Фундаментальные Группы Гомологических Сфер

Михаил Корнев

МИАН им. В. А. Стеклова

Семинар ИМ СО РАН "Геометрия, топология и их приложения" 15 декабря 2022 г.

Определение гомологической сферы

Определение

Гомологической сферой называется гладкое замкнутое многообразие Σ^n , такое, что

$$H_*(\Sigma^n; \mathbb{Z}) \cong H_*(\mathbb{S}^n; \mathbb{Z}).$$

Вопрос, M. Kervaire, [27], 1969

Какие группы G реализуются, как фундаментальные группы $\pi_1(\Sigma^n)$ гомологических n-мерных сфер Σ^n ?

• Пусть $G = \pi_1(\Sigma^n)$. Из определения гомологической сферы сразу следует, что группа G является конечно представленной и совершенной (т. е. $H_1(G; \mathbb{Z}) = 0$)

$\pi_1(\Sigma^n)$ — суперсовершенные

Определение

Группа G называется *суперсовершенной*, если $H_1(G;\mathbb{Z})=H_2(G;\mathbb{Z})=0\;(\mathbb{Z}-$ тривиальный G-модуль)

Утверждение (H. Hopf, [18], 1942)

Пусть X — связный CW-комплекс. Тогда имеется точная последовательность групп:

$$\pi_2(X) \stackrel{h}{\rightarrow} H_2(X; \mathbb{Z}) \rightarrow H_2(\pi_1(X); \mathbb{Z}) \rightarrow 0,$$

где h — гомоморфизм Гуревича, а \mathbb{Z} — тривиальный $\pi_1(X)$ -модуль.

Из точности последовательности в утверждении следует, что $\pi_1(\Sigma^n)$ является суперсовершенной

Формула Хопфа

Теорема (Х. Хопф, 1942, [18])

Пусть $G = \langle F \mid R \rangle$ — конечно представленная группа. Тогда

$$H_2(G;\mathbb{Z})\cong \frac{R\cap [F,F]}{[F,R]}.$$

Следствие

$$H_2(G; \mathbb{Z}) = 0 \Leftrightarrow R \cap [F, F] = [F, R].$$

Теорема Кервера-Новикова

Определение

Конечно определённая группа G называется peanusyemoй, если существует гомологическая сфера Σ^n , такая, что $G \cong \pi_1(\Sigma^n)$

Теорема (М. Kervaire, [27], 1969)

Пусть G — суперсовершенная конечно определённая группа, и $n \geqslant 5$. Тогда существует гладкая гомологическая n-сфера с фундаментальной группой G

Теорема (С. П. Новиков, 1974, [39])

Свойство n-мерного многообразия быть стандартной n-мерной сферой ($n\geqslant 5$) или свойство стягиваемой области в (n+1)-мерном евклидовом пространстве с гладкой границей быть (n+1)-мерным диском, нераспознаваемы

Вопрос в размерностях 3 и 4

• В настоящее время является открытым

Вопрос, M. Kervaire, [27]

Какие конечно определённые группы реализуются, как фундаментальные группы гомологических 3-сфер? 4-сфер?

Схема доказательства (С. П. Новиков, [39] 1962)

• По представлению группы π образующими и соотношениями построим n+1-мерное многообразие с краем:

$$M^{n+1} = \left(\mathbb{D}^{n+1} \bigcup_{g_1, \dots, g_k} \mathbb{D}_j^n \times \mathbb{D}_j^1 \right) \bigcup_{r_1, \dots, r_\ell} \mathbb{D}_q^{n-1} \times \mathbb{D}^2,$$

где склейка происходит со стандартным сглаживанием по отображениям

$$g_j: \mathbb{D}_j^n \times \partial \mathbb{D}_j^1 \to \partial \mathbb{D}^{n+1},$$

$$r_q: \mathbb{D}_q^{n-1} \times \partial \mathbb{D}_q^2 \to \partial \left(\mathbb{D}^{n+1} \bigcup_{g_1, \dots, g_k} \mathbb{D}_j^n \times \mathbb{D}_j^1 \right),$$

которые соответствуют образующим и соотношениям группы π

Схема доказательства (продолжение)

