

# X2 开发手册





# 目录

| 1 | 工作机制 | 1 |
|---|------|---|
|   | 采样测距 |   |
|   | 上电信息 |   |
| 4 | 数据协议 | 2 |
| 5 | 速度控制 | 5 |
| 6 | 修订   | 6 |



## 1 工作机制

X2 上电后, 系统自动启动测距, 以下是 X2 系统的工作流程:



图 1 YDLIDAR X2 系统工作流程

## 2 采样测距

在上电后,系统会自动启动测距,同时会向串口输出一次启动扫描的报文数据: A5 5A 05 00 00 40 81。该报文具体含义如下:



图 2 YDLIDAR X2 启动扫描报文说明

- ▶ 起始标志: X2 的报文标志统一为 0xA55A;
- ▶ 应答长度: 应答长度表示的是应答内容的长度,但当应答模式为持续应答时,长度应为 无限大,因此该值失效,启动扫描的报文应答长度为无限大;
- ▶ **应答模式:** 该位只有 **2**bits,表示本次报文是单次应答或持续应答,启动扫描的应答模式 为 **1**,其取值和对应的模式如下:

| 表 1 X2 应答模式取值和对应应 | <b>Y</b> 答模式 |
|-------------------|--------------|
|-------------------|--------------|

| 应答模式取值 | 0x0  | 0x0 0x1 |           | 0x3 |
|--------|------|---------|-----------|-----|
| 应答模式   | 单次应答 | 持续      | 持续    未定义 |     |

- ▶ 类型码: 启动扫描报文的类型码为 0x81;
- ▶ 应答内容: 扫描数据,详见数据协议。



# 3 上电信息

在上电后,系统会输出一次上电信息,会反馈设备的型号、固件版本和硬件版本,以及设备出厂序列号。其应答报文为:



图 3 YDLIDAR X2 设备信息报文示意图

按照协议解析:应答长度 = 0x00000014,应答模式 = 0x0,类型码 = 0x04。

即应答内容字节数为 20;本次应答为单次应答,类型码为 04,该类型应答内容满足一下数据结构:



图 4 YDLIDAR X2 设备信息应答内容数据结构示意图

- ▶ 型号: 1 个字节设备机型,如 X2 的机型代号是 04;
- ▶ **固件版本:** 2 个字节, 低字节为主版本号, 高字节为次版本号;
- **▶ 硬件版本: 1** 个字节,代表硬件版本;
- **▶ 序列号: 16** 个字节, 唯一的出厂序列号。

# 4 数据协议

系统启动扫描后,会在随后的报文中输出扫描数据,其数据协议按照以下数据结构,以16进制向串口发送至外部设备。

#### 字节偏移:



图 5 扫描命令应答内容数据结构示意图



| 表 2 | 扫描命令应答内容数据结构描述 | ĸ |
|-----|----------------|---|

| 内容       | 名称   | 描述                                                                           |
|----------|------|------------------------------------------------------------------------------|
| PH (2B)  | 数据包头 | 长度为 2B, 固定为 0x55AA, 低位在前, 高位在后                                               |
| CT (1B)  | 包类型  | 表示当前数据包的类型,CT[bit(0)]=1 表示为一圈数据起始,<br>CT[bit(0)]=0 表示为点云数据包,CT[bit(7:1)]为预留位 |
| LSN(1B)  | 采样数量 | 表示当前数据包中包含的采样点数量;起始数据包中只有1个起始点的数据,该值为1                                       |
| FSA (2B) | 起始角  | 采样数据中第一个采样点对应的角度数据                                                           |
| LSA (2B) | 结束角  | 采样数据中最后一个采样点对应的角度数据                                                          |
| CS (2B)  | 校验码  | 当前数据包的校验码,采用双字节异或对当前数据包进行校验                                                  |
| Si (2B)  | 采样数据 | 系统测试的采样数据,为采样点的距离数据,其中 Si 节点的 LSB 中还集成了干扰标志                                  |

#### ▶ 起始位&扫描频率解析:

当检测到 CT[bit(0)]=0 时,表明该包数据为点云数据包;

当检测到 CT[bit(0)]=1 时,表明该包数据为起始数据包,该数据包中 LSN=1,即 Si 的数量为 1;其距离、角度的具体值解析参见下文;同时,起始数据包中,CT[bit(7:1)]扫 描频率信息,F=CT[bit(7:1)]/10 (当 CT[bit(7:1)]=1 时)。

