \ldots, e_n базис V. Им соответствуют " e_1 ", ..., " e_n ". Покажем, что это базис в V^{**} :

Мы знаем, что $\dim(V^*)^* = \dim V^* = \dim V = n$. Откуда достаточно показать, что " e_1 ", ..., " e_n " - линейно независимы. Для этого покажем единственность разложения нуля.

$$0=\sum\limits_{i=1}^n \alpha_i"e_i"(w_i)=\sum\limits_{i=1}^n \alpha_i w^j(e_j)=\alpha_j\Rightarrow$$
 линейно независимы, откуда базис.

Откуда отображение φ это изоморфизм.

Q.E.D.

Как мы только что поняли: $x \in V \leftrightarrow$ "x" $\in V^{**}$ - изомофризм. $f \in V^*, x \in V$.

$$x(f) = f(x) = x^i a_i = w^i(x) a_i = x(w^i) a_i = x^i a_i = x^i f(e_i) = x^i e_i(f)$$

e и w взаимно сопряж.

$$x = x^i e_i, w^i(x) = x^i$$
, где $x \in V$

$$e_j(f)=f(e_j)=a_j(f\in V^*),\,e_j\in V^{**}$$
 - коорд. формы относительно базиса $w^i.$

Я категорически не помню для чего Кучерук это написала, напомните мне пж.

Пример:

 ${\cal A}$ - о.п.с, A - диагонализируема.

$$V = \bigoplus_{\lambda} V_{\lambda} = span(v_1, \dots, v_n)$$

$$w^1, \dots, w^n$$
 сопряж. базис к v

$$\Rightarrow \forall x \in V : w^j(x) = x^i : x^i v_j = x$$

2.2 Два определения тензора. Линейное пространство тензоров. Многомерная матрица тензоров.

def: Есть V, V^* и $p, q \in N$.

Тензором типа (p,q) (p-раз ковариантным, q-раз контрвариантным) называется полилинейная функция $f: V^p \times (V^*)^q \to K$. p,q называются **валентностями** тензора, r = (p+q) ранг тензора.

Если r=0, f=const. Если тензор (p,0) - **ковариантный** тензор валентности p. Если тензор (0,q) - **контрвариантный** тензор валентности q. Если $p\neq 0$ и $q\neq 0$ - тензор смешанного типа.

$$\xi_i \in V, \eta^i \in V^*$$

 $f(\xi_1,\ldots,\xi_p,\eta^1,\ldots,\eta^q)$ - линейно по каждому аргументу (или полилинейная)

Пусть $e = (e_1, \ldots, e_n)$ - базис $V, w = (w^1, \ldots, w^n)$ - базис V^* . Тогда сделаем похожую вещь, как когда мы считали определитель. По линейности вынесем, то есть:

$$\xi_j = \xi_j^{j_k} e_{j_k}; \eta^i = \eta_{i_m}^i w^{i_m}$$

$$f(\xi_1, \dots, \xi_p, \eta^1, \dots, \eta^q) = \xi_1^{j_1} \dots \xi_p^{j_p} \eta_{i_1}^1 \dots \eta_{i_p}^q \cdot f(e_{j_1}, \dots, e_{j_p}, w^{i_1}, \dots, w^{i_q})$$

То есть на самом деле наша функция задается матрицей значений на базисных векторах. Обозначим $f(e_{j_1},\ldots,e_{j_p},w^{i_1},\ldots,w^{i_q})=\alpha_{j_1,\ldots,j_p}^{i_1,\ldots,i_q}$

<u>def:</u> M - многомерная матрица тензора r = (p + q) мерная размерности n.

Замечание: Если говорить программистким языком, то наша матрица это просто:

```
for (i1 = 1 ... n):
    for(i2 = 1 ... n):
        ...
    for(iq = 1 ... n):
        for(j1 = 1 ... n):
        ...
        for(jp = 1 ... n):
        m[i1][i2]...[jp] = f(соответсвенных значений)
```

Соглашение о записи элементов многомерной матрицы

 $\alpha_{j_1,\dots,j_p}^{i_1,\dots,i_q}\in M_{p+q}$ - многомерная матрица порядка n. $i_k\in(1,\dots,n);j_m\in(1,\dots,m)$

Мы читаем сначала верхние индексы, потом нижние в записи

Пример:

1.
$$r = 2 : (\alpha_i^i), (\alpha^{ij}), (\alpha_{ij})$$

1-ый индекс номер строки

2-ой индекс номер столбца

Например при n=3:

$$(a_j^i) = \begin{pmatrix} \alpha_1^1 & \alpha_2^1 & \alpha_3^1 \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 \\ \alpha_1^3 & \alpha_2^3 & \alpha_3^3 \end{pmatrix} \text{ или } (a^{ij}) = \begin{pmatrix} \alpha^{11} & \alpha^{12} & \alpha^{13} \\ \alpha^{21} & \alpha^{22} & \alpha^{23} \\ \alpha^{31} & \alpha^{32} & \alpha^{33} \end{pmatrix}$$

2.
$$r = 3 : (\alpha^{ijk}), (\alpha^{ij}_k), (\alpha^{ij}_{ik}), (\alpha_{ijk})$$

1-ый индекс всегда строка

2-ой индекс всегда столбец

3-ий индекс всегда слой

Например при n = 3:

$$(a^i_{jk}) = \left(\begin{array}{ccc|ccc|c} \alpha^1_{11} & \alpha^1_{21} & \alpha^1_{31} & \alpha^1_{12} & \alpha^1_{22} & \alpha^1_{32} & \alpha^1_{13} & \alpha^1_{23} & \alpha^1_{33} \\ \alpha^2_{11} & \alpha^2_{21} & \alpha^2_{31} & \alpha^2_{12} & \alpha^2_{22} & \alpha^2_{22} & \alpha^2_{32} & \alpha^2_{13} & \alpha^2_{23} & \alpha^2_{33} \\ \alpha^3_{11} & \alpha^3_{21} & \alpha^3_{31} & \alpha^3_{12} & \alpha^3_{22} & \alpha^3_{32} & \alpha^3_{33} & \alpha^3_{13} & \alpha^3_{23} & \alpha^3_{33} \end{array} \right)$$

3.
$$r = 4 : (\alpha^{ijkm}), (\alpha^{ijk}_m), (\alpha^{ij}_{km}), (\alpha^{ij}_{jkm}), (\alpha_{ijkm})$$

1-ый индекс всегда строка

2-ой индекс всегда столбец

3-ий индекс всегда слой

4-ый индекс всегда сечение

Например при n = 2 мы имеем:

$$(a_{km}^{ij}) = \begin{pmatrix} \alpha_{11}^{11} & \alpha_{11}^{12} & \alpha_{12}^{11} & \alpha_{12}^{12} \\ \alpha_{21}^{21} & \alpha_{22}^{22} & \alpha_{21}^{21} & \alpha_{22}^{22} \\ \hline \alpha_{21}^{11} & \alpha_{21}^{12} & \alpha_{11}^{11} & \alpha_{12}^{12} \\ \alpha_{21}^{21} & \alpha_{21}^{22} & \alpha_{22}^{21} & \alpha_{22}^{22} \end{pmatrix}$$

4.
$$r = 1 : (\alpha^i), (a_i)$$

При первой записи мы считаем, что она в столбик, а при второй считаем, что она строчка.

Пример:

$$f: V_3 \times V_3 \to \mathbb{R}$$

$$\forall \overline{a}, \overline{b}: f(\overline{a}, \overline{b}) = |\overline{a}||\overline{b}|\cos\varphi$$

 $f \in T(2,0)$. Зафиксируем базис e_1, e_2, e_3 :

$$f(a^i e_i, b^j r_j) = a^i b^j f(e_i, e_j)$$

Пусть e_1, e_2, e_3 вектора, между которыми 2 угла по 60 градусов и 1 120 и $|e_i|=i$.

Тогда
$$(a_{ij}) = \begin{pmatrix} 1 & 1 & \frac{3}{2} \\ 1 & 4 & 3 \\ \frac{3}{2} & 3 & 9 \end{pmatrix}$$

Вернемся в реальность.

Пускай $f\in T(p,q)\stackrel{e,w}{\longleftrightarrow}\left(lpha_{j_1,\dots,j_p}^{i_1,\dots,i_q}\right)$, где e - базис, w - дуально сопряженный

$$f: V^p \times (V^*)^q \to K$$

Возьмем $e'=(e'_1,\ldots,e'_n)$ и дуальный к нему $w'=(w'_1,\ldots,w'_m)$

$$T = T_{(e \to e')}, S = T^{-1} = (T_{w \to w'}^T)$$

Замечу, что $\xi = \xi^i e_i : \xi = T \xi' \leftrightarrow \xi^i = t_k^i \xi'^k$ и $\eta = \eta_j w^j; \eta = \eta' S \leftrightarrow \eta_j = s_j^k \eta_k'$

Возьму $\xi_1,\ldots,\xi_p\in V$ и $\eta^1,\ldots,\eta^q\in V^*$:

$$f(\xi_{1},\ldots,\xi_{p},\eta^{1},\ldots,\eta^{q}) = \alpha_{j_{1},\ldots,j_{p}}^{i_{1},\ldots,i_{q}}\xi_{1}^{j_{1}}\ldots\xi_{p}^{j_{p}}\eta_{i_{1}}^{1}\ldots\eta_{iq}^{q} = \alpha_{j_{1},\ldots,j_{p}}^{i_{1},\ldots,i_{q}}\cdot t_{k_{1}}^{j_{1}}\xi_{1}^{\prime k_{1}}\ldots t_{k_{p}}^{j_{p}}\xi_{p}^{\prime k_{p}}\cdot s_{i_{1}}^{m_{1}}\eta_{m_{1}}^{\prime 1}\ldots s_{i_{q}}^{m_{q}}\eta_{m_{q}}^{\prime 1}$$

$$= \alpha_{j_{1},\ldots,j_{p}}^{i_{1},\ldots,i_{q}}\cdot t_{k_{1}}^{j_{1}}\ldots t_{k_{p}}^{j_{p}}\cdot s_{i_{1}}^{m_{1}}\ldots s_{i_{q}}^{m_{q}}\cdot \xi_{1}^{\prime k_{1}}\ldots\xi_{p}^{\prime k_{p}}\cdot \eta_{m_{1}}^{\prime 1}\ldots\eta_{m_{q}}^{\prime q_{1}}$$

Откуда подставив новые базисные вектора в эту формулу:

$$\alpha'_{k_1,\dots,k_p}^{m_1,\dots,m_q} = \alpha_{j_1,\dots,j_p}^{i_1,\dots,i_q} t_{k_1}^{j_1} \dots t_{k_p}^{j_p} \dots s_{i_1}^{m_1} \dots s_{i_q}^{m_q}$$

 j_1,\ldots,j_p ковариантные индексы матрицы, i_1,\ldots,i_q контрвариантные, откуда название тензора $f\in T(p,q)$ p-раз ковариантный, q раз контрвариантный.

Замечание: это формула перехода (смены базиса), потом будет очень много везде использоваться.

2-ое определение тензора: $\alpha-r=p+q$ мерная матрица n - геометрический объект над пространством V (dim V=n), такой, что при смене базиса пространства V элементы матрицы пересчитываются по формуле:

$$\alpha'^{m_1,\dots,m_q}_{k_1,\dots,k_p} = \alpha^{i_1,\dots,i_q}_{j_1,\dots,j_p} t^{j_1}_{k_1} \dots t^{j_p}_{k_p} s^{m_1}_{i_1} \dots s^{m_q}_{i_q}$$

(геометрический объект - независимый от выбора базиса, но согласованный с заменой базиса, т.е. после замены базиса остается тем же объектом с теми же свойствами)

Если матрицы одного порядка, то мы умеем складывать их и умножать на скаляр, есть нулевая и противоположная, откуда это линейное пространство.

