



## SEQUENCE LISTING

<110> Seoul National University Industry Foundation  
<120> ROOT-SPECIFIC EXPASIN GENE REGULATING ROOT GROWTH AND OBSTACLE-TOUCHING STRESS RESISTANCE IN THE PLANT  
<130> 20020-02USA  
<140> US 10/660,499  
<141> 2003-09-12  
<150> KR 2003-19069  
<151> 2003-03-27  
<160> 9  
<170> KopatentIn 1.71  
<210> 1  
<211> 1089  
<212> DNA  
<213> Glycine max  
<220>  
<221> CDS  
<222> (52)..(816)  
<223> Glycine max expansin (GmEXP1)  
  
<400> 1  
gcacgagctt caaccctctca tcattaggca ttcagcaagc aagaaaaaaaa a 51  
atg ggc aaa atc atg ctt gtt ttg ggt agc ctc att gga tta tgc tgt 99  
Met Gly Lys Ile Met Leu Val Leu Gly Ser Leu Ile Gly Leu Cys Cys  
1 5 10 15  
ttc aca atc act acc tat gcc ttc tca cct tct gga tgg acc aac gcc 147  
Phe Thr Ile Thr Thr Tyr Ala Phe Ser Pro Ser Gly Trp Thr Asn Ala  
20 25 30  
cat gcc act ttt tat ggg ggt agt gat gct tca gga act atg ggg gga 195  
His Ala Thr Phe Tyr Gly Ser Asp Ala Ser Gly Thr Met Gly Gly  
35 40 45  
gct tgt ggg tat ggg aat ctg tat gca act ggg tat gga act aga act 243  
Ala Cys Gly Tyr Gly Asn Leu Tyr Ala Thr Gly Tyr Gly Thr Arg Thr  
50 55 60  
gca gct tta agc act gcc tta ttt aat gat gga gct tcc tgt ggt cag 291  
Ala Ala Leu Ser Thr Ala Leu Phe Asn Asp Gly Ala Ser Cys Gly Gln  
65 70 75 80  
tgc tac aaa att ata tgt gat tac aaa tca gac tct aga tgg tgc atc 339  
Cys Tyr Lys Ile Ile Cys Asp Tyr Lys Ser Asp Ser Arg Trp Cys Ile

