

SELF STUDY
BASED ON MY UNDERSTANDING OF THE SUBJECT

Graph Neural Network

Compilation of my study materials

Author: Dr. Md Arafat Hossain Khan

Last updated: November 30, 2022

Contents

1 Fundamentals				
	1.1	Graph	Neural Network Model Mathematics	1
		1.1.1	Labels of a graph	1
		1.1.2	Local transition and output functions	2
		1.1.3	Model Variation	3
		1.1.4	Learning set	4
		1.1.5	Global transition and output functions	I.
		1.1.6	Existence and uniqueness of global transition and output functions	E.

Chapter

1

Fundamentals

Artificial intelligence is a tool, not a threat. Artificial intelligence is a tool, not a threat. Artificial intelligence is a tool, not a threat.

Rodney Brooks

1.1	Graph	Neural Network Model Mathematics	1
	1.1.1	Labels of a graph	1
	1.1.2	Local transition and output functions	2
	1.1.3	Model Variation	3
	1.1.4	Learning set	4
	1.1.5	Global transition and output functions	5
	1.1.6	Existence and uniqueness of global transition and output functions	5

1.1 Graph Neural Network Model Mathematics

1.1.1 Labels of a graph

A graph G is a pair (N, E), where $N = \{n_1, n_2, \ldots, n_{|N|-1}, n_{|N|}\}$ is the set of nodes and $E = \{e_1, e_2, \ldots, e_{|E|-1}, e_{|E|}\}$ is the set of edges. $\mathcal{N}(n)$ stands for the neighbors of $n \in N$. If an undirected edge e connects node x and y, we can also denote e as (x, y) or (y, x). All nodes are embedded into some euclidean space of dimention $d_N \in \mathbb{N}$ and all edges are embedded into some euclidean space of dimention $d_E \in \mathbb{N}$, e.g.

label (embedding) for node n is defined as $\ell_n : n \mapsto \mathbb{R}^{d_N}$, where $n \in N$ label (embedding) for edge e is defined as $\ell_e : e \mapsto \mathbb{R}^{d_E}$, where $e \in E$

The notion of labels can be extended to multiple nodes and edges. Suppose, we take a node set, $\mathfrak{N} = \{\mathfrak{n}_1, \mathfrak{n}_2, \dots, \mathfrak{n}_{|\mathfrak{N}|-1}, \mathfrak{n}_{|\mathfrak{N}|}\} \subseteq N$. Then we define,

$$\ell_{\mathfrak{N}}: \mathbb{R}^{d_N \times |\mathfrak{N}|} \mapsto \mathbb{R}^{d_N} \text{ as } \left(\ell_{\mathfrak{n}_1}, \ell_{\mathfrak{n}_2}, \dots, \ell_{\mathfrak{n}_{|\mathfrak{N}|-1}}, \ell_{\mathfrak{n}_{|\mathfrak{N}|}}\right) \mapsto \mathbb{R}^{d_N}$$

Here, we want $\ell_{\mathfrak{N}}$ to be permutation invariant. Similarly, we take an edge set, $\mathfrak{E} = \{\mathfrak{e}_1, \mathfrak{e}_2, \dots, \mathfrak{e}_{|\mathfrak{E}|-1}, \mathfrak{e}_{|\mathfrak{E}|}\} \subseteq E$. Then we define,

$$\ell_{\mathfrak{E}}: \mathbb{R}^{d_E \times |\mathfrak{E}|} \mapsto \mathbb{R}^{d_E} \text{ as } \left(\ell_{\mathfrak{e}_1}, \ell_{\mathfrak{e}_2}, \dots, \ell_{\mathfrak{e}_{|\mathfrak{E}|-1}}, \ell_{\mathfrak{e}_{|\mathfrak{E}|}}\right) \mapsto \mathbb{R}^{d_E}$$

Here, we want $\ell_{\mathfrak{E}}$ to be permutation invariant. We extend the notion of the labels even further for the entire graph by the following permutation invariant map,

$$\ell: \mathbb{R}^{d_N \times |N|} \times \mathbb{R}^{d_E \times |E|} \mapsto \mathbb{R}^D$$
 as $\left(\ell_{n_1}, \ell_{n_2}, \dots, \ell_{|N|-1}, \ell_{|N|}, \ell_{e_1}, \ell_{e_2}, \dots, \ell_{|E|-1}, \ell_{|E|}\right) \mapsto \mathbb{R}^D$

where $D \in \mathbb{N}$.

1.1.2 Local transition and output functions

Let us take $n \in N$ from the graph G = (N, E) and define the following,

- $\ell_n \in \mathbb{R}^{d_N}$: node label of $n \in N$.
- $\ell_{\mathcal{N}(n)} \in \mathbb{R}^{d_N}$: label of the neighborhood $\mathcal{N}(n) = \{\nu_1, \nu_2, \dots, \nu_{|\mathcal{N}(n)|-1}, \nu_{|\mathcal{N}(n)|}\} \subseteq N$.
- $\mathcal{E}(n)$: edges connected to n i.e $\mathcal{E}(n) = \{(\nu_1, n), (\nu_2, n), \dots, (\nu_{|\mathcal{N}(n)|-1}, n), (\nu_{|\mathcal{N}(n)|}, n)\}.$
- $\ell_{\mathcal{E}(n)}$: edge label of $\mathcal{E}(n)$.

Now we can define something called the *state* of n, denoted as $x_n \in \mathbb{R}^s$, which captures the the local information of n using its own node label $\ell_n \in \mathbb{R}^{d_N}$, node label of the neighbors $\ell_{\mathcal{N}(n)} \in \mathbb{R}^{d_N}$, connected edges lalel $\ell_{\mathcal{E}(n)}$, and the *state* of the neighbors $x_{\mathcal{N}(n)} \in \mathbb{R}^s$. Note that, $x_{\mathcal{N}(n)}$ is a permutation invariant map, defined by

$$x_{\mathcal{N}(n)}: \mathbb{R}^{s \times |\mathcal{N}(n)|} \mapsto \mathbb{R}^s$$
 as $\left(x_{\nu_1}, x_{\nu_2}, \dots, x_{\nu_{|\mathcal{N}(n)|-1}}, x_{\nu_{|\mathcal{N}(n)|}}\right) \mapsto \mathbb{R}^s$.

Then we define the local transition function, that expresses the dependence of a node on its neighborhood as

$$f_w : \mathbb{R}^{d_N} \times \mathbb{R}^{d_E} \times \mathbb{R}^s \times \mathbb{R}^{d_N} \mapsto \mathbb{R}^s \quad \text{as} \quad \left(\ell_n, \ell_{\mathcal{E}(n)}, x_{\mathcal{N}(n)}, \ell_{\mathcal{N}(n)}\right) \mapsto \mathbb{R}^s.$$
where
$$\left(\ell_{(\nu_1, n)}, \ell_{(\nu_2, n)}, \dots, \ell_{(\nu_{|\mathcal{N}(n)|-1}, n)}, \ell_{(\nu_{|\mathcal{N}(n)|}, n)}\right) := \ell_{\mathcal{E}(n)}$$

$$\left(x_{\nu_1}, x_{\nu_2}, \dots, x_{\nu_{|\mathcal{N}(n)|-1}}, x_{\nu_{|\mathcal{N}(n)|}}\right) := x_{\mathcal{N}(n)}$$

$$\left(\ell_{\nu_1}, \ell_{\nu_2}, \dots, \ell_{\nu_{|\mathcal{N}(n)|-1}}, \ell_{\nu_{|\mathcal{N}(n)|}}\right) := \ell_{\mathcal{N}(n)}$$

And we also express the local output function that describes how the output is produced as follows,

$$q_w: \mathbb{R}^s \times \mathbb{R}^{d_N} \mapsto \mathbb{R}^r$$
 as $(x_n, \ell_n) \mapsto \mathbb{R}^r$

Hence, we have the following model,

local transition function,
$$x_n = f_w \left(\ell_n, \ell_{\mathcal{E}(n)}, x_{\mathcal{N}(n)}, \ell_{\mathcal{N}(n)} \right)$$

local output function, $o_n = g_w(x_n, \ell_n)$

1.1.3 Model Variation

Minimal model

Definition 1: Minimal Model

A model is said to be minimal if it has the smallest number of variables while retaining the same computational power.

