## **Data Mining: Data**

# Introduction to Data Mining Lecture by Shangsong Liang (梁上松)

Originally Produced by Tan, Steinbach, Karpatne, and Kumar for the book <<Introduction to Data Mining>>, Modified by S. Liang

## **Outline**

- Attributes and Objects
- Types of Data

- Data Quality
- Similarity and Distance
- Data Preprocessing

## What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
  - Examples: eye color of a person, temperature, etc.
  - Attribute is also known as variable, field, characteristic, dimension, or feature

**Objects** 

- A collection of attributes describe an *object* 
  - Object is also known as record, point, case, sample, entity, or instance

#### **Attributes**

|   | Tid | Refund | Marital  | Taxable |       |  |
|---|-----|--------|----------|---------|-------|--|
| _ |     |        | Status   | Income  | Cheat |  |
|   | 1   | Yes    | Single   | 125K    | No    |  |
|   | 2   | No     | Married  | 100K    | No    |  |
|   | 3   | No     | Single   | 70K     | No    |  |
|   | 4   | Yes    | Married  | 120K    | No    |  |
|   | 5   | No     | Divorced | 95K     | Yes   |  |
|   | 6   | No     | Married  | 60K     | No    |  |
|   | 7   | Yes    | Divorced | 220K    | No    |  |
|   | 8   | No     | Single   | 85K     | Yes   |  |
|   | 9   | No     | Married  | 75K     | No    |  |
| , | 10  | No     | Single   | 90K     | Yes   |  |

# **A More Complete View of Data**

- Data may have parts
- The different parts of the data may have relationships
- More generally, data may have structure
- Data can be incomplete
- We will discuss this in more details later

## **Attribute Values**

- Attribute values are numbers or symbols assigned to an attribute for a particular object
- Distinction between attributes and attribute values
  - Same attribute can be mapped to different attribute values
    - Example: height can be measured in feet or meters
  - Different attributes can be mapped to the same set of values
    - Example: Attribute values for ID and age are integers
    - But properties of attribute values can be different

## **Measurement of Length**

15

The way you measure an attribute may not match the attributes properties.



## **Types of Attributes**

- There are different types of attributes
  - Nominal(标称/名词词组)
    - Examples: ID numbers, eye color, zip codes

#### Ordinal

 Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}

#### Interval

 Examples: calendar dates, temperatures in Celsius or Fahrenheit.

#### Ratio

Examples: temperature in Kelvin, length, time, counts

## **Properties/operations of Attribute Values**

The type of an attribute depends on which of the following properties/operations it possesses:

```
Distinctness: = ≠
Order: < >
Differences are + -
meaningful : + /
Ratios are * /
meaningful
```

- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & meaningful differences
- Ratio attribute: all 4 properties/operations

|                            | Attribute              | Description                                                                | Examples                                                                                | Operations                                                     |
|----------------------------|------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Categorical<br>Qualitative | <b>Type</b><br>Nominal | Nominal attribute<br>values only<br>distinguish. (=, ≠)                    | zip codes, employee<br>ID numbers, eye<br>color, sex: { <i>male,</i><br><i>female</i> } | mode, entropy, contingency correlation, χ2 test                |
| Cate<br>Qua                | Ordinal                | Ordinal attribute values also order objects. (<, >)                        | hardness of minerals, {good, better, best}, grades, street numbers                      | median, percentiles, rank correlation, run tests, sign tests   |
| Numeric<br>λuantitative    | Interval               | For interval attributes, differences between values are meaningful. (+, -) | calendar dates,<br>temperature in<br>Celsius or Fahrenheit                              | mean, standard deviation, Pearson's correlation, t and F tests |
| Nu<br>Quar                 | Ratio                  | For ratio variables, both differences and ratios are meaningful. (*, /)    | temperature in Kelvin,<br>monetary quantities,<br>counts, age, mass,<br>length, current | geometric mean,<br>harmonic mean,<br>percent variation         |

This categorization of attributes is due to S. S. Stevens

|                            | Attribute | Transformation                                                                                             | Comments                                                                                                                               |  |  |
|----------------------------|-----------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                            | Type      |                                                                                                            |                                                                                                                                        |  |  |
| cal<br>/e                  | Nominal   | Any permutation of values                                                                                  | If all employee ID numbers were reassigned, would it make any difference?                                                              |  |  |
| Categorical<br>Qualitative | Ordinal   | An order preserving change of values, i.e.,<br>new_value = f(old_value)<br>where f is a monotonic function | An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}. |  |  |
| Numeric<br>Quantitative    | Interval  | new_value = a * old_value + b<br>where a and b are constants                                               | Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).      |  |  |
| _ g                        | Ratio     | new_value = a * old_value                                                                                  | Length can be measured in meters or feet.                                                                                              |  |  |

This categorization of attributes is due to S. S. Stevens

#### **Discrete and Continuous Attributes**

#### Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

#### Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floatingpoint variables.