Осталось показать, что эти операции не ломают второе определение (формулу перехода):

$$(\alpha + \lambda \beta)'_{k_1, \dots, k_p}^{m_1, \dots, m_q} = \alpha'_{k_1, \dots, k_p}^{m_1, \dots, m_q} + \lambda \beta'_{k_1, \dots, k_p}^{m_1, \dots, m_q} = \alpha_{j_1, \dots, j_p}^{i_1, \dots, i_q} \cdot t_{k_1}^{j_1} \dots t_{k_p}^{j_p} \cdot s_{i_1}^{m_1} \dots s_{i_q}^{m_q} + \lambda \beta_{j_1, \dots, j_p}^{i_1, \dots, i_q} \cdot t_{k_1}^{j_1} \dots t_{k_p}^{j_p} \cdot s_{i_1}^{m_1} \dots s_{i_q}^{m_q}$$

$$= (\alpha_{j_1, \dots, j_p}^{i_1, \dots, i_q} + \lambda \beta_{j_1, \dots, j_p}^{i_1, \dots, i_q}) t_{k_1}^{j_1} \dots s_{i_q}^{m_q}$$

Откуда корректно.

Замечание: в дальнейшем мы будем называть формулу перехода - свойством линейного пространства.

То есть теперь наше линейное пространство сохраняет заданное свойство.

Заметим, что мы получили равносильность первого и второго определения.

2.3 Произведение тензоров. Базис пространства тензоров. Свертка тензоров.

<u>**def:**</u> $\alpha \in T(p_1, q_1), \beta \in T(p_2, q_2)$. Тогда <u>**произведением**</u> тензоров называется тензор $\gamma \in T(p_1 + p_2, q_1 + g_2)$:

$$\gamma_{j_1,\dots,j_{p_1},k_1,\dots,k_{p_2}}^{i_1,\dots i_{q_1},m_1,\dots,m_{q_2}} := \alpha_{j_1,\dots,j_p}^{i_1,\dots i_q} \beta_{k_1,\dots,k_{p+2}}^{m_1,\dots,m_{q_2}}$$

Проверим корректность, то есть то что выполняется свойство тензора:

$$\begin{split} \gamma_{\tilde{j}_{1},\ldots,\tilde{j}_{p_{1}},\tilde{k}_{1},\ldots,\tilde{k}_{p_{2}}}^{\prime\,\tilde{i}_{1},\ldots,\tilde{i}_{q_{1}}} &= \alpha_{\tilde{j}_{1},\ldots,\tilde{j}_{p_{1}}}^{\prime\,\tilde{i}_{1},\ldots,\tilde{i}_{q_{1}}} \cdot \beta_{\tilde{k}_{1},\ldots,\tilde{k}_{p_{2}}}^{\prime\,\tilde{m}_{1},\ldots,\tilde{m}_{q_{2}}} &= \\ &= \alpha_{j_{1},\ldots,j_{p_{1}}}^{i_{1},\ldots,i_{q_{1}}} t_{\tilde{j}_{1}}^{j_{1}} \ldots t_{\tilde{j}_{p_{1}}}^{j_{p_{1}}} s_{\tilde{i}_{1}}^{\tilde{i}_{1}} \ldots s_{\tilde{i}_{q_{1}}}^{\tilde{i}_{q_{1}}} \cdot \beta_{k_{1},\ldots,k_{p_{2}}}^{m_{1},\ldots,m_{q_{2}}} t_{\tilde{k}_{1}}^{k_{1}} \ldots t_{\tilde{k}_{p_{2}}}^{k_{p_{2}}} s_{m_{1}}^{\tilde{m}_{1}} \ldots s_{m_{q_{2}}}^{\tilde{m}_{q_{2}}} \\ &= \gamma_{j_{1},\ldots,j_{p_{1}},k_{1},\ldots,k_{p_{2}}}^{i_{1},\ldots,i_{q_{1}},m_{1},\ldots,m_{q_{2}}} \cdot t_{\tilde{j}_{1}}^{j_{1}} \ldots t_{\tilde{j}_{p_{1}}}^{j_{p_{1}}} s_{\tilde{i}_{1}}^{\tilde{i}_{1}} \ldots s_{\tilde{i}_{q_{1}}}^{\tilde{i}_{q_{1}}} \cdot t_{\tilde{k}_{1}}^{k_{1}} \ldots t_{\tilde{k}_{p_{2}}}^{k_{p_{2}}} s_{m_{1}}^{\tilde{m}_{1}} \ldots s_{m_{q_{2}}}^{\tilde{m}_{q_{2}}} \end{split}$$

Откуда получаем, что верно, это тензор!!! я устал это писать

Обозначается $\gamma = \alpha \otimes \beta$.

Произведение ассоциативно, дистрибутивно, не коммутативно

Пример:

Пусть $\alpha \in T(1,0), \beta \in T(0,1)$. Тогда $\gamma = \alpha \otimes \beta \in T(1,1)$. $\alpha = (\alpha_1, \alpha_2, \alpha_3); \beta = (\beta_1, \beta_2, \beta_3)^T$. Тогда

$$\gamma_j^i = \alpha^i \beta_j \leftrightarrow \gamma = \begin{pmatrix} \alpha^1 \beta_1 & \alpha^1 \beta_2 & \alpha^1 \beta_3 \\ \alpha^2 \beta_1 & \alpha^2 \beta_2 & \alpha^2 \beta_3 \\ \alpha^3 \beta_1 & \alpha^3 \beta_2 & \alpha^3 \beta_3 \end{pmatrix}$$

Возьмем $\alpha \in T(p_1, q_1) \leftrightarrow f : V^{p_1} \times (V^{q_1})^* \to K$.

Возьмем $\beta \in T(p_2, q_2) \leftrightarrow g : V^{p_2} \times (V^{q_2})^* \to K$.

$$\xi_1, \dots, \xi_{p_1} \in V; \eta^1, \dots, \eta^{q_1} \in V^*; \zeta_1, \dots, \zeta_{p_2} \in V; \theta^1, \dots, \theta^{q_2} \in V^*$$

 $\gamma = a \otimes \beta \in T(p_1 + p_2, q_1 + q_1) \leftrightarrow t : V^{p_1 + p_2} \times (V^*)^{q_1 + q_2} \to K$

$$t(\xi_{1}, \dots, \xi_{p_{1}}, \zeta_{1}, \dots, \zeta_{p_{2}}, \eta^{1}, \dots, \eta^{q_{1}}, \theta^{1}, \dots, \theta^{q_{2}}) =$$

$$= \gamma_{j_{1}, \dots, j_{p_{1}}, k_{1}, \dots, k_{p_{2}}}^{i_{1}, \dots, i_{q_{1}}, m_{1}, \dots, m_{q_{2}}} \xi_{1}^{j_{1}} \dots \xi_{p_{1}}^{j_{p_{1}}} \cdot \zeta_{1}^{k_{1}} \dots \zeta_{p_{2}}^{k_{p_{2}}} \cdot \eta_{i_{1}}^{1} \dots \eta_{i_{q_{1}}}^{q_{1}} \cdot \theta_{m_{1}}^{1} \dots \theta_{m_{q_{2}}}^{q_{2}} =$$

$$= f(\xi_{1}, \dots, \xi_{p_{1}}, \eta^{1}, \dots, \eta^{q_{1}}) \cdot g(\zeta_{1}, \dots, \zeta_{p_{2}}, \theta^{1}, \dots, \theta^{q_{2}})$$

Вывели формулу, по которой мы можем легко находить значения функций. Воспользуемся нашей формулой и выведем еще одну:

$$f^1,\dots,f^p\in V^*=T(1,0)-f^j:V o K$$
 - линейная форма
$$g_1,\dots,g_q\in V^{**}=T(0,1)-g_i:V^* o K$$
 $\gamma=f^1\otimes\dots\otimes f^p\otimes g_1\otimes\dots\otimes g_q\leftrightarrow a^1_{j_1}\dots a^p_{j_p}b^{i_1}_1\dots b^{i_q}_q=\gamma^{i_1,\dots,i_q}_{j_1,\dots,j_p},\ \gamma\in T(p,q).$

Воспользуемся только что доказанной формулой и получим:

$$\gamma(\xi_1, \dots, \xi_p, \eta^1, \dots, \eta^q) = f^1(\xi_1) \dots f^q(\xi_q) \cdot g_1(\eta^1) \dots g_q(\eta^q)$$

Продолжим играться с этой формулой:

Пусть $f^j = w^j$, а $g_i = e_i$ (сопряженные базисы), и подставим это в нашу формулу:

$$w^{j_1} \otimes \ldots \otimes w^{j_p} \otimes e_{i_1} \otimes \ldots \otimes e_{i_q} \in T(p,q)$$

Как мы вывели ранее:

$$w^{j_1} \otimes \ldots \otimes w^{j_p} \otimes e_{i_1} \otimes \ldots \otimes e_{i_q}(\xi_1, \ldots, \xi_p, \eta^1, \ldots, \eta^q) = w^{j_1}(\xi_1) \ldots w^{j_p}(\xi_q) \cdot e_{i_1}(\eta^1) \ldots e_{i_q}(\eta^q) =$$

$$= \xi_1^{j_1} \xi_2^{j_2} \ldots \xi_p^{j_p} \cdot \eta_{i_1}^1 \ldots \eta_{i_q}^q$$

Получили вот такую относительно простую формулу для базисных векторов

Теорема (о базисе пространства тензоров типа (p, q))

Набор тензоров $w^{j_1} \otimes \ldots \otimes w^{j_p} \otimes e_{i_1} \otimes \ldots \otimes e_{i_q}$, где $j_k \in (1,\ldots,n), i_m \in (1,\ldots,n)$ — базис пространства T(p,q).

Доказательство:

1. Докажем, что порождающее. Пусть $f\in T(p,q): \forall \xi_1,\dots \xi_p\in V, \forall \eta^1,\dots \eta^q\in V^*:$

Давайте найдем значение функции в этой точке:

$$f(\xi_1,\ldots,\xi_p,\eta^1,\ldots,\eta^q) = \alpha_{j_1,\ldots,j_p}^{i_1,\ldots,i_q} \xi_1^{j_1} \ldots \xi_p^{j_p} \cdot \eta_{i_1}^1 \ldots \eta_{i_q}^q =$$

Выразим координаты через базис и дуальный к нему:

$$=\alpha_{j_1,\ldots,j_p}^{i_1,\ldots,i_q}w^{j_1}(\xi_1)\ldots w^{j_p}(\xi_p)e_{i_1}(\eta^1)\ldots e_{i_q}(\eta^q)=\alpha_{j_1,\ldots,j_p}^{i_1,\ldots,i_q}w^{j_1}\otimes\ldots\otimes p_{i_q}(\xi_1,\ldots,\eta^q)$$

Что мы получили? Разложение в нашем базисе с коэффициентами: $\alpha^{i_1,\dots,i_q}_{j_1,\dots,j_p}$

Откуда порождаемо.

2. Докажем, что линейно независимо. Для этого, как обычно, покажем единственность разложения нуля:

$$\gamma = \alpha_{j_1, \dots, j_p}^{i_1, \dots, i_q} w^{j_1} \otimes \dots \otimes w^{j_p} \otimes e_{i_1} \otimes \dots \otimes e_{i_q} = \mathbb{O}$$

Давайте подставим какие-то базисные векторы:

$$\gamma(e_{\widetilde{i}_1},\ldots,e_{\widetilde{i}_n},w^{\widetilde{i}_1},\ldots,w^{\widetilde{i}_q}) =$$

$$\alpha_{j_1,\ldots,j_p}^{i_1,\ldots,i_q}w^{j_1}(e_{\widetilde{j}_1})\ldots w^{j_p}(e_{\widetilde{j}_p})\cdot e_{i_1}(w^{\widetilde{i}_1})\ldots e_{i_q}(w^{\widetilde{i}_q})$$

Заметим, что каждая из $w^{j_k}(e_{\widetilde{j}_k})=\delta^{j_k}_{\widetilde{j}_k}$ и $e_{i_k}(w^{\widetilde{i}_k})=\delta^{\widetilde{i}_k}_{i_k}$, поэтому получим, что:

$$=\alpha_{\widetilde{j}_1,\ldots,\widetilde{j}_p}^{\widetilde{i}_1,\ldots,\widetilde{i}_q}$$

Но с другой стороны это ноль (тк мы смотрим на разложение тензора, выдающего всегда ноль (нуля)). Тогда получаем, что все $\alpha = 0$, откуда единственно

Q.E.D.

