

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Projeto e Seminário Licenciatura em Engenharia Informática e Computadores

Ana Carolina Baptista

41487@alunos.isel.ipl.pt

960314580

Eliane Almeida 41467@alunos.isel.ipl.pt 960271968

Orientadores:

Cátia Vaz, ISEL, <u>cvaz@cc.isel.ipl.pt</u>

José Simão, ISEL, <u>jsimao@cc.isel.ipl.pt</u>

Alexandre P. Francisco, IST, <u>aplf@ist.utl.pt</u>

19 de Março de 2018

1 Introdução

Nos dias atuais, com o grande crescimento e propagação de dados na internet, surge a necessidade de que a informação seja descrita e transmitida por meio de uma linguagem *standard*, sendo esta de fácil entendimento tanto para computadores quanto para humanos.

Uma das técnicas de descrição de informação que se está a tornar muito popular é baseada em ontologias (1). Esta permite uma especificação explícita de uma conceptualização ou um conjunto de termos de conhecimento para um domínio particular. Apesar da popularidade das ontologias, há uma grande dificuldade por parte de muitos em transformar o conhecimento pré-definido num caso concreto.

Na área da bioinformática, existem recursos científicos que necessitam de ser partilhados entre a comunidade científica por meio de ontologias. Sendo as ontologias normalmente definidas através na linguagem OWL (2) (*Web Ontology Language*), em várias situações poderá não ser uma tarefa simples para os bioinformáticos representar o seu conhecimento do domínio através das ontologias.

Atualmente existem algumas ferramentas de edição de ontologias que permitem ao utilizador inserir um ficheiro referente a uma ontologia e criar novos dados de acordo com este ficheiro, como por exemplo *Protégé* (3). Contudo, não temos conhecimento da

existência de uma ferramenta que também permita a transformação de dados semiestruturados.

Desta forma, de modo a ajudar os utilizadores – como por exemplo, os biólogos - desenvolveremos uma aplicação que tenha uma interface intuitiva que permita esta transformação de dados semiestruturados em dados definidos na linguagem OWL. Nesta interface também teria a possibilidade de atribuir valores aos vários conceitos da ontologia ou apenas editar os existentes.

2 Requisitos

Figura 1 - Arquitetura da aplicação: fluxo de execução

Com base na Figura 1, a aplicação será desenvolvida de modo a que o utilizador insira um ficheiro com definição de uma ontologia (*Ontology File*) e opcionalmente, um segundo ficheiro (*Real Case File*). Estes ficheiros irão ser submetidos a uma aplicação externa designada *Chaos Pop* através do módulo *FileUploader*. De seguida irá ser gerada uma interface gráfica onde o *user* poderá atribuir valores aos vários conceitos presentes no *Ontology File* ou mapear os conceitos do *Real Case File* com os termos do *Ontology File*. No final deste processo, é gerado um novo ficheiro OWL que contém os dados descritos de acordo com *Ontology File*. Iremos também dar a opção ao *user* de guardar os ficheiros de *input* e *output* numa base de dados remota.

Desta forma, este projeto tem como requisitos obrigatórios:

 Realizar uma versão remota da aplicação descrita anteriormente em tecnologia Node.js. Nesta será permitida a inserção de ficheiros CWL (4) (JSON) ou XML para *Real Case File* e irá existir a persistência dos ficheiros de *input* e de *output* numa base de dados remota documental.

- Realizar uma versão local utilizando a tecnologia *Electron* ¹ onde o ficheiro de *output* será salvo em disco.
- Definir em OWL a descrição de ferramentas bioinformáticas, previamente definidas em CWL.

Os requisitos seguintes só serão realizados como sejam concluídos com sucessos os obrigatórios:

- Definir em OWL workflows, previamente definidos em CWL.
- Adicionar ao módulo externo *Chaos Pop* um *parser* para CWL descrito em YAML.
- Criar um sistema de autorização/autenticação para a versão Web.

3 Calendarização

Os termos utilizados nesta calendarização correspondem ao da Figura 1.

Data de início	Semana	Descrição
19/02/2018	1-2	- Compreensão da necessidade da ferramenta nos dias atuais
		- Estudo do Chaos Pop
05/03/2018	3-4	- Estudo da ferramenta Electron
		- Desenvolvimento da proposta
19/03/2018	5	- Entrega da proposta do projeto
		- Utilização do Chaos Pop em alguns exemplos
26/03/2018	6-7	- Desenvolvimento do módulo <i>FileUploader</i> e <i>OWLDownloader</i>
09/04/2018	8-10	- Realização do esqueleto da <i>Main App</i>
		- Desenvolvimento da <i>Graphic Interface</i>
30/04/2018	11	- Apresentação individual
		- Entrega do relatório de progresso
07/05/2018	12	- Definição da descrição de ferramentas em OWL
14/05/2018	13-14	- Desenvolvimento da aplicação <i>desktop</i>
		- Criação do cartaz
28/05/2018	15 - 17	- Entrega do cartaz e da versão beta
		- Otimização dos módulos
18/06/2018	18	- Testes de escalabilidade
25/06/2018	19-21	- Finalização do relatório
14/07/2018		- Entrega da versão final

¹ https://electronjs.org/docs/tutorial/about

-

O relatório, os testes unitários e a documentação serão atualizados constantemente ao longo das 20 semanas.

Marcos / Entregas	Data limite
Proposta do projeto	19/03/2018
Relatório de progresso e	30/04/2018
apresentação individual	
Cartaz e versão beta	28/05/2018
Versão final e documentação	14/07/2018

Referências

- 1. Wikipedia. [Online] [Citação: 09 de 03 de 2018.] https://en.wikipedia.org/wiki/Ontology_(information_science).
- 2. W3C Semantic Web. [Online] [Citação: 09 de 03 de 2018.] https://www.w3.org/OWL/.
- 3. Protege. [Online] [Citação: 15 de 03 de 2018.] https://protege.stanford.edu/.
- 4. Common Workflow Language. [Online] [Citação: 09 de 03 de 2018.] http://www.commonwl.org/draft-3/UserGuide.html;.

Bibliografia

Jamie Taylor, Colin Evans, Toby Segaran. (2009). Programming the Semantic Web.

Jim R. Wilson. (2013). Node.js the Right Way: Practical, Server-side JavaScript that Scales.