- $H_2(\pi) = 0 \Rightarrow$ в $H_2(\partial M)$ все циклы сферические
- ullet Реализуем свободный базис $H_2(\partial M)$ сферами $\mathbb{S}^2_{lpha} imes \mathbb{D}^{n-2}_{lpha} \subset \partial M$ и сделаем вдоль них хирургию
- Тогда мы убьём вторую гомотопическую группу (здесь существенно, что $n\geqslant 5$) и, следовательно, получим нулевые вторые гомологии для многообразия ∂M
- По построению и исходя из клеточных гомологий, у M не могут быть гомологии в остальных размерностях (кроме размерности n). Стало быть, мы имеем гомологическую сферу ∂M

Сфера Пуанкаре и 21

Определение

Копредставление группы G называется cбалансированным, если в нём число образующих равно числу соотношений

- Как известно (например, [27], [23]), любая фундаментальная группа 3-многообразия имеет сбалансированное копредставление
- Если конечная группа G является фундаментальной группой гомологической 3-сферы Σ^3 , то [27] G либо тривиальна, либо изоморфна бинарной группе икосаэдра $2I = \langle x,y|x^2=y^3=(xy)^5 \rangle$

Сфера Пуанкаре и 21

- Группа 2I имеет точное представление в кватернионах и потому имеется действие 2 $I \curvearrowright \mathbb{S}^3$, фактором по которому является $c\phi$ ера Π уанкаре
- Универсальным пространством бинарной группы икосаэдра является бесконечномерная сфера $\mathbb{S}^{\infty} = \operatorname{colim} \mathbb{S}^{4n-1}$ со свободным действием левыми сдвигами группы $G \cong 2I$

Центральные расширения

Определение

Центральным расширением (X,ϕ) группы G посредством группы H и гомоморфизма $\phi:X\to G$ называется такая пара (X,ϕ) , что имеет место короткая точная последовательность

$$1 \rightarrow H \rightarrow X \rightarrow G \rightarrow 1$$
.

для которой $\ker \phi = H \subset \mathcal{Z}(X)$

Определение

Универсальным центральным расширением (U,ϕ) группы G называется центральное расширение

$$1 \rightarrow H \rightarrow U \rightarrow G \rightarrow 1$$
,

т. ч. для любого другого центрального расширения (X,ψ) группы G найдётся *единственный* гомоморфизм $U \to X$, замыкающий данную диаграмму до коммутативной

Определение

Ядро H универсального расширения называется мультипликатором Шура группы G

Теорема ([37])

Центральное расширение (U,ϕ) группы G является универсальным тогда и только тогда, когда группа U — совершенная и любое центральное расширение группы U расщепляется

Следствие ([37])

Универсальное центральное расширение группы G существует тогда и только тогда, когда G совершенна

Следствие

Ядро универсального центрального расширения канонически изоморфно $H_2(G; \mathbb{Z})$, где \mathbb{Z} — тривиальный G-модуль, т. е. имеется короткая точная последовательность

$$0 \to H_2(G; \mathbb{Z}) \to U \to G \to 0$$

Следствие

Универсальное центральное расширение *U* группы *G* является суперсовершенной группой

Доказательство.

Пусть имеется универсальное центральное расширение группы $\it U$:

$$1 \to H_2(U) \to \widetilde{U} \stackrel{s}{\underset{r}{\hookleftarrow}} U \to 1 \tag{\bigstar}$$

Из того, что $U \to G$ является универсальным центральным расширением по универсальному свойству следует, что имеется сечение $s: U \to \widetilde{U}$. Значит, расширение (\bigstar) расщепляется. Но расщепляющиеся расширения параметризуются [8] элементами группы $H^1(U, H_2(U)) \cong \operatorname{Hom}(H_1(U), H_2(U)) = 0$. Таким образом, расширение (\bigstar) единственно, $\widetilde{U} \cong U$ и $H_2(U) = 0$.

• Приведём здесь явную конструкцию [37] универсального центрального расширения $U \to G$ совершенной группы $G = \langle F \mid R \rangle$:

$$(F/[R,F])'=[F,F]/[R,F] \rightarrow G$$

Сфера Пуанкаре и 21

• Бинарная группа икосаэдра является [37] универсальным центральным расширением группы икосаэдра A_5 :

$$1 \to \{\pm 1\} \to 2 \textit{I} \cong \mathrm{SL}(2,\mathbb{F}_5) \to \textit{A}_5 \cong \mathrm{PSL}(2,\mathbb{F}_5) \to 1$$

• В частности, $H_2(A_5; \mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$

Сферы Брискорна

Определение

Сферой Брискорна $\Sigma(p,q,r)$ называется 3-мерное многообразие, которое получается при пересечении малой сферы с центром в 0 и множества нулей многочлена $x^p+y^q+z^r=0$ для натуральных p,q и r в \mathbb{C}^3

Предложение (J. Milnor, [29], 1975)

Если p, q и r попарно взаимно простые, то $\Sigma(p, q, r)$ — гомологическая 3-сфера.

