$Alg\`ebre$

Relations d'équivalence

Denis Vekemans *

Exercice 1 Soit E un ensemble et \mathcal{R} une relation de E dans E.

Dans chacun des exemples ci-dessous, donner les propriétés (réflexivité, symétrie, transitivité) vérifiées par \mathcal{R} .

- 1. E est l'ensemble des droites du plan. \mathcal{R} est définie par $D \mathcal{R} D' \iff D \perp D'$.
- 2. E est l'ensemble des cercles du plan. \mathcal{R} est définie par Γ \mathcal{R} $\Gamma' \iff \Gamma$ et Γ' se coupent en exatcement deux points.
- 3. E est l'ensemble des fonctions continues de [0,1] dans $\mathbb{R}: E = \mathcal{C}[0,1]$. \mathcal{R} est définie par f \mathcal{R} $g \iff \forall x \in [0,1], \ f(x) \leq g(x)$.
- 4. E est l'ensemble des fonctions de définies sur \mathbb{R} et à valeurs dans \mathbb{R} . \mathcal{R} est définie par f \mathcal{R} $g \iff f g$ est une fonction paire.
- 5. $E = \mathbb{R}$. \mathcal{R} est définie par $x \mathcal{R} y \iff xe^y = ye^x$.
- 6. $E = \mathbb{Z}^*$. \mathcal{R} est définie par $x \mathcal{R} y \iff x$ divise y.
- 7. $E = \mathcal{P}(X)$, où X est un ensemble. \mathcal{R} est définie par $A \mathcal{R} B \iff A \subset B$.

Exercice 2 Dans $\mathbb{Z} \times \mathbb{Z}^*$, démontrer que la relation \mathcal{R} définie par

$$(x,y) \mathcal{R} (x',y') \iff xy' = x'y$$

est une relation d'équivalence.

Exercice 3 Soit E un ensemble. Soit R une relation réflexive et transitive de E vers E et S la relation de E vers E définie par

$$x \mathcal{S} y \iff (x \mathcal{R} y) \wedge (y \mathcal{R} x).$$

Montrer que S est une relation d'équivalence.

 $^{^*}$ Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France

Exercice 4 On dit qu'une relation \mathcal{R} de X dans X est circulaire si

$$(x \mathcal{R} y) \wedge (y \mathcal{R} z) \Longrightarrow z \mathcal{R} x.$$

Montrer qu'une relation est réflexive et circulaire si et seulement si elle est une relation d'équivalence.

Exercice 5 Trouver l'erreur dans le raisonnement suivant :

Soit \mathcal{R} une relation binaire de X dans X, symétrique et transitive.

Donc, $x \mathcal{R} y$ implique que $y \mathcal{R} x$, par symétrie, et comme $(x \mathcal{R} y) \land (y \mathcal{R} x)$, cela induit que $x \mathcal{R} x$, par transitivité.

Donc, \mathcal{R} est réflexive et est, par conséquent, une relation d'équivalence.

Donner un exemple \mathcal{R} de relation binaire de X dans X, symétrique et transitive, mais non réflexive.

Exercice 6 Soit E un ensemble. Soit R la relation de E vers E définie par

$$x \mathcal{R} y \iff x = y.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Pour tout $x \in E$, déterminer la classe d'équivalence de x.
- 3. Déterminer l'ensemble quotient de E par \mathcal{R} .

Exercice 7 On définit sur \mathbb{R}^2 la relation \mathcal{R} par

$$(x,y) \mathcal{R}(x',y') \Longleftrightarrow x - 5y' = x' - 5y.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Vérifier que la classe d'équivalence de (0,0), que l'on notera $\mathcal{R}(0,0)$, est une droite \mathcal{D} à préciser.
- 3. Vérifier que toute classe d'équivalence $\mathcal{R}(x,y)$ est une droite parallèle à \mathcal{D} .
- 4. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ l'application définie par f(x,y) = x + 5y. Montrer que

V(... ...

$$\forall (x,y) \in \mathbb{R}^2, \ f(\mathcal{R}(x,y)) = x + 5y.$$

Montrer que f est bijective de \mathbb{R}^2/\mathcal{R} dans \mathbb{R} .

Exercice 8 Soit $n \in \mathbb{N}^*$. Soit \mathcal{R}_n la relation définie dans \mathbb{Z} par

$$x \mathcal{R}_n y \iff n \text{ divise } x - y.$$

1. Montrer que \mathcal{R}_n est une relation d'équivalence.

Elle est appelée congruence modulo n et on note $x \equiv y \mod(n)$ au lieu de $x \mathcal{R}_n y$.

- 2. Pour tout $x \in \mathbb{Z}$, déterminer la classe de x modulo n.
- 3. On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient de \mathbb{Z} par \mathcal{R}_n . Quel est son cardinal?

Exercice 9 Soit f une application de E vers F et soit \mathcal{R} la relation de E vers E définie par

$$x \mathcal{R} y \iff f(x) = f(y).$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Pour tout $x \in E$, on note \overline{x} la classe d'équivalence de x. Montrer que l'application Φ de E/\mathcal{R} vers f définie par $\Phi(\overline{x}) = f(x)$ est une bijection.

Exercice 10 Soit \mathcal{R} la relation sur \mathbb{N}^* définie par

$$x \mathcal{R} y \iff x \text{ divise } y.$$

Montrer que $(\mathbb{N}^*, \mathcal{R})$ est un ensemble partiellement ordonné.

Références

- [1] M. Gran, fiches de TD (L1), Université du Littoral Côte d'Opale.
- [2] M. Serfati, Exercices de mathématiques. 1. Algèbre, Belin, Collection DIA, 1987.
- [3] D. Duverney, S. Heumez, G. Huvent, Toutes les mathématiques Cours, exercices corrigés MPSI, PCSI, PTSI, TSI, Ellipses, 2004.