1장. 파이썬 설치 & 변수 & 연산자

프로그래밍이란?

- 프로그래밍(Programming)이란?
 - 컴퓨터 프로그램을 만드는 일
 - 컴퓨터에게 원하는 작업을 수행하도록 명령을 내리는 과정
- 프로그램(Program)
 - 컴퓨터에게 일을 시키는 명령의 집합 또는 프로그래밍한 작업의 결과.
- 프로그래밍 언어의 종류
 - C언어, C++언어, Java, Python, JavaScript, C#
- 인터프리터, 컴파일러
 - 프로그램 언어를 컴퓨터가 알 수 있는 언어(기계어)로 바꿔 주는 프로그램
 - 인터프리터(코드를 한 줄씩 변환하여 실행) 파이썬, 자바스크립트
 - 컴파일러(전체 코드를 한 번에 변환후 실행) C, C++, Java

인터프리터와 컴파일러

➤ 인터프리터(Interpreter)

➤ 컴파일러(Compiler)

Python 언어

◆ 파이썬(Python) 창시

- 창시자 : 1990년 네델란드 암스테르담의 **귀도 반 로섬** (이름의 유래 – 좋아하는 코미디 프로그램)
- 플랫폼에 독립적이고, 인터프리터 언어이며 객체지향 언어이다.

◆ 파이썬의 특징

- ✓ 사람이 사고하는 체계와 비슷하다.
- ✓ 문법이 간결하고 읽기 쉽다.
- ✓ 오픈 소스로 무료 누구나 자유롭게 사용하고 확장 가능
- ✓ 개발 속도가 빠르다.
- ✓ 다양하고 많은 라이브러리를 사용할 수 있다.

Python 언어

◆ 파이썬으로 할 수 있는 일

- 시스템 유틸리티 제작 윈도우 등에서 사용자에 유용한 도구 (압축, 이미지뷰어 등)
- 웹 프로그래밍 웹 사이트 제작 등 웹 개발 (장고[Django] & 플라스크)
- 데이터 분석 데이터 수집, 분석 및 시각화(Pandas 모듈, matplotlib)
- 머신러닝(딥러닝) 인공지능 구현(텐서플로우, 케라스)
- 사물 인터넷 IOT 구현(라즈베리파이[Raspberry Pi])

◆ 파이썬으로 할 수 없는 일

- 시스템 프로그래밍 운영체제 관련 제작(주로 C언어로 개발함)
- 모바일 프로그래밍 안드로이드, 아이폰 앱 등

파이썬 설치하기

● 파이썬 - <u>www.python.org</u>

파이썬 설치하기

- 파이썬 설치 버전 확인 및 파이썬 실행하기
 - 명령 프롬프트(cmd)

```
C:\Users\kiyon>python --version
Python 3.10.4

C:\Users\kiyon>python
Python 3.10.4 (tags/v3.10.4:9d38120, Mar 23 2022, 23:13:41)
Type "help", "copyright", "credits" or "license" for more in
>>> 10 + 20
30
>>> "안녕하세요"
'안녕하세요'
>>> a = 10
>>> b = 20
>>> a + b
30
```

파이썬 추천 에디터(Editor)

비주얼 스튜디오 코드(VS code)

주피터노트북(Jupyter Notebook)

파이썬 IDLE

■ 파이썬의 IDLE 실행

■ 파이썬의 쉘

>>>기호는 파이썬이 사용자가 입력하기를 기다리고 있다는 뜻이다. 사용자가 입력을 하면 바로 결과를 보여 주는데 이것을 대화형 쉘(shell) 이라고 함

파이썬 IDLE

■ 파이썬의 쉘

```
P IDLE Shell 3.13.3
File Edit Shell Debug Options Window Help
    Python 3.13.3 (tags/v3.13.3:6280bb5, Apr 8 2025
    AMD64)] on win32
    Enter "help" below or click "Help" above for mo
>>> "hello"
    'hello'
>>> "안녕~"
    '안녕~'
>>> 12
>>> 2.54
    2.54
>>> 10 + 20
    30
>>> 10 - 20
    -10
>>> '010-1234-5678'
    '010-1234-5678'
```

