DB Design

Prof. Hyuk-Yoon Kwon

https://sites.google.com/view/seoultech-bigdata

Contents

- Summary of Previous Lecture
 - Data manipulation
 - View
- Today's lecture
 - DB Design

Today's Lecture

- 1. Normal forms & functional dependencies
 - ACTIVITY: Finding FDs
- 2. Finding functional dependencies
- 3. Closures, superkeys & keys
 - ACTIVITY: The key or a key?

1. Normal Forms & Functional Dependencies

What you will learn about in this section

1. Overview of design theory & normal forms

2. Data anomalies & constraints

3. Functional dependencies

4. ACTIVITY: Finding FDs

Design Theory

■ Design theory is about how to represent your data to avoid *anomalies*.

- It is a mostly mechanical process
 - Tools can carry out routine portions

Normal Forms

1st Normal Form (1NF) = All tables are flat

■ 2nd Normal Form = disused

Boyce-Codd Normal Form (BCNF)

■ 3rd Normal Form (3NF)

■ 4th and 5th Normal Forms

1st Normal Form (1NF)

Student	Courses
Mary	{CS145,CS229}
Joe	{CS145,CS106}
	•••

Student	Courses
Mary	CS145
Mary	CS229
Joe	CS145
Joe	CS106

Violates 1NF.

In 1st NF

1NF Constraint: Types must be atomic!

Data Anomalies & Constraints

A poorly designed database causes *anomalies*:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
* *		

If every course is in only one room, contains <u>redundant</u> information!

A poorly designed database causes *anomalies*:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	C12
Sam	CS145	B01
••	••	••

If we update the room number for one tuple, we get inconsistent data = an <u>update anomaly</u>

A poorly designed database causes *anomalies*:

Student	Course	Roc	m
••			

If everyone drops the class, we lose what room the class is in! = a *delete* anomaly

A poorly designed database causes *anomalies*:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••		

Similarly, we can't reserve a room without students = an insert anomaly

Student	Course
Mary	CS145
Joe	CS145
Sam	CS145

Course	Room
CS145	B01
CS229	C12

Is this form better?

- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?

Today: develop theory to understand why this design may be better **and** how to find this *decomposition*...

Functional Dependencies

Functional Dependency

Def: Let A,B be *sets* of attributes We write A \rightarrow B or say A *functionally determines* B if, for any tuples t_1 and t_2 :

 $t_1[A] = t_2[A]$ implies $t_1[B] = t_2[B]$

and we call A → B a **functional dependency**

A->B means that "whenever two tuples agree on A then they agree on B."

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...,B_n\}$ in R,

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...B_n\}$ in R,

The functional dependency A→
B on R holds if for any t_i,t_i in R:

If t1,t2 agree here..

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...,B_n\}$ in R,

The functional dependency A→
B on R holds if for any t_i,t_i in R:

 $t_i[A_1] = t_j[A_1]$ AND $t_i[A_2] = t_j[A_2]$ AND ... AND $t_i[A_m] = t_i[A_m]$

Defn (again):

Given attribute sets $A=\{A_1,...,A_m\}$ and $B=\{B_1,...,B_n\}$ in R,

The *functional dependency* A→ B on R holds if for *any* t_i,t_i in R:

$$\underline{\textbf{if}} \ t_i[A_1] = t_j[A_1] \ \text{AND} \ t_i[A_2] = t_j[A_2] \\ \text{AND} \ \dots \ \text{AND} \ t_i[A_m] = t_j[A_m]$$

then $t_i[B_1] = t_j[B_1] \text{ AND } t_i[B_2] = t_j[B_2]$ AND ... AND $t_i[B_n] = t_j[B_n]$

Practice #1: Functional Dependency

A	В	С	D	Е
1	2	4	3	6
3	2	5	1	8
1	4	4	5	7
1	2	4	3	6
3	2	5	1	8

Find at least *three* FDs which are violated on this instance:

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - 1. Start with some relational *schema*
 - 2. Find out its functional dependencies (FDs)
 - 3. Use these to design a better schema
 - 1. One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

A functional dependency is a form of constraint

- Holds on some instances (but not others) – can check whether there are violations
- Part of the schema, helps define a valid instance

Recall: an <u>instance</u> of a schema is a multiset of tuples conforming to that schema, **i.e. a table**

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	

Note: The FD {Course}
-> {Room} holds on
this instance

Functional Dependencies as Constraints

Note that:

- You can check if an FD is violated by examining a single instance;
- However, you cannot prove that an FD is part of the schema by examining a single instance.
 - This would require checking every valid instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	• •

However, cannot *prove* that the FD {Course} -> {Room} is *part of the schema*

More Examples

An FD is a constraint which <u>holds</u>, or <u>does not hold</u> on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

More Examples

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

{Position} → {Phone}

More Examples

EmpID	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

but *not* {Phone} → {Position}

Practice #2: Functional Dependency with SQL

- Given the database schema R(a, b, c), write an SQL query to test whether the functional dependency b
 - → c holds on relation R.
 - You can check your SQL with ACDB databases mapping R into ACDB_CUSTOMERS, b into CUSTOMER_ID, and c into STATE

2. Finding Functional Dependencies

What you will learn about in this section

1. "Good" vs. "Bad" FDs: Intuition

2. Finding FDs

3. Closures

4. Practice: Compute the closures

"Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

 Minimal redundancy, less possibility of anomalies

"Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

But Position -> Phone is a "bad FD"

Redundancy!
 Possibility of data
 anomalies

"Good" vs. "Bad" FDs

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••		••

Returning to our original example... can you see how the "bad FD" {Course} -> {Room} could lead to an:

- Update Anomaly
- Insert Anomaly
- Delete Anomaly
- •

Given a set of FDs (from user) our goal is to:

- 1. Find all FDs, and
- 2. Eliminate the "Bad Ones".

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - 1. Start with some relational *schema*
 - 2. Find out its *functional dependencies (FDs)*
 - 3. Use these to design a better schema
 - 1. One which minimizes possibility of anomalies

This part can be tricky!

Finding Functional Dependencies

- There can be a very large number of FDs...
 - How to find them all efficiently?

- We can't necessarily show that any FD will hold on all instances...
 - How to do this?

We will start with this problem: Given a set of FDs, F, what other FDs *must* hold?

Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, $F = \{f_1, ..., f_n\}$, does an FD g hold?

Inference problem: How do we decide?

Finding Functional Dependencies

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

- 1. {Name} → {Color}
- 2. {Category} → {Department}
- 3. {Color, Category} → {Price}

Given the provided FDs, we can see that {Name, Category} → {Price} must also hold on **any instance**...

Which / how many other FDs do?!?

Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, $F = \{f_1, ..., f_n\}$, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called

Armstrong's Rules.

- 1. Split/Combine,
- 2. Reduction, and
- 3. Transitivity... ideas by picture

1. Split/Combine

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

1. Split/Combine

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

... is equivalent to the following *n* FDs...

$$A_1,...,A_m \rightarrow B_i$$
 for i=1,...,n

1. Split/Combine

And vice-versa, $A_1,...,A_m \rightarrow B_i$ for i=1,...,n

... is equivalent to ...

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

2. Reduction

$$A_1,...,A_m \rightarrow A_j$$
 for any j=1,...,m

3. Transitive Closure

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and $B_1, ..., B_n \rightarrow C_1, ..., C_k$

3. Transitive Closure

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and $B_1, ..., B_n \rightarrow C_1, ..., C_k$ implies $A_1, ..., A_m \rightarrow C_1, ..., C_k$

Finding Functional Dependencies

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

- 1. {Name} → {Color}
- 2. {Category} → {Department}
- 3. {Color, Category} → {Price}

Which / how many other FDs hold?

Finding Functional Dependencies

Example:

Inferred FDs:

Inferred FD	Rule used
4.	
5.	
5.6.7.	
7.	
8.	

Provided FDs:

- 1. {Name} → {Color}
- 2. {Category} → {Dept.}
- 3. {Color, Category} → {Price}

Closures

Closure of a set of Attributes

```
Given a set of attributes A_1, ..., A_n and a set of FDs F:
Then the <u>closure</u>, \{A_1, ..., A_n\}^+ is the set of attributes B s.t. \{A_1, ..., A_n\} \rightarrow B
```

```
Example: F = \{name\} \rightarrow \{color\} \}

\{category\} \rightarrow \{department\} \}

\{color, category\} \rightarrow \{price\} \}
```

```
Example
Closures
:
```

```
{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}
```

Start with $X = \{A_1, ..., A_n\}$ and set of FDs F.

Repeat until X doesn't change; do:

if $\{B_1, ..., B_n\} \rightarrow C$ is entailed by F

and $\{B_1, ..., B_n\} \subseteq X$

then add C to X.

