MOCK TEST 9, 2024 HS 2ND YEAR SCIENCE

TIME: 1 HOUR

1. Select the correct statement related to allergic response;

MARKS: 120(JEE), 200(NEET)

BIOLOGY

A) Allergens stimulate formation of Ig E antibody. B) Histamine is secreted from mast cells.

C) Treatment involves use of steroids and antihistamines. D) Immune system becomes hyposensitive.								
a. Only A, B, D	b. Only A, B, C	c. Only B, C, D	d. All of these					
2. Which of the following is an example of an autoimmune disease?								
a) AIDS	b) Taberculosis	c) Rheumatoid arthritis	d) Malaria					
3. In which organ are T-lymphocytes matured?								
a) Bone marrow b) Splee	en c) Thy	mus	d) Lymph nodes					
4. Which of the following	is not a characteristic of i	nnate immunity?						
a) Non-specific response	b) 'mmediate response	c) Memory formation	d) Physical barriers					
5. Which of the following	g starements is true about a	autoimmunity?						
a) The immune system at	tacks foreign pathogens							
b) The immune system fa	ils to recognize its own ce	lls.						
c) Autoimmunity only aff	ects elderly individuals.							
d) Vaccines are used to tre	eat autoimmune diseases.							
6. A gene, whose expressi	ion helps to identify transfe	ormed cells is known as						
a. selectable marker	b. vector	c. plasmid	d. structural gene					
7. A selectable marker is a	used to:							
a. help in eliminating the non-transformants so that the transformants can be regenerated.								
b. identify the gene for the desired trait in an alien organism.								
c. select a suitable vector for transformation in a specific crop.								
d. mark a gene on a chromosome for isolation using a restriction enzyme.								
8. Insertional inactivation of the lac Z gene forms-								
a. Blue recombinant colonies b. Colourless recombinant colonies								
c. Fluorescent green colonies d. There is no relation between the lac Z gene and colour of the colony.								
9. In the screening process during rDNA experiments, clones that metabolize B-gal turn:								
a. Colorless	b. Blue	c. Yellow	d. Green					

10. A cloning vector has two antibiotic resistance ger inserted into the tetracycline gene. Non- recombinant	nes- for tetracycline and amp	icillin. A foreign DNA was				
a. ampicillin but not tetracycline	steattin containing:					
c. both tetracycline and ampicillin	b. tetracycline but not ampicillin d. neither tetracycline nor ampicillin					
11. Which one is the omnivorous -	and the state of amplettin					
a. Frog. b. Consumer	c. Deer.					
12. The process of breakdown of detritus by detrivor		d. Man				
a. Mineralisation. b. Fragmentation		unification				
13. The breakdown of detritus into small particles by		ed -				
a. Mineralisation. b. Catabolism	c. Humification. d.Fragmentation					
14. Given below are two statements:						
Statement 1: Decomposition is a process in which d	etritus is degraded into simp	ler substances by				
Statement 2: Decomposition is faster if the detritus	is rich in lignin and chitin	ici substances by microbes				
Choose the correct answer	gan and china					
a. Statement 1 is correct but Statement 2 is incorrec	t					
b. Statement 1 is incorrect but statement 2 is correct	t.					
c. Both Statement 1 and 2 are correct						
d. Both Statement 1 and 2 are incorrect.						
15. In relation to gross primary productivity and ne following is correct?	t primary productivity of an	ecosystem, which one of the				
a. Gross primary productivity is always more than	net primary productivity					
b. Gross primary productivity and net primary productivity	luctivity are one and same					
c. There is no relationship between gross primary p	productivity and net primary	productivity				
d. Gross primary productivity is always less than net primary productivity						
16. Sperms produce an enzymatic substance for dissolving egg, coverings. It is called						
a.Hyaluronic acid b. Hyaluronidase c. Androgamone d. Diastase.						
17. Oocyte is liberated from ovary under the influence of LH, after completing						
a. Meiosis and before liberating polar bodies b. Meiosis I and before liberating polar bodies						
c. Meiosis I after release of polar body.						
18.Antrum is cavity of						
a. Ovary b.Blastula	c. Graffian follicle	d. Gastrula				
19.Hormone responsible for ovulation and develo	pment of corpus luteum is					
a FSH bill	c. LTH	d. ICSH				

