MIPS Reference Data

1

CORE INSTRUCTI	ON SE	ΞT		OPCODE		
MANG AREMO	ATIC	FOR-	OPERATION ('. W. 'I.)		/ FUNCT	
NAME, MNEMO Add	add	MAT R	OPERATION (in Verilog) R[rd] = R[rs] + R[rt]	(1)	(Hex) 0 / 20 _{hex}	
Add Immediate	addi		R[rt] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm	(1,2)		
Add Imm. Unsigned			R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm	(2)	8 _{hex}	
Add Unsigned	addu		R[rd] = R[rs] + SignExtimin $R[rd] = R[rs] + R[rt]$	(2)	9 _{hex} 0 / 21 _{hex}	
And Onsigned	and				0 / 24 _{hex}	
And Immediate	andi		R[rd] = R[rs] & R[rt] R[rt] = R[rs] & ZeroExtImm	(2)		
And immediate	andi	-	if(R[rs]==R[rt])	(3)	c _{hex}	
Branch On Equal	beq	1	PC=PC+4+BranchAddr	(4)	4 _{hex}	
Branch On Not Equa	lbne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}	
Jump	j	J	PC=JumpAddr	(5)	2_{hex}	
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}	
Jump Register	jr	R	PC=R[rs]		$0 / 08_{hex}$	
Load Byte Unsigned	lbu	I	$R[rt]=\{24\text{'b0,M}[R[rs] + \text{SignExtImm}](7:0)\}$	(2)	24 _{hex}	
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}	
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	$30_{ m hex}$	
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}	
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	$23_{ m hex}$	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}	
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}	
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}	
Set Less Than Imm.	slti	I	$R[rt] = (R[rs] \le SignExtImm)? 1$:	0(2)	a _{hex}	
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1: 0	(2,6)	b_{hex}	
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0/2b_{hex}$	
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}	
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}	
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}	
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}	
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}	
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}	
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}	
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}	

(1) May cause overflow exception

- (2) SignExtImm = { 16{immediate[15]}, immediate }
- (3) ZeroExtImm = { 16{1b'0}, immediate }
- (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 }
- (6) Operands considered unsigned numbers (vs. 2's comp.)
- (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 0
I	opcode	rs	rt		immediate	e
	31 26	25 21	20 16	15		0
J	opcode			address		
	31 26	25				0

Branch On FP False bc1f

ARITHMETIC CORE INSTRUCTION SET (2) OPCODE / FMT /FT FOR-/ FUNCT NAME, MNEMONIC MAT OPERATION (Hex) Branch On FP True bclt FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/--

FI if(!FPcond)PC=PC+4+BranchAddr(4)

11/8/0/--

11/11/--/2

11/10/--/1

11/11/--/1

0/--/-1a Divide div R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt](6) 0/--/--/1b Divide Unsigned $\label{eq:loss_relation} \texttt{divu} \quad R \quad Lo=R[rs]/R[rt]; \\ Hi=R[rs]\%R[rt]$ FP Add Single add.s FR F[fd] = F[fs] + F[ft]11/10/--/0 FP Add ${F[fd],F[fd+1]} = {F[fs],F[fs+1]}$ add.d FR 11/11/--/0 Double {F[ft],F[ft+1]} FP Compare Single c.x.s* FR FPcond = (F[fs] op F[ft]) ? 1:0 11/10/--/y FPcond = $(\{F[fs],F[fs+1]\} op \{F[ft],F[ft+1]\}) ? 1 : 0$ FP Compare c.x.d* FR 11/11/--/y Double

* (x is eq, lt, or le) (op is ==, <, or <=) (y is 32, 3c, or 3e)

FP Divide Single div.s FR F[fd] = F[fs] / F[ft] 11/10/--/3 FP Divide ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$ $\operatorname{div.d}\ FR$ 11/11/--/3 Double $\{F[ft],F[ft+1]\}$ FP Multiply Single mul.s FR F[fd] = F[fs] * F[ft] 11/10/--/2

FP Multiply ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$ mul.d FR {F[ft],F[ft+1]} FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft] ${F[fd],F[fd+1]} = {F[fs],F[fs+1]}$ FP Subtract $\verb"sub.d" FR"$

Double ${F[ft],F[ft+1]}$ Load FP Single lwc1 I F[rt]=M[R[rs]+SignExtImm] (2) 31/--/--Load FP F[rt]=M[R[rs]+SignExtImm]; 35/--/--1dc1 F[rt+1]=M[R[rs]+SignExtImm+4] Double 0 /--/-10 Move From Hi mfhi R[rd] = Hi

Move From Lo R 0 /--/-12 mflo R[rd] = LoMove From Control mfc0 R R[rd] = CR[rs]10 /0/--/0 Multiply ${Hi,Lo} = R[rs] * R[rt]$ 0/--/--/18 (6) 0/--/--/19 Multiply Unsigned multu R ${Hi,Lo} = R[rs] * R[rt]$ R[rd] = R[rt] >>> shamt0/--/--/3 Shift Right Arith. R sra M[R[rs]+SignExtImm] = F[rt]Store FP Single (2) 39/--/--Store FP M[R[rs]+SignExtImm] = F[rt];(2) 3d/--/--/-

FLOATING-POINT INSTRUCTION FORMATS opcode fd funct immediate fmt ft opcode

21 20

M[R[rs]+SignExtImm+4] = F[rt+1]

16 15

PSEUDOINSTRUCTION SET

Double

sdc1

26 25

,			
	NAME	MNEMONIC	OPERATION
	Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
	Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
	Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
	Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
	Load Immediate	li	R[rd] = immediate
	Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

	·,	,,			
NAME	NUMBER	USE	PRESERVEDACROSS		
INAME	NUMBER	USE	A CALL?		
\$zero	0	The Constant Value 0	N.A.		
\$at	1	Assembler Temporary	No		
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No		
\$a0-\$a3	4-7	Arguments	No		
\$t0-\$t7	8-15	Temporaries	No		
\$s0-\$s7	16-23	Saved Temporaries	Yes		
\$t8-\$t9	24-25	Temporaries	No		
\$k0-\$k1	26-27	Reserved for OS Kernel	No		
\$gp	28	Global Pointer	Yes		
\$sp	29	Stack Pointer	Yes		
\$fp	30	Frame Pointer	Yes		
\$ra	31	Return Address	No		

MIPS

т

OPCOD	ES, BASI	CONVER	SION,	ASCII	SYME	OLS		3	
MIPS	(1) MIPS	(2) MIPS		Deci-	Hexa-	ASCII	Deci-	Hexa-	ASCII
opcode	funct	funct	Binary	mal	deci-	Char-	mal	deci-	Char-
(31:26)	(5:0)	(5:0)	-	mai	mal	acter	IIIai	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
		$\mathrm{sub}.f$	00 0001	. 1	1	SOH	65	41	Ā
j	srl	$\mathtt{mul}.f$	00 0010	2	2	STX	66	42	В
jal	sra	${ t div.} f$	00 0011	. 3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 0100		4	EOT	68	44	D
bne		abs. f	00 0101	. 5	5	ENQ	69	45	E
blez	srlv	${\tt mov}.f$	00 0110		6	ACK	70	46	F
bgtz	srav	neg. f	00 0111		7	BEL	71	47	G
addi	jr		00 1000		8	BS	72	48	Н
addiu	jalr		00 1001		9	HT	73	49	I
slti	movz		00 1010	10	a	LF	74	4a	J
sltiu	movn		00 1011	. 11	b	VT	75	4b	K
andi	syscall	round.w.f	00 1100	12	С	FF	76	4c	L
ori	break	trunc.w.f	00 1101		d	CR	77	4d	M
xori		ceil.w f	00 1110	14	e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	. 15	f	SI	79	4f	O
	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001		11	DC1	81	51	Q
	mflo	${\tt movz}.\!f$	01 0010		12	DC2	82	52	R
	mtlo	movn. f	01 0011		13	DC3	83	53	S
			01 0100		14	DC4	84	54	T
			01 0101	. 21	15	NAK	85	55	U
			01 0110	22	16	SYN	86	56	V
			01 0111		17	ETB	87	57	W
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	. 25	19	EM	89	59	Y
	div		01 1010		1a	SUB	90	5a	Z
	divu		01 1011	. 27	1b	ESC	91	5b	[
			01 1100	28	1c	FS	92	5c	/
			01 1101	. 29	1d	GS	93	5d]
			01 1110	30	1e	RS	94	5e	Ā
			01 1111		1f	US	95	5f	_
lb	add	cvt.s.f	10 0000	32	20	Space	96	60	-
lh	addu	$\mathtt{cvt.d}.f$	10 0001		21	!	97	61	a
lwl	sub		10 0010	34	22	"	98	62	b
lw	subu		10 0011	. 35	23	#	99	63	c
lbu	and	cvt.w.f	10 0100	36	24	\$	100	64	d
lhu	or		10 0101	. 37	25	%	101	65	e
lwr	xor		10 0110	38	26	&	102	66	f
	nor		10 0111	. 39	27	,	103	67	g
sb			10 1000		28	(104	68	h
sh			10 1001		29)	105	69	i
swl	slt		10 1010		2a	*	106	6a	j
SW	sltu		10 1011		2b	+	107	6b	k
			10 1100		2c	,	108	6c	1
			10 1101	45	2d	-	109	6d	m
swr			10 1110		2e		110	6e	n
cache			10 1111		2f	/	111	6f	o
11	tge	c.f.f	11 0000		30	0	112	70	р
lwc1	tgeu	c.un.f	11 0001		31	1	113	71	q
lwc2	tlt	c.eq f	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq f	11 0011	51	33	3	115	73	S
	teq	c.olt.f	11 0100	52	34	4	116	74	t
ldc1		c.ult f	11 0101	53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0110	54	36	6	118	76	v
			11 0111	55	27	7	110	77	