기초 문법 - 오류

■ 구문 오류 및 변수 사용 오류

```
>>> 10 + 20
    30
>>> 10 - 20
    -10
>>> '010-1234-5678'
    <u> '010-1234-5678'</u>
>>> 10 + 20 =
                                                            에러 : 구문 오류
    SyntaxError: cannot assign to expression .
>>> he l lo
    Traceback (most recent call last):
                                                           변수와 문자 구분
      File "<pyshell#8>", line 1, in <module>
        hello
    NameError: name 'hello' is not defined. Did you mean: 'help'?
>>>
```

파이썬 IDLE - Editor

■ IDLE 에디터(Editor)

에디터는 프로그램을 작성하여 파일 형태로 저장하는 편집기이다.

- 1. File > New File (새 파일)
- 2. 코드 작성
- 3. print.py로 저장 (pyworks 폴더 > basic 폴더 아래)
- 4. Run -> Run Module(F5): 실행

파이썬 IDLE - Editor

■ 실습 예제

```
주석(comment) - 코드 내용을 설명하기 위한 메모
- 한 줄 주석 : '#' 기호
- 여러 줄 주석 : 쌍따옴표 3번, 홑따옴표 3번 사용 가능
# 출력 - print() 함수 사용
# 문자 출력 - '홑따옴표', '쌍따옴표' 모두 사용 가능
print('K')
print('hello')
print("아이스 아메리카노")
print('010-1234-5678')
# 숫자 출력 - 정수, 실수
print(12)
print(2.54)
print(0.756)
print("======")
# 산술 계산
print(10 + 20)
print(50 - (5 * 6)) #20
print((50 - (5 * 6)) / 4) #5.0
```

파이썬 IDLE - Editor

■ IDLE 에디터(Editor) 환경 설정

Options > Configure IDLE > Settings

- 글꼴 변경 : (Fonts) consolas, size 17
- 화면 색상 변경 : (Highlights) IDLE Dark

```
# 출력 - print() 함수 사용
# 문자 출력 - '흩따옴표',
print('K')
print('hello')
print("아이스 아메리카노")
print('010-1234-5678')
```


기초 문법

• 기본 문법

- 자료형을 사용하지 않는다. (n = 10, msg='hello')
- 주석(comment) 코드 내용을 설명하기 위한 메모

```
한 줄 주석 : '#' 기호
```

여러 줄 주석 : """~"", (쌍따옴표 3번, 홑따옴표 3번 사용함)

• 들여쓰기(indent)

4칸 들여쓰기

```
# 들여쓰기(indent)

n = 10
if n % 2 == 0:
    print("짝수")
else:
    print("홀수")
```

```
print('A')
print('B')
print('C')
```

1칸 들여쓰기로 에러

파이썬 파일 IDLE로 실행

- ◆ .py 파일 실행하기
 - 1. 파일 > 단축 메뉴> Edit with IDLE > Edit with IDLE 3.13

2. IDLE 실행후 > 파일 > 열기(crtl + O)

파이썬 Docs

- ◆ 파이션 Docs python.org ^i이트
 - Documents > Python Docs > Turorial(*\textsq^1)

Python 3.9.5 documentation

Welcome! This is the documentation for Python 3.9.5.

Parts of the documentation:

What's new in Python 3.9?

or all "What's new" documents since 2.0

Tutorial

start here

Library Reference

keep this under your pillow

Language Reference

describes syntax and language elements

Python Setup and Usage

how to use Python on different platforms

Python HOWTOs

in-depth documents on specific topics

Installing Python Modules

installing from the Python Package Index & other sources

Distributing Python Modules

publishing modules for installation by others

Extending and Embedding

tutorial for C/C++ programmers

Python/C API

reference for C/C++ programmers

FAQs

frequently asked questions (with answers!)

