Domande orale Aritmetica 2014-2015

19 gennaio 2015

 \mathbb{Z}_{90}

- 1. Un polinomio $p \in \mathbb{Z}[x]$ può essere riducibile o irriducibile. Lo stesso polinomio, preso con coefficienti in $\mathbb{Z}/p\mathbb{Z}[x]$ può essere riducibile o irriducibile. Che relazione c'è tra queste due cose? (Attenzione se su $\mathbb{Z}/p\mathbb{Z}$ la scoposizione diventa banale)
- 2. Capire se -1 è residuo quadratico modulo p (**Hint:** si può dare per scontato che esista un generatore)
- 3. Sia $q \in \mathbb{Z}[x]$ un polinomio irriducible. Si chiede se $\exists p \in \mathbb{P}$ tale che q modulo p è riducibile?
- 4. G gruppo abeliano finito, $H \triangleleft G$. Sappiamo che sia H che G/H sono ciclici. Si può dedurre che G è ciclico? Se no, c'è una qualche altra ipotesi che mi permette di dedurlo? (**Hint:** pensare agli ordini di H e G/H)
- 5. Fai un esempio di due anelli isomorfi come spazi vettoriali ma non come anelli
- 6. Consideriamo $\sigma: \mathbb{N}^+ \to \mathbb{N}^+$ definita come $\sigma(n) = \sum_{d|n} d$. Dimostrarne la moltiplicatività, ovvero che $\sigma(mn) = \sigma(m) \cdot \sigma(n)$ se (n,m) = 1
- 7. Si consideri in $\mathcal{M}(\mathbb{K}, n, n)$ l'insieme delle matrici quadrate invertibili di ordine n a coefficienti nel campo \mathbb{K} . Dimostrare che un gruppo. Consideriamo $\mathcal{M}(\mathbb{F}_{11}, 2, 2)$. Non è un gruppo abeliano ma mostriamo che esiste un sottogruppo normale. (**Hint:** prendiamo l'insieme delle matrici il cui determinante ...) Sappiamo che ogni sottogruppo normale di un gruppo è \mathcal{K} er di un omomorfismo. Sai trovare un omomorfismo $\varphi: \mathcal{M}(\mathbb{F}_{11}, 2, 2) \to \mathbb{F}_{11}$ che abbia come \mathcal{K} er il sottogruppo delle matrici con determinante che un quadrato in \mathbb{F}_{11} ?

8. Quanti sono i polinomi irriducibili di grado n su \mathbb{F}_p ? (**Hint:** può essere utile provare prima il caso dei polinomi di secondo grado. **Hint:** in alternativa si possono contare i polinomi riducibili.) **Hint:** Altrimenti dimostrate che

