第一章 集合

1.1 集合及其运算

定理 1.1.1. 设 *A*, *B*, *C* 是集合,则有

- (i) 交換律 $A \cup B = B \cup A$, $A \cap B = B \cap A$
- (ii) 结合律

$$A \cup (B \cup C) = A \cup B \cup C$$
$$A \cap (B \cap C) = A \cap B \cap C$$

(iii) 分配律

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

证明.:

- (i) 交換律 $A \cup B = \{x \in A g x \in B\} = \{x \in B g x \in A\} = B \cup A$ 同理 $A \cap B = \{x \in A \exists x \in B\} = \{x \in B \exists x \in A\} = B \cap A$
- (ii) 结合律

$$A \cup (B \cup C) = A \cup \{x \in A x \in B\}$$
$$= \{x \in A x \in B x \in C\}$$
$$= A \cup B \cup C$$
$$A \cap (B \cap C) = A \cap \{x \in A x \in B\}$$
$$= \{x \in A x \in B x \in C\}$$
$$= A \cap B \cap C$$

第一章 集合

(iii) 分配律

因为 $A \cap B \in A \cap (B \cup C)$, $A \cap C \in A \cap (B \cup C)$, 所以 $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. 另一方面, $\forall x \in A \cap (B \cup C)$, $x \in A \perp x \in B \cup C$, 所以当 $x \in B$ 时, $x \in A \cap B$, 同理 $x \notin B$ 时, $x \in A \cap C$, 所以 $\forall x \in A \cap (B \cup C)$, $x \in (A \cap B) \cup (A \cap C)$, 所以 $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. 综上 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

第二章 Lebesgue 测度

2.1 有界开集、闭集的测度及其性质

定理 2.1.1. 设 G_1, G_2 是两个有界开集,且 $G_1 \subseteq G_2$,则 $mG_1 \le mG_2$ (单调性).

定理 2.1.2. 设有界开集 G 是有限个或可列个可不相交的开集的并,即 $G = \bigcup_k G_k, G_k$ 是开集且 互不相交,则

$$mG = \sum_{k} mG_k$$
 (完全可加性)

引理 **2.1.1.** 设区间 $(a,b) = \bigcup_{k} G_k, G_k$ 为开集,则

$$b - a \le \sum_{k} mG_k$$

定理 2.1.3. 设有界开集 G 是有限个或可列个开集 G_1, G_2, \ldots , 的并,即 $G = \bigcup_k G_k$, 则

$$mG \leq \sum_{k} mG_k($$
半可加性)

引理 **2.1.2.** 设 F_1, F_2, \ldots, F_n 均为闭集, $F_k \subseteq (\alpha_k, \beta_k), k = 1, 2, \ldots, n$ 且 (α_k, β_k) 等互不相交,则

$$m(\bigcup_{k=1}^{n} F_k) = \sum_{k=1}^{n} mF_k$$

定理 2.1.4. 设 F 为闭集,G 为有界开集,且 $F \subseteq G$ 则

$$m(G - F) = mG - mF$$

推论. 设 $F_k, k = 1, 2, ..., n$ 是不相交的闭集,则

$$m(\bigcup_{k=1}^{n} F_k) = \sum_{k=1}^{n} mF_k$$

2.2 可测集及其性质

定义 2.2.1. 设 E 为有界集, E 的外测度 (定义为 m^*E) 定义为一切包含 E 的开集的测度的下确界,即

$$m^*E = \inf\{mG : G \supseteq E, G$$
为开集}

E 的内测度 (记为 mE) 定义为所有含于 E 闭集的测度的上确界,即

$$m_*E = \sup\{mF : F \subseteq E, F$$
为闭集}

- (i) $m_*E \le mE \le m^*E$,也就是说任何有界集的内测度均不超过外测度
- (ii) 当 $m^*E_2 = \inf_{G \subset E_2, G \to \mathbb{T}_{\$}} mG \ge \inf_{G \subset E_1, G \to \mathbb{T}_{\$}} mG = m^*E_1$ 即外测度具有单调性,同样内测度也具有单调性

定义 2.2.2. 设 E 为有界集,当 $m_*E = m^*E$ 时,称 E 为 Lebesgue 可测集,简称 E 为可测的,这时的 E 外测度或内测度称为 E 的测度,记为 mE, 即 $m_*E = m^*E = mE$.

