1.5 Standardkonstruktionen

A) Produkte

Seien X, Y nVRe. Dann:

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$
ist ein nVR bzgl.

$$||(x,y)||_p = \begin{cases} (||x||_X^p + ||y||_Y)^{\frac{1}{p}}, & 1 \le p < \infty \\ \max\{||x||_X, ||y||_Y\}, & p = \infty \end{cases}$$

Diese Normen sind alle äquivalent.

Sind X, Y vollständig, dann ist $(X \times Y, ||\cdot||_p)$ ein BR.

Definition Sei Z ein nVR und $P \in B(Z)$ mit $P = P^2$. Dann heißt P **Projektion**.

Hier ist die kanonische Projektion auf X gegeben durch P(x,y) = (x,0).

B) Diskrete Summe

Definition 1.72 Seien X_1, X_2 abg. UVRe eines BRes X mit $X_1 + X_2 = X$ und $X_1 \cap X_2 = \{0\}$. Dann ist X die **direkte Summe** von X_1 und X_2 . Mann schreibt $X = X_1 \oplus X_2$.

 X_2 heißt dann **Komplement** von X_1 in X.

Lemma 1.73 Sei X ein BR und $P \in B(X)$ eine Projektion. Dann ist $Q = I - P \in B(X)$ auch eine Projektion und es gelten $R(P) = N(Q) =: X_1, N(P) = R(Q) =: X_2, X = X_1 \oplus X_2$. Man hat $||P|| \ge 1$, wenn $P \ne 0$.

Beweis $Q^2 = I - 2P + P^2 = I - P = Q$.

Falls y = Px für ein $x \in X \Longrightarrow Qy = Px - P^2x = 0$.

Falls Qx = 0 für ein $x \in X \Longrightarrow x - Px = 0 \Longleftrightarrow x = Px \Longrightarrow x \in R(P) \Longrightarrow R(P) = N(Q)$. Also ist $X_1 = N(Q) = R(P)$ abgeschlossen (1.16). Genauso: X_2 .

Ist $x \in X \Longrightarrow x = Px + (I - P)x \in X_1 \oplus X_2$. Wenn $x \in X_1 \cap X_2 \Longrightarrow Px = 0$ und x = Py für ein $y \in X \Longrightarrow x = P^2y = Px = 0 \Longrightarrow X_1 \cap X_2 = \{0\}$. Schließlich: $||P|| = ||P^2|| \le ||P||^2 \Longrightarrow ||P|| \ge 1$, falls $P \ne 0$.

Umkehrung:

Sei $X = X_1 \oplus X_2$. Dann existiert für jedes $x \in X$ eindeutig bestimmte $x_1 \in X_1, x_2 \in X_2$ mit $x = x_1 + x_2$. Setze $Px = x_1$. Dann ist P linear und $P = P^2$. Ferner ist P stetig nach dem Homomorphiesatz (Kap. 3). Somit ist die Existenz direkter Zerlegungen und Projektionen äquivalent.

Beispiel 1.74 a) $X = L^1(\mathbb{R})$. $Pf := \mathbb{1}_{\mathbb{R}^+} \cdot f$, $f \in X \Rightarrow P \in B(X)$, ||P|| = 1, $P = P^2$. Ferner: $(I - P)f = \mathbb{1}_{(-\infty,0)} \cdot f$. Die Abbildung $J : R(P) \to L^1(\mathbb{R}^+)$, $Jf = f_{|\mathbb{R}^+}$ ist stetig und linear mit stetiger Inverser

$$J^{-1}g = \begin{cases} g, & \text{auf } \mathbb{R}^+ \\ 0, & \text{auf } (-\infty, 0) \end{cases}$$

 $\Rightarrow R(P) \equiv L^1(\mathbb{R}^+)$. Entsprechend: $N(P) \equiv L^1(\mathbb{R}_-) \Rightarrow L^1(\mathbb{R}) \equiv L^1(\mathbb{R}^+) \oplus L^1(\mathbb{R}_-)$

b) c_0 hat kein Komplement in ℓ^{∞} (Werner, IV 6.5)

c)
$$X = \mathbb{R}^2, P = \begin{pmatrix} 1 & t \\ 0 & 0 \end{pmatrix}, t \in \mathbb{R}.P^2 = P \text{ und } ||P|| = 1 + |t| \text{ bzgl. } ||\cdot||_1. P \text{ ist Projection auf } x-\text{Achse.}$$

Quotienten

Seien X nVR, Y ein UVR.

$$X_{/Y} = \{\hat{x} = x + Y, x \in X\}$$
 Quotientenraum

Die Quotientenabbildung $\Pi: X \to X_{/Y}, \Pi X = \hat{X}$ ist wohldefiniert, linear und surjektiv. Man schreibt codim $Y = \dim X_{/Y}$. Es gilt $N(\Pi) = Y$. Definiere $||\hat{x}|| = \inf_{y \in Y} ||x-y|| := d(x,Y)$ Quotientennorm. Gilt $\overline{x} + Y = x + Y$ für gewisse $x, \overline{x} \in X$, dann gilt: $\overline{x} - x \in Y \Rightarrow d(x,Y) = d(\overline{x},Y) \Rightarrow$ Quotientennorm wohldefiniert. Sei $\alpha \in \mathbb{K} \setminus \{0\}$. Dann:

$$||\hat{\alpha x}|| = \inf_{y \in Y} ||\alpha x - \frac{\alpha}{\alpha} y|| = |\alpha| \inf_{z \in Y} ||x - z|| = |\alpha| \cdot ||\hat{x}||$$

