Environment Department

Advanced Environmental Economics Spring Term 2002

Preliminary Notes on Estimating an EKC Using Panel Data in LimDep

Lecturer: Giovanni Baiocchi

Course Web Page:

http://www-users.york.ac.uk/~jb35/aee/aee.htm

Aims

 The aim of these lectures to enable students to reproduce the results of a paper published on a top environmental economics journal using LimDep.

• Learning Outcomes

- Understand how to read and transform data in LimDep .
- Use panel data regression techniques in LimDep.
- Choose the appropriate method.
- Know how quantities needed for policy analysis can be computed from regression results in LimDep.

Contents

1 Panel Data File Structure

We will reproduce the results from the following paper:

• Stern D. I. and Mick S. Common (2001), Is there an environmental Kuznets curve for sulfur?, *Journal of Environmental Economics and Management*, 40(2).

For the dataset used by Common and Stern the first column is the time index (years from 1960 to 1990) whereas the second column contains the individual country index (there are 74 countries in the sample). The correspondence between codes and countries is provided in Table 1. The third column contains the populations, the fourth SO_2 emissions. The fifth is the GDP in real 1990 international dollars. The sixth column contains the SO_2 concentration per capita, and the last column a OECD/non-OECD dummy. The emission data comes from ASL and Associates; GDP and population is taken from the Penn World Table.

1960	54	17910	1099.72	7258	0.0614	1
1961	54	18270	1076.06	7261	0.0589	1
1962	54	18614	1073.68	7605	0.05768	1
1963	54	18963	1087.53	7876	0.05735	1
1964	54	19326	1142.22	8244	0.0591	1
1965	54	19678	1206.56	8664	0.06132	1
1966	54	20049	1174.17	9093	0.05857	1
1967	54	20411	1304.04	9231	0.06389	1
1968	54	20744	1328.19	9582	0.06403	1
1969	54	21028	1239.66	9975	0.05895	1
1970	54	21324	1356.98	10124	0.06364	1
1971	54	21592	1416.06	10599	0.06558	1
1972	54	21822	1478.4	11125	0.06775	1
1973	54	22072	1540.07	11854	0.06977	1
1974	54	22364	1553.33	12225	0.06946	1
1975	54	22697	1505.36	12287	0.06632	1
1976	54	22993	1433.46	12929	0.06234	1
1977	54	23273	1531.62	13184	0.06581	1
1978	54	23517	1340.82	13631	0.05701	1
1979	54	23747	1424.14	14114	0.05997	1
1980	54	24043	1512.53	14133	0.06291	1
1981	54	24342	1439.02	14555	0.05912	1
1982	54	24583	1267.14	13740	0.05155	1
1983	54	24787	1213.11	14105	0.04894	1
1984	54	24978	1363.25	14954	0.05458	1
1985	54	25165	1304.08	15589	0.05182	1
1986	54	25353	1238.74	16029	0.04886	1
1987	54	25625	1388.12	16602	0.05417	1

```
1988
       54 25950
                   1417.18 17258
                                   0.05461 1
       54
           26219
                   1334.33 17524
1989
                                   0.05089 1
1990
       54 26522
                   1366.41 17173
                                   0.05152 1
1960
       72 180673
                   9479.18 9895
                                   0.05247 1
       72 183687
                   9246.24 9946
1961
                                   0.05034 1
1962
       72 186537
                   9492.94 10358
                                   0.05089 1
```

2 Reading Data

```
READ; file=M:\stern.dat; nvar=7; nobs=2294
; names=year, country, pop, so, gdpc, sopc, oe$
```

3 Descriptive Statistics

We can now summarise the data by obtaining some descriptive statistics (dstat).

```
DSTAT; Rhs=pop, so, gdpc, sopc, oe$
```

1			Descriptive	Statistics		
2	All results based on nonmissing observations.					
3	Variable	Mean	Std.Dev.	Minimum	Maximum	Cases
4						
5	POP	47466.1081	130444.260	231.000000	1133683.00	2294
6	SO	703.026687	1991.16822	.10000000E-01	14213.8900	2294
7	GDPC	5359.90817	6244.16765	303.000000	80830.7551	2294
8	SOPC	.215023403E-01	.366821025E-01	.89000000E-06	.465551720	2294
9	0E	.310810811	.462926418	.000000000	1.0000000	2294

