Constrained Convex Optimization Master DSC/MLDM/CPS2

levgen Redko

ievgen.redko@univ-st-etienne.fr

LABORATOIRE HUBERT CURIEN, UMR CNRS 5516 Université Jean Monnet Saint-Étienne amaury.habrard@univ-st-etienne.fr

Semester 2

Outline

- Optimization: Quick overview
- Smooth constrained convex optimization
- 3 Interior point methods
- 4 Summary
- 5 Non-convex optimization
- Formulation of optimization problems
- Software

Some Course material

- ► The textbook for the optimization part is *Convex Optimization* (Boyd & Vandenberghe).
- ► It is freely available in PDF on Boyd's website: http://www.stanford.edu/~boyd/cvxbook/
- ► This book goes a lot further than what we will cover, so you can refer to it if you want to know more about optimization.
- ➤ Online lectures from Boyd (Standford university) are freely available on the web (http://www.stanford.edu/class/ee364a/videos.html or youtube:
 - http://www.youtube.com/watch?v=McLq1hEq3UY)
- ► Useful book for matrix/vector operations, derivatives, ...: the matrix cookbook http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf

Plan

- Optimization: Quick overview
- 2 Smooth constrained convex optimization
- 3 Interior point methods
- 4 Summary
- 5 Non-convex optimization
- 6 Formulation of optimization problems
- Software

What is it?

(Mathematical) Optimization

Find values for variables such that a given function is minimized (or maximized), sometimes under constraints. Standard form:

$$\min_{x} f_{0}(x)$$
subject to $f_{i}(x) \leq 0, \quad 1 \leq i \leq m$

$$h_{i}(x) = 0, \quad 1 \leq i \leq p$$

What is it?

(Mathematical) Optimization

Find values for variables such that a given function is minimized (or maximized), sometimes under constraints. Standard form:

$$\min_{x} f_{0}(x)$$
subject to $f_{i}(x) \leq 0, \quad 1 \leq i \leq m$

$$h_{i}(x) = 0, \quad 1 \leq i \leq p$$

- ▶ f_0 is the objective function, $x=(x_1,\ldots,x_n)$ the variables and $f_1,\ldots,f_m,h_1,\ldots,h_p$ defines m+p inequality and equality constraints on the variables.
- ightharpoonup Optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints.
- An optimization problem can be constrained or unconstrained.

▶ In our lab. Optimizing the setting of a femto-second laser to improve its performance.

- ▶ In our lab. Optimizing the setting of a femto-second laser to improve its performance.
- ► **Economics**. Optimization of agent behavior (expected profit). Game theory. Portfolio optimization.

- ▶ In our lab. Optimizing the setting of a femto-second laser to improve its performance.
- ► **Economics**. Optimization of agent behavior (expected profit). Game theory. Portfolio optimization.
- ► Control engineering. Online optimization of robot behavior.

- ▶ In our lab. Optimizing the setting of a femto-second laser to improve its performance.
- ► **Economics**. Optimization of agent behavior (expected profit). Game theory. Portfolio optimization.
- ► Control engineering. Online optimization of robot behavior.
- ► Machine learning. Data fitting. Parameter inference, e.g., in Support Vector Machines.

- ▶ In our lab. Optimizing the setting of a femto-second laser to improve its performance.
- ► **Economics**. Optimization of agent behavior (expected profit). Game theory. Portfolio optimization.
- ► Control engineering. Online optimization of robot behavior.
- ► Machine learning. Data fitting. Parameter inference, e.g., in Support Vector Machines.
- ➤ Computer Vision. Image segmentation and restoration. Dictionary learning. 2D/3D shape matching/recovery. Tracking.

Continuous functions

Definition (Continuous function)

A function $f:\mathbb{R}^n \to \mathbb{R}$ is **continuous** at some point $c \in \mathbb{R}^n$ if

$$\lim_{x \to c} f(x) = f(c).$$

Intuitively, it means that "small" changes in the input x result in "small" changes in the output f(x).

Differentiable functions

Definition (Differentiable function, Gradient)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **differentiable** if its derivative exists at all $x \in \mathbb{R}^n$. Then the **gradient** of f at x is the vector whose components are the partial derivatives of f at x:

$$\nabla f(x) = \left(\frac{\partial_f}{\partial_{x_1}}, \cdots, \frac{\partial_f}{\partial_{x_n}}\right)^T$$

Differentiable functions

Definition (Differentiable function, Gradient)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **differentiable** if its derivative exists at all $x \in \mathbb{R}^n$. Then the **gradient** of f at x is the vector whose components are the partial derivatives of f at x:

$$\nabla f(x) = \left(\frac{\partial_f}{\partial_{x_1}}, \cdots, \frac{\partial_f}{\partial_{x_n}}\right)^T$$

Theorem

If f is differentiable then it is continuous. The converse is false (for instance, f(x) = |x|).

Twice differentiable and smooth functions

Definition (Twice differentiable function, Hessian)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **twice differentiable** if its second-order derivative exists at all $x \in \mathbb{R}^n$. Then the **Hessian matrix** of f at x is the matrix whose components are the partial second-order derivatives of f at x:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial_f^2}{\partial_{x_1}^2} & \frac{\partial_f^2}{\partial_{x_1} \partial_{x_2}} & \cdots & \frac{\partial_f^2}{\partial_{x_1} \partial_{x_n}} \\ \frac{\partial_f^2}{\partial_{x_2} \partial_{x_1}} & \frac{\partial_f^2}{\partial_{x_2}^2} & \cdots & \frac{\partial_f^2}{\partial_{x_2} \partial_{x_n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial_f^2}{\partial_{x_n} \partial_{x_1}} & \frac{\partial_f^2}{\partial_{x_n} \partial_{x_2}} & \cdots & \frac{\partial_f^2}{\partial_{x_n}^2} \end{bmatrix}$$

Twice differentiable and smooth functions

Definition (Twice differentiable function, Hessian)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **twice differentiable** if its second-order derivative exists at all $x \in \mathbb{R}^n$. Then the **Hessian matrix** of f at x is the matrix whose components are the partial second-order derivatives of f at x:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial_f^2}{\partial_{x_1}^2} & \frac{\partial_f^2}{\partial_{x_1} \partial_{x_2}} & \cdots & \frac{\partial_f^2}{\partial_{x_1} \partial_{x_n}} \\ \frac{\partial_f^2}{\partial_{x_2} \partial_{x_1}} & \frac{\partial_f^2}{\partial_{x_2}^2} & \cdots & \frac{\partial_f^2}{\partial_{x_2} \partial_{x_n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial_f^2}{\partial_{x_n} \partial_{x_1}} & \frac{\partial_f^2}{\partial_{x_n} \partial_{x_2}} & \cdots & \frac{\partial_f^2}{\partial_{x_n}^2} \end{bmatrix}$$

Definition (Smooth function)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **smooth** if it has derivatives of all orders.

Positive semi-definiteness

Definition (Positive semi-definiteness)

A matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ is **positive semi-definite** (PSD), denoted $\mathbf{M} \succeq 0$, if all its eigenvalues are positive. Alternatively, \mathbf{M} is PSD if all the following matrices have a positive determinant:

- \blacktriangleright the upper left 1-by-1 corner of ${\bf M}$,
- \blacktriangleright the upper left 2-by-2 corner of ${f M}$,
- **▶** ···,
- ► M itself.

Other possibility: check that for any vector $\mathbf{z} \neq 0$: $\mathbf{z}^t \mathbf{M} \mathbf{z} \geq 0$.

Positive semi-definiteness

Definition (Positive semi-definiteness)

A matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ is **positive semi-definite** (PSD), denoted $\mathbf{M} \succeq 0$, if all its eigenvalues are positive. Alternatively, \mathbf{M} is PSD if all the following matrices have a positive determinant:

- \blacktriangleright the upper left 1-by-1 corner of ${\bf M}$,
- \blacktriangleright the upper left 2-by-2 corner of ${f M}$,
- **▶** ···,
- ► M itself.

Other possibility: check that for any vector $\mathbf{z} \neq 0$: $\mathbf{z}^t \mathbf{M} \mathbf{z} \geq 0$.

Complexity of PSD check

The complexity of checking $\mathbf{M} \succeq 0$ is $O(n^3)$. It can be done by hand for very small matrices, but when \mathbf{M} gets large, it becomes costly even for a computer.

Note on PSD Matrices and eigenvalues

PSD matrix $M \Rightarrow$ eigenvalues of M are positive (easy)

If \boldsymbol{v} is an eigenvector of M with eigenvalue λ ; we have $M\boldsymbol{v}=\lambda\boldsymbol{v}$. Then $\boldsymbol{v}^tM\boldsymbol{v}=\boldsymbol{v}^t\lambda\boldsymbol{v}$ that is positive by assumption and thus we must have $\lambda>0$.