Return X as X+

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X+
```

```
{name, category}+ =
{name, category}
```

```
F = \{\text{name}\} \rightarrow \{\text{color}\}
\{\text{category}\} \rightarrow \{\text{dept}\}
\{\text{color, category}\} \rightarrow \{\text{price}\}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X<sup>+</sup>
```

```
{name, category}+ = {name, category}
```

```
{name, category}+ = {name, category, color}
```

```
F = \{\text{name}\} \rightarrow \{\text{color}\}
\{\text{category}\} \rightarrow \{\text{dept}\}
\{\text{color, category}\} \rightarrow \{\text{price}\}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X+
```

```
{name, category}+ = {name, category}
```

```
{name, category}+ = {name, category, color}
```

```
F = \{\text{name}\} \rightarrow \{\text{color}\}
\{\text{category}\} \rightarrow \{\text{dept}\}
\{\text{color, category}\} \rightarrow \{\text{price}\}
```

```
{name, category}+ =
{name, category, color, dept}
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.

Repeat until X doesn't change; do:

if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\} \subseteq X:

then add C to X.

Return X as X+
```

```
{name, category}<sup>+</sup> = {name, category}
```

```
{name, category}<sup>+</sup> = {name, category, color}
```

```
F = \{\text{name}\} \rightarrow \{\text{color}\}
\{\text{category}\} \rightarrow \{\text{dept}\}
\{\text{color, category}\} \rightarrow \{\text{price}\}
```

```
{name, category}+ = {name, category, color, dept}
```

```
{name, category}+ = {name, category, color, dept, price}
```

Practice #3: Finding Closure1

$${A,B} \rightarrow {C}$$

 ${A,D} \rightarrow {E}$
 ${B} \rightarrow {D}$
 ${A,F} \rightarrow {B}$

Compute
$$\{A, F\}^+ = \{A, F, A, F, A,$$

Practice #3: Finding Closure2

- Consider a schema with attributes $X=\{A,B,C,D,E,F,G,H\}$. In this practice, you are given a set of attributes $A \subset X$ and a set of FDs F.
 - A = {A, B, F}
 - F = {{A, C} -> {D},
 {D, H, G} -> {E},
 {A, B} -> {G},
 {F, B, G} -> {C}}

- 1) Compute A⁺
- 2) Find one FD to add to F so that the closure A+=X

3. Closures, Superkeys & Keys

What you will learn about in this section

1. Closures

2. Superkeys & Keys

3. ACTIVITY: The key or a key?

Why Do We Need the Closure?

■ With closure we can find all FD's easily

- \blacksquare To check if $X \rightarrow A$
 - 1. Compute X⁺
 - 2. Check if $A \in X^+$

Step 1: Compute X⁺, for every set of attributes X:

$${A,B} \rightarrow C$$

 ${A,D} \rightarrow B$
 ${B} \rightarrow D$

```
\{A\}^+ = \{A\}
\{B\}^+ = \{B,D\}
\{C\}^+ = \{C\}
\{D\}^+ = \{D\}
{A,B}^+ = {A,B,C,D}
{A,C}^+ = {A,C}
{A,D}^+ = {A,B,C,D}
{A,B,C}^+ = {A,B,D}^+ = {A,C,D}^+ = {A,B,C,D}
\{B,C,D\}^+ = \{B,C,D\}
{A,B,C,D}^+ = {A,B,C,D}
```

Example: Given F =

Step 1: Compute X⁺, for every set of attributes X:

$${A,B} \rightarrow C$$

 ${A,D} \rightarrow B$
 ${B} \rightarrow D$

$${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D},$$

 ${A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} =$
 ${A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

```
\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\},

\{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\},

\{A,C,D\} \rightarrow \{B\}
```

Example: Given F =

Step 1: Compute X⁺, for every set of attributes X:

$${A,B} \rightarrow C$$

 ${A,D} \rightarrow B$
 ${B} \rightarrow D$

$${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}^{+} = {A,$$

Step 2: Enumerate all FDs X \rightarrow Y, s.t $Y \subseteq X^+$ and X \cap Y = \emptyset :

"Y is in the closure of X"

```
{A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C},

{A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C},

{A,C,D} \rightarrow {B}
```

Example: Given F =

Step 1: Compute X⁺, for every set of attributes X:

$${A,B} \rightarrow C$$

 ${A,D} \rightarrow B$
 ${B} \rightarrow D$

```
{A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}^{+} = {A,
```

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \varnothing :

 $Y = \emptyset$: The FD $X \rightarrow Y$ is non-trivial

