Resumen

Resolución de una tarea de clasificación

- Conjunto de datos etiquetados (aprendizaje supervisado)
- Definición de la arquitectura de la red
 - Número de capas y tamaño de cada una
 - Función de activación a usar en cada capa
- Entrenamiento
 - □ Función de error
 - Técnica de optimización para reducir el error
- Evaluar el modelo

Arquitectura de la red

Las dimensiones de las capas de entrada y salida las define el problema

Arquitectura de la red

Su respuesta depende de la Función de activación elegida

ReLU (Unidad Lineal Rectificada)

- Velocidad de aprendizaje (derivada)
- Velocidad de cómputo (fácil de calcular)
- Activa sólo algunas neuronas

Función Softmax

 Se utiliza como función de activación en la última capa para normalizar la salida de la red de manera que los valores sumen 1.

$$neta_j = \sum_i w_{ji} x_i + b_j$$

$$\hat{y}_j = \frac{e^{neta_j}}{\sum_k e^{neta_k}}$$

Ejemplo: Clasificación de flores de Iris

Id	sepallength	sepalwidth	petallength	petalwidth	class
1	5,1	3,5	1,4	0,2	lris-setosa
2	4,9	3,0	1,4	0,2	lris-setosa
•••	•••	•••	•••	•••	• • •
95	5,6	2,7	4,2	1,3	Iris-versicolor
96	5,7	3,0	4,2	1,2	Iris-versicolor
97	5,7	2,9	4,2	1,3	Iris-versicolor
•••	•••	•••	•••	•••	• • •
149	6,2	3,4	5,4	2,3	Iris-virginica
150	5,9	3,0	5,1	1,8	Iris-virginica

https://archive.ics.uci.edu/ml/datasets/lris

Ejemplo: Clasificación de flores de Iris

Ingresar el primer ejemplo a la red y calcular su salida

Calculando la salida de la capa oculta

Salida de la capa oculta

netasH = W1 * x.T + b1

xT

$$\begin{bmatrix}
[0.15, -0.13, 0.23, -0.45], \\
[-0.29, -0.41, -0.19, 0.37]
\end{bmatrix}$$
*
$$\begin{bmatrix}
[-1.73], \\
[-0.05], \\
[-1.38], \\
[-1.31]
\end{bmatrix}$$
*
$$\begin{bmatrix}
[-0.45], \\
[-0.10]
\end{bmatrix}$$
*
$$\begin{bmatrix}
[-0.4309] \\
[-1.31]
\end{bmatrix}$$
* b1

sepallength sepalwidth lris-Setosa lris-Versicolor petallength petalwidth lris-Virginica
$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

Capa de

salida

 $i_{pj} = f_j^h(neta_{pj}^h)$

Calculando la salida de la capa oculta

X [[-1.73,-0.05,-1.38,-1.31], [[1,0,0], [-0.37,-1.62, 0.22, 0.18], [1.11,-0.05, 0.93, 1.54], [-0.99, 0.39,-1.44,-1.31], [1.73, 1.29, 1.46, 1.81]] [0,0,1]]

Salida de la capa oculta

$$neta_{pj}^h = \sum_{i=1}^n w_{ji}^h x_{pi} + \theta_j^h$$

$$i_{pj} = f_j^h(neta_{pj}^h)$$

Calculando la salida de la red (capa de salida)

X [[-1.73, -0.05, -1.38, -1.31],[[1,0,0], [-0.37, -1.62, 0.22, 0.18],[0,1,0], [0,0,1], [1.11,-0.05, 0.93, 1.54],[-0.99, 0.39, -1.44, -1.31],[1,0,0], [1.73, 1.29, 1.46, 1.81]] [0,0,1]

Salida de red

W2

salidasH

[[-0.29],

[-0.17],

[-0.27]]

FunH='relu' ; FunO='sigmoid'

netas0

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

$$o_{pk} = f_k^o(neta_{pk}^o)$$

Calculando la salida de la red (capa de salida)

Capa de entrada Capa de X Capa salida oculta sepallength [[-1.73, -0.05, -1.38, -1.31],[[1,0,0], Iris-Setosa [-0.37, -1.62, 0.22, 0.18],[0,1,0], sepalwidth [1.11,-0.05, 0.93, 1.54], [0,0,1], Iris-Versicolor petallength [-0.99, 0.39, -1.44, -1.31],[1,0,0], [1.73, 1.29, 1.46, 1.81]] [0,0,1] Iris-Virginica petalwidth Salida de red FunH='relu' ; FunO='sigmoid' netas0 = W2 * salidasH + b2salidasH netas0

b2

W2

salidas0 = 1 / (1+np.exp(-netas0)) = [[0.38043483]
[0.46206628]
[0.41438041]]

$$neta_{pk}^o = \sum_{j=1}^L w_{kj}^o i_{pj} + \theta_k^o$$

$$o_{pk} = f_k^o(neta_{pk}^o)$$

Error de la capa de salida

```
X
Y

[[-1.73,-0.05,-1.38,-1.31],
[-0.37,-1.62, 0.22, 0.18],
[1.11,-0.05, 0.93, 1.54],
[-0.99, 0.39,-1.44,-1.31],
[1.73, 1.29, 1.46, 1.81]]

Y

sepal

[0,0,1],
[1,0,0],
[0,0,1]]

petal

petal
```

