"This Document needs to be updated."

1 Overall Packet Structure

The structure of the packet (and the data sub-packet) relies on byte positions and known values, rather than delimiters.

Field	Value	Byte Position	Length
Start	0xAA	0	1
Protocol version	0x00	1	1
Length of data (not whole packet)		2	1
Data		3	194
CRC of data (not whole packet)		197	1
End	0x55	198	1

Table 1: Overall packet structure

Important: If the *length of data* is 0, the packet immediately ends, meaning the *data*, *CRC*, and *end* fields do not exist.

2 Data Sub-Packet

The data sub-packet consists of 32 "chunks" (30 sensors and 2 MAC addresses). Each "chunk" follows one of seven formats.

2.1 Data Formats

Format	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
1	$(1 \ll 7) \mid 7$ -bit int	$(\text{neg} \ll 7) \mid 7\text{-bit frac}.$	-	-	-	-
2	7 MSb	LSB	-	-	-	-
3	Addr5	Addr4	Addr3	Addr2	Addr1	${\rm Addr0}$
4	(1 « 7) (neg « 6) (4-bit int « 2) 2 MSb of frac.	8 LSb of frac.	-	-	-	-
5	$(\text{neg} \ll 6) \mid 6 \text{ MSb}$	8 LSb	-	-	-	-
6	$(1 \ \ \%7) \ \ (\text{neg} \ \ \%6) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Middle 8 bits	8 LSb	-	-	-
7	First 8 "chunks"	8 "chunks"	8 "chunks"	Last 8 "chunks"	-	-

Table 2: Data formats

This version of the Waggle protocol does not use standard representations for floating point numbers. Instead, the location of the decimal point is pre-determined (between the integer and fractional components, if applicable).

The most significant bit in byte 0 of formats 1, 4, and 6 means the data is already converted. Formats 2 and 5 contain raw data.

Formats 1, 4, 5, and 6 contain a "negative" bit. If this bit is 1, the value is negative.

2.2 Data "Chunks"

The length in each data "chunk" represents the number of bytes of sensor data. The total "chunk" length is length + 2.

Field	ID	Validity Length	Data
Main MAC address	0x00	(1 « 7) 0x06	Table 4
TMP112	0x01	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 5
HTU21D	0x02	$(0/1 * 7) \mid 0 \times 04$	Table 6
GP2Y1010AU0F	0x03	$(0/1 * 7) \mid 0 \times 02$	Table 7
BMP180	0x04	$(0/1 \ll 7) \mid 0 \mathrm{x} 05$	Table 8
PR103J2	0x05	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9
TSL250RD	0x06	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9
MMA8452Q	0x07	$(0/1 \ll 7) \mid 0 \times 08$	Table 10
SPV1840LR5H-B	0x08	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 11
TSYS01	0x09	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 12
HMC5883L	0x0A	$(0/1 * 7) \mid 0 \times 06$	Table 13
HIH6130	0x0B	$(0/1 \ll 7) \mid 0 \times 04$	Table 6
APDS-9006-020	0x0C	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9
TSL260RD	0x0D	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9
TSL250RD	0x0E	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9
MLX75305	0x0F	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9
ML8511	0x10	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9
D6T	0x11	$(0/1 \ll 7) \mid 0\mathrm{x}22$	Table 14
MLX90614	0x12	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 5
TMP421	0x13	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 5
SPV1840LR5H-B	0x14	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 11
Total reducing gases	0x15	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15
Ethanol	0x16	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15
Nitrogen dioxide	0x17	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15
Ozone	0x18	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15
Hydrogen sulphide	0x19	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15
Total oxidizing gases	0x1A	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15
Carbon monoxide	0x1B	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15
Sulfur dioxide	0x1C	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15
Sensition	0x1D	$(0/1 \ll 7) \mid 0 \mathrm{x} 04$	Table 6
Bosh	0x1E	$(0/1 \ll 7) \mid 0 \mathrm{x} 03$	Table 16
Intel MAC address	0x1F	$(1 \ \ \ \ 7) \ \ 0x06$	Table 4
Sensor status (health)	0xFE	$(1 \ \ \ \ 7) \ \ 0x04$	Table 17

