Notations et définitions

Selon l'usage, les corps sont supposés commutatifs. Dans tout le problème, n est un élément de \mathbb{N}^* , \mathbb{K} est un corps.

Si \mathbb{A} est un sous-anneau d'un corps, si p et q sont des éléments de \mathbb{N}^* , on note $\mathcal{M}_{p,q}(\mathbb{A})$ l'ensemble des matrices à p lignes et q colonnes à coefficients dans \mathbb{A} . On abrège $\mathcal{M}_{p,p}(\mathbb{A})$ en $\mathcal{M}_p(\mathbb{A})$; la matrice identité de $\mathcal{M}_p(\mathbb{A})$ est notée I_p . Le groupe des inversibles de l'anneau $\mathcal{M}_p(\mathbb{A})$ est noté $GL_p(\mathbb{A})$. Pour m dans \mathbb{N} , on note $U_m(\mathbb{A})$ l'ensemble des polynômes unitaires de $\mathbb{A}[X]$.

Deux matrices M et N de $\mathcal{M}_n(\mathbb{A})$ sont dites semblables sur \mathbb{A} si, et seulement si, il existe P dans $GL_n(\mathbb{A})$ telle que :

$$N = PMP^{-1}$$

La relation de similitude sur $\mathcal{M}_n(\mathbb{A})$ est une relation d'équivalence. Les classes de cette relation sont appelées classes de similitude sur \mathbb{A} ; pour $\mathbb{A} = \mathbb{Z}$, on les appellera également classes de similitude entière.

Pour M dans $\mathcal{M}_n(\mathbb{K})$, soit χ_M le polynôme caractéristique (unitaire) de M:

$$\chi_M(X) = \det(XI_n - M)$$

Pour P dans $U_n(\mathbb{K})$, soit $\mathcal{E}_{\mathbb{K}}(P)$ l'ensemble des matrices M de $\mathcal{M}_n(\mathbb{K})$ telles que $\chi_M = P$. Puisque deux matrices semblables dans $\mathcal{M}_n(\mathbb{K})$ ont même polynôme caractéristique, $\mathcal{E}_{\mathbb{K}}(P)$ est une réunion de classes de similitude sur \mathbb{K} .

Il est clair que si M est dans $\mathcal{M}_n(\mathbb{Z})$, χ_M est dans $U_n(\mathbb{Z})$. Si P est dans $U_n(\mathbb{Z})$, on note $\mathcal{E}_{\mathbb{Z}}(P)$ l'ensemble des matrices M de $\mathcal{M}_n(\mathbb{Z})$ telles que $\chi_M = P$; cet ensemble est une réunion de classes de similitude entière. On note $\mathcal{D}_{\mathbb{Z}}(P)$ l'ensemble des matrices de $\mathcal{E}_{\mathbb{Z}}(P)$ diagonalisables sur \mathbb{C} .

Si P est le polynôme $X^n - a_{n-1}X^{n-1} - \cdots - a_1X - a_0$ de $\mathbb{K}[X]$, on note C(P) la matrice compagnon de P, c'est-à-dire :

$$C(P) = \begin{pmatrix} 0 & \cdots & 0 & a_0 \\ 1 & \ddots & \vdots & a_1 \\ \vdots & \ddots & 0 & \vdots \\ 0 & \cdots & 1 & a_{p-1} \end{pmatrix} \text{ si } n \ge 2 \text{ et } (a_0) \text{ si } n = 1$$

- I - Préliminaires

- A - Matrices à coefficients dans \mathbb{K}

1.

- (a) Pour quels (a, b, c) de \mathbb{K}^3 , la matrice $M = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ est-elle diagonalisable sur \mathbb{K} ?
- (b) Si $a \neq c$ et b quelconque dans \mathbb{K} , la matrice M est alors triangulaire supérieure dans $\mathcal{M}_2(\mathbb{K})$ avec deux valeurs propres distinctes, elle est donc diagonalisable. Si a=c, elle est diagonalisable si, et seulement si, b=0. En effet, pour b=0, elle est diagonale et pour $b\neq 0$, a est valeur propre double de M et l'équation MX=X équivaut à by=0, soit à y=0. L'espace propre associé à l'unique valeur propre a de M est donc la droite $D=R\begin{pmatrix}1\\0\end{pmatrix}$ et M n'est pas diagonalisable.

- (c) Trouver deux matrices de $\mathcal{M}_2(\mathbb{K})$ non semblables sur \mathbb{K} et ayant même polynôme caractéristique.
- (d) Pour a, b dans \mathbb{K} , avec $b \neq 0$, les matrices $M = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ et $N = aI_2$ ont le même polynôme caractéristique, $\chi_M(X) = (X a)^2$ et ne peuvent être semblables puisque N est diagonalisable et M ne l'est pas (ou bien le polynôme minimal de M est $(X a)^2$ et celui de N, X a).
- (e) Soient M et M' deux éléments de $\mathcal{M}_n(\mathbb{K})$ diagonalisables sur \mathbb{K} et telles que $\chi_M = \chi_{M'}$. Montrer que M et M' sont semblables sur \mathbb{K} .
- (f) Une matrice $M \in \mathcal{M}_n(\mathbb{K})$ diagonalisable a un polynôme caractéristique scindé, $\chi_M(X) = \prod_{k=1}^p (X \lambda_k)^{\alpha_k}$, où les λ_k sont deux à deux distincts dans \mathbb{K} et les α_k sont

des entiers naturels non nuls, le polynôme minimal étant $\pi_{M}\left(X\right)=\prod_{k=1}^{p}\left(X-\lambda_{k}\right).$

L'égalité $\chi_M = \chi_{M'}$ avec M, M' diagonalisables sur \mathbb{K} , nous dit alors que $\pi_M = \pi_{M'}$, ces deux polynômes étant scindés à racines simples. Il en résulte que M et M' sont diagonalisables avec les mêmes valeurs propres, elles sont donc semblables à une même matrice diagonale et conséquence semblables entre elles.

- 2. Soit P dans $U_n(\mathbb{K})$.
 - (a) Montrer que $\chi_{C(P)} = P$.
 - (b) En notant $P_{(a_0,\dots,a_{n-1})}(X) = \det(XI_n C(P))$ le polynôme caractéristique de C(P) et en le développant par rapport à la première ligne, on a :

$$P_{(a_0,\dots,a_{n-1})}(X) = \begin{vmatrix} X & \cdots & 0 & -a_0 \\ -1 & \ddots & \vdots & -a_1 \\ \vdots & \ddots & X & \vdots \\ 0 & \cdots & -1 & X - a_{n-1} \end{vmatrix} = X \cdot P_{(a_1,\dots,a_{n-1})}(X) - a_0$$

et par récurrence $P_{(a_0,\cdots,a_{n-1})}\left(X\right)=X^p-\sum\limits_{k=0}^{n-1}a_kX^k=P\left(X\right).$

b. bis On peut en fait vérifier que P est le polynôme caractéristique et aussi le polynôme minimal de C(P).

On désigne par E l'espace vectoriel quotient $\frac{\mathbb{K}[X]}{(P)}$, où $(P) = \mathbb{K}[X] \cdot P$ est l'idéal engendré par P et $u \in \mathcal{L}(E)$ est défini par :

$$\forall \overline{A} \in E, \ u\left(\overline{A}\right) = \overline{XA}$$

i. Par division euclidienne, tout polynôme $A \in \mathbb{K}[X]$ s'écrit A = PQ + R avec $R \in \mathbb{K}[X]$ et $\overline{P} = \overline{R} = \sum_{k=0}^{n-1} \alpha_k \overline{X^k}$, donc $\left(\overline{X^k}\right)_{0 \le k \le n-1}$ est une famille génératrice de E.

Dire que $\sum_{k=0}^{n-1} \alpha_k \overline{X^k} = \overline{0}$ dans E équivaut à dire que $R = \sum_{k=0}^{n-1} \alpha_k X^k$ est multiple

de P, donc nul à cause des degré, ce qui revient à dire que tous les α_k sont nuls. La famille $\mathcal{B} = \left(\overline{X^k}\right)_{\substack{0 \leq k \leq n-1}}$ est donc une base de E et dim $(E) = n = \deg\left(P\right)$. On notons $e_k = \overline{X^{k-1}}$ pour k compris entre 1 et n.

ii. Avec $u(e_k) = u\left(\overline{X^{k-1}}\right) = \overline{X^k} = e_{k+1}$ pour $1 \le k \le n-1$ et :

$$u(e_n) = u(\overline{X^{n-1}}) = \overline{X^n} = \sum_{k=0}^{n-1} a_k \overline{X^k} = \sum_{k=1}^n a_{k-1} e_k$$

(qui résulte de $\overline{P} = \overline{0}$), on voit que C(P) est la matrice de u dans la base \mathcal{B} .

iii. On a $e_k = u^{k-1}\left(e_1\right)$ pour $1 \le k \le n$ et :

$$\left(u^n - \sum_{k=1}^n a_{k-1} u^{k-1}\right)(e_1) = 0$$

$$\left(u^n - \sum_{k=1}^n a_{k-1} u^{k-1}\right)(e_j) = u^{j-1} \left(\left(u^n - \sum_{k=1}^n a_{k-1} u^{k-1}\right)(e_1)\right) = 0$$

pour $1 \leq j \leq n$, ce qui signifie que u est annulé par P. Le polynôme minimal $\pi_{C(P)} = \pi_u$ divise donc P. Si π_u est de degré p < n, u^p est alors combinaison linéaire de Id, u, \dots, u^{p-1} , donc $e_{p+1} = u^p(e_1)$ est combinaison linéaire de e_1, e_2, \dots, e_p , ce qui n'est pas. On a donc p = n et $\pi_{C(P)} = \pi_u = P$.

iv. Le théorème de Cayley-Hamilton nous dit $\pi_{C(P)}$ est unitaire de degré n divisant le polynôme caractéristique lui aussi unitaire de degré n, donc ces polynômes sont égaux.

En définitive, $\chi_{C(P)} = \pi_{C(P)} = P$.

- (c) Si λ est dans \mathbb{K} , montrer que le rang de $C(P) \lambda I_n$ est supérieur ou égal à n-1.
- (d) Pour $n \ge 2$, on a :

$$C\left(P\right) = \left(\begin{array}{cc} 0_{1,n-1} & a_0\\ I_{n-1} & \beta \end{array}\right)$$

où $0_{1,n-1}$ est le vecteur nul de $\mathcal{M}_{1,n-1}\left(\mathbb{K}\right)$ et $\beta\in\mathcal{M}_{n-1,1}\left(\mathbb{K}\right)$, donc pour tout $\lambda\in\mathbb{K}$:

$$C(P) - \lambda I_n = \begin{pmatrix} \alpha_{\lambda} & a_0 \\ T_{n-1}(\lambda) & \beta_{\lambda} \end{pmatrix}$$

où $\alpha_{\lambda} = (-\lambda, 0_{1,n-2}) \in \mathcal{M}_{1,n-1}(\mathbb{K})$, $\beta_{\lambda} \in \mathcal{M}_{n-1,1}(\mathbb{K})$ et $T_{n-1}(\lambda) \in \mathcal{M}_{n-1}(\mathbb{K})$ est triangulaire supérieure avec la diagonale formée de 1. On a donc det $(T_{n-1}(\lambda)) = 1 \neq 0$ et la matrice C(P) est de rang au moins égal à n-1. Précisément, ce rang est n-1 si λ est valeur propre de C(P) et n sinon.

Pour n = 1, $C(P) - \lambda I_1 = (a_0 - \lambda)$ est de rang 0 ou 1.

