ÁLGEBRA II (61.08 - 81.02)

Evaluación integradora Duración: 3 horas. Primer cuatrimestre -202316/VIII/23 - 9:00 hs.

Apellido y Nombres:

Legajo:

Curso:

1. Sea $T: \mathbb{R}_2[x] \to \mathbb{R}^3$ la transformación lineal definida por

$$[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix},$$

donde \mathcal{B} y \mathcal{C} son las bases de $\mathbb{R}_2[x]$ y \mathbb{R}^3 , respectivamente, definidas por

$$\begin{split} \mathcal{B} &= \left\{1+x^2, 1+x, x+x^2\right\}, \\ \mathcal{C} &= \left\{\begin{bmatrix}1 & 1 & 0\end{bmatrix}^T, \begin{bmatrix}1 & 0 & 1\end{bmatrix}^T, \begin{bmatrix}0 & 1 & 1\end{bmatrix}^T\right\}. \end{split}$$

Hallar la preimagen por T del vector $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$.

2. Hallar, si existe, una matriz $A \in \mathbb{R}^{2 \times 2}$ tal que $\det(A) = -1$ y

$$A^2 - 3A + 2I = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}.$$

3. Sea $A \in \mathbb{R}^{2 \times 2}$ la matriz definida por

$$A = \begin{bmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{bmatrix}$$

Hallar $\lim_{n\to\infty} A^n$.

4. Hallar una matriz simétrica $A \in \mathbb{R}^{3\times 3}$ tal que $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ y $\begin{bmatrix} 2 & 3 & 4 \end{bmatrix}^T$ son autovectores de A, $\det(A) = 18$, $\operatorname{traza}(A) = 8$, y $\sigma(A) \subset (0, +\infty)$.

5. Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ la transformación definida por T(x) = Ax, donde

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Hallar y graficar la imagen por T de la esfera unitaria.