# 电子科技大学

# 计算机专业类课程

# 实验报告

课程名称: 计算机系统结构实验

学 院: 计算机科学与工程

专 业: 计算机科学与技术

学生姓名:

学号:

指导教师:

日期: 2016年5月20日

## 系统结构第三次试验报告

### 1. 不含控制器的 CPU 电路图



### 该 CPU 实现的指令集:

| 指令    | 指令意义   | Op[31:26] | Op2 [25:20]     | [19:15]        | [14:10] | [9:5] | [4:0] |
|-------|--------|-----------|-----------------|----------------|---------|-------|-------|
| add   | 寄存器加法  | 000000    | 000001          | 00000          | rd      | rs    | rt    |
| and   | 寄存器与   | 000001    | 000001          | 00000 rd       |         | rs    | rt    |
| or    | 寄存器或   | 000001    | 000010          | 00000          | rd      | rs    | rt    |
| xor   | 寄存器异或  | 000001    | 000100 00000 rd |                | rs      | rt    |       |
| sra   | 算术右移   | 000010    | 000001          | shift          | rd      | 00000 | rt    |
| srl   | 逻辑右移   | 000010    | 000010          | shift          | rd      | 00000 | rt    |
| sll   | 逻辑左移   | 000010    | 000011          | shift          | rd      | 00000 | rt    |
| addi  | 立即数加法  | 000101    | 16 位 im         | rs             | rt      |       |       |
| andi  | 立即数与   | 001001    | 16 位 im         | 16 位 immediate |         |       |       |
| ori   | 立即数或   | 001010    | 16 位 im         | 16 位 immediate |         |       |       |
| xori  | 立即数异或  | 001100    | 16 位 im         | 16 位 immediate |         |       |       |
| load  | 取整数数据字 | 001101    | 16位 of          | rs             | rt      |       |       |
| store | 存整数数据字 | 001110    | 16 位 of         | rs             | rt      |       |       |
| beq   | 相等则跳转  | 001111    | 16 位 of         | rs             | rt      |       |       |
| bne   | 不相等则跳转 | 010000    | 16 位 of         | rs             | rt      |       |       |
| jump  | 无条件跳转  | 010010    |                 | 26 位 a         | ddress  |       |       |

Op 和 Op2 为操作码;

shift 保存要移位的位数;

rd、rs、rt 分别为寄存器的寄存器号;

immediate 保存立即数的低 16 位;

offset 为偏移量;

address 为转移地址的一部分。

- 1、对于 add/sub/mul/and/or/xor rd,rs,rt 指令 //rd←rs op rt 其中 rs 和 rt 是两个源操作数的寄存器号,rd 是目的寄存器号。
- 2、对于 sll/srl/sra rd,rt,shift 指令 //rd←rt 移动 shift 位
- 3、对于 addi/muli rt,rs,imm 指令 //rt←rs+imm(符号拓展) rt 是目的寄存器号,立即数要做符号拓展到 32 位。
- 4、对于 andi/ori/xori rt,rs,imm 指令 //rt←rs op imm(零拓展) 因为是逻辑指令,所以是零拓展。
- 5、对于 load rt,offset(rs) 指令 //rt← memory[rs+offset] load 是一条取存储器字的指令。寄存器 rs 的内容与符号拓展的 offset 想加, 得到存储器地址。从存储器取来的数据存入 rt 寄存器。
- 6、对于 store rt,offset(rs) 指令 // memory[rs+offset] ← rt store 是一条存字指令。存储器地址的计算方法与 load 相同。
- 7、对于 beq rs,rt,label 指令 //if(rs==rt) PC←label

beq 是一条条件转移指令。当寄存器 rs 内容与 rt 相等时,转移到 label。如果程序计数器 PC 是 beq 的指令地址,则 label=PC+4+offset<<2。offset 左移两位导致 PC 的最低两位永远是 0,这是因为 PC 是字节地址,而一条指令要占 4 个字节。offset 要进行无符号拓展。

- 8、bne 指令去 beq 类似,但是是在寄存器 rs 内容与 rt 不相等时,转移到 label。
- 9、对于 jump target 指令 //PC←target jump 是一条跳转指令。target 是转移的目标地址, 32 位, 由 3 部分组成: 最高 4 位来 自于 PC+4 的高 4 位, 中间 26 位是指令中的 address,最低两位为 0。

### 2. 控制器的设计及实现 控制器示意图如下:



### 控制器的输入端:

imO: 指令存储器的输出, 32 位;

iiO: 流水线寄存器 IF/ID 的输出之一, 32 位, 属于寄存器型变量, 输入端为 imO;

ieO: 流水线寄存器 ID/EXE 的输出之一, 32 位, 属于寄存器型变量, 输入端为 iiO;

emO: 流水线寄存器 EXE/MEM 的输出之一, 32 位, 属于寄存器型变量, 输入端为 ieO;

mwO: 流水线寄存器 MEM/WB 的输出之一, 32 位, 属于寄存器型变量, 输入端为 emO;

memzero: 流水线寄存器 EXE/MEM 的输出之一; 置 1 表示 ALU 的运算结果为 0;

### 控制器的输出端:

a0---a12、RN: 控制单元的 14 个输出信号:

RN:由于寄存器堆在前半个周期写寄存器,此时对应的寄存器号在 emO 中,且不确定是否为 rd 位置还是 rt 位置,此时就需要 Control Unit 处理,若为 add~srl 指令则打回 rd 寄存器代表位置[14:10],若为 addi~load 则打回 rt 代表位置[4:0],其余情况置 0;

- a0:4路5位多选器选择信号,结果应随时钟信号变化(时钟为高电平时为前半周期,有可能需要装入iiO中rt位置或rd位置的寄存器号,此时寄存器可写不可读;时钟为低电平时处于后半周期,有可能需要写回WB级的多选器结果,此时读寄存器);
  - a1: 寄存器写/读信号, 其中写为高电平, 读为低电平;
  - a2: 符号扩展器信号, 置1时作符号扩展, 置0时作无符号扩展;

- a3: 4 路 32 位多选器选择信号, 置 0 时选择 exeQa, 置 1 时选择 forSR, 置 2 时选择 memALUR, 置 3 时选择 a8R;
- a4: 4 路 32 位多选器选择信号,置 0 时选择 exeQb, 置 1 时选择 ExR, 置 2 时选择 memALUR, 置 3 时选择 a8R;
- a5: ALU 控制信号,000 表加法,001 表减法,010 表与运算,011 表或运算,100 表异或运算,101 表算术右移,110 表逻辑右移,111 表逻辑左移(也即算术左移);
- a6: 在执行 beq 指令时, 当 zero 为 0 时 a6 选择 01 处的无符号扩展后的立即数 forBR 进行跳转, 在执行 bne 指令时, 当 zero 不为 0 时 a6 选择 01 处的无符号扩展后的立即数 forBR 进行跳转(条件分支指令跳转后, IF/ID、ID/EXE、EXE/MEM 清零,中间损失了 3 个时钟周期; 另外需要注意,beq、bne 指令执行时,立即数作的是无符号扩展而非符号扩展,原因是本 CPU 在设计 PC 时选择 PC 的[7:2]位进行对指令存储器中存储单元的选择,不需要进行符号扩展),当 iiO 为 jump 指令时,直接转到 PC 选择 forJR,清零 IF/ID、ID/EXE,浪费 2 个时钟周期;
  - a7:数据存储器写信号、置0表示可读不可写、置1表示可写不可读;
- a8: 位于 WB 级的 2 路 32 位多选器选择信号,置 0 时选择 wbALUR,置 1 时选择 wbDMO;
- a9: 位于 EXE 级的 4 路 32 位多选器选择信号,该多选器用于在 EXE 级的 store 指令的 rt 寄存器与 MEM 级的 memALUR(即 MEM 级指令更改了 EXE 级中 store 指令 rt 寄存器的值)或 WB 级的 a8R(即 WB 级指令更改了 EXE 级中 store 指令 rt 寄存器的值)产生冒险时进行数据前推;当 a9 置 0 时,代表无冒险,正常打入 ID 级中的 idQb;当 a9 置 1 时,代表与 MEM 级指令产生了数据冒险,打入 memALUR;当 a9 置 2 时,代表与 WB 级指令产生了数据冒险,打入 a8R;剩余一个引脚置空;
- a10: IF/ID 锁存器控制信号(当 a10 置 0 时锁存器左端的输入信号打入输出端;当 a10 置 1 或 3(本次试验默认置 1,3 未出现)时锁存器保持上个时钟周期的输出;当 a10 置 2 时起到 Reset 作用,锁存器内容清零);
- a11: ID/EXE 锁存器控制信号(当 a11 置 0 时锁存器左端的输入信号打入输出端;当 a11 置 1 或 3 (本次试验默认置 1, 3 未出现)时锁存器保持上个时钟周期的输出;当 a11 置 2 时起到 Reset 作用,锁存器内容清零);
- a12: EXE/MEM 锁存器控制信号(当 a12 置 0 时锁存器左端的输入信号打入输出端;当 a12 置 1 或 3 (本次试验默认置 1, 3 未出现)时锁存器保持上个时钟周期的输出;当 a12 置 2 时起到 Reset 作用. 锁存器内容清零);

由于在实际情况下,CPU 不能控制 Reset 信号,Reset 一般为使用者手动控制,故该工程中每个具有保存输入信号功能的器件都有一个统一的 Reset 信号;而对于 IF/ID 锁存器、ID/EXE 锁存器和 EXE/MEM 锁存器,它们在产生 load 暂停时需要清零,且该信号应由 Control Unit 控制,故这三个锁存器即有 Reset 信号,又在对应的控制单元控制信号置 2 时清零,从而也起到了 Reset 的作用;

由于 MEM/WB 锁存器不需要对数据冒险做出反应(与未发生数据冒险时功能完全相同),故该锁存器无控制信号;

### 控制单元的实现:

module ControlUnit(

input zero,clk,

input [31:0] iiO,ieO,emO,mwO,

```
output [2:0] a5,
             output [1:0] a0,a3,a4,a9,a10,a11,a6,
             output [4:0] RegNumber
        );
             wire a,b,c;
         assign a0 = (clk \& (mwO[31:26] < 14)) ? 2 : //A|B|C
                                        ((\sim clk) \& (iiO[31:26] < 3)) ? 1 : //A
                                                        ((\sim clk) \& (iiO[31:26] > 4) \& (iiO[31:26] < 14)) ? 0 : 3; //B and C
             assign a1 = (clk \& (mwO[31:26] < 14)) ? 1 : //A|B|C
                                        ((\sim clk) \& (iiO[31:26] < 17)); //A|B|C|D|E
             assign a2 = (iiO[28] & ~iiO[27] & iiO[26]) | (iiO[28] & iiO[27] & ~iiO[26]); //addi load|store
             assign a7 = (emO[31:26] == 13) ? 1 : 0; //store
             assign a8 = (mwO[31:26] == 14) ? 1 : 0; //load
             assign a5[2] = (~ieO[30] & ~ieO[29] & ieO[27]) | (~ieO[29] & ~ieO[28] & ieO[26] & ieO[22]) | (ieO[28]
& ~ieO[27] & ~ieO[26]); //sra srl sll|xor|xori
             assign a5[1] = (~ieO[30] & ~ieO[29] & ieO[27] & ieO[21]) | (~ieO[29] & ~ieO[28] & ieO[26] &
~ieO[22]) | (ieO[29] & ~ieO[28]); //srl sll|and or|andi ori
         assign a5[0] = (ieO[28] & ieO[27] & ieO[26]) | (ieO[30] & ~ieO[27]) | (ieO[29] & ~ieO[28] & ieO[27]) |
(~ieO[30] & ~ieO[29] & ~ieO[28] & ieO[27] & ieO[20]) |
                                              (~ieO[29] & ~ieO[28] & ieO[26] & ieO[21]); //beq|bne|ori|sra sll|or
         assign a = \sim (((ieO[31:26] == 1) & (emO[31:26] < 3) & (ieO[9:5] == emO[14:10])) | //AAX and not shift
                                                        ((ieO[31:26] == 1) & (emO[31:26] > 4) & (emO[31:26] < 13) & (ieO[9:5] == 1)
emO[4:0])) | //ABX and not shift
                                                        ((ieO[31:26] > 4) \& (ieO[31:26] < 14) \& (emO[31:26] < 3) \& (ieO[9:5] ==
emO[14:10])) | //BAX|CAX
                                                        ((ieO[31:26] > 4) & (ieO[31:26] < 14) & ((emO[31:26] > 4) & (emO[31:26] < 13))
& (ieO[9:5] == emO[4:0])) | //BBX|CBX
                                                        ((ieO[31:26] == 14) \& (emO[31:26] < 3) \& (ieO[9:5] == emO[14:10])) | //DAX
and ieO(rs)=emO(rd)
                                                        ((ieO[31:26] == 14) \& (emO[31:26] > 4) \& (emO[31:26] < 13) \& (ieO[9:5] == 14) & (emO[31:26] == 14) & (emO[31:26]
emO[4:0])) | //DBX and ieO(rs)=emO(rt)
                                                        (((ieO[31:26] == 15) | (ieO[31:26] == 16)) & (emO[31:26] < 3) & (ieO[9:5] == 16))
emO[14:10])) | //EAX
                                                        (((ieO[31:26] == 15) | (ieO[31:26] == 16)) & ((emO[31:26] > 4) & (emO[31:26] <
13)) & (ieO[9:5] == emO[4:0])); //EBX
             assign b = \sim(((ieO[31:26] < 3) & (emO[31:26] < 3) & (ieO[4:0] == emO[14:10])) | //AAX
                                                          ((ieO[31:26] < 3) & (emO[31:26] > 4) & (emO[31:26] < 13) & (ieO[4:0] == 6)
emO[4:0])) | //ABX
```

output a1,a2,a7,a8,a12,

```
emO[14:10])) | //EAX
                                                                                                                                                      (((ieO[31:26] == 15) | (ieO[31:26] == 16)) & ((emO[31:26] > 4) & (emO[31:26] > 4))
< 13)) & (ieO[4:0] == emO[4:0])));
                                 assign c = \sim(((ieO[31:26] == 14) & (emO[31:26] < 3) & (ieO[4:0] == emO[14:10])) | //DAX and
ieO(rt)=emO(rd)
                                                                                                                                                     ((ieO[31:26] == 14) & ((emO[31:26] > 4) & (emO[31:26] < 13)) & (ieO[4:0] == 14) & ((emO[31:26] == 14) & ((emO[31:26] == 14)) & ((emO[31
emO[4:0]))); //DBX and ieO(rt)=emO(rt)
                                 assign a6 = (iiO[30] & iiO[27]) ? 3 : //jump
                                                                                                                                                (((ieO[31:26] < 3) \& (emO[31:26] == 13) \& ((ieO[9:5] == emO[4:0]) | (ieO[4:0])
== emO[4:0]))) | //ACX
                                                                                                                                                (((ieO[31:26] > 4) \& (ieO[31:26] < 14)) \& (emO[31:26] == 13) \& (ieO[9:5] == 14)) \& (ieO[9:5] == 14)
emO[4:0])) | //BCX|CCX
                                                                                                                                                ((ieO[31:26] == 14) & (emO[31:26] == 13) & ((ieO[9:5] == emO[4:0]) | (ieO[4:0]) |
== emO[4:0]))) | //DCX
                                                                                                                                               (((ieO[31:26] == 15) \mid (ieO[31:26] == 16)) \ \& \ (emO[31:26] == 13) \ \& \ ((ieO[9:5] == 16)) \ \& \ ((ieO[31:26] == 16)) \ \& \ (
emO[4:0]) | (ieO[4:0] == emO[4:0]))) | //ECX
                                                                                                                                           (iiO[31:26] == 15) | (iiO[31:26] == 16) | (ieO[31:26] == 15) | (ieO[31:26] == 16)) ?
2://possible to branch
                                                                                                                                                ((zero & (emO[31:26] == 15)) | (~zero & (emO[31:26] == 16))) ? 1 : 2'b00;
//enable to branch
                                 assign a3 = a & (((ieO[31:26] < 3) & (mwO[31:26] < 3) & (ieO[9:5] == mwO[14:10])) | //AXA and not
shift
                                                                                                        ((ieO[31:26] < 3) & ((mwO[31:26] > 4) & (mwO[31:26] < 14)) & (ieO[9:5] == mwO[4:0]))
//(AXB or AXC) and not shift
                                                                                                                                                ((ieO[31:26] > 4) \& (ieO[31:26] < 14) \& (mwO[31:26] < 3) \& (ieO[9:5] == 6)
mwO[14:10])) | //BXA or CXA
                                                                                                                                             ((ieO[31:26] > 4) \& (ieO[31:26] < 14) \& ((mwO[31:26] > 4) \& (mwO[31:26] < 14))
& (ieO[9:5] == mwO[4:0])) | //BXB|BXC|CXB|CXC
                                                                                                                                                ((ieO[31:26] == 14) \& (mwO[31:26] < 3) \& (ieO[9:5] == mwO[14:10])) | //DXA
and ieO(rs)=mwO(rd)
                                                                                                                                                ((ieO[31:26] == 14) & ((mwO[31:26] > 4) & (mwO[31:26] < 14)) & (ieO[9:5] == 14) & ((mwO[31:26] == 14) & ((mwO[31:26] == 14)) & ((mwO[31
mwO[4:0])) | //(DXB|DXC) and ieO(rs)=mwO(rt)
                                                                                                                                                (((ieO[31:26] == 15) | (ieO[31:26] == 16)) & (mwO[31:26] < 3) & (ieO[9:5] == 16))
mwO[14:10])) | //EXA
                                                                                                                                                (((ieO[31:26] == 15) | (ieO[31:26] == 16)) & (mwO[31:26] > 4) & (mwO[31:26] < 6)
14) & (ieO[9:5] == mwO[4:0]))) ? 3 : //EXB|EXC
```

