

FIGURE 10.7. K-means clustering performed six times on the data from Figure 10.5 with K=3, each time with a different random assignment of the observations in Step 1 of the K-means algorithm. Above each plot is the value of the objective (10.11). Three different local optima were obtained, one of which resulted in a smaller value of the objective and provides better separation between the clusters. Those labeled in red all achieved the same best solution, with an objective value of 235.8.

10.3.2 Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to pre-specify the number of clusters K. Hierarchical clustering is an alternative approach which does not require that we commit to a particular choice of K. Hierarchical clustering has an added advantage over K-means clustering in that it results in an attractive tree-based representation of the observations, called a dendrogram.

In this section, we describe *bottom-up* or *agglomerative* clustering. This is the most common type of hierarchical clustering, and refers to the fact that a dendrogram (generally depicted as an upside-down tree; see

bottom-up agglomerative

FIGURE 10.8. Forty-five observations generated in two-dimensional space. In reality there are three distinct classes, shown in separate colors. However, we will treat these class labels as unknown and will seek to cluster the observations in order to discover the classes from the data.

Figure 10.9) is built starting from the leaves and combining clusters up to the trunk. We will begin with a discussion of how to interpret a dendrogram and then discuss how hierarchical clustering is actually performed—that is, how the dendrogram is built.

Interpreting a Dendrogram

We begin with the simulated data set shown in Figure 10.8, consisting of 45 observations in two-dimensional space. The data were generated from a three-class model; the true class labels for each observation are shown in distinct colors. However, suppose that the data were observed without the class labels, and that we wanted to perform hierarchical clustering of the data. Hierarchical clustering (with complete linkage, to be discussed later) yields the result shown in the left-hand panel of Figure 10.9. How can we interpret this dendrogram?

In the left-hand panel of Figure 10.9, each *leaf* of the dendrogram represents one of the 45 observations in Figure 10.8. However, as we move up the tree, some leaves begin to *fuse* into branches. These correspond to observations that are similar to each other. As we move higher up the tree, branches themselves fuse, either with leaves or other branches. The earlier (lower in the tree) fusions occur, the more similar the groups of observations are to each other. On the other hand, observations that fuse later (near the top of the tree) can be quite different. In fact, this statement can be made precise: for any two observations, we can look for the point in the tree where branches containing those two observations are first fused. The height of this fusion, as measured on the vertical axis, indicates how

FIGURE 10.9. Left: dendrogram obtained from hierarchically clustering the data from Figure 10.8 with complete linkage and Euclidean distance. Center: the dendrogram from the left-hand panel, cut at a height of nine (indicated by the dashed line). This cut results in two distinct clusters, shown in different colors. Right: the dendrogram from the left-hand panel, now cut at a height of five. This cut results in three distinct clusters, shown in different colors. Note that the colors were not used in clustering, but are simply used for display purposes in this figure.

different the two observations are. Thus, observations that fuse at the very bottom of the tree are quite similar to each other, whereas observations that fuse close to the top of the tree will tend to be quite different.

This highlights a very important point in interpreting dendrograms that is often misunderstood. Consider the left-hand panel of Figure 10.10, which shows a simple dendrogram obtained from hierarchically clustering nine observations. One can see that observations 5 and 7 are quite similar to each other, since they fuse at the lowest point on the dendrogram. Observations 1 and 6 are also quite similar to each other. However, it is tempting but incorrect to conclude from the figure that observations 9 and 2 are quite similar to each other on the basis that they are located near each other on the dendrogram. In fact, based on the information contained in the dendrogram, observation 9 is no more similar to observation 2 than it is to observations 8, 5, and 7. (This can be seen from the right-hand panel of Figure 10.10, in which the raw data are displayed.) To put it mathematically, there are 2^{n-1} possible reorderings of the dendrogram, where n is the number of leaves. This is because at each of the n-1 points where fusions occur, the positions of the two fused branches could be swapped without affecting the meaning of the dendrogram. Therefore, we cannot draw conclusions about the similarity of two observations based on their proximity along the horizontal axis. Rather, we draw conclusions about the similarity of two observations based on the location on the vertical axis where branches containing those two observations first are fused.

FIGURE 10.10. An illustration of how to properly interpret a dendrogram with nine observations in two-dimensional space. Left: a dendrogram generated using Euclidean distance and complete linkage. Observations 5 and 7 are quite similar to each other, as are observations 1 and 6. However, observation 9 is no more similar to observation 2 than it is to observations 8,5, and 7, even though observations 9 and 2 are close together in terms of horizontal distance. This is because observations 2,8,5, and 7 all fuse with observation 9 at the same height, approximately 1.8. Right: the raw data used to generate the dendrogram can be used to confirm that indeed, observation 9 is no more similar to observation 2 than it is to observations 8,5, and 7.

