BML. 6.1 Bayesian NNs/DL

Background

Sources

MLE-DL Intro ML Chapter 7 https://datalab-icmat.github.io/courses stats.html

Muller, DRI (1998) Gallego, DRI (2022)

Motivation

- Al is ultra cool because of deep learning/nns
- ML is very cool because of deep learning/nns
- Stats is pretty cool because of deep learning/nns
- Annex 1 of EU Al Act
- Many exciting research questions
- Many exciting computational problems
- Many exciting applications
- Probabilistic ML

Brief history of NNs

When	What	Why	Why not
End of 50's, Beg of 60's	Rosenblatt's perceptron	Efficiente scheme Good branding	Minsky& Papert (1968)
End of 80's, Beg of 90's	Cybenko's representation Shallow NNs	Good branding Impulse from CS comm	Tech problems (vanishing gradient) Emergence of SVM and others
2010's on	Deep learning, variants Outstanding aplications	Massive labeled data Rediscovery of SGD GPUs ReLUs et al Domain specific architectures Winning Imagenet comp	

Concept

Input Layer ∈ R¹⁰

Hidden Layer ∈ R⁴

Output Layer $\in \mathbb{R}^2$

$$y = \sum_{j=1}^{m} \beta_j \psi(x'\gamma_j) + \epsilon$$
$$\epsilon \sim N(0, \sigma^2),$$
$$\psi(\eta) = \exp(\eta)/(1 + \exp(\eta))$$

(Shallow) Neural nets

Deep neural nets

What is to be gained?

- Uncertainties in predictions
- Improved decision making based on above (risk aversion etc...)
- Some explainability via hypothesis testing
- Architecture choice

Shallow nets

$$y = \sum_{j=1}^{m} \beta_j \psi(x'\gamma_j) + \epsilon$$
$$\epsilon \sim N(0, \sigma^2),$$
$$\psi(\eta) = \exp(\eta)/(1 + \exp(\eta))$$

Motivation. Cybenko's theorem

Any continuous function in the r-dimensional cube may be approximated by models of type $\sum_{j=1}^{m} \beta_{j} \psi(x'\gamma_{j})$ when the activation function is sigmoidal

(as m goes to infty)

Training with regularisation

$$\min_{\beta,\gamma} f(\beta,\gamma) = \sum_{i=1}^n f_i(\beta,\gamma) = \sum_{i=1}^n \left(y_i - \sum_{j=1}^m \beta_j \psi(x_i'\gamma_j) \right)^2$$

$$\min g(\beta, \gamma) = f(\beta, \gamma) + h(\beta, \gamma),$$

Weight decay

$$h(\beta, \gamma) = \lambda_1 \sum \beta_i^2 + \lambda_2 \sum \sum \gamma_{ji}^2$$

Ridge

Backpropagation (CASI 18, care with notation)

Algorithm 18.1 BACKPROPAGATION

- 1 Given a pair x, y, perform a "feedforward pass," computing the activations a_ℓ^(k) at each of the layers L₂, L₃,..., L_K; i.e. compute f(x; W) at x using the current W, saving each of the intermediary quantities along the way.
- For each output unit ℓ in layer L_K, compute

$$\delta_{\ell}^{(K)} = \frac{\partial L[y, f(x, \mathcal{W})]}{\partial z_{\ell}^{(K)}}$$

$$= \frac{\partial L[y, f(x; \mathcal{W})]}{\partial a_{\ell}^{(K)}} \dot{g}^{(K)}(z_{\ell}^{(K)}), \qquad (18.10)$$

where \dot{g} denotes the derivative of g(z) wrt z. For example for $L(y, f) = \frac{1}{2} \|y - f\|_2^2$, (18.10) becomes $-(y_\ell - f_\ell) \cdot \dot{g}^{(K)}(z_\ell^{(K)})$.

