Au temps des Mayas

Les phénomènes naturels terrestres ou célestes ont nourri, au fil des âges, les cultures des civilisations anciennes et contribué à forger leur vision du monde. Les exemples astronomiques sont nombreux. Il n'est pas rare de trouver, par exemple, des bâtiments orientés selon les directions astronomiques des levers et couchers du Soleil ou de Vénus, astres qui furent souvent associés à des divinités importantes. Dans ce problème, on se propose d'étudier quelques phénomènes physiques auxquels les Mayas, civilisation précolombienne d'Amérique centrale, ont été confrontés ou pour lesquels ils ont manifesté de l'intérêt :

- t) La couleur de la Lune totalement éclipsée,
- ii) L'écho de la grande pyramide de Chichén Itzá.

Notations et valeurs numériques :

- Notations : les notations adoptées sont les notations internationales (norme ISO 80000-2).
- Vecteurs : conformément aux notations internationales, les vecteurs sont représentés en caractères gras. Par exemple, le champ vectoriel de pesanteur terrestre, supposé uniforme, est noté g. Les vecteurs de base, unitaires, sont désignés par un e.
- Valeurs numériques : lorsqu'une valeur numérique non nulle est demandée, l'écart relatif de la réponse par rapport à la valeur exacte ne doit pas excéder 20%.
- Données astronomiques : les données numériques astronomiques sont regroupées à la fin de l'énoncé. Les deux parties du problème sont indépendantes.

I. — Couleur de la Lune totalement éclipsée

Lorsqu'une éclipse de Lune se produit, cet astre, majeur pour les Mayas, change d'aspect durant plusieurs heures. Dans une société où le mécanisme précis d'une éclipse est méconnu, l'interprétation et la signification du phénomène se réfère souvent, sinon toujours, à une origine mythologique ou religieuse. C'est en particulier le cas de la couleur évocatrice prise par la Lune lorsqu'elle se trouve totalement immergée dans l'ombre de la Terre, couleur dont l'analyse fait l'objet de cette dernière partie.

AGURE 1 - Chronologie d'une éclipse de Lune : a) Phénomène général ; b) Vision depuis la Terre l'évolution dans une section droite du cône d'ombre terrestre au niveau de l'orbite lunaire. Les disquaixes contenant un chiffre représentent le disque lunaire dans l'étape repérée par ce chiffre

Une éclipse se produit lorsque la Lune entre dans le cône d'onabre de la Terre (Fig. 1a). On note N le point situé sur l'axe ST de symétrie de révolution du cône d'ombre terrestre (S centre du Soleil et T centre de la Terre) à la distance $r_L = TL$ de T (L centre de la Lune) à l'opposé du Soleil (Fig. 1a). Dans un plan frontal \mathcal{P}_e orthogonal à ST, et placé en N, l'éclipse suit la chronologie indiquée sur la figure 1b. On note respectivement R_S , R_T et R_L les rayons solaire, terrestre et lunaire. Des considérations de géométrie élémentaire montrent que dans le plan \mathcal{P}_e , la Lune tient plus de deux fois dans le cône d'ombre de la Terre. Pourtant, durant la totalité (entre le premier contact intérieur et le dernier contact intérieur), c'est-à-dire lorsque la Lune est entièrement plongée dans l'ombre de la Terre, elle est nettement visible dans le ciel!

I.A. — Sources de lumière éclairant la Lune

La photographie reproduite sur la figure 2 a été prise, depuis Toulouse, lors de l'éclipse totale de Lune du 28 septembre 2015. La direction du zénith (sens de la verticale ascendante) est indiquée sur la figure.

→ 1 — Situer la photographie de la figure 2 dans la chronologie de la figure 1b.

On suppose <u>désormais</u> que la Lune est <u>totalement immergée</u> dans l'ombre de la Terre (éclipse totale) et que son centre L occupe le point N de son orbite.

Eclipse de Lune du 28 septembre 2015

Direction
du zénith

FIGURE 2 Éclipse de Lune

Imaginons, pour commencer l'analyse, que la Terre soit dépourvue d'atmosphère.

