

دانشگاه اصفهان

دانشكده مهندسي كامپيوتر

تمرین سوم هوش محاسباتی: شبکه های عصبی و کاربردها Neural Networks & Applications

نگارش

دانیال شفیعی مهدی مهدیه امیررضا نجفی

استاد راهنما

دكتر كارشناس

درس مبانی هوش محاسباتی صفحه ۲ از ۷

فهرست مطالب

٠ مقدمه
 ١ مفاهيم و حل مسئله
 ٢ کدزنی و پياده سازی

مقدمه ا

هدف از این تمرین آشنایی بیشتر با شبکه های عصبی و استفادهی بیشتر از آنها در کاربردهای عملی است.

۱ مفاهیم و حل مسئله

۱. بله، هر نورون در یک شبکهٔ عصبی حامل نوعی اطلاعات است؛ اما ماهیت و میزان «وضوح» این اطلاعات بسته به عمق
 لایه و ویژگیهای بنیادین شبکه متفاوت است.

چهار ویژگی بنیادی و سلسلهمراتبی بودن نمایش:

(آ) توابع غيرخطي (Nonlinearity)

- هر نورون پس از تركیب خطی ورودی ها (ضرب وزن ها + بایاس) خروجی را از طریق تابعی مانند ReLU،
 ۱ sigmoid یا tanh عبور می دهد.
- بدون غیرخطی سازی، شبکه عملاً یک عملگر خطی بزرگ خواهد بود و قادر به تشخیص زیرویژگی های پیچیده نست.
- تابع فعالسازی باعث میشود هر نورون تنها در صورت وقوع یک الگوی خاص «فعال» شود و در نتیجه بهعنوان یک تشخیص دهندهٔ ساده عمل کند.

(ب) نمایش توزیع شده (Distributed Representation)

- برخلاف سیستمهای سمبلیک که هر مفهوم را با یک واحد منفرد نمایش میدهند، شبکههای عصبی مفاهیم
 را بهصورت همزمان در بردار فعالسازی تعداد زیادی نورون کدگذاری میکنند.
 - این پراکندگی اطلاعات باعث افزایش مقاومت شبکه در برابر نویز و آسیب به نورونهای منفرد می شود.
 - هر نورون سهم جزئی اما معنادار در تشخیص زیرویژگیهای ساده یا انتزاعی دارد.

(ج) یادگیری گرادیان محور (Gradient-based Learning)

- با استفاده از الگوریتم پسانتشار (Backpropagation)، وزنها و بایاس هر نورون بهروزرسانی می شود تا خطای خروجی به کمترین مقدار برسد.
- در طی آموزش، هر نورون به زیرویژگیهایی پاسخ میدهد که برای کاهش خطا در مسئلهٔ مشخص مفیدند.
- در پایان آموزش، وزنهای ورودی هر نورون تعیین میکنند که آن نورون به چه الگو یا ویژگی حساس باشد.

درس مبانی هوش محاسباتی صفحه ۳ از ۷

(د) سلسلهمراتب ویژگیها (Hierarchical Feature Learning)

- لایههای ابتدایی شبکههای عمیق معمولاً به زیرویژگیهای ساده مانند لبههای عمودی/افقی یا بافتها حساس اند.
 - لایههای میانی ترکیب این زیرویژگیها را انجام داده و الگوهای پیچیدهتر را میآموزند.
- در لایهٔ خروجی (مثلاً نورونهای softmax) احتمال تعلق هر ورودی به یک کلاس نهایی (مثلاً «گربه» یا «سگ») کدگذاری می شود.
- ۲. در شبکههای عصبی، «دانش» در قالب پارامترها (وزنها و بایاسها) ذخیره میشود و از طریق فرآیند آموزش شکل میگیرد؛ در ادامه، یک پاسخ یکپارچه و مرتبشده ارائه شده است:

(آ) شکلگیری دانش در شبکههای عصبی

- i. تعریف ساختار شبکه (Architecture): انتخاب تعداد لایهها (Input, Hidden, Output)، نوع آنها (fully-connected)، کانولوشن، بازگشتی و ...) و تعداد نورون در هر لایه.
- ii. مقداردهی اولیه پارامترها (Initialization): وزنها و بایاسها معمولاً با توزیعهای تصادفی (مثل Xavier یا He) مقداردهی می شوند.
 - iii. انتشار رو به جلو (Forward Propagation): برای هر ورودی x، در هر لایه:

$$z^{(\ell)} = W^{(\ell)} a^{(\ell-1)} + b^{(\ell)}, \quad a^{(\ell)} = \sigma(z^{(\ell)})$$

در نهایت $a^{(L)}$ خروجی نهایی شبکه است.

