Fantasy Football Analytics

Isaac T. Petersen

Table of contents

Pr	eface	3	хi			
	How to Contribute					
	Ope	Access	xi			
	Lice	se	cii			
	Cita	ion	ii			
	Abo	it the Author	iii			
	Acce	ssibility	iv			
	Ackı	owledgments	iv			
1	Intr	oduction	1			
	1.1	About this Book	1			
	1.2	What is Fantasy Football?	1			
	1.3	Why Focus on Fantasy Football?	2			
	1.4	Educational Value	2			
	1.5	Learning Objectives	3			
	1.6	Disclosures	4			
	1.7	Disclaimer	4			
2	Intr	o to Football and Fantasy	5			
	2.1	Football	5			
		2.1.1 The Objective	5			
		2.1.2 The Roster	5			
			8			
		2.1.4 The Gameplay	10			
		2.1.5 The Scoring	l 1			

iv	Contents
	00,000,000

		2.1.6	Glossary of Terms	11
	2.2	Fantas	sy Football	13
		2.2.1	Overview of Fantasy Football	13
		2.2.2	The Fantasy League	14
		2.2.3	The Roster of a Fantasy Team	14
		2.2.4	Scoring	15
3	\mathbf{Get}	ting St	tarted with R for Data Analysis	19
	3.1	Initial	Setup	19
	3.2	Install	ing Packages	20
	3.3	Load I	Packages	20
	3.4	Downl	oad Football Data	20
		3.4.1	Players	20
		3.4.2	Teams	20
		3.4.3	Player Info	21
		3.4.4	Rosters	21
		3.4.5	Game Schedules	21
		3.4.6	The Combine	21
		3.4.7	Draft Picks	21
		3.4.8	Depth Charts	22
		3.4.9	Play-By-Play Data	22
		3.4.10	4th Down Data	22
		3.4.11	Participation	22
		3.4.12	Historical Weekly Actual Player Statistics	23
		3.4.13	Injuries	23
		3.4.14	Snap Counts	23
		3.4.15	ESPN QBR	24
		3.4.16	NFL Next Gen Stats	24
		3.4.17	Advanced Stats from PFR	25
		3.4.18	Player Contracts	26
		3 4 19	FTN Charting Data	26

Contents	V
----------	---

	3.4.20 Fantasy Player IDs	27
	3.4.21 FantasyPros Rankings	27
	3.4.22 Expected Fantasy Points	27
3.5	Data Dictionary	28
3.6	Create a Data Frame	28
3.7	Variable Names	29
3.8	Logical Operators	30
	3.8.1 Is Equal To: ==	30
	3.8.2 Is Not Equal To: !=	30
	3.8.3 Is Greater Than: >	30
	3.8.4 Is Less Than: <	30
	3.8.5 Is Greater Than or Equal To: >=	31
	3.8.6 Is Less Than or Equal To: <=	31
	3.8.7 Is In a Value of Another Vector: %in%	31
	3.8.8 Is Not In a Value of Another Vector: ! (%in%)	31
	3.8.9 Is Missing: is.na()	31
	3.8.10 Is Not Missing: !is.na()	32
	3.8.11 And: &	32
	3.8.12 Or:	32
3.9	Subset	32
	3.9.1 One Variable	33
	3.9.2 Particular Rows of One Variable	33
	3.9.3 Particular Columns (Variables)	33
	3.9.4 Particular Rows	38
	3.9.5 Particular Rows and Columns	40
3.10	View Data	41
	3.10.1 All Data	41
	3.10.2 First 6 Rows/Elements	41
3.11	Data Characteristics	42
	3.11.1 Data Structure	42
	3.11.2 Data Dimensions	43

vi		Contents

		3.11.3 Number of Elements	43
		3.11.4 Number of Missing Elements \dots	43
		3.11.5 Number of Non-Missing Elements	43
	3.12	Create New Variables	44
	3.13	Recode Variables	44
	3.14	Rename Variables	45
	3.15	Convert the Types of Variables	45
	3.16	$Merging/Joins \dots \dots \dots \dots \dots \dots \dots$	48
		3.16.1 Overview	48
		3.16.2 Data Before Merging	49
		3.16.3 Types of Joins	50
	3.17	Transform Data from Long to Wide	58
	3.18	Transform Data from Wide to Long $\ldots \ldots \ldots \ldots$	65
	3.19	Calculations	66
		3.19.1 Historical Actual Player Statistics $\ \ldots \ \ldots \ \ldots$	66
		3.19.2 Historical Actual Fantasy Points	69
		3.19.3 Player Age	69
	3.20	Plotting	74
		3.20.1 Rushing Yards per Carry By Player Age	74
		3.20.2 Defensive and Offensive EPA per Play	77
4	Play	ver Evaluation	79
	4.1	Getting Started	79
		4.1.1 Load Packages	79
	4.2	Overview	79
	4.3	Athletic Profile	80
	4.4	Historical Performance	81
		4.4.1 Overview	81
		4.4.2 Efficiency	82
		4.4.3 Consistency	82
	4.5	Health	84

Ca	ntent	s		vii
	4.6	Age ar	nd Career Stage	84
	4.7	Situati	ional Factors	84
	4.8	Match	ups	86
	4.9	Cognit	tive and Motivational Factors	86
	4.10	Fantas	sy Value	87
		4.10.1	Sources From Which to Evaluate Fantasy Value	87
		4.10.2	Indices to Evaluate Fantasy Value	88
	4.11	Puttin	g it Altogether	92
5	The	Fanta	sy Draft	95
	5.1	Gettin	g Started	95
		5.1.1	Load Packages	95
	5.2	Types	of Fantasy Drafts	95
		5.2.1	Snake Draft	95
		5.2.2	Auction Draft	95
		5.2.3	Comparison	96
	5.3	Draft	Strategy	96
		5.3.1	Overview	96
		5.3.2	Snake Draft	98
		5.3.3	Auction Draft	98
6	Res	earch l	Methods	99
	6.1	Gettin	g Started	99
		6.1.1	Load Packages	99
	6.2	Sample	e vs Population	99
	6.3	Resear	rch Designs	100
		6.3.1	Experiment	100
		6.3.2	Correlational/Observational Study	101
		6.3.3	Case Study	102
		6.3.4	Other Features of the Research Design	103
	6.4	Resear	ch Design Validity	106

viii	Contents
------	----------

		6.4.1	Internal Validity
		6.4.2	External Validity
		6.4.3	Tradeoffs Between Internal and External Validity 106
		6.4.4	Conclusion Validity
	6.5	Media	tion vs Moderation
		6.5.1	Mediation
		6.5.2	Moderation (i.e., Interaction)
	6.6	Levels	of Measurement
		6.6.1	Nominal
		6.6.2	Ordinal
		6.6.3	Interval
		6.6.4	Ratio
	6.7	Psych	ometrics
		6.7.1	Measurement Reliability
		6.7.2	Measurement Validity
		6.7.3	Reliability vs Validity
7	Bas	ic Stat	cistics 121
7	Bas 7.1		cistics 121 ag Started
7			
7		Gettin	ng Started
7	7.1	Gettin	ag Started
7	7.1	Gettin 7.1.1 Descri	Load Packages
7	7.1	Gettir 7.1.1 Descri 7.2.1	Load Packages
7	7.1	Gettin 7.1.1 Descri 7.2.1 7.2.2	ng Started 121 Load Packages 121 ptive Statistics 121 Center 121 Spread 122
7	7.1	Gettin 7.1.1 Descri 7.2.1 7.2.2 7.2.3 7.2.4	ng Started 121 Load Packages 121 ptive Statistics 121 Center 121 Spread 122 Shape 123
7	7.1	Gettin 7.1.1 Descri 7.2.1 7.2.2 7.2.3 7.2.4	ag Started 121 Load Packages 121 ptive Statistics 121 Center 121 Spread 122 Shape 123 Combination 123
7	7.1	Gettin 7.1.1 Descri 7.2.1 7.2.2 7.2.3 7.2.4 Inferen	ag Started 121 Load Packages 121 ptive Statistics 121 Center 121 Spread 122 Shape 123 Combination 123 ntial Statistics 124
7	7.1	Gettin 7.1.1 Descri 7.2.1 7.2.2 7.2.3 7.2.4 Inferen 7.3.1 7.3.2	ng Started 121 Load Packages 121 ptive Statistics 121 Center 121 Spread 122 Shape 123 Combination 123 ntial Statistics 124 Null Hypothesis Significance Testing 124
7	7.1 7.2 7.3	Gettin 7.1.1 Descri 7.2.1 7.2.2 7.2.3 7.2.4 Inferen 7.3.1 7.3.2 Statist	ag Started 121 Load Packages 121 ptive Statistics 121 Center 121 Spread 122 Shape 123 Combination 123 ntial Statistics 124 Null Hypothesis Significance Testing 124 Practical Significance 132

Contents	ix
7.5.2	Analysis of Variance
7.5.3	Correlation
7.5.4	(Multiple) Regression $\dots \dots \dots$
7.5.5	Chi-Square Tests
7.5.6	Formulating Statistical Tests in Terms of Partitioned Variance
7.5.7	Critical Value
References	147

Preface

This is a book in progress—it is incomplete. I will continue to add to and update it as I am able.

How to Contribute

This is an open-access textbook. My goal is to share data analysis strategies for free! Anyone is welcome to contribute to the project. If you would like to contribute, please consider one of the following:

- open an issue¹ or create a pull request² on the book's GitHub repository³.
- buy me a coffee⁴—Support me in developing this (free!) resource for fantasy football analytics... Even a cup of coffee helps me stay awake!

The GitHub repository for the book is located here: https://github.com/isaactpetersen/Fantasy-Football-Analytics-Textbook. If you have data or analysis examples that are you willing to share and include in the book, feel free to contact me.

Open Access

This is an open-access book. This means that it is freely available for anyone to access.

 $^{^{1}} https://github.com/isaactpetersen/Fantasy-Football-Analytics-Textbook/issues$

²https://github.com/isaactpetersen/Fantasy-Football-Analytics-Textbook/pulls

 $^{^3 {\}it https://github.com/isaactpetersen/Fantasy-Football-Analytics-Textbook}$

 $^{^{4} \}rm https://www.buymeacoffee.com/isaactpetersen$

xii Preface

License

Figure 1 Creative Commons License

The online version of this book is licensed under the Creative Commons Attribution License⁵. In short, you can use my work as long as you cite it.

Citation

The APA-style citation for the book is:

Petersen, I. T. (2024). Fantasy football analytics. Version 0.0.1. University of Iowa Libraries. https://github.com/isaactpetersen/Fantasy-Football-Analytics-Textbook. [INSERT DOI LINK]

The BibTeX citation for the book is:

```
@book{petersenFantasyFootballAnalytics,
   title = {Fantasy football analytics},
   author = {Petersen, Isaac T.},
   year = {2024},
   publisher = {{University of Iowa Libraries}},
   note = {Version 0.0.1},
   doi = {INSERT},
   isbn = {INSERT},
   url = {https://github.com/isaactpetersen/Fantasy-Football-Analytics-Textbook}}
```

 $^{^5 \}rm https://creative commons.org/licenses/by/4.0/$

About the Author

I am an Assistant Professor in the Department of Psychological and Brain Sciences at the University of Iowa. I am a licensed psychologist with expertise in child clinical psychology. Why am I writing about fantasy football and data analysis? Because fantasy football involves the intersection of two things I love: sports and statistics.

Through my training, I have learned the value of statistics for answering important questions that I find interesting. In graduate training, I came to the realization that statistics are relevant not only for psychology and science, but also for domains that I enjoy as hobbies, including sports and fantasy sports. I have played in a longstanding fantasy football league for over 20 years (since my junior year of high school) with old friends from high school. I wanted to apply what I was learning about statistics to help others improve their performance in fantasy football and to help people—including those who might not otherwise be interested—to learn statistics. So I began blogging online about the value of applying statistics to improve decision making in fantasy football. Apparently, many people were interested in learning statistics when they could apply them to a domain that they find interesting like fantasy football. My blog eventually became FantasyFootballAnalytics.net⁶, a website that uses advanced statistics to help people win their fantasy football leagues.

In terms of my R and statistics background, I have published many peer-reviewed publications⁷ that employ advanced statistical methods, have published a book on psychological assessment⁸ (Petersen, 2024b, 2024c) that includes applied examples in R, and have published the petersenlab R package⁹ (Petersen, 2024a) on the Comprehensive R Archive Network (CRAN). I am also a co-author of the ffanalytics R package¹⁰ that provides free utilities for downloading fantasy football projections and additional fantasy-relevant data, and for calculating projected points given your league settings.

⁶http://fantasyfootballanalytics.net

⁷https://developmental-psychopathology.lab.uiowa.edu/publications

⁸https://www.routledge.com/9781032413068

⁹https://cran.r-project.org/web/packages/petersenlab/index.html

¹⁰https://github.com/FantasyFootballAnalytics/ffanalytics

Accessibility

I strive to follow principles of accessibility¹¹ (archived at https://perma.cc/8XJ9-Q6QJ) to make the book content accessible to people with visual impairments and physical disabilities. If there are additional ways I can make the content more accessible, please let me know.

Acknowledgments

I thank Dr. Benjamin Motz, who provided consultation and many helpful resources based on his fantasy football statistics class. I also thank key members of FantasyFootballAnalytics.net¹², including Val Pinskiy, Andrew Tungate, Dennis Andersen, and Adam Peterson, who helped develop and provide fantasy football-related resources and who helped sharpen my thinking about the topic. I also thank Professor Patrick Carroll, who taught me the value of statistics for answering important questions.

¹¹https://bookdown.org/yihui/rmarkdown-cookbook/html-accessibility.html

¹²http://fantasyfootballanalytics.net

Introduction

1.1 About this Book

How can we use information to make predictions about uncertain events? This book is about empiricism (basing theories on observed data) and judgment, prediction, and decision making in the context of uncertainty. The book provides an introduction to modern analytical techniques used to make informed predictions, test theories, and draw conclusions from a given dataset.

This book was originally written for a undergraduate-level course entitled, "Fantasy Football: Predictive Analytics and Empiricism". The chapters provide an overview of topics that each could have its own class and textbook, such as causal inference¹, factor analysis², cluster analysis³, principal component analysis⁴, machine learning⁵, cognitive biases⁶, modern portfolio theory⁷, data visualization⁸, simulation⁹, etc. The book gives readers an overview of the breadth of the approaches to prediction and empiricism. As a consequence, the book does not cover any one technique or approach in great depth.

1.2 What is Fantasy Football?

Fantasy football is an online game where participants assemble (i.e., "draft") imaginary teams composed of real-life National Football League (NFL) players. In this game, participants compete against their opponents (e.g.,

¹causal-inference.qmd

 $^{^2 {\}it factor-analysis.qmd}$

 $^{^3}$ cluster-analysis.qmd

⁴pca.qmd

⁵machine-learning.qmd

⁶cognitive-bias.qmd

⁸data-visualization.qmd

 $^{^9 {\}rm simulation.qmd}$

2 Introduction

friends/coworkers/classmates), accumulating points based on players' actual statistical performances in games. The goal is to outscore one's opponent each week to win matches and ultimately claim victory in the league.

1.3 Why Focus on Fantasy Football?

I was fortunate to have an excellent instructor who taught me the value of learning statistics to answer interesting and important questions. That is, I do not find statistics intrinsically interesting; rather, I find them interesting because of what they allow me to do. Many students find statistics intimidating in part because of how it is typically taught—with examples like dice rolls and coin flips that are (seemingly irrelevant and) boring to students. My contention is that applied examples are a more effective lens to teach many concepts in psychology and data analysis. It can be more engaging and relatable to learn statistics in the applied context of sports, a domain that is more intuitive to many. Many people play fantasy sports. This book involves applying statistics to a particular domain (football). People actually want to learn statistical principles and methods when they can apply them to interesting questions (e.g., sports). In my opinion [and supported by evidence; Motz (2013)], this is a much more effective way of engaging people and teaching statistics than in the context of abstract coin flips and dice rolls. Fantasy football relies heavily on prediction—trying to predict which players will perform best and selecting them accordingly. In this way, fantasy football provides a plethora of decision making opportunities in the face of uncertainty, and a wealth of data for analyzing these decisions. However, unlike many other applied domains in psychology, fantasy football (1) allows a person to see the accuracy of their predictions on a timely basis and (2) provides a safe environment for friendly competition. Thus, it provides a unique domain to evaluate—and improve the accuracy of various prediction models.

1.4 Educational Value

Skills in statistics, statistical programming, and data analysis are highly valuable. This book includes practical and conceptual tools that build a foundation for critical thinking. The book aims to help readers evaluate theory in the light of evidence (and vice versa) and to refine decision making in the context of uncertainty. Readers will learn about the ways that psychological science (and

related disciplines) poses questions, formulates hypotheses, designs studies to test those questions, and interprets the findings, collectively with the aim to answer questions, improve decision making, and solve problems.

Of course, this is not a traditional psychology textbook. However, the book incorporates important psychological concepts, such as cognitive biases in judgment and prediction, etc. In the modern world of big data, research and society need people who know how to make sense of the information around us. Psychology is in a prime position to teach applied statistics to a wide variety of students, most of whom will not have careers as psychologists. Psychology can teach the importance of statistics given humans' cognitive biases. It can also teach about how these biases can influence how people interpret statistics. This book will teach readers the applications of statistics (prediction) and research methods (empiricism) to answer questions they find interesting, while applying scientific and psychological rigor.

1.5 Learning Objectives

This book aims to help readers accomplish the following learning objectives:

- Apply empirical inference and appreciate the value it provides over speculative supposition.
- Ask educated questions when confronted with decisions in the face of uncertainty.
- Understand human decision making, including common heuristics and cognitive biases and how to mitigate them analytically.
- Engage in critical thinking about causality, including devising plausible alternative explanations for observed effects.
- Understand causal inference including confounding, causal pathways, and counterfactuals.
- Think empirically about human behavior and performance.
- Describe the strengths and weaknesses of humans versus computers in prediction scenarios.
- Apply basic skills in statistical programming using R to manipulate and summarize datasets and to conduct data analysis.
- Critically evaluate the strengths and limitations of different statistical models and methodologies used in predicting uncertain events, enhancing their understanding of statistical inference and model selection.
- Use various analytical techniques for predicting the outcome of uncertain events, and for uncovering latent causes of patterns in observed data.
- Interpret findings from various statistical approaches and evaluate the accuracy of predictions.

4 Introduction

Engage in iterative problem-solving processes, refining analytical approaches based on feedback and outcomes, and adapting strategies accordingly.

- Communicate statistical findings and analyses in both written and oral formats, demonstrating proficiency in presenting complex information to diverse audiences.
- Make sense of big data.
- Use practical analytical skills that can be applied in future research and job settings.

1.6 Disclosures

I am the Owner of Fantasy Football Analytics, LLC, which operates https://fantasyfootballanalytics.net.

1.7 Disclaimer

"This material probably won't win you fantasy football championships. You could take what we learn and apply it to fantasy football and you might become 5 percent more likely to win. Or... Consider the broader relevance of this. You could learn data analysis and figure out ways to apply it to other systems. And you could be making a six-figure salary within the next five years." — Benjamin Motz, Ph.D.

Intro to Football and Fantasy

This chapter provides a brief primer on (American) football and fantasy football. If you are already familiar with fantasy football, feel free to skip this chapter.

2.1 Football

Football is the most widely watched sport in the United States.¹

2.1.1 The Objective

The goal in football is for a team to score more points than their opponent. A game lasts 60 minutes, and it is separated into four 15-minute quarters. The team with the most points when the time runs out wins.

2.1.2 The Roster

2.1.2.1 Overview

Each team has 11 players on the field at a time. The particular players who are on the field will depend on the situation, but usually includes one of the three subsets of players:

- 1. Offense
- 2. Defense
- 3. Special Teams

 $^{^1\}rm https://news.gallup.com/poll/610046/football-retains-dominant-position-favorite-sport.aspx (archived at https://perma.cc/X2UG-RAAK); https://www.statista.com/statistics/1430289/most-watched-sports-leagues-usa/ (archived at https://perma.cc/JNU6-S96A)$

An example formation is depicted in Figure 2.1.

Figure 2.1 An Example Football Formation for the Offense and Defense. The solid line indicates the line of scrimmage. The arrow indicates the direction the offense tries to advance the ball.

2.1.2.2 Offense

The offense is on the field when the team has the ball.

Players on offense include:

- Quarterback (QB)
- Running Back (RB)
 - Halfback (HB) or Tailback (TB)
 - Fullback (FB)
- Wide Receiver (WR)
- Tight End (TE)
- Offensive Linemen (OL), part of the "Offensive Line"
 - Center (C)
 - Offensive Guard (OG)
 - Offensive Tackle (OT)

The quarterback is the most important player on the offense. They help lead the team down the field. The quarterback receives the ball from the Center at the beginning of the play, and they can either hand the ball off (typically to a Running Back or Fullback), pass the ball (typically to a Wide Receiver or Football 7

Tight End), or run the ball. Quarterbacks tend to have a strong arm for throwing the ball far and accurately. Some quarterbacks are fast and are considered "dual threats" to pass or run.

Running Backs take a hand-off from the Quarterback to execute a running play (i.e., a rush). They may also catch short passes from the Quarterback or help protect (i.e., block for) the Quarterback from the defensive players who are trying to tackle the Quarterback. Halfbacks and Tailbacks tend to be quick and agile. Fullbacks tend to be strong and powerful.

Wide Receivers catch passes from the Quarterback to execute a passing play. On running plays, they provide protection for the player running the ball (e.g., the Running Back) so the ball carrier can get as far as possible without being tackled. Wide receivers tend to be tall, fast, have good hands (can catch the ball well), and can jump high.

Tight Ends block for running and passing plays, and they catch passes from the Quarterback. Tight ends tend to be strong and have good hands.

Offensive Linemen block for running and passing plays. On passing plays, they provide protection for the Quarterback so the Quarterback has time to pass the ball without being tackled. On running plays, they provide protection for the player running the ball (e.g., the Running Back) so the ball carrier can get as far as possible without being tackled. Offensive Linemen tend to be large so they can provide adequate protection for the Quarterback and Running Back.

2.1.2.3 Defense

The defense is on the field when the team does not have the ball (i.e., when the opposing team has the ball).

Players on defense include:

- Defensive Linemen (DL), part of the "Defensive Line"
 - Defensive End (DE)
 - Defensive Tackle (DT)
- Linebacker (LB)
 - Middle (or Inside) Linebacker (MLB)
 - Outside Linebacker (OLB)
- Defensive Back (DB), part of the "Secondary"
 - Cornerback (CB)
 - Safety (S)
 - * Free Safety (FS)
 - * Strong Safety (SS)

The players on the defense attempt to tackle the offensive players for as short of gains as possible and attempt to prevent completed passes.

On passing plays, Defensive Linemen try to apply pressure to the Quarterback and try to tackle the Quarterback behind the line of scrimmage before the Quarterback can throw the ball (i.e., a sack). On rushing plays, Defensive Linemen try to tackle the ball carrier to prevent the ball carrier from advancing the ball (i.e., gaining yards). Defensive Linemen tend to be large yet quick so they can apply pressure to the Quarterback.

Linebackers are versatile in that, on a given play, they may attempt to a) "blitz" to sack the Quarterback, b) stop the Running Back, or c) prevent a completed pass. Linebackers tend to be strong yet agile.

Defensive Backs are specialist pass defenders. The main role of Cornerbacks is to cover the Wide Receivers. Safeties serve as the last line of defense for longer passes. Defensive Backs tend to be quick and agile.

2.1.2.4 Special Teams

The special teams involves specialist players who are on the field during all kicking plays including kickoffs, field goals, and punts.

Players on special teams include:

- Kicker (K)
- Punter (P)
- Holder
- Long Snapper
- Punt Returner
- Kick Returner
- and other players intended to block for or to tackle the ball carrier

On a field goal attempt, the Long Snapper snaps the ball to the Holder, who holds the ball for the Kicker. The Kicker attempts field goals and, during kick-offs, kicks the ball to the opposing team. During kickoffs, the Kick Returner catches the kicked ball and returns it for as many yards as possible. During a punt play, the Long Snapper snaps the ball to the Punter who kicks (i.e., punts) the ball to the opposing team. The Punt Returner catches the punted ball and returns it for as many yards as possible.

2.1.3 The Field

The football field is rectangular and is 120 yards long and 53 1/3 yards wide $(109.73 \text{ m} \times 48.77 \text{ m}).^2$ At each end of the 120-yard field is a team's end zone.

²One yard is equal to three feet. A yard is just smaller than a meter (0.9144 meters).

Football 9

Each end zone is 10 yards long (9.14 m). Thus, the distance from one end zone to the other end zone is 100 yards (91.44 m). Behind each end zone is a field goal post. A diagram of a football field is depicted in Figure 2.2.

Figure 2.2 A Diagram of a Football Field. The yard markers depict the distance from the nearest end zone. The orange shaded area is called the "red zone", where chances of scoring points are highest. The original figure was modified to depict field goal posts. (Figure retrieved from https://commons.wikimedia.org/wiki/File:American_football_field.svg)

2.1.4 The Gameplay

At the beginning of the game, there is a coin flip to determine which teams receives the ball first and which team takes which side of the field. During the kickoff, the kicking team kicks the ball to the receiving team, who has the option to return the kick. The offense starts their possession at the 25 yard line—if there is no return (i.e., a touchback)—or wherever the kick returner is tackled or goes out of bounds.

The team with the ball (i.e., the offense) has four opportunities ("downs") to advance the ball (i.e., gain) 10 yards. A team can advance the ball either by running it or by throwing (i.e., passing) and catching it. At the end of a rushing play, the ball advances to wherever the ball carrier is tackled or goes out of bounds (i.e., wherever the player is "down"). At the end of a passing play, if the thrown ball is caught (i.e., a completed pass), the ball advances to wherever the ball carrier is tackled or goes out of bounds. If the thrown ball is not caught in bounds before the ball hits the ground (i.e., an incomplete pass), the ball does not advance. Wherever the ball is advanced to dictates where the next play begins. The yard position on the field where the next play takes place from is known as the "line of scrimmage". Neither team can cross the line the line of scrimmage until the next play begins. To begin the play, the ball is placed on the line of scrimmage and the Center gives (or "snaps") the ball to the Quarterback.

If the team advances the ball 10 or more yards within four downs, the team receives a "first down" and is awarded a new set of downs—four more downs to advance the ball 10 more yards. If the team advances the ball all the way to the other team's end zone, they score a touchdown. If the team fails to advance the ball 10 or more yards within four downs, the team loses the ball, and the other team takes possession at that spot on the field. There are risks of giving the other team the ball with a short distance to score. Thus, on fourth down, instead of trying to advance the ball for a first down, a team may choose to kick a field goal—to get points—or to punt.

A field goal involves a kicker kicking the ball with an intent to kick the ball through the field goal posts ("uprights"). To score points by making a field goal, the kicked ball must go between the uprights (extended vertically) and over the cross bar.

