

Tip #1 of 10

Don't forget the point of data science.

Take a practical view of data science.

A map of data science? No

SQL **Python** R Descriptive Machine **Statistical Analytics** Learning Inference

@quaesita by Google

A map of data science? No

Histogram

Neural network

Student's t-test

Q

€ =

Descriptive Analytics

Machine Learning Statistical Inference

A map of data science!

None Many Few Descriptive Machine **Statistical Analytics** Learning Inference

@quaesita by Google

A map of data science!

Get inspired

Make a recipe

Decide wisely

Q

Descriptive Analytics

Machine Learning

Statistical Inference

Tip #2 of 10

Inspiration is cheap, rigor is expensive.

Conclusions about your data: cheap Conclusions beyond your data: expensive

Have your cake and eat it too.

Tip #3 of 10

Split your data!

Don't trust "insights" without it. Restrict access.

Split your data.

Split your data.

Tip #4 of 10

Incentivize your entire workforce to look at data information.

Share where possible and make access easy.

Tip #5 of 10

Rigor begins with the decision-maker.

Avoid rigor for rigor's sake.

Tip #6 of 10

Understand how decision-making is delegated.

Trust is broken by misalignment.

Know your role

Know your role

Time investor

Find something actionable quickly.

Decision supporter

Provide the decision-maker's rigor.

Decision-maker

Exercise judgment about what's useful.

Full data science leader

Master all three focus areas.

Tip #7 of 10

Harness the power of large datasets.

The history of data science is a history of data-splitting.

No datasets.

NO DATA

One dataset.

One dataset.

One dataset.

Two datasets.

Three datasets.

Four datasets.

Four datasets.

Four datasets.

A map of data science

Get inspired

Make a recipe

Decide wisely

Q

Descriptive Analytics

Machine Learning

Statistical Inference

Applied AI and machine learning

Select

Train

Test

Q

Descriptive Analytics

Machine Learning Statistical Inference

Tip #8 of 10

Do things in the right order.

- 1. **Outputs** → Decision-Maker
- 2. **Performance** → Statistics Leader
- 3. **Inputs** → Analytics Leader
- 4. **Models** → Machine Learning Leader

Tip #9 of 10

Take data quality seriously.

You are at the mercy of data engineering.

Tip #10 of 10

Testing is the best basis for trust.

Make sure it works on new data. Apply rigorous statistical principles.