(((ieO[31:26] == 1) & (emO[31:26] < 3) & (ieO[9:5] == emO[14:10])) | //AAX |

(((ieO[31:26] == 15) | (ieO[31:26] == 16)) & (emO[31:26] < 3) & (ieO[4:0] == 16))

```
and not shift

((ieO[31:26] == 1) & (emO[31:26] > 4) & (emO[31:26] < 13) & (ieO[9:5] == emO[4:0])) | //ABX and not shift

((ieO[31:26] > 4) & (ieO[31:26] < 14) & (emO[31:26] < 3) & (ieO[9:5] == emO[14:10])) | //BAX|CAX

((ieO[31:26] > 4) & (ieO[31:26] < 14) & ((emO[31:26] > 4) & (emO[31:26] < 13)) & (ieO[9:5] == emO[4:0])) | //BBX|CBX

((ieO[31:26] == 14) & (emO[31:26] < 3) & (ieO[9:5] == emO[14:10])) | //DAX and ieO(rs)=emO(rd)

((ieO[31:26] == 14) & (emO[31:26] > 4) & (emO[31:26] < 13) & (ieO[9:5] == emO[4:0])) | //DBX and ieO(rs)=emO(rt)

(((ieO[31:26] == 15) | (ieO[31:26] == 16)) & (emO[31:26] < 3) & (ieO[9:5] == emO[14:10])) | //EAX

(((ieO[31:26] == 15) | (ieO[31:26] == 16)) & ((emO[31:26] > 4) & (emO[31:26] < 3) & (emO[31:26] == 16)) | //EAX
```

(ieO[31:26] == 2) ? 1 : 0; //shift

| //AXB|AXC

 $(((ieO[31:26] == 15) \mid (ieO[31:26] == 16)) \ \& \ (mwO[31:26] < 3) \ \& \ (ieO[4:0] == 16)) \ \& \ (mwO[31:26] == 16)) \ \& \ (mwO[31:26] == 16)$ 

mwO[14:10])) | //EXA

13)) & (ieO[9:5] == emO[4:0]))) ? 2 : //EBX

 $(((ieO[31:26] == 15) \mid (ieO[31:26] == 16)) \& ((mwO[31:26] > 4) \& (mwO[31:26] < 14)) \& (ieO[4:0] == mwO[4:0]))) ? 3 : //EXB|EXC$ 

emO[4:0])) | //ABX

 $(((ieO[31:26] == 15) \mid (ieO[31:26] == 16)) \ \& \ (emO[31:26] < 3) \ \& \ (ieO[4:0] == 16)) \ \& \ (emO[31:26] < 3) \ \& \ (emO[4:0] == 16)) \ \& \ (emO[4:0] == 16)$ 

emO[14:10])) | //EAX

((ieO[31:26] > 2) & (ieO[31:26] < 15)) ? 1 : 0; //instructions which include an

imme

 $assign\ a9 = c\ \&\ (((ieO[31:26] == 14)\ \&\ (mwO[31:26] < 3)\ \&\ (ieO[4:0] == mwO[14:10]))\ |\ //DXA\ and\ ieO(rt) = mwO(rd)$ 

((ieO[31:26] == 14) & ((mwO[31:26] > 4) & (mwO[31:26] < 14)) & (ieO[4:0] == mwO[4:0]))) ? 2 : //(DXB|DXC) and ieO(rt)= mwO(rt)

 $(((ieO[31:26] == 14) \& (emO[31:26] < 3) \& (ieO[4:0] == emO[14:10])) \ | \ //DAX = ((ieO[4:0] == 14) \& (emO[31:26] == 14) \& (emO[31:26$ 

and ieO(rt)=emO(rd)

```
emO[4:0]))) ? 1 : 0; //DBX and ieO(rt)=emO(rt)
       assign a10 = ((zero & (emO[31:26] == 15)) | (~zero & (emO[31:26] == 16)) | //enable to branch
                      (iiO[30] & iiO[27])) ? 2 : //jump
                                (((ieO[31:26] < 3) \& (emO[31:26] == 13) \& ((ieO[9:5] == emO[4:0])))
(ieO[4:0] == emO[4:0]))) | //ACX
                                (((ieO[31:26] > 4) \& (ieO[31:26] < 14)) \& (emO[31:26] == 13) \& (ieO[9:5])
== emO[4:0])) | //BCX|CCX
                                ((ieO[31:26] == 14) & (emO[31:26] == 13) & ((ieO[9:5] == emO[4:0]) |
(ieO[4:0] == emO[4:0]))) | //DCX
                               (((ieO[31:26] == 15) | (ieO[31:26] == 16)) & (emO[31:26] == 13) & ((ieO[9:5])
== emO[4:0]) | (ieO[4:0] == emO[4:0])))) ? 1 : 0; //ECX
       assign a11 = ((zero & (emO[31:26] == 15)) | (~zero & (emO[31:26] == 16)) | (iiO[30] & iiO[27])) ? 2 :
//enable to branch|jump
                                (((ieO[31:26] < 3) \& (emO[31:26] == 13) \& ((ieO[9:5] == emO[4:0]) |
(ieO[4:0] == emO[4:0]))) | //ACX
                                (((ieO[31:26] > 4) \& (ieO[31:26] < 14)) \& (emO[31:26] == 13) \& (ieO[9:5])
== emO[4:0])) | //BCX|CCX
                                ((ieO[31:26] == 14) & (emO[31:26] == 13) & ((ieO[9:5] == emO[4:0]) |
(ieO[4:0] == emO[4:0]))) | //DCX
                                (((ieO[31:26] == 15) | (ieO[31:26] == 16)) & (emO[31:26] == 13) & ((ieO[9:5]))
== emO[4:0]) | (ieO[4:0] == emO[4:0])))) ? 1 : 0;//ECX
       assign a12 = ((zero & (emO[31:26] == 15)) | (~zero & (emO[31:26] == 16))) ? 1 : 0;//enable to
branch
       assign RegNumber = (mwO[31:26] < 3) ? mwO[14:10] : //A
                             (mwO[31:26] < 14)? mwO[4:0] : 0; //B|C
```

