Final Project

Caravan Insurance Policy Purchase Prediction

Anutida Sangkla

Predictive Risk Modeling, Spring 2022

Abstract

Customers who are interested in purchasing a caravan insurance policy are predicted using different techniques such as logistic regression, forward stepwise selection, backward stepwise selection, and others. Data were trained and validated to select best model to predict an interest in buying a caravan. The lasso regression model was the selected model we used to predict who would be interested in buying a caravan insurance policy and explain why people would buy this insurance policy.

1 Introduction

Caravans are commonly used as temporary accommodation while traveling. However, because of advantages such as easily towable units, low fuel consumption, lower maintenance and insurance costs, and depreciation value, some people use them as their primary residence. In 2021, the caravan market was valued at \$48.49 billion, and it is expected to increase over the forecast period between 2022 and 2027 due to the COVID-19 outbreak causing the demand for recreational vehicles increased [3]. As a result, this may potentially increase the demand for a caravan insurance policy.

Today, the use of predictive modeling has permanently changed the way insurance policies are priced. Innovative tools allow insurers to use datasets to design sophisticated models that accurately determine the amount charged to each customer [1]. However, predictive modeling could also help marketing by researching customer buying behaviors. We believe that predictive modeling can help carriers to identify customers who require a caravan insurance policy. More advanced data insights will help insurers identify customers who is intent to buy this insurance policy [1]. Therefore, this project aims to discover the features influencing a caravan insurance policy buying and predict a customer who is potentially interested in buying this insurance policy. The predictive modeling was applied to select best model with the highest prediction accuracy.

In this project, we used three datasets provided by The Insurance Company (TIC) Benchmark which contains 85 variables and 1 target variable [4]. The dataset comprises all kinds of customer information of an insurance company, including product usage data and socio-demographic data derived from zip area codes [4]. These datasets allows us to create a process used statistical technique to predict future behaviors or outcomes by analyzing patterns in given sets of input data. In the past, these datasets were used to predict who would be interested in buying a specific insurance product and to explain why people would buy applying the bias-variance analysis [5]. For our project, the algorithms for a classification problem, such as logistic regression model, were used in order to achieve the goals of this project.

2 Data Exploration

There are three datasets using to predict a caravan insurance policy:

- 1. TICDATA2000.txt: Dataset to train and validate prediction models containing 5,822 customer records, and each record contain 86 attributes.
- 2. TICEVAL2000.txt: Dataset for predictions containing 4,000 customers, and each record contains 85 attibutes, target variable is missing.
- 3. TICTGTS2000.txt: Targets for the model evaluation

2.1 Importing data

All three datasets were imported to analyze and predict an interest in buying a caravan insurance policy of a customer as follow:

```
ticdata2000 = read.delim("ticdata2000.txt",header=FALSE)
ticeval2000 = read.delim("ticeval2000.txt",header=FALSE)
tictgts2000 = read.delim("tictgts2000.txt",header=FALSE)
```

2.2 Data description

The table 1 shows the description for 86 attributes.

	Name	Description
1	MOSTYPE	Customer subtype
2	MAANTHUI	Number of houses 1 - 10
3	MGEMOMV	Avg size household 1 - 6
4	MGEMLEEF	Average age
5	MOSHOOFD	Customer main type
6	MGODRK	Roman catholic
7	MGODPR	Protestant
8	MGODOV	Other religion
9	MGODGE	No religion
10	MRELGE	Married
11	MRELSA	Living together
12	MRELOV	Other relation
13	MFALLEEN	Singles
14	MFGEKIND	Household without children
15	MFWEKIND	Household with children
16	MOPLHOOG	High level education
17	MOPLMIDD	Medium level education
18	MOPLLAAG	Lower level education
19	MBERHOOG	High status
20	MBERZELF	Entrepreneur
21	MBERBOER	Farmer
22	MBERMIDD	Middle management
23	MBERARBG	Skilled labourers
24	MBERARBO	Unskilled labourers
25	MSKA	Social class A

26	MSKB1	Social class B1
27	MSKB2	Social class B2
28	MSKC	Social class C
29	MSKD	Social class D
30	MHHUUR	Rented house
31	MHKOOP	Home owners
32	MAUT1	1 car
33	MAUT2	2 cars
34	MAUT0	No car
35	MZFONDS	National Health Service
36	MZPART	Private health insurance
37	MINKM30	Income > 30.000
38	MINK3045	Income 30-45.000
39	MINK4575	Income 45-75.000
40	MINK7512	Income 75-122.000
41	MINK123M	Income <123.000
42	MINKGEM	Average income
43	MKOOPKLA	Purchasing power class
44	PWAPART	Contribution private third party insurance
45	PWABEDR	Contribution third party insurance (firms)
46	PWALAND	Contribution third party insurance (agriculture)
47	PPERSAUT	Contribution car policies
48	PBESAUT	Contribution delivery van policies
49	PMOTSCO	Contribution motorcycle/scooter policies
50	PVRAAUT	Contribution lorry policies
51	PAANHANG	Contribution trailer policies
52	PTRACTOR	Contribution tractor policies
53	PWERKT	Contribution agricultural machines policies
54	PBROM	Contribution moped policies
55	PLEVEN	Contribution life insurances
56	PPERSONG	Contribution private accident insurance policies
57	PGEZONG	Contribution family accidents insurance policies
58	PWAOREG	Contribution disability insurance policies
59	PBRAND	Contribution fire policies
60	PZEILPL	Contribution surfboard policies
61	PPLEZIER	Contribution boat policies
62	PFIETS	Contribution bicycle policies
63	PINBOED	Contribution property insurance policies
64	PBYSTAND	Contribution social security insurance policies
65	AWAPART	Number of private third party insurance 1 - 12
66	AWABEDR	Number of third party insurance (firms)
67	AWALAND	Number of third party insurance (agriculture)
68	APERSAUT	Number of car policies
69	ABESAUT	Number of delivery van policies
70	AMOTSCO	Number of motorcycle/scooter policies
71	AVRAAUT	Number of lorry policies
72	AAANHANG	Number of trailer policies
73	ATRACTOR	Number of tractor policies
10	11110110 1 OIU	realiser or eractor policies

74	AWERKT	Number of agricultural machines policies
75	ABROM	Number of moped policies
76	ALEVEN	Number of life insurances
77	APERSONG	Number of private accident insurance policies
78	AGEZONG	Number of family accidents insurance policies
79	AWAOREG	Number of disability insurance policies
80	ABRAND	Number of fire policies
81	AZEILPL	Number of surfboard policies
82	APLEZIER	Number of boat policies
83	AFIETS	Number of bicycle policies
84	AINBOED	Number of property insurance policies
85	ABYSTAND	Number of social security insurance policies
86	CARAVAN	Number of mobile home policies 0 - 1

Table 1: Data Description

Each column was changed the names from the numbers to names.

```
colnames(ticdata2000) = c('MOSTYPE','MAANTHUI','MGEMOMV','MGEMLEEF','
   MOSHOOFD', 'MGODRK', 'MGODPR', 'MGODOV', 'MGODGE', 'MRELGE', 'MRELSA', 'MRELOV
   ','MFALLEEN','MFGEKIND','MFWEKIND','MOPLHOOG','MOPLMIDD','MOPLLAAG','
   MBERHOOG', 'MBERZELF', 'MBERBOER', 'MBERMIDD', 'MBERARBG', 'MBERARBO', 'MSKA'
   ,'MSKB1','MSKB2','MSKC','MSKD','MHHUUR','MHKOOP','MAUT1','MAUT2','MAUT0
   ','MZFONDS','MZPART','MINKM30','MINK3045','MINK4575','MINK7512','
   MINK123M', 'MINKGEM', 'MKOOPKLA', 'PWAPART', 'PWABEDR', 'PWALAND', 'PPERSAUT'
   ,'PBESAUT','PMOTSCO','PVRAAUT','PAANHANG','PTRACTOR','PWERKT','PBROM','
   PLEVEN', 'PPERSONG', 'PGEZONG', 'PWAOREG', 'PBRAND', 'PZEILPL', 'PPLEZIER', '
   PFIETS', 'PINBOED', 'PBYSTAND', 'AWAPART', 'AWABEDR', 'AWALAND', 'APERSAUT',
   ABESAUT', 'AMOTSCO', 'AVRAAUT', 'AAANHANG', 'ATRACTOR', 'AWERKT', 'ABROM', '
   ALEVEN', 'APERSONG', 'AGEZONG', 'AWAOREG', 'ABRAND', 'AZEILPL', 'APLEZIER', '
   AFIETS', 'AINBOED', 'ABYSTAND', 'CARAVAN')
colnames(ticeval2000) = c('MOSTYPE','MAANTHUI','MGEMOMV','MGEMLEEF','
   MOSHOOFD','MGODRK','MGODPR','MGODOV','MGODGE','MRELGE','MRELSA','MRELOV
   ','MFALLEEN','MFGEKIND','MFWEKIND','MOPLHOOG','MOPLMIDD','MOPLLAAG','
   MBERHOOG','MBERZELF','MBERBOER','MBERMIDD','MBERARBG','MBERARBO','MSKA'
   ,'MSKB1','MSKB2','MSKC','MSKD','MHHUUR','MHKOOP','MAUT1','MAUT2','MAUT0
   ','MZFONDS','MZPART','MINKM30','MINK3045','MINK4575','MINK7512','
   MINK123M', 'MINKGEM', 'MKOOPKLA', 'PWAPART', 'PWABEDR', 'PWALAND', 'PPERSAUT'
   ,'PBESAUT','PMOTSCO','PVRAAUT','PAANHANG','PTRACTOR','PWERKT','PBROM','
   PLEVEN', 'PPERSONG', 'PGEZONG', 'PWAOREG', 'PBRAND', 'PZEILPL', 'PPLEZIER', '
   PFIETS', 'PINBOED', 'PBYSTAND', 'AWAPART', 'AWABEDR', 'AWALAND', 'APERSAUT', '
   ABESAUT', 'AMOTSCO', 'AVRAAUT', 'AAANHANG', 'ATRACTOR', 'AWERKT', 'ABROM', '
   ALEVEN', 'APERSONG', 'AGEZONG', 'AWAOREG', 'ABRAND', 'AZEILPL', 'APLEZIER', '
   AFIETS', 'AINBOED', 'ABYSTAND')
colnames(tictgts2000) = 'CARAVAN'
```

