Section 3.2

4. Show that if |G|=pq for some primes p and q (not necessarily distinct) then either G is abelian or Z(G)=1.

Proof. (Baggett) Since Z(G) is a subgroup of G, from Lagrange's Theorem we have that |Z(G)| = 1, p, q, or pq. Suppose that $|Z(G)| \neq 1$. If |Z(G)| = p, then $|G/Z(G)| = \frac{pq}{p} = q$. Since the order of G/Z(G) is prime, G/Z(G) is cyclic. Similarly, if |Z(G)| = q, then $|G/Z(G)| = \frac{pq}{q} = p$. Since the order of G/Z(G) is prime, G/Z(G) is cyclic. If |Z(G)| = pq, then $|G/Z(G)| = \frac{pq}{pq} = 1$. Thus, G/Z(G) is the trivial group and is therefore cyclic. In all three cases where $|Z(G)| \neq 1, G/Z(G)$ is cyclic. From Exercise 3.1.36, we can conclude that G is abelian. Thus, either G is abelian or Z(G) = 1.

- 5. Let H be a subgroup of G and fix some element $q \in G$.
 - (a) Prove that gHg^{-1} is a subgroup of G of the same order as H.
 - (B) Deduce that if $n \in \mathbb{Z}^+$ and H is the unique subgroup of G of order n then $H \leq G$.

Proof. (Mobley)

(A) We know that the identity is contained in gHg^{-1} and it is therefore nonempty. Pick gh_1g^{-1} , $gh_2g^{-1} \in gHg^{-1}$. Then $(gh_1g^{-1})(gh_2g^{-1}) = gh_1h_2g^{-1}$ and the subset is closed under the operation. Next, $(ghg^{-1})^{-1} = (g^{-1})^{-1}h^{-1}g^{-1} = gh^{-1}g^{-1}$ and the subset is closed under inverses. Thus, $gHg^{-1} \leq G$.

Let $\varphi: H \to gHg^{-1}$ be defined by $h \mapsto ghg^{-1}$. Pick two elements in gHg^{-1} such that $gh_1g^{-1} = gh_2g^{-1}$. Then by using cancellation laws, $h_1 = h_2$ and φ is one-to-one. Now if $ghg^{-1} \in gHg^{-1}$, then $\varphi(h) = ghg^{-1}$ and φ is surjective. Thus, H and gHg^{-1} have the same cardinality.

- (B) H is the only subgroup of order n. But from the first part $|H| = |gHg^{-1}|$ for an arbitrary $g \in G$. Thus, $gHg^{-1} = H$ for all $g \in G$ and $H \subseteq G$.
- 8. Prove that if H and K are finite subgroups of G whose orders are relatively prime then $H \cap K = 1$.

Proof. (Mobley) We will use Proposition 3 on page 55 of the text. Pick $g \in H \cap K$. Since |H| = p and |K| = q and (p,q) = 1, it follows that $g^p = 1$, $g^q = 1$ and $g^1 = 1$. Thus g must be the identity and $H \cap K = 1$.

16. USE LAGRANGE'S THEOREM IN THE MULTIPLICATIVE GROUP $(\mathbb{Z}/p\mathbb{Z})^{\mathsf{x}}$ to prove Fermat's Little Theorem: If p is a prime then $a^p \equiv a(\mathsf{MOD}p)$ for all $a \in \mathbb{Z}$.

Proof. (Buchholz) Let $G = (\mathbb{Z}/p\mathbb{Z})^{x}$ and note that |G| = p - 1 where p is prime. Then choose $a \in G$ and let |a| = k. By Lagrange's Theorem |a| ||G|, so k|p-1. Then p-1 = km for some $m \in \mathbb{Z}^{+}$, which implies that p = km + 1. Consider,

$$a^p = a^{km+1} = (a^k)^m a = (1^m)a \equiv a \pmod{p}.$$

П

Hence $a^p \equiv a(\text{mod}p)$ for all $a \in \mathbb{Z}$.

22. Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\mathsf{x}}$ to prove Euler's Theorem: $a^{\varphi(n)} \equiv 1 \pmod{n}$ for every integer a relatively prime to n, where φ denotes Euler's φ -function.

