CS_175: Modelling Computing Systems 2

Exercise 4

Due: Problem Session in Week 9 (Friday 26 March 2020)

1. [Exercise 4, page 354]

Consider the following 4-state transition system.

$$X \stackrel{\text{def}}{=} a.0 + Y$$
 $Y \stackrel{\text{def}}{=} a.Z$
 $Z \stackrel{\text{def}}{=} b.0$

Fill in the following table with the states satisfying the relevant properties. (The first line has been filled in to get you started.)

property P	states satisfying P	negation $\neg P$	states satisfying ¬P
$\langle a \rangle true$	X, Y	[a]false	Z, 0
[a] true			
$\langle { t b} angle true$			
[b] true			
$\langle a \rangle \langle b \rangle true$			
$\langle a \rangle [b] true$			
$[a]\langle b \rangle true$			
[a][b] true			

2. [Exercise 6, page 355]

Give a labelled transition system with a state s which satisfies all of the following:

- $\langle a \rangle \Big(\langle a \rangle true \wedge \langle b \rangle \langle a \rangle true \Big)$
- $\langle a \rangle \langle b \rangle \Big(\langle b \rangle true \wedge [a] false \Big)$
- $\langle a \rangle \langle b \rangle \Big([a] false \wedge [b] false \Big)$

Explain informally what each of the above properties are saying, and why they are true of the state s in your LTS.