Feuille d'exercice n° 24 : **Déterminants**

Exercice 1 () On pose $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 7 & 1 & 3 & 5 & 6 \end{pmatrix}$ et $\theta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 4 & 2 & 7 & 6 & 5 & 3 \end{pmatrix}$. Écrire $\sigma\theta$ et σ^{-1} sous forme de produits de cycles de supports disjoints

Exercice 2 () Soit
$$s \in S_{10}$$
, $s = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 10 & 6 & 4 & 2 & 1 & 7 & 5 & 8 & 9 \end{pmatrix}$. Décomposer s en produit de cycles à supports 2 à 2 disjoints, en produit de transpositions.

Donner la signature de s

Exercice 3 () Écrire la permutation (1,2)(2,4,6,5)(1,3,7)(2,5,4)(3,5,6,1)(2,5)(1,4,6) sous forme d'un produit de cycles de supports disjoints.

Calculer la signature des permutations suivantes : $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 2 & 1 & 6 & 8 & 7 & 3 \end{pmatrix}$, Exercice 4 () (1,3,4)(2,4,3,1)(2,3) et $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix}^{-1}$.

Exercice 5

- 1. Montrer que les transpositions (1 i) (pour $i \in [2, n]$) engendrent le groupe symétrique \mathfrak{S}_n .
- 2. Montrer que les transpositions $(i \ i+1)$ (pour $i \in [1, n-1]$) engendrent le groupe symétrique \mathfrak{S}_n .
- 3. Montrer que les cycles de longueur 3 engendrent \mathfrak{A}_n .
- 4. Montrer que les cycles de la forme $(1 \ i \ j)$ avec $i, j \in [2, n], i \neq j$, engendrent \mathfrak{A}_n .
- 5. Montrer que les cycles de la forme $(1\ 2\ j)$ avec $j \in [3, n]$, engendrent \mathfrak{A}_n .

Dans chacun des cas ci-dessous, dire si l'application φ de $\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3$ dans \mathbb{R} , est Exercice 6 () multilinéaire.

1.
$$\varphi\left(\begin{pmatrix} x_1\\ x_2\\ x_2 \end{pmatrix}, \begin{pmatrix} y_1\\ y_2\\ y_2 \end{pmatrix}, \begin{pmatrix} z_1\\ z_2\\ z_2 \end{pmatrix}\right) = x_1 + y_2 + z_3$$

2.
$$\varphi\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}\right) = x_1 y_3 + y_2 z_1 + z_3 x_2$$

3.
$$\varphi\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}\right) = x_1 y_2 z_3 + x_2 y_3 z_1 + x_3 y_1 z_2$$

4.
$$\varphi\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}\right) = x_1 x_2 x_3 + y_1 y_2 y_3 + z_1 z_2 z_3$$

5.
$$\varphi\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}\right) = x_1 y_1 z_1 + x_2 y_2 z_2 + x_3 y_3 z_3$$

6.
$$\varphi\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}\right) = (x_1y_1 + x_2y_2 + x_3y_3)(z_1 + z_3)$$

7.
$$\varphi\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}\right) = (x_1 + 2x_2)(z_1 + z_3)$$

Exercice 7 () Soit $A \in \mathcal{M}_3(\mathbb{R})$ anti-symétrique. Calculer $\det(A)$. Ce résultat vaut-il encore pour $A \in \mathscr{M}_2(\mathbb{R})$?

Exercice 8 (%) — Déterminant circulant —

Soit $(a,b,c) \in (\mathbb{K})^3$. On note $j=\mathrm{e}^{\frac{2i\pi}{3}}$, et on considère les deux matrices suivantes :

$$A = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \qquad \text{et } V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$$

Calculer le produit AV, puis det(V) et det(AV), et en déduire det(A).

Exercice 9 Pour quelles valeurs de k la matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ -1 & 1 & k \end{pmatrix}$ est-elle inversible ? Idem avec

$$B = \begin{pmatrix} 1 & k & 0 \\ 2 & -1 & k \\ 3 & 0 & 1 \end{pmatrix}.$$

Exercice 10 () Calculer les déterminants : $\alpha = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix}, \beta = \begin{vmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix}, \gamma =$

$$\begin{vmatrix} 1 & 2 & 5 & 4 \\ 0 & 6 & 4 & 8 \\ 0 & 3 & 4 & 1 \\ 0 & 6 & 8 & 0 \end{vmatrix}.$$

Exercice 11 Montrer que : $\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \end{vmatrix}$ est divisible par $(x-1)^3$.