20 Hormone contro	olling human menstrual cycle	is		
a. Estrogen	b. FSH	c. LH	I .	d. All the above
	ollowing best describes the Co	entral Dogn	na of Biology?	
	followed by protein synthesi		b. DNA to RNA	to protein
	followed by DNA synthesis		d. Prot	cin to RNA to DNA
22. The semi-cons	ervative nature of DNA replic	ation mear	s that:	
	molecule consists of one old			•
	molecule consists entirely of			
	molecule is replaced entirely l			
d. DNA is replicat	ted without any changes.			
23. During transcr	ription in the Central Dogma o	of Biology:		
	ted to form new DNA molecu			from a DNA template
c. Proteins are syr	nthesized from RNA molecule	es	d. DNA is tran	aslated into protein sequences.
24. Which of the	following statements is true re	garding the	e reverse transcripta	ise enzyme?
a. It synthesizes F	RNA from a DNA template	b. It sy	nthesizes DNA fro	om an RNA template.
c. It synthesizes I	RNA from an RNA template.		d. It synthesizes D	NA from a protein template.
25. Which of the	following components is cruc	ial for hum	oral immunity?	
a) Cytotoxic T c	tells b) Helper	T cells	c) B cells	d) Natural killer cells
26. I.Read the fo	ollowing statements and select	the incorre	ct one.	
a) Little decomp	osition occurs during the form	nation of pri	mary sludge.	
b) Formation of	primary sludge requires aerat	ion.		
c) Activated sluc	dge possess flocs of decompos	ser microbe	S,	
d) Formation of	activated sludge requires acra	tion.		
27. Read the fol dissolved oxyge microorganisms	lowing statements and select to that would be consumed if a s.	he correct o	option. Statement 1 lic matter in one lit	: BOD represents the amount of re of water were oxidised by
Statement 2: Hi	gh value of BOD indicates tha	at water is h	ighly polluted by o	rganic matter.
	ents 1 and 2 are correct.	111		
(b) Statement 1	is correct but statement 2 is in	ncorrect.		
	is incorrect but statement 2 is			
	nents 1 and 2 are incorrect			

		2 2 2		20.0	r mark
	4 1 2 2 2 6 0	a= gramma B= av		7:2	9VB= mx2
1. PA 10, 14 X	ax tenon at	water is higher, then dissolv	ved oxygen conte	of of water	TC= my
The second second second	a) higher	b) lower	c) medium		913
		sore useful than burning of		uono ise	of these.
	a) a is a non-po				16 [26
	chit is cheap, se	afe and renewable source o	fenergy	d) all of these	ted, stored and transported 40
	30. The primary	treatment fails to remove			v2=u-2a
12+4=16	a) sand, silt	b) small pebbles c) path	nogens or dissolve	ed substances	$\sqrt{1 = +2 \times 98}$
1249=			PHYSICS	3	d) both (a) and (c).
	Q1.Lenz's law is	consistent with conservat	ion of		V = 12 m
~	(a) energy	(b) mass		(c) charge	(d) momentum.
rei	Q2. The magnet at t=2s is	ic flux linked with the coil	varies with time	as, φ=3t²+4t+9. The	magnitude of the induced emi
45	(a) 9V	(b) 16V		© 3V	(d) 4v. KE= Km
4	Q3. Two solenoic their self inducta	ds of equal number of turn ince will be	ns having their le	ngth and radii in the	e same ratio 1:2. The ratio of
	1:4	(b) 1:1		© 2:1	D33=V/d112
	Q4. The phase did produced in it is	fference between the flux	k linked with a co	il rotating in a unifo	orm magnetic field and emf
1	(e) n/2	(b) π/		© -π/6	$(d)_{\pi} \Rightarrow \frac{2}{1.6} \times 10^{2}$
The state of the s	magnetic neid.	erotons with speed 4x 10 ^s . The pitch of the resulting of Toton = 1.69 x 10- ¹⁹ C)	m/s enters a unifo helical path of pro	orm magnetic field stons is close to (Ma	of 0.3T at an angle of 60° to the iss of the proton 1.67 x 10^{-27} kg
Toom	(a) 2 cm	4015	cm (c) 12	cm	(d) 4 cm
T12:8m	Q6.Proton with applied magnet	n kinetic energy of 1MeV r tic field (west to east). The	noves from south value of magnetic	to north. It gets an c field is : (Rest mas	acceleration of 1012m/s2 by an s of proton is 1.6 x 10-27 kg)
	(a) 0.71 mT	(b) 7.	1 Mt	(c) 0.071 mT	(d) 71 mT.
KS	Q7. If a station	ary charge is put inside m	agnetic field, then	the charge will	
K	(a) Move in t	nelix (b) m	nove in circle (c) m	ove in stationary lin	e (d) remain stationary
		d sphere separated by dis tric constant 2, then what			er. If they are immersed in a ions are same
	(a) +/2	(b) F		(c) 2F	(d) 4F
	4/3. A fish insid		all, is looking at the		he refractive index of water is t when the ball is 12.8 m above
	(a) 9 m/s	(b) T	2 m/s	(c) 16 m/s	(d) 21.33 m/s
	Q10. The lowe	st Bohr orbit in hydrogen a	atom has		

