Evolutionary Algorithms

Piero P. Bonissone
GE Corporate Research & Development
Bonissone@crd.ge.com

EA Review - Outline

- Soft Computing
 - Definition
 - SC Components & Hybrid Systems
- Evolutionary Algorithms
 - Derivative Free
 - Components (ES, EP, GA, GP)
- Genetic Algorithms
 - General Characteristics
 - Representation
 - Evaluation & Constraints
 - Operators
 - Components Summary
 - Process Cycle
 - Functional Optimization Example
 - Evolution Stages

SC Definition and EA

- Soft Computing (SC): the symbiotic use of many emerging problem-solving disciplines.
- According to Prof. Zadeh:
 - "...in contrast to traditional hard computing, soft computing exploits the tolerance for imprecision, uncertainty, and partial truth to achieve tractability, robustness, low solution-cost, and better rapport with reality"
- Evolutionary Algorithms is one of Soft Computing four main components:
 - Approximate Reasoning:
 - Probabilistic Reasoning, Fuzzy Logic
 - Search:
 - Neural Networks, **Evolutionary Algorithms**

Evolutionary Algorithms Hybrid SC Systems

EA Review - Outline

- Soft Computing
 - Definition
 - SC Components & Hybrid Systems

Evolutionary Algorithms

- Derivative Free
- Components (ES, EP, GA, GP)
- Genetic Algorithms
 - General Characteristics
 - Representation
 - Evaluation & Constraints
 - Operators
 - Components Summary
 - Process Cycle
 - Functional Optimization Example
 - Evolution Stages

Evolutionary Algorithms (EA)

- EA are part of the Derivative-Free Optimization and Search Methods:
 - Evolutionary Algorithms
 - Simulated annealing (SA)
 - Random search
 - Downhill simplex search
 - Tabu search
- EA consists of
 - Evolutionary Strategies (ES)
 - Evolutionary Programming (EP)
 - Genetic Algorithms (GA)
 - Genetic Programming (GP)

Evolutionary Algorithms (EA) Characteristics

Most Evolutionary Algorithms can be described by

$$x[t+1] = s(v(x[t]))$$

- x[t]: the population at time t under representation x
- v: is the variation operator(s)
- s: is the selection operator
- EA exhibit an *adaptive behavior* that allows them to handle non-linear, high dimensional problems without requiring differentiability or explicit knowledge of the problem structure.
- EA are very robust to time-varying behavior, even though they may exhibit low speed of convergence.

Evolutionary Algorithms: ES

Evolutionary Strategies (ES)

- Originally proposed for the optimization of continuous functions
- (μ , λ)-ES and (μ + λ)-ES
 - A population of μ parents generate λ offspring
 - Best μ offspring are selected in the next generation
 - (μ, λ) -ES: parents are **excluded** from selection
 - $(\mu + \lambda)$ -ES: parents are **included** in selection
- Started as (1+1)-ES (Reschenberg) and evolved to (μ + λ)-ES (Schwefel)
- Started with Mutation only (with individual mutation operator) and later added a recombination operator
- Focus on behavior of individuals

Evolutionary Algorithms: EP

Evolutionary Programming (EP)

- Originally proposed for sequence predictiom and optimal gaming strategies
- Currently focused on continuous parameter optimization and training of NNs
- Could be considered a special case of ($\mu + \mu$)-ES without recombination operator
- Focus on behavior of species (hence no crossover)
- Proposed by Larry Fogel (1963)

Evolutionary Algorithms: GA

Genetic Algorithms (GA)

- Perform a randomized search in solution space using a genotypic rather than a phenotypic
- Each solution is encoded as a chromosome in a population (a binary, integer, or real-valued string)
 - Each string's element represents a particular feature of the solution
- The string is evaluated by a fitness function to determine the solution's quality
 - Better-fit solutions survive and produce offspring
 - Less-fit solutions are culled from the population
- Strings are evolved using mutation & recombination operators.
- New individuals created by these operators form next generation of solutions
- Started by *Holland (1962; 1975)*

Evolutionary Algorithms: GP

Genetic Programming (GP)

