Домашняя работа по дискретной математике №5 Вариант 1

Выполнила Абдуллаева София Исходная таблица соединений R:

1

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	2	2					2	4			
e2	2	0		4		4		4	4	4	3	
e3	2		0		4		4	4		1		
e4		4		0		4	3	3				
e5			4		0		4			1	1	
e6		4		4		0			2	3	1	4
e7			4	3	4		0	1			1	1
e8	2	4	4	3			1	0	1	4	2	4
e9	4	4				2		1	0	2		3
e10		4	1		1	3		4	2	0		
e11		3			1	1	1	2			0	4
e12						4	1	4	3		4	0

Изоморфизм графов

Матрица смежности G_1 :

V/V	X 1	X2	Х3	X4	X 5	X 6	X 7	X8	X 9	X10	X11	X12	ri
X 1	0	1	1	0	0	0	0	1	1	0	0	0	4
X 2	1	0	0	1	0	1	0	1	1	1	1	0	7
Х3	1	0	0	0	1	0	1	1	0	1	0	0	5
X 4	0	1	0	0	0	1	1	1	0	0	0	0	4
X 5	0	0	1	0	0	0	1	0	0	1	1	0	4
X 6	0	1	0	1	0	0	0	0	1	1	1	1	6
X 7	0	0	1	1	1	0	0	1	0	0	1	1	6
X 8	1	1	1	1	0	0	1	0	1	1	1	1	9
X 9	1	1	0	0	0	1	0	1	0	1	0	1	6
X ₁₀	0	1	1	0	1	1	0	1	1	0	0	0	6
X11	0	1	0	0	1	1	1	1	0	0	0	1	6
X ₁₂	0	0	0	0	0	1	1	1	1	0	1	0	5

Матрица смежности G_2 :

V/V	y 1	y 2	y 3	y 4	y 5	y 6	y 7	y 8	y 9	y 10	y 11	y 12	ri
y 1	0	1	0	0	1	1	0	0	0	0	0	1	4
y 2	1	0	1	1	1	1	0	0	1	0	1	0	7
у з	0	1	0	1	0	1	1	0	0	0	0	0	4
y 4	0	1	1	0	1	0	0	1	1	0	1	0	6
y 5	1	1	0	1	0	1	0	1	0	0	1	0	6
y 6	1	1	1	0	1	0	1	1	1	0	1	1	9
y 7	0	0	1	0	0	1	0	1	1	1	0	1	6
У8	0	0	0	1	1	1	1	0	1	0	0	0	5
y 9	0	1	0	1	0	1	1	1	0	1	0	0	6
y 10	0	0	0	0	0	0	1	0	1	0	1	1	4
y ₁₁	0	1	0	1	1	1	0	0	0	1	0	1	6
y 12	1	0	0	0	0	1	1	0	0	1	1	0	5

Для графа G1 $\Sigma \rho(x)$ =68. Список $P(x) = \{4, 7, 5, 4, 4, 6, 6, 9, 6, 6, 6, 5\}$

Для графа G2 $\Sigma \rho(y)$ =68. Список $P(y) = \{4, 7, 4, 6, 6, 9, 6, 5, 6, 4, 6, 5\}$

Разобьем вершины обоих графов на классы по их степеням.

	P(x) = P(y) = 9	P(x) = P(y) = 7	P(x) = P(y) = 6	P(x) = P(y) = 5	P(x) = P(y) = 4
X	x8	x2	x6, x7, x9, x10, x11	x3, x12	x1, x4, x5
у	уб	y2	y4, y5, y7, y9, y11	y8, y12	y1, y3, y10

Из таблицы сразу можно заметить соответствие вершин графов:

X	Y
x8	у6
x2	y2

Для определения соответствия вершин с P(x)=P(y)=6 попробуем связать вершины P(x)=P(y)=4 и P(x)=P(y)=5 с неустановленными вершинами

Видно, что друг другу соответствуют вершины х1-у1, х4-у3, х5-у10 Тогда вот следующие соответствия:

X	Y
x1	y1
x4	y3
x5	y10
x2	y2
x8	у6

X8	X6	Y6	Y4
X2	X7	Y2	Y7
X1	X9	Y1	Y5
X4	X11	Y3 /	Y9
X5	— X10	Y10	Y11

Видно, что друг другу соответствуют вершины x6-y4, x7-y7, x9-y5, x11-y9, x10-y11

X	Y
x1	y1
x4	y3
x5	y10
x2	y2 y6 y4
x8	у6
х6	y4
x7	y7
x9	y5
x10	y11
x11	y9

Видно, что друг другу соответствуют вершины х12-у8, х3-у12

X	Y
x1	y1
x4	у3
x5	y10
x2	y2
x8	y2 y6
х6	y4
x7	y7
x9	у5
x10	y11
x11	у9
x12	y9 y8
х3	y12

Все вершины имеют связь. Следовательно, графы G1 и G2 изоморфны