# Artificial Intelligence Algorithms and Mathematics

**CSCN 8000** 



#### Motivation

- Vectors, Matrices, Gradients, Optimization, and Probability Distribution occurs a lot in Machine Learning.
- How and why do machine learning algorithms work?
- To build customized machine learning models.
- Debugging the machine learning algorithms.
- Understanding the maths will help you to improve the performance of the machine learning algorithms.



# Linear Algebra

- Vectors
- Matrix
  - Inverse
  - Rank
- Linear Transformation
- Eigenvalues
- Eigenvectors
- These are used in machine learning to store and compute on data.



## Motivation to Machine Learning

- Linear Algebra most useful in machine learning
- Most popular application Neural Networks image recognition – using matrix operations.



# Motivation to Machine Learning



- To perform all the vector or matrix operations to go from the image on the left to the prediction on the right, we use linear algebra.
- The pixels in the image are simply values that serve as an input where the algorithm(neural networks) performs mathematical operations to determine the output prediction.

#### Vector



- A vector is a quantity defined by a magnitude and a direction. For example, a rocket's velocity is a 3-dimensional vector: its magnitude is the rocket's speed, and its direction is (hopefully) up.
- A vector can be represented by an array of numbers called scalars.
- Each scalar corresponds to the magnitude of the vector with regard to each dimension.
- For example, say the rocket is going up at a slight angle: it has a vertical speed of 5,000 m/s, and also a slight speed towards the East at 10 m/s, and a slight speed towards the North at 50 m/s.

$$\mathsf{velocity} = \begin{pmatrix} 10 \\ 50 \\ 5000 \end{pmatrix}$$

#### Purpose



- To represent observations and predictions.
- For example, say we built a Machine Learning system to classify videos into 3 categories (good, spam, clickbait) based on what we know about them.
- For each video, we would have a vector representing what we know about it, such as:

$$\mathsf{video} = \begin{pmatrix} 10.5 \\ 5.2 \\ 3.25 \\ 7.0 \end{pmatrix}$$

This vector could represent a video that lasts 10.5 minutes, but only 5.2% viewers watch for more than a minute, it gets 3.25 views per day on average, and it was flagged 7 times as spam

#### Purpose



- Based on this vector our Machine Learning system may predict that there is an 80% probability that it is a spam video, 18% that it is clickbait, and 2% that it is a good video.
- This could be represented as the following vector:

$$\textbf{class\_probabilities} = \begin{pmatrix} 0.80 \\ 0.18 \\ 0.02 \end{pmatrix}$$

#### Vectors in python



- In python, a vector can be represented in many ways
  - import numpy as np
  - video = np.array([10.5, 5.2, 3.25, 7.0])
  - Video

Output: array([10.5, 5.2, 3.25, 7.])

# Plotting vectors



- To plot vectors, we will use matplotlib, so let's start by importing
- import matplotlib.pyplot as plt
- Let's create a couple of very simple 2D vectors to plot:
  - u = np.array([2, 5])
  - v = np.array([3, 1])

These vectors each have 2 elements, so they can easily be represented graphically on a 2D graph, for example as points:

- x\_coords, y\_coords = zip(u, v)
- plt.scatter(x\_coords, y\_coords, color=["r","b"])
- plt.axis([o, 9, o, 6])
- plt.grid()
- plt.show()



#### Arrays



- The array object in NumPy is called ndarray meaning 'ndimensional array'.
- To begin with, you will use one of the most common array types: the one-dimensional array ('1-D').
- A 1-D array represents a standard list of values entirely in one dimension.
- Remember that in NumPy, all of the elements within the array are of the same type.

#### Arrays -Examples



- Create and print a NumPy array 'a' containing the elements 1, 2, 3.
  - a = np.array([1, 2, 3])
  - print(a)

Output: [1 2 3]

- Create an array with 3 integers, starting from the default integer o.
  - b = np.arange(3)
  - print(b)

Output: [012]

- NumPy function np.linspace is a floating point (np.float64).
  - l= np.linspace(o, 100, 5)
  - print(l)

Output: [ o. 25. 5o. 75. 100.]

- Converting and displaying as int
- I\_int= np.linspace(o, 100, 5, dtype=int)
- print(l\_int)

Output: [ o 25 50 75

100]

#### Arrays



- One of the advantages of using NumPy is that you can easily create arrays with built-in functions such as:
  - np.ones() Returns a new array setting values to one.
  - np.zeros() Returns a new array setting values to zero.
  - np.empty() Returns a new uninitialized array.
  - np.random.rand() Returns a new array with values chosen at random.

#### **Vector Operations**



Vector Addition:

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$

Vector Multiplication:

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} * \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix}$$

Vector Dot Product:

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = (1 * 1) + (2 * 2) + (3 * 3) = 14$$

#### Vector Space & Span



#### Vector Space:

 In its more general form, a vector space, also known as linear space, is a collection of objects that follow the rules defined for vectors in R<sup>n</sup>.

#### Vector Span:

• Consider the vectors x and y and the scalars  $\alpha$  and  $\beta$ . If we take all possible linear combinations of  $\alpha x + \beta y$  we would obtain the **span** of such vectors.



