Metodi di Risoluzione per ODE

Tobia Sacchetto

September 21, 2025

1 Esercizio 1

1.1 Consegna

Preso dall'esercizio 1: Considerare il metodo di Eulero esplicito e quello di Eulero implicito come la coppia di formule che forma un metodo predictor-corrector. Risolvere il seguente problema di Cauchy

$$y' = -5y(x) + x$$
 $y(0) = 1$

sull'intervallo [0, 4] con passo h = 0.1. Indicare qual 'e la costante di errore (funzione di influenza) e fornirne una stima.

1.2 Svolgimento

1.2.1 Svolgimento Teorico

Si svolge il seguente integrale con il metodo di Eulero esplicito:

Si ricorda che $h=0.1=\frac{1}{10}$, di conseguenza $x_i=x_0+hi=0.1*i, \mu=\lfloor (x_1-x_0)/h+0.5 \rfloor = \lfloor (4-0)/0.1+0.5 \rfloor = \lfloor 40.5 \rfloor = 40$ e i=0,...,40-1, inoltre $y(0) \to x_0=0$, f(x,y)=-5y+x e $y(0)=y_0=1$. Per $y_i^{(1)}$ si intende l'iterato numero 1, il numero degli iterati nel codice è p e per i si intende il passo a cui ci si sta riferendo.

$$y_{(i+1)}^{(0)} = y_i + h * f(x_i, y_i)$$

$$= y_i + \frac{1}{10}(-5y_i + x_i)$$

$$= y_i - \frac{1}{2}y_i + \frac{1}{10}x_i$$

$$= \frac{1}{2}y_i + \frac{1}{100}i$$

Questo lo si sostituisce con $y_{i+1}^{(0)}$ nel metodo Eulero implicito (per p=1).

$$y_{(i+1)}^{(1)} = y_i + h \cdot f(x_{i+1}, y_{i+1}^{(0)})$$

$$= y_i + \frac{1}{10} \cdot \left(-5 \cdot \left(\underbrace{\frac{1}{2}y_i + \frac{1}{100}i}\right) + \underbrace{(i+1) \cdot \frac{1}{10}}\right)$$

$$= y_i + \frac{1}{10} \cdot \left(-\frac{5}{2}y_i - \frac{1}{20}i + \frac{1}{10}i + \frac{1}{10}\right)$$

$$= y_i - \frac{1}{4}y_i + \frac{1}{200}i + \frac{1}{100}$$

$$= \frac{3}{4}y_i + \frac{1}{200}i + \frac{1}{100}$$

Ora lo si svolge per p=2 (Sempre con Eulero implicito)

$$y_{i+1}^{(2)} = y_i + h \cdot f(x_{i+1}, y_{i+1}^{(1)})$$

$$= y_i + \frac{1}{10} \cdot \left(-5 \cdot \left(\frac{3}{4}y_i + \frac{1}{200}i + \frac{1}{100}\right) + \underbrace{(i+1) \cdot \frac{1}{10}}\right)$$

$$= y_i + \frac{1}{10} \cdot \left(-\frac{15}{4}y_i - \frac{1}{40}i - \frac{1}{20} + \frac{1}{10}i + \frac{1}{10}\right)$$

$$= y_i - \frac{3}{8}y_i + \frac{3}{400}i + \frac{1}{200}$$

$$= \frac{5}{8}y_i + \frac{3}{400}i + \frac{1}{200}$$

1.2.2 Svolgimento Pratico

Segue il codice MATLAB per constatare se si sono eseguiti i calcoli del punto precedente nel modo corretto. Si tiene a ricordare che corrector è Eulero implicito, mentre il predictor è Eulero esplicito. Viene fatto uso della funzione eulero implicito mod.

Funzione eulero implicito mod:

```
y = zeros(length(x), length(y0));
  y_esp = zeros(length(x), length(y0));
  y_impl = zeros(length(x), length(y0));
  y(1,:)=y0;
  for i=1:length(x)-1
      %predictor
      pre=y(i,:)+h*feval(f,x(i),y(i,:)); %eulero esplicito in cui
           do in pasto come precedente il corrector
      y_esp(i,:)=pre;
      %corrector
      for k=1:p
          pre=y(i,:)+h*feval(f,x(i+1),pre); %eulero implicito
      y(i+1,:)=pre;
17
  end
19 %ultimo valore per il predictor che non ho
20 i=length(x);
  y_esp(i,:)=y(i,:)+h*feval(f,x(i),y(i,:));
  y_impl=y;
```

