Data Analysis Framework

Project: Sharks from Space

Objective: Identify shark movement patterns, foraging areas, and mating zones using

NASA satellite data.

1. Scientific Overview

Earth's oceans are dynamic ecosystems where **top predators like sharks** play a key role in maintaining ecological balance.

Their behavior — migration, feeding, and reproduction — is tightly linked to **physical** (temperature, currents) and biological (plankton, prey density) parameters of the ocean.

While direct tracking (tags) provides individual movement data, **NASA's satellite missions** offer the global, high-resolution environmental context necessary to understand *why* sharks move as they do and *where* they are likely to be found.

By combining NASA ocean datasets, we can:

- Model habitat suitability (where sharks are likely to forage or breed)
- **Detect environmental triggers** (eddies, fronts, temperature thresholds)
- Correlate shark presence with physical and biological variables

2. NASA Data Sources and Their Analytical Use

NASA Resource	Data Type	Key Variables	Analytical Use for Shark Ecology	Scientific Insight Derived
PACE (Plankton, Aerosols, Clouds, and Ecosystems)	Ocean color spectrometry (multi-spectral)	Chlorophyll-a, phytoplankton abundance & community composition	Map primary productivity; identify feeding grounds where plankton → zooplankton → fish chain initiates	Foraging hotspots; trophic chain foundation
MODIS-Aqua / Terra	Ocean color, SST	Chlorophyll-a, SST (Sea Surface Temperature),	Establish long-term trends (20+ years) in	Seasonal & interannual migration patterns;

Amalusiaal Haa fawCalausifia Inalahs

NASA Resource	Data Type	Key Variables	Analytical Use for Scientific Insight Shark Ecology Derived	
		photosynthetic active radiation	productivity & temperature	preferred temperature windows
SWOT (Surface Water and Ocean Topography)	Radar altimetry	Sea Surface Height (SSH), eddy kinetic energy, ocean fronts	Detect eddies and frontal systems where prey accumulate	Pathways for foraging and long-distance migrations
GHRSST (Group for High Resolution Sea Surface Temperature)	Combined multi-sensor SST dataset	Sea Surface Temperature, daily variability	Identify thermal corridors and mating comfort zones	Reproductive migration triggers; surface vs. deep preference
SMAP (Soil Moisture Active Passive, ocean salinity mode)	Microwave radiometer	Sea Surface Salinity (SSS)	Track freshwater inputs, salinity-driven productivity	Identifies estuarine or nursery zones (juvenile habitat)
GEBCO / NASA Ocean Data Portal	Bathymetry and seafloor topography	Depth, slope, shelf boundaries	Characterize continental shelf edges and seamounts	Common breeding or resting habitats near slopes and reefs
NOAA / NASA Ocean Color Climatologies	Derived products	Chlorophyll anomalies, temperature anomalies	Detect ecological anomalies (blooms, upwellings)	Predict irregular shark aggregations; detect "event years"
NASA Earth Observations (NEO)	Cross-mission visualization portal	Sea Surface Height, Temperature, Chlorophyll	Integrate and visualize all datasets regionally	Conceptual link between environment and predator movement

Step 1 — Data Integration and Preprocessing

1. Data Ingestion:

Download daily or weekly composites from NASA's *Ocean Color Web (OCWeb)* and *Earthdata* portals.

Each raster is geo-referenced and stored as NetCDF or GeoTIFF.

2. Co-registration:

Align datasets (PACE, MODIS, SWOT, GHRSST, SMAP) to a **common spatial grid** (0.1°) and **temporal scale** (daily).

3. Normalization and Masking:

- \circ Chlorophyll \rightarrow log-scaled, normalized per region.
- SSH \rightarrow calculate spatial gradient (∂ SSH/ ∂ x, ∂ SSH/ ∂ y) for eddy detection.
- \circ SST \rightarrow normalized anomalies from climatology.
- o Mask land and poor-quality pixels using QA flags.

4. Feature stacking:

Combine all layers into a single multidimensional data cube:

 $X(lat, lon, t) = [Chl, SST, SSH, SSS, Bathy, SSH_grad, Anomalies]$

Step 2 — Ecological Variable Extraction

Variable Derived	From Source(s)	Purpose / Interpretation
Primary productivity (PP)	PACE / MODIS	Indicates prey abundance; base for foraging zones
Eddy kinetic energy (EKE)	SWOT (SSH variance)	Indicates ocean mixing & aggregation of prey
Thermal comfort index (TCI)	MODIS / GHRSST	Optimal temperature range for species activity
Front intensity (FI)	SWOT gradients	Measures transition zones attracting prey
Bathymetric slope (BS)	GEBCO	Indicates potential nursery or mating sites
Chlorophyll anomaly (Δ Chl)	PACE / MODIS	Signals bloom events (temporary feeding hotspots)
Temperature anomaly (ΔSST)	MODIS / GHRSST	Identifies environmental stress or attraction zones

Variable Derived	From Source(s)	Purpose / Interpretation
Salinity deviation (△SSS)	SMAP	Tracks estuarine or freshwater influence on habitats

Step 3 — Correlation and Modeling

We analyze relationships between shark presence (from tagging databases or literature) and environmental variables:

Techniques:

- **Spatio-temporal correlation matrices** between presence density and environmental variables.
- **Principal Component Analysis (PCA)** to reduce redundancy among ocean variables.
- Cluster Analysis (K-Means / DBSCAN) to identify recurring "ecological provinces" zones that share environmental signatures preferred by sharks.
- Dynamic Habitat Modeling (AI-based):
 - Train a Foraging Suitability Index (FSI) model using the derived variables.
 - Incorporate time-lagged data (e.g., plankton bloom precedes shark arrival by 3–5 days).