2.2.1 TICDATA2000

```
str(ticdata2000)
'data.frame': 5822 obs. of 86 variables:
```

```
$ MOSTYPE : int 33 37 37 9 40 23 39 33 33 11 ...
$ MAANTHUI: int
                 1 1 1 1 1 1 2 1 1 2
                 3 2 2 3 4 2 3 2 2 3
$ MGEMOMV : int
$ MGEMLEEF: int
                2 2 2 3 2 1 2 3 4 3 ...
$ MOSHOOFD: int
                 8 8 8 3 10 5 9 8 8 3 ...
$
                 0 1 0 2 1 0 2 0 0 3 ...
 MGODRK
         : int
$ MGODPR
                 5 4 4 3 4 5 2 7 1 5
          : int
$ MGODOV
          : int
                 1 1 2 2 1 0 0 0 3 0 ...
$
 MGODGE
          : int
                 3 4 4 4 4 5 5 2 6 2 ...
$ MRELGE
         : int
                7 6 3 5 7 0 7
                               7
                0 2 2 2 1 6 2 2 0 0
$ MRELSA
         : int
$ MRELOV
         : int
                 2 2 4 2 2 3 0 0
                                 3 2 ...
                 1 0 4 2 2 3 0 0
 MFALLEEN: int
                                 3 2
$
                 2 4 4 3 4 5 3 5 3 2
$ MFGEKIND: int
                 6 5 2 4 4 2 6 4 3 6 ...
$ MFWEKIND: int
$ MOPLHOOG: int
                1 0 0 3 5 0 0 0 0 0 ...
$
 MOPLMIDD: int
                 2 5 5 4 4 5 4 3 1 4
                7 4 4 2 0 4 5 6 8 5 ...
$ MOPLLAAG: int
 MBERHOOG: int
                1 0 0 4 0 2 0 2 1 2 ...
$
                0 0 0 0 5 0 0 0
$
 MBERZELF: int
                                 1 0
$
 MBERBOER: int
                 1 0 0 0 4 0 0
                               0
                                 0 0
                2 5 7 3 0 4 4 2 1 3 ...
$ MBERMIDD: int
$ MBERARBG: int
                5 0 0 1 0 2 1 5 8 3 ...
                2 4 2 2 0 2 5
                               2 1 3
$
 MBERARBO: int
                1 0 0 3 9 2 0 2
$ MSKA
         : int
                                 1 1
$ MSKB1
                1 2 5 2 0 2 1 1
         : int
$ MSKB2
          : int
                 2 3 0 1 0 2 4 2
                                 0 1 . . .
$ MSKC
                 6 5 4 4 0 4 5
                               5
                                 8 4 ...
          : int
                 1 0 0 0 0 2 0 2
$ MSKD
          : int
                                 1 2
                1 2 7 5 4 9 6 0 9 0
$ MHHUUR
         : int
$ MHKOOP
          : int
                8 7 2 4 5 0 3 9 0 9
                 8 7 7 9 6 5 8 4 5 6
$
 MAUT 1
          : int
                0 1 0 0 2 3 0 4
                                 2 1 ...
$ MAUT 2
          : int
$
 MAUTO
          : int
                1 2 2 0 1 3 1 2 3 2 ...
                 8 6 9 7 5 9 9 6
                                 7 6 ...
$ MZFONDS : int
$
 MZPART
          : int
                 1 3 0 2 4 0
                             0
                               3 2
$ MINKM30 : int
                0 2 4 1 0 5 4 2 7
$ MINK3045: int
                4 0 5 5 0 2 3 5 2 3 ...
$
 MINK4575: int
                5 5 0 3 9 3 3 3 1 3 ...
 MINK7512: int
                0 2 0 0 0 0 0
                               0
$
                0 0 0 0 0 0 0 0 0
$
 MINK123M: int
$
 MINKGEM : int
                4 5 3 4 6 3 3 3 2 4 ...
                 3 4 4 4 3 3 5 3 3 7
$
 MKOOPKLA: int
                 0 2 2 0 0 0 0 0
$
 PWAPART : int
                                 0 2
$ PWABEDR : int
                 0 0 0 0 0 0 0 0 0 0 . . .
$ PWALAND : int
                 0 0 0 0 0 0 0 0 0 0 . . .
$
 PPERSAUT: int
                 6 0 6 6 0 6 6 0 5 0
$ PBESAUT : int
                0 0 0 0 0 0 0 0 0
                0 0 0 0 0 0 0 0 0 0 ...
$ PMOTSCO : int
                 0 0 0 0 0 0 0 0
                                 0 0 ...
$ PVRAAUT : int
$ PAANHANG: int
                 0 0 0 0 0 0
                             0
                               0
                0 0 0 0 0 0 0 0 0 0 ...
$ PTRACTOR: int
$ PWERKT : int
                0 0 0 0 0 0 0 0 0
        : int 0 0 0 0 0 0 0 3 0 0
$ PBROM
```

```
$ PLEVEN : int 0 0 0 0 0 0 0 0 0 ...
$ PPERSONG: int
                0 0 0 0 0 0 0
                              0
                0 0 0 0 0 0 0 0 0
$ PGEZONG : int
$ PWAOREG : int
                0 0 0 0 0 0 0 0 0
$ PBRAND
         : int
                5 2 2 2 6 0 0 0 0 3 ...
$ PZEILPL : int
                0 0 0 0 0 0 0 0
                                0 0
                0 0 0 0 0 0 0 0 0 0 . . .
$ PPLEZIER: int
$ PFIETS
         : int
                0 0 0 0 0 0 0 0 0 0 ...
$ PINBOED : int
                0 0 0 0 0 0 0 0 0 0 ...
$ PBYSTAND: int
               0 0 0 0 0 0 0 0 0
               0 2 1 0 0 0 0 0 0 1 ...
$ AWAPART : int
$ AWABEDR : int 0 0 0 0 0 0 0 0 0 ...
$ AWALAND : int
                0 0 0 0 0 0 0 0 0 0 . . .
$ APERSAUT: int 1 0 1 1 0 1 1 0 1 0 ...
$ ABESAUT : int 0 0 0 0 0 0 0 0 0 ...
$ AMOTSCO : int 0 0 0 0 0 0 0 0 0 ...
$ AVRAAUT : int
                0 0 0 0 0 0 0 0 0
$ AAANHANG: int 0 0 0 0 0 0 0 0 0 ...
$ ATRACTOR: int 0 0 0 0 0 0 0 0 0 ...
                0 0 0 0 0 0 0 0 0 0 ...
$ AWERKT : int
$ ABROM
          : int
                0 0 0 0 0 0 0 1 0 0 ...
$ ALEVEN : int 0 0 0 0 0 0 0 0 0 ...
$ APERSONG: int
               0 0 0 0 0 0 0 0 0 0 ...
                0 0 0 0 0 0 0 0 0 0 . . .
$ AGEZONG : int
               0 0 0 0 0 0 0 0 0
$ AWAOREG : int
               1 1 1 1 1 0 0 0 0 1 ...
$ ABRAND : int
$ AZEILPL : int
               0 0 0 0 0 0 0 0 0 0 ...
$ APLEZIER: int
                0 0 0 0 0 0 0 0 0 0 . . .
                0 0 0 0 0 0 0 0 0 0 ...
$ AFIETS
         : int
                0 0 0 0 0 0 0 0 0 0 . . .
$ AINBOED : int
$ ABYSTAND: int 0 0 0 0 0 0 0 0 0 ...
$ CARAVAN : int 0 0 0 0 0 0 0 0 0 ...
```

2.2.2 TICEVAL2000

```
str(ticeval2000)
'data.frame': 4000 obs. of
                            85 variables:
$ MOSTYPE : int 33 6 39 9 31 30 35 6 4 10 ...
$ MAANTHUI: int
                 1 1 1 1 1 1 1 1 1 1 . . .
$ MGEMOMV : int 4 3 3 2 2 2 2 3 2 4 ...
                 2 2 3 3 4 4 4 3 4 2 ...
$ MGEMLEEF: int
$ MOSHOOFD: int 8 2 9 3 7 7 8 2 1 3 ...
$ MGODRK
          : int 0 0 1 2 0 1 2 3 0 0 ...
$ MGODPR
                 6 5 4 3 2 4 5 4 7 7 ...
          : int
$ MGODOV
                 0 0 2 2 0 2 1 2 2 0 ...
          : int
$ MGODGE
                 3 4 3 4 7 3 2 2 0 2 ...
          : int
$ MRELGE
          : int
                 5 5 5 5 9 5 8 9 9 9 ...
$ MRELSA
           : int
                 0 2 2 4 0 0 0 0 0 0 ...
                 4 2 3 1 0 4 1 0 0 0 ...
$ MRELOV : int
                 1 1 2 2 0 4 2 0 1 0 ...
$ MFALLEEN: int
$ MFGEKIND: int
                 1 4 3 4 6 3 5 5 7 2 ...
$ MFWEKIND: int
                 8 5 6 4 3 2 3 4 2 7
$ MOPLHOOG: int
                 2 5 2 2 0 1 1 4 3 2
$ MOPLMIDD: int 2 4 4 4 0 2 5 4 4 3
```

```
$ MOPLLAAG: int 6 0 4 4 9 6 4 2 2 5 ...
$ MBERHOOG: int
                 0 5 2 2 0
                           1
                             2
                0 0 1 1 0 0 0
$ MBERZELF: int
                               3
 MBERBOER: int
                1 0 1 1 0 1 0 0
                 2 4 3 5
$
 MBERMIDD: int
                         2 3
                             3 2
                                 4 5
$
 MBERARBG: int
                 6 0 2 1
                         4 3
                             3 0
                                 3 2
$ MBERARBO: int
                1 0 2 2 4 3 3 2 1 3 ...
$ MSKA
         : int
                0 4 1 3 0 1 1 6 2 0 ...
$
 MSKB1
          : int
                2 3 1
                       1 0
                           1 1
                               1
$ MSKB2
         : int
                1 0 5 3 0 2 5 0 1 0
                5 2 2 2 7 5 4 2 4 5
$ MSKC
          : int
$ MSKD
          : int
                 3 1 1 2 2 1 0 0
                                 1 0
$ MHHUUR
                 1 3 1 3 9 5 8
         : int
                               0
$ MHKOOP
         : int
                 8 6 8 6 0 4 1 9 2 9
$ MAUT1
          : int
                8 9 6 7 7 5 8 5 7 6 ...
$ MAUT2
                1 0 2 2 2 1 1 4 0 1 ...
          : int
$ MAUTO
                 1 0 2 1 0 4 1
                               0
          : int
$ MZFONDS : int
                8 7 6 7 9 9 4 3 7 6
 MZPART
                1 2 3 2 0 0 5 6
$
          : int
                3 1 2 2 5 2 2 1
$ MINKM30 : int
$
 MINK3045: int
                 3 1 4 5 4 5
                             5
                               3 3 7
                3 5 3 3 0 2 2 4
$ MINK4575: int
                0 4 1 1 0 1 0 2 1 0
$ MINK7512: int
                0 0 0 0 0 0 0 2 0 0
$
 MINK123M: int
                3 6 3 4 3 4 3 6
$ MINKGEM : int
 MKOOPKLA: int
                3 8 5 4 1 2 5 8 6 8 ...
$
$
 PWAPART : int
                1 2 2 2 2 0 2 2 2 2 ...
$
 PWABEDR : int
                 0 0 0 0 0 0 0
                               0
                0 0 0 0 0 0 0
$
 PWALAND : int
                                 0 0
                0 6 6 5 0 0 6 0 0 0
$ PPERSAUT: int
$ PBESAUT : int
                0 0 0 0 0 0 0 0 0
$
 PMOTSCO : int
                0 4 0 0 0 0 0
                               0
$ PVRAAUT : int
                0 0 0 0 0 0 0
 PAANHANG: int
                0 0 0 0 0 0 0
                0 0 0 0 0 0 0
$
 PTRACTOR: int
                               0
                                 0 0
$
 PWERKT
         : int
                 0 0 0 0 0 0
                             0
                               0
$ PBROM
          : int
                0 0 0 0 0 0 0 0
                                 0 0
$
 PLEVEN
         : int
                0 3 4 0 0 0 0 0
$
 PPERSONG: int
                0 0 0 0 0 0
                               0
 PGEZONG : int
                0 0 0 0 0 0 0
                               0
$
 PWAOREG : int
                0 0 0 0 0 0 0 0
$
$
 PBRAND
          : int
                4 4 4 3 1 4 2 0
                                 2 4 ...
                 0 0 0 0 0 0 0
$
 PZEILPL : int
                               0
                0 0 0 0 0 0 0
$
 PPLEZIER: int
                               0
                                 0 0
$ PFIETS
                0 0 0 0 0 0 0 0 0
         : int
$ PINBOED : int
                0 0 0 0 0 0 0 0 0 0 . . .
$
 PBYSTAND: int
                 0 0 0 0 0 0 0 0 0 3
$ AWAPART : int
                1 1 1 1 1 0 1 1 1 1
                0 0 0 0 0 0 0 0 0
$ AWABEDR : int
                 0 0 0 0 0 0 0 0
                                 0 0 ...
$ AWALAND : int
$ APERSAUT: int
                 0 1 1 1
                         0 0
                             1
                               0
                0 0 0 0 0 0 0 0 0 0 ...
$ ABESAUT : int
$ AMOTSCO : int
                0 1 0 0 0 0 0 0 0 0
$ AVRAAUT : int 0 0 0 0 0 0 0 0 0
```

```
$ AAANHANG: int 0 0 0 0 0 0 0 0 0 ...
$ ATRACTOR: int
                0 0 0 0 0 0 0 0 0 0 . . .
$ AWERKT : int 0 0 0 0 0 0 0 0 0 ...
$ ABROM
        : int 0 0 0 0 0 0 0 0 0 ...
$ ALEVEN : int 0 2 1 0 0 0 0 0 0 ...
$ APERSONG: int 0 0 0 0 0 0 0 0 0 ...
$ AGEZONG : int 0 0 0 0 0 0 0 0 0 ...
$ AWAOREG : int 0 0 0 0 0 0 0 0 0 ...
               1 1 1 1 1 2 1 0 1 1 ...
$ ABRAND : int
$ AZEILPL : int 0 0 0 0 0 0 0 0 0 ...
$ APLEZIER: int 0 0 0 0 0 0 0 0 0 ...
$ AFIETS : int 0 0 0 0 0 0 0 0 0 ...
$ AINBOED : int
               0 0 0 0 0 0 0 0 0 0 . . .
$ ABYSTAND: int 0 0 0 0 0 0 0 0 1 ...
```