Main Es_1 :

```
close all
clear all
clc
addpath("/Users/tobiasacchetto/Documents/GitHub/
Numerical_Analysis_II/matlab_class_exercises/Function");

h=0.1; %passo
x0=0; x1=4; %intervalli
x=x0:h:x1; %x esplicita
p = 2; %quanto voglio preciso il corrector
y0=1;
f=@(x,y)(-5*y+x);

%soluzione esatta
exact_sol=@(x)((5*x-1)/25+(24/25)*exp(-5*x));
exact_soll=arrayfun(exact_sol,x);
```

```
16 %chiamo eulero implicito / esplicito
  [y_explicit,y_implicit] = eulero_implicito_mod(f,y0,x0,x1,h,p);
  y_eulero=eulero(f,y0,x);
18
19
23 %% 3. CONFRONTO VISIVO DEI RISULTATI
24 figure;
plot(x, y_explicit, 'b-o', 'LineWidth', 1.5, 'DisplayName', '
      Predictor(Eulero Esplicito)');
  hold on;
26
plot(x, exact_soll, 'g-o', 'LineWidth', 1.5, 'DisplayName', '
      Soluzione Esatta');
plot(x, y_implicit, 'r-s', 'LineWidth', 1.5, 'DisplayName', '
      Corrector(Eulero Implicito) p=2');
plot(x, y_eulero, 'm-s', 'LineWidth', 1.5, 'DisplayName', '
      Eulero Esplicito');
go [y_explicit,y_implicit_p1] = eulero_implicito_mod(f,y0,x0,x1,h,1)
plot(x, y_implicit_p1, 'y-s', 'LineWidth', 1.5, 'DisplayName',
     'Corrector(Eulero Implicito) p=1');
32 xlabel('x');
33 ylabel('y(x)');
  title('Confronto tra metodi di Eulero');
35 legend('show');
36 grid on;
37
39 fprintf('\nPrimi 5 valori:\n');
40 fprintf(' i x(i) Esatta
                                       Eulero Exp.
                                                      Predictor
            Corrector (p=2) Corrector (p=1)\n');
      (p=2)
  fprintf('
      n');
  for i = 1:5
      fprintf('%3d %7.2f %9.5f %10.5f %10.5f
                     %10.5f\n', ...
          %10.5f
          i-1, x(i), exact_soll(i), y_eulero(i), y_explicit(i),
              y_implicit(i), y_implicit_p1(i));
  end
```

1.3 Confronto Risultati

I risultati che vengono dati da MATLAB sono uguali a quelli che sono stati calcolati. Il plot che lo script stampa è il seguente. Esso mette a confronto i vari metodi con la soluzione esatta.

Figure 1: Confronto fra i vari metodi

1.4 Errore

Formula generale per l'errore globale:

$$E_n = \sum_{k=0}^{n-1} I_{n,k} \tau_k$$

dove $I_{n,k}$ è la funzione di influenza in cui l'errore locale passo k influisce l'errore globale al passo n. La funzione nel caso di Eulero implicito è:

$$I_{n,k} = \prod_{j=k+1}^{n-1} \frac{1}{1 - h \cdot f_y(x_{j+1}, y(x_{j+1}))}$$

quindi $f_y(x_{j+1}, y(x_{j+1}))$ è la derivata parziale di f rispetto y nel punto $(x_{j+1}, y(x_{j+1}))$ e di conseguenza

$$I_{n,k} = \prod_{j=k+1}^{n-1} \frac{1}{1 - h(-5)} \tag{1}$$

$$=\prod_{j=k+1}^{n-1} \frac{1}{1+\frac{1}{2}} \tag{2}$$

$$=\prod_{j=k+1}^{n-1} \frac{2}{3} \tag{3}$$

$$= \left(\frac{2}{3}\right)^{n-k-1} \tag{4}$$

L'errore locale τ_k , per Eulero implicito è di ordine h^2 ed è tipicamente:

$$\tau_{k+1} = \frac{h^2}{2} y''(\xi_k)$$
 per qualche $\xi_k \in (x_k, x_{k+1})$

SI svolge prima $y''(\xi_k)$. Nel problema si ha:

$$y' = -5y + x \Rightarrow y'' = -5y' + 1 = 25y - 5x + 1$$

Usando la soluzione esatta $y(x) = \frac{5x-1}{25} + \frac{24}{25}e^{-5x}$ si ottiene:

$$y''(x) = 24e^{-5x}$$

Quindi

$$|\tau_{k+1}| \le \frac{h^2}{2} 24e^{-5x} \tag{5}$$

$$\leq h^2 12e^{-5x} \tag{6}$$

$$\leq \left(\frac{1}{10}\right)^2 12e^{-5x} \tag{7}$$

$$\leq \frac{3}{25}e^{-5x} \tag{8}$$

La funzione che si ricava è una funzione monotona decrescente.

Figure 2: Errore di troncamento

1.4.1 Errore globale: Ipotesi 1

Ora si riesce a calcolare una stima dell'errore globale. Si assume che l'errore di troncamento sia limitato uniformemente per $\tau_k \leq 0.12$ (si prende l'elemento maggiore possibile):

$$E_n \le \sum_{k=0}^{n-1} \left(\frac{2}{3}\right)^{n-k-1} 0.12$$

Posto m = n - k - 1, quando k = 0, m = n - 1; quando k = n - 1, m = 0. Dunque la serie diventa una serie geometrica:

$$\sum_{m=0}^{n-1} \left(\frac{2}{3}\right)^m = \frac{1 - \left(\frac{2}{3}\right)^n}{1 - \frac{2}{3}} = 3\left(1 - \left(\frac{2}{3}\right)^n\right)$$