Punting involves a punter kicking the ball to the other team with an intent to give their opponent worse field position, thus making it harder for the other team to score. The punting team tries to pin the opponent as close as possible to the opponent's end zone (i.e., as far as possible from the own team's end zone), so they have a longer distance to go to score a touchdown.

There are multiple ways that ball possession can switch from the offense to the other team. After scoring a touchdown, field goal, or safety, there is a kickoff, in which the scoring team kicks the ball to the opponent. Another Football 11

way that the ball switches possession to the other team is if the team commits a turnover. The defense can force a turnover by an interception, fumble recovery, or turnover on downs. A turnover due to an interception occurs when a defensive player catches the quarterback's pass. A turnover due to a fumble recovery occurs when an offensive player, who had possession of the ball, loses the ball before being down or scoring a touchdown and the ball is recovered by the opponent. A turnover on downs occurs when the team attempts on fourth down to achieve the remainder of the needed 10 yards to go but fails.

Other football-related situations include tackles for loss and sacks. A tackle for loss occurs when a ball carrier is tackled behind the line of scrimmage. A sack occurs when a Quarterback is tackled with the ball behind the line of scrimmage. A pass defended occurs when a defensive player knocks down the ball in the air so that the indended receiver cannot catch the ball.

2.1.5 The Scoring

The goal of the team with the ball (i.e., the offense) is to score points. It can do this by either advancing the ball into the other team's end zone (6 points) or by kicking a field goal (3 points). Advancing the ball in the other team's end zone is called a touchdown. After a touchdown, the offense chooses to attempt either a point-after-touchdown (PAT) or a two-point conversion. A PAT is a short kick attempt from the 15-yard line (i.e., 15 yards away from the end zone) that, if it goes through the goal posts ("uprights") and over the cross bar, is worth 1 point. A two-point conversion is a single-scoring opportunity from the 3-yard line (i.e., 3 yards away from the end zone). If the offense scores (i.e., advances the ball into the end zone) from the 3-yard line, the team is awarded 2 points.

A team can kick a field goal from any distance as long as the kick goes through the goal posts. The current record for the longest field goal is 66 yards (by Justin Tucker in 2021).

A safety occurs when the offense is tackled with the ball in their own end zone. When a safety occurs, the opposing team (i.e., defense) is awarded two points and the ball.

2.1.6 Glossary of Terms

- running play ("run") or rushing play (or "rush")—the attempt by an offensive player, typically the Running Back or Quarterback, to advance the ball "on the ground" by running it—not by passing it forward
- passing play (or "pass")—the attempt by an offensive player, typically the Quarterback, to advance the ball by throwing it forward to an offensive player

- passing attempt—the attempt to advance the ball by passing it (i.e., a thrown pass)
- rushing attempt—the attempt to advance the ball by running it
- passing completion—a thrown pass that is successfully caught by an offensive player
- passing incompletion—a thrown pass that is not caught by an offensive player
- passing yards—the distance (in yards) the player advanced the ball by throwing it
- rushing yards—the distance (in yards) the player advanced the ball by running it
- receving yards—the distance (in yards) the player advanced the ball by catching thrown passes and then running with it further upfield
- kick/punt return yards—the distance (in yards) the player advanced the ball by returning kicks or punts
- turnover return yards—the distance (in yards) the player advanced the ball by returning turnovers
- reception—a pass that is caught by the offensive player
- touchdown—advancing the ball into the opponent's end zone either by a) throwing a completed pass that ends up in the end zone, b) running it into the end zone, c) catching it in the end zone, or d) catching it and then running it into the end zone
- passing touchdown—advancing the ball into the opponent's end zone either by throwing a completed pass that ends up in the end zone
- rushing touchdown—advancing the ball into the opponent's end zone either by running it into the end zone
- receiving touchdown—advancing the ball into the opponent's end zone either
 by catching it in the end zone or by catching it and then running it into the
 end zone
- kick/punt return touchdown—advancing the ball into the opponent's end zone when returning a kick or punt
- turnover return touchdown—advancing the ball into the opponent's end zone when returning a turnover (i.e., interception or fumble)
- two-point conversion—a single-scoring opportunity from the 3-yard line (i.e., 3 yards away from the end zone) that is an option given to a team that scores a touchdown; if the offense scores (i.e., advances the ball into the end zone) from the 3-yard line, the team is awarded 2 points
- block—when the defense/special teams blocks a kick or field goal by hitting the ball just after it is kicked to prevent the ball from going far
- kickoff—the kicking team kicks the ball to the receiving team, who has the option to return the kick
- field goal—a kicker kicks the ball with an intent to kick the ball through the field goal posts ("uprights"). To score points by making a field goal, the kicked ball must go between the uprights (extended vertically) and over the cross bar. If the field goal attempt is successful, the team gains 3 points.

• point after touchdown (PAT)—a short kick attempt from the 15-yard line (i.e., 15 yards away from the end zone) that, if it goes through the goal posts ("uprights") and over the cross bar, is worth 1 point

13

- extra point returned—if the defense/special teams returns the ball into the opponent's end zone during a point after touchdown (PAT) attempt, it is worth 2 points
- punt—a punter kicks the ball to the other team with an intent to give their
 opponent worse field position, thus making it harder for the other team to
 score
- fumble lost—when an offensive player, who had possession of the ball, loses the ball before being down or scoring a touchdown and the ball is recovered by the opponent
- fumble forced—when a defensive player knocks the ball out of the hands of an offensive player, who had possession of the ball
- fumble recovery—when a defensive player recovers a fumble by the opponent
- interception—when a defensive player catches a pass from an offensive player
- tackle—when a player brings down the ball carrier
- tackle solo—when a player is the main tackler (i.e., the primary player to bring down the ball carrier)
- tackle assist—when a player is one of two or more players who, together, bring down the ball carrier
- tackle for loss—when an offensive player is tackled with the ball behind the line of scrimmage
- sack—when a Quarterback is tackled with the ball behind the line of scrimmage
- pass defended—when a defensive player knocks down the ball in the air so that the indended receiver cannot catch the ball
- safety—when the offense is tackled with the ball in their own end zone

2.2 Fantasy Football

2.2.1 Overview of Fantasy Football

Fantasy football is one of the most widely played games in the history of games. It is estimated that around 62 million people play fantasy sports³, of whom around 29 million play fantasy football.⁴ As noted in the Introduction⁵,

 $^{^3 \}rm https://thefsga.org/industry-demographics/ (archived at https://perma.cc/9PB8-ZDJJ)$

 $^{^4 \}rm https://www.statista.com/topics/10895/fantasy-sports-in-the-us/ (archived at https://perma.cc/8YSN-UUNT)$

⁵intro.qmd

fantasy football is an online game where participants assemble (i.e., "draft") imaginary teams composed of real-life National Football League (NFL) players. The participants are in charge of managing and making strategic decisions for their imaginary team to have the best possible team that will score the most points. Thus, the participants are called "managers". Managers make decisions such as selecting which players to draft, selecting which players to play (i.e., "start") on a weekly basis, identifying players to pick up from the remaining pool of available players (i.e., waiver wire), and making trades with other teams. Fantasy football relies heavily on prediction—trying to predict which players will perform best and selecting them accordingly.

2.2.2 The Fantasy League

A fantasy football "league" is composed of various imaginary (i.e., "fantasy") teams—and their associated manager. In the fantasy league, the managers' fantasy teams play against each other. A fantasy league is commonly composed of 8, 10, or 12 fantasy teams, but leagues can have more or fewer teams.

2.2.3 The Roster of a Fantasy Team

On a given roster, a manager has a "starting lineup" and a "bench". Each week, the manager decides which players on their roster to put in the starting lineup, and which to keep on the bench. In many leagues, a starting lineup is composed of offensive players, a kicker, and defense/special teams:

Offensive players:

Table 2.1 Offensive Players in the Starting Lineup

Position	Typical Number of Players in Starting Lineup
Quarterback (QB)	1
Running Back	2
(RB)	
Wide Receiver	2
(WR)	
Tight End (TE)	1
Flex Position	1

A "flex position" is a flexible position that can involve a player from various positions: e.g., a Running Back, Wide Receiver, or Tight End.

Kickers:

⁶Fantasy leagues are also available for baseball⁷, basketball⁸, and many other sports.

• one Kicker (K)

Defense/Special Teams:

- one Team Defense (DST/D/DEF) or multiple Individual Defensive Players (IDP)

2.2.4 Scoring

2.2.4.1 Scoring Overview

In the game of fantasy football, managers accumulate points on a weekly basis based on players' actual statistical performances in NFL games. Managers receive points for only those players who are on their starting lineup (not players on their bench). A manager's goal is to outscore their opponent each week to win matches and ultimately claim victory in the league. Scoring settings can differ from league to league.

Below are common scoring settings for fantasy leagues.

2.2.4.2 Offensive Players

Table 2.2 Common Scoring Settings for Offensive Players

Statistical category	Points
Rushing or receiving TD	6
Returning a kick or punt for a TD	6
Returning or recovering a fumble for	6
a TD	
Passing TD	4
Passing INT	-2
Fumble lost	-2
Rushing, passing, or receiving	2
2-point conversion	
Rushing or receiving yards	1 point per 10 yards
Passing yards	1 point per 25 yards

Note: "TD" = touchdown; "INT" = interception

Other common (but not necessarily standard) statistical categories include:

• receptions (called "point per reception" [PPR] leagues)

- return yards
- passing attempts
- rushing attempts

2.2.4.3 Kickers

 Table 2.3 Common Scoring Settings for Kickers

Statistical category	Points
FG made: 50+ yards	5
FG made: 40–49 yards	4
FG made: 39 yards or less	3
Rushing, passing, or receiving	2
2-point conversion	
Point after touchdown attempt made	1
Point after touchdown attempt	-1
missed	
Missed FG: 0–39 yards	-2
Missed FG: 40–49 yards	-1

Note: "FG" = field goal

2.2.4.4 Team Defense/Special Teams

Table 2.4 Common Scoring Settings for Team Defense/Special Teams

Statistical category	Points		
Defensive or special teams TD	3		
Interception	2		
Fumble recovery	2		
Blocked punt, PAT, or FG	2		
Safety	2		
Sack	1		

Note: "TD" = touchdown; "PAT" = point after touchdown; "FG" = field goal

2.2.4.5 Individual Defensive Players

 Table 2.5 Common Scoring Settings for Individual Defensive Players

Statistical category	Points
Tackle solo	1
Tackle assist	0.5
Tackle for loss	1
Sack	2
Interception	4
Fumble forced	2
Fumble recovery	2
TD	6
Safety	2
Pass defended	1
Blocked kick	2
Extra point returned	2

Note: "TD" = touchdown

Other common (but not necessarily standard) statistical categories include:

• turnover return yards

2.2.4.6 Common Scoring Abbreviations

- "TD" = touchdown
- "INT" = interception
- "yds" = yards
- "ATT" = attempts
- "2-pt conversion" = two-point conversion
- "FG" = field goal
- "PAT" = point after touchdown (i.e., extra point/point after attempt)

Getting Started with R for Data Analysis

The book uses R for statistical analyses (http://www.r-project.org). R is a free software environment; you can download it at no charge here: https://cran.r-project.org.

3.1 Initial Setup

To get started, follow the following steps:

- 1. Install R: https://cran.r-project.org
- Install RStudio Desktop: https://posit.co/download/rstudio-desktop
- 3. After installing RStudio, open RStudio and run the following code in the console to install several key R packages:

```
install.packages(
   c("petersenlab","ffanalytics","nflreadr","nflfastR","nfl4th","nflplotR",
   "gsisdecoder","progressr","lubridate","tidyverse","psych"))
```

Note 1: If you are in Dr. Petersen's class

If you are in Dr. Petersen's class, also perform the following steps:

- 1. Set up a free account on $GitHub.com^a$.
- 2. Download GitHub Desktop: https://desktop.github.com

^ahttps://github.com

3.2 Installing Packages

You can install R packages using the following syntax:

```
install.packages("INSERT_PACKAGE_NAME_HERE")
```

For instance, you can use the following code to install the nflreadr package:

```
install.packages("nflreadr")
```

3.3 Load Packages

```
library("ffanalytics")
library("nflreadr")
library("nflfastR")
library("nfl4th")
library("nflplotR")
library("progressr")
library("lubridate")
library("tidyverse")
```

3.4 Download Football Data

3.4.1 Players

```
nfl_players <- progressr::with_progress(
    nflreadr::load_players())</pre>
```

3.4.2 Teams

```
nfl_teams <- progressr::with_progress(
   nflreadr::load_teams(current = TRUE))</pre>
```

3.4.3 Player Info

3.4.4 Rosters

A Data Dictionary for rosters is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_rosters.html

```
nfl_rosters <- progressr::with_progress(
    nflreadr::load_rosters(seasons = TRUE))

nfl_rosters_weekly <- progressr::with_progress(
    nflreadr::load_rosters_weekly(seasons = TRUE))</pre>
```

3.4.5 Game Schedules

A Data Dictionary for game schedules data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_schedules.html

```
nfl_schedules <- progressr::with_progress(
  nflreadr::load_schedules(seasons = TRUE))</pre>
```

3.4.6 The Combine

A Data Dictionary for data from the combine is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_combine.html

```
nfl_combine <- progressr::with_progress(
   nflreadr::load_combine(seasons = TRUE))</pre>
```

3.4.7 Draft Picks

A Data Dictionary for draft picks data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_draft_picks.html

```
nfl_draftPicks <- progressr::with_progress(
    nflreadr::load_draft_picks(seasons = TRUE))</pre>
```

3.4.8 Depth Charts

A Data Dictionary for data from weekly depth charts is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_depth_charts.html

```
nfl_depthCharts <- progressr::with_progress(
    nflreadr::load_depth_charts(seasons = TRUE))</pre>
```

3.4.9 Play-By-Play Data

To download play-by-play data from prior weeks and seasons, we can use the load_pbp() function of the nflreadr package. We add a progress bar using the with_progress() function from the progressr package because it takes a while to run. A Data Dictionary for the play-by-play data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_pbp.html

```
i Note 2: Downloading play-by-play data
```

Note: the following code takes a while to run.

```
nfl_pbp <- progressr::with_progress(
  nflreadr::load_pbp(seasons = TRUE))</pre>
```

3.4.10 4th Down Data

```
nfl_4thdown <- nfl4th::load_4th_pbp(seasons = 2014:2023)</pre>
```

3.4.11 Participation

A Data Dictionary for the participation data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_participation.html

```
nfl_participation <- progressr::with_progress(
    nflreadr::load_participation(
    seasons = TRUE,
    include_pbp = TRUE))</pre>
```

3.4.12 Historical Weekly Actual Player Statistics

We can download historical week-by-week actual player statistics using the load_player_stats() function from the nflreadr package. A Data Dictionary for statistics for offensive players is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_player_stats.html. A Data Dictionary for statistics for defensive players is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_player_stats_def.html.

```
nfl_actualStats_offense_weekly <- progressr::with_progress(
    nflreadr::load_player_stats(
    seasons = TRUE,
    stat_type = "offense"))

nfl_actualStats_defense_weekly <- progressr::with_progress(
    nflreadr::load_player_stats(
    seasons = TRUE,
    stat_type = "defense"))

nfl_actualStats_kicking_weekly <- progressr::with_progress(
    nflreadr::load_player_stats(
    seasons = TRUE,
    stat_type = "kicking"))</pre>
```

3.4.13 Injuries

A Data Dictionary for injury data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_injuries.html

```
nfl_injuries <- progressr::with_progress(
  nflreadr::load_injuries(seasons = TRUE))</pre>
```

3.4.14 Snap Counts

A Data Dictionary for snap counts data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_snap_counts.html

```
nfl_snapCounts <- progressr::with_progress(
   nflreadr::load_snap_counts(seasons = TRUE))</pre>
```

3.4.15 ESPN QBR

A Data Dictionary for ESPN QBR data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_espn_qbr.html

```
nfl_espnQBR_seasonal <- progressr::with_progress(
    nflreadr::load_espn_qbr(
        seasons = TRUE,
        summary_type = c("season")))

nfl_espnQBR_weekly <- progressr::with_progress(
    nflreadr::load_espn_qbr(
        seasons = TRUE,
        summary_type = c("weekly")))

nfl_espnQBR_weekly$game_week <- as.character(nfl_espnQBR_weekly$game_week)

nfl_espnQBR <- bind_rows(
    nfl_espnQBR_seasonal,
    nfl_espnQBR_weekly
)</pre>
```

3.4.16 NFL Next Gen Stats

A Data Dictionary for NFL Next Gen Stats data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_nextgen_stats.html

```
nfl_nextGenStats_pass_weekly <- progressr::with_progress(
    nflreadr::load_nextgen_stats(
        seasons = TRUE,
        stat_type = c("passing")))

nfl_nextGenStats_rush_weekly <- progressr::with_progress(
    nflreadr::load_nextgen_stats(
        seasons = TRUE,
        stat_type = c("rushing")))

nfl_nextGenStats_rec_weekly <- progressr::with_progress(
    nflreadr::load_nextgen_stats(
        seasons = TRUE,
        stat_type = c("receiving")))

nfl_nextGenStats_weekly <- bind_rows(
    nfl_nextGenStats_pass_weekly,</pre>
```

```
nfl_nextGenStats_rush_weekly,
nfl_nextGenStats_rec_weekly
)
```

3.4.17 Advanced Stats from PFR

A Data Dictionary for PFR passing data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_pfr_passing.html

```
nfl_advancedStatsPFR_pass_seasonal <- progressr::with_progress(</pre>
 nflreadr::load_pfr_advstats(
    seasons = TRUE,
    stat_type = c("pass"),
    summary_level = c("season")))
nfl_advancedStatsPFR_pass_weekly <- progressr::with_progress(</pre>
 nflreadr::load_pfr_advstats(
    seasons = TRUE,
    stat_type = c("pass"),
    summary_level = c("week")))
nfl_advancedStatsPFR_rush_seasonal <- progressr::with_progress(</pre>
 nflreadr::load_pfr_advstats(
    seasons = TRUE,
    stat_type = c("rush"),
    summary_level = c("season")))
nfl_advancedStatsPFR_rush_weekly <- progressr::with_progress(</pre>
 nflreadr::load_pfr_advstats(
    seasons = TRUE,
    stat_type = c("rush"),
    summary_level = c("week")))
nfl_advancedStatsPFR_rec_seasonal <- progressr::with_progress(</pre>
 nflreadr::load_pfr_advstats(
    seasons = TRUE,
    stat_type = c("rec"),
    summary_level = c("season")))
nfl_advancedStatsPFR_rec_weekly <- progressr::with_progress(</pre>
 nflreadr::load_pfr_advstats(
    seasons = TRUE,
    stat_type = c("rec"),
```

```
summary_level = c("week")))
nfl_advancedStatsPFR_def_seasonal <- progressr::with_progress(</pre>
 nflreadr::load_pfr_advstats(
    seasons = TRUE,
    stat_type = c("def"),
    summary_level = c("season")))
nfl_advancedStatsPFR_def_weekly <- progressr::with_progress(</pre>
 nflreadr::load_pfr_advstats(
   seasons = TRUE,
   stat_type = c("def"),
    summary_level = c("week")))
nfl_advancedStatsPFR <- bind_rows(</pre>
 nfl_advancedStatsPFR_pass_seasonal,
 nfl_advancedStatsPFR_pass_weekly,
 nfl_advancedStatsPFR_rush_seasonal,
 nfl_advancedStatsPFR_rush_weekly,
 nfl_advancedStatsPFR_rec_seasonal,
 nfl_advancedStatsPFR_rec_weekly,
 nfl_advancedStatsPFR_def_seasonal,
 nfl_advancedStatsPFR_def_weekly,
```

3.4.18 Player Contracts

A Data Dictionary for player contracts data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_contracts.html

```
nfl_playerContracts <- progressr::with_progress(
   nflreadr::load_contracts())</pre>
```

3.4.19 FTN Charting Data

A Data Dictionary for FTN Charting data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_ftn_charting.html

```
nfl_ftnCharting <- progressr::with_progress(
   nflreadr::load_ftn_charting(seasons = TRUE))</pre>
```

3.4.20 Fantasy Player IDs

A Data Dictionary for fantasy player ID data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_ff_playerids.html

```
nfl_playerIDs <- progressr::with_progress(
    nflreadr::load_ff_playerids())</pre>
```

3.4.21 FantasyPros Rankings

A Data Dictionary for FantasyPros ranking data is located at the following link: https://nflreadr.nflverse.com/articles/dictionary_ff_rankings.html

```
#nfl_rankings <- progressr::with_progress( # currently throws error
# nflreadr::load_ff_rankings(type = "all"))

nfl_rankings_draft <- progressr::with_progress(
    nflreadr::load_ff_rankings(type = "draft"))

nfl_rankings_weekly <- progressr::with_progress(
    nflreadr::load_ff_rankings(type = "week"))

nfl_rankings <- bind_rows(
    nfl_rankings_draft,
    nfl_rankings_weekly
)</pre>
```

3.4.22 Expected Fantasy Points

A Data Dictionary for expected fantasy points data is located at the following link: $https://nflreadr.nflverse.com/articles/dictionary_ff_opportunity.html$

```
nfl_expectedFantasyPoints_weekly <- progressr::with_progress(
    nflreadr::load_ff_opportunity(
        seasons = TRUE,
        stat_type = "weekly",
        model_version = "latest"
    ))

nfl_expectedFantasyPoints_pass <- progressr::with_progress(
    nflreadr::load_ff_opportunity(
        seasons = TRUE,</pre>
```

```
stat_type = "pbp_pass",
    model_version = "latest"
))

nfl_expectedFantasyPoints_rush <- progressr::with_progress(
    nflreadr::load_ff_opportunity(
    seasons = TRUE,
    stat_type = "pbp_rush",
    model_version = "latest"
))

nfl_expectedFantasyPoints_weekly$season <- as.integer(nfl_expectedFantasyPoints_weekly$season)

nfl_expectedFantasyPoints_offense <- bind_rows(
    nfl_expectedFantasyPoints_pass,
    nfl_expectedFantasyPoints_rush
)</pre>
```

3.5 Data Dictionary

Data Dictionaries are metadata that describe the meaning of the variables in a datset. You can find Data Dictionaries for the various NFL datasets at the following link: https://nflreadr.nflverse.com/articles/index.html.

3.6 Create a Data Frame

Here is an example of creating a data frame:

```
players <- data.frame(
   ID = 1:12,
   name = c(
    "Ken Cussion",
    "Ben Sacked",
    "Chuck Downfield",
    "Ron Ingback",
    "Rhonda Ball",
    "Hugo Long",</pre>
```

Variable Names 29

```
"Lionel Scrimmage",
   "Drew Blood",
   "Chase Emdown",
   "Justin Time",
   "Spike D'Ball",
   "Isac Ulooz"),
   position = c("QB","QB","QB","RB","RB","WR","WR","WR","WR","TE","TE","LB"),
   age = c(40, 30, 24, 20, 18, 23, 27, 32, 26, 23, NA, 37)
)

fantasyPoints <- data.frame(
   ID = c(2, 7, 13, 14),
   fantasyPoints = c(250, 170, 65, 15)
)</pre>
```

3.7 Variable Names

To see the names of variables in a data frame, use the following syntax:

```
names(nfl_players)
```

```
[1] "status"
                                 "display_name"
[3] "first_name"
                                 "last_name"
[5] "esb_id"
                                 "gsis_id"
[7] "suffix"
                                 "birth_date"
                                 "position_group"
[9] "college_name"
[11] "position"
                                 "jersey_number"
[13] "height"
                                 "weight"
[15] "years_of_experience"
                                 "team_abbr"
[17] "team_seq"
                                 "current_team_id"
[19] "football_name"
                                 "entry_year"
                                 "draft_club"
[21] "rookie_year"
[23] "college_conference"
                                 "status_description_abbr"
[25] "status_short_description" "gsis_it_id"
                                 "smart_id"
[27] "short_name"
[29] "headshot"
                                 "draft_number"
[31] "uniform_number"
                                 "draft_round"
[33] "season"
```

3.8 Logical Operators

3.8.1 Is Equal To: ==

```
players$position == "RB"
```

[1] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

3.8.2 Is Not Equal To: !=

```
players$position != "RB"
```

[1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

3.8.3 Is Greater Than: >

```
players$age > 30
```

[1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE $\,$ NA $\,$ TRUE

3.8.4 Is Less Than: <

 $Logical\ Operators$

31

```
players$age < 30
```

[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE NA FALSE

3.8.5 Is Greater Than or Equal To: >=

```
players$age >= 30
```

[1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE NA TRUE

3.8.6 Is Less Than or Equal To: <=

```
players$age <= 30
```

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE NA FALSE

3.8.7 Is In a Value of Another Vector: %in%

```
players$position %in% c("RB","WR")
```

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

3.8.8 Is Not In a Value of Another Vector: !(%in%)

```
!(players$position %in% c("RB","WR"))
```

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

3.8.9 Is Missing: is.na()

```
is.na(players$age)
```

[1] FALSE TRUE FALSE

3.8.10 Is Not Missing: !is.na()

```
!is.na(players$age)
```

3.8.11 And: &

```
players$position == "WR" & players$age > 26
```

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

3.8.12 Or: |

```
players$position == "WR" | players$age > 23
```

[1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE NA TRUE

3.9 Subset

To subset a data frame, use brackets to specify the subset of rows and columns to keep, where the value/vector before the comma specifies the rows to keep, and the value/vector after the comma specifies the columns to keep:

```
dataframe[rowsToKeep, columnsToKeep]
```

You can subset by using any of the following:

- numeric indices of the rows/columns to keep (or drop)
- names of the rows/columns to keep (or drop)
- values of TRUE and FALSE corresponding to which rows/columns to keep

Subset 33

3.9.1 One Variable

To subset one variable, use the following syntax:

```
players$name
                                        "Chuck Downfield" "Ron Ingback"
[1] "Ken Cussion"
                       "Ben Sacked"
                                         "Lionel Scrimmage" "Drew Blood"
[5] "Rhonda Ball"
                       "Hugo Long"
[9] "Chase Emdown"
                       "Justin Time"
                                         "Spike D'Ball"
                                                            "Isac Ulooz"
or:
players[,"name"]
[1] "Ken Cussion"
                      "Ben Sacked"
                                        "Chuck Downfield" "Ron Ingback"
[5] "Rhonda Ball"
                       "Hugo Long"
                                         "Lionel Scrimmage" "Drew Blood"
[9] "Chase Emdown"
                       "Justin Time"
                                          "Spike D'Ball"
                                                            "Isac Ulooz"
```

3.9.2 Particular Rows of One Variable

To subset one variable, use the following syntax:

```
players$name[which(players$position == "RB")]

[1] "Ron Ingback" "Rhonda Ball"

or:

players[which(players$position == "RB"), "name"]

[1] "Ron Ingback" "Rhonda Ball"
```

