

Fondamenti di Matematica

Enrico Martini

Indice

1	Gec	ometria	a analitica
	1.1		
	1.2	Retta	
	1.3	Circon	nferenza
	1.4		ola
	1.5		9
	1.6		ble
			Funzione omografica
	1.7		he generali
	1.,	Come	ne generali
2	Tra	sforma	azioni geometriche
		2.0.1	Simmetria
		2.0.2	Traslazione
		2.0.3	Rotazione
		2.0.4	Omotetia
		2.0.5	Affinita'
3	Soli	idi	
		3.0.1	Cilindro
		3.0.2	Cono
		3.0.3	Sfera
		3.0.4	Prisma
		3.0.5	Piramide
Ł	Geo		a analitica dello spazio
		4.0.1	Equazione del piano
		4.0.2	Punto medio
		4.0.3	Equazione di una retta
		4.0.4	Retta passante per due punti
		4.0.5	Distanza tra piano e punto
		4.0.6	Piano parallelo ad un altro piano passante per un punto .
		4.0.7	Retta perpendicolare ad un piano passante per un punto .
		4.0.8	Piano passante per un punto perpendicolare ad una retta
		4.0.9	Parallelismo tra piani
		4.0.10	Perpendicolarita' tra piani
	4.1	Calcol	lare i punti stazionari
	4.2		lare il massimo/minimo locale vincolato
	4.3	Calcol	lare il massimo/minimo globale
5	Nui	meri co	omplessi
	5.1	Coord	
		5.1.1	Coordinate sferiche
		5.1.2	Coordinate cilindriche
	5.2	Param	netrizzazione
		5.2.1	Parametrizzazione di un ellisse
		5.2.2	Retta tangente alla curva
		5.2.3	Lunghezza di una curva

6	Probabilit	a' 10	0
	6.0.1	Probabilita' della somma logica di eventi	0
	6.0.2	Probabilita' condizionata	0
	6.0.3	Probabilita' del prodotto logico di eventi	0
	6.0.4	Problema delle prove ripetute	0
	6.0.5	Teorema di Bayes	0
7	Calcolo co	mbinatorio 1	1
	7.0.1	Disposizione semplice	1
	7.0.2	Disposizione con ripetizione	1
	7.0.3	Permutazione semplice	1
	7.0.4	Permutazione con ripetizione	1
	7.0.5	Combinazione semplice	1
	7.0.6	Combinazione con ripetizione	1
8	Goniomet	ria 1:	${f 2}$
	8.1 Formu	le di Werner	2
	8.2 Formu	le di Prostaferesi	3
9	Trigonome	etria 14	4
	9.0.1	Teorema dei seni	4
	9.0.2	Teorema del coseno (Carnot)	4
10	Matrici	15	5
		Somma tra matrici	
		Sottrazione tra matrici	5
		Moltiplicazione per uno scalare	5
		Prodotto tra matrici	5
11	Progressio	oni 10	6
	11.1 Progre	essioni aritmetiche	6
		essioni geometriche	6
12	Esponenzi	ali 1'	7
13	Logaritmi	1'	7
-0		Proprieta'	
		Casi particolari	
14	Limiti	18	8
		Verifica dei limiti	
		Forme indeterminate	
		Limiti notevoli	8
	14.0.4	Teorema del confronto	
15	Derivate	19	9
_	15.0.1	Derivate immediate	
	15.0.2	Proprieta'	
		Retta tangente alla curva	0
		Retta normale alla curva	
		Teorema di Fermat	

		15.0.6	Teorema di Rolle	20
	-	15.0.7	Teorema di Cauchy	21
			Teorema di Lagrange	21
	15.1	Teoren	na delle derivate successive	22
16	Integ			23
			Proprieta'	23
			Integrali immediati	23
			Integrali mediati	23
	1	16.0.4	Funzioni non banali	24
		16.0.5		24
			Volume nei solidi di rotazione	24
			Metodo dei rettangoli	24
			Metodo dei trapezi	24
	-	16.0.9	Integrali doppi	25
	-	16.0.10	Integrali di linea di prima specie	25
	Ī	16.0.11	Integrali di linea di seconda specie	25
		16.0.12	2 Integrali tripli	25
	-	16.0.13	Campi vettoriali	25
17	Earra	:	differencial:	26
11			differenziali Primo ordine	26
				26 26
	-	17.0.2	Secondo ordine	20
	C4 1			
18	Stua	io di f	funzione	27
				27 27
	18.1	Studio	del dominio	
	18.1 S 18.2 S	Studio Studio	del dominio	27
	18.1 S 18.2 S	Studio Studio 18.2.1	del dominio	27 27
	18.1 S 18.2 S	Studio Studio 18.2.1 18.2.2	del dominio	27 27 27 27 27
	18.1 S 18.2 S 18.3 I	Studio Studio 18.2.1 18.2.2 Parita'	del dominio	27 27 27 27 27 28
	18.1 S 18.2 S 18.3 I 18.4 I	Studio Studio 18.2.1 18.2.2 Parita' Incont	del dominio	27 27 27 27 27 28 28
	18.1 \$ 18.2 \$ 18.3 \$ 18.4 \$ 18.5 \$ \$	Studio Studio 18.2.1 18.2.2 Parita' Inconti	del dominio	27 27 27 27 27 28 28 28
	18.1 \$ 18.2 \$ 18.3 \$ 18.4 \$ 18.5 \$ 18.6 \$ 1	Studio Studio 18.2.1 18.2.2 Parita' Incontractudio Punti o	del dominio	27 27 27 27 28 28 28 28
	18.1 \$ 18.2 \$ 18.3 \$ 18.4 \$ 18.5 \$ 18.6 \$ 18.6 \$ 18.7 \$ 1	Studio Studio 18.2.1 18.2.2 Parita' Incontr Studio Punti o	del dominio	27 27 27 27 28 28 28 28 28
	18.1 \$ 18.2 \$ 18.3 \$ 18.4 \$ 18.5 \$ 18.6 \$ 18.7 \$ 18.8 \$ 18	Studio Studio 18.2.1 18.2.2 Parita' Inconti Studio Punti (Punti (del dominio	27 27 27 27 28 28 28 28 28 28
	18.1 \$ 18.2 \$ 18.3 \$ 18.4 \$ 18.5 \$ 18.6 \$ 18.7 \$ 18.8 \$ 18.9 \$ 18	Studio Studio 18.2.1 18.2.2 Parita' Inconti Studio Punti o Punti o Proprio	del dominio	27 27 27 27 28 28 28 28 28 29 29
	18.1 \$ 18.2 \$ 18.3 \$ 18.4 \$ 18.5 \$ 18.6 \$ 18.7 \$ 18.8 \$ 18.9 \$ 18.10 \$	Studio Studio 18.2.1 18.2.2 Parita' Inconti Studio Punti Punti Propri Appros	del dominio	27 27 27 27 28 28 28 28 28 28

