Package 'coMethDMR'

August 22, 2019

Title Accurate identification of co-methylated and differentially methylated regions in epigenome-wide association studies
Version 0.0.0.9001
Maintainer Lissette Gomez <1xg255@miami.edu>
Description coMethDMR identifies genomic regions associated with continuous phenotypes by optimally leverages covariations among CpGs within predefined genomic regions. Instead of testing all CpGs within a genomic region, coMethDMR carries out an additional step that selects co-methylated sub-regions first without using any outcome information. Next, coMethDMR tests association between methylation within the sub-region and continuous phenotype using a random coefficient mixed effects model, which models both variations between CpG sites within the region and differential methylation simultaneously.
Depends R (>= 3.5.0), IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b2.hg19
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Imports BiocParallel, bumphunter, GenomicRanges, IRanges, lmerTest, pathwayPCA
Suggests testthat

R topics documented:

AnnotateResults	2
betaMatrixChr22_df	3
betaMatrix_ex1	4
betaMatrix_ex2	4
betaMatrix_ex3	5
betaMatrix_ex4	5
CloseBySingleRegion	ϵ

2 AnnotateResults

	CoMethAllRegions	7
	CoMethSingleRegion	8
	CpGsInfoAllRegions	10
	CpGsInfoOneRegion	11
	CreateCpGsRegions	12
	CreateRdrop	13
	FindComethylatedRegions	13
	GetCpGsInRegion	14
	lmmTest	15
	lmmTestAllRegions	16
	MarkComethylatedCpGs	18
	NameRegion	19
	OrderCpGsByLocation	20
	pheno_df	20
	RegionsToRanges	21
	WriteCloseByAllRegions	21
Index		23
Anno	tateResults Annotate coMethDMR Pipeline Results	

Description

Given a data frame with regions in the genome, add gene symbols, UCSC reference gene accession, and IDs of probes in the region.

Usage

```
AnnotateResults(lmmRes_df, arrayType = c("450k", "EPIC"))
```

Arguments

1mmRes_df

A data frame returned by lmmTestAllRegions. This data frame must contain the following columns:

- chrom: the chromosome the region is on, e.g. "chr22"
- start: the region start point
- end: the region end point

Optionally, the data frame can also has regionType, which is a character string marking the type of genomic region tested. See details below.

arrayType

Type of array: 450k or EPIC

Details

```
The region types include "NSHORE", "NSHELF", "SSHORE", "SSHELF", "TSS1500", "TSS200", "UTR5",
"EXON1", "GENEBODY", "UTR3", and "ISLAND".
```

betaMatrixChr22_df 3

Value

A data frame with

- the location of the genomic region's chromosome (chrom), start (start), and end (end);
- UCSC annotation information (UCSC_RefGene_Group, UCSC_RefGene_Accession, and UCSC_RefGene_Name);
 and
- a list of all of the probes in that region (probes).

Examples

```
lmmResults_df <- data.frame(
   chrom = c("chr22", "chr22", "chr22", "chr22", "chr22"),
   start = c("39377790", "50987294", "19746156", "42470063", "43817258"),
   end = c("39377930", "50987527", "19746368", "42470223", "43817384"),
   regionType = c("TSS1500", "EXON1", "ISLAND", "TSS200", "ISLAND"),
   stringsAsFactors = FALSE
)

AnnotateResults(
   lmmRes_df = lmmResults_df,
   arrayType = "450k"
)</pre>
```

betaMatrixChr22_df

Prefrontal Cortex (PFC) Methylation Data from Alzheimer's Disease subjects

Description

Subset of an Alzheimer's methylation dataset, with beta values for CpGs.

Usage

betaMatrixChr22_df

Format

A data frame containing beta values for 8552 CpGs in Chr22 for a subset of 20 subjects.

Source

4 betaMatrix_ex2

betaMatrix_ex1

Alzheimer's Prefrontal Cortex (PFC) Methylation Data

Description

Subset of an Alzheimer's Disease methylation data set, with beta values for measured CpGs methylation levels.

