Exercices

Exercice 1. Montrer, sans utiliser la fonction exponentielle ni le théorème de Cauchy-Lipschitz, qu'une solution réelle définie sur \mathbf{R} et non identiquement nulle de l'équation différentielle y' = y ne s'annule jamais.

Exercice 2. On considère l'équation différentielle $x^2y' = y$ (E).

- 1. Trouver les solutions de (E) sur $]-\infty,0[$ et sur $]0,+\infty[$.
- 2. Trouver toutes les solutions de (E) sur \mathbb{R} .

Exercice 3. Chercher toutes les solutions de (x+1)y" $-y'-xy=e^{-x}$ (remarquer que $x\mapsto e^x$ est solution de l'équation homogène.

Exercice 4. Intégrer les équations différentielles suivantes :

- 1. 2x(1-x)y' + (1-2x)y = 1.
- 2. $y'' 2y' + 2y = xe^x$
- 3. y'' + y = cotgx.
- 4. $y'' y' e^{2x}y = e^{3x}$ (poser $u = e^x$).

Exercice 5. Chercher les solutions développables en série entière des équations suivantes et résoudre complètement ces équations.

- 1. $4xy'' 2y' + 9x^2y = 0$.
- 2. xy'' + 2y' xy = 0.

Exercice 6. On considère l'équation différentielle z'' + a(x)z' + b(x)z = 0 à coefficients continus sur un intervalle I.

- 1. Montrer qu'en posant z(x) = u(x)y(x) on peut se ramener à étudier une équation différentielle (E) de la forme y" + py = 0 où p est une fonction continue sur I
- 2. On suppose que p est continue sur \mathbf{R} à valeurs dans $]0,+\infty[$. Montrer que toute solution de y''+py=0 s'annule au moins une fois sur \mathbf{R} .
- 3. Soit z une solution de l'équation différentielle z'' pz = 0 non identiquement nulle. Montrer que z s'annule au plus une fois.
- 4. Soient f, g deux solutions indépendantes de (E). Si α et β (avec $\alpha < \beta$) sont deux zéros consécutifs de f (cf. exercice δ), alors il existe $\gamma \in [\alpha, \beta]$ tel que $g(\gamma) = 0$.
- 5. On suppose désormais que l'on a deux équations du second ordre

$$(E_1): y'' + p(t)y = 0$$

$$(E_2): y'' + q(t)y = 0$$

où $p \leq q$ sont deux fonctions continues sur un intervalle I. On considère f (resp. g) une solution non-identiquement nulle de (E_1) (resp. de E_2). Montrer que si α et β sont deux zéros consécutifs de f, alors il existe $\gamma \in [\alpha, \beta]$ tel que $g(\gamma) = 0$.

- 6. Comparaison à un cas classique Soit l'équation y'' + q(t)y = 0, et f une solution non-identiquement nulle de cette équation. Montrer que
 - si $q(t) \le M^2$, alors deux zéros consécutifs de f sont distants d'au moins π/M ;
 - si $q(t) \ge M^2$, alors dans tout intervalle I de longueur π/M , f admet au moins un zéro dans I.

FIGURE 1 – Ressorts couplés.

Exercice 7. Soit f une application de classe \mathscr{C}^1 sur \mathbf{R} . On suppose que $f(x) + f'(x) \to 0$ quand $x \to +\infty$. Montrer que $f(x) \to 0$ quand $x \to +\infty$.

Exercice 8. On considère le système de trois ressorts de raideur k et deux masses suivant La loi fondamentale de la mécanique montre que si y_1 et y_2 désignent les élongations des deux premiers ressorts on a

$$-my_1" - ky_1 - k(y_1 - y_2) = 0 (1)$$

$$k(y_1 - y_2) - my_2" - ky_2 = 0. (2)$$

- 1. Écrire ce système d'équations différentielle sous forme d'un sytème différentiel d'ordre 1.
- 2. Déterminer les valeurs propres de la matrice 4×4 associée dans le cas où k = 1 et m = 1.
- 3. On se donne pour condition initiale $y_1(0) = \alpha$, $y_1'(0) = 0$. $y_2(0) = 0$ et $y_2'(0) = 0$. Étudier le mouvement.
- 4. On impose maintenant un mouvement sinusoïdal à l'extrémité précédemment fixe du « premier »ressort. Étudier le mouvement.