((ieO[31:26] == 14) & ((emO[31:26] > 4) & (emO[31:26] < 13)) & (ieO[4:0] == 14) & ((emO[31:26] == 14) & ((emO[31:26] == 14)) & ((emO[31

endmodule

3.CPU 其他部件代码展示 2 路 32 位多选器、4 路 32 位多选器、4 路 5 位多选器:

```
module Mux2 32(
                                 input [31:0] a0,a1,
                                 input s,
                                 output [31:0] y
                                 );
                                 assign y = s ? a1 : a0;
                            endmodule
            module Mux4_32(
            module Mux4_5(
                                                input [31:0] a0,a1,a2,a3,
               input [4:0] a0,a1,a2,a3,
                                                  input [1:0] s,
               input [1:0] s,
                                                 output [31:0] y
               output [4:0] y
                                                );
function [31:0] select;
               function [4:0] select;
  input [4:0] a0,a1,a2,a3;
  input [1:0] s;
                                                  input [31:0] a0,a1,a2,a3;
input [1:0] s;
                                                    case(s)
                  case(s)
                                                    2'b00:select=a0;
2'b01:select=a1;
                  2'b00:select=a0;
                  2'b01:select=a1;
                                                    2'b10:select=a2;
2'b11:select=a3;
                  2'b10:select=a2:
                  2'b11:select=a3;
                  endcase
                                                    endcase
                endfunction
                                                  endfunction
                assign y=select(a0,a1,a2,a3,s);
                                                  assign y=select(a0,a1,a2,a3,s);
            endmodule
                                              endmodule
                   module PC(
                      input [31:0] nPC,
                       input clk, Reset,
                       output reg [31:0] PC
                       always@(posedge clk or negedge Reset) begin
                         if(Reset==0) PC<=0;
                          else
                                    PC<=nPC;
                        end
                   endmodule
IF/ID 锁存器:
            module ifid(
                input [31:0] iiI, PCp4,
                input [1:0] a10,
                input clk, Reset,
                output reg [31:0] iiO,forBJ
                always@(posedge clk or negedge Reset)
                 if((a10 == 2) | ~Reset) begin iiO<=0; forBJ<=0; end
                 else if (a10 == 0) begin iiO <= iiI; forBJ <= PCp4; end
```

寄存器堆:

endmodule

PC:

```
module Reg(
                      input [4:0] Rna, Rnb, Wn, //读端口寄存器号a和b以及写端口寄存器号
                     input a1,clk,Reset,
                     input [31:0] Wd,
output [31:0] Qa,Qb
               );
                reg [31:0] Register[1:31]; //定义31个32位的寄存器
                //Read data
                assign Qa = (Rna == 0) ? 0 : Register[Rna];
assign Qb = (Rnb == 0) ? 0 : Register[Rnb];
                //Write data
               integer i;
                always @ (negedge clk or negedge Reset)
                if (Reset == 0)
                   begin
                    for(i = 1 ; i \le 31 ; i = i + 1)
                     Register[i] <= 0 ;</pre>
                else
                    begin
                     Register[Wn] <= Wd;
            endmodule
shift 辅助部件(用于将 shift 信号无条件扩展至 32 位,以适应 4 路 32 位多选器):
                         module forS(
                             input [4:0] shift,
                             output [31:0] forSR
                              assign forSR={27'b0,shift};
                         endmodule
符号扩展器:
module Extender (
    input [15:0] imme,
    input a2,
    output [31:0] ximme
    assign ximme = a2 ? {(imme[15] ? 16'hffff : 16'h0) , imme} : {16'h0 , imme};
endmodule
jump 辅助部件 (用于将 jump 指令的低 26 位与 PC 高四位组合成 target):
                        module forJ(
                            input [25:0] j,
                            input [31:0] npc,
                            output [31:0] r
                            assign r={npc[31:28] , j , 2'b00};
                        endmodule
```

ID/EXE 锁存器:

```
module idexe(
         input [31:0] ieI,Qa,Qb,exR,forSR,PC,
         input [1:0] a11,
         input clk, Reset,
         output reg [31:0] ieO,ta30,ta40,ta41,ta31,tfB
         );
         always @(posedge clk or negedge Reset)
         if((a11 == 2) | ~Reset)
         begin
         ieO <= 0; ta30 <= 0; ta40 <= 0; ta41 <= 0; ta31 <= 0; tfB <= 0;
         end
         else if(a11 == 0)
         begin
         ieO <= ieI; ta30 <= Qa; ta40 <= Qb; ta41 <= exR; ta31 <= forSR; tfB <= PC;
     endmodule
ALU:
      module ALU(
         input [31:0] a,b,
         input [2:0] a5,
         output zero,
         output [31:0] r
         );
         wire [4:0] c;
         assign c=a[4:0];
         assign r= (a5 == 3'b000) ? a+b :
                     (a5 == 3'b001) ? a-b :
                     (a5 == 3'b010) ? a&b :
                     (a5 == 3'b011) ? a|b :
                     (a5 == 3'b100) ? a^b :
                     (a5 == 3'b101) ? (b[31] ? -1-((-b)/(2**(c+1))) : b/(2**(c+1))) :
                     (a5 == 3'b110) ? (b/(2**(c+1))) :
                     (a5 == 3'b111) ? b*(2**(c+1)) :
                    32'hxxxxxxxx;
           assign zero = ~r;
      endmodule
branch 辅助部件 (用于产生 label; label=PC+4+offset<<2):
                           module forBranch(
                               input [31:0] branch,
                               input [31:0] npc,
                               output [31:0] forbranchR
                               assign forbranchR = npc + 4*branch;
                           endmodule
EXE/MEM 锁存器:
                 module exemem(
                    input [31:0] emI,ALUR,forBR,exea9R,
input zero,clk,
                    input a12, Reset
                    output reg [31:0] emO,tDM,ta6,mema9R,
output reg tCU
                    always @(posedge clk or negedge Reset)
if ((a12 == 1) | ~Reset)
                    begin
                    emO <= 0; tDM <= 0; ta6 <= 0; tCU <= 0; mema9R <= 0;
                    else
                    emO <= emI; tDM <= ALUR; ta6 <= forBR; tCU <= zero; mema9R <= exea9R;
```

### 数据存储器:

```
module IP_RAM(
  input [31:0] ALUR, DataI,
  input clk, a7,
  output [31:0] DataO
);
  reg [31:0] ram[0:31];
  assign DataO=ram[ALUR[6:2]];
  always@(posedge clk)begin
    if(a7)ram[ALUR]=DataI;
  end

integer i;
  initial begin
  for(i=0; i<32; i=i+1)
    ram[i]=0;
  end

endmodule</pre>
```

### MEM/WB 级锁存器:

```
module memwb(
  input [31:0] mwI,fem,fdm,
  input clk,Reset,
  output reg[31:0] mwO,ta81,ta82
);
  always @(posedge clk or negedge Reset)
  if (Reset == 0)
    begin
    mwO <= 0; ta81 <= 0; ta82 <= 0;
  end

else
  begin
  mwO <= mwI; ta81 <= fem; ta82 <= fdm;
  end</pre>
endmodule
```

### 4. CPU 仿真执行(1)

```
assign rom[6'h0] = 32'h15b14c22; //addi rt(2) rs(1)(6c53) 4
assign rom[6'h1] = 32'h17d72483; //addi rt(3) rs(4)(f5c9) 8
assign rom[6'h2] = 32'h04101443; //and rd(5) rs(2) rt(3) 12
assign rom[6'h3] = 32'h04201843; //or rd(6) rs(2) rt(3) 16
assign rom[6'h4] = 32'h04401c43; //xor rd(7) rs(2) rt(3) 20
assign rom[6'h5] = 32'h0812a003; //sra(5) rd(8) rt(3) 24
assign rom[6'h6] = 32'h08242405; //srl(8) rd(9) rt(5) 28
assign rom[6'h7] = 32'h08322807; //sll(4) rd(10) rt(7) 32
assign rom[6'h8] = 32'h26960843; //andi rt(11) rs(2)(a582) 36
assign rom[6'h9] = 32'h00103043; //add rd(12) rs(2) rt(3) 40
assign rom[6'ha] = 32'h2a90c06d; //ori rt(13) rs(3)(a430) 44
assign rom[6'hb] = 32'h3066644e; //xori rt(14) rs(2)(1999) 48
assign rom[6'hc] = 32'h0010404f; //add rd(16) rs(2) rt(15) 52
assign rom[6'hd] = 32'h3f589050; //beq rs(2) rt(16)(d624) (jump to 32h)358c8
assign rom[6'h32] = 32'h380000c7; //store rt(7) 0000(rs(6)) 358cc
```

assign rom[6'h33] = 32'h428c2843; //bne rs(2) rt(3)(a30a) (jump to 3eh)5e4f8 assign rom[6'h3e] = 32'h340000d1; //load rt(17) 0000(rs(6)) 5e4fc assign rom[6'h3f] = 32'h49159d16; //jump 1159d16 (jump to 16h) 4567458 assign rom[6'h16] = 32'h00104843; //add rd(18) rs(2) rt(3) 456745c

