

EXHIBIT 24

Name : S. E. Elghobashi
Nationality : U.S.A.

June 2016

Education :

Degree	Year	Institution
M.Sc. (Mechanical Engineering)	1971	Univ. of Southern California, Los Angeles, USA.
Ph.D. (Mechanical Engineering)	1974	Imperial College, University of London, England.
D.Sc. (Mechanical Engineering)	1999	Imperial College, University of London, England.

Professional Activities (partial list)

Member of the National Academy of Engineering.

Fellow of the American Physical Society.

Fellow of the American Association for the Advancement of Science.

Fellow of the American Society of Mechanical Engineers.

Visiting Fellow of Cambridge University, Wolfson College, England, 1999.

Senior Award of International Conference on Multiphase Flow, Florence, Italy, May 25, 2016.

Chair of the Nominating Committee of American Physical Society, Div. Fluid Dynamics (2014-2015).

Member of Fellowship Committee of American Physical Society, Div. Fluid Dynamics (2009-11).

Member of Science and Engineering Advisory Committee (SETAC) of Blue Waters supercomputer project(2016-2017). <https://bluewaters.ncsa.illinois.edu/setac>

Senior member of the American Institute of Aeronautics and Astronautics(AIAA).

Member of the Combustion Institute.

Member of EuroMech.

Member of the Editorial Advisory Board of International J. of Multiphase Flow(2010-present).

Guest Editor of International J. of Multiphase Flow, Special Issue on Point-particle model for disperse turbulent flows, vol. 35, 2009.

DIC: Diploma of Membership of Imperial College in Mech. Engineering, 1974.

British Science Research Council (SRC) Scholarship (1971-1974).

Major Research Interests

Direct numerical simulation of turbulent flows, including multiphase and chemically-reacting flows, and biomedical flows.

Research and Professional Experience

March 2015 -Present **UC Distinguished Professor**, Mechanical and Aerospace Engineering Department, University of California, Irvine.

July 1985 - Feb. 2014 **Professor**, Mechanical and Aerospace Engineering Department, University of California, Irvine.

July 1997 - June 2002 **Chairman**, Mechanical and Aerospace Engineering Department, University of California, Irvine.

Aug. 1984 - July 1985 **Visiting Scientist**, DFVLR, German Aerospace Research Establishment, Institute of Atmospheric Physics, Oberpfaffenhofen, West Germany (Sabbatical Year).

July 1983 - July 1984 **Vice Chairman**, Mechanical Engineering Department, University of California, Irvine.

July 1982 - June 1985 **Associate Professor**, Mechanical Engineering Department, University of California, Irvine.

July 1978 - June 1982 **Assistant Professor**, Mechanical Engineering Department, University of California, Irvine.

Jan. 1978 - June 1978 **Staff Research Engineer**, Acurex Corporation, Aerotherm Division, Mountain View, California.

Oct. 1974 - Dec. 1977 **Group Leader**, CHAM, (Concentration, Heat and Momentum), London, England and Huntsville, Alabama.

Reviewer for:

Journal of Fluid Mechanics
Physics of Fluids
Nature
Science
Physical review Letters
International Journal of Multiphase Flow
Journal of Combustion Science and Technology
Combustion and Flame
Journal of American Institute of Aeronautics and Astronautics
Journal of Fluids Engineering
Journal of Heat Transfer
International Journal of Numerical Heat Transfer
International Journal of Heat and Mass Transfer
International Journal of Heat and Fluid Flow
Progress in Energy and Combustion Science
Journal of Applied Mathematical Modeling
National Science Foundation
NASA
Department of Energy
University of California Energy Research Group
McGraw Hill Book Co.
John Wiley Book Co. and Wiley Interscience Europe.

Consulting

1974 - 1978

NASA- Lewis, NASA- Langley, NASA- Marshall, AFOSR, ARO, ONR

Westinghouse, General Electric, Airesearch
ALCAN, ALCOA, Corning, Phillip Morris
Ballistic Missile Advance Technology Center
Rolls-Royce, England
Rheinmetall, Germany
Societe National des Poudres et Explosifs, France
Spectron Development Labs.

1981 - 1996

Jet Propulsion Laboratory
Ballistic Missile Advance Technology Center
R&D Associates
Physical Research Inc.
P D A Engineering
1978 - 2000

Science Applications Inc.

Invited Keynote and Distinguished Lectures since 2000

L1. Elghobashi, S. " On the two-fluid and trajectory approaches for DNS of turbulent particle-laden flows", Part 1: DNS of bubble-laden flows via the two-fluid approach, [**Invited Lecture**] Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, **Belgium**, April 3-7, 2000.

L2. Elghobashi, S. " On the two-fluid and trajectory approaches for DNS of turbulent particle-laden flows", Part 2: On the approximation of the two-way coupling terms in the trajectory approach, [**Invited Lecture**] Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, **Belgium**, April 3-7, 2000.

L3. Elghobashi, S. " On the point-force approximation in DNS of particle-laden turbulent flows with two-way coupling", [**Invited lecture**] ERCOFTAC Conference on Dynamics of Particle-Laden Flows, Zurich, **Switzerland**, July 3-5, 2000.

L4. L4. Elghobashi, S. "Recent Advance in DNS of Particle-Laden Turbulent Flows" [**Invited Plenary lecture**], XI Congress on Numerical Methods and their Applications, ENIEF 2000 , San Carlos de Bariloche, **Argentina**, November 20-24, 2000.

L5. L5. Elghobashi, S. "The physical mechanisms of modifying the structure of turbulent homogeneous flows by dispersed particles ", [**Invited Plenary Lecture**], ERCOFTAC Conference on Small Particles in Turbulence , Seville, **Spain**, March 11-13, 2002.

L6. S. Elghobashi "On the physical mechanisms of drag reduction in a microbubble-laden turbulent boundary layer" [**Keynote Lecture**] at **The 5th International Con-**

ference of Multiphase Flow (ICMF 2004), Yokohama, **Japan**, May 31 - June 3, 2004.

L7. S. Elghobashi “On the drag reduction in a mirobubble-laden spatially-developing turbulent boundary layer”, **IUTAM Symposium** on Recent advances in disperse multiphase flow simulation- **[Invited Lecture]**- Chicago-October 2004.

L8. S. Elghobashi “ Reynolds number effect on drag reduction in a microbubble-laden spatially-developing turb. boundary layer”, **Euromech Conference on Hydrodynamics of bubbly flows- [Invited Lecture]**- Lorentz Center, Leiden, **the Netherlands**, June 6-8, 2005.

L9. S. Elghobashi “On drag reduction in a microbubble-laden spatially-developing turbulent boundary layer”, **European Science Foundation- Challenging Turbulent Lagrangian Dynamics, [Invited Lecture]**- Castel Gandolfo, **Italy**, Sept. 1-4, 2005.

L10. S. Elghobashi “On drag reduction in a microbubble-laden spatially-developing turbulent boundary layer”, **Thirteen IUTAM Advanced School & Workshop, Particle Dispersion in Turbulent Flows, [Invited Lecture I]** - CISM, Udine, **Italy**, September 12-16, 2005.

L11. S. Elghobashi “ Reynolds number effect on drag reduction in a microbubble-laden spatially-developing turb. boundary layer”, **Thirteen IUTAM Advanced School & Workshop, Particle Dispersion in Turbulent Flows, [Invited Lecture II]**- CISM, Udine, **Italy**, September 12-16, 2005.

L12. S. Elghobashi, “ Direct simulation of turbulent flows laden with particles or bubbles”, **CIEMAT : Research Centre for Energy, Environment and Technology, [Invited Lecture]**, Madrid, **Spain**, June 21, 2006.

L13. S. Elghobashi, “ DNS of the two-way interactions between dispersed solid particles and turbulent flows”, **Workshop on multiphase turbulence: Dust storms, erosion, hurricanes and tornadoes, [Invited Lecture]**, Xian, **China**, July 16-18, 2007.

L14. S. Elghobashi, “ On the two-way interactions between dispersed solid particles and turbulent flows”, **European Workshop on Direct and Large-Eddy Simulation, [Keynote Lecture]**, Trieste, **Italy**, Sept. 8-10, 2008.

L15. S. Elghobashi “ On the two-way interactions between dispersed particles and turbulent flows ” , **March 2009 Meeting of American Physical Society** Pittsburgh, PA . Bulletin of APS, Vol. 54, 209, **[Invited Lecture]**, March 18, 2009.

L16. S. Elghobashi “ The physical mechanisms of two-way interactions between dispersed particles and turbulent flows”, **Workshop on Clouds and Turbulence Institute for Mathematical Sciences**, Imperial College, [Invited Lecture], London, **England**, March 23-25, 2009.

L17. S. Elghobashi “ How do inertial particles modify isotropic turbulence ?” **International Workshop- Solving the Riddle of Turbulence: What, Why, and How?** Max Planck Institute for Dynamics and Self-Organization, [Invited Lecture], Göttingen, **Germany**, May 6 - May 9, 2009.

L18. S. Elghobashi “How do inertial particles modify isotropic turbulence ?” **International Symposium on Turbulence**”, [Invited Lecture], Peking University, **Beijing, China**, Sept. 21-25, 2009.

L19. S. Elghobashi “How do inertial particles modify isotropic turbulence ?” **4th Latin-American Workshop on CFD ”**, [Keynote Lecture], Rio de Janeiro, **Brazil**, July 11-14, 2010.

L20. S. Elghobashi “On turbulence modulation by dispersed inertial particles” **13th European Turbulence Conference, ETC 13, [Keynote Lecture]** University of Warsaw, **Poland**, September 12-15, 2011.

L21. F. Lucci, V.S. Lvov, A. Ferrante and S. Elghobashi, “Eulerian-Lagrangian bridge for the energy and dissipation spectra in homogeneous turbulence”, [Invited Lecture], International Workshop on “Lagrange versus Euler for turbulent flows”, **Wolfgang Pauli Institute, Vienna, Austria**, May 7-12, 2012.

