Pytorch 算子的实现与优化——Transformer

CS433 并行与分布式程序设计

Name: 易文龙 张若涵 Student ID: 519030910068 519030910029

1 Pytorch 框架 CUDA 算子实现方法

1.1 调研 Transformer 网络用到的 GPU 算子情况

利用助教提供的 kernel_count.py 脚本,分别输出 CPU 环境下和 GPU 环境下执行 Transformer 模型推理时底层设备 kernel 的调用情况。

epsilon: 44 check_uniform_bounds : 44 uniform_kernel_cpu : 44 fill_cpu : 44 copy_kernel : 44 addmm_impl_cpu_ : 44 fill_out : 44 copy_ : 44 div_cpu: 44 baddbmm_with_gemm : 44 softmax_lastdim_kernel_impl : 44 bernoulli_scalar_cpu_ : 44 mul_cpu : 44 LayerNormKernelImpl: 44 clamp_min_cpu : 44 #Dispatch : 44

图 1: CPU 环境下底层设备 kernel 调用

epsilon: 44
check_uniform_bounds: 44
uniform_kernel_cpu: 44
fill_cpu: 44
copy_kernel: 44
copy_: 44
addmm_cuda: 44
fill_out: 44
div_true_cuda: 44
baddbmm_cuda: 44
host_softmax: 44
fused_dropout: 44
LayerNormKernelImpl: 44
clamp_min_scalar_cuda: 44

图 2: GPU 环境下底层设备 kernel 调用

如图所示,可以看到 Transformer 网络在调用了 7 个 GPU 算子来提升运行效率,分别是:

- addmm cuda
- baddbmm cuda
- host_softmax
- fused_dropout
- LayerNormKernelImpl
- $\bullet \quad div_true_cuda$
- clamp_min_scalar_cuda

对前四个进行进一步调研。

1.2 addmm_cuda 和 baddbmm_cuda

addmm 算子用来执行矩阵 mat1 和 mat2 的矩阵乘法。矩阵 input 被添加到最终结果中。baddbmm 算子用来执行 batch1 和 batch2 执行批量的矩阵相乘, 然后和输入相加, 得到最终结果。

在矩阵乘法中,进行了不同数据的大量相同计算操作(相乘并累加),这种计算是特别适合使用 GPU 来计算,因为 GPU 拥有大量简单重复的计算单元,通过并行就能极大的提高计算效率。 Pytorch 中最终通过调用 cublasSgemm CUDA 库函数来实现矩阵乘法。

图 3: cublasSgemm CUDA 库函调用

1.3 host softmax

因为 softmax 的输入常为长向量或是大矩阵,为提高计算效率,考虑针对公式并行处理。

$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$

常见的并行思路为:

• ReduceMax (并行):得到输入每一行的最大值

• BroadcastSub: 各点减去最大值,得到 z_i

• Exp: $\Re e^{z_j}$

• ReduceSum (并行): 对 e^{z_j} 求和

• BroadcastDiv: 除法得到结果

图 4: Softmax 并行思路

Pytorch 中 cunn_SoftMaxForward kernel 实现了 host_softmax 的核心功能 cunn_SoftMaxForward kernel 中先实现了 ReduceMax 和 ReduceSum 这两个步骤,然后借助实现的 Epilogue 整体计算中间三个步骤。

图 5: Pytorch host_softmax 实现核心

1.4 fused_dropout

Dropout: 设置一个固定的概率 p. 对每一个神经元都以概率 p 随机丢弃(即置 0)。因为 Dropout 的输入常为长向量或是大矩阵,为提高计算效率,考虑并行处理。

Pytorch 中 fused_dropout_kernel 实现了 fused_dropout 的核心功能,基于 totalElements 数分块并行,随机生成分块概率矩阵筛选元素。

图 6: Pytorch fused_dropout 实现核心

2 Pytorch 框架中对 CUDA Runtime API 的调用

2.1 CUDA Runtime API

Runtime API 是基于 Driver API 之上开发的一套 API。Runtime API 内部封装了各情况下为 线程使用何种 context,避免了涉及 context 的底层操作。Runtime API 基本都是以 cuda 开头的。

图 7: CUDA Runtime API

2.2 Pytorch 调用 CUDA Runtime API

CUDA Runtime 相关头文件: #include < cuda_runtime.h > 和 #include < cuda_runtime_api.h > , 其中 cuda_runtime_api.h 是 cuda_runtime.h 的子集。cuda_runtime_api.h 是纯 C 接口和实现。

Pytorch 主要在以下文件目录下引用 CUDA Runtime 相关头文件: aten/和 c10/。torch/csrc/和 caffe2/等目录下也有调用了部分关于设备和内存信息的 API。

2.2.1 aten/目录下的 CUDA Runtime API

具体算子文件中,如 SoftMax.cu,SparseCUDATensorMath.cu,SparseCsrTensorMath.cu,SparseCmatMul.cu,在算子的计算过程中调用了 CUDA Runtime API。如:

- cudaMemcpyAsync, cudaMemcpy: 在主机和设备之间拷贝数据
- cudaGetDevice: 获取当前正在使用的设备

在 cache 分配相关文件中,如 CachingHostAllocator.cpp,CUDACachingAllocator.cpp 调用了大量 CUDA Runtime API。如:

• cudaMalloc, cudaFree, cudaMemGetInfo: 分配查询内存

- cudaHostAlloc, cudaFreeHost: 分配页锁定内存
- cudaIpcOpenMemHandle, cudaIpcCloseMemHandle: 进程间内存句柄
- cuda 事件相关操作: cudaEventQuery, cudaEventDestroy, cudaEventRecord, cudaEventElapsedTime, cudaEventSynchronize, cudaEventCreateWithFlags

