BÀI 4. NGẮT - INTERRUPT

1. Mục đích

Qua bài học sinh viên có thể đạt được các kiến thức sau:

- Hiểu biết về cấu trúc và cở chế hoạt động của Interrupt trong PIC24F.
- Ứng dụng vào ngắt các thiết bị ngoại vi, ngắt Timer và ngắt ADC.

2. Tóm tắt nội dung lý thuyết

2.1. Giới thiệu

Ngắt trong PIC24 là một sự kiên xảy ra bên ngoài hoặc bên trong mà có thể tác động nhanh đên CPU, làm cho CPU có thể ngưng công việc hiện tại và thực hiện công việc xử lý sự kiện ngắt. PIC24 cho phép 118 nguồn ngắt khác nhau, mỗi nguồn ngắt được định nghĩa duy nhất một đoạn code nhất định để phụ vụ gọi là "Interrupt Service Routine - ISR" và được gắn kết trực tiếp thông qua một con trỏ hay một vector. Các ngắt có thể hoàn toàn không đồng bộ với luồng thực thi của chương trình chính. Chúng có thể được kích hoạt tại bất kỳ thời điểm nào và theo một trật tự không thể đoán trước. Đáp ứng nhanh với các ngắt là điều cần thiết để cho phép phản ứng kịp thời với sự kiện kích hoạt và nhanh chóng quay trở lại luồng thực hiện chương trình chính.

PIC24/32 có các ngắt bên ngoài như sau:

- Ngắt thông qua chân thiết bị ngoại vi "INTx".
- Ngắt dùng cho chân ngoại vi được kết nối với module Change Notification "OCx".
- Ngắt dùng cho module Capture/Compare modules "CCPx".
- Ngắt dùng cho UART, SPI và I2C.
- Ngắt dùng cho Parallel Master Port.
- Ngắt dùng cho DMA.

Ngắt nội có các loại như sau:

- Ngắt dùng cho Timer.
- Ngắt dùng cho ADC.
- Ngắt dùng cho Comparators module.
- Ngắt dùng cho Real-time Clock và Calender.
- Ngắt dùng cho CRC gennerator.

Bảng 8-2 trong PIC24/32 family datasheet định nghĩa chi tiết các vector ngắt.

Các nguồn ngắt trong PIC24 có thể được cấu hình có các độ ưu tiên từ 0 đến 7, trong đó độ ưu tiên càng cao thì sẽ được ưu tiên xử lý trước. Bảng 8-2 trong tài liệu tham khảo Explorer 16-32 Development Board User's Guide thể hiện các nguồn ngắt và thanh ghi cấu hình ngắt tương ứng. Hình 1 thể hiện một phần bảng mô tả ngắt và các thanh ghi cấu hình.

