Algorítmica

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Algorítmica

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2023-2024

José Juan Urrutia Milán: jjum@correo.ugr.es

Airam Falcón Marrero: airamfm@correo.ugr.es

Lucas Hidalgo Herrera: lucashidalgo@correo.ugr.es

Irina Kuzyshyn Basarab: kuzirina@correo.ugr.es

Arturo Olivares Martos: arturoolivares@correo.ugr.es

${\bf \acute{I}ndice}$

1. Participación								
2.	Obj	etivos						
3.			Estudio	6				
	3.1. 3.2.		de entrada	6				
4.			s considerados	7				
	4.1.	Algoria	tmos cuadráticos	7				
		4.1.1.	Análisis teórico	7				
		4.1.2.	Análisis empírico e híbrido	9				
		4.1.3.	Comparación de algoritmos cuadráticos	19				
		4.1.4.	Comparación en distinto hardware	23				
	4.2.	Algori	tmos linear-logarítmicos	25				
		4.2.1.	Análisis teórico	25				
		4.2.2.	Análisis empírico e híbrido	30				
		4.2.3.	Comparación de algoritmos linear-logarítmicos	43				
		4.2.4.	Comparación en distinto hardware	48				
	4.3.	Algori	tmos cúbicos	50				
		4.3.1.	Análisis teórico	50				
		4.3.2.	Análisis empírico e híbrido	51				
		4.3.3.	Comparación en distinto hardware	53				
	4.4.	Algori	tmos exponenciales					
		4.4.1.	Análisis teórico	55				
		4.4.2.	Análisis empírico e híbrido	56				
		4.4.3.	Comparación de algoritmos exponenciales	61				
		4.4.4.	Comparación en distinto hardware	63				
5.	Con	clusio	nes	66				

1. Participación

Esta práctica ha sido realizada por los miembros de la siguiente lista. Se repartió el trabajo según unas directrices que considerábamos equitativas y que se describirán a continuación, aunque al final todos hemos acabado colaborando en todo.

- José Juan Urrutia Milán. Principalmente, me he dedicado a redactar la eficiencia teórica de Floyd, Burbuja y Mergesort; así como de las empíricas e híbridas de Quicksort y Hanoi. Además, he comentado las comparativas hardware de cuadráticos y cúbicos. También me he dedicado a darle formato a las tablas de datos, haciendo uso del editor Vim.
- Airam Falcón Marrero. Principalmente, me he dedicado a redactar la eficiencia teórica de Hanoi, así como de las empíricas e híbridas del algoritmo de ordenación por burbuja. También he ayudado a hacer el análisis empírico del Quicksort y he hecho la comparativa de los algoritmos linear-logarítmicos en distintos hardware.
- Lucas Hidalgo Herrera. Me he dedicado a realizar el análisis completo del algoritmo de ordenación de Inserción; concretamente análisis teórico, empírico e híbrido al completo. Por otro lado, he realizado la comparativa al completo, con ayuda de mi compañera Irina (ha tomado mis datos, creado la tabla y ha creado las gráficas), de los algoritmos exponenciales. Además, he realizado la comparación de algoritmos cuadráticos.
- Irina Kuzyshyn Basarab. Me he dedicado a realizar el estudio teórico de Fibonacci, y el empírico e híbrido de los algoritmos de Fibonacci y Floyd. He contribuido también en la comparación de los algoritmos linear-logarítmicos y los exponenciales.
- Arturo Olivares Martos. Mi trabajo se ha centrado especialmente en algoritmos de ordenación. En concreto, he llevado a cabo de forma íntegra el estudio empírico e híbrido del algoritmo de ordenación mediante Mergesort, y el estudio teórico del algoritmo de ordenación Quicksort, que ha sido complejo. También he colaborado en gran medida a redactar las conclusiones. Por último, mi función también ha sido colaborar en los aspectos técnicos de LATEX, ayudando con el formato y la estructura de las imágenes en el documento.

2. Objetivos

El objetivo de esta práctica es el análisis de algoritmos de forma teórica, empírica e híbrida, para familiarizarnos con este, aprender a trabajar en equipo, y comprender la importancia del orden de eficiencia de los algoritmos. Hemos podido observar cómo algunos algoritmos resolvían un problema (como el de ordenación) en menos de un segundo mientras otros tardaban medio minuto, algo que ha sido instructivo. Además, hemos podido percibir que, a la hora de realizar ordenaciones, el tipo de dato que ordenamos influye en el tiempo de ejecución del programa.

3. Diseño de Estudio

3.1. Datos de entrada

En el presente informe se estudiarán los siguientes 7 algoritmos:

- Burbuja.
- Inserción.
- Mergesort.
- Quicksort.
- Floyd.
- Fibonacci.
- Hanoi.

Se han realizado ejecuciones para varios tamaños del problema (n), midiendo el tiempo de ejecución. Hemos decidido recolectar alrededor de 25 muestras de cada algoritmo, usando distintos intervalos de donde extraemos las muestras para n. Estos intervalos dependen del orden de eficiencia de cada algoritmo puesto que, por ejemplo, para algoritmos exponenciales no podemos considerar tamaños excesivamente grandes. Los intervalos considerados son:

- 1. Algoritmos cuadráticos: Desde 5000 hasta 125000 con saltos de 5000.
- 2. Algoritmos linear-logarítmicos: Desde 50000 hasta 1250000 con saltos de 50000. No obstante, en el caso del tipo de dato string, en el que trabajaremos con *El Quijote*, no tiene tantas palabras (tiene un total de 202308), por lo que los intervalos irán desde 12308 hasta 202308 con saltos de 10000 palabras.
- 3. Algoritmos cúbicos: Desde 50 a 1250 con saltos de 50.
- 4. Algoritmos exponenciales: Al tratarse de funciones exponenciales, para cada algoritmo decidimos tomar un rango de muestreo distinto, ya que puede cambiar mucho de un algoritmo exponencial a otro.
 - a) Fibonacci: Desde 2 hasta 50 con saltos de 2.
 - b) Hanoi: Desde 3 hasta 33 con saltos de 1.

3.2. Hardware y configuraciones empleadas

Los resultados empíricos han sido obtenidos en distintos ordenadores, cuyo hardware y configuraciones se detallan en la Tabla 1.

Alumno	CPU	RAM	L1 (d)/(i)	L2	L3	SO	Compilador
Airam	i7	8 GB	192KB /	5 MB	12 MB	Ubuntu	g++
	1165G7		/ 128KB			22.04.4	
Arturo	i5	8GB	64KB /	512KB	3MB	Ubuntu	g++
	5350U		/ 64KB			22.04.3	
Irina	Ryzen 7	16GB	256KB /	4 MB	16 MB	Ubuntu	g++
	5800H		/ 256KB			23.10	
José	Ryzen 7	16GB	256KB /	4 MB	8 MB	Ubuntu	g++
Juan	4800H		/ 256KB			23.10	
Lucas	i7	8 GB	192KB /	5 MB	12 MB	Ubuntu	g++
	1165G7		/ 128KB			22.04.4	

Tabla 1: Especificaciones de los ordenadores de cada uno de los integrantes.

```
void burbuja(int T[], int inicial, int final){
2
        int i, j;
3
        int aux;
 4
        for(i = inicial; i < final - 1; i++)</pre>
5
6
             for(j = final - 1; j > i; j--)
7
                 if(T[j] < T[j-1]){
8
                     aux = T[j];
9
                     T[j] = T[j-1];
                     T[i-1] = aux;
10
                 }
11
12
   }
```

Código fuente 1: Ordenación mediante el método de burbuja.

4. Algoritmos considerados

4.1. Algoritmos cuadráticos

4.1.1. Análisis teórico

Burbuja

El algoritmo se encuentra disponible en el Código Fuente 1.

El código comprendido entre las líneas 7 y 11 tiene un tiempo de ejecución constante, ya que no depende del tamaño de nuestro problema (el cual definiremos próximamente), al tratarse de comparaciones e intercambios de variables. A este tiempo constante le denotaremos por a. Por tanto, para calcular el tiempo de ejecución del bucle interno, multiplicamos a por el número de iteraciones, que es de:

$$(final - 1) - (i + 1) + 1 = final - i - 1$$

Este bucle se ejecuta un número de veces determinado por el bucle externo. Un total de:

$$(final - 2) - inicial + 1$$

```
void Insercion(int T[], int inicial, int final)
2
3
      int i, j;
 4
      int aux;
      for (i = inicial + 1; i < final; i++) {</pre>
5
        j = i;
6
        while ((j > 0) \&\& (T[j] < T[j-1])) {
7
           aux = T[j];
8
          T[j] = T[j-1];
9
10
          T[j-1] = aux;
11
           j--;
        }
12
13
      }
    }
14
```

Código fuente 2: Ordenación mediante el método de inserción.

iteraciones. Matemáticamente, el algoritmo tiene un tiempo de ejecución de:

$$\sum_{i=inicial}^{final-2} \sum_{j=i+1}^{final-1} a$$

Si definimos n de forma que inicial sea 1 y final n, tenemos que:

$$T(n) = \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} a = \sum_{i=1}^{n-2} a(n-i-1) = a \sum_{i=1}^{n-2} (n-i-1) = a(n-2) + a(n-3) + \dots + a \cdot 1$$

Notemos que la última sumatoria es la suma de los n-2 primeros naturales, que podemos sintetizar gracias a la sumatoria de Gauss:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Por tanto, tenemos que:

$$T(n) = a \sum_{i=1}^{n-2} (n-i-1) = a \left[\frac{(n-2)(n-1)}{2} \right] = \frac{a}{2} (n^2 - 3n + 2) = \frac{a}{2} n^2 - \frac{3a}{2} n + a \in O(n^2)$$

Claramente, tenemos que es de orden $O(n^2)$ por la Regla de la Suma.

Inserción

El algoritmo se encuentra disponible en el Código Fuente 2.

La función Insercion vemos que se basa en la ejecución de dos bucles anidados, de hecho un bucle while dentro de un bucle for. Obviaremos las líneas 3 y 4 pues son de eficiencia constante y no aportarán nada importante al análisis. Si comenzamos con el análisis de las líneas 5 hasta 13 tenemos que el bucle for se ejecuta un máximo de n-2 veces, donde n=final e inicial=1, al empezar en inicial+1. Por otra

parte, como en la línea 6 se realiza la asignación j=i tenemos que el número de veces que se ejecutan las sentencias de las líneas 8, 9, 10 y 11 son cada una de ellas de tiempo de ejecución constante; y por tanto las acotamos por una constante $a \in \mathbb{R}^+$. Entonces se ejecutarán i veces, pues dependen de este valor. Más formalmente, tenemos:

$$T(n) = \sum_{i=2}^{n-1} \sum_{j=1}^{i} a = \sum_{i=2}^{n-1} \left(a \sum_{j=1}^{i} 1 \right) = \sum_{i=2}^{n} ai = a \sum_{i=2}^{n-1} i \stackrel{(*)}{=} a \left(\frac{(n-1)n}{2} - 1 \right)$$

Donde en (*) he usado el resultado de la suma de Gauss $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. Por tanto, tenemos que:

$$T(n) = a\frac{n^2 - n}{2} - a = \frac{a}{2}n^2 - \frac{a}{2}n - a \in O(n^2)$$

Es decir, $T(n) \in O(n^2)$, por lo que el algoritmo de Inserción es cuadrático.

