

Energy-Based Models (part 4)

http://bit.ly/DLSP20

Yann LeCun

NYU - Courant Institute & Center for Data Science

Facebook AI Research

http://yann.lecun.com

TAs: Alfredo Canziani, Mark Goldstein

Deep Learning, NYU, Spring 2020

Architecture and Loss Function

- ▶ Family of energy functions $\mathcal{E} = \{E(W, Y, X) : W \in \mathcal{W}\}.$
- ▶ Training set $\mathcal{S} = \{(X^i, Y^i) : i = 1 \dots P\}$
- ▶ Loss functional / Loss function $\mathcal{L}(E, \mathcal{S})$ $\mathcal{L}(W, \mathcal{S})$
 - ► Measures the quality of an energy function on training set
- ▶ Training $W^* = \min_{W \in \mathcal{W}} \mathcal{L}(W, \mathcal{S}).$
- Form of the loss functional
 - invariant under permutations and repetitions of the samples

$$\mathcal{L}(E,\mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} L(Y^i, E(W, \mathcal{Y}, X^i)) + R(W).$$
 Energy surface For a given Xi loss answer as Y varies

Designing a Loss Functional

- Push down on the energy of the correct answer
- Pull up on the energies of the incorrect answers, particularly if they are smaller than the correct one

Architecture + Inference Algo + Loss Function = Model

- \blacksquare 1. Design an architecture: a particular form for E(W,Y,X).
- 2. Pick an inference algorithm for Y: MAP or conditional distribution, belief prop, min cut, variational methods, gradient descent, MCMC, HMC.....
- **3. Pick a loss function:** in such a way that minimizing it with respect to W over a training set will make the inference algorithm find the correct Y for a given X.
- 4. Pick an optimization method.

PROBLEM: What loss functions will make the machine approach the desired behavior?

Examples of Loss Functions: Energy Loss

▶ Energy Loss $L_{energy}(Y^i, E(W, \mathcal{Y}, X^i)) = E(W, Y^i, X^i).$

► Simply pushes down on the energy of the correct answer

Negative Log-Likelihood Loss

Conditional probability of the samples (assuming $\text{independence}(Y^0,\ldots,Y^P|X^1,\ldots,X^P,W) = \prod P(Y^i|X^i,W).$

$$-\log \prod_{i=1}^{P} P(Y^i|X^i,W) = \sum_{i=1}^{P} -\log P(Y^i|X^i,W).$$

$$-\log \prod_{i=1}^{P} P(Y^i|X^i,W) = \sum_{i=1}^{P} -\log P(Y^i|X^i,W).$$

$$\mathbf{Gibbs \ distribution:} \quad P(Y|X^i,W) = \frac{e^{-\beta E(W,Y,X^i)}}{\int_{y \in \mathcal{Y}} e^{-\beta E(W,y,X^i)}}.$$

$$-\log \prod_{i=1}^{P} P(Y^{i}|X^{i}, W) = \sum_{i=1}^{P} \beta E(W, Y^{i}, X^{i}) + \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})}.$$

▶ We get the NLL loss by dividing by P and Beta:

$$\mathcal{L}_{\text{nll}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)} \right).$$

Reduces to the perceptron loss when Beta->infinity

Negative Log-Likelihood Loss

- Pushes down on the energy of the correct answer
- Pulls up on the energies of all answers in proportion to their probability

$$\mathcal{L}_{\text{nll}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)} \right).$$

$$\frac{\partial L_{\text{nll}}(W, Y^i, X^i)}{\partial W} = \frac{\partial E(W, Y^i, X^i)}{\partial W} - \int_{Y \in \mathcal{Y}} \frac{\partial E(W, Y, X^i)}{\partial W} P(Y|X^i, W),$$

Negative Log-Likelihood Loss

- ► A probabilistic model is an EBM in which:
 - ► The energy can be integrated over Y (the variable to be predicted)
 - ► The loss function is the negative log-likelihood
- Negative Log Likelihood Loss has been used for a long time in many communities for discriminative learning with structured outputs
 - ➤ Speech recognition: many papers going back to the early 90's [Bengio 92], [Bourlard 94]. They call "Maximum Mutual Information"
 - ► Handwriting recognition [Bengio LeCun 94], [LeCun et al. 98]
 - ▶ Bio-informatics [Haussler]
 - Conditional Random Fields [Lafferty et al. 2001]
 - Lots more.....
 - ► In all the above cases, it was used with non-linearly parameterized energies.