파이썬 Docs

◆ 파이썬 Docs

Turorial([™]† ([™]) Numbers

3.1.1. Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. syntax is straightforward: the operators +, -, * and / work just like in most other languages (for exam or C); parentheses (()) can be used for grouping. For example:

```
>>> 2 + 2
4
>>> 50 - 5*6
20
>>> (50 - 5*6) / 4
5.0
>>> 8 / 5 # division always returns a floating point number
1.6
```

변수(variable)

■ 변수란?

- 프로그램에서 사용되는 자료를 저장하기 위한 메모리 공간(영역)
- 프로그램 실행 중에 값 변경 가능, variable 이라 함

■ 변수의 선언 및 초기화

• 변수 선언은 어떤 타입의 데이터를 저장할 것인지 그리고 변수이름은 무엇인지를 결정한다. (자료형)은 생략함.

(자료형) 변수이름 = 초기값;

예) number = 10, season = "여름"

변수(variable)

● 변수 사용 예제

```
# 상수 - 변하지 않는 수
print(4 + 5)
print(4 * 5)
# 변수 선언과 초기화
n1 = 4 #정수형 변수 n1에 4를 저장(기억)
n2 = 5
n1 = 10 #값을 변경(수정)
print("n1 + n2 = ", n1 + n2)
print("n1 - n2 =", n1 - n2)
print("n1 * n2 =", n1 * n2)
print("n1 / n2 =", n1 / n2) #나누기는 소수로 출력됨
season = "여름" #문자형 변수 season에 "여름" 저장
print("계절 :", season)
```

변수(variable)

● 변수명(이름) 작성시 주의

- 변수 이름은 영문, 한글, 특수문자, 숫자의 결합으로 만든다.
- 변수 이름은 숫자로 시작할 수 없고, 공백이 있으면 안됨.
- 변수 이름은 대, 소문자를 구분함
- 예약어는 사용할 수 없음.(if, for, while 등)

```
# 변수이름 - 스네이크 표기법
name_of_fruit = "사과"
rate_of_birth = 0.75

print(name_of_fruit)
print(rate_of_birth)

# 변수 이름 작명시 오류
"""

3n = 100 #숫자로 시작 불가
sea son = "봄" #공백(문자)을 넣을 수 없다.
class = 3 #예약어(이미 지정된 명령어)는 사용 불가
"""
```

자료형(Type)

■ 자료형이란?

- 사용할 데이터의 종류에 따라 메모리 공간을 적절하게 설정해 주는 것
- 파이썬에서는 표기하지 않음 (예, num=10, name="홍길동", pi=3.14)

분류	자료형	설명	예
정수	int	소수점이 없는 수	-2, -1, 0, 1, 2
실수	float	소수점(.)이 있는 수, 부동소수 점수라고도 불린다.	-3.5, 0.0, 1.25
문자열	str	알파벳과 다른 문자로 이루어 진 문장	"a", 'hello', "비"
논리형	bool	참과 거짓을 표현	True, False(2가지 값만 있음)

type() 함수

■ 자료형을 반환해주는 type() 함수

```
# 자료형 확인 - type()
# 숫자형
print(type(n1)) #int
print(type(1.609)) #float
# 문자형
print(type('B')) #str
print(type(season)) #str
# 논리형 자료형 - 결과값이 True / False임
print(4 > 5) # False
print(4 < 5) # True</pre>
print(type(4 > 5)) # bool
```

컴퓨터에서 데이터 표현하기

■ 비트(binary digit)

bit(비트) : 컴퓨터가 표현하는 데이터의 최소 단위로 2진수 하나의 값을 저장할 수 있는 메모리의 크기

컴퓨터는 0과 1로만 데이터를 저장함(0-> 신호꺼짐, 1-> 신호켜짐)

■ 비트로 표현할 수 있는 수의 범위

비트수	표현할 수 있는 범위(십진수)	
1bit	0, 1(0~1)	2 ¹
2bit	00, 01, 10, 11(0~3)	2 ²
3bit	000, 001, 010, 011, 100, 101, 110, 111(0~7)	23