- (e) Montrer l'équivalence entre les trois assertions suivantes :
 - i. le polynôme P est scindé sur \mathbb{K} à racines simples ;
 - ii. toutes les matrices de $\mathcal{E}_{\mathbb{K}}(P)$ sont diagonalisables sur \mathbb{K} ;
 - iii. C(P) est diagonalisable sur \mathbb{K} .

(f)

- $(i) \Rightarrow (ii)$ Si P est scindé sur \mathbb{K} à racines simples, il en est de même de $\chi_M = P$ pour toute matrice $M \in \mathcal{E}_{\mathbb{K}}(P)$ et M est diagonalisable sur \mathbb{K} .
- $(ii) \Rightarrow (iii)$ Si toutes les matrices de $\mathcal{E}_{\mathbb{K}}(P)$ sont diagonalisables sur \mathbb{K} , la matrice C(P) qui est dans $\mathcal{E}_{\mathbb{K}}(P)$ (puisque $\chi_{C(P)} = P$) est diagonalisable.
- $(iii)\Rightarrow (i)$ Si C(P) est diagonalisable, son polynôme caractéristique $\chi_{C(P)}=P$ est scindé sur \mathbb{K} . Si $\lambda\in\mathbb{K}$ est une valeur propre de C(P), le rang de $C(P)-\lambda I_n$ vaut n-1, donc l'espace propre associé est de dimension 1. Les valeurs propres de C(P) sont donc toutes simples. En définitive $P=\chi_{C(P)}$ est scindé sur \mathbb{K} à racines simples.
- 3. Soient r et s dans \mathbb{N}^* , A dans $\mathcal{M}_r(\mathbb{K})$, A' dans $\mathcal{M}_s(\mathbb{K})$, $M = \begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix}$. Montrer que M est diagonalisable sur \mathbb{K} si, et seulement si, A et A' sont diagonalisables sur \mathbb{K} .
- 4. Si M est diagonalisable sur \mathbb{K} , son polynôme minimal π_M est scindé sur \mathbb{K} à racines simples et avec :

$$0 = \pi_M(M) = \begin{pmatrix} \pi_M(A) & 0 \\ 0 & \pi_M(A') \end{pmatrix}$$

on déduit que A et A' sont annulées par un polynôme scindé sur $\mathbb K$ à racines simples, elles sont donc diagonalisables.

Réciproquement si A, A' sont diagonalisables sur \mathbb{K} , il existe alors $P \in GL_r(\mathbb{K})$, $Q \in GL_s(\mathbb{K})$ telles que $P^{-1}AP$ et $Q^{-1}A'Q$ soient diagonales. La matrice $R = \begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix}$ est alors inversible et :

$$R^{-1}MR = \left(\begin{array}{cc} P^{-1} & 0 \\ 0 & Q^{-1} \end{array} \right) \left(\begin{array}{cc} A & 0 \\ 0 & A' \end{array} \right) \left(\begin{array}{cc} P & 0 \\ 0 & Q \end{array} \right) = \left(\begin{array}{cc} P^{-1}AP & 0 \\ 0 & Q^{-1}A'Q \end{array} \right)$$

est diagonale.

Ce résultat est en fait valable pour une matrice diagonale à r blocs, c'est-à-dire qu'une matrice diagonale par blocs $M = \operatorname{diag}(A_1, \dots, A_r)$, où $A_k \in \mathcal{M}_{r_k}(\mathbb{K})$ pour tout k, est diagonalisable sur \mathbb{K} si, et seulement si, toutes les matrices A_k sont diagonalisables sur \mathbb{K} .

- 5. Montrer que, pour tout P de U_n (K), l'ensemble E_K (P) est une réunion finie de classes de similitude sur K. On pourra admettre et utiliser le résultat suivant ¹.
 « Si M est dans M_n (K), il existe r dans N* et r polynômes unitaires non constants P₁, · · · , P_r de K[X] tels que M soit semblable sur K à une matrice diagonale par blocs dont les blocs diagonaux sont C(P₁), · · · , C(P_r). »
- 6. Le théorème de Frobénius nous dit qu'une matrice $M \in \mathcal{E}_{\mathbb{K}}(P)$ est semblable à une matrice de la forme :

$$F = \begin{pmatrix} C(P_1) & 0 & \cdots & 0 \\ 0 & C(P_2) & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & C(P_r) \end{pmatrix}$$

^{1.} c'est la décomposition de Frobénius

elle est donc dans la classe de similitude de F. Le polynôme caractéristique de F est :

$$P = \chi_F = \prod_{k=1}^{r} \chi_{C(P_k)} = \prod_{k=1}^{r} P_k$$

Dans l'anneau factoriel $\mathbb{K}[X]$, il n'y a qu'un nombre fini de polynômes unitaires P_k tels que $P = \prod_{k=1}^r P_k$, ce qui ne laisse qu'un nombre fini de possibilités pour F.

L'ensemble $\mathcal{E}_{\mathbb{K}}(P)$ est donc une réunion finie de classes de similitude sur \mathbb{K} .

- B - Polynômes

- 1. Soient P dans $\mathbb{K}[X]$, a dans \mathbb{K} une racine de P. Montrer que a est racine simple de P si, et seulement si, $P'(a) \neq 0$.
- 2. Dire que a est racine de P signifie qu'il existe un polynôme $Q \in \mathbb{K}[X]$ tel que P(X) = (X a) Q(X) et cette racine est simple si, et seulement si, $Q(a) \neq 0$, ce qui équivaut encore à $P'(a) \neq 0$, puisque P'(X) = Q(X) + (X a) Q'(X) et P'(a) = Q(a).
- 3. Soit P un élément irréductible de $\mathbb{Q}[X]$. Montrer que les racines de P dans \mathbb{C} sont simples.
- 4. Si P est irréductible dans $\mathbb{Q}[X]$, on a alors $P \wedge P' = 1$ dans $\mathbb{Q}[X]$ (de manière générale $P \wedge Q = 1$ pour Q non nul de degré strictement inférieur à n) et le théorème de Bézout nous dit qu'il existe deux polynômes U, V dans $\mathbb{Q}[X]$ tels que UP + VP' = 1. Si $a \in \mathbb{C}$ est une racine de P, on a alors V(a)P'(a) = 1, donc $P'(a) \neq 0$ et a est racine simple de P.
- 5. Soient P et Q dans $\mathbb{Q}[X]$, unitaires, tels que P appartienne à $\mathbb{Z}[X]$ et que Q divise P dans $\mathbb{Q}[X]$. Montre que Q appartient à $\mathbb{Z}[X]$. On pourra admettre et utiliser le lemme de Gauss suivant.
 - « Si U est dans $\mathbb{Z}[X]\setminus\{0\}$, soit c(U) le pgcd des coefficients de U. ²Alors pour tout couple (U,V) d'éléments de $\mathbb{Z}[X]\setminus\{0\}:c(UV)=c(U)\,c(V)$. »
- 6. On a P=QR unitaire $\mathbb{Z}[X]$ avec Q,R unitaires dans $\mathbb{Q}[X]$. Après réduction au même dénominateur des coefficients de Q et R, on peut écrire que $Q=\frac{1}{m}Q_1,\ R=\frac{1}{m}R_1$, avec m dans \mathbb{N}^* et Q_1,R_1 dans $\mathbb{Z}[X]$ de coefficient dominant égal à m (Q et R sont unitaires). On a alors $m^2QR=Q_1R_1$ dans $\mathbb{Z}[X]$ et on peut écrire :

$$c\left(m^{2}QR\right) = m^{2}c\left(QR\right) = c\left(Q_{1}\right)c\left(R_{1}\right)$$

avec $c\left(QR\right)=1$ puisque P=QR est unitaire dans $\mathbb{Z}\left[X\right]$. On a donc $m^2=c\left(Q_1\right)c\left(R_1\right)$ avec $c\left(Q_1\right)$ et $c\left(R_1\right)$ qui divisent m (m est le coefficient dominant des polynômes Q_1 et R_1), ce qui implique que $c\left(Q_1\right)=c\left(R_1\right)=m$, c'est-à-dire que m divise tous les coefficients de Q_1 et R_1 et donc $Q=\frac{1}{m}Q_1$, $R=\frac{1}{m}R_1$ sont dans $\mathbb{Z}\left[X\right]$.

Par récurrence, on en déduit que si $P = \prod_{k=1}^r P_k$ est unitaire $\mathbb{Z}[X]$, les P_k étant unitaires dans $\mathbb{Q}[X]$, alors tous les P_k sont dans $\mathbb{Z}[X]$.

7. Soit P dans $U_n(\mathbb{Z})$. Montrer que $\mathcal{D}_{\mathbb{Z}}(P)$ n'est pas vide.

^{2.} c(U) est le contenu de U

8. Dans l'anneaux factoriel $\mathbb{Q}[X]$, le polynôme $P \in U_n(\mathbb{Z})$ est produit de polynômes irréductibles, soit $P = \prod_{k=1}^{\prime} P_k$, les P_k étant unitaires dans $\mathbb{Q}[X]$.

La question précédente nous dit que les P_k sont nécessairement dans $\mathbb{Z}[X]$.

Comme les P_k sont irréductibles dans $\mathbb{Q}[X]$, la question I.B.2. nous dit qu'ils sont scindés à racines simples dans \mathbb{C} , et I.A.2.c. nous dit que les $C(P_k)$ sont diagonalisables sur $\mathbb{C}.$

De **I.A.3.** on déduit que la matrice $M = \operatorname{diag}(C(P_1), \dots, C(P_r))$ est diagonalisable sur \mathbb{C} . Cette matrice est dans $\mathcal{M}_n(\mathbb{Z})$ avec $\chi_M = \prod_{k=1}^r \chi_{C(P_k)} = \prod_{k=1}^r P_k = P$, elle est donc dans $\mathcal{E}_{\mathbb{Z}}(P)$ et dans $\mathcal{D}_{\mathbb{Z}}(P)$. Cet ensemble est donc non vide.

- C - Similitude sur $\mathbb K$ de matrices blocs

Pour U et V dans $\mathcal{M}_n(\mathbb{K})$, on note $\Phi_{U,V}$ l'endomorphisme de $\mathcal{M}_n(\mathbb{K})$ défini par :

$$\forall X \in \mathcal{M}_n(\mathbb{K}), \ \Phi_{U,V}(X) = UX - XV$$

1. Soient U dans $\mathcal{M}_n(\mathbb{K})$, Q dans $GL_n(\mathbb{K})$ et $V = QUQ^{-1}$. Déterminer un automorphisme du K-espace vectoriel $\mathcal{M}_n(\mathbb{K})$ envoyant le noyau de $\Phi_{U,V}$ sur celui de $\Phi_{U,U}$. Dans la suite, m est un entier tel que 0 < m < n, A un élément de $\mathcal{M}_m(\mathbb{K})$, A' un

élément de $\mathcal{M}_{n-m}(\mathbb{K})$, B un élément de $\mathcal{M}_{m,n-m}(\mathbb{K})$.

On note:

$$M = \begin{pmatrix} A & B \\ 0 & A' \end{pmatrix}, \ N = \begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix}$$

2. On a, pour $Q \in GL_n(\mathbb{K})$:

$$\Phi_{U,V}(X) = UX - XV = UX - XQUQ^{-1} = (UXQ - XQU)Q^{-1}$$

= $\Phi_{UU}(XQ)Q^{-1}$

donc:

$$\Phi_{U,V}(X) = 0 \Leftrightarrow \Phi_{U,U}(XQ) = 0$$

soit:

$$X \in \ker (\Phi_{U,V}) \Leftrightarrow XQ \in \ker (\Phi_{U,U})$$

L'automorphisme $X \in \mathcal{M}_n(\mathbb{K}) \mapsto XQ$ envoie donc $\ker(\Phi_{U,V})$ sur $\ker(\Phi_{U,U})$.

