```
1. a true
f(n) = O(f(n))^2
f(n) \le c \Gamma(f(n))^2
f(n) \rightarrow monotically increazing
f(n) \le f(n) \Box f(n) c = 1, \forall n > n_0
b. false
if f(n) = O(N) \rightarrow 2^{f(n)} = O(2^n)
f(n) = 2n
```

 $2n \le c \ln \forall c \ge 2$ $2^{2n} = 2^n \lceil 2^n \succ c \lceil 2^n, \forall c - \text{permanent}$

$$2^{2n} \neq O(2^n)$$

 $\max(f(n),g(n)) = \Theta(f(n)+g(n))$ without loss of generality we will assume $f(n) \le g(n)$

$$\max(f(n), g(n)) = g(n), c_1 = \frac{1}{2}, c_2 = 2$$

$$\frac{1}{2} \cdot (f(n) + g(n)) \le g(n) \le 2 \cdot (f(n) + g(n))$$

 $g(n) = \Theta(f(n) + g(n))$ d.false $f(n) = \Omega(\log n) & (f(n))^2 = O(f(n))$

$$d$$
. false
$$f(n) = \Omega(\log n) \& (f(n))^2 = O(f(n))$$
$$\exists c \ f(n) \ge c \cdot \log n \to f(n) \ne \text{permanent}$$
$$(f(n))^2 = f(n) \cdot f(n) \succ d \cdot f(n), \forall d - \text{permanent}$$

 $(f(n))^2 \neq O(f(n))$ etrue if $f(g(n)) = O(n) & f(n) = O(n) \rightarrow g(n) = O(n)$

 $\exists c \ f(g(n)) \le c \cdot n, \exists d \ f(n) \ge d \cdot n$ $f(g(n)) \le c \cdot n \square d \cdot n \le f(n)$ f monotically increazing $\rightarrow \exists e, g(n) \leq e \cdot n$, g(n) = O(n)

$$(n+1)^5 < (n+n)^5 =$$

b. $3n \log_2 n + 2n = \Omega(n \log_2 n)$ $3(n\log_2 n) + 2n > c(n\log_2 n)$

 $\exists c = 1$ c. $n(2^n + 3^{n+1})^2 = O(n!9^n)$

 $n(2^{2n} + 2 \cdot 2^n \cdot B^{n+1} + 3^{2n+2}) < c \cdot n \cdot B^{2n} / : n > 0$ $3^{2n}((\frac{2}{3})^{2n}+\frac{2^{n+1} \lfloor B^{n+1}}{3^{2n}}+\frac{3^{2n+2}}{3^{2n}}) < c \lfloor m \lfloor B^{2n}/ \, \colon 3^{2n}>0$

 $3^2 < c \ln$ $c, n \ge 3$ $d.\log_3 2^n = O(n)$ $n\log_1 2 \le c \ln$ $\log_{1} 2 < 1, n > 1$ $e. n^2 - 10n = \Omega(n^2)$ $n^2 - 10n \ge c \Box n^2$ $c = \frac{1}{2}$ $n^2 - 10n \ge \frac{1}{2}n^2$ $n(\frac{1}{2}n-10) \ge 0$ n < 0 || n > 20 $n \in Nson > 20$ $f.(2^n+3^{n+1})^2=O(n!9^n)$ $(2^{2n} + 2 \mathbb{Z}^n \mathbb{B}^{n+1} + 3^{2n+2}) \le c \ln \mathbb{B}^{2n}$ $3^{2n}((\frac{2}{3})^{2n} + \frac{2^{n+1} \mathbb{B}^{n+1}}{3^{2n}} + \frac{3^{2n+2}}{3^{2n}}) \le c \mathbb{D}(\mathbb{B}^{2n}/; 3^{2n} > 0)$