Error en la respuesta de la red para este ejemplo

```
ErrorSalida = y.T - salidasO
```



```
FunH='relu' ; FunO='sigmoid'
```

Factores de corrección de los pesos

$$\delta_{pk}^o = (y_{pk} - o_{pk}) f_k^o'(neta_{pk}^o)$$

Factores de corrección de los pesos

[[-1.73, -0.05, -1.38, -1.31], [[1,0,0],[-0.37, -1.62, 0.22, 0.18], [0,1,0],[1.11,-0.05, 0.93, 1.54], [0,0,1],[-0.99, 0.39, -1.44, -1.31], [1,0,0],[1.73, 1.29, 1.46, 1.81] [0,0,1]]

Factores para corregir W1 y b1

```
(salidasH > 0)*1
         deltaH = deriv FunH .* (W2.T @ deltaO)
        deltaH = \begin{bmatrix} [ & 0 & 1 \\ & & 1 & 1 \end{bmatrix} .* \begin{bmatrix} [ & -4.79 & 0.38 & 2.4 & 1 \\ & & & -0.99 & 0.09 & -0.38 \end{bmatrix} \begin{bmatrix} [ & 0.14603409 ] \\ & & & [ & -0.11485167 ] \\ & & & & -0.1005574 & 11 \end{bmatrix}
        deltaH = \begin{bmatrix} [ 0 & ] \\ [-0.11669859] \end{bmatrix}
```


FunH='relu' ; FunO='sigmoid'

$$\delta_{pj}^h = f_j^h'(neta_{pj}^h) \sum_k \delta_{pk}^o w_{kj}^o$$

Corrigiendo de los pesos

Modificación de W2 y b2

FunH='relu'; FunO='sigmoid'

W2 = W2 + alfa * deltaO @ salidasH.T

W2 = \begin{bmatrix} [[-4.79, -0.99], & \begin{bmatrix} [[-0.14603409] & \begin{bmatrix} [[-0.11485167] @ [[-0], [-0.1997]] \\ [-0.1005574]] & \begin{bmatrix} [[-0.1997]] & \begin{bmatrix} [[-0.28], & \begin{bmatrix} [-0.14603409] & \begin{bmatrix} [[-0.28], & \begin{bmatrix} [-0.17], + alfa * & [-0.11485167] & \begin{bmatrix} [[-0.18], & \begin{bmatrix} [-0.28]] & \begin{bmatrix} [[-0.28]] & \begin{bmatrix}

MLP_IRIS_algBPN_RELU.ipynb

Corrigiendo de los pesos

Capa de entrada Capa de X Capa salida oculta sepallength [[-1.73, -0.05, -1.38, -1.31], [[1,0,0],Iris-Setosa [-0.37, -1.62, 0.22, 0.18], [0,1,0],sepalwidth [1.11,-0.05, 0.93, 1.54], [0,0,1],Iris-Versicolor petallength [-0.99, 0.39, -1.44, -1.31], [1,0,0],[1.73, 1.29, 1.46, 1.81] [0,0,1]] Iris-Virginica petalwidth Modificación de W1 y b1 W1 = W1 + alfa * deltaH @ xFunH='relu' ; FunO='sigmoid' $W1 = \begin{bmatrix} \begin{bmatrix} 0.15, -0.13, 0.23, -0.45 \end{bmatrix}, \\ \begin{bmatrix} -0.29, -0.41, -0.19, 0.37 \end{bmatrix} + alfa * \begin{bmatrix} \begin{bmatrix} 0. \\ -0.11669859 \end{bmatrix} \end{bmatrix}$ @ [[-1.73, -0.05, -1.38, -1.31] $\mathbf{W1} = \begin{bmatrix} [0.15 & -0.13 & 0.23 & -0.45] \\ [-0.27 & -0.41 & -0.17 & 0.39] \end{bmatrix}$ $b1 = b1 + alfa * deltaH = \frac{[[-0.45],}{[-0.101]} + alfa * \frac{[[0.]]}{[-0.11669859]]} = \frac{[[-0.45],}{[-0.11]]}$

Si se ingresa el mismo ejemplo luego de modificar los pesos de la red ...

```
netasH = W1 @ xi.T + b1
salidasH = 2.0/(1+np.exp(-netasH))-1
netasO = W2 @ salidasH + b2
salidas0 = 1.0/(1+np.exp(-netas0))
print("salida0 = \n", salidas0)
ErrorSalidaNew = yi.T-salidasO
print("ErrorSalida = \n", ErrorSalidaNew)
salidaO =
[[0.66514149]
 [0.436038 ]
 [0.30779953]]
ErrorSalida =
[[ 0.33485851]
 [-0.436038 ]
 [-0.30779953]]
print("Error inicial = ", np.sum(ErrorSalida**2))
print("Error luego de la correccion = ", np.sum(ErrorSalidaNew**2))
Frror inicial = 0.7690773719494183
Error luego de la correccion = 0.39699991207045215
```

Antes de modificar los pesos de la red

```
salida0 =
[[0.38043483]
[0.46206628]
[0.41438041]]
ErrorSalida =
[[ 0.61956517]
[-0.46206628]
[-0.41438041]]
```

Ver MLP_IRIS.ipynb

Keras

 Keras es una biblioteca de código abierto escrita en Python que facilita la creación de modelos complejos de aprendizaje profundo.