Exercice 9. Traiter le cas où la fonction a est constante et le second membre b est de la forme $b(x) = P(x)e^{\alpha x} + Q(x)e^{\beta x}$, les fonctions P,Q étant polynomiales et α,β étant des constantes complexes distinctes (ou b est une somme de $p \ge 2$ fonctions de la forme $P(x)e^{\alpha x}$).

Exercice 10. Résoudre, dans le cas réel, l'équation différentielle y' + 2y = b, où b est la fonction définie sur \mathbf{R} par :

$$b(x) = \begin{cases} 1 - |x| & \text{si } |x| \le 1\\ 0 & \text{si } |x| > 1 \end{cases}$$

Exercice 11. On se donne deux scalaires a,b et on s'intéresse à l'équation différentielle linéaire homogène d'ordre 2 sur **R** :

$$y'' = ay' + by \tag{3}$$

Résoudre cette équation différentielle en se ramenant à une équation différentielle d'ordre 1.

Exercice 12. On se fixe un point $x_0 \in I$. Montrer, dans le cas réel, que les tangentes aux courbes intégrales de $(\ref{eq:control})$ en x_0 sont parallèles ou concourantes.

Exercice 13. [Préambule] Soient $a_1, \ldots, a_n : I \to \mathbf{R}$ des fonctions continues. Montrer que toute solution non-nulle de l'équation $y^{(n)} + a_{n-1}(t)y^{(n-1)} + \cdots + a_0(t)y = 0$ a ses zéros isolés. (Si $t_0 \in I$ et $y(t_0) = 0$, utiliser une formule de Taylor en t_0)

Exercice 14. On considère l'équation différentielle z'' + a(x)z' + b(x)z = 0 à coefficients continus sur un intervalle I.

- 1. Montrer qu'en posant z(x) = u(x)y(x) on peut se ramener à étudier une équation différentielle (E) de la forme y'' + py = 0 où p est une fonction continue sur I
- On suppose que p est continue sur R à valeurs dans]0,+∞[. Montrer que toute solution de y"+py = 0 s'annule au moins une fois sur R.
 Soit z une solution de l'équation différentielle z"-pz = 0 non identiquement nulle. Montrer que z s'annule au plus une fois.
- 3. Soient f, g deux solutions indépendantes de (E). Si α et β (avec $\alpha < \beta$) sont deux zéros consécutifs de f (cf. exercice δ), alors il existe $\gamma \in [\alpha, \beta]$ tel que $g(\gamma) = 0$.
- 4. On suppose désormais que l'on a deux équations du second ordre

$$(E_1): y'' + p(t)y = 0$$

$$(E_2): y'' + q(t)y = 0$$

où $p \leq q$ sont deux fonctions continues sur un intervalle I. On considère f (resp. g) une solution non-identiquement nulle de (E_1) (resp. de E_2). Montrer que si α et β sont deux zéros consécutifs de f, alors il existe $\gamma \in [\alpha, \beta]$ tel que $g(\gamma) = 0$.

- 5. Comparaison à un cas classique Soit l'équation y'' + q(t)y = 0, et f une solution non-identiquement nulle de cette équation. Montrer que
 - si $q(t) \le M^2$, alors deux zéros consécutifs de f sont distants d'au moins π/M ;
 - si $q(t) \ge M^2$, alors dans tout intervalle I de longueur π/M , f admet au moins un zéro dans I.

Exercice 15. Soit p une fonctions continue et intégrable sur \mathbb{R}^+ . Montrer que l'équation différentielle y'' + p(x)y = 0 admet des solutions non bornées. (Raisonner par l'absurde en utilisant le Wronskien).