10진수를 2진수로 바꾸기

■ 진수 표현

10진수	2진수	16진수	10진수	2진수	16진수
1	0001	1	9	1001	9
2	0010	2	10	1010	А
3	0011	3	11	1011	В
4	0100	4	12	1100	С
5	0101	5	13	1101	D
6	0110	6	14	1110	Е
7	0111	7	15	1111	F
8	1000	8	16	10000	10

자리 올림 발생

아스키 코드와 유니코드

■ 숫자, 문자 표현 – 컴퓨터 내부에서는 숫자뿐만 아니라 문자도 2진수로 표현

아스키 코드(ASCII)

- 숫자, 영문 알파벳 등 128개의 문자를 표기하도록 정한 코드값
- 1963년 미국 ANSI에서 표준화한 정보 교환용 7비트 부호 체계

■ 유니코드(Unicode)

- 전 세계 문자를 컴퓨터에서 일관되게 처리하기 위한 국제 표준. 각 문자
 에 고유한 숫자값이 할당되어 있음.
- 한글, 중국어 등 아스키 코드로 표현할 수 없는 문자 표기 가능예) 한글은 약 11,000자
 - 총 65536개의 문자 표현 가능

아스키 코드와 유니코드

■ 유니 코드 & 아스키 코드

문자	코드값	문자	코드값
	32	Α	65
!	33	В	66
"	34	С	67
•••	•••	•••	•••
0	48	а	97
1	49	b	98
2	50	С	99

```
# ord(문자) - 문자를 유니코드(아스키) 값으로 변환
# chr(코드값) - 유니코드 값을 문자로 변환
print(ord('0')) #48
print(ord('A')) #65
print(ord('a')) #97
print(chr(48)) #'0'
print(chr(65)) #'A'
print(chr(97)) #'a'
```

진수 표현

■ 10진수, 2진수, 16진수

```
※ 10진수를 2진수로 바꾸기
10 = 1010(2)
8 4 2 1
1 0 1 0(1x2<sup>3</sup>+ 1x 2<sup>1</sup> → 8 + 2)
```

```
# 진수 표현하기
num = 10
b_num = 0b1010
h_num = 0xA

print(num)
print(b_num)
print(h_num)

#진수 표현 함수
print(bin(10))
print(bin(65))
print(hex(10))
print(hex(65))
```

10 10 10 0b1010 0b1000001 0xa 0x41

자료형 변환(Type Conversion)

■ 형 변환

- 자료형은 각각 사용하는 메모리 크기와 방식이 다름
- int(문자) : 숫자로 변환함, str(숫자) : 문자로 변환함

```
# int(문자) - 문자를 정수로 변환
val 1 = "123"
val 1 = int(val 1)
print(val 1 + 10)
# 실수를 정수로 변환
val 2 = 3.1
val_2 = int(val_2)
print(val 2)
# str(숫자) - 숫자를 문자로 변환
val 3 = 123
\#val 3 = str(val 3)
print(str(val 3))
# 정수를 실수로 변환
val 4 = 21
val_4 = float(val_4)
print(val_4)
```

문자열 다루기

- Text 문자 쓰기
 - 문자열 안에 따옴표 사용하기 서로 중복이 되지 않게 함
 - 여러 줄로 출력하기 쌍따옴표 또는 홑따옴표 3개 사용("""~~""")
 - 이스케이프 문자 사용하기

코드	내 용	
\n	줄바꿈	
\t	탭 – 문자열 간격	
\' 어포스트로피(')		

문자열 다루기

■ 문자열 예제

```
# 문자열 다루기
say1 = "'힘내세요!' \n라고 말했다."
print(say1)
say2 = "No, it doesn't"
print(say2)
say3 = 'No, it doesn\'t'
print(say3)
say4 = "문자 \"12\"를 숫자 12로 변환하세요"
print(say4)
# 문자열을 여러줄에 입력
table = """
상품명\t가격\t수량
키보드\t20000\t100
마우스\t25000\t100
모니터\t80000\t50
print(table)
```

```
'힘내세요!'
라고 말했다.
No, it doesn't
No, it doesn't
문자 "12"를 숫자 12로 변환하세요
상품명 가격 수량
키보드 20000 100
마우스 25000 100
모니터 80000 50
```

