Graph Theory Fall 2022

Week 11 Assessment

1. Let *G* and *H* be graphs with incidence matrices

$$M_G = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}; \quad M_H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

These matrices are the same except the last two entries in the final column are switched.

- A. Draw G and H
- B. Determine, with justification, whether G and H are isomorphic graphs.
- 2. Given a simple graph G=(V,E), we define its **complement** $\overline{G}=(V,\overline{E})$ as the simple graph with the same vertex set and where two distinct vertices in \overline{G} are joined by an edge in \overline{G} if and only if they are not joined by an edge in G. Here, the set \overline{E} is defined as

$$\overline{E} = \{uv: u \in V, v \in V, u \neq v \text{ and } uv \notin E\}.$$

A. Suppose G is the six-cycle drawn below. Draw its complement \overline{G} .

- B. Suppose G is an r-regular simple graph of order n. Explain why \overline{G} is an s-regular simple graph of order n and determine the value of s in terms of r.
- C. If $G = K_{p,q}$ where p and q are positive integers, describe \overline{G} .

3. Consider the graph G below

- A. Write down an incidence matrix and an adjacency matrix for G.
- B. Determine the radius and the diameter of G.
- C. This is the graph from question 3 in homework 6. Explain why (x k) is a factor of its chromatic polynomial for every $k \in \{0,1,2,3\}$. You are not required to find the chromatic polynomial of G.
- 4. Recall that a **circuit** is a closed walk (one in which the starting and ending vertices are the same) that does not repeat an edge. Explain why if *G* has a nontrivial circuit, then it must have a nontrivial cycle.
- 5. Let T be a full ternary (3-ary) tree of height 7.
 - A. Determine, with justification, a tight upper bound on the number of vertices *T* can have.
 - B. Determine, with justification, a tight upper bound on the number of edges T can have.
 - C. Determine, with justification, a tight upper bound on the number of leaves T can have.
 - D. Determine, with justification, whether it is possible for T to have exactly 100 leaves.
- 6. For integers $q \ge 1$ and $r \ge 3$, the **cylinder graph** $S_{q,r}$ is defined as $S_{q,r} = P_q \times C_r$. For instance, $S_{5,3}$ is drawn below:

- A. Determine, in terms of q and r, the number of vertices in $S_{q,r}$
- B. Determine, in terms of q and r, the number of edges in $\mathcal{S}_{q,r}$
- C. Show that r is even if and only if $S_{q,r}$ is bipartite.