Características

- Prototipado rápido del modelo.
- De alto nivel (programación a nivel de capa)
- Usa las librerías de los frameworks vinculados
 - TensorFlow
 - Theano
 - Microsoft Cognitive Toolkit (CNTK)

from keras.models import Sequential from keras.layers import Dense

Crear un modelo de capas secuenciales model=Sequential()

from keras.models import Sequential from keras.layers import Dense

Crear un modelo de capas secuenciales model=Sequential()

Agregar las capas al modelo

model.add(Dense(2, input_shape=[4], activation='tanh'))

from keras.models import Sequential from keras.layers import Dense

Crear un modelo de capas secuenciales model=Sequential()

Agregar las capas al modelo

model.add(Dense(2, input_shape=[4], activation='tanh')) model.add(Dense(3, activation='sigmoid'))

from keras.models import Sequential from keras.layers import Dense

Crear un modelo de capas secuenciales model=Sequential()

model.add(Dense(2, input_shape=[4], activation='tanh'))

model.add(Dense(3, activation='sigmoid'))

Imprimir un resumen del modelo

model.summary()

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 2)	10
dense_2 (Dense)	(None, 3)	9
T 1 1 40	=======================================	=======

Total params: 19 Trainable params: 19

Non-trainable params: 0

Indicando la función de activación por separado

from keras.models import Sequential from keras.layers import Dense, Activation model=Sequential() model.add(Dense(2, input_dim=4)) model.add(Activation('tanh')) model.add(Dense(3)) model.add(Activation('sigmoid')) model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 2)	10
activation (Activation)	(None, 2)	0
dense_1 (Dense)	(None, 3)	9
activation_1 (Activation)	(None, 3)	0

Total params: 19 Trainable params: 19 Non-trainable params: 0

Usando una lista

from keras.models import Sequential from keras.layers import Dense

model=Sequential([

Dense(3, activation='sigmoid', name='salida')])

model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
Oculta (Dense)	(None, 2)	10
salida (Dense)	(None, 3)	9

Total params: 19 Trainable params: 19 Non-trainable params: 0

Usando una lista

from keras.models import Sequential from keras.layers import Dense, Activation

model=Sequential([

Dense(2, input_dim=4, name='Oculta'),

Activation('tanh', name='FunH'),

Dense(3, name='salida'),

Activation('sigmoid', name='FunO')])

model.summary()

Layer (type)	Output	Shape	Param #
Oculta (Dense)	(None,	2)	10
FunH (Activation)	(None,	2)	0
salida (Dense)	(None,	3)	9
FunO (Activation)	(None,	3)	0
		:	======:

Funcional

from keras.models import Model from keras.layers import Dense, Input

I = Input(shape=(4,))

L = Dense(units=2, activation='tanh', name='Oculta')(I)

salida=Dense(units=3, activation='sigmoid', name='salida')(L)

model = Model(inputs=I, outputs = salida)

model.summary()

Layer (type)	Output Shape	Param #	
input_1 (InputLayer)	[(None, 4)]	0	
Oculta (Dense)	(None, 2)	10	
salida (Dense)	(None, 3)	9	

Funcional

from keras.models import Model from keras.layers import Dense, Input, Activation

I = Input(shape=(4,), name='entrada')

L = Dense(units=2, name='Oculta')(I)

L = Activation('tanh', name='FunH')(L)

L = Dense(units=3, name='salida')(L)

salida=Activation('sigmoid', name='FunO')(L)

model = Model(inputs=I, outputs = salida)

model.summary()

Layer (type)	Output Shape	Param #
entrada (InputLayer)	[(None, 4)]	0
Oculta (Dense)	(None, 2)	10
FunH (Activation)	(None, 2)	0
salida (Dense)	(None, 3)	9
FunO (Activation)	(None, 3)	0
		.=======

Definiendo capas

from keras.models import Model from keras.layers import Dense, Input

I = Input(shape=(4,), name='entrada')

oculta = Dense(units=2, activation='tanh',name='Oculta')

salida = Dense(units=3, activation='sigmoid', name='salida')

red = salida(oculta(l))

model = Model(inputs=I, outputs = red)

model.summary()

Layer (type)	Output Shape	Param #
entrada (InputLayer)	[(None, 4)]	0
Oculta (Dense)	(None, 2)	10
salida (Dense)	(None, 3)	9

Resumen

Resolución de una tarea de clasificación

- Conjunto de datos etiquetados (aprendizaje supervisado)
- Definición de la arquitectura de la red
 - Número de capas y tamaño de cada una
 - Función de activación a usar en cada capa
- Entrenamiento
 - □ Función de error
 - □ Técnica de optimización para reducir el error
- Evaluar el modelo

Configuración para entrenamiento

from keras.models import Sequential from keras.layers import Dense

Keras_IRIS.ipynb

```
model=Sequential()
model.add(Dense(2, input_shape=[4], activation='tanh'))
model.add(Dense(3, activation='sigmoid'))
```

Configuración para entrenamiento

model.compile(optimizer='sgd', loss='mse', metrics='accuracy')

Descenso de gradiente estocástico

Error Cuadrático Medio

Configuración para entrenamiento

from keras.optimizers import SGD from keras.models import Sequential from keras.layers import Dense