PSD matrix $M \leftarrow$ eigenvalues of M are positive (sketch)

Let $M=PDP^{-1}$ the eigenvalue decomposition of M, P= matrix of (right) eigenvectors $\boldsymbol{v}_{i=1}^n$ of M and D a diagonal of eigenvalues. As eigenvectors are linearly independent, $\forall \boldsymbol{z}$, $\boldsymbol{z}=c_1\boldsymbol{v}_1+\ldots c_n\boldsymbol{v}_n$, with the $c_i's\in\mathbb{R}$. Thus:

$$\mathbf{z}^{T}M\mathbf{z} = (c_{1}\mathbf{v}_{1}^{t} + \dots + c_{n}\mathbf{v}_{n}^{t})PDP^{-1}(c_{1}\mathbf{v}_{1} + \dots + c_{n}\mathbf{v}_{n})$$

$$= (c_{1}\|\mathbf{v}_{1}\|_{2}^{2} \dots c_{n}\|\mathbf{v}_{n}\|_{2}^{2})\begin{pmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{pmatrix}\begin{pmatrix} c_{1}\|\mathbf{v}_{1}\|_{2}^{2} \\ c_{2}\|\mathbf{v}_{2}\|_{2}^{2} \\ \vdots \\ c_{n}\|\mathbf{v}_{n}\|_{2}^{2} \end{pmatrix}$$

$$= \lambda_{1}c_{1}^{2} + \dots + \lambda_{n}c_{n}^{2}$$

which is clearly positive since the eigenvalues of the matrix are positive. Note from that from properties of eigenvectors $\|\boldsymbol{v}_i\|_2^2 = \boldsymbol{v}_i^t \cdot \boldsymbol{v}_i = 1$ and $\boldsymbol{v}_i^t \cdot \boldsymbol{v}_i = 0$ for $\mathbf{i} \neq j$.

Recaps about derivatives on vectors and matrices

Capital letters denote matrices and small letters vectors

$$\blacktriangleright \ \frac{\delta \mathbf{x}^T \mathbf{a}}{\delta \mathbf{x}} = \frac{\delta \mathbf{a}^T \mathbf{x}}{\delta \mathbf{x}} = \mathbf{a}$$

$$\blacktriangleright \ \frac{\delta \mathbf{a} \mathbf{X}^T \mathbf{b}}{\delta \mathbf{X}} = \mathbf{b} \mathbf{a}^T$$

$$\blacktriangleright \ \frac{\delta}{\delta \mathbf{X}} Tr(\mathbf{X}) = \mathbf{I}$$

$$\blacktriangleright \ \frac{\delta}{\delta \mathbf{X}} Tr(\mathbf{X} \mathbf{A}) = \mathbf{A}^T$$

$$\blacktriangleright \ \frac{\delta}{\delta \mathbf{X}} Tr(\mathbf{A} \mathbf{X} \mathbf{B}) = \mathbf{A}^T \mathbf{B}^T$$

$$\blacktriangleright \ \frac{\delta}{\delta \mathbf{X}} Tr(\mathbf{X}^T \mathbf{A}) = \mathbf{A}$$

▶ ... → matrix cookbook
 (https://www.math.uwaterloo.ca/~hwolkowi/
 matrixcookbook.pdf)

Convex sets

Definition (Convex set)

A $\operatorname{\mathbf{convex}}$ $\operatorname{\mathbf{set}}$ C contains line segment between any two points in the $\operatorname{\mathbf{set}}$.

$$x_1, x_2 \in C, \quad 0 \le \alpha \le 1 \implies \alpha x_1 + (1 - \alpha)x_2 \in C$$

Convex functions

Definition (Convex function)

$$f: \mathbb{R}^n \to \mathbb{R}$$
 is a convex function if $x_1, x_2 \in \mathbb{R}^n, 0 \le \alpha \le 1$
 $\Longrightarrow f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$

Can also see it as "the area above the curve is a convex set".

Convex functions ctd

- ▶ *f* strictly convex if strict inequality (unique stationary point).
- \blacktriangleright f is (strictly) **concave** if -f is (strictly) convex.

Convex functions ctd

- ► *f* strictly convex if strict inequality (unique stationary point).
- \blacktriangleright f is (strictly) **concave** if -f is (strictly) convex.
- ► Examples of convex functions
 - ▶ linear: ax + b on \mathbb{R} for any $a, b \in \mathbb{R}$
 - ightharpoonup exponential: \exp^{ax} for any $a \in \mathbb{R}$
 - $lackbox{}$ powers: x^a on \mathbb{R}_{++} , for $a\geq 1$ or $a\leq 0$
 - lacktriangle powers of absolute value: $|x|^p$ for $p \ge 1$
 - ▶ negative entropy: $x \log x$ on \mathbb{R}_+
 - $\qquad \qquad \text{norms: } \|x\|_p \text{ for } p \geq 1; \ \|x\|_\infty = \max_k |x_k|$

Convex functions ctd

- ▶ *f* strictly convex if strict inequality (unique stationary point).
- \blacktriangleright f is (strictly) **concave** if -f is (strictly) convex.
- ► Examples of convex functions
 - ▶ linear: ax + b on \mathbb{R} for any $a, b \in \mathbb{R}$
 - ightharpoonup exponential: \exp^{ax} for any $a \in \mathbb{R}$
 - $lackbox{}$ powers: x^a on \mathbb{R}_{++} , for $a\geq 1$ or $a\leq 0$
 - $lackbox{}$ powers of absolute value: $|x|^p$ for $p \ge 1$
 - ightharpoonup negative entropy: $x \log x$ on \mathbb{R}_+
 - ▶ norms: $||x||_p$ for $p \ge 1$; $||x||_\infty = \max_k |x_k|$
- ► Examples of concave functions
 - ▶ linear
 - \blacktriangleright powers: x^a on \mathbb{R}_{++} , for $0 \le a \le 1$
 - ▶ logarithm: $\log x$ on \mathbb{R}_{++}

How to establish the convexity of f?

1. Plot to see what it looks like

- 1. Plot to see what it looks like
- 2. Verify **definition** (easier if f restricted to a single line)

- 1. Plot to see what it looks like
- 2. Verify **definition** (easier if f restricted to a single line)
- 3. Use the **PSD property** of the Hessian: f twice differentiable is convex iff $\nabla^2 f(x) \succeq 0 \quad \forall x$.

- 1. Plot to see what it looks like
- 2. Verify **definition** (easier if f restricted to a single line)
- 3. Use the **PSD property** of the Hessian: f twice differentiable is convex iff $\nabla^2 f(x) \succeq 0 \quad \forall x$.
- 4. Express f with other convex functions using operations that preserve convexity:
 - ▶ nonnegative weighted sum of convex functions,
 - ▶ composition of a convex function with a linear function,
 - pointwise maximum and supremum of convex functions,
 - ► composition of convex functions,
 - ▶ minimization of convex function over a convex set.

Local and global optima

Definition (Local optimum)

We say that x is a **local minimum** (resp. maximum) of f if there exists R>0 such that $f(x)\leq f(z)$ (resp. $f(x)\geq f(z)$) for all z satisfying $\|z-x\|_2\leq R$. Moreover we have $\nabla^2 f(x)\succeq 0$. (resp. $\nabla^2 f(x)\prec 0$).

Local and global optima

Definition (Local optimum)

We say that x is a **local minimum** (resp. maximum) of f if there exists R>0 such that $f(x)\leq f(z)$ (resp. $f(x)\geq f(z)$) for all z satisfying $\|z-x\|_2\leq R$. Moreover we have $\nabla^2 f(x)\succeq 0$. (resp. $\nabla^2 f(x)\preceq 0$).

Intuition

It means that \boldsymbol{x} achieves the best value within a neighboring set of solutions.

Local and global optima

Definition (Local optimum)

We say that x is a **local minimum** (resp. maximum) of f if there exists R>0 such that $f(x)\leq f(z)$ (resp. $f(x)\geq f(z)$) for all z satisfying $\|z-x\|_2\leq R$. Moreover we have $\nabla^2 f(x)\succeq 0$. (resp. $\nabla^2 f(x)\preceq 0$).

Intuition

It means that \boldsymbol{x} achieves the best value within a neighboring set of solutions.

Definition (Global optimum)

We say that x^* is a **global minimum** (resp. maximum) of f if $f(x^*) \leq f(z)$ (resp. $f(x^*) \geq f(z)$) for all $z \in \mathbb{R}^n$.

Local and global optima: illustration

Key properties of convex optimization

Theorem (Key property!!!)

If f is convex (resp. concave), then any local minimum (resp. maximum) is a global minimum (resp. maximum).

Key properties of convex optimization

Theorem (Key property!!!)

If f is convex (resp. concave), then any local minimum (resp. maximum) is a global minimum (resp. maximum).

Theorem (Uniqueness of global optimum)

If f is **strictly** convex (resp. concave), then there is a unique global minimum (resp. maximum).

Key properties of convex optimization

Theorem (Key property!!!)

If f is convex (resp. concave), then any local minimum (resp. maximum) is a global minimum (resp. maximum).

Theorem (Uniqueness of global optimum)

If f is **strictly** convex (resp. concave), then there is a unique global minimum (resp. maximum).

Convention

Without loss of generality, we consider minimization problems (since maximizing a concave function f is equivalent to minimizing the convex function -f).

Solving Convex Optimization Problems

Gradient descent-based algorithms

With a well-tuned algorithms we are able to find (or accurately approximate) the global optimum

How to deal with constraints?

Plan

- Optimization: Quick overview
- 2 Smooth constrained convex optimization
- 3 Interior point methods
- 4 Summary
- 5 Non-convex optimization
- 6 Formulation of optimization problems
- Software

Constrained optimization

▶ We are now interested in smooth constrained convex optimization, i.e., in standard form:

$$\min_{x} f_{0}(x)$$
subject to $f_{i}(x) \leq 0, \quad 1 \leq i \leq m$

$$h_{i}(x) = 0, \quad 1 \leq i \leq p$$

where f_0, f_1, \ldots, f_m are smooth convex functions (and h_1, \ldots, h_p are linear functions).

