Exercício #4 Solução

Questão 1

Determine TODAS as 10 Soluções Básicas do problema do **Exercício #3**. Associe cada uma delas aos pontos (coordenadas) da solução gráfica do problema, e identifique quais delas são Viáveis (SBVs).

```
Minimizar Custo = 4x1 + 2x2

s.a:

Carb) 5x1 + 15x2 >= 50 (1)

Prot) 20x1 + 5x2 >= 40 (2)

Gord) 15x1 + 2x2 <= 60 (3)
```

Inserindo as variáveis de folga, temos:

Minimizar
$$4x1 + 2x2$$

s.a.:
$$5x1 + 15x2 - x3 = 50$$

$$20x1 + 5x2 - x4 = 40$$

$$15x1 + 2x2 + x5 = 60$$

$$\begin{bmatrix} 5 & 15 & -1 & 0 & 0 \\ 20 & 5 & 0 & -1 & 0 \\ 15 & 2 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix}$$

1) Base =
$$(x1, x2, x3)$$

$$B = \begin{bmatrix} 5 & 15 & -1 \\ 20 & 5 & 0 \\ 15 & 2 & 0 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 0 & -0.057 & 0.143 \\ 0 & 0.428 & -0.571 \\ -1 & 6.143 & -7.86 \end{bmatrix} \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} 6.2857 \\ -17.143 \\ -275.7 \end{bmatrix}$$
Invitively

Ponto: interseção das retas (2) e (3)

2) Base =
$$(x1, x2, x4)$$

$$B = \begin{bmatrix} 5 & 15 & 0 \\ 20 & 5 & -1 \\ 15 & 2 & 0 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_4 \end{bmatrix} = B^{-1}b = \begin{bmatrix} -0.00930 & 0 & 0.0698 \\ 0.0698 & 0 & -0.0233 \\ 0.163 & -1 & 1.28 \end{bmatrix} \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} 3.72 \\ 2.09 \\ 44.9 \end{bmatrix}$$
Viável

Ponto: interseção das retas (1) e (3)

3) Base =
$$(x1, x2, x5)$$

$$B = \begin{bmatrix} 5 & 15 & 0 \\ 20 & 5 & 0 \\ 15 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix} = B^{-1}b = \begin{bmatrix} -0.0182 & 0.0545 & 0 \\ 0.0727 & -0.0182 & 0 \\ 0.127 & -0.782 & 1 \end{bmatrix} \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} 1.27 \\ 2.91 \\ 35.1 \end{bmatrix}$$
Viável

Ponto: interseção das retas (1) e (2)

4) Base =
$$(x1, x3, x4)$$

$$B = \begin{bmatrix} 5 & -1 & 0 \\ 20 & 0 & -1 \\ 15 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 0 & 0 & 0.0667 \\ -1 & 0 & 0.333 \\ 0 & -1 & 1.33 \end{bmatrix} \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} 4 \\ -30 \\ -40 \end{bmatrix}$$
Inviável

Ponto: interseção da reta (3) com o eixo de x1

5) Base =
$$(x1, x3, x5)$$

$$B = \begin{bmatrix} 5 & -1 & 0 \\ 20 & 0 & 0 \\ 15 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 0 & 0.05 & 0 \\ -1 & 0.25 & 0 \\ 0 & -0.75 & 1 \end{bmatrix} \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} 2 \\ -40 \\ 30 \end{bmatrix}$$
Inviável

Ponto: interseção da reta (2) com o eixo de x1

6) Base =
$$(x1, x4, x5)$$

$$B = \begin{bmatrix} 5 & 0 & 0 \\ 20 & -1 & 0 \\ 15 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_4 \\ x_5 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 0.2 & 0 & 0 \\ 4 & -1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} 10 \\ 160 \\ -90 \end{bmatrix}$$
Inviável

Ponto: interseção da reta (1) com o eixo de x1

7) Base =
$$(x2, x3, x4)$$

$$B = \begin{bmatrix} 15 & -1 & 0 \\ 5 & 0 & -1 \\ 2 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} x_2 \\ x_3 \\ x_4 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 0 & 0 & 0.5 \\ -1 & 0 & 7.5 \\ 0 & -1 & 2.5 \end{bmatrix} \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} 30 \\ 400 \\ 110 \end{bmatrix}$$
 Viável