3. Soient Y dans $\mathcal{M}_{m,n-m}(\mathbb{K})$ et $P = \begin{pmatrix} I_m & Y \\ 0 & I_{n-m} \end{pmatrix}$. Vérifier que P appartient à $GL_n(\mathbb{K})$; déterminer P^{-1} et $P^{-1}NP$. En déduire que s'il

existe Y dans $\mathcal{M}_{m,n-m}(\mathbb{K})$ tel que B = AY - YA', alors M et N sont semblables.

4. De $\det(P) = 1$, on déduit que $P \in GL_n(\mathbb{K})$. Plus précisément, avec :

$$\begin{pmatrix} I_m & Y \\ 0 & I_{n-m} \end{pmatrix} \begin{pmatrix} I_m & Z \\ 0 & I_{n-m} \end{pmatrix} = \begin{pmatrix} I_m & Z+Y \\ 0 & I_{n-m} \end{pmatrix}$$

on déduit que $P \in GL_n(\mathbb{K})$ avec $P^{-1} = \begin{pmatrix} I_m & -Y \\ 0 & I_{n-m} \end{pmatrix}$ et :

$$P^{-1}NP = \begin{pmatrix} I_m & -Y \\ 0 & I_{n-m} \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix} \begin{pmatrix} I_m & Y \\ 0 & I_{n-m} \end{pmatrix}$$
$$= \begin{pmatrix} A & AY - YA' \\ 0 & A' \end{pmatrix}$$

Il en résulte que $M=\left(\begin{array}{cc}A&B\\0&A'\end{array}\right)$ est semblable à N pour $B=\Phi_{A,A'}\left(Y\right)=AY-YA'.$

5. Le but de cette question est de montrer que si M et N sont semblables sur \mathbb{K} , alors il existe Y dans $\mathcal{M}_{m,n-m}(\mathbb{K})$ tel que B = AY - YA'. Si X est dans $\mathcal{M}_n(\mathbb{K})$, on pose :

$$X = \left(\begin{array}{cc} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \end{array}\right)$$

avec $X_{1,1} \in \mathcal{M}_m(\mathbb{K})$, $X_{1,2} \in \mathcal{M}_{m,n-m}(\mathbb{K})$, $X_{2,1} \in \mathcal{M}_{n-m,m}(\mathbb{K})$ et $X_{2,2} \in \mathcal{M}_{n-m}(\mathbb{K})$. On note alors:

$$\tau(X) = (X_{2,1}, X_{2,2})$$

Il est clair que τ est une application linéaire de $\mathcal{M}_n(\mathbb{K})$ dans $\mathcal{M}_{n-m,n}(\mathbb{K})$.

(a) Montrer les relations :

$$\begin{cases} \ker(\tau) \cap \ker(\Phi_{N,N}) = \ker(\tau) \cap \ker(\Phi_{M,N}) \\ \tau(\ker(\Phi_{M,N})) \subset \tau(\ker(\Phi_{N,N})) \end{cases}$$

(b) Une matrice X dans $\ker(\tau)$ est de la forme $X = \begin{pmatrix} X_{1,1} & X_{1,2} \\ 0 & 0 \end{pmatrix}$ et pour toute matrice B dans $\mathcal{M}_{m,n-m}(\mathbb{K})$, on a :

$$\begin{split} \Phi_{M,N}\left(X\right) &= MX - XN \\ &= \left(\begin{array}{cc} A & B \\ 0 & A' \end{array}\right) \left(\begin{array}{cc} X_{1,1} & X_{1,2} \\ 0 & 0 \end{array}\right) - \left(\begin{array}{cc} X_{1,1} & X_{1,2} \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} A & 0 \\ 0 & A' \end{array}\right) \\ &= \left(\begin{array}{cc} AX_{1,1} - X_{1,1}A & AX_{1,2} - X_{1,2}A' \\ 0 & 0 \end{array}\right) = \Phi_{N,N}\left(X\right) \end{split}$$

Il en résulte que $\ker(\tau) \cap \ker(\Phi_{N,N}) = \ker(\tau) \cap \ker(\Phi_{M,N})$.

Pour
$$X = \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \end{pmatrix} \in \ker (\Phi_{M,N}), \text{ on a :}$$

$$\Phi_{M,N}(X) = MX - XN
= \begin{pmatrix} A & B \\ 0 & A' \end{pmatrix} \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \end{pmatrix} - \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix}
= \begin{pmatrix} AX_{1,1} + BX_{2,1} - X_{1,1}A & AX_{1,2} + BX_{2,2} - X_{1,2}A' \\ A'X_{2,1} - X_{2,1}A & A'X_{2,2} - X_{2,2}A' \end{pmatrix} = 0$$

donc:

$$\tau\left(\Phi_{M,N}\left(X\right)\right) = \left(A'X_{2,1} - X_{2,1}A, A'X_{2,2} - X_{2,2}A'\right) = 0$$

En posant
$$X' = \begin{pmatrix} I_m & 0 \\ X_{2,1} & X_{2,2} \end{pmatrix}$$
, on a:

$$\begin{split} \Phi_{N,N}\left(X'\right) &= NX' - X'N \\ &= \begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix} \begin{pmatrix} I_m & 0 \\ X_{2,1} & X_{2,2} \end{pmatrix} - \begin{pmatrix} I_m & 0 \\ X_{2,1} & X_{2,2} \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 \\ A'X_{2,1} - X_{2,1}A & A'X_{2,2} - X_{2,2}A' \end{pmatrix} = 0 \end{split}$$

donc, $\tau(X) = (X_{2,1}, X_{2,2}) = \tau(X')$ avec $X' \in \ker(\Phi_{N,N})$. On a donc montré que $\tau(\ker(\Phi_{M,N})) \subset \tau(\ker(\Phi_{N,N}))$.

(c) On suppose que M et N sont semblables sur \mathbb{K} . Montrer :

$$\tau \left(\ker \left(\Phi_{M,N} \right) \right) = \tau \left(\ker \left(\Phi_{N,N} \right) \right)$$

(d) En **I.C.1.** on a vu que, si M et N sont semblables sur \mathbb{K} , $\ker (\Phi_{M,N})$ est alors isomorphe à $\ker (\Phi_{N,N})$, donc ces espaces ont même dimension. Le théorème du rang appliqué à la restriction de τ à $\ker (\Phi_{M,N})$ [resp. à $\ker (\Phi_{N,N})$] nous dit que :

$$\dim (\tau (\ker (\Phi_{M,N}))) = \dim (\ker (\Phi_{M,N})) - \dim (\ker (\tau) \cap \ker (\Phi_{M,N}))$$

[resp.
$$\dim (\tau (\ker (\Phi_{N,N}))) = \dim (\ker (\Phi_{N,N})) - \dim (\ker (\tau) \cap \ker (\Phi_{N,N}))$$
]

et de la première égalité de **I.C.3.a.** on déduit que $\ker(\tau) \cap \ker(\Phi_{M,N})$ et $\ker(\tau) \cap \ker(\Phi_{N,N})$ ont même dimension. En définitive on a dim $(\tau(\ker(\Phi_{M,N}))) = \dim(\tau(\ker(\Phi_{N,N})))$ et l'égalité $\tau(\ker(\Phi_{M,N})) = \tau(\ker(\Phi_{N,N}))$ d'après l'inclusion de **I.C.3.a.**

- (e) On suppose que M et N sont semblables sur \mathbb{K} . Montrer qu'il existe Y dans $\mathcal{M}_{m,n-m}$ (\mathbb{K}) tel que B = AY YA'.
- (f) Si M et N sont semblables sur \mathbb{K} , on a alors $\tau\left(\ker\left(\Phi_{M,N}\right)\right) = \tau\left(\ker\left(\Phi_{N,N}\right)\right)$. La matrice $I_n = \begin{pmatrix} I_m & 0 \\ 0 & I_{n-m} \end{pmatrix}$ étant dans $\ker\left(\Phi_{N,N}\right)$, il existe une matrice $X = \begin{pmatrix} X_{1,1} & X_{1,2} \\ 0 & I_{n-m} \end{pmatrix}$ dans $\ker\left(\Phi_{M,N}\right)\left(\tau\left(I_n\right) = \tau\left(X\right) = (0,I_{n-m})\right)$, ce qui se traduit par :

$$\begin{split} \Phi_{M,N}\left(X\right) &= \left(\begin{array}{cc} A & B \\ 0 & A' \end{array}\right) \left(\begin{array}{cc} X_{1,1} & X_{1,2} \\ 0 & I_{n-m} \end{array}\right) - \left(\begin{array}{cc} X_{1,1} & X_{1,2} \\ 0 & I_{n-m} \end{array}\right) \left(\begin{array}{cc} A & 0 \\ 0 & A' \end{array}\right) \\ &= \left(\begin{array}{cc} AX_{1,1} - X_{1,1}A & AX_{1,2} + B - X_{1,2}A' \\ 0 & 0 \end{array}\right) = 0 \end{split}$$

et nous dit que $B=X_{1,2}A'-AX_{1,2}$. Posant $Y=-X_{1,2}\in\mathcal{M}_{m,n-m}\left(\mathbb{K}\right)$, on a B=AY-YA'.

- 6. Montrer l'équivalence entre les deux assertions suivantes :
 - (i) M est diagonalisable sur \mathbb{K} ;
 - (ii) A et A' sont diagonalisables sur \mathbb{K} et B est de la forme AY YA' avec Y dans $\mathcal{M}_{m,n-m}(\mathbb{K})$.
- 7. Dire que $M=\begin{pmatrix}A&B\\0&A'\end{pmatrix}$ est diagonalisable sur $\mathbb K$ équivaut à dire que son polynôme minimal π_M est alors scindé sur $\mathbb K$ à racines simples. Avec :

$$0 = \pi_M(M) = \begin{pmatrix} \pi_M(A) & C \\ 0 & \pi_M(A') \end{pmatrix}$$

on déduit que les matrices A et A' sont annulées par un polynôme scindé sur \mathbb{K} et à racines simples, elles sont donc diagonalisables sur \mathbb{K} .

De **I.A.3.** on déduit que $N = \begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix}$ est diagonalisable sur \mathbb{K} . Comme M et N sont diagonalisable sur \mathbb{K} avec le même polynôme caractéristique (à savoir $\chi_A \cdot \chi_{A'}$), elles sont semblables (d'après **I.A.1.c.**) et B = AY - YA' avec $Y \in \mathcal{M}_{m,n-m}(\mathbb{K})$ d'après **I.C.3.c.** Si B = AY - YA' avec $Y \in \mathcal{M}_{m,n-m}(\mathbb{K})$, la matrice $M = \begin{pmatrix} A & B \\ 0 & A' \end{pmatrix}$ est alors semblable sur \mathbb{K} à $N = \begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix}$ d'après **I.C.2.** Si de plus, A et A' sont diagonalisables sur \mathbb{K} , il en est de même de N d'après **I.A.3.** et M est diagonalisable sur \mathbb{K} .

- II - Similitudes entières

- A - Généralités, premier exemple

- 1. Soit \mathbb{A} un sous-anneau d'un corps. Montrer que $GL_n(\mathbb{A})$ est l'ensemble des matrices de $\mathcal{M}_n(\mathbb{A})$ dont le déterminant est un élément inversible de \mathbb{A} . Expliciter ce résultat pour $\mathbb{A} = \mathbb{Z}$.
- 2. Dire que $M \in \mathcal{M}_n(\mathbb{A})$ est inversible, signifie qu'il existe une matrice $M' \in \mathcal{M}_n(\mathbb{A})$ telle que $MM' = I_n$, ce qui entraîne $\det(M) \det(M') = 1$ dans l'anneau \mathbb{A} , donc $\det(M)$ est inversible dans \mathbb{A} .

