NHANES 2013-14 Data Analysis Research Presentation

Rameen Saeed

PRESENTATION OUTLINE

- Introduction
 - a. Background + Project Goals
 - b. NHANES Dataset
 - c. Summary of Contributions
- 2. Preliminary Visualizations
- 3. Activity Level Analysis
- 4. Linear Model Analysis
- 5. Summary of Conclusions

PRESENTATION OUTLINE

- 1. Introduction
 - a. Background + Project Goals
 - b. NHANES Dataset
 - c. Summary of Contributions
- 2. Preliminary Visualizations
- 3. Activity Level Analysis
- 4. Linear Model Analysis
- 5. Summary of Conclusions

Background

- NHANES = National Health & Nutritional Examination Surveys
 - Conducted every year by CDC

- ~ 5000 people
- each person represented by a unique ID called "SEQN"
- Oversampling: hispanics, black persons, white persons below poverty level, & white persons 80+

- Focus: 2013 2014 Cycle
 - Data: Demographics, Examination, Laboratory

Project Goals

- Visualizing + analyzing physical activity trends at the hour, day, & week levels
- Viewing physical activity breakdowns between different age groups & comparing them
- Observing how trends in physical activity and other demographic data affect the following 3 health indicators:
 - 1. Waist Circumference (cm)
 - 2. BMI (kg/m²)
 - 3. Total Cholesterol (mg/DL)

PRESENTATION OUTLINE

- 1. Introduction
 - a. Background + Project Goals
 - b. NHANES Dataset
 - c. Summary of Contributions
- 2. Preliminary Visualizations
- 3. Activity Level Analysis
- 4. Linear Model Analysis
- 5. Summary of Conclusions

Main Datasets:

- 1. Examination Data > Physical Activity Monitor Header (PAXHD_H)
 - Participants told to wear physical activity monitor (PAM) for 9 days (days 1 & 9 have partial data)
- 2. Examination Data > Physical Activity Monitor Day (PAXDAY_H)
- 3. Examination Data > Physical Activity Monitor Hour (PAXHR_H)
- 4. Examination Data > Body Measures (BMX_H)
- 5. Demographics Data > Demographic Variables and Sample Weights (DEMO_H)
- 6. Laboratory Data > Cholesterol Total (TCHOL_H)

MIMS:

- Purpose: develop a universal open source acceleration summary metric that is not dependent on device specifications
- Derived from raw acceleration data (in g):
 - interpolation, extrapolation, bandpass filtering, and aggregation conducted independently using empirically determined time and frequency-domain parameters -> software algorithm
- Our dataset:
 - PAM worn on wrist
 - Measure x,y,z acceleration every 1/80th sec (80 Hz)
 - Measure lux light vals every sec (1 Hz)

Header Flowchart

Day Flowchart

NHANES 2013-14 Examination Data > Physical Activity Monitor (PAM) - Day > PAXDAY_H Data 7776 SEQNs identified Filter: Full day's worth of data only (paxvmd \geq 1440) 7659 SEQNs identified Data: Day 13 14 Filtered

PRESENTATION OUTLINE

- 1. Introduction
 - a. Background + Project Goals
 - b. NHANES Dataset
 - c. Summary of Contributions
- 2. Preliminary Visualizations
- 3. Activity Level Analysis
- 4. Linear Model Analysis
- 5. Summary of Conclusions

CONTRIBUTIONS

- Created visualizations to highlight differences in activity levels between the day of the week & age groups
- Converted between the MIMS acceleration summary metric to 1 of 5 activity levels
- Viewed breakdown of activity levels according to each age group
- Performed linear regression to examine how activity levels & other demographic variables affect waist circumference, BMI, & total cholesterol levels

MAIN FINDINGS

- Activity Levels:
 - Weekdays vs. Weekends
 - Decrease with Age

 Age, height, and vigorous physical activity appear as most statistically significant variables affecting waist circumference & BMI

PRESENTATION OUTLINE

- 1. Introduction
 - a. Background + Project Goals
 - b. NHANES Dataset
 - c. Summary of Contributions
- 2. Preliminary Visualizations
- 3. Activity Level Analysis
- 4. Linear Model Analysis
- 5. Summary of Conclusions

Header Visualization

- Day of week conversion:1(Sun).....7(Sat)
- Most measurements started on weekend

Day Visualization

Day of week conversion: 1(Sun).....7(Sat)

