Out[3

## **Exploratory Data Analysis - Terrorism**

-Vaishnavi Parvathy N

## Importing all the libraries required for analysis

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
```

# Importing and observing the data

```
df=pd.read_csv("globalterrorismdb_0718dist.csv", encoding="latin1")
df=pd.DataFrame(df)
print("Data has been successfully imported")
df.head()
```

Data has been successfully imported

| 3]: | eve               | ntid | iyear | imonth | iday | approxdate | extended | resolution | country | country_txt           | region | ••• | addnotes | scite1 | scite2 | scite3 | dbsource | IN. |
|-----|-------------------|------|-------|--------|------|------------|----------|------------|---------|-----------------------|--------|-----|----------|--------|--------|--------|----------|-----|
|     | <b>1</b> 9700000  | 0001 | 1970  | 7      | 2    | NaN        | 0        | NaN        | 58      | Dominican<br>Republic | 2      |     | NaN      | NaN    | NaN    | NaN    | PGIS     |     |
|     | <b>1</b> 19700000 | 0002 | 1970  | 0      | 0    | NaN        | 0        | NaN        | 130     | Mexico                | 1      |     | NaN      | NaN    | NaN    | NaN    | PGIS     |     |
|     | <b>2</b> 19700100 | 0001 | 1970  | 1      | 0    | NaN        | 0        | NaN        | 160     | Philippines           | 5      |     | NaN      | NaN    | NaN    | NaN    | PGIS     |     |
|     | <b>3</b> 19700100 | 0002 | 1970  | 1      | 0    | NaN        | 0        | NaN        | 78      | Greece                | 8      |     | NaN      | NaN    | NaN    | NaN    | PGIS     |     |
|     | <b>4</b> 19700100 | 0003 | 1970  | 1      | 0    | NaN        | 0        | NaN        | 101     | Japan                 | 4      |     | NaN      | NaN    | NaN    | NaN    | PGIS     |     |

5 rows × 135 columns

```
In [4]:
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 181691 entries, 0 to 181690
         Columns: 135 entries, eventid to related
         dtypes: float64(55), int64(22), object(58)
         memory usage: 187.1+ MB
In [5]:
          df.shape
Out[5]: (181691, 135)
In [6]:
          df.columns
Out[6]: Index(['eventid', 'iyear', 'imonth', 'iday', 'approxdate', 'extended',
                 'resolution', 'country', 'country txt', 'region',
                'addnotes', 'scite1', 'scite2', 'scite3', 'dbsource', 'INT LOG',
                'INT IDEO', 'INT MISC', 'INT ANY', 'related'],
               dtype='object', length=135)
In [7]:
          for i in df.columns:
              print(i,end=", ")
```

eventid, iyear, imonth, iday, approxdate, extended, resolution, country, country\_txt, region, region\_txt, provstate, city, latitud e, longitude, specificity, vicinity, location, summary, crit1, crit2, crit3, doubtterr, alternative, alternative\_txt, multiple, su ccess, suicide, attacktype1, attacktype1\_txt, attacktype2\_txt, attacktype3, attacktype3\_txt, targtype1\_txt, targsubtype1\_txt, corp1, target1, natlty1, natlty1\_txt, targtype2, targtype2\_txt, targsubtype2\_txt, corp2, target2, natlty2, natlty2\_txt, targtype3\_txt, targsubtype3\_txt, corp3, target3, natlty3, natlty3\_txt, gname, gsubname, gname2, gsubname2, gname3, gsubname3, motive, guncertain1, guncertain2, guncertain3, individual, nperps, nper pcap, claimed, claimmode, claimmode\_txt, claim2, claimmode2, claimmode2\_txt, claim3, claimmode3, claimmode3\_txt, compclaim, weapty pe1, weaptype1\_txt, weapsubtype1, weapsubtype1\_txt, weaptype2, weaptype2\_txt, weapsubtype2\_txt, weapsubtype2\_txt, weaptype3\_txt, weaptype3\_txt, weaptype4\_txt, weapsubtype4, weapsubtype4\_txt, weapdetail, nkill, nkillus, nkill er, nwound, nwoundus, nwoundte, property, propextent, propextent\_txt, propvalue, propcomment, ishostkid, nhostkid, nhostkidus, nho urs, ndays, divert, kidhijcountry, ransom, ransomamt, ransomamtus, ransompaid, ransompaidus, ransomnote, hostkidoutcome, hostkidoutcome\_txt, nreleased, addnotes, scite1, scite2, scite3, dbsource, INT\_LOG, INT\_IDEO, INT\_MISC, INT\_ANY, related,

## Procressing the data