A Simpler Loss Functions:Perceptron Loss

$$L_{perceptron}(Y^i, E(W, \mathcal{Y}, X^i)) = E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i).$$

- Perceptron Loss [LeCun et al. 1998], [Collins 2002]
 - Pushes down on the energy of the correct answer
 - Pulls up on the energy of the machine's answer
 - Always positive. Zero when answer is correct
 - No "margin": technically does not prevent the energy surface from being almost flat.
 - Works pretty well in practice, particularly if the energy parameterization does not allow flat surfaces.
 - ► This is often called "discriminative Viterbi training" in the speech and handwriting literature

Perceptron Loss for Binary Classification

$$L_{perceptron}(Y^i, E(W, \mathcal{Y}, X^i)) = E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i).$$

- ▶ Energy: $E(W, Y, X) = -YG_W(X)$,
- ▶ Inference: $Y^* = \operatorname{argmin}_{Y \in \{-1,1\}} YG_W(X) = \operatorname{sign}(G_W(X)).$
- ▶ Loss: $\mathcal{L}_{perceptron}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(sign(G_W(X^i)) Y^i \right) G_W(X^i).$
- ► Learning Rule: $W \leftarrow W + \eta \left(Y^i \text{sign}(G_W(X^i)) \right) \frac{\partial G_W(X^i)}{\partial W}$,
- ▶ If Gw(X) is linear in W: $E(W, Y, X) = -YW^T\Phi(X)$

$$W \leftarrow W + \eta \left(Y^i - \operatorname{sign}(W^T \Phi(X^i)) \right) \Phi(X^i)$$

A Better Loss Function: Generalized Margin Losses

- ► First, we need to define the Most Offending Incorrect Answer
- Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X^i, Y^i) , the most offending incorrect answer \bar{Y}^i is the answer that has the lowest energy among all answers that are incorrect:

$$\bar{Y}^i = \operatorname{argmin}_{Y \in \mathcal{Y}_{and}Y \neq Y^i} E(W, Y, X^i). \tag{8}$$

Most Offending Incorrect Answer: continuous case

Definition 2 Let Y be a continuous variable. Then for a training sample (X^i, Y^i) , the **most offending incorrect answer** \bar{Y}^i is the answer that has the lowest energy among all answers that are at least ϵ away from the correct answer:

$$\bar{Y}^i = \operatorname{argmin}_{Y \in \mathcal{V}, ||Y - Y^i|| > \epsilon} E(W, Y, X^i). \tag{9}$$

Examples of Generalized Margin Losses

$$L_{\text{hinge}}(W, Y^{i}, X^{i}) = \max(0, m + E(W, Y^{i}, X^{i}) - E(W, \bar{Y}^{i}, X^{i})),$$

- Hinge Loss
 - ► [Altun et al. 2003], [Taskar et al. 2003]
 - ► With the linearly-parameterized binary classifier architecture, we get linear SVMs

$$L_{\log}(W, Y^i, X^i) = \log\left(1 + e^{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)}\right).$$

- Log Loss
 - "soft hinge" loss
 - With the linearly-parameterized binary classifier architecture, we get linear Logistic Regression

Examples of Margin Losses: Square-Square Loss

$$L_{\text{sq-sq}}(W, Y^{i}, X^{i}) = E(W, Y^{i}, X^{i})^{2} + (\max(0, m - E(W, \bar{Y}^{i}, X^{i})))^{2}.$$

- Square-Square Loss
 - ► [LeCun-Huang 2005]
 - Appropriate for positive energy **functions**

Learning $Y = X^2$

Other Margin-Like Losses

LVQ2 Loss [Kohonen, Oja], Driancourt-Bottou 1991]

$$L_{\text{lvq2}}(W, Y^i, X^i) = \min\left(1, \max\left(0, \frac{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)}{\delta E(W, \bar{Y}^i, X^i)}\right)\right),$$