Usage

betaMatrix_ex1

Format

A data frame containing beta values for 4 CpGs in one CpG islands for 110 subjects. Each column is a CpG, each row is a sample.

Source

GEO accession: GSE59685

betaMatrix_ex2

Alzheimer's Prefrontal Cortex (PFC) Methylation Data

Description

Subset of an Alzheimer's Disease methylation data set, with beta values for measured CpGs methylation levels.

Usage

betaMatrix_ex2

Format

A data frame containing beta values for 4 CpGs in one CpG islands for 110 subjects. Each column is a CpG, each row is a sample.

Source

betaMatrix_ex3 5

betaMatrix_ex3

Alzheimer's Prefrontal Cortex (PFC) Methylation Data

Description

Subset of an Alzheimer's Disease methylation data set, with beta values for measured CpGs methylation levels.

Usage

betaMatrix_ex3

Format

A data frame containing beta values for 6 CpGs in one CpG islands for 110 subjects. Each column is a CpG, each row is a sample.

Source

GEO accession: GSE59685

betaMatrix_ex4

Alzheimer's Prefrontal Cortex (PFC) Methylation Data

Description

Subset of an Alzheimer's Disease methylation data set, with beta values for measured CpGs methylation levels.

Usage

betaMatrix_ex4

Format

A data frame containing beta values for 52 CpGs in one CpG islands for 110 subjects. Each column is a CpG, each row is a sample.

Source

CloseBySingleRegion

Extract clusters of CpGs located closely in a genomic region.

Description

Extract clusters of CpGs located closely in a genomic region.

Usage

```
CloseBySingleRegion(CpGs_char, arrayType = c("450k", "EPIC"),
  maxGap = 200, minCpGs = 3)
```

Arguments

CpGs_char a list of CpG IDs

arrayType Type of array, 450k or EPIC

maxGap an integer, genomic locations within maxGap from each other are placed into the same cluster

minCpGs an integer, minimum number of CpGs for the resulting CpG cluster

Details

Note that this function depends only on CpG locations, and not on any methylation data. The algorithm is based on the clusterMaker function in the bumphunter R package. Each cluster is essentially a group of CpG locations such that two consecutive locations in the clsuter are separated by less than maxGap.

Value

a list, each item in the list is a character vector of CpG IDs located closely (i.e. in the same cluster)

```
CpGs_char <- c(
    "cg02505293", "cg03618257", "cg04421269", "cg17885402", "cg19890033",
    "cg20566587", "cg27505880"
)
cluster_ls <- CloseBySingleRegion(
    CpGs_char, arrayType = "450k", maxGap = 100, minCpGs = 3
)</pre>
```

CoMethAllRegions 7

CoMethAllRegions	Extract contiguous co-methylated genomic regions from a list of pre- defined genomic regions

Description

Extract contiguous co-methylated genomic regions from a list of pre-defined genomic regions

Usage

```
CoMethAllRegions(betaMatrix, betaToM = TRUE, method = c("pearson",
    "spearman"), rDropThresh_num = 0.4, arrayType = c("450k", "EPIC"),
    CpGs_ls = NULL, file = NULL, fileType = c("gmt", "RDS"),
    regionType = c("ISLAND", "NSHORE", "NSHELF", "SSHORE", "SSHELF",
    "TSS1500", "TSS200", "UTR5", "EXON1", "GENEBODY", "UTR3"),
    returnAllCpGs = FALSE, output = c("CpGs", "dataframe"),
    cluster = NULL, ...)
```

