# 인터네트워크 기술



# 01 라우팅 기능



## 라우팅 기능 (1)

■ 라우팅 시스템은 데이터를 최종 목적지까지 올바른 경로로 중개하는 교환 기능을 제공데이터 통신망에서 제공하는 다양한 라우팅 시스템의 종류를 설명



- 회선 교환 시스템은 고정 대역으로 할당된 연결을 설정하여 데이터 전송을 시작
- 회선 교환 시스템에서는 하나의 연결에 대하여 전송되는 모든 데이터가 동일한 경로로 라우팅됨

# 라우팅 기능 (2)

- 패킷 교환 시스템은 컴퓨터 네트워크 환경에서 주로 이용
- 데이터를 미리 패킷 단위로 나누어 전송하므로 패킷을 기준으로 라우팅이 이루어짐
- 패킷 교환에는 모든 패킷의 경로를 일정하게 유지시키는 가상 회선 방식과 패킷들이 각각의 경 로로 전송되는 데이터그램 방식이 있음

## 라우팅 기능 (3)

#### ■ 라우팅 시스템

- ▶ 전송 선로를 이용해 데이터를 전송할 때는 전용 회선을 이용하거나 교환 회선을 이용할 수 있음
- 전용 회선 방식에서는 송신 호스트와 수신 호스트가 전용으로 할당된 통신 선로로 데이터를 전송
- 교환 회선 방식에서는 전송 선로 하나를 다수의 호스트가 공유



#### 라우팅 기능 (4)

그림 3-3 회선 교환과 패킷 교환

- 교환 회선을 이용하는 방식은 데이터의 전송 경로와 관련하여 크게 두 가지로 구분
  - 하나는 [그림 3-3]의 (a)처럼 데이터를 전송하기 전에 통신 양단 사이에 고정된 연결 경로를 설정하는 회선 교환 방식
  - 다른 하나는 (b)처럼 미리 연결을 설정하지 않고, 데이터를 패킷 단위로 나누어 전송하는 패킷 교환 방식



## 라우팅 기능 (5)

- 회선 교환
  - 통신하고자 하는 호스트가 데이터를 전송하기 전에 연결 경로를 미리 설정하는 방식
- ■메시지 교환
  - 데이터를 전송하기 전에 경로를 설정하지 않고, 대신 전송하는 메시지의 헤더마다 목적지 주소를 표시 하는 방식
- 패킷 교환
  - 회선 교환과 메시지 교환의 장점을 모두 이용
  - 인터넷에서 사용하는 패킷 교환 시스템의 장점은 전송 대역의 효율적 이용, 호스트의 무제한 수용, 패킷에 우선순위 부여라는 세 가지로 요약

## 패킷 교환 (1)

데이터를 패킷 교환 방식으로 전송하는 네트워크는 가상 회선과 데이터그램이라는 두 가지 전송 방식을 지원

#### ■ 가상 회선

• 일반적으로 가상 회선 방식은 연결형 서비스를 지원하기 위한 기능으로, 미리 설정된 논리적인 연결을 통해 전송되는 모든 패킷의 경로가 동일

가상 회선 방식에서 패킷을 전송하는 방식을 시간의 흐름에 따라 보여줌



## 패킷 교환 (2)

그림 3-5 데이터그램 방식의 패킷 경로

#### ■ 데이터그램

• 패킷 교환 방식에서 비연결형 서비스를 이용해 패킷을 독립적으로 전송하는 것 데이터그램 방식에서 패킷을 전송하는 과정을 시간의 흐름에 따라 보여줌



#### 프레임 릴레이

- 낭비 요소를 제거해 데이터 전송 속도를 향상시키기 위해 프레임 릴레이 방식이 고안
- 동일한 속도의 전송 매체로 고속 데이터 전송을 지원할 수 있도록 고안된 기술이 프레임 릴레이

