Biostatistics 682: Applied Bayesian Inference Lecture 13: Beyond Linear Regression

Jian Kang

Department of Biostatistics University of Michigan, Ann Arbor

Hierarchical models

- Hierarchical modeling provides a framework for building complex and high-dimensional models from simple and low-dimensional building blocks
- Of course, it is possible to analyze these models using non-Bayesian methods
- However, this modeling framework is popular in the Bayesian literature because MCMC is conducive to hierarchical models
- Both ?divide and conquer? big problems by splitting them into a series of smaller problems in the same way

Hierarchical models

- Often Bayesian models can we written in the following layers of the hierarchy
- Data layer: $[y \mid \theta, \alpha]$ is the likelihood for the observed data y
- **Process layer**: $[\theta \mid \alpha]$ is the model for the parameters θ that define the latent data generating process
- **Prior layer**: $[\alpha]$ prior for hyperparameters

One-way random-effects model

• Consider the classical one-way random effects model: for $i=1,\ldots,n$ and $j=1,\ldots,m$,

$$y_{ij} \sim \mathrm{N}(heta_i, \sigma^2)$$
 and $heta_i \sim \mathrm{N}(\mu, au^2)$

where y_{ij} is the jth replicate for unit i and $\alpha=(\mu,\sigma^2,\tau^2)$ has an uninformative prior

• This hierarchy can be written using a directed acyclic graph (DAG; also called Bayesian network or belief network)

One-way random-effects model

Hierarchical models and MCMC

- MCMC is efficient in this case even if the number of parameter or levels of the hierarchy is large
- You only need to consider "connected nodes" when you update each parameter
- $\mathbf{0}$ $[\theta_i \mid \cdot]$
 - $[\mu \mid \cdot]$
 - \circ $[\sigma^2 \mid \cdot]$
 - $\bullet \ [\tau^2 \mid \cdot]$
- Each of these updates is a draw from a standard one-dimensional normal or inverse gamma

Two-way random effects model

- Data example: national wide daily ozone levels for one month
- Denote by $y_{i,j}$ the ozone measurement at spatial location $i(i=1,\ldots,100)$ and day $j(j=1,\ldots,31)$
- We consider the model

$$y_{ij} \sim N(\mu + \alpha_i + \gamma_j, \sigma^2).$$

- ullet μ is the overall mean.
- α_i is the random effect for location i.
- γ_j is the random effect of day j.

Two-way random-effects model

Model:

$$y_{i,j} \sim N(\mu + \alpha_i + \gamma_j, \sigma^2),$$

• Priors for the fixed-effects model:

$$\alpha_j \sim N(0, 10^4), \qquad \gamma_j \sim N(0, 10^4).$$

• Priors for the random-effects model:

$$\alpha_j \sim N(0, \sigma_{\alpha}^2), \qquad \gamma_j \sim N(0, \sigma_{\gamma}^2).$$

$$\sigma_{\alpha}^2 \sim G^{-1}(0.001, 0.001), \qquad \sigma_{\gamma}^2 \sim G^{-1}(0.001, 0.001).$$

• What is the difference between these two prior settings?

Random slopes model

- Data example: bone density measurements for children at different ages.
- Let y_{ij} be the jth measurement for child i at the age x_i .

$$y_{ij} \sim N(\gamma_{i0} + x_i \gamma_{i1}, \sigma^2).$$

- $\gamma_i = (\gamma_{i0}, \gamma_{i1})^{\mathrm{T}}$ controls the growth curve for child i.
- These separate regression are tied together in the prior

$$\gamma_i \sim \mathrm{N}(\boldsymbol{\beta}, \boldsymbol{\Sigma}),$$

which borrows strength across children.

ullet This is a linear mixed-effects model: γ_i are random-effects specific to one child and eta are fixed-effects common to all children

Bone mass density

Prior for a covariance matrix

- The random-effects covariance matrix is $\Sigma=\left(egin{array}{cc}\sigma_1^2&\sigma_{12}\\\sigma_{12}&\sigma_2^2\end{array}
 ight)$
- ullet σ_1^2 is the variance of the intercepts across children
- ullet σ_2^2 is the variance of the slopes across children
- ullet σ_{12} is the covariance between the intercepts and slopes
- Prior 1: $\sigma_1^2, \sigma_2^2 \sim G^{-1}(0.001, 0.001)$ and $\rho \sim \sigma_{12}/(\sigma_1\sigma_2) \sim U(-1, 1)$.
- Prior 2: Inverse Wishart works better in higher dimensions

Non- and Semi-parametric modeling

- Nonparametric (NP) methods attempt to analyze the data by making the fewest number of assumptions as possible
- NP methods are generally are robust and flexible, but less powerful than correctly specified parametric models
- Most frequentist NP methods completely avoid specifying a model
- For example, a rank or sign test to compare two means

Bios 682

Non- and Semi- parametric modeling

- Bayesian methods need a likelihood in order to obtain a posterior, so you cannot completely avoid specifying a model
- Bayesian NP (BNP) then attempts to specify a model that is so flexible that it almost certainly captures the true model
- One definition of the BNP model is one that has infinitely-many parameters
- In some cases, NP models are difficult conceptually and computationally, and so semi-parametric models with a large but finite number of parameters are useful approximations.