TABLE 8-2: INTERRUPT VECTOR DETAILS

	IRQ	D/T Address	Int	errupt Bit Lo	ocation
Interrupt Source	#	IVT Address	Flag	Enable	Priority
	Highest Na	atural Order Priorit	ty		
INT0 – External Interrupt 0	0	000014h	IFS0<0>	IEC0<0>	INT0Interrupt
IC1 – Input Capture 1	1	000016h	IFS0<1>	IEC0<1>	IC1Interrupt
OC1 – Output Compare 1	2	000018h	IFS0<2>	IEC0<2>	OC1Interrupt
T1 – Timer1	3	00001Ah	IFS0<3>	IEC0<3>	T1Interrupt
DMA0 - Direct Memory Access 0	4	00001Ch	IFS0<4>	IEC0<4>	DMA0Interrupt
IC2 - Input Capture 2	5	00001Eh	IFS0<5>	IEC0<5>	IC2Interrupt
OC2 - Output Compare 2	6	000020h	IFS0<6>	IEC0<6>	OC2Interrupt
T2 – Timer2	7	000022h	IFS0<7>	IEC0<7>	T2Interrupt
T3 – Timer3	8	000024h	IFS0<8>	IEC0<8>	T3Interrupt
SPI1 – SPI1 General	9	000026h	IFS0<9>	IEC0<9>	SPI1Interrupt
SPI1TX - SPI1 Transfer Done	10	000028h	IFS0<10>	IEC0<10>	SPI1TXInterrupt
U1RX – UART1 Receiver	11	00002Ah	IFS0<11>	IEC0<11>	U1RXInterrupt
U1TX – UART1 Transmitter	12	00002Ch	IFS0<12>	IEC0<12>	U1TXInterrupt
ADC1 – A/D Converter 1	13	00002Eh	IFS0<13>	IEC0<13>	ADC1Interrupt
DMA1 - Direct Memory Access 1	14	000030h	IFS0<14>	IEC0<14>	DMA1Interrupt
NVM - NVM Program/Erase Complete	15	000032h	IFS0<15>	IEC0<15>	NVMInterrupt
SI2C1 - I2C1 Slave Events	16	000034h	IFS1<0>	IEC1<0>	SI2C1Interrupt
MI2C1 - I2C1 Master Events	17	000036h	IFS1<1>	IEC1<1>	MI2C1Interrupt
Comp – Comparator	18	000038h	IFS1<2>	IEC1<2>	Complnterrupt
IOC - Interrupt-on-Change Interrupt	19	00003Ah	IFS1<3>	IEC1<3>	IOCInterrupt
INT1 – External Interrupt 1	20	00003Ch	IFS1<4>	IEC1<4>	INT1Interrupt
_	21	_	_	_	_
CCP5 - Capture/Compare 5	22	000040h	IFS1<6>	IEC1<6>	CCP5Interrupt
CCP6 - Capture/Compare 6	23	000042h	IFS1<7>	IEC1<7>	CCP6Interrupt
DMA2 - Direct Memory Access 2	24	000044h	IFS1<8>	IEC1<8>	DMA2Interrupt
OC3 - Output Compare 3	25	000046h	IFS1<9>	IEC1<9>	OC3Interrupt
OC4 - Output Compare 4	26	000048h	IFS1<10>	IEC1<10>	OC4Interrupt
T4 – Timer4	27	00004Ah	IFS1<11>	IEC1<11>	T4Interrupt
T5 – Timer5	28	00004Ch	IFS1<12>	IEC1<12>	T5Interrupt
INT2 – External Interrupt 2	29	00004Eh	IFS1<13>	IEC1<13>	INT2Interrupt
U2RX – UART2 Receiver	30	000050h	IFS1<14>	IEC1<14>	U2RXInterrupt
U2TX – UART2 Transmitter	31	000052h	IFS1<15>	IEC1<15>	U2TXInterrupt
SPI2 – SPI2 General	32	000054h	IFS2<0>	IEC2<0>	SPI2Interrupt
SPI2TX - SPI2 Transfer Done	33	000056h	IFS2<1>	IEC2<1>	SPI2TXInterrupt
_	34	_	_	_	_
_	35		_	_	
DMA3 - Direct Memory Access 3	36	00005Ch	IFS2<4>	IEC2<4>	DMA3Interrupt
IC3 – Input Capture 3	37	00005Eh	IFS2<5>	IEC2<5>	IC3Interrupt
IC4 - Input Capture 4	38	000060h	IFS2<6>	IEC2<6>	IC4Interrupt
IC5 – Input Capture 5	39	000062h	IFS2<7>	IEC2<7>	IC5Interrupt
IC6 - Input Capture 6	40	000064h	IFS2<8>	IEC2<8>	IC6Interrupt

Hình 1.Các thanh ghi dùng trong cấu hình Interrupt.

2.2. Các thanh ghi cấu hình ngắt

2.2.1. Thanh ghi INTCON1

R/W-0	U-0								
NSTDIS	_	_	_	_	_	_	_		
bit 15 b									

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
_	_	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Bit Tên Chức năng **NSTDIS**: Interrupt Nesting Disable bit 15 1 = Cho phép interrupt nesting. 0 = Không cho phép interrupt nesting. MATHERR: Arithmetic Error Trap Status bit 4 1 = Overflow trap đã xảy ra. 0 = Overflow trap chưa xảy ra. 3 **ADDRERR**: Address Error Trap Status bit $1 = L\tilde{0}i$ địa chỉ trap đã xảy ra. $0 = L\tilde{0}i$ địa chỉ chưa xảy ra. 1 = Lỗi stack đã xảy ra. 2 STKERR: Stack Error Trap Status bit $0 = L\tilde{o}i$ stack chưa xảy ra. **OSCFAIL:** Oscillator Failure Trap Status bit $1 = L\tilde{0}i$ bô dao đông đã xảy ra. $0 = L\tilde{0}i$ bô dao đông chưa xảy ra.