# Asymmetric Attributes/不对称属性

- Only presence (a non-zero attribute value) is regarded as important
  - Words present in documents
  - Items present in customer transactions
- If we met a friend in the grocery store would we ever say the following?
  - "I see our purchases are very similar since we didn't buy most of the same things."
- We need two asymmetric binary attributes to represent one ordinary binary attribute
  - Association analysis uses asymmetric attributes
- Asymmetric attributes typically arise from objects that are sets

# **Critiques**

- Incomplete
  - Asymmetric binary
  - Cyclical
  - Multivariate
  - Partially ordered
  - Partial membership
  - Relationships between the data
- Real data is approximate and noisy
  - This can complicate recognition of the proper attribute type
  - Treating one attribute type as another may be approximately correct

## Critiques ...

- Not a good guide for statistical analysis
  - May unnecessarily restrict operations and results
    - Statistical analysis is often approximate
    - Thus, for example, using interval analysis for ordinal values may be justified
  - Transformations are common but don't preserve scales
    - Can transform data to a new scale with better statistical properties
    - Many statistical analyses depend only on the distribution

## **More Complicated Examples**

- ID numbers
  - Nominal, ordinal, or interval?

- Number of cylinders in an automobile engine
  - Nominal, ordinal, or ratio?

- Biased Scale
  - Interval or Ratio

# **Key Messages for Attribute Types**

- The types of operations you choose should be "meaningful" for the type of data you have
  - Distinctness, order, meaningful intervals, and meaningful ratios are only four properties of data
  - The data type you see often numbers or strings may not capture all the properties or may suggest properties that are not there
  - Analysis may depend on these other properties of the data
    - Many statistical analyses depend only on the distribution
  - Many times what is meaningful is measured by statistical significance
  - But in the end, what is meaningful is measured by the domain

## Types of data sets

- Record
  - Data Matrix
  - Document Data
  - Transaction Data
- Graph
  - World Wide Web
  - Molecular Structures
- Ordered
  - Spatial Data
  - Temporal Data
  - Sequential Data
  - Genetic Sequence Data

## **Important Characteristics of Data**

- Dimensionality (number of attributes)
  - High dimensional data brings a number of challenges
- Sparsity
  - Only presence counts
- Resolution (分辨率)
  - Patterns depend on the scale
- Size
  - Type of analysis may depend on size of data

#### **Record Data**

Data that consists of a collection of records, each of which consists of a fixed set of attributes

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |  |
|-----|--------|-------------------|-------------------|-------|--|
| 1   | Yes    | Single            | 125K              | No    |  |
| 2   | No     | Married           | 100K              | No    |  |
| 3   | No     | Single            | 70K               | No    |  |
| 4   | Yes    | Married           | 120K              | No    |  |
| 5   | No     | Divorced          | 95K               | Yes   |  |
| 6   | No     | Married           | 60K               | No    |  |
| 7   | Yes    | Divorced          | 220K              | No    |  |
| 8   | No     | Single            | 85K               | Yes   |  |
| 9   | No     | Married           | 75K               | No    |  |
| 10  | No     | Single            | 90K               | Yes   |  |

## **Data Matrix**

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

#### **Document Data**

- Each document becomes a 'term' vector
  - Each term is a component (attribute) of the vector
  - The value of each component is the number of times the corresponding term occurs in the document.

|            | team | coach | play | ball | score | game | win | lost | timeout | season |
|------------|------|-------|------|------|-------|------|-----|------|---------|--------|
| Document 1 | 3    | 0     | 5    | 0    | 2     | 6    | 0   | 2    | 0       | 2      |
| Document 2 | 0    | 7     | 0    | 2    | 1     | 0    | 0   | 3    | 0       | 0      |
| Document 3 | 0    | 1     | 0    | 0    | 1     | 2    | 2   | 0    | 3       | 0      |

### **Transaction Data**

- A special type of record data, where
  - Each record (transaction) involves a set of items.
  - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |

## **Graph Data**

Examples: Generic graph, a molecule, and webpages



Benzene Molecule: C6H6

#### **Useful Links:**

- Bibliography
- Other Useful Web sites
  - ACM SIGKDD
  - KDnuggets
  - The Data Mine

### **Book References in Data Mining and Knowledge Discovery**

Usama Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy uthurasamy, "Advances in Knowledge Discovery and Data Mining", AAAI Press/the MIT Press, 1996.

J. Ross Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers, 1993. Michael Berry and Gordon Linoff, "Data Mining Techniques (For Marketing, Sales, and Customer Support), John Wiley & Sons, 1997.

# **Knowledge Discovery and Data Mining Bibliography**

(Gets updated frequently, so visit often!)

