Ongoing XAS collaboration between SCK•CEN and Aalto University

J. Pakarinen¹, R. Bes², G. Leinders¹, R. Delville¹, M. Verwerft¹

¹Institute for Nuclear Material Science, Belgian Nuclear Research Centre (SCK•CEN), Belgium ²Department of Applied Physics, Aalto University, Finland

jpakarin@sckcen.be

Outline

- Background
- Examples of actinide studies
- Fuel lab introduction
- Collaboration possibilities

Background

- Personal interest towards synchrotron methods since PhD work on III-V semiconductors
 - Photoluminescence blue shift as a function of In-N bonds in GaInAsN
 - These things can be ACTUALLY measured!
- Visiting scientist at the UW-Madison, USA
 - SSRL and collaboration with S. Conradson (complexity of UO_{2+x})
- Arrival to SCK•CEN in 2014
 - Productive PhD students in newly established fuel laboratory
 - Storage full of samples ready for further analysis
 - Collaboration with R. Bes

Background

- UO₂ and its derivatives are the main fuel used in the light water reactors globally
 - 450 reactors online, 58 under construction (158 ordered or planned)*)
 - 150 tons of U per reactor per year (→ 65 000 t/year)*)
- Nuclear fuel complex system
 - Simple binary fluorite consisting of U and O
 - ~100 years of studies simple oxidation of UO₂ still remains a subject of debate
- Spent nuclear fuel the most complex system on Earth
 - Crystal damage from fissions
 - Alternating chemical environment from fission products
 - Extreme radiotoxity

SCIENTIFIC REPORTS

OPEN

Direct observation of pure pentavalent uranium in U₂O₅ thin films by high resolution photoemission spectroscopy

Received: 18 January 2018 Accepted: 14 May 2018 Published online: 29 May 2018

T. Gouder, R. Eloirdi @ & R. Caciuffo @

G. Leinders (PhD Thesis, https://lirias.kuleuven.be/handle/123456789/546279)

→ Understanding the behavior of (spent) fuel is a challenge

Background

Spent fuel inventory

Heavy metal atoms	
U	238.00
Np	237.00
Pu	240.00
Am	242.00
Cm	244.00
Cf	249.00

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Pd

Ag

Cd

In

Sn

Sb

Te

Ba

La

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Dy

Tb

Ho

Er

Tm

Yb

Fission produc	ts .	Gaseous and volatile fission product.			
Li	6.94	H	1.00		
Be	9.01	He	4.00		
C	12.01	Br	79.09		
		Kr	83.80		
Zn	65.37	I	126.90		
Ga	69.72	Xe	131.29		
Ge	72.59	Cs	132.91		
As	74.92				
Se	78.96				

85.47

87.62

88.91

91.22

92.91

95.94

97.00

101.07

102.91

106.40

106.40

107.87

Outline

- Background
- Examples of actinide studies
- Fuel lab introduction
- Collaboration possibilities

- Challenges (mainly) due to radioactivity
 - Transport of samples
 - Can become costly and time consuming
 - Exempt limit for U and Th = 1000 Bq \rightarrow sample mass < ~1 g
 - Optimization required (and sometimes possible)
 - Preparation of samples
 - Double sealing required (Kapton)
 - 10 20 mg of UO₂ in BN
 - No powder allowed (pressed pellet)

- Dedicated beamline for radioactive samples
 - MARS at Soleil
 - ROBL / ID26 at ESRF
 - ANKA at KIT
 - ...

Journal of Nuclear Materials 489 (2017) 9-21

Contents lists available at ScienceDirect

Journal of Nuclear Materials

Charge compensation mechanisms in $U_{1-x}Gd_xO_2$ and $Th_{1-x}Gd_xO_{2-x/2}$ studied by X-ray Absorption Spectroscopy

R. Bès ^{a, *}, J. Pakarinen ^b, A. Baena ^b, S. Conradson ^c, M. Verwerft ^b, F. Tuomisto ^a

- Practical interest: Gd has large neutron cross-section used as a burnable neutron absorber in the fresh reactor core
- Challenge: Gd³⁺ substitution to the position of U⁴⁺ or Th⁴⁺
- U can be (3+), 4+, 5+, and 6+, Th is always 4+
- Mechanism for charge compensation?
- XANES and EXAFS @ MARS (Soleil, France)

^a Department of Applied Physics, Aalto University, P.O. Box 14100, FI-00076 Aalto, Finland

b Belgian Nuclear Research Centre (SCK-CEN), Institute for Nuclear Materials Science, Boeretang 200, B-2400 Mol, Belgium

c Synchrotron SOLEIL, Ligne de Lumière MARS, L'Orme des Merisiers, Saint Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France

- XANES for U L₃ edge
 - Intensity increases on the highenergy side:
 - Fingerprint for U⁵⁺formation
 - Linear combination fitting using reference spectra indicated this being the case

- XANES for Th L₃ edge
 - Features remain at fixed positions:
 - Th⁴⁺ is stable (as should be)
 - Uniform reduction is observed, charge is compensated by O vacancies which induce to local lattice disorder and reduced coordination number?