					$t=x^{2n}$. It = 2n	+24			
					12 = 2n	X			
	5 Page	S. J. J.		O	(1		(da	
							17	(2"+X)	
	(a) The maximum	(b) the leas		(c) infinite		(d) Zero ene	rgy.		į.
		<u>, </u>	MATHEMAT	rics	d'				
	References								3
	1. $\int \frac{dx}{x(x^n+1)}$ is equal to						[ab	llagi	0
)	$(a)\frac{1}{n}\log\left(\frac{x^n}{x^{n+1}}\right)+c$	$(b)^{\frac{1}{n}}\log\left(\frac{x^{n}+1}{x^{n}}\right)+c$	# TE	(c) $\log \left(\frac{x}{x^n} \right)$	$\left(\frac{1}{1+1}\right) + c(d)$ None	e of these	o e t	la di	
	2. For any square matrix	(A, AA' is a							
,	(a) Unit matrix	(b) Symmetric mate			c matrix(d) None				
-	3. If $A = \begin{bmatrix} \cos 2\theta & -\sin \theta \\ \sin 2\theta & \cos \theta \end{bmatrix}$	$\begin{bmatrix} a2\theta \\ 2\theta \end{bmatrix}$ and $A + A' = I$, t		of θ is equa	l to	ì.		J+ K. K	
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{3\pi}{2}$		(d) $\frac{\pi}{2}$		1+1+	1	
_	$4. i. (j \times k) + j. (k \times i)$	$+ k. (i \times j) =$					ry start	99	
	(a) 1	(b) 0	Yet 3		(d) None of the	ese	dy=	dit dix	
-	5. If x>1 for $(2x)^{2y} = 4$	$4e^{2x-2y}$, then $(1 + \log x)$	$(\frac{dy}{dx})^2 \frac{dy}{dx}$ equal	ls		•	dr	dt	lant
	(a) $\frac{x \log_e 2x - \log_e 2}{x}$	(b) $\log_e 2x$	(c) $\frac{z \log}{z}$	x x	(d) none of the	se ant		3 KA	E
	6. $\lim_{x \to \frac{\pi}{4}} \frac{\cot^3 x - \tan x}{\cot(x + \frac{\pi}{4})}$ is					sect		00	
= 1	(a) $4\sqrt{2}$	(b) 8√2	(c) 4	10.00	(d) no	ne of these		Y	
	7. If $x = 3tant$ and y	= 3sect then the value	ue of $\frac{d^2y}{dx^2}$ at $t =$	$\frac{\pi}{4}$ is	(d) not	1 = 1	i i	40 20 3x	
	(a) $\frac{1}{6\sqrt{2}}$	(b) $\frac{3}{2\sqrt{2}}$	3.4	(c) $\frac{1}{3\sqrt{2}}$	132	(d) None	of these	20 t10	+20
		ents ,40 opted for NCo cted at random, then			-				24
	$\sqrt{a})\frac{1}{6} \qquad \qquad (b)$	$\frac{5}{6}$ (c) $\frac{1}{3}$		(d) Non	e of these			witt	
		it a target correctly wi the probability that th			$ad\frac{1}{8}$ respectively	. If all hit at t	ne target	sect	tant 4
	(a) 1/192	(b) $\frac{25}{32}$	(c) $\frac{25}{192}$		(d) 7/32			sint	272
	10. Let $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. If u_1 and u_2 are co	iumn matrices s	such that A	$u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} $ and A	$u_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, the	en	cost	68
	$u_1 + u_2 =$							36	
	$(a)\begin{bmatrix} -1\\ -1\end{bmatrix}$	(b) $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	(c)	1	(d) none of the	hese	-	2	
	[0]	1-11	1	10 D	7 = [00	7	2 = 5	-
	21	0		212] u = [[100]		52 0	