- Books
- General Data Mining

#### **General Data Mining**

Usama Fayyad, "Mining Databases: Towards Algorithms for Knowledge Discovery", Bulletin of the IEEE Computer Society Technical Committee on data Engineering, vol. 21, no. 1, March 1998.

Christopher Matheus, Philip Chan, and Gregory Piatetsky-Shapiro, "Systems for knowledge Discovery in databases", IEEE Transactions on Knowledge and Data Engineering, 5(6):903-913, December 1993.

#### **Ordered Data**

Sequences of transactions



An element of the sequence

### **Ordered Data**

Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGCCCCCCTGGCGGCG GGGGGAGGCGGGCCGCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

#### **Ordered Data**

Spatio-Temporal Data

Jan

Average Monthly Temperature of land and ocean



# **Data Quality**

- Poor data quality negatively affects many data processing efforts
- "The most important point is that poor data quality is an unfolding disaster.
  - Poor data quality costs the typical company at least ten percent (10%) of revenue; twenty percent (20%) is probably a better estimate."

Thomas C. Redman, DM Review, August 2004

- Data mining example: a classification model for detecting people who are loan risks is built using poor data
  - Some credit-worthy candidates are denied loans
  - More loans are given to individuals that default

## **Data Quality ...**

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
  - Noise and outliers
  - Missing values
  - Duplicate data
  - Wrong data

## **Noise**

- □ For objects, noise is an extraneous (外来的) object
- For attributes, noise refers to modification of original values
  - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen





Two Sine Waves

Two Sine Waves + Noise

Data Mining: Data

29

### **Outliers**

- Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set
  - Case 1: Outliers are noise that interferes with data analysis
  - Case 2: Outliers are the goal of our analysis
    - Credit card fraud
    - Intrusion detection
- Causes?







## **Missing Values**

- Reasons for missing values
  - Information is not collected (e.g., people decline to give their age and weight)
  - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
  - Eliminate data objects or variables
  - Estimate missing values
    - Example: time series of temperature
    - Example: census results
  - Ignore the missing value during analysis

## Missing Values ...

- Missing completely at random (MCAR)
  - Missingness of a value is independent of attributes
  - Fill in values based on the attribute
  - Analysis may be unbiased overall
- Missing at Random (MAR)
  - Missingness is related to other variables
  - Fill in values based other values
  - Almost always produces a bias in the analysis
- Missing Not at Random (MNAR)
  - Missingness is related to unobserved measurements
  - Informative or non-ignorable missingness
- Not possible to know the situation from the data

## **Duplicate Data**

- Data set may include data objects that are duplicates, or almost duplicates of one another
  - Major issue when merging data from heterogeneous sources
- Examples:
  - Same person with multiple email addresses
- Data cleaning
  - Process of dealing with duplicate data issues
- When should duplicate data not be removed?

## Similarity and Dissimilarity Measures

- Similarity measure
  - Numerical measure of how alike two data objects are.
  - Is higher when objects are more alike.
  - Often falls in the range [0,1]
- Dissimilarity measure
  - Numerical measure of how different two data objects are
  - Lower when objects are more alike
  - Minimum dissimilarity is often 0
  - Upper limit varies
- Proximity refers to a similarity or dissimilarity

## Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity between two objects, x and y, with respect to a single, simple attribute.

| Attribute         | Dissimilarity                                                                                     | Similarity                                                                                           |  |  |
|-------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Type              |                                                                                                   |                                                                                                      |  |  |
| Nominal           | $d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$                   | $s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$                      |  |  |
| Ordinal           | d =  x - y /(n - 1)<br>(values mapped to integers 0 to $n-1$ , where $n$ is the number of values) | s = 1 - d                                                                                            |  |  |
| Interval or Ratio | d =  x - y                                                                                        | $s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min \cdot d}{max \cdot d - min \cdot d}$ |  |  |

#### **Euclidean Distance**

Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where n is the number of dimensions (attributes) and  $x_k$  and  $y_k$  are, respectively, the  $k^{th}$  attributes (components) or data objects x and y.

Standardization is necessary, if scales differ.

#### **Euclidean Distance**



| point     | X | y |
|-----------|---|---|
| <b>p1</b> | 0 | 2 |
| <b>p2</b> | 2 | 0 |
| р3        | 3 | 1 |
| p4        | 5 | 1 |

|           | <b>p1</b> | <b>p2</b> | р3    | <b>p4</b> |
|-----------|-----------|-----------|-------|-----------|
| <b>p1</b> | 0         | 2.828     | 3.162 | 5.099     |
| <b>p2</b> | 2.828     | 0         | 1.414 | 3.162     |
| р3        | 3.162     | 1.414     | 0     | 2         |
| p4        | 5.099     | 3.162     | 2     | 0         |

#### **Distance Matrix**

# 离)

Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where r is a parameter, n is the number of dimensions (attributes) and  $x_k$  and  $y_k$  are, respectively, the  $k^{\text{th}}$  attributes (components) or data objects x and y.