Keras_IRIS_SGD.ipynb

```
model=Sequential()
model.add(Dense(2, input_shape=[4], activation='tanh'))
model.add(Dense(3, activation='sigmoid'))
```

Configuración para entrenamiento

model.compile(optimizer=SGD(Ir=0.1), loss='mse', metrics='accuracy')

Tasa de aprendizaje (learning rate)

Configuración para entrenamiento

from keras.models import Sequential from keras.layers import Dense

```
model=Sequential()
model.add(Dense(2, input_shape=[4], activation='tanh'))
model.add(Dense(3, activation='softmax'))
```

Configuración para entrenamiento

```
model.compile( loss='categorical_crossentropy', optimizer='sgd', metrics ='accuracy')
```

Keras_Iris_Softmax.ipynb

Carga de datos

 $X,T = cargar_datos()$

Y = keras.utils.to_categorical(T)

T debe ser un vector numérico. Puede usar lo siguiente para convertirlo de ser necesario:

from sklearn import preprocessing
encoder = preprocessing.LabelEncoder()
T = encoder.fit_transform(T)

X → Conjunto de ejemplos de entrada

	0	1	2	3
0	5.1	3.5	1.4	0.2
1	4.9	3	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4

Y → Rtas esperadas para cada neurona de la capa de salida

	0	1	2
0	1	0	0
1	0	1	0
2	0	0	1
3	0	0	1
4	0	1	0
5	0	0	1

X e Y son matrices de numpy

Entrenamiento del modelo

```
X,Y = cargar_datos() # X e Y son matrices de numpy
# Entrenar el modelo
model.fit(X,Y, epochs=100, batch_size=20)
```

Predicción del modelo

X,Y = cargar_datos() # X e Y son matrices de numpy

Entrenar el modelo

model.fit(X,Y, epochs=100, batch_size=20)

predecir la salida del modelo

Y_pred = model.predict(X)

Y_pred tiene las mismas dimensiones que Y

5

0	1	2
0.967722	0.189344	0.00421873
0.0372113	0.510963	0.346058
0.00325751	0.261545	0.917956
0.00823823	0.319694	0.795647
0.0717264	0.611822	0.171516
0.0134856	0.482814	0.59486

Error del modelo

```
X,Y = cargar_datos() # X e Y son matrices de numpy
# Entrenar el modelo
model.fit(X,Y, epochs=100, batch_size=20)
# predecir la salida del modelo
Y_pred = model.predict(X)
# Calcular el error del modelo
score = model.evaluate(X_train, Y_trainB)
print('Error :', score[0])
                                           Muestra el valor de la función de
                                          Costo y la precisión del modelo al
print('Accuracy:', score[1])
                                             finalizar el entrenamiento
```

Métricas

```
# Entrenar el modelo
model.fit (X, Y, epochs=100, batch_size=20)
# Predicciones del modelo
Y_pred = model.predict(X)
Y_pred_nro = np.argmax (Y_pred, axis=1) # conversión a entero
Y true = np.argmax(Y, axis=1)
print("%% aciertos %.3f" % metrics.accuracy_score(Y_true, Y_pred_nro))
```

ver
Keras_IRIS.ipynb

Pesos de la red

```
model.fit(...)
capaOculta = model.layers[0]
W1, b1 = capaOculta.get_weights()
capaSalida = model.layers[1]
W2,b2 = capaSalida.get_weights()
```


Salvar el modelo

 Una vez entrenado el modelo, si los resultados han sido buenos lo guardamos para su uso posterior

OPCION 1 Guardamos todo el modelo

```
model = ...
model.fit( ... )
...
model.save("miModelo.h5")
```

OPCION 2 Guardamos sólo los pesos

```
model = ...
model.fit( ... )
...
model.save_weights("pesos_de_miModelo.h5")
```

Requiere definir el modelo antes de cargar

Cargar el modelo

```
OPCION 1 – Carga el modelo completo

from keras.models import load_model

model = load_model("miModelo.h5")
```

```
OPCION 2 - Cargar sólo los pesos
  model = ... (definir el modelo)
  ...
  model.load_weights("pesos_de_miModelo.h5")
```

Técnicas de optimización

Descenso de gradiente estocástico (SGD) y el uso de mini-lotes

- Capacidad de generalización de la red Sobreajuste
- Mejoras introducidas
 - Momento: utiliza información de los gradientes anteriores
 - RMSProp: considera distintas magnitudes de cambio para reducir oscilaciones
 - Adam: combina los dos anteriores. Es el más usado.