송신 호스트가 데이터 패킷을 보내고, 수신 호스트가 긍정 응답 패킷으로 회신하는 과정을 패킷 교환 방식과 프레임 릴레이 방식에 각각 적용한 예



(b) 프레임 릴레이망

전송 데이터 공정 응답 하위 계층의 긍정 응답

#### 네트워크의 분류 (1)

- 컴퓨터 네트워크를 분류하는 가장 간단한 기준은 네트워크의 크기
  - 매우 빠른 전송 속도를 지원하는 시스템 버스를 이용해 다수의 프로세서를 연결하는 다중 처리 시스템 이 해당
- 컴퓨터 시스템의 내부와 컴퓨터 네트워크의 차이는 전송 매체의 성능
- 네트워크는 물리적으로 일정 거리 이상 떨어진 위치에서 독립적으로 실행할 수 있는 호스트 간의 데이터 송수신 기능 지원
- 호스트 사이의 연결 거리를 기준으로 네트워크를 LAN, MAN, WAN으로 구분

## **LAN (1)**

#### LAN

- 단일 건물이나 학교 같은 가까운 거리에 위치하는 호스트로 구성된 네트워크
- LAN은 MAN이나 WAN 환경보다 호스트 간의 간격이 가깝기 때문에 데이터를 브로드캐스팅 방식으로 전송
- ▶ LAN에서는 보통 수십 Mbps~수 Gbps의 전송 속도를 지원
- LAN 환경에서 호스트를 연결하는 방식을 구성 형태에 따라 버스형, 링형으로 구분

## LAN (2)

#### ■ 버스형

- LAN 환경에서 가장 많이 사용하는 네트워크 연결 형태는 버스형과 링형
- 버스형은 공유 버스 하나에 여러 호스트를 직접 연결



- 버스형에서는 전송 데이터가 모든 호스트에 브로드캐스팅되므로 라우팅 기능이 필요없음
- 둘 이상의 호스트에서 데이터를 동시에 전송하려고 하면 공유 버스에서 데이터 충돌이 발생
- 이다넷은 충돌이 발생하는 것을 허용하는 대신, 충돌 후에 문제를 해결하는 사후 해결 방식에 해당

## **LAN (3)**

#### ■ 링형

- 전송 호스트의 연결이 순환 구조인 링 형태
- 데이터는 시계나 반시계 방향으로 전송될 수 있지만, 미리 정해진 한쪽 방향으로만 전송



- 링형도 둘 이상의 호스트에서 데이터를 동시에 전송하면 충돌이 발생할 수 있으므로 이 문제를 고려해야 함
- 링형에서는 토콘이라는 제어 프레임을 사용해 충돌 가능성을 원천적으로 차단

#### MAN

- MAN은 LAN보다 큰 지역을 지원
- 사용하는 하드웨어와 소프트웨어는 LAN과 비슷하지만, 연결 규모가 더 큼
- MAN은 근처에 위치한 여러 건물이나 한 도시에서의 네트워크 연결로 구성 가능
- MAN을 위한 국제 표준안은 DQDB

그림 3-9 DQDB 구조에서의 호스트 연결

DQDB에는 [그림 3-9]의 화살표처럼 2개의 단방향 선로가 존재하며, 이 전송 선로를 통해 모든 호스트가 연결



#### WAN

- WAN은 국가 이상의 넓은 지역을 지원하는 네트워크 구조
- 거리가 먼 WAN에서는 브로드캐스팅 방식을 지원하기 어렵고, 또한 전송 매체의 길이가 길어지는 환경을 고 려해야 함
- 점대점으로 연결된 WAN 환경에서는 전송과 더불어 라우팅 기능이 반드시 필요 WAN에서는 전송 매체를 이용해 호스트를 일대일로 연결하는 방식으로 네트워크를 확장