#### Minkowski Distance: Examples

- □ r = 1. City block (Manhattan( 曼哈顿 ), taxicab, L₁ norm) distance.
  - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- $\Gamma = 2$ . Euclidean distance
- □  $r \to \infty$ . "supremum" (Chebyshev( 切比雪夫),  $L_{max}$  norm,  $L_{\infty}$  norm) distance.
  - This is the maximum difference between any component of the vectors

$$\lim_{r \to +\infty} \left( \sum_{k=1}^{n} |x_k - y_k|^r \right)^{1/r} = \max_{k=1}^{n} |x_k - y_k|^r$$

Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

#### **Minkowski Distance**

| point     | X | y |
|-----------|---|---|
| p1        | 0 | 2 |
| <b>p2</b> | 2 | 0 |
| р3        | 3 | 1 |
| p4        | 5 | 1 |

| L1        | <b>p1</b> | <b>p2</b> | р3 | <b>p4</b> |
|-----------|-----------|-----------|----|-----------|
| p1        | 0         | 4         | 4  | 6         |
| <b>p2</b> | 4         | 0         | 2  | 4         |
| р3        | 4         | 2         | 0  | 2         |
| p4        | 6         | 4         | 2  | 0         |

| L2        | <b>p1</b> | <b>p2</b> | р3    | <b>p4</b> |
|-----------|-----------|-----------|-------|-----------|
| <b>p1</b> | 0         | 2.828     | 3.162 | 5.099     |
| p2        | 2.828     | 0         | 1.414 | 3.162     |
| р3        | 3.162     | 1.414     | 0     | 2         |
| p4        | 5.099     | 3.162     | 2     | 0         |

| L∞        | <b>p1</b> | <b>p2</b> | р3 | p4 |
|-----------|-----------|-----------|----|----|
| p1        | 0         | 2         | 3  | 5  |
| <b>p2</b> | 2         | 0         | 1  | 3  |
| р3        | 3         | 1         | 0  | 2  |
| p4        | 5         | 3         | 2  | 0  |

#### **Distance Matrix**

#### Mahalanobis Distance(马哈拉诺比斯距离)

mahalanobis 
$$(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^T \Sigma^{-1} (\mathbf{x} - \mathbf{y})$$



#### $\Sigma$ is the covariance matrix

$$egin{aligned} Cov\left( {X,Y} 
ight) &= E\left[ {\left( {X - E\left[ X 
ight]} 
ight)\left( {Y - E\left[ Y 
ight]} 
ight)} 
ight] \ &= E\left[ {XY} 
ight] - 2E\left[ Y 
ight]E\left[ X 
ight] + E\left[ X 
ight]E\left[ Y 
ight] \ &= E\left[ {XY} 
ight] - E\left[ X 
ight]E\left[ Y 
ight] \end{aligned}$$

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

#### **Mahalanobis Distance**



# Covariance Matrix:

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Mahal(A,B) = 5

Mahal(A,C) = 4

#### **Common Properties of a Distance**

- Distances, such as the Euclidean distance, have some well known properties.
  - 1.  $d(\mathbf{x}, \mathbf{y}) = 0$  for all  $\mathbf{x}$  and  $\mathbf{y}$  and  $d(\mathbf{x}, \mathbf{y}) = 0$  only if  $\mathbf{x} = \mathbf{y}$ . (Positive definiteness)
  - 2.  $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$  for all  $\mathbf{x}$  and  $\mathbf{y}$ . (Symmetry)
  - 3.  $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$  for all points  $\mathbf{x}$ ,  $\mathbf{y}$ , and  $\mathbf{z}$ . (Triangle Inequality)

where  $d(\mathbf{x}, \mathbf{y})$  is the distance (dissimilarity) between points (data objects),  $\mathbf{x}$  and  $\mathbf{y}$ .

A distance that satisfies these properties is a metric  $D_{KL}(p||q) = \sum_{i=1}^{N} p(x_i) \cdot (\log p(x_i) - \log q(x_i))$ 

Is Kullback-Leibler divergence a metric? Why? Data Mining: Data

# **Common Properties of a Similarity**

- Similarities, also have some well known properties.
  - 1.  $s(\mathbf{x}, \mathbf{y}) = 1$  (or maximum similarity) only if  $\mathbf{x} = \mathbf{y}$ .
  - 2.  $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$  for all  $\mathbf{x}$  and  $\mathbf{y}$ . (Symmetry)

where  $s(\mathbf{x}, \mathbf{y})$  is the similarity between points (data objects),  $\mathbf{x}$  and  $\mathbf{y}$ .

