Block Ciphers

Outline

- Block Ciphers
- Pseudo Random Functions (PRFs)
- Pseudo Random Permutations (PRPs)
- DES Data Encryption Standard
- AES Advanced Encryption Standard
- PRF ⇒ PRG
- PRG \Rightarrow PRF

Block Ciphers: crypto work horse

Canonical examples:

• **DES**: n = 64 bits, k = 56 bits

• **3DES**: n = 64 bits, k = 168 bits

• **AES**: n=128 bits, k=128, 192, 256 bits

Block Ciphers Built by Iteration

R(k,m) is called a round function

for 3DES (n=48), for AES-128 (n=10)

Performance: Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

	<u>Cipher</u>	Block/key size	Speed (MB/sec)				
st	RC4		126				
stream	Salsa20/12		643				
	Sosemanuk		727				
block	3DES	64/168	13				
	AES-128	128/128	109				

Abstractly: PRPs and PRFs

Pseudo Random Function (PRF) defined over (K,X,Y):

$$F: K \times X \rightarrow Y$$

such that there exists "efficient" algorithm to evaluate F(k,x)

Pseudo Random Permutation (PRP) defined over (K,X):

$$E: K \times X \rightarrow X$$

such that:

- 1. There exists "efficient" <u>deterministic</u> algorithm to evaluate E(k,x)
- 2. The function $E(k, \cdot)$ is **one-to-one** (for every k)
- 3. There exists "efficient" inversion algorithm D(k,y)

Running example

• Example PRPs: 3DES, AES, ...

AES: $K \times X \rightarrow X$ where $K = X = \{0,1\}^{128}$

3DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{168}$

- Functionally, any PRP is also a PRF.
 - A PRP is a PRF where X=Y and is efficiently invertible.

Secure PRFs

• Let F: $K \times X \to Y$ be a PRF. Set some notation: $\begin{cases} Funs[X,Y]: & \text{the set of } \textbf{all} \text{ functions from } X \text{ to } Y \\ \\ S_F = \{ F(k, \cdot) \text{ s.t. } k \in K \} \subseteq Funs[X,Y] \end{cases}$

• Intuition: a PRF is secure if a random function in Funs[X,Y] is "indistinguishable" from a random function in S_F

Secure PRF: definition

• Consider a PRF $\mathbf{F}: \mathbf{K} \times \mathbf{X} \rightarrow \mathbf{Y}$. For b=0,1 define experiment EXP(b) as:

Definition: F is a secure PRF if for all "efficient" adversary A:

$$Adv_{PRF}[A,F] := Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is "negligible".

Secure PRPs (secure block cipher)

• Let $E: K \times X \to X$ be a PRP $\begin{cases} \text{Perms}[X]: \text{ the set of all one-to-one } \text{functions } \text{from } X \text{ to } X \\ \text{(i.e., permutations)} \end{cases}$ $S_E = \{ E(k, \cdot) \text{ s.t. } k \in K \} \subseteq \text{Perms}[X]$

• Intuition: a PRP is secure if a random function in Perms[X] is "indistinguishable" from a random function in $S_{\rm E}$

Secure PRP (secure block cipher)

• Consider a PRP $E: K \times X \rightarrow X$. For b=0,1 define experiment EXP(b) as:

Definition. E is a secure PRP if for all "efficient" adversary A:

$$Adv_{PRP}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$
 is "negligible".

Data Encryption Standard (DES)

The Data Encryption Standard (DES)

- Early 1970s: Horst Feistel designs Lucifer at IBM
 key-length = 128 bits; block-length = 128 bits
- 1973: NBS (nowadays called NIST) asks for block cipher proposals.
 IBM submits variant of Lucifer.
- 1976: NBS adopts DES as a federal standard key-length = 56 bits; block-length = 64 bits
- 1997: DES broken by exhaustive search
- 2000: NIST adopts Rijndael as AES to replace DES

DES: core idea – Feistel Network

Given functions $f_1, ..., f_d: \{0,1\}^n \rightarrow \{0,1\}^n$ (not necessarily invertible)

Goal: build **invertible** function F: $\{0,1\}^{2n} \longrightarrow \{0,1\}^{2n}$

In symbols:
$$R_i = f_i(R_{i-1}) \bigoplus L_{i-1}$$

 $L_i = R_{i-1}$

Feistel network is invertible

Claim: for all (arbitrary) $f_1, ..., f_d$: $\{0,1\}^n \longrightarrow \{0,1\}^n$