Réciproquement si $M \in \mathcal{M}_n(\mathbb{A})$ est telle que $\det(M)$ soit inversible dans \mathbb{A} , la relation $M \cdot {}^t\widetilde{M} = \det(M) I_n$, où $\widetilde{M} \in \mathcal{M}_n(\mathbb{A})$ est la comatrice de M, nous dit que M est inversible dans \mathbb{A} avec $M^{-12} = (\det(M))^{-1} {}^t\widetilde{M}$.

Pour $\mathbb{A} = \mathbb{Z}$, on obtient l'ensemble des matrices de $\mathcal{M}_n(\mathbb{Z})$ de déterminant égal à ± 1 .

- 3. Soient p un nombre premier, \mathbb{F}_p le corps fini $\mathbb{Z}/p\mathbb{Z}$. Si M est une matrice de $\mathcal{M}_n(\mathbb{Z})$, on note \overline{M} la matrice de $\mathcal{M}_n(\mathbb{F}_p)$ obtenue en réduisant M modulo p.

 Montrer que si M et N sont deux matrices de $\mathcal{M}_n(\mathbb{Z})$ semblables sur \mathbb{Z} , les matrices \overline{M} et \overline{N} sont semblables sur \mathbb{F}_p .
- 4. On vérifie facilement que pour toutes matrices P, Q dans $\mathcal{M}_n(\mathbb{Z})$, on a $\overline{P+Q} = \overline{P} + \overline{Q}$ $\overline{PQ} = \overline{P} \cdot \overline{Q}$, c'est-à-dire que l'application $M \mapsto \overline{M}$ est un morphisme d'anneau de $\mathcal{M}_n(\mathbb{Z})$ sur $\mathcal{M}_n(\mathbb{F}_p)$ (il est surjectif). Si de plus P est inversibles, on a alors $PP^{-1} = I_n$ dans $\mathcal{M}_n(\mathbb{Z})$ et $\overline{PP^{-1}} = \overline{I_n}$ dans $\mathcal{M}_n(\mathbb{F}_p)$, c'est-à-dire que \overline{P} est inversible dans $\mathcal{M}_n(\mathbb{F}_p)$ d'inverse $\overline{P}^{-1} = \overline{P^{-1}}$.

Si M et N sont semblables dans $\mathcal{M}_n(\mathbb{Z})$, il existe alors $P \in GL_n(\mathbb{Z})$ telle que $N = P^{-1}MP$ et avec $\overline{N} = \overline{P}^{-1}\overline{MP}$, on déduit que \overline{M} et \overline{N} sont semblables dans $\mathcal{M}_n(\mathbb{F}_p)$.

5. Pour a dans \mathbb{Z} , soient :

$$S_a = \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}, T_a = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

- (a) Montrer que S_0 et S_1 sont semblables sur \mathbb{Q} , mais ne sont pas semblables sur \mathbb{Z} . Soit M dans $\mathcal{M}_2(\mathbb{Z})$ telle que $\chi_M = X^2 - 1$.
- (b) Pour tout $a \in \mathbb{Z}$, la matrice $S_a \in \mathcal{M}_2(\mathbb{Q})$ a deux valeurs propres distinctes dans \mathbb{Q} , elle est donc diagonalisable semblable à $S_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ sur \mathbb{Q} .

Si S_a est semblable à S_0 sur \mathbb{Z} , pour tout nombre premier $p \geq 2$, la matrice $\overline{S_a}$

est semblable à $\overline{S_0}$ sur \mathbb{Z}_p . Prenant p=2 et a impair, on a $\overline{S_0}=\left(\begin{array}{cc}\overline{1}&\overline{0}\\\overline{0}&\overline{1}\end{array}\right)=\overline{I_2}$ et $\overline{S_a}=\left(\begin{array}{cc}\overline{1}&\overline{1}\\\overline{0}&\overline{1}\end{array}\right)\neq\overline{I_2}$ ne peut être semblable à $\overline{S_0}=\overline{I_2}$ dans $\mathcal{M}_2\left(\mathbb{F}_2\right)$, ce qui contredit **II.A.2.** Donc S_0 et S_a , pour a impair, ne sont pas semblables sur \mathbb{Z} .

- (c) Montrer qu'il existe x_1 et x_2 dans \mathbb{Z} premiers entre eux tels que le vecteur colonne $x = {}^t(x_1, x_2)$ vérifie Mx = x.
- (d) Comme $\chi_M = (X-1)(X+1)$ est scindé à racines simples dans \mathbb{Q} , la matrice M est diagonalisable sur \mathbb{Q} , semblable à S_0 . En particulier, il existe un vecteur $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{Q}^2$ tel que My = y. Multipliant y par un entier λ judicieusement choisi, le vecteur $x = \lambda y = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ est dans \mathbb{Z}^2 , encore valeur propre de M associé à la valeur propre 1, avec x_1, x_2 premiers entre eux.
- (e) Montrer que M est semblable sur \mathbb{Z} à une matrice S_a avec a dans \mathbb{Z} .
- (f) Comme $x_1 \wedge x_2 = 1$, le théorème de Bézout nous dit qu'il existe $\begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{Z}^2$ tel que $ux_1 + vx_2 = 1$. En notant $P = \begin{pmatrix} x_1 & -v \\ x_2 & u \end{pmatrix}$ dans $\mathcal{M}_2(\mathbb{Z})$, on a det (P) = 1, donc P est inversible dans $\mathcal{M}_2(\mathbb{Z})$ et $P^{-1}MP = \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}$ avec $a \in \mathbb{Z}$, puisque P est la matrice de passage de la base canonique de \mathbb{Q}^2 à la base (x,y) où $y = \begin{pmatrix} -v \\ u \end{pmatrix}$ et Mx = x.
- (g) Pour a et x dans \mathbb{Z} , déterminer $T_xS_aT_x^{-1}$; conclure que M est semblable sur \mathbb{Z} à l'une des deux matrices S_0, S_1 .
- (h) Pour $(a, x) \in \mathbb{Z}^2$, on a :

$$T_x S_a T_x^{-1} = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & a - 2x \\ 0 & -1 \end{pmatrix} = S_{a-2x}$$

Comme M est semblable sur \mathbb{Z} à une matrice S_a avec a dans \mathbb{Z} , on en déduit qu'elle est aussi semblable sur \mathbb{Z} à S_{a-2x} pour tout $x \in \mathbb{Z}$. Si a est pair [resp. impair], on a a = 2x [resp. a = 2x + 1] avec $x \in \mathbb{Z}$, et M est semblable à S_0 [resp. à S_1].

$$-$$
 B $-$ Les ensembles $\mathcal{E}_{\mathbb{Z}}\left(X^{2}-\delta
ight)$

Dans cette partie, on fixe un élément δ de \mathbb{Z}^* qui n'est pas le carré d'un entier et on considère $P=X^2-\delta$.

1.

(a) Vérifier que $\mathcal{E}_{\mathbb{Z}}(P)$ est l'ensemble des matrices de la forme :

$$\left(\begin{array}{cc} a & c \\ b & -a \end{array}\right)$$

où a, b, c sont dans \mathbb{Z} et vérifient : $a^2 + bc = \delta$. Si a et b sont deux entiers relatifs tels que b divise $\delta - a^2$, vérifier que l'ensemble $\mathcal{E}_{\mathbb{Z}}(P)$ contient une unique matrice de la forme :

$$\begin{pmatrix} a & c \\ b & -a \end{pmatrix}$$

Cette matrice sera notée $M_{(a,b)}$ dans la suite.

(b) Si
$$M = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{E}_{\mathbb{Z}}(P)$$
, on a $M \in \mathcal{M}_{2}(\mathbb{Z})$ et:

$$\chi_M(X) = X^2 - \text{tr}(M)X + \text{det}(M) = X^2 - \delta$$

donc $\operatorname{tr}(M) = a + d = 0$ et $\det(M) = ad - bc = -a^2 - bc = -\delta$. La matrice M est donc de la forme :

$$M = \left(\begin{array}{cc} a & c \\ b & -a \end{array}\right)$$

avec $(a, b, c) \in \mathbb{Z}^3$ tel que $a^2 + bc = \delta$.

Pour $(a,b) \in \mathbb{Z}^2$ tel que b divise $\delta - a^2$, on a $\delta - a^2 = bc$ avec $c \in \mathbb{Z}$ uniquement déterminé et $M_{(a,b)} = \begin{pmatrix} a & \frac{\delta - a^2}{b} \\ b & -a \end{pmatrix}$ est l'unique élément de $\mathcal{E}_{\mathbb{Z}}(P)$.

- (c) Soient a, b dans \mathbb{Z} tels que b divise δa^2 , λ dans \mathbb{Z} . Montrer que les matrices $M_{(a,b)}$, $M_{(a,-b)}$, $M_{(a+\lambda b,b)}$, $M_{\left(-a,\frac{\delta-a^2}{b}\right)}$ sont semblables sur \mathbb{Z} .
- (d) Pour $P = \begin{pmatrix} x & z \\ y & t \end{pmatrix} \in GL_2(\mathbb{Z})$, on a det $(P) = \varepsilon \in \{-1, 1\}$, $P^{-1} = \varepsilon \begin{pmatrix} t & -z \\ -y & x \end{pmatrix}$

$$P^{-1}M_{(a,b)}P = \varepsilon \begin{pmatrix} t & -z \\ -y & x \end{pmatrix} \begin{pmatrix} a & \frac{\delta - a^2}{b} \\ b & -a \end{pmatrix} \begin{pmatrix} x & z \\ y & t \end{pmatrix}$$

$$= \varepsilon \begin{pmatrix} x(at - bz) + y \left(az + \frac{1}{b}t(\delta - a^2)\right) & z(at - bz) + t \left(az + \frac{1}{b}t(\delta - a^2)\right) \\ x(-ay + bx) + y \left(-ax - \frac{1}{b}y(\delta - a^2)\right) & z(-ay + bx) + t \left(-ax - \frac{1}{b}y(\delta - a^2)\right) \end{pmatrix}$$

Pour y = z = 0, cela donne :

$$P^{-1}M_{(a,b)}P = \varepsilon \begin{pmatrix} axt & \frac{1}{b}(\delta - a^2)t^2 \\ bx^2 & -axt \end{pmatrix} = \begin{pmatrix} a & \frac{\varepsilon}{b}(\delta - a^2) \\ b\varepsilon & -a \end{pmatrix}$$

Prenant $\varepsilon = -1$ (i. e. $x = \pm 1$ et t = -x), on obtient :

$$P^{-1}M_{(a,b)}P = \begin{pmatrix} a & -\frac{1}{b}(\delta - a^2) \\ -b & -a \end{pmatrix} = M_{(a,-b)}$$

Pour y = 0, $z = -\lambda$, x = t = 1, cela donne :

$$P^{-1}M_{(a,b)}P = \begin{pmatrix} a+b\lambda & -\lambda(a+b\lambda) - a\lambda + \frac{1}{b}(\delta - a^2) \\ b & -\lambda b - a \end{pmatrix}$$
$$= \begin{pmatrix} a+b\lambda & -b\lambda^2 - 2\lambda a + \frac{1}{b}(\delta - a^2) \\ b & -\lambda b - a \end{pmatrix}$$
$$= \begin{pmatrix} a+\lambda b & \frac{\delta - (a+\lambda b)^2}{b} \\ b & -a - \lambda b \end{pmatrix} = M_{(a+\lambda b,b)}$$

Pour x = t = 0, cela donne :

$$P^{-1}M_{(a,b)}P = \varepsilon \begin{pmatrix} ayz & -bz^2 \\ -\frac{1}{b}(\delta - a^2)y^2 & -ayz \end{pmatrix} = \begin{pmatrix} -a & -b\varepsilon \\ -\frac{\varepsilon}{b}(\delta - a^2) & a \end{pmatrix}$$