L22. S. Elghobashi “On the multi-way interactions between turbulent flows and suspended sediment”

International symposium on two-phase modeling for sediment dynamics in geophysical flows(THESIS-2013) [Keynote Lecture] Chatou, Paris, **France**, June 10-12, 2013.

L23. S. Elghobashi “On the multi-way interactions between turbulent flows and suspended particles”

Fluid-Mediated Particle Transport in Geophysical Flows (GEOFLOWS13), Kavli Institute for Theoretical Physics [Invited Lecture] UCSB, Santa Barbara, **California**, December 10, 2013.

L24. S. Elghobashi “ Modulation of isotropic turbulence by dispersed particles,” **Huazhong University of Science and Technology, Wuhan, China**, June 9, 2014. [Plenary Lecture].

L25. S. Elghobashi “Homogeneous shear turbulence modulation by dispersed small

particles,” **Huazhong University of Science and Technology, Wuhan, China**, June 10, 2014. [keynote Lecture].

L26. S. Elghobashi “Modulation of isotropic turbulence by finite-size particles,” **Huazhong University of Science and Technology, Wuhan, China**, June 11, 2014. [keynote Lecture].

L27. S. Elghobashi “How do dispersed inertial particles modify turbulent flows,” Department of Mechanics and Engineering Science, **Peking University, China**, June 17, 2014 . [Distinguished lecture].

L28. S. Elghobashi “How do dispersed inertial particles modify turbulent flows,” Center for Turbulence Research, **Stanford University**, July 25, 2014. [Distinguished lecture].

L29. S. Elghobashi “How do dispersed inertial particles modify turbulent flows,” Computational and Applied Mathematics, **Pennsylvania State University**, October 10, 2014. [Distinguished lecture].

L30. S. Elghobashi “How do dispersed inertial particles modify turbulent flows,” Aerospace Engineering department, **University of Minnesota**, April 21, 2015. [Distinguished lecture].

L31. S. Elghobashi “How do dispersed inertial particles modify turbulent flows,” Mechanical Engineering department, **Northwestern University**, February 1, 2016. [Distinguished lecture].

L32. S. Elghobashi “How do dispersed inertial particles modify turbulent flows,” Mechanical Engineering department, **MIT**, February 3, 2016. [Distinguished lecture].

Publications

Articles in Books

B1 Elghobashi, S.E., "Studies in the Prediction of Turbulent Diffusion Flames", **Studies in Convection**, Vol. 2, B.E. Launder, ed., Academic Press, London, (1977).

B2 Elghobashi, S. E., and Nomura, K.N., "Direct Simulation of a Passive Diffusion Flame in Sheared and Unsheared Homogeneous Turbulence", **Turbulent Shear Flows 7**, pp. 313-329, W.C. Reynolds, ed., Springer-Verlag, (1991).

B3 Elghobashi, S. E. "Direct Simulation of turbulent flows laden with dispersed particles", **Handbook on Multiphase Flow**, pp. 13-34:13-60, C. Crowe, ed., CRC, (2005).

B4 Elghobashi, S. E. "An updated classification map of particle-laden turbulent flows", **Proceedings of IUTAM Symposium on Computational approaches to multiphase flow**, Springer pp. 3-10, , (2006).

B5 Loy, A.C., Jing, J., Zhang, J., Wang., Y., Elghobashi, S., Chen, Z. and Wong, B.J.F. "Anatomic optical coherence tomography of upper airways", **Optical Coherence Tomography: Technology and Applications**, Ed. W. Drexler and J. Fujimoto, Springer, Chapter 75, pp. 1145-2262, (2015).

Guest Editor

Elghobashi, S.E. " Point-Particle Models for Disperse Turbulent Flows", **International Journal of Multiphase Flow, Special Issue**, Volume 35, Issue 9, Pages 791-878, (September 2009).

Journal Papers

J1 Elghobashi, S.E., Pun, W.M. and Spalding, D.B., "Concentration Fluctuations in Isothermal Turbulent Confined Coaxial Jets", **Chem. Eng. Sci.**, Vol. 32, pp. 161-166 (1977).

J2 Elghobashi, S.E. and Wassel, A.T., "The Effect of Turbulent Heat Transfer on the Propagation of an Optical Beam Across Supersonic Boundary and Free Shear Layers", **Int. J. Heat and Mass Transfer**, Vol. 23, pp. 1229-1241 (1980).

J3 Elghobashi, S.E., Samuels, G.S., Wuerer, J.E., and LaRue, J.C., " Prediction and Measurement of Mass, Heat and Momentum Transport in a Nonreacting Turbulent Flow of a Jet in an Opposing Stream", **J. Fluids Engineering**, Vol. 103, pp. 127-132 (1981).

J4 Megahed, I.E.A. and Elghobashi, S.E., "On the Numerical Solution of Indeterminate Steady Elliptic Flows", **Computer Methods in Applied Mechanics and Engineering**, Vol. 26, pp. 225-240 (1981).

J5 Elghobashi, S.E. and Megahed, I.E.A., "Mass and Momentum Transport in a Laminar Isothermal Two-Phase Round Jet", **Int. J. Numerical Heat Transfer**, Vol. 4, pp. 317-329 (1981).

J6 Elghobashi, S.E. and Abou Arab, T.W., "A Two-Equation Turbulence Model for Two-Phase Flows", **Physics of Fluids**, Vol. 26, pp. 931-938 (1983).

J7 Elghobashi, S.E. and Launder, B.E., "Turbulent Time Scales and the Dissipation Rate of Temperature Variance in the Thermal Mixing", **Physics of Fluids**, Vol. 26, pp. 2415-2419 (1983).

J8 Modarress, D., Tan, H. and Elghobashi, S.E., "Two-Component LDA Measurement in a Two-Phase Turbulent Jet", **AIAA J.** Vol. 22, pp. 624-630 (1984).

J9 Modarress, D., Wuerer, J. and Elghobashi, S.E., "An Experimental Study of a Turbulent Round Two-Phase Jet", **Chemical Engineering Communications**, Vol. 28, pp. 341-354 (1984).

J10 Wassel, A.T. and Elghobashi, S.E., "Mathematical Simulation of Ocean Thermal Energy Conversion Sea Water Systems", **J. Solar Energy Engineering** Vol. 106, pp. 198-205 (1984).

J11 Mostafa A.A. and Elghobashi, S.E., "A Study of the Motion of Vaporizing Droplets in a Turbulent Flow", **AIAA Progress in Astronautics and Aeronautics**, Vol. 10, pp. 513-539, Oppenhiem and Soloukhin (editors) (1984).

J12 Elghobashi, S.E., Abou-Arab, T., Rizk, M. and Mostafa, A., "Prediction of the Particle-Laden Jet with a Two-Equation Turbulence Model", **Int. J. of Multiphase Flow**, Vol. 10, pp. 697-710 (1984).

J13 Bellan J., and Elghobashi, S.E., "Fuel Composition Effects on High Temperature Corrosion in Boiler and Furnaces", **J. of Engineering for Power**, Vol. 107, pp. 744-757 (1985).

J14 Rizk, M., and Elghobashi, S.E., "Wall Effects on the Motion of a Spherical Particle Suspended in a Turbulent Flow", **Physics of Fluids**, Vol. 28, pp. 806-817 (1985).

J15 Mostafa, A.A. and Elghobashi, S.E., "A Two-Equation Turbulence Model for Jet Flows Laden with Vaporizing Droplets", **Int. J. of Multiphase Flow**, Vol. 11, pp. 515-533 (1985).

J16 Schumann, U., Elghobashi, S.E., and Gerz, T., "Direct Simulation of Stably Stratified Turbulent Homogeneous Shear Flows", **Notes on Numerical Fluid Mechanics**, Vol. 15, pp. 245-264 (1986).

J17 Prud'homme, M., and Elghobashi, S.E., "Turbulent Heat Transfer Near the Reattachment of Flow Downstream of a Sudden Pipe Expansion", **Int. J. Numerical Heat Transfer**, Vol. 10, pp. 349-368 (1986).

J18 Conner, J. and Elghobashi, S.E., "Numerical Solution of Laminar Flow Past a Sphere with Surface Mass Transfer", **Int. J. Numerical Heat Transfer**, Vol. 12, pp. 57-82 (1987).

J19 Rizk, M. and Elghobashi, S.E., "A Two-Equation Turbulence Model for Dispersed Dilute Two-Phase Confined Flows", **Int. J. of Multiphase Flow**, Vol. 15, pp. 119-133 (1989).

J20 Gerz, T., Schumann, U. and Elghobashi, S., "Direct Simulation of Stably Stratified Homogeneous Turbulent Shear Flows", **J. Fluid Mechanics**, Vol. 200, pp. 563-594 (1989).

J21 Tsau, F. , Elghobashi, S. E.,and Sirignano, W. " Effects of G- Jitter on a Thermally Buoyant Flow", **J. Thermophysics and Heat Transfer**, vol. 6, pp. 246-254 (1992).

J22 Elghobashi, S. E., "Particle-Laden Turbulent Flows : Direct Simulation and Closure Models ", **J. Applied Scientific Research**, vol.48, pp. 301-314 (1991).

J23 Elghobashi, S. E.,and Truesdell, G.C., "Direct Simulation of Particle Dispersion in a Decaying Isotropic Turbulence", **J. Fluid Mechanics**, vol. 242, pp. 655-700 (1992).

J24 Nomura, K.N.,and Elghobashi, S. E. "Mixing characteristics of an inhomoge-

neous scalar in isotropic and homogeneous sheared turbulence",
Physics of Fluids, vol. 4, pp. 606-625 (1992).

