Stofftransport & Reaktionsgleichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunger

Reaktions-

Algenwachstum Szenarien

Gray-Scott

Stofftransport & Reaktionsgleichungen

Projekt zur Vorlesung Numerische Simulation WS16/17

P. Buchfink¹ E. Ott¹ M. Schleicher¹

¹Institut Universität Stuttgart

February 1, 2017

Wiederholung: Diffusions-Advektionsgleichung

Stofftransport & Reaktionsgleichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichungen

Reaktions-

Algenwachstum Szenarien

Gray-Scot

 $(\textit{Stochastic Problems in Physics and Astronomy}, \, \mathsf{Page} \,\, \mathsf{41}, \, \mathsf{S}. \,\, \mathsf{Chandrasekhar}, \, \mathsf{1943}, \, \mathsf{Reviews of Modern})$

Physics, American Physical Society)

Zeitschrittbeschränkung

Stofftransport & Reaktionsgle-ichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichungen

gleichungen

Algenwachstun

Gray-Scott

Für Diffusion:

$$\Delta t \leq \frac{\Delta x^2 \Delta y^2}{2D(\Delta x^2 + \Delta y^2)}$$

(http://pauli.uni-muenster.de/tp/fileadmin/lehre/NumMethoden/WS0910/ScriptPDE/Heat.pdf, Page 12)

Für Advektion: "Vererbt" von Beschränkung für Strömungslöser

Gesamtgleichung

Stofftransport & Reaktionsgleichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichungen

Reaktionsgleichunger

Algenwachstum

Gray-Scott

$$\frac{\partial s(\vec{x}, s, t)}{\partial t} = \nabla \cdot (D\nabla s(t, \vec{x})) - \nabla \cdot (\vec{v}s) + R(\vec{x}, s, t)$$

Erweitert um allgemeinen Reaktionsterm R

Lotka-Volterra-Modell

Stofftransport & Reaktionsgleichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunge

Reaktionsgleichungen

Algenwachstun Szenarien

Gray-Scot

R(s,t) nicht analytisch bestimmbar. Modelliert als System von ODEs.

$$\frac{ds_i}{dt} = \alpha_i s_i + \sum_{j=1}^n \beta_{ij} s_j$$

Zudem: $\beta_{ii} = -\frac{\alpha_i}{L}$ mit L als Wachstumsgrenze

(Principes de biologie mathématique, V. Volterra, Acta Biotheoretica, 1937, Volume 3, Issue 1, Pages 1–36)

Lotka-Volterra-Modell

Stofftransport & Reaktionsgleichungen

> P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunge

Reaktionsgleichungen

Algenwachstur

Gray-Scot

■ Zwei Substanzen A: Beute, B: Jäger

Feed Reaktion Kill
$$R_A(s_A, s_B) = p_A s_A(I_A - s_A) - \gamma_A s_A s_B$$

$$R_B(s_A, s_B) = + \gamma_B s_B s_A - p_B s_B(I_B - s_B)$$

- \blacksquare p_A Reproduktionsrate der Beute
- *I_A* Gleichgewichtspunkt der Beute
- \blacksquare γ_A Fressrate der Räuber pro Beutelebewesen
- $ightharpoonup \gamma_B$ Reproduktionsrate der Räuber pro Beutelebewesen
- *p_B* Sterberate der Räuber
- I_B Gleichgewichtspunkt der Räuber
- \blacksquare d_A , d_B Diffusions-Konstanten

Stofftransport & Reaktionsgleichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunger

Reaktions-

gleichungen
Algenwachstum

Stofftransport & Reaktionsgle-ichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunger

Reaktionsgleichungen

Algenwachstum Szenarien

Stofftransport & Reaktionsgleichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunger

Reaktionsgleichungen

Algenwachstum Szenarien

Stofftransport & Reaktionsgleichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunger

Reaktionsgleichungen

Algenwachstum Szenarien

Stofftransport & Reaktionsgle-ichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunge

Reaktionsgleichungen

Algenwachstun Szenarien

- Instabilität durch Parameter und Löser überlagert
- Löser lässt sich durch symplektische Verfahren ersetzen
- Parameterwahl nicht trivial, aber auch nicht willkürlich

Inspiration

Stofftransport & Reaktionsgleichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunger

Reaktions-

Algenwachstum Szenarien

Grav-Scott

Quelle: http://www.spiegel.de/wissenschaft/natur/bild-1042982-869697.html

Idee des Gray-Scott Modells

Stofftransport & Reaktionsgleichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunger

Reaktions-

Algenwachstum Szenarien

Gray-Scott

■ Zwei Substanzen A: Futter, B: Räuber

$$R_{A}(s_{A}, s_{B}, t, x) = f(1 - s_{A}) - s_{A}s_{B}^{2}$$
 $R_{B}(s_{A}, s_{B}, t, x) = +s_{A}s_{B}^{2} - (k + f)s_{B}^{2}$

Reaktion

Feed

- Kill-Rate k
- Feed-Rate f
- Diffusions-Konstanten d_A , d_B

Kill

Gray-Scott Modell ohne Advektion

Stofftransport & Reaktionsgle-ichungen

P. Buchfink, E. Ott, M. Schleicher

RAD-Gleichunger

Reaktions-

Algenwachstu Szenarien

Gray-Scott

Muster bekannt von

- Blättern
- Tierfellen (Rehe, Giraffen, Schmetterlinge, ...)
- Miktose

Quelle: http://www.karlsims.com/rd.html