J. Kang

Parametric simple linear regression

• Consider the classical parametric model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad \epsilon_i \sim N(0, \sigma^2).$$

Assumptions:

- ϵ_i are independent
- ullet The mean of y_i is linear in x_i
- ullet The residual distribution does not depend on x_i

Alternatives:

- Parametric alternatives such as a time series model
- Let $\epsilon_i \sim F$, and place a prior on the distribution F.
- Let $E(y_i \mid x_i) = g(x_i)$ put a prior on the function g.
- Heteroskedastic regression $Var(\epsilon_i) = \exp{\{\alpha_0 + \alpha_1 x_i\}}$.

Bayesian Nonparametric regression

- The mean of y_i is $g(x_i)$, where g is a function
- Parametric models include
 - Linear: $g(x) = \beta_0 + \beta_1 x$,
 - Quadratic: $g(x) = \beta_0 + \beta_1 x + \beta_2 x^2$,
 - Logistic: $g(x) = \beta_0 + \beta_1 \frac{\beta_2 + \beta_3 x}{1 + \exp(\beta_2 + \beta_3 x)}$.
- NP regression puts a prior on the curve g(x), rather than parameters β_1,\ldots,β_p that determine the parametric model.
 - For example, Gaussian process priors:

$$g \sim \text{GP}(\mu, \kappa),$$

where $\mathrm{E}\{g(x)\} = \mu(x)$ and $\mathrm{Cov}\{g(x),g(x')\} = \kappa(x,x')$.

 Gaussian processes: a stochastic process for which any finite linear combination of samples has a joint Gaussian

$$[g(x_1),\ldots,g(x_n)] \sim N(\boldsymbol{\mu},\boldsymbol{\Sigma}),$$

where $\boldsymbol{\mu} = \{\mu(x_1), \dots, \mu(x_n)\}$ and $\boldsymbol{\Sigma} = \{\kappa(x_i, x_j)\}_{1 \leq i, j \leq n}$.

Bios 682

Bayesian Semiparametric regression

 \bullet Semiparametric regression approximates the function g using a finite basis expansion

$$g(x) = \sum_{j=1}^{J} B_j(x)\beta_j,$$

where $B_j(x)$ are known basis functions and β_j are unknown coefficients that determine the shape of g

• Example: the cubic spline basis functions are

$$B_j(x) = (x - \nu_j)_+^3,$$

where v_j are fixed knots that span the range of x.

- Many other expansions exist: wavelets; Fourier, etc
- Fact: A basis expansion of J terms can match the true curve g at any J points x_1, \ldots, x_J .
- ullet So increasing J gives an arbitrarily flexible model

J. Kang Bios 682

Model fitting

- The model is $y_i \sim N(\mathbf{B}_i^T \boldsymbol{\beta}, \sigma^2)$, where $\beta_j \sim N(0, \tau^2)$ and B_i is comprised of the known basis functions $B_j(x_i)$, where $\mathbf{B}_i = \{B_1(x_i), \dots, B_J(x_i)\}^T$.
- Therefore, the model is usual linear regression model and is straightforward to fit using MCMC.
- How to pick J?
- Can we have more basis functions than observations?
- What would you do if your prior was that g was probably quadratic, but you are not 100% sure about this. That is, your prior is that $g(x) \approx \beta_0 + \beta_1 x + \beta_2 x^2$.

Bayesian logistic regression

- Other forms of regression follow naturally from linear regression
- \bullet For example, for binary responses $y_i \in \{0,1\},$ we may use the logistic regression

$$logit{Pr(y_i = 1)} = \eta_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$$

- The logit link is the log-odd $logit\{x\} = log[x/(1-x)]$.
- \bullet Then β_j represents the increase in the log odds of an event corresponding to a one-unit increase in covariate j
- The expit transformation $\operatorname{expit}(x) = \exp(x)/\{1 + \exp(x)\}$ is the inverse of logit. and

$$\Pr(y_i = 1) = \exp it(\eta_i) \in [0, 1].$$

18 / 19

J. Kang Bios 682

Bayesian logistic regression

- ullet Bayesian logistic regression requires a prior for eta
- All of the priors we have discussed for linear regression (Zellner, BLASSO, etc) can apply for logistic regression
- Computationally the full conditional distributions are no longer conjugate and so we must use Metropolis sampling
- It is fast in JAGS.