Aljabar Relasional

Badie'ah, ST, M.Kom

Apa itu Aljabar Relational?

- Merupakan Bahasa yang mudah dipahami oleh mesin DBMS
- SQL yang biasa kita gunakan nantinya akan diterjemahkan ke dalam bentuk aljabar relasional sehingga query yang kita buat akan dipahami oleh DBMS, diproses dan ditampilkan hasilnya

OPERASI ALJABAR RELASIONAL

- 1. Selection (σ)
- 2. Projection (π)
- 3. Union (**U**)
- 4. Set-Difference (-)
- 5. Cartesian-Product (X, biasa disebut dengan cross product)
- 6. Rename (**ρ**)

- Operasi ini digunakan untuk menyeleksi record/baris yang memenuhi predikat (syarat atau kondisi) yang sudah ditentukan
- Kalau di SQL adalah seleksi menggunakan kondisi WHERE
- Operator perbandingan (=, ≠, <, ≤, >, ≥) biasanya digunakan pada operasi ini
- Beberapa predikat data digabungkan menggunakan penghubung AND (Λ) dan OR (ν) atau negasi (~)

• Sintaksnya:

```
σP (E1)
```

- P → predikat/kondisi/syarat dari atribut E1
- E1 \rightarrow tabel atau relasi

- Contoh:
 - Tampilkan seluruh data mahasiswa yang kota asalnya adalah "Semarang"

SQL

SELECT * FROM mahasiswa WHERE kota_asal="Semarang"

Aljabar Relasional

σ kota_asal="Semarang" (mahasiswa)

 Contoh: Tampilkan seluruh data mahasiswa yang kota asalnya "Semarang" dan tahun lahirnya "1999"

SQL

SELECT * FROM mahasiswa WHERE kota_asal="Semarang" AND tahun_lahir=1999

Aljabar Relasional

σ kota_asal="Semarang" Λ tahun lahir=1999 (mahasiswa)

Projection (π)

- Merupakan operasi yang digunakan untuk memperoleh kolom-kolom tertentu untuk ditampilkan
- Sintaks :

```
π S (E1)

atau

π colum1,..., column (tabel)
```

Projection (π)

• Contoh: Tampilkan kolom nim, nama, alamat dari tabel mahasiswa

SQL

SELECT nim, nama, alamat FROM mahasiswa

Aljabar Relasional

π nim, nama, alamat (mahasiswa)

Projection (π)

 Contoh: Tampilkan kolom nim, nama, alamat dari tabel mahasiswa yang kota asalnya "Semarang" dan tahun lahirnya 1999

SQL

SELECT nim, nama, alamat FROM mahasiswa WHERE kota_asal="Semarang" AND tahun_lahir=1999

Aljabar Relasional

π nim, nama, alamat (σ kota_asal="Semarang" Λ tahun_lahir=1999 (mahasiswa))

Union (U)

• Union merupakan operasi untuk menggabungkan tabel dengan syarat tabel memiliki atribut dan struktur yang sama

• Sintaks:

E1 U E2

Union (U)

• Contoh: gabungkan data kota dari tabel customer dan tabel supplier

SQL

SELECT kota FROM customer UNION SELECT kota FROM supplier

Aljabar Relasional

π kota (customer) U π kota (supplier)

Union (U)

• Contoh: gabungkan data kota dari tabel customer dan tabel supplier

SQL

SELECT kota FROM customer WHERE kota="Semarang" UNION
SELECT kota FROM supplier WHERE kota="Jakarta"

Aljabar Relasional

 π kota (σ kota="Semarang" (customer)) \cup π kota (σ kota="Jakarta" (supplier))

Set-Difference (-)

- Digunakan untuk mendapatkan record yang berada pada suatu tabel namun tidak ada di tabel lainnya
- Mysql tidak memiliki perintah SQL spesifik terhadap operasi ini
- Sebaliknya, Oracle memiliki perintah MINUS untuk menjalankan operasi ini
- Sintaks :

E1-E2

Set-Difference (-)