Conclusion

 Avg MIMS value for all SEQNs based on day of the week

Day Visualization

 Weekends have lower activity measures while Tuesday has the highest

Under 18 Day Visualization

- Study showed children accumulate significantly more activity on the structured weekdays than the weekends
- Important to provide more opportunities for activity on the weekends

Merged: Day & Age

Merged: Day & Age

Merged Flowchart: Day, Hour, & Age

Project_Data.R × Day_13_14_Filtered × Day_HR_merged × Seqn_Activity ×								
(■ □								
	seqn ‡	wtmec2yr Full sample 2 year MEC exam weight	† hour	paxdayh Day of PAM measurements for this hour	paxdaywh Day of the week for this hour			
1	73557	13481.04	1	2	Wed			
2	73557	13481.04	2	2	Wed			
3	73557	13481.04	3	2	Wed			
4	73557	13481.04	4	2	Wed			
5	73557	13481.04	5	2	Wed			
6	73557	13481.04	6	2	Wed			
7	73557	13481.04	7	2	Wed			
8	73557	13481.04	8	2	Wed			
9	73557	13481.04	9	2	Wed			
10	73557	13481.04	10	2	Wed			
11	73557	13481.04	11	2	Wed			
12	73557	13481.04	12	2	Wed			
13	73557	13481.04	13	2	Wed			
14	73557	13481.04	14	2	Wed			
15	73557	13481.04	15	2	Wed			
16	73557	13481.04	16	2	Wed			

Daily Hour Visualization

Graphed each hour vs MIMS pair for every SEQN & created smooth lines based on day of week

Same trend with lower activities for weekends

Weekday Hours

Weekend Hours

18-35 Analysis

Weekly Hour Visualization

Day of week conversion: 1(Sun).....7(Sat)

```
Equation =
minimim_positive(24*(firstday-1) + firstday
timestamp + paxssnhp/288000,
24*(firstday-1) + firstday timestamp +
paxssnhp/288000 - 168)
```

Week_13_14 merged_ageday_13_14 Filter ridageyr Age in years at screening riagendr dmdeduc3 dmdeduc2 indhhin2 ageg	= [Q
riagendr dmdeduc3 dmdeduc2 indhhin2 aged	÷ ÷
	group hrsincesun
69 1 <i>NA</i> 3 4 51-7	72
69 1 NA 3 4 51-7	73
69 1 NA 3 4 51-7	74
69 1 NA 3 4 51-7	75 75
69 1 <i>NA</i> 3 4 51-7	76
69 1 NA 3 4 51-7	'5 77
69 1 NA 3 4 51-7	75 78
69 1 NA 3 4 51-7	75 79
69 1 NA 3 4 51-7	75 80
69 1 NA 3 4 51-7	75 81
69 1 <i>NA</i> 3 4 51-7	75 82

Introduction	Prelim Visuals	Activity Leve	els	Linear Models	Conclusion
	Dav		"Hours	s Since Sunday"	

Day	"Hours Since Sunday"
Sunday	0-23
Monday	24-47
Tuesday	48-71
Wednesday	72-95
Thursday	96-119
Friday	120-143
Saturday	144-167

1. Introduction

Introduction

- a. Background + Project Goals
- b. NHANES Dataset
- c. Summary of Contributions
- 2. Preliminary Visualizations
- 3. Activity Level Analysis
- 4. Linear Model Analysis
- 5. Summary of Conclusions

MIMS:

- Purpose: develop a universal open source acceleration summary metric that is not dependent on device specifications
- Derived from raw acceleration data (in g):
 - interpolation, extrapolation, bandpass filtering, and aggregation conducted independently using empirically determined time and frequency-domain parameters -> software algorithm
- Our dataset:
 - PAM worn on wrist
 - Measure x,y,z acceleration every 1/80th sec (80 Hz)
 - Measure lux light vals every sec (1 Hz)

Activity Level									
		Sedentary (SD)	Light (LPA)	Moderate (MPA)	Vigorous (VPA)				
cpm		0-100 101-2019 2020-5998 5999+		5999+					
MIMS/mi	MIMS/min 0667		.67-13.46 13.46-39.98		39.99+				
MIMS/hr (~	x60)	0-40	41-807	808-2399	2400+				
Table 1: Physical Activity Levels obtained from NHANES 2003-04 cpm date by Troiano & colleagues¹. Conversion made to MIMS/min using figure 4 in an article published by researchers									