```
df=df[["iyear","imonth","iday","country txt","region txt","provstate","city",
In [8]:
                   "latitude", "longitude", "location", "summary", "attacktype1_txt", "targtype1 txt",
                   "gname", "motive", "weaptype1 txt", "nkill", "nwound", "addnotes"]]
           df.head()
Out[8]:
             iyear imonth iday country_txt region_txt provstate
                                                                        city
                                                                               latitude
                                                                                         longitude location summary
                                                                                                                           attacktype1 txt targtype1 txt
                                                                                                                                                            gr
                                                                                                                                                 Private
                                                 Central
                                   Dominican
                                                                       Santo
          0
             1970
                         7
                              2
                                                                             18.456792
                                                                                        -69.951164
                                                                                                                                              Citizens &
                                                                                                                                                          1AM
                                              America &
                                                              NaN
                                                                                                       NaN
                                                                                                                 NaN
                                                                                                                             Assassination
                                     Republic
                                                                    Domingo
                                               Caribbean
                                                                                                                                                Property
                                                                                                                                                            23
                                                  North
                                                                                                                            Hostage Taking
                                                                                                                                            Government
                                                                     Mexico
                                                                                                                                                         Septe
          1 1970
                         0
                              0
                                                                             19.371887 -99.086624
                                      Mexico
                                                           Federal
                                                                                                       NaN
                                                                                                                 NaN
                                                America
                                                                         city
                                                                                                                              (Kidnapping)
                                                                                                                                            (Diplomatic)
                                                                                                                                                        Comm
                                                                                                                                                            Le
                                               Southeast
                                                                                                                                            Journalists &
                                                             Tarlac Unknown 15.478598 120.599741
          2 1970
                         1
                                   Philippines
                                                                                                       NaN
                                                                                                                 NaN
                                                                                                                             Assassination
                                                                                                                                                          Unki
                                                                                                                                                 Media
                                                   Asia
                                                Western
                                                                                                                                            Government
          3 1970
                         1
                               0
                                                                      Athens 37.997490
                                                                                         23.762728
                                                                                                                        Bombing/Explosion
                                                                                                                                                          Unkı
                                      Greece
                                                             Attica
                                                                                                       NaN
                                                                                                                 NaN
                                                 Europe
                                                                                                                                            (Diplomatic)
                                                                                                                       Facility/Infrastructure
                                                                                                                                            Government
          4 1970
                         1
                              0
                                       Japan
                                                East Asia
                                                           Fukouka
                                                                    Fukouka 33.580412 130.396361
                                                                                                       NaN
                                                                                                                 NaN
                                                                                                                                                          Unkı
                                                                                                                                             (Diplomatic)
                                                                                                                                   Attack
In [9]:
           df.rename(columns={"iyear":"Year","imonth":"Month","iday":"Day","country txt":"Country",
                                 "region txt":"Region","provstate":"Province/State","city":"City",
                                 "latitude": "Latitude", "longitude": "Longitude", "location": "Location",
                                "summary": "Summary", "attacktype1 txt": "Attack Type", "targtype1 txt": "Target Type",
                                 "gname": "Group Name", "motive": "Motive", "weaptype1 txt": "Weapon Type",
                                 "nkill":"Killed","nwound":"Wounded","addnotes":"Add Notes"},inplace=True)
           df.head()
Out[9]:
              Year Month Day
                                              Region Province/State
                                                                                                                                Attack Type Target Type
                                  Country
                                                                         City
                                                                                Latitude Longitude Location Summary
                                              Central
                                                                                                                                                  Private
                                 Dominican
                                             America
          0 1970
                        7
                                                                               18.456792 -69.951164
                                                                                                         NaN
                                                                                                                   NaN
                                                                                                                                Assassination
                                                                                                                                               Citizens &
                                                                                                                                                           MA
                                                               NaN
```

Domingo

Republic

&

Caribbean

Property

|   | Year | Month | Day | Country     | Region            | Province/State | City           | Latitude  | Longitude  | Location | Summary | Attack Type                       | Target Type                | -                       |
|---|------|-------|-----|-------------|-------------------|----------------|----------------|-----------|------------|----------|---------|-----------------------------------|----------------------------|-------------------------|
| 1 | 1970 | 0     | 0   | Mexico      | North<br>America  | Federal        | Mexico<br>city | 19.371887 | -99.086624 | NaN      | NaN     | Hostage Taking<br>(Kidnapping)    | Government<br>(Diplomatic) | 2<br>Septe<br>Comr<br>L |
| 2 | 1970 | 1     | 0   | Philippines | Southeast<br>Asia | Tarlac         | Unknown        | 15.478598 | 120.599741 | NaN      | NaN     | Assassination                     | Journalists<br>& Media     | Unk                     |
| 3 | 1970 | 1     | 0   | Greece      | Western<br>Europe | Attica         | Athens         | 37.997490 | 23.762728  | NaN      | NaN     | Bombing/Explosion                 | Government<br>(Diplomatic) | Unk                     |
| 4 | 1970 | 1     | 0   | Japan       | East Asia         | Fukouka        | Fukouka        | 33.580412 | 130.396361 | NaN      | NaN     | Facility/Infrastructure<br>Attack | Government<br>(Diplomatic) | Unk                     |
| 4 |      |       |     |             |                   |                |                |           |            |          |         |                                   |                            | •                       |

In [10]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 181691 entries, 0 to 181690
Data columns (total 19 columns):

| - 0. 00. | 00-0           |                 |         |
|----------|----------------|-----------------|---------|
| #        | Column         | Non-Null Count  | Dtype   |
|          |                |                 |         |
| 0        | Year           | 181691 non-null | int64   |
| 1        | Month          | 181691 non-null | int64   |
| 2        | Day            | 181691 non-null | int64   |
| 3        | Country        | 181691 non-null | object  |
| 4        | Region         | 181691 non-null | object  |
| 5        | Province/State | 181270 non-null | object  |
| 6        | City           | 181257 non-null | object  |
| 7        | Latitude       | 177135 non-null | float64 |
| 8        | Longitude      | 177134 non-null | float64 |
| 9        | Location       | 55495 non-null  | object  |
| 10       | Summary        | 115562 non-null | object  |
| 11       | Attack Type    | 181691 non-null | object  |
| 12       | Target Type    | 181691 non-null | object  |
| 13       | Group Name     | 181691 non-null | object  |
| 14       | Motive         | 50561 non-null  | object  |
| 15       | Weapon Type    | 181691 non-null | object  |
| 16       | Killed         | 171378 non-null | float64 |
| 17       | Wounded        | 165380 non-null | float64 |
| 18       | Add Notes      | 28289 non-null  | object  |

```
memory usage: 26.3+ MB
In [11]:
           df.shape
          (181691, 19)
Out[11]:
In [12]:
           df.isnull().sum()
Out[12]:
          Year
                                   0
                                   0
          Month
                                   0
          Day
                                   0
          Country
          Region
                                   0
          Province/State
                                 421
          City
                                 434
          Latitude
                                4556
          Longitude
                                4557
          Location
                             126196
          Summary
                              66129
          Attack Type
                                   0
          Target Type
                                   0
          Group Name
                                   0
          Motive
                             131130
          Weapon Type
                                   0
          Killed
                              10313
          Wounded
                              16311
          Add Notes
                             153402
          dtype: int64
In [13]:
           df["Killed"]=df["Killed"].fillna(0)
           df["Wounded"]=df["Wounded"].fillna(0)
           df["Casualty"]=df["Killed"]+df["Wounded"]
           df.describe()
                                                     Day
Out[13]:
                         Year
                                                                Latitude
                                                                           Longitude
                                                                                             Killed
                                                                                                                      Casualty
                                     Month
                                                                                                       Wounded
          count 181691.000000 181691.000000 181691.000000 177135.000000
                                                                         1.771340e+05 181691.000000 181691.000000
                                                                                                                 181691.000000
                   2002.638997
                                    6.467277
                                                 15.505644
                                                              23.498343
                                                                        -4.586957e+02
                                                                                           2.266860
                                                                                                         2.883296
                                                                                                                      5.150156
           mean
```

3.388303

8.814045

18.569242

2.047790e+05

11.227057

34.309747

40.555416

std

13.259430

dtypes: float64(4), int64(3), object(12)

|     | Year        | Month     | Day       | Latitude   | Longitude     | Killed      | Wounded     | Casualty    |
|-----|-------------|-----------|-----------|------------|---------------|-------------|-------------|-------------|
| min | 1970.000000 | 0.000000  | 0.000000  | -53.154613 | -8.618590e+07 | 0.000000    | 0.000000    | 0.000000    |
| 25% | 1991.000000 | 4.000000  | 8.000000  | 11.510046  | 4.545640e+00  | 0.000000    | 0.000000    | 0.000000    |
| 50% | 2009.000000 | 6.000000  | 15.000000 | 31.467463  | 4.324651e+01  | 0.000000    | 0.000000    | 1.000000    |
| 75% | 2014.000000 | 9.000000  | 23.000000 | 34.685087  | 6.871033e+01  | 2.000000    | 2.000000    | 4.000000    |
| max | 2017.000000 | 12.000000 | 31.000000 | 74.633553  | 1.793667e+02  | 1570.000000 | 8191.000000 | 9574.000000 |

Observation: 1.The data consists of terrorist activities ranging from the year: 1970 to 2017 2.Maximum number of people killed in an event were: 1570 3.Maximum number of people wounded in an event were: 8191 4.Maximum number of total casualties in an event were: 9574

## Visualizing the data

1. Year wise Attacks: Number of Attacks in each Year

