Sistem Linier

Week 7 – 8: Representasi deret Fourier sinyal periodik

B.T Atmaja¹ & Dwi Prananto²

- 1) Teknik Fisika, ITS Surabaya
- ²) Prodi. Teknik Elektro, Universitas Panca Marga Probolinggo

Discrete-time systems described by difference equations

I. Tanggapan sistem LTI terhadap eksponensial kompleks

 Tanggapan sistem LTI terhadap masukan sinyal eksponensial kompleks adalah sinyal eksponensial kompleks yang sama, dengan perubahan amplitudo

Bukti:

H(s) Adalah konstanta kompleks yang mempunyai harga tergantung pada s

$$y[n] = h[n] * x[n]$$

$$= z^n \sum_{-\infty}^{+\infty} h[k] z^{-k}$$

$$y[n] = h[n] * x[n]$$

$$= z^n \sum_{-\infty}^{+\infty} h[k] z^{-k}$$

$$y[n] = H(z) z^n$$

H(z) Adalah konstanta kompleks yang mempunyai harga tergantung pada z

Bentuk kombinasi linier

$$x(t) = \sum_k a_k e^{s_k t} \qquad \qquad \text{Sistem LTI } \qquad \qquad y(t) = \sum_k a_k H(s_k) e^{s_k t}$$
 Waktu-kontinu

$$x[n] = \sum_k a_k z_k^n \qquad \qquad \text{Sistem LTI } \qquad \qquad \mathbf{y}[n] = \sum_k a_k H(z_k) z_k^n$$
 Waktu-diskrit

II.Representasi deret Fourier pada sinyal periodik waktu-kontinu

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

dimana
$$\omega_0 = \frac{2\pi}{T}$$
 dan a_k adalah koefisien-koefisien deret Fourier

 Kombinasi linier dari sinyal eksponensial kompleks yang dihubungkan secara harmonik

- Penentuan koefisien-koefisien deret Fourier a_k
 - 1.Kalikan kedua sisi representasi deret Fourier dengan $e^{-jn\omega_0t}$

$$e^{-jn\omega_0 t}x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} e^{-jn\omega_0 t}$$

2.Integrasikan kedua sisi dengan interval 0 s/d T

$$\int_0^T e^{-jn\omega_0 t} x(t)dt = \int_0^T \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} e^{-jn\omega_0 t} dt$$

3. Keluarkan jumlahan dan koefisien deret Fourier dari integral

$$\int_0^T e^{-jn\omega_0 t} x(t)dt = \sum_{k=-\infty}^{+\infty} a_k \int_0^T e^{j(k-n)\omega_0 t} dt$$

4.Ubah integral eksponensial di sisi kanan dengan hubungan Euler

$$\int_{0}^{T} e^{j(k-n)\omega_{0}t} dt = \int_{0}^{T} \cos[(k-n)\omega_{0}t] dt + j \int_{0}^{T} \sin[(k-n)\omega_{0}t] dt$$

5. Selesaikan integral nomor 4

→ Untuk $k \neq n$

$$\int_0^T \cos[(k-n)\omega_0 t]dt + j \int_0^T \sin[(k-n)\omega_0 t]dt = 0$$

Pandang integral sebagai luasan di bawah kurva

→ Untuk k = n

$$\int_0^T \cos[(k-n)\omega_0 t]dt + j \int_0^T \sin[(k-n)\omega_0 t]dt = T$$

Sehingga

$$\int_0^T e^{j(k-n)\omega_0 t} dt = \begin{cases} 0 & , k \neq n \\ T & , k = n \end{cases}$$

5.Nomor 3 dapat dituliskan kembali sebagai

$$\int_0^T e^{-jn\omega_0 t} x(t)dt = \sum_{k=-\infty}^{+\infty} a_k T$$

$$\int_0^T e^{-jn\omega_0 t} x(t)dt = a_k T$$

Sehingga

$$a_k = \frac{1}{T} \int_0^T e^{-jn\omega_0 t} x(t) dt$$

atau

$$a_k = \frac{1}{T} \int_T e^{-jk\omega_0 t} x(t) dt$$

koefisien-koefisien deret Fourier sepanjang periode T

Representasi deret Fourier sinyal periodik waktu-diskrit

Persamaan sintesis

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

Persamaan analitis

$$a_k = \frac{1}{T} \int_T e^{-jk\omega_0 t} x(t) dt = \int_T e^{-jk(2\pi/T)t}$$

Contoh:

Gelombang bujur sangkar periodik

$$x(t) = \begin{cases} 1 & , |t| < T_1 \\ 0 & , T_1 < |t| < T/2 \end{cases}$$

Tentukan koefisien-koefisien deret Fourier-nya!

