What is Feature Selection?

- **Definition:** Process of selecting a subset of features most relevant to the target
- Benefits:
 - Mitigates computational burden
 - Helps avoid overfitting
 - Enhances model interpretability
- Particularly important: When dealing with high-dimensional datasets

Feature Selection in MoDeVa

The DataSet class in MoDeVa implements three feature selection strategies:

- DataSet.feature_select_corr
 - Selects features based on correlation with target variable
- DataSet.feature_select_xgbpfi
 - Selects important features using XGBoost model and permutation importance
- DataSet.feature_select_rcit
 - Selects causal features using conditional independence testing

Correlation Coefficient Approach

DataSet.feature_select_corr selects features based on:

- Strength of correlation between features and target variable
- Different correlation measures based on variable types:
 - Pearson's correlation: For numerical-numerical pairs
 - Theil's U: For categorical-categorical pairs
 - Correlation ratio: For mixed numerical-categorical pairs
- Features with correlation strength above specified threshold are selected

Implementing Correlation-Based Selection

Basic Usage # Import necessary libraries from modeva import DataSet # Load your dataset dataset = DataSet(data) # Select features based on correlation with target selected_features = dataset.feature_select_corr(target='target_variable',

threshold=0.3 # Correlation strength threshold

```
print(f"Selected features: {selected_features}")
```

Correlation Measures in Detail

Pearson's Correlation

- Measures linear relationship
- Range: [-1, 1]
- +1: Perfect positive correlation
- −1: Perfect negative correlation
- 0: No linear correlation

Theil's U

- Measures association between categorical variables
- Based on information theory
- Range: [0,1]
- Asymmetric measure
- Handles non-linear relationships

Correlation Ratio

- Measures association between numerical and categorical variables
- Ratio of between-group variance to total variance
- Range: [0,1]
- Higher values indicate stronger association

XGBoost with Permutation Feature Importance

DataSet.feature_select_xgbpfi approach:

- Two-step process:
 - Fit an XGBoost model using all features and the target
 - Apply permutation feature importance analysis
- Selection methodology:
 - Obtain importance score for each feature
 - Sort features by importance (descending order)
 - Normalize scores to sum to 1
 - Select top features with accumulated importance above threshold
- Caution: Results may be affected if the fitted XGBoost model overfits or underfits

Implementing Feature Importance-Based Selection

Basic Usage

```
# Select features based on XGBoost permutation importance
selected_features = dataset.feature_select_xgbpfi(
    target='target_variable',
    threshold=0.8, # Accumulated importance threshold
    n_estimators=100 # Number of trees in XGBoost model
)
print(f"Selected features: {selected_features}")
```

Benefits and Limitations

Benefits:

- Captures non-linear relationships between features and target
- Accounts for feature interactions
- Can handle mixed data types (numerical and categorical)
- More robust than simple correlation for complex relationships

Limitations:

- Dependent on XGBoost model quality
- May select redundant features (correlated with each other)
- Results may vary with different random seeds
- Computationally more intensive than correlation-based methods

RCIT and FBEDk Algorithm

DataSet.feature_select_rcit implements a two-stage process:

- Combines Randomized Conditional Independence Test (RCIT) with Forward-Backward-Elimination with Early Dropping (FBEDk)
- Process:
 - Forward selection to identify potentially important features
 - Backward elimination to remove redundant features
- Uses random Fourier features for non-parametric conditional independence testing
- Capable of identifying features causally related to the target

RCIT: Randomized Conditional Independence Test

RCIT tests whether a feature X is independent of the response Y, given a Markov boundary set Z:

- Notation: $X \perp Y \mid Z$ (X is independent of Y given Z)
- Process:
 - Transform X, Y, Z using random Fourier features
 - ② Test null hypothesis: $\Sigma_{XY|Z} = \Sigma_{XY} \Sigma_{YZ} \Sigma_{ZZ}^{-1} \Sigma_{XZ} = 0$
 - **3** Compute test statistic: $\|\hat{\Sigma}_{XY|Z}\|_F^2 = n\hat{\Sigma}_{XY} \hat{\Sigma}_{YZ}(\hat{\Sigma}_{ZZ} + \gamma I)^{-1}\hat{\Sigma}_{XZ}$
 - **4** Approximate distribution: $\sum_{i=1}^{\infty} \lambda_i z_i^2$, where z_i are i.i.d. standard Gaussian
- Lindsay-Pilla-Basak method approximates CDF under null using Gamma distribution mixture