Constrained optimization

▶ We are now interested in smooth constrained convex optimization, i.e., in standard form:

$$\min_{x} f_{0}(x)$$
subject to $f_{i}(x) \leq 0, \quad 1 \leq i \leq m$

$$h_{i}(x) = 0, \quad 1 \leq i \leq p$$

where f_0, f_1, \ldots, f_m are smooth convex functions (and h_1, \ldots, h_p are linear functions).

- ► Many special cases:
 - ▶ Linear Programming (LP): $\forall i, f_i$ linear. Specific algorithm: Simplex.
 - ▶ Quadratic Programming (QP): f_0 quadratic, $\{f_i\}_{i=1}^m$ linear.
 - ▶ Quadratically Constrained Quadratic Programming (QCQP): $f_0, f_1, \ldots, f_m, h_1, \ldots, h_p$ quadratic.
 - ▶ .

Constrained optimization: challenge

Constrained optimization is challenging!

▶ The problem may not be **feasible**, i.e., the **feasibility set**

$$F = \{x \mid f_i(x) \le 0, \ 1 \le i \le m\} = \emptyset,$$

meaning that no point satisfies the constraints.

- ▶ The minimum of f_0 may violate the constraints.
- ➤ Therefore, adapting Gradient Descent for constrained optimization is not trivial!

General solution

A general-purpose solution: **interior point algorithms**.

- ► Solve general smooth convex constrained problems.
- ► Solve large problems (many variables, many constraints).
- ► Reliable and efficient.

General solution

A general-purpose solution: interior point algorithms.

- ► Solve general smooth convex constrained problems.
- ► Solve large problems (many variables, many constraints).
- ► Reliable and efficient.

As many other methods, based on duality theory.

Graphical illustration

By Onmyphd - http://www.onmyphd.com/?p=kkt.karush.kuhn.tucker, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=27331272

Lagrangian and Duality Theory

Basic idea: take the constraints into account by augmenting the objective function with a weighted sum of the constraint functions.

Constrained optimization

Standard form (not necessarily convex)

$$\min_{x} f_{0}(x)$$
subject to $f_{i}(x) \leq 0, \quad 1 \leq i \leq m$

$$h_{i}(x) = 0, \quad 1 \leq i \leq p$$

variable $x \in \mathbb{R}^n$, domain D, optimal value p^*

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- ▶ weighted sum of objective and constraint functions
- \blacktriangleright λ_i is the Lagrange multiplier associated with $f_i(x) \leq 0$
- \blacktriangleright ν_i is the Lagrange multiplier associated with $h_i(x)=0$.

Duality theory: the Lagrange dual function

Definition (Lagrange dual function $g: \mathbb{R}^m \to \mathbb{R}$)

We now define the Lagrange dual function $g:\mathbb{R}^m\to\mathbb{R}$ as the minimum value of the Lagrangian over x, i.e., for $\lambda\in\mathbb{R}^m$ and $\nu\in\mathbb{R}^p$

$$g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu)$$
$$= \inf_{x \in D} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^m \nu_i h_i(x) \right).$$

g is concave, can be $-\infty$ for some λ, ν

Property of the Lagrange Dual Function

Theorem (Property)

The dual function yields a lower bound on the optimal objective value p^* of the original problem, i.e., for any $\lambda \succeq 0$, we have

$$g(\lambda, \nu) \le p^*$$
.

Proof:

if \hat{x} is feasible, for any $\lambda \succ 0$:

$$f_0(\hat{x}) \ge L(\hat{x}, \lambda, \nu) \ge \inf_{x \in D} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \hat{x} gives $p^* \geq g(\lambda, \nu)$.

Exercise 1: Least-norm solution of Linear Equation

$$\label{eq:linear_equation} \begin{aligned} \min_{x} \quad x^T x &= \|x\|_2^2 \\ \text{subject to} \quad \quad A x &= b \end{aligned}$$

with $x \in \mathbb{R}^d$, $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$. Note that the equality constraint corresponds actually to m constraints!

Questions

- ► Give the Lagrangian formulation
- ightharpoonup Compute the gradient over x
- ightharpoonup Compute an optimum with respect to x
- ▶ Deduce a lower bound for the solution of the optimization problem above.

1. Lagrangian:

$$L(x,\nu) = x^T x + \nu^T (Ax - b), \ \nu \in \mathbb{R}^m$$

1. Lagrangian:

$$L(x,\nu) = x^T x + \nu^T (Ax - b), \ \nu \in \mathbb{R}^m$$

2. Gradient:

$$\nabla_x L(x, \nu) = 2x + A^T \nu$$

1. Lagrangian:

$$L(x,\nu) = x^T x + \nu^T (Ax - b), \ \nu \in \mathbb{R}^m$$

2. Gradient:

$$\nabla_x L(x, \nu) = 2x + A^T \nu$$

3. To minimize over x set the gradient to zero:

$$\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \Rightarrow x = -(1/2)A^T \nu$$

1. Lagrangian:

$$L(x,\nu) = x^T x + \nu^T (Ax - b), \ \nu \in \mathbb{R}^m$$

2. Gradient:

$$\nabla_x L(x, \nu) = 2x + A^T \nu$$

3. To minimize over x set the gradient to zero:

$$\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \Rightarrow x = -(1/2)A^T \nu$$

4. Plug in L to **obtain** g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T \nu - b^T \nu$$

a concave function of ν

1. Lagrangian:

$$L(x,\nu) = x^T x + \nu^T (Ax - b), \ \nu \in \mathbb{R}^m$$

2. Gradient:

$$\nabla_x L(x, \nu) = 2x + A^T \nu$$

3. To minimize over x set the gradient to zero:

$$\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \Rightarrow x = -(1/2)A^T \nu$$

4. Plug in L to **obtain** g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T \nu - b^T \nu$$

a concave function of ν

5. Lower bound property:

$$p^* \ge -(1/4)\nu^T A A^T \nu - b^T \nu, \ \forall \nu$$

Exercise 2: Standard form LP

$$\min_{x} \qquad c^{T}x$$
 subject to
$$Ax = b, x \succeq 0$$
 with $c \in \mathbb{R}^{d}, \quad x \in \mathbb{R}^{d}, A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^{m}.$

Questions

- ► Give the Lagrangian formulation
- ightharpoonup Define the dual function g
- lacktriangle Deduce a lower bound on the optimum p^*

1. Lagrangian:

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x = -b^T \nu + (c + A^T \nu - \lambda)^T x$$

1. Lagrangian:

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x = -b^T \nu + (c + A^T \nu - \lambda)^T x$$

2. L is affine in x thus

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \begin{cases} -b^T \nu & \text{if } A^T \nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain $\{(\lambda,\nu)|A^T\nu-\lambda+c=0\},$ hence concave.

1. Lagrangian:

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x = -b^T \nu + (c + A^T \nu - \lambda)^T x$$

2. L is affine in x thus

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \left\{ \begin{array}{ll} -b^T\nu & \text{if } A^T\nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{array} \right.$$

g is linear on affine domain $\{(\lambda,\nu)|A^T\nu-\lambda+c=0\}$, hence concave.

3. Lower bound property:

$$p^* \ge -b^T \nu$$
 if $A^T \nu + c \succeq 0$

Exercise 3: Two-way partitioning

- 1. We want to **partition a set** of 3 tennis players x_1, x_2 and x_3 in **two clusters** given a **compatibility score**
- 2. We add one point when they win a double game and -1 when they loose it. Here is a matrix summarizing these scores:

$$W = \left(\begin{array}{ccc} 0 & -3 & 10 \\ -3 & 0 & 2 \\ 10 & 2 & 0 \end{array}\right)$$

3. To solve this problem, we create a vector of 3 variables $\mathbf{x}^t = (x_1, x_2, x_3)^t$, s.t. $\forall i, \ x_i = \{-1, 1\}$. If x_i and x_j $(i \neq j)$ have **the same value** then they belong to the **same cluster**.

Exercise 3: Two-way partitioning problem

This task can be solved by the following optimization problem

$$\min_{x} \qquad x^{T}Wx$$
 subject to $x_{i}^{2} = 1, i = 1, \dots, n$

- \blacktriangleright A **non convex** problem: feasible set contains 2^n points
- ▶ Interpretation: partition $\{1, ..., n\}$ in two sets, W_{ij} is the cost of assigning i, j to the same set, $-W_{ij}$ is cost of assigning to different sets

Goal

- 1. Write the dual function and interpret it
- 2. Deduce a general lower bound
- 3. Solve it with example of tennismen

Exercise 3 - Two-way partitioning - solution

1. Compute the dual function

$$\begin{split} g(\nu) &= \inf_x (x^T W x + \sum_i \nu_i (x_i^2 - 1)) \\ &= \inf_x x^T (W + \operatorname{diag}(\nu)) x - \mathbf{1}^T \nu \Rightarrow \\ g(\nu) &= \left\{ \begin{array}{ll} -\mathbf{1}^T \nu & \text{if } W + \operatorname{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{array} \right. \end{split}$$

Exercise 3 - Two-way partitioning - solution

1. Compute the dual function

$$\begin{split} g(\nu) &= \inf_x (x^T W x + \sum_i \nu_i (x_i^2 - 1)) \\ &= \inf_x x^T (W + \operatorname{diag}(\nu)) x - \mathbf{1}^T \nu \Rightarrow \\ g(\nu) &= \left\{ \begin{array}{ll} -\mathbf{1}^T \nu & \text{if } W + \operatorname{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{array} \right. \end{split}$$

2. Lower bound property:

$$p^* \ge -\mathbf{1}^T \nu \text{ if } W + \operatorname{diag}(\nu) \succeq 0$$

Example: $\nu = \max(W)\mathbf{1}$ gives $p^* \ge -n \max(W)$ if $W + diag(\nu) \succeq 0$.