Proof. (Buchholz) Let $G = (\mathbb{Z}/n\mathbb{Z})^{\mathbf{x}}$ and note that $|G| = \varphi(n)$. Then choose $a \in G$ where (a, n) = 1. Let |a| = k. By Lagrange's Theorem |a| ||G|, so $k |\varphi(n)$. Then $\varphi(n) - 1 = km$ for some $m \in \mathbb{Z}^+$. Consider,

$$a^{\varphi(n)} = a^{km} = (a^k)^m = (1^m) \equiv 1 \pmod{n}.$$

Hence $a^{\varphi(n)} \equiv 1 \pmod{n}$ for all $a \in \mathbb{Z}$ which is relatively prime to n.

Section 3.3

3.3.1 Let F be a finite field of order q and let $n \in \mathbb{Z}^+$, then $|GL_n(F): SL_n(F)| = q - 1$.

Proof. (Gillispie) Consider the function $\varphi: GL_n(F) \to F$ defined by

$$g \mapsto \det(g)$$

.

Note that by the properties of the determinate we know that $\varphi(e) = 1$ and if $g_1, g_2 \in GL_n(F)$, then $\det(g_1) \det(g_2) = \det(g_1g_2)$ and so φ is a group homomorphism.

Now if we let $s \in SL_n(F)$, by definition we know that $\varphi(s) = \det(s) = 1$, so $s \in Ker\varphi$ and $SL_n(F) \subset Ker\varphi$.

If we let $k \in Ker\varphi$, then we know that $1 = \varphi(k) = \det(k)$, which by definition means that $k \in SL_n(F)$, and so $SL_n(F) = Ker\varphi$.

By the first isomorphism theorem we mow have that $|GL_n(F): SL_n(F)| = |\varphi(GL_n(F))|$.

If $g \in GL_n(F)$, then $\det(g) \in F - 0$ and so $\varphi(GL_N(F)) \subset F - \{0\}$. Now, if we let $f \in F$, I claim that the $n \times n$ matrix with all zeroes(in F) off the main diagonal, f in the upper-left hand position, and ones(in F) in every other main diagonal position has determinate f. By construction this matrix is in $GL_n(F)$, and so $F - \{0\} \subset \varphi(GL_n(F))$.

We have that $|GL_n(F): SL_n(F)| = |\varphi(GL_n(F))| = |F - \{0\}| = q - 1$. As needed.

3. Prove that if H is a normal subgroup of G of prime index p then for all $K \leq G$ either

I.
$$K \le H$$
 Or

II.
$$G = HK$$
 AND $|K : K \cap H| = p$.

Proof. (Hazlett) Suppose $K \not \leq H$. Then $H \subset K$. Hence we can deduce that |G:HK|=1 since |G:H|=p, a prime. So HK=G. Then by the Second Isomorphism Theorem we have $HK/H \cong K/H \cap K$. Consequently $G/H \cong K/H \cap K$. Therefore $|K:K \cap H|=p$.

3.3.7 Let M and N be normal subgroups of G s.t. MN = G, then $G/(N \cap M) \cong (G/M) \times (G/N)$.

Proof. (Gillispie) Define $\varphi: G \to G/M \times G/N$ by $g \mapsto gM, gN$.

Note that $\varphi(e_G) = e_G M, e_G N = M, N$ which is the identity in $G/M \times G/N$.

Let $g_1, g_2 \in G$. Because G = MN, there exist $m_1, m_2 \in M$ and $n_1, n_2 \in N$ s.t. $g_1 = m_1 n_1$ and $g_2 = m_2 n_2$

$$\varphi(g_1g_2) = g_1g_2M, g_1g_2N$$

$$= (g_1M, g_1N)(g_2M, g_2N)$$

$$= \varphi(g_1)\varphi(g_2)$$

And so φ is a homomorphism.

Consider the kernel of φ . Let $k \in Ker\varphi$, that is kM, kN = M, N by proposition 3.1.4 we have then that $k \in M$ and $k \in N$, so $k \in M \cap N$.

Now let $g \in M \cap N$, notice that $\varphi(g) = (gM, gN) = (M, N)$ again by proposition 3.1.4, and so $Ker\varphi = M \cap N$.

I claim now that φ is surjective, and thus by the first isomorphism theorem $G/M \times G/N \cong G/M \cap N$.