Descenso de gradiente en mini-lotes

- En lugar de ingresar los ejemplos de a uno, ingresamos N a la red y buscamos minimizar el error cuadrático promedio del lote.
- La función de costo será

$$C = \frac{1}{N} \sum_{i=1}^{N} (d_i - f(neta_i))^2$$

N es la cantidad de ejemplos que conforman el lote.

model.fit(X, Y, epochs=2000, batch_size=200)

Descenso de gradiente

Batch	Mini-batch	Stochastic
Ingresa TODOS los ejemplos y luego actualiza los pesos.	Ingresa un LOTE de N ejemplos y luego actualiza los pesos	Ingresa UN ejemplo y luego actualiza los pesos
$C = \frac{1}{M} \sum_{i=1}^{M} (d_i - f(neta_i))^2$	$C = \frac{1}{N} \sum_{i=1}^{N} (d_i - f(neta_i))^2 N \ll M$	$C = (d - f(neta))^2$
0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0 20 40 60 80 100 120 140	0.24 - 0.22 - 0.20 - 0.18 - 0.14 - 0.12 - 0.10 - 0.08 - 0.20 - 40 60 80 100 120 140	0.30 - 0.25 - 0.20 - 0.15 - 0.10 - 0.20 - 40 60 80 100 120 140

Técnicas de optimización

- Descenso de gradiente estocástico (SGD) y el uso de mini-lotes
- Capacidad de generalización de la red Sobreajuste

- Mejoras introducidas
 - Momento: utiliza información de los gradientes anteriores
 - RMSProp: considera distintas magnitudes de cambio para reducir oscilaciones
 - Adam: combina los dos anteriores. Es el más usado.

Capacidad de generalización de la red

Underfitting (demasiado simple)

Generalización correcta

Overfitting (demasiados parámetros)

Sobreajuste

Parada temprana (early-stopping)

Parada temprana

```
from keras.callbacks import EarlyStopping
model = \dots
model.compile( ... )
es = EarlyStopping(monitor='val_accuracy', patience=30, min_delta=0.0001)
H = model.fit(x = X_train, y = Y_train, epochs=4000, batch_size = 20,
              validation_data = (X_test, Y_test), callbacks=[es])
print("Epocas = %d" % es.stopped_epoch)
```

Keras_Iris_softmax_earlyStop.ipynb; Keras_IRIS_Softmax_earlyStop_Valida.ipynb

EarlyStopping

- Detiene el entrenamiento cuando una métrica ha dejado de mejorar.
- Parámetros principales
 - **monitor**: valor a monitorear
 - min_delta: un cambio absoluto en el valor monitoreado inferior a min_delta, se considerará como que no hubo mejora.
 - patience: Número de épocas sin mejora tras las cuales se detendrá el entrenamiento.
 - modo: Uno de {"auto", "min", "max"}. En el modo "min", el entrenamiento se detendrá cuando el valor monitoreado haya dejado de disminuir; en el modo "max" se detendrá cuando el valor monitoreado haya dejado de aumentar; en el modo "auto", la dirección se infiere automáticamente del nombre del valor monitoreado.
 - restore_best_weights: Si se restauran los pesos del modelo de la época con el mejor resultado del valor monitoreado.

https://keras.io/api/callbacks/early_stopping/

Evolución del entrenamiento

Reducción del sobreajuste

- □ Si lo que se busca es reducir el sobreajuste puede probar
 - Incrementar la cantidad de ejemplos de entrenamiento.
 - Reducir la complejidad del modelo, es decir usar menos pesos (menos capas o menos neuronas por capa).
 - Aplicar una técnica de regularización
 - Regularización L2
 - Regularización L1
 - Dropout

Tienen por objetivo que los pesos de la red se mantengan pequeños

Sobreajuste - Regularización L2

□ También conocida como técnica de decaimiento de pesos

$$C = C_o + \frac{\lambda}{2} \sum_k w_k^2$$

donde \mathcal{C}_o es la función de costo original sin regularizar

□ La derivada de la función de costo regularizada será

$$\frac{\partial C}{\partial w_k} = \frac{\partial C_0}{\partial w_k} + \lambda \ w_k$$

Sobreajuste - Regularización L2

Función de costo regularizada

$$C = C_o + \frac{\lambda}{2} \sum_k w_k^2$$

Derivada

$$\frac{\partial c}{\partial w_k} = \frac{\partial c_0}{\partial w_k} + \lambda \ w_k$$

Actualización de los pesos

$$w_k = w_k - \alpha \frac{\partial C_0}{\partial w_k} - \lambda w_k$$

$$w_k = (1 - \lambda) w_k - \alpha \frac{\partial C_0}{\partial w_k}$$

Sobreajuste - Regularización L1

Función de costo regularizada

$$C = C_o + \lambda \sum_{k} |w_k|$$

Derivada

$$\frac{\partial C}{\partial w_k} = \frac{\partial C_0}{\partial w_k} + \lambda \, sign(w_k)$$

Actualización de los pesos

$$w_k = w_k - \alpha \frac{\partial C_0}{\partial w_k} - \lambda \operatorname{sign}(w_k)$$

Keras.regularizers

Se pueden aplicar ambos

Sobreajuste - Dropout

- No modifica la función de costo sino la arquitectura de la de la red.
- Proceso
 - Selecciona aleatoriamente las neuronas que no participarán en la próxima iteración y las "borra" temporalmente.
 - Actualiza los pesos (del mini lote si corresponde).
 - Restaura las neuronas "borradas".
 - Repite hasta que se estabilice.

