CORRECTION EXAMEN SESSION 2 (2021-2022)

Exercice 1.

1. Soient $a, b \in I$, on a par hypothèse

$$\forall m \in M, am = 0 = bm$$

donc en particulier (a-b)m=am-bm=0 et $a-b\in I$, qui est donc un sous-groupe abélien de R. Ensuite, pour $r\in R$, on a (ra).m=r.(am)=0, donc $ra\in I$, qui est bien un idéal de R.

2. Soit $k \in \mathbb{Z}$, k est dans l'annulateur de \mathbb{Z} si et seulement si

$$\forall n \in \mathbb{Z}, kn = 0$$

ce qui entraîne bien sur k = 0 car \mathbb{Z} est intègre, donc l'annulateur de \mathbb{Z} est (0).

3. Soit $n \in \mathbb{Z}$, calculons l'annulateur de $\mathbb{Z}/n\mathbb{Z}$. Comme $\mathbb{Z}/n\mathbb{Z}$ est engendré par $\overline{1}$, on a que $k \in \mathbb{Z}$ est annulateur de $\mathbb{Z}/n\mathbb{Z}$ si et seulement si

$$k.\overline{1} = \overline{k} = 0 \Leftrightarrow k \equiv 0[n] \Leftrightarrow n|k \Leftrightarrow k \in n\mathbb{Z}$$

Donc l'annulateur de $\mathbb{Z}/n\mathbb{Z}$ est $n\mathbb{Z}$.

3. Un élément $k \in \mathbb{Z}$ est annulateur de $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ si et seulement si

$$\forall (a, b, c) \in \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, \quad k(a, b, c) = (ka, kb, kc) = (0, 0, 0)$$

autrement dit si k est annulateur de $\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/3\mathbb{Z}$ et $\mathbb{Z}/4\mathbb{Z}$. Autrement dit, on obtient que l'annulateur de $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ est donné par

$$2\mathbb{Z} \cap 3\mathbb{Z} \cap 4\mathbb{Z} = (PPCM(2,3,4))\mathbb{Z} = 12\mathbb{Z}$$

Exercice 2.

1. On a

$$ev_x(\lambda \varphi + \psi) = (\lambda \varphi + \psi)(x) = \lambda \varphi(x) + psi(x) = \lambda ev_x(\varphi) + ev_x(\psi)$$

par définition de l'addition (et de la multiplication scalaire) sur les formes linéaires, donc ev_x est linéaire et on a $ev_x \in \in E^{**}$.

2. On a

$$ev_{\lambda x+y}(\varphi) = \varphi(\lambda x+y) = \lambda \varphi(x) + \varphi(y) = (\lambda ev_x + ev_y)(\varphi)$$

 $\operatorname{car} \varphi$ est linéaire

3. Soit $x \in E \setminus \{0\}$, on peut compléter x en une base de E. En considérant la famille duale de cette base, on obtient en particulier que $x^*(x) = 1$. Si x est dans le noyau de ev, c'est à dire si $ev_x = 0$, on a

$$\forall \varphi \in E^*, \varphi(x) = 0 \Leftrightarrow$$

ce qui contredit $x^*(x) = 1$, donc $ev_x \neq 0$ et ev est injective.

Si E est de dimension finie, on a dim $E = \dim E^* = \dim E^{**}$, donc ev est un isomorphisme.

Exercice 3.

1. Premièrement μ_{∞} est non vide car il contient 1. Ensuite, pour $z \in \mu_{\infty}$ tel que $z^n = 1$. On a $(z^{-1})^n$) = $(z^n)^{-1} = 1$ donc $z^{-1} \in \mu_{\infty}$. Enfin, soient $z, z' \in \mu_{\infty}$ et n, n' tels que $z^n = 1 = z'^{n'}$, on a $(zz')^{nn'} = z^{nn'}z'^{nn'} = 1$ car z, z' commutent (\mathbb{C}^* est commutatif).

2. On rappelle que $\mathbb{S}^1 = \{e^{i\theta} \mid \theta \in \mathbb{R}\}$. Soit $z = e^{i\theta} \in \mathbb{S}^1$, si $z \in \mu_{\infty}$ et $z^n = 1$, on a $e^{in\theta} = 1$. On sait que

$$e^{in\theta} = 1 \Leftrightarrow n\theta \equiv 0[2\pi] \Leftrightarrow \exists k \in \mathbb{Z} \mid n\theta = 2k\pi \Leftrightarrow \exists k \in \mathbb{Z} \mid \theta = \frac{2k}{n}\pi \Leftrightarrow \theta \in \mathbb{Q}\pi$$

Il suffit donc de prendre un θ qui ne soit pas un multiple rationnel de π , par exemple $e^{i\sqrt{2}\pi}$ n'est pas dans μ_{∞} .

- 3.a) Par définition de μ_{∞} , tous ses éléments sont d'ordre fini. Or si μ_{∞} admet une partie libre, il admet un sous-groupe libre, en particulier dont les éléments sont d'ordre infinis (c'est toujours vrai pour un groupe libre, ou pour un module libre).
- b). Si μ_{∞} est de type fini et sans partie libre, alors le théorème de classification indique que μ_{∞} est un produit de groupes cycliques, en particulier finis : μ_{∞} serait un groupe fini.
- c). Il est clair que μ_{∞} n'est pas un groupe fini! Il contient tous les $e^{\frac{2i\pi}{n}}$ pour $n \in \mathbb{N}$.