swc1

swc2

11 0111

11 1000

11 1001

11 1010

11 1011

11 1100

c.ule. c.sf.

c.ngle.j

c.seq.f

c.ngl.j

56 38

57 39 9

58 3a

59

60

119

120

121

122

123

124

37

3h

3c

77 w

78 Х

79

7a

7h

у

4 **IEEE 754 FLOATING-POINT STANDARD** IEEE 754 Symbols Exponent Fraction Object $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ 0 ± 0 0 **≠**0 ± Denorm where Single Precision Bias = 127, 1 to MAX - 1 anything ± Fl. Pt. Num Double Precision Bias = 1023. MAX 0 ±∞ **IEEE Single Precision and** MAX **≠**0 NaN S.P. MAX = 255, D.P. MAX = 2047 **Double Precision Formats:** S Exponent Fraction 31 30 23 22 S Fraction Exponent

DATA ALIGNMENT

Double Word											
	Wo	rd		Word							
Halfw	vord	Half	word	Hal	fword	Halfword					
Byte	Byte	Byte Byte		Byte Byte		Byte	Byte				
0	1	2	3	4	5	6	7				

Value of three least significant bits of byte address (Big Endian)

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

Name	Cause of Exception	Number	Name	Cause of Exception
Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
Adei	Address Error Exception	10	DI	Reserved Instruction
Auel	(load or instruction fetch)	10	KI	Exception
Adec	Address Error Exception	11	CnII	Coprocessor
AuLS	(store)	11	СрО	Unimplemented
IDE	Bus Error on	12	Ov	Arithmetic Overflow
IBE	Instruction Fetch	12	Ov	Exception
DDE	Bus Error on	12	T.	Trap
DBE	Load or Store	13	11	пар
Sys	Syscall Exception	15	FPE	Floating Point Exception
	Int AdEL AdES IBE DBE		Int	Int Interrupt (hardware) 9 Bp AdEL Address Error Exception (load or instruction fetch) 10 RI AdES Address Error Exception (store) 11 CpU IBE Bus Error on Instruction Fetch 12 Ov DBE Bus Error on Load or Store 13 Tr

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

	c.lt.f	11 1100	60	3c	<	124	7.c		012		O (10 101 DI	ok, commun	ication, 2 ic	n wichiory)	
sdc1	c.nge.f	11 1101		3d	=	125	7d	}		SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol
sdc2	c.le.f	11 1110		3e	>	126	7e	~		10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki
(1) oncode(31	c.ngt.f	11 1111	63	3f	?	127	7f I	DEL		10 ⁶	Mega-	M	2 ²⁰	Mebi-	Mi
	(1) opcode(31:26) == 0 (2) opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}})$ $f = s$ (single);									10 ⁹	Giga-	G	2 ³⁰	Gibi-	Gi
	$(21) = 17_{\text{ten}} (11_{\text{he}})$	11070		′ '	cii (IICX) J	` ` `	**		10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti
									ı	10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi
Comunicate 200	Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, <i>Comp</i>									10^{18}	Exa-	Е	2^{60}	Exbi-	Ei
Copyright 200	by Elsevier, in	c., All figi	us resei	rved. F	rom P	auerson	and Her	messy, Con	ри	10 ²¹	Zetta-	Z	2 ⁷⁰	Zebi-	Zi
									ı	10 ²⁴	Yotta-	Y	2 ⁸⁰	Yobi-	Yi

⁽²⁾ opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f = s$ (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$