Attention!

22th November, 2022

Alexey Zaytsev, Assistant professor

Models of Sequential Data

3 generations of Machine translation models

Machine translation: a sequence to sequence problem

Translate a sentence from one language to another

source language

target language

X

y

A la guerre comme a la guerre

На войне как на войне

First generation: Early machine translation, 50s

Cold war child: Russian to English IBM 701 Translator

Doctor Dostert predicted that "five, perhaps three years hence, interlingual meaning conversion by electronic process in important functional areas of several languages may well be an accomplished fact." (1954)

Rule-based approach, uses a dictionary to map Russian words to English

Second generation: Statistical machine translation, 90s-2010s

Learn probabilistic model from data

To translate: for an input English sequence $oldsymbol{x}$ find the most probable Russian sentence $oldsymbol{y}$

$$p(y|x) \to \max_{y}$$

Bayesian perspective:

$$p(y|x) \sim \frac{p(x|y)p(y)}{p(x|y)}$$

Translation model: learn from parallel corpus

Language model: learn from monolingual corpus

Learning translation model

Learn translation model from data

- Large amount of parallel data
- Alignment

correspondence between words in different languages

Alignment types:

- one-to-one
- spurious words
- one-to-many
- Many-to-one

Many problems on the way

Skoltech

Decoding

The optimization problem is hard

$$p(y|x) \to \max_{y}$$

- Full search is not possible
- Heuristic search algorithm to search for the best translation: look through a tree of possible options

The best SMT systems are very complex

- Language itself is very complex
- Many details we don't even mention
- Separately designed subcomponents
- Tricky feature engineering
- Extra information
- The language changes we need to maintain the system

All difficulties we saw about pre-Neural approaches to sequence processing multiplied x100!

Neural machine translation

Our goal is to do machine translation with one Neural network

It works with two RNNs

Sequence to sequence **seq2seq** architecture

Our goal is to do machine translation with one Neural network

It works with two RNNs

Our goal is to do machine translation with one Neural network

It works with two RNNs

Sequence to sequence **seq2seq** architecture

Our goal is to do machine translation with one Neural network

It works with two RNNs

Sequence to sequence **seq2seq** architecture

Encoding of a sequence

Our goal is to do machine translation with one Neural network

It works with two RNNs

Sequence to sequence **seq2seq** architecture

Language model

New world of seq2seq models

Summarization: long text – text summary

Dialogue: one phrase – another phrase

Parsing: input – output parse as a sequence

Code generation: task description – python code

Language model

NMT directly models the conditional language model

Learn probabilistic model from data

$$p(\mathbf{y}|\mathbf{x}) = p(y_T|y_1, y_2, ..., y_{T-1}, \mathbf{x}) p(y_{T-1}|y_1, y_2, ..., y_{T-2}, \mathbf{x}) ... p(y_1|\mathbf{x})$$

Each term is an RNN block

Loss function: compare logits to true words, now we have a logloss if we have a parallel corpus

Beam search decoding

Problem:

We generate tokens one by one from the very beginning Wrong decision at some step leads to wrong translation as a whole

Solution:

"Beam search": Keep a population of solutions and select the most probable sequences at each step

Beam search decoding: practical implementation

Stopping criteria:

- Generated <END> token
- Reached maximum sequence length

We have $\{y_1, y_2, ..., y_m\}$ after beam search

Selection criterion:

Compare normalized $\tilde{p}(\mathbf{y}_i|\mathbf{x})$ instead of $p(\mathbf{y}_i|\mathbf{x})$

$$\tilde{p}(\mathbf{y}|\mathbf{x}) = \frac{1}{|\mathbf{y}|} p(\mathbf{y}|\mathbf{x})$$

Advantages of NMT

- Better performance compared to SLT (Statistical Learning Translation)
- Single end2end neural network
- Much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Evaluations of Machine Translation: BLEU

"the closer a machine translation is to a professional human translation, the better it is"

Precision: share of words from \hat{y} that appear in y

True y	the	cat	is	on	the	mat
Candidate $\widehat{oldsymbol{y}}$	the	the	the	the	the	the

Unigram precision is 6/6 = 1

Limit with number of words from references: there are 2 "the" in \boldsymbol{y}

BLEU modified unigram precision is 2/6 = 0.33

BLEU evaluation examples

True y	the	cat	is	on	the	mat
Candidate $\widehat{m{y}}$	the	the	cat	cat	cat	the

Unigram precision is 6/6 = 1 Bigram precision is 1/5 = 0.2 BLEU unigram score 2/6 BLEU bigram score is 1/5

Good BLEU scores is about 0.7 Higher scores mean overfitting or other problems

General advices on BLEU

In practice we use **n-gram modified precision** with n = 4 that "best correlates to human judgement".

