The parameters are an ID of ion, ion column density (N_ion, [10¹⁸ cm⁻²]), an effective temperature for the Doppler broadening $kT_{\rm eff}$ [keV], and redshift z. The ion ID is written as (atomic number)+(the number of electrons). For example, Fe xxvI is 2601, that of Fe xxv is 2602 and that of Ni xxvII is 2802. The effective temperature $kT_{\rm eff}$ is written as the $2kT_{\rm eff}/m_{\rm atom} = 2kT/m_{\rm atom} + v_{\rm turb}^2$, where T is the real temperature of the gas and $v_{\rm turb}$ is the microscopic turbulent velocity of the gas. Thus, the Doppler broadening is calculated as $\Delta E_D/E = \sqrt{2kT_{\rm eff}/m_{\rm atom}}/c$. If $kT_{\rm eff}$ is much higher than the temperature you think, then the microscopic turbulence must be very large. If you use the negative value for this parameter, it returns $\Delta v_D/c = \Delta E_D/E$ directly.

When you use it, please set the environmental variable "IONABS_DATA_PATH" to the directory of data_ionabs your .zshrc, such as "export IONABS_DATA_PATH=/path/to/the/data_ionabs"