```
In [2]: import numpy as np
   import pandas as pd
   import seaborn as sns
   from matplotlib import pyplot as plt
```

In [4]: pima_data.head()

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288
4							•

In [5]: pima_data.describe()

Out[5]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	_
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							•

In [6]: df=pima_data

9/8/2020

```
diabetic
In [7]: df.isnull().sum()
Out[7]: Pregnancies
                                      0
        Glucose
                                      0
         BloodPressure
                                      0
        SkinThickness
                                      0
         Insulin
                                      0
         BMI
                                      0
        DiabetesPedigreeFunction
                                      0
        Age
                                      0
         Outcome
                                      0
         dtype: int64
In [8]: sns.countplot(x="Outcome",data=df)
Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x2a1d2f76608>
            500
            400
            300
            200
```

```
In [9]:
         x=df.iloc[:,:-1]
In [10]:
         y=df.iloc[:,-1]
         x=np.c_[np.ones((x.shape[0], 1)), x]
In [11]:
         y = y[:, np.newaxis]
In [12]:
In [13]:
         def sigmoid(x, w):
             z= np.dot(x, w)
             #print(z)
             return 1/(1+np.exp(-z))
```

Outcome

i

100

0

ò

```
In [47]: | def cost_function(w,x, y):
              m = x.shape[0]
              dw=np.zeros((x.shape[1], 1))
              #h = sigmoid(x, w)
              for i in range(m):
                  h = sigmoid(x,w)
                  j=-(1/m)*np.sum(y*np.log(h) + (1-y)*np.log(1-h))
                  dw+=(1/m) * np.dot(x.T, (h-y))
                  W=W - (0.0001 * (dw))
              return w,j
In [54]: def gradient(w, x, y):
              c=[]
              for i in range(1000):
                  w,j=cost_function(w,x,y)
                  if i<100:
                      c.append(j)
              #print(h)
              return w,c
In [55]: | theta = np.zeros((x.shape[1], 1))
          theta.shape
Out[55]: (9, 1)
In [56]: | a,c=gradient(theta,x,y)
In [57]: a
Out[57]: array([[-8.40469637e+00],
                 [ 1.23182299e-01],
                 [ 3.51637197e-02],
                 [-1.32955408e-02],
                 [ 6.18975165e-04],
                 [-1.19169951e-03],
                 [ 8.97009297e-02],
                 [ 9.45179740e-01],
                 [ 1.48690062e-02]])
 In [ ]:
In [24]: b = sigmoid(x,a)
In [25]: | z=[]
```

```
In [27]: sns.countplot(z)
```

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x2a1d3307fc8>


```
In [28]: z.count(1)
```

Out[28]: 211

```
In [29]: accuracy = 0
    for i in range(0, len(z)):
        if z[i] == y[i]:
            accuracy += 1
            accuracy/len(y)
```

Out[29]: 0.7825520833333334

```
In [66]: plt.plot(c[:12])
    plt.ylabel('cost')

    plt.title('Cost reduction over time')
    plt.show()
```


In []: