Create your own neural network with Keras

CSRG Talks

Francisco Casas B. (@autopawn)

Machine Learning

The objective of **machine learning** is to create algorithms that **learn**:

"A computer program is said to learn from experience [...] if its performance at tasks in T, as measured by P, improves with experience E."

-- Tom Mitchell (1997)

T may be classification, regression, clustering, etc.

E usually comes in the form of data.

- An ANN is a collection of connected units (artificial neurons).
- Each connection transmits a signal.
- An artificial neuron receives signals and processes them to signal additional artificial neurons.

They are usually useful for multivariate problems with strong correlations between the variables and with complex distributions.

A feed forward neural network:

Typical activation for a neuron:

$$u_j = \sigma \left(\sum_i w_{ij} x_i + b_j
ight)$$

where x_i are the activations from input neurons and σ is the sigmoid activation function.

Weights w_{ij} and biases b_j are parameters to be trained.

- ullet When we train an ANN we calibrate them to approximate an ullet unknown function X o Y.
- We take the input features x_i and try to predict y_i for each sample i.
- We minimize an error function like the **mean square error**:

$$L = \sum_i (y_i - \hat{y}_i)^2$$

where \hat{y}_i is the network prediction for x_i .

Mainstream learning algorithms use the gradient of this function to adjust the w's and b's as each \hat{y}_i depends of them.

Other kinds of ANNs

- Convolutional Neural Networks (CNNs).
- Generative Adversarial Networks (GANs).
- Recurrent networks (RNN, LSTM).
- Many more.

Our example problem

We will take images from the UTKFace dataset:

Our example problem

We will use the automatically cropped face images:

Our example problem

We will try to predict the **race** of a person from:

• The **photo**, which will be rescaled to 48x48 pixels

We may then expand our model to include the following inputs:

- The age
- The gender

For this purpose we will build **CNNs**!

Inspecting the data

Inspecting the data


```
import os
import re
import numpy as np
from PIL import Image
# Get the file names:
DIR = './UTKFace'
fnames = list(os.listdir(DIR))
# Data arrays
x_img = []
x_age = []
x_gender = []
y_race = []
```

```
# Regular expression to parse the parts of the name
regex = re.compile('(\d+)_(\d+)_(\d+)_.*\.jpg')
# Process each file:
for fname in fnames:
    match = regex.match(fname)
    if match:
         age, gender, race = match.groups()
    else:
         print("Bad match: \"%s\""%fname)
         continue
    x_age.append(int(age))
    x_gender.append(int(gender))
    y_race.append(int(race))
    # Read the image and scale it
    img = Image.open(os.path.join(DIR, fname))
    img = img.convert('RGB').resize((48,48))
    x_img.append(np.array(img,dtype='float')/255.0)
    # Notice the normalization here
                                                 \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda
```

Normalizing the data is important

- The **weight initializers** (that determinate the starting point of our optimization), assume input activations around 1.
- Depending on our **activations**, it may be very necessary to avoid learning problems.

If our initial activations are too **big** we may have a **saturated gradient**.

```
np.save('x_img.npy', np.array(x_img, dtype='float'))
np.save('x_age.npy', np.array(x_age, dtype='int'))
np.save('x_gender.npy', np.array(x_gender, dtype='int'))
np.save('y_race.npy', np.array(y_race, dtype='int'))
```

Output:

```
$ python3 preproc.py
Bad match: "61_1_20170109150557335.jpg.chip.jpg"
Bad match: "61_1_20170109142408075.jpg.chip.jpg"
Bad match: "39_1_20170116174525125.jpg.chip.jpg"
```

There were bad labeled samples too!

Google Colaboratory

We will work on Google Colaboratory, it allows us to create collaborative jupyter notebooks and use remote GPUs. It also has all the python packages we need, already installed.