Quindi la stima diventa:

$$E_n \le 0.12 \cdot 3 \left(1 - \left(\frac{2}{3} \right)^n \right) = 0.36 \left(1 - \left(\frac{2}{3} \right)^n \right) \le 0.36$$

Questo non dipende da n. Sarà sempre limitato ≤ 0.36 . Si mostra la funzione:

Figure 3: L'errore globale Ipotesi 1

1.4.2 Errore Globale: Ipotesi 2

Si assume, in questo caso, che l'errore di troncamento decada esponenzialmente $\tau_k \leq 12h^2e^{-0.5k}$. Quindi si ha una funzione più precisa per l'errore di troncamento rispetto l'ipotesi 1. Quindi:

$$E_n \le 12h^2 \sum_{k=0}^{n-1} \left(\left(\frac{2}{3} \right)^{n-k-1} e^{-\frac{1}{2}k} \right) \tag{9}$$

$$\leq 12h^2 \left(\frac{2}{3}\right)^{n-1} \sum_{k=0}^{n-1} \left(\left(\frac{3}{2}\right)^k e^{-\frac{1}{2}k} \right) \tag{10}$$

$$\leq 12h^2 \left(\frac{2}{3}\right)^{n-1} \sum_{k=0}^{n-1} \left(\left(\frac{3}{2}\right)^k e^{-\frac{1}{2}k} \right) \tag{11}$$

$$\leq 12h^2 \left(\frac{2}{3}\right)^{n-1} \sum_{k=0}^{n-1} \left(\left(\frac{3}{2}e^{-\frac{1}{2}}\right)^k \right) \tag{12}$$

Si nota che $\frac{3}{2}e^{-\frac{1}{2}}\approx 0.9098$ e si trova una serie geometrica $\sum_{k=0}^{n-1}0.9098^k\approx\frac{1}{1-0.9098}$. Dunque:

$$E_n \le 12h^2 \left(\frac{2}{3}\right)^{n-1} \frac{1}{1 - 0.9098} \tag{13}$$

$$\leq 12 \left(\frac{1}{10}\right)^2 \left(\frac{2}{3}\right)^{n-1} \frac{1}{1 - 0.9098} \tag{14}$$

$$\leq \frac{3}{25} \left(\frac{2}{3}\right)^{n-1} \frac{1}{0.0902} \tag{15}$$

Quindi E_n decade per $\left(\frac{2}{3}\right)^{n-1}$. Si mostra un grafico rappresentativo della funzione dell'errore globale più accurato dell'ipotesi 1.

Figure 4: L'errore globale Ipotesi 2

Per h=0.1 e n=40, cioè x=4 risulta una stima numerica molto piccola dell'ordine di 10^{-7} . Da notare che l'errore massimo che si può avere si verifica all'inizio (n=0) e tende a decrescere.

2 Esercizio 2

2.1 Consegna

Preso da esercizio 3. Dato il metodo di Runge Kutta a tre stadi:

$$y_{i+1} = y_i + \frac{h}{9}(2K_1 + 3K_2 + 4K_3) \tag{16}$$

$$K_1 = f(x_i, y_i) \tag{17}$$

$$K_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1)$$
(18)

$$K_3 = f(x_i + \frac{3h}{4}, y_i + \frac{3h}{4}K_2) \tag{19}$$

risolvere con tale metodo il problema y' = -34y, y(0) = 1 sull'intervallo [0, 1], scegliendo il passo in modo da avere assoluta stabilità.

Ripetere usando la regola trapezoidale abbinata ad un conveniente passo (discutere la selezione fatta del passo).

2.2 Svolgimento

2.2.1 Risoluzione numerica tramite Runge-Kutta

Con f(x,y) = -34y [attenzione, non dipende dalla x, quindi l'intero termine $(x_i + h/2)$ non c'è. Se fosse stato f(x,y) = x + y allora si avrebbe $K_2 = (x_i + h/2) + (y_i(1-17h))$], si ottiene :

$$K_1 = f(x_i, y_i) \tag{20}$$

$$= -34y_i \tag{21}$$

$$K_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1)$$
(22)

$$y^{(1)} = y_i + \frac{h}{2}K_1 \tag{23}$$

$$= y_i + \frac{h}{2}(-34y_i) \tag{24}$$

$$= y_i(1 - 17h) (25)$$

$$K_2 = f(x_i + \frac{h}{2}, y^{(1)}) \tag{26}$$

$$= -34(y_i(1-17h))$$
 Si ricorda che $f(x,y) = -34y$ (27)

(28)

$$K_3 = f(x_i + \frac{3h}{4}, y_i + \frac{3h}{4}K_2) \tag{29}$$

$$= -34(y_i + \frac{3h}{4}K_2) \tag{30}$$

$$= -34(y_i + \frac{3h}{4}(-34y_i(1-17h))) \tag{31}$$

$$= -34y_i(1 + \frac{3h}{4}(-34)(1 - 17h)) \tag{32}$$

$$= -34y_i(1 + \frac{3h}{4}(-34 + 578h)) \tag{33}$$

$$= -34y_i\left(1 - \frac{51h}{2} + \frac{867h^2}{2}\right) \tag{34}$$

$$y_{i+1} = y_i \frac{h}{9} (2K_1 + 3K_2 + 4K_3) \tag{35}$$

$$=y_i \frac{h}{9} (2(-34y_i) + 3(-34(y_i(1-17h))) + 4(-34y_i(1-\frac{51h}{2} + \frac{867h^2}{2})))$$
(36)

$$= y_i \frac{h}{9} \cdot (-34y_i)(9 - 153h + 1734h^2) \tag{37}$$

Per Runge-Kutta a 3 stadi (esplicito) per trovare il passo h si deve prima trovare la funzione di stabilità sul test lineare $y' = \lambda y$ che è data dal polinomio di grado 3 ottenuto troncando la serie di Taylor di e^z :

$$R(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6}$$
, dove $z = h\lambda$.