#### Vector Subspace



#### Vector Subspace:

- A vector subspace is a vector space that lies within a larger vector space. These are also known as linear subspaces.
- Consider a subspace S. For a vector to be in the valid subspace it has to meet three conditions:
  - Contains the zero vector,  $\mathbf{0} \in S$
  - Closure under multiplication,  $\forall \alpha \in R \rightarrow \alpha \times s_i \in S$ .
  - Closure under addition,  $\forall s_i \in S \rightarrow s_1 + s_2 \in S$ .



Is the span of  $x = [1 \ 1]$  a valid subspace of  $R^2$ ?

## Basis of Vector Space



- The basis of a vector space is a set of vectors that satisfies two critical criteria:
  - Linear Independence: The vectors in the basis set are linearly independent. This means that no vector in the basis set can be written as a linear combination of the others.
  - Spanning the Space: The basis set of vectors spans the vector space. This means that any vector in the vector space can be expressed as a linear combination of the vectors in the basis set.
- The number of vectors in a basis set of a vector space is equal to the number of dimensions.
- What is the basis set of  $R^3$ ?

#### Matrices



- With matrices, we can represent sets of variables. In this sense, a matrix is simply an ordered collection of vectors.
- Matrix-Matrix Addition:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

- Matrix-Matrix Dot Product:
  - $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$

$$\bullet A.B = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} . \begin{bmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{np} \end{bmatrix} = \begin{bmatrix} c_{11} & \cdots & c_{1p} \\ \vdots & \ddots & \vdots \\ c_{m1} & \cdots & c_{mp} \end{bmatrix}$$

•  $c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj}$  where i = 1, ..., m, and, j = 1, ..., p

#### The Determinant



- The determinant is a scalar value that can be computed from the elements of a square matrix. It is denoted as det(A) or |A| for a matrix A.
- Consider Matrix:  $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
- Determinant = a.d b.c = (1 \* 4) (3 \* 2) = -2
- Applications:
  - **Geometry:** Used in transformations, rotations, and scaling of geometric figures.
  - Physics and Engineering: In solving systems of linear equations which frequently arise in physics and engineering problems.
  - Computer Graphics: In transformations and animations.
  - **Economics:** In solving linear models and systems of equations in economic analysis.

# Matrices in python



• In python, a matrix can be represented in various ways. The simplest is just a list of python lists:

- **1**0, 20, 30],
- **[**40, 50, 60]

[[10, 20, 30], [40, 50, 60]]

#### Matrices



- Use the NumPy library which provides optimized implementations of many matrix operations:
  - A = np.array([[10,20,30],[40,50,60]])

A

array([[10, 20, 30], [40, 50, 60]])

#### Size



- The size of a matrix is defined by its number of rows and number of columns.
- For example, consider a2×3 matrix: 2 rows, 3 columns. Caution: a 3×2 matrix would have 3 rows and 2 columns.
- To get a matrix's size in NumPy:
  - A.shape

(2, 3)

- Caution: the size attribute represents the number of elements in the ndarray, not the matrix's size:
- A.size

6

# Introduction to System of Linear Equation

- System 1
  - The apple is red
  - The pear is green
- System 2
  - The apple is red
  - The apple is red
- System 2
  - The apple is red
  - The apple is green



# System of Equations



 The system of equations can also be singular and nonsingular, very similar to sentences.

#### System of Linear Equations



#### Linear Equations

$$x + y = 20$$

Non Linear Equations-complicated

• 
$$X^2 + Y^2 = 20$$

#### System of Equations as Lines, planes



- Plotting the different solutions as the coordinates visually on the graph.
- Example: Consider the linear equation 3x + 4y = 10, 2x 2y = 2;
- Since the points cross at a unique solution, it is said to be nonsingular.
- If there are infinite solutions or no solutions then it is said to be singular.

# System of Linear Equations as Matrices



 Coefficients of the Linear Equations are considered elements of the matrix.

• Example: 
$$x+y=0$$
 matrix = 1 1  
 $x+2y=0$  1 2  
• Example:  $x+y=0$  matrix = 1 1  
 $2x+2y=0$  2 2

Matrices can also be Singular and Non Singular

# Singular Vs Nonsingular Matrix



 Linear dependence between rows – Second row is multiple of the first row. Here they are linearly dependent

For Example : x+y = o

2X+2Y=0

| / | , |                            |
|---|---|----------------------------|
| 1 | 1 | First Row                  |
| 2 | 2 | Second Row/multiple of the |
|   |   | first row                  |

Otherwise, they are referred to be linearly independent

For Example : x+y = o

x+2y=0

1 1 1 2

Second Row/not a multiple of the first row

First Row

# Singular vs Non-Singular Matrix



- To determine whether a system if linear equations is singular vs non-singular, one could use *The Determinant:* 
  - If the determinant of the matrix of the system is equal to zero → Singular System
  - If the determinant of the matrix of the system is not equal to zero →
     Non-Singular System

# Solving Systems of Linear Equations using Matrices



- NumPy linear algebra package provides a quick and reliable way to solve the system of linear equations using the function np.linalg.solve(A, b).
  - A is a matrix, each row of which represents one equation in the system and each column corresponds to the variable  $x_1$ ,  $x_2$
  - b is a 1-D array of the free (right side) coefficients.
- More about the Package:https://numpy.org/doc/stable/reference/generated/n umpy.linalg.solve.html

#### References



 https://learning.oreilly.com/library/view/hands-on-machinelearning/9781098125967/cho1.html#what\_is\_machine\_learning
 ng

# Thank you!

Any questions?







Thank You
Youssef Abdelkareem
yabdelkareem@conestogac.on.ca