2.2.3 TICTGTS2000

```
str(tictgts2000)

'data.frame': 4000 obs. of 1 variable:
$ CARAVAN: int 0 1 0 0 0 0 0 0 0 ...
```

2.3 Target exploration

Number of mobile home policies is the target variable for our prediction. We explored this variable to learn more about our target as below:

```
caravan = table(ticdata2000$CARAVAN)
caravan
0 1
5474 348
```

The data contains 5,474 customer records purchased 0 caravan policy and 348 customer records purchased 1 caravan policy. Therefore, 99% of customers did not purchase a mobile home policy.

2.3.1 Correlation between target and predictors

We explored the relationships between the target variable and independent variables to determine the feature highly correlated to a caravan insurance policy.

```
#### Top 20 highly correlated between features and target variable:
cor_target = cor(ticdata2000[-86], ticdata2000$CARAVAN, method = "pearson"
    ) %>%
    as_tibble(rownames = "Variable") %>%
    mutate(abs_cor = abs(V1)) %>%
    arrange(-abs_cor)
topcor_target = cor_target[1:20,]
topcor_target$Variable = factor(topcor_target$Variable,
levels = topcor_target$Variable[order(topcor_target$abs_cor, decreasing = FALSE)])
colnames(topcor_target) = c("Variable", "Correlation", "Absolute_Correlation")
```

```
# Plotting
p = ggplot(topcor_target, aes(x=Variable, y=Absolute_Correlation, fill =
    Absolute_Correlation))
p = p + geom_bar(stat = 'identity') + coord_flip()
p = p + scale_fill_gradient2(low = "green", mid = "yellow", high = "
    darkred", midpoint = max(topcor_target$Absolute_Correlation)/2)
p = p + labs(y = "Correlation", fill = "Correlation")
```


Figure 1: Correlation Between Target and Predictors.

The figure 1 indicates that **PPERSAUT**, Contribution car policies, is the most correlated to CARAVAN.

2.3.2 The most correlated variable

We explored the contribution car policies variable since this variable is the highest correlated to our target variable.

```
ggplot(ticdata2000, aes(x = reorder(PPERSAUT, PPERSAUT, function(x) -
    length(x)), fill = as.factor(CARAVAN))) +
geom_bar() +
scale_fill_brewer(palette = "Set2")+
labs(x = "Contribution Car Policies", fill = "# of CARAVAN")
```

The figure 2 shows zero contribution car policies is the most frequency. However, 6 contributions car policies are also high. With 6 contributions car policies, customers were most likely to purchase a caravan insurance policy.

Figure 2: PPERSAUT: Contribution Car Policies

2.4 Feature exploration

We analyzed the relationships between independent variables which include 85 features containing in TICDATA2000 set to determine the high correlation variables.

```
corr_sig <- function(data = ticdata2000, sig = 0.9){</pre>
 df_cor <- data %>% mutate_if(is.character, as.factor)
 df_cor <- df_cor %>% mutate_if(is.factor, as.numeric)
  corr <- cor(df_cor)</pre>
  corr[lower.tri(corr,diag=TRUE)] <- NA</pre>
  #drop perfect correlations
  corr[corr == 1] <- NA
  #turn into a 3-column table
  corr <- as.data.frame(as.table(corr))</pre>
  #remove the NA values from above
  corr <- na.omit(corr)</pre>
  #select significant values
  corr <- subset(corr, abs(Freq) > sig)
  #sort by highest correlation
  corr <- corr[order(-abs(corr$Freq)),]</pre>
  return(corr)
}
corr.df = as.data.frame(corr_sig())
rownames(corr.df) = NULL
# Create table for report
tab2 = xtable(corr.df, , digits = 4, caption = "Correlation Between
   Predictors", label = "tab:table2", table.placement = "h!" )
print(tab2, tabular.environment = "longtable")
```

	Var1	Var2	Freq
1	MHHUUR	MHKOOP	-0.9996
2	MZFONDS	MZPART	-0.9992
3	MOSTYPE	MOSHOOFD	0.9927

4	PWALAND	AWALAND	0.9876
5	PWAPART	AWAPART	0.9814
6	PGEZONG	AGEZONG	0.9800
7	PBROM	ABROM	0.9697
8	PBYSTAND	ABYSTAND	0.9662
9	PAANHANG	AAANHANG	0.9661
10	PVRAAUT	AVRAAUT	0.9487
11	PWAOREG	AWAOREG	0.9484
12	PFIETS	AFIETS	0.9359
13	PTRACTOR	ATRACTOR	0.9298
14	PPERSAUT	APERSAUT	0.9162
15	PWERKT	AWERKT	0.9097
16	PMOTSCO	AMOTSCO	0.9049
17	PPLEZIER	APLEZIER	0.9044
18	PBESAUT	ABESAUT	0.9030

Table 2: Correlation Between Predictors

The table 2 shows paired variables having a correlation greater than 0.90. Especially, rented house (MHHUUR) variable and home owners (MHKOOP) have the highest correlation, which is equal to -0.9996. However, it is clear that rented house and home owners have a negative relationship.

2.5 Customer exploration

Customers related data are analyzed to provide insights related to customers information.

2.5.1 Customer subtype

```
### Customer Subtype and their interests in buying a caravan insurance
   policy:
mostype = ticdata2000
mostype$MOSTYPE = as.factor(mostype$MOSTYPE)
ggplot(mostype, aes(x = reorder(MOSTYPE, MOSTYPE, function(x) - length(x))
   , fill = as.factor(CARAVAN))) +
   geom_bar() +
   labs(x = "Customer Subtype", fill = "# of CARAVAN")
```

The figure 3 shows most customers were lower class large families, type 33. However, middle class families, type 8, were more likely to purchase a caravan insurance policy.

2.5.2 Customer main type

Customer main type and their interests in buying a caravan insurance policy:

```
moshoofd = ticdata2000
moshoofd$MOSHOOFD = as.factor(moshoofd$MOSHOOFD)
ggplot(moshoofd, aes(x = reorder(MOSHOOFD, MOSHOOFD, function(x) - length(
    x)), fill = as.factor(CARAVAN))) +
    geom_bar() +
    scale_fill_brewer(palette = "Dark2")+
    labs(x = "Customer Main Type", fill = "# of CARAVAN")
```


Figure 3: Customer Subtype and Customers Purchased a Caravan Insurance Policy

Figure 4: Customer Main Type and Customers Purchased a Caravan Insurance Policy

The figure 4 shows most customers were family with grown ups, main type 8, and the most caravan policies were bought by this main type.

2.5.3 Customer age group

labs(x = "Average Age") + theme(legend.position="none")

Figure 5: Age Group and Customers Purchased a Caravan Insurance Policy

Average Age

The figure 5 shows a caravan insurance policy were interested in buying for customers age group between 40 and 50 years.

3 Model selection

3.1 Splitting data

TICDATA2000 was divided into two sets with the train-test ratio of 70%. This means that we used 70% of the observations for training and the rest for validation.

The example of training data

The table 3 shows the first 5 customer records and 5 features in the training set used to train models to select the best model for predicting an interest in buying a caravan insurance policy of a customer.

	MOSTYPE	MAANTHUI	MGEMOMV	MGEMLEEF	MOSHOOFD
1	33	1	3	2	8
3	37	1	2	2	8
5	40	1	4	2	10
7	39	2	3	2	9
8	33	1	2	3	8
9	33	1	2	4	8

Table 3: Training data

The example of validation data

```
xtable(head(validation[,1:5]), digits = 0, caption = " Validation data",
    label = "tab:table4", table.placement = "h!")
```

	MOSTYPE	MAANTHUI	MGEMOMV	MGEMLEEF	MOSHOOFD
2	37	1	2	2	8
4	9	1	3	3	3
6	23	1	2	1	5
10	11	2	3	3	3
18	22	2	3	3	5
26	33	1	3	3	8

Table 4: Validation data

The table 4 shows the first 5 customer records and 5 features in the training set used to validate models to select the best model for predicting an interest in buying a caravan insurance policy.

