Power

[kW]

172

140

53.9

37.9

30.8 23.6

17.6

16.5

15.9

13.3

12.3

11.5

9.21

7.91

7.41

7 01

6.88

6.32

5.82

5.60

5.39

5.29

5.06

5.04

4.88

4.76

4.19

3.93 3.77

3.51 3.39 3.19

3.10 3.02 2.87

2.80 2.73

2.67

2.64

1-5/8" CELLFLEX® Lite Low-Loss Foam-Dielectric Coaxial Cable

Product Description

CELLFLEX® Lite 1-5/8" low loss flexible cable

Application: Main feed line, Riser-rated In-Building

Attenuation

[dB/100m | [dB/100ft]

0.0480

0.0680

0.0834

0.0963

0.217

0.309

0.380

0.0146 0.0207

0.0254

0.0294

0.0662

0.0942

0.116 0.151

0.202

0.216

0.225

0.267

0.289

0.311

0.387

0.452

0.481

0.510

0.517

0.564

0.614

0.638

0.661

0.672

0.704

0.707

0.718 0.733

0.750

0.851

0.908

0.945 1.02

1.05

1.12

1.15 1.18 1.24

1.28 1.34

1.35

Features/Benefits

- · It represents a light-weight transmission line solution
 - The light weight of CELLFLEX® Lite coaxial cable results in reduced work-force and lifting gear.
- · It is easy to transport, handle and install
- CELLFLEX® Lite coaxial cables enable savings in shipping cost.
- · It exhibits a cost-efficient alternative to copper transmission line CELLFLEX® Lite coaxial cable helps to reduce CAPEX spending.
- · It offers a user-friendly compatibility with RFS's existing range of accessories CELLFLEX® Lite coaxial cable requires less inventory additions, thus reduced OPEX.
- It enables trouble-free installation and operation
- CELLFLEX® Lite coaxial cable avoids downtime and reduces OPEX.
- · The attenuation is comparable to the industry standard in traditional cable CELLFLEX® Lite coaxial cable maintains uncompromised coverage.
- · Specially developed connectors exhibit low and stable intermodulation performance CELLFLEX® Lite coaxial cable exceeds present PIM standards ensuring no dropped calls.
- · It is available with UV-resistant polyethylene or flame-retardant jackets CELLFLEX® Lite coaxial cable can be used outside and in indoor applications where restrictions apply
- · It exceeds industry standard for return loss performance

	50	0.49
	88	0.66
	100	0.70
	108	0.73
	150	0.87
	174	0.94
	200	1.02
<i>/</i> .	300	1.27
	400	1.48
	450	1.58
	500	1.67
	512	1.70
	600	1.88
	700	2.01
	750	2.09
	800	2.17
	824	2.2
	894	2.3
	900	2.32
	925	2.35
	960	2.40
	1000	2.46
	1250	2.79
	1400	2.98
	1500	3.10
	1700	3.33
	1800	3.45
	2000	3.67
	2100	3.77
	2200	3.88
	2400	4.08
	2500	4.18
	2600	4.28
	2700	4.38
	2750	4.43
	Attenuation at	
	Mean power r	ating at 4

Frequency

[MHz]

0.5 1.0

1.5

2.0

10

20

Attenuation at 20°C (68°F) cable temperature
Mean power rating at 40°C (104°F) ambient temperature

CELLFLEX® Li	te coaxial cable means zero risk in networ	k planning.	
Technical Fea	atures		
Structure			
Inner conductor:	Corrugated Copper Tube	[mm (in)]	17.6 (0.69)
Dielectric:	Foam Polyethylene	[mm (in)]	40.9 (1.61)
Outer conductor:	Corrugated Aluminium	[mm (in)]	46.5 (1.83)
Jacket:	Polyethylene, PE, Metalhydroxite Filling	[mm (in)]	50.3 (1.98)
Mechanical Prop	perties		
Weight, approximately		[kg/m (lb/ft)]	0.78 (0.52)
Minimum bending radius, single bending		[mm (in)]	200 (8)
Minimum bending radius, repeated bending		[mm (in)]	500 (20)
Bending moment		[Nm (lb-ft)]	46.0 (34.0)
Max. tensile force		[N (lb)]	1800 (405)
Recommended / maximum clamp spacing		[m (ft)]	1.2 / 1.5 (4.0 / 5.0)
Electrical Prope	rties		
Characteristic impedance		[Ω]	50 +/- 1
Relative propagation velocity		[%]	90
Capacitance		[pF/m (pF/ft)]	74.0 (22.5)
Inductance		[µH/m (µH/ft)]	0.185 (0.056)
Max. operating frequency		[GHz]	2.75
Jacket spark test RMS		[V]	10000
Peak power rating		[kW]	310
RF Peak voltage rating		[V]	5600
DC-resistance inner conductor		[Ω/km (Ω/1000ft)]	1.30 (0.396)

Recommended	Temperature R	ange
Necommenaea	remperature is	alige

Storage temperature	[°C (°F)]	-70 to +85 (-94 to +185)
Installation temperature	[°C (°F)]	-25 to +60 (-13 to +140)
Operation temperature	[°C (°F)]	-50 to +85 (-58 to +185)

Other Characteristics

DC-resistance outer conductor

Fire Performance: Flame Retardant, LS0H

VSWR Performance: Standard [dB (VSWR)] 18 (1.288:1) Other Options: Phase stabilized and phase matched cables and assemblies are available upon request.

RFS The Clear Choice ®

LCF158-50JFNL

[Ω/km (Ω/1000ft)]

0.68 (0.205)

Rev: C / 16.DEC.2010