MATHEMATICAL MODELING OF RECOMBINANT DNA EXPRESSION

Presenter: M.A.A. Aqeel

Co-author: Dr. S.P. Rajapaksha

University of Sri Jayewardenepura

INTRODUCTION

INTRODUCTION TO DNA RECOMBINATION

Genetic Engineering

- Most proteins are difficult to manufacture with available synthetic capabilities
- Genes that are involved in producing protein molecules can be assembled through gene manipulation to a cistron
- The cistron encodes necessary information and utilize intrinsic gene expression machinery to produce target proteins

INTRODUCTION TO DNA RECOMBINATION

Gene expression

OBJECTIVES

General Objective

 To develop a minimalistic mathematical model that grasps the basic mechanics of recombinant DNA expression

Specific Objectives

- To understand the crucial checkpoints of protein expression
- To understand the relationship between host history and protein production

STEP 1

Assumptions

- 1. The bacterial cytoplasm is assumed to be homogenous and posses a fixed volume
- 2. The biochemical nutrient pool is large and the changes during consumption is negligible
- No replication occurs within the simulation time/observation time
- 4. The resources available for expression is assumed to be in high numbers and continuum hypothesis and mass action-based formalisms become applicable
- 5. The synthesized proteins are assumed to be transported outside (i.e., to culture supernatant)

Bacterial Cell

STEP 2

Understanding the biochemical interactions and developing a chemical reaction network

G _o – plasmid	k1 - RNAP-promoter association
P _o – RNA polymerase (RNAP)	k2 – RNAP-promoter dissociation
GP - RNAP-plasmid complex	k3 – transcription commitment
TX _c – escape committed complex	k4 - mRNA production
M _o – mRNA	k5 – mRNA-ribosome association
R _o – ribosome	k6 – mRNA-ribosome dissociation
MR – mRNA-ribosome complex	k7 - translation commitment
TL _c – translation complex	k8 - protein production
Z _o – reporter protein	k _m – mRNA degradation

k_t - protein transport

STEP 3

Develop differential equations for the formulated reaction network

Differential Equations

$$dG_0 = -k_1G_0P_0 + k_2GP + k_4TX_C$$

$$dP_0 = -k_1G_0P_0 + k_2GP + k_4TX_C$$

$$dGP = k_1G_0P_0 - k_2GP - k_3GP$$

$$dTX_C = k3GP - k4TX_C$$

$$dM_0 = k_4 TX_C - k_m M_0 - k_5 M_0 R_0 + k_6 MR + k_8 TL_C$$

$$dR_0 = -k_5 M_0 R_0 + k_6 MR + k_8 TL_C$$

$$dMR = k_5 M_0 R_0 - k_6 MR - k_7 MR$$

$$dTL_C = k_7MR - k_8TL_C$$

$$dZ_0 = k_8 TL_C - k_t Z_0$$

$$dZ_S = k_t Z_0$$

STEP 4

Carry out simulation for a collection of time points using a computational software (*R* and the package *deSolve*)

Initial Concentrations	
Go – 0.5 nM	TL _C – 0 nM
Po – 0.5 nM	Zo – o nM
GP – o nM	Zs – o nM
TX _C – o nM	Mo – o nM
Ro – 0.5 nM	MR – o nM

Rate Constants		
k ₁ - 6x10 ⁹ M ⁻¹ min ⁻¹	k ₇ – 30 min ⁻¹	
k ₂ – 6x10 ⁹ M ⁻¹ min ⁻¹	k ₈ – 0.9 min ⁻¹	
k ₃ – 60 min ⁻¹	k _t – 60 min ⁻¹	
k ₄ – 0.9 min ⁻¹	k _m – 18 min ⁻¹	
k ₅ – 6x10 ⁹ M ⁻¹ min ⁻¹	k ₆ – 135 min ⁻¹	

Code Availability

https://github.com/zachari ah-ibrahim/recombinant-DNA-expression

Parameter availability

Kierzek, A. M., Zaim, J., & Zielenkiewicz, P. (2001). The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. The Journal of Biological Chemistry, 276(11), 8165–8172. doi:10.1074/jbc.M006264200

Simulation results (Default Settings)

- mRNA within the bacterial cell shows saturation behavior
- The protein production show a quasi-linear behavior

Simulation results (High copy number)

Simulation results (High copy number + no mRNA degradation + increased nutrient pool)

CONCLUSION

- Positive modifications can improve the production yield significantly
- Choosing a better candidate/host is also a promising approach to improve yield

THANK YOU