Solusi

• Untuk k=0

$$a_0 = \frac{1}{T} \int_{-T_1}^{T_1} dt = \frac{2T_1}{T} = \frac{1}{2}$$

dengan $T = 4T_1$

• Untuk $k \neq 0$

$$a_k = \frac{1}{T} \int_{-T_1}^{T_1} e^{-jk\omega_0 t} dt$$

$$= \frac{2}{kT\omega_0} \left[\frac{e^{jk\omega_0 T_1} - e^{-jk\omega_0 T_1}}{2j} \right]$$

$$a_k = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T}$$

$$\mathrm{dengan}\ \omega_0 = \frac{2\pi}{T}$$

Grafik fungsi koefisien deret Fourier terhadap k

III.Sifat-sifat deret Fourier waktu-kontinu

$$x(t) \stackrel{Fs}{\longleftrightarrow} a_k$$

Pasangan sinyal periodik dan koefisien deret Fourier

1.linieritas

Dua sinyal periodik

$$x(t) \stackrel{Fs}{\longleftrightarrow} a_k$$
$$y(t) \stackrel{Fs}{\longleftrightarrow} b_k$$

Jikaz(t) adalah kombinasi linier dari kedua sinyal,

$$z(t) = Ax(t) + By(t) \stackrel{Fs}{\leftrightarrow} c_k = Aa_k + Bb_k$$

III.Sifat-sifat deret Fourier waktu-kontinu

2.Pergeseran waktu

Jika
$$y(t)=x(t-t_0)$$
 ,
$$b_k=\frac{1}{T}\int_T x(t-t_0)e^{-jk\omega_0t}dt$$

Ambil
$$au=t-t_0$$

$$b_k=\frac{1}{T}\int_T x(\tau)e^{-jk\omega_0(\tau+t_0)}dt$$

$$=\frac{1}{T}e^{-jk\omega_0t_0}\int_T x(\tau)e^{-jk\omega_0\tau}$$

$$b_k=e^{-jk\omega_0t_0}a_k$$

sehingga

$$x(t-t_0) \stackrel{Fs}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k$$

 Nilai koefisien deret Fourier tidak bergantung pada pergeseran waktu

III.Sifat-sifat deret Fourier waktu-kontinu

3.Waktu-balikan

Jika y(t) = x(-t), persamaan sintesis

$$x(-t) = \sum_{k=-\infty}^{\infty} a_k e^{-jk\omega_0 t}$$

Ambil -k = m

$$x(-t) = \sum_{k=-\infty}^{\infty} a_{-m} e^{jm\omega_0 t}$$

Sehingga, jika

$$x(t) \stackrel{Fs}{\longleftrightarrow} a_k,$$

$$x(-t) \stackrel{Fs}{\longleftrightarrow} a_{-k}$$

III.Sifat-sifat deret Fourier waktu-kontinu

4.Penskalaan waktu

Jika x(t) periodik dengan periode T dan frekuensi $\omega_0=2\pi/T$, $x(\alpha t)$ Periodik dengan periode T/α dan frekuensi $\alpha \omega_0$.

$$x(\alpha t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(\alpha\omega_0)t}$$

Koefisien deret Fourier tidak berubah, representasi deret
 Fourier berubah karena perubahan frekuensi dasar

III.Sifat-sifat deret Fourier waktu-kontinu

4.Perkalian

Jika

$$x(t) \stackrel{Fs}{\longleftrightarrow} a_k$$

$$y(t) \stackrel{Fs}{\longleftrightarrow} b_k,$$

Hasil kali
$$x(t)y(t) \stackrel{Fs}{\longleftrightarrow} h_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}$$

5.Konjugasi

$$x(t) \stackrel{Fs}{\longleftrightarrow} a_k$$

$$x^*(t) \stackrel{Fs}{\longleftrightarrow} a_{-k}^*,$$

konsekuensinya

jika
$$x(t) = x^*(t), a_{-k} = a_k^*$$

IV.Representasi <u>deret Fourier</u> pada sinyal periodik <u>waktu-diskrit</u>

Deret Fourier waktu-diskrit

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n}$$
$$= \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

