Laboratorium sieci komputerowych Konfiguracja mostka, protokół ARP, konfiguracja PPP

Artur Skonecki Łukasz Załęski gr. 3

30 maja 2012

1 Schematy

1.1 Schemat nullmodem

			
	tun0 .1	null modem	tun0 .2
k7			k8
1	_	10.17.17.0/32	

1.2 Schemat mostek

2 ARP

2.1 Wyświetlenie tablicy ARP

Wyświetlamy tablicę arp na k8 za pomocą: arp -n -a

```
k8% arp -n -a
? (194.29.146.1) at 00:14:1c:ad:7b:43 on sk0 expires in 1127 seconds [ethernet]
? (194.29.146.3) at 00:e0:81:65:37:d4 on sk0 expires in 1121 seconds [ethernet]
```

2.2 Wykasowanie tablicy ARP

Aby sprawdzić dalsze zachowanie arp wyczyściliśmy tablicę arp za pomocą polecenia: arp -d -a

```
k8% sudo arp -d -a
194.29.146.1 (194.29.146.1) deleted
194.29.146.3 (194.29.146.3) deleted
```

Teraz ponownie sprawdzamy zawartość tablicy arp:

```
k8% arp -n -a

k8% arp -n -a

? (194.29.146.3) at 00:e0:81:65:37:d4 on sk0 expires in 1195 seconds

[ethernet]

? (194.29.146.188) at 00:11:d8:4a:c5:cc on sk0 permanent [ethernet]
```

2.3 Nasłuchiwanie zapytań ARP

Teraz podglądamy jak wygląda zapytanie arp kierowanie do k8 za pomocą: tcpdump

```
k8% sudo tcpdump -c 4 -n arp listening on sk0, link-type EN10MB (Ethernet), capture size 65535 bytes 22:24:27.957386 ARP, Request who-has 192.168.2.70 tell 192.168.2.70, length 46 22:24:28.670615 ARP, Request who-has 192.168.123.118 tell 192.168.146.3, length 46
```

3 Ustanowienie połączenia przez kabel RS-232 (null modem) z wykorzystaniem protokołu PPP

Po połączeniu 2 komputerów za pomocą kabla RS-232, wykonaliśmy konfigurację programu ppp poprzez edycję pliku "/etc/ppp/ppp.conf". Na maszynie k7 w sekcji **nullmodem** pliku konfiguarcyjnego:

```
set ifaddr 10.17.17.1 10.17.17.2 255.255.255.255
```

Na maszynie k8 w sekcji **nullmodem** pliku konfiguarcyjnego:

```
set ifaddr 10.17.17.2 10.17.17.1 255.255.255.255
```

Następnie uruchomiliśmy ppp.

```
sudo ppp nullmodem
```

```
interfejs tun0 - maszyna k7
```

tunO: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> metric 0 mtu 1500
options=80000<LINKSTATE>
inet 10.17.17.1 --> 10.17.17.2 netmask 255.255.255.255
Opened by PID 937

interfejs tun0 - maszyna k8

k7% ping -c 1 -S 10.17.17.1 10.17.17.2

tun0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> metric 0 mtu 1500 options=80000<LINKSTATE> inet 10.17.17.2 --> 10.17.17.1 netmask 255.255.255.255
Opened by PID 7681

Przetestowaliśmy połączenie obustronnie przy użyciu tcpdump i ping.

```
PING 10.17.17.2 (10.17.17.2) from 10.17.17.1: 56 data bytes
64 bytes from 10.17.17.2: icmp_seq=0 ttl=64 time=8.555 ms

k8% sudo tcpdump -i tun0
listening on tun0, link-type NULL (BSD loopback), capture size 65535 bytes
13:05:22.313695 IP un-registered-LAN10 > un-registered-LAN10: ICMP echo request, id 13469, seq (13:05:22.313729 IP un-registered-LAN10 > un-registered-LAN10: ICMP echo reply, id 13359, seq 0,
```

4 Konfiguracja mostka

Ćwiczenie polegało na konfiguracji mostka (bridge) i uruchomieniu protokołu STP (Spanning Tree Protocol).