```
In [14]:
           attacks=df["Year"].value counts(dropna=False).sort index().to frame().reset index().rename(columns={"index":"Year","Year";"Attacks
           attacks.head()
Out[14]:
                Attacks
           Year
          1970
                   651
          1971
                   471
          1972
                   568
          1973
                   473
          1974
                   581
In [15]:
           attacks.plot(kind="bar",color="purple",figsize=(15,6),fontsize=13)
           plt.title("Timeline of Attacks",fontsize=15)
           plt.xlabel("Years",fontsize=15)
           plt.ylabel("Number of Attacks",fontsize=15)
           plt.show()
```





(i). Most number of attacks(16903) in 2014 (ii). Least number of attacks(471) in 1971 Total Casualties (Killed + Wounded) in each Year

```
In [16]: yc=df[["Year","Casualty"]].groupby("Year").sum()
    yc.head()
```

| Out[16]: |      | Casualty |
|----------|------|----------|
|          | Year |          |
|          | 1970 | 386.0    |
|          | 1971 | 255.0    |
|          | 1972 | 975.0    |

#### Casualty

| Year |        |
|------|--------|
| 1973 | 865.0  |
| 1974 | 1404.0 |

```
In [17]:
    yc.plot(kind="bar",color="purple",figsize=(15,6))
    plt.title("Year wise Casualties",fontsize=13)
    plt.xlabel("Years",fontsize=13)
    plt.xticks(fontsize=12)
    plt.ylabel("Number of Casualties",fontsize=13)
    plt.show()
```



Killed in each Year

```
In [18]:
             yk=df[["Year","Killed"]].groupby("Year").sum()
            yk.head()
 Out[18]:
                  Killed
             Year
            1970 174.0
            1971 173.0
            1972 566.0
            1973 370.0
            1974 539.0
Wounded in each Region
 In [19]:
             yw=df[["Year","Wounded"]].groupby("Year").sum()
             yw.head()
 Out[19]:
                  Wounded
             Year
                      212.0
            1970
                      82.0
            1971
            1972
                      409.0
            1973
                      495.0
            1974
                      865.0
 In [20]:
             fig=plt.figure()
             ax0=fig.add_subplot(2,1,1)
             ax1=fig.add_subplot(2,1,2)
             #Killed
             yk.plot(kind="bar",color="purple",figsize=(15,15),ax=ax0)
             ax0.set_title("People Killed in each Year")
```

```
ax0.set xlabel("Years")
ax0.set ylabel("Number of People Killed")
#Wounded
yw.plot(kind="bar",color="purple",figsize=(15,15),ax=ax1)
ax1.set_title("People Wounded in each Year")
ax1.set xlabel("Years")
ax1.set ylabel("Number of People Wounded")
plt.show()
```





People Wounded in each Year





1. Region wise Attacks Distribution of Terrorist Attacks over Regions from 1970-2017

In [21]:

reg=pd.crosstab(df.Year,df.Region)
reg.head()

Out[21]:

| :<br>Region | Australasia &<br>Oceania | Central America &<br>Caribbean | Central<br>Asia | East<br>Asia | Eastern<br>Europe | Middle East &<br>North Africa | North<br>America | South<br>America | South<br>Asia | Southeast<br>Asia | Sub-<br>Saharan<br>Africa | Western<br>Europe |
|-------------|--------------------------|--------------------------------|-----------------|--------------|-------------------|-------------------------------|------------------|------------------|---------------|-------------------|---------------------------|-------------------|
| Year        |                          |                                |                 |              |                   |                               |                  |                  |               |                   |                           |                   |
| 1970        | 1                        | 7                              | 0               | 2            | 12                | 28                            | 472              | 65               | 1             | 10                | 3                         | 50                |
| 1971        | 1                        | 5                              | 0               | 1            | 5                 | 55                            | 247              | 24               | 0             | 6                 | 2                         | 125               |
| 1972        | 8                        | 3                              | 0               | 0            | 1                 | 53                            | 73               | 33               | 1             | 16                | 4                         | 376               |
| 1973        | 1                        | 6                              | 0               | 2            | 1                 | 19                            | 64               | 83               | 1             | 2                 | 4                         | 290               |
| 1974        | 1                        | 11                             | 0               | 4            | 2                 | 42                            | 111              | 81               | 2             | 3                 | 7                         | 317               |

```
reg.plot(kind="area", stacked=False, alpha=0.5,figsize=(20,10))
plt.title("Region wise attacks",fontsize=20)
plt.xlabel("Years",fontsize=20)
plt.ylabel("Number of Attacks",fontsize=20)
plt.show()
```



Total Terrorist Attacks in each Region from 1970-2017

```
regt=reg.transpose()
regt["Total"]=regt.sum(axis=1)
```

```
ra=regt["Total"].sort values(ascending=False)
           ra
          Region
Out[23]:
          Middle East & North Africa
                                         50474
          South Asia
                                         44974
          South America
                                         18978
          Sub-Saharan Africa
                                         17550
          Western Europe
                                         16639
          Southeast Asia
                                         12485
          Central America & Caribbean
                                         10344
          Eastern Europe
                                          5144
          North America
                                          3456
          East Asia
                                           802
          Central Asia
                                           563
          Australasia & Oceania
                                           282
          Name: Total, dtype: int64
In [24]:
           ra.plot(kind="bar",color="purple",figsize=(15,6))
           plt.title("Total Number of Attacks in each Region from 1970-2017")
           plt.xlabel("Region")
           plt.ylabel("Number of Attacks")
           plt.show()
```

### Total Number of Attacks in each Region from 1970-2017



rc=df[["Region","Casualty"]].groupby("Region").sum().sort\_values(by="Casualty",ascending=False)
rc

Out[25]: Casualty

Region

Middle East & North Africa 351950.0

**South Asia** 242679.0

#### Casualty

| Region                      |          |
|-----------------------------|----------|
| Sub-Saharan Africa          | 131243.0 |
| South America               | 45553.0  |
| Southeast Asia              | 41896.0  |
| Central America & Caribbean | 37699.0  |
| North America               | 26447.0  |
| Western Europe              | 25026.0  |
| Eastern Europe              | 19460.0  |
| East Asia                   | 10365.0  |
| Central Asia                | 3009.0   |
| Australasia & Oceania       | 410.0    |