### 结果截图:





| 11 400   | 11 500   |    | 11 000   | 11 700   | 11 000   | 11 000   | 10.000   | 10.100   | 10,000     |
|----------|----------|----|----------|----------|----------|----------|----------|----------|------------|
|          | 1,500 ns | ш, |          | 1,700 ns | 1,000 ns |          | 2,000 ns | 2,100 ns |            |
| 0000a432 | 000075cs |    | 00006c53 | <u> </u> |          | 00000000 |          |          | 00004851   |
| 0000     | 0038     |    | 000358c8 | 000358cc | 00035840 | 0003     | 58d0     | 0005e4f8 | 0005e4fc   |
| (        | 2        |    | 1        | (        |          | X        | 2        | 1        | ¥•         |
| 0        | 1        |    | <b>(</b> |          |          |          | 1        | X        | 0          |
| 2 / 3    | 2        | 1  | 2 (1     | 3 / 1    | 2 3      | 2 / 3    | 2 / 1    | 3 / 1    | 3 (1       |
|          |          | 0  |          |          | 3        | X        |          | 0        | X          |
| 0        | 2        |    | 0        |          |          | 1        | (        | 0        | 2          |
| 0        |          |    | 2        |          |          | •        |          | 2        | <b>x</b> • |
| 00000    | c53      |    |          | 00000000 |          | fffffddb | 00006c53 | X        | 00000000   |
| 00006c53 |          |    | 00000000 |          | fffffddb | 00006c53 | <b>X</b> | 00000000 | X          |
| 00000000 | 00006c53 |    |          | 0000     | 0000     |          | 00002402 | X        | 00000000   |
| 0000     | 0038     |    | 000358c8 | 000358cc | 000358d0 | 0003     | 58d0     | 0005e4f8 | 0005e4fc   |
|          | 00000000 |    |          | 380000e7 | 428c2843 | k        | 00000000 |          | 340000d1   |
| 3f589050 | k        |    | 00000000 |          | 380000e7 | 428c2843 | k        | 00000000 |            |
| 0010404f | 3f589050 |    | (        | 00000000 |          | 380000c7 | 428c2843 | <u> </u> | 00000000   |
| 3066644e | 0010404f |    | 3f589050 |          | 00000000 |          | 380000c7 | 428c2843 | 0000000    |
| 2a90c06d | 3066644€ |    | 0010404f | 3f589050 | k        | 00000000 |          | 380000c7 | 428c2843   |
| 00006c53 |          |    | 0000     | 0000     |          | fffffddb | 00004851 | *        | 00000000   |
| 0000a432 | 000075cs |    | 00006c53 |          |          | 00000000 |          |          | 00004851   |
|          |          |    |          |          |          |          |          |          |            |
|          |          |    |          |          |          |          |          |          |            |
|          |          |    |          |          |          |          |          |          |            |
|          |          |    |          |          |          |          |          |          |            |
|          |          |    |          |          |          |          |          |          |            |
|          |          |    |          |          |          |          |          |          |            |
|          |          |    |          |          |          |          |          |          |            |
|          |          |    |          |          |          |          |          |          |            |
|          |          |    |          |          |          |          |          |          |            |
|          |          |    |          |          |          |          |          |          |            |

|          | 2,300 ns |          | 2,500 ns |      |          | 2,700 ns |          |          | 3,000 ns |
|----------|----------|----------|----------|------|----------|----------|----------|----------|----------|
| 00004851 | X        | 00000000 |          |      | fffffddb | 0000     |          | 00009055 | 00000000 |
| 0005e4fc | 0005e500 | 04567458 | 0456745c |      | 04567460 | 04567464 | 04567468 | 0456746c | 04567470 |
|          |          | 3        |          |      |          |          | 0        |          |          |
| 3 / 1    | 2 0      | 2 \ 3    | 2        | 1    | 2 1      | 2 / 1    | 2 1      | 2 / 1    | 2        |
|          | 3        | 0        | 3        |      | Ť        |          | 3        | 0        | 3        |
|          | 2        | 1        | 3        |      | 2        | 0        | 3        |          | 2        |
|          | •        | 2        | <b>*</b> |      |          |          | 0        |          |          |
| 00000000 |          | fffffddb | <b>*</b> | 0000 | 0000     | 00006c53 | <b>/</b> | 00000000 |          |
| 0        | fffffddb | ffffffd7 | 00000000 |      | 00006c53 | (        | 0000     | 00000    |          |
|          | 0000     | 0000     |          |      |          | 00002402 | K        | 00000000 |          |
| 0005e4fc | 0005e500 | 04567458 | 0456745c |      | 04567460 | 04567464 | 04567468 | 0456746c | 04567470 |
| 340000d1 | 49159d16 | 15b14c22 | 00104843 |      | K        |          | 00000000 |          |          |
| 0        | 340000d1 | 49159d16 | 00000000 |      | 00104843 |          | 0000     | 0000     |          |
| 00000000 |          | 340000d1 | *        | 0000 | 0000     | 00104843 | *        | 00000000 |          |
|          | 00000000 |          | 340000d1 |      | 0000     | 0000     | 00104843 | 0000     | 0000     |
| 428c2843 | X        | 00000000 |          |      | 340000d1 | 0000     | 0000     | 00104843 | 0000000  |
| 00000000 |          | fffffddb | ×        | 0000 | 0000     | 00009055 |          | 00000000 |          |
| 00004851 | k        | 00000000 |          |      | fffffddb | 0000     | 0000     | 00009055 | 0000000  |
|          |          |          |          |      |          |          |          |          |          |
|          |          |          |          |      |          |          |          |          |          |
|          |          |          |          |      |          |          |          |          |          |
|          |          |          |          |      |          |          |          |          |          |
|          |          |          |          |      |          |          |          |          |          |
|          |          |          |          |      |          |          |          |          |          |
|          |          |          |          |      |          |          |          |          |          |
|          |          |          |          |      |          |          |          |          |          |
|          |          |          |          |      |          |          |          |          |          |

(2)

assign rom[6'h00]=32'b0;//op6 func6 shift5 rd5 rs5 rt5

 $assign\ rom[6'h01] = 32'b00110100000000000000000000001; //001101\ 000000\ 00000\ 00000\ 00000\ 00001\ load\ 0 + rs0 = > rt1$ 

assign rom [6'h02]=32'b000000000010000000110000100010;//000000 000001 00000 00011 00001 00010 add rd3 <=rs1+rs2

assign rom[6'h03]=32'b0011010000000000000001100100;//001101 000000 00000 00000 00011 00100 load 0+rs3=>rt4

 $assign\ rom[6'h04] = 32'b000000000100000001010010000001; //000000\ 000010\ 00000\ 00101\ 00100\ 00001\ sub\ rd5 <= rs4-rt1$ 

assign rom[6'h05]=32'b000000000101001010010100100;//000000 000100 00000 00101 00101 00100 mul rd5<=rs5\*rt4

assign rom[6'h07]=32'b0000010001000000001110011000110;//000001 000100 00000 00111 00110 00110 xor rd7<=rs6xorrt6 assign rom[6'h08]=32'b0011110000000000000010011000110;//001111 000000 00000 00001 00110 00110 beg 1 rs6 rt6 assign rom[6'h09]=32'b010010000000000000000000001011;//010010 000000 00000 00000 00000 01011 jmp 0BH assign rom[6'h0A]=32'b0100001111111111111111100010100110;//010000 111111 11111 11110 00101 00110 bne -2 rs5 rt6 assign rom[6'h0B]=32'b001001111111111111110100010101000://001001 111111 11111 11010 00101 01000 and rs5=>rt8 assign rom[6'h0C]=32'b00011000000000000101001001001;//000110 000000 00000 00101 00100 01001 muli 5\*rs4=>rt9 assign rom[6'h0D]=32'b000101111111111111111110100101010;//000101 111111 11111 11111 01001 01010 addi -1+rs9=>rt10 assign rom[6'h0E]=32'b000010000010101010110000000110;//000010 000001

00101 01011 00000 00110 sra 5 rd11<=rt6>>

assign rom[6'h0F]=32'b0000100001010111000000000110;//000010 000010 00101 01100 00000 00110 srl 5 rd12<=rt6>>

assign rom[6'h10]=32'b0000010000100000011010101101100;//000001 000010 00000 01101 01011 01100 or rd13<=rs11orrt12

assign rom[6'h11]=32'b00000100000100000011100101101100;//000001 000001 00000 01110 01011 01100 and rd14<=rs11andrt12

assign rom[6'h12]=32'b001010000000000000010101101110;//001010 000000 00000 00001 01011 01110 ori 1ors11=?rt14

assign rom[6'h13]=32'b001110000000000001000000001110;//001110 000000 00000 01000 00000 01110 store 8+rs0<=rt14

assign rom[6'h14]=32'b0; assign rom[6'h15]=32'b0; assign rom[6'h16]=32'b0; assign rom[6'h17]=32'b0; assign rom[6'h18]=32'b0;

