

Translating Lean to Higher Order Logic

Praxis der Forschung

Max Nowak | May 15, 2023

```
theorem toArrayLit_eq' (a : Array α) (n : Nat) (hsz : a.size = n) : a = toArrayLit a n hsz := by
have := aux n
    rw [List.drop_eq_nil_of_le (Nat.le_of_eq hsz)] at this
    rw [List.drop_eq_nil_of_le (Nat.le_of_eq hsz)] at this
    exact (data_toArray a).symm.trans $ congrArg List.toArray (this _).symm
    exact (data_toArray a).symm
    exact (data_toArray a).symm.trans $ congrArg List.toArray (this _).symm
    exact (data_toArray a).symm
    exact (
```


- Interactive Theorem Provers
 - Based on higher order logic: Isabelle/HOL
 - Based on Martin-Löf type theory and the calculus of inductive constructions: Coq, Lean 4

- Interactive Theorem Provers
 - Based on higher order logic: Isabelle/HOL
 - Based on Martin-Löf type theory and the calculus of inductive constructions: Coq, Lean 4

```
theorem sumBounded (xs : Vec N len) (f: N \rightarrow N) (m : Monotone f)
 : sum (map f xs) \leq len * (f (max xs))
 := bv
    induction xs with
    | Onil ⇒ simp [Nat.zero_eq, Nat.zero_mul, Nat.le_zero_eq, map]
    I @cons len x xs ih ⇒
     rw [Vec.max]
     bv_cases x ≤ max xs
      . simp_all [ite_true, map, sum]
       have : f x \leq f (max xs) := by apply m; simp_all
        Linarith
      . simp [ite_false, map, sum, h]
        suffices len * f (max xs) \leq len * f x by linarith
       have : f(max xs) \le f x := by apply m; simp at h; exact le_of_lt h
        exact mul_le_mul_left2 (f (Vec.max xs)) (f x) this len
```


- Interactive Theorem Provers
 - Based on higher order logic: Isabelle/HOL
 - Based on Martin-Löf type theory and the calculus of inductive constructions: Coq, Lean 4

```
theorem sumBounded (xs : Vec N len) (f: N \rightarrow N) (m : Monotone f)
  : sum (map f xs) \leq len * (f (max xs))
 := hv
    induction xs with
    | Onil ⇒ simp [Nat.zero_eq, Nat.zero_mul, Nat.le_zero_eq, map]
     Ocons len x xs ih ⇒
     rw [Vec.max]
     bv_cases x ≤ max xs
      . simp_all [ite_true, map, sum]
       have : f x \leq f (max xs) := by apply m; simp_all
        Linarith
      . simp [ite_false, map, sum, h]
        suffices len * f (max xs) \leq len * f x by linarith
       have : f(max xs) \le f x := by apply m; simp at h; exact le_of_lt h
        exact mul_le_mul_left2 (f (Vec.max xs)) (f x) this len
```

- SMT solvers now good enough at solving HOL problems
- Hammers
 - Isabelle/HOL: Sledgehammer (HOL)
 - Coq: CoqHammer and SMTCoq (FOL)
 - Lean: Lean-Smt (FOL)

- Interactive Theorem Provers
 - Based on higher order logic: Isabelle/HOL
 - Based on Martin-Löf type theory and the calculus of inductive constructions: Coq, Lean 4

```
theorem sumBounded (xs : Vec N len) (f: N \rightarrow N) (m : Monotone f)
  : sum (map f xs) \leq len * (f (max xs))
  := hv
    induction xs with
     @nil ⇒ simp [Nat.zero_eq, Nat.zero_mul, Nat.le_zero_eq, map]
     Monns len x xs ih ⇒
     rw [Vec.max]
     bv_cases x ≤ max xs
      . simp_all [ite_true, map, sum]
       have : f x \leq f (max xs) := by apply m; simp_all
        Linarith
      . simp [ite_false, map, sum, h]
        suffices len * f (max xs) \leq len * f x by linarith
        have : f(max xs) \le f x := by apply m; simp at h; exact le_of_lt h
        exact mul_le_mul_left2 (f (Vec.max xs)) (f x) this len
```