Arguments

betaMatrix	matrix (or data frame) of beta values, with row names = CpG IDs, column names = sample IDs. This is typically genome-wide methylation beta values.
betaToM	indicates if converting methylation beta values to mvalues
method	method for computing correlation, can be "spearman" or "pearson"
rDropThresh_num	n
	thershold for min correlation between a cpg with sum of the rest of the CpGs
arrayType	Type of array, can be "450k" or "EPIC"
CpGs_ls	list where each item is a character vector of CpGs IDs.
file	an RDS or gmt file with clusters of CpG locations (i.e. CpGs located closely to each other on the genome). This file can be generated by the WriteCloseByAllRegions function.
fileType	file extension for input file, can be "gmt" or "RDS"
regionType	Type of input genomic regions (e.g. "ISLAND" for CpG island)
returnAllCpGs	When there is not a contiguous comethylated region in the inputing pre-defined region, returnAllCpGs = 1 indicates outputting all the CpGs in the input regions, while returnAllCpGs = 0 indicates not returning any CpG.
output	a character vector of CpGs or a dataframe of CpGs along with rDrop info
cluster	computing clusters created when using parallel computing
	Dots for internal arguments. Currently unused.

Details

There are several ways to input genomic regions for this function: (1) use CpGs_ls argument (2) use regionType argument (3) use file and fileType arguments, examples of these files are at https://github.com/lissettegomez/coMethDMRdata

8 CoMethSingleRegion

Value

When output = "dataframe" is selected, returns a list of data frames, each with CpG (CpG name), Chr (chromosome number), MAPINFO (genomic position), r_drop (correlation between the CpG with rest of the CpGs), keep (indicator for co-methylated CpG), keep_contiguous (index for contiguous comethylated subregions).

When output = "CpGs" is selected, returns a list, each item is a list of CpGs in the contiguous co-methylated subregion.

Examples

```
data(betaMatrixChr22_df)
   CpGisland_ls <- readRDS(</pre>
     system.file(
       "extdata",
       "CpGislandsChr22_ex.RDS",
       package = 'coMethDMR',
       mustWork = TRUE
   )
   coMeth_ls <- CoMethAllRegions (</pre>
     betaMatrix = betaMatrixChr22_df,
     betaToM = TRUE,
    method = "pearson",
    CpGs_ls = CpGisland_ls,
    arrayType = "450k",
    returnAllCpGs = FALSE,
     output = "CpGs"
   )
## Not run:
CoMethAllRegions (
   betaMatrix = betaMatrixChr22_df,
   regionType = "ISLAND",
   arrayType = "450k",
   returnAllCpGs = FALSE
 )
## End(Not run)
```

CoMethSingleRegion

Wrapper function to find contiguous and comethyalted sub-regions within a pre-defined genomic region

Description

Wrapper function to find contiguous and comethyalted sub-regions within a pre-defined genomic region

CoMethSingleRegion 9

Usage

```
CoMethSingleRegion(CpGs_char, betaMatrix, betaToM = TRUE,
  rDropThresh_num = 0.4, method = c("pearson", "spearman"),
  minCpGs = 3, arrayType = c("450k", "EPIC"), returnAllCpGs = FALSE)
```

Arguments

CpGs_char vector of CpGs in the inputting pre-defined genomic region.

betaMatrix matrix (or data frame) of beta values, with row names = CpG ids, column names

= sample ids. This should include the CpGs in CpGs_char, as well as additional

CpGs.

betaToM indicates if converting methylation beta values mvalues

rDropThresh_num

thershold for min correlation between a cpg with sum of the rest of the CpGs

method method for computing correlation, can be "pearson" or "spearman"

minCpGs mininum number of CpGs to be considered a "region". Only regions with more

than minCpGs will be returned.

arrayType Type of array, can be "450k" or "EPIC"

returnAllCpGs When there is not a contiguous comethylated region in the inputing pre-defined

region, returnAllCpGs = 1 indicates outputting all the CpGs in the input region,

while returnAllCpGs = 0 indicates not returning any CpG.