定理 2.2.1. 有界集 E 为可测的充要条件是: 对任给的 $\varepsilon > 0$,存在开集 $G \subset E$,与闭集 $F \supset E$,使 $m(G - F) < \varepsilon$.

定理 2.2.2. 设基本集为 X = (a, b). 若 E 可测,则 E 关于 X 的补集 $\mathbb{C}_X E$ 也可测

定理 2.2.3. 若 E_1 , E_2 可测,则 $E_1 \cup E_2$, $E_1 \cap E_2$, $E_1 - E_2$, 均可测,又若 E_1 , E_2 不相交时,则 $m(E_1 \cup E_2) = mE_1 + mE_2$.

定理 2.2.4. 设 E_1, E_2 是两个可测集, $E_1 \subset E_2$ 则

$$mE_1 \leq mE_2$$

定理 2.2.5. (i) 设 $E = \bigcup_{k=1}^{n} E_k$, 每个 E_k 均可测,则 E 也可测,又如果 E_k 等互不相交,则有

$$mE = \sum_{k=1}^{\infty} mE_k$$
(完全可加性)

(ii) 设 $E = \bigcap_{k=1}^{n} E_k$, 每个 E_k 均可测, 则 E 也可测.

引理 **2.2.1.** 设 $E \subset (a,b)$,CE 是 E 关于 (a,b) 补集,则有

$$m_*E + m^*\mathsf{C}E = b - a$$

定理 2.2.6. 有界集 E 可测的充要条件是: 对于任意集 A,等式

$$m^*A = m^*(A \cap E) + m^*(A \cap \complement E)$$

成立.

- 定理 2.2.7. (i) 设 $\{E_k\}$ 是基本集 (a,b) 中的渐张可测集列,即 $E_1 \subset E_2 \subset \ldots$,则 $E = \bigcup_{k=1}^n E_k$ 是可测的,且 $mE = \lim_{k \to \infty} mE_k$
- (ii) 设 $\{E_k\}$ 是基本集 (a,b) 中的渐缩可测集列,即 $E_1\supset E_2\supset\dots$,则 $E=\bigcap\limits_{k=1}^n E_k$ 是可测的,且 $mE=\lim\limits_{k\to\infty} mE_k$

第三章 Lebesgue 可测函数

3.1 Lebesgue 可测函数及其基本性质

定义 3.1.1. 设 f 是定义在可测集 E 上的实函数,如果对每个实数 α , 集 $E(f > \alpha)$ 恒可测 (Lebesgue 可测),则称 f 是 E 上 (Lebesgue) 可测函数.

定义 3.1.2. 若 $\forall \alpha \in \mathbf{R}$, 集 $E(f \ge \alpha)$ 恒可测,则称 f 在 E 上可测.

定义 3.1.3. 若 $\forall \alpha \in \mathbf{R}$, 集 $E(f < \alpha)$ 恒可测,则称 f 在 E 上可测.

定义 3.1.4. 若 $\forall \alpha \in \mathbf{R}$, 集 $E(f \leq \alpha)$ 恒可测,则称 f 在 E 上可测.

定义 3.1.5. 若 $E(f = +\infty)$, $E(f = -\infty)$ 可测,且 $\forall \alpha \beta \in \mathbf{R}$, $(\alpha < \beta)$, 集 $E(\alpha < f < \beta)$ 恒可测,则称 f 在 E 上可测.

定理 3.1.1. 1

定理 3.1.2. 1

定理 3.1.3. 设 $\{f_n(x)\}$, $b \in \mathbb{N}$ 是可测 E 上定义的可测函数列,则 $\sup_n f_n(x)$ 与 $\inf_n f_n(x)$ 都是可测的.

推论 (1). 设 f(x) 是可测集 E 上的可测函数,则 $f_{+}(x)$, $f_{+}(x)$ 和 |f(x)| 均可测.

推论 (2). 设 $f_n(x)$, $n \in \mathbb{N}$ 是可测集 E 上的可测函数,则 $\overline{\lim}_n f_n(x)$ 与 $\underline{\lim}_n f_n(x)$ 均可测.

3.2 可列函数列的收敛性

定义 3.2.1. 设给定一个集列 $\{A_n\}_{n\in\mathbb{N}}$,它的上限集、下限集分别定义为

$$\underline{\lim} A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n, \quad \overline{\lim} A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$$

定理 3.2.1.