Exercise 3 - Two-way partitioning - solution

3. Rewrite the optimization problem

$$\min_{\boldsymbol{x}} \boldsymbol{x}^T W \boldsymbol{x} = \min_{\boldsymbol{x}} -6x_1 x_2 + 20x_1 x_3 + 4x_2 x_3$$

The constraints $x_i^2=1$ imposes each $x_i=\{-1,1\}$. An optimum of -30 is given by $x_1=1$, $x_2=1$ and $x_3=-1$ (or equivalently $x_1=-1$, $x_2=-1$ and $x_3=1$) meaning that we group x_1 and x_2 together and we let x_3 alone.

Exercise 4 - Lagrange multipliers - another example

$$\min_{x,y} f(x,y) = x + y \text{ s.t. } x^2 + y^2 = 1$$

Goal

- 1. Write the Lagrangian function
- 2. Compute the gradient of the Lagrangian
- 3. Deduce the solution of the problem.

1. Write the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)$$

1. Write the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)$$

2. Set $\nabla L(x, y, \lambda) = 0$:

1. Write the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)$$

2. Set
$$\nabla L(x, y, \lambda) = 0$$
:
$$\frac{\partial L}{\partial x} = 0 \Leftrightarrow 1 + 2\lambda x = 0$$

1. Write the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)$$

2. Set $\nabla L(x, y, \lambda) = 0$:

$$\frac{\partial L}{\partial x} = 0 \Leftrightarrow 1 + 2\lambda x = 0$$
$$\frac{\partial L}{\partial y} = 0 \Leftrightarrow 1 + 2\lambda y = 0$$

1. Write the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)$$

2. Set $\nabla L(x, y, \lambda) = 0$: $\frac{\partial L}{\partial x} = 0 \Leftrightarrow 1 + 2$

$$\begin{array}{l} \frac{\partial L}{\partial x} = 0 \Leftrightarrow 1 + 2\lambda x = 0 \\ \frac{\partial L}{\partial y} = 0 \Leftrightarrow 1 + 2\lambda y = 0 \\ \frac{\partial L}{\partial \lambda} = 0 \Leftrightarrow x^2 + y^2 - 1 = 0 \end{array}$$

1. Write the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)$$

2. Set $\nabla L(x, y, \lambda) = 0$:

$$\begin{array}{l} \frac{\partial L}{\partial x} = 0 \Leftrightarrow 1 + 2\lambda x = 0 \\ \frac{\partial L}{\partial y} = 0 \Leftrightarrow 1 + 2\lambda y = 0 \\ \frac{\partial L}{\partial \lambda} = 0 \Leftrightarrow x^2 + y^2 - 1 = 0 \end{array}$$

3. This yields

$$x == \frac{1}{2\lambda} \text{ and } y == \frac{1}{2\lambda}$$

Exercise 4 - Lagrange multipliers - solution

1. Write the Lagrangian

$$L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)$$

2. Set $\nabla L(x, y, \lambda) = 0$:

$$\frac{\partial L}{\partial x} = 0 \Leftrightarrow 1 + 2\lambda x = 0$$

$$\frac{\partial L}{\partial y} = 0 \Leftrightarrow 1 + 2\lambda y = 0$$

$$\frac{\partial L}{\partial \lambda} = 0 \Leftrightarrow x^2 + y^2 - 1 = 0$$

3. This yields

$$x == rac{1}{2\lambda}$$
 and $y == rac{1}{2\lambda}$

4. Substituting into the last equation yields $\frac{1}{4\lambda^2} + \frac{1}{4\lambda^2} = 1$, so $\lambda = 1/\sqrt{2}$, which implies that the optimum is defined by

$$x^* = -\sqrt{2}/2$$
 and $y^* = -\sqrt{2}/2$

Duality theory: Lagrange dual problem

We know that dual function gives a lower bound on the optimal objective value. Natural question: what is the best lower bound?

Duality theory: Lagrange dual problem

We know that dual function gives a lower bound on the optimal objective value. Natural question: what is the best lower bound?

Definition (Lagrange dual problem)

This leads to the Lagrange dual problem:

$$\max_{\lambda,\nu} \quad g(\lambda,\nu)$$
 subject to $\lambda \succeq 0$

Duality theory: Lagrange dual problem

We know that dual function gives a lower bound on the optimal objective value. Natural question: what is the best lower bound?

Definition (Lagrange dual problem)

This leads to the Lagrange dual problem:

$$\max_{\lambda,\nu} \quad g(\lambda,\nu)$$

subject to $\quad \lambda \succ 0$

- ▶ The dual problem is convex (g is concave + convex constraints). The optimal value is denoted by d^*
- ▶ λ, ν is dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in dom(g)$
- ► Original problem is called **primal problem**.

Duality theory: weak duality

Theorem (Weak duality)

Simple but important inequality:

$$d^* \le p^*.$$

Duality theory: weak duality

Theorem (Weak duality)

Simple but important inequality:

$$d^* \leq p^*$$
.

- ► Always holds (for convex and non convex problem)
- ▶ We define the **optimal duality gap** as $p^* d^*$.
- ► Can be used to find a lower bound on the optimal value of a non convex problem.

Weak duality - illustration

- ▶ We have $g(\nu^*, \lambda^*) = d^* \le p^* = f(x^*)$
- ▶ Any value of g is a lower bound on p^* and the best lower bound is d^* .

Duality theory: strong duality

- ▶ In our case, we are interested in **strong duality**: $d^* = p^*$ (optimal duality gap is zero).
- ▶ Strong duality does **not** hold in general.
- ▶ But if primal problem is convex, it usually does!
- Many results establish conditions (beyond convexity) under which strong duality holds.

Strong duality - illustration

▶ We have $d^* = p^*$ (optimal duality gap is zero).

Duality gap illustration

► The duality gap ensures that $0 \le f(\hat{x}) - f(x^*) \le |f(\hat{\nu}) - f(\hat{x})|$

Slater's condition

Strong duality holds for a convex problem

$$\min_{x} f_{0}(x)$$
subject to $f_{i}(x) \leq 0, i = 1, \dots, n$

$$Ax = b$$

If it is strictly feasible: $\exists x : f_i(x) < 0, i = 1, ..., n, \quad Ax = b.$

lacktriangle Guarantees that the dual optimum is attained (if $p^* > -\infty$)

Example: Inequality form LP

$$\min_{x} \quad c^{T}x$$
 subject to $Ax \succeq b$

1. Dual function

$$g(\lambda) = \inf_x ((c + A^T \lambda)^T x - b^T \lambda) = \begin{cases} -b^T \lambda & \text{if } A^T \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

2. Dual problem

$$\max_{\lambda} \qquad -b^T \lambda$$
 subject to $A^T \lambda + c = 0, \lambda \succeq 0$

- 3. From **Slater's condition**: $p^* = d^*$ if $A\hat{x} \succeq b$ for some \hat{x}
- 4. In fact here $p^* = d^*$ except when primal and dual are infeasible

Complementary slackness

If **strong duality holds**, then for primal optimal x^* and dual optimal (λ^*, ν^*) we obtain:

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

Hence, the last two lines hold with equality!

- \blacktriangleright x^* minimizes $L(x, \lambda^*, \nu^*)$
- ► Complementary slackness:

$$\lambda_i > 0 \Rightarrow f_i(x^*) = 0$$
 and $f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$

Karush-Kuhn-Tucker (KKT) conditions

Given differentiable f_0, f_i, h_i , the following four conditions are called KKT conditions

- 1. Primal constraints: $f_i(x) \leq 0$, i = 1, ..., m and $h_i(x) = 0, i = 1, ..., p$
- 2. Dual constraints $\lambda \succeq 0$
- 3. Complementary slackness:

$$\lambda_i f_i(x) = 0, i = 1 \dots, m$$

4. **Gradient** of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

If strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions.

KKT conditions for convex problems

Convex problems

If $\hat{x}, \hat{\lambda}, \hat{\nu}$ satisfy KKT for a convex problem, then:

- 1. They are optimal
- 2. Complementary slackness implies

$$f_0(\hat{x}) = L(\hat{x}, \hat{\lambda}, \hat{\nu})$$

3. Vanishing gradient and convexity imply:

$$g(\hat{\lambda}, \hat{\nu}) = L(\hat{x}, \hat{\lambda}, \hat{\nu})$$

4. $f_0(\hat{x}) = g(\hat{\lambda}, \hat{\nu}) \Rightarrow$ sufficient optimality conditions.

