UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA

3º Exercício Computacional de Algoritmos Numéricos II Relatório

> Matheus Gomes Arante de Souza Vinícius Lucas dos Reis

> > Vitória Abril de 2019

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA

Matheus Gomes Arante de Souza Vinícius Lucas dos Reis

3º Exercício Computacional de Algoritmos Numéricos II **Relatório**

Neste relatório analisaremos o comportamento de um conjunto de matrizes esparsas em métodos iterativos não estacionários utilizando precondicionamento e reordenamento no ambiente de programação Octave.

Vitória Abril de 2019

Sumário

1	Introdução	1
2	Exercício 1 2.1 Matriz bcsstk01 2.2 Matriz 1138_bus 2.3 Matriz 2cubes_sphere 2.4 Matriz G3_circuit	2 2 3 4 6
3	Exercício 2 3.1 Matriz CAG_mat72 3.2 Matriz dw1024 3.3 Matriz trans4 3.4 Matriz circuit5M_dc	7 7 9 11 13
4	 Conclusão 4.1 Exercício 1: Método dos Gradientes Conjugados com a ação de precondicionadores	15 15 15
5	Referências	16

1 Introdução

Os métodos iterativos não estacionários, a saber Gradientes Conjugados e GM-RES, são muito utilizados para resolver sistemas lineares e utilizam a ideia de minimizar o resíduo da solução. Entretanto, pode demorar para que ocorra convergência ou o tempo computacional necessário para obter-se a resposta do método seja inviável.

Para contornar as dificuldades citadas anteriormente, é possível utilizar a estratégia de precondicionamento e reordenamento. Desta maneira, conseguimos acelerar a convergência dos métodos iterativos e reduzir o tempo computacional.

Neste exercício computacional avaliaremos o comportamento das matrizes utilizadas no exercício computacional 2, quando submetidas à estes métodos sob a ação de precondicionadores e reordenamento. Entretanto, foi necessário substituirmos algumas matrizes que haviam sido usadas anteriormente, devido a problemas de pivoteamento e memória. Para este experimento, tomamos a tolerância $tol=10^{-5}$ e o número máximo de iterações $maxit=10^4$.

2 Exercício 1

2.1 Matriz bcsstk01

Ordem da matriz: 48

Quantidade de elementos não nulos: 400

Condicionamento: 8.823363e+05

Figura 1: Matriz bcsstk01

ex1_bcsstk01-eps-converted-to.pdf

Figura 2: Iterações x log(Resíduo Relativo), utilizando precondicionamento ICC(0) e ICC com algum preenchimento

Precondicionador	Nenhum	ICC(0)	ICC
Flag	0	0	0
N_{iter}	31	14	5
Resíduo Rel.	7.1771e-06	3.3069e-06	1.4405e-06
$ x _{\infty}$	1.0099	1.0013	1.0008
$Tempo_{seg}$	0.0084	0.037724	0.00355697

Tabela 1: Resultados do Método dos Gradientes Conjugados com e sem a utilização de precondicionadores para a matriz bcsstk01

2.2 Matriz 1138_bus

Ordem da matriz: 1,138

Quantidade de elementos não nulos: 4,054

Condicionamento: 8.572646e+06

Figura 3: Matriz 1138_bus

Figura 4: Iterações x log(Resíduo Relativo), utilizando precondicionamento ICC(0) e ICC com algum preenchimento

Precondicionador	Nenhum	ICC(0)	ICC
Flag	0	0	0
N_{iter}	1526	26 97	
Resíduo Rel.	9.481e-06	9.3065e-06	1.8228e-06
$ x _{\infty}$	1.0009	1.0004	1.0001
$Tempo_{seg}$	0.4355	0.0354638	0.00900388

Tabela 2: Resultados do Método dos Gradientes Conjugados com e sem a utilização de precondicionadores para a matriz 1138_bus

2.3 Matriz 2cubes_sphere

Ordem da matriz: 101,492

Quantidade de elementos não nulos: 1,647,264

Condicionamento: †

Figura 5: Matriz 2cubes_sphere

Precondicionador	Nenhum	ICC(0)	ICC
Flag	0	0	0
N_{iter}	3030	3030 5	
Resíduo Rel.	9.9466e-06	2.5699e-06	1.3428e-06
$ x _{\infty}$	1.3170	1.0045	1.0003
$Tempo_{seg}$	33.6678	0.0354638	0.00900388