3.9.3 Particular Columns (Variables)

To subset particular columns/variables, use the following syntax:

3.9.3.1 Base R

```
subsetVars <- c("name", "age")</pre>
players[,c(2,4)]
               name age
1
        Ken Cussion 40
2
         Ben Sacked
                     30
3
    Chuck Downfield 24
        Ron Ingback 20
4
5
        Rhonda Ball
                     18
6
          Hugo Long
                     23
   Lionel Scrimmage
7
                     27
8
         Drew Blood
9
       Chase Emdown
                     26
        Justin Time
10
       Spike D'Ball NA
11
12
         Isac Ulooz 37
players[,c("name","age")]
               name age
        Ken Cussion 40
1
2
         Ben Sacked
3
    Chuck Downfield 24
4
        Ron Ingback 20
5
        Rhonda Ball
                    18
6
          Hugo Long
7
  Lionel Scrimmage
8
         Drew Blood
9
       Chase Emdown
                     26
10
        Justin Time
       Spike D'Ball NA
11
         Isac Ulooz 37
players[,subsetVars]
               name age
        Ken Cussion 40
1
2
         Ben Sacked
3
    Chuck Downfield 24
        Ron Ingback 20
4
        Rhonda Ball 18
```

Subset 35

```
6
          Hugo Long 23
   Lionel Scrimmage 27
8
         Drew Blood
9
       Chase Emdown
        Justin Time
10
       Spike D'Ball NA
11
12
         Isac Ulooz 37
Or, to drop columns:
dropVars <- c("name", "age")</pre>
players[,-c(2,4)]
   ID position
1
    1
             QΒ
2
    2
             QΒ
3
    3
             QB
4
             RB
    4
5
    5
             RB
6
             WR
7
    7
             WR
8
             WR
    9
             WR
10 10
             ΤE
11 11
             ΤE
12 12
             LB
players[,!(names(players) %in% c("name","age"))]
   ID position
             QB
1
    1
2
    2
             QB
3
    3
             QB
             RB
5
    5
             RB
7
    7
             WR
             WR
```

9

10 10

11 11

12 12

WR

ΤE

ΤE

LB

1

2

Ken Cussion

Ben Sacked

Chuck Downfield

QB 40

QB 30

QB 24

```
players[,!(names(players) %in% dropVars)]
   ID position
            QΒ
1
    1
            QΒ
3
    3
            QΒ
            RB
5
    5
            RB
6
            WR
7
    7
            WR
9
    9
            WR
10 10
            ΤE
11 11
            ΤE
12 12
            LB
3.9.3.2 Tidyverse
players %>%
 select(name, age)
               name age
1
        Ken Cussion
2
         Ben Sacked
3
    Chuck Downfield
                     24
4
        Ron Ingback
                     20
5
        Rhonda Ball 18
6
          Hugo Long 23
7
  Lionel Scrimmage
                     27
         Drew Blood
8
9
       Chase Emdown 26
10
        Justin Time
11
       Spike D'Ball NA
         Isac Ulooz
12
players %>%
 select(name:age)
               name position age
```

Subset 37

```
4
        Ron Ingback
                           RB
                              20
                              18
5
        Rhonda Ball
                           RB
                               23
          Hugo Long
                          WR
7
  Lionel Scrimmage
                          WR
                              27
         Drew Blood
8
                          WR
9
       Chase Emdown
                          WR
                              26
10
        Justin Time
                           ΤE
                              23
       Spike D'Ball
                           ΤE
11
                              NA
12
         Isac Ulooz
                           LB 37
players %>%
 select(all_of(subsetVars))
               name age
1
        Ken Cussion
2
         Ben Sacked
3
    Chuck Downfield 24
4
        Ron Ingback
                     20
5
        Rhonda Ball 18
6
          Hugo Long
   Lionel Scrimmage
7
                     27
8
         Drew Blood
9
       Chase Emdown 26
10
        Justin Time 23
       Spike D'Ball NA
11
         Isac Ulooz 37
Or, to drop columns:
players %>%
 select(-name, -age)
   ID position
1
    1
            QΒ
2
            QΒ
    2
3
    3
            QΒ
4
            RB
5
    5
            RB
6
            WR
    6
7
            WR
8
            WR
9
    9
            WR
10 10
            ΤE
11 11
            ΤE
```

12 12

LB

```
players %>%
 select(-c(name:age))
   ID
1
   1
2
    2
3
    3
    4
5
    5
10 10
11 11
12 12
players %>%
 select(-all_of(dropVars))
```

```
ID position
1
             QΒ
2
    2
             QΒ
    3
             QΒ
4
    4
             RB
             RB
             WR
6
    6
8
             WR
             WR
10 10
             ΤE
11 11
             ΤE
12 12
             LB
```

3.9.4 Particular Rows

To subset particular rows, use the following syntax:

3.9.4.1 Base R

Subset 39

```
subsetRows <- c(4,5)
players[c(4,5),]
 ID
         name position age
4 4 Ron Ingback RB 20
5 5 Rhonda Ball
                  RB 18
players[subsetRows,]
 ID
         name position age
4 4 Ron Ingback RB 20
5 5 Rhonda Ball RB 18
players[which(players$position == "RB"),]
 ID
         name position age
4 4 Ron Ingback RB 20
5 5 Rhonda Ball RB 18
3.9.4.2 Tidyverse
players %>%
filter(position == "WR")
 ID
              name position age
1 6 Hugo Long WR 23
2 7 Lionel Scrimmage
                        WR 27
     Drew Blood
                        WR 32
4 9
       Chase Emdown
                        WR 26
players %>%
filter(position == "WR", age <= 26)
 ID
          name position age
       Hugo Long WR 23
1 6
2 9 Chase Emdown
                    WR 26
```

```
players %>%
  filter(position == "WR" | age >= 26)
  ID
                name position age
1
  1
         Ken Cussion
                           QB 40
2
  2
          Ben Sacked
                           QB 30
           Hugo Long
                           WR 23
  6
  7 Lionel Scrimmage
                           WR
                               27
5
  8
          Drew Blood
                           WR
                              32
         Chase Emdown
                           WR
                              26
7 12
          Isac Ulooz
                           LB 37
```

3.9.5 Particular Rows and Columns

To subset particular rows and columns, use the following syntax:

3.9.5.1 Base R

3.9.5.2 Tidyverse

View Data 41

3.10 View Data

3.10.1 All Data

To view data, use the following syntax:

```
View(players)
```

3.10.2 First 6 Rows/Elements

To view only the first six rows (if a data frame) or elements (if a vector), use the following syntax:

```
head(nfl_players)
```

```
# A tibble: 6 x 33
 status display_name
                       first_name last_name esb_id gsis_id suffix birth_date
 <chr> <chr>
                        <chr>>
                                  <chr>
                                            <chr>
                                                   <chr>
                                                           <chr> <chr>
                                   Ellison
1 RET
        'Omar Ellison
                        'Omar
                                            ELL711~ 00-000~ <NA>
       A'Shawn Robinson A'Shawn
2 ACT
                                 Robinson ROB367~ 00-003~ <NA> 1995-03-21
3 ACT
        A.J. Arcuri
                        A.J.
                                   Arcuri
                                            ARC716~ 00-003~ <NA>
4 RES
       A.J. Bouye
                      Arlandus
                               Bouye
                                        B0U651~ 00-003~ <NA> 1991-08-16
5 ACT
       A.J. Brown
                      Arthur
                               Brown
                                        BRO413~ 00-003~ <NA> 1997-06-30
       A.J. Cann
                     Aaron
                                       CAN364~ 00-003~ <NA> 1991-10-03
6 ACT
                               Cann
# i 25 more variables: college_name <chr>, position_group <chr>,
    position <chr>, jersey_number <int>, height <dbl>, weight <int>,
   years_of_experience <chr>, team_abbr <chr>, team_seq <int>,
   current_team_id <chr>, football_name <chr>, entry_year <int>,
   rookie_year <int>, draft_club <chr>, college_conference <chr>,
   status_description_abbr <chr>, status_short_description <chr>,
  gsis_it_id <int>, short_name <chr>, smart_id <chr>, headshot <chr>, ...
```

```
head(nfl_players$display_name)

[1] "'Omar Ellison" "A'Shawn Robinson" "A.J. Arcuri" "A.J. Bouye"

[5] "A.J. Brown" "A.J. Cann"
```

3.11 Data Characteristics

3.11.1 Data Structure

```
str(nfl_players)
```

```
nflvrs_d [20,039 x 33] (S3: nflverse_data/tbl_df/tbl/data.table/data.frame)
                            : chr [1:20039] "RET" "ACT" "ACT" "RES" ...
$ status
                       : chr [1:20039] "'Omar Ellison" "A'Shawn Robinson" "A.J. Arcuri" "A.J. Bouye" .
$ display_name
                      : chr [1:20039] "'Omar" "A'Shawn" "A.J." "Arlandus" ...
$ first_name
                     : chr [1:20039] "Ellison" "Robinson" "Arcuri" "Bouye" ...
$ last_name
                     : chr [1:20039] "ELL711319" "ROB367960" "ARC716900" "BOU651714" ...
$ esb_id
$ gsis_id
                     : chr [1:20039] "00-0004866" "00-0032889" "00-0037845" "00-0030228" ...
$ suffix
                            : chr [1:20039] NA NA NA NA ...
$ birth_date
                      : chr [1:20039] NA "1995-03-21" NA "1991-08-16" ...
                       : chr [1:20039] NA "Alabama" "Michigan State" "Central Florida" \dots
$ college_name
                            : chr [1:20039] "WR" "DL" "OL" "DB" ...
$ position_group
                            : chr [1:20039] "WR" "DT" "T" "CB" ...
$ position
$ jersey_number
                         : int [1:20039] 84 91 61 24 11 60 6 81 63 20 ...
$ height
                        : num [1:20039] 73 76 79 72 72 75 76 69 76 72 ...
$ weight
                     : int [1:20039] 200 330 320 191 226 325 220 190 280 183 ...
                           : chr [1:20039] "2" "8" "2" "8" ...
$ years_of_experience
                            : chr [1:20039] "LAC" "NYG" "LA" "CAR" ...
$ team_abbr
$ team_seq
                           : int [1:20039] NA 1 NA 1 1 1 1 NA NA NA ...
$ current_team_id
                         : chr [1:20039] "4400" "3410" "2510" "0750" ...
$ football_name
                         : chr [1:20039] NA "A'Shawn" "A.J." "A.J." ...
                      : int [1:20039] NA 2016 2022 2013 2019 2015 2019 NA NA NA ...
$ entry_year
                      : int [1:20039] NA 2016 2022 2013 2019 2015 2019 NA NA NA ...
$ rookie_year
                            : chr [1:20039] NA "DET" "LA" NA ...
$ draft_club
$ college_conference
                        : chr [1:20039] NA "Southeastern Conference" "Big Ten Conference" "American A
\ status_description_abbr : chr [1:20039] NA "A01" "A01" "R01" \dots
$ status_short_description: chr [1:20039] NA "Active" "Active" "R/Injured" ...
                      : int [1:20039] NA 43335 54726 40688 47834 42410 48335 NA NA NA ...
$ gsis_it_id
                      : chr [1:20039] NA "A.Robinson" "A.Arcuri" "A.Bouye" ...
$ short_name
```

Data Characteristics 43

3.11.2 Data Dimensions

Number of rows and columns:

```
dim(nfl_players)
[1] 20039 33
```

3.11.3 Number of Elements

```
length(nfl_players$display_name)
```

[1] 20039

[1] 7912

3.11.4 Number of Missing Elements

```
length(nfl_players$college_name[which(is.na(nfl_players$college_name))])
[1] 12127
```

3.11.5 Number of Non-Missing Elements

```
length(nfl_players$college_name[which(!is.na(nfl_players$college_name))])
```

```
length(na.omit(nfl_players$college_name))
[1] 7912
```

3.12 Create New Variables

To create a new variable, use the following syntax:

```
players$newVar <- NA
```

Here is an example of creating a new variable:

```
players$newVar <- 1:nrow(players)</pre>
```

3.13 Recode Variables

Here is an example of recoding a variable:

```
players$oldVar1 <- NA
players$oldVar1[which(players$position == "QB")] <- "quarterback"
players$oldVar1[which(players$position == "RB")] <- "running back"
players$oldVar1[which(players$position == "WR")] <- "wide receiver"
players$oldVar1[which(players$position == "TE")] <- "tight end"

players$oldVar2 <- NA
players$oldVar2[which(players$age < 30)] <- "young"
players$oldVar2[which(players$age >= 30)] <- "old"</pre>
```

Recode multiple variables:

Rename Variables 45

	ID	name	position	age	oldVar1	oldVar2
1	1	Ken Cussion	QB	40	0	0
2	2	Ben Sacked	QB	30	0	0
3	3	Chuck Downfield	QB	24	0	1
4	4	Ron Ingback	RB	20	0	1
5	5	Rhonda Ball	RB	18	0	1
6	6	Hugo Long	WR	23	1	1
7	7	Lionel Scrimmage	WR	27	1	1
8	8	Drew Blood	WR	32	1	0
9	9	Chase Emdown	WR	26	1	1
10	10	Justin Time	TE	23	1	1
11	11	Spike D'Ball	TE	NA	1	NA
12	12	Isac Ulooz	LB	37	NA	0

3.14 Rename Variables

```
players <- players %>%
  rename(
   newVar1 = oldVar1,
   newVar2 = oldVar2)
```

Using a vector of variable names:

```
varNamesFrom <- c("oldVar1","oldVar2")
varNamesTo <- c("newVar1","newVar2")

players <- players %>%
  rename_with(~ varNamesTo, all_of(varNamesFrom))
```

3.15 Convert the Types of Variables

One variable:

```
players$factorVar <- factor(players$ID)
players$numericVar <- as.numeric(players$age)</pre>
```

```
players$integerVar <- as.integer(players$newVar1)
players$characterVar <- as.character(players$newVar2)</pre>
```

Multiple variables:

```
players %>%
  mutate(across(c(
    ID,
    age),
    as.numeric))
```

```
ID
              name position age
                                     newVar1 newVar2 factorVar numericVar
   1
          Ken Cussion
                                                    old
1
                           QB 40
                                    quarterback
                                                                1
                                                                         40
2
   2
          Ben Sacked
                           QB 30
                                    quarterback
                                                    old
                                                                2
                                                                         30
3
   3
      Chuck Downfield
                            QB 24
                                    quarterback
                                                   young
                                                                3
                                                                         24
                                   running back
4
          Ron Ingback
                           RB 20
                                                  young
                                                                         20
5
   5
          Rhonda Ball
                                   running back
                                                                         18
                           RB 18
                                                  young
6
   6
           Hugo Long
                           WR 23 wide receiver
                                                  young
                                                                6
                                                                         23
7
   7 Lionel Scrimmage
                               27 wide receiver
                                                   young
                                                                7
                                                                         27
8
   8
           Drew Blood
                               32 wide receiver
                                                    old
                                                                8
                                                                         32
9
   9
         Chase Emdown
                               26 wide receiver
                                                  young
                                                                9
                                                                         26
10 10
          Justin Time
                            TE
                               23
                                      tight end
                                                  young
                                                               10
                                                                         23
11 11
         Spike D'Ball
                            ΤE
                               NA
                                      tight end
                                                    <NA>
                                                               11
                                                                         NA
12 12
           Isac Ulooz
                            LB 37
                                           <NA>
                                                    old
                                                              12
                                                                         37
```

integerVar characterVar

```
1
            NA
                          old
            NA
                          old
3
            NA
                        young
            NA
                        young
5
            NA
                        young
6
            NA
                        young
7
            NA
                        young
8
            NA
                          old
9
            NA
                        young
10
            NA
                        young
11
             NA
                         <NA>
12
             NA
                          old
```

```
players %>%
  mutate(across(
    age:newVar1,
    as.character))
```

1	1	Ken Cussion	QB	40	quarterback	old	1	40
2	2	Ben Sacked	QB	30	quarterback	old	2	30
3	3	Chuck Downfield	QB	24	quarterback	young	3	24
4	4	Ron Ingback	RB	20	running back	young	4	20
5	5	Rhonda Ball	RB	18	running back	young	5	18
6	6	Hugo Long	WR	23 ١	wide receiver	young	6	23
7	7	Lionel Scrimmage	WR	27	wide receiver	young	7	27
8	8	Drew Blood	WR	32	wide receiver	old	8	32
9	9	Chase Emdown	WR	26	wide receiver	young	9	26
10	10	Justin Time	TE	23	tight end	young	10	23
11	11	Spike D'Ball	TE	<na></na>	tight end	<na></na>	11	NA
12	12	Isac Ulooz	LB	37	<na></na>	old	12	37

integerVar characterVar

1	NA	old
2	NA	old
3	NA	young
4	NA	young
5	NA	young
6	NA	young
7	NA	young
8	NA	old
9	NA	young
10	NA	young
11	NA	<na></na>
12	NA	old

```
players %>%
  mutate(across(where(is.factor), as.character))
```

	ID	name positi	on ag	e	newVar1 newV	ar2 facto	orVar numeri	icVar
1	1	Ken Cussion	QB	40	quarterback	old	1	40
2	2	Ben Sacked	QB	30	quarterback	old	2	30
3	3	Chuck Downfield	QB	24	quarterback	young	3	24
4	4	Ron Ingback	RB	20	running back	young	4	20
5	5	Rhonda Ball	RB	18	running back	young	5	18
6	6	Hugo Long	WR	23 1	wide receiver	young	6	23
7	7	Lionel Scrimmage	WR	27	wide receiver	young	7	27
8	8	Drew Blood	WR	32	wide receiver	old	8	32
9	9	Chase Emdown	WR	26	wide receiver	young	9	26
10	10	Justin Time	TE	23	tight end	young	10	23
11	11	Spike D'Ball	TE	NA	tight end	<na></na>	11	NA
12	12	Isac Ulooz	LB	37	<na></na>	old	12	37

integerVar characterVar

1	NA	old
2	NA	old

3	NA	young
4	NA	young
5	NA	young
6	NA	young
7	NA	young
8	NA	old
9	NA	young
10	NA	young
11	NA	<na></na>
12	NA	old

3.16 Merging/Joins

3.16.1 Overview

Merging (also called joining) merges two data objects using a shared set of variables called "keys." The keys are the variable(s) that uniquely identify each row (i.e., they account for the levels of nesting). In some data objects, the key might be the player's identification number (e.g., player_id). However, some data objects have multiple keys. For instance, in long form data objects, each participant may have multiple rows corresponding to multiple seasons. In this case, the keys may be player_id and season. If a participant has multiple rows corresponding to seasons and games/weeks, the keys are player_id, season, and week. In general, each row should have a value on each of the keys; there should be no missingness in the keys.

To merge two objects, the key(s) that will be used to match the records must be present in both objects. The keys are used to merge the variables in object 1(x) with the variables in object 2(y). Different merge types select different rows to merge.

Note: if the two objects include variables with the same name (apart from the keys), R will not know how you want each to appear in the merged object. So, it will add a suffix (e.g., .x, .y) to each common variable to indicate which object (i.e., object x or object y) the variable came from, where object x is the first object—i.e., the object to which object y (the second object) is merged. In general, apart from the keys, you should not include variables with the same name in two objects to be merged. To prevent this, either remove or rename the shared variable in one of the objects, or include the shared variable as a key. However, as described above, you should include it as a key *only* if it uniquely identifies each row in terms of levels of nesting.

Merging/Joins 49

3.16.2 Data Before Merging

Here are the data in the players object:

pl	aye	rs						
F -) -							
	ID	name po	osition a	ge	newVar1 new\	/ar2 fact	orVar numer	icVar
1	1	Ken Cussion	n QB	40	quarterback	old	1	40
2	2	Ben Sacked	d QB	30	quarterback	old	2	30
3	3	Chuck Downfiel	d QB	24	quarterback	young	3	24
4	4	Ron Ingback	k RB	20	running back	young	4	20
5	5	Rhonda Ball	L RB	18	running back	young	5	18
6	6	Hugo Long	; WR	23	wide receiver	young	6	23
7	7	Lionel Scrimmag	ge WR	27	wide receiver	young	7	27
8	8	Drew Blood	l WR	32	wide receiver	old	8	32
9	9	Chase Emdow	n WR	26	wide receiver	young	9	26
10	10	Justin Tim	e TE	23	tight end	young	10	23
11	11	Spike D'Bal	l TE	NA	tight end	<na></na>	11	NA
12	12	Isac Uloo	z LB	37	<na></na>	old	12	37
	in	tegerVar charac	terVar					
1		NA	old					
2		NA	old					
3		NA	young					
4		NA	young					
5		NA	young					
6		NA	young					
7		NA	young					
8		NA	old					
9		NA	young					
10		NA	young					
11		NA	<na></na>					
12		NA	old					

dim(players)

[1] 12 10

The data are structured in ID form. That is, every row in the dataset is uniquely identified by the variable, ${\tt ID}.$

Here are the data in the fantasyPoints object:

fantasyPoints

	ID	fantasyPoints
1	2	250
2	7	170
3	13	65
4	14	15

dim(fantasyPoints)

[1] 4 2

3.16.3 Types of Joins

3.16.3.1 Visual Overview of Join Types

Below is a visual that depicts various types of merges/joins. Object x is the circle labeled as x. Object y is the circle labeled as y. The area of overlap in the Venn diagram indicates the rows on the keys that are shared between the two objects (e.g., the same player_id, season, and week). The non-overlapping area indicates the rows on the keys that are unique to each object. The shaded blue area indicates which rows (on the keys) are kept in the merged object from each of the two objects, when using each of the merge types. For instance, a left outer join keeps the shared rows and the rows that are unique to object x, but it drops the rows that are unique to object y.

Join Types

Figure 3.1 Types of merges/joins

Merging/Joins 51

3.16.3.2 Full Outer Join

A full outer join includes all rows in x or y. It returns columns from x and y. Here is how to merge two data frames using a full outer join (i.e., "full join"):

```
fullJoinData <- full_join(
  players,
  fantasyPoints,
  by = "ID")
fullJoinData</pre>
```

	ID	name posit	ion ag	e	newVar1 newV	ar2 facto	orVar numer	icVar
1	1	Ken Cussion	QB	40	quarterback	old	1	40
2	2	Ben Sacked	QB	30	quarterback	old	2	30
3	3	Chuck Downfield	QB	24	quarterback	young	3	24
4	4	Ron Ingback	RB	20	running back	young	4	20
5	5	Rhonda Ball	RB	18	running back	young	5	18
6	6	Hugo Long	WR	23	wide receiver	young	6	23
7	7	Lionel Scrimmage	WR	27	wide receiver	young	7	27
8	8	Drew Blood	WR	32	wide receiver	old	8	32
9	9	Chase Emdown	WR	26	wide receiver	young	9	26
10	10	Justin Time	TE	23	tight end	young	10	23
11	11	Spike D'Ball	TE	NA	tight end	<na></na>	11	NA
12	12	Isac Ulooz	LB	37	<na></na>	old	12	37
13	13	<na></na>	<na></na>	NA	<na></na>	<na></na>	<na></na>	NA
14	14	<na></na>	<na></na>	NA	<na></na>	<na></na>	<na></na>	NA

integerVar	${\tt characterVar}$	fantasyPoints
	7.1	

1	NA	old	NA
2	NA	old	250
3	NA	young	NA
4	NA	young	NA
5	NA	young	NA
6	NA	young	NA
7	NA	young	170
8	NA	old	NA
9	NA	young	NA
10	NA	young	NA
11	NA	<na></na>	NA
12	NA	old	NA
13	NA	<na></na>	65
14	NA	<na></na>	15

```
dim(fullJoinData)
```

[1] 14 11

3.16.3.3 Left Outer Join

A left outer join includes all rows in x. It returns columns from x and y. Here is how to merge two data frames using a left outer join ("left join"):

```
leftJoinData <- left_join(
  players,
  fantasyPoints,
  by = "ID")
leftJoinData</pre>
```

	ID	name positi	on ag	e	newVar1 newV	ar2 facto	rVar numer	icVar
1	1	Ken Cussion	QB	40	quarterback	old	1	40
2	2	Ben Sacked	QB	30	quarterback	old	2	30
3	3	Chuck Downfield	QB	24	quarterback	young	3	24
4	4	Ron Ingback	RB	20	running back	young	4	20
5	5	Rhonda Ball	RB	18	running back	young	5	18
6	6	Hugo Long	WR	23	wide receiver	young	6	23
7	7	Lionel Scrimmage	WR	27	wide receiver	young	7	27
8	8	Drew Blood	WR	32	wide receiver	old	8	32
9	9	Chase Emdown	WR	26	wide receiver	young	9	26
10	10	Justin Time	TE	23	tight end	young	10	23
11	11	Spike D'Ball	TE	NA	tight end	<na></na>	11	NA
12	12	Isac Ulooz	LB	37	<na></na>	old	12	37
	in	tegerVar characterV	ar fa	nta	syPoints			
1		NA o	ld		NA			
2		NA o	ld		250			
3		NA you	ng		NA			
4		NA you	ng		NA			

_	INA	otu	INA
2	NA	old	250
3	NA	young	NA
4	NA	young	NA
5	NA	young	NA
6	NA	young	NA
7	NA	young	170
8	NA	old	NA
9	NA	young	NA
10	NA	young	NA
11	NA	<na></na>	NA
12	NA	old	NA

Merging/Joins 53

```
dim(leftJoinData)
```

[1] 12 11

3.16.3.4 Right Outer Join

A right outer join includes all rows in y. It returns columns from x and y. Here is how to merge two data frames using a right outer join ("right join"):

```
rightJoinData <- right_join(
  players,
  fantasyPoints,
  by = "ID")
rightJoinData</pre>
```

	ID	name position age			newVar1 newVar2 factorVar numericVar				
1	2 Ben	Sacked	QB	30	quarterback	old	2	30	
2	7 Lionel S	crimmage	WR	27	wide receiver	young	7	27	
3	13	<na></na>	<na></na>	NA	<na></na>	<na></na>	<na></na>	NA	
4	14	<na></na>	<na></na>	NA	<na></na>	<na></na>	<na></na>	NA	
	integerVar characterVar fantasyPoints								
1	NA		old		250				
2	NA	yo	ung		170				
3	NA	<	NA>		65				
4	NA	<	NA>		15				

```
dim(rightJoinData)
```

[1] 4 11

3.16.3.5 Inner Join

An inner join includes all rows that are in **both** x **and** y. An inner join will return one row of x for each matching row of y, and can duplicate values of records on either side (left or right) if x and y have more than one matching record. It returns columns from x and y. Here is how to merge two data frames using an inner join:

```
innerJoinData <- inner_join(
  players,
  fantasyPoints,</pre>
```

```
by = "ID")
innerJoinData
```

```
ID
             name position age
                                   newVar1 newVar2 factorVar numericVar
1 2
         Ben Sacked
                         QB 30
                                  quarterback
                                                  old
                                                                      30
2 7 Lionel Scrimmage
                          WR 27 wide receiver
                                                young
                                                                      27
 integerVar characterVar fantasyPoints
          NA
                      old
                                     250
2
          NA
                                    170
                    young
```

dim(innerJoinData)