An illustration with an equality constraint

1. Draw level curves of f(x,y) and equality constraints g(x,y)=k.

2. Optimal solution is where their gradients are colinear.

Example: Water-filling problem

Assume $\alpha_i > 0$ and consider the following problem:

$$\min_{x} - \sum_{i=1}^{n} \log(x_i + \alpha_i)$$

subject to $x \succeq 0, \mathbf{1}^T x = 1$

Task

- 1. Write the Lagrangian
- 2. Deduce optimal values with respect to KKT conditions

Example: solution

1. Langrangian writes

$$L(x, \lambda, \nu) = -\sum_{i=1}^{n} \log(x_i + \alpha_i) - \sum_{i=1}^{n} \lambda_i x_i + \nu(\mathbf{1}^T x - 1)$$

2. x^* is optimal iff $x^*\succeq 0$, $\mathbf{1}^Tx^*=1$ and there exist $\lambda\in\mathbb{R}^n$, $\nu\in\mathbb{R}$ such that:

$$\lambda \succeq 0, \lambda_i x_i^* = 0, \frac{1}{x_i^* + \alpha_i} + \lambda_i = \nu$$

3. Complementary slackness can be rewritten as

$$x_i^*(\nu - 1/(\alpha_i + x_i^*)) = 0 \Rightarrow \frac{1}{x_i^* + \alpha_i} + \lambda_i = \nu \Rightarrow \frac{1}{x_i^* + \alpha_i} \le \nu$$

Example: solution

4. From KKT:

▶ If $\nu < 1/\alpha_i$ then $x_i^* > 0$ and last condition implies

$$x_i^* = 1/\nu - \alpha_i$$

▶ If $\nu \ge 1/\alpha_i$ then $x_i^* = 0$ otherwise complementary slackness is violated. Thus

$$x_i^* = \max\{0, 1/\nu - \alpha_i\}$$

 \blacktriangleright We determine ν from

$$\mathbf{1}^T x^* = \sum_{i=1}^n \max\{0, 1/\nu - \alpha_i\} = 1$$

Interpretation of the result

- \blacktriangleright n patches; level of patch i is at height α_i
- ► Flood area with unit amount of water
- ▶ Resulting level is $1/\nu^*$

Another illustration - SVM hard-margin primal

SVM hard-margin primal form

Given a training set $T = \{\mathbf{z_i} = (\mathbf{x_i}, \ell_i)\}_{i=1}^n$ of linearly-separable instances $(\mathbf{x_i} \in \mathbb{R}^d, \ell_i \in \{-1, 1\})$. We want to maximize the margin $\frac{1}{\|\mathbf{w}^*\|_2}$. The largest-margin hyperplane (\mathbf{w}^*, b^*) separating the instances of T is the solution of the following optimization problem.

$$\begin{split} & \min_{\mathbf{w},b} & & \frac{1}{2}\|\mathbf{w}\|_2^2 \\ \text{s.t.} & \forall i, & \ell_i(\langle \mathbf{w}, \mathbf{x_i} \rangle + b) \geq 1 \end{split}$$

Towards the dual

▶ The Lagrangian of the problem is:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|_2^2 + \sum_{i=1}^n \alpha_i [1 - \ell_i(\langle \mathbf{w}, \mathbf{x_i} \rangle + b)],$$

where $\alpha \succeq 0$.

Towards the dual

▶ The Lagrangian of the problem is:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{n} \alpha_{i} [1 - \ell_{i}(\langle \mathbf{w}, \mathbf{x_{i}} \rangle + b)],$$

where $\alpha \succeq 0$.

▶ Lagrange dual function $g(\alpha)$ is obtained by minimizing L over \mathbf{w} and b. To do that, we set the derivatives of L w.r.t. \mathbf{w} and b to 0:

$$\begin{cases} \frac{\partial L(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} &= \mathbf{w} - \sum_{i=1}^{n} \ell_i \alpha_i \mathbf{x_i} = 0\\ \frac{\partial L(\mathbf{w}, b, \alpha)}{\partial \mathbf{b}} &= \sum_{i=1}^{n} \ell_i \alpha_i = 0 \end{cases}$$

Towards the dual ctd

▶ We thus have:

$$\mathbf{w} = \sum_{i=1}^n \ell_i \alpha_i \mathbf{x_i} \quad \text{and} \quad \sum_{i=1}^n \ell_i \alpha_i = 0.$$

Towards the dual ctd

▶ We thus have:

$$\mathbf{w} = \sum_{i=1}^{n} \ell_i \alpha_i \mathbf{x_i}$$
 and $\sum_{i=1}^{n} \ell_i \alpha_i = 0$.

▶ Substitute in L to get the dual function $g(\alpha)$ to maximize:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{n} \alpha_{i} [1 - \ell_{i} (\langle \mathbf{w}, \mathbf{x_{i}} \rangle + b)]$$

$$= \frac{1}{2} \sum_{i,j=1}^{n} \ell_{i} \ell_{j} \alpha_{i} \alpha_{j} \langle \mathbf{x_{i}}, \mathbf{x_{j}} \rangle$$

$$- \sum_{i,j=1}^{n} \ell_{i} \ell_{j} \alpha_{i} \alpha_{j} \langle \mathbf{x_{i}}, \mathbf{x_{j}} \rangle - b \sum_{i=1}^{n} \ell_{i} \alpha_{i} + \sum_{i=1}^{n} \alpha_{i}$$

$$= \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \ell_{i} \ell_{j} \alpha_{i} \alpha_{j} \langle \mathbf{x_{i}}, \mathbf{x_{j}} \rangle$$

$$= g(\boldsymbol{\alpha}).$$

SVM hard-margin dual

SVM hard-margin dual form

$$\max_{\alpha} \qquad g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \ell_i \ell_j \alpha_i \alpha_j \langle \mathbf{x_i}, \mathbf{x_j} \rangle$$
s.t.
$$\sum_{i=1}^{n} \ell_i \alpha_i = 0, \ \alpha \succeq 0$$

SVM hard-margin dual

SVM hard-margin dual form

$$\begin{aligned} \max_{\boldsymbol{\alpha}} & g(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \ell_{i} \ell_{j} \alpha_{i} \alpha_{j} \langle \mathbf{x_{i}}, \mathbf{x_{j}} \rangle \\ \text{s.t.} & \sum_{i=1}^{n} \ell_{i} \alpha_{i} = 0, \ \boldsymbol{\alpha} \succeq 0 \end{aligned}$$

- ► This problem is **convex** (duality theory).
- ▶ Optimal value of the dual and the primal coincide.
- ▶ The largest margin can be recovered by taking $\mathbf{w}^* = \sum_{i=1}^n \ell_i \alpha_i^* \mathbf{x_i}$.

What about b^* ?

Understanding the optimal solution

1. From KKT conditions, we get:

$$\alpha_i^* [\ell_i(\langle \mathbf{w}^*, \mathbf{x_i} \rangle + b^*) - 1] = 0, \quad 1 \le i \le n.$$

- ► Case 1: $\ell_i(\langle \mathbf{w}^*, \mathbf{x_i} \rangle + b^*) > 1$. $\mathbf{x_i}$ is not on the margin and $\alpha_i^* = 0$.
- ► Case 2: $\ell_i(\langle \mathbf{w}^*, \mathbf{x_i} \rangle + b^*) = 1$. $\mathbf{x_i}$ is on the margin and $\alpha_i^* \neq 0$. From these points we can deduce b^* .

Understanding the optimal solution

1. From KKT conditions, we get:

$$\alpha_i^* [\ell_i(\langle \mathbf{w}^*, \mathbf{x_i} \rangle + b^*) - 1] = 0, \quad 1 \le i \le n.$$

- ► Case 1: $\ell_i(\langle \mathbf{w}^*, \mathbf{x_i} \rangle + b^*) > 1$. $\mathbf{x_i}$ is not on the margin and $\alpha_i^* = 0$.
- ► Case 2: $\ell_i(\langle \mathbf{w}^*, \mathbf{x_i} \rangle + b^*) = 1$. $\mathbf{x_i}$ is on the margin and $\alpha_i^* \neq 0$. From these points we can deduce b^*
- Therefore, w* is defined only in terms of the training instances that lie on the margin. We call these points support vectors.

Support vectors: illustration

Plan

- Optimization: Quick overview
- 2 Smooth constrained convex optimization
- 3 Interior point methods
- 4 Summary
- 5 Non-convex optimization
- 6 Formulation of optimization problems
- Software

Optimization problem

$$\min_{x} f_0(x)$$
subject to $f_i(x) \le 0, i = 1, \dots m$

Assumptions

- \blacktriangleright f_0 convex and f_i are convex, twice continuously differentiable
- ▶ Problem is **strictly feasible**: $\exists \hat{x} : f_i(\hat{x}) < 0, i = 1, \dots m$
- ▶ Strong duality holds and dual optimum is attained.
- ▶ No equality constraints (equivalent to two inequality constraints $h_i(x) < 0$ and $-h_i(x) < 0$ (or $h_i(x) \epsilon < 0$ and $-h_i(x) \epsilon < 0$ for a small ϵ to remain feasible)

Interior point methods

- ► Main idea is to solve the constrained problem by solving a sequence of unconstrained problems.
- ▶ Duality provides an **exact stopping criteria**.
- ► We consider a simple-to-implement barrier method.
- ► As for now, we assume that we are given a **strictly feasible starting point** x (talk later on how to find it).

Interior point methods: log barrier

Goal

Approximately formulate the constrained problem as an unconstrained problem

Solution

Consider the following approximation:

$$\min_{x} \quad f_0(x) + \sum_{i=1}^{m} -(1/t) \log(-f_i(x)).$$

- ► Convex and differentiable problem.
- ▶ The function $\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$ is called the **log barrier**.
- ▶ Its domain is the set of points that strictly satisfy the constraints of the original problem.
- ▶ It grows without bound if $f_i(x) \to 0$ for any i ("barrier"), no matter the value of the positive parameter t.