Keras dropout

```
from keras.layers import Dense
from keras.layers import Dropout
```

•••

model.add(Dense(6, input_shape=[3]))
model.add(Dropout(0.5))
model.add(Dense(2))

Probabilidad de anular cada entrada de la capa anterior En este caso el 50% de las entradas serán anuladas

Técnicas de optimización

- Descenso de gradiente estocástico (SGD)
- Capacidad de generalización de la red Sobreajuste
- Mejoras introducidas
 - Momento: utiliza información de los gradientes anteriores
 - RMSProp: considera distintas magnitudes de cambio para reducir oscilaciones
 - Adam: combina los dos anteriores. Es el más usado.

$$v_t = \beta v_{t-1} + (1 - \beta)(\nabla C)_t$$
$$w_t = w_t - \alpha v_t$$

- Las modificaciones sobre W tienen en cuenta el promedio de los gradientes anteriores.
- \Box La cantidad de gradientes anteriores a considerar son aprox. $\frac{1}{1-\beta}$
- Esto reduce las oscilaciones.

$$v_t = \beta v_{t-1} + (1 - \beta)(\nabla C)_t$$

 \square Usemos $\beta=0.9$ en la iteración t=10

$$v_{10} = 0.9 * v_9 + (1 - 0.9)(\nabla C)_{10}$$

$$v_t = \beta v_{t-1} + (1 - \beta)(\nabla C)_t$$

$$v_{10} = 0.9 * v_9 + (1 - 0.9)(\nabla C)_{10} = 0.1 \nabla C_{10} + 0.9 v_9$$

$$v_t = \beta v_{t-1} + (1 - \beta)(\nabla C)_t$$

 \square Usemos $\beta=0.9$ en la iteración t=10

$$v_{10} = 0.9 * v_9 + (1 - 0.9)(\nabla C)_{10} = 0.1 \nabla C_{10} + 0.9 v_9$$

$$v_{10} = 0.1 \nabla C_{10} + 0.9 (0.1 \nabla C_9 + 0.9 v_8)$$

$$v_{10} = 0.1 \, \nabla C_{10} + 0.1 * 0.9 \, \nabla C_9 + 0.9^2 v_8$$

$$v_{10} = 0.1 \, \nabla C_{10} + 0.1 * 0.9 \, \nabla C_9 + 0.9^2 (0.9 \, v_7 + 0.1 \, \nabla C_8)$$

$$v_t = \beta v_{t-1} + (1 - \beta)(\nabla C)_t$$

 \square Usemos $\beta=0.9$ en la iteración t=10

$$v_{10} = 0.9 * v_9 + (1 - 0.9)(\nabla C)_{10} = 0.1 \nabla C_{10} + 0.9 v_9$$

$$v_{10} = 0.1 \nabla C_{10} + 0.9 (0.1 \nabla C_9 + 0.9 v_8)$$

$$v_{10} = 0.1 \, \nabla C_{10} + 0.1 * 0.9 \, \nabla C_9 + 0.9^2 v_8$$

$$v_{10} = 0.1 \, \nabla C_{10} + 0.1 * 0.9 \, \nabla C_9 + 0.1 * 0.9^2 \, \nabla C_8 + 0.9^3 v_7 + \cdots$$

La cantidad de gradientes anteriores a considerar son aprox. $\frac{1}{1-\beta}$:. si β =0.9 serán aprox. 10

```
Vw = 0
Vb = 0
for t in range(iteraciones):
    Calcular gradientes \nabla w y \nabla b
    Vw = beta * Vw + (1-beta) * Vw
    Vb = beta * Vb + (1-beta) * Vb
    W = W - alfa * Vw
    b = b - alfa * Vb
```


keras.optimizers.SGD(learning_rate=0.01, momentum=0.9)

RMSprop

$$s = \beta s + (1 - \beta) (\nabla C)^2$$

$$w = w - \alpha \frac{\nabla C}{\sqrt{s + \varepsilon}}$$

- Las modificaciones sobre W tienen en cuenta el promedio de los gradientes anteriores.
- Las modificaciones más grandes serán divididas por coeficientes más grandes; por lo tanto se reducen.
- Las modificaciones más chicas se incrementan.

Es más eficiente que SGD+Momento

RMSprop

```
from keras.optimizers import RMSprop
X,Y = cargar datos()
model = Sequential()
model.add(...)
model.compile(
            loss='categorical crossentropy',
            optimizer = RMSprop(lr=0.001),
            metrics=['accuracy'])
model.fit(X,Y, epochs=10, batch size=32)
```

ADAM

Combina momento y RMSprop

$$v = \beta_1 v + (1 - \beta_1) \nabla C$$

$$s = \beta_2 s + (1 - \beta_2) (\nabla C)^2$$

$$w = w - \alpha \frac{v}{\sqrt{s + \varepsilon}}$$

 \square Los valores recomendados son $\beta_1=0.9$ y $\beta_2=0.999$

model.compile(optimizer='adam', loss='mse')

Resumen

Resolución de una tarea de clasificación

- Conjunto de datos etiquetados (aprendizaje supervisado)
- Definición de la arquitectura de la red
 - Número de capas y tamaño de cada una
 - Función de activación a usar en cada capa
- Entrenamiento
 - □ Función de error
 - Técnica de optimización para reducir el error
- Evaluar el modelo

Evaluación del modelo

- Matriz de confusión
- Métricas
 - Accuracy
 - Precisión
 - Recall
 - □ F1-score
 - AUC, Curva ROC

Clasificación binaria

- □ Los resultados se etiquetan como positivos (P) o negativos (N)
- Luego, la matriz de confusión tendrá la siguiente forma:

	Predice P	Predice N	
Clase P	VP	FN	P = VP + FN
Clase N	FP	VN	N = FP + VN

- □ Tasa de verdaderos positivos \rightarrow TVP = VP / P (Sensibilidad)
- □ Tasa de Falsos Positivos \rightarrow TFP = FP / N (Falsas alarmas)
- □ Tasa de verdaderos negativos \rightarrow TVN = VN / N (Especificidad)

A

VP=6	FN=6	12
FP=0	VN=8	8
6	14	20

$$TVP = 6/12=0.5$$

$$TFP = 0/8 = 0$$

Roca o Mina

- □ A partir de los datos del archivo "Sonar.csv" se desea construir una red neurona multiperceptrón para discriminar entre señales de sonar rebotadas en un cilindro de metal ("Mine") y aquellas rebotadas en una roca más o menos cilíndrica ("Rock").
- Probar con distintas configuraciones
- Indicar cuál recomendaría a la hora de predecir si es una mina o no utilizando: accuracy, f1-score y AUC.

ID	Clase	Confianza	Predice
5	Mina	0.99	
7	Mina	0.99	
9	Mina	0.99	
1	Mina	0.9	
10	Mina	0.9	
20	Mina	0.9	
8	Roca	0.8	
14	Mina	0.8	
15	Mina	0.8	
18	Roca	0.8	
19	Mina	0.8	
3	Mina	0.7	
6	Mina	0.7	
12	Mina	0.65	
4	Roca	0.6	
16	Roca	0.6	
11	Roca	0.5	
2	Roca	0.4	
13	Roca	0.3	
1 <i>7</i>	Roca	0.1	

ID	Clase	Confianza	Predice
5	Mina	0.99	
7	Mina	0.99	
9	Mina	0.99	
1	Mina	0.9	
10	Mina	0.9	
20	Mina	0.9	
8	Roca	0.8	
14	Mina	0.8	
15	Mina	0.8	
18	Roca	0.8	
19	Mina	0.8	
3	Mina	0.7	
6	Mina	0.7	
12	Mina	0.65	
4	Roca	0.6	
16	Roca	0.6	
11	Roca	0.5	
2	Roca	0.4	
13	Roca	0.3	
1 <i>7</i>	Roca	0.1	

12 minas y 8 rocas

ID	Clase	Confianza	Predice
5	Mina	0.99	Mina
7	Mina	0.99	Mina
9	Mina	0.99	Mina
1	Mina	0.9	Roca
10	Mina	0.9	Roca
20	Mina	0.9	Roca
8	Roca	0.8	Roca
14	Mina	0.8	Roca
15	Mina	0.8	Roca
18	Roca	0.8	Roca
19	Mina	0.8	Roca
3	Mina	0.7	Roca
6	Mina	0.7	Roca
12	Mina	0.65	Roca
4	Roca	0.6	Roca
16	Roca	0.6	Roca
11	Roca	0.5	Roca
2	Roca	0.4	Roca
13	Roca	0.3	Roca
1 <i>7</i>	Roca	0.1	Roca

12 minas y 8 rocas

ID	Clase	Confianza	Predice
5	Mina	0.99	Mina
7	Mina	0.99	Mina
9	Mina	0.99	Mina
1	Mina	0.9	Mina
10	Mina	0.9	Mina
20	Mina	0.9	Mina
8	Roca	0.8	Roca
14	Mina	0.8	Roca
15	Mina	0.8	Roca
18	Roca	0.8	Roca
19	Mina	0.8	Roca
3	Mina	0.7	Roca
6	Mina	0.7	Roca
12	Mina	0.65	Roca
4	Roca	0.6	Roca
16	Roca	0.6	Roca
11	Roca	0.5	Roca
2	Roca	0.4	Roca
13	Roca	0.3	Roca
17	Roca	0.1	Roca

12 minas y 8 rocas

ID	Clase	Confianza	Predice
5	Mina	0.99	Mina
7	Mina	0.99	Mina
9	Mina	0.99	Mina
1	Mina	0.9	Mina
10	Mina	0.9	Mina
20	Mina	0.9	Mina
8	Roca	0.8	Mina
14	Mina	0.8	Mina
15	Mina	0.8	Mina
18	Roca	0.8	Mina
19	Mina	0.8	Mina
3	Mina	0.7	Roca
6	Mina	0.7	Roca
12	Mina	0.65	Roca
4	Roca	0.6	Roca
16	Roca	0.6	Roca
11	Roca	0.5	Roca
2	Roca	0.4	Roca
13	Roca	0.3	Roca
1 <i>7</i>	Roca	0.1	Roca

ID	Clase	Confianza	Predice
5	Mina	0.99	Mina
7	Mina	0.99	Mina
9	Mina	0.99	Mina
1	Mina	0.9	Mina
10	Mina	0.9	Mina
20	Mina	0.9	Mina
8	Roca	0.8	Mina
14	Mina	0.8	Mina
15	Mina	0.8	Mina
18	Roca	0.8	Mina
19	Mina	0.8	Mina
3	Mina	0.7	Mina
6	Mina	0.7	Mina
12	Mina	0.65	Roca
4	Roca	0.6	Roca
16	Roca	0.6	Roca
11	Roca	0.5	Roca
2	Roca	0.4	Roca
13	Roca	0.3	Roca
1 <i>7</i>	Roca	0.1	Roca