Il dominio di stabilità assoluta sul semiasse reale negativo è un intervallo:

$$z \in (\alpha, 0),$$

Il metodo è assolutamente stabile per quei valori di z per cui:

$$|R(z)| \leq 1.$$

Siccome $\lambda=-34<0$, ci si concentra solo sul semiasse reale negativo $z\in(-\infty,0)$. Quindi si deve determinare fino a quale valore negativo di z si ha:

$$|R(z)| \leq 1.$$

Cioè, si deve trovare l'estremo sinistro dell'intervallo di stabilità assoluta del metodo, ovvero il valore $\alpha < 0$ tale che:

$$|R(z)| \le 1$$
 per ogni $z \in (\alpha, 0)$,

dove R(z) è la funzione di stabilità:

$$R(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6}$$
.

Ora si moltiplica tutto per 6. Si ricorda inoltre che il bordo sinistro del dominio di stabilità reale si ottiene risolvendo: R(z) = -1. Dunque:

$$-1 = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} \tag{38}$$

$$-6 = 6 + 6z + 3z^2 + z^3 \tag{39}$$

$$0 = 12 + 6z + 3z^2 + z^3 \tag{40}$$

Si usa il metodo di Newton globale (sis_newton_glob) per risolvere l'equazione non lineare definita dalla funzione:

$$p(z) = z^3 + 3z^2 + 6z + 12$$

con derivata:

$$p'(z) = 3z^2 + 6z + 6$$

Es2:

```
sis_newton_glob:
  function [x,it,iterati,merito] = sis_newton_glob(fvett,jac,x0,
      tolx,tolf,maxit)
  %Parametri per cui dipende il metodo
  beta=1e-4; %va cosi' di default sempre di solito
  rho=0.5;
  delta=0.01;
  % % % % %
  x=x0(:);
  n=length(x);
iterati{1}=x;
f=feval(fvett,x);
12 J=feval(jac,x);
merito=zeros(maxit,1);
  merito (1) = 0.5 * norm (f)^2;
15 for it=1:maxit
       dx = J \setminus (-f); %J dx = -f
       gradmerito=J'*f;
       tau=1;
       dirdis=gradmerito'*dx;
       costheta=abs(dirdis)/(norm(gradmerito)*norm(dx));
20
       while costheta <= delta</pre>
21
           [Q,R]=qr([J; sqrt(tau)*eye(n)]);
22
           R=R(1:n,:);
23
           dx=R\(R'\(-gradmerito));
           dirdis=gradmerito'*dx;
25
           tau=tau*10;
26
27
       %Ok e' come se stessimo partendo come se alpha fosse uguale
           a 1
       f0=f;
29
       x0=x;
30
       alpha=1;
31
       normf0=norm(f0)^2;
       x=x0+alpha*dx;
33
       f=feval(fvett,x);
34
       while norm(f)^2>(1-2*beta*alpha)*normf0
35
           alpha=alpha*rho;
           x=x0+alpha*dx;
          f=feval(fvett,x);
```

Radice trovata: -2.512745326618 in 6 iterazioni

Per trovare λ si segue la formula:

$$y' = \lambda y \tag{41}$$

$$= -34y \tag{42}$$

$$\lambda = -34\tag{43}$$

Quindi si è trovato $\alpha \approx -2.5127453$. Per garantire che tutti i punti

$$z = h\lambda \pmod{\lambda = -34}$$

appartengano all'intervallo di stabilità assoluta

$$z \in (\alpha, 0)$$
, con $\alpha \approx -2.5127453$,

è necessario che:

$$h|\lambda| \le 2.5127453 \implies h \le \frac{2.5127453}{34} \approx 0.07390.$$

Quindi, qualsiasi passo

$$h \le 0.07390$$

assicura la stabilità assoluta del metodo per il problema. Si pone come passo $h=\frac{1}{14}\approx 0.0714286$ che è minore del limite di stabilità 0.07390 e di

conseguenza il metodo risulta stabile. Si pone $y_i = 1$

$$K_1 = -34y_i = -34 \tag{44}$$

$$K_2 = -34(1 - 17\frac{1}{14}) \tag{45}$$

$$= -34\left(\frac{3}{14}\right) = \frac{51}{7} \approx 7.2857142857\tag{46}$$

$$K_3 = -34\left(\frac{545}{392}\right) = -\frac{9265}{196} \approx -47.2704081633$$
 (47)

$$y_{i+1} = \frac{h}{9} \cdot (-34)(9 - 153\frac{1}{14} + 1734\frac{1}{14}^2) \tag{48}$$

$$= -\frac{17}{63}(9 - \frac{153}{14} + \frac{1734}{196})\tag{49}$$

$$= -\frac{17}{63} \cdot \frac{339}{49} = -\frac{1029}{1921} \approx -0.866861030 \tag{50}$$

