Instruction fusion opportunities in Manticore

Bachelor semester project
Simon A. Marti, Spring 2022
Supervised by Sahand Kashani & Mahyar Emami

Manticore

- Goal : Accelerate RTL simulation with parallelization
- Run on FPGAs
- Array of custom CPUs
- Wimpy cores with a static schedule

Manticore compiler

- Verilog executable / Netlist
- Standard optimizations
 - Dead code elimination
 - Constant folding
 - Extract parallelism

Custom Instructions

- HW has support for up to 32 custom LUT
- 0 ≤ arity ≤ 4
- Replace logic instructions (AND, OR, XOR)
- Save simple instructions

Goal

- Program with only normal instructions
 - => Program with normal & custom instructions
- Find most profitable instructions to fuse
- Constraint: up to 32 different custom functions

4-inputs fusion examples

"A-fusion"

AND w1, i1, i2;

AND w2, i3, i4;

AND w3, w1, w2;

"B-fusion"

AND w1, i1, i2;

AND w2, w1, i3;

AND w3, w2, i4;

Some fusion save more instructions than other

Needs to be replicated

Fusion conflicts

Before: 6 After: 4 Gain = 2

Before: 6 After: 3 Gain = 3

Algorithm: fixed-point approach

```
    build graph
    find and select fusions to apply
    merge reused operands
    reduce arity
    merge arity-0 instructions
    collapse chains of arity-1 instructions
```

} 6. repeat until no more change in graph

0. Graph building

- Candidates for fusion : AND, OR, XOR
- Not considered : ADD, SLL, MUX, MOV, ...
- Three types of nodes :
 - Logic
 - Const
 - Name


```
AND w5, i8, i9;

AND w6, i10, i11;

AND w7, w5, w6;

MOV o3, w7;

AND w8, i12, i13;

SLL o5, w8, c1;

AND w9, i14, i15;

AND w10, w8, w9;

AND o4, w7, w10;
```


14 / 47

1.1 Fusion pattern-based enumeration

Pattern matching approach

```
for i in body.arity2Instructions :
    for j in i.inputs :
        for k in j.inputs :
        if (i, j, k) forms a fusion pattern :
            record (i, j, k)
```

1.2 Collisions and collision zones

- Each fusion exclude some others
- "Collision zone" = isolated portion of the program where some fusions overlap
- Typical size : 1 300

7 fusions

7 fusions


```
AND w0, w22, i2;
AND w1, w0, i3;
AND w2, w1, i4;
AND w3, w2, i5;
AND w4, i6, i7;
AND o2, w3, w4;
```



```
AND w0, w22, i2;
AND w1, w0, i3;
AND w2, w1, i4;
AND w3, w2, i5;
AND w4, i6, i7;
AND o2, w3, w4;
```



```
AND w0, w22, i2;
AND w1, w0, i3;
AND w2, w1, i4;
AND w3, w2, i5;
AND w4, i6, i7;
AND o2, w3, w4;
```



```
AND w0, w22, i2;
AND w1, w0, i3;
AND w2, w1, i4;
AND w3, w2, i5;
AND w4, i6, i7;
AND o2, w3, w4;
```


Maximum Independent Set

```
AND w0, w22, i2;
AND w1, w0, i3;
AND w2, w1, i4;
AND w3, w2, i5;
AND w4, i6, i7;
AND o2, w3, w4;
```


Maximum Independent Set problem!

1.3 Fusion selection: Heuristic

Given a collision zone :

```
sort it (by degree ascending, gain descending)
while(zone.isNotEmpty):
    f = zone.pop()
    selection.add(f)
    selection.addAll(fusions excluded by f)
```

```
AND w0, w22, i2;
AND w1, w0, i3;
AND w2, w1, i4;
AND w3, w2, i5;
AND w4, i6, i7;
AND o2, w3, w4;
```



```
AND w20, i24, i25;
AND w21, i14, i25;
AND o24, w20, w21;
```



```
AND w20, i24, i25;
AND w21, i14, i25;
AND o24, w20, w21;
```



```
AND w20, i24, i25;
AND w21, i14, i25;
AND o24, w20, w21;
```