3 For layers k = K - 1, K - 2, ..., 2, and for each node ℓ in layer k, set

$$\delta_{\ell}^{(k)} = \left(\sum_{j=1}^{p_{k+1}} w_{j\ell}^{(k)} \delta_j^{(k+1)}\right) \dot{g}^{(k)}(z_{\ell}^{(k)}). \tag{18.11}$$

4 The partial derivatives are given by

$$\frac{\partial L[y, f(x; W)]}{\partial w_{\ell j}^{(k)}} = a_j^{(k)} \delta_{\ell}^{(k+1)}. \tag{18.12}$$

Bayesian NNs

Bayesian analysis of shallow neural nets (fixed arch)

$$y = \sum_{j=1}^{m} \beta_j \psi(x'\gamma_j) + \epsilon$$
$$\epsilon \sim N(0, \sigma^2),$$
$$\psi(\eta) = \exp(\eta)/(1 + \exp(\eta))$$

Bayesian analysis of shallow neural nets (fixed arch)

$$y = \sum_{j=1}^{m} \beta_{j} \psi(x'\gamma_{j}) + \epsilon$$

$$\epsilon \sim N(0, \sigma^{2}),$$

$$\psi(\eta) = \exp(\eta)/(1 + \exp(\eta))$$

$$\beta_{i} \sim N(\mu_{\beta}, \sigma_{\beta}^{2}) \text{ and } \gamma_{i} \sim N(\mu_{\gamma}, S_{\gamma}^{2})$$

$$\mu_{\beta} \sim N(a_{\beta}, A_{\beta}), \ \mu_{\gamma} \sim N(a_{\gamma}, A_{\gamma}), \ \sigma_{\beta}^{-2} \sim Gamma(c_{b}/2, c_{b}C_{b}/2)$$

$$S_{\gamma}^{-1} \sim Wish(c_{\gamma}, (c_{\gamma}C_{\gamma})^{-1}) \text{ and } \sigma^{-2} \sim Gamma(s/2, sS/2)$$

Objects of interest

'Indirectly', the posterior

$$p(\beta, \gamma, \nu|D) = \frac{p(\beta, \gamma, \nu)p(D|\beta, \gamma, \nu)}{\int p(\beta, \gamma, \nu)p(D|\beta, \gamma, \nu)d\beta d\gamma d\nu}$$

Directly, the predictive

$$p(y_{N+1}|D,x_{N+1}) = \int p(y_{N+1}|\beta,\gamma,\nu,x_{N+1}) p(\beta,\gamma,\nu|D) d\beta d\gamma d\nu$$

Objects of interest

Lemma 2.1. Let
$$z_{ij} = z_{ij}(\gamma) = \psi(x'_i\gamma_j)$$
, $Z = (z_{ij})_{i=1,...,N}^{j=1,...,M}$, $1 = (1)_{i=1,...,M}$, $A = Z'Z/\sigma^2$, $\rho = Z'y/\sigma^2$, $C = 1/\sigma_\beta^2 I$, $\delta = \mu_\beta/\sigma_\beta^2 1$. Let $m_b(\gamma) = (A + C)^{-1}(\rho + \delta)$ and $S_b(\gamma) = (A + C)^{-1}$. Then,

$$p(D|\gamma) = \frac{p[\beta = m_b(\gamma)]}{p[\beta = m_b(\gamma)|y,\gamma]} \prod_{i=1}^{N} p[y_i|\beta = m_b(\gamma),\gamma]$$
$$= p[\beta = m_b(\gamma)]|S_b(\gamma)|^{1/2} \prod_{i=1}^{N} p[y_i|\beta = m_b(\gamma),\gamma].$$

Bayesian analysis of shallow neural nets (fixed arch)

```
1 Start with arbitrary (\beta, \gamma, \nu).
 2 while not convergence do
          Given current (\gamma, \nu), draw \beta from p(\beta|\gamma, \nu, y) (a multivariate normal).
          for j = 1, ..., m, marginalizing in \beta and given \nu do
               Generate a candidate \tilde{\gamma}_j \sim g_j(\gamma_j).
               Compute a(\gamma_j, \tilde{\gamma}_j) = \min\left(1, \frac{p(D|\tilde{\gamma}, \nu)}{p(D|\gamma, \nu)}\right) with \tilde{\gamma} = (\gamma_1, \gamma_2, \dots, \tilde{\gamma}_i, \dots, \gamma_m).
              With probability a(\gamma_j, \tilde{\gamma}_j) replace \gamma_j by \tilde{\gamma}_j. If not, preserve \gamma_j.
          end
          Given \beta and \gamma, replace \nu based on their posterior conditionals:
        p(\mu_{\beta}|\beta,\sigma_{\beta}) is normal; p(\mu_{\gamma}|\gamma,S_{\gamma}), multivariate normal; p(\sigma_{\beta}^{-2}|\beta,\mu_{\beta}),
           Gamma; p(S_{\gamma}^{-1}|\gamma,\mu_{\gamma}), Wishart; p(\sigma^{-2}|\beta,\gamma,y), Gamma.
11 end
```

