Practice questions for Feb 19, 2020. (Work on Problem 1 before Problem 2 before Problem 3, etc.)

1. Consider the code below to test H = W, where H and W are binary arrays of length n.

```
for (int i = 0; i < n; i++)
    if (H[i] != W[i]) return(false);
return(true);</pre>
```

Complete the following sentences and give a justifications for your answer:

- (b) #((H, W)-pairs giving false-return) =
- (c) #((H, W))-pairs giving true-return) =
- (d) For n = 4, the average #(itertions for all (H, W)-pairs) =
- (e) For n = 5, the average #(itertions for all (H, W)-pairs) =
- (f) For n = 6, the average #(itertions for all (H, W)-pairs) =
- (g) For general $n \ge 1$, the average #(itertions for all (H, W)-pairs) =
- 2. Give an alternate if-condition for the code in Problem 1 that would also correctly test H = W.
- 3. Express the set theoretic relationship between H and W, when we think of H and W representing subsets of an n-set, that is tested by the following code.

- 4. Complete the following sentences.
 - (a) For a given H of size m, $0 \le m \le n$, $\#(W \text{ disjoint from } H) = \dots$
 - (b) #((H, W))-pairs such that $H \cap W = \emptyset$ and |H| = m) =
 - (c) #((H, W)-pairs such that $H \cap W = \emptyset) = \dots$

 - (e) How many (H, W)-pairs would give true return-value for the code in Problem 3?
- 5. What is wrong in the following way of counting (H, W) pairs with $H \cap W$ non-empty? (Here, H and W are subsets of an n-set.)
 - (a) For a given *m*-subset X, $1 \le m \le n$, #((H, W)-pairs with $H \cap W = X) = 3^{n-m}$.
 - (b) $\#((H, W)\text{-pairs with } |H \cap W| = m) = C(n, m)3^{n-m}$.
 - (c) $\#((H, W)\text{-pairs with } |H \cap W| \ge 1) = \sum_{m=1}^{n} C(n, m)3^{n-m} = 4^{n} 3^{n}$.