FBEDk Algorithm: Forward Selection

Forward Selection phase:

- Initialize with a predefined Markov boundary set
- Initialize all remaining covariates as candidate features
- For each candidate feature:
 - Run RCIT test between candidate and response, conditional on Markov boundary
 - ullet Select features with p-value \leq threshold as candidates
- Add most significant candidate to Markov boundary set
- Repeat until candidate set is empty
- **o** Repeat entire forward phase k times (default: k = 2)

FBEDk Algorithm: Backward Elimination

Backward Elimination phase:

- For each feature j in the Markov boundary set:
 - ullet Temporarily remove feature j from the set
 - ullet Run RCIT test between feature j and response Y, conditional on temporary Markov boundary
 - ullet If p-value > threshold, permanently remove feature j
- Resulting Markov boundary contains only causally significant features

Implementing Conditional Independence-Based Selection

Basic Usage

```
# Select features using RCIT and FBEDk
selected_features = dataset.feature_select_rcit(
    target='target_variable',
    threshold=0.05, # Significance level
    n_forward_phase=2 # Number of forward phases
)
print(f"Selected features: {selected_features}")
```

Benefits and Limitations of RCIT-Based Selection

Benefits:

- Can handle non-linear relationships
- Selects features causally related to response
- Reduces redundancy among selected features
- Statistically rigorous approach

Limitations:

- Computationally intensive
- Results may vary with different initial Markov boundary sets
- Requires careful selection of significance threshold
- May require larger sample sizes for reliable results

Comparing Feature Selection Methods

Aspect	Correlation	XGBoost PFI	RCIT-FBEDk
Relationship type	Linear (mostly)	Non-linear	Non-linear
Computational	Low	Medium	High
cost			
Detects causality	No	Partially	Yes
Handles redun-	No	No	Yes
dancy			
Implementation	Simple	Moderate	Complex
Feature interac-	No	Yes	Yes
tions			
Stability	High	Medium	Medium

When to Use Each Method

Use Correlation-Based Selection when:

- Dataset is small to medium-sized
- Quick exploratory analysis is needed
- Relationships are primarily linear
- Computational resources are limited

Use XGBoost Feature Importance when:

- Non-linear relationships are expected
- Feature interactions are important
- Predictive performance is the primary goal
- Medium computational resources are available

Use RCIT-FBEDk when:

- Causal features are of interest
- High feature redundancy is expected
- Dataset is medium to large
- Strong statistical guarantees are required

Best Practices for Feature Selection

- **Start simple:** Begin with correlation-based method for initial exploration
- Cross-validate: Evaluate model performance with selected features
- Consider stability: Apply selection methods with different random seeds
- Combine methods: Use intersection or union of features from different methods
- Oomain knowledge: Incorporate domain expertise in final feature selection
- Iterative approach: Refine feature set based on model performance
- Monitor overfitting: Check if reduced feature set improves generalization
- Ocument process: Keep track of selection criteria and results

Complete Feature Selection Workflow

```
from modeva import DataSet
# Load your dataset
dataset = DataSet(data)
# Apply multiple feature selection methods
corr features = dataset.feature select corr(
    target='target_variable', threshold=0.3)
xgb_features = dataset.feature_select_xgbpfi(
    target='target_variable', threshold=0.8)
causal features = dataset.feature select rcit(
    target='target_variable', threshold=0.05)
# Find common features across methods
common_features = set(corr_features) & set(xgb_features) &
set(causal features)
# Use selected features for modeling
final features = list(common features)
```

Summary

- Feature selection improves model performance, interpretability, and efficiency
- Modeva provides three approaches:
 - Correlation-based: Simple, efficient for linear relationships
 - XGBoost importance: Captures non-linear relationships and interactions
 - RCIT-FBEDk: Identifies causal features with statistical rigor
- Method selection depends on:
 - Dataset characteristics
 - Modeling objectives
 - Available computational resources
 - Desired statistical properties
- Combined approach often yields the most robust feature set