Следствие: элементы матрицы тензора это его координаты в базисе пространства T(p,q): $w^{j_1} \otimes \ldots \otimes w^{j_p} \otimes e_{i_1} \otimes \ldots \otimes e_{i_q}$

С одной стороны элементы матрицы - значения на базисном наборе, а с другой стороны коэффициент при базисном элементе.

Замечание. Канонический базис состоит из тензоров, в матрицах которых есть ровно одна единица, а все остальные значения нули.

 $\underline{\mathbf{def:}}$ Пусть $\alpha \in T(p,q): p,q \geq 1$, тогда тензор β называется **сверткой** тензора α , если

$$\beta_{j_1,\ldots,\widehat{j}_m,\ldots,j_p}^{i_1,\ldots,\widehat{i}_k,\ldots,i_q}=\alpha_{j_1,\ldots,j_{m-1},\text{\tiny @},j_{m+1},\ldots,j_p}^{i_1,\ldots,i_{k-1},\text{\tiny @},i_{k+1},\ldots,i_q}$$

Причем \hat{i}_k - нет индекса на этой позиции.

Замечание: Этого не говорили на лекции, но k, m фиксированы. Отсюда я бы хотел написать похожее определение, которое может быть более понятным:

$$\beta_{j_1,\dots,j_{m-1},j_{m+1},\dots,j_p}^{i_1,\dots,i_{k-1},i_{k+1},\dots,i_q}=\alpha_{j_1,\dots,j_{m-1},\text{@},j_{m+1},\dots,j_p}^{i_1,\dots,i_{k-1},\text{@},i_{k+1},\dots,i_q}$$

(Причем тут скрыта сумма в правой части)

Получили, что $\beta \in T(p-1,q-1)$, но нам осталось проверить свойство:

$$\beta_{\widetilde{j}_{1},\dots,\widetilde{j}_{r},\dots,\widetilde{j}_{p}}^{\widetilde{n}_{1},\dots,\widetilde{i}_{k},\dots,\widetilde{i}_{q}} = \alpha_{\widetilde{j}_{1},\dots,\mathfrak{x},\dots,\widetilde{j}_{p}}^{\widetilde{n}_{1},\dots,\mathfrak{x},\dots,\widetilde{i}_{q}} =$$

$$=\alpha^{i_1,\ldots,i_k,\ldots,i_q}_{j_1,\ldots,j_m,\ldots,j_p}\cdot t^{j_1}_{\widetilde{j}_1}\ldots t^{j_m}_{\mathfrak w}\ldots t^{j_p}_{\widetilde{j}_p}\cdot s^{i_1}_{i_1}\ldots s^{\mathfrak w}_{i_k}\ldots \tilde{s^{i_q}_{i_q}}=$$

Что у нас происходит с æ? Мы умножаем j_m строчку T на i_k строчку S, откуда $t_{æ}^{j_m} \cdot s_{i_k}^{æ} = (TS)_{i_k}^{j_m} = \delta_{i_k}^{j_m}$. Тогда в нашей сумме сохранится только суммы, когда $i_k = j_m = \widetilde{æ}$:

$$=\alpha_{j_1,\ldots,\widetilde{\mathbf{x}},\ldots,j_p}^{i_1,\ldots,\widetilde{\mathbf{x}},\ldots,i_q}t_{j_1}^{j_1}\ldots\widehat{t_{\mathbf{x}}^{j_m}}\ldots t_{\widetilde{j}_p}^{j_p}\cdot s_{i_1}^{i_1}\ldots\widehat{s_{i_k}^{\widetilde{\mathbf{x}}}}\ldots\widehat{s_{i_q}^{i_q}}$$

(переменные с крышками как бы пропали)

Откуда получили то, что нужно.

Замечание: Свертка может происходить по нескольким парам символов.

Замечание: Если в результате свертки получалась константа, то такая свертка называется полной.

2.4 Транспонирование тензора. Симметричные, кососимметричные тензоры.

Пускай $\alpha \in T(2,0), \alpha = (\alpha_{ij})$, мы умеем ее транспонировать — $\alpha^T = (a_{ij})^T = \beta = (\beta_{ij})$, причем $\beta_{ij} = \alpha_{ji}$. Это называется транспонированием 2-мерной матрицы. Казалось бы, можно транспонировать многомерную матрицу, но нет так нельзя

Для тензоров транспонирование происходит только по одному типу индексов <u>либо по нижним,</u> либо по верхним.

Пускай $\beta=\alpha^T$. $\beta_{j_1j_2}=\alpha_{j_2j_1}$. На самом деле случилась перестановка. Теперь для тензора произвольного типа

<u>def:</u> $\alpha \in T(p,q), p \geq 2$. Пусть σ это перестановка из p чисел $(1,2,3,\ldots,p)$. $\sigma = (\sigma_1,\ldots,\sigma_p)$

 $\beta=\sigma(\alpha)$. β получен **транспонированием** (перестановкой σ) по нижним индексам из тензора α по перестановке σ , если

 $\beta_{j_1\dots j_p}^{i_1,\dots i_q} = \alpha_{j_{\sigma_1\dots j_{\sigma_p}}}^{i_1,\dots i_q}$

Замечание. Аналогично определяется транспонирование по верхним индексам.

Замечание. При транспонировании по нижним индексам верхние индексы никак не задействованы.

Замечание. В дальнейшем мы будем рассматривать транспонирования по нижним индексам. Все, что будет доказано для транспонированя и по нижним индексам будет выполнено и для транспонирования по верхним индексам.

Как и было раньше нам надо проверить корректность определение тензора(то самое свойство).

 $\forall \sigma =$ конечное число транспозиций двух элементов(доказывали в прошлом семестре). То есть достаточно проверить корректность определения для транспонирования при котором переставляются только 2 индекса.

 $\beta^{i_1...i_q}_{j_1,...*..\Delta...j_p}=\alpha^{i_1...i_q}_{j_1,...\Delta...*...j_p}$, где * и Δ - наша перестановка.

$$\beta'^{k_1\dots k_q}_{m_1\dots m_*\dots m_\Delta\dots m_p} = \alpha'^{k_1\dots k_q}_{m_1\dots m_\Delta\dots m_*\dots m_p} = \alpha^{i_1\dots i_1}_{j_1\dots\Delta\dots *\dots j_p} t^{j_1}_{m_1}\dots t^{j_\Delta}_{m_\Delta}\dots t^{j_*}_{m_*}\dots t^{j_p}_{m_p} s^{k_1}_{i_1}\dots s^{k_q}_{i_q}$$

Заметим, что $\alpha_{j_1...\Delta..*...j_p} = \beta_{j_1...*...\Delta...j_p}^{i_1...i_q}$, переставим множители $t_{m_\Delta}^{j_\Delta}, t_{m_*}^{j_*}$ и получим наше определение.

Теперь посмотрим на это с функциональной стороны:

$$\alpha \in T(p,q) \leftrightarrow f: V^p \times (V^*)^q \to K, \ \beta = \sigma(\alpha) \leftrightarrow g: V^p \times (V^*)^q \to K$$

$$\forall \xi_1, \xi_2, \dots, \xi_p \in V; \forall \eta^1, \dots, \eta^q \in V^*$$
:

$$g(\xi_1, \dots, \xi_p, \eta^1, \dots, \eta^q) = \beta_{j_1 \dots j_p}^{i_1 \dots i_q} \xi_1^{j_1} \dots \xi_p^{j_p} \eta_{i_1}^1 \dots \eta_{i_q}^q = \alpha_{j_{\sigma_1} \dots j_{\sigma_p}}^{i_1 \dots i_q} \xi_1^{j_1} \dots \xi_p^{j_p} \eta_{i_1}^1 \dots \eta_{i_q}^q$$

Немного переставим внутри и получим:

$$= \alpha_{j_{\sigma_{1}}...j_{\sigma_{p}}}^{i_{1}...i_{q}} \xi_{\sigma_{1}}^{j_{\sigma_{1}}} \dots \xi_{\sigma_{p}}^{j_{\sigma_{p}}} \eta_{i_{1}}^{1} \dots \eta_{i_{q}}^{q} = f(\xi_{\sigma_{1}}, \dots \xi_{\sigma_{p}}, \eta^{1}, \dots, \eta^{q})$$

То есть:

$$g = \sigma(f) \leftrightarrow g(\xi_1, \dots, \xi_p, \eta^1, \dots, \eta^q) = f(\xi_{\sigma_1}, \dots, \xi_{\sigma_p}, \eta^1, \dots, \eta^q)$$

Пример:

Пусть
$$\alpha \in T(3,0), \ \alpha = f^1 \otimes f^2 \otimes f^3, f^j \in V^* = T(1,0), \ \sigma = (312), \beta = \sigma(\alpha).$$

$$\forall \xi_1, \xi_2, \xi_3 \in V$$

$$\beta(\xi_1, \xi_2, \xi_3) = \alpha(\xi_3, \xi_1, \xi_2) = f^1 \otimes f^2 \otimes f^3(\xi_3, \xi_1, \xi_2) = f^1(\xi_3) \cdot f^2(\xi_1) \cdot f^3(\xi_2)$$

И из этого примера следует формула:

Если
$$\alpha \in T(p,q): \alpha = f^1 \otimes \ldots \otimes f^p \otimes \gamma, \beta = \sigma(\alpha), p \geq 2, \gamma \in T(0,q)$$

$$\beta = f^{\sigma_1^{-1}} \otimes \ldots \otimes f^{\sigma_p^{-1}} \otimes \gamma = \sigma^{-1}(f^1 \otimes \ldots \otimes f^p) \otimes \gamma$$

На практике транспонирование многомерной матрицы тензора осуществляется:

МЕТОДОМ ТРАНСПОНИРОВАНИЯ СЛОЯМИ:

Для этого разобьем нашу σ на транспозиции и будем транспонировать по ним по очереди:

Для этого фиксируется набор верхних индексов, и набор нижних индексов, за исключением двух нижних. Таким образом из многомерной матрицы тензора извлекается двумерная матрица, которая называется <u>слой</u>.

$$\alpha_{j_1...*..\Delta...j_q}^{i_1...i_q}$$

Здесь я фиксирую все i-шки, а j все фиксированнны кроме * и Δ . Получили двумерную матрицу порядка n - **слой**.

$$(\alpha_{j_1...*..\Delta...j_p}^{i_1...i_q})^T = \overline{\alpha}$$

(просто обычная транспозицая квадратной двумерной матрицы).

И после транспонирования слой $\overline{\alpha}$ размещается обратно в исходную матрицу на те же позиции. Таким образом, в тензоре будут произведена перестановка (транспозиция) двух индексов. Назовем такую операцию τ .

Тогда наша последовательность действий выглядит так:

$$\sigma \xrightarrow{\tau_1} \overline{\sigma} \xrightarrow{\tau_2} \ldots \to (1, 2, \ldots n)$$

Пример:

$$n = 4, \alpha \in T(3,0), \sigma = (312) \rightarrow \overline{\sigma} = (132) \rightarrow \overline{\overline{\sigma}} = (123)$$

1) Проведем первую операцию. Так как у нас зафиксирована 3-я координата, то на самом деле нам надо лишь транспонировать 3 матрицы слоев. На рисунке снизу изображены все 4-и слоя и матрицы A_1, A_2, A_3, A_4 . Поэтому для операции транспонирования я должен взять каждую из матриц A_i и транспонировать ее

2) Проведем вторую операцию. В этот раз у нас зафиксирована 1-ая координата (строка). Зафиксируем i=1 и выпишем соответствующий ей слой:

А теперь возвращаем наш слой обратно. На рисунке показано, как мы это делаем:

Проделываем то же самое с остальными 3-емя слоями и получаем протранспонированную матрицу тензора.

Замечание: Если в матрице тензора много нулей, то проще пересчитать элементы по формуле.