Good BLEU scores is about 0.7

Higher scores mean overfitting or other problems

Recall is also important

Evaluations of Machine Translation

NMT: success story for deep learning

2014: first seq2seq paper published

2016: Google translate switches from SMT to

NMT

SMT: hundreds of engineers *for many years*

NMT: handful of engineers *in a few months*

NMT problems

- Out-of-vocabulary words
- Domain mismatch: training and test data
- Context over longer texts
- Low-resource language pairs

New state of the art: attention is all we need

attention

All information about the sequence is in this vector

Attention

- Solution to the bottleneck problem
- Direction connection between parts of input and output sequence

Sequence 2 sequence with attention

Attention output

Attention distribution

Decoder

Sequence 2 sequence with attention

Sequence 2 sequence with attention

Attention: formulas

- First RNN produces encoder hidden states $m{h}_1$, ..., $m{h}_{T_r} \in \mathbb{R}^h$
- Decoder hidden state $s_t \in \mathbb{R}^h$ at time step t
- Attention scores for step t: $e^t = [s_t^T h_1, ..., s_t^T h_{T_x}] \in \mathbb{R}^{T_x}$
- Softmax to get attention distribution: all values are positive, sum of all values is 1:

$$\boldsymbol{\alpha^t} = \operatorname{softmax}(\boldsymbol{e^t}) \in \mathbb{R}^{T_{\chi}}$$

• Attention output a_t is a weighted sum of hidden states:

$$\boldsymbol{a}_t = \sum_{i=1}^{T_x} \alpha_i^t \boldsymbol{h}_i \in \mathbb{R}^h$$

• We concatenate the attention output a_t with the decoder hidden state s_t and proceed to the non-attention part of our seq2seq model

$$[\boldsymbol{a}_t, \boldsymbol{s}_t] \in \mathbb{R}^{2h}$$

Attention is just great

- Significantly improves performance of NMT
- Solves the bottleneck problem
 - All encoder tokens are connected to all decoder tokens
- No more vanishing gradients
 - All to All connection
- Provides some interpretability
 - see alignment figure
- Similar to RNN seq2seq, but greater!

BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to French translation benchmark.

Attention is a general deep learning idea

We can use attention in many architectures and many tasks

- Other NLP problems
- Sequential data processing
- Graph Neural Networks

Key value interpretation:

 S_i - query to a database Hidden state of the decoder

 k_i - keys in the database Hidden state of the encoder

 h_i - values in the database Hidden state of the encoder

- Calculate correspondence $e(s_i, k_i)$
- Calculate weights on the base of correspondence values
- Extract information as weighted sum of values $\sum_{i=1}^{n} \alpha_i \boldsymbol{h}_i$

Transformers

Key value interpretation

 $oldsymbol{q}_i$ - query to a database Hidden state of the decoder

 $oldsymbol{k}_j$ - keys in the database Hidden state of the encoder

 $oldsymbol{v}_{i}$ - values in the database Hidden state of the encoder

We calculate attention scores

$$\alpha_j = e(\boldsymbol{q}_i, \boldsymbol{k}_j) = \boldsymbol{s}_i^T \boldsymbol{k}_j$$

$$\alpha = \operatorname{softmax}(\alpha)$$

Then we extract the information as weighted sum of values

$$\mathbf{a}_{\mathrm{i}} = \sum_{j=1}^{T_{\chi}} \alpha_{j} \mathbf{v}_{j}$$

Skoltech

Matrix key value interpretation

 q_i - query to a database

 k_i - keys in the database

 \boldsymbol{v}_i - values in the database

Hidden state of the decoder

Hidden state of the *encoder*

Hidden state of the *encoder*

We calculate correspondences

$$A(q, K, V) = \sum_{i} \frac{\exp(q_i^T k_j)}{\sum_{l} \exp(q_i^T k_l)} v_j$$

$$A(Q, K, V) = \operatorname{softmax}(QK^{T})V$$

Scaled attention values

For large dimension of the space of keys d_k :