Uncertainty in predictions, explainability

$$\hat{f}(x) = \hat{E}(y_{n+1}|x_{n+1}, D) = \frac{1}{k} \sum_{t=1}^{k} E(y_{N+1}|x_{n+1}, \theta = \theta_t)$$

The need for architecture selection

DataLab CSIC

Bayesian analysis of shallow neural nets (var arch)

$$y = x_i'a + \sum_{j=1}^{m^*} d_j \beta_j \psi(x'\gamma_j) + \epsilon$$

$$\epsilon \sim N(0, \sigma^2),$$

$$\psi(\eta) = \exp(\eta)/(1 + \exp(\eta)),$$

$$Pr(d_j = k|d_{j-1} = 1) = (1 - \alpha)^{1-k} \times \alpha^k, k \in \{0, 1\}$$

$$\beta_i \sim N(\mu_b, \sigma_\beta^2), a \sim N(\mu_a, \sigma_a^2), \gamma_i \sim N(\mu_\gamma, \Sigma_\gamma).$$

Reversible jump algo

20

Reversible jump algo

- 1. $\gamma_{jk}|_{\gamma_{-jk}}, M, \nu, D, j = 1, \ldots, M+1, k = 0, \ldots, p.$
- 2. $d_j|d_{-j}, \gamma_1, \ldots, \gamma_M, \gamma_{M+1}, \nu, D, j = 1, \ldots, M+1.$
- 3. $\beta_1, \ldots, \beta_M, \lambda | \gamma_1, \ldots, \gamma_M, M, \nu, D$.
- 4. $\nu | \beta_1, \gamma_1, \ldots, \beta_M, \gamma_M, \lambda, D$.

Other

Non-linear autoregression

Semi-parametric regression

(Gaussian process)

$$y = \sum_{j=1}^{m} \beta_j \psi(x'\gamma_j) + \epsilon$$
$$\epsilon \sim N(0, \sigma^2),$$
$$\psi(\eta) = \exp(\eta)/(1 + \exp(\eta))$$

HMC

$$U(\theta) = \tau_{\beta} \sum_{j=1}^{m} \beta_{j}^{2}/2 + \tau_{\gamma} \sum_{j=1}^{d} \sum_{k=1}^{m} \gamma_{j,k}^{2}/2 + \tau \sum_{i=1}^{n} (y_{i} - f_{i}(\beta, \gamma))^{2}/2, \qquad H(\theta, r) = U(\theta) + \frac{1}{2} \sum_{j=1}^{l} q_{j}^{2}$$

- 1 Start with arbitrary $\theta_0 = (\beta_0, \gamma_0)$.
- 2 while not convergence do
- 3 Given current θ_t and $q_t \sim \mathcal{N}(0, I)$, perform one or more leapfrog integration steps

$$\begin{aligned} q_{t+\frac{1}{2}} &= q_t - \frac{\epsilon}{2} \nabla U(\theta_t) \\ \theta_{t+1} &= \theta_t + \epsilon q_{t+\frac{1}{2}} \\ q_{t+1} &= q_{t+\frac{1}{2}} - \frac{\epsilon}{2} \nabla U(\theta_{t+1}) \end{aligned}$$

to reach θ^* and q^* .

- 4 Compute $\alpha(\theta_t, \theta^*) = \min \left\{1, \frac{\exp H(\theta^*, r^*)}{\exp H(\theta_t, r_t)}\right\}$.
- Accept θ^* as θ_{t+1} with probability $\alpha(\theta_t, \theta^*)$, else discard it.

6 end

From shallow to deep....

Input Layer ∈ R¹⁰

Hidden Layer ∈ R⁴

Output Layer ∈ R2

$$y = \sum_{j=1}^{m} \beta_j \psi(x'\gamma_j) + \epsilon$$
$$\epsilon \sim N(0, \sigma^2),$$
$$\psi(\eta) = \exp(\eta)/(1 + \exp(\eta))$$

(Shallow) Neural nets

Deep neural nets

From shallow to deep

Chapter 7 https://datalab-icmat.github.io/courses stats.html

- Convolutional
- Recurrent. LSTM and Transformers
- Autoencoders, VAE
- GANs

• ...