- نیا محاسبه خطا (Loss Calculation): با تابع هزینه ($L(y_{\mathrm{pred}}, y_{\mathrm{true}})$ مانند iv. Cross–Entropy برای طبقه بندی.
 - v. پس انتشار خطا (Backpropagation): مشتق تابع هزینه را نسبت به پارامترها محاسبه می کنیم:

$$\frac{\partial L}{\partial W^{(\ell)}}, \quad \frac{\partial L}{\partial b^{(\ell)}}$$

.i. بهروزرساني پارامترها (Optimization): با الگوريتمهايي مثل Gradient Descent يا Adam يا vi.

$$W^{(\ell)} \leftarrow W^{(\ell)} - \eta \frac{\partial L}{\partial W^{(\ell)}}, \quad b^{(\ell)} \leftarrow b^{(\ell)} - \eta \frac{\partial L}{\partial b^{(\ell)}}$$

این چرخه تا رسیدن به همگرایی تکرار میشود.

(ب) فرمول بندی «معادل بودن» دو شبکه عصبی

 $M(x)=f_{\theta_N}(x)$ دو شبکه (Exact Functional Equivalence) دو شبکه i. معادل تابعی $f_{\theta_N}(x)=f_{\theta_N}(x)$ دقیقاً معادل اند اگر:

$$\forall x \in X, \quad N(x) = M(x).$$

نورونها فرونهای ایمانی نورونهای ایمانی (Structural Equivalence) جابجایی نورونها ii. معادل ساختاری تحت تبدیلات (W, b) معراه با جابجایی سطرها/ستونهای متناظر در W, b، خروجی را تغییر نمی دهد.

 $d(x) = \|N(x) - M(x)\|_p$ با فاصلهٔ خروجی (Approximate Equivalence) تقریب معادل iii.

$$\forall x \in X, \ d(x) < \epsilon \quad \forall x \in X, \ d(x) < \delta.$$

(ج) مثال ریاضی

 $\sigma(z)=z$ حالت سادهٔ خطی: دو شبکه خطی با یک لایه پنهان و i.

$$N(x) = W_2(W_1 x + b_1) + b_2, \quad M(x) = W_2'(W_1' x + b_1') + b_2'.$$

آنها معادلاند اگر:

$$W_2W_1 = W_2'W_1', \quad W_2b_1 + b_2 = W_2'b_1' + b_2'.$$

ii. اشارهای به حالت غیرخطی: در شبکههای غیرخطی (مثلاً ReLU)، تبدیلات پیچیدهترند؛ اما با ادغام BatchNorm یا تبدیلات جبری می توان مشابهت رفتار را نشان داد.

۳. در شبکههای عصبی، توانایی یادگیری، بهخاطر سپاری (Memorization) و تعمیم (Generalization) بر پایهی ساختار معماری، الگوریتمهای آموزش و ویژگیهای دادهها شکل میگیرد. در ادامه، این سه قابلیت را همراه با مبانی ریاضی و مثالهای عینی بررسی میکنیم.

(آ) یادگیری (Learning)

شبکه با کمینهسازی تابع هزینه

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell(f_{\theta}(x_i), y_i)$$

و به کارگیری انتشار رو به جلو و پسانتشار خطا ،(Backpropagation) پارامترهای θ (وزنها و بایاسها) را با الگوریتمهای گرادیان محور ،Adam (SGD و ...) به روزرسانی می کند:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta).$$

- قضیه تقریب جهانی (Universal Approximation Theorem) هر شبکه ی با حداقل یک لایه پنهان و تابع فعالسازی غیرفابی (مثلاً ReLU یا Sigmoid) میتواند هر تابع پیوسته روی یک مجموعه ی کامپکت را تقریب بزند.
- **ویژگی توزیعی** (Distributed Representation) هر نورون یا زیراسختار فقط بخشی از ویژگیهای داده را مدل میکند و با ترکیب میلیونها پارامتر، شبکه قادر به نمایش الگوهای غیرخطی و سلسلهمراتبی است.

(ب) به خاطر سپاری (Memorization)

شبکههای overparameterized (پارامترها خیلی بزرگتر از نمونهها) میتوانند جزئیات حتی نویزی دادههای آموزشی را حفظ کنند:

. بزرگ Complexity Rademacher و VC-Dimension Capacity: High

• مثال Bias-Variance Tradeoff

Complexity $\uparrow \rightarrow \text{Bias} \downarrow$, Variance \uparrow , Memorization \uparrow

اگر هیچ ضابطهای (Regularization) وجود نداشته باشد، شبکه می تواند اطلاعات آموزشی را تقریباً کامل بازتولید کند.