Замечание: $\beta = \sigma(\alpha), \sigma = (kij).$ $\alpha_{ikj} = \beta_{kij}$ — неверно!!! Это ошибка!!!

Операция транспонирования - линейная операция, очевидно из определения.

 $\sigma = \tau_k \cdot \dots \tau_1$ произведение перестановок ассоциативно и не коммутативно, откуда операция транспозиции тензора аналогично ассоциативна и не коммутативна.

<u>def:</u> $\alpha \in T(p,q)$ называется <u>симметричным</u> тензором по нижним индексам, если $\forall \sigma$ перестановки $\sigma(\alpha) = \alpha$

<u>def:</u> $\alpha \in T(p,q)$ называется <u>кососимметричным</u> тензором по нижним индексам, если $\forall \sigma$: $\sigma(\alpha) = (-1)^{\varepsilon(\sigma)}\alpha$, где ε знак перестановки. (смотрите конспект первого семестра, раздел 6)

Поговорим, про равносильные определения:

 α симметричный $\Leftrightarrow \sigma: \alpha_{j_1,\ldots,j_p}^{i_1,\ldots,i_q} = \alpha_{j_{\sigma_1}\ldots j_{\sigma_p}}^{i_1\ldots i_q} \Leftrightarrow \forall (k,m): \alpha_{\ldots j_k\ldots j_m\ldots}^{i_1,\ldots,i_q} = \alpha_{\ldots j_m\ldots j_k\ldots}^{i_1\ldots i_q}$

 $\alpha \ \text{кососимметричный} \Leftrightarrow \sigma: \alpha_{j_1,\ldots,j_p}^{i_1,\ldots,i_q} = (-1)^{\varepsilon(\sigma)} \alpha_{j_{\sigma_1}\ldots j_{\sigma_p}}^{i_1\ldots i_q} \Leftrightarrow \forall (k,m): \alpha_{\ldots j_k\ldots j_m\ldots}^{i_1,\ldots,i_q} = -\alpha_{\ldots j_m\ldots j_k\ldots}^{i_1\ldots i_q}$

Теперь про функциональные:

 α - симметричный $\Leftrightarrow \forall \sigma: \forall \xi_1, \dots, \xi_p \in V; \forall \eta^1, \dots, \eta^q \in V^*:$

$$\alpha(\xi_1,\ldots,\xi_p,\eta^1,\ldots,\eta^q) = \alpha(\xi_{\sigma_1},\ldots,\xi_{\sigma_p},\eta^1,\ldots,\eta^q) \Leftrightarrow$$

$$\Leftrightarrow \forall (k,m): \alpha(\ldots,\xi_m,\ldots,\xi_k,\ldots) = \alpha(\ldots,\xi_k,\ldots,\xi_m,\ldots)$$

 α - кососимметричный $\Leftrightarrow \forall \sigma : \forall \xi_1, \dots, \xi_p \in V; \forall \eta^1, \dots, \eta^q \in V^* :$

$$\alpha(\xi_1,\ldots,\xi_p,\eta^1,\ldots,\eta^q)=(-1)^{\varepsilon(\sigma)}\alpha(\xi_{\sigma_1},\ldots\xi_{\sigma_p},\eta^1,\ldots,\eta^q)\Leftrightarrow$$

$$\Leftrightarrow \forall (k,m): \alpha(\ldots,\xi_m,\ldots,\xi_k,\ldots) = -\alpha(\ldots,\xi_k,\ldots,\xi_m,\ldots)$$

Утверждение. α кососимметричный $\Leftrightarrow \forall (k,m): \forall \xi: \alpha(\ldots,\xi,\ldots\xi,\ldots)=0$

Замечание: $\alpha \in T(p,q)$ — кососимметричная. Тогда

- 1. Если $p>n\Rightarrow \alpha\equiv 0$, тк обязательно в наборе j_1,\dots,j_p будут одни индексы, а из этого следует, что все компоненты будут нулями
- 2. Если $p=n\Rightarrow$ ненулевые элементы матрицы α будут только те, у которых набор нижних индексов $j_1,\ldots j_n=$ перестановка от 1 до n. Все остальные будут нулями , тк совпадают индексы:

$$\alpha_{j_1\dots j_p}^{i_1\dots i_q} = (-1)^{\varepsilon(\sigma)} \alpha_{1\dots n}^{i_1 * \dots i_q}$$

Примеры:

- 1. $V_3, \, \alpha(\overline{a}, \overline{b}) = (\overline{a}, \overline{b}) \in T(2,0)$ скалярное произведение симметрично.
- 2. $V_3, \alpha(\overline{a}, \overline{b}, \overline{c}) = \overline{a}\overline{b}\overline{c} \in T(3,0)$ смешанное произведение кососимметрично.

3. $n=3, \alpha\in T(3,0),$ α - симметрично $\alpha=(\alpha_{ijk})$. Тогда $\alpha_{123}=\alpha_{132}=\alpha_{213}=\alpha_{231}=\alpha_{312}=\alpha_{321},$ $\alpha_{112}=\alpha_{121}=\alpha_{211},\ldots$ См рисунок

он перерисуется, когда у славы руки дойдут

2.5 Операции симметрирования и альтернировании тензора.

кососимметричный = антисимметричный = альтернированный.

 $\underline{\mathbf{def:}}\ \alpha\in T(p,q), p\geq 2.\ \mathrm{Sim}\ \alpha=\frac{1}{p!}\sum_{\sigma\in S_p}\sigma(\alpha),$ где S_p - множество всех перестановок $(1,\ldots,p).$

Такая операция называется симметрированием тензора по нижним индексам.

 $\underline{\mathbf{def:}}$ Alt $\alpha=\frac{1}{p!}\sum_{\sigma\in S_p}(-1)^{\varepsilon(\sigma)}\sigma(\alpha)$ - операция <u>альтернирования</u> тензора по нижним индексам.

Замечание: по верхним аналогичным.

Позамечаем некоторые интересные факты

- 1. Sim $\alpha \in T(p,q)$, Alt $\alpha \in T(p,q)$
- 2. Sim , Alt линейные операции, так как σ линейные операторы.
- 3. если α симметричный \Rightarrow Sim $\alpha = \alpha$
- 4. если α кососимметричный \Rightarrow Alt $\alpha = \alpha$
- 5. Sim и Alt можно проводить не по всему набору (нижних) индексов. В этом случае, тот набор по которому происходит симметрирование (альтернирование) заключается в круглые (квадратные) скобки. Индексы, не участвующие в операндах выделяются вертикальными чертами. При этом квадратные и круглые скобки должны быть только одни.

Теорема.

 $\alpha \in T(p,q), p \ge 2.$

 $\forall \sigma : \text{Sim } \sigma(\alpha) = \sigma(\text{Sim } \alpha) = \text{Sim } \alpha, \text{Alt } (\sigma(\alpha)) = \sigma(\text{Alt } \alpha) = (-1)^{\varepsilon(\sigma)} \text{Alt } \alpha$

Доказательство:

Будем доказывать для Alt для (Sim упр).

Alt
$$(\sigma(\alpha)) = \frac{1}{p!} \sum_{\tau \in S_p} (-1)^{\varepsilon(\tau)} \tau(\sigma(\alpha))$$

Пусть $r\sigma = \rho$. Заметим, что ρ пробегает все P. Тогда заменим и получим:

$$= \frac{(-1)^{\varepsilon(\sigma)}}{p!} \sum_{\rho \in S_{\rho}} (-1)^{\varepsilon(\rho)} \rho(\alpha)$$

Теперь вторая часть:

$$\sigma(\text{Alt }\alpha) = \sigma\left(\frac{1}{p} \sum_{\tau \in S_P} (-1)^{\varepsilon} \tau(\alpha)\right)$$

Как мы знаем транспонирование это линейная операция. Сделаем замену на ρ , как в прошлой части и получим:

$$= \frac{1}{p!} \sum_{\tau \in S_p} (-1)^{\varepsilon(\tau)} \sigma(\tau(\alpha)) = \frac{(-1)^{\varepsilon(\sigma)}}{p!} \sum_{\rho \in S_p} (-1)^{\varepsilon(\tau)} \rho(\alpha)$$

Получили то, что хотели.

Q.E.D.

Следствие 1. $\forall \alpha \in T(p,q), \text{ Alt } \alpha$ - кососимметричный тензор, $\text{Sim } \alpha$ - симметричный тензор. Очевидно по определению.

Следствие 2. α кососимметричный \Leftrightarrow Alt $\alpha=\alpha$ и α симметричный \Leftrightarrow Sim $\alpha=\alpha$

Доказательство:

В правую сторону очевидно по определению. Докажем в левую сторону.

Пусть $\alpha = \text{Alt } \alpha$. Тогда $\sigma(\text{Alt } \alpha) = \sigma(\alpha) = (-1)^{\varepsilon(\sigma)} \text{Alt } \alpha = (-1)^{\varepsilon(\sigma)} \alpha$. Откуда $\sigma(\alpha) = (-1)^{\varepsilon(\sigma)} \alpha$. Откуда кососимметрично по определению.

Q.E.D.

Следствие 3. Alt (Alt α) = Alt α , Sim (Sim α) = Sim α , Alt (Sim α) = \mathbb{O} , Sim (Alt α) = Sim α

Очевидно по определению.

Замечание. Теорема и следствия верны для неполного набора индексов.

Замечание. $T(p,q)^{\text{кососим}}$ и $T(p,q)^{\text{сим}}$ - линейные пространства в T(p,q).

Замечание. $T(p,q)^{ ext{\tiny KOCOCUM}} \oplus T(p,q)^{ ext{\tiny CUM}} = T(p,q)$

2.6 р-формы. Внешнее произведение р форм.

<u>def:</u> $f \in T(p,0)$ — ковариантный тензор валентности p — **полилинейная форма**.

 $f \in T(p,0)$ и <u>полилинейная антисимметричная</u> форма = ковар. тензор валентности p и кососимметричный. В таком случае f называется p-формой, или внешней формой порядка p.

 $\Lambda^p V^* = \{f \in T(p,0) : \text{Alt } f = f\}$ — линейное подпространство тензоров — <u>линейное пространство</u> *p*-форм.

$$p = 1 : \Lambda^1 V^* \equiv V^*$$
.

 $\underline{\mathbf{def:}}\ g \in T(0,q)$ — контрвариантный тензор валентности q или поливектор.

 $g \in T(0,q)$ — антисимметричный поливектор — q-вектор

 $V^qV=\{g\in T(0,q): {
m Alt}\ g=g\}$ — линейное пространство q-векторов.

Замечание: все, что мы выведем для p-форм, будет верно и для q-форм

 $\underline{\mathbf{def:}}\ f^1\in \Lambda^{p_1}V^*, f^2\in \Lambda^{p_2}V^*\ p_1$ и p_2 формы. Введем новую операцию, такую:

$$f^1 \wedge f^2 = \frac{(p_1 + p_2)!}{p_1! p_2!} \text{Alt } (f^1 \otimes f^2)$$

Такая операция называется **внешним произведением** *p*-форм.