4.1.2. Análisis empírico e híbrido

Burbuja

Hemos ejecutado el algoritmo de ordenación burbuja con una cantidad de datos aleatoria, comenzando por 5000 datos y terminando en 125000 datos con saltos de 5000 para los tipos int, float, double, string siendo este último el más costoso. Obtenemos la Tabla 2 de datos, en la que podemos observar a primera vista que el string se ordena mucho más lento que el resto de datos. Esto era de esperar debido a que su comparación es más lenta, y trasladar los datos del string es una ardua tarea que consume bastantes más recursos que mover un tipo primitivo, pues hay que manejar la memoria dinámica, entre otras cosas. Si se persigue conseguir una mayor eficiencia es recomendable mover referencias o punteros a string y, una vez terminada la ordenación, reordenar según el orden que tengan las referencias o los punteros. Sin embargo, como en esta práctica se busca ver el efecto de ordenar los datos según su tipo y tamaño, no hemos realizado ningún cambio para mejorar la eficiencia y observar con claridad este efecto.

Destacamos de que a pesar de que este algoritmo al principio le tocaba ejecutarlo a Airam, se ha ejecutado en el PC de Irina debido a la lentitud de ejecución de burbuja y a una anomalía en las prestaciones del ordenador de Airam.

Como vemos en la Tabla 2, es casi 6 veces mas costoso ordenar datos de tipo string que del tipo int, mientras que es 4 veces más costoso ordenar string que datos de tipo double aproximadamente. Esto es debido a que tanto el criterio de ordenación como mover los string es una operación más pesada que con los tipos primitivos, debido a la necesidad de realojar memoria (si aplica), y de comparar probablemente más de un carácter por comparación.

La diferencia de comparar un double a un float es casi nula, ejecutando a veces peor incluso el float ante el double a pesar del tamaño. Esto es debido a que, al estar utilizando sistemas de 64 bits con sistema operativo Linux, los double ocupan 8 bytes y se puede hacer la transferencia de los datos en un solo mov. Comparar double y float se hace de una manera muy similar, por lo que no hay un motivo real para que tarde más uno que el otro. Sin embargo, los int, a pesar de ocupar lo mismo que los float, tardan notablemente menos. Esto es debido a que si el

n	int	float	double	n	string
5000	0,0212946	0,0302322	0,0322627	12308	1,43091
10000	0,0915509	0,121694	0,125429	22308	4,77521
15000	0,218336	0,278069	0,287403	32308	10,2992
20000	0,415814	0,5216	0,531124	42308	17,8631
25000	0,7533	0,898337	0,929696	52308	27,1793
30000	1,19593	1,52004	1,54373	62308	37,6928
35000	1,78745	2,33233	2,34784	72308	51,5894
40000	2,47333	3,34983	3,41603	82308	65,0768
45000	3,26826	4,43736	4,63391	92308	83,1108
50000	4,09936	5,76111	5,76577	102308	103,776
55000	5,19007	6,8605	7,4734	112308	125,272
60000	6,33393	8,9319	9,05426	122308	148,481
65000	6,73805	10,643	10,8369	132308	172,592
70000	8,82045	12,6475	12,9681	142308	194,527
75000	10,1966	14,5884	14,8796	152308	229,14
80000	11,7404	16,9146	17,5713	162308	251,031
85000	13,3161	19,375	19,5585	172308	284,995
90000	15,0023	21,9805	22,5451	182308	313,357
95000	16,6872	24,5462	24,8629	192308	351,57
100000	18,8043	27,3487	27,8094	202308	389,206
105000	20,7516	30,4895	30,704		
110000	22,8418	33,1168	34,002		
115000	24,4744	36,9083	37,0177		
120000	27,5181	39,8829	40,5956		
125000	29,1986	44,4319	44,1174		

Tabla 2: Tiempos de los distintos tipos del algoritmo Burbuja en PC Irina.

hardware del ordenador no tiene un soporte específico, las operaciones con coma flotante son más lentas. El movimiento no debería ser diferente, pues solo hay que mover los bits correspondientes.

Llegamos a la conclusión de que el tipo de dato importa, incluso si es un tipo primitivo. Esto se debe tener en cuenta a la hora de decidir representaciones de datos y criterios de comparación cuando se quiera trabajar con una cantidad de datos masiva.

En las nubes de puntos de las Figuras 1, 2, 3 y 4 se observa bien el crecimiento cuadrático del algoritmo respecto a su entrada. También se nota cómo los tiempos dejan bastante que desear teniendo otros algoritmos mucho más rápidos para poder ordenar datos. No es recomendable, por lo tanto, usar burbuja en casi ninguna situación, e incluso en las que funciona ligeramente mejor es preferible usar el algoritmo de ordenación conocido como cocktail sort (burbuja bidireccional), que mantiene el mejor caso de burbuja y se ejecuta mejor que este en el caso medio. En general, no hay un buen motivo para utilizar burbuja.

• Para ints, se ha usado la función siguiente, que se observa en la Figura 5:

Figura 1: Tiempo de ejecución del algoritmo de Burbuja para int en PC Irina.

Figura 2: Tiempo de ejecución del algoritmo de Burbuja para float en PC Irina.

Figura 3: Tiempo de ejecución del algoritmo de Burbuja para double en PC Irina.

Figura 4: Tiempo de ejecución del algoritmo de Burbuja para string en PC Irina.

Figura 5: Regresión del algoritmo de Burbuja para int en PC Irina.

Figura 6: Regresión del algoritmo de Burbuja para float en PC Inina.

Figura 7: Regresión del algoritmo de Burbuja para double en PC Irina.

Figura 8: Regresión del algoritmo de Burbuja para string en PC Irina.

Figura 9: Comparación de Burbuja para distintos tipos de datos en PC Irina.

$$f(x) = 2.03 \cdot 10^{-9} x^2 - 1.78 \cdot 10^{-6} x - 0.029$$

• Para float, se ha usado la función siguiente, que se observa en la Figura 6:

$$g(x) = 3.17 \cdot 10^{-9} x^2 - 4.56 \cdot 10^{-5} x + 0.14$$

• Para double, se ha usado la función siguiente, que se observa en la Figura 7:

$$h(x) = 3.11 \cdot 10^{-9}x^2 - 3.36 \cdot 10^{-5}x - 0.0518$$

• Para string, se ha usado la función siguiente, que se observa en la Figura 8:

$$s(x) = 8.94 \cdot 10^{-9} x^2 + 1.12 \cdot 10^{-4} x - 3.22$$

Estas regresiones nos indican cómo de bien podemos, con la nube de puntos dependiente de la entrada que elegimos, predecir el tiempo que tardaría una entrada de datos arbitraria en un caso medio. Cabe destacar que a pesar de que pueda ser mejor, para n grande no va a ser mejor que el algoritmo de inserción, así que tampoco hay motivo para utilizar burbuja.

Se aprecia muy bien en la Figura 9 cómo el tipo de dato afecta a la velocidad con la que ordena el algoritmo de burbuja, como hemos justificado anteriormente con la tabla de valores del tiempo de ejecución según su entrada. Esta gráfica, sin embargo, en un ordenador con hardware dedicado al tratamiento de los tipos de coma flotante, se verían probablemente tres curvas juntas para los tipos int, float y double, y una curva bastante alejada para los string.

n	int	float	double	string
5000	0,0204147	0,0204531	0,0204161	0,11739
10000	0,0668181	0,0706252	0,0717277	0,476915
15000	0,150446	0,15914	0,162697	1,03511
20000	0,265347	0,289009	0,291386	1,91591
25000	0,422021	0,452415	0,465071	3,02633
30000	0,605959	0,65003	0,662947	4,37451
35000	0,826906	0,891952	0,900922	5,88987
40000	1,09136	1,16696	1,17208	7,74376
45000	1,40001	1,48177	1,4988	9,79467
50000	1,69897	1,83223	1,85276	12,1064
55000	2,06273	2,21709	2,24403	15,5281
60000	2,49409	2,64314	2,69843	18,9615
65000	2,89699	3,14981	3,12897	21,8367
70000	3,37379	3,59713	3,68795	25,0129
75000	3,86297	4,23868	4,26568	29,1099
80000	4,38083	4,75756	4,85197	32,7821
85000	5,01868	5,47579	5,74777	36,8927
90000	5,57376	5,99755	6,19353	41,7275
95000	6,29386	6,82111	6,91584	46,0235
100000	6,85596	7,40268	7,74474	51,5689
105000	7,89825	8,44242	8,62168	56,5793
110000	8,59807	9,29984	9,39702	62,1997
115000	9,60581	10,0701	10,2097	67,7463
120000	10,3022	11,0502	11,1417	74,2626
125000	11,0969	11,9086	12,0964	77,8286

Tabla 3: Tiempos de ejecución para Inserción en el ordenador de Lucas.

Inserción

Hemos ejecutado el algoritmo de ordenación conocido por Inserción con una cantidad aleatorio creciente comenzando por 5000 datos y terminando en 125000 datos con saltos de 5000 para los tipos int, float, double, string siendo este último el más costoso; obteniendo la Tabla 3, en la cual la primera columna hace referencia al número de datos usados y las siguientes cuatro sobre los tiempos de los distintos tipos. Sobre los datos de la Tabla 3 podemos observar las gráficas de las Figuras 10, 11, 12 y 13.

Sobre los mismos datos de la Tabla 3 hemos realizado los siguientes ajustes, siendo todos cuadráticos:

• Para ints, se ha usado la función siguiente, que se observa en la Figura 14:

$$f(x) = 7,58319 \cdot 10^{-10} - 6,14623 \cdot 10^{-6}x + 0,0843174x^{2}$$

• Para float, se ha usado la función siguiente, que se observa en la Figura 15:

$$f(x) = 7,98116 \cdot 10^{-10} - 4,6311 \cdot 10^{-6}x + 0,0548818x^2$$

Figura 10: Tiempo de ejecución del algoritmo de Inserción para int en PC Lucas.

Figura 11: Tiempo de ejecución del algoritmo de Inserción para float en PC Lucas.

Figura 12: Tiempo de ejecución del algoritmo de Inserción para double en PC Lucas.

Figura 13: Tiempo de ejecución del algoritmo de Inserción para string en PC Lucas.

Figura 14: Regresión del algoritmo de Inserción para int en el PC Lucas.

• Para double, se ha usado la función siguiente, que se observa en la Figura 16:

$$f(x) = 8,00545 \cdot 10^{-10} - 3,12454 \cdot 10^{-6}x + 0,0218544x^2$$

• Para string, se ha usado la función siguiente, que se observa en la Figura 17:

$$f(x) = 5,00798 \cdot 10^{-9} - 1,46519 \cdot 10^{-5}x - 0,439829x^{2}$$

Por último, para concluir el estudio de la eficiencia empírica sobre este algoritmo de ordenación, en la Figura 18 se han representado todos los tipos de datos para realizar una comparación de los mismos. Como ya se preveía, la ejecución de los tipos de dato string son mucho más costosos de ordenar. De hecho este coste se percibe mucho debido a la cantidad de intercambios que se realiza durante la ordenación. Por otro lado, los otros tipos no se distancian tanto entre sí; de hecho, es casi imperceptible. Esto es debido a que internamente los Bytes se mueven en una sola instrucción, en nuestro caso 8 Bytes (tamaño de línea de la caché), al tener un procesador de esta cantidad de Bytes. Más coloquialmente, se leen 64 bits siendo este el tamaño del double; por tanto, independientemente del tipo de dato ya mencionado, siempre se realiza el movimiento en una instrucción.