### **Similarity Between Binary Vectors**

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities  $f_{01}$  = the number of attributes where p was 0 and q was 1  $f_{10}$  = the number of attributes where p was 1 and q was 0  $f_{00}$  = the number of attributes where p was 0 and q was 0  $f_{11}$  = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard (雅卡尔) Coefficients SMC = number of matches / number of attributes =  $(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$ 
  - J = number of 11 matches / number of non-zero attributes =  $(f_{11})$  /  $(f_{01} + f_{10} + f_{11})$

### **SMC versus Jaccard: Example**

$$\mathbf{x} = 10000000000$$
  
 $\mathbf{y} = 0000001001$ 

 $f_{01} = 2$  (the number of attributes where p was 0 and q was 1)

 $f_{10} = 1$  (the number of attributes where p was 1 and q was 0)

 $f_{00} = 7$  (the number of attributes where p was 0 and q was 0)

 $f_{11} = 0$  (the number of attributes where p was 1 and q was 1)

SMC = 
$$(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$$
  
=  $(0+7) / (2+1+0+7) = 0.7$ 

$$J = (f_{11}) / (f_{01} + f_{10} + f_{11}) = 0 / (2 + 1 + 0) = 0$$

### **Cosine Similarity**

☐ If d₁ and d, are two document vectors, then

$$\cos(\mathbf{d}_{1}, \mathbf{d}_{2}) = \langle \mathbf{d}_{1}, \mathbf{d}_{2} \rangle / ||\mathbf{d}_{1}|| ||\mathbf{d}_{2}||,$$

where  $<\mathbf{d_1},\mathbf{d_2}>$  indicates inner product or vector dot product of vectors,  $\mathbf{d_1}$  and  $\mathbf{d_2}$ , and  $\parallel\mathbf{d}\parallel$  is the length of vector  $\mathbf{d}$ .

Example:

$$d_1 = 3 2 0 5 0 0 0 2 0 0$$

$$d_2 = 1000000102$$

$$<\mathbf{d_1}, \mathbf{d2}> = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$\|\mathbf{d}_1\| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||\mathbf{d}_{2}|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.449$$

$$\cos(\mathbf{d_1}, \mathbf{d_2}) = 0.3150$$

#### Correlation measures the linear relationship between objects

$$corr(\mathbf{x}, \mathbf{y}) = \frac{covariance(\mathbf{x}, \mathbf{y})}{standard\_deviation(\mathbf{x}) * standard\_deviation(\mathbf{y})} = \frac{s_{xy}}{s_x s_y}, (2.11)$$

where we are using the following standard statistical notation and definitions

covariance(
$$\mathbf{x}, \mathbf{y}$$
) =  $s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$  (2.12)

standard\_deviation(
$$\mathbf{x}$$
) =  $s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})^2}$ 

standard\_deviation(
$$\mathbf{y}$$
) =  $s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (y_k - \overline{y})^2}$ 

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 is the mean of  $\mathbf{x}$ 

$$\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k$$
 is the mean of  $\mathbf{y}$ 

#### **Visually Evaluating Correlation**



Scatter plots showing the similarity from -1 to 1.

Figure 5.11. Scatter plots illustrating correlations from -1 to 1.

#### **Drawback of Correlation**

- $\mathbf{x} = (-3, -2, -1, 0, 1, 2, 3)$
- $\mathbf{y} = (9, 4, 1, 0, 1, 4, 9)$

$$y_{i} = x_{i}^{2}$$

- $\square$  mean( $\mathbf{x}$ ) = 0, mean( $\mathbf{y}$ ) = 4
- $\square$  std(**x**) = 2.16, std(**y**) = 3.74

$$corr = (-3)(5)+(-2)(0)+(-1)(-3)+(0)(-4)+(1)(-3)+(2)(0)+3(5) / (6 * 2.16 * 3.74)$$

$$= 0$$

### **Comparison of Proximity Measures**

- Domain of application
  - Similarity measures tend to be specific to the type of attribute and data
  - Record data, images, graphs, sequences, 3D-protein structure, etc. tend to have different measures
- However, one can talk about various properties that you would like a proximity measure to have
  - Symmetry is a common one
  - Tolerance to noise and outliers is another
  - Ability to find more types of patterns?
  - Many others possible
- The measure must be applicable to the data and produce results that agree with domain knowledge

#### **Information Based Measures**

Information theory is a well-developed and fundamental disciple with broad applications

- Some similarity measures are based on information theory
  - Mutual information in various versions
  - General and can handle non-linear relationships
  - Can be complicated and time intensive to compute

