

ISSN 0167-6369

Computer Physics Communications

All issues

of volume 100

S-61-60

S-61-60

International Society for
Computer Physics

NORTH-HOLLAND

COMPUTER PHYSICS COMMUNICATIONS

An international journal and program library for computational physics and physical chemistry

Honorary Editor: P.G. BURKE, Belfast

Principal Editors

Geerd H.F. DIERCKSEN

Max-Planck-Institut für Physik und Astrophysik, Institut für Astrophysik,
Karl-Schwarzschild Strasse 1, W-8046 Garching bei München, Germany

James W. EASTWOOD

Culham Laboratory, Abingdon, Oxfordshire OX14 3DB, England

J.E. INGLESFIELD

ESM, Department of Physics, Catholic University of Nijmegen,
Toernooiveld, 6525 ED Nijmegen, The Netherlands

F. JAMES

CERN, Data Handling Division, CH-1211 Geneva 23, Switzerland

Donald G. TRUHLAR

University of Minnesota, Department of Chemistry and Supercomputer Institute, 207 Pleasant Street S.E., Minneapolis, MN 55455, USA

Editors in specialist fields

The complete mailing addresses of all Editors in specialist fields are printed at the beginning of each volume.

Algebraic manipulation

J.P. FITCH, Bath, England

A.C. HEARN, Santa Monica, CA

Astrophysics

D.G. HUMMER, Boulder, CO

M.L. NORMAN, Urbana, IL

W.M. TSCHARNUTER, Heidelberg, Germany

Atomic and molecular dynamics

B.H. BRANDSEN, Durham, England

D.C. CLARY, Cambridge, England

T.H. DUNNING, Jr., Richland, WA

F.A. GIANTURCO, Rome, Italy

J.-M. LAUNAY, Meudon, France

H. NAKAMURA, Okazaki, Japan

J. READING, College Station, TX

G.C. SCHATZ, Evanston, IL

R.E. WYATT, Austin, TX

Atomic and molecular structure, spectra and properties

C.F. FISCHER, Nashville, TN

I.P. GRANT, Oxford, England

S. IWATA, Yokohama, Japan

I. SHAVITT, Columbus, OH

B.T. SUTCLIFFE, Heslington, England

Algorithms, performance and architecture of new computer systems

J.C. BROWNE, Austin, TX

E. CLEMENTI, Cagliari, Italy

I.S. DUFF, Chilton, England

G.C. FOX, Syracuse, NY

B. GLISS, Stuttgart, Germany

Y. MURAOKA, Tokyo, Japan

J. NADRHAL, Prague, Czechoslovakia

W. SCHONAUER, Karlsruhe, Germany

K. SCHULTE, Urbana, IL

H.A.G. WIJSHOFF, Utrecht, The Netherlands

Condensed matter physics

C.R.A. CATLOW, Keele, England

K. DIFFERT, Stuttgart, Germany

R. HAYDOCK, Eugene, OR

O.H. NIELSEN, Lyngby, Denmark

S.B. TRICKEY, Gainesville, FL

Electromagnetics

D.A. McNAMARA, Pretoria, South Africa

D.E. STEIN, Linthicum Heights, MD

High energy physics

R.K. BOCK, Geneva, Switzerland

B. van EIJK, Geneva, Switzerland

C.B. LANG, Graz, Austria

J. LINNEMANN, East Lansing, MI

T. NASH, Batavia, IL

C. REBBI, Boston, MA

H. YOSHIKI, Ibaraki, Japan

Nuclear physics

B.S. NILSSON, Copenhagen, Denmark

Plasma physics

M. ASHOUR-ABDALLA, Los Angeles, CA

D.C. BARNES, Los Alamos, NM

D.W. HEWETT, Livermore, CA

Statistical mechanics and many body physics

K. BINDER, Mainz, Germany

M. PARRINELLO, Rüschlikon, Switzerland

Statistics and data analysis

F. JAMES, Geneva, Switzerland

J. LINNEMANN, East Lansing, MI

Desk Editor

E. MATHLENER, Elsevier Science Publishers B.V. (North-Holland), P.O. Box 103, 1000 AC Amsterdam, The Netherlands. Telephone: (020) 5862 517, Telefax: (020) 5862 319, Email: (X400) C = NL; A = 400NET; P = SURF; O = ELSEVIER; S = NHPDESKED or (RFC822) NHPDESKED@ELSEVIER.NL, Telex: 10704 espom nl

Subscriptions

6 volumes (18 issues) of Computer Physics Communications have been announced for 1992. The subscription price for these volumes is Dfl.2970.00 (US \$1623.00). Postage and handling amount to Dfl.186.00 (US \$101.50). Therefore the total price is Dfl.3156.00 (US \$1724.50). The Dutch Guilder prices are definitive; dollar prices are for guidance only.

Subscriptions should be sent to the publisher, Elsevier Science Publishers B.V., Journals Department, P.O. Box 211, 1000 AE Amsterdam, or to any subscription agent.

Journals are sent by surface delivery to all countries, except the following countries where SAL air delivery (Surface Airlifted Mail) is ensured: USA, Canada, Japan, Australia, New Zealand, The People's Republic of China, Israel, India, Brazil, Malaysia, Singapore, South Korea, Taiwan, Pakistan, Hong Kong, South Africa. Air mail rates for other countries are available upon request. The publisher expects to supply missing numbers free only when losses have been sustained in transit, when the reserve stock will permit, and when claims have been made within three months following the date of publication.

Elsevier Science Publishers B.V. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher, Elsevier Science Publishers B.V., Copyright & Permissions Department, P.O. Box 521, 1000 AM Amsterdam, The Netherlands.

Special regulations for authors – Upon acceptance of an article by the journal, the author(s) will be asked to transfer copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information.

Submission to this journal of an article entails the author's irrevocable and exclusive authorization of the publisher to collect any sums or considerations for copying or reproduction payable by third parties (as mentioned in article 17 paragraph 2 of the Dutch Copyright Act of 1912 and in the Royal Decree of 20 June 1974 (S. 351) pursuant to article 16b of the Dutch Copyright Act of 1912) and/or to act in or out of Court in connection therewith.

Special regulations for readers in the USA – This journal has been registered with the Copyright Clearance Center, Inc. Consent is given for copying of articles for personal or internal use, or for the personal use of specific clients. This consent is given on the condition that the copier pays through the Center the per copy fee stated in the code on the first page of each article for copying beyond that permitted by Sections 107 or 108 of the US Copyright Law. The appropriate fee should be forwarded with a copy of the first page of the article to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, MA 01970, USA. If no code appears in an article, the author has not given broad consent to copy and permission to copy must be obtained directly from the author. All articles published prior to 1981 may be copied for a per-copy fee of US \$2.25, also payable through the Center. (N.B. For review journals this fee is \$0.25 per copy per page.) This consent does not extend to other kinds of copying, such as for general distribution, resale, advertising and promotion purposes, or for creating new collective works. Special written permission must be obtained from the publisher for such copying.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

Published monthly

Printed in The Netherlands

COMPUTER PHYSICS COMMUNICATIONS

3
0

Computer Physics Communications

Honorary Editor

P.G. BURKE, *Queen's University of Belfast*

Principal Editors

Geerd H.F. DIERCKSEN, *Max-Planck-Institut für Physik und Astrophysik, Garching*

James W. EASTWOOD, *Culham Laboratory, Abingdon*

J.E. INGLESFIELD, *Catholic University of Nijmegen*

F. JAMES, *CERN, Geneva*

Donald G. TRUHLAR, *University of Minnesota, Minneapolis, MN*

Master Index Volumes 51-60

Program Index Volumes 1-60

Recognized by the
European Physical Society

NORTH-HOLLAND

© 1992 Elsevier Science Publishers B.V. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher, Elsevier Science Publishers B.V., Copyright & Permissions Department, P.O. Box 521, 1000 AM Amsterdam, The Netherlands.

Special regulations for authors – Upon acceptance of an article by the journal, the author(s) will be asked to transfer copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information.

Submission to this journal of an article entails the author's irrevocable and exclusive authorization of the publisher to collect any sums or considerations for copying or reproduction payable by third parties (as mentioned in article 17 paragraph 2 of the Dutch Copyright Act of 1912 and in the Royal Decree of 20 June 1974 (S. 351) pursuant to article 16b of the Dutch Copyright Act of 1912) and/or to act in or out of Court in connection therewith.

Special regulations for readers in the USA – This journal has been registered with the Copyright Clearance Center, Inc. Consent is given for copying of articles for personal or internal use, or for the personal use of specific clients. This consent is given on the condition that the copier pays through the Center the per copy fee stated in the code on the first page of each article for copying beyond that permitted by Sections 107 or 108 of the US Copyright Law. The appropriate fee should be forwarded with a copy of the first page of the article to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, MA 01970, USA. If no code appears in an article, the author has not given broad consent to copy and permission to copy must be obtained directly from the author. All articles published prior to 1981 may be copied for a per-copy fee of US \$2.25, also payable through the Center. (N.B. For review journals this fee is \$0.25 per copy per page.) This consent does not extend to other kinds of copying, such as for general distribution, resale, advertising and promotion purposes, or for creating new collective works. Special written permission must be obtained from the publisher for such copying.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

This volume is printed on acid-free paper.

Printed in The Netherlands

Computer Physics Communications – List of Editors

Honorary Editor: P.G. BURKE, Belfast

Principal Editors

Geerd H.F. DIERCKSEN

Max-Planck-Institut für Physik und Astrophysik, Institut für Astrophysik,
Karl-Schwarzschild Strasse 1, W-8046 Garching bei München, Germany

James W. EASTWOOD

Culham Laboratory, Abingdon, Oxfordshire OX14 3DB, England

J.E. INGLESFIELD

ESM, Department of Physics, Catholic University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

F. JAMES

CERN, Data Handling Division, CH-1211 Geneva 23, Switzerland

Donald G. TRUHLAR

University of Minnesota, Department of Chemistry and Supercomputer Institute,
207 Pleasant Street S.E., Minneapolis, MN 55455, USA

Program Library Director

P.G. BURKE

Department of Applied Mathematics, Queen's University
of Belfast, Belfast BT7 1NN, N. Ireland

Program Librarian

Miss C. JACKSON

Department of Applied Mathematics, Queen's University
of Belfast, Belfast BT7 1NN, N. Ireland

Editors in specialist fields

Algebraic manipulation

J.P. FITCH

School of Mathematical Sciences, University of Bath, Bath
BA2 7AY, England

A.C. HEARN

The Rand Corporation, Information Sciences Department,
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90406,
USA

Astrophysics

D.G. HUMMER

Joint Institute for Laboratory Astrophysics, University of Colorado,
Boulder, CO 80309, USA

M.L. NORMAN

University of Illinois at Urbana-Champaign, National Center
for Supercomputing Applications, 5600 Beckman Institute for
Advanced Science and Technology, Drawer 25, 405 North
Mathews Avenue, Urbana, IL 61801, USA

W.M. TSCHARNUTER

Institut für Theoretische Astrophysik, Universität Heidelberg,
IM Neuenheimer Feld 561, W-6900 Heidelberg 1, Germany

Atomic and molecular dynamics

B.H. BRANSDEN

Department of Physics, University of Durham, Science Laboratories,
South Road, Durham City DH1 3LE, England

D.C. CLARY

University Chemical Laboratory, Lensfield Road, Cambridge
CB2 1EW, England

T.H. DUNNING, Jr.

Molecular Science Research Center, Pacific Northwest Laboratories,
Battelle Boulevard, Richland, WA 99352, USA

F.A. GIANTURCO

Dipartimento di Chimica, Università degli Studi di Roma,
Nuovo Edificio Chimico, Città Universitaria, 00100 Rome
AD, Italy

J.-M. LAUNAY

Observatoire de Paris, Département "Atomes et Molécules en Astrophysique", Unité Propre de Recherches n° 261 du CNRS, 5, place Jules Janssen, 92195 Meudon, France

H. NAKAMURA

Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

J. READING

Department of Physics, Texas A&M University, College Station, TX 77843-4242, USA

G.C. SCHATZ

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

R.E. WYATT

Department of Chemistry, University of Texas, Austin, TX 78712, USA

Atomic and molecular structure, spectra and properties**C.F. FISCHER**

Department of Computer Science, Vanderbilt University, Box 6035B, Nashville, TN 37235, USA

I.P. GRANT

Department of Theoretical Chemistry, University of Oxford, 1 South Park Road, Oxford OX1 3TG, England

S. IWATA

Department of Chemistry, Faculty of Science and Technology, Keio University, Minato-ku, Hiyoshi 3-14-1, Yokohama 223, Japan

I. SHAVITT

Chemistry Department, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, USA

B.T. SUTCLIFFE

Department of Chemistry, University of York, Heslington, York YO1 5DD, England

Algorithms, performance and architecture of new computer systems**J.C. BROWNE**

Department of Computer Science, University of Texas at Austin, Austin, TX 78712, USA

E. CLEMENTI

CRS4, P.O. Box 488, 09100 Cagliari, Italy

I.S. DUFF

Atlas Centre, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, England

G.C. FOX

Northeast Parallel Architectures Center, 111 College Place, Syracuse University, Syracuse, NY 13244-4100, USA

B. GLISS

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, W-7000 Stuttgart 80, Germany

Y. MURAOKA

Department of Electrical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 160, Japan

J. NADRchal

Institute of Physics ČSAV, Na Slovance 2, 180 40 Prague 8, Czechoslovakia

W. SCHÖNAUER

Universität Karlsruhe, Rechenzentrum, Zirkel 2, Postfach 6380, W-7500 Karlsruhe 1, Germany

K. SCHULTEN

University of Illinois, Beckman Institute and Department of Physics, 405 North Mathews Avenue, Urbana, IL 61801, USA

H.A.G. WIJSHOFF

Department of Computer Science, Rijksuniversiteit Utrecht, Padualaan 14, 3584 CH Utrecht, The Netherlands

Condensed matter physics**C.R.A. CATLOW**

Department of Chemistry, University of Keele, Keele, Staffordshire ST5 3BG, England

K. DIFFERT

Max-Planck-Institut für Metallforschung, Institut für Physik, Heisenbergstrasse 1, W-7000 Stuttgart 80, Germany

R. HAYDOCK

Department of Physics, 122 Science I, University of Oregon, Eugene, OR 97403, USA

O.H. NIELSEN

Laboratory of Applied Physics, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark

S.B. TRICKEY

QTP-Physics, Williamson Hall, University of Florida, Gainesville, FL 32611-2085, USA

Electromagnetics**D.A. McNAMARA**

University of Pretoria, Dept. of Electronics and Computer Engineering, Pretoria, South Africa 0002

D.E. STEIN

Westinghouse Electric Corporation, P.O. Box 169, Linthicum Heights, MD 21090, USA

High energy physics**R.K. BOCK**

CERN, CH-1211 Geneva 23, Switzerland

B. van Eijk

CERN, Div. ECP, CH-1211 Geneva 23, Switzerland

C.B. LANG

Institut für Theoretische Physik, Universitätsplatz 5, Universität Graz, A-8010 Graz, Austria

J. LINNEMANN

Department of Physics, Michigan State University, East Lansing, MI 48824-1116, USA

T. NASH

FNAL, P.O. Box 500, Batavia, IL 60510, USA

C. REBBI

Physics Department, 590 Commonwealth Avenue, Boston, MA 02215, USA

H. YOSHIKI

National Laboratory for High Energy Physics, Oho-Machi, Tsukuba-Gun, Ibaraki 300-32, Japan

Nuclear physics**B.S. NILSSON**

Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

Plasma physics**M. ASHOUR-ABDALLA**

Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024, USA

D.C. BARNES

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

D.W. HEWETT

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550, USA

Statistical mechanics and many body physics**K. BINDER**

Institut für Physik, Johannes-Gutenberg-Universität Mainz, Postfach 3980, W-6500 Mainz 1, Germany

M. PARRINELLO

IBM Research Division, Zürich Research Laboratory, CH-8803 Rüschlikon, Switzerland

Statistics and data analysis**F. JAMES**

CERN, Data Handling Division, CH-1211 Geneva 23, Switzerland

J. LINNEMANN

Department of Physics, Michigan State University, East Lansing, MI 48824-1116, USA

Contents

Subject index of computational physics papers to volumes 51–60	3
Author index to volumes 51–60	25
Program index to volumes 1–60	57

8
0

Subject index of computational physics papers to volumes 51–60

1. Astronomy and astrophysics

1.6. Solar physics

Schnack, D.D., Z. Mikić, D.C. Barnes and G. van Hoven, Magnetohydrodynamic simulation of coronal magnetic fields 59 (1990) 21
 Goedbloed, J.P., Stability of solar coronal loops 59 (1990) 39
 de Bruyne, P., M. Velli and A.W. Hood, The ideal MHD stability of line-tied coronal loops: a truncated Fourier series approach 59 (1990) 55
 van der Linden, R.A.M., M. Goossens and W. Kerner, A combined finite element/Fourier series method for the numerical study of the stability of line-tied magnetic plasmas 59 (1990) 61
 Poedts, S., M. Goossens and W. Kerner, Numerical simulation of the stationary state of periodically driven coronal loops 59 (1990) 75
 Poedts, S., M. Goossens and W. Kerner, Temporal evolution of resonant absorption in solar coronal loops 59 (1990) 95
 Lin, Y., Numerical calculation of force-free magnetic field for solar active regions and its application to prediction of solar flares 59 (1990) 139
 Velli, M., R. Grappin and A. Mangeney, Solar wind expansion effects on the evolution of hydromagnetic turbulence in the interplanetary medium 59 (1990) 153
 Reale, F., F. Brugè, G. Peres, S.L. Fornili, V. Martorana and S. Serio, One-dimensional hydrodynamic modeling of coronal plasmas on transputer arrays 60 (1990) 201

1.7. Stars and stellar systems

Toomre, J., N. Brummell, F. Cattaneo and N.E. Hurlburt, Three-dimensional compressible convection at low Prandtl numbers 59 (1990) 105
 Nordlund, Å. and R.F. Stein, 3-D simulations of solar and stellar convection and magnetoconvection 59 (1990) 119
 Hermans, D., W. Kerner and M. Goossens, Linearly overstable magnetic convection in 1D compressible and non-uniform plasmas 59 (1990) 127
 Ito, T., J. Makino, T. Ebisuzaki and D. Sugimoto, A special-purpose N -body machine GRAPE-1 60 (1990) 187

2. Atomic physics

2.1. Structure and properties

Hibbert, A., C. Froese Fischer and M.R. Godefroid, Non-orthogonal orbitals in MCHF or configuration interaction wave functions 51 (1988) 285
 Moncrieff, D., D.J. Baker and S. Wilson, Diagrammatic many-body perturbation expansion for atoms and molecules. VI 55 (1989) 31

Atomic physics — Structure and properties (continued)

Wilson, S., Universal basis sets and Cholesky decomposition of the two-electron integral matrix	58 (1990) 71
2.2. Spectra	
Fernandez, J.E., Monte Carlo computer simulation of the XRF intensity dependence on the propagation plane inclination	54 (1989) 211
Janicki, C., A computer program for the free-free and bound-free Gaunt factors of Rydberg systems	60 (1990) 281
2.4. Electron scattering	
Lan, V.K., M. Le Dourneuf, N.F. Allard, H.E. Saraph and W. Eissner, On the comparisons of close-coupling calculations using the UCL and opacity codes	55 (1989) 303
2.5. Photon interactions	
Fernandez, J.E., Monte Carlo computer simulation of the XRF intensity dependence on the propagation plane inclination	54 (1989) 211
2.6. Other collision processes	
Hansen, J.P. and K. Taulbjerg, A preorthonormalization procedure for coupled channel problems	51 (1988) 317
2.7. Wave functions and integrals	
Hibbert, A., C. Froese Fischer and M.R. Godefroid, Non-orthogonal orbitals in MCHF or configuration interaction wave functions	51 (1988) 285
Nesbet, R.K., Analytical evaluation of integrals over Coulomb wave functions	52 (1988/1989) 29
2.9. Theoretical methods	
Vinette, F. and J. Čížek, Perturbation energy expansion using hypervirial theorem and symbolic computation for the N -dimensional hydrogen atom in an external spherically symmetric field	52 (1988/1989) 35
4. Computational methods	
4.2. Other algebras and groups	
Gausterer, H. and S. Sanielevici, Remarks on the numerical solution of Langevin equations on unitary group spaces	52 (1988/1989) 43
4.3. Differential equations	
Young, D.M., A historical overview of iterative methods	53 (1989) 1
Nour-Omid, B., Applications of the Lanczos method	53 (1989) 157
Keyes, D.E., Domain decomposition methods for the parallel computation of reacting flows	53 (1989) 181
Bank, R.E., W.M. Coughran Jr., M.A. Driscoll, R.K. Smith and W. Fichtner, Iterative methods in semiconductor device simulation	53 (1989) 201
Lewis, J.G. and D.J. Pierce, Recent research in iterative methods at Boeing	53 (1989) 213
van der Vorst, H.A., ICCG and related methods for 3D problems on vector computers	53 (1989) 223

Computational methods — Differential equations (continued)

Chan, T.F., C-C.J. Kuo and C. Tong, Parallel elliptic preconditioners: Fourier analysis and performance on the connection machine 53 (1989) 237

Greenbaum, A., C. Li and H.Z. Chao, Parallelizing preconditioned conjugate gradient algorithms 53 (1989) 295

Kelkar, K. M. and S.V. Patankar, Development of generalized block correction procedures for the solution of discretized Navier–Stokes equations 53 (1989) 329

Foresti, S., G. Brussino, S. Hassanzadeh and V. Sonnad, Multilevel solution method for the p-version of finite elements 53 (1989) 349

Duneczky, C., R.E. Wyatt, D. Chatfield, K. Haug, D.W. Schwenke, D.G. Truhlar, Y. Sun and D.J. Kouri, Iterative methods for solving the nonsparse equations of quantum mechanical reactive scattering 53 (1989) 357

Schneider, B.I. and L.A. Collins, A direct iterative–variational method for solving large sets of linear algebraic equations 53 (1989) 381

Fortin, M., Some iterative methods for incompressible flow problems 53 (1989) 393

Dean, E., R. Glowinski and C.H. Li, Supercomputer solutions of partial differential equation problems in computational fluid dynamics and in control 53 (1989) 401

Tezduyar, T.E. and J. Liou, Grouped element-by-element iteration schemes for incompressible flow computations 53 (1989) 441

Cohen, R., S.-Y. Lin and M. Luskin, Relaxation and gradient methods for molecular orientation in liquid crystals 53 (1989) 455

Meurant, G., Practical use of the conjugate gradient method on parallel supercomputers 53 (1989) 467

Friedman, R.S. and M.J. Jamieson, Model potentials for multichannel eigenvalue problems 55 (1989) 137

Marshall, G., Monte Carlo methods for the solution of nonlinear partial differential equations 56 (1989/1990) 51

Thyagaraja, A. and D.F. Fletcher, The nonhyperbolicity of multiphase flow equations: a nonlinear nonproblem? 56 (1989/1990) 115

Friedman, R.S., M.J. Jamieson and S.C. Preston, On the numerical solution of coupled eigenvalue differential equations arising in molecular spectroscopy 58 (1990) 17

Weniger, E.J. and J. Cížek, Rational approximations for the modified Bessel function of the second kind 59 (1990) 471

Fontenelle, M.T. and J.A.C. Gallas, Constants of motion for the KdV and mKdV equations 60 (1990) 225

4.4. Feynman diagrams

Küblbeck, J., M. Böhm and A. Denner, Feyn Arts – Computer-algebraic generation of Feynman graphs and amplitudes 60 (1990) 165

4.5. Coulomb functions

Nesbet, R.K., Analytical evaluation of integrals over Coulomb wave functions 52 (1988/1989) 29

Pollock, E.L., Properties and computation of the Coulomb pair density matrix 52 (1988/1989) 49

Computational methods (continued)**4.6. Fourier transforms**

Wormeester, H., A.G.B.M. Sasse and A. van Silfhout, Deconvolution, differentiation and Fourier Transformation algorithms for noise-containing data based on splines and global approximation 52 (1988/1989) 19
 Damarowsky, M. and G.H. Guthöhrlein, Spectral analysis without knowledge of the line shape function by use of a new numerical procedure 52 (1988/1989) 187
 Hogewij, G.M.D., G. Hordósy and N.J. Lopes Cardozo, Heat transport analysis with error calculation 59 (1990) 245

4.7. Other functions

Butler, J.W., A proposed new approach to the expansion of mathematical functions 54 (1989) 221
 Kamgnia, E. and A. Sameh, A fast elliptic solver for simply connected domains 55 (1989) 43
 Weniger, E.J. and J. Cížek, Rational approximations for the modified Bessel function of the second kind 59 (1990) 471
 Lee, D.K., Application of theta functions for numerical evaluation of complete elliptic integrals of the first and second kinds 60 (1990) 319

4.8. Matrices

DeGrand, Th.A., A conditioning technique for matrix inversion for Wilson fermions 52 (1988/1989) 161
 Young, D.M., A historical overview of iterative methods 53 (1989) 1
 Cullum, J., W. Kerner and R. Willoughby, A generalized nonsymmetric Lanczos procedure 53 (1989) 19
 Davidson, E.R., Super-matrix methods 53 (1989) 49
 Boley, D., R. Maier and J. Kim, A parallel QR algorithm for the nonsymmetric eigenvalue problem 53 (1989) 61
 Saad, Y., Numerical solution of large nonsymmetric eigenvalue problems 53 (1989) 71
 Kress, J.D., G.A. Parker, R. T Pack, B.J. Archer and W.A. Cook, Comparison of Lanczos and subspace iterations for hyperspherical reaction path calculations 53 (1989) 91
 Kress, J.D., S.B. Woodruff, G.A. Parker and R. T Pack, Some strategies for enhancing the performance of the block Lanczos method 53 (1989) 109
 Gil, T.J., C.L. Winstead and P.W. Langhoff, Lanczos methods for Hamiltonian spectra: Hilbert-space approximations to interaction-prepared states 53 (1989) 123
 Haydock, R., Accuracy of the recursion method and basis nonorthogonality 53 (1989) 133
 Nex, C.M.M., The block Lanczos algorithm and the calculation of matrix resolvents 53 (1989) 141
 Nour-Omid, B., Applications of the Lanczos method 53 (1989) 157
 Parlett, B.N. and B. Nour-Omid, Towards a black box Lanczos program 53 (1989) 169
 Keyes, D.E., Domain decomposition methods for the parallel computation of reacting flows 53 (1989) 181
 Bank, R.E., W.M. Coughran Jr., M.A. Driscoll, R.K. Smith and W. Fichtner, Iterative methods in semiconductor device simulation 53 (1989) 201
 Lewis, J.G. and D.J. Pierce, Recent research in iterative methods at Boeing 53 (1989) 213
 van der Vorst, H.A., ICCG and related methods for 3D problems on vector computers 53 (1989) 223
 Chan, T.F., C-C.J. Kuo and C. Tong, Parallel elliptic preconditioners: Fourier analysis and performance on the connection machine 53 (1989) 237
 Elman, H.C. and E. Agrón, Ordering techniques for the preconditioned conjugate gradient method on parallel computers 53 (1989) 253

Computational methods — Matrices (continued)

Scott, D.S., Implementing Lanczos-like algorithms on hypercube architectures 53 (1989) 271
 Oppe, T.C., W.D. Joubert and D.R. Kincaid, An overview of NSPCG: a nonsymmetric preconditioned conjugate gradient package 53 (1989) 283
 Greenbaum, A., C. Li and H.Z. Chao, Parallelizing preconditioned conjugate gradient algorithms 53 (1989) 295
 Walker, H.F., Implementations of the GMRES method 53 (1989) 311
 Navarra, A., An application of GMRES to indefinite linear problems in meteorology 53 (1989) 321
 Duneczky, C., R.E. Wyatt, D. Chatfield, K. Haug, D.W. Schwenke, D.G. Truhlar,
 Y. Sun and D.J. Kouri, Iterative methods for solving the nonsparse equations of quantum mechanical reactive scattering 53 (1989) 357
 Schneider, B.I. and L.A. Collins, A direct iterative-variational method for solving large sets of linear algebraic equations 53 (1989) 381
 Fortin, M., Some iterative methods for incompressible flow problems 53 (1989) 393
 Tezduyar, T.E. and J. Liou, Grouped element-by-element iteration schemes for incompressible flow computations 53 (1989) 441
 Meurant, G., Practical use of the conjugate gradient method on parallel supercomputers 53 (1989) 467
 Haydock, R., Recursive tridiagonalization of infinite dimensional Hamiltonians 55 (1989) 1
 Friedman, R.S. and M.J. Jamieson, Model potentials for multichannel eigenvalue problems 55 (1989) 137
 Burkitt, A.N. and A.C. Irving, Inversion of the fermion matrix and the equivalence of the conjugate gradient and Lanczos algorithms 59 (1990) 447

4.9. Minimization and fitting

Wormeester, H., A.G.B.M. Sasse and A. van Silfhout, Deconvolution, differentiation and Fourier Transformation algorithms for noise-containing data based on splines and global approximation 52 (1988/1989) 19
 Damarowsky, M. and G.H. Guthörlein, Spectral analysis without knowledge of the line shape function by use of a new numerical procedure 52 (1988/1989) 187
 Pantelic, D.V. and Z.D. Janevski, A new kind of splines and their use for fast ray-tracing in reflective cavities 55 (1989) 5
 Billoir, P., Progressive track recognition with a Kalman-like fitting procedure 57 (1989) 390

4.11. Quadratures

Migneron, R., K.S.S. Narayanan and H. Rasmussen, Numerical inversion of moments 54 (1989) 239

4.12. Other numerical methods

Sobottka, S.E., R.J. Chandross, G.G. Cornick, B.D. Justice, R.S. Stewart and
 J.A. Thomas, Fast algorithm for identifying clusters in digitized images 51 (1988) 295
 Murtagh, F.D., Hierarchical trees in N -body simulations: relations with cluster analysis methods 52 (1988/1989) 15
 Keyes, D.E., Domain decomposition methods for the parallel computation of reacting flows 53 (1989) 181
 van der Vorst, H.A., ICCG and related methods for 3D problems on vector computers 53 (1989) 223
 Chan, T.F., C-C.J. Kuo and C. Tong, Parallel elliptic preconditioners: Fourier analysis and performance on the connection machine 53 (1989) 237

Computational methods — Other numerical methods (continued)

Elman, H.C. and E. Agrón, Ordering techniques for the preconditioned conjugate gradient method on parallel computers 53 (1989) 253

Oppe, T.C., W.D. Joubert and D.R. Kincaid, An overview of NSPCG: a nonsymmetric preconditioned conjugate gradient package 53 (1989) 283

Greenbaum, A., C. Li and H.Z. Chao, Parallelizing preconditioned conjugate gradient algorithms 53 (1989) 295

Walker, H.F., Implementations of the GMRES method 53 (1989) 311

Kelkar, K. M. and S.V. Patankar, Development of generalized block correction procedures for the solution of discretized Navier–Stokes equations 53 (1989) 329

Parsons, I.D., The implementations of an element level multigrid algorithm on the Alliant FX/8 53 (1989) 337

Foresti, S., G. Brussino, S. Hassanzadeh and V. Sonnad, Multilevel solution method for the p-version of finite elements 53 (1989) 349

Duneczky, C., R.E. Wyatt, D. Chatfield, K. Haug, D.W. Schwenke, D.G. Truhlar, Y. Sun and D.J. Kouri, Iterative methods for solving the nonsparse equations of quantum mechanical reactive scattering 53 (1989) 357

Schneider, B.I. and L.A. Collins, A direct iterative–variational method for solving large sets of linear algebraic equations 53 (1989) 381

Fortin, M., Some iterative methods for incompressible flow problems 53 (1989) 393

Dean, E., R. Glowinski and C.H. Li, Supercomputer solutions of partial differential equation problems in computational fluid dynamics and in control 53 (1989) 401

Cohen, R., S.-Y. Lin and M. Luskin, Relaxation and gradient methods for molecular orientation in liquid crystals 53 (1989) 455

Dubey, I.P. and S.K. Upadhyay, A trivariate interpolation method developed on the basis of Akima's bivariate interpolation procedure 54 (1989) 23

Migneron, R., K.S.S. Narayanan and H. Rasmussen, Numerical inversion of moments 54 (1989) 239

Kamgnia, E. and A. Sameh, A fast elliptic solver for simply connected domains 55 (1989) 43

McColl, W.F., Parallel algorithms and architectures 57 (1989) 84

May, E.N., Portable parallel programming in a Fortran environment 57 (1989) 278

Wilson, S., Universal basis sets and Cholesky decomposition of the two-electron integral matrix 58 (1990) 71

Jaquet, R., Application of the finite element method to eigenvalue problems. I. One dimensional calculations using optimized elements 58 (1990) 257

Llobet, X., K. Appert, A. Bondeson and J. Vaclavik, On spectral pollution 59 (1990) 199

Weniger, E.J. and J. Čížek, Rational approximations for the modified Bessel function of the second kind 59 (1990) 471

Sararu, A. and M. Sararu, Stability of finite linear combinations of vectors under changes of their coefficients. An application to approximation problems 60 (1990) 47

4.13. Statistical methods

Vohwinkel, C., A fast method to gather neighbors in vectorized Monte Carlo simulations 51 (1988) 323

De Angelis, A., A class of N -dimensional probability density functions suitable for random generation 52 (1988/1989) 61

Decker, K., Numerical investigation of a coarse-to-fine transformation for multigrid Monte Carlo updating 54 (1989) 1

Computational methods — Statistical methods (continued)

Fernandez, J.E., Monte Carlo computer simulation of the XRF intensity dependence on the propagation plane inclination	54 (1989) 211
Amar, J.G. and F. Sullivan, Monte Carlo simulation of domain growth in the kinetic Ising model on the connection machine	55 (1989) 287
Marshall, G., Monte Carlo methods for the solution of nonlinear partial differential equations	56 (1989/1990) 51
Toussaint, D., Introduction to algorithms for Monte Carlo simulations and their application to QCD	56 (1989/1990) 69
Gils, H.J., D. Heck, J. Oehlschläger, G. Schatz, T. Thouw and A. Merkel, A multi-transputer system for parallel Monte Carlo simulation of extensive air showers	56 (1989/1990) 105
Barlow, R. and P. Hinde, Fitting the ratio of two distributions	56 (1989/1990) 325
Martin, W.R., Successful vectorization – reactor physics Monte Carlo code	57 (1989) 68
Berretti, A. and A.D. Sokal, Vectorized program for Monte Carlo simulation of self-avoiding walks	58 (1990) 1
Wang, C.-J. and C.-H. Wu, Concurrent and vectorized Monte Carlo simulation of the evolution of an assembly of particles increasing in number	58 (1990) 63
Zlokazov, V.B., Analysis of hidden anharmonic periodicities	59 (1990) 217
Desalvo, A., G. Erbacci and R. Rosa, Vectorized code for the three-dimensional spin-exchange kinetic Ising model on cubic and diamond lattices	60 (1990) 305
Heermann, D.W., P. Nielaba and M. Rovere, Hybrid molecular dynamics	60 (1990) 311

4.14. Utility

Bhowmick, S., R. Bhattacharya and D. Roy, Iterations of convergence accelerating nonlinear transforms	54 (1989) 31
Bhattacharya, R., D. Roy and S. Bhowmick, On the regularity of the Levin u -transform	55 (1989) 297
Aiello, G.R., M. Budinich and E. Milotti, Hardware implementation of a GFSR pseudo-random number generator	56 (1989/1990) 135
Brody, T.A., Random-number generation for parallel processors	56 (1989/1990) 147
Lessner, E.S., Weighted fit of parametric functions to distributions. The new interface of HBOOK with MINUIT	57 (1989) 385
Ilyin, V.A., A.P. Kryukov, A.Ya. Rodionov and A.Yu. Taranov, High speed Dirac algebra calculations in a space of arbitrary dimension by means of a computer algebra system	57 (1989) 505
Unonius, L. and P. Paatero, Use of singular value decomposition for analyzing repetitive measurements	59 (1990) 225
Mohamed, A.R. and M.A. El Sharkawy, 16-bit microprocessor in second-order state-space digital filter design and implementation	59 (1990) 283
Rycerz, Z.A., Acceleration of molecular dynamics simulation of order N with neighbour list	60 (1990) 297

5. Computer algebra

Küblbeck, J., M. Böhm and A. Denner, Feyn Arts – Computer-algebraic generation of Feynman graphs and amplitudes	60 (1990) 165
---	---------------

6. Computer languages, hardware and software

6.1. Hardware

Capotondi, A., V. Sonnad and S. Chin, Parallel solution of the shallow water equations using an explicit finite difference algorithm 52 (1988/1989) 195

Grosdidier, G., Use of an IBM-FPS loosely coupled array of processors for high energy physics programs 52 (1988/1989) 207

van der Vorst, H.A., ICCG and related methods for 3D problems on vector computers 53 (1989) 223

Chan, T.F., C.-C.J. Kuo and C. Tong, Parallel elliptic preconditioners: Fourier analysis and performance on the connection machine 53 (1989) 237

Elman, H.C. and E. Agrón, Ordering techniques for the preconditioned conjugate gradient method on parallel computers 53 (1989) 253

Scott, D.S., Implementing Lanczos-like algorithms on hypercube architectures 53 (1989) 271

Parsons, I.D., The implementations of an element level multigrid algorithm on the Alliant FX/8 53 (1989) 337

Meurant, G., Practical use of the conjugate gradient method on parallel supercomputers 53 (1989) 467

Burkitt, A. N. and D.W. Heermann, Parallelization of a cluster algorithm 54 (1989) 201

Raine, A.R.C., D. Fincham and W. Smith, Systolic loop methods for molecular dynamics simulation using multiple transputers 55 (1989) 13

Amar, J.G. and F. Sullivan, Monte Carlo simulation of domain growth in the kinetic Ising model on the connection machine 55 (1989) 287

Hey, A.J.G., The role of MIMD arrays of transputers in computational physics 56 (1989/1990) 1

Huberman, B.A., Parallel computation 56 (1989/1990) 25

Gils, H.J., D. Heck, J. Oehlschläger, G. Schatz, T. Thouw and A. Merkel, A multi-transputer system for parallel Monte Carlo simulation of extensive air showers 56 (1989/1990) 105

Aiello, G.R., M. Budinich and E. Milotti, Hardware implementation of a GFSR pseudo-random number generator 56 (1989/1990) 135

Aiello, G.R., M. Budinich and E. Milotti, A parallel processor for the simulation of Ising spin systems 56 (1989/1990) 141

Otto, S.W., Shared-memory versus distributed-memory: halftime score 57 (1989) 95

Levine, R.H., You want me to predict the future? 57 (1989) 118

Avico, N., P. Bacilieri, S. Cabasino, N. Cabibbo, L.A. Fernández, G. Fiorentini, A. Lai, M.P. Lombardo, E. Marinari, F. Marzano, P. Paolucci, G. Parisi, J. Pech, F. Rapuano, E. Remiddi, R. Sarno, G. Salina, A. Tarancón, G.M. Todesco, M. Torelli, R. Tripiccione and W. Tross, From APE to APE-100: from 1 to 100 Gflops in lattice gauge theory simulations 57 (1989) 285

Flieller, S., T.Node, industrial version of SuperNode 57 (1989) 492

Berretti, A. and A.D. Sokal, Vectorized program for Monte Carlo simulation of self-avoiding walks 58 (1990) 1

Mohamed, A.R. and M.A. El Sharkawy, 16-bit microprocessor in second-order state-space digital filter design and implementation 59 (1990) 283

Ito, T., J. Makino, T. Ebisuzaki and D. Sugimoto, A special-purpose N -body machine GRAPE-1 60 (1990) 187

6.2. Languages

Hey, A.J.G., The role of MIMD arrays of transputers in computational physics 56 (1989/1990) 1

Metcalf, M., Recent progress in Fortran standardization 57 (1989) 78

Computer languages, hardware and software — Languages (continued)

Chandra, U., G. Riccardi, J. Vagi, J.-L. Dekeyser and F. Hannedouche, Aftran: array Fortran programming language

57 (1989) 263

White, B., The comparison and selection of programming languages for high energy physics applications

57 (1989) 538

6.3. Networks

Grosdidier, G., Use of an IBM-FPS loosely coupled array of processors for high energy physics programs

52 (1988/1989) 207

Scott, D.S., Implementing Lanczos-like algorithms on hypercube architectures

53 (1989) 271

Burkitt, A. N. and D.W. Heermann, Parallelization of a cluster algorithm

54 (1989) 201

Raine, A.R.C., D. Fincham and W. Smith, Systolic loop methods for molecular dynamics simulation using multiple transputers

55 (1989) 13

Hey, A.J.G., The role of MIMD arrays of transputers in computational physics

56 (1989/1990) 1

Huberman, B.A., Parallel computation

56 (1989/1990) 25

Slaets, J.F.W. and G. Travieso, Parallel computing: a case study

56 (1989/1990) 63

Gils, H.J., D. Heck, J. Oehlschläger, G. Schatz, T. Thouw and A. Merkel, A multi-transputer system for parallel Monte Carlo simulation of extensive air showers

56 (1989/1990) 105

Aiello, G.R., M. Budinich and E. Milotti, A parallel processor for the simulation of Ising spin systems

56 (1989/1990) 141

Booth, S.P., K.C. Bowler, D.J. Candlin, R.D. Kenway, B.J. Pendleton, A.M. Thornton, D.J. Wallace, J. Blair-Fish and D. Roweth, Large scale applications of transputers in HEP: the Edinburgh Concurrent Supercomputer Project

57 (1989) 101

Forrest, B.M., A. Baumgärtner and D.W. Heermann, Parallel simulation of dense two-dimensional polymer systems

59 (1990) 455

Brugè, F. and S.L. Fornili, Concurrent molecular dynamics simulation of spinodal phase transition on transputer arrays

60 (1990) 31

Brugè, F. and S.L. Fornili, A distributed dynamic load balancer and its implementation on multi-transputer systems for molecular dynamics simulation

60 (1990) 39

Reale, F., F. Brugè, G. Peres, S.L. Fornili, V. Martorana and S. Serio, One-dimensional hydrodynamic modeling of coronal plasmas on transputer arrays

60 (1990) 201

6.4. Neural networks

Parga, N., Neural networks as models of associative memories

55 (1989) 77

Koberle, R., Neural networks as content addressable memories and learning machines

56 (1989/1990) 43

Virasoro, M.A., Disordered models of the brain

56 (1989/1990) 93

Würtz, D. and G. Hartung, Neural computing on a system of parallel organized transputers: software implementation and hardware configuration

56 (1989/1990) 155

Denby, B. and S.L. Linn, Spatial pattern recognition in a high energy particle detector using a neural network algorithm

56 (1989/1990) 293

Humpert, B., On the use of neural networks in high energy physics experiments

56 (1989/1990) 299

Treleaven, P. and M. Vellasco, Neural computing overview

57 (1989) 543

Humpert, B., A comparative study of neural network architectures

58 (1990) 223

6.5. Software

Raine, A.R.C., D. Fincham and W. Smith, Systolic loop methods for molecular dynamics simulation using multiple transputers

55 (1989) 13

Computer languages, hardware and software — Software (continued)

Moncrieff, D., D.J. Baker and S. Wilson, Diagrammatic many-body perturbation expansion for atoms and molecules. VI 55 (1989) 31
 Grest, G.S., B. Dünweg and K. Kremer, Vectorized link cell FORTRAN code for molecular dynamics simulation for a large number of particles 55 (1989) 269
 Amar, J.G. and F. Sullivan, Monte Carlo simulation of domain growth in the kinetic Ising model on the connection machine 55 (1989) 287
 Mazza, C., Software project management 57 (1989) 23
 Gather, K.S., SASD-tools for program design 57 (1989) 29
 Sufrin, B., Formal methods in system design and implementation 57 (1989) 108
 Kunz, P.F., Software management issues 57 (1989) 191
 Hoare, C.A.R., Formal methods in computer system design 57 (1989) 206
 Hall, D.E., W.H. Greiman, W.F. Johnston, A.X. Merola, S.C. Loken and D.W. Robertson, The software bus: a vision for scientific software development 57 (1989) 211
 Story, C.M., Software engineering in industry 57 (1989) 217
 Berny, L. and H. Frese, Automatic generation of software detailed design documents for C language programs 57 (1989) 476

7. Condensed matter and surface science**7.3. Electronic structure**

Haydock, R., Accuracy of the recursion method and basis nonorthogonality 53 (1989) 133
 Nex, C.M.M., The block Lanczos algorithm and the calculation of matrix resolvents 53 (1989) 141
 Lee, M.H., Frequency moment sum rules, recurrence relations and continued fractions in nonequilibrium statistical mechanics 53 (1989) 147
 Teo, K.H., W. Allegretto, J.N. McMullin and H.G. Schmidt-Weinmar, Self-consistent calculation of the density-of-states mass of holes in 2-D silicon structures 59 (1990) 277

7.7. Other condensed matter physics inc. simulation of liquids and solids

Schoen, M., Structure of a simple molecular dynamics FORTRAN program optimized for CRAY vector processing computers 52 (1988/1989) 175
 Bank, R.E., W.M. Coughran Jr., M.A. Driscoll, R.K. Smith and W. Fichtner, Iterative methods in semiconductor device simulation 53 (1989) 201
 Mościński, M., J. Kitowski, Z.A. Rycerz and P.W.M. Jacobs, A vectorized algorithm on the ETA 10-P for molecular dynamics simulation of large number of particles confined in a long cylinder 54 (1989) 47
 Raine, A.R.C., D. Fincham and W. Smith, Systolic loop methods for molecular dynamics simulation using multiple transputers 55 (1989) 13
 Slaets, J.F.W. and G. Travieso, Parallel computing: a case study 56 (1989/1990) 63
 Morales, J.J., L.F. Rull and S. Toxvaerd, Efficiency test of the traditional MD and the link-cell methods 56 (1989/1990) 129
 Brecht, S.H. and J.R. Ferrante, Vortex-in-cell calculations in three dimensions 58 (1990) 25
 Pais, V.A. and A. Caruso, A collisional method to correct the mesh distortion in two-dimensional Langrangian hydrocodes 58 (1990) 55
 Wu, E.Y. and R.J. Friauf, Techniques for achieving thermal equilibrium in molecular dynamics calculations for solids 59 (1990) 259

Condensed matter and surface science — Other condensed matter physics inc. simulation of liquids and solids (continued)

Arnold, A. and N. Mauser, An efficient method of bookkeeping next neighbours in molecular dynamics simulations 59 (1990) 267

Randrup, J., Microcanonical sampling of momenta in simulations of many-particle systems 59 (1990) 439

Singer, S.J., Multiparticle Monte Carlo moves: algorithm for solids with free-energy determination 59 (1990) 463

Evans, M.W., On the isolation of possible artifacts due to cubic periodic boundary conditions 59 (1990) 495

Brugè, F. and S.L. Fornili, Concurrent molecular dynamics simulation of spinodal phase transition on transputer arrays 60 (1990) 31

Brugè, F. and S.L. Fornili, A distributed dynamic load balancer and its implementation on multi-transputer systems for molecular dynamics simulation 60 (1990) 39

Wang, S.C., C.K. Chan and S.P. Li, A vectorized algorithm on the ETA-10Q for MD simulation of particles in a box interacting by long-ranged forces 60 (1990) 181

Morales, J.J. and M.J. Nuevo, A technique for improving the link-cell method 60 (1990) 195

Chialvo, A.A. and P.G. Debenedetti, On the use of the Verlet neighbor list in molecular dynamics 60 (1990) 215

Rycerz, Z.A., Acceleration of molecular dynamics simulation of order N with neighbour list 60 (1990) 297

Desalvo, A., G. Erbacci and R. Rosa, Vectorized code for the three-dimensional spin-exchange kinetic Ising model on cubic and diamond lattices 60 (1990) 305

Heermann, D.W., P. Nielaba and M. Rovere, Hybrid molecular dynamics 60 (1990) 311

7.8. Structure and lattice dynamics

Rosato, V., G. Maino and A. Ventura, A molecular dynamics model for the study of helium on transition metals 54 (1989) 251

Babalevski, F. and O. Peshev, An algorithm to construct quasilattices and study percolation on them 60 (1990) 27

Stefanou, N., H. Akai and R. Zeller, An efficient numerical method to calculate shape truncation functions for Wigner-Seitz atomic polyhedra 60 (1990) 231

7.10. Collisions in solids

Rosato, V., G. Maino and A. Ventura, A molecular dynamics model for the study of helium on transition metals 54 (1989) 251

9. Data bases, data compilation & information retrieval

Putzer, A., Data structures and data-base systems used in high energy physics: modelling and implementation 57 (1989) 156

Read, B.J., Data structures and organisation: special problems in scientific applications 57 (1989) 164

Skotniczny, Z., Query by Forms: user-oriented relational database retrieving system and its application in analysis of experiment data 57 (1989) 225

Rushton, A.M., L. Hunt, T. McGlynn, F. Ochsenbein, B. Perrine, A. Richmond, F. Romelfanger, G. Russo, P.M.B. Shames, J. Travissano, L. Willard and S. Zeller, Design and implementation of an optical disk-based astronomical data archive 57 (1989) 427

Data bases, data compilation & information retrieval (continued)

Whalley, M.R., The Durham-RAL high energy physics databases – HEPDATA	57 (1989) 536
11. Elementary particle physics	
<i>11.1. General, high energy physics and computing</i>	
Colangelo, P., L. Cosmai and E. Scrimieri, Computer simulation of gauge theories on a lattice with improved rotational symmetry	54 (1989) 235
Humpert, B., On the use of neural networks in high energy physics experiments	56 (1989/1990) 299
Bock, R.K., Bringing together high energy physicist and computer scientist. A summary of the Oxford conference on Computing in High Energy Physics	57 (1989) 1
Williams, D.O., Computing on the eve of LEP data-taking: are we ready?	57 (1989) 8
Hertzberger, L.O., Does HEP still hold challenges for computer science?	57 (1989) 15
Mackenzie, P.B., Machines for lattice gauge theory	57 (1989) 37
Nash, T., Event parallelism: distributed memory parallel computing for high energy physics experiments	57 (1989) 47
Gamble, J.N., Beyond Ethernet – future LAN's	57 (1989) 129
Wiegandt, D., UNIX and HEP	57 (1989) 134
Myers, D.R., HEP graphics: standard and portability versus performance and cost	57 (1989) 176
Fluckiger, F., Overview of HEP wide area networking: producer perspective	57 (1989) 183
Hutton, J., Future scientific networking	57 (1989) 188
Watase, Y., High energy physics computing in Japan	57 (1989) 198
Kowalski, H., T. Poser, L. Stanco and E. Tscheslog, Investigation of ADAMO performance in the ZEUS calorimeter reconstruction program	57 (1989) 222
Lebrun, P. and A. Kreymer, High level language memory management on parallel architectures	57 (1989) 231
Brun, M., R. Brun and A.A. Rademakers, CMZ – a source code management system	57 (1989) 235
Mueller, K. and P. Pfeifer, CODEBASE: a commercially developed code management system and code transfer facility	57 (1989) 239
van Herwijnen, E., The use of text interchange standards for submitting physics articles to journals	57 (1989) 244
NA-35 Collaboration, G. Vesztregombi, "Iconic" tracking algorithms for high energy physics using the TRAX-I massively parallel processor	57 (1989) 290
Denby, B. and S.L. Linn, Status of HEP neural net research in the USA	57 (1989) 297
Bizeau, C., A. Bogaerts, R.W. Dobinson, D.R.N. Jeffery, W. Lu, C. Parkman and Y. Perrin, The use and possible abuse of transputer links	57 (1989) 301
Nichols, J., The Fermilab central computing facility architectural model	57 (1989) 417
Avery, P. and A. White, UFMULTI: a new parallel processing software system for HEP	57 (1989) 422
Schilling, P.K., Graphics at DESY	57 (1989) 443
Runge, K., A high speed network for HEP in Germany	57 (1989) 452
Karita, Y., F. Abe, H. Hirose, H. Goto, R. Ogasawara, F. Yuasa, Y. Banno and Y. Yasu, Networking for high energy physics in Japan	57 (1989) 455
Bacilieri, P., B. Caccia, R. Cardarelli, G.P. Carlucci, O. Ciaffoni, M. Coli, G. Di Pirro, M.L. Ferrer, A. Ghiselli, A. Martini, G. Medici, G. Mirabelli, E. Pace, R. Santonico, L. Trasatti, E. Valente and S. Valentini, STARNET, a fiber optic metropolitan area network with centralized control	57 (1989) 459

Elementary particle physics — General, high energy physics and computing (continued)

Adye, T., T. Berners-Lee, S. Brobecker, A. Camacho, D. Davids, F. Harris and P. Lorenz, Online communications in the DELPHI experiment	57 (1989) 466
da Rocha, A.R.C. and S. Palermo, Software quality assurance in HEP	57 (1989) 524
Schaile, O., DZDISP: a graphics tool to interact with ZEBRA data structures	57 (1989) 528
Voevodin, V.P., V.N. Gorovun, A.M. Davidenko, An.V. Ekimov, N.S. Ivanova, V.I. Kovaltsov, Yu.M. Kozyaev, A.F. Lukyantsev, M.Yu. Matveev, V.A. Senko, A.N. Sytin and G.V. Tishin, The 780/E 32-bit specialized processor-emulator	57 (1989) 532
11.3. Cascade and shower simulation	
Gils, H.J., D. Heck, J. Oehlschläger, G. Schatz, T. Thouw and A. Merkel, A multi- transputer system for parallel Monte Carlo simulation of extensive air showers	56 (1989/1990) 105
Chen, H.-S., Fast simulation of showers in inhomogeneous media	57 (1989) 375
11.4. Quantum electrodynamics (see also Feynman diagrams, §4.4)	
Küblbeck, J., M. Böhm and A. Denner, Feyn Arts – Computer-algebraic generation of Feynman graphs and amplitudes	60 (1990) 165
11.5. Quantum chromodynamics, lattice gauge theory	
Nakamura, A., G. Feuer, H.C. Hege, V. Linke and M. Haraguchi, Fast algorithm for an exact treatment of lattice quantum chromodynamics by Monte Carlo simulation on vector processors	51 (1988) 301
Vohwinkel, C., A fast method to gather neighbors in vectorized Monte Carlo simulations	51 (1988) 323
Kronfeld, A.S., K.J.M. Moriarty and G. Schierholz, An efficient method for the computation of glueball masses using the inverse of the covariant Dirac operator as correlator	52 (1988/1989) 1
Decker, K., Numerical investigation of a coarse-to-fine transformation for multigrid Monte Carlo updating	54 (1989) 1
Biddulph, P. and G. Thompson, Improved modelling of independent parton hadronization	54 (1989) 13
Toussaint, D., Introduction to algorithms for Monte Carlo simulations and their application to QCD	56 (1989/1990) 69
Mackenzie, P.B., Machines for lattice gauge theory	57 (1989) 37
Kennedy, A.D., Status of lattice gauge theory calculations	57 (1989) 57
Avico, N., P. Bacilieri, S. Cabasino, N. Cabibbo, L.A. Fernández, G. Fiorentini, A. Lai, M.P. Lombardo, E. Marinari, F. Marzano, P. Paolucci, G. Parisi, J. Pech, F. Rapuano, E. Remiddi, R. Sarno, G. Salina, A. Tarancón, G.M. Todesco, M. Torelli, R. Tripiccione and W. Tross, From APE to APE-100: from 1 to 100 Gflops in lattice gauge theory simulations	57 (1989) 285
Knowles, I.G., A linear algorithm for calculating spin correlations in hadronic collisions	58 (1990) 271
Burkitt, A.N. and A.C. Irving, Inversion of the fermion matrix and the equivalence of the conjugate gradient and Lanczos algorithms	59 (1990) 447
Degrand, T.A. and P. Rossi, Conditioning techniques for dynamical fermions	60 (1990) 211
11.7. Detector design and simulation	
Youssef, S., W. Martin, T.C. Wan and S. Wilderman, A vectorized Monte Carlo detector simulation program for electromagnetic interactions	57 (1989) 251