Value

A list with two components:

- Contiguous_Regions: a data frame with CpG (CpG ID), Chr (chromosome number), MAPINFO (genomic position), r_drop (correlation between the CpG with rest of the CpGs), keep (indicator for co-methylated CpG), keep_contiguous (index for contiguous comethylated subregion)
- CpGs_subregions : lists of CpGs in each contiguous co-methylated subregion

```
data(betaMatrixChr22_df)

CpGsChr22_char <- c(
    "cg02953382", "cg12419862", "cg24565820", "cg04234412", "cg04824771",
    "cg09033563", "cg10150615", "cg18538332", "cg20007245", "cg23131131",
    "cg25703541"
)

CoMethSingleRegion(
    CpGs_char = CpGsChr22_char,
    betaMatrix = betaMatrixChr22_df
)

data(betaMatrix_ex3)

CpGsEx3_char <- c(
    "cg14221598", "cg02433884", "cg07372974", "cg13419809", "cg26856676",
    "cg25246745"
)
CoMethSingleRegion(</pre>
```

10 CpGsInfoAllRegions

```
CpGs_char = CpGsEx3_char,
betaMatrix = t(betaMatrix_ex3),
returnAllCpGs = TRUE
)
```

CpGsInfoAllRegions

Test associations of individual CpGs in multiple genomic regions with a continuous phenotype

Description

Test associations of individual CpGs in multiple genomic regions with a continuous phenotype

Usage

```
CpGsInfoAllRegions(AllRegionNames_char, betas_df, pheno_df, contPheno_char,
  covariates_char, arrayType = c("450k", "EPIC"))
```

Arguments

AllRegionNames_char

vector of character strings with location info for all the genomic regions. Each

region should be specified in this format: "chrxx:xxxxxx-xxxxxx"

betas_df data frame of beta values for all genomic regions, with row names = CpG IDs,

column names = sample IDs

pheno_df a data frame with phenotype and covariate variables, with variable "Sample" for

sample IDs.

contPheno_char character string of the continuous phenotype, to be tested against methylation

values

covariates_char

character vector of covariate variables names

arrayType Type of array, can be "450k" or "EPIC"

Value

a data frame with locations of the genomic region (Region), CpG ID (cpg), chromosome (chr), position (pos), and results for testing association of methylation in individual CpGs with continuous phenotype (slopeEstimate, slopePval), UCSC_RefGene_Name, UCSC_RefGene_Accession, UCSC_RefGene_Group

```
data(betaMatrixChr22_df)
data(pheno_df)
AllRegionNames_char <- c("chr22:18267969-18268249", "chr22:18531243-18531447")

CpGsInfoAllRegions(
   AllRegionNames_char,
   betas_df = betaMatrixChr22_df,
   pheno_df, contPheno_char = "stage",
   covariates_char = c("age.brain", "sex")
)</pre>
```

CpGsInfoOneRegion 11

CpGsInfoOneRegion	Test associations of individual CpGs in a genomic region with a continuous phenotype
-------------------	--

Description

Test associations of individual CpGs in a genomic region with a continuous phenotype

Usage

```
CpGsInfoOneRegion(regionName_char, betas_df, pheno_df, contPheno_char,
  covariates_char, arrayType = c("450k", "EPIC"))
```

Arguments

Details

This function implements linear models that test association between methylation values in a genomic region with a continuous phenotype. Note that methylation M values are used as regression outcomes in these models. The model for each CpG is:

```
methylation M value ~ contPheno_char + covariates_char
```

Value

a data frame with location of the genomic region (Region), CpG ID (cpg), chromosome (chr), position (pos), results for testing association of methylation in individual CpGs with continuous phenotype (slopeEstimate, slopePval) and annotations for the regions

```
data(betaMatrixChr22_df)
data(pheno_df)

CpGsInfoOneRegion(
  regionName_char = "chr22:19709548-19709755",
  betas_df = betaMatrixChr22_df,
  pheno_df, contPheno_char = "stage",
  covariates_char = c("age.brain", "sex"),
```

12 CreateCpGsRegions

```
arrayType = "450k"
)

# not adjusting for covariates
CpGsInfoOneRegion(
  regionName_char = "chr22:18267969-18268249",
  betas_df = betaMatrixChr22_df,
  pheno_df, contPheno_char = "stage",
  covariates_char = NULL
)
```

CreateCpGsRegions

Create a list object with class CpGsRegions

Description

Create a list object with class CpGsRegions

Usage

```
CreateCpGsRegions(CpGs_ls)
```

Arguments

CpGs_ls

a list where each item is a character vector of CpGs IDs in a region. Each vector should be named with the region name.

