中国科学技术大学期末试卷

2022年秋季学期 A 卷

课程名	宮称		代数拓	<u>扑</u>	课程编号		MA	MATH5004P.01		
授课教			<u> 俞建青</u>	<u>:</u> —						
考试时间		2023-02	-22, 19	:00-21:0	00 考	试形式		_闭卷_		
学生姓名					学	号				
题号	1	2	3	4	5	6	7		总分	
得分										
1. 简答题(每小题4分) (1) 写出Klein瓶的所有 Z 系数同调群										
(2) 举出一个例子:两个拓扑空间同伦等价,但是不同胚。										
(3) 实射影空间 $\mathbf{R}P^{2022}$ 是否可定向? 简要说明理由。										
(4) 举一个Abel群的短正合列的例子,要求它不是可裂(split)的。										
(5) 设 M 是一个 n 维流形,那么 $H_n(M, \mathbf{Z}_2) =$										
(6) 设1	E为底》	 充形Β上	:秩为n	的定向	实向量	丛,描	述 <i>E</i> 的'	Thom孝	$ \stackrel{\checkmark}{\approx} U_E $	
(7) 流形上定向实向量丛E存在处处非零截面的一个拓扑障碍是										
(8) 计算	章									
	$\operatorname{Hom}(\mathbf{Z}_n, \mathbf{Z}) = \underline{\hspace{1cm}}, \operatorname{Tor}(\mathbf{Z}_n, \mathbf{Z}) = \underline{\hspace{1cm}},$									
$\operatorname{Ext}(\mathbf{Z}_n, \mathbf{Z}) = \underline{\qquad}, \operatorname{Tor}(\mathbf{Z}_n, \mathbf{Z}_m) = \underline{\qquad}.$										
(9) 给出	出判定·	$\{U,V\}$	与 Maye	r-Vieto	ris耦的	两类常	用条件	:		

- 2. (10分) 证明: 正交群O(n)是一般线性群 $GL(n, \mathbf{R})$ 的强形变收缩核。
- 3. (10分) 将Mobius带沿着它的边界(圆圈)粘贴到环面 $S^1 \times S^1$ 中的圆圈 $S^1 \times \{x_0\}$, 其中 x_0 为 S^1 中的某固定点,所得到的空间记为X. 求X的所有 \mathbf{Z} 系数同调群。
- 4. (10分) 用 $\langle \cdot, \cdot \rangle$ 表示 \mathbf{R}^{n+1} 上的标准欧氏内积。用 $S^n \subset \mathbf{R}^{n+1}$ 表示标准球面。假定映射 $f: S^n \longrightarrow S^n$ 连续。

证明: 如果f的映射度 $\deg f \neq \pm 1$,那么函数

$$F(x) = \langle x, f(x) \rangle : S^n \longrightarrow \mathbf{R}$$

必有零点。

5. (10分) 若k > 0, l > 0, 证明: 连续映射 $f: S^{k+l} \to S^k \times S^l$ 诱导的 $f_*: H_{k+l}(S^{k+l}) \to H_{k+l}(S^k \times S^l).$

为平凡映射。

- 6. (10分) 设M是2k维闭可定向流形,已知 $H_{k-1}(M, \mathbf{Z})$ 无挠,证明: $H_k(M, \mathbf{Z})$ 也是无挠的。
 - 7. (14分) 设M是n维闭定向流形, $\rho_M \in H^n(M, \mathbf{Z})$ 为定向类。
 - (1) 证明:对任意的 $0 \le p \le n$,双线性形式

$$H^q(M, \mathbf{R}) \times H^{n-q}(M, \mathbf{R}) \longrightarrow \mathbf{R}, \quad (u, v) \longmapsto \langle u \cup v, \rho_M \rangle,$$

为非奇异的。

(2) 若n = 4k + 2, 证明: M的Euler数 $\chi(M)$ 为偶数。