Pomiędzy maszynami k7 i k8 utworzyliśmy połączenie typu adhoc.

```
k7% sudo ifconfig wlan create wlandev rum0 wlanmode adhoc ssid 'K7_K8' k7% sudo ifconfig wlan0 inet 10.17.17.1/24 up

k8% sudo ifconfig wlan create wlandev ural0 wlanmode adhoc ssid 'K7_K8' k8% sudo ifconfig wlan0 inet 10.17.17.2/24 up
```

Utworzenie mostka i właczenie STP:

```
k7% sudo ifconfig bridge create
k7% sudo ifconfig bridge0 addm sk0 addm wlan0
k7% sudo ifconfig bridge0 stp sk0 stp wlan0
k7% sudo ifconfig bridge0 up
```

Następnie sprawdziliśmy ustawienia mostka:

```
k7% ifconfig bridge0
bridge0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 02:7d:1d:ad:cc:00
id 00:0f:cb:ff:13:a7 priority 32768 hellotime 2 fwddelay 15
maxage 20 holdcnt 6 proto rstp maxaddr 2000 timeout 1200
root id 00:14:1c:ad:7b:00 priority 16388 ifcost 220000 port 1
member: wlan0 flags=147<LEARNING,DISCOVER,STP,AUTOEDGE,AUTOPTP>
        ifmaxaddr 0 port 5 priority 128 path cost 370370 proto rstp
        role designated state discarding
member: vr0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
        ifmaxaddr 0 port 1 priority 128 path cost 200000 proto rstp
        role root state discarding
```

Sprawdziliśmy działanie mostka za pomocą tcpdump.

```
k7% sudo tcpdump -i wlan0
22:38:12.776351 STP 802.1w, Rapid STP, Flags [Learn, Forward], bridge-id 8000.K7-W.8007, length
22:38:13.423461 ARP, Request who-has 192.168.2.70 tell 192.168.2.70, length 46

k8% sudo tcpdump -i wlan0
22:42:23.449938 ARP, Request who-has 192.168.2.70 tell 192.168.2.70, length 46
22:42:23.502402 IP 10.146.5.8.netbios-ns > 10.146.255.255.netbios-ns: NBT UDP PACKET(137): QUERY
```

5 Podsumowanie

5.1 Podsumowanie ARP

Čwiczenie polegało na diagnostyce protokołu ARP. Protokół ARP jest używany do tłumaczenia adresów internetowych na adresy sprzętowe używane przez sieci lokalne. ARP może pracować z tymi rodzajami sieci, które posiadają mechanizm rozgłaszania. Zasada działania ARP polega na wymianie komunikatów żądanie - odpowiedź. Węzeł szukający adresu sprzętowego związanego z określonym adresem IP rozgłasza pakiet "Żądanie ARP". każdy węzeł dołączony do sieci odbiera taki komunikat i jeśli rozpozna, że szukany jest jego adres IP - zapisuje w pamięci adres sprzętowy i IP nadawcy i wysyła pakiet Ódpowiedź ARP".

5.2 Podsumewanie PPP RS-232

PPP (Point to Point Protocol) to protokół warstwy łącza. Pozwala na ustanowienie bezpośredniego połączenia między węzłami sieci komputerowej. PPP jest często wykorzystywany przez dostawców usługi internetowej do zapewniania uwierzytelniania.

5.3 Podsumowanie mostek

Mostek pracuje na poziomie warstwy łącza danych. Przekazuje pakiety wykorzystując adresy MAC. W tym celu wykorzystuje tablicę mostowania, w której o segmentach sieci skojarzonych z adresami MAC. W celu znalezienia adresów MAC, które nie znajdują się w tablicy forwardingu, mostek zalewa sieć przekazując pakiet na wszystki porty z wyjątkiem źródłowego.

STP (Spanning Tree Protocol) to protokół warstwy łącza danych. Pozwala on na wykrywanie i blokowanie pętli w sieci oraz ustalanie zapasowych łącz. Obecnie dominuje wstecznie zgodna wersja protokołu STP - RSTP (Rapid Spanning Tree Protocol). Charakteryzuje się ona szybszym wykrywaniem pętli i uruchamianiem zapasowych łacz.