Let $(pM, qN) \in G/M \times G/N$, since $p, q \in G = MN$ and by proposition 3.2.6 MN = NM, there exist $m_1, m_2 \in M$ and $n_1, n_2 \in N$ s.t. $p = m_1 n_1$ and $q = n_2 m_2$. By Theorem 3.1.6

$$\varphi(n_1 m_2) = (n_1 m_2 M, n_1 m_2 N)
= (n_1 M, N n_1 m_2)
= (n_1 m_1 M, N m_2)
= (pM, N n_2 m_2)
= (pM, Nq)
= (pM, qN)$$

So, φ is surjective onto $G/M \times G/N$, and by the first isomorphism theorem $G/M \cap N = G/Ker\varphi \cong \varphi(G) = G/M \times G/N$.

Section 3.4

2. Exhibit all 3 composition series for for Q_8 and all 7 composition series for D_8 . List the composition factors in each case.

(Schamel) Q_8 :

$$\begin{split} &\langle 1 \rangle \lhd \langle -1 \rangle \lhd \langle i \rangle \lhd Q_8 \\ &\langle 1 \rangle \lhd \langle -1 \rangle \lhd \langle j \rangle \lhd Q_8 \end{split}$$

$$\langle 1 \rangle \lhd \langle -1 \rangle \lhd \langle j \rangle \lhd Q_8$$

 D_8 :

$$\langle 1 \rangle \triangleleft \langle s \rangle \triangleleft \langle s, r^2 \rangle \triangleleft D_8$$

$$\langle 1 \rangle \triangleleft \langle sr^2 \rangle \triangleleft \langle s, r^2 \rangle \triangleleft D_8$$

$$\langle 1 \rangle \triangleleft \langle r^2 \rangle \triangleleft \langle s, r^2 \rangle \triangleleft D_8$$

$$\langle 1 \rangle \triangleleft \langle r^2 \rangle \triangleleft \langle r \rangle \triangleleft D_8$$

$$\langle 1 \rangle \triangleleft \langle r^2 \rangle \triangleleft \langle r \rangle \triangleleft D_8$$

$$\langle 1 \rangle \triangleleft \langle r^2 \rangle \triangleleft \langle sr, r^2 \rangle \triangleleft D_8$$

$$\langle 1 \rangle \triangleleft \langle sr \rangle \triangleleft \langle sr, r^2 \rangle \triangleleft D_8$$

$$\langle 1 \rangle \triangleleft \langle sr^3 \rangle \triangleleft \langle sr, r^2 \rangle \triangleleft D_8$$

$$\langle 1 \rangle \triangleleft \langle sr^3 \rangle \triangleleft \langle sr, r^2 \rangle \triangleleft D_8$$

In both groups and all composition series, the index between sucessive terms is always 2. Thus, for both groups, each composition series has 3 composition factors, all isomorphic to \mathcal{C}_2 .

5. Prove that subgroups and quotient groups of a solvable group are solvable.

Proof. (Bastille) Let G be a solvable group, and let $N \leq G$. Since G is solvable, there exists a chain of subgroups of G satisfying:

$$1 = G_0 \unlhd G_1 \unlhd G_2 \unlhd \cdots \unlhd G_s = G$$

where G_{i+1}/G_i is Abelian for $i = 0, 1, \dots, s-1$.

We will show that N is solvable by considering a chain of $G_i \cap N$. Let $i \in \{0, 1, \dots, s-1\}$.

Since $G_i \subseteq G_{i+1}$, $G_i \subseteq G_{i+1}$. Hence if $g \in G_i \cap N$ then $g \in N$ and $g \in G_i \subseteq G_{i+1}$, so $g \in G_{i+1} \cap N$. Furthermore, the intersection of two subgroups is a subgroup, hence $G_i \cap N \subseteq G_{i+1} \cap N$. We also note that if $g \in G_{i+1} \cap N$ and $h \in G_i \cap N$, then $ghg^{-1} \in N$ by closure under . of N (because $g, h \in N$), and $ghg^{-1} \in G_i$ since $g \in G_{i+1}, h \in G_i$ and $G_i \subseteq G_{i+1}$. Thus, for all $g \in G_{i+1} \cap N$, and for all $h \in G_i \cap N$, $ghg^{-1} \in G_i \cap N$, and so $G_i \cap N \subseteq G_{i+1} \cap N$.