 $3^2 \le c \ln$ $c, n \ge 3$

 $\forall c > 32$

2. $a.(n+1)^5 = O(n)^5$ $(n+1)^5 < (n+n)^5 = (2n)^5 = 32n^5 < c \ln^5$

3.
$$a.T(n) = T(\frac{2}{3}n) + T(\frac{1}{3}n)$$

we will prove in induction

we will prove in induction
$$T(n) = \Theta(n)$$

base: $n = 1$ $T(1) = 1$

base:
$$n = 1$$
 $T(1) = 1$
assumption: $\forall m < n$ $T(m) = \Theta(m)$
induction step: $T(n) = T(\frac{2}{2}n) + T(\frac{1}{2}n) = \frac{2}{2}n + \frac{1}{2}n = n$

induction step:
$$T(n) = T(\frac{2}{3}n) + T(\frac{1}{3}n) = \frac{2}{3}n + \frac{1}{3}n = n$$

b.
$$T(n) = 6T(\frac{1}{2}n) + n^3$$

with the master theory

with the master the
$$a = 6$$
 $b = 2$ $f(n)$:

with the master the
$$a = 6 \ b = 2 \ f(n) =$$

$$a = 6$$
 $b = 2$ $f(n) =$

$$a = 6$$
 $b = 2$ $f(n) =$
 $n^3 = \Omega n^{\log_2 6 + 0.1}$ $e = 0$

$$n^3 = \Omega n^{\log_2 6 + 0.1} e = 0$$

$$n^{3} = \Omega n^{\log_{2} 6 + 0.1} e = 0$$
$$6(\frac{1}{2}n)^{3} < 2n^{3} c = 2$$

 $T(n) = \Theta(n^3)$

$$a = 6$$
 $b = 2$ $f(n) = n^3$
 $n^3 = \Omega n^{\log_2 6 + 0.1}$ $e = 0.1$ $c = 1$

with the master theory:

$$a = 6$$
 $b = 2$ $f(n) = n^3$

$$c.T(n) = 5T(\frac{1}{2}n) + n^3 \log n$$

with the master theory: a = 5 b = 2 $f(n) = n^3 \log n$

$$a = 5$$
 $b = 2$ $f(n) = n^3 \log n$
 $n^3 \log n = \Omega n^{\log_2 5 + 0.1}$ $e = 0.1$ e

 $T(n) = \Theta(n^3 \log n)$ $f. T(n) = 2T(\frac{1}{2}n) + n^3$ with the master theory: a = 2 b = 2 $f(n) = n^3$ $n^3 = \Omega n^{\log_2 2 + 0.1} e = 0.1$ $2(\frac{1}{2}n)^3 < 2n^3$ c = 2 $T(n) = \Theta(n^3)$ $g. T(n) = 2T(\frac{1}{4}n) + 1$ with the master theory: a = 2 b = 4 f(n) = 1 $1 = O(n^{\log_4 2 - 0.1}) e = 0.1 c = 1$

 $T(n) = \Theta(\sqrt{n})$

$$a = 5 b = 2 f(n) = n^{3} \log n$$

$$n^{3} \log n = \Omega n^{\log_{2} 5 + 0.1} e = 0.1 c$$

$$5(\frac{1}{n}n)^{3} \log(\frac{1}{n}n) < cn^{3} \log n$$

 $n^3 \log n = \Omega n^{\log_2 5 + 0.1} e = 0.1 c = 1$ $5(\frac{1}{2}n)^3 \log(\frac{1}{2}n) < cn^3 \log n$

 $\frac{5}{9}n^3(\log n - \log_2 2) < 2n^3 \log n$

$$h.T(n) = T(n-1) + n$$

we will prove in induction $T(n) = \Theta(n^2)$

we will prove in induction
$$T(n) = \Theta(n)$$

base: $n = 1$ $T(1) = 1$

assumption:
$$\forall m < n \ t(m) = \Theta(m^2)$$

assumption:
$$\forall m < n \ t(m) = \Theta(m^2)$$

induction step: $T(n) = T(n-1) + n = (n-1)^2 + n = n^2 - n + 1$

$$ep: T(n) = T(n-1) + n = (n-1)$$

$$\frac{1}{3}n^2 \le n^2 - \frac{1}{2}n^2 + 1 \le n^2 - n + 1 \le n^2 \quad c_1 = \frac{1}{3} \quad c_2 = 1$$