- A special case of Genetic Algorithms
 - Chromosomes have a hierarchical rather than a linear structure
 - Their sizes are not predefined
 - Individuals are tree-structured programs
 - Modified operators are applied to sub-trees or single nodes
- Proposed by Koza (1992)

EA Review - Outline

- Soft Computing
 - Definition
 - SC Components & Hybrid Systems
- Evolutionary Algorithms
 - Derivative Free
 - Components (ES, EP, GA, GP)

Genetic Algorithms

- General Characteristics
- Representation
- Evaluation & Constraints
- Operators
- Components Summary
- Process Cycle
- Functional Optimization Example
- Evolution Stages

GAs General Characteristics

- No gradient information required
- No restrictions on structure of evaluation function (could be a black box)
- Resulting search is global
- Local Optima are avoided by hyperplane sampling in Hamming space (crossovers) plus random perturbations (mutations)
- Potential for massive parallelism
- They can be hybridized with conventional optimization methods

Genetic Algorithms: Description & Representation

What are They?

GAs are a new programming paradigm used to solve NP-hard problems by performing a randomized search in the solution space.

Encoding:

GAs *encode* the solution to a given problem in a binary (or real-valued) string. Each string's element represents a particular feature in the solution.

Genetic Algorithms: Evaluation & Constraints

Evaluation:

The string (solution) is *evaluated* by a fitness function to determine the solution's quality: good solutions survive and have off-springs, while bad solutions are discontinued.

Constraints:

Solution's constraints can be modeled by *penalties* in the fitness function or encoded directly in the solution *data structures*.

Genetic Algorithms: Operators

Operators:

To improve current solutions, the string is modified by two basic type of operators: Cross-over and Mutations.

- Cross-over are (sometime) deterministic operators that capture the best features of two parents and pass it to a new off-spring string.
- Mutations are probabilistic operators that try to introduce needed solutions features in populations of solutions that lack such feature.

Genetic Algorithms: Components Summary

- 1) Encoding Technique
 - (Chromosome Structure)
- 2) Evaluation or Fitness Function
 - (The Environment)
- 3) Initialization Procedure
 - (Creation)
- 4) Genetic Operators
 - (Mutation, Recombination or Crossover)

- 5) Parameter Setting
 - (practice and art)

Genetic Algorithms: Process Cycle

Initialization:

generate a random population of individuals

Solution Evaluation:

 Evaluate and score all individuals in population by using the fitness function

Reproduction:

- Select parents and generate offsprings using crossover operator
- Recombine population according to probability of crossover
- Apply mutation according to probability of mutation

Genetic Algorithms: Example of Binary Encoding, Crossover, Mutation

Genetic Algorithms: Example of Process

Flowchart 10010110 10010110 **Elitism** 01100010 01100010 10100100 10100100 10011001 10011101 01111101 01111001 Selection | Crossover | Mutation **Current Next** generation generation

Genetic Algorithms: Functional Optimization Example

Example: Find the max. of the "peaks" function

$$z = f(x, y) = 3*(1-x)^2*exp(-(x^2) - (y+1)^2) - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) -1/3*exp(-(x+1)^2 - y^2).$$

