EE24BTECH11005 - Arjun Pavanje

1) If $\lim_{x\to 0} \frac{\left[\sin^{-1}x - \tan^{-1}x\right]}{3}$ is equal to L, then the value of (6L+1) is,

a)
$$\frac{1}{2}$$

b) 2

c)
$$\frac{1}{6}$$

d) 6

2) For all four circles M, N, O, P, the following four equations are given,

Circle M:
$$x^2 + y^2 = 1$$

Circle N:
$$x^2 + y^2 - 2x = 0$$

Circle O:
$$x^2 + y^2 - 2x - 2y + 1 = 0$$

Circle P:
$$x^2 + y^2 - 2y = 0$$

If the centre of circle M is joined with the centre of circle N, furthur centre of circle N is joined with centre of circle O, centre of circle O is joined with centre of circle O and lastly, the centre of circle O is joined with the centre of circle O, then these lines form the sides of O,

a) Rectangle

b) Square

c) Parallelogram

d) Rhombus

3) Let $(1 + x + 2x^2)^{20} = a_0 + a_1x + a_2x^2 + \dots + a_{40}x^{40}$. Then, $a_1 + a_3 + a_5 + \dots + a_{37}$ is equal to,

a)
$$2^{20} (2^{20} + 21)$$

b)
$$2^{19} (2^{20} + 21)$$

c)
$$2^{20} \left(2^{20} - 21\right)$$

d)
$$2^{19} \left(2^{20} - 21\right)$$

4) Let,

$$A + 2B = \begin{pmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{pmatrix}$$

$$2A - B = \begin{pmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{pmatrix}$$

If tr(A) denotes the sum of all diagonal entries of the matrix A, then tr(A) - tr(B) is,

a) 0

b) 1

c) 2

- d) 3
- 5) The equation of one of the straight lines which pass through the point $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and make an angle $\tan^{-1} \sqrt{2}$ with the straight line $y + 1 = 3\sqrt{2}x$ is,
 - a) $5\sqrt{2}x + 4y 15 + 4\sqrt{2} = 0$
- b) $4\sqrt{2}x 5y 5 + 4\sqrt{2} = 0$
- c) $4\sqrt{2}x + 5y 4\sqrt{2} = 0$

- d) $4\sqrt{2}x + 5y (15 + 4\sqrt{2}) = 0$
- 6) The number of times digit 3 will be written when listing the integers from 1 to 1000 is _____
- 7) The equation of the planes parallel to the plane x 2y + 2z 3 = 0 which are at unit distace from the point (1, 2, 3) is ax + by + cz + d = 0. If (b d) = k(c a), then the positive value of k is ______
- 8) Let f(x), g(x) be two functions satisfying $f(x^2) + g(4-x) = 4x^3$ and g(4-x) + g(x) = 0, then the value of $\int_{-4}^4 f(x^2) dx$ is,_____
- 9) The mean age of 25 teachers in a school is 40 years. A teacher retires at the age of 60 years and a new teacher is appointed in his place. If the mean age of the teachers in this school now is 39 years, then the age of the newly appointed teacher is ______
- 10) A square ABCD has all its vertices on the curve $x^2y^2 = 1$. The midpoints of its sides also lie on the same curve. Then, the square of the area of ABCD is______
- 11) The missing value in the following figure is,_____

- 12) The number of solutions of the equation $|\cot x| = \cot x + \left(\frac{1}{\sin x}\right)$ in the interval $[0, 2\pi]$ is ______
- 13) Let z_1, z_2 be the roots of the equations $z_2 + a_z + 12 = 0$ and z_1, z_2 form an equilateral triangle with origin. Then, the value of |a| is _____

- 14) Let the plane ax + by + cz + d = 0 bisect the line joining the points $\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix}$ at right angles. If a, b, c, d are integers, then the minimum value of $(a^2 + b^2 + c^2 + d^2)$ is,

 15) If $f(x) = \int \frac{[5x^8 + x^6]}{[x^2 + 1 + 2x^7]^2} dx$, $(x \ge 0)$, f(0) = 0 and $f(1) = \frac{1}{k}$, then the value of k is,