3.2 Model training and validation

The training dataset was trained with different techniques, and the validation dataset was used to validate model to obtain model accuracy. We compared each model with predictive accuracy and chose the model having the highest accuracy as follows:

3.2.1 Logistic regression model

Model fitting

```
## Model fitting:
glm.fit = glm(CARAVAN ~ ., data = training, family = binomial)
sum = summary(glm.fit)

# Create table for the report
tab4 = xtable(sum, digits = 4, caption = "Logistic Regression Model",
    label = "tab:table4", table.placement = "h!")
print(tab4, tabular.environment = "longtable")
```

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	252.7201	13187.0282	0.0192	0.9847
MOSTYPE	0.0665	0.0558	1.1917	0.2334

MAANTHUI	-0.1496	0.2230	-0.6709	0.5023	
MGEMOMV	-0.0520	0.1695	-0.3070	0.7588	
MGEMLEEF	0.1122	0.1217	0.9219	0.3566	
MOSHOOFD	-0.2885	0.2515	-1.1472	0.2513	
MGODRK	-0.1306	0.1292	-1.0108	0.3121	
MGODPR	-0.0657	0.1408	-0.4670	0.6405	
MGODOV	-0.0348	0.1258	-0.2765	0.7822	
MGODGE	-0.1184	0.1322	-0.8953	0.3706	
MRELGE	0.2783	0.1861	1.4957	0.1347	
MRELSA	0.1650	0.1756	0.9397	0.3474	
MRELOV	0.1631	0.1857	0.8783	0.3798	
MFALLEEN	-0.1305	0.1598	-0.8168	0.4141	
MFGEKIND	-0.1780	0.1611	-1.1050	0.2692	
MFWEKIND	-0.1312	0.1716	-0.7644	0.4446	
${\bf MOPLHOOG}$	-0.1119	0.1606	-0.6970	0.4858	
MOPLMIDD	-0.1689	0.1680	-1.0053	0.3148	
MOPLLAAG	-0.2514	0.1684	-1.4929	0.1355	
MBERHOOG	0.1724	0.1140	1.5126	0.1304	
MBERZELF	0.0725	0.1223	0.5924	0.5536	
MBERBOER	-0.1188	0.1368	-0.8683	0.3852	
MBERMIDD	0.1652	0.1120	1.4746	0.1403	
MBERARBG	0.0648	0.1108	0.5853	0.5583	
MBERARBO	0.1481	0.1119	1.3243	0.1854	
MSKA	0.0050	0.1243	0.0405	0.9677	
MSKB1	-0.0036	0.1221	-0.0293	0.9766	
MSKB2	0.0401	0.1108	0.3620	0.7174	
MSKC	0.0622	0.1209	0.5141	0.6072	
MSKD	-0.0696	0.1178	-0.5909	0.5546	
MHHUUR	-14.6780	970.7529	-0.0151	0.9879	
MHKOOP	-14.6452	970.7529	-0.0151	0.9880	
MAUT1	0.2700	0.1855	1.4555	0.1455	
MAUT2	0.1667	0.1676	0.9947	0.3199	
MAUT0	0.1498	0.1746	0.8575	0.3912	
MZFONDS	-14.2061	1097.5164	-0.0129	0.9897	
MZPART	-14.2590	1097.5164	-0.0130	0.9896	
MINKM30	0.0907	0.1191	0.7613	0.4465	
MINK3045	0.0442	0.1144	0.3863	0.6993	
MINK4575	0.0163	0.1155	0.1410	0.8878	
MINK7512	0.0913	0.1215	0.7516	0.4523	
MINK123M	-0.1420	0.1695	-0.8375	0.4023	
MINKGEM	0.0936	0.1125	0.8323	0.4052	
MKOOPKLA	0.0843	0.0561	1.5025	0.1330	
PWAPART	0.5225	0.4525	1.1546	0.2483	
PWABEDR	-0.5155	0.8444	-0.6105	0.5416	
PWALAND	-1.4032	1.5576	-0.9009	0.3676	sle sle sle
PPERSAUT	0.1984	0.0515	3.8505	0.0001	***
PBESAUT	11.1491	409.8225	0.0272	0.9783	
PMOTSCO	-0.2047	0.1388	-1.4746	0.1403	

PVRAAUT	-2.7313	2438.9492	-0.0011	0.9991	
PAANHANG	0.2379	1.4096	0.1688	0.8659	
PTRACTOR	1.1172	0.7898	1.4144	0.1572	
PWERKT	-6.1844	4591.9914	-0.0013	0.9989	
PBROM	-0.0479	0.7092	-0.0675	0.9462	
PLEVEN	-0.2744	0.1428	-1.9218	0.0546	
PPERSONG	-0.4464	2.3459	-0.1903	0.8491	
PGEZONG	0.9177	1.1247	0.8160	0.4145	
PWAOREG	0.8809	0.5637	1.5626	0.1182	
PBRAND	0.2706	0.0939	2.8823	0.0039	**
PZEILPL	-5.1678	2174.2129	-0.0024	0.9981	
PPLEZIER	-0.4551	0.4677	-0.9731	0.3305	
PFIETS	-0.1113	0.9248	-0.1203	0.9042	
PINBOED	-0.2620	0.8574	-0.3056	0.7599	
PBYSTAND	-0.6676	0.4377	-1.5251	0.1272	
AWAPART	-0.9239	0.9067	-1.0190	0.3082	
AWABEDR	0.6951	2.4345	0.2855	0.7753	
AWALAND	2.7427	4.7940	0.5721	0.5672	
APERSAUT	0.1834	0.2183	0.8399	0.4010	
ABESAUT	-67.0725	2458.9318	-0.0273	0.9782	
AMOTSCO	0.3531	0.3801	0.9288	0.3530	
AVRAAUT	-1.1088	10215.0365	-0.0001	0.9999	
AAANHANG	0.0001	2.4055	0.0000	1.0000	
ATRACTOR	-4.2004	3.1144	-1.3487	0.1774	
AWERKT	0.6237	9171.8688	0.0001	0.9999	
ABROM	-0.3009	2.1443	-0.1403	0.8884	
ALEVEN	0.5535	0.2810	1.9699	0.0489	*
APERSONG	0.8135	4.8316	0.1684	0.8663	
AGEZONG	-1.8510	2.9160	-0.6348	0.5256	
AWAOREG	-2.8146	3.0516	-0.9223	0.3563	
ABRAND	-0.3879	0.3379	-1.1479	0.2510	
AZEILPL	NA	NA	NA	NA	
APLEZIER	2.9115	1.3090	2.2242	0.0261	*
AFIETS	0.6717	0.5991	1.1213	0.2622	
AINBOED	0.0695	1.9121	0.0363	0.9710	
ABYSTAND	2.7145	1.4673	1.8501	0.0643	

Table 5: Logistic Regression Model

The table 5 shows the results from fitting logistic regression model. From the result, we can observe that AZEILPL, number of surfboard policies, is removed from our logistic regression model as it produces null value. With a significance level of 0.05, only four variables are statistically significance as follows:

- 1. **PPERSAUT**: Contribution car policies
- 2. **PBRAND**: Contribution fire policies

- 3. ALEVEN: Number of life insurance
- 4. APLEZIER: Number of boat policies

Model Evaluation

```
glm.probs = predict(glm.fit, newdata = validation, type = "response")
glm.pred = rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] = 1
y.val = validation $ CARAVAN
# Get confusion matrix
ConfusionMatrix = confusionMatrix(table(glm.pred, y.val))
logistic.acc = as.numeric(ConfusionMatrix$overall[1])
print(ConfusionMatrix)
Confusion Matrix and Statistics
       y.val
glm.pred 0
      0 1634 103
       1 7
               Accuracy: 0.937
                95% CI: (0.9246, 0.9479)
   No Information Rate: 0.9399
   P-Value [Acc > NIR] : 0.7136
                 Kappa : 0.0258
 Mcnemar's Test P-Value : <2e-16
            Sensitivity: 0.99573
            Specificity: 0.01905
         Pos Pred Value : 0.94070
         Neg Pred Value: 0.22222
             Prevalence: 0.93986
         Detection Rate: 0.93585
   Detection Prevalence: 0.99485
      Balanced Accuracy: 0.50739
       'Positive' Class : 0
```

From the result, the accuracy of logistic regression model is 93.7%.

3.2.2 Logistic regression model applying forward stepwise selection

Forward stepwise selection method was used to obtain a subset.

Model fitting

```
# Applying forward stepwise selection using StepAIC:
# Full Model Fitting
full.model = formula(glm(CARAVAN~., data = training, family = 'binomial'))
# Fitting Logistic Regression with no predictors, only intercept included
glm.model0 = glm(CARAVAN~1, data = training, family = 'binomial')
```

	Step	Df	Deviance	Resid. Df	Resid. Dev	AIC
1				4075.0000	1841.6438	1849.9567
2	+ PPERSAUT	1.0000	103.8871	4074.0000	1737.7568	1754.3825
3	+ MKOOPKLA	1.0000	47.9881	4073.0000	1689.7687	1714.7073
4	+ PBRAND	1.0000	18.8505	4072.0000	1670.9182	1704.1697
5	+ MBERBOER	1.0000	14.8075	4071.0000	1656.1107	1697.6751
6	+ APLEZIER	1.0000	11.1603	4070.0000	1644.9505	1694.8277
7	+ PWALAND	1.0000	8.8476	4069.0000	1636.1029	1694.2930
8	+ MAUT1	1.0000	8.9474	4068.0000	1627.1555	1693.6584
9	+ MINK7512	1.0000	9.2531	4067.0000	1617.9024	1692.7182

Table 6: Analysis of Deviance

The table 6 shows the Analysis of Deviance. The results indicate that 8 variables are added to the final model. As a result, the best subset chosen by forward stepwise selection method contains 8 variables as follows:

1. **PPERSAUT**: Contribution car policies

2. MKOOPKLA: Purchasing power class

3. **PBRAND**: Contribution fire policies

4. MBERBOER: Farmer

5. APLEZIER: Number of boat policies

6. **PWALAND**: Contribution third party insurance (agriculture)

7. **MAUT1**: 1 Car

8. MINK7512: Income 75 - 122.000

Fitting logistic regression model with the chosen subset

We fitted a logistic regression model with the subset containing 8 variables chosen from the forward stepwise selection method and obtained coefficients from fitted model as shown below.

```
# Summarize the final selected model
best.forward = coef(glm.forward)

# Create table for the report
xtable(best.forward, digits = 4, caption = "Logistic Regression Model
    Applying Forward Stepwise Selection ", label = "tab:table7", table.
    placement = "h!")
```

	Estimate	Std. Error	z value	$\Pr(> z)$	
(Intercept)	-5.7633	0.3695	-15.5986	0.0000	***
PPERSAUT	0.2405	0.0284	8.4544	0.0000	***
MKOOPKLA	0.1352	0.0367	3.6890	0.0002	***
PBRAND	0.1950	0.0374	5.2199	0.0000	***
MBERBOER	-0.2433	0.0996	-2.4432	0.0146	*
APLEZIER	1.7996	0.4625	3.8907	0.0001	***
PWALAND	-0.6494	0.3200	-2.0293	0.0424	*
MAUT1	0.1537	0.0483	3.1854	0.0014	**
MINK7512	0.1589	0.0506	3.1391	0.0017	**

Table 7: Logistic Regression Model Applying Forward Stepwise Selection

The table 7 shows the results from fitting logistic regression model with the variables obtained from forward stepwise selection method. It can be observed that all variables are statistically significance.

Model evaluation

The model was evaluated using validation set and obtaining confusion matrix to get the model accuracy.

```
prob = predict(glm.forward, validation, type = "response")
pred = ifelse(prob > 0.5, 1, 0)
y.val = validation $ CARAVAN
# Get confusion matrix
ConfusionMatrix = confusionMatrix(table(pred, y.val))
forward.acc <- as.numeric(ConfusionMatrix$overall[1])</pre>
print(ConfusionMatrix)
Confusion Matrix and Statistics
   y.val
pred 0
            1
  0 1638 104
      3
               Accuracy : 0.9387
                 95% CI : (0.9264, 0.9495)
    No Information Rate: 0.9399
    P-Value [Acc > NIR] : 0.6047
                  Kappa : 0.014
Mcnemar's Test P-Value : <2e-16
            Sensitivity: 0.998172
            Specificity: 0.009524
         Pos Pred Value: 0.940299
         Neg Pred Value: 0.250000
             Prevalence: 0.939863
         Detection Rate: 0.938144
```

```
Detection Prevalence: 0.997709

Balanced Accuracy: 0.503848

'Positive' Class: 0
```

The accuracy of the logistic regression model applying forward stepwise selection method is equal to 93.87 %, which is greater than the logistic regression model including all variables. Therefore, applying forward stepwise selection method helps improve our prediction.

