

Study design

Dr Gianluca Campanella 5th May 2016

Where we are

- 1. Define the research question
- 2. Get the data
- 3. Explore the data
 - · (Re)format, clean, merge, stratify...
 - Identify trends and outliers
- 4. Model the data
 - Select and build model(s)
 - Evaluate and refine model(s)
- 5. **Summarise** the results
 - · Summarise findings
 - · Describe assumptions and limitations
 - Identify follow-up research questions

Contents

Research question

Study designs

Research question

Why do we need a good question?

'Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise'

— JW Tukey (1962), Ann Math Stat **33**(1)

Specific

- · What exactly do you want to accomplish?
- · Why?
- → Dataset and key variables

Measurable

- · How will you demonstrate attainment of the goal?
- · How will you evaluate it?
- → Type of analysis and major assumptions

Attainable

- · Can the question be answered with the data at hand?
- Are conclusions likely to be biased?
- → Limitations and need for further information

Reproducible

- · Could another person understand what you did?
- Could another person reproduce your results?
- → Documentation and standardisation

Time-bound

- · What are the relevant time period and population?
- Can results be extrapolated?
- → Applicability and generalisability

EXERCISE: come up with a research question

- 1. Divide into groups
- 2. Go to https://www.kaggle.com/datasets and choose a dataset that looks interesting
- 3. **Identify** a research question
 - · What type of data are available?
 - · What is your outcome?
 - What are the SMART aims for these data?
- 4. Share your question with the class

Study designs

Study designs

Observational

The researcher studies, but does not alter, what occurs

Experimental

The researcher intervenes to change reality, then observes what happens

Observational studies

Sampling based on...

Exposure Outcome Neither

↓ ↓ ↓

Cohort Case-control Cross-sectional

Cohort studies

- Sampling based on exposure
- · Prospective: exposure before outcome
- Lengthy → attrition

Example

- · Select two groups:
 - 1. Smokers
 - 2. Non-smokers
- · Follow-up for lung cancer after 10 years

Case-control studies

- Sampling based on outcome
- · Retrospective: outcome before exposure
- May be biased by imperfect recall

Example

- · Select two groups:
 - 1. Lung cancer patients
 - 2. Cancer-free 'controls'
- · Ask them whether they have ever smoked

Cross-sectional

- · All data are collected at the same time
- · No distinction between exposure and outcome

Strengths

- Often population-based
- Less expensive than other designs

Weaknesses

- No direction of causality
- Over-representation of cases with longer durations

Experimental studies

Randomised Controlled Trials (RCTs)

- Control for all main forms of bias
- Ethical concerns

Example

- Divide patients in two groups:
 - 1. Those who take the drug
 - 2. Those who take the placebo
- · Evaluate influence of drug on disease course

Quasi-experiments

- More practical than RCTs (natural experiments)
- · Allocation bias

Example (1854 Broad Street cholera outbreak)

- · Public water pumps supplied by:
 - 1. Southwark and Vauxhall Waterworks Company
 - 2. Lambeth Waterworks Company
- High disease rate in districts supplied by 1
- Water obtained downstream from sewage discharge

EXERCISE: identify hypothesis and design

- 1. Divide into groups
- Read "Worsening depression 'may predict dementia risk" at http://www.bbc.co.uk/news/health-36170259
- 3. Identify the research question and the study design
- 4. Discuss