Outline

Course Introduction

2 Complex Analysis

3 Analytic Functions (Module - 01)

Text Book(s):

• Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons (Wiley student Edison) (2015).

Reference Books:

- \bullet B. S. Grewal, Higher Engineering Mathematics, 42^{nd} Edition (2013), Khanna Publishers, New Delhi.
- ② G. DennisZill, Patrick D. Shanahan, A first course in complex analysis with applications, 3^{rd} Edition, 2013, Jones and Bartlett Publishers Series in Mathematics.
- \odot Michael, D. Greenberg, Advanced Engineering Mathematics, 2^{nd} Edition, Pearson Education (2002).
- Peter V. O Neil, Advanced Engineering Mathematics, 7th Edition, Cengage Learning (2011).
- **1.** J. H. Mathews, R. W. Howell, Complex Analysis for Mathematics and Engineers, Fifth Edition (2013), Narosa Publishers.

- Complex numbers.
- z = x + iy form of complex numbers.
- Algebraic Operations: Addition, Subtraction, Multiplication, Division.
- Conjugate, Modulus of a complex number.
- Properties of the complex numbers.
- Basic identities and inequalities.
- Non-zero complex numbers: Polar form, Trigonometric form, Exponential form, Argument function.
- Powers and Roots of complex numbers.
- Analytic function, Harmonic function.
- Properties of the analytic functions.
- Construction of analytic functions.
- Application of analytic functions.

Complex Numbers

Definition

A complex number z is defined to be an ordered pair of real numbers x and y as z=(x,y). That is, the set of complex numbers is denoted by $\mathbb C$ and is given by

$$\mathbb{C} \equiv \{z = (x, y) : x \text{ and } y \text{ are real numbers}\}.$$

The ordered pair here means the order in which we write x and y in defining the complex number z = (x, y). For example, the number (1, 2) is not the same as (2, 1).

In the complex number z = (x, y),

- x is called the real part of z and is denoted by Re(z) or $\Re(z)$.
- y is called the imaginary part of z and is denoted by Im(z) or $\Im(z)$.

- The numbers of the form (0, y) are called pure imaginary numbers.
- The numbers of the form (x,0) are called real numbers.
- The set of real numbers can be identified as a subset

$$\mathbb{R} \equiv \{z = (x, y) \in \mathbb{C} : x \in \mathbb{R} \text{ and } y = 0\} \in \mathbb{C}.$$
 That is, $\mathbb{R} \subset \mathbb{C}$.

- Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal.
- i is used for the symbol of $\sqrt{-1}$ which is an imaginary unit.
- A real constant multiple of imaginary unit is pure imaginary number. Example: z = 6i.
- Re(z) = Im(iz) and Im(z) = -Re(iz).

Algebraic form of Complex Number (x + i y notation)

Set, i = (0,1). It is called iota. Such that,

$$(x,y) = (x,0)(1,0) + (0,1)(y,0) = x.1 + i.y = x + iy$$

 $\Rightarrow (x,y) = x + iy,$
 $i^2 = (0,1)(0,1) = (-1,0) = -1.$
 $i^3 = ?, i^4 = ?, i^5 = ?$ and so on.

The form z = x + iy is called the algebraic form of a complex number.

Hereafter, we prefer to use x + iy form instead of ordered pair (x, y)form to write complex numbers.

Note: Electrical engineers use the letter j instead of i.

History: The representation of complex numbers in the plane was proposed independently by Casper Wessel (1797), K. F. Gauss (1799) and Jean Robert Argand (1806).

Basic algebraic properties

Let $z_1, z_2, z_3 \in \mathbb{C}$:

• Commutative and associative law for addition:

$$z_1 + z_2 = z_2 + z_1$$
 and $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$.

- Additive identity: $z + 0 = 0 + z = z \ \forall \ z \in \mathbb{C}$.
- Additive inverse: For every $z \in \mathbb{C}$ there exists $-z \in \mathbb{C}$ such that z + (-z) = 0 = (-z) + z.
- Commutative and associative law for multiplication: $z_1 z_2 = z_2 z_1$ and $z_1(z_2 z_3) = (z_1 z_2) z_3$.
- Multiplicative identity: $z.1 = z = 1.z \ \forall \ z \in \mathbb{C}$.
- Multiplicative inverse: For every non-zero $z \in \mathbb{C}$ there exists $w(=\frac{1}{z}) \in \mathbb{C}$ such that zw = 1 = wz.
- Distributive law: $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$.

Note: \mathbb{C} is a field.

