Authors:

Erick Rosete Beas — er165@uni-freiburg.de Jessica Lizeth Borja Diaz — jb986@uni-freiburg.de

Principles of AI Planning Exercise Sheet 7

13.12.2019

Exercise 7.1 - Innacuracy of h_{max}

Prove that the heuristic h_{max} is arbitrarily innacurate.

Exercise 7.2 - Stability of h_{add}

Show that it is important to test for stability when computing h_{add} by giving an example where you get an unnecessairly high overestimation when not performing this test.

Exercise 7.3 - Relaxed planning graph and heuristics

Consider the relaxed planning task Π^+ with variables $A = \{a, b, c, d, e\}$, operators $O = \{o_1, o_2, o_3\}$, $o_1 = \langle d, c \wedge (c \triangleright e) \rangle$, $o_2 = \langle c, a \rangle$, $o_3 = \langle a, b \rangle$, goal $\gamma = b \wedge e$ and initial states $s = \{a \mapsto 0, b \mapsto 0, c \mapsto 0, d \mapsto 1, e \mapsto 0\}$. Solve the following by drawing the relaxed planning graph for the lowest depth k that is necessary to extract a solution

- (a) Calculate $h_{max}(s) for \Pi^+$
- (b) Calculate $h_{add}(s) for \Pi^+$