Google Colaboratory

We need to change the *runtime type* to one with **GPU** support

Google Colaboratory

• Link to the Colaboratory notebook

Shuffle the data

```
# Shuffle the data
indexes = np.arange(x_img.shape[0])
np.random.shuffle(indexes)
x_img = x_img[indexes]
y_race = y_race[indexes]
```

Shapes:

```
x_img.shape (23705, 48, 48, 3)
y_race.shape (23705,)
```

Separate the data

```
# Separate data for testing
N_TEST = x_img.shape[0]//4 # 25% of data for testing
x_img_test = x_img[:N_TEST]
x_img_trai = x_img[N_TEST:]
y_race_test = y_race[:N_TEST]
y_race_trai = y_race[N_TEST:]
```

Shapes:

```
x_img_trai.shape
x_img_test.shape
x_img_test.shape
y_race_trai.shape
y_race_test.shape
(17779, 48, 48, 3)
(5926, 48, 48, 3)
(17779,)
(5926,)
```

Convolutional Neural Networks

Networks that have **convolutional layers**:

- Train several filters that are multiplied over the image.
- Ideal for *images* or other data with *spacial locality* as they exploit **local connectivity**.

Convolutional Layers

- Each filter receives t^2k values (where $t\times t$ is the kernel size and k is the number of channels).
- The resulting tensor will have one channel for each filter.

Max pooling layers

- Generally used after convolutional layers.
- It reduces tensor dimensions.
- ullet For each pool of size t imes t, it only takes the maximum values.

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Keras

Keras is a **high-level** open source neural networks API in **Python**.

Keras delegates low-level operations such as tensor products and convolutions to a specialized tensor manipulation library to do so.

The available **backend engines** are:

- TensorFlow
- Theano
- CNTK

Creating a Keras Model

Keras provides two ways to create a model.

- If our model is simple, only composed of several layers in sequence, we can create an instance of **Sequential**.
- If our model is more complex, e.g. multiple inputs, we'll have to use the **functional API**.

Keras documentation

For any question that we may have, we should use the Keras documentation.

Building our model

```
# Create a sequential model:
model = keras.models.Sequential()
# 1st convolutional layer:
model.add(keras.layers.Conv2D(
    input_shape=(48,48,3), # Notice input_shape!
    filters=24,
    kernel_size=(3,3),
    activation='relu'))
# Convolutional layer:
model.add(keras.layers.Conv2D(
    filters=24,
    kernel_size=(3,3),
    activation='relu'))
# Max pooling
model.add(keras.layers.MaxPooling2D(
    pool_size=(2,2)))
```

```
# 2 more convolutional layers:
model.add(keras.layers.Conv2D(
    filters=48,
    kernel_size=(3,3),
    activation='relu'))
model.add(keras.layers.Conv2D(
    filters=48,
    kernel_size=(3,3),
    activation='relu'))
# Max pooling
model.add(keras.layers.MaxPooling2D(
    pool size=(2,2)))
# Flatten the last image
model.add(keras.layers.Flatten())
# 3 dense layers:
for i in range(3):
  model.add(keras.layers.Dense(
      units=250,
      activation='relu'))
# Last layer
model.add(keras.layers.Dense(
    units=5,
    activation='softmax'))
```

Building our model

The batch dimension

- We must fit in memory a parallel version of the model for each sample!
- As this is often not possible, we take a subset of them.
- This is known as the batch.

The size of this dimension is the **batch size**. We have to choose it.

The **batch size** affects the training!

ReLU activations

- We used ReLU activations instead of sigmoids.
- They are often better for **deep** architectures, as long as we initialize the weights right.

Final dense layer (softmax activation)

- Our model will have with 5 output neurons.
- Each neuron will represent a probability for each class.
- Probabilities must be normalized.
- As we will measure the performance of the network by its accuracy, we only care about the max.

We use **softmax** as the last activation:

$$\sigma(z)_i = rac{e^{z_i}}{\sum_j e^{z_j}}$$

We can't just set the **maximum** to 1 and the **others** to 0, as we need it to be differentiable.

