1. Sea
$$X = \{1, 2, 3, 4, 5\}$$
. Dada la colección

$$\mathcal{T} = \{\emptyset, \{3\}, \{1, 2\}, \{3, 4\}, \{3, 5\}, \{1, 2, 3\}, \{3, 4, 5\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, X\}.$$

- a) Verifique que \mathcal{T} es una topología sobre X.
- b) Halle la colección \mathcal{C} de todos los conjuntos cerrados sobre el espacio (X, \mathcal{T}) .
- c) Halle el interior IntA, la clausura \overline{A} , y el derivado A' para los siguientes conjuntos:
 - $A = \{1, 2, 4\}$
 - $A = \{1, 3, 4, 5\}$
 - $A = \{3, 4, 5\}$
 - $A = \{3, 5\}$

a) Pare verificer que T es una topología sobre X:

O Ver gre Ø, X & T

 $\begin{cases} 23 \\ 33 \\ 343 \\ 23 \\ 343 \\ 23 \\ 343 \\ 243 \\$

er fin es una forgologia...

b) halle la colección Co de todos los conjuntos cerrodos Sobre (X, Z)

 $C_{3} = \{ \emptyset, \times, \{ 1, 2, 4, 5 \}, \{ 3, 4, 5 \}, \{ 1, 2, 5$

2. Sobre \mathbb{R} definamos la colección $\mathcal{T} = \{\varnothing, \mathbb{R}\} \cup \{(-n, n) : n \in \mathbb{Z}\}$ a) Muestre que \mathcal{T} es una topología sobre \mathbb{R} . b) Describa la colección $\mathcal C$ de los cerrados en $(\mathbb R,\mathcal T)$. c) Halle el interior IntA, la clausura \overline{A} , y el derivado A' para los siguientes conjuntos: A = (-3, 5)• A = (1, 4]• $A = (-\infty, 8)$

mustre que T es una fredaya sobre R.

O for def.
$$\emptyset$$
, $\mathbb{R} \in \mathbb{T}$

O $(-\mathbb{N}_{i}, \mathbb{N}_{i}) = (-\max(\S_{i}, \S_{i}), \max(\S_{i}, \S_{i}))$
 $\in \mathbb{T}$.

O $(-\mathbb{N}_{i}, \mathbb{N}_{i}) = (-\min(\S_{i}, \S_{i}), \max(\S_{i}, \S_{i}))$
 $\in \mathbb{T}$.

D) Describu la colocción C_{i} de cerrodos en (\mathbb{R}, \mathbb{T})
 $A^{\text{total summation }}$
 A^{\text

$$In+(A) = (-8, 8)$$
 $= -0.8$ $= -0.8$

3. Sea \mathbb{R} con la topología usual. Halle el interior IntA, la clausura \overline{A} , y el derivado A' para los siguientes conjuntos:

■
$$A = (-3, 5] \cup (6, \infty)$$

$$A = \left\{ \frac{(-1)^n n}{n+1} : n \in \mathbb{Z}^+ \right\}$$

$$A = (0,8) \cup (8,3]$$

- 4. Sean $A, B, y A_{\alpha}$ subconjuntos del espacio X. Pruebe lo siguiente:
 - a) Si $A \subset B$ entonces $\overline{A} \subset \overline{B}$.
 - b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - c) $\bigcup \overline{A_{\alpha}} \subset \overline{\bigcup A_{\alpha}}$, dé un ejemplo donde no se cumpla la igualdad.

partinus de ACB consideranos Ā = AUA'Y
B = BUB's queronos lleger a que ĀCB.

Supragunos que F ¢B, que es AUR' ¢ BUB' Note que es obligatorio que A C BUB' por def. de A.

bego tentrá que ser que A d BOB, rote que para en x & M', coalquier vecindario Ux treve Ux n A \$ & 7 adicionalmente Ux n B \$ &

parque ACB; luego x & B1, como x es arbitravro A' CB', la gre contradice que A' & BOB' (=><=) Contradición que surye de assmir que ACB. Vego si ACB => FCB. $\overline{A \cup B} = \overline{A \cup B}$ observe que: € AUB = (AUB) U (AUB) Lego Jecir que $\overline{AUB} = \overline{AUB}$ es lo mismo que Jecir que:

(AUB) = (A'UB')

(C) Sca $x \in (AUB)'$ vea que todo vecindario U_x es 6.9. $U_x \cap (AUB) \neq \emptyset$. Note que hay 2 = 0.005; UxnA + Ø O UxnB + Ø, o ambos es decir x & A' y/o x & B', que es x & (t'u B'). Sca X E (A' UB') note 5in pértitu de generalidad
que pura todo vecendarro UX hay que U2 n A # Ø ,
tembré es trivial que: Uxn (AUB) +Ø luego X E (AUB') tembrés es X E (AUB)

