Explainability for Deep Neural Networks

Katarína Grešová

Katarína Grešová

https://katarinagresova.github.io

Outline

14:00 – 14:10 Introduction to explainability for deep neural networks 14:10 – 14:40 Hands on: Practical overview of explainability methods for genomic sequence data 14:40 – 15:30 Hands on: Practical overview of explainability methods for image data 15:30 – 16:00 Coffee break 16:00 – 16:30 Use case: miRNA target prediction 16:30 – 17:00 Hands on: Using DeepExperiment to interpret and visualize miRNA targeting

Introduction to explainability for deep neural networks

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification
Speech Recognition
Language Translation
Language Processing
Sentiment Analysis
Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery **AUTONOMOUS MACHINES**

Pedestrian Detection Lane Tracking Recognize Traffic Sign

When do we need model interpretation?

- High-stakes decision making settings
 - Impact on human lives/health/finances
 - Less studied problems, models not extensively validated
- Accuracy alone is no longer enough
 - Train/test data might not be representative of data encountered in practice
- Auxiliary criteria are also crucial
 - Nondiscrimination
 - Right to explanation

Model interpretation as scientific method?

Machine Learning vs. Deep Learning

Interpretability vs Accuracy tradeoff

Post-hoc explainability

Hands on: Practical overview of explainability methods for genomic sequence data

Open the Colab notebook

Hands on: Practical overview of explainability methods for genomic sequence data (https://colab.research.google.com/drive/1Br0f8xPIBkGFIPuXZPMtDDV8GG64wkf2?usp=sharing)

Hands on: Practical overview of explainability methods for image data

Open the Colab notebook

Hands on: Practical overview of explainability methods for image data (https://colab.research.google.com/drive/1cO54Si-hoTZkrkIRS3WYxYHVm4YQUEhB?usp=sharing)

Use case: miRNA target prediction

Biological meaning

Biological meaning

RISC (RNA-induced silencing complex)

Seed Binding + More?

mRNA degradation

Biological experiment - CLASH

Biological experiment - CLASH

himeri Read

miRNA	gene	label
AACTGGCCCTCAAAGTCCCG	TGGAGAGCGGGCTTAAGAAGTGGCGGTTCGGCCGGAGGTTCCATCGTATC	1
ATCAGGGCTTGTGGAATGGG	CTCGCTGGCGTTCTCCGGGGTGGTTGGCATTGTGTCCTGGAAGCGGCCAT	0
TGGGGAGCTGAGGCTCTGGG	CTACACCTCAGCCCGGGGCTGCACTGCCACCCTGGGCAACTTCGCCAAGG	0
GTGAGGGCATGCAGGCCTGG	GTAAGGAGCTGGAGTCGCTGGTAGAGAACGAGGGCAGTGAGGTGCTGGCG	0
ATGCACCTGGGCAAGGATTC	GCATATGGGGGCCTTAAGGAATAACAGTGTGCGTGGTGGTGCAGGAGA	0
TGCACGGCACTGGGGACACG	TCAGGGTTTCTTGGGGGCTTATGAGTCTCACCGGTCAACCCAGGAGGCCT	0
AACTGGCCCTCAAAGTCCCG	ACCTCTTAATGGGCCAGTGAATAACACTCACTGCTGGCATTTAATGTGCA	1
TGGGTTCCTGGCATGCTGAT	CACCTGCTGCCCCTTCTACCCCAGCTCCACCACCTGCAGTCCCTAAAGAA	0
TCAGTGCATCACAGAACTTT	ACCCGCACAGCAAGCACCTGTACACGGCCGACATGTTCACGCACG	0
CTGGCCCTCTCTGCCCTTCC	CTGATTGTGGCAGAGGGCCACTACCCAAGGTCTAGCTAGGCCCAAGACC	1
TGAGGTAGTAGGTTGTATAG	ATGACCCAACCTACCACCTGTTTTTACATATCCAATTCCAGTAACTCTC	1
TAAAGTGCTTATAGTGCAGG	CAAAAGCATACCTACCTTCCCCTAGAGGTCTGTAACATTGTGGCTGGGCA	1
TGAGAACTGAATTCCATGGG	${\tt CCTGGGACCCCCAGGCGTGGAGGACAGTCAAGCCGTGGAGGCCGTGGAGG}$	0
TGAGGTAGTAGGTTGTATAG	CCCAACCTCAACCTCCAGCACCACACATCATGCCAGGGGTTGG	1
CTGTACAGGCCACTGCCTTG	GAAGGTAAAGAGGGTCATTGGGGTCGAGCTATGCCCAGAGGCTGTGGAGG	0
GTCCCTCTCCAAATGTGTCT	GCTGGCCAGCGGACTTCTGGAGTTAGCCTTTGCTTTTTGGAGGACTGTGTG	0
TTAGGGCCCTGGCTCCATCT	ACACAGGAAGAGGAGCCAGGCCCTTGTACCTATGGGATTGGACAGGACTG	1
TAGGTAGTTTCATGTTGTTG	TCCGCCCTCTTTTGCCAGCCCAGCCCCTCCATGCACATTTGGACGCTGTC	0
TAAAGAGCCCTGTGGAGACA	TCCTGAGGCCTGGGGCACCTTTCGTCTGATGAGCCTCTGCATGGAGAGAG	0
GTGGGTACGGCCCAGTGGGG	CATCTTGTCCTCACAGCCCAGAGCATGTTCCAGATCCCAGAGTTTGAGCC	0
Helwak et al., 2013 CLASH dataset - 30 785 miRNA:target site pairs		