[1] 2 11

3.16.3.6 Semi Join

A semi join is a filter. A left semi join returns all rows from x with a match in y. That is, it filters out records from x that are not in y. Unlike an inner join, a left semi join will never duplicate rows of x, and it includes columns from only x (not from y). Here is how to merge two data frames using a left semi join:

```
semiJoinData <- semi_join(
  players,
  fantasyPoints,
  by = "ID")
semiJoinData</pre>
```

```
newVar1 newVar2 factorVar numericVar
 ID
             name position age
         Ben Sacked
                         QB 30
                                 quarterback
                                                 old
                                                            2
2 7 Lionel Scrimmage
                          WR 27 wide receiver
                                                                     27
                                                young
 integerVar characterVar
1
         NA
                      old
         NA
                    young
```

dim(semiJoinData)

[1] 2 10

Merging/Joins 55

3.16.3.7 Anti Join

An anti join is a filter. A left anti join returns all rows from x without a match in y. That is, it filters out records from x that are in y. It returns columns from only x (not from y). Here is how to merge two data frames using a left anti join:

```
antiJoinData <- anti_join(
  players,
  fantasyPoints,
  by = "ID")
antiJoinData</pre>
```

```
ID
              name position age
                                      newVar1 newVar2 factorVar numericVar
1
   1
         Ken Cussion
                           QB 40
                                    quarterback
                                                     old
                                                                 1
                                                                          40
2
   3 Chuck Downfield
                            QB
                               24
                                     quarterback
                                                   young
                                                                 3
                                                                          24
3
   4
         Ron Ingback
                           RB
                                   running back
                                                                 4
                              20
                                                   young
                                                                          20
4
   5
         Rhonda Ball
                           RB
                              18
                                   running back
                                                   young
                                                                 5
                                                                          18
5
   6
           Hugo Long
                           WR 23 wide receiver
                                                                 6
                                                                          23
                                                   young
6
   8
          Drew Blood
                           WR
                               32 wide receiver
                                                     old
                                                                 8
                                                                          32
7
   9
        Chase Emdown
                           WR
                               26 wide receiver
                                                                 9
                                                                          26
                                                   young
8
  10
         Justin Time
                                      tight end
                                                                10
                                                                          23
                                                   young
9
        Spike D'Ball
                                       tight end
                                                    <NA>
  11
                            ΤE
                               NA
                                                                11
                                                                          NA
10 12
          Isac Ulooz
                                            <NA>
                                                     old
                                                                12
                                                                          37
   integerVar characterVar
1
           NA
                        old
2
           NA
                      young
3
           NA
                      young
4
           NA
                      young
5
           NA
                      young
6
           NA
                        old
7
           NA
                      young
8
            NA
                      young
                        <NA>
9
           NA
10
           NA
                        old
```

```
dim(antiJoinData)
```

[1] 10 10

3.16.3.8 Cross Join

A cross join combines each row in x with each row in y.

```
crossJoinData <- cross_join(
  players,
  fantasyPoints)

crossJoinData</pre>
```

```
ID.x
                      name position age
                                                newVar1 newVar2 factorVar
1
              Ken Cussion
      1
                                  QB
                                      40
                                            quarterback
                                                             old
                                                                           1
2
              Ken Cussion
                                  QB
                                      40
                                            quarterback
                                                              old
                                                                           1
3
      1
              Ken Cussion
                                      40
                                            quarterback
                                                              old
                                  QB
                                                                           1
4
              Ken Cussion
                                  QB
                                      40
                                            quarterback
                                                              old
                                                                           1
               Ben Sacked
5
      2
                                  QB
                                      30
                                            quarterback
                                                             old
                                                                           2
6
      2
               Ben Sacked
                                                                           2
                                  QB
                                      30
                                            quarterback
                                                             old
7
      2
                                                                           2
               Ben Sacked
                                  QB
                                      30
                                            quarterback
                                                              old
8
      2
               Ben Sacked
                                  QB
                                      30
                                            quarterback
                                                             old
                                                                           2
9
      3
         Chuck Downfield
                                  QB
                                      24
                                                                           3
                                            quarterback
                                                           young
      3
         Chuck Downfield
10
                                  QВ
                                      24
                                            quarterback
                                                           young
                                                                           3
         Chuck Downfield
11
      3
                                  QB
                                      24
                                            quarterback
                                                           young
                                                                           3
12
      3
         Chuck Downfield
                                  QB
                                      24
                                            quarterback
                                                                           3
                                                           young
13
      4
              Ron Ingback
                                  RB
                                      20
                                           running back
                                                           young
                                                                           4
14
      4
              Ron Ingback
                                  RB
                                           running back
                                      20
                                                                           4
                                                           young
15
      4
              Ron Ingback
                                  RB
                                      20
                                           running back
                                                           young
                                           running back
              Ron Ingback
16
      4
                                  RB
                                      20
                                                           young
                                                                           4
17
      5
              Rhonda Ball
                                  RB
                                      18
                                           running back
                                                           young
                                                                           5
      5
              Rhonda Ball
                                           running back
                                                                           5
18
                                  RB
                                      18
                                                           young
19
      5
              Rhonda Ball
                                  \mathsf{RB}
                                           running back
                                                                           5
                                                           young
                                           running back
20
      5
              Rhonda Ball
                                  RB
                                      18
                                                           young
                                                                           5
21
      6
                                  WR
                                      23 wide receiver
                                                                           6
                Hugo Long
                                                           young
22
      6
                                  WR
                                      23 wide receiver
                Hugo Long
                                                           young
                                                                           6
23
                                      23 wide receiver
      6
                Hugo Long
                                                           young
                                                                           6
24
                Hugo Long
                                  WR
                                      23 wide receiver
                                                                           6
                                                           young
25
      7 Lionel Scrimmage
                                  WR
                                      27 wide receiver
                                                                           7
                                                           young
26
      7 Lionel Scrimmage
                                      27 wide receiver
                                                                           7
                                                           young
                                                           young
27
      7 Lionel Scrimmage
                                  WR
                                      27 wide receiver
                                                                           7
28
      7 Lionel Scrimmage
                                  WR
                                      27 wide receiver
                                                           young
                                                                           7
29
      8
               Drew Blood
                                  WR
                                      32 wide receiver
                                                             old
                                                                           8
30
      8
               Drew Blood
                                      32 wide receiver
                                                              old
                                                                           8
31
               Drew Blood
                                  WR
                                      32 wide receiver
                                                             old
                                                                           8
      8
32
      8
               Drew Blood
                                  WR
                                      32 wide receiver
                                                              old
                                                                           8
      9
             Chase Emdown
                                  WR
                                      26 wide receiver
33
                                                           young
                                                                           9
34
      9
             Chase Emdown
                                  WR
                                      26 wide receiver
                                                           young
                                                                           9
35
      9
             Chase Emdown
                                  WR
                                      26 wide receiver
                                                           young
                                                                           9
36
      9
             Chase Emdown
                                  WR
                                      26 wide receiver
                                                           young
                                                                           9
                                      23
37
     10
              Justin Time
                                  ΤE
                                              tight end
                                                                          10
                                                           young
38
     10
              Justin Time
                                  ΤE
                                              tight end
                                                                          10
                                                           young
```

Merging/Joins 57

39	10	Justin Time	TE	23	t	ight	end	young	10
40	10	Justin Time	TE	23	t	ight	end	young	10
41	11	Spike D'Ball	TE	NA	t	ight	end	<na></na>	11
42	11	Spike D'Ball	TE	NA	t	ight	end	<na></na>	11
43	11	Spike D'Ball	TE	NA	t	ight	end	<na></na>	11
44	11	Spike D'Ball	TE	NA	t	ight	end	<na></na>	11
45	12	Isac Ulooz	LB	37		<	<na></na>	old	12
46	12	Isac Ulooz	LB	37		<	<na></na>	old	12
47	12	Isac Ulooz	LB	37		<	<na></na>	old	12
48	12	Isac Ulooz	LB	37		•	<na></na>	old	12
	numeric\	/ar integerVar	character	Var	ID.y	fanta	asyPo	ints	
1		40 NA		old	2			250	
2		40 NA		old	7			170	
3		40 NA		old	13			65	
4		40 NA		old	14			15	
5		30 NA		old	2			250	
6		30 NA		old	7			170	
7		30 NA		old	13			65	
8		30 NA		old	14			15	
9		24 NA	yo	ung	2			250	
10		24 NA	yo	ung	7			170	
11		24 NA	yo	ung	13			65	
12		24 NA	yo	ung	14			15	
13		20 NA	yo	ung	2			250	
14		20 NA	yo	ung	7			170	
15		20 NA	yo	ung	13			65	
16		20 NA	yo	ung	14			15	
17		18 NA	yo	ung	2			250	
18		18 NA	yo	ung	7			170	
19		18 NA	yo	ung	13			65	
20		18 NA	yo	ung	14			15	
21		23 NA	yo	ung	2			250	
22		23 NA	yo	ung	7			170	
23		23 NA	yo	ung	13			65	
24		23 NA	yo	ung	14			15	
25		27 NA	,	ung	2			250	
26		27 NA	yo	ung	7			170	
27		27 NA	-	ung	13			65	
28		27 NA	-	ung	14			15	
29		32 NA		old	2			250	
30		32 NA		old	7			170	
31		32 NA		old	13			65	
32		32 NA		old	14			15	
33		26 NA	-	ung	2			250	
34		26 NA	yo	ung	7			170	

35	26	NA	young	13	65
36	26	NA	young	14	15
37	23	NA	young	2	250
38	23	NA	young	7	170
39	23	NA	young	13	65
40	23	NA	young	14	15
41	NA	NA	<na></na>	2	250
42	NA	NA	<na></na>	7	170
43	NA	NA	<na></na>	13	65
44	NA	NA	<na></na>	14	15
45	37	NA	old	2	250
46	37	NA	old	7	170
47	37	NA	old	13	65
48	37	NA	old	14	15

dim(crossJoinData)

[1] 48 12

3.17 Transform Data from Long to Wide

Depending on the analysis, it may be important to restructure the data to be in long or wide form. When the data are in wide form, each player has only one row. When the data are in long form, each player has multiple rows—e.g., a row for each game. The data structure is called wide or long form because a dataset in wide form has more columns and fewer rows (i.e., it appears wider and shorter), whereas a dataset in long form has more rows and fewer columns (i.e., it appears narrower and taller).

Here are the data in the nfl_actualStats_offense_weekly object. The data are structured in "player-season-week form". That is, every row in the dataset is uniquely identified by the variables, player_id, season, and week. This is an example of long form, because each player has multiple rows.

Original data:

```
dataLong <- nfl_actualStats_offense_weekly %>%
   select(player_id, player_display_name, season, week, fantasy_points)
dim(dataLong)
```

"fantasy_points"

Below, we widen the data by two variables (season and week), using tidyverse, so that the data are now in "player form" (where each row is uniquely identified by the player_id variable):

```
dataWide <- dataLong %>%
  pivot_wider(
   names_from = c(season, week),
   names_glue = "{.value}_{season}_week{week}",
   values_from = fantasy_points)

dim(dataWide)
```

[1] 4021 530

[4] "week"

names(dataWide)

```
[1] "player_id"
                                  "player_display_name"
 [3] "fantasy_points_1999_week1"
                                 "fantasy_points_1999_week2"
[5] "fantasy_points_1999_week4"
                                 "fantasy_points_1999_week7"
[7] "fantasy_points_1999_week8"
                                 "fantasy_points_1999_week9"
[9] "fantasy_points_1999_week10" "fantasy_points_1999_week11"
[11] "fantasy_points_1999_week12" "fantasy_points_1999_week13"
[13] "fantasy_points_1999_week14" "fantasy_points_1999_week15"
[15] "fantasy_points_1999_week16" "fantasy_points_1999_week5"
[17] "fantasy_points_1999_week6" "fantasy_points_1999_week17"
[19] "fantasy_points_1999_week18" "fantasy_points_1999_week3"
[21] "fantasy_points_1999_week19" "fantasy_points_1999_week20"
[23] "fantasy_points_1999_week21" "fantasy_points_2000_week1"
[25] "fantasy_points_2000_week12" "fantasy_points_2000_week14"
[27] "fantasy_points_2000_week15" "fantasy_points_2000_week6"
[29] "fantasy_points_2000_week10" "fantasy_points_2000_week4"
[31] "fantasy_points_2000_week5" "fantasy_points_2000_week7"
[33] "fantasy_points_2000_week8" "fantasy_points_2000_week9"
[35] "fantasy_points_2000_week11" "fantasy_points_2000_week13"
[37] "fantasy_points_2000_week2" "fantasy_points_2000_week16"
[39] "fantasy_points_2000_week17" "fantasy_points_2000_week3"
[41] "fantasy_points_2000_week18" "fantasy_points_2000_week19"
[43] "fantasy_points_2000_week21" "fantasy_points_2000_week20"
```

```
[45] "fantasy_points_2001_week15" "fantasy_points_2001_week17"
[47] "fantasy_points_2001_week1" "fantasy_points_2001_week3"
[49] "fantasy_points_2001_week4" "fantasy_points_2001_week5"
[51] "fantasy_points_2001_week6" "fantasy_points_2001_week9"
[53] "fantasy_points_2001_week11" "fantasy_points_2001_week12"
[55] "fantasy_points_2001_week13" "fantasy_points_2001_week14"
[57] "fantasy_points_2001_week16" "fantasy_points_2001_week2"
[59] "fantasy_points_2001_week7" "fantasy_points_2001_week8"
[61] "fantasy_points_2001_week10" "fantasy_points_2001_week19"
[63] "fantasy_points_2001_week18" "fantasy_points_2001_week20"
[65] "fantasy points 2001 week21" "fantasy points 2002 week3"
                                  "fantasy_points_2002_week2"
[67] "fantasy_points_2002_week1"
[69] "fantasy_points_2002_week4"
                                  "fantasy_points_2002_week6"
[71] "fantasy_points_2002_week7" "fantasy_points_2002_week8"
[73] "fantasy_points_2002_week9" "fantasy_points_2002_week5"
[75] "fantasy_points_2002_week10" "fantasy_points_2002_week11"
[77] "fantasy_points_2002_week12" "fantasy_points_2002_week13"
[79] "fantasy_points_2002_week14" "fantasy_points_2002_week15"
[81] "fantasy_points_2002_week16" "fantasy_points_2002_week17"
[83] "fantasy_points_2002_week19" "fantasy_points_2002_week20"
[85] "fantasy_points_2002_week21" "fantasy_points_2002_week18"
[87] "fantasy_points_2003_week2" "fantasy_points_2003_week4"
[89] "fantasy_points_2003_week5" "fantasy_points_2003_week7"
[91] "fantasy_points_2003_week8" "fantasy_points_2003_week9"
[93] "fantasy_points_2003_week10" "fantasy_points_2003_week11"
[95] "fantasy_points_2003_week13" "fantasy_points_2003_week14"
[97] "fantasy_points_2003_week15" "fantasy_points_2003_week17"
[99] "fantasy_points_2003_week1" "fantasy_points_2003_week3"
[101] "fantasy_points_2003_week6" "fantasy_points_2003_week12"
[103] "fantasy_points_2003_week16" "fantasy_points_2003_week18"
[105] "fantasy_points_2003_week19" "fantasy_points_2003_week20"
[107] "fantasy_points_2003_week21" "fantasy_points_2004_week2"
[109] "fantasy_points_2004_week5" "fantasy_points_2004_week6"
[111] "fantasy_points_2004_week10" "fantasy_points_2004_week16"
[113] "fantasy_points_2004_week17" "fantasy_points_2004_week1"
[115] "fantasy_points_2004_week3" "fantasy_points_2004_week7"
[117] "fantasy_points_2004_week8" "fantasy_points_2004_week9"
[119] "fantasy_points_2004_week11" "fantasy_points_2004_week12"
[121] "fantasy_points_2004_week13" "fantasy_points_2004_week14"
[123] "fantasy_points_2004_week15" "fantasy_points_2004_week4"
[125] "fantasy_points_2004_week19" "fantasy_points_2004_week20"
[127] "fantasy_points_2004_week21" "fantasy_points_2004_week18"
[129] "fantasy_points_2005_week1"
                                  "fantasy_points_2005_week2"
[131] "fantasy_points_2005_week3" "fantasy_points_2005_week4"
[133] "fantasy_points_2005_week6" "fantasy_points_2005_week7"
```

```
[135] "fantasy_points_2005_week8" "fantasy_points_2005_week10"
[137] "fantasy_points_2005_week11" "fantasy_points_2005_week13"
[139] "fantasy_points_2005_week14" "fantasy_points_2005_week15"
[141] "fantasy_points_2005_week16" "fantasy_points_2005_week17"
[143] "fantasy_points_2005_week5" "fantasy_points_2005_week9"
[145] "fantasy_points_2005_week12" "fantasy_points_2005_week18"
[147] "fantasy_points_2005_week19" "fantasy_points_2005_week20"
[149] "fantasy_points_2005_week21" "fantasy_points_2006_week4"
[151] "fantasy_points_2006_week1"
                                  "fantasy_points_2006_week2"
[153] "fantasy_points_2006_week3" "fantasy_points_2006_week10"
[155] "fantasy_points_2006_week11" "fantasy_points_2006_week12"
[157] "fantasy_points_2006_week13" "fantasy_points_2006_week14"
[159] "fantasy_points_2006_week5"
                                  "fantasy_points_2006_week6"
[161] "fantasy_points_2006_week7" "fantasy_points_2006_week15"
[163] "fantasy_points_2006_week16" "fantasy_points_2006_week17"
[165] "fantasy_points_2006_week8"
                                  "fantasy_points_2006_week9"
[167] "fantasy_points_2006_week18" "fantasy_points_2006_week19"
[169] "fantasy_points_2006_week20" "fantasy_points_2006_week21"
[171] "fantasy_points_2007_week1"
                                  "fantasy_points_2007_week2"
[173] "fantasy_points_2007_week3"
                                  "fantasy_points_2007_week5"
[175] "fantasy_points_2007_week9" "fantasy_points_2007_week16"
[177] "fantasy_points_2007_week17" "fantasy_points_2007_week14"
[179] "fantasy_points_2007_week4" "fantasy_points_2007_week6"
[181] "fantasy_points_2007_week7" "fantasy_points_2007_week8"
[183] "fantasy_points_2007_week10" "fantasy_points_2007_week11"
[185] "fantasy_points_2007_week12" "fantasy_points_2007_week13"
[187] "fantasy_points_2007_week15" "fantasy_points_2007_week19"
[189] "fantasy_points_2007_week21" "fantasy_points_2007_week18"
[191] "fantasy_points_2007_week20" "fantasy_points_2008_week8"
[193] "fantasy_points_2008_week1" "fantasy_points_2008_week2"
[195] "fantasy_points_2008_week3"
                                  "fantasy_points_2008_week4"
[197] "fantasy_points_2008_week5"
                                  "fantasy_points_2008_week6"
[199] "fantasy_points_2008_week7" "fantasy_points_2008_week14"
[201] "fantasy_points_2008_week10" "fantasy_points_2008_week11"
[203] "fantasy_points_2008_week12" "fantasy_points_2008_week13"
[205] "fantasy_points_2008_week15" "fantasy_points_2008_week16"
[207] "fantasy_points_2008_week17" "fantasy_points_2008_week9"
[209] "fantasy_points_2008_week19" "fantasy_points_2008_week18"
[211] "fantasy_points_2008_week20" "fantasy_points_2008_week21"
[213] "fantasy_points_2009_week9" "fantasy_points_2009_week11"
[215] "fantasy_points_2009_week2"
                                  "fantasy_points_2009_week3"
[217] "fantasy_points_2009_week5"
                                  "fantasy_points_2009_week7"
[219] "fantasy_points_2009_week12" "fantasy_points_2009_week13"
[221] "fantasy_points_2009_week14" "fantasy_points_2009_week15"
[223] "fantasy_points_2009_week16" "fantasy_points_2009_week17"
```

```
[225] "fantasy_points_2009_week1" "fantasy_points_2009_week4"
[227] "fantasy_points_2009_week8" "fantasy_points_2009_week6"
[229] "fantasy_points_2009_week10" "fantasy_points_2009_week18"
[231] "fantasy_points_2009_week19" "fantasy_points_2009_week20"
[233] "fantasy_points_2009_week21" "fantasy_points_2010_week2"
[235] "fantasy_points_2010_week3" "fantasy_points_2010_week4"
[237] "fantasy_points_2010_week1" "fantasy_points_2010_week7"
[239] "fantasy_points_2010_week17" "fantasy_points_2010_week6"
[241] "fantasy_points_2010_week8" "fantasy_points_2010_week10"
[243] "fantasy_points_2010_week13" "fantasy_points_2010_week14"
[245] "fantasy_points_2010_week15" "fantasy_points_2010_week16"
[247] "fantasy_points_2010_week5" "fantasy_points_2010_week20"
[249] "fantasy_points_2010_week12" "fantasy_points_2010_week11"
[251] "fantasy_points_2010_week18" "fantasy_points_2010_week19"
[253] "fantasy_points_2010_week21" "fantasy_points_2010_week9"
[255] "fantasy_points_2011_week17" "fantasy_points_2011_week13"
[257] "fantasy_points_2011_week14" "fantasy_points_2011_week16"
[259] "fantasy_points_2011_week15" "fantasy_points_2011_week1"
[261] "fantasy_points_2011_week2" "fantasy_points_2011_week3"
[263] "fantasy_points_2011_week4"
                                  "fantasy_points_2011_week5"
[265] "fantasy_points_2011_week6" "fantasy_points_2011_week7"
[267] "fantasy_points_2011_week9" "fantasy_points_2011_week10"
[269] "fantasy_points_2011_week11" "fantasy_points_2011_week12"
[271] "fantasy_points_2011_week19" "fantasy_points_2011_week8"
[273] "fantasy_points_2011_week18" "fantasy_points_2011_week20"
[275] "fantasy_points_2011_week21" "fantasy_points_2012_week12"
[277] "fantasy_points_2012_week13" "fantasy_points_2012_week2"
[279] "fantasy_points_2012_week3" "fantasy_points_2012_week4"
[281] "fantasy_points_2012_week5" "fantasy_points_2012_week7"
[283] "fantasy_points_2012_week8" "fantasy_points_2012_week9"
[285] "fantasy_points_2012_week11" "fantasy_points_2012_week16"
[287] "fantasy_points_2012_week1" "fantasy_points_2012_week6"
[289] "fantasy_points_2012_week10" "fantasy_points_2012_week14"
[291] "fantasy_points_2012_week15" "fantasy_points_2012_week17"
[293] "fantasy_points_2012_week19" "fantasy_points_2012_week20"
[295] "fantasy_points_2012_week21" "fantasy_points_2012_week18"
[297] "fantasy_points_2013_week1" "fantasy_points_2013_week2"
[299] "fantasy_points_2013_week3"
                                  "fantasy_points_2013_week4"
[301] "fantasy_points_2013_week5"
                                  "fantasy_points_2013_week7"
[303] "fantasy_points_2013_week8" "fantasy_points_2013_week9"
[305] "fantasy_points_2013_week10" "fantasy_points_2013_week11"
[307] "fantasy_points_2013_week12" "fantasy_points_2013_week13"
[309] "fantasy_points_2013_week14" "fantasy_points_2013_week15"
[311] "fantasy_points_2013_week16" "fantasy_points_2013_week17"
[313] "fantasy_points_2013_week6" "fantasy_points_2013_week19"
```

```
[315] "fantasy_points_2013_week20" "fantasy_points_2013_week21"
[317] "fantasy_points_2013_week18" "fantasy_points_2014_week3"
[319] "fantasy_points_2014_week4" "fantasy_points_2014_week16"
[321] "fantasy_points_2014_week17" "fantasy_points_2014_week1"
[323] "fantasy_points_2014_week2"
                                  "fantasy_points_2014_week5"
[325] "fantasy_points_2014_week6" "fantasy_points_2014_week7"
[327] "fantasy_points_2014_week8" "fantasy_points_2014_week9"
[329] "fantasy_points_2014_week10" "fantasy_points_2014_week11"
[331] "fantasy_points_2014_week12" "fantasy_points_2014_week13"
[333] "fantasy_points_2014_week14" "fantasy_points_2014_week15"
[335] "fantasy_points_2014_week19" "fantasy_points_2014_week20"
[337] "fantasy_points_2014_week21" "fantasy_points_2014_week18"
[339] "fantasy_points_2015_week4" "fantasy_points_2015_week5"
[341] "fantasy_points_2015_week11" "fantasy_points_2015_week12"
[343] "fantasy_points_2015_week13" "fantasy_points_2015_week14"
[345] "fantasy_points_2015_week15" "fantasy_points_2015_week16"
[347] "fantasy_points_2015_week1"
                                  "fantasy_points_2015_week2"
[349] "fantasy_points_2015_week3" "fantasy_points_2015_week6"
[351] "fantasy_points_2015_week8"
                                  "fantasy_points_2015_week9"
[353] "fantasy_points_2015_week10" "fantasy_points_2015_week17"
[355] "fantasy_points_2015_week19" "fantasy_points_2015_week20"
[357] "fantasy_points_2015_week21" "fantasy_points_2015_week7"
[359] "fantasy_points_2015_week18" "fantasy_points_2016_week5"
[361] "fantasy_points_2016_week6"
                                  "fantasy_points_2016_week7"
[363] "fantasy_points_2016_week8" "fantasy_points_2016_week10"
[365] "fantasy_points_2016_week11" "fantasy_points_2016_week12"
[367] "fantasy_points_2016_week13" "fantasy_points_2016_week14"
[369] "fantasy_points_2016_week15" "fantasy_points_2016_week16"
[371] "fantasy_points_2016_week17" "fantasy_points_2016_week19"
[373] "fantasy_points_2016_week20" "fantasy_points_2016_week21"
                                  "fantasy_points_2016_week2"
[375] "fantasy_points_2016_week1"
[377] "fantasy_points_2016_week3"
                                   "fantasy_points_2016_week4"
[379] "fantasy_points_2016_week9"
                                  "fantasy_points_2016_week18"
[381] "fantasy_points_2017_week1"
                                   "fantasy_points_2017_week2"
[383] "fantasy_points_2017_week3"
                                   "fantasy_points_2017_week4"
[385] "fantasy_points_2017_week5"
                                  "fantasy_points_2017_week6"
[387] "fantasy_points_2017_week7" "fantasy_points_2017_week8"
[389] "fantasy_points_2017_week10" "fantasy_points_2017_week11"
[391] "fantasy_points_2017_week12" "fantasy_points_2017_week13"
[393] "fantasy_points_2017_week14" "fantasy_points_2017_week15"
[395] "fantasy_points_2017_week16" "fantasy_points_2017_week17"
[397] "fantasy_points_2017_week19" "fantasy_points_2017_week20"
[399] "fantasy_points_2017_week21" "fantasy_points_2017_week9"
[401] "fantasy_points_2017_week18" "fantasy_points_2018_week1"
[403] "fantasy_points_2018_week2" "fantasy_points_2018_week3"
```

```
[405] "fantasy_points_2018_week4" "fantasy_points_2018_week5"
[407] "fantasy_points_2018_week6"
                                  "fantasy_points_2018_week7"
[409] "fantasy_points_2018_week8" "fantasy_points_2018_week9"
[411] "fantasy_points_2018_week10" "fantasy_points_2018_week12"
[413] "fantasy_points_2018_week13" "fantasy_points_2018_week14"
[415] "fantasy_points_2018_week15" "fantasy_points_2018_week16"
[417] "fantasy_points_2018_week17" "fantasy_points_2018_week19"
[419] "fantasy_points_2018_week20" "fantasy_points_2018_week21"
[421] "fantasy_points_2018_week11" "fantasy_points_2018_week18"
[423] "fantasy_points_2019_week1" "fantasy_points_2019_week2"
[425] "fantasy_points_2019_week3"
                                  "fantasy_points_2019_week4"
[427] "fantasy_points_2019_week5"
                                  "fantasy_points_2019_week6"
[429] "fantasy_points_2019_week7"
                                  "fantasy_points_2019_week8"
[431] "fantasy_points_2019_week9" "fantasy_points_2019_week11"
[433] "fantasy_points_2019_week12" "fantasy_points_2019_week13"
[435] "fantasy_points_2019_week14" "fantasy_points_2019_week15"
[437] "fantasy_points_2019_week16" "fantasy_points_2019_week17"
[439] "fantasy_points_2019_week18" "fantasy_points_2019_week10"
[441] "fantasy_points_2019_week19" "fantasy_points_2019_week20"
[443] "fantasy_points_2019_week21" "fantasy_points_2020_week1"
[445] "fantasy_points_2020_week2" "fantasy_points_2020_week3"
[447] "fantasy_points_2020_week4" "fantasy_points_2020_week5"
[449] "fantasy_points_2020_week6"
                                  "fantasy_points_2020_week7"
[451] "fantasy_points_2020_week8"
                                  "fantasy_points_2020_week9"
[453] "fantasy_points_2020_week10" "fantasy_points_2020_week11"
[455] "fantasy_points_2020_week12" "fantasy_points_2020_week14"
[457] "fantasy_points_2020_week15" "fantasy_points_2020_week16"
[459] "fantasy_points_2020_week17" "fantasy_points_2020_week18"
[461] "fantasy_points_2020_week19" "fantasy_points_2020_week20"
[463] "fantasy_points_2020_week21" "fantasy_points_2020_week13"
                                  "fantasy_points_2021_week2"
[465] "fantasy_points_2021_week1"
[467] "fantasy_points_2021_week3"
                                  "fantasy_points_2021_week4"
[469] "fantasy_points_2021_week5"
                                  "fantasy_points_2021_week6"
[471] "fantasy_points_2021_week7"
                                  "fantasy_points_2021_week8"
[473] "fantasy_points_2021_week10" "fantasy_points_2021_week11"
[475] "fantasy_points_2021_week12" "fantasy_points_2021_week13"
[477] "fantasy_points_2021_week14" "fantasy_points_2021_week15"
[479] "fantasy_points_2021_week16" "fantasy_points_2021_week17"
[481] "fantasy_points_2021_week18" "fantasy_points_2021_week19"
[483] "fantasy_points_2021_week20" "fantasy_points_2021_week9"
[485] "fantasy_points_2021_week21" "fantasy_points_2021_week22"
                                  "fantasy_points_2022_week2"
[487] "fantasy_points_2022_week1"
[489] "fantasy_points_2022_week3"
                                  "fantasy_points_2022_week4"
[491] "fantasy_points_2022_week5"
                                  "fantasy_points_2022_week6"
[493] "fantasy_points_2022_week7" "fantasy_points_2022_week8"
```

```
[495] "fantasy_points_2022_week9" "fantasy_points_2022_week10"
[497] "fantasy_points_2022_week12" "fantasy_points_2022_week13"
[499] "fantasy_points_2022_week14" "fantasy_points_2022_week15"
[501] "fantasy_points_2022_week16" "fantasy_points_2022_week17"
[503] "fantasy_points_2022_week18" "fantasy_points_2022_week19"
[505] "fantasy_points_2022_week11" "fantasy_points_2022_week20"
[507] "fantasy_points_2022_week21" "fantasy_points_2022_week22"
[509] "fantasy_points_2023_week1"
                                  "fantasy_points_2023_week4"
[511] "fantasy_points_2023_week7"
                                  "fantasy_points_2023_week11"
[513] "fantasy_points_2023_week14" "fantasy_points_2023_week16"
[515] "fantasy_points_2023_week13" "fantasy_points_2023_week15"
[517] "fantasy_points_2023_week17" "fantasy_points_2023_week19"
[519] "fantasy_points_2023_week2"
                                  "fantasy_points_2023_week3"
[521] "fantasy_points_2023_week5" "fantasy_points_2023_week6"
[523] "fantasy_points_2023_week8"
                                  "fantasy_points_2023_week12"
[525] "fantasy_points_2023_week18" "fantasy_points_2023_week10"
[527] "fantasy_points_2023_week21" "fantasy_points_2023_week22"
[529] "fantasy_points_2023_week9" "fantasy_points_2023_week20"
```