### 结果截图:

| Name              | Value    | 0 ns     | 100 ns   | 200 ns   | 300 ns   | 400 ns                                         | 500 ns   | 600 ns   | /00 ns   | 800 ns   |          | 900 ns   |
|-------------------|----------|----------|----------|----------|----------|------------------------------------------------|----------|----------|----------|----------|----------|----------|
| ▶ d[31:0]         | 00000000 |          |          |          |          |                                                | 0000     |          |          |          |          |          |
| ▶ ■ nPC[31:0]     | 0000001c | 0000004  | 00000008 | 0000000c | 00000010 | 0000010                                        | 00000014 | 00000018 | 00000018 | <u> </u> | 0000001c | 00000020 |
| ▶ Ma6[1:0]        | 0        |          |          | •        |          | 2                                              |          |          | 2        | <u> </u> |          | •        |
| ▶ 📆 a5[2:0]       | 0        |          |          |          |          |                                                |          |          |          |          |          |          |
| ▶ N a0[1:0]       | 2        | 2 / 1    | 2 / 1    | 2 / 0    | 2 / 1    | 2 0                                            | 2 0      | 2 1      | 2 / 1    | 2        | X 1      | 2 X      |
| ▶ 🧓 a3[1:0]       | 3        | Ç        | 3        |          | 2        | <b>*</b> • • • • • • • • • • • • • • • • • • • | 3        | 2        | 0        | K        |          | 3        |
| ▶ 🧓 a4[1:0]       | 0        |          | 2        |          | 1        | Υ                                              |          | 1        | <b>.</b> |          | 0        |          |
| ▶ 🦷 a11[1:0]      | 0        |          |          | •        |          | 1                                              |          |          | 1        | <b>K</b> |          | •        |
| ▶ ■ a3R[31:0]     | 00000000 |          |          |          |          | 0000                                           |          |          |          |          |          |          |
| ▶ 🦬 idQa[31:0]    | 00000000 |          |          |          |          | 0000                                           | 0000     |          |          |          |          |          |
| ▶ N a4R[31:0]     | 00000000 |          |          |          |          | 0000                                           | 0000     |          |          |          |          |          |
| ▶ ■ a6R[31:0]     | 0000001c | 00000004 | 00000008 | 0000000a | 00000010 | 00000010                                       | 00000014 | 00000018 | 00000018 | ×        | 0000001c | 00000020 |
| ▶ 🦷 imO[31:0]     | 08311805 | 00000000 | 34000001 | 00100e22 | 34000064 | 0020                                           | 1481     | 004014a4 | 0931     | 1805     |          | 04401cc6 |
| ▶ 🦬 iiO[31:0]     | 004014a4 | 0000     | 0000     | 34000001 | 00100e22 | 3400                                           | 0064     | 00201481 | 0040     | 11484    |          | 08311805 |
| ▶ ■ ieO[31:0]     | 00201481 |          | 00000000 |          | 34000001 | 0010                                           | 0e22     | 34000064 | 0020     | 1481     |          | 004014a4 |
| ▶ 🥞 emO[31:0]     | 00201481 | k .      | 000      | 0000     |          | 34000001                                       | 0010     | 0c22     | 34000064 | ×        | 002      | 01481    |
| ▶ 🦷 mwO[31:0]     | 34000064 |          |          | 00000000 |          |                                                | 34000001 | 0010     | 0c22     |          | 4000064  | 00201481 |
| ► W exeALUR[31:0] | 00000000 |          |          |          |          | 0000                                           | 0000     |          |          |          |          |          |
| ▶ N a8R[31:0]     | 00000000 |          |          |          |          | 0000                                           | 0000     |          |          |          |          |          |
| 1∰ clk            | 1        |          |          |          |          |                                                |          |          |          |          |          |          |
| 1 Reset           | 1        |          |          |          |          |                                                |          |          |          |          |          |          |
|                   |          |          |          |          |          |                                                |          |          |          |          |          |          |
|                   |          |          |          |          |          |                                                |          |          |          |          |          |          |
|                   |          |          |          |          |          |                                                |          |          |          |          |          |          |
|                   |          |          |          |          |          |                                                |          |          |          |          |          |          |
|                   |          |          |          |          |          |                                                |          |          |          |          |          |          |
|                   |          |          |          |          |          |                                                |          |          |          |          |          |          |