1 Geometria analitica

1.1 Punto

Rappresentazione:

$$P(x_P; y_P)$$

Distanza tra due punti:

$$d = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Punto medio:

$$M\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2}\right)$$

Baricentro:

$$G\left(\frac{x_A + x_B + x_C}{3}; \frac{y_A + y_B + y_C}{3}\right)$$

Area di un triangolo:

$$A = \frac{1}{2} \cdot \left| \begin{array}{ccc} x_C - x_A & y_C - y_A \\ x_B - x_A & y_B - y_A \end{array} \right|$$

1.2 Retta

Rappresentazione:

$$y = mx + q \qquad \qquad \lor \qquad \qquad ax + by + c = 0$$

Retta passante per due punti:

$$\frac{y - y_A}{y_B - y_A} = \frac{x - x_A}{x_B - x_A}$$

Fascio di rette passante per un punto:

$$y - y_0 = m(x - x_0)$$

Distanza punto-retta:

$$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

1.3 Circonferenza

Rappresentazione:

$$x^{2} + y^{2} + ax + by + c = 0$$
 $(x - \alpha)^{2} + (y - \beta)^{2} = r^{2}$

Coordinate del centro:

$$C\left(-\frac{a}{2};-\frac{b}{2}\right)$$

Raggio:

$$r=\frac{1}{2}\sqrt{a^2+b^2-4c}$$

1.4 Parabola

Rappresentazione:

$$y = ax^2 + bx + c x = ay^2 + by + c$$

Vertice:

$$V\left(-\frac{b}{2a};-\frac{\varDelta}{4a}\right) \qquad \qquad V\left(-\frac{\varDelta}{4a};-\frac{b}{2a}\right)$$

1.5 Ellisse

Rappresentazione:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Con a > b:

$$F(\pm c; 0) c = \sqrt{a^2 - b^2}$$

Con a < b:

$$F(0; \pm c) \qquad \qquad c = \sqrt{b^2 - a^2}$$

1.6 Iperbole

Rappresentazione:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Se rivolta all'asse x:

$$F(\pm c; 0)$$
 $c^2 = a^2 + b^2$ $y = \pm \frac{b}{a}x$

Se equilatera:

$$x^2 - y^2 = a^2 y = \pm x$$

1.6.1 Funzione omografica

 ${\bf Rappresentazione:}$

$$y = \frac{ax+b}{cx+d} \qquad \qquad C\left(-\frac{d}{c}; \frac{a}{c}\right)$$

1.7 Coniche generali

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

2 Trasformazioni geometriche

2.0.1 Simmetria

Simmetria rispetto ad un punto $P(\alpha, \beta)$:

$$\begin{cases} x' = 2\alpha - x \\ y' = 2\beta - y \end{cases}$$

Simmetria rispetto all'asse y:

$$\begin{cases} x' = -x \\ y' = y \end{cases}$$

Simmetria rispetto all'asse x:

$$\begin{cases} x' = x \\ y' = -y \end{cases}$$

2.0.2 Traslazione

Traslazione rispetto ad un vettore $\vec{v}(a;b)$:

$$\begin{cases} x' = x + a \\ y' = y + b \end{cases}$$

2.0.3 Rotazione

Rotazione rispetto ad un angolo α :

$$\begin{cases} x = x' \cdot \cos(\alpha) + y' \cdot \sin(\alpha) \\ y = -x' \cdot \sin(\alpha) + y' \cdot \cos(\alpha) \end{cases} \begin{cases} x' = x \cdot \cos(\alpha) - y \cdot \sin(\alpha) \\ y' = x \cdot \sin(\alpha) + y \cdot \cos(\alpha) \end{cases}$$

2.0.4 Omotetia

Omotetia di centro O(0;0) e rapporto h:

$$\begin{cases} x' = hx - x_c \\ y' = hx - y_c \end{cases}$$

2.0.5 Affinita'

$$\begin{cases} x' = ax + by + h \\ y' = cx + dy + k \end{cases} con \Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$$

