Sunspotter: Using Citizen Science to Determine the Complexity of Sunspots

Paul A. Higgins^{1,2}, David Perez-Suarez, Michael Parrish, David O'Callaghan, KD Leka, Graham Barnes, Joseph Roche, Peter Gallagher & the Sunspotter Zooniverse Team

Citizen Science in the Realm of Solar Physics

Astrophysics Research Group,
 Trinity College Dublin, Dublin, Ireland
 Lockheed Martin Solar and
 Astrophysics Laboratory, Palo Alto, CA

Science Goal

To construct a quantitative measure of **complexity** for sunspot group photospheric magnetic fields ...and to answer:

→ Phase 1

- Do more complex groups produce more eruptions?
- Can accurate knowledge of comlexity improve eruption forecasts?
 - **Phase 2** (Launch June 13)
- Are they born or do they evolve to become complex?

What do We Mean by Complexity?

- 1. Complexity characterises [something] with many [parts] in intricate arrangement.
- 2. 'Complexity science' is the study of the [phenomena] that emerge from a [collection] of interacting [objects].
- 3. Displaying variation without being random.

Previous Work

Proxies for Complexity

Fractal Dimension

(Abramenko 2005; McAteer et al. 2005; Ireland et al. 2008; Conlon et al. 2008)

- Does not scale well with eruption productivity (Georgoulis 2012)
- Difficult to interpret physically
- Magnetic Inter-connectivity

(Georgoulis & Rust 2007; Ahmed et al. 2010)

- Heavily dependent on position

Expert Classification

(NOAA/SWPC; Hale 1919)

- Unreliable (single human)
- Vague definition
- Only a handful of classes (poor resolution)

Sammis, Tang & Zirin (2000)

Method

Phase 1 Data set

- 13k sunspot group detections from NASA All-Clear Workshop
- Detections based on NOAA ARs (must have WL spots)
- MDI LOS cutouts scaled to +/- 1kG
- Sunspot groups are shown to-scale but binned by Lon.
- Volunteers are asked to compare individual pairs of sunspot groups
- From Phase 1: ~1600 volunteers, ~13k images,
 320k classifications (clicks), 50/image
- Elo ranking algorithm used to convert the list of classifications into a ranked list

Web Interface Example

Web Interface Example

Least/Most Complex

- Which are the least / most complex sunspot groups?
 - (unit-less) Elo Score **ranges**: 950 1488
 - Hale Class Least: Alpha, Beta Most: Beta-Gamma-Delta

Elo Score

Difference in sequentially ranked detection complexity scores

Elo Score

- Std. Dev. of Last 10 Rankings Vs. Sequential Score Difference
- Detections could jump up or down by ~50 images (out of ~13k)

Elo Score to Scale

- Converting from Elo score into a complexity scale
- Use Hale-class Elo-score median values as a reference

Complexity Scale

- α 's range 0–25, β 's range 25–50, and γ/δ 's range 50–100
- M1 Flaring regions clustered at >60 complexity units

Results

- Comparing complexity scale to total LOS flux
- Complexity improves separation between flaring and non-flaring detections

More **complex** SSGs are more **flare** active!

Next Step:

To compare complexity scale flare-predictive power to other physical properties

Citizen science is a great way to do **novel research**, while **engaging the public!**

Sign up to the **Zooniverse**mailing list to keep up with
project developments
(e.g. Re-Launch on
June 13, 2014)

Contact Sunspotters Team: pohuigin@gmail.com

Project Phases

- 1. Existing collaborative dataset
- Allows comparison to many SSG properties
- 2. New completely automated dataset
- Covers entirety of SOHO/MDI lifetime
- 3. Transition to SDO/HMI datatet
- Will allow realtime classifications...
- Potential for classifications to be fed into operational forecasting system

