2022 Digital IC Design Homework 4: Edge-Based Line Average interpolation

NAME 柳譯筑						•		
Student ID NE6101034								
Simulation Result								
Functional		Gate-level		Clock	40	Gate-level	79529 (ns)	
simulation	Pass	simulation	Pass	width	(ns)	simulation time		
VSIM 6> run -aii START!!! Simulation Start SIM M A R Y					VSIM 14> run -all STARTIII Simulation Start			
Synthesis Result								
Total logic elements				12,588/68,416(18%)				
Total memory bit				8,820/68,416(13%)				
Embedded multiplier 9-bit element				0/300(0%)				
Flow Summary								
Flow Status Quartus II 32-bit Version Revision Name Top-level Entity Name Family Device Timing Models Total logic elements Total combinational functions Dedicated logic registers Total registers Total pins Total virtual pins Total memory bits Embedded Multiplier 9-bit elements Total PLLs			13.0. ELA ELA Cyclo EP2C Final 12,58 8,820 7,952 7952 39 / 6 0 0 / 1,	ELA Cyclone II EP2C70F896C8 Final 12,588 / 68,416 (18 %) 8,820 / 68,416 (13 %) 7,952 / 68,416 (12 %) 7952 39 / 622 (6 %)				
Description of your design								

```
State:
Idle, Input, calculate, output,
在 input 的時候讀進奇數行的 img data,
for (i = 10'd0; i<10'd992; i=i+10'd1)begin
 if (i == cnt)begin
    n_img[i] = in_data;
 end else begin
 n_{img[i]} = \{1'b0, img[i]\};
end
end
接著在 calculate 的階段把偶數行的 interpolate data 填滿。
我設定 D1, D2, D3 分別為三個不同 pair 的 pixel 差值,
if(img[cnt-10'd33]>img[cnt+10'd33])begin
D1 = img[cnt-10'd33]-img[cnt+10'd33];
end else begin
D1 = img[cnt+10'd33]-img[cnt-10'd33];
end
if(img[cnt-10'd32]>img[cnt+10'd32])begin
D2 = img[cnt-10'd32]-img[cnt+10'd32];
end else begin
D2 = img[cnt+10'd32]-img[cnt-10'd32];
end
if(img[cnt-10'd31]>img[cnt+10'd31])begin
___D3 = img[cnt-10'd31]-img[cnt+10'd31];
end else begin
D3 = img[cnt+10'd31]-img[cnt-10'd31];
end
要注意需要判斷在邊界的時候:
if (cnt[4:0]==5'd0)begin
 n_img[cnt] = ({1'b0,img[cnt-10'd32]}+{1'b0,img[cnt+10'd32]})>>1;
D1 = 8'hff;
D2 = 8'hff;
 D3 = 8'hff;
end else if (cnt[5:0]==6'd63)begin
```

```
n_{img}[cnt] = ({1'b0,img}[cnt-10'd32]) + {1'b0,img}[cnt+10'd32]) >> 1;
D1 = 8'hff;
D2 = 8'hff;
D3 = 8'hff;
end
我直接把三個 D 的大小排列組合全部排出來:
// D1 min
if (D1<D2 && D1<D3)begin
n_{img[cnt]} = ({1'b0,img[cnt-10'd33]}+{1'b0,img[cnt+10'd33]})>>1;
// D2 min
end else if(D2<D1 && D2<D3)begin
n_{img}[cnt] = ({1'b0,img}[cnt-10'd32]) + {1'b0,img}[cnt+10'd32]) >> 1;
// D3 min
end else if (D3<D1 && D3<D2)begin
n_{img}[cnt] = ({1'b0,img}[cnt-10'd31]) + {1'b0,img}[cnt+10'd31]) >> 1;
// D1=D2 min
end else if (D1==D2 && D1 < D3) begin
n_img[cnt] = ({1'b0,img[cnt-10'd32]}+{1'b0,img[cnt+10'd32]})>>1;
// D2=D3 min
end else if (D3==D2 && D3 < D1)begin
n_{img[cnt]} = ([1'b0,img[cnt-10'd32]]+[1'b0,img[cnt+10'd32]])>>1;
// D1 = D3 min
end else if(D1 == D3 && D1<D2)begin
n_{img}[cnt] = ({1'b0,img[cnt-10'd33]}+{1'b0,img[cnt+10'd33]})>>1;
// D1=D2=D3 min
end else begin
n_{img}[cnt] = ({1'b0,img[cnt-10'd32]}+{1'b0,img[cnt+10'd32]})>>1;
end
在 output 階段把 wen 拉高,所有資料 output 出去。
case(State)
OUT:begin
 if (cnt == 10'd992)begin
  wen <= 1'b0;
```

data_wr <= 8'hff;

end else begin

wen <= 1'b1;

data_wr <= img[addr];
end
end
default:begin

wen = 1'b0;

data_wr <= 8'hff;
end
endcase
這次作業 cycle 要改大才不會有 error,找了很久找不到 latch,最後是因為時間問題,總之成功合成真的感動~: D

Scoring = (Total logic elements + total memory bit + 9*embedded multiplier 9-bit element) × (longest gate-level simulation time in \underline{ns})