3.2.3 Logistic regression model applying backward stepwise selection

Backward stepwise selection method was used to obtain a subset.

Model fitting

```
# Applying backward stepwise selection using StepAIC:
# Model Formula
# Full Model Fitting
full.model = formula(glm(CARAVAN~., data = training, family = 'binomial'))
# Fitting Logistic Regression with all predictors
glm.model.all = glm(CARAVAN ~ ., data = training, family = 'binomial')
# Backward Stepwise Selection using StepAIC
# Logistic Regression Model with BIC
glm.backward = stepAIC(glm.model.all, direction = 'backward', scope = full
   .model, k= log(nrow(training)), trace = 0)
backward.acc <- as.numeric(ConfusionMatrix$overall[1])</pre>
sum3 = glm.backward$anova
library(xtable)
tab8 = xtable(sum3, digits = 4, caption = "Backward Stepwise Selection",
   label = "tab:table8", table.placement = "h!")
print(tab8, tabular.environment = "longtable")
```

	Step	Df	Deviance	Resid. Df	Resid. Dev	AIC
1				3991.0000	1542.9819	2249.5760
2	- AZEILPL	0.0000	0.0000	3991.0000	1542.9819	2249.5760
3	- PVRAAUT	1.0000	0.0000	3992.0000	1542.9819	2241.2631
4	- AWERKT	1.0000	0.0000	3993.0000	1542.9819	2232.9503
5	- AAANHANG	1.0000	0.0000	3994.0000	1542.9819	2224.6374
6	- MSKB1	1.0000	0.0009	3995.0000	1542.9828	2216.3254
7	- AINBOED	1.0000	0.0013	3996.0000	1542.9841	2208.0138
8	- PBROM	1.0000	0.0046	3997.0000	1542.9887	2199.7055
9	- MSKA	1.0000	0.0081	3998.0000	1542.9968	2191.4008
10	- PFIETS	1.0000	0.0151	3999.0000	1543.0119	2183.1030
11	- MINK4575	1.0000	0.0224	4000.0000	1543.0343	2174.8125
12	- APERSONG	1.0000	0.0366	4001.0000	1543.0709	2166.5362
13	- PPERSONG	1.0000	0.0273	4002.0000	1543.0981	2158.2506
14	- MGODOV	1.0000	0.0756	4003.0000	1543.1737	2150.0134
15	- AWABEDR	1.0000	0.0881	4004.0000	1543.2618	2141.7885

16	- PZEILPL	1.0000	0.0910	4005.0000	1543.3528	2133.5667
17	- MGEMOMV	1.0000	0.1035	4006.0000	1543.4563	2125.3573
18	- MGODPR	1.0000	0.1574	4007.0000	1543.6137	2117.2018
19	- AWALAND	1.0000	0.2921	4008.0000	1543.9058	2109.1811
20	- MINK3045	1.0000	0.3060	4009.0000	1544.2118	2101.1741
21	- PAANHANG	1.0000	0.3065	4010.0000	1544.5183	2093.1678
22	- PBESAUT	1.0000	0.3892	4011.0000	1544.9075	2085.2441
23	- ABESAUT	1.0000	0.3030	4012.0000	1545.2105	2077.2342
24	- MBERZELF	1.0000	0.4294	4013.0000	1545.6399	2069.3508
25	- MBERARBG	1.0000	0.1734	4014.0000	1545.8133	2061.2113
26	- MOPLHOOG	1.0000	0.2290	4015.0000	1546.0424	2053.1275
27	- MSKD	1.0000	0.3399	4016.0000	1546.3823	2045.1546
28	- AGEZONG	1.0000	0.4252	4017.0000	1546.8075	2037.2669
29	- MAANTHUI	1.0000	0.4847	4018.0000	1547.2922	2029.4388
30	- MINKGEM	1.0000	0.5737	4019.0000	1547.8659	2021.6996
31	- MINKM30	1.0000	0.4118	4020.0000	1548.2777	2013.7985
32	- PINBOED	1.0000	0.5636	4021.0000	1548.8413	2006.0493
33	- MFALLEEN	1.0000	0.5788	4022.0000	1549.4202	1998.3152
34	- MFWEKIND	1.0000	0.1628	4023.0000	1549.5830	1990.1651
35	- MFGEKIND	1.0000	0.5290	4024.0000	1550.1120	1982.3813
36	- PGEZONG	1.0000	0.6324	4025.0000	1550.7443	1974.7008
37	- AMOTSCO	1.0000	0.6652	4026.0000	1551.4096	1967.0531
38	- APERSAUT	1.0000	0.6074	4027.0000	1552.0169	1959.3476
39	- MRELSA	1.0000	0.7753	4028.0000	1552.7922	1951.8100
40	- MRELOV	1.0000	0.1968	4029.0000	1552.9890	1943.6939
41	- ABROM	1.0000	0.7994	4030.0000	1553.7884	1936.1805
42	- MINK123M	1.0000	0.8720	4031.0000	1554.6604	1928.7396
43	- MGEMLEEF	1.0000	0.7897	4032.0000	1555.4501	1921.2164
44	- MZFONDS	1.0000	0.9794	4033.0000	1556.4295	1913.8830
45	- MZPART	1.0000	0.9033	4034.0000	1557.3328	1906.4734
46	- PPLEZIER	1.0000	0.9296	4035.0000	1558.2624	1899.0901
47	- MOPLMIDD	1.0000	0.9621	4036.0000	1559.2244	1891.7393
48	- MSKB2	1.0000	1.0500	4037.0000	1560.2745	1884.4764
49	- MSKC	1.0000	0.9673	4038.0000	1561.2418	1877.1309
50	- MAUT2	1.0000	1.0431	4039.0000	1562.2849	1869.8611
51	- MAUT0	1.0000	0.5757	4040.0000	1562.8606	1862.1240
52	- AVRAAUT	1.0000	1.0984	4041.0000	1563.9591	1854.9096
53	- PWERKT	1.0000	1.2658	4042.0000	1565.2248	1847.8624
54	- ABRAND	1.0000	1.2586	4043.0000	1566.4834	1840.8081
55	- MBERARBO	1.0000	1.3554	4044.0000	1567.8387	1833.8506
56	- MBERHOOG	1.0000	0.8377	4045.0000	1568.6764	1826.3754
57	- MGODRK	1.0000	1.1096	4046.0000	1569.7860	1819.1722
58	- MBERMIDD	1.0000	1.1098	4047.0000	1570.8958	1811.9691
59	- PMOTSCO	1.0000	1.3859	4048.0000	1572.2817	1805.0421
60	- AWAPART	1.0000	1.5234	4049.0000	1573.8051	1798.2526
61	- PWAPART	1.0000	0.1945	4050.0000	1573.9996	1790.1343
62	- MOSHOOFD	1.0000	1.6398	4051.0000	1575.6394	1783.4612
63	- MOSTYPE	1.0000	0.0856	4052.0000	1575.7249	1775.2339

64	- AWAOREG	1.0000	1.8071	4053.0000	1577.5320	1768.7281
65	- PTRACTOR	1.0000	1.8699	4054.0000	1579.4019	1762.2851
66	- ATRACTOR	1.0000	1.2784	4055.0000	1580.6804	1755.2507
67	- MGODGE	1.0000	2.1196	4056.0000	1582.8000	1749.0574
68	- PBYSTAND	1.0000	2.0077	4057.0000	1584.8077	1742.7523
69	- ABYSTAND	1.0000	1.9490	4058.0000	1586.7567	1736.3884
70	- MKOOPKLA	1.0000	2.5899	4059.0000	1589.3466	1730.6654
71	- PWABEDR	1.0000	2.6851	4060.0000	1592.0317	1725.0376
72	- MRELGE	1.0000	3.1964	4061.0000	1595.2281	1719.9211
73	- MHKOOP	1.0000	3.2686	4062.0000	1598.4966	1714.8768
74	- PWAOREG	1.0000	3.6027	4063.0000	1602.0993	1710.1667
75	- ALEVEN	1.0000	3.6431	4064.0000	1605.7424	1705.4968
76	- PLEVEN	1.0000	0.6409	4065.0000	1606.3833	1697.8249
77	- MHHUUR	1.0000	3.8997	4066.0000	1610.2830	1693.4117
78	- MBERBOER	1.0000	7.4630	4067.0000	1617.7459	1692.5618
79	- AFIETS	1.0000	7.5539	4068.0000	1625.2999	1691.8028

Table 8: Backward Stepwise Selection

The table 8 shows the Analysis of Deviance. The results indicate that 79 variables were removed from the final model; therefore, the best subset chosen by backward stepwise selection method contains 7 variables as follows:

1. MOPLLAAG: Lower level education

2. **MAUT1**: 1 Car

3. MINK7512: Income 75 - 122.000

4. **PWALAND**: Contribution third party insurance (agriculture)

5. **PPERSAUT**: Contribution car policies

6. **PBRAND**: Contribution fire policies

7. **APLEZIER**: Number of boat policies

Fitting Logistic regression model with the chosen subset

We fitted a logistic regression model with the subset containing 7 variables chosen from the backward forward stepwise selection method and obtained coefficients from the fitted model as shown below:

```
# Summarize the final selected model
best.backward = summary(glm.backward)

# Create table for the report
xtable(best.backward, digits = 4, caption = "Logistic Regression Model
    Applying Backward Stepwise Selection", label = "tab:table9", table.
    placement = "h!")
```

The table 9 shows fitted logistic regression model with the variables obtained from backward stepwise selection method. It can be observed that all variables are statistically significance.

	Estimate	Std. Error	z value	$\Pr(> z)$	
(Intercept)	-4.9211	0.3979	-12.3685	0.0000	***
MOPLLAAG	-0.1292	0.0319	-4.0519	0.0001	***
MAUT1	0.1880	0.0472	3.9869	0.0001	***
MINK7512	0.1685	0.0505	3.3396	0.0008	***
PWALAND	-0.7300	0.3203	-2.2791	0.0227	*
PPERSAUT	0.2408	0.0284	8.4907	0.0000	***
PBRAND	0.1976	0.0367	5.3787	0.0000	***
APLEZIER	1.7639	0.4644	3.7981	0.0001	***

Table 9: Logistic regression model applying backward stepwise selection

Model evaluation

```
prob = predict(glm.backward, validation, type = "response")
pred = ifelse(prob > 0.5, 1, 0)
y.val = validation $ CARAVAN
ConfusionMatrix = confusionMatrix(table(pred, y.val))
backward.acc = as.numeric(ConfusionMatrix$overall[1])
print(ConfusionMatrix)
Confusion Matrix and Statistics
   y.val
pred 0
  0 1638 104
  1 3 1
               Accuracy : 0.9387
                95% CI : (0.9264, 0.9495)
   No Information Rate: 0.9399
   P-Value [Acc > NIR] : 0.6047
                 Kappa : 0.014
 Mcnemar's Test P-Value : <2e-16
           Sensitivity: 0.998172
            Specificity: 0.009524
         Pos Pred Value: 0.940299
         Neg Pred Value : 0.250000
             Prevalence: 0.939863
         Detection Rate: 0.938144
  Detection Prevalence: 0.997709
     Balanced Accuracy: 0.503848
       'Positive' Class : 0
```

From the result, the accuracy of the logistic regression model applying backward stepwise selection is 93.87%, which equals to the logistic regression model applying forward stepwise selection even though some selected variables are different.