| -                                                                            |                                         |          |                                                                                   |                                                                 |                                                                                |                                                                        |                                                                                                         |                                                                                                   |
|------------------------------------------------------------------------------|-----------------------------------------|----------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 800 ns                                                                       | 900 ns                                  |          | 1,000 ns                                                                          | 1, 100 ns                                                       | 1, 200 ns                                                                      | 1,300 ns                                                               | 1,400 ns                                                                                                | 1,500 ns                                                                                          |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                | 00000000                                                               |                                                                                                         |                                                                                                   |
| 0000001c                                                                     | 0000002                                 | (        | 00000024                                                                          | 00000024                                                        | 0000002c                                                                       | 00000028                                                               | 0000002c                                                                                                |                                                                                                   |
|                                                                              | 0                                       | <b>—</b> |                                                                                   | 2 4                                                             | 3                                                                              | 1                                                                      | 0                                                                                                       |                                                                                                   |
| 2 / 1                                                                        | 2 /                                     | +        | 2 \ 1                                                                             | 2 × 3                                                           | 2 \ 3                                                                          | 2 / 1                                                                  |                                                                                                         | 1 2 X                                                                                             |
| 2 1                                                                          | <u></u>                                 | =        | 1                                                                                 | 2 1 3                                                           | 2 3 3                                                                          | <b>─</b> \$ <u></u> ^                                                  |                                                                                                         | 2 3                                                                                               |
|                                                                              | 0                                       | = =      | <del></del>                                                                       | <u> </u>                                                        | 3                                                                              | <b>─</b> ↓                                                             |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          | •                                                                                 |                                                                 | <b>─</b>                                                                       | <u></u>                                                                | <b>-</b>                                                                                                |                                                                                                   |
| 00                                                                           | 000000                                  |          | 00000002                                                                          | <del></del>                                                     | <del></del>                                                                    |                                                                        | 00000000                                                                                                |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                | 00000000                                                               |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 | 00000000                                                                       |                                                                        |                                                                                                         |                                                                                                   |
| 0000001c                                                                     | 0000002                                 | _        | 00000024                                                                          | 00000024                                                        | 0000002c                                                                       | 00000028                                                               | 0000002c                                                                                                | X                                                                                                 |
| 08311805                                                                     | 04401cc                                 | _        | 3c0004c6                                                                          | —1·                                                             | 4800000Ъ                                                                       | 27ffe8a8                                                               | 43fff8a6                                                                                                |                                                                                                   |
| 004014a4                                                                     | 0831180                                 | _        | 04401cc6                                                                          | 3c0004c6                                                        | 4800000ь                                                                       |                                                                        | 00000000                                                                                                | 43fff8a6                                                                                          |
| 00201481                                                                     | 004014a                                 | 4        | 08311805                                                                          | 04401cc6                                                        | 3c0004c6                                                                       |                                                                        | 00000000                                                                                                |                                                                                                   |
|                                                                              | 0201481                                 |          | 004014a4                                                                          | 08311805                                                        | 04401cc6                                                                       | 3c0004c6                                                               |                                                                                                         | 00000000                                                                                          |
| 34000064                                                                     |                                         | 0020     | 1481                                                                              | 004014a4                                                        | 08311805                                                                       | 04401cc6                                                               | 3c0004c6                                                                                                |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                | 00000000                                                               |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                | 0000000                                                                |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                |                                                                        |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                |                                                                        |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                |                                                                        |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                |                                                                        |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                |                                                                        |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                |                                                                        |                                                                                                         |                                                                                                   |
|                                                                              |                                         | ·        |                                                                                   |                                                                 |                                                                                |                                                                        |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                |                                                                        |                                                                                                         |                                                                                                   |
|                                                                              |                                         |          |                                                                                   |                                                                 |                                                                                |                                                                        |                                                                                                         |                                                                                                   |
| 1,600 ns                                                                     | 1,700 ns                                | 1, 8     | 800 ns                                                                            | 1,900 ns                                                        | 2,000 ns                                                                       | 2,100 ns                                                               | 2, 200 ns                                                                                               | 2,300 ns                                                                                          |
|                                                                              |                                         | 1, 8     | 00000000                                                                          |                                                                 |                                                                                |                                                                        | 00000005                                                                                                | 00000004                                                                                          |
| 0000002c                                                                     | 1,700 ns                                | 1, 8     |                                                                                   | 1,900 ns                                                        | 2,000 ns 0000003c                                                              | 00000040                                                               | 2, 200 ns 00000005                                                                                      | 12,300 ns 00000004 00000048                                                                       |
| 0000002c                                                                     |                                         | 1, 5     | 00000000<br>00000034                                                              |                                                                 | 0000003c                                                                       | 00000040                                                               | 00000005<br>00000044                                                                                    | 00000004<br>00000048                                                                              |
| 0000002c<br>2                                                                | 00000030                                |          | 00000000<br>00000034<br>2                                                         | ( 00000038                                                      | 0000003c                                                                       | 00000040                                                               | 00000005<br>00000044<br>5                                                                               | 00000004<br>00000048                                                                              |
| 0000002c<br>2                                                                | 00000030                                |          | 00000000<br>00000034<br>2                                                         | 00000038                                                        | 0000003c                                                                       | 00000040<br>0<br>0                                                     | 00000005<br>00000044                                                                                    | 00000004<br>00000048                                                                              |
| 0000002c<br>2                                                                | 00000030                                |          | 00000000<br>00000034<br>2<br>3 \ 0                                                | ( 00000038                                                      | 0000003c                                                                       | 00000040<br>0<br>0<br>2 1                                              | 00000005<br>00000044<br>5                                                                               | 00000004<br>00000048                                                                              |
| 0000002c<br>2<br>X 1<br>X 2 X 0                                              | 00000030                                |          | 00000000<br>00000034<br>2<br>3 \ 0                                                | ( 00000038                                                      | 0000003c                                                                       | 00000040<br>0<br>0<br>2 1                                              | 00000005<br>00000044<br>5                                                                               | 00000004<br>00000048                                                                              |
| 0000002c<br>2<br>X 1<br>X 2 X 0                                              | 00000030                                | ×        | 00000000<br>00000034<br>2<br>3 \ 0                                                | ( 00000038                                                      | 0000003c  4 2 0                                                                | 00000040<br>0<br>0<br>2 1                                              | 00000005<br>00000044<br>5                                                                               | 00000004<br>00000048                                                                              |
| 0000002e<br>2<br>X 1<br>2 X 0                                                | 00000030                                | ×        | 00000000<br>00000034<br>2<br>3 \ 0 \ 0                                            | ( 00000038                                                      | 0000003c  4 2 0 0 0 00000000                                                   | 00000040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                 | 00000005<br>00000044<br>5<br>2 \ 1                                                                      | 0000004<br>00000048<br>6<br>2 \ 1                                                                 |
| 0000002e<br>2<br>1<br>2 \ 0<br>0                                             | 2 / 0                                   | ×        | 00000000<br>00000034<br>2<br>3 \ 0<br>0                                           | 2 \ 0                                                           | 0000003c  4 2 \ 0 0 00000000 0000000000000000000000                            | 00000040<br>0<br>2 \ 1<br>2                                            | 00000005<br>00000044<br>5<br>2 \ 1                                                                      | 00000004<br>00000048<br>6<br>2 / 1                                                                |
| 0000002e 2 ( 1 ( 2 ) 0 ( 0 ( 0 ( 0 ( 0 ( 0 ( 0 ( 0 ( 0 ( 0 (                 | 00000030                                | ×        | 00000000 00000034  2 3 0 0 0000000  00000000  00000ffa 00000034                   | 2 00000038                                                      | 0000003c  4 2 \ 0 0 00000000 0000000000000000000000                            | 00000040 0 0 2 \ 1 2  fffffff 00000040                                 | 00000005<br>00000044<br>5<br>2 \ 1<br>00000005                                                          | 0000004<br>00000048<br>6<br>2 1                                                                   |
| 0000002e<br>2<br>1<br>2 \ 0<br>0                                             | 2 \ 00000030                            | ×        | 00000000<br>00000034<br>2<br>3 \ 0<br>0                                           | 00000038<br>2 0 1<br>1 00000038<br>17fffd2a                     | 0000003c  4 2 0 0 00000000 00000005 0000003c 0012ac06                          | 0000040 0 2 1 2 1 2 ffffffff 0000040 08225006                          | 0000005<br>00000044<br>5<br>2 1<br>00000005<br>00000005                                                 | 0000004<br>00000048<br>6<br>2 1<br>0<br>00000000<br>00000000<br>00000008<br>0410396c              |
| 0000002e 2 ( 1 ( 2 ) 0 ( 0 ( 0 ( 0 ( 0 ( 0 ( 0 ( 0 ( 0 ( 0 (                 | 2 / 0                                   | ×        | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 00000034 18001489                  | 2 00000038                                                      | 0000003c  4 2 0 0 0 00000000 00000005 00000003c 000103c 00117fffd2a            | 00000040 0 0 2 1 2 1 2 ffffffff 0000040 08228006 0812ac06              | 00000005<br>00000044<br>5<br>2 \ 1<br>00000005                                                          | 0000004<br>00000048<br>6<br>2 1                                                                   |
| 0000002c 2 ( 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         | 2 \ 00000030                            | ×        | 00000000 00000034  2 3 0 0 0000000  00000000  00000ffa 00000034                   | 00000038<br>2 0 1<br>1 00000038<br>17fffd2a                     | 0000003c  4 2 0 0 00000000 00000005 0000003c 0012ac06                          | 0000040 0 2 1 2 1 2 ffffffff 0000040 08225006                          | 00000005<br>00000044<br>5<br>2 1<br>00000005<br>00000005                                                | 0000004 00000048  6 2   1  00000000 00000000 00000048 0410396e 0420356e 09225006                  |
| 0000002c 2 1 2 0 0 0 00000000 00000000 00000002c 27ffe8a8                    | 00000030  2 (00000030 00000030 27ffe8a8 | ×        | 00000000  00000034  2  3                                                          | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 0 00000000 00000005 00000003c 000103c 00112ac06 17fffd2a     | 00000040 0 0 2 1 2 2 fffffff 00000040 08225006 0812ac06 17fffd2a       | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000044 0420356c 08225006 0912ac06                   | 00000004<br>00000048<br>6<br>2 1<br>0<br>00000000<br>00000000<br>00000048<br>0410396c<br>0420356c |
| 0000002e 2 ( 1 2                                                             | 00000030  2 (00000030 00000030 27ffe8a8 | 00       | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 0000034 18001489 27ffesa8 43fffsa6 | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 0 00000000 00000005 00000005 0000000                         | 00000040 0 0 2 1 2 2 fffffff 00000040 08225006 0812ac06 17fffd2a       | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000005 00200000 0012a006 0012a006 17fffd2a 18001459 | 0000004 0000048  6 2 1  00000000 00000000 00000048 0410396e 0420356e 0822b006 0812ac06 17fffd2a   |
| 0000002e 2 ( 1 2                                                             | 00000030  2                             | 00       | 00000000 00000034  2 3 0 0 0000000  00000fffa 0000034 18001489 27ffe8a8           | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 00000000 00000005 00000005 0000005 17fffdda 18001489 27ffs88 | 0000040 0 0 2 1 2 ffffffff 0000040 08225006 0812ac06 17fffd2a 18001489 | 0000005 00000044 5 2 1 00000005 00000005 00000004 0420356c 08225006 0812ac06 17fffd2a 18001489          | 0000004 0000048  6 2 1  00000000 00000000 00000048 0410396c 0420356c 0822b006 0812ac06 17fffd2a   |
| 0000002e 2 ( 1 2                                                             | 00000030  2                             | 00       | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 0000034 18001489 27ffesa8 43fffsa6 | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 00000000 00000005 00000005 0000005 17fffdda 18001489 27ffs88 | 0000040 0 0 2 1 2 ffffffff 0000040 08225006 0812ac06 17fffd2a 18001489 | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000005 00200000 0012a006 0012a006 17fffd2a 18001459 | 0000004 0000048  6 2 1  00000000 00000000 00000048 0410396e 0420356e 0822b006 0812ac06 17fffd2a   |
| 0000002e 2 ( 1 2                                                             | 00000030  2                             | 00       | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 0000034 18001489 27ffesa8 43fffsa6 | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 00000000 00000005 00000005 0000005 17fffdda 18001489 27ffs88 | 0000040 0 0 2 1 2 ffffffff 0000040 08225006 0812ac06 17fffd2a 18001489 | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000005 00200000 0012a006 0012a006 17fffd2a 18001459 | 0000004 0000004 6 2 1 00000000 0000000 00000049 0410396c 0420356c 09226006 0912ac06 17fffd2a      |
| 0000002e 2 ( 1 2                                                             | 00000030  2                             | 00       | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 0000034 18001489 27ffesa8 43fffsa6 | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 00000000 00000005 00000005 0000005 17fffdda 18001489 27ffs88 | 0000040 0 0 2 1 2 ffffffff 0000040 08225006 0812ac06 17fffd2a 18001489 | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000005 00200000 0012a006 0012a006 17fffd2a 18001459 | 0000004 0000004 6 2 1 00000000 0000000 00000049 0410396c 0420356c 09226006 0912ac06 17fffd2a      |
| 0000002e 2 ( 1 2                                                             | 00000030  2                             | 00       | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 0000034 18001489 27ffesa8 43fffsa6 | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 00000000 00000005 00000005 0000005 17fffdda 18001489 27ffs88 | 0000040 0 0 2 1 2 ffffffff 0000040 08225006 0812ac06 17fffd2a 18001489 | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000005 00200000 0012a006 0012a006 17fffd2a 18001459 | 0000004 0000004 6 2 1 00000000 0000000 00000049 0410396c 0420356c 09226006 0912ac06 17fffd2a      |
| 0000002e 2 1 2 0 0 0 0 00000000 00000000 0000002e 27ffe8a8 43fff8a6 00000000 | 00000030  2                             | 00       | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 0000034 18001489 27ffesa8 43fffsa6 | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 00000000 00000005 00000005 0000005 17fffdda 18001489 27ffs88 | 0000040 0 0 2 1 2 ffffffff 0000040 08225006 0812ac06 17fffd2a 18001489 | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000005 00200000 0012a006 0012a006 17fffd2a 18001459 | 0000004 0000004 6 2 1 00000000 0000000 00000049 0410396c 0420356c 09226006 0912ac06 17fffd2a      |
| 0000002e 2 1 2 0 0 0 0 00000000 00000000 0000002e 27ffe8a8 43fff8a6 00000000 | 00000030  2                             | 00       | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 0000034 18001489 27ffesa8 43fffsa6 | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 00000000 00000005 00000005 0000005 17fffdda 18001489 27ffs88 | 0000040 0 0 2 1 2 ffffffff 0000040 08225006 0812ac06 17fffd2a 18001489 | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000005 00200000 0012a006 0012a006 17fffd2a 18001459 | 0000004 0000048  6 2 1  00000000 00000000 00000048 0410396e 0420356e 0822b006 0812ac06 17fffd2a   |
| 0000002e 2 1 2 0 0 0 0 00000000 00000000 0000002e 27ffe8a8 43fff8a6 00000000 | 00000030  2                             | 00       | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 0000034 18001489 27ffesa8 43fffsa6 | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 00000000 00000005 00000005 0000005 17fffdda 18001489 27ffs88 | 0000040 0 0 2 1 2 ffffffff 0000040 08225006 0812ac06 17fffd2a 18001489 | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000005 00200000 0012a006 0012a006 17fffd2a 18001459 | 0000004 0000048  6 2 1  00000000 00000000 00000048 0410396e 0420356e 0822b006 0812ac06 17fffd2a   |
| 0000002e 2 1 2 0 0 0 0 00000000 00000000 0000002e 27ffe8a8 43fff8a6 00000000 | 00000030  2                             | 00       | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 0000034 18001489 27ffesa8 43fffsa6 | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 00000000 00000005 00000005 0000005 17fffdda 18001489 27ffs88 | 0000040 0 0 2 1 2 ffffffff 0000040 08225006 0812ac06 17fffd2a 18001489 | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000005 00200000 0012a006 0012a006 17fffd2a 18001459 | 0000004 0000048  6 2 1  00000000 00000000 00000048 0410396e 0420356e 0822b006 0812ac06 17fffd2a   |
| 0000002c 2 1 2 0 0 0 00000000 00000002c 27ffs8a8 43fff8a6 00000000           | 00000030  2                             | 00       | 00000000 00000034  2 3 0 0 0 0000000 000000ffa 0000034 18001489 27ffesa8 43fffsa6 | 00000038<br>2 0 0<br>1<br>1<br>00000038<br>17fffd2a<br>18001489 | 0000003c  4 2 0 0 00000000 00000005 00000005 0000005 17fffdda 18001489 27ffs88 | 0000040 0 0 2 1 2 ffffffff 0000040 08225006 0812ac06 17fffd2a 18001489 | 0000005 00000044 5 2 1 00000005 00000005 00000005 00000005 00200000 0012a006 0012a006 17fffd2a 18001459 | 0000004 0000048  6 2 1  00000000  00000000  00000048 0410396e 0420356e 0822b006 0812ac06 17fffd2a |