Сферы Брискорна

Teopeма (J. Milnor, [29], 1975)

Если $1/p+1/q+1/r \neq 1$, то $\pi_1(\Sigma(p,q,r))$ изоморфна центральному расширению группы von Dyck

$$D(p, q, r) = \langle a, b, c | a^p = b^q = c^r = abc = 1 \rangle.$$

Это расширение имеет копредставление

$$\pi_1(\Sigma(p,q,r)) = \langle a, b, c \mid a^p = b^q = c^r = abc \rangle$$

• Из теоремы Милнора следует, что сферой Брискорна с нетривиальной конечной фундаментальной группой может являться только сфера Пуанкаре $\Sigma(2,3,5)$

Нереализуемые группы в размерности 3

- Не всякая сбалансированная копредставленная группа может быть фундаментальной группой гомологической 3-сферы
- Самый простой пример группа Хигмана [20]

Нереализуемые группы в размерности 3

ullet Можно также определить группы Hig_n для всех $n\geqslant 4$

Определение

$$\operatorname{Hig}_n := \langle x_i, i \in \mathbb{Z}/n \mid [x_{i-1}, x_i] = x_i \rangle,$$

где
$$[x, y] = xyx^{-1}y^{-1}, \ n \geqslant 4$$

Определение

Aцикличной называется такая группа G, что $H_*(G)\cong H_*(\mathrm{pt})$

- Фундаментальная группа любого 3-многообразия не может быть ацикличной согласно работе Berrick [6]
- Группы Hig_n нереализуема в размерности 3, поскольку являются ацикличными [6]

Определение

Гомотопической n-сферой называется многообразие, гомотопически эквивалентное стандартной n-сфере

Определение ([25], 1963)

Группой кобордизмов гомотопических сфер Θ^n называется группа классов гомотопических сфер с точностью до диффеоморфизма по отношению h-кобордантности: $M_0 \sim M_1$, если существует W, т. ч. $\partial W = -M_0 \sqcup M_1$ и вложения M_i индуцируют гомотопические эквивалентности

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$ \Theta^n $	1	1	1	1	1	1	28	2	8	6	992	1	3	2	16256	2	16	16

$$28 = 2^2 \cdot 7$$
, $992 = 2^5 \cdot 31$, $16256 = 2^7 \cdot 127$

$\Theta^n_{\mathbb{Z}}$

- Изучение гомологических сфер тесно связано с проблемами гладких структур на многообразиях
- Позднее, в диссертации ([17], 1970) González-Acuña определил n-мерные группы кобордизмов гомологических сфер $\Theta_{\mathbb{Z}}^n$:

Определение

 $\Theta_{\mathbb{Z}}^n$ называется группой n-мерных кобордизмов гомологических $c\phi$ ер. Она состоит из классов эквивалентности гомологических n-сфер с точностью до диффеоморфизма по следующему отношению кобордантности: $M_0 \sim M_1$, если существует (n+1)-многообразие W, т. ч. $\partial W = -M_0 \sqcup M_1$ и включения M_i индуцируют изоморфизмы гомологий с W

Теорема (M. Kervaire и J. Milnor, [25], 1963)

Группы Θ^n — конечные для всех n

Следствие

Множество классов диффеоморфизма $M\sharp N^n$ конечно, где N^n — гомотопическая сфера

Сравнение Θ^n и $\Theta^n_{\mathbb{Z}}$

ullet Оказалось, что группы Θ^n и $\Theta^n_{\mathbb{Z}}$ тесно связаны между собой:

Теорема (F. González-Acuña, [17], 1970)

Если $n \neq 3$, то $\Theta^n \cong \Theta^n_{\mathbb{Z}}$. В частности, группы $\Theta^n_{\mathbb{Z}}$ конечны для всех $n \neq 3$

Инвариант Рохлина

- ullet Имеется [2] гомоморфизм $\mu:\Theta^3_{\mathbb{Z}} o \mathbb{Z}/2\mathbb{Z}$
- ullet Он задан формулой $\mu(\Sigma^3)=\sigma(W^4)/8 \mod 2$, где $\partial W=M$, где $\sigma(M)$ обозначает сигнатуру многообразия M

Пример

Для стандартной сферы $\mu(\mathbb{S}^3)=0$, для сферы Пуанкаре $\mu(\Sigma(2,3,5))=1$

Утверждение

Группа $\Theta_{\mathbb{Z}}^3$ содержит бесконечную циклическую группу, натянутую на $\Sigma(2,3,5)$

Доказательство.

