M2A

OT sender and receiver want to get an **additive** sharing (y, \overline{b}) from a **multiplicative** sharing (x, a). So the sender starts with x and ends up with y and the receiver starts with a and ends up with \overline{b} .

They compute $y = ax + b \Leftrightarrow y - b = ax \Leftrightarrow y + \overline{b} = ax$ in n OTs, where n is given by the bitsize of the field elements y, x, a, b. The receiver's inputs for every i-th OT are x_i and his output is y_i . The sender's inputs are a linear combination of a and b_i and he outputs b_i .

Compute y = ax + b

The OT sender P_S :

- 1. Sample n random field elements $b_i \leftarrow \$$ so that $b = \sum_{i=0}^n 2^i b_i$
- 2. In each i-th OT: Send $k_i=(b_i,a+b_i)$ to P_R
- 3. Compute and output $\overline{b} = -b = -\sum_{i=0}^{n} 2^{i}b_{i}$

The OT receiver P_R :

- 1. Bit-decomposes $x = \sum_{i=0}^{n} 2^{i} x_{i}$
- 2. In each *i*-th OT: Depending on the bit of x_i he receives $y_i = k_i^{x_i}$, which is
 - $k_i^0 = b_i$ if $x_i = 0$
 - $k_i^1 = a + b_i$ if $x_i = 1$
- 3. Compute and output $y = \sum_{i=0}^{n} 2^{i} k_{i} = ax + b$

Correctness Check

- 1. Repeat the whole M2A protocol for the same x but with random a_2, b_2 . We now label $a_1 := a$ and $b_1 := b$, which are the original values from the previously executed M2A protocol
- 2. P_R sends 2 random field elements χ_1,χ_2 to P_S
- 3. P_S computes $a^*=\chi_1a_1+\chi_2a_2$ and $b^*=\chi_1b_1+\chi_2b_2$ and sends them to P_R .
- 4. P_R checks that $\chi_1 y_1 + \chi_2 y_2 = a^* x + b^*$

A₂M

OT sender and receiver want to get a **multiplicative** sharing (y, \overline{b}) from an **additive** sharing (x, a). So the sender starts with x and ends up with y and the receiver starts with a and ends up with \overline{b} .

They compute $y=(a+x)b \Leftrightarrow yb^{-1}=a+x \Leftrightarrow y\bar{b}=a+x$ in n OTs, where n is given by the bitsize of the field elements y,x,a,b. The receiver's inputs for every i-th OT are x_i and his output is y_i . The sender's inputs are a linear combination of a_i and b including a mask m_i and he outputs b.

Compute y = (a + x)b

The OT sender P_S :

- 1. Sample a random field element $b \leftarrow \$$
- 2. Sample n random field elements $m_i \leftarrow \$$, with $\sum_{i=0}^n 2^i m_i = 0$
- 3. Bit-decomposes $a = \sum_{i=0}^{n} 2^{i} a_{i}$
- 4. In each i-th OT: Send $k_i = (a_i b + m_i, (a_i + 1)b + m_i)$ to P_R
- 5. Compute and output $\bar{b} = b^{-1}$

The OT receiver P_R :

- 1. Bit-decomposes $x = \sum_{i=0}^{n} 2^{i} x_{i}$
- 2. In each *i*-th OT: Depending on the bit of x_i he receives $y_i = k_i^{x_i}$, which is
 - $\bullet \ k_i^0 = a_i b + m_i \ \text{if} \ x_i = 0$
- $k_i^1=(a_i+1)b+m_i$ if $x_i=1$ 3. Compute and output $y=\sum_{i=0}^n 2^i k_i=(a+x)b$

Correctness Check

- 1. Repeat the whole A2M protocol for the same x but with random a_2, b_2 . We now label $a_1 := a$ and $b_1 := b$, which are the original values from the previously executed A2M protocol
- 2. P_R sends 2 random field elements χ_1,χ_2 to P_S
- 3. P_S computes $z^*=\chi_1a_1b_1+\chi_2a_2b_2$ and $b^*=\chi_1b_1+\chi_2b_2$ and sends them to P_R .
- 4. P_R checks that $\chi_1 y_1 + \chi_2 y_2 = b^* x + z^*$