```
rc.plot(kind="bar",color="purple",figsize=(15,6))
plt.title("Region wise Casualties",fontsize=13)
plt.xlabel("Regions",fontsize=13)
plt.xticks(fontsize=12)
plt.ylabel("Number of Casualties",fontsize=13)
plt.show()
```

#### Region wise Casualties



Killed in each Region

```
rk=df[["Region","Killed"]].groupby("Region").sum().sort_values(by="Killed",ascending=False)
rk
```

Out[27]: Killed

| Region                      | Killed   |
|-----------------------------|----------|
|                             |          |
| Region                      |          |
| Middle East & North Africa  | 137642.0 |
| South Asia                  | 101319.0 |
| Sub-Saharan Africa          | 78386.0  |
| South America               | 28849.0  |
| Central America & Caribbean | 28708.0  |
| Southeast Asia              | 15637.0  |
| Eastern Europe              | 7415.0   |
| Western Europe              | 6694.0   |
| North America               | 4916.0   |
| East Asia                   | 1152.0   |
| Central Asia                | 1000.0   |
| Australasia & Oceania       | 150.0    |

### Wounded in each Region

```
rw=df[["Region","Wounded"]].groupby("Region").sum().sort_values(by="Wounded",ascending=False)
rw
```

Out[28]: Wounded

| Region                     |          |
|----------------------------|----------|
| Middle East & North Africa | 214308.0 |
| South Asia                 | 141360.0 |
| Sub-Saharan Africa         | 52857.0  |
| Southeast Asia             | 26259.0  |

#### Wounded

| Region                      |         |
|-----------------------------|---------|
| North America               | 21531.0 |
| Western Europe              | 18332.0 |
| South America               | 16704.0 |
| Eastern Europe              | 12045.0 |
| East Asia                   | 9213.0  |
| Central America & Caribbean | 8991.0  |
| Central Asia                | 2009.0  |
| Australasia & Oceania       | 260.0   |

```
In [29]:
    fig=plt.figure()
        ax0=fig.add_subplot(1,2,1)
        ax1=fig.add_subplot(1,2,2)

#Killed
    rk.plot(kind="bar",color="purple",figsize=(15,6),ax=ax0)
        ax0.set_title("People Killed in each Region")
        ax0.set_xlabel("Regions")
        ax0.set_ylabel("Number of People Killed")

#Wounded
    rw.plot(kind="bar",color="purple",figsize=(15,6),ax=ax1)
        ax1.set_title("People Wounded in each Region")
        ax1.set_xlabel("Regions")
        ax1.set_ylabel("Number of People Wounded")
    plt.show()
```



# 3. Country wise Attacks - Top 10

Number of Attacks in each Country

```
In [30]: ct=df["Country"].value_counts().head(10)
    ct
Out[30]: Iraq 24636
```

localhost:8888/nbconvert/html/LGM-datascience/task 2/Exploratory Data Analysis - Terrorism.ipynb?download=false

```
Pakistan
                            14368
          Afghanistan
                            12731
          India
                            11960
          Colombia
                             8306
          Philippines
                             6908
          Peru
                             6096
          El Salvador
                             5320
          United Kingdom
                             5235
          Turkey
                             4292
          Name: Country, dtype: int64
In [31]:
           ct.plot(kind="bar",color="purple",figsize=(15,6))
           plt.title("Country wise Attacks",fontsize=13)
           plt.xlabel("Countries", fontsize=13)
           plt.xticks(fontsize=12)
           plt.ylabel("Number of Attacks", fontsize=13)
           plt.show()
```





Total Casualties (Killed + Wounded) in each Country

```
cnc=df[["Country","Casualty"]].groupby("Country").sum().sort_values(by="Casualty",ascending=False)
cnc.head(10)
```

Out[32]: Casualty

Country

Iraq 213279.0

Afghanistan 83661.0

#### Casualty

| Country              |         |
|----------------------|---------|
| Pakistan             | 65860.0 |
| India                | 48321.0 |
| Nigeria              | 32921.0 |
| Sri Lanka            | 31091.0 |
| Syria                | 29338.0 |
| Colombia             | 25026.0 |
| <b>United States</b> | 24473.0 |
| Philippines          | 22926.0 |

#### Country wie Casualties



### Killed in each Country

```
cnk=df[["Country","Killed"]].groupby("Country").sum().sort_values(by="Killed",ascending=False)
cnk.head(10)
```

Out[42]: Killed

Country

Iraq 78589.0

Afghanistan 39384.0

**Pakistan** 23822.0

#### Killed

| Country     |         |
|-------------|---------|
| Nigeria     | 22682.0 |
| India       | 19341.0 |
| Sri Lanka   | 15530.0 |
| Syria       | 15229.0 |
| Colombia    | 14698.0 |
| Peru        | 12771.0 |
| El Salvador | 12053.0 |

### Wounded in each Country

```
cnw=df[["Country","Wounded"]].groupby("Country").sum().sort_values(by="Wounded",ascending=False)
cnw.head(10)
```

### Out[35]: Wounded

| Country       |          |
|---------------|----------|
| Iraq          | 134690.0 |
| Afghanistan   | 44277.0  |
| Pakistan      | 42038.0  |
| India         | 28980.0  |
| United States | 20702.0  |
| Sri Lanka     | 15561.0  |
| Syria         | 14109.0  |
| Philippines   | 13367.0  |
| Lebanon       | 10904.0  |
| Colombia      | 10328.0  |

```
fig=plt.figure()
    ax0=fig.add_subplot(1,2,1)
    ax1=fig.add_subplot(1,2,2)

#KitLed
    cnk[:10].plot(kind="bar",color="purple",figsize=(15,6),ax=ax0)
    ax0.set_title("People Killed in each Country")
    ax0.set_xlabel("Countries")
    ax0.set_ylabel("Number of People Killed")

#Wounded
    cnw[:10].plot(kind="bar",color="purple",figsize=(15,6),ax=ax1)
    ax1.set_title("People Wounded in each Country")
    ax1.set_xlabel("Countries")
    ax1.set_ylabel("Number of People Wounded")
    plt.show()
```



# 4. City wise Attacks - Top 10

Number of Attacks in each city

```
In [37]:
           city=df["City"].value_counts()[1:11]
           city
          Baghdad
                           7589
Out[37]:
          Karachi
                           2652
          Lima
                           2359
                           2265
          Mosul
          Belfast
                           2171
          Santiago
                           1621
```

```
Mogadishu 1581
San Salvador 1558
Istanbul 1048
Athens 1019
Name: City, dtype: int64
```

plt.show()

```
city.plot(kind="bar",color="purple",figsize=(15,6))
plt.title("City wise Attacks",fontsize=13)
plt.xlabel("Cities",fontsize=13)
plt.xticks(fontsize=12)
plt.ylabel("Number of Attacks",fontsize=13)
```



Total Casualties (Killed + Wounded) in each City