그림 3-10 WAN 구조

WAN에서는 호스트 사이의 거리가 멀어 연결의 수가 증가할수록 전송 매체를 많이 사용해 비용이

# 03 인터네트워킹



# 인터네트워킹 (1)

#### ■의미

• 라우팅 장비는 네트워크 내부에서 경로 선택 기능을 수행하는데, 둘 이상의 서로 다른 네트워크를 연결하는 기능을 인터네트워킹이라 함



## 인터네트워킹 (2)

- 네트워크 장비는 수행 기능에 따라 리피터, 브리지, 라우터로 구분
  - 리피터
    - 물리 계층의 기능을 지원
    - 양쪽 단의 물리적인 특성이 같으면 한쪽 단에서 들어온 비트 신호를 증폭해 다른 단으로 단순히 전달하는 역할을 함
  - 브리지
    - 물리 계층을 포함하여 데이터 링크 계층의 기능을 지원
    - 한쪽 단에서 들어온 프레임의 MAC 계층 헤더를 다른 단의 MAC 계층 헤더로 변형해 전송할 수 있어 종류가 다른 LAN을 연결할 수 있음
  - 라우터
    - 물리 계층, 데이터 링크 계층, 네트워크 계층의 기능을 지원
    - 네트워크 계층의 라우팅 기능을 수행할 수 있으므로 여러 포트를 사용해 다수의 LAN을 연결하는 구조를 지원

## 브리지 (1)

그림 3-12 브리지의 역할

- 브리지의 좌우에 위치하는 LAN은 종류가 같을 수도, 다를 수도 있음
- 양쪽 LAN이 모두 이더넷을 사용하면 프레임 헤더를 해석하는 간단한 작업을 통해 쉽게 중개할수 있지만 종류가 다르면 프레임 변환 등의 복잡한 과정이 필요
  - [그림 3-12]는 데이터 링크 계층의 기능을 수행하는 일반 브리지의 역할을 보여줌 양쪽 LAN의 종류가 달라 한쪽 LAN의 헤더를 제거하고 다른 쪽 LAN의 헤더를 붙여주는 과정



## 브리지 (2)

#### ■ 트랜스페런트 브리지

- 트랜스페런트 브리지는 라우팅 기능이 투명하게 보이기 때문에 라우팅 작업이 사용자의 부담 없이 이루어짐
- 브리지 사용자는 전송하는 프레임 헤더에 라우팅 정보를 추가하지 않아도 되며, 필요한 라우팅 과정은 브리지가 자동으로 수행
- 브리지에 연결된 임의의 LAN으로부터 프레임이 도착했을 때, 브리지가 수행하는 동작
  - 첫째, 해당 프레임의 수신 호스트가 송신 호스트와 동일한 방향에 위치한 경우에는 프레임을 중개하는 과정이 필요 없기 때문에 무시해도 됨
  - 둘째, 프레임의 수신 호스트가 송신 호스트와 다른 방향에 위치한 경우에는 수신 호스트가 있는 방향으로 프레임을 중개해야 함

# 브리지 (3)

• [그림 3-13]은 브리지 BI과 B2를 사용하는 환경에서 브리지 BI에는 LAN을 3개(LANI, LAN2, LAN3) 연결하고, 브리지 B2에는 LAN을 2개(LAN3, LAN4) 연결한 예



#### 라우팅 테이블

- 트랜스페런트 브리지가 제대로 동작하려면 라우팅 테이블 정보가 정확해야 함
- 라우팅 테이블은 LAN이 동작하면서 자동으로 생성
- 데이터 전달 과정에서 얻은 프레임의 송신 호스트 주소와 포트 번호의 정보를 라우팅 테이블에 반영
- 네트워크의 동작 과정에서 라우팅 정보를 얻는 방식을 역방향 학습 알고리즘이라고 함

브리지 BI과 B2의 라우팅 테이블에 호스트 c의 이동을 반영한 그림

| (a) 브리지 B1 | а | b | С | d | е | f | g    |
|------------|---|---|---|---|---|---|------|
|            | 1 | 1 | 3 | 2 | 3 | 3 | 3    |
|            |   |   |   |   |   |   |      |
|            |   |   |   |   |   |   |      |
| (b) 브리지 B2 | а | b | С | d | е | f | g    |
|            |   |   |   |   |   |   | 1000 |

그림 3-14 호스트 c가 LAN4로 이동한 경우의 라우팅 테이블

## 스패닝 트리

· 네트워크에 이중 경로가 존재하면 잘못된 라우팅 정보를 얻게 됨



 네트워크의 설계 과정에서 순환 구조가 불가피하게 만들어지면 네트워크의 논리적인 연결 상태를 비순환 형태로 간주함으로써, 역방향 학습 알고리즘이 올바르게 동작하도록 해야 함