Now that we understand how to interpret the left-hand panel of Figure 10.9, we can move on to the issue of identifying clusters on the basis of a dendrogram. In order to do this, we make a horizontal cut across the dendrogram, as shown in the center and right-hand panels of Figure 10.9. The distinct sets of observations beneath the cut can be interpreted as clusters. In the center panel of Figure 10.9, cutting the dendrogram at a height of nine results in two clusters, shown in distinct colors. In the right-hand panel, cutting the dendrogram at a height of five results in three clusters. Further cuts can be made as one descends the dendrogram in order to obtain any number of clusters, between 1 (corresponding to no cut) and n (corresponding to a cut at height 0, so that each observation is in its own cluster). In other words, the height of the cut to the dendrogram serves the same role as the K in K-means clustering: it controls the number of clusters obtained.

Figure 10.9 therefore highlights a very attractive aspect of hierarchical clustering: one single dendrogram can be used to obtain any number of clusters. In practice, people often look at the dendrogram and select by eye a sensible number of clusters, based on the heights of the fusion and the number of clusters desired. In the case of Figure 10.9, one might choose to select either two or three clusters. However, often the choice of where to cut the dendrogram is not so clear.

The term hierarchical refers to the fact that clusters obtained by cutting the dendrogram at a given height are necessarily nested within the clusters obtained by cutting the dendrogram at any greater height. However, on an arbitrary data set, this assumption of hierarchical structure might be unrealistic. For instance, suppose that our observations correspond to a group of people with a 50-50 split of males and females, evenly split among Americans, Japanese, and French. We can imagine a scenario in which the best division into two groups might split these people by gender, and the best division into three groups might split them by nationality. In this case, the true clusters are not nested, in the sense that the best division into three groups does not result from taking the best division into two groups and splitting up one of those groups. Consequently, this situation could not be well-represented by hierarchical clustering. Due to situations such as this one, hierarchical clustering can sometimes yield worse (i.e. less accurate) results than K-means clustering for a given number of clusters.

The Hierarchical Clustering Algorithm

The hierarchical clustering dendrogram is obtained via an extremely simple algorithm. We begin by defining some sort of dissimilarity measure between each pair of observations. Most often, Euclidean distance is used; we will discuss the choice of dissimilarity measure later in this chapter. The algorithm proceeds iteratively. Starting out at the bottom of the dendrogram, each of the n observations is treated as its own cluster. The two clusters that are most similar to each other are then fused so that there now are n-1 clusters. Next the two clusters that are most similar to each other are fused again, so that there now are n-2 clusters. The algorithm proceeds in this fashion until all of the observations belong to one single cluster, and the dendrogram is complete. Figure 10.11 depicts the first few steps of the algorithm, for the data from Figure 10.9. To summarize, the hierarchical clustering algorithm is given in Algorithm 10.2.

This algorithm seems simple enough, but one issue has not been addressed. Consider the bottom right panel in Figure 10.11. How did we determine that the cluster {5,7} should be fused with the cluster {8}? We have a concept of the dissimilarity between pairs of observations, but how do we define the dissimilarity between two clusters if one or both of the clusters contains multiple observations? The concept of dissimilarity between a pair of observations needs to be extended to a pair of groups of observations. This extension is achieved by developing the notion of linkage, which defines the dissimilarity between two groups of observations. The four most common types of linkage—complete, average, single, and centroid—are briefly described in Table 10.2. Average, complete, and single linkage are most popular among statisticians. Average and complete

linkage

Algorithm 10.2 Hierarchical Clustering

- 1. Begin with n observations and a measure (such as Euclidean distance) of all the $\binom{n}{2} = n(n-1)/2$ pairwise dissimilarities. Treat each observation as its own cluster.
- 2. For $i = n, n 1, \dots, 2$:
 - (a) Examine all pairwise inter-cluster dissimilarities among the *i* clusters and identify the pair of clusters that are least dissimilar (that is, most similar). Fuse these two clusters. The dissimilarity between these two clusters indicates the height in the dendrogram at which the fusion should be placed.
 - (b) Compute the new pairwise inter-cluster dissimilarities among the i-1 remaining clusters.

T . 1	D
Linkage	Description
Complete	Maximal intercluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the
	observations in cluster B, and record the <i>largest</i> of these
	dissimilarities.
Single	Minimal intercluster dissimilarity. Compute all pairwise dis-
	similarities between the observations in cluster A and the
	observations in cluster B, and record the <i>smallest</i> of these
	dissimilarities. Single linkage can result in extended, trailing
	clusters in which single observations are fused one-at-a-time.
Average	Mean intercluster dissimilarity. Compute all pairwise dis-
	similarities between the observations in cluster A and the
	observations in cluster B, and record the average of these
	dissimilarities.
Centroid	Dissimilarity between the centroid for cluster A (a mean
	vector of length p) and the centroid for cluster B. Centroid
	linkage can result in undesirable inversions.