```
rc.plot(kind="bar",color="purple",figsize=(15,6))
plt.title("City wise Casualties",fontsize=13)
plt.xlabel("Cities",fontsize=13)
plt.xticks(fontsize=12)
plt.ylabel("Number of Casualties",fontsize=13)
```



```
cc=df[["City","Casualty"]].groupby("City").sum().sort_values(by="Casualty",ascending=False).drop("Unknown")
In [44]:
           cc.head(10)
Out[44]:
                         Casualty
                   City
                         77876.0
               Baghdad
           New York City
                         19619.0
                  Mosul
                          12927.0
                          9376.0
                 Karachi
             Mogadishu
                          8868.0
                          8466.0
                  Kabul
                 Beirut
                          7257.0
                 Kirkuk
                          6636.0
                          5906.0
               Colombo
                 Aleppo
                          5748.0
          Killed in each City
In [45]:
           ck=df[["City","Killed"]].groupby("City").sum().sort_values(by="Killed",ascending=False).drop("Unknown")
           ck.head(10)
Out[45]:
                          Killed
                   City
               Baghdad 21151.0
                         7140.0
                  Mosul
             Mogadishu
                          3913.0
                 Karachi
                          3688.0
           New York City
                         2838.0
```

```
Killed
```

| City      |        |  |
|-----------|--------|--|
| Tikrit    | 2679.0 |  |
| Kabul     | 2493.0 |  |
| Ramadi    | 2313.0 |  |
| Maiduguri | 2235.0 |  |
| Aleppo    | 2125.0 |  |

### Wounded in each City

```
cw=df[["City","Wounded"]].groupby("City").sum().sort_values(by="Wounded",ascending=False).drop("Unknown")
cw.head(10)
```

### Out[46]: Wounded

| City          |         |
|---------------|---------|
| Baghdad       | 56725.0 |
| New York City | 16781.0 |
| Kabul         | 5973.0  |
| Mosul         | 5787.0  |
| Karachi       | 5688.0  |
| Tokyo         | 5542.0  |
| Beirut        | 5341.0  |
| Nairobi       | 5024.0  |
| Kirkuk        | 5008.0  |
| Mogadishu     | 4955.0  |

```
In [47]: fig=plt.figure()
```

```
ax0=fig.add_subplot(1,2,1)
ax1=fig.add_subplot(1,2,2)

#KilLed

ck[:10].plot(kind="bar",color="purple",figsize=(15,6),ax=ax0)
ax0.set_title("People Killed in each City")
ax0.set_xlabel("Cities")
ax0.set_ylabel("Number of People Killed")

#Wounded

cw[:10].plot(kind="bar",color="purple",figsize=(15,6),ax=ax1)
ax1.set_title("People Wounded in each City")
ax1.set_xlabel("Cities")
ax1.set_ylabel("Number of People Wounded")

plt.show()
```



## 5. Terrorist Group wise Attacks - Top 10

Number of Attacks by each Group

```
In [48]: grp=df["Group Name"].value_counts()[1:10]
grp

Out[48]: Taliban 7478
Islamic State of Iraq and the Levant (ISIL) 5613
Shining Path (SL) 4555
Farabundo Marti National Liberation Front (FMLN) 3351
Al-Shabaab 3288
New People's Army (NPA) 2772
```

```
Irish Republican Army (IRA)
Revolutionary Armed Forces of Colombia (FARC)
Boko Haram
Name: Group Name, dtype: int64

In [49]:
grp.plot(kind="bar",color="purple",figsize=(15,6))
plt.title("Group wise Attacks",fontsize=13)
plt.xlabel("Terrorist Groups",fontsize=13)
plt.xticks(fontsize=12)
plt.ylabel("Number of Attacks",fontsize=13)
plt.show()
```





Total Casualties(Killed + Wounded) by each Group

```
In [50]:
            gc=df[["Group Name","Casualty"]].groupby("Group Name").sum().sort_values(by="Casualty",ascending=False).drop("Unknown")
           gc.head(10)
Out[50]:
                                                         Casualty
                                            Group Name
                   Islamic State of Iraq and the Levant (ISIL)
                                                         69595.0
                                                 Taliban
                                                         57342.0
                                            Boko Haram
                                                         29801.0
                                               Al-Qaida
                                                         28372.0
                     Liberation Tigers of Tamil Eelam (LTTE)
                                                         22020.0
                                             Al-Shabaab
                                                         16954.0
                            Tehrik-i-Taliban Pakistan (TTP) 15574.0
                                         Al-Qaida in Iraq
                                                         14724.0
                                        Shining Path (SL)
                                                         14632.0
           Farabundo Marti National Liberation Front (FMLN) 12130.0
In [51]:
            gc.head(10).plot(kind="bar",color="purple",figsize=(15,6))
           plt.title("Casualties by each Group", fontsize=13)
            plt.xlabel("Terrorist Groups", fontsize=13)
            plt.xticks(fontsize=12)
           plt.ylabel("Number of Casualties", fontsize=13)
           plt.show()
```





Killed by each Group

```
In [52]:
            gk=df[["Group Name","Killed"]].groupby("Group Name").sum().sort_values(by="Killed",ascending=False).drop("Unknown")
            gk.head(10)
Out[52]:
                                                            Killed
                                             Group Name
                    Islamic State of Iraq and the Levant (ISIL)
                                                          38923.0
                                                  Taliban 29410.0
                                             Boko Haram 20328.0
                                         Shining Path (SL) 11601.0
                      Liberation Tigers of Tamil Eelam (LTTE) 10989.0
                                              Al-Shabaab
                                                           9330.0
           Farabundo Marti National Liberation Front (FMLN)
                                                           8065.0
                        Nicaraguan Democratic Force (FDN)
                                                           6662.0
                             Tehrik-i-Taliban Pakistan (TTP)
                                                           6042.0
             Revolutionary Armed Forces of Colombia (FARC)
                                                           5661.0
          Wounded by each Group
In [53]:
            gw=df[["Group Name","Wounded"]].groupby("Group Name").sum().sort_values(by="Wounded",ascending=False).drop("Unknown")
            gw.head(10)
Out[53]:
                                                  Wounded
                                     Group Name
           Islamic State of Iraq and the Levant (ISIL)
                                                    30672.0
                                         Taliban
                                                    27932.0
                                        Al-Qaida
                                                    24512.0
             Liberation Tigers of Tamil Eelam (LTTE)
                                                    11031.0
```

#### Wounded

# Group Name Al-Qaida in Iraq 10343.0 Tehrik-i-Taliban Pakistan (TTP) 9532.0 Boko Haram 9473.0 Al-Shabaab 7624.0 Aum Shinri Kyo 6003.0 Kurdistan Workers' Party (PKK) 4908.0

