TD de Maths - SURFACES

- 1/ Soit Σ la nappe paramétrée : x = u + v, y = v u, $z = u^2 v^2$, $u \in [-1, +1]$, $v \in [0, \sqrt{1 u^2}]$
 - a. Déterminer un vecteur normal à la nappe Σ au point de paramètre (u, v).
 - b. Calculer l'aire de Σ (on pourra calculer l'intégrale en coordonnées polaires).
 - c. Calculer les coordonnées du centre de gravité de Σ en termes de l'intégrale $\int_0^1 \rho^3 \sqrt{2\rho^2 + 1} \ d\rho$.
 - d. Calculer cette intégrale par le changement de variable $t = \sqrt{2\rho^2 + 1}$.
- 2/ Calculer l'aire et la position du centre de gravité des surfaces suivantes :

Soit Γ une courbe simple fermée du plan xOz, de centre de gravité G.

Par révolution autour de Oz, Γ engendre une surface de révolution Σ .

Étant donnée une paramétrisation de la courbe Γ : x = x(t), y = y(t), $t \in [a,b]$,

trouver une paramétrisation de la surface Σ .

En déduire une relation entre la longueur de Γ , l'aire de Σ et l'abscisse de G

(2^{ème} formule dite "de Guldin" (1577-1643), due en fait à Pappus d'Alexandrie 4° siècle après J.C.)

On considère la quadrique Q d'équation $x^2 + 2y^2 + 4z^2 - 6x + 3y + 5 = 0$

Montrer qu'il s'agit d'un ellipsoïde de révolution. Quel est son centre ?

A quelle condition sur x, y et z le plan tangent à Q passe-t-il par l'origine?

Montrer que les points obtenus sont situés sur un même plan dont on calculera l'équation.

5/ a/ Une « lune » d'angle α est la région de la sphère unité délimitée par 2 méridiens faisant entre eux l'angle α . Faire une figure.

Par un calcul en coordonnées sphériques, montrer que l'aire de cette région est 2α .

b/ Un triangle sphérique T d'angles α , β et γ peut être vu comme l'intersection de 3 lunes d'angles α , β et γ . Faire une figure.

Démontrer que l'aire de *T* est égale à $\alpha + \beta + \lambda - \pi$ (*Formule de Girard*).

Remarque : il en découle en particulier que la somme des angles d'un triangle sphérique est toujours $\geq \pi$.

6/ Trouver une représentation paramétrique de la surface suivante :