On tiendra désormais compte de la présence de l'atmosphère terrestre, toutes les autres sources de lumière envisageables étant insuffisantes pour expliquer l'éclairement de la Lune durant la phase de totalité.

I.B. — Modèle d'atmosphère isotherme

On suppose que l'atmosphère terrestre est en équilibre mécanique à une température $T\approx 20^{\circ}$ C uniforme et stationnaire. On cherche le profil altimétrique de masse volumique : c'està-dire l'expression de la masse volumique ρ_a en fonction de l'altitude Z mesurée depuis un point G de la surface terrestre (Fig. 3). Le vecteur unitaire e_Z sera dirigé dans le sens de la verticale ascendante, et on note $g\approx 9.80\,\mathrm{m\cdot s^{-2}}$, l'intensité du champ de pesanteur terrestre. L'air est assimilé à un gaz parfait de masse molaire $M_a\approx 29\,\mathrm{g\cdot mol^{-1}}$. On note $R\approx 8.31\,\mathrm{J\cdot mol^{-1}\cdot K^{-1}}$ la constante des gaz parfaits.

Figure 3 - Un point dans l'atmosphère terrestre.

J 3 — Déterminer le profil altimétrique de masse volumique
ρ_a(Z) en fonction de ρ_a(0) et d'une hauteur caractéristique H_c que l'on exprimera et dont ou calculera
la valeur numérique.

4 — Évaluer numériquement la masse volumique de l'air au niveau de la mer (pression d'environ 1 bar) puis en déduire celle de l'air au sommet du mont Everest (8 848 m d'altitude) : on indique que exp(−1) ≈ 1/3. Les valeurs moyennes annuelles de pression et de température au sommet de l'Everest sont respectivement 321 hPa et −23 °C. Le modèle isotherme est-il réaliste?

Onde électromagnétique incidente

Une onde électromagnétique plane, progressive et monochromatique, se propage dans le vide libration de l'expanse étant rapporté à un repère orthonormé (O.e. Une onde électromagnétique plane, progressive et monoche le long et dans le sens d'un axe (O,e_x) . l'espace étant rapporté à un repère orthonormé (O,e_x) le long et dans le sens d'un axe (O,e_x) . l'espace étant rapporté à un repère orthonormé (O,e_x) le le long et dans le sens d'un axe (O,e_x) . L'espace étant rapporté à un repère orthonormé (O,e_x) e l'espace et t, le temps. dans lequel on note x, y et z les coordonnées spatiales d'un point de l'espace et t, le temps

Le champ électrique de l'onde est polarisé rectilignement selon e_y . On note $\mu_0 \approx 10^{-6} \, \mathrm{H}_{-10^{-1}}$ Le champ électrique de l'onde est polarise rectingieux (célérité dans le vide des ondes électrique, $B_m > 0$ celle du champ magnétique. perméabilité magnétique du vide, c la constante d'Europe, $B_m > 0$ celle du champ magnétique magnétiques), $E_m > 0$ l'amplitude du champ électrique et B(x,t), celle du champ magnétique et B(x,t), celle du champ magnétique et B(x,t). magnétiques), $E_m > 0$ l'amplitude du Champ de l'extrique et B(x,t), celle du Champ magnétique pulsation de l'onde, E(x,t) la composante du Champ électrique et B(x,t), celle du Champ magnétique pulsation de l'onde, E(x,t) la composante du Champ électrique et B(x,t), celle du Champ magnétique pulsation de l'onde, E(x,t) la composante du Champ électrique et B(x,t), celle du Champ magnétique pulsation de l'onde, E(x,t) la composante du Champ électrique et B(x,t), celle du Champ magnétique pulsation de l'onde, E(x,t) la composante du Champ électrique et B(x,t), celle du Champ magnétique pulsation de l'onde, E(x,t) la composante du Champ électrique et B(x,t), celle du Champ magnétique pulsation de l'onde E(x,t) la composante du Champ électrique et E(x,t) la composante du Champ magnétique et E(x,t) la composante et E(x,La phase du champ électrique, à l'origine spatio-temporelle, est nulle.