Если это не так, то $m\Sigma \sim \mathbb{S}^3$. Тогда есть гомологический диск W' с границей $m\Sigma$. Гладкое многообразие $mW \sqcup_{m\Sigma} W'$, где $\partial W = \Sigma$, имеет $\oplus_m E_8$ формой пересечений — противоречие с теорией Дональдсона

• На самом деле, в группе $\Theta^3_{\mathbb{Z}}$ выделяется ([13], 2002) прямое слагаемое $\langle [\Sigma(2,3,5)] \rangle$

Теорема (І. Dai, и др., [11], 2018)

Группа $\Theta^3_{\mathbb{Z}}$ содержит слагаемое \mathbb{Z}^{∞} , порождённое сферами Брискорна $\{\Sigma(2n+1,4n+1,4n+3)\}_{n=1}^{\infty}$

Вопрос, [33]

Верно ли, что $\Theta^3_{\mathbb{Z}} \cong \mathbb{Z}^{\infty}$?

- Какие образующие бывают у $\Theta^3_{\mathbb{Z}}$?
- Первые результаты в этом направлении принадлежат Freedman и Taylor

Teopeмa (M. Freedman, Taylor, [12], 1977)

Группа $\Theta^3_{\mathbb{Z}}$ порождается гомологическими сферами, которые являются границами 4-многообразий, имеющие гомологии $\mathbb{S}^2 \times \mathbb{S}^2$

Определение

Неприводимым 3-многообразием называется гладкое 3-многообразие, в котором любая вложенная 2-сфера ограничивает 3-диск

- ullet Примеры: \mathbb{S}^3 , линзовые пространства L(p,q) с p
 eq 0
- Как известно, 3-многообразия склеиваются из неприводимых 3-многообразий

Teopeма (C. Livingston, [26], 1981)

Группа $\Theta^3_{\mathbb{Z}}$ порождается неприводимыми гомологическими 3-сферами

Teopeма (R. Myers, [31], 1983)

Группа $\Theta^3_{\mathbb{Z}}$ порождается гиперболическими гомологическими 3-сферами

Вопрос

Какие группы реализуются, как фундаментальные группы гиперболических гомологических сфер?

• Этот вопрос тесно связан с известной проблемой Ф. Клейна [40] об описании всех связных компактных римановых многообразий постоянной отрицательной кривизны

• Гомологические сферы, которые являются расслоениями Зейферта над \mathbb{S}^2 , не порождают $\Theta^3_{\mathbb{Z}}$:

Теорема (K. Frøyshov и др., [14], 2016)

Существует бесконечное семейство гомологических 3-сфер, которые гомотопически не кобордантны никакой зейфертовой расслоенной гомологической сфере

Теорема (K. Hendricks и др., [19], 2021)

Пусть Θ^3_{SF} — подгруппа $\Theta^3_{\mathbb{Z}}$, порождённая гомологическими сферами Зейферта. Тогда факторгруппа $\Theta^3_{\mathbb{Z}}/\Theta^3_{SF^3}$ имеет \mathbb{Z}^∞ в качестве подгруппы

Вопрос, [33]

Выделяется ли \mathbb{Z}^{∞} прямым слагаемым?

Хирургии Дена вдоль узлов

- Гомологические 3-сферы можно получать при помощи p/q-хирургий Дена (1938) [33, 16]
- $\bullet \ \mathbb{S}^3_{p/q}(K) = \left(\mathbb{S}^3 \backslash \operatorname{Int} \nu(K)\right) \cup_{\phi} \left(\mathbb{D}^2 \times \mathbb{S}^1\right), \ \phi(\partial \mathbb{D}^2 \times \{*\}) = p\mu + q\lambda$
- ullet $H_1(\mathbb{S}^3_{p/q}(K))=\mathbb{Z}/p\mathbb{Z}$, поэтому $\mathbb{S}^3_{1/n}$ гомологическая 3-сфера

Пример

Ден показал, что сфера Пуанкаре получается (-1)-хирургией вдоль левого трилистника