3	Activity Level for the Hou	r
Sleep (SL)	Non-Wear (NW)	Unknown (UN)
Paxswmh >= 30	Paxnwmh >= 30	Paxumh >= 30

Table 2: Breakdown of SL vs. NW vs. UN using NHANES hourly variables

PRESENTATION OUTLINE

- 1. Introduction
 - a. Background + Project Goals
 - b. NHANES Dataset
 - c. Summary of Contributions
- 2. Preliminary Visualizations
- 3. Activity Level Analysis
- 4. Linear Model Analysis
- 5. Summary of Conclusions

Outcomes to Analyze:

- 1) Waist Circumference cm (BMXWAIST)
 - Examination Data > Body Measures
 - Range: 40.2 177.9
- 2) Body Mass Index (kg/m²) (BMXBMI)
 - Examination Data > Body Measures
 - Range: 12.1 to 82.9
- 3) Total Cholesterol (mg/dL) (LBXTC)
 - Laboratory Data > Cholesterol Total
 - Range: 69 813

	_
ВМІ	Weight Status
Below 18.5	Underweight
18.5 – 24.9	Healthy Weight
25.0 – 29.9	Overweight
30.0 and Above	Obesity

seqn	nonwear	‡ unknown	\$ sleep	\$ sedentary	‡ light	moderate \$	vigorous \$	total_hr	agegroup \$	wtmec2yr Full sample 2 year MEC exam weight	BMXWAIST ‡
73557	110	0	7	0	15	36	0	168	51-75	13481.042	100.0
73559	0	0	69	0	71	28	0	168	51-75	57193.285	109.2
73561	0	0	66	0	96	6	0	168	51-75	65541.871	NA
73564	0	0	65	0	65	38	0	168	51-75	61758.655	110.8
73567	33	0	53	0	45	37	0	168	51-75	34795.429	93.7
73568	6	0	60	0	25	77	0	168	18-35	91523.516	73.7
73571	0	0	62	1	103	2	0	168	75+	46190.114	122.1
73573	118	0	25	0	3	20	2	168	under 18	6460.788	72.5
73579	1	1	62	0	42	62	0	168	under 18	70708.034	62.6
73580	19	0	57	0	53	39	0	168	36-50	27196.638	107.4
73581	26	0	46	0	80	16	0	168	36-50	16764.261	99.3
73585	1	0	61	0	78	26	2	168	18-35	18590.965	90.3
73586	0	0	66	0	21	81	0	168	under 18	13569.677	53.7
73589	0	0	54	1	54	59	0	168	18-35	61374.100	94.6
73592	1	0	70	0	74	23	0	168	18-35	68450.780	107.7
73594	1	0	53	0	80	33	1	168	18-35	45736.924	88.6
73595	6	0	40	0	30	92	0	168	51-75	25027.723	114.8

Activity Levels

Linear Models

Conclusion

Other Categorical Predictors

Introduction Prelim Visuals Activity Levels Linear Models Conclusion

RIAGENDR - Gender

Variable Name: RIAGENDR

SAS Label: Gender

English Text: Gender of the participant.

Target: Both males and females 0 YEARS - 150 YEARS

Code or Value	Value Description	Count	Cumulative	Skip to Item
1	Male	5003	5003	
2	Female	5172	10175	
	Missing	0	10175	

Introduction Prelim Visuals Activity Levels Linear Models Conclusion

INDHHIN2 - Annual household income

Reclassified Income

<u>Levels</u>

Variable Name: INDHHIN2

SAS Label: Annual household income

English Text: Total household income (reported as a range value in dollars)

Target: Both males and females 0 YEARS - 150 YEARS

	Code or Value	Value Description	Count	Cumulative Ski	ip to Item
	1	\$ 0 to \$ 4,999	273	273	
low	2	\$ 5,000 to \$ 9,999	407	680	
low	3	\$10,000 to \$14,999	639	1319	
	4	\$15,000 to \$19,999	658	1977	
	5	\$20,000 to \$24,999	880	2857	
	6	\$25,000 to \$34,999	1185	4042	
	7	\$35,000 to \$44,999	913	4955	
	8	\$45,000 to \$54,999	764	5719	
medium	9	\$55,000 to \$64,999	521	6240	
	10	\$65,000 to \$74,999	378	6618	
	12	\$20,000 and Over	323	6941	
	13	Under \$20,000	133	7074	
high	14	\$75,000 to \$99,999	860	7934	
	15	\$100,000 and Over	1781	9715	
	77	Refused	252	9967	
missing	99	Don't know	75	10042	
		Missing	133	10175	

Introduction Prelim Visuals Activity Levels Linear Models Conclusion

DMDEDUC2 - Education level - Adults 20+

Variable Name: DMDEDUC2

SAS Label: Education level - Adults 20+

English Text: What is the highest grade or level of school {you have/SP has} completed or

the highest degree {you have/s/he has} received?