J25 Kim, I. , Elghobashi, S. E., and Sirignano, W. " Three- dimensional flow over two spheres placed side by side",
J. Fluid Mechanics, vol. 246, pp. 465-488 (1993).

J26 Nomura, K.N.,and Elghobashi, S. E. " The structure of inhomogeneous turbulence in variable density nonpremixed flames",
Theoretical and Computational Fluid Dynamics, vol. 5, pp. 153-176 (1993).

J27 Elghobashi, S. E., and Truesdell, G.C., " On the two-way interaction between homogeneous turbulence and dispersed solid particles ; Part 1 : turbulence modification",
Physics of Fluids, vol. A5, pp. 1790-1801 (1993).

J28 Elghobashi, S. E., 'On Predicting Particle-Laden Turbulent Flows' ,
J. Applied Scientific Research, Vol. 52, 4, pp. 309-329 (1994).

J29 Truesdell, G.C., and Elghobashi, S. E." On the two-way interaction between homogeneous turbulence and dispersed solid particles ; Part 2 : particle dispersion",
Physics of Fluids, Vol. 6, pp. 1405-1407 (1994).

J30 Kim, I. , Elghobashi, S. E., and Sirignano, W. " Unsteady flow interactions between an advected cylindrical vortex tube and a spherical particle",
J. Fluid Mechanics, Vol. 288, pp. 123-155 (1995).

J31 Boratav, O. , Elghobashi, S. E., and Zhong, R. " On the alignment of the α -strain and vorticity in turbulent nonpremixed flames",
Physics of Fluids, Vol. 8, pp. 2251-2253 (1996).

J32 Kim, I. , Elghobashi, S. E., and Sirignano, W. " Unsteady flow interactions between a pair of advected vortex tubes and a rigid sphere",
International J. Multiphase Flow, Vol. 23, pp. 1-23 (1997).

J33 Druzhinin, O. and Elghobashi, S., ' DNS of bubble-laden turbulent flows using the two-fluid formulation',
Physics of Fluids, Vol. 10, pp. 685-697 (1998).

J34 Kim, I. , Elghobashi, S. E., and Sirignano, W. ' On the equation for spherical particle motion : effects of Reynolds and acceleration numbers',
J. Fluid Mechanics, Vol. 367, pp. 221-253 (1998).

J35 Boratav, O. , Elghobashi, S. E., and Zhong, R.' On the alignment of strain,

vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames',
Physics of Fluids, Vol. 10, pp. 2260-2267 (1998).

J36 Druzhinin, O. and Elghobashi, S., 'On the decay rate of isotropic turbulence laden with microparticles',
Physics of Fluids, Vol. 11, pp. 602-610 (1999).

J37 Druzhinin, O. and Elghobashi, S., ' A Lagrangian-Eulerian mapping solver for direct numerical simulation of a bubble-laden homogeneous turbulent shear flow using the two-fluid formulation ',
J. Computational Physics, Vol. 154, pp.174-196 (1999).

J38 Elghobashi, S. E., Zhong, R. and Boratav, O. ' Effects of gravity on turbulent nonpremixed flames',
Physics of Fluids, Vol. 11 , pp. 3123-3135 (1999).

J39 Zhong, R. , Elghobashi, S. E., Boratav, O. ' Surface topology of a buoyant turbulent nonpremixed flame',
Physics of Fluids, Vol. 12, pp. 2091-2100 (2000).

J40 Ahmed, A.M. and Elghobashi, S. E. On the mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles,
Physics of Fluids, Vol. 12, pp. 2906-2930 (2000).

J41 Druzhinin, O. and Elghobashi, S., ' Direct numerical simulation of a three-dimensional spatially-developing bubble-laden mixing layer with two-way coupling',
J. Fluid Mechanics, Vol. 429, pp. 23-61 (2001).

J42 Ahmed, A.M. and Elghobashi, S. E. Direct numerical simulation of particle dispersion in homogeneous turbulent shear flows ,
Physics of Fluids, Vol. 13, pp. 3346-3364 (2001).

J43 Ferrante, A. and Elghobashi, S. E. On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence ,
Physics of Fluids, Vol. 15, pp. 315-329 (2003).

J44 Ferrante, A. and Elghobashi, S. E., ' A robust method for generating inflow conditions for direct simulations of spatially-developing turbulent boundary layers',
J. Computational Physics, Vol. 198, pp. 372-387 (2004).

J45 Latz, M. I., Juhl, A. R., Ahmed, A.M., Elghobashi, S. and Rohr, J. ' Hydrodynamic stimulation of dinoflagellate bioluminescence: A computational and experimental study',
J. Experimental Biology, Vol. 207, pp. 1941-1951(2004).

J46 Ferrante, A. and Elghobashi, S. E., ' On the physical mechanisms of drag reduction in a spatially-developing turbulent boundary layer laden with microbubbles', **J. Fluid Mechanics**, Vol. 503, pp. 345-355. (2004).

J47 Ferrante, A. and Elghobashi, S. E., Adams P., Valenciano M. and Longmire D. ' Evolution of quasi-streamwise vortex tubes and wall-streaks in a microbubble-laden turbulent boundary layer over a flat plate', **Physics of Fluids**, Vol. 16(9), pp. S2 (2004).

J48 Ferrante, A. and Elghobashi, S. E., ' Reynolds number effect on drag reduction in a microbubble-laden spatially-developing turbulent boundary layer', **J. Fluid Mechanics**, Vol. 543, pp. 93-106 (2005).

J49 Ferrante, A. and Elghobashi, S. E., ' On the effects of microbubbles on the Taylor-Green vortex flow', **J. Fluid Mechanics**, Vol. 572 , pp. 145 - 177 (2007).

J50 Ferrante, A. and Elghobashi, S. E., ' On the accuracy of the two-fluid formulation in DNS of bubble-laden turbulent boundary layers', **Physics of Fluids**, Vol. 19, 045105, pp.1-8 (2007).

J51 L'vov, V.S., Pomyalov, A., Ferrante, A. and Elghobashi, S. E., ' Analytical model of the time Developing turbulent boundary layer', **J. Exp. Theor. Phys.**, Vol. 86, issue 2, pp. 111-116 (2007).

J52 Lucci, F., Ferrante, A. and Elghobashi, S. E., ' Modulation of isotropic turbulence by particles of Taylor-lengthscale size', **J. Fluid Mechanics**, Vol. 650, pp. 5-55 (2010).

J53 Lucci, F., Ferrante, A. and Elghobashi, S. ' Is Stokes number an appropriate indicator of turbulence modulation by large particles ?' **Physics of Fluids**, Vol. 23, pp. 25101-1-7 (2011).

J54 Cleckler, J., Elghobashi, S. and Liu, F. 'On the motion of inertial particles by sound waves' **Physics of Fluids**, Vol. 24, 033301 (2012).

J55 Lucci, F., L'Vov, V., Ferrante, A., Rosso, M. and Elghobashi, S. , ' Eulerian-Lagrangian bridge for the energy and dissipation spectra in isotropic turbulence ', **Theoretical and Computational Fluid Dynamics**, DOI: 10.1007/s00162-013-0310-5(2013).

J56 Wang, Y. and Elghobashi, S. , ' On locating the obstruction in the upper

airway via numerical simulation ',

J. Respiratory Physiology & Neurobiology, Vol. 193, pp.1-10 (2014).

J57 Mylavarapu, G., Wang, Y., Elghobashi, S. and Gutmark, E. 'PIV measurements and numerical simulations of the flow in a human upper airway phantom', **Biomechanics and Modeling in Mechanobiology**, submitted (2016).

Archival Conference Papers

C1 Elghobashi, S.E. and Pun, W.M., "A Theoretical and Experimental Study of Turbulent Diffusion Flames in Cylindrical Furnaces", **Proceedings of Fifteenth Symposium (International) on Combustion**, (1974).

C2 Elghobashi, S.E., Pratt, D.T., Spalding, D.B. and Srivatsa, S.K., "Unsteady Combustion of Fuel Spray in Jet Engine Afterburners", **Proceedings of Third International Symposium on Air Breathing Engines**, Munich (1976).

C3 Elghobashi, S.E. and Launder, B.E., "Modeling the Dissipation Rate of Scalar Fluctuations in a Thermal Mixing Layer", **Proceedings of Third Symposium on Turbulent Shear Flows**, (1981).

C4 Elghobashi, S.E. and Abou Arab, T.W., "A Second Order Turbulence Model for Two-Phase Flows", **Proceedings of Seventh International Heat Transfer Conference**, Munich (1982).

C5 Elghobashi, S.E. and Prud'homme, M., "On the Accuracy and Stability of Quadratic Upstream Differencing in Laminar Elliptic Flows", **Numerical Methods in Laminar and Turbulent Flow**, ed. Taylor, C., Johnson, J., and Smith, W., Pineridge Press, U.K., pp. 317-327 (1983).

C6 Mostafa A.A. and Elghobashi, S.E., "A Study of the Motion of Vaporizing Droplets in a Turbulent Flow", **Proceedings of Ninth International Colloquium and Dynamics of Explosions and Reactive Systems**, Poitiers, France, July (1983).

C7 Elghobashi, S.E., Abou Arab, T.W., Rizk, M. and Mostafa, A., "A Mathematical Model of the Turbulent Two-Phase Round Jet", **Proceedings of Fourth International Symposium on Turbulent Shear Flows**, Karlsruhe, Germany, Sept. (1983).

C8 Elghobashi, S.E., Rizk, M. and Mostafa, A., "A Mathematical Model of the Two-Phase Turbulent Axisymmetric Jet", **Proceedings of the Third Multi-Phase Flow and Heat Transfer Symposium**, Miami, Florida, April (1983).

C9 Prud'homme, M. and Elghobashi, S.E., "Prediction of Wall-Bounded Turbulent Flows with an Improved Version of a Reynolds-Stress Model", **Proceedings of Fourth International Symposium on Turbulent Shear Flows**, Karlsruhe, Germany, Sept. (1983).