4 Creating and Transforming Variables

For the whole sample create squared and log terms.

```
CREATE ; lgdp = log(gdpc)
; lgdpsq=lgdp*lgdp
; lsopc=log(sopc)$
```

Table 1: Country Codes

1	ALGERIA	95	JAPAN
14	EGYPT	97	KOREA,
18	GHANA	98	KUWAIT
22	KENYA	100	MALAYSIA
25	MADAGASCAR	102	MYANMAR
30	MOROCCO	106	PHILIPPINES
31	MOZAMBIQUE	108	SAUDI ARABIA
32	NAMIBIA	109	SINGAPORE
34	NIGERIA	110	SRI LANKA
41	SAFRICA	111	SYRIA
44	TANZANIA	112	TAIWAN
46	TUNISIA	113	THAILAND
48	ZAIRE	116	AUSTRIA
49	ZAMBIA	117	BELGIUM
50	ZIMBABWE	119	CYPRUS
52	BARBADOS	120	CZECHOSLOVAKIA
54	CANADA	121	DENMARK
60	GUATEMALA	122	FINLAND
62	HONDURAS	123	FRANCE
64	MEXICO	125	WGERMANY
65	NICARAGUA	126	GREECE
71	TRINIDAD&TOBAGO	129	IRELAND
72	U.S.A.	130	ITALY
73	ARGENTINA	131	LUXEMBOURG
74	BOLIVIA	133	NETHERLANDS
75	BRAZIL	134	NORWAY
76	CHILE	136	PORTUGAL
77	COLOMBIA	137	ROMANIA
81	PERU	138	SPAIN
83	URUGUAY	139	SWEDEN
84	VENEZUELA	140	SWITZERLAND
88	CHINA	141	TURKEY
89	HONG KONG	142	U.K.
90	INDIA	143	USSR
91	INDONESIA	144	YUGOSLAVIA
92	IRAN	145	AUSTRALIA
94	ISRAEL	147	NZ

5 Plotting Data in LimDep

PLOT; Lhs=lgdp; Rhs=lsopc\$

Figure 1: Economics Program Group

6 Running the EKC Panel Regression in LimDep

```
REGRESS ;Lhs=lsopc
;Rhs=ONE,lgdp,lgdpsq
;Str=country
;Panel$

REGRESS ;Lhs=lsopc
;Rhs=ONE,lgdp,lgdpsq
;Str=country
;period=year
;Panel$
```

The output is divided into four parts.

- 1. The first part gives the OLS (OLS Without Group Dummy Variables) estimates,
- 2. the second the fixed effect estimates (Least Squares with Group Dummy Variables),
- 3. the third the random effect estimates, and
- 4. the fourth the fixed individuals and time effects estimates.

Note that:

- you can suppress one of the panel models this is useful to compute turning points of a specific model) by including the subcommands; **Fixed** or; **Random**
- it is not necessary to include **ONE** amongst the regressors
- to obtain a list of the fixed effects use the ; Output = 2 subcommand

6.1 OLS

```
| OLS Without Group Dummy Variables
3 | Ordinary least squares regression Weighting variable = none
4 Dep. var. = LSOPC Mean= -5.033948624 , S.D.= 1.880254548
Model size: Observations = 2294, Parameters = 3, Deg.Fr.=
6 | Residuals: Sum of squares= 5087.108121 , Std.Dev.= 1.49013
7 | Fit:
            R-squared = .372471, Adjusted R-squared =
                                                   .37192
_{8} | Model test: F[ 2, 2291] = 679.91,
                                Prob value =
                                                   .00000
9 | Diagnostic: Log-L = -4168.5302, Restricted(b=0) Log-L = -4702.9930
            LogAmemiyaPrCrt.= .799, Akaike Info. Crt.= 3.637
| Panel Data Analysis of LSOPC | [ONE way]
          Unconditional ANOVA (No regressors)
                        Deg. Free.
                                    Mean Square
13 | Source
            Variation
14 | Between
                                      98.8914
             7219.07
                              73.
15 | Residual
            887.504
                             2220.
                                       .399776
16 | Total
             8106.57
                             2293.
                                        3.53536
 +-----
<sub>19</sub> | +-----+
         1.820929092 .43802340
                                   4.157 .0000 8.1226219
21 LGDPSQ -.4175485084E-01 .27100655E-01 -1.541 .1234 66.974400
22 Constant -17.02816116 1.7524821 -9.717 .0000
```