|                                                                    | 85  | 90 | 95  |      |
|--------------------------------------------------------------------|-----|----|-----|------|
| aaa gga aga tct gta acc gta act gcc aca aac ttt tgc cct ccc aat    | 387 |    |     |      |
| Lys Gly Arg Ser Val Thr Val Thr Ala Thr Asn Phe Cys Pro Pro Asn    |     |    |     |      |
| 100                                                                | 105 |    | 110 |      |
| ttc gcc ctt cct aac aac aat gga ggc tgg tgc aac cca cca ctc aag    | 435 |    |     |      |
| Phe Ala Leu Pro Asn Asn Gly Gly Trp Cys Asn Pro Pro Leu Lys        |     |    |     |      |
| 115                                                                | 120 |    | 125 |      |
| cat ttt gat atg gcc caa ccc gct tgg gaa aag att ggt att tac aga    |     |    |     | 483  |
| His Phe Asp Met Ala Gln Pro Ala Trp Glu Lys Ile Gly Ile Tyr Arg    |     |    |     |      |
| 130                                                                | 135 |    | 140 |      |
| gga ggg atc gtc ccc gtg cta ttt caa agg gtt cca tgc aaa aag cat    |     |    |     | 531  |
| Gly Gly Ile Val Pro Val Leu Phe Gln Arg Val Pro Cys Lys Lys His    |     |    |     |      |
| 145                                                                | 150 |    | 155 | 160  |
| gga ggg gtt agg ttc agt gtg aat ggg agg gac tac ttt gag cta gta    |     |    |     | 579  |
| Gly Gly Val Arg Phe Ser Val Asn Gly Arg Asp Tyr Phe Glu Leu Val    |     |    |     |      |
| 165                                                                | 170 |    | 175 |      |
| ttg atc agc aat gtg ggg ggt gct gga tcc atc caa tca gtg ttc att    |     |    |     | 627  |
| Leu Ile Ser Asn Val Gly Gly Ser Ile Gln Ser Val Phe Ile            |     |    |     |      |
| 180                                                                | 185 |    | 190 |      |
| aaa ggc tca aaa act gga tgg atg gca atg tca aga aat tgg ggt tct    |     |    |     | 675  |
| Lys Gly Ser Lys Thr Gly Trp Met Ala Met Ser Arg Asn Trp Gly Ser    |     |    |     |      |
| 195                                                                | 200 |    | 205 |      |
| aat tgg caa tcc aat gcg tat ttg aat ggt caa tct ttg tcc ttc agg    |     |    |     | 723  |
| Asn Trp Gln Ser Asn Ala Tyr Leu Asn Gly Gln Ser Leu Ser Phe Arg    |     |    |     |      |
| 210                                                                | 215 |    | 220 |      |
| gtc acc acc act gat gga gag acc aga gtt ttc caa gat att gtt cca    |     |    |     | 771  |
| Val Thr Thr Asp Gly Glu Thr Arg Val Phe Gln Asp Ile Val Pro        |     |    |     |      |
| 225                                                                | 230 |    | 235 | 240  |
| gta agt tgg aca ttc ggc caa act ttc tct agc cca gtt cag ttc taag   |     |    |     | 820  |
| Val Ser Trp Thr Phe Gly Gln Thr Phe Ser Ser Pro Val Gln Phe        |     |    |     |      |
| 245                                                                | 250 |    | 255 |      |
| ctgattacag ataaaccaac caacggctga ggcgtgcttt ttattttat tactggagct   |     |    |     | 880  |
| gccccccacc ctcttctgg ttgttattat tcccatcaac tccaaggccc ctatcaaggc   |     |    |     | 940  |
| ataaaattctt atcaataata caatcaatca ccatcatatc atcataagct tgtatataaa |     |    |     | 1000 |
| ataaaacatct ttcaagtta aattaattta tactataat tggtgtataa tcattatagt   |     |    |     | 1060 |
| tgaagttcaa aaaaaaaaaaaaaaaa                                        |     |    |     | 1089 |

<210> 2  
 <211> 255  
 <212> PRT  
 <213> Glycine max

<400> 2  
 Met Gly Lys Ile Met Leu Val Leu Gly Ser Leu Ile Gly Leu Cys Cys  
 1 5 10 15  
 Phe Thr Ile Thr Thr Tyr Ala Phe Ser Pro Ser Gly Trp Thr Asn Ala  
 20 25 30  
 His Ala Thr Phe Tyr Gly Gly Ser Asp Ala Ser Gly Thr Met Gly Gly  
 35 40 45

Ala Cys Gly Tyr Gly Asn Leu Tyr Ala Thr Gly Tyr Gly Thr Arg Thr  
       50                 55                 60  
 Ala Ala Leu Ser Thr Ala Leu Phe Asn Asp Gly Ala Ser Cys Gly Gln  
       65                 70                 75                 80  
 Cys Tyr Lys Ile Ile Cys Asp Tyr Lys Ser Asp Ser Arg Trp Cys Ile  
       85                 90                 95  
 Lys Gly Arg Ser Val Thr Val Thr Ala Thr Asn Phe Cys Pro Pro Asn  
       100                105                110  
 Phe Ala Leu Pro Asn Asn Asn Gly Gly Trp Cys Asn Pro Pro Leu Lys  
       115                120                125  
 His Phe Asp Met Ala Gln Pro Ala Trp Glu Lys Ile Gly Ile Tyr Arg  
       130                135                140  
 Gly Gly Ile Val Pro Val Leu Phe Gln Arg Val Pro Cys Lys Lys His  
       145                150                155                160  
 Gly Gly Val Arg Phe Ser Val Asn Gly Arg Asp Tyr Phe Glu Leu Val  
       165                170                175  
 Leu Ile Ser Asn Val Gly Gly Ala Gly Ser Ile Gln Ser Val Phe Ile  
       180                185                190  
 Lys Gly Ser Lys Thr Gly Trp Met Ala Met Ser Arg Asn Trp Gly Ser  
       195                200                205  
 Asn Trp Gln Ser Asn Ala Tyr Leu Asn Gly Gln Ser Leu Ser Phe Arg  
       210                215                220  
 Val Thr Thr Thr Asp Gly Glu Thr Arg Val Phe Gln Asp Ile Val Pro  
       225                230                235                240  
 Val Ser Trp Thr Phe Gly Gln Thr Phe Ser Ser Pro Val Gln Phe  
       245                250                255