```
In [54]:
    fig=plt.figure()
    ax0=fig.add_subplot(1,2,1)
    ax1=fig.add_subplot(1,2,2)

#Killed
    gk[:10].plot(kind="bar",color="purple",figsize=(15,6),ax=ax0)
    ax0.set_title("People Killed by each Group")
    ax0.set_xlabel("Terrorist Groups")
    ax0.set_ylabel("Number of people Killed")

#Wounded
    gw[:10].plot(kind="bar",color="purple",figsize=(15,6),ax=ax1)
    ax1.set_title("People Wounded by each Group")
    ax1.set_xlabel("Terrorist Groups")
    ax1.set_ylabel("Number of people Wounded")
    plt.show()
```



## 6. Attack Type wise Attacks

Number of Attacks by each Attack Type

```
In [55]:
           at=df["Attack Type"].value counts()
           at
Out[55]:
          Bombing/Explosion
                                                 88255
          Armed Assault
                                                 42669
          Assassination
                                                 19312
          Hostage Taking (Kidnapping)
                                                 11158
          Facility/Infrastructure Attack
                                                 10356
          Unknown
                                                  7276
          Unarmed Assault
                                                  1015
          Hostage Taking (Barricade Incident)
                                                   991
          Hijacking
                                                   659
          Name: Attack Type, dtype: int64
In [56]:
           at.plot(kind="bar",color="purple",figsize=(15,6))
           plt.title("Types of Attacks",fontsize=13)
           plt.xlabel("Attack Types",fontsize=13)
           plt.xticks(fontsize=12)
           plt.ylabel("Number of Attacks", fontsize=13)
           plt.show()
```





Total Casualties (Killed + Wounded) by each Attack Type

```
In [57]: ac=df[["Attack Type","Casualty"]].groupby("Attack Type").sum().sort_values(by="Casualty",ascending=False) ac
```

Out[57]:

#### Casualty

### Attack Type

**Bombing/Explosion** 530007.0

Armed Assault 237663.0

**Unknown** 47106.0

**Assassination** 38807.0

**Hostage Taking (Kidnapping)** 30677.0

Hijacking 20719.0

**Unarmed Assault** 14907.0

**Hostage Taking (Barricade Incident)** 8444.0

**Facility/Infrastructure Attack** 7407.0

```
In [58]:
    ac.plot(kind="bar",color="purple",figsize=(15,6))
    plt.title("Casualties in each Attack",fontsize=13)
    plt.xlabel("Attack Types",fontsize=13)
    plt.xticks(fontsize=12)
    plt.ylabel("Number of Casualties",fontsize=13)
    plt.show()
```

#### Casualties in each Attack



Killed by each Attack Type

```
In [59]: ak=df[["Attack Type","Killed"]].groupby("Attack Type").sum().sort_values(by="Killed",ascending=False)
ak
```

Out[59]:

#### Killed

| Attack Type                         |          |
|-------------------------------------|----------|
| Armed Assault                       | 160297.0 |
| Bombing/Explosion                   | 157321.0 |
| Unknown                             | 32381.0  |
| Assassination                       | 24920.0  |
| Hostage Taking (Kidnapping)         | 24231.0  |
| Hostage Taking (Barricade Incident) | 4478.0   |
| Hijacking                           | 3718.0   |
| Facility/Infrastructure Attack      | 3642.0   |
| Unarmed Assault                     | 880.0    |
|                                     |          |

Wounded by each Attack Type

```
aw=df[["Attack Type","Wounded"]].groupby("Attack Type").sum().sort_values(by="Wounded",ascending=False)
aw
```

Out[60]: Wounded

| Attack Type                         |          |
|-------------------------------------|----------|
| Bombing/Explosion                   | 372686.0 |
| Armed Assault                       | 77366.0  |
| Hijacking                           | 17001.0  |
| Unknown                             | 14725.0  |
| Unarmed Assault                     | 14027.0  |
| Assassination                       | 13887.0  |
| Hostage Taking (Kidnapping)         | 6446.0   |
| Hostage Taking (Barricade Incident) | 3966.0   |

#### Wounded

#### **Attack Type**

Facility/Infrastructure Attack 3765.0

```
In [61]:
    fig=plt.figure()
    ax0=fig.add_subplot(1,2,1)
    ax1=fig.add_subplot(1,2,2)

#Killed
    ak.plot(kind="bar",color="purple",figsize=(15,6),ax=ax0)
    ax0.set_title("People Killed in each Attack Type")
    ax0.set_xlabel("Attack Types")
    ax0.set_ylabel("Number of people Killed")

#Wounded
    aw.plot(kind="bar",color="purple",figsize=(15,6),ax=ax1)
    ax1.set_title("People Wounded in each Attack Type")
    ax1.set_xlabel("Attack Types")
    ax1.set_ylabel("Number of people Wounded")
    plt.show()
```



# 7. Target Type wise Attacks

Number of Attacks over each Target Type

```
In [62]: ta=df["Target Type"].value_counts()
ta
```

```
Out[62]: Private Citizens & Property
                                            43511
          Military
                                            27984
          Police
                                            24506
          Government (General)
                                            21283
          Business
                                            20669
          Transportation
                                             6799
          Utilities
                                             6023
          Unknown
                                             5898
          Religious Figures/Institutions
                                             4440
          Educational Institution
                                             4322
          Government (Diplomatic)
                                             3573
          Terrorists/Non-State Militia
                                             3039
          Journalists & Media
                                             2948
          Violent Political Party
                                             1866
          Airports & Aircraft
                                             1343
          Telecommunication
                                             1009
          NGO
                                              970
          Tourists
                                              440
          Maritime
                                              351
          Food or Water Supply
                                              317
          Abortion Related
                                              263
          Other
                                              137
          Name: Target Type, dtype: int64
In [63]:
           ta.plot(kind="bar",color="purple",figsize=(15,6))
           plt.title("Types of Targets",fontsize=13)
           plt.xlabel("Target Types",fontsize=13)
           plt.xticks(fontsize=12)
           plt.ylabel("Number of Attacks", fontsize=13)
           plt.show()
```



In [64]: tc=df[["Target Type","Casualty"]].groupby("Target Type").sum().sort\_values(by="Casualty",ascending=False)
tc

Out[64]: Casualty

**Target Type** 

**Private Citizens & Property** 319176.0

#### Casualty

| Target Type                    |          |
|--------------------------------|----------|
| Military                       | 177085.0 |
| Police                         | 118407.0 |
| Business                       | 78018.0  |
| Government (General)           | 67255.0  |
| Transportation                 | 54595.0  |
| Religious Figures/Institutions | 37890.0  |
| Terrorists/Non-State Militia   | 17311.0  |
| <b>Educational Institution</b> | 13972.0  |
| Government (Diplomatic)        | 13398.0  |
| <b>Violent Political Party</b> | 8920.0   |
| Unknown                        | 7888.0   |
| Airports & Aircraft            | 7245.0   |
| Journalists & Media            | 3297.0   |
| Utilities                      | 3227.0   |
| Maritime                       | 2099.0   |
| Tourists                       | 2048.0   |
| NGO                            | 1950.0   |
| Telecommunication              | 679.0    |
| Other                          | 674.0    |
| Food or Water Supply           | 547.0    |
| <b>Abortion Related</b>        | 56.0     |