Feistel network F: $\{0,1\}^{2n} \longrightarrow \{0,1\}^{2n}$ is **invertible**

Proof: construct inverse

Feistel network is invertible

Claim: for all (arbitrary) $f_1, ..., f_d$: $\{0,1\}^n \rightarrow \{0,1\}^n$

Feistel network F: $\{0,1\}^{2n} \longrightarrow \{0,1\}^{2n}$ is **invertible**

Proof: construct inverse

Decryption circuit

- Inversion is basically the same circuit, with $f_1, ..., f_d$ applied in reverse order
- General method for building invertible functions (block ciphers) from arbitrary functions.
- Used in many block ciphers ... but not AES

Theorem (Luby-Rackoff '85):

f: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a secure PRF

 \Rightarrow 3-round Feistel F: $K^3 \times \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is a **secure PRP** $(k_0, k_1, k_2 \text{ three independent keys})$

DES: 16 round Feistel network

$$f_1, ..., f_{16}$$
: $\{0,1\}^{32} \rightarrow \{0,1\}^{32}$, $f_i(x) = F(k_i, x)$
 $k = 56 \text{ bits}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 = k_2$
 $k_2 = 48 \text{ bits each}$
 $k_1 =$

The function $F(k_i, x)$

S-box: function $\{0,1\}^6 \longrightarrow \{0,1\}^4$, implemented as look-up table.

The S-boxes (substitution boxes)

$$S_i: \{0,1\}^6 \longrightarrow \{0,1\}^4$$

S ₅		Middle 4 bits of input															
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
-	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

$$S_5(011011) \longrightarrow 1001$$

Choosing the S-boxes and P-box

- Choosing the S-boxes and P-box at random would result in an insecure block cipher (key recovery after ≈2²⁴ outputs)
- Several rules used in choice of S and P boxes:
 - No output bit should be close to a linear func. of the input bits
 - S-boxes are 4-to-1 maps (4 pre-images for each output)
 - •

Exhaustive Search for block cipher key

Goal: given a few input output pairs $(m_i, c_i = E(k, m_i))$ i=1,...,3 find key k.

Exhaustive Search for block cipher key

Goal: given a few input output pairs $(m_i, c_i = E(k, m_i))$ i=1,...,3 find key k.

```
Lemma: Suppose DES is an ideal cipher ( 2^{56} random invertible functions \Pi_1, ..., \Pi_{2^{56}}: \{0,1\}^{64} \rightarrow \{0,1\}^{64})

Then \forall m, c there is at most <u>one</u> key k s.t. c = DES(k, m) with prob. \geq 1 - 1/256 \approx 99.5\%
```

Proof:

 $Pr[\exists k' \neq k: c=DES(k,m)=DES(k',m)] \leq \sum_{k' \in \{0,1\}^{56}} Pr[DES(k,m) = DES(k',m)] \leq 2^{56} \times 1/(2^{64}) = 1/(2^{8}) = 1/(2^{$

Exhaustive Search for block cipher key

For two DES pairs $(m_1, c_1=DES(k, m_1))$, $(m_2, c_2=DES(k, m_2))$ unicity prob. $\approx 1 - 1/2^{71}$

For AES-128: given two inp/out pairs, unicity prob. $\approx 1 - 1/2^{128}$

⇒ two input/output pairs are enough for exhaustive key search.

Exhaustive Search Attacks

DES challenge

8 byte blocks, encrypted with the same key

Goal: find $k \in \{0,1\}^{56}$ s.t. DES $(k, m_i) = c_i$ for i=1,2,3 and decrypt $c_4, c_{5...}$

1997: Internet search -- 3 months

1998: EFF machine (deep crack) -- **3 days** (250K \$)

1999: combined search -- 22 hours

2006: COPACOBANA (120 FPGAs) -- 7 days (10K \$)

⇒ 56-bit ciphers should not be used !!

Strengthening DES against exhaustive search

Method 1: Triple-DES

Method 2: DESX

 General construction that can be applied to other block ciphers as well.