Solidi3

3.0.1 Cilindro

$$S_L = 2p \cdot h$$
$$S_B = \pi r^2$$

$$S_{TOT} = S_L + 2S_B$$
$$V = S_b \cdot h$$

3.0.2 Cono

$$S_L = \pi r a$$

$$S_B = \pi r^2$$

$$S_{TOT} = S_L + 2S_B$$

$$V = \frac{1}{3}\pi r^2 h$$

3.0.3 Sfera

$$S = 4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

3.0.4 Prisma

$$S_{\tau} = 2n \cdot h$$

$$S_L = 2p \cdot h$$
 $S_{TOT} = S_L + 2S_B$ $V = S_b \cdot h$

$$V = S_b \cdot h$$

3.0.5 Piramide

$$S_L = pa$$
$$S_B = l^2$$

$$S_{TOT} = S_L + S_B$$

$$V = \frac{1}{3}S_B \cdot h$$

4 Geometria analitica dello spazio

4.0.1 Equazione del piano

$$\alpha : ax + by + cz + d = 0$$
 $d = -a^2 - b^2 - c^2$

4.0.2 Punto medio

$$M\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2};\frac{z_A+z_B}{2}\right)$$

4.0.3 Equazione di una retta

$$\begin{cases} ax + by + cz + d = 0 \\ ex + fy + gz + h = 0 \end{cases}$$

4.0.4 Retta passante per due punti

$$\frac{x-x_A}{x_B-x_A} = \frac{y-y_A}{y_B-y_A} = \frac{z-z_A}{z_B-z_A} = \lambda$$

4.0.5 Distanza tra piano e punto

$$d(A; \alpha) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

4.0.6 Piano parallelo ad un altro piano passante per un punto

$$\alpha = \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = 0$$

4.0.7 Retta perpendicolare ad un piano passante per un punto

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

4.0.8 Piano passante per un punto perpendicolare ad una retta

$$\alpha = l(x - x_0) + m(y - y_0) + n(z - z_0) = 0$$

4.0.9 Parallelismo tra piani

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'} \neq \frac{d}{d'}$$

4.0.10 Perpendicolarita' tra piani

$$aa' + bb' + cc' = 0$$

4.1 Calcolare i punti stazionari

Punti chiave:

1. Calcolare le derivate parziali del primo ordine

$$f_x'(x,y)$$
 $f_y'(x,y)$

2. Risolvere i sistema con le derivate uguali a zero

$$\begin{cases} f_x'(x,y) = 0 \\ f_y'(x,y) = 0 \end{cases}$$

3. Ricavare i punti stazionari

$$P(x_P, y_P)$$

4. Calcolare le derivate parziali del secondo ordine

$$f_{xx}^{\prime\prime}(x,y) \hspace{1cm} f_{xy}^{\prime\prime}(x,y) \hspace{1cm} f_{yx}^{\prime\prime}(x,y) \hspace{1cm} f_{yy}^{\prime\prime}(x,y)$$

5. Costruire la matrice Hessiana

$$H_f(x,y) = \left[\begin{array}{ccc} f''_{xx}(x,y) & f''_{xy}(x,y) \\ f''_{yx}(x,y) & f''_{yy}(x,y) \end{array} \right]$$

6. Calcolare il determinante della matrice Hessiana

$$det(H_f(x,y)) = \begin{vmatrix} f''_{xx}(x,y) & f''_{xy}(x,y) \\ f''_{yx}(x,y) & f''_{yy}(x,y) \end{vmatrix}$$

Considerare i casi:

- $f_{xx}''(x_0, y_0) > 0 \land det(H_f) > 0 \rightarrow minimo locale$
- $f''_{xx}(x_0, y_0) < 0 \land det(H_f) > 0 \rightarrow$ massimo locale
- $det(H_f) < 0 \rightarrow$ punto di sella

4.2 Calcolare il massimo/minimo locale vincolato

Punti chiave:

1. Definire la funzione lagrangiana:

$$\mathcal{L} = f(x, y) - \lambda g(x, y)$$

2. Risolvere il sistema:

$$\begin{cases} \mathcal{L}'_x = 0 \\ \mathcal{L}'_y = 0 \\ g(x, y) = 0 \end{cases}$$

3. Calcolare le derivate parziali del secondo ordine

$$\mathcal{L}_{xx}^{\prime\prime}(x,y)$$
 $\qquad \mathcal{L}_{xy}^{\prime\prime}(x,y)$ $\qquad \mathcal{L}_{yx}^{\prime\prime}(x,y)$ $\qquad \mathcal{L}_{yy}^{\prime\prime}(x,y)$

4. Calcolare il determinante della matrice hessiana orlata:

$$det(\bar{H}) = \begin{vmatrix} 0 & g'_x & g'_y \\ g'_x & \mathcal{L}''_{xx} & \mathcal{L}''_{xy} \\ g'_y & \mathcal{L}''_{yx} & \mathcal{L}''_{yy} \end{vmatrix}$$

Considerare i casi:

- $det(\bar{H}) > 0 \rightarrow$ Massimo locale vincolato
- $det(\bar{H}) < 0 \rightarrow$ Minimo locale vincolato
- $det(\bar{H}) = 0 \rightarrow Indeterminato$

4.3 Calcolare il massimo/minimo globale

Passi chiave:

- 1. Verificare che l'insieme sia compatto
- 2. Trovare i punti stazionari interni con le derivate parziali
- 3. Trovare i punti di frontiera stazionari con Lagrange
- 4. Sostituire massimo/minimo per trovare i punti globali

5 Numeri complessi

Un numero complesso c ϵ C:

$$c = Re + jIm$$
$$j = \sqrt{-1}$$

Il coniugato di c è :

$$\bar{c} = Re - jIm$$

Formula di Eulero:

$$e^{j\theta} = \cos(\theta) + j * \sin(\theta)$$

Serve ad ottenere una formulazione alternativa alla forma polare

I numeri complessi is possono rappresentare in coordinate polari:

$$(modulo, angolo)$$

$$(|c|, \theta)$$

$$|c| = \sqrt{Re^2 + Im^2}$$

$$\theta = \arctan \frac{Im}{Re}$$

Operazioni tra numeri complessi:

$$c_1 + c_2 = (R_1 + R_2) + j * (I_1 + I_2)$$

$$c_1 * c_2 = (R_1 R_2 - I_1 I_2) - j * (R_1 R_2 + I_1 I_2) = |c_1| |c_2| * e^{j(\theta_1 + \theta_2)}$$

5.1 Coordinate

5.1.1 Coordinate sferiche

Si noti che $\rho \geq 0$, $\varphi \in [0, \pi]$ e $\Theta \in [0, 2\pi]$.

$$\begin{cases} x = \rho \cdot \sin(\varphi) \cos(\Theta) \\ y = \rho \cdot \sin(\varphi) \sin(\Theta) \\ z = p \cdot \cos(\varphi) \end{cases} \qquad p = \sqrt{x^2 + y^2 + z^2}$$

$$\int \int \int_D f(x,y,z) dx dy dz = \int \int \int_D f(\rho,\varphi,\Theta) \cdot \rho^2 \cdot \sin(\varphi) d\rho d\varphi d\Theta$$

5.1.2 Coordinate cilindriche

Si noti che $p \geq 0$, $z \in \mathcal{R}$ e $\Theta \in [0, 2\pi]$.

$$\begin{cases} x = \rho \cdot \cos(\Theta) \\ y = \rho \cdot \sin(\Theta) \\ z = z \end{cases} \qquad p = \sqrt{x^2 + y^2}$$

5.2 Parametrizzazione

5.2.1 Parametrizzazione di un ellisse

$$\gamma: [0, 2\pi] \to \mathbb{R}^2$$
 $t \to (x_c + a\cos t; y_c + b\sin t)$
$$\begin{cases} x = a\cos t + x_c \\ y = b\sin t + y_c \end{cases}$$

5.2.2 Retta tangente alla curva

$$\gamma: I \subseteq \mathcal{R} \to \mathcal{R}^n
t \to \gamma(t) = (\gamma_1(t), \gamma_2(t), ..., \gamma_n(t))
r: \mathcal{R} \to \mathcal{R}^n
t \to \gamma(t_0) + t\gamma'(t_0) = P + t\gamma'(t_0)$$

5.2.3 Lunghezza di una curva

Sia $\gamma:[a,b]\to \mathcal{R}^n$ una curva regolare. Allora la lunghezza $l(\gamma)$ di γ è finita e vale:

$$l(\gamma) = \int_{a}^{b} ||\gamma'(t)|| dt$$

6 Probabilita'

$$p(E) = \frac{casi_{POSSIBILI}}{casi_{TOTALI}} \qquad 0 \le p(E) \le 1$$

6.0.1 Probabilita' della somma logica di eventi

$$p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$$

6.0.2 Probabilita' condizionata

La probabilita' condizionata di un evento A rispetto a un evento B è la probabilita' che si verifichi A, sapendo che B è verificato.

$$p(E_1|E_2) = \frac{p(E_1 \cap E_2)}{p(E_2)}$$

6.0.3 Probabilita' del prodotto logico di eventi

$$\begin{cases} p(E_1 \cap E_2) = p(E_1) \cdot p(E_1 | E_2) & dipendenti \\ p(E_1 \cap E_2) = p(E_1) \cdot p(E_2) & indipendenti \end{cases}$$

6.0.4 Problema delle prove ripetute

- n : numero di estrazioni
- k : numero delle volte in cui deve uscire
- p : probabilita' che si verifichi
- q : probabilita' che non si verifichi

$$P_{k,n} = \binom{n}{k} p^k q^{n-k}$$

6.0.5 Teorema di Bayes

Considerando un insieme di alternative A_1 , A_n che partizionano lo spazio degli eventi Ω (ossia $A_i \cap A_j = \emptyset$, $\forall i \neq j$ e $\bigcup_{i=1}^n A_i = \Omega$) si trova la seguente espressione per la probabilita' condizionata:

$$p(E_i|E) = \frac{p(E_i) \cdot p(E|E_i)}{p(E)}$$

7 Calcolo combinatorio

7.0.1 Disposizione semplice

Tutti i gruppi con k elementi su h elementi diversi per contenuto e ordine non ripetuti.

$$D_{n,k} = n(n-1)(n-2)...(n-k+1)$$

7.0.2 Disposizione con ripetizione

Numeri di k-uple ordinate $D_{n,k}$ che posso formare con n oggetti, considerando che tali oggetti possono anche essere ripetuti.

$$D'_{n,k} = n^k$$

7.0.3 Permutazione semplice

Tutti i gruppi con n elementi con ordine diverso.

$$P_n = n!$$

7.0.4 Permutazione con ripetizione

$$P_n^{(m;k)} = \frac{n!}{m!k!}$$

7.0.5 Combinazione semplice

Scegliere k elementi su n, senza ripetizione e senza cambiare l'ordine.

$$C_{n,k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

7.0.6 Combinazione con ripetizione

Si consideri un insieme I costituito da n oggetti distinti e sia k un numero naturale senza alcuna limitazione superiore.