C10 Elghobashi, S.E. and J.C. LaRue, "The Effect of Mechanical Strain on the Dissipation Rate of a Scalar Variance", **Proceedings of Fourth International Sym-**

posium on Turbulent Shear Flows, Karlsruhe, Germany, Sept. (1983).

C11 Rizk, M. and Elghobashi, S.E., "A Mathematical Model for a Turbulent Gas-Solid Suspension Flow in a Vertical Pipe", **Proceedings of Fifth International Symposium on Turbulent Shear Flows**, Cornell Univ., August (1985).

C12 Elghobashi, S.E., Gerz, T. and Schumann, U., "Direct Simulation of Turbulent Homogeneous Shear Flow with Buoyancy", **Proceedings of Fifth International Symposium on Turbulent Shear Flows**, Cornell Univ., August (1985).

C13 Elghobashi, S.E., Gerz, T. and Schumann, U., "Direct Simulation of the Initial Development and the Homogeneous Limit of the Thermal Mixing Layer", **Proceedings of Sixth International Symposium on Turbulent Shear Flows**, Toulouse, France, (1987).

C14 Elghobashi, S. E., and Nomura, K.N., "Direct Simulation of a Fast Chemical Reaction in a Homogeneous Turbulent Shear Flow", **Proceedings of Seventh Symposium on Turbulent Shear Flows**, Stanford, pp. 711-716 (1989).

C15 Elghobashi, S. E., and Truesdell, G.C., "Direct Simulation of Particle Dispersion in a Decaying Grid Turbulence", **Proceedings of Seventh Symposium on Turbulent Shear Flows**, Poster Session, Stanford (1989).

C16 Tsau, F. , Elghobashi, S. E., and Sirignano, W. " Effects of G- Jitter on a Thermal Buoyant Flow", Paper no 90-653, **AIAA 28th Aerospace Science Meeting**, Reno, Nevada, January (1990).

C17 Tsau, F. , Elghobashi, S. E.,and Sirignano, W. " Prediction of a Liquid Jet in a Gaseous Crossflow", Paper no 90-2067, **AIAA 26th Joint Propulsion Conference**, Orlando, Florida, July (1990).

C18 Nomura, K.N., and Elghobashi, S. E. "Direct Simulation of an Isothermal Nonpremixed Flame in a Homogeneous Turbulent Shear Flow", Paper no 90-148, **AIAA 28th Aerospace Science Meeting**, Reno, Nevada, January (1990).

C19 Kim, I. , Elghobashi, S. E., and Sirignano, W. " Three- dimensional droplet interactions in dense sprays", Paper no 91-0073, **AIAA 30th Aerospace Science Meeting**, Reno, Nevada, January (1991).

C20 Truesdell, G.C., and Elghobashi, S. E. "Direct numerical simulation of a particle-laden homogeneous turbulent flow ", **Proceedings of First ASME-JSME Fluids Engineering Conference**, Portland, Oregon, ASME-FED, Vol. 121, pp. 11-17, June

(1991).

C21 Elghobashi, S. E., and Truesdell, G.C., "On the interaction between solid particles and decaying turbulence ", **Proceedings of Eighth Symposium on Turbulent Shear Flows**, Munich, Germany , September (1991).

C22 Sirignano, W.A., Chiang, C.H., Kim, I. and Elghobashi, S. E. " Aerodynamic interactions amongst neighboring droplets", **4th International Symposium on Computational Fluid Dynamics**, Davis, Calif., September (1991).

C23 Kim, I. , Elghobashi, S. E., and Sirignano, W. " Three- dimensional flow computation for two interacting, moving droplets", Paper no 92-0343, **AIAA 30th Aerospace Science Meeting**, Reno, Nevada, January (1992).

C24 Nomura, K.N., and Elghobashi, S. E. " The structure of inhomogeneous turbulence in variable density nonpremixed flames", **Proceedings of IUTAM Symposium on Eddy Structure and Identification in Free Turbulent Shear Flows**, Poitiers, France, October (1992).

C25 Elghobashi, S. E. and Truesdell, G.C., " On the two-way interaction between homogeneous turbulence and dispersed solid particles", Papaer AIAA 93-1875, **AIAA /ASME 29th Joint Propulsion Conference**, Monterey, CA (1993).

C26 Elghobashi, S. E." On Predicting particle-laden turbulent flows ", **Proceedings of Seventh Workshop on Two-Phase Flows**, Erlangen, Germany, pp 211-219, April 11 (1994). [**Invited Lecture**]

C27 Elghobashi, S. E." Effects of the two-way coupling on particle dispersion ", **Proceedings of Seventh Workshop on Two-Phase Flows**, Erlangen, Germany, pp 224-230, April 13 (1994). [**Invited Lecture**]

C28 Kim, I. , Elghobashi, S. E., and Sirignano, W. " Unsteady flow interactions between a pair of advected cylindrical vortex tube and a rigid sphere", Paper no 95-0105, **AIAA 33th Aerospace Science Meeting**, Reno, Nevada, January (1995).

C29 Elghobashi, S. E., Lee, Y.Y. and Zhong, R. " Effects of gravity on sheared and nonsheared turbulent nonpremixed flame", **Third International Microgravity Combustion Workshop, NASA Lewis**", Cleveland, Ohio, April 11-13 (1995).

C30 Kim, I. , Elghobashi, S. E., and Sirignano, W. " " The motion of a spherical particle in unsteady flows at moderate Reynolds numbers", **AIAA, 34th Aerospace Sciences Meeting**, Reno, NV, January (1996).

C31 Elghobashi, S. "Direct simulation of dispersed dilute two-phase turbulent flows",

Part 1: Decaying Turbulence, **Proceedings of the 1996 Lecture series programme, Von Karman Institute for Fluid Dynamics**, Rhode-Saint-Genese, Belgium, January 29-February 2, 1996. [Invited Lecture]

C32 Elghobashi, S. "Direct simulation of dispersed dilute two-phase turbulent flows", Part 2 : Homogeneous shear, **Proceedings of the 1996 Lecture series programme, Von Karman Institute for Fluid Dynamics**, Rhode-Saint-Genese, Belgium, January 29-February 2, 1996. [Invited Lecture]

C33 Elghobashi, S. and Lasheras, J. " Effects of gravity on sheared turbulence laden with bubbles or droplets", **Third Microgravity Fluid Physics Conference, NASA Lewis**, Cleveland, OH, June 13-15, 1996.

C34 Elghobashi, S., Boratav, O. and Zhong, R. " Effects of gravity on sheared and nonsheared turbulent nonpremixed flames", **Fourth International Microgravity Combustion Conference, NASA Lewis**, Cleveland, OH, May 19-21, 1997.

C35 Elghobashi, S. and Ahmed, A.M. ' DNS of turbulent homogeneous shear flow laden with particles: Two-way coupling', **Japan Society of Mechanical Engineers, Centennial Grand Congress**, Tokyo, Japan, July 18-19, 1997. [Invited Lecture]

C36 Druzhinin, O. and Elghobashi, S. 'DNS of bubble-laden turbulent flows using a two-fluid formulation', **Third International Conference on Multiphase Flow**, Lyon, France, June 8-12, 1998.

C37 Elghobashi, S. and Lasheras, J. 'Effects of gravity on sheared turbulence laden with bubbles or droplets' **Fourth Microgravity Fluid Physics and Transport Phenomena Conference**, NASA-Lewis, Cleveland, Ohio, August 12-14, 1998.

C38 Elghobashi, S. and Zhong, R. 'Effects of gravity on sheared turbulent non-premixed flames' **Fifth International Microgravity Combustion Conference**, NASA-Lewis, Cleveland, Ohio, May 18-20, 1999.

C39 Elghobashi, S. " On the two-fluid and trajectory approaches for DNS of turbulent particle-laden flows", Part 1: DNS of bubble-laden flows via the two-fluid approach, **Proceedings of the 2000 Lecture series programme, Von Karman Institute for Fluid Dynamics**, Rhode-Saint-Genese, Belgium, April 3-7, 2000. [Invited Lecture]

C40 Elghobashi, S. " On the two-fluid and trajectory approaches for DNS of turbulent particle-laden flows", Part 2: On the approximation of the two-way coupling terms in the trajectory approach, **Proceedings of the 2000 Lecture series programme, Von Karman Institute for Fluid Dynamics**, Rhode-Saint-Genese, Belgium, April 3-7, 2000. [Invited Lecture]

C41 Ferrante, A. and Elghobashi, S. 'Effects of Reynolds number on drag reduction in a microbubble-laden spatially-developing turbulent boundary layer' **Second International Symposium on Seawater Drag Reduction**, Busan, Korea, May 23-26, 2005.

C42 Ferrante, A. and Elghobashi, S. 'On the accuracy of the two-fluid formulation in DNS of a microbubble-laden turbulent boundary layer' **26th Symposium on Naval Hydrodynamics**, Rome, Italy, 17-22 September 2006.

C43 Ferrante, A. and Elghobashi, S. 'On the effects of finite-size particles on decaying isotropic turbulence' **International Conference on Multiphase Flow, ICMF 2007**, Leipzig, Germany, July 9 – 13, 2007.

C44 Lucci, F., Ferrante, A. and Elghobashi, S. 'Turbulence modulation by particles of the Taylor-lengthscale size: is Stokes number an appropriate indicator ?' **International Conference on Multiphase Flow, ICMF 2010**, Tampa, Florida, May 30- June 4, 2010.

Abstracts of Papers Presented at Conferences

A1 Mostafa A.A. and Elghobashi, S.E., "Prediction of a Turbulent Round Gaseous Jet Laden with Vaporizing Droplets", Western States/The Combustion Institute, UCLA, October (1983).