Prenant $\varepsilon = -1$ (i. e. $y = \pm 1$ et z = -y), on obtient :

$$P^{-1}M_{(a,b)}P = \begin{pmatrix} -a & b \\ \frac{\delta - a^2}{b} & a \end{pmatrix} = M_{\left(-a, \frac{\delta - a^2}{b}\right)}$$

- 2. Soit M dans $\mathcal{E}_{\mathbb{Z}}(P)$. Puisque $M_{(a,b)}$ et $M_{(a,-b)}$ sont semblables sur \mathbb{Z} , l'ensemble \mathcal{B} des b de \mathbb{N}^* tels qu'il existe une matrice $M_{(a,b)}$ semblable sur \mathbb{Z} à M n'est pas vide; on note $\beta(M)$ le plus petit élément de \mathcal{B} .
 - (a) Montrer qu'il existe un entier a tel que $|a| \leq \frac{\beta(M)}{2}$ et tel que M soit semblable sur \mathbb{Z} à $M_{(a,\beta(M))}$.
 - (b) Soit a' un entier tel que $M_{(a',\beta(M))}$ soit semblable sur \mathbb{Z} à M. En effectuant la division euclidienne de a' par $\beta(M)$, il existe un unique couple d'entiers (q,r) tel que $a' = q\beta(M) + r$ et $-\frac{\beta(M)}{2} \le r < \frac{\beta(M)}{2}$. La matrice $M_{(a'-q\beta(M),\beta(M))} = M_{(r,\beta(M))}$ est alors semblable sur \mathbb{Z} à $M_{(a',\beta(M))}$, donc à M, avec $|r| \le \frac{\beta(M)}{2}$.
 - (c) Comparer $|\delta a^2|$ et $\beta(M)^2$. En déduire que $\beta(M)$ est majoré par $\sqrt{\delta}$ si $\delta > 0$, par $\sqrt{\frac{4|\delta|}{3}}$ si $\delta < 0$.
 - (d) Pour tout $b \in \mathcal{B}$, la matrice $M_{(a,b)}$ est semblable sur \mathbb{Z} à M, donc aussi la matrice $M_{\left(-a,\frac{\delta-a^2}{b}\right)}$ et la matrice $M_{\left(-a,\frac{|\delta-a^2|}{b}\right)}$ d'après **II.B1.b.** Il en résulte que $\beta\left(M\right) \leq \frac{|\delta-a^2|}{b}$. En particulier, on a $\beta\left(M\right) \leq \frac{|\delta-a^2|}{\beta\left(M\right)}$, donc $\beta\left(M\right)^2 \leq |\delta-a^2|$. Si $\delta < a^2$, on a alors :

$$\beta(M)^2 \le a^2 - \delta \le \frac{\beta(M)^2}{4} - \delta$$

donc $\delta < 0$ et $\beta(M) \le \sqrt{\frac{4|\delta|}{3}}$.

Si $\delta > 0$, on a alors nécessairement $\delta > a^2$ (sinon $\delta < 0$ et δ n'est pas un carré) et :

$$\beta \left(M\right)^2 \le \delta - a^2 \le \delta$$

soit $\beta(M) \leq \sqrt{\delta}$.

- (e) Montrer que $\mathcal{E}_{\mathbb{Z}}(P)$ est réunion d'un nombre fini de classes de similitude entière.
- (f) Ce qui précède nous dit que toute matrice $M \in \mathcal{E}_{\mathbb{Z}}(P)$ est semblable sur \mathbb{Z} à une matrice M(a,b) avec $b=\beta(M)$ compris entre 1 et $\max\left(\sqrt{\delta},\sqrt{\frac{4\,|\delta|}{3}}\right)$ et $|a|\leq \frac{\beta(M)}{2}\leq \max\left(\sqrt{\delta},\sqrt{\frac{4\,|\delta|}{3}}\right)$. L'ensemble de ces matrices étant fini, il n'y a qu'un nombre fini de classes de similitude entière.

- C - Diagonalisabilité et réduction modulo p

Soient p un nombre premier, $\overline{\mathbb{F}_p}$ une clôture algébrique su corps \mathbb{F}_p défini en **II.A.2.** ℓ dans \mathbb{N}^* . Pour P dans $\mathbb{Z}[X]$, on note \overline{P} l'élément de $\mathbb{F}_p[X]$ obtenu en réduisant P modulo P. Si M est dans $\mathcal{M}_{\ell}(\mathbb{Z})$, on note \overline{M} la matrice de $\mathcal{M}_{\ell}(\mathbb{F}_p)$ obtenue en réduisant M modulo p.

- 1. Soit P dans $\mathbb{Z}[X]$ non constant dont les racines dans \mathbb{C} sont simples.
 - (a) Montrer qu'il existe d dans \mathbb{N}^* , S et T dans $\mathbb{Z}[X]$ tels que :

$$SP + TP' = d$$

- (b) Comme toutes les racines complexes de P sont simples, les polynômes P et P' sont premiers entre eux dans $\mathbb{Q}[X]$ et le théorème de Bézout nous dit qu'il existe U, V dans $\mathbb{Q}[X]$ tels que UP + VP' = 1. Désignant par d un entier naturel non nul tel que S = dU et T = dV soient dans $\mathbb{Z}[X]$, on a SP + TP' = d.
- (c) Si p ne divise pas d, montrer que les racines de \overline{P} dans $\overline{\mathbb{F}_p}$ sont simples.
- (d) Si $\alpha \in \overline{\mathbb{F}_p}$ est une racine de \overline{P} , on a $\overline{T}(\alpha)\overline{P}'(\alpha) = \overline{d} \neq \overline{0}$ si p ne divise pas d, donc $\overline{P}'(\alpha) \neq 0$ et α est racine simple de \overline{P} .
- 2. Soit M dans $\mathcal{M}_{\ell}(\mathbb{Z})$ diagonalisable sur \mathbb{C} .
 - (a) Montrer qu'il existe un élément P de $\mathbb{Z}[X]$ unitaire, dont les racines complexes sont toutes simples et tel que P(M) = 0.
 - (b) Soient $\chi_M \in \mathbb{Z}[X]$ le polynôme caractéristique de M et $\chi_M = \prod_{k=1}^r (X \lambda_k)^{m_k}$ sa décomposition en facteurs irréductibles dans $\mathbb{C}[X]$, les λ_k étant deux à deux distincts. Le pgcd de χ_M et χ_M' est :

$$\Delta = \prod_{k=1}^{r} (X - \lambda_k)^{m_k - 1} \in \mathbb{Q}[X]$$

(le pgcd est le même dans $\mathbb{Q}\left[X\right]$ et $\mathbb{C}\left[X\right]$) et, pour M diagonalisable, le polynôme minimal de M est :

$$\pi_{M} = \prod_{k=1}^{r} (X - \lambda_{k}) = \frac{\chi_{M}}{\Delta} \in \mathbb{Q}[X]$$

On a donc $\chi_M = \Delta \cdot \pi_M$ avec χ_M et Δ unitaires dans $\mathbb{Q}[X]$, $\chi_M \in \mathbb{Z}[X]$ et π_M divise χ_M dans $\mathbb{Q}[X]$, ce qui implique que $\pi_M \in \mathbb{Z}[X]$ d'après **I.B.3.** Ce polynôme $P = \pi_M$ convient.

- (c) Montrer qu'il existe un entier d_M tel que si p ne divise pas d_M alors \overline{M} est diagonalisable sur $\overline{\mathbb{F}_p}$.
- (d) Le polynôme π_M étant non constant dans $\mathbb{Z}[X]$ à racines complexes simples, on déduit de **II.C.1.** que pour tout $d \in \mathbb{N}^*$ non multiple de p, les racines de $\overline{\pi_M}$ dans $\overline{\mathbb{F}_p}$ sont simples. Ce polynôme $\overline{\pi_M} \in \overline{\mathbb{F}_p}[X]$ étant annulateur de \overline{M} , on en déduit que \overline{M} est diagonalisable sur $\overline{\mathbb{F}_p}$.

- D - Un résultat de non finitude

Soit P un élément de $U_n(\mathbb{Z})$ dont les racines dans \mathbb{C} ne sont pas toutes simples.

1. Montrer qu'il existe ℓ dans \mathbb{N}^* , m dans \mathbb{N} , Q dans $U_{\ell}(\mathbb{Z})$, R dans $U_m(\mathbb{Z})$ tels que $P = Q^2 R$. Grâce à **I.B.4.** on dispose de A dans $\mathcal{D}_{\mathbb{Z}}(Q)$ et, si m > 0, de B dans $\mathcal{D}_{\mathbb{Z}}(R)$. Si p est un nombre premier, soit E_p la matrice:

$$\begin{pmatrix} A & pI_{\ell} & 0 \\ 0 & A & 0 \\ 0 & 0 & B \end{pmatrix} \text{ si } m > 0, \begin{pmatrix} A & pI_{\ell} \\ 0 & A \end{pmatrix} \text{ si } m = 0$$

- 2. Dans l'anneau factoriel $\mathbb{Q}[X]$, on a la décomposition de $P \in U_n(\mathbb{Z})$ en facteurs irréductibles unitaires, $P = \prod_{k=1}^r P_k^{m_k}$. De **I.B.3.** on déduit que les P_k sont dans $\mathbb{Z}[X]$ et de **I.B.2.** qu'ils sont à racines complexes simples. Les m_k ne peuvent être tous égaux à 1, sinon toutes les racines de P sont simples (pour $j \neq k$, on a $P_k \wedge P_j = 1$ dans $\mathbb{Q}[X]$ et $\mathbb{C}[X]$, donc les racines complexes de P_k sont distinctes de celles de P_j). Il existe donc un indice j tel que $m_j \geq 2$ et posant $Q = P_j \in U_\ell(\mathbb{Z})$, avec $1 \leq \ell \leq r$, $R = P_j^{m_j-2} \prod_{\substack{k=1 \ k \neq j}}^r P_k^{m_k} \in U_m(\mathbb{Z})$ avec $m+2\ell=r$, on a $P=Q^2R$.
 - avec $m + 2\ell = r$, on a $P = Q^2 R$.
- 3. Les entiers d_A et d_B (si m > 0) sont ceux définis en **II.C.** Soient p et q deux nombres premiers distincts tels que p ne divise ni d_A , ni ℓ , ni d_B si m > 0. Montrer que E_p et E_q ne sont pas semblables sur \mathbb{Z} .
- 4. Comme p ne divise ni d_A , ni d_B , les matrices \overline{A} et \overline{B} sont diagonalisable sur $\overline{\mathbb{F}_p}$ d'après II.C.2. Comme :

$$\overline{E_p} = \begin{pmatrix} \overline{A} & \overline{0} & \overline{0} \\ \overline{0} & \overline{A} & \overline{0} \\ \overline{0} & \overline{0} & \overline{B} \end{pmatrix} \text{ si } m > 0, \ \begin{pmatrix} \overline{A} & \overline{0} \\ \overline{0} & \overline{A} \end{pmatrix} \text{ si } m = 0$$

on déduit de **I.A.3.** que $\overline{E_p}$ est aussi diagonalisable sur $\overline{\mathbb{F}_p}$.

Soit q un nombre premier distinct de p. Si $\overline{E_q}$ est diagonalisable sur $\overline{\mathbb{F}_p}$ il en est de même de $\begin{pmatrix} \overline{A} & \overline{q}\overline{I_\ell} \\ 0 & \overline{A} \end{pmatrix}$ et **I.C.4.** nous dit que $\overline{q}\overline{I_\ell}$ doit être de la forme $\overline{AY} - \overline{YA}$, ce qui entraîne $\operatorname{Tr}\left(\overline{q}\overline{I_\ell}\right) = \overline{\ell q} = \operatorname{Tr}\left(\overline{AY} - \overline{YA}\right) = \overline{0}$ dans \mathbb{F}_p et est en contradiction avec l'hypothèse, p ne divise pas ℓ .