2.2.2. Thanh ghi INTCON2

R/W-1	R-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	
GIE	DISI	SWTRAP	_	_	_	_	AIVTEN	
bit 15								

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

Bit	Tên	Chức năng
15	GIE: Global Interrupt Enable bit	1 = Cho phép sử dụng Interrupt.
		0 = Tắt Interrupt.
14	DISI: DISI Instruction Status bit	1 = Kích hoạt câu lệnh DISI.
		0 = Không kích hoạt câu lệnh DISI.
13	SWTRAP: Software Trap Status bit	1: Software trap được kích hoạt.

		0: Software trap bị tắt.
8	AIVTEN: Alternate Interrupt Vector Table	1: Sử dụng bảng ngắt thay thế.
	Enable bit	0: Sử dụng bảng ngắt chuẩn.
4	INT4EP: External Interrupt 4 Edge Detect	1 = Interrupt khi có cạnh xuống.
	Polarity Select bit	0 = Interrupt khi có cạnh lên.
3	INT3EP: External Interrupt 3 Edge Detect	1 = Interrupt khi có cạnh xuống.
	Polarity Select bit	0 = Interrupt khi có cạnh lên.
2	INT2EP: External Interrupt 2 Edge Detect	1 = Interrupt khi có cạnh xuống.
	Polarity Select bit	0 = Interrupt khi có cạnh lên.
1	INT1EP: External Interrupt 1 Edge Detect	1 = Interrupt khi có cạnh xuống.
	Polarity Select bit	0 = Interrupt khi có cạnh lên.
0	INT0EP: External Interrupt 0 Edge Detect	1 = Interrupt khi có cạnh xuống.
	Polarity Select bit	0 = Interrupt khi có cạnh lên.

2.2.3. Thanh ghi INTCON4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/C-0	R/C-0
_	_	_	_	_	_	ECCDBE	SGHT
bit 7							bit 0

Legend:	C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

Bit	Tên	Chức năng
14	ECCDBE : ECC Double-Bit Error Trap bit.	1 = ECC Double-Bit Error Trap đã xảy
		ra. 0 = ECC Double-Bit Error Trap chưa đã xảy ra.
13	SGHT : Software Generated Hard Trap Status bit.	1: Software tạo ra hard trap vừa xảy ra. 0: Software tạo ra hard trap chưa xảy ra.

2.2.4. Thanh ghi cò ngắt IFSx

Cho biết trạng thái của cờ ngắt, nếu bit trong thanh ghi bằng "1" thì ngắt xảy ra, nếu bằng "0" thì ngắt chưa xảy ra.

2.2.5. Thanh ghi cho phép ngắt IECx

Cho phép ngắt nếu bit là "1", ngược lại không cho phép ngắt khi bit là "0".

2.2.6. Thanh ghi đô ưu tiên ngắt ICPx

Cấu hình độ ưu tiên cho từng nguồn ngắt tương ứng với bảng thanh ghi trong hình 2.8.

2.3. Ngắt Interrupt-On-Change

Chức năng ngắt Interrupt-On-Change cho phép PIC24F tạo ra ngắt khi có sự thay rỗi trạng thái của các chân IO port (có sự thay đổi trạng thái từ thấp lên cao – mức "0" lên mức "1", hoặc từ cao xuống thấp – mức "1" xuống "0").