Table 3: Data sub-packet structure (each row is a "chunk")

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5		
Address 5	Address 4	Address 3	Address 2	Address 1	Address 0		
Format 3							

Table 4: MAC address

Byte 0	Byte 1				
Temperature					
Form	nat 1				

Table 5: Sensor data

Byte 0	Byte 1	Byte 2	Byte 3
Tempe	erature	Hum	idity
Format 1		Forn	nat 1

Table 6: Sensor data

Byte 0	Byte 1			
Dust				
Forn	nat 2			

Table 7: Sensor data

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
Tempe	erature	Atm	ospheric pre	ssure
Form	nat 1		Format 6	

Table 8: Sensor data

Byte 0	Byte 1				
Light					
Forn	nat 2				

Table 9: Sensor data

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Accelera	ation X	Acceler	ation Y	Acceler	ation Z	RN	MS
Form	Format 1		Format 1		Format 1		nat 1

Table 10: Sensor data

Table 11: Sensor data

Byte 0	Byte 1			
Temperature				
Form	nat 2			

Table 12: Sensor data

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Magne	etic X	Magn	Magnetic Y Mag		etic Z
Form	Format 4		Format 4		nat 4

Table 13: Sensor data

Byte 0	Byte 1	•••	Byte 32	Byte 33
Temperature		Temperature	Temperature	
Format 1		Format 1	Format 1	

Table 14: Sensor data

Byte 0	Byte 1
Gas conce	entration
Form	at 2

Table 15: Sensor data

Byte 0	Byte 1	Byte 2		
Atmospheric pressure				
Format 6				

Table 16: Sensor data

Byte 0 Byte 1		Byte 2	Byte 3	
Health status (1 bit per "chunk")				
Format 7				

Table 17: Sensor status (health)

3 Sensor Data Units: Raw and Processed

Field	ID	Validity Length	Data	Units
Main MAC address	0x00	(1 « 7) 0x06	Table 4	MAC Address: Raw 6 Bytes
TMP112	0x01	$(0/1 \ll 7) \mid 0 \times 02$	Table 5	Temperature: °C
HTU21D	0x02	$(0/1 \ll 7) \mid 0 \times 04$	Table 6	Temperature: °C
GP2Y1010AU0F	0x03	(0/1 iny 7) 0x02	Table 7	Dust: Raw
BMP180	0x04	$(0/1 \ll 7) \mid 0 \mathrm{x} 05$	Table 8	Temperature: °C, Pressure: hPa
PR103J2	0x05	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9	UNITSHERE
TSL250RD	0x06	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9	UNITSHERE
MMA8452Q	0x07	$(0/1 \text{ ext{ iny }} 7) 0\text{x}08$	Table 10	UNITSHERE
SPV1840LR5H-B	0x08	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 11	UNITSHERE
TSYS01	0x09	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 12	UNITSHERE
HMC5883L	0x0A	$(0/1 \ll 7) \mid 0 \mathrm{x} 06$	Table 13	UNITSHERE
HIH6130	0x0B	$(0/1 \ll 7) \mid 0 \times 04$	Table 6	UNITSHERE
APDS-9006-020	0x0C	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 9	UNITSHERE
TSL260RD	0x0D	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9	UNITSHERE
TSL250RD	0x0E	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9	UNITSHERE
MLX75305	0x0F	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9	UNITSHERE
ML8511	0x10	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 9	UNITSHERE
D6T	0x11	$(0/1 \ll 7) \mid 0\mathrm{x}22$	Table 14	UNITSHERE
MLX90614	0x12	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 5	UNITSHERE
TMP421	0x13	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 5	UNITSHERE
SPV1840LR5H-B	0x14	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 11	UNITSHERE
Total reducing gases	0x15	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15	UNITSHERE
Ethanol	0x16	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15	UNITSHERE
Nitrogen dioxide	0x17	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15	UNITSHERE
Ozone	0x18	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15	UNITSHERE
Hydrogen sulphide	0x19	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15	UNITSHERE
Total oxidizing gases	0x1A	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15	UNITSHERE
Carbon monoxide	0x1B	$(0/1 \ll 7) \mid 0 \mathrm{x} 0 2$	Table 15	UNITSHERE
Sulfur dioxide	0x1C	$(0/1 \ll 7) \mid 0\mathrm{x}02$	Table 15	UNITSHERE
Sensition	0x1D	$(0/1 \ll 7) \mid 0 \mathrm{x} 04$	Table 6	UNITSHERE
Bosh	0x1E	$(0/1 \ll 7) \mid 0 \mathrm{x} 03$	Table 16	UNITSHERE
Intel MAC address	0x1F	$(1 \ll 7) \mid 0 \times 06$	Table 4	UNITSHERE
Sensor status (health)	0xFE	$(1 \ \text{``}\ 7) \ \ 0x04$	Table 17	UNITSHERE