### **Information and Probability**

- Information relates to possible outcomes of an event
  - transmission of a message, flip of a coin, or measurement of a piece of c
- The more certain an outcome, the less information that it contains and vice-versa
  - For example, if a coin has two heads, then an outcome of heads provides no information
  - More quantitatively, the information is related the probability of an outcome
    - The smaller the probability of an outcome, the more information it provides and vice-versa
  - Entropy is the commonly used measure

#### **Entropy**

- For
  - a variable (event), X,
  - with *n* possible values (outcomes),  $x_1, x_2, ..., x_n$
  - each outcome having probability,  $p_1, p_2 ..., p_n$
  - the entropy of X, H(X), is given by

- $\hfill \hfill$  Entropy is between 0 and  $\log_2 n$  and is measured in bits
  - Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

# **Entropy Examples**

☐ For a coin with probability p of heads and probability q = 1 - p of tails

- For p=0.5, q=0.5 (fair coin) H=1
- For p = 1 or q = 1, H = 0

What is the entropy of a fair four-sided die?

#### **Entropy for Sample Data: Example**

| Hair Color | Count | p    | $-p\log_2 p$ |
|------------|-------|------|--------------|
| Black      | 75    | 0.75 | 0.3113       |
| Brown      | 15    | 0.15 | 0.4105       |
| Blond      | 5     | 0.05 | 0.2161       |
| Red        | 0     | 0.00 | 0            |
| Other      | 5     | 0.05 | 0.2161       |
| Total      | 100   | 1.0  | 1.1540       |

Maximum entropy is  $log_2 5 = 2.3219$ 

#### **Entropy for Sample Data**

- Suppose we have
  - a number of observations (m) of some attribute, X, e.g., the hair color of students in the class,
  - where there are n different possible values
  - And the number of observation in the  $i^{th}$  category is  $m_i$
  - Then, for this sample

For continuous data, the calculation is harder

# **Conditional Entropy**

$$egin{aligned} \mathrm{H}(Y|X) &\equiv \sum_{x \in \mathcal{X}} p(x) \, \mathrm{H}(Y|X=x) \ &= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \, \log \, p(y|x) \ &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \, \log \, p(y|x) \ &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \, p(y|x) \ &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \, rac{p(x,y)}{p(x)}. \ &= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log rac{p(x)}{p(x,y)}. \end{aligned}$$

#### **Mutual Information**

Information one variable provides about another

Formally, , where

H(X,Y) is the joint entropy of X and Y,

Where  $p_{ij}$  is the probability that the  $i^{th}$  value of X and the  $j^{th}$  value of Y occur together. It also can be computed as:

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(rac{p(x,y)}{p(x)\,p(y)}
ight)$$

- For discrete variables, this is easy to compute
- Maximum mutual information for discrete variables is  $log_2(min(n_X, n_Y))$ , where  $n_X(n_Y)$  is the number of values of X(Y)

# **Mutual Information Example**

| Student<br>Status | Count | p    | $-p\log_2 p$ |
|-------------------|-------|------|--------------|
| Undergrad         | 45    | 0.45 | 0.5184       |
| Grad              | 55    | 0.55 | 0.4744       |
| Total             | 100   | 1.00 | 0.9928       |

| Grade | Count | p    | $-p\log_2 p$ |
|-------|-------|------|--------------|
| Α     | 35    | 0.35 | 0.5301       |
| В     | 50    | 0.50 | 0.5000       |
| С     | 15    | 0.15 | 0.4105       |
| Total | 100   | 1.00 | 1.4406       |

| Student<br>Status | Grade | Count | p    | -plog₂p |
|-------------------|-------|-------|------|---------|
| Undergrad         | Α     | 5     | 0.05 | 0.2161  |
| Undergrad         | В     | 30    | 0.30 | 0.5211  |
| Undergrad         | С     | 10    | 0.10 | 0.3322  |
| Grad              | Α     | 30    | 0.30 | 0.5211  |
| Grad              | В     | 20    | 0.20 | 0.4644  |
| Grad              | С     | 5     | 0.05 | 0.2161  |
| Total             |       | 100   | 1.00 | 2.2710  |

Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 = 0.1624

# Relationship



#### **General Approach for Combining Similarities**

- Sometimes attributes are of many different types, but an overall similarity is needed.
- 1: For the  $k^{th}$  attribute, compute a similarity,  $s_k(\mathbf{x}, \mathbf{y})$ , in the range [0, 1].
- 2: Define an indicator variable,  $\delta_k$ , for the k<sup>th</sup> attribute as follows:
  - $\delta_k$  = 0 if the  $k^{\text{th}}$  attribute is an asymmetric attribute and both objects have a value of 0, or if one of the objects has a missing value for the kth attribute

3. Compute 
$$similarity(\mathbf{x}, \mathbf{y}) = \frac{\sum_{k=1}^{n} \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \delta_k}$$