Elementary particle physics — Detector design and simulation (continued)

Georgopoulos, C.H. and M.E. Mermikides, Vectorized simulation of the response of a time projection chamber 57 (1989) 255

Corden, M.J., C.H. Georgopoulos and M.E. Mermikides, Implementation of the ALEPH detector simulation code using UNIX with on-line graphics display 57 (1989) 260

Corden, M.J., C.H. Georgopoulos, R. Brun, F. Bruyant and J.-L. Dekeyser, Progress towards a vectorized version of the GEANT Monte Carlo program 57 (1989) 268

Dobberstein, M.P., The calibration of the ZEUS forward drift chamber: an application for software with a high degree of parallelism 57 (1989) 483

Jejcic, A., J. Maillard, J. Silva, M. Auguin and F. Boeri, Could running experience on SPMD computers contribute to the architectural choices for future dedicated computers for high energy physics simulation? 57 (1989) 507

Männer, R., A programmable systolic array correlator as a trigger processor for electron pairs in RICH (ring image Cherenkov) counters 57 (1989) 516

Hallam-Baker, P.M. and I.C. McArthur, Use of Occam in ZEUS 57 (1989) 520

11.8. Detector control and data acquisition

Krischer, W., Commercial highly parallel signal processors on-line? 57 (1989) 121

Briggs, D., T. Glanzman, P. Grosse-Wiesmann, J. Tinsman, S. Holmgren and M.W. Schaad, A calorimeter software trigger for the Mark II detector at SLC 57 (1989) 273

Thaler, J.J., Data-acquisition modeling and simulation 57 (1989) 309

ZEUS CDAQ Collaboration, , P. Erhard, J. Ficenec, K. Gather, G. Heath, M. Iacovacci, J. Kehres, R. Loveless, M. Mobayyen, D. Notz, R. Orr, A. Sephton, R. Stroili, K. Tokushuku, W. Vogel, J. Whitmore and L. Wiggers, ZEUS hardware control system 57 (1989) 313

ZEUS Collaboration, , L.W. Wiggers and J.C. Vermeulen, The use of transputers in the ZEUS online system 57 (1989) 316

ZEUS CDAQ Collaboration, , S. Bhadra, M. Crombie, D. Kirkby and R.S. Orr, The ZEUS third-level trigger system 57 (1989) 321

Quarrie, D.R., M.D. Anderson, C.T. Day, G. Goeransson, J. Patrick, M. Schmitz, E. Sexton and B. Troemel, The CDF online system 57 (1989) 325

Booth, A.W., J.T. Carroll, R. Forster, G. Goeransson, L. Gustafsson and N. Ho, A knowledge-based approach to network and module diagnosis 57 (1989) 332

Cutts, D., J.S. Hoftun, C.R. Johnson and R.T. Zeller, Data acquisition at D0 57 (1989) 339

Sendall, D.M., C. Boissat, W. Bozzoli, P. Burkimsher, R. Jones, J.-P. Matheys, G. Mornacchi, T. Nguyen, P. Vande Vyvre, A. Vascotto and D. Weaver, MODEL: a software suite for data acquisition 57 (1989) 343

White, V., Distributed data-acquisition systems (PAN-DA) for Fermilab experiments 57 (1989) 348

Saulys, A.C., A. Etkin, K.J. Foley, R.W. Hackenburg, R.S. Longacre, W.A. Love, T.W. Morris, E.D. Platner, S.J. Lindenbaum, C.S. Chan and M.A. Kramer, MPS data-acquisition software system 57 (1989) 353

Barao, F., C. Gaspar, Ph. Gavillet, J.Ph. Laugier, B. Martin, P. Moreau, M. Pimenta, M. Reis and J. Varela, DELPHI's central partition 57 (1989) 358

Werner, C.M.L., M. Pimenta, J. Varela and J. Souza, FADO 2.0: a high level tagging language 57 (1989) 364

Cittolin, S., M. Demoulin, A. Fucci, W. Haynes, B. Martin, J.P. Porte and P. Sphicas, The third level trigger and output event unit of the UA1 data-acquisition system 57 (1989) 370

Elementary particle physics — Detector control and data acquisition (continued)

Wan Abdullah, W.A.T., Connectionist architectures for triggering and track reconstruction	57 (1989) 472
Cutts, D., J.S. Hoftun, A. Sornborger, C.R. Johnson and R.T. Zeller, Neural networks for event filtering at D0	57 (1989) 478
Hall, D.E., A. Agogino, W.H. Greiman, W.F. Johnston, D. Olson, R. Paasch, A. Padgaonkar and D.W. Robertson, A fault location system for a time of flight detector array	57 (1989) 499
Boissat, C., R. Jones and G. Mornacchi, The model human interface	57 (1989) 512
Budinich, M. and S. Esquivel, An efficient algorithm for charged tracks pattern recognition	58 (1990) 83
11.9. Event reconstruction and data analysis (except data bases)	
Denby, B. and S.L. Linn, Spatial pattern recognition in a high energy particle detector using a neural network algorithm	56 (1989/1990) 293
Nash, T., Event parallelism: distributed memory parallel computing for high energy physics experiments	57 (1989) 47
Mount, R.P., Overview of the essential tools	57 (1989) 140
Blobel, V., From DST to publication	57 (1989) 148
Fisher, S.M. and P. Palazzi, Using a data model from software design to data analysis: what have we learned	57 (1989) 169
Stanco, L., Particle track reconstruction in heavy materials with the Kalman technique	57 (1989) 380
Lessner, E.S., Weighted fit of parametric functions to distributions. The new interface of HBOOK with MINUIT	57 (1989) 385
Billoir, P., Progressive track recognition with a Kalman-like fitting procedure	57 (1989) 390
Dittus, F., Parallel processing with attached processors in a computer center environment	57 (1989) 395
Delfino, M., E. Fernández, S. Orteu and A. Pacheco, The ALEPH event reconstruction facility: parallel processing using workstations	57 (1989) 401
Sliwa, K., CDF's experience with a parallel architecture multiprocessor system - ACP	57 (1989) 407
O'Neale, S.W., The OPAL event server	57 (1989) 413
Brun, R., O. Couet, C.E. Vandoni and P. Zanarini, PAW, a general-purpose portable software tool for data analysis and presentation	57 (1989) 432
Johnstad, H., PAW at Fermilab	57 (1989) 438
Bonissent, A. and F. Etienne, Artificial intelligence steering for the interactive analysis of a high energy physics experiment	57 (1989) 447
Booth, S.P., R.W. Dobinson, D.R.N. Jeffery, W. Lu, K.M. Storr and A. Thornton, An evaluation of the Meiko computing surface for HEP Fortran farming	57 (1989) 486
Carter, J.M., M.G. Green and T. Medcalf, Transparent use of transputers for off-line computation	57 (1989) 495
Hoek, J., Use of attached transputer hardware to VAX's for offline analysis	57 (1989) 503
11.11. Data structures and data base systems	
Putzer, A., Data structures and data-base systems used in high energy physics: modelling and implementation	57 (1989) 156

12. Gases and fluids

Capotondi, A., V. Sonnad and S. Chin, Parallel solution of the shallow water equations using an explicit finite difference algorithm 52 (1988/1989) 195
 Navarra, A., An application of GMRES to indefinite linear problems in meteorology 53 (1989) 321
 Kelkar, K. M. and S.V. Patankar, Development of generalized block correction procedures for the solution of discretized Navier–Stokes equations 53 (1989) 329
 Fortin, M., Some iterative methods for incompressible flow problems 53 (1989) 393
 Dean, E., R. Glowinski and C.H. Li, Supercomputer solutions of partial differential equation problems in computational fluid dynamics and in control 53 (1989) 401
 Tezduyar, T.E. and J. Liou, Grouped element-by-element iteration schemes for incompressible flow computations 53 (1989) 441
 Thyagaraja, A. and D.F. Fletcher, The nonhyperbolicity of multiphase flow equations: a nonlinear nonproblem? 56 (1989/1990) 115

13. Geophysics

Navarra, A., An application of GMRES to indefinite linear problems in meteorology 53 (1989) 321

14. Graphics

Myers, D.R., HEP graphics: standard and portability versus performance and cost 57 (1989) 176
 Corden, M.J., C.H. Georgopoulos and M.E. Mermikides, Implementation of the ALEPH detector simulation code using UNIX with on-line graphics display 57 (1989) 260
 Brun, R., O. Couet, C.E. Vandoni and P. Zanarini, PAW, a general-purpose portable software tool for data analysis and presentation 57 (1989) 432
 Johnstad, H., PAW at Fermilab 57 (1989) 438
 Schilling, P.K., Graphics at DESY 57 (1989) 443
 Schaile, O., DZDISP: a graphics tool to interact with ZEBRA data structures 57 (1989) 528

15. Laser physics

Tran, T.M. and J.S. Wurtele, TDA – a three-dimensional axisymmetric code for free-electron-laser (FEL) simulation 54 (1989) 263

16. Molecular physics*16.1. Structure and properties*

Zhu, S.-B. and G.W. Robinson, Molecular dynamics study of liquid carbon dioxide 52 (1988/1989) 317
 Moncrieff, D., D.J. Baker and S. Wilson, Diagrammatic many-body perturbation expansion for atoms and molecules. VI 55 (1989) 31
 Wilson, S., Universal basis sets and Cholesky decomposition of the two-electron integral matrix 58 (1990) 71

16.2. Spectra

Gil, T.J., C.L. Winstead and P.W. Langhoff, Lanczos methods for Hamiltonian spectra: Hilbert-space approximations to interaction-prepared states 53 (1989) 123

Molecular physics — Spectra (continued)

Carter, S., P. Rosmus, N.C. Handy, S. Miller, J. Tennyson and B.T. Sutcliffe, Benchmark calculations of first principles rotational and ro-vibrational line strengths
 Friedman, R.S., M.J. Jamieson and S.C. Preston, On the numerical solution of coupled eigenvalue differential equations arising in molecular spectroscopy

55 (1989) 71
 58 (1990) 17

16.3. Molecular vibrations

Johnson, B.R., Semiclassical vibrational eigenvalues of H₂O and SO₂ by the adiabatic switching method
 Noid, D.W., S.K. Knudson and B.G. Sumpter, Exact semiclassical calculation of eigenvalues for multidimensional systems using SOS
 vande Linde, S.R. and W.L. Hase, Dynamics of ion-molecule recombination. IV. Li⁺+(CH₃)₂O association
 Baćić, Z., R.M. Whitnell, D. Brown and J.C. Light, Localized representations for large amplitude molecular vibrations
 Carter, S. and N.C. Handy, A variational method for the determination of the vibrational (J=0) energy levels of acetylene, using a Hamiltonian in internal coordinates
 Fleming, P.R. and J.S. Hutchinson, Representation of the Hamiltonian matrix in non-local coordinates for an acetylene bond-mode model
 Sutcliffe, B.T., S. Miller and J. Tennyson, An effective computational approach to the calculation of the vibration-rotation spectra of triatomic molecules
 Carter, S., P. Rosmus, N.C. Handy, S. Miller, J. Tennyson and B.T. Sutcliffe, Benchmark calculations of first principles rotational and ro-vibrational line strengths

51 (1988) 1
 51 (1988) 11
 51 (1988) 17
 51 (1988) 35
 51 (1988) 49
 51 (1988) 59
 51 (1988) 73
 55 (1989) 71

16.4. Experimental analysis

Carter, S., P. Rosmus, N.C. Handy, S. Miller, J. Tennyson and B.T. Sutcliffe, Benchmark calculations of first principles rotational and ro-vibrational line strengths

55 (1989) 71

16.8. Rearrangement collisions, charge transfer and chemical reactions

vande Linde, S.R. and W.L. Hase, Dynamics of ion-molecule recombination. IV. Li⁺+(CH₃)₂O association
 Ohsaki, A., H. Nakamura and S.C. Park, On the evaluation of cross section and rate constant of atom-diatom reactions in the sudden and adiabatic approximations
 Kress, J.D., G.A. Parker, R. T Pack, B.J. Archer and W.A. Cook, Comparison of Lanczos and subspace iterations for hyperspherical reaction path calculations
 Kress, J.D., S.B. Woodruff, G.A. Parker and R. T Pack, Some strategies for enhancing the performance of the block Lanczos method
 Duneczky, C., R.E. Wyatt, D. Chatfield, K. Haug, D.W. Schwenke, D.G. Truhlar, Y. Sun and D.J. Kouri, Iterative methods for solving the nonsparse equations of quantum mechanical reactive scattering
 Dubey, I.P. and S.K. Upadhyay, A trivariate interpolation method developed on the basis of Akima's bivariate interpolation procedure
 Gorecki, J. and J. Gryko, Molecular dynamics simulation of a chemical reaction

51 (1988) 17
 52 (1988/1989) 291
 53 (1989) 91
 53 (1989) 109
 53 (1989) 357
 54 (1989) 23
 54 (1989) 245

16.9. Classical methods

Moncrieff, D., D.J. Baker and S. Wilson, Diagrammatic many-body perturbation expansion for atoms and molecules. VI

55 (1989) 31

Molecular physics — Classical methods (continued)

Amini, M. and D. Fincham, Evaluation of temperature in molecular dynamics simulation	56 (1989/1990) 313
16.10. Wave functions and integrals	
Cioslowski, J., Principles of ab initio SCF calculations with minimal storage requirements	53 (1989) 117
Grest, G.S., B. Dünweg and K. Kremer, Vectorized link cell FORTRAN code for molecular dynamics simulation for a large number of particles	55 (1989) 269
16.11. Polymers	
Forrest, B.M., A. Baumgärtner and D.W. Heermann, Parallel simulation of dense two-dimensional polymer systems	59 (1990) 455
18. Optics	
Pantelic, D.V. and Z.D. Janevski, A new kind of splines and their use for fast ray-tracing in reflective cavities	55 (1989) 5
19. Plasma physics	
19.3. Collisionless plasmas	
Nunn, D., The numerical simulation of VLF nonlinear wave-particle interactions in collision-free plasmas using the Vlasov hybrid simulation technique	60 (1990) 1
19.6. Equilibrium and stability	
Varias, A., An extension of the HERA code to flux coordinate equilibria	52 (1988/1989) 167
Turnbull, A.D. and F. Troyon, Two variational forms of the MHD ballooning equation	52 (1988/1989) 303
Parker, R.D. and R.L. Dewar, 2-D, nonlinear spectral simulation of reconnective transitions on a periodic, planar current sheet with (1) smooth and (2) corrugated conducting wall boundary conditions with flow	59 (1990) 1
Aly, J.J., Quasi-static evolution of a force-free magnetic field	59 (1990) 13
Goedbloed, J.P., Stability of solar coronal loops	59 (1990) 39
de Bruyne, P., M. Velli and A.W. Hood, The ideal MHD stability of line-tied coronal loops: a truncated Fourier series approach	59 (1990) 55
van der Linden, R.A.M., M. Goossens and W. Kerner, A combined finite element/Fourier series method for the numerical study of the stability of line-tied magnetic plasmas	59 (1990) 61
Poedts, S., M. Goossens and W. Kerner, Numerical simulation of the stationary state of periodically driven coronal loops	59 (1990) 75
19.8. Kinetic models	
Epperlein, E.M., G.J. Rickard and A.R. Bell, A code for the solution of the Vlasov-Fokker-Planck equation in 1-D or 2-D	52 (1988/1989) 7
Parker, R.D. and R.L. Dewar, 2-D, nonlinear spectral simulation of reconnective transitions on a periodic, planar current sheet with (1) smooth and (2) corrugated conducting wall boundary conditions with flow	59 (1990) 1

Plasma physics — Kinetic models (continued)

Aly, J.J., Quasi-static evolution of a force-free magnetic field	59 (1990) 13
Schnack, D.D., Z. Mikić, D.C. Barnes and G. van Hoven, Magnetohydrodynamic simulation of coronal magnetic fields	59 (1990) 21
Poedts, S., M. Goossens and W. Kerner, Temporal evolution of resonant absorption in solar coronal loops	59 (1990) 95
Toomre, J., N. Brummell, F. Cattaneo and N.E. Hurlburt, Three-dimensional compressible convection at low Prandtl numbers	59 (1990) 105
Nordlund, Å. and R.F. Stein, 3-D simulations of solar and stellar convection and magnetoconvection	59 (1990) 119
Hermans, D., W. Kerner and M. Goossens, Linearly overstable magnetic convection in 1D compressible and non-uniform plasmas	59 (1990) 127
Lin, Y., Numerical calculation of force-free magnetic field for solar active regions and its application to prediction of solar flares	59 (1990) 139
Geertsema, G.T. and A. Achterberg, MHD turbulence and accretion disks	59 (1990) 145
Lee, L.C., Time-dependent magnetic reconnection: two- and three-dimensional MHD simulations	59 (1990) 163
Scholer, M., T. Terasawa and F. Jamitzky, Reconnection and fluctuations in compressible MHD: a comparison of different numerical methods	59 (1990) 175
Otto, A., 3D resistive MHD computations of magnetospheric physics	59 (1990) 185

19.10. Magnetohydrodynamics

Varias, A., An extension of the HERA code to flux coordinate equilibria	52 (1988/1989) 167
Turnbull, A.D. and F. Troyon, Two variational forms of the MHD ballooning equation	52 (1988/1989) 303
Schnack, D.D., Z. Mikić, D.C. Barnes and G. van Hoven, Magnetohydrodynamic simulation of coronal magnetic fields	59 (1990) 21

19.11. Transport

Hogeweij, G.M.D., G. Hordósy and N.J. Lopes Cardozo, Heat transport analysis with error calculation	59 (1990) 245
---	---------------

19.12. Space and astrophysical plasmas

Parker, R.D. and R.L. Dewar, 2-D, nonlinear spectral simulation of reconnective transitions on a periodic, planar current sheet with (1) smooth and (2) corrugated conducting wall boundary conditions with flow	59 (1990) 1
Schnack, D.D., Z. Mikić, D.C. Barnes and G. van Hoven, Magnetohydrodynamic simulation of coronal magnetic fields	59 (1990) 21
Goedbloed, J.P., Stability of solar coronal loops	59 (1990) 39
de Bruyné, P., M. Velli and A.W. Hood, The ideal MHD stability of line-tied coronal loops: a truncated Fourier series approach	59 (1990) 55
van der Linden, R.A.M., M. Goossens and W. Kerner, A combined finite element/ Fourier series method for the numerical study of the stability of line-tied magnetic plasmas	59 (1990) 61
Poedts, S., M. Goossens and W. Kerner, Numerical simulation of the stationary state of periodically driven coronal loops	59 (1990) 75
Krauss-Varban, D., Some aspects of finite element calculations applied to ULF magnetospheric cavity waves	59 (1990) 85

Plasma physics — Space and astrophysical plasmas (continued)

Poedts, S., M. Goossens and W. Kerner, Temporal evolution of resonant absorption in solar coronal loops 59 (1990) 95

Toomre, J., N. Brummell, F. Cattaneo and N.E. Hurlburt, Three-dimensional compressible convection at low Prandtl numbers 59 (1990) 105

Nordlund, Å. and R.F. Stein, 3-D simulations of solar and stellar convection and magnetoconvection 59 (1990) 119

Hermans, D., W. Kerner and M. Goossens, Linearly overstable magnetic convection in 1D compressible and non-uniform plasmas 59 (1990) 127

Lin, Y., Numerical calculation of force-free magnetic field for solar active regions and its application to prediction of solar flares 59 (1990) 139

Geertsema, G.T. and A. Achterberg, MHD turbulence and accretion disks 59 (1990) 145

Velli, M., R. Grappin and A. Mangeney, Solar wind expansion effects on the evolution of hydromagnetic turbulence in the interplanetary medium 59 (1990) 153

Lee, L.C., Time-dependent magnetic reconnection: two- and three-dimensional MHD simulations 59 (1990) 163

Scholer, M., T. Terasawa and F. Jamitzky, Reconnection and fluctuations in compressible MHD: a comparison of different numerical methods 59 (1990) 175

Otto, A., 3D resistive MHD computations of magnetospheric physics 59 (1990) 185

Reale, F., F. Brugè, G. Peres, S.L. Fornili, V. Martorana and S. Serio, One-dimensional hydrodynamic modeling of coronal plasmas on transputer arrays 60 (1990) 201

19.13. Wave-plasma interactions

Tran, T.M. and J.S. Wurtele, TDA – a three-dimensional axisymmetric code for free-electron-laser (FEL) simulation 54 (1989) 263

Shoucri, M., I. Shkarofsky, V. Fuchs, K. Kupfer, A. Bers and S. Luckhardt, A quasilinear Fokker-Planck code for the numerical solution of the lower-hybrid current-drive problem in the presence of electron cyclotron heating 55 (1989) 253

Krauss-Varban, D., Some aspects of finite element calculations applied to ULF magnetospheric cavity waves 59 (1990) 85

Velli, M., R. Grappin and A. Mangeney, Solar wind expansion effects on the evolution of hydromagnetic turbulence in the interplanetary medium 59 (1990) 153

Dyachenko, A.J., A.N. Pushkarev, A.M. Rubenchik and V.F. Shvets, A particle model for three-dimensional Langmuir collapse simulation 60 (1990) 239

22. Reactor systems

Mohanakrishnan, P., Use of albedo for neutron reflector regions in reactor core 3D simulations 55 (1989) 311

23. Statistical physics and thermodynamics

Lee, M.H., Frequency moment sum rules, recurrence relations and continued fractions in nonequilibrium statistical mechanics 53 (1989) 147

Cohen, R., S.-Y. Lin and M. Luskin, Relaxation and gradient methods for molecular orientation in liquid crystals 53 (1989) 455

Burkitt, A. N. and D.W. Heermann, Parallelization of a cluster algorithm 54 (1989) 201

Statistical physics and thermodynamics (continued)

Gomes, M.A.F. and G.L. Vasconcelos, Fragmentation dynamics in fractal and Euclidean systems 54 (1989) 257

Pichon, B., Numerical calculation of the generalized Fermi–Dirac integrals 55 (1989) 127

Amar, J.G. and F. Sullivan, Monte Carlo simulation of domain growth in the kinetic Ising model on the connection machine 55 (1989) 287

Aiello, G.R., M. Budinich and E. Milotti, A parallel processor for the simulation of Ising spin systems 56 (1989/1990) 141

8
0

Author index to volumes 51–60

Abdelmalek, N.N., A program for the solution of ill-posed linear systems arising from the discretization of the Fredholm integral equation of the first kind 58 (1990) 285

Abe, F, see Y. Karita 57 (1989) 455

Abril, I., ALACANT: modeling of glow discharge sputtering systems 51 (1988) 413

Achterberg, A., see G.T. Geertsema 59 (1990) 145

Adye, T., T. Berners-Lee, S. Brobecker, A. Camacho, D. Davids, F. Harris and P. Lorenz, Online communications in the DELPHI experiment 57 (1989) 466

Agogino, A., see D.E. Hall 57 (1989) 499

Agrón, E., see H.C. Elman 53 (1989) 253

Aiello, G.R., M. Budinich and E. Milotti, Hardware implementation of a GFSR pseudo-random number generator 56 (1989) 135

Aiello, G.R., M. Budinich and E. Milotti, A parallel processor for the simulation of Ising spin systems 56 (1989) 141

Akai, H., see N. Stefanou 60 (1990) 231

Albers, R.C., see J.M. MacLaren 60 (1990) 365

Aldea, N. and E. Indrea, Fourier analysis of EXAFS and XANES data – a self-contained Fortran program-package – the third version 60 (1990) 145

Aldea, N. and E. Indrea, XRLINE, a program to evaluate the crystallite size of supported metal catalysts by single X-ray profile Fourier analysis 60 (1990) 155

Aldea, N. and E. Indrea, Fourier analysis of EXAFS data – a self-contained FORTRAN program-package – a second version 51 (1988) 451

Alexander, J.M., see R.L. McGrath 59 (1990) 507

Allan, R.J., L. Heck and S. Zurek, Parallel Fortran in scientific computing: a new occam harness called Fortnet 59 (1990) 325

Allard, N.F., see V.K. Lan 55 (1989) 303

Allegretto, W., see K.H. Teo 59 (1990) 277

Allouche, A. and G. Pouzard, Computer simulation of FT-NMR multiple pulse experiment 54 (1989) 171

Álvarez Collado, J.R., J. Fernández Rico, R. López, M. Paniagua and G. Ramírez, Rotation of real spherical harmonics 52 (1989) 323

Alvisi, L. and R. Odorico, A rule based approach for pattern recognition in planar geometric figures 51 (1988) 443

Aly, J.J., Quasi-static evolution of a force-free magnetic field 59 (1990) 13

Amar, J.G. and F. Sullivan, Monte Carlo simulation of domain growth in the kinetic Ising model on the connection machine 55 (1989) 287

Amini, M. and D. Fincham, Evaluation of temperature in molecular dynamics simulation 56 (1990) 313

Anderson, D.V., see Y.-M. Chen 55 (1989) 359

Anderson, D.V., A.E. Koniges and D.E. Schumaker, CPDES2: a preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in two dimensions 51 (1988) 391

Anderson, D.V., A.E. Koniges and D.E. Schumaker, CPDES3: a preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in three dimensions 51 (1988) 405

Anderson, M.D., see D.R. Quarrie 57 (1989) 325

Appert, K., see X. Llobet 59 (1990) 199

Archer, B.J., see J.D. Kress 53 (1989) 91

Arnold, A. and N. Mauser, An efficient method of bookkeeping next neighbours in molecular dynamics simulations 59 (1990) 267

Auguin, M., see A. Jejcic 57 (1989) 507

Avery, P. and A. White, UFMULTI: a new parallel processing software system for HEP 57 (1989) 422

Avico, N., P. Bacilieri, S. Cabasino, N. Cabibbo, L.A. Fernández, G. Fiorentini, A. Lai, M.P. Lombardo, E. Marinari, F. Marziano, P. Paolucci, G. Parisi, J. Pech, F. Rapuano, E. Remiddi, R. Sarno, G. Salina, A. Tarancón, G.M. Todesco, M. Torelli, R. Tripiccione and W. Tross, From APE to APE-100: from 1 to 100 Gflops in lattice gauge theory simulations 57 (1989) 285

Ayala, C. and M. Baig, Generation and analysis of high order strong coupling series for SU(2) lattice gauge theory 58 (1990) 199

Aydinli, A., see C. Topaçlı 52 (1988) 65

Babalievski, F. and O. Peshev, An algorithm to construct quasilattices and study percolation on them 60 (1990) 27

Bachmann, Chr., see M.-M. Rohmer 60 (1990) 127

Baćić, Z., R.M. Whitnell, D. Brown and J.C. Light, Localized representations for large amplitude molecular vibrations 51 (1988) 35

Bacilieri, P., see N. Avico 57 (1989) 285

Bacilieri, P., B. Caccia, R. Cardarelli, G.P. Carlucci, O. Ciaffoni, M. Coli, G. Di Pirro, M.L. Ferrer, A. Ghiselli, A. Martini, G. Medici, G. Mirabelli, E. Pace, R. Santonico, L. Trasatti, E. Valente and S. Valentini, STARNET, a fiber optic metropolitan area network with centralized control 57 (1989) 459

Baig, M., see C. Ayala 58 (1990) 199

Baillie, C.F., D.A. Johnston and R.D. Williams, Computational aspects of simulating dynamically triangulated random surfaces 58 (1990) 105

Baker, D.J., see D. Moncrieff 55 (1989) 31

Bank, R.E., W.M. Coughran Jr, M.A. Driscoll, R.K. Smith and W. Fichtner, Iterative methods in semiconductor device simulation 53 (1989) 201

Banno, Y., see Y. Karita 57 (1989) 455

Barao, F., C. Gaspar, Ph. Gavillet, J.Ph. Laugier, B. Martin, P. Moreau, M. Pimenta, M. Reis and J. Varela, DELPHI's central partition 57 (1989) 358

Bardin, D.Yu., M.S. Bilenky, T. Riemann, M. Sachwitz and H. Vogt, DIZET - electroweak one-loop corrections for $e^+ + e^- \rightarrow f^+ + f^-$ around the Z peak 59 (1990) 303

Barlow, R. and P. Hinde, Fitting the ratio of two distributions 56 (1990) 325

Barnes, D.C., see D.D. Schnack 59 (1990) 21

Baumgärtner, A., see B.M. Forrest 59 (1990) 455

Bell, A.R., see E.M. Epperlein 52 (1988) 7

Bénard, M., see R. Ernenwein 58 (1990) 305

Bénard, M., see M.-M. Rohmer 60 (1990) 127

Berg, B.A., see C. Vohwinkel 51 (1988) 331

Berners-Lee, T., see T. Adye 57 (1989) 466

Berny, L. and H. Frese, Automatic generation of software detailed design documents for C language programs 57 (1989) 476

Berretti, A. and A.D. Sokal, Vectorized program for Monte Carlo simulation of self-avoiding walks 58 (1990) 1

Berry, R.S., see D.M. Leitner 51 (1988) 207

Bers, A., see M. Shoucri 55 (1989) 253

Bertrand, P., see B. Izrar 52 (1989) 375

Bertsch, G., An RPA program for jellium spheres 60 (1990) 247

Bhadra, S., see ZEUS CDAQ Collaboration 57 (1989) 321

Bhattacharya, R., see S. Bhowmick 54 (1989) 31

Bhattacharya, R., D. Roy and S. Bhowmick, On the regularity of the Levin u -transform 55 (1989) 297

Bhowmick, S., R. Bhattacharya and D. Roy, Iterations of convergence accelerating nonlinear transforms 54 (1989) 31

Bhowmick, S., see R. Bhattacharya 55 (1989) 297

Bialolenker, G., see Z. Burshtein 51 (1988) 349

Biddulph, P. and G. Thompson, Improved modelling of independent parton hadronization 54 (1989) 13

Biersack, J.P., see W. Möller 51 (1988) 355

Bilenky, M.S., see D.Yu. Bardin 59 (1990) 303

Billing, G.D., Erratum notice. Rate constants for vibrational transitions in diatom-diatom collisions (AATY - CPC 44 (1987) 121) 52 (1989) 443

Billoir, P., Progressive track recognition with a Kalman-like fitting procedure 57 (1989) 390

Bizeau, C., A. Bogaerts, R.W. Dobinson, D.R.N. Jeffery, W. Lu, C. Parkman and Y. Perrin, The use and possible abuse of transputer links 57 (1989) 301

Blaha, P., K. Schwarz, P. Sorantin and S.B. Trickey, Full-potential linearized augmented plane wave programs for crystalline systems 59 (1990) 399

Blair-Fish, J., see S.P. Booth 57 (1989) 101

Blobel, V., From DST to publication 57 (1989) 148

Bock, R.K., Bringing together high energy physicist and computer scientist. A summary of the Oxford conference on Computing in High Energy Physics 57 (1989) 1

Boeri, F., see A. Jejcic 57 (1989) 507

Bogaerts, A., see C. Bizeau 57 (1989) 301

Böhm, M., see J. Kübelbeck 60 (1990) 165

Boissat, C., see D.M. Sendall 57 (1989) 343

Boissat, C., R. Jones and G. Mornacchi, The model human interface 57 (1989) 512

Bok, J., see J. Horáček 59 (1990) 319

Boley, D., R. Maier and J. Kim, A parallel QR algorithm for the nonsymmetric eigenvalue problem 53 (1989) 61

Bondeson, A., see X. Llobet 59 (1990) 199

Bonissent, A. and F. Etienne, Artificial intelligence steering for the interactive analysis of a high energy physics experiment 57 (1989) 447

Booth, A.W., J.T. Carroll, R. Forster, G. Goeransson, L. Gustafsson and N. Ho, A knowledge-based approach to network and module diagnosis 57 (1989) 332

Booth, S.P., K.C. Bowler, D.J. Candlin, R.D. Kenway, B.J. Pendleton, A.M. Thornton, D.J. Wallace, J. Blair-Fish and D. Roweth, Large scale applications of transputers in HEP: the Edinburgh Concurrent Supercomputer Project 57 (1989) 101

Booth, S.P., R.W. Dobinson, D.R.N. Jeffery, W. Lu, K.M. Storr and A.M. Thornton, An evaluation of the Meiko computing surface for HEP Fortran farming 57 (1989) 486

Bowler, K.C., see S.P. Booth 57 (1989) 101

Bowman, J.M., see A. Wierzbicki	51 (1988) 225
Bozzoli, W., see D.M. Sendall	57 (1989) 343
Brecht, S.H. and J.R. Ferrante, Vortex-in-cell calculations in three dimensions	58 (1990) 25
Briggs, D., T. Glanzman, P. Grosse-Wiesmann, J. Tinsman, S. Holmgren and M.W. Schaad, A calorimeter software trigger for the Mark II detector at SLC	57 (1989) 273
Brobecker, S., see T. Adye	57 (1989) 466
Brody, T.A., Random-number generation for parallel processors	56 (1989) 147
Brown, D., see Z. Baćić	51 (1988) 35
Brugè, F. and S.L. Fornili, Concurrent molecular dynamics simulation of spinodal phase transition on transputer arrays	60 (1990) 31
Brugè, F. and S.L. Fornili, A distributed dynamic load balancer and its implementation on multi-transputer systems for molecular dynamics simulation	60 (1990) 39
Brugè, F., see F. Reale	60 (1990) 201
Brummell, N., see J. Toomre	59 (1990) 105
Brun, M., R. Brun and A.A. Rademakers, CMZ - a source code management system	57 (1989) 235
Brun, R., see M. Brun	57 (1989) 235
Brun, R., see M.J. Corden	57 (1989) 268
Brun, R., O. Couet, C.E. Vandoni and P. Zanarini, PAW, a general-purpose portable software tool for data analysis and presentation	57 (1989) 432
Brussino, G., see S. Foresti	53 (1989) 349
Bruyant, F., see M.J. Corden	57 (1989) 268
Budinich, M. and S. Esquivel, An efficient algorithm for charged tracks pattern recognition	58 (1990) 83
Budinich, M., see G.R. Aiello	56 (1989) 135
Budinich, M., see G.R. Aiello	56 (1989) 141
Burkimsher, P., see D.M. Sendall	57 (1989) 343
Burkitt, A. N. and D.W. Heermann, Parallelization of a cluster algorithm	54 (1989) 201
Burkitt, A.N. and A.C. Irving, Inversion of the fermion matrix and the equivalence of the conjugate gradient and Lanczos algorithms	59 (1990) 447
Burshtein, Z., D. Levron and G. Bialolenker, Thermally induced refractive index gradients in a dye-laser cell	51 (1988) 349
Butler, J.W., A proposed new approach to the expansion of mathematical functions	54 (1989) 221
Cabasino, S., see N. Avico	57 (1989) 285
Cabibbo, N., see N. Avico	57 (1989) 285
Caccia, B., see P. Bacilieri	57 (1989) 459
Calabuig, B., see R. Carbó	55 (1989) 117
Calabuig, B., see R. Carbó	52 (1989) 345
Camacho, A., see T. Adye	57 (1989) 466
Candlin, D.J., see S.P. Booth	57 (1989) 101
Capotondi, A., V. Sonnad and S. Chin, Parallel solution of the shallow water equations using an explicit finite difference algorithm	52 (1989) 195
Carbó, R. and B. Calabuig, MOLSIMIL-88: molecular similarity calculations using a CNDO-like approximation	55 (1989) 117
Carbó, R. and B. Calabuig, ARIADNE-88: an ab initio monoconfigurational closed and open shell direct electronic energy calculation using elementary Jacobi rotations	52 (1989) 345
Cardarelli, R., see P. Bacilieri	57 (1989) 459
Carlucci, G.P., see P. Bacilieri	57 (1989) 459
Carroll, J.T., see A.W. Booth	57 (1989) 332

Carter, J.M., M.G. Green and T. Medcalf, Transparent use of transputers for off-line computation	57 (1989) 495
Carter, P.A., A fast vectorized program for the Cyber 205 to calculate the partition function of the 3-D Ising model	54 (1989) 103
Carter, S. and N.C. Handy, A variational method for the determination of the vibrational ($J=0$) energy levels of acetylene, using a Hamiltonian in internal coordinates	51 (1988) 49
Carter, S., P. Rosmus, N.C. Handy, S. Miller, J. Tennyson and B.T. Sutcliffe, Benchmark calculations of first principles rotational and ro-vibrational line strengths	55 (1989) 71
Caruso, A., see V.A. Pais	58 (1990) 55
Cash, J.R., A.D. Raptis and T.E. Simos, A Fortran program for the numerical integration of the one-dimensional Schrödinger equation using exponential and Bessel fitting methods	56 (1990) 391
Castaños, O., J.P. Draayer and Y. Leschber, Quantum rotor and its SU(3) realization	52 (1988) 71
Castellano, M., C. Favuzzi, N. Giglietto, E. Nappi and P. Spinelli, A Monte Carlo program to design a transition radiation detector	51 (1988) 431
Catchen, G.L., Perturbation functions: PAC probe nuclei, $I=2, 5/2$, and 3	55 (1989) 85
Cattaneo, F., see J. Toomre	59 (1990) 105
Cecchini, R. and M. Tarlini, Symbolic superalgebra manipulations using COMMON LISP	60 (1990) 265
Cecchini, R. and M. Tarlini, Symbolic Lie algebras manipulations using COMMON LISP	52 (1989) 283
Chan, C.K., see S.C. Wang	60 (1990) 181
Chan, C.S., see A.C. Saulys	57 (1989) 353
Chan, T.F., C.-C.J. Kuo and C. Tong, Parallel elliptic preconditioners: Fourier analysis and performance on the connection machine	53 (1989) 237
Chandra, U., G. Riccardi, J. Vagi, J.-L. Dekeyser and F. Hannedouche, Aftran: array Fortran programming language	57 (1989) 263
Chandross, R.J., see S.E. Sobottka	51 (1988) 295
Chang, B.H., J.S. Lee and D. Secrest, Rotation-vibration eigenvalues and vectors	51 (1988) 195
Chao, H.Z., see A. Greenbaum	53 (1989) 295
Chassapis, C.S., D.G. Papageorgiou and I.E. Lagaris, MCL - optimization oriented programming language	52 (1989) 223
Chassapis, C.S., see D.G. Papageorgiou	52 (1989) 241
Chatfield, D., see C. Duneczky	53 (1989) 357
Chen, B.-Q., see J.-L. Ping	52 (1989) 355
Chen, H.-S., Fast simulation of showers in inhomogeneous media	57 (1989) 375
Chen, J.-Q., see J.-L. Ping	52 (1989) 355
Chen, Q. and B.D. Mestel, Taylor-Chirikov map package	51 (1988) 463
Chen, Y.-M., A.E. Koniges and D.V. Anderson, ILUBCG2-11: Solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine	55 (1989) 359
Chialvo, A.A. and P.G. Debenedetti, On the use of the Verlet neighbor list in molecular dynamics	60 (1990) 215
Child, M.S., see L. Halonen	51 (1988) 173
Chilingarian, A.A., Statistical decisions under nonparametric a priori information	54 (1989) 381
Chin, S., see A. Capotondi	52 (1989) 195
Chipaux, R., MOSPLV, a program for simulation of complex Mössbauer spectra in polycrystalline samples	60 (1990) 405
Chiu, C.B., see K. Srinivasa Rao	56 (1989) 231
Ciaffoni, O., see P. Bacilieri	57 (1989) 459
Ciosowski, J., Principles of ab initio SCF calculations with minimal storage requirements	53 (1989) 117

Cittolin, S., M. Demoulin, A. Fucci, W. Haynes, B. Martin, J.P. Porte and P. Sphicas, The third level trigger and output event unit of the UA1 data-acquisition system 57 (1989) 370

Čížek, J., see F. Vinette 52 (1988) 35

Čížek, J., see E.J. Weniger 59 (1990) 471

Clark, P., see S. Fraga 52 (1989) 445

Climenhaga, J.D., see S. Fraga 52 (1989) 445

Cohen, R., S.-Y. Lin and M. Luskin, Relaxation and gradient methods for molecular orientation in liquid crystals 53 (1989) 455

Colangelo, P., L. Cosmai and E. Scrimieri, Computer simulation of gauge theories on a lattice with improved rotational symmetry 54 (1989) 235

Coli, M., see P. Bacilieri 57 (1989) 459

Collins, L.A., see B.I. Schneider 53 (1989) 381

Cook, W.A., see J.D. Kress 53 (1989) 91

Corden, M.J., C.H. Georgopoulos and M.E. Mermikides, Implementation of the ALEPH detector simulation code using UNIX with on-line graphics display 57 (1989) 260

Corden, M.J., C.H. Georgopoulos, R. Brun, F. Bruyant and J.-L. Dekeyser, Progress towards a vectorized version of the GEANT Monte Carlo program 57 (1989) 268

Cornick, G.G., see S.E. Sobottka 51 (1988) 295

Cosmai, L., see P. Colangelo 54 (1989) 235

Couet, O., see R. Brun 57 (1989) 432

Coughran Jr, W.M., see R.E. Bank 53 (1989) 201

Crampin, S., see J.M. MacLaren 60 (1990) 365

Creutz, M., P. Mitra and K.J.M. Moriarty, Erratum notice. A fast algorithm for investigations on the three-dimensional Ising model (ACCP - CPC 33(1984)361) 55 (1989) 251

Crombie, M., see ZEUS CDAQ Collaboration 57 (1989) 321

Cullum, J., W. Kerner and R. Willoughby, A generalized nonsymmetric Lanczos procedure 53 (1989) 19

Cutts, D., J.S. Hoftun, C.R. Johnson and R.T. Zeller, Data acquisition at D0 57 (1989) 339

Cutts, D., J.S. Hoftun, A. Sornborger, C.R. Johnson and R.T. Zeller, Neural networks for event filtering at D0 57 (1989) 478

Cybenko, G., Book review 60 (1990) 417

Da Rocha, A.R.C. and S. Palermo, Software quality assurance in HEP 57 (1989) 524

Damarowsky, M. and G.H. Guthöhrlein, Spectral analysis without knowledge of the line shape function by use of a new numerical procedure 52 (1989) 187

Das, P., Computer programs for the Boltzmann collision matrix elements 55 (1989) 177

Dasso, C.H., see J. Fernández-Niello 54 (1989) 409

Davidenko, A.M., see V.P. Voevodin 57 (1989) 532

Davids, D., see T. Adye 57 (1989) 466

Davidson, D.B. and D.A. McNamara, A boundary element program package for electromagnetic excitation of conducting bodies of revolution by an asymmetrical slot 56 (1989) 249

Davidson, E.R., Super-matrix methods 53 (1989) 49

Davie, K. and R. Wallace, TITLE - solution of bound state single variable eigenproblems by the extended renormalized Numerov method 51 (1988) 217

Davie, K. and R. Wallace, Orthogonal generalized Jacobi coordinates for N -body systems 55 (1989) 463

Davis, E.D., see U. Hartmann 54 (1989) 353

Day, C.T., see D.R. Quarrie 57 (1989) 325

De Angelis, A., A class of N -dimensional probability density functions suitable for random generation 52 (1988) 61

De Bruyne, P., M. Velli and A.W. Hood, The ideal MHD stability of line-tied coronal loops: a truncated Fourier series approach 59 (1990) 55

De Leon, N., see M.A. Mehta 51 (1988) 115

Dean, E., R. Glowinski and C.H. Li, Supercomputer solutions of partial differential equation problems in computational fluid dynamics and in control 53 (1989) 401

Debenedetti, P.G., see A.A. Chialvo 60 (1990) 215

Decker, K., Numerical investigation of a coarse-to-fine transformation for multigrid Monte Carlo updating 54 (1989) 1

Defranceschi, M. and M. Sarrazin, Numerical integration over a spherical shell 52 (1989) 409

Degrard, T.A. and P. Rossi, Conditioning techniques for dynamical fermions 60 (1990) 211

DeGrand, Th.A., A conditioning technique for matrix inversion for Wilson fermions 52 (1988) 161

Dekeyser, J.-L., see U. Chandra 57 (1989) 263

Dekeyser, J.-L., see M.J. Corden 57 (1989) 268

Delfino, M., E. Fernández, S. Orteu and A. Pacheco, The ALEPH event reconstruction facility: parallel processing using workstations 57 (1989) 401

Delgado-Barrio, G., see D.M. Leitner 51 (1988) 207

Demoulin, M., see S. Cittolin 57 (1989) 370

Demuynck, J., see M.-M. Rohmer 60 (1990) 127

Denby, B. and S.L. Linn, Spatial pattern recognition in a high energy particle detector using a neural network algorithm 56 (1990) 293

Denby, B. and S.L. Linn, Status of HEP neural net research in the USA 57 (1989) 297

Denner, A., see J. Küblbeck 60 (1990) 165

Desalvo, A., G. Erbacci and R. Rosa, Vectorized code for the three-dimensional spin-exchange kinetic Ising model on cubic and diamond lattices 60 (1990) 305

Devoto, A., see C. Vohwinkel 51 (1988) 331

Dewar, R.L., see R.D. Parker 59 (1990) 1

De Young, P.A., see R.L. McGrath 59 (1990) 507

Di Gregorio, D.E., see A.J. Pacheco 52 (1988) 93

Di Pirro, G., see P. Bacilieri 57 (1989) 459

Ding, L. and E. Stenlund, A Monte Carlo program for nuclear collision geometry 59 (1990) 313

Dittus, F., Parallel processing with attached processors in a computer center environment 57 (1989) 395

Dobberstein, M.P., The calibration of the ZEUS forward drift chamber: an application for software with a high degree of parallelism 57 (1989) 483

Dobinson, R.W., see C. Bizeau 57 (1989) 301

Dobinson, R.W., see S.P. Booth 57 (1989) 486

Docherty, R., K.J. Roberts and E. Dowty, MORANG - a computer program designed to aid in the determinations of crystal morphology 51 (1988) 423

Dowty, E., see R. Docherty 51 (1988) 423

Draayer, J.P., see O. Castaños 52 (1988) 71

Draayer, J.P., see S.C. Park 55 (1989) 189

Draayer, J.P., Y. Leschber, S.C. Park and R. Lopez, Representations of $U(3)$ in $U(N)$ 56 (1989) 279

Dressel, B., see E. Ganssauge 55 (1989) 233

Driscoll, M.A., see R.E. Bank 53 (1989) 201

Drouffe, J.-M. and K.J.M. Moriarty, FORTRAN code for the three-dimensional Ising model on bcc and fcc lattices 52 (1989) 249

Dubey, I.P. and S.K. Upadhyay, A trivariate interpolation method developed on the basis of Akima's bivariate interpolation procedure 54 (1989) 23

Dubois, A. and A. Maquet, Subroutines for the evaluation of cross sections of one-photon radiative processes occurring in fast-electron H-atom collisions 60 (1990) 271

Duneczky, C., R.E. Wyatt, D. Chatfield, K. Haug, D.W. Schwenke, D.G. Truhlar, Y. Sun and D.J. Kouri, Iterative methods for solving the nonsparse equations of quantum mechanical reactive scattering 53 (1989) 357
55 (1989) 269

Dünweg, B., see G.S. Grest 52 (1989) 415

Dupuis, M., J.D. Watts, H.O. Villar and G.J.B. Hurst, The general atomic and molecular electronic structure system HONDO: version 7.0 60 (1990) 239

Dyachenko, A.J., A.N. Pushkarev, A.M. Rubenchik and V.F. Shvets, A particle model for three-dimensional Langmuir collapse simulation 58 (1990) 345

Dyall, K.G., I.P. Grant, C.T. Johnson, F.A. Parpia and E.P. Plummer, Erratum notice. GRASP: a general purpose relativistic atomic program (ABJN - CPC 55(1989)425) 55 (1989) 425

Dyall, K.G., I.P. Grant, C.T. Johnson, F.A. Parpia and E.P. Plummer, GRASP: a general purpose relativistic atomic structure program 60 (1990) 187

Ebisuzaki, T., see T. Ito 51 (1988) 355

Eckstein, W., see W. Möller 55 (1989) 303

Eissner, W., see V.K. Lan 57 (1989) 532

Ekimov, An.V., see V.P. Voevodin 59 (1990) 283

El Sharkawy, M.A., see A.R. Mohamed 52 (1988) 93

Elgue, M., see A.J. Pacheco 59 (1990) 507

Elmaani, A., see R.L. McGrath 53 (1989) 253

Elman, H.C. and E. Agrón, Ordering techniques for the preconditioned conjugate gradient method on parallel computers 52 (1988) 7

Epperlein, E.M., G.J. Rickard and A.R. Bell, A code for the solution of the Vlasov-Fokker-Planck equation in 1-D or 2-D 60 (1990) 305

Erbacci, G., see A. Desalvo 57 (1989) 313

Erhard, P., see ZEUS CDAQ Collaboration 51 (1988) 257

Ermler, W.C., H.C. Hsieh and L.B. Harding, Polyatomic surface fitting, vibrational-rotational analysis, expectation value and intensity program 60 (1990) 127

Ernenwein, R., see M.-M. Rohmer 58 (1990) 305

Ernenwein, R., M.-M. Rohmer and M. Bénard, A program system for ab initio MO calculations on vector and parallel processing machines. I. Evolution of integrals 58 (1990) 83

Esquivel, S., see M. Budinich 55 (1989) 217

Etchegoyen, A. and M.C. Etchegoyen, Microscopic inelastic form factors for heavy-ion reactions 55 (1989) 227

Etchegoyen, A., M.C. Etchegoyen and E.G. Vergini, Evaluation of Hamiltonian two-body matrix elements 55 (1989) 217

Etchegoyen, M.C., see A. Etchegoyen 55 (1989) 227

Etchegoyen, M.C., see A. Etchegoyen 55 (1990) 507

Ethvignot, T., see R.L. McGrath 57 (1989) 447

Etienne, F., see A. Bonissent 57 (1989) 353

Etkin, A., see A.C. Saulys 59 (1990) 495

Evans, M.W., On the isolation of possible artifacts due to cubic periodic boundary conditions 51 (1988) 103

Ezra, G.S., see L.E. Fried

Falck, N.K., D. Graudenz and G. Kramer, Cross section for five-parton production in e^+e^- annihilation 56 (1989) 181

Fan, G.Y., Electron diffraction simulation on Micro-VAX II computers with the aid of an array processor 59 (1990) 429

Favuzzi, C., see M. Castellano 51 (1988) 431

Feix, M.R., see B. Izrar 52 (1989) 375

Fernández, E., see M. Delfino 57 (1989) 401

Fernandez, J.E., Monte Carlo computer simulation of the XRF intensity dependence on the propagation plane inclination 54 (1989) 211

Fernández, L.A., see N. Avico 57 (1989) 285

Fernández-Niello, J., C.H. Dasso and S. Landowne, CCDEF – a simplified coupled-channel code for fusion cross sections including static nuclear deformations 54 (1989) 409

Fernández Niello, J.O., see A.J. Pacheco 52 (1988) 93

Fernández Rico, J., see J.R. Álvarez Collado 52 (1989) 323

Ferrante, J.R., see S.H. Brecht 58 (1990) 25

Ferrer, M.L., see P. Bacilieri 57 (1989) 459

Feuer, G., see A. Nakamura 51 (1988) 301

Ficenec, J., see ZEUS CDAQ Collaboration 57 (1989) 313

Fichtner, W., see R.E. Bank 53 (1989) 201

Fijalkow, E., see B. Izrar 52 (1989) 375

Fincham, D., see A.R.C. Raine 55 (1989) 13

Fincham, D., see M. Amini 56 (1990) 313

Fincham, D., Bookreview 56 (1990) 409

Fiorentini, G., see N. Avico 57 (1989) 285

Fisher, S.M. and P. Palazzi, Using a data model from software design to data analysis: what have we learned 57 (1989) 169

Fleming, P.R. and J.S. Hutchinson, Representation of the Hamiltonian matrix in non-local coordinates for an acetylene bond-mode model 51 (1988) 59

Fletcher, D.F., see A. Thyagaraja 56 (1989) 115

Flieller, S., T.Node, industrial version of SuperNode 57 (1989) 492

Flower, D.R., see L. Heck 58 (1990) 169

Fluckiger, F., Overview of HEP wide area networking: producer perspective 57 (1989) 183

Foley, K.J., see A.C. Saulys 57 (1989) 353

Fontenelle, M.T. and J.A.C. Gallas, Constants of motion for the KdV and mKdV equations 60 (1990) 225

Foresti, S., G. Brusino, S. Hassanzadeh and V. Sonnad, Multilevel solution method for the p-version of finite elements 53 (1989) 349

Fornili, S.L., see F. Brugè 60 (1990) 31

Fornili, S.L., see F. Brugè 60 (1990) 39

Fornili, S.L., see F. Reale 60 (1990) 201

Forrest, B.M., A. Baumgärtner and D.W. Heermann, Parallel simulation of dense two-dimensional polymer systems 59 (1990) 455

Forster, R., see A.W. Booth 57 (1989) 332

Fortin, M., Some iterative methods for incompressible flow problems 53 (1989) 393

Fraga, S., M. Klobukowski, J. Muszynska, K.M.S. Saxena, J.A. Sordo, J.D. Climenhaga and P. Clark, Erratum notice. Research in atomic structure: a configuration interaction program with relativistic corrections (ABBB – CPC 47 (1987) 159) 52 (1989) 445

Frederick, J.H. and E.J. Heller, Quantum vibrational eigenstates from classical origins 51 (1988) 83

