Àlgebra Lineal M1 - FIB

Continguts:

- 5. Matrius, sistemes i determinants
- 6. Espais vectorials
- 7. Aplicacions lineals
- 8. Diagonalització

Anna de Mier Montserrat Maureso

Dept. Matemàtica Aplicada II Febrer 2012

5. Matrius, sistemes i determinants5.2 Sistemes d'equacions lineals

Sistemes d'equacions lineals

Una **equació lineal** en les variables x_1, \ldots, x_n és una expressió del tipus

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b,$$

on a_1, \ldots, a_n, b pertanyen al cos d'escalars \mathbb{K}

Una **solució** és $(s_1, \ldots, s_n) \in \mathbb{K}^n$ tal que

$$a_1s_1 + a_2s_2 + \cdots + a_ns_n = b$$

(Obs. Una equació lineal pot tenir entre zero i infinites solucions)

Exemple: quincs de les equacions seguents són lineals en x, y, 2?

	LINEAL?
3x - y + z = 1	51
2x - (sin # y + = = 2	51
$3\times -\frac{4}{y} + 2 = 2$	NO
x + (yz) = 5	NO
X-y (22)=1	NO
$X + (\sin y) + 2 = -3$	NO

Sistemes d'equacions lineals

Un **sistema d'equacions lineals** és un conjunt d'equacions lineals (totes amb les mateixes variables x_1, \ldots, x_n)

La forma genèrica d'un sistema d'equacions lineals seria doncs:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ & \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

Una **solució del sistema** és una *n*-upla $(s_1, \ldots, s_n) \in \mathbb{K}^n$ que és solució de totes les equacions del sistema

Solucions d'un sistema

Direm que un sistema és

- incompatible si no té cap solució
- compatible determinat si té una única solució
- compatible indeterminat si té més d'una solució

La **solució general** d'un sistema és el conjunt de totes les seves solucions

Dos sistemes són equivalents si tenen la mateixa solució general

Sistemes equivalents

Dos sistemes amb les mateixes equacions però ordenades de manera diferent són equivalents

I si en un sistema

- multipliquem una equació per un escalar (no nul), o bé
- a una equació li sumem un múltiple d'una altra

el sistema resultant és equivalent al primer

Matriu associada a un sistema

Donat el sistema

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

la seva **matriu associada** i les matrius de variables i de termes independents són

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Podem escriure el sistema com un producte de matrius:

$$Ax = b$$

Exemple. Matriu associada al ristema:

$$\begin{pmatrix} 3 & -2 & 4 \\ 1 & 1 & -2 \\ 4 & -1 & 5 \\ 3 & 3 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 2 \end{pmatrix}$$

$$A \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = b$$

sistema expressat de de forma matricial.

Matriu ampliada

La matriu ampliada és la matriu (A|b), és a dir,

$$(A|b) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Obs. Si es realitzen transformacions elementals a la matriu ampliada d'un sistema, el sistema resultant és equivalent al primer

Per tant, tot sistema d'equacions lineals és equivalent a un en què

la matriu ampliada és (escalonada reduida: hi ha zeros dament dels pivots (és a dir, a la columna del pivot, els elements diferents del pivot són tots zeros)

Sistemes escalonats

Un sistema escalonat genèric seria

$$\begin{cases} x_1 + c_{12}x_2 + c_{13}x_3 + \dots + c_{1r}x_r + \dots + c_{1n}x_n &= d_1 \\ x_2 + c_{23}x_3 + \dots + c_{2r}x_r + \dots + c_{2n}x_n &= d_2 \\ & \vdots & \vdots \\ x_r + \dots + c_{rn}x_n &= d_r \end{cases}$$
(si cal reordenem les variables)

Les variables x_1, \ldots, x_r les anomenarem principals i la resta les anomenarem lliures

Podem resoldre el sistema aïllant "cap amunt"

La variable principal x_r la podem aïllar en termes de les variables lliures:

$$x_r = d_r - c_{r,r+1}x_{r+1} - \cdots - c_{rn}x_n$$

Ara podem aïllar x_{r-1} en termes de x_r i de les variables lliures, etc

Solució general d'un sistema escalonat

En un sistema escalonat podem expressar totes les variables principals en termes de les lliures (i de constants escalars):

$$x_1 = f_1 + e_{1,r+1}x_{r+1} + \cdots + e_{1,n}x_n$$

 $x_2 = f_2 + e_{2,r+1}x_{r+1} + \cdots + e_{2,n}x_n$
 \vdots \vdots
 $x_r = f_r + e_{r,r+1}x_{r+1} + \cdots + e_{r,n}x_n$