3.18 Transform Data from Wide to Long

Conversely, we can also restructure data from wide to long.

Original data:

Data in long form, transformed from wide form using tidyverse:

"team"

```
dataLong <- dataWide %>%
  pivot_longer(
    cols = c(recent_team, opponent_team),
    names_to = "role",
    values_to = "team")

dim(dataLong)

[1] 259478    6

names(dataLong)
```

"player_display_name" "season"

3.19 Calculations

[1] "player_id"
[4] "week"

3.19.1 Historical Actual Player Statistics

"role"

In addition to week-by-week actual player statistics, we can also compute historical actual player statistics as a function of different timeframes, including season-by-season and career statistics.

3.19.1.1 Career Statistics

First, we can compute the players' career statistics using the calculate_player_stats(), calculate_player_stats_def(), and calculate_player_stats_kicking() functions from the nflfastR package for offensive players, defensive players, and kickers, respectively.

```
i Note 3: Calculating players' career statistics

Note: the following code takes a while to run.
```

```
nfl_actualStats_offense_career <- nflfastR::calculate_player_stats(
    nfl_pbp,
    weekly = FALSE)</pre>
```

```
nfl_actualStats_defense_career <- nflfastR::calculate_player_stats_def(
    nfl_pbp,
    weekly = FALSE)

nfl_actualStats_kicking_career <- nflfastR::calculate_player_stats_kicking(
    nfl_pbp,
    weekly = FALSE)</pre>
```

3.19.1.2 Season-by-Season Statistics

Second, we can compute the players' season-by-season statistics.

```
seasons <- unique(nfl_pbp$season)

nfl_pbp_seasonalList <- list()
nfl_actualStats_offense_seasonalList <- list()
nfl_actualStats_defense_seasonalList <- list()
nfl_actualStats_kicking_seasonalList <- list()</pre>
```

i Note 4: Calculating players' season-by-season statistics

Note: the following code takes a while to run.

```
pb <- txtProgressBar(</pre>
 min = 0,
 max = length(seasons),
 style = 3)
for(i in 1:length(seasons)){
 # Subset play-by-play data by season
 nfl_pbp_seasonalList[[i]] <- nfl_pbp %>%
    filter(season == seasons[i])
 # Compute actual statistics by season
 nfl_actualStats_offense_seasonalList[[i]] <-</pre>
    nflfastR::calculate_player_stats(
      nfl_pbp_seasonalList[[i]],
     weekly = FALSE)
 nfl_actualStats_defense_seasonalList[[i]] <-</pre>
   nflfastR::calculate_player_stats_def(
     nfl_pbp_seasonalList[[i]],
     weekly = FALSE)
```

```
nfl_actualStats_kicking_seasonalList[[i]] <-</pre>
    nflfastR::calculate_player_stats_kicking(
      nfl_pbp_seasonalList[[i]],
      weekly = FALSE)
  nfl_actualStats_offense_seasonalList[[i]]$season <- seasons[i]</pre>
  nfl_actualStats_defense_seasonalList[[i]]$season <- seasons[i]</pre>
  nfl_actualStats_kicking_seasonalList[[i]]$season <- seasons[i]</pre>
  print(
    paste("Completed computing projections for season: ", seasons[i], sep = ""))
  # Update the progress bar
  setTxtProgressBar(pb, i)
}
# Close the progress bar
close(pb)
nfl_actualStats_offense_seasonal <- nfl_actualStats_offense_seasonalList %>%
  bind_rows()
nfl_actualStats_defense_seasonal <- nfl_actualStats_defense_seasonalList %>%
 bind_rows()
nfl_actualStats_kicking_seasonal <- nfl_actualStats_kicking_seasonalList %>%
bind_rows()
```

3.19.1.3 Week-by-Week Statistics

We already load players' week-by-week statistics above. Nevertheless, we could compute players' weekly statistics from the play-by-play data using the following syntax:

```
nfl_actualStats_offense_weekly <- nflfastR::calculate_player_stats(
    nfl_pbp,
    weekly = TRUE)

nfl_actualStats_defense_weekly <- nflfastR::calculate_player_stats_def(
    nfl_pbp,
    weekly = TRUE)

nfl_actualStats_kicking_weekly <- nflfastR::calculate_player_stats_kicking(
    nfl_pbp,
    weekly = TRUE)</pre>
```

3.19.2 Historical Actual Fantasy Points

Specify scoring settings:

- 3.19.2.1 Weekly
- **3.19.2.2** Seasonal
- 3.19.2.3 Career
- 3.19.3 Player Age

```
# Reshape from wide to long format
nfl_actualStats_offense_weekly_long <- nfl_actualStats_offense_weekly %>%
 pivot_longer(
   cols = c(recent_team, opponent_team),
   names_to = "role",
   values to = "team")
# Perform separate inner join operations for the home_team and away_team
nfl_actualStats_offense_weekly_home <- inner_join(</pre>
 nfl_actualStats_offense_weekly_long,
 nfl_schedules,
 by = c("season","week","team" = "home_team")) %>%
 mutate(home_away = "home_team")
nfl_actualStats_offense_weekly_away <- inner_join(</pre>
 nfl_actualStats_offense_weekly_long,
 nfl_schedules,
 by = c("season","week","team" = "away_team")) %>%
 mutate(home_away = "away_team")
nfl_actualStats_defense_weekly_home <- inner_join(</pre>
 nfl_actualStats_defense_weekly,
 nfl_schedules,
 by = c("season","week","team" = "home_team")) %>%
 mutate(home_away = "home_team")
nfl_actualStats_defense_weekly_away <- inner_join(</pre>
 nfl_actualStats_defense_weekly,
 nfl_schedules,
 by = c("season","week","team" = "away_team")) %>%
 mutate(home_away = "away_team")
```

```
nfl_actualStats_kicking_weekly_home <- inner_join(</pre>
 nfl_actualStats_kicking_weekly,
 nfl_schedules,
 by = c("season","week","team" = "home_team")) %>%
 mutate(home_away = "home_team")
nfl_actualStats_kicking_weekly_away <- inner_join(</pre>
 nfl_actualStats_kicking_weekly,
 nfl_schedules,
 by = c("season","week","team" = "away_team")) %>%
 mutate(home_away = "away_team")
# Combine the results of the join operations
nfl_actualStats_offense_weekly_schedules_long <- bind_rows(</pre>
 nfl_actualStats_offense_weekly_home,
 nfl_actualStats_offense_weekly_away)
nfl_actualStats_defense_weekly_schedules_long <- bind_rows(</pre>
 nfl_actualStats_defense_weekly_home,
 nfl_actualStats_defense_weekly_away)
nfl_actualStats_kicking_weekly_schedules_long <- bind_rows(</pre>
 nfl_actualStats_kicking_weekly_home,
 nfl_actualStats_kicking_weekly_away)
# Reshape from long to wide
player_game_gameday_offense <- nfl_actualStats_offense_weekly_schedules_long %>%
 distinct(player_id, season, week, game_id, home_away, team, gameday) %>% #, .keep_all = TRUE
 pivot_wider(
    names_from = home_away,
    values_from = team)
player_game_gameday_defense <- nfl_actualStats_defense_weekly_schedules_long %>%
 distinct(player_id, season, week, game_id, home_away, team, gameday) %>% #, .keep_all = TRUE
 pivot_wider(
    names_from = home_away,
    values_from = team)
player_game_gameday_kicking <- nfl_actualStats_kicking_weekly_schedules_long %>%
 distinct(player_id, season, week, game_id, home_away, team, gameday) %>% #, .keep_all = TRUE
 pivot_wider(
    names_from = home_away,
    values_from = team)
```

```
# Merge player birthdate and the game date
player_game_birthdate_gameday_offense <- left_join(</pre>
  player_game_gameday_offense,
 unique(nfl_players[,c("gsis_id","birth_date")]),
 by = c("player_id" = "gsis_id")
player_game_birthdate_gameday_defense <- left_join(</pre>
 player_game_gameday_defense,
 unique(nfl_players[,c("gsis_id","birth_date")]),
 by = c("player_id" = "gsis_id")
)
player_game_birthdate_gameday_kicking <- left_join(</pre>
 player_game_gameday_kicking,
 unique(nfl_players[,c("gsis_id","birth_date")]),
 by = c("player_id" = "gsis_id")
player_game_birthdate_gameday_offense$birth_date <- ymd(player_game_birthdate_gameday_offense$birt
player_game_birthdate_gameday_offense$gameday <- ymd(player_game_birthdate_gameday_offense$gameday
player_game_birthdate_gameday_defense$birth_date <- ymd(player_game_birthdate_gameday_defense$birt
player_game_birthdate_gameday_defense$gameday <- ymd(player_game_birthdate_gameday_defense$gameday
player_game_birthdate_gameday_kicking$birth_date <- ymd(player_game_birthdate_gameday_kicking$birt
player_game_birthdate_gameday_kicking$gameday <- ymd(player_game_birthdate_gameday_kicking$gameday
# Calculate player's age for a given week as the difference between their birthdate and the game d
player_game_birthdate_gameday_offense$age <- interval(</pre>
  start = player_game_birthdate_gameday_offense$birth_date,
 end = player_game_birthdate_gameday_offense$gameday
) %>%
 time_length(unit = "years")
player_game_birthdate_gameday_defense$age <- interval(</pre>
  start = player_game_birthdate_gameday_defense$birth_date,
 end = player_game_birthdate_gameday_defense$gameday
) %>%
  time_length(unit = "years")
player_game_birthdate_gameday_kicking$age <- interval(</pre>
  start = player_game_birthdate_gameday_kicking$birth_date,
  end = player_game_birthdate_gameday_kicking$gameday
```

```
) %>%
  time_length(unit = "years")
# Merge with player info
player_age_offense <- left_join(</pre>
  player_game_birthdate_gameday_offense,
  nfl_players %>% select(-birth_date, -season),
  by = c("player_id" = "gsis_id"))
player_age_defense <- left_join(</pre>
  player_game_birthdate_gameday_defense,
  nfl_players %>% select(-birth_date, -season),
  by = c("player_id" = "gsis_id"))
player_age_kicking <- left_join(</pre>
  player_game_birthdate_gameday_kicking,
  nfl_players %>% select(-birth_date, -season),
  by = c("player_id" = "gsis_id"))
# Add game_id to weekly stats to facilitate merging
nfl_actualStats_game_offense_weekly <- nfl_actualStats_offense_weekly %>%
  left_join(
    player_age_offense[,c("season","week","player_id","game_id")],
    by = c("season","week","player_id"))
nfl_actualStats_game_defense_weekly <- nfl_actualStats_defense_weekly %>%
 left_join(
    player_age_offense[,c("season","week","player_id","game_id")],
    by = c("season","week","player_id"))
nfl_actualStats_game_kicking_weekly <- nfl_actualStats_kicking_weekly %>%
  left_join(
    player_age_offense[,c("season","week","player_id","game_id")],
    by = c("season","week","player_id"))
# Merge with player weekly stats
player_age_stats_offense <- left_join(</pre>
  player_age_offense %>% select(-position, -position_group),
  nfl_actualStats_game_offense_weekly,
  by = c(c("season","week","player_id","game_id")))
player_age_stats_defense <- left_join(</pre>
  player_age_defense %>% select(-position, -position_group),
  nfl_actualStats_game_defense_weekly,
```

```
by = c(c("season","week","player_id","game_id")))
player_age_stats_kicking <- left_join(</pre>
 player_age_kicking %>% select(-position, -position_group),
 nfl_actualStats_game_kicking_weekly,
 by = c(c("season","week","player_id","game_id")))
player_age_stats_offense$years_of_experience <- as.integer(player_age_stats_offense$years_of_exper
player_age_stats_defense$years_of_experience <- as.integer(player_age_stats_defense$years_of_exper
player_age_stats_kicking$years_of_experience <- as.integer(player_age_stats_kicking$years_of_exper
# Merge player info with seasonal stats
player_seasonal_offense <- left_join(</pre>
 nfl_actualStats_offense_seasonal,
 nfl_players %>% select(-position, -position_group, -season),
 by = c("player_id" = "gsis_id")
)
player_seasonal_defense <- left_join(</pre>
 nfl_actualStats_defense_seasonal,
 nfl_players %>% select(-position, -position_group, -season),
 by = c("player_id" = "gsis_id")
)
player_seasonal_kicking <- left_join(</pre>
 nfl_actualStats_kicking_seasonal,
 nfl_players %>% select(-position, -position_group, -season),
 by = c("player_id" = "gsis_id")
# Calculate age
season_startdate <- nfl_schedules %>%
  group_by(season) %>%
  summarise(startdate = min(gameday, na.rm = TRUE))
player_seasonal_offense <- player_seasonal_offense %>%
 left_join(
    season_startdate,
    by = "season"
 )
player_seasonal_defense <- player_seasonal_defense %>%
  left_join(
    season_startdate,
```

```
by = "season"
 )
player_seasonal_kicking <- player_seasonal_kicking %>%
 left_join(
    season_startdate,
    by = "season"
  )
player_seasonal_offense$age <- interval(</pre>
 start = player_seasonal_offense$birth_date,
 end = player_seasonal_offense$startdate
  time_length(unit = "years")
player_seasonal_defense$age <- interval(</pre>
 start = player_seasonal_defense$birth_date,
 end = player_seasonal_defense$startdate
) %>%
 time_length(unit = "years")
player_seasonal_kicking$age <- interval(</pre>
 start = player_seasonal_kicking$birth_date,
 end = player_seasonal_kicking$startdate
) %>%
time_length(unit = "years")
```

3.20 Plotting

3.20.1 Rushing Yards per Carry By Player Age

```
# Prepare Data
rushing_attempts <- nfl_pbp %>%

dplyr::filter(
   season_type == "REG") %>%

filter(
   rush == 1,
   rush_attempt == 1,
   qb_scramble == 0,
   qb_dropback == 0,
```

Plotting 75

```
!is.na(rushing_yards))
rb_yardsPerCarry <- rushing_attempts %>%
 group_by(rusher_id, season) %>%
 summarise(
   ypc = mean(rushing_yards, na.rm = TRUE),
   rush_attempts = n(),
   .groups = "drop") %>%
 ungroup() %>%
 left_join(
   nfl_players %>% select(-season),
   by = c("rusher_id" = "gsis_id")
 ) %>%
 filter(
   position_group == "RB",
   rush_attempts >= 50) %>%
 left_join(
   season_startdate,
   by = "season"
 )
rb_yardsPerCarry$age <- interval(</pre>
 start = rb_yardsPerCarry$birth_date,
 end = rb_yardsPerCarry$startdate
) %>%
 time_length(unit = "years")
# Create Plot
ggplot2::ggplot(
 data = rb_yardsPerCarry,
 ggplot2::aes(
   x = age,
   y = ypc)) +
 ggplot2::geom_point() +
 ggplot2::geom_smooth() +
 ggplot2::labs(
   x = "Rushing Back Age (years)",
   y = "Rushing Yards per Carry/season",
   title = "2023 NFL Rushing Yards Per Carry per Season by Player Age",
   subtitle = "(minimum 50 rushing attempts)"
 ggplot2::theme_classic()
```

2023 NFL Rushing Yards Per Carry per Season by Player Age (minimum 50 rushing attempts)

Figure 3.2 2023 NFL Rushing Yards Per Carry per Season by Player Age

```
# Subset Data
rb_seasonal <- player_seasonal_offense %>%
 filter(position_group == "RB")
# Create Plot
ggplot2::ggplot(
 data = rb_seasonal,
 ggplot2::aes(
   x = age,
   y = rushing_epa)) +
 ggplot2::geom_point() +
 ggplot2::geom_smooth() +
 ggplot2::labs(
   x = "Rushing Back Age (years)",
   y = "Rushing EPA/season",
   title = "2023 NFL Rushing Expected Points Added (EPA) per Season by Player Age"
 ggplot2::theme_classic()
```

Plotting 77

Figure 3.3 2023 NFL Rushing Expected Points Added (EPA) per Season by Player Age

3.20.2 Defensive and Offensive EPA per Play

Expected points added (EPA) per play by the team with possession.

```
pbp_regularSeason <- nfl_pbp %>%
  dplyr::filter(
    season == 2023,
    season_type == "REG") %>%
  dplyr::filter(!is.na(posteam) & (rush == 1 | pass == 1))

epa_offense <- pbp_regularSeason %>%
  dplyr::group_by(team = posteam) %>%
  dplyr::summarise(off_epa = mean(epa, na.rm = TRUE))

epa_defense <- pbp_regularSeason %>%
  dplyr::group_by(team = defteam) %>%
  dplyr::group_by(team = defteam) %>%
  dplyr::summarise(def_epa = mean(epa, na.rm = TRUE))

epa_combined <- epa_offense %>%
  dplyr::inner_join(epa_defense, by = "team")

ggplot2::ggplot(
```

```
data = epa_combined,
ggplot2::aes(
  x = off_epa
  y = def_epa)) +
nflplotR::geom_mean_lines(
  ggplot2::aes(
    x0 = off_epa,
   y0 = def_epa)) +
nflplotR::geom_nfl_logos(
  ggplot2::aes(
    team_abbr = team),
   width = 0.065,
    alpha = 0.7) +
ggplot2::labs(
  x = "Offense EPA/play",
  y = "Defense EPA/play",
  title = "2023 NFL Offensive and Defensive EPA per Play"
ggplot2::theme_classic() +
ggplot2::scale_y_reverse()
```


Figure 3.4 2023 NFL Offensive and Defensive EPA per Play

Player Evaluation

4.1 Getting Started

4.1.1 Load Packages

library("tidyverse")

4.2 Overview

Evaluating players for fantasy football could be thought of as similar to the process of evaluating companies when picking stocks to buy. You want to evaluate and compare various assets so that you get the assets with the best value.

There are various domains of criteria we can consider when evaluating a football player's fantasy prospects. Potential domains to consider include:

- athletic profile
- historical performance
- health
- age and career stage
- situational factors
- matchups
- cognitive and motivational factors
- fantasy value

The discussion that follows is based on my and others' *impressions* of some of the characteristics that may be valuable to consider when evaluating players. However, the extent to which any factor is actually relevant for predicting

future performance is an empirical question and should be evaluated empirically.

4.3 Athletic Profile

Factors related to a player's athletic profile include factors such as:

- body shape
 - height
 - weight
 - hand size
 - wing span (arm length)
- body function
 - agility
 - strength
 - speed
 - acceleration/explosiveness
 - jumping ability

In terms of body shape, we might consider a player's height, weight, hand size, and wing span (arm length). Height allows players to see over opponents and to reach balls higher in the air. Thus, greater height is particularly valuable for Quarterbacks and Wide Receivers. Heavier players are tougher to budge and to tackle. Greater weight is particularly valuable for Linemen, Fullbacks, and Tight Ends, but it can also be valuable—to a deree—for Quarterbacks, Running Backs, and Wide Receivers. Hand size and wing span is particularly valuable for people catching the ball; thus, a larger hand size and longer wing span are particularly valuable for Wide Receivers and Tight Ends.

In terms of body function, we can consider a player's agility, strength, speed, acceleration/explosiveness, and jumping ability. For Wide Receivers, speed, explosiveness, and jumping ability are particularly valuable. For Running Backs, agility, strength, speed, and explosiveness are particularly valuable.

Many aspects of a player's athletic profile are available from the National Football League (NFL) Combine, which is especially relevant for evaluating rookies. We demonstrate how to import data from the NFL Combine in Section 3.4.6. There are also calculators that integrate information about body shape and information from the NFL Combine to determine a player's relative athletic score (RAS) for their position: https://ras.football/ras-calculator/

4.4 Historical Performance

4.4.1 Overview

"The best predictor of future behavior is past behavior." – Unknown

"Past performance does not guarantee future results." – A common disclaimer about investments.

Factors relating to historical performance to consider could include:

- performance in college
 - draft position
- performance in the NFL
- efficiency
- consistency

It is important to consider a player's past performance. However, the extent to which historical performance may predict future performance may depend on many factors such as (a) the similarity of the prior situation to the current situation, (b) how long ago the prior situation was, and (c) the extent to which the player (or situation) has changed in the interim. For rookies, the player does not have prior seasons of performance in the NFL to draw upon. Thus, when evaluating rookies, it can be helpful to consider their performance in college or in their prior leagues. However, there are large differences between the situation in college and the situation in the NFL, so prior success in college may not portend future success in the NFL. An indicator that intends to be prognostic of future performance, and that accounts for past performance, is a player's draft position—that is, how early (or late) was a player selected in

the NFL Draft. The earlier a player was selected in the NFL Draft, the greater likelihood that the player will perform well.

For players who have played in the NFL, past performance becomes more relevant because, presumably, the prior situation is more similar (than was their situation in college) to their current situation. Nevertheless, lots of things change from game to game and season to season: injuries, coaches, coaching strategies, teammates, etc. So just because a player performed well or poorly in a given game or season does not necessarily mean that they will perform similarly in subsequent games/seasons. Nevertheless, historical performance is one of the best indicators we have.

We demonstrate how to import historical player statistics in Section 3.4.12. We demonstrate how to calculate historical player statistics in Section 3.19.1. We demonstrate how to calculate historical fantasy points in Section 3.19.2.

4.4.2 Efficiency

In addition to how many fantasy points a player scores in terms of historical performance, we also care about efficiency and consistency. How efficient were they given the number of opportunities they had? If they were relatively more efficient, they will likely score more points than many of their peers when given more opportunities. If they were relatively inefficient, their capacity to score fantasy points may be more dependent on touches/opportunities. Efficiency might be operationalized by indicators such as yards per passing attempt, yards per rushing attempt, yards per target, yards per reception, etc.