From shallow to deep....

```
1 Start with arbitrary (\beta, \gamma, \nu).
 2 while not convergence do
          Given current (\gamma, \nu), draw \beta from p(\beta|\gamma, \nu, y) (a multivariate normal).
          for j = 1, ..., m, marginalizing in \beta and given \nu do
                Generate a candidate \tilde{\gamma}_i \sim g_i(\gamma_i).
               Compute a(\gamma_j, \tilde{\gamma}_j) = \min\left(1, \frac{p(D|\tilde{\gamma}, \nu)}{p(D|\gamma, \nu)}\right) with \tilde{\gamma} = (\gamma_1, \gamma_2, \dots, \tilde{\gamma}_i, \dots, \gamma_m).
               With probability a(\gamma_i, \tilde{\gamma}_i) replace \gamma_i by \tilde{\gamma}_i. If not, preserve \gamma_i.
          Given \beta and \gamma, replace \nu based on their posterior conditionals:
          p(\mu_{\beta}|\beta,\sigma_{\beta}) is normal; p(\mu_{\gamma}|\gamma,S_{\gamma}), multivariate normal; p(\sigma_{\beta}^{-2}|\beta,\mu_{\beta}),
                                                                                                                                         1 Start with arbitrary \theta_0 = (\beta_0, \gamma_0).
            Gamma; p(S_{\gamma}^{-1}|\gamma,\mu_{\gamma}), Wishart; p(\sigma^{-2}|\beta,\gamma,y), Gamma.
                                                                                                                                         2 while not convergence do
11 end
                                                                                                                                                  Given current \theta_t and q_t \sim \mathcal{N}(0, I), perform one or more leapfrog
                                                                                                                                                    integration steps
                                                                                                                                                                                            q_{t+\frac{1}{2}} = q_t - \frac{\epsilon}{2} \nabla U(\theta_t)
                                                                                                                                                                                             \theta_{t+1} = \theta_t + \epsilon q_{t+\frac{1}{2}}
                                                                                                                                                                                             q_{t+1} = q_{t+\frac{1}{2}} - \frac{\epsilon}{2} \nabla U(\theta_{t+1})
                                                                                                                                                    to reach \theta^* and q^*.
                                                                                                                                         4 Compute \alpha(\theta_t, \theta^*) = \min \left\{ 1, \frac{\exp H(\theta^*, r^*)}{\exp H(\theta_t, r_t)} \right\}.
                                                                                                                                                  Accept \theta^* as \theta_{t+1} with probability \alpha(\theta_t, \theta^*), else discard it.
                                                                                                                                         6 end
```

From shallow to deep

From gradient descent to stochastic descent

From MCMC to variational Bayes (ADVI)
 SG-MCMC
 hybrids (e.g. VIS)

Algorithm 4 (A refined variational approximation sampler).

Refinement phase:

while not convergence do

Sample initial set of particles, $\theta_0 \sim q_{0,\phi}(\theta|D)$.

Refine particles through sampler, $\theta_T \sim Q_{\eta, T}(\theta | \theta 0)$.

Compute the ELBO objective (Equation 12).

Update parameters ϕ , η through automatic differentiation on objective.

end

Inference phase, based on learned sampler parameters ϕ^* , η^* :

Sample an initial set of particles, $\theta_0 \sim q_{0,\phi^*}(\theta|D)$.

Use the MCMC sampler $\theta_T \sim Q_{\eta^*,T}(\theta|\theta_0)$ as $T \to \infty$.

Code at https://github.com/vicgalle/nn-review.

VGG-19 vs 3 hidden layer with 200 nodes with ReLU vs multinomial regression

Independent Gaussian priors over parameters (plus strong prior in

VGG-19)

CIFAR-10 60000 32x32 color images 10 classes

 $\hat{y} = airplane$

 $\hat{y} = car$

 $\hat{y} = cat$

 $\hat{y} = cat$

 $\hat{y} = \text{deer}$

y = deer

Model	Test accuracy	
Linear	38.10%	
MLP	50.03%	
VGG-19	93.29%	

Code

https://github.com/chris-nemeth/sgmcmc-review-paper

R package sgmcmc (Edward in Python)

https://github.com/vicgalle/nn-review.

https://github.com/vicgalle/vis

VIS examples

Systems with VI

Venture, WebPPL, Edward, Stan, PyMC3, Infer.net, Anglican

Challenges

Challenges

The limits of VIS

New hybrids

New bright ideas from physics

PPLs

Decision support

Bayesian Transformers

Bayesian graduation in LLMs