4.1.3. Comparación de algoritmos cuadráticos

A continuación, vamos a comparar la ejecución del algoritmo de burbuja con el de Inserción para determinar qué algoritmo es más eficiente. Lo haremos tan solo con el tipo de dato int, aunque se puede extrapolar al resto de tipos de datos. En la Tabla 4 se encuentran los datos de ambos algoritmos, representados en la Figura 19.

Figura 15: Regresión del algoritmo de Inserción para float en el PC Lucas.

Figura 16: Regresión del algoritmo de Inserción para double en el PC Lucas.

Figura 17: Regresión del algoritmo de Inserción para string en el PC Lucas.

Figura 18: Comparativa de tipos de datos del algoritmo de Inserción en el PC Lucas.

n	Burbuja	Inserción
5000	0,0320169	0,0315755
10000	0,121503	0,0695729
15000	0,318309	$0,\!154259$
20000	0,655574	$0,\!271925$
25000	1,14731	0,430184
30000	1,6936	0,619942
35000	2,38803	0,858703
40000	3,10454	1,1165
45000	4,14383	1,40402
50000	5,05033	1,72773
55000	6,29143	2,11243
60000	7,41145	2,50072
65000	9,05342	2,95596
70000	10,2067	3,46206
75000	11,9712	3,98734
80000	13,453	4,48404
85000	15,48	5,08662
90000	17,3659	5,71736
95000	19,1808	6,43874
100000	21,7095	7,0535
105000	24,2073	8,00074
110000	26,3358	8,80258
115000	29,268	9,68143
120000	31,244	10,3124
125000	34,563	11,236

Tabla 4: Tiempos de Burbuja para int con Inserción, ambos en PC Lucas.

Figura 19: Comparación de Burbuja con Inserción para int, ambos en PC Lucas.

Es fácil de intuir que el algoritmo de ordenación conocido como Burbuja ha presentado peor eficiencia que el algoritmo de Inserción. En gran medida, esto es debido a que en el primero de ellos se realizan un mayor número de intercambios. Por tanto, esta es la razón fundamental por la cual este algoritmo es menos eficiente que el segundo de ellos.

Además, cabe destacar que, aunque ambos sean cuadráticos, esto no quiere decir que tengan el mismo tiempo de ejecución en todos los ámbitos. Asimismo, se puede resaltar la gran diferencia que hay entre ellos a medida que va aumentando el número de datos. Si nos fijamos, el algoritmo de Inserción tiene un crecimiento mucho menos pronunciado que el algoritmo Burbuja; el cual con 125000 datos tiene tiempo de ejecución de 35 segundos.

En conclusión, el algoritmo de Inserción es más eficiente que el algoritmo Burbuja. No obstante, ambos tiene un orden de eficiencia cuadrático diferenciándose en las constantes. Esto último nos da a entender que las constantes también tienen un significado importante en el estudio de la eficiencia de algoritmos.

4.1.4. Comparación en distinto hardware

Hemos elegido el algoritmo de Inserción como candidato de algoritmo cuadrático a ejecutarse en todos los ordenadores usando el tipo de dato int (se extrapola al resto de tipos de datos). A continuación, en la Tabla 5 mostramos los tiempos de ejecución en cada uno de los ordenadores, así como la gráfica de la Figura 20, que nos muestra estos tiempos visualmente.

En esta, podemos ver de forma muy clara el comportamiento de un algoritmo cuadrático en distinto hardware (con burbuja, el resultado habría sido similar). Podemos observar que para valores no muy grandes de n como 40000, obtenemos una

n	José Juan	Arturo	Irina	Lucas	Airam
5000	0,0215686	0,0405246	0,014567	0,0315755	0,0516634
10000	0,0867437	0,122055	0,0629751	0,0695729	0,196678
15000	0,195987	0,26581	0,139884	0,154259	0,429474
20000	0,345769	0,478241	0,255842	0,271925	0,75662
25000	0,534336	0,747736	0,404021	0,430184	1,18137
30000	0,779653	1,06181	0,555394	0,619942	1,69171
35000	1,05228	1,45304	0,712199	0,858703	2,30821
40000	1,3656	1,91375	0,973901	1,1165	2,98189
45000	1,74368	2,41838	1,21816	1,40402	3,79044
50000	2,14439	2,96104	1,58308	1,72773	4,77736
55000	2,62142	3,58726	1,90068	2,11243	5,66737
60000	3,11232	4,26268	2,27818	2,50072	6,81823
65000	3,61466	5,01638	2,64389	2,95596	7,95222
70000	4,20397	5,79249	2,9987	3,46206	9,38579
75000	4,82346	6,69775	3,54469	3,98734	10,6808
80000	5,50419	7,67351	4,05363	4,48404	11,9706
85000	6,1988	8,55686	4,63762	5,08662	13,7397
90000	6,94836	9,61363	5,14756	5,71736	15,2493
95000	7,76365	10,7204	5,75839	6,43874	17,0127
100000	8,56124	11,8724	6,33938	7,0535	18,7912
105000	9,5075	13,0696	7,08369	8,00074	20,7604
110000	10,3898	14,3768	7,66268	8,80258	22,642
115000	11,3695	15,6251	8,4614	9,68143	24,894
120000	12,314	17,2278	9,19415	10,3124	27,0555
125000	13,4283	18,6903	10,1265	11,236	29,3985

Tabla 5: Comparación de Inserción en distinto hardware para int.

Figura 20: Algoritmo de Inserción en todos los PCs para datos de tipo int.

diferencia de 2 segundos en cuanto a tiempo de ejecución, que al principio no parece una diferencia muy grande. Sin embargo, a medida que aumentamos el tamaño de n, observamos cómo el crecimiento de la pendiente varía considerablemente en distinto hardware: PCs como el de Irina, Lucas o José Juan no presentan un crecimiento muy grande de la pendiente para los tamaños considerados; el PC de Arturo presenta un crecimiento moderado y el de Airam un crecimiento bastante grande. Esta variación de crecimiento, por la naturaleza de la función cuadrática, es bastante notorio ya para valores de n más grandes, como el último valor de n que consideramos, 125000, ya podemos observar una gran diferencia en tiempos de ejecución, de hasta 20 segundos respecto al hardware con mejores resultados (el PC de Irina) y el hardware con peores resultados (el PC de Airam). Esto nos lleva a pensar que el tiempo de ejecución en cuanto a algoritmos cuadráticos depende bastante del hardware que elijamos para tamaños del problema suficientemente grandes, pero cabe destacar que el ordenador de Airam parece tener un fallo que impide que se aprovechen bien sus prestaciones.

4.2. Algoritmos linear-logarítmicos

4.2.1. Análisis teórico

Mergesort

El algoritmo se encuentra disponible en el Código Fuente 3.

Para el análisis teórico, comenzamos definiendo el tamaño de nuestro problema, n. Tendremos que **final** será n y que **inicial** será 0. Primero, analizamos el tiempo de ejecución de la función **fusion**. El bucle ejecuta las líneas 6 a 12 que se ejecutan en un tiempo constante, llamémosle a. Por tanto, el tiempo de ejecución vendrá

```
void fusion(int T[], int inicial, int final, int U[], int V[]){
 2
        int j = 0;
 3
        int k = 0;
 4
        for(int i = inicial; i < final; i++)</pre>
 5
 6
            if(U[j] < V[k]){
 7
                T[i] = U[j];
 8
                j++;
 9
            }else{
                T[i] = V[k];
10
                k++;
11
            }
12
13
   }
14
   void mergesort(int T[], int inicial, int final){
15
        if (final - inicial < UMBRALMS)</pre>
16
17
            burbuja(T, inicial, final);
        else{
18
            int k = (final - inicial)/2;
19
            int *U = new int[k - inicial + 1];
20
21
            assert(U==0);
            int 1, 12;
22
23
24
            for (1 = 0, 12 = inicial; 1 < k-inicial; 1++, 12++)
                U[1] = T[12];
25
            U[1] = INT_MAX;
26
27
            int *V = new int[final - k + 1];
28
            assert(V == 0);
29
            for(1 = 0, 12 = k; 1 < final - k; 1++, 12++)
30
31
                V[1] = T[12];
32
            V[1] = INT_MAX;
33
34
            mergesort(U, 0, k-inicial);
            mergesort(V, 0, final - k);
35
36
            fusion(T, inicial, final, U, V);
37
            delete[] U;
38
            delete[] V;
39
        }
40 }
```

Código fuente 3: Ordenación mediante el método de Mergesort.

dado por

$$\sum_{i=0}^{n-1} a = a \cdot n$$

que claramente es de orden O(n). A continuación, analizamos la función Mergesort. Suponemos que entramos por la rama del else, ya que buscamos comportamientos asintóticos $(n \gg)$. Podemos acotar la secuencia de instrucciones de las líneas 19 a 22 por una constante b. El bucle de la línea 24 se ejecuta un total de $\frac{n}{2}$ veces y su cuerpo es de orden constante, luego podemos asumir una eficiencia de $\frac{n}{2}$. El mismo razonamiento se aplica a las líneas 26 a 29, pueden ser acotadas por una constante, y ahora el bucle de la línea 30 también tiene eficiencia $\frac{n}{2}$. A continuación, se realizan dos llamadas a la misma función, luego si la función tiene un tiempo de ejecución T(n), asumimos que las líneas 34 y 35 tendrán uno de T(n/2). Finalmente, la línea 36 tiene una eficiencia de O(n). Resumiendo, la parte del else tiene una eficiencia total de:

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Ahora, analizamos la parte del if. Esta llama a la función burbuja, que sabemos que es de orden $O(n^2)$. Por tanto, la recurrencia es:

$$T(n) = \left\{ \begin{array}{ll} 2T\left(\frac{n}{2}\right) + n & si \quad n \geqslant \texttt{UMBRALMS} \\ n^2 & si \quad n < \texttt{UMBRALMS} \end{array} \right.$$

Haciendo en la primera ecuación el cambio de variable $n = 2^m$:

$$T(2^m) = 2T(2^{m-1}) + 2^m \qquad \text{ si } m \geqslant \log_2(\mathtt{UMBRALMS})$$