# **Using Weights to Combine Similarities**

- May not want to treat all attributes the same.
  - Use non-negative weights

Can also define a weighted form of distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$

# **Density**

- Measures the degree to which data objects are close to each other in a specified area
- The notion of density is closely related to that of proximity
- Concept of density is typically used for clustering and anomaly detection
- Examples:
  - Euclidean density
    - Euclidean density = number of points per unit volume
  - Probability density
    - Estimate what the distribution of the data looks like
  - Graph-based density
    - Connectivity

#### **Euclidean Density: Grid-based Approach**

Simplest approach is to divide region into a number of rectangular cells of equal volume and define density as # of points the cell contains



| 0  | 0  | 0  | 0  | 0 | 0  | 0  |
|----|----|----|----|---|----|----|
| 0  | 0  | 0  | 0  | 0 | 0  | 0  |
| 4  | 17 | 18 | 6  | 0 | 0  | 0  |
| 14 | 14 | 13 | 13 | 0 | 18 | 27 |
| 11 | 18 | 10 | 21 | 0 | 24 | 31 |
| 3  | 20 | 14 | 4  | 0 | 0  | 0  |
| 0  | 0  | 0  | 0  | 0 | 0  | 0  |

#### **Euclidean Density: Center-Based**

Euclidean density is the number of points within a specified radius of the point



Illustration of center-based density.

# **Data Preprocessing**

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

### **Aggregation**

 Combining two or more attributes (or objects) into a single attribute (or object)

- Purpose
  - Data reduction
    - Reduce the number of attributes or objects
  - Change of scale
    - Cities aggregated into regions, states, countries, etc.
    - Days aggregated into weeks, months, or years
  - More "stable" data
    - Aggregated data tends to have less variability

#### **Example: Precipitation in Australia**

This example is based on precipitation (降雨量) in Australia from the period 1982 to 1993.

The next slide shows

- A histogram for the standard deviation of average monthly precipitation for 3,030 0.5° by 0.5° grid cells in Australia, and
- A histogram for the standard deviation of the average yearly precipitation for the same locations.
- The average yearly precipitation has less variability than the average monthly precipitation.
- All precipitation measurements (and their standard deviations) are in centimeters.

#### **Example: Precipitation in Australia ...**

#### Variation of Precipitation in Australia





Standard Deviation of Average Monthly Precipitation

Standard Deviation of Average Yearly Precipitation

# **Sampling**

- Sampling is the main technique employed for data reduction.
  - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians often sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is typically used in data mining because processing the entire set of data of interest is too expensive or time consuming.

### Sampling ...

The key principle for effective sampling is the following:

- Using a sample will work almost as well as using the entire data set, if the sample is representative
- A sample is representative if it has approximately the same properties (of interest) as the original set of data

# **Sample Size**



## **Types of Sampling**

- Simple Random Sampling
  - There is an equal probability of selecting any particular item
  - Sampling without replacement
    - As each item is selected, it is removed from the population
  - Sampling with replacement
    - Objects are not removed from the population as they are selected for the sample.
    - In sampling with replacement, the same object can be picked up more than once
- □ Stratified (层级的) sampling
  - Split the data into several partitions; then draw random samples from each partition

Monte Carlo Estimator: Evaluating Integrals

$$E[f(X)] = \int f(X)P_X(X) \ dX.$$

$$Var(X) = E[(X - E[X])^2],$$
  
=  $E[X^2] - E[X]^2.$ 

Image that we want to integrate a one-dimensional function f(x) from a to b :

$$F = \int_{a}^{b} f(x) \ dx.$$



Figure 1: the integral over the domain [a,b] can be seen as the area under the curve.

Image that we want to integrate a one-dimensional function f(x) from a to b :

$$F = \int_a^b f(x) \ dx.$$



Figure 2: the curve can be evaluated at x and the result can be multiplied by (b - a). This defines a rectangle which can be seen as a very crude approximation of the integral.

Image that we want to integrate a one-dimensional function f(x) from a to b :

$$F = \int_{a}^{b} f(x) \ dx.$$



We can formalize this idea with the following formula:

$$\langle F^N \rangle = (b-a) \frac{1}{N} \sum_{i=0}^{N-1} f(X_i).$$

 $X_i = a + \xi(b - a)$ , where  $\xi$  is uniformly distributed between zero and one.

