Ingeniørhøjskolen Aarhus

DSB

E, IKT og EP

Miniprojekt Lektion 6

*Udarbejdet af:*Simon Thrane Hansen
Lars Hjerrild
Kasper Lauge Madsen

201500150 201409555 201409873

Underviser: Lars G. Johansen

17. marts 2016

Indhold

1	Indl	edning	2	
2	Analysebeskrivelse			
		2.0.1 Vinduesfunktioner	3	
		2.0.2 Fouriertransformationen	3	
		2.0.3 Aliasering		
3	Analyse			
	3.1	Motor	4	
	3.2	Klaver	8	
	3.3	Symfoni	12	
	3.4	Bass	15	
	3.5	Vinglas	19	
	3.6		23	
	3.7	Spilledåse	27	
	3.8	ECG-signal	30	
4	Rest	ltat og Diskussion	34	
5	Kon	dusion	35	

1. Indledning

Denne opgave ophandler et design af et analysesystem i Matlab, der baserer sig på Diskret Fourier Transformation (DFT). Analysesystemet skal kunne vise størrelsen af DFT'en på de korrekte frekvensakser.

I opgaven er der arbejdet med følgende typer af signer:

- Vibrations- eller lydsignal fra bilmotor
- Vindmøllestøj
- Fysiologisk signal, eksempelvis EKG
- Vinglas, der knipses på
- Fire forskellige stykker musik

De overstående signaler er fundet på nettet og er blevet lagt i repository'et.

2. Analysebeskrivelse

I denne opgave er der brugt en række forskellige metoder til analyse af de valgte digitale signaler, dette afsnit er til for at beskrive disse metoder som indbefatter :

- Fouriertransformationen
- Aliasering
- Vinduesfunktioner og lækage
- Udglatning

2.0.1 Vinduesfunktioner

2.0.2 Fouriertransformationen

2.0.3 Aliasering

I analysen af de forskellige signaler, er der i figurene kun plottet op til halvdelen af samplingsfrekvensen, dette skyldes at der efter nyquist frekvensen, som er: INKULDER MA-TEMATIK,

blot ville vise et spejlbillede af signalet op til nyquist frekvensen, men dette giver ikke mening at kikke på. Ved signalerne udvindes en samplingsfrekvens ved matlabfunktionen audioread, og dermed forventes det at undgå både gentagelse af frekvensspektret, samt forkert sampling. På et enkelt spekter er der sent tegn på at der tidligere er brugt en anden samplingsfrekvens.

2.0.4 Udglatning

Da det har været fremende for forståelsen af spektrene at plotte på logaritmisk x-akse, er det valgt at udglatningen af signalet skal afspejle aksen, og derfor bruges octav udglatning.

3. Analyse

Dette afsnit viser analyserne, der er blevet i lavet over de forskellige signaler. Der er for alle signaler lavet 4 forskellige plot: Det originale signal, Det Disket Fourrier Transformerede signal, Det Disket Fourrier Transformerede signal med et hanning vindue og Det udglattet Disket Fourrier Transformerede signal.

3.1 Motor

Dette signal er fra motoren på en motorcykel. Man kan se det originale lydsignal på figur 3.1.

Figur 3.1: DFT Det originale signal fra en Motor

Det originale signal er blevet fast fourrier transformeret og er blevet plottet på en logoritmisk skala på figur 3.2. Det i øjenfaldende på dette plot er.....

Figur 3.2: DFT Analyse af et signal fra en Motor

Det DFT-transfomerede signal er blevet vægtet ved brug af et hanningvindue. Resultatet ses på figur 3.3. Som man kan se på figuren er der ikke en det helt store at hente ved hanningviduet på denne funktion.

Figur 3.3: DFT Analyse af et signal fra en Motor med et hanningvindue

Figur 3.4: Det udglattede DFT signal fra en Motor

3.2 Klaver

Dette signal er fra et klaver. Man kan se det originale lydsignal på figur 3.5.