English Instructions: HAND CARD DMQ1 READ HAND CARD CATEGORIES IF NECESSARY ENTER

HIGHEST LEVEL OF SCHOOL

Target: Both males and females 20 YEARS - 150 YEARS

Code or Value	Value Description	Count	Cumulative	Skip to Item
1	Less than 9th grade	455	455	
2	9-11th grade (Includes 12th grade with no diploma)	791	1246	
3	High school graduate/GED or equivalent	1303	2549	V)
4	Some college or AA degree	1770	4319	
5	College graduate or above	1443	5762	
7	Refused	2	5764	
9	Don't Know	5	5769	32
¥	Missing	4406	10175	25

```
Introduction
                   Prelim Visuals
                                    Activity Levels
                                                     Linear Models
                                                                        Conclusion
# 20+ Linear model using age group as categorical var
basic_model <- lm(BMXWAIST ~ unknown + sleep + sedentary + light + moderate +
     vigorous + agegroup + riagendr + dmdeduc2 + house_income + BMXHT,
   data = Segn_Activity, weights = wtmec2yr)
 Predictor Variables Used in Most Models:
```

- **Activity levels:** represent # of hourly counts for each person in each category out of 168 ** hr/week
 - Non-wear, unknown, sleep, sedentary, light, moderate, vigorous
- Age group **"20-35","36-50","51-75","75+"**
- Age (yrs)
- Gender
- Education Level (for 20+)
- Annual Household Income
- Height (cm)

Activity Levels

Linear Models

Conclusion

Waist Results Summary

Introduction	Prelim Vi	suals Activity Levels			Linea	ar Models	;	Conclus	sion
		Variables	Under 20	20+	20-35	36-50	51-75	75+	1
		Intercept	3.23	34.6***	52.48**	16.85	45.81***	62.75**	
924		Activity: Non-Wear	REF	REF	REF	REF	REF	REF	
Significant Codes		Activity: Unknown	-2.07	1.40	-3.60	-1.25	5.13*	-3.23	
Jigimicant codes	· ·	Activity: Sleep	0.06*	0.05**	-0.05	0.09*	0.10***	0.02	
		Activity: Sedentary	-0.21	1.62.	1.72	0.82	1.45	2.20	
		Activity: Light	-0.11***	0.05***	0.01	0.05	0.09***	0.05	
*** - < 0.001		Activity: Moderate	-0.02	-0.07***	-0.02	-0.03	-0.12***	-0.11*	
*** $p < 0.001$		Activity: Vigorous	-0.48**	-1.37***	-1.30*	-1.79***	-0.99 .	-0.29	
		Age (Yrs)	0.87***	10 10 10 10 10 10 10 10 10 10 10 10 10 1	_	_	_	144	
		Male	REF	REF	REF	REF	REF	REF	
** 0.001 0	0.1	Female	-0.14	1.34	3.20	1.37	0.13	-2.40	
** $0.001 \le p < 0$.01	< 9th Grade	-	REF	REF	REF	REF	REF	
		9 - 11th Grade (or 12 w/o diploma)	-	0.39	4.08	-1.97	-1.72	3.86	
+0010	0.5	High School / GED	<u>M</u>	0.44	2.74	-2.13	-1.06	2.99	
* $0.01 \le p < 0$.	.05	Some college / AA	_	0.78	3.39	-2.58	0.58	3.59	
		College Grad / Above	-	-4.47*	0.62	-9.07*	-5.86*	-0.36	
		Don't know Educ	-	-11.56	-	-	-14.08	-	
0.050	1	Low Income	4.11.	0.06	-5.57	6.15	-0.67	-1.43	
$0.05 \le p < 0$.1	Medium Income	2.82	0.08	-5.72	4.72	1.14	-5.00	
		High Income	-1.06	-3.45	-10.16.	1.61	-2.52	-2.06	
		Missing Income	REF	REF	REF	REF	REF	REF	
		Height	0.41***	0.36***	0.29**	0.47***	0.33***	0.23.	
		Agegroup: Under 18	2	<u>~</u>	140	-	ω	120	
		Agegroup: 18-35		REF	-	-	-	-2	
		Agegroup: 36-50	-	5.39***	-	-	×	.	
		Agegroup: 51-75	-	7.61***	1 5 0	105	=	1 5 7	
		Agegroup: 75+	7	2.28.	17%	(5)	-	178	