# 소스 라우팅 브리지

- 트랜스페런트 브리지는 공유 버스에서 구현되는 CSMA/CD 방식과 토큰 버스 방식에서 사용
- 사용자 입장에서 보면 간편하지만, 효율적이지 못하다는 단점도 있음
- 일반적으로 소스 라우팅 브리지는 링 구조의 네트워크에서 사용

## IP 인터네트워킹 (1)

- 인터넷 환경에서 IP 프로토콜을 사용해 IP 인터네트워킹을 지원하려면 [그림 3-16]처럼 송수신 호스트 간의 여러 네트워크 인터페이스를 거쳐 패킷을 전달할 수 있어야 함
- 인터넷에 연결된 모든 시스템은 공통으로 IP 프로토콜을 지원해야 하며, 하위의 데이터 링크 계층에는 다양한 종류가 존재



# IP 인터네트워킹 (2)

- 라우터에는 양쪽 MAC 계층의 프레임 구조에 차이가 있을 때 이를 변환하는 기능이 필요
- [그림 3-17]처럼 라우터 A는 입력된 이더넷 헤더를 PPP 헤더로 변환하고, 라우터 B는 PPP 헤더를 ATM 헤더로 변환해주어야 함



# 인터넷 라우팅 (1)

그림 3-18 라우터로 네트워크를 구성한 예

#### ■ 고정 경로 배정

- 간단한 구현만으로도 효과적인 라우팅이 가능한 방법으로, 송수신 호스트 사이에 고정불변의 경로를 배정
- 전송 경로가 고정되므로 트래픽 변화에 따른 동적 경로 배정이 불가능하다는 단점이 있음



## 인터넷 라우팅 (2)

- 각 라우터가 관리하는 라우팅 정보는 [그림 3-19]처럼 결정
- 경로 배정은 네트워크를 연결하는 선로의 전송 용량이나 네트워크 간의 데이터 전송량을 측정 해 이루어짐

| (a) R1의 정보 |     | (b) R2: | (b) R2의 정보 |  | (c) R3의 정보 |     |  | (d) R4의 정보 |     |  |
|------------|-----|---------|------------|--|------------|-----|--|------------|-----|--|
| 네트워크       | 라우터 | 네트위     | 부크 라우터     |  | 네트워크       | 라우터 |  | 네트워크       | 라우터 |  |
| Net.1      |     | Net     | .1         |  | Net.1      | R1  |  | Net.1      | R1  |  |
| Net.2      |     | Net     | .2 R3      |  | Net.2      |     |  | Net,2      |     |  |
| Net.3      | R4  | Net     | .3 R5      |  | Net.3      | R4  |  | Net.3      |     |  |
| Net.4      | R3  | Net     | .4         |  | Net.4      |     |  | Net.4      | R3  |  |
| Net.5      | R6  | Net     | .5 R8      |  | Net.5      | R6  |  | Net.5      | R7  |  |
|            |     |         |            |  |            |     |  |            |     |  |
| (e) R5의 정보 |     | (f) R69 | (f) R6의 정보 |  | (g) R7의 정보 |     |  | (h) R8의 정보 |     |  |
| 네트워크       | 라우터 | 네트위     | 보크 라우터     |  | 네트워크       | 라우터 |  | 네트워크       | 라우터 |  |
| Net.1      | R2  | Net     | .1 R1      |  | Net.1      | R6  |  | Net.1      | R2  |  |
| Net.2      | R3  | Net     | 2          |  | Net.2      | R4  |  | Net.2      | R6  |  |
| Net.3      |     | Net     | .3 R7      |  | Net.3      |     |  | Net.3      | R7  |  |
| Net.4      |     | Net     | .4 R3      |  | Net.4      | R5  |  | Net.4      |     |  |
|            |     |         |            |  | Net,5      |     |  | Net.5      |     |  |