(51)

Se si prende h più grande di $\frac{1}{4}$ si potrebbe rischiare la stabilità, mentre se lo si prende più piccolo (es. h=0.05) allora è più preciso, ma richiede più step (maggiore costo computazionale). Si riporta un esempio di seguito: Passo scelto: h=0.05 (per confronto):

$$K_1 = -34.$$

Calcoliamo i valori intermedi:

$$\frac{h}{2} = 0.025,$$
 $\frac{3h}{4} = 0.0375,$ $y^{(2)} = 1 + 0.025 \cdot (-34) = 0.15,$ $y^{(3)} = 1 + 0.0375 \cdot (-5.1) = 0.80875,$

Si calcolano K_2 e K_3:

$$K_2 = -34 \times 0.15 = -5.1.$$
 $K_3 = -34 \times 0.80875 = -27.4975.$

Infine, il calcolo di y_1 :

$$y_1 = 1 + \frac{h}{9} \left[2K_1 + 3K_2 + 4K_3 \right] \tag{52}$$

$$=1+\frac{0.05}{9}\left[2(-34)+3(-5.1)+4(-27.4975)\right]$$
 (53)

$$\approx -0.0738. \tag{54}$$

Con $h = \frac{1}{14}$ si suddivide l'intervallo (in questo problema tra 0 e 1)in 14 passi da computare, mentre con h = 0.05 l'intervallo viene suddiviso in 20 passi.

2.2.2 Risoluzione numerica tramite metodo dei trapezzi (trapezoidale implicita, metodo di ordine 2)

La regola trapezoidale è:

$$y_{i+1} = y_i + \frac{h}{2}(f(x_i, y_i) + f(x_{i+1}, y_{i+1}))$$

Con $f(x,y) = -34y, \lambda = -34$ otteniamo:

$$y_{i+1} = y_i + \frac{h}{2}(-34y_i + -34y_{i+1})$$
(55)

$$(1 - \frac{h\lambda}{2})y_{i+1} = (1 + \frac{h\lambda}{2})y_i.$$
 (56)

Definiamo $z = h\lambda$ e il fattore di amplificazione come

$$q(z) = \frac{1 + \frac{z}{2}}{1 - \frac{z}{2}}.$$

Quindi,

$$y_{i+1} = q y_i, \quad q = \frac{1 + \frac{z}{2}}{1 - \frac{z}{2}}, \quad z = h\lambda.$$

La regola trapezoidale è A-stabile: qualsiasi passo di integrazione garantisce la stabilità assoluta. Tuttavia, l'accuratezza è legata all'ordine 2, quindi per ottenere una buona precisione (ad esempio un errore relativo piccolo rispetto a y(1), che è circa 1.7×10^{-15}) è necessario scegliere un passo di integrazione adeguatamente piccolo. Si provano due passi:

- trapezoidale con h=0.25 (4 step su [0,1])
- trapezoidale con h=1/14 (14 step, per confronto diretto)

Esempio con $h = \frac{1}{14}$

$$z = -34 \cdot \frac{1}{14} = -\frac{17}{7}, \quad \frac{z}{2} = -\frac{17}{14}$$
 (57)

$$q = \frac{1 - \frac{z}{2}}{1 + \frac{z}{2}} \tag{58}$$

$$=\frac{1-\frac{17}{14}}{1+\frac{17}{14}}\tag{59}$$

$$=\frac{-\frac{3}{14}}{\frac{31}{14}} = -\frac{3}{31} \approx -0.0967741935 \tag{60}$$

Con $y_0 = 1$, ogni passo si moltiplica per q:

$$y_1 = q y_0 = -\frac{3}{31} \approx -0.0967742,$$

$$y_2 = q y_1 = \left(-\frac{3}{31}\right)^2 = \frac{9}{961} \approx 0.00936524,$$

$$y_3 = q y_2 = \left(-\frac{3}{31}\right)^3 = -\frac{27}{29791} \approx -0.000906314,$$

e così via. In generale,

$$y_i = q^i y_0 = \left(-\frac{3}{31}\right)^i$$

dove i = 1/h = 14 passi e y_0 viene fornito insieme al problema,

$$y(1) = \left(-\frac{3}{31}\right)^{14} \approx 6.3187889848 \cdot 10^{-15}$$

Esempio con $h = \frac{1}{4}$

$$z = 0.25 \times (-34) = -8.5, \quad q = \frac{1 + 4.25}{1 - 4.25} = -\frac{21}{13} \approx -0.6190476,$$

$$y(1) \approx y_4 = \left(-\frac{13}{21}\right)^4 = \frac{28561}{194481} \approx 0.1468575.$$

La soluzione è stabile (la regola trapezoidale è A-stabile), ma poco accurata con un passo così grande.