Persamaan sintesis

$$k = \langle N \rangle$$
 \longrightarrow k yang bervariasi pada daerah N bilangan bulat

V.Penentuan koefisien-koefisien deret Fourier

Untuk menentukan koefisien-koefisien deret Fourier, kalikan kedua sisi deret Fourier dengan $e^{-jr\omega_0n}$ dan jumlahkan terhadap suku-suku N

$$\sum_{n=\langle N \rangle} x[n]e^{-jr(2\pi/N)n} = \sum_{n=\langle N \rangle} \sum_{k=\langle N \rangle} a_k e^{j(k-r)(2\pi/N)n}$$

$$\sum_{n=\langle N \rangle} x[n]e^{-jr(2\pi/N)n} = \sum_{k=\langle N \rangle} a_k \sum_{n=\langle N \rangle} e^{j(k-r)(2\pi/N)n}$$

$$\sum_{n=\langle N \rangle} e^{j(k-r)(2\pi/N)n} = \begin{cases} N & , k-r=0, \pm N, \pm 2N, \dots \\ 0 & , k-r=\text{lainnya} \end{cases}$$

V.Penentuan koefisien-koefisien deret Fourier

Sehingga jika dituliskan

$$\sum_{n=\langle N\rangle} x[n]e^{-jr(2\pi/N)n} = \sum_{n=\langle N\rangle} a_k N$$

Koefisien-koefisien deret Fourier dapat dicari dengan

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jr(2\pi/N)n}$$

Persamaan analitis

r Harga a_k berulang secara periodik dengan periode N

$$a_k = a_{k+N}$$

Contoh: $a_0 = a_N$; $a_1 = a_{1+N}$

Contoh soal:

Gelombang bujur sangkar periodik waktu-diskrit

Tentukan koefisien-koefisien deret Fourier sinyal tersebut!

solusi

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}$$

$$a_k = \frac{1}{N} \sum_{n=-N_1}^{N_1} 1 e^{-jk\omega_0 n}$$

Gunakan <u>rumus jumlahan terbatas</u> untuk menyelesaikan

$$\sum_{n=0}^{N} \alpha^n = \begin{cases} N+1 & , \alpha = 1\\ \frac{1-\alpha^{N+1}}{1-\alpha} & , \alpha \neq 1 \end{cases}$$

Ambil $m = n + N_1$, sehingga

$$a_k = \frac{1}{N} \sum_{m=0}^{2N_1} e^{-jk(2\pi/N)(m-N_1)}$$

$$a_{k} = \frac{1}{N} \sum_{m=0}^{2N_{1}} e^{-jk(2\pi/N)(m-N_{1})}$$

$$= \frac{1}{N} e^{jk(2\pi/N)N_{1}} \sum_{m=0}^{2N_{1}} e^{-jk(2\pi/N)m}$$

$$= \frac{1}{N} e^{jk(2\pi/N)N_{1}} \left[\frac{1 - e^{-jk(2\pi/N)(2N_{1}+1)}}{1 - e^{-jk(2\pi/N)}} \right]$$

$$= \frac{1}{N} \left[\frac{e^{jk(N_{1}+1/2)2\pi/N} - e^{-jk(N_{1}+1/2)2\pi/N}}{e^{jk\pi/N} - e^{-jk\pi/N}} \right]$$

$$a_{k} = \frac{1}{N} \frac{\sin[2\pi k(N_{1}+1/2)/N]}{\sin(k\pi/N)}, \quad k \neq 0, \pm N, \pm 2N....$$

Dan

$$a_k = \frac{2N_1 + 1}{N}, \quad k = 0, \pm N, \pm 2N, \dots$$

Grafik fungsi koefisien deret Fourier terhadap k

Perhatikan keterulangan yang terlihat. $a_k = a_{k+N}$

Referensi

- (1) A. V. Oppenheim, A. S. Willsky, S. H. H. Nawab, *Sinyal dan Sistem jilid 1*, (Penerbit Erlangga, Jakarta, 2000)
- (2) Plot grafik dibuat dengan bantuan program iPython dan Inkscape

Referensi pemrograman Python:

- (1) Python Scientific Lecture Notes, http://scipy-lectures.github.io/index.html
- (2) The Python Tutorial, https://docs.python.org/2/tutorial/index.html
- (3) Matplotlib, http://matplotlib.org/index.html