Frese, H., see L. Berny	57 (1989) 476
Friauf, R.J., see E.Y. Wu	59 (1990) 259
Fricke, B., see J. Meyer	54 (1989) 55
Fricke, B., see J. Meyer	55 (1989) 469
Fried, L.E. and G.S. Ezra, PERTURB: a program for calculating vibrational energies by generalized algebraic quantization	51 (1988) 103
Friedman, R.S., M.J. Jamieson and S.C. Preston, On the numerical solution of coupled eigenvalue differential equations arising in molecular spectroscopy	58 (1990) 17
Friedman, R.S. and M.J. Jamieson, Model potentials for multichannel eigenvalue problems	55 (1989) 137
Froese Fischer, C., see A. Hibbert	51 (1988) 285
Fucci, A., see S. Cittolin	57 (1989) 370
Fuchs, V., see M. Shoucri	55 (1989) 253
Gallas, J.A.C., see M.T. Fontenelle	60 (1990) 225
Gamble, J.N., Beyond Ethernet - future LAN's	57 (1989) 129
Ganssauge, E., B. Dressel, S. Hackel, H. Kallies, E. Koch, Ch. Müller, J.T. Rhee, W. Schulz and K. Ständecke, A track reconstruction program (TRP) for evaluation of nucleus-nucleus collisions in nuclear track emulsion chambers	55 (1989) 233
Gaspar, C., see F. Barao	57 (1989) 358
Gather, K., see ZEUS CDAQ Collaboration	57 (1989) 313
Gather, K.S., SASD-tools for program design	57 (1989) 29
Gausterer, H. and S. Sanielevici, Remarks on the numerical solution of Langevin equations on unitary group spaces	52 (1988) 43
Gavillet, Ph., see F. Barao	57 (1989) 358
Geertsema, G.T. and A. Achterberg, MHD turbulence and accretion disks	59 (1990) 145
Georgopoulos, C.H., see M.J. Corden	57 (1989) 268
Georgopoulos, C.H. and M.E. Mermikides, Vectorized simulation of the response of a time projection chamber	57 (1989) 255
Georgopoulos, C.H., see M.J. Corden	57 (1989) 260
Gerber, R.B., see H. Romanowski	51 (1988) 161
Ghiselli, A., see P. Bacilieri	57 (1989) 459
Ghizzo, A., see B. Izrar	52 (1989) 375
Giglietto, N., see M. Castellano	51 (1988) 431
Gil, T.J., C.L. Winstead and P.W. Langhoff, Lanczos methods for Hamiltonian spectra: Hilbert-space approximations to interaction-prepared states	53 (1989) 123
Gils, H.J., D. Heck, J. Oehlschläger, G. Schatz, T. Thouw and A. Merkel, A multi-transputer system for parallel Monte Carlo simulation of extensive air showers	56 (1989) 105
Glanzman, T., see D. Briggs	57 (1989) 273
Glasser, A.H., see K. Smith	54 (1989) 391
Glasser, A.H. and K. Smith, POS - a 1D time-dependent H^+ ion source code	55 (1989) 409
Gleixner, H., see J. Schastok	54 (1989) 167
Glowinski, R., see E. Dean	53 (1989) 401
Godefroid, M.R., see A. Hibbert	51 (1988) 285
Goedbloed, J.P., Stability of solar coronal loops	59 (1990) 39
Goeransson, G., see D.R. Quarrie	57 (1989) 325
Goeransson, G., see A.W. Booth	57 (1989) 332
Gomes, M.A.F. and G.L. Vasconcelos, Fragmentation dynamics in fractal and Euclidean systems	54 (1989) 257

Góngora-T, A., see R.G. Stuart	56 (1990) 337
Goossens, M., see R.A.M. van der Linden	59 (1990) 61
Goossens, M., see S. Poedts	59 (1990) 75
Goossens, M., see S. Poedts	59 (1990) 95
Goossens, M., see D. Hermans	59 (1990) 127
Gordon, M.S., see R.L. McGrath	59 (1990) 507
Gorecki, J. and J. Gryko, Molecular dynamics simulation of a chemical reaction	54 (1989) 245
Gorishny, S.G., S.A. Larin, L.R. Surguladze and F.V. Tkachov, MINCER: program for multiloop calculations in quantum field theory for the SCHOONSCHIP system	55 (1989) 381
Goto, H., see Y. Karita	57 (1989) 455
Govorun, V.N., see V.P. Voevodin	57 (1989) 532
Grant, I.P., see K.G. Dyall	58 (1990) 345
Grant, I.P., see K.G. Dyall	55 (1989) 425
Grappin, R., see M. Velli	59 (1990) 153
Graudenz, D., see N.K. Falck	56 (1989) 181
Green, M.G., see J.M. Carter	57 (1989) 495
Greenbaum, A., C. Li and H.Z. Chao, Parallelizing preconditioned conjugate gradient algorithms	53 (1989) 295
Greiman, W.H., see D.E. Hall	57 (1989) 211
Greiman, W.H., see D.E. Hall	57 (1989) 499
Grest, G.S., B. Dünweg and K. Kremer, Vectorized link cell FORTRAN code for molecular dynamics simulation for a large number of particles	55 (1989) 269
Grosdidier, G., Use of an IBM-FPS loosely coupled array of processors for high energy physics programs	52 (1989) 207
Grosse-Wiesmann, P., see D. Briggs	57 (1989) 273
Grotendorst, J., Approximating functions by means of symbolic computation and a general extrapolation method	59 (1990) 289
Grotendorst, J., MAPLE programs for converting series expansions to rational functions using the Levin transformation. Automatic generation of FORTRAN functions for numerical applications	55 (1989) 325
Gryko, J., see J. Gorecki	54 (1989) 245
Gündüç, Y., see C. Topaçlı	52 (1988) 65
Gustafsson, L., see A.W. Booth	57 (1989) 332
Guthöhrlein, G.H., see M. Damarowsky	52 (1989) 187
Hackel, S., see E. Ganssauge	55 (1989) 233
Hackenburg, R.W., see A.C. Saulys	57 (1989) 353
Hall, D.E., W.H. Greiman, W.F. Johnston, A.X. Merola, S.C. Loken and D.W. Robertson, The software bus: a vision for scientific software development	57 (1989) 211
Hall, D.E., A. Agogino, W.H. Greiman, W.F. Johnston, D. Olson, R. Paasch, A. Padgaonkar and D.W. Robertson, A fault location system for a time of flight detector array	57 (1989) 499
Hallam-Baker, P.M. and I.C. McArthur, Use of Occam in ZEUS	57 (1989) 520
Halonen, L. and M.S. Child, Local mode vibrations in tetrahedral molecules	51 (1988) 173
Handy, N.C., see S. Carter	51 (1988) 49
Handy, N.C., see S. Carter	55 (1989) 71
Handy, N.C., see P.J. Knowles	54 (1989) 75
Hannedouche, F., see U. Chandra	57 (1989) 263

Hansen, J.P., General subroutines for the calculation of atomic and molecular two-centre integrals 58 (1990) 217

Hansen, J.P. and K. Taulbjerg, A preorthonormalization procedure for coupled channel problems 51 (1988) 317
51 (1988) 301
51 (1988) 257

Haraguchi, M., see A. Nakamura

Harding, L.B., see W.C. Ermler

Harper, D., Vector 33: a REDUCE program for vector algebra and calculus in orthogonal curvilinear coordinates 54 (1989) 295
57 (1989) 466

Harris, F., see T. Adye

Hartmann, U. and E.D. Davis, *epicGRASS* - symbolic calculations with anticommuting variables 54 (1989) 353
56 (1989) 155

Hartung, G., see D. Würtz

Hase, W.L., see S.R. vande Linde

Hassanzadeh, S., see S. Foresti

Haug, K., see C. Duneczky

Haydock, R., Recursive tridiagonalization of infinite dimensional Hamiltonians 53 (1989) 349
53 (1989) 357

Haydock, R., Accuracy of the recursion method and basis nonorthogonality 55 (1989) 1
53 (1989) 133

Haynes, W., see S. Cittolin

Heath, G., see ZEUS CDAQ Collaboration 57 (1989) 370
57 (1989) 313

Heck, D., see H.J. Gils 56 (1989) 105

Heck, L., D.R. Flower and G. Pineau des Forêts, A computer program for calculating the structure of magnetohydrodynamical shocks in interstellar clouds 58 (1990) 169
59 (1990) 325

Heck, L., see R.J. Allan

Heermann, D.W., see A. N. Burkitt

Heermann, D.W., P. Nielaba and M. Rovere, Hybrid molecular dynamics 54 (1989) 201
60 (1990) 311

Heermann, D.W., see B.M. Forrest

Hege, H.C., see A. Nakamura

Heinrich, J., see H. Perlitz

Heller, E.J., see J.H. Frederick

Henriet, C., see M.-M. Rohmer 59 (1990) 455
51 (1988) 301
56 (1990) 385
51 (1988) 83
60 (1990) 127

Hermans, D., W. Kerner and M. Goossens, Linearly overstable magnetic convection in 1D compressible and non-uniform plasmas 59 (1990) 127

Hertzberger, L.O., Does HEP still hold challenges for computer science? 57 (1989) 15

Heuer, H.-O., A fast vectorized Fortran 77 program for the Monte Carlo simulation of the three-dimensional Ising system 59 (1990) 387

Hey, A.J.G., The role of MIMD arrays of transputers in computational physics 56 (1989) 1

Hibbert, A., C. Froese Fischer and M.R. Godefroid, Non-orthogonal orbitals in MCHF or configuration interaction wave functions 51 (1988) 285
56 (1990) 325
57 (1989) 455

Hinde, P., see R. Barlow

Hirose, H., see Y. Karita

Hnatowicz, V., V. Illyushchenko and P. Kozma, GSAP: Fortran code for gamma-spectrum analysis 60 (1990) 111
57 (1989) 332

Ho, N., see A.W. Booth

Hoare, C.A.R., Formal methods in computer system design 57 (1989) 206

Hock, J., Use of attached transputer hardware to VAX's for offline analysis 57 (1989) 503

Hoftun, J.S., see D. Cutts 57 (1989) 339
Hoftun, J.S., see D. Cutts 57 (1989) 478

Hogeweij, G.M.D., G. Hordósy and N.J. Lopes Cardozo, Heat transport analysis with error calculation	59 (1990) 245
Holmgren, S., see D. Briggs	57 (1989) 273
Hood, A.W., see P. de Bruyne	59 (1990) 55
Horáček, J. and J. Bok, K-matrix calcuation for general nonlocal potentials	59 (1990) 319
Hordósy, G., see G.M.D. Hogeweij	59 (1990) 245
Hsiao, M.-Y., K.A. Werley and K.M. Ling, CRFX, a one-and-a-quarter-dimensional transport code for field-reversed configuration studies	54 (1989) 329
Hsieh, H.C., see W.C. Ermler	51 (1988) 257
Hubeny, I., A computer program for calculating non-LTE model stellar atmospheres	52 (1988) 103
Huberman, B.A., Parallel computation	56 (1989) 25
Humpert, B., A comparative study of neural network architectures	58 (1990) 223
Humpert, B., On the use of neural networks in high energy physics experiments	56 (1990) 299
Hunt, L., see A.M. Rushton	57 (1989) 427
Hurlburt, N.E., see J. Toomre	59 (1990) 105
Hurst, G.J.B., see M. Dupuis	52 (1989) 415
Hutchinson, J.S., see P.R. Fleming	51 (1988) 59
Hutton, J., Future scientific networking	57 (1989) 188
Iacovacci, M., see ZEUS CDAQ Collaboration	57 (1989) 313
Ilyin, V.A., A.P. Kryukov, A.Ya. Rodionov and A.Yu. Taranov, High speed Dirac algebra calculations in a space of arbitrary dimension by means of a computer algebra system	57 (1989) 505
Ilyushchenko, V., see V. Hnatowicz	60 (1990) 111
Indrea, E., see N. Aldea	60 (1990) 145
Indrea, E., see N. Aldea	60 (1990) 155
Indrea, E., see N. Aldea	51 (1988) 451
Irving, A.C., see A.N. Burkitt	59 (1990) 447
Ito, T., J. Makino, T. Ebisuzaki and D. Sugimoto, A special-purpose N -body machine GRAPE-1	60 (1990) 187
Ivanova, N.S., see V.P. Voevodin	57 (1989) 532
Izrari, B., A. Ghizzo, P. Bertrand, E. Fijalkow and M.R. Feix, Integration of Vlasov equation by a fast Fourier Eulerian code	52 (1989) 375
Jacobs, P.W.M., see M. Mościński	54 (1989) 47
Jacobs, P.W.M., see Z.A. Rycerz	60 (1990) 53
Jadach, S. and B.F.L. Ward, YFS2 – The second-order Monte Carlo program for fermion pair production at LEP/SLC, with the initial state radiation of two hard and multiple soft photons	56 (1990) 351
James, F., A review of pseudorandom number generators	60 (1990) 329
Jamieson, M.J., see R.S. Friedman	58 (1990) 17
Jamieson, M.J., see R.S. Friedman	55 (1989) 137
Jamitzky, F., see M. Scholer	59 (1990) 175
Janevski, Z.D., see D.V. Pantelic	55 (1989) 5
Janicki, C., A computer program for the free-free and bound-free Gaunt factors of Rydberg systems	60 (1990) 281
Janse Van Rensburg, D.J. and D.A. McNamara, An interactive computer-graphics-based processor for boundary element modelling of electromagnetic scattering by thin conducting wires	55 (1989) 457

Jaquet, R., Application of the finite element method to eigenvalue problems. I. One dimensional calculations using optimized elements 58 (1990) 257

Jeffery, D.R.N., see C. Bizeau 57 (1989) 301

Jeffery, D.R.N., see S.P. Booth 57 (1989) 486

Jejcic, A., J. Maillard, J. Silva, M. Auguin and F. Boeri, Could running experience on SPMD computers contribute to the architectural choices for future dedicated computers for high energy physics simulation? 57 (1989) 507

Jenkins, D.A., see A. Minter 59 (1990) 499

Johnson, B.R., Semiclassical vibrational eigenvalues of H₂O and SO₂ by the adiabatic switching method 51 (1988) 1

Johnson, C.R., see D. Cutts 57 (1989) 339

Johnson, C.R., see D. Cutts 57 (1989) 478

Johnson, C.T., see K.G. Dyall 58 (1990) 345

Johnson, C.T., see K.G. Dyall 55 (1989) 425

Johnstad, H., PAW at Fermilab 57 (1989) 438

Johnston, D.A., see C.F. Baillie 58 (1990) 105

Johnston, W.F., see D.E. Hall 57 (1989) 211

Johnston, W.F., see D.E. Hall 57 (1989) 499

Jones, R., see D.M. Sendall 57 (1989) 343

Jones, R., see C. Boissat 57 (1989) 512

Joubert, W.D., see T.C. Oppe 53 (1989) 283

Justice, B.D., see S.E. Sobottka 51 (1988) 295

Kallies, H., see E. Ganssauge 55 (1989) 233

Kamgnia, E. and A. Sameh, A fast elliptic solver for simply connected domains 55 (1989) 43

Kaneko, T. and S. Kawabata, A preprocessor for FORTRAN source code produced by REDUCE 55 (1989) 141

Karita, Y., F. Abe, H. Hirose, H. Goto, R. Ogasawara, F. Yuasa, Y. Banno and Y. Yasu, Networking for high energy physics in Japan 57 (1989) 455

Kawabata, S., see T. Kaneko 55 (1989) 141

Kehres, J., see ZEUS CDAQ Collaboration 57 (1989) 313

Kelkar, K. M. and S.V. Patankar, Development of generalized block correction procedures for the solution of discretized Navier-Stokes equations 53 (1989) 329

Kennedy, A.D., Status of lattice gauge theory calculations 57 (1989) 57

Kenway, R.D., see S.P. Booth 57 (1989) 101

Kermode, J.P. and D. Weaire, 2D-FROTH: a program for the investigation of 2-dimensional froths 60 (1990) 75

Kermode, M.W., see M.M. Mustafa 55 (1989) 109

Kerner, W., see J. Cullum 53 (1989) 19

Kerner, W., see R.A.M. van der Linden 59 (1990) 61

Kerner, W., see S. Poedts 59 (1990) 75

Kerner, W., see S. Poedts 59 (1990) 95

Kerner, W., see D. Hermans 59 (1990) 127

Keyes, D.E., Domain decomposition methods for the parallel computation of reacting flows 53 (1989) 181

Killeen, J., see A.A. Mirin 51 (1988) 373

Kim, J., see D. Boley 53 (1989) 61

Kincaid, D.R., see T.C. Oppe 53 (1989) 283

Kirkby, D., see ZEUS CDAQ Collaboration	57 (1989) 321
Kitowski, J., see M. Mościński	54 (1989) 47
Klobukowski, M., see S. Fraga	52 (1989) 445
Kniehl, B.A., QCD corrections to vector boson self-energies in the standard model	58 (1990) 293
Knowles, I.G., A linear algorithm for calculating spin correlations in hadronic collisions	58 (1990) 271
Knowles, P.J. and N.C. Handy, A determinant based full configuration interaction program	54 (1989) 75
Knudson, S.K., see D.W. Noid	51 (1988) 11
Koberle, R., Neural networks as content addressable memories and learning machines	56 (1989) 43
Koch, E., see E. Ganssauge	55 (1989) 233
Köhler, S., see H.A. Yousif	59 (1990) 371
Koniges, A.E., see Y.-M. Chen	55 (1989) 359
Koniges, A.E., see D.V. Anderson	51 (1988) 391
Koniges, A.E., see D.V. Anderson	51 (1988) 405
Kouri, D.J., see C. Duneczky	53 (1989) 357
Kovaltsov, V.I., see V.P. Voevodin	57 (1989) 532
Kowalski, H., T. Poser, L. Stanco and E. Tscheslog, Investigation of ADAMO performance in the ZEUS calorimeter reconstruction program	57 (1989) 222
Kozma, P., see V. Hnatowicz	60 (1990) 111
Kozaev, Yu.M., see V.P. Voevodin	57 (1989) 532
Kramer, G., see N.K. Falck	56 (1989) 181
Kramer, M.A., see A.C. Saulys	57 (1989) 353
Krauss-Varban, D., Some aspects of finite element calculations applied to ULF magnetospheric cavity waves	59 (1990) 85
Kremer, K., see G.S. Grest	55 (1989) 269
Kress, J.D., G.A. Parker, R. T Pack, B.J. Archer and W.A. Cook, Comparison of Lanczos and subspace iterations for hyperspherical reaction path calculations	53 (1989) 91
Kress, J.D., S.B. Woodruff, G.A. Parker and R. T Pack, Some strategies for enhancing the performance of the block Lanczos method	53 (1989) 109
Kreuzberger, T., W. Kummer and M. Schweda, SUSYCAL - symbolic computations in supersymmetric theories	58 (1990) 89
Kreymer, A., see P. Lebrun	57 (1989) 231
Krischer, W., Commercial highly parallel signal processors on-line?	57 (1989) 121
Kronfeld, A.S., K.J.M. Moriarty and G. Schierholz, An efficient method for the computation of glueball masses using the inverse of the covariant Dirac operator as correlator	52 (1988) 1
Kronfeld, A.S., M.L. Laursen, G. Schierholz, C. Schleiermacher and U.-J. Wiese, A vectorized code for the computation of the topological charge in SU(2) lattice gauge theory	54 (1989) 109
Kryukov, A.P., see V.A. Ilyin	57 (1989) 505
Küblbeck, J., M. Böhm and A. Denner, Feyn Arts - Computer-algebraic generation of Feynman graphs and amplitudes	60 (1990) 165
Kummer, W., see T. Kreuzberger	58 (1990) 89
Kunz, P.F., Software management issues	57 (1989) 191
Kuo, C-C.J., see T.F. Chan	53 (1989) 237
Kupfer, K., see M. Shoucri	55 (1989) 253
Lagaris, I.E., see C.S. Chassapis	52 (1989) 223
Lagaris, I.E., see D.G. Papageorgiou	52 (1989) 241
Lagaris, I.E., see D.G. Papageorgiou	58 (1990) 119

Lai, A., see N. Avico 57 (1989) 285
 Lamarche, F. and C. Leroy, Evaluation of the volume of intersection of a sphere with a cylinder by elliptic integrals 59 (1990) 359
 Lambin, Ph., J.-P. Vigneron and A.A. Lucas, Computation of the surface electron-energy-loss spectrum in specular geometry for an arbitrary plane-stratified medium 60 (1990) 351
 Lan, V.K., M. Le Dourneuf, N.F. Allard, H.E. Saraph and W. Eissner, On the comparisons of close-coupling calculations using the UCL and opacity codes 55 (1989) 303
 Landau, R.H., see M.J. Páez 52 (1988) 141
 Landowne, S., see J. Fernández-Niello 54 (1989) 409
 Langhoff, P.W., see T.J. Gil 53 (1989) 123
 Larin, S.A., see S.G. Gorishny 55 (1989) 381
 Lauderdale, J.G., see S.C. Tucker 51 (1988) 233
 Laugier, J.Ph., see F. Barao 57 (1989) 358
 Laursen, M.L., see A.S. Kronfeld 54 (1989) 109
 Le Dourneuf, M., see V.K. Lan 55 (1989) 303
 Le Roy, R.J., Bound-continuum intensities - a computer program for calculating absorption coefficients, emission intensities or (golden rule) predissociation rates 52 (1989) 383
 Lebrun, P. and A. Kreymer, High level language memory management on parallel architectures 57 (1989) 231
 Lee, D.K., Application of theta functions for numerical evaluation of complete elliptic integrals of the first and second kinds 60 (1990) 319
 Lee, J.S., see B.H. Chang 51 (1988) 195
 Lee, L.C., Time-dependent magnetic reconnection: two- and three-dimensional MHD simulations 59 (1990) 163
 Lee, M.H., Frequency moment sum rules, recurrence relations and continued fractions in nonequilibrium statistical mechanics 53 (1989) 147
 Leitner, D.M., G.A. Natanson, R.S. Berry, P. Villarreal and G. Delgado-Barrio, Particles-on-a-sphere method for computing the rotational-vibrational spectrum of H₂O 51 (1988) 207
 Leroy, C., see F. Lamarche 59 (1990) 359
 Leschber, Y., see O. Castaños 52 (1988) 71
 Leschber, Y., see J.P. Draayer 56 (1989) 279
 Lessner, E.S., Weighted fit of parametric functions to distributions. The new interface of HBOOK with MINUIT 57 (1989) 385
 Levine, M.J.S., A LaTeX graphics routine for drawing Feynman diagrams 58 (1990) 181
 Levine, R.H., You want me to predict the future? 57 (1989) 118
 Levron, D., see Z. Burshtein 51 (1988) 349
 Lewis, J.G. and D.J. Pierce, Recent research in iterative methods at Boeing 53 (1989) 213
 Li, C., see A. Greenbaum 53 (1989) 295
 Li, C.H., see E. Dean 53 (1989) 401
 Li, S.P., see S.C. Wang 60 (1990) 181
 Light, J.C., see Z. Baćić 51 (1988) 35
 Lin, S.-Y., see R. Cohen 53 (1989) 455
 Lin, Y., Numerical calculation of force-free magnetic field for solar active regions and its application to prediction of solar flares 59 (1990) 139
 Lindenbaum, S.J., see A.C. Saulys 57 (1989) 353
 Ling, K.M., see M.-Y. Hsiao 54 (1989) 329
 Linke, V., see A. Nakamura 51 (1988) 301
 Linn, S.L., see B. Denby 56 (1990) 293

Linn, S.L., see B. Denby	57 (1989) 297
Liou, J., see T.E. Tezduyar	53 (1989) 441
Llobet, X., K. Appert, A. Bondeson and J. Vaclavik, On spectral pollution	59 (1990) 199
Loken, S.C., see D.E. Hall	57 (1989) 211
Lombardo, M.P., see N. Avico	57 (1989) 285
Longacre, R.S., see A.C. Saulys	57 (1989) 353
Lopes Cardozo, N.J., see G.M.D. Hogeweij	59 (1990) 245
Lopez, R., see J.P. Draayer	56 (1989) 279
López, R., see J.R. Álvarez Collado	52 (1989) 323
Lorenz, P., see T. Adye	57 (1989) 466
Love, W.A., see A.C. Saulys	57 (1989) 353
Loveless, R., see ZEUS CDAQ Collaboration	57 (1989) 313
Lu, D.R. and K. Park, A three-dimensional protein graphic program	60 (1990) 257
Lu, W., see C. Bizeau	57 (1989) 301
Lu, W., see S.P. Booth	57 (1989) 486
Lucas, A.A., see Ph. Lambin	60 (1990) 351
Luckhardt, S., see M. Shoucri	55 (1989) 253
Lukyantsev, A.F., see V.P. Voevodin	57 (1989) 532
Luskin, M., see R. Cohen	53 (1989) 455
Máca, F. and M. Scheffler, Surface Green's function for a rumpled crystal surface	51 (1988) 381
Macfarlane, J.J., IONMIX – a code for computing the equation of state and radiative properties of LTE and non-LTE plasmas	56 (1989) 259
Mackenzie, P.B., Machines for lattice gauge theory	57 (1989) 37
MacLaren, J.M., S. Crampin, D.D. Vvedensky, R.C. Albers and J.B. Pendry, Layer Korringa-Kohn-Rostoker electronic structure code for bulk and interface geometries	60 (1990) 365
Maier, R., see D. Boley	53 (1989) 61
Maillard, J., see A. Jejcic	57 (1989) 507
Maino, G., see V. Rosato	54 (1989) 251
Makino, J., see T. Ito	60 (1990) 187
Malegat, L., DCS – a program for calculating differential cross sections for the electronic excitation of diatomic molecules at fixed nuclei	60 (1990) 391
Mangeney, A., see M. Velli	59 (1990) 153
Männer, R., A programmable systolic array correlator as a trigger processor for electron pairs in RICH (ring image Cherenkov) counters	57 (1989) 516
Maquet, A., see A. Dubois	60 (1990) 271
Marinari, E., see N. Avico	57 (1989) 285
Marsaglia, G., B. Narasimhan and A. Zaman, A random number generator for PC's	60 (1990) 345
Marshall, G., Monte Carlo methods for the solution of nonlinear partial differential equations	56 (1989) 51
Martin, B., see F. Barao	57 (1989) 358
Martin, B., see S. Cittolin	57 (1989) 370
Martin, D.R., see A.A. Mirin	54 (1989) 183
Martin, W., see S. Youssef	57 (1989) 251
Martin, W.R., Successful vectorization – reactor physics Monte Carlo code	57 (1989) 68
Martinec, Z., Program to calculate the spectral harmonic expansion coefficients of the two scalar fields product	54 (1989) 177

Martini, A., see P. Bacilieri 57 (1989) 459
 Martorana, V., see F. Reale 60 (1990) 201
 Marzano, F., see N. Avico 57 (1989) 285
 Matheys, J-P., see D.M. Sendall 57 (1989) 343
 Matveev, M.Yu., see V.P. Voevodin 57 (1989) 532
 Mauser, N., see A. Arnold 59 (1990) 267
 May, E.N., Portable parallel programming in a Fortran environment 57 (1989) 278
 Mazza, C., Software project management 57 (1989) 23
 McArthur, I.C., see P.M. Hallam-Baker 57 (1989) 520
 McColl, W.F., Parallel algorithms and architectures 57 (1989) 84
 McCoy, M.G., see A.A. Mirin 51 (1988) 369
 McCoy, M.G., see A.A. Mirin 51 (1988) 373
 McGlynn, T., see A.M. Rushton 57 (1989) 427
 McGrath, R.L., A. Elmaani, J.M. Alexander, P.A. De Young, T. Ethvignot, M.S. Gordon and
 E. Renshaw, A Monte Carlo reaction simulation for small-angle correlations between
 light charged particles 59 (1990) 507
 McMullin, J.N., see K.H. Teo 59 (1990) 277
 McNamara, D.A., see D.B. Davidson 56 (1989) 249
 McNamara, D.A., see D.J. Janse Van Rensburg 55 (1989) 457
 Medcalf, T., see J.M. Carter 57 (1989) 495
 Medici, G., see P. Bacilieri 57 (1989) 459
 Mehta, M.A. and N. De Leon, LUCY: a FORTRAN implementation of semiclassical
 spectral quantization 51 (1988) 115
 Merkel, A., see H.J. Gils 56 (1989) 105
 Mermikides, M.E., see C.H. Georgopoulos 57 (1989) 255
 Mermikides, M.E., see M.J. Corden 57 (1989) 260
 Merola, A.X., see D.E. Hall 57 (1989) 211
 Mestel, B.D., see Q. Chen 51 (1988) 463
 Metcalf, M., Recent progress in Fortran standardization 57 (1989) 78
 Meurant, G., Practical use of the conjugate gradient method on parallel supercomputers 53 (1989) 467
 Meyer, J., W.-D. Sepp, B. Fricke and A. Rosén, Computation of relativistic symmetry
 orbitals for finite double point groups 54 (1989) 55
 Meyer, J., W.-D. Sepp, B. Fricke and A. Rosén, Erratum notice. Computation of relativistic
 symmetry orbitals for finite double point groups (ABHW - CPC 54(1989)55) 55 (1989) 469
 Migneron, R., K.S.S. Narayanan and H. Rasmussen, Numerical inversion of moments 54 (1989) 239
 Mikić, Z., see D.D. Schnack 59 (1990) 21
 Miller, S., see S. Carter 55 (1989) 71
 Miller, S., see B.T. Sutcliffe 51 (1988) 73
 Miller, S., see J. Tennyson 55 (1989) 149
 Milne, G.J., see J.S. Reid 55 (1989) 91
 Milotti, E., see G.R. Aiello 56 (1989) 135
 Milotti, E., see G.R. Aiello 56 (1989) 141
 Minter, A. and D.A. Jenkins, Bremsstrahlung cross section for a point, spinless target 59 (1990) 499
 Mirabelli, G., see P. Bacilieri 57 (1989) 459
 Mirin, A.A., D.R. Martin and N.J. O'Neill, TUBE88 - a code which computes magnetic
 field lines 54 (1989) 183
 Mirin, A.A. and M.G. McCoy, SIGV5D: a routine to compute the reaction rates of
 interacting distribution functions 51 (1988) 369

Mirin, A.A., M.G. McCoy, G.P. Tomaschke and J. Killeen, FPPAC88: a two-dimensional multispecies nonlinear Fokker-Planck package 51 (1988) 373

Mitra, P., see M. Creutz 55 (1989) 251

Mobayyen, M., see ZEUS CDAQ Collaboration 57 (1989) 313

Mohamed, A.R. and M.A. El Sharkawy, 16-bit microprocessor in second-order state-space digital filter design and implementation 59 (1990) 283

Mohanakrishnan, P., Use of albedo for neutron reflector regions in reactor core 3D simulations 55 (1989) 311

Möller, W., W. Eckstein and J.P. Biersack, TRIDYN - binary collision simulation of atomic collisions and dynamic composition changes in solids 51 (1988) 355

Monagan, M.B., see T.C. Scott 52 (1989) 261

Moncrieff, D., D.J. Baker and S. Wilson, Diagrammatic many-body perturbation expansion for atoms and molecules. VI 55 (1989) 31

Moon, W.M., see M.H. Serzu 52 (1989) 333

Moon, W.M., see M.H. Serzu 52 (1989) 337

Moore, R.A., see T.C. Scott 52 (1989) 261

Morales, J.J., L.F. Rull and S. Toxvaerd, Efficiency test of the traditional MD and the link-cell methods 56 (1989) 129

Morales, J.J. and M.J. Nuevo, A technique for improving the link-cell method 60 (1990) 195

Moreau, P., see F. Barao 57 (1989) 358

Morgan, W.L. and B.M. Penetrante, ELENDIF: a time-dependent Boltzmann solver for partially ionized plasmas 58 (1990) 127

Moriarty, K.J.M., see A.S. Kronfeld 52 (1988) 1

Moriarty, K.J.M., see J.-M. Drouffe 52 (1989) 249

Moriarty, K.J.M., E. Myers and C. Rebbi, A vector code for the numerical simulation of cosmic strings and flux vortices in superconductors on the ETA-10 54 (1989) 273

Moriarty, K.J.M., see M. Creutz 55 (1989) 251

Mornacchi, G., see D.M. Sendall 57 (1989) 343

Mornacchi, G., see C. Boissat 57 (1989) 512

Morris, T.W., see A.C. Saulys 57 (1989) 353

Mościński, M., J. Kitowski, Z.A. Rycerz and P.W.M. Jacobs, A vectorized algorithm on the ETA 10-P for molecular dynamics simulation of large number of particles confined in a long cylinder 54 (1989) 47

Mount, R.P., Overview of the essential tools 57 (1989) 140

Mueller, K. and P. Pfeifer, CODEBASE: a commercially developed code management system and code transfer facility 57 (1989) 239

Müller, B., see H.E. Rafelski 59 (1990) 521

Müller, Ch., see E. Ganssauge 55 (1989) 233

Murtagh, F.D., Hierarchical trees in *N*-body simulations: relations with cluster analysis methods 52 (1988) 15

Mustafa, M.M., M.W. Kermode and E.S. Zahran, Solution of the two-nucleons Schrödinger equation with nonlocal tensor potential in the 3S_1 - 3D_1 state 55 (1989) 109

Muszynska, J., see S. Fraga 52 (1989) 445

Myers, D.R., HEP graphics: standard and portability versus performance and cost 57 (1989) 176

Myers, E., see K.J.M. Moriarty 54 (1989) 273

Myers, N.C., see U. Schmid 58 (1990) 329

NA-35 Collaboration, G. Vesztergombi, "Iconic" tracking algorithms for high energy physics using the TRAX-I massively parallel processor	57 (1989) 290
Nakamura, A., G. Feuer, H.C. Hege, V. Linke and M. Haraguchi, Fast algorithm for an exact treatment of lattice quantum chromodynamics by Monte Carlo simulation on vector processors	51 (1988) 301 52 (1989) 291
Nakamura, H., see A. Ohsaki	51 (1988) 431
Nappi, E., see M. Castellano	60 (1990) 345
Narasimhan, B., see G. Marsaglia	54 (1989) 239
Narayanan, K.S.S., see R. Migneron	57 (1989) 47
Nash, T., Event parallelism: distributed memory parallel computing for high energy physics experiments	51 (1988) 207
Natanson, G.A., see D.M. Leitner	53 (1989) 321
Navarra, A., An application of GMRES to indefinite linear problems in meteorology	52 (1988) 29
Nesbet, R.K., Analytical evaluation of integrals over Coulomb wave functions	53 (1989) 141
Nex, C.M.M., The block Lanczos algorithm and the calculation of matrix resolvents	57 (1989) 343
Nguyen, T., see D.M. Sendall	57 (1989) 417
Nichols, J., The Fermilab central computing facility architectural model	60 (1990) 311
Nielaba, P., see D.W. Heermann	51 (1988) 11
Noid, D.W., S.K. Knudson and B.G. Sumpter, Exact semiclassical calculation of eigenvalues for multidimensional systems using SOS	59 (1990) 119
Nordlund, Å. and R.F. Stein, 3-D simulations of solar and stellar convection and magnetoconvection	54 (1989) 95
Norman, M.R., see B.A. Shadwick	57 (1989) 313
Notz, D., see ZEUS CDAQ Collaboration	53 (1989) 157
Nour-Omid, B., Applications of the Lanczos method	53 (1989) 169
Nour-Omid, B., see B.N. Parlett	60 (1990) 195
Nuevo, M.J., see J.J. Morales	57 (1989) 455
Nunn, D., The numerical simulation of VLF nonlinear wave-particle interactions in collision-free plasmas using the Vlasov hybrid simulation technique	52 (1989) 291
Ochsenbein, F., see A.M. Rushton	57 (1989) 443
Odorico, R., see L. Alvisi	59 (1990) 527
Odorico, R., COJETS 5.12: a Monte Carlo simulation program for \bar{p} -p and p-p collisions	56 (1989) 105
Oehlschläger, J., see H.J. Gils	57 (1989) 183
Ogasawara, R., see Y. Karita	53 (1989) 283
Ohsaki, A., H. Nakamura and S.C. Park, On the evaluation of cross section and rate constant of atom-diatom reactions in the sudden and adiabatic approximations	57 (1989) 499
Olson, D., see D.E. Hall	57 (1989) 413
O'Neale, S.W., The OPAL event server	54 (1989) 183
O'Neill, N.J., see A.A. Mirin	57 (1989) 321
Oppe, T.C., W.D. Joubert and D.R. Kincaid, An overview of NSPCG: a nonsymmetric preconditioned conjugate gradient package	57 (1989) 401
Orr, R.S., see ZEUS CDAQ Collaboration	59 (1990) 185
Orr, R.S., see ZEUS CDAQ Collaboration	57 (1989) 95
Orteu, S., see M. Delfino	53 (1989) 231
Otto, A., 3D resistive MHD computations of magnetospheric physics	57 (1989) 413
Otto, S.W., Shared-memory versus distributed-memory: halftime score	59 (1990) 185

Paasch, R., see D.E. Hall	57 (1989) 499
Paatero, P., see L. Unionius	59 (1990) 225
Pace, E., see P. Bacilieri	57 (1989) 459
Pacheco, A., see M. Delfino	57 (1989) 401
Pacheco, A.J., D.E. Di Gregorio, J.O. Fernández Niello and M. Elgue, Fusion cross sections from measurements of delayed X-rays	52 (1988) 93
Pacheco, J.M., see C. Yannouleas	52 (1988) 85
Pacheco, J.M., see C. Yannouleas	54 (1989) 315
Padgaonkar, A., see D.E. Hall	57 (1989) 499
Páez, M.J., M.E. Sagen and R.H. Landau, LPOTP: nucleon elastic-scattering from spin 0 and 1/2 nuclei in momentum space	52 (1988) 141
Pais, V.A. and A. Caruso, A collisional method to correct the mesh distortion in two-dimensional Langrangian hydrocodes	58 (1990) 55
Palazzi, P., see S.M. Fisher	57 (1989) 169
Palermo, S., see A.R.C. da Rocha	57 (1989) 524
Paniagua, M., see J.R. Álvarez Collado	52 (1989) 323
Pantelic, D.V. and Z.D. Janevski, A new kind of splines and their use for fast ray-tracing in reflective cavities	55 (1989) 5
Paolucci, P., see N. Avico	57 (1989) 285
Papageorgiou, D.G. and I.E. Lagaris, MERLIN-2.1 DOUBLE PRECISION	58 (1990) 119
Papageorgiou, D.G., see C.S. Chassapis	52 (1989) 223
Papageorgiou, D.G., C.S. Chassapis and I.E. Lagaris, MERLIN-2.0 - enhanced and programmable version	52 (1989) 241
Parga, N., Neural networks as models of associative memories	55 (1989) 77
Parisi, G., see N. Avico	57 (1989) 285
Park, K., see D.R. Lu	60 (1990) 257
Park, S.C. and J.P. Draayer, Balanced binary tree code for scientific applications	55 (1989) 189
Park, S.C., see J.P. Draayer	56 (1989) 279
Park, S.C., see A. Ohsaki	52 (1989) 291
Parker, G.A., see J.D. Kress	53 (1989) 91
Parker, G.A., see J.D. Kress	53 (1989) 109
Parker, R.D. and R.L. Dewar, 2-D, nonlinear spectral simulation of reconnective transitions on a periodic, planar current sheet with (1) smooth and (2) corrugated conducting wall boundary conditions with flow	59 (1990) 1
Parkman, C., see C. Bizeau	57 (1989) 301
Parlett, B.N. and B. Nour-Omid, Towards a black box Lanczos program	53 (1989) 169
Parpia, F.A., see K.G. Dyall	55 (1989) 425
Parpia, F.A., see K.G. Dyall	58 (1990) 345
Parsons, I.D., The implementations of an element level multigrid algorithm on the Alliant FX/8	53 (1989) 337
Patankar, S.V., see K. M. Kelkar	53 (1989) 329
Patrick, J., see D.R. Quarrie	57 (1989) 325
Pech, J., see N. Avico	57 (1989) 285
Pendleton, B.J., see S.P. Booth	57 (1989) 101
Pendry, J.B., see P.J. Rous	54 (1989) 137
Pendry, J.B., see P.J. Rous	54 (1989) 157
Pendry, J.B., see J.M. MacLaren	60 (1990) 365

Penetrante, B.M., see W.L. Morgan	58 (1990) 127
Peres, G., see F. Reale	60 (1990) 201
Perl, H., J. Ranft and J. Heinrich, Calculation of QED graphs with the spinor technique	56 (1990) 385
Perrin, Y., see C. Bizeau	57 (1989) 301
Perrine, B., see A.M. Rushton	57 (1989) 427
Persson, S., Measurement and three dimensional reconstruction of particle tracks in emulsion chambers	55 (1989) 103
Peshev, O., see F. Babalievski	60 (1990) 27
Pfeifer, P., see K. Mueller	57 (1989) 239
Pichon, B., Numerical calculation of the generalized Fermi-Dirac integrals	55 (1989) 127
Pierce, D.J., see J.G. Lewis	53 (1989) 213
Pimenta, M., see F. Barao	57 (1989) 358
Pimenta, M., see C.M.L. Werner	57 (1989) 364
Pineau des Forêts, G., see L. Heck	58 (1990) 169
Ping, J.-L., Q.-R. Zheng, B.-Q. Chen and J.-Q. Chen, Computer generated subgroup-symmetry adapted irreducible representations and CG coefficients of space groups by the eigenfunction method	52 (1989) 355
Platner, E.D., see A.C. Saulys	57 (1989) 353
Plummer, E.P., see K.G. Dyall	55 (1989) 425
Plummer, E.P., see K.G. Dyall	58 (1990) 345
Poedts, S., M. Goossens and W. Kerner, Numerical simulation of the stationary state of periodically driven coronal loops	59 (1990) 75
Poedts, S., M. Goossens and W. Kerner, Temporal evolution of resonant absorption in solar coronal loops	59 (1990) 95
Pollock, E.L., Properties and computation of the Coulomb pair density matrix	52 (1988) 49
Porte, J.P., see S. Cittolin	57 (1989) 370
Portilho, O., MP - a multiple precision package	59 (1990) 345
Poser, T., see H. Kowalski	57 (1989) 222
Pouzard, G., see A. Allouche	54 (1989) 171
Preston, S.C., see R.S. Friedman	58 (1990) 17
Purrington, R.D., Particle-vibration coupling model for odd- A nuclei	58 (1990) 211
Pushkarev, A.N., see A.J. Dyachenko	60 (1990) 239
Putzer, A., Data structures and data-base systems used in high energy physics: modelling and implementation	57 (1989) 156
Quarrie, D.R., M.D. Anderson, C.T. Day, G. Goeransson, J. Patrick, M. Schmitz, E. Sexton and B. Troemel, The CDF online system	57 (1989) 325
Rademakers, A.A., see M. Brun	57 (1989) 235
Rafelski, H.E. and B. Müller, PC-Fortran programs for muon reactivation calculations in muon-catalyzed fusion	59 (1990) 521
Raine, A.R.C., D. Fincham and W. Smith, Systolic loop methods for molecular dynamics simulation using multiple transputers	55 (1989) 13
Rajeswari, V., see K. Srinivasa Rao	56 (1989) 231
Ramírez, G., see J.R. Álvarez Collado	52 (1989) 323
Randrup, J., Microcanonical sampling of momenta in simulations of many-particle systems	59 (1990) 439
Ranft, J., see H. Perl	56 (1990) 385

Raptis, A.D., see J.R. Cash	56 (1990) 391
Rapuano, F., see N. Avico	57 (1989) 285
Rasmussen, H., see R. Migneron	54 (1989) 239
Ratner, M.A., see H. Romanowski	51 (1988) 161
Read, B.J., Data structures and organisation: special problems in scientific applications	57 (1989) 164
Reale, F., F. Brugè, G. Peres, S.L. Fornili, V. Martorana and S. Serio, One-dimensional hydrodynamic modeling of coronal plasmas on transputer arrays	60 (1990) 201
Rebbi, C., see K.J.M. Moriarty	54 (1989) 273
Reid, J.S. and G.J. Milne, Quasi-elastic X-ray scattering divergence analysis calculation	55 (1989) 91
Reid, J.S., Synchrotron radiation flux at experimental stations	54 (1989) 307
Reis, M., see F. Barao	57 (1989) 358
Remiddi, E., see N. Avico	57 (1989) 285
Renshaw, E., see R.L. McGrath	59 (1990) 507
Rhee, J.T., see E. Ganssauge	55 (1989) 233
Riccardi, G., see U. Chandra	57 (1989) 263
Richmond, A., see A.M. Rushton	57 (1989) 427
Rickard, G.J., see E.M. Epperlein	52 (1988) 7
Riemann, T., see D.Yu. Bardin	59 (1990) 303
Roberts, K.J., see R. Docherty	51 (1988) 423
Robertson, D.W., see D.E. Hall	57 (1989) 211
Robertson, D.W., see D.E. Hall	57 (1989) 499
Robinson, G.W., see S.-B. Zhu	52 (1989) 317
Rodioniov, A.Ya., see V.A. Ilyin	57 (1989) 505
Rohmer, M.-M., J. Demuynck, M. Bénard, R. Wiest, Chr. Bachmann, C. Henriet and R. Ernenwein, A program system for ab initio MO calculations on vector and parallel processing machines. II. SCF closed-shell and open-shell iterations	60 (1990) 127
Rohmer, M.-M., see R. Ernenwein	58 (1990) 305
Romanowski, H., M.A. Ratner and R.B. Gerber, Determination of potential energy surfaces of linear triatomics from vibration-rotation spectra: an inversion method applied to CO ₂	51 (1988) 161
Romelfanger, F., see A.M. Rushton	57 (1989) 427
Rosa, R., see A. Desalvo	60 (1990) 305
Rosato, V., G. Maino and A. Ventura, A molecular dynamics model for the study of helium on transition metals	54 (1989) 251
Rosén, A., see J. Meyer	54 (1989) 55
Rosén, A., see J. Meyer	55 (1989) 469
Rosmus, P., see S. Carter	55 (1989) 71
Rossi, P., see T.A. Degrand	60 (1990) 211
Rous, P.J. and J.B. Pendry, Tensor LEED I: a technique for high speed surface structure determination by low energy electron diffraction. TLEED1	54 (1989) 137
Rous, P.J. and J.B. Pendry, Tensor LEED II: a technique for high speed surface structure determination by low energy electron diffraction. TLEED2	54 (1989) 157
Rovere, M., see D.W. Heermann	60 (1990) 311
Roweth, D., see S.P. Booth	57 (1989) 101
Roy, D., see S. Bhowmick	54 (1989) 31
Roy, D., see R. Bhattacharya	55 (1989) 297
Rubenchik, A.M., see A.J. Dyachenko	60 (1990) 239
Ruder, H., see J. Schastok	54 (1989) 167

Rull, L.F., see J.J. Morales 56 (1989) 129

Runge, K., A high speed network for HEP in Germany 57 (1989) 452

Rushton, A.M., L. Hunt, T. McGlynn, F. Ochsenbein, B. Perrine, A. Richmond, F. Romelfanger, G. Russo, P.M.B. Shames, J. Travisano, L. Willard and S. Zeller, Design and implementation of an optical disk-based astronomical data archive 57 (1989) 427

Russo, G., see A.M. Rushton 57 (1989) 427

Rycerz, Z.A., see M. Mościński 54 (1989) 47

Rycerz, Z.A. and P.W.M. Jacobs, Molecular dynamics simulation program of order N for condensed matter. I. MDPYRS1: scalar pyramid, short-range interactions 60 (1990) 53

Rycerz, Z.A., Acceleration of molecular dynamics simulation of order N with neighbour list 60 (1990) 297

Saad, Y., Numerical solution of large nonsymmetric eigenvalue problems 53 (1989) 71

Sachwitz, M., see D.Yu. Bardin 59 (1990) 303

Sagen, M.E., see M.J. Páez 52 (1988) 141

Salina, G., see N. Avico 57 (1989) 285

Salvini, S.A., Erratum notice. A new program to calculate differential and total cross sections for electron-atom or ion scattering using the momentum transfer formalism (AANW - CPC 27 (1982)25) 52 (1988) 165

Sameh, A., see E. Kamgnia 55 (1989) 43

Sanielewici, S., see H. Gausterer 52 (1988) 43

Santonico, R., see P. Bacilieri 57 (1989) 459

Saraph, H.E., see V.K. Lan 55 (1989) 303

Sararu, A. and M. Sararu, Stability of finite linear combinations of vectors under changes of their coefficients. An application to approximation problems 60 (1990) 47

Sararu, M., see A. Sararu 60 (1990) 47

Sarno, R., see N. Avico 57 (1989) 285

Sarrazin, M., see M. Defranceschi 52 (1989) 409

Sasse, A.G.B.M., see H. Wormeester 52 (1988) 19

Saulys, A.C., A. Etkin, K.J. Foley, R.W. Hackenburg, R.S. Longacre, W.A. Love, T.W. Morris, E.D. Platner, S.J. Lindenbaum, C.S. Chan and M.A. Kramer, MPS data-acquisition software system 57 (1989) 353

Sawaryn, A. and W.A. Sokalski, Cumulative atomic multipole moments and point charge models describing molecular charge distribution 52 (1989) 397

Saxena, K.M.S., see S. Fraga 52 (1989) 445

Schaad, M.W., see D. Briggs 57 (1989) 273

Schaile, O., DZDISP: a graphics tool to interact with ZEBRA data structures 57 (1989) 528

Schastok, J., H. Gleixner, M. Soffel, H. Ruder and M. Schneider, The ephemeris program GLE2000 54 (1989) 167

Schatz, G., see H.J. Gils 56 (1989) 105

Schatz, G.C., A program for determining primitive semiclassical eigenvalues for vibrating/rotating nonlinear triatomic molecules 51 (1988) 135

Scheffler, M., see F. Máca 51 (1988) 381

Schierholz, G., see A.S. Kronfeld 52 (1988) 1

Schierholz, G., see A.S. Kronfeld 54 (1989) 109

Schilling, P.K., Graphics at DESY 57 (1989) 443

Schleiermacher, C., see A.S. Kronfeld 54 (1989) 109

Schmid, U., N.C. Myers and J.A. Van Vechten, VIDSIM - a Monte Carlo program for the simulation of atomic diffusion in diamond and zinc-blende structures 58 (1990) 329

Schmidt-Weinmar, H.G., see K.H. Teo 59 (1990) 277

Schmitz, M., see D.R. Quarrie 57 (1989) 325

Schnack, D.D., Z. Mikić, D.C. Barnes and G. van Hoven, Magnetohydrodynamic simulation of coronal magnetic fields 59 (1990) 21

Schneider, B.I. and L.A. Collins, A direct iterative-variational method for solving large sets of linear algebraic equations 53 (1989) 381

Schneider, M., see J. Schastok 54 (1989) 167

Schoen, M., Structure of a simple molecular dynamics FORTRAN program optimized for CRAY vector processing computers 52 (1989) 175

Scholer, M., T. Terasawa and F. Jamitzky, Reconnection and fluctuations in compressible MHD: a comparison of different numerical methods 59 (1990) 175

Schulz, W., see E. Ganssauge 55 (1989) 233

Schumaker, D.E., see D.V. Anderson 51 (1988) 391

Schumaker, D.E., see D.V. Anderson 51 (1988) 405

Schwarz, K., see P. Blaha 59 (1990) 399

Schweda, M., see T. Kreuzberger 58 (1990) 89

Schwenke, D.W., see C. Duneczky 53 (1989) 357

Sciutto, S.J., POLYFIT - a package for polynomial fitting 52 (1989) 427

Scott, D.S., Implementing Lanczos-like algorithms on hypercube architectures 53 (1989) 271

Scott, T.C., R.A. Moore and M.B. Monagan, Resolution of many particle electrodynamics by symbolic manipulation 52 (1989) 261

Scrimieri, E., see P. Colangelo 54 (1989) 235

Secret, D., see B.H. Chang 51 (1988) 195

Sendall, D.M., C. Boissat, W. Bozzoli, P. Burkimsher, R. Jones, J.-P. Matheys, G. Mornacchi, T. Nguyen, P. Vande Vyvre, A. Vascotto and D. Weaver, MODEL: a software suite for data acquisition 57 (1989) 343

Senko, V.A., see V.P. Voevodin 57 (1989) 532

Sephton, A., see ZEUS CDAQ Collaboration 57 (1989) 313

Sepp, W.-D., see J. Meyer 54 (1989) 55

Sepp, W.-D., see J. Meyer 55 (1989) 469

Serio, S., see F. Reale 60 (1990) 201

Serzu, M.H. and W.M. Moon, Two dimensional fast Fourier transform for large data matrices 52 (1989) 333

Serzu, M.H. and W.M. Moon, Dip-moveout by Fourier transform 52 (1989) 337

Sexton, E., see D.R. Quarrie 57 (1989) 325

Shadwick, B.A., J.D. Talman and M.R. Norman, A program to compute variationally optimized relativistic atomic potentials 54 (1989) 95

Shames, P.M.B., see A.M. Rushton 57 (1989) 427

Sherborne, B.S. and G.E. Stedman, Recursive generation of Cartesian angular momentum coupling trees for SO(3) 59 (1990) 417

Shimizu, Y., see K. Tobimatsu 55 (1989) 337

Shkarofsky, I., see M. Shoucri 55 (1989) 253

Shmakov, S.Yu., V.V. Uzhinskii and A.M. Zadorozhny, Diagen-generator of inelastic nucleus-nucleus interaction diagrams 54 (1989) 125

Shoucri, M., I. Shkarofsky, V. Fuchs, K. Kupfer, A. Bers and S. Luckhardt, A quasilinear Fokker-Planck code for the numerical solution of the lower-hybrid current-drive problem in the presence of electron cyclotron heating 55 (1989) 253

Shvets, V.F. see A.J. Dyachenko 60 (1990) 239

Sibert III, E.L., VANVLK: an algebraic manipulation program for canonical Van Vleck perturbation theory 51 (1988) 149

Silva, J., see A. Jejcic 57 (1989) 507

Simos, T.E., see J.R. Cash 56 (1990) 391

Singer, S.J., Multiparticle Monte Carlo moves: algorithm for solids with free-energy determination 59 (1990) 463

Skála, L., A new version of the program for the generation of symmetry-adapted functions for molecular calculations 58 (1990) 343

Skotnickzny, Z., Query by Forms: user-oriented relational database retrieving system and its application in analysis of experiment data 57 (1989) 225

Slaets, J.F.W. and G. Travieso, Parallel computing: a case study 56 (1989) 63

Sliwa, K., CDF's experience with a parallel architecture multiprocessor system - ACP 57 (1989) 407

Smith, K. and A.H. Glasser, Data base of cross sections and reaction rates for hydrogen ion sources 54 (1989) 391

Smith, K., see A.H. Glasser 55 (1989) 409

Smith, R.K., see R.E. Bank 53 (1989) 201

Smith, W., see A.R.C. Raine 55 (1989) 13

Sobottka, S.E., R.J. Chandross, G.G. Cornick, B.D. Justice, R.S. Stewart and J.A. Thomas, Fast algorithm for identifying clusters in digitized images 51 (1988) 295