2.3 Confronto tra i metodi e codice

Ora si implementa su codice (Es2_v2 con le funzione rk3 e trapezoidal) quello che si è svolto sinora Es2_v2:

```
close all
  clear all
  clc
  % Definizione del problema
  f = Q(x, y) -34 * y; % Funzione derivata
  y0 = 1;
                         % Condizione iniziale
  \mathbf{a} = 0;
                         % Estremo sinistro
  b = 1;
                          % Estremo destro
  % Passi da confrontare
11
  h_{values} = [1/14, 1/4, 0.05];
12
  % Inizializzazione delle figure
  figure('Position', [100, 100, 1200, 800]);
  for i = 1:length(h_values)
      h = h_values(i);
18
       % Creazione della griglia temporale
20
       x = a:h:b;
21
       if x(end) \sim b
           x = [x, b]; % Assicura che l'ultimo punto sia
23
               esattamente b
       end
       % Applicazione del metodo RK3
26
       y_rk3 = rk3(f, y0, x);
27
28
       % Applicazione della regola trapezoidale
29
       y_trap = trapezoidal(f, y0, x);
30
31
       % Soluzione esatta
32
       y_{exact} = exp(-34 * x);
```

```
% Calcolo degli errori
    error_rk3 = abs(y_exact - y_rk3');
    error_trap = abs(y_exact - y_trap');
    % Plot delle soluzioni
    subplot(3, 2, 2*i-1);
    plot(x, y_rk3, 'b-o', x, y_trap, 'r-s', x, y_exact, 'k--',
        'LineWidth', 1.5);
    legend('RK3', 'Trapezoidale', 'Esatta');
    title(sprintf('Soluzioni (h = %.4f)', h));
    xlabel('x');
    ylabel('y');
    grid on;
    % Plot degli errori
    subplot(3, 2, 2*i);
    semilogy(x, error_rk3, 'b-*', x, error_trap, 'r-*', '
       LineWidth', 1.5);
    legend('RK3', 'Trapezoidale');
    title(sprintf('Errori (h = %.4f)', h));
    xlabel('x');
    ylabel('Errore');
    grid on;
    % Stampa degli errori massimi
    fprintf('h = \%.4f:\n', h);
    fprintf(' Errore max RK3: %e\n', max(error_rk3));
    fprintf(' Errore max Trapezoidale: %e\n\n', max(error_trap
       ));
end
```

rk3:

```
for i = 1:n-1

h = x(i+1) - x(i);

"Calcolo degli stadi

K1 = feval(f, x(i), y(i, :));

K2 = feval(f, x(i) + h/2, y(i, :) + (h/2) * K1);

K3 = feval(f, x(i) + (3*h)/4, y(i, :) + (3*h)/4 * K2);

"Aggiornamento della soluzione

y(i+1, :) = y(i, :) + (h/9) * (2*K1 + 3*K2 + 4*K3);

end
end
```

trapezoidal:

Di seguito viene mostrato nei grafici ciò che si era detto precedentemente. Viene messo a confronto il metodo dei trapezzi e Runge-Kutta di ordine 3, con i relativi errori.

Figure 5: Le soluzioni e errori del metodo trapezzi e Runge-Kutta

3 Esercizio 3

3.1 Consegna

Preso dall'esercizio 8. Risolvere il seguente problema applicando il metodo shooting:

$$y'' = (2x/(x^2+1))y' - (2x/(x^2+1)) + 1$$
(61)

$$y(0) = 1.25 (62)$$

$$y(4) = -0.95 (63)$$

(soluzione esatta $y = \frac{29x^3}{380} - \frac{x^2}{2} + \frac{87x}{380} + \frac{5}{4}$)

3.2 Svolgimento

Si pongono le variabili di stato:

$$y_1(x) = y(x), y_2(x) = y'(x).$$

Allora il sistema equivalente è:

$$\begin{cases} y_1'(x) = y_2(x) \\ y_2'(x) = \frac{2x}{1+x^2} y_2(x) - \frac{2}{1+x^2} + 1 \end{cases}$$

con condizioni iniziali parametriche (shooting):

$$y_1(0) = \frac{5}{4}, \qquad y_2(0) = s,$$

dove $s \in \mathbb{R}$ è la pendenza iniziale da determinare in modo che:

$$y_1(4) = -\frac{19}{20}$$

Per ogni s, si integra il sistema nel dominio $x \in [0,4]$ (problema di Cauchy) e si definisce la funzione residuo:

$$F(s) = y_1(4; s) - \left(-\frac{19}{20}\right).$$

Si vuole trovare $s \in \mathbb{R}$ tale che F(s) = 0. Per risolvere questa equazione scalare si possono utilizzare metodi numerici come:

- il metodo di bisezione
- il metodo delle secanti
- il metodo di Newton

In questo caso, si utilizza il metodo delle secanti. Date due stime iniziali s_0 e s_1 , si calcola iterativamente:

$$s_{k+1} = s_k - F(s_k) \cdot \frac{s_k - s_{k-1}}{F(s_k) - F(s_{k-1})},$$

fino alla convergenza, ovvero fino a che $|F(s_k)|$ sia sufficientemente piccolo.

