La clasificación Dynkin en perspectiva computacional

Claudia Pérez Ruisánchez Mario Alberto Abarca Sotelo Daniel Rivera López

Universidad Autónoma del Estado de Morelos

21 de junio de 2017

Índice

- La Clasificación A-D-E
 - Conceptos y relaciones
 - Algoritmo de las inflaciones
 - Las construcciones de Barot
 - Planteamiento
- 2 Aportaciones en perspectiva computacional
 - El morfismo de flación y sus invariantes
 - Clasificación de A y D por teoría de gráficas
 - ullet Un algoritmo polinomial para la clasificación $\mathbb{A} ext{-}\mathbb{D} ext{-}\mathbb{E}$

Índice

- La Clasificación A-D-E
 - Conceptos y relaciones
 - Algoritmo de las inflaciones
 - Las construcciones de Barot
 - Planteamiento
- 2 Aportaciones en perspectiva computacional
 - El morfismo de flación y sus invariantes
 - Clasificación de A y D por teoría de gráficas
 - Un algoritmo polinomial para la clasificación A-D-E

Matriz de Cartan simétrica

Definición

- Una matriz $A \in \mathcal{M}_{n \times n}\left(\mathbf{Z}\right)$ es casi Cartan si A es simétrica y $(\mathbf{A})_{i\,i}=2$ para toda $i=1,\ldots,n$.
- Se denota por sqC a la

$$\begin{pmatrix} 2 & -2 & 1 & 0 \\ -2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Matriz de Cartan simétrica

Definición

- Una matriz $A \in \mathcal{M}_{n \times n}\left(\mathbf{Z}\right)$ es casi Cartan si A es simétrica y $(\mathbf{A})_{ii} = 2$ para toda $i=1,\ldots,n$.
- Se denota por sqC a la clase de todas las matrices casi-Cartan simétricas.

$$\begin{pmatrix} 2 & -2 & 1 & 0 \\ -2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Matriz de Cartan simétrica

Definición

- Una matriz $A \in \mathcal{M}_{n \times n}\left(\mathbf{Z}\right)$ es casi Cartan si A es simétrica y $(\mathbf{A})_{i\,i}=2$ para toda $i=1,\ldots,n$.
- Se denota por sqC a la clase de todas las matrices casi-Cartan simétricas.

Ejemplo

$$\begin{pmatrix} 2 & -2 & 1 & 0 \\ -2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Forma unitaria asociada a una matriz casi Cartan

Matriz casi-Cartan simétrica ↔ Forma unitaria

$$\mathbf{q}_{\boldsymbol{A}}\left(\boldsymbol{x}\right) = \frac{1}{2}\boldsymbol{x}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x}$$

Matriz casi-Cartan simétrica ↔ Forma unitaria

$$\mathbf{q}_{A}(x) = \frac{1}{2}x^{\mathrm{T}}Ax$$

$$= \frac{1}{2}\left(\sum_{i=1}^{n}\sum_{j=1}^{n}\left(A\right)_{ij}x_{i}x_{j}\right)$$

Matriz casi-Cartan simétrica ↔ Forma unitaria

$$\mathbf{q}_{\boldsymbol{A}}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} (\boldsymbol{A})_{ii} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} (\boldsymbol{A})_{ij} x_{i} x_{j} \right)$$

Forma unitaria asociada a una matriz casi Cartan Matriz casi-Cartan simétrica ↔ Forma unitaria

$$\begin{aligned} \mathbf{q}_{\boldsymbol{A}}\left(\boldsymbol{x}\right) &= \frac{1}{2}\boldsymbol{x}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x} \\ &= \frac{1}{2}\left(\sum_{i=1}^{n}\sum_{j=1}^{n}\left(\boldsymbol{A}\right)_{i\,j}x_{i}x_{j}\right) \\ &= \frac{1}{2}\left(\sum_{i=1}^{n}\left(\boldsymbol{A}\right)_{i\,i}x_{i}^{2} + 2\sum_{1\leqslant i < j \leqslant n}\left(\boldsymbol{A}\right)_{i\,j}x_{i}x_{j}\right) \\ &= \sum_{i=1}^{n}x_{i}^{2} + \sum_{1\leqslant i < j \leqslant n}\left(\boldsymbol{A}\right)_{i\,j}x_{i}x_{j}. \end{aligned}$$

Bigráfica asociada a una matriz casi Cartan

 $\mathsf{Matriz}\ \mathsf{casi}\text{-}\mathsf{Cartan}\ \mathsf{sim\acute{e}trica}\ \leftrightarrow\ \mathsf{Bigr\'{a}fica}$

Teorema

Sea $A \in M_n(\mathbb{Z})$ una matriz casi Cartan simétrica y definida positiva sean $i, j \in \{1, 2...n\}$, entonces

- (a) $0 \leqslant A_{ij}A_{ji} < 4$
- (b) $A_{ij} \in \{-1, 0, -1\}$

La bigráfica $\mathbf{bigr}(A)$ asociada a la matriz A tiene vértices $\{1,2,\ldots,n\}$, y para cada par de vértices i,j con $i\neq j$:

- Si $A_{ij} = -1 = A_{ji}$ trazamos una arista solida entre los vértices, (j)—(j)
- ② Si $A_{ij} = 1 = A_{ji}$ trazamos una arista punteada entre los vértices, $(i) \cdots (j)$

Equivalencia de conceptos Ejemplo

$$\mathbf{A} = \begin{pmatrix} 2 & -2 & 1 & 0 \\ -2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\mathbf{q}_{A}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} - 2x_{1}x_{2} + x_{1}x_{3} - x_{2}x_{3} + x_{3}x_{4}$$

Z-equivalencia

- Una matriz $M \in \mathcal{M}_{n \times n}\left(\mathbf{Z}\right)$ es \mathbf{Z} -invertible si tiene inversa $M^{-1} \in \mathcal{M}_{n \times n}\left(\mathbf{Z}\right)$.
- $A, A' \in \operatorname{sqC}$ son **Z**-equivalentes si existe una matriz **Z**-invertible M tal que $A' = M^T A M$.

Z-equivalencia

- Una matriz $M \in \mathcal{M}_{n \times n}\left(\mathbf{Z}\right)$ es \mathbf{Z} -invertible si tiene inversa $M^{-1} \in \mathcal{M}_{n \times n}\left(\mathbf{Z}\right)$.
- $A, A' \in \operatorname{sqC}$ son **Z**-equivalentes si existe una matriz **Z**-invertible M tal que $A' = M^T A M$.

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

Familia Gráfica $\mathbb{A}_n, \ n \geqslant 1 \qquad \boxed{1} \qquad \cdots \qquad \boxed{n}$ $\mathbb{D}_n, \ n \geqslant 4 \qquad \boxed{2} \qquad \boxed{3} \qquad \boxed{4} \qquad \cdots \qquad \boxed{n}$ $\mathbb{E}_n, \ 6 \leq n \leq 8 \qquad \boxed{3} \qquad \boxed{4} \qquad \boxed{5} \qquad \cdots \qquad \boxed{n}$

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

 Todas las bigráficas conexas, definidas positivas, de aristas sólidas:

Familia Gráfica $\mathbb{A}_n,\ n\geqslant 1 \qquad \qquad \boxed{1} \qquad \qquad \boxed{2} \qquad \cdots \qquad \boxed{n}$ $\mathbb{D}_n,\ n\geqslant 4 \qquad \qquad \boxed{2} \qquad \boxed{3} \qquad \boxed{4} \qquad \cdots \qquad \boxed{n}$ $\mathbb{E}_n,\ 6\leqslant n\leqslant 8 \qquad \boxed{2} \qquad \boxed{3} \qquad \boxed{4} \qquad \boxed{5} \qquad \cdots \qquad \boxed{n}$

La clasificación \mathbb{A} - \mathbb{D} - \mathbb{E}

Teorema (S. Ovsienko – 1978)

Toda bigráfica G definida positiva es \mathbf{Z} -equivalente a una bigráfica sin aristas punteadas, que está determinada de forma única hasta isomorfismo de gráficas, y es la unión disjunta de diagramas de Dynkin.

 Demostración constructiva llamada algoritmo de las inflaciones.

La clasificación $\mathbb{A}\text{-}\mathbb{D}\text{-}\mathbb{E}$

Teorema (S. Ovsienko – 1978)

Toda bigráfica G definida positiva es \mathbf{Z} -equivalente a una bigráfica sin aristas punteadas, que está determinada de forma única hasta isomorfismo de gráficas, y es la unión disjunta de diagramas de Dynkin.

 Demostración constructiva llamada algoritmo de las inflaciones.

Índice

- La Clasificación A-D-E
 - Conceptos y relaciones
 - Algoritmo de las inflaciones
 - Las construcciones de Barot
 - Planteamiento
- 2 Aportaciones en perspectiva computacional
 - El morfismo de flación y sus invariantes
 - Clasificación de A y D por teoría de gráficas
 - Un algoritmo polinomial para la clasificación A-D-E

Inflaciones

- ullet I denota la matriz identidad con vectores columna e_j .
- $E_{s\,r}^{\sigma}:=I+\sigma\,e_s\,e_r^{\,\mathrm{T}}\,\left(s,r\in\{1,\ldots,n\},\,\sigma\in\mathbf{R}\right)$ denota una matriz elemental de suma de renglones/columnas.
- Si $m{A} \in \mathbf{sqC}$ y $(m{A})_{s\,r} = 1$ entonces $\left(m{E}_{s\,r}^{-1}\right)^{\mathrm{T}} m{A} \left(m{E}_{s\,r}^{-1}\right)$ es una inflación de $m{A}$.

Inflaciones

- ullet I denota la matriz identidad con vectores columna e_j .
- $E_{s\,r}^{\sigma} := I + \sigma\,e_s\,e_r^{\,\mathrm{T}}\,\left(s,r\in\{1,\ldots,n\},\,\sigma\in\mathbf{R}\right)$ denota una matriz elemental de suma de renglones/columnas.
- Si $m{A} \in \mathbf{sqC}$ y $(m{A})_{s\,r} = 1$ entonces $\left(m{E}_{s\,r}^{-1}\right)^{\mathrm{T}} m{A} \left(m{E}_{s\,r}^{-1}\right)$ es una inflación de $m{A}$.

Inflaciones

- ullet I denota la matriz identidad con vectores columna e_j .
- $E_{s\,r}^{\sigma} := I + \sigma\,e_s\,e_r^{\,\mathrm{T}}\,\left(s,r\in\{1,\ldots,n\},\,\sigma\in\mathbf{R}\right)$ denota una matriz elemental de suma de renglones/columnas.
- Si $m{A} \in \mathbf{sqC}$ y $(m{A})_{s\,r} = 1$ entonces $\left(m{E}_{s\,r}^{-1}\right)^{\mathrm{T}} m{A} \left(m{E}_{s\,r}^{-1}\right)$ es una inflación de $m{A}$.

Algoritmo de las inflaciones

Algoritmo de las inflaciones

función inflaciones(A):

repetir mientras exista una entrada no diagonal

$$(oldsymbol{A})_{s\,r}=1$$
:
 $oldsymbol{L}=\left(oldsymbol{E}_{s\,r}^{-1}
ight)^{\mathrm{T}}oldsymbol{A}\left(oldsymbol{E}_{s\,r}^{-1}
ight)$

- Se justifica en que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\right|<\infty$ permanece constante en cada iteración mientras que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\cap\mathbf{N}^{n}\right|$ crece.
- Cota superior del número de raíces positivas $O(n \cdot 6^n)$ (Kosakowska 2012).

Algoritmo de las inflaciones

Algoritmo de las inflaciones

función inflaciones(A):

repetir mientras exista una entrada no diagonal

$$(oldsymbol{A})_{s\,r}=1$$
:
 $oldsymbol{L} oldsymbol{A}:=\left(oldsymbol{E}_{s\,r}^{-1}
ight)^{\mathrm{T}}oldsymbol{A}\left(oldsymbol{E}_{s\,r}^{-1}
ight)$

- Se justifica en que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\right|<\infty$ permanece constante en cada iteración mientras que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\cap\mathbf{N}^{n}\right|$ crece.
- Cota superior del número de raíces positivas $O(n \cdot 6^n)$ (Kosakowska 2012).

Algoritmo de las inflaciones

Algoritmo de las inflaciones

función inflaciones(A):

repetir mientras exista una entrada no diagonal

$$(oldsymbol{A})_{s\,r}=1:$$
 $oldsymbol{A}:=\left(oldsymbol{E}_{s\,r}^{-1}
ight)^{\mathrm{T}}oldsymbol{A}\left(oldsymbol{E}_{s\,r}^{-1}
ight)$

- Se justifica en que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\right|<\infty$ permanece constante en cada iteración mientras que $\left|\mathbf{q}_{A}^{-1}\left(1\right)\cap\mathbf{N}^{n}\right|$ crece.
- Cota superior del número de raíces positivas $O\left(n\cdot 6^n\right)$ (Kosakowska 2012).

Índice

- La Clasificación A-D-E
 - Conceptos y relaciones
 - Algoritmo de las inflaciones
 - Las construcciones de Barot
 - Planteamiento
- 2 Aportaciones en perspectiva computacional
 - El morfismo de flación y sus invariantes
 - Clasificación de A y D por teoría de gráficas
 - Un algoritmo polinomial para la clasificación A-D-E

El caso \mathbb{A}_n

Los A-bloques.

El caso \mathbb{A}_n

El caso \mathbb{A}_n

La condición de ciclo

 Convención: Una pareja de aristas paralelas se considera un ciclo de longitud 2.

Definición

Una bigráfica cumple la condición de ciclo si todo ciclo sin cuerdas tiene un número impar de aristas punteadas.

La condición de ciclo

 Convención: Una pareja de aristas paralelas se considera un ciclo de longitud 2.

Definición

Una bigráfica cumple la condición de ciclo si todo ciclo sin cuerdas tiene un número impar de aristas punteadas.

La condición de ciclo

 Convención: Una pareja de aristas paralelas se considera un ciclo de longitud 2.

Definición

Una bigráfica cumple la condición de ciclo si todo ciclo sin cuerdas tiene un número impar de aristas punteadas.

El marco de una bigráfica

Definición

El marco $\Phi\left(G\right)$ de una bigráfica G es su gráfica subyacente.

 Su diagrama se obtiene reemplazando aristas punteadas por sólidas.

El marco de una bigráfica

Definición

El marco $\Phi\left(G\right)$ de una bigráfica G es su gráfica subyacente.

 Su diagrama se obtiene reemplazando aristas punteadas por sólidas.

El marco de una bigráfica

Definición

El marco $\Phi(G)$ de una bigráfica G es su gráfica subyacente.

 Su diagrama se obtiene reemplazando aristas punteadas por sólidas.

Construcción (ensamblaje de árbol)

Datos:

- un árbol T con $V(T) = \{1, 2, \dots, t\};$
- t bigráficas B_1, B_2, \ldots, B_t ;
- para cada $i \in V(G)$ una función inyectiva $\sigma_i : \delta_T(i) \to V(B_i)$.

- ① calcular la unión disjunta $H = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_t$;
- ② para cada $e = \{i, j\} \in E(T)$ identificar $\sigma_i(e) = \sigma_j(e)$ en H.

Construcción (ensamblaje de árbol)

Datos:

- un árbol T con $V(T) = \{1, 2, ..., t\};$
- t bigráficas B_1, B_2, \ldots, B_t ;
- para cada $i \in V(G)$ una función inyectiva $\sigma_i : \delta_T(i) \to V(B_i)$.

- ① calcular la unión disjunta $H = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_t$;
- ② para cada $e = \{i, j\} \in E(T)$ identificar $\sigma_i(e) = \sigma_j(e)$ en H.

Construcción (ensamblaje de árbol)

Datos:

- un árbol T con $V(T) = \{1, 2, ..., t\};$
- t bigráficas B_1, B_2, \ldots, B_t ;
- para cada $i \in V(G)$ una función inyectiva $\sigma_i : \delta_T(i) \to V(B_i)$.

- ① calcular la unión disjunta $H = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_t$;
- ② para cada $e = \{i, j\} \in E(T)$ identificar $\sigma_i(e) = \sigma_j(e)$ en H.

Construcción (ensamblaje de árbol)

Datos:

- un árbol T con $V(T) = \{1, 2, ..., t\};$
- t bigráficas B_1, B_2, \ldots, B_t ;
- para cada $i \in V(G)$ una función inyectiva $\sigma_i : \delta_T(i) \to V(B_i)$.

- calcular la unión disjunta $H = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_t$;
- ② para cada $e = \{i, j\} \in E(T)$ identificar $\sigma_i(e) = \sigma_j(e)$ en H.

Construcción (ensamblaje de árbol)

Datos:

- un árbol T con $V(T) = \{1, 2, ..., t\};$
- t bigráficas B_1, B_2, \ldots, B_t ;
- para cada $i \in V(G)$ una función inyectiva $\sigma_i : \delta_T(i) \to V(B_i)$.

- **1** calcular la unión disjunta $H = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_t$;
- ② para cada $e = \{i, j\} \in E(T)$ identificar $\sigma_i(e) = \sigma_j(e)$ en H.

Construcción de \mathbb{A}_n

Teorema (M. Barot – 1999)

Una bigráfica G es de tipo Dynkin $\mathbb A$ si y sólo si satisface la condición de ciclo y $\Phi\left(G\right)$ es un ensamblaje de árbol de gráficas completas.

Construcción de \mathbb{A}_n Ejemplo

$$\sigma_1 = \begin{pmatrix} \{1,2\} & \{1,3\} & \{1,4\} \\ 1 & 3 & 2 \end{pmatrix}$$

$$\sigma_2 = \begin{pmatrix} \{1,2\} \\ 3 \end{pmatrix}$$

$$\sigma_3 = \begin{pmatrix} \{1,3\} \\ 1 \end{pmatrix}$$

$$\sigma_4 = \begin{pmatrix} \{1,4\} \\ 1 \end{pmatrix}$$

Construcción de \mathbb{A}_n Ejemplo (continuado)

$$H =$$

$$G =$$

Construcción (extensión de A-espejo)

Datos:

- una gráfica G que haya sido obtenida mediante un ensamblaje de árbol de gráficas completas;
- un vértice $x \in V(G)$.

- ① agregar un nuevo vértice x' a G;
- ② para cada y vecino de x agregar una arista $\{x', y\}$ a G.

Construcción (extensión de A-espejo)

Datos:

- una gráfica G que haya sido obtenida mediante un ensamblaje de árbol de gráficas completas;
- un vértice $x \in V(G)$.

- ① agregar un nuevo vértice x' a G;
- ② para cada y vecino de x agregar una arista $\{x', y\}$ a G.

Construcción (extensión de A-espejo)

Datos:

- una gráfica G que haya sido obtenida mediante un ensamblaje de árbol de gráficas completas;
- un vértice $x \in V(G)$.

- lacktriangle agregar un nuevo vértice x' a G;
- 2 para cada y vecino de x agregar una arista $\{x', y\}$ a G.

Construcción (extensión de A-espejo)

Datos:

- una gráfica G que haya sido obtenida mediante un ensamblaje de árbol de gráficas completas;
- un vértice $x \in V(G)$.

- agregar un nuevo vértice x' a G;
- ② para cada y vecino de x agregar una arista $\{x', y\}$ a G.

Construcción (A-ciclado)

Datos:

- una gráfica G que haya sido obtenido mediante un ensamblaje de árbol de gráficas completas;
- dos vértices $x, y \in V(G)$ a distancia $d_G(x, y) \geqslant 3$.

Instrucciones:

 \bullet identificar x = y en G.

Construcción (A-ciclado)

Datos:

- una gráfica G que haya sido obtenido mediante un ensamblaje de árbol de gráficas completas;
- dos vértices $x, y \in V(G)$ a distancia $d_G(x, y) \geqslant 3$.

Instrucciones:

• identificar x = y en G.

Construcción (A-ciclado)

Datos:

- una gráfica G que haya sido obtenido mediante un ensamblaje de árbol de gráficas completas;
- dos vértices $x, y \in V(G)$ a distancia $d_G(x, y) \geqslant 3$.

Instrucciones:

1 identificar x = y en G.

Ejemplos

Construcción de \mathbb{D}_n

Teorema (M. Barot - 2001)

Una bigráfica G es de tipo $\mathbb D$ si y sólo si las siguientes tres condiciones se satisfacen:

- G tiene cuatro o más vértices
- 2 G cumple la condición de ciclo
- $\Phi(G)$ se obtiene mediante una extensión de \mathbb{A} -espejo o un \mathbb{A} -ciclado.

Construcción de \mathbb{D}_n

Teorema (M. Barot - 2001)

Una bigráfica G es de tipo $\mathbb D$ si y sólo si las siguientes tres condiciones se satisfacen:

- G tiene cuatro o más vértices
- ② G cumple la condición de ciclo
- $\Phi(G)$ se obtiene mediante una extensión de \mathbb{A} -espejo o un \mathbb{A} -ciclado.

Construcción de \mathbb{D}_n

Teorema (M. Barot - 2001)

Una bigráfica G es de tipo $\mathbb D$ si y sólo si las siguientes tres condiciones se satisfacen:

- G tiene cuatro o más vértices
- ② G cumple la condición de ciclo
- $\Phi\left(G\right)$ se obtiene mediante una extensión de \mathbb{A} -espejo o un \mathbb{A} -ciclado.

Índice

- La Clasificación A-D-E
 - Conceptos y relaciones
 - Algoritmo de las inflaciones
 - Las construcciones de Barot
 - Planteamiento
- 2 Aportaciones en perspectiva computacional
 - El morfismo de flación y sus invariantes
 - Clasificación de A y D por teoría de gráficas
 - Un algoritmo polinomial para la clasificación A-D-E

Planteamiento

- ¿Qué técnicas computacionales se pueden aplicar para el estudio de la clasificación A-D-E?
- ¿Qué criterios eficientes se pueden aplicar para clasificar una bigráfica?
- ¿Qué complejidad computacional tiene el problema de clasificar una bigráfica?

Planteamiento

- ¿Qué técnicas computacionales se pueden aplicar para el estudio de la clasificación A-D-E?
- ¿Qué criterios eficientes se pueden aplicar para clasificar una bigráfica?
- ¿Qué complejidad computacional tiene el problema de clasificar una bigráfica?

Planteamiento

- ¿Qué técnicas computacionales se pueden aplicar para el estudio de la clasificación A-D-E?
- ¿Qué criterios eficientes se pueden aplicar para clasificar una bigráfica?
- ¿Qué complejidad computacional tiene el problema de clasificar una bigráfica?

Índice

- 1 La Clasificación A-D-E
 - Conceptos y relaciones
 - Algoritmo de las inflaciones
 - Las construcciones de Barot
 - Planteamiento
- 2 Aportaciones en perspectiva computacional
 - El morfismo de flación y sus invariantes
 - Clasificación de A y D por teoría de gráficas
 - Un algoritmo polinomial para la clasificación A-D-E

Motivación

Para estudiar un algoritmo se suele identificar qué atributos cambian o permanecen invariantes a lo largo de la ejecución.

- $ullet A' := (E_{s\,r}^{\sigma})^{\mathrm{T}} A (E_{s\,r}^{\sigma}), \ \sigma \in \mathbf{R};$
- $(A')_{rr} = (A)_{rr} + \sigma ((A)_{sr} + (A)_{rs}) + \sigma^2 (A)_{ss};$
- si $A, A' \in \operatorname{sqC}$ entonces $(A')_{rr} = 2$;
- entonces $\sigma \in \{0, -(\mathbf{A})_{s\,r}\}.$

Definición

$$T_{sr}\left(\boldsymbol{A}\right) := \left(\boldsymbol{E}_{sr}^{-(\boldsymbol{A})_{sr}}\right)^{\mathrm{T}} \boldsymbol{A} \left(\boldsymbol{E}_{sr}^{-(\boldsymbol{A})_{sr}}\right).$$

- $ullet A' := (E_{s\,r}^{\sigma})^{\mathrm{T}} A (E_{s\,r}^{\sigma}), \ \sigma \in \mathbf{R};$
- $(A')_{rr} = (A)_{rr} + \sigma ((A)_{sr} + (A)_{rs}) + \sigma^2 (A)_{ss}$;
- si $A, A' \in \operatorname{sqC}$ entonces $(A')_{rr} = 2$;
- entonces $\sigma \in \{0, -(\mathbf{A})_{s\,r}\}.$

Definición

$$T_{sr}(\mathbf{A}) := \left(\mathbf{E}_{sr}^{-(\mathbf{A})_{sr}}\right)^{\mathrm{T}} \mathbf{A} \left(\mathbf{E}_{sr}^{-(\mathbf{A})_{sr}}\right).$$

- $ullet A' := (oldsymbol{E}_{s\,r}^{\sigma})^{\mathrm{T}} A (oldsymbol{E}_{s\,r}^{\sigma}), \ \sigma \in \mathbf{R};$
- $(A')_{rr} = (A)_{rr} + \sigma ((A)_{sr} + (A)_{rs}) + \sigma^2 (A)_{ss}$;
- ullet si $m{A}, m{A}' \in \mathbf{sqC}$ entonces $(m{A}')_{r\,r} = 2$;
- entonces $\sigma \in \{0, -(\mathbf{A})_{s\,r}\}.$

Definición

$$T_{sr}\left(\boldsymbol{A}\right) := \left(\boldsymbol{E}_{sr}^{-(\boldsymbol{A})_{sr}}\right)^{\mathrm{T}} \boldsymbol{A} \left(\boldsymbol{E}_{sr}^{-(\boldsymbol{A})_{sr}}\right).$$

- $ullet A' := (E_{s\,r}^{\sigma})^{\mathrm{T}} A (E_{s\,r}^{\sigma}), \ \sigma \in \mathbf{R};$
- $(A')_{rr} = (A)_{rr} + \sigma ((A)_{sr} + (A)_{rs}) + \sigma^2 (A)_{ss}$;
- si $A, A' \in \mathbf{sqC}$ entonces $(A')_{rr} = 2$;
- $\bullet \ \ \text{entonces} \ \sigma \in \{0, -\, ({\pmb A})_{s\,r}\}.$

Definición

$$T_{sr}\left(\boldsymbol{A}\right) := \left(\boldsymbol{E}_{sr}^{-(\boldsymbol{A})_{sr}}\right)^{\mathrm{T}} \boldsymbol{A} \left(\boldsymbol{E}_{sr}^{-(\boldsymbol{A})_{sr}}\right).$$

- $ullet A' := (E_{s\,r}^{\sigma})^{\mathrm{T}} A (E_{s\,r}^{\sigma}), \ \sigma \in \mathbf{R};$
- $(A')_{rr} = (A)_{rr} + \sigma ((A)_{sr} + (A)_{rs}) + \sigma^2 (A)_{ss}$;
- ullet si $m{A}, m{A}' \in \mathbf{sqC}$ entonces $(m{A}')_{r\,r} = 2$;
- ullet entonces $\sigma \in \{0, -({m A})_{s\,r}\}.$

Definición

$$T_{sr}\left(\boldsymbol{A}\right) := \left(\boldsymbol{E}_{sr}^{-(\boldsymbol{A})_{sr}}\right)^{\mathrm{T}} \boldsymbol{A} \left(\boldsymbol{E}_{sr}^{-(\boldsymbol{A})_{sr}}\right).$$

Cómputo de una flación

• La flación se puede implementar en O(n) operaciones.

```
\begin{aligned} & \textbf{función flación}(\boldsymbol{A},s,r) : \\ & \sigma := -\left(\boldsymbol{A}\right)_{sr}; \\ & \textbf{para } j = 1 \textbf{ hasta } n : \\ & \left\lfloor \ (\boldsymbol{A}\right)_{rj} := (\boldsymbol{A})_{rj} + \sigma \left(\boldsymbol{A}\right)_{sj}; \\ & \textbf{para } i = 1 \textbf{ hasta } n : \\ & \left\lfloor \ (\boldsymbol{A}\right)_{ir} := (\boldsymbol{A})_{ir} + \sigma \left(\boldsymbol{A}\right)_{is}; \end{aligned}
```

Cómputo de una flación

• La flación se puede implementar en O(n) operaciones.

Algoritmo

```
\begin{array}{l} \text{función flación}(\boldsymbol{A},s,r) \colon \\ \sigma := -\left(\boldsymbol{A}\right)_{sr}; \\ \text{para } j = 1 \text{ hasta } n \colon \\ \left\lfloor \left(\boldsymbol{A}\right)_{rj} := \left(\boldsymbol{A}\right)_{rj} + \sigma\left(\boldsymbol{A}\right)_{sj}; \\ \text{para } i = 1 \text{ hasta } n \colon \\ \left\lfloor \left(\boldsymbol{A}\right)_{ir} := \left(\boldsymbol{A}\right)_{ir} + \sigma\left(\boldsymbol{A}\right)_{is}; \end{array} \right.
```


Interpretación gráfica

Interpretación gráfica

Interpretación gráfica

Ejemplo
$$(T_{15}(G))$$

$$\begin{array}{c}
2 \\
\hline
3
\end{array}$$

Ejemplo
$$(T_{15}(G))$$

$$\begin{array}{c}
2 \\
\hline
3 \\
\hline
\end{array}$$

Ejemplo
$$(T_{15}(G))$$

$$\begin{array}{c}
2 \\
\hline
3
\end{array}$$

Lema

Sea G una bigráfica y $s,r \in V(G)$; entonces

- **1** $T_{sr}(G) r = G r$.
- \bullet Si $s \neq r$ y $\{s,r\} \notin E(G)$, entonces $T_{sr}(G) = G$.

Lema

Lema

Sea G una bigráfica y $s,r \in V(G)$; entonces

- **1** $T_{sr}(G) r = G r$.
- \bullet Si $s \neq r$ y $\{s,r\} \notin E(G)$, entonces $T_{sr}(G) = G$.

Lema

Lema

Sea G una bigráfica y $s,r\in V\left(G\right)$; entonces

- **1** $T_{sr}(G) r = G r$.
- **2** $T_{sr}(T_{sr}(G)) = G.$
- \bullet Si $s \neq r$ y $\{s,r\} \notin E(G)$, entonces $T_{sr}(G) = G$.

Lema

Lema

Sea G una bigráfica y $s,r \in V(G)$; entonces

- **1** $T_{sr}(G) r = G r$.
- **2** $T_{sr}(T_{sr}(G)) = G.$
- \bullet Si $s \neq r$ y $\{s,r\} \notin E(G)$, entonces $T_{s\,r}(G) = G$.

Lema

Lema

Sea G una bigráfica y $s,r \in V(G)$; entonces

- **1** $T_{sr}(G) r = G r$.
- **2** $T_{sr}(T_{sr}(G)) = G.$
- \bullet Si $s \neq r$ y $\{s,r\} \notin E(G)$, entonces $T_{s\,r}(G) = G$.

Lema

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Definición

$$P(G) \Rightarrow P(T_{sr}(G))$$

- La conexidad de una bigráfica es invariante de flación
- La condición de ciclo no lo es

Índice

- 1 La Clasificación A-D-E
 - Conceptos y relaciones
 - Algoritmo de las inflaciones
 - Las construcciones de Barot
 - Planteamiento
- 2 Aportaciones en perspectiva computacional
 - El morfismo de flación y sus invariantes
 - ullet Clasificación de $\mathbb A$ y $\mathbb D$ por teoría de gráficas
 - Un algoritmo polinomial para la clasificación A-D-E

Motivación

Existen algoritmos eficientes que revelan la estructura de gráficas. Sólo hay que caracterizar las estructuras que son relevantes para nosotros.

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa\left(G\right)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un vértice de corte si $\kappa(G) < \kappa(G-v)$.

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa\left(G\right)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un vértice de corte si $\kappa(G) < \kappa(G-v)$.

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa(G)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un vértice de corte si $\kappa(G) < \kappa(G-v)$.

Definición (F. Harary – 1969)

Sea G una gráfica.

- $\kappa(G)$ denota a la cantidad de componentes conexas de G.
- $v \in V(G)$ es un vértice de corte si $\kappa(G) < \kappa(G-v)$.

Bloques

Definiciones (F. Harary – 1969)

- Una gráfica es inseparable si no tiene vértices de corte.
- Un bloque es una subgráfica inseparable que además es maximal respecto a esta propiedad.
- El árbol de bloques $\mathrm{BT}\,(G)$ es la gráfica bipartita que contiene una arista $\{B,v\}$ si y sólo si B es un bloque de G que contiene al vértice de corte v.

Bloques

Definiciones (F. Harary – 1969)

- Una gráfica es inseparable si no tiene vértices de corte.
- Un bloque es una subgráfica inseparable que además es maximal respecto a esta propiedad.
- El árbol de bloques $\mathrm{BT}\,(G)$ es la gráfica bipartita que contiene una arista $\{B,v\}$ si y sólo si B es un bloque de G que contiene al vértice de corte v.

Bloques

Definiciones (F. Harary – 1969)

- Una gráfica es inseparable si no tiene vértices de corte.
- Un bloque es una subgráfica inseparable que además es maximal respecto a esta propiedad.
- El árbol de bloques $\mathrm{BT}\,(G)$ es la gráfica bipartita que contiene una arista $\{B,v\}$ si y sólo si B es un bloque de G que contiene al vértice de corte v.

Árbol de bloques

Cómputo de $\mathrm{BT}\left(G\right)$

Teorema (J. Hopcroft & R. Tarjan – 1971)

Es posible descomponer una gráfica G=(V,E) en sus vértices de corte y bloques en O(|V|+|E|) operaciones.

• Basado en el algoritmo de recorrido en profundidad.

Cómputo de $\mathrm{BT}\left(G\right)$

Teorema (J. Hopcroft & R. Tarjan – 1971)

Es posible descomponer una gráfica G=(V,E) en sus vértices de corte y bloques en $O\left(|V|+|E|\right)$ operaciones.

• Basado en el algoritmo de recorrido en profundidad.

Definición

- ullet Se define la bigráfica $\mathbf{F}\left[X,Y
 ight]=\left(X\cup Y,E^{+}\cup E^{-}
 ight)$ donde
 - $E^+ = {X \choose 2} \cup {Y \choose 2};$
 - $E^- = \{\{x, y\} | x \in X, y \in Y\}.$
- ullet denota a la clase de todas las bigráficas de la forma ${f F}\left[\cdot,\cdot\right]$.

Teorema

Una gráfica G es de tipo \mathbb{A} si y sólo si cada bloque $B \in \mathcal{F}$ y cada vértice de corte tiene grado 2 en $\mathrm{BT}\,(G)$.

• Demostración autocontenida usando invariantes de flación.

Definición

- ullet Se define la bigráfica ${f F}[X,Y] = \left(X \cup Y, E^+ \cup E^- \right)$ donde
 - $\bullet E^+ = {X \choose 2} \cup {Y \choose 2};$
 - $E^- = \{\{x, y\} | x \in X, y \in Y\}.$
- ullet ${\cal F}$ denota a la clase de todas las bigráficas de la forma ${f F}\left[\cdot,\cdot\right]$.

Teorema

Una gráfica G es de tipo \mathbb{A} si y sólo si cada bloque $B \in \mathcal{F}$ y cada vértice de corte tiene grado 2 en $\mathrm{BT}(G)$.

Demostración autocontenida usando invariantes de flación.

Definición

- ullet Se define la bigráfica ${f F}[X,Y] = \left(X \cup Y, E^+ \cup E^- \right)$ donde
 - $E^+ = {X \choose 2} \cup {Y \choose 2}$;
 - $E^- = \{\{x, y\} | x \in X, y \in Y\}.$
- ullet denota a la clase de todas las bigráficas de la forma ${f F}\left[\cdot,\cdot\right]$.

Teorema

Una gráfica G es de tipo \mathbb{A} si y sólo si cada bloque $B \in \mathcal{F}$ y cada vértice de corte tiene grado 2 en $\mathrm{BT}\,(G)$.

Demostración autocontenida usando invariantes de flación.

Definición

- Se define la bigráfica $\mathbf{F}\left[X,Y\right]=\left(X\cup Y,E^{+}\cup E^{-}\right)$ donde
 - $E^+ = {X \choose 2} \cup {Y \choose 2}$;
 - $E^- = \{\{x, y\} | x \in X, y \in Y\}.$
- \bullet ${\cal F}$ denota a la clase de todas las bigráficas de la forma $F\left[\cdot,\cdot\right].$

Teorema

Una gráfica G es de tipo \mathbb{A} si y sólo si cada bloque $B \in \mathcal{F}$ y cada vértice de corte tiene grado 2 en $\mathrm{BT}(G)$.

• Demostración autocontenida usando invariantes de flación.

Definición

- Se define la bigráfica $\mathbf{F}[X,Y] = (X \cup Y, E^+ \cup E^-)$ donde
 - $E^+ = {X \choose 2} \cup {Y \choose 2};$
 - $E^- = \{ \{x, y\} | x \in X, y \in Y \}.$
- ullet denota a la clase de todas las bigráficas de la forma $F[\cdot,\cdot]$.

Teorema

Una gráfica G es de tipo \mathbb{A} si y sólo si cada bloque $B \in \mathcal{F}$ y cada vértice de corte tiene grado 2 en $\operatorname{BT}(G)$.

Demostración autocontenida usando invariantes de flación.

Definición

- Se define la bigráfica $\mathbf{F}[X,Y] = (X \cup Y, E^+ \cup E^-)$ donde
 - $E^+ = {X \choose 2} \cup {Y \choose 2};$
 - $E^- = \{ \{x, y\} | x \in X, y \in Y \}.$
- ullet denota a la clase de todas las bigráficas de la forma $F[\cdot,\cdot]$.

Teorema

Una gráfica G es de tipo \mathbb{A} si y sólo si cada bloque $B \in \mathcal{F}$ y cada vértice de corte tiene grado 2 en $\operatorname{BT}(G)$.

• Demostración autocontenida usando invariantes de flación.

Ejemplo

Ejemplo
$$(T_{15}(G))$$

$$\begin{array}{c}
2 \\
\hline
3 \\
\hline
\end{array}$$

Suma de bigráficas

Definición

G+H es la bigráfica que se obtiene de simplificar la bigráfica ($V\left(G\right)\cup V\left(H\right),E\left(G\right)+E\left(H\right)$).