Renombrando $t_m = T(2^m)$, tenemos:

$$t_m - 2t_{m-1} = 2^m$$

La ecuación característica asociada a la parte homogénea, con $t_m = x^m$, es:

$$x^m - 2x^{m-1} = x^{m-1}(x-2) = 0$$

Como $x^m > 0$ para todo $m \in \mathbb{N}$, tenemos que la única solución de la ecuación característica es x = 2, con multiplicidad simple. Respecto a la parte no homogénea, tenemos que $2^m = 2^m(m^0)$, por lo que el polinomio característico de la ecuación en diferencias queda:

$$p(x) = (x-2)(x-2) = (x-2)^2$$

Por tanto, la solución general de la ecuación en diferencias será de la forma:

$$t_m = c_1 \cdot 2^m + c_2 \cdot m \cdot 2^m \qquad c_2, c_2 \in \mathbb{R}$$

Deshaciendo el cambio de variable, $m = \log_2 n$, tenemos que:

$$T(n) = c_1 \cdot 2^{\log_2 n} + c_2 \cdot \log_2 n \cdot 2^{\log_2 n} = c_1 \cdot n + c_2 \cdot n \log_2(n) \in O(n \log n)$$

Por tanto, se tiene que $T(n) \in O(n \log n)$.

```
void quicksort(int T[], int inicial, int final){
 2
        int k;
        if (final - inicial < UMBRAL_QS){</pre>
 3
            insercion(T, inicial, final);
        } else{
 5
 6
            dividir_qs(T, inicial, final, k);
            quicksort(T, inicial, k);
 7
            quicksort(T, k+1, final);
 8
        }
 9
   }
10
   void dividir_qs(int T[], int inicial, int final, int & pp)
11
12
13
      int pivote, aux;
14
      int k, l;
15
      pivote = T[inicial];
16
17
      k = inicial;
18
      1 = final;
19
      do {
20
        k++;
      } while (k < final-1)) && ((T[k] \le pivote);
21
      do {
22
        1--;
23
24
      } while (T[1] > pivote);
      while (k < 1) {
25
26
        aux = T[k];
27
        T[k] = T[1];
        T[1] = aux;
28
        do k++; while (T[k] <= pivote);</pre>
29
        do l--; while (T[1] > pivote);
30
31
      };
      aux = T[inicial];
32
      T[inicial] = T[1];
33
34
      T[1] = aux;
      pp = 1;
35
   };
36
37
```

Código fuente 4: Algoritmo de ordenación por el método de Quicksort.

Quicksort

El código del algoritmo se encuentra en Código fuente 4.

Comenzamos definiendo el tamaño del problema, teniendo que final será n y que inicial será 0. Estudiamos en primer lugar la eficiencia de la función dividir_qs. Tenemos que las líneas 13 a 18 no dependen de n, por lo son de orden O(1); al igual que las líneas 32 a 35. Las líneas 19 a 31 describen dos índices, 1 y k, que se desplazan desde los dos extremos hasta encontrarse. Por tanto, siempre se encontrarán tras n iteraciones, por lo que esta parte es de orden O(n). Por tanto, de forma general, podemos decir que la función dividir_qs es de orden O(n).

Estudiamos ahora la eficiencia de la función Quicksort. La línea 2 es despreciable, ya que es de tiempo constante. En el caso de que se tome la rama del if, tenemos que se usa el algoritmo de Inserción, que es $O(n^2)$. En el caso del else, se ejecuta la función $dividir_qs$, que es de orden O(n), y dos llamadas recursivas. No obstante, la eficiencia del algoritmo Quicksort depende de la elección del pivote. Distinguimos:

Caso peor. Supongamos que el vector original se divide en uno de tamaño 1 y en otro de tamaño n-1 en todas las iteraciones; algo que ocurrirá si los elementos están repetidos, ordenados o casi ordenados. Tenemos que:

$$T(n) = \left\{ \begin{array}{ccc} n^2 & \text{si} & n < \texttt{UMBRAL_QS} \\ T(n-1) + T(1) + c_2 n + c_3' & \text{si} & n \geqslant \texttt{UMBRAL_QS} \end{array} \right.$$

Como T(1) es para un valor de n fijo, tenemos que se puede acotar por una constante, por lo que:

$$T(n) = \left\{ \begin{array}{ccc} n^2 & \text{si} & n < \texttt{UMBRAL_QS} \\ T(n-1) + c_2 n + c_3 & \text{si} & n \geqslant \texttt{UMBRAL_QS} \end{array} \right.$$

Aplicando el cambio de variable $T(n) = x^n$, la parte homogénea queda:

$$x^{n} - x^{n-1} = 0 \Longrightarrow x^{n-1}(x-1) = 0$$

Por tanto, la única solución es x = 1, con multiplicidad simple. Respecto a la parte no homogénea, tenemos que $c_2n + c_3 = 1^n(c_2n^1 + c_3n^0)$, por lo que el polinomio característico de la Ley de Recurrencia queda:

$$p(x) = (x-1)(x-1)^2 = (x-1)^3$$

Por tanto, la solución a la Ley de Recurrencia es:

$$T(n) = x^n = k_1 + k_2 n + k_3 n^2 \in O(n^2)$$

Caso mejor. Supongamos que en cada división se parte el vector en dos problemas de tamaño igual, teniendo entonces que:

$$T(n) = \left\{ \begin{array}{ccc} n^2 & \text{si} & n < \texttt{UMBRAL_QS} \\ 2T\left(\frac{n}{2}\right) + c_2n + c_3 & \text{si} & n \geqslant \texttt{UMBRAL_QS} \end{array} \right.$$

Aplicamos en primer lugar el cambio de variable $n=2^m$, quedándonos:

$$T(2^m) = \left\{ \begin{array}{ccc} 4^m & \text{si} & m < \log_2 \texttt{UMBRAL_QS} \\ 2T\left(2^{m-1}\right) + c_2 \cdot 2^m + c_3 & \text{si} & m \geqslant \log_2 \texttt{UMBRAL_QS} \end{array} \right.$$

Expresando $T(2^m) = x^m$, tenemos que la parte homogénea queda:

$$x^{m} - 2x^{m-1} = 0 \Longrightarrow x^{m-1}(x-2) = 0$$

Por tanto, la única solución es x = 2, con multiplicidad simple. Respecto a la parte no homogénea, tenemos que $c_2 \cdot 2^m + c_3 = 2^m(c_2n^0) + 1^m(c_3n^0)$, por lo que el polinomio característico de la Ley de Recurrencia queda:

$$p(x) = (x-2)(x-2)(x-1) = (x-2)^{2}(x-1)$$

Por tanto, la solución a la Ley de Recurrencia es:

$$T(2^m) = x^m = k_1 + k_2 \cdot 2^m + k_3 \cdot m2^m$$

Deshaciendo el cambio de variable $m = \log_2 n$, tenemos que:

$$T(n) = k_1 + k_2 \cdot n + k_3 \log_2 n \cdot n \in O(n \log n)$$

Tenemos entonces que la eficiencia del algoritmo Quicksort es compleja de calcular, ya que depende de la elección del elemento de pivote. Como cualquier algoritmo de ordenación basado en la técnica "divide y vencerás", es necesario que esa división no se haga de una forma excesivamente desequilibrada, para que el tamaño de los dos nuevos subproblemas sea más pequeño.

4.2.2. Análisis empírico e híbrido

Mergesort

Hemos ejecutado el algoritmo de ordenación conocido por Mergesort con una cantidad aleatoria creciente comenzando en 50000 hasta 1250000 con saltos de 50000 para los tipos de datos int, double, float; y tamaños desde 12308 hasta 202308 con saltos de 10000 para string, siendo este último el más costoso; obteniendo la Tabla 6.

Sobre los datos de la Tabla 6 podemos observar las gráficas de las Figuras 21, 22, 23 y 24.

Sobre los mismos datos de la Tabla 6 hemos realizado los siguientes ajustes, siendo todos linear-logarítmicos:

• Para ints, se ha usado la función siguiente, que se observa en la Figura 25:

$$f(x) = -0.0126508 - 7.72477 \cdot 10^{-7} x - 2.44202 \cdot 10^{-8} x \log_2(x)$$

• Para float, se ha usado la función siguiente, que se observa en la Figura 26:

$$f(x) = -0.0146428 + 9.2974 \cdot 10^{-7}x - 3.15744 \cdot 10^{-8}x \log_2(x)$$

n	int	double	float	n	string
50000	0,014839	0,017539	0,014244	12308	0,026039
100000	0,025333	0,033689	0,0279	22308	0,034568
150000	0,038744	0,048785	0,037897	32308	0,042481
200000	0,051856	0,06467	0,055116	42308	0,060849
250000	0,056825	0,077173	0,061077	52308	0,060711
300000	0,083605	0,091396	0,09201	62308	0,080397
350000	0,107423	0,107569	0,124285	72308	0,105116
400000	0,11874	0,14035	0,124493	82308	0,120913
450000	0,124092	0,136582	0,131188	92308	0,17803
500000	0,134394	0,150366	0,138771	102308	0,128233
550000	0,15722	0,17314	0,163911	112308	0,142492
600000	0,168724	0,176033	0,180171	122308	0,157295
650000	0,172775	0,2104	0,189866	132308	0,180138
700000	0,209681	0,230459	0,219616	142308	0,198765
750000	0,234851	0,254745	0,247467	152308	0,219851
800000	0,250391	$0,\!25588$	0,268727	162308	0,243553
850000	0,211862	0,227545	0,248201	172308	0,273034
900000	0,222096	0,244035	0,2348	182308	0,322363
950000	0,24649	0,263679	0,250608	192308	0,317648
1000000	0,315176	0,27787	0,273616	202308	0,344353
1050000	0,278162	0,29704	0,285182		
1100000	0,284839	0,314768	0,307615		
1150000	0,303776	0,337459	0,323439		
1200000	0,31913	0,351971	0,343243		
1250000	0,34263	0,376201	0,361719		

Tabla 6: Tiempos de ejecución para Mergesort en el ordenador de Arturo.

Figura 21: Tiempo de ejecución Mergesort int en PC Arturo.

Figura 22: Tiempo de ejecución Mergesort float en PC Arturo.

Figura 23: Tiempo de ejecución Inserción double en PC Arturo.

Figura 24: Tiempo de ejecución Mergesort string en PC Arturo.

Figura 25: Regresión de Mergesort int en PC Arturo.

■ Para double, se ha usado la función siguiente, que se observa en la Figura 27:

$$f(x) = -0.00314742 + 7.17161 \cdot 10^{-7}x - 2.11266 \cdot 10^{-8}x \log_2(x)$$

• Para string, se ha usado la función siguiente, que se observa en la Figura 28:

$$f(x) = 0.0389456 - 7.06717 \cdot 10^{-6}x + 4.84648 \cdot 10^{-7}x \log_2(x)$$

Por último, para concluir el estudio de la eficiencia empírica sobre este algoritmo de ordenación, en la Figura 29 se han representado todos los tipos de datos para realizar una comparación de las mismas. Como se puede apreciar de forma directa, la ordenación en el caso de los **string** es mucho más costosa, como ya hemos explicado en el presente documento. Un aspecto a destacar de esta gráfica son los picos de tiempo que se ven claramente en la Figura 29, especialmente para n=400000 y n=800000. Esto se debe a que el presente algoritmo requiere de grandes reservas de memoria en el Heap, y precisamente en dichos puntos seguramente requiera más espacio (o cualquier otro motivo de la gestión dinámica de la memoria) que implica estos picos.