항과 연산자

■ 항(operand)

• 연산에 사용되는 값

■ 연산자(operator)

• 연산에 사용되는 기호 예) 3 + 7 (3과 7은 항, '+'는 연산자)

■ 연산자의 종류

구분	연산자	연산 예
대입연산자	′=′	num = 10
산술연산자	+, -, *, /, //, %	3 + 7
비교연산자	>, >=, <, <=, ==, !=	7 == 3
논리연산자	and, or, not	7 >=3 and 3 !=3
복합대입연산자	+=, -=, *=, /=	n += 1

대입 연산자

■ 대입 연산자

- 오른쪽의 값을 왼쪽의 변수에 대입
- '=' 연산자를 사용.

• 연산의 순서 오른쪽 > 왼쪽

산술 연산 > 대입 연산

```
# '=' 은 대입 연산자
user_id = "smile"
password = "k1234"

print("user_id =", user_id)
print("password =", password)

print("user_id = " + user_id)
print("password = " + password)
```

대입 연산자 연습문제

■ 변수 값 교환하기

```
# 변수값 교환
x = 1
v = 2
print("==== 교환전 =====")
print("x =", x, ", y =", y)
# 교화
.....
temp = x
x = y
y = temp
.....
# 직접 교환
x, y = y, x
print("==== 교환후 =====")
print("x =", x, ", y =", y)
```

```
===== 교환전 =====
x = 1 , y = 2
===== 교환후 =====
x = 2 , y = 1
```

산술 연산자

■ 산술 연산자

연산자	연산 작업	설명
+	n1 + n2	더하기
-	n1 - n2	빼기
*	n1 * n2	곱하기
/	n1 / n2	나누기
//	n1 // n2	몫
%	n1 % n2	나머지
**	n1 ** n2	거듭제곱

산술 연산자

■ 산술 연산자

```
n1 = 10
n2 = 4

print("n1 + n2 =", n1 + n2)
print("n1 - n2 =", n1 - n2)
print("n1 * n2 =", n1 * n2)
print("n1 / n2 =", n1 / n2) # 나누기
print("n1 // n2 =", n1 // n2) # 몫
print("n1 % n2 =", n1 % n2) # 나머지
print("n1 ** n2 =", n1 ** n2) # 거듭제곱
```

```
n1 + n2 = 14

n1 - n2 = 6

n1 * n2 = 40

n1 / n2 = 2.5

n1 // n2 = 2

n1 % n2 = 2

n1 ** n2 = 10000
```

복합 대입 연산자

■ 복합 대입 연산자

연산자	연산 작업
+=	val += 10
-=	val -= 10
*=	val *= 10
/=	val /= 10
%=	val %= 10

```
val = 20
val += 10 # val = val + 10
print(val)
val -= 10 # val = val - 10
print(val)
val *= 10 # val = val * 10
print(val)
val /= 10 # val = val / 10
print(val)
val %= 10  # val = val % 10
print(val)
```

비교 연산

■ 비교 연산자

연산자	의미	예	결과
<	보다 작다	9 < 10	True
>	보다 크다	9 > 10	False
<=	작거나 같다	9<=10	True
>=	크거나 같다	9>=10	False
==	같다	9==10	False
!=	같지 않다	9!=10	True
is	같다(객체)	a is b	False
is not	같지 않다(객체)	a is not b	True

비교 연산

■ 비교 연산자

```
x = 10
y = -10
print(x > 0)
print(y > 0)
print()
print(x > y)
print(x < y)
print()
print(x == 10)
print(x == y)
print(x != y)
print(x is y)
print(x is not y)
print()
```

```
True
False
True
False
True
False
True
False
True
False
True
```