Value

A list object with class CpGsRegions

CreateRdrop 13

r	ea:	tο	ᄓ	ro	n

Computes leave-one-out correlations (rDrop) for each CpG

Description

Computes leave-one-out correlations (rDrop) for each CpG

Usage

```
CreateRdrop(data, method = c("pearson", "spearman"))
```

Arguments

data a dataframe with rownames = sample IDs, column names = CpG IDs.
method method for computing correlation, can be "pearson" or "spearman"

Details

An outlier CpG in a genomic region will typically have low correlation with the rest of the CpGs in a genomic region. On the other hand, in a cluster of co-methylated CpGs, we expect each CpG to have high correlation with the rest of the CpGs. The r.drop statistic is used to identify these co-methylated CpGs here.

Value

A data frame with the following columns:

- CpG: CpG ID
- r_drop: The correlation between each CpG with the sum of the rest of the CpGs

Examples

```
data(betaMatrix_ex1)
CreateRdrop(data = betaMatrix_ex1, method = "pearson")
```

FindComethylatedRegions

 $Find\ contiguous\ comethy lated\ regions\ based\ on\ output\ file\ from\ function\ {\tt MarkComethylatedCpGs}$

Description

Find contiguous comethylated regions based on output file from function MarkComethylatedCpGs

Usage

```
FindComethylatedRegions(CpGs_df, minCpGs_int = 3)
```

14 GetCpGsInRegion

Arguments

CpGs_df an output dataframe from function MarkComethylatedCpGs, with variables

CpG, keep, ind, r_drop. See details in documentation for MarkComethylatedCpGs.

minCpGs_int an integer, indicates minimum nubmer of CpGs for output genomic regions

Value

A data frame with variables ProbeID and Subregion (index for each output contiguous comethy-lated regions)

Examples

```
data(betaMatrix_ex4)

CpGs_df <- MarkComethylatedCpGs(betaCluster_mat = betaMatrix_ex4)

FindComethylatedRegions(CpGs_df)</pre>
```

GetCpGsInRegion

Extract probe IDs for CpGs located in a genomic region

Description

Extract probe IDs for CpGs located in a genomic region

Usage

```
GetCpGsInRegion(regionName_char, arrayType = c("450k", "EPIC"))
```

Arguments

regionName_char

character string with location information for one region in this format: "chrxx:xxxxxxx-

xxxxxx"

arrayType Type of array, 450k or EPIC

Value

vector of CpG probe IDs mapped to the genomic region

```
GetCpGsInRegion(
  regionName_char = "chr22:18267969-18268249",
  arrayType = "450k"
)
```

ImmTest 15

lmmTest	Fit mixed model to methylation values in one genomic region

Description

Fit mixed model to methylation values in one genomic region

Usage

```
lmmTest(betaOne_df, pheno_df, contPheno_char, covariates_char,
  modelType = c("randCoef", "simple"), arrayType = c("450k", "EPIC"),
  outLogFile = NULL)
```

Arguments

matrix of beta values for one genomic region, with row names = CpG IDs, colbetaOne_df umn names = sample IDs pheno_df a data frame with phenotype and covariates, with variable Sample indicating sample IDs. contPheno_char character string of the main effect (a continuous phenotype) to be tested for association with methylation values in the region covariates_char character vector for names of the covariate variables type of mixed model, can be randCoef for random coefficient mixed model, or modelType simple for simple linear mixed model. Type of array, can be "450k" or "EPIC" arrayType outLogFile Name of log file for messages of mixed model analysis

Details

This function implements a mixed model to test association between methylation values in a genomic region with a continuous phenotype.

When randCoef is selected, the model is

methylation M value \sim contPheno_char + covariates_char + (1|Sample) + (contPheno_char|CpG). The last term specifies random intercept and slope for each CpG.