Soffel, M., see J. Schastok 54 (1989) 167

Sokal, A.D., see A. Berretti 58 (1990) 1

Sokalski, W.A., see A. Sawaryn 52 (1989) 397

Sonnad, V., see A. Capotondi 52 (1989) 195

Sonnad, V., see S. Foresti 53 (1989) 349

Sorantin, P., see P. Blaha 59 (1990) 399

Sordo, J.A., see S. Fraga 52 (1989) 445

Sornborger, A., see D. Cutts 57 (1989) 478

Souza, J., see C.M.L. Werner 57 (1989) 364

Sphicas, P., see S. Cittolin 57 (1989) 370

Spinelli, P., see M. Castellano 51 (1988) 431

Srinivasa Rao, K., V. Rajeswari and C.B. Chiu, A new Fortran program for the 9-j angular momentum coefficient 56 (1989) 231

Stanco, L., see H. Kowalski 57 (1989) 222

Stanco, L., Particle track reconstruction in heavy materials with the Kalman technique 57 (1989) 380

Ständecke, K., see E. Ganssauge 55 (1989) 233

Stedman, G.E., see B.S. Sherborne 59 (1990) 417

Stefanou, N., H. Ákai and R. Zeller, An efficient numerical method to calculate shape truncation functions for Wigner-Seitz atomic polyhedra 60 (1990) 231

Stein, R.F., see Å. Nordlund 59 (1990) 119

Stenlund, E., see L. Ding 59 (1990) 313

Stewart, R.S., see S.E. Sobottka 51 (1988) 295

Storr, K.M., see S.P. Booth 57 (1989) 486

Story, C.M., Software engineering in industry 57 (1989) 217

Stroili, R., see ZEUS CDAQ Collaboration 57 (1989) 313

Stuart, R.G. and A. Góngora-T., Algebraic reduction of one-loop Feynman diagrams to scalar integrals. II 56 (1990) 337

Sufrin, B., Formal methods in system design and implementation 57 (1989) 108

Sugimoto, D., see T. Ito 60 (1990) 187

Sullivan, F., see J.G. Amar 55 (1989) 287

Sumpter, B.G., see D.W. Noid 51 (1988) 11

Sun, Y., see C. Duneczky 53 (1989) 357

Surguladze, L.R. and F.V. Tkachov, LOOPS: procedures for multiloop calculations in quantum field theory for the REDUCE system 55 (1989) 205

Surguladze, L.R., see S.G. Gorishny 55 (1989) 381

Sutcliffe, B.T., see S. Carter 55 (1989) 71

Sutcliffe, B.T., S. Miller and J. Tennyson, An effective computational approach to the calculation of the vibration-rotation spectra of triatomic molecules 51 (1988) 73

Sytin, A.N., see V.P. Voevodin 57 (1989) 532

T Pack, R., see J.D. Kress 53 (1989) 91

T Pack, R., see J.D. Kress 53 (1989) 109

Takemasa, T., Abscissae and weights for the Gauss-Laguerre quadrature formula 52 (1988) 133

Talman, J.D., A program to compute variationally optimized effective atomic potentials 54 (1989) 85

Talman, J.D., see B.A. Shadwick 54 (1989) 95

Talwar, I. and L.E. Wright, The radiation tail accompanying elastic electron scattering from the atomic nucleus 55 (1989) 367

Tanaka, H., Numerical calculation of helicity amplitudes for processes involving massive fermions 58 (1990) 153

Tarancón, A., see N. Avico 57 (1989) 285

Taranov, A.Yu., see V.A. Ilyin 57 (1989) 505

Tarlini, M., see R. Cecchini 60 (1990) 265

Tarlini, M., see R. Cecchini 52 (1989) 283

Taulbjerg, K., see J.P. Hansen 51 (1988) 317

Tennyson, J., see S. Carter 55 (1989) 71

Tennyson, J., see B.T. Sutcliffe 51 (1988) 73

Tennyson, J. and S. Miller, A program suite for the calculation of ro-vibrational spectra of triatomic molecules 55 (1989) 149

Teo, K.H., W. Allegretto, J.N. McMullin and H.G. Schmidt-Weinmar, Self-consistent calculation of the density-of-states mass of holes in 2-D silicon structures 59 (1990) 277

Terasawa, T., see M. Scholer 59 (1990) 175

Tezduyar, T.E. and J. Liou, Grouped element-by-element iteration schemes for incompressible flow computations 53 (1989) 441

Thaler, J.J., Data-acquisition modeling and simulation 57 (1989) 309

Thomas, J.A., see S.E. Sobottka 51 (1988) 295

Thompson, G., see P. Biddulph 54 (1989) 13

Thompson, T.C., see S.C. Tucker 51 (1988) 233

Thornton, A.M., see S.P. Booth 57 (1989) 101

Thornton, A.M., see S.P. Booth 57 (1989) 486

Thouw, T., see H.J. Gils 56 (1989) 105

Thyagaraja, A. and D.F. Fletcher, The nonhyperbolicity of multiphase flow equations: a nonlinear nonproblem? 56 (1989) 115

Thyagaraja, A., Book review 56 (1989) 291

Tinsman, J., see D. Briggs	57 (1989) 273
Tishin, G.V., see V.P. Voevodin	57 (1989) 532
Tkachov, F.V., see L.R. Surguladze	55 (1989) 205
Tkachov, F.V., see S.G. Gorishny	55 (1989) 381
Tobimatsu, K. and Y. Shimizu, Radiative Bhabha scattering in special configurations with missing final e^+ and/or e^-	55 (1989) 337
Todesco, G.M., see N. Avico	57 (1989) 285
Tokushuku, K., see ZEUS CDAQ Collaboration	57 (1989) 313
Tomaschke, G.P., see A.A. Mirin	51 (1988) 373
Tong, C., see T.F. Chan	53 (1989) 237
Toomre, J., N. Brummell, F. Cattaneo and N.E. Hurlburt, Three-dimensional compressible convection at low Prandtl numbers	59 (1990) 105
Topaçlı, C., Y. Gündüz and A. Aydinli, MULTI: a simulation program for laser processing of multilayer structures	52 (1988) 65
Torelli, M., see N. Avico	57 (1989) 285
Toussaint, D., Introduction to algorithms for Monte Carlo simulations and their application to QCD	56 (1989) 69
Toxvaerd, S., see J.J. Morales	56 (1989) 129
Tran, T.M. and J.S. Wurtele, TDA - a three-dimensional axisymmetric code for free-electron-laser (FEL) simulation	54 (1989) 263
Trasatti, L., see P. Bacilieri	57 (1989) 459
Travieso, G., see J.F.W. Slaets	56 (1989) 63
Travisano, J., see A.M. Rushton	57 (1989) 427
Treleaven, P. and M. Vellasco, Neural computing overview	57 (1989) 543
Trickey, S.B., see P. Blaha	59 (1990) 399
Tripiccione, R., see N. Avico	57 (1989) 285
Troemel, B., see D.R. Quarrie	57 (1989) 325
Tross, W., see N. Avico	57 (1989) 285
Troyon, F., see A.D. Turnbull	52 (1989) 303
Truhlar, D.G., see S.C. Tucker	51 (1988) 233
Truhlar, D.G., see C. Duneczky	53 (1989) 357
Tscheslog, E., see H. Kowalski	57 (1989) 222
Tucker, S.C., T.C. Thompson, J.G. Lauderdale and D.G. Truhlar, A vibrational configuration interaction program for energies and resonance widths	51 (1988) 233
Turnbull, A.D. and F. Troyon, Two variational forms of the MHD ballooning equation	52 (1989) 303
Unonius, L. and P. Paatero, Use of singular value decomposition for analyzing repetitive measurements	59 (1990) 225
Upadhyay, S.K., see I.P. Dubey	54 (1989) 23
Uzhinskii, V.V., see S.Yu. Shmakov	54 (1989) 125
Vaclavik, J., see X. Llobet	59 (1990) 199
Vagi, J., see U. Chandra	57 (1989) 263
Valente, E., see P. Bacilieri	57 (1989) 459
Valentini, S., see P. Bacilieri	57 (1989) 459
Van der Linden, R.A.M., M. Goossens and W. Kerner, A combined finite element/Fourier series method for the numerical study of the stability of line-tied magnetic plasmas	59 (1990) 61
Van der Vorst, H.A., ICCG and related methods for 3D problems on vector computers	53 (1989) 223

Van Herwijnen, E., The use of text interchange standards for submitting physics articles to journals 57 (1989) 244

Van Hoven, G., see D.D. Schnack 59 (1990) 21

Van Silhout, A., see H. Wormeester 52 (1988) 19

Van Vechten, J.A., see U. Schmid 58 (1990) 329

Vande Linde, S.R. and W.L. Hase, Dynamics of ion-molecule recombination. IV. $\text{Li}^+ + (\text{CH}_3)_2\text{O}$ association 51 (1988) 17

Vande Vyvre, P., see D.M. Sendall 57 (1989) 343

Vandoni, C.E., see R. Brun 57 (1989) 432

Varela, J., see F. Barao 57 (1989) 358

Varela, J., see C.M.L. Werner 57 (1989) 364

Varias, A., An extension of the HERA code to flux coordinate equilibria 52 (1989) 167

Vasconcelos, G.L., see M.A.F. Gomes 54 (1989) 257

Vascotto, A., see D.M. Sendall 57 (1989) 343

Vellasco, M., see P. Treleaven 57 (1989) 543

Velli, M., see P. de Bruyne 59 (1990) 55

Velli, M., R. Grappin and A. Mangeney, Solar wind expansion effects on the evolution of hydromagnetic turbulence in the interplanetary medium 59 (1990) 153

Ventura, A., see V. Rosato 54 (1989) 251

Vergini, E.G., see A. Etchegoyen 55 (1989) 227

Vermeulen, J.C., see ZEUS Collaboration 57 (1989) 316

Vertes, P., FEDMIX: neutron transmission functions and lumped averaged cross-sections from standarized evaluated neutron data 56 (1989) 199

Vesztergombi, G., see NA-35 Collaboration 57 (1989) 290

Vigneron, J.-P., see Ph. Lambin 60 (1990) 351

Villar, H.O., see M. Dupuis 52 (1989) 415

Villarreal, P., see D.M. Leitner 51 (1988) 207

Vinette, F. and J. Čížek, Perturbation energy expansion using hypervirial theorem and symbolic computation for the N -dimensional hydrogen atom in an external spherically symmetric field 52 (1988) 35

Virasoro, M.A., Disordered models of the brain 56 (1989) 93

Voevodin, V.P., V.N. Govorun, A.M. Davidenko, An.V. Ekimov, N.S. Ivanova, V.I. Kovaltsov, Yu.M. Kozyaev, A.F. Lukyantsev, M.Yu. Matveev, V.A. Senko, A.N. Sytin and G.V. Tishin, The 780/E 32-bit specialized processor-emulator 57 (1989) 532

Vogel, W., see ZEUS CDAQ Collaboration 57 (1989) 313

Vogt, H., see D.Yu. Bardin 59 (1990) 303

Vohwinkel, C., A fast method to gather neighbors in vectorized Monte Carlo simulations 51 (1988) 323

Vohwinkel, C., B.A. Berg and A. Devoto, A fast CYBER 205 - ETA¹⁰ program for SU(3) lattice gauge theory 51 (1988) 331

Vrba, V., The Monte Carlo integration of cylindrical phase-space with leading particles 56 (1989) 165

Vvedensky, D.D., see J.M. MacLaren 60 (1990) 365

Walker, H.F., Implementations of the GMRES method 53 (1989) 311

Wallace, D.J., see S.P. Booth 57 (1989) 101

Wallace, R., see K. Davie 51 (1988) 217

Wallace, R., see K. Davie 55 (1989) 463

Wan, T.C., see S. Youssef 57 (1989) 251

Wan Abdullah, W.A.T., Connectionist architectures for triggering and track reconstruction	57 (1989) 472
Wang, C.-J. and C.-H. Wu, Concurrent and vectorized Monte Carlo simulation of the evolution of an assembly of particles increasing in number	58 (1990) 63
Wang, S.C., C.K. Chan and S.P. Li, A vectorized algorithm on the ETA-10Q for MD simulation of particles in a box interacting by long-ranged forces	60 (1990) 181
Ward, B.F.L., see S. Jadach	56 (1990) 351
Watase, Y., High energy physics computing in Japan	57 (1989) 198
Watts, J.D., see M. Dupuis	52 (1989) 415
Weaire, D., see J.P. Kermode	60 (1990) 75
Weaver, D., see D.M. Sendall	57 (1989) 343
Weniger, E.J. and J. Cižek, Rational approximations for the modified Bessel function of the second kind	59 (1990) 471
Werley, K.A., see M.-Y. Hsiao	54 (1989) 329
Werner, C.M.L., M. Pimenta, J. Varela and J. Souza, FADO 2.0: a high level tagging language	57 (1989) 364
Whalley, M.R., The Durham-RAL high energy physics databases – HEPDATA	57 (1989) 536
White, A., see P. Avery	57 (1989) 422
White, B., The comparison and selection of programming languages for high energy physics applications	57 (1989) 538
White, V., Distributed data-acquisition systems (PAN-DA) for Fermilab experiments	57 (1989) 348
Whitmore, J., see ZEUS CDAQ Collaboration	57 (1989) 313
Whitnell, R.M., see Z. Bačić	51 (1988) 35
Wiegandt, D., UNIX and HEP	57 (1989) 134
Wierzbicki, A. and J.M. Bowman, GVSCF: a general code to perform vibrational self-consistent field calculations	51 (1988) 225
Wiese, U.-J., see A.S. Kronfeld	54 (1989) 109
Wiest, R., see M.-M. Rohmer	60 (1990) 127
Wiggers, L.W., see ZEUS CDAQ Collaboration	57 (1989) 313
Wiggers, L.W., see ZEUS Collaboration	57 (1989) 316
Wilderman, S., see S. Youssef	57 (1989) 251
Willard, L., see A.M. Rushton	57 (1989) 427
Williams, D.O., Computing on the eve of LEP data-taking: are we ready?	57 (1989) 8
Williams, R.D., see C.F. Baillie	58 (1990) 105
Willoughby, R., see J. Cullum	53 (1989) 19
Wilson, S., see D. Moncrieff	55 (1989) 31
Wilson, S., Universal basis sets and Cholesky decomposition of the two-electron integral matrix	58 (1990) 71
Winstead, C.L., see T.J. Gil	53 (1989) 123
Woodruff, S.B., see J.D. Kress	53 (1989) 109
Wormeester, H., A.G.B.M. Sasse and A. van Silfhout, Deconvolution, differentiation and Fourier Transformation algorithms for noise-containing data based on splines and global approximation	52 (1988) 19
Wright, L.E., see I. Talwar	55 (1989) 367
Wu, C.-H., see C.-J. Wang	58 (1990) 63
Wu, E.Y. and R.J. Friauf, Techniques for achieving thermal equilibrium in molecular dynamics calculations for solids	59 (1990) 259
Wurtele, J.S., see T.M. Tran	54 (1989) 263

Würz, D. and G. Hartung, Neural computing on a system of parallel organized transputers: software implementation and hardware configuration 56 (1989) 155

Wyatt, R.E., see C. Duneczky 53 (1989) 357

Yannouleas, C. and J.M. Pacheco, An algebraic program for the states associated with the $U(5) \supset O(5) \supset O(3)$ chain of groups 52 (1988) 85

Yannouleas, C. and J.M. Pacheco, Algebraic manipulation of the states associated with the $U(5) \supset O(5) \supset O(3)$ chain of groups: orthonormalization and matrix elements 54 (1989) 315

Yasu, Y., see Y. Karita 57 (1989) 455

Young, D.M., A historical overview of iterative methods 53 (1989) 1

Youssif, H.A. and S. Köhler, A Fortran code for the scattering of EM plane waves by two cylinders at normal incidence 59 (1990) 371

Youssef, S., W. Martin, T.C. Wan and S. Wilderman, A vectorized Monte Carlo detector simulation program for electromagnetic interactions 57 (1989) 251

Yuasa, F., see Y. Karita 57 (1989) 455

Zadorozhny, A.M., see S.Yu. Shmakov 54 (1989) 125

Zahran, E.S., see M.M. Mustafa 55 (1989) 109

Zaman, A., see G. Marsaglia 60 (1990) 345

Zanarini, P., see R. Brun 57 (1989) 432

Zeller, R., see N. Stefanou 60 (1990) 231

Zeller, R.T., see D. Cutts 57 (1989) 339

Zeller, R.T., see D. Cutts 57 (1989) 478

Zeller, S., see A.M. Rushton 57 (1989) 427

ZEUS CDAQ Collaboration, P. Erhard, J. Ficenec, K. Gather, G. Heath, M. Iacovacci, J. Kehres, R. Loveless, M. Mobayyen, D. Notz, R.S. Orr, A. Septon, R. Stroili, K. Tokushuku, W. Vogel, J. Whitmore and L.W. Wiggers, ZEUS hardware control system 57 (1989) 313

ZEUS CDAQ Collaboration, S. Bhadra, M. Crombie, D. Kirkby and R.S. Orr, The ZEUS third-level trigger system 57 (1989) 321

ZEUS Collaboration, L.W. Wiggers and J.C. Vermeulen, The use of transputers in the ZEUS online system 57 (1989) 316

Zheng, Q.-R., see J.-L. Ping 52 (1989) 355

Zhu, S.-B. and G.W. Robinson, Molecular dynamics study of liquid carbon dioxide 52 (1989) 317

Zlokazov, V.B., GFIT - generalized quadratic approximation of functions under constraints 54 (1989) 371

Zlokazov, V.B., Analysis of hidden anharmonic periodicities 59 (1990) 217

Zurek, S., see R.J. Allan 59 (1990) 325

3
0

Program index to volumes 1-60

1. Astronomy and astrophysics

1.1. Cosmic rays

CASCADE (Fortran, 946*). A program for the analytic simulation of extensive air showers. L. Goorevich
 EMCASR (Fortran, 730). A set of subroutines for simulation of electron-photon cascades. T. Stanev,
 Ch. Vankov
 000A CORRECTION 08/05/79 (Fortran). Unpublished correction

AYAF 7 (1974) 344

AAUV 16 (1979) 363

1.2. Nuclear processes

No programs classified under this heading yet.

1.3. Radiative transfer

ABELA (Fortran, 413). Calculation of the radial distribution of emitters in a cylindrical source. R. Piessens
 TRANSPHERE (Fortran, 1808). Numerical evaluation of the formal solution of radiative transfer problems
 in spherical geometries. D.G. Hummer, C.V. Kunasz, P.B. Kunasz
 PROFILE (Fortran, 1149). PROFILE: a code for evaluating line profile shapes for optically thick expanding
 plasmas. G.J. Tallents
 Other version: ABBQ (\$1.3)
 MAXWEL (Fortran, 914). MAXWEL: exact photon cross section processor for relativistic Maxwellian
 electrons. B.L. Lathrop, B.R. Wienke
 CSDUST3 (Fortran, 3943). CSDUST3: a radiation transport code for a dusty medium with 1-D planar,
 spherical or cylindrical geometry. M.P. Egan, C.M. Leung, G.F. Spagna Jr. Other version: AAEJ (\$1.3)

ABUE 5 (1973) 294

AAAB 6 (1973) 38

AARK 25 (1982) 141

AAEJ 28 (1983) 337

ACCF 32 (1984) 309

ABBQ 48 (1988) 271

1.4. Radio astronomy

HYDROGENIC RECOMBINATION COEFFS (Fortran, 306). A program to calculate radiative
 recombination coefficients of hydrogenic ions. D.R. Flower, M.J. Seaton
 ILTHII (Fortran, 4016). ILTHII - analysis of the spectrum of a thermal radioastronomical source. M. Salem
 RCMBLN (Fortran, 1239). Computation of line and continuum radiation from thermal radioastronomical
 sources. M. Brocklehurst, M. Salem. Subroutine required (for data): AAEH (\$1.4)
 SELECT BN,CN VALUES (Fortran, 3864). Computation of line and continuum radiation from thermal
 radioastronomical sources. M. Brocklehurst, M. Salem
 GENERAL BN PROGRAM (Fortran, 1297). Radio recombination lines from H+ regions and cold
 interstellar clouds: computation of the bn factors. M. Brocklehurst, M. Salem

ACQD 1 (1969) 31

AAEF 9 (1975) 247

AAEG 9 (1975) 258

AAEH 9 (1975) 259

ACXI 13 (1977) 39

1.5. Relativity and gravitation

WATER BAG MODEL (Fortran, 1056). A numerical code for multiple water bag gravitational systems.
 S. Cuperman, A. Harten
 TAVI (Reduce, 170). A REDUCE program for the calculation of geometrical characteristics of compactified
 multidimensional Riemannian space. A.P. Demichev, A.Ya. Rodionov
 GLE2000 (Fortran, 1764). The ephemeris program GLE2000. J. Schastok, H. Gleixner, M. Soffel, H. Ruder,
 M. Schneider

ACRU 8 (1974) 307

AADJ 38 (1985) 441

ABHM 54 (1989) 167

1.6. Solar physics

AATWAB (Fortran, 2046). A program to calculate coronal emission line strengths. P.L. Dufton

ACXE 13 (1977) 25

* Number of lines in program.

Astronomy and astrophysics — Solar physics (continued)

ALFVEN (Fortran, 2463). ALFVEN: a two-dimensional code based on SHASTA, solving the radiative, diffusive MHD equations. W.J. Weber, J.P. Boris, J.H. Gardner
 000A CORRECTION 26/09/80 (Fortran) ABUX 16 (1979) 243
 21 (1981) 437

1.7. Stars and stellar systems

BIN DYN (Algol, Usercode, 1046). Derivation of the orbit of a double star from observations made with an intensity interferometer. D. Herbison-Evans AACD 2 (1971) 59
 BISPEC (Algol, 652). Analysis of a variable spectroscopic double star. D. Herbison-Evans, N.R. Lomb AACE 2 (1971) 368
 MAGBIN (Algol, 796). The light curve of a variable star subject to orbital tidal distortion. D. Herbison-Evans AACG 5 (1973) 315
 TOROID (Fortran, 1652). Calculation of the equilibrium structure and oscillations of polytropic stars pervaded by toroidal magnetic fields. M.J. Miketinac. Other version: AAAI (§1.7) AAAAE 7 (1974) 410
 POLOID (Fortran, 2350). Calculation of the form of an equilibrium poloidal magnetic field contained in a polytropic star. G.B. Brundrit, M.J. Miketinac. Other version: AAAE (§1.7)
 COSTANTI DEL MOTO (Fortran, 785). A computer program for integrals of motion. A. Giorgilli
 BINARY (Fortran, 1907). Shape of a polytropic primary. M.J. Miketinac, J. Miketinac
 CELESTE AND STELLA (Fortran, 3912). Programs "CELESTE" and "STELLA" for computations in special relativity: evaluation of the celestial view from an interstellar spacecraft. E. Sheldon, R.H. Giles
 TLUSTY (Fortran, 9834). A computer program for calculating non-LTE model stellar atmospheres.
 I. Hubeny ABFK 52 (1988) 103

1.8. Interstellar medium

GENERAL BN PROGRAM (Fortran, 1297). Radio recombination lines from H+ regions and cold interstellar clouds: computation of the bn factors. M. Brocklehurst, M. Salem ACXI 13 (1977) 39
 MHD (Fortran, 4584). A computer program for calculating the structure of magnetohydrodynamical shocks in interstellar clouds. L. Heck, D.R. Flower, G. Pineau Des Forets ABLS 58 (1990) 169

2. Atomic physics**2.1. Structure and properties**

SOCKITTOME 1 (Fortran, 3243). Relativistic and non-relativistic configuration interaction calculations for atoms having a closed core and two valence spin-orbitals. D.R. Beck, R.N. Zare
 Other versions: ACRF (§2.1), ACYA (§2.1), AATK (§2.1) AAKA 1 (1969) 113
 H.F.S. SELF CONSISTENT FIELD (Fortran, 635). Hartree Fock Slater self consistent field calculations. J.P. Desclaux ACQJ 1 (1969) 151
 0001 ADAPT HFS FOR MSXALPHA (Fortran, 254). An adaptation of ACQI to calculate the data for MSXALPHA program. M. Klobukowski ACQI 1 (1970) 216
 SPSS-ATOMIC Z-EXPANSION E2 PRIME (Fortran, 1911). Single-particle substitution sums in the second-order Z-expansion theory of atomic energies. M.N. Lewis
 000A CORRECTION 27/07/70 (Fortran) AACC 1 (1970) 265
 HEX (Fortran, 1333). Relativistic self-consistent field program for atoms and ions. D.A. Liberman, D.T. Cromer, J.T. Waber
 000A CORRECTION 11/08/71 (Fortran) 1 (1970) 469
 000B CORRECTION 02/09/71 (Fortran) AAKB 2 (1971) 107
 000C CORRECTION 18/11/74 (Fortran) 2 (1971) 471
 LEVEL (Fortran, 2521). Calculation of atomic energy level values. L.J. Radziemski Jr., K.J. Fisher, D.W. Steinhaus, A.S. Goldman
 CALOR (Fortran, 309). Wave number calculation from least-squares level values. L.J. Radziemski Jr., K.J. Fisher, D.W. Steinhaus, A.S. Goldman. Subroutine required (for data): AAKD (§2.1)
 Other versions: ACQJ (§2.1), ACYA (§2.1), AATK (§2.1) AAKE 3 (1972) 19
 BACK-GOUDSMIT (Fortran, 400). A program for computing level crossings and the Back-Goudsmit effect. P. Violino ACRF 4 (1972) 107
 000A CORRECTION 27/1/77 (Fortran) AAKD 3 (1972) 9
 HERSKLZARE (Fortran, 3445). A non-relativistic SCF atomic program to compute one-electron energies, total energies, and Slater integrals. J.H. Wood, M. Boring AAKE 3 (1972) 19
 13 (1977) 137
 AAKG 7 (1974) 73

Atomic physics — Structure and properties (continued)

000A CORRECTION 5/09/75 (Fortran)	10 (1976)	434
FIXED CORE HARTREE-FOCK (Fortran, 2140). A fixed core Hartree-Fock program for calculating bound and continuum orbitals. G.N. Bates	ACRX	8 (1974) 220
MULTICONFIGURATION DIRAC-FOCK (Fortran, 4434). A multiconfiguration relativistic Dirac-Fock program. J.P. Desclaux. Subroutines required (for data): ACRI (§4.1), ACWE (§2.9), AAHD (§4.1)	ACRV	9 (1975) 31
000A CORRECTION 4/01/75 (Fortran). Unpublished correction		
000B CORRECTION 7/12/76 (Fortran)		13 (1977) 71
CIV3 A GENERAL C.I. PROGRAM (Fortran, 5583). CIV3 - a general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths. A. Hibbert. Subroutines required: ACQB (§4.1), ACRN (§4.1), AAHD (§4.1), ACQV (§2.9), ACQV0001, ACQV0002, AAKF (§4.1)	AAKM	9 (1975) 141
000A CORRECTION 26/1/76 (Fortran)		10 (1976) 436
0001 ADAPT CIV3 FOR HFS (Fortran, 880). Adaptation of CIV3 to evaluate hyperfine structure. R. Glass, A. Hibbert. Subroutines required: ACOB (§4.1), ACRN (§4.1), AAHD (§4.1), ACQV (§2.9), ACQV0001, ACQV0002, AAKF (§4.1), AAKF0001		11 (1976) 125
GF VALUES (Fortran, 903). Oscillator strengths from numerical MCHF radial functions. C.F. Fischer, K.M.S. Saxena. Subroutines required (for data): ACRF (§2.1), AAKP (§4.1), ACQB (§4.1), ACRN (§4.1), AAHD (§4.1)	ACRZ	9 (1975) 381
0001 QUADRUPOLE TRANSITIONS (Fortran, 478). An adaptation of ACRZ to calculate electric quadrupole oscillator strengths. M. Godefroid. Subroutines required: ACRF (§2.1) or AAKP (§4.1), (for data): ACQB (§4.1), ACRN (§4.1), AAHD (§4.1)		15 (1978) 275
A00A CORRECTION TO 0001 01/03/79 (Fortran)		17 (1979) 426
A00B CORRECTION TO 0001 26/02/86 (Fortran)		41 (1986) 195
ATOMIC SCF HARTREE-FOCK (Algol, 428). Self-consistent field Hartree-Fock program for atoms. L.V. Chernysheva, N.A. Cherepkov, V. Radojevic	AAKQ	11 (1976) 57
MBPT ORGANIZATION (Fortran, 1454). Diagrammatic many-body perturbation expansion for atoms and molecules: I. General organization. D.M. Silver. Subroutines required: ACXG (§2.1), ACXH (§2.1)	ACXF	14 (1978) 71
MBPT LADDER DIAGRAMS (Fortran, 794). Diagrammatic many-body perturbation expansion for atoms and molecules: II. Second-order and third-order ladder energies. D.M. Silver. Subroutines required: ACXF (§2.1), ACXH (§2.1)		
MBPT RING DIAGRAMS (Fortran, 739). Diagrammatic many-body perturbation expansion for atoms and molecules: III. Third-order ring energies. S. Wilson. Subroutines required: ACXF (§2.1), ACXG (§2.1)	ACXG	14 (1978) 81
Other versions: ACQJ (§2.1), ACRF (§2.1), AATK (§2.1)	ACXH	14 (1978) 91
TERM (Fortran, 7994). I. Generator of determinantal non-relativistic atomic states from spectroscopic notation. Computation of matrix elements. J.J. Labarthe	ACYA	14 (1978) 145
EXCGH (Fortran, 4048). II. Generator of atomic excited terms from angular considerations. J.J. Labarthe. Subroutine required (for data): AAKU (§2.1)	AAKU	16 (1979) 285
EDD (Fortran, 7087). III. Analytic approximations of radial orbitals for multiconfigurational Hartree-Fock computations. J.J. Labarthe. Subroutines required (for data): AAKV (§2.1), AAKU (§2.1)	AAKV	16 (1979) 301
0001 QFO (Fortran, 1071). IV. Approximation of numerical orbitals by Slater functions. J.J. Labarthe	AAKW	16 (1979) 311
ATOMIC FROZEN CORE HARTREE-FOCK (Algol, 571). Frozen core Hartree-Fock program for atomic discrete and continuous states. L.V. Chernysheva, N.A. Cherepkov, V. Radojevic. Subroutine required (for data): AAKQ (§2.1)		16 (1979) 325
SSTR-TRANSITION GENERALIZED SUMS (Fortran, 2988). Z-expansion of matrix elements of one-electron operators for many-electron atoms. M.N. Lewis	AAKZ	18 (1979) 87
RPA TWO ELECTRON EIGENFUNCTION (Fortran, 566). A program to calculate the eigenfunctions of the random phase approximation for two electron systems. M.J. Jamieson, I.H.K. Aldeen	AACH	18 (1979) 109
CPOLAR (Fortran, 1405). Energy eigenvalues and bound-bound transitions of hydrogen atoms in a magnetic field using cylindrical basis functions. S.M. Kara	AAJD	20 (1980) 213
MCDF (Fortran, 11151). An atomic multiconfigurational Dirac-Fock package. I.P. Grant, B.J. McKenzie, P.H. Norrington, D.F. Mayers, N.C. Pyper. Subroutines required: AAHD (§4.1), ACRI (§4.1)	AAHK	20 (1980) 221
MCBP/BENA (Fortran, 2858). A program to calculate transverse Breit and QED corrections to energy levels in a multi-configuration Dirac-Fock environment. B.J. McKenzie, I.P. Grant, P.H. Norrington. Subroutine required: AANC (§2.1)	AANC	21 (1980) 207
000A CORRECTION 27/04/81 (Fortran)	AAND	21 (1980) 233
		23 (1981) 222

Atomic physics — Structure and properties (continued)

HSCF (Fortran, 2393). An atomic Gaussian-type orbital Roothaan–Hartree–Fock program. S. Huzinaga, M. Klobukowski, Y. Sakai	AAFI 30 (1983) 311
INTERACTING CONFIGURATIONS (Fortran, 1663). Determination of interacting configurations. D. Ridder	ACFZ 31 (1984) 423
GOLIATH (Fortran, 1900). A nonrelativistic program for optical response in atoms using a time-dependent local density approximation. A. Zangwill, D.A. Liberman	AAML 32 (1984) 63
DAVID (Fortran, 1816). A relativistic program for optical response in atoms using a time-dependent local density approximation. D.A. Liberman, A. Zangwill	AAMM 32 (1984) 75
REDUCED LOCAL ENERGY FOR ATOMS (Fortran, 1135). Reduced local energy for atomic Hartree–Fock wavefunctions. F.W. King, M.K. Kelly, M.A. LeGore, M.E. Poitzsch	ACCE 32 (1984) 215
HF86 (Fortran, 4205). General Hartree–Fock program. C.F. Fischer. Other versions: ACQJ (§2.1), ACRF (§2.1), ACYA (§2.1)	AATK 43 (1987) 355
RIAS (Fortran, 12551). Research in atomic structure: a configuration interaction program with relativistic corrections. S. Fraga, M. Klobukowski, J. Muszynska, K.M.S. Saxena, J.A. Sordo, J.D. Climenhaga, P. Clark	ABBB 47 (1987) 159 52 (1989) 445
000A CORRECTION 07/09/88 (Fortran)	ABFS 52 (1989) 415
HONDO VERSION 7.0 (Fortran, 97320, Manual 155 pages). The general atomic and molecular electronic structure system HONDO: version 7.0. M. Dupuis, J.D. Watts, H.O. Villar, G.J.B. Hurst	ABHT 54 (1989) 85
ATOMOPM (Fortran, 947). A program to compute variationally optimized effective atomic potentials. J.D. Talman	ABHU 54 (1989) 95
DIRACATOMOPM (Fortran, 1121). A program to compute variationally optimized relativistic atomic potentials. B.A. Shadwick, J.D. Talman, M.R. Norman	ABJN 55 (1989) 425
GRASP (Fortran, 94872). GRASP: a general-purpose relativistic atomic structure program. See erratum Comput. Phys. Commun. 58 (1990) 345. K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, E.P. Plummer	

2.2. Spectra

RITZ COMBINATION PRINCIPLE (Fortran, 113). Program for fitting transition energies into a level scheme according to the combination principle. I.R. Williams	ABKD 1 (1970) 465
COMPTON CROSS SECTIONS (Fortran, 762). Non-relativistic form factor program for Compton scattering of gamma rays by bound electrons. F. Smend, M. Schumacher	ACWW 11 (1976) 363
BREMSSSTRAHLUNG INTENSITY (NR) (Fortran, 301). A program for calculating the angular distribution of nonrelativistic bremsstrahlung intensity. A. Banuelos, F. Rodriguez-Trelles	ACYJ 15 (1978) 125
0001 BREMSSSTRAHLUNG INTENSITY 2 (Fortran, 245). Extension to high frequencies of a program for calculating the angular distribution of nonrelativistic bremsstrahlung. A. Banuelos, F. Rodriguez-Trelles, L. Bilbao	17 (1979) 305
MQDTAC (Fortran, 2537). A program for analysing the Rydberg series of highly excited discrete spectra by M.Q.D.T. O. Robaux, M. Aymar	AANQ 25 (1982) 223
AUGER-TRANSITIONS CLASSIFICATION (Fortran, 1292). Classification of Auger-transitions in LS-coupling. D. Ridder	AAOV 28 (1982) 201
BREMPNT (Fortran, 323). Bremsstrahlung cross section for a point, spinless target. A. Minter, D.A. Jenkins	ABRV 59 (1990) 499

2.3. Experimental analysis

SYNCHROTRON RADIATION (Fortran, 321). Spectral intensity, angular distribution and polarisation of synchrotron radiation from a monoenergetic electron. J. Lang	ACQR 1 (1970) 440
CALOR (Fortran, 309). Wave number calculation from least-squares level values. L.J. Radziemski Jr., K.J. Fisher, D.W. Steinhaus, A.S. Goldman. Subroutine required (for data): AAKD (§2.1)	AAKE 3 (1972) 19
Other versions: AAGX (§2.3), AAGZ (§2.3), AAHI (§2.3), AANN (§2.3), ACKX (§7.4)	AAGK 3 (1972) 240
HOMER (Fortran, 2026). A program for the extraction of radiative lifetimes from experimental beam-foil intensity decay data. D.J.G. Irwin, A.E. Livingston	AAED 7 (1974) 95
Other versions: AAGK (§2.3), AAGZ (§2.3), AAHI (§2.3), AANN (§2.3), ACKX (§7.4)	AAGX 7 (1974) 401
DBLCON (Fortran, 1336). DBLCON: a version of POSITRONFIT with non-Gaussian prompt for analysing positron lifetime spectra. W.K. Warburton. Other versions: AAGK (§2.3), AAGX (§2.3), AAHI (§2.3), AANN (§2.3), ACKX (§7.4)	AAGZ 13 (1977) 371

Atomic physics — Experimental analysis (continued)

INTERACTIVE POSITRONFIT (Fortran, 1367). INTERACTIVE POSITRONFIT: a new version of a program for analysing positron lifetime spectra. C.J. Virtue, R.J. Douglas, B.T.A. McKee. Other versions: AAGK (\$2.3), AAGX (\$2.3), AAGZ (\$2.3), AANN (\$2.3), ACKX (\$7.4)	AAHI 15 (1978) 97
PATFIT (Fortran, 5599). Program system for analysing positron lifetime spectra and angular correlation curves. P. Kirkegaard, M. Eldrup, O.E. Mogensen, N.J. Pedersen. Other versions: AAGK (\$2.3), AAGX (\$2.3), AAGZ (\$2.3), AAHI (\$2.3), ACKX (\$7.4)	AANN 23 (1981) 307 AARV 25 (1982) 417
MONIT (Fortran, 11769). A spectrum data processing system. T.P. Hult, S.P. Svensson, T.G. Andersson	
POSDIF (Fortran, 903). POSDIF: a program to compute positron diffusion and annihilation in rare gases. R.I. Campeau	AAHN 25 (1982) 433 ABJB 54 (1989) 307
SYNCHR88 (Fortran, 777). Synchrotron radiation flux at experimental stations. J.S. Reid	
2.4. Electron scattering	
Other version: ACRK (\$2.4)	ACQE 1 (1969) 88
SIMMEG (Fortran, 698). Collision strengths from reactance matrices. H.E. Saraph	AAGB 1 (1970) 232
0001 ADAPT AAGB FOR CDC 6600 (Fortran, 15). Unpublished adaptation to adapt SIMMEG for CDC 6600. H.E. Saraph. Unpublished correction	
ATOMNP (Fortran, 4320). A computer program for the calculation of electron scattering and photoionization cross sections of atomic systems with configuration $(np)q$. See erratum Comput. Phys. Commun. 1 (1970) 470. M.J. Connealy, L. Lipsky, K. Smith, P.G. Burke, R.J.W. Henry	AAIA 1 (1970) 306 ACQX 2 (1971) 175
A SCAT (Fortran, 635). A program for calculating relativistic elastic electron-atom collision data. A.C. Yates	
SCATTERING AMPLITUDES (Fortran, 675). Amplitudes for scattering of electrons by hydrogenic and alkali-like atomic systems. D.L. Moores	AAGH 2 (1971) 360 34 (1984) 224
000A CORRECTION 24/8/84 (Fortran)	AAGJ 3 (1972) 256
Other version: ACYG (\$2.4)	
ASYM VERSION FOR ICL 1900 (Fortran, 1202). A new version of the program to compute the asymptotic solution of coupled equations for electron scattering. A.T. Chivers. Other version: ACQE (\$2.4)	ACRK 5 (1973) 416
SHIFTA (Fortran, 2018). Phase shift analysis and consistency checks on electron-atom collision data. P.F. Naccache, M.R.C. McDowell	AAGV 6 (1973) 77
POLORB (Fortran, 1722). Electron impact excitation cross sections. M.R.C. McDowell, L. Morgan, V.P. Myerscough	AAGW 7 (1974) 38 AAHA 8 (1974) 149
Other versions: AAHF (\$2.4), AANR (\$2.4)	AAHB 8 (1974) 150
Other versions: AAHG (\$2.4), AANS (\$2.4)	AAHC 8 (1974) 150
Other versions: AAHH (\$2.4), AANV (\$2.4)	
LAG 1 (Fortran, 1587). A program for calculating elastic scattering phase shifts for an electron colliding with a one-electron target using perturbation theory. E. McGreevy, A.L. Stewart	ACYD 14 (1978) 99
A NEW VERSION OF RMATRIX STG1 (Fortran, 5119). A new version of the general program to calculate atomic continuum processes using the R-matrix method. K.A. Berrington, P.G. Burke, M. Le Dourneuf, W.D. Robb, K.T. Taylor, Vo Ky Lan. Subroutines required: AAHG (\$2.4), AAHH (\$2.4). Other versions: AAHA (\$2.4), AANR (\$2.4)	AAHF 14 (1978) 367
A NEW VERSION OF RMATRIX STG2 (Fortran, 10154). A new version of the general program to calculate atomic continuum processes using the R-matrix method. K.A. Berrington, P.G. Burke, M. Le Dourneuf, W.D. Robb, K.T. Taylor, Vo Ky Lan. Subroutines required: AAHF (\$2.4), AAHH (\$2.4). Other versions: AAHB (\$2.4), AANS (\$2.4)	AAHG 14 (1978) 367
A NEW VERSION OF RMATRIX STG3 (Fortran, 7244). A new version of the general program to calculate atomic continuum processes using the R-matrix method. K.A. Berrington, P.G. Burke, M. Le Dourneuf, W.D. Robb, K.T. Taylor, Vo Ky Lan. Subroutines required: AAHF (\$2.4), AAHG (\$2.4). Other versions: AAHC (\$2.4), AANV (\$2.4)	AAHH 14 (1978) 367
0001 R-MATRIX POLARIZABILITIES (Fortran, 428). R-matrix dynamic dipole polarizabilities. P. Shorer. Subroutines required: AAHF (\$2.4), AAHG (\$2.4), AAHH (\$2.4)	22 (1981) 467
IMPACT (Fortran, 6762). IMPACT: a program for the solution of the coupled integro-differential equations of electron-atom collision theory. M.A. Crees, M.J. Seaton, P.M.H. Wilson. Subroutine required: ACYF (\$2.4). Other version: ACZK (\$2.4)	ACYE 15 (1978) 23
IMPPRO (Fortran, 705). Preprocessor for IMPACT: a program for the solution of the coupled integro-differential equations of electron-atom collision theory. M.A. Crees, M.J. Seaton, P.M.H. Wilson	ACYF 15 (1978) 23

Atomic physics — Electron scattering (continued)

0001 ADAPT IMPPRO FOR ECSIMPACT (Fortran, 39). Preprocessor for ECSIMPACT: a special version of program IMPACT for CDC machines with ex-core memory. H.E. Saraph	18 (1979) 287
JAJOMP <small>R</small> E (Fortran, 2835). Fine structure cross sections from reactance matrices: a more versatile development of the program JAJOM. H.E. Saraph. Other version: AAGJ (\$2.4)	ACYG 15 (1978) 247
LSTOIC (Fortran, 1238). Intermediate coupling collision strengths from LS coupled R-matrix elements. R.E.H. Clark	AAKY 16 (1978) 119
ECSIMPACT (Fortran, 6862). ECSIMPACT: a special version of program IMPACT for CDC machines with ex-core memory. T.M. Luke, H.E. Saraph. Subroutines required: ACYF (\$2.4), ACYF0001. Other version: ACYE (\$2.4)	ACZK 18 (1979) 287
Other version: AANK (\$2.4)	AAJA 19 (1980) 103
Other version: AANL (\$2.4)	AAJB 19 (1980) 103
ASYPCK2 (Fortran, 4398). ASYPCK2, an extended version of ASYPCK. M.A. Crees. Subroutine required: AANL (\$2.4). Other version: AAJA (\$2.4)	AANK 23 (1981) 181
ASYPRO2 (Fortran, 773). Preprocessor for ASYPCK2, an extended version of ASYPCK. M.A. Crees. Other version: AAJB (\$2.4)	AANL 23 (1981) 181
ASYSLIM (Fortran, 194). A streamlined version of ASYPCK2, an extended version of ASYPCK. M.A. Crees. Subroutines required: AANK (\$2.4), AANL (\$2.4)	AANM 23 (1981) 181
NIEM POTC1 (Fortran, 6393). A general program to calculate atomic continuum processes using the NIEM method. R.J.W. Henry, S.P. Rountree, E.R. Smith. Subroutines required: AAJH (\$2.4), AAJI (\$2.4), ACWN0001	AAJG 23 (1981) 233
NIEM NIES2 (Fortran, 3162). A general program to calculate atomic continuum processes using the NIEM method. R.J.W. Henry, S.P. Rountree, E.R. Smith. Subroutines required: AAJG (\$2.4), AAJI (\$2.4), ACWN0001	AAJI 23 (1981) 233
NIEM ASYM3 (Fortran, 2086). A general program to calculate atomic continuum processes using the NIEM method. R.J.W. Henry, S.P. Rountree, E.R. Smith. Subroutines required: AAJG (\$2.4), AAJH (\$2.4), ACWN0001	AANP 25 (1982) 97
SEPDE (Fortran, 1330). A non-iterative method for solving PDE's arising in electron scattering. E.C. Sullivan, A. Temkin	AANR 25 (1982) 347
RMATRIX STG1R (Fortran, 6047). A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. N.S. Scott, K.T. Taylor. Subroutines required: AANS (\$2.4), AANT (\$2.4), AANU (\$2.4), AANV (\$2.4). Other versions: AAHA (\$2.4), AAHF (\$2.4)	AANS 25 (1982) 347
RMATRIX STG2R (Fortran, 10141). A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. N.S. Scott, K.T. Taylor. Subroutines required: AANR (\$2.4), AANT (\$2.4), AANU (\$2.4), AANV (\$2.4). Other versions: AAHB (\$2.4), AAHG (\$2.4)	AANT 25 (1982) 347
RMATRIX RECUP (Fortran, 6148). A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. N.S. Scott, K.T. Taylor. Subroutines required: AANR (\$2.4), AANS (\$2.4), AANT (\$2.4), AANV (\$2.4)	AANU 25 (1982) 347
RMATRIX RECUS (Fortran, 1275). A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. N.S. Scott, K.T. Taylor. Subroutines required: AANR (\$2.4), AANS (\$2.4), AANT (\$2.4), AANU (\$2.4)	AANV 25 (1982) 347
RMATRIX STG3R (Fortran, 9548). A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. N.S. Scott, K.T. Taylor. Subroutines required: AANR (\$2.4), AANS (\$2.4), AANT (\$2.4), AANU (\$2.4). Other versions: AAHC (\$2.4), AAHH (\$2.4)	AANW 27 (1982) 25 52 (1988) 165
MOMTRANF (Fortran, 2590). A new program to calculate differential and total cross sections for electron-atom or ion scattering using the momentum transfer formalism. S.A. Salvini	ACFE 30 (1983) 369
000A CORRECTION 26/09/88 (Fortran)	ACFF 30 (1983) 383
SCATTAMPREL (Fortran, 1247). Amplitudes for scattering of electrons by atomic systems including relativistic effects. K.P.W. Bartschat, N.S. Scott	
OBSERVABLES (Fortran, 1429). Program to calculate observable quantities from scattering amplitudes for inelastic electron-atom collisions. K.P.W. Bartschat	

Atomic physics — Electron scattering (continued)

CFASYM (Fortran, 3294). CFASYM: a program for the calculation of the asymptotic solutions of the coupled equations of electron collision theory. C.J. Noble, R.K. Nesbet. Subroutines required: ABNK (\$4.7), ACCU (\$4.5)	ACCT 33 (1984) 399
SKEW (PL/1, 469). SKEW: program for calculation of electron scattering amplitudes on atomic potential using spin-orbit relativistic correction. E. Pilipczuk, I. Pilipczuk	ACDU 36 (1985) 101
RECREM (Fortran, 3386). Recurrence relations for Coulomb excitation electric multipole radial matrix elements. L.D. Tolsma. Subroutine required: ACMM (\$7.8)	AALF 41 (1986) 41
RESFIT (Fortran, 1612). RESFIT: a multichannel resonance fitting program. K. Bartschat, P.G. Burke	AAFX 41 (1986) 75
BETRT (Fortran, 1207). A procedure to evaluate the cross section for electron-hydrogen collisions in the Bethe approximation to the reactance matrix. A. Burgess, C.T. Whelan	AAXK 47 (1987) 295
CEFEUSK (Fortran, 402). K-matrix calculation for general nonlocal potentials. J. Horacek, J. Bok	ABRP 59 (1990) 319
2.5. Photon interactions	
RAYLEIGH FORM FACTORS (Fortran, 310). Form factor program for Rayleigh scattering of gamma rays by bound electrons. F. Smend, M. Schumacher	AAGY 7 (1974) 389
000A CORRECTION 25/09/75 (Fortran)	10 (1975) 257
Other versions: AAHF (\$2.5), AANR (\$2.5)	AAHA 8 (1974) 149
Other versions: AAHG (\$2.5), AANS (\$2.5)	AAHB 8 (1974) 150
Other versions: AAHH (\$2.4), AANV (\$2.5)	AAHC 8 (1974) 150
A NEW VERSION OF RMATRIX STG1 (Fortran, 5119). A new version of the general program to calculate atomic continuum processes using the R-matrix method. K.A. Berrington, P.G. Burke, M. Le Dourneuf, W.D. Robb, K.T. Taylor, Vo Ky Lan. Subroutines required: AAHG (\$2.5), AAHH (\$2.4). Other versions: AAHA (\$2.5), AANR (\$2.5)	AAHF 14 (1978) 367
A NEW VERSION OF RMATRIX STG2 (Fortran, 10154). A new version of the general program to calculate atomic continuum processes using the R-matrix method. K.A. Berrington, P.G. Burke, M. Le Dourneuf, W.D. Robb, K.T. Taylor, Vo Ky Lan. Subroutines required: AAHF (\$2.5), AAHH (\$2.4). Other versions: AAHB (\$2.5), AANS (\$2.5)	AAHG 14 (1978) 367
RMATRIX STG1R (Fortran, 6047). A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. N.S. Scott, K.T. Taylor. Subroutines required: AANS (\$2.5), AANT (\$2.5), AANU (\$2.5), AANV (\$2.5). Other versions: AAHA (\$2.5), AAHF (\$2.5)	AANR 25 (1982) 347
RMATRIX STG2R (Fortran, 10141). A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. N.S. Scott, K.T. Taylor. Subroutines required: AANR (\$2.5), AANT (\$2.5), AANU (\$2.5), AANV (\$2.5). Other versions: AAHB (\$2.5), AAHH (\$2.5)	AANS 25 (1982) 347
RMATRIX RECUP (Fortran, 6148). A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. N.S. Scott, K.T. Taylor. Subroutines required: AANR (\$2.5), AANS (\$2.5), AANU (\$2.5), AANV (\$2.5)	AANT 25 (1982) 347
RMATRIX RECUD (Fortran, 1275). A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. N.S. Scott, K.T. Taylor. Subroutines required: AANR (\$2.5), AANS (\$2.5), AANT (\$2.5), AANU (\$2.5)	AANU 25 (1982) 347
RMATRIX STG3R (Fortran, 9548). A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. N.S. Scott, K.T. Taylor. Subroutines required: AANR (\$2.5), AANS (\$2.5), AANT (\$2.5), AANU (\$2.5). Other versions: AAHC (\$2.5), AAHH (\$2.4)	AANV 25 (1982) 347
RAYLEIGH DHFS RFF AND MRFF (Fortran, 328). Rayleigh self consistent relativistic form factors and modified form factors. D. Schaupp, M. Schumacher, F. Smend. Subroutine required: AAKB (\$2.1)	ACCN 32 (1984) 413
PHOTUC (Fortran, 9620). PHOTUC: oscillator strengths and photoionization cross sections from close coupling wavefunctions. H.E. Saraph	AAXB 46 (1987) 107
JELLYRPA (Fortran, 485). An RPA program for jellium spheres. G. Bertsch	ABTC 60 (1990) 247
FRFRTR (Fortran, 496). Subroutines for the evaluation of cross sections of one-photon radiative processes occurring in fast-electron H-atom collisions. A. Dubois, A. Maquet	ABTE 60 (1990) 271
BREMSS (Fortran, 493). Subroutines for the evaluation of cross sections of one-photon radiative processes occurring in fast-electron H-atom collisions. A. Dubois, A. Maquet	ABTF 60 (1990) 271

Atomic physics (continued)**2.6. Other collision processes**

SCATTERING BY COMPLEX POTENTIAL (Fortran, 625). The calculation of absorption and elastic cross sections using the optical potential. A.C. Allison

SCAT (Fortran, 2566). A general program to study the scattering of particles by solving coupled inhomogeneous second-order differential equations. N. Chandra. Subroutine required: ACRK (§2.4) Other version: AAJE (§2.6)

DCS2 (Fortran, 2661). New version of program for calculating differential and integral cross sections for quantum mechanical scattering problems from reactance or transition matrices. K. Onda, D.G. Truhlar, M.A. Brandt. Other versions: ACRL (§2.6), ACRL0001

GAMOW FUNCTIONS (Fortran, 1359). GAMOW: a program for calculating the resonant state solution of the radial Schrodinger equation in an arbitrary optical potential. T. Vertse, K.F. Pal, Z. Balogh

AACF	3 (1972)	173
AAGO	5 (1973)	417
ACRL	5 (1973)	456
AAJE	21 (1980)	97
AAOD	27 (1982)	309

2.7. Wave functions and integrals

TWO ELECTRON WAVEFUNCTIONS (Fortran, 1754). Computation of wavefunctions for the helium isoelectronic sequence. H.O. Knox

RKDP-RK INTEGRALS(DOUBLE PREC.) (Fortran, 1373). Hydrogenic Rk integrals. M.N. Lewis
000A CORRECTION 24/06/70 (Fortran)

HYDROGENIC INTERACTION INTEGRAL (Fortran, 281). A program to calculate the radial parts of interaction matrix elements between two hydrogenic wave functions as power series. M.J. Jamieson

Other version: AAHE (§2.7)

MAPPAC (Fortran, 3600). A program for atomic wavefunction computations by the parametric potential method. M. Klapisch

NETI (Fortran, 1100). Program for evaluation of non-exchange type integrals required in electron-atom scattering theory using Slater-type orbitals as basis functions. R.L. Smith, D.G. Truhlar. Other version: AAGT (§2.7)

000A CORRECTION 19/07/74 (Fortran)

0001 NETI/ETI (Fortran, 1120). Continuum exchange integrals for algebraic variational calculations of electron-atom scattering using Slater-type orbitals as basis functions. J. Abdallah Jr., D.G. Truhlar

NETIX (Fortran, 1319). Program for evaluation of non-exchange type integrals required in electron-atom scattering theory using Slater-type orbitals as basis functions. R.L. Smith, D.G. Truhlar. Other version: AAGP (§2.7)

000A CORRECTION 19/07/74 (Fortran)

ATOMINT (Fortran, 458). Atomic integral containing three odd powers of interelectronic separation coordinates. A.H. Moussa, H.M.A. Radi