On en déduit que les matrices $\overline{E_p}$ et $\overline{E_q}$ ne peuvent être semblables sur $\overline{\mathbb{F}_p}$, donc elles ne peuvent être semblables sur \mathbb{F}_p et les matrices E_p et E_q ne peuvent être semblables sur \mathbb{Z} .

- 5. Conclure que $\mathcal{E}_{\mathbb{Z}}(P)$ n'est pas réunion d'un nombre fini de classes de similitude entière.
- 6. On a une infinité de nombres premiers p ne ne divisant ni d_A , ni ℓ , ni d_B et pour de tels entiers $p \neq q$, on a E_p , E_q dans $\mathcal{E}_{\mathbb{Z}}(P)$ non semblables sur \mathbb{Z} . Donc $\mathcal{E}_{\mathbb{Z}}(P)$ n'est pas réunion d'un nombre fini de classes de similitude entière.

- III - Un théorème de finitude

Si $(\Gamma, +)$ est un groupe abélien et r un élément de \mathbb{N}^* , on dit que la famille $(e_i)_{1 \leq i \leq r}$ d'éléments de Γ est une \mathbb{Z} -base de Γ si, et seulement si, tout élément de Γ s'écrit de façon unique $\lambda_1 e_1 + \cdots + \lambda_r e_r$ avec $(\lambda_1, \cdots, \lambda_r)$ dans \mathbb{Z}^r .

Si Γ admet une \mathbb{Z} -base finie, on dit que Γ est un groupe abélien libre de type fini ou, en abrégé, un g.a.l.t.f. On sait alors qu'alors toutes les \mathbb{Z} -bases de Γ ont même cardinal; ce cardinal commun est appelé rang de Γ . par exemple, $(\mathbb{Z}^r, +)$ est un g.a.l.t.f. de rang r (et tout g.a.l.t.f. de rang r est isomorphe à \mathbb{Z}^r).

On pourra admettre et utiliser le résultat suivant.

Soient $(\Gamma, +)$ un g.a.l.t.f. de rang r, Γ' un sous-groupe non nul de Γ . Alors il existe une \mathbb{Z} -base $(e_i)_{1 \leq i \leq r}$ de Γ , un entier naturel non nul $s \leq r$ et des éléments d_1, \dots, d_s de \mathbb{N}^* tels que $(d_i e_i)_{1 \leq i \leq s}$ soit une une \mathbb{Z} -base de Γ' . En particulier, Γ' est un g.a.l.t.f. de rang $\leq r$.

A – Groupes abéliens libres de type fini

1. Soient Γ un g.a.l.t.f. de rang n, $(e_i)_{1 \leq i \leq n}$ une \mathbb{Z} -base de Γ , $(f_j)_{1 \leq j \leq n}$ une famille d'éléments de Γ . Si $1 \leq j \leq n$, on écrit :

$$f_j = \sum_{i=1}^n p_{i,j} e_i$$

où la matrice $P = (p_{i,j})_{1 \leq i,j}$ est dans $\mathcal{M}_n(\mathbb{Z})$. Montrer que $(f_j)_{1 \leq j \leq n}$ est une \mathbb{Z} -base de Γ si, et seulement si, P appartient à $GL_n(\mathbb{Z})$.

2. Dire que $(f_j)_{1 \leq j \leq n}$ est une \mathbb{Z} -base de Γ équivaut à dire que pour tout $g = \sum_{i=1}^n \mu_i e_i \in \Gamma$, il existe un unique $\lambda = (\lambda_j)_{1 \leq j \leq n} \in \mathbb{Z}^n$ tel que :

$$g = \sum_{j=1}^{n} \lambda_{j} f_{j} = \sum_{j=1}^{n} \lambda_{j} \left(\sum_{i=1}^{n} p_{i,j} e_{i} \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} p_{i,j} \lambda_{j} \right) e_{i}$$

ce qui équivaut à dire que pour tout $\mu=(\mu_i)_{1\leq i\leq n}\in\mathbb{Z}^n$, il existe un unique $\lambda=(\lambda_j)_{1\leq j\leq n}\in\mathbb{Z}^n$ tel que :

$$\mu_i = \sum_{j=1}^n p_{i,j} \lambda_j \ (1 \le i \le n)$$

ce qui est encore équivalent à dire que le morphisme de groupes $\lambda \mapsto \mu$ défini par les relations précédentes est bijectif et se traduit par la condition $P \in GL_n(\mathbb{Z})$.

3. Soient $(\Gamma, +)$ un g.a.l.t.f. et Γ' un sous-groupe de Γ . Montrer que le groupe quotient Γ/Γ' est fini si, et seulement si, Γ et Γ' ont même rang.

4. Soient $(e_i)_{1 \leq i \leq r}$ une \mathbb{Z} -base de Γ et $(d_i)_{1 \leq i \leq s}$ dans $(\mathbb{N}^*)^s$ avec $1 \leq s \leq r$ tels que $(d_i e_i)_{1 \leq i \leq s}$ soit une une \mathbb{Z} -base de Γ' . Le morphisme de groupes :

$$\varphi: \qquad \Gamma \qquad \to \qquad \prod_{k=1}^{s} \frac{\mathbb{Z}}{d_{k}\mathbb{Z}} \times \mathbb{Z}^{r-s}$$

$$g = \sum_{i=1}^{r} \lambda_{i} e_{i} \quad \mapsto \quad (\lambda_{1} + d_{1}\mathbb{Z}, \cdots, \lambda_{s} + d_{s}\mathbb{Z}, \lambda_{s+1}, \cdots, \lambda_{r})$$

est surjectif de noyau Γ' , il induit donc un isomorphisme :

$$\overline{\varphi}: \qquad \Gamma/\Gamma' \qquad \to \qquad \prod_{k=1}^{s} \frac{\mathbb{Z}}{d_{k}\mathbb{Z}} \times \mathbb{Z}^{r-s}$$

$$\overline{g} = \sum_{i=1}^{r} \lambda_{i} e_{i} + \Gamma' \quad \mapsto \quad (\lambda_{1} + d_{1}\mathbb{Z}, \cdots, \lambda_{s} + d_{s}\mathbb{Z}, \lambda_{s+1}, \cdots, \lambda_{r})$$

Il en résulte que Γ/Γ' est fini si, et seulement si, r=s, ce qui revient à dire que Γ et Γ' ont même rang.

- 5. Soient R un anneau commutatif intègre dont le groupe additif est un g.a.l.t.f. et I un idéal non nul de R.
 - (a) Montrer que l'anneau quotient R/I est fini.
 - (b) L'idéal I étant en particulier un sous-groupe additif de R, c'est un g.a.l.t.f. de rang $s \leq r = \operatorname{rg}(R)$.

Si $(e_i)_{1 \leq i \leq r}$ est une \mathbb{Z} -base de R, comme I est un idéal, pour tout $d \in R^*$, la famille $(de_i)_{1 \leq i \leq r}$ engendre un sous-groupe R' de R contenu dans I.

Pour
$$\lambda = (\lambda_i)_{1 \le i \le r} \in \mathbb{Z}^r$$
 l'égalité $\sum_{i=1}^r \lambda_i de_i = 0$ équivaut à $d\left(\sum_{i=1}^r \lambda_i e_i\right) = 0$, soit à

 $\sum_{i=1}^{n} \lambda_i e_i$ puisque $d \neq 0$ et R est intègre et cette dernière égalité équivaut à la nullité

de tous les λ_i puisque $(e_i)_{1 \leq i \leq r}$ est une \mathbb{Z} -base de R. En définitive, $(de_i)_{1 \leq i \leq r}$ est une \mathbb{Z} -base de R' qui est donc de rang r. Comme $R' \subset I \subset R$, on en déduit que le rang de I est aussi égal à r. La question précédente nous dit alors que l'anneau quotient R/I est fini.

- (c) Montrer que l'ensemble des idéaux de R contenant I est fini.
- (d) La surjection canonique $\pi: R \to R/I$ induit une bijection entre les idéaux de R qui contiennent I et les idéaux de R/I, donc cet ensemble est fini.
- 6. Soient m et n dans \mathbb{N}^* avec $m \leq n$, V un sous-espace de dimension m de \mathbb{Q}^n . Montrer qu'il existe une \mathbb{Z} -base $(e_i)_{1 \leq i \leq n}$ de \mathbb{Z}^n telle que $(e_i)_{1 \leq i \leq m}$ soit une \mathbb{Q} -base de V.
- 7. Comme $V \cap \mathbb{Z}^n$ est un sous groupe de \mathbb{Z}^n , il existe une \mathbb{Z} -base $(e_i)_{1 \leq i \leq n}$ de \mathbb{Z}^n , un entier naturel non nul $m \leq n$ et des éléments d_1, \dots, d_m de \mathbb{N}^* tels que $(d_i e_i)_{1 \leq i \leq m}$ soit une une \mathbb{Z} -base de $V \cap \mathbb{Z}^n$. Comme V est un \mathbb{Q} -sous-espace vectoriel de \mathbb{Q}^n , pour tout $x \in V$, on peut trouver un entier naturel non nul d tel que $dx \in V \cap \mathbb{Z}^n$ et en conséquence, il existe

des entiers
$$\lambda_1, \dots, \lambda_m$$
 tels que $dx = \sum_{i=1}^m \lambda_i d_i e_i$ et $x = \sum_{i=1}^m \frac{\lambda_i d_i}{d} e_i$, les $\frac{\lambda_i d_i}{d}$ étant dans \mathbb{Q} .

La famille $(e_i)_{1 \leq i \leq m}$ est donc génératrice pour V et comme cette famille est \mathbb{Q} -libre, c'est une base de V.

La dimension de V est donc égale au rang du groupe $V \cap \mathbb{Z}^n$.

Dans les parties **III.B.** et **III.C.** P est un élément de $U_n(\mathbb{Z})$ irréductible sur \mathbb{Q} , α une racine de P dans \mathbb{C} , $\mathbb{Q}[\alpha]$ la \mathbb{Q} -sous-algèbre de \mathbb{C} engendrée par α , c'est-à-dire le sous-espace du \mathbb{Q} -espace vectoriel \mathbb{C} dont $(\alpha^i)_{0 \leq i \leq n-1}$ est une base. On rappelle que $\mathbb{Q}[\alpha]$ est un-sous-corps de \mathbb{C} . Si l'élément z de $\mathbb{Q}[\alpha]$ s'écrit $x_0 + x_1\alpha + \cdots + x_{n-1}\alpha^{n-1}$ où (x_0, \cdots, x_{n-1}) est dans \mathbb{Q}^n , on pose :

$$\mathcal{N}\left(x\right) = \max_{0 \le i \le n-1} |x_i|$$

On note $\mathbb{Z}[\alpha]$ le sous-anneau de $\mathbb{Q}[\alpha]$:

$$\mathbb{Z}\left[\alpha\right] = \left\{ \sum_{i=0}^{n-1} x_i \alpha^i, \ (x_0, \dots, x_{n-1}) \in \mathbb{Z}^n \right\}$$

On vérifie que $\mathbb{Q}[\alpha]$ est le corps des fractions de $\mathbb{Z}[\alpha]$; la justification n'est pas demandée. Si P est une partie non vide de $\mathbb{Q}[\alpha]$ et a un élément de $\mathbb{Q}[\alpha]$, on note aP l'ensemble :

$$\{ax, x \in P\}$$

On note \mathcal{I} l'ensemble des idéaux non nuls de $\mathbb{Z}[\alpha]$.