Table 18: Data sub-packet structure (each row is a "chunk")

4 Example

In the example below, the spaces and brackets are used to clearly show the different fields within the packet. The actual packet, or any component of it, does not have spaces or brackets. This example is in hex format.

4.1 Whole Packet

To avoid any confusion, this is what the packet actually looks like:

 $AA0C2086654321182F14924C82CCE832558C45B383D198545822D562756B7888A3928CE2A18DCF88230D1926D61A6CCC\\28499829CB4B49EAAC2C269C5D8230C4E82AE5F824D3910277E811A285FED81F35DB62C35A042E126EDE1B4259961D\\08881CBBAAAC0CD55EABC4B26122B5521382DD5F14823DCE15827261162E78178217E18262719825E471A8258291B25B\\A21C8262461D49C2CC71A1E3B312641F86CBA987FE84FFDFFFFF2955$

Field	Value	Explanation	
Start	0xAA	Start-of-packet indicator	
Protocol version	0x00	Version of Waggle sensor protocol being used	
Length of data	0xC2	Byte length of data sub-packet	
Data		Data sub-packet	
CRC	0x29	CRC-8 of data sub-packet	
End	0x55	End-of-packet indicator	

Table 19: Example of whole packet

4.2 Data Sub-Packet

Value	Explanation
0x00	ID
0x86	0b10000000 (valid) OR'd with $0x06$ (length)
0x06	Address byte 0
0x05	Address byte 1
0x04	Address byte 2
0x03	Address byte 3
0x02	Address byte 4
0x01	Address byte 5

Table 20: Example of MAC address

Value	Explanation
0x01	ID
0x82	0b10000000 (valid) OR'd with $0x02$ (length)
0xF1	$0\mathrm{b}10000000$ (data converted) OR'd with 0x71 (integer)
0x49	$0b\theta00000000$ (positive) OR'd with $0x49$ (fractional)
113.73	Temperature in decimal

Table 21: Example of TMP112 $\,$

Value	Explanation
0x1E	ID
0x03	$0b\theta0000000$ (not valid) OR'd with $0x03$ (length)
0xB3	0b10000000 (data converted) OR'd with $0b00000000$ (positive) OR'd with $0b00110011$ (6 MSb of data)
0x12	Middle byte of data
0x64	LSB of data
5118100	Pressure in decimal (pascals)

Table 22: Example of Bosh

Value	Explanation
0x0FE	ID
0x84	0b 1 0000000 (valid) OR'd with 0x04 (length)
0xFF	Sensors (including MAC addresses) 31-24 are healthy (operating correctly)
0xDF	Sensor 21 (total reducing gases) not healthy. Sensors 23, 22, 20-16 are healthy
0xFF	Sensors 15-8 are healthy
0xFF	Sensors 7-0 are healthy

Table 23: Example of sensor status (health)