- XANES for Gd L₃ edge in UO₂
 - White line at fixed position:
 - Gd³⁺ is stable
 - Reduction in intensity: disorder
 - Comparison to Gd₂O₃
 - Same resonances, A B difference approaches Gd₂O₃

- XANES for Gd L₃ edge in ThO₂
 - White line at fixed position:
 - Gd³⁺ is stable
 - Reduction in intensity: disorder
 - Comparison to Gd₂O₃
 - Same resonances, A B
 difference approaches Gd₂O₃

+ full EXAFS analysis for U L₃, Th L₃, and Gd L₃

Conclusion:

- Charge compensation in Gd-doped UO₂ proceeds via disorder and formation of U⁵⁺
- Charge compensation in Gd-doped ThO₂ proceeds via disorder and formation of O vacancies
- Thus: $U_{1-x}Gd_xO_2$ vs $Th_{1-x}Gd_xO_{2-x/2}$

Inorganic Chemistry

Inorganic Chemistry 56 (2017) 6784

Communication

pubs.acs.org/IC

Evolution of the Uranium Chemical State in Mixed-Valence Oxides

Gregory Leinders,**,†© René Bes,‡© Janne Pakarinen,† Kristina Kvashnina,^{§,||} and Marc Verwerft†

- Main motivation: breakthrough in solving the crystal structure of U₃O₇
- Does chemical state of U match the proposed structure?
- HERFD-XANES @ ID26 (ESRF)

G. Leinders et al., Inorganic Chemistry 55 (2016) 9923

[†]Belgian Nuclear Research Centre (SCK·CEN), Institute for Nuclear Materials Science, Boeretang 200, B-2400 Mol, Belgium

^{*}Department of Applied Physics, Aalto University, P.O. Box 14100, FI-00076 Aalto, Finland

[§]Rossendorf Beamline at ESRF - The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France

Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden, Germany

- "Typical" approach:
 - Well known references and fitting for the unknown
- Excellent agreement with the theory
 - U₃O₇ matches perfectly
 - world's best U₄O₉
- EXAFS was done @ ROBL (ESRF)
 - Analysis ongoing

	relative abundance of valence states (%), ±3%			average U valence, ±0.03	
	U(IV)	U(V)	U(VI)	exptl.	theor.
U_4O_9	51	49	0	4.49	4.50
U_3O_7	36	64	0	4.64	4.67
U_3O_8	0	65	35	5.35	5.33

Inorganic Chemistry 56 (2017) 6784

Journal of Nuclear Materials 507 (2018) 50-53

Contents lists available at ScienceDirect

Journal of Nuclear Materials

Laboratory-scale X-ray absorption spectroscopy approach for actinide research: Experiment at the uranium L₃-edge

R. Bès ^{a, *}, T. Ahopelto ^b, A.-P. Honkanen ^b, S. Huotari ^b, G. Leinders ^c, J. Pakarinen ^c, K. Kvashnina ^{d, e}

- ^a Department of Applied Physics, Aalto University, P.O. Box 14100, FI-00076, Aalto, Finland
- ^b Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
- ^c Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science, Boeretang 200, B-2400, Mol, Belgium
- d Rossendorf Beamline at ESRF The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- e Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, P.O. Box 510119, 01314, Dresden, Germany
- Demonstration of lab-XAS @ University of Helsinki
- XANES measurement at U L3 edge comparison to measurement @ ROBL (ESRF)

- Lab-XAS: Time consuming compared to synchrotron (24h vs 2h) but all XANES features were reproduced!
- Set-up in the lab offers possibilities: screening of samples before beam time, in-situ development, instrument time availability,...

Outline

- Background
- Examples of actinide studies
- Fuel lab introduction
- Collaboration possibilities

Fuel fabrication: from powder to pellet

Center Bring growing the Control of the Control of

Fuel lab introduction

- Silmutaneous Thermal Analyser (STA) Netzsch Jupiter 449 F1
 - → <u>Thermogravimetry</u> (TGA): precise measure of sample mass change in function of time/temp in a controlled atmosphere
 - → <u>Differential Scanning Calorimetry</u> (DSC): precise measure of heat fluxes from sample in function of time/temp in a control, atm.
 - → <u>Mass Spectrometry</u> (MS): analyse the chemical composition of the evolved gases during test

© 2017 SCK•CEN

Fuel lab introduction

U02 → U3O8 → UO2 transformation followed by TG

Fuel lab introduction

- Complete laboratory for fuel pellet fabrication from powder to pellet (U and Th)
- Coming: new laboratory for MOX fuel processing (everything in glove boxes).
- Complimented by capabilities for full post-processing characterization
 - XAS through collaboration
 - In-house: SEM, FIB, TEM, XRD, Raman (coming),...

Outline

- Background
- Examples of actinide studies
- Fuel lab introduction
- Collaboration possibilities

Collaboration possibilities

- We're always looking for bright students!
- Internships, MSc, and PhD program through SCK•CEN Academy: http://academy.sckcen.be/
- Internships and MSc can be tailored (in case of interest contact directly by email).
- Possibility for a small financial support + affordable housing during your stay.
- For PhDs, there's a yearly competition (deadline for applications ~ end of March).
 - University promotor is always needed
 - Possibility for full SCK•CEN funding