Now we need to show that $G_{i+1} \cap N/G_i \cap N$ is Abelian. In Exercise 3.1.40, we showed that $\bar{x}, \bar{y} \in G_{i+1}/G_i$ commute if and only if $x^{-1}y^{-1}xy \in G_i$. So in particular, since G_{i+1}/G_i is indeed Abelian, if $x, y \in G_{i+1} \cap N \subseteq G_{i+1}$ then $x^{-1}y^{-1}xy \in G_i$. But since $x, y \in N$, by closure under inverses and ., $x^{-1}y^{-1}xy \in N$. Hence $x^{-1}y^{-1}xy \in G_i \cap N$. Thus by Exercise 3.1.40, \bar{x}, \bar{y} commute in $G_{i+1} \cap N/G_i \cap N$ (well-defined) so $G_{i+1} \cap N/G_i \cap N$ is Abelian.

Therefore we have the following chain of subgroups (with possibly several $\{1\}$ sets on the left, and several N's on the right):

$$1 = H_0 \unlhd H_1 \unlhd \cdots \unlhd H_{s-1} \unlhd H_s = N$$

where $H_i = G_i \cap N$ for all $i = 0, 1, \dots, s$ and H_{i+1}/H_i is Abelian for all $i = 0, 1, \dots, s-1$. Therefore by definition, N is solvable.

Now for quotient groups, let H be a normal subgroup of G. If H = G, then trivially we have the chain $1 = 1H/H \le G/H = 1$ and (G/H)/(H/H) is Abelian (it contains again only the trivial group), and so G/H is solvable. Now assume that $H \triangleleft G$. We will construct a chain using $(G_iH)/H$. Let $i \in \{0, 1, \dots, s-1\}$.

By the Second Isomorphism Theorem, since $G_i \leq G = N_G(H)$, then $G_iH \leq G$, and $H \leq G_iH$. We also have $G_iH \leq G_{i+1}H$ (since if $y = gh \in G_iH$ then $g \in G_i \subseteq G_{i+1}$ so $gh \in G_{i+1}H$). Hence we obtain the following chain:

$$H = G_0 H < G_1 H < G_2 H < \dots < G_{s-1} H < G_s H = GH = G.$$

We now show that $G_iH \leq G_{i+1}H$. Let $y = bh_1 \in G_{i+1}H$ and let $x = ah_2 \in G_iH$. Then,

$$yxy^{-1} = bh_{1}ah_{2}h_{1}^{-1}b^{-1} = bh_{1}(b^{-1}b)a(b^{-1}b)h_{2}h_{1}^{-1}b^{-1}$$

$$= \underbrace{(bh_{1}b^{-1})(bab^{-1})}_{\in H} \underbrace{(bh_{2}h_{1}^{-1}b^{-1})}_{\in H} \quad \text{since } H \leq G \text{ and } b \in G_{i+1} \subseteq G$$

$$= h_{3}\underbrace{bab^{-1}}_{\in G_{i}}h_{4} \quad \text{since } G_{i} \leq G_{i+1} \text{ so set } bab^{-1} = a_{1}$$

$$= \underbrace{h_{3}a_{1}}_{\in H_{i}} \quad h_{4} \quad \text{since they are subgroups, so } h_{3}a_{1} = a_{2}h_{5} \text{ for some } a_{2} \in G_{i}, h_{5} \in H$$

$$= a_{2}h_{5}h_{4} = a_{2}h_{6} \in G_{i}H.$$

Therefore G_iH is normal in $G_{i+1}H$. Hence by the Fourth Isomorphism Theorem, we have:

$$1 = (G_0H)/H \le (G_1H)/H \le \cdots \le (G_{s-1}H)/H \le G/H.$$

We now need only show that $((G_{i+1}H)/H)/((G_iH)/H)$ is Abelian. By the Third Isomorphism Theorem, this is equivalent to showing $(G_{i+1}H)/(G_iH)$ is Abelian since $((G_{i+1}H)/H)/((G_iH)/H) \cong (G_{i+1}H)/(G_iH)$. We reprise a similar argument: since G_{i+1}/G_i is Abelian, for any $x, y \in G_{i+1}$, $x^{-1}y^{-1}xy \in G_i$. Now consider $(G_{i+1}H)/(G_iH)$. Let $z_1, z_2 \in G_{i+1}H$. Then there exist $x, y \in G_{i+1}$

and $h_1, h_2 \in H$ such that $z_1 = xh_1, z_2 = yh_2$. We must show that $z_1^{-1}z_2^{-1}z_1z_2 \in G_iH$. Observe that:

$$\begin{split} z_1^{-1} z_2^{-1} z_1 z_2 &= h_1^{-1} x^{-1} h_2^{-1} y^{-1} x h_1 y h_2 = h_1^{-1} x^{-1} h_2^{-1} (x x^{-1}) y^{-1} x (y y^{-1}) h_1 y h_2 \\ &= h_1^{-1} \underbrace{\left((x^{-1}) h_2^{-1} (x^{-1})^{-1} \right)}_{\in H} x^{-1} y^{-1} x y \underbrace{\left(y^{-1} h_1 (y^{-1})^{-1} \right)}_{\in H} h_2 \quad \text{since } H \leq G \text{ and } x^{-1}, y^{-1} \in G \\ &= h_1^{-1} h_3 \underbrace{x^{-1} y^{-1} x y}_{\in G_i} h_4 h_2 \quad \text{since } G_{i+1} / G_i \text{ is Abelian} \\ &= \underbrace{h_5 g_1}_{\in HG_i = G_i H} h_6 = g_2 h_7 h_6 = g_2 h_8 \in G_i H. \end{split}$$

Therefore $(G_{i+1}H)/(G_iH)$ is Abelian and so is $((G_{i+1}H)/H)/((G_iH)/H)$. Thus, G/H is solvable. Hence we find that subgroups and quotient groups of solvable groups are solvable.

6. Prove part (1) of the Jordan-Holder Theorem by induction on |G|: Every finite group G with |G| > 1 has a composition series.

Proof. (Schamel) If |G| = 2 then $G \cong C_2$. Since 1 is normal in G and $G/1 \cong G$, which is simple, we conclude that $1 = N_1 \triangleleft N_2 = G$ is a composition series for G.

Suppose |G| = n > 2 and that every group of strictly smaller order has a composition series. Note that $1 \triangleleft G$, so G has at least one normal subgroup. Let H be a proper normal subgroup of G of maximal order (that is, there is no proper normal subgroup of G of larger order). We will show that G/H is simple. To the contrary, suppose G/H is not simple. Then there is a normal subgroup $K/H \triangleleft G/H$ such that K/H is neither the trivial subgroup nor all of G/H. But then, by the Fourth Isomorphism Theorem, $\exists K \triangleleft G$ and |G:K| = |G/H:K/H| > 1 and hence $K \neq G$, but $H \leq K$ and |K:H| = |K/H:1| = |K/H| > 1. Thus H is does not have maximal order amongst the proper normal subgroups of G, a contradiction. We conclude G/H is simple. By our induction hypothesis, H has a composition series: $1 = N_1 \triangleleft \cdots \triangleleft N_k = H$ where N_{i+1}/N_i is simple for all i. Then $1 = N_1 \triangleleft \cdots \triangleleft N_k = H \triangleleft G$ is a composition series for G. This inductive construction allows us to conclude that every finite group of order 2 or more has a composition series.

Section 3.5

3. Prove that S_n is generated by $\{(i \mid i+1) \mid 1 \leq i \leq n-1\}$.

Proof. (Baggett) Let $A = \langle \{(i \ i+1) \mid 1 \le i \le n-1\} \rangle$. Since S_n is closed under products, $A \le S_n$. Because any permutation in S_n can be expressed as a product of transpositions, we need only show that all transpositions are generated by A. Take $(a \ b)$ where $1 \le a < b \le n$. Then

Thus, $(a \ b) \in A$ for any transposition $(a \ b)$. Therefore, $A = S_n$.

4. Show that $S_n = \langle (12), (123...n) \rangle$ for all $n \geq 2$.

Proof. (Lawless) We have just shown that S_n is generated by the set of transpositions of the form $(i \ i+1)$. We will show we can generate these elements as products of elements from $\{(1\,2), (1\,2\,3\ldots n)\}$. Pick an arbitrary i with $1 \le i \le n-1$. Then $(1\,2\ldots n)^{n-i+1}$ gives us:

$$\begin{pmatrix} 1 & 2 & \cdots & i & i+1 & \cdots & n \\ n-i+2 & n-i+3 & \cdots & 1 & 2 & \cdots & n-i+1 \end{pmatrix}$$

