Stochastic Processes

Kevin Chang

April 20, 2022

1

Suppose $B_1(t)$, $B_2(t)$ are independent Brownian processes with variance parameters σ_1^2 , σ_2^2 respectively. Define: $\forall t$, $X(t) = B_1(t) - B_2(t)$. Derive the mean and autocorrelation functions of X(t).

 $\mathbf{2}$

In Problems 8.1, 8.2, and 8.3, let $\{X(t), t \ge 0\}$ denote a Brownian motion process.

-8.1. Let Y(t) = tX(1/t).

- (a) What is the distribution of Y(t)?
- **(b)** Compute Cov(Y(s), Y(t)).
- (c) Argue that $\{Y(t), t \ge 0\}$ is also Brownian motion.
- (d) Let

$$T = \inf\{t > 0: X(t) = 0\}.$$

Using (c) present an argument that

$$P\{T=0\}=1.$$

3

8.2. Let $W(t) = X(a^2t)/a$ for a > 0. Verify that W(t) is also Brownian motion.

Verify that $Y(t) = t^{\beta} X(t^{1-\alpha\beta})$ is not Brownian motion unless $\beta \in \{0,1\}$. In particular, plot together X(t) and $T \in X(I)$. 4) For each of the following processes, compute EX, and Cov(Xs, Xt).

a) $X_t = \int_{-\infty}^{\infty} B(u) du$ (B(t) is standard Brownian motion.)

- b) $X_t = \int_{a}^{b} u \cdot B(u) du$
- c) $X_t = \int_0^t u^2 \cdot B(u) du$

Note: Since Bu is a Gaussian process, so is each of these X+s (being sum/integrals of Gaussians) Therefore they are fully determined by the means and covariances.