2D, Cylindrical, Homogeneous Material Problem Description

Transient, 2D, RZ Heat Transfer PDE

$$\rho c_{p} \frac{\partial T}{\partial t} - \nabla k \nabla T = \rho c_{p} \frac{\partial T}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left(r \cdot k \frac{\partial T}{\partial r} \right) - \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) = q$$

Advection PDE for Level Set

$$\frac{\partial \phi}{\partial t} + u(r,z,t) \cdot \nabla \phi = 0$$
, $\frac{\partial \phi}{\partial t} + u(r,z,t) \cdot \left(\frac{\partial \phi}{\partial r} + \frac{\partial \phi}{\partial z}\right) = 0$

Domain/Material Properties

$$[\Omega_r, \Omega_z] = [[1, 2], [1, 2]]$$

 $\rho c_p = 10$
 $k = 1.5$

2D, Cylindrical, Homogeneous Problem BCs/IC

BCs

Left: **Neumann** $-\frac{\partial T}{\partial r}\Big|_{r=1} = k \cdot 100t$

Right: **Dirichlet** – T(2, z, t) = (-100z + 200)t + 400

Bottom: **Neumann** $-\left.\frac{\partial T}{\partial z}\right|_{z=1} = k \cdot 100t$

Top: Dirichlet -T(r, 2, t) = (-100r + 200)t + 400

ICs

Constant – T(r, z, 0) = 400

Function $-\phi(r, z, 0) = -0.5(x + y) + 2.04$

Method of Manufactured Solutions for 2D, RZ, Homogeneous Material Problem

Prescribed T Solution

$$T(x,t) = (-100r - 100z + 400)t + 400$$

Derived T Source

$$q = 100 \rho c_D (-r - z + 4) + \frac{100kt}{r}$$

Prescribed ϕ Interface Level Set Solution (& ϕ Initial Condition)

$$\phi(x, y, t) = -0.5(x + y) + 2.04 - 0.2t$$

Derived ϕ velocity term, u(r, z, t)

$$u(r, z, t) = -0.2$$

ϕ Solution L2 Error Norms at Each Timestep

T Solution L2 Error Norms at Each Timestep

