Network and Information Security Lecture 5

B.Tech. Computer Engineering Sem. VI.

M. T. Mehta
Associate Professor
Computer Engineering Department
Faculty of Technology,
Dharmsinh Desai University, Nadiad

Examples: Modular Arithmetic

Example 1

Perform the following operations (inputs come from Z_n)

- a. Add 7 to 14 in Z_{15}
- b. Subtract 11 from 7 in Z_{13}
- c. Multiply 11 by 7 in Z_{20}

Example 2

Perform the following operations (inputs come from Z or Z_n)

- a. Add 17 to 27 in Z_{14}
- b. Subtract 43 from 12 in Z_{13}
- c. Multiply 123 by -10 in Z_{19}

Additive Inverse

- In Zn, two numbers a and b are additive inverse of each other if
- $a + b \equiv 0 \pmod{n}$
- In Zn, additive inverse of a can be calculated as b
 = n a
- Additive inverse of 4 in Z₁₀ is 6
- The sum of an integer and its additive inverse is congruent to 0 modulo n.

• Example Find all additive inverse pairs in Z_{10} .

- (0,0)
- (1,9)
- (2,8)
- (3,7)
- (4,6)
- (5,5)

Multiplicative Inverse

- In Zn, two numbers a and b are the multiplicative inverse of each other if
- $a \times b \equiv 1 \pmod{n}$
- The multiplicative inverse of 3 is 7, if the modulus is 10.
- 3 x 7 mod 10 = 1
- In modular arithmetic, an integer may or may not have a multiplicative inverse. When it does the product of the integer and its multiplicative integer is congruent to 1 modulo n.

Example

- (a) Find the multiplicative inverse of 8 in Z_{10} .
- (b) Find all multiplicative inverses in Z_{10} .
- (c) Find all multiplicative inverse pairs in Z_{11} .

(b) (1,1), (3,7), (9,9) (c) (1,1), (2,6), (3,4), (5,9), (7,8), (9,9), (10,10) • The integer a in Z_n has a multiplicative inverse if and only if gcd $(n,a) \equiv 1 \pmod{n}$

Numbers a and b are called relatively prime or co-prime if gcd(a,b)=1

We know that according to extended Euclidean algorithm,

$$a \times s + b \times t = gcd(a,b)$$

Let us put n in place of a, a in place of b

$$n \times s + a \times t = gcd(n,a)$$

```
(n x s + a x t) mod n = [gcd(n,a)] mod n
[(n x s) mod n + (a x t) mod n] mod n = [gcd(n,a)] mod n
[ 0 + (a x t) mod n] mod n = 1 mod n = 1
(axt) mod n = 1
```

The numbers a and t are multiplicative inverse of each other.

 $a^{-1} \mod n = t$, $t^{-1} \mod n = a$

If a and n are co-prime then it is possible to find a⁻¹ mod n (multiplicative inverse of a with respect to n) using extended euclidean algorithm.

Example

Find the multiplicative inverse of 11 in Z_{26} .

Find the multiplicative inverse of 23 in Z_{100} .

Find the inverse of 12 in Z_{26} .

Apply extended Euclidian algorithm

Multiplicative inverse of 23 in Z_{100}

q	r1	r2	r	t1	t2	t
4	100	23	8	0	1	-4
2	23	8	7	1	-4	19
1	8	7	1	-4	9	-13
7	7	1	0	9	-13	100
	1	0		-13		

-13 mod 100

=87

23 and 87 are multiplicative inverse.

 $(23 \times 87) \mod 100 = 2001 \mod 100 = 1$

• Find the inverse of 12 in Z_{26} .

q	r1	r2	r	t1	t2	t
2	26	12	2	0	1	-2
6	12	2	0	1	-2	13
	2	0		-2	13	

gcd (26,12) is $2 \neq 1$. Hence, multiplicative inverse of 12 in Z_{26} is not possible.