Bearbeitete Aufgaben: A1, A2, A3

A1)

24/24 *33=33

	inf(M)	sup(M)	$\min(M)$	max(M)	,
a)	$\sqrt{3}$	$\sqrt{5}$	$\sqrt{3}$	existiert nicht	1
b)	$\frac{1}{4}$	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{2}{3}$	V
c)	0	$\frac{1}{2}$	existiert nicht	$\frac{1}{2}$	متصر
d)	$-\infty$	$+\infty$	exisitiert nicht	existiert nicht,	
e)	0	1	existiert nicht	1	Č
f)	$\frac{2}{3}$	$+\infty$	$\frac{2}{3}$	existiert nicht	V/
g)	1	$+\infty$	existiert nicht	existiert nicht	1

A2)

$$2n \leq m \leq 3n$$

$$\frac{3n+4m}{5n^2+10} \le \frac{3n+4\cdot(3n)}{5n^2+10} = \frac{15n}{5n^2+10} = \frac{3n}{n^2+2}$$

(ii)

$$\frac{5n-m}{2n} \le \frac{3n}{2n} = \frac{3}{2}$$

(iii)

$$\frac{n}{n+m} \leq \frac{n}{3n} = \frac{1}{3}$$

(iv)

$$\frac{n+m}{\frac{1}{2}-n} \le \frac{4n}{\frac{1}{2}-n}$$

(v)

$$\frac{5n-m+3\cdot 2^m}{3n^3-m+3} \leq \frac{5n-2n+3\cdot 2^{3n}}{3n^3-3n+3} = \frac{3\cdot (n+2^{3n})}{3\cdot (n^3-n+1)} = \frac{n+2^{3n}}{n^3-n+1}$$

(vi)

$$m + n + \sin(m) - \sin(17m^2) + 2^m + 2^{-m} \le 3n + n + 1 - (-1) + 2^{3n} + 2^{-2n}$$
$$= 4n + 2 + 2^{3n} + 2^{-2n}$$

A3)

(i)
$$a_n = \frac{2n}{n+3}$$
 (ii) $b_n = \frac{n}{4^n} = \frac{n}{2^{2^n}}$

a)

(i)

 $\frac{6}{n^2+7n+12}$ ist immer positiv für $n \in \mathbb{N}$, somit ist (a_n) monoton steigend.

(ii)

$$b_{n+1} - b_n = \frac{n+1}{4^{n+1}} - \frac{n}{4^n} = \frac{4^n \cdot (n+1) - 4^{n+1} \cdot n}{4^{n+1} \cdot 4^n} = \frac{4^n \cdot (n+1) - 4^n \cdot 4 \cdot n}{4^{n+1} \cdot 4^n} = \frac{n+1-4 \cdot n}{4^{n+1}}$$

$$\leq \frac{n+n-4n}{4^{n+1}} \leq \frac{-2n}{4^{n+1}} \leq 0 \qquad |n \in \mathbb{K}|$$

Von hier aus auch einfach:(1-

 $\frac{-2n}{4^{n+1}}$ ist immer positiv für $n \in \mathbb{N}$, somit ist (b_n) monoton fallend.

b)

- (i) (a_n) konvergiert gegen 2, da das +3 im Nenner bei großen n's kaum eine Auswirkung hat. Somit ergibt sich dann $\frac{2n}{n}=2$
- (ii) (b_n) konvergiert gegen 0, da 4^n schneller wächst als n. Somit wird der Nenner immer kleiner und damit auch der gesamte Term. Er kann jedoch nicht unter 0 fallen, da der Zähler stets positiv ist.
- c) Epsilon Kriterium der Konvergenz: $\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_o : |a_n a| \leq \epsilon$
- (i) Sei $\epsilon > 0$ beliebig vorgegeben. Setzte $n_0 := \left\lceil \frac{6}{\epsilon} \right\rceil$ Dann gilt für alle $n \geq n_o$:

$$|a_n - a| = \left| \frac{2n}{n+3} - 2 \right| = \left| \frac{2n - 2n - 6}{n+3} \right| = \left| \frac{-6}{n+3} \right| = \frac{6}{n+3} \le \frac{6}{n_0 + 3} = \frac{6}{\left\lceil \frac{6}{\epsilon} \right\rceil + 3}$$

$$\le \frac{6}{\frac{6}{\epsilon} + 3} \le \frac{6}{\frac{6}{\epsilon}} = \epsilon$$

(ii) Sei $\epsilon > 0$ beliebig vorgegeben. Setze $n_0 := \begin{cases} 1 & \text{falls } \epsilon > 0, 5 \\ \lceil -\log_2(\epsilon) \rceil & \text{falls } \epsilon \leq 0, 5 \end{cases}$ Dann gilt für alle $n \geq n_0$:

$$|b_n - b| = \left| \frac{n}{4^n} - 0 \right| = \left| \frac{n}{2^{2n}} \right| = \frac{n}{2^{2n}} \le \frac{2^n}{2^n \cdot 2^n} = \frac{1}{2^n} \le \frac{1}{2^{n_0}}$$

Falls $\epsilon > 0, 5 \ (\rightsquigarrow n_0 = 1)$:

$$\frac{1}{2^{n_0}} = \frac{1}{2^1} = \frac{1}{2} < \epsilon$$

Falls $\epsilon \leq 0, 5 \ (\rightsquigarrow n_0 = \lceil -\log_2(\epsilon) \rceil)$:

$$\frac{1}{2^{n_0}} = \frac{1}{2^{\lceil -\log_2(\epsilon) \rceil}} \le \frac{1}{2^{-\log_2(\epsilon)}} = \frac{1}{\frac{1}{\epsilon}} = \epsilon$$