Paleoenvironmental Reconstruction of Two Paleoindian Sites in North-Central

New Mexico

Introduction

Hypotheses

Carbon H_0 : The C_3 and C_4 grasses ratio remained stable between the Younger Dryas and the Early Holocene

H₁: The ratio of C₄ grasses to C₃ grasses was higher in the Early Holocene than in the Younger Dryas

Oxygen

 H_0 : δ^{18} O will remain stable between the Younger Dryas and the Early Holocene

 H_1 : $\delta^{18}O$ will differ between the Younger Dryas and the Early Holocene

Background

Map showing Boca Negra Wash and Water Canyon

The Stable Isotopes

Carbon = Habitat

Oxygen = Climate

 A higher ratio of ¹⁶O to ¹⁸O may indicate a wetter climate

Carbon exists in two stable forms in Oxygen exists in three naturally occurring stable isotopes (¹⁸O, ¹⁷O, and ¹⁶O) nature (12C and 13C) ¹⁷O is not used in paleoenvironmental Plants have evolved different photosynthetic pathways for observing analyses carbon from the atmosphere depending ¹⁶O is the most common isotope on the habitat ¹⁸O to ¹⁶O ratios can provide proxy C_3 , C_4 , and CAM evidence for an animal's environment Bison do not feed on CAM (crassulacean acid metabolism) Plants (e.g., succulents) Environmental factors affect the value:

Carbon

There is no specific fractionation factor to determine an environment based on δ^{18} O Precipitation, temperature, altitude, latitude.. Lakes will have an average δ¹⁸O across the seasons while δ^{18} O in rivers varies seasonally

Oxygen

Isotopic analysis results comparing the bison at Water Canyon (blue) and Boca Negra Wash (orange) in ‰

C₃-browsers vs C₄-grazers according to Cerling et al.

plot and ran a Mann-Whitney *U*.

Methods

Center for Stable Isotopes

Bison tooth before and after drilling of the surface

Results

Sample Number	FS Number	Project	LA Number	weight (mg)	δ ¹³ C‰	δ ¹⁸ O‰
1	5029	41.901	134764	6.468	-0.44	-7.18
2	5121	WC field school	134764	6.212	-2.63	-7.91
3	5171	UNM field school	134764	6.561	-0.70	-5.47
4	5140	WC field school	134764	6.114	-1.07	-6.64
5	5080	41.901	134764	6.336	-5.83	-8.22
6	5140	WC field school	134764	6.242	-2.78	-8.40
7	5102	41.901	134764	6.428	-0.38	-8.24
8	5118	41.901	134764	6.994	-1.40	-7.09
9	5125	WC field school/41.901	134764	6.178	0.71	-7.29
10	5037	41.901	134764	6.45	0.01	-6.25
11	5055	WC field school	134764	6.499	0.11	-4.64
12	5013	41.901	134764	6.896	-1.69	-8.07
13	5145	WC field school	134764	6.075	-1.33	-7.00
14	5148	WC field school	134764	6.261	0.07	-4.49
15	5151	WC field school	134764	6.575	-1.46	-5.47
16	1198	WC 2012	134764	5.184	-2.13	-7.17
17	1276	WC 2012	134764	6.89	0.24	-6.67

Sample 15 was removed from further analysis due to possible contamination.

The average and range for δ^{13} C and δ^{18} O values for bison at Water Canyon and Boca Negra Wash

	Average		Range	
	$\delta^{13}C$	$\delta^{18}O$	$\delta^{13}C$	$\delta^{18}O$
Water Canyon	-1.20‰	-6.92‰	-5.83‰ – 0.71‰	-8.40‰ – - 4.49‰
Boca Negra Wash	-1.89‰	-4.41‰	-8.38‰ – 1.12‰	-10.47‰ – - 0.60‰

	Average		Range	
	$\delta^{13}C$	$\delta^{18}O$	$\delta^{13}C$	$\delta^{18}O$
Water Canyon	-1.20‰	-6.92‰	-5.83‰ – 0.71‰	-8.40‰ – - 4.49‰
Boca Negra Wash	-1.89‰	-4.41‰	-8.38‰ – 1.12‰	-10.47‰ – - 0.60‰

tooth type.

Water Canyon

The statistics show that the δ^{13} C values for both sites are similar, while Water Canyon

has more negative δ^{18} O values than Boca Negra Wash on average. The statistics also

show that sample 5 from Water Canyon clusters with five samples from Boca Negra

Wash. At Boca Negra Wash, only fragmentary enamel samples were analyzed due to

preservation, so individual teeth could not be identified precisely. This same problem

occurred at Water Canyon, with several samples too fragmentary to identify a specific

Gadbury et al. (2000), documented that the M1 teeth of ungulates had a "light" δ18O

enamel formation. I created Population A and B based on where they fell on the scatter

compared to the M2 and M3 of the same animal, most likely due to the M1's utero

53% C₄ grazers and 47% C₃/C₄ grazers

Boca Negra Wash

52% C₄ grazers and 48% C₃/C₄ grazers

Statistics

6 1			
Carbon			
Mann-Whitney <i>U</i>	0		
Z	3.4191		
р	< 0.01		

Results comparing Boca Negra Wash vs Water Canyon

Carbon Statistically similar Water Canyon: 53% C₄-grazers and 47% mixed C_3/C_4 -

grazers Boca Negra Wash: 52% C₄-grazers and 48% mixed C_3/C_4 -

C₃ and C₄ grasses habitat remained unchanged from the Younge Dryas into the **Early Holocene**

Oxygen Statistically different Water Canyon had "lighter" δ^{18} O compared to Boca Negra Wash Bison had a different source of water during the Younger Dryas and Early Holocene

Acknowledgments

I heartily acknowledge Dr. Bruce Huckell and Dr. Sherry Nelson, my Co-chairs for this Master's Project. Both were key in framing this project and seeing it through to its completion. I also thank my committee member, Dr. Emily Jones. Gratitude is extended to the Hibben Fellowship and the Moore Research Grant for the funding to pursue this research. Gratitude is also extended to the UNM Office of Contract Archaeology for letting me use their material for my research. Thanks to the Center for Stable Isotopes UNM, specifically Dr. Nelson, for using her lab to conduct my research. I especially thank Dr. Viorel Atudorei (Department of Earth and Planetary Science) for running my samples. And to my wonderful "cohort," who has always been there and has suffered through graduate school with me. We leaned hard on each other, and because of that, none of us fell. My excellent partner Katherine Peck for supporting me and making the maps. Lastly, to Paul and Brenda Vallejos, my loving and caring parents, encouraging me in everything I do and never thinking anything, even dyslexia, could stop me from following my dreams.

References Cited

