МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра вычислительной математики и программирования

спецкурс «Параллельные и распределенные вычисления»

ОТЧЕТ

Лабораторная работа № 1 «Знакомство с технологией CUDA»

Выполнил: Дмитроченко Б.А. Группа: M8O-114M-22, **вариант 6**

Преподаватель: Семенов С. А.

Оглавление

1.	Постановка задачи
2.	Описание решения
3.	Основные моменты кода
4.	Результат работы программы
5.	Сравнение скорости выполнения на CPU и GPU Ошибка! Закладка не
οп	ределена.
6.	Работа GPU при использовании эффективного алгоритмаОшибка!
3a	кладка не определена.
7.	ВыводыОшибка! Закладка не определена.
8.	Приложения Ошибка! Закладка не определена.

1. Постановка задачи

Вычислить значения функции синуса

2. Описание решения

Создать массив из N значений (N задается в теле программы) и для каждого вычислить значение по формуле: $\sin(\frac{\pi N}{36})$

3. Основные моменты кода

Ниже представлена программная реализация задачи

```
#include "cuda_runtime.h"
#include stdio.h>
#include stdib.h>
```

```
29
30
      ⊡int main()
            long long n = 1000000;
            double* sin = (double*)malloc(n * sizeof(double));
            double* sin_dev = (double*)malloc(n * sizeof(double));
            cudaEvent_t start, stop;
            float time;
            cudaEventCreate(&start);
            cudaEventCreate(&stop);
            CSC(cudaMalloc(&sin_dev, sizeof(double) * n));
CSC(cudaMemcpy(sin_dev, sin, sizeof(double) * n, cudaMemcpyHostToDevice));
            cudaEventRecord(start, 0);
            kernel << <256, 256 >> > (sin_dev, n);
            cudaEventRecord(stop, 0);
            cudaEventSynchronize(stop);
            CSC(cudaMemcpy(sin, sin_dev, sizeof(double) * n, cudaMemcpyDeviceToHost));
            CSC(cudaFree(sin_dev));
                 printf("%.3f\n", sin[i]);
            printf("\n");
            free(sin);
            cudaEventElapsedTime(&time, start, stop);
printf("Time for the kernel: %f ms\n", time);
            return 0;
```

4. Результат работы программы

Рис. 1. Окно вывода консольного приложения при N = 1000

Рис. 2. Окно вывода консольного приложения при N = 10000

Рис. 3. Окно вывода консольного приложения при N = 100000