```
tc.plot(kind="bar",color="purple",figsize=(15,6))
plt.title("Casualties in each Target Attack",fontsize=13)
```

```
plt.xlabel("Target Types",fontsize=13)
plt.xticks(fontsize=12)
plt.ylabel("Number of Casualties",fontsize=13)
plt.show()
```



```
tk=df[["Target Type","Killed"]].groupby("Target Type").sum().sort_values(by="Killed",ascending=False)
tk
```

Out[66]: Killed

| Target Type                    |          |
|--------------------------------|----------|
| Private Citizens & Property    | 140504.0 |
| Military                       | 106047.0 |
| Police                         | 53704.0  |
| Government (General)           | 26071.0  |
| Business                       | 23487.0  |
| Transportation                 | 13916.0  |
| Religious Figures/Institutions | 13413.0  |
| Terrorists/Non-State Militia   | 9088.0   |
| Unknown                        | 4329.0   |
| Airports & Aircraft            | 3767.0   |
| <b>Educational Institution</b> | 3745.0   |
| <b>Violent Political Party</b> | 3617.0   |
| Government (Diplomatic)        | 3039.0   |
| Utilities                      | 1874.0   |
| Journalists & Media            | 1501.0   |
| Maritime                       | 1191.0   |
| NGO                            | 1057.0   |
| Tourists                       | 758.0    |
| Food or Water Supply           | 313.0    |
| Other                          | 255.0    |
| Telecommunication              | 182.0    |
| <b>Abortion Related</b>        | 10.0     |

```
In [67]:
          tw=df[["Target Type","Wounded"]].groupby("Target Type").sum().sort_values(by="Wounded",ascending=False)
```

Out[67]: Wounded

| Target | Type |
|--------|------|
|--------|------|

| Target Type                    |          |
|--------------------------------|----------|
| Private Citizens & Property    | 178672.0 |
| Military                       | 71038.0  |
| Police                         | 64703.0  |
| Business                       | 54531.0  |
| Government (General)           | 41184.0  |
| Transportation                 | 40679.0  |
| Religious Figures/Institutions | 24477.0  |
| Government (Diplomatic)        | 10359.0  |
| <b>Educational Institution</b> | 10227.0  |
| Terrorists/Non-State Militia   | 8223.0   |
| <b>Violent Political Party</b> | 5303.0   |
| Unknown                        | 3559.0   |
| Airports & Aircraft            | 3478.0   |
| Journalists & Media            | 1796.0   |
| Utilities                      | 1353.0   |
| Tourists                       | 1290.0   |
| Maritime                       | 908.0    |
| NGO                            | 893.0    |
| Telecommunication              | 497.0    |
| Other                          | 419.0    |
| Food or Water Supply           | 234.0    |

#### Wounded

#### **Target Type**

**Abortion Related** 46.0

```
In [68]:
    fig=plt.figure()
    ax0=fig.add_subplot(1,2,1)
    ax1=fig.add_subplot(1,2,2)

#Killed
    tk.plot(kind="bar",color="purple",figsize=(17,6),ax=ax0)
    ax0.set_title("People Killed in each Target Attack")
    ax0.set_xlabel("Target Types")
    ax0.set_ylabel("Number of people Killed")

#Wounded
    tw.plot(kind="bar",color="purple",figsize=(17,6),ax=ax1)
    ax1.set_title("People Wounded in each Target Attack")
    ax1.set_ylabel("Target Types")
    ax1.set_ylabel("Number of people Wounded")
    plt.show()
```



# 8. Group + Country wise - Top10

Sorting by number of Attacks

```
gca=df[["Group Name","Country"]].value_counts().drop("Unknown")
gca.head(10)
```

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py:4153: PerformanceWarning: dropping on a non-lexsorted multi-inde x without a level parameter may impact performance.

obj = obj.\_drop\_axis(labels, axis, level=level, errors=errors)

Group Name Country

```
Afghanistan
Out[69]: Taliban
                                                                               7423
          Islamic State of Iraq and the Levant (ISIL)
                                                             Iraq
                                                                               4797
          Shining Path (SL)
                                                                               4541
                                                             Peru
          Farabundo Marti National Liberation Front (FMLN)
                                                             El Salvador
                                                                               3330
          Al-Shabaab
                                                             Somalia
                                                                               2867
          New People's Army (NPA)
                                                             Philippines
                                                                               2770
          Irish Republican Army (IRA)
                                                             United Kingdom
                                                                               2575
          Revolutionary Armed Forces of Colombia (FARC)
                                                             Colombia
                                                                               2468
          Kurdistan Workers' Party (PKK)
                                                             Turkey
                                                                               2109
          Boko Haram
                                                             Nigeria
                                                                               2087
          dtype: int64
```

```
In [70]:
```

```
gca.head(10).plot(kind="bar",color="purple",figsize=(15,6))
plt.title("Countries with most attacks by a particular Group",fontsize=13)
plt.xlabel("(Terrorist Group,Country)",fontsize=13)
plt.xticks(fontsize=12)
plt.ylabel("Number of Attacks",fontsize=13)
plt.show()
```





(Taliban, Afgl

(Islamic State of Iraq and the Levant (Is

(Shining Path (

(Farabundo Marti National Liberation Front (FMLN), El 🤅

Exploratory Data Analysis - Terrorism
(New People's Army (NPA), Ph

(Irish Republican Army (IRA), United I

(Kurdistan Workers' Party (PKK)

(Boko Haram

(Revolutionary Armed Forces of Colombia (FARC), C

(Terrorist Group, Country)

#### Sorting by Number of Casualties

gcc=df[["Group Name","Country","Casualty"]].groupby(["Group Name","Country"],axis=0).sum().sort\_values(by="Casualty",ascending=Falgcc

Out[71]: Casualty

| Group Name                                  | Country              |         |
|---------------------------------------------|----------------------|---------|
| Taliban                                     | Afghanistan          | 57140.0 |
| Islamic State of Iraq and the Levant (ISIL) | Iraq                 | 54755.0 |
| Boko Haram                                  | Nigeria              | 24588.0 |
| Liberation Tigers of Tamil Eelam (LTTE)     | Sri Lanka            | 21919.0 |
| Al-Qaida                                    | <b>United States</b> | 19494.0 |
| Tehrik-i-Taliban Pakistan (TTP)             | Pakistan             | 15532.0 |
| Shining Path (SL)                           | Peru                 | 14625.0 |

#### Casualty

|         | Country     | Group Name                                       |
|---------|-------------|--------------------------------------------------|
| 14348.0 | Iraq        | Al-Qaida in Iraq                                 |
| 14201.0 | Somalia     | Al-Shabaab                                       |
| 12068.0 | El Salvador | Farabundo Marti National Liberation Front (FMLN) |