2.2.2 c10/目录下的 CUDA Runtime API

CUDAFunctions.h 中利用 cudaMemcpyAsync, cudaStreamSynchronize 封装了 C10_CUDA_API memcpy_and_sync stream_synchronize。

CUDAStream.h 利用 cudaStreamQuery, cudaStreamGetPriority,cudaDeviceGetStreamPriorityRange 封装了 query, priority 等新接口,供 c10/目录下其他文件调用。

2.3 Pytorch 中最常调用的 CUDA Runtime API——cudaGetLastError

cudaGetLastError: 返回运行时调用的最后一个错误。在 Pytorch 中常用来进行异常处理, 返回报错信息。

```
bool query() const {
   if (!is_created_) {
      return true;
   }

   cudaError_t err = cudaEventQuery(event_);
   if (err == cudaSuccess) {
      return true;
   } else if (err != cudaErrorNotReady) {
      C10_CUDA_CHECK(err);
   } else {
      // ignore and clear the error if not ready
      cudaGetLastError();
   }

   return false;
}
```

图 8: cudaGetLastError 异常处理

2.4 CUDA Runtime API PyTorch 背景下的作用

CUDA Runtime API 帮助 Pytorch 实现以下功能:

- 异常处理, 返回错误信息
- 内存、内存间通信相关操作
- 流相关操作
- 事件相关操作

通过 CUDA Runtime API 的功能封装,可以进一步简化 PyTorch 中 cuda 算子的实现。

3 CUDA 算子优化

3.1 SoftMax.cu 优化

优化原先 cunn_softMaxForward kernel 中 blockReduceSum 的 warp reduce 部分。利用 Warp 级别原语 ___shfl_xor_sync, 提升 warp reduce 部分效率。

图 9: 原始 BlockReduceSum 代码

图 10: 优化后 BlockReduceSum 代码

表 1: softmax 测试结果

	D 13 11 11 11 11 11 11 11 11 11 11 11 11		
	优化前	优化后	
10次 softmax 耗时 1	0.5590	0.5126	
10 次 softmax 耗时 2	0.5467	0.5084	
平均耗时	0.5529	0.5105	

3.2 softmax kernel 优化结果

```
(labpy37) group12@38f495981d79:~$ python test_softmax_dropout.py Softmax elapsed time: 0.5126 (labpy37) group12@38f495981d79:~$ python test_softmax_dropout.py Softmax elapsed time: 0.5084 (labpy37) group12@38f495981d79:~$ conda deactivate (base) group12@38f495981d79:~$ conda activate py37 (py37) group12@38f495981d79:~$ python test_softmax_dropout.py Softmax elapsed time: 0.5590 (py37) group12@38f495981d79:~$ python test_softmax_dropout.py Softmax elapsed time: 0.5467
```

图 11: 优化后 softmax kernel 效果

3.3 Gemm 优化

在本次实验中我们对 Cublas 的矩阵乘法进行了重写,实现思路如下:

- 基础的实现
- 矩阵分块与资源分配

显然我们不能只使用一个 block 计算一个超大矩阵,这样会造成大量 SM (Streaming Multiprocessor)的闲置浪费,这就需要对矩阵进行分块计算。

图 12: gemm 效率调研

在选取了合适的 block 资源配置,利用 Shared Memory 降低访存延迟,做好循环展开之后, SGEMM Kernel 的性能已经能达到一个不错的水平。

```
Miniconda3-4.6.14-Linux-x86_64.sh kernel_count.py lab2_baseline miniconda3 (py37) group12@38f495981d79:~$ python test_transformer.py
Transformer elapsed time: 4.0533 (py37) group12@38f495981d79:~$ conda deactivate (base) group12@38f495981d79:~$ conda activate labpy37 (labpy37) group12@38f495981d79:~$ python test_transformer.py
Transformer elapsed time: 3.5578 (labpy37) group12@38f495981d79:~$
```

图 13: gemm 优化效率测试

3.4 进一步提升

我们可以使用向量读取指令 LDS.128 优化 Shared Memory 访问(对应 float4 数据类型),这能大幅减少访存指令的数量,进一步提升计算访存比,由此我们需要将 A 矩阵做一次转置我们的 kernel 为 256 个线程计算 128x128 的分块,为了能够合并访问 Shared Memory,我们将 256 个线程划为二维最终单个线程计算 2x2 个 4x4 的结果,如下图所示。

图 14: 线程划分示意图

代码实现见 Aten/native/cuda/cuSgemm_refactory.cu 文件。

4 实验结果

借助助教提供的 test.py 进行优化效果测试。运行 3 次结果分别如下。

```
Test1 diff: 0.07940991967916489
Test2 diff: 0.09208536893129349
Test1 running time: 21170151 ns
Test2 running time: 36616292 ns
```

图 15: 第 1 次测试结果

Test1 diff: -0.003939248155802488 Test2 diff: -0.05987675487995148 Test1 running time: 24012758 ns Test2 running time: 38582117 ns

图 16: 第 2 次测试结果

Test1 diff: -0.02818882279098034 Test2 diff: 0.008811971172690392 Test1 running time: 23753665 ns Test2 running time: 36685493 ns

图 17: 第 3 次测试结果

表 2: 测试结果

	Trial 1	Trial 2	Trial 3	Avg.
Test1 diff	0.0794	-0.0039	-0.0282	0.0158
Test2 diff	0.0921	-0.0599	0.0088	0.0137
Test1 running time	21170151ns	24012758ns	23753665 ns	22978858ns
Test2 running time	36616292ns	38582117ns	36685493 ns	37294634ns