Quicksort

Tras ejecutar el algoritmo de Quicksort sobre datos aleatorios para tamaños de n desde 50000 hasta 1250000 con saltos de 50000 para los tipos de datos int, double, float; y tamaños desde 12308 hasta 202308 con saltos de 10000 para string; obtenemos la Tabla 7 de tiempos, donde en la columna n indicamos el tamaño del problema y en las columnas de int, double, float y string indicamos el tiempo en segundos que tarda el algoritmo en ejecutarse según el tamaño de n y del tipo de dato. Dichos resultados los podemos ver en las Figuras 30, 31, 32 y 33.

Figura 26: Regresión de Mergesort float en PC Arturo.

Figura 27: Regresión de Mergesort double en PC Arturo.

Figura 28: Regresión de Mergesort string en PC Arturo.

Figura 29: Comparativos de tipos de datos del algoritmo Mergesort en el PC Arturo.

n	int	double	float	n	string
50000	0,00467381	0,0114837	0,0103696	12308	0,0220313
100000	0,0098776	0,0121806	0,0117013	22308	0,0229442
150000	0,0156925	0,0183871	0,018259	32308	0,0422547
200000	0,0208121	0,0249882	0,0247901	42308	0,06872
250000	0,0265519	0,0319184	0,0315846	52308	0,1012
300000	0,0323268	0,038625	0,0383557	62308	0,142347
350000	0,0379446	0,0455637	0,0450607	72308	0,186687
400000	0,0444629	0,0522814	0,0517725	82308	0,241633
450000	0,0496729	0,0598129	0,059378	92308	0,295446
500000	0,0561251	0,0668194	0,0661963	102308	0,368751
550000	0,0620964	0,0742795	0,0737543	112308	0,431337
600000	0,0674103	0,0812635	0,0803504	122308	0,552277
650000	0,0767052	0,0892056	0,0884973	132308	0,622159
700000	0,0804308	0,0950736	0,0942522	142308	0,691106
750000	0,0858259	$0,\!103554$	0,102893	152308	0,806095
800000	0,0913994	$0,\!110159$	0,10909	162308	0,896376
850000	0,095706	0,118214	0,116856	172308	1,01104
900000	0,101631	$0,\!125201$	0,123795	182308	1,15227
950000	0,108028	0,132181	0,130613	192308	1,27353
1000000	0,111617	0,140264	0,138568	202308	1,4092
1100000	0,1245	$0,\!153546$	0,152169		
1150000	0,131298	$0,\!160642$	0,158896		
1200000	0,13887	$0,\!168724$	0,166526		
1250000	0,146035	0,175753	0,174023		

Tabla 7: Tiempos de ejecución para Quicksort en el ordenador de José Juan.

Figura 30: Tiempo de ejecución de Quicksort para int en PC José Juan.

Figura 31: Tiempo de ejecución de Quicksort para float en PC José Juan.

Figura 32: Tiempo de ejecución de Quicksort para double en PC José Juan.

Figura 33: Tiempo de ejecución de Quicksort para string en PC José Juan.

De estos datos vemos que a pesar de tener una complejidad del orden $O(n^2)$, el Quicksort presenta un crecimiento muy suave en el tiempo de ejecución respecto el tamaño de la entrada. Esto es debido a que es altamente improbable que se dé el peor caso del Quicksort salvo que intencionadamente se introduzcan datos que lo lleven a su peor tiempo de ejecución o que se use en situaciones inapropiadas, en las que un algoritmo como el de Inserción podría ser incluso mejor dependiendo del contexto (i.e. insertar al final nuevos datos en un vector ordenado y reordenar).

Sabiendo que el Quicksort en su mejor caso es $O(n \log n)$ y observando las gráficas, vemos que no es disparatado pensar que casi siempre está más cerca de su mejor caso que de su peor caso. Para hacernos una idea de por qué esto es cierto vamos a razonar de manera intuitiva por qué este es el caso más probable: En el mejor caso del Quicksort, se partirá siempre a la mitad el vector y hará que se ejecute el algoritmo lineal de partir $\log(n)$ veces (aunque un poco antes cambiará el método de ordenación cuando los tamaños sean razonablemente pequeños debido a motivos de eficiencia). En su peor caso se partirá siempre el vector en un elemento aislado y otro vector con un elemento menos que el anterior; es en este caso en el que el Quicksort presenta una peor eficiencia. Esto ocurre cuando los datos ya están casi ordenados, ordenados en el orden contrario o se repiten demasiados datos. En ellos, se llama a dividir_qs n veces, una por cada dato.

Podemos razonar entonces que, si no se aplica ninguna estrategia para evitar estos casos (que probablemente ni valdría la pena si el tiempo que tomara evaluar la estrategia no fuese muy pequeño), tendríamos que de vez en cuando se partiría el vector en dos subvectores de casi n/2 y a veces solo se separarían unos pocos datos al partir. Entonces es razonable asumir que el vector es partido en n/4 y en 3n/4 si queremos hacer un análisis de cómo se comportaría en un caso promedio. Esta es una asunción algo simple, pero nos ayudará a entender cuan rápido es en media el Quicksort. Como los vectores se dividen en 1/4 y en 3/4 de su tamaño original, la intuición nos dice que en la parte de un cuarto del tamaño original se llega al final en $\log_{4/3}(n)$. En la parte de tres cuartos se llega al final en $\log_{4/3}(n)$. En esta premisa, tenemos que ambos logaritmos son equivalentes por una constante real, así que nos

Figura 34: Regresión del algoritmo Quicksort para int en el PC de José Juan.

encontramos en un caso muy parecido en orden de eficiencia al mejor caso. Esta es la intuición que hay detrás de que el Quicksort sea en media de orden $O(n \log n)$. (La demostración rigurosa de esto es complicada y se sale del propósito de la asignatura, que se centra más en el peor caso).

Sobre los mismos datos de la Tabla 7 hemos realizado los siguientes ajustes (que corresponden con el mejor ajuste en cada caso), siendo todos linear-logarítimicos (es el ajuste adecuado según el razonamiento anterior) salvo para string:

• Para int, se ha usado la función siguiente, que se observa en la Figura 34:

$$f(x) = -0.00130275 + 9.59332 \cdot 10^{-8}x + 1.02604 \cdot 10^{-9}x \log_2(x)$$

■ Para float, se ha usado la función siguiente, que se observa en la Figura 35:

$$f(x) = 0.00178712 - 5.31219 \cdot 10^{-9}x + 7.09756 \cdot 10^{-9}x \log_2(x)$$

• Para double, se ha usado la función siguiente, que se observa en la Figura 36:

$$f(x) = 0.00264789 - 2.75117 \cdot 10^{-8}x + 8.2366 \cdot 10^{-9}x \log_2(x)$$

Para string, se ha usado la función siguiente, que se observa en la Figura 37:

$$f(x) = 0.00809874 + 4.84326 \cdot 10^{-8}x + 3.39336 \cdot 10^{-11}x^2$$

En la Figura 38, comparamos la influencia del cambio de tipos de datos. Como cabría esperar, int es el tipo que proporciona la ejecución más liviana. Los tipos de datos float y double están bastante cerca en cuanto a tiempo de ejecución y, con string, observamos algo novedoso: el comportamiento del algoritmo cambia de $n \log(n)$ a n^2 . Para corroborarlo, podemos observar la Figura 39. En ella claramente se observa que el ajuste cuadrático es mejor que el linear-logarítmico. Realizando el análisis teórico de Quicksort, observábamos que este tiene un orden de eficiencia de

Figura 35: Regresión del algoritmo Quicksort para float en el PC de José Juan.

Figura 36: Regresión del algoritmo Quicksort para double en el PC de José Juan.

Figura 37: Regresión del algoritmo Quicksort para string en el PC de José Juan.

Figura 38: Comparativa de tipos de datos del algoritmo Quicksort en PC José Juan.

 $O(n^2)$ en su peor caso (que estén los datos casi ordenados) y $O(n \log n)$ en el caso promedio. Hemos podido ver que para valores aleatorios de int, float y double el algoritmo presenta un orden de eficiencia $O(n \log n)$, como cabría esperar al ser datos aleatorios y, por tanto, podemos imaginar que se ajustarían a una instancia de caso promedio. Sin embargo, con string observamos un comportamiento novedoso: el orden de eficiencia del algoritmo pasa a ser de $O(n^2)$, algo que no esperábamos, ya que los datos de entrada son de un libro, contienen multitud de palabras y podríamos pensar que se asemejaría a generar palabras de forma aleatoria. Sabemos que las operaciones de comparación e intercambio de string son más costosas, pero no deberían cambiar el orden de eficiencia del algoritmo (ya que dichas operaciones son del orden O(m) siendo m el tamaño de la palabra, que de media en español es de 5 letras, en comparación con el tamaño de n, que varía desde 12308 hasta 202308, luego $m \ll n$). A qué se debe este cambio en el orden de eficiencia de Quicksort?

Pues se debe a que no estamos considerando cadenas aleatorias (como cabría esperar), estamos considerando palabras aleatorias en español. Según Wikipedia, la distribución de las letras en español se corresponde con la Tabla 8, que podemos ver gráficamente en la Figura 40 (excluimos la "ñ" debido a que su código ASCII no está entre el de la "a" y la "z"), donde podemos ver que de las 26 letras consideradas, 10 no aparecen ni el 1 % de las veces, mientras que la "a" y la "e" aparecen más del 12 % cada una. Esta diferencia hace que el Quicksort trate de ordenar una instancia que no corresponde con el caso promedio, sino con el peor caso. Para corroborarlo, en la Tabla 8 representamos además la cantidad de palabras del Quijote (libro que tomamos como banco de palabras para string) que empiezan con cada letra (por cómo se ordenan las palabras, es más relevante ver por qué letra comienzan que la frecuencia de las letras en las palabras). Podemos visualizar esta cantidad gracias a la Figura 41.

4.2.3. Comparación de algoritmos linear-logarítmicos

Como se puede observar en los datos recogidos de la Tabla 9, el Mergesort se ejecuta casi 1,7 veces peor que el Quicksort. Esto es, entre otras cosas, debido a que nuestra versión del Mergesort requiere una cantidad $n \log(n)$ de memoria auxiliar, la cual reserva de manera dinámica. Esto causa que el algoritmo sea bastante más lento que el Quicksort en su caso medio, que tan solo requiere un almacenamiento auxiliar constante. Sin embargo, es de vital importancia resaltar que el Quicksort ha ganado en tiempo debido a que recibió una entrada aleatoria con el propósito de visualizar el caso medio. En su peor caso, como ya hemos resaltado bastantes veces, el Quicksort es $O(n^2)$, lo que causaría que, en un caso malo del Quicksort, el algoritmo perdiese estrepitosamente la comparación de cuál de los dos es más rápido. En la Figura 42 se ilustra de manera más visual cómo evoluciona esta diferencia a lo largo del tiempo, lo que nos permite ver que el Quicksort aun así es la mejor elección en su caso medio. Sin embargo, se debe decidir de forma coherente cuál de los dos usar en cada caso, pues Quicksort debe quedar descartado si se van a ordenar datos casi ordenados o muchos datos repetidos, ya que estos son algunos de sus peores casos.

Mientras tanto, el Mergesort con esta implementación debe evitar ser usado si pueden haber limitaciones en la memoria principal disponible; como puede darse el caso en sistemas empotrados en los que, por algún motivo, se necesite ordenar

Figura 39: Comparativa de tipos de ajuste para string en PC José Juan.