4-inputs fusion examples (2)

"C-fusion"

```
CUST w13, [CUST2], i16, i17;
CUST o6, [CUST3], w13, i18, i19;
```


"D-fusion"

```
CUST w17, [CUST3], i21, i22, i23;
CUST o20, [CUST2], w17, i20;
```


3. Arity reduction: Constant folding

3. Arity reduction: Constant folding

3. Arity reduction: Constant folding

5. Collapsing chains of arity-1 nodes

5. Collapsing chains of arity-1 nodes

6. Repeat

- At start, only arity-2 nodes
- Now we have all kind of different nodes
- Rerun to find new fusions

Limit the number of fusions

In HW, bounded to 32 distinct custom functions

Manticore functions
$$\subseteq \{ \mathbb{N}_{16}^4 \rightarrow \mathbb{N}_{16} \}$$

One function can correspond to many fusions

Problems (1)

- Best fusions at an iteration may not be the best over iterations
- Useless constant merging
- Performance: Exponential runtime for optimal choice of fusions

Problems (2)

Function equality

$$(((a \& b) \& c) \& d) == ((a \& b) \& (c \& d))$$

$$((a \& b) \& (a \& b)) == (a \& b)$$

$$((a \mid b) \land (c \& d)) == ((c \& d) \land (a \mid b))$$

Benchmarks

- Mips32: a 32 bits MIPS processor
- PicoRV32 : small 32 bits RISC-V processor
- Swizzle: inversion of a simple bit vector
- XorReduce : XOR bit reduction of bit vector
- Xormix32: pseudorandom number generator
- Bitcoin: a bitcoin mining simulation

Benchmarks: additional information

	#collision zones	largest collision zone
Mips32	4	15
PicoRV32	72	48
Swizzle	1	17
XorReduce	1	37
Xormix32	36	291
Bitcoin	12	11

Benchmark results

Random choice

	#Cycles before	#Cycles after	Speedup	Custom Functions	Fusions	Loop iterations
MIPS32	335	315	5.97%	13	23	3
PicoRV32	2028	1767	12.87%	32	216	2
Swizzle	57	46	19.30%	4	4	3
XorReduce	107	87	18.69%	4	14	3
Xormix32	1808	1269	29.81%	32	431	2
Bitcoin	266	225	15.41%	14	141	4

Benchmark results

Smarter choice

	#Cycles before	#Cycles after	Speedup	Custom Functions	Fusions	Loop iterations
MIPS32	335	315	5.97%	13	23	2
PicoRV32	2028	1770	12.72%	32	175	2
Swizzle	57	46	19.30%	4	4	3
XorReduce	107	85	20.56%	2	12	2
Xormix32	1808	1092	39.60%	32	384	2
Bitcoin	327	279	14.68%	13	119	3

Benchmarks: Unbounded functions

- HW with support for infinitely many LUTs
- Random choice

	#Cycles before	#Cycles after	Speedup	Custom Functions	Fusions	Loop iterations
MIPS32	335	315	5.97%	13	23	2
PicoRV32	2028	1528	21.84%	64	319	3
Swizzle	57	46	19.30%	4	4	3
XorReduce	107	89	16.82%	2	10	2
Xormix32	1808	1105	38.88%	44	360	4
Bitcoin	219	187	14.61%	13	117	3

Benchmark results

- HW with support for infinitely many LUTs
- Smarter choice

	#Cycles before	#Cycles after	Speedup	Custom Functions	Fusions	Loop iterations
MIPS32	335	315	5.97%	13	23	2
PicoRV32	2028	1578	22.19%	62	316	3
Swizzle	57	46	19.30%	4	4	3
XorReduce	107	85	20.56%	2	12	2
Xormix32	1808	995	44.97%	32	364	3
Bitcoin	211	182	13.74%	14	120	3

Benchmarks results

Conclusion

- Manticore: Parallelize RTL simulation on FPGAs
- Compiler: Pass to find custom functions
- Algorithm: Fixed-point based loop
 - Pattern matching search
 - Selection (random/locally optimal/heuristic)
 - Transformation (arity reduction, collapsing)
- ~20% speedup on some circuits