- B - Classes d'idéaux

1. Montrer qu'il existe C > 0 tel que :

$$\forall (x, y) \in \mathbb{Q} [\alpha]^2, \ \mathcal{N}(xy) \leq C\mathcal{N}(x)\mathcal{N}(y)$$

2. Pour $x = \sum_{i=0}^{n-1} x_i \alpha^i$ et $y = \sum_{j=0}^{n-1} y_j \alpha^j$ dans $\mathbb{Q}[\alpha]$, on a :

$$\mathcal{N}(xy) = \mathcal{N}\left(\sum_{0 \le i, j \le n-1} x_i y_j \alpha^{i+j}\right) \le \sum_{0 \le i, j \le n-1} \mathcal{N}\left(x_i y_j \alpha^{i+j}\right)$$
$$\le \sum_{0 \le i, j \le n-1} |x_i y_j| \,\mathcal{N}\left(\alpha^{i+j}\right)$$

puisque $\mathcal{N}(\lambda x + y) \leq |\lambda| \mathcal{N}(x) + \mathcal{N}(y)$ pour tous x, y dans $\mathbb{Q}[\alpha]$ et tout λ dans \mathbb{Q} et $\alpha^k \in \mathbb{Q}[\alpha]$ pour tout entier naturel k.

Et avec $|x_iy_j| \leq \mathcal{N}(x)\mathcal{N}(y)$ pour tous i, j, on en déduit que :

$$\mathcal{N}(xy) \le \left(\sum_{0 \le i,j \le n-1} \mathcal{N}\left(\alpha^{i+j}\right)\right) \mathcal{N}(x) \mathcal{N}(y) = C\mathcal{N}(x) \mathcal{N}(y)$$

3. Si y est dans $\mathbb{Q}[\alpha]$ et M dans \mathbb{N}^* , montrer qu'il existe m dans $\{1, \dots, M^m\}$ et α dans $\mathbb{Z}[\alpha]$ tels que :

$$\mathcal{N}\left(my - a\right) \le \frac{1}{M}$$

Indication: Posant $y = y_0 + y_1\alpha + \cdots + y_{n-1}\alpha^{n-1}$ avec (y_0, \dots, y_{n-1}) dans \mathbb{Q}^n , on pourra considérer, pour $0 \le j \le M^n$:

$$u_j = \sum_{i=0}^{n-1} (jy_i - [jy_i]) \alpha^i$$

où [x] désigne, pour x dans \mathbb{R} , la partie entière de x.

4. Pour $0 \le j \le M^n$ et $1 \le m \le M^n$, on a :

$$u_{m+j} - u_j = \sum_{i=0}^{n-1} (my_i - ([jy_i] - [(m+j)y_i])) \alpha^i$$

$$= m \sum_{i=0}^{n-1} y_i \alpha^i - \sum_{i=0}^{n-1} ([jy_i] - [(m+j)y_i]) \alpha^i$$

$$= my - a$$

avec
$$a = \sum_{i=0}^{n-1} ([jy_i] - [(m+j)y_i]) \alpha^i \in \mathbb{Z}[\alpha].$$

Pour tout i comprisentre 0 et n-1, on a $0 \le jy_i - [jy_i] < 1$ et en utilisant la partition $[0,1[=\left[0,\frac{1}{M}\left[\cup\left[\frac{1}{M},\frac{2}{M}\left[\cup\cdots\cup\left[\frac{M-1}{M},1\right[$, on a un entier k_i comprisentre 0 et M-1 tel que $jy_i - [jy_i] \in \left[\frac{k_i}{M},\frac{k_i+1}{M}\right[$. Les M^n+1 éléments u_j sont donc dans l'un des M^n pavés $\prod_{i=1}^n \left[\frac{k_i}{M},\frac{k_i+1}{M}\right[$, il existe donc deux entiers $0 \le j < k = m+j \le M^n$ tels que u_j et u_{m+j} soient dans le même pavé, ce qui nous donne :

$$\mathcal{N}(my - a) = \mathcal{N}(my - a) = \mathcal{N}(u_{m+j} - u_j) \le \frac{1}{M}$$

5. On définit la relation \sim sur \mathcal{I} en convenant que $I_1 \sim I_2$ si, et seulement si, il existe a et b dans $\mathbb{Z}[\alpha] \setminus \{0\}$ tels que $aI_1 = bI_2$, c'est-à-dire s'il existe x dans $\mathbb{Q}[\alpha] \setminus \{0\}$ tel que $I_2 = xI_1$. Il est clair que \sim est une relation d'équivalence sur \mathcal{I} . On se propose de montrer que le nombre de classes de cette relation est fini.

On fixe I dans \mathcal{I} , z dans $I \setminus \{0\}$ tel que $\mathcal{N}(z)$ soit minimal (ce qui est possible car l'image d'un élément non nul de $\mathbb{Z}[\alpha]$ par \mathcal{N} appartient à \mathbb{N}^*).

Soient également M un entier strictement supérieur à C et ℓ le ppcm des éléments de \mathbb{N}^* inférieurs ou égaux à M^n .

(a) Soit x dans I. En appliquant la question 2. à $y = \frac{x}{z}$ montrer que :

$$\ell I \subset z\mathbb{Z}\left[\alpha\right]$$

(b) Pour tous $x \in I \subset \mathbb{Z}[\alpha]$ et $z \in I \setminus \{0\}$, on a $y = \frac{x}{z} \in \mathbb{Q}[\alpha]$. Pour tout $M \in \mathbb{N}^*$, il existe $m \in \{1, \dots, M^m\}$ et $\alpha \in \mathbb{Z}[\alpha]$ tels que:

$$\mathcal{N}\left(my - a\right) \le \frac{1}{M}$$

ce qui nous donne :

$$\mathcal{N}(mx - az) = \mathcal{N}((my - a)z) \le C\mathcal{N}(my - a)\mathcal{N}(z)$$
$$\le \frac{C}{M}\mathcal{N}(z)$$

et choisissant M > C, cela donne $\mathcal{N}(mx - az) < \mathcal{N}(z)$.

Comme x, z sont dans l'idéal I et a dans $\mathbb{Z}\left[\alpha\right]$, on a $mx - az \in I$ et choisissant z tel que $\mathcal{N}\left(z\right) = \inf_{t \in I \setminus \{0\}} \mathcal{N}\left(t\right)$, on a nécessairement mx - az = 0, ce qui nous donne,

pour $\ell = \operatorname{ppcm} \{1, \cdots, M^m\}$, $\ell x = \frac{\ell}{m} az \in z\mathbb{Z} [\alpha] \ (m \in \{1, \cdots, M^m\} \text{ divise } \ell)$. On a donc ainsi montré que $\ell I \subset z\mathbb{Z} [\alpha]$.

- (c) Vérifier que $J = \frac{\ell}{z}I$ est un idéal de $\mathbb{Z}[\alpha]$ contenant $\ell \cdot \mathbb{Z}[\alpha]$ et conclure.
- (d) La question précédente nous dit que, pour tout idéal non nul I de $\mathbb{Z}\left[\alpha\right]$, l'ensemble $J=\frac{z}{\ell}I$ est contenu dans $\mathbb{Z}\left[\alpha\right]$. De plus, il est clair que J est un idéal non nul de $\mathbb{Z}\left[\alpha\right]$ et il est équivalent à I ($\frac{z}{\ell}\in\mathbb{Q}\left[\alpha\right]\setminus\{0\}$).

On a
$$\ell = \frac{z}{\ell} \ell \in J$$
, donc $\ell \cdot \mathbb{Z}[\alpha] \subset J$.

En définitive, on a montré que tout idéal de $\mathbb{Z}[\alpha]$ est équivalent à un idéal de de $\mathbb{Z}[\alpha]$ qui contient un idéal donné non nul, à savoir $\ell \cdot \mathbb{Z}[\alpha]$. En **III.A.3.b.** on a vu qu'il n'y a qu'un nombre fini de tels idéaux, ce qui nous dit que le nombre de classes d'équivalences, pour la relation \sim sur \mathcal{I} , est fini.

- C - Classes de similitudes et classes d'idéaux

- 1. Soient M dans $\mathcal{E}_{\mathbb{Z}}(P)$, X_M l'ensemble des éléments $x=(x_1,\cdots,x_n)$ non nuls de $\mathbb{Z}\left[\alpha\right]^n$ tels que le vecteur colonne tx soit vecteur propre de M associé à α .
 - (a) Montrer que X_M n'est pas vide, que si x et y sont dans X_M , il existe a et b dans $\mathbb{Z}[\alpha] \setminus \{0\}$ tels que ax = by.
 - (b) Si $M \in \mathcal{E}_{\mathbb{Z}}(P)$, on a alors $M \in \mathcal{M}_n(\mathbb{Z})$ et $\chi_M = P$, donc α qui est racine complexe de P, est valeur propre de M dans le corps $\mathbb{Q}[\alpha]$, il existe donc $y = (y_1, \dots, y_n)$ dans $\mathbb{Q}[\alpha]^n \setminus \{0\}$ tel que ty M soit vecteur propre de M associé à α et pour un entier non nul r bien choisi, l'élément $x = ry \in \mathbb{Z}[\alpha]^n \setminus \{0\}$ est tel que tx soit vecteur propre de M associé à α . Donc X_M n'est pas vide.

Comme le polynôme $\chi_M = P$ est irréductible dans $\mathbb{Q}[X]$, cette racine $\alpha \in \mathbb{Q}[\alpha]$ est simple (conséquence du théorème de Bézout comme en **I.B.2.**) et le sous espace propre associé dans $\mathbb{Q}[\alpha]^n$ est de dimension 1. Il en résulte que deux éléments x, y de $X_M \setminus \{0\}$ sont nécessairement $\mathbb{Q}[\alpha]$ -colinéaires, ce qui revient à dire qu'il existe a et b dans $\mathbb{Z}[\alpha] \setminus \{0\}$ tels que ax = by.

(c) Si $x = (x_1, \dots, x_n)$ est dans X_M , soit (x) le sous-groupe de $(\mathbb{Z}[\alpha], +)$ engendré par x_1, \dots, x_n . Montrer que (x) est un idéal de $\mathbb{Z}[\alpha]$, que (x_1, \dots, x_n) en est une \mathbb{Z} -base, que si y est dans X_M , alors $(x) \sim (y)$.

On notera j l'application de $\mathcal{E}_{\mathbb{Z}}(P)$ dans l'ensemble quotient \mathcal{I}/\sim qui à M associe la classe de (x) pour \sim .

(d) On sait déjà que (x) est un sous-groupe de $(\mathbb{Z}[\alpha], +)$. Comme $M^{t}x = \alpha^{t}x$, on a $\alpha x_{i} = \sum_{j=1}^{n} m_{ij}x_{j} \in (x)$ pour tout j compris entre 1 et n, puisque $M \in \mathcal{M}_{n}(\mathbb{Z})$. Il en

résulte que $\alpha^k x_i \in (x)$ pour tout entier naturel k et tout i, donc $ax_i \in (x)$ pour tout $a \in \mathbb{Z}[\alpha]$ et tout i compris entre 1 et n. Donc (x) est un idéal de $\mathbb{Z}[\alpha]$.

De manière analogue, on voit que le \mathbb{Q} -sous-espace vectoriel $\operatorname{Vect}(x)$ de $\mathbb{Q}[\alpha]$ engendré par x_1, \dots, x_n est un idéal non réduit à $\{0\}$ de $\mathbb{Q}[\alpha]$ et comme $\mathbb{Q}[\alpha]$ est un corps, on a nécessairement $\operatorname{Vect}(x) = \mathbb{Q}[\alpha]$. Il en résulte que $\dim_{\mathbb{Q}}(\operatorname{Vect}(x)) = \dim_{\mathbb{Q}}(\mathbb{Q}[\alpha]) = n$ et la famille (x_1, \dots, x_n) est \mathbb{Q} -libre, donc \mathbb{Z} -libre et c'est une \mathbb{Z} -base de (x).