(Generalization) تعميم

تعمیم یعنی عملکرد خوب روی دادههای ندیده. این امر با ترکیب مکانیزمهای implicit و explicit regularization و explicit regularization و Inductive Bias حاصل می شود:

$$L_{\text{reg}}(\theta) = L(\theta) + \lambda \|\theta\|_2^2$$

- Implicit Regularization: رفتار SGD شبکه را به سمت مینیممهای تخت (flat minima: میکند.
 - Regularization
 - افزودن $\lambda \|\theta\|_2^2$ به تابع هزینه. (L2) Weight Decay $oldsymbol{-}$
 - Dropout: غيرفعالسازي تصادفي نورونها.
 - Early Stopping: پایان آموزش پیش از شروع شدید
 - Inductive Bias معمارى:
 - CNN: اشتراک وزنها و حساسیت به ویژگیهای مکانی.
 - RNN/Transformer: نگاشت توالی های زمانی و وابستگی های ترتیبی.
- نرمالسازی (Batch Normalization) کاهش حساسیت به مقیاس وزنها و تثبیت جریان گرادیان.
- دادههای متنوع و کافی کمیت و کیفیت دادههای آموزشی پایهی استخراج قاعدههای عمومی و کاهش Overfitting
 - (د) پیوند با «معادل بودن دو شبکه» و «شکلگیری دانش»

شکلگیری دانش = پارامترهای بهینه θ که از فرآیند یادگیری بهدست میآیند. معادل بودن دو شبکه وقتی است که:

$$\forall x, \ N(x) = M(x)$$
 Functional) (Exact

یا با پرموتیشن π روی نورونها (Structural Symmetry)، یا تقریباً:

$$||N(x) - M(x)||_p < \varepsilon$$
 $\text{LL}(N(x) || M(x)) < \delta$.

- ۴. در زیر سه نوع رایج از "توابع تبدیل نورونی" (یا به عبارت دیگر انواع نورونهای مرتبهبالا و RBF) را به صورت ریاضی می بینید:
 - (آ) نورون درجه دوم (Quadratic Neuron):

$$\operatorname{net}(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j + \sum_{i=1}^{n} v_i x_i + b,$$
$$y = f(\operatorname{net}(\mathbf{x})),$$

که در آن

- $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n \bullet$
- ضرایب ضربهای درجه دوم، w_{ij}
 - خطی، ضرایب ترکیب خطی، $v_i \bullet$
 - b باياس،
 - تابع فعالسازی. $f(\cdots)$

(ب) نورون کروی (Spherical / RBF Neuron):

$$\operatorname{net}(\mathbf{x}) = \|\mathbf{x} - \boldsymbol{\mu}\| = \sqrt{\sum_{i=1}^{n} (x_i - \mu_i)^2}, \quad y = f(\operatorname{net}(\mathbf{x})),$$

یا گونهی مربعی بدون ریشه:

$$\operatorname{net}(\mathbf{x}) = \sum_{i=1}^{n} (x_i - \mu_i)^2, \quad y = \exp(-\gamma \operatorname{net}(\mathbf{x})),$$

که در آن

- مرکز نورون، $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n) \bullet$
 - \bullet ضریب پهنای باند، $\gamma > 0$
- هي باشد. ميتواند تابع خطى يا نمايي باشد. $f(\cdot)$
- (ج) نورون چندجملهای (Polynomial Neuron): ابتدا ترکیب خطی و توان:

$$u = \sum_{i=1}^{n} w_i x_i + b, \quad y = u^d = \left(\sum_{i=1}^{n} w_i x_i + b\right)^d.$$

به صورت کلی برای ورودی چندبعدی:

$$y = \sum_{\alpha_1 + \dots + \alpha_n \le d} w_{\alpha_1, \dots, \alpha_n} \ x_1^{\alpha_1} \cdots x_n^{\alpha_n},$$

که در آن

درجه چندجملهای، d

اندیسهای چندجملهای، $\alpha_i \in \mathbb{N}_0$

. ضرایب متناظر $w_{\alpha_1,...,\alpha_n}$

۵. سوال ۵

(آ) طراحی پرسیترون تکلایه

فرض کنیم میخواهیم الگوها را به صورت برچسب $t_1=-1$ برای $t_2=+1$ برای $t_2=+1$ دسته بندی کنیم. باید $w\in\mathbb{R}^3$ باید $w\in\mathbb{R}^3$ باید نیم میخواهیم الگوها را طوری بیابیم که

$$\begin{cases} \operatorname{sign}(w^{\top} P_1 + b) = -1, \\ \operatorname{sign}(w^{\top} P_2 + b) = +1. \end{cases}$$

این معادلات به صورت نابرابری های زیر نوشته می شوند:

$$w^{\mathsf{T}}(-1, -1, 1) + b < 0, \quad w^{\mathsf{T}}(+1, -1, 1) + b > 0.$$

به سادگی میتوانیم مثلاً وزنها را به صورت w=(1,0,0) ، و بایاس b=0 انتخاب کنیم:

$$w^{\mathsf{T}} P_1 + b = -1 < 0, \quad w^{\mathsf{T}} P_2 + b = +1 > 0.$$

لذا تابع تصميم $y = \mathrm{sign}(x_1)$ دو الگو را به درستی تفکیک میکند.

