Conic Sections

22b1053

May 2023

Contents

1	Introduction	2		
2	Types of Conic Section	2		
3	Properties			
	3.1 Equations	3		
	3.2 Parameters	3		

1 Introduction

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions.

2 Types of Conic Section

This section explains two types of conic sections.

• Ellipse An ellipse is a plane curve surrounding two focal points, such that

Figure 1: Ellipse

for all points on the curve, the sum of the two distances to the focal points is a constant $\,$

• Parabola A parabola is a plane curve which is mirror-symmetrical and

Figure 2: Ellipse

is approximately U-shaped.

3 Properties

This section contains the equations for various conic sections and various parameter values.

3.1 Equations

 \bullet **Ellipse** The equation for ellipse in figure 1 is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\tag{1}$$

 \bullet Parabola The equation for parabola in figure 2 is

$$y^2 = 4ax (2)$$

3.2 Parameters

Conic section type	Eccentricity	Semilatus rectum
Ellipse	$\sqrt{1-\frac{b^2}{a^2}}$	$\frac{b^2}{a}$
Parabola	1	2a