Letra	Frecuencia	Palabras que empiezan
	(en porcentaje)	por cada letra en el Quijote
a	12,53	16141
b	1,42	2803
c	4,68	14441
d	5,86	22108
e	13,68	18046
f	0,69	2954
g	1,01	1851
h	0,7	6723
i	6,25	1462
j	0,44	676
k	0,02	0
1	4,97	17220
m	3,15	11038
n	6,71	6001
О	8,68	3134
p	2,51	13314
q	0,88	14657
r	6,87	2967
s	7,98	15369
t	4,63	8019
u	3,93	2024
v	0,9	5744
w	0,01	8
x	0,22	42
у	0,9	10791
Z	0,52	141

Tabla 8: Tabla de análisis de frecuencia de aparición de letras según Wikipedia y de comienzo de palabras en español según el Quijote.

Figura 40: Frecuencia de aparición de letras en español según Wikipedia.

Figura 41: Cantidad de palabras que comienzan por cada letra en el Quijote.

n	Mergesort	Quicksort
50000	0,006236	0,00345248
100000	0,013314	0,00701012
150000	0,019333	0,0115228
200000	0,028895	0,0154378
250000	0,0317	0,0194958
300000	0,041888	0,0232022
350000	0,050927	0,0284878
400000	0,060585	0,0318925
450000	0,059927	0,0364872
500000	0,069133	0,0416348
550000	0,076643	0,0450575
600000	0,085745	0,049795
650000	0,096291	0,0545303
700000	0,1036	0,0603586
750000	0,116193	0,0631069
800000	0,128549	0,0680165
850000	0,120082	0,0725883
900000	0,127915	0,0771059
950000	0,136794	0,0813733
1000000	0,141584	0,0864082
1050000	0,154477	0,0913727
1100000	0,162778	0,0960989
1150000	0,169551	0,0988133
1200000	0,178112	0,102367
1250000	0,187529	0,107923

Tabla 9: Tabla comparativa del Mergesort y Quicksort en PC Irina.

Figura 42: Comparativa de los algoritmos linear-logarítmicos en el PC Irina.

muchos datos o en algunos sistemas en concreto de tiempo real, pues esto podría causar que se bloqueen procesos (Swapping) para poder ordenar rápidamente, o se tendría que realizar muchas peticiones de E/S para poder usar la memoria secundaria para ordenar. En un sistema de tiempo real esto podría traer consecuencias nefastas, así que en estos casos concretos el Quicksort sería una mejor elección.

4.2.4. Comparación en distinto hardware

Como algoritmo linear-logarítmico para ejecutarse en todos los ordenadores hemos elegido el algoritmo de Quicksort. Mostramos ahora en la Tabla 10 los tiempos de ejecución en cada uno de los ordenadores y lo resaltamos gráficamente en la Figura 43.

En los datos de la Figura 43 observamos cómo la diferencia de tiempos de ejecución entre cualesquiera dos ejecuciones del mismo tamaño de entrada está determinado por una constante. Por ejemplo, la diferencia de tiempo de ejecución entre el ordenador de José Juan y el ordenador de Airam nos muestra que el ordenador de José Juan corre aproximadamente 2,7 veces más rápido el Quicksort que el ordenador de Airam. Cabe destacar que a pesar de tener las mismas prestaciones, el ordenador de Lucas y el ordenador de Airam presentan tiempos muy dispares. Como el algoritmo se ejecuta de forma secuencial, hemos descartado la posibilidad de que sea por una diferencia en el número de cores disponibles.

En todos los ordenadores, no obstante, se aprecia como el tiempo de ejecución crece de forma casi lineal con respecto a su entrada (sabemos, sin embargo, que una curva lineal-logarítmica explica mucho mejor los resultados, a pesar de que a simple vista sea difícil de apreciar). Esto nos muestra cómo el Quicksort es un algoritmo que no requiere de un hardware específico para comportarse de una manera bastante estable en el caso medio. Deducimos también que es un buen algoritmo que

n	José Juan	Arturo	Irina	Lucas	Airam
50000	0,0042545	0,00996516	0,00335371	0,00532395	0,0132008
100000	0,0095564	0,0179203	0,00711646	0,0110067	0,0278678
150000	0,0140981	0,0242093	0,0112455	0,0163917	0,0428819
200000	0,0205965	0,0308087	0,0155371	0,0198361	0,056683
250000	0,0262451	0,0378297	0,0194076	0,0247633	0,0685042
300000	0,0318026	0,0457154	0,023623	0,0297904	0,0867636
350000	0,0372646	0,0545872	0,0278431	0,0353328	0,0987438
400000	0,0430272	0,0630784	0,0317653	0,0404795	0,113244
450000	0,0485389	0,0707236	0,0369531	0,0459344	0,126802
500000	0,0542375	0,0799438	0,0416354	0,0513512	0,150223
550000	0,0601134	0,0922267	0,0448741	$0,\!0578232$	0,159226
600000	0,066169	0,0969197	0,049937	0,0641938	0,17775
650000	0,0708353	0,103708	0,0533011	0,0688807	0,185832
700000	0,0772646	0,113966	0,0594714	0,0751388	0,201091
750000	0,0839523	0,128006	0,0628564	$0,\!0815278$	0,22947
800000	0,0898418	0,12998	0,0686097	0,0853565	0,234128
850000	0,0959496	0,139148	0,0705088	0,0921127	0,247716
900000	0,101498	0,14925	0,0749372	0,0970982	0,263426
950000	0,1077	0,158863	0,0824308	0,103748	0,295789
1000000	0,113698	0,165685	0,0864631	0,110242	0,303211
1050000	0,120464	0,177278	0,0922949	$0,\!116239$	0,309282
1100000	0,125074	0,183784	0,0985157	0,123108	0,329378
1150000	0,131339	0,194812	0,101853	0,12938	0,344027
1200000	0,137853	0,201575	0,105796	0,133816	0,378104
1250000	0,144411	0,212129	0,108373	0,143624	0,381028

Tabla 10: Comparación Quicksort en distinto hardware.

Figura 43: Quicksort en todos los PCs.

usar cuando se quieren ordenar datos de tamaño razonablemente grande incluso en nuestros ordenadores portátiles, lo que lo hace un algoritmo adecuado para utilizar en ámbitos que requieran ordenar 2 o 3 millones de datos en un corto periodo de tiempo. Nótese que, de ser estrictamente necesario reducir el tiempo de cómputo, se puede desarrollar un algoritmo multihebra para que al partir los datos se asigne cada subvector a un hilo y acelerar considerablemente el tiempo de ejecución.

4.3. Algoritmos cúbicos

Esta sección trata sobre el algoritmo de Floyd, que calcula el coste mínimo de caminos en un grafo. Se trata del único algoritmo cúbico que tratamos en este estudio.

4.3.1. Análisis teórico

Floyd

El código del algoritmo se encuentra en el Código fuente 5.

El tiempo de ejecución de las líneas 5 y 6 pueden acotarse por una constante, que denotaremos por a, debido a que su tiempo de ejecución no depende del tamaño de dim, que es la dimensión de nuestro problema, la cual denotaremos por n para abreviar. Teniendo esto en cuenta, procedemos a calcular el tiempo de ejecución en función de la constante a:

$$T(n) = \sum_{k=0}^{n-1} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a = a \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} 1 = a \sum_{k=1}^{n} \sum_{i=1}^{n} n = a \sum_{k=1}^{n} n^2 = a \cdot n^3$$

El algoritmo por tanto tiene un tiempo de ejecución $T(n) = a \cdot n^3$, que claramente es de orden $O(n^3)$.

```
void Floyd(int **M, int dim){
1
2
       for(int k = 0; k < dim; k++)
           for(int i = 0; i < dim; i++)</pre>
3
4
                for(int j = 0; j < dim; j++){
                    int sum = M[i][k] + M[k][j];
5
6
                    M[i][j] = (M[i][j] > sum)? sum : M[i][j];
                }
7
8
   }
```

Código fuente 5: Algoritmo de Floyd.

Figura 44: Tiempo de ejecución del algoritmo de Floyd según el tamaño en PC Irina.

4.3.2. Análisis empírico e híbrido

Floyd

Tras ejecutar el algoritmo de Floyd para tamaños de n de 50 a 1250 con saltos de 50, obtenemos la Tabla 11 que relaciona el tamaño de n con su tiempo de ejecución en segundos. Representamos estos datos en la gráfica de la Figura 44 con ayuda de gnuplot.

Habiendo estudiado el análisis teórico, sabemos que el algoritmo es de eficiencia $O(n^3)$. Buscamos una regresión según la función $f(x) = ax^3$, donde a es una constante que vamos a calcular mediante los datos empíricos medidos. Usamos gnuplot para calcular la regresión y para representarlo en la Figura 45. El ajuste que nos da la regresión es:

$$ax^3$$
 con $a = 3{,}30642 \cdot 10^{-9}$

Tenemos entonces que la función de regresión es:

$$f(x) = 3,30642 \cdot 10^{-9} \cdot x^3$$

Además en la gráfica de la Figura 45 podemos observar que se hace un ajuste muy bueno, y los datos que nos ofrece gnuplot nos indican que solo han hecho falta 5

Tamaño de n	Tiempo de ejecución (seg)
50	0,000449805
100	0,00337267
150	0,0115654
200	0,0271475
250	0,0536884
300	0,091903
350	0,143536
400	0,214013
450	0,304792
500	0,415365
550	0,552097
600	0,714185
650	0,910873
700	1,13693
750	1,39432
800	1,69703
850	2,02785
900	2,40473
950	2,8274
1000	3,29641
1050	3,81262
1100	4,40302
1150	5,01334
1200	5,69402
1250	6,50325

Tabla 11: Tiempos de ejecución del algoritmo de Floyd en el ordenador de Irina.

Figura 45: Regresión aplicada al algoritmo de Floyd en PC Irina.

n	José Juan	Arturo	Irina	Lucas	Airam
50	0,000603	0,001159	0,000449805	0,001847	0,00138499
100	0,004542	0,013131	0,00337267	0,012631	0,0110037
150	0,0441	0,026228	0,0115654	0,013884	0,03537
200	0,035143	0,059772	0,0271475	0,02809	0,0852457
250	0,068313	0,095128	0,0536884	0,052543	0,156427
300	0,117504	0,16313	0,091903	0,090714	0,256682
350	0,186478	0,275216	0,143536	0,143473	0,395706
400	0,304537	0,40694	0,214013	0,213136	0,602894
450	0,422511	0,544064	0,304792	0,312363	0,840254
500	0,540751	0,74787	0,415365	0,424881	1,16819
550	0,747692	1,10025	0,552097	0,563973	1,568
600	0,93305	1,29331	0,714185	0,738205	2,08373
650	1,18336	1,63547	$\overline{0,910873}$	0,927077	$\overline{2,57425}$
700	1,47721	2,03938	1,13693	1,16598	3,2336
750	1,81361	2,52209	1,39432	1,41559	4,00494
800	2,20274	3,1811	1,69703	1,74523	4,87717
850	2,64064	3,80557	2,02785	2,08503	5,80996
900	3,13418	4,63116	2,40473	2,4943	6,85551
950	3,68503	5,54908	2,8274	2,90362	8,09525
1000	4,31219	6,63507	3,29641	3,52293	9,50607
1050	4,99056	7,29339	3,81262	3,951	10,8454
1100	5,73665	8,35357	4,40302	4,62134	12,5006
1150	6,45164	9,74663	5,01334	5,25637	14,255
1200	7,42755	10,9512	5,69402	6,01818	16,1939
1250	8,39534	13,209	6,50325	6,73471	18,1392

Tabla 12: Comparación Floyd en distinto hardware.

iteraciones para llegar a dicho ajuste. De aquí podemos deducir que es un algoritmo bastante estable.