3.2.4 Ridge regression

Model fitting Step 1: Find the best lambda using cross-validation

```
# Find the best lambda using cross-validation
library(glmnet)
set.seed(1)
x.train = model.matrix(CARAVAN~., training)[,-1]
y.train = training$CARAVAN
cv.ridge = cv.glmnet(x.train, y.train, alpha = 0, family = "binomial")
bestlam.ridge = cv.ridge$lambda.min
sprintf('%s is %f', 'The best lambda obtained from the cross-validation',
    bestlam.ridge)
[1] "The best lambda obtained from the cross-validation is 0.037422"
```

With cross-validation method, the best lambda obtained is 0.037422.

Step 2: Fit a ridge regression model with chosen lambda

```
ridge.model = glmnet(x.train, y.train, alpha = 0, family = "binomial",
    lambda = bestlam.ridge)
```

Ridge regression model results

	Variable	Estimate
1	(Intercept)	-4.5410
2	MOSTYPE	-0.0009
3	MAANTHUI	-0.0691
4	MGEMOMV	-0.0135
5	MGEMLEEF	0.0459
6	MOSHOOFD	-0.0080
7	MGODRK	-0.0258
8	MGODPR	0.0164
9	MGODOV	0.0261
10	MGODGE	-0.0258
11	MRELGE	0.0289
12	MRELSA	-0.0148
13	MRELOV	-0.0197
14	MFALLEEN	-0.0074
15	MFGEKIND	-0.0223
16	MFWEKIND	0.0109

17	MOPLHOOG	0.0358
18	MOPLMIDD	0.0134
19	MOPLLAAG	-0.0309
20	MBERHOOG	0.0244
21	MBERZELF	0.0111
22	MBERBOER	-0.0977
23	MBERMIDD	0.0368
24	MBERARBG	-0.0161
25	MBERARBO	0.0070
26	MSKA	0.0043
27	MSKB1	0.0096
28	MSKB2	0.0123
29	MSKC	0.0093
30	MSKD	-0.0373
31	MHHUUR	-0.0130
32	MHKOOP	0.0116
33	MAUT1	0.0563
34	MAUT2	-0.0195
35	MAUT0	-0.0234
36	MZFONDS	0.0056
37	MZPART	-0.0082
38	MINKM30	-0.0031
39	MINK3045	-0.0009
40	MINK4575	-0.0013
41	MINK7512	0.0700
42	MINK123M	-0.0907
43	MINKGEM	0.0453
44	MKOOPKLA	0.0433
45	PWAPART	0.0432 0.0783
46	PWABEDR	-0.0692
47	PWALAND	-0.0092
48	PPERSAUT	0.0888
49	PBESAUT	-0.0295
49 50	PMOTSCO	-0.0293
50 51	PVRAAUT	-0.0466
51	PAANHANG	0.0502
	PTRACTOR	-0.0465
53		-0.0405
54	PWERKT	
55 50	PBROM	-0.0536
56	PLEVEN	-0.0539
57	PPERSONG	-0.0254
58	PGEZONG	0.1307
59	PWAOREG	0.2270
60	PBRAND	0.0715
61	PZEILPL	-0.2123
62	PPLEZIER	0.0473
63	PFIETS	0.2362
64	PINBOED	-0.1096

65	PBYSTAND	0.0141
66	AWAPART	0.1078
67	AWABEDR	-0.0948
68	AWALAND	-0.3469
69	APERSAUT	0.3268
70	ABESAUT	-0.1398
71	AMOTSCO	0.0039
72	AVRAAUT	-0.2823
73	AAANHANG	0.0846
74	ATRACTOR	-0.2007
75	AWERKT	-0.1800
76	ABROM	-0.1639
77	ALEVEN	0.1261
78	APERSONG	-0.0006
79	AGEZONG	0.0500
80	AWAOREG	0.1117
81	ABRAND	0.0721
82	AZEILPL	-0.6368
83	APLEZIER	1.2793
84	AFIETS	0.3115
85	AINBOED	-0.2269
86	ABYSTAND	0.3971

Table 10: Ridge Regression Model: Coefficients

The table 10 indicate that all variables are included in the ridge regression model.

Model evaluation

```
# Make predictions on the validation data
x.test = model.matrix(CARAVAN~., validation)[,-1]
probs = predict(ridge.model, newx = x.test)
pred = ifelse(probs > 0.5, 1, 0)
# Model accuracy
y.val = validation $ CARAVAN
ConfusionMatrix = confusionMatrix(table(pred, y.val))
ridge.acc = as.numeric(ConfusionMatrix$overall[1])
print(ConfusionMatrix)
Confusion Matrix and Statistics
   y.val
pred 0
  0 1641 104
  1 0 1
               Accuracy : 0.9404
                95% CI : (0.9283, 0.9511)
   No Information Rate: 0.9399
  P-Value [Acc > NIR] : 0.4858
```

From the result, the accuracy of ridge regression model is 94.04%.

3.2.5 Lasso model

Model fitting Step 1: Find the best lambda using cross-validation

```
# Find the best lambda using cross-validation
set.seed(1)
x.train = model.matrix(CARAVAN~., training)[,-1]
y.train = training$CARAVAN
cv.lasso = cv.glmnet(x.train, y.train, alpha = 1, family = "binomial")
bestlam.lasso = cv.lasso$lambda.min
sprintf('%s is %f', 'The best lambda obtained from the cross-validation',
    bestlam.lasso)
[1] "The best lambda obtained from the cross-validation is 0.004303"
```

Step 2: Fit a lasso model with chosen lambda iii. = @

```
# Fit the final model on the training data
lasso.model = glmnet(x.train, y.train, alpha = 1, family = "binomial",
    lambda = bestlam.lasso)
```

Non-zero coefficients

Non-zero coefficients from the lasso model are selected.

```
# Display non-zero coefficients
coefs = coef(lasso.model)
var = rownames(coefs)
rownames(coefs) = NULL
coefs = cbind(data.frame(Variable =var, Estimate = coefs[,1]))
lasso.coefs = coefs[with(coefs, Estimate != 0),]

# Create table for the report
tab11 = xtable(lasso.coefs, digits = 4, caption = "Lasso Model: Non-Zero Coefficients", label = "tab:table11", table.placement = "h!")
print(tab11, tabular.environment = "longtable")
```

	Variable	Estimate
1	(Intercept)	-4.8518
10	MGODGE	-0.0219
11	MRELGE	0.0364
17	MOPLHOOG	0.0112
19	MOPLLAAG	-0.0533
22	MBERBOER	-0.1157
23	MBERMIDD	0.0179
31	MHHUUR	-0.0081
33	MAUT1	0.0888
41	MINK7512	0.0756
43	MINKGEM	0.0319
44	MKOOPKLA	0.0721
45	PWAPART	0.0783
47	PWALAND	-0.1418
48	PPERSAUT	0.1869
59	PWAOREG	0.1676
60	PBRAND	0.1118
69	APERSAUT	0.0624
74	ATRACTOR	-0.1334
83	APLEZIER	1.4074
84	AFIETS	0.4445
86	ABYSTAND	0.3055

Table 11: Lasso Model: Non-Zero Coefficients

The table 11 shows non-zero coefficients obtained from the lasso model. There are 21 variables not shrinking to zero, while 64 variables shrink to zero.

Model evaluation

```
95% CI : (0.9283, 0.9511)
No Information Rate : 0.9399
P-Value [Acc > NIR] : 0.4858

Kappa : 0.0178

Mcnemar's Test P-Value : <2e-16

Sensitivity : 1.000000
Specificity : 0.009524
Pos Pred Value : 0.940401
Neg Pred Value : 1.000000
Prevalence : 0.939863
Detection Rate : 0.939863
Detection Prevalence : 0.999427
Balanced Accuracy : 0.504762

'Positive' Class : 0
```

From the result, the accuracy of lasso model is 94.04%.

3.2.6 Linear Discriminant Analysis Model: LDA

Model fitting

	Variable	LD1
1	MOSTYPE	0.0468
2	MAANTHUI	-0.0806
3	MGEMOMV	-0.0426
4	MGEMLEEF	0.1118
5	MOSHOOFD	-0.2167
6	MGODRK	-0.1077
7	MGODPR	-0.0462
8	MGODOV	-0.0231
9	MGODGE	-0.0987
10	MRELGE	0.1692
11	MRELSA	0.1001
12	MRELOV	0.0933
13	MFALLEEN	-0.0949

14	MFGEKIND	-0.1431
15	MFWEKIND	-0.0822
16	MOPLHOOG	-0.0376
17	MOPLMIDD	-0.1168
18	MOPLLAAG	-0.2076
19	MBERHOOG	0.0829
20	MBERZELF	0.0124
21	MBERBOER	-0.0648
22	MBERMIDD	0.0752
23	MBERARBG	0.0031
24	MBERARBO	0.0522
25	MSKA	-0.0261
26	MSKB1	-0.0486
27	MSKB2	0.0066
28	MSKC	0.0312
29	MSKD	-0.0210
30	MHHUUR	-0.8000
31	MHKOOP	-0.7657
32	MAUT1	0.2055
33	MAUT2	0.1329
34	MAUT0	0.1226
35	MZFONDS	-0.8963
36	MZPART	-0.9520
37	MINKM30	0.0812
38	MINK3045	0.0304
39	MINK4575	-0.0015
40	MINK7512	0.0763
41	MINK123M	-0.1661
42	MINKGEM	0.1340
43	MKOOPKLA	0.0604
44	PWAPART	0.3662
45	PWABEDR	-0.2447
46	PWALAND	-0.2447 -0.4593
47	PPERSAUT	0.1192
48	PBESAUT	-0.0046
49	PMOTSCO	-0.1703
50	PVRAAUT	-0.1703
51	PAANHANG	0.3224 0.1471
52	PTRACTOR	0.1471 0.1293
53	PWERKT	-0.3403
	PBROM	
54 55		0.0330
	PLEVEN	-0.2828
56	PPERSONG	0.0709
57	PGEZONG	2.0686
58	PWAOREG	1.4925
59	PBRAND	0.2333
60	PZEILPL	-0.2322
61	PPLEZIER	-1.0494

```
62 PFIETS
                -1.0890
63
   PINBOED
                -0.1370
   PBYSTAND
64
                -1.1625
65
   AWAPART
                -0.5009
66 AWABEDR
                0.2812
67 AWALAND
                0.6754
68
   APERSAUT
                0.2466
69 ABESAUT
                -0.2711
70
   AMOTSCO
                0.3764
71
   AVRAAUT
                0.7094
72
   AAANHANG
                -0.0570
73 ATRACTOR
                -0.6363
74
   AWERKT
                0.3035
75
   ABROM
                -0.1373
76 ALEVEN
                0.6742
77
   APERSONG
                -0.1552
78 AGEZONG
                -4.0971
79
   AWAOREG
                -5.2523
80 ABRAND
                -0.3482
81 AZEILPL
                -0.6966
82 APLEZIER
                6.4779
83 AFIETS
                1.4865
   AINBOED
84
                -0.1154
85
   ABYSTAND
                4.9815
```

Table 12: Linear Discriminant Analysis Model: LDA

The table 12 shows the calculated coefficients for all variables including in the LDA model. Because our target contains two groups, the results indicate only LD1 in this case.