4.4.3 Consistency

In terms of consistency, how consistent was the player they from game to game and from season to season? For instance, we could examine the standard deviations of players' fantasy points across games in a given season. However, the standard deviation tends to be upwardly biased as the mean increases. So, we can account for the player's mean fantasy points per game by dividing their game-to-game standard deviation of fantasy points (σ) by their mean fantasy points across games (μ) . This is known as the coefficient of variation (CV), which is provided in Equation 4.1.

$$CV = \frac{\sigma}{\mu} \tag{4.1}$$

Players with a lower standard deviation and a lower coefficient of variation (of fantasy points across games) are more consistent. In the example below, Player 2 might be preferable to Player 1 because Player 2 is more consistent; Player 1 is more "boom-or-bust." Despite showing a similar mean of fantasy

set.seed(1)

3 12.23

4 12.40

points across weeks, Player 2 shows a smaller week-to-week standard deviation and coefficient of variation.

```
playerScoresByWeek <- data.frame(</pre>
  player1_scores = rnorm(17, mean = 20, sd = 7),
  player2_scores = rnorm(17, mean = 20, sd = 4),
  player3_scores = rnorm(17, mean = 10, sd = 4),
  player4_scores = rnorm(17, mean = 10, sd = 1)
consistencyData <- data.frame(t(playerScoresByWeek))</pre>
weekNames <- paste("week", 1:17, sep = "")</pre>
names(consistencyData) <- weekNames</pre>
row.names(consistencyData) <- NULL</pre>
consistencyData$mean <- rowMeans(consistencyData[,weekNames])</pre>
consistencyData$sd <- apply(consistencyData, 1, sd)</pre>
consistencyData$cv <- consistencyData$sd / consistencyData$mean</pre>
consistencyData$player <- c(1, 2, 3, 4)</pre>
consistencyData <- consistencyData %>%
  select(player, mean, sd, cv, week1:week17)
round(consistencyData, 2)
 player mean sd cv week1 week2 week3 week4 week5 week6 week7 week8 week9
     1 20.60 6.47 0.31 15.61 21.29 14.15 31.17 22.31 14.26 23.41 25.17 24.03
     2 20.61 3.35 0.16 23.78 23.28 22.38 23.68 23.13 20.30 12.04 22.48 19.78
     3 10.32 2.65 0.26 4.49 8.34 8.42 9.76 14.40 13.05 9.34 8.99 12.79
     4 10.19 1.11 0.11 9.39 10.34 8.87 11.43 11.98 9.63 8.96 10.57 9.86
  week10 week11 week12 week13 week14 week15 week16 week17
```

1 17.86 30.58 22.73 15.65 4.50 27.87 19.69 19.89 2 19.38 14.12 18.09 21.67 25.43 19.59 21.55 19.78

9.26 10.19

9.55 13.52 11.59

8.20 11.47

7.24 7.17 11.46 13.07

9.96 10.69 10.03

4.5 Health

Health-related factors to consider include:

- current injury status
- injury history

It is also important to consider a player's past and current health status. In terms of a player's current health status, it is important to consider whether they are injured or are playing at less than 100% of their typical health. In terms of a player's prior health status, one can consider their injury history, including the frequency and severity of injuries and their prognosis.

We demonstrate how to import injury reports in Section 3.4.13.

4.6 Age and Career Stage

Age and career stage-related factors include:

- age
- experience
- touches

A player's age is relevant because of important age-related changes in a player's speed, ability to recover from injury, etc. A player's experience is relevant because players develop knowledge and skills with greater experience. A player's prior touches/usage is also relevant, because it speaks to how many hits a player may have taken. For players who take more hits, it may be more likely that their bodies "break down" sooner.

4.7 Situational Factors

Situational factors one could consider include:

• team quality

- role on team
- teammates
- opportunity and usage
 - snap count
 - touches/targets
 - red zone usage

Football is a team sport. A player is embedded within a broader team context; it is important to consider the strength of their team context insofar as it may support— or detract from—a player's performance. For instance, for a Quarterback, it is important to consider how strong the pass blocking is from the Offensive Line. Will they have enough time to throw the ball, or will they be constantly under pressure to be sacked? It is also important to consider the strength of the pass catchers—the Wide Receivers and Tight Ends. For a Running Back, it is important to consider how strong the run blocking is from the Offensive Line. For a Wide Receiver, it is important to consider how strong the pass blocking is, and how strong the Quarterback is.

It is also important to consider a player's role on the team. Is the player a starter or a backup? Related to this, it is important to consider the strength of one's teammates. For a given Running Back, if a teammate is better at running the ball, this may take away from how much the player sees the field. For a given Wide Receiver, if a teammate is better at catching the ball, this may take some targets away from the player. However, the team's top defensive back is often matched up against the team's top Wide Receiver. So, if the team's top Wide Receiver is matched up against a particularly strong Defensive Back, the second- and third-best Wide Receivers may more targets than usual.

It is also important to consider a player's opportunity and usage, which are influenced by many factors, including the skill of the player, the skill of their teammates, the role of the player on the team, the coaching style, the strategy of the opposing team, game scripts, etc. In terms of the player's opportunity and usage, how many snaps do they get? How many touches and/or targets do they receive? Being on the field for more snaps and receiving more touches and/or targets means that the player has more opportunities to score fantasy points. Are they targeted in the red zone? Red zone targets are more likely to lead to touchdown scoring opportunities, which are particularly valuable in fantasy football.

4.8 Matchups

Matchup-related factors to consider include:

- strength of schedule
- weekly matchup

Another aspect to consider is how challenging their matchup(s) and strength of schedule is. For a Quarterback, it is valuable to consider how strong the oppenent's passing defense is. For a Running Back, how strong is the running defense? For a Wide Receiver, how strong is the passing defense and the Defensive Back that is likely to be assigned to guard them?

4.9 Cognitive and Motivational Factors

Other factors to consider include cognitive and motivational factors. Some coaches refer to these as the "X Factor" or "the intangibles." However, just as any other construct in psychology, we can devise ways to operationalize them. Insofar as they are observable, they are measurable.

Cognitive and motivational factors one could consider include:

- reaction time
- knowledge and intelligence
- work ethic and mental toughness
- incentives
 - contract performance incentives
 - whether they are in a contract year

A player's knowledge, intelligence, and reaction time can help them gain an upper-hand even when they may not be the fastest or strongest. A player's work ethic and mental toughness may help them be resilient and persevere in the face of challenges. Contact-related incentives may lead a player to put forth greater effort. For instance, a contract may have a performance incentive that provides a player greater compensation if they achieve a particular performance milestone (e.g., receiving yards). Another potential incentive is if a player is in what is called their "contract year" (i.e., the last year of their current contract). If a player is in the last year of their current contract, they have an incentive to perform well so they can get re-signed to a new contract.

Fantasy Value 87

4.10 Fantasy Value

4.10.1 Sources From Which to Evaluate Fantasy Value

There are several sources that one can draw upon to evaluate a player's fantasy value:

- expert or aggregated rankings
- layperson rankings
 - players' Average Draft Position (ADP) in other league snake drafts
 - players' Average Auction Value (AAV) in other league auction drafts
- expert or aggregated projections

4.10.1.1 Expert Fantasy Rankings

Fantasy rankings (by so-called "experts") are provided by many sources. To reduce some of the bias due to a given source, some services aggregate projections across sources, consistent with a "wisdom of the crowd" approach. FantasyPros¹ aggregates fantasy rankings across sources. Fantasy Football Analytics² creates fantasy rankings from projections that are aggregated across sources (see the webapp here: https://apps.fantasyfootballanalytics.net).

4.10.1.2 Layperson Fantasy Rankings: ADP and AAV

Average Draft Position (ADP) and Average Auction Value (AAV), are based on league drafts, mostly composed of everyday people. ADP is based on snake drafts, whereas AAV is based on auction drafts. Thus, ADP and AAV are consistent with a "wisdom of the crowd" approach, and I refer to them as forms of rankings by laypeople. ADP data are provided by FantasyPros³. AAV data are also provided by FantasyPros⁴.

4.10.1.3 Projections

Projections are provided by various sources. Projections (and rankings, for that matter) are a bit of a black box. It is often unclear how they were derived

¹https://www.fantasypros.com/nfl/rankings/consensus-cheatsheets.php

²https://fantasyfootballanalytics.net

³https://www.fantasypros.com/nfl/adp/overall.php

 $^{^{4} \}rm https://www.fantasypros.com/nfl/auction-values/calculator.php$

by a particular source. That is, it is unclear how much of the projection was based on statistical analysis versus conjecture.

To reduce some of the bias due to a given source, some services aggregate projections across sources, consistent with a "wisdom of the crowd" approach. Projections that are aggregated across sources are provided by Fantasy Football Analytics⁵ (see the webapp here: https://apps.fantasyfootballanalytics.net) and by FantasyPros⁶.

4.10.1.4 Benefits of Using Projections Rather than Rankings

It is important to keep in mind that rankings, ADP, and AAV are specific to roster and scoring settings of a particular league. For instance, in point-per-reception (PPR) leagues, players who catch lots of passes (Wide Receivers, Tight Ends, and some Running Backs) are valued more highly. As another example, Quarterbacks are valued more highly in 2-Quarterback leagues. Thus, if using rankings, ADP, or AAV, it is important to find ones from leagues that mirror—as closely as possible—your league settings.

Projected statistics (e.g., projected passing touchdowns) are agnostic to league settings and can thus be used to generate league-specific fantasy projections and rankings. Thus, projected statisitics may be more useful than rankings because they can be used to generate rankings for your particular league settings. For instance, if you know how many touchdowns, yards, and interceptions a Quarterback is a projected to throw (in addition to any other relevant categories for the player, e.g., rushing yards and touchdowns), you can calculate how many fantasy points the Quarterback is expected to gain in your league (or in any league). Thus, you can calculate ranking from projections, but you cannot reverse engineer projections from rankings.

4.10.2 Indices to Evaluate Fantasy Value

Based on the sources above (rankings, ADP, AAV, and projections), we can derive multiple indices to evaluate fantasy value. There are many potential indices that can be worthwhile to consider, including a player's:

- dropoff
- value over replacement player (VORP)
- uncertainty

⁵https://fantasyfootballanalytics.net

 $^{^6}$ https://www.fantasypros.com/nfl/auction-values/calculator.php

Fantasy Value 89

4.10.2.1 Dropoff

A player's *dropoff* is the difference between (a) the player's projected points and (b) the projected points of the next-best player at that position.

4.10.2.2 Value Over Replacement Player

Because players from some positions (e.g., Quarterbacks) tend to score more points than players from other positions (e.g., Wide Receivers), it would be inadvisable to compare players across different positions based on projected points. In order to more fairly compare players across positions, we can consider a player's value over a typical replacement player at that position (shortened to "value over replacement player"). A player's value over a replacement player (VORP) is the difference between (a) a player's projected fantasy points and (b) the fantasy points that you would be expected to get from a typical bench player at that position. Thus, VORP provides an index of how much added value a player provides.

4.10.2.3 Uncertainty

A player's uncertainty is how much variability there is in projections or rankings for a given player across sources. For instance, consider a scenario where three experts provide ratings about two players, Player A and Player B. Player A is projected to score 300, 310, and 290 points by experts 1, 2, and 3, respectively. Player B is projected to score 400, 300, and 200 points by experts 1, 2, and 3, respectively. In this case, both players are (on average) projected to score the same number of points (300).

```
exampleData <- data.frame(
  player = c(rep("A", 3), rep("B", 3)),
  expert = c(1:3, 1:3),
  projectedPoints = c(300, 310, 290, 400, 300, 200)
)

playerA_mean <- mean(exampleData$projectedPoints[which(exampleData$player == "A")])
playerB_mean <- mean(exampleData$projectedPoints[which(exampleData$player == "B")])

playerA_sd <- sd(exampleData$projectedPoints[which(exampleData$player == "A")])
playerB_sd <- sd(exampleData$projectedPoints[which(exampleData$player == "B")])

playerA_cv <- playerA_mean / playerA_sd
playerB_cv <- playerB_mean / playerB_sd</pre>
```

```
playerA_mean
```

[1] 300

```
playerB_mean
```

[1] 300

However, the players differ considerably in their uncertainty (i.e., the source-to-source variability in their projections), as operationalized with the standard deviation and coefficient variation of projected points across sources for a given player.

```
playerA_sd
```

[1] 10

```
playerB_sd
```

[1] 100

```
playerA_cv
```

[1] 30

```
playerB_cv
```

[1] 3

Here is a depiction of a density plot of projected points for a player with a low, medium, and high uncertainty:

```
playerA <- rnorm(1000000, mean = 150, sd = 5)
playerB <- rnorm(1000000, mean = 150, sd = 15)
playerC <- rnorm(1000000, mean = 150, sd = 30)

mydata <- data.frame(playerA, playerB, playerC)

mydata_long <- mydata %>%
    pivot_longer(
```

Fantasy Value 91

```
cols = everything(),
   names_to = "player",
   values_to = "points"
 ) %>%
 mutate(
   name = case_match(
     player,
     "playerA" ~ "Player A",
     "playerB" ~ "Player B",
      "playerC" ~ "Player C",
   )
 )
ggplot2::ggplot(
 data = mydata_long,
 ggplot2::aes(
   x = points,
   fill = name
 )
 ggplot2::geom_density(alpha = .3) +
 ggplot2::labs(
   x = "Players' Projected Points",
   title = "Density Plot of Projected Points for Three Players"
 ggplot2::theme_classic() +
 ggplot2::theme(legend.title = element_blank())
```


Figure 4.1 Density Plot of Projected Points for Three Players

Uncertainty is not necessarily a bad characteristic of a player's projected points. It just means we have less confidence about how the player may be expected to perform. Thus, players with greater uncertainty are risky and tend to have a higher upside (or ceiling) and a lower downside (or floor).

4.11 Putting it Altogether

After performing an evaluation of the relevant domain(s) for a given player, then one must integrate the evaluation information across domains to make a judgment about a player's overall value. When thinking about a player's value, it can be worth thinking of a player's upside and a player's downside. Player that are more consistent may show higher downside but a lower upside. Younger, less experienced players may show a higher upside but a lower downside.

The extent to which you prioritize a higher upside versus a higher downside may depend on many factors. For instance, when drafting players, you may prioritize drafting players with the highest downside (i.e., the safest players), whereas you may draft sleepers (i.e., players with higher upside) for your bench. When choosing which players to start in a given week, if you are predicted to beat a team handily, it may make sense to start the players with

the highest downside. By contrast, if you are predicted to lose to a team by a good margin, it may make sense to start the players with the highest upside.

The Fantasy Draft

5.1 Getting Started

5.1.1 Load Packages

5.2 Types of Fantasy Drafts

There are several types of drafts in fantasy football. The most common types of drafts are snake drafts and auction drafts.

5.2.1 Snake Draft

In a snake draft, the participants (i.e., managers) are assigned a draft order. In the first round, the managers draft in that order. In the second round, the managers draft in reverse order. It continues to "snake" in this way, round after round, so that the person who has the first pick in a given round has the last pick in the next round, and whoever has the last pick in a given round has the first pick in the next round.

5.2.2 Auction Draft

In an auction draft, the managers are assigned a nomination order and there is a salary cap (e.g., \$200). The first manager chooses which player to nominate. Then, the managers bid on that player like in an auction. In order to bid, the manager must raise the price by at least \$1. If two managers want to obtain the same player, they may continue to raise the amount until one manager backs out and is no longer to bid by raising the price. The highest bidder wins (i.e., drafts) that player. Then, the second manager nominates a player, and the managers bid on that player. This process repeats until all teams have drafted their allotment of players.

5.2.3 Comparison

Snake drafts are more common than auction drafts. Snake drafts tend to be quicker than auction drafts. However, auction drafts are more fair than snake drafts. In an auction draft, unlike a snake draft, all players are available to all teams. For instance, in a snake draft, the first 9 players drafted are unavailable to the 10th pick of the first round. So, if you have the 10th pick and want the top-ranked player, this player would not be available to you in the snake draft. However, in the auction draft, every player is available to every manager, so long as the manager is able and willing to bid enough.

5.3 Draft Strategy

5.3.1 Overview

There is no one "right" draft strategy. Sometimes it works best to "zig" when everyone else is "zagging". For instance, if you notice that everyone else is drafting Wide Receivers, this may mean that other managers are over-valuing Wide Receivers, and this could be a nice opportunity to draft a Running Back for good value.

In general, you will first want to generate the rankings you will use to select which players to prioritize. You may generate your rankings based one or more of the following:

- your evaluation of players¹
- expert or aggregated rankings
- layperson rankings
 - players' Average Draft Position (ADP) in other league drafts (for snake drafts)
 - players' Average Auction Value (AAV) in other league drafts (for auction drafts²)
- expert or aggregated projections
- indices derived from rankings and projections

Section 4.10.1 describes where to obtain aggregated rankings, aggregated projections, ADP, and AAV data.

 $^{^{1}}$ player-evaluation.qmd

²sec-draftStrategyAuction

Draft Strategy 97

An important concept in the draft is "dropoff", which is described in Section 4.10.2.1. *Dropoff* at a given position, is the difference—in terms of projected fantasy points—between (a) the best available player remaining at that position and (b) the second-best available player remaining at that position. If there is a bigger dropoff at a given position, there may be greater value in drafting the top player from that position. For instance, consider the following scenario: "Quarterback A" is projected to score 325 points, and "Quarterback B" is projected to score 320 points. "Tight End A" is projected to score 230 points, and "Tight End B" is projected to score 150 points. In this example, there is a much greater dropoff for Tight Ends than there is for Quarterbacks. Thus, even though "Quarterback A" is projected to score more points than "Tight End A", "Tight End A" may be more valuable because there is still a good Quarterback available if someone else drafts "Quarterback A".

Another important concept is a player's value over a typical replacement player at that position (shortened to "value over replacement player"; VORP), which is described in Section 4.10.2.2.

Another important concept is a player's uncertainty, which is described in Section 4.10.2.3.

In both snake and auction draft formats, your goal is to draft the team whose weekly starting lineup scores the most points and thus the collection of players with the greatest VORP. For your starting lineup, it may make senseespecially with your earliest selections—when comparing two players with equivalent VORP, to prioritize players with higher consistency and lower uncertainty, because they may be considered "safer" with a higher floor. However, when drafting players for your bench, it make make more sense to prioritize high-risk, high reward players with greater uncertainty, because they may have a higher ceiling. Players with a higher ceiling have a potential to be "sleepers"—players who are valued low (i.e., with a high ADP or low AAV) and who outperform their valuation. Note that, although players with greater uncertainty are high-risk, high-reward players, selecting this kind of a player for your bench (i.e., in a late round or for a small cost) is a lower risk selection, because you have less to lose with later/lower-cost picks. That is, even though the player is higher risk, selecting a higher risk player for your bench is a lower risk decision.

The Spurs in the National Basketball Association (NBA) were well-reputed for excelling in this draft strategy³ (archived at https://perma.cc/X7NW-WZC6). They frequently used their second-round picks to draft high-risk, high-reward players. Sometimes, the second round pick was a bust, but they have little to lose with a failed second round pick. Other times, their second round picks—including Willie Anderson, DeJuan Blair, Goran Dragic, Luis Scola, and Manu Ginóbili—greatly outperformed expectations. Thanks, in

 $^{^3 \}rm https://harvardsportsanalysis.org/2013/11/beating-the-nba-draft-does-any-team-outperform-expectations/$

part, to this draft strategy, the team showed strong extended success for nearly three decades from 1989 through the late-2010s.

However, the draft strategies to achieve the "optimal lineup" differ between snake versus auction drafts.

5.3.2 Snake Draft

In general, your goal is to draft the team whose weekly starting lineup has the greatest VORP. Consequently, you are often looking to pick the player with the highest VORP at a given selection, while keeping in mind (a) the dropoff of players at other positions and (b) which players may be available at subsequent picks so that you do not sacrifice too much later value with a given selection. For instance, if a particular Quarterback has a slightly higher VORP than a particular Running Back, but the Quarterback is likely to be available at the manager's next pick but the Running Back is likely to be unavailable at their next pick, it might make more sense to draft the Running Back.

5.3.3 Auction Draft

According to an analysis⁴ by the Harvard Sports Analysis Collective (archived at https://perma.cc/P7RX-92UU), the majority of the manager's salary cap should be spent on the starting lineup, and you should spend less on bench players. This is known as the "stars and scrubs" draft strategy. Based on the analysis, the author recommended applying a 10% premium to the top players and a 10% discount to the lower-tiered players. The idea behind the approach is that a player on your bench does not contribute to the team's points and, thus, most players drafted to your bench do not contribute much to the team's points throughout the season. That said, bench players can be important in the case of a starter's injury or under-performance. So, it is recommended to draft starters with lower uncertainty who are safer. In contrast to your starting lineup, you may look to draft players on your bench who have greater uncertainty for their high reward potential in a low-risk selection given the lower price.

 $^{^4}$ https://harvardsportsanalysis.wordpress.com/wp-content/uploads/2012/04/fantasyfootballdraftanalysis1.pdf

6.1 Getting Started

6.1.1 Load Packages

6.2 Sample vs Population

In research, it is important to distinguish between the sample and the target population. The target *population* is who you want your study's findings to generalize to. For instance, if we want our findings to lead to inferences we can draw regarding all current NFL players, then NFL players are our target population. However, despite our best efforts to recruit all NFL players into our study, we may not succeed in doing that. The participants (i.e., people or players) who we successfully recruit to be in our study represent our *sample*.

It is rare for the sample to include all people who are in the target population. It can be costly to recruit large samples, and many potential participants may decline to participate for a variety of reasons (insufficient time, lack of interest in the study, distrust of scientists, etc.). Thus, our goals are (a) to recruit as many people from the population as possible and (b) for the sample to be as representative of the population as possible.

For increasing the representativeness of the sample (with respect to the population), we might conduct a random sample, in which each person in the population (i.e., each NFL player) has equal likelihood of being selected. For instance, we might randomly select 250 players to recruit to the study. True random samples, though strong in aspiration, are difficult and costly to achieve. In reality, many researchers conduct convenience sampling. A convenience sample is recruited because it is convenient (i.e., less costly and time-consuming).

For instance, many studies examine college students—in part, because they are easy to recruit. If our target population is NFL players but we are unable to recruit NFL players into our study, we could easily recruit a large sample

of college students. Although the convenience sample may afford a very large sample, the college student sample may not be representative of the target population (NFL players). Thus, the findings in our study may not generalize to NFL players—that is, what we learn in college students may not apply in the same way among NFL players. For instance, if we learn that consumption of sports drinks (compared to drinking only water) improves running speed among college students, that may not be the case among NFL players.

6.3 Research Designs

There are three broad types of research designs:

- experiment
- correlational/observational study
- case study

6.3.1 Experiment

In an experiment, there are one or more things (i.e., variables) that we manipulate to see how the manipulation influences the process of interest. The variable that we manipulate is the independent variable. By contast, the dependent variable is the variable that we evaluate to determine whether it was influenced by the manipulation (i.e., by the independent variable). Besides the independent and dependent variables, the researcher attempts to hold everything else constant through processes including standardization and random assignment. Standardization involves using the same procedures to assess each participant, so that scores can be fairly compared across participants (and groups). Random assignment involves randomly assigning participants to conditions of the independent variable, so the people in each condition are comparable and do not differ systematically.

For instance, we may be interested to evaluate whether players perform better (e.g., run faster) if they drink a sports drink compared when they drink only water. Our hypothesis might be that players will be expected to perform better when they drink a sports drink (compared to when they drink only water). To this this research question and hypothesis, we might conduct an experiment by randomly assigning some players during practice to receive a sports drink and some players to receive only water. In this case, our independent variable is whether the player receives a sports drink. Our dependent variable might be their 40-yard dash time during practice.

6.3.2 Correlational/Observational Study

In a correlational (aka observational) study, we do not manipulate a variable to see how the manipulation influences another variable. Instead, we examine how two variables, a predictor and an outcome variable, are associated. The hypothesized cause is called the predictor variable. The hypothesized effect is called the outcome variable. In this way, the predictor variable is similar to the independent variable, and the outcome variable is similar to the dependent variable. However, unlike the independent and dependent variables in an experiment, the predictor and outcome variables in a correlational study are not manipulated.

For instance, to use a correlational study to test the possibility that players who drink sports drinks perform better than players who drink only water, we could examine whether the players who drink sports drinks during a game score more fantasy points than players who drink only water during the game. In this case, our predictor variable is whether the players drinks sports drinks during a game. Our outcome variable is the number of fantasy points the player scored.

6.3.2.1 Correlation Does Not Imply Causation

As the maxim goes, "correlation does not imply causation"—just because two variables are associated does not necessarily mean that they are causally related.

Just because X is associated with Y does not mean that X causes Y. Consider that you find an association between variables X and Y.

There are several reasons why you might observe an association between X and Y:

- X causes Y
- Y causes X
- a third variable (i.e., confound), Z, influences both X and Y
- the association between X and Y is spurious

For instance, one possibility is that the association we observed reflects our hypothesis that X causes Y, as depicted in Figure 6.1. That is, consumption of more sports drink may improve players' performance.

However, a second possibility is that the association reflects the opposite direction of effect, where Y actually causes X, as depicted in Figure 6.2. For instance, greater performance may lead players to drink more sports drink (rather than the reverse).

Figure 6.1 Hypothesized Causal Effect Based on an Observed Association Between X and Y, Such That X Causes Y.

Figure 6.2 Reverse (Opposite) Direction of Effect From the Hypothesized Effect, Where Y Causes X.

A third possibility is that the association could reflect the influence of a third variable. If a third variable is a common cause of each and accounts for their association, it is a confound. An observed association between X and Y could reflect a confound—i.e., a cause (Z) that influences both X and Y, which explains why X and Y are correlated even though they are not causally related. A third variable confound that is a common cause of both X and Y is depicted in Figure 6.3. For instance, it may not be that sport drink consumption per se influences player performance; rather, it may be that players who are more intelligent or have more financial resources tend to drink more sports drinks and also tend to perform better. In this case, intelligence or financial resources may be a confound that influences both sports drink consumption and player performance, but sports drink consumptions—though correlated with player performance—does not influence player performance.

Lastly, the association might be spurious. It might just reflect random variation (i.e., chance), and that when tested on an independent sample, what appeared as an association in the original dataset may not hold when testing the association in a new dataset.

6.3.3 Case Study

In a case study, we assess a small sample of individuals (commonly only one person or a few people), often with rich qualitative information. Themes may be coded from the qualitative information, which may help inform inferences about whether some process may have played a role in influencing the outcome

Figure 6.3 Confounded Association Between X and Y due to a Common Cause, Z.

of interest. The inferences are then drawn in a subjective, qualitative way. Testimonials and anecdotes are examples are case studies.

For instance, to use a case study to evalute the possibility that players who drink sports drinks perform better than players who drink only water, we could conduct an in-depth interview with a player. In the interview, we might ask the player how they performed in games with versus without a sports drink and have them discuss whether they believe the sports drink improved their performance (and if so, how). Then, based on the player's responses, we might code the responses to extract themes and to make a qualitative judgement of whether or not the player likely performed better during games in which they had a sports drink.