- exprimer B_m en fonction notamment de E_m . Représenter sur un même graphique, à une date t dounée exprimer B_m en fonction notamment de E_m . l'évolution spatiale du champ électrique ainsi que celle du champ magnétique.
- grandeur de E_m pour une onde électromagnétique véhiculant une intensité $I_0=1\,\mathrm{kW}\cdot\mathrm{m}^{-2}$

Transfert du rayonnement solaire à travers l'atmosphère terrestre LD.

L'onde électromagnétique précédente se propage désormais dans l'atmosphère terrestre et rencontre sur son trajet, des molécules du gaz atmosphérique, mais aussi, dans la stratosphère (entre 15 et 20 km d'altitude), de fines poussières en suspension (aérosols).

Le gaz atmosphérique a pour effet de diffuser sélectivement l'onde incidente (dépendance fréquentielle) réduisant ainsi la puissance transportée par l'onde. On modélise la diffusion atmosphérique en supposant que chaque molécule rencontrée diffuse, en moyenne temporelle, la puissance \mathscr{P}_a donnée par

$$\mathscr{P}_a = k_a \left(\frac{\omega}{\omega_0}\right)^1 I$$

où k_a et ω_0 sont des constantes qui caractérisent la composition chimique du gaz atmosphérique et l l'intensité de l'onde électromagnétique. On note $\eta_a(x)$ le nombre de molécules par unité de volume du gaz atmosphérique, x désignant toujours l'abscisse mesurée le long de la direction de propagation. Les poussières ont pour effet d'absorber non sélectivement (indépendance fréquentielle) l'onde incidente, réduisant aussi la puissance transportée. On modélise l'effet des poussières sur le rayonnement en supposant que chaque poussière rencontrée absorbe, en moyenne temporelle, la puissance \mathscr{P}_p donnée par:

$$\mathscr{P}_p = k_p I$$

où k_p est une constante qui caractérise la composition chimique des poussières. On note $\eta_p(x)$ le nombre de poussières par unité de volume.

- 7 Exprimer η_a(x) en fonction notamment de la masse volumique du gaz atmosphérique ρ_a(x) au point d'abscisse x.
- → Effectuer un bilan unidimensionnel de puissance électromagnétique moyenne pour une tranche. d'air limitée par les plans d'abscisse x et x + dx; en déduire la relation liant l'intensité I(x + dx) de l'onde en x + dx en fonction notamment de l'intensité I(x) en x: il faudra prendre en compte les deux phénomènes, de diffusion et d'absorption.
- $oldsymbol{eta}$ 9 Montrer qu'il est possible d'écrire I(x) sous la forme suivante :

$$I(x) = I(0) \exp\left[-d_o(x)\right]$$

où $d_{\sigma}(x)$ est un facteur, appelé « densité optique », que l'on exprimera en fonction des quantités intégrales :

$$\int_0^x \eta_a(\xi) \mathrm{d}\xi \quad \text{et} \quad \int_0^x \eta_p(\xi) \mathrm{d}\xi$$

Figure 4 – Déviation d'un rayon lumineux par l'atmosphère terrestre

I.E. — Réfraction atmosphérique

Lorsqu'un rayon lumineux solaire traverse l'atmosphère terrestre, il subit une réfraction (Fig. 4). On note M un point quelconque sur la trajectoire du rayon, et Z, son altitude. On note M_0 le point de la trajectoire le plus proche du sol, et Z_0 son altitude. On pose :

$$r = TM = R_T + Z$$
 et $r_0 = TM_0 = R_T + Z_0$

Pour une longueur d'onde donnée, l'indice de l'air n(Z) dépend de l'altitude, selon la loi de variation suivante :

$$n(Z) = 1 + \varepsilon_{\lambda} \frac{\rho_a(Z)}{\rho_a(0)}$$
 où $\varepsilon_{\lambda} = a + \left(\frac{\lambda_r}{\lambda}\right)^2$, $a = 2.8 \times 10^{-4}$ et $\lambda_r = 0.42$ nm, on note $n_0 = n(Z_0)$.