Complex Plane

- The complex number z = x + iy can be viewed as a point P having cartesian coordinates (x, y) in the plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.
- The x-axis and y-axis are called the real axis and the imaginary axis respectively.
- The complex number z = (x, y) can also be represented by a vector connecting the origin 0 = (0,0) to the point P.
- This plane is called the complex plane or z-plane. It is also known as the Gauss plane or the Argand Plane.
- Sum, difference, product and division of any two complex numbers is itself a complex number. 4□ > 4□ > 4□ > 4□ > 4□ > 900

Addition Operation

For any two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, the addition of z_1 and z_2 is defined

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2).$$

Geometric Interpretation of Addition of two complex numbers:

If \overrightarrow{OP} and \overrightarrow{OQ} are not collinear, then \overrightarrow{OR} is the diagonal of the parallelogram with \overrightarrow{OP} and \overrightarrow{OQ} as adjacent sides.

Subtraction Operation

For any two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, the difference of z_1 and z_2 is defined

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2).$$

The difference $z_1 - z_2$ can be viewed as the sum of the complex numbers z_1 and $-z_2$ (additive inverse of z_2).

Geometric Interpretation of Subtraction of two complex numbers:

Multiplication and Division

Multiplication Operation

For any two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, the product of z_1 and z_2 is defined

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1).$$

Division Operation

For any two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, the division of z_1 and z_2 is defined

$$\frac{z_1}{z_2} = \left(\frac{1}{x_1^2 + x_2^2}\right) ((x_1 x_2 + y_1 y_2) + i(x_2 y_1 - x_1 y_2)).$$

Note: The set of complex numbers \mathbb{C} with these operations addition and multiplication forms a field. The identity element of addition is (0,0) and the identity element of multiplication is (1,0). \mathbb{R} is a sub-

Conjugate of a Complex Number

The complex conjugate, or simply, the conjugate of a complex number z = x + iy is denoted by \bar{z} and is defined by

$$\bar{z} = x - iy$$

Geometrically, the point $\bar{z} = x - iy$ is the reflection (mirror image) of the point z = x + iy on the real axis.

Examples: If z = 3 + 4i then $\bar{z} = 3 - 4i$. If z = -5 then $\bar{z} = -5$.

Complex conjugate properties

If z = x + iy is a complex number then its conjugate is denoted by $\bar{z} = x - iy$. Let $z_1, z_2 \in \mathbb{C}$ then,

- $z_1 = z_2$ if and only if $\bar{z}_1 = \bar{z}_2$.
- $Re(z) = Re(\bar{z})$ and $Im(z) = -Im(\bar{z})$.
- $\bar{z} = z$ if and only if z is a real number.
- \bullet $\bar{\bar{z}}=z$.
- $z + \bar{z} = 2Re(z) = 2x$ if z = x + iy.
- $z \overline{z} = 2iIm(z) = 2iy$ if z = x + iy.
- $(z_1 \pm z_2) = \bar{z}_1 \pm \bar{z}_2$ and $\bar{z}_1 \bar{z}_2 = \bar{z}_1 \bar{z}_2$.
- $\overline{z_1/z_2} = \overline{z}_1/\overline{z}_2$ provided $\overline{z}_2 = 0$.

Note: The numbers z and \bar{z} are called the complex conjugate coordinates, or simply the conjugate coordinates corresponding to the point z = (x, y) = x + iy. Also they have been called the isotropic coordinates and the minimal coordinates of the point. 4 D > 4 D > 4 E > 4 E > E 99 C

Modulus of a Complex Number

The modulus or absolute value of a complex number z = x + iy is denoted by |z| and is given by

$$|z| = \sqrt{x^2 + y^2}.$$

Here, as usual, the radical stands for the principal (non-negative) square root of $x^2 + y^2$.

Example: The modulus of the complex number 4 + 3i is |4 + 3i| =

Complex conjugate and Modulus properties

- $|z| \ge 0 \ \forall \ z \in \mathbb{C}$. |z| = 0 if and only if z = 0.
- $|\bar{z}| = |z| = |-z|$.
- $|z|^2 = z\bar{z}$.
- $|z_1z_2|=|z_1||z_2|.$
- If z = x + iy, |z| < |x| + |y|.
- If z = x + iy, |x| < |z| and |y| < |z|.
- Parallelogram Law: $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$.
- Triangle Inequality: $|z_1 + z_2| \leq |z_1| + |z_2|$.
- $|z_1 z_2| \le |z_1| + |z_2|$, $|z_1 z_2| \ge ||z_1| |z_2||$, $|z_1 + z_2| \ge ||z_1| |z_2||$.
- $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$ provided $z_2 \neq 0$.
- If $n \in \mathbb{N}$, then $|z^n| = |z|^n$. If $-n \in \mathbb{N}$, then $|z^n| = |z|^n$ for $z \neq 0$.