Si chiama combinazione con ripetizioni di classe k un raggruppamento non ordinato di k degli n elementi di I nel quale si possono avere ripetizioni di uno stesso elemento.

$$C'_{n,k} = C_{n+k-1,k} = \binom{n+k-1}{k}$$

8 Goniometria

Formula fondamentale:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

Formule derivate:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \qquad \cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}$$
$$\sec(\alpha) = \frac{1}{\sin(\alpha)} \qquad \csc(\alpha) = \frac{1}{\cos(\alpha)}$$

Somma e differenza:

$$\sin(\alpha + \beta) = \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta)$$
$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$$
$$\sin(\alpha - \beta) = \sin(\alpha) \cdot \cos(\beta) - \cos(\alpha) \cdot \sin(\beta)$$
$$\cos(\alpha - \beta) = \cos(\alpha) \cdot \cos(\beta) + \sin(\alpha) \cdot \sin(\beta)$$

Duplicazione:

$$\sin(2\alpha) = 2\sin(\alpha) \cdot \cos(\alpha)$$
 $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

Bisezione:

$$\cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos(\alpha)}{2}} \qquad \qquad \sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos(\alpha)}{2}}$$

$$\tan\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos(\alpha)}{1+\cos(\alpha)}} = \frac{\sin(\alpha)}{1+\cos(\alpha)} = \frac{1-\cos(\alpha)}{\sin(\alpha)}$$

Formule parametriche:

$$\sin(\alpha) = \frac{2t}{1+t^2} \qquad \cos(\alpha) = \frac{1-t^2}{1+t^2} \qquad t = \tan\left(\frac{\alpha}{2}\right)$$

8.1 Formule di Werner

$$sin(\alpha)cos(\beta) = \frac{1}{2}[sin(\alpha + \beta) + sin(\alpha - \beta)]$$
$$cos(\alpha)cos(\beta) = \frac{1}{2}[cos(\alpha + \beta) + cos(\alpha - \beta)]$$
$$sin(\alpha)sin(\beta) = \frac{1}{2}[cos(\alpha - \beta) - cos(\alpha + \beta)]$$

8.2 Formule di Prostaferesi

$$sin(\alpha) + sin(\beta) = 2sin\frac{\alpha + \beta}{2}cos\frac{\alpha - \beta}{2}$$
$$sin(\alpha) - sin(\beta) = 2sin\frac{\alpha - \beta}{2}cos\frac{\alpha + \beta}{2}$$
$$cos(\alpha) + cos(\beta) = 2cos\frac{\alpha + \beta}{2}cos\frac{\alpha + \beta}{2}$$
$$sin(\alpha) - cos(\beta) = -2sin\frac{\alpha + \beta}{2}sin\frac{\alpha - \beta}{2}$$

quadrante	angolo	seno	coseno	tangente	cotangente
	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
primo	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{\sqrt{3}}{3}$
	120°	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	-√3	$-\frac{\sqrt{3}}{3}$
secondo	135°	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	-1
	150°	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\sqrt{3}$
	210°	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	√3
terzo	225°	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1	1
	240°	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	√3	$\frac{\sqrt{3}}{3}$
	300°	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	-√3	$-\frac{\sqrt{3}}{3}$
quarto	315°	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	-1
	330°	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	-√3
150° 45° 30° 150° 45° 30° 30° 30° 30° 30° 30° 30° 30° 30° 30					

Figura 1: Tabella degli angoli associati

9 Trigonometria

9.0.1 Teorema dei seni

In ogni triangolo e' costante il rapporto fra ogni lato ed il seno dell'angolo opposto e tale costante equivale al doppio del raggio del cerchio circoscritto al triangolo.

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

9.0.2 Teorema del coseno (Carnot)

In ogni triangolo il quadrato di un lato e' uguale alla somma dei quadrati degli altri due lati meno il doppio prodotto degli stessi lati per il coseno dell' angolo fra essi compreso.

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

10 Matrici

Una matrice è una tabella rettangolare di elementi.

10.0.1 Somma tra matrici

$$[A+B]_{i,j} = [A]_{i,j} + [B]_{i,j}$$

10.0.2 Sottrazione tra matrici

$$[A - B]_{i,j} = [A]_{i,j} - [B]_{i,j}$$

10.0.3 Moltiplicazione per uno scalare

$$[cA]_{i,j} = c[A]_{i,j}$$

10.0.4 Prodotto tra matrici

La moltiplicazione è definita soltanto se le matrici A e B sono rispettivamente di tipo $m \times p$ e $p \times n$: il numero p di colonne di A deve coincidere con il numero p di righe di B. Il risultato è una matrice C di tipo $m \times n$.

$$[C]_{i,j} = [A]_{i,1}[B]_{1,j} + [A]_{i,2}[B]_{2,j} + \dots + [A]_{i,j}[B]_{i,j}$$

- 11 Progressioni
- 11.1 Progressioni aritmetiche
- 11.2 Progressioni geometriche

12 Esponenziali

13 Logaritmi

$$\log_a b = x \qquad \begin{cases} b > 0 \\ a > 0 \land a \neq 0 \end{cases}$$

13.0.1 Proprieta'

$$\log_a(b \cdot c) = \log_a b + \log_a c \qquad \qquad \log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c$$
$$\log_a b^n = n \log_a b \qquad \qquad \log_a b = \frac{\log_c b}{\log_c a}$$

13.0.2 Casi particolari

$$\log_a 1 = 0 \qquad \qquad \log_a a = 1$$

14 Limiti

14.0.1 Verifica dei limiti

$$\forall \epsilon > 0 \exists I(x_0) : |f(x) - l| < \epsilon \qquad \forall x \in I(x_0), x \neq x_0 \qquad l, x_0 \in \mathcal{N}$$

$$\forall M > 0 \exists I(x_0) : f(x) - l > M \qquad \forall x \in I(x_0), x \neq x_0 \qquad l = +\infty$$

$$\forall M > 0 \exists I(x_0) : f(x) - l < -M \qquad \forall x \in I(x_0), x \neq x_0 \qquad l = -\infty$$

$$\forall \epsilon > 0 \exists c > 0 : |f(x) - l| < \epsilon \qquad \forall x > c \qquad x_0 = +\infty$$

$$\forall \epsilon > 0 \exists c > 0 : |f(x) - l| < \epsilon \qquad \forall x < -c \qquad x_0 = -\infty$$