Aquesta és la solució general del sistema

Obs. Per a cada assignació de valors que donem a les variables lliures x_{r+1}, \ldots, x_n obtindrem una solució particular del sistema

Diem que el sistema té n-r graus de llibertat

Si tenim una matriu reduida equivalent el sistema té les mateixes solucions que el sistema que comes por a aquesta matriu reduida aquivalent i per a donar el conjunt de totes les solucions podem aillar directament les variables principals (les que corresponen a les columnes dels pivots) i donar-les en frució de les variables llures (la resta de variables):

SOLUCIONS:

$$X_1 = -2x_2 - 3x_5 + 2x_6 + 4$$

 $X_3 = x_5 - 4x_6 + 5$ $x_2, x_5, x_6 \in \mathbb{K}$
 $x_4 = -5x_5 + x_6 + 2$

Exemple.

Si el sistema és equivalent a un sistema amb matriu reduida:

aleshores no té solució perque la quarta equació equival a:

$$0 x_1 + 0 x_2 + 0 x_3 + 0 x_4 + 0 x_5 + 0 x_6 = 3$$

$$= 3$$

que no es compleix mai!

Forma paramètrica de la solució general

Si la solució general d'un sistema és

$$x_1 = f_1 + e_{1,r+1}x_{r+1} + \dots + e_{1,n}x_n$$

 $x_2 = f_2 + e_{2,r+1}x_{r+1} + \dots + e_{2,n}x_n$
 \vdots \vdots
 $x_r = f_r + e_{r,r+1}x_{r+1} + \dots + e_{r,n}x_n$

anomenarem forma paramètrica de la solució a l'expressió

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_r \\ x_{r+1} \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_r \\ 0 \\ \vdots \\ 0 \end{pmatrix} + x_{r+1} \begin{pmatrix} e_{1,r+1} \\ e_{2,r+1} \\ \vdots \\ e_{r,r+1} \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \cdots + x_n \begin{pmatrix} e_{1,n} \\ e_{2,n} \\ \vdots \\ e_{r,n} \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Discussió de sistemes: el teorema de Rouché-Frobenius

Teorema

Considerem un sistema d'equacions lineals que té matriu associada $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ i matriu ampliada (A|b)

Sigui r el rang d'A i sigui r' el rang de (A|b)

Aleshores.

- $r \neq r'$: \triangleright si r < r', el sistema és incompatible (SI)
- r = r' si r = r' = n, el sistema és compatible determinat (SCD) si r = r' < n, el sistema és compatible indeterminat (SCI)
 - amb n-r graus de llibertat

Anomenarem rang d'un sistema lineal compatible al rang de la matriu associada

Sistemes homogenis

Un sistema d'equacions lineals és **homogeni** si tots els termes independents són iguals a 0

Obs. Un sistema homogeni sempre és compatible (ja que tenim la solució trivial $x_1 = \cdots = x_n = 0$)

Corol·lari

Sigui A la matriu associada a un sistema homogeni en n variables; sigui r el rang d'A. Aleshores

- si r = n, el sistema és compatible determinat i l'única solució és la trivial
- ightharpoonup si r < n, el sistema és compatible indeterminat i té alguna solució diferent de la trivial

Resolució de sistemes d'equacions lineals

Sistema de m equacions lineals i n incògnites:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

Matriu ampliada associada al sistema:

$$(A|b) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Resolució de sistemes d'equacions lineals

- $rang A \neq rang(A|b)$: sistema incompatible.
- rang A = rang(A|b) = r = n: sistema compatible determinat.
- rang A = rang(A|b) = r < n: sistema compatible indeterminat.

Solucions. Si (A|b) és equivalent per files a una matriu escalonada amb zeros damunt dels pivots (matriu escalonada reduida), podem donar les r variables corresponents a les columnes dels pivots (variables principals)

en funció de la resta de n-r variables (variables lliures).