When simple is selected, the model is

```
methylation M value ~ contPheno_char + covariates_char + (1|Sample)
```

In our simulation studies, we found both models are conservative, so p-values are estimated from normal distributions instead of t-distributions.

Value

A dataframe with one row for association result of one region: Estimate, StdErr, and pvalue for the association of methylation values in the genomic region tested vs. continuous phenotype contPheno_char

16 ImmTestAllRegions

Examples

```
data(betaMatrixChr22_df)

CpGsChr22_char <- c(
    "cg02953382", "cg12419862", "cg24565820", "cg04234412", "cg04824771",
    "cg09033563", "cg10150615", "cg18538332", "cg20007245", "cg23131131",
    "cg25703541"
)

coMethCpGs <- CoMethSingleRegion(CpGsChr22_char, betaMatrixChr22_df)

# test only the first co-methylated region
    coMethBeta_df <- betaMatrixChr22_df[coMethCpGs$CpGsSubregions[[1]], ]

data(pheno_df)

res <- lmmTest(
    betaOne_df = coMethBeta_df,
    pheno_df,
    contPheno_char = "stage",
    covariates_char = c("age.brain", "sex"),
    modelType = "randCoef",
    arrayType = "450k"
)</pre>
```

 ${\tt lmmTestAllRegions}$

Fit mixed model to test association between a continuous phenotype and methylation values in a list of genomic regions

Description

Fit mixed model to test association between a continuous phenotype and methylation values in a list of genomic regions

Usage

```
lmmTestAllRegions(beta_df, region_ls, pheno_df, contPheno_char,
  covariates_char, modelType = c("randCoef", "simple"),
  arrayType = c("450k", "EPIC"), outFile = NULL, outLogFile = NULL)
```

Arguments

beta_df	data frame of beta values for all genomic regions, with row names = CpG IDs, column names = sample IDs. This is often the genome-wide array data.
region_ls	a list of genomic regions, each item is a vector of CpG IDs within a genomic region. The co-methylated regions can be obtained by function CoMethAllRegions.
pheno_df	a data frame with phenotype and covariates, with variable Sample indicating sample IDs.
contPheno_char	character string of the main effect (a continuous phenotype) to be tested for association with methylation values in each region

ImmTestAllRegions 17

covariates_char

character vector for names of the covariate variables

modelType type of mixed model, can be randCoef for random coefficient mixed model, or

simple for simple linear mixed model.

arrayType Type of array, can be "450k" or "EPIC"

outFile output .csv file with the results for the mixed model analysis

outLogFile log file for mixed models analysis messages

Details

This function implements a mixed model to test association between methylation values in a genomic region with a continuous phenotype.

When randCoef is selected, the model is

methylation M value ~ contPheno_char + covariates_char + (1|Sample) + (contPheno_char|CpG). The last term specifies both random intercept and slope for each CpG.

When simple is selected, the model is

```
methylation M value ~ contPheno_char + covariates_char + (1|Sample)
```

In our simulation studies, we found both models are conservative, so p-values are estimated from normal distributions instead of t-distributions.

For the results of mixed models, note that

- (1) When mixed model failed to converge, p-value for mixed model is set to 1.
- (2) When mixed model is singular, at least one of the estimated variance components for intercepts or slopes random effects is 0, because there isn't enough variabilities in data to estimate the random effects. In this case, mixed model reduces to a fixed effects model. The p-values for these regions are still valid.

Value

- (1) output file: a .csv file with location of the genomic region (chrom, start, end), number of CpGs (nCpGs), Estimate, Standard error (StdErr) of the test statistic, p-value and False Discovery Rate (FDR) for association between methylation values in each genomic region with phenotype (pValue).
- (2) log file: a .txt file that includes messages for mixed model fitting

```
data(betaMatrixChr22_df)

data(pheno_df)

CpGisland_ls <- readRDS(
    system.file(
        "extdata",
        "CpGislandsChr22_ex.RDS",
        package = 'coMethDMR',
        mustWork = TRUE
    )
)

coMeth_ls <- CoMethAllRegions(</pre>
```

```
betaMatrix = betaMatrixChr22_df,
 betaToM = TRUE,
 CpGs_ls = CpGisland_ls,
 arrayType = "450k",
 rDropThresh_num = 0.4,
  returnAllCpGs = FALSE
)
results <- lmmTestAllRegions(</pre>
 beta_df = betaMatrixChr22_df,
  region_ls = coMeth_ls,
 pheno_df,
 contPheno_char = "stage",
 covariates_char = "age.brain",
 modelType = "randCoef",
 arrayType = "450k",
 # generates a log file in the current directory
  outLogFile = paste0("lmmLog_", Sys.Date(), ".txt")
```