(ب) طراحی شبکه Hamming

شبکه همینگ برای N الگو P_k به صورت زیر است:

$$\mathbf{W} = \begin{bmatrix} P_1^{\top} \\ P_2^{\top} \end{bmatrix}, \quad y = \arg\max_k (\mathbf{W} x)_k.$$

برای P_1, P_2 داریم:

$$\mathbf{W} = \begin{pmatrix} -1 & -1 & 1 \\ +1 & -1 & 1 \end{pmatrix}, \quad .\sum_i W_{k,i} x_i$$
انتخاب k با بیشینه ی

(ج) طراحی شبکه Hopfield

شبکه هاپفیلد با الگوهای باینری ± 1 به کمک قاعده $T=\sum_k P_k P_k^{ op}$ ساخته می شود. اینجا داریم:

$$T = P_1 P_1^{\top} + P_2 P_2^{\top} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 2 \end{pmatrix}.$$

درس مبانی هوش محاسباتی صفحه ۸ از ۷

سپس حالت نرونیها با قاعده $x_i \leftarrow \mathrm{sign} \left(\sum_j T_{ij} x_j \right)$ به سمت نزدیک ترین الگو جذب می شود.

٧. (آ) طراحي مرز تصميم و شبكه پرسپترون تكلايه

با انتخاب وزنها و بایاس زیر:

$$\mathbf{w} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad b = \frac{1}{2}$$

تابع فعالسازي گام به اين صورت خواهد بود:

$$y = \begin{cases} 1, & \mathbf{w}^{\top} \mathbf{x} + b > 0, \\ 0, & \text{وگرنه}. \end{cases}$$

معادله مرز تصمیم:

$$-x_1 - x_2 + \frac{1}{2} = 0 \iff x_1 + x_2 = \frac{1}{2}.$$

ε بازه و تعیین بازه و تعیین بازه

از نامعادلات زیر برای کلاس بندی استفاده میکنیم:

$$\begin{cases}
-x_1 - x_2 + b > 0 & 1 \\
-x_1 - x_2 + b < 0 & 0
\end{cases}$$

نتیجه می شود که برای هر $\varepsilon \geq 0$ می توان $w_1 = w_2 = -1$ و $w_1 = w_2 = -1$ را انتخاب کرد و جداسازی خطی امکانپذیر است.

(ج) اجرای الگوریتم پرسپترون و نتایج نهایی

برای سه مقدار ε اجرای الگوریتم با نرخ یادگیری $\eta=1$ ، وزن و بایاس را از صفر مقداردهی کرده و تا خطای صفر تکرار میکنیم.

برنامهٔ ۱: پیادهسازی الگوریتم پرسپترون

درس مبانی هوش محاسباتی صفحه ۹ از ۷

```
import numpy as np
 def perceptron_train(P, t, lr=1, max_epochs=1000):
    w = np.zeros(2)
   b = 0.0
   epc = 0
   for epoch in range(max_epochs):
      errors = 0
     for x, target in zip(P, t):
       y = 1 if np.dot(w, x) + b > 0 else 0
       if y != target:
          errors += 1
          update = lr * (target - y)
          w += update * x
          b += update
      if errors == 0:
        break
      epc = epoch
   return w, b, epc+1
 epsilons = [1, 2, 6]
 for eps in epsilons:
   P = [
      np.array([0,1]), np.array([1,-1]), np.array([-1,1]),
44
      np.array([1,eps]), np.array([1,0]), np.array([0,0])
۲۵
   t = [0,1,1,0,0,1]
۲۷
   w, b, epochs = perceptron_train(P, t)
   print(f" ={eps}: w={w}, b={b}, epochs={epochs}")
```

```
\varepsilon = 1: \mathbf{w} = (-1, -1), \ b = 1, \ \text{epochs} = 2,

\varepsilon = 2: \mathbf{w} = (-2, -2), \ b = 1, \ \text{epochs} = 4,

\varepsilon = 6: \mathbf{w} = (-3, -4), \ b = 3, \ \text{epochs} = 4.
```

(د) خلاصه نتایج

- $.x_1 + x_2 = \frac{1}{2}$ مرز تصمیم: •
- بازه $\varepsilon \geq 0$ (تمام مقادیر غیرمنفی).
- ullet وزنها و بایاس نهایی برای $\varepsilon = 1, 2, 6$ مطابق جدول فوق.
- الگوريتم پرسپترون حداكثر تا ۴ دور همگرا شده و خطاي صفر حاصل شد.

٨. سوال ٨

٩. سوال ٩

درس مبانی هوش محاسباتی ۲ کدزنی و پیاده سازی