```
{A,B} \rightarrow {C,D}, {A,D} \rightarrow {B,C},

{A,B,C} \rightarrow {D}, {A,B,D} \rightarrow {C},

{A,C,D} \rightarrow {B}
```

Practice #4: Closure

- 1. Consider relation R(A,B,C,D,E) with functional dependencies:
 - AB \rightarrow C, C \rightarrow D, BD \rightarrow E
 - Which of the following sets of attributes does not functionally determine E?
 - 1) AD
 - 2) ABC
 - 3) BC
 - 4) BCD
- 2. Let relation R(A,B,C,D,E,F,G,H) satisfy the following functional dependencies:
 - A \rightarrow B, CH \rightarrow A, B \rightarrow E, BD \rightarrow C, EG \rightarrow H, DE \rightarrow F
 - Which of the following FDs is also guaranteed to be satisfied by R?
 - 1) CDE -> AF
 - 2) BCD -> FH
 - 3) BED -> CF
 - 4) CGH \rightarrow BF

- 3. Let relation R(A,B,C,D,E) satisfy the following functional dependencies:
 - AB \rightarrow C, BC \rightarrow D, CD \rightarrow E, DE \rightarrow A, AE \rightarrow B
 - Which of the following FDs is also guaranteed to be satisfied by R?
 - 1) AD -> B
 - 2) CD -> B
 - 3) D -> B
 - 4) AD -> C
- 4. Suppose relation R(A,B,C) currently has only the tuple (0,0,0), and it must always satisfy the functional dependencies A \rightarrow B and B \rightarrow C. Which of the following tuples may be inserted into R legally?
 - 1) (2, 0, 1)
 - 2) (0, 2, 1)
 - 3) (1, 1, 0)
 - 4) (0, 1, 0)

Practice #5: Closure in SQL

■ Related to the Problem #4 in Practice #4

- Make a table R using your Oracle database
- Insert the tuple (0, 0, 0)
- For each tuple from 1) to 4), check given functional dependencies are satisfied or not using SQL
 - For each tuple, drop existing table and then make new table
 - Or you can make a table having new name (e.g., R1, R2, R3, and R4)

Superkeys and Keys

Keys and Superkeys

A <u>superkey</u> is a set of attributes $A_1, ..., A_n$ s.t. for *any other* attribute **B** in R, we have $\{A_1, ..., A_n\} \rightarrow B$

I.e. all attributes are functionally determined by a superkey

A **key** is a *minimal* superkey

This means that no subset of a key is also a superkey (i.e., dropping any attribute from the key makes it no longer a superkey)

Finding Keys and Superkeys

For each set of attributes X

Compute X⁺

2. If X^+ = set of all attributes then X is a **superkey**

3. If X is minimal, then it is a **key**

Example of Finding Keys

Product(name, price, category, color)

```
{name, category} → price {category} → color
```

What is a key?

Example of Keys

Product(name, price, category, color)

```
{name, category} → price {category} → color
```

Practice #6: Finding superkeys

- 1. Consider relation R(A,B,C,D,E) with functional dependencies:
 - D \rightarrow C, CE \rightarrow A, D \rightarrow A, AE \rightarrow D
 - Which of the following is a superkey?
 - 1) A
 - 2) BD
 - 3) CDE
 - 4) BDE
- 2. Consider relation R(A,B,C,D,E,F) with functional dependencies:
 - CDE \rightarrow B, ACD \rightarrow F, BEF \rightarrow C, B \rightarrow D
 - Which of the following is a superkey?
 - 1) BDF
 - 2) ABE
 - 3) ADEF
 - 4) ABEF

- 3. Consider relation R(A,B,C,D,E,F,G) with functional dependencies:
 - AB \rightarrow C, CD \rightarrow E, EF \rightarrow G, FG \rightarrow E, DE \rightarrow C, and BC \rightarrow A
 - Which of the following is a superkey?
 - 1) ABEF
 - 2) BDF
 - 3) BDEG
 - 4) BDFG

Practice #7: Finding super keys and keys

- Given the schema R={A,B,C}, define two FDs such that it has only two keys
 - Remember the definition of super key: $\{A_1, ..., A_n\} \rightarrow B$ where B is any other attribute (NOT set) except for $\{A_1, ..., A_n\}$

- Now, given the below relation R, define a set of FDs to result in the most keys possible.
 - $R = \{A,B,C,D,E\}$
 - How many keys can you make? Largest number wins it all!