Activity Levels

Linear Models

Conclusion

BMI Results Summary

Introduction	Prelim Visu	uals Activ		isuals		vity Leve	Is	Linear	Models		Conclusio	n
		Vari	ables	Under 20	20+	20-35	36-50	51-75	75+			
		Inte	rcept	0.85	23.28***	37.90***	20.47**	28.72***	26.47***			
20			Non-Wear	REF	REF	REF	REF	REF	REF			
Significant Codes	5: -	Activity:	Unknown	-1.73	0.48	-1.31	-0.81	1.91	0.06			
		Activit	y: Sleep	0.03*	0.01.	-0.02 .	0.04.	0.04**	-0.02			
		Activity:	Sedentary	-0.08	0.40	0.34	0.35	0	1.12			
*** p < 0.001		Activity: Light Activity: Moderate Activity: Vigorous		-0.06***	0.02**	0.01	0.03.	0.03**	0.01			
				-0.01	-0.03***	-0.01	-0.01	-0.05***	-0.05**			
				-0.19*	-0.56***	-0.55*	-0.68***	-0.40	-0.17			
		Age (Yrs)		0.54***	-	-	-	-	-			
		М	lale	REF	REF	REF	REF	REF	REF			
** $0.001 \le p < 0$	01	Fer	male	-0.04	0.97*	0.73	0.98	1.14.	0.71			
$0.001 \leq p < 0$.01	< 9th	Grade	7.	REF	REF	REF	REF	REF			
			rade (or 12 iploma)	⇒	0.73	3.46	-0.56	-0.11	0.76			
* 0.01 0	ΩĽ	High Sch	ool / GED	=	0.82	2.66	-0.47	0.50	0.25			
* $0.01 \le p < 0.$.05	Some co	llege / AA	_	1.13	3.13	-0.03	0.98	0.68			
		College Gr	rad / Above	=	-0.83	1.82	-2.55	-1.14	-0.44			
		Don't kr	now Educ	-	-7.20	NA	NA	-7.70	NA			
0050	1	Low I	ncome	1.21	0.37	-2.79	3.22.	0.79	0.02			
$0.05 \le p < 0$.1	Mediun	n Income	0.44	0.12	-2.98	2.27	1.16	-1.19			
		High I	ncome	-1.14	-1.40	-4.94*	0.89	-0.35	-0.19			
		9.55										

REF

0.10***

REF

0

REF 1.71***

1.02**

-2.89***

REF

-0.04

REF

0.03

REF

-0.01

REF

0.02

Missing Income

Height

Agegroup: Under 18 Agegroup: 18-35

Agegroup: 36-50

Agegroup: 51-75

Agegroup: 75+

Activity Levels

Linear Models

Conclusion

Cholesterol Results Summary

Introduction	Prelim Visua	als Activi		ity Levels		Linear M	lodels	С	onclusion
		Va	riables	Under 20	20+	20-35	36-50	51-75	75+
		Int	ercept	163.24***	216.61***	220.28***	267.67***	232.45***	166.99*
			: Non-Wear	REF	REF	REF	REF	REF	REF
Significant Codes	5:	Activity	: Unknown	12.45.	-1.15	5.80	-17.47	-0.18	7.90
	1000		ity: Sleep	0.08	-0.02	-0.04	0.23	-0.07	-0.02
		Activity	: Sedentary	0.07	-0.82	-2.04	4.20	-5.57	2.96
			ity: Light	-0.02	-0.01	0.07	-0.04	-0.12	0.09
*** $p < 0.001$		Activity	: Moderate	-0.05	0.08*	0.09	-0.11	0.05	0.63***
p < 0.001		Activity	y: Vigorous	0.22	-1.07	-0.51	-2.61.	0.66	1.29
		Ag	e (Yrs)	0.64	-		-	-	_
		Male		REF	REF	REF	REF	REF	REF
** $0.001 \le p < 0$	0.01	Female		5.58*	3.84	-4.28	-10.16	14.52***	24.40**
0.001 = p < 0	01	< 9t	h Grade		REF	REF	REF	REF	REF
		17.557.7	Grade (or 12 diploma)		4.43	13.48	-24.71.	10.74	5.41
#001 0	OF		hool / GED	÷	1.89	3.39	-24.26	6.70	7.91
* $0.01 \le p < 0$.05	Some c	ollege / AA	-	8.76.	7.47	-13.35	14.82*	13.85
		College (Grad / Above	8	9.33.	12.17	-18.61	15.78*	16.87.
		Don't l	know Educ		20.79	-	-	32.37	-
$0.05 \le p < 0$	1	Low	Income	-0.82	0.33	12.67	10.67	-17.22*	2.63
$0.05 \le p < 0$.1	Mediu	ım Income	2.23	-1.31	16.56	13.18	-24.47**	-1.03
		High	Income	1.77	0.69	13.88	17.73	-21.38*	1.29
		Missir	ng Income	REF	REF	REF	REF	REF	REF
		Н	leight	-0.12	-0.28*	-0.39	-0.36	-0.17	-0.19
		Agegrou	p: Under 18			2	_		2
		Agegro	oup: 18-35		REF	2	2	₹	70
		Agegro	oup: 36-50		20.06***	-	=	38	7.0
		Agegro	oup: 51-75	=	14.78***	-	-	-	-
		Agegi	roup: 75+	×	3.78	-	-	- 3	80

