卵日本国特許庁(JP)

⑩ 特許 出願 公開

⑫ 公 開 特 許 公 報 (A) 平2-34592

®Int. Cl. *

識別記号

庁内整理番号

❸公開 平成2年(1990)2月5日

C 30 B 11/00

8518-4G

審査請求 未請求 請求項の数 1 (全5頁)

60発明の名称 化合物半導体単結晶の成長方法

> 20特 顧 昭63-181545

22出 顧 昭63(1988)7月22日

@発 明 者 ⊞ 吉

神奈川県横浜市西区岡野2-4-3 古河電気工業株式会

补横浜研究所内

72発 睸 老 Æ 傪 夫 神奈川県横浜市西区岡野2-4-3 古河電気工業株式会

补横浜研究所内

の出 願 人 古河電気工業株式会社

四代 理 人 弁理士 若林 広志 東京都千代田区丸の内2丁目6番1号

一、発明の名称 化合物半導体単結晶の成長方法

1. 化合物半導体の融液を収容するポートの一 婚にシードを設置し、そのボートのシード婚側に ヒートシンクを設置して、ボートの周囲からボー ト内に供給される熱を、上記シードを通してヒー トシンクで吸収しつつ化合物半導体単結晶を成長 させていく方法において、上記シードをヒートシ ンクと直接接触させることを特徴とする化合物半 導体単結晶の成長方法。

三、発明の詳細な説明

(座業上の利用分野)

本発明は、化合物半導体単結晶の成長方法に関 し、特に模型ボート法(温度勾配凝固法、水平ブ リッジマン法など) により単結晶を成長させる際 に熱液を制御して高品質の単結晶を成果させる方 法に関するものである。

(従来技術)

模型ポート法は、ボートの一端にシード(維結

品)を設置し、このシードにポート内の化合物半 導体融液を付着させて単結晶を成長させていく方 法である。この方法で、InPのような解離圧の きわめて高い化合物半導体の単結晶を成長させよ うとすると、結晶成長過程で多結晶化が生じやす く、大型の単結晶をつくることは極めて困難であ

そこで本発明者等は先に、ポートのシード端側 にヒートシンクを設置して、ポートの周囲からポ ート内に供給される熱を、上記シードを通してヒ ートシンクで吸収しつつ化合物半導体単結晶を成 長させていく方法を開発した(特開昭62-187193 号公報)。この方法によれば、ボートの壁面から 融液の内部を通ってシードに向かう然の流れが作 られるため、ボートの壁画より融液内部の方が温 度が低くなり、このため単結晶(シードまたはそ こから成長したもの)と融液の界間における結晶 成長が促進され、ポート壁面と融液との接触面に おける結晶核の発生が抑制されて、InPなどの 単結晶を確実に成長させることができる。

(課題)

しかしこれまでの方法では、シードは、ボートのシード機能に設置され、ヒートシンクとはボートの確望を介して熱的に結合した状態にあるため、シードからヒートシンクへの熱の流れが悪く、またボートとシードの確認などの関係から熱流低流も一定せず、ヒートシンクの冷却条件の設定など、温度制制が難しいという問題のあることが判明した。

(課題の解決手段とその作用)

本発明は、上記のような課題を解決するため、 化合物半導体の融液を収容するボートの一端にシードを設置し、そのボートのシード端間にヒートシンクを設置して、ボートの周囲からボート内に 供給される熱を、上記シードを進してヒートシンクで吸収しつつ化合物半導体単結晶を成長させて いく方法において、上記シードをヒートシンクと 直接接触させることを特徴とする。

シードをヒートシンクに直接接触させるには、 シードの嫡郎をポートのシード棚部から突出させ て、その嫡面をヒートシンクと突き合わせるよう にすることが望ましい。

このようにするとシードからヒートシンクへの 熱の彼れが良好になり、かつ安定するため、温度 制御が容易になり、かつ正確に行える。

(宣辞例)