Per integrare il sistema, si utilizza il metodo di Runge–Kutta del quarto ordine (RK4). Dato un passo h, e due punti consecutivi x_n e $x_{n+1} = x_n + h$, si indica lo stato come un vettore colonna $\mathbf{Y} = (y_1, y_2)^T$. Le formule del metodo RK4 sono:

$$K_{1} = f(x_{i}, Y_{i}),$$

$$K_{2} = f\left(x_{i} + \frac{h}{2}, Y_{i} + \frac{h}{2}K_{1}\right),$$

$$K_{3} = f\left(x_{i} + \frac{h}{2}, Y_{i} + \frac{h}{2}K_{2}\right),$$

$$K_{4} = f(x_{i} + h, Y_{i} + hK_{3}),$$

$$Y_{i+1} = Y_{i} + \frac{h}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4}).$$

Il vettore funzione f(x, Y) rappresenta il lato destro del sistema differenziale, ovvero:

$$f(x, (y_1, y_2)) = \left(\frac{y_2}{1+x^2} y_2 - \frac{2}{1+x^2} + 1\right).$$

3.3 Codice

Nel codice è stato utilizzato i=200 passi uniformi su [0,4], quindi il passo di integrazione è:

$$h = \frac{4}{200} = 0.02$$

Tale valore è sufficientemente piccolo da rendere l'integrazione numerica molto accurata. Si rende pubblico il codice (Es3, con le funzioni rk4, f_ode, shooting_residual):

Es3:

```
close all
clear all
clc

// intervallo di integrazione
a = 0;
b = 4;
i = 200;
// numero di passi
x = linspace(a,b,i+1);
// condizioni al contorno
```

```
% y(0)
y0 = 1.25;
  yb = -0.95;
                                   % y(4) (target)
16 % funzione residuo per la secante
17 F = @(s) shooting_residual(s, x, y0, yb);
19 % -----
20 % metodo della secante
s0 = 0;
                    % guess 1
s1 = 0.2;
                   % guess 2 (puoi cambiare)
23 tol = 1e-10;
                   % tolleranza
  maxit = 50;
24
for k = 1:maxit
     f0 = F(s0);
27
      f1 = F(s1);
28
      s2 = s1 - f1*(s1-s0)/(f1-f0);
29
      if abs(s2-s1) < tol
         break;
31
      end
32
      s0 = s1;
33
      s1 = s2;
34
  end
35
36 s_star = s2;
fprintf('Pendenza iniziale trovata: s = %.12f\n', s_star);
40 % integrazione finale con s_star
41 Y0 = [y0; s_star];
[Y] = rk4(@f_ode, Y0, x);
  % soluzione esatta
y_{\text{exact}} = (29/380) * x .^3 - 0.5 * x .^2 + (87/380) * x + 1.25;
47 % grafico
48 plot(x, Y(:,1), 'b-', 'LineWidth',1.5); hold on;
plot(x, y_exact, 'r--', 'LineWidth',1.5);
plot(4, yb, 'ko', 'MarkerFaceColor', 'k');
s1 xlabel('x'); ylabel('y(x)');
title('Confronto soluzione numerica (shooting RK4) vs esatta');
legend('Numerica (shooting RK4)', 'Soluzione esatta', 'Location
```

```
','Best');
54 grid on;
```

rk4:

```
function y = rk4(f, y0, x)
\mbox{\it %} x sono il nodo iniziale + tutta la discretizzazione
% metodo di Runge-Kutta a 4 stadi di ordine 4
% y: matrice length(x) x n. di componenti di y
    y(1,:) = y0;
                      % inizializzo la prima riga
    n = length(x);
    for i = 1:n-1
       h = x(i+1)-x(i);
       K1 = feval(f, x(i), y(i,:).'); K1 = K1(:).'; % -->
            riga
        K2 = feval(f, x(i)+h/2, y(i,:).' + h/2*K1.'); K2 = K2
        K3 = feval(f, x(i)+h/2, y(i,:).' + h/2*K2.'); K3 = K3
        K4 = feval(f, x(i+1), y(i,:).' + h*K3.'); K4 = K4
           (:).';
        y(i+1,:) = y(i,:) + h/6*(K1 + 2*(K2+K3) + K4);
    end
end
```

f_ode:

```
function dydx = f_ode(x,y)

% y(1) = y1 = y, y(2) = y2 = y'

dydx = zeros(2,1);

dydx(1) = y(2);

dydx(2) = (2*x/(1+x^2))*y(2) - (2/(1+x^2)) + 1;

end
```

shooting residual

```
1 % calcolo del residuo per la secante
```

```
function r = shooting_residual(s, x, y0, yb)
Y0 = [y0; s];
Y = rk4(@f_ode, Y0, x);
r = Y(end,1) - yb;  % differenza con la condizione a x=b
end
```

```
Pendenza iniziale trovata: s = 0.228947368687
```

Viene mostrata la soluzione insieme alla stima effettuata.