```
In [72]:
    gcc.plot(kind="bar",color="purple",figsize=(15,6))
    plt.title("Countries with most casualties by a particular Group",fontsize=13)
    plt.xlabel("(Terrorist Group,Country)",fontsize=13)
    plt.xticks(fontsize=12)
    plt.ylabel("Number of Casualties",fontsize=13)
    plt.show()
```



(Terrorist Group, Country)

#### Sorting by Number of People Killed

```
In [73]:
           gck=df[["Group Name","Country","Killed"]].groupby(["Group Name","Country"],axis=0).sum().sort values(by="Killed",ascending=False).
           gck
          C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py:4153: PerformanceWarning: dropping on a non-lexsorted multi-inde
          x without a level parameter may impact performance.
            obj = obj. drop axis(labels, axis, level=level, errors=errors)
Out[73]:
                                                                    Killed
                                          Group Name
                                                          Country
                   Islamic State of Iraq and the Levant (ISIL)
                                                             Iraq 31058.0
                                               Taliban Afghanistan 29269.0
                                           Boko Haram
                                                           Nigeria 16917.0
                                       Shining Path (SL)
                                                             Peru 11595.0
```

**Sri Lanka** 10928.0

**Liberation Tigers of Tamil Eelam (LTTE)** 

#### Killed

| Group Name                                       | Country     |        |
|--------------------------------------------------|-------------|--------|
| Al-Shabaab                                       | Somalia     | 8176.0 |
| Farabundo Marti National Liberation Front (FMLN) | El Salvador | 8019.0 |
| Islamic State of Iraq and the Levant (ISIL)      | Syria       | 6883.0 |
| Nicaraguan Democratic Force (FDN)                | Nicaragua   | 6630.0 |
| Tehrik-i-Taliban Pakistan (TTP)                  | Pakistan    | 6014.0 |

```
gck.plot(kind="bar",color="purple",figsize=(15,6))
plt.title("Countries with most people killed by a particular Group",fontsize=13)
plt.xlabel("(Terrorist Group,Country)",fontsize=13)
plt.xticks(fontsize=12)
plt.ylabel("Number of people Killed",fontsize=13)
plt.show()
```



(Al-Shabaab, Somali

| ā     |
|-------|
| Ξ,    |
| SI)   |
| ant   |
| Fe    |
| the   |
| and p |
| Iraq  |
| of    |
| State |
| mic   |
| (Isla |

(Taliban, Afghanista

| ċ              |
|----------------|
|                |
| - 0            |
|                |
|                |
| -              |
| _              |
| - 7            |
|                |
| -              |
|                |
|                |
| - 7            |
| 7              |
| _ !            |
|                |
| _              |
|                |
|                |
|                |
|                |
|                |
| (10) Hard Carl |
| - ' '          |
| -              |
|                |

(Boko Haram, Nigeri

| LAPIOLATOLY                                        | Data Allai |
|----------------------------------------------------|------------|
| (Liberation Tigers of Tamil Eelam (LTTE), Sri Lank |            |
|                                                    |            |

| n |                                                              |  |
|---|--------------------------------------------------------------|--|
| n | Farabundo Marti National Liberation Front (FMLN), El Salvado |  |
|   |                                                              |  |

(Nicaraguan Democratic Force (FDN), Nicaragu

(Islamic State of Iraq and the Levant (ISIL), Syri

(Tehrik-i-Taliban Pakistan (TTP), Pakista

(Terrorist Group, Country)

#### Sorting by Number of People Wounded

```
In [75]: gcw=df[["Group Name","Country","Wounded"]].groupby(["Group Name","Country"],axis=0).sum().sort_values(by="Wounded",ascending=False gcw
```

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py:4153: PerformanceWarning: dropping on a non-lexsorted multi-inde x without a level parameter may impact performance.

obj = obj.\_drop\_axis(labels, axis, level=level, errors=errors)

#### Out[75]: Wounded

|         | Country       | Group Name                                  |  |
|---------|---------------|---------------------------------------------|--|
| 27871.0 | Afghanistan   | Taliban                                     |  |
| 23697.0 | Iraq          | Islamic State of Iraq and the Levant (ISIL) |  |
| 16493.0 | United States | Al-Qaida                                    |  |

#### Wounded

| Group Name                              | Country   |         |
|-----------------------------------------|-----------|---------|
| Liberation Tigers of Tamil Eelam (LTTE) | Sri Lanka | 10991.0 |
| Al-Qaida in Iraq                        | Iraq      | 10075.0 |
| Tehrik-i-Taliban Pakistan (TTP)         | Pakistan  | 9518.0  |
| Boko Haram                              | Nigeria   | 7671.0  |
| Al-Shabaab                              | Somalia   | 6025.0  |
| Aum Shinri Kyo                          | Japan     | 6003.0  |
| Kurdistan Workers' Party (PKK)          | Turkey    | 4795.0  |

```
In [76]:
    gcw.plot(kind="bar",color="purple",figsize=(15,6))
    plt.title("Countries with most people wounded by a particular Group",fontsize=13)
    plt.xlabel("(Terrorist Group,Country)",fontsize=13)
    plt.xticks(fontsize=12)
    plt.ylabel("Number of people Wounded",fontsize=13)
    plt.show()
```

#### Countries with most people wounded by a particular Group



# 9. Humanity Affected (World-wide) by Terrorist Attacks from 1970 to 2017

Total Casualties (Killed + Wounded) due to Terrorist Attacks

```
In [77]:
           casualty=df.loc[:,"Casualty"].sum()
           print("Total number of Casualties due to Terrorist Attacks from 1970 to 2017 across the world:\n",casualty)
          Total number of Casualties due to Terrorist Attacks from 1970 to 2017 across the world:
           935737.0
          Killed due to Terrorist Attacks
In [78]:
           kill=df.loc[:,"Killed"].sum()
           print("Total number of people killed due to Terrorist Attacks from 1970 to 2017 across the world :\n",kill)
          Total number of people killed due to Terrorist Attacks from 1970 to 2017 across the world :
           411868.0
         Wounded due to Terrorist Attacks
In [79]:
           wound=df.loc[:,"Wounded"].sum()
           print("Total number of people killed due to Terrorist Attacks from 1970 to 2017 across the world :\n",wound)
          Total number of people killed due to Terrorist Attacks from 1970 to 2017 across the world :
           523869.0
In [ ]:
```