Design Guidelines

1. Design Constraints

I Robot skeleton: Made of aluminum profile.

I Materials of additional parts: ABS, Steel alloy, Aluminum alloy, Acrylic

I **Products (Sensors, PC, etc.):** Use at least one of the Products, following the maximum quantity constraints listed in the table below.

Products	Dynamixel MX-28	Intel NUC	NI myRIO	NVDIA Jetson	RPLidar	Webcam Logitech c920
Quantity	No limit	1	1	1	1	1~2

2. Starter-Kit

3D models of the system components (Solidworks Libs.zip) developed by our course TAs should be available from the course website.

AL Profile	2020-04-02 오전 1:29	파일 폴더	
Example part	2020-04-07 오후 2:38	파일 폴더	
Webcam Logitech c920	2020-04-02 오전 1:07	파일 폴더	
Dynamixel MX-28	2020-04-01 오후 10:43	SOLIDWORKS Part	740KB
♠ Intel NUC	2020-04-01 오후 10:36	SOLIDWORKS Part	606KB
NI myRiO2	2020-04-07 오후 2:25	SOLIDWORKS Part	547KB
NVDIA_Jetson	2020-04-07 오후 2:26	SOLIDWORKS Part	792KB
RPLidar	2020-04-07 오후 12:30	SOLIDWORKS Part	7,389KB

Folders/files	Description		
AL Profile	the aluminum profile for constructing the robot skeleton		
Example parts	Examples of additional parts		
Webcam Logitech c920	3d model of Webcam. You can use the assembly file 'Webcam_C920_ASM.SLDASM' or just the part file 'Webcam_C920.SLDPRT'		
Others	SLDPRT files of 3d model of the products including:		

Dynamixel MX-28 motor, Intel NUC, NI myRIO, NVIDIA		
Jetson, RPLidar and Logitech Webcam		

3. System Design

Wheels and actuators

You can freely choose wheel dimensions as long as they do not exceed the maximum size allowed.

- Wheel diameter < 150mm
- Wheel thickness < 50 mm

(http://emanual.robotis.com/docs/en/dxl/mx/mx-28/)

* For design convenience, it is accepted to use a linear actuator. However, the actuator should have a 200N force limit and a 0.04m/s velocity limit.

Chassis skeleton

The robot base can be made of aluminum profiles (20x20 or 30x30 in 'AL Profile' folder), and the length can be adjusted freely. You can use other types of profiles if you want.

One example for designing the skeleton of robot is shown below. You do not need to add brackets for fastening the profile in this virtual design project, although fastening (bolting, bonding, etc.) is an important part of the structure for a real mechanical system.

Other parts

Assume that necessary parts have been already processed via 3d printing, milling machining, lathe machining, laser cutting, etc. and provided. As a result, it is free to make your own structure with given material options from the table shown below. If you want to use other materials, consult with TAs.

Processing Method	Materials	Path	
3d printing	ABS	플라스틱(Plastic) □ ABS	
milling	Aluminum alloy	알루미늄 합금(Aluminum Alloy) □ 6061 Alloy	
machining, lathe machining, laser	Steel alloy	강(Steel) □ Alloy Steel	
cutting	Acrylic	플라스틱(Plastic) □ 아크릴(acrylic)	

The material of the part can be set by clicking재질(Material) -> 재질 편집(Edit Material) -> solidworks materials (see below).

3.1. Assembly and integration

Additional parts should be attached to the skeleton parts. Again, there is no need for considering fastening components.

Install the system components on the mobile system. The size and mass of each component should be considered in finalizing the layout.

3.2. Suspension Design

You may want to design a suspension system to reduce vibration while passing over bumps in the entrance zone.

For example, if you want to add a suspension system to the left wheel.

Original system

Suspension included system

*Example files are given in the given zip file.

(urdf/exex2.urdf in Capstone_Design_2021_Spring_Suspension_Design_Example.zip) (Important! You need to change the paths to the mesh files in the urdf/exex2.urdf file to your personal path.)

- **Step 1:** Create a dummy joint and a link between the links where you want to insert the suspension system (between the base link and the wheel in the above-shown example) in your urdf file.
- **Step 2:** Set this virtual suspension joint as "prismatic" or "revolute" and set the limit of the suspension system considering the maximum movement you want to allow.

```
| Signature | September | Sept
```

*Or you can directly design the suspension joint and link in solidworks.

Step 3: Now load the robot in the Coppeliasim simulator using the URDF import plugin.

Step 4: Double click the suspension joint in 'Scene hierarchy' to setup the suspension joint. Change the Mode to Torque/force mode

Step 5: Get into 'Show dynamic properties dialog' and check 'control loop enabled'. Furthermore, check the 'spring-damper mode' since we are going to use the suspension joint as a spring and damper. Now, set the desired spring constant and damping coefficient as you want. Finally, set the 'Target Velocity' high enough. This is because Coppeliasim's torque/force controller's control structure. The controller outputs the torque/force until the joint meets the target velocity value. So if the user sets the 'Target Velocity' zero, the joint will not activate at all.

Step 6: Now do the same procedure for all suspension joints. Finally check the results by running the simulation! (Maybe make the robot fall from a certain height or try to make it go through bumpy environments!) If the suspension joint is too diverging, try to reduce the spring constant and damping coefficients.

(https://youtu.be/W7wRbnabqNg)

(https://youtu.be/xFBX8skYYIs)

^{*}Video Examples of Suspension Test