4.3.3. Comparación en distinto hardware

Mostramos la Tabla 12 con los tiempos de ejecución en cada uno de los ordenadores del algoritmo de Floyd y una gráfica en la Figura 46 en la que vemos el tiempo de ejecución en cada ordenador.

En esta, podemos observar un comportamiento similar a lo que ocurría con la comparativa de algoritmos cuadráticos: para tamaños no muy grandes del problema, como 600, obtenemos una diferencia en tiempos de ejecución no muy grande, de 2 segundos entre el hardware con mejor resultados y aquel con peores resultados. Sin embargo, a medida que aumentamos el tamaño del problema, observamos que la pendiente de la gráfica aumenta: observamos un crecimiento moderado en los PCs de Irina, Lucas y José Juan; y un crecimiento grande en los PCs de Arturo y Airam, alcanzando para el último valor de n considerado, 1250, una diferencia de hasta 11,5 segundos entre el PC de Irina y el de Airam. Al igual que ocurría en los algoritmos cuadráticos, el hardware influye bastante en los tiempos de ejecución de los algorit-

Figura 46: Floyd en todos los PCs.

```
1 int fibo(int n){
2     if (n < 2) return 1;
3     else return fibo(n-1) + fibo(n-2);
4 }</pre>
```

Código fuente 6: Algoritmo para la sucesión de Fibonacci.

mos cúbicos. De hecho, más que para los cuadráticos, ya que aquí observamos una pendiente más pronunciada que en la gráfica de los cuadráticos, ya que un hardware con mejores resultados sostiene mejor el crecimiento de la pendiente, que es mayor en cúbicos que en cuadráticos.

4.4. Algoritmos exponenciales

4.4.1. Análisis teórico

Fibonacci

El código del algoritmo de Fibonacci se encuentra en el Código fuente 6.

El tamaño de nuestro problema es n. Supongamos que la función tiene un tiempo de ejecución T(n). Tenemos entonces la siguiente ecuación para la función:

$$T(n) = \begin{cases} 1 & si & n < 2 \\ T(n-1) + T(n-2) + 1 & si & n \geqslant 2 \end{cases}$$

Aplicamos el método de la ecuación característica. Empezaremos buscando las raíces de la ecuación lineal homogénea. Notando $T(n) = x^n$, tenemos que:

$$x^{n} - x^{n-1} - x^{n-2} = x^{n-2}(x^{2} - x - 1) = 0$$

Por tanto, el polinomio característico asociado a la parte homogénea es:

$$p(x) = x^2 - x - 1 = \left(x - \left(\frac{1 + \sqrt{5}}{2}\right)\right) \cdot \left(x - \left(\frac{1 - \sqrt{5}}{2}\right)\right)$$

Si ahora tenemos en cuenta la parte no homogénea, tenemos que $1 = 1^n(n^0)$, por lo que el polinomio característico de la ecuación en diferencias queda:

$$p(x) = \left(x - \left(\frac{1 + \sqrt{5}}{2}\right)\right) \cdot \left(x - \left(\frac{1 - \sqrt{5}}{2}\right)\right) \cdot (x - 1) \implies$$

La solución entonces de la Ley de Recurrencia es:

$$T(n) = t_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n + c_3 \cdot 1^n$$

Por la regla del máximo deducimos que es exponencial; es decir:

$$T(n) \in O\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$$

```
1 void hanoi(int M, int i, int j)
2 {
3    if (M > 0)
4    {
5       hanoi(M - 1, i, 6 - i - j);
6       cout << i << " -> " << j << endl;
7       hanoi(M - 1, 6 - i - j, j);
8    }
9 }</pre>
```

Código fuente 7: Algoritmo resolver el problema Hanoi.

Hanoi

El código del algoritmo de Hanoi se encuentra en el Código fuente 7.

Analizamos el código y vemos que es muy simple, evaluar la condición y llevar cada paso a la salida estándar tienen un orden de tiempo constante (aunque en la práctica, bastante duradero debido a la cantidad de llamadas E/S). Sin embargo, se hacen dos llamadas recursivas por cada llamada a la función, por lo que tendremos que expresar en términos de una función recurrente el tiempo de ejecución. La función que determina el tiempo que tarda Hanoi en ejecutarse viene dada por:

$$T(n) = \begin{cases} 2T(n-1) + 1 & si \quad n \geqslant 1\\ 1 & si \quad n = 0 \end{cases}$$

Desarrollando de forma recurrente, vemos que:

$$T(n) = 2T(n-1) + 1 = 2(2T(n-2) + 1) + 1 =$$

$$= 2^{2}T(n-2) + 2 + 1 = 2^{3}T(n-3) + 4 + 2 + 1 = \dots =$$

$$= 2^{k}T(n-k) + \sum_{i=0}^{k-1} 2^{i} = 2^{k}T(n-k) + 2^{k} - 1 \qquad \forall k \in \mathbb{N}, k \geqslant n$$

Tomamos k = n para tener entonces que:

$$T(n) = 2^n T(0) + 2^n - 1 = 2 \cdot 2^n - 1$$

Con esto, concluimos que claramente el algoritmo que resuelve el problema de las torres de Hanoi es $O(2^n)$.

4.4.2. Análisis empírico e híbrido

Fibonacci

Tras ejecutar el algoritmo de Fibonacci para tamaños de n de 2 a 50 con saltos de 2, obtenemos la Tabla 13 que relaciona el tamaño de n con su tiempo de ejecución en segundos. Representamos también los datos en una gráfica en la Figura 47 con ayuda de gnuplot.

Por el análisis teórico del algoritmo, sabemos que la eficiencia del algoritmo es $O\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$, con $\frac{1+\sqrt{5}}{2}\approx 1{,}618$. Vamos a buscar entonces un ajuste según la

Tama \tilde{n} o de n	Tiempo de ejecución (seg)
2	$1.01 \cdot 10^{-7}$
4	$1.6 \cdot 10^{-7}$
6	$2.4 \cdot 10^{-7}$
8	$4.51 \cdot 10^{-7}$
10	$6.81 \cdot 10^{-7}$
12	$1,123 \cdot 10^{-6}$
14	$2,705 \cdot 10^{-6}$
16	$5,801 \cdot 10^{-6}$
18	$1{,}1943\cdot10^{-5}$
20	$3,8093 \cdot 10^{-5}$
22	$8,4522 \cdot 10^{-5}$
24	0,000195986
26	0,000647991
28	0,00167728
30	0,00351789
32	0,00918415
34	0,0242092
36	0,0640642
38	0,165698
40	0,429828
42	1,13613
44	2,97267
46	7,73283
48	20,164
50	53,4597

Tabla 13: Tiempos de ejecución para Fibonacci en el ordenador de Irina.

Figura 47: Tiempo de ejecución del Fibonacci según el tamaño en PC Irina.

función $f(x) = a \cdot 1,618^{b \cdot x}$, donde a y b son constantes que calculamos gracias a los datos empíricos medidos. Usamos gnuplot para esta tarea, además de representar la gráfica de la Figura 48. El ajuste que nos da la regresión realizada es el siguiente:

$$a \cdot 1,618^{b \cdot n}$$
 con
$$\begin{cases} a = 1,55082 \cdot 10^{-9} \\ b = 1,00846 \end{cases}$$

Luego nuestra función de regresión es:

$$f(x) = 1,55082 \cdot 10^{-9} \cdot 1,618^{1,000846 \cdot x}$$

Se ve muy claro en la gráfica de la Figura 48 el carácter exponencial del algoritmo puesto que hasta n=40 no tarda más de un segundo; aunque incluso en esos primeros 40 valores la escala va creciendo rápido, lo que se puede ver en la Tabla 13. Pero a partir de n=42 se puede ver más fácilmente: 1,2,7,20 y 53 segundos aproximadamente. Teniendo en cuenta que en todos son saltos de 2, vemos claramente que sube exponencialmente.

Hanoi

Tras ejecutar el algoritmo de Hanoi para tamaños de n de 3 a 33 con saltos de 1, obtenemos la Tabla 14 que relaciona el tamaño de n con su tiempo de ejecución en segundos. Representamos además estos resultados en la gráfica de la Figura 49 con la ayuda de gnupot.

El análisis teórico nos dice que se trata de un algoritmo de eficiencia $O(2^n)$. Por tanto, tratamos de buscar una regresión según una función del estilo $a \cdot 2^n$ donde a es una constante que buscamos mediante los datos empíricos obtenidos. Usamos gnuplot para su regresión y representación gráfica en la Figura 50. El ajuste que nos da la regresión es:

$$f(x) = a \cdot 2^x$$
 con $a = 4{,}38663 \cdot 10^{-9}$

Figura 48: Regresión del algoritmo de Fibonacci en PC Irina.

Figura 49: Tiempo de ejecución de Hanoi según el tamaño en PC José Juan.

Tamaño de n	Tiempo de ejecución (seg)
3	$1.6 \cdot 10^{-7}$
4	$2.5 \cdot 10^{-7}$
5	$3.5 \cdot 10^{-7}$
6	$5.21 \cdot 10^{-7}$
7	$2,665 \cdot 10^{-6}$
8	$4,308 \cdot 10^{-6}$
9	$7.835 \cdot 10^{-6}$
10	$1,7313 \cdot 10^{-5}$
11	$2.8524 \cdot 10^{-5}$
12	$5,6017 \cdot 10^{-5}$
13	0,000111002
14	0,00022041
15	0,000430572
16	0,000877333
17	0,00175262
18	0,00352908
19	0,00703891
20	0,0140495
21	0,0276141
22	0,0559939
23	0,0860842
24	0,0732093
25	0,179872
26	0,292778
27	0,585756
28	1,17102
29	2,34124
30	4,68704
31	9,36798
32	18,7341
33	37,4663

Tabla 14: Tiempos de ejecución para Hanoi en el ordenador de José Juan.

Figura 50: Regresión aplicada al algoritmo de Hanoi en PC José Juan.

4.4.3. Comparación de algoritmos exponenciales

Es el momento de realizar la comparación entre los distintos algoritmos exponenciales que hemos visto, Hanoi y Fibonacci. Para ello hemos construido una gráfica donde se aprecia la diferencia entre los distintos ajustes de estos algoritmos. Con ello conseguiremos determinar cuál de ambos algoritmos es más eficiente. Los datos de ambos algoritmos se encuentran recopilados en la Tabla 15 que podemos observar gráficamente en la Figura 51. En este caso se ha realizado en el caso más sencillo, es decir, para el tipo int.