6.2 Fixed Country Effects

```
| Least Squares with Group Dummy Variables
 | Ordinary
              least squares regression
                                      Weighting variable = none
 | Dep. var. = LSOPC | Mean= -5.033948624 , S.D.=
                                                   1.880254548
 | Model size: Observations = 2294, Parameters = 76, Deg.Fr.=
                                                            2218
 Residuals: Sum of squares= 756.0200229 , Std.Dev.=
                                                           .58383
 | Fit:
              R-squared = .906740, Adjusted R-squared =
                                                           .90359
  | Model test: F[75, 2218] = 287.53,
                                      Prob value =
                                                           .00000
  | Diagnostic: Log-L = -1981.8929, Restricted(b=0) Log-L = -4702.9930
              LogAmemiyaPrCrt.= -1.044, Akaike Info. Crt.=
10
                                  .824207
  | Estd. Autocorrelation of e(i,t)
  +----+
  |Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X|
15
                          . 35333572
                                         9.207
                                               .0000 8.1226219
  LGDP
           3.253033758
16
                          .21296400E-01
                                        -7.163 .0000 66.974400
  LGDPSQ
          -.1525441984
```

6.3 Random Country Effects

```
Test Statistics for the Classical Model
3
          Model
                                          Sum of Squares
                         Log-Likelihood
                                                          R-squared
  (1)
       Constant term only
                           -4702.99293 .8106573979D+04
                                                           .0000000
       Group effects only
   (2)
                           -2165.80845
                                        .8875037643D+03
                                                           .8905205
  (3)
        X - variables only -4168.53014
                                         .5087108121D+04
                                                           .3724713
        X and group effects -1981.89285
   (4)
                                         .7560200229D+03
                                                          .9067399
9
                                Hypothesis Tests
                Likelihood Ratio Test
                                                  F Tests
11
                       d.f. Prob.
                                               num. denom. Prob value
           Chi-squared
                                           F
12
  (2) vs (1) 5074.369
                         73
                                         247.367
                                                  73 2220
                                                              .00000
                                .00000
   (3) vs (1)
                         2
                                         679.914
                                                2 2291
                                                              .00000 |
             1068.926
                               .00000
                         75
                               .00000
  (4) vs (1) 5442.200
                                         287.533
                                                  75 2218
                                                              .00000 |
 (4) vs (2)
                         2
                                                2 2218
             367.831
                               .00000
                                         192.872
                                                              .00000
                             .00000
 (4) vs (3) 4373.275
                          73
                                         174.061
                                                  73 2218
                                                              .00000 |
19
```

```
20
                Random Effects Model: v(i,t) = e(i,t) + u(i)
21
               | Estimates:
                             Var[e]
                                                       .340857D+00
                              Var[u]
                                                       .193366D+01
23
                              Corr[v(i,t),v(i,s)] =
                                                       .850141
24
               | Lagrange Multiplier Test vs. Model (3) =24162.52
25
               | (1 df, prob value = .000000)
26
               | (High values of LM favor FEM/REM over CR model.) |
27
               | Fixed vs. Random Effects (Hausman)
                                                                5.94
28
               | (2 df, prob value = .051175)
               | (High (low) values of H favor FEM (REM).)
30
               | Reestimated using GLS coefficients:
31
                              Var[e]
                 Estimates:
                                                       .340899D+00
                              Var[u]
                                                       .208904D+01
33
                              Sum of Squares
                                                       .537828D+04
34
                              R-squared
                                                        .336553D+00
35
36
                             | Standard Error | b/St.Er.|P[|Z|>z]
38
39
   LGDP
                                                  9.347
                                                           .0000
              3.266327171
                                .34946779
                                                                  8.1226219
                                                 -7.210
                                                           .0000
   LGDPSQ
             -.1520906198
                                .21094792E-01
                                                                  66.974400
41
                                                -14.718
                                                           .0000
   Constant -21.37891105
                                1.4525931
```

