

Commonly Used Datasets for ML

J.-S. Roger Jang (張智星)

jang@mirlab.org

http://mirlab.org/jang

MIR Lab, CSIE Dept.

National Taiwan University

Datasets

- Numerous datasets for testing ML algorithms
 - Kaggle
 - UCI Machine Learning Repository
 - Image net
 - MNIST handwritten digit database
 - Labeled Faces in the Wild
 - Many many more...
- Looking for a specific dataset?
 - Google search engine

Try "license plate dataset" in Google!

Google dataset search

ucI Dataset: Iris

- Source
 - R.A. Fisher, 1936
- Goal
 - Predict the types of iris in Hawaii
- Dataset specs
 - 150 instances, 3 classes
 - 4 attributes (features)
 - sepal length
 - sepal width
 - petal length
 - o petal width

uCI Dataset: Wine

Source

 Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy.

Goal

Using 13 chemical constituents to determine the origin of wines

Dataset specs

178 instances, 3 classes, 13 attributes

uCI Dataset: Abalone

Source

Dept. of Primary Industry and FIsheries, Tasmania, Australia

Goal

Predict the age of abalone (鮑魚)

Dataset specs

- 4177 instances, 29 classes
- 8 attributes (features): sex, length, diameter, height, whole weight, shucked weight, viscera weight, shell weight
- 1 output: rings (+1.5 gives the age in years)

uCI Dataset: Mushroom Classification

Source

 Mushroom records drawn from The Audubon Society Field Guide to North American Mushrooms (1981)

Goal

- To determine a mushroom is poisonous or edible
- Dataset specs
 - 8124 instances, 2 classes, 22 attributes

uCI Dataset: Liver Disorder

Source

BUPA Medical Research Ltd.

Goal

 Use variables from blood tests and alcohol consumption to see if liver disorder exists

Dataset specs

 345 instances, 2 classes, 6 attributes (the first five are results from blood tests, the last one is alcohol consumption per day)

uCI Dataset: Credit Screening

- Source
 - Chiharu Sano, csano@bonnie.ICS.UCI.EDU
- Goal
 - Determine people who are granted credit
- Dataset specs
 - 125 instances, 2 classes, 15 attributes

uCI Dataset: House Price Prediction

- Source
 - CMU StatLib Library
- Goal
 - Predict house price near Boston
- Dataset specs
 - 506 instances, 13 attributes
 - CRIM: per capita crime rate by town
 - 2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
 - 3. INDUS: proportion of non-retail business acres per town
 - 4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
 - 5. NOX: nitric oxides concentration (parts per 10 million)
 - 6. RM: average number of rooms per dwelling
 - 7. AGE: proportion of owner-occupied units built prior to 1940
 - 8. DIS: weighted distances to five Boston employment centres
 - 9. RAD: index of accessibility to radial highways
 - 10. TAX: full-value property-tax rate per \$10,000
 - 11. PTRATIO: pupil-teacher ratio by town
 - 12. B: 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town
 - 13. LSTAT: % lower status of the population
 - 14. MEDV: Median value of owner-occupied homes in \$1000's

MNIST Digit Dataset (1/2)

- o Source
- Quiz: Full name of NIST?
- NIST's Special Database 3 (collected among Census Bureau employees) and Special Database 1 (collected among highschool students)
- Goal
 - Recognize isolated hand-written digits of 0-9
- Dataset specs
 - 70000 instances

Disjoint writers!

- 60000 for training (30000 from SD-3 and 30000 from SD-1) of about 250 writers
- 10000 for test (5000 from SD-3 and 5000 from SD-1)
- Normalized to 28x28 gray-scale image, centered by gravity

MNIST Digit Dataset (Z/Z)

Links

- Data source
- Wikipedia
- o Examples

Misclassified digits

You need to download

How to Acquire/Visualize the Datasets?

- Acquire the datasets
 - prData.m for acquiring PR data
 - dcData.m for acquiring TX data
 dcData.m for acquiring DC data

 Machine Learning Toolbox to try these commands.
- Visualize the datasets
 - Please refer to Chapter 2 of DCPR tutorial
- Example:

```
>> ds=prData('iris')

ds =
    dataName: 'iris'
    inputName: {'sepal length' 'sepal width' 'petal length' 'petal width'}
    outputName: {'Setosa' 'Versicolour' 'Virginica'}
    input: [4x150 double]
    output: [1x150 double]
```


Iris Dataset Visualization (1/2)

ds=prData('iris');
classSize=dsClassSize(DS, 1);

ds=prData('iris');
dsDistPlot(ds);

Iris Dataset Visualization (Z/Z)

ds = prData('iris');
dsProjPlot1(ds);

ds = prData('iris');
dsProjPlot2(ds);

ds = prData('iris');
dsProjPlot3(ds);

