

목차

O1 ^{조원 소개}

02

데이터 및 프로젝트 소개

03

04 추후계획

ESC 소방대

프로젝트 개요

배경

김해지역의 높은 화재 발생량

목적

김해시 내 화재 위험도에 대해 분석 및 예측

해결 과제

김해시가 수집한 경상남도의 소방 및 건물 관련 데이터를 활용하여 건축물의 화재 위험도 분석 및 예측 모델을 제시

데이터 개요

Train Set

경상남도 지역의 <mark>날짜, 시간, 건물화재여부, 건물정보</mark> 등에 대한 정보

불 안 났으면 데이터를 어떻게 뽑을까? 무작위 샘플링!

Test Set

Train Set과 동일하나 김해시 지역으로 한정 및 예측해야 하는 화재발생여부 변수를 제거

NA imputation – Data Overview

Dataset statistics	
Number of variables	180
Number of observations	59199
Missing cells	4750511
Missing cells (%)	44.6%
Total size in memory	81.3 MiB
Average record size in memory	1.4 KiB
Variable types	
Categorical	21
Numeric	159

<pre>print(df.isnull().sum().he</pre>	ead(30))
shape: (59199, 180)	
dt_of_fr	0
fr_yn	0
bldng_us	27677
bldng_archtctr	27665
bldng_cnt	0
bldng_ar	0
ttl_ar	0
lnd_ar	0
dt_of_athrztn	27581
ttl_grnd_flr	10210
ttl_dwn_flr	11005
bldng_us_clssfctn	29343
tmprtr	13
강수량 prcpttn	53629
wnd_spd	33
wnd_drctn	221
hmdt	22
gas_engry_us_201401	
ele_engry_us_201401	
gas_engry_us_201402	
ele_engry_us_201402	
gas_engry_us_201403	
ele_engry_us_201403	27581
ele_engry_us_201403	27581

NA imputation – NA ratio

180개 변수 중 161개 변수에 결측치 존재

NA imputation - Fluxplot

월별 가스, 전기 사용량 관련 변수의 influx와 outflux가 0.2보다 낮음

NA Imputation에 영향이 적은 변수 확인

The influx of a variable quantifies how well its missing data connect to the observed data on other variables. The outflux of a variable quantifies how well its observed data connect to the missing data on other variables. In general, higher influx and outflux values are preferred.

NA imputation – Lw_131____

Lw_131____ - (결측률 <mark>99.49%~99.55%)</mark> 의미 있는 NA인지 판단 필요 해당 변수들을 두가지 대체방법을 통해 로지스틱 회귀분석 실시

> Imputation 1 NA는 0, 관측치일 경우 1

Imputation 2 MICE imputation

Imputation 1이 F1 Score가 높게 나타나, NA 자체가 의미가 있다고 해석

NA imputation – multivariate imputation

Prcpptn, wnd_drctn, wnd_spd, hdmt, tmprtr - (결측률 <mark>0.02%~90.59%)</mark> Bldng_ar_prc, ttl_dwn_fir, ttl_gmd_flr - (결측률 <mark>17.25%~36.99%)</mark>

날씨 관련 변수

건물 가격 관련 변수

NA imputation – NA ratio

Crammer's V: 범주형 변수간의 상관관계를 나타냄

NA imputation -변수 삭제

화재발생여부 변수와의 상관관계 이용

```
rgnl_ar_nm2
trgt_crtr
fr_fghtn, fclt_spcl s_6_yn
fr_fghtng s_s_css_5_yn
cltrl ___yn
blk_dngrs __ns_nnfctr_yn
sl__r_brgd_
dngrs_thng_yn
us_yn
```

8개 변수 삭제!

NA imputation

각 범주 별 화재발생비율 확인

NA imputation - clustering

Collapse Category level

다음의 변수에 대하여 범주를 묶는 시도를 진행함

bldng_us_clssfctn : 건물 사용 용도

bldng_us: 건물 유형

bldng_archtctr : 건물 구조

임베딩 벡터 = (반응변수에 대한 오즈비, 수준이 관측된 빈도수)

{O: ['공공용', '공업용'], 1: ['NAN', '주거용'], 2: ['기타', '농수산용', '문교사회용', '상업용']}

NA imputation – 에너지, 가스 시계열 데이터

O과 na를 다른 범주로 가정(범주: 0: 0, na: 1), O과 na 이외는 범주 2로 묶음

0과 na를 같은 범주로 가정(범주: 0, na: 0), 0과 na 이외는 범주 2로 묶음

Value	Count	Frequency (%)
0	30753	51.9%
70455168	6	< 0.1%
1028221320	6	< 0.1%
1078168968	6	< 0.1%
21826944	6	< 0.1%
1056662200	5	< 0.1%
154440600	4	< 0.1%
96390360	4	< 0.1%
364526032	4	< 0.1%
7996920	4	< 0.1%
Other values (704)	820	1.4%
(Missing)	27581	46.6%

NA imputation - 에너지, 가스 시계열 데이터 화재발생여부별 가스사용량 time series plot

gas, ele data 120개의 변수 계절 단위로 파생 변수 생성 -> 4개!

진행상황 요약

추후 계획