6.4 Fixed Country and Time Effects

Unlike the individual stratification dummy variable, the time dummy variable must be a sequence of integers starting at $1, (1, 2, \ldots, T)$. As noted earlier, it is not necessary for every group to have data in every period; there may be gaps. With a balanced panel, it is possible to create the needed sequence using the CREATE Trn function. Also, knowing the starting date, one can subtract the starting year minus one to obtain the sequence. In our case, having 31 years, starting in 1960,

```
CREATE ; Time = Trn(-31,0) $
? or
CREATE ; Tt = year - 1959 $
```

LimDep will not print the time effects on the screen. To obtain the effects the output has to be saved in a file.

```
? Create file to save output
OPEN;Output=M:panel.out$
? panel with time effects
REGRESS ;Lhs=lsopc
;Rhs=lgdp,lgdpsq
;Str=country
;period=Time
;Output=2
;Panel$
```

```
| Least Squares with Group Dummy Variables and Period Effects
  | Ordinary
                least squares regression
                                             Weighting variable = none
  | Dep. var. = LSOPC
                         Mean= -5.033948624
                                                 , S.D.=
                                                            1.880254548
  | Model size: Observations =
                                   2294, Parameters = 107, Deg.Fr.=
  Residuals: Sum of squares= 727.7615281
                                                , Std.Dev.=
                                                                     .57686
                R-squared = .910185, Adjusted R-squared =
  | Fit:
                                                                     .90583
  | Model test: F[106,
                         2187] = 209.08,
                                              Prob value =
                                                                     .00000
  | Diagnostic: Log-L = -1938.1986, Restricted(b=0) Log-L =
                                                                 -4702.9930
                LogAmemiyaPrCrt.=
                                   -1.055, Akaike Info. Crt.=
                                                                      1.783
10
  | Estd. Autocorrelation of e(i,t)
                                         .811309
11
12
                            | Standard Error | b/St.Er. | P[|Z|>z] | Mean of X
  |Variable | Coefficient
14
   LGDP
             3.846522878
                               .36525929
                                               10.531
                                                         .0000 8.1226219
15
                                               -7.945
   LGDPSQ
            -.1706012228
                               .21473304E-01
                                                         .0000
                                                                66.974400
16
   Constant -24.85188530
                               1.5617902
                                              -15.912
                                                         .0000
```

Now the file panelie.out will contain the Time effects. Figure 2 shows the time effects with the two standard errors bands.