Triple DES

Consider a block cipher

$$E: K \times M \longrightarrow M$$

$$D: K \times M \longrightarrow M$$

• Define 3E: $K^3 \times M \longrightarrow M$ as

$$3E(k_1,k_2,k_3,m) = E(k_1,D(k_2,E(k_3,m)))$$

- For 3DES (or Triple DES)
 - key lenght = $3 \times 56 = 168$ bits.
 - 3×slower than DES.
 - $k_1 = k_2 = k_3 \Rightarrow \text{ single DES}$
 - simple attack in time ≈ 2¹¹⁸ (more on this later ...)

Why not double DES?

- Given a block cipher E, define $2E(k_1, k_2, m) = E(k_1, E(k_2, m))$
- Double DES: 2DES(k_1 , k_2 , m) = E(k_1 , E(k_2 , m)) key-length = 112 bits for 2DES
- Attack: Given m and c the goal is to find (k_1,k_2) s.t. $E(k_1, E(k_2,m)) = c$ or equivalently

find (k_1, k_2) s.t. $E(k_2, m) = D(k_1, c)$

$$E(\mathbf{k_2}, \cdot) \qquad E(\mathbf{k_1}, \cdot) \qquad c$$

• Attack: Given m and c the goal is to

find
$$(k_1,k_2)$$
 s.t. $E(k_1, E(k_2,m)) = c$ or equivalently
find (k_1,k_2) s.t. $E(k_2,m) = D(k_1,c)$

Attack involves TWO STEPS

Step 1:

- build table.
- sort on 2nd column

Step 2:

• for each $k \in \{0,1\}^{56}$ do:

test if D(k, c) is in the 2nd column of the table If so, then $E(k^i,m) = D(k,c) \Rightarrow (k^i,k) = (k_2,k_1)$

$k^0 = 0000$	E(k ⁰ , m)
$k^1 = 0001$	E(k ¹ , m)
k ⁱ = 00	E(k ⁱ , m)
:	•
k ^N = 1111	E(k ^N , m)

Time =
$$2^{56} \log(2^{56}) + 2^{56} \log(2^{56}) < 2^{63} << 2^{112}$$
,
build + sort table search in table

Space $\approx 2^{56}$

Same attack on 3DES:

Time =
$$2^{118}$$
, space $\approx 2^{56}$

Time =
$$2^{56}\log(2^{56}) + 2^{112}\log(2^{56}) < 2^{118}$$

build + sort table search in table

DESX

Consider a block cipher

$$E: K \times M \longrightarrow M$$

$$D: K \times M \longrightarrow M$$

• Define **EX** as

$$EX(k_1, k_2, k_3, m) = k_1 \oplus E(k_2, m \oplus k_3)$$

- For DESX
 - key-len = 64+56+64 = 184 bits $k_1 \oplus E(k_2, m \oplus k_3)$
 - ... but easy attack in time $2^{64+56} = 2^{120}$
- Note: $k_1 \oplus E(k_2, m)$ and $E(k_2, m \oplus k_1)$ insecure!! (XOR outside) or (XOR inside) \Rightarrow As weak as E w.r.t. exhaustive search

Few others attacks on block ciphers

Linear attacks on DES

A tiny bit of linearly in S_5 lead to a 2^{43} time attack.

Total attack time $\approx 2^{43}$ (<< 2^{56}) with 2^{42} random inp/out pairs

Quantum attacks

Generic search problem:

Let $f: X \longrightarrow \{0,1\}$ be a function.

Goal: find $x^* \in X$ s.t. $f(x^*)=1$.

Classical computer: best generic algorithm time = O(|X|)

Quantum computer [Grover '96]: time = $O(|X|^{1/2})$

Quantum exhaustive search

Given \mathbf{m} and $\mathbf{c} = \mathbf{E}(\mathbf{k}, \mathbf{m})$ define

For
$$k \in K$$
, $f(k) = \begin{cases} 1 & \text{if } E(k,m) = c \\ 0 & \text{otherwise} \end{cases}$

Grover \Rightarrow quantum computer can find k in time $O(|K|^{1/2})$

DES: time $\approx 2^{28}$, AES-128: time $\approx 2^{64}$ Quantum computer \Rightarrow 256-bits key ciphers (e.g., AES-256)

Advanced Encryption Standard (AES)

The AES process

• 1997: NIST publishes request for proposal

• 1998: 15 submissions. Five claimed attacks.