$$conclusion T(n) = \Theta(n^2)$$

$$i.T(n) = T(\sqrt{n}) + 1$$

we will mark: $m = \log n \rightarrow n = 2^m$

we will mark:
$$M = \log n^{m} + n = 2$$

we will mark: $S(m) = T(2^{m})$

we will mark:
$$S(m) = T(2^m)$$

$$S(m) = S(\frac{m}{2}) + 1$$

with the master theory
$$a=1,b=2,f(n)=1$$

$$a=1 \ b=2 \ f(n)=1$$

$$1 \in \Theta(n^{\log_2 1}) \quad c = 1$$
$$S(m) = \Theta(\log m)$$

$$S(m) = \Theta(\log m)$$
$$T(n) = \Theta(\log(\log n))$$

 $4.T(n) = 16T(\frac{n}{4}) + f(n) [a = 16, b = 4]$ a, there is no f(n) that will be equal to $\Theta(n \log n)$ because the min imum value that could be is constant and it is bigger then n log n by the master theory

b. f(n) = O(1), cons $\tan t$ so by the master theory: $n^{\log_4 16} = n^2 \mathcal{L} = 1$ $T(n) = \Theta(n^2)$ c. if $f(n) = n^2$ so by the master theory c1, c2 = 1 so $f(n) = \Theta(f(n) \log n)$

 $T(n) = n-1+n-2+...+n-n=n^2-1(1+2+...+n)=n^2-\frac{n(1+n)}{2}=\frac{n^2}{2}-\frac{n}{2}$

b, this is a recursion function so we will decribe it's complexity;

c. this is a recursion function so we will decribe it's complexity: $T(n) = T(n-1) + c_1 n\%2 \neq 0 \parallel T(\frac{n}{2}) + c_2 n\%2 = 0 \ c_1, c_2 \ cons \ tan \ ts$

 $T(n) = T(n-1) + c_1 = T(\frac{n-1}{2}) + c_1 + c_2 = after \ i \ steps = T(\frac{n-1}{2}) + ic_2$

d. if $f(n) = n^4$, so by the master theory $n^4 \in \Omega(n^{\log_4 16 + \epsilon})$ c = 1 $\epsilon = 1 \rightarrow n^4 \ge n^3$ $16\frac{n^4}{16^3} = \frac{n^4}{64} \le \frac{1}{2}n^4$ $c = \frac{1}{2} \to T(n) = \Theta(n^4)$

 $c_1 = \frac{1}{9} n_0 = 2, \frac{n^2}{9} \le \frac{n^2}{2} - \frac{n}{2} \le 2n^2, c_2 = 2 n_0 = 2$

T(n) = T(n-1) + c, c is acons t > 0=T(n-2)+2c=T(n-k)+kc=nc $\frac{1}{c}n \le cn \le 2cn$, $c_1 = \frac{1}{c}$ $c_2 = 2c \rightarrow T(n) = \Theta(n)$

we will choose n%2 ≠ 0 so:

we will stop when $\frac{n}{2^i} = 1 \rightarrow i = \log n$ $T(n) = T(1) + \log n \cdot c_2 = \Theta \log n$

 $...i = k \rightarrow i = (n...k+1)$

 $i=1 \rightarrow i=(n...2)$ $i=2 \rightarrow j=(n...3)$

 $T(n) = \Theta(n^2)$

so $f(n) = n^2 \log n$

6.

a.
$$f_1(n) = n^2$$
, $g(n) = n^3$

b. $f_2(n) = 2n^2$, $g(n) = n^3$

 $f_2(n)$, $f_1(n)$ =O(g(n)) We will choose c=1 and n₀=3 $2n^2$ < n^3 for every n≥3 We will choose c=1 and n₀=2 n^2 < n^3 for every n≥2 $f_2(n)$ = $\theta(f_1(n))$ We will choose c₁=1 and then $2n^2$ ≥ n^2 and c₂=3 and then $2n^2$ ≤ $3n^2$

if c=1 then we will mathematically solve $2n^2 < n^3$ 0< n^3 -2 n^2 so 2 (n-2)>0 and that only happens for n>2 so n₀=3

if c=1 then we will mathematically solve $n^2 < n^3$ 0< n^3 - n^2 so 2 (n-1)>0 and that only happens for n>1 so n₀=2

 $f_3(n)$ =O($g_2(n)$) we will choose c=100 100n-500≤100(n^2 +8n+4) simplify: 100 n^2 +700n+900≥0

So for every n>0 this is always true.