17 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840			
1 .16217 .07128 2.2750 4 2 .15322 .07080 2.1642 5 3 .07063 .07010 1.0074 6 4 .15818 .06958 2.2733 7 5 .16781 .06896 2.4334 8 6 .17013 .06848 2.4843 9 .15860 .06791 3.0481 10 .8 .20700 .06791 3.0481 11 .9 .15860 .06755 2.3478 12 10 .10664 .06715 1.5879 13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 17 15 .05629 .06693 .8410 10 16 01857 .06694 2774	~~	Ctandard Error t	-ro+io
4 2 .15322 .07080 2.1642 5 3 .07063 .07010 1.0074 6 4 .15818 .06958 2.2733 7 5 .16781 .06896 2.4334 8 6 .17013 .06848 2.4843 9 .19815 .06816 2.9069 10 8 .20700 .06791 3.0481 11 9 .15860 .06755 2.3478 12 10 .10664 .06715 1.5879 13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06691 2.2484 16 14 .06100 .06683 .9127 15 .05629 .06693 .8410 18 16 01857 .06694 2774 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 <th></th> <th></th> <th></th>			
5 3 .07063 .07010 1.0074 6 4 .15818 .06958 2.2733 7 5 .16781 .06896 2.4334 8 6 .17013 .06848 2.4843 9 7 .19815 .06816 2.9069 10 8 .20700 .06791 3.0481 11 9 .15860 .06755 2.3478 12 10 .10664 .06715 1.5879 13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983			
6 4 .15818 .06958 2.2733 7 5 .16781 .06896 2.4334 8 6 .17013 .06848 2.4843 9 7 .19815 .06816 2.9069 10 8 .20700 .06791 3.0481 11 9 .15860 .06755 2.3478 12 10 .10664 .06715 1.5879 13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 18 16 01857 .06694 2774 19 17 05375 .06704 8017 19 1,0770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 <th></th> <th></th> <th></th>			
7 5 .16781 .06896 2.4334 8 6 .17013 .06848 2.4843 9 7 .19815 .06816 2.9069 10 8 .20700 .06791 3.0481 11 9 .15860 .06755 2.3478 12 10 .10664 .06715 1.5879 13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 </th <th></th> <th></th> <th></th>			
8 6 .17013 .06848 2.4843 9 7 .19815 .06816 2.9069 10 8 .20700 .06791 3.0481 11 9 .15860 .06755 2.3478 12 10 .10664 .06715 1.5879 13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 17 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 <			
9 7 .19815 .06816 2.9069 10 8 .20700 .06791 3.0481 11 9 .15860 .06755 2.3478 12 10 .10664 .06715 1.5879 13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 17 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06767 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06762			
10 8 .20700 .06791 3.0481 11 9 .15860 .06755 2.3478 12 10 .10664 .06715 1.5879 13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 17 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06767 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06762			
11 9 .15860 .06755 2.3478 12 10 .10664 .06715 1.5879 13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 17 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 <th></th> <th></th> <th></th>			
12 10 .10664 .06715 1.5879 13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 17 .15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .0676			
13 11 .15045 .06691 2.2484 14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 17 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .067			
14 12 .12153 .06680 1.8192 15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 17 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .0			
15 13 .06982 .06678 1.0456 16 14 .06100 .06683 .9127 17 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840			
16 14 .06100 .06683 .9127 17 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	80	.06680 1	81925
17 15 .05629 .06693 .8410 18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	78	.06678 1	.04561
18 16 01857 .06694 2774 19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	83	.06683	91276
19 17 05375 .06704 8017 20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	93	.06693	.84101
20 18 03203 .06719 4767 21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	94	.06694 -	. 27743
21 19 10770 .06738 -1.5983 22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	04	.06704 -	.80177
22 20 10525 .06753 -1.5586 23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	19	.06719 -	47673
23 21 06862 .06757 -1.0156 24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	38	.06738 -1	. 59833
24 22 06066 .06764 8968 25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	53	.06753 -1	. 55860
25 23 09541 .06756 -1.4122 26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	57	.06757 -1	.01567
26 24 15720 .06749 -2.3290 27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	64	.06764 -	.89681
27 25 15758 .06757 -2.3323 28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	56	.06756 -1	41226
28 26 15921 .06762 -2.3543 29 27 16811 .06774 -2.4818 30 28 17548 .06791 -2.5840	49	.06749 -2	.32904
29 2716811 .06774 -2.4818 30 2817548 .06791 -2.5840	57	.06757 -2	. 33230
30 2817548 .06791 -2.5840	62	.06762 -2	. 35438
	74	.06774 -2	48181
29 - 18165 06803 -2 6700	91	.06791 -2	. 58407
31 2918165 .06803 -2.6700	03	.06803 -2	67004
3021141 .06822 -3.0991	22	.06822 -3	.09910
3125898 .06829 -3.7920	29	.06829 -3	79209

Figure 2: Time Effects for World Plus or Minus Two sd.

7 Model specification: OLS Vs. Individual Effects, Fixed Vs. Random Effects

First, the (Breusch and Pagan) LM-test is used to test the hypothesis that individual effects are significant. If these tests do not provide any evidence for individual effects, then the model can simply be estimated by ordinary least squares (OLS).

