Union-Find-Algorithm

union-find: definitions

spec: Elements of sets chosen from [0:N-1] algorithm maintains

- $Q \subseteq [1:N]$ set of all elements chosen so far. Initially $Q = \emptyset$.
- system (partition) P of Q

$$P = \{S_1, \dots, S_k\} \quad , \quad i \neq j \to S_i \cap S_j = \emptyset$$

$$\bigcup_{i=1}^k S_i = Q$$

For elements $x \in Q$ define S(x) as the set $S \in P$ with $x \in S$

• representatives $r_i \in S_i$ serves as names of sets S_i . System of representatives:

$$R = \{r_1, \dots, r_k\}$$

union-find: definitions

spec: Elements of sets chosen from [0:N-1] algorithm maintains

- $Q \subseteq [1:N]$ set of all elements chosen so far. Initially $Q = \emptyset$.
- system (partition) P of Q

$$P = \{S_1, \dots, S_k\} \quad , \quad i \neq j \to S_i \cap S_j = \emptyset$$

$$\bigcup_{i=1}^k S_i = Q$$

For elements $x \in Q$ define S(x) as the set $S \in P$ with $x \in S$

• representatives $r_i \in S_i$ serves as names of sets S_i . System of representatives:

$$R = \{r_1, \ldots, r_k\}$$

operations

• make - set(x) with $x \notin Q$

$$Q' = Q \cup \{x\} , P' = P \cup \{\{x\}\}\$$

• union(x, y) with $x, y \in Q$

$$P' = P \setminus S(x) \setminus S(y) \cup \{S(x) \cup S(y)\}$$

• find(x) = r with $x \in S(r)$ and $r \in R$

union-find: definitions

spec: Elements of sets chosen from [0:N-1] algorithm maintains

- $Q \subseteq [1:N]$ set of all elements chosen so far. Initially $Q = \emptyset$.
- system (partition) P of Q

$$P = \{S_1, \dots, S_k\} \quad , \quad i \neq j \to S_i \cap S_j = \emptyset$$

$$\bigcup_{i=1}^k S_i = Q$$

For elements $x \in Q$ define S(x) as the set $S \in P$ with $x \in S$

• representatives $r_i \in S_i$ serves as names of sets S_i . System of representatives:

$$R = \{r_1, \ldots, r_k\}$$

operations

• make - set(x) with $x \notin Q$

$$Q' = Q \cup \{x\} , P' = P \cup \{\{x\}\}\}$$

• union(x, y) with $x, y \in Q$

$$P' = P \setminus S(x) \setminus S(y) \cup \{S(x) \cup S(y)\}$$

• find(x) = r with $x \in S(r)$ and $r \in R$

problem size

- n: number of make-set operations; number of elements in all sets
- *m* number of union and find operations

$$n \leq m$$

disjoint set forest

one tree per set

class TE for tree elements. Nodes x are objects with components

- *x.p*: parent
- *x.r*: rank

notation:

$$p(x) = x.p \text{ (parent)}$$

$$r(x) = x.r \text{ (rank)}$$

disjoint set forest

one tree per set

class TE for tree elements. Nodes x are objects with components

- *x.p*: parent
- *x.r*: rank

notation:

$$p(x) = x.p \text{ (parent)}$$

 $r(x) = x.r \text{ (rank)}$

convention:

- x is root of its tree iff p(x) = x, i.e. x points to itself
- roots serve as representatives

one tree per set

class TE for tree elements. Nodes x are objects with components

- *x.p*: parent
- *x.r*: rank

notation:

$$p(x) = x.p ext{ (parent)}$$

 $r(x) = x.r ext{ (rank)}$

convention:

- x is root of its tree iff p(x) = x, i.e. x points to itself
- roots serve as representatives

• test if p(x) = x: i.e. x points to itself

```
p(x)=x?: /x is representative, root */
x.p==x
```

one tree per set

class TE for tree elements. Nodes x are objects with components

- *x.p*: parent
- *x.r*: rank

notation:

$$p(x) = x.p ext{ (parent)}$$

 $r(x) = x.r ext{ (rank)}$

convention:

- x is root of its tree iff p(x) = x, i.e. x points to itself
- roots serve as representatives

• test if p(x) = x: i.e. x points to itself

```
p(x)=x?: /x is representative, root */
x.p==x
```

• make $y \in Q$ the parent of $x \in Q$:

```
p(x):=y:/*make y parent of x*/
x.p= y
```

one tree per set

class TE for tree elements. Nodes x are objects with components

- *x.p*: parent
- *x.r*: rank

notation:

$$p(x) = x.p ext{ (parent)}$$

 $r(x) = x.r ext{ (rank)}$

convention:

- x is root of its tree iff p(x) = x, i.e. x points to itself
- roots serve as representatives

• test if p(x) = x: i.e. x points to itself

```
p(x)=x?: /x is representative, root */
x.p==x
```

• make $y \in Q$ the parent of $x \in Q$:

```
p(x):=y:/*make y parent of x*/
x.p= y
```

• replace x by parent p(x) of x

```
x:=p(x): /* replace x by p(x) */
x=x.p
```

one tree per set

class TE for tree elements. Nodes x are objects with components

- *x.p*: parent
- *x.r*: rank

notation:

$$p(x) = x.p ext{ (parent)}$$

 $r(x) = x.r ext{ (rank)}$

convention:

- x is root of its tree iff p(x) = x, i.e. x points to itself
- roots serve as representatives

• test if p(x) = x: i.e. x points to itself

```
p(x)=x?: /x is representative, root */
x.p==x
```

• make $y \in Q$ the parent of $x \in Q$:

```
p(x):=y:/*make y parent of x*/
x.p= y
```

• replace x by parent p(x) of x

```
x:=p(x): /* replace x by p(x) */
x=x.p
```

• assign expression f to rank r(x)

```
r(x):=f /*assign f to rank of x*/
x.r= f
```

implementation of operations with balancing

using basic operations

implementation of operations with balancing

```
make-set(x):

x= new TE;

p(x):=x; r(x):=0
```

implementation of operations with balancing

using basic operations

implementation of operations with balancing

```
make-set(x):

x= new TE;

p(x):=x; r(x):=0
```


Figure 1: The root find(x) of the tree containing x is found by chasing of parent-pointers

```
find(x):
while p(x) !=x {x:=p(x)};
return x
```

implementation of operations with balancing

using basic operations

implementation of operations with balancing

```
make-set(x):

x= new TE;

p(x):=x; r(x):=0
```


Figure 1: The root find(x) of the tree containing x is found by chasing of parent-pointers

```
find(x):
while p(x) !=x {x:=p(x)};
return x
```

```
union(x,y): link(find(x), find(y))
```

linking trees with roots x and y

```
link(x,y): if r(x) < r(y) {p(x):=y} /*make y predecessor of x*/; if r(x) > r(y) {p(y):=x} /*make x predecessor of y*/; if r(x) = r(y) {p(x):=y; r(y) = r(y) + 1} /*increase rank of y*/
```


Figure 2: link(x,y): if $r(x) \le r(y)$ one makes x a son of y. If r(x) = r(y) one increases r(y) to r'(y) = r(y) + 1.

Lemma 1. if x is root of tree with n nodes, then

$$r(x) \le \lfloor \log n \rfloor \le n - 1$$

Induction on *n*

n = 0 and right inequality: trivial

Lemma 1. if x is root of tree with n nodes, then

$$r(x) \le \lfloor \log n \rfloor \le n - 1$$

Induction on *n*

n = 0 and right inequality: trivial

 $n-1 \rightarrow n$. Let a, b be number of nodes in trees with roots x, y

Figure 5: link(x, y): if $r(x) \le r(y)$ one makes x a son of y. The new tree has a + b nodes.

•
$$r(x) < r(y)$$

$$r(y) \le \lfloor \log a \rfloor \le \lfloor \log(a+b) \rfloor$$

Lemma 1. if x is root of tree with n nodes, then

$$r(x) \le \lfloor \log n \rfloor \le n - 1$$

Induction on *n*

n = 0 and right inequality: trivial

 $n-1 \rightarrow n$. Let a, b be number of nodes in trees with roots x, y

Figure 5: link(x, y): if $r(x) \le r(y)$ one makes x a son of y. The new tree has a + b nodes.

•
$$r(x) < r(y)$$

$$r(y) \le \lfloor \log a \rfloor \le \lfloor \log(a+b) \rfloor$$

•
$$r(x) > r(y)$$
 similar

•
$$r(x) = r(y)$$

$$r'(y) = r(y) + 1$$

$$= r(x) + 1$$

$$\leq \lfloor \log \min\{a, b\} \rfloor + 1$$

$$\leq \lfloor \log \frac{a+b}{2} \rfloor + 1$$

$$= \lfloor \log(a+b) - 1 \rfloor + 1$$

$$= \lfloor \log(a+b) \rfloor$$

Lemma 2.

$$r(x) \ge h(x)$$

Induction on number of nodes in tree with root *x*

n = 1 trivial

Lemma 2.

$$r(x) \ge h(x)$$

Induction on number of nodes in tree with root x

n = 1 trivial

$$n-1 \rightarrow n$$

Figure 6: link(x, y): if $r(x) \le r(y)$ one makes x a son of y. The new tree has height $h'(y) = \max\{h(x) + 1, h(y)\}$.