L'angle θ_d , de déviation totale du rayon après traversée de l'atmosphère (Fig. 4), est donné par :

$$\theta_d(Z_0, \lambda) \approx 2 \int_1^{n_0} \left\{ \left[\frac{r(n)}{r_0(n_0)} \right]^2 - 1 \right\}^{-1/2} dn$$

→ 10 — Pourquoi l'atmosphère terrestre réfracte-t-elle les rayons lumineux qui la traversent?

Le la tenant compte des ordres de grandeur du problème, précisément $Z \ll R_T$ et $Z_0 \ll R_T$, exprimer $\sqrt{\frac{r^2}{r_0^2}} - 1$ en fonction de $u = Z - Z_0$. Exprimer dn en fonction de $d\rho_a$ puis $d\rho_a$ en fonction de H_c , $\rho_a(Z_0)$, u et du.

On donne la valeur de l'intégrale suivante, qui se ramène aisément à l'intégrale de Gauss :

$$\int_{0}^{\infty} \frac{e^{-v}}{\sqrt{v}} dv = \sqrt{\pi}$$

J 12 — Déduire des expressions obtenues à la question précédente que l'angle de déviation totale, d'un rayon monochromatique passant en M₀, s'écrit :

$$\theta_d(Z_0,\lambda) \approx \Theta(Z_0)\varepsilon_{\lambda}$$

où $\Theta(Z_0)$ est une fonction de Z_0 que l'on exprimera en fonction de R_T et H_c et Z_0 . Pour quelle valeur particulière de Z_0 , notée Z_m , la déviation d'un rayon lumineux est-elle maximale?

J 13 — Exprimer l'écart de déviation δθ_d correspondant à deux rayons incidents passant au même point M₀ (et donc caractérisés par le même Z₀) mais possédant des longueurs d'ondes qui différent de δλ.

La minute d'arc (1'), soit le soixantième de degré, vaut environ : $1' \approx 3 \times 10^{-4}$ rad. En adoptant la valeur numérique réaliste $H_c \approx 7.3$ km du profil atmosphérique de masse volunteur et pour la longueur d'onde $\lambda_m = 504$ nm du maximum d'émission spectrale solaire : $\theta_d(Z_m, \lambda_m) \approx 70^\circ$. Avec les valeurs $\delta\lambda \approx 350$ nm, $Z_0 = Z_m$ et $\lambda = \lambda_m$, sur l'étendue du domaine visible, l'application numérique donne $|\delta\theta_d| \approx 0.25'$. La dépendance chromatique de la déviation étant négligeable devant l'angle de déviation, on supposera que les rayons sont identiquement déviés, indépendamment de leur longueur d'onde, avec un angle pouvant varier entre 0' et $\theta_{d,M} = 70'$.

□ 14 — L'angle sous lequel le rayon terrestre est vu depuis N est d'environ $\theta_T \approx 57'$ tandis que celui sous lequel le rayon solaire est vu depuis la Terre vaut environ $\theta_S \approx 16'$. L'atmosphère terrestre est-elle capable de dévier la lumière solaire pour éclairer le point N? On justifiera quantitativement la réponse en s'appuyant sur un schéma.

I.F. — Prévision du spectre de la lumière reçue par la Lune

Le spectre de la lumière solaire hors de l'atmosphère terrestre est donné sur la partie gauche de la figure 5 (spectre de référence E-490-00). Le calcul numérique basé sur le modèle qui vient d'être développé permet de tracer, sur la partie droite de la figure 5, l'atténuation $\exp(-d_o)$ en N en fonction de la longueur d'onde λ de l'onde incidente.