PRESENTATION OUTLINE

- 1. Introduction
 - a. Background + Project Goals
 - b. NHANES Dataset
 - c. Summary of Contributions
- 2. Preliminary Visualizations
- 3. Activity Level Analysis
- 4. Linear Model Analysis
- 5. Summary of Conclusions

Activity Levels

Linear Models

Conclusion

<u>Most Significant Variables - Under 20</u>

Waist Circumference

BMI

Cholesterol

<u>Most Significant Variables - 20+</u>

Waist Circumference BMI Cholesterol

Introduction Prelim Visuals

Activity Levels

Linear Models

Conclusion

Sources

[1] TROIANO, RICHARD P.1; BERRIGAN, DAVID1; DODD, KEVIN W.1; MÂSSE, LOUISE C.1; TILERT, TIMOTHY2; MCDOWELL, MARGARET2. Physical Activity in the United States Measured by Accelerometer, Medicine & Science in Sports & Exercise: January 2008 - Volume 40 - Issue 1 - p 181-188 doi: 10.1249/mss.0b013e31815a51b3

[2] John D, Tang Q, Albinali F, Intille S. An Open-Source Monitor-Independent Movement Summary for Accelerometer Data Processing. J Meas Phys Behav. 2019 Dec;2(4):268-281. doi: 10.1123/jmpb.2018-0068. PMID: 34308270; PMCID: PMC8301210.

[3] Centers for Disease Control and Prevention. (n.d.). Nhanes tutorials - module 3 - weighting: "How to Select the Correct Weights for NHANES Analysis". Centers for Disease Control and Prevention. Retrieved October 5, 2021, from https://wwwn.cdc.gov/nchs/nhanes/tutorials/module3.aspx.

[4] Where do I fall in the American economic class system ... USNews. (n.d.). Retrieved October 22, 2021, from https://money.usnews.com/money/personal-finance/family-finance/articles/where-do-i-fall-in-the-american-economic-class -system.

Introduction	Prelim Visuals	Activity Levels	Linear Models	Conclusion
--------------	----------------	-----------------	---------------	------------

- [5] Michos, E. D. (n.d.). Why cholesterol matters for women. Johns Hopkins Medicine. Retrieved November 12, 2021, from https://www.hopkinsmedicine.org/health/wellness-and-prevention/why-cholesterol-matters-for-women.
- [6] Henriksson KM, Lindblad U, Agren B, Nilsson-Ehle P, Råstam L. Associations between body height, body composition and cholesterol levels in middle-aged men. the coronary risk factor study in southern Sweden (CRISS). Eur J Epidemiol. 2001;17(6):521-6. doi: 10.1023/a:1014508422504. PMID: 11949723.
- [7] Brazendale, K., Beets, M. W., Armstrong, B., Weaver, R. G., Hunt, E. T., Pate, R. R., Brusseau, T. A., Bohnert, A. M., Olds, T., Tassitano, R. M., Tenorio, M. C. M., Garcia, J., Andersen, L. B., Davey, R., Hallal, P. C., Jago, R., Kolle, E., Kriemler, S., Kristensen, P. L., ... van Sluijs, E. M. F. (2021, February 10). *Children's moderate-to-vigorous physical activity on weekdays Versus Weekend Days: A multi-country analysis*. International Journal of Behavioral Nutrition and Physical Activity. Retrieved November 29, 2021, from https://ijbnpa.biomedcentral.com/articles/10.1186/s12966-021-01095-x.

END