Alternative Fractional Factorial Designs

BIOE 498/598 PJ

Spring 2021

How low can we go?

The efficiency of fractional factorial designs offsets the exponential increase in runs for factorial designs.

How low can we go? (zoomed in)

Foldover Designs

Imagine a $2_{\rm III}^{6-3}$ design with

$$D = AB$$
, $E = AC$, $F = BC$

$$I = ABD = ACE = BCF = DEF$$

= $BCDE = ACDF = ABEF$

After analysis, we find that both B and D are significant.

Since D = AB, the significance of D might be due to B and AB.

We can *augment* the design by doubling the runs *with D flipped*. This clears *D* and its interactions.

Run	Α	В	C	D	Ε	F
1	_	_	_	+	+	+
2	+	_	_	_	_	+
3	_	+	_	_	+	_
4	+	+	_	+	_	_
5	_	_	+	+	_	_
6	+	_	+	_	+	_
7	_	+	+	_	_	+
8	+	+	+	+	+	+

Foldover Designs

Imagine a $2_{\rm III}^{6-3}$ design with

$$D = AB$$
, $E = AC$, $F = BC$

$$I = ABD = ACE = BCF = DEF$$

= $BCDE = ACDF = ABEF$

After analysis, we find that both E and D are significant.

Since D = AB, the significance of D might be due to B and AB.

We can *augment* the design by doubling the runs *with D flipped*. This clears *D* and its interactions.

-	3	_	+	_	_	
	4	+	+	_	+	
	5	_	_	+	+	
=	6	+	_	+	_	
	7	_	+	+	_	
	8	+	+	+	+	
3	9	_	_	_	_	
	10	+	_	_	+	
D	11	_	+	_	+	
ν	10					

Run

2

13

14

15

16

Mirror image designs

If we combine a Resolution III design with its mirror image (all factors flipped), we have a Resolution ${\rm IV}$ design with all main effects clear.

If we add a blocking factor we can perform the experimental batches sequentially.

As with foldover designs, mirror image designs are only necessary if more than one main effect is significant.

Plackett-Burman (PB) Designs

The number of runs in a fractional factorial design is always a power of two $(8, 16, 32, \ldots)$.

Plackett-Burman designs allow run sizes in multiples of four regardless of the number of factors.

PB designs have no generators or defining relation (pro & con).

Creating a PB design (up to 23 factors)

1. Start with the first run from the following table.

Runs	Factor Levels
12	++-+++-
20	++++-+-+++-
24	++++-+-+

- 2. Cycle the factor levels by one to get run #2. Repeat for 11, 19, or 23 runs.
- 3. Set the final run to all low (-).
- 4. If the number of factors *k* is less than the number of runs, select the first *k* columns.

A 12-run PB design

Run	A	В	C	D	Ε	F	G	Η	J	K	L
1	+	+	_	+	+	+	_	_	_	+	_
2	_	+	+	_	+	+	+	_	_	_	+
3	+	_	+	+	_	+	+	+	_	_	_
4	_	+	_	+	+	_	+	+	+	_	_
5	_	_	+	_	+	+	_	+	+	+	_
6	_	_	_	+	_	+	+	_	+	+	+
7	+	_	_	_	+	_	+	+	_	+	+
8	+	+	_	_	_	+	_	+	+	_	+
9	+	+	+	_	_	_	+	_	+	+	_
10	_	+	+	+	_	_	_	+	_	+	+
11	+	_	+	+	+	_	_	_	+	_	+
12	—	_	_	_	_	_	_	_	_	_	_

Note: We skip "I" when naming factors as this symbol is used for the intercept.

Confounding in PB designs

- Factors in **FF** designs are *confounded* (perfectly correlated).
- ► Factors in **PB** designs are *partially correlated* (complex aliasing).

Example PB design: Cast fatigue

This design includes 7 factors; however, effects are estimated for all columns. The last 4 "factors" are interactions with complex aliasing.

Example PB design: Cast fatigue

This design includes 7 factors; however, effects are estimated for all columns. The last 4 "factors" are interactions with complex aliasing.

The complex aliasing of PB designs allow us to fit models with main and TWI terms **provided the number of terms is small**. This feature is called the *hidden projection property*.

What effects should I include?

Many small models can be built from the 7 main effects and 21 TWIs. How many effects should I include, and which ones?

What effects should I include?

Many small models can be built from the 7 main effects and 21 TWIs. How many effects should I include, and which ones?

We use *subset selection* to find good models with few terms.

```
> castfr <- castf[ , c(1:7, 12)]
> library(leaps)
> modpbr<-regsubsets(y ~ (.)^2, data=castfr,
+ method="exhaustive",nvma=4,nbest=4)
> rs <- summary(modpbr)
> plot(c(rep(1:4,each=4)), rs$adjr2, xlab="No.
+ ylab="Adjusted R-square")
> plot(modpbr,scale="r2")
```


What effects should I include?

Many small models can be built from the 7 main effects and 21 TWIs. How many effects should I include, and which ones?

We use *subset selection* to find good models with few terms.

We stop adding effects when the model improvement diminishes.

Here 3 parameters is a good cutoff.

What parameters should be selected?

Number of		
Terms	Adjusted	Variables
in Model	R-Square	in Model
1	0.3921	FG
1	0.3896	\mathbf{F}
1	0.3814	AE
1	0.0993	$_{\mathrm{BC}}$
2	0.8686	F FG
2	0.5891	AE FG
2	0.5870	FAE
2	0.5403	BD FG
3	0.9348	F AE FG
3	0.9056	F BD FG
3	0.8886	D F FG
3	0.8785	F DG FG
4	0.9507	F AE EF FG
4	0.9465	F AE CD FG
4	0.9439	F AD AE FG
4	0.9438	F BD CF FG

What parameters should be selected?

Number of		
Terms	Adjusted	Variables
in Model	R-Square	in Model
1	0.3921	FG
1	0.3896	\mathbf{F}
1	0.3814	AE
1	0.0993	$_{\mathrm{BC}}$
2	0.8686	F FG
2	0.5891	AE FG
2	0.5870	FAE
2	0.5403	BD FG
3	0.9348	F AE FG
3	0.9056	F BD FG
3	0.8886	D F FG
3	0.8785	F DG FG
4	0.9507	F AE EF FG
4	0.9465	F AE CD FG
4	0.9439	F AD AE FG
4	0.9438	F BD CF FG

Be mindful of the *heredity effect*: A model that includes an interaction should also include the corresponding main effects.

Mixed-level factorials

- ightharpoonup Fractional factorial and PB designs use two level factors (+/-).
- ▶ The theory does not extend simply to multi-level factors.

Mixed-level factorials

- \triangleright Fractional factorial and PB designs use two level factors (+/-).
- ▶ The theory does not extend simply to multi-level factors.
- One solution is Orthogonal Array Designs (OAs).
 - ▶ OAs are "hand-crafted" for mixtures of 2- and 3-level factors.
 - Software packages choose OA designs from catalogs.

Mixed-level factorials

- ▶ Fractional factorial and PB designs use two level factors (+/-).
- ▶ The theory does not extend simply to multi-level factors.
- One solution is Orthogonal Array Designs (OAs).
 - ▶ OAs are "hand-crafted" for mixtures of 2- and 3-level factors.
 - Software packages choose OA designs from catalogs.
- Analysis of OAs is similar to PB designs
 - ► Resolution III, no defining relation
 - Complex aliasing, hidden projection
 - Models with few parameters can be fit directly to the data.

(Fractional) Factorial Summary

- Fractional designs are the most efficient method to screen large numbers of factors.
- Factors are confounded, but the alias structure is known.
- ▶ PB designs are an alternative if
 - 1. a specific # of runs is needed, or
 - 2. you don't want a secondary experiment
- ► Factors with >2 levels require OA designs.