논리 연산

■ 논리 연산자

연산자	규칙
x and y	x, y 가 모두 참이면 참, 나머지는 거짓
x or y	x, y 중 둘 중 하나가 참이면 참
not x	x가 참이면 거짓, 거짓이면 참

Python Docs > Library Reference > Built-in Types

Operation	Meaning
<	strictly less than
<=	less than or equal
>	strictly greater than
>=	greater than or equal
==	equal
[=	not equal
is	object identity
is not	negated object identity

Boolean Operations — and, or, not ¶

These are the Boolean operations, ordered by ascending priority:

Operation	Result	Notes
x or y	if x is false, then y, else x	(1)
x and y	if x is false, then x, else y	(2)
not x	if x is false, then True, else False	(3)

논리 연산

■ 논리 연산자

```
# and - 2개의 조건이 모두 참일때 참이다.
# or - 2개의 조건중 1개만 참이어도 참이다.
print(x > 0 and y > 0) #False
print(x > 0 or y > 0) #True
print(not (y > 0)) #True
```

비트 연산

■ 비트 이동 연산자

연산자	규칙
a << 2	a를 왼쪽으로 2비트 이동
b >> 3	b를 오른쪽으로 3비트 이동

```
원본데이터 옮길비트의수

num = 5 #00000101

val_1 = (num) << 2) #00010100

print(val_1)

val_2 = (num >> 1) #00000010

print(val_2)
```

비트 연산

■ 비트 논리 연산자

연산자	규칙
10 & 13	10과 13의 비트 논리곱을 수행 (1010 & 1101)
10 13	10과 13의 비트 논리합을 수행 (1010 1101)
~10	1은 0으로 0은 1로 반전

num1 = 10 # 00001010
num2 = 13 # 00001101

val_3 = num1 & num2 # 00001000
print(val_3)

val_4 = num1 | num2 # 00001111
print(val_4)

10:00001010 & 13:0001101 00001000

10:00001010 | <u>13:00001101</u> 00001111

문지열 연산

■ 문자열 더해서 연결하기(Concatenation)

+ : 연결 연산자

■ 문자열 곱하기

*: 곱하기 연산자

```
head = "Good"
tail = " Job!"
print(head + tail)
print(head * 3)

print('=' * 10)
print(head + tail)
print('=' * 10)
```

Good Job!
GoodGoodGood
======
Good Job!
======

파이썬의 입력 처리

➤ input() – 입력 함수

```
"""

print("문자 입력: ")

ch = input()

print(ch)

"""

ch = input("문자 입력: ")

print(ch)
```

```
문자 입력:
happy
happy
```

```
문자 입력: apple apple
```

파이썬의 입력 처리

➤ input() – 입력 함수

```
# 정수에 1 더하기
num = input("정수 입력: ")
num = int(num) #문자를 정수로 변환
print(type(num))

print(num + 1)

# 몸무게의 2배 계산
weight = input("몸무게 입력: ")
weight = float(weight) #문자를 실수로 변환
print(type(weight))
```

파이썬의 입력 처리

➤ input() – 입력 함수

```
print("이름을 입력해 주세요:")
name = input()
print(name + '님 반갑습니다.')

age = input('나이를 입력해 주세요: ')
age = int(age)
print("당신의 나이는 " + str(age) + "세 이군요!")
```

나이 계산 프로그램

나이 계산 프로그램

나이를 입력 받아 아래의 결과처럼 계산하는 프로그램을 작성하세요.

실습 문제 1 – 산술 연산

몫과 나머지 계산하기

30개의 빵을 4명이 나눠 가질때 몫과 나머지를 구하세요.

☞ 실행 결과

빵의 개수 : 7 남은 빵의 개수 : 2

실습 문제 2 - 입력

사각형의 넓이 계산하는 프로그램

가로와 세로의 길이를 입력 받아 넓이를 계산하는 프로그램을 작성하세요.

☞ 실행 결과

가로의 길이 : 4 세로의 길이 : 5 가로 길이 : 4cm 세로 길이 : 5cm 면적 : 20cm