Analysis Zusammenfassung MAX 10S

Manuel Strenge

Konzepte der Differential- und Integralrechnung

Komposition

Für zwei gegebene Funktionen $f:A\to B$ und $g:B\to C$, ist die Funktion $g\circ f:A\to C$ definiert durch

$$(g \circ f)(x) = g(f(x))$$

Diese neue Funktion heisst Komposition von f und g. (Andere Bezeichnungen: Verkettung, Nacheinanderausführung.)

Summenzeichen

$$a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k \ a_k + a_{k+1} + a_{k+2} + \dots + a_n = \sum_{k=1}^n a_k a_k$$

Begriff des Polynoms, Eigenschaften von Polynomen Definition

$$y = f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0 \text{ mit } a \neq 0$$

$\frac{1}{n}$:	Grad der Polynomfunktion
$a_0, a_1, \dots, a_n \in \mathbb{R}$:	Koeffizienten
Definitionsbereich	\mathbb{R}

Horner Schema

Ziel: Zu einem gegebenen x_0 (z.B. $x_0 = -2$) möglichst effizienten Wert $f(x_0)$ ausrechnen

Variante 1: Das Polynom normal ausrechnen. Problem dabei ist, dass sehr viele Multiplikationen dafür benötigt werden (z.B. für $n=10 \rightarrow 55$)

Effizienteres Verfahren Umformung, damit Multiplikation schrittweise erfolgen kann. Für ein Polynom vom Grad 4:

$$f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 = ((((a_4) \cdot x + a_3) \cdot x + a_2) \cdot x + a_1) \cdot x + a_0 + a_1 x + a_2 x^2 + a_1 x + a_0 = (((a_4) \cdot x + a_3) \cdot x + a_2) \cdot x + a_1) \cdot x + a_0 + a_1 x + a_1 x + a_2 x + a_1 x + a_2 x + a_1 x + a_2 x + a_2 x + a_2 x + a_2 x + a_1 x + a_2 x$$

Das Schema von Horner bietet eine übersichtliche Art, ein Polynom auf diese effiziente Weise auszurechnen. Veranschaulichung anhand des Beispiels:

$$f(x) = 3x^{4} - 2x^{3} + 5x^{2} - 7x - 12$$

$$a_{4} = 3$$

$$a_{3} = -2$$

$$b_{3} \cdot x_{0} = -6$$

$$b_{2} \cdot x_{0} = 16$$

$$b_{1} \cdot x_{0} = -42$$

$$b_{0} \cdot x_{0} = 98$$

$$b_{1} = 21$$

$$b_{0} = -49$$

$$f(x_{0}) = 86$$

Figure 1: Berechnung mit Horner Schema

Zerlegunssatz

Ist x_0 eine Nullstelle der Polynomfunktion f(x), dann gibt es eine bestimmte Polynomfunktion q(x), so dass gilt:

$$f(x) = (x - x_0) \cdot q(x)$$

für jedex x

Notation: Der Faktor $(x - x_0)$ heisst Linearfaktor. q(x) ist das sogenannte 1. reduzierte *Polynom:* der Grad von q(x) ist um eins kleiner als der Grad von f(x)

Nullstellen

Eine Polynomfunktion vom Grad n hat höchstens n Nullstellen

 x_0 heisst m -fache Nullstelle (oder Nullstelle der Multiplizität m) der Polynomfunktion f(x), falls es eine bestimmte Polynomfunktion g(x) gibt, so dass gilt:

$$f(x) = (x - x_0)^m \cdot g(x)$$

für jedex x

Beispiel Im Polynom $f(x) = (x-1)(x+3)(x-8)^2(x-6)^3$ ist 8 eine doppelte Nullstelle und 6 ist eine dreifache Nullstelle

Ableitung (Tangente, Kurvendiskussion)

• Die Ableitung einer Funktion an einer bestimmten Stelle gibt Auskunft über die Entwicklung, die Veränderung dieser Funktion.

Figure 2: Geometrische Interpretation

formale Bezeichnung	geometrische Beschreibung	Konkretisierung für Wegfunktion
Differezenquotient	Sekanten-Steigung	mittlere Geschwindigkeit
Ableitung	Tangentensteigung	Momentangeschwindigkeit

Die Funktion, die jeder Stelle x den Wert f'(x) zuordnet, wird Ableitungsfunktion von f genannt

Schreibweisen: $f'(x), \frac{df}{dx}, \frac{dy}{dx}$

Gegeben ist die Funktion $f(x) = x^k$ mit $k \neq 0$. Dann gilt: $f'(x) = k \cdot x^{k-1}$

Stammfunktion und Hauptsatz

Folgen und Reihen

Begriff der Folge (direkt, rekursiv, arithmetisch, geometrisch)

Grenzwertbegriff (Monotonie, Beschränktheit, Rechenregeln, Limes einer Funktion)

Reihen (Summenzeichen, arithmetisch, geometrisch)

Erweiterung der Differentialrechnung

Ableitung elementarer Funktionen

Ableitungsregeln

Faktorregel: $(c \cdot f)'(x) = c \cdot f'(x)$

Summerregel: (f+g)'(x) = f'(x) + g'(x)

Produktregel: $(u \cdot v)'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$

Quotienten regel: $\left(\frac{u}{v}\right)'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{(v(x))^2}$

Kettenregel $(F \circ u)'(x) = F'(u) \cdot u'(x)$

F(u): äussere Funktion $F'(u)=\frac{dF(u)}{du}$ Ableitung der äusseren Funktion nach u

u(x): äussere Funktion $u'(x)=\frac{du(x)}{dx}$ Ableitung der inneren Funktion nach x

Ableitung bestimmter Funktionen

- $(\sin(x))' = \cos(x)$

- $(\sin(x))' = \cos(x)$ $(\cos(x))' = -\sin(x)$ $(e^x)' = e^x$ $(a^x)' = a^x \cdot \ln(a)$ $(\ln(x))' = \frac{1}{x}$ $(\log_a(x))' = \frac{1}{x \cdot \ln(a)}$

Kurvendiskussion

Extremwertaufgaben

Newton-Verfahren

Die entsprechende Stelle x_1 liegt (im Vergleich zu x_0) in vielen Fällen schon ein Stück näher bei der gesuchten Lösung. Als nächstes betrachten wir die Tangente beim Punkt (x_1 , y_1). Diese schneidet die x-Achse an der Stelle x_2 , welche uns in der Regel noch ein bisschen näher zur Lösung bringt. Dieses Verfahren wiederholen wir, bis wir die Lösung z mit der gewünschten Genauigkeit bestimmt haben.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Figure 3: Visualisierung Newton-Verfahren