Note that, one may wish to remove the labels $\ell_{\mathcal{N}(n)}$, since they include information that is implicitly contained in $x_{\mathcal{N}(n)}$. Thus one can hunt for a minimal model. It can be shown that the minimal model exists but not unique.

Extension of neighborhood

The neighborhood could contain nodes that are two or more links away from n capturing a bigger local region.

Directed and mixed graph

For directed or mixed graph we may find a variation of model definition by incorporating the following map into the model definition,

$$\mathfrak{d}_{\mathcal{E}(n)} : \mathcal{E}(n) \mapsto \{0, 1\} \text{ as}$$

$$\mathfrak{d}_{\mathcal{E}(n)}(e) = \mathfrak{d}_e = \begin{cases} 1 & \text{if } e \in \mathcal{E}(n) \text{ directs towards } n \\ 0 & \text{if } e \in \mathcal{E}(n) \text{ comes out of } n \end{cases}$$

Thus the definition of *local transition function* changes as follows,

$$f_w : \mathbb{R}^{d_N} \times \mathbb{R}^{d_E} \times \mathbb{R}^s \times \mathbb{R}^{d_N} \times \{0,1\}^{|\mathcal{N}(n)|} \mapsto \mathbb{R}^s$$
 as $(\ell_n, \ell_{\mathcal{E}(n)}, x_{\mathcal{N}(n)}, \ell_{\mathcal{N}(n)}, \mathfrak{d}_{\mathcal{E}(n)}) \mapsto \mathbb{R}^s$. where

$$\begin{split} \left(\ell_{(\nu_{1},n)},\ell_{(\nu_{2},n)},\dots,\ell_{(\nu_{|\mathcal{N}(n)|-1},n)},\ell_{(\nu_{|\mathcal{N}(n)|},n)}\right) &:= \ell_{\mathcal{E}(n)} \\ \left(x_{\nu_{1}},x_{\nu_{2}},\dots,x_{\nu_{|\mathcal{N}(n)|-1}},x_{\nu_{|\mathcal{N}(n)|}}\right) &:= x_{\mathcal{N}(n)} \\ \left(\ell_{\nu_{1}},\ell_{\nu_{2}},\dots,\ell_{\nu_{|\mathcal{N}(n)|-1}},\ell_{\nu_{|\mathcal{N}(n)|}}\right) &:= \ell_{\mathcal{N}(n)} \\ \left(\mathfrak{d}_{(\nu_{1},n)},\mathfrak{d}_{(\nu_{2},n)},\dots,\mathfrak{d}_{(\nu_{|\mathcal{N}(n)|-1},n)},\mathfrak{d}_{(\nu_{|\mathcal{N}(n)|},n)}\right) &:= \mathfrak{d}_{\mathcal{E}(n)} \end{split}$$

However, unless explicitly stated, all the results proposed in this paper hold also for directed graphs and for graphs with mixed directed and undirected links.

Node specific local transition and output functions

Moreover, each node can have its own *local transition function* and *the local output function* definition,

local transition function,
$$x_n = f_{w_n}^{(n)} \left(\ell_n, \ell_{\mathcal{E}(n)}, x_{\mathcal{N}(n)}, \ell_{\mathcal{N}(n)} \right)$$

local output function, $o_n = g_{w_n}^{(n)}(x_n, \ell_n)$

However, for the sake of simplicity, our analysis will consider a particular model where all the nodes share the same implementation.

Positional and nonpositional graphs

Nonpositional graphs are those described so far. Positional graphs differ since a unique integer identifier is assigned to each neighbors of a node to indicate its logical position.

Definition 2: Positional graphs

If for a graph G = (N, E) and for each $n \in N$, there exists,

$$\rho_n: \mathcal{N}(n) \hookrightarrow [|N|]$$

then G is called a positional graph. Note that the symbol \hookrightarrow means an injection and [|N|] means the set $\{1, 2, \dots, |N|\}$.