Composing this with (12) to this gives us:

$$\begin{pmatrix} 1 & 2 & \cdots & i & i+1 & \cdots & n \\ n-i+2 & n-i+3 & \cdots & 2 & 1 & \cdots & n-i+1 \end{pmatrix}$$

Finally, composing this with $(1 \ 2 \cdots n)^{i-1}$ gives us:

$$\begin{pmatrix} 1 & 2 & \cdots & i & i+1 & \cdots & n \\ 1 & 2 & \cdots & i+1 & i & \cdots & n \end{pmatrix}$$

Therefore, $(i \ i+1) = (1 \ 2 \cdots n)^{i-1} (1 \ 2) (1 \ 2 \cdots n)^{n-i+1}$. Thus $S_n = \langle (1 \ 2), (1 \ 2 \ 3 \dots n) \rangle$.

6. Show that $\langle (13), (1234) \rangle$ is a proper subgroup of S_4 . What is the isomorphism type of this group?

Proof (Granade). Recall that $D_8 = \langle r, s | r^4 = s^2 = 1, rs = sr^{-1} \rangle$. If we show that these relations hold for s = (13) and r = (1234), then we will have that $\langle (13), (1234) \rangle \cong D_8$. Then, since $|D_8| = 8 < 4!$, we will have that $\langle (13), (1234) \rangle$ is a proper subgroup of S_4 . Following this plan, note that |(13)| = 2 and |(1234)| = 4. Then, |(13)| = (12)| =

10. Find a composition series for A_4 . Deduce that A_4 is solvable.

Proof (Granade). We claim that the following is a composition series for A_4 :

$$\{1\} \le \langle (12)(34) \rangle \le K_4 \le A_4$$

To show this, we must demonstrate that $\langle (12) (34) \rangle \triangleleft K_4$, $K_4 \triangleleft A_4$, and that $K_4 / \langle (12) (34) \rangle$ and A_4 / K_4 are simple.

Note that $K_4 = \{(12)(34), (13)(24), (14)(23), (1)\} \subseteq A_4$. Then, since K_4 is a group, $K_4 \leq A_4$. Moreover, since conjugation in S_4 (and hence $A_4 \leq S_4$) preserves cycle decomposition structure, and since K_4 contains all elements of A_4 that are the product of two disjoint transpositions, we have that $\sigma K_4 \sigma^{-1} = K_4$ and thus that $K_4 \triangleleft A_4$. To see that A_4/K_4 is simple, note that $|A_4/K_4| = |A_4| : |A_4| = |A_4| / |A_4| = |A_4|$

Next, note that since K_4 is Abelian, all subgroups are also normal. In particular, $\langle (12) (34) \rangle \triangleleft K_4$. To see that $K_4 / \langle (12) (34) \rangle$ is simple, note that $|K_4 / \langle (12) (34) \rangle| = |K_4| / |\langle (12) (34) \rangle| = |K_4| / |\langle (12) (34) \rangle| = 4/\text{lcm}(2,2) = 4/2 = 2$. Thus, $K_4 / \langle (12) (34) \rangle \cong C_2$, which is simple.

We have therefore shown that each subgroup inclusion is normal, and that each factor is simple. We conclude that the given series is in fact a composition series for A_4 .

Note that the proof also gives that A_4 is solvable, since $A_4/K_4 \cong C_3$, $\langle (12)(34) \rangle$ are both isomorphic to cyclic groups, which are Abelian.

15. Prove that if x and y are distinct 3-cycles in S_4 with $x \neq y^{-1}$, then the subgroup of S_4 generated by x and y is A_4 .

Proof. (Bastille) Note that $H:=\langle x\rangle=\{1,x,x^{-1}\}$ and $K:=\langle y\rangle=\{1,y,y^{-1}\}$. We verify that any finite product of x,y and their powers will give an even permutation since x and y are both even, so $\langle x,y\rangle\leq A_4$. We have by assumption $x\neq y,y^{-1}$ hence $x^{-1}\neq y^{-1},y$. Therefore $H\cap K=1$. Hence we have:

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|} = 9.$$

But by definition, $HK \subseteq \langle x, y \rangle$. Hence $9 \le |\langle x, y \rangle| \le |A_4| = 12$. By Lagrange's Theorem, we must have $|\langle x, y \rangle| |A_4$. Hence $|\langle x, y \rangle| = 12$ and $\langle x, y \rangle = A_4$.