4. Identifying Ecological Zones

Ecological Behavior	Data Indicators	NASA Resources Used	Interpretation
	High chlorophyll + high eddy activity + moderate SST	PACE, SWOT, MODIS	Areas where prey density is high; sharks aggregate for feeding
Mating / Breeding Grounds	Stable SST + low EKE + specific bathymetric depth (200–1000 m)	GHRSST, GEBCO	Thermal comfort and structural protection ideal for reproduction
Migration Corridors	Persistent SST gradients + recurrent eddies (SSH)	MODIS, SWOT	Predictable physical pathways used seasonally

Ecological Behavior	Data Indicators	NASA Resources Used	Interpretation
Nursery Areas	Low salinity + shallow slope (<100 m)	SMAP, GEBCO	Juvenile habitats near river O outflows or continental shelves
Stress / Avoidance Zones	High SST anomaly + low chlorophyll	MODIS, PACE	Low productivity, unsuitable or warming waters cause avoidance

5. Example Analytical Workflow (Conceptual)

1. Daily NASA Data Layers:

- o PACE Chlorophyll (OCx algorithm)
- SWOT SSH & EKE
- GHRSST SST
- o GEBCO Bathymetry

2. Derived Composite Map:

- Overlay normalized maps
- Compute FSI = w₁·Chl_norm + w₂·EKE_norm + w₃·SST_band + w₄·Bathy_edge

3. Temporal Smoothing:

Apply moving average (±3 days) to detect stable zones.

4. Output:

- Hotspot raster (probability 0–1)
- Clustered zones (feeding, mating, migration)

5. Validation:

- Cross-check with known tagging data (NOAA, Global Shark Movement Project)
- Evaluate correlation R² between predicted vs. observed presence density.

6. Visualization and Interpretation

- Heatmaps: show high FSI areas (foraging).
- Contour maps: represent temperature & salinity bands (mating comfort).
- **Time-lapse animations**: show how hotspots shift seasonally or with ENSO events.
- 3D bathymetric overlays: identify nursery zones along continental slopes.

These visualizations are directly **integrated in the Web + VR App**, allowing users to explore data interactively and intuitively.

7. Data Accessibility

Dataset Portal	Access URL	Data Use License
NASA Ocean Color Web (PACE, MODIS)	https://oceancolor.gsfc.nasa.gov	Public, scientific use
SWOT Data Portal	https://podaac.jpl.nasa.gov/SWOT	Public, with attribution
GHRSST (NOAA/NASA SST)	https://www.ghrsst.org	Open, NASA-approved
GEBCO Bathymetry	https://www.gebco.net	Open, academic use
SMAP Ocean Salinity	https://podaac.jpl.nasa.gov/SMAP	Public, attribution required

8. Summary Table

Behavioral Feature	NASA Datasets Used	Analytical Output	Ecological Interpretation
Shark Movement Patterns	SWOT, MODIS, PACE	Time-lagged spatial correlation	Dynamic migration routes
Foraging Activity	PACE (Chl), SWOT (Eddy), GHRSST (SST)	Foraging Suitability Index (FSI)	Feeding hotspots
Reproductive Behavior	GHRSST (SST), GEBCO (Depth), SMAP (Salinity)	Thermal & structural comfort zones	Mating / nursery areas

Behavioral Feature	NASA Datasets Used	Analytical Output	Ecological Interpretation
Climate Stress / Avoidance	MODIS (SST anomalies), PACE (Δ ChI)	Negative anomaly detection	Habitat degradation tracking

9. Key Scientific References

- Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B., & Thorrold, S. R. (2019). Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. PNAS, 116(35), 17187–17192.
- Gaube, P., et al. (2018). Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Scientific Reports, 8(7363).
- NASA (2024). PACE Science Data Overview. NASA Goddard Space Flight Center.
- NASA JPL (2023). SWOT Mission Oceanography Data User Handbook.

10. Conclusion

NASA's ocean-observing satellites provide the environmental context that explains and predicts shark movement patterns.

By fusing biological (PACE), physical (SWOT, GHRSST), and geophysical (GEBCO) data, we can infer:

- Where sharks feed (high productivity + eddies),
- Where they breed (stable, protected thermal zones),
- **How they migrate** (along persistent frontal corridors).

This multi-source approach transforms NASA's orbital view into actionable ecological insight — the foundation for both our **AI model** and **immersive educational experience**.