Tabela 3: Resultados do Método dos Gradientes Conjugados com e sem a utilização de precondicionadores para a matriz 2cubes_sphere

Figura 6: Iterações x log(Resíduo Relativo) sem utilizar precondicionamento

Figura 7: Iterações x log(Resíduo Relativo), utilizando precondicionamento ICC(0) e ICC com algum preenchimento

2.4 Matriz G3_circuit

Ordem da matriz: 1,585,478

Quantidade de elementos não nulos: 7,660,826

Condicionamento: †

Figura 8: Matriz G3_circuit

Figura 9: Iterações x log(Resíduo Relativo), utilizando precondicionamento ICC(0) e ICC com algum preenchimento

Precondicionador	Nenhum	ICC(0)	ICC	
Flag	0	0	0	
N_{iter}	817	34	12	
Resíduo Rel.	9.8539e-06	9.7501e-06	9.7052e-06	
$ x _{\infty}$	1.3639	1.2663	1.0248	
$Tempo_{seg}$	122.0181	8.7495	5.82741	

Tabela 4: Resultados do Método dos Gradientes Conjugados com e sem a utilização de precondicionadores para a matriz G3_circuit

3 Exercício 2

3.1 Matriz CAG_mat72

Ordem da matriz: 72

Quantidade de elementos não nulos: 1,012

Condicionamento: 8,786167e+03

Banda da Matriz: 47

Banda da Matriz Reordenada: 34

Figura 10: Matrizes do Sistema

Figura 11: Matrizes da Fatoração LU sem reordenamento

Figura 12: Matrizes da Fatoração LU com reordenamento

Figura 13: Iterações x log(Resíduo Relativo) (Para diferentes valores de k e sem o uso de precondicionador)

Figura 14: Iterações x log(Resíduo Relativo) (com precondicionador)

Método	Convergência	Iterações	$ r _{\infty}$	$ x _{\infty}$	ΔT_{seg}
Nenhum	Sim (flag 0)	40	288.52	1.0387	0.0351372
ILU(0)	Sim (flag 0)	13	7.404e-06	1	0.006437
ILU inc.	Sim (flag 0)	2	2.623e-14	1	0.003491
ILU(0) com reord.	Sim (flag 0)	10	7.924e-06	1	0.008102
ILU com reord.	Sim (flag 0)	2	5.617e-14	1	0.002828
Prec. Seidel	Sim (flag 0)	38	8.728e-06	1.013	0.04287

Tabela 5: Resultados do GMRES com e sem a utilização de precondicionadores para a matriz CAG_mat72

3.2 Matriz dw1024

Ordem da matriz: 2,048

Quantidade de elementos não nulos: 10,114

Condicionamento: 2.093210e+03

Banda da Matriz: 1056

Banda da Matriz Reordenada: 66

Figura 15: Matrizes do Sistema

Figura 16: Matrizes da Fatoração LU sem reordenamento

Figura 17: Matrizes da Fatoração LU com reordenamento

Figura 18: Iterações x log(Resíduo Relativo)

Método	Convergência	Iterações	$ r _{\infty}$	$ x _{\infty}$	ΔT_{seg}
Nenhum	Sim (flag 0)	494	36.474	1.006	1.063
ILU(0)	Sim (flag 0)	9	8.021e-06	4.194	0.008568
ILU inc.	Sim (flag 0)	3	1.776e-06	1	0.005313
ILU(0) com reord.	Não (flag 3)	2201	0.0002117	8.469	2.271
ILU com reord.	Sim (flag 0)	3	2.286e-06	1	0.004388
Prec. Seidel	Sim (flag 0)	2	3.7397e-10	9.0623e-03	0.00571394

Tabela 6: Resultados do GMRES com e sem a utilização de precondicionadores para a matriz dw1024

3.3 Matriz trans4

Ordem da matriz: 116,835

Quantidade de elementos não nulos: 749,800

Condicionamento: † Banda da Matriz: 116,831

Banda da Matriz Reordenada: 114,129

Figura 19: Matrizes do Sistema

Figura 20: Matrizes da Fatoração LU sem reordenamento

Figura 21: Matrizes da Fatoração LU com reordenamento

Figura 22: Iterações x log(Resíduo Relativo)

