Course 5: 22.03.2021

1.7 Equivalence relations induced by a subgroup

Definition 1.7.1 Let (G, \cdot) be a group and let $H \leq G$. Define the homogeneous relations r_H and r'_H on G by

$$x r_H y \iff x^{-1} \cdot y \in H,$$

 $x r'_H y \iff y \cdot x^{-1} \in H.$

Remark 1.7.2 (1) If the group G is commutative, then $r_H = r'_H$.

(2) Since $H \leq G$, the restriction of r_H (and r'_H) to H is clearly the universal relation on H.

Theorem 1.7.3 Let (G,\cdot) be a group and let $H \leq G$.

(i) The relations r_H and r'_H previously defined are equivalence relations on G.

(ii)

$$G/r_H = \{xH \mid x \in G\},\$$

$$G/r'_H = \{Hx \mid x \in G\},\$$

where we denote $xH = \{xh \mid h \in H\}$ and $Hx = \{hx \mid h \in H\}$.

Proof. (i) We will prove that r_H is an equivalence relation on G, using several times the fact that $H \leq G$. The relation r_H is reflexive, since $\forall x \in G$, $x^{-1}x = 1 \in H$, that is, $x r_H x$.

Let $x, y, z \in G$ be such that $x r_H y$ and $y r_H z$. Then $x^{-1}y \in H$ and $y^{-1}z \in H$, so that $x^{-1}z = x^{-1}yy^{-1}z \in H$. Hence $x r_H z$ and consequently r_H is transitive.

Let $x, y \in G$ be such that $x r_H y$. Hence $x^{-1}y \in H$. Then $y^{-1}x = (x^{-1}y)^{-1} \in H$. Thus, $y r_H x$ and consequently r_H is symmetric.

(ii) Since r_H and r'_H are equivalence relations on G, we know that G/r_H and G/r'_H are partitions of G. We have $x r_H y \iff y \in xH$, so that

$$G/r_H = \{r_H < x > | x \in G\} = \{xH \mid x \in G\}.$$

Similarly for G/r'_H .

Definition 1.7.4 The relations r_H and r'_H are called the (left and right) equivalence relations induced by the subgroup H of G.

In general, the partitions G/r_H and G/r_H' do not coincide, but we have connections between them.

Definition 1.7.5 We say that two sets A and B have the same cardinal, and we denote it by |A| = |B|, if there exists a bijection between A and B.

Recall that by the cardinal of a finite set we simply understand the number of elements of that set.

Theorem 1.7.6 Let (G,\cdot) be a group and let $H \leq G$. Then:

- $(i) \ \forall x \in G, \ |xH| = |Hx| = |H|.$
- (ii) $|G/r_H| = |G/r'_H|$.

Proof. (i) Let $x \in G$ and consider $\alpha : H \to xH$ defined by $\alpha(h) = xh$, $\forall h \in H$. It is easy to see that α is a bijection. Similarly, there exists a bijection between H and Hx, and consequently between xH and Hx.

(ii) Define

$$f: G/r_H \to G/r'_H \text{ by } f(xH) = Hx^{-1}, \ \forall x \in G,$$

 $g: G/r'_H \to G/r_H \text{ by } g(Hx) = x^{-1}H, \ \forall x \in G.$

Since H is a subgroup of G, the definitions of f and g are independent of the choice of representatives, because we have:

$$xH = yH \Longrightarrow (xH)^{-1} = (yH)^{-1} \Longrightarrow H^{-1}x^{-1} = H^{-1}y^{-1} \Longrightarrow Hx^{-1} = Hy^{-1}$$
,

where we have denoted $X^{-1} = \{x^{-1} \mid x \in X\}$ for some set $X \subseteq G$.

Let us now prove that $g \circ f = 1_{G/r_H}$ and $f \circ g = 1_{G/r_H'}$. For every $x \in G$, we have

$$(g \circ f)(xH) = g(f(xH)) = g(Hx^{-1}) = (x^{-1})^{-1}H = xH,$$

$$(f \circ g)(Hx) = f(g(Hx)) = f(x^{-1}H) = H(x^{-1})^{-1} = Hx.$$

Hence f is a bijection.

Definition 1.7.7 Let (G,\cdot) be a group and let $H \leq G$. Then we denote

$$|G:H| = |G/r_H| = |G/r'_H|$$

and we call it the index of H in G.

Theorem 1.7.8 (Lagrange) Let (G,\cdot) be a finite group and let $H \leq G$. Then

$$|G| = |G:H| \cdot |H|.$$

Proof. The equivalence classes xH ($x \in G$) partition G into |G:H| parts, each of which having exactly |H| elements (see Theorem 1.7.6).

Remark 1.7.9 The Lagrange Theorem holds for infinite groups as well, but it requires cardinal numbers, that are not a subject of the present course.

Corollary 1.7.10 Let (G, \cdot) be a finite group. Then:

- (i) $\forall H \leq G$, ord $H \mid \text{ord } G$.
- (ii) $\forall x \in G$, ord x| ord G.
- (iii) $\forall x \in G, \ x^{|G|} = 1.$
- (iv) If |G| = p for some prime p, then G is cyclic and it is generated by any non-identity element.