#### 인터넷 라우팅 (3)

#### ■ 적응 경로 배정

- 고정 경로 배정 방식에서 라우팅 테이블의 경로 정보 변경은 네트워크 구성이 변경된 경우에만 가능
- 인터넷에서 사용되는 라우터는 적응 경로 배정 방식을 채택
- 적응 경로 배정에서는 네트워크 연결 상태가 변하면 이를 패킷의 전달 경로에 반영하는데, 결정에 영향을 주는 요소는 크게 두 가지
  - 특정 네트워크나 라우터가 정상적으로 동작하지 않는 경우
  - 네트워크의 특정 위치에서 혼잡이 발생하는 경우
- 적응 경로 배정은 경로를 결정하는 과정이 복잡해지면 이를 처리하는 라우터의 부담이 증가
- 인터넷처럼 복잡하고 거대한 네트워크에서 인터넷 자체의 트래픽 증가에 많은 영향을 줌
- 인터넷에서 라우팅 정보의 수집은 비실시간적으로 제한된 형태로 적용됨

#### 인터넷 라우팅 (4)

#### ■ 자율 시스템

- 자율 시스템은 다수의 라우터로 구성할 수 있으며, 라우터들은 서로 공통의 라우팅 프로토콜을 사용해 정보를 교환
- 자율 시스템은 동일한 라우팅 특성에 의해 동작하는 논리적인 단일 구성체
- 자율 시스템 내부에서 사용하는 공통 프로 토콜을 내부 라우팅 프로토콜이라 하며, 라 우터들끼리 라우팅 정보를 교환하는 용도 로 사용
- 자율 시스템들 간에 사용하는 라우팅 프로 토콜을 일반적으로 외부 라우팅 프로토콜



#### 서비스 품질

#### ■의미

- 네트워크에서 서비스 품질이라는 용어는 보통 데이터를 어느 정도로 신뢰성 있게 전송하는지를 의미
- 전송 과정에서의 데이터 변형, 데이터 분실, 전송 지연, 지연 값의 일관성(지터) 등을 기준으로 전송 품질을 판단
- 서비스 클래스는 사용자에게 제공되는 네트워크 서비스를 등급에 따라 분류하는 것

## QOS 개요 (1)

- 인터넷 환경에서 전송 서비스의 품질 문제를 다루는 QoSQuality of Service는 네트워크 설계 과정의 중요 한 고려 대상
- QoS 기준은 보통 연결형 서비스를 위한 것이지만, 비연결형 서비스에도 부분적으로 적용
- QoS 서비스를 지원할 때 전송 계층에 필요한 기능이 구현
- 하위의 네트워크 계층이 기능의 일부를 수행할 수 있으면 전송 계층의 역할이 그만큼 줄어듬
- 연결 설정 지연
  - 연결 설정을 위한 request 프리미티브 발생과 confirm 프리미티브 도착 사이의 경과 시간
  - 시간이 짧을수록 서비스 품질이 좋으며, 네트워크 혼잡도 등의 영향을 많이 받음
- 연결 설정 실패 확률
  - 임의의 최대 연결 설정 지연 시간을 기준으로 연결 설정이 이루어지지 않을 확률
- ■전송률
  - 임의의 시간 구간에서 초당 전송할 수 있는 바이트 수

# QOS 개요 (2)

- 전송 지연
  - 송신 호스트가 전송한 데이터가 수신 호스트에 도착할 때까지 경과한 시간
- 전송 오류율
  - 임의의 시간 구간에서 전송된 총 데이터 수와 오류 발생 데이터 수의 비율
- 우선순위
  - 다른 데이터 전송보다 먼저 처리함을 의미
  - 우선순위는 연결 설정 단위로 이루어질 수도 있고, 패킷 단위로 이루어질 수도 있음

#### 인터넷에서의 QOS

- QoS에서는 전송 데이터를 특징에 따라 여러 종류로 분류
- 영상 데이터 등은 대용량의 실시간 전송이 필요하지만, 전송 오류 문제에는 상대적으로 관대
- 일반 컴퓨터 데이터는 실시간 기능은 필요 없지만, 전송 오류에 매우 민감함
- IP 프로토콜에는 특정 패킷의 우선순위를 조절하는 기능이 존재하지 않으므로 모든 패킷을 동일한 기준으로 처리한다는 단점이 있음
- IP 프로토콜에서 QoS를 지원하려면 각 패킷을 서로 다른 QoS 기준으로 구분할 수 있어야 하고, 라우터에서 이를 처리해야 함