Interior point methods: log barrier ctd

Solution

$$\min_{x} \quad f_0(x) + \sum_{i=1}^{m} -(1/t) \log(-f_i(x)).$$

- \blacktriangleright The approximation gets better as t gets larger (intuitive).
- ▶ If t is too large, function and derivatives vary very quickly near the boundary of the feasible set causing numerical problems.

Interior point methods: log barrier ctd

Solution

$$\min_{x} \quad f_0(x) + \sum_{i=1}^{m} -(1/t) \log(-f_i(x)).$$

- \blacktriangleright The approximation gets better as t gets larger (intuitive).
- ▶ If t is too large, function and derivatives vary very quickly near the boundary of the feasible set causing numerical problems.

Implementation

- ▶ Increase parameter t at each step and start each minimization at the solution of previous problem.
- ► For t > 0, the **central path** is defined as the set of solutions $x^*(t)$, t > 0, which we call the **central points**.

Interior point methods: central path properties

- ► Each central point has the following properties:
 - 1. It is strictly feasible.
 - 2. It yields a dual feasible point, and hence a lower bound on the optimal objective value p^* , with duality gap m/t.
- ► Property 2 gives the **stopping criterion** by telling us how far we are from optimal:

$$f_0(x^*(t)) - p^* \le m/t,$$

Interior point methods: algorithm

Barrier algorithm: given a strictly feasible x, $t=t^0>0$, $\mu>1$, tolerance $\epsilon>0$.

- 1. Compute $x^*(t)$ by minimizing (67), starting at x.
- 2. Update: $x = x^*(t)$.
- 3. If $m/t < \epsilon$, stop.
- 4. Otherwise, iterate with $t = \mu t$.

Wait! How do I find a **strictly feasible** x **to start** with?

Interior point methods: find a strictly feasible point

Consider the following problem:

$$\min_{x,s} s$$
subject to $f_i(x) \le s, 1 \le i \le m$

- ▶ s can be seen as a bound on the "maximum infeasibility of the problem". The goal is to drive it below zero.
- ► This problem is always strictly feasible! Indeed, can pick any x and $s \ge \max_{i=1,...,m} f_i(x)$. So what?

We can apply the barrier method!

Interior point methods: final algorithm

Barrier algorithm: given $t = t^0 > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

- ightharpoonup Phase I: find a strictly feasible starting point x (or declare infeasibility) by solving the maximum infeasibility problem.
- ► Phase II:
 - 1. Compute $x^*(t)$ by minimizing (67), starting at x.
 - 2. Update: $x = x^*(t)$.
 - 3. If $m/t < \epsilon$, stop.
 - 4. Otherwise, iterate with $t = \mu t$.

Interior point methods: illustration

Example

$$\min_{x \in \mathbb{R}^{\bowtie}} \quad f_0(x) = x^2 + 3 * y$$
 subject to
$$-x - y + 4 \ge 0$$

Example - interior point formulation

$$\min_{x \in \mathbb{R}^2} h(x) = x^2 + 3 * y - \log(-x - y + 4)$$

A barrier is created along the boundary of the inequality constraint -x-y+4=0.

Plan

- Optimization: Quick overview
- 2 Smooth constrained convex optimization
- 3 Interior point methods
- 4 Summary
- 5 Non-convex optimization
- 6 Formulation of optimization problems
- Software

▶ Solving constrained problems builds on tools such as **duality theory**.

- ▶ Solving constrained problems builds on tools such as **duality theory**.
- ▶ Another approach is to transform it to an unconstrained problem.

- ▶ Solving constrained problems builds on tools such as **duality theory**.
- ▶ Another approach is to transform it to an **unconstrained problem**.
- ▶ Interior point algorithms (such as the barrier method).

- ▶ Solving constrained problems builds on tools such as **duality theory**.
- ▶ Another approach is to transform it to an **unconstrained problem**.
- ▶ Interior point algorithms (such as the barrier method).

Take-home message #1

Convexity and smoothness help!

- ▶ Solving constrained problems builds on tools such as **duality theory**.
- ▶ Another approach is to transform it to an **unconstrained problem**.
- ▶ Interior point algorithms (such as the barrier method).

Take-home message #1

Convexity and smoothness help!

Take-home message #2

Duality and optimality conditions are essential!

Some examples/exercises

Example 1: Duality

Consider the simple optimization problem

$$\min_{x} f_0(x) = x^2 + 1$$

subject to $f_1(x) = (x - 2)(x - 4) \le 0$,

Questions

- 1. Analyse primal problem: feasible set, optimal value and optimal solutions.
- 2. Lagrangian and dual functions. Plot f_0 and **feasible set**, plot the **Lagrangian** with different λ 's (e.g. 1, 2, 3). Write the dual function.
- 3. State the dual problem. Find the dual optimal solution. Does **strong duality** hold?

The feasible set is interval [2,4]. The unique optimal point is $x^* = 2$, optimal value is $p^* = 5$. The plot shows f_0 and f_1 .

The Lagrangian:

$$L(x,\lambda) = x^2 + 1 + \lambda(x-2)(x-4) = (1+\lambda)x^2 - 6\lambda x + 1 + 8\lambda$$

- ▶ For all λ , $p^* \ge \inf_x L(x,\lambda) = g(\lambda)$
- ▶ $g(\lambda)$ increases when $\lambda \in [0; 2)$, and then decreases as $\lambda > 2$.
- ▶ We have $p^* = q(\lambda)$ for $\lambda = 2$

Dual function:

$$g(\lambda) = \inf_{x} (1 + \lambda)x^2 - 6\lambda x + 1 + 8\lambda$$

▶ Taking the derivative of $g(x, \lambda)$ with respect to x we have for $\lambda > -1$:

$$\frac{\partial L(x,\lambda)}{\partial x} = 0 \quad \Leftrightarrow \quad 2(1+\lambda)x - 6\lambda = 0$$

$$\Leftrightarrow \quad x = \frac{3\lambda}{1+\lambda}$$

▶ For $\lambda < -1$ the dual function is unbounded below. Then the dual is given by:

$$g(\lambda) = \left\{ \begin{array}{ll} -9\lambda^2/(1+\lambda) + 1 + 8\lambda & \text{if } \lambda > -1 \\ -\infty & \text{if } \lambda \leq -1 \end{array} \right.$$

The Lagrange dual problem is:

$$\max_{\lambda} -9\lambda^2/(1+\lambda) + 1 + 8\lambda$$

subject to
$$\lambda \ge 0$$

- ▶ $\frac{\partial g(\lambda)}{\partial \lambda} = 0$ is equivalent to $\lambda^2 + 2\lambda 8 = 0$ that admits 2 solutions $\lambda_1 = -4$ and $\lambda_2 = 2$.
- ▶ The constraint tells us that the optimum we are looking for is attained for $\lambda = 2$ and $d^* = g(2) = 5$.

Strong duality holds!

Example 2: Optimization

Consider the following QCQP

$$\min_{\mathbf{x} \in \mathbb{R}^2} \quad x_1^2 + x_2^2$$
subject to $(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$
 $(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$

Questions

- 1. Try to **guess** the optimal point x^* and its optimal value p^*
- 2. Give the **KKT conditions**. Do there exist Lagrange multipliers that give optimal x^* ?
- 3. Derive and solve the Lagrange dual problem. Does strong duality hold?

- ► The figure shows the **feasible sets** (the 2 shaded disks) and some contour lines of the **objective function**.
- ▶ There is **only one feasible point** (1,0), so it is **optimal** for the primal problem and we have $p^* = 1$.

Example 2: KKT conditions

Lagrangian

$$x_1^2 + x_2^2 + \lambda_1((x_1 - 1)^2 + (x_2 - 1)^2 - 1) + \lambda_2((x_1 - 1)^2 + (x_2 + 1)^2 - 1)$$

KKT conditions

▶ Primal constraints:

$$(x_1 - 1)^2 + (x_2 - 1)^2 \le 1, \quad (x_1 - 1)^2 + (x_2 + 1)^2 \le 1$$

- ▶ Dual constraints: $\lambda_1 \ge 0$, $\lambda_2 \ge 0$
- **▶** Complementary slackness:

$$\lambda_1((x_1-1)^2+(x_2-1)^2-1)=\lambda_2((x_1-1)^2+(x_2+1)^2-1)=0$$

► Gradient of the Lagrangian is 0:

$$2x_1 + 2\lambda_1(x_1 - 1) + 2\lambda_2(x_1 - 1) = 0$$

$$2x_2 + 2\lambda_1(x_2 - 1) + 2\lambda_2(x_2 + 1) = 0$$

At $\boldsymbol{x}=(1,0)$ these conditions reduce to $\lambda_1\geq 0$, $\lambda_2\geq 0$, 2=0, $-2\lambda_1+2\lambda_2=0$, which clearly have **no solution**.

