Fig. 1A

Fig. 1B

Fis. 10

Figure 2

Normal heptane reactions starting at 900 K and B3 ber

Figure 3

Figure 4

Figure 5

V.

A STANDARD CONTRACTOR OF THE STANDARD CONTRACTOR

.;

Wave Form Diagram: Operation of Fuel Injection Nozzle

Figure 8

Figure 9

Figure 10

Simultaneously Charged Secondary Coll: f- 40 Hz A-T, B-C, C=A+charge, D-C+inj. duration

Precharged Secondary Coll: f= 40 Hz:

Stable Multiple Ultra-Short Injection (Target Technology)

Figure 13

Figure 14

Figure 15

Comparison of different SC charging second/levic or 7.3 stee, in 36 Hz, PC charging 2.0 see, form 18.8 see

Fig. 16A

Fig. 1613

Figure 18

Figure 19

	R 22	R=L/T			08.7	1,60	7, 60	00 kg	0		
	L_22	Tup 184				0	Ϋ́.	556	663		1, 1, 1, 6, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2=[12]	Te UR 22					180	. 6 . 6 . 7	348	000		
e.						2,62	<u> </u>	8			
ω22 = w2	R.L. 22 kHz										
	4*E_peak					, 259.2 (259.2)	259.2	2592	7) 12592 14118	250.2	2592
	E_hold W	I_h 12A		,	4	5.5	4.9	5.0	5.7	6.1	5.7
0.5*12*L/T	E_peak W	l_p 18A		6	6.7/	64.8	64.8	64.8	64.8	64.8	64.8
ω21	Freq R/L kHz	averaged		0	0.85	5.24	5.84	5.76	5.01	4.72	5.02
	Injector L_mean L_mean R_mean R_mean Time L/R	averaged		•	041	191	171	174	200	212	199
1	R_mean \O	max) 	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	R_mean \O	min	÷		Q	0.35	0.35	0.35	0:35	0.35	0.35
	L_mean µH	тах			67.79	76.35	68.41	69.58	79.85	84.84	79,69
,	L_mean µH	min			62.73	76.24	68.48	69.42	79.79	84.75	79.69
	Injector		Bosch	Engine	_	=	III	2	addit: V	7	IIA
	¥Ł			-		7	ო	3	4	S	9

Figure 20

Figure 21

Figure 22

No.	Parameter	Calcul formula	Dimension	Value	Control	Device/Unit	
}	Inductance	L, measured	μН	#REF!	L/R Meter IIB	Bosch injetor I	
2	Resistance	R, measured	Ω	#REF!	Mutimeter	Bosch injetor I	
3	T-Response	L/R	μs	#REF!	HP infinum scope 500 MHz, 1GSa/s	Bosch profile	
4	F-Response	R/L	kHz	#REF!	HP infinum scope 500 MHz, 1GSa/s	Bosch profile	
5	Cycle [Hz]	considered	degree	360	HP/Agilent 33120A	Injector solenoid	
	33.33		ms pts	30.0 16000	15 MHz wavegenerator	PROGRAM	
6	P Injection offset	considered	degree	157.5	HP/Agilent 33120A	Injector solenoid	
	"-X deg BTDC"	START	ms pts	13.13 7000	15 MHz wavegenerator	PROGRAM	
7	M Injection offset	considered	degree	180	HP/Agilent 33120A	Injector solenoid	
	"TDC"		ms	15.00	15 MHz wavegenerator	PROGRAM	
			pts	8000			
8	P_M interval	P_off - M_off	degree	22.5	HP/Agilent 33120A	Injector solenoid	
		X BTC	μs	1875	15 MHz wavegenerator	PROGRAM	
			pts	1000			
9	Normal injection		degree	26.4	HP/Agilent 33120A	Injector solenoid	
	"-X deg BTDC"	max 2.2 ms	μs	2200	15 MHz wavegenerator	PROGRAM	
			pts	1173			
10	P_duration=		degree	7.2	HP/Agilent 33120A	Injector solenoid	
	M_duration	considered	μs	600	15 MHz wavegenerator	PROGRAM	
	5 11 1 11	(n cc) (co)	pts	320	177/4 71 - 22122		
1)	P_M_dwell	(P_off - M_off)-P_dur	degree	15	HP/Agilent 33120A	Injector solenoid	
			μs	1275	15 MHz wavegenerator	PROGRAM	
ا ر	Total Injustice December	Daha Jaman NA a CC	pts	680	IID/A allami 22120 4	laiootoul	
12	Total Injection Duration	P_dur +dwell+M_d_off	degree	30	HP/Agilent 33120A	Injector solenoid PROGRAM	
			μs	2475	15 MHz wavegenerator	PROORAM	
			pts	1320			

Figure 24

Figure 25

Figure 26

Controllable Multiple Injection System applied to Bosch Common Rail: Solution

Measurement Setup to Verify High Pressure Multiple Injection

Figure 27

Sketch to six-shot injection cycle along arbitrary referenced camshaft phases.

Injection control test configuration used for verification of dynamic response: instantaneous flow rate upstream of injector and spray downstream of injector.

Initial available units of CRIS (grays) and algorithm for construction of ROSA multiple injection control systems.