Tabel Customer

Kota

Semarang

Pekalongan

Solo

Customer - Supplier

Kota

Semarang

Menampilkan kota yang ada di tabel Customer tapi tidak ada di tabel supplier **Tabel Supplier**

Kota

Solo

Jakarta

Pekalongan

Supplier - Customer

Kota

Jakarta

Menampilkan kota yang ada di tabel supplier tapi tidak ada di tabel customer

Set-Difference (-)

ORACLE

(SELECT kota FROM customer)
MINUS
(SELECT kota FROM supplier)

MySQL

SELECT kota FROM customer WHERE kota NOT IN (SELECT kota FROM supplier)

Aljabar Relasional

 π kota (customer) - π kota (supplier)

Cartesian-Product (X)

- Operasi ini digunakan merelasikan semua record-record yang berasal dari dua tabel
- Operasi catesian product umumnya tidak berdiri sendiri karena dapat digunakan bersama dengan operasi selection (σ) dan projection (π)
- Sintaks :

E1 X E2

Masih ingat ini?

Tabel Dokter

kd_dokter	nama_dokter		▼ telepon	
D01	dr.Arief	UMM	0814262728299	L
D04	dr. Sarah	JTG	083383373772	P
D02	dr.Agung	DLM	085363738339	L
D03	dr.Bambang	BDH	082628282626	L

Tabel Spesialis

kd_spesialis	spesialis
ANK	Anak
BDH	Bedah
DLM	Penyakit Dalam
GIG	Gigi
JTG	Jantung
KDG	Kandungan
KLT	Kulit
MAT	Mata
SRF	Saraf
THT	THT
UMM	Dokter Umum

Tujuannya:

Ingin mengetahui Dokter X adalah spesialis apa?

Query yang dilakukan:

select dokter.nama_dokter, spesialis.spesialis
from dokter, spesialis

HASILNYA:

spesialis	
Anak	
Anak	
Anak	
Anak	
Bedah	
Bedah	
Bedah	
Bedah	
Penyakit Dalam	
Gigi	
Gigi	
Cini W	

Ada 44 Rows

333 i

Apa yang terjadi?

- Data pada tabel dokter <u>akan dipetakan dengan data yang mana pada kolom</u> spesialis di tabel spesialis
- Logikanya :

Semua elemen pada himpunan BIRU akan dipetakan semua ke elemen pada himpunan HIJAU Jumlah total pemetaannya adalah sejumlah = Jumlah elemen himpunan BIRU X jumlah elemen pada himpunan HIJAU

$$= 3 \times 3$$

Cartesian-Product (X)

 Kasus tadi menggambarkan operasi pemetaan atau yang disebut Cartesian-product (cross product) pada DBMS

Cartesian-Product (X)

Contoh: Tampilkan seluruh data yang ada di tabel dokter dan tabel spesialis yang spesialisnya "BEDAH"

SQL

SELECT * FROM dokter, spesialis WHERE dokter.kd_spesialis=spesialis.kd_spesialis AND spesialis.spesialis="BEDAH"

Aljabar Relasional

σ dokter.kd_spesialis=spesialis.kd_spesialis Λ spesialis.spesialis="BEDAH" (dokterXspesialis)

- Operasi ini digunakan untuk memberikan nama alias terhadap :
 - Tabel
 - Kolom
 - Keduanya
- Sintaks:

$$\rho_X^{(R)}$$

Contoh 1: Memberikan nama alias mhs pada tabel mahasiswa

Contoh 2: Memberikan nama alias kolom nama, alamat pada tabel mahasiswa dengan A dan B

SQL

SELECT nama AS A, alamat AS B FROM mahasiswa

Aljabar Relasional

ρ A,B (π nama, alamat (mahasiswa))

Contoh 3: Memberikan nama alias pada tabel mahasiswa menjadi mhs & kolom nama, alamat menjadi A dan B

SQL

SELECT nama AS A, alamat AS B FROM mahasiswa AS mhs

Aljabar Relasional

ρ mhs(A,B) (π nama, alamat (mahasiswa))