Sei nun Y abgeschlossen. Ist $||\hat{x}|| = 0$, dann ex $y_n \in Y$ mit $||x - y_n|| \to 0$ $(n \to \infty)$. Da Y abg $\Rightarrow x \in Y \Rightarrow \hat{x} = 0$ und $X_{/_Y}$ ist nVR.

Weiter: $||\Pi(x)|| = ||\hat{x}|| \le ||x||_X \Longrightarrow \Pi \in B(X, X_{/_Y}) \text{ mit } ||\Pi|| \le 1.$

Satz 1.75 Sei X ein BR und Y ein abg UVR von X. Dann ist $(X_{/Y}, ||\cdot||)$ ein BR $(||\cdot|| Quotientennorm)$ und $\Pi \in B(X, X_{/Y}), ||\Pi|| = 1.$

Beweis Sei \overline{x} wie in Lemma 1.51. Dann gilt: $||\Pi|| \ge ||\Pi \overline{x}|| = \inf_{y \in Y} ||\overline{x} - y|| \ge 1 - \delta$ für ein bel $\delta \in (0, 1) \stackrel{\delta \to 0}{\Rightarrow} ||\Pi|| = 1$.

Sei $(\hat{x_n})_{n\in\mathbb{N}}$ eine CF in $X_{/Y}$. Dann ex eine Teilfolge $(\hat{x}_{n_k})_{k\in\mathbb{N}}$ mit $||\hat{x}_m - \hat{x}_{n_k}|| \le 2^{-k}$ (*) für alle $x \ge n_k$. Dann ex $y_{n_k} \in Y$ mit $||x_{n_{k+1}} - x_{n_k} - y_{n_k}|| \le 2 \cdot 2^{-k}$. Setze $v_N = x_{n_1} + \sum_{k=1}^N z_k$, wobei $z_k = x_{n_{k+1}} - x_{n_k} - y_{n_k}$. $X \text{ BR} \Rightarrow \exists x := \lim_{N \to \infty} v_n \in X$. Weiter gilt:

$$v_N = x_{n_{N+1}} - \sum_{\substack{k=1 \ \in Y}}^N y_{n_k} \stackrel{\text{II stetig}}{=} \underbrace{\hat{v}_N}_{\hat{x}_{n_{N+1}}} \to \hat{x} \text{ in } X_{/Y}$$

Beachte: $\hat{v}_N = \hat{x}_{n_{N+1}}$. Wie in Th 1.42 folgt aus (*), dass $\hat{x}_n \to \hat{x}$.

Beispiel 1.76 a) Sei $X = Y \oplus Z$, X BR. Setze $J : Z \to X_{/Y}$, $Jz = \hat{z} = z + Y \Rightarrow J$ ist linear und stetig. Sei $Jz = 0 \Rightarrow \hat{z} = 0 \Rightarrow z \in Y \stackrel{z \in X}{\Rightarrow} z \in X \cap Y \Rightarrow z = 0$. Für alle $\hat{x} \in X_{/Y}$ ex. $y \in Y, z \in Z$ mit x = z + y, also: $\hat{x} = Jz \Rightarrow J$ ist surjektiv. Mit dem Homomorphiesatz (Kap. 3) folgt: J^{-1} ist steitg $\Rightarrow Z \cong X_{/Y}$, z.B. $L^1(\mathbb{R}_+) \cong L^1(\mathbb{R})_{/L^1(\mathbb{R}_+)}$.

Beachte: $\ell_{/c_0}^{\infty}$ kann nicht mit einem Teilraum von ℓ^{∞} identifiziert werden, d.h. C) ist allgemeiner als B).

b) $c = c_0 \cdot \mathbb{C}$ mit Projektion $Px = x - \ell(x) \mathbb{1}$ $(\ell(x) = \lim_{n \to \infty} x_n)$, also ist $c_{/c_0} \cong \mathbb{C}$, d.h. codim $c_0 = 1$.

Beachte: Mit anderem Isomorphismus gilt: $c \cong c_0$ (nach Bsp 1.71)

Satz 1.77 Sei X nVR und $Y \subseteq X$ ein abg. UVR. Sei $T \in B(X)$ mit $TY = \{Ty : y \in Y\} \subseteq Y$.

Dann def. $\hat{T}\hat{x} := Tx$ einen Operator $\hat{T} \in B(X_{/Y}, X)$ mit $||\hat{T}|| \le ||T||$.

Beweis Sei $\hat{x} = \hat{u} \Rightarrow x - u \in Y$. Dann: $T(x - u) \in Y$

...Vorlesungsende, Beweis in der nächste Stunde fertig...