NN Interpretability

Aleksandar Aleksandrov Hans Hao-Hsun Hsu

Outline

- Project Introduction
- Model-Based Interpretability Methods
- Decision-Based Interpretability Methods
- Uncertainty
- Interpretability Overview
- Demo

Interpretability Introduction

Introduction

- What is NN interpretability?

Why is it predicted as "Dog"?

Introduction

- What types of NN interpretability methods are there?
 - Model-based methods (e.g. Activation Maximization) try to explain what does the concepts learned from a model look like. (How does a "dog" typically look like?)
 - **Decision-based methods** (e.g. Layerwise Relevance Propagation) try to explain why did the model assign a certain concept to a premeditated input. (**Why is this example classified as "dog"?**)

Model-based Methods

Activation Maximization (AM)

- AM is a **model-based approach** that searches for an **input pattern** which elicits a maximum model response for a class of interest.

General AM:

- Different starting points
 - Random image from dataset
 - Random noise
 - Mean class image

- AM in Codespace

- Different generative models
 - Simple GAN
 - Pretrained DCGAN

$$\max_{\boldsymbol{x}} \log p(\omega_c|\boldsymbol{x}) - \lambda ||\boldsymbol{x}||^2.$$

$$\max_{\boldsymbol{z} \in \mathcal{Z}} \ \log p(\omega_c \, | \, g(\boldsymbol{z})) - \lambda \|\boldsymbol{z}\|^2,$$

AM Results

Left: General AM - Random Noise; **Middle:** General AM- Mean Image; **Right:** AM in Codespace with DCGAN

DeepDream

- Set a **whole layer** as our **Activation Maximization** objective.

$$\max_{\boldsymbol{x}} \ \log p(\omega_c | \boldsymbol{x}) - \lambda \|\boldsymbol{x}\|^2.$$
 Weights of a certain layer

Starting point

Pretrained VGG-16

DeepDream

- Techniques for feature visualization (1.) **L2 Regularization** (2.) **Add Gaussian Noise** (3.) **Random Roll** (4.)**Multiple Octaves** (5.) **Split Image into Tiles**

25th layer 27th layer

DeepDream

- Set a **channel** as our **Activation Maximization** objective.

25th layer channel No.30

25th layer channel No.150

Model-based Methods Conclusion

Optimization Objectives

Neuron

Channel

Layer (DeepDream)

Class Logits (General AM)

Class Probability

Decision-based Methods

Backprogagation (Gradient based)

- Vanilla backpropagation (Saliency map) compute attribution based on gradients at input
- Drawbacks of vanilla backpropagation:
 - Low Visual Quality -> Guided Backpropagation (Positive Gradients)
 - Break Sensitivity -> Integrated Gradients (Path Method)
 - Too Noisy -> SmoothGrad (Adding Gaussian Noise)

Backprogagation (Gradient based)

Vanilla Backprop

Guided Backprop

Integrated Gradients

SmoothGrad

Which pixels influence this prediction the most? (If you use gradient based)

Which pixels cause the prediction?

$$f(x) \approx f(\tilde{x}) + \frac{\partial f}{\partial x}(\tilde{x}) \cdot (x - \tilde{x})$$

Deconvolution

- Deconvolution is a **decision-based approach** for mapping feature activities back to the input pixel space.
- Deconvolution has the **reversed structure** of a concrete CNN model and **reuses the initially learned weights**.

Applications

- DeConvNet input reconstruction
- Single Filter Projection in input space
- LRP

DeConvNet Results

Results for the first CONV layer

Results for the second CONV layer

Left: Full DeConvNet; Right: Single Feature Projection for each filter in each layer

Class Activation Maps (CAM)

- CAM is a **decision-based approach** that highlights the parts of the input which had the highest influence to the model's decision.

Variations

- CAM
 - Limited to CNN layers ending with a single AVGPOOL layer followed by a Linear layer.
 - Huge dependency on model architecture
- Grad-CAM
 - CAM generalization by utilising the gradient
 - Support for all CNN architectures
 - Can be applied to any CONV layer in a CNN

$$M_c(x, y) = \sum_k w_k^c f_k(x, y).$$

$$L_{\text{Grad-CAM}}^{c} = ReLU \underbrace{\left(\sum_{k} \alpha_{k}^{c} A^{k}\right)}_{\text{linear combination}}$$

CAM & Grad-CAM Results

CAM Results Grad-CAM Results: CONV 2

Deep Learning Important FeaTures (DeepLIFT)