• Хирургию вдоль оснащённых узлов исследовали Lickorish, Wallace и Kirby

Зейфертовы расслоенные пространства

- Seifert предложил (1933) следующую конструкцию [15, 16]
- Зейфертово расслоенное пространство с базой-орбифолдом \mathbb{S}^2 это 3-многообразие без края $M\left(\mathbb{S}^2;e,(a_1,b_1),...,(a_n,b_n)\right),$ НОД $(a_i,b_i)=1$
- Возьмём пространство \mathbb{S}^1 -расслоения над $\mathbb{S}^2 \setminus \{ \mathrm{pt}_1, ..., \mathrm{pt}_n \}$ с числом Эйлера e и вклеим в него (a_i/b_i) -оснащённые торы
- Результат будет гомологической сферой \Leftrightarrow

$$a_1...a_n\left(-e+\sum_{i=1}^n\frac{b_i}{a_i}\right)=\pm 1$$

Зейфертовы расслоенные пространства

- Зейфертовы расслоенные пространства можно [15] задать уравнениями в \mathbb{C}^n
- $m{V}(a_1,...,a_n)=\{b_{i1}z_1^{a_1}+...+b_{in}z^{a_n}=0,\ i=1,...,n-2\},\ \mathrm{rk}\ B=n-2$
- ullet Тогда $\Sigma(a_1,...,a_n)=V(a_1,...,a_n)\cap \mathbb{S}^{2n-1}$ многообразие размерности 2n-1-2(n-2)=3
- $\Sigma(a_1,...,a_n)$ гомологическая 3-сфера $\Leftrightarrow \{a_i\}$ попарно взаимно просты
- Сферы Брискорна частный случай зейфертовых гомологических 3-сфер

Пламбинг вдоль диаграмм

- Гомологические 3-сферы можно получать пламбингом по взвешенным деревьям. У взвешенного дерева рядом с вершиной по построению написано целое число
- Каждой вершине v с весом w(v) соответствует пространство \mathbb{D}^2 -расслоения над \mathbb{S}^2 с классом Эйлера w(v)
- Пламбинг даёт 4-мерное топологическое многообразие с краем гомологической 3-сферой в случае, если матрица формы пересечений унимодулярна

Другие способы работы с Σ^3

- ullet Циклические накрытия над \mathbb{S}^3 , разветвлённые над узлом $K\subset\mathbb{S}^3$
- Применение JSJ (Jaco, Shalen и Johannson) разложения

Примеры Σ^4

- ullet Из Σ^3 можно построить Σ^4 следующим образом [34]
- ullet Пусть связная сумма $\Sigma^3 \sharp \Sigma^3$ ограничивает некоторое 4-многообразие V^4 с краем
- Возьмем дубль многообразия V^4 и получим гомологическую 4-сферу с фундаментальной группой $\pi=\pi_1(\Sigma^3)$
- Значит, все фундаментальные группы Σ^3 реализуются в размерности 4. Другой способ это увидеть содержится в статье Кервера [27] см. ниже
- Но не всякая $\pi_1(\Sigma^4)$ реализуется в размерности 3 (например, группы Хигмана), как мы видели

Σ^4 с конечной фундаментальной группой

- В отличие от гомологической 3-сферы, гомологическую 4-сферу с конечной фундаментальной группой нельзя представить в виде фактора \mathbb{S}^4/G стандартной сферы по свободному действию конечной группы G
- Это означает, что вопрос ниже не сводится к изучению свободных действий конечных групп на сферах

Вопрос, [24]

Существует ли Σ^4 с конечной нетривиальной фундаментальной группой, отличной от 2I?

Результат Кервера для размерности 4

Теорема (М. Kervaire, [27], 1969)

Сбалансированная конечно определённая суперсовершенная группа реализуется как $\pi_1(\Sigma^4)$

Результат Кервера для размерности 4

- В той же работе [27] Кервер высказал предположение о том, что всякая реализуемая группа в размерности 4 имеет сбалансированное копредставление
- Однако это оказалось неверно:

Определение

Дефектом конечно представленной группы π с g образующими и r соотношениями называется максимум разности g-r по всем предствлениям группы π (с конечным g)

Teopeма (С. Livingston, 2003, [9])

