





# <u>Undergraduate Group</u> Mid-term report – Transformer on sEMG

**Presenter: Howard** 

Advisor: Prof. An-Yeu (Andy) Wu

Date: 2023/11/10



#### **Outline**

- Basic Transformer Procedure(ViT)
- Improved transformer
  - CViT
  - **\*** LST-EMG NET
- Future Work





## **Hand Gesture Recogntion**

**Feature-based**: Pre-processing + feature extractor + classifier







# TEMG: Basic Transformer Concept

- $\star x^{cls}$  a trainable token
- ❖ Position embedding → encode the order of the input sequence
- Transformer encoder





#### **Result of Basic Transformer**

- ❖ Performance improve while the computing complexity reduce 7 times<sub>[2]</sub>
- ❖ more electrodes (channel) → better performance [3]

|               | _                                      | 300ms    |              |
|---------------|----------------------------------------|----------|--------------|
|               |                                        | Params   | Accuracy (%) |
| Reference [8] | 4-layer 3rd Order Dilation             | 466, 944 | 82.4         |
|               | 4-layer 3rd Order Dilation (pure LSTM) | _        | 79.7         |
|               | SVM                                    | _        | 30.7         |
| Our Method    | Model 1                                | 20,593   | 80.88        |
|               | Model 4                                | 65,713   | 82.93        |

| Reference         | Window size (ms) | # Channels | Accuracy (%)  | Train/Test Split        |
|-------------------|------------------|------------|---------------|-------------------------|
| Ref <sup>43</sup> | 200              | 128        | 84.6 (NA)     | 5-fold Cross Validation |
| CT-HGR-V1         | 250              | 128        | 91.98 (±2.22) | 5-fold Cross Validation |
| CT-HGR-V2         | 250              | 128        | 92.88 (±2.10) | 5-fold Cross Validation |





## Ensemble Learning - CViT[1]2022

- Time domain + frequency domain -> better performance
- ❖ FFT transforms time domain → frequency domain
- Convolution > improve capability of generalization



Stacking Strategies

LSTM-CNN [10]

CviT

NinaPro DB5-A/B

NinaPro DB5-A/B



Accuracy

### Performance Between Stacking Strategies [1]2022

- Class token of time and frequency concatenation
- Dropout : prevents units from over-fitting too much



Secondary classifier

| Stacki                            | ing Strategies  | Accuracy            |                  |                 |
|-----------------------------------|-----------------|---------------------|------------------|-----------------|
| Time                              |                 |                     | 79.58%           |                 |
| F                                 | requency        | 78.65%              |                  |                 |
| Time + Time Frequency + Frequency |                 |                     | 81.06%<br>79.27% |                 |
|                                   |                 |                     |                  |                 |
| Method                            | Database        | Number of movements | Window length    | Accuracy        |
| andom Forest [22]                 | NinaPro DB2     | 49                  | 200ms            | 75.27%          |
| CNN [4]                           | NinaPro DB2     | 49                  | 200ms            | 78.71%          |
| CviT                              | NinaPro DB2     | 49                  | 200ms            | 80.02%          |
| LSTM [8]                          | NinaPro DB2-E1  | 17                  | 300ms            | 79.19%          |
| ViT [13]                          | NinaPro DB2-E1  | 17                  | 200ms / 300ms    | 82.05% / 82.93% |
| CviT                              | NinaPro DB2-E1  | 17                  | 200ms / 300ms    | 83.47% / 84.09% |
| LDA [2]                           | NinaPro DB5-A/B | 12 / 17             | 200ms            | 69.49% / 61.75% |
| SVM [2]                           | NinaPro DB5-A/B | 12 / 17             | 200ms            | 67.9% / 58.27%  |
|                                   |                 |                     |                  |                 |

Best Performance → Time + Frequency

12 / 17

12 / 17

200ms

200ms

71.66% / 61.4%

76.83% / 73.23%



#### LST-EMG NET [5]2023

LST(long short term)

- Split raw segment into different length patches
- ❖ Feature Cross-Attention → long-term cls token + short-term patch







### LST-EMG Result [5]2023

❖ Performance : LSTEMG > TEMG

Inference time : LSTEMG > TEMG

| Dataset        | Model name       | Accuracy | Inference<br>time |
|----------------|------------------|----------|-------------------|
| DB2 exercise B | MSCNN            | 71.89%   | 5.60 ms           |
|                | BiTCN            | 65.79%   | 5.75 ms           |
|                | TEMG             | 78.77%   | 1.09 ms           |
|                | LSTEMGNet [ours] | 81.47%   | 6.47 ms           |
| DB5 exercise C | MSCNN            | 79.14%   | 7.27 ms           |
|                | BiTCN            | 83.75%   | 7.29 ms           |
|                | TEMG             | 68.18%   | 1.18 ms           |
|                | LSTEMGNet [ours] | 88.24%   | 6.36 ms           |

NinaPro DB2 DB5 - A public available multimodal database for machine learning research on human, robotic & prosthetic hands.



#### **Future Work**

- Do some research on neutral network code(Pytorch)
- Replicate some transformer method on open-source data (NinaPro)





## Complexity Reduction[4]2023

- Tradeoff between performance drop and computational cost
  - ❖ More sequence → high accuracy
  - ❖ Less detail → avoid high frequency noise







#### Reference – Overview

- [1] S. Shen, X. Wang, F. Mao, L. Sun and M. Gu, "Movements Classification Through sEMG With Convolutional Vision Transformer and Stacking Ensemble Learning," in *IEEE Sensors Journal*, vol. 22, no. 13, pp. 13318-13325, 1 July1, 2022, doi: 10.1109/JSEN.2022.3179535.
- [2] Rahimian, E.et al.Temgnet: Deep transformer-based decoding of upperlimb semg for hand gestures recognition.arXiv pre-printarXiv:2109.12379(2021).16.Toledo-Peral, C. L.et al.semg
- [3] Montazerin, M., Rahimian, E., Naderkhani, F. et al. Transformer-based hand gesture recognition from instantaneous to fused neural decomposition of high-density EMG signals. Sci Rep 13, 11000 (2023). https://doi.org/10.1038/s41598-023-36490-w
- [4] PoseFormerV2: Exploring Frequency Domain for Efficient and Robust 3D Human Pose Estimation Qitao Zhao, Ce Zheng, Mengyuan Liu, Pichao Wang, Chen Chen.In CVPR 2023
- [5] Zhang W, Zhao T, Zhang J, Wang Y. LST-EMG-Net: Long short-term transformer feature fusion network for sEMG gesture recognition. Front Neurorobot. 2023 Feb 28;17:1127338. doi: 10.3389/fnbot.2023.1127338. PMID: 36925629; PMCID: PMC10011454.
- [6] Côté-Allard, Ulysse, Gabriel Gagnon-Turcotte, François Laviolette, and Benoit Gosselin. 2019. "A Low-Cost, Wireless, 3-D-Printed Custom Armband for sEMG Hand Gesture Recognition" *Sensors* 19, no. 12: 2811. https://doi.org/10.3390/s19122811
- [7] W. Wei, Q. Dai, Y. Wong, Y. Hu, M. Kankanhalli and W. Geng, "Surface-Electromyography-Based Gesture Recognition by Multi-View Deep Learning," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 10, pp. 2964-2973, Oct. 2019, doi: 10.1109/TBME.2019.2899222.