以下、本発明の実施例をImPの単結晶を成長させる場合について詳細に説明する。

図-1および図-2 は本発明の単結晶成長方在に用いる装置の一例を示す。図において、11は内部を実空にした石英アンプル、12はその中の一環側に設置された場、13は他端倒に設置されたボートである。ボート13内にはインジウム14が収納されており、その一端側にはシード15が設置されている。16は石英アンプル11内の肩の高気圧を制御する低温側電気炉、17は所定の温度プロファイルでボート13側を加熱する高温側電気炉、18は石英タイナー管、19はごれらを収納し、アルゴンを加圧光環した高圧容器である。

模型ポート法では、満12を蒸発させ、それをイ

ンジウム14内に拡散させて、ポート13内に I n P の融液を作成した後、高温側電気炉17内の温度プロファイルを徐々に変化させるか、あるいは炉内の温度プロファイルをそのままにして、電気炉17または石英アンプル11を徐々に移動させるかして、ポート13内でシード15個から単結晶を成長させていく。

この装置は、単結晶を成長させる際に、ポート 13の外側から内側に向けての熱波を作り出すため、 次のような構成を採用している。

まず石英アンプル11内には、ボート13のシード 婚姻に然任事性のよいヒート・シンク20が設置されている。また石英ライナー管18の外側のヒートシンク10の周囲には、ヒートシンク20を冷却するための冷却管21が設置されている。冷却管11は両端部を高圧容器19外に導出し、その中に冷却用の不活性ガスを減過させるものである。さらに石英ライナー管18の外側のボート13の周囲に相当する部位には、周方向および輪漏方向に複数に分割された補助ヒーター22が設置されている。

また石英5イナー管18の両端には管備断熱体23 が、高温側電気炉17の外端には環状の高温側炉端 断熱体24が、低温側電気炉16の外端には頭状の低 温側炉端断熱体25かそれぞれ設置され、高圧下で の対域による熱の移動を防止している。さらに両 電気炉16・17の間には環状の炉間断熱体26が設置 され、炉間での温度低下を防止している。また網 助ヒーター22と冷却管21の間の石英5イナー管18 上には補助断熱体27を患いて、冷却管21によるボ 点の移動を妨げる中間断熱体としての働きを使用 させている。

本発明は、このような装置で I a P 単結晶を成 扱させる際に、シード15の端部をボート13のシード側から突出させてヒートシンク20に直接接触させた状態で、融液の合成、単結晶の成長を行うものである。その様子を図っ3(4)(4)に示す。シード15は下面に排を形成し、この溝にボート13のシード側13 a の体型13 b を差し込むようにしてシード側13 a 上に投置される。これによりシード15の編 部はシード間の端壁13 b を乗り越えてシード椰13 a の外に突出した状態となり、その領面をヒート シンク20に直接接触させることができる。またシード15はシード側の端壁13 b に引っ掛かった状態 となるため移動するおそれもない。なおヒートシ ンク20にはシード15の先端が入る回路20 a が形成 されている。31は合成された l n P 散液を示す。

このほかのシードの設置の仕方としては、図ー 4 に示すようにシード欄13 a の端壁を除去して、 そこにシード15を設置することも可能である。こ のようにすればシード15に滞を形成する必要がな くなり、かつシード15内の熱の彼れも一様になる という利点がある。もちろんこの場合は、シード 15とシード間13 a の球間から融液31が漏れないように仕食する必要がある。

またこのほか、シード側の端壁を全部除去する のではなく、端壁の下部だけを残すようにすれば、 シードに形成する溝を使くすることができる。

シードを以上のように設置した後、図 - 1 のように若英アンプル!1を電気炉!6・!7の中に入れて

昇温する。昇温時の往意点としては、シード15の 熱分解を抑えるため、石英アンプル11内の損圧は 常に1 n P のその時の温度における解離圧よりも 1 ~ 2 a ta 高めにすること、また高圧容得19内の アルゴン圧は、この石英アンプル11内の圧力と平 制するように印加し、これにより石英アンプル11 の破積を防止すること、そしてシード15には7 で / □以上の温度勾配がつくように温度制御することである。このようにしてボート13内の融液部の 温度を1 n P の融点よりわずかに高い温度(1065 で)まで昇温する。このときのボート部の温度分 布は関−5のようになる。シード部の温度分配(4 T / △ X)は7 で / □以上に保つ。