14.0.2 Forme indeterminate

$$+\infty-\infty$$
 $0\cdot\infty$ $\frac{0}{0}$ $\frac{\infty}{\infty}$ 0^0

$$\infty^0 \hspace{1cm} \log_1 1 \hspace{1cm} \log_0 \infty \hspace{1cm} \log_0 0$$

14.0.3 Limiti notevoli

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1 \qquad \lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right) = 1 \qquad \lim_{x \to 0} \left(\frac{1 - \cos x}{x^2} \right) = \frac{1}{2}$$

$$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = e \qquad \lim_{x \to 0} \left(\frac{e^x - 1}{x}\right) = 1$$

14.0.4 Teorema del confronto

$$\begin{cases} \mathcal{D}_{f(x)} = \mathcal{D}_{g(x)} = \mathcal{D}_{h(x)} \\ f(x) \le g(x) \le h(x) \end{cases} \to \lim_{x \to \infty} f(x) = \lim_{x \to \infty} h(x) \to \lim_{x \to \infty} g(x)$$

15 Derivate

Il rapporto incrementale di una funzione in un punto è il rapporto tra la variazione di ordinate e la variazione di ascisse definite a partire da un incremento h, ed è un prerequisito necessario per la definizione di derivata.

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

15.0.1 Derivate immediate

$$\begin{array}{lll} k\in\mathcal{N}\to 0 & x^a\to ax^{a-1} \\ x\to 1 & \sqrt{x}\to \frac{1}{2\sqrt{x}} \\ \sqrt[n]{x}\to \frac{1}{n\sqrt[n]{x}} & \frac{1}{x}\to -\frac{1}{x^2} \\ a^x\to a^x\ln a & e^x\to e^x \\ \log_a x\to \frac{1}{x}\log_a e & \ln x\to \frac{1}{x} \\ \sin x\to \cos x & \cos x\to -\sin x \\ \arctan x\to \frac{1}{1+x^2} & \arcsin x\to \frac{1}{\sqrt{1-x^2}} \end{array}$$

15.0.2 Proprieta'

• Somma:

$$d(f(x) + q(x)) = d(f(x)) + d(q(x))$$

• Prodotto:

$$d(k \cdot f(x)) = k \cdot d(f(x))$$

$$d(f(x) \cdot g(x)) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

• Quoziente:

$$d\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

• Reciproco:

$$d\left(\frac{1}{f(x)}\right) = -\frac{f'(x)}{f(x)^2}$$

• Inverso:

$$d\left(f(x)^{-1}\right) = \frac{1}{f'(x)}$$

15.0.3 Retta tangente alla curva

$$y - f(x_0) = f'(x_0) \cdot (x - x_0)$$

15.0.4 Retta normale alla curva

$$y - f(x_0) = -\frac{1}{f'(x_0)} \cdot (x - x_0)$$

15.0.5 Teorema di Fermat

Una funzione che ammette un massimo od un minimo relativo o assoluto in un punto, e che sia ivi derivabile, ha necessariamente la derivata prima nulla nel punto.

15.0.6 Teorema di Rolle

Se una funzione è continua in un intervallo chiuso , derivabile in ogni punto dell'intervallo aperto e assume valori uguali negli estremi dell'intervallo, allora esiste almeno un punto interno ad in cui la derivata si annulla, cioè (punto critico o stazionario).

Requisiti:

- f(x) continua in [a;b] e derivabile in (a;b)
- f(a) = f(b)

$$\exists c \in \mathcal{N}f'(c) = 0$$

15.0.7 Teorema di Cauchy

Requisiti:

- f(x) continua in [a;b] e derivabile in (a;b)
- g(x) continua in [a;b] e derivabile in (a;b)

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

15.0.8 Teorema di Lagrange

Dato il grafico di una funzione tra due estremi, esiste almeno un punto in cui la tangente al grafico è parallela alla secante passante per gli estremi. Questo teorema è usato per provare delle proprieta' di una funzione in un intervallo partendo da ipotesi locali sulle derivate nei punti di tale intervallo. Requisiti:

• f(x) continua in [a;b] e derivabile in (a;b)

$$m = f'(c) = \frac{f(b) - f(a)}{b - a}$$

15.1 Teorema delle derivate successive

Massimo:

$$\begin{cases} f'(x_0) = 0\\ f''(x_0) < 0 \end{cases}$$

Minimo:

$$\begin{cases} f'(x_0) = 0\\ f''(x_0) > 0 \end{cases}$$

Flesso ascendente a tangente orizzontale:

$$\begin{cases} f'(x_0) = 0 \\ f''(x_0) = 0 \\ f'''(x_0) > 0 \end{cases}$$

Flesso discendente a tangente orizzontale:

$$\begin{cases} f'(x_0) = 0 \\ f''(x_0) = 0 \\ f'''(x_0) < 0 \end{cases}$$

Flesso ascendente a tangente obliqua:

$$\begin{cases} f'(x_0) \neq 0 \\ f''(x_0) = 0 \\ f'''(x_0) > 0 \end{cases}$$

Flesso discendente a tangente obliqua:

$$\begin{cases} f'(x_0) \neq 0 \\ f''(x_0) = 0 \\ f'''(x_0) < 0 \end{cases}$$

Formula della tangente obliqua:

$$y - y_0 = f'(x_0)(x - x_0)$$

16 Integrali

16.0.1 Proprieta'

$$\int kf(x)dx = k \int f(x)dx$$

$$\int [f_1(x) + f_2(x) + f_3(x)] dx = \int f_1(x)dx + \int f_2(x)dx + \int f_3(x)dx$$

