LEC013 Greedy: Scheduling, MST

min spanning tree

VG441 SS2020

Cong Shi Industrial & Operations Engineering University of Michigan

Scheduling Problem

- We are given n jobs to schedule
- For each job j = 1, ..., n, let
 - w_i be the weight (or the importance)
 - l_i be the length (or the time required)

• Define the completion time of job j $c_j = \text{sum of the lengths of jobs up to and including } l_j$

Objective: to minimize the weighted sum of completion times

$$\sum_{j=1}^{n} w_j \cdot c_j$$

Intuition

- If all jobs have the same length, we prefer larger weighted jobs to appear earlier in the order
- If all jobs have equal weights, we prefer shorter length jobs to appear earlier in the order

Quandrum (Tricky Cases)

What do we do in the cases where

$$l_i < l_j \text{ and } w_i < w_j$$

• Idea: give a priority score (prefers smaller length and larger weight at the same time)

score-diff
$$= l_j - w_j$$
 Guess #1
$$\text{score-ratio} = l_j/w_j$$
 Guess #2

Quandrum (Tricky Cases)

• Let a look at a simple example: $l_i < l_j \text{ and } w_i < w_j$

Score-diff does not work so well...

score-diff =
$$l_j - w_j$$
 2 1 WC = 2 + 21 = 23

Score-ratio seems to work

score-ratio =
$$l_j/w_j$$
 1 2 WC = $15+7=22$

Correctness Argument

- Claim: Ranking by score_ratio is correct.
- Proof (by exchange argument):

Consider some input of *n* jobs, now rename the jobs according the score_ratio, then our greedy algo picks the schedule

$$\sigma = 1, 2, 3, \dots, n \text{ with } \frac{l_1}{w_1} \le \frac{l_2}{w_2} \le \frac{l_3}{w_3} \le \dots \le \frac{l_n}{w_n}$$

Correctness Argument

• Consider any other schedule σ' , we want to show that σ is as good as σ'

Now if $\sigma' \neq \sigma$ then at some point in σ' , there exists a job i right after a job j with i < j (why?)

Correctness Argument

$$WC^{\text{after swap}} - WC^{\text{before swap}} = w_j l_i - w_i l_j \le 0$$

MST

minimal spanning tree

Given undirected connected graph, G = (V, E). There is a function $c : E \to \mathbb{R}$, showing the cost of each edge. Assume that there are m edges in G

Definition (tree): $T = (V_T, E_T)$, is an undirected graph in which any two vertices are connected by exactly one path. In other words, any acyclic connected graph is a tree.

Definition (a spanning tree): $T = (V_T, E_T)$ in graph G = (V, E) is a tree with $E_T \subseteq E$ that has all vertices covered, i.e. $V_T = V$ MST 2 a ST in which $\sum_{e \in T} (e^{-is})$ minimized

An Example of MST

Greedy Algorithm for MST (Kruskal Algo)

- 1. sort edges in non-decreasing order of cost, $c(e_1) \leq c(e_2) \leq \cdots \leq c(e_m)$
- 2. Let $T_1 = \emptyset$
- 3. For $i = 1, 2, \dots, m$, if $(T_i \cup \{e_i\})$ contains no cycle, let $T_{i+1} = T_i \cup \{e_i\}$

a simple check of whether there is a cycle in graph $T_i \cup e_i$ in step 3

O(m·(bym)

- 1. Get both ends of edge e_i , vertex a and b
- 2. Make a list L that contains all vertices connected to a in T_i
- 3. If vertex b is in L, there will be a cycle in $T_i \cup \{e_i\}$. If b is not in L, then $T_i \cup \{e_i\}$ is acyclic.

We apply quicksort to assign indices to edges in the first step. We can apply

Note that the algorithm above takes O(m) time. So the overall greedy algorithm runs in polynomial time.

Python Code

Analysis

Lemma: The algorithm gives a tree T that covers all vertices in G.

Proof: Given the graph is connected, we can prove this property by contradiction. If in the tree T generated by algorithm, not all the vertices are connected, there exist an edge $e \in E$ between two disconnected components of T (see Figure 1 a). Because T is acyclic, and two components are not connected, we can declare that $T \cup \{e\}$ is also acyclic. Then according to the algorithm, e must have been included.

Analysis

Let $i=1,2,\cdots,m,m+1$ denote the iteration in the algorithm. Let T_i denote the solution at the beginning of i^{th} iteration. **Lemma:** For each iteration i, there is a minimum spanning tree M with $T_i \subset M$

Lemma: For each iteration i, there is a minimum spanning tree M with $T_i \subset M$ Quandrum (tricky case) Suppose $T_i \subseteq M$ but $T_{i+1} = T_i \cup \{e_i\} \not\subseteq M$

 $cost(M') = cost(M \setminus \{f\} \cup \{e_i\}) = cost(M) - cost(f) + cost(e_i) \le cost(M)$

Analysis

Suppose $T_i \subseteq M$ but $T_{i+1} = T_i \cup \{e_i\} \nsubseteq M$

- $M \cup e_i$ must contain a cycle (if not, then M is disconnected.)
- There must be an edge f in this cycle that is costlier than e_i (if not, then the greedy algorithm would not pick e_i)