- SMT solvers now good enough at solving HOL problems
- Hammers
 - Isabelle/HOL: Sledgehammer (HOL)
 - Coq: CoqHammer and SMTCoq (FOL)
 - Lean: Lean-Smt (FOL)

- Translate Lean goals $\Gamma \vdash ?m : \phi$ to new Lean goals
 - Can infer types, distinguish between x : Type and x : Prop
 - Add translated inductive types and definitions

Lean Metaprogramming

- Translate Lean goals $\Gamma \vdash ?m : \phi$ to new Lean goals
 - Can infer types, distinguish between x : Type and x : Prop
 - Add translated inductive types and definitions
- Expr represents values, types, propositions, and proofs
 - a = b represented as Expr.app (Expr.app (Expr.const "Eq") a) b

- Translate Lean goals $\Gamma \vdash ?m : \phi$ to new Lean goals
 - Can infer types, distinguish between x : Type and x : Prop
 - Add translated inductive types and definitions
- Expr represents values, types, propositions, and proofs
 - lacktriangle a=b represented as Expr.app (Expr.app (Expr.const "Eq") a) b

$$\vdash \forall_{x: List A} \ x = x$$

- Translate Lean goals $\Gamma \vdash ?m : \phi$ to new Lean goals
 - Can infer types, distinguish between x : Type and x : Prop
 - Add translated inductive types and definitions
- Expr represents values, types, propositions, and proofs
 - lack a = b represented as Expr.app (Expr.app (Expr.const "Eq") a) b

$$\vdash \qquad \forall_{x: List \ A} \ \ x = x$$
$$\vdash \qquad \forall_{x: List'} \ \ x = x$$

- Translate Lean goals $\Gamma \vdash ?m : \phi$ to new Lean goals
 - Can infer types, distinguish between x : Type and x : Prop
 - Add translated inductive types and definitions
- Expr represents values, types, propositions, and proofs
 - lack a = b represented as Expr.app (Expr.app (Expr.const "Eq") a) b

$$\vdash \forall_{x: List \ A} \ x = x$$
$$\vdash \mathsf{prf}_1 : \forall_{x: List'} \ x = x$$

- Translate Lean goals $\Gamma \vdash ?m : \phi$ to new Lean goals
 - Can infer types, distinguish between x : Type and x : Prop
 - Add translated inductive types and definitions
- Expr represents values, types, propositions, and proofs
 - lack a = b represented as Expr.app (Expr.app (Expr.const "Eq") a) b

$$\vdash \mathsf{prf}_0 : \forall_{x:\mathsf{List}\;A} \; \; x = x$$
$$\vdash \mathsf{prf}_1 : \forall_{x:\mathsf{List}'} \; \; x = x$$

- Translate Lean goals $\Gamma \vdash ?m : \phi$ to new Lean goals
 - Can infer types, distinguish between x : Type and x : Prop
 - Add translated inductive types and definitions
- Expr represents values, types, propositions, and proofs
 - lacksquare a=b represented as Expr.app (Expr.const "Eq") a) b

$$\vdash \mathsf{prf}_0 : \forall_{x:\mathsf{List}\;A} \; x = x$$
$$\vdash \mathsf{prf}_1 : \forall_{x:\mathsf{List}'} \; x = x$$

- Finally, directly encode to TPTP-THF0
 - Simply-typed higher order logic

Lean	HOL
And $\phi \; \psi$	$\phi \wedge \psi$
$\phi o \psi$	$\phi \Rightarrow \psi$

inductive	\mathbb{N} :	Type
-----------	----------------	------

 $\text{zero}: \mathbb{N}$

 $\text{cons}: \mathbb{N} \to \mathbb{N}$

Lean	HOL
And $\phi \; \psi$	$\phi \wedge \psi$
$\phi o \psi$	$ \begin{array}{c} \phi \wedge \psi \\ \phi \Rightarrow \psi \end{array} $
\mathbb{N}	N

Lean

And $\phi \psi$

 $\phi \to \psi$

Even n

HOL

 $\phi \wedge \psi$

 $\phi \Rightarrow \psi$

even n

inductive	\mathbb{N}	: '	Type
-----------	--------------	-----	------

 $\mathsf{zero}: \mathbb{N}$

 $\text{cons}:\mathbb{N}\to\mathbb{N}$

inductive Even :
$$\mathbb{N} \to \mathsf{Prop}$$

base: Even 0

 $\mathsf{step}: (x:\mathbb{N}) \to \mathsf{Even}\ x \to \mathsf{Even}\ (x+2)$

Lean

And $\phi \psi$

 $\phi \to \psi$

Even n

HOL

 $\phi \wedge \psi$

 $\phi \Rightarrow \psi$

even n

 $(x:A) \rightarrow \phi x \mid \forall_{x:A} \phi x$

inductive	\mathbb{N}	: -	Туре
-----------	--------------	-----	------

 $\text{zero}: \mathbb{N}$

 $\text{cons}: \mathbb{N} \to \mathbb{N}$

inductive Even :
$$\mathbb{N} \to \mathsf{Prop}$$

base: Even 0

step : $(x : \mathbb{N}) \to \text{Even } x \to \text{Even } (x + 2)$

Lean

And ϕ ψ

 $\phi \to \psi$

Even n

 $\lambda_{x \cdot A} f x$ $\lambda_{x \cdot A} f x$

inductive	\mathbb{N}	: T	ype
-----------	--------------	-----	-----

zero: N

cons : $\mathbb{N} \to \mathbb{N}$

HOL

 $\phi \wedge \psi$

inductive Even : $\mathbb{N} \to \mathsf{Prop}$

base: Even 0

step: $(x : \mathbb{N}) \to \text{Even } x \to \text{Even } (x + 2)$

inductive	\mathbb{N}	: Ty	/pe
-----------	--------------	------	-----

 $\mathsf{zero}: \mathbb{N}$

 $\text{cons}: \mathbb{N} \to \mathbb{N}$

inductive Even : $\mathbb{N} \to \mathsf{Prop}$

base: Even 0

step : $(x : \mathbb{N}) \to \text{Even } x \to \text{Even } (x + 2)$

Lean	HOL
And $\phi \ \psi$	$\phi \wedge \psi$
$\phi o \psi$	$\phi \Rightarrow \psi$
\mathbb{N}	\mathbb{N}
Even n	even n
$(x : A) \rightarrow \phi x$	$\forall_{\mathbf{x}:\mathbf{A}} \phi \mathbf{x}$
${\it A} ightarrow {\it B}$	$A \rightarrow B$
$\lambda_{x:A} f x$	$\lambda_{x:A} f x$
$(x:A) \rightarrow B x$	no

Lean	HOL
And $\phi \ \psi$	$\phi \wedge \psi$
$\phi o \psi$	$\phi \Rightarrow \psi$
\mathbb{N}	\mathbb{N}
Even n	even n
$(x : A) \rightarrow \phi x$	$\forall_{x:A} \phi x$
$ extcolor{black}{A} ightarrow extcolor{black}{B}$	$A \rightarrow B$
$\lambda_{x:A} f x$	$\lambda_{x:A} f x$
$(x:A) \rightarrow B x$	no
List A	no

inductive \mathbb{N} : Type

 $\mathsf{zero}: \mathbb{N}$

 $\text{cons}: \mathbb{N} \to \mathbb{N}$

inductive Even : $\mathbb{N} \to \mathsf{Prop}$

base: Even 0

step : $(x : \mathbb{N}) \to \text{Even } x \to \text{Even } (x + 2)$

inductive List : $(A : \mathsf{Type}) \to \mathsf{Type}$

nil : List A

cons : $A \rightarrow \text{List } A \rightarrow \text{List } A$

Lean	HOL
And $\phi \ \psi$	$\phi \wedge \psi$
$\phi o \psi$	$\phi \Rightarrow \psi$
\mathbb{N}	\mathbb{N}
Even n	even n
$(x : A) \rightarrow \phi x$	$\forall_{\mathbf{x}:\mathbf{A}} \phi \mathbf{x}$
A o B	A o B
$\lambda_{x:A} f x$	$\lambda_{x:A} f x$
$(x:A) \rightarrow B x$	no
List A	no

Need non-simple types to write (x : A) → B x inductive \mathbb{N} : Type

 $\mathsf{zero}: \mathbb{N}$

 $\text{cons}: \mathbb{N} \to \mathbb{N}$

inductive Even : $\mathbb{N} \to \mathsf{Prop}$

base: Even 0

step : $(x : \mathbb{N}) \to \text{Even } x \to \text{Even } (x + 2)$

inductive List : $(A : \mathsf{Type}) \to \mathsf{Type}$

nil : List A

cons : $A \rightarrow \text{List } A \rightarrow \text{List } A$


```
inductive Vec : (A : \mathsf{Type}) \to (\mathit{len} : \mathbb{N}) \to \mathsf{Type}
```

nil: Vec A 0

cons : $(len : \mathbb{N}) \to A \to \text{Vec } A \ len \to \text{Vec } A \ (len + 1)$

- Kinds of parameters
 - A is a uniform type parameter
 - len is a type index

inductive Vec : $(A : \mathsf{Type}) \to (\mathit{len} : \mathbb{N}) \to \mathsf{Type}$

nil: Vec A 0

cons : $(len : \mathbb{N}) \to A \to \text{Vec } A \ len \to \text{Vec } A \ (len + 1)$

Kinds of parameters

- A is a uniform type parameter (TU)
- len is a type index (VX)

	value	type
uniform	VU	TU
index	VX	TX

Anatomy of Inductive Types

inductive Vec : $(A : \mathsf{Type}) \to (\mathit{len} : \mathbb{N}) \to \mathsf{Type}$

nil: Vec A 0

cons : $(len : \mathbb{N}) \to A \to \text{Vec } A \ len \to \text{Vec } A \ (len + 1)$

	value	type
uniform	VU	TU
index	VX	TX

- Kinds of parameters
 - A is a uniform type parameter (TU)
 - len is a type index (VX)
- Want only simple data types T : Type
- Two approaches
 - Monomorphization
 - Guard construction


```
inductive Vec : (A : \mathsf{Type}) \to \mathbb{N} \to \mathsf{Type}

nil : Vec A 0

cons : (\mathit{len} : \mathbb{N}) \to (x : A) \to

(xs : \mathsf{Vec} \ A \ \mathit{len}) \to

Vec A \ (\mathit{len} + 1)
```

double: Vec $A n \rightarrow Vec A (2 * n)$


```
inductive Vec : (A : \mathsf{Type}) \to \mathbb{N} \to \mathsf{Type}

nil : Vec A \ 0

cons : (\mathit{len} : \mathbb{N}) \to (x : A) \to

(xs : \mathsf{Vec} \ A \ \mathit{len}) \to

Vec A \ (\mathit{len} + 1)
```

inductive VecE : $(A : \mathsf{Type}) \to \mathsf{Type}$ nil : VecE Acons : $(\mathit{len} : \mathbb{N}) \to (x : A) \to$ $(xs : \mathsf{VecE} \ A) \to$ VecE A

Erase indices

double : $VecE A \rightarrow VecE A$


```
inductive Vec : (A : \mathsf{Type}) \to \mathbb{N} \to \mathsf{Type}

nil : Vec A 0

cons : (\mathit{len} : \mathbb{N}) \to (x : A) \to

(xs : \mathsf{Vec} \ A \ \mathit{len}) \to

Vec A \ (\mathit{len} + 1)
```

- **inductive** VecE : $(A : Type) \rightarrow Type$
 - nil : VecE A
 - cons : $(len : \mathbb{N}) \rightarrow (x : A) \rightarrow$
 - $(xs : VecE A) \rightarrow$
 - VecE A

- Erase indices
- Derive guard predicate

inductive VecG : $(A : \mathsf{Type}) \to \mathbb{N} \to \mathsf{VecE} \ A \to \mathsf{Prop}$

double : $VecE A \rightarrow VecE A$


```
inductive Vec : (A : \mathsf{Type}) \to \mathbb{N} \to \mathsf{Type}

nil : Vec A \ 0

cons : (\mathit{len} : \mathbb{N}) \to (x : A) \to

(xs : \mathsf{Vec} \ A \ \mathit{len}) \to

Vec A \ (\mathit{len} + 1)
```

- Erase indices
- Derive guard predicate

```
inductive VecE : (A : \mathsf{Type}) \to \mathsf{Type}

nil : VecE A

cons : (\mathit{len} : \mathbb{N}) \to (x : A) \to

(xs : \mathsf{VecE}\ A) \to

VecE A
```

inductive VecG :
$$(A : \mathsf{Type}) \to \mathbb{N} \to \mathsf{VecE} A \to \mathsf{Prop}$$

nil : VecG $A \circ (\mathsf{VecE.nil} A)$

double: $VecE A \rightarrow VecE A$


```
inductive Vec : (A : \mathsf{Type}) \to \mathbb{N} \to \mathsf{Type}

nil : Vec A \ 0

cons : (\mathit{len} : \mathbb{N}) \to (x : A) \to

(xs : \mathsf{Vec} \ A \ \mathit{len}) \to

Vec A \ (\mathit{len} + 1)
```

- Erase indices
- Derive guard predicate

```
nil: VecE A
     cons : (len : \mathbb{N}) \rightarrow (x : A) \rightarrow
        (xs : VecE A) \rightarrow
         VecE A
inductive VecG : (A : \mathsf{Type}) \to \mathbb{N} \to \mathsf{VecE} \ A \to \mathsf{Prop}
  nil: VecG A 0 (VecE.nil A)
  cons : (len : \mathbb{N}) \rightarrow (x : A) \rightarrow
     (xs: Vec A len
     VecG A (len + 1) (VecE.cons A \times xs)
```

inductive VecE : $(A : Type) \rightarrow Type$

double : VecE A

 \rightarrow VecE A


```
inductive Vec : (A : \mathsf{Type}) \to \mathbb{N} \to \mathsf{Type}

nil : Vec A \ 0

cons : (\mathit{len} : \mathbb{N}) \to (x : A) \to

(xs : \mathsf{Vec} \ A \ \mathit{len}) \to

Vec A \ (\mathit{len} + 1)
```

- Erase indices
- Derive guard predicate
- Replace T u i with $\{x : E u \mid G u i x\}$
 - $\{x : \mathbb{N} \mid x < 5\}$ is a *subtype* of \mathbb{N}

```
inductive VecE : (A : \mathsf{Type}) \to \mathsf{Type}

nil : VecE A

cons : (\mathsf{len} : \mathbb{N}) \to (x : A) \to

(xs : \mathsf{VecE} \ A) \to

VecE A
```

inductive VecG :
$$(A : \mathsf{Type}) \to \mathbb{N} \to \mathsf{VecE} \ A \to \mathsf{Prop}$$

nil : VecG $A : \mathsf{O} \ (\mathsf{VecE.nil} \ A)$
cons : $(\mathit{len} : \mathbb{N}) \to (x : A) \to$
 $(xs : \{v : \mathsf{VecE} \ A \mid \mathsf{VecG} \ A \ \mathit{len} \ v\}) \to$
VecG $A \ (\mathit{len} + 1) \ (\mathsf{VecE.cons} \ A \ _ x \ xs)$

double :
$$\{x : VecE \ A \mid VecG \ A \ n \ x\} \rightarrow \{x : VecE \ A \mid VecG \ A \ (2 * n) \ x\}$$

- Inductive data types: Monomorphize TU (and VU) parameters
 - Predicates: Only monomorphize TU parameters

$$T: (A: {\sf Type}) o {\mathbb N} o {\sf Type}$$
 $T': {\sf Type}$ $T': {\sf Type}$ " $T':= T {\mathbb N} 3$ "

- Inductive data types: Monomorphize TU (and VU) parameters
 - Predicates: Only monomorphize TU parameters

Functions: Monomorphize parameters occuring in data positions

$$f: (A: \mathsf{Type}) \to (n: \mathbb{N}) \to (k: \mathbb{N}) \to k < n \to \mathsf{Vec} \ A \ n$$
 $f': (k: \mathbb{N}) \to k < 7 \to \mathsf{Vec} \ \mathbb{N} \ 7$
 $f':= f \ \mathbb{N} \ 7$

Monomorphization

- Inductive data types: Monomorphize TU (and VU) parameters
 - Predicates: Only monomorphize TU parameters

$$T: (A: {\sf Type}) o {\mathbb N} o {\sf Type}$$
 $T': {\sf Type}$ $T': {\sf Type}$ " $T':= T {\mathbb N} 3$ "

Functions: Monomorphize parameters occuring in data positions

$$f: (A: \mathsf{Type}) \to (n: \mathbb{N}) \to (k: \mathbb{N}) \to k < n \to \mathsf{Vec} \ A \ n$$
 $f': (k: \mathbb{N}) \to k < 7 \to \mathsf{Vec} \ \mathbb{N} \ 7$
 $f':=f \ \mathbb{N} \ 7$

- What about goals such as $(A : Type) \rightarrow ...$?
 - Lift binder by introducing axiom A : Type

- Inductive data types
 - Add injectivity theorems
 - Structures get projection theorems

inductive List_ℤ : Type

nil: List_Z

 $\mathsf{cons}: \mathbb{Z} \to \mathsf{List}_\mathbb{Z} \to \mathsf{List}_\mathbb{Z}$

thf(type, ListZ : \$tType).

thf(type, nil : ListZ).

thf(type, cons : $Z \rightarrow ListZ \rightarrow ListZ$).

Encoding Inductive Types to TPTP

- Inductive data types
 - Add injectivity theorems
 - Structures get projection theorems

inductive List_ℤ : Type

ductive List. Typ

 $\mathsf{nil}:\mathsf{List}_{\mathbb{Z}}$

 $\mathsf{cons} : \mathbb{Z} \to \mathsf{List}_\mathbb{Z} \to \mathsf{List}_\mathbb{Z}$

thf(type, ListZ : \$tType).

thf(type, nil : ListZ).

thf(type, cons : $Z \rightarrow ListZ \rightarrow ListZ$).

Inductive predicates: Treat Prop as Bool

inductive VecG : $\mathbb{N} \to \text{VecE} \to \text{Prop}$

thf(type, VecG: $N \rightarrow VecE \rightarrow Bool$).

