Detección de Emociones

Kun Han, Dong Yu, Ivan Tashev - 2014

Reconocimiento de Emociones

¿Qué características o atributos del habla nos ayudan?

Previamente eran seleccionados a mano.

Redes Neuronales Profundas

Emoción de los segmentos determina la Emoción del audio completo

Salida de la RNP de un audio

Extracción de Atributos a nivel Segmento

- 1. Separan la señal en segmentos de 25 ms, cada 10 ms.
- 2. Generan un vector de atributos formado por
 - a. Atributos MFCC
 - b. Atributos tonales
 - c. Diferenciales entre ellos a través del tiempo
- 3. Se descartan los segmentos con poca intensidad

RNP y su entrenamiento

Entrenamiento

- Conjunto de vectores de atributos.
- X segmentos / vectores por cada audio en el conjunto de entrenamiento.
- La salida esperada es la emoción etiquetada para el audio entero.

Una vez entrenada

- Entrada: Vector de Atributos de un segmento de una señal de audio
- Salida: Distribución de probabilidades de las Emociones
 - \circ T = [P(E1), ... P(Ek)]

Estructura de la RNP

- Capas:
 - 1 de entrada. Con 750 unidades, correspondientes al tamaño del vector.
 - 3 ocultas, con 256 unidades
 - 1 de salida, con K unidades

Extracción de Atributos a Nivel Habla/Audio

- Se computan en base a estadísticas sobre probabilidades obtenidas de los segmentos
- Denotando $P_s(E_k)$ = "prob. Emoción k para segmento s"

$$\circ F_1^k = \mathbf{Max}_{s \in U} P_s(E_k)$$

$$\circ F_2^k = \mathbf{Min}_{s \in U} P_s(E_k)$$

$$\circ F_3^k = Avg_{s \in U} P_s(E_k)$$

$$F_{3}^{k} = \mathbf{Avg}_{s \in U} \quad F_{s}^{k}(E_{k})$$

$$F_{4}^{k} = \mathbf{S}_{s \in U} \quad F_{s}(E_{k}) > 0$$

Extreme Learning Machine (ELM)

- Red neuronal con 1 capa oculta
- Capa oculta es mucho mayor a la dimensión de la entrada
- Entrenamiento no convencional
 - Capa 1: Pesos fijos
 - Capa 2: Entrenamiento rápido (Matrices)
- Buenos resultados para conjuntos de entrenamiento pequeños

Clasificación a nivel Habla

Entrenamiento ELM

- Conjunto de vectores F, de atributos estadísticos.
- 1 vector por cada audio en el conjunto de entrenamiento inicial.
- La salida esperada es la emoción etiquetada para el audio correspondiente

Capas ELM

- Capa entrada: 4 unidades por cada emoción
- Capa oculta: 120 unidades
- Salida: Vector K-dimensional, con las K probabilidades

Experimentos

- Datos: Contenido audiovisual de 10 actores.
- Cada Audio fue etiquetado con una emoción.
 - Exaltación (Excitement)
 - Frustación
 - Felicidad
 - Neutro
 - Sorpresa
- No aprovechan información del hablante.
- $\theta = 0.2$

Experimentos

- Comparan contra
 - Enfoque con HMMs y atributos sobre tono y amplitud.
 - OpenEAR que usa SVM con atributos estadísticos
 - Su propio enfoque pero reemplazando la ELM por
 - SVM
 - Kernel ELM
- Metricas
 - Weighted Accuracy
 - Precisión de clasificación de la emoción sobre el total del conjunto de prueba
 - Unweighted Accuracy
 - Promedio de las precisiones por cada emoción.

Comparación de resultados para los distintos enfoques