A NEW VERSION OF BASFUN (Fortran, 956). A general program to calculate atomic continuum processes using the R-matrix method. K.A. Berrington, P.G. Burke, J.J. Chang, A.T. Chivers, W.D. Robb, K.T. Taylor. Other version: ACQS (§2.7)

SPINORBITWEIGHTS (Fortran, 1565). A general program to calculate the matrix of the spin-orbit interaction. W.-D. Klotz. Subroutines required: ACQB (§4.1), ACQC (§4.1), AAGD (§4.1). Other version: ACXL (§2.7)

0001 WKAPPAKQ (Fortran, 357). Reduced matrix elements of summations of one-particle tensor products. W.-D. Klotz. Subroutines required: AAGD (§4.1), ACQB (§4.1), ACQC (§4.1)

000A CORRECTION 18/07/75 (Fortran)

SPINORBIT WEIGHTS 2 (Fortran, 1947). A new version of AAKL (the matrix elements of spin-orbit interaction) adapted to spectroscopic notation. K.M.S. Saxena. Subroutines required: ACQB (§4.1), ACRN (§4.1), AAHD (§4.1). Other version: AAKL (§2.7)

SLATER INTEGRALS (PL/I, 197). Exact Slater integrals. L.B. Golden

STP (Fortran, 673). An integral package for one-centre integrals over Slater-Transform-Preuss functions. E. Yurtsever

CLMINT (Fortran, 1544). Radial electric multipole matrix elements for inelastic collisions in atomic and nuclear physics. H.F. Arnoldus

GREEN (Pascal, 1655). Integrals involved in the perturbation theory of a hydrogen-like system. I. J. Mlodzki, A. Lusakowski, M. Suffczynski

GREEN2 (Pascal, 873). Integrals involved in the perturbation theory of a hydrogen-like system. II. J. Mlodzki

ACQK	1 (1970)	167
AACB	1 (1970)	325
	1 (1970)	469
ABWA	1 (1970)	437
ACQS	1 (1970)	457
AAKC	2 (1971)	239
AAGP	5 (1973)	80
	8 (1974)	333
	9 (1975)	327
AAGT	5 (1973)	81
	8 (1974)	333
ACRO	6 (1973)	89
AAHE	8 (1974)	152
AAKL	9 (1975)	102
	10 (1975)	56
	10 (1975)	70
ACXL	13 (1977)	193
ACYB	14 (1978)	255
ACYU	16 (1978)	65
ACCM	32 (1984)	421
ACDH	34 (1984)	199
ACDI	34 (1984)	211

Atomic physics — Wave functions and integrals (continued)

R12 INTERACTION MATRIX ELEMENTS (Reduce, 595). A Reduce package for exact Coulomb interaction matrix elements. N. Bogdanova, H. Hogreve	ABBN 48 (1988) 319
2.8. Exotic atoms	
MUONIC ATOM CASCADE (Fortran, 2760). Muonic atom cascade program. V.R. Akylas, P. Vogel MUON (Fortran, 2385). Static and dynamic muonic-atom codes MUON and RURP. G.A. Rinker RURP (Fortran, 4564). Static and dynamic muonic-atom codes MUON and RURP. G.A. Rinker. Subroutine required (for data): ABNB (\$2.8)	AAMA 15 (1978) 291 ABNB 16 (1979) 221 ABNC 16 (1979) 221
2.9. Theoretical methods (see also angular momentum, §4.1)	
Other versions: ACQV (\$2.9), AAOM (\$2.9)	ACQL 1 (1970) 359
Other versions: ACQL (\$2.9), AAOM (\$2.9)	ACQV 2 (1971) 180
Other version: ACWE (\$2.9)	ACRJ 5 (1973) 263
MCP75 (Fortran, 2465). A program to calculate angular momentum coefficients in relativistic atomic structure – revised version. I.P. Grant. Subroutines required: AAHD (\$4.1), ACRI (\$4.1). Other version: ACRJ (\$2.9)	ACWE 11 (1976) 397 14 (1978) 311
000A CORRECTION 29/09/77 (Fortran)	
MCBP-BREIT ANGULAR COEFFICIENTS (Fortran, 1974). MCBP: a program to calculate angular coefficients of the Breit interaction between electrons in the low energy limit. N. Beatham, I.P. Grant, B.J. McKenzie, N.C. Pyper. Subroutines required: AAHD (\$4.1), ACRI (\$4.1), ACWE (\$2.9)	AAAL 18 (1979) 245
WEIGHTS A MORE EFFICIENT VERSION (Fortran, 3150). A more efficient version of the WEIGHTS and NJSYM packages. N.S. Scott, A. Hibbert. Subroutines required: ACQB (\$4.1), ACRN (\$4.1), AAON (\$4.1). Other versions: ACQL (\$2.9), ACQV (\$2.9)	AAOM 28 (1982) 189
SU2DIMPHE (Fortran, 1013). Model space dimensionalities for multiparticle fermion systems. J.P. Draayer, H.T. Valdes	AABN 36 (1985) 313
3. Biology	
AMYR (Fortran, 2198). Molecular associations. S. Fraga	ACEO 29 (1983) 351
0001 AGAB (Fortran, 198). Association of proteins: adaptation and coupling of two available programs. L. Seijo, B. Coghlann, S. Fraga	41 (1986) 169
DIAD (Fortran, 820). Determination of antigenic determinants. S. Fraga	ACFH 30 (1983) 325
POETA (Fortran, 7746). Determination of proteinic structures: an experimentation program. B. Coghlann, S. Fraga	AABU 36 (1985) 391
0001 AGAB (Fortran, 234). Association of proteins: adaptation and coupling of two available programs. L. Seijo, B. Coghlann, S. Fraga	41 (1986) 169
4. Computational methods	
4.1. Angular momentum coupling coefficients	
P SHELL C.F.P. (Fortran, 173). Fractional parentage coefficients for equivalent p shell and equivalent d shell electrons. D.C.S. Allison	ACQB 1 (1969) 15 ACQC 1 (1969) 16
Other version: ACRN (\$4.1)	
VECTOR COUPLING COEFFICIENTS (Fortran, 1634). Vector coupling coefficients for complex atoms. H. Nussbaumer	ACQH 1 (1970) 191 AAYA 1 (1970) 207 AAGD 1 (1969) 241
3N-J SYMBOLS FOR SU(2) (Fortran, 969). Arbitrary 3n-j symbols for SU(2). J. Shapiro	ABMA 1 (1970) 337 2 (1971) 174
Other versions: AAHD (\$4.1), AAON (\$4.1), ABBY (\$4.1)	ABOR 3 (1972) 318
GEOMETRICAL COEFFICIENT (Fortran, 342). Angular momentum coupling coefficients. T. Tamura	ACRE 4 (1972) 268
000A CORRECTION 19/01/71 (Fortran)	
DS (Fortran, 114). The reduced rotation matrix. W.J. Braithwaite, J.G. Cramer	ACRI 4 (1972) 377
COEF (Fortran, 633). Vector coupling coefficients as products of prime factors. R.McD. Dodds, G. Wiechers	14 (1978) 311
CFPJ – CFP IN JJ-COUPLING (Fortran, 448). CFPJ-fractional parentage coefficients for equivalent electrons in jj-coupling. I.P. Grant	
000A CORRECTION 08/05/77 (Fortran)	

Computational methods — Angular momentum coupling coefficients (continued)

A NEW D SHELL CFP (Fortran, 412). A new version of the program to compute the fractional parentage coefficients for equivalent d shell electrons. A.T. Chivers. Other version: ACQC (§4.1)	ACRN	6 (1973)	88
REDUCED TENSOR MATRIX ELEMENTS (Fortran, 1094). A program to evaluate the reduced matrix elements of summations of one-particle tensor operators. W.D. Robb. Subroutines required: ACQB (§4.1), ACRN (§4.1), AAHD (§4.1). Other version: AAKP (§4.1)	AAKF	6 (1973)	132
000A CORRECTION 14/11/74 (Fortran)		9 (1975)	268
0001 ADAPT TENSOR FOR PRODUCTS (Fortran, 55). Adaptation of CIV3 to evaluate hyperfine structure. R. Glass, A. Hibbert. Subroutines required: ACQB (§4.1), ACRN (§4.1), AAHD (§4.1). Other version: AAKP0001		11 (1976)	125
000B CORRECTION 12/04/77 (Fortran)		13 (1977)	231
Other version: ACYM (§4.1)	AAAD	7 (1974)	225
A NEW VERSION OF NJSYM (Fortran, 1580). A general program to calculate atomic continuum processes using the R-matrix method. K.A. Berrington, P.G. Burke, J.J. Chang, A.T. Chivers, W.D. Robb, K.T. Taylor. Other versions: AAGD (§4.1), AAON (§4.1), ABBY (§4.1)	AAHD	8 (1974)	151
F SHELL C.F.P. (Fortran, 1825). Fractional parentage coefficients for equivalent f shell electrons. D.C.S. Allison, J.E. McNulty	ACRY	8 (1974)	246
REDUCED TENSOR MATRIX ELEMENTS 2 (Fortran, 1544). A new version of AAKF (Reduced Tensor Matrix Elements) adapted to spectroscopic notation. C.F. Fischer, K.M.S. Saxena. Subroutines required: ACQB (§4.1), ACRN (§4.1), AAHD (§4.1). Other version: AAKF (§4.1)	AAKF	9 (1975)	370
000A CORRECTION 12/04/77 (Fortran)		13 (1977)	231
0001 ADAPT TENSOR 2 FOR PRODUCT (Fortran, 89). Adaptation of the new version of the reduced tensor matrix elements (AAKF) program: inclusion of the evaluation of matrix elements of tensor products. K.M.S. Saxena. Subroutines required: ACQB (§4.1), ACRN (§4.1), AAHD (§4.1). Other version: AAKF0001		13 (1977)	289
0002 ADAPT TENSOR 2 TO CHECK DATA (Fortran, 291). Adaptation of the new version of the reduced matrix elements (AAKF) program; inclusion of the checking of the input data. K.M.S. Saxena. Subroutines required: ACQB (§4.1), ACRN (§4.1), AAHD (§4.1)		16 (1978)	57
CLEBSCH-GORDAN EXPLICIT FORMULAS (Formac, 185). Explicit formulas for Clebsch-Gordan coefficients. G. Rudnicki-Bujnowski	ACWL	10 (1975)	245
J1-RECURSION OF 3J-COEFFICIENTS (Fortran, 411). Recursive evaluation of 3j- and 6j- coefficients. K. Schulten, R.G. Gordon	ACWQ	11 (1976)	269
M2-RECURSION OF 3J-COEFFICIENTS (Fortran, 401). Recursive evaluation of 3j- and 6j- coefficients. K. Schulten, R.G. Gordon	ACWR	11 (1976)	269
J1-RECURSION OF 6J-COEFFICIENTS (Fortran, 436). Recursive evaluation of 3j- and 6j- coefficients. K. Schulten, R.G. Gordon	ACWS	11 (1976)	269
ANGMOM (Fortran, 904). New Fortran programs for angular momentum coefficients. K. Srinivasa Rao, K. Venkatesh	ACYK	15 (1978)	227
ONE-PARTICLE OPS IN JJ-COUPLING (Fortran, 1336). A new program for calculating matrix elements of one-particle operators in jj-coupling. N.C. Pyper, I.P. Grant, N. Beatham. Subroutines required: AAHD (§4.1), ACRI (§4.1), ACWE (§2.9). Other version: AAAD (§4.1)	ACYM	15 (1978)	387
CONTRACTION-BASIC-DIAGRAM (Fortran, 1326). A program to generate closed basic diagrams for product operators. B.D. Chang, S.S.M. Wong	ACZI	18 (1979)	35
CONTRACTION-JT-RECOUPLING (Fortran, 3491). A program to evaluate closed diagrams algebraically for angular momentum coupled product operators. B.D. Chang, S.S.M. Wong. Subroutine required (for data): ACZI (§4.1)	AAAM	20 (1980)	191
ROOT (Fortran, 2154). Root-rational-fraction package for exact calculation of vector-coupling coefficients. A.J. Stone, C.P. Wood	ABVN	21 (1980)	195
CONTRACTION-COMPILER (Fortran, 5372). A system to generate Fortran programs for calculating configuration traces of angular momentum coupled product operators. B.D. Chang, J.P. Draayer, S.S.M. Wong. Subroutines required (for data): ACZI (§4.1), AAAM (§4.1)	AAOP	28 (1982)	41
NJSYM - A MORE EFFICIENT VERSION (Fortran, 1561). A more efficient version of the WEIGHTS and NJSYM packages. N.S. Scott, A. Hibbert. Other versions: AAGD (§4.1), AAHD (§4.1), ABBY (§4.1)	AAON	28 (1982)	189
CLEBSCH-GORDAN STORAGE (I, 2578). Uplink coefficients cdc 750 centre for computing ser. C.F. Vermaak, D. Vermaak, H.G. Miller. Subroutine required: 337	ACFN	31 (1984)	41

Computational methods — Angular momentum coupling coefficients (continued)

000A CORRECTION 06/02/85 (Fortran)	36 (1985)	337
TRANSFORM (Fortran, 5293). TRANSFORM: a program to calculate transformations between various jj and LS coupling schemes. K.G. Dyall	AADT	39 (1986) 141
PRACAH (OCCAM, 435). The parallel computation of Racah coefficients using transputers. N.S. Scott, P. Milligan, H.W.C. Riley	AAXE	46 (1987) 83
NJGRAF (Fortran, 5212). NJGRAF: an efficient program for calculation of general recoupling coefficients by graphical analysis, compatible with NJSYM. A. Bar-Shalom, M. Klapisch. Other versions: AAGD (§4.1), AAHD (§4.1), AAON (§4.1)	ABBY	50 (1988) 375
ROTAR (Fortran, 682). Rotation of real spherical harmonics. J.R. Alvarez Collado, J. Fernandez Rico, R. Lopez, M. Paniagua, G. Ramirez	ABHI	52 (1989) 323
IR, CGC (Fortran, 4846). Computer generated subgroup-symmetry adapted irreducible representations and CG coefficients of space groups by the eigenfunction method. Jia-Lun Ping, Qing-Rong Zheng, Bing-Qing Chen, Jin-Quan Chen	ABHE	52 (1989) 355
NINEJ (Fortran, 1700). A new Fortran program for the 9-j angular momentum coefficient. K. Srinivasa Rao, V. Rajeswari, C.B. Chiu	ABLE	56 (1989) 231
AMTREES (Pascal, 4587). Recursive generation of Cartesian angular momentum coupling trees for SO(3). B.S. Sherborne, G.E. Stedman	ABRD	59 (1990) 417

4.2. Other algebras and groups

PERMID (Fortran, 226). An algorithm generating permutations with identical objects. P. Basso, C. Bourrelly	ACQP	1 (1970) 415
WEYL GROUP (Fortran, 607). Computer generated Weyl groups. R.E. Beck, B. Kolman	ACRA	3 (1972) 155
SU(3)VCC (Fortran, 817). Analytic formulation of SU(3) vector coupling coefficients for n particles. J.M. Casilio, M.E. Noz	AAWA	5 (1973) 365
SU3 WIGNER & RACAH COEFFICIENTS (Fortran, 2046). A user's guide to Fortran programs for Wigner and Racah coefficients of SU3. Y. Akiyama, J.P. Draayer	ACRM	5 (1973) 405
FREUD (Fortran, 1024). Freudenthal's inner multiplicity formula. B. Kolman, R.E. Beck	AAAA	6 (1973) 24
RACOUT (Fortran, 670). Racah's outer multiplicity formula. R.E. Beck, B. Kolman. Subroutine required: AAAA (§4.2)	AAAG	8 (1974) 95
EIGLAB (Fortran, 1168). Eigenstates and eigenvalues of labelling operators for O(3) bases of U(3) representations. W. McKay, J. Patera, R.T. Sharp	ABID	10 (1975) 1
IMUG (Basic, 353). Inner multiplicity of unitary groups. S. Thomas, M.T. Sunny. Other version: AATL (§4.2)	AAAJ	14 (1978) 267
DAM AND DEGSUN (Fortran, 361). Weight multiplicity for unitary groups. V. Amar, U. Dozzio, C. Oleari	AAAK	14 (1978) 413
SYMCGM (Fortran, 1876). Generation of the Clebsch-Gordan coefficients for Sn. S. Schindler, R. Mirman. Subroutine required (for data): ACXW (§4.2)	ACXV	15 (1978) 131
SYMOR (Fortran, 187). Generation of the Clebsch-Gordan coefficients for Sn. S. Schindler, R. Mirman. Subroutines required (for data): ACXV (§4.2), ACXW (§4.2)	ACYH	15 (1978) 131
SYMCC (Fortran, 268). Generation of the Clebsch-Gordan coefficients for Sn. S. Schindler, R. Mirman. Subroutines required (for data): ACXV (§4.2), ACXW (§4.2)	ACYI	15 (1978) 131
SYMFUNC (Fortran, 805). Functions on tableaux and frames of the symmetric group. S. Schindler, R. Mirman	ACXW	15 (1978) 147
SYMGRPTB (PL/1, 746). Computation of group tables for the symmetric groups. M.F. Soto Jr., R. Mirman. Subroutine required: AAME (§4.2)	AAMC	23 (1981) 81
NGHBTRNS (PL/1, 132). Computation of group tables for the symmetric groups. M.F. Soto Jr., R. Mirman. Subroutines required: AAMC (§4.2), AAME (§4.2)	AAMD	23 (1981) 81
SYMSTATS (PL/1, 769). Construction of symmetric group representation matrices and states. M.F. Soto Jr., R. Mirman. Subroutine required: AAMC (§4.2)	AAME	23 (1981) 95
SYMRPMAT (PL/1, 171). Construction of symmetric group representation matrices and states. M.F. Soto Jr., R. Mirman. Subroutines required: AAMC (§4.2), AAME (§4.2)	AAMF	23 (1981) 95
ORTHNRN (PL/1, 200). Construction of symmetric group representation matrices and states. M.F. Soto Jr., R. Mirman. Subroutine required: AAME (§4.2)	AAMG	23 (1981) 95
MATTAB (PL/1, 214). Construction of symmetric group representation matrices and states. M.F. Soto Jr., R. Mirman. Subroutines required: AAMC (§4.2), AAME (§4.2)	AAMH	23 (1981) 95
SYMBNDS (PL/1, 182). Number of representations and maximum dimensions for S(N). M.F. Soto Jr., R. Mirman	AAMI	27 (1982) 57

Computational methods — Other algebras and groups (continued)

LIE0, LIE1, LIE2, LIE3, LIE4 (LISP, 246). A REDUCE package for determining Lie symmetries of ordinary and partial differential equations. F. Schwarz	AAZB 27 (1982) 179
SCHUR (Pascal, 493). Computation of outer products of Schur functions. O. Egecioglu	AAMJ 28 (1982) 183
CASEIG (Fortran, 249). Computation of Casimir operator eigenvalues. A.K. Bose	AARX 28 (1983) 271
BCD DAM AND MAIN (Fortran, 809). Weight multiplicity for Cartan classes. V. Amar, U. Dozzio, C. Oleari	ACED 29 (1983) 201
DIRECTOR (Fortran, 2114). DIRECTOR: a program for calculating representation matrices of the symmetric group in the Yamanouchi Kotani basis or in a direct product basis. J.C. Manley, J. Gerratt	ACFP 31 (1984) 75
CHAR (Pascal, 68). Murnaghan's rule and the irreducible characters of the symmetric group. O. Egecioglu, G.M. Costa	AAMK 31 (1984) 357
GENBIN, PATERN (IBM Assembler, Fortran, 1449). Generation and inter-correlation of basis sets in implementing the unitary group approach to $U(n) \times SU(m)$. R.D. Kent, M. Schlesinger	ACCR 33 (1984) 367
ROTTA (Fortran, 987). ROTTRA: a program for generating rotations and translations. O.E. Taurian	ACCZ 34 (1984) 153
KOSNUM (PL/1, 1456). Number of states of unitary group representations. M.F. Soto Jr, R. Mirman.	ACDT 34 (1985) 339
Subroutine required: AAMI (§4.2)	
UGRPSTTS (PL/1, 1090). Construction of canonical states of unitary groups. M.F. Soto Jr, R. Mirman.	AABB 34 (1985) 347
Subroutines required: AACM (§4.2), AAME (§4.2), AAMI (§4.2), ACDT (§4.2)	
UGREPMAT (PL/1, 772). Computation of unitary group representation matrices. M.F. Soto Jr, R. Mirman.	AABA 34 (1985) 357
Subroutines required: AACM (§4.2), AAME (§4.2), AAMI (§4.2), ACDT (§4.2), AABB (§4.2)	
INVRNUGR (PL/1, 381). Invariants and commutators for unitary group representations. M.F. Soto Jr, R. Mirman. Subroutines required: AAME (§4.2), AAMI (§4.2), ACDT (§4.2), AABA (§4.2)	AABC 34 (1985) 365
CMMUMAT (PL/1, 194). Invariants and commutators for unitary group representations. M.F. Soto Jr, R. Mirman. Subroutines required: AAME (§4.2), AAMI (§4.2), ACDT (§4.2), AABA (§4.2)	AABD 34 (1985) 365
ORTHNRN (PL/1, 302). Invariants and commutators for unitary group representations. M.F. Soto Jr, R. Mirman. Subroutines required: AAME (§4.2), AAMI (§4.2), ACDT (§4.2), AABA (§4.2)	AABE 34 (1985) 365
GAN (Fortran, 412). Program to calculate generalized Talmi-Moshinsky coefficients of 3-body and 4-body systems. See erratum Comput. Phys. Commun. 39 (1986) 154. Gan You-ping, Gong Min-zhuan, Wu Chong-en, Bao Cheng-guang	ACDO 34 (1985) 387
Other version: AAFG (§4.2)	AABI 36 (1985) 213
LIE (Reduce, 132). A REDUCE program for determining point and contact lie symmetries of differential equations. V.P. Eliseev, R.N. Fedorova, V.V. Konyak	AABS 36 (1985) 383
BAO (Fortran, 294). Program to calculate transformation brackets of hyperspherical harmonic functions of a three body system. See erratum Comput. Phys. Commun. 47 (1987) 367. Bao Cheng-guang, Gan You-ping, Lui Xian-hui	AABV 36 (1985) 401
ROTATION MATRIX ELEMENTS DD (Fortran, 4717). A Fortran 77 version of 'a function subprogram in order to calculate the matrix elements of rotation operators'. F. Brut. Other version: AABI (§4.2)	AAFG 39 (1986) 297
RADICAL (Pascal, 5341). PASCAL programs for identification of Lie algebras. Part I. RADICAL: a program to calculate the radical and nil radical of parameter-free and parameter-dependent Lie algebras. D.W. Rand	AALB 41 (1986) 105 47 (1987) 369
000A CORRECTION 02/06/87 (Pascal)	AATF 43 (1987) 413 AATX 44 (1987) 137
GENDRT, DRDTIM (Pascal, 5227). Data structure techniques for the graphical special unitary group approach to arbitrary spin representations. R.D. Kent, M. Schlesinger	AATO 44 (1987) 197
CLTB (Fortran, 151). Clifford multiplication tables. G. Bergdolt	AATP 44 (1987) 197
POLRANGE (Fortran, 285). Two programs to perform certain symbolic calculations in the enveloping algebra of a Lie algebra. H. De Meyer, G. Vanden Berghe, P. De Wilde	AATL 44 (1987) 221
ORDINVAR (Fortran, 688). Two programs to perform certain symbolic calculations in the enveloping algebra of a Lie algebra. H. De Meyer, G. Vanden Berghe, P. De Wilde	AAXM 46 (1987) 297
IMUG1 (Fortran, 602). Inner multiplicity of unitary groups – a modified version. S. Thomas. Other version: AAAJ (§4.2)	AAXN 46 (1987) 311
SPLIT (Pascal, 4169). PASCAL programs for identification of lie algebras, part II: SPLIT, a program to decompose parameter-free and parameter-dependent lie algebras into direct sums. D.W. Rand, P. Winteritz, H. Zassenhaus. Subroutine required: AALB (§4.2)	
LEVI (Pascal, 1163). PASCAL programs for identification of lie algebras, part III: Levi decomposition and canonical basis. D.W. Rand. Subroutines required: AALB (§4.2), AAXM (§4.2)	

Computational methods — Other algebras and groups (continued)

CANONIK (Pascal, 1082). PASCAL programs for identification of lie algebras, part III: Levi decomposition and canonical basis. D.W. Rand. Subroutines required: AALB (§4.2), AAXM (§4.2)	AAXO	46 (1987)	311
HS4 (Fortran, 882). Calculation of transformation brackets of hyperspherical harmonics of four-body systems with arbitrary masses. W. Wang, Y. Gan, C.G. Bao	ABDC	50 (1988)	331
VSPLAD (COMMON LISP, 1700). Symbolic lie algebras manipulations using COMMON LISP. R. Cecchini, M. Tarlini	ABFW	52 (1989)	283
UNTOU3 (Fortran, 1829). Representations of U(3) in U(N). J.P. Draayer, Y. Leschner, S.C. Park, R. Lopez	ABLJ	56 (1989)	279

4.3. Differential equations

BOUND (Fortran, 372). Nuclear bound state wave function subroutine. W.R. Smith	ACQA	1 (1969)	55
DEUT (Fortran, 968). Bound state solution of the two-nucleon Schroedinger equation with tensor forces. L. Lovitch, S. Rosati	ABGE	2 (1971)	353
0001 REMOVE NON-STANDARD FORTRAN (Fortran, 138). Bound state solution of the two-nucleon Schroedinger equation with tensor forces. L. Lovitch, S. Rosati		4 (1972)	140
SCHROD (Fortran, 138). Numerical solution of the radial Schrodinger equation. F. Beleznyay	ACQZ	3 (1972)	334
YUKAWA/RH**LP D JL 72 (Fortran, 433). Nearly exact calculation of the solution of the radial Schrodinger equation. L. Marquez	AAGN	5 (1973)	379
SCAT (Fortran, 2566). A general program to study the scattering of particles by solving coupled inhomogeneous second-order differential equations. N. Chandra. Subroutine required: ACRK (§2.4)	AAGO	5 (1973)	417
BSSW (Fortran, 300). Computation of S-state binding energy and wave functions in a Saxon-Woods potential. J. Cugnon	ABGL	6 (1973)	17
DIRPAK (Fortran, 2563). A program package for the Dirichlet problem with axially symmetric boundary conditions. J.B. Campbell	ABSB	9 (1975)	283
NUCLEAR POTENTIAL (Fortran, 1357). Solution of bound state problems in nuclear shell model with momentum dependent potentials. M.A.K. Lodhi, B.T. Waak	ACWK	10 (1975)	182
MUCALC (Fortran, 1126). Determination of SSOR-SI iteration parameters. J.B. Campbell	ABUM	10 (1975)	194
GRN1 (Fortran, 1218). A program to calculate Green's functions. S.P. Rountree, T. Burnett, R.J.W. Henry, C.A. Weatherford	ACWN	11 (1976)	27
0001 GRN2 (Fortran, 2220). Adaptation of a program to calculate Green's function. R.J.W. Henry, S.P. Rountree, E.R. Smith		23 (1981)	233
FORSIM VI (Fortran, 6991, Manual 162 pages). FORSIM VI: a program package for the automated solution of arbitrarily defined differential equations. M.B. Carver	ACYZ	17 (1979)	283
RADISH (Fortran, 602). De Vogelaere's method with automatic error control. J.P. Coleman, J. Mohamed	ACZB	17 (1979)	283
SCHRODINTEQN (Fortran, 374). An integral equation program to calculate radial wave functions and scattering phase shifts of short-range local interactions. M.S. Stern	AAIE	17 (1979)	365
SIPSOL (Fortran, 1022). SIPSOL: a suite of subprograms for the solution of the linear equations arising from elliptic partial differential equations. C.R. Jesshope	ACZL	17 (1979)	383
EXPFIT1 (Fortran, 766). The method of Raptis and Allison with automatic error control. J. Mohamed	AANA	20 (1980)	309
PCNUM (Fortran, 829). A program for the predictor-corrector Numerov method. W.E. Baylis, S.J. Peel	AARJ	25 (1982)	21
Other version: AAJL (§4.3)	AAJK	27 (1982)	299
GAMOW FUNCTIONS (Fortran, 1359). GAMOW: a program for calculating the resonant state solution of the radial Schrodinger equation in an arbitrary optical potential. T. Vertse, K.F. Pal, Z. Balogh	AAOD	27 (1982)	309
VPM (Fortran, 3734). VPM: a new asymptotic package. J.P. Croskery, N.S. Scott, K.L. Bell, K.A. Berrington	AAOE	27 (1982)	385
RPROP2 (Fortran, 3039). A generalized R-matrix propagation program for solving coupled second-order differential equations. L.A. Morgan	AAJL	31 (1984)	419
DIFEQ (Fortran, 406). A program for performing a numerical integration of the Schroedinger equation. C. Foglia	ACCC	32 (1984)	209
MRVAC (Fortran, 2760). MRVAC: a variational correction method for solving differential equations with r**-n coupling. M.R.H. Rudge	ACCV	34 (1984)	187
GREFUL (Fortran, 1813). A Green's function code for Schrodinger equations with nonlocal separable kernels. H. Leeb, H. Markum	ABPP	34 (1985)	271
SCR2 (Fortran, 265). Solving the Schrodinger equation for bound states. P. Falkensteiner, H. Grosse, F. Schoberl, P. Hertel	ACDQ	34 (1985)	287

Computational methods — Differential equations (continued)

POT4A (Fortran, 4808). POT4A: a program for the direct solution of Poisson's equation in complex geometries. S.J. Beard, R.W. Hockney. Subroutines required: ABUF (\$4.14) or ABUJ (\$4.14) or ABUK (\$4.14), ABUA (\$4.6)	ACDB 36 (1985) 25
LIE (Reduce, 132). A REDUCE program for determining point and contact lie symmetries of differential equations. V.P. Eliseev, R.N. Fedorova, V.V. Kornyak	AABS 36 (1985) 383
DRANK, CONSD, CONSD2 (Reduce, Rlisp, 581). A REDUCE program for finding conserved densities of partial differential equations with uniform rank. M. Ito, F. Kako	AADG 38 (1985) 415
LB (PL/1, 762). Determination of Lie-Backlund symmetries of differential equations using FORMAC. R.N. Fedorova, V.V. Kornyak	AADL 39 (1985) 93
SCHROD (Fortran, 438). A program for the calculation of energy eigenvalues and eigenstates of a Schrodinger equation. V. Fack, G. Vanden Berghe	AADV 39 (1986) 187
DISSYS (RLISP, 931). A REDUCE package for determining first integrals of autonomous systems of ordinary differential equations. F. Schwarz	AAFF 39 (1986) 285
DRANK, DRANK2, SYM, SYM2, SYMS (Reduce, Rlisp, 913). A REDUCE program for finding symmetries of nonlinear evolution equations with uniform rank. M. Ito	AALS 42 (1986) 351
ODEPAINLEVE (REX MACSYMA, 305). ODEPAINLEVE: a MACSYMA package for Painleve analysis of ordinary differential equations. D.W. Rand, P. Winternitz	AALT 42 (1986) 359
TPR (Reduce, 131). Tests of resonances in the Painleve analysis. L. Hlavaty	AATA 42 (1986) 427
RKPC (Fortran, 617). Subroutines for integration of systems of first order ODE's. G. Delic, S.M. Malherbe	ABBH 48 (1988) 293
VCSUM (Fortran, 430). Program to calculate the spectral harmonic expansion coefficients of the two scalar fields product. Z. Martinec. Subroutine required: AAPE (\$4.11)	ABHK 54 (1989) 177
PHASEI (Fortran, 2422). A Fortran program for the numerical integration of the one dimensional Schrodinger equation using exponential and Bessel fitting methods. J.R. Cash, A.D. Raptis, T.E. Simos	ABLM 56 (1990) 391

4.4. Feynman diagrams

P.T. DIAGRAM GENERATION (Fortran, 879). Computer generation of Feynman diagrams for perturbation theory. II. Program description. H.C. Wong, J. Paldus	AAKH 6 (1973) 9
GRAFFITI (Fortran, 638). Computer generation of connected graphs. D.C. Rapaport	ACOA 8 (1974) 320
GRAND (Pascal, Fortran, 6664). Automatic generation of Feynman graphs and amplitudes in QED. T. Kaneko, S. Kawabata, Y. Shimizu	AATD 43 (1987) 279
COLOR (Reduce, 469). Program COLOR for computing the group-theoretic weight of Feynman diagrams in non-Abelian gauge theories. A.P. Kryukov, A.Ya. Rodionov	AAXC 48 (1988) 327
LERG-I (Reduce, 1251). Algebraic reduction of one-loop Feynman diagrams to scalar integrals. R.G. Stuart. Other version: ABLU (\$4.4)	ABBX 48 (1989) 367
LOOPS (Reduce, 663). LOOPS: procedures for multiloop calculations in quantum field theory for system REDUCE. L.R. Surguladze, F.V. Tkachov	ABJO 55 (1989) 205
MINCER (SCHOONSCHIP, 3707). MINCER: multiloop calculations in quantum field theory for system SCHOONSCHIP. S.G. Gorishny, S.A. Larin, L.R. Surguladze, F.V. Tkachov	ABQJ 55 (1989) 381
LERG-I (Reduce, 2595). Algebraic reduction of one-loop Feynman diagrams to scalar integrals II. R.G. Stuart, A. Gongora-T. Other version: ABBX (\$4.4)	ABLU 56 (1990) 337
CHANEL (Fortran, 1395). Numerical calculation of helicity amplitudes for processes involving massive fermions. H. Tanaka	ABLT 58 (1990) 153
FEYNMAN (LATEX, 1922, Manual 92 pages). A LaTeX graphics routine for drawing Feynman diagrams. M.J.S. Levine	ABLR 58 (1990) 181

4.5. Coulomb functions

COULOM (Fortran, 547). Coulomb functions for complex energies. T. Tamura, F. Rybicki	ABOC 1 (1969) 25
000A CORRECTION 18/03/72 (Fortran)	3 (1972) 276
COULOM FOR REAL ENERGY (Fortran, 1073). Coulomb functions in entire (eta,rho)-plane. C. Bardin, Y. Dandeu, L. Gauthier, J. Guillerm, T. Lena, J.M. Pernet, H.H. Wolter, T. Tamura	ABOQ 3 (1972) 73
RCWFN (Fortran, 282). Coulomb wave functions for all real eta and rho. A.R. Barnett, D.H. Feng, J.W. Steed, L.J.B. Goldfarb	ABPC 8 (1974) 377
0001 RCWFF (Fortran, 74). RCWFF – a modification of the real Coulomb wavefunction program RCWFN. A.R. Barnett	11 (1976) 141
A00A CORRECTION TO 0001 26/10/77 (Fortran). Unpublished correction	

Computational methods — Coulomb functions (continued)

CCOULM (Fortran, 400). Coulomb functions with complex angular momenta. T. Takemasa, T. Tamura, H.H. Wolter

COUL (Fortran, 707). Coulomb functions (negative energies). K.L. Bell, N.S. Scott

KLEIN: COULOMB WFN, REAL L,ETA,X (Fortran, 312). KLEIN: Coulomb functions for real lambda and positive energy to high accuracy. A.R. Barnett

COULAN (Fortran, 337). Coulomb functions analytic in the energy. M.J. Seaton

RCGF (Pascal, 1387). A Pascal program for calculating the reduced Coulomb Green's functions and their partial waves. J. Mlodzki, J. Kuszkowski, M. Sufczynski

COULN (Fortran, 449). COULN: a program for evaluating negative energy Coulomb functions. C.J. Noble, I.J. Thompson

COULCC (Fortran, 1597). COULCC: a continued-fraction algorithm for Coulomb functions of complex order with complex arguments. I.J. Thompson, A.R. Barnett

4.6. Fourier transforms

FOUR67 (Fortran, 1122). FOUR67, a fast Fourier transform package. J.P. Christiansen, R.W. Hockney

FOURGEN (PL/I, Fortran, 601). FOURGEN: a fast Fourier transform program generator. J.A. Maruhn

TRIINT (Fortran, 951). Fourier analysis with splines. A Fortran program. C. Pomponiu, M. Sararu

FTRANS (Fortran, 396). On numerical Bessel transformation. B. Sommer, J.G. Zabolitzky

FASTF (Fortran, 376). FASTF: fast Fourier transform with arbitrary factors. E. Garcia-Torano

MFFT (Fortran, 4462). MFFT: a package for two- and three-dimensional vectorized discrete Fourier transforms. A. Nobile, V. Roberto

0001 MFFT4 (Fortran, 1323). MFFT4: four dimensional vectorized fast Fourier transforms. A. Nobile, V. Roberto, F. Saitta

UNIDFT (Fortran, 4710). UNIDFT: a package of optimized discrete Fourier transforms. G. Cabras, V. Roberto, G. Salemi

CCFS (Fortran, 682). Subroutines for convolution sums of Chebyshev and Fourier series. G. Delic, S.M. Malherbe

SW2DFFT (Fortran, 655). Two dimensional fast Fourier transform for large data matrices. M.H. Serzu, W.M. Moon

4.7. Other functions

CLOGAM AND CDIGAM (Fortran, 175). Programs for computing the logarithm of the gamma function and the digamma function for complex argument. K.S. Kolbig

LEGENDRE (Fortran, 160). Associated Legendre polynomials, ordinary and modified spherical harmonics. W.J. Braithwaite

FORTRAN CALCULATION OF SODS (Fortran, 343). A subroutine and procedure for the rapid calculation of simple off-diagonal rational approximants. P.R. Graves-Morris, D.E. Roberts. Other version: ACRT (\$4.7)

ALGOL CALCULATION OF SODS (Algol, 299). A subroutine and procedure for the rapid calculation of simple off-diagonal rational approximants. P.R. Graves-Morris, D.E. Roberts. Other version: ACRS (\$4.7)

FORTRAN CALCULATION OF C.A'S (Fortran, 410). Calculation of Canterbury approximants. P.R. Graves-Morris, D.E. Roberts. Other version: ACWG (\$4.7)

000A CORRECTION 23/02/77 (Fortran)

ALGOL CALCULATION OF C.A'S (Algol, 411). Calculation of Canterbury approximants. P.R. Graves-Morris, D.E. Roberts. Other version: ACWF (\$4.7)

PADE APPROXIMANTS (Fortran, 686). Subroutine for calculation of matrix Padé approximants. Y. Starkand

BESSEL (Fortran, 536). The Bessel functions J0 and J1 of complex argument. R.W.B. Ardill, K.J.M. Moriarty

SPHBES (Fortran, 558). Spherical Bessel functions jn and yn of integer order and real argument. R.W.B. Ardill, K.J.M. Moriarty

NULLIJN (Fortran, Compass, 4092). NULLIJN: a program to calculate zero curves of a function of two variables of which one may be complex. P.C. de Jagher

FTRANS (Fortran, 396). On numerical Bessel transformation. B. Sommer, J.G. Zabolitzky

ABND	17 (1979)	351
AANB	20 (1980)	447
ABNJ	24 (1981)	141
AAJJ	25 (1982)	87
ACEP	29 (1983)	341
ACCU	33 (1984)	413
ACDP	36 (1985)	363
ABUA	2 (1971)	127
ABUO	12 (1976)	147
AAUX	16 (1978)	93
ACZC	16 (1979)	383
ACUH	30 (1983)	397
AALL	42 (1986)	233
	48 (1988)	313
AAXR	47 (1987)	113
ABBO	48 (1988)	305
ABFB	52 (1989)	333

ACRG	4 (1972)	221
ABME	5 (1973)	390
ACRS	9 (1975)	46
ACRT	9 (1975)	46
ACWF	10 (1975)	234
	13 (1977)	72
ACWG	10 (1975)	234
	13 (1977)	72
ACWV	11 (1976)	325
ACWZ	13 (1977)	17
ACXM	14 (1978)	261
ACYL	15 (1978)	351
ACZC	16 (1979)	383

Computational methods — Other functions (continued)

BESJYH (Fortran, 1521). Accurate Bessel functions $J_n(z)$, $Y_n(z)$, $H(1)n(z)$ and $H(2)n(z)$ of integer order and complex argument. R.W.B. Ardlill, K.J.M. Moriarty	ACYQ 17 (1979) 321 39 (1986) 303
000A CORRECTION 30/09/85 (Fortran)	ACZN 18 (1979) 63
PLMCHB (Fortran, 481). Chebyshev expansion of the associated Legendre polynomial $PLM(x)$. G. Delic	ACZM 18 (1979) 73
JLRCHB (Fortran, 418). Chebyshev series for the spherical Bessel function $jl(r)$. G. Delic	ACZP 18 (1979) 133
BESSJY (Fortran, 1499). Bessel functions $J_{nu}(x)$ and $Y_{nu}(x)$ of real order and real argument. J.B. Campbell	
ANALYT (Fortran, 2500). A guide to analytic extrapolations. Part I: a program for optimal extrapolation to interior points. M. Ciulli, S. Ciulli	AAUT 18 (1979) 215
RIEMANN ZETA FUNCTION (Fortran, 142). A program for computing the Riemann Zeta function for complex argument. A. Banuelos, R.A. Depine	ABVJ 20 (1980) 441
REALJN (Fortran, 625). A Fortran subroutine for the Bessel function $J_n(x)$ of order 0 to 10. J.P. Coleman	ABVM 21 (1980) 109
FERMI-DIRAC FUNCTIONS (Fortran, 266). A program for computing the Fermi-Dirac functions.	
A. Banuelos, R.A. Depine, R.C. Mancini	ABVP 21 (1981) 315
AIRY (Fortran, 443). Airy function with complex arguments. W. Moon	ABVX 22 (1981) 411
FCONIC (Fortran, 855). A program for computing the conical functions of the first kind $P_m(-1/2+i\tau)(x)$ for $m=0$ and $m=1$. K.S. Kolbig	AAQH 23 (1981) 51
CHEBY (Fortran, 326). A Chebyshev series approximation to continuous functions. M.A. Christie,	ABQJ 23 (1981) 145
K.J.M. Moriarty	
BESSIK (Fortran, 1955). Bessel functions $I_{nu}(z)$ and $K_{nu}(z)$ of real order and complex argument.	AAQZ 24 (1981) 97
J.B. Campbell	25 (1982) 207
000A CORRECTION 28/10/81 (Fortran)	AARE 24 (1981) 191
LHARM (Fortran, 137). Generating functions for L-harmonics. R.W. Gaskell	AAQQ 25 (1982) 81
F3Y (Fortran, 121). Fortran program for the integral of three spherical harmonics. A.L. de Brito	
YLM-COUPING (Fortran, 1143). Programs for the coupling of spherical harmonics. E.J. Weniger,	AARL 25 (1982) 149
E.O. Steinborn	AART 25 (1982) 289
HANKEL (Fortran, 1345). Automatic computation of Bessel function integrals. R. Piessens	
COULFG (Fortran, 432). COULFG: Coulomb and Bessel functions and their derivatives, for real	ABNK 27 (1982) 147
arguments, by Steed's method. A.R. Barnett	
FUNEXP (Fortran, 700). An expansion of complicated functions using Chebyshev polynomials suitable for	
fast calculation. M.O. Caceres, H.S. Wio, R.J.J. Stamm'ler	ACEE 29 (1983) 261
LSFBTR (Fortran, 370). LSFBTR: a subroutine for calculating spherical Bessel transforms. J.D. Talman	AANZ 30 (1983) 93
PRSWFN (Fortran, 570). Prolate radial spheroidal wave functions. T.A. Beu, R.I. Campeanu	ACEY 30 (1983) 177
PASWFN (Fortran, 477). Prolate angular spheroidal wave functions. T.A. Beu, R.I. Campeanu	ACEZ 30 (1983) 187
FRANKC (Fortran, 450). Calculation of the auxiliary functions $F_m(z)$. L.F. Errea, L. Mendez, A. Riera	ACFL 31 (1984) 47
FZRI (Fortran, 166). A simple procedure for numerical approximation of the $F_m(z)$ functions with complex	
argument. L. Jakab	ACFO 31 (1984) 89
NUZERO (Fortran, 935). Determination of nu-zeros of Hankel functions. J.B. Campbell	ACCH 32 (1984) 333
BAO (Fortran, 294). Program to calculate transformation brackets of hyperspherical harmonic functions	
of a three body system. See erratum Comput. Phys. Commun. 47 (1987) 367. Bao Cheng-guang, Gan	AABV 36 (1985) 401
You-ping, Lui Xian-hui	
FD, FDG, FDH (Fortran, 2119). Generalized Fermi-Dirac integrals - FD, FDG, FDH. L.W. Fullerton,	AADU 39 (1986) 181
G.A. Rinker	
ORTHOGONAL POLYNOMIALS (Fortran, 3938). A program to set up systems of orthogonal polynomials.	AAXL 46 (1987) 263
U. Opik	
GYP (Fortran, 245). Program to calculate Raynal-Revai coefficients of a three-body system in two or three	AAXP 47 (1987) 149
dimensions. Y. Gan, F. Liu, T.K. Lim	
BESSCC (Fortran, 874). Modified Bessel functions $I_{mu}(z)$ and $K_{mu}(z)$ of real order and complex argument,	ABBM 47 (1987) 245
to selected accuracy. I.J. Thompson, A.R. Barnett	
CCFS (Fortran, 682). Subroutines for convolution sums of Chebyshev and Fourier series. G. Delic,	ABBO 48 (1988) 305
S.M. Malherbe	

4.8. Matrices

MATPLT (Fortran, 107). Isometric representation of two-dimensional matrices. A. Choudry	ACQM 1 (1970) 277
COMPLEX GENERALISED EIGENPROBLEM (Fortran, 1007). The hermitian matrix eigenproblem $Hx = \lambda x$ using compact array storage. J.C. Nash	AAAF 8 (1974) 85

Computational methods — Matrices (continued)

HYMNIA (Fortran, 2390). HYMNIA – band matrix package for solving eigenvalue problems. R. Gruber	ACWC	10 (1975)	30
APICS (Fortran, 691). Application of the generalized backward substitution method to solve a class of linear systems. R. Calinon, J. Ligou	ACZJ	17 (1979)	317
LIHOIN (Fortran, 557). A program for solving systems of homogeneous linear inequalities. K.S. Kolbig, F. Schwarz	ACZH	17 (1979)	375
GENLU (Fortran, 2070). A program generator for the incomplete LU decomposition-conjugate gradient (ILUCG) method. G.K. Petracic, M. Petracic	ABSE	18 (1979)	13
HYMBLO (Fortran, 978). HYMNIABLOCK: eigenvalue solver for blocked matrices. R. Gruber	ABVI	20 (1980)	421
GENIC (Fortran, 2961). A program generator for the Incomplete Cholesky Conjugate Gradient (ICCG) method with a symmetrizing preconditioner. G.K. Petracic, M. Petracic	ABSF	22 (1981)	33
PERDIAG (Fortran, 447). Recurrence solution of a block tridiagonal matrix equation with Neumann, Dirichlet, mixed or periodic boundary conditions. F. Marsh, D.E. Potter	AARF	24 (1981)	185
EIGVEC (Fortran, CAL Assembler, 1763). A vectorizable eigenvalue solver for sparse matrices. L.C. Bernard, F.J. Helton	AARI	25 (1982)	73
ILUCG2 (Fortran, 1193). ILUCG2: subprograms for the solution of a linear asymmetric matrix equation arising from a 9-point discretization. See erratum Comput. Phys. Commun. 31 (1984) 433. A.I. Shestakov, D.V. Anderson	ACEU	30 (1983)	31
ICCG2 (Fortran, 1012). ICCG2: subprograms for the solution of a linear symmetric matrix equation arising from a 9-point discretization. See erratum Comput. Phys. Commun. 31 (1984) 435. D.V. Anderson, A.I. Shestakov	ACEV	30 (1983)	37
ILUCG3 (Fortran, 1857). ILUCG3: subprograms for the solution of a linear asymmetric matrix equation arising from a 7, 15, 19 or 27 point 3D discretization. See erratum Comput. Phys. Commun. 31 (1984) 437. D.V. Anderson	ACEW	30 (1983)	43
ICCG3 (Fortran, 1582). ICCG3: subprograms for the solution of a linear symmetric matrix equation arising from a 7, 15, 19 or 27 point 3D discretization. See erratum Comput. Phys. Commun. 31 (1984) 439. D.V. Anderson	ACEX	30 (1983)	51
ILUBCG2 (Fortran, 824). ILUBCG2: a preconditioned biconjugate gradient routine for the solution of linear asymmetric matrix equations arising from 9-point discretizations. A.E. Koniges, D.V. Anderson	AALX	43 (1987)	297
0001 ILUBCG2-11 (Fortran, 872). ILUBCG2-11: solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine. Y.-M. Chen, A.E. Koniges, D.V. Anderson		55 (1989)	359
CPDES2 (Fortran, 1080). CPDES2: a preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in two dimensions. D.V. Anderson, A.E. Koniges, D.E. Shumaker	ABFD	51 (1988)	391
CPDES3 (Fortran, 1143). CPDES3: a preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in three dimensions. D.V. Anderson, A.E. Koniges, D.E. Shumaker	ABFE	51 (1988)	405
EGRASS (Fortran, 54594). epicGRASS: symbolic calculations with anticommuting variables. U. Hartmann, E.D. Davis	ABHY	54 (1989)	353
MLS (Fortran, 407). A program for the solution of ill-posed linear systems arising from the discretization of Fredholm integral equation of the first kind. N.N. Abdelmalek	ABLZ	58 (1990)	285
4.9. Minimization and fitting (see also interpolation, §4.10)			
SEARCH (Fortran, 202). Parameter search subroutine. W.R. Smith	ABOD	1 (1969)	135
0001 ADAPT SEARCH TO ELASTIC (Fortran, 2). Adaptation of subroutine SEARCH for use with program ELASTIC. W.R. Smith		1 (1970)	198
NONLINEAR LEAST SQUARES FIT (Fortran, 465). A procedure for nonlinear least squares refinement in adverse practical conditions. J. Lang, R. Muller	ABGA	2 (1971)	79
000A CORRECTION 20/11/72 (Fortran)		5 (1973)	308
COMBAT (Fortran, 1036). A program for closed orbit minimization by analytic technique. J.V. Trotman	ABCF	5 (1973)	56
OPTIME SYSTEM (Fortran, 10992). Users manual for the OPTIME system. P.H. Eberhard, W.O. Koellner	AAYB	5 (1973)	163
LINCOM (Fortran, 968). Search program for significant variables. M.J. O'Connell	ABCG	8 (1974)	49
GSFIT (Fortran, 1415). Multivariate least squares fitting program using modified Gram-Schmidt transformations. M.J. O'Connell	ABCH	8 (1974)	56
LGFIT2 (Fortran, 1368). A least-squares spectral curve fitting routine for strongly overlapping lorentzians or gaussians. E.D. von Meerwall	ABMK	9 (1975)	117

Computational methods — Minimization and fitting (see also interpolation, §4.10) (continued)

PEAK2 (Fortran, 1290). A FORTRAN code for automatic spectrum analysis on medium-scale computers.	ABML	9 (1975)	351
E.D. von Meerwall			
SPEC3 (Fortran, 1004). A general-purpose routine for the analysis of spectroscopic peak shapes.	ABMM	10 (1975)	145
E.D. von Meerwall			
MINUIT (Fortran, 2891). MINUIT: a system for function minimization and analysis of the parameter errors and correlations.	ACWH	10 (1975)	343
F. James, M. Roos. Other version: AAVP (§4.9)			
000A CORRECTION 17/02/77 (Fortran). Unpublished correction	ABMR	11 (1976)	211
Other version: ABNH (§4.9)	ACXB	12 (1976)	173
RENYIF, RENYIT, TESKAC (Fortran, 996). Algorithms for the Kac and Renyi tests.	ACXP	13 (1977)	271
J.M.F. Chamayou	AAPA	16 (1978)	113
FURI (Fortran, 632). FURI: a Fortran function writer.	ABNH	18 (1979)	411
A.J. Barnard	AAVD	21 (1980)	119
BELLS (Fortran, 351). A subroutine for approximation by cubic splines in the least squares sense.	ABVR	21 (1980)	271
J. Bok			
UNIFIT4 (Fortran, 906). An all-purpose curve-fitting program for functions of several variables.	AAOB	27 (1982)	229
E.D. von Meerwall. Other version: ABMR (§4.9)	AAOC	27 (1982)	229
LOUHI78 (Fortran, 3227). General purpose unfolding program LOUHI78 with linear and nonlinear regularizations.	AAOK	27 (1982)	415
J.T. Routhi, J.V. Sandberg	ACEG	29 (1983)	131
DECONV (Fortran, 1540). A spline-based method for experimental data deconvolution.	ACEH	29 (1983)	171
I. Beniaminy, M. Deutsch	ACEM	29 (1983)	231
CONTIN (VERSION 2DP) (Fortran, 5822, Manual 164 pages). CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. See also Comput. Phys. Commun. 27 (1982) 213. S.W. Provencher	ACER	29 (1983)	361
CONTIN (VERSION 2SP) (Fortran, 5822, Manual 164 pages). CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. See also Comput. Phys. Commun. 27 (1982) 213. S.W. Provencher	AAVP	31 (1984)	29
ABEL (Fortran, 1615). ABEL: stable, high accuracy program for the inversion of Abel's integral equation.	ACFM	31 (1984)	53
I. Beniaminy, M. Deutsch	AADH	38 (1985)	421
MOSAUT AND MOSINP (Fortran, 5613). A program to analyze series of Mossbauer spectra.	AALI	42 (1986)	127
E. Verbiest	AALM	42 (1986)	249
ERIKA (Fortran, 1626). ERIKA: a program for the decomposition of line spectra.	AALN	42 (1986)	253
M. Rysavy, M. Fiser			
CONCON (Fortran, 4867). CONCON: a code for constrained minimization without derivative computation.	AATU	46 (1987)	149
A. Buckley	AAXW	46 (1987)	401
CHPACK (Fortran, 2246). CHPACK: a package for the manipulation of Chebyshev approximations.	AAXQ	46 (1987)	437
B. D'Aguanno, A. Nobile, E. Roman	ABHA	52 (1989)	223
PDP-MINUIT (Fortran, 3363). A new version of MINUIT program for a PDP11/34A computer system.	ABHB	52 (1989)	241
Sp. Dedousis, M. Chardalias, S. Charalambous. Other version: ACWH (§4.9)	D. Papageorgiou	58 (1990)	119
ORT1 POLYNOMIAL FIT DIFF/INT (Fortran, 1074). Numerical generation and use of orthonormal polynomials I. ORT1 – a one-dimensional package for the solution of fitting, differentiation and integration problems.	ABFP	52 (1989)	427
V. Gadjokov, J. Jordanova			
CENTER (Fortran, 5658). CENTER: a software package for center estimation.	ABHX	54 (1989)	371
S.B. Hooker, J.W. Brown.			
Subroutine required: AADI (§4.14)			
LINRZ (Fortran, 986). Matrix linearization.			
L. Seijo, M. Florez, L. Pueyo			
SMOOTHF (Fortran, 93). Smoothing of data by least squares fitting.			
C. Wooff			
SMOOTHFR (Reduce, 141). Generation of a smoothing function.			
C. Wooff			
POAGS (Fortran, 390). A routine for parameter optimization using an accelerated grid-search method.			
Z. Basrak			
Other version: ABHB (§4.9)			
CNFIT (Fortran, 426). Constrained nonlinear least squares fitting.			
R. Shally			
MCL (Fortran, 9911, Manual 129 pages). MCL: optimization oriented programming language.			
C.S. Chassapis, D.G. Papageorgiou, I.E. Lagaris			
MERLIN-2.0 PROGRAMMABLE (Fortran, 6956, Manual 54 pages). MERLIN-2.0: Enhanced and programmable version.			
D.G. Papageorgiou, C.S. Chassapis, I.E. Lagaris. Subroutine required: ABHA (§4.9).			
Other version: AAXW (§4.9)			
0001 MERLIN-2.1 DOUBLE PRECISION (Fortran, 7502). MERLIN-2.1 Double precision.			
D.G. Papageorgiou, I.E. Lagaris			
POLYFIT (Pascal, 3072). POLYFIT: a package for polynomial fitting.			
S.J. Scitutto			
GFIT (Fortran, 667). GFIT: program for generalized quadratic approximation of functions under constraints.			
V.B. Zlokazov			

Computational methods — Minimization and fitting (see also interpolation, §4.10) (continued)

GSAP (Fortran, 731). GSAP: Fortran code for gamma-spectrum analysis. V. Hnatowicz, V. Ilyushchenko, P. Kozma

ABRT 60 (1990) 111

4.10. Interpolation

CUSPLN (Fortran, 828). A cubic spline interpolation of unequally spaced data points. J. Anderson, R.W.B. Ardill, K.J.M. Moriarty, R.C. Beckwith. Subroutines required: AAUN (§14), AAUN0001	ACYV	16	(1979)	199
JMPDIS (Fortran, 477). An interpolation method for data sets with jump discontinuities. W. Moon	ACYW	16	(1979)	273
BISPLN (Fortran, 749). A bicubic spline interpolation of unequally spaced data. M.A. Christie, K.J.M. Moriarty	ACZG	17	(1979)	357
ANALYT (Fortran, 2500). A guide to analytic extrapolations. Part I: a program for optimal extrapolation to interior points. M. Ciulli, S. Ciulli	AAUT	18	(1979)	215
SPLINESMOOTH (Fortran, 832). Spline interpolation and smoothing of data. R.E. Cutkosky, C. Pomponiu	AAQO	23	(1981)	287
FINT (Fortran, 672). Newton-Everett interpolation of continuous functions. J.A. Hernando	AARS	27	(1982)	73
LSPLIN (Fortran, 1228). An exponential spline interpolation for unequally spaced data points. V. Tornow	AAOW	28	(1982)	61
LNIDIF (Fortran, 728). Routines for numerical interpolation, with first and second order differentiation, having non-uniformly spaced points, out to three dimensions. J. Waite	AAXJ	46	(1987)	323

4.11. Quadratures

KOROBO (Fortran, 417). A numerical calculation of multidimensional integrals. K. Zakrzewska, J. Dudek, W. Nazarewicz	ACXU	14	(1978)	299
QADAPT (Fortran, 1229). Two-dimensional adaptive quadrature over rectangular regions. P.C. Lewellen	AAZA	27	(1982)	167
MDAI (Fortran, 1077). Multidimensional automatic integrator (MDAI) – an efficient routine for automatic integration of functions of many variables. W. Nazarewicz, M. Pindor	ACUI	31	(1984)	1
GISP (Fortran, 842). GISP: Gauss-integration subroutine pack. M. Rysavy	AAPE	32	(1984)	191
GAUSSH (Fortran, 261). Abscissae and weights for the Gauss-Hermite quadrature formula. T. Takemasa	ABBL	48	(1988)	265
VBASES (Fortran, 2474). A multi-dimensional integration package for vector processor. S. Kawabata, T. Kaneko	ABBU	48	(1988)	353
GAUSSLA (Fortran, 414). Abscissae and weights for the Gauss-Laguerre quadrature formula. T. Takemasa	ABFJ	52	(1988)	133
R3DGL (Fortran, 372). Numerical integration over a spherical shell. M. Defranceschi, M. Sarrazin	ABFT	52	(1989)	409

4.12. Other numerical methods

ERRCAL (Fortran, 699). A general purpose Monte-Carlo program. P. Dufour, J. Schlesinger	AAUP	9 (1975)	360
000A CORRECTION 05/08/75 (Fortran). Unpublished correction			
FTRANS (Fortran, 396). On numerical Bessel transformation. B. Sommer, J.G. Zabolitzky	ACZC	16 (1979)	383
FHT (Fortran, 525). A method and a program for the numerical evaluation of the Hilbert transform of a real function. O.E. Taurian	ABVD	20 (1980)	291
RECT (Fortran, 543). Orthogonalization of discrete coordinates. C.W. Davies	AAQW	23 (1981)	427
TETRAHEDRAL MATRIX PRIMITIVES (Fortran, 930). Tetrahedral finite element matrix primitives. P.P. Silvester, F.U. Minhas, Z.J. Csendes	AARB	24 (1981)	173
RATRT, REDUSE (PDP Assembler, Fortran, 1745). Micro/mini computer program for calculating the square root of rationals at arbitrary precision. J. Demsky, M. Schlesinger, R.D. Kent	ACEQ	29 (1983)	237
CRTEST (Fortran, 2063). Complex zeros of analytic functions. L.C. Botten, M.S. Craig, R.C. McPhedran	AAOO	29 (1983)	245
BIRKHOFF (Fortran, 857). A computer program for the Birkhoff series of area preserving maps. G. Servizi, G. Turchetti	ACCD	32 (1984)	201
KUBIK (Fortran, 5692). Automatic three-dimensional finite element mesh generation using the program KUBIK. See also Comput. Phys. Commun. 32 (1984) 267. S. Pissanetzky	AAVO	32 (1984)	245
RECLIB (Fortran, 1999). The recursion method: processing the continued fraction. C.M.M. Nex	ACDL	34 (1984)	101
MODST (Reduce, 803). Program for stability and accuracy analysis of finite difference methods. R. Liska	ACDF	34 (1984)	175
FIREGU (Fortran, 321). A program for solving first kind Fredholm integral equations by means of regularization. H.I.I. te Riele	AARX	36 (1985)	423

4.13 Statistical methods

ERRCAL (Fortran, 699). A general purpose Monte-Carlo program. P. Dufour, J. Schlesinger
000A CORRECTION 05/08/75 (Fortran). Unpublished correction AAUP 9 (1975) 360

Computational methods — Statistical methods (continued)

SRNG (Fortran, 106). Sequential random integer generator. C.T.K. Kuo, T.W. Cadman, R.J. Arsenault	ACIE 12 (1976) 163
MATRIXFORMAT, CLSSCLFORMAT (Fortran, 2563). An inversion of quantum mechanics. E. Lubkin, T. Lubkin	ACYP 16 (1979) 207
SMOOS,SMOSI (Fortran, 237). SMOOS: a program for the filtration of non-stationary statistical series. V.B. Zlokazov	ABVQ 21 (1981) 373
SUBROUTINE PACKAGE SAMPLE (Fortran, 768). Algorithms for random sampling from single-variate distributions. F. Salvat	AAXT 46 (1987) 427
PSEUDORAN (Fortran, 367). A review of pseudorandom number generators. F. James	ABTK 60 (1990) 329
ACARRYPC (Assembler, 736). A random number generator for PC's. G. Marsaglia, B. Narasimhan, A. Zaman	ABTL 60 (1990) 345
4.14. Utility	
CONV (Fortran, 276). Conversion of binary magnetic tapes. J. Goldberg	ABC A 1 (1970) 420
CODNUM (Fortran, 294). A program to change the punching code and to number a deck of cards. F.R. Femenia	ACQU 2 (1971) 168
OLYMPUS (Fortran, 2425). OLYMPUS — a standard control and utility package for initial-value Fortran programs. J.P. Christiansen, K.V. Roberts. Other versions: ABUJ (\$4.14), ABUK (\$4.14)	ABUF 7 (1974) 245
TIMER (Fortran, 545). TIMER — a software instrumentation routine for making timing measurements. M.H. Hughes, A.P.V. Roberts	ABUH 8 (1974) 118
LEDGER (Fortran, 571). OLYMPUS restart facilities. M.H. Hughes, K.V. Roberts	ABUI 8 (1974) 123
OLYMPUS FOR IBM 370/165 (Fortran, 2412). OLYMPUS and preprocessor package for an IBM 370/165. M.H. Hughes, K.V. Roberts, P.D. Roberts. Other versions: ABUF (\$4.14), ABUK (\$4.14)	ABUJ 9 (1975) 51
OLYMPUS FOR CDC 6500 (Fortran, Compass, 2170). OLYMPUS control and utility package for the CDC 6500. M.H. Hughes, K.V. Roberts, G.G. Lister. Other versions: ABUF (\$4.14), ABUJ (\$4.14)	ABUK 10 (1975) 167
TRANAL (Algol, 700). TRANAL: a program for the translation of Symbolic Algol I into Symbolic Algol II. L.G.K. Petracic, M. Petracic, K.V. Roberts	ABUN 11 (1976) 5
FORMAT AND DATA CONVERTER (Fortran, 1304). Converter of FORTRAN format and data statements to standard form. M. Salem	ACWP 11 (1976) 199
STRING REPLACEMENT PROGRAM (Fortran, 283). A portable text editor. C. Day	ACXJ 13 (1977) 101
WORKER (Fortran, MACRO, 4920). WORKER: a program for histogram manipulation. J.E. Bolger, H. Ellinger, C.F. Moore	ABPH 16 (1979) 345
CDC PARTITIONED DATA SETS (Fortran, Compass, 1219). Implementation of the partitioned-data-set concept for CDC computers. J.R. Comfort	ACZQ 19 (1980) 51
EDITOR (Fortran, 917). EDITOR: a program for amending files of card images. M.A. Crees	ACZZ 19 (1980) 139
UPDATE (Fortran, 2712). A Fortran system to maintain a program library. 1. Storage of the program decks in magnetic tape files. V.M. Burke, C. Jackson	AANE 22 (1981) 59
0001 ADAPT FOR FREE FORMAT DATA (Fortran, 110). A Fortran system to maintain a program library, adapt UPDATE to store decks containing free format data. C. Jackson	38 (1985) 113
RETRIEVE (Fortran, 1197). A Fortran system to maintain a program library. 2. Retrieval of program decks from the library files. V.M. Burke, C. Jackson	AANF 22 (1981) 77
0001 ADAPT FOR FREE FORMAT DATA (Fortran, 28). A Fortran system to maintain a program library, adapt RETRIEVE for retrieval of decks containing free format data. C. Jackson	38 (1985) 115
CPSN (Fortran, 186). A Fortran system to maintain a program library. Auxiliary program 1 for RETRIEVE. V.M. Burke, C. Jackson	AANG 22 (1981) 77
CPIN (Fortran, 160). A Fortran system to maintain a program library. Auxiliary program 2 for RETRIEVE. V.M. Burke, C. Jackson	AANH 22 (1981) 77
CREC (Fortran, 345). A Fortran system to maintain a program library. Auxiliary program 3 for RETRIEVE. V.M. Burke, C. Jackson	AANI 22 (1981) 77
FSCRIPT (Fortran, 1720). FSCRIPT: a full portable text formatting program. O.E. Taurian	ABVY 22 (1981) 85
RDLIST AND PREPROCESSOR MAKEDATA (Fortran, 737). RDLIST: a portable NAMELIST facility. A.C. Day	AANJ 22 (1981) 403
INDCAL (PDP Assembler, Fortran, 550). A microcomputer program for the correlating of two ordered lists of numbers. R.D. Kent, M. Schlesinger	AAQR 23 (1981) 301
WORD ADDRESSABLE DATA SET (MACRO, 1457). Design and implementation of a word addressable data set for DEC-10 computers. B.C. Karp, J.R. Comfort	AAQS 23 (1981) 355

Computational methods — Utility (continued)

DEC-10 PARTITIONED DATA SETS (Fortran, MACRO, 1697). Implementation of the partitioned data set concept for DEC-10 computers. B.C. Karp, J.R. Comfort. Subroutine required: AAQS (\$4.14)	AAQT 23 (1981) 365
EQSYSTM (PL/I-FORMAC73, 1986). A flexible program for performing analytic differentiation and substitutions on a system of equations. D.W. Merdes, J. Pliva	AAQX 24 (1981) 113
COMPOS (Fortran, 5496). The OLYMPUS Fortran compositor. M.H. Hughes, K.V. Roberts. Subroutine required: ABUF (\$4.14) or ABUJ (\$4.14) or ABUK (\$4.14)	ACEA 29 (1983) 45
GENESIS (Fortran, 7759). The OLYMPUS Fortran generator. M.H. Hughes, K.V. Roberts. Subroutine required: ABUF (\$4.14) or ABUJ (\$4.14) or ABUK (\$4.14)	ACEB 29 (1983) 59
ABACUS (Fortran, 3742). ABACUS: a natural language for the numerical computation of mathematical formulae. M.L. Luvisetto, E. Ugolini	ACFC 30 (1983) 277
TESTSUB (Fortran, 386). User-friendly routines for tree storage and retrieval of multidimensional arrays. P.B. Visscher	ACMT 31 (1984) 319
MODST (Reduce, 803). Program for stability and accuracy analysis of finite difference methods. R. Liska	ACDF 34 (1984) 175
FORMINT (PL/I-FORMAC, 342). FORMINT: a program for the classification of integrable nonlinear evolution equations. V.P. Gerdt, A.B. Shvachka, A.Yu. Zharkov	ACDJ 34 (1985) 303
COMMS (Reduce, 80). A REDUCE program for evaluating a Lax pair form. M. Ito	ACDE 34 (1985) 325
FORMAL (Fortran, 934). FORMAL: a Fortran memory allocation system. K. Dobes	AABK 36 (1985) 147
FIXSRC (Fortran, 299). FIXSRC: a Fortran preprocessor. J.W. Brown, S.B. Hooker	AADI 38 (1985) 435
FTIDY (Pascal, 4134). FTIDY: a utility program for Fortran 77 programs. K.M.H. Boyd, N.S. Scott	AAFM 39 (1986) 421
CXHULL (Fortran, 669). Computing the convex hull of a set of points. D.C.S. Allison, M.T. Noga	AATI 43 (1987) 381
TRCG (8086/87 Assembly Language, Pascal, 1037). A shift-register sequence random number generator implemented on the microcomputers with 8088/8086 and 8087. Ting-Wai Chiu, Tian-Shin Guu	AAXI 47 (1987) 129
MISHA (Fortran, 2456). MISHA: a system for calculations with arbitrary arithmetic precision. M. Rysavy	AAXU 47 (1987) 351
TOPREC (OPS5, 847). A rule based approach for pattern recognition in planar geometric figures. L. Alvisi, R. Odorico	ABDG 51 (1988) 443
VECTOR33 (Rlisp, Reduce, 1467, Manual 9 pages). VECTOR33: a Reduce program for vector algebra and calculus in orthogonal curvilinear coordinates. D. Harper	ABJC 54 (1989) 295
BBTREE (Fortran, 644). Balanced binary tree code for scientific applications. S.C. Park, J.P. Draayer	ABJR 55 (1989) 189
LEVIN (Maple, 879). MAPLE programs for converting series expansions to rational functions using the Levin transformation. Automatic generation of Fortran functions for numerical applications. J. Grotendorst	ABLG 55 (1989) 325
BH (Maple, 1163). Approximating functions by means of symbolic computation and a general extrapolation method. J. Grotendorst	ABRN 59 (1990) 289
MP (Fortran, 1653). MP: a multiple precision package. O. Portillo	ABRJ 59 (1990) 345
CYLSPHER (Fortran, 306). Evaluation of the volume of intersection of a sphere with a cylinder by elliptic integrals. F. Lamarche, C. Leroy	ABRH 59 (1990) 359

5. Computer algebra

CLEBSCH-GORDAN EXPLICIT FORMULAS (Formac, 185). Explicit formulas for Clebsch-Gordan coefficients. G. Rudnicki-Bujnowski	ACWL 10 (1975) 245
EQSYSTM (PL/I-FORMAC73, 1986). A flexible program for performing analytic differentiation and substitutions on a system of equations. D.W. Merdes, J. Pliva	AAQX 24 (1981) 113
LIE0, LIE1, LIE2, LIE3, LIE4 (LISP, 246). A REDUCE package for determining Lie symmetries of ordinary and partial differential equations. F. Schwarz	AAZB 27 (1982) 179
MODST (Reduce, 803). Program for stability and accuracy analysis of finite difference methods. R. Liska	ACDF 34 (1984) 175
FORMINT (PL/I-FORMAC, 342). FORMINT: a program for the classification of integrable nonlinear evolution equations. V.P. Gerdt, A.B. Shvachka, A.Yu. Zharkov	ACDJ 34 (1985) 303
COMMS (Reduce, 80). A REDUCE program for evaluating a Lax pair form. M. Ito	ACDE 34 (1985) 325
LIE (Reduce, 132). A REDUCE program for determining point and contact lie symmetries of differential equations. V.P. Eliseev, R.N. Fedorova, V.V. Korniyak	AABS 36 (1985) 383
DRANK, CONSD, CONSD2 (Reduce, Rlisp, 581). A REDUCE program for finding conserved densities of partial differential equations with uniform rank. M. Ito, F. Kako	AADG 38 (1985) 415
TAVI (Reduce, 170). A REDUCE program for the calculation of geometrical characteristics of compactified multidimensional Riemannian space. A.P. Demichev, A.Ya. Rodionov	AADJ 38 (1985) 441

Computer algebra (*continued*)

POWER SERIES BY REDUCE (Reduce, 280). REDUCE procedures for the manipulation of generalized power series. E. Feldmar, K.S. Kolbig	AAFE 39 (1986) 267
DISSYS (RLISP, 931). A REDUCE package for determining first integrals of autonomous systems of ordinary differential equations. F. Schwarz	AAFF 39 (1986) 285
SMOOTH'R (Reduce, 141). Generation of a smoothing function. C. Wooff	AALN 42 (1986) 253
DRANK, DRANK2, SYM, SYM2, SYMS (Reduce, Rlisp, 913). A REDUCE program for finding symmetries of nonlinear evolution equations with uniform rank. M. Ito	AALS 42 (1986) 351
ODEPAINLEVE (REX MACSYMA, 305). ODEPAINLEVE: a MACSYMA package for Painleve analysis of ordinary differential equations. D.W. Rand, P. Winternitz	AALT 42 (1986) 359
TPR (Reduce, 131). Tests of resonances in the Painleve analysis. L. Hlavaty	AATA 42 (1986) 427
SPLIT (Pascal, 4169). PASCAL programs for identification of lie algebras, part II: SPLIT, a program to decompose parameter-free and parameter-dependent lie algebras into direct sums. D.W. Rand, P. Winternitz, H. Zassenhaus. Subroutine required: AALB (\$4.2)	AAXM 46 (1987) 297
LEVI (Pascal, 1163). PASCAL programs for identification of lie algebras, part III: Levi decomposition and canonical basis. D.W. Rand. Subroutines required: AALB (\$4.2), AAXM (\$5)	AAXN 46 (1987) 311
CANONIK (Pascal, 1082). PASCAL programs for identification of lie algebras, part III: Levi decomposition and canonical basis. D.W. Rand. Subroutines required: AALB (\$4.2), AAXM (\$5)	AAXO 46 (1987) 311
ORTHOVEC (Reduce, 440). ORTHOVEC: a REDUCE program for 3-D vector analysis in orthogonal curvilinear coordinates. J.W. Eastwood	AAXY 47 (1987) 139
R12 INTERACTION MATRIX ELEMENTS (Reduce, 595). A Reduce package for exact Coulomb interaction matrix elements. N. Bogdanova, H. Hogreve	ABBN 48 (1988) 319
COLOR (Reduce, 469). Program COLOR for computing the group-theoretic weight of Feynman diagrams in non-Abelian gauge theories. A.P. Kryukov, A.Ya. Rodionov	AAXC 48 (1988) 327
LERG-I (Reduce, 1251). Algebraic reduction of one-loop Feynman diagrams to scalar integrals. R.G. Stuart. Other version: ABLU (\$5)	ABBX 48 (1989) 367
DOP (Reduce, RLISP, 1045). A REDUCE program for Hirota's bilinear operator and Wronskian operations. M. Ito	ABDE 50 (1988) 321
PHISYM (Reduce, 261). An algebraic program for the states associated with the U(5) include O(5) include O(3) chain of groups. C. Yannouleas, J.M. Pacheco	ABFN 52 (1988) 85
LIENARD (Maple, 352). Resolution of many particle electrodynamics by symbolic manipulation. T.C. Scott, R.A. Moore, M.B. Monagan	ABFX 52 (1989) 261
VSPLOD (COMMON LISP, 1700). Symbolic lie algebras manipulations using COMMON LISP. R. Cecchini, M. Tarlini	ABFW 52 (1989) 283
VECTOR33 (Rlisp, Reduce, 1467, Manual 9 pages). VECTOR33: a Reduce program for vector algebra and calculus in orthogonal curvilinear coordinates. D. Harper	ABJC 54 (1989) 295
PHIMANIP (Reduce, 665). Algebraic manipulation of the states associated with the U(5) include O(5) include O(3) chain of groups: orthonormalization and matrix elements. C. Yannouleas, J.M. Pacheco. Subroutine required: ABFN (\$5)	ABJA 54 (1989) 315
EGRASS (Fortran, 54594). epicGRASS: symbolic calculations with anticommuting variables. U. Hartmann, E.D. Davis	ABHY 54 (1989) 353
SPROC (Fortran, 6626). A preprocessor for Fortran source code produced by REDUCE. T. Kaneko, S. Kawabata	ABLB 55 (1989) 141
LOOPS (Reduce, 663). LOOPS: procedures for multiloop calculations in quantum field theory for system REDUCE. L.R. Surguladze, F.V. Tkachov	ABJO 55 (1989) 205
LEVIN (Maple, 879). MAPLE programs for converting series expansions to rational functions using the Levin transformation. Automatic generation of Fortran functions for numerical applications. J. Grotendorst	ABLG 55 (1989) 325
MINCER (SCHOONSCHIP, 3707). MINCER: multiloop calculations in quantum field theory for system SCHOONSCHIP. S.G. Gorishny, S.A. Larin, L.R. Surguladze, F.V. Tkachov	ABJQ 55 (1989) 381
FIVE PARTON CROSS SECTION (Reduce, Fortran, 2656). Cross section for five-parton production in e+e- annihilation. N.K. Falck, D. Graudenz, G. Kramer	ABLH 56 (1989) 181
LERG-I (Reduce, 2595). Algebraic reduction of one-loop Feynman diagrams to scalar integrals II. R.G. Stuart, A. Gongora-T. Other version: ABBX (\$5)	ABLU 56 (1990) 337
SPINORP (Pascal, 3441). Calculation of QED graphs with spinor technique. H. Perlt, J. Ranft, J. Heinrich	ABLN 56 (1990) 385

Computer algebra (continued)

SUSYCAL (Pascal, 3463). SUSYCAL: symbolic computations in supersymmetric theories. T. Kreuzberger,
W. Kummer, M. Schweda
BH (Maple, 1163). Approximating functions by means of symbolic computation and a general extrapolation
method. J. Grotendorst
GRAAL (Common Lisp, 1946). Symbolic superalgebra manipulations using Common Lisp. R. Cecchini,
M. Tarlini

ABLW	58 (1990)	89
ABRN	59 (1990)	289
ABRY	60 (1990)	265

6. Computer languages, hardware and software**6.1. Hardware**

No programs classified under this heading yet.

6.2. Languages

MCL (Fortran, 9911, Manual 129 pages). MCL: optimization oriented programming language.
C.S. Chassapis, D.G. Papageorgiou, I.E. Lagaris

ABHA	52 (1989)	223
------	-----------	-----

6.3. Networks

No programs classified under this heading yet.

6.4. Neural networks

No programs classified under this heading yet.

6.5. Software

PRACAH (OCCAM, 435). The parallel computation of Racah coefficients using transputers. N.S. Scott,
P. Milligan, H.W.C. Riley
FORTNET V2.2 (Occam, Fortran, 1572). Parallel Fortran in scientific computing: a new occam harness
called Fortnet. R.J. Allan, L. Heck, S. Zurek

AAXE	46 (1987)	83
ABRK	59 (1990)	325

7. Condensed matter and surface science**7.1. Defects**

GRAINS (Fortran, 1826). Computer simulation of extended defects in metals. R.E. Dahl Jr., J.R. Beeler Jr.,
R.D. Bourquin
NONLIN (Fortran, 494). Nonlinear computation of anisotropic elastic fields about straight edge dislocations.
P. Petrasch
ANISCO (Algol, 1278). Computation of the anisotropic cubic elastic Green's tensor function and the elastic
energy coefficients of point defects in crystals. R.K. Leutz, R. Bauer
SROCASE (Fortran, 555). A program for the study of short range order of binary alloys. G.L. Bleris,
Ch. Polatoglou
RANDOM VACANCY MIGRATION (Fortran, 718). Computer simulation of correlated self-diffusion via
randomly migrating vacancies in cubic crystals. D. Wolf, K. Differt
0001 CORRELATION FACTOR AND NMR (Fortran, 169). Determination of correlation factor and
NMR diffusion parameters from the computer-simulated random motion of vacancies in cubic crystals.
D. Wolf, K. Differt, H. Mehrer
CLUSTER 78 (Fortran, 4180). Calculation of the nucleation and growth of defect clusters. P.B. Kruger,
R.M. Mayer
DIFSEG (Fortran, 911). A program to solve a solute diffusion problem with segregation at a moving
interface. M. Bakker, D. Hoonhout
HEXALAT (Fortran, 445). Two subroutines for calculating lattice sums and the distortion field due to a
point force in hexagonal systems. W. Maysenholder
POINT DEFECTS IN CRYSTALS (Fortran, 4343). Shell model calculations of point defect formation
energies in cubic ionic crystals. D.D. Richardson
GB1, GB2, GB3 (Fortran, 1344). A programming package for the study of high angle grain boundaries by
using TEM. G.L. Bleris, Th. Karakostas, P. Delavignette

ACQY	2 (1971)	301
ACKK	11 (1976)	279
ACKL	11 (1976)	339
ACKN	13 (1977)	49
ACKO	13 (1977)	167
	13 (1977)	183
ACUE	18 (1979)	385
ABVZ	22 (1981)	439
ACKQ	24 (1981)	89
AAOL	28 (1982)	75
AAOS	28 (1983)	287

Condensed matter and surface science — Defects (continued)

GFCUBE (Fortran, 353). Program to calculate elastic Green's functions, displacement fields and interaction energies in cubic materials. J.W. Deutz, H.R. Schober	ACMS 30 (1983) 87
VIDSIM VER. 2.11 (C, 14211). VIDSIM: a Monte Carlo program for the simulation of atomic diffusion in diamond and zinc-blende structures. U. Schmid, N.C. Myers, J.A. Van Vechten	ABRF 58 (1990) 329
7.2. Electron spectroscopies	
LEED (Fortran, 1087). Program for calculating LEED intensities using band structure-matching formalism. V. Hoffstein	ACMH 2 (1971) 341
ICMLEED-MATRIX INVERSION (Fortran, 1909). Program for calculating LEED intensities based on the inelastic collision model: I. Matrix inversion method. V. Hoffstein	ACMK 7 (1974) 50
Other version: ACKG (§7.2)	ACKE 7 (1974) 369
WORK (Fortran, 238). Program for calculating work functions from photoelectric data. I.F. Kerr, C.H.B. Mee	ACKF 7 (1974) 419
LEED BEAM-SYMMETRIZED (Fortran, 1989). Symmetrization and calculation of LEED intensity patterns. J. Rundgren, A. Salwen. Other version: ACKE (§7.2)	ACKG 9 (1975) 312
000A CORRECTION 12/09/75 (Fortran). Unpublished correction	
PEOVERI (Fortran, 4743). Calculation of photoemission spectra for surfaces of solids. J.F.L. Hopkinson, J.B. Pendry, D.J. Titterington	ACZY 19 (1980) 69
000A CORRECTION 31/01/83 (Fortran)	29 (1983) 417
ELECTRONS REFLECTED BY SURFACE (Fortran, 1623). A program for calculation of the reflection and transmission of electrons through a surface potential barrier. G. Malmstrom, J. Rundgren	ACKR 19 (1980) 263
CAVLEED (Fortran, 4875). Calculation of LEED diffracted intensities. D.J. Titterington, C.G. Kinniburgh	ABVY 20 (1980) 237
000A CORRECTION 09/01/81 (Fortran)	22 (1981) 103
Other versions: ABDF (§7.2), ABRS (§7.2)	ACUF 21 (1980) 91
Other version: AARR (§7.2)	AARR 25 (1982) 193
EELSOV (Fortran, 4263). Calculation of the impact scattering contribution to electron energy loss spectra. G.C. Aers, J.B. Pendry	AARU 25 (1982) 389
DLEED (Fortran, 2608). Calculation of elastic diffuse LEED intensities from disordered adsorbates. D.K. Saldin, J.B. Pendry	AALY 42 (1986) 399
TAUMOL (Fortran, 2454). Calculation of the renormalised electron scattering matrix of a molecule adsorbed on a crystal surface. D.K. Saldin, J.B. Pendry	AAXA 46 (1987) 129
Other versions: ACUF (§7.2), ABRS (§7.2)	ABDF 51 (1988) 451
TLEED1 (Fortran, 4522). Tensor LEED I: a technique for high speed surface structure determination by low energy electron diffraction. TLEED1. P.J. Rous, J.B. Pendry	ABHN 54 (1989) 137
TLEED2 (Fortran, 3882). Tensor LEED II: a technique for high speed surface structure determination by low energy electron diffraction. TLEED2. P.J. Rous, J.B. Pendry. Subroutine required (for data): ABHN (§7.2)	ABHO 54 (1989) 157
MIDS (Fortran, 632). Electron diffraction simulation on Micro-VAX II computers with the aid of an array processor. G.Y. Fan	ABLK 59 (1990) 429
EXAFS (13,23,33,43,53,63) (Fortran, 3101). Fourier analysis of EXAFS and XANES data: a self-contained Fortran program-package: the third version. N. Aldea, E. Indrea. Other versions: ACUF (§7.2), ABDF (§7.2)	ABRS 60 (1990) 145
HREELS of multilayers (Fortran, 1553). Computation of the surface electron-energy-loss spectrum in specular geometry for an arbitrary plane-stratified medium. Ph. Lambin, J.-P. Vigneron, A.A. Lucas	ABTI 60 (1990) 351
7.3. Electronic structure	
DATA FOR ACMD, ACME, ACMF, ACMJ (Fortran, 740). Luehrmann tables. V. Hoffstein	AAB* 2 (1971) 11
SYMMETRY AND BAND STRUCTURE 1 (Fortran, 397). Selection of reciprocal lattice vectors. V. Hoffstein, O. Moller	ACMD 2 (1971) 11
000A CORRECTION 17/12/74 (Fortran). Unpublished correction	
SYMMETRY AND BAND STRUCTURE 2 (Fortran, 528). Storage and retrieval of group theoretical information. V. Hoffstein, O. Moller	ACME 2 (1971) 17
SYMMETRY AND BAND STRUCTURE 3 (Fortran, 489). Construction of symmetrized Hamiltonian matrix. V. Hoffstein, O. Moller. Subroutine required: ACME (§7.3)	ACMF 2 (1971) 26
CRYSTAL FIELD AND G VALUE (Fortran, 1588). Lanthanide crystal field fitting routine. G.E. Stedman	ACAB 2 (1971) 191

Condensed matter and surface science — Electronic structure (continued)

SYMMETRIZED APW (Fortran, 2130). Symmetrized program for calculating energy bands and electronic structure of solids. V. Hoffstein, D.K. Ray, M. Belakhovsky	ACMJ	4 (1972)	361
0001 SYMMETRY AND BANDSTRUCTURE (Fortran, 39). Symmetry and bandstructure. J.Th.M. de Hosson		10 (1975)	67
CRYSTAL POTENTIALS (Fortran, 2012). Calculation of crystal potentials. D.A. Papaconstantopoulos, W.R. Slaughter	ACID	7 (1974)	207
000A CORRECTION 23/02/77 (Fortran)		13 (1977)	225
BNDPKG (Fortran, 8656). BNDPKG: a package of programs for the calculation of electronic energy bands by the LCGO method. C.S. Wang, J. Callaway	ACXZ	14 (1978)	327
GRINT (Fortran, 83). Gilat-Raubenheimer method for k-space integration. A. Simunek	AAPC	20 (1980)	349
AVA (Fortran, 310). A program for calculating the structure factors of liquid metals and binary liquid alloys. Md.M. Islam	ACKT	23 (1981)	43
EBCLP (Fortran, 358). Band structure calculations of cubic semiconductors on the basis of Lowdin's perturbation technique. D.R. Masovic, F. Vukajlovic	AARC	24 (1981)	181
SPINORB (Fortran, 1350). Band structure calculations of cubic metals, elementary semiconductors and semiconductor compounds with spin-orbit interaction. D.R. Masovic, F.R. Vukajlovic	ACKV	30 (1983)	207
BAPAR (Fortran, 480). Parametrization of the band structure of F.C.C. crystals. C. Salustri	ACKU	30 (1983)	271
RECLIB (Fortran, 1999). The recursion method: processing the continued fraction. C.M.M. Nex	ACDL	34 (1984)	101
MAGFAC (Fortran, 2503). A program to calculate magnetic form factors for transition metal systems. L.A. Barnes, G.S. Chandler, B.N. Figgis, D.C. Khan	AABR	36 (1985)	373
Other versions: AAXZ (§7.3), ABFF (§7.3)	AADF	38 (1985)	403
SURFACE GREEN'S FUNCTION VER. 2 (Fortran, 3908). A new version of the program for the calculation of the Green's function for a crystal surface or interface. F. Maca, M. Scheffler. Other versions: AADF (§7.3), ABFF (§7.3)	AAXZ	47 (1987)	349
RUMPGF (Fortran, 4743). Surface Green's function for a rumpled crystal surface. F. Maca, M. Scheffler. Other versions: AADF (§7.3), AAXZ (§7.3)	ABFF	51 (1988)	381
WIEN (Fortran, 7828). Full-potential, linearized augmented plane wave programs for crystalline systems. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey	ABRE	59 (1990)	399
LKKR (Fortran, 9338). Layer Korringa-Kohn-Rostoker electronic structure code for bulk and interface geometries. J.M. MacLaren, S. Crampin, D.D. Vvedensky, R.C. Albers, J.B. Pendry	ABRZ	60 (1990)	365
7.4. Experimental analysis			
Other versions: AAGX (§7.4), AAGZ (§7.4), AAHI (§7.4), AANN (§7.4), ACKX (§7.4)	AAGK	3 (1972)	240
Other versions: AAGZ (§7.4), AAHI (§7.4), AANN (§7.4), ACKX (§7.4)	AAGX	7 (1974)	401
ASYMMETRY PARAMETER IN NQR (Fortran, 1355). Exact computation of the Zeeman effect on nuclear quadrupole resonance profiles for powders (spin I = 3/2). Determination of the asymmetry parameter. J. Darville, A. Gerard	ACKH	9 (1975)	173
EPR SPIN HAMILTONIAN PARAMETERS (Fortran, 1147). Program for optimal computation of EPR spin-Hamiltonian parameters for ions in tetragonal symmetry. A.S. Stefanescu	ACKI	11 (1976)	257
SROCASE (Fortran, 555). A program for the study of short range order of binary alloys. G.L. Bleris, Ch. Polatoglou	ACKN	13 (1977)	49
HEQSIM2 (Fortran, 988). A Fortran program to simulate quadrupole-distorted NMR powder patterns. E.D. von Meerwall	ABMW	13 (1977)	107
KRONIG (Fortran, 101). Numerical solution of Kramers-Kronig transforms by a Fourier method. S.J. Collocott	ACMN	13 (1977)	203
0001 TRAPZAL (Fortran, 15). Adaptation: numerical solution of the Kramers-Kronig transforms by trapezoidal summation as compared to a Fourier method. S.J. Collocott, G.J. Troup		17 (1979)	393
DBLCON (Fortran, 1336). DBLCON: a version of POSITRONFIT with non-Gaussian prompt for analysing positron lifetime spectra. W.K. Warburton. Other versions: AAGK (§7.4), AAGX (§7.4), AAHI (§7.4), AANN (§7.4), ACKX (§7.4)	AAGZ	13 (1977)	371
INTHIST2 (Fortran, 729). A Fortran program to collect histograms over microscopic scalar interactions. E.D. von Meerwall	ABMX	13 (1977)	421
INTERACTIVE POSITRONFIT (Fortran, 1367). INTERACTIVE POSITRONFIT: a new version of a program for analysing positron lifetime spectra. C.J. Virtue, R.J. Douglas, B.T.A. McKee. Other versions: AAGK (§7.4), AAGX (§7.4), AAGZ (§7.4), AANN (§7.4), ACKX (§7.4)	AAHI	15 (1978)	97

Condensed matter and surface science — Experimental analysis (continued)

SUSCEPT2 (Fortran, 747). A Fortran program for routine analysis of magnetic susceptibility data. E.D. von Meerwall	ABNA 15 (1978) 237
FYPAR (Fortran, 504). II. A computer program for calculation of parameters necessary for the computation of reliable pair distribution functions of non-crystalline materials from limited diffraction data. F.Y. Hansen. Subroutines required: ACYR (§7.6), ACYT (§7.4)	ACYS 15 (1978) 417
PAR (Fortran, 134). III. A computer program for calculation of reliable pair distribution functions of non-crystalline materials from limited diffraction data. F.Y. Hansen. Subroutines required: ACYR (§7.6), ACYS (§7.4)	ACYT 15 (1978) 431
PATFIT (Fortran, 5599). Program system for analysing positron lifetime spectra and angular correlation curves. P. Kirkegaard, M. Eldrup, O.E. Mogensen, N.J. Pedersen. Other versions: AAGK (§7.4), AAGX (§7.4), AAGZ (§7.4), AAHI (§7.4), ACKX (§7.4)	AANN 23 (1981) 307
GB1, GB2, GB3 (Fortran, 1344). A programming package for the study of high angle grain boundaries by using TEM. G.L. Bleris, Th. Karakostas, P. Delavignette	AAOS 28 (1983) 287
PFPOSFIT (Fortran, 3304). PFPOSFIT: a new version of a program for analysing positron lifetime spectra with non-Gaussian prompt curve. W. Puff. Other versions: AAGK (§7.4), AAGX (§7.4), AAGZ (§7.4), AAHI (§7.4), AANN (§7.4)	ACKX 30 (1983) 359
T12FIT (Fortran, 1120). A Fortran program for reduction of NMR relaxation data. E.D. von Meerwall, D. Thompson	ACFT 31 (1984) 385
ATSCAT (Fortran, 2800). Calculation of low energy atomic diffraction (LEAD) intensities. R.J. Blake	ACCX 33 (1984) 425
XFIT (Fortran, 1688). XFIT: a package for simulating and fitting X-ray powder diffraction patterns. A. Martorana, R. Gerbasi, A. Marigo, R. Zannetti. Subroutines required: ABCH (§4.9), ACWH (§4.9)	ACKY 34 (1984) 145
DIANA88 (Fortran, 5061, Manual 17 pages). Quasi-elastic X-ray scattering divergence analysis calculation. J.S. Reid, G.J. Milne	ABJK 55 (1989) 91

7.5. Mössbauer spectra

See §17.3, Nuclear physics, Mössbauer spectra

7.6. Neutron scattering

Other version: AAFR (§7.6)	ACIC 7 (1974) 289
RESTOR 1 (Fortran, 246). Computation of phonon spectrum from the cold neutron incoherent inelastic scattering by a polycrystal. T.D. Sokolovskij, L.A. Rogoschenko	ACXT 13 (1977) 381
FYCOOR (Fortran, 1694). I. A computer program for generation of a complete set of coordinates and force matrices for normal mode calculations of crystals and molecules. F.Y. Hansen. Subroutines required: ACXR (§7.6), ACXS (§7.6)	ACXQ 14 (1978) 193
000A CORRECTION 28/11/77 (Fortran). Unpublished correction	ACXR 14 (1978) 219
FYFRE (Fortran, 1363). II. A program for computing normal modes of molecules, crystal phonon dispersion relations and structure factors for neutron inelastic scattering. F.Y. Hansen. Subroutines required: ACXQ (§7.6), ACXS (§7.6)	17 (1979) 423
000A CORRECTION 22/12/78 (Fortran)	ACXS 14 (1978) 245
FYADJ (Fortran, 1219). III. A force constant adjuster program to obtain a least squares fit to observed frequencies of molecules and crystals. F.Y. Hansen. Subroutines required: ACXQ (§7.6), ACXR (§7.6)	ACYS 15 (1978) 401
000A CORRECTION 28/11/77 (Fortran). Unpublished correction	ACYS 15 (1978) 417
FYINT (Fortran, 1106). I. A computer program for normalization and instrument correction of neutron diffraction data on non-crystalline materials to obtain the static structure factor. F.Y. Hansen. Subroutines required: ACYS (§7.6), ACYT (§7.6)	ACYT 15 (1978) 431
FYPAR (Fortran, 504). II. A computer program for calculation of parameters necessary for the computation of reliable pair distribution functions of non-crystalline materials from limited diffraction data. F.Y. Hansen. Subroutines required: ACYR (§7.6), ACYT (§7.6)	ACIC 40 (1986) 337
PAR (Fortran, 134). III. A computer program for calculation of reliable pair distribution functions of non-crystalline materials from limited diffraction data. F.Y. Hansen. Subroutines required: ACYR (§7.6), ACYS (§7.6)	AAFR 40 (1986) 337
MSCAT85 (Fortran, 7604). Improved Monte Carlo calculation of multiple scattering effects in thermal neutron scattering experiments. J.R.D. Copley, P. Verkerk, A.A. van Well, H. Fredrikze. Other version: ACIC (§7.6)	

Condensed matter and surface science (continued)**7.7. Other condensed matter inc. simulation of liquids and solids**

GINZBURG-LANDAU-FLUXOIDS (Algol, 235). Ginzburg-Landau fluxoids. See erratum Comput. Phys.

Commun. 1 (1970) 291. U. Kammerer

SYMMETRIC NEEL WALLS (Algol, 424). Symmetric Neel walls in thin magnetic films. A. Hubert
0001 INTERNAL IMPROVEMENTS (Algol, 78). Symmetric Neel walls in thin magnetic films. An
adaptation to increase the range of convergence. A. HubertTSP (Fortran, 497). Simulation of thermally stimulated dipolar processes in dielectrics. A. Linkens,
J. Vanderschueren, P. Parot, J. Gasiot

000A CORRECTION 22/12/77 (Fortran). Unpublished correction

USSI (Fortran, 792). Simulation of ultrasonic degradation of macromolecules in solution. A. Linkens,
J. Niezette, J. VanderschuerenMDATOM (Fortran, 1116). Programs for the molecular dynamics simulation of liquids: I. Spherical
molecules with short-ranged interactions. D. FinchamMDIONS (Fortran, 1826). Programs for the dynamic simulation of liquids and solids. II. MDIONS: rigid
ions using the Ewald sum. N. Anastasiou, D. Fincham. Other version: AARN (§7.7)

000A CORRECTION 09/09/82 (Fortran)

MDIONS (VECTORISED) (Fortran, 1530). Programs for the dynamic simulation of liquids and solids.
II. MDIONS: rigid ions using the Ewald sum (vectorised version on the CRAY-1). D. Fincham. Other
version: AARM (§7.7)

000A CORRECTION 09/09/82 (Fortran)

RECLIB (Fortran, 1999). The recursion method: processing the continued fraction. C.M.M. Nex

DUMBELL (Fortran, 983). DUMBELL: a program to calculate the structure and thermodynamics of a
classical fluid of hard, homonuclear diatomic molecules. F. LadoMICROIS (Fortran, 442). Fortran code for the three-dimensional Ising model. M. Creutz, K.J.M. Moriarty.
Other version: AALU (§7.7)ISING (Fortran, 349). Vectorization of the three-dimensional Ising model program on the CDC CYBER
205. M. Creutz, K.J.M. Moriarty, M. O'Brien. Other version: AADW (§7.7)MCMOLDYN/H2O (Fortran, 4625). Computer simulation package for liquids and solids with polar
interactions. I. MCMOLDYN/H2O: aqueous systems. A. LaaksonenVX (Fortran, 11325). A vector code for the numerical simulation of cosmic strings and flux vortices in
superconductors on the ETA-10. K.J.M. Moriarty, E. Myers, C. RebbiMDPYRS1 (Fortran, 4021). Molecular dynamics simulation program of order N for condensed matter. I.
MDPYRS1: scalar pyramid, short-range interactions. Z.A. Rycerz, P.W.M. Jacobs

ACKA 1 (1969) 10

ACKB 1 (1970) 343

1 (1970) 468

ACKP 13 (1977) 411

ACYN 15 (1978) 375

ABVO 21 (1980) 247

AARM 25 (1982) 159
28 (1983) 323

AARN 25 (1982) 177

28 (1983) 323

ACDL 34 (1984) 101

AADS 39 (1986) 133

AADW 39 (1986) 173

AALU 42 (1986) 191

AALR 42 (1986) 271

ABJD 54 (1989) 273

ABRW 60 (1990) 53

7.8. Structure and lattice dynamicsNA CL MADELUNG FIELD (Fortran, 267). The Madelung potential and electric field intensity for a
sodium chloride and for a caesium chloride lattice. U. Opik, R.F. WoodCS CL MADELUNG FIELD (Fortran, 299). The Madelung potential and electric field intensity for a
sodium chloride and for a caesium chloride lattice. U. Opik, R.F. Wood

Other version: ACMM (§7.8)

GROUP THEORY LATTICE DYNAMICS 2 (Fortran, 2334). Improved version of group-theoretical
analysis of lattice dynamics. J.L. Warren, T.G. Worlton. Other version: ACMI (§7.8)SPACE GROUP REPRESENTATIONS (Fortran, 2128). Numerical calculations of the irreducible
representations of space groups. N. NetoNORMAL COORDINATE ANALYSIS (Fortran, 1325). Normal coordinate analysis of crystals. J.Th.M. de
Hosson

KCOUL1 (Algol, 936). Coulomb coefficients for complex ionic crystals. D.C. Sutherland, W.G. Ferrier

Other version: ACMU (§7.8)

RESTOR 1 (Fortran, 246). Computation of phonon spectrum from the cold neutron incoherent inelastic
scattering by a polycrystal. T.D. Sokolovskij, L.A. RogoschenkoFYCOOR (Fortran, 1694). I. A computer program for generation of a complete set of coordinates and force
matrices for normal mode calculations of crystals and molecules. F.Y. Hansen. Subroutines required:

ACXR (§7.8), ACXS (§7.8)

000A CORRECTION 28/11/77 (Fortran). Unpublished correction

ACMA 1 (1970) 281

ACMB 1 (1970) 282

ACMI 3 (1972) 88

ACMM 8 (1974) 71

ACUA 9 (1975) 231

ACKJ 10 (1975) 104

ACWY 12 (1976) 179

ACMO 13 (1977) 341

ACXT 13 (1977) 381

ACXQ 14 (1978) 193

Condensed matter and surface science — Structure and lattice dynamics (continued)

FYFRE (Fortran, 1363). II. A program for computing normal modes of molecules, crystal phonon dispersion relations and structure factors for neutron inelastic scattering. F.Y. Hansen. Subroutines required:	
ACXQ (§7.8), ACXS (§7.8)	ACXR 14 (1978) 219
000A CORRECTION 22/12/78 (Fortran)	17 (1979) 423
FYADJ (Fortran, 1219). III. A force constant adjuster program to obtain a least squares fit to observed frequencies of molecules and crystals. F.Y. Hansen. Subroutines required: ACXQ (§7.8), ACXR (§7.8)	ACXS 14 (1978) 245
000A CORRECTION 28/11/77 (Fortran). Unpublished correction	
LATTICE DYNAMICS OF ZINCLENDE (Fortran, 1157). Lattice dynamics of zincblende structure compounds using deformation-dipole model and rigid ion model. K. Kunc, O.H. Nielsen	ACMP 16 (1979) 181
LATTICE DYNAMICS - SHELL MODEL (Fortran, 601). Lattice dynamics of zincblende structure compounds II. Shell model. K. Kunc, O.H. Nielsen. Subroutine required: ACMP (§7.8)	ACUC 17 (1979) 413
ADIABATIC BOND CHARGE MODEL (Fortran, 1437). Lattice dynamics of group IV semiconductors using an adiabatic bond charge model. O.H. Nielsen, W. Weber	ACUD 18 (1979) 101
LATEN (Fortran, 3129). LATEN: a complete lattice energy program. H.D.B. Jenkins, K.F. Pratt. Other version: ACMO (§7.8)	ACMU 21 (1980) 257
HEXALAT (Fortran, 445). Two subroutines for calculating lattice sums and the distortion field due to a point force in hexagonal systems. W. Maysenholder	ACKQ 24 (1981) 89
LATTICE DYNAMICS OF ZINCLENDE (Fortran, 269). Lattice dynamics of zincblende structure compounds using a deformable ion model. O.H. Nielsen, S.S. Jaswal. Subroutine required: ACMP (§7.8)	ACUG 25 (1982) 269
ACOUSTIC PHONON ANISOTROPY (Fortran, 1073). Acoustic phonon anisotropy: phonon focusing. G.A. Northrop	AAOJ 28 (1982) 103
NPHZB84 (Fortran, 2824). Multiphonon X-ray scattering. J.S. Reid	AADC 38 (1985) 43
SPHZB86 (Fortran, 1464). Single-phonon X-ray scattering. J.S. Reid	AALZ 42 (1986) 417
CAROLINA (Fortran, 436). Low temperature Gruneisen parameter of cubic ionic crystals. A. Batana, M.C. Monard, M.R. Soriano	AATG 43 (1987) 399
KAPPA,KP (Fortran, 1159). High temperature expansion via Schwinger-Dyson equations: the planar rotator model on a triangular lattice. P. Butera, R. Cabassi, M. Comi, G. Marchesini	AATS 44 (1987) 143
DWB87 (Fortran, 2880). Harmonic Debye-Waller factors for cubic materials. J.S. Reid	AATZ 46 (1987) 141

7.9. Transport properties

MUKUL (Fortran, 118). A routine for calculating the form-factor and the electrical resistivity of liquid N.F.E. metals. Md.M. Islam	ACKC 5 (1973) 299
ELECTROTRANSPORT SIMULATION (Fortran, 186). Simulation of chemical profiles during electrotransport. D.L. Olson, J.L. Blough, T.S. Lakshmanan, D.A. Rigney	ACIA 5 (1973) 430
AVA (Fortran, 310). A program for calculating the structure factors of liquid metals and binary liquid alloys. Md.M. Islam	ACKT 23 (1981) 43

7.10. Collisions in solids

TRIDYN (VERSION 3.1) (Fortran, 1661). TRIDYN: binary collision simulation of atomic collisions and dynamic composition changes in solids. W. Moller, W. Eckstein, J.P. Biersack	ABFH 51 (1988) 355
---	--------------------

8. Crystallography

STLPLT (Fortran, 913). STLPLT-CALCOMP plot of crystallographic projections of Laue photographs. M. Canut-Amoros	AASA 1 (1970) 293
FIREFLY II (Fortran, 2669). A program for the calculation of X-ray reflection intensities. I.F. Ferguson, J.E. Kirwan. Other version: AAQC (§8)	AAQB 5 (1973) 328
FIREFLY IV (Fortran, 4557). A program for the calculation of X-ray reflection intensities, Part 2. I.F. Ferguson. Subroutine required: AAQB (§8). Other version: AAQC (§8)	AAQC 10 (1973) 42
XRAY2 (Fortran, 618). A simple FORTRAN program to interpret cubic X-ray powder diffraction data. E.D. von Meerwall	ABMT 11 (1976) 331
FIREBIRD 2 (Fortran, 4072). A program for the calculation of the positions of X-ray powder reflections. I.F. Ferguson, R.S. Fox, T.E. Hughes	AAQD 12 (1976) 305
CORECTEX (Fortran, 1762). Slit height smearing correction in small angle X-ray scattering I: intensity correction program. M. Deutsch. Subroutine required (for data): AASC (§8)	AASB 17 (1979) 337

Crystallography (continued)

0001 CORECTSP (Fortran, 114). Slit height smearing correction in small angle X-ray scattering III: intensity correction program adaptation to arbitrary slit transmission function. M. Deutsch. Subroutine required (for data): AASD (\$8)	18 (1979) 143
FFITEX (Fortran, 552). Slit height smearing correction in small angle X-ray scattering II: computation of the correction function. M. Deutsch	AASC 17 (1979) 345
GTSPLINE (Fortran, 1496). Slit height smearing correction in small angle X-ray scattering IV: computation of the correction function for an arbitrary slit transmission function. M. Deutsch	AASD 18 (1979) 149
PLOMAC (Fortran, 3099). Plot program for Laue patterns and stereographic projections. E. Preuss	AAQE 18 (1979) 261
COL (Fortran, 358). Calculation of crystal orientations using Laue patterns. E. Preuss. Subroutine required (for data): AAQE (\$8)	AAQF 18 (1979) 277
POWDER (Fortran, 832). Simulation of EPR-spectra of randomly oriented samples. See erratum Comput. Phys. Commun. 28 (1982) 217. C. Daul, C.W. Schlapfer, B. Mohos, J. Ammeter, E. Gamp	ABVG 21 (1981) 385
Other version: ACKW (\$8)	ABVT 22 (1981) 13
PROVA (Fortran, 718). PROVA: a program for the calculation of X-ray powder spectra (ordered and disordered structures). A. Martorana, R. Zannetti, A. Marigo, D. Ajo, V. Malta	AASE 27 (1982) 49
SIMULAPO (Fortran, 683). Simulation of powder EPR spectra with axial symmetry. R.S. de Biasi, J.A.M. Mendonca	AAOF 28 (1982) 69
PLATTSUM2 (Fortran, 1557). A modification to PLATTSUM, a program that evaluates electrostatic lattice sums by the planewise summation method. J.A. Hernando, V. Massidda. Other version: ABVT (\$8)	ACKW 30 (1983) 403
FIREFLY VI (FIRECOMET) (Fortran, 7865). A program for the calculation of the intensities of X-ray or neutron powder reflections, Part 3. I.F. Ferguson, A.D. Hardy, M.U. Modi, A.H. Rogerson. Subroutines required: AAQB (\$8), AAQC (\$8)	ACFX 32 (1984) 83
FIRESTAR (Fortran, 3269). A program for the derivation of crystal unit cell parameters from X-ray powder diffraction measurements. I.F. Ferguson, A.H. Rogerson	ACFY 32 (1984) 95
NPHZB84 (Fortran, 2824). Multiphonon X-ray scattering. J.S. Reid	AADC 38 (1985) 43
ORIENT (Fortran, 1883). Simulation of molecular reorientation in crystals. J.C.A. Boeyens, D.C. Levendis	AADZ 39 (1986) 221
SPHZB86 (Fortran, 1464). Single-phonon X-ray scattering. J.S. Reid	AALZ 42 (1986) 417
MORANG (Fortran, 1355). MORANG: a computer program designed to aid in the determinations of crystal morphology. R. Docherty, K.J. Roberts, E. Dowty	ABFA 51 (1988) 423
XRLINE (Fortran, 1374). XRLINE, a program to evaluate the crystallite size of supported metal catalysts by single X-ray profile Fourier analysis. N. Aldea, E. Indrea. Subroutine required: ABDF (\$7.2)	ABLL 60 (1990) 155
PROPLT (Fortran, 5348). A three-dimensional protein graphic program. D.R. Lu, K. Park	ABTB 60 (1990) 257