MarkComethylatedCpGs Mark CpGs in contiguous and co-methylated region

Description

Mark CpGs in contiguous and co-methylated region

Usage

```
MarkComethylatedCpGs(betaCluster_mat, betaToM = TRUE,
    rDropThresh_num = 0.4, method = c("pearson", "spearman"))
```

Arguments

betaCluster_mat

matrix of beta values, with rownames = sample ids, column names = CpG ids. Note that the CpGs need to be ordered by their genomic positions, this can be accomplished by the OrderCpGbyLocation function.

betaToM indicates if converting to mvalues before computing correlations

rDropThresh_num

thershold for min correlation between a cpg with sum of the rest of the CpGs

method correlation method, can be pearson or spearman

Details

An outlier CpG in a genomic region will typically have low correlation with the rest of the CpGs in a genomic region. On the other hand, in a cluster of co-methylated CpGs, we expect each CpG to have high correlation with the rest of the CpGs. The r.drop statistic is used to identify these co-methylated CpGs here.

NameRegion 19

Value

A data frame with the following columns:

- CpG: CpG ID
- keep: The CpGs with keep = 1 belong to the contiguous and co-methylated region
- ind : Index for the CpGs
- r_drop: The correlation between each CpG with the sum of the rest of the CpGs

Examples

```
data(betaMatrix_ex1)
MarkComethylatedCpGs(betaCluster_mat = betaMatrix_ex1, betaToM = FALSE, method = "pearson")

data(betaMatrix_ex2)
MarkComethylatedCpGs(betaCluster_mat = betaMatrix_ex2, method = "pearson")

data(betaMatrix_ex3)
MarkComethylatedCpGs(betaCluster_mat = betaMatrix_ex3, method = "pearson")

data(betaMatrix_ex4)
MarkComethylatedCpGs(betaCluster_mat = betaMatrix_ex4, rDropThresh_num = 0.6, method = "pearson")
```

NameRegion

Name a region with several CpGs based on its genomic location

Description

Name a region with several CpGs based on its genomic location

Usage

```
NameRegion(CpGsOrdered_df)
```

Arguments

CpGsOrdered_df dataframe with columns for Probe IDs as character (cpg), chromosome number as character (chr) and genomic location as integer (pos)

Value

genome location of the CpGs, in the format of "chrxx:xxxxxx-xxxxxx"

```
CpGs_char <- c("cg04677227", "cg07146435", "cg11632906", "cg20214853")
CpGsOrdered_df <- OrderCpGsByLocation(CpGs_char, arrayType=c("EPIC"), output = "dataframe")
NameRegion(CpGsOrdered_df)</pre>
```

20 pheno_df

OrderCpGsByLocation

Order CpGs by genomic location

Description

Order CpGs by genomic location

Usage

```
OrderCpGsByLocation(CpGs_char, arrayType = c("450k", "EPIC"),
  output = c("vector", "dataframe"))
```

Arguments

CpGs_char vector of CpGs

arrayType Type of array, 450k or EPIC

output vector of CpGs or dataframe with CpGs, CHR, MAPINFO

Value

vector of CpGs ordered by location or dataframe with CpGs ordered by location (cpg), chromosome (chr), position (pos)

Examples

```
CpGs_char <- c("cg04677227", "cg07146435", "cg11632906", "cg20214853")
OrderCpGsByLocation(CpGs_char, arrayType=c("EPIC"), output = "dataframe")</pre>
```

pheno_df

Example phenotype data file from Prefrontal Cortex (PFC) Methylation Data of Alzheimer's Disease subjects

Description

Subset of phenotype information for Alzheimer's methylation dataset.

