#### MATH 1121 (Calculus for Engineering Technology) Course Outline

### 1.3 Rectangular Coordinates

- Illustrate the following concepts:
  - rectangular coordinate system,
  - $\blacksquare x$ -axis,
  - $\blacksquare$  y-axis,
  - origin,
  - quadrants,
  - coordinates
- Examples:
  - (Example 1) Plot A = (2,1) and B = (-4, -3).
  - (Example 3) Three vertices of a rectangle are A = (-3, -2), B = (4, -2), C = (4, 1). What is the fourth vertex?
- HW: 1-9, 15-16, 21-24

### 2.1 Some Basic Definitions

- Distance Formula
  - $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
  - (Example 2) Find the distance between (3, -1) and (-2, -5).
- Slope Formula
  - $m = \frac{y_2 y_1}{x_2 x_1}$
  - (Example 3) Find the slope of the line joining (3, -5), (-2, -6).
  - (Example 4) Find the slope of the line joining (3,4), (4,-6).
- Identify parallel/perpendicular lines by slopes.
  - Parallel:  $m_1 = m_2$
  - Perpendicular:  $m_1 = -\frac{1}{m_2}$
  - (Example 7) Prove that the triangle with vertices A = (-5,3), B = (6,0), and C = (5,5) is a right triangle.
- Suggested HW: 1-20, 29-36

## 2.2 The Straight Line

- Point-slope form
  - $y y_1 = m(x x_1)$
  - (Example 2) Find the equation of the line passing through (2,-1) and (6,2).
- Slope-intercept form
  - y = mx + b
  - (Example 4) Find the slope and y-intercept of the straight line with equation 2y + 4x 5 = 0.
- Suggested HW: 1-21, 33-40

# 2.3 The Circle

- Definition
  - A circle is a collection of points equidistant from its center.
- Standard form
  - $(x-h)^2 + (y-k)^2 = r^2$
  - (Example 1) Sketch  $(x-1)^2 + (y+2)^2 = 16$ .
  - (Example 2) Find an equation for the circle with center (2,1) which passes through (4,8).
- General form
  - $x^2 + y^2 + Dx + Ey + F = 0$
  - (Example 4) Find the center and radius of the circle  $x^2 + y^2 6x + 8y 24 = 0$ .
  - (Example) Find two functions whose graphs represent the circle with the previous equation.
- HW: 1-32, 37-38

#### 2.4 The Parabola

- Definition
  - A parabola is a collection of points equidistant from a focus point and a directrix line.

- (Example 6) Find an equation for the parabola with focus (2,3) and directrix (y=-1)
- Standard forms with vertex at origin and horizontal/vertical directrix
  - $y^2 = 4px$  with directrix at x = -p and focus at (p, 0)
  - $y^2 = -4px$  with directrix at x = p and focus at (-p, 0)
  - $x^2 = 4py$  with directrix at y = -p and focus at (0, p)
  - $x^2 = -4py$  with directrix at y = p and focus at (0, -p)
  - (Example 2) Find an equation for the parabola with focus (-2,0) and directrix (x=2).
  - (Example 4) Find the focus and directrix of the parabola with equation  $2x^2 = -9y$ .
- HW: 1-28

## 2.5 The Ellipse

- Definition
  - An ellipse is a collection of points where the sum of distances from two fixed points (called foci) is constant.
  - The two points furthest/closest apart from each other on an ellipse are the endpoints of the major/minor axis.
  - The sum of distances between each point and the foci is the same as the length of the major axis. The major axis passes through both foci.
  - (Example 6) Find an equation for the ellipse with foci at (1,3) and (9,3), and a major axis of length 10.
- Standard form with center at the origin
  - $\frac{x^2}{a_c^2} + \frac{y^2}{b^2} = 1$ , with foci given by either (c,0), (-c,0) or (0,c), (0,-c) where  $a^2 + b^2 = c^2$
  - (Example 3) Sketch the ellipse with equation  $4x^2 + 16y^2 = 64$ , and compute the locations of its foci.
  - (Example 5) Find the equation of the ellipse centered at the origin with an end of its minor axis at (2,0) and containing the point  $(-1,\sqrt{6})$ .
- HW: 1-26

## **Remaining Topics**

- 2.6 The Hyperbola
- 2.7 Translation of Axes
- 1.2 Algebraic Functions
- 1.4 The Graph of a Function
- 3.1 Limits
- 3.2 The Slope of a Tangent to a Curve
- 3.3 The Derivative
- 3.4 The Derivative as an Instantaneous Rate of Change
- 3.5 Derivatives of Polynomials
- 3.6 Derivatives of Products and Quotients of Functions
- 3.7 The Derivative of a Power of a Function
- 3.8 Differentiation of Implicit Functions
- 3.9 Higher Derivatives
- ullet 4.1 Tangents and Normals
- 4.4 Related Rates
- 4.5 Using Derivatives in Curve Sketching
- 4.6 More on Curve Sketching
- 4.7 Applied Maximum and Minimum Problems
- 4.8 Differentials and Linear Approximations
- 5.1 Antiderivatives
- 5.2 The Indefinite Integral
- 5.3 The Area Under a Curve
- 5.4 The Definite Integral
- 7.1 The Trigonometric Functions
- 7.2 Basic Trigonometric Relations

- 7.3 Derivatives of the Sine and Cosine Functions
- 7.4 Derivatives of the Other Trigonometric Functions
- 8.1 Exponential and Logarithmic Functions
- 8.2 Derivative of the Logarithmic Functions
- 8.3 Derivative of the Exponentials Function
- 9.1 The General Power Formula
- 9.2 Basic Logarithmic Form
- 9.3 Exponential Form
- 9.4 Basic Trigonometric Forms