Minimum Classification Error Loss [Juang, Chou, Lee 1997]

$$L_{\text{mce}}(W, Y^{i}, X^{i}) = \sigma \left(E(W, Y^{i}, X^{i}) - E(W, \bar{Y}^{i}, X^{i}) \right),$$

$$\sigma(x) = (1 + e^{-x})^{-1}$$

Square-Exponential Loss [Osadchy, Miller, LeCun 2004]

$$L_{\text{sq-exp}}(W, Y^i, X^i) = E(W, Y^i, X^i)^2 + \gamma e^{-E(W, \bar{Y}^i, X^i)},$$

What Make a "Good" Loss Function

Good and bad loss functions

Loss (equation #)	Formula	Margin
energy loss	$E(W, Y^i, X^i)$	none
perceptron	$E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i)$	О
hinge	$\max\left(0,m+E(W,Y^i,X^i)-E(W,ar{Y}^i,X^i) ight)$	m
log	$\log\left(1+e^{E(W,Y^i,X^i)-E(W,\bar{Y}^i,X^i)}\right)$	> 0
LVQ2	$\min \left(M, \max(0, E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)\right)$	O
MCE	$\left(1 + e^{-\left(E(W,Y^{i},X^{i}) - E(W,\bar{Y}^{i},X^{i})\right)}\right)^{-1}$	> 0
square-square	$E(W, Y^i, X^i)^2 - (\max(0, m - E(W, \bar{Y}^i, X^i)))^2$	m
square-exp	$E(W, Y^i, X^i)^2 + \beta e^{-E(W, \bar{Y}^i, X^i)}$	> 0
NLL/MMI	$E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)}$	> 0
MEE	$E(W, Y^{i}, X^{i}) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $ $1 - e^{-\beta E(W, Y^{i}, X^{i})} / \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $	> 0

Slightly more general form:

$$L(W, X^{i}, Y^{i}) = \sum_{y} H(E(W, Y^{i}, X^{i}) - E(W, y, X^{i}) + C(Y^{i}, y))$$

Structured Prediction

A particular type of latent variable models

The Oldest Example of Structured Prediction

- Trainable Automatic Speech Recognition system with a convolutional net (TDNN) and dynamic time warping (DTW)
- The feature extractor and the structured classifier are trained simultanesously in an integrated fashion.
- with the LVQ2 Loss :
 - Driancourt and Bottou's speech recognizer (1991)
- with NLL:
 - ► Bengio's speech

Energy-Based Factor Graphs: Energy = Sum of "factors"

Sequence Labeling

► Output is a sequence Y1,Y2,Y3,Y4.....

- $Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}, Z \in \mathcal{Z}} E(Z, Y, X).$
- NLP parsing, MT, speech/handwriting recognition, biological sequence analysis
- ► The factors ensure grammatical consistency
- ► They give low energy to consistent sub-sequences of output symbols
- ► The graph is generally simple (chain or tree)
- ► Inference is easy (dynamic programming, min-sum)

Energy-Based Factor Graphs

- ► When the energy is a sum of partial energy functions (or when the probability is a product of factors):
 - ► Efficient inference algorithms can be used for inference (without the normalization step).

Efficient Inference: Energy-Based Factor Graphs

- Example:
 - ➤ Z1, Z2, Y1 are binary
 - Z2 is ternary
 - A naïve exhaustive inference would require 2x2x2x3=24 energy evaluations (= 96 factor evaluations)
 - ▶ BUT: Ea only has 2 possible input configurations, Eb and Ec have 4, and Ed 6.
 - Hence, we can precompute the 16 factor values, and put them on the arcs in a trellis.
 - A path in the trellis is a config of variable
 - The cost of the path is the energy of the config