6.3.4 Other Features of the Research Design

6.3.4.1 Number of Timepoints

In addition to whether the research design is an experiment, correlational/observational study, or a case study, a research design can also have one or multiple timepoints. The differing number of timepoints allow studies to be characterized as one of the following:

- cross-sectional
- longitudinal

6.3.4.1.1 Cross-Sectional

A cross-sectional study is a study with one timepoint.

For instance, in a cross-sectional study evaluating whether having a sports drink improves player performance, we might assess players' drinking behavior and performance during only game 1.

Cross-sectional studies are more common than longitudinal studies because cross-sectional studies are less costly and time-consuming. They can provide a helpful starting point to test findings more rigorously in subsequent longitudinal studies.

6.3.4.1.2 Longitudinal Design

A *longitudinal study* is a study with more than one timepoint. When the same measures are assessed at each of multiple timepoints, we refer to this as a "repeated measures" design.

In a longitudinal study evaluating whether having a sports drink improves player performance, we might assess players' drinking behavior and performance during each game of the season, and possibly across multiple seasons.

Longitudinal studies are less common than cross-sectional studies because longitudinal studies are more costly and time-consuming. Nevertheless, longitudinal studies can allow us test our hypotheses more rigorously, because they can allow us to test whether changes in the predictor/indepdnent variable leads to changes in the outcome/dependent variable. Thus, compared to cross-sectional studies, longitudinal studies can provide greater confidence in causal inferences.

6.3.4.2 Within- or Between-Subject

A research design can also be within-subject, between-subject, or both. A study can involve both within-subject and between-subject comparisons if one predictor/independent variable is within-subject and another predictor/independent variable is between-subject.

6.3.4.2.1 Within-Subject Design

A within-subject design is one in which each participant (i.e., person or player) receives multiple levels of the independent variable (or predictor).

For instance, in an experiment evaluating whether having a sports drink improves player performance, we might assign players to drink the sports drink in the first half of the game and to drink only water in the second half of the game. Or we could assign some of the players to drink sports drink in the first half and water in the second half, and assign the other players to drink water in the first half and sports drink in the second half.

In a correlational study evaluating whether having a sports drink improves player performance, we might evaluate how within-person changes in sports drink consumption are associated with within-person changes in performance. That is, we could evaluate, when a given player has a sports drink (or more sports drinks), do they perform better than when the same individual has only water (or fewer sports drinks)?

Within-subject designs tend to have greater statistical power than betweensubject designs. However, within-subject designs often have *carryover effects*. For instance, consider the study in which we assign players to drink only water in the first and third quarters and to drink sports drink in the second and fourth quarters (an A-B-A-B design). Drinking sports drink in the second quarter could increase how much hydration a player has throughout the rest of the game, which could lead to altered performance in the third and fourth quarters that is not due to what they drink in third and fourth quarters.

6.3.4.2.2 Between-Subject Design

A between-subject design is one in which each participant (i.e., person or player) receives only one level of the independent variable.

For instance, in an experiment evaluating whether having a sports drink improves player performance, we might assign some players to drink the sports drink but the other players to drink only water.

In a correlational study evaluating whether having a sports drink improves player performance, we might evaluate whether people who drink sports drinks tend to perform better than players who drink only water. Or, we could evaluate whether players who drink more sports drinks perform better than players who drink fewer sports drinks (i.e., whether the number of sports drinks consumed during a game is correlated with player performance).

6.4 Research Design Validity

Research design validity involves the accuracy of inferences from a study. There are three types of research design validity:

- internal validity
- · external validity
- · conclusion validity

6.4.1 Internal Validity

Internal validity is the extent to which we can be confident that the associations identified in the study are causal.

6.4.2 External Validity

External validity is the extent to which we can be confident that findings from the study play out similarly in the real world—that is, the findings generalize to the target population.

6.4.3 Tradeoffs Between Internal and External Validity

There is a tradeoff between internal and external validity—a single research design cannot have both high internal and high external validity. Each study and design has weaknesses. Some research designs are better suited for making causal inferences, whereas other designs tend to be better suited for making inferences that generalize to the real world. The research design that is best suited to making causal inferences is an experiment because it is the design in which the researcher has the greatest control over the variables. Thus, experiments tend to have higher internal validity than other research designs. However, by manipulating one variable and holding everything else constant, the research takes place in a very standardized fashion that can become like studying a process in a vacuum. So, even if a process is theoretically causal in a vacuum, it may act differently in the real world when it interacts with other processes.

Correlational designs have greater capacity for external validity than experimental designs because the participants can be observed in their natural environments to evaluate how variables are related in the real world. However, the greater external validity comes at a cost of lower internal validity.

Correlational designs are not well-positioned to make causal inferences. Correlational studies can account for potential confounds using *covariates* or for the reverse direction of effect using longitudinal designs, but the researcher has less control over the variables than in an experiment.

As the internal validity of a study's design increases, its external validity tends to decrease. The greater control we have over variables (and, therefore, have greater confidence about causal inferences), the lower the likelihood that the findings reflect what happens in the real world because it is studying things in a metaphorical vacuum. Because no single research design can have both high internal and external validity, scientific inquiry needs a combination of many different research designs so we can be more confident in our inferences—experimental designs for making causal inferences and correlational designs for making inferences that are more likely to reflect the real world.

Case studies, because they have smaller sample sizes and inferences drawn in a subjective, qualitative way, tend to have lower external validity than both experimental and correlational studies. Case studies also tend to have lower internal validity because they have less control over variables, and thus fail to remove the possibility of illusory correlations, potential confounds, or the reverse direction of effect. Thus, case studies are among the weakest forms of evidence. Nevertheless, case studies can still be useful for generating hypotheses that can then be tested empirically with a larger sample in experimental or correlational studies.

6.4.4 Conclusion Validity

Conclusion validity is the extent to which a study's conclusions are reasonable about the association among variables based on the data. That is, were the correct statistical analyses performed, and are the interpretations of the findings from those analyses correct?

6.5 Mediation vs Moderation

Both types of effects involve (at least) three variables:

- 1. An independent/predictor variable, which will be labeled as x.
- 2. A dependent/outcome variable, which will be labeled as Y.
- 3. The mediator or moderator variable, which will be labeled as M.

A mnemonic to help remember the difference between mediation and moderation is in Figure 6.4.

Mediation = a 'middle man' along the pathway

Moderation = the effect/path is 'modified'

Figure 6.4 Mediation Versus Moderation Mnemonic.

6.5.1 Mediation

6.5.1.1 Overview

Mediation is a causal chain of events, where one variable (a mediator variable) at least partially explains (or accounts for) the association between two other variables (the predictor variable and the outcome variable). In mediation, a predictor (X) leads to a mediator (M), which leads to an outcome (Y). Mediation answers the question of, "Why (or how) does X influence Y? A mediator (M) is a variable that helps explain the assocation between two other variables, and it answers the question of why/how X influences Y. That is, the mediator is the variable that helps explain how/why X is related to Y. In other words, you can think of the mediator as the mechanism that helps explain why X has an impact on Y. The association between X and Y gets smaller when accounting for M. Visually this can be written as in Figure 6.5:

Figure 6.5 Mediation.

where X is causing M, which in turn is causing Y. In other words, X leads to M, and M leads to Y.

For instance, if we determine that consuming sports drinks improves player performance, we may want to know how/why. That is, what is the mechanism that leads consumption of sports drinks to improve player performance? We might hypothesize that consumption of sports drink helps increase a player's hydration, which in turn will improve the player's performance. In this case, increased hydration mediates (i.e., helps explain or account for) the effect of the sports drink consumption on improved player performance.

Question: Why/how does sports drink consumpion lead players to perform better?

Answer: increased hydration

As a picture, we can draw this assocation as in Figure 6.6:

Figure 6.6 Mediation Example.

6.5.1.2 Types of Mediation

6.5.1.2.1 Full Mediation

When one mechanism fully accounts for the effect of the predictor variable on the outcome variable, this is known as **full mediation**, as depicted in Figure 6.7:

6.5.1.2.2 Partial Mediation

Figure 6.7 Full Mediation.

When a single process partially—but does not fully—accounts for the effect of the predictor variable on the outcome variable; this is known as **partial** mediation and is depicted in Figure 6.8:

Figure 6.8 Partial Mediation.

6.5.1.2.3 Multiple Mediators

In addition, there can be multiple mediators/mechanisms that account for the effect of a predictor variable on an outcome variable, as depicted in Figure 6.9:

6.5.2 Moderation (i.e., Interaction)

6.5.2.1 Overview

Moderation (sometimes called an "interaction"), on the other hand, occurs when there is a variable or condition (M; called a "moderator") that changes the assocation between X and Y. That is, the effect of the predictor variable on the outcome variable differs at different levels of the moderator variable. In these cases, X and M work together to have an effect on Y; here X does not have a direct effect on M. Moderation answers the question of, "For whom

Figure 6.9 Multiple Mediators.

does X influence Y?" If X influences Y more strongly for some people or in some circumstances, we would say that there is an interaction such that the effect of X on Y depends on M, as depicted in Figure 6.10:

Figure 6.10 Moderation.

For example, if the effect of consuming sports drinks on player performance differs for Quarterbacks and Wide Receivers, the interaction could be depicted in Figure 6.11 and Figure 6.12:

An interaction can be identified visually by non-parallel lines at different levels of the moderator. In this example, the player's position moderates the effect consuming sports drinks on player performance. In particular, there is a strong positive association between consuming sports drinks and player performance

Figure 6.11 Moderation Example: Path Diagram.

 ${\bf Figure~6.12~{\rm Moderation~Example:~Interaction~Graph.}}$

for Wide Receivers (as evidenced by the upward slope of the best-fit regression line), whereas there is no association between consuming sports drinks and player performance for Quarterbacks (as evidenced by the flat line).

6.6 Levels of Measurement

It is important to know the levels of measurement of your data, because the level(s) of measurement of your data constrain the types of comparisons and analyses that you can meaningfully perform. There are four levels of measurement that any variable can have:

- nominal
- ordinal
- interval
- ratio

Each is described below:

6.6.1 Nominal

A variable is considered nominal if it is composed of qualitative classifications. You cannot meaningfully evaluate whether one number in the variable is larger than another number in the variable because higher numbers do not reflect higher levels of the concept. Examples of nominal variables include:

- sex (e.g., 1 = male; 2 = female)
- race (e.g., 1 = American Indian; 2 = Asian; 3 = Black; 4 = Pacific Islander; 5 = White)
- ethnicity (e.g., 0 = Non-Hispanic/Latino; 1 = Hispanic/Latino)
- zip code
- jersey number

A football player's jersey number is an example of a nominal variable. A jersey number of 7 is not higher on whatever concept of interest compared to a jersey number of 6.

To examine the central tendency of a nominal variable, you can determine the mode, but you cannot calculate a mean or median.

6.6.2 Ordinal

A variable is considered ordinal if the classifications are ordered. However, ordinal variables do not have equally spaced intervals. Examples of ordinal intervals include:

- likert response scales (e.g., 1 = strongly disagree; 2 = disagree; 3 = neutral; 4 = agree; 5 = strongly agree)
- educational attainment (e.g., 1 = no formal education; 2 = elementary school; 3 = middle school; 4 = high school; 5 = college; 6 = graduate degree)
- academic grades on A–F scale (e.g., 1 = A; 2 = B; 3 = C; 4 = D; 5 = F)
- player rank (1 = 1st; 2 = 2nd; 3 = 3rd, etc.)

A football player's fantasy rank is an example of an ordinal variable. A player with a fantasy rank of 1 has a higher rank than a player with a rank of 2, but it is not known how far apart each player is—i.e., the intervals do not all reflect the same distance. For instance, the distance between the top-ranked player and the 2nd-best player might be 30 points, whereas the distance between the 2nd-best player and the 3rd-best player might be 2 points.

To examine the central tendency of ordinal data, the median and mode are most appropriate; however, the mean may be used (unlike for nominal data).

6.6.3 Interval

A variable is considered interval if the classifications are ordered (similar to ordinal data) and have equally spaced intervals (unlike ordinal data). However, interval variables do not have a meaningful zero that reflects absence. Examples of interval data include:

- temperature on the Fahrenheit or Celsius scale
- time of day

For instance, the temperature difference between 80 and 90 degrees Fahrenheit is the same as the temperature difference between 90 and 100 degrees Fahrenheit. However, 0 degrees Fahrenheit does not reflect absence of temperature/heat.

Interval data can be meaningfully added or subtracted. For instance, if a game starts at 4 pm and ends at 7 pm, you know the game lasted 3 hours (7-4=3). However, interval data cannot be meaningfully multiplied or divided. For instance, 100 degrees Fahrenheit is not twice as hot as 50 degrees Fahrenheit.

To examine the central tendency of interval data, you can compute the mean, median, or mode.

Psychometrics 115

6.6.4 Ratio

A variable is considered ratio if the classifications are ordered (similar to ordinal data), have equally spaced intervals (like interval data), and have an absolute zero point that reflects absence of the concept. Examples of ratio data include:

- temperature on the Kelvin scale
- height
- weight
- age
- distance
- speed
- volume
- time elapsed
- income
- years of formal education
- points in football

For instance, points in football has order, equally spaced intervals, and an absolute zero—a team cannot score less than zero points, and zero points reflects absence of points (though it could be argued to be interval data because zero points does not reflect absence of skill.)

Ratio data can be meaningfully added, subtracted, multiplied, or divided. A player who weighs 350 pounds weighs twice as much as someone who weighs 175 pounds.

To examine the central tendency of ratio data, you can compute the mean, median, or mode.

6.7 Psychometrics

Below, I provide brief discussions of various aspects of measurement reliability and validity. For more information on these and other aspects of psychometrics, see Petersen (2024b) and Petersen (2024c).

6.7.1 Measurement Reliability

The *reliability* of a measure's scores deals with the *consistency* of measurement. This book focuses on the following types of reliability:

- test-retest reliability
- inter-rater reliability
- intra-rater reliability
- internal consistency
- parallel-forms reliability

For more information on these and other aspects of reliability, see https://isaactpetersen.github.io/Principles-Psychological-Assessment/reliability.html (Petersen, 2024b, 2024c).

6.7.1.1 Test-Retest Reliability

Test—retest reliability evaluates the consistency of scores across time. For a construct that is expected to be stable across time (e.g., hand size in adults), we would expect our measurements to be consistent across time. The consistency of scores across time can be examined in terms of relative or absolute test—retest reliability. Relative test—retest reliability—i.e., the consistency of individual differences across time—is commonly evaluated using the coefficient of stability—i.e., the Pearson correlation coefficient). Absolute test—retest reliability—i.e., the absolute consistency of people's scores across time—is commonly evaluated using the coefficient of repeatability.

6.7.1.2 Inter-Rater Reliability

Inter-rater reliability evaluates the consistency of scores across raters. For instance, if we have a strong measure for assessing college players' aptitude to succeed in the NFL, the measure should yield a similar score for a given player regardless of which (trained) rater (e.g., coach or talent scout) uses it to rate the player. The consistency of scores across raters is commonly evaluated using the intraclass correlation coefficient (for continuous variables) and Cohen's kappa (κ ; for categorical variables).

6.7.1.3 Intra-Rater Reliability

Intra-rater reliability evaluates the consistency of scores within a given rater. If we have a strong measure for assessing college players' aptitude to succeed in the NFL, the measure should yield a similar score for a given player from the same (trained) rater (e.g., coach or talent scout) each time they rate the same player (assuming the player's aptitude has not changed). The consistency of scores within raters can be evaluated using similar approaches as those evaluating inter-rater reliability.

Psychometrics 117

6.7.1.4 Internal Consistency

Internal consistency evaluates the consistency of scores across items within a measure. If we develop a strong questionnaire measure to assess a college players' aptitude to succeed in the NFL, the scores should be relatively consistent across items. The consistency of scores across items within a measure is commonly evaluated using Cronbach's alpha (α) or McDonald's omega (ω) .

6.7.1.5 Parallel-Forms Reliability

Parallel-forms reliability evaluates the consistency of scores across different but equivalent forms of a measure. If we develop two equivalent versions of the Wonderlic Contemporary Cognitive Ability Test (Form A and Form B) so that players sitting next to each other do not receive the same items, we would expect a player's score on Form A would be similar to their score on Form B. Parallel-forms reliability is is commonly evaluated using the coefficient of equivalence (i.e., the Pearson correlation coefficient).

6.7.2 Measurement Validity

The *validity* of a measure's scores deals with the *accuracy* of measurement. This book focuses on the following types of validity:

- face validity
- content validity
- criterion-related validity
 - concurrent (criterion-related) validity
 - predictive (criterion-related) validity
- construct validity
- convergent validity
- discriminant validity
- incremental validity

For more information on these and other aspects of validity, see https://isaactpetersen.github.io/Principles-Psychological-Assessment/validity.html (Petersen, 2024b, 2024c).

6.7.2.1 Face Validity

Face validity evaluates the extent to which a measure "looks like" (on its face) it assesses the construct of interest. For instance, if a measure is developed to assess aptitude of Wide Receivers for the position, it would be considered to

have face validity if everyday (lay) people believe that it assesses aptitude for being a successful Wide Receiver.

6.7.2.2 Content Validity

Content validity evaluates the extent to which the measure assesses the full breadth of the content, as determined by context experts. For the measure to have content validity, it should not have gaps (missing content facets) or intrusions (facets of other constructs). For instance, a strong measure for assessing a player's aptitude to succeed in the NFL might need to include a player's speed, strength, size, lateral quickness, etc. If the measure is missing their speed, this would be a content gap. If the measure assesses a constructive irrelevant facet (e.g., their attractiveness), this would be a content intrusion.

6.7.2.3 Criterion-Related Validity

Criterion-related validity evaluates the extent to which the measure's scores are related to meaningful variables of interest. Criterion-related validity is commonly evaluated using a Pearson correlation or some form of regression.

There are two types of criterion-related validity:

- concurrent (criterion-related) validity
- predictive (criterion-related) validity

6.7.2.3.1 Concurrent (Criterion-Related) Validity

Concurrent criterion-related validity evaluates the extent to which the measure's scores are related to meaningful variables of interest assessed at the same point in time. That is, concurrent validity could evaluate whether current player statistics (e.g., passing yards) are associated with their fantasy points.

6.7.2.3.2 Predictive (Criterion-Related) Validity

Predictive criterion-related validity evaluates the extent to which the measure's scores are related to meaningful variables of interest that are assessed at a later point in time. For example, predictive validity could evaluate whether scores on the measure we developed to assess a player's aptitude to succeed in the NFL predicts later performance in the NFL.

Psychometrics 119

6.7.2.4 Construct Validity

Construct validity evaluates the extent to which the measure's scores accurately assess the construct of interest. If we develop a measure with intent to assess aptitude for being a successful Running Back, and it appears to more accurately assess aptitude for being a successful Wide Receiver, then our measure has poor construct validity for assessing aptitude for being a successful Running Back. Construct validity subsumes convergent and discriminant validity, in addition to all of the other forms of measurement validity.

6.7.2.5 Convergent Validity

Convergent validity evaluates the extent to which the measure's scores are related to other measures of the same construct. For instance, if we develop a new measure to assess intelligence, its scores should be related to scores from other measures designed to assess intelligence (e.g., Wonderlic Contemporary Cognitive Ability Test).

6.7.2.6 Discriminant Validity

Discriminant validity evaluates the extent to which the measure's scores are unrelated to measures of the different constructs. For instance, if we develop a new measure to assess intelligence, its scores should be less strongly associated with measures of other constructs (e.g., measures of happiness).

6.7.2.7 Incremental Validity

Incremental validity evalutes the extent to which the measure's scores provide an increase in predictive accuracy compared to other information that is easily and cheaply available. That is, in order to be useful, a strong measure should tell us something that we did not already know. For instance, if we develop a strong measure of intelligence, it should result in increased predictive accuracy (for success in the NFL) compared to when just relying on the Wonderlic Contemporary Cognitive Ability Test.

6.7.3 Reliability vs Validity

Reliability and validity are different but related. Reliability refers to the *consistency* of scores, whereas accuracy refers to the *accuracy* of scores. Validity depends on reliability. Reliability is necessary—but insufficient for—validity. That is, consistency is necessary—but insufficient for—accuracy. As depicted in Figure 6.13, a measure can be no more valid than it is reliable. A measure

can be consistent but inaccurate; however, a measure cannot be accurate but inconsistent.

 ${\bf Figure~6.13~Reliability~Versus~Validity}.$

Basic Statistics

7.1 Getting Started

7.1.1 Load Packages

```
library("petersenlab")
library("grid")
library("tidyverse")
```

7.2 Descriptive Statistics

Descriptive statistics are used to describe data. For instance, they may be used to describe the center, spread, or shape of the data. There are various indices of each.

7.2.1 Center

Indices to describe the *center* (central tendency) of a variable's data include:

- mean
- median
- mode

The mean of X (written as: \bar{X}) is calculated as:

$$\bar{X} = \frac{\sum X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n} \tag{7.1}$$

122 Basic Statistics

That is, to compute the mean, sum all of the values and divide by the number of values (n).

The median is determined as the value at the 50th percentile (i.e., the value that is higher than 50% of the values and is lower than the other 50% of values).

The mode is the most common/frequent value.

Below is R code to estimate each:

7.2.2 Spread

Indices to describe the *spread* (variability) of a variable's data include:

- standard deviation
- variance
- range
- minimum and maximum
- interquartile range (IQR)

The (sample) variance of X (written as: s^2) is calculated as:

$$s^2 = \frac{\sum (X_i - \bar{X})^2}{n - 1} \tag{7.2}$$

The (sample) standard deviation of X (written as: s) is calculated as:

$$s = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n - 1}} \tag{7.3}$$

The range is calculated of X is calculated as:

$$range = maximum - minimum (7.4)$$

The interquartile range (IQR) is calculated as:

$$IQR = Q_3 - Q_1 \tag{7.5}$$

where Q_3 is the score at the third quartile (i.e., 75th percentile), and Q_1 is the score at the first quartile (i.e., 25th percentile).

Below is R code to estimate each:

7.2.3 Shape

Indices to describe the *shape* of a variable's data include:

- skewness
- kurtosis

Below is R code to estimate each:

7.2.4 Combination

To estimate multiple indices of center, spread, and shape of the data, you can use the following code:

```
#psych::describe(mydata)
#mydata %>%
  summarise(across(
      everything(),
       .fns = list(
        n = ~ length(na.omit(.)),
        missingness = ~ mean(is.na(.)) * 100,
        M = ~ mean(., na.rm = TRUE),
        SD = \sim sd(., na.rm = TRUE),
        min = ~ min(., na.rm = TRUE),
        max = \sim max(., na.rm = TRUE),
         range = ~ max(., na.rm = TRUE) - min(., na.rm = TRUE),
         IQR = \sim IQR(., na.rm = TRUE),
        median = ~ median(., na.rm = TRUE),
        mode = ~ petersenlab::Mode(., multipleModes = "mean"),
        skewness = ~ psych::skew(., na.rm = TRUE),
         kurtosis = ~ psych::kurtosi(., na.rm = TRUE)),
       .names = "{.col}.{.fn}")) %>%
    pivot_longer(
      cols = everything(),
       names_to = c("variable", "index"),
      names_sep = "\\.") %>%
     pivot_wider(
      names_from = index,
       values_from = value)
```

124 Basic Statistics

7.3 Inferential Statistics

Inferential statistics are used to draw inferences regarding whether there is (a) a difference in level on variable across groups or (b) an association between variables. For instance, inferential statistics may be used to evaluate whether Quarterbacks tend to have longer careers compared to Running Backs. Or, they could be used to evaluate whether number of carries is associated with injury likelihood. To apply inferential statistics, we make use of the null hypothesis (H_0) and the alternative hypothesis (H_1) .

7.3.1 Null Hypothesis Significance Testing

7.3.1.1 Null Hypothesis (H_0)

When testing whether there are differences in level across groups on a variable of interest, the null hypothesis (H_0) is that there is no difference in level across groups. For instance, when testing whether Quarterbacks tend to have longer careers compared to Running Backs, the null hypothesis (H_0) is that Quarterbacks do not systematically differ from Running Backs in the length of their career.

When testing whether there is an association between variables, the null hypothesis (H_0) is that there is no association between the variables. For instance, when testing whether number of carries is associated with injury likelihood, the null hypothesis (H_0) is that there is no association between number of carries and injury likelihood.

7.3.1.2 Alternative Hypothesis (H_1)

The alternative hypothesis (H_1) is the researcher's hypothesis that they want to evaluate. An alternative hypothesis (H_1) might be directional (i.e., one-sided) or non-directional (i.e., two-sided).

Directional hypotheses specify a particular direction, such as which group will have larger scores or which direction (positive or negative) two variables will be associated. Examples of directional hypotheses include:

- Quarterbacks have longer careers compared to Running Backs
- Number of carries is positively associated with injury likelihood

Non-directional hypotheses do not specify a particular direction. For instance, non-directional hypotheses may state that two groups differ but do not specify

which group will have larger scores. Or, non-directional hypotheses may state that two variables are associated but do not state what the sign is of the association—i.e., positive or negative. Examples of non-directional hypotheses include:

- Quarterbacks differ in the length of their careers compared to Running Backs
- Number of carries is associated with injury likelihood

7.3.1.3 Statistical Significance

In science, statistical significance is evaluated with the p-value. The p-value does not represent the probability that you observed the result by chance. The p-value represents a conditional probability—it examines the probability of one event given another event. In particular, the p-value evaluates the likelihood that you would detect a result as at least as extreme as the one observed (in terms of the magnitude of the difference or of the association) given that the null hypothesis (H_0) is true.

This can be expressed in conditional probability notation, Pr(A|B), which is the probability (likelihood) of event A occurring given that event B occurred (or given condition B).

The conditional probability notation for a left-tailed directional test (i.e., Quarterbacks have shorter careers than Running Backs; or number of carries is negatively associated with injury likelihood) is in Equation 7.6.

$$p
-value = Pr(T \le t|H_0)$$
(7.6)

where T is the test statistic of interest (e.g., the distribution of t-, r-, or F values, depending on the test) and t is the observed test statistic (e.g., t-, r-, or F-coefficient, depending on the test).

The conditional probability notation for a right-tailed directional test (i.e., Quarterbacks have longer careers than Running Backs; or number of carries is positively associated with injury likelihood) is in Equation 7.7.

$$p
-value = Pr(T \ge t|H_0)$$
(7.7)

The conditional probability notation for a two-tailed non-directional test (i.e., Quarterbacks differ in the length of their careers compared to Running Backs; or number of carries is associated with injury likelihood) is in Equation 7.8.

$$p\text{-value} = 2 \times \min(Pr(T \le t|H_0), Pr(T \ge t|H_0))$$
 (7.8)

where min(a, b) is the smaller number of a and b.

