1	Complete	00100	20	cimbologies	convenientes	(d		1	١.
Ι.	Complete	com a	as	simbologias	convenientes	$(\subset,$	$\not\succeq$,	\subset	\checkmark) :

(a)
$$e \ \underline{\epsilon} \ \{a, e, i, o, u\};$$

(b)
$$\{e, i\}$$
 ____ $\{a, e, i, o, u\}; \checkmark$

(c)
$$\{u,z\}$$
 $\not\subseteq$ $\{a,e,i,o,u\}$; Como $\not\in$ $\{a,e,i,o,u\}$

(d)
$$w = \{a, e, i, o, u\};$$

(e)
$$\{c,d\}$$
 $\not\subset$ $\{z\};$ Como $C \not\in \{z\}$

(f)
$$\{4,8\}$$
 C $\{2,4,6,8\}$; pois $4,9 \in \{2,4,6,8\}$
(g) \emptyset _C $\{\alpha,\beta,\gamma,\delta\}$; $\emptyset \in \{0,0\}$ $\emptyset \in \{0,0\}$

(g)
$$\emptyset$$
 $\underline{\hspace{1cm}} \{\alpha, \beta, \gamma, \delta\};$

2. Escreva
$$V$$
 quando a sentença for verdadeira e F quando for falsa.

(a)
$$(\sqrt{})$$
 $o \in \{a, e, i, o, u\};$

(b)
$$\{i\} \in \{a, e, i, o, u\}; \quad \{a, e, 1i\}, e, u\}$$

(a) (V)
$$o \in \{a, e, i, o, u\}$$
;
(b) (F) $\{i\} \in \{a, e, i, o, u\}$; $\{a, e, i, o, u\}$; $\{a,$

(a) (b)
$$\{1\} \supset \{\underline{a}, e, i, o, u\};$$
 as compared to $\{a, e, i, o, u\};$

(e)
$$(\checkmark)$$
 $\{1,3\} \supset \{1\}; \implies \{3\} \subset \{3,3\}$

(f) (
$$\checkmark$$
) $\emptyset \subset \emptyset$; \Longrightarrow $\emptyset \supset \emptyset$

3. Send
$$(A) = \{(1), (1, 2)\}$$
 quais são as afirmações verdadeiras e as falsas.

(a)
$$\{1\} \notin A$$
. $\rightarrow F$ poin $\{1\} \in A$

(b)
$$\{1\} \cap \{2\} \not\subset A$$
. $\Rightarrow E_{\text{vis}} \{1\} \cap \{2\} \not\subset A$

(c)
$$\{1\} \cup \{2\} \in A.V$$

(e)
$$2 \in A$$
. $2 \notin A$. $2 \notin A$. $2 \notin A$. $2 \notin A$

Se
$$(x'+y')^{-1}=2$$
, deserva y em relação à x .

De lu ção:

$$(x^{3}+y^{-3})^{-3}=2$$

$$(x^{3}+y^{-3})^{-3}=2$$

$$\frac{1}{x^{2}+y^{3}}=2$$

$$\frac{1}{x^{2}+x^{2}}=2$$

$$\frac{xy}{y+x}=2$$

$$xy=2(y+x)$$

$$xy=2y+2x$$

$$xy-2y=2x$$

$$y(x-2)=2x$$

$$(x \neq 2)$$

$$y=\frac{2x}{x^{2}-2}$$

Da bem do que -1 i rolecção de equoção $(4-h)\cdot \pi + 3\cdot (5-2h) + 6\cdot h = 0$ o volor de h. determine

$$\frac{39 \ln \text{Coio}:}{(4-h)(-1) + 3.(5-2h) + 6h = 0}$$

$$-4 + h + 15 - 6h + 6h = 0$$

$$h + 11 = 0$$

$$h = -11$$

Determine o conjunto solucció da inequação |2x -4| 22.

$$|a| = \frac{1}{2} a \times a = 0$$

1a 1 4 b 4 a 2 b

Do lu Cao:

$$1 \leq x \leq 3 = \begin{bmatrix} 1,3 \end{bmatrix}$$
$$= \begin{bmatrix} 1,3 \end{bmatrix}$$