- DeepLIFT is a decision-based approach which aims to dissect the output by backpropagating the contributions of every layer back to the input.
 DeepLIFT tries to explain the decision in the context of a predefined reference input.
- Different Rules
 - **Linear** Linear & CONV layers
 - **Rescale** ReLU activations
 - **RevealCancel** ReLU activations
 - Combinations

$$\begin{split} C_{\Delta x_i^+ \Delta y^+} &= 1\{w_i \Delta x_i > 0\} w_i \Delta x_i^+ \\ C_{\Delta x_i^- \Delta y^+} &= 1\{w_i \Delta x_i > 0\} w_i \Delta x_i^- \\ C_{\Delta x_i^+ \Delta y^-} &= 1\{w_i \Delta x_i < 0\} w_i \Delta x_i^+ \\ C_{\Delta x_i^- \Delta y^-} &= 1\{w_i \Delta x_i < 0\} w_i \Delta x_i^- \end{split}$$

Linear Rule: Contributions

$$\Delta y^{+} = \frac{\Delta y}{\Delta x} \Delta x^{+} = C_{\Delta x^{+} \Delta y^{+}}$$
$$\Delta y^{-} = \frac{\Delta y}{\Delta x} \Delta x^{-} = C_{\Delta x^{-} \Delta y^{-}}$$

Rescale Rule: Contributions

DeepLIFT Results

Left: Vanilla Backpropagation; Middle: LinearRescale; Right: LinearRevealCancel

Layer-wise Relevance Propagation

 Layer-wise Relevance Propagation(LRP) backpropagates contribution of every pixel from a predicted class logit using a set of LRP rules. During the propagation each layer preserve same quantity of contribution.

$$R_j = \sum_k \frac{a_j w_{jk}}{\sum_{0,j} a_j w_{jk}} R_k$$

$$R_j = \sum_{k} \frac{a_j w_{jk}}{\epsilon + \sum_{0,j} a_j w_{jk}} R_k$$

- LRP-y Rule
$$R_j = \sum_k \frac{a_j \cdot (w_{jk} + \gamma w_{jk}^+)}{\sum_{0,j} a_j \cdot (w_{jk} + \gamma w_{jk}^+)} R_k$$

- LRP-
$$\alpha\beta$$
 $R_j = \sum_k \left(\alpha \frac{a_j w_{jk}^+}{\sum_j a_j w_{jk}^+} - \beta \frac{a_j w_{jk}^-}{\sum_j a_j w_{jk}^-}\right) R_k$

LRP Results

Which pixels cause the prediction of digit X?

Uncertainty

Monte Carlo Dropout

Dropout as bayesian approximation. Same training as standard approach but enable dropout at test time.

Interpret MC Dropout with LRP

Observe 1000 times
 predictions for each class,
 backpropagate with LRP
 starting from the assigned
 class and sum the
 heatmaps of those 1000
 observations.

Predicted as 1

Prediction under **high uncertainty** (3rd Rotated Image)

Evidential Deep Learning

Replace the softmax layer with a 10 ReLU to get non-negative evidence. Take "evidence+1" as alpha in Dirichlet Distribution(prior)

$$D(\mathbf{p}|\boldsymbol{\alpha}) = \begin{cases} \frac{1}{B(\boldsymbol{\alpha})} \prod_{i=1}^{K} p_i^{\alpha_i - 1} & \text{for } \mathbf{p} \in \mathcal{S}_K, \\ 0 & \text{otherwise,} \end{cases}$$

 Introduce uncertainty during our training Prediction of evidential deep learning model

Base Model vs. Evidential Deep Learning Model

Interpret with LRP

Model **without** uncertainty awareness

Model **with** uncertainty awareness

Uncertain DeepLIFT

Motivation: How does DeepLIFT behave under uncertainty?

- Experiments
 - **Experiment #1:** Standard CNN model vs. Dropout CNN Model (single- and multipass)
 - **Experiment #2:** Input with random noise
 - **Experiment #3:** Temperature scaling
 - Standard CNN model & MNIST
 - Pretrained AlexNet & ImageNet (1k images validation subset)

$$\hat{q}_i = \max_k \, \sigma_{\text{SM}}(\mathbf{z}_i/T)^{(k)}.$$

Experiment #1: CNN vs Dropout-CNN

Left: Standard CNN; Middle: Single-pass Dropout-CNN; Right: Multi-pass Dropout-CNN

Experiment #2: Input with Random Noise

Experiment #3: Temperature Scaling (ImageNet)

