# Bayesian Shrinkage Among Time Varying

Coefficients in Counterfactual Analysis

#### Motivation

- Synthetic Control methods have become a major empirical tool (ADH approach)
  - Most development been on the frequentist side
  - Abadie and Gardeazabal (2003), Abadie, Diamond, and Hainmueller (2010) initially
  - Developments include: Athey et al. (2018), Xu (2017), Powell (2018), Kaul et al. (2018) to name a very very limited few
- ▶ Other approaches to the synthetic control framework
  - ► Brodersen et al. (2015)
  - Uses Bayesian variable selection and state space models (Kalman Filter)
  - Based off of Scott and Varian (2013)
  - This paper builds off of this literature

#### Basic Setup

- ▶ There is a unit  $Y_{0,t}$  (aka country GDP)
- An endogenous intervention, d, occurs at  $t = T_0$  (aka policy change) to  $Y_{0,t}$  and stays forever
  - $\triangleright$   $Y_{0,t}(1)$ : unit 0 when a treatment has occurred
  - $Y_{0,t}(0)$ : unit 0 when a treatment has not occurred
  - Observe  $Y_{0,t} = dY_{0,t}(1) + (1-d)Y_{0,t}(0)$
- Want to estimate  $Y_{0,t}(0)$  when d=1 using untreated units (aka other countries)
  - $Y_{0,t} = f(Y_{1,t},...,Y_{J,t})$

#### Benefits of a Time Series Bayesian Approach

- Allows modeling time series component explicitly
- Allows modeling nonconstant relationships between control and treatment
  - ► Time varying coefficients
- Allows stronger structure to use "expert knowledge"

# Brodersen et al. (2015) Basic Model

$$y_t = \mu_t + X_t \beta + \epsilon_t$$
  $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$  (1)

$$\mu_{t+1} = \delta_t + \mu_t + \eta_{1,t}$$
  $\eta_{1,t} \sim \mathcal{N}(0, \sigma_{\eta_1}^2)$  (2)

$$\delta_{t+1} = \delta_t + \eta_{2,t} \qquad \qquad \eta_{2,t} \sim \mathcal{N}(0, \sigma_{\eta_2})$$
 (3)

- Flexible model allows for changes in the linear trend term
- ightharpoonup Allows for  $\beta$  to be time varying
- ightharpoonup Bayesian priors (spike and slab) used on  $\beta$  to avoid overfitting
- Problem: Coefficients are either time varying or constant
  - Bayesian priors only apply to  $\beta$ , but can decompose  $\beta$  into time varying and time invariant parts

# My Initial Simulation

$$y_{0,t}(0) = \sum_{j=1}^{J} w_{j,t} \left( c_j t + z_j + \gamma_j \sin \left( \frac{\pi t}{\rho_j} \right) \right) + \epsilon'_{1,t}$$

$$w_{1,t} = w_{1,t-1} + \frac{.6}{T}$$

$$w_{2,t} = w_{2,t-1} - \frac{.6}{T}$$

$$w_{j,t} = w_{j,t-1}$$

$$j \notin \{1, 2\}$$

with initial conditions:

$$w_{1,0} = .2$$
  
 $w_{2,0} = .8$   
 $w_{j,0} = 0$   $j \notin \{1, 2\}$ 

### Parameters - Linear Weights

- 1)  $c_{1,t} = .75$ ,  $c_{2,t} = .25$ , and  $c_{j,t} \sim \textit{U}[0,1]$  for all  $j \notin \{1,2\}$
- 2)  $z_1 = 25$ ,  $z_2 = 5$  and  $z_j$  is sampled from  $\{1, 2, 3, 4, ..., 50\}$
- 3)  $\epsilon'_{i,t} \sim N(0,1)$
- 4) T = 35,  $T_0 = 15$
- 5) J = 15
- 6)  $w_{1,t} = .2 + .6 \frac{t}{T}$ ,  $w_{2,t} = 1 w_{1,t}$ , and  $w_{j,t} = 0$  for all else
- 7)  $\gamma_j = 0 \ \forall j$

## Visual Comparison - Linear Weights



# Simulation Results - Linear Weights

Table 1: Mean Results of 100 Simulations

| Model                 | pre.treat.mse | pre.treat.coverage | post.treat.mse | post.treat.coverage | CI.Spread | Bias  |
|-----------------------|---------------|--------------------|----------------|---------------------|-----------|-------|
| Causal Impact No TVP  | 0.828         | 1.000              | 17.427         | 0.838               | 10.295    | 8.574 |
| Causal Impact TVP     | 0.000         | 1.000              | 30.994         | 0.954               | 13.396    | 8.950 |
| Bayesian Lasso No TVP | 0.549         | 0.948              | 24.676         | 0.589               | 9.361     | 2.043 |
| Bayesian Lasso TVP    | 0.267         | 0.991              | 17.468         | 0.772               | 10.176    | 3.171 |