Свойства внешнего произведение:

1.
$$f^1 \wedge f^2 = (-1)^{p_1 \cdot p_2} \cdot f^2 \wedge f^1$$

Доказательство:

$$f^1 \wedge f^2 = \frac{(p_1 + p_2)!}{p_1! p_2!} (\text{Alt } f^1 \otimes f^2)$$

Заметим, что тогда должно быть выполнено:

Alt
$$(f^1 \otimes f^2) = (-1)^{p_1 \cdot p_2} \text{Alt } (f^2 \otimes f^1)$$

Введем больше формальности в доказательства. Разложим f^1, f^2 по базису пространства тензоров. Получим:

$$f^1 \leftrightarrow (a_{i_1,\dots i_{p_1}}), f^2 \leftrightarrow (b_{j_1,\dots,j_{p_2}})$$

Тогда давайте выпишем:

$$f^1 \otimes f^2 \leftrightarrow \gamma_{i_1 \dots i_{p_1} j_1 \dots j_{[p_2]}} = \alpha_{i_1 \dots i_{p_1}} \beta_{j_1 \dots j_{p_2}}$$

$$f^2 \otimes f^1 \leftrightarrow \theta_{j_1 \dots j_{p_2} i_1 \dots i_{p_1}} = \beta_{j_1 \dots j_{p_2}} \alpha_{i_1 \dots i_{p_1}}$$

Тогда

Alt
$$(\gamma) = \frac{1}{(p_1 + p_2)!} \sum_{\sigma \in S_{p_1 + p_2}} \sigma(\gamma) (-1)^{\varepsilon(\sigma)}$$
 Alt $(\theta) = \frac{1}{(p_1 + p_2)!} \sum_{\tau \in S_{p_1 + p_2}} \tau(\theta) (-1)^{\varepsilon(\tau)}$

Не трудно присмотреться, что в альтернировании второго, мы дополнительно перестановку из $(i_1,\ldots,i_{p_1},j_1,\ldots,j_{p_2})$ в $(j_1,\ldots,j_{p_2},i_1,\ldots i_{p_1})$, обозначим ее ab (Заметим, что мы тратим

 $p_1 \cdot p_2$ транспозиций). То есть на самом деле я применяю к исходному α перестановку, а это значит, что

Alt
$$\gamma = \text{Alt } (ab(\theta)) = (-1)^{\varepsilon(ab)} \text{Alt } \theta = (-1)^{p_1 p_2} \text{Alt } \theta$$

Q.E.D.

В частности, $f^1 \in V^*, f^2 \in V^*,$ то $f^1 \wedge f^2 = -f^2 \wedge f^1.$ Так же $f \wedge f = 0.$

Отсюда выводится свойство, что $w^i \wedge w^j = -w^j \wedge w^i$ и $w^i \wedge w^i = 0$.

2.
$$(f^1+f^2) \wedge f^3 = f^1 \wedge f^3 + f^2 \wedge f^3$$
 и $f^1 \wedge (f^2+f^3) = f^1 \wedge f^2 + f^1 \wedge f^3$

3.
$$\forall \lambda \in K : (\lambda f^1) \wedge f^2 = \lambda (f^1 \wedge f^2) = f^1 \wedge (\lambda f^2)$$

4.
$$\mathbb{O}_{\Lambda^{p_1}V^*} \wedge f^2 = f^1 \wedge \mathbb{O}_{\Lambda^{p_2}V^*} = \mathbb{O}_{\Lambda^{p_1+p_2}V^*}$$

5.
$$(f^1 \wedge f^2) \wedge f^3 = f^1 \wedge (f^2 \wedge f^3) = f^1 \wedge f^2 \wedge f^3$$

Доказательство:

Распишем первое:

$$(f^{1} \wedge f^{2}) \wedge f^{3} = \left(\frac{(p_{1} + p_{2})!}{p_{1}!p_{2}!} \operatorname{Alt} (f^{1} \otimes f^{2})\right) \wedge f^{3} =$$

$$= \frac{(p_{1} + p_{2} + p_{3})!}{(p_{1} + p_{2})!(p_{3})!} \operatorname{Alt} \left(\left(\frac{(p_{1} + p_{2})!}{p_{1}!p_{2}} \operatorname{Alt} (f^{1} \otimes f^{2})\right) \otimes f^{3}\right) = \frac{(p_{1} + p_{2} + p_{3})!}{p_{1}!p_{2}!p_{3}!} \operatorname{Alt} \left(\operatorname{Alt} (f^{1} \otimes f^{2}) \otimes f^{3}\right)$$

Распишем второе:

$$(f^1 \wedge f^2) \wedge f^3 = \frac{(p_1 + p_2 + p_3)!}{p_1! p_2! p_3!} \text{Alt } (f^1 \otimes \text{Alt } (f^2 \otimes f^3))$$

Нам надо лишь доказать, что Alt (Alt $(f^1 \otimes f^2) \otimes f^3$) = Alt $(f^1 \otimes \text{Alt } (f^2 \otimes f^3))$

Ну, давайте докажем:

Alt (Alt
$$(f^1 \otimes f^2) \otimes f^3$$
) = Alt $\left(\frac{1}{(p_1 + p_2)!} \sum_{\sigma \in S_{p_1 + p_2}} \left((-1)^{\varepsilon(\sigma)} \sigma(f^1 \otimes f^2) \otimes f^3 \right) \right)$
 $f^1 \otimes f^2 \leftrightarrow \alpha_{i_1 \dots i_{p_1}} \beta_{j_1 \dots j_{p_2}} \quad f^3 \leftrightarrow \gamma_{\theta_1 \dots \theta_{p_2}}$

Заметим, что σ это перестановка, которая переставляет $p_1 + p_2$ индексов.

Возьму τ такую перестановку, что она переставляет $(p_1+p_2+p_3)$ индексов $i_1,\ldots,i_{p_1},j_1,\ldots,j_{p_2},\theta_1,\ldots,\theta_n$ но при этом последние p индексов будут стоять на месте(Расширим нашу перестановку σ).

$$= \frac{1}{(p_1 + p_2)!} \text{Alt} \left(\sum_{\sigma \in S_{p_1 + p_2}} (-1)^{\varepsilon(\tau)} \tau(f^1 \otimes f^2 \otimes f^3) \right) = \frac{1}{(p_1 + p_2)!} \sum_{\sigma} (-1)^{\varepsilon(\tau)} \text{Alt} \left(\tau(f^1 \otimes f^2 \otimes f^3) \right) =$$

$$= \frac{1}{(p_1 + p_2)!} \text{Alt} \left(f^1 \otimes f^2 \otimes f^3 \right) \sum_{\sigma \in S_{p_1 + p_2}} 1 = \text{Alt} \left(f^1 \otimes f^2 \otimes f^3 \right)$$

Аналогичным образом раскрываем и получаем, для другой то же самое. Откуда они равны.

Q.E.D

Следствие:
$$f^1 \wedge f^2 \wedge f^3 = \frac{(p_1 + p_2 + p_3)!}{p_1!p_2!p_3!} \text{Alt } (f^1 \otimes f^2 \otimes f^3)$$

Следствие: По индукции верно $f^1 \wedge \ldots \wedge f^n = \frac{(p_1 + \ldots + p_n)}{p_1! \ldots p_n!} \text{Alt } (f^1 \otimes \ldots \otimes f^n)$

Следствие: $\forall j = 1 \dots p : f^j \in V^* = \Lambda^1 V^*$

$$f^1 \wedge \ldots \wedge f^p = p! \cdot \text{Alt } (f^1 \otimes \ldots \otimes f^n)$$

Это следует из нашего свойства и поэтому у нас именно такое обозначение p-форм (у нас как бы значок \wedge)

6.
$$\forall j = 1 \dots p : f^j \in V^* = \Lambda^1 V^*$$
.

Тогда

$$\sigma(f^1 \wedge f^2 \wedge \ldots \wedge f^p) = (-1)^{\varepsilon(\sigma)} f^1 \wedge \ldots \wedge f^p = \sigma^{-1}(f^1 \wedge \ldots \wedge f^n) = f^{\sigma_1} \wedge \ldots \wedge f^{\sigma_p}$$

Доказательство:

Докажем только последний переход, все остальные очевидны из определения:

$$\sigma^{-1}(f^1 \wedge \ldots \wedge f^p) = p!\sigma^{-1}\text{Alt } (f^1 \otimes \ldots \otimes f^p) = p!\text{Alt } (\sigma^{-1}(f^1 \otimes \ldots \otimes f^p))$$

Следствие: Если f^{j} — 1 формы, тогда:

$$f^{1} \wedge \ldots \wedge f^{k} \wedge \ldots \wedge f^{m} \wedge \ldots \wedge f^{p} = -f^{1} \wedge \ldots \wedge f^{m} \wedge \ldots \wedge f^{k} \wedge \ldots f^{p}$$
$$\ldots \wedge f \wedge \ldots \wedge f \wedge \ldots = \mathbb{O}$$

Теорема (о базисе пространства p - форм)

Пусть $j_1 < \ldots < j_p$ — упорядоченный набор $j_l \in (1, \ldots, n)$

 $\{w^{j_1}\wedge\ldots\wedge w^{j_p}\}$ совокупность по всем упорядоченным наборам (j_1,\ldots,j_p) — базис Λ^pV^* .

Доказательство:

Докажем порождаемость:

 $\forall f \in \Lambda^p V^*. \ f \in T(p,0)$ и $f = \mathrm{Alt}\ f$ - кососимметричный. Разложим по координатам тензора

$$f = \alpha_{i_1 \dots i_p} w^{i_1} \otimes \dots \otimes w^{i_p}$$

С другой стороны Alt $f = \text{Alt } (\alpha_{i_1 \dots i_p} w^{i_1} \otimes \dots \otimes w^{i_p}) = a_{i_1 \dots i_p} \text{Alt } (w^{i_1} \otimes \dots \otimes w^{i_p})$. Из следствия 2 свойства 5 Alt $(w^{i_1} \otimes \dots \otimes w^{i_p}) = \frac{1}{p!} w^{i_1} \wedge \dots \wedge w^{i_p}$.

Если среди $(i_1 \dots i_p)$ есть одинаковые индексы, то $w^{i_1} \wedge \dots \wedge w^{i_p} = 0$. Если все индексы различные, то это просто перестановка $(j_1, \dots, j_p) : j_1 < \dots < j_p$. Тогда заменим на равное:

$$= \sum_{j_1 < \dots < j_p} \frac{1}{p!} \sum_{\sigma \in S_p} \alpha_{j_{\sigma_1} \dots j_{\sigma_p}} w^{j_{\sigma_1}} \wedge \dots \wedge w^{j_{\sigma_p}} = \sum_{j_1 < \dots < j_p} \frac{1}{p!} \sum_{\sigma \in S_p} \alpha_{j_{\sigma_1} \dots j_{\sigma_p}} (-1)^{\varepsilon(\sigma)} w^{j_1} \wedge \dots w^{j_p}$$

Вынесем за скобки и получим:

$$= \sum_{j_1 < \dots < j_p} \left(\frac{1}{p!} \sum_{\sigma \in S_p} \alpha_{j_{\sigma_1} \dots j_{\sigma_p}} (-1)^{\varepsilon(\sigma)} \right) w^{j_1} \wedge \dots \wedge w^{j_p}$$

Откуда порождаемый.

Замечание: коээффицент перед омегами равен $\beta_{j_1...j_p}$ b называется **существенной** координатой p-формы f. Она равна $\alpha_{[j_1...j_p]}=\alpha_{j_1...j_p}$.

Докажем линейно-независимость:

Для этого составим комбинацию.

$$0 = \sum_{j_1 < \dots < j_p} \beta_{j_1 \dots j_p} w^{j_1} \wedge \dots \wedge w^{j_P} = \sum_{j_1 < \dots < j_p} \beta_{j_1 \dots j_p} \sum_{\sigma \in S_p} w^{j_{\sigma_1}} \otimes \dots \otimes w^{j_{\sigma(p)}} \cdot (-1)^{\varepsilon(\sigma)} =$$
$$= \alpha_{i_1 \dots i_p} w^{i_1} \otimes \dots \otimes w^{i_p}$$

где если хотя бы 2 индекса совпадают, то $\alpha_{i_1...i_p}=0$. Получили, что базис из тензоров = нулю, откуда и искомые.

Q.E.D.

Следствие 1: dim
$$\Lambda^p V^* = C_n^p = \frac{n!}{p!(n-p)!}$$

Следствие 2: $\forall f \in \Lambda^p V^*$:

$$f = \sum_{j_1 < \dots < j_p} \beta_{j_1 \dots j_p} w^{j_1} \wedge \dots \wedge w^{j_p}$$

где $\beta_{j_1...j_p} = \alpha_{j_1...j_p} -$ существенные координаты.

