Misura di temperatura con sensore PT100 e scheda Arduino Uno

Simone Aronica, Giovanni Bloise, Gabriele Camisa, Giuseppe Casale

26 gennaio 2023

Indice

1	Strumenti usati			
2	Sintesi dell'esperienza			
	Circuito di condizionamento 3.1 Valutazione dell'incertezza	4		
4	Conclusioni	5		

1 Strumenti usati

- Arduino Uno, utilizzato come ADC
 - risoluzione di 10 bit
 - alimentazione tramite porta USB 2.0 ($V_{\rm CC} = 5 \pm 0.25 \, {\rm V}$).
- Sensore PT100 a film sottile, classe II (B)
 - resistenza variabile secondo $R_{\theta} = R_0 \cdot (1 + A \cdot \theta + B \cdot \theta^2)$
 - parametri caratteristici:
 - * $R_0 = 100 \,\Omega$
 - * $A = 3.9083 \cdot 10^{-3} \, ^{\circ} \text{C}^{-1}$
 - * $B = -5.775 \cdot 10^{-7} \, \text{C}^{-1}$
 - classe II $\to \delta\theta^{\rm sens} = (0.3 + 0.005 \cdot |\theta|)^{\circ}$ C. Il termine incorpora le incertezze dovute ai parametri $A, B \in R_0$, dei quali non sono disponibili le singole incertezze.
 - -resistenza termica: $100\,^{\circ}\mathrm{C}\,\mathrm{W}^{-1}$
- Multimetro HP 34401A
 - Risoluzione a $6\frac{1}{2}$ cifre.
 - funzioni di misurazione: tensione CC / CA, corrente CC / CA, resistenza a 2 e 4 fili, diodo, continuità, frequenza, periodo.
 - Ingresso in tensione max 1000 V, ingresso in corrente 3 A max.

2 Sintesi dell'esperienza

L'esperienza consiste nella misurazione della temperatura ambientale in laboratorio mediante la scheda a microcontrollore Arduino Uno e un sensore di temperatura PT100. Bisogna anche riportare la correlazione di tali misure all'incertezza attesa e a valori di riferimento osservati su un secondo termometro digitale più accurato.

3 Circuito di condizionamento

La scheda Arduino Uno implementa un convertitore analogico-digitale a 10 bit con cui è possibile convertire un voltaggio in input, in un range da $0\,\mathrm{V}$ alla tensione di riferimento di $5\,\mathrm{V}$, in codici digitali da 0 a 1023. Il sensore PT100 incorpora una resistenza dipendente dalla temperatura, per cui è possibile ottenere come output la tensione su una resistenza posta in serie al sensore stesso. Dato che la tensione di alimentazione dell'ADC è usata anche come tensione di riferimento, la misura è definibile raziometrica.

Per ottimizzare la sensibilità $S_{V_F}^{\theta} = \frac{\partial V_F}{\partial \theta}$, rimanendo contemporaneamente in condizioni di autoriscaldamento accettabili, si è collegato il PT100 in una configurazione di partizione resistiva con un resistore di valore nominale $R_F = 1 \, \mathrm{k}\Omega$ (successivamente rivalutato a $(976.00 \pm 0.11)\Omega$ tramite il multimetro digitale). La tensione di output del circuito di condizionamento V_F è stata prelevata ai capi di R_F . La serie è stata alimentata tramite USB 2.0 ad una tensione di $V_S = V_{\mathrm{CC}} = (5.00 \pm 0.25)\mathrm{V}$. Con questa configurazione si ha una sensibilità di $S_{V_F}^{\theta} = -1.54 \, \mathrm{mV} \, ^{\circ}\mathrm{C}^{-1}$ e un autoriscaldamento $\Delta \theta_{\mathrm{s-o}} \approx 0.2 \, ^{\circ}\mathrm{C}$.