- Large variances dot products $q_i^T k_j$
- Softmax only pays attention to some keys
- Gradients are small, hard to learn

Old formula:

$$A(Q, K, V) = \operatorname{softmax}(QK^{T})V$$

New scaled formula:

$$A(Q, K, V) = \operatorname{softmax}(QK^{T}/\sqrt{d_{k}})V$$

Transformer is based on the same idea

Now we completely drop RNN part

Also we repeat *self-attention* many times

Further we'll consider separate parts:

- Multi-head attention
- Feed Forward

Attention / Self-attention block

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

 d_k is the dimension of query and key, we scale to take control of large values of dot-product in high dimensions

A possible option is to replace scaled dot-product used here with additive attention: a single-hidden layer neural network.

Scaled Dot-Product Attention

We produce queries, keys, and values using initial word embeddings

$$Q = XW^Q$$
, $dim(W^Q) = d_x \times d_q$,

$$K = XW^K$$
, $dim(W^Q) = d_x \times d_k$,

$$V = XW^V$$
, $dim(W^Q) = d_X \times d_v$,

Scaled Dot-Product Attention

Multi-Head attention

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ $where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

h heads in total

Scaled Dot-Product Attention

"Attention is all you need" paper

Full block

Two linear transformation with ReLU activation in between

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Multi-head attention

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$

$$where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

There are 6 consecutive Full blocks in the paper transformer architecture

Full block: normalization and residual connection

$$LayerNorm(x + Sublayer(x))$$

Why? Speeds up training!

- Similar to Batch Normalization
- But can be used with batch size 1
- Can be used with RNNs and Transformers

$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l} \qquad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_{i}^{l} - \mu^{l})^{2}}$$

In addition to usual embeddings of inputs we use position encoding to capture position

They are not one-hot vectors, as we want to handle various-length sequences

Real example of positional encoding with a toy embedding size of 4

Skoltech

Decoder is similar with another N=6 blocks

Additional sublayer to take into account attentions from encoder

We generate one token and proceed to the next token generation

Decoder inference

We generate one token and proceed to the next token generation

Attention visualizations

Transformer training

Masked language model:

Replace random tokens with masks, try to reconstruct them using a Neural network

Next token prediction

Predict next token

BERT | Transformer

We don't need labeled examples, we just create them

Efficiency of transformers

Brown, T. B., Mann, B., Ryder, N. et al. (2020). Language models are few-shot learners. *arXiv preprint arXiv:2005.14165*.

Model Name	n_{params}	n_{layers}	d_{model}	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

	Mean accuracy	95% Confidence Interval (low, hi)	t compared to control (p -value)	"I don't know" assignments
Control (deliberately bad model)	86%	83%-90%	-	3.6 %
GPT-3 Small	76%	72%-80%	3.9(2e-4)	4.9%
GPT-3 Medium	61%	58%-65%	10.3 (7e-21)	6.0%
GPT-3 Large	68%	64%-72%	7.3 (3e-11)	8.7%
GPT-3 XL	62%	59%-65%	10.7~(1e-19)	7.5%
GPT-3 2.7B	62%	58%-65%	10.4~(5e-19)	7.1%
GPT-3 6.7B	60%	56%-63%	11.2 (3e-21)	6.2%
GPT-3 13B	55%	52%-58%	15.3 (1e-32)	7.1%
GPT-3 175B	52%	49%-54%	16.9 (1e-34)	7.8%

Table 3.11: Human accuracy in identifying whether short (\sim 200 word) news articles are model generated. We find that human accuracy (measured by the ratio of correct assignments to non-neutral assignments) ranges from 86% on the control model to 52% on GPT-3 175B. This table compares mean accuracy between five different models, and shows the results of a two-sample T-Test for the difference in mean accuracy between each model and the control model (an unconditional GPT-3 Small model with increased output randomness).

Transformer models are monstrous

Number of parameters

Training cost estimation: 10-50 MLN US\$ for GPT-3

Skoltech

Conclusions

- Attention + positional encoding are all you need
- The attention idea is pretty general

Sources

- Stanford CS224N: NLP with Deep Learning | Winter 2019 | Lecture 8 –
 Translation, Seq2Seq, Attention
- https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html