Genetic Algorithms: Functional Optimization Example

Derivatives of the "peaks" function

- dz/dx = -6*(1-x)*exp(-x^2-(y+1)^2) 6*(1-x)^2*x*exp(-x^2-(y+1)^2) 10*(1/5-3*x^2)*exp(-x^2-y^2) + 20*(1/5*x-x^3-y^5)*x*exp(-x^2-y^2) 1/3*(-2*x-2)*exp(-(x+1)^2-y^2)
- dz/dy = 3*(1-x)^2*(-2*y-2)*exp(-x^2-(y+1)^2) + 50*y^4*exp(-x^2-y^2) + 20*(1/5*x-x^3-y^5)*y*exp(-x^2-y^2) + 2/3*y*exp(-(x+1)^2-y^2)
- d(dz/dx)/dx = 36*x*exp(-x^2-(y+1)^2) 18*x^2*exp(-x^2-(y+1)^2) 24*x^3*exp(-x^2-(y+1)^2) + 12*x^4*exp(-x^2-(y+1)^2) + 72*x*exp(-x^2-y^2) 148*x^3*exp(-x^2-y^2) 20*y^5*exp(-x^2-y^2) + 40*x^5*exp(-x^2-y^2) + 40*x^2*exp(-x^2-y^2)*y^5 2/3*exp(-(x+1)^2-y^2) 4/3*exp(-(x+1)^2-y^2)*x^2 8/3*exp(-(x+1)^2-y^2)*x
- d(dz/dy)/dy = -6*(1-x)^2*exp(-x^2-(y+1)^2) + 3*(1-x)^2*(-2*y-2)^2*exp(-x^2-(y+1)^2) + 200*y^3*exp(-x^2-y^2)-200*y^5*exp(-x^2-y^2) + 20*(1/5*x-x^3-y^5)*exp(-x^2-y^2) 40*(1/5*x-x^3-y^5)*y^2*exp(-x^2-y^2) + 2/3*exp(-(x+1)^2-y^2)-4/3*y^2*exp(-(x+1)^2-y^2)

Evolutionary Algorithms

Genetic Algorithms: Functional Optimization Example

GA process:

Initial population

5th generation

10th generation

GAs Performance Measurements

Performance profile

GAs Evolution Stages

- <u>Exploration</u>: GAs generate enough candidates to have enough diversity (building blocks) for good solution
 - Increased Population Size
 - More forgiving parents selection
 - Stronger mutation
- <u>Transition</u>: GAs refine their performance by performing a down-selection & managing their resources during exploitation
- <u>Exploitation</u>: GAs refine their solutions by focusing on good individuals and enforcing more stringent solution quality requirements
 - Decreased Population Size
 - Stricter parents selection
 - Weaker mutation

Appendix

Derivative-Free Optimization

- Other Derivative-Free Optimization & Search Methods besides EA:
 - Simulated annealing (SA)
 - Random search
 - Downhill simplex search
 - Tabu search
- We will explore Simulated Annealing (SA)

Simulated Annealing (SA)

- Stochastic Hill-climbing algorithm based on the analogy with the physical process of annealing:
 - a lattice structure of a solid is achieved by heating up the solid to its melting point
 - and then slowly cooling until it solidifies to a low-energy state
- SA works as follows:
 - Randomly picks feasible solutions,
 - Improving on a solution by always accepting better-cost neighbors if they are selected
 - Allowing for a stochastically guided acceptance of worse-cost neighbors
 - Gradually decreasing the probability of accepting worse-cost neighbors (*gradual cooling*)

Simulated Annealing (SA)

- SA can be seen as a single-individual EA in which crossovers are disabled and only mutations are used
- This is also a global search strategy and can work in very high-dimensional searches given enough computational resources.
- Proposed by Kirkpatrick (1983)

Terminology:

- Objective function E(x):
 - function to be optimized
- Move set:
 - set of next points to explore
- Generating function:
 - to select next point
- Acceptance function h(∆E, T):
 - to determine if the selected point should be accept or not. Usually $h(\Delta E, T) = 1/(1+\exp(\Delta E/(cT))$.
- Annealing (cooling) schedule:
 - schedule for reducing the temperature T

Flowchart

Example: Travel Salesperson Problem (TSP)

How to transverse n cities once and only once with a minimal total distance?

A 100-city TSP using SA

Initial random path

During SA process

Final path

100-city TSP with penalities when crossing the circle

Tabu Search

- Usually applied to combinatorial optimization problems
 - Retains information of best solutions detected and "path" to reach previous solutions.
 - Memory of itinerary used to restrict search transitions in the neighborhood of a current solution and discourage cycling among recently visited solutions.
 - Restrictions are relaxed when a solution has some preferred characteristics
 - Search selects the best solution from a set of feasible solutions that are subject to restrictions and relaxations.
 - Update list maintaining restrictions and relaxations.
 - Search terminated by stopping criteria
- Requires extensive parameter tuning
- List maintenance/update overhead could be large
- Proposed by Glover (1986)