Figure 5 – A gauche : Spectre solaire hors de l'atmosphère terrestre. À droite : facteur d'atténuation spectrale $\exp(-d_o)$

15 — À l'aide des deux schémas de la figure 5, déterminer quelques points du spectre de la lumière reçue par la Lune en N permettant de représenter la courbe correspondante sur la feuille réponse. Conclure sur la couleur de la Lune totalement occultée.

FIN DE LA PARTIE I

II. — Écho de la grande pyramide de Chichén Itzá

Sur le site archéologique de Chichén Itzá, situé dans le Yucatán à $200 \,\mathrm{km}$ à l'ouest de Cancún, se trouve le temple Maya Cuculcán, en forme de pyramide à base carrée (Fig. 6). Sur chaque face de la pyramide, se trouve un grand escalier central comportant 91 marches qui culmine à $H=24 \,\mathrm{m}$ au-dessus du sol (Fig. 7).

Ce monument, érigé autour du X^e siècle de notre ère, est classé au patrimoine mondial de l'UNESCO Une de ses particularités a fait l'objet d'études archéoacoustiques : un clap produit en frappant dans ses mains face à l'escalier retourne un écho qui imite, de manière stupéfiante, le chant de l'oiseau sacri endémique quetzal (pharomachrus mocinno).

La question se pose alors de savoir si ce monument a été érigé en respectant les contraintes acoustique de reproduction du gazouillement de l'oiseau, ou bien s'il s'agit d'une simple coïncidence.

Figure 6 - Vue d'une arête de la grande pyramide Maya de Chichén Itzá (Cuculcán).

FIGURE 7 – Vue d'une face de la grande pyramide Maya de Chichén Itzá (Cuculcán). Au centre de la photographie, se trouve le grand escalier.

Si la question reste ouverte, l'analyse physique apporte à l'archéologie quelques éléments notamment en permettant de comprendre l'origine de ce phénomène. Cette partie s'appuie sur les fondamentaux des phénomènes ondulatoires. Aucune connaissance spécifique d'acoustique n'est requise.

II.A. - Sonogramme

On enregistre, à l'aide d'un microphone, le son d'une note de musique tenue produite en sifflant avec la bouche.

On note $s_a(t)$ le signal obtenu. Le spectre d'amplitude du signal en sortie du microphone est donné sur la figure 8, l'échelle verticale étant graduée en décibels. L'amplitude du pic 1 vaut $a_1 = 100 \,\text{mV}$.

J 16 — Déterminer la fréquence f_1 du fondamental (pic 1) de cette note ainsi que l'amplitude a_2 du pic 2. On donne $10^{0.5} \approx 3.16$.

Figure 8 – Spectre d'amplitude d'un son sifflé tenu.

Les pics i et 2 sont assimilés à des composantes harmoniques et on néglige tout autre contenu spectral. On note T_a la durée totale de l'enregistrement et f_c la fréquence d'échantillonnage. La méthode d'analyse spectrale employée génère un spectre dont la résolution spectrale, notée δf , est l'inverse de la durée d'acquisition du signal.

→ 17 — Calculer numériquement la plus petite valeur de f_e respectant la condition de Nyquis Shannon, et la durée d'acquisition T_a donnant une résolution spectrale de 100 Hz.

Un sonogramme est une représentation graphique permettant de visualiser l'évolution des compensants harmoniques d'un son au cours du temps. Dans sa version simplifiée, c'est un diagramme à deux dimensions ayant en abscisse le temps et en ordonnée les fréquences. À un instant t donnée un composante harmonique de fréquence f est représentée par un point de coordonnées (t, f). Le sonogramme simplifié de $s_a(t)$ est représenté sur la figure 9a. Dans un sonogramme complet ajoute l'information sur l'amplitude des composantes harmoniques en grisant les points du diagramme à l'aide d'une échelle allant du blanc pour les faibles amplitudes $(< -50 \, \mathrm{dB})$, au noir pour les faires $(> 0 \, \mathrm{dB})$. Le sonogramme complet de $s_a(t)$ est donné sur la figure 9b.

