Local Variable Selection and Parameter Estimation of Spatially Varying Coefficient Regression Models

Wesley Brooks

1. Spatially varying coefficients regression

1.1. Model

Consider n data points, observed at sampling locations s_1, \ldots, s_n , which are distributed in a spatial domain $D \subset \mathbb{R}^2$ according to a density f(s). For $i = 1, \ldots, n$, let $y(s_i)$ and $x(s_i)$ denote the univariate response variable, and a (p + 1)-variate vector of covariates measured at location s_i , respectively. At each location s_i , assume that the outcome is related to the covariates by a linear model where the coefficients $\beta(s_i)$ may be spatially-varying and $\varepsilon(s_i)$ is random error at location s_i . That is,

$$y(s_i) = x(s_i)'\beta(s_i) + \varepsilon(s_i). \tag{1}$$

Further assume that the error term $\varepsilon(s_i)$ is normally distributed with zero mean and variance σ^2 , and that $\varepsilon(s_i)$, i = 1, ..., n are independent. That is,

$$\varepsilon(\mathbf{s}_i) \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma^2\right).$$
 (2)

In the context of nonparametric regression, the boundary-effect bias can be reduced by local polynomial modeling, usually in the form of a locally linear model (Fan and Gijbels, 1996). Here, locally linear coefficients are estimated by augmenting the local design matrix with covariate-by-location

Preprint April 28, 2014

interactions in two dimensions as proposed by Wang et al. (2008). The augmented local design matrix at location s_i is

$$Z(s_i) = (X L_i X M_i X)$$
(3)

where X is the unaugmented matrix of covariates, $L_i = \text{diag}\{s_{i',x} - s_{i,x}\}$ and $M_i = \text{diag}\{s_{i',y} - s_{i,y}\}$ for i' = 1, ..., n.

1.2. Estimation

The total log-likelihood of the observed data is the sum of the log-likelihood of each individual observation:

$$\ell\left\{\boldsymbol{\beta}\right\} = -(1/2) \sum_{i'=1}^{n} \left[\log \sigma^2 + \sigma^{-2} \left\{y(\boldsymbol{s}_{i'}) - \boldsymbol{z}'(\boldsymbol{s}_{i'})\boldsymbol{\beta}(\boldsymbol{s}_{i})\right\}^2\right]. \tag{4}$$

Since there are a total of $n \times 3(p+1)$ free parameters for n observations, the model is not identifiable and it is not possible to directly maximize the total likelihood.

The values of the local coefficients $\beta(s)$ are estimated at location s by the weighted likelihood

$$\mathcal{L}\{\beta(s)\} = \prod_{i'=1}^{n} \left\{ \left(2\pi\sigma^{2} \right)^{-1/2} \exp\left[-(1/2)\sigma^{-2} \left\{ y(s_{i'}) - z'(s_{i'})\beta(s) \right\}^{2} \right] \right\}^{K_{h}(\|s - s_{i'}\|)}, \quad (5)$$

where the weights are calculated by a kernel function $K_h(\cdot)$ such as the Epanechnikov kernel:

$$K_{h}(\delta_{ii'}) = h^{-2}K(h^{-1}\delta_{ii'})$$

$$K(x) = \begin{cases} (3/4)(1-x^{2}) & \text{if } \delta_{ii'} < h, \\ 0 & \text{if } \delta_{ii'} \ge h. \end{cases}$$
(6)

Thus, the local log-likelihood function is, up to an additive constant:

$$\ell\{\beta(s)\} = -(1/2) \sum_{i'=1}^{n} K_h(\|s - s_{i'}\|) \left[\log \sigma^2 + \sigma^{-2} \left\{ y(s_{i'}) - z'(s_{i'})\beta(s) \right\}^2 \right].$$
 (7)

This local likelihood can be maximized by weighted least squares

$$\hat{\boldsymbol{\beta}}(s) = \left\{ \boldsymbol{Z}^{T}(s)\boldsymbol{W}(s)\boldsymbol{Z}(s) \right\}^{-1} \boldsymbol{Z}^{T}(s)\boldsymbol{W}(s)\boldsymbol{Y}. \tag{8}$$

From (7), the maximum local likelihood estimate $\hat{\sigma}_i^2$ is:

$$\hat{\sigma}^{2}(\mathbf{s}) = \left\{ \sum_{i'=1}^{n} K_{h}(\|\mathbf{s} - \mathbf{s}_{i'}\|) \right\}^{-1} \sum_{i'=1}^{n} K_{h}(\|\mathbf{s} - \mathbf{s}_{i'}\|) \left\{ y(\mathbf{s}_{i'}) - \mathbf{z}'(\mathbf{s}_{i'}) \hat{\boldsymbol{\beta}}(\mathbf{s}) \right\}^{2}$$
(9)

2. Local variable selection and parameter estimation

2.1. Local variable selection

Local adaptive grouped regularization (LAGR) is explored as a penalty function for local variable selection in SVCR models. The proposed local variable selection with LAGR penalty is an ℓ_1 regularization method for variable selection in regression models (Wang and Leng, 2008; Zou, 2006). The adaptive group lasso selects groups of covariates for inclusion or exclusion in the model. For an SVCR model, each variable group is a covariate and its interactions on location.

2.1.1. Local variable selection and coefficient estimation with the adaptive group lasso

The objective function for the LAGR at location s consists of the local log-likelihood and an additive penalty:

$$S\{\boldsymbol{\beta}(\boldsymbol{s})\} = -2\ell_{i}\{\boldsymbol{\beta}(\boldsymbol{s})\} + \mathcal{J}_{1}\{\boldsymbol{\beta}(\boldsymbol{s})\}$$

$$= \sum_{i'=1}^{n} K_{h}(\|\boldsymbol{s} - \boldsymbol{s}_{i'}\|) \left[\log \sigma^{2} + \sigma^{-2} \left\{y(\boldsymbol{s}_{i'}) - \boldsymbol{z}'(\boldsymbol{s}_{i'})\boldsymbol{\beta}(\boldsymbol{s}_{i})\right\}^{2}\right] + \lambda_{n}(\boldsymbol{s}) \sum_{j=1}^{p} \|\beta_{j}(\boldsymbol{s})\| \|\gamma_{j}(\boldsymbol{s})\|^{-\gamma}$$

$$(10)$$

where $\sum_{i'=1}^{n} K_h(\|\mathbf{s}-\mathbf{s}_i\|) \{y(\mathbf{s}_{i'}) - \mathbf{z}'(\mathbf{s}_{i'})\boldsymbol{\beta}(\mathbf{s})\}^2$ is the weighted sum of squares minimized by traditional GWR, and $\mathcal{J}_1\{\boldsymbol{\beta}(\mathbf{s})\} = \lambda_n(\mathbf{s}) \sum_{j=1}^{p} \|\beta_j(\mathbf{s})\| \|\tilde{\beta}_j(\mathbf{s})\|^{-\gamma}$ is the LAGR penalty. With the vector of unpenalized local coefficients $\tilde{\boldsymbol{\beta}}(\mathbf{s})$, the LAGR penalty for the jth group of coefficients $\beta_j(\mathbf{s})$ at location \mathbf{s} is $\lambda_n(\mathbf{s})\|\tilde{\beta}_j(\mathbf{s})\|^{-\gamma}$, where $\lambda_n(\mathbf{s}) > 0$ is a the local tuning parameter applied to all coefficients at location \mathbf{s} and $\boldsymbol{\gamma}(\mathbf{s}) = \{\gamma_1(\mathbf{s}), \dots, \gamma_p(\mathbf{s})\}'$ is the vector of adaptive weights at location \mathbf{s} .

3. Asymptotic properties

Consider a local model at location s where there are $p_0 < p$ covariates with nonzero local regression coefficients. Without loss of generality, assume these are covariates $1, \ldots, p_0$.

Let $a_n = \max\{\lambda_n(s) \|\tilde{\beta}_j(s)\|^{-\gamma}, j \leq p_0\}$ be the largest penalty applied to a covariate group whose true coefficient norm is nonzero, and $b_n = \min\{\lambda_n(s) \|\tilde{\beta}_j(s)\|^{-\gamma}, j > p_0\}$ be the smallest penalty applied to a covariate group whose true coefficient norm is zero.

3.1. Asymptotic normality

Theorem 3.1. If
$$h^{-1}n^{-1/2}a_n \xrightarrow{p} 0$$
 and $hn^{-1/2}b_n \xrightarrow{p} \infty$ then $\hat{\beta}(s) - \beta(s) - \frac{\kappa_2 h^2}{2\kappa_0} \{\beta_{uu}(s) + \beta_{vv}(s)\} = O_p(n^{-1/2}h^{-1})$

Proof. The idea of the proof is to show that the objective being minimized achieves a unique minimum, which must be $\hat{\beta}(s)$.

The order of convergence is $hn^{1/2}$ where $h = O(n^{-1/6})$.

We find the limiting distribution of the estimator:

$$V_{4}^{(n)}(\boldsymbol{u}) = Q\left\{\boldsymbol{\beta}(s) + h^{-1}n^{-1/2}\boldsymbol{u}\right\} - Q\left\{\boldsymbol{\beta}(s)\right\}$$

$$= (1/2)\left[\boldsymbol{Y} - \boldsymbol{Z}(s)\left\{\boldsymbol{\beta}(s) + h^{-1}n^{-1/2}\boldsymbol{u}\right\}\right]^{T}\boldsymbol{W}(s)\left[\boldsymbol{Y} - \boldsymbol{Z}(s)\left\{\boldsymbol{\beta}(s) + h^{-1}n^{-1/2}\boldsymbol{u}\right\}\right]$$

$$+ \sum_{j=1}^{p} \lambda_{j} \|\boldsymbol{\beta}(s) + h^{-1}n^{-1/2}\boldsymbol{u}_{j}\|$$

$$- (1/2)\left\{\boldsymbol{Y} - \boldsymbol{Z}(s)\boldsymbol{\beta}(s)\right\}^{T}\boldsymbol{W}(s)\left\{\boldsymbol{Y} - \boldsymbol{Z}(s)\boldsymbol{\beta}(s)\right\} - \sum_{j=1}^{p} \lambda_{j} \|\boldsymbol{\beta}(s)\|$$

$$= (1/2)\boldsymbol{u}^{T}\left\{h^{-2}n^{-1}\boldsymbol{Z}^{T}(s)\boldsymbol{W}(s)\boldsymbol{Z}(s)\right\}\boldsymbol{u} - \boldsymbol{u}^{T}\left[h^{-1}n^{-1/2}\boldsymbol{Z}^{T}(s)\boldsymbol{W}(s)\left\{\boldsymbol{Y} - \boldsymbol{Z}(s)\boldsymbol{\beta}(s)\right\}\right]$$

$$+ \sum_{j=1}^{p} n^{-1/2}\lambda_{j}n^{1/2}\left\{\|\boldsymbol{\beta}_{j}(s) + h^{-1}n^{-1/2}\boldsymbol{u}_{j}\| - \|\boldsymbol{\beta}_{j}(s)\|\right\}$$

$$(11)$$

Note the different limiting behavior of the third term between the cases $j \leq p_0$ and $j > p_0$:

Case
$$j \leq p_0$$
. If $j \leq p_0$ then $n^{-1/2}\lambda_j \to n^{-1/2}\lambda \|\boldsymbol{\beta}_j(s)\|^{-\gamma}$ and $\|\sqrt{n} \{\|\boldsymbol{\beta}_j(s) + h^{-1}n^{-1/2}\boldsymbol{u}_j\| - \|\boldsymbol{\beta}_j(s)\|\} \| \leq h^{-1}\|\boldsymbol{u}_j\|$ so $\lim_{n\to\infty} \lambda_j (\|\boldsymbol{\beta}_j(s) + h^{-1}n^{-1/2}\boldsymbol{u}_j\| - \|\boldsymbol{\beta}_j(s)\|) \leq h^{-1}n^{-1/2}\lambda_j\|\boldsymbol{u}_j\| \leq h^{-1}n^{-1/2}a_n\|\boldsymbol{u}_j\| \to 0$

Case
$$j > p_0$$
. If $j > p_0$ then $\lambda_j (\|\beta_j(s) + h^{-1}n^{-1/2}u_j\| - \|\beta_j(s)\|) = \lambda_j h^{-1}n^{-1/2}\|u_j\|$.

And note that $h = O(n^{-1/6})$ so that if $hn^{-1/2}b_n \xrightarrow{p} \infty$ then $h^{-1}n^{-1/2}b_n \xrightarrow{p} \infty$.

Now, if $\|\boldsymbol{u}_j\| \neq 0$ then $h^{-1}n^{-1/2}\lambda_j\|\boldsymbol{u}_j\| \geqslant h^{-1}n^{-1/2}b_n\|\boldsymbol{u}_j\| \to \infty$. On the other hand, if $\|\boldsymbol{u}_j\| = 0$ then $h^{-1}n^{-1/2}\lambda_j\|\boldsymbol{u}_j\| = 0$.

Thus, the limit of $V_4^{(n)}(\boldsymbol{u})$ is the same as the limit of $V_4^{*(n)}(\boldsymbol{u})$ where

$$V_4^{*(n)}(\boldsymbol{u}) = \begin{cases} (1/2)\boldsymbol{u}^T \left\{ h^{-2}n^{-1}\boldsymbol{Z}^T(\boldsymbol{s})\boldsymbol{W}(\boldsymbol{s})\boldsymbol{Z}(\boldsymbol{s}) \right\} \boldsymbol{u} - \boldsymbol{u}^T \left[h^{-1}n^{-1/2}\boldsymbol{Z}^T(\boldsymbol{s})\boldsymbol{W}(\boldsymbol{s}) \left\{ \boldsymbol{Y} - \boldsymbol{Z}(\boldsymbol{s})\boldsymbol{\beta}(\boldsymbol{s}) \right\} \right] & \text{if } \|\boldsymbol{u}_j\| = 0 \ \forall j > p_0 \\ \infty & \text{otherwise} \end{cases}$$

And $V_4^{*(n)}(\boldsymbol{u})$ is convex and is minimized at $\hat{\boldsymbol{u}}^{(n)}$:

$$0 = \left\{ h^{-2}n^{-1}\boldsymbol{Z}^{T}(s)\boldsymbol{W}(s)\boldsymbol{Z}(s) \right\} \hat{\boldsymbol{u}}^{(n)} - \left[h^{-1}n^{-1/2}\boldsymbol{Z}^{T}(s)\boldsymbol{W}(s) \left\{ \boldsymbol{Y} - \boldsymbol{Z}(s)\boldsymbol{\beta}(s) \right\} \right]$$

$$\therefore \hat{\boldsymbol{u}}^{(n)} = \left\{ n^{-1}\boldsymbol{Z}^{T}(s)\boldsymbol{W}(s)\boldsymbol{Z}(s) \right\}^{-1} \left[hn^{-1/2}\boldsymbol{Z}^{T}(s)\boldsymbol{W}(s) \left\{ \boldsymbol{Y} - \boldsymbol{Z}(s)\boldsymbol{\beta}(s) \right\} \right]$$
(12)

By the epiconvergence results of Geyer (1994) and Knight and Fu (2000), the minimizer of the limiting function is the limit of the minimizers $\hat{u}^{(n)}$. And since, by Lemma 2 of Sun et al. (2014),

$$\hat{\boldsymbol{u}}^{(n)} \stackrel{d}{\to} N\left(0, f(\boldsymbol{s})\kappa_0^{-2}\nu_0\sigma^2\Psi^{-1}\right) \tag{13}$$

the result is proven.

3.2. Selection

Theorem 3.2. If
$$hn^{-1/2}b_n \stackrel{p}{\to} \infty$$
 then $P\left\{\hat{\beta}_{(b)}(s) = 0\right\} \to 1$.

Proof. We showed in Theorem 3.1 that the

The proof is by contradiction.

Recall that the objective to be minimized by $\hat{\beta}_{(p)}(s)$ is

$$Q\left\{\hat{\boldsymbol{\beta}}(\boldsymbol{s})\right\} = (1/2)\left\{\boldsymbol{Y} - \boldsymbol{Z}(\boldsymbol{s})\hat{\boldsymbol{\beta}}(\boldsymbol{s})\right\}^{T}\boldsymbol{W}(\boldsymbol{s})\left\{\boldsymbol{Y} - \boldsymbol{Z}(\boldsymbol{s})\hat{\boldsymbol{\beta}}(\boldsymbol{s})\right\} + \sum_{j=1}^{p} \lambda_{j} \|\hat{\boldsymbol{\beta}}_{p}(\boldsymbol{s})\|$$
(14)

Let $\hat{\beta}_p(s) \neq 0$. Then (14) is differentiable w.r.t. $\beta_p(s)$ and Q is maximized at

$$0 = \mathbf{Z}_{(p)}^{T}(s)\mathbf{W}(s) \left\{ \mathbf{Y} - \mathbf{Z}_{(-p)}(s)\hat{\boldsymbol{\beta}}_{(-p)}(s) - \mathbf{Z}_{(p)}(s)\hat{\boldsymbol{\beta}}_{(p)}(s) \right\} - \lambda_{p} \frac{\hat{\boldsymbol{\beta}}_{(p)}(s)}{\|\hat{\boldsymbol{\beta}}_{(p)}(s)\|}$$

$$= \mathbf{Z}_{(p)}^{T}(s)\mathbf{W}(s) \left[\mathbf{Y} - \mathbf{Z}(s)\boldsymbol{\beta}(s) - \frac{h^{2}\kappa_{2}}{2\kappa_{0}} \left\{ \boldsymbol{\beta}_{uu}(s) + \boldsymbol{\beta}_{vv}(s) \right\} \right]$$

$$+ \mathbf{Z}_{(p)}^{T}(s)\mathbf{W}(s)\mathbf{Z}_{(-p)}(s) \left[\boldsymbol{\beta}_{(-p)}(s) + \frac{h^{2}\kappa_{2}}{2\kappa_{0}} \left\{ \boldsymbol{\beta}_{(-p),uu}(s) + \boldsymbol{\beta}_{(-p),vv}(s) \right\} - \hat{\boldsymbol{\beta}}_{(-p)}(s) \right]$$

$$+ \mathbf{Z}_{(p)}^{T}(s)\mathbf{W}(s)\mathbf{Z}_{(p)}(s) \left[\boldsymbol{\beta}_{(-p)}(s) + \frac{h^{2}\kappa_{2}}{2\kappa_{0}} \left\{ \boldsymbol{\beta}_{(p),uu}(s) + \boldsymbol{\beta}_{(p),vv}(s) \right\} - \hat{\boldsymbol{\beta}}_{(p)}(s) \right]$$

$$- \lambda_{p} \frac{\hat{\boldsymbol{\beta}}_{(p)}(s)}{\|\hat{\boldsymbol{\beta}}_{(p)}(s)\|}$$

$$(15)$$

6

So

$$\frac{h}{\sqrt{n}} \lambda_{p} \frac{\hat{\beta}_{(p)}(s)}{\|\hat{\beta}_{(p)}(s)\|} = Z_{(p)}^{T}(s) W(s) \frac{h}{\sqrt{n}} \left[Y - Z(s) \beta(s) - \frac{h^{2} \kappa_{2}}{2\kappa_{0}} \left\{ \beta_{uu}(s) + \beta_{vv}(s) \right\} \right]
+ \left\{ n^{-1} Z_{(p)}^{T}(s) W(s) Z_{(-p)}(s) \right\} h \sqrt{n} \left[\beta_{(-p)}(s) + \frac{h^{2} \kappa_{2}}{2\kappa_{0}} \left\{ \beta_{(-p),uu}(s) + \beta_{(-p),vv}(s) \right\} - \hat{\beta}_{(-p)}(s) \right]
+ \left\{ n^{-1} Z_{(p)}^{T}(s) W(s) Z_{(-p)}(s) \right\} h \sqrt{n} \left[\beta_{(-p)}(s) + \frac{h^{2} \kappa_{2}}{2\kappa_{0}} \left\{ \beta_{(p),uu}(s) + \beta_{(p),vv}(s) \right\} - \hat{\beta}_{(p)}(s) \right] \right]$$
(16)

From Lemma 2 of Sun et al. (2014), $\left\{n^{-1}\mathbf{Z}_{(p)}^{T}(s)\mathbf{W}(s)\mathbf{Z}_{(-p)}(s)\right\} = O_{p}(1)$ and $\left\{n^{-1}\mathbf{Z}_{(p)}^{T}(s)\mathbf{W}(s)\mathbf{Z}_{(p)}(s)\right\} = O_{p}(1)$.

From Theorem 3 of Sun et al. (2014), we have that $h\sqrt{n}\left[\hat{\beta}_{(-p)}(s) - \beta_{(-p)}(s) - \frac{h^2\kappa_2}{2\kappa_0}\left\{\beta_{(p),uu}(s) + \beta_{(p),vv}(s)\right\}\right] = O_p(1)$ and $h\sqrt{n}\left[\hat{\beta}_{(p)}(s) - \beta_{(p)}(s) - \frac{h^2\kappa_2}{2\kappa_0}\left\{\beta_{(p),uu}(s) + \beta_{(p),vv}(s)\right\}\right] = O_p(1)$.

So the second and third terms of the sum in (16) are $O_p(1)$.

We showed in the proof of 3.1 that $h\sqrt{n}\mathbf{Z}_{(p)}^{T}(s)\mathbf{W}(s)\left[\mathbf{Y}-\mathbf{Z}(s)\boldsymbol{\beta}(s)-\frac{h^{2}\kappa_{2}}{2\kappa_{0}}\left\{\boldsymbol{\beta}_{uu}(s)+\boldsymbol{\beta}_{vv}(s)\right\}\right]=O_{p}(1).$

The three terms of the sum to the right of the equals sign in (16) are $O_p(1)$, so for $\hat{\beta}_{(p)}(s)$ to be a solution, we must have that $hn^{-1/2}\lambda_p \frac{\hat{\beta}_{(p)}(s)}{\|\hat{\beta}_{(p)}(s)\|} = O_p(1)$.

But since by assumption $\hat{\beta}_{(p)}(s_i) \neq 0$, there must be some $k \in \{1, \ldots, d_p\}$ such that $|\hat{\beta}_{(p),k}(s)| = \max\{|\hat{\beta}_{(p),k'}(s)| : 1 \leq k' \leq d_p\}$. And for this k, we have that $|\hat{\beta}_{(p),k}(s)|/\|\hat{\beta}_{(p)}(s)\| \geq 1/\sqrt{d_p} > 0$.

Now since $hn^{-1/2}b_n \to \infty$, we have that $hn^{-1/2}\lambda_p \frac{\hat{\beta}_{(p)}(s)}{\|\hat{\beta}_{(p)}(s)\|} \ge hn^{-1/2}b_nd_p^{-1/2} \to \infty$ and therefore the term to the left of the equals sign dominates the sum to the right of the equals sign in (16). So for large enough n, $\hat{\beta}_{(p)}(s) \ne 0$ cannot maximize Q.

So
$$P\left\{\hat{\boldsymbol{\beta}}_{(b)}(\boldsymbol{s})=0\right\} \to 1.$$

3.3. A note on rates

To prove the oracle properties of LAGR, we assumed that $h^{-1}n^{-1/2}a_n \xrightarrow{p} 0$ and $hn^{-1/2}b_n \xrightarrow{p} \infty$.

Therefore, $h^{-1}n^{-1/2}\lambda_n \to 0$ for $j \leq p_0$ and $hn^{-1/2}\lambda_n \|\beta_j(s)\|^{-\gamma} \to \infty$ for $j > p_0$.

We require a λ_n that can satisfy both assumptions. Suppose $\lambda_n = n^{\alpha}$, and recall that $h = O(n^{-1/6})$.

Then
$$h^{-1}n^{-1/2}\lambda_n = O(n^{-1/3+\alpha})$$
 and $hn^{-1/2}\lambda_n(h\sqrt{n})^{\gamma} = O(n^{-2/3+\alpha+\gamma/3})$.

So $(2-\gamma)/3 < \alpha < 1/3$, which can only be satisfied for $\gamma > 1$.

4. References

References

Fan, J. and I. Gijbels (1996). Local Polynomial Modeling and its Applications. Chapman and Hall, London.

Geyer, C. J. (1994). On the asymptotics of constrained m-estimation. *Annals of Statistics* 22, 1993–2010.

Knight, K. and W. Fu (2000). Asymptotics for lasso-type estimators. Annals of Statistics 28, 1356–1378.

Sun, Y., H. Yan, W. Zhang, and Z. Lu (2014). A semiparametric spatial dynamic model.

Wang, H. and C. Leng (2008). A note on adaptive group lasso. Computational Statistics and Data Analysis 52, 5277–5286.

Wang, N., C.-L. Mei, and X.-D. Yan (2008). Local linear estimation of spatially varying coefficient models: an improvement on the geographically weighted regression technique. *Environment and Planning A* 40, 986–1005.

Zou, H. (2006). The adaptive lasso and its oracle properties. *Journal of the American Statistical Association* 101, 1418–1429.