12 minas y 8 rocas

ID	Clase	Confianza	Predice
5	Mina	0.99	Mina
7	Mina	0.99	Mina
9	Mina	0.99	Mina
1	Mina	0.9	Mina
10	Mina	0.9	Mina
20	Mina	0.9	Mina
8	Roca	0.8	Mina
14	Mina	0.8	Mina
15	Mina	0.8	Mina
18	Roca	0.8	Mina
19	Mina	0.8	Mina
3	Mina	0.7	Mina
6	Mina	0.7	Mina
12	Mina	0.65	Mina
4	Roca	0.6	Mina
16	Roca	0.6	Mina
11	Roca	0.5	Roca
2	Roca	0.4	Roca
13	Roca	0.3	Roca
1 <i>7</i>	Roca	0.1	Roca

12 minas y 8 rocas

ID	Clase	Confianza	Predice
5	Mina	0.99	Mina
7	Mina	0.99	Mina
9	Mina	0.99	Mina
1	Mina	0.9	Mina
10	Mina	0.9	Mina
20	Mina	0.9	Mina
8	Roca	0.8	Mina
14	Mina	0.8	Mina
15	Mina	0.8	Mina
18	Roca	0.8	Mina
19	Mina	0.8	Mina
3	Mina	0.7	Mina
6	Mina	0.7	Mina
12	Mina	0.65	Mina
4	Roca	0.6	Mina
16	Roca	0.6	Mina
11	Roca	0.5	Mina
2	Roca	0.4	Roca
13	Roca	0.3	Roca
1 <i>7</i>	Roca	0.1	Roca

12 minas y 8 rocas

ID	Clase	Confianza	Predice
5	Mina	0.99	Mina
7	Mina	0.99	Mina
9	Mina	0.99	Mina
1	Mina	0.9	Mina
10	Mina	0.9	Mina
20	Mina	0.9	Mina
8	Roca	0.8	Mina
14	Mina	0.8	Mina
15	Mina	0.8	Mina
18	Roca	0.8	Mina
19	Mina	0.8	Mina
3	Mina	0.7	Mina
6	Mina	0.7	Mina
12	Mina	0.65	Mina
4	Roca	0.6	Mina
16	Roca	0.6	Mina
11	Roca	0.5	Mina
2	Roca	0.4	Mina
13	Roca	0.3	Roca
1 <i>7</i>	Roca	0.1	Roca

12 minas y 8 rocas

ID	Clase	Confianza	Predice
5	Mina	0.99	Mina
7	Mina	0.99	Mina
9	Mina	0.99	Mina
1	Mina	0.9	Mina
10	Mina	0.9	Mina
20	Mina	0.9	Mina
8	Roca	0.8	Mina
14	Mina	0.8	Mina
15	Mina	0.8	Mina
18	Roca	0.8	Mina
19	Mina	0.8	Mina
3	Mina	0.7	Mina
6	Mina	0.7	Mina
12	Mina	0.65	Mina
4	Roca	0.6	Mina
16	Roca	0.6	Mina
11	Roca	0.5	Mina
2	Roca	0.4	Mina
13	Roca	0.3	Mina
1 <i>7</i>	Roca	0.1	Roca

12 minas y 8 rocas

Predice Mina Mina Mina Mina
Mina Mina Mina
Mina Mina
Mina
Mina

12 minas y 8 rocas

ID	Clase	Confianza	Predice
5	Mina	0.99	
7	Mina	0.99	
9	Mina	0.99	
1	Mina	0.9	
10	Mina	0.9	
20	Mina	0.9	
8	Roca	0.8	
14	Mina	0.8	
15	Mina	0.8	
18	Roca	0.8	
19	Mina	0.8	
3	Mina	0.7	
6	Mina	0.7	
12	Mina	0.65	
4	Roca	0.6	
16	Roca	0.6	
11	Roca	0.5	
2	Roca	0.4	
13	Roca	0.3	
1 <i>7</i>	Roca	0.1	

ID	Clase	Confianza	Predice
5	Mina	0.99	
7	Mina	0.99	
9	Mina	0.99	
1	Mina	0.9	
10	Mina	0.9	
20	Mina	0.9	
8	Roca	0.8	
14	Mina	0.8	
15	Mina	0.8	
18	Roca	0.8	
19	Mina	0.8	
3	Mina	0.7	
6	Mina	0.7	
12	Mina	0.65	
4	Roca	0.6	
16	Roca	0.6	
11	Roca	0.5	
2	Roca	0.4	
13	Roca	0.3	
1 <i>7</i>	Roca	0.1	

Roca o Mina

- □ A partir de los datos del archivo "Sonar.csv" se desea construir una red neurona multiperceptrón para discriminar entre señales de sonar rebotadas en un cilindro de metal ("Mine") y aquellas rebotadas en una roca más o menos cilíndrica ("Rock").
- Probar con distintas configuraciones
- Indicar cuál recomendaría a la hora de predecir si es una mina o no utilizando: accuracy, f1-score y AUC.

Curva ROC

```
fpr, tpr, threshold = metrics.roc_curve(Y_true,Y_prob)
roc_auc = metrics.auc(fpr, tpr)

plt.figure()
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc auc)
```

Keras_SONAR_softmax_AUC.ipynb

Curva ROC