Suma de bigráficas

Definición

G+H es la bigráfica que se obtiene de simplificar la bigráfica $\left(V\left(G\right)\cup V\left(H\right),E\left(G\right)+E\left(H\right)\right)$.

Invariante para BT(G)

Lema

Sea $\{s,r\}$ una arista de alguna $H \in \mathcal{F}$, y sea $F \in \mathcal{F}$ tal que $V\left(F\right) \cap V\left(H\right) = \{s\}$; entonces $T_{s\,r}\left(F + H\right) = F' + H'$ donde:

- ② $F' r = F \ y \ H r = H'$.

Invariante para BT(G)

Lema

Sea $\{s,r\}$ una arista de alguna $H \in \mathcal{F}$, y sea $F \in \mathcal{F}$ tal que $V\left(F\right) \cap V\left(H\right) = \{s\}$; entonces $T_{s\,r}\left(F + H\right) = F' + H'$ donde:

- $\bullet \ F' \ y \ H' \ son \ miembros \ de \ \mathcal{F} \ tales \ que \ V \left(F'\right) \cap V \left(H'\right) = \{s\}$
- ② $F' r = F \ y \ H r = H'$.

Invariante para BT(G)

Lema

Sea $\{s,r\}$ una arista de alguna $H \in \mathcal{F}$, y sea $F \in \mathcal{F}$ tal que $V\left(F\right) \cap V\left(H\right) = \{s\}$; entonces $T_{s\,r}\left(F + H\right) = F' + H'$ donde:

- $\bullet \ F' \ y \ H' \ son \ miembros \ de \ \mathcal{F} \ tales \ que \ V \ (F') \cap V \ (H') = \{s\}$
- 2 $F' r = F \ y \ H r = H'$.

Ejemplo

Construcción (pegado de D-núcleo)

Datos:

- Una bigráfica cíclica con vértices x_1, \ldots, x_h $(h \ge 2)$ que satisface la condición de ciclo (el \mathbb{D} -núcleo).
- Bigráficas F_1, F_2, \ldots, F_h , tales que:
 - cada F_i tiene tipo Dynkin A y contiene una arista $\{x_i, x_{i+1}\}$ con el mismo estilo de línea que en H:
 - x_i y x_{i+1} son vértices internos de F_i
 - todas las F_i son disjuntas por vértices excepto por aquellos que conforman el D-núcleo.

Procedimiento:

① Calcular la suma de bigráficas $\sum_{i=1}^{h} F_i$; a la bigráfica resultante le llamamos el pegado de \mathbb{D} -núcleo de H y F_1, F_2, \ldots, F_h .

Construcción (pegado de D-núcleo)

Datos:

- Una bigráfica cíclica con vértices x_1, \ldots, x_h $(h \ge 2)$ que satisface la condición de ciclo (el \mathbb{D} -núcleo).
- Bigráficas F_1, F_2, \dots, F_h , tales que:
 - cada F_i tiene tipo Dynkin \mathbb{A} y contiene una arista $\{x_i, x_{i+1}\}$ con el mismo estilo de línea que en H;
 - x_i y x_{i+1} son vértices internos de F_i
 - todas las F_i son disjuntas por vértices excepto por aquellos que conforman el \mathbb{D} -núcleo.

Procedimiento:

① Calcular la suma de bigráficas $\sum_{i=1}^{h} F_i$; a la bigráfica resultante le llamamos el pegado de \mathbb{D} -núcleo de H y F_1, F_2, \ldots, F_h .

Construcción para $\mathbb D$

Construcción (pegado de D-núcleo)

Datos:

- Una bigráfica cíclica con vértices x_1, \ldots, x_h $(h \ge 2)$ que satisface la condición de ciclo (el \mathbb{D} -núcleo).
- Bigráficas F_1, F_2, \dots, F_h , tales que:
 - cada F_i tiene tipo Dynkin \mathbb{A} y contiene una arista $\{x_i, x_{i+1}\}$ con el mismo estilo de línea que en H;
 - x_i y x_{i+1} son vértices internos de F_i
 - todas las F_i son disjuntas por vértices excepto por aquellos que conforman el \mathbb{D} -núcleo.

Procedimiento:

① Calcular la suma de bigráficas $\sum_{i=1}^h F_i$; a la bigráfica resultante le llamamos el pegado de \mathbb{D} -núcleo de H y F_1, F_2, \ldots, F_h .

Construcción (pegado de D-núcleo)

Datos:

- Una bigráfica cíclica con vértices x_1, \ldots, x_h $(h \ge 2)$ que satisface la condición de ciclo (el \mathbb{D} -núcleo).
- Bigráficas F_1, F_2, \dots, F_h , tales que:
 - cada F_i tiene tipo Dynkin \mathbb{A} y contiene una arista $\{x_i, x_{i+1}\}$ con el mismo estilo de línea que en H;
 - x_i y x_{i+1} son vértices internos de F_i
 - todas las F_i son disjuntas por vértices excepto por aquellos que conforman el \mathbb{D} -núcleo.

Procedimiento:

① Calcular la suma de bigráficas $\sum_{i=1}^{h} F_i$; a la bigráfica resultante le llamamos el pegado de \mathbb{D} -núcleo de H y F_1, F_2, \ldots, F_h .

Construcción (pegado de D-núcleo)

Datos:

- Una bigráfica cíclica con vértices x_1, \ldots, x_h $(h \ge 2)$ que satisface la condición de ciclo (el \mathbb{D} -núcleo).
- Bigráficas F_1, F_2, \dots, F_h , tales que:
 - cada F_i tiene tipo Dynkin \mathbb{A} y contiene una arista $\{x_i, x_{i+1}\}$ con el mismo estilo de línea que en H;
 - x_i y x_{i+1} son vértices internos de F_i
 - todas las F_i son disjuntas por vértices excepto por aquellos que conforman el \mathbb{D} -núcleo.

Procedimiento:

① Calcular la suma de bigráficas $\sum_{i=1}^{h} F_i$; a la bigráfica resultante le llamamos el pegado de \mathbb{D} -núcleo de H y F_1, F_2, \dots, F_h .

Construcción (pegado de D-núcleo)

Datos:

- Una bigráfica cíclica con vértices x_1, \ldots, x_h $(h \ge 2)$ que satisface la condición de ciclo (el \mathbb{D} -núcleo).
- Bigráficas F_1, F_2, \dots, F_h , tales que:
 - cada F_i tiene tipo Dynkin \mathbb{A} y contiene una arista $\{x_i, x_{i+1}\}$ con el mismo estilo de línea que en H;
 - x_i y x_{i+1} son vértices internos de F_i
 - todas las F_i son disjuntas por vértices excepto por aquellos que conforman el \mathbb{D} -núcleo.

Procedimiento:

• Calcular la suma de bigráficas $\sum_{i=1}^{h} F_i$; a la bigráfica resultante le llamamos el pegado de \mathbb{D} -núcleo de H y F_1, F_2, \ldots, F_h .

Ejemplo de pegado de D-núcleo

- caracteriza al tipo D;
- define la estructura de la bigráfica, no de la gráfica subyacente;
- ullet considera al A-espejo es un caso especial, cuando h=2;
- tiene demostración autocontenida basada en invariante de flación.

- caracteriza al tipo D;
- define la estructura de la bigráfica, no de la gráfica subyacente;
- considera al \mathbb{A} -espejo es un caso especial, cuando h=2;
- tiene demostración autocontenida basada en invariante de flación.

- caracteriza al tipo D;
- define la estructura de la bigráfica, no de la gráfica subyacente;
- considera al \mathbb{A} -espejo es un caso especial, cuando h=2;
- tiene demostración autocontenida basada en invariante de flación.

- caracteriza al tipo \mathbb{D} ;
- define la estructura de la bigráfica, no de la gráfica subyacente;
- considera al \mathbb{A} -espejo es un caso especial, cuando h=2;
- tiene demostración autocontenida basada en invariante de flación.

- caracteriza al tipo D;
- define la estructura de la bigráfica, no de la gráfica subyacente;
- considera al \mathbb{A} -espejo es un caso especial, cuando h=2;
- tiene demostración autocontenida basada en invariante de flación.

Casos del invariante de flación para $\mathbb D$

Casos del invariante de flación para $\mathbb D$

Casos del invariante de flación para $\mathbb D$

Casos del invariante de flación para D

Casos del invariante de flación para D

Índice

- 1 La Clasificación A-D-E
 - Conceptos y relaciones
 - Algoritmo de las inflaciones
 - Las construcciones de Barot
 - Planteamiento
- 2 Aportaciones en perspectiva computacional
 - El morfismo de flación y sus invariantes
 - Clasificación de A y D por teoría de gráficas
 - ullet Un algoritmo polinomial para la clasificación $\mathbb{A}\text{-}\mathbb{D}\text{-}\mathbb{E}$

Motivación

En computación se considera que un problema es tratable cuando existe un algoritmo que lo resuelve en tiempo polinomial.

- ullet Sea G una bigráfica conexa y definida positiva de n vértices.
- ullet G no puede tener aristas múltiples por ser definida positiva.
- Si n > 8 entonces G es de tipo \mathbb{A} o \mathbb{D} .
- Si n ≤ 8 entonces el algoritmo de las inflaciones puede determinar su tipo en O (1) operaciones.

- ullet Sea G una bigráfica conexa y definida positiva de n vértices.
- ullet G no puede tener aristas múltiples por ser definida positiva.
- Si n > 8 entonces G es de tipo \mathbb{A} o \mathbb{D} .
- Si n ≤ 8 entonces el algoritmo de las inflaciones puede determinar su tipo en O (1) operaciones.

- ullet Sea G una bigráfica conexa y definida positiva de n vértices.
- ullet G no puede tener aristas múltiples por ser definida positiva.
- Si n > 8 entonces G es de tipo \mathbb{A} o \mathbb{D} .
- Si n ≤ 8 entonces el algoritmo de las inflaciones puede determinar su tipo en O (1) operaciones.

- ullet Sea G una bigráfica conexa y definida positiva de n vértices.
- G no puede tener aristas múltiples por ser definida positiva.
- Si n > 8 entonces G es de tipo \mathbb{A} o \mathbb{D} .
- Si $n \le 8$ entonces el algoritmo de las inflaciones puede determinar su tipo en O(1) operaciones.

Algoritmo propuesto

Algoritmo

Paso 1

Determinar si una matriz $A \in \mathbf{sqC}$ es definida positiva usando sólo números enteros

No se puede hacer en tiempo polinomial usando el método de Gauss:

$$\begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & \ddots & \ddots & & \\ & & \ddots & 2 & -1 \\ & & & -1 & 2 \end{bmatrix} \mapsto \begin{bmatrix} 2 & -1 & & & \\ 4 & -2 & & & \\ & & \ddots & \ddots & & \\ & & & 2^{2^{n-2}} & -2^{(2^{n-2}-1)} \\ & & & & 2^{2^{n-1}} \end{bmatrix}$$

Paso 1

Algoritmo (adaptación de E. Bareiss – 1968)

devolver Verdadero

Características del algoritmo de Bareiss

- Justificado por el criterio de Sylvester dado que al final de la iteración i, $(\boldsymbol{A})_{i\,i} = \det\left(\boldsymbol{A}^{(i,i)}\right)$.
- Complejidad $O\left(n^5\left(L + \log n\right)^2\right)$ donde $2^L \geqslant \max_{i,j} \left| (\boldsymbol{A})_{ij} \right|$.
- ullet En nuestro caso L=2: entonces existe un algoritmo polinomial.

Características del algoritmo de Bareiss

- Justificado por el criterio de Sylvester dado que al final de la iteración i, $(\boldsymbol{A})_{i\,i} = \det\left(\boldsymbol{A}^{(i,i)}\right)$.
- ullet Complejidad $O\left(n^5\left(L+\log n\right)^2
 ight)$ donde $2^L\geqslant \max_{i,j}\left|\left(\pmb{A}\right)_{ij}\right|.$
- En nuestro caso L=2: entonces existe un algoritmo polinomial.

Características del algoritmo de Bareiss

- Justificado por el criterio de Sylvester dado que al final de la iteración i, $(\boldsymbol{A})_{i\,i} = \det\left(\boldsymbol{A}^{(i,i)}\right)$.
- ullet Complejidad $O\left(n^5\left(L + \log n\right)^2\right)$ donde $2^L \geqslant \max_{i,j} \left| (\boldsymbol{A})_{ij} \right|$.
- ullet En nuestro caso L=2: entonces existe un algoritmo polinomial.

Lecturas complementarias I

M. Abarca & D. Rivera Graph Theoretical and Algorithmic Characterizations of Positive Definite Symmetric Quasi-Cartan Matrices. Fundamenta Informaticae. 149(3):241–261, 2016.

M. Barot.
A characterization of positive unit forms.
Boletín de la Sociedad Matemática Mexicana. 5:87–94, 1999.

M. Barot.

A characterization of positive unit forms, part II.

Boletín de la Sociedad Matemática Mexicana. 7:13–22, 2001.