Second, the Hausman test is used to decide whether the regressors are correlated with the individual effect.

The large value of the LM statistic argues in favor of the of a panel data model, the small Hausman statistic argues in favor of the random effect model. A small Hausman statistic argues in favor of the random effect model, a large in favor of a fixed effects one.

Note that:

- you can suppress one of the panel models by including the subcommands Fixed or Random
- it is not necessary to include **ONE** amongst the regressors
- to obtain a list of the fixed effects use the ; Output = 2 subcommand

8 Selecting a Subsample

```
INCLUDE; oe=1; new$

?Or exclude the observations such that oe=0.

?REJECT; oe=0$

REGRESS; Lhs=lsopc; Rhs=ONE, lgdp, lgdpsq; Str=country; period=year;
Panel$
```

9 EKC Computations

When you estimate a model, the estimation results are displayed on the screen and in the output file if one is open. In addition, each model produces a number of results which are saved automatically and can be used in subsequent procedures and commands.

```
| Least Squares with Group Dummy Variables and Period Effects
  | Ordinary
              least squares regression
                                       Weighting variable = none
                                           , S.D.=
  | Dep. var. = LSOPC
                      Mean= -5.033948624
                                                    1.880254548
  | Model size: Observations =
                              2294, Parameters = 107, Deg.Fr.=
                                                              2187
  | Residuals:
              Sum of squares= 727.7615281
                                          , Std.Dev.=
                                                            .57686
              R-squared = .910185, Adjusted R-squared =
  | Fit:
                                                            .90583
  | Model test: F[106,
                      2187] = 209.08,
                                        Prob value =
                                                            .00000
   Diagnostic: Log-L = -1938.1986, Restricted(b=0) Log-L =
                                                        -4702.9930
              LogAmemiyaPrCrt.=
                               -1.055, Akaike Info. Crt.=
10
  | Estd. Autocorrelation of e(i,t)
                                    .811309
   _____
       13
  |Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X|
  +----+
           3.846522878
                                         10.531
                                                 .0000 8.1226219
                           . 36525929
16
                                         -7.945
  LGDPSQ
          -.1706012228
                           .21473304E-01
                                                 .0000
                                                       66.974400
17
  Constant -24.85188530
                           1.5617902
                                        -15.912
                                                 .0000
19
  Matrix ; list ; B $
20
21
                has 3 rows and 1 columns.
 Matrix Result
               1
24
        1| .3846523D+01
25
        2 - . 1706012D+00
        3| -.2485189D+02
27
28
  --> CALC; LIST; TP= -B(1)/(2*B(2)) $
            = .11273432910213310D+02
     TP
30
  --> CALC; LIST; exp(TP)$
31
     Result = .78702713292846510D+05
32
  --> CALC; LIST; VARTP=1/B(2)^2 * (
            VARB(1.1)
                       + (B(1)/B(2))^2 * VARB(2,2)
35
                       -2*(B(1)/B(2))*VARB(1,2)
36
```

```
) $ VARTP = .63112066734721470D+00
```

```
Matrix; list; Varb $

Matrix Result has 3 rows and 3 columns.

1 2 3

+------

1 .1334143D+00 -.7749469D-02 .0000000D+00

2 | -.7749469D-02 .4611028D-03 .000000D+00

3 | .0000000D+00 .000000D+00 .2439189D+01
```

10 Exercise (Due by noon on Friday the 16th of February 2002)

Following Common and Stern's (2001) paper and data provided on the course web page,

- Estimate the EKC for the world data.
- Discuss the economic and statistical significance of the coefficients for GDP in the world equation.
- Based on the Hausman statistic decide which model, fixed or random, should be used.
- A high Hausman statistic implies that there is correlation between country effects and income variables. What could be the most likely cause of this problem?
- Compute the relevant turning points of the estimated curves for the world, OECD and non-OECD regressions.
- How could trade account for the differences in turning point estimates when estimating the EKC for only OECD and only non-OECD countries? Explain.
- Obtain, plot and interpret the fixed time effects for the OECD sample.