126 Basic Statistics

If the distribution of the test statistic is symmetric around zero, the *p*-value for the two-tailed non-directional test simplifies to Equation 7.9.

$$p
-value = 2 \times Pr(T \ge |t||H_0)$$
(7.9)

Nevertheless, to be conservative (i.e., to avoid false positive/Type I errors), many researchers use two-tailed p-values regardless whether their hypothesis is one- or two-tailed.

For a test of group differences, the p-value evaluates the likelihood that you would observe a difference as large or larger than the one you observed between the groups if there were no systematic difference between the groups. For instance, when evaluating whether Quarterbacks have longer careers than Running Backs, and you observed a mean difference of 0.03 years, the p-value evaluates the likelihood that you would observe a difference as larger or larger than 0.03 years between the groups if Quarterbacks do not differ from Running Backs in terms of the length of their career.

For a test of whether two variables are associated, the p-value evaluates the likelihood that you would observe an association as strong or stronger than the one you observed between the groups if there were no association between the variables. For instance, when evaluating whether number of carries is positively associated with injury likelihood, and you observed a correlation coefficient of r=.25 between number of carries and injury likelihood, the p-value evaluates the likelihood that you would observe a correlation as strong or stronger than r=.25 between the variables if number of carries is not associated with injury likelihood.

Using what is called null-hypothesis significance testing (NHST), we consider an effect to be statistically significant if the p-value is less than some threshold, called the alpha level. In science, we typically want to be conservative because a false positive (i.e., Type I error) is considered more problematic than a false negative (i.e., Type II error). That is, we would rather say an effect does not exist when it really does than to say an effect does exist when it really does not. Thus, we typically set the alpha level to a low value, commonly .05. Then, we would consider an effect to be statistically significant if the p-value is less than .05. That is, there is a small chance (5%; or 1 in 20 times) that we would observe an effect at least as extreme as the effect observed, if the null hypothesis were true. So, you might expect around 5% of tests where the null hypothesis is true to be statistically significant just by chance. We could lower the rate of Type II (i.e., false negative) errors—i.e., we could detect more effects—if we set the alpha level to a higher value (e.g., .10); however, raising the alpha level would raise the possibility of Type I (false positive) errors.

If the p-value is less than .05, we reject the null hypothesis (H_0) that there was no difference or association. Thus, we conclude that there was a statistically

significant (non-zero) difference or association. If the *p*-value is greater than .05, we fail to reject the null hypothesis; the difference/association was not statistically significant. Thus, we do not have confidence that there was a difference or association. However, we do not accept the null hypothesis; it could be there we did not observe an effect because we did not have adequate power to detect the effect—e.g., if the effect size was small, the data were noisy, and the sample size was small and/or unrepresentative.

There are four general possibilities of decision making outcomes when performing null-hypothesis significance testing:

- 1. We (correctly) reject the null hypothesis when it is in fact false $(1-\beta)$. This is a true positive. For instance, we may correctly determine that Quarterbacks have longer careers than Running Backs.
- 2. We (correctly) fail to reject the null hypothesis when it is in fact true (1α) . This is a true negative. For instance, we may correctly determine that Quarterbacks do not have longer careers than Running Backs.
- 3. We (incorrectly) reject the null hypothesis when it is in fact true (α). This is a false positive. When performing null hypothesis testing, a false positive is known as a Type I error. For instance, we may incorrectly determine that Quarterbacks have longer careers than Running Backs when, in fact, Quarterbacks and Running Backs do not differ in their career length.
- 4. We (incorrectly) fail to reject the null hypothesis when it is in fact false (β) . This is a false negative. When performing null hypothesis testing, a false negative is known as a Type II error. For instance, we may incorrectly determine that Quarterbacks and Running Backs do not differ in their career length when, in fact, Quarterbacks have longer careers than Running Backs.

A two-by-two confusion matrix for null-hypothesis significance testing is in Figure 7.1.

In statistics, *power* is the probability of detecting an effect, if, in fact, the effect exists. Otherwise said, power is the probability of rejecting the null hypothesis, if, in fact, the null hypothesis is false. Power is influenced by several variables:

- the sample size (N): the larger the N, the greater the power
 - for group comparisons, the power depends on the sample size of each group
- the effect size: the larger the effect, the greater the power
 - for group comparisons, larger effect sizes reflect:
 - * larger between-group variance, and

128 Basic Statistics

Decision

		Reject H _o	Fail to reject H _o
Truth	H _o false	Correct True Positive 1 – β ("power")	Type II error False Negative beta (β)
	H _o true	Type I error False Positive alpha (α)	Correct True Negative 1 – α

Figure 7.1 A Two-by-Two Confusion Matrix for Null-Hypothesis Significance Testing.

- * smaller within-group variance (i.e., strong measurement precision, i.e., reliability)
- the alpha level: the researcher specifies the alpha level (though it is typically set at .05); the higher the alpha level, the greater the power; however, the higher we set the alpha level, the higher the likelihood of Type I errors (false positives)
- one- versus two-tailed tests: one-tailed tests have higher power than two-tailed tests
- within-subject versus between-subject comparisons: within-subject designs tend to have greater power than between-subject designs

A plot of statistical power is in Figure 7.2.

```
m1 <- 0  # mu H0
sd1 <- 1.5  # sigma H0
m2 <- 3.5  # mu HA
sd2 <- 1.5  # sigma HA

z_crit <- qnorm(1-(0.05/2), m1, sd1)

# set length of tails
min1 <- m1-sd1*4
max1 <- m1+sd1*4
min2 <- m2-sd2*4
max2 <- m2+sd2*4
# create x sequence
x <- seq(min(min1,min2), max(max1, max2), .01)
# generate normal dist #1
y1 <- dnorm(x, m1, sd1)</pre>
```

```
# put in data frame
df1 \leftarrow data.frame("x" = x, "y" = y1)
# generate normal dist #2
y2 \leftarrow dnorm(x, m2, sd2)
# put in data frame
df2 \leftarrow data.frame("x" = x, "y" = y2)
# Alpha polygon
y.poly <- pmin(y1,y2)</pre>
poly1 <- data.frame(x=x, y=y.poly)</pre>
poly1 <- poly1[poly1$x >= z_crit, ]
poly1<-rbind(poly1, c(z_crit, 0)) # add lower-left corner</pre>
# Beta polygon
poly2 <- df2
poly2 <- poly2[poly2$x <= z_crit,]</pre>
poly2<-rbind(poly2, c(z_crit, 0)) # add lower-left corner</pre>
# power polygon; 1-beta
poly3 <- df2
poly3 <- poly3[poly3$x >= z_crit,]
poly3 <-rbind(poly3, c(z_crit, 0)) # add lower-left corner</pre>
# combine polygons.
poly1$id <- 3 # alpha, give it the highest number to make it the top layer</pre>
poly2$id <- 2 # beta
poly3$id <- 1 # power; 1 - beta</pre>
poly <- rbind(poly1, poly2, poly3)</pre>
poly$id <- factor(poly$id, labels=c("power","beta","alpha"))</pre>
# plot with ggplot2
ggplot(poly, aes(x,y, fill=id, group=id)) +
  geom_polygon(show.legend=F, alpha=I(8/10)) +
  # add line for treatment group
  geom_line(data=df1, aes(x,y, color="H0", group=NULL, fill=NULL), linewidth=1.5, show_guide=F) +
  # add line for treatment group. These lines could be combined into one dataframe.
  geom_line(data=df2, aes(color="HA", group=NULL, fill=NULL),linewidth=1.5, show_guide=F) +
  # add vlines for z_crit
  geom_vline(xintercept = z_crit, linewidth=1, linetype="dashed") +
  # change colors
  scale_color_manual("Group",
                      values= c("HA" = "#981e0b","H0" = "black")) +
  scale_fill_manual("test", values= c("alpha" = "#0d6374","beta" = "#be805e","power"="#7cecee")) +
  # beta arrow
```

130 Basic Statistics

```
annotate("segment", x=0.1, y=0.045, x=0.1, y=0.045, x=0.1, y=0.045, y=0.01, y=0.
annotate("text", label="beta", x=0, y=0.05, parse=T, size=8) +
annotate("segment", x=4, y=0.043, xend=3.4, yend=0.01, arrow = arrow(length = unit(0.3, "cm")),
annotate("text", label="frac(alpha,2)", x=4.2, y=0.05, parse=T, size=8) +
# power arrow
annotate("segment", x=6, y=0.2, xend=4.5, yend=0.15, arrow = arrow(length = unit(0.3, "cm")), li
annotate("text", label=expression(paste(1-beta, " (\"power\")")), x=6.1, y=0.21, parse=T, size=
# H_0 title
annotate("text", label="H[0]", x=m1, y=0.28, parse=T, size=8) +
# H_a title
annotate("text", label="H[1]", x=m2, y=0.28, parse=T, size=8) +
ggtitle("Statistical Power") +
# remove some elements
theme(
    panel.grid.minor = element_blank(),
    panel.grid.major = element_blank(),
     panel.background = element_blank(),
     plot.background = element_rect(fill="white"),
    panel.border = element_blank(),
    axis.line = element_blank(),
    axis.text.x = element_blank(),
    axis.text.y = element_blank(),
    axis.ticks = element_blank(),
    axis.title.x = element_blank(),
     axis.title.y = element_blank(),
    plot.title = element_text(size=22))
```

Statistical Power

Figure 7.2 Statistical Power (Adapted from Kristoffer Magnusson: https://rpsychologist.com/creating-a-typical-textbook-illustration-of-statistical-power-using-either-ggplot-or-base-graphics; archived at https://perma.cc/FG3J-85L6). The dashed line represents the critical value or threshold.

Interactive visualizations by Kristoffer Magnusson on p-values and null-hypothesis significance testing are below:

- https://rpsychologist.com/pvalue/ (archived at https://perma.cc/JP9F-9ZVY)
- https://rpsychologist.com/d3/nhst/ (archived at https://perma.cc/ZU9A-37F3)

Twelve misconceptions about p-values (Goodman, 2008) are in Table 7.1.

Table 7.1 Twelve Misconceptions About *p*-Values from Goodman (2008). Goodman also provides a discussion about why each statement is false.

Numberisconception

- If p = .05, the null hypothesis has only a 5% chance of being true.
- A nonsignificant difference (eg, p > .05) means there is no difference between groups.

Numberisconception

- 3 A statistically significant finding is clinically important.
- 4 Studies with p-values on opposite sides of .05 are conflicting.
- Studies with the same p-value provide the same evidence against the null hypothesis.
- p = .05 means that we have observed data that would occur only 5% of the time under the null hypothesis.
- 7 p = .05 and p < .05 mean the same thing.
- 8 *p*-values are properly written as inequalities (e.g., " $p \le .05$ " when p = .015).
- p = .05 means that if you reject the null hypothesis, the probability of a Type I error is only 5%.
- With a p = .05 threshold for significance, the chance of a Type I error will be 5%.
- 11 You should use a one-sided *p*-value when you don't care about a result in one direction, or a difference in that direction is impossible.
- A scientific conclusion or treatment policy should be based on whether or not the p-value is significant.

Statistical significance involves the *consistency* of an effect/association/difference; it suggests that the association/difference is reliably non-zero. However, just because something is statistically significant does not mean that it is important. In addition to statistical significance, it is also important to consider practical significance.

7.3.2 Practical Significance

Practical significance deals with how large or important the effect/association/difference is. It is based on the magnitude of the effect, called the effect size. Effect size can be quantified in various ways including:

- Cohen's d
- Standardized regression coefficient (beta; β)
- Correlation coefficient (r)
- Coefficient of determination (R^2)
- Eta squared (η^2)
- Partial eta squared (η_p^2)

Effect size thresholds (McGrath & Meyer, 2006) for small, medium, and large effect sizes are in Table 7.2.

Table 7.2 Effect Size Thresholds for Small, Medium, and Large Effect Sizes.

Effect Size Index	Small	Medium	Large
Cohen's d	$\geq .20 $	$\geq .50 $	$\geq .80 $
Standardized regression coefficient (beta; β)	$\geq .10 $	$\geq .24 $	$\geq .37 $
Correlation coefficient (r)	$\geq .10 $	$\geq .24 $	$\geq .37 $
Coefficient of determination (R^2)	$\geq .01$	$\geq .06$	$\geq .14$
Eta squared (η^2)	$\geq .01$	$\geq .06$	$\geq .14$
Partial eta squared (η_p^2)	$\geq .01$	$\geq .06$	$\geq .14$

7.4 Statistical Decision Tree

An example statistical decision tree is depicted in Figure 7.3.

However, many statistical tests can be re-formulated in a regression framework, as in Figure 7.4.

For an online, interactive statistical decision tree to help you decide which statistical analysis to use, see here: https://www.statsflowchart.co.uk

7.5 Statistical Tests

7.5.1 *t*-Test

There are several t-tests:

- \bullet one-sample t-test
- two-samples t-test
 - independent samples t-test
 - paired samples t-test

A one-sample t-test is used to evaluate whether a sample mean differs systematically from a particular value. The null hypothesis is that the sample mean does not differ systematically from the pre-specified value. The alternative hypothesis is that the sample mean differs systematically from the pre-specified

Note: "Predictor" and "independent variable" are used interchangeably, as are "outcome" and "dependent variable", according to differing conventions of respective disciplines. Multilevel modeling goes by many terms, including mixed modeling, mixed-effects modeling, and hierarchical linear modeling.

Figure 7.3 A Statistical Decision Tree For Choosing an Appropriate Statistical Procedure. Adapted from: https://commons.wikimedia.org/wiki/File:InferentialStatisticalDecisionMakingTrees.pdf. The original source is: Corston, R. & Colman, A. M. (2000). A crash course in SPSS for Windows. Wiley-Blackwell. Changes were made to the original, including the addition of several statistical tests.

value. For instance, let's say you want to test out a new draft strategy. You could participate in a mock draft and draft players using the new strategy. Then, you could use a one-sample *t*-test to evaluate whether your new draft strategy yields players with more projected points than the average of players' projected points for other teams.

Two-samples t-tests are used to test for differences between scores of two groups. If the two groups are independent, the independent samples t-test is used. If the two groups involve paired samples, the paired samples t-test is used. The null hypothesis is that the mean of group 1 does not differ systematically from the mean of group 2. The alternative hypothesis is that the mean of group 1 differs systematically from the mean of group 2. For instance, you could use an independent-samples t-test if you want to examine whether Quarterbacks tend to have have longer careers than Running Backs. By contrast, you could use a paired samples t-test if you want to examine whether

* Also includes manifest indicators that are used to identify latent factors.

Note: Multilevel modeling goes by many terms, including mixed modeling, mixed-effects modeling, and hierarchical linear modeling.

Figure 7.4 A Statistical Decision Tree For Choosing an Appropriate Statistical Procedure, Re-Formulated in a Regression Framework. Adapted from: https://commons.wikimedia.org/wiki/File:InferentialStatisticalDecisionMakingTrees.pdf. The original source is: Corston, R. & Colman, A. M. (2000). A crash course in SPSS for Windows. Wiley-Blackwell. Changes were made to the original, including re-formulating the tests in a regression framework.

Quarterbacks tend to score more points in the second year of their contract compared to their rookie year, because the same subjects were assessed twice (i.e., a within-subject design).

7.5.2 Analysis of Variance

Analysis of variance (ANOVA) allows examining whether groups differ systematically as a function of one or more factors. There are multiple variants of ANOVA:

• one-way ANOVA

- factorial ANOVA
- repeated measures ANOVA (RM-ANOVA)
- multivariate ANOVA (MANOVA)

Like two-samples t-tests, ANOVA allows examining whether groups differ as a function of an independent variable. However, unlike a t-test, ANOVA allows examining multiple multiple independent variables and more than two groups. The null hypothesis is that the groups' mean value does not differ systematically. The alternative hypothesis is that the groups' mean value differs systematically.

A one-way ANOVA examines whether two or more groups differ as a function of an independent variable. For instance, you could use a one-way ANOVA to evaluate if you want to evaluate whether multiple positions differ in their length of career. Factorial ANOVA examines whether two or more groups differ as a function of multiple independent variables. For instance, you could use factorial ANOVA to evaluate whether one's length of career depends on one's position and weight. Repeated measures ANOVA examines whether scores differ across repeated measures (e.g., across time) for the same participants. For instance, you could use repeated-measures ANOVA to evaluate whether rookies score more points as the season progresses. Multivariate ANOVA examines whether multiple dependent variables differ as a function of one or more factor(s). For instance, you could use MANOVA to evaluate whether one's contract length and pay differ as a function of one's position.

7.5.3 Correlation

Correlation examines the association between a predictor and outcome variable. The null hypothesis is that the two variables are not associated. The alternative hypothesis is that the two variables are associated.

7.5.4 (Multiple) Regression

Regression, like correlation, examines the association between a predictor and outcome variable. However, unlike correlation, regression allows multiple predictor variables.

Regression with one predictor takes the form of Equation 7.10:

$$y = \beta_0 + \beta_1 x_1 + \epsilon \tag{7.10}$$

where y is the outcome variable, β_0 is the intercept, β_1 is the slope, x_1 is the predictor variable, and ϵ is the error term.

Figure 7.5 A Regression Best-Fit Line.

A regression line is depicted in Figure 7.5.

Regression with multiple predictors—i.e., multiple regression—takes the form of Equation 7.11:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon \tag{7.11}$$

where p is the number of predictor variables.

The null hypothesis is that the predictor variable(s) are not associated with the outcome variable. The alternative hypothesis is that the predictor variable(s) are associated with the outcome variable.

7.5.5 Chi-Square Tests

There are two primary types of chi-square tests:

- chi-square goodness-of-fit test
- chi-square test for association (aka test of independence)

The chi-square goodness-of-fit test evaluates whether a set of categorical data came from a specified distribution. The null hypothesis is that the data came from the specified distribution. The alternative hypothesis is that the data did not come from the specified distribution.

The chi-square test for association evaluates whether two categorical variables are associated. The null hypothesis is that the two variables are not associated. The alternative hypothesis is that the two variables are associated.

7.5.6 Formulating Statistical Tests in Terms of Partitioned Variance

Many statistical tests can be formulated in terms of partitioned variance.

For instance, the t statistic from the independent-samples t-test and the F statistic from ANOVA can be thought of as the ratio of between-group variance to within-group variance, as in Equation 7.12:

$$t \text{ or } F = \frac{\text{between-group variance}}{\text{within-group variance}}$$
 (7.12)

The correlation coefficient can be thought of as the ratio of shared variance (i.e., covariance) to total variance, as in Equation 7.13:

$$r = \frac{\text{shared variance}}{\text{total variance}} \tag{7.13}$$

The coefficient of determination (R^2) is the proportion of variance in the outcome variable that is explained by the predictor variables. The coefficient of determination can be expressed as the ratio of variance explained in the outcome variable to the total variance in the outcome variable, as in Equation 7.14:

$$R^{2} = \frac{\text{variance explained in the outcome variable}}{\text{total variance in the outcome variable}}$$
(7.14)

7.5.7 Critical Value

The critical value is the test value for a given test, above which the effect is considered to be statistically significant. The critical value for statistical significance for each test can be determined based on the degrees of freedom and alpha level. The degrees of freedom (df) refer to the number of values in the calculation of a test statistic that are free to vary.

```
alpha <- .05
N <- 200
nGroup1 <- 150
nGroup2 <- 150
numGroups <- 4
numLevelsFactorA <- 3
numLevelsFactorB <- 4
numTimepoints <- 4
numPredictors <- 5
numCategories <- 6
numRows <- 5
numColumns <- 2</pre>
```

7.5.7.1 One-Sample t-Test

For a one-sample t-test, the degrees of freedom is in Equation 7.15:

$$df = N - 1 \tag{7.15}$$

where N is sample size.

```
df_oneSampleTtest <- N - 1
```

One-tailed test:

```
qt(1 - alpha, df_oneSampleTtest)
```

[1] 1.652547

Two-tailed test:

```
qt(1 - alpha/2, df_oneSampleTtest)
```

[1] 1.971957

7.5.7.2 Independent-Samples t-Test

For an independent-samples t-test, the degrees of freedom is in Equation 7.16:

$$df = n_1 + n_2 - 2 (7.16)$$

where n_1 is the sample size of group 1 and n_2 is the sample size of group 2.

```
df_independentSamplesTtest <- nGroup1 + nGroup2 - 2</pre>
```

One-tailed test:

```
qt(1 - alpha, df_independentSamplesTtest)
```

[1] 1.649983

Two-tailed test:

```
qt(1 - alpha/2, df_independentSamplesTtest)
```

[1] 1.967957

7.5.7.3 Paired-Samples t-Test

For a paired-samples t-test, the degrees of freedom is in Equation 7.17:

$$df = N - 1 \tag{7.17}$$

where N is sample size (i.e., the number of paired observations).

```
df_pairedSamplesTtest <- N - 1</pre>
```

One-tailed test:

```
qt(1 - alpha, df_pairedSamplesTtest)
```

[1] 1.652547

Two-tailed test:

```
qt(1 - alpha/2, df_pairedSamplesTtest)
```

[1] 1.971957

7.5.7.4 One-Way ANOVA

For a one-way ANOVA, the degrees of freedom is in Equation 7.18:

$$df_{\text{between}} = g - 1$$

$$df_{\text{within}} = N - g$$
(7.18)

where N is sample size and g is the number of groups.

```
df_betweenOneWayANOVA <- numGroups - 1
df_withinOneWayANOVA <- N - numGroups</pre>
```

One-tailed test:

```
qf(1 - alpha, df_betweenOneWayANOVA, df_withinOneWayANOVA)
```

[1] 2.650677

Two-tailed test:

```
qf(1 - alpha/2, df_betweenOneWayANOVA, df_withinOneWayANOVA)
```

[1] 3.183378

7.5.7.5 Factorial ANOVA

For a factorial two-way ANOVA, the degrees of freedom is in Equation 7.19:

$$df_{\text{Factor A}} = a - 1$$

$$df_{\text{Factor B}} = b - 1$$

$$df_{\text{Interaction}} = (a - 1)(b - 1)$$

$$df_{\text{error}} = ab(N - 1)$$
(7.19)

where N is sample size, a is the number of levels for factor A, and b is the number of levels for factor B.

```
df_factorA <- numLevelsFactorA - 1
df_factorB <- numLevelsFactorB - 1
df_interaction <- df_factorA * df_factorB
df_error <- numLevelsFactorA * numLevelsFactorB * (N - 1)</pre>
```

Factor A (one-tailed test):

```
qf(1 - alpha, df_factorA, df_error)
```

[1] 2.999494

Factor B (one-tailed test):

```
qf(1 - alpha, df_factorB, df_error)
```

[1] 2.608629

Interaction (one-tailed test):

```
qf(1 - alpha, df_interaction, df_error)
```

[1] 2.102376

Factor A (two-tailed test):

[1] 3.694584

Factor B (two-tailed test):

```
qf(1 - alpha/2, df_factorB, df_error)
```

[1] 3.121587

Interaction (two-tailed test):

```
qf(1 - alpha/2, df_interaction, df_error)
```

[1] 2.413504

7.5.7.6 Repeated Measures ANOVA

For a repeated measures ANOVA, the degrees of freedom is in Equation 7.20:

$$\begin{split} df_1 &= T - 1 \\ df_2 &= (T - 1)(N - 1) \end{split} \tag{7.20}$$

where N is sample size and T is the number of timepoints (or conditions).

```
df1_RMANOVA <- numTimepoints - 1
df2_RMANOVA <- (numTimepoints - 1) * (N - 1)</pre>
```

One-tailed test:

```
qf(1 - alpha, df1_RMANOVA, df2_RMANOVA)
```

[1] 2.619828

Two-tailed test:

```
qf(1 - alpha/2, df1_RMANOVA, df2_RMANOVA)
```

[1] 3.138017

7.5.7.7 Correlation

For a correlation, the degrees of freedom is in Equation 7.21:

$$df = N - 2 \tag{7.21}$$

where N is sample size.

```
df_correlation <- N - 2
```

One-tailed test:

```
qt(1 - alpha, df_correlation)
```

[1] 1.652586

Two-tailed test:

```
qt(1 - alpha/2, df_correlation)
```

[1] 1.972017

7.5.7.8 Multiple Regression

For multiple regression, the degrees of freedom is in Equation 7.22:

$$\begin{split} df_1 &= p \\ df_2 &= N-p-1 \end{split} \tag{7.22}$$

where N is sample size and p is the number of predictors.

```
df1_regression <- numPredictors
df2_regression <- N - numPredictors - 1</pre>
```

One-tailed test:

```
qf(1 - alpha, df1_regression, df2_regression)
```

[1] 2.260647

Two-tailed test:

```
qf(1 - alpha/2, df1_regression, df2_regression)
```

[1] 2.63243

7.5.7.9 Chi-Square Goodness-of-Fit Test

For the chi-square goodness-of-fit test, the degrees of freedom is in Equation 7.23:

$$df = c - 1 \tag{7.23}$$

where c is the number of categories.

```
df_chisquareGOF <- numCategories - 1
```

One-tailed test:

```
qchisq(1 - alpha, df_chisquareGOF)
```

[1] 11.0705

Two-tailed test:

```
qchisq(1 - alpha/2, df_chisquareGOF)
```

[1] 12.8325

7.5.7.10 Chi-Square Test for Association

For the chi-square test for association, the degrees of freedom is in Equation 7.24:

$$df = (r-1) \times (c-1) \tag{7.24}$$

where r is the number of rows in the contingency table and c is the number of columns in the contingency table.

```
df_chisquareAssociation <- (numRows - 1) * (numColumns - 1)</pre>
```

One-tailed test:

```
qchisq(1 - alpha, df_chisquareAssociation)
```

[1] 9.487729

Two-tailed test:

```
qchisq(1 - alpha/2, df_chisquareAssociation)
```

[1] 11.14329

References

- Corston, R., & Colman, A. M. (2000). A crash course in SPSS for windows. Wiley-Blackwell.
- Goodman, S. (2008). A dirty dozen: Twelve p-value misconceptions. Seminars in Hematology, 45(3), 135–140. https://doi.org/10.1053/j.seminhematol. 2008.04.003
- McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: The case of r and d. *Psychological Methods*, 11(4), 386–401. https://doi.org/10.1037/1082-989X.11.4.386
- Motz, B. (2013). Fantasy football: A touchdown for undergraduate statistics education. *Proceedings of the Games, Learning, and Society Conference*, 9.0, 222–228. https://doi.org/10.1184/R1/6686804.v1
- Petersen, I. T. (2024a). petersenlab: A collection of R functions by the Petersen Lab. https://doi.org/10.5281/zenodo.7602890
- Petersen, I. T. (2024c). Principles of psychological assessment: With applied examples in R. University of Iowa Libraries. https://doi.org/10.25820/work.007199
- Petersen, I. T. (2024b). Principles of psychological assessment: With applied examples in R. Chapman and Hall/CRC. https://doi.org/10.1201/9781003357421

Index

GitHub, xi