A2 Bellan J. and Elghobashi, S.E., "Impact of Fuel Composition on Deposits and on High-Temperature Corrosion in Industrial Furnaces", Western States Meeting, The Combustion Institute, UCLA, October (1983).

A3 Rizk, M. and Elghobashi, S.E., "Turbulent Fluid and Particle Interaction Near a Plane Wall", **Bull. Am. Phys. Soc.**, Vol. 28, pp. 1378 (1983).

A4 Rizk, M. and Elghobashi, S.E., "The Motion of a Spherical Particle Suspended in a Turbulent Flow Near a Plane Wall", **Proceedings of International Symposium on Two-Phase Annular and Dispersed Flows**, Pisa, Italy, June (1984).

A5 Elghobashi, S. E., and Truesdell, G.C., "Direct Simulation of Particle Dispersion in a Homogeneous Turbulent Shear Flow", Paper no. 73 f ,**AIChE Annual Meeting**, San Francisco, November (1989).

A6 Elghobashi, S. E. "Direct numerical simulation and modelling of particle-laden turbulent flows", **Shell Conference on Computational Fluid Dynamics** , Apeldoorn, The Netherlands, December 11,1989.

A7 Elghobashi, S. E., and Truesdell, G.C., "Direct Simulation of Particle Dispersion in Grid Turbulence and Homogeneous Shear Flows", **Bull. Am. Phys. Soc.**, Vol. 34, pp. 2311 (1989).

A8 Elghobashi, S. E., and Truesdell, G.C., "Direct Numerical Simulation of Particle-Laden Decaying Isotropic Turbulence", **21st Annual Meeting of The Fine Particle Society**, San Diego, Calif., August (1990).

A9 Kim, I. , Elghobashi, S. E., and Sirignano, W. " Three- dimensional flow interactions between two neighboring spheres", **Bull. Am. Phys. Soc.**, Vol. 36, pp. 2622 (1991).

A10 Elghobashi, S. E., and Truesdell, G.C., " On the modification of the energy spectrum of homogeneous turbulence by dispersed solid particles ", **Proceedings of Sixth Workshop on Two-Phase Flows**, Erlangen, Germany, pp 211-219, March 30 (1992). [Invited Lecture]

A11 Elghobashi, S. E., " On predicting particle-laden turbulent flows", **Workshop**

on turbulence in particulate multiphase flow, Fluid Dynamics Laboratory, Battelle Pacific Northwest Laboratory, Richland, WA, March 22, 1993. [**Invited Lecture**]

A12 Elghobashi, S. E., " Direct numerical simulation of particle dispersion and turbulence modulation in homogeneous turbulence", **NATO Advanced Research Workshop on Chaotic Advection, Tracer Dynamics, and Turbulent Dispersion**, Alessandria, Italy, May 24-28, 1993. [**Invited Lecture**]

A13

Elghobashi, S. E." One of the unresolved questions in predicting particle-laden turbulent flows ", **International Symposium on Numerical Methods for Multiphase Flows**, Lake Tahoe, NV, June 19-24 (1994). [**Invited Lecture**]

A14 Elghobashi, S. E." Mathematical models of particle-laden turbulent flows ", **Proceedings of 2nd International Workshop on Mathematical Modeling of Turbulent Flows, Tokyo**, Japan, July 29 (1994). [**Invited Lecture**]

A15 Elghobashi, S. E." Direct numerical simulation of particle-laden homogeneous turbulence ", **Proceedings of 2nd International Workshop on Mathematical Modeling of Turbulent Flows, Tokyo**, Japan, July 30 (1994). [**Invited Lecture**]

A16 Nomura, K.N., and Elghobashi, S. E. "Interaction of chemical energy release and small-scale turbulence in a nonpremixed reacting flow", **47th Annual Meeting of the American Physical Society**, Div. of Fluid Dynamics, Atlanta, GA, (1994).

A17 Elghobashi, S. E." DNS of bubble dispersion in homogeneous turbulent shear flows ", **ONR bubbly flow workshop**, UC San Diego, February 23-24 (1995).

A18 Elghobashi, S. E. "Direct simulation of particle dispersion in a homogeneous turbulent shear flow", Presented at the **Annual ASME/JSME Fluids Engineering Conference**, Hilton Head, S.C., August 13-18, (1995). [Invited lecture]

A19 Elghobashi, S., Boratav, O. and Zhong, R. 'Buoyancy effects on the structure of turbulence in nonpremixed flames', **48th Annual Meeting of American Physical Society**, Div. Fluid Dynamics, Irvine, CA, November 1995.

A20 Elghobashi, S. and Ahmed, A. " Bubble dispersion and turbulence modification in a homogeneous shear flow", **ONR workshop on Bubbly Flows**, UCSD, La Jolla, February 22-23, 1996.

A21 Elghobashi, S., Boratav, O. and Zhong, R. "Effects of buoyancy on turbulent nonpremixed flames', Presented at the **'International Conference on Turbulent Heat Transfer'**, San Diego, CA, March 10-15, 1996. [Invited lecture]

A22 Boratav, O. Elghobashi, S. and Zhong, R. 'Buoyancy effects on the struc-

ture of turbulence in nonpremixed flames', **SIAM - 6th International Conference on Numerical Combustion**, New Orleans, March 4-6, 1996.

A23 Elghobashi, S. and Ahmed, A. "On the two-way interactions between a turbulent homogeneous shear flow and dispersed particles", **Eighth Workshop on Turbulent Two-Phase Flows**, Merseburg, Germany, March 25-29, 1996. [Invited lecture]

A24 Elghobashi, S. " How do particles modify the turbulence energy of homogeneous shear flows?", **ASME Fluids Engineering Conference**, San Diego, CA, July 8-11, 1996. [Invited Lecture]

A25 Elghobashi, S. and Ahmed, A. " How do particles modify the turbulence energy of homogeneous shear flows?", **49th Annual Meeting of American Physical Society**, Div. Fluid Dynamics, Syracuse, NY, November 1996.

A26 Elghobashi, S., Zhong, R. and Boratav, O. " Evolution of flame surface in buoyant and nonbuoyant turbulent nonpremixed reactions", **49th Annual Meeting of American Physical Society**, Div. Fluid Dynamics, Syracuse, NY, November 1996.

A27 Latz, M., Juhl, A., Elghobashi, S., Ahmed, A. and Rohr, J. "Response of dinoflagellates in well-characterized laminar and turbulent flows: differentiating the effect of shear and acceleration", **Annual meeting of the American Society of Limnology and Oceanography (ASLO)**, Santa Fe, New Mexico, February 1997.

A28 Druzhinin, O. and Elghobashi, S. " A closure model for bubble-laden turbulent flows" **ONR workshop on Dynamics of Bubbly Flows, UCSD, February 19-21, 1997**.

A29 Elghobashi, S. " Modification of a homogeneous turbulent shear flow by dispersed particles" **Workshop on Turbulence Transport and Numerical Modeling, Center for Nonlinear Studies**, Los Alamos National Laboratory, June 3-7, 1997. [Invited Lecture]

A30 Elghobashi, S. and Druzhinin, O. " DNS of bubble-laden turbulent flows using the two-fluid formulation" **50th Annual Meeting of American Physical Society**, Div. Fluid Dynamics, San Francisco, CA, November 1997.

A31 Boratav, O., Elghobashi, S. and Zhong, R. " Persistence of strain in buoyant and nonbuoyant turbulent nonpremixed flames" **50th Annual Meeting of American Physical Society**, Div. Fluid Dynamics, San Francisco, CA, November 1997.

A32 Elghobashi, S. and Druzhinin, O. " DNS of bubble-laden turbulent flows using the two-fluid formulation" **ONR workshop on Dynamics of Bubbly Flows**, Caltech, February 25-27, 1998.

A33 Druzhinin, O. and Elghobashi, S. " A Lagrangian-Eulerian mapping solver for DNS of a bubble-laden homogeneous turbulent shear flow using the two-fluid formulation" **51st Annual Meeting of American Physical Society, Div. Fluid Dynamics, Philadelphia, PA**, November 22-24, 1998. Published in **Bulletin of APS, Vo. 43, 1965-2144, 1998**.

A34 Druzhinin, O. and Elghobashi, S. " A bubble-laden turbulent mixing layer: DNS and Closure model" **ONR workshop on Dynamics of Bubbly Flows**, UCSD, February 24-26, 1999.

A35 Druzhinin, O. and Elghobashi, S. " On the point-force approximation in DNS of particle-laden flows with two-way coupling " **51st Annual Meeting of American Physical Society, Div. Fluid Dynamics, New Orleans, LA** November 21-23, 1999. Published in **Bulletin of APS, Vol. 44, 15-194, 1999**

A36 Druzhinin, O. and Elghobashi, S. " DNS and Closure model for a bubble-laden turbulent mixing layer:" **ONR workshop on Dynamics of Bubbly Flows**, CALTECH, March 1-3, 2000. *

A37 Druzhinin, O. and Elghobashi, S. " On the point-force approximation in DNS of particle-laden turbulent flows with two-way coupling", ERCOFTAC Conference on Dynamics of Particle-Laden Flows, Zurich, Switzerland, July 3-5, 2000.

A38 Elghobashi, S. " Recent Advance in DNS of Particle-Laden Turbulent Flows" [Invited Plenary lecture], **XI Congres on Numerical Methods and their Applications, ENIEF 2000**, San Carlos de Bariloche, Argentina, November 2000.

A39 Druzhinin, O. and Elghobashi, S. " The properties of a spatially-developing bubble-laden mixing layer with two-way coupling" **53rd Annual Meeting of American Physical Society**, Div. Fluid Dynamics, Washington D.C., November 2000.

A40 Ahmed, A. and Elghobashi, S. " On the physical mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles " **53rd Annual Meeting of American Physical Society**, Div. Fluid Dynamics, Washington D.C., November 2000.