Для любого N>0 существует гомологическая 4-сфера с дефектом, меньшим -N

Σ^4 с данной фундаментальной группой

- ullet В называется *3-косвязным*, если $\pi_n(B) = 0$ при $n \geqslant 3$
- Пространству X можно сопоставить тройку $[\pi_1(X), \pi_2(X), k(X))]$, где k(X) гомотопический класс отображения $p: X_2 \to X_1$ между 1-м и 2-м этажами башни Постникова. Элементы k биективно соответствуют элементам группы $H^3(\pi_1(X), \pi_2(X))$
- На множестве троек $\{[\pi_1,\pi_2,k]\}$ можно ввести отношение эквивалентности, при котором $[\pi_1,\pi_2,k]\sim [\widetilde{\pi_1},\widetilde{\pi_2},k]\Leftrightarrow \pi_1\cong\widetilde{\pi_1}$ и $\pi_2\cong\widetilde{\pi_2}$ как π_1 -модули
- Здесь $\mathscr{J}_4(B)$ множество гомотопических классов 3-эквивалентностей $f:X\to B$ для ориентируемых связных 4-мерных комплексов Пуанкаре X
- ullet И Г (π_2) это левый π_1 -модуль целочисленных форм на $\pi_2(B)\cong H^2(\widetilde{B})$

Σ^4 с данной фундаментальной группой

• Из результатов Hambleton и Kreck следует, что имеется лишь конечное число замкнутых ориентируемых 4-многообразий с данными π_1 и эйлеровой характеристикой

Teopeмa (I. Hambleton, M. Kreck, 1988, [21])

Пусть $B = B(\pi_1, \pi_2, k) - 3$ -косвязный клеточный комплекс с фундаментальной группой π_1 и $\mathscr{J}_4(B) \neq \varnothing$.

- $oldsymbol{0}$ Если $\pi_1(B)$ конечна, то существует точная последовательность $0 o\operatorname{Tors}\left(\Gamma\left(\pi_2B\right)\otimes_{\Lambda}\mathbb{Z}
 ight) o\mathscr{I}_4(B) o H_4(\widetilde{B},B) imes\{\mathbb{Z}\text{-ϕ. на $\pi_2(B)$}\}$
 - $0 o \operatorname{Tors}\left(\Gamma\left(\pi_2 B\right) \otimes_{\Lambda} \mathbb{Z}\right) o \mathscr{J}_4(B) o H_4(\widetilde{B},B) imes \{\mathbb{Z}\text{-}m{\phi}$. на $\pi_2(B)\}$ $\cong \mathbb{Z}/|\pi_1|\mathbb{Z}$
- $m{Q}$ Если $\pi_1(B)$ бесконечна и $H_2(B,\mathbb{Q})
 eq \{0\}$, то отображение $\mathscr{J}_4(B) o H_4(B;\mathbb{Z})$, отправляющее (X,f) в $f_\star[X]$ инъективно.

• При помощи алгебраической *K*-теории получается следующий результат:

Теорема ([37])

При п ≥ 3 группа

$$\mathrm{SL}(n,\mathbb{F}_q)$$
 — суперсовершенная,

за исключением трёх случаев:

$$\mathrm{SL}(3,\mathbb{F}_2),\ \mathrm{SL}(4,\mathbb{F}_2),\ \mathrm{SL}(3,\mathbb{F}_4)$$

- При помощи групп лиева типа из предыдущей теоремы Hausmann и Veinberg в [24] конструируют примеры нереализуемых групп
- Рассмотрим

$$G_0 = (\mathbb{F}_p^n)^k \rtimes \mathrm{SL}(n, \mathbb{F}_p)$$

со стандартным действием $\mathrm{SL}(n,\mathbb{F}_p) \curvearrowright (\mathbb{F}_p^n)^k$

• Группа G_0 не обязательно будет суперсовершенной, однако она является совершенной, что означает существование универсального центрального расширения

$$1 \rightarrow H_2(G_0) \rightarrow G \rightarrow G_0 \rightarrow 1$$
,

и здесь оказывается, что G уже будет суперсовершенной

- Далее, Hausmann и Veinberg находят подгруппу H конечного индекса, являющуюся ядром сквозного гомоморфизма $G \to G_0 \to \mathrm{SL}(n,\mathbb{F}_p)$. Этот индекс не зависит от k, поскольку он равен порядку группы $\mathrm{SL}(n,\mathbb{F}_p)$
- И при больших k приходят к выполнению неравенства из утверждения ниже, что и показывает нереализуемость группы G фундаментальной группой гомологической 4-сферы:

Утверждение ([24])

Пусть группа G содержит подгруппу H конечного индекса п такую, что

$$2 + b_2(H) - 2b_1(H) > 2n$$

где b_i — числа Бетти по отношению к какому-либо полю коэффициентов. Тогда G не реализуется как фундаментальная группа 4-мерной гомологической сферы