Exercice 12 On note a, b, c [...] des réels. Calculer les déterminants des matrices suivantes :

$$\begin{pmatrix} a & x & y & z \\ b & x & y & z \\ c & x' & y' & z' \\ d & x' & y' & z' \end{pmatrix} \; , \; \begin{pmatrix} 1+a & b & a & b \\ b & 1+a & b & a \\ a & b & 1+a & b \\ b & a & b & 1+a \end{pmatrix} \; , \; \begin{pmatrix} a & a & a^2 & b+c+d \\ a & b & b^2 & c+d+a \\ a & c & c^2 & d+a+b \\ a & d & d^2 & a+b+c \end{pmatrix} \; , \; \begin{pmatrix} 1 & 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 3 & 0 \\ a & 0 & a & 0 & 3 \\ b & a & 0 & a & 0 \\ 0 & b & 0 & 0 & a \end{pmatrix} \; ,$$

$$\begin{pmatrix} a+b+c & b & b & b \\ c & a+b+c & b & b \\ c & c & a+b+c & b \\ c & c & c & a+b+c \end{pmatrix}, \begin{pmatrix} p & 1 & 0 \\ 1 & p & \ddots \\ \vdots & \ddots & \ddots & 1 \\ 0 & & 1 & p \end{pmatrix}, \begin{pmatrix} 0 & 1 & \dots & 1 \\ -1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ -1 & \dots & -1 & 0 \end{pmatrix}.$$

Exercice 13 Calculer les déterminants suivants, d'ordre $n \in \mathbb{N}^*$:

$$A_{n} = \begin{vmatrix} 1+x^{2} & x & & & 0 \\ x & 1+x^{2} & x & & & \\ & \ddots & \ddots & \ddots & & \\ & & x & 1+x^{2} & x \\ 0 & & & x & 1+x^{2} \end{vmatrix}$$

$$B_{n} = \begin{vmatrix} a_{1}+b_{1} & a_{1} & \dots & \dots & a_{1} \\ a_{2} & a_{2}+b_{2} & a_{2} & \dots & a_{2} \\ a_{3} & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ a_{n} & & \dots & & \dots & a_{n} & a_{n}+b_{n} \end{vmatrix}$$

Exercice 14 Soit a_1, \ldots, a_n sont n réels. Calculer les déterminants :

$$S_n = \begin{vmatrix} \sin(a_1 + a_1) & \sin(a_1 + a_2) & \dots & \sin(a_1 + a_n) \\ \sin(a_2 + a_1) & & \vdots & \\ \sin(a_n + a_1) & \sin(a_n + a_2) & \dots & \sin(a_n + a_n) \end{vmatrix}$$

$$C_n = \begin{vmatrix} 1 & \dots & \dots & 1 \\ \cos a_1 & \dots & \dots & \cos a_n \\ \vdots & & \vdots \\ \cos((n-1)a_1) & \dots & \cos((n-1)a_n) \end{vmatrix}$$

Exercice 15 Soit $n \in \mathbb{N}^*$ et $p \in [1, n]$. On définit la matrice A_p de $\mathcal{M}_{p+1}(\mathbb{R})$ par :

$$A_{n,p} = \begin{pmatrix} 1 & \binom{n}{1} & \binom{n}{2} & \dots & \binom{n}{p} \\ 1 & \binom{n+1}{1} & \binom{n+1}{2} & \dots & \binom{n+1}{p} \\ \vdots & \vdots & & & \vdots \\ 1 & \binom{n+p}{1} & \binom{n+p}{2} & \dots & \binom{n+p}{p} \end{pmatrix}$$

Calculer $\det A_{n,p}$.

- 1. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique (notée \mathscr{C}) est $\begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$.
 - a) On appelle valeur propre de f tout scalaire λ pour lequel $f \lambda \operatorname{Id}_{\mathbb{R}^3}$ n'est pas injective. Déterminer toutes les valeurs propres de f en calculant un déterminant. On notera λ_1 , λ_2 et λ_3 ces valeurs propres, avec $\lambda_1 < \lambda_2 < \lambda_3$.
 - b) Si λ est une valeur propre de f, on appelle sous-espace propre de f associé à λ le noyau de $f \lambda \operatorname{Id}_{\mathbb{R}^3}$. Déterminer les trois sous-espaces propres de f. On appellera E_i le sous-espace propre associé à λ_i , et on le notera $E_i = \operatorname{Vect}(v_i)$, pour un vecteur v_i à déterminer.
 - c) Écrire la matrice de f dans la base $\mathscr{B} = (v_1, v_2, v_3)$. De quelle forme est-elle?