注: 当 CT[bit(7:1)] = 0 时,CT[bit(7:1)]为预留位,未来版本会用作其他用途,因此在解析 CT 过程中,只需要对 bit(0)位做起始帧的判断。

#### ▶ 距离解析:

距离解算公式: Distance<sub>i</sub> =  $\frac{Si}{4}$ 

其中, Si 为采样数据。设采样数据为 E5 6F,由于本系统是小端模式,所以本采样点 S = 0x6FE5,带入到距离解算公式,得 Distance = 7161.25mm。

#### ▶ 角度解析:

角度数据保存在 FSA 和 LSA 中,每一个角度数据有如下的数据结构,C 是校验位,其值固定为 1。角度解析有两个等级:一级解析和二级解析。一级解析初步得到角度初值,二级解析对角度初值进行修正,具体过程如下:

#### 一级解析:



起始角解算公式:  $Angle_{FSA} = \frac{Rshiftbit(FSA,1)}{64}$ 

Ang\_q2[6:0] C LSB Ang\_q2[14:7] MSB

结束角解算公式: 
$$Angle_{LSA} = \frac{Rshiftbit(LSA,1)}{64}$$

中间角解算公式: 
$$Angle_i = \frac{diff(Angle)}{LSN-1} * (i-1) + Angle_{FSA}$$
  $(i=2,3,...,LSN-1)$ 

Rshiftbit(data,1)表示将数据 data 右移一位。diff(Angle)表示起始角(未修正值)到结束角(未修正值)的顺时针角度差,LSN 表示本帧数据包采样数量。

#### 二级解析:

角度修正公式: 
$$Angle_i = Angle_i + AngCorrect_i$$
  $(i = 1, 2, ..., LSN)$ 

其中,AngCorrect为角度修正值,其计算公式如下,tand<sup>-1</sup>为反三角函数,返回角度值:

ELSE AngCorrect<sub>i</sub> = 
$$tand^{-1}(21.8 * \frac{155.3 - Distance_i}{155.3 * Distance_i})$$

设数据包中,第4<sup>8</sup> 字节为28 E5 6F BD 79,所以LSN = 0x28 = 40(dec),FSA = 0x6FE5,LSA = 0x79BD,带入一级解算公式,得:

$$Angle_{FSA} = 223.78^{\circ}, \ Angle_{LSA} = 243.47^{\circ}, \ diff(Angle) = 19.69^{\circ}$$

$$Angle_i = \frac{19.69^{\circ}}{39} * (i-1) + 223.78^{\circ}$$
 (i = 2,3,...,39)

假设该帧数据中,Distance<sub>1</sub> = 1000,Distance<sub>LSN</sub> = 8000,带入二级解算公式,得:

AngCorrect<sub>1</sub> = 
$$-6.7622^{\circ}$$
, AngCorrect<sub>LSN</sub> =  $-7.8374^{\circ}$ , 所以:

$$Angle_{FSA} = Angle_1 + AngCorrect_1 = 217.0178^{\circ}$$

$$Angle_{LSA} = Angle_{LSA} + AngCorrect_{LSA} = 235.6326^{\circ}$$

同理,  $Angle_i$  (i = 2,3,...,LSN - 1), 可以依次求出。

#### ▶ 校验码解析:



校验码采用双字节异或,对当前数据包进行校验,其本身不参与异或运算,且异或顺序不是严格按照字节顺序,其 异或顺序如图所示,因此,校验码解算公式为:

$$CS = XOR_1^{end}(C_i)$$
  $i = 1, 2, ..., end$ 



图 7 CS 异或顺序示意图

XOR<sup>end</sup> 为异或公式,表示将元素中从下标 1 到 end 的数 进行异或。但异或满足交换律,实际解算中可以无需按照本文异或顺序。

## 5 速度控制

同时,用户可以根据实际需要,改变扫描频率来满足需求。通过改变 M\_SCTP 管脚输入电压,或改变输入的 PWM 信号的占空比,来调控电机转速(具体控制方法,请参考数据手册)。



# 6 修订

| 日期         | 版本  | 修订内容     |
|------------|-----|----------|
| 2019-04-24 | 1.0 | 初撰       |
| 2021-07-30 | 1.1 | 优化 CT 信息 |