Các thanh ghi cấu hình ngắt của chức năng Interrupt-On-Change trên PIC24F bao gồm:

- Thanh ghi PADCON
- Thanh ghi IOCSTAT
- Thanh ghi IOCPx
- Thanh ghi IOCNx
- Thanh ghi IOCFx

2.3.1. Thanh ghi PADCON

R/W-0	U-0						
IOCON	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_		_				PMPTTL
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Bit	Tên	Chức năng
15	IOCON: Interrupt-on-Change Enable bit	1 = Cho phép chức năng Interrupt-on-
		Change hoặt động.
		0 = Vô hiệu hóa chức năng Interrupt-on-
		Change.
0	PMPTTL: PMP Port type bit	1 = Các mức TTL trên port PMP.
		0 = Cho phép trigger schmitt trên port PMP

2.3.2. Thanh ghi IOCSTAT

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/HS/HC-0						
_	IOCPGF	IOCPFF	IOCPEF	IOCPDF	IOCPCF	IOCPBF	IOCPAF
bit 7	•		•				bit 0

Legend:	HS = Hardware Settable bit	Hardware Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Bit		Tên		Chức năng
6	IOCPGF:	Interrup-on-Change	PORTG	1 = Có sự thay đổi trên chân đã được kích
	Flag bit	interrup on change	TORTO	hoat chức năng IOC trên PORTG.
	Tiug oit			0 = Không có sự thạy đổi trên chân đã
				được kích hoạt chức năng IOC trên
				PORTG.
5	IOCPFF: I	nterrupt-on-Change PO	RTF Flag	1 = Có sự thay đổi trên chân đã được kích
	bit			hoạt chức năng IOC trên PORTF.
				0 = Không có sự thạy đổi trên chân đã
				được kích hoạt chức năng IOC trên
				PORTF.
4	IOCPEF:	Interrupt-on-Change	PORTE	1 = Có sự thay đổi trên chân đã được kích
	Flag bit	-		hoạt chức năng IOC trên PORTE.
				0 = Không có sự thạy đổi trên chân đã
				được kích hoạt chức năng IOC trên
				PORTE.
3	IOCPDF:	Interrupt-on-Change	PORTD	1 = Có sự thay đổi trên chân đã được kích
	Flag bit.			hoạt chức năng IOC trên PORTD.
				0 = Không có sự thạy đổi trên chân đã
				được kích hoạt chức năng IOC trên
				PORTD.
2	IOCPCF:	Interrupt-on-Change	PORTC	1 = Có sự thay đổi trên chân đã được kích
	Flag bit.			hoạt chức năng IOC trên PORTC.
				0 = Không có sự thạy đổi trên chân đã
				được kích hoạt chức năng IOC trên
1	TOCODE	T	DODED	PORTC.
1	IOCPBF:	Interrupt-on-Change	PORTB	1 = Có sự thay đổi trên chân đã được kích
	Flag bit.			hoạt chức năng IOC trên PORTB.
				0 = Không có sự thạy đổi trên chân đã
				được kích hoạt chức năng IOC trên
				PORTB.

0	IOCPAF :	Interrupt-on-Change	PORTA	1 = Có sự thay đổi trên chân đã được kích
	Flag bit			hoạt chức năng IOC trên PORTA.
				0 = Không có sự thạy đổi trên chân đã
				được kích hoạt chức năng IOC trên
				PORTA.

2.6.3. Thanh ghi IOCPx

Cho phép cấu hình chân của PORTx tương ứng sẽ tạo ra ngắt nếu có cạnh lên của tác động (thay đổi từ mức "0" lên mức "1"). Nếu bit **IOCPx** là "1" thì sẽ cho phép tạo ra ngắt khi có cạnh lên, gược lại nếu bit **IOCPx** là "0" thì sẽ không tạo ra ngắt.

2.6.4. Thanh ghi IOCNx

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
	IOCNx<15:8>									
bit 15							bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IOCNx<7:0>								
bit 7							bit 0	

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

Cho phép cấu hình chân của PORTx tương ứng sẽ tạo ra ngắt nếu có cạnh lên của tác động (thay đổi từ mức "1" lên xuống "0"). Nếu bit IOCPx là "1" thì sẽ cho phép tạo ra ngắt khi có cạnh lên, ngược lại nếu bit IOCPx là "0" thì sẽ không tạo ra ngắt.

2.6.5. Thanh ghi IOCFx

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
IOCFx<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IOCFx<7:0>									
bit 7							bit 0		

Legend:			
R = Readable bit	= Readable bit W = Writable bit		d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Các bit của thanh ghi IOCFx là cờ báo hiệu chân nào của PORTx xảy ra sự thay đổi cạnh lên hoặc cạnh xuống. Nếu có sự thay đổi, các bit của IOCFx sẽ bằng 1, hoặc bằng 0 tương ứng nếu không có sự thay đổi về cạnh.

2.7. Ngắt Timer

Timer 16 bit có khả năng sinh ra ngắt (bit TxIF set lên 1) nếu được cho phép và một trong những sự kiện:

- Bộ đếm đạt một giá trị được thiết lập trong thanh ghi chu kì (PRx) và timer không hoạt động trong chế độ Gated Timer.
 - Có một cạnh xuống xảy ra tại chân TxCK khi timer hoạt động trong chế độ Gated timer.
 Cấu hình ngắt:
 - Bit TxIF phải được xóa bởi phần mềm.
 - Để cho phép Timer sinh ra ngắt, bit Timer Interrupt Enable (**TxIE**) phải được bật lên 1 đồng thời giá trị ưu tiên ngắt (được thiết lập qua các bit **TxIP**<2:0>) phải khác 0.

Hình 2. Hình thể hiện sư kiến tạo ra ngắt Timer.

2.8. Ngắt ADC

Bộ ADC có thể tạo ra ngắt trong các trường hợp sau:

- Khi trình tự phát hiện ngưỡng đã hoàn thành và so sánh hợp lệ đã xảy ra.
- Ngắt khi so sánh hợp lệ đã xảy ra.
- Ngắt sau khi trình tự phát hiện ngưỡng đã hoàn thành.

Cấu hình ngắt:

- Cấu hình bật interrupt với ngưỡng ở bit **AD1CON5**<9:8>.
- Xóa cờ ngắt: **IFS0**<13>.
- Bật interrupt cho bộ: **IEC0**<13>.
- Cấu hình độ ưu tiên: **IPC3**<6:4>.

3. Phần thực hành

Tạo project trên MPLAB-X chpo device là **PIC24FJ1024GB610** và đặt tên **Lab4** rồi lưu ở thư mục **D:\VDK\Lab4**. Thực hiện thêm file main.c với nội dung như đoạn code bên dưới.

```
#include "xc.h"
#include <p24fj1024gb610.h>
void Init OnChange Interrupt(void) {
  ANSD = 0;
  TRISD = 0xffff:
  IOCIP = 7;
  _{IOCIF} = 0:
  _{IOCIE} = 1;
  PADCONbits.IOCON = 1;
  IOCNDbits.IOCND6 = 1;
void _ISR _IOCInterrupt(void) {
  PORTA++:
  IOCFD = 0;
  \_IOCIF = 0;
int main() {
  ANSA = 0;
  TRISA = 0:
  PORTA = 0;
  Init OnChange Interrupt();
  while (1);
  return 0;
```

Lưu ý: sinh viên phải cấu hình bit như hình 2.12 để xuất giá trị LED.

Hình 2.3. Cấu hình bit.

Tiến hành chạy chương trình và cho biết kết quả.

4. Bài tập

4.1. Bài chuẩn bị ở nhà:

1. Cho biết cách cấu Interrupt-on-Change ở nút nhấn số S4 gồm những thông tin gì?

4.2. Bài thực hành trên lớp:

- 1. Cấu hình PIC24/32 để thực hiện ngắt trên Timer1 để bật tắt led sau mỗi 500 ms.
- 2. Cấu hình PIC24/32 để thực hiện ngắt trên ADC để đọc giá trị của cảm biến nhiệt độ và ghi ra LED.

5. Tài liệu tham khảo

- 1. Explorer 16-32 Development Board User's Guide.pdf.
- 2. PIC24FJ1024GB610 family datasheet.pdf.
- 3. Explorer_16_32_Schematics_R6_3.pdf.
- 4. PIC24FJ1024GB610 Plug-In Module (PIM) Information Sheet.pdf.