Left: Input Image; **Middle:** DeepLIFT for AlexNet; **Right:** DeepLIFT for TS-AlexNet

Summary

Interpretability Overview I

	AM	DeepDream	Deconvolution	DeepLIFT
Туре	Model	Model	Decision	Decision
Use case	Find the prototype of each class	Find the prototype of each layer	Reconstruct output from input	Assign contributions to input pixels
Complexity	high	middle	middle	middle
Support	No restrictions	Deep NN	Need MAXPOOL	No restrictions
Drawback	Unstable, huge overhead	Several visualization techniques	Need for second NN	Lots of rules

Interpretability Overview II

	Saliency Map	Guided Backprop	Integrated	SmoothGrad	Occlusion sensitivity
Туре	Decision	Decision	Decision	Decision	Decision
Use case	Changing which pixel will change the decision the most	Changing which pixel will change the decision the most	Changing which pixel will change the decision the most	Changing which pixel will change the decision the most	Showcase parts of the input which upon occlusion lead to output change
Complexity	low	low	low	low	low
Support	No restrictions	Require ReLU	No restrictions	No restrictions	All CNNs
Drawback	Noisy, Shattered gradients	Shattered gradients Easy to fail with uniform background	Shattered gradients	Shattered gradients	Limited expression power

Interpretability Overview III

	Simple Taylor Decomposition	Deep Taylor Decomposition	LRP	CAM	Grad-CAM
Туре	Decision	Decision	Decision	Decision	Decision
Use case	Show pixel direct contributions	Show pixel direct contributions	Show pixel direct contributions	Highlight important parts of the input	Highlight important parts of the input
Complexity	middle	middle	middle	low	low
Support	No restrictions	No restrictions	No restrictions	Subset of CNN	All CNNs
Drawback	Hard to find root point	Doesn't show negative contribution	Hard to choose between rules	Strong support limitations	Interpolation issues

Demo Time

Sources

- Montavon, Grégoire, Wojciech Samek, and Klaus-Robert Müller. "Methods for Interpreting and Understanding Deep Neural Networks."
 Digital Signal Processing 73 (2018): 1–15. Crossref. Web.
- Matthew D. Zeiler and Rob Fergus (2013). Visualizing and Understanding Convolutional NetworksCoRR, abs/1311.2901.
- Gregoire Montavon, et al., "Layer-Wise Relevance Propagation: An Overview"
- Olah, et al., "Feature Visualization", Distill, 2017.
- Olah, et al., "The Building Blocks of Interpretability", Distill, 2018.
- Karen Simonyan, Andrea Vedaldi, & Andrew Zisserman. (2013). Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps.
- Jost Tobias Springenberg, et al., "Striving for Simplicity: The All Convolutional Net"
- Mukund Sundararajan, et al., "Axiomatic Attribution for Deep Networks"
- Daniel Smilkov, et al., "SmoothGrad: removing noise by adding noise"
- Alexander Mordvintsev, et al., "Inceptionism: Going Deeper into Neural Networks"
- Yarin Gal, et al., "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning"
- Chuan Guo, et al., "On Calibration of Modern Neural Networks"
- Murat Sensoy, et al., "Evidential Deep Learning to Quantify Classification Uncertainty"
- Avanti Shrikumar, et al., "Learning Important Features Through Propagating Activation Differences."

Backup Slides

Taylor Decomposition

 Apply Taylor Expansion to the entire network without considering the structure of our model. -> Simple Taylor Decomposition

 Apply Taylor Expansion to a layer-wise manner by considering relevance score layer by layer. -> Deep Taylor Decomposition

Taylor Decomposition Results

- Red pixels: positive contribution; Blue pixels: negative contribution

Taylor Decomposition

$$f(x) \approx f(\tilde{x}) + \frac{\partial f}{\partial x}(\tilde{x}) \cdot (x - \tilde{x})$$

$$f(\tilde{x}) = 0$$

- ReLU is piecewise linear and satisfy f(tx) = tf(x)

$$\rightarrow \tilde{x} = \lim \varepsilon x$$

$$-> f(x) = \sum_{i=1}^{\widehat{V}} \frac{\partial f}{\partial x_i} \cdot x_i$$

Relevance Score $R(x_i)$

Which pixels have a **positive/negative** contribution

Occlusion Sensitivity

- Occlusion Sensitivity is a **decision-based approach** in which parts of the input are **deliberately obstructed to mislead** the decision of the model

- Example:

