Álgebra Booleana – Resumo (parte 2)

Operadores secundários

São operadores criados a partir dos operadores primitivos. Aqui serão mostrados três operadores secundários:

- NÃO E (também chamado de NAND)
- NÃO OU (também chamado de NOR)
- OU EXCLUSIVO (também chamado de EXNOR)

Operador NÃO E (NAND)

É um operador criado com os operadores E e NÃO.

Expressão Circuito lógico equivalente Símbolo

$$Y = \overline{A \cdot B}$$
 $A = A \cdot B$
 $A = A \cdot B$
 $A = A \cdot B$

Antes de iniciar a apresentação dos operadores secundários faremos uma explicação sobre o operador de negação quando utilizado sobre uma expressão booleana. Neste caso, assume-se, por convenção, que a expressão que está abaixo do sinal de negação está entre parênteses. Por exemplo, a expressão \overline{A} \overline{R}

deve ser interpretada como

$$\overline{(A.B)}$$

Para ficar mais clara essa interpretação, observaremos que nas linguagens de programação C, Java, PHP, dentre outras, essa operação seria implementada pela expressão abaixo, onde nota-se obrigatoriamente o uso do parênteses:

Nesse caso, seguindo-se as regras das precedências entre operadores, deve-se primeiro executar a expressão entre parênteses para depois executar o operador de negação. Portanto, vamos calcular a tabela verdade para esse operador:

Calculando a tabela verdade da expressão $Y = \overline{A \cdot B}$

Calculando para A=0 e B=0

 $Y = \overline{0.0}$ primeiro resolver 0.0

 $Y = \overline{0}$ agora sim, resolver a negação

Y = 1

Calculando para A=0 e B=1

 $Y = \overline{0.1}$ primeiro resolver 0.1

 $Y = \overline{0}$ agora sim, resolver a negação

Y = 1

Calculando para A=1 e B=0

 $Y = \overline{1.0}$ primeiro resolver 1.0

 $Y = \overline{0}$ agora sim, resolver a negação

Y = 1

Calculando para A=1 e B=1

 $Y = \overline{1.1}$ primeiro resolver 1.1

 $Y = \overline{1}$ agora sim, resolver a negação

Y = 0

Ou, usando o formato de tabela e calculando as parciais...

Α	В	A.B	A.B
Θ	Θ	Θ	1
Θ	1	0	1
1	Θ	0	1
1	1	1	0

Portanto, a tabela verdade da expressão $\overline{A.B}$ é:

Α	В	A.B	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Operador NÃO OU (NOR)

É um operador criado com os operadores OU e NÃO.

Expressão

Circuito lógico equivalente

Símbolo

Calculan<u>do a Tabela Verdade do Operador NÃO O</u>U (NOR)

Α	В	A+B	A+B
Θ	Θ	Θ	1
Θ	1	1	Θ
1	Θ	1	Θ
1	1	1	0

Tabela Verdade do Operador NÃO OU (NOR)

Α	В	A+B	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Operador OU EXCLUSIVO (XOR)

É um operador que resulta verdadeiro somente se apenas uma das entradas for verdadeira.

Tabela Verdade do Operador OU EXCLUSIVO

A	В	$A \oplus B$
Θ	Θ	Θ
Θ	1	1
1	Θ	1
1	1	Θ

É um operador bem complexo se pensarmos na sua implementação a partir de operadores primitivos, conforme mostra a expressão $Y=\overline{A}.B+A.\overline{B}$

Α	В	Ā	B	Ā.B	A.B	$\overline{A}.B + A.\overline{B}$
Θ	Θ	1	1	0	0	0
Θ	1	1	0	1	0	1
1	Θ	Θ	1	0	1	1
1	1	0	0	Θ	Θ	Θ