1. Double and Total Complexes

Definition 1.1 (Double complex). A double complex (or bicomplex) in an abelian category \mathcal{A} is a family $\{C_{p,q}\}$ of objects of \mathcal{A} , together with maps

$$d^h: C_{p,q} \to C_{p-1,q}$$
 and $d^v: C_{p,q} \to C_{p,q-1}$

such that $d^h \circ d^h = d^v \circ d^v = d^v d^h + d^h d^v = 0$.

It is useful to picture the double complex as a lattice in which the maps d^h go horizontally, the maps d^v go vertically, and each square anticommutes.

Each row C_{*q} and each columns C_{p*} is a chain complex.

We say that the double complex C is bounded if C has only finitely many nonzero terms along each diagonal line p + q = n. For example, if C is concentrated in the first quadrant of the plane (a first quadrant double complex).

1.0.1. Sign Trick. Are the maps d^v and d^h maps in Ch?

Because of anticommutativity, the chain map conditions fail, but we can construct chain maps f_{*q} from $C_{*,q}$ to $C_{*,q-1}$ by introducing signs:

$$f_{p,q} = (-1)^p d_{p,q}^v \colon C_{p,q} \to C_{p,q-1}.$$

Using this sign trick, we can identify the category of double complexes with the category Ch (Ch).

1.0.2. Total Complexes. To see why the anticommutativity condition $d^v d^h + d^h d^v = 0$ is useful, we define the total complexes $\text{Tot}(C) = Tot^{\prod}(C)$ and $\text{Tot}^{\oplus}(C)$ as follows:

Definition 1.2 (Total complexes). We define

$$\operatorname{Tot}^{\prod}(C)_n = \prod_{p+q=n} C_{p,q} \text{ and } \operatorname{Tot}^{\oplus}(C)_n = \bigoplus_{p+q=n} C_{p,q}.$$

The formula $d = d^h + d^v$ define maps

$$d \colon \operatorname{Tot}^{\prod}(C)_n = \prod_{p+q=n} C_{p,q} \text{ and } d \colon \operatorname{Tot}^{\oplus}(C)_n \to \operatorname{Tot}^{\oplus}(C)_{n-1}$$

such that $d \circ d = 0$, making $\text{Tot}^{\Pi}(C)$ and $\text{Tot}^{\oplus}(C)$ into chain complexes.

Exercise 1.3. Check that $d = d^h + d^v$ define maps as claimed.

Solution. Let $(\alpha_{p,q}) \in \text{Tot}^{\prod}(C)_n$, so p+q=n. Then $d((\alpha_{p,q}))=d^h((\alpha_{p,q}))+d^v((\alpha_{p,q}))=(\alpha_{p-1,q})+(\alpha_{p,q-1})\in \prod_{p+q=n-1}C_{p,q}$. Clearly, this also works for direct products since the number of non-zero terms under d just multiplies by 2, hence is still finite. We also want to show that $d \circ d = 0$. For this, note that

$$\begin{split} d\circ d\left(\alpha\right) &= d\left(d^h(\alpha) + d^v(\alpha)\right) = d^h\left(d^h(\alpha) + d^v(\alpha)\right) + d^v\left(d^h(\alpha) + d^v(\alpha)\right) \\ &= d^hd^h(\alpha) + d^hd^v(\alpha) + d^vd^h(\alpha) + d^vd^v(\alpha) \\ &= 0. \end{split}$$

2. Introduction to Spectral Sequences

Consider the problem of computing the homology of the total chain complex $T_* = \text{Tot}(E_{**})$ where E_{**} is a first quadrant double complex.

Firstly, it is convenient to forget the horizontal differentials and add a superscript zero, retaining only the vertical differentials d^v along the columns E_{p*}^0 .

Let E_{pq}^1 be the vertical homology $H_q\left(E_{p*}^0\right)$ at the (p,q) spot.

3. Filtrations

Definition 3.1 (Filtered *R*-module). A filtered *R*-module is an *R*-module *A* with an increasing sequence of submodules $\{F_p\}_{p\in\mathbb{Z}}$ such that $F_pA \subset F_{p+1}A$ for all p and such that $\bigcup_p F_pA = A$ and $\bigcap_p F_pA = \{0\}$.

A filtration is said to be bounded if $F_pA = \{0\}$ for p sufficiently small and $F_pA = A$ for p sufficiently larger.

Definition 3.2 (Associated graded module). The associated graded module is defined by $G_pA = F_pA/F_{p-1}A$.

Definition 3.3 (Filtered chain complex). A filtered chain complex is a chain complex (C_*, ∂) together with a filtration $\{F_pC_i\}_{p\in\mathbb{Z}}$ of each C_i such that the differential preserves the filtration, i.e., s.t. $\partial (F_pC_i) \subset F_pC_{i-1}$.

Note that we, in particular, obtain an induced differential $\partial: G_pC_i \to G_pC_{i-1}$ by the universal property of cokernels

$$F_{p}C_{i} \xrightarrow{\partial} F_{p}C_{i-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{p-1}C_{i} \xrightarrow{\partial} F_{p-1}C_{i-1}$$

$$\downarrow^{\text{coker}} \qquad \downarrow^{\text{coker}}$$

$$G_{p}C_{i} \xrightarrow{\partial} G_{p}C_{i-1}$$

so we obtain an associated graded chain complex G_pC_* .

The filtration on C_* also induces a filtration on the homology of C_* by

$$F_p H_i(C_*) = \{ \alpha \in H_i(C_*) \mid (\exists x \in F_p C_i) : \alpha = [x] \}.$$

This filtration has associated graded pieces $G_pH_i(C_*)$ which, in favorable cases, determine $H_i(C_*)$.

3.1. **Example.** Suppose we have a chain complex C_* and a filtration consisting of a single F_0C_* , so $F_nC_*=0$ if n<0 and $F_nC_*=F_0C_*$ if $n\geq 0$. Then $G_nC_*=0$ for $n\neq 0$ and $G_0C_*=F_0C_*$ and