| 2, 100 ns | 2, 2                                                                         | 00 ns     | 2,300 ns | 2,400 ns | 2,500 ns | 2,600 ns | 2, 700 ns |
|-----------|------------------------------------------------------------------------------|-----------|----------|----------|----------|----------|-----------|
| 00000000  | ᅷ                                                                            | 00000005  | 0000004  |          | 0000     |          |           |
| 00000040  | ¥=                                                                           | 00000044  | 00000048 | 0000004c | 00000050 | 00000054 | 00000058  |
|           |                                                                              |           |          |          | 0        |          |           |
| 0         | $\!\!\!\!\!/\!\!\!\!\!\!\!\!\!\!/$                                           | 5         | 6        | 3        | 2        | 3        | X         |
| 2 / 1     | $^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 2 / 1     | 2 1      | 2 (1     | 2 0      | 2 3      | 2 1       |
| 2         | $^{\!\!\!\!/}$                                                               |           |          | 3        | (        |          | 0         |
| 1         | 灴                                                                            |           |          | 2        | 3        | <b>X</b> | 1         |
|           |                                                                              |           |          |          | 0        |          |           |
|           |                                                                              | 00000005  |          | k        |          |          | 00000000  |
|           |                                                                              |           |          |          | 00000000 |          |           |
| ffffffff  | 灴                                                                            |           | 0000     | 0000     |          | 00000001 | 00000008  |
| 00000040  | 灴                                                                            | 00000044  | 00000048 | 0000004c | 00000050 | 00000054 | 00000058  |
| 08226006  | 厂                                                                            | 0420356c  | 0410396c | 2800056e | 3800200e | X        |           |
| 0812ac06  | *                                                                            | 08226006  | 0420356c | 0410396c | 2800056e | 3800200e | Х         |
| 17fffd2a  | 灴                                                                            | 0812ac06  | 08226006 | 0420356c | 0410396c | 2800056e | 3800200e  |
| 18001489  | 厂                                                                            | 17ffffd2a | 0812ac06 | 0822ь006 | 0420356c | 0410396c | 2800056e  |
| 27ffe8a8  | 厂                                                                            | 18001489  | 17fffd2a | 0812ac06 | 0822ь006 | 0420356c | 0410396c  |
| 00000004  | 厂                                                                            |           | 0000     | 0000     | 0000     | 0000001  | 00000008  |
| 00000000  | 粁                                                                            | 00000005  | 0000004  | <b>K</b> | 0000     | 0000     |           |
|           |                                                                              |           |          |          |          |          |           |
|           |                                                                              |           |          |          |          |          |           |
|           |                                                                              |           |          |          |          |          |           |
|           |                                                                              |           |          |          |          |          |           |
|           |                                                                              |           |          |          |          |          |           |
|           |                                                                              |           |          |          |          |          |           |
|           |                                                                              |           |          |          |          |          |           |
|           |                                                                              |           |          |          |          |          |           |
|           |                                                                              |           |          |          |          |          |           |