Distance between Two Complex Numbers

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be any two complex numbers. Then the (Usual/Euclidean) distance between z_1 and z_2 is defined by

$$d(z_1, z_2) = |z_2 - z_1| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

simillarly, $|z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

Example: If
$$z_1 = 1 + i$$
 and $z_2 = 1 - i$ then $|z_1 - z_2| = \sqrt{(1-1)^2 + (1-(-1))^2} = 2$.

Note: |z| = d(0, z). (\mathbb{C}, d) is a metric space.

Polar representation of Complex Numbers

• In addition to the cartesian coordinates (x, y) in the complex plane, we also employ the usual polar coordinates (r, θ) defined by

$$x = rcos(\theta), y = rsin(\theta).$$

• Then, z = x + iy takes polar form

$$z = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$$

where, the Euler's formula $e^{i\theta} = cos(\theta) + isin(\theta)$.

Cont.

- Any non-zero complex number z = x + iy can be uniquely specified by its magnitude(length from origin) and direction(the angle it makes with positive x-axis).
- Here, r is called the absolute value or modulus of z and is denoted by $|z| = r = \sqrt{x^2 + y^2} = \sqrt{z\overline{z}}$.
- and θ is called the argument of z and is denoted by $arg(z) = \theta = tan^{-1} \left(\frac{y}{z}\right)$.

Cont.

- An argument of a complex number z is not unique since $cos(\theta)$ and $sin(\theta)$ are 2π -periodic; in other words, if θ_0 is an argument of z, then necessarily the angles $\theta_0 \pm 2\pi$, $\theta_0 \pm 2\pi$, ... are also arguments of z.
- So that arg(z) is a multi-valued function.

$$arg(z) = Arg(z) + 2k\pi, k \in \mathbb{Z}.$$

• Arg(z) is a principal value of arg(z), the principal argument of z chosen in $(-\pi, \pi]$.

Examples: 1. Let z = 0 + i, $arg(i) = \pi/2 + 2k\pi$, $n \in \mathbb{Z}$, where $Arg(i) = \pi/2$ since *i* lies in first quadrant. 2. $arg(5) = \{2k\pi, k \in \mathbb{Z}\}; 3. arg(-3) = \{(2k+1)\pi, k \in \mathbb{Z}\}.$ 4. Find arg(1-i). 5. Find arg(-i).

Properties

• Let $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$ then

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)] = r_1 r_2 e^{i(\theta_1 + \theta_2)}.$$

• If $z_1 \neq 0$ and $z_2 \neq 0$.

$$arg(z_1z_2) = arg(z_1) + arg(z_2),$$

$$arg\left(\frac{z_1}{z_2}\right) = arg(z_1) - arg(z_2).$$

• As $|e^{i\theta}| = 1$, $\forall \theta \in \mathbb{R}$, it follows that $|z_1 z_2| = |z_1||z_2|$.

Powers of Complex Numbers

De Moiver's formula:

$$z^{n} = [r(\cos(\theta) + i\sin(\theta))]^{n} = r^{n}(\cos(n\theta) + i\sin(n\theta)) = r^{n}e^{in\theta}.$$

- Problem: Given a non-zero complex number z_0 and a natural number $n \in \mathbb{N}$. Find all distinct complex numbers w such that $z_0 = w^n$.
- If w satisfies the above then $|w| = |z_0|^{1/n}$. So, if $z_0 = |z_0|(\cos(\theta) +$ $isin(\theta)$), we try to find α such that

$$|z_0|(\cos(\theta) + i\sin(\theta)) = [|z_0|^{1/n}(\cos(\alpha) + i\sin(\alpha))]^n.$$

• By De Moiver's formula the absolute values $cos(\theta) = cos(n\alpha)$ and $sin(\theta) = sin(n\alpha)$ that is, $n\alpha = \theta + 2k\pi \Rightarrow \alpha = \frac{\theta}{\pi} + \frac{2k\pi}{\pi}$. Then $w = z_0^{1/n} = |z_0|^{1/n} \left(\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right)^n$ for k = Example 1. Simplify $(\sqrt{3}+i)^7$. We know that $z^n=r^ne^{in\theta}$,

$$(\sqrt{3}+i)^7 = \left(2e^{i\pi/6}\right)^7 = \left(2^6e^{i\pi}(2e^{i\pi/6})\right) = -64\left(2e^{i\pi/6}\right) = -64(\sqrt{3}+i).$$

Example 2. Find cube roots of z=i.

WKT, we are basically solving the equation $w^3 = i$. Now r = 1, $\theta = i$ $arg(i) = \pi/2$. Then, the polar form of the given number is given by

$$z = 1(\cos(\pi/2) + i\sin(\pi/2))$$

using De Moiver's formula, we get

$$w_k = \sqrt[3]{1} \left[\cos \left(\frac{\pi/2 + 2k\pi}{3} \right) + i \sin \left(\frac{\pi/2 + 2k\pi}{3} \right) \right], \ k = 0, 1, 2.$$