Figure 6: soluzione vs shooting rk4

Nel codice sono stati scelti come valori iniziali per il metodo delle secanti:

$$s_0 = 0, \qquad s_1 = 0.2$$

(dove s_1 è una stima fornita nell'enunciato originale) Riassumendo, il risultato finale è il seguente: pendenza iniziale trovata (convergenza della secante):

$$s^{\star} \approx 0.228947368421$$

con questo valore di s^* , l'integrazione del sistema tramite RK4 fornisce:

$$y_1(4; s^*) = -0.9500000000000,$$

cioè il vincolo al bordo è rispettato con un errore numerico trascurabile (residuo $\sim -3 \times 10^{-14}$).

4 Esercizio 4

4.1 Consegna

Risolvere il modello predatore-preda

$$x'(t) = Ax(t) - Bx(t)y(t)$$
(64)

$$y'(t) = Cx(t)y(t) - Dy(t)$$
(65)

$$x(0) = 3000 y(0) = 120 (66)$$

con $A=2,\,B=0.02,\,C=0.0002,\,D=0.8.$ Usare il metodo di Runge-Kutta nell'intervallo [0,5] e fare il grafico di (x,y). Ripetere con A=B=C=D=1 e $x(0)=4,\,y(0)=1$; risolvere nell'intervallo [0,8]; fare il grafico di (x,y).

4.2 Svolgimento

Si crea uno script MATLAB che svolge il seguente problema e disegna dei grafici per (x,y) per tutte e 2 le parti dell'esercizio. Es4 farà uso della funzione rk4 (per il metodo Runge-Kutta) e pred_prey (per implementare il modello predatore-preda). rk4:

```
function y=rk4(f,y0,x)

% x sono il nodo iniziale + tutta la discretizzazione
% metodo di Runge-Kutta a 4 stadi di ordine 4
%% struttura di y: matrice length(x)x n. di componenti di y
y(1,:)=y0;
n=length(x);
for i=1:n-1
h=x(i+1)-x(i);
K1=feval(f,x(i),y(i,:));
x12=x(i)+h/2;
K2=feval(f,x12,y(i,:)+h/2*K1);
K3=feval(f,x12,y(i,:)+h/2*K2);
K4=feval(f,x(i+1),y(i,:)+h*K3);
y(i+1,:)=y(i,:)+h/6*(K1+2*(K2+K3)+K4);
end
```

pred_prey:

```
% Definizione della funzione per il sistema predatore-preda
function dydt = pred_prey(t, y, A, B, C, D)
x = y(1);
y_val = y(2);
dxdt = A*x - B*x*y_val;
dydt = C*x*y_val - D*y_val;
dydt = [dxdt; dydt];
end
```

Es4:

```
%esercizio predatore-preda
  clear all
  close all
  clc
  % Prima configurazione: A=2, B=0.02, C=0.0002, D=0.8 
  A1 = 2; B1 = 0.02; C1 = 0.0002; D1 = 0.8;
  x0_1 = 3000; y0_1 = 120;
  h = 0.01;
t_span1 = 0:h:5; % Intervallo [0,5] con passo 0.01
  % Definizione della funzione con parametri specifici
12
13 f1 = 0(t, y) pred_prey(t, y, A1, B1, C1, D1);
15 % Risoluzione con Runge-Kutta
  sol1 = rk4(f1, [x0_1; y0_1], t_span1);
16
18 % Grafico della fase (x,y)
19 figure;
20 plot(sol1(:,1), sol1(:,2));
21 xlabel('Prede (x)');
ylabel('Predatori (y)');
  title('Modello Predatore-Preda - Primo Caso (A=2, B=0.02, C
      =0.0002, D=0.8);
  grid on;
  % Seconda\ configurazione:\ A=B=C=D=1
A2 = 1; B2 = 1; C2 = 1; D2 = 1;
```

```
x0_2 = 4; y0_2 = 1;
  t_span2 = 0:h:8; % Intervallo [0,8] con passo 0.01
30
  % Definizione della funzione con parametri specifici
31
  f2 = @(t, y) pred_prey(t, y, A2, B2, C2, D2);
32
  % Risoluzione con Runge-Kutta
  sol2 = rk4(f2, [x0_2; y0_2], t_span2);
35
  % Grafico della fase (x,y)
37
  figure;
38
  plot(sol2(:,1), sol2(:,2));
  xlabel('Prede (x)');
  ylabel('Predatori (y)');
  title('Modello Predatore-Preda - Secondo Caso (A=B=C=D=1)');
   grid on;
```

4.3 Risultati

Gli ultimi valori calcolati sono:

- Caso 1 (t finale 5.0): $x(5) \approx 3018.04$, $y(5) \approx 120.35$
- Caso 2 (t finale 8.0): $x(8) \approx 3.9764$, $y(8) \approx 0.8235$

I seguenti grafici rappresentano i risultati ottenuti dalla soluzione numerica del sistema di equazioni differenziali del modello predatore-preda, utilizzando il metodo di Runge-Kutta del quarto ordine:

Figure 7: prima soluzione

Il grafico mostra un'orbita chiusa che rappresenta il ciclo delle popolazioni di prede e predatori

Figure 8: seconda soluzione

Anche in questo caso si osserva un'orbita chiusa, sebbene con caratteristiche diverse dovute ai differenti parametri