How to Write a Scalable Compiler for an Error-Prone Quantum Computer

Kim Worrall
kim.worrall@ed.ac.uk
University of Edinburgh

Samin Ishtiaq <u>samin.ishtiaq@riverlane.com</u> Riverlane

April 16, 2025

Languages

Cirq Qiskit Q# Braket ...

Languages

Qubits

Superconducting Photonic Trapped Ion ...

[Google Quantum AI]

[Google Quantum AI]

Languages

[Google Quantum AI]

Languages

Control System

Languages

Control System

Languages


```
quantum.circuit {
    %q1 = quantum.alloc<1> {"state" = 0}
    %q2 = quantum.alloc<1> {"state" = 1}
    quantum.gate <#quantum.TGate> (%q1)
```

Act on qubit, changing probability of measuring 1 or 0 } : () -> ()

Control System

Languages


```
quantum.circuit {
    %q1 = quantum.alloc<1> {"state" = 0}
    %q2 = quantum.alloc<1> {"state" = 1}
    quantum.gate <#quantum.TGate> (%q1)
    quantum.gate <#quantum.CNOT> (%q1, %q2)
```

Interact two qubits

} : () -> ()

Qubits

Control System

Languages


```
quantum.circuit {
    %q1 = quantum.alloc<1> {"state" = 0}
    %q2 = quantum.alloc<1> {"state" = 1}
    quantum.gate <#quantum.TGate> (%q1)
    quantum.gate <#quantum.CNOT> (%q1, %q2)
    %bit1 = quantum.measure (%q1)
} : () -> ()

Measure a qubit and get a bit
```

Control System

Languages

- No Cloning
 - Can swap values

quantum.gate <#quantum.CNOT> (%q1, %q2)

Control System

Qubits

Not allowed to be equal

Languages

- No Cloning
 - Can swap values
- Physical Connectivity Matters

```
quantum.gate <#quantum.CNOT> (%q1, %q2)
```

Must be physically next to each other after register allocation.

Control System

Languages

- No Cloning
 - Can swap values
- Physical Connectivity Matters
- Measurement is 'final'

```
%bit1 = quantum.measure (%q1)
%bit2 = quantum.measure (%q1)
```

No other gates => %bit1 = %bit2

Qubits

Control System

Languages

> QSSA for optimisations

New qubit value after using a qubit

```
qssa.circuit {
    %q1 = qssa.alloc<1> {"state" = 0}
    %q2 = qssa.alloc<1> {"state" = 0}
    %q3 = qssa.gate <#quantum.TGate> (%q1)
    %q4, %q5 = qssa.gate <#quantum.CNOT> (%q3, %q2)
    %bit1 = qssa.measure (%q4)
} : () -> ()
```

Control System

Hardware

Languages

Control System

Hardware

Languages

Control Box 1

Control Box 2

Control Box 3

Control Box ...

- Coordinated
- Synchronised
- Transpiler required

```
%q4, %q5 = qssa.gate <#quantum.CNOT> (%q3, %q2)
```

Control System

Hardware

Control System Pulse

Qubits

- Coordinated
- Synchronised
- Transpiler required

```
%q4, %q5 = qssa.gate <#quantum.CNOT> (%q3, %q2)
```

pulse.drive (line, duration, intensity)

Quantum Errors and Correcting Them

- ~ 1 per 1000 operations on a qubit result in an error
- Existing qubits decohere on average in the order of microseconds

Interact data qubits with ancillas

Interact data qubits with ancillas

Measure, then repeat whole process

Measure, then repeat whole process, compare the results

Adapting the Computation Stack

Languages

QSSA

QREF

Control System

Pulse

Adapting the Computation Stack

Languages

QSSA

QREF

- Separate decoding system
- Coordinated with the control system

[Riverlane Error-Correction Box]

Control System

Pulse

Decoding System

Scaling?

Languages

QSSA

QREF

- Millions of qubits and operations needed
- Error Rate: 1 per 1000 operations
- Error-corrected operation ~ 10 μs
- Must process Terrabytes / Second
- Code generation and integration done by hand
- Massive parallelism to exploit
 [Beverland. M, Murali. P, Troyer. M, Svore. K, et al.]

Control System

Pulse

Decoding System

Scaling?

Languages

QSSA

QREF

- Millions of qubits and operations needed
- Error Rate: 1 per 1000 operations
- Error-corrected operation ~ 10 μs
- Must process Terrabytes / Second
- Code generation and integration done by hand
- Massive parallelism to exploit
 [Beverland. M, Murali. P, Troyer. M, Svore. K, et al.]

Control System

Pulse

Decoding System

An MLIR-based Framework

Languages

QSSA

QREF

An MLIR-based Framework – Adding Nothing

Languages

QSSA

QREF

```
qssa.circuit {
    %q1 = qssa.alloc<1> {"state" = 0}
    %q2 = qssa.alloc<1> {"state" = 0}
    %q3 = qssa.gate <#quantum.SGate> (%q1)
    %q4, %q5 = qssa.gate <#quantum.CNOT> (%q3,
%q2)
    %bit1 = qssa.measure (%q4)
} : () -> ()
```

An MLIR-based Framework – Adding Nothing

Languages

QSSA

QREF

```
qssa.circuit {
    %q1 = qssa.alloc<1> {"state" = 0}
    %q2 = qssa.alloc<1> {"state" = 0}
    %q3 = qssa.gate <#quantum.SGate> (%q1)
    %q4 = qssa.gate <#quantum.Id> (%q2)
    %q4, %q5 = qssa.gate <#quantum.CNOT> (%q3, %q4)
    %bit1 = qssa.measure (%q4)
} : () -> ()
```


- Transpile to new gate set
- New operations
- Implement interface

Control System

Pulse

Control System

Pulse

Control System

Pulse

Error Correction

%p2 = patches.merge (%p0, %p1) %p3, %p4 = patches.split (%p2)

Control System

Pulse

An MLIR-based Framework – Calibrate Decoder

System

Control System

Pulse

An MLIR-based Framework – Calibrate Decoder

Control System

Pulse

Decoding System

Decoder

An MLIR-based Framework – Coordination

An MLIR-based Framework – Coordination

Instruction Scheduling and the Abstraction Problem

Parallelism? Abstractions for Algorithms? Knowledge About Hardware?