On a vu en **a.** que tout $y \in X_M$ s'écrit $y = \lambda x$ avec $\lambda \in \mathbb{Q}[\alpha] \setminus \{0\}$, donc $(y) = \lambda(x)$ et $(x) \sim (y)$.

2.

- (a) Montrer que l'application j est surjective.
- (b) Soit $I \in \mathcal{I}$, comme $\mathbb{Z}[\alpha]$ est de rang n, on déduit de III.A.3.b. que l'anneau quotient $\mathbb{Z}[\alpha]/I$ est fini et I est de rang n d'après III.A.2. En désignant par $x = (x_i)_{1 \leq i \leq n}$ une \mathbb{Z} -base de I, il existe des entiers m_{ij} tels que, pour tout i compris entre 1 et n, on ait $\alpha x_i = \sum_{j=1}^n m_{ij} x_j$ (on a $\alpha x_i \in I$ puisque I est un idéal de $\mathbb{Z}[\alpha]$), ce qui se traduit par $M^{-t}x = \alpha^{-t}x$ avec $M = ((m_{ij}))_{1s < i,jS < n} \in \mathcal{M}_n(\mathbb{Z})$. En conséquence, α est racine dans $\mathbb{Q}[\alpha]$ du polynôme caractéristique χ_M . Comme $P \in \mathbb{Q}[X]$ est le polynôme minimal de α , il va diviser χ_M et nécessairement $P = \chi_M$ puisque ces polynômes sont de même degré et unitaires. En définitive, $M \in \mathcal{E}_{\mathbb{Z}}(P)$ et j(M) est la classe de (x).
- (c) Soient M et M' dans $\mathcal{E}_{\mathbb{Z}}(P)$. Montrer que M et M' sont semblables sur \mathbb{Z} si, et seulement si, j(M) = j(M').
- (d) Si M et M' sont semblables sur \mathbb{Z} , il existe alors $Q \in GL_n(\mathbb{Z})$ telle que $M' = Q^{-1}MQ$. Pour tout $x' \in X_{M'}$, en notant ${}^tx = Q {}^tx'$, on a :

$$M\ ^tx=QM'Q^{-1}\ ^tx=QM'\ ^tx'=\alpha Q\ ^tx'=\alpha\ ^tx$$

et $x \in X_M$, donc $(x) \sim (x')$ et j(M) = j(M').

Si j(M) = j(M'), il existe alors $x \in X_M$ et $x' \in X_{M'}$ tels que $(x) \sim (x')$, ce qui signifie qu'il existe a, b dans $\mathbb{Z}[\alpha] \setminus \{0\}$ tels que a(x) = b(x'). Les familles $y = ax \in X_M$ et $y' = bx' \in X_{M'}$ sont deux \mathbb{Z} -bases du même g.a.l.t.f. a(x) = b(x'), donc il existe $Q \in GL_n(\mathbb{Z})$ telle que y' = Q y' (question **III.A.1.**). En notant $M'' = Q^{-1}MQ$, on a :

$$M''\ {}^ty' = Q^{-1}MQQ^{-1}\ {}^ty = Q^{-1}M\ {}^ty = Q^{-1}\alpha\ {}^ty = \alpha\ {}^ty' = M'\ {}^ty'$$

Il en résulte que M' = M'' puisque la matrice $M' \in \mathcal{M}_n(\mathbb{Z})$ telle que α ty' = M' ty' est uniquement déterminée par le fait que y' est une \mathbb{Z} -base de (y') et les $\alpha y_i'$ sont dans (y') pour tout i compris entre 1 et n. Les matrices M et M' sont donc semblables sur \mathbb{Z} .

- D - Finitude de l'ensemble $\mathcal{D}_{\mathbb{Z}}(P)$

On se propose d'établir que, pour tout polynôme unitaire non constant P de $\mathbb{Z}[X]$, l'ensemble $\mathcal{D}_{\mathbb{Z}}(P)$ est réunion finie de classes de similitude entière. On raisonne par récurrence sur le degré de P. Le cas où ce degré est 1 est évident, on suppose $n \geq 2$ et le résultat prouvé pour tout P de degré majoré par n-1.

On fixe désormais P dans $U_n(\mathbb{Z})$. Si P est irréductible sur \mathbb{Q} , on a vu à la fin de III.C. que $\mathcal{E}_{\mathbb{Z}}(P)$ est réunion finie de classes de similitude entière. On suppose donc P réductible sur \mathbb{Q} , et on se donne un diviseur irréductible Q de P dans $\mathbb{Q}[X]$ unitaire non constant, dont on note m le degré. D'après la question I.B.3. Q P/Q sont respectivement dans $U_m(\mathbb{Z})$ et $U_{n-m}(\mathbb{Z})$. On dispose donc (récurrence) de P et P dans $\mathbb{Q}[P]$ teléments P eléments P de P

Soit M dans $\mathcal{D}_{\mathbb{Z}}(P)$.

1. Montrer que M est semblable sur $\mathbb Z$ à une matrice de la forme :

$$\begin{pmatrix} A_i & B \\ 0 & A'_i \end{pmatrix}$$

avec $1 \le i \le r$, $1 \le j \le s$, $B \in \mathcal{M}_{m,n-m}(\mathbb{Z})$.

2. On identifie M à l'endomorphisme de \mathbb{Q}^n qu'il définit dans la base canonique.

On a $\chi_M = P = QR$ avec $Q \in U_m(\mathbb{Z})$ irréductible et $R \in U_{n-m}(\mathbb{Z})$, donc le polynôme minimal de M est de la forme $\pi_M = QS$ avec $R \in U_p(\mathbb{Z})$ (χ_M et π_M ont les mêmes facteurs irréductibles dans $\mathbb{Q}[X]$). On a donc $S(M) \neq 0$ et pour tout vecteur non nul x dans $\mathrm{Im}(S(M))$, on a Q(M)(x) = 0.

Le sous espace vectoriel de \mathbb{Q}^n , $V = \mathrm{Vect} \left\{ M^k\left(x\right) \mid k \in \mathbb{N} \right\}$, est stable par M et il est de dimension m avec pour base $\left(M^k\left(x\right)\right)_{0 \leq k \leq m-1}$ puisque Q est le polynôme minimal de x relativement à M (i.e. le générateur unitaire dans $\mathbb{Q}\left[X\right]$ de l'idéal $\{\varphi \in \mathbb{Q}\left[X\right] \mid \varphi\left(M\right)\left(x\right) = 0\}$). Le polynôme Q est donc le polynôme minimal et le polynôme caractéristique de la restriction de M à V. En utilisant le résultat de **III.A.4**. on déduit qu'il existe une \mathbb{Z} -base $(e_i)_{1 \leq i \leq n}$ de \mathbb{Z}^n telle que $\mathcal{B} = (e_i)_{1 \leq i \leq m}$ soit une \mathbb{Q} -base de V.

En notant $A \in GL_n(\mathbb{Z})$ la matrice de passage de la base canonique de \mathbb{Q}^n à la \mathbb{Z} -base \mathcal{B} , la matrice M est semblable à :

$$M' = A^{-1}MA = \left(\begin{array}{cc} B & C \\ 0 & D \end{array}\right)$$

avec B, C, D dans $\mathcal{M}(\mathbb{Z})$, la matrice $B \in \mathcal{M}_m(\mathbb{Z})$ ayant Q comme polynôme caractéristique. Le polynôme caractéristique D est alors $\frac{P}{Q}$. De **I.C.4**. on déduit que $B \in \mathcal{D}_{\mathbb{Z}}(Q)$, $D \in \mathcal{D}_{\mathbb{Z}}(P/Q)$ et l'hypothèse de récurrence nous dit qu'il existe une matrice A_i de $\mathcal{D}_{\mathbb{Z}}(Q)$ semblable sur \mathbb{Z} à B et une matrice A'_j de $\mathcal{D}_{\mathbb{Z}}(P/Q)$ semblable sur \mathbb{Z} à B. Il en résulte qu'il existe une matrice $B' \in \mathcal{M}(\mathbb{Z})$ telle que M soit semblable sur \mathbb{Z} à $\begin{pmatrix} A_i & B' \\ 0 & A'_i \end{pmatrix}$.

3. Montrer que:

$$\Gamma = \mathcal{M}_{m,n-m}(\mathbb{Z}) \cap \left\{ A_i X - X A'_j \mid X \in \mathcal{M}_{m,n-m}(\mathbb{Q}) \right\}$$

et $\Gamma' = \left\{ A_i X - X A'_i \mid X \in \mathcal{M}_{m,n-m}(\mathbb{Z}) \right\}$

sont deux g.a.l.t.f. de même rang.

4. Soit φ_{ij} l'application \mathbb{Q} -linéaire :

$$\varphi_{ij}: \mathcal{M}_{m,n-m}(\mathbb{Q}) \to \mathcal{M}_{m,n-m}(\mathbb{Q})$$

$$X \mapsto A_i X - X A'_i$$

On a $\Gamma = \mathcal{M}_{m,n-m}(\mathbb{Z}) \cap \operatorname{Im}(\varphi_{ij})$ et $\Gamma' = \varphi(\mathcal{M}_{m,n-m}(\mathbb{Z}))$, donc Γ et Γ' sont des g.a.l.t.f. comme sous-groupes du g.a.l.t.f. $\mathcal{M}_{m,n-m}(\mathbb{Z})$. Ces deux ensembles étant \mathbb{Q} -générateurs du \mathbb{Q} -sous-espace vectoriel $\operatorname{Im}(\varphi_{ij})$ de $\mathcal{M}_{m,n-m}(\mathbb{Q})$, ils sont de même rang.

- 5. Conclure que $\mathcal{D}_{\mathbb{Z}}(P)$ est réunion finie de classes de similitude entière.
- 6. Toute matrice $M \in \mathcal{D}_{\mathbb{Z}}(P)$ est semblable sur \mathbb{Z} à une matrice de la forme :

$$\left(\begin{array}{cc} A_i & B \\ 0 & A'_j \end{array}\right)$$

avec $1 \le i \le r, 1 \le j \le s, B \in \mathcal{M}_{m,n-m}(\mathbb{Z})$ et **I.C.4.** nous dit que $B \in \Gamma = \mathcal{M}_{m,n-m}(\mathbb{Z}) \cap \operatorname{Im}(\varphi_{ij})$.

Comme Γ est un sous-groupe de Γ' et ce sont des g.a.l.t.f. de même rang, l'ensemble quotient Γ/Γ' est fini d'après III.A.2. soit $\Gamma/\Gamma' = \left\{\overline{B_1^{(i,j)}}, \cdots, \overline{B_{r_{ij}}^{(i,j)}}\right\}$. Avec :

$$\begin{pmatrix} I_{m} & B \\ 0 & I_{n-m} \end{pmatrix}^{-1} \begin{pmatrix} A_{i} & B \\ 0 & A'_{j} \end{pmatrix} \begin{pmatrix} I_{m} & B \\ 0 & I_{n-m} \end{pmatrix} = \begin{pmatrix} A_{i} & B + \varphi_{ij}(X) \\ 0 & A'_{j} \end{pmatrix}$$

on déduit que toute matrice $M \in \mathcal{D}_{\mathbb{Z}}(P)$ est semblable sur \mathbb{Z} à une matrice de la forme :

$$\left(\begin{array}{cc} A_i & B_k^{(i,j)} \\ 0 & A_i' \end{array}\right)$$

Comme ces matrices sont en nombre fini, il en résulte que $\mathcal{D}_{\mathbb{Z}}(P)$ est réunion finie de classes de similitude entière.