Método	Convergência	Iterações	$ r _{\infty}$	$ x _{\infty}$	ΔT_{seg}
Nenhum	Sim (flag 0)	358	34693.79381	19.79	19.37
ILU(0)	Sim (flag 0)	24	9.873e-06	5.484	0.4698
ILU inc.	Sim (flag 0)	7	2.043e-06	1.01	0.1346
ILU(0) com reord.	Sim (flag 0)	24	9.973e-06	4.561	0.5051
ILU com reord.	Sim (flag 0)	5	2.905e-07	1	0.1169
Prec. Seidel	Sim (flag 0)	8	9.716e-06	1.6945	0.313749

Tabela 7: Resultados do GMRES com e sem a utilização de precondicionadores para a matriz trans4

3.4 Matriz circuit5M_dc

Ordem da matriz: 3,523,317

Quantidade de elementos não nulos: 14,865,409

Condicionamento: †

Banda da Matriz: 2,832,157

Banda da Matriz Reordenada: 155,868

Figura 23: Matrizes do Sistema

Figura 24: Matrizes da Fatoração ILU(0) sem e com reordenamento, respectivamente

Figura 25: Iterações x log(Resíduo Relativo)

Método	Convergência	Iterações	$ r _{\infty}$	$ x _{\infty}$	ΔT_{seg}
Nenhum	Sim (flag 0)	7	8.7717e-06	1.0873	3.61464
ILU(0)	Sim (flag 0)	16	56996e-06	1.0005	18.2096
ILU inc.	†	†	†	†	†
ILU(0) com reord.	Sim (flag 0)	13	5.8066e-06	1.0004	14.5132
ILU com reord.	†	†	†	†	†
Prec. Seidel	Sim (flag 0)	40	8.7600e-06	1.0018	32.8672

Tabela 8: Resultados do GMRES com e sem a utilização de precondicionadores para a matriz circuit5M_dc

4 Conclusão

4.1 Exercício 1: Método dos Gradientes Conjugados com a ação de precondicionadores

De acordo com a observação dos resultados de cada matriz, é possível notar que, de fato, os precondicionadores aceleraram a convergência do método significativamente, pois o número de iterações necessárias para convergência e o tempo de execução foram demasiadamente reduzidos.

Um detalhe interessante é que, com o uso dos precondicionadores, a solução encontrada tendeu a ser mais confiável, pois apresentou menor resíduo relativo e a norma ficou próxima a da solução exata. Isso só é possível devido a conservação de simetria da matriz por parte do precondicionador ICC, caso contrário o algoritmo dos Gradientes Conjugados provavelmente não convergiria.

4.2 Exercício 2: Método GMRES com a ação de precondicionadores e reordenamento

Ao analisar o efeito dos precondicionadores (com e sem reordenamento) na execução do algoritmo GMRES fica evidente o impacto que eles têm na aceleração de convergência das matrizes. Esse fato se ressalta ao olharmos a expressiva diferença no número de iterações realizadas com e sem precondicionamento.

Dentre os experimentos realizados, vale destacar o desempenho do precondicionador ILU com reordenamento, pois apesar dos demais precondicionadores também melhorarem a eficiência do método, para o conjunto de matrizes que foram selecionadas, este fazia o método convergir com o menor número de iterações e o menor tempo de execução.

Outro ponto a ser destacado é que mesmo atingindo a convergência, ou seja, alcançando um resíduo relativo menor que 10^{-6} , o a fatoração ILU(0) apresentou uma norma para a solução muito longe dos esperado. Isso acaba gerando um alerta de que mesmo o método conseguindo um resíduo relativamente baixo, não podemos garantir a qualidade final da solução encontrada.

5 Referências

```
EATON, John W. Octave Documentation, 1996.

Disponível em: <a href="https://octave.org/doc/v4.2.2/">https://octave.org/doc/v4.2.2/</a>.

COMMUNITY, Octave Forge. Octave Forge, 2002.

Disponível em: <a href="https://octave.sourceforge.io/docs.php">https://octave.sourceforge.io/docs.php</a>.

CATABRIGA, Lucia. Sistemas Lineares Métodos Diretos e Métodos Iterativos Estacionários, 2019. Disponível em: <a href="https://inf.ufes.br/~luciac/mn1/191-SL_MD_MIE_AlgoII.pdf">https://inf.ufes.br/~luciac/mn1/191-SL_MD_MIE_AlgoII.pdf</a>.

SuiteSparse Matrix Collection.
```

Disponível em: https://sparse.tamu.edu/>.