Integrated ROSA measurement configuration to visualize diesel spray by means of high-speed digital camera and quantify injection by means of instantaneous flow rate.

Fig. 31

Arbitrary I-Function and its derivative.

Arbitrary 2 ms Bosch injection.

Visualization at 5,000 fps.

Example of spray at low camera speed.

Fig. 36

Arbitrary 6-shot injection and stroboscope (2nd channel) signals.

Pilot shot in six-shot injection: engine speed 2,400 RPM, frame duration 55.56 μs, coin size 24.76 mm.

Liquid jet length and tip velocity for six-shot injection 100 ms cycle: at engine speed of 1,200 RPM and camera speed of 18,000 fps

Cycle-to-cycle variability at resolution 24.69 μ s/frame for 6-shot injection, only 4 shots are shown: engine speed 3,600 RMP, dwell between Pre-Main and Main 1 setup to 200 μ s.

Fig.41

Waveform Electronic Setup, Engine Speed 3,600 RPM							High Speed Camera Record at Speed of 40,500 fps							
DURATION F					PHASES		DURATION			PHASES				
т т	pts	ms	deg	r	pts	ms	deg	frames	ms	deg		frame	ms	deg
period	16000	33.3	360	period	16000	33.33	360	1350	33.333	360	period	1350	33.333	360
3 Main dwell 1	288 96	0.6 0.2	6.5 2.2		8000	16.667	180.0	11 21	0.272 0.518			1969	17.210	185.9
2 Pre_M	192	0.4	4.3			16.067	173.5	8	0.198	2.1		1940		178.1
l Pilot dwell_2	192 240	0.4	4.3 5.4		5600	11.667	126.0	8 28	0.198	2.1 7.5		1762	12.099	130.7
4 Main_2	240	0.5	5.4			17.767	191.9	14	0.346	3.7		2008		196.3
5 After_M 6 Post	192 192	0.4 0.4	4.3 4.3			25.000 29.167	270.0 315. <u>0</u>	9 7	0.222 0.173				25.432 29.630	274.7 320.0
		Pilot-to	o-Pre l	—— И	1920	4.000	43.2		Pilot-to-	Pre M		170	4.198	45
		Pre_M	_		96	0.200	2.16	1	Pre_M-	_		21	0.519	6
	Main 1-to-Main 2			240		5		Main1-to-Main2		28	0.691	7		
Main2-to-AfterM				3232		73		Main2-to-AfterM 280 6.914			75			
AfterM-to-Post				1808	3.767	41	1	AfterM-to-Post 161 3.975				43		

Comparison of dynamic injection timing (on the right) vs. waveform setups of timing (on the left): [pts] - points in ARB waveform generator, [ms] absolute time, [deg] - cam phasing, [frame] number of frames, 1 frame = $24.69 \mu s$

0.500

0.000

Dwell intervals between Pre-Main and Main1 (dwell 1), Main1 and Main2 (dwell 2) and

their standard deviation in absolute time (2 top plots) and in camshaft angle (2 bottom plots).

0.100

0.200

0.300

ARB Setups (ms)

0.600

0.100

0.000

0.200

0.300 ARB Setups [ms]

Velocity profiles for fully developed laminar and turbulent pipe flows.

Sketch to high-pressure fuel flow rig and LDA flow rate measurements.

LDA MI-1 cell for injection pressures up to 140 bar

Fig. 49

LDA MI-2 cell withstanding high-pressures up to 2000 bar.

LDA flow rate and mass balance.

ROSA electronic circuit.

Simultaneous- and pre- charge; bold - injection duration (T2), thin - output from injector.

Flow rate (top row) and integrated mass (bottom row) obtained for: simultaneous charge -1^{st} column, pre-charge -2^{nd} column, tuned charge -3^{rd} column

Velocity and flow rate: injection pressures - 62 (servo-jet) and 7 bar (gasoline).

Pressure gradient and accumulated mass: p= 62 bar, f= 11 Hz, duration 15 ms.

Velocity time series with selected angular phases (top) and velocity profiles for two stages: opening (bottom left) and closing (bottom right) of injector valve.

Summary to dynamic of 6-shot injection and integrated fuel mass.

Engine Speed [rpm]

ROSA-controlled six shots injection: Main1 SOI at 180°, p= 1600 bar.

Comparison of dynamics for 2-ms reference single injection, p= 1400 bar and ROSA-controlled six shots injection, p= 1600 bar.

	shot/pass	Start End deg deg		duration ms	masses mg	% of total %	
1	deliver 1	0	125	34.72	10.74	14.8	
2	Pilot	125	133	2.22	4.18	5.8	
3	deliver 2	133	175	11.67	4.33	6.0	
4	Pre-Main	175	182	1.94	4.47	6.2	
5	Main 1	182	186	1.11	7.30	10.1	
6	Main 2	186	196	2.78	11.65	16.1	
7	deliver 3	196	269	20.28	10.62	14.7	
8	After-M	269	281	3.33	5.81	8.0	
9	deliver 4	281	315	9.44	5.02	6.9	
10	Post	315	327	3.33	4.76	6.6	
11	deliver 5	327	360	9.17	3.54	4.9	
	Total: injected deliver				72.42 38.17 34.25	100.0 52.7 47.3	

Fig.70

Integrated Masses per Active and Passive (deliver) Injection Events.