The energy is a sum of "factor" functions Factor graph

Energy-Based Belief Prop

- The previous picture shows a chain graph of factors with 2 inputs.
- ► The extension of this procedure to trees, with factors that can have more than 2 inputs the "min-sum" algorithm (a non-probabilistic form of belief propagation)
- ► Basically, it is the sum-product algorithm with a different semi-ring algebra (min instead of sum, sum instead of product), and no normalization step.
 - ► [Kschischang, Frey, Loeliger, 2001][McKay's book]

Simple Energy-Based Factor Graphs with "Shallow" Factors

- Linearly Parameterized Factors
- with the NLL Loss :
 - Lafferty's Conditional Random Field
- with Hinge Loss:
 - Taskar and Altun/Hofmann's Max Margin Markov Nets and Latent SVM
- with Perceptron Loss
 - Collins's Structured Perceptron model

Example: The Conditional Random Field Architecture

- ► A CRF is an energy-based factor graph in which:
 - the factors are linear in the parameters (shallow factors)
 - ► The factors take neighboring output variables as inputs
 - ▶ The factors a

Example: The Conditional Random Field Architecture

Applications:

X is a sentence, Y is a sequence of Parts of Speech Tags (there is one Yi for each possible group of words).

➤ X is an image, Y is a set of labels for each window in the image (vegetation, building, sky....).

Deep/non-linear Factors for Speech and Handwriting

- ➤ Trainable Speech/Handwriting Recognition systems that integrate Neural Nets (or other "deep" classifiers) with dynamic time warping, Hidden Markov Models, or other graph-based hypothesis representations
- Training the feature extractor as part of the whole process.
- with the LVQ2 Loss :
 - Driancourt and Bottou's speech recognizer (1991)
- with NLL:
 - Bengio's speech recognizer (1992)
 - ► Haffner's speech recognizer (1993)

- With Minimum Empirical Error loss
 - ► Ljolje and Rabiner (1990)
- with NLL:
 - Bengio (1992), Haffner (1993), Bourlard (1994)
- With MCE
 - ▶ Juang et al. (1997)
- Late normalization scheme (un-normalized HMM)
 - ► Bottou pointed out the **label bias problem** (1991)
 - ▶ Denker and Burges proposed a solution (1995)

Deep Factors & implicit graphs: GTN

- Handwriting Recognition with Graph Transformer Networks
- Un-normalized hierarchical HMMs
 - Trained with Perceptron loss [LeCun, Bottou, Bengio, Haffner 1998]
 - ➤ Trained with NLL loss [Bengio, LeCun 1994], [LeCun, Bottou, Bengio, Haffner 1998]
- Answer = sequence of symbols
- Latent variable = segmentation

Graph Transformer Networks

- Variables:
 - X: input image
 - Z: path in the interpretation graph/segmentation
 - Y: sequence of labels on a path
- Loss function: computing the energy of the desired answer:

E(W, Y, X)

Graph Transformer Networks

- Variables:
 - X: input image
 - Z: path in the interpretation graph/segmentation
 - Y: sequence of labels on a path
- ► Loss function: computing the constrastive term:

$$E(W, \check{Y}, X)$$

Graph Transformer Networks

- Example: Perceptron loss
- Loss = Energy of desired answer – Energy of best answer.
 - ► (no margin)

Graph Composition, Transducers.

- The composition of two graphs can be computed, the same way the dot product between two vectors can be computed.
- General theory: semiring algebra on weighted finite-state transducers and acceptors.

Check Reader

- Graph transformer network trained to read check amounts.
- Trained globally with Negative-Log-Likelihood loss.
- ► 50% percent corrent, 49% reject, 1% error (detectable later in the process.
- Fielded in 1996, used in many banks in the US and Europe.
- Processes an estimated 10% of all the checks written in the US.

Deep Factors / Deep Graph: ASR with TDNN/HMM

- Discriminative Automatic Speech Recognition system with HMM and various acoustic models
 - ► Training the acoustic model (feature extractor) and a (normalized) HMM in an integrated fashion.
- With Minimum Empirical Error loss
 - ► Ljolje and Rabiner (1990)
- with NLL:
 - ► Bengio (1992)
 - ► Haffner (1993)
 - ► Bourlard (1994)
- With MCE
 - ► Juang et al. (1997)
- Late normalization scheme (un-normalized HMM)