# Simulation Results - Linear Weights

Table 2: Median Results of 100 Simulations

| Model                 | pre.treat.mse | pre.treat.coverage | post.treat.mse | post.treat.coverage | CI.Spread | Bias  |
|-----------------------|---------------|--------------------|----------------|---------------------|-----------|-------|
| Causal Impact No TVP  | 0.779         | 1.000              | 16.137         | 0.853               | 10.258    | 8.704 |
| Causal Impact TVP     | 0.000         | 1.000              | 19.429         | 1.000               | 13.145    | 9.026 |
| Bayesian Lasso No TVP | 0.512         | 0.941              | 23.192         | 0.647               | 9.013     | 1.856 |
| Bayesian Lasso TVP    | 0.216         | 1.000              | 13.901         | 0.853               | 9.995     | 2.847 |

# Parameters - Constant Weights

- 1)  $c_{1,t} = .75$ ,  $c_{2,t} = .25$ , and  $c_{j,t} \sim U[0,1]$  for all  $j \notin \{1,2\}$
- 2)  $z_1 = 25$ ,  $z_2 = 5$  and  $z_j$  is sampled from  $\{1, 2, 3, 4, ..., 50\}$
- 3)  $\epsilon'_{i,t} \sim N(0,1)$
- 4) T = 35,  $T_0 = 15$
- 5) J = 15
- 6)  $w_{1,t} = w_{1,t-1}$ ,  $w_{2,t} = 1 w_{1,t}$ , and  $w_{j,t} = 0$  for all else
- 7)  $\gamma_j = 0 \ \forall j$

# Visual Comparison - Constant Weights



# Simulation Results - Constant Weights

Table 3: Mean Results of 100 Simulations

| Model                 | pre.treat.mse | pre.treat.coverage | post.treat.mse | post.treat.coverage | CI.Spread | Bias  |
|-----------------------|---------------|--------------------|----------------|---------------------|-----------|-------|
| Causal Impact No TVP  | 0.702         | 0.999              | 6.814          | 0.898               | 6.452     | 2.638 |
| Causal Impact TVP     | 0.000         | 1.000              | 16.372         | 0.933               | 9.787     | 1.131 |
| Bayesian Lasso No TVP | 0.619         | 0.838              | 2.714          | 0.926               | 6.322     | 1.002 |
| Bayesian Lasso TVP    | 0.317         | 0.978              | 5.133          | 0.919               | 8.468     | 1.108 |

# Simulation Results - Constant Weights

Table 4: Median Results of 100 Simulations

| Model                 | pre.treat.mse | pre.treat.coverage | post.treat.mse | post.treat.coverage | CI.Spread | Bias  |
|-----------------------|---------------|--------------------|----------------|---------------------|-----------|-------|
| Causal Impact No TVP  | 0.725         | 1.000              | 5.585          | 1.000               | 6.486     | 2.706 |
| Causal Impact TVP     | 0.000         | 1.000              | 7.912          | 1.000               | 9.286     | 0.852 |
| Bayesian Lasso No TVP | 0.651         | 0.824              | 1.993          | 0.941               | 6.323     | 1.041 |
| Bayesian Lasso TVP    | 0.258         | 1.000              | 3.185          | 1.000               | 8.201     | 1.352 |

#### Work Cited

Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program." *Journal of the American Statistical Association* 105 (490): 493–505. https://doi.org/10.1198/jasa.2009.ap08746.

Abadie, Alberto, and Javier Gardeazabal. 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country." *American Economic Review* 93 (1): 113–32.

https://doi.org/10.1257/000282803321455188.

September. http://arxiv.org/abs/1710.10251.

Athey, Susan, Mohsen Bayati, Nikolay Doudchenko, Guido Imbens, and Khashayar Khosravi. 2018. "Matrix Completion Methods for Causal Panel Data Models." arXiv:1710.10251 [Econ, Math, Stat],

Brodersen, Kay H., Fabian Gallusser, Jim Koehler, Nicolas Remy, and Steven L. Scott. 2015. "Inferring Causal Impact Using Bayesian Structural Time-Series Models." *The Annals of Applied* 

Statistics 9 (1): 247–74. https://doi.org/10.1214/14-AOAS788.