Pokročilé spracovanie obrazu - Detekcia Hrán

Ing. Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

30.10.2019

Princíp

Hľadanie hrán

V prípade spojitej funkcie hľadáme hrany pomocou derivácii. Niektoré metódy využívajú prvé derivácie a niektoré druhé.

2D Diskrétny prípad

Diskrétny prípad

Obraz je diskrétny preto budeme robiť namiesto derivácie diferenciáciu. Teda diskretizovanú verziu derivácie.

2D

Obraz je 2-rozmerný a preto použijeme parciálne diferenciálne operátory v rôznych smeroch.

Postup pri použití prvej derivácie

Konvolúcia

Diferenciáciu realizujeme pomocou konvolúcie. Matlab má efektívnejšiu implementáciu.

Úloha

Pomocou conv2 a prewittovej filtrov nájdite hrany v obrázku zatisie.jpg. Nezabudnite použiť rgb2gray. Keďže máme dva filtre, použite $h=\sqrt{h_{\scriptscriptstyle X}^2+h_{\scriptscriptstyle y}^2}$ na získanie kombinovaných hrán. Po filtrácii obraz prahujte.

Prewittovej filtre

Matlab - edge

edge

edge(I, method) - Vráti hranový obraz podľa metódy method. Metódy založené na prvej derivácii sú: 'Sobel', 'Prewitt', 'Roberts' a 'Canny'. Metóda založená na druhej derivácii je 'log', tiež známa ako Marr-Hildrethovej metóda.

edge

edge(I, method, threshold, direction) - Je možné modifikovať prah po filtrácii a smer filtra.

Úloha

Úloha

Vyskúšajte rôzne hranové detektory založené na prvej derivácii.

Šum

Detekcia hrán je jeden z algoritmov, ktorý môže značne zlyhať pri prítomosti šumu. Zašumte si obrázok a vyskúšajte na ňom detekovať hrany. Potom skúste odstrániť šum, zlepší sa výsledok?

Cannyho detektor

Gaussovo hladenie

Cannyho detektor najprv vyhladí obraz pomocou gaussovského filtra.

Non-maximum suppression

Po vyhladení sa použije iný detektor využívajúci prvú deriváciu. Keďže jednoduchšie metódy tvoria príliš hrubé hrany v každej oblasti sa zachovajú iba hrany s najsilnejšou odozvou, pritom sa berie do úvahy aj smer hrany.

Slabé a silné hrany

Nakoniec sa použijú dva prahy na rozdelenie zvyšných hranových pixelov na dve kategórie: silné a slabé hrany. Silné hrany ostanú vo výsledku. Zo slabých ostanú iba tie ktoré sú napojené na silné hrany, resp. tvoria útvary spolu so silnými hranami.

Metóda založená na druhej derivácii

Druhá derivácia

Hrany môžeme nájsť tam kde druhá derivácia zmení znamienko (funkcia pretne nulu).

Marr-Hildrethovej metóda

LoG

Pre získanie druhej derivácie sa použije Laplacian of Gaussian filter.

$$LoG = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Marr-Hildrethovej metóda

Zero-Crossings

Po aplikácii druhej derivácie je nutné nájsť body v ktorých sa mení znamienko.

Zrýchlená metóda

Dá sa použit aj rozdiel gaussiánov (DoG) namiesto LoG.

Úloha

Vyskúšajte Marr-Hildrethovej metódu. V matlabe je pod názvom 'log'.

Unsharp masking - Princíp

Ostrenie obrazu

Unsharp masking

Unsharp masking

Máme obrázok, ktorý je rozostrený. Chceme ho vyostriť. Táto úloha sa dá pochopiť aj ako zvýrazňovanie hrán.

Unsharp masking - princíp

$$I_{ostr\acute{y}} = I_{origin\acute{a}l} + p \cdot (I_{origin\acute{a}l} - I_{vyhladen\acute{y}})$$

Úloha

Vytvorte funkciu unsharp_mask(I,p,sigma), ktorý aplikuje unsharp masking s parametrom p na obrázok I pomocou gaussovho vyhladenia s hodnotou sigma. Aplikujte na blurred.pgm.

Ostrenie obrazu Ostrenie obrazu

Laplacián

Laplacián - definícia

$$\Delta f = \nabla \cdot \nabla f = \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}} \stackrel{2D}{=} \frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}}$$

Konvolučné jadro v 2D

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} alebo \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Laplacián v matlabe

Generujeme ručne, alebo pomocou fspecial ('laplacian', alpha), kde alpha určuje ako veľmi berieme do úvahy diagonálnych susedov.

Ostrenie pomocou Laplaciánu

Postup

$$I_{ostr\acute{y}} = I_{origin\acute{a}l} - p(L_{jadro} * I_{origin\acute{a}l})$$

Úloha

Načítajte obrázok blurred.pgm a použite naň metódu ostrenia pomocou Laplaciánu. Skúste rôzne hodnoty p. Nezabudnite na dátové typy.