Security of Wireless LANs (IEEE 802.11)

Wireless Technologies

WAN

(Wide Area Network)

MAN

(Metropolitan Area Network)

LAN

(Local Area Network)

PAN

(Personal Area Net.)

	PAN	LAN	MAN	WAN		
Standard	Bluetooth	802.11 HiperLAN2	802.11 MMDS, LMDS	GSM, GPRS, CDMA, 2.5-3G		
Data rate	< 1Mbps	11 to 54 Mbps	11 to 100+ Mbps	10 to 384Kbps		
Raggio	Short	Medium	Medium-Long	Long		
Applicazioni	Peer-to-Peer Device-to- Device	Enterprise networks	T1 replacement, last mile access	PDAs, Mobile Phones, cellular access		

The wireless security problem

- Any wireless network is unsafe as a wired network PLUS the intrinsic risks related to being radiotransmitted
- We appreciate wifi because it spreads all over. The risk is that it really spreads all over...
- Anything transmitted by radio without encryption can be picked up by any receiving station in range (remember Enigma?)
- Authentication is also an issue, as wireless cannot be "physically" contained as cable access can. We literally risk placing a network plug connected to the internal network in the parking lot!
- Availability is also a problem, as radio transmitters are prone to physical denial of service attacks

Wireless LAN standards

- IEEE 802.11: 1997, 2.4GHz band, 1-2Mbps
- All 802.11 networks use the same protocols for Media Access Control (MAC), namely Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
- 802.11a: 1999, 5GHz band, OFDM encoding, up to 54Mbps
- 802.11b: 1999, 2,4 GHz band, backwardcompatible, DSSS encoding, 11 Mbps
- 802.11g: 2001, 2,4 Ghz band, backwardcompatible, OFDM/CCK encoding, 54Mbps

IEEE 802.11b

- 2.4 GhZ ISM band
- Uses 14 channels for phi-layer separation (actually, just 3 are totally separated) but multiple networks with a different SSID (Service Set ID) are logically separated
- Shared medium
- Two modes: infrastructure (with base stations/access points, possibile roaming e bridging) or ad-hoc
- Range approx 100m outdoor, 50m indoor

Security protocol of IEEE 802.11b: WEP

- Designing the IEEE 802.11b standard, authentication, confidentiality and integrity of data were considered, and the target was set to make them "equivalent" to the ones on a wired network
- The WEP (Wired Equivalent Privacy) protocol was designed, as we will see, with a series of design flaws

ID card of WEP

- WEP is based on a CFB stream cipher (back to this in the next slide) based on a shared key which must be manually set on all the clients and the APs
- It is based on the RC4 stream cipher algorithm designed by Ron Rivest in 1987 and protected as a trade secret by RSA until 1994, when it was leaked on USENET and became public domain
- Public domain is good for standards!

What is a CFB stream Cipher?

- Stream cipher: bit-per-bit XOR between the plaintext stream and a pseudorandom stream
- The stream is generated by the key only
- If the key stays the same...

WEP in detail

WEP in detail

- Since for a SC in CFB mode:
 - Same Plain Text results in same Cipher Text
 - Key stream is always the same
- To mitigate, a random IV is used
 - combines with the key and adds randomness
 - Needs to be transmitted in clear (but this is fine, because it will combine with the key)
- Exporting ciphers above 64bits forbidden by ITAR: 128 bit version of RC4 could not be used
 - 64 bits = 24 bits IV + 40 bits key
 - Later on, they couldn't change the format, so 128 bits
 = 24 bits IV + 104 bits key

Born to be broken...

- RC4 could be exported only in the 40+24 bit version due to ITAR restriction, 104+24 bit version was cleared only later
- 802.11 uses CRC-32 as a MIC (Message Integrity Code). CRC-32 is distributive wrt XOR:
 CRC(A) were CRC(R)
 - $CRC(A \times B) = CRC(A) \times CRC(B)$
- RC4 uses XOR to encrypt...