TABLE 10.2. A summary of the four most commonly-used types of linkage in hierarchical clustering.

linkage are generally preferred over single linkage, as they tend to yield more balanced dendrograms. Centroid linkage is often used in genomics, but suffers from a major drawback in that an *inversion* can occur, whereby two clusters are fused at a height *below* either of the individual clusters in the dendrogram. This can lead to difficulties in visualization as well as in interpretation of the dendrogram. The dissimilarities computed in Step 2(b) of the hierarchical clustering algorithm will depend on the type of linkage used, as well as on the choice of dissimilarity measure. Hence, the resulting

inversion

FIGURE 10.11. An illustration of the first few steps of the hierarchical clustering algorithm, using the data from Figure 10.10, with complete linkage and Euclidean distance. Top Left: initially, there are nine distinct clusters, $\{1\}, \{2\}, \ldots, \{9\}$. Top Right: the two clusters that are closest together, $\{5\}$ and $\{7\}$, are fused into a single cluster. Bottom Left: the two clusters that are closest together, $\{6\}$ and $\{1\}$, are fused into a single cluster. Bottom Right: the two clusters that are closest together using complete linkage, $\{8\}$ and the cluster $\{5,7\}$, are fused into a single cluster.

dendrogram typically depends quite strongly on the type of linkage used, as is shown in Figure 10.12.

Choice of Dissimilarity Measure

Thus far, the examples in this chapter have used Euclidean distance as the dissimilarity measure. But sometimes other dissimilarity measures might be preferred. For example, *correlation-based distance* considers two observations to be similar if their features are highly correlated, even though the observed values may be far apart in terms of Euclidean distance. This is

FIGURE 10.12. Average, complete, and single linkage applied to an example data set. Average and complete linkage tend to yield more balanced clusters.

an unusual use of correlation, which is normally computed between variables; here it is computed between the observation profiles for each pair of observations. Figure 10.13 illustrates the difference between Euclidean and correlation-based distance. Correlation-based distance focuses on the shapes of observation profiles rather than their magnitudes.

The choice of dissimilarity measure is very important, as it has a strong effect on the resulting dendrogram. In general, careful attention should be paid to the type of data being clustered and the scientific question at hand. These considerations should determine what type of dissimilarity measure is used for hierarchical clustering.

For instance, consider an online retailer interested in clustering shoppers based on their past shopping histories. The goal is to identify subgroups of *similar* shoppers, so that shoppers within each subgroup can be shown items and advertisements that are particularly likely to interest them. Suppose the data takes the form of a matrix where the rows are the shoppers and the columns are the items available for purchase; the elements of the data matrix indicate the number of times a given shopper has purchased a given item (i.e. a 0 if the shopper has never purchased this item, a 1 if the shopper has purchased it once, etc.) What type of dissimilarity measure should be used to cluster the shoppers? If Euclidean distance is used, then shoppers who have bought very few items overall (i.e. infrequent users of the online shopping site) will be clustered together. This may not be desirable. On the other hand, if correlation-based distance is used, then shoppers with similar preferences (e.g. shoppers who have bought items A and B but

FIGURE 10.13. Three observations with measurements on 20 variables are shown. Observations 1 and 3 have similar values for each variable and so there is a small Euclidean distance between them. But they are very weakly correlated, so they have a large correlation-based distance. On the other hand, observations 1 and 2 have quite different values for each variable, and so there is a large Euclidean distance between them. But they are highly correlated, so there is a small correlation-based distance between them.

never items C or D) will be clustered together, even if some shoppers with these preferences are higher-volume shoppers than others. Therefore, for this application, correlation-based distance may be a better choice.

In addition to carefully selecting the dissimilarity measure used, one must also consider whether or not the variables should be scaled to have standard deviation one before the dissimilarity between the observations is computed. To illustrate this point, we continue with the online shopping example just described. Some items may be purchased more frequently than others; for instance, a shopper might buy ten pairs of socks a year, but a computer very rarely. High-frequency purchases like socks therefore tend to have a much larger effect on the inter-shopper dissimilarities, and hence on the clustering ultimately obtained, than rare purchases like computers. This may not be desirable. If the variables are scaled to have standard deviation one before the inter-observation dissimilarities are computed, then each variable will in effect be given equal importance in the hierarchical clustering performed. We might also want to scale the variables to have standard deviation one if they are measured on different scales; otherwise, the choice of units (e.g. centimeters versus kilometers) for a particular variable will greatly affect the dissimilarity measure obtained. It should come as no surprise that whether or not it is a good decision to scale the variables before computing the dissimilarity measure depends on the application at hand. An example is shown in Figure 10.14. We note that the issue of whether or not to scale the variables before performing clustering applies to K-means clustering as well.