Usage

pheno_df

Format

A data frame containing variables for Braak stage (stage), subject.id, Batch (Mplate), Sex, Sample, age of brain sample (age.brain)

Source

RegionsToRanges 21

RegionsToRanges	Convert genomic	regions in a data	a frame to GRanges format
-----------------	-----------------	-------------------	---------------------------

Description

Convert genomic regions in a data frame to GRanges format

Usage

```
RegionsToRanges(regionName_char)
```

Arguments

```
regionName_char
a character vector of regions, in this format: "chrxx:xxxxxx-xxxxxx"
```

Value

genomic regions in GRanges format

Examples

```
regions = c("chr22:19709548-19709755", "chr2:241721922-241722113")
RegionsToRanges (regions)
```

```
WriteCloseByAllRegions
```

Extract clusters of CpG probes located closely from a list of predefined genomic regions

Description

Extract clusters of CpG probes located closely from a list of pre-defined genomic regions

Usage

```
WriteCloseByAllRegions(file, regionType = c("ISLAND", "NSHORE", "NSHELF",
   "SSHORE", "SSHELF", "TSS1500", "TSS200", "UTR5", "EXON1", "GENEBODY",
   "UTR3"), arrayType = c("450k", "EPIC"), maxGap = 200, minCpGs = 3,
   fileType = c("gmt", "RDS"), ...)
```

Arguments

file	file where the output genomic regions will be saved. File extension should not be supplied, it is automatically added via the fileType argument.
	be supplied, it is automatically added via the +11e+ype argument.
regionType	Type of input genomic regions (e.g. "ISLAND" for CpG island)
arrayType	Type of array, can be "450k" or "EPIC"
maxGap	an integer, genomic locations within maxGap from each other are placed into the same cluster

minCpGs an integer, minimum number of CpGs for each resulting region the output files can be saved as .gmt or .RDS.

... Dots for internal arguments. Currently unused.

Details

For maxGap = 200 and minCpGs = 3, we already calculated the clusters of CpGs. They are saved in folder /inst/extdata/.

Note that for output files, .gmt files can be opened as flat text file. .RDS files are half the size of .gmt files, but they can only be read in the R environment.

Creating and writing the file for one type of genomic region (regionType = "ISLAND") took about 25 minutes.

Value

a file with the genomic regions containing CpGs located closely within each inputing pre-defined genomic region

```
## Not run:
    WriteCloseByAllRegions(
        regionType = "ISLAND", arrayType = "450k", maxGap = 50,
        minCpGs = 3, fileType = "gmt", file = "closeByRegions"
)
## End(Not run)
```

Index

```
*Topic datasets
    betaMatrix_ex1,4
    betaMatrix_ex2,4
    betaMatrix_ex3,5
    betaMatrix_ex4, 5
    betaMatrixChr22_df, 3
    pheno_df, 20
AnnotateResults, 2
betaMatrix_ex1,4
betaMatrix_ex2, 4
betaMatrix_ex3, 5
betaMatrix_ex4, 5
beta {\tt MatrixChr22\_df}, {\tt 3}
CloseBySingleRegion, 6
clusterMaker, 6
CoMethAllRegions, 7
CoMethSingleRegion, 8
CpGsInfoAllRegions, 10
CpGsInfoOneRegion, 11
CreateCpGsRegions, 12
CreateRdrop, 13
FindComethylatedRegions, 13
{\tt GetCpGsInRegion}, {\tt 14}
1mmTest, 15
lmmTestAllRegions, 2, 16
{\tt MarkComethylatedCpGs}, 18
NameRegion, 19
{\tt OrderCpGsByLocation}, {\tt 20}
pheno_df, 20
{\tt RegionsToRanges}, \textcolor{red}{21}
WriteCloseByAllRegions, 7, 21
```