The breakup (1)

- 2000: J. Walker studies reuse of IV in WEP
 - Space is small (2²⁴)
 - Birthday paradox makes for a high probability of overlap
 - APs which use the same pseudorandom sequence obviously are a problem
 - If APs try to divide the space, situation grows worse

The breakup (2)

- 2001: Borisov, Goldberg and Wagner show practical reuse attacks
- They also describe a method to flip arbitrary bits into encrypted messages using the fact that CRC is distributive wrt XOR
 - Original = $A \mid CRC(A)$
 - Want to send A xor M, need to build CRC(A xor M), which is CRC(A) xor CRC(M)
- This depends from the lack of an authenticated portion in CRC-32

The breakup (3)

- W. Arbaugh creates a step-by-step attack to retrieve the key stream (not the key):
 - Let's suppose we know the plaintext of n bytes of ciphertext (e.g. a DHCP request, a DNS request...)
 - We know, therefore, n bytes of the key stream associated to some IV
 - We can therefore inject arbitrary message of size (n-4)
 - Pick a message long (n-3) which generates an answer if received (e.g. a ping)
 - Encrypt it and guess the last byte; if answer received we guessed right
 - lather, rinse, repeat

The breakup (4)

- Walker: IV is a bad idea per se
- Borisov-Goldberg-Wagner: no integrity, even if attacker knows nothing about key or keystream
- Arbaugh: practical recovery of keystream, building a dictionary with a cost of time (average, at date, 18h, worst case 55h) and space (several gigabytes); active attack (i.e. requires to transmit a lot of packets)
- None of these attacks directly compromises the WEP key

Final hit

- Fluhrer, Shamir, Mantin describe a vulnerability when RC4 is used with a fixed key part and a variable key part
- They develop a passive statistic attack which extracts information on the key directly from the ciphertext, exploiting a set of weak IV
- Stubblefield, Ioannidis and Rubin implement it against WEP
- The attack needs several million packets (several hours of sniffing) and then breaks the key in a few seconds. It is completely passive.

Tool

AirSnort http://airsnort.shmoo.com/

- Implements the attack as described by Stubblefield et al. (but rewritten from scratch)
- Also WepCrack: http://sourceforge.net/projects/wepcrack

AirSnort

Other useful tools

- wavemon detects intensity and direction of wireless signals http://www.wavemage.com/projects.html
- Kismet detects networks, verifies encryption type and obtains data on them such as SSID http://www.kismetwireless.net/

Networks									-16	-Info
SSID	Ι		Ch	Data	LLC	Crypt	Иk	Flags		Ntwrks
linksys		Y	01	0	97	0	0	00	11	33
HarlamNet		N	01	1	188	0	0		П	Pckets
. Physics Network	A	Y	01	9	36	3	0			6145
. Travis	A		01	0	9	0	0			Cryptd
. Hamilton MS2	A		01	4	17	0	0			4
. Hamilton-Steve and Kim's rm		N	01	0	4	0	0			Weak
. Wheeler MS 2	A	N	01	2	7	0	0		11	0
. WaveLAN Network	A	I	03	0	15	0	0		Ш	Noise
! David's Room	A		01	9	82	0	0	A C		138
. Hope 302	A	Y	05	3	24	0	0		11	Discrd
. <no ssid=""></no>		N	00	17	17	0	0			407
! WirelessHomeNetwork	A		01	0	84	0	0		11	
! harbor+wave	A	N	06	0	27	0	0		H	
! the new ALT	A	N	06	0	91	0	0			Elapsd
									III	000203 H-M-S

| Removing inactive network 'default' from display list. | Detected new network 'harbor+wave' bssid 00:40:96:44:15:C7 WEP N Ch 6

Wardriving

Wardriving: recipe

Ingredients:

- Car (with one driver and one wardriver, possibly...)
- A wireless-enabled laptop or PDA
- kismet (or NetStumbler under Windows, MacStumbler under Mac)
- (optionally) a GPS
- (optionally) omnidirectional antenna
- (optionally) directional antenna
- (optionally) inverter
- Beware about legality of what you're doing!

Data show a trend...

IEEE 802.1x

- 1X, common to "wired" and "wireless" networks
- Proposed standard for the authentication at layer 2
- At the moment it integrates the following protocols: LEAP, EAP-TLS, EAP-TTLS and PEAP
- Uses RADIUS (Remote Access Dial-In User Service)

EAP

- Extensible Authentication Protocol (RFC 2284) an extension of PPP, adopted in 802.1x
- Allows to authenticate the user on an external server (tipically RADIUS)
- Supports a wide range of authentication mechanisms (password MD5, kerberos, One Time Password, smart card...)
- Access Point acts as mediator for the authentication
- EAP, in its original form, does NOT allow for key exchange or mutual recognition