Существенные координаты принято записывать в строку (перестановки в лексикографическом порядке)

Пример:

$$n = 4, p = 3: f \in \Lambda^p V^* \leftrightarrow \beta = (\beta_{123}, \beta_{124}, \beta_{134}, \beta_{234})$$

Теорема 1

$$\forall \xi_1, \dots, \xi_p \in V : w^{j_1} \wedge \dots \wedge w^{j_p}(\xi_1, \dots, \xi_p) = \det(\xi_k^{j_m})_{p \times p} = \begin{vmatrix} \xi_1^{j_1} & \dots & \xi_p^{j_1} \\ \vdots & & \vdots \\ \xi_1^{j_p} & \dots & \xi_p^{j_p} \end{vmatrix}$$

Доказательство:

$$w^{j_1} \wedge \ldots \wedge w^{j_p}(\xi_1, \ldots, \xi_p) = p! \text{Alt } (w^{j_1} \otimes \ldots \otimes w^{j_p})(\xi_1, \ldots, \xi_p) =$$

$$= \frac{p!}{p!} \sum_{\sigma \in S_p} (-1)^{\varepsilon(\sigma)} \sigma(w^{j_1} \otimes \ldots \otimes w^{j_p})(\xi_1, \ldots, \xi_p) = \sum_{\sigma \in S_p} (-1)^{\varepsilon(\sigma)} w^{j_1} \otimes \ldots \otimes w^{j_p}(\xi_{\sigma_1}, \ldots, \xi_{\sigma_p}) =$$

$$= \sum_{\sigma \in S_p} (-1)^{\varepsilon(\sigma)} \xi_{\sigma_1}^{j_1} \ldots \xi_{\sigma_p}^{j_p} = \det(\xi_k^{j_m})$$

Q.E.D.

Следствие: $\forall f \in \Lambda^p V^*$:

$$f(\xi_1, \dots, \xi_p) = \sum_{j_1 < \dots < j_p} \beta_{j_1 \dots j_p} \begin{vmatrix} \xi_1^{j_1} & \dots & \xi_p^{j_1} \\ \vdots & & \vdots \\ \xi_1^{j_p} & \dots & \xi_p^{j_p} \end{vmatrix}$$

Теорема 2.

 $\forall j=1\dots p.f^j\in V^*=\Lambda^1V^*$ - 1 форма.

$$f = f^1 \wedge f^2 \wedge \ldots \wedge f^p$$
 - p - форма.

 $f^j \leftrightarrow a^j = (a_1^j \dots a_n^j)$ — координатная строка в базисе w^j . $f^j = a_i^j w^i$. Тогда

$$\beta_{j_1...j_p} = \begin{vmatrix} a_{j_1}^1 & \dots & a_{j_p}^1 \\ \vdots & & \vdots \\ a_{j_1}^p & \dots & a_{j_p}^p \end{vmatrix} = \det(a_{j_k}^m)$$

А также:

$$f^{1} \wedge \ldots \wedge f^{p} = \sum_{j_{1} < \ldots < j_{p}} \begin{vmatrix} a_{j_{1}}^{1} & \ldots & a_{j_{p}}^{1} \\ \vdots & & \vdots \\ a_{j_{1}}^{p} & \ldots & a_{j_{p}}^{p} \end{vmatrix} w^{j_{1}} \wedge \ldots \wedge w^{j_{p}}$$

Доказательство:

$$\beta_{i_1...i_n} = f^1 \wedge \ldots \wedge f^p(e_{i_1}, \ldots, e_{i_n}) =$$

Теперь смотрите доказательство первой теоремы, но в качестве w^j возьмите f^j , а в качестве $\xi_i \to e_{j_i}$:

$$= \sum_{\sigma \in S_p} (-1)^{\varepsilon(\sigma)} f^1(e_{j_{\sigma_1}}) \dots f^p(e_{j_{\sigma_p}}) = \det(a_{j_k}^m) = \begin{vmatrix} a_{j_1}^1 & \dots & a_{j_p}^1 \\ \vdots & & \vdots \\ a_{j_1}^p & \dots & a_{j_p}^p \end{vmatrix}$$

Q.E.D

Следствие: $\forall j=1\dots m: f^j$ - 1-форма. $\forall \xi_1,\dots,\xi_p \in V$. Тогда

$$f^{1} \wedge \ldots \wedge f^{p}(\xi_{1}, \ldots, \xi_{n}) = \sum_{j_{1} < \ldots < j_{p}} \begin{vmatrix} a_{j_{1}}^{1} & \ldots & a_{j_{p}}^{1} \\ \vdots & & \vdots \\ a_{j_{1}}^{p} & \ldots & a_{j_{p}}^{p} \end{vmatrix} \cdot \begin{vmatrix} \xi_{1}^{j_{1}} & \ldots & \xi_{p}^{j_{1}} \\ \vdots & & \vdots \\ \xi_{1}^{j_{p}} & \ldots & \xi_{p}^{j_{p}} \end{vmatrix}$$

Теорема 3.

 $\forall j=1\dots p,\ f^j$ - 1-формы. $\forall \xi_1,\dots,\xi_p\in V$ выполнено:

$$f^{1} \wedge f^{2} \wedge \ldots \wedge f^{p}(\xi_{1}, \ldots \xi_{p}) = \begin{vmatrix} f^{1}(\xi_{1}) & \ldots & f^{1}(\xi_{p}) \\ \vdots & & \vdots \\ f^{p}(\xi_{1}) & \ldots & f^{p}(\xi_{p}) \end{vmatrix} = \det(f^{j}(\xi_{i}))$$

Доказательство:

Смотрите доказательство теоремы 2. Записать $e_{j_k} \to \xi_k$.

$$f^1 \wedge \ldots \wedge f^p(\xi_1 \dots \xi_p) = \sum_{\sigma \in S_p} (-1)^{\varepsilon(\sigma)} f^1(\xi_{\sigma_1}) \dots f^p(\xi_{\sigma_p}) = \det(f^j(\xi_k))$$

Q.E.D.

Следствие:
$$\begin{vmatrix} f^1(\xi_1) & \dots & f^1(\xi_p) \\ \vdots & & \vdots \\ f^p(\xi_1) & \dots & f^p(\xi_p) \end{vmatrix} = \sum_{j_1 < \dots j_p} \begin{vmatrix} a^1_{j_1} & \dots & a^1_{j_p} \\ \vdots & & \vdots \\ a^p_{j_1} & \dots & a^p_{j_p} \end{vmatrix} \begin{vmatrix} \xi^{j_1}_1 & \dots & \xi^{j_1}_p \\ \vdots & & \vdots \\ \xi^{j_p}_1 & \dots & \xi^{j_p}_p \end{vmatrix}$$

Пример: частный случай.

 $p=n, \dim \Lambda^n V^*=1.$ Тогда в таком случае:

$$f^1 \wedge \ldots \wedge f^n(\xi_1, \ldots, \xi_n) = \det(A\xi) = \det A \cdot \det \xi$$

$$f = \det A \cdot w^1 \wedge \ldots \wedge w^n$$

Замечание. Все вышесказанное верно и для *q*-векторов. Есть лишь пару отличий:

$$g_1 \vee g_2 = \frac{(q_1 + q_2)!}{q_1! q_2!} \mathrm{Alt} \ (g_1 \otimes g_2) - \underline{\mathbf{B}}$$
нешнее произведение q -векторов.

Все свойства и теоремы выполнены, но базис $\{e_{i_1} \lor \ldots \lor e_{i_q}\}$, для $i_1 < \ldots < i_1$.

Как мы помним $f(\xi) = \xi(f)$. Так что давайте применим это.

Пусть p=q. Тогда $\xi_j\in V\cong V^{**},\,f^j\in V^*$. Тогда

$$\xi_{1} \vee \ldots \vee \xi_{p}(f^{1}, \ldots, f^{p}) = \sum_{j_{1} < \ldots < j_{p}} \begin{vmatrix} \xi_{1}^{j_{1}} & \ldots & \xi_{p}^{j_{1}} \\ \vdots & & \vdots \\ \xi_{1}^{j_{p}} & \ldots & \xi_{p}^{j_{o}} \end{vmatrix} \begin{vmatrix} a_{j_{1}}^{1} & \ldots & a_{j_{p}}^{1} \\ \vdots & & \vdots \\ a_{j_{1}}^{p} & \ldots & a_{j_{p}}^{p} \end{vmatrix} = f^{1} \wedge \ldots \wedge f^{p}(\xi_{1}, \ldots, \xi_{p}) = \det(f^{j}(\xi_{i})) = \det(\xi_{i}(f^{j}))$$

3 Евклидовы и унитарные пространства.

3.1 Основные определения.

Начнем с определений.

 $\underline{\mathbf{def:}}\ V$ - линейное пространство над полем $\mathbb R.$

 $(\cdot,\cdot): V \times V \to \mathbb{R}$ называется **скалярное произведение**, если она удовлетворяет 4-ем аксиомам.

 $\forall x, y \in V, \forall \lambda \in \mathbb{R}$:

- 1. (x, y) = (y, x) симметричность
- 2. $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$
- 3. $(\lambda x, y) = \lambda(x, y)$
- 4. $\forall x \neq 0 : (x, x) > 0$

 $\underline{\operatorname{def:}}\ (V,(\cdot,\cdot))\ \dim V=n<\infty$ называется $\underline{\operatorname{eвклидовым}}\ \operatorname{пространством}$ или вещественным линейным пространством со скалярным произведением.

Замечание: Если V бесконечномерно, то это называется **гильбертовым пространством**

def: V - линейное пространство над полем \mathbb{C} .

 $(\cdot,\cdot):V\times V\to\mathbb{C}$ функция называется **псевдоскалярным** пространством.

- 1. $(x,y) = \overline{(y,x)}$ симметричность
- 2. $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$
- 3. $(\lambda x, y) = \lambda(x, y)$
- 4. $\forall x \neq 0 : (x, x) > 0$

Такая функция называется полуторалинейной.

 $\underline{\mathbf{def:}}\ \dim V = n < \infty,\ (V,(\cdot,\cdot))$ называется $\underline{\mathbf{yнитарным}}\$ пространством или эрмитовый или псевдоевклидовой или комплексным линейным пространством с псевдоскаляром.

Замечание: Если вы не напишите слово вещественные или комплексные в работе или на экзамене, то вам инста бан.

 $\underline{\mathbf{def:}}$ Введем норму: $\forall x \in V: ||x|| = \sqrt{(x,x)} - \underline{\mathbf{e}}$ вклидова норма.

Давайте проверим выполняемость свойств нормы.

- 1. $\forall x \neq 0 \Rightarrow ||x|| \neq 0$ (невырожденность) выполнена.
- 2. $\forall \lambda \in K \Rightarrow ||\lambda x|| = \sqrt{(\lambda x, \lambda x)} = |\lambda| \cdot ||x||$ (однородность) выполнено.
- 3. $\forall x, y \in V$ неравенство треугольника.

$$||x + y|| \le ||x|| + ||y||$$

Мы будем пользоваться в доказательстве неравенством КБШ. Его доказательство вы можете найти в конспекте первого семестра по матанализу.

$$||x+y||^2 = (x+y,x+y) = ||x||^2 + (x,y) + (y,x) + ||y||^2 \le ||x||^2 + 2Re(x,y) + ||y||^2 + 2Re(x,y) + ||y||^2 + 2Re(x,y) + ||y||^2 + ||x||^2 +$$

$$\leq ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 \leq (||x|| + ||y||)^2$$

$$\Rightarrow ||x + y|| \leq ||x|| + ||y||$$

 $\underline{\mathbf{def:}}\ \forall x\in V: ||x||$ - <u>длина вектора</u>. φ называем углом между x и y, таким, что $\cos\varphi=\frac{(x,y)}{||x||||y||}$

Пример:

1. Возьмем \mathbb{R}^n . $\forall x,y \in \mathbb{C}^n$. $(x,y) = \sum_{i=1}^n x_i \overline{y_i}$. Заметим что выполнены все 4 аксиомы скалярного произведения

$$||x|| = (\sum_{i=1}^{n} |x_i|^2)^{1/2} = \sqrt{(x,x)} = \sqrt{\sum_{i=1}^{n} x_i \overline{x_i}}$$

Неравенство КБШ в данном случае будет вот таким:

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} |y_i|^2\right)^{\frac{1}{2}}$$

А неравенство треугольника у нас будет вот таким:

$$\left(\sum_{i=1}^{n} |x_i + y_i|^2\right)^{\frac{1}{2}} \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} + \left(\sum_{i=1}^{n} |y_i|^2\right)^{\frac{1}{2}}$$

По-другому неравентво треугольника в данном случае будет называться неравенством Минковского.