Computational model

miRNA: TGAGGTAGTAGGTTGTATAG Binding site: ATGTCAACCTACCTACTTCTAAGCA CAGGGTATGAAGCTCTCTTTCCACT Feature extraction Classification

Statistical model

Computational model

Statistical model

miRNA:

TGAGGTAGTAGGTTGTATAG

Binding site:

ATGTCĂACCTACCTACTTCTAAGCA CAGGGTATGAAGCTCTCTTTCCACT

Deep neural network

miRNA:

TGAGGTAGTAGGTTGTATAG

Binding site:

ATGTCAACCTACCTACTTCTAAGCA CAGGGTATGAAGCTCTCTTTCCACT

miRBind model

Article

miRBind: A Deep Learning Method for miRNA Binding Classification

Eva Klimentová ^{1,†}, Václav Hejret ^{1,2,†}, Ján Krčmář ³, Katarína Grešová ^{1,2}, Ilektra-Chara Giassa ^{1,*} and Panagiotis Alexiou ¹

Interpreting Neural Networks

Interpreting Neural Networks

GATA motif TAL1 motif

Interpreting Neural Networks

(driver ~20nt)

AGTTCTAGTTCGTCCGTCAGTGTCAG
TTCATGAGCACCAGTCACGTTCGTCTA
(target ~50nt)

miRBind model - interpretation

miRBind model - interpretation

0.84

Visualization

miRNA: TGAGGTAGTAGGTTGTATAG

Binding site: ATGTCAACCTACCTACTTCTAAGCACAGGGTATGAAGCTCTCTTTCCACT

Predicted alignment:

Visualization

miRNA: TGAGGTAGTAGGTTGTATAG

Binding site: ATGTCAACCTACCTACTTCTAAGCACAGGGTATGAAGCTCTCTTTCCACT

Predicted alignment:

miRNA position importance:

Visualization

miRNA: TGAGGTAGTAGGTTGTATAG

Binding site: ATGTCAACCTACCTACTTCTAAGCACAGGGTATGAAGCTCTCTTTCCACT

Predicted alignment:

Classes of interaction

Classes of interaction

Mutagenesis experiment

Open access, freely available online PLOS BIOLOGY

Principles of MicroRNA-Target Recognition

Julius Brennecke[®], Alexander Stark[®], Robert B. Russell, Stephen M. Cohen*

European Molecular Biology Laboratory, Heidelberg, Germany

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression in plants and animals. Although their biological importance has become clear, how they recognize and regulate target genes remains less well understood. Here, we systematically evaluate the minimal requirements for functional miRNA-target duplexes in vivo and distinguish classes of target sites with different functional properties. Target sites can be grouped into two broad categories. 5' dominant sites have sufficient complementarity to the miRNA 5' end to function with little or no support from pairing to the miRNA 3' end. Indeed, sites with 3' pairing below the random noise level are functional given a strong 5' end. In contrast, 3' compensatory sites have insufficient 5' pairing and require strong 3' pairing for function. We present examples and genome-wide statistical support to show that both classes of sites are used in biologically relevant genes. We provide evidence that an average miRNA has approximately 100 target sites, indicating that miRNAs regulate a large fraction of protein-coding genes and that miRNA 3' ends are key determinants of target specificity within miRNA families.

Citation: Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3(3): e85.

Mutagenesis experiment

UCUUGUUUDAGU AUCAGAAG I

Open access, freely available online PLOS BIOLOGY

10 11 12

Principles of MicroRNA-Target Recognition

Julius Brennecke[®], Alexander Stark[®], Robert B. Russell, Stephen M. Cohen^{*}

European Molecular Biology Laboratory, Heidelberg, Germany

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression in plants and animals. Although their biological importance has become clear, how they recognize and regulate target genes remains less well understood. Here, we systematically evaluate the minimal requirements for functional miRNA-target duplexes in vivo and distinguish classes of target sites with different functional properties. Target sites can be grouped into two broad

0.2

0.0

categories. 5' dominant sites have sufficient complementarity to the miRNA 5' end to function with little or no support from pairing to the miRNA 3' end. Indeed, sites wi strong 5' end. In contrast, 3' compensatory sites ha 1.0 We present examples and genome-wide statistical relevant genes. We provide evidence that an ave miRNAs regulate a large fraction of protein-codin specificity within miRNA families. Citation: Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of r 0.6 0.4

UC

Verification

miRNA	miR-7	miR-278
correlation	0.59	0.85

Messenger RNA, 100s – 100,000s nt long

Messenger RNA, 100s – 100,000s nt long

Narrowing the peaks

Narrowing the peaks

Close by peaks

Hands on: Using DeepExperiment to interpret and visualize miRNA targeting

Open the Colab notebook

Hands on: Using DeepExperiment to interpret and visualize miRNA targeting

(https://colab.research.google.com/drive/1lelArVN_BJ4P9Uex3yhB8hM3MfEPGay2?usp=sharing)

Conclusions

- There are many techniques for interpreting neural networks
- They use different principles and produce different results
- Personal tip: don't use just one, try multiple interpretation techniques

Thank you for your attention!

Deep Neural Networks are like a complex organisms and interpretation techniques help us perform experiments to better understand them.