<210> 3  
 <211> 44  
 <212> DNA  
 <213> Artificial Sequence

<220>  
 <223> Primer

<400> 3  
 nnggatccga ygcntcnggn acnatgggyg gygctgygyt angg                   44

<210> 4  
 <211> 37  
 <212> DNA  
 <213> Artificial Sequence

<220>  
 <223> Primer

<400> 4  
nnggatcctt kswytgccar ttnnsncccc arttnck

37

<210> 5  
<211> 519  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Probe

<400> 5  
gaygcnwsgn gnacnatggg nggngcntgy ggntayggna ayytntaygc nacnggntay 60  
ggnacnmgna cngcngcnyt nwsnacngcn ytnttyaayg ayggngcnws ntgyggncar 120  
tgytayaara thathtgyga ytayaarwsn gaywsnmgt ggtgyathaa rggnmgnwsn 180  
gtnacngtna cngcnaacnaa yttytgyccn ccnaayttyg cnytncnaa yaayaayggn 240  
ggntggtgya ayccnccnyt naarcaytty gayatggcnc arccngcntg ggaraarath 300  
ggnathtaym gnggnggnat hgtncngtn ytnttycarm gngtncntg yaaraarcay 360  
gngngngtnm gnttysnsgt naayggnmgn gaytayttyg arytngtnyt nathwsnaay 420  
gtnggnggng cnggnwsnat hcarwsngtn ttyathaarg gnwsnaarac nggntggatg 480  
gcnatgwsnm gnaaytggg nwsnaaytgg carwsnaay 519

<210> 6  
<211> 269  
<212> RNA  
<213> Artificial Sequence  
  
<220>  
<223> RNA probe (antisense)

<400> 6  
aauaaaaauaa aaaagcacgc cucagccuu gguugguuua ucuguaauca gcuuagaacu 60  
gaacuggggcu agagaaaaguu uggccgaaug uccaacuuac uggaacaauua ucuuggaaaa 120  
cucugggucuc uccaucagug guggugaccc ugaaggacaa agauugacca uucaaauacg 180  
cauuggauug ccaaauuagaa ccccaauuuuc uugacauugc cauccaucca guuuuugagc 240  
cuuuauaugaa cacugauugg auggaucca 269

<210> 7  
<211> 389  
<212> RNA  
<213> Artificial Sequence  
  
<220>  
<223> RNA probe (sense)

<400> 7  
uggauccauc caaucagugu ucauuuaagg cuaaaaacu ggauggaugg caaugucaag 60  
aaauuggggu ucuaauuggc aauccaaugc guauuugaau ggucaaucuu uguccuucag 120  
ggucaccacc acugauggag agaccagagu uuuccaagau auuguuccag uaaguuggac 180  
auucggccaa acuuuucucua gcccaguua guucuaagcu gauuacagau aaaccaacca 240  
acggcugagg cgugcuuuuu uauuuuaaua cuggaggcugc cggccacccu ucuucugguu300  
uugauuuauuc ccaucaacuc caagcccucu aucaaggcau aaauucuuau caauaaauaca 360  
aucaaucacc aucauaucau cauaagcuu 389

<210> 8  
<211> 28  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 8  
accaagcttc aacctctcat cattagc 28

<210> 9  
<211> 29  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Primer

<400> 9  
accaagcttg gagttgatgg gaataatca 29