Example 2: Lagrange Dual

▶ Dual function

$$g(\lambda_1, \lambda_2) = \inf_{x_1, x_2} L(x_1, x_2, \lambda_1, \lambda_2)$$

where

$$L(x_1, x_2, \lambda_1, \lambda_2)$$
= $x_1^2 + x_2^2 + \lambda_1((x_1 - 1)^2 + (x_2 - 1)^2) + \lambda_2((x_1 - 1)^2 + (x_2 + 1)^2 - 1)$
= $(1 + \lambda_1 + \lambda_2)(x_1^2 + x_2^2) - 2(\lambda_1 + \lambda_2)x_1 - 2(\lambda_1 - \lambda_2)x_2 + \lambda_1 + \lambda_2$

▶ **Gradient** of L w.r.t. x_1 and x_2 is equal to 0 for

$$x_1 = \frac{\lambda_1 + \lambda_2}{1 + \lambda_1 + \lambda_2}$$
$$x_2 = \frac{\lambda_1 - \lambda_2}{1 + \lambda_1 + \lambda_2}$$

implying

$$g(\lambda_1,\lambda_2) = \left\{ \begin{array}{ll} -\frac{(\lambda_1+\lambda_2)^2+(\lambda_1-\lambda_2)^2}{1+\lambda_1+\lambda_2} + \lambda_1+\lambda_2 & \text{if } 1+\lambda_1+\lambda_2 \geq 0 \\ -\infty & \text{otherwise} \end{array} \right.$$

Example 2: Lagrange Dual

The Lagrange **dual problem** is given by:

$$\max_{\boldsymbol{\lambda} \in \mathbb{R}^2} \quad (\lambda_1 + \lambda_2 - (\lambda_1 - \lambda_2)^2) / (1 + \lambda_1 + \lambda_2)$$
 subject to
$$\lambda_1, \lambda_2 \ge 0.$$

▶ Since g is **symmetric**, optimum occurs when $\lambda_1 = \lambda_2$ (if it exists, check the derivatives). The dual function then simplifies to

$$g(\lambda_1, \lambda_2) = \frac{2\lambda_1}{2\lambda_1 + 1}$$

- ▶ $g(\lambda_1, \lambda_2)$ tends to 1 as $\lambda_1 \to \infty$. We have thus $d^* = p^* = 1$ but the dual is **not attained**.
- ▶ KKT conditions only if (1) strong duality holds, (2) the primal optimum is attained and (3) the dual optimum is attained. In this example the KKT conditions **fail** because the **dual** optimum is **not** attained.

Example 3 - Optimization and KKT

We consider the following problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^3} \quad -3x_1^2 + x_2^2 + 2x_3^2 + 2(x_1 + x_2 + x_3)$$
 subject to
$$x_1^2 + x_2^2 + x_3^2 = 1.$$

Questions

- 1. Derive the **KKT conditions**.
- 2. Find all **solutions** x and ν that satisfy these conditions.
- 3. What is the optimum?

The **Lagrangian** is:

$$L(\boldsymbol{x},\nu) = -3x_1^2 + x_2^2 + 2x_3^2 + 2(x_1 + x_2 + x_3) + \nu(x_1^2 + x_2^2 + x_3^2 - 1)$$

▶ We have

$$\begin{split} \frac{\partial L}{\partial x_1} &= 2((-3+\nu)x_1+1),\\ \frac{\partial L}{\partial x_2} &= 2((1+\nu)x_2+1),\\ \frac{\partial L}{\partial x_3} &= 2((2+\nu)x_3+1) \end{split}$$

- ► The KKT conditions are:
 - 1. Constraint of the primal $x_1^2 + x_2^2 + x_3^2 = 1$
 - 2. Vanishing gradient

$$(-3+\nu)x_1+1=0, (1+\nu)x_2+1=0, (2+\nu)x_3+1=0$$

- \blacktriangleright $\nu \neq -2$, $\nu \neq -1$ and $\nu \neq 3$.
- ▶ We can then express x_1, x_2 and x_3 and plug them in the constrained leading to:

$$\frac{1}{(-3+\nu)^2} + \frac{1}{(1+\nu)^2} + \frac{1}{(2+\nu)^2} = 1$$

► Analyze the lefthand side plotted below

There are four (approximate) solutions:

$$\nu = -3.15, \nu = 0.22, \nu = 1.89, \nu = 4.04$$

Corresponding to:

$$x = (0.16, 0.47, -0.87),$$
 $x = (0.36, -0.82, -0.45)$
 $x = (0.90, -0.35, -0.26),$ $x = (-0.97, -0.20, -0.17)$

► Compare the values of the **objective function**:

$$f_0(\mathbf{x}) = 1.17, f_0(\mathbf{x}) = 0.67, f_0(\mathbf{x}) = -0.56, f_0(\mathbf{x}) = -4.70$$

- ▶ The **minimizer** is $\nu^* = 4.04$
- $ightharpoonup x^*$ is a minimizer of $L(x, \nu^*)$ so we must have:

$$\nabla^2 f_0(x^*) + \nu^* \nabla^2 f_1(x^*) \succeq 0$$

$$\begin{bmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} + \nu^* \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \succeq 0$$

and therefore $\nu^* \geq 3$. So the **optimum** is given by $\nu^* = 4.04$.

Note that this problem is not convex, but strong duality holds

Example 4 - Barrier method and LP

We consider the following LP problem

$$\min_{\boldsymbol{x}} \qquad x_2$$
 subject to $x_1 \le x_2, 0 \le x_2$.

What happens to this problem is we apply the barrier method?

Nothing good!

▶ We have the following modified unconstrained problem

$$\min_{x} \quad x_2 - \frac{1}{t} (\log(x_2 - x_1) + \log(x_2))$$

This function is unbounded below (letting $x_1 \to -\infty$)

This problem is not properly defined!

Plan

- Optimization: Quick overview
- 2 Smooth constrained convex optimization
- 3 Interior point methods
- 4 Summary
- 5 Non-convex optimization
- 6 Formulation of optimization problems
- Software

Non-convex optimization

- ▶ Hard setting in general: no guarantee for the optimum.
- ▶ Unfortunately, **occurs** quite **often** (deep learning).
- ➤ Sometimes behaves nicely every local minima can be global minima or local minima are very close to the global one
- ► General solutions exist
 - 1. Grid search: uniform grid space covering
 - 2. Branch and bound
 - 3. Multiple coverings
 - 4. Stochastic optimization: simulated annealing, stochastic gradient (machine learning)

Branch and bound illustration

Key idea

- ► Split region into sub-regions and compute bounds
- ightharpoonup Consider two regions A and C
- lackbox If lower bound of A is greater than upper bound of C then A can be discarded
- ▶ Divide (branch) regions and repeat

Multiple covering

Key idea

Cover the parameter space with overlapping regions to deal with local optima, and then take advantage of efficient continuous optimization for each region

- ▶ Use multiple starting points
- ► Continuous optimization method for each
- ▶ Record optimum for each starting point

Simulated Annealing

Key idea

- ► At each iteration propose a move in the parameter space
- ▶ If the move decreases the cost, then accept it
- ▶ If the move increases the cost by ΔE , then
 - ▶ Accept it with probability $\exp(-\Delta E/T)$, or do not move.
- ▶ Adapt *T* to reduce the probability to move at the end.

Other Strategies

- ► Stochastic Gradient Descent (Machine Learning)
- ▶ Detect saddle point and try to go further along some directions
- ▶ Approximate the optimum thanks to a convex surrogate.

A few words on hard settings

What if f is **not differentiable**?

- ▶ Very annoying as most efficient methods rely on differentiability.
- ▶ Hard because "we don't know in which direction to go".
- ► Still, **there exists** methods to deal with it (DFO: Derivative-Free Optimization).

Plan

- Optimization: Quick overview
- 2 Smooth constrained convex optimization
- 3 Interior point methods
- 4 Summary
- 5 Non-convex optimization
- 6 Formulation of optimization problems
- Software

Formulation of optimization problems

- ► An important **practical** problem in optimization.
- ► As we've seen, there are efficient algorithms to solve smooth (un)constrained convex optimization.
- ► So you want to **cast your problem as a smooth convex problem** (whenever possible).
- ▶ Also, some solvers do not support expressions such as |x| or $\max x$. Must reformulate these.
- ► This is not always easy, but there are **classic tricks** out there to help you do that.
- ▶ The purpose of this section is to review some of those.

Top priorities

When formulating your problem, you should keep in mind two things.

Priority #1: smoothness and convexity

Whenever possible, prefer a **smooth and convex** formulation (even if it has a large number of variables/constraints).

Priority #2: keep the problem as small as possible

Less variables and/or less constraints means that your problem will be solved faster. Also, **sparse constraints** (i.e., including only a fraction of the problem's variables) can be handled more efficiently by solvers.

Strict inequality constraints

Using strict inequality constraints may be tempting

Consider the following problem:

$$\min_{x} \quad x \\
 \text{s.t.} \quad x > 0$$

Strict inequality constraints

Using strict inequality constraints may be tempting

Consider the following problem:

$$\min_{x} x$$
s.t. $x > 0$

- ► This problem has no solution (unbounded below)!
- ▶ Illustration of why you should **never** use them: a number can get very close to zero without being exactly zero (up to numerical precision).
- ► Some solvers actually treat strict inequalities as nonstrict to avoid such problems.

Absolute value

Meet absolute value function |x|

- ► The absolute value is **convex** but **not differentiable** at 0.
- ► Some solvers **do not support** absolute value.

What to do if you have it in the objective function?

1. Solution 1 (classic and slow):

- ▶ Introduce two variables $x^+, x^- \ge 0$.
- $\qquad \text{Express } x = x^+ x^- \text{, then } |x| = x^+ + x^-.$
- ▶ For minimization, $x^+ = 0$ (x negative) or $x^- = 0$ (x positive).

