Exercice 1:

- 1. O(Algo1) = min(O(m), O(n))
- 2. O(Algo1) = max(O(m), O(n))
- 3. $O(Algo2) = O(m+n+1) \cong O(m+n)$
- 4. $O(Algo2) = O(m^*n+1) \cong O(m^*n)$

Exercice 2:

1. Soit $f(n) = n^2$, $g(n) = 10^{-4}$. n^3 et $c = 10^4$

On a
$$f(n) \le c^*g(n) \Rightarrow n^2 \le n^3$$

Donc $n^2 \in O(10^{-4}. n^3)$

2. Soit $f(n) = 24n^4-10n^3+22n^2$, $g(n) = n^4$ et $c = 10^2$

On a
$$f(n) \le c^*g(n) \Rightarrow 24n^4 - 10n^3 + 22n^2 \le 10^2$$
. n^4

Donc
$$24n^4$$
- $10n^3$ + $22n^2 \in O(10^2. n^4)$

Avec
$$O(10^2. n^4) \cong O(n^4)$$

3. Soit $f(n) = 2^{n+10}$, $g(n) = 2^n$ et $c = 2^{11}$

On a
$$f(n) \le c^*g(n) \Rightarrow 2^{n+10} \le 2^{11}. 2^n$$

Donc $2^{n+10} \in O(2^{11}. 2^n)$

Avec $O(2^{11}. 2^n) \cong O(2^n)$

Exercice 3:

1. Si $f \in O(g)$

$$\Rightarrow$$
 f < g

$$\Rightarrow$$
 f +g < 2g

$$\Rightarrow$$
 f +g \in O(2g) \cong O(g)

2. Sif > g

$$\Rightarrow$$
 2f > f+g

$$\Rightarrow$$
 f+g < 2g

$$\Rightarrow$$
 f+g \in O(2f) \cong O(f)

$$\Rightarrow$$
 f+g \in O(2g) \cong O(g)

$$O(f+g) = O(f)$$
 (*)

$$O(f+g) = O(g)$$
 (**)

Donc avec (*) et (**) O(f+g) = O(max(f,g))

3. Ona:S≤f,T≤getf≤g

```
Donc S \le f \le g
       \Rightarrow S \leq g et T \leq g
      \Rightarrow S+T ≤ 2g
      D'où (S+T) \in O(2g) \cong O(g)
Exercice 4:
      Procédure TriParSelectionOrdreCroissant (A: Tableau, n: Entier)
      DÉBUT
      Variable i, j, k: Entier
       Pour i allant de 0 à n-2 par pas de 1 faire
             k ← i
             Pour j allant de i à n-1 par pas de 1 faire
                    Si ( A[j]<A[k] )
                           k ← j
                    FinSi
             FinPour
             Permuter (A[i], A[k])
       FinPour
       FIN
Exercice 5:
      Procédure TriParInsertionOrdreDecroissant (A: Tableau, n: Entier)
       DÉBUT
      Variable i, j, k: Entier
      Pour i allant de 1 à n-1 par pas de 1 faire
             k \leftarrow A[i]
             j ← j
             TantQue (j > 0) et (A[j-1] < k) faire
                    A[j] = A[j-1]
                   j ← j-1
             FinTantQue
```

```
A[j] \leftarrow k FinPour FIN
```

Exercice 8:

```
Procédure TriBullesOrdreCroissant (A : Tableau, n : Entier)

DÉBUT

Variable i, j: Entier

Pour i allant de 0 à n-1 par pas de 1 faire

Pour i allant de n-1 à i par pas de -1 faire

Si (A[j] < A[j-1]) faire

Permuter(A[j], A[j-1])

FinSi

FinPour
```