9. Data bases, data compilation & information retrieval

DIRAC (Fortran, 9320). Dynamic information retrieval of atomic codes II. Implementation. A.R. Davies, K. Smith, K.L. Kwok. Subroutine required (for data): AAIC (\$9)	AAIB 6 (1973) 165
DATBNK (Fortran, 7128). Dynamic information retrieval of atomic codes II. Implementation. A.R. Davies, K. Smith, K.L. Kwok	AAIC 6 (1973) 166
DATSTOR (Fortran, 1511). Numerical modelling of a chemical plasma. III. DATSTOR: a program to create a database containing information on rate coefficients of chemical reactions. S.A. Roberts	ACZF 18 (1979) 377
AMDS (Fortran, 2334). AMDS: a database system for atomic and molecular physics. J.G. Hughes, F.J. Smith	ACCI 32 (1984) 317
HIONDAT (Fortran, 8263). Data base of cross sections and reaction rates for hydrogen ion sources. K. Smith, A.H. Glasser	ABHF 54 (1989) 391
BBTREE (Fortran, 644). Balanced binary tree code for scientific applications. S.C. Park, J.P. Draayer	ABJR 55 (1989) 189

10. Electrostatics and electromagnetics

AXISYMM-SCALAR-HELMHOLTZ-FINTEL4 (Fortran, 3638). A finite element program package for axisymmetric scalar field problems. A. Konrad, P. Silvester. Subroutine required: ACSD (\$10). Other version: ACSC (\$10)	ACSB 5 (1973) 437
AXISYMM-SCALAR-HELMHOLTZ-FINTEL6 (Fortran, 4188). A finite element program package for axisymmetric scalar field problems. A. Konrad, P. Silvester. Subroutine required: ACSD (\$10). Other version: ACSB (\$10)	ACSC 5 (1973) 438

Electrostatics and electromagnetics (continued)

GENERATE (Fortran, 760). A finite element program package for axisymmetric scalar field problems.		
A. Konrad, P. Silvester. Other version: AABL (§12)	ACSD	5 (1973) 438
AXISYMM-VECTOR-HELMHOLTZ-FINTEL6 (Fortran, 4463). A finite element program package for axisymmetric vector field problems. A. Konrad, P. Silvester. Subroutines required: ACSC (§10), ACSD (§10), ACSF (§10)	ACSE	9 (1975) 193
VECTR-FINTEL6-BLK-DATA-GENERATOR (Fortran, 1629). A finite element program package for axisymmetric vector field problems. A. Konrad, P. Silvester	ACSF	9 (1975) 194
MAGNETSUITE (Fortran, 3050). Computing a Laplacian field component from boundary observations only. M.J. O'Connell	ABCM	11 (1976) 221
LINEAR ACCELERATOR CAVITY CODE (Fortran, 6193). A linear accelerator cavity code based on the finite element method. A. Konrad. Subroutine required: ACSF (§10)	ACSK	13 (1977) 349
Other version: ACKW (§10)	ABVT	22 (1981) 13
PLATTSUM2 (Fortran, 1557). A modification to PLATTSUM, a program that evaluates electrostatic lattice sums by the planewise summation method. J.A. Hernando, V. Massidda. Other version: ABVT (§10)	ACKW	30 (1983) 403
POT4A (Fortran, 4808). POT4A: a program for the direct solution of Poisson's equation in complex geometries. S.J. Beard, R.W. Hockney. Subroutines required: ABUF (§4.14) or ABUJ (§4.14) or ABUK (§4.14), ABUA (§4.6)	ACDB	36 (1985) 25
MAXENTWDF (Fortran, 3660). MAXENTWDF: a computer program for the maximum entropy estimation of a wave distribution function. C. Delannoy, F. Lefevre	AAVF	40 (1986) 389
VCSUM (Fortran, 430). Program to calculate the spectral harmonic expansion coefficients of the two scalar fields product. Z. Martinec. Subroutine required: AAPE (§4.11)	ABHK	54 (1989) 177
CAROT VERSION 3.0 (Pascal, Screen, 10762, Manual 64 pages). An interactive computer-graphics-based processor for boundary element modelling of electromagnetic scattering by thin conducting wires. D.J.J. Van Rensburg, D.A. McNamara	ABJL	55 (1989) 457
ASBOR (Fortran, 4207). A boundary element program package for electromagnetic excitation of conducting bodies of revolution by an asymmetrical slot. D.B. Davidson, D.A. McNamara	ABLD	56 (1989) 249
SCTWO (Fortran, 1028). The Fortran code for the scattering of EM plane waves by two cylinders at normal incidence. H.A. Yousif, S. Kohler	ABRI	59 (1990) 371
JELLYRPA (Fortran, 485). An RPA program for jellium spheres. G. Bertsch	ABTC	60 (1990) 247

11. Elementary particle physics**11.1. General, high energy physics and computing**

SPROC (Fortran, 6626). A preprocessor for Fortran source code produced by REDUCE. T. Kaneko, S. Kawabata	ABLB	55 (1989) 141
GRAAL (Common Lisp, 1946). Symbolic superalgebra manipulations using Common Lisp. R. Cecchini, M. Tarlini	ABRY	60 (1990) 265

11.2. Phase space and event simulation

GENIS (Fortran, 400). A Monte Carlo generation method with importance sampling for high energy collisions of hadrons. W. Kittel, L. Van Hove, W. Wojcik	AAUA	1 (1970) 425
RN (Fortran, 300). The evaluation of the volume of the phase space of n particles. K. Kajantie, V. Karimaki	AAUB	2 (1971) 207
GAT (Fortran, 4516). A program for the generation of artificial bubble chamber events. J. Bettels, P. Dodd	AAUC	3 (1972) 136
PERIPHERAL PHASE SPACE INTEGRAL (Fortran, 1078). Recursive numerical integration of multi-particle phase space with peripheral matrix element. P. Pirila, E. Byckling	AAUD	4 (1972) 117
LIMS (Algol, 187). Approximation formula and ALGOL program of the Lorentz-invariant momentum-space integral for particles of equal masses. A. Jabs	AAUE	5 (1973) 217
GENRAP (Fortran, 300). Rapidity generator for Monte-Carlo calculations of cylindrical phase space. S. Jadach	AAUO	9 (1975) 297
MCN (Fortran, 549). Monte Carlo integration program for the n-particle relativistic phase space integral in invariant variables. R.A. Morrow	AAWB	13 (1977) 399
MULTJ (Fortran, 1923). A Monte Carlo program for QCD event simulation in electron-positron annihilation at LEP energies. R. Odorico	AAVF	24 (1981) 73
Other version: AAFP (§11.2)	AAVJ	27 (1982) 243
Other versions: AAFP (§11.2), AATJ (§11.2)	AAVM	28 (1983) 229

Elementary particle physics — Phase space and event simulation (continued)

Other version: ACDN (§11.2)		
BAMJET (Fortran, 959). Monte Carlo code BAMJET to simulate the fragmentation of quark and diquark jets. S. Ritter. Subroutine required: ACFS (§11.2)	ACCB	31 (1984) 323
PARJET (Fortran, 1501). Monte Carlo code PARJET to simulate e+e-annihilation events via QCD jets. S. Ritter. Subroutines required: ACFQ (§11.2), ACFS (§11.2)	ACFQ	31 (1984) 393
DECAY (Fortran, 899). The Monte Carlo code DECAY to simulate the decay of baryon and meson resonances. K. Hansgen, S. Ritter	ACFR	31 (1984) 401
000A CORRECTION 03/07/87 (Fortran). Unpublished correction	ACFS	31 (1984) 411
COJETS (Fortran, 5138). COJETS: a Monte Carlo program simulating QCD in hadronic production of jets and heavy flavours with inclusion of initial QCD bremsstrahlung. R. Odorico	AAVR	32 (1984) 139
000A CORRECTION 21/11/84 (Fortran)		34 (1985) 427
WIZJET (Fortran, 4964). WIZJET: a Monte Carlo program for hadronic production of W+- and Z0 simulating the standard model with inclusion of initial QCD bremsstrahlung. R. Odorico	AAVS	32 (1984) 173
000A CORRECTION 21/11/84 (Fortran)		34 (1985) 427
Other versions: ACCB (§11.2), AAXF (§11.2)	ACDN	34 (1985) 251
EPOS (Fortran, 3865). A Monte Carlo program for generating hadronic final states in electron-positron annihilations. L. Angelini, L. Nitti, M. Pellicoro, G. Preparata, G. Valenti	ACDM	34 (1985) 371
KORAL-B (Fortran, 1364). Monte Carlo simulation of the process e+e- → tau+tau-, tau+- → X+- including radiative O(alpha**3) QED corrections, mass and spin effects. S. Jadach, Z. Was	AABH	36 (1985) 191
BOPIT (Fortran). Coulomb plus strong interaction bound states -momentum space numerical solutions. D.P. Heddle, Yong Rae Kwon, F. Tabakin	AADM	38 (1985) 71
0001 AUTOMATIC GRIDPOINT METHOD (Fortran, 2031). Adaptation of Coulomb plus strong interaction bound states - momentum space solutions: automatic gridpoint method. R.J. Luce, F. Tabakin		46 (1987) 193
HADRIN (Fortran, 2560). The Monte Carlo code HADRIN to simulate inelastic hadron-nucleon interactions at laboratory energies below 5 GeV. K. Hansgen, J. Ranft. Subroutine required: ACFS (§11.2)	AADN	39 (1986) 37
000A CORRECTION 05/05/87 (Fortran). Unpublished correction		
NUCRIN (Fortran, 1650). The Monte Carlo code NUCRIN to simulate inelastic hadron-nucleus interactions at laboratory energies below 5 GeV. K. Hansgen, J. Ranft. Subroutines required: AADN (§11.2), ACFS (§11.2)	AADO	39 (1986) 53
MACPAR (Fortran, 1683). The macroparticle code MACPAR to simulate the beam-beam interaction of high energy linear electron-positron colliders. S. Ritter	AAFP	39 (1986) 347
Other versions: AAVM (§11.2), AATJ (§11.2)	AAFK	40 (1986) 271
RADCOR (Fortran, 1754). Monte Carlo simulation of two-photon processes. I. Radiative corrections to multiperipheral e+e-mu+mu- production. F.A. Berends, P.H. Daverveldt, R. Kleiss	AAFH	40 (1986) 285
DIAG36 (Fortran, 4332). Monte Carlo simulation of two-photon processes. II. Complete lowest order calculations for four-lepton production processes in electron-positron collisions. F.A. Berends, P.H. Daverveldt, R. Kleiss	AAFJ	40 (1986) 309
DIAG12NST (Fortran, 3071). Monte Carlo simulation of two-photon processes. III. Complete lowest order calculations for e+e- → e+e-mu+mu- with large angle tagging conditions. F.A. Berends, P.H. Daverveldt, R. Kleiss	AAFU	40 (1986) 359
RAMBO (Fortran, 237). A new Monte Carlo treatment of multiparticle phase space at high energies. R. Kleiss, W.J. Stirling, S.D. Ellis	AAFW	41 (1986) 127
BASES/SPRING (Fortran, 2893). A new Monte Carlo event generator for high energy physics. S. Kawabata		
JETSET 6.3 (Fortran, 6173). The Lund Monte Carlo for jet fragmentation and e+e- physics: JETSET version 6.3 – an update. T. Sjostrand, M. Bengtsson. Other versions: AAVM (§11.2), AAFP (§11.2)	AATJ	43 (1987) 367
FRITIOF VERSION 1.6 (Fortran, 1644). Interactions between hadrons and nuclei: the Lund Monte Carlo – FRITIOF version 1.6. B. Nilsson-Almqvist, E. Stenlund. Subroutine required: AAFP (§11.2)	AATH	43 (1987) 387
PYTHIA 4.8 (Fortran, 6990). The Lund Monte Carlo for hadronic processes: PYTHIA version 4.8. H.-U. Bengtsson, T. Sjostrand. Subroutine required: AATJ (§11.2). Other version: ACDN (§11.2)	AAXF	46 (1987) 43
TWISTER VERSION 1.2 (Fortran, 5023). TWISTER: a Monte Carlo for QCD high-p(transverse) scattering. G. Ingelman. Subroutine required: AAFP (§11.2) or AATJ (§11.2)	AAXG	46 (1987) 217
LUCIFER VERSION 2.2 (Fortran, 3669). LUCIFER: a Monte Carlo for high-p(transverse) photoproduction. G. Ingelman, A. Weigend. Subroutine required: AAFP (§11.2) or AATJ (§11.2)	AAXH	46 (1987) 241

Elementary particle physics — Phase space and event simulation (continued)

JADJAD (Fortran, 1206). JADJAD: simulation of inelastic nucleus-nucleus interactions below 5GeV. H.N. Agakishiev, V.G. Grishin, K. Hansgen, T. Kanarek, R.M. Mechtev. Subroutines required: AADO (§11.2), AADN (§11.2), ACFS (§11.2)
 RABHAT (Fortran, 6281). Radiative Bhabha scattering in special configurations with missing final e+ and/or e-. K. Tobimatsu, Y. Shimizu
 GENEVE (Fortran, 1036). The Monte Carlo integration of cylindrical phase space with leading particles. V. Vrba
 YFS2.02 (Fortran, 2190). YFS2: the second order Monte Carlo for fermion pair production at LEP/SLC with the initial state radiation of two hard and multiple soft photons. S. Jadach, B.F.L. Ward
 CHANNEL (Fortran, 1395). Numerical calculation of helicity amplitudes for processes involving massive fermions. H. Tanaka
 COJETS (Fortran, 40237, Manual 86 pages). COJETS 5.12: A Monte Carlo simulation program for antiproton-proton and proton-proton collisions. R. Odorico. Other version: AAVR (§11.2)

ABBK	48 (1988)	391
ABLC	55 (1989)	337
ABLI	56 (1989)	165
ABLO	56 (1990)	351
ABLT	58 (1990)	153
ABRM	59 (1990)	527

11.3. Cascade and shower simulation

FLUKA (Fortran, 1975). Monte Carlo programs for calculating three-dimensional high-energy (50 MeV-500GeV) hadron cascades in matter. J. Ranft, J.T. Routhi
 0001 TRANKA FOR DEEP PENETRATION (Fortran, 1296). Monte Carlo programs for calculating three-dimensional high-energy (50 MeV-500GeV) hadron cascades in matter. J. Ranft, J.T. Routhi
 CASCADE (Fortran, 946). A program for the analytic simulation of extensive air showers. L. Goorevich
 EMCASR (Fortran, 730). A set of subroutines for simulation of electron-photon cascades. T. Stanev, Ch. Vankov
 000A CORRECTION 08/05/79 (Fortran). Unpublished correction

AAUH	7 (1974)	327
	7 (1974)	327
AAYF	7 (1974)	344
AAUV	16 (1979)	363

11.4. Quantum electrodynamics (see also Feynman diagrams, §4.4)

VIRT SPEC (Fortran, 1280). Calculation of the virtual photon spectrum in distorted wave analysis. L.E. Wright, C.W. Soto Vargas
 0001 MICROCANONICAL DEMON (Fortran). Implementation of the microcanonical Monte Carlo simulation algorithm for SU(N) lattice gauge theory calculations. M. Creutz, K.J.M. Moriarty
 MUSTRAAL (Fortran, 944). Monte Carlo simulation of radiative corrections to the processes e+e- → mu+mu- and e+e- → q(ubar)q in the Z0 region. F.A. Berends, R. Kleiss, S. Jadach
 KORAL-B (Fortran, 1364). Monte Carlo simulation of the process e+e- → tau+tau-, tau+- → X+- including radiative O(alpha**3) QED corrections, mass and spin effects. S. Jadach, Z. Was
 ZORAD (Fortran, 243). Programs to calculate multiple QED radiation in leptonic decays of the Z0 and W+- weak bosons. S. Laporta, R. Odorico
 WRAD (Fortran, 257). Programs to calculate multiple QED radiation in leptonic decays of the Z0 and W+- weak bosons. S. Laporta, R. Odorico
 GRAND (Pascal, Fortran, 6664). Automatic generation of Feynman graphs and amplitudes in QED. T. Kaneko, S. Kawabata, Y. Shimizu
 LUCIFER VERSION 2.2 (Fortran, 3669). LUCIFER: a Monte Carlo for high-p(transverse) photoproduction. G. Ingelman, A. Weigend. Subroutine required: AAFF (§11.2) or AATJ (§11.2)
 RABHAT (Fortran, 6281). Radiative Bhabha scattering in special configurations with missing final e+ and/or e-. K. Tobimatsu, Y. Shimizu
 SPINORP (Pascal, 3441). Calculation of QED graphs with spinor technique. H. Perlitz, J. Ranft, J. Heinrich
 DIZET (Fortran, 2824). DIZET: electroweak one loop corrections for e+ + e- → f+ + f- around the Z0 peak. D.Yu. Bardin, M.S. Bilenky, T. Riemann, M. Sachwitz, H. Vogt, P.Ch. Christova

ABPJ	20 (1980)	337
AAOT	30 (1983)	255
ACEJ	29 (1983)	185
AABH	36 (1985)	191
AADQ	39 (1986)	127
AADR	39 (1986)	127
AATD	43 (1987)	279
AAXH	46 (1987)	241
ABLC	55 (1989)	337
ABLN	56 (1990)	385
ABRL	59 (1990)	303

11.5. Quantum chromodynamics, lattice gauge theory

U1LATTICE (Fortran, 430). Monte Carlo simulation of U(1) lattice gauge theory. R.C. Edgar, L. McCrossen, K.J.M. Moriarty
 SU2LGT (Fortran, 724). Monte Carlo simulation of SU(2) lattice gauge theory. R.W.B. Ardill, K.J.M. Moriarty
 LATTICE (Fortran, 694). Vectorizing the Monte Carlo algorithm for lattice gauge theory calculations on the CDC CYBER 205. D. Barkai, K.J.M. Moriarty

ABEA	22 (1981)	433
AAQY	24 (1981)	127
AARH	25 (1982)	57

Elementary particle physics — Quantum chromodynamics, lattice gauge theory (continued)

HEVOL (Fortran, 2005). HEVOL: a Monte Carlo program to calculate the evolution of structure functions with the inclusion of heavy quark effects. R. Odorico	AAVH 25 (1982) 253
LATGAUGEMC (Fortran, 393). A fast algorithm for Monte Carlo simulations of 4-d lattice gauge theories with finite groups. G. Bhanot, C.B. Lang, C. Rebbi	AAVI 25 (1982) 275
MULTIQUARK (SCHOONSCHIP, 1043). Multiquark calculations with SCHOONSCHIP. J. Wroldsen	AAVG 27 (1982) 39
HEVOL2 (Fortran, 2823). HEVOL2: a Monte Carlo program to calculate the evolution of structure functions with the inclusion of next to leading order effects. A. Sansoni	AAVK 27 (1982) 403
SUUNFA (Fortran, 852). Monte Carlo simulation of pure U(N) and SU(N) lattice gauge theories with fundamental and adjoint couplings. R.W.B. Ardill, K.J.M. Moriarty, M. Creutz	AAOT 29 (1983) 97
LATTICE (Fortran, 635). Efficient implementation of the Monte Carlo method for lattice gauge theory calculations on the Floating Point Systems FPS-164. K.J.M. Moriarty, J.E. Blackshaw	ACEK 29 (1983) 155
LATTICE (Fortran, 802). Monte Carlo simulation of pure U(N) and SU(N) gauge theories on a simplicial lattice. J.-M. Drouffe, K.J.M. Moriarty, C.N. Mouhas	ACFG 30 (1983) 249
LATT (Fortran, 1301). Wilson loops, string tension and correlations in Monte Carlo simulation of compact U(1) lattice gauge theory. M.J. Cole, K.J.M. Moriarty, P.E. Stolorz	ACFJ 30 (1983) 421
BCH (Fortran, 952). Monte Carlo simulation of pure SU(2) gauge theory on a body-centered hypercubic lattice. W. Celmaster, K.J.M. Moriarty	AABF 34 (1985) 415
SU3 (Fortran, 1968). Efficient multitasking of the SU(3) lattice gauge theory algorithm on the CRAY X-MP. D.W. Kubo, K.J.M. Moriarty	AABT 36 (1985) 351
LINE, BESEL AND TRANSLATE (Fortran, 891). A vectorized Monte Carlo algorithm for computing Wilson line observables in SU(2) gauge theory on a BCH lattice. W. Celmaster, F. Green, R. Gupta, E. Kovacs	AABW 36 (1985) 409
SKY2, SKY3, SKY4 (Fortran, 985). Monte Carlo simulation of lattice Skyrme model. R. Saly	AABZ 36 (1985) 417
SPINSU3 (Fortran, 4550). A vectorized code for the Monte Carlo computation of spin-dependent static potentials in QCD. M. Campostrini, K.J.M. Moriarty, C. Rebbi	AALH 42 (1986) 175
TWISTER VERSION 1.2 (Fortran, 5023). TWISTER: a Monte Carlo for QCD high-p(transverse) scattering. G. Ingelman. Subroutine required: AAFFP (\$11.2) or AATJ (\$11.2)	AAXG 46 (1987) 217
PSEUDOF (Fortran, 2897). A vectorized code for the pseudofermion simulation of QCD with dynamical quarks. M. Campostrini, K.J.M. Moriarty, J. Potvin, C. Rebbi	ABDH 50 (1988) 395
U3MAIN (Fortran, 1106). A fast CYBER 205 – ETA-10 program for SU(3) lattice gauge theory. C. Vohwinkel, B.A. Berg, A. Devoto	ABDJ 51 (1988) 331
QUBIC (Fortran, 1232). A vectorized code for the computation of the topological charge in SU(2) lattice gauge theory. A.S. Kronfeld, M.L. Laursen, G. Schierholz, C. Schleiermacher, U.-J. Wiese	ABHQ 54 (1989) 109
VX (Fortran, 11325). A vector code for the numerical simulation of cosmic strings and flux vortices in superconductors on the ETA-10. K.J.M. Moriarty, E. Myers, C. Rebbi	ABJD 54 (1989) 273
FIVE PARTON CROSS SECTION (Reduce, Fortran, 2656). Cross section for five-parton production in e+e- annihilation. N.K. Falck, D. Graudenz, G. Kramer	ABLH 56 (1989) 181
SUSYCAL (Pascal, 3463). SUSYCAL: symbolic computations in supersymmetric theories. T. Kreuzberger, W. Kummer, M. Schweda	ABLW 58 (1990) 89
STRING (C, 9846). Computational aspects of simulating dynamically triangulated random surfaces. C.F. Baillie, D.A. Johnston, R.D. Williams	ABLV 58 (1990) 105
STRONG_SU2 (Fortran, 4440). Generation and analysis of high order strong coupling series for SU(2) lattice gauge theory. C. Ayala, M. Baig	ABLQ 58 (1990) 199
QCDPI (Fortran, 1281). QCD corrections to vector boson self-energies in the standard model. B.A. Kniehl	ABRC 58 (1990) 293

11.6. Phenomenological and empirical models and theories

EFFECTIVE REGGE TRAJECTORIES (Fortran, 1381). Computation of effective Regge trajectories for high energy two-body reactions. D.J. Harrison, A.C. Irving, A.D. Martin	ABCE 5 (1973) 153
EPWAAM (Fortran, 2583). An efficient partial-wave analyser for the absorption model. P.A. Collins, B.J. Hartley, R.W. Moore, K.J.M. Moriarty	AAUF 5 (1973) 349
DEM (Fortran, 689). Monte Carlo simulation of the diffractive excitation model. J. Kasman	ABCK 9 (1975) 182
ONCPLT (Fortran, 4020). A program for calculating the observables for single-particle-inclusive production reactions. K.J.M. Moriarty, J.H. Tabor. Subroutine required: AAUN (\$14)	AAUR 12 (1976) 277

Elementary particle physics — Phenomenological and empirical models and theories (continued)

0001 BACKWARD INCLUSIVE PROTONS (Fortran, 401). Program adaptation: to calculate inclusive backward proton production cross sections. K.J.M. Moriarty, H.N. Thompson. Subroutines required: AAUN (§14), AAUN0001	18 (1979) 155
SPALL (Fortran, 1247). Fortran program SPALL for computing spallation reaction cross sections. J.T. Routti, J.V. Sandberg	AAVE 23 (1981) 411
SOLITON (Fortran, 543). Soliton bag model. R. Saly	AAVQ 30 (1983) 411
REGGEON (Fortran, 479). Calculation of hadron elastic scattering amplitude from higher order Reggeon field theory. M. Baig, C. Bourrely	ACCG 32 (1984) 281
SKY2, SKY3, SKY4 (Fortran, 985). Monte Carlo simulation of lattice Skyrme model. R. Saly	AABZ 36 (1985) 417
BAG (Fortran, 1390). Soliton bag model. R. Horn, R. Goldflam, L. Wilets	AALD 42 (1986) 105
ROMPIN (Fortran, 11309). ROMPIN: a relativistic optical model program for pion-nucleus scattering. D.R. Giebink, D.J. Ernst	ABBP 48 (1988) 407

11.7. Detector design and simulation

EBEGA (Fortran, 1513). EBEGA: the counting efficiency of a beta-gamma emitter in liquid scintillators. E. Garcia-Torano, A. Grau Malonda, J.M. Los Arcos	ABDK 50 (1988) 313
TRD_SIM (Fortran, 3555). A Monte Carlo program to design a transition radiation detector. M. Castellano, C. Favuzzi, N. Giglietto, E. Nappi, P. Spinelli	ABDI 51 (1988) 431

11.8. Detector control and data acquisition

MENU-EMU, VERSION LUND/10/88 (Pascal, 4778, Manual 37 pages). Measurement and three dimensional reconstruction of particle tracks in emulsion chambers. S. Persson	ABJI 55 (1989) 103
--	--------------------

11.9. Event reconstruction and data analysis (except data bases)

EXCAMP (Fortran, 3980). A program for fitting and plotting amplitudes, polarization and differential cross section data for two-body reactions. R.W.B. Ardill, K.J.M. Moriarty, P. Koehler. Subroutines required: ACWH (§4.9), AAUN (§14), AAUN0001	ABVW 22 (1981) 419
RESON (Fortran, 4605). RESON: a program for the detection and fitting of Breit-Wigner resonances. J. Tennyson, C.J. Noble	ACCW 33 (1984) 421
JETS (Fortran, 35218). JETS: a program for jet analysis of high-energy collision events. M. Galli	ACCS 34 (1984) 135
KNN (Fortran, 487). Statistical decisions under nonparametric a priori information. A.A. Chilingarian	ABHS 54 (1989) 381
VERT VER. 3.1, EMUFIT VER. 4.1 (Fortran, 7444). A track reconstruction program (TRP) for evaluation of nucleus-nucleus collisions in nuclear track emulsion chambers. E. Ganssauge, B. Dressel, S. Hackel, H. Kallies, E. Koch, Ch. Muller, J.T. Rhee, W. Schulz, K. Standecke	ABFU 55 (1989) 233

11.10. Accelerators and particle beams

TAYLOR-CHIRIKOV MAP PACKAGE (Fortran, 1260). Taylor-Chirikov map package: a package of programs for the calculation of ordered periodic orbits of area preserving twist maps. Q. Chen, B.D. Mestel	ABBW 51 (1988) 463
--	--------------------

11.11. Data structures and data base systems

No programs classified under this heading yet.

12. Gases and fluids

TRANSPORT COLLISION INTEGRALS (Fortran, 1750). Transport collision integrals for a dilute gas. H. O'Hara, F.J. Smith	ACQN 2 (1971) 47
000A CORRECTION 10/03/71 (Fortran)	2 (1971) 173
0001 ACQN ADAPTED FOR IBM 360/75 (Fortran, 412). Program ACQN to calculate transport collision integrals adapted to run on IBM computers. P.D. Neufeld, R.A. Aziz	3 (1972) 269
A00A CORRECTION TO 0001 31/01/80 (Fortran)	19 (1980) 271
0002 ACQN FOR MINICOMPUTERS (Fortran, 298). Adaptation of the ACQN program to calculate transport collision integrals on minicomputers. G. Hegyi, L. Barbu, L. Jakab	34 (1984) 219

Gases and fluids (continued)

SOUND ABSORPTION (Fortran, 320). A program for the extraction of bulk viscosities from sound absorption data. H. Moraal	ABSA	3 (1972)	1
EOSEXP (Fortran, 424). An expansion equation of state subroutine. K. Morgan	ACSA	5 (1973)	64
000A CORRECTION 21/09/79 (Fortran)		19 (1980)	395
ELECTRON ENERGY LOSS (Fortran, 2223). Electron energy deposition in a gaseous mixture. L.R. Peterson, T. Sawada, J.N. Bass, A.E.S. Green	ACRH	5 (1973)	239
GAS MIXTURE TRANSPORT PROPERTIES (Fortran, 1148). Transport properties of dilute gas mixtures. R.M. Thomson	ACZO	18 (1979)	123
NOMAD (Fortran, 1438). Numerical solutions of the Boltzmann transport equation. S.D. Rockwood, A.E. Greene	ABVC	19 (1980)	377
BOREAS (Fortran, 6618). BOREAS: a program for 1-D ideal fluid dynamics with shocks. D. Odstrcil. Subroutines required: ABUF (§4.14) or ABUJ (§4.14) or ABUK (§4.14), ABUH (§4.14), ABUI (§4.14)	ACFK	31 (1984)	13
FORMINT (PL/I-FORMAC, 342). FORMINT: a program for the classification of integrable nonlinear evolution equations. V.P. Gerdt, A.B. Shvachka, A.Yu. Zharkov	ACDJ	34 (1985)	303
BLOCDAT (Fortran, 4600). BLOCK DATA subprograms for finite element program packages. L. Flach, D.A. McNamara. Other version: ACSD (§10)	AABL	36 (1985)	223
DUMBELL (Fortran, 983). DUMBELL: a program to calculate the structure and thermodynamics of a classical fluid of hard, homonuclear diatomic molecules. F. Lado	AADS	39 (1986)	133
DECOMP (Fortran, 219). DECOMP: computational package for nitrogen transport modelling in tissues. B.R. Wienke	AAFO	40 (1986)	327
TDPOIS (Fortran, 931). TDPOIS, a vector-processor routine for the solution of the three-dimensional Poisson and biharmonic equations in a rectangular prism. G.A. Houseman	AATC	43 (1987)	257
GABI (Basic, 692). Thermally induced refractive index gradients in a dye-laser cell. Z. Burshtein, D. Levron, G. Bialolenker	ABFQ	51 (1988)	349
KINPACK (Fortran, 1549). Computer programs for the Boltzmann collision matrix elements. P. Das	ABJS	55 (1989)	177
2D-FROTH (Fortran, 8186). 2D-FROTH, a program for the investigation of 2-dimensional froths. J.P. Kermode, D. Weaire	ABRX	60 (1990)	75

13. Geophysics

SHELL (Fortran, 432). Direct computation of the magnetic shell parameter. G. Kluge	AAEA	3 (1972)	31
INTEL (Fortran, 518). Numerical fits for the geomagnetic shell parameter. G. Kluge, K.G. Lenhart. Subroutine required: AAEA (§13)	AAEB	3 (1972)	36
MAGNES (Fortran, 218). Geomagnetic field models: scalar and vector potential, induction vector and its gradient tensor computed by a common algorithm. G. Kluge	AAEC	4 (1972)	347
H-PARALLEL FEMT-2D (Fortran, 4199). A finite element program package for magnetotelluric modelling. E. Kisak, P. Silvester. Subroutine required: ACSJ (§13)	ACSG	10 (1976)	421
E-PARALLEL FEMT-2D (Fortran, 6357). A finite element program package for magnetotelluric modelling. E. Kisak, P. Silvester. Subroutine required: ACSJ (§13)	ACSH	10 (1976)	421
ZFORMATS (Fortran, 585). A finite element program package for magnetotelluric modelling. E. Kisak, P. Silvester	ACSJ	10 (1976)	421
ELSGAU (Fortran, 354). Numerical evaluation of geomagnetic dynamo integrals (Elsasser and Adams-Gaunt integrals). W. Moon	ACYX	16 (1979)	267
0001 ADDITION OF FUNCTION DJSQ (Fortran, 271). J-square. W. Moon		22 (1981)	97
HYDEL (Fortran, 557). Algorithm for the first order hydrostatic ellipticity of a planet. W. Moon	ACZT	19 (1980)	63
TAUP (Fortran, 3309). Algorithm for the creation of the P-Tau and P-X planes from T-X plane data. A. Carswell, W. Moon	ACCA	32 (1984)	185
CENTER (Fortran, 5658). CENTER: a software package for center estimation. S.B. Hooker, J.W. Brown. Subroutine required: AADI (§4.14)	AADH	38 (1985)	421
MAXENTWDF (Fortran, 3660). MAXENTWDF: a computer program for the maximum entropy estimation of a wave distribution function. C. Delannoy, F. Lefevre	AAVF	40 (1986)	389
DMO (Fortran, 4175). Dip moveout by Fourier transform. M.H. Serzu, W.M. Moon	ABHH	52 (1989)	337

14. Graphics

Other version: ABOO (§14)	ABOI	2 (1971)	55
PLOTT NEW VERSION (Fortran, 509). A new version of a printer-plotter routine. C.F. Moore. Other version: ABOI (§14)	ABOO	2 (1971)	470
APLOT (Fortran, 1261). A plotting package for visual comparison of points and curves. J. Anderson, K.J.M. Moriarty, R.C. Beckwith	AAUN	9 (1975)	85
0001 POLAR PLOT AND IMPROVEMENTS (Fortran, 1102). A plotting package for visually comparing theoretical and experimental results. J. Anderson, R.C. Beckwith, K.J.M. Moriarty, J.H. Tabor		15 (1978)	437
A00A CORRECTION TO 0001 04/02/80 (Fortran)		19 (1980)	272
A00B CORRECTION TO 0001 28/06/83 (Fortran)		30 (1983)	219
TDPL0T3 (Fortran, 2814). A program for perspective views of three-dimensional surfaces. E.A. Olszewski, W.J. Thompson	ABVL	21 (1980)	185
000A CORRECTION 07/04/81 (Fortran)		23 (1981)	221
PHOTO SIMULATION (Fortran, 397). Simulation of photographic images on a plotter. B.V. Robouch, A. Sestero, S. Podda	AAQG	24 (1981)	63
FERMI-SURFACE (Fortran, 2096). FERMI-SURFACE: a package to display perspective drawings of Fermi surfaces in cubic systems. P.C. Pattnaik, P.H. Dickinson, J.L. Fry	AARG	25 (1982)	63
RAMFLA (Fortran, 3416). Program for B-spline interpolation of surfaces with application to computer tomography. J.M.F. Chamayou	AARO	27 (1982)	187
TDPL0T3 (Fortran, 5493). A program for perspective views of open surfaces. E.A. Olszewski	ACFB	30 (1983)	259
KUBIK (Fortran, 5692). Automatic three-dimensional finite element mesh generation using the program KUBIK. See also Comput. Phys. Commun. 32 (1984) 267. S. Pissanetzky	AAVO	32 (1984)	245
INPOLY (Fortran, 169). Checking if a point lies inside a polygon. C. Wooff	AABJ	36 (1985)	219
TITEL (Fortran, 5113). TITEL: a letter generating program. M. Ramek	AABY	36 (1985)	433
PLO (Fortran, 886). A colloquial plotting package to realize scientific diagrams. R. Potenza, C. Tuve	AABQ	38 (1985)	53
FEYNMAN (LATEX, 1922, Manual 92 pages). A LaTe \backslash x graphics routine for drawing Feynman diagrams. M.J.S. Levine	ABLR	58 (1990)	181

15. Laser physics

MEDUSA (Fortran, 6316). MEDUSA - a one-dimensional laser fusion code. J.P. Christiansen, D.E.T.F. Ashby, K.V. Roberts. Subroutine required: ABUF (§4.14) or ABUJ (§4.14) or ABUK (§4.14)	ABUG	7 (1974)	271
000A CORRECTION 15/8/75 (Fortran)		10 (1975)	251
TLASER (Fortran, 1117). TLASER - a CO ₂ laser kinetics code. A.R. Davies, K. Smith, R.M. Thomson	ACWD	10 (1975)	117
0001 INJLOK (Fortran, 398). INJLOK: a CO ₂ laser injection locking code. A.R. Davies, K. Smith, R.M. Thomson		20 (1980)	413
RAMSES (Fortran, 3798). RAMSES: a two-dimensional, PIC type laser pulse propagation code. H.D. Dudder, D.B. Henderson. Subroutine required: ABUF (§4.14) or ABUJ (§4.14) or ABUK (§4.14)	ABUL	10 (1975)	155
BOLTZ (Fortran, 2857). BOLTZ: a code to solve the transport equation for electron distributions and then calculate transport coefficients and vibrational excitation rates in gases with applied fields. R.M. Thomson, K. Smith, A.R. Davies		ACWX	11 (1976) 369
PULSAM (Fortran, 1256). PULSAM: a program to predict the amplification of nano-second CO ₂ laser light pulses. S.A. Roberts, K. Smith	ACXC	12 (1976)	323
SUBMMW (Fortran, 833). SUBMMW: a theoretical model to predict CW sub-millimeter wave laser performance. K. Smith	ACYC	15 (1978)	85
CARS (Fortran, 749). CARS spectral profiles for homonuclear diatomic molecules. W.M. Shaub, S. Lemont, A.B. Harvey	AAHJ	16 (1978)	73
CASTOR 2 (Fortran, 13600). CASTOR 2: a two-dimensional laser target code. J.P. Christiansen, N.K. Winsor. Subroutines required: ABUF (§4.14) or ABUJ (§4.14) or ABUK (§4.14), ABUV (§19.1)	ABUY	17 (1979)	397
000A CORRECTION 10/03/81 (Fortran)		23 (1981)	109
REACS (Fortran, 923). Numerical modelling of a chemical plasma. I. REACS: a program to generate all reactions which take place in a plasma of given chemical content. S.A. Roberts. Subroutine required (for data): ACZF (§9)	ACZD	18 (1979)	353
PLASKEM (Fortran, 1789). Numerical modelling of a chemical plasma. II. PLASKEM: a program to predict the variation with time of the number densities of chemical species within a plasma. S.A. Roberts. Subroutines required (for data): ACWX (§15), ACZD (§15), ACZF (§9)	ACZE	18 (1979)	363

Laser physics (continued)

COLASE (Fortran, 2796). COLASE: a CO-N ₂ -He laser kinetics code. S.A. Roberts HEATER (Fortran, 602). HEATER: a 2D laser propagation subroutine for underdense plasmas. J.N. McMullin, C.E. Capjack, C.R. James	ABVF 20 (1980) 373
PROION (Fortran, 407). Proion: a code for calculating ionisation threshold intensities and ionisation periods in high-intensity-laser irradiated plasmas. B.W. Boreham	ABSG 23 (1981) 31
FIRE (Fortran, 6071). FIRE: a code for computing the response of an inertial confinement fusion cavity gas to a target explosion. T.J. McCarville, R.R. Peterson, G.A. Moses. Subroutine required (for data): AAHO (§15)	AARY 27 (1982) 65
MIXERG (Fortran, 2509). MIXERG: an equation of state and opacity computer code. R.R. Peterson, G.A. Moses	AAHP 28 (1983) 367
HEIZ (Fortran, 316). HEIZ: a program to estimate temperature modifications in laser plasma interaction experiments by inverse bremsstrahlung absorption and classical heat conduction. B. Gellert, J. Handke	AAHO 28 (1983) 405
MF-FIRE (Fortran, 9545). MF-FIRE: a multifrequency radiative transfer hydrodynamics code. G.A. Moses, R.R. Peterson, T.J. McCarville. Subroutine required: AAHO (§15)	ACES 30 (1983) 169
SQSIMUL (Fortran, 1836). SQSIMUL: a Fortran code for the computation of squeezing properties and photon statistics in multiphoton processes. F.J. Bermejo, J. Santoro, L. Sainz de los Terreros	ACDV 36 (1985) 249
MULTI (Fortran, 2670). MULTI: a simulation program for laser processing of multilayer structures. C. Topacli, Y. Gunduc, A. Aydinli	AATE 43 (1987) 245
	ABFR 52 (1988) 65

16. Molecular physics and physical chemistry**16.1. Structure and properties**

Other version: AARD (§16.1)	ACXN 14 (1978) 13
MBPT ORGANIZATION (Fortran, 1454). Diagrammatic many-body perturbation expansion for atoms and molecules: I. General organization. D.M. Silver. Subroutines required: ACXG (§16.1), ACXH (§16.1)	ACXF 14 (1978) 71
MBPT LADDER DIAGRAMS (Fortran, 794). Diagrammatic many-body perturbation expansion for atoms and molecules: II. Second-order and third-order ladder energies. D.M. Silver. Subroutines required: ACXF (§16.1), ACXH (§16.1)	ACXG 14 (1978) 81
MBPT RING DIAGRAMS (Fortran, 739). Diagrammatic many-body perturbation expansion for atoms and molecules: III. Third-order ring energies. S. Wilson. Subroutines required: ACXF (§16.1), ACXG (§16.1)	ACXH 14 (1978) 91
IBMOL-7 (Fortran, 18476). A program to introduce local symmetry in ab initio computations of molecules: IBMOL-7. E. Ortoleva, G. Castiglione, E. Clementi	ACYY 19 (1980) 337
PSEPOP (Fortran, 971). Pseudopotential matrix elements in the Gaussian basis. M. Kolar. Other version: AAQM (§16.1)	AAQL 23 (1981) 275
PSEPO1 (Fortran, 958). Pseudopotential matrix elements in the Gaussian basis. M. Kolar. Subroutine required: AAQN (§16.1). Other version: AAQL (§16.1)	AAQM 23 (1981) 275
COMPANGI (Fortran, 249). Pseudopotential matrix elements in the Gaussian basis. M. Kolar	AAQN 23 (1981) 275
Other version: ABRA (§16.1)	AAPD 24 (1981) 135
MSXALPHA/II (Fortran, 7052). A compact program of the SCF-Xalpha scattered wave method: Version II. S. Katsuki, M. Klobukowski, P. Palting. Subroutines required: ACQI (§2.1), ACQI0001. Other version: ACXN (§16.1)	AARD 25 (1982) 39
AMYR (Fortran, 2198). Molecular associations. S. Fraga	ACEO 29 (1983) 351
0001 AGAB (Fortran, 198). Association of proteins: adaptation and coupling of two available programs. L. Seijo, B. Coghlani, S. Fraga	41 (1986) 169
DIAB (Fortran, 801). Non-adiabatic transformation of quantum chemistry energy hypersurfaces. M.C. Bacchus-Montabonel, P. Vermeulen	ABXA 30 (1983) 163
ASYMTOP (Fortran, 852). A program to generate the symmetry-adapted rotational eigenfunctions and energy levels for asymmetric top molecules. A. Jain, D.G. Thompson	ACFD 30 (1983) 301
000A CORRECTION 18/10/84 (Fortran)	34 (1985) 427
DIAD (Fortran, 820). Determination of antigenic determinants. S. Fraga	ACFH 30 (1983) 325
POETA (Fortran, 7746). Determination of proteinic structures: an experimentation program. B. Coghlani, S. Fraga	AABU 36 (1985) 391

Molecular physics and physical chemistry — Structure and properties (continued)

0001 AGAB (Fortran, 234). Association of proteins: adaptation and coupling of two available programs. L. Seijo, B. Coglian, S. Fraga	41 (1986) 169
IPPP (Fortran, 1218). IPPP: a program for the RPA calculation of transmission mechanisms of spin-spin coupling constants. A.R. Engelmann, M.A. Natiello, G.E. Scuseria, R.H. Contreras	AAFL 39 (1986) 409
LBEXP (Fortran, 1065). One-dimensional vibrational eigenvalue problem with numerical potentials. E. Yurtsever, M. Pehlivan	AAFN 39 (1986) 431
DIRIGE (Fortran, 1235). DIRIGE: a program for calculating eigenvalues and initial values of log derivative eigenfunctions for a diatomic molecule. M. Dagher, H. Kobeissi	AATT 46 (1987) 445
ARIADNE-88 (Fortran, 8671, Manual 10 pages). ARIADNE-88: an ab initio monoconfigurational closed and open shell direct electronic energy calculation using elementary Jacobi rotations. R. Carbo, B. Calabuig	ABHG 52 (1989) 345
IR, CGC (Fortran, 4846). Computer generated subgroup-symmetry adapted irreducible representations and CG coefficients of space groups by the eigenfunction method. Jia-Lun Ping, Qing-Rong Zheng, Bing-Qing Chen, Jin-Quan Chen	ABHE 52 (1989) 355
CAMM (Fortran, 1198). Cumulative atomic multipole moments and point charge models describing molecular charge distribution. A. Sawaryn, W.A. Sokalski	ABFV 52 (1989) 397
HONDO VERSION 7.0 (Fortran, 97320, Manual 155 pages). The general atomic and molecular electronic structure system HONDO: version 7.0. M. Dupuis, J.D. Watts, H.O. Villar, G.J.B. Hurst	ABFS 52 (1989) 415
FCI (Fortran, 2852). A determinant based full configuration interaction program. P.J. Knowles, N.C. Handy	ABHV 54 (1989) 75
MOLSIMIL-88 (Fortran, 2643, Manual 11 pages). MOLSIMIL-88: molecular similarity calculations using a CNDO-like approximation. R. Carbo, B. Calabuig	ABJG 55 (1989) 117
GJGEN (Fortran, 1666, Manual 7 pages). Orthogonal generalized Jacobi coordinates for N-body systems. K. Davie, R. Wallace	ABJJ 55 (1989) 463
SYMMET VERSION 2 (Fortran, 1279). A new version of the program for the generation of symmetry-adapted functions for molecular calculations. L. Skala. Other version: AAPD (§16.1)	ABRA 58 (1990) 343

16.2. Spectra

RITZ COMBINATION PRINCIPLE (Fortran, 113). Program for fitting transition energies into a level scheme according to the combination principle. I.R. Williams	ABKD 1 (1970) 465
ROSCOS (Algol, 1266). Analysis of the intensity distribution in the rotational structure of the electronic spectra of diatomic molecules by computer simulation. R.Ch. Baas, C.I.M. Beenakker	ACRW 8 (1974) 236
UPEAK (Fortran, 4406). UPEAK: spectro-oriented routine for mixture decomposition. V.B. Zlokazov	ABAA 13 (1977) 389
CARS (Fortran, 749). CARS spectral profiles for homonuclear diatomic molecules. W.M. Shaub, S. Lemont, A.B. Harvey	AAHJ 16 (1978) 73
DIFFUS2 (Fortran, 781). A Fortran program to interpret pulsed field-gradient spin-echo diffusion data. E.D. von Meerwall. Other version: ABNI (§16.4)	ABNE 17 (1979) 309
DOMUS (Fortran, 2596). DOMUS: a program for the analysis of two-dimensional spectra. V.B. Zlokazov	ABAB 18 (1979) 281
ASYTOP (Fortran, 3227). ASYTOP: a program for detailed analysis of gas phase magnetic resonance spectra of asymmetric top molecules. T.J. Sears	ACDD 34 (1984) 123
DBLSIG (Fortran, 968). A Fortran program for the calculation of hyperfine structure and Stark effect in the rotational transition of a 2sigma diatomic molecule. K.P.R. Nair	ACDC 34 (1984) 163
ASYROT (Fortran, 4248). Computer assistance in the analysis of molecular spectra. I. Rotational structure of high resolution singlet-singlet bands. F.W. Birss, D.A. Ramsay. Other version: ABBA (§16.2)	ACDS 38 (1985) 83
DBLSIG2 (Fortran, 1113). A Fortran program for the calculation of hyperfine structure in the rotational transition of a doublet sigma diatomic molecule. II. Magnetic and electric quadrupole interaction from both nuclei. K.P.R. Nair	AAFY 41 (1986) 59
CARS SPECTRAL PROFILES (Fortran, 3537). Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules. J.C. Luthe, E.J. Beiting, F.Y. Yueh	AALG 42 (1986) 73
ASYROT PC (Fortran, 4317). A new version of ASYROT for the HP Vectra or any IBM AT compatible computer. R.H. Judge. Other version: ACDS (§16.2)	ABBA 47 (1987) 361
SIMULDENS (Pascal, 2372). Computer simulation of FT-NMR multiple pulse experiment. A. Allouche, G. Pouzard	ABHL 54 (1989) 171

Molecular physics and physical chemistry (continued)**16.3. Molecular vibrations**

FRANCK-CONDON FACTOR PROGRAM (Fortran, 537). A program to calculate Franck-Condon factors. A.C. Allison	AACA	1 (1969)	21
000A CORRECTION 21/10/70 (Fortran)		1 (1970)	23
VIBROT I (Algol, 293). I. Program for calculating degenerate Raman bands of symmetric tops with an adaptation for infrared bands. F.N. Masri, I.R. Williams. Other version: AAGF (§16.3)	AAGC	1 (1970)	349
0001 ADAPT VIBROT I FOR INFRARED (Algol, 33). I. Program for calculating degenerate Raman bands of symmetric tops with an adaptation for infrared bands. F.N. Masri, I.R. Williams		1 (1970)	350
VIBROT II (Algol, 231). II. Program for calculating triply degenerate Raman bands of spherical tops with an adaptation for infrared bands. F.N. Masri, I.R. Williams. Other version: AAGG (§16.3)	AAGE	2 (1971)	87
0001 ADAPT VIBROT II FOR INFRARED (Algol, 30). II. Program for calculating triply degenerate Raman bands of spherical tops with an adaptation for infrared bands. F.N. Masri, I.R. Williams		2 (1971)	88
FORTRAN VIBROT I (Fortran, 269). I. A FORTRAN program for calculating degenerate Raman bands of symmetric tops with an adaptation for infrared bands. F.N. Masri, I.R. Williams. Other version: AAGC (§16.3)	AAGF	2 (1971)	298
0001 VIBROT I FOR INFRARED (Fortran, 27). I. A FORTRAN program for calculating degenerate Raman bands of symmetric tops with an adaptation for infrared bands. F.N. Masri, I.R. Williams		2 (1971)	298
FORTRAN VIBROT II (Fortran, 229). II. A FORTRAN program for calculating degenerate Raman bands of spherical tops with an adaptation for infrared bands. F.N. Masri, I.R. Williams. Other version: AAGE (§16.3)	AAGG	2 (1971)	299
0001 VIBROT II FOR INFRARED (Fortran, 27). II. A FORTRAN program for calculating degenerate Raman bands of spherical tops with an adaptation for infrared bands. F.N. Masri, I.R. Williams		2 (1971)	299
MORSEFNS (Fortran, 136). A program for normalised Morse functions. J.R. Parkinson, D.T. Birtwistle	AAGM	4 (1972)	257
RKRPT (Fortran, 251). A fast quadrature method for computing diatomic RKR potential curves. J. Tellinghuisen			
VIBOCO (Fortran, 801). Vibrational energies of CO ₂ . W.C. Maguire	AAEE	6 (1973)	221
FCFRKR (Fortran, 6963). FCFRKR: a procedure to evaluate Franck-Condon type integrals for diatomic molecules. H. Telle, U. Telle	ABWC	10 (1976)	368
0001 FCFRKR*ADAPT1 (Fortran, 68). Comments on the program FCFRKR. H.H. Telle, U. Telle	AAOR	28 (1982)	1
0002 FCFRKR*LEVEL2CDC (Fortran, 78). Comments on the program FCFRKR. H.H. Telle, U. Telle		36 (1985)	109
ATOMDIAT (Fortran, 3706). ATOMDIAT: a program for calculating variationally exact ro-vibrational levels of "floppy" triatomics. J. Tennyson		36 (1985)	109
0001 ATOMDIAT2 (Fortran, 190). ATOMDIAT2 and GENPOT: adaptations of ATOMDIAT for the ro-vibrational levels of any floppy triatomic using a general potential function. J. Tennyson	ACEN	29 (1983)	307
0002 GENPOT (Fortran, 218). ATOMDIAT2 and genpot: adaptations of atomdiat for the ro-vibrational levels of any floppy triatomic using a general potential function. J. Tennyson		32 (1984)	109
YDY84C (Fortran, 5408). Spectroscopic energy coefficients for vibration-rotational states of dinuclear molecules. J.F. Ogilvie		32 (1984)	109
MOLFORCE (Fortran, 1481). MOLFORCE: a computer program for calculation of molecular force constants using the generalized inverse matrix. B. Gellai	ACET	30 (1983)	101
000A CORRECTION 29/01/86 (Fortran)	AABG	36 (1985)	177
VIBMATEL (Fortran, 5916). Analytic vibrational matrix elements for diatomic molecules. J.P. Bouanich, J.F. Ogilvie, R.H. Tipping		39 (1986)	447
TRIATOM (Fortran, 2688). TRIATOM, SELECT and ROTLEV: for the calculation of the ro-vibrational levels of triatomic molecules. J. Tennyson. Subroutine required (for data): AALP (§16.3)	AAFO	39 (1986)	439
SELECT (Fortran, 1934). TRIATOM, SELECT and ROTLEV: for the calculation of the ro-vibrational levels of triatomic molecules. J. Tennyson	AALO	42 (1986)	257
ROTLEV (Fortran, 3440). TRIATOM, SELECT and ROTLEV: for the calculation of the ro-vibrational levels of triatomic molecules. J. Tennyson. Subroutine required (for data): AALP (§16.3)	AALP	42 (1986)	257
ROTVIBMATEL (Fortran, 10512). Analytic vibration-rotational matrix elements for diatomic molecules. J.P. Bouanich	AALQ	42 (1986)	257
F.C. (Fortran, 928). F.C.: A program for calculating Franck-Condon factors and R-centroids for transitions between the vibrational-rotational levels of two electronic states of a diatomic molecule. M. Dagher, H. Koebeissi	ABBJ	47 (1987)	259
	ABBE	47 (1987)	305

