Model selection

CWI Autumn School - Scientific Machine Learning and Dynamical Systems

Urban Fasel

Imperial College London

Literature

- Model selection
 - SL Brunton, JL Proctor, JN Kutz (2016) <u>Discovering governing equations from data by sparse identification of nonlinear dynamical systems</u>.
 - NM Mangan, JN Kutz, SL Brunton, JL Proctor (2017) Model selection for dynamical systems via sparse regression and information criteria.
 - S Maddu, BL Cheeseman, IF Sbalzarini, CL Muller (2019) Stability selection enables robust learning of partial differential equations from limited noisy data.

Model selection

Model selection is **not simply about reducing error**, but about producing a model that has high degree of **interpretability**, **generalization**, and **predictive capabilities**.

→ selecting accurate and sparse model

Model selection methods

- Cross validation
- Akaike information criteria
- Stability selection

Tutorials

Compare methods on Lorenz system data

Model selection – k-fold cross-validation

Model selection: sweep through λ -path \rightarrow repeat following 3 steps for increasing λ (model complexity)

- 1. Partition data in k (random) subsamples. (e.g. 4-fold CV shown here)
- 2. Build *k* SINDy models:
 - use k-1 subsamples for training
 - test the model using the withheld testing sample: $\epsilon_k = \|\dot{\mathbf{X}}_k \mathbf{\Theta}(\mathbf{X}_k)\boldsymbol{\xi}_k\|_2^2$
- 3. Average the test scores $\epsilon_k \rightarrow \epsilon_{\lambda} = \frac{1}{k} \sum \epsilon_k$

Select model (choose λ) with lowest test score ϵ_{λ}

Model selection – Akaike information criteria

Sum of model prediction error plus number of active terms

- Model quality relative to other models
- Increased information criteria score for larger, overfit models
 - Creates min in AIC curve: allows for intuitive model selection

• AIC =
$$-2 \ln(L(\mathbf{x}, \hat{\mu})) + 2k$$

- Max log likelihood L of model + number of parameters k of model
 - $L(x, \hat{\mu}) = P(x|\mu)$, likelihood function: conditional probability of observations x given the parameters μ of a candidate model
- SINDy likelihood function: model prediction error $\to E_{avg} = \sum_{\tau} |y_i g(x_i; \mu)|$
 - y_i observed outcomes (time series data)
 - $g(x_i; \mu)$ SINDy model prediction (integrated SINDy ODE)

• AIC =
$$m \ln \left(\left(\sum_{i=1}^{m} E_{avg} \right)^2 / m \right) + 2k$$

• m number of test time series (e.g. starting from different initial conditions)

Model selection - stability selection

Calculate the stability (importance) of each coefficient over the regularization path λ

- 1. Generate B random subsamples (size N/2) of the library and derivative data without replacement
- 2. Compute *B* SINDy models over regularization path λ
- 3. Calculate the λ -dependent stability (or importance) Π_k^{λ}
 - Probability of a coefficient to be non-zero
 - Find stable support: $\Pi_k^{\lambda} > \pi_{th} = 0.8$
 - e.g. coefficient is non-zero in 80% of the models

Tutorial summary

Model selection is **not simply about reducing error**, but about producing a model that has high degree of **interpretability**, **generalization**, and **predictive capabilities**.

→ selecting accurate and sparse model

Cross validation

Akaike information criteria

Stability selection

Coding examples

MATLAB live scripts

■ Test different model selection methods on dysts database ODEs: <u>Database</u>, <u>paper</u>, <u>PySINDy</u>

PySINDy

■ AIC is implemented in <u>example 16</u>