Отчет по лабораторной работе №2

Цель работы: провести исследования характеристик рассеяния для разных распределений и оценить полученные результаты

Ход работы:

- 0. Предварительно был скачан пакет Python 3.6.9 и библиотека Numpy для работы с выборками и средними значениями
- 1. Были сгенерированы выборки по 100 значений из следующих распределений:

• Нормальное распределение:
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x)^2}{2}}$$

• Равномерное распределение:
$$f(x) = \frac{1}{2\sqrt{3}} npu|x| \le \sqrt{3}, f(x) = 0 npu|x| > \sqrt{3}$$

• Распределение Лапласа:
$$f(x) = \frac{1}{\sqrt{2}} e^{-\sqrt{2}|x|}$$

• Распределение Коши:
$$f(x) = \frac{1}{\pi(1+x^2)}$$

• Смесь нормальных распределений:
$$f(x) = 0.9*(\frac{1}{\sqrt{2\pi}}e^{-\frac{(x)^2}{2}}) + 0.1*(\frac{1}{3\sqrt{2\pi}}e^{-\frac{(x)^2}{18}})$$

- 2. Для каждого набора случайных значений были вычислены характеристики:
 - Среднеквадратическое отклонение *s*
 - Среднее абсолютное отклонение от медианы d
 - Размах выборки R
 - Интерквартильная широта выборки IQR
 - Медиана абсолютных значений от медианы МАД
- 3. По методу Монте-Карло шаги 1-2 были повторены 1000 раз, значения характеристик складывались для дальнейшего вычисления первого и второго моментов и дисперсии
- 4. По полученным данным были построены следующие таблицы:

Среднеквадратическое отклонение							
	Нормальное	Равномерное	Лапласа	Коши	Смесь		
$\overline{Z_m}$	0.994	0.992	0.996	36.119	1.327		
$\overline{Z_m^2}$	0.994	0.986	1.004	20400.152	1.783		
D	0.005	0.002	0.012	19095.544	0.022		

Среднее абсолютное отклонение от медианы							
	Нормальное	Равномерное	Лапласа	Коши	Смесь		
$\overline{Z_m}$	0.794	0.856	0.707	6.385	0.952		
$\overline{Z_m^2}$	0.634	0.735	0.504	246.933	0.912		
D	0.004	0.002	0.005	206.171	0.006		

Размах выборки							
	Нормальное	Равномерное	Лапласа	Коши	Смесь		
$\overline{Z_m}$	5.001	3.392	6.453	381.502	9.413		
$\overline{Z_m^2}$	25.358	11.507	43.510	2113343.181	93.281		
D	0.351	0.002	1.865	1967799.455	4.670		

Интерквартильная широта выборки							
	Нормальное	Равномерное	Лапласа	Коши	Смесь		
\overline{Z}_m	1.334	1.693	0.980	2.024	1.443		
$\overline{Z_m^2}$	1.803	2.895	0.980	4.209	2.110		
D	0.023	0.027	0.020	0.111	0.027		

Медиана абсолютных значений от медианы							
	Нормальное	Равномерное	Лапласа	Коши	Смесь		
$\overline{Z_m}$	0.670	0.847	0.492	1.014	0.727		
$\overline{Z_m^2}$	0.455	0.725	0.247	1.056	0.536		
D	0.006	0.007	0.005	0.027	0.007		

5. Были вычислены значения дисперсии $D = \int_{-\infty}^{+\infty} x^2 f(x) dx$ и значения $\delta = \int_{-\infty}^{+\infty} |x - Me| f(x) dx$

	Нормальное	Равномерное	Лапласа	Коши	Смесь
D	1.000	1.000	1.000	44348.127	1.800
σ	1.000	1.000	1.000	210.589	1.342
δ	0.798	0.864	0.707	8.585	0.957

Анализ полученных результатов:

Нормальное распределение						
S d R IQR MAD						
$\overline{Z_m^2}$	0.99	0.63	25.36	1.80	0.46	

Равномерное распределение						
	S d R IQR MAD					
$\overline{Z_m^2}$	0.99	0.74	11.51	2.90	0.73	

Распределение Лапласа					
S d R IQR MAD					MAD
$\overline{Z_m^2}$	1.00	0.50	43.51	0.98	0.25

Распределение Коши						
S d R IQR MAD						
$\overline{Z_m^2}$	20400.15	246.93	2113343.18	4.21	1.06	

Смесь распределений						
	S	d	R	IQR	MAD	
$\overline{Z_m^2}$	1.78	0.91	93.28	2.11	0.54	

Вывод: для нормального, равномерного распределений, распределения Лапласа и смеси распределений среднее среднеквадратических отклонений по выборкам соотносится с вычисленным по формуле среднеквадратическим отклонением

Аналогична и ситуация со средним абсолютным отклонением от медианы: для данных четырех распределений результаты, полученные методом Монте-Карло, сопоставимы с результатами вычисления интегральной формулы.

Распределение Коши имеет аномальные значения среднеквадратического отклонения и среднего абсолютного отклонения от медианы: дисперсия данного распределения не определена (бесконечна).