A41 Elghobashi, S. E." DNS of bubble-laden turbulent shear flows ", **ONR bubbly flow workshop**, CALTECH, Pasadena, April 17-19, 2001.

A42 Druzhinin, O. and Elghobashi, S. 'Direct numerical simulation of a three-dimensional spatially-developing bubble-laden mixing layer with two-way coupling', **4th International Conference on Multiphase Flow-ICMF 2001**, New Orleans, May 26-31, 2001.

A43 Elghobashi, S. "The physical mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles", **Euromech Colloquium 421: Strongly-Coupled Dispersed Two-Phase Flows**, LEGI, Grenoble, France, September 10-12, 2001.

A44 Elghobashi, S. "The physical mechanisms of modifying the structure of turbulent homogeneous flows by dispersed particles", **[Invited Plenary Lecture], ERCOFTAC Conference on Small Particles in Turbulence**, Seville, Spain, March 11-13, 2002.

A45 Elghobashi, S. and Ferrante, A. "DNS of bubble-laden spatially-developing turbulent boundary layer with one-way coupling" **ONR workshop on Dynamics of Bubbly Flows**, UCSD, La Jolla, Calif., April 3-4, 2002.

A46 Ferrante, A. and Elghobashi, S. "Dispersion of bubbles in a spatially-developing turbulent boundary layer" **55th Annual Meeting of American Physical Society**, Div. Fluid Dynamics, Dallas, Texas, November 2002.

A47 Elghobashi, S. and Ferrante, A. "DNS of bubble-laden spatially-developing turbulent boundary layer with two-way coupling" **ONR workshop on Waves and Dynamics of Bubbly Flows**, Caltech, Pasadena, Calif., February 19-20, 2003.

A48 Elghobashi, S. and Ferrante, A. "DNS of bubble-laden spatially-developing turbulent boundary layer" **5th Euromech Fluid Mechanics Conference**, Toulouse, France, August 24-28, 2003.

A49 Ferrante, A. and Elghobashi, S. "Drag reduction in a spatially-developing turbulent boundary layer laden with microbubbles," **ERCOFTAC Multiphase Flow Conference, ETH, Zurich, Switzerland**, November, 2003.

A50 Elghobashi, S. and Ferrante, A. "Drag reduction in a bubble-laden spatially-developing turbulent boundary layer over a flat plate", **56th Annual Meeting of American Physical Society**, Div. Fluid Dynamics, East Rutherford, New Jersey, November 2003. Published in **Bulletin of APS, Vol. 48, p.116, 2003**.

A51 Ferrante, A. and Elghobashi, S. "A method for generating inflow conditions for direct simulations of spatially-developing turbulent boundary layers" **56th Annual Meeting of American Physical Society**, Div. Fluid Dynamics, East Rutherford, New Jersey, November 2003. Published in **Bulletin of APS, Vol. 48, p.119, 2003**.

A52 Elghobashi, S. and Ferrante, A. "The physical mechanisms of drag reduction in a microbubble-laden turbulent boundary layer with one-way coupling" **ONR workshop on Dynamics of Bubbly Flows**, UCSD, La Jolla, Calif., March 24-25, 2004.

A53 Elghobashi, S. "On the physical mechanisms of drag reduction in a mirobubble-laden turbulent boundary layer" **Keynote Lecture at The 5th International Conference of Multiphase Flow (ICMF 2004)**, Yokohama, Japan, May 31 - June 3, 2004.

A54 Elghobashi, S. "On the drag reduction in a mirobubble-laden spatially-developing turbulent boundary layer", IUTAM Symposium on Recent advances in disperse multiphase flow simulation- **[Invited Lecture]**- Chicago-October 2004.

A55 Ferrante, A. and Elghobashi, S. "Effects of bubble diameter on drag reduction in a spatially developing turbulent boundary layer over a flat plate", **57th Annual Meeting of American Physical Society**, Div. Fluid Dynamics, Seattle, Washington, November 2004. Published in **Bulletin of APS, Vol. 49, p.129, 2004**.

A56 Elghobashi, S. "On the drag reduction in a mirobubble-laden spatially-developing turbulent boundary layer", **ONR workshop on Dynamics of Bubbly Flows**, Reston, VA, April 4-5, 2005.

A57 Elghobashi, S. "Reynolds number effect on drag reduction in a microbubble-laden spatially-developing turb. boundary layer", **Euromech Conference on Hydrodynamics of bubbly flows- [Invited Lecture]**- Lorentz Center, Leiden, the Netherlands, June 6-8, 2005.

A58 Elghobashi, S. "On drag reduction in a microbubble-laden spatially-developing turbulent boundary layer", **European Science Foundation- Challenging Turbulent Lagrangian Dynamics, [Invited Lecture]**- Castel Gandolfo, Italy, Sept. 1-4, 2005.

A59 Elghobashi, S. "On drag reduction in a microbubble-laden spatially-developing turbulent boundary layer", **Thirteen IUTAM Advanced School & Workshop, Particle Dispersion in Turbulent Flows, [Invited Lecture I]**- CISM, Udine, Italy, September 12-16, 2005.

A60 Elghobashi, S. "Reynolds number effect on drag reduction in a microbubble-laden spatially-developing turb. boundary layer", **Thirteen IUTAM Advanced School & Workshop, Particle Dispersion in Turbulent Flows, [Invited Lecture II]**- CISM, Udine, Italy, September 12-16, 2005.

A61 Ferrante, A. and Elghobashi, S. "Effects of microbubbles on the Taylor-Green vortex flow" , **58th Annual Meeting of American Physical Society**, Div. Fluid Dynamics, Chicago, IL, November 2005. Published in **Bulletin of APS, Vol. 50, p.130, 2005**.

A62 Elghobashi, S. and Ferrante, A. "Reynolds number effect on drag reduction

in a microbubble-laden spatially-developing turbulent boundary layer ” , **58th Annual Meeting of American Physical Society, Div. Fluid Dynamics**,Chicago, IL, November 2005. Published in **Bulletin of APS, Vol. 50, p.132, 2005**.

A63 Elghobashi, S. “ On the accuracy of the two- fluid formulation in DNS of a microbubble-laden turbulent boundary layer”, **ONR 2006 Ship Wave-breaking and Bubble Wake Review**, Caltech, Pasadena, CA, March 29-30, 2006.

A64 Ferrante, A. and Elghobashi, S. “ On the accuracy of the two-fluid formulation in DNS of bubble-laden turbulent boundary layers” , **59th Annual Meeting of American Physical Society, Div. Fluid Dynamics**, Tampa, FL, November 2006. Published in **Bulletin of APS, Vol. 51, 2006**.

A65 Elghobashi, S. “ DNS of the two-way interactions between dispersed solid particles and turbulent flows”, **Workshop on multiphase turbulence: Dust storms, erosion, hurricanes and tornadoes, [Invited Lecture]**, Xian, **China**, July 16-18, 2007.

A66 Ferrante, A. and Elghobashi, S. “ Fully resolved DNS of freely moving finite-size particles in decaying isotropic turbulence” , **60th Annual Meeting of American Physical Society, Div. Fluid Dynamics**, Salt Lake City, UT, November 2007. Published in **Bulletin of APS, Vol. 52, 2007**.

A67 Cleckler,J., Liu, F. and Elghobashi, S. “ Aerosol particle motion induced by non-linear sound waves” , **61th Annual Meeting of American Physical Society, Div. Fluid Dynamics**, San Antonio, Texas, November 2008. Published in **Bulletin of APS, Vol. 53, 2008**.

A68 Elghobashi, S. “On the two-way interactions between dispersed solid particles and turbulent flows”, **European Workshop on Direct and Large-Eddy Simulation, Keynote Lecture**, Trieste, **Italy**, Sept. 8-10, 2008.

A69 Lucci, F., Ferrante, A. and Elghobashi, S. “ DNS of fully resolved spherical particles dispersed in isotropic turbulence ” , **61th Annual Meeting of American Physical Society, Div. Fluid Dynamics**, San Antonio, Texas, November 2008. Published in **Bulletin of APS, Vol. 53, 2008**.

A70 Elghobashi, S. “ On the two-way interactions between dispersed particles and turbulent flows ”,[**Invited Lecture**], **March 2009 Meeting of American Physical Society** Pittsburgh, PA . Published in **Bulletin of APS, Vol. 54, 209, March 18, 2009**.

A71 Elghobashi, S. “ The physical mechanisms of two-way interactions between dispersed particles and turbulent flows”, **Workshop on Clouds and Turbulence Institute for Mathematical Sciences**, Imperial College, [**Invited Lecture**], London, **England**,

March 23-25, 2009.

A72 Elghobashi, S. "How do inertial particles modify isotropic turbulence?" **International Workshop- Solving the Riddle of Turbulence: What, Why, and How?** Max Planck Institute for Dynamics and Self-Organization, [Invited Lecture], Göttingen, Germany, May 6-9, 2009.

A73 Elghobashi, S. "How do inertial particles modify isotropic turbulence?" **International Symposium on Turbulence**, [Invited Lecture], Peking University, Beijing, China, Sept. 21-25, 2009.

A74 Lucci, F., Ferrante, A. and Elghobashi, S. "On the effects of Taylor-lengthscale size particles on isotropic turbulence", **62nd Annual Meeting of American Physical Society, Div. Fluid Dynamics**, Minneapolis, Minnesota. Published in Bulletin of APS, Vol. 54, No. 19, p. 159, November 20-23, 2009.

A75 Lucci, F., Ferrante, A. and Elghobashi, S. "Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size?", **63nd Annual Meeting of American Physical Society, Div. Fluid Dynamics**, Long Beach, California. Published in Bulletin of APS, Vol. 55, No. 16, p. 150, November 20-23, 2010.

A76 Cleckler, J., Liu, F. and Elghobashi, S. "Numerical simulation of particle dispersion in an acoustic field", **63nd Annual Meeting of American Physical Society, Div. Fluid Dynamics**, Long Beach, California. Published in Bulletin of APS, Vol. 55, No. 16, p. 319, November 23, 2010.