Loss function

For our **Loss** function we could use:

- The mean squared error against a one-hot vector.
- The cross entropy: ideal for comparing probability distributions:

$$L = -\sum_i p(y=i)\log(\sigma(z)_i)$$

we make p(y=i)=1 for the right class and 0 for the others:

$$L = -\log(\sigma(z)_y)$$

Compiling our model

We have to choose an optimizer and our loss function:

- **SGD** or Stochastic Gradient Descent, is just to use the Gradient Descent on the batch samples at a constant rate.
- We can pass a more customized Optimizer if we want.
- We use sparse_categorical_crossentropy if our **targets** are encoded as an integer instead of an **one-hot** vectors.
- We also want to measure the accuracy.

Training our model

- The epochs are the times we will feed the whole training dataset.
- The validation data is used to measure the validation loss and accuracy.
- We also save the History object in order to plot the this measures.

Training our model

```
EPOCHS = 50
 history = model.fit(x img trai,y race trai,validation data=(x img test,y race test),
    epochs=EPOCHS, batch size=128)
••• Train on 17779 samples, validate on 5926 samples
 Epoch 1/50
 Epoch 2/50
 Epoch 3/50
 Epoch 4/50
 Epoch 5/50
 Epoch 6/50
 Epoch 7/50
 Epoch 8/50
 6528/17779 [=======>.....] - ETA: 3s - loss: 0.5890 - acc: 0.7937
```

Learning over epochs

Saving and loading our model

Overfitting

When the model **overadjust** to the samples instead of learning the real distribution.

Its like **memorizing** the training dataset.

We will test the model on 4 images outside the dataset:


```
!google-drive-ocamlfuse -cc # Clear Drive cache
faces = [
  '/gdrive/My Drive/datasets/face_scatman.png',
  '/gdrive/My Drive/datasets/face_armstrong.png',
  '/gdrive/My Drive/datasets/face_salman.png',
  '/gdrive/My Drive/datasets/face_kaku.png']
x_pred = np.zeros((len(faces), 48, 48, 3))
for i in range(len(faces)):
  fnam = faces[i]
  img = Image.open(fnam).convert('RGB').resize((48,48))
  x_pred[i] = np.array(img, dtype='float')/255.0
res = model.predict(x_pred)
```

```
for i in range(len(faces)):
    fname = faces[i]
    pred = res[i]
    print("for '%s'"%fname)
    print(" white: %.10f"%pred[0])
    print(" black: %.10f"%pred[1])
    print(" asian: %.10f"%pred[2])
    print(" indian: %.10f"%pred[3])
    print(" other: %.10f"%pred[4])
```

Output:

```
for '/gdrive/My Drive/datasets/face_scatman.png'
  white: 0.0023453396
  black: 0.1121084243
  asian: 0.0000282523
  indian: 0.7826154828
  other: 0.1029024646
```

```
for '/gdrive/My Drive/datasets/face_armstrong.png'
 white: 0.4184690714
 black: 0.5805023909
 asian: 0.0000150980
 indian: 0.0007698628
 other: 0.0002436012
for '/gdrive/My Drive/datasets/face_salman.png'
 white: 0.000000001
 black: 0.9999998808
 asian: 0.0000000000
 indian: 0.0000001533
 other: 0.0000000000
for '/gdrive/My Drive/datasets/face_kaku.png'
 white: 0.0007136273
 black: 0.3409764469
 asian: 0.5911596417
 indian: 0.0671168566
 other: 0.0000335017
```

How we may enhance our model

- Reduce overfitting using regularizers like Dropout or Batch normalization.
- Using the right **Kernel initializers**, e.g. he_uniform for relu activations.
- Test several architectures using cross validation.
- Using the Functional API to create multi-input model that also recieves the age and gender and concatenate them in the first dense layer.

A more complex model: UMONNA

A more complex model: UMONNA

Artificial Neural Networks drawbacks

- They need a lot of data.
- Acceptable training and execution times usually require GPU.
- They are **black-boxes**, getting insight of how they solve the task from inspection is hard. What are they learning?
- As they have a lot of parameters, overfitting is an issue.

Artificial Neural Networks drawbacks

A lot of ML problems can be solved using simpler strategies, e.g.:

- Decisions trees
- Less squares regression
- Principal component analysis
- *k*-nearest neighbors

Recommended references

- 3Blue1Brown Deep learning video series.
- The Deep Learning book.