Proof. (i) By the Lagrange Theorem.

- (ii) Let $x \in G$ and apply the Lagrange Theorem for $H = \langle x \rangle$. Then ord $x = |\langle x \rangle|$ divides ord G.
- (iii) Consider the finite subgroup < x > of G, say |< x > | = k. Then clearly $x^k = 1$. But since k divides |G|, it follows that $x^{|G|} = 1$.
- (iv) Let $x \in G$, $x \neq 1$. Then by the Lagrange Theorem, ord x|p, so that ord x = p, since $x \neq 1$. Hence $\langle x \rangle$ is a subgroup of G having p elements. Therefore, $\langle x \rangle = G$.

Example 1.7.11 Consider the permutation group

$$S_3 = \{e, \sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5\},\$$

where

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$$
$$\sigma_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \sigma_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

Let $H = \{e, \sigma_1\}$ and $N = \{e, \sigma_4, \sigma_5\}$. Then we have

$$\begin{split} S_3/r_H &= \{\sigma H \mid \sigma \in S_3\} = \{\{e,\sigma_1\}, \{\sigma_2,\sigma_5\}, \{\sigma_3,\sigma_4\}\} \,, \\ S_3/r_H' &= \{H\sigma \mid \sigma \in S_3\} = \{\{e,\sigma_1\}, \{\sigma_2,\sigma_4\}, \{\sigma_3,\sigma_5\}\} \,, \\ S_3/r_N &= \{\sigma N \mid \sigma \in S_3\} = \{\{e,\sigma_4\sigma_5\}, \{\sigma_1,\sigma_2,\sigma_3\}\} \,, \\ S_3/r_N' &= \{N\sigma \mid \sigma \in S_3\} = \{\{e,\sigma_4\sigma_5\}, \{\sigma_1,\sigma_2,\sigma_3\}\} \,. \end{split}$$

Hence $S_3/r_H \neq S_3/r_H'$ and $S_3/r_N = S_3/r_N'$. Therefore, there exist non-commutative groups such that the left and the right equivalence relations induced by a subgroup coincide. We also have $|S_3:H|=3$ and $|S_3:N|=2$.

1.8 Normal subgroup. Factor group

We have seen that the equivalence relations induced by a subgroup coincide in the case of a commutative group, but not only in that situation. This is the motivation for introducing the following definition, that considers the subgroups H of a group G such that $r_H = r'_H$.

Definition 1.8.1 Let (G, \cdot) be a group and let $N \leq G$. Then N is called a *normal subgroup* of G if $r_N = r'_N$.

We denote by $N \subseteq G$ the fact that N is a normal subgroup of G.

Theorem 1.8.2 Let (G,\cdot) be a group and let $N \leq G$. Then the following statements are equivalent:

- (i) $N \subseteq G$;
- (ii) $\forall x \in G, xN = Nx;$
- (iii) $\forall x \in G, \ \forall n \in N, \ x^{-1}nx \in N.$

Proof. (i) \iff (ii) Since r_N and r'_N are equivalence relations on G, then by Theorem 1.7.3, we have:

$$r_N = r'_N \iff r_N < x >= r'_N < x >, \forall x \in G \iff xN = Nx, \forall x \in G.$$

 $(ii) \iff (iii) \ \forall x \in G \text{ we have:}$

$$xN = Nx \iff N = x^{-1}Nx \iff x^{-1}Nx \subseteq N \iff \forall n \in N, x^{-1}nx \in N.$$

Example 1.8.3 (a) Let (G, \cdot) be a group. Then the trivial subgroups $\{1\}$ and G are clearly normal subgroups. A group that has only trivial normal subgroups is called *simple*.

- (b) Every subgroup of a commutative group is normal.
- As a consequence, the normal subgroups of $(\mathbb{Z}, +)$ are all its subgroups, namely $\{n\mathbb{Z} \mid n \in \mathbb{N}\}.$
- (c) The subgroup H in Example 1.7.11 is not normal in S_3 , whereas N in the same example is a normal subgroup of S_3 .

Corollary 1.8.4 Every subgroup of index 2 of a group is normal.

Proof. Let (G, \cdot) be a group and let $H \leq G$ be such that |G: H| = 2. Then $|G/r_H| = |G/r'_H| = |G: H| = 2$. By Theorem 1.7.3 we have $G/r_H = \{H, xH\}$ and $G/r'_H = \{H, Hx\}$ for any $x \in G \setminus H$. But G/r_H and G/r'_H are partitions of G, so that we must have $xH = G \setminus H = Hx$ for every $x \in G \setminus H$. Hence $H \leq G$ by Theorem 1.8.2.

Definition 1.8.5 Let (G,\cdot) be a group and let $N \subseteq G$. Then we denote

$$G/r_N = G/r'_N = \{xN \mid x \in G\}$$

by G/N and define on G/N an operation " \cdot " by

$$(xN) \cdot (yN) = (xy)N$$
, $\forall x, y \in G$.