2. Так же мы будем пользоваться вот таким примером. Пусть у нас выбран промежуток [a,b] и $\int_{-b}^{b} |f|^2 dt < \infty$. Тогда введем скалярное произведение:

$$(f,g) = \int_{a}^{b} f\overline{g}dt$$

3.2 Процесс ортогонализация Грама-Шмидта. Орто-нормированный базис. Ортогональное дополнение.

<u>def:</u> Система ненулевых векторов v_1, \ldots, v_m называется <u>ортогональным</u>, если $\forall (i, j), i \neq j$: $(v_i, v_j) = 0$.

<u>**def:**</u> Система ненулевых векторов называется <u>**ортонормированной**</u>, если $v_1, \dots, v_m : \forall (i, j) : (v_i, v_j) = \delta_{ij}. \ ||v_i|| = 1$

Утверждение: v_1, \ldots, v_m ортогональная $\Rightarrow v_1, \ldots, v_m$ линейно независимы.

Доказательство:

 v_1, \dots, v_m ортогональны. Хотим показать тривиальность разложения нуля(в принципе ничего нового).

$$\sum_{i=1}^{n} \alpha_i v_i = 0$$

Давайте применим операцию скалярного произведения с v_j к обеим частям. Таким образом получим:

$$0 = \sum_{i=1}^{n} \alpha_i(v_i, v_j) = \alpha_j(v_j, v_j) \Rightarrow \alpha_j = 0$$

Таким образом получаю, что каждая $\alpha_j = 0$, то есть вектора линейно независимы.

Q.E.D.

Теорема (процесс ортогонализации Грама-Шмидта)

 $\forall a_1,\ldots,a_n \to \exists b_1,\ldots,b_k \in V$. Причем b_i попарно-ортогонально и $span(a_1,\ldots,a_n) = span(b_1,\ldots,b_k)$. При этом $k = rg(a_1,\ldots,a_m)$

Доказательство:

Пусть a_1, \ldots, a_m линейно независимы, то есть m = k

Будем доказывать по индукции.

База:

Рассмотрим k = 2, пусть $b_1 = a_1$. Мы хотим, чтобы b_2 и b_1 были ортогональны, то есть $(b_1, b_2) = 0$. Пусть $b_2 = a_2 - c_1b_1$. Тогда, нам надо, чтобы было выполнено:

$$0 = (b_2, b_1) = (a_1, b_1) - c_1(b_1, b_1) \Leftrightarrow c_1 = \frac{(a_2, b_1)}{(b_1, b_1)}$$

Заметим, что сейчас мы нашли такое b_2 , что оно ортогонально и тк мы сделали линейное преобразование, то $span(b_1, b_2) = span(a_1, a_2)$

Индукционный переход:

Пусть верно для m. Докажем для m + 1.

Возьму первые m. Для них по предположению индукцию построю ортогональные.

Возьму
$$b_{m+1} = a_{m+1} - \sum_{j=1}^{m} c_j b_j$$

Хотим, понять существуют ли такие c. Давайте переберем r=1...m и возьмем скалярное произведение с b_r . Тогда:

$$0 = (b_{m+1}, b_r) = (a_{m+1}, b_r) - \sum_{j=1}^{m} c_j(b_j, b_r) = (a_{m+1}, b_r) - c_r(b_r, b_r)$$

$$c_r = \frac{(a_{m+1}, b_r)}{||b_r||^2}$$

Заметим, что $b_{m+1} \neq 0$, тк иначе $a_{m+1} \in span(b_1, \dots b_n)$, откуда линейно-независимый. Откуда получили m+1 ортогональный.

Q.E.D.

Следствие 1: Для любого пространства V евклидова, унитарного всегда существует ортонормированный базис.

Следствие 2: Любую ортогональную систему в V можно дополнить до о.н.б.

def:
$$L \subset V$$
 $L^{\perp} = \{y \in V | (x,y) = 0, \forall x \in L\}$ — ортогональное дополнение L .

Свойства:

1. L^{\perp} — линейное подпространство.

$$\forall y_1, y_2 \in L^{\perp}, \forall \lambda \in K : (x, \lambda y_1 + \lambda y_2) = \overline{\lambda}(x, y_1) + (x, y_2) = 0$$

Откуда $\lambda y_1 + y_2 \in L^{\perp}$

2. $V = L \oplus L^{\perp}$.

Доказательство:

L и L^{\perp} очевидно дизъюнктны. Хотим понять $L \oplus L^{\perp}$. Пусть $L = span(a_1, \ldots, a_n)$ - ортогональный базис L. Дополним до базиса V.

$$V = span(a_1, \dots, a_k, a_{k+1}, \dots, a_n)$$

Тогда очевидно, что $L^{\perp} = span(a_{k+1}, \ldots, a_n)$, тк $y = \sum_{j=1}^{n-k} c_j a_{k+j}$ и $\forall x \in L : (x,y) =$

$$\sum_{j=1}^{n-k} \overline{c_j}(x, a_{k+j}) = \sum_{j=1}^{n-k} \sum_{m=1}^k \overline{c_j} \alpha + m(a_m, a_{k+j}) = 0$$

Откуда по эквивалентному условию прямой суммы верно.

Q.E.D.

Замечание: $\forall L: \exists L'$ - прямое дополнение и $\exists L^{\perp}$ со свойством, что его элементы $\perp L$.

3.
$$(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp} \text{ if } (L_1 \cap L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}$$

Доказательство:

$$(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp}.$$

Докажем сначала вложенность в левую сторону:

 $\forall y \in L_1^{\perp} \& y \in L_2^{\perp} \Leftrightarrow y \in L_1^{\perp} \cap L_2^{\perp}$. Как мы знаем:

$$\forall x_1 \in L_1 : (x_1, y) = 0$$

$$\forall x_1 \in L_1 : (x_2, y) = 0$$

$$\Rightarrow x_1 + x_2 \in L_1 + L_2; (x_1 + x_2, y) = (x_1, y) + (x_2, y) = 0$$

Откуда $y \in (L_1 + L_2)^{\perp}$.

Докажем вложенность в правую сторону:

Пусть $y \in (L_1 + L_2)^{\perp} \Rightarrow \forall x_1 + x_2 \in L_1 + L_2, x \in L_1, x_2 \in L_2$: $(x_1 + x_2, y) = 0$. Пусть $x_2 = 0$. Тогда $\forall x_1 \in L_1 : (x_1 + y) = 0$. Откуда $y \in L_1^{\perp}$, аналогично $y \in L_2^{\perp}$. А это то что нам надо

Теперь докажем второе равенство:

$$(L_1 \cap L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}$$

Применим первое свойство к L_1^{\perp}

$$(L_1^{\perp} + L_2^{\perp})^{\perp} = (L_1^{\perp})^{\perp} \cap (L_2^{\perp})^{\perp}$$

А еще:

$$(L_1^{\perp} + L_2^{\perp})^{\perp} = L_1 \cap L_2$$

Поэтому приравняем правые части равенств и получим то, что нам надо

Q.E.D.

4.
$$V^{\perp} = \mathbb{O}$$

3.3 Матрица Грама и ее свойства. Ортогональные и унитарные матрицы.

Дано $(V, (\cdot, \cdot))$ - евклидово или унитарное, e - базис V. $e = (e_1, \dots, e_n)$.

$$\forall x, y \in V : (x, y) = (\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_i e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \overline{y_i}(e_i, e_j)$$

$$\underline{\mathbf{def:}}\ \Gamma = ((e_i,e_j))_{n\times n} = \begin{pmatrix} (e_1,e_1) & \dots & (e_1,e_n) \\ \vdots & & \vdots \\ (e_n,e_1) & \dots & (e_n,e_n) \end{pmatrix} - \underline{\mathbf{матрицей}\ \mathbf{\Gamma pama}} \text{(базиса пространства } V)$$

Очевидно, что $\overline{\Gamma^T} = \Gamma$ из свойств скалярного произведения.

 $\underline{\mathbf{def:}}\ A=(a_{ij})_{n\times n}, a_{ij}\in K.\ A^*=\overline{A^T}$ называется матрицей, сопряженной к A.

Замечание: все def пишем для \mathbb{C} , для \mathbb{R} надо убрать операцию сопряжения.

 $\underline{\mathbf{def:}}\ A^* = A$ называется самосопряженной.

 $\mathbb{R} A^T = A$ — симметричная.

 \mathbb{C} $\overline{A^T}=A$ — эрмитова матрица.

$$(x,y) = x^T \cdot \Gamma \cdot \overline{y}$$

Частный случай. e - ортонормированный базис $\Gamma = E$.

Частный случай. e - ортогональный базис $\Gamma = diag(||e_1||^2, \dots, ||e_n||^2)$

<u>def:</u> Пусть есть $a_1, \ldots, a_k \in V$. Назовем $G = (a_1, \ldots, a_k) = ((a_i, a_j))_{k \times k}$ — матрицей Грама системы векторов.

Очевидно, что $G^* = G$ - самосопряженная.

Очевидно, что $\Gamma = G(e_1, \dots, e_n)$ - матрица Γ рама частный случай.

 $\underline{\mathbf{def:}}\ g(a_1,\ldots,a_k)=\det G(a_1,\ldots,a_k).$

Теорема (об определителе матрицы Грама)

 a_1, \dots, a_k по Граму-Шмидту переводится в попарно-ортогональные b_1, \dots, b_k (но возможно есть нули).

Тогда
$$g(a_1,\ldots,a_k) = ||b_1||^2 \ldots ||b_k||^2 = g(b_1,\ldots,b_k)$$

Доказательство:

$$g(a_1, \dots, a_k) = \begin{vmatrix} (a_1, a_1) & (a_1, a_2) & (a_1, a_3) & \dots & (a_1, a_n) \\ (a_2, a_1) & (a_2, a_2) & (a_2, a_3) & \dots & (a_1, a_n) \\ (a_3, a_1) & (a_3, a_2) & (a_3, a_3) & \dots & (a_1, a_n) \\ \vdots & \vdots & \vdots & & \vdots \\ (a_n, a_1) & (a_n, a_2) & (a_n, a_3) & \dots & (a_n, a_n) \end{vmatrix}$$

По процессу ортогонализации я заменяю a_1 на b_1 получу:

$$g(a_1, \dots, a_k) = \begin{vmatrix} (b_1, b_1) & (b_1, a_2) & (b_1, a_3) & \dots & (b_1, a_n) \\ (a_2, b_1) & (a_2, a_2) & (a_2, a_3) & \dots & (a_1, a_n) \\ (a_3, b_1) & (a_3, a_2) & (a_3, a_3) & \dots & (a_1, a_n) \\ \vdots & \vdots & \vdots & & \vdots \\ (a_n, b_1) & (a_n, a_2) & (a_n, a_3) & \dots & (a_n, a_n) \end{vmatrix}$$

Выполним второй шаг. $b_2 = a_2 - c_1$, где $c_1 = \frac{(a_2, b_1)}{||b_1||^2}$.

Из второй строки вычту 1 строку умноженную на c_1 получу:

$$g(a_1, \dots, a_k) = \begin{vmatrix} (b_1, b_1) & (b_1, a_2) & (b_1, a_3) & \dots & (b_1, a_n) \\ (b_2, b_1) & (b_2, a_2) & (b_2, a_3) & \dots & (b_1, a_n) \\ (a_3, b_1) & (a_3, a_2) & (a_3, a_3) & \dots & (a_1, a_n) \\ \vdots & \vdots & \vdots & & \vdots \\ (a_n, b_1) & (a_n, a_2) & (a_n, a_3) & \dots & (a_n, a_n) \end{vmatrix}$$

А теперь из второго столбика вычту первый умноженный на $\overline{c_1}$. Аналогично дальше. Откуда получили то, что нам надо.

Q.E.D.