#### **Basic Monte Carlo Estimator**

Image that we want to integrate a one-dimensional function f(x) from a to b :

$$F = \int_a^b f(x) \ dx.$$

It is important here to note that:

$$Pr(\lim_{N\to\infty}\langle F^N\rangle=F)=1.$$

#### It is important here to note that:

$$Pr(\lim_{N\to\infty}\langle F^N\rangle = F) = 1.$$

Note also that  $\langle F^N \rangle$  is a random variable, since it's actually made up of a sum of random numbers. We can now proof that the expected value of  $\langle F^N \rangle$  is equal to F:

$$E[\langle F^N \rangle] = E\left[(b-a)\frac{1}{N}\sum_{i=0}^{N-1} f(x_i)\right]$$

$$= (b-a)\frac{1}{N}E\left[\sum_{i=0}^{N-1} f(x_i)\right]$$

$$= (b-a)\frac{1}{N}\sum_{i=0}^{N-1} \int_a^b f(x)pdf(x)dx$$

$$= \frac{1}{N}\sum_{i=0}^{N-1} \int_a^b f(x)dx$$

$$= \int_a^b f(x)dx$$

$$= F$$

- Generalization to Arbitrary PDF
  - We can extend Monte Carlo integration to random variables with arbitrary PDFs. The more generic formula is then:

$$\langle F^N \rangle = \frac{1}{N} \sum_{i=0}^{N-1} \frac{f(X_i)}{pdf(X_i)}.$$

The pdf in the denominator is the same as the pdf of the random variable X

- Generalization to Arbitrary PDF
  - We can extend Monte Carlo integration to random variables with arbitrary PDFs. The more generic formula is then:

$$E[\langle F^{N} \rangle] = E\left[\frac{1}{N} \sum_{i=0}^{N-1} \frac{f(X_{i})}{pdf(X_{i})}\right],$$

$$= \frac{1}{N} \sum_{i=0}^{N-1} E\left[\frac{f(X_{i})}{pdf(X_{i})}\right],$$

$$= \frac{1}{N} \sum_{i=0}^{N-1} \int_{\Omega} \frac{f(x)}{pdf(x)} pdf(x) dx,$$

$$= \frac{1}{N} \sum_{i=0}^{N-1} \int_{\omega} f(x) dx,$$

$$= F.$$

### **Sample Size**

☐ What sample size is necessary to get at least one object from each of 10 equal-sized groups.



- Data in only one dimension is relatively packed
- Adding a dimension
   "stretch" the points across
   the dimension, making
   them further apart
- Adding more dimensions will make the points further apart—high dimensional data is extremely sparse
- Distance measure become meaningless due to equi-distance



(a) Many objects in one unit bin



Dimension a

Data

(b) 6 objects in one unit bin

(c) 4 objects in one unit bin

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which are critical for clustering and outlier detection, become less meaningful



- Randomly generate 500 points
- \*Compute difference between max and min distance between any pair of points





Figure 2. A single feature does not result in a perfect separation of our training data.







Figure 5. The more features we use, the higher the likelihood that we can successfully separate the classes perfectly.

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

https://zhuanlan.zhihu.com/p/27488363 Data Mining: Data

### **Dimensionality Reduction**

#### Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

### Techniques

- Principal Components Analysis (PCA)
- Singular Value Decomposition
- Others: supervised and non-linear techniques

### **Dimensionality Reduction: PCA**

 Goal is to find a projection that captures the largest amount of variation in data



91

## **Dimensionality Reduction: PCA**



### **Feature Subset Selection**

- Another way to reduce dimensionality of data
- Redundant features
  - Duplicate much or all of the information contained in one or more other attributes
  - Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
  - Contain no information that is useful for the data mining task at hand
  - Example: students' ID is often irrelevant to the task of predicting students' GPA
- Many techniques developed, especially for classification

### **Feature Creation**

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
  - Feature extraction
    - Example: extracting edges from images
  - Feature construction
    - Example: dividing mass by volume to get density
  - Mapping data to new space
    - Example: Fourier and wavelet analysis

### **Mapping Data to a New Space**

#### Fourier and wavelet transform



**Two Sine Waves + Noise** 

Frequency

#### **Discretization**

- Discretization is the process of converting a continuous attribute into an ordinal attribute
  - A potentially infinite number of values are mapped into a small number of categories
  - Discretization is commonly used in classification
  - Many classification algorithms work best if both the independent and dependent variables have only a few values
  - We give an illustration of the usefulness of discretization using the Iris data set

### **Binarization**

- Binarization maps a continuous or categorical attribute into one or more binary variables
- Typically used for association analysis
- Often convert a continuous attribute to a categorical attribute and then convert a categorical attribute to a set of binary attributes
  - Association analysis needs asymmetric binary attributes
  - Examples: eye color and height measured as {low, medium, high}

### **Attribute Transformation**

- An attribute transform is a function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
  - Simple functions:  $x^k$ , log(x),  $e^x$ , |x|
  - Normalization
    - Refers to various techniques to adjust to differences among attributes in terms of frequency of occurrence, mean, variance, range
    - Take out unwanted, common signal, e.g., seasonality
  - In statistics, standardization refers to subtracting off the means and dividing by the standard deviation

# Thank You!