•
$$r(x) < r(y)$$

$$h'(y) = \max\{h(y), h(x) + 1\}$$

$$r'(y) = r(y) \ge r(x) + 1 \ge h(x) + 1$$

Lemma 2.

$$r(x) \ge h(x)$$

Induction on number of nodes in tree with root x

n = 1 trivial

 $n-1 \rightarrow n$

- r(x) > r(y) similar
- r(x) = r(y)

$$h'(y) = \max\{h(y), h(x) + 1\}$$

$$h'(y) = h(y) \to h'(y) \le r(y) < r(y) + 1 = r'(y)$$

$$h'(y) = h(x) + 1 \to h'(y) = h(x) + 1 \le r(x) + 1 = r(y) + 1 = r'(y)$$

Figure 6: link(x,y): if $r(x) \le r(y)$ one makes x a son of y. The new tree has height $h'(y) = \max\{h(x) + 1, h(y)\}.$

• r(x) < r(y)

$$h'(y) = \max\{h(y), h(x) + 1\}$$

$$r'(y) = r(y) \ge r(x) + 1 \ge h(x) + 1$$

run time

time for operations

- make-set: O(1)
- union: O(1)
- find:

$$O(h(find(x))) = O(r(find(x)))$$
 (lemma 2)
= $O(logn)$ (lemma 1)

total runtime: $O(n + m \log n)$

run time

time for operations

- make-set: O(1)
- union: O(1)
- find:

$$O(h(find(x))) = O(r(find(x)))$$
 (lemma 2)
= $O(logn)$ (lemma 1)

total runtime: $O(n + m \log n)$

improved by path compression

- programming: utterly simple
- run time: THE most famous analysis of an algorithm (Tarjan 1975)

spec:

input x at depth t.

$$x = x_t$$
, $i \ge 0 \to p(x_i) = x_{i-1}$, $p(x_0) = x_0$

output: x_0

Figure 7: parent chasing from $x = x_t$ touches elements x_{t-1}, \dots, x_0

spec:

input x at depth t.

$$x = x_t$$
, $i \ge 0 \to p(x_i) = x_{i-1}$, $p(x_0) = x_0$

output: x_0

side effect:

$$p'(x_i) = x_0 \text{ for } i \in [1:t]$$

Figure 7: parent chasing from $x = x_t$ touches elements x_{t-1}, \dots, x_0

Figure 8: after path compression all nodes x_t, \ldots, x_1 are sons of the root x_0

implementation:

```
find(x):if x != p(x)

{p(x) := find(p(x)) /*recursive call with side effect*/return p(x)
```

correctness:

t = 0 trivial

implementation:

```
find(x):if x != p(x)
{p(x):= find(p(x)) /*recursive call with side effect*/
return p(x)
```

correctness:

$$t = 0$$
 trivial

$$t \rightarrow t + 1$$

Figure 9: The path from x_{t+1} to x_0 needs to be compressed

implementation:

```
find(x):if x != p(x)
{p(x):= find(p(x)) /*recursive call with side effect*/return p(x)
```

correctness:

t = 0 trivial

 $t \rightarrow t + 1$

$$p(x_{t+1}) = x_t$$

 $find(x_t)$ called.

returns $find(x_t) = x_0$

side effect:

$$p'(x_i) = x_0 \text{ for } i \in [1:t]$$

Figure 9: The path from x_{t+1} to x_0 needs to be compressed

Figure 10: The path from x_t to x_0 is compressed by the recursive call $find(x_t)$

implementation:

```
find(x):if x != p(x)
{p(x) := find(p(x)) /*recursive call with side effect*/return p(x)
```

correctness:

t = 0 trivial

$$t \rightarrow t + 1$$

$$p(x_{t+1}) = x_t$$

 $find(x_t)$ called.

side effect:

$$p'(x_i) = x_0 \text{ for } i \in [1:t]$$

returns $find(x_t) = x_0$.

Figure 10: The path from x_t to x_0 is compressed by the recursive call $find(x_t)$

$$p(x_{t+1}) := x_0$$
 executed

side effect:

$$p''(x_i) = x_0 \text{ for } i \in [1:t+1]$$

Figure 11: assignment $p(x_{t+1}) := x_0$ has completed the path compression