For $n \in N$,

$$\rho_n(u) = i \implies u$$
 is the *i*-th neighbor of *n*.

An example of this assignment can be such that ρ_n might enumerate the neighbors of a node following a clockwise ordering convention. Notice that for nodes n_j and n_k we may have $\rho_{n_j} = \rho_{n_k}$ which implies that this is only a relative positional assignment. Note that, for a complete graph, ρ_n is a bijection for all n, on the other hand for a path graph with at least 3 nodes ρ_n is an injection not a surjection for any n.

1.1.4 Learning set

Let us sonsider an arbitrary set of graphs \mathcal{G} . We take a finite set of graphs from \mathcal{G} as,

$$\{G_1, G_2, \dots, G_i, \dots, G_{p-1}, G_p\} \subseteq \mathcal{G} \implies p \leq |\mathcal{G}|.$$

Let us take a subset of the node set of $G_i = (N_i, E_i)$ as,

$$N = \{n_{i,1}, n_{i,2}, \dots, n_{i,i}, \dots, n_{i,a_{i-1}}, n_{i,a}\} \subseteq N_i \implies q \leq |N_i|.$$

Definition 3: Domain of a supervised learning framework

The domain is the set of pairs of a graph and a node, i.e. $\mathcal{D} = \mathcal{G} \times \mathbb{N}$.

We consider a desired target association $t_{i,j} \in \mathbb{R}^m$ of the node $n_{i,j}$, which is a vector in some euclidean space of dimension m.

Definition 4: Learning Set

We assume a supervised learning framework with the following set,

$$\mathcal{L} = \{ (G_i, n_{i,j}, t_{i,j}) | G_i = (N_i, E_i) \in \mathcal{G}, n_{i,j} \in N_i, t_{i,j} \in \mathbb{R}^m, 1 \le i \le p, 1 \le j \le q_i \}$$

 \mathcal{L} is called the learning set.

Note that \mathcal{G} or $\{G_1, G_2, \ldots, G_i, \ldots, G_{p-1}, G_p\}$ can also be considered as one single graph which may have multiple connected components and modify the definition of learning set accordingly.

1.1.5 Global transition and output functions

Note that we have local transition functions for each node of the graph G = (N, E), where $N = \{n_1, n_2, \dots, n_{|N|-1}, n_{|N|}\}$ is the set of nodes and $E = \{e_1, e_2, \dots, e_{|E|-1}, e_{|E|}\}$ is the set of edges.

$$x_{n_{1}} = f_{w} \left(\ell_{n_{1}}, \ell_{\mathcal{E}(n_{1})}, x_{\mathcal{N}(n_{1})}, \ell_{\mathcal{N}(n_{1})} \right)$$

$$x_{n_{2}} = f_{w} \left(\ell_{n_{2}}, \ell_{\mathcal{E}(n_{2})}, x_{\mathcal{N}(n_{2})}, \ell_{\mathcal{N}(n_{2})} \right)$$

$$\vdots$$

$$x_{n_{|N|}} = f_{w} \left(\ell_{n_{|N|}}, \ell_{\mathcal{E}(n_{|N|})}, x_{\mathcal{N}(n_{|N|})}, \ell_{\mathcal{N}(n_{|N|})} \right)$$

We define a global transition function, F_w that takes the graph G as input and returns the state x_n for each $n \in \mathbb{N}$.

Now, observe the local output functions,

$$\begin{aligned} o_{n_1} &= g_w(x_{n_1}, \ell_{n_1}) \\ o_{n_2} &= g_w(x_{n_2}, \ell_{n_2}) \\ &\vdots \\ o_{n_{|N|}} &= g_w(x_{n_{|N|}}, \ell_{n_{|N|}}) \end{aligned}$$

We define a global output function, G_w that takes the graph G as input and returns the output o_n for each $n \in N$.

At this point we have to make sure that such global transition function and global output function exists and are unique.

1.1.6 Existence and uniqueness of global transition and output functions

This section will contain the proof of the existence and uniqueness of *global transition* function and *global output function*. Coming soon . . .