3.1 Valutazione dell'incertezza

La funzione di taratura

$$\theta = -\frac{A}{2 \cdot B} - \sqrt{\frac{A}{4 \cdot B^2} - \frac{1}{R_0 \cdot B} \cdot \left(R_0 + R_F - \frac{V_S}{V_F} \cdot R_F\right)}$$

si può manipolare dato che si sta operando utilizzando la stessa tensione $V_{\rm CC}$ di alimentazione come riferimento, ridefinendola come:

$$\theta = -\frac{A}{2 \cdot B} - \sqrt{\frac{A}{4 \cdot B^2} - \frac{1}{R_0 \cdot B} \cdot \left(R_0 + R_F - \frac{2^{N_b}}{D_{\text{out}}} \cdot R_F\right)}$$

dato che

$$D_{\text{out}} = V_{\text{CC}} \cdot \frac{R_F}{R_F + R_{\theta}} \cdot \frac{1}{V_q}$$

$$V_q = \frac{V_{FR}}{2^{N_b}} = \frac{V_{CC}}{2^{N_b}} \Longrightarrow$$

$$\Longrightarrow D_{\text{out}} = V_{\text{CC}} \cdot \frac{R_F}{R_F + R_{\theta}} \cdot \frac{2^{N_b}}{V_{CC}}$$

$$D_{\text{out}} = 2^{N_b} \cdot \frac{R_F}{R_F + R_{\theta}}$$

L'incertezza assoluta sulla temperatura dipende allora, secondo il modello deterministico, solo da D_{out} , R_F e dalle incertezze sulle caratteristiche del sensore.

$$\begin{split} \delta\theta &= \left|\frac{\partial\theta}{\partial D_{\text{out}}}\right| \delta D_{\text{out}} + \left|\frac{\partial\theta}{\partial R_{\text{F}}}\right| \delta R_{\text{F}} + \delta\theta^{\text{sens}} = \\ &= \left|\frac{2^{N_b-1} \cdot R_F}{B \cdot R_0 \cdot D_{\text{out}}^2 \cdot \sqrt{\frac{A^2}{4B^2} - \frac{R_0 + R_F - \frac{2^{N_b \cdot R_F}}{D_{\text{out}}}}}\right| \delta D_{\text{out}} + \\ &+ \left|\frac{1 - \frac{2^{N_b}}{D_{\text{out}}}}{2 \cdot B \cdot R_0 \cdot \sqrt{\frac{A^2}{4B^2} - \frac{R_0 + R_F - \frac{2^{N_b \cdot R_F}}{D_{\text{out}}}}}\right| \delta R_{\text{F}} + \\ &+ \delta\theta^{\text{sens}} \end{split}$$

3.2 Firmware

La funzione di taratura è stata implementata, insieme alla visualizzazione delle misure di temperatura nel seguente codice sorgente:

```
const int pin = A3;
2 const long Rf = 976;
3 const long R0 = 100;
4 const double A = 3.9083*pow(10, -3);
5 const double B = -5.775*pow(10, -7);
6 const int Vs = 5;
8 void setup() {
       pinMode(pin, INPUT);
9
10
       Serial.begin(9600);
11 }
12
13 void loop() {
       int Dout = analogRead(pin);
14
       double T = -(A/(2*B)) - sqrt(pow(A,2)/(4*pow(B,2)) - 1/(R0*B)*(R0+B)
       Rf-pow(2, 10)/Dout*Rf));
       Serial.print("Valore sensore: ");
17
       Serial.println(Dout);
18
       Serial.print("Valore temperatura in Celsius: ");
19
       Serial.println(T);
20
       Serial.println("#####");
21
22
23
       delay(1000);
24 }
```

3.3 Dithering

D	0 /00	50 /00
D_{out}	θ /°C	$\delta\theta$ /°C
920	26.54	6.95
921	23.50	6.91
921	23.50	6.91
921	23.50	6.91
921	23.50	6.91
921	23.50	6.91
921	23.50	6.91
921	23.50	6.91
921	23.50	6.91
920	26.54	6.95
921	23.50	6.91
921	23.50	6.91
921	23.50	6.91
921	23.50	6.91
921	23.50	6.91
920	26.54	6.95
920	26.54	6.95
920	26.54	6.95
921	23.50	6.91
921	23.50	6.91

Tabella 1: Misurazioni successive

Il valore finale è stato calcolato come media su 20 misurazioni, da cui si è ricavato il valore $\overline{T}=(24.26\pm6.92)^{\circ}\mathrm{C}$, con $D_{\mathrm{out,max}}=921$. La misurazione è stata confrontata con quella di un secondo termometro, di incertezza supponibile trascurabile rispetto a quella riscontrata nell'esperienza, il quale ha riportato una misura compatibile di 26.30 °C.

4 Conclusioni

L'esperienza ha portato a verificare come il PT100 assicuri una misura con incertezza minore rispetto al LM335 che abbiamo usato nella precedente esperienza e come utilizzare tecniche quali il dithering porti a imprecisioni minori nella misura finale.