Figur 3.5: DFT Det originale signal fra et klaver

Det originale signal er blevet fast fourrier transformeret og er blevet plottet på en logoritmisk skala på figur 3.6. Det i øjenfaldende på dette plot er, at det indeholder stor energi omkring 100Hz-1000Hz og indeholder mange præcise unikke frekvenser i dette område.

Figur 3.6: DFT Analyse af et signal fra et Klaver

Det DFT-transfomerede signal er blevet vægtet ved brug af et hanningvindue. Resultatet ses på figur 3.7. Som man kan se på figuren er der ikke en det helt store at hente ved hanningviduet på denne funktion.

Figur 3.7: DFT Analyse af et signal fra et klaver med et hanningvindue

Figur 3.8: Det udglattede DFT signal fra et Klaver

3.3 Symfoni

Dette signal er fra et symfoniorkester. Man kan se det originale lydsignal på figur 3.9.

Figur 3.9: DFT Det originale signal fra en Symfoni

Det originale signal er blevet fast fourrier transformeret og er blevet plottet på en logoritmisk skala på figur 3.10. Det i øjenfaldende på dette plot er, at det indeholder mange forskellige frekvenser fra de forskellige instrumenter i området 100Hz-1000Hz.

Figur 3.10: DFT Analyse af et signal fra en Symfoni

Det DFT-transfomerede signal er blevet vægtet ved brug af et hanningvindue. Resultatet ses på figur 3.11. Som man kan se på figuren er der ikke en det helt store at hente ved hanningviduet på denne funktion.

Figur 3.11: DFT Analyse af et signal fra en Symfoni med et hanningvindue

Figur 3.12: Det udglattede DFT signal fra en Symfoni

3.4 Bass

Dette signal er fra en bas. Man kan se det originale lydsignal på figur 3.13.

Figur 3.13: DFT Det originale signal fra en Bas

Det originale signal er blevet fast fourrier transformeret og er blevet plottet på en logoritmisk skala på figur 3.14. Det i øjenfaldende på dette plot er, at frekvenserne fra bassen er rimelig lave i forhold til både klaveret og symfoni-orkesteret. Signalet har også færre frekvenser, "der stikker ud fra mængden", hviket skyldes, at det er en el-bas.

Figur 3.14: DFT Analyse af et signal fra en Bas

Det DFT-transfomerede signal er blevet vægtet ved brug af et hanningvindue. Resultatet ses på figur 3.15. Som man kan se på figuren er der ikke en det helt store at hente ved hanningviduet på denne funktion.

Figur 3.15: DFT Analyse af et signal fra en Bas med et hanningvindue

Figur 3.16: Det udglattede DFT signal fra en Bas

3.5 Vinglas

Dette signal er af en, der knipser på et vinglas. Man kan se det originale lydsignal på figur 3.17.

Figur 3.17: DFT Det originale signal fra et Vinglas

Det originale signal er blevet fast fourrier transformeret og er blevet plottet på en logoritmisk skala på figur 3.18. Det i øjenfaldende på dette plot er, at det indeholder mange høje frekvenser og har få meget præcise frekvenser, hvor der er stor energi.

Figur 3.18: DFT Analyse af et signal fra et Vinglas

Det DFT-transfomerede signal er blevet vægtet ved brug af et hanningvindue. Resultatet ses på figur 3.19. Som man kan se på figuren er der ikke en det helt store at hente ved hanningviduet på denne funktion.

Figur 3.19: DFT Analyse af et signal fra et Vinglas med et hanningvindue

Figur 3.20: Det udglattede DFT signal fra en, der knipser på et vinglas

3.6 Vindmølle

Dette signal er larm fra en vindmølle. Man kan se det originale lydsignal på figur 3.17.

Figur 3.21: DFT Det originale signal fra en Vindmølle

Det originale signal er blevet fast fourrier transformeret og er blevet plottet på en logoritmisk skala på figur 3.22. Det i øjenfaldende på dette plot er, det er rimelig lavfrekvent (70Hz-200Hz). Der er heller ikke rigtig specielt mange frekvenser, der stikker specielt ud.

