

ORDINARY REDUCER FACTORIZATION

Why

In ordinary reduction, we obtain a sequence of row reducers.

Factorization of A from a sequence of reducers

Let $(A \in \mathbb{R}^{m \times m}, b \in \mathbb{R}^m)$ be an ordinarily reducible linear system. The *ordinary reducer sequence* is a sequence of reducer matrices $L_1, \ldots L_{m-1}$ with $A_1 = L_1 A$ and $A_i = L_i A_{i-1}$ for $2 \le i \le m-1$. In other words, $U \in \mathbb{R}^{m \times m}$ defined by

$$U = L_{m-1} \cdots L_2 L_1 A \tag{1}$$

is the ordinary row reduction of A. U is upper triangular.

If $L_{m-1} \cdots L_2 L_1$ in Equation (1) is invertible, then we have

$$A = (L_{m-1} \cdots L_2 L_1)^{-1} U,$$

which is a factorization of A. Each L_i is invertible, so

$$(L_{m-1}\cdots L_2L_1)^{-1}=L_1^{-1}L_2^{-1}\cdots L_{m-1}^{-1}.$$

So we are interested in the inverse of L_i for $i \leq m-1$. Recall that if x_1 is the first column of A, and x_2 is the second column of L_1A and x_k is the kth column of $L_{k-1} \cdots L_1A$ for $k = 2, \ldots, m-1$, then

where $\ell_{jk} = x_{jk}/x_{kk}$ for $k < j \le m$.

Properties

The two important properties of the L_i is that they have simple inverses and a simple product. Define

$$\ell_k = (0, \cdots, 0, \ell_{k+1,k}, \cdots, \ell_{m,k})$$

so that $L_k = L_k - \ell_k e_k^{\top}$ where $(e_k)_i$ is 1 if k = i and 0 otherwise.

Prop: L_i^{-1} is L_i with the subdiagonal entries negated. Proof. From the sparsity pattern of ℓ_k , we have $e_k^{\top} \ell_k = 0$. So

$$(I - \ell_k e_k^\top)(I + \ell_k e_k^\top) = I - \ell_k e_k^\top \ell_k e_k^\top = I.$$

Prop: $L_k^{-1}L_{k+1}^{-1}$ is the unit lower-triangular matrix with the entries of both L_k^{-1} and L_{k+1}^{-1} in their usual places. Proof. From the sparsity pattern of ℓ_{k+1} we have $e_k^{\top}\ell_{k+1} = 0$ so that

$$L_k^{-1}L_{k+1}^{-1} = (I + \ell_k e_k^\top)(I + \ell_{k+1} e_{k+1}^\top) = I + \ell_k e_k^* + \ell_{k+1} e_{k+1}^*.$$

Combining these two results, we deduce that

$$L_1^{-1}L_2^{-1}\cdots L_{m-1}^{-1} = \begin{bmatrix} 1 & & & & \\ \ell_{21} & 1 & & & \\ \ell_{31} & \ell_{32} & 1 & & \\ \vdots & \vdots & \ddots & \ddots & \\ \ell_{m1} & \ell_{m2} & \cdots & \ell_{m,m-1} & 1 \end{bmatrix}$$

If we define $L = L_1^{-1} \cdots L_{m-1}^{-1}$ we obtain A = LU. In other words, we have a factorization (the *ordinary reducer factorization*) of A in terms of two matrices. The first, L is unit lower triangular. The second, U, is upper triangular.