Pour construire un sonogramme, on calcule les spectres successifs du signal entre les dates $nT_{\eta} = (n+1)T_a$, n étant un entier positif ou nul et T_a , la durée des intervalles temporels d'acquisition.

Figure 9 - Sonogramme d'un son sifflé tenu a) simplifié b) complet.

⊿ 18 — On note τ la durée totale de l'enregistrement sonore. La résolution spectrale δf du sonogramme dépend-elle de T_a ou de τ ? Combien de pixels (rectangles élémentaires composant le sonogramme) comporte un sonogramme de fréquence maximale f_M et de durée τ ? Effectuer l'application numérique lorsque $f_M = 3.5$ kHz et $\tau = 500$ ms.

On produit un nouveau son sifflé, $s_b(t)$, mais cette fois, de hauteur décroissante (donc vers les sons graves). Ce son possède encore deux composantes harmoniques, mais la fréquence f_1' du fondamental décroît au cours du temps de manière affine : $f_1'(t) = f_1 \times (1 - t/\tau_d)$, $\tau_d > 0$ étant une constante temporelle.

□ Quelle condition doit vérifier $τ_d$ afin que l'on puisse suivre l'évolution temporelle de la fréquence du fondamental sur le sonogramme? Construire le sonogramme simplifié de $s_b(t)$ dans l'intervalle temporel [0; 0,5 $τ_d$]. On prendra soin de mentionner sur le graphique toutes les informations connues.

Figure 10 Sonogramme du quetzal

Le chant d'un oiseau est plus riche en harmoniques que le sifflement précédent.

Le sonogramme d'un quetzal jeune est représenté sur la figure 10 extraite de Lubman, D., J. Acoust. Soc. Am. 112 (5), 2008.

□ 20 — Déterminer la durée approximative $τ_q$ du chant du quetzal puis mesurer, à la date $t = 140 \,\mathrm{ms}$, la fréquence $f_{q,i}$ du fondamental du chant ainsi que celles $f_{q,i}$ (i entier) des autres harmoniques visibles sur le sonogramme.

II.B. — Diffraction du son par une marche de l'escalier

Lorsque l'on frappe dans ses mains en face de l'escalier, depuis une position S que l'on supposera voisine du sol (Fig. 11), le clap produit se propage dans l'air en direction des marches. Ces dernières sont modélisées par des obstacles de petite dimension, qu'on localise arbitrairement en S_n (les arêtes des marches), n allant de 0 à N=91. On note a=20 m la distance entre S et le bas S_0 des marches de la pyramide. La hauteur b=26,3 cm des marches est égale à leur profondeur de sorte que les arêtes S_n soient contenues dans un plan formant un angle de 45° par rapport au plan horizontal.

Figure 11 - Les marches de la pyramide

L'hypothèse testée est que l'écho entendu par l'auteur du clap, ressemblant à s'y méprendre au chant du quetzal, résulte de la diffraction du son sur les marches de l'escalier.

Le clap émis en S, à un instant pris comme origine temporelle, est un signal bref, noté s(t) au point d'émission S. La distance entre S et l'arête de la n--ième marche est appelée $d_n = SS_n$. Pour modéliser la propagation du son, on note $\Psi(M,t)$ la fonction qui décrit l'onde sonore en un point M de l'espace à l'instant t: par exemple ici $\Psi(S,t)=s(t)$. On note $c_s\approx 340\,\mathrm{m\cdot s^{-1}}$ la célérité du son dans l'air. On assimilera la propagation de l'onde le long de l'axe SS_n à une propagation unidimensionnelle linéaire non dispersive; ainsi, on ignore toute variation d'amplitude au cours de la propagation. Lorsque l'onde atteint une arête S_n , elle est « renvoyée » dans toutes les directions (par diffraction), et en particulier, dans la direction S_nS . On suppose qu'après diffraction, la fonction décrivant l'onde retour, notée $\Psi'(M,t)$, dont la propagation est encore supposée unidimensionnelle (modélisation identique à celle de l'onde incidente), s'écrit en $S_n: \Psi'(S_n,t) = \kappa \Psi(S_n,t)$ où κ est un facteur (nombre sans dimension) indépendant de n.

