实验概述

本次实验实现(或调用)以下方法,并探究不同参数对实验结果的影响。

集成学习方法: Bagging, AdaboostM1

分类法: SVM, DTree, KNN(K-NN), NB(Naive Bayes)

归一化方法: None(不使用), I1-Norm, Standardizing

迭代次数

实验结果

一、探究Ensemble对分类结果的影响:

Ensemble	Classifier	Normalize	Iteration	RMSE
Bagging	DTree	None	25	0.76445
AdaBoostM1	DTree	None	25	0.78769
Bagging	SVM	None	25	0.78492
AdaBoostM1	SVM	None	25	0.72778

由上述结果可知, AdaBoostM1对SVM的修正效果较DTree好。

二、探究Classifier对分类结果的影响:

Ensemble	Classifier	Normalize	Iteration	RMSE
None	SVM	None	0	0.80404
None	DTree	None	0	0.81896
None	KNN	None	0	0.87713
None	NB	None	0	1.08812

从上述结果可知,以上分类算法在未经集成学习的情况下的优劣程度大致为: SVM > DTree > KNN > NB

三、探究Normalize(归一化方法)对分类结果的影响:

Ensemble	Classifier	Normalize	Iteration	RMSE
Bagging	SVM	None	25	0.78492
Bagging	SVM	l1-norm	25	0.79585
Bagging	SVM	Standardizing	25	0.78419

由上述结果可知,对SVM而言,归一化方法的优劣程度大致为: Standardizing >= None > I1-norm

四、探究Iteration(迭代次数)对分类结果的影响:

Ensemble	Classifier	Normalize	Iteration	RMSE
Bagging	DTree	None	25	0.76445
Bagging	DTree	None	100	0.76130
Bagging	DTree	None	400	0.76225

由上述结果可知, 迭代次数并不是越多越好, 过多的迭代可能导致"过度学习"从而降低准确率。

五、最终结果:

以上探究中RMSE相对较小的组合有:

Ensemble	Classifier	Normalize	Iteration	RMSE
Bagging	DTree	None	100	0.76130
Bagging	KNN	None	25	0.65549
Bagging	SVM	None	25	0.78492

我决定用以下组合进行深入测试,探索最佳实验效果,结果如下:

#	Ensemble	Classifier	Normalize	Iteration	RMSE
0	Bagging	DTree	None	400	0.76225
1	Bagging	KNN	None	100	0.60519
2	Bagging	SVM	None	100	0.68449

由上述结果可知,增加迭代次数无助于DTree精度的提高,而KNN与SVM相比之下,KNN精度较高,故选取第一组作为最终的实验结果。

实验总结

本次实验的因变量是RMSE,而自变量相当多,导致在探索单一变量的影响时比较麻烦,另外程序运行也花费不少时间。下面针对不同的自变量进行分析:

- 1. 特征词提取:人工选取比较有代表性的词,可能不够全面,导致实验精度不高;
- 2. 训练集大小: 选择合适大小的训练集比较困难, 训练集过小则精度不高, 过大则增加程序运行时间;
- 3. 集成学习方法+分类法+迭代次数+归一化方法: 个人认为, 其实在本次实验中用控制变量法并不能准确说明孰优孰劣, 因为这四个变量并非独立, 但是若考虑各种组合情况工作量又过于庞大。

总之,由于没有明确的思路以及对原理理解的不到位,导致对本次实验的探究工作做得很不理想,不够深入。在今后的实验中,应该基于对原理的熟练把握之上先做好明确的规划,不能想当然地盲目进行实验!

另外,在实验中发现一个问题:本地测试的结果优于线上测试,二者基本成平方关系。猜想可能与Kaggle的RMSE计算方法有些出入。