Theorem 1.8.6 In the context of the previous definition, $(G/N, \cdot)$ is a group, called the quotient (factor) group of G modulo N.

Proof. Let us prove first that the definition of the operation in G/N does not depend on the choice of representatives. Indeed, if xN = x'N and yN = y'N, then xyN = xy'N = xNy' = x'Ny' = x'y'N.

The associative law in G/N follows easily by the associative law in G. The identity element in G/N is $1 \cdot N = N$ and $\forall x \in G$, we have $(xN)^{-1} = x^{-1}N$. Hence G/N is a group.

Corollary 1.8.7 Let (G,\cdot) be a group and let $N \subseteq G$. Then the natural projection $p_N : G \to G/N$, defined by $p_N(x) = xN$, $\forall x \in G$, is a surjective group homomorphism and $\operatorname{Ker} p_N = N$.

Proof. The map p_N is a group homomorphism, since $\forall x, y \in G$, we have

$$p_N(xy) = (xy)N = (xN)(yN) = p_N(x)p_N(y)$$
.

Furthermore, p_N is clearly surjective and

$$\operatorname{Ker} p_N = \{ x \in G \mid p_N(x) = N \} = \{ x \in G \mid xN = N \} = N.$$

Theorem 1.8.8 (Correspondence Theorem) Let (G, \cdot) be a group and let $N \subseteq G$. Then there is a bijective correspondence $\alpha : \{H \subseteq G \mid N \subseteq H\} \to S(G/N), \ \alpha(H) = H/N \ \text{with inverse } \beta : S(G/N) \to \{H \subseteq G \mid N \subseteq H\}, \ \beta(H') = \{x \in G \mid xN \in H'\}.$

Proof. Let us show that α is well-defined. For $H \leq G$ we prove that $H/N \leq G/N$. We have $1 \in H$, hence $N = 1 \cdot N \in G/N$. For every $xN, yN \in H/N$ we have $(xN) \cdot (yN)^{-1} = (xN) \cdot (y^{-1}N) = (xy^{-1})N \in H/N$. Let us show that β is well-defined. For $H' \leq G/N$ we prove that $N \subseteq B = \{x \in G \mid xN \in H'\} \leq G$. We have $N \subseteq B$, because $n \in N \Longrightarrow nN = N \in H' \Longrightarrow n \in B$. Also, clearly $1 \in B$. For every $x, y \in B$ we have $xN, yN \in H'$, hence $xN, (yN)^{-1} \in H'$. Then $(xy^{-1})N = (xN) \cdot (y^{-1}N) = (xN) \cdot (yN)^{-1} \in H'$, and so $xy^{-1} \in B$. Thus $B \leq G$.

For every $H \leq G$ with $N \subseteq H$ and $H' \leq G/N$ we have:

$$\beta(\alpha(H)) = \beta(H/N) = \{x \in G \mid xN \in H/N\} = H,$$

$$\alpha(\beta(H')) = \alpha(\{x \in G \mid xN \in H'\}) = \{xN \mid xN \in H'\} = H'.$$

Hence α and β are inverse to each other.

Example 1.8.9 Consider the group $(\mathbb{Z}_4, +)$. We may see $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z}$. Then the subgroups of \mathbb{Z}_4 are of the form $H/4\mathbb{Z}$ with $4\mathbb{Z} \subseteq H \leq \mathbb{Z}$. Then $4\mathbb{Z} \subseteq H = n\mathbb{Z}$, hence n|4, and so $n \in \{1, 2, 4\}$. Therefore, the subgroups of \mathbb{Z}_4 are: $1\mathbb{Z}/4\mathbb{Z} = \mathbb{Z}_4$, $2\mathbb{Z}/4\mathbb{Z} = \{2x + 4\mathbb{Z} \mid x \in \mathbb{Z}\} = \{\widehat{0}, \widehat{2}\}$ and $4\mathbb{Z}/4\mathbb{Z} = \{\widehat{0}\}$.

One may immediately draw the Hasse diagram of the subgroup lattice of $(\mathbb{Z}_4, +)$.

Consider $N = \{\widehat{0}, \widehat{2}\}$. By Lagrange's Theorem it follows that $|\mathbb{Z}_4/N| = |\mathbb{Z}_4|/|N| = 2$. We have:

$$\mathbb{Z}_4/N = \{\widehat{x} + N \mid \widehat{x} \in \mathbb{Z}_4\} = \{\widehat{0} + N, \widehat{1} + N, \widehat{2} + N, \widehat{3} + N\} = \{N, \widehat{1} + N\} = \{\{\widehat{0}, \widehat{2}\}, \{\widehat{1}, \widehat{3}\}\}.$$

Let us fill in the operation table for the factor group \mathbb{Z}_4/N :

+	$\{\widehat{0},\widehat{2}\}$	$\{\widehat{1},\widehat{3}\}$
$\{\widehat{0},\widehat{2}\}$	$\{\widehat{0},\widehat{2}\}$	$\{\widehat{1},\widehat{3}\}$
$\{\widehat{1},\widehat{3}\}$	$\{\widehat{1},\widehat{3}\}$	$\{\widehat{0},\widehat{2}\}$