## **Tests**

```
Read in data
Make a table
See ?@tbl-table1 for details.
Now try for the kable version:
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
       1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.0 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr
       1.0.2
-- Conflicts ------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
              masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
here() starts at /Users/samharper/git/bhet-report
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
   group_rows
Rows: 12 Columns: 6
-- Column specification ------
```

Table 1: Summary: Numeric variables using kableExtra

|               |              | DiD      |        |        | Adjusted DiD |        |        |
|---------------|--------------|----------|--------|--------|--------------|--------|--------|
|               |              | Estimate | LL     | UL     | Estimate     | LL     | UL     |
| Air pollution |              |          |        |        |              |        |        |
| Personal      | Black carbon | -0.45    | -1.85  | 0.96   | -0.45        | -1.81  | 0.92   |
|               | PM2.5        | 2.14     | -31.39 | 35.67  | 7.00         | -21.28 | 35.28  |
| Indoor        | Daily        | -37.97   | -74.79 | -1.14  | -31.17       | -63.98 | 1.64   |
|               | Seasonal     | -38.97   | -55.29 | -22.64 | -37.72       | -54.01 | -21.44 |
| Outdoor       | Daily        | -0.11    | -5.86  | 5.64   | -1.73        | -9.26  | 5.81   |
|               | Seasonal     | 3.14     | -3.10  | 9.38   | 0.36         | -6.27  | 6.99   |

Delimiter: ","

chr (3): Pollutant, Category, Effect
dbl (3): Estimate, CI\_low, CI\_upper

See Table 1 for more.

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show\_col\_types = FALSE` to quiet this message.



Figure 1: Map of village implementation of CBHP policy

See Figure 1.

The source profiles for the four-factor solution are presented in Figure X. The first source was identified as dust by high percentages of crustal elements like wi-Ca, Si, and wi-Mg. The second source was constituted of non-sulfate sulfur as well as secondary inorganic ions (ammonium, nitrate, and sulfate). Non-sulfate sulfur is a tracer for primary coal combustion, while secondary inorganic ions indicate a secondary source. Since coal combustion is a major source of energy in our study area, it is likely that the second source is a mixture of primary and secondary emissions that originate from coal and other sulfurous fuel combustion.

Additionally, in Figure 2 for details. the mean source contribution of the second source is higher in outdoor than personal exposure measurements. Secondary formation occurs outdoors in the presence of sunlight, so higher outdoor concentrations compared personal exposure further support our naming the second source and sulfur secondary. The third source had high percentages of ws-Ca nd Al, which in our study region, has been found to be indicative of transported



Figure 2: Google scholar metrics

dust from dust storms that can occur in the spring. While our samples were collected during winter months only, it is possible that transported dust from previous years still remained. The fourth source was characterized by high percentages of tracers for both coal (OC, wi-K, chloride, Pb) and biomass combustion (EC, ws-K). Coal and biomass combustion is common in our study setting so this source is likely a mixture of the two combustion sources.