Ethernet. Bucles LAN

Álvaro González Sotillo

17 de abril de 2018

Índice

indice	
. Introducción	1
2. Bucles LAN	1
3. 802.1D: Spanning Tree	•
I. IEEE 802.3ad: Link Aggregation	
5. Referencias	;
1. Introducción	
Bucles lan	
■ Generalmente, una LAN se configura de forma jerárquica	

- Óptimo según el cableado estructurado
- Fácil de entender
- A veces conviene una topología en forma de malla
 - Mayor tolerancia a fallos
 - A veces, mayor velocidad entre switches

2. Bucles LAN

- \blacksquare Problema
 - Una trama podría estar *viajando* por la red por siempre (Switching loop)
- Solución 1: STP
 - Ciertos enlaces de la red se deshabilitan, para volver a una topología jerárquica
 - Estos enlaces se habilitan de nuevo cuando se modifican las condiciones
- Solución 2: Link Aggregation
 - Se modifica el comportamiento de los switches
 - Utilizan varias conexiones como una sola, con más velocidad

3. 802.1D: Spanning Tree

- Es un protocolo de red para conseguir un árbol (red jerárquica) a base de deshabilitar enlaces de una malla
 - El administrador puede definir una raíz (centro de estrella)
 - Los switches envían paquetes entre sí para calcular sus distancias a esa raíz
 - El puerto más cercano de cada switch se convierte en el puerto raíz

3.1. Nomenclatura

- Root Port (RP): es el puerto por el que se llega más "barato" a la raíz
 - \bullet Coste del enlace: un enlace lento es más costoso. Esta es la medida para decidir entre enlaces. Coste = $10000/\mathrm{Mbs}$
 - nos quedamos con el más "barato", que es el más rápido
- Designated Port (DP): es el puerto conectado al RP de algún otro switch
- Bumped Port (BP): Un puerto enchufado a otro switch, que no es RP ni DP

3.2. Costes de un enlace

- Definidos por un estándar
- Nosotros los aproximaremos por 10000/velocidad

Data rate	STP Cost (802.1D-1998)	RSTP Cost (802.1W-2001)
4 Mbit/s	250	5000000
$10~\mathrm{Mbit/s}$	100	2000000
$16~\mathrm{Mbit/s}$	62	1250000
$100~\mathrm{Mbit/s}$	19	200000
$1 \; \mathrm{Gbit/s}$	4	20000
$2 \; \mathrm{Gbit/s}$	3	10000
$10~\mathrm{Gbit/s}$	2	2000

3.3. Bridge Protocol Data Units

- Cada switch viene de fábrica con un ID para ser root
 - Aunque el administrador lo puede cambiar
- Se envían tramas BPDU para comunicarse
 - Qué switch tiene el menor ID
 - Qué costes tiene cada uno de sus puertos para llegar a la raiz
- Generalmente, se envían cada 2 segundos

3.4. Ejemplos

4. IEEE 802.3ad: Link Aggregation

- Los switches no envían entre sí tramas ethernet estándar
- Agrupan varios enlaces y los utilizan como uno solo
- Sirve para eliminar cuellos de botella entre switches.

4.1. Configuración en Cisco

■ Los puertos que se quieren agregar se añaden al mismo channel-group

```
Switch(config) # interface fa0/1
Switch(config-if) # channel-group 1 mode active
```

5. Referencias

- Formatos:
 - Transparencias
 - PDF
- Ejercicios
- Creado con:
 - Emacs
 - org-reveal
 - Latex