A77 Lucci, F., L'Vov, V., Ferrante, A. and Elghobashi, S. "On the Lagrangian Power Spectrum of Turbulence Energy in Isotropic Turbulence", **64th Annual Meeting of American Physical Society, Div. Fluid Dynamics**, Baltimore, MD , Published in Bulletin of APS, Vol. 56, No. 18, p. 80, November 20-22, 2011.

A78 Wang, Y. and Elghobashi, S. "Direct numerical simulation of the flow in the pediatric upper airway", **34th Annual Int. Conf. of the IEEE Engineering in Medicine & Biology (EMB) Society**, San Diego, CA, August 28-September 1, 2012.

A79 Wang, Y. and Elghobashi, S. "Direct numerical simulation of the flow in the human upper airway", **65th Annual Meeting of American Physical Society, Div. Fluid Dynamics**, San Diego, CA , Published in Bulletin of APS, Vol. 57, No. 17, p. 333, November 18-20, 2012.

A80 Wang, Y. and Elghobashi, S. "On locating the obstruction in the human upper airway, Direct numerical simulation", **66th Annual Meeting of American Physical Society, Div. Fluid Dynamics**, Pittsburgh, PA, November 24-26, 2013.

A81 Y. Wang, L. Oren, E. Gutmark a and S. Elghobashi, “ DNS and PIV measurements of the flow in a model of the human upper airway”, **67th Annual Meeting of American Physical Society, Div. Fluid Dynamics**, San Francisco, CA, November 23-25, 2014.

Technical Reports

Yeh, G.C.K. and Elghobashi, S.E., "A Two-Equation Turbulence Model for a Dispersed Two-Phase Flow with Variable Density Fluid and Constant Density Particles", Defense Nuclear Agency Report DNA-TR-86-42, 1986.

Elghobashi, S.E. and Rizk, M.A., "The Effect of Solid Particles on the Turbulent Flow of a Round Gaseous Jet: A Mathematical and Experimental Study", DOE/PC,30303-5, December (1983).

Wassel, A.T., Elghobashi, S.E., and Wenger, R.S., "Analysis of the Sea Water Systems of Ocean Thermal Energy Conversion Pilot Plants", SAI Report No. 82R-018-LA, October (1982).

Bellan, J. and Elghobashi, S.E., "Present and Projected Status of Computer Modeling in Furnace and Boiler Technology", US DOE, Jet Propulsion Lab. Report, Nov. (1982).

Elghobashi, S.E., Lockwood, F.C. and Naguib, A.S., "The Calculation of Combustion Processes", Imperial College Mech. Engr. Dept., HTS/74/8, (1974).

Elghobashi, S.E., Pun, W.M., "A Theoretical and Experimental Study of Turbulent Diffusion Flames in Cylindrical Chambers", Imperial College, Mech. Engr. Dept., HTS/74/3, (1974).

Elghobashi, S.E., "Concentration Fluctuations in Isothermal Turbulent Confined Jets", Imperial College, Mech. Engr., HTS/75/23, (1975).

Elghobashi, S.E., "Prediction of the Three Dimensional Flow and Radiation Heat Transfer Inside a Cylindrical Glass Furnace", for Corning, (1977).

Elghobashi, S.E., "Prediction of the Three Dimensional Flow Inside a Liquid- Metal Fast-Breeder Reactor Steam Generator", for Westinghouse, (1978).

Elghobashi, S.E., "Prediction of the Flow and the Concentration of *CO* and *NO_x* inside a Burning Cigarette", for Philip Morris, (1977).

Elghobashi, S.E., "Prediction of the Flow Around the Earth and the Influence of Temperature Gradients on Both Hemispheres", for NASA Marshall, (1977).

Elghobashi, S.E., "Prediction of the Flow Inside a Crystal-Growth Device at Near-Zero Gravity", for NASA Marshall, (1978).

Elghobashi, S.E., "Prediction of the Effects of Low Gravity and Heat Transfer on the Trajectories of Blood Cells in an Electrophoresis Chamber", for NASA Marshall, (1978).

Elghobashi, S.E., "Prediction of the Flow and Electrical Properties of a Rocket Exhaust Plume", for US Air Force, (1978).

Elghobashi, S.E., Spalding, D.B. and Thyagraja, A., "Prediction of Three Dimensional Supersonic Flow of a Conical Body Interacting with a Plane Blast Wave", prepared for Ballistic Missile Defense Advance Technology Center, Huntsville, (1976).

Elghobashi, S.E., "Prediction of Transient Flow and Heat Transfer in 155 MM Gun Barrel and its Exhauster", prepared for Rheinmetall, West Germany (1976).

Elghobashi, S.E., "Prediction of Three Dimensional flow and Chemical Reaction in a Can Combustor with Fuel Spray", prepared for Airesearch Co. of Arizona (1976).

Elghobashi, S.E., Spalding, D.B. and Srivatsa, S.K. "Prediction of Three Dimensional Flow in a Hall-Cell Aluminum Smelter", prepared for ALCOA (1975).

Elghobashi, S.E., Moult, A. and Spalding, D.B., "Prediction of Compressible Flow in the Combustion Chamber of a Solid-Propellant Rocket" prepared for Societe National des Poudres et Explosifs, France (1975).

Elghobashi, S., Rosten, H. and Spalding, D.B., "Effects of gravity on Methane-air combustion", **NASA-CR 2671**, (1974).

Elghobashi, S., Pratt, D.T., Runchal, A.K., Spalding, D.B. and Srivatsa, S.K. "Unsteady combustion of fuel spray in jet engine afterburners, The CID4 computer program," CHAM 551/1, (1975).

Elghobashi, S., Spalding, D.B. and Srivatsa, S.K., "Prediction of hydrodynamics and chemistry of confined turbulent methane-air flames with attention to formation of oxides of nitrogen," **NASA CR-135179**, (1977).

Elghobashi, S. and Spalding, D.B., "Equilibrium chemical reaction of supersonic hydrogen-air jets (The ALMA computer program)", **NASA CR-2725**, (1977).

Invited Research Presentations (1983- Present)

“How do dispersed inertial particles modify turbulent flows ?” **École Polytechnique**, The Hydrodynamics Laboratory (LadHyX), **Palaiseau, France**, June 14, 2013.

“How do dispersed inertial particles modify turbulent flows ?” **University of California, San Diego**, Mechanical and Aerospace Engineering Dept., June 3, 2013.

“Direct numerical simulation of the flow in the upper airway via lattice Boltzmann method” **National Institute of Health**, Bethesda, MD, April 29, 2013.

“On the physical mechanisms of drag reduction in a spatially-developing turbulent boundary layer laden with microbubbles ” **École Normal Supérieur, Paris, France**, March 17, 2011.

“Direct numerical simulation of the flow in the upper airway via lattice Boltzmann method” **National Institute of Health**, Bethesda, MD, Feb. 24, 2011.

“Turbulence modulation by dispersed inertial particles” Mech. Eng. Dept., **Univ. of California, Berkeley**, February 11, 2011.

“ On the two-way interactions between dispersed particles and turbulent flows” **School of Engineering and Mathematical Sciences, City University, London, England**, March 26, 2009.

“On the effects of finite-size solid particles on decaying isotropic turbulence”, **Institut de Mècanique des Fluides de Toulouse, IMFT, Toulouse, France**, June 28, 2007.

“On the physical mechanisms of drag reduction in a spatially-developing turbulent boundary layer laden with microbubbles ” **École Polytechnique**, The Hydrodynamics Laboratory (LadHyX), **Palaiseau, France**, June 26, 2007.

“Turbulence modification in flows laden with particles or bubbles” **The Johns Hopkins University**, Mechanical Engineering Department, February 15, 2007.

“ Direct simulation of turbulent flows laden with particles or bubbles”, **Invited Lecture, CIEMAT : Research Centre for Energy, Environment and Technology, Madrid, Spain**, June 21, 2006.

”On drag reduction in a spatially-developing turbulent boundary layer laden with microbubbles”, **Department of Mechanics and Aeronautics, University of Rome ”La Sapienza”, Rome,, Italy**, September 5, 2005.

“On the drag reduction in a mirobubble-laden spatially-developing turbulent boundary

layer,” **School of Mechanical and Aerospace Engineering, Center for Turbulence and Flow Control Research, Seoul National University, Seoul, South Korea**, May 27, 2005.

“On the physical mechanisms of drag reduction in a mirobubble-laden turbulent boundary layer”, **Department of Mechanical Engineering, University of Tokyo, Japan, June 7, 2004.**

“On the physical mechanisms of drag reduction in a spatially-developing turbulent boundary layer laden with microbubbles”, **Mech. Eng. Dept., Univ. California, Santa Barbara, California**, February 14, 2004.

“Recent advances in DNS of particle-laden turbulent flows ”, **Institute for Scientific Computing Research, Lawrence Livermore Research Laboratory, Livermore, California** , August 7, 2003.

“DNS of turbulent flows laden with particles ”, **Institute for Scientific Computing Research, Lawrence Livermore Research Laboratory, Livermore, California** , March 27, 2003.

“ On the physical mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles”, **Mechanical Engineering Dept., Stanford University, Stanford, California**, October 30, 2001.

“Recent Advances in DNS of Turbulent Flows Laden with Particles, Droplets or Bubbles”, **Universite Pierre et Marie Curie, Paris, France**, September 19, 2001.

“Recent advances in direct numerical simulations (DNS) of turbulent shear flows laden with particles ”, **Institute for Scientific Computing Research, Lawrence Livermore Research Laboratory, Livermore, California** , May 4, 2001.

“Recent Advances in DNS of Turbulent Flows Laden with Particles, Droplets or Bubbles”, **The Aerospace Corporation, Los Angeles, California**, April 17, 2001.