Следствие 1: $a_1, \dots a_k$ - линейно-независимо \Leftrightarrow определитель матрицы Грама > 0.

Следствие 2: $a_1, \ldots a_{k-1}$ линейно независимы, есть a_k . Тогда: $||b_k||^2 = \frac{g(a_1, \ldots, a_k)}{g(a_1, \ldots, a_{k-1})}$.

$$\underline{\mathbf{def:}} \ A = (a_{ij})_{n \times n} = \begin{pmatrix} a_{11} & \dots & a_{1k} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{k1} & \dots & a_{kk} & \dots & a_{kn} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nk} & \dots & a_{nn} \end{pmatrix}$$

Свойства Г:

1.
$$\Gamma>0$$
 положительно-определенная. $\Leftrightarrow \begin{cases} \Gamma=\Gamma^* \\ \forall x\in K^n, x^T\Gamma\overline{x}>0 \end{cases}$

Верно из свойств скалярного произведения.

2. Для матрицы Γ все угловые миноры $\Delta_k > 0$. Откуда матрица Γ — невырожденная.

3.
$$e,e'$$
 базисы $V.$ $\Gamma=G(e_1,\ldots,e_n),$ $\Gamma'=G(e'_1,\ldots,e'_n).$ $\Gamma'=T^T\Gamma\overline{T}$

Доказательство:

$$\forall x, y \in V : (x, y) = x^T \Gamma \overline{y}.$$

Сделаем замену $x^T \Gamma \cdot \overline{y} = (x')^T T^T \Gamma \overline{T} \cdot \overline{(y')} = (x')^T \Gamma' \overline{y'}$

Пусть $x'=E_i, y'=E_j,$ тогда подставляя мы получаем поэлементное равенство матриц, откуда доказали

4.
$$e, e'$$
 о.н.б. $V \Rightarrow T^T \overline{T} = E$

<u>def:</u> $Q_{n\times n}$ невырожденная. Q называется унитарной, ортогональной, если $Q^* = Q^{-1}$

Свойства ортогональной/унитарной матрицы

1. строки и столбцы попарно-ортогональны и нормированны. (со стандартный ск. п.)

Доказательство:

$$Q^*Q = E = QQ^*$$

$$(\overline{Q^T}Q) = E = (Q\overline{Q^T})$$

А это получается, что $(Q_i,Q_j)=\sigma_{ij},$ аналогично $(Q_i^T,Q_j^T)=\sigma_{ij}$

Q.E.D.

- 2. Q ортог/унитар $\Rightarrow Q^{-1}$ ортог/унитар.
- 3. Q, R ортог/унитар $\Rightarrow QR$ ортог/унитар.
- 4. $|\det Q| = 1 : (\mathbb{R} : \det Q = \pm 1)$
- 5. e, e' о.н.б $\Leftrightarrow T_{e \to e'}$ ортогонально унитарно

Доказательство:

e' - о.н.б $\Leftarrow e$ - орто нормированный базис и $T_{e \to e'}$ - ортог/унитар. - 4-ое свойство матрицы Грама.

Q.E.D.

Я не совсем понял, что тут исправляла ЕА, так что скажите.

3.4 Теорема Пифагора. Расстояние до линейного подпространства. Задача о перпендикуляре(наилучшем приближении). Объем кмерного параллелепипеда в п-мерном пространстве

Теорема (Пифагора)

$$\forall y, z \in V : (y, z) = 0 \Rightarrow ||y + z||^2 = ||y||^2 + ||z||^2$$

Доказательство:

$$||y+z||^2 = (y+z, y+z) = (y,y) + (y,z) + (z,y) + (z,z)$$

Q.E.D.

Следствие: $\forall x_1, \dots, x_k \in V$ попарно-ортогональными: $||\sum_{j=1}^k x_j||^2 = \sum_{j=1}^k ||x_j||^2$

def:

 $V=L\oplus L^{\perp}.\ \forall x\in V: x=y+z$ представляется единственным образом, где $y\in L,z\in L^{\perp}.$ В таком случае y называется **ортогональной проекцией** x на линейное подпространство L. z - **ортогональная составляющая** x относительно линейного подпространства L или **перпендикуляром**, опущенным из x на L.

Теорема (о наилучшем приближении)

$$L \subset V: \forall l \in L: ||x-l|| \geq ||x-y||,$$
причем = при $l=y$

Доказательство:

$$||x-l||^2 = ||x-y+y-l||^2 = ||x-y||^2 + ||y-l||^2 \ge ||x-y||^2$$

Q.E.D.

 $\underline{\operatorname{def:}}\ L\subset V, x\in V.\ dist(x,L):=(|z|),$ где z ортогон. сост. (перпендикуляр x относительно y).

Замечание: исходя из того, что мы доказали выше $dist(x,L) = \min_{l \in L} ||x-l||$

Задача о перпендикуляре(о наилучшем приближении)

Возьму
$$L=span(a_1,\ldots,a_m),\,y=\sum\limits_{j=1}^mc_ja_j.\;(x,a_k)=(y,a_k)+(z,a_k)=(y,a_k).$$
 Хочу найти $c_j.$

$$k = 1 \dots m : \left(\sum_{j=1}^{m} c_j a_j, a_k\right) = (x, a_k)$$

 $\sum_{j=1}^{m} c_j(a_j, a_k) = (x, a_k)$. Что же получаем? Да это же СЛОУ!

$$G^T C = \begin{pmatrix} (x, a_1) \\ \vdots \\ (x, a_m) \end{pmatrix}$$

Мы знаем, что a_1, \ldots, a_m линейно независимы, откуда определитель матрицы Грама > 0, откуда матрица невырожденная, а из этого следует, что существует единственное решение. То есть:

$$C = (G^T)^{-1} \begin{pmatrix} (x, a_1) \\ \vdots \\ (x, a_m) \end{pmatrix}$$

Замечание: аналогично можно искать z, раскладывая по базису L^\perp (имеет смысл, если известен базис L^\perp)

Теорема (о расстоянии до линейного пространства)

 $L \subset V$ - линейное подпространство. $L = span(a_1, \ldots, a_n)$ и $a_1, \ldots a_n$ - базис.

$$\forall x \in V \Rightarrow dist^{2}(x, L) = \frac{g(a_{1}, \dots, a_{m}, x)}{g(a_{1}, \dots, a_{m})} = ||z||^{2}$$
, где $x = y + z, y \in L, z \in L^{\perp}$.

Доказательство:

Переводим a_1, \ldots, a_m, x по Граму-Шмидту. Получаем b_1, \ldots, b_{m+1} , причем первые m b-шек точно не нули.

 $span(a_1, ..., a_m) = span(b_1, ..., b_m)$. $b_{m+1} = x - \sum_{j=1}^m c_j b_j$. Немного перекинем и получим, что

$$x = \sum_{j=1}^{m} c_j b_j + b_{m+1}$$

При этом $b_{m+1} \in L^{\perp}$, а сумма $\in L$. Откуда по единственности разложения x=y+z, получаю, что $b_{m+1}=z$. А отсюда уже следует:

$$dist^{2}(x,L) = ||z||^{2} = ||b_{m+1}||^{2} = \frac{g(a_{1}, \dots, a_{m}, x)}{g(a_{1}, \dots, a_{m})}$$

Q.E.D

Следствие 1: dist(x, P) = min||x - u|| = ||z||, где $z + y = x - x_0$, а P- линейное многообразие $x_0 + L$.

Доказательство:
$$dist(x, P) = \min_{u \in P} ||x - u|| = \min_{l \in L} ||x - x_0 + l||$$
, где $l \in L$

$$\min_{l \in L} ||x - x_0 + l|| = \min_{l \in L} ||y + z + l|| = \min_{l \in L} ||z + l||, \text{ так как } y \in L, l \in L$$

$$\min_{l \in L} ||z + l|| = \min_{l \in L} \sqrt{||z||^2 + ||l||^2} = ||z||$$

Q.E.D

Следствие 2: $dist(P_1,P_2)=\min_{u_1\in P_1,u_2\in P_2}||u_2-u_1||=||z||,$ где z ортогональная составляющая x_1-x_2 относительно $L=L_1+L_2.$ $P_j=x_j+L_j, j=1,2$ и $x_1-x_2=y+z,$ где $y\in L_1+L_2,$ $z\in (L_1+L_2)^\perp$

Доказательство:

$$\min ||u_2 - u_1|| = \min_{l_1 \in L_1, l_2 \in L_2} ||x_2 - x_1 + l_1 + l_2|| = \min_{l \in L_1 + L_2} ||y + z + l|| = \min_{l \in L} ||z + l|| = ||z||$$
Q.E.D.

<u>def:</u> $(V,(\cdot,\cdot))$ - евклидово пространство. Введем <u>параллелепипед</u>, натянутый на a_1,\ldots,a_k - линейно-независимые.

$$\prod (a_1, \dots, a_k) = \{ x \in V | x = \sum_{i=1}^k \alpha_i a_i, \forall \alpha_i \in [0, 1] \}$$

Приложен к точке M_0 .

 $v(\prod(a_1,\ldots,a_k)):=(g(a_1,\ldots,a_k))^{\frac{1}{2}}=(g(b_1,\ldots,b_k))^{\frac{1}{2}}=(g(a_1,\ldots,a_{k-1}))||b_k||=v(\prod(a_1,\ldots,a_{k-1}))||b_k||,$ где b_k высота. Получаем, что объем не зависит от точки приложения векторов.

Примеры:

- 1. k = 1. $\prod (a_1) = \{\alpha_1 a_1 : \forall \alpha_1 \in [0, 1]\}$ отрезок. $v(\prod (a_1)) = ||a_1||$.
- 2. k=2. $\prod(a_1,a_2)$ параллелограмм. $v(\prod(a_1,a_2))=v(\prod(a_1))||b_2||$ длина основания на высоту, то есть наша привычная площадь параллелограмма.
- 3. k=3. $\prod(a_1,a_2,a_3)$ параллеленинед. $v(\prod(a_1,a_2,a_3))=v(\prod(a_1,a_2))\cdot ||b_3||$. то есть наш привычный объем параллеленинеда.

Пусть e_1, \ldots, e_n о.н.б., то есть $(x, y) = x^T y$. $\prod (a_1, \ldots, a_k)$. $a_j \leftrightarrow A_j \in \mathbb{R}^n$ — координатный столбец. Тогда:

$$v(\prod(a_1,\ldots,a_k)) = (g(a_1,\ldots,a-k))^{\frac{1}{2}} = \begin{vmatrix} (a_1,a_1) & \ldots & (a_1,a_k) \\ \vdots & & \vdots \\ (a_k,a_1) & \ldots & (a_k,a_k) \end{vmatrix}^{\frac{1}{2}} = \begin{vmatrix} A_1^T A_1 & \ldots & A_1^T A_k \\ \vdots & & \vdots \\ A_k^T A_1 & \ldots & A_k^T A_k \end{vmatrix}^{\frac{1}{2}} = |A^T \cdot A|$$

В частности, если k=n, то ответ просто будет = $|\det A|$. Так же есть ориентированный объем $v^{\pm} = \det A$.

Как меняется объем при линейны преобразованиях?

Пусть $B \in End(V)$ изоморфное и не вырожденное.

$$B(\prod(a_1, \dots, a_k)) = \{Bx = \sum_{i=1}^k \alpha_i B a_i = \sum_{i=1}^k \alpha_i w_i | \forall \alpha_i \in [0, 1]\} = \prod(w_1, \dots, w_k)$$

При этом из изоморфности изображения мы опять получили линейно-независимую систему векторов.

$$v(\prod(w_1, \dots, w_k)) = v(\prod(Ba_1, \dots, Ba_k)) = (g(Ba_1, \dots, Ba_k))^{\frac{1}{2}} = \sqrt{(BA)^T BA} = \sqrt{A^T B^T BA}$$

4 Информация о курсе

Поток — y2024.

Группы М3138-М3139.

Преподаватель — Кучерук Екатерина Аркадьевна.

Не сдавайтесь, изучая лин. ал. Это реально!

Upd: 13.02 слава устал

Upd: 06.03 что за пипяу происходит