Model evaluation

```
# Make predictions on the validation data
lda.pred = predict(lda.fit,newdata = validation)
lda.class = lda.pred$class
head(lda.class)
# Model accuracy
y.val = validation $ CARAVAN
ConfusionMatrix = confusionMatrix(table(lda.class, y.val))
lda.acc = as.numeric(ConfusionMatrix$overall[1])
print(ConfusionMatrix)
Confusion Matrix and Statistics
         y.val
lda.class
             0
                  1
        0 1621
                 99
        1
            20
                  6
```

```
Accuracy: 0.9318
95% CI: (0.919, 0.9432)

No Information Rate: 0.9399
P-Value [Acc > NIR]: 0.9257

Kappa: 0.0694

Mcnemar's Test P-Value: 8.662e-13

Sensitivity: 0.98781
Specificity: 0.05714
Pos Pred Value: 0.94244
Neg Pred Value: 0.23077
Prevalence: 0.93986
Detection Rate: 0.92841

Detection Prevalence: 0.98511
Balanced Accuracy: 0.52248

'Positive' Class: 0
```

The confusion matrix shows that the accuracy of LDA model is 93.18%, lower than other models, therefore, LDA might not be a model for predicting an interest in buying a caravan insurance policy.

3.2.7 K-Nearest Neighbor: KNN

K optimal value selection

```
# Select X from training set
train.X = cbind(training[-ncol(training)])

# Select X from validation set
test.X = cbind(validation[-ncol(validation)])

# Select y from training set
train.y = training$CARAVAN

# Compute optimal value of k
i = 1
k.optm = 1
for (i in 1:100){
   knn.mod = knn(train.X,test.X,train.y, k = i)
   k.optm[i] = 100 * sum(y.val == knn.mod)/NROW(y.val)
   k=i
}
sprintf("%s is %i", "The maximum k", which.max(k.optm))
[1] "The maximum k is 20"
```

K optimal value

```
plot(k.optm, type="b", xlab="K-Value",ylab="Accuracy level", xlim = c(0,30
     ))
points(20, k.optm[20], col = 'red', pch = 19)
```


Figure 6: K-Optimal Value.

The figure 6 shows the optimal value of k is 20.

Model fitting

We fitted KNN model with k = 20 as follow:

```
set.seed(1)
knn.pred = knn(train.X, test.X, train.y, k = 20)
```

Model evaluation

```
# Model accuracy
y.val = validation $ CARAVAN
ConfusionMatrix = confusionMatrix(table(knn.pred, y.val))
knn.acc = as.numeric(ConfusionMatrix$overall[1])
print(ConfusionMatrix)
Confusion Matrix and Statistics
        y.val
knn.pred
           0
                 1
       0 1641
               104
           0
                1
               Accuracy : 0.9404
                 95% CI : (0.9283, 0.9511)
    No Information Rate : 0.9399
    P-Value [Acc > NIR] : 0.4858
                  Kappa : 0.0178
Mcnemar's Test P-Value : <2e-16
            Sensitivity: 1.000000
            Specificity: 0.009524
```

```
Pos Pred Value : 0.940401
Neg Pred Value : 1.000000
Prevalence : 0.939863
Detection Rate : 0.939863
Detection Prevalence : 0.999427
Balanced Accuracy : 0.504762
'Positive' Class : 0
```

The confusion matrix shows that the accuracy of KNN model with k-optimal value of 20 is 94.04%, which is high.

3.2.8 Bagging technique model

We used bagging technique to construct a more powerful prediction model.

Model fitting

Variable importance

The most 20 important variables are selected from the bagging approach model can be shown as follow:

```
# Variable Important Measure: 20 important variables from bagging
    technique
imp = as.data.frame(importance(bag.caravan))
imp = data.frame(variable = rownames(imp),importance = imp$IncNodePurity)
imp = imp[order(imp$importance,decreasing = T),]
imp = imp[1:20,]
imp$variable = factor(imp$variable, levels = imp$variable[order(imp$
    importance, decreasing = FALSE)])

# Feature importance plot
ggplot(imp, aes(x=variable, y= importance, fill = importance))+
    geom_bar(stat = 'identity') + coord_flip() +
    scale_fill_gradient2(low = "yellow", mid = "skyblue", high = "blue",
        midpoint = max(imp$importance)/2)+
    labs(y = "Correlation") +
    xlab("Variable") + ylab("IncNodePurity") + theme(legend.position = 'none
        ')
```


Figure 7: Variable Importance Using Bagging Technique.

The figure 7 shows top 20 variables importance. It can be observed that there are four variables seem more important than others. Therefore, we chose these four variables to re-fit our model to improve model performance as follows:

1. **PBRAND**: Contribution fire policies

2. **PPERSAUT**: Contribution car policies

3. MOSTYPE: Customer subtype

4. MKOOPKLA: Purchasing power class

Re-fitting bagging approach model with importance variables

Model evaluation

```
# Make predictions on the validation data
bag.probs = predict(bag.caravan.imp,newdata = validation)
bag.pred = ifelse(bag.probs > 0.5, 1, 0)
# Model accuracy
y.val = validation $ CARAVAN
ConfusionMatrix = confusionMatrix(table(bag.pred, y.val))
bag.acc = as.numeric(ConfusionMatrix$overall[1])
print(ConfusionMatrix)
Confusion Matrix and Statistics
       y.val
bag.pred 0 1
      0 1640 104
      1 1 1
               Accuracy : 0.9399
                95% CI : (0.9277, 0.9506)
   No Information Rate : 0.9399
   P-Value [Acc > NIR] : 0.5259
                 Kappa : 0.0165
 Mcnemar's Test P-Value : <2e-16
            Sensitivity: 0.999391
           Specificity: 0.009524
         Pos Pred Value: 0.940367
         Neg Pred Value : 0.500000
             Prevalence: 0.939863
         Detection Rate: 0.939290
   Detection Prevalence: 0.998855
      Balanced Accuracy: 0.504457
       'Positive' Class : 0
```

The confusion matrix shows that the accuracy of bagging approach model using high variable importance is 93.99%.

3.2.9 Model comparison

```
# Create table for report
xtable(Model.selection, digits = 4, caption = "Model Comparison", label =
    "tab:table13", table.placement = "h!")
```

	Model	Accuracy
4	Ridge Regression	0.9404
5	Lasso Regresion	0.9404
7	KNN	0.9404
8	Bagging	0.9399
2	Forward Selection	0.9387
3	Backward Selection	0.9387
1	Logistic Regression	0.9370
6	LDA	0.9318

Table 13: Model Comparison

The table 13 indicates all models performance. From the results, it can be observed that the ridge regression, lasso, and k-nearest neighbor models have the same accuracy rates, which is equal to 94.04%, and perform the best. The model using bagging approach has the accuracy of 93.99%. The models applying forward stepwise selection and backward stepwise selection are not different, while the logistic regression model with all predictors is not good as much as the logistic regression model with selected variables using forward and backward stepwise selection methods. In addition, linear discriminant analysis performs worst. This may be concluded that LDA is not good for predicting customers who are more likely to buy a caravan policy. Since there are 3 models performing the best and having the same accuracy, we may need to compare the algorithm that is the best for prediction to consider the model that we would use to predict a customer purchases a caravan insurance policy. The followings are each model advantage and disadvantage:

- KNN classifier predicts the class of a given test observation by identifying the observations that are nearest to it; therefore, the KNN algorithm can compete with the most accurate models because it makes highly accurate predictions. We can use the KNN algorithm for applications that require high accuracy. However, we will not able to extract feature importance from this model [2].
- Ridge regression is the method used for the analysis of multicollinearity in multiple regression data. Ridge regression can still perform well by trading off a small increase in bias for a large decrease in variance when predictors are greater than observations. Therefore, ridge regression is most suitable when a data set contains a higher number of predictor variables than number of observations. However, ridge regression includes all predictors in the final model. This may not be a problem for prediction accuracy, but it can create a challenge in model interpretation in settings in which the number of variables is quite large as our dataset [2].
- Lasso regression is introduced in order to improve the prediction accuracy and interoperability of regression models. Lasso regression will automatically select those features that are useful, discarding the useless or redundant features by making its coefficient equal to zero [2].

Therefore, we chose the lasso regression model to be the model used to predict an interest in buying a caravan policy of a customer since it can help us improve the prediction accuracy as well as allowing us to explain why people would buy a caravan insurance policy based on selected

variables, because it overcomes the disadvantage of ridge regression and select useful features that we cannot find from using KNN model.

4 Prediction

We used TICDATA2000 to find the optimal value of lambda and train the lasso model.

Find the best lambda using cross-validation

```
# Find the best lambda using cross-validation
set.seed(1)
x.train = model.matrix(CARAVAN~., ticdata2000)[,-1]
y.train = ticdata2000$CARAVAN
cv.lasso = cv.glmnet(x.train, y.train, alpha = 1, family = "binomial")
bestlam.lasso = cv.lasso$lambda.min
sprintf('%s is %f', 'The best lambda obtained from the cross-validation',
    bestlam.lasso)
[1] "The best lambda obtained from the cross-validation is 0.002902"
```

Model fitting

```
# Fit the final model on the training data
lasso.model = glmnet(x.train, y.train, alpha = 1, family = "binomial",
    lambda = bestlam.lasso)
```

Non-zero coefficients

```
# Display non-zero coefficients
coefs = coef(lasso.model)
var = rownames(coefs)
rownames(coefs) = NULL
coefs = cbind(data.frame(Variable =var, Estimate = coefs[,1]))
lasso.coefs = coefs[with(coefs, Estimate != 0),]
lasso.coefs

# Create table for the report
tab14 = xtable(lasso.coefs, digits = 4, caption = "Lasso Model: Non-Zero Coefficients", label = "tab:table14", table.placement = "h!")
print(tab14, tabular.environment = "longtable")
```

	Variable	Estimate
1	(Intercept)	-4.8319
5	MGEMLEEF	0.0382
7	MGODRK	-0.0092
8	MGODPR	0.0187
10	MGODGE	-0.0102
11	MRELGE	0.0494
12	MRELSA	-0.0152
17	MOPLHOOG	0.0491
19	MOPLLAAG	-0.0510
22	MBERBOER	-0.1263

23	MBERMIDD	0.0306
30	MSKD	-0.0028
31	MHHUUR	-0.0192
33	MAUT1	0.0458
38	MINKM30	-0.0057
41	MINK7512	0.0236
42	MINK123M	-0.0933
43	MINKGEM	0.0446
44	MKOOPKLA	0.0421
45	PWAPART	0.1229
47	PWALAND	-0.1279
48	PPERSAUT	0.2035
54	PWERKT	-0.0389
58	PGEZONG	0.0926
59	PWAOREG	0.1535
60	PBRAND	0.1039
63	PFIETS	0.1047
74	ATRACTOR	-0.0610
82	AZEILPL	0.8141
83	APLEZIER	1.8316
84	AFIETS	0.2741
86	ABYSTAND	0.3898

Table 14: Lasso Model: Non-Zero Coefficients

The table 14 shows non-zero coefficients from the lasso regression model. There are 31 variables that are not equal to zero.

Model prediction

After fitting the chosen model to the TICDATA2000 dataset, we applied the fitted model to the TICEVAL2000 dataset to obtain the predictions.

```
# Make predictions on the TICEVAL2000 data
# Make predictions on the TICEVAL2000 data
x.test = as.matrix(ticeval2000)
probs = predict(lasso.model,newx = x.test)
prediction = ifelse(probs > 0.5, 1, 0)
table(prediction)

prediction
0 1
3997 3
```

Our predictions contain 3,997 customer records did not purchase a caravan insurance policy, and only 3 customer records purchased a caravan insurance policy. Therefore, only 0.08% of customers purchased insurance.