• 1999: NIST chooses 5 finalists

• 2000: NIST chooses Rijndael as AES (designed in Belgium)

Key sizes: 128, 192, 256 bits. Block size: 128 bits

AES is a Substitution—permutation Network (not Feistel)

AES-128 schematic

10 rounds

The round function

- ByteSub: a 1 byte S-box. 256 byte table (easily computable)
 - Apply S-box to each byte of the 4x4 input A, i.e., A[i,j] = S[A[i,j]], for 1 ≤i,j≤4
- ShiftRows:

$S_{0,0}$	$S_{0,1}$	$S_{0,2}$	S _{0,3}		$S_{0,0}$	$S_{0,1}$	$S_{0,2}$	S _{0,3}
S _{1,0}	$S_{1,1}$	<i>S</i> _{1,2}	$S_{1,3}$		$S_{1,1}$	<i>S</i> _{1,2}	$S_{1,3}$	$S_{1,0}$
S _{2,0}	<i>S</i> _{2,1}	$s_{2,2}$	S _{2,3}	- ■■	S _{2,2}	S _{2,3}	S _{2,0}	S _{2,1}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}	———	S _{3,3}	S _{3,0}	S _{3,1}	S _{3,2}

• MixColumns:

AES in hardware

AES instructions in Intel Westmere:

- aesenc, aesenclast: do one round of AES
 128-bit registers: xmm1=state, xmm2=round key
 aesenc xmm1, xmm2; puts result in xmm1
- aeskeygenassist: performs AES key expansion
- Claim 14 x speed-up over OpenSSL on same hardware

Similar instructions on AMD Bulldozer

Attacks

• Best key recovery attack:

four times better than ex. search [BKR'11]

• Related key attack on AES-256: [BK'09]

Given 2^{99} inp/out pairs from **four related keys** in AES-256 can recover keys in time $\approx 2^{99}$

 $PRF \Rightarrow PRG$ $PRG \Rightarrow PRF$

An easy application: $PRF \Rightarrow PRG$ (counter mode)

- Let $F: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a PRF.
- We define the PRG G: K → {0,1}^{nt} as follows:
 (t is a parameter that we can choose)

$$G(k) = F(k,\langle 0\rangle n) \mid | F(k,\langle 1\rangle n) \mid | \cdots | | F(k,\langle t-1\rangle n)$$

- Properties:
 - Theorem: If F is a secure PRF then G is a secure PRG
 - Key property: parallelizable

Can we build a PRF from a PRG?

Let G: $K \rightarrow K^2$ be a PRG

Define a 1-bit PRF F: $K \times \{0,1\} \longrightarrow K$ as

$$F(k, x \in \{0,1\}) = G(k)[x]$$

Theorem. If G is a secure PRG then F is a secure PRF

Can we build a PRF with a larger domain? (e.g., 128 bits)

Extending a PRG

Let G: $K \rightarrow K^2$ be a PRG

Define $G_1: K \longrightarrow K^4$ as

$$G_1(k) = G(G(k)[0]) | I G(G(k)[1])$$

Then define a 2-bit PRF F: $K \times \{0,1\}^2 \longrightarrow K$ as

$$F(k, x \in \{0,1\}^2) = G_1(k)[x]$$

Extending more

 $G: K \longrightarrow K^2$. Let eval F(k,101) Define $G_2: K \longrightarrow K^8$ as $G_2(k) =$ as follows: G Then define a 3-bit PRF G(k)[0]G(k)[1]F: $K \times \{0,1\}^3 \longrightarrow K$ as G $F(k, x \in \{0,1\}^3) = G_2(k)[x]$ G G G 011 000 001 010 100 101 110 111

Extending even more: the GGM PRF

Let G: $K \longrightarrow K^2$. define PRF F: $K \times \{0,1\}^n \longrightarrow K$ as For input $x = x_0 x_1 \dots x_{n-1} \in \{0,1\}^n$ do:

Security: **G** a secure PRG \Rightarrow **F** is a secure PRF on $\{0,1\}^n$. Not used in practice due to slow performance.

Secure block cipher from a PRG?

Can we build a secure PRP from a secure PRG?

- No, it cannot be done
- Yes, just plug the GGM PRF into the Luby-Rackoff theorem
- It depends on the underlying PRG

Theorem (Luby-Rackoff '85):

f: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a secure PRF

 \Rightarrow 3-round Feistel F: $K^3 \times \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is a **secure PRP** $(k_0, k_1, k_2 \text{ three independent keys})$