“Recent advances in direct numerical simulations (DNS) of turbulent shear flows laden with particles ”, **Institute for Scientific Computing Research, Lawrence Livermore Research Laboratory, Livermore, California** , May 4, 2001.

” On the physical mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles ”, **ETH, Zürich, Switzerland**, October 4, 2000.

” Recent advances in direct numerical simulations (DNS) of turbulent shear flows laden with particles ”, **Paul Scherer Institute, Villigen, Switzerland**, October 3, 2000.

” Recent advances in direct numerical simulations (DNS) of turbulent shear flows laden with particles and bubbles”, **Mechanical Engineering Department, Imperial College, London**, April 6, 2000.

” Recent advances in direct numerical simulations (DNS) of turbulent shear flows laden with particles and bubbles”, **Mechanical and Aerospace Engineering Department, Univ. California, San Diego**, March 15, 2000.

” Direct numerical simulation of particle-laden flows: the trajectory and two-fluid approaches”, **Dept. of Mechanical Engineering, Univ. of Illinois, Urbana-Champaign**, November 9, 1999.

” Evolution of flame surface in buoyant and nonbuoyant turbulent nonpremixed reactions”, **Graduate Aeronautical Laboratories, California Institute of Technology**, January 16, 1998.

” How do particles modify the turbulence energy in a homogeneous shear flow ?”, **Department of Chemical Engineering, Univ. of California, Santa Barbara**, April 16, 1997.

” Direct numerical simulation of particle-laden homogeneous turbulent shear flows”, **CEA : Atomic Energy Commision - Military Applications Division**, Bordeaux, France, April 2, 1997.

” Mathematical models of particle-laden flows”, **CEA : Atomic Energy Commision - Military Applications Division**, Bordeaux, France, April 2, 1997.

” DNS of surface topology of turbulent nonpremixed flames ”, **CEA : Atomic Energy Commision - Military Applications Division**, Bordeaux, France, April 2, 1997.

”Effects of buoyancy on turbulent diffusion flames”, Dept. of Mechanical Engineering, **Yale University**, June 10, 1996.

”Particle dispersion and turbulence modification in a homogeneous shear flow”, Dept. of Mechanical Engineering, **California Institute of Technology**, April 23, 1996.

” Particle dispersion and turbulence modulation in a homogeneous shear flow”, Aerospace Engineering Dept., **University of Southern California**, October 4, (1995).

” DNS of particle dispersion in homogeneous shear turbulence” **Institut de Mecanique des Fluides de Toulouse, Toulouse, France**, September 12, (1995).

” DNS of a turbulent diffusion flame under different gravity conditions” **Institut de Mecanique des Fluides de Toulouse, Toulouse, France**, September 12, (1995).

” DNS of particle dispersion in homogeneous shear turbulence” **Technical University of Delft, Delft, Netherlands**, September 7, (1995).

” DNS of a turbulent diffusion flame under different gravity conditions” **Technical University of Delft, Delft, Netherlands**, September 7, (1995).

” On the two-way interaction between homogeneous turbulence and dispersed solid particles”, **Naval Command, Control and Ocean Surveillance Center, San Diego, CA**, Oct. 19, 1993.

” On the two-way interaction between homogeneous turbulence and dispersed solid particles”, **Arizona State University, Tempe, Arizona**, Oct. 8, 1993.

” Direct numerical simulation of particle dispersion and turbulence modulation in homogeneous turbulence”, **NATO Advanced Research Workshop on Chaotic Advection, Tracer Dynamics, and Turbulent Dispersion, Alessandria, Italy**, May 24-28, 1993.

” On predicting particle-laden turbulent flows”, Workshop on turbulence in particulate multiphase flow, **Fluid Dynamics Laboratory, Battelle Pacific Northwest Laboratory, Richland, WA**, March 22, 1993.

” On the two-way interaction between homogeneous turbulence and dispersed solid particles”, **AMES Dept. Univ. of California, San Diego**, February 5, 1993.

” On the two-way interaction between homogeneous turbulence and dispersed solid particles”, **NASA Langley Research Center**, December 14, 1992.

” On the modification of energy spectrum of homogeneous turbulence by dispersed solid particles”, **Department of Mathematics, UCI**, May 21, 1992.

” The two-way coupling between solid particles and homogeneous decaying turbulence”, **Mechanical and Aerospace Engineering Department, Princeton University**, August 23, 1991.

” Direct simulation of particle-laden homogeneous turbulence”, **Los Alamos National Laboratory**, May 25, 1991.

”The effect of turbulence on the propagation of an electromagnetic wave in a compressible turbulent boundary layer”, Workshop on Aerothermal Technology Development, **U.S. Strategic Defense Command , Huntsville, Alabama**, June 13, 1991.

”Direct numerical simulation and closure modelling of particle-laden turbulent flows”, Workshop on Turbulence Simulation and Modelling , **NASA-Marshall, Huntsville**,

Alabama, April 14-15, 1991.

”Direct numerical simulation of particle dispersion in sheared and unsheared homogeneous turbulence”, **Mechanical Engineering Department, University of Southern California**, March 1, 1990.

”Direct numerical simulation and modelling of particle-laden turbulent flows”, **German Aerospace Organization (DLR), Munich, Germany**, December 4, 1989.

”Direct numerical simulation of particle dispersion in homogeneous turbulent flows”, **University of Kaiserslautern, West Germany**, December 5, 1989.

”Direct numerical simulation of particle dispersion in isotropic and sheared turbulent flows”, **Institut de Mecanique des Fluides, Toulouse, France**, December 6, 1989.

”Direct numerical simulation of particle dispersion in homogeneous turbulent flows”, **University of Rouen, France**, December 7, 1989.

”Direct numerical simulation and modelling of particle-laden turbulent flows”, **Shell Conference on Computational Fluid Dynamics, Apeldoorn, The Netherlands**, December 11, 1989.

”Direct numerical simulation of particle dispersion in homogeneous turbulent flows”, **Norway Institute of Technology, Trondheim, Norway**, December 15, 1989.

”Direct numerical simulation of particle dispersion in grid-generated turbulence”, **Workshop on droplets and sprays, AFOSR and ONR Contractors Meeting, Ann Arbor, Michigan**, June 21, 1989.

”Direct numerical simulation of particle dispersion and chemical reaction in turbulent flows”, **G.M. Research Laboratory, Thermal Science Department, Warren, Michigan**, June 22, 1989.

”Direct numerical simulation of stratified turbulent homogeneous shear flow”, **Idaho National Engineering Laboratory, Idaho Falls**, September 8, 1988.

”Direct numerical simulation of stratified turbulent homogeneous shear flow”, **Center for Microgravity and Materials Research, University of Alabama, Huntsville**, August 5, 1988.

”Direct simulation of stable stratified turbulent homogeneous shear flows”, **Third International Symposium on Stratified Flows, California Institute of Technology**, February 3-5, 1987.

”Direct simulation of the passive-scalar mixing layer”, **Institut de Mecanique des Fluides, Toulouse, France**, September 11, 1987.

”Direct simulation of stratified homogeneous turbulent shear flow”, **Department of Aerospace Engineering, University of Southern California**, October 8, 1986.

”Direct simulation of stratified homogeneous turbulent shear flow”, **Institut de Mecanique Statistique de la Turbulence, Marseille, France**, October 22, 1986.

”Direct simulation of homogeneous turbulent shear flow”, **Mechanical Engineering Department, University of California, Irvine**, July 22, 1986.

”Direct simulation of stratified homogeneous turbulent shear flow”, **AMES Department, University of California, San Diego**, February 3, 1986.

”Direct simulation of turbulent shear flow with buoyancy”, **Jet Propulsion Laboratory, California Institute of Technology**, May 30, 1986.

”Direct numerical simulation of a turbulent homogeneous shear flow with buoyancy”, **Mechanical Engineering Dept., University of California, Irvine**, October 18, 1985.

”Direct simulation of turbulent homogeneous shear flow”, **DFVLR, Institute of Atmospheric Physics, Oberpfaffenhofen, West Germany**, June 21, 1985.

”Prediction of the turbulent jet laden with vaporizing droplets” **Dept. of Fluid Mechanics, University of Erlangen, West Germany**, May 22, 1985.

”Experimental study of the turbulent jet laden with particles”, **University of the German Armed Forces, Aerospace Department, Munich, West Germany**, February 7, 1985.

”Measurement and prediction of the turbulent two-phase jet”, **University of Karlsruhe, Mechanical Engineering Dept.**, December 13, 1984.

”Prediction of the turbulent jet laden with solid spherical particles”, **DFVLR, Institute of Atmospheric Physics, Oberpfaffenhofen, West Germany**, December 5, 1984.

”Recent developments in mathematical modeling of dispersed two- phase flows”, presented at the Mechanical Engineering Dept., Technical University of Munich, West Germany, November 27, 1984.

”Recent developments in mathematical modeling of dispersed two- phase flows”, presented at the **Mechanical Engineering Dept., University of California, Berkeley**, March 20, 1984.

”Effects of dispersed two-phase flows on turbulence structure”, **Office National d’Etudes et de Recherches Aerospatiales (ONERA), Paris, France**, September 19, 1983.

”Turbulence modulation in a turbulent two-phase jet : theory and experiment”, Mechanical Engineering Department, **University of Kaiserslautern, West Germany**, September 16, 1983.

”Passive-scalar time-scales in turbulent flows”, **DFVLR, Institute of Atmospheric Physics, Oberpfaffenhofen, West Germany** , September 15, 1983.

”Mathematical models of temperature variance and time-scales for the thermal mixing layer ”, **Institut de Mecanique Statistique de la Turbulence, Marseille, France**, July 8, 1983.

”Experimental and theoretical study of dispersed two-phase turbulent jets”, **Institut de Mecanique des Fluides, Toulouse, France**, July 6, 1983.