EAP-TLS

- RFC 2716
- Uses TLS (Transport Layer Security) and digital certificate (remember, TLS = SSL v3.1)
- Automatic key generation
- Mutual authentication
- Requires existence of a PKI (Public Key Infrastructure)

EAP-TTLS

- Tunneled Transport Layer Security: client uses login+password, in a TLS tunnel
- Server uses a certificate
- Less burden for PKI

LEAP/PEAP

- LEAP is a proprietary Cisco protocol
- Uses MS-CHAPv1 for mutual authentication
- Dynamic key generation
- PEAP: Protected EAP, new standard proposed by Microsoft and Cisco, using CHAPv2
- Why? Because CHAPv1 is weak, and as a result, LEAP is vulnerable to attack

LEAP Vulnerability

- J. Wright announced it in august 2003 at Defcon
- Uses a weakness of the challenge response mechanism of LEAP (CHAP) which was developed on the basis of NTLM passwords, which are hashed without salting
- Allows to efficiently perform a dictionary attack"
- http://asleap.sourceforge.net/ implements it
- Cisco suggested "a strong password policy" (...) and a migration to PEAP or TTLS

Details

- Username in cleartext
- "Two bytes vulnerability"
 - LEAP password is hashed with MD4 generating a 16 byte hash (NT_HASH)
 - 16 byte are brought to 21 adding 5 null (!!)
 - Divided in 3*7 byte keys = 3*56 bit (just enough for DES)
 - Each subkey used to encrypt a challenge separately
 - We know the challenge (sent in clear) and we know that the third subkey has just 2 bytes (5 are fixed to NULL).
 - 2 byte = 65k combinations: can guess them
 - Can reduce the space of possible passwords (on a dictionary 3 million strong, I need to test just 45 of them)

IEEE 802.11i - TKIP

- Stopgap standard to "upgrade" WEP in software (changing it to something more secure such as AES requires hw change)
- TKIP (Temporal Key Integrity Protocol) uses RC4, with a variable key

TKIP: WEP Key Hashing

WEP: no key hashing

Message Integrity Check (MIC)

- MIC: Message Integrity Check, another addition of 802.11i: substituting CRC-32 with strong authentication
- MIC is a function of a random seed, of the source and dst mac addressess, and of the payload
- Since the seed and MIC are in the encrypted payload, no more blind bit flipping

Wi-Fi Protected Access (WPA)

- WPA = 802.1X-LEAP + TKIP
- WPA2 = PEAP + AES
- WPA a requirement, since August 2003, for the "Wi-Fi" logo
- WPA-PSK (shared key) is vulnerable to attack if used with TKIP (2008)

Additional "security" measures

- Using at very least WEP 128bit if WPA2 is not available
- Disable SSID broadcast and choose nontelling SSID
- MAC address filter
- Positioning the AP in the DMZ and require the use of a VPN

Bibliography

- J. Walker, "Unsafe at any key size: an analysis of WEP encapsulation", IEEE 802.11-00/362, IEEE Press, 2000
- N. Borisov, I. Goldberg, D. Wagner, "Intercepting mobile communications: the insecurity of 802.11", Proc. 7th Ann. Intl. Conf. Mobile Computing and Networking, ACM Press 2001
- W. A. Arbaugh, "An inductive chosen plaintext attack against WEP/WEP2", IEEE 802.11, Verlag, 2001
- S. Fluhrer, I. Mantin, A. Shamir, "Weaknesses in the key scheduling algorithm of RC4", Proc. 8th Ann. Workshop Selected Areas in Cryptography, Springer

Stefa 200.1

Bibliography

- E. Danyelyan, "802.11": http://www.isoc.org/pubs/int/cisco-1-1.html
- Security in Wireless Networks: http://rr.sans.org/wireless/wireless_net3.php
- Using the Fluhrer, Mantin, and Shamir Attack to Break WEP: http://www.cs.rice.edu/~astubble/papers.html
- DRAFT Special Publication 800-48, Wireless Network Security: 802.11, Bluetooth, and Handheld Devices: http://csrc.nist.gov/publications/drafts/draft-sp800-48.pdf
- A Technical Comparison of TTLS and PEAP by Matthew Gast:
 - http://www.oreillynet.com/pub/a/wireless/2002/10/17/peap.html
- Vulnerabilità di LEAP: http://home.jwu.edu/jwright/ presentations/asleap-defcon.pdf