COVID-19

COVID-19 Symptom Analysis and Prediction System (CSAPS)

CSAPS project aims to develop a system to detect and classify symptoms to predict whether a patient has COVID-19.

Students: Tao Jin

Yerbol Baizhumanov

Alisher Aliyev

Professor: Dr. Farshid Alizadeh-Shabdiz

TA: Simran Khanna

Data Information

Data Preparation

The system reads a CSV dataset containing symptom data and converts categorical columns (Yes/No) into numeric values (1/0). It then extracts symptoms into a feature vector for model training.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5435 entries, 0 to 5434
Data columns (total 21 columns):
Column Non-Null Count Dtype

#	Column	Non-Null Count Dtype						
		E425 pop pull object						
0	0	5435 non-null object						
1	1	5435 non-null object						
2	2	5435 non-null object						
3	3	5435 non-null object						
4	4	5435 non-null object						
5	5	5435 non-null object						
6	6	5435 non-null object						
7	7	5435 non-null object						
8	8	5435 non-null object						
9	9	5435 non-null object						
10	10	5435 non-null object						
11	11	5435 non-null object						
12	12	5435 non-null object						
13	13	5435 non-null object						
14	14	5435 non-null object						
15	15	5435 non-null object						
16	16	5435 non-null object						
17	17	5435 non-null object						
18	18	5435 non-null object						
19	19	5435 non-null object						
20	20	5435 non-null object						
dtypes: object(21)								
memory usage: 891.8+ KB								

```
Number of columns in the DataFrame: 21
   Breathing Problem Fever Dry Cough Sore throat Running Nose Asthma \
0 Breathing Problem Fever Dry Cough Sore throat Running Nose Asthma
   Chronic Lung Disease Headache Heart Disease Diabetes ...
  Chronic Lung Disease Headache Heart Disease Diabetes
   Gastrointestinal Abroad travel Contact with COVID Patient \
  Gastrointestinal
                    Abroad travel Contact with COVID Patient
  Attended Large Gathering Visited Public Exposed Places \
  Attended Large Gathering Visited Public Exposed Places
   Family working in Public Exposed Places Wearing Masks \
  Family working in Public Exposed Places Wearing Masks
   Sanitization from Market COVID-19
  Sanitization from Market COVID-19
```


Machine Learning Models

1 Random Forest Classifier

This ensemble model combines multiple decision trees to improve accuracy and reduce overfitting.

2 Gradient Boosting Classifier

This algorithm sequentially builds decision trees, with each tree correcting errors made by previous trees.

3 Logistic Regression

This model predicts the probability of a patient having COVID-19 using a linear combination of features.

CSAPS – CS777 Big Data Analytics

Histograms of Features

0.5

Scalable Architecture

Apache Spark's distributed computing capabilities enable efficient handling of large volumes of medical data in a scalable and reliable manner.

Cloud Computing

Spark Jobs (?)

User: hadoop Total Uptime: 1.2 min Scheduling Mode: FIFO Completed Jobs: 555

▼ Event Timeline

Only the most recent 500 submitted/completed jobs (of 555 total) are shown.

☐ Enable zooming

→ Completed Jobs (555)

Page: 1 2 3 4 5 6 >

6 Pages. Jump to 1 . Show 100 items in a page. Go

Job Id ▼	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
554	collect at /mnt/yarn/usercache/hadoop/appcache/application_1733099315105_0001/container_1733099315105_0001_01_000001/big_data_project.py:190 collect at /mnt/yarn/usercache/hadoop/appcache/application_1733099315105_0001/container_1733099315105_0001_01_000001/big_data_project.py:190	2024/12/02 00:34:54	92 ms	1/1	4/4
553	collect at /mnt/yarn/usercache/hadoop/appcache/application_1733099315105_0001/container_1733099315105_0001_01_000001/big_data_project.py:189 collect at /mnt/yarn/usercache/hadoop/appcache/application_1733099315105_0001/container_1733099315105_0001_01_000001/big_data_project.py:189	2024/12/02 00:34:54	0.1 s	1/1	4/4
552	collect at /mnt/yarn/usercache/hadoop/appcache/application_1733099315105_0001/container_1733099315105_0001_01_000001/big_data_project.py:188 collect at /mnt/yarn/usercache/hadoop/appcache/application_1733099315105_0001/container_1733099315105_0001_01_000001/big_data_project.py:188	2024/12/02 00:34:53	0.1 s	1/1	4/4
551	collect at /mnt/yarn/usercache/hadoop/appcache/application_1733099315105_0001/container_1733099315105_0001_01_000001/big_data_project.py:190 collect at /mnt/yarn/usercache/hadoop/appcache/application_1733099315105_0001/container_1733099315105_0001_01_000001/big_data_project.py:190	2024/12/02 00:34:53	80 ms	1/1	4/4
550	collect at /mnt/yarn/usercache/hadoop/appcache/application_1733099315105_0001/container_1733099315105_0001_01_000001/big_data_project.py:189	2024/12/02 00:34:53	0.1 s	1/1	4/4

Model Evaluation and Performance Metrics

The system evaluates the performance of models using Area Under ROC (AUC), which measures the ability of a model to distinguish between positive and negative classes.

Gradient Boosting

Gradient Boosting Metrics:

AUC: 0.9990594652295035

Accuracy: 0.9866028708133971

Random Forest

Random Forest Metrics: AUC: 0.9922121117446432

Accuracy: 0.9665071770334929

Logistic Regression

Logistic Regression Metrics:

AUC: 0.9899339998437865

Accuracy: 0.9760765550239234

Prediction

Predictions

The CSAPS system provides predictions for COVID-19 status based on user-provided symptom data.

Real-Time Predictions

The system allows for real-time predictions based on user input.

```
Example Predictions:

Example 1 Prediction: {'random_forest_prediction': 'No', 'random_forest_confidence': 0.03318306460384017,
    'gradient_boosting_prediction': 'No', 'gradient_boosting_confidence': 0.013263930924715228,
    'logistic_regression_prediction': 'No', 'logistic_regression_confidence': 0.0013825968442934267}

Example 2 Prediction: {'random_forest_prediction': 'No', 'random_forest_confidence': 0.40689667640422583,
    'gradient_boosting_prediction': 'Yes', 'gradient_boosting_confidence': 0.6871890561092804,
    'logistic_regression_prediction': 'Yes', 'logistic_regression_confidence': 0.5480369880970453}
```


Key Considerations and Future Directions

Data Quality

Ensuring data quality is essential for accurate model training and predictions.

Hyperparameter Tuning

Model hyperparameters (e.g., tree depth, regularization) can be adjusted for performance tuning to optimize accuracy and generalization.

Neural Networks

Future development could incorporate neural network implementations to potentially enhance efficiency and improve prediction accuracy.

Conclusion

The CSAPS project is a promising tool for aiding in the diagnosis and prediction of COVID-19. By leveraging machine learning models and scalable computing capabilities, the system can effectively analyze symptom data and provide valuable insights to healthcare professionals.

Github link

https://github.com/ChrisJT47/CS777 Project/