Рациональные гомологические сферы

- Можно задаться вопросом реализуемости для рациональных гомологических сфер
- Hasmann и Veinberg в ([24], 1985) сопоставили группе G число q(G), равное инфимуму эйлеровой характеристики замкнутого ориентируемого 4-многообразия с фундаментальной группой G. Они нашли неулучшаемые верхнюю и нижнюю оценки для q(G) по заданию группы G образующими и соотношениями
- Hambleton и Adem обобщили в ([1], 2021) определение q(G), теперь уже беря инфимум не по 4-мерным, а по 2n-мерным замкнутым ориентированным многообразиям, которые имеют (n-1)-связное универсальное накрытие

- Этот результат может дать некоторую информацию про рациональные гомологические 4-сферы [1]. Дело в том, что конечная фундаментальная группа G является фундаментальной группой некоторой рациональной гомологической 4-сферы тогда и только тогда, когда q(G) = 2
- Имеются результаты других авторов (см. список литературы к статье [1]) о том, при каких условиях на конечную абелеву группу G получается q(G)=2. Так, например, результат Teichner ([32], 1992) даёт критерий: конечная абелева группа G реализуется рациональной гомологической 4-сферой тогда и только тогда, когда минимальное число порождающих группы G не больше 3.
- Также в работе [1] приведено несколько классов конечных групп, которые не могут быть фундаментальными группами рациональных гомологических 4-сфер

Распознаваемость стандартной сферы

- С. И. Адян доказал ([38], 1957), что проблема распознавания тривиальной группы, заданной образующими и соотношениями, не разрешима
- Используя это, А. А. Марков опубликовал работу ([35], 1958) о неразрешимости проблемы гомеоморфности 4-многообразий. В ней имеется результат о том, что для всякого n>3 существует n-мерное многообразие, для которого проблема гомеоморфности неразрешима

Теорема (С. П. Новиков, 1974, [39])

Свойство n-мерного многообразия быть стандартной n-мерной сферой ($n\geqslant 5$) или свойство стягиваемой области в (n+1)-мерном евклидовом пространстве с гладкой границей быть (n+1)-мерным диском, нераспознаваемы

Распознаваемость в размерностях 3 и 4

• В размерности 3 существует алгоритм распознавания стандартной сферы

Вопрос

Распознаваема стандартная 4-сфера среди гладких 4-мерных многообразий?

• А. А. Гайфуллин заметил, что проблема распознавания 4-сферы будет алгоритмически неразрешима, если ответ на следующий вопрос будет утвердительным:

Вопрос

Верно ли, что если π — конечно определённая суперсовершенная группа, не имеющая подгрупп конечного индекса, то π реализуется как фундаментальная группа 4-мерной гомологической сферы?

Литература I

- Alejandro A. and Hambleton I.
 Minimal Euler Characteristics for Even-Dimensional Manifolds with Finite Fundamental Group.
 Unpublished, 02 2021.
- [2] Rokhlin V. A. New results in the theory of four-dimensional manifolds. Doklady Akad. Nauk SSSR (N.S.), 84:221–224, 1952.
- [3] Alejandro Adem and R. James Milgram. Cohomology of Finite Groups. Springer-Verlag Berlin Heidelberg, 2004.
- [4] G. Baumslag, E. Dyer, and A. Heller.
 The topology of discrete groups.

 Journal of Pure and Applied Algebra, 16(1):1–47, 1980.

Литература II

- [5] G. Baumslag, E. Dyer, and C.F. Miller. On the integral homology of finitely presented groups. *Topology*, 22(1):27–46, 1983.
- [6] A.J. Berrick.
 The acyclic group dichotomy.

 Journal of Algebra, 326(1):47–58, 2011.
- [7] AJ Berrick and JA Hillman. Perfect and acyclic subgroups of finitely presentable groups. Journal of The London Mathematical Society-second Series - J LONDON MATH SOC-SECOND SER, 68, 12 2003.

Литература III

- [8] Kenneth S. Brown. Cohomology of Groups, volume 87 of Graduate Texts in Mathematics. Springer New York, NY, 1982.
- [9] Livingston C. Four-manifolds of large negative deficiency. Mathematical Proceedings of the Cambridge Philosophical Society, 138:107–115, 2005.
- [10] Maurice Chiodo and Michael E. Hill. Preserving torsion orders when embedding into groups with small finite presentations, 2016.