Ponto: interseção da reta (3) com o eixo de x2

8) Base =
$$(x_2, x_3, x_5)$$

$$B = \begin{bmatrix} 15 & -1 & 0 \\ 5 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} x_2 \\ x_3 \\ x_5 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 0 & 0.2 & 0 \\ -1 & 3 & 0 \\ 0 & -0.4 & 1 \end{bmatrix} \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} 8 \\ 70 \\ 44 \end{bmatrix}$$
 Viável

9) Base =
$$(x2, x4, x5)$$

$$B = \begin{bmatrix} 15 & 0 & 0 \\ 5 & -1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} x_2 \\ x_4 \\ x_5 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 0.0667 & 0 & 0 \\ 0.333 & -1 & 0 \\ -0.133 & 0 & 1 \end{bmatrix} \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} 3.33 \\ -23.3 \\ 53.3 \end{bmatrix}$$
Inviável

Ponto: interseção da reta (1) com o eixo de x2

10)Base = (x3, x4, x5)
$$B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix} = B^{-1}b = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 50 \\ 40 \\ 60 \end{bmatrix} = \begin{bmatrix} -50 \\ -40 \\ 60 \end{bmatrix}$$
Inviável

Ponto: Origem (0;0)

Questão 2

Resolva a **Questão 2** do **Exercício #1** pelo método Simplex. Em cada tableau, mostre qual variável entra e qual delas sai da Base, bem como as equações seguidas em cada pivoteamento.

Modelo de PL do problema:

Maximizar Lucro =
$$8x1 + 5x2$$
 sujeito a:
Mão_de_Obra) $2x1 + x2 \le 400$ (1)
Limite_x1) $x1 \le 150$ (2)
Limite_x2) $x2 \le 200$ (3)

Forma Padrão:

Max.
$$f = 8x1 + 5x2$$

s.a.

$$2x1 + x2 + s1 = 400$$

$$x1 + s2 = 150$$

$$x2 + s3 = 200$$

Resolvendo pelo Simplex:

Tableau 1:

Tubicuu						İ	
Base	x1	x2	s1	<i>s</i> 2	s3	RHS	
f	-8	-5	0	0	0	0	L0
s1	2	1	1	0	0	400	L1
s2	1	0	0	1	0	150	L2
s3	0	1	0	0	1	200	L3

```
x1 entra na Base (valor mais negativo na linha da F.O.) s2 sai da Base (porque 150/1 < 400/2) Faz-se o pivoteamento em torno do item destacado (pivô = 1):
```

- L2' = L2 / 1
- L0' = 8 * L2' + L0
- L1' = -2 * L2' + L1
- L3' = 0 * L2' + L3

Tableau 2:

Base	x1	x2	s1	52	s3	RHS	
f	0	-5	0	8	0	1200	L0'
51	0	1	1	-2	0	100	L1'
x1	1	0	0	1	0	150	L2'
s3	0	1	0	0	1	200	L3'

x2 entra na Base no lugar de s1. Pivoteamento:

- L1" = L1' / 1
- L0" = 5 * L1" + L0"
- L2" = 0 * L1" + L2'
- L3" = -1 * L1" + L3'

Tableau 3:

Base	x1	x2	s1	s2	s3	RHS	
f	0	0	5	-2	0	1700	L0"
х2	0	1	1	-2	0	100	L1"
x1	1	0	0	1	0	150	L2"
s3	0	0	-1	2	1	100	L3"

s2 entra na Base no lugar de s3. Pivoteamento:

- L3"' = L3" / 2
- L0"' = 2 * L3"' + L0"
- L1"' = 2 * L3"' + L1"
- L2"' = -1 * L3"' + L2"

Tableau 4:

	1							
Base	x1	x2	s1	s2	s3	RHS		
f	0	0	4	0	1	1800	L0"'	
х2	0	1	0	0	1	200	L1"'	
x1	1	0	0.5	0	-0.5	100	L2"'	
s2	0	0	-0.5	1	0.5	50	L3"'	

Solução ótima, porque não existem mais valores negativos na linha da F.O.