				•	2
		(y	0 -	M	M= K(A)2 W= K(A)2
	ν	11-20 **	, , , , ,	100 X#3	VTATE
Edu Ear	SIP a g dO	115		102	x = x 1 3
	- 0 10g	5600		- 1113	on. If $r = 9x [A]^2$
9	052	112000	OVER COTOV	1. / E	r= ax
Fron	25 2 a of codium ca	rhonath Na.CO. is	CHEMISTRY dissolved in enough water	to make 250 ml of soluti	
T WE S	sodium carbonate diss	ociates completely	molar concentration of sod	lium ion, Na ⁺ and carbon	ate ions,
From Ever	CO ₃ ² are respectively	(Malar mace of Na	$_{0}^{1}CO_{3} = 106 \text{ g mol}^{-1}$):		n
	(\$)(a)4.90 M and 1.910	M (b) 0.477 M and 0.0477 M		W= ~
			d) 0.955 M and 1.910 M		2
East	The density of a sol	lution prepared by d	issolving 120 g of urea (mo	ol. mass = 60 u) in 1000	g of
Ez	o water is		issorving 12 5		13
- Ecost	1.15 g/mL. The molar	rity of this solution i			52
	(a) 1.78 M	(b) 1.02 M	(c) 2.05 M	(d) 0.50 M	
	3. For a second order	reaction rate at a par	ticular time is x . If the initi	al concentration is triple	d, the
	rate will become:				H- K[A]
	(a) $3x$	(b) $9x^2$	(e) 9x	(d) $27x$.	the $K = K [A]^{x}$ $2K = K [4A]^{x}$ $= 4^{x} K [A]^{x}$
	4. For a chemical read	ction A → B it is o	oserved that the rate of reac	tion doubles when the	or= Klain
	concentration of A is	increased four times	The order of reaction in A	is:	4x K(A)
	(a) Two	(b) One	(c) Half	(d) Zero	
***	5. What pressure of H	L would be required	to make the e.m.f. of the hy	vdrogen electrode zero in	pure
	water at 25°C?	iz would be required	to make the time of	, 5	
•	(a) 10^{-7} atm	(b) 1 atm	$(c)10^{-14}$ atm	(d) Zero	
•.	6 In the electrochemi	cal cell: ZniZnSO.((0.01 M) CuSO ₄ (1.0 M) Cu,	the emf of this Daniell o	ell is E ₁ .
	When the concentration	on of ZnSO4 is chan	ged to 1.0 M and that CuSC	0_4 changed to 0.01 M, the	e emi
	changes to E2. From t	he following, which	one is the relationship betv	veen E ₁ and E ₂ ? (Given, l	RT/F =
	0.059)		(NO F	(4) E - E.	
	(a) $E_1 < E_2$	(b) $E_2 = 0 \neq E_1$	$(o)E_1 > E_2$	$(d) E_1 = E_2$	Pt
	7. The molecular form	nula of Wilkinson ca	ntalyst, used in hydrogenatio	on of alkenes is:	148
	(a) Co(CO) ₈	(b) $[Pt(NH_3)_2Cl_2]$		(d) $K[Ag(CN)_2]$.	
	0 Tl		t can exist for square plana	r (Pt(Cl) (pv) (NH ₂) (NH	OH)I+
	is (py = pyridine)	metrical isomers the	t can exist for square plants	i [i i(Ci) (þ)) (1413) (142	V
	(a) 4	(b) 6	(c) 3	_(d)2 ×	
		f - autoibuting struct	ures showing		Pt
	9. The total number of hyperconjugation (inv	volving C—H bonds) for the $H_3C + C$	CH ₂ CH ₃	7
	following carbocation				- Y
	(a) six	(b) four		×	TM
	(c) eight	(d) three			
	,	m is most usaful far	stabilizing which of the foll	lowing carbocations?	7
	(a) neo-Pentyl	(b) tert-Butyl	(c) iso-Propyl	(d) Ethyl	2
	(a) neo-rentyr	100	(1)		
				16 2	4
				9	8
				369	