Figur 3.22: DFT Analyse af et signal fra en Vindmølle

Det DFT-transfomerede signal er blevet vægtet ved brug af et hanningvindue. Resultatet ses på figur 3.23. Som man kan se på figuren er der ikke en det helt store at hente ved hanningviduet på denne funktion.

Figur 3.23: DFT Analyse af et signal fra en Vindmølle med et hanningvindue

Figur 3.24: Det udglattede DFT signal fra en Vindmølle

3.7 Spilledåse

Dette signal er musik fra en gammeldags spilledåse. Man kan se det originale lydsignal på figur 3.25.

Figur 3.25: Det originale signal fra en Musikbox

Det originale signal er blevet fast fourrier transformeret og er blevet plottet på en logoritmisk skala på figur 3.26. Det i øjenfaldende på dette plot er, at det en del frekvenser, der stikker meget ud.

Figur 3.26: DFT Analyse af et signal fra en Musikbox

Det DFT-transfomerede signal er blevet vægtet ved brug af et hanningvindue. Resultatet ses på figur 3.27. Som man kan se på figuren er der ikke en det helt store at hente ved hanningviduet på denne funktion.

Figur 3.27: DFT Analyse af et signal fra en Musikbox med et hanningvindue

Figur 3.28: Det udglattede DFT signal fra en Musikbox

3.8 ECG-signal

Dette signal er et ECG-signal. Man kan se det originale lydsignal på figur 3.29.

Figur 3.29: Det originale ECG-signal

Det originale signal er blevet fast fourrier transformeret og er blevet plottet på en logoritmisk skala på figur 3.30. Det i øjenfaldende på dette plot er, at der meget energi ved de meget lave frekvenser. Man kan også se, at 50Hz stikker voldsomt ud, hvilket er støj fra strømnettet. Dette er meget normalt for ECG-signaler.

Figur 3.30: DFT Analyse af et ECG-signal

Det DFT-transfomerede signal er blevet vægtet ved brug af et hanningvindue. Resultatet ses på figur 3.31. Som man kan se på figuren er der ikke en det helt store at hente ved hanningviduet på denne funktion.

Figur 3.31: DF140 Analyse af et ECG-signal med et hanningvindue

Figur 3.32: Det udglattede DF140 ECG-signal

4. Resultat og Diskussion

Vores analyse af de forskellige signaler viste, hvilke frekvenser, der var dominerende i de enkelte signaler. Denne viden er vigtig at have, da den fortæller meget godt, hvad signalet indeholder.

Man kan f.eks. ved brug af analysen af symfoni-signalet se, at indeholder stor aktivitet i frekvensområdet 100Hz-1000Hz, hvilket stemmer meget godt overens med, hvad man kunne forvente af frekvenser i et sådan signal.

Man kan, hvis man sammenligner de to signaler: Bas og musikboxen. Se, at signalet fra musikboxen indeholder flere høje frekvens end Bas-signalet, dette er helt forventelig. Man kan også se, at signalet fra vinglasset, der knipses på indeholder nogen meget præcise frekvenser modsat f.eks. signalet fra symfoni-orkesteret, der indeholder mange forskellige instrumenter med forskellige frekvenser.

Vores analysesystem har dermed givet os en bedre forståelse for, hvilke frekvenser, der er dominerende i de enkelte signaler. Dette kan f.eks. bruges i til at bestemme om, der er en bolt i motoren, der er slidt og skal skifte. Da man med tilstrækkelig stor erfaring inde for et enkelt område kan bruge de signaler til at opfange fejl og slidtage.

5. Konklusion

I denne opgave har vi arbejdet med DFT af forskellige digitale signaler. Vi har lavet et analysesystem, hvor der blev benyttet DFT til at analysere signaler.

Hanningvinduet er også blevet undersøgt og brugt til at sortere støj fra signalet.

Vi har set på, hvordan man ved brug af DFT kan trække "nye"oplysninger ud af signalet.

Disse oplysninger kan bruges til