この温度で 2 時間保持し、 In P 職権を合成する。融液が合成されると、シード15 は図-3 に示すように職権31と接触するが、シード15には上記の温度勾配が与えられているため、融液31には溶けない。

融液合成後、結晶成長を開始するが、このとき シード15と融液31との濡れをよくするため、シー

ドISの融液循端部のみ1~2で温度を上げて、その部分を溶かしてシードISと融液31を確実に接触させる。このあと固液界面に4で/の以上の温度な配を与えて結晶成長を開始する。

ところで通常の温度勾配顧園法で I e P 単結晶 放長を行うと、電気炉内の温度分布は図ー 7 のよ うに融液内の温度人が石英アンプルの外側の温度 日より高くなることがある。このような状態では、 融液からボート型を違ってボート外に出ていく熱 域が存在することになり、このときの固液界面は 図ー 9 に点線で示すように融液に対し凹面となり、 ボート内型面から結晶はが発生しやすく、また双 晶も発生しやすくなり、単結晶を成長させること が格めて困難になる。

このため電気炉内の温度分布は、図 — 8 のよう に融液内の温度人が石英アンプル外の温度Bより 低くなるように制御することが必要となる。これ を実現するため図 — 1 の装置では補助ヒーター22、 ヒートシンク20、冷却管21等を設けて、ボート外 からボート内に供給される熱を、シード15を退し てヒートシンクで吸収するようにしているのである。このときの融液温度 A とアンプル外温度 B の 差は、実験によると(B − A) / □ ≥ 4 で / □ に 保 つことが好ましい。このような温度差は前述のようにシード15をヒートシンク 20に直接接触させ よなくことにより容易に得ることができる。以上のような温度分布を実現すると固複界面は図 − 10 に点輪で示すように融液に対し凸面となり、安定した機構品或長が可能となる。

さらに『nPの高品質単結晶を得るには、図一 6に示すように結晶成長中のボート部の最低温度 を1000で以上に保つことも理要である。実際にこ の温度が990 で以下になったとき、成長プロセス で生じたと思われるクラックが『nP単結晶内に 見られた。ボート部の最低温度を1000で以上に保 つと、このクラックの発生は抑えられた。

以上の実施例では「aP単結晶の成長方法について説明したが、本発明は高解離圧を有する他の化合物半導体例えば『-VI族化合物半導体の単結 路成長にも適用することができる。

また上記実施例では融液をアンブル内で直接合 成する場合を説明したが、予め製造された化合物 半導体の多結晶原料を溶融させて融液を作成して もよい。

さらに本発明は水平ブリッジマン法にも適用可

(発明の詳細な説明)

以上説明したように本発明によれば、シードを ヒートシンクに直接接触させてヒートシンク側で 然を吸引しながら単結晶を成長させるようにした ので、成長中の単結晶からシード、ヒートシンク への然の流れがスムーズになり、安定した温度制 御が行えるため、高品質の化合物半導体単結晶を 製造できる利点がある。

四. 図面の簡単な説明

図-1は本発明の単結晶成長方法に使用する装置の一例を示す雑新面図、図-2は図-1の『一 『観における検新面図、図-3(4)(6)は本発明の一 実施例を示す機新面図および平面図、図-4は本 発明の他の実施例を示す機断面図、図-5は融液 合放時および単結晶収長開始時の温度分布を示す グラフ、図 - 6 は単結晶成長中の温度分布を示す グラフ、図 - 7 は従来の温度勾配基固法における 温度分布を示すグラフ、図 - 8 は改良された温度 勾配基固法における温度分布を示すグラフ、図 -9 は図 - 7 の温度分布における単結晶の成長状態 を示す平面図、図 - 10 は図 - 8 の温度分布における単結晶の成長状態を示す平面図である。

13:ポート、13±:シード棚、15:シード、20 :ヒートシンク、31:敵液。

出顧人代理人 弁理士 若林広志

特開平2-34592 (5)

20 20a 15 31 13b 13a 13

図 - 3

X - 5

