Homework Assignment #1

1. Ch 1.1 Exercise #2

- a. Not a proposition
- **b.** Not a proposition
- c. Is a proposition with truth value F
- **d.** Not a proposition
- e. Is a proposition with truth value F
- f. Not a proposition

2. Ch 1.1 Exercise #27

a.	p	٨	$\neg p$
----	---	---	----------

р	$\neg p$	$p \wedge \neg p$
Т	F	F
F	Т	F

b.
$$p \lor \neg p$$

р	$\neg p$	$p \wedge \neg p$
Т	F	Т
F	T	Т

c.
$$(p \lor \neg q) \rightarrow q$$

p	q	$\neg q$	$(p \lor \neg q) \to q$
Т	Т	F	Т
F	F	Т	F
Т	F	Т	F
F	Т	F	Т

d.
$$(p \lor q) \to (p \land q)$$

p	q	$(p \lor q) \to (p \land q)$
Т	T	Т
F	F	Т
Т	F	F
F	Т	F

e.
$$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$(p ightarrow q) \leftrightarrow (\neg q ightarrow \neg p)$
Т	Т	T	Т	Т
F	F	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	Т

f.
$$(p \rightarrow q) \rightarrow (q \rightarrow p)$$

p	q	$p \rightarrow q$	q o p	$(p \rightarrow q) \rightarrow (q \rightarrow p)$
Т	Т	Т	Т	Т
F	F	T	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	F

3. Ch 1.2 Exercise #5

p	q	r	$p \wedge (q \vee r)$
Т	Т	Т	Т
F	F	F	F
Т	F	Т	Т
F	Т	F	F
Т	Т	F	Т
F	F	T	F

p	q	r	$(p \land q) \lor (p \land r)$
Т	Τ	Т	Т
F	F	F	F
Т	F	Т	Т
F	Т	F	F
Т	Т	F	Т
F	F	Т	F

4. Ch 1.2 Exercise #30

$$(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$$

p	q	r	$\neg p$	$(p \lor q) \land (\neg p \lor r)$	$q \lor r$	$(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$
Т	Т	Т	F	Т	Т	Т
F	F	F	Т	F	F	Т
Т	F	Т	F	T	T	Т
F	Т	F	Т	T	T	Т
Т	Т	F	F	F	T	Т
F	F	Т	Т	F	Т	Т

5. Ch 1.3 Exercise #3

- a. T
- **b.** F
- c. T
- d. F

6. Ch 1.3 Exercise #15

- a. T
- **b.** T
- **c.** T
- d. F

7. Ch 1.4 Exercise #15 $L(x,y) = x \ loves \ y : x,y \in all \ humans$

- **a.** $\forall x L(x, Jerry)$
- **b.** $\forall x \exists y L(x, y)$
- c. $\exists x \forall y L(x, y)$
- **d.** $\neg \exists x \forall y L(x, y)$
- e. $\exists y \neg L(Lydia, y)$
- **f.** $\forall x \exists y \neg L(x, y)$
- **g.** $\exists x \forall y (L(x,y) \leftrightarrow x = y)$

Homework Assignment #1

8. Ch 1.4 Exercise #24

- **a.** For all values of x and y such that if x is greater than or equal to zero and y is less than zero then the sum of y subtracted from x is greater than zero.
- **b.** This exists some value x and y such that x and y are less than or equal to zero and the result of y subtracted from x is greater than zero.
- **c.** For all values of x and y such that x and y are not equal to zero if and only if the product of x and y is not equal to zero.

9. Ch 1.5 Exercise #5

p = "Randy works hard" q = "Randy is a dull boy" r = "Randy will not get the job"

$$p \to q$$

$$q \to r$$

$$\therefore p \to r$$

$$(p \to q) \land (q \to r) \to r$$

By hypothetical syllogism

10. Ch 1.5 Exercise #33

Premise:
$$(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q) \equiv F$$

$$(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q)$$

$$q \land (p \lor \neg q) \land (\neg p \lor \neg q)$$

$$q \land \neg q$$

$$F \quad \blacksquare$$

11. Ch 1.6 Exercise #1

The sum of two odd integers is an even integer

Odd integer: 2i + 1

Even Integer: 2*j*

$$x + y = z$$

 $(2i + 1) + (2i + 1) = z$
 $4i + 2 = z$
 $2(2i + 1) = z$

Homework Assignment #1

12. Ch 1.6 Exercise #18

If n is an integer and 3n + 2 is even, then n is even

$$p=n\in\mathbb{Z}$$
 $q=3n+2$ is even $r=n$ is even $p\wedge q\rightarrow r$ Odd integer $=2k+1$ Even Integer $=2k$

a.
$$\neg (p \land q) \rightarrow \neg r$$
 (n is an integer)
 $\neg q \rightarrow \neg r$
 $n = 2k + 1$
 $3n + 2 = 3(2k + 1) + 2$
 $3(2k + 1) = 6k + 5$
 $6k + 5 = 2(3k + 2) + 1$

b.
$$p \land q \to \neg r$$
 (n is an integer)
 $q \to \neg r$
 $n = 2k + 1$
 $3n + 2 = 3(2k + 1) + 2$
 $3(2k + 1) + 2 = 6k + 5$
 $6k + 5 = 2(3k + 2) + 1$
 $\therefore q \to r$

13. Ch 1.7 Exercise #6

Claim:
$$\exists n \left(\sum_{1}^{n} i = n \right)$$
$$n = \frac{n(n+1)}{2}$$
$$0 = \frac{n(n+1)}{2} - n$$
$$n^{2} - n = 0$$
$$n(n-1) = 0$$
$$n = 0, 1$$
$$n = 1 = 0 + 1 = 1$$

This proof is constructive since we found some value for which the claim is true

If r is an irrational number, there is a unique integer n such that the distance between r and n is less than $\frac{1}{2}$

Claim:
$$\exists n(|r-n| < 0.5)$$

Given two integers x, y such that $|r-x| < 0.5$ and $|r-y| < 0.5$
 $|x-y| \le |r-x| + |r-y| < 0.5 + 0.5$
 $|x-y| \le |r-x| + |r-y| < 1$

However, since x and y are two distinct integers we know that $|n-m| \ge 1$ \therefore We have proved uniqueness by contradiction

15. Ch 1.7 Exercise #27

14. Ch 1.7 Exercise #16

Claim:
$$\neg \exists n(n^2 + n^3 = 100)$$

 $n^3 \ge n^2$
We have to test all values integers $n^3 + n^2 \le 100$
 $n = 0 \quad (0)^2 + (0)^3 = 0$
 $n = 1 \quad (1)^2 + (1)^3 = 1$
 $n = 3 \quad (3)^2 + (3)^3 = 36$
 $n = 4 \quad (4)^2 + (4)^3 = 80$
 $n = 5 \quad (5)^2 + (5)^3 = 150$

 \therefore There is no value of n for which this claim is false

This is an example of an exhaustive proof