$$\prod_{p(x) \text{ irriducibile}} p(x) = x^{p^n} - x$$
$$\deg(p(x)) \mid n$$

- 9. Sia $G = \langle x_1, x_2 \rangle$ un gruppo e H < G un sottogruppo. È vero che anche H è generato da al più due elementi? Se è falso trovare un controesempio. (Provare prima il caso $H \triangleleft G$, poi il caso generale) (**Hint:** una volta è vero, l'altra è falso)
- 10. Descrivere i sottogruppi di $G = \mathbb{Z}_{10} \times \mathbb{Z}_5$ e contare i sottogruppi $H \triangleleft V$ tali che $\mid H \mid = 1000$ e $V = \mathbb{Z}_{1000} \times \mathbb{Z}_{500}$. E quanti sono i sottogruppi $H \triangleleft V$ tali che $\mid H \mid = 5$?
- 11. Considera l'insieme $W=\{p(x)\in\mathbb{Z}_5[x]\}$. Ogni polinomio $p\in W$ lo posso vedere come funzione $f_p:\mathbb{Z}_5\to\mathbb{Z}_5$ associando ad ogni polinomio la funzione valutazione sui suoi elementi. Esistono polinomi distinti la cui funzione associata è la stessa? Sia φ l'omomorfismo che ad un polinomio associa la sua funzione polinomiale in $\mathbb{Z}/p\mathbb{Z}$. Qual'è il \mathcal{K} er di questa funzione? E l'immagine di φ quanti elementi ha?
- 12. Siano α, β algebrici su \mathbb{Q} tali che $\deg(\alpha) = m$ e $\deg(\beta) = n$. Quali sono i possibili valori per $\deg(\alpha + \beta)$? Qual è il minimo $\deg(\alpha + \beta)$ fissati m ed n?
- 13. $(\mathbb{Q}, +)$ è ciclico? Quanti generatori ha? (**Hint:** considera le frazioni con numeratore uno e denominatore potenza di un primo) Dimostra che quelli che hai trovato generano.
- 14. Sia H < G, con G gruppo ciclico finito. Dimostra che anche H è ciclico. Vale anche nel caso $|G| = +\infty$?
- 15. $\forall n \in \mathbb{N} \text{ sia } z_n = e^{i\frac{2\pi}{n}}$. Che cosa ottengo se aggiungo z_n a \mathbb{Q} ? E se aggiungo z_n e z_m con $m \neq n$? Calcola il grado dell'estensione di campo $[\mathbb{Q}(z_n, z_m) : \mathbb{Q}]$ (**Hint:** $[\mathbb{Q}(z_n) : \mathbb{Q}] = \varphi(n)$)
 Dimostra che se ho (n,m) = 1 allora $\mathbb{Q}(z_{nm}) = \mathbb{Q}(z_n, z_m)$. Dimostra che $\sum_{j=0}^{p-1} x^j$ è irriducibile su $\mathbb{Q}[x]$.
- 16. Trova un $\mathbb{Z}/n\mathbb{Z}[x]$ in cui esiste un polinomio p(x) tale che $\exists k \in \mathbb{N} \quad p^k = 0$. Esistono polinomi invertibili in $\mathbb{Z}/6\mathbb{Z}[x]$?

Sia $p(x) = \sum_{i=0}^{n} a_i x^i$ t.c. $\exists k \in \mathbb{N} \quad p^k = 0$. Dimostra che allora a_i è nilpotente $\forall 0 \geq i \leq n$

- 17. Sia $f(x) = x^{14} + 2 \in \mathbb{F}_{13}[x]$. Trovane il campo di spezzamento.
- 18. Sia $G = (\mathbb{Z}/m\mathbb{Z})^*$ un gruppo e $f: G \to G$ definita come $f(x) = x^5$ una funzione. È un morfismo? Quando è iniettiva e quando e suriettiva (al variare di m)?

Mostra che $\operatorname{Ker} \varphi \simeq \underline{\mathbb{Z}_5 \times \mathbb{Z}_5 \times \ldots \times \mathbb{Z}_5}$.

un po' di volte

Trova un G tale che $\operatorname{Ker} \varphi \simeq \mathbb{Z}_5 \times \mathbb{Z}_5$.

 $x^{p-1} + x^{p-2} + \ldots + x + 1 \in \mathbb{Q}[x]$ è irriducibile. 19. Dimostrare che $\forall p \in \mathbb{P}$ Dimostra che f(x) è irriducibile in $\mathbb{Q} \Leftrightarrow f(x+a)$ è irriducibile, con

Per quali $n \in \mathbb{N}$ si ha $x^n + x^{n-1} + \ldots + x + 1$ irriducibile?

20. Quand'è che esiste $(3x+5)^{-1}$ in \mathbb{Z}_{100} ? (con x parametro). So che $x^2 \equiv a$ (p). Quando $\exists y$ t.c. $y^2 \equiv (p^2)$?

(**Hint:** provare y = x + bp)

 $\sqrt{2} + \sqrt{3} + \sqrt{5}$ è algebrico sui razionali? Trova un polinomio su cui si annulla e trova una base di $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$

Sia \mathbb{K} un campo che contiene \mathbb{Q} . Quando $\mathbb{K}(\sqrt{a}) = \mathbb{K}(\sqrt{b})$?