Molecular physics and physical chemistry — Molecular vibrations (continued)

PANDORA (Fortran, 4500, Manual 38 pages). Quantum vibrational eigenstates from classical origins.	ABDL	51 (1988)	83
J.H. Frederick, E.J. Heller			
DEMETER (Fortran, 2533, Manual 38 pages). Quantum vibrational eigenstates from classical origins.	ABDM	51 (1988)	83
J.H. Frederick, E.J. Heller. Subroutine required (for data): ABDL (§16.3)			
PERTURB (C, 17298). PERTURB: a program for calculating vibrational energies by generalized algebraic quantization. L.E. Fried, G.S. Ezra	ABDN	51 (1988)	103
LUCY (Fortran, 1774). LUCY: a Fortran implementation of semiclassical spectral quantization.	ABDO	51 (1988)	115
M.A. Mehta, N. De Leon			
ACTION (Fortran, 4747). A program for determining primitive semiclassical eigenvalues for vibrating/rotating nonlinear triatomic molecules. G.C. Schatz	ABDP	51 (1988)	135
VANVLK (Fortran, 1129). VANVLK: an algebraic manipulation program for canonical Van Vleck perturbation theory. E.L. Sibert III	ABDQ	51 (1988)	149
RKRINV (Fortran, 2807). Determination of potential energy surfaces of linear triatomics from vibration-rotation spectra: an inversion method applied to CO ₂ . H. Romanowski, M.A. Ratner, R.B. Gerber	ABDR	51 (1988)	161
TETRA (Fortran, 1847). Local mode vibrations in tetrahedral molecules. L. Halonen, M.S. Child	ABDS	51 (1988)	173
SLEIGC (Fortran, 5192). Rotation-vibration eigenvalues and vectors. B.H. Chang, Jae Shin Lee, D. Secrest	ABDT	51 (1988)	195
SP2D (Fortran, 660). Particles-on-a-sphere method for computing the rotational-vibrational spectrum of H ₂ O. D.M. Leitner, G.A. Natanson, R.S. Berry, P. Villarreal, G. Delgado-Barrio	ABDU	51 (1988)	207
OS2D (Fortran, 763). Particles-on-a-sphere method for computing the rotational-vibrational spectrum of H ₂ O. D.M. Leitner, G.A. Natanson, R.S. Berry, P. Villarreal, G. Delgado-Barrio	ABDV	51 (1988)	207
NUMROV (Fortran, 1500). Solution of bound state single variable eigenproblems by the extended renormalized Numerov method. K. Davie, R. Wallace	ABDW	51 (1988)	217
GVSCF (Fortran, 1701). GVSCF: a general code to perform vibrational self-consistent field calculations.	ABDX	51 (1988)	225
A. Wierzbicki, J.M. Bowman			
VIBCI (Fortran, 2061). A vibrational configuration interaction program for energies and resonance widths.	ABDY	51 (1988)	233
S.C. Tucker, T.C. Thompson, J.G. Lauderdale, D.G. Truhlar			
SURVIBTM (Fortran, 12251). Polyatomic surface fitting, vibrational-rotational analysis, expectation value and intensity program. W.C. Ermler, H.C. Hsieh, L.B. Harding	ABDZ	51 (1988)	257
TRIATOM (Fortran, 2934). A program suite for the calculation of ro-vibrational spectra of triatomic molecules. J. Tennyson, S. Miller. Subroutine required (for data): ABJX (§16.3)	ABJW	55 (1989)	149
SELECT (Fortran, 2152). A program suite for the calculation of ro-vibrational spectra of triatomic molecules. J. Tennyson, S. Miller	ABJX	55 (1989)	149
ROTLEVD (Fortran, 3994). A program suite for the calculation of ro-vibrational spectra of triatomic molecules. J. Tennyson, S. Miller. Subroutine required (for data): ABJW (§16.3)	ABJY	55 (1989)	149
DIPOLE (Fortran, 2619). A program suite for the calculation of ro-vibrational spectra of triatomic molecules. J. Tennyson, S. Miller. Subroutines required (for data): ABJW (§16.3), ABJY (§16.3)	ABJZ	55 (1989)	149
SPECTRA (Fortran, 938). A program suite for the calculation of ro-vibrational spectra of triatomic molecules. J. Tennyson, S. Miller. Subroutine required (for data): ABJZ (§16.3)	ABLA	55 (1989)	149
16.4. Experimental analysis			
UPEAK (Fortran, 4406). UPEAK: spectro-oriented routine for mixture decomposition. V.B. Zlokazov	ABA	13 (1977)	389
DIFFUS2 (Fortran, 781). A Fortran program to interpret pulsed field-gradient spin-echo diffusion data.	ABNE	17 (1979)	309
E.D. von Meerwall. Other version: ABNI (§16.4)			
BATAN (Fortran, 1042). Analysis of Faradaic impedance experimental measurements. A. Batana,	ACZA	18 (1979)	27
E.R. Gonzalez, M.C. Monard			
DIFFUSS (Fortran, 1444). A Fortran program to fit diffusion models to field-gradient spin echo data.	ABNI	21 (1981)	421
E.D. von Meerwall, R.D. Ferguson. Other version: ABNE (§16.4)			
CLUSTER IDENTIFICATION (Fortran, 184). Identification of clusters in computer experiments with periodic boundary conditions. H. Bunz	ACKZ	42 (1986)	435
SPEX8 (Fortran, Microsoft Macro Assembler, 4930, Manual 35 pages). A data acquisition system for spectroscopy using an IBM PC. M. Lowe, S. Blumenroeder, P.H. Kutt	ABBZ	50 (1988)	367
16.5. Electron scattering			
Other version: ACZS (§16.5)	ACQO	1 (1970)	445
Other versions: ACWO (§16.5), ACZR (§16.5), AALA (§16.5)	ACQW	2 (1971)	261

Molecular physics and physical chemistry — Electron scattering (continued)

VIBAD (Fortran, 1157). Rovibrational cross sections from reactance matrices calculated in adiabatic nuclei approximation. R.J.W. Henry	ACWI 10 (1975) 375
Other versions: ACQW (§16.5), ACZR (§16.5), AALA (§16.5)	ACWO 11 (1976) 237
Other versions: ACQW (§16.5), ACWO (§16.5), AALA (§16.5)	ACZR 20 (1980) 267
ELECTRON MOLECULE SCATTERING (Fortran, 10926). Electron scattering by closed or open shell diatomic molecules. G. Raseev. Subroutine required (for data): ACZR (§16.5). Other version: ACQO (§16.5)	ACZS 20 (1980) 275
ALAM (Fortran, 1126). ALAM: a program for the calculation and expansion of molecular charge densities. M.A. Morrison	ACZW 21 (1980) 63
VLAM (Fortran, 1709). VLAM: a program for computing the electron-molecule static interaction potential from a Legendre expansion of the molecular charge density. G.B. Schmid, D.W. Norcross, L.A. Collins	ACZX 21 (1980) 79
SAS14 (Fortran, 1600). The vibrational excitation of diatomic molecules by electron impact. S.A. Salvini, D.G. Thompson	AAJF 22 (1981) 49
EXLAM (Fortran, 5134). EXLAM: a program for the calculation and expansion of local model exchange potentials. W.F. Weitzel, T.L. Gibson, M.A. Morrison. Subroutines required: ACZW (§16.5), ACZX (§16.5)	AANY 30 (1983) 151
EROTVIB (Fortran, 3214). EROTVIB: a general program to calculate rotationally and/or vibrationally elastic and inelastic cross sections for electron (positron) scattering by spherical, symmetric and asymmetric top molecules. A. Jain, D.G. Thompson. Subroutine required: ACFD (§16.1)	AAJM 32 (1984) 367
RESFIT (Fortran, 1612). RESFIT: a multichannel resonance fitting program. K. Bartschat, P.G. Burke	AAFX 41 (1986) 75
STOEX (Fortran, 566). Errors in the three CPC versions of the program to calculate the single centre expansion of the electron diatomic-molecule static potential. L. Malegat, M. Le Dourneuf, Vo Ky Lan. Other versions: ACQW (§16.5), ACWO (§16.5), ACZR (§16.5)	AALA 41 (1986) 181
DCS (Fortran, 2332). DCS: a program for calculating differential cross sections for the electronic excitation of diatomic molecules at fixed nuclei. L. Malegat	ABTG 60 (1990) 391

16.6. Photon interactions

PEAD (Fortran, 658). PEAD: for the calculation of photoelectron angular distributions of linear molecules. J. Tennyson, N. Chandra	AAXD 46 (1987) 99
BCONT (Fortran, 3097, Manual 53 pages). Bound → continuum intensities: a computer program for calculating absorption coefficients, emission intensities or (golden rule) predissociation rates. R.J. Le Roy	ABHC 52 (1989) 383

16.7. Elastic scattering and energy transfer

PAMPA (Fortran, 877). Multistate molecular treatment of atomic collisions in the impact parameter approximation. I. Integration of coupled equations and calculation of transition amplitudes for the straight line case. C. Gaussorgues, R.D. Piacentini, A. Salin	ACWJ 10 (1975) 223 11 (1976) 407 17 (1979) 424
000A CORRECTION 21/06/76 (Fortran)	
000B CORRECTION 28/03/79 (Fortran)	
TANGO (Fortran, 904). Multistate molecular treatment of atomic collisions in the impact parameter approximation. III – Integration of coupled equations and calculation of transition amplitudes for Coulomb trajectories. R.D. Piacentini, A. Salin	ACWU 12 (1976) 199 17 (1979) 425
000A CORRECTION 27/03/79 (Fortran)	
EIKON (Fortran, 644). Multistate molecular treatment of atomic collisions in the impact parameter approximation. II. Calculation of differential cross-sections from the transition amplitudes for the straight line case. See erratum Comput. Phys. Commun. 13 (1977) 295. R.D. Piacentini, A. Salin. Subroutine required (for data): ACWJ (§16.7)	ACXD 13 (1977) 57
EDWIN (Fortran, 3477). EDWIN: a program for calculating inelastic molecular collision cross sections using the exponential distorted wave and related approximate methods. G.G. Balint-Kurti, J.H. van Lenthe, R. Saktreger, L. Enø	AAJC 19 (1980) 359
VIBREQ (Fortran, 1739). A program to solve a set of linear coupled differential equations describing a collision process with several electronic and vibrational degrees of freedom. M.R. Spalburg, U.C. Klomp	AAOX 28 (1982) 207
CARLO (Fortran, 907). A Monte Carlo calculation of the dissociation of fast H ₂ + ions traversing thin carbon foils. W.D. Ruden, R.M. Schectman	AAOZ 28 (1983) 355

Molecular physics and physical chemistry — Elastic scattering and energy transfer (continued)

ADIAV (Fortran, 401). Rate constants and cross sections for vibrational transitions in atom-diatom and diatom-diatom collisions. G.D. Billing	ACFU	32 (1984)	45
DIDI AV (Fortran, 947). Rate constants and cross sections for vibrational transitions in atom-diatom and diatom-diatom collisions. G.D. Billing	ACFV	32 (1984)	45
RATECONS (Fortran, 109). Rate constants and cross sections for vibrational transitions in atom-diatom and diatom-diatom collisions. G.D. Billing	ACFW	32 (1984)	45
000A CORRECTION 15/04/85 (Fortran)		38 (1985)	118
DIDI EX (Fortran, 1034). Rate constants for vibrational transitions in diatom-diatom collisions. G.D. Billing	AATY	44 (1987)	121
000A CORRECTION 14/1/88 (Fortran)		52 (1989)	443
EDWAVE (Fortran, 2059). A program to evaluate vibrationally inelastic collisional cross sections of atom-diatom systems. M.M. Novak	AAXV	46 (1987)	417

16.8. Rearrangement collisions, charge transfer and chemical reactions

H+ + H(2) CHARGE TRANSFER (Fortran, 1054). Computation of charge transfer probability between protons and excited hydrogen atoms. V. Malaviya	ACQQ	1 (1970)	380
CLASSICAL TRAJECTORIES 324 (Algol, 472). Trajectory calculations for the reaction K+HBr → KBr+H in the eV-region. A. van der Meulen	AAGI	3 (1972)	42
SOLVE D.E. FOR MATRIX ELEMENTS (Fortran, 1494). Solution of differential equations for exchange matrix elements in heavy particle collisions. L.A. Parcell	AAGU	5 (1973)	283
IPFVAIJ (Fortran, 1031). A programming package for the calculation of cross-sections and probabilities for charge-exchange processes. J. Van den Bos	ACRP	7 (1974)	163
IPFDEQ (Fortran, 992). A programming package for the calculation of cross-sections and probabilities for charge-exchange processes. J. Van den Bos. Subroutine required: ACRP (§16.8)	ACRQ	7 (1974)	163
PAMPA (Fortran, 877). Multistate molecular treatment of atomic collisions in the impact parameter approximation. I. Integration of coupled equations and calculation of transition amplitudes for the straight line case. C. Gaussorgues, R.D. Piacentini, A. Salin	ACWJ	10 (1975)	223
000A CORRECTION 21/06/76 (Fortran)		11 (1976)	407
000B CORRECTION 28/03/79 (Fortran)		17 (1979)	424
TANGO (Fortran, 904). Multistate molecular treatment of atomic collisions in the impact parameter approximation. III - Integration of coupled equations and calculation of transition amplitudes for Coulomb trajectories. R.D. Piacentini, A. Salin	ACWU	12 (1976)	199
000A CORRECTION 27/03/79 (Fortran)		17 (1979)	425
EIKON (Fortran, 644). Multistate molecular treatment of atomic collisions in the impact parameter approximation. II. Calculation of differential cross-sections from the transition amplitudes for the straight line case. See erratum Comput. Phys. Commun. 13 (1977) 295. R.D. Piacentini, A. Salin. Subroutine required (for data): ACWJ (§16.8)	ACXD	13 (1977)	57
DATSTOR (Fortran, 1511). Numerical modelling of a chemical plasma. III. DATSTOR: a program to create a database containing information on rate coefficients of chemical reactions. S.A. Roberts	ACZF	18 (1979)	377
IPEXMAT (Fortran, 828). Subroutines for the evaluation of exchange integrals in the impact parameter formulation of atomic charge transfer collisions. C.J. Noble. Subroutine required (for data): ACZV (§16.10)	ACZU	19 (1980)	327
Other version: ACCJ (§16.8)	AAHL	23 (1981)	153
Other version: ACCK (§16.8)	AAHM	23 (1981)	153
UNIMOL (Fortran, 2222). UNIMOL: a program for Monte Carlo simulation of RRKM unimolecular decomposition in molecular beam experiments. K. Ryne fors	AAOA	27 (1982)	201
LZRATE (Fortran, 675). A program for the calculation of Landau-Zener cross sections and rate coefficients. S. Bienstock	AACJ	29 (1983)	333
CDW (Fortran, 686). Computation of total cross-sections for electron capture in high energy collisions. II. Dz. Belkic, R. Gayet, A. Salin	ACFA	30 (1983)	193
CDW1 (Fortran, 781). Computation of total cross-sections for electron capture in high energy collisions III. Dz. Belkic, R. Gayet, A. Salin. Other version: AAHL (§16.8)	ACCJ	32 (1984)	385
CDW2 (Fortran, 876). Computation of total cross-sections for electron capture in high energy collisions III. Dz. Belkic, R. Gayet, A. Salin. Other version: AAHM (§16.8)	ACCK	32 (1984)	385

Molecular physics and physical chemistry — Rearrangement collisions, charge transfer and chemical reactions (continued)

POLYRATE (Fortran, 21663, Manual 204 pages). POLYRATE: a general computer program for variational transition state theory and semiclassical tunneling calculations of chemical reaction rates. A.D. Isaacson, D.G. Truhlar, S.N. Rai, R. Steckler, G.C. Hancock, B.C. Garrett, M.J. Redmon

HIONDAT (Fortran, 8263). Data base of cross sections and reaction rates for hydrogen ion sources. K. Smith, A.H. Glasser

ABBD 47 (1987) 91
ABHF 54 (1989) 391

16.9. Classical methods

Other version: ACRB (§16.9)

EVAR EDITION 02 (Fortran, 3828). Classical relative motion of 2 particles (EVAR edition 02). D. Banks, I.C. Percival, J.McB. Wilson. Other version: ACQT (§16.9)

EVA2 EDITION 01 (Fortran, 1451). Classical motion of 2 particles (EVA2 edition 01). D. Banks, I.C. Percival, J.McB. Wilson. Subroutine required: ACRB (§16.9)

CLASSICAL P-H COLLISIONS (Fortran, 3060). Classical collisions of protons with hydrogen atoms.

D. Banks, K.S. Barnes, P.E. Hughes, I.C. Percival, D. Richards, N.A. Valentine, J.McB. Wilson

SCATXS (Fortran, 1137). Calculation of differential scattering cross-sections for classical binary elastic collisions. C. O'Raikeartaigh, J.F. McGilp

ACQT 2 (1971) 114
ACRB 3 (1972) 197
ACRC 3 (1972) 221
ACXO 13 (1977) 251
AANX 28 (1983) 255

16.10. Wave functions and integrals

POLYMOL (Fortran, 6793). POLYMOL: a general program for the calculation of ground state wave functions for polymers. J.-M. Andre

DFZERO (Fortran, 286). High speed evaluation of F0(x). L.L. Shipman, R.E. Christoffersen

FIELD (Fortran, 568). Field and field gradient integrals based on gaussian type orbitals. O. Matsuoka

FGRAD (Fortran, 640). Field and field gradient integrals based on gaussian type orbitals. O. Matsuoka

ONEINT (Fortran, 839). Dipole and overlap integrals between Slater-type functions and continuum Coulomb functions. K.K. Docken, A.L. Ford

GRAVE (Fortran, 692). Calculation of wave-function and collision matrix elements for one-electron diatomic molecules. See erratum Comput. Phys. Commun. 15 (1978) 443. A. Salin

MEDOC (Fortran, 1120). Calculation of wave-functions and collision matrix elements for one-electron diatomic molecules. A. Salin. Subroutine required: ACXX (§16.10)

000A CORRECTION 22/08/80 (Fortran)

TRIO (Fortran, 2186). Inter-electron repulsion integrals for three-open-shell configurations in cubic symmetry. B. Bird, C. Daul, P. Day

STP (Fortran, 673). An integral package for one-centre integrals over Slater-Transform-Preuss functions. E. Yurtsever

REXMAT (Reduce2, 494). Subroutines for the evaluation of exchange integrals in the impact parameter formulation of atomic charge transfer collisions. C.J. Noble

IBMOL-7 (Fortran, 18476). A program to introduce local symmetry in ab initio computations of molecules: IBMOL-7. E. Ortoleva, G. Castiglione, E. Clementi

PSEPOT (Fortran, 971). Pseudopotential matrix elements in the Gaussian basis. M. Kolar. Other version: AAQN (§16.10)

PSEPO1 (Fortran, 958). Pseudopotential matrix elements in the Gaussian basis. M. Kolar. Subroutine required: AAQN (§16.10). Other version: AAQL (§16.10)

COMPANGI (Fortran, 249). Pseudopotential matrix elements in the Gaussian basis. M. Kolar

FRTRF (Fortran, 569). Computation of Fourier transform of a general two-centre STO charge distribution. B.R. Junker

MATSUP (Fortran, 840). MATSUP: a program to obtain two-electron repulsion integrals from a sparse file of P supermatrix elements. M. Benard

TCOI (Fortran, 825). Two centre overlap integrals of numerical wavefunctions. R.P. Gupta, Rashmi-Rekha, S. Pal

PP-I-1982 (Fortran, 5108). A general program to compute two electron repulsion integrals. P. Habitz, E. Clementi

FRANKC (Fortran, 450). Calculation of the auxiliary functions Fm(z). L.F. Errea, L. Mendez, A. Riera

OFMO (Fortran, 1173). Reduction of orbital sets. E. Francisco, L. Seijo, L. Pueyo

TSYM (Fortran, 6048). Computation of relativistic symmetry orbitals for finite double point groups. See erratum Comput. Phys. Commun. 55 (1989) 469. J. Meyer, W.-D. Sepp, B. Fricke, A. Rosen

ABYA 1 (1970) 391
ACAA 2 (1971) 201
ABYB 3 (1972) 130
ABYC 3 (1972) 131

ABWB 11 (1976) 49
ACXX 14 (1978) 121
ACXY 14 (1978) 121
20 (1980) 462
AAKT 14 (1978) 273
ACYU 16 (1978) 65
ACZV 19 (1980) 327
ACYY 19 (1980) 337
AAQL 23 (1981) 275
AAQM 23 (1981) 275
AAQN 23 (1981) 275

AANO 23 (1981) 377
AARZ 27 (1982) 79
ACEF 29 (1983) 87
ACEL 29 (1983) 301
ACFL 31 (1984) 47
AATB 43 (1987) 269

ABHW 54 (1989) 55

Molecular physics and physical chemistry — Wave functions and integrals (continued)

ALAIN (Fortran, 935). General subroutines for calculation of atomic and molecular two-centre integrals.

J.P. Hansen

ASTERIX-INTEGS (Fortran, 20964). A program system for ab initio MO calculations on vector and parallel processing machines. Part 1: evaluation of integrals. R. Ernenwein, M.-M. Rohmer, M. Benard
ASTERIX-SFCFS, ASTERIX-SCFOS (Fortran, 16674). A program system for ab initio MO calculations on vector and parallel processing machines. Part 2: SCF closed-shell and open-shell iterations. M.-M. Rohmer, J. Demuyck, M. Benard, R. Wiest, C. Bachmann, C. Henriet, R. Ernenwein. Subroutine required: ABRB (§16.10)

ABLY 58 (1990) 217

ABRB 58 (1990) 305

ABRR 60 (1990) 127

16.11. Polymers

POLYMOL (Fortran, 6793). POLYMOL: a general program for the calculation of ground state wave functions for polymers. J.-M. Andre

ABYA 1 (1970) 391

17. Nuclear physics**17.1. Apparatus design**

COMBAT (Fortran, 1036). A program for closed orbit minimization by analytic technique. J.V. Trotman

MCS (Fortran, 867). Monte Carlo simulation of photons in two-layered media for density gauges.

E.R. Christensen

MCD (Fortran, 631). Computer simulation of photons in spherical media for density gauges. E.R. Christensen. Subroutine required: AAUK (§17.1)

ABCF 5 (1973) 56

AAUK 7 (1974) 185

AAUL 7 (1974) 192

ACSK 13 (1977) 349

ABKI 23 (1981) 199

ABQM 23 (1981) 393

ABKJ 24 (1981) 205

AARW 25 (1982) 311

AAVN 30 (1983) 71

AABP 36 (1985) 321

IMBUIG, NEUTRON TOF SIMULATOR (RTE Assembler, 2225). A time-of-flight spectrum simulator for neutron elastic and inelastic scattering. G.H.R. Kegel

LINEAR ACCELERATOR CAVITY CODE (Fortran, 6193). A linear accelerator cavity code based on the finite element method. A. Konrad. Subroutine required: ACSF (§10)

SATDSK (Fortran, 1286). SATDSK: a numerical simulation of the magnetic field due to saturated iron in cyclotron pole tips. G.S. McNeilly

DSAMER (Fortran, 1322). A computer program for nuclear lifetimes measurements by DSAM using a self supporting target. C. Morand, Tsan Ung Chan

DELPHINE (Fortran, 713). DELPHINE: program to bunch a D.C. beam through a tandem accelerator for injection into a cyclotron with superconducting magnet. M.S. Antony, J.M. Britz, J. Denimal

PHOCHA (Fortran, 1492). PHOCHA: a Monte Carlo program to calculate the characteristics of a beam of photons produced by annihilation and bremsstrahlung of relativistic positrons. E. De Sanctis, V. Lucherini, V. Bellini

MURI, NEUTRON YIELDS AND SPECTRA (RTE Assembler). Fluences and energy spectra of fast neutrons from a proton-irradiated thick lithium target. G.H.R. Kegel

17.2. Energy loss

STRAGL (Fortran, 1307). Energy-loss straggling of heavy charged particles. R.G. Clarkson, N. Jarmie

ELECTRON ENERGY LOSS (Fortran, 2223). Electron energy deposition in a gaseous mixture.

L.R. Peterson, T. Sawada, J.N. Bass, A.E.S. Green

E-DEP-1 (Fortran, 2047). Depth distribution of energy deposition by ion bombardment. I. Manning, G.P. Mueller

0001 CALCULATE LATERAL RANGES (Fortran, 68). Adaptation of a program for depth distribution of energy deposition by ion bombardment: calculation of ion lateral ranges. I. Manning, M. Rosen, J.E. Westmoreland

000A CORRECTION 21/09/75 (Fortran)

000B CORRECTION 5/03/75 (Fortran)

0002 BETTER STOPPING POWERS (Fortran, 2912). Adaptation of a program for depth distribution of energy deposition by ion bombardment: better stopping powers. C.M. Davission, I. Manning

MCS (Fortran, 867). Monte Carlo simulation of photons in two-layered media for density gauges.

E.R. Christensen

LANDAU (Fortran, 300). Programs for the Landau and the Vavilov distributions and the corresponding random numbers. B. Schorr

ABON 2 (1971) 433

ACRH 5 (1973) 239

ACIB 7 (1974) 85

12 (1976) 335

12 (1976) 339

12 (1976) 339

42 (1986) 137

AAUK 7 (1974) 185

AAUI 7 (1974) 215

Nuclear physics — Energy loss (continued)

VAVILOV (Fortran, 636). Programs for the Landau and the Vavilov distributions and the corresponding random numbers. B. Schorr	AAUJ	7 (1974)	215
NELAS (Fortran, 664). Nuclear energy loss and scattering of ions penetrating thin layers of matter. R. Skoog	AAUM	7 (1974)	392
LANDAU (Fortran, 691). A program package for the Landau distribution. K.S. Kolbig, B. Schorr	ABAD	31 (1984)	97
MURI, NEUTRON YIELDS AND SPECTRA (RTE Assembler). Fluences and energy spectra of fast neutrons from a proton-irradiated thick lithium target. G.H.R. Kegel	AABP	36 (1985)	321
DEPOS (Fortran, 150). DEPOS: parametric electron energy deposition module in slabs. B.L. Lathrop, B.R. Wience	AADE	38 (1985)	389
MCSDA (Fortran, 1288). A Monte Carlo program to simulate the penetration and energy loss of keV electrons through matter. F. Salvat, J.D. Martinez, R. Mayol, J. Parellada	AALC	42 (1986)	93

17.3. Mössbauer spectra

MOSSBAUER DATA LEAST-SQUARES FIT (Fortran, 2900). Versatile program for analysis of Mossbauer spectra. M.F. Bent, B.I. Person, D.G. Agresti	ABQA	1 (1969)	67
MOSSBAUER FITTING PROGRAM (Fortran, 1078). Computer analysis of Mossbauer spectra. B.L. Chrisman, T.A. Tumolillo	ABIB	2 (1971)	322
MOSSBAUER SCATTERING SPECTRA (Fortran, 1942). Computer simulation of Mossbauer scattering spectra. J.L. Groves	ABOP	3 (1972)	339
PARAMAGNETIC MOSSBAUER SPECTRA (Fortran, 1698). Computer simulations of Mossbauer spectra for an effective spin $S=1/2$ Hamiltonian. E. Munck, J.L. Groves, T.A. Tumolillo, P.G. Debrunner	ABMD	5 (1973)	225
000A CORRECTION 18/01/73 (Fortran)		5 (1973)	395
FLEXIBLE MOSSBAUER FIT ROUTINE (Fortran, 2023). A flexible least squares routine for general Mossbauer effect spectra fitting. W. Wilson, L.J. Swartzendruber	ACML	7 (1974)	151
MOSAUT AND MOSINP (Fortran, 5613). A program to analyze series of Mossbauer spectra. E. Verbiest	ACEG	29 (1983)	131
MOSPLV (Fortran, 1992). MOSPLV: a program for simulation of complex Mossbauer spectra in polycrystalline samples. R. Chipaux	ABTH	60 (1990)	405

17.4. Experimental analysis — general

OPTIME SYSTEM (Fortran, 10992). Users manual for the OPTIME system. P.H. Eberhard, W.O. Koellner	AAYB	5 (1973)	163
LINCOM (Fortran, 968). Search program for significant variables. M.J. O'Connell	ABCG	8 (1974)	49
GSFIT (Fortran, 1415). Multivariate least squares fitting program using modified Gram-Schmidt transformations. M.J. O'Connell	ABCH	8 (1974)	56
LGFIT2 (Fortran, 1368). A least-squares spectral curve fitting routine for strongly overlapping lorentzians or gaussians. E.D. von Meerwall	ABMK	9 (1975)	117
PEAK2 (Fortran, 1290). A FORTRAN code for automatic spectrum analysis on medium-scale computers. E.D. von Meerwall	ABML	9 (1975)	351
SPEC3 (Fortran, 1004). A general-purpose routine for the analysis of spectroscopic peak shapes. E.D. von Meerwall	ABMM	10 (1975)	145
ANNA (Fortran, 1128). ANNA: an interactive program for analysis of one-dimensional pulse-height spectra. P.A. Assimakopoulos, S. Kossionides	ABMN	11 (1976)	37
JOTOV (Fortran, 5191). Identification of nuclear reactions registered in ionographic detectors. M. Ortega, A. Vidal-Quadras, M. Tomas, F. Fernandez, V. Gandia, C. Jacquot	ABKF	11 (1976)	287
COUNTING FEW RADIOACTIVE ATOMS (Fortran, 123). Counting a small number of radioactive atoms. A.M. Aurela. Other versions: AAUY (\$17.4), ABQR (\$17.4)	AAUS	13 (1977)	281
UPEAK (Fortran, 4406). UPEAK: spectro-oriented routine for mixture decomposition. V.B. Zlokazov	ABAQ	13 (1977)	389
COUNTING FEW RADIOACTIVE ATOMS/2 (Fortran, 144). Counting a small number of radioactive atoms, second program. A.M. Aurela. Other versions: AAUS (\$17.4), ABQR (\$17.4)	AAUY	17 (1979)	301
DIFFUS2 (Fortran, 781). A Fortran program to interpret pulsed field-gradient spin-echo diffusion data. E.D. von Meerwall. Other version: ABNI (\$17.4)	ABNE	17 (1979)	309
SAMCS1 (Fortran, 828). A Fortran program to perform signal averaging, multichannel scaling and pulse-height analysis. E.D. von Meerwall	ABNG	18 (1979)	417
LOUHI78 (Fortran, 3227). General purpose unfolding program LOUHI78 with linear and nonlinear regularizations. J.T. Routti, J.V. Sandberg	AAVD	21 (1980)	119
DIFFUSS (Fortran, 1444). A Fortran program to fit diffusion models to field-gradient spin echo data. E.D. von Meerwall, R.D. Ferguson. Other version: ABNE (\$17.4)	ABNI	21 (1981)	421

Nuclear physics — Experimental analysis — general (continued)

DSAMER (Fortran, 1322). A computer program for nuclear lifetimes measurements by DSAM using a self supporting target. C. Morand, Tsan Ung Chan	ABQM 23 (1981) 393
COUNTING FEW RADIOACTIVE ATOMS/3 (Fortran, 97). Counting a small number of radioactive atoms. Monte Carlo program. K.T. Ekholm, A.M. Aurela. Other versions: AAUS (\$17.4), AAUY (\$17.4)	ABQR 29 (1983) 163
LINDA (Fortran, 2963). The code LINDA: a Monte Carlo reaction simulation for correlated fragments and evaporation residues formed in nuclear reactions. E. Duek, L. Kowalski, J.M. Alexander	ABPO 34 (1985) 395
CRAZS (Fortran, 1365). A computer program for determining the complete reaction amplitude for two-body nuclear reactions involving zero-spin particles. Z. Basrak. Subroutine required: AATU (\$4.9)	AATV 46 (1987) 155
TPSPM (Fortran, 470). Determination of the physical scattering matrix from a complete set of ambiguous solutions of the scattering problem by using the shortest-path method. Z. Basrak. Subroutine required: AATV (\$17.4)	AATW 46 (1987) 179
FEDMIX (Fortran, 14009). Neutron transmission functions and lumped averaged cross-sections from standardized evaluated neutron data (FEDMIX system). P. Vertes	ABLF 56 (1989) 199

17.5. Experimental analysis — particle detection

MATCH (Fortran, 3338). A track matching program for bubble chamber photographs. P.L. Bastien, J.N. Snyder, V. Pless	ABCB 2 (1971) 394
VBPL (Fortran, 1067). Analysis of photonuclear yield curves by the variable Bin Penfold-Leiss method. P.D. Allen, Su Su, E.G. Muirhead	AAVC 21 (1980) 163
SEMIEMPIRICAL ALPHA HALF-LIFE (Fortran, 1511). Alpha-decay half-life semiempirical relationships with self-improving parameters. D.N. Poenaru, M. Ivascu, D. Mazilu	ABQQ 25 (1982) 297
CEAN (Fortran, 4505). CEAN: a system for processing coincident data and particle identification. K. Ioannides, P.A. Assimakopoulos	AAFB 39 (1986) 245

17.6. Experimental analysis — activity detection

NAA (Fortran, 1344). Computer-assisted analysis of gamma-ray spectra. G.D. Atkinson Jr., J.B. Whitworth, S.J. Gage	ABMB 2 (1971) 40
DECAY SCHEME PROGRAM, DCSCH3 (Fortran, 533). A program to aid in establishing gamma-ray decay schemes. B.P. Foster, D.C. Camp	ABOF 2 (1971) 288
DECAY SCHEME PROGRAM, DCSCH4 (Fortran, 484). A program to aid in establishing gamma-ray decay schemes. B.P. Foster, D.C. Camp	ABOG 2 (1971) 289
INTERNAL CONVERSION COEFFICIENTS (Fortran, 790). A program to calculate internal conversion coefficients for all atomic shells without screening. O. Dragoun, G. Heuser	ABGF 2 (1971) 427
CATAR (Fortran, 3136). A computer program for internal conversion coefficients and particle parameters. H.C. Pauli, U. Raff	ABGP 9 (1975) 392
000A CORRECTION 16/08/77 (Fortran). Unpublished correction	ABPG 11 (1976) 75
Other version: ABMZ (\$17.6)	
THDST (Fortran, 1805). A program for calculating gamma-gamma directional correlation coefficients and angular distribution coefficients for gamma rays of mixed multipolarities from partially aligned nuclei. R.J. Rouse Jr., G.L. Struble, R.G. Lanier, L.G. Mann, E.S. Macias. Other version: ABPG (\$17.6)	ABMZ 15 (1978) 107
INTERNAL CONVERSION COEFFICIENTS (Fortran, 1714). A program to calculate internal conversion coefficients including higher-order corrections for all atomic shells. R. Der, D. Hinneburg, M. Nagel	AAMB 18 (1979) 401
CFIT (Fortran, 824). A computer program for determination of nuclear parameters from internal conversion experiments. M. Rysavy, O. Dragoun	ABGS 19 (1980) 93
SMUDLA (Fortran, 1579). Nuclear decay scheme construction based on qualitative coincidences. L. Hlavaty	AAPB 19 (1980) 197
HFNX (Fortran, 1085). Calculation of (n, γ) cross-sections and astrophysical reaction rates by the nuclear statistical model. M.J. Harris	ABVV 21 (1981) 407
EFFY (Fortran, 419). EFFY: a program to calculate the counting efficiency of beta particles in liquid scintillators. E. Garcia-Torano, A. Grau	ABQL 23 (1981) 385
SAMPO80 (Fortran, 2988). SAMPO80: minicomputer program for gamma spectrum analysis with nuclide identification. M.J. Koskelo, P.A. Aarnio, J.T. Routti	ABQO 24 (1981) 11
0001 PDP-11 VERSION OF SAMPO80 (Fortran, 2959). SAMPO80: minicomputer program for gamma spectrum analysis with nuclide identification. M.J. Koskelo, P.A. Aarnio, J.T. Routti	ABAC 28 (1982) 27
ACTIV (Fortran, 5215). ACTIV: a program for automatic processing of gamma-ray spectra. V.B. Zlokazov	24 (1981) 11

Nuclear physics — Experimental analysis — activity detection (continued)

COUNTING FEW RADIOACTIVE ATOMS/3 (Fortran, 97). Counting a small number of radioactive atoms. Monte Carlo program. K.T. Ekholm, A.M. Aurela. Other versions: AAUS (§17.4), AAUY (§17.4)	ABQR	29 (1983)	163
DELTA (Fortran, 1975). DELTA: a computer program to analyze gamma-gamma angular correlations from unaligned states. L.P. Ekstrom	ACCL	32 (1984)	399
FGM (Fortran, 2171). FGM: a flexible gamma-spectrum analysis program for a small computer. G. Szekely	ACDK	34 (1985)	313
EFFY 2 (Fortran, 521). EFFY: a new program to compute the counting efficiency of beta particles in liquid scintillators. E. Garcia-Torano, A. Grau Malonda	AABO	36 (1985)	307
VIASKL (Fortran, 902). VIASKL: a computer program to evaluate the liquid scintillation counting efficiency and its associated uncertainty for K-L-atomic shell electron-capture nuclides. J.M. Los Arcos, A. Grau, A. Fernandez	AATN	44 (1987)	209
GAMBLE AND GAMANA (Fortran, 4794). Simulation of nuclear quasicontinuum gamma-ray spectra. G.A. Leander	ABBF	47 (1987)	311
EFYGA (Fortran, 523). EFYGA: a Monte Carlo program to compute the interaction probability and the counting efficiency of gamma rays in liquid scintillators. E. Garcia-Torano, A. Grau Malonda	ABBC	47 (1987)	341

17.7. Experimental analysis — fission, fusion, heavy-ion

NAA (Fortran, 1344). Computer-assisted analysis of gamma-ray spectra. G.D. Atkinson Jr., J.B. Whitworth, S.J. Gage	ABMB	2 (1971)	40
DECAY SCHEME PROGRAM, DCSCH3 (Fortran, 533). A program to aid in establishing gamma-ray decay schemes. B.P. Foster, D.C. Camp	ABOF	2 (1971)	288
DECAY SCHEME PROGRAM, DCSCH4 (Fortran, 484). A program to aid in establishing gamma-ray decay schemes. B.P. Foster, D.C. Camp	ABOG	2 (1971)	289
E-DEP-1 (Fortran, 2047). Depth distribution of energy deposition by ion bombardment. I. Manning, G.P. Mueller	ACIB	7 (1974)	85
0001 CALCULATE LATERAL RANGES (Fortran, 68). Adaptation of a program for depth distribution of energy deposition by ion bombardment: calculation of ion lateral ranges. I. Manning, M. Rosen, J.E. Westmoreland		12 (1976)	335
000A CORRECTION 21/09/75 (Fortran)		12 (1976)	339
000B CORRECTION 5/03/75 (Fortran)		12 (1976)	339
0002 BETTER STOPPING POWERS (Fortran, 2912). Adaptation of a program for depth distribution of energy deposition by ion bombardment: better stopping powers. C.M. Davisson, I. Manning		42 (1986)	137
SMUDLA (Fortran, 1579). Nuclear decay scheme construction based on qualitative coincidences. L. Hlavaty	AAPB	19 (1980)	197
FRANPIE (Fortran, 1345). The code FRANPIE: a semiclassical friction free model for calculating excitation functions for complete fusion of heavy ions. L.C. Vaz	ABPK	22 (1981)	451
ASYM (Fortran, 217). ASYM: a program to examine fission fragment mass asymmetry in hemispherical chambers. R.S. Tarczyn, G.P. Couchell, W.A. Schier	AADD	38 (1985)	61
CEAN (Fortran, 4505). CEAN: a system for processing coincident data and particle identification. K. Ioannides, P.A. Assimakopoulos	AAFB	39 (1986)	245
TCNT (Fortran, 456). Exact calculation of the penetrability through triple hump fission barriers. G.D. James	AAFT	40 (1986)	375
FREESCO (Fortran, 1753). FREESCO: statistical event generator for nuclear collisions. G. Fai, J. Randrup	AALV	42 (1986)	385
CCFUS (Fortran, 337). CCFUS: a simplified coupled-channel code for calculation of fusion cross sections in heavy-ion reactions. C.H. Dasso, S. Landowne	AATM	46 (1987)	187
NUCFRAG (Fortran, 944). An algorithm for a semiempirical nuclear fragmentation model. F.F. Badavi, L.W. Townsend, J.W. Wilson, J.W. Norbury	ABBG	47 (1987)	281
TORINO (Fortran, 2427). TORINO: a semiclassical coupled channel code for heavy ion reactions. C.H. Dasso, G. Pollarolo	ABDB	50 (1988)	341
XRAY (Fortran, 1510). Fusion cross sections from measurements of delayed X-rays. A.J. Pacheco, D.E. DiGregorio, J.O. Fernandez Niello, M. Elgue	ABFL	52 (1988)	93
KALLIOPI (Fortran, 2938). A Monte Carlo reaction simulation for small-angle correlations between light charged particles. R.L. McGrath, A. Elmaani, J.M. Alexander, P.A. DeYoung, T. Ethvignot, M.S. Gordon, E. Renshaw	ABRU	59 (1990)	507

17.8. Nuclear reaction — general

DATA FOR ABOM (Fortran, 12980). Kinematical parameters of nuclear reactions. A. Wolfram, C.F. Moore, W.R. Coker	AAA*	2 (1971)	443
---	------	----------	-----

Nuclear physics — Nuclear reaction — general (continued)

NUCLEAR SPECTRA (Fortran, 603). Kinematical parameters of nuclear reactions. A. Wolfram, C.F. Moore, W.R. Coker. Subroutine required (for data): AAA* (§17.8)	ABOM	2 (1971)	443
EFFECTIVE RANGE APPROXIMATION (Fortran, 388). The two-nucleon effective-range parameters with tensor forces. L. Lovitch, S. Rosati. Subroutines required: ABGE (§4.3), ABGE0001	ABGJ	4 (1972)	138
TWOBODY (Fortran, 185). Relativistic kinematics for two-body final states. W.J. Braithwaite	ABOS	4 (1972)	227
BODY3 (Fortran, 128). Relativistic kinematics for three-body final states. W.J. Braithwaite	ABOT	4 (1972)	233
S 1/2 PARTICLE CS AND POL (Fortran, 356). Computation of cross sections and polarizations for nuclear reactions, in which only spin 1/2 particles are involved. P. Heiss	ABGK	4 (1972)	371
Other version: AAJE (§17.8)	ACRL	5 (1973)	456
FATSO (Fortran, 1834). A program calculating the formulae for polarization effects in nuclear reactions. F. Seiler	ABGM	6 (1973)	229
PAKINE3 (Fortran, 368). Kinematics of three-body reactions. P.A. Assimakopoulos	ABMO	10 (1975)	385
PAKIPILOT (Fortran, 220). Kinematics of three-body reactions. P.A. Assimakopoulos	ABMP	10 (1975)	385
FRICITION (Fortran, 554). One-dimensional wave packet solutions of time-dependent frictional or optical potential Schrödinger equations. R.W. Hasse	ACWT	11 (1976)	353
DCS2 (Fortran, 2661). New version of program for calculating differential and integral cross sections for quantum mechanical scattering problems from reactance or transition matrices. K. Onda, D.G. Truhlar, M.A. Brandt. Other versions: ACRL (§17.8), ACRL0001	AAJE	21 (1980)	97
LORNA (Fortran, 2981). Analysis of polarization experiments. J. Nurzynski	AABM	36 (1985)	295
CRAZS (Fortran, 1365). A computer program for determining the complete reaction amplitude for two-body nuclear reactions involving zero-spin particles. Z. Basrak. Subroutine required: AATU (§4.9)	AATV	46 (1987)	155
TPSPM (Fortran, 470). Determination of the physical scattering matrix from a complete set of ambiguous solutions of the scattering problem by using the shortest-path method. Z. Basrak. Subroutine required: AATV (§17.8)	AATW	46 (1987)	179
JADJAD (Fortran, 1206). JADJAD: simulation of inelastic nucleus-nucleus interactions below 5GeV. H.N. Agakishiev, V.G. Grishin, K. Hanssgen, T. Kanarek, R.M. Mechthiv. Subroutines required: AADO (§11.2), AADN (§11.2), ACFS (§11.2)	ABBK	48 (1988)	391
FEDMIX (Fortran, 14009). Neutron transmission functions and lumped averaged cross-sections from standardized evaluated neutron data (FEDMIX system). P. Vertes	ABL	56 (1989)	199
NUCOGE (Fortran, 865). A Monte Carlo for nuclear collision geometry. L. Ding, E. Stenlund	ABRO	59 (1990)	313

17.9. Optical models

REGGE TRAJECTORY (Fortran, 1187). A program for calculating Regge trajectories in potential scattering. P.G. Burke, C. Tate	AAGA	1 (1969)	97
SCAT (Fortran, 340). Nuclear penetrability and phase shift subroutine. W.R. Smith	ACQF	1 (1969)	106
0002 ADAPT SCAT TO LIANA (Fortran, 13). Adaptation of subroutine SCAT for use with program LIANA. W.R. Smith		1 (1970)	181
0001 ADAPT SCAT TO ELASTIC (Fortran, 12). Adaptation of subroutine SCAT for use with program ELASTIC. W.R. Smith		1 (1970)	198
ELASTIC (Fortran, 290). Nuclear elastic scattering program with parameter search. W.R. Smith. Subroutines required: ABOD (§4.9), ABOD0001, ACQF (§17.9), ACQF0001	ACQG	1 (1970)	198
PHASESHIFT ANALYSIS (Fortran, 1796). A program to calculate complex phase shifts and mixing parameters of elastic scattering of spin 1/2 particles on spin 1/2 targets. R. Kankowsky, D. Fick	ABGB	2 (1971)	223
OPTICS (Fortran, 3344). A nuclear optical model code for small computers. R.J. Eastgate, W.J. Thompson, R.A. Hardekopf. Other version: ACRR (§17.9)	ABOU	5 (1973)	69
OPTIX KSU1 (Fortran, 3660). A version of a nuclear optical model code for small computers designed to run on a PDP-15. S.K. Datta, W.J. Thompson, D.O. Elliott. Other version: ABOU (§17.9)	ACRR	7 (1974)	343
PATIWEN (Fortran, 1256). PATIWEN - a code for Coulomb-nuclear interference calculations. D.H. Feng, A.R. Barnett. Subroutines required: ABPC (§4.5), ABPC0001	ABPD	10 (1976)	401
A-THREE (Fortran, 3571). A-THREE: a general optical model code especially suited to heavy-ion calculations. E.H. Auerbach. Subroutine required: ABPC (§4.5)	ABII	15 (1978)	165
REGGE (Fortran, 1914). Complex angular momentum methods for elastic scattering with an optical potential. T. Takemasa, T. Tamura, H.H. Wolter	ABNF	18 (1979)	427
FYPEDIFC (Fortran, 1359). Folded Yukawa-plus-exponential model PES for nuclei with different charge densities. D.N. Poenaru, M. Ivascu, D. Mazilu	ABQH	19 (1980)	205

Nuclear physics — Optical models (continued)

NONLOCAL POTENTIALS (Fortran, 1017). A spline function program for treating nonlocal potentials.

H.R. Fiebig

PCNUM (Fortran, 829). A program for the predictor-corrector Numerov method. W.E. Baylis, S.J. Peel

DFPOT (Fortran, 964). DFPOT: a program for the calculation of double folded potentials. J. Cook

RIHIOP (Fortran, 1918). Real and imaginary part of the heavy ion optical potential from a realistic nucleon-nucleon interaction. A. Faessler, L. Rikus, R. Sartor

HERMES (Fortran, 3805). HERMES: an optical model search program including tensor potentials for projectile spin 0 to 3/2. J. Cook

LPOTp (Fortran, 8111). LPOTp: nucleon elastic-scattering from spin 0 and 1/2 nuclei in momentum space.

M.J. Paez, M.E. Sagen, R.H. Landau

NPSD (Fortran, 955). Solution of the two nucleons Schrodinger equation with nonlocal tensor potential in the 3S1-3D1 state. M.M. Mustafa, M.W. Kermode, E.S. Zahran

ABQK	23 (1981)	135
AARJ	25 (1982)	21
ABQP	25 (1982)	125
ABPL	28 (1983)	275
ABPM	31 (1984)	363
ABDD	52 (1988)	141
ABJH	55 (1989)	109

17.10. Compound nucleus

MANDY (Algol, 1273). Computation of total, differential, and double-differential cross sections for compound nuclear reactions of the type (a,b), (a,bgamma) and (a,bgamma-gamma) (II) Generalized programs MANDY and BARBARA for arbitrary angular momenta in Hauser-Feshbach-Moldauer formalism. See erratum Comput. Phys. Commun. 1 (1970) 224. E. Sheldon, R.M. Strang. Other versions: ABOJ (\$17.10), ABMF (\$17.10)

000A CORRECTION 23/04/71 (Algol)

BARBARA (Algol, 1219). Computation of total, differential, and double-differential cross sections for compound nuclear reactions of the type (a,b), (a,bgamma) and (a,bgamma-gamma) (II) Generalized programs MANDY and BARBARA for arbitrary angular momenta in Hauser-Feshbach-Moldauer formalism. See erratum Comput. Phys. Commun. 1 (1970) 224. E. Sheldon, R.M. Strang. Other version: ABOK (\$17.10)

000A CORRECTION 23/04/71 (Algol)

LIANA (Fortran, 571). Hauser-Feshbach nuclear scattering subroutine LIANA. W.R. Smith. Subroutines required: ACQF (\$17.9), ACQF0002

Other versions: ABOA (\$17.10), ABMF (\$17.10)

BARBYF (Fortran, 1382). Computation of total, differential and double-differential cross sections for compound nuclear reactions of the type (a,b), (a,bgamma) and (a,bgamma-gamma). (III) FORTRAN translations of the ALGOL programs MANDY and BARBARA. E. Sheldon, S. Mathur, D. Donati. Other version: ABOB (\$17.10)

000A CORRECTION 17/10/72 (Fortran)

CINDY (Fortran, 2367). Computation of total and differential cross sections for compound nuclear reactions of the type (a,a), (a,a'), (a,b), (a,gamma), (a,gamma-gamma), (a,bgamma) and (a,bgamma-gamma). (IV) Fortran program CINDY. E. Sheldon, V.C. Rogers. Other versions: ABOA (\$17.10), ABOJ (\$17.10)

000A CORRECTION 4/01/74 (Fortran). Unpublished correction

MIA (Fortran, 1360). MIA, a FORTRAN-IV program for making spin and parity assignments to high-lying single and coherent twin nuclear levels from (alpha, nucleon) angular distributions in on-resonance, compound-nuclear, channel-spin-1/2 reactions. E. Sheldon, D.R. Donati, H.R. Hiddleston

REFERENCE REACTION MATRIX (Fortran, 1000). Matrix elements of the reaction matrix in finite nuclei. R.J.W. Hodgson. Subroutine required: ABIF (\$17.10)

REACTION MATRIX (Fortran, 2053). Matrix elements of the reaction matrix in finite nuclei.

R.J.W. Hodgson. Subroutine required: ABIE (\$17.10)

CARLA (Fortran, 1101). CARLA: a code to calculate the population of high spin states through compound nucleus reactions. C. Savelli, M. Morando

ABOA	1 (1969)	35
	2 (1971)	278

ABOB	1 (1969)	37
	2 (1971)	278

ABKA	1 (1970)	181
ABOJ	2 (1971)	272

ABOK	2 (1971)	274
	5 (1973)	304

ABMF	6 (1973)	99
------	----------	----

ABMI	8 (1974)	199
------	----------	-----

ABIE	11 (1976)	113
------	-----------	-----

ABIF	11 (1976)	113
------	-----------	-----

ABGQ	15 (1978)	283
------	-----------	-----

17.11. Direct reactions

DWBA-VENUS (Fortran, 4034). Distorted wave Born approximation for nuclear reactions. T. Tamura, W.R. Coker, F. Rybicki

000A CORRECTION 01/03/72 (Fortran)

FINITE RANGE DWBA PHASE 1 (Fortran, 1539). FORTRAN program to calculate finite-range no-recoil DWBA transfer cross sections. G.L. Payne, P.L. von Behren

ABOH	2 (1971)	94
	3 (1972)	275

ABOW	7 (1974)	13
------	----------	----

Nuclear physics — Direct reactions (continued)

FINITE RANGE DWBA PHASE 2 (Fortran, 1590). FORTRAN program to calculate finite-range no-recoil DWBA transfer cross sections. G.L. Payne, P.L. von Behren. Subroutine required: ABOW (§17.11)	ABOX	7 (1974)	13
SATURN-1-FOR-EFR-DWBA (Fortran, 2509). Exact finite range DWBA calculations for heavy-ion induced nuclear reactions. T. Tamura, K.S. Low. Subroutine required: ABPB (§17.11)	ABPA	8 (1974)	349
0001 SATURN-2-FOR-EFR-DWBA (Fortran, 869). Exact finite range DWBA form factor for heavy-ion induced nuclear reactions. T. Tamura, T. Udagawa, K.E. Wood, H. Amakawa		18 (1979)	163
A00A CORRECTION TO 0001 19/02/87 (Fortran)		44 (1987)	227
MARS-1-FOR-EFR-DWBA (Fortran, 2175). Exact finite range DWBA calculations for heavy-ion induced nuclear reactions. T. Tamura, K.S. Low. Subroutine required: ABPA (§17.11)	ABPB	8 (1974)	349
COCHASE (Fortran, 1358). COCHASE, a code for coupled channel Schrodinger equations. S. Hirschi, E. Lomon, N. Spencer	ABIC	9 (1975)	11
QUASI-BOUND STATE WAVEFUNCTIONS (Fortran, 628). Quasi-bound state wavefunctions. R.M. DeVries	ABMQ	11 (1976)	249
SATTNT-FOR-EFR-MICRO-DWBA (Fortran, 3158). Exact-finite-range microscopic calculations for heavy-ion induced two-nucleon transfer reactions. D.H. Feng, B.T. Kim, T. Udagawa, T. Tamura, K.S. Low	ABMU	12 (1976)	293
DAISY (Fortran, 1973). DWBA program for heavy ion transfer reactions. P.J.A. Buttle	ABMY	14 (1978)	133
FRCCBAOUKID (Fortran, 3220). A finite range coupled channel Born approximation code. P. Nagel, R.D. Koshel	ABPI	15 (1978)	193
ORION-TRISTAR-1 (Fortran, 3471). DWBA calculations of continuum spectra of nuclear reactions. T. Tamura, T. Udagawa, M. Benhamou	ABNL	29 (1983)	391
SPECTO (Fortran, 2129). A program for calculating spectroscopic amplitudes for two-nucleon transfer reactions by projecting angular momentum. T. Takemasa	ACDX	36 (1985)	79
TORINO (Fortran, 2427). TORINO: a semiclassical coupled channel code for heavy ion reactions. