Planche TD 2.

Exercice 1. Notons E l'espace vectoriel des fonctions f continues sur I = [0, 1] puis posons :

$$\|f\|_1 := \int_0^1 \! |f(t)| dt \quad ; \quad \|f\|_\infty := \sup_{t \in I} \! |f(t)|.$$

- 1. Vérifier que $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ sont des normes et qu'elles vérifient l'inégalité $\|f\|_1 \leq \|f\|_{\infty}$.
- 2. Notons E_1 l'espace normé $(E, \|\cdot\|_1)$ et B_1 sa boule unité ouverte. De même, E_{∞} désignera l'espace normé $(E, \|\cdot\|_{\infty})$ et B_{∞} sa boule unité ouverte.
 - (a) Montrer que B_1 est ouverte dans E_{∞} .
 - (b) Montrer que la suite de fonctions $f_n: I \to \mathbb{R}: t \mapsto t^n$ converge vers la fonction nulle dans E_1 tout en restant sur la sphère-unité de E_{∞} . En déduire que B_{∞} n'est pas ouverte dans E_1 .
 - (c) Que dire des distances associées à nos deux normes ? Et de leurs topologies respectives ?

Exercice 2. Soit X un espace topologique, et A, B deux parties de X.

- 1. Vérifier que $A \subset B$ implique $\overline{A} \subset \overline{B}$ et $\mathring{A} \subset \mathring{B}$.
- 2. Etablir les égalités: $C_X(\overline{A}) = C_X(A)$, $C_X(A) = \overline{C_X(A)}$, $\overline{A \cup B} = \overline{A} \cup \overline{B}$, $A \cap B = A \cap B$.
- 3. Etablir les inclusions $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ et $\mathring{A} \cup \mathring{B} \subset A \overset{\circ}{\cup} B$ puis construire des exemples où ces inclusions sont strictes.

Exercice 3. Dans un espace métrique X, notons B la boule ouverte de centre a et de rayon r et B' la boule fermée correspondante.

- 1. Rappeler pourquoi on a toujours $\mathring{B} = B$ et $\overline{B'} = B'$.
- 2. Montrer que $B \subset \mathring{B'}$ et $\overline{B} \subset B'$. Trouver un espace métrique où ces inclusions sont strictes.
- 3. Montrer que si X est un espace normé, les inclusions ci-dessus sont toujours des égalités.

Exercice 4. Soit A une partie non-vide d'un espace métrique (X, d). On définit :

$$\forall x \in X, \quad \mathbf{d}(x, A) := \inf_{a \in A} (d(x, a)).$$

- 1. S'assurer que la définition ci-dessus est valide et donne un nombre positif. On l'appellera distance du point x à la partie A.
- 2. Vérifier que $\mathbf{d}_A : x \mapsto \mathbf{d}(x, A)$ définit une fonction lipschitzienne sur X.
- 3. Montrer que pour tout $x \in X$, on a $\mathbf{d}(x, A) = \mathbf{d}(x, \overline{A})$.
- 4. Montrer que \overline{A} est l'ensemble des points à distance nulle de A..
- 5. On se place dans \mathbb{R} muni de sa structure métrique usuelle. Calculer $\mathbf{d}(x,A)$ dans les cas suivants : $A = \mathbb{Q}$, $A = \{1/n\}_{n \in \mathbb{N}^*}$ et x = 2, $A = \{1/n\}_{n \in \mathbb{N}^*}$ et x = 0.
- 6. On considère dans \mathbb{R}^2 la droite affine A d'équation t = s + 1. Calculer $\mathbf{d}(0, A)$ d'abord avec d_2 puis avec d_{∞} .

Exercice 5. Un espace topologique est dit *séparable* s'il possède une partie au-plus dénombrable partout dense. Montrer qu'un espace métrique est séparable si et seulement si il possède une base d'ouverts au plus dénombrable. Etablir que \mathbb{R}^n est séparable et exhiber une base d'ouverts dénombrable.

Exercice 6. Deux espaces métriques (X, d) et (Y, δ) étant donnés, définissons:

$$D_1((x,y),(x',y')) := d(x,x') + \delta(y,y') \quad ; \quad D_{\infty}((x,y),(x',y')) := \max\{d(x,x'),\delta(y,y')\}.$$

Montrer que D_1 et D_{∞} définissent deux distances équivalentes sur $X \times Y$, puis que la topologie associée à D_1 n'est autre que la topologie produit.

Exercice 7. X et Y étant deux espaces topologiques, équipons $X \times Y$ de la topologie produit.

- 1. Si $A \subset X$ et $B \subset Y$, montrer que $\overline{A \times B} = \overline{A} \times \overline{B}$. En déduire que $A \times B$ est fermé si et seulement si A et B le sont.
- 2. Montrer que les projections canoniques sont des applications ouvertes.

Exercice 8. Soit A une partie d'un espace topologique X.

- 1. Montrer que la topologie de sous-espace sur A est la moins fine des topologies sur A rendant continue l'inclusion $j:A\hookrightarrow X$. Montrer qu'une application $f:Y\to A$ est continue si et seulement si $j\circ f$ l'est.
- 2. Montrer que A est ouvert dans X si et seulement si pour tout ouvert Ω de A, Ω est aussi ouvert dans X.
- 3. Si $\Omega \subset A$, notons $\mathrm{adh}_A(\Omega)$ l'adhérence de Ω dans le sous-espace A. Montrer que $\mathrm{adh}_A(\Omega) = \overline{\Omega} \cap A$.
- 4. Soit $f: X \to Y$ une application continue à valeurs dans un autre espace topologique Y. Montrer que $f(\overline{A}) \subset \overline{f(A)}$ En déduire que si A est dense dans X, alors f(A) est dense dans f(X).

Exercice 9. Soient $f: X \to \mathbb{R}$ et $g: X \to \mathbb{R}$ deux fonctions continues sur un espace topologique X.

- 1. Montrer que, pour tout $a \in \mathbb{R}$, l'ensemble $\{x \in X \mid f(x) < a\}$ est ouvert et que les ensembles $\{x \in X \mid f(x) \leq a\}$ et $\{x \in X \mid f(x) = a\}$ sont fermés .
- 2. Montrer que $\{x \in X \mid f(x) = g(x)\}$ est fermé dans X. En déduire que si f et g coïncident sur une partie dense de X, alors elles sont égales.
- 3. Montrer facilement par un argument de continuité que toute sphère d'un espace métrique est fermée.
- 4. Munissons l'espace vectoriel des matrices M carrées réelles d'ordre n de la norme : $||M|| = \max(m_{ij})$. Montrer par un argument de continuité que le sous-ensemble des matrices inversibles est ouvert.

Exercice 10. Soit (X, d) un espace métrique et $f: X \to X$ une application vérifiant la condition $d(f(x), f(x')) = \alpha \cdot d(x, x')$ (avec α constante strictement positive). Montrer que la restriction à droite $\hat{f}: X \to f(X)$ est un homéomorphisme (f(X)) étant équipé de la topologie induite par celle de X).

Exercice 11. Soit X un espace topologique et \sim une relation d'équivalence sur X. On munit X/\sim de la topologie quotient et on note $\pi: X \to X/\sim$ la projection quotient.

- 1. Vérifier que la topologie quotient est la plus fine des topologies sur X/\sim parmi celles rendant la projection quotient continue.
- 2. Montrer qu'une application $g:X/\sim \to Y$ est continue si et seulement si $g\circ\pi$ est continue.
- 3. Soit $f: X \to Y$ une application continue surjective vérifiant, pour tous x et x' dans X, la condition : $x \sim x' \Leftrightarrow f(x) = f(x')$. Montrer qu'il existe alors une unique application continue bijective $\tilde{f}: X/\sim \to Y$ telle que $f = \tilde{f} \circ \pi$. En déduire que **si**, **de plus**, f est ouverte, alors \tilde{f} est un homéomorphisme.
- 4. Application : montrer que $\mathbb{R}/2\pi\mathbb{Z}$, équipé de sa topologie quotient, est homéomorphe au cercle-unité S^1 .

Exercice 12. Montrer que tout intervalle ouvert]a,b[est homéomorphe à \mathbb{R} . Est-ce aussi le cas si on considère un intervalle fermé?