16.0.2 Integrali immediati

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c \qquad \int \frac{1}{x} dx = \ln|x| + c \qquad \int \sin(x) dx = -\cos(x) + c$$

$$\int \cos(x) dx = \sin(x) + c \qquad \int \frac{1}{1+x^2} dx = \arctan(x) + c \qquad \int \frac{1}{\cos^2(x)} dx = \tan(x) + c$$

$$\int e^x dx = e^x + c \qquad \int a^x dx = \frac{a^x}{\ln(a)} + c \qquad \int \frac{1}{\sqrt{a-x^2}} dx = \arcsin(x) + c$$

$$\int \frac{1}{\sin^2(x)} dx = -\cot(x) + c \qquad \int 1 dx = x + c$$

16.0.3 Integrali mediati

$$\int [f(x)]^{\alpha} \cdot f'(x) dx = \frac{[f(x)]^{\alpha+1}}{\alpha+1} + c \qquad \int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\int f'(x) \cdot \sin[f(x)] dx = -\cos[f(x)] + c \qquad \int f'(x) \cdot \cos[f(x)] dx = \sin[f(x)] + c$$

$$\int e^{f(x)} \cdot f'(x) dx = e^{f(x)} + c \qquad \int \frac{f'(x)}{\sqrt{1 - f^2(x)}} dx = \arcsin[f(x)] + c$$

$$\int a^{f(x)} \cdot f'(x) dx = \frac{a^{f(x)}}{\ln(a)} + c \qquad \int \frac{f'(x)}{1 + f^2(x)} dx = \arctan[f(x)] + c$$

$$\int \frac{f'(x)}{\cos^2[f(x)]} dx = \tan[f(x)] + c$$

16.0.4 Funzioni non banali

Risoluzione con formule parametriche:

$$\sin(x) = \frac{2t}{1+t^2}$$
 $\cos(x) = \frac{1-t^2}{1+t^2}$ $t = \tan(\frac{x}{2})$

Risoluzione di integrali irrazionali:

$$\int \sqrt{x^2 \pm \alpha^2} dx \qquad \int \frac{1}{\sqrt{x^2 + \alpha^2}} dx \quad \to t = x + \sqrt{x^2 \pm \alpha^2}$$

$$\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2} \arcsin\left(\frac{x}{a}\right) + \frac{x}{2}\sqrt{a^2 - x^2} \qquad \to x = a\sin(t)$$

Risoluzione per parti:

$$\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx$$

16.0.5 Teorema della media

$$f(c) = \frac{\int_{a}^{b} f(x)dx}{b-a}$$

16.0.6 Volume nei solidi di rotazione

$$V = \pi \int_{a}^{b} f^{2}(x)dx$$

16.0.7 Metodo dei rettangoli

$$\int_{a}^{b} f(x)dx = \frac{b-a}{n} \sum_{i=0}^{n-1} f(x_i) \qquad \lor \qquad \int_{a}^{b} f(x)dx = \frac{b-a}{n} \sum_{i=0}^{n} f(x_i)$$

16.0.8 Metodo dei trapezi

$$\frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_i+1)}{2} = \int_a^b f(x) dx$$

16.0.9 Integrali doppi

$$I = \int_{a}^{b} dy \int_{c}^{d} f(x, y) dx$$

16.0.10 Integrali di linea di prima specie

$$I = \int_{a}^{b} f(\gamma(t)) \cdot ||\gamma'(t)|| dt$$

16.0.11 Integrali di linea di seconda specie

$$\gamma:[a,b] \to \mathcal{R}^2$$
 $\vec{F}:(x,y) \to (x_1,y_1)$ $t \to (t_1,t_2)$
$$\int_a^b \langle (f(\gamma)); (\gamma'(t)) \rangle dt$$

16.0.12 Integrali tripli

• Parallelepipedi regolari:

$$D = [a, b] \times [c, d] \times [e, h] \to \int_a^b \left(\int_c^d \left(\int_e^h f(x, y, z) dz \right) dy \right) dx$$

• Per fili:

$$D = \{(x, y, z) \in \mathcal{R}^2 : (x, y) \in \Omega, g_1(x, y) \le z \le g_2(x, y)\} \text{ to } \int \int_{\Omega} \left(\int_{g_1(x, y)}^{g_2(x, y)} f(x, y, z) dz \right) dx dy$$

• Per strati:

$$D = \left\{ (x, y, z) \in \mathcal{R}^2 : z_1 \le z \le z_2, (x, y) \in \Omega(z) \right\} \to \int_{z_1}^{z_2} \left(\int \int_{\Omega(z)} f(x, y, z) dx dy \right) dz$$

16.0.13 Campi vettoriali

1. Verificare che il campo sia conservativo con le derivate incrociate:

$$F'_{ij} = F'_{ji}$$

2. Trovare il potenziale (U è il minimo potenziale che comprende entrambi gli integrali):

$$\vec{F}: (x,y) \to (x_1,y_2)$$

$$\begin{cases} \int x_1 dx \\ \int y_1 dy \end{cases} \qquad \int_a^b \vec{F} = U(\gamma)_B - U(\gamma)_B$$