FIGURE 10.14. An eclectic online retailer sells two items: socks and computers. Left: the number of pairs of socks, and computers, purchased by eight online shoppers is displayed. Each shopper is shown in a different color. If inter-observation dissimilarities are computed using Euclidean distance on the raw variables, then the number of socks purchased by an individual will drive the dissimilarities obtained, and the number of computers purchased will have little effect. This might be undesirable, since (1) computers are more expensive than socks and so the online retailer may be more interested in encouraging shoppers to buy computers than socks, and (2) a large difference in the number of socks purchased by two shoppers may be less informative about the shoppers' overall shopping preferences than a small difference in the number of computers purchased. Center: the same data is shown, after scaling each variable by its standard deviation. Now the number of computers purchased will have a much greater effect on the inter-observation dissimilarities obtained. Right: the same data are displayed, but now the y-axis represents the number of dollars spent by each online shopper on socks and on computers. Since computers are much more expensive than socks, now computer purchase history will drive the inter-observation dissimilarities obtained.

10.3.3 Practical Issues in Clustering

Clustering can be a very useful tool for data analysis in the unsupervised setting. However, there are a number of issues that arise in performing clustering. We describe some of these issues here.

Small Decisions with Big Consequences

In order to perform clustering, some decisions must be made.

Should the observations or features first be standardized in some way?
 For instance, maybe the variables should be centered to have mean zero and scaled to have standard deviation one.

- In the case of hierarchical clustering,
 - What dissimilarity measure should be used?
 - What type of linkage should be used?
 - Where should we cut the dendrogram in order to obtain clusters?
- In the case of K-means clustering, how many clusters should we look for in the data?

Each of these decisions can have a strong impact on the results obtained. In practice, we try several different choices, and look for the one with the most useful or interpretable solution. With these methods, there is no single right answer—any solution that exposes some interesting aspects of the data should be considered.

Validating the Clusters Obtained

Any time clustering is performed on a data set we will find clusters. But we really want to know whether the clusters that have been found represent true subgroups in the data, or whether they are simply a result of *clustering the noise*. For instance, if we were to obtain an independent set of observations, then would those observations also display the same set of clusters? This is a hard question to answer. There exist a number of techniques for assigning a p-value to a cluster in order to assess whether there is more evidence for the cluster than one would expect due to chance. However, there has been no consensus on a single best approach. More details can be found in Hastie et al. (2009).

Other Considerations in Clustering

Both K-means and hierarchical clustering will assign each observation to a cluster. However, sometimes this might not be appropriate. For instance, suppose that most of the observations truly belong to a small number of (unknown) subgroups, and a small subset of the observations are quite different from each other and from all other observations. Then since K-means and hierarchical clustering force every observation into a cluster, the clusters found may be heavily distorted due to the presence of outliers that do not belong to any cluster. Mixture models are an attractive approach for accommodating the presence of such outliers. These amount to a soft version of K-means clustering, and are described in Hastie et al. (2009).

In addition, clustering methods generally are not very robust to perturbations to the data. For instance, suppose that we cluster n observations, and then cluster the observations again after removing a subset of the n observations at random. One would hope that the two sets of clusters obtained would be quite similar, but often this is not the case!

A Tempered Approach to Interpreting the Results of Clustering

We have described some of the issues associated with clustering. However, clustering can be a very useful and valid statistical tool if used properly. We mentioned that small decisions in how clustering is performed, such as how the data are standardized and what type of linkage is used, can have a large effect on the results. Therefore, we recommend performing clustering with different choices of these parameters, and looking at the full set of results in order to see what patterns consistently emerge. Since clustering can be non-robust, we recommend clustering subsets of the data in order to get a sense of the robustness of the clusters obtained. Most importantly, we must be careful about how the results of a clustering analysis are reported. These results should not be taken as the absolute truth about a data set. Rather, they should constitute a starting point for the development of a scientific hypothesis and further study, preferably on an independent data set.

10.4 Lab 1: Principal Components Analysis

In this lab, we perform PCA on the USArrests data set, which is part of the base R package. The rows of the data set contain the 50 states, in alphabetical order.

```
> states=row.names(USArrests)
> states
```

The columns of the data set contain the four variables.

We first briefly examine the data. We notice that the variables have vastly different means.

```
> apply(USArrests, 2, mean)
Murder Assault UrbanPop Rape
7.79 170.76 65.54 21.23
```

Note that the apply() function allows us to apply a function—in this case, the mean() function—to each row or column of the data set. The second input here denotes whether we wish to compute the mean of the rows, 1, or the columns, 2. We see that there are on average three times as many rapes as murders, and more than eight times as many assaults as rapes. We can also examine the variances of the four variables using the apply() function.

```
> apply(USArrests, 2, var)
Murder Assault UrbanPop Rape
    19.0 6945.2 209.5 87.7
```