Antes de comentar nada sobre la gráfica de la Figura 51, es importante aclarar que no es demasiado relevante el resultado expuesto en ella. Esto es así a causa de que el orden de eficiencia de cada uno de los algoritmos, pese a ser ambos de orden exponencial, tienen base distinta ocasionando así que cada paso dado en el tamaño aumente de forma exponencial la diferencia entre los tiempos de ejecución de estos algoritmos. Además, cabe resaltar que cada algoritmo ha tenido un número de datos tope; en el caso del algoritmo de Hanoi como máximo se tomaron 33 datos y en el caso de Fibonacci se tomaron 50 datos.

No obstante, es posible deducir cuál de ellos tiene mejor comportamiento. Claramente, si miramos en pocos datos ambos algoritmos tienen un comportamiento prácticamente idéntico, con tiempos prácticamente nulos o inapreciables en la gráfica. A medida que nos alejamos del origen, podemos comprobar que el tiempo de ejecución del algoritmo de Hanoi se dispara a partir de los 30 datos; en contraste con el algoritmo de Fibonacci que sigue con datos inapreciables y no es hasta los 40 datos cuando el tiempo de ejecución comienza a realizar una subida exponencial.

n	Fibonacci	n	Hanoi
2	$3.9 \cdot 10^{-7}$	3	$5,99 \cdot 10^{-7}$
4	$5,46 \cdot 10^{-7}$	4	$7,98 \cdot 10^{-7}$
6	$9,51 \cdot 10^{-7}$	5	$1.5 \cdot 10^{-6}$
8	$1,275 \cdot 10^{-6}$	6	$1,616 \cdot 10^{-6}$
10	$3,009 \cdot 10^{-6}$	7	$2,671 \cdot 10^{-6}$
12	$3,941 \cdot 10^{-6}$	8	$3,962 \cdot 10^{-6}$
14	$8,844 \cdot 10^{-6}$	9	$7,972 \cdot 10^{-6}$
16	$2{,}1815 \cdot 10^{-5}$	10	$ 1,3234 \cdot 10^{-5} $
18	$5,3475 \cdot 10^{-5}$	11	$2,6074 \cdot 10^{-5}$
20	0,000136905	12	$ 4,9961 \cdot 10^{-5} $
22	0,000367394	13	$9,9579 \cdot 10^{-5}$
24	0,000940697	14	0,000197581
26	0,00252106	15	0,000392722
28	0,00625692	16	0,000835642
30	0,0126508	17	0,00165139
32	0,0178029	18	0,00314614
34	0,0323833	19	0,00591598
36	0,0824038	20	0,00642067
38	0,216716	21	0,010082
40	0,571192	22	0,0166809
42	1,49193	23	0,0280198
44	3,96064	24	0,0555396
46	10,3372	25	0,113143
48	27,5995	26	0,225693
50	73,7711	27	0,455376
		29	1,83801
		30	3,67708
		31	7,38961
		32	15,0929
		33	30,0923

Tabla 15: Tabla comparativa de Fibonacci y Hanoi en el PC Lucas.

Figura 51: Gráfica comparativa de Fibonacci y Hanoi, ambos en el PC de Lucas.

Por tanto, pese a que no haya el mismo número de datos, podemos concluir que el algoritmo de Fibonacci es más eficiente que el algoritmo de Hanoi. Esto es claro, pues la base de la función exponencial es distinta en cada caso, siendo la de Fibonacci más pequeña.

4.4.4. Comparación en distinto hardware

Como algoritmo exponencial para ejecutarse en todos los ordenadores hemos elegido el algoritmo de Fibonacci. Mostramos ahora la Tabla 16 con los tiempos de ejecución en cada uno de los ordenadores y una gráfica en la Figura 52 en la que vemos el tiempo de ejecución en cada ordenador. La gráfica de los tiempos por sí sola apenas puede apreciarse bien, por lo que decidimos incluir en esta las curvas de regresión; a diferencia de lo hecho en otras ocasiones. Observando la tabla, vemos que para tamaños del problema suficientemente grandes, (por ejemplo, a partir de n = 44) obtenemos una disparidad considerable en cuanto a tiempos de ejecución en distinto hardware: diferencias de hasta 7 segundos. Conforme aumentamos el tamaño, esta diferencia se dispara debido a la naturaleza de las funciones exponenciales, llegando hasta una diferencia de 144 segundos para n=50 entre los ordenadores de Irina y Airam. Como podemos observar, en el caso de los algoritmos exponenciales, la bondad del hardware es aún más importante, ya que este retrasa el "estallido" de los datos a partir de uno en adelante (observemos que en el PC de Irina hay una diferencia considerable entre los datos a partir de n=46, mientras que esta diferencia se aprecia en el PC de Airam a partir de n=42).

n	José Juan	Arturo	Irina	Lucas	Airam
2	$3.51 \cdot 10^{-7}$	$1,75 \cdot 10^{-7}$	$1,01 \cdot 10^{-7}$	$3.9 \cdot 10^{-7}$	$2,94 \cdot 10^{-7}$
4	$1.4 \cdot 10^{-7}$	$3.59 \cdot 10^{-7}$	$1.6 \cdot 10^{-7}$	$5,46 \cdot 10^{-7}$	$4,55 \cdot 10^{-7}$
6	$2.2 \cdot 10^{-7}$	$3,42 \cdot 10^{-7}$	$2.4 \cdot 10^{-7}$	$9.51 \cdot 10^{-7}$	$6.49 \cdot 10^{-7}$
8	$3.81 \cdot 10^{-7}$	$7,58 \cdot 10^{-7}$	$4.51 \cdot 10^{-7}$	$1,275 \cdot 10^{-6}$	$1,139 \cdot 10^{-6}$
10	$6.81 \cdot 10^{-7}$	$1,309 \cdot 10^{-6}$	$6.81 \cdot 10^{-7}$	$3,009 \cdot 10^{-6}$	$2,302 \cdot 10^{-6}$
12	$1,423 \cdot 10^{-6}$	$2,232 \cdot 10^{-6}$	$1,123 \cdot 10^{-6}$	$3,941 \cdot 10^{-6}$	$3,573 \cdot 10^{-6}$
14	$9,337 \cdot 10^{-6}$	$1,4181 \cdot 10^{-5}$	$2,705 \cdot 10^{-6}$	$8,844 \cdot 10^{-6}$	$7,947 \cdot 10^{-6}$
16	$6,682 \cdot 10^{-6}$	$1,0605 \cdot 10^{-5}$	$5,801 \cdot 10^{-6}$	$2,1815 \cdot 10^{-5}$	$2,0002 \cdot 10^{-5}$
18	$1,8245 \cdot 10^{-5}$	$2,6339 \cdot 10^{-5}$	$1,1943 \cdot 10^{-5}$	$5,3475 \cdot 10^{-5}$	$ 4,9157 \cdot 10^{-5} $
20	$4,6427 \cdot 10^{-5}$	$8,7014 \cdot 10^{-5}$	$3,8093 \cdot 10^{-5}$	0,000136905	0,000125821
22	0,000123191	0,000210895	$8,4522 \cdot 10^{-5}$	0,000367394	0,000328948
24	0,000297878	0,00194832	0,000195986	0,000940697	0,00087767
26	0,000764572	0,00122205	0,000647991	0,00252106	0,0022649
28	0,00199871	0,00337777	0,00167728	0,00625692	0,0059107
30	0,00547652	0,00864883	0,00351789	0,0126508	0,0141414
32	0,0142995	0,0213254	0,00918415	0,0178029	0,0372582
34	0,0371424	0,0549702	0,0242092	0,0323833	0,102112
36	0,0980092	0,138956	0,0640642	0,0824038	0,243725
38	0,247195	0,397855	0,165698	0,216716	0,63263
40	0,646761	0,980171	0,429828	0,571192	1,59775
42	1,7614	2,47504	1,13613	1,49193	4,24822
44	4,58162	6,62743	2,97267	3,96064	10,9739
46	11,6635	18,0981	7,73283	10,3372	28,7114
48	30,3569	45,845	20,164	27,5995	76,4746
50	80,9576	120,518	53,4597	73,7711	197,166

Tabla 16: Comparación del algoritmo de Fibonacci en distinto hardware.

Figura 52: Comparación del algoritmo de Fibonacci en todos los PCs.

5. Conclusiones

Las conclusiones alcanzadas en el presente informe son varias y de diversa índole. Grosso modo, hemos comprendido de forma real lo que implica la notación O, ya que estamos muy acostumbrados a asignar a cada algoritmo un orden de eficiencia sin saber lo que esto implica.

Como primera gran conclusión, hemos visto que aun siendo dos algoritmos del mismo orden, no necesariamente implica que sean "igual de buenos", debido a constantes. Como hemos señalado en la sección correspondiente, aun siendo tanto el algoritmo de ordenación mediante Inserción como Burbuja ambos cuadráticos; el de Inserción es mucho más eficiente, no habiendo motivos aparentes por los que elegir el algoritmo de Burbuja en ningún caso.

Otra conclusión que hemos obtenido de este estudio es la importancia de entender la diferencia entre el caso peor, el caso promedio, y el caso óptimo. En el caso del Quicksort, por ejemplo, aun siendo de orden $O(n^2)$, cuadrático en el peor caso, en el caso promedio se comporta como un algoritmo lineal-logarítmico. Por ello, pese a ser de orden cuadrático, no se suele englobar con los algoritmos no recursivos como el de Inserción; sino con los recursivos como el Mergesort.

Asimismo, también nos hemos dado cuenta de la importancia del estudio teórico de los algoritmos previamente a su implementación, ya que si estos no son buenos no va a tener sentido implementarlos, pues van a ser inútiles al tardar estos demasiado. Para tamaños del problema grandes, esto será esencial para poder llegar a cualquier resultado.

Por otra parte, hemos visto como también afectan los tipos de datos empleados para un problema, siendo por ejemplo el string un tipo de dato cuya ordenación es mucho más costosa dada la complejidad que supone hacer por ejemplo el swap de dos cadenas. Esto puede causar un gran deterioro en el paradigma de programación orientada a objetos (por ejemplo), al tener que manipular objetos con numerosos atributos.

Además, hemos concluido que el hardware empleado en la ejecución de los algoritmos juega un gran papel en sus tiempos de ejecución, sobre todo en el caso de los algoritmos de peor orden (los menos eficientes). Junto con tamaños de problema grandes y algoritmos inadecuados, podemos llegar a obtener tiempos no deseados, sobre todo si no se dispone de un buen hardware. Por tanto, ante problemas que puedan ser escalables, debemos buscar siempre una solución óptima que retarde el crecimiento de tiempos de ejecución.

Otra cuestión que hemos podido comprobar es la diferencia en cuanto a la base de un orden de eficiencia exponencial: ante una pequeña perturbación en la base de este (como ocurre con Fibonacci y Hanoi) obtenemos una diferencia notoria en cuanto a tiempos de ejecución. Por tanto, no tiene sentido comparar dos algoritmos de ese estilo, pues admiten escalas de datos muy diferentes.

En general, nos ha sido de gran ayuda porque nos ha ayudado a plasmar los conocimientos teóricos que teníamos en mente de una forma empírica, aprendiendo de ellos.