Encoding Inductive Types to TPTP

- Inductive data types
 - Add injectivity theorems
 - Structures get projection theorems

```
\begin{array}{l} \textbf{inductive} \ \mathsf{List}_{\mathbb{Z}} : \mathsf{Type} \\ \\ \mathsf{nil} : \mathsf{List}_{\mathbb{Z}} \\ \\ \mathsf{cons} : \mathbb{Z} \to \mathsf{List}_{\mathbb{Z}} \to \mathsf{List}_{\mathbb{Z}} \end{array}
```

Inductive predicates: Treat Prop as Bool

```
inductive VecG : \mathbb{N} \to \text{VecE} \to \text{Prop}

nil : VecG 0 VecE.nil

cons : (len : \mathbb{N}) \to (x : \mathbb{Z}) \to

(xs : \{v : \text{VecE} \mid \text{VecG len } v\}) \to

VecG (len + 1) (VecE.cons \_x xs)
```

```
thf(type, VecG: N \rightarrow VecE \rightarrow Bool).

thf(axiom, VecG 0 VecE.nil).

thf(axiom, \forall len: N, \forall x: Z,

\forall xs: VecE, VecG len xs \Rightarrow

VecG (len + 1) (VecE.cons = x xs)).
```

thf(type, cons : $Z \rightarrow ListZ \rightarrow ListZ$).

thf(type, ListZ: \$tType).

thf(type, nil : ListZ).

Encoding Functions to TPTP

Best case: Directly via lambda

def increment : $\mathbb{N} \to \mathbb{N}$

$$:= \lambda_n \ n+1$$

thf(type, increment : $N \rightarrow N$).

thf(axiom, increment = $(\lambda x : N, add x 1)$).

Best case: Directly via lambda

def increment :
$$\mathbb{N} \to \mathbb{N}$$

:= $\lambda_n \ n+1$

thf(type, increment : N
$$\rightarrow$$
 N). thf(axiom, increment = (λ x : N, add x 1)).

Functions with pattern matching: Multiple equations

$$\begin{split} \textbf{def} \; \mathsf{map} : & (A \to B) \to \mathsf{List}_A \to \mathsf{List}_B \\ & | \; f, \; [\;]_A \Rightarrow [\;]_B \\ & | \; f, \; x ::_A xs \; \Rightarrow (f \; x) ::_B (\mathsf{map} \; xs) \end{split}$$

thf(type, map :
$$(A \rightarrow B) \rightarrow ListA \rightarrow ListB$$
).
thf(axiom, $\forall f$, map f nilA = nilB).
thf(axiom, $\forall f \forall x \forall xs$,
map f (consA x xs) = consB (f x) (map f xs)).

Encoding Functions to TPTP

Best case: Directly via lambda

def increment :
$$\mathbb{N} \to \mathbb{N}$$

:= $\lambda_n \ n+1$

thf(type, increment : N
$$\rightarrow$$
 N). thf(axiom, increment = (λx : N, add x 1)).

Functions with pattern matching: Multiple equations

```
def map : (A \rightarrow B) \rightarrow \text{List}_A \rightarrow \text{List}_B

| f, []_A \Rightarrow []_B

| f, x ::_A xs \Rightarrow (f x) ::_B (map xs)
```

■ Treat {x : T | P x} as T

thf(type, map :
$$(A \rightarrow B) \rightarrow ListA \rightarrow ListB$$
).
thf(axiom, $\forall f$, map f nilA = nilB).
thf(axiom, $\forall f \forall x \forall xs$,
map f (consA x xs) = consB (f x) (map f xs)).


```
theorem sumBounded (xs : Vec N len) (f: N → N) (m : Monotone f)
: sum (map f xs) ≤ len * (f (max xs))
:= by
induction xs with
| @nil ⇒ smt
| @cons len x xs ih ⇒ smt
```

- Map inductive types to simple types
 - Guard construction
 - Monomorphization
- Translation is extensible
- Ability to reason about higher order functions
- Type indices depending on other type indices seem to work

- Typeclasses and their structure projections are spammy
 - Proof for 1 + 2 = 3 is 250kB
 - CVC5 on 1 + 0 + 2 = 3 times out
- Further work
 - Lemma selection and proof reconstruction
 - Recursors
 - Pre- and postconditions