Литература IV

- [11] Irving Dai, Jennifer Hom, Matthew Stoffregen, and L. Truong. An infinite-rank summand of the homology cobordism group. arXiv: Geometric Topology, 2018.
- [12] Michael H. Freedman and Lawrence Taylor. Lambda-splitting 4-manifolds. Topology, 16(2):181–184, 1977.
- [13] Kim A. Frøyshov. Equivariant aspects of Yang-Mills Floer theory. Topology, 41(3):525-552, 2002.
- [14] Kim A. Frøyshov. Mod 2 instanton floer homology. Unpublished, 2016.

Литература V

- [15] Shintaro Fushida-Hardy. Homology 3-spheres.
- [16] R.V. Gamkrelidze, N. Saveliev, and A. Vassiiev. Invariants of Homology 3-Spheres. Encyclopaedia of Mathematical Sciences. Springer Berlin Heidelberg, 2002.
- [17] Short González-Acuña, Francisco and Hamish. On homology spheres. PhD thesis, Princeton University, 1970.
- [18] Hopf H. Fundamentalgruppe und zweite Bettische Gruppe. Commentarii Mathematici Helveticiment., 14:257–309, 1942.

Литература VI

- [19] Kristen Hendricks, Jennifer Hom, Matthew Stoffregen, and Ian Zemke.
 - Surgery exact triangles in involutive Heegaard Floer homology. arXiv: Geometric Topology, 2020.
- [20] Graham Higman.
 - A Finitely Generated Infinite Simple Group.
 - Journal of The London Mathematical Society-second Series, pages 61–64, 1951.
- [21] Hambleton I. and Kreck M.
 On the Classification of Topological 4-Manifolds with Finite Fundamental Group.
 - Math. Ann., 280:85-104, 1988.

Литература VII

- [22] Hillman J. Four-manifolds, geometries and knots. Geometry and Topology Publications, 2002.
- [23] Milnor J. Groups Which Act on Sn Without Fixed Point. American Journal of Mathematics, 79(3):623–630, 1957.
- [24] Hausmann J.-C. and Weinberger Sh. Caractéristiques d'euler et groupes fondamentaux des variétés de dimension 4. Commentarii Mathematici Helvetici, 1985.
- [25] Michel A. Kervaire and John W. Milnor. Groups of Homotopy Spheres: I. Annals of Mathematics, 77(3):504–537, 1963.

Литература VIII

- [26] Charles Livingston. Homology cobordisms of 3-manifolds, knot concordances, and prime knots. Pacific Journal of Mathematics, 94(1):193 – 206, 1981.
- [27] Kervaire M. Smooth homology spheres and their fundamental groups. Transactions of the American Mathematical Society, 144:67–72, 1969.
- [28] C. R. F. Maunder. A Short Proof of a Theorem of Kan and Thurston. Bulletin of the London Mathematical Society, 13(4):325–327, 07 1981.

Литература IX

- [29] John Milnor. ON THE 3-DIMENSIONAL BRIESKORN MANIFOLDS M(p, q, r), pages 175–226. Princeton University Press, Princeton, 1975.
- [30] Nicolas Monod.

 Variations on a theme by Higman, 2016.
- [31] Robert Myers. Homology Cobordisms, Link Concordances, and Hyperbolic 3-Manifolds.

Transactions of the American Mathematical Society, 278(1):271–288, 1983.

Литература Х

- [32] Teichner P. Topological four-manifolds with finite fundamental group. PhD thesis, Johannes-Gutenberg Universitat in Mainz, 1992.
- [33] Oğuz Şavk. A survey of the homology cobordism group, 2022.
- [34] user98602.

 Answer on the posted question.
- [35] Марков А. Неразрешимость проблемы гомеоморфии. Докл. АН СССР, 121(2):218–220, 1958.
- [36] Гуревич В.; Волмэн Г. Теория размерности. Издательство иностранной литературы, 1948.

Литература XI

- [37] Милнор Дж. Введение в алгебраическую К-теорию. Мир. 1974.
- [38] Адян С. И. Неразрешимость некоторых алгоритмических проблем теории груп. Tp. MMO, pages 231–298, 1957.
- [39] Володин И. А.; Кузнецов В. Е.; Фоменко А. Т. О проблеме алгоритмического распознавания стандартной трехмерной сферы.

УМН, 29:71–169, 1974.

Литература XII

[40] Веснин А. Ю.

Объемы трехмерных гиперболических многообразий Лебелля.

Матем. заметки, 64(1):17-23, 1998.