Direm que el sistema té n-r graus de llibertat.

$$(A|b) \sim egin{pmatrix} 1 & 0 & 0 & 1 \ 0 & 1 & 0 & 2 \ 0 & 0 & 1 & 3 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $rang A = rang(A|b) = 3 \Rightarrow$ Sistema Compatible Determinat

Solucions. La solució és única, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$.

$$(A|b) \sim egin{pmatrix} 1 & -2 & 0 & 0 & 3 & 0 & 4 & 1 \ 0 & 0 & 1 & 0 & -1 & 5 & 0 & 2 \ 0 & 0 & 0 & 1 & 2 & -2 & 2 & 3 \ 0 & 0 & 0 & 0 & 0 & 0 & 3 \ 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

 $rang A = 3 \neq 4 = rang(A|b) \Rightarrow$ Sistema Incompatible

rang A = rang(A|b) = 3 < 7 = nombre d'incògnites \Rightarrow Sistema Compatible Indeterminat amb 4 graus de llibertat

Solucions. Donem x_1, x_3, x_4 en funció de x_2, x_5, x_6, x_7 :

$$x_1 = 1 + 2x_2 - 3x_5 - 4x_7$$

 $x_3 = 2 + x_5 - 5x_6$ on $x_2, x_5, x_6, x_7 \in \mathbb{K}$
 $x_4 = 3 - 2x_5 + 2x_6 - 2x_7$

Exemple 3 (cont.)

Solucions en forma paramètrica.

 x_1, x_3, x_4 en funció de x_2, x_5, x_6, x_7 :

$$x_1 = 1 + 2x_2 - 3x_5 - 4x_7$$

 $x_3 = 2 + x_5 - 5x_6$ on $x_2, x_5, x_6, x_7 \in \mathbb{K}$
 $x_4 = 3 - 2x_5 + 2x_6 - 2x_7$

Forma paramètrica:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 1 + 2x_2 - 3x_5 - 4x_7 \\ x_2 \\ 2 + x_5 - 5x_6 \\ 3 - 2x_5 + 2x_6 - 2x_7 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -3 \\ 0 \\ 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_6 \begin{pmatrix} 0 \\ 0 \\ -5 \\ 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_7 \begin{pmatrix} -4 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

on
$$x_2, x_5, x_6, x_7 \in \mathbb{K}$$

Exemple 4. Sistema homogeni

rang A = rang(A|b) = 3 < 7 = nombre d'incògnites \Rightarrow Sistema Compatible Indeterminat amb 4 graus de llibertat

Solucions. Donem x_1, x_3, x_4 en funció de x_2, x_5, x_6, x_7 :

$$x_1 = 2x_2 - 3x_5 - 4x_7$$

 $x_3 = x_5 - 5x_6$ on $x_2, x_5, x_6, x_7 \in \mathbb{K}$
 $x_4 = -2x_5 + 2x_6 - 2x_7$

Exemple 4 (cont.)

Solucions en forma paramètrica.

 x_1, x_3, x_4 en funció de x_2, x_5, x_6, x_7 :

$$\begin{cases} x_1 = 2x_2 - 3x_5 - 4x_7 \\ x_3 = x_5 - 5x_6 \\ x_4 = 2x_5 + 2x_6 - 2x_7 \end{cases} \quad on \quad x_2, x_5, x_6, x_7 \in \mathbb{K}$$

Forma paramètrica:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 2x_2 - 3x_5 - 4x_7 \\ x_2 \\ x_5 - 5x_6 \\ -2x_5 + 2x_6 - 2x_7 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -3 \\ 0 \\ 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_6 \begin{pmatrix} 0 \\ 0 \\ -5 \\ 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_7 \begin{pmatrix} -4 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

on $x_2, x_5, x_6, x_7 \in \mathbb{K}$

EXEMPLE DE DISCUSSIÓ DE SISTEMA

$$\begin{cases} a \times + b y + 2 = 1 \\ x + aby + 2 = b \end{cases} \quad \text{en } \mathbb{R}$$

$$x + by + a = 1$$

$$\begin{cases} a & b & 1 & 1 \\ 1 & ab & 1 & b \\ 1 & b & a & 1 \end{cases} \quad \begin{cases} a & b & 1 & 1 \\ 1 & ab & 1 & b \\ 1 & b & a & 1 \end{cases} \quad \begin{cases} a & b & 1 & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \\ 1 & ab & 1 & b \end{cases} \quad \begin{cases} a & b & a & 1 \\ 1 & ab & 1 & b \\$$

RETUM DE CASOS:

Es pot comprovar que és equivalent a:

$$a = 1$$

$$b = 1 : S.C.J.$$

$$b \neq 1 : S.J$$

$$a = -2 : b = -2 : S.C.J.$$

$$b \neq -2 : S.J.$$

$$a \neq 1, -2 : b = 0 : S.J.$$

$$a \neq 1, -2 : b \neq 0 : S.C.D.$$