25

17 Equazioni differenziali

17.0.1 Primo ordine

$$F(y'; y; x) = 0$$

1. y' = f(x)

$$\frac{dy}{dx} = f(x) y = \int f(x)dx$$

2. $y' = g(x) \cdot h(x) \operatorname{con} h(y) \neq 0$

$$\frac{dy}{dx} = g(x)h(y)$$
 $\frac{dy}{h(y)} = g(x)dx$ $\int \frac{dy}{h(y)} = \int g(x)dx$

3. y' + a(x)y = b(x)

$$y = e^{-\int a(x)dx} \cdot \left[\int b(x) \cdot e^{\int a(x)dx} dx + c \right]$$

17.0.2 Secondo ordine

1. F(y''; y'; y; x) = 0

$$y'' + by' + cx = 0 \to z^2 + bz + c = 0 \qquad \begin{cases} y = c_1 e^{z_1 x} + c_2 e^{z_2 x} & \Delta > 0 \\ y = e^{z_1} (c_1 + c_2 x) & \Delta = 0 \\ y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x) & \Delta < 0 \end{cases}$$

2.
$$y'' + by' + cy = r(x)$$

Risolvere la soluzione omogenea y'' + by' + cy = 0 e poi valutare la soluzione particolare r(x):

- r(x) polinomio $\to p(x) = x(ax^2 + bx + c)$
- $r(x) = A \cdot e^{hx} \rightarrow p(x) = C \cdot e^{rx}$, r = h
- $r(x) = A\cos\omega x + B\sin\omega x \rightarrow p(x) = C\cos\omega x + D\sin\omega x$

18 Studio di funzione

18.1 Studio del dominio

Verificare la presenza di:

$$\begin{array}{ccc} \frac{numeratore}{denominatore} & \rightarrow & denominatore \neq 0 \\ \\ \sqrt{argomento} & \rightarrow & argomento \geq 0 \\ \\ \log_a\left(argomento\right) & \rightarrow & argomento > 0 \end{array}$$

18.2 Studio del limite e degli asintoti

18.2.1 Discontinuita'

• Funzione continua:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

• Discontinuita' di prima specie:

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x) \in \mathcal{R}$$

• Discontinuita' di seconda specie:

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x) = \pm \infty$$

• Discontinuita' di terza specie:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \land x \neq x_0$$

18.2.2 Asintoto

ullet Orizzontale

$$\lim_{x \to \pm \infty} f(x) = q \qquad y = q$$

• Verticale

$$\lim_{x \to q} f(x) = \pm \infty \qquad x = q$$

• Obliquo

$$\lim_{x \to \pm \infty} f(x) = \pm \infty \qquad y = mx + q$$

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x} \qquad q = \lim_{x \to \pm \infty} f(x) - mx$$

18.3 Parita'/Disparita'

• Funzione pari: funzione simmetrica rispetto all'asse y.

$$f(x) = f(-x)$$

• Funzione dispari: funzione con simmetria centrale rispetto all'origine.

$$f(x) = -f(-x)$$

18.4 Incontro con gli assi

$$\begin{cases} x = 0 \\ y = f(0) \end{cases}$$

 $\begin{cases} y = 0 \\ f(x) = 0 \end{cases}$

18.5 Studio del segno

Funzione crescente:

$$\forall x_1, x_2 \in \mathcal{D}, x_1 < x_2 \to f(x_1) < f(x_2)$$

Funzione decrescente:

$$\forall x_1, x_2 \in \mathcal{D}, x_1 > x_2 \to f(x_1) > f(x_2)$$

18.6 Punti di massimo e minimo

Line up:

- 1. Calcolo della derivata prima
- 2. Studio del dominio
- 3. Studio del segno

$$f'(x) > 0$$

4. Estrazione del massimo e minimo locale/globale

18.7 Punti di flesso

Line up:

- 1. Calcolo della derivata seconda
- 2. Studio del dominio
- 3. Studio del segno

$$f''(x) > 0$$

4. Estrazione del massimo e minimo locale/globale

18.8 Punti di non derivabilita'

Punto angoloso:

$$\lim_{x \to x_0^-} f'(x) \neq \lim_{x \to x_0^+} f'(x)$$

Cuspide:

$$\lim_{x \to x_0^-} f'(x) \neq \lim_{x \to x_0^+} f'(x) = \pm \infty$$

Flesso a tangente verticale:

$$\lim_{x \to x_0^-} f'(x) = \lim_{x \to x_0^+} f'(x) = \pm \infty$$

18.9 Proprieta' delle funzioni derivabili

f(x)	f'(x)
$x \neq k$	$x \neq k$
pari	dispari
dispari	pari
crescente	positiva
decrescente	negativa
max/min	intersezione
\cap	decrescente
U	crescente
flesso	max/min

18.10 Approssimazioni

18.10.1 Metodo delle tangenti (Newton)

Il metodo delle tangenti, chiamato anche metodo di Newton-Raphson, è uno dei metodi per il calcolo approssimato di una soluzione di un'equazione della forma f(x) = 0. Esso si applica dopo avere determinato un intervallo [a,b] che contiene una sola radice.

$$C_n = C_{n-1} - \frac{f(n-1)}{f'(n-1)}$$

18.10.2 Metodo delle secanti

Il metodo delle secanti è uno dei metodi più semplici per il calcolo approssimato di una soluzione di un'equazione della forma f(x) = 0. Esso si applica dopo avere determinato un intervallo [a, b] che contiene una sola radice.

$$C_{n+1} = b - \frac{f(b) \cdot (b - C_n)}{f(b) - f(C_n)}$$