5 Evaluation

We evaluated model using the TICTGTS2000 set to obtain the prediction accuracy.

```
# Evaluating model
# Model accuracy
target = tictgts2000$CARAVAN
ConfusionMatrix = confusionMatrix(table(prediction, target))
print(ConfusionMatrix)
Confusion Matrix and Statistics
          target
prediction 0
                   1
         0 3760 237
         1
             2
               Accuracy : 0.9402
                 95% CI: (0.9325, 0.9474)
   No Information Rate: 0.9405
   P-Value [Acc > NIR] : 0.5438
                  Kappa: 0.0068
Mcnemar's Test P-Value : <2e-16
            Sensitivity: 0.999468
            Specificity: 0.004202
         Pos Pred Value: 0.940706
         Neg Pred Value: 0.333333
             Prevalence: 0.940500
         Detection Rate: 0.940000
   Detection Prevalence: 0.999250
      Balanced Accuracy: 0.501835
       'Positive' Class : 0
```

The results show that the prediction accuracy is 94.02%, which is not much different than the training accuracy.

6 Conclusion

To predict whether customers would buy a caravan insurance policy, we used different prediction techniques to select best performed model including logistic regression, forward stepwise selection, backward stepwise selection, ridge regression, lasso regression, linear discriminant analysis, k-nearest neighbor, and bagging approach. Each technique has different method to choose a set of features that is useful for predicting customers purchase insurance.

Among these models, the lasso regression is the model we chose to predict an interest in buying a caravan insurance policy although there are three models having highest accuracy, which is 94.04%, since the lasso regression model using regularization which is a technique that can be used to improve a model and also good for feature selection as it tries to minimize the cost function and select those useful features. It is believed that with the lasso regression model, we would be able to

predict who would be interested in buying a caravan insurance policy and why people would buy this insurance policy based on the selected variables as followings:

1. MGEMLEEF: Average age

2. MGODPK: Roman catholic

3. MGODPR: Protestant

4. MGODGE: No religion

5. MRELGE: Married

6. MRELSA: Living together

7. MOPLHOOG: High level education

8. MOPLLAAG: Lower level education

9. MBERBOER: Farmer

10. MBERMIDD: Middle management

11. MSKD: Social class D

12. MHHUUR: Rented house

13. **MAUTI:** 1 Car

14. MINKM30: Income > 30.000

15. MINK**7512:** Income 75 - 122.000

16. **MINK123M:** Income < 123.000

17. MINKGEM: Average income

18. MKOOPKLA: Purchasing power class

19. **PWAPART:** Contribution private third party insurance

20. **PWALAND:** Contribution third party insurance (agriculture)

21. **PPERSAUT:** Contribution car policies

22. PWERKT: Contribution agricultural machine policies

23. **PGEZONG:** Contribution private accident insurance policies

24. **PWAOREG:** Contribution disability insurance policies

25. **PBRAND:** Contribution fire policies

26. **PFIETS:** Contribution boat policies

27. ATRACTOR: Number of tractor policies

28. AZEILPL: Number of surfboard policies

29. APLEZIER: Number of boat policies

30. **AFIETS:** Number of bicycle policies

31. ABYSTAND: Number of social security insurance policies

The number of selected variables when all customer records from the TICDATA2000 set used is greater than the number of variables when customer records were split into training and validation sets because the features increased from 21 variables to 31 variables. Based on the lasso regression model, the socio-demographic related variables are selected, such as age, education level, and marriage status. The income level of the customer including income and purchasing power related variables is also selected to be important.

The product usage related variables are also included in the lasso regression model. The features measuring the number and contribution of insurance policies are predictors for caravan insurance policy purchases, such as contribution private third party insurance, contribution car policies, contribution fire policies, number of boat policies, and number of bicycle policies. In some sense, people who buy any kind of insurance are more likely to buy a caravan insurance policy.

However, PPERSAUT variable was found to be relevant by all selected methods we used to select the best model for prediction. Based on the correlation coefficient between target variable and feature, PPERSAUT is the most correlated variable. The lasso regression model used for prediction includes this variable as well. Clearly, the strong predictor of caravan insurance policy purchases is the feature measuring the contribution to car policy purchase. This may be concluded that we might be able to provide more accurate prediction for whether a customer purchases a caravan insurance policy if we include this variable in our model.

After we chose the lasso regression model, we fitted the model with training set and made predictions using test set. After we got our predictions, we evaluated these predictions with the provided targets. The model accuracy is 94.02% meaning that our model is able to classify 3,761 customer records from 4,000 customer records. Below is showing our prediction results compared to target data.

The figure 8 shows the comparison between prediction results and given target data. We can see that the number of 0 caravan insurance policy for both prediction and target is not much different, but our model seems not to predict people who are more likely to but a caravan insurance policy correctly. This may be caused by the imbalanced class as 0 is the majority class and 1 is the minority class in these data. Therefore, our model seems over-classify the larger class like 0 due to its increased prior probability.

Although our model predicted there are 3 customers would buy a caravan insurance policy, only one customer was predicted correctly compared to our target data. From the result, a customer from customer record of 576 from the test set is interested in purchasing a caravan insurance policy

Figure 8: Prediction vs. Target

as shown below.

```
# Create table for test set containing target and prediction
pred.target = cbind(ticeval2000, prediction, target)
# Select only useful features from lasso
print(lasso.coefs[,1])
pred.target= pred.target[, c( "MGEMLEEF", "MGODRK", "MGODPR", "MGODGE","
   MRELGE", "MRELSA", "MOPLHOOG", "MOPLLAAG", "MBERBOER", "MBERMIDD", "MSKD", "
   MHHUUR", "MAUT1", "MINKM30", "MINK7512", "MINK123M", "MINKGEM", "MKOOPKLA", "
   PWAPART", "PWALAND", "PPERSAUT", "PWERKT", "PGEZONG", "PWAOREG", "PBRAND", "
   PFIETS", "ATRACTOR", "AZEILPL", "APLEZIER", "AFIETS", "ABYSTAND", "
   prediction","target" )]
# Select only target of 1
target1 = subset(pred.target, target == 1)
# Select only the prediction of 1
pred1 = subset(target1, prediction == 1)
# Create table for report
data = unlist(pred1[1,], use.names = FALSE)
data = matrix(data, ncol = 1)
colnames(data) = "Data"
rownames(data) = c( "MGEMLEEF", "MGODRK", "MGODPR", "MGODGE", "MRELGE", "
   MRELSA", "MOPLHOOG", "MOPLLAAG", "MBERBOER", "MBERMIDD", "MSKD", "MHHUUR", "
   MAUT1", "MINKM30", "MINK7512", "MINK123M", "MINKGEM", "MKOOPKLA", "PWAPART".
   "PWALAND", "PPERSAUT", "PWERKT", "PGEZONG", "PWAOREG", "PBRAND", "PFIETS", "
   ATRACTOR", "AZEILPL", "APLEZIER", "AFIETS", "ABYSTAND", "prediction", "
   target" )
descrb = ticdatadescr[c(4,6,7,9,10,11,16,18,21,22,29,30,32,37,40,41,42,43,
   44,46,47,53,56,58,59,62,73,81,82,83,85),]
descrb = as.data.frame(descrb[,2])
```

```
descrb[nrow(descrb) + 1,] = "Number of mobile home policies"
descrb[nrow(descrb) + 1,] = "Number of mobile home policies"
data = cbind(data, descrb)

tab15 = xtable(data, digits = 0, caption = "Customer who purchases a caravan insurance policy", label = "tab15")
print(tab15, tabular.environment = "longtable")
```

-	Data	Description	
MGEMLEEF	4	Average age	
MGODRK	2	Roman catholic	
MGODPR	2	Protestant	
MGODGE	5	No religion	
MRELGE	7	Married	
MRELSA	1	Living together	
MOPLHOOG	5	High level education	
MOPLLAAG	2	Lower level education	
MBERBOER	0	Farmer	
MBERMIDD	0	Middle management	
MSKD	0	Social class D	
MHHUUR	0	Rented house	
MAUT1	3	1 car	
MINKM30	0	Income > 30.000	
MINK7512	2	Income 75-122.000	
MINK123M	1	Income < 123.000	
MINKGEM	6	Average income	
MKOOPKLA	7	Purchasing power class	
PWAPART	0	Contribution private third party insurance	
PWALAND	0	Contribution third party insurance (agriculture)	
PPERSAUT	6	Contribution car policies	
PWERKT	0	Contribution agricultural machines policies	
PGEZONG	0	Contribution private accident insurance policies	
PWAOREG	0	Contribution disability insurance policies	
PBRAND	5	Contribution fire policies	
PFIETS	0	Contribution bicycle policies	
ATRACTOR	0	Number of tractor policies	
AZEILPL	0	Number of surfboard policies	
APLEZIER	2	Number of boat policies	
AFIETS	0	Number of bicycle policies	
ABYSTAND	0	Number of social security insurance policies	
prediction	1	Number of mobile home policies	
target	1	Number of mobile home policies	
Table 15: Customer who purchases a caravan policy			

Table 15: Customer who purchases a caravan policy

The table 15 indicate customer data based on selected features from the lasso regression model. In some sense, this may be said that people with these features are more likely to buy a caravan insurance policy. For example, the customer with 6 contributions car policies were most likely to

purchase a caravan insurance policy, but it cannot be concluded that people with 6 contributions car policies would buy a caravan insurance policy since there are other 30 features as mentioned, which include both product usage and socio-demographic data, we need to consider to analyze whether a customer will purchase this insurance policy.

Therefore, we can predict who would be interested in buying a caravan insurance policy using predictive modeling techniques since the prediction accuracy of 94.02% indicates that we have a highly accurate model. Of course, using this model to predict is better than a random prediction. Those predictive modeling techniques also enable us to choose best performance model like the lasso regression and found most relevant features. With the lasso regression model, we can not only predict people who would buy a caravan insurance policy but also explain why those people buy a caravan insurance policy based on their given information. As a result, our model would benefit insurance companies because insurers can use this model to discover customer characteristics and predict which customers are potentially interested in an insurance policy.

References

- [1] Insurance Journal.(2012). How Predictive Modeling Has Revolution-Retrieved ized Insurance. Insurance Journal. April 5, 2022. from https://www.insurancejournal.com/news/national/2012/06/18/251957.htm.
- [2] James, G., Witten, D., Hastie, T., amp; Tibshirani, R. (2013). An introduction to statistical learning. Springer Texts in Statistics. https://doi.org/10.1007/978-1-4614-7138-7
- [3] Mordor Intelligence. (2022,January 21). Caravan and market trends, Industry Analysis (2022)_ 27). Retrieved April 5, from growth, https://www.mordorintelligence.com/industry-reports/caravan-and-motorhome-market
- [4] van der Putten, P. (2000). Coil Challenge 2000 . Retrieved April 26, 2022, from https://liacs.leidenuniv.nl/puttenpwhvander/library/cc2000/
- [5] van der Putten, P., amp; van Someren, M. (2004). A bias-variance analysis of a real world learning problem: The Coil Challenge 2000. Machine Learning, 57, 177–195. https://doi.org/10.1023/b:mach.0000035476.95130.99