□ 21 — Exprimer $Ψ(S_n,t)$ puis Ψ'(S,t) en fonction notamment de la fonction s.

Le spectre du clap s(t) dans le domaine audible est continu : toutes les fréquences y sont présentes. On supposera par ailleurs qu'elles ont toutes la même amplitude. On considère une composante harmonique $s_{\omega}(t)$ du clap, de pulsation ω , dont on suppose la phase $\phi(t)$ nulle à l'origine temporelle soit $s_{\omega}(t) = s_m \cos[\phi(t)]$. On prendra $\phi(t) = \omega t$ et on considère que s_m ne varie pas dans le temps.

 \beth 22 — Exprimer la phase $\phi'_n(t)$ à l'instant t de la composante harmonique de pulsation ω de l'onde retour en S diffractée en S_n , en fonction notamment de d_n .

II.C. — Superposition constructive en S

Le clap étant bref, on suppose seules deux marches consécutives diffractent le son incident. On note la différence de phase en S entre les deux ondes retour diffractées $\Delta \phi'_n = \phi'_n(t) - \phi'_{n+1}(t)$.

J 23 — Exprimer $\Delta \phi'_n$ en fonction notamment des distances d_n et d_{n+1} .

On fait l'hypothèse que les seules fréquences audibles sont celles pour lesquelles les ondes diffractées se superposent constructivement.

J 24 — Déduire de cette hypothèse l'ensemble des fréquences $\{\nu_m, m \in \mathbb{N}\}$ entendues lors du retour du son diffracté par les marches S_n et S_{n+1} , en fonction notamment des distances d_n et d_{n+1} .

J 25 — Exprimer d_n en fonction de a, b et n. Calculer l'expression exacte de $d_{n+1}^2 - d_n^2$. On admet que la condition de l'expérience $a \gg b$ permet d'écrire $d_n + d_{n+1} \simeq 2d_n$: en déduire l'expression approchée suivante $\nu_1 \simeq \frac{c_s}{2ab} \, g(n) d_n$ où g(n) est une fonction que l'on explicitera.

La figure 12 donne la représentation graphique de $g(n)d_n$ en fonction de d_n pour les 91 valeurs de n. Elle permet d'éviter des calculs fastidieux à la main.

→ 26 — En exploitant la figure 12 déterminer la distance d_N entre le sommet de l'escalier et S. On fixe l'origine temporelle à l'instant du clap. Calculer numériquement la date t₁ d'arrivée du début de l'écho en S. puis celle t_N de fin de l'écho. Combien de temps l'écho dure-t-il?

J 28 — Sur la feuille réponse, tracer l'allure du sonogramme simplifié de l'écho comportant le fondamental du son ainsi que les trois harmoniques qui le suivent.

Figure $12 - g(n)d_n$ en fonction de d_n

On marquera d'une croix bien visible les points du sonogramme d'abscisses t_1 et t_N .

→ 29 — Comparer le sonogramme construit à la question précédente, au sonogramme du quetzal
(Fig. 10). L'écart fréquentiel est-il négligeable? L'écart se réduirait-il si l'enregistrement du quetzal
était celui d'un oiseau adulte?

FIN DE LA PARTIE II

Données astronomiques

Constante d'Einstein : $c \approx 3 \times 10^8 \text{ m} \cdot \text{s}^{-1}$

Distance Terre-Lune (centre à centre) : $r_L = TL \approx 3.84 \times 10^8 \, \mathrm{m}$

Rayon du Soleil : $R_S \approx 6.96 \times 10^8 \text{ m}$

Rayon de la Terre : $R_T \approx 6.37 \times 10^6 \, \mathrm{m}$

Rayon de la Lune : $R_L \approx 1.74 \times 10^6 \,\mathrm{m}$

FIN DE L'ÉPREUVE