2. Solution 2 (modern and fast)¹:

- ► Replace $||w||_1 = \sum_{i=1}^d |w_i| = \min_{\eta > 0} \frac{1}{2} \sum_{i=1}^d \left\{ \frac{w_i^2}{\eta_i} + \eta_i \right\}$
- \blacktriangleright Alternating minimization wrt to η and w

Can be used to express the L_1 -norm without absolute value

 $^{^{1}}$ Micchelli and Pontil, 2006; Rakotomamonjy et al. 2008)

Original problem

$$\min_{x} f_0(x) + ||x||_1$$

1. Solution 1

$$\min_{\substack{x,x_+,x_-\\ \text{subject to}}} f_0(x) + x_+ + x_-$$
subject to
$$x_+ - x_- = x,$$

$$x_+ \ge 0, x_- \ge 0$$

2. Solution 2

$$\min_{x,\eta} \quad f_0(x) + \frac{1}{2} \sum_{i=1}^d \left\{ \frac{x_i^2}{\eta_i} + \eta_i \right\}$$
 subject to
$$\eta \ge 0$$

Meet maximum function

- ▶ It is convex but not differentiable.
- ▶ Some solvers **do not like it** just as the absolute value function.

What to do if you have it in the objective function?

Reformulation: introduce a new variable M:

Can be used to express the L_{∞} -norm without \max

Simplification

- ► You should always try to keep the problem as **simple** as possible and avoid **redundancies** in the constraints.
- ► Consider the following problem:

$$\begin{aligned} \min_x & x_1^2 + x_2^2 \\ \text{s.t.} & x_1/(1+x_2^2) \leq 0 \\ & (x_1+x_2)^2 = 0 \end{aligned}$$

▶ Is it a convex formulation?

Simplification

- You should always try to keep the problem as simple as possible and avoid redundancies in the constraints.
- ► Consider the following problem:

$$\begin{aligned} \min_{x} & x_1^2 + x_2^2 \\ \text{s.t.} & x_1/(1+x_2^2) \leq 0 \\ & (x_1+x_2)^2 = 0 \end{aligned}$$

- ▶ Is it a convex formulation?
- ► Find an equivalent convex (and simpler) formulation, and put in standard form.

Relaxation

- ▶ We say that a problem P2 is a **relaxation** of a problem P1 if:
 - ▶ its objective function is the same (up to some penalty),
 - ▶ and $F_1 \subseteq F_2$ (the feasibility set of P2 is larger than that of P1).
- ▶ For instance, getting rid of a constraint is a relaxation.
- ► Two main uses:
 - 1. allow some amount of (penalized) constraint violation.
 - transform a constraint that makes the problem hard too solve (because it is noncontinuous, non differentiable and/or nonconvex) into a smooth, convex one.

Relaxation: case 1

► Consider the following problem:

$$\min_{x} f_0(x)$$
s.t. $f_i(x) \le 0, \quad 1 \le i \le m$

where f_0, f_1, \ldots, f_m are all smooth and convex.

- ► The problem can be solved efficiently, but it may be infeasible because it is **too constrained**.
- ► Would like to **allow the constraints to be violated**, but if this happens, it should incur a **penalty**.

Relaxation: case 1 ctd

▶ Solution: introduce slack variables ξ_1, \ldots, ξ_m .

$$\min_{\substack{x,\xi_1,\dots,\xi_m\\\text{s.t.}}} f_0(x) + \sum_{i=1}^m \xi_i$$
s.t.
$$f_i(x) \le \xi_i, \qquad 1 \le i \le m$$

$$\xi_i \ge 0, \qquad 1 \le i \le m$$

- ► Can use other penalty functions (e.g., squared penalty).
- ► Famous example: Perceptron and Support Vector Machines. Want to find the hyperplane that best separates the two classes, while allowing some violation to deal with the nonseparable case.

Relaxation: case 2

► Classic case: integer constraints. Example:

$$\min_{x} f_0(x)$$
s.t. $x \in \{0, 10\}$

is very hard too solve (NP-hard).

Relaxation: case 2

► Classic case: integer constraints. Example:

$$\min_{x} f_0(x)$$
s.t. $x \in \{0, 10\}$

is very hard too solve (NP-hard).

► Can be relaxed as:

$$\min_{x} f_0(x)$$
s.t. $x \in [0, 10]$

which can be solved very efficiently.

► Can then convert solution to get a (suboptimal) integer solution to the original problem (not always good!).

Surrogate function

- ▶ The function f_0 to minimize may not be smooth/convex.
- ▶ If it can't be reformulated nicely, sometimes a good surrogate function s for f_0 can be used:
 - \triangleright s behaves similarly to the original function,
 - ▶ but has a nicer form (typically smooth convex),
- ► Classic examples:
 - \blacktriangleright use the L_1 -norm as a convex relaxation of the L_0 -norm.
 - ▶ use a convex loss function as a surrogate for the number of classification errors (0/1 loss).
- ► Can be combined with relaxation.

Surrogate function: illustration

The 0/1 loss along with convex loss functions that can be used as surrogates:

Another example:

http://www.iet.ntnu.no/~schellew/convexrelaxation/ConvexRelaxation.html

Summary

- ▶ Many tricks can be used to reformulate problems in a nice form.
- ► Surprisingly many real-world problems can be expressed in a convex form one way or another.

Summary

- ▶ Many tricks can be used to reformulate problems in a nice form.
- ► Surprisingly many real-world problems can be expressed in a convex form one way or another.

Take-home message #1

Formulating the problem with care is an important part of optimization and must not be overlooked!

Summary

- ▶ Many tricks can be used to reformulate problems in a nice form.
- ► Surprisingly many real-world problems can be expressed in a convex form one way or another.

Take-home message #1

Formulating the problem with care is an important part of optimization and must not be overlooked!

Take-home message #2

Again: very small changes (e.g., L_0 -norm instead of L_1 -norm, integer variable instead of real variable) can turn an easy problem into a very hard one!

Plan

- Optimization: Quick overview
- 2 Smooth constrained convex optimization
- 3 Interior point methods
- 4 Summary
- 5 Non-convex optimization
- 6 Formulation of optimization problems
- Software

Software

- ▶ When dealing with large and complex problems, the use of a well-implemented solver is recommended.
- ► Many solvers are available (unfortunately most of them are commercial), on many platforms.
- ► Here are 3 general-purpose optimization packages:
 - ► MATLAB Optimization Toolbox: many algorithms for (non)smooth (un)constrained optimization of (non)convex problems. Commercial.
 - ► MOSEK: solver that can handle many types of problems. Very efficient implementation of interior point for large-scale problems. Commercial, but provides a free unlimited size license for academic use.
 - ▶ AMPL: a very convenient modeling language, compatible with several solvers (including MOSEK). Commercial, but provides a student limited license (300 variables, 300 constraints). We will use AMPL during the practical session.

AMPL: model file

Suppose you want to solve the following problem:

$$\min_{x} \quad 3x_{1}^{2} + 2x_{2}$$
s.t.
$$2x_{1} + x_{2} \ge 100$$

$$x_{1} + x_{2} \ge 80$$

$$x_{1}, x_{2} \ge 0$$

AMPL model file

```
var x1 >= 0;
var x2 >= 0;
minimize f: 3*x1^2 + 2*x2;
subject to c1: 2*x1 + x2 >= 100;
subject to c2: x1 + x2 >= 80;
```

AMPL: features

- ► AMPL features:
 - ▶ it does **not** require the problem to be in standard form.
 - ▶ can minimize or maximize the objective function.
 - ▶ supports many mathematical functions in model files (e.g., sum, max, exp, etc).
 - can use multidimensional variables and sets.
 - ▶ and even more sophisticated features (ordered pairs, union of sets, etc)!
- ▶ However, some features make debugging quite complex.
- ▶ I recommend you do not use sophisticated features unless you really have to!

AMPL: parameters and data file

▶ You can also model your problem with parameters.

```
AMPL model file

var x1 >= 0;
var x2 >= 0;
param B1;
param B2;

minimize f: 3*x1^2 + 2*x2;

subject to c1: 2*x1 + x2 >= B1;
subject to c2: x1 + x2 >= B2;
```

► And use a data file to specify their value.

AMPL data file param B1 := 100; param B2 := 80;

AMPL: a more complex example

In this example we use a set defining the number of variables as well as the sum function, and we write all the bound constraints in a single line.

AMPL model file

```
set nbVar;
var x{i in nbVar};
param weight{i in nbVar};
param bound{i in nbVar};
minimize f: sum{i in nbVar} x[i]*weight[i];
subject to bound{i in nbVar}: x[i] >= bound[i];
```

AMPL data file

```
set nbVar := 1..5;
param weight := 1.2 2.2 0.1 3.5 2.1;
param bound := 10 40 10 20 34;
```

AMPL: homework

To save us a little bit of time during the practical section, please do the following:

- ▶ make sure you understand the examples I just showed.
- ► check out the following tutorial: https://www.tu-chemnitz.de/mathematik/part_dgl/teaching/WS2009_Grundlagen_der_Optimierung/amplguide.pdf
- ► A longer document http://www.ampl.com/REFS/amplmod.pdf
- ▶ More resources on AMPL page: http://www.ampl.com/, including a book that can be downloaded freely.
- ► We will use the free demo for the practical session http://ampl.com/try-ampl/download-a-free-demo/limited to 500 variables and constraints.
- ➤ You can run it freely on the NEOS server http://ampl.com/try-ampl/run-ampl-on-neos/

I do not expect you to install AMPL and start practicing. It's only about getting used to the syntax!

The end