1

Challenging Problem1

Shivangi Parashar

Lines and Planes

Abstract—This documnet contains the solution to find the points on the lines that are closest to each other. Given Lines are skew

Download latex-tikz codes from

https://github.com/shivangi-975/Challenge_1/blob/master/Challenge_1.tex

1 Problem

Find the points on the skew lines that are closest to eachother in 3-Dimensions? skew line 1 passing through the point A(1,1,0) with directional vector $v_1(2,-1,1)$ and skew line 2 passing through the point B(2,1,-1) with directional vector $v_2(3,-5,2)$

$$L_1: x = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
 (1.0.1)

and

$$L_2: x = \begin{pmatrix} 2\\1\\-1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3\\-5\\2 \end{pmatrix}$$
 (1.0.2)

2 Solution

Let the closest points be $P(p_1, p_2, p_3)$ on skew line1 and $Q(q_1, q_2, q_3)$ on skew line2, Let p,q be two points on the lines L_1, L_2

$$\boldsymbol{p} = x_1 + \lambda_1 \boldsymbol{v_1} \tag{2.0.1}$$

$$q = x_2 + \lambda_2 v_2 \tag{2.0.2}$$

$$pq = x_2 + \lambda_2 v_2 - x_1 - \lambda_1 v_1$$

$$pq = \begin{pmatrix} x_2 & v_2 \end{pmatrix} \begin{pmatrix} 1 \\ \lambda_2 \end{pmatrix} - \begin{pmatrix} x_1 & v_1 \end{pmatrix} \begin{pmatrix} 1 \\ \lambda_1 \end{pmatrix}$$
(2.0.3)

points P and Q are closest points,p-q will be perpendicular to both the skew lines, Therefore,

$$\mathbf{v}_1^T(\mathbf{q} - \mathbf{p}) = 0 \tag{2.0.4}$$

$$\mathbf{v}_2^T(\mathbf{q} - \mathbf{p}) = 0 \tag{2.0.5}$$

From 2.0.4 and 2.0.5 we have: The dot product of v_1 with the line pq is

$$\mathbf{v_1^T} \begin{pmatrix} x_2 & \mathbf{v_2} \end{pmatrix} \begin{pmatrix} 1 \\ \lambda_2 \end{pmatrix} - \mathbf{v_1^T} \begin{pmatrix} x_1 & \mathbf{v_1} \end{pmatrix} \begin{pmatrix} 1 \\ \lambda_1 \end{pmatrix} = 0$$
 (2.0.6)

The dot product of v_2 with the line pq is

$$\mathbf{v_2^T} \begin{pmatrix} x_2 & \mathbf{v_2} \end{pmatrix} \begin{pmatrix} 1 \\ \lambda_2 \end{pmatrix} - \mathbf{v_2^T} \begin{pmatrix} x_1 & \mathbf{v_2} \end{pmatrix} \begin{pmatrix} 1 \\ \lambda_1 \end{pmatrix} = 0$$
 (2.0.7)

solving 2.0.6 and 2.0.7we get

$$\begin{pmatrix} \mathbf{v}_{1}^{T} x_{2} & \mathbf{v}_{1}^{T} \mathbf{v}_{2} & -\mathbf{v}_{1}^{T} x_{1} & -\mathbf{v}_{1}^{T} \mathbf{v}_{1} \\ \mathbf{v}_{2}^{T} x_{2} & \mathbf{v}_{2}^{T} \mathbf{v}_{2} & -\mathbf{v}_{2}^{T} x_{1} & -\mathbf{v}_{2}^{T} \mathbf{v}_{1} \end{pmatrix} \begin{pmatrix} 1 \\ \lambda_{1} \\ 1 \\ \lambda_{2} \end{pmatrix} = 0 \qquad (2.0.8)$$

simplifying it further

$$\begin{pmatrix} v_1^T v_1 & -v_1^T v_2 \\ v_2^T v_1 & -v_2^T v_2 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} v_1^T (x_2 - x_1) \\ v_2^T (x_2 - x_1) \end{pmatrix}$$
(2.0.9)

Substituting values we have $\lambda_1 = 25/59$ and $\lambda_2 = 7/59$ and coordinates of points would be.

$$P = \begin{pmatrix} 109/59\\ 34/59\\ 23/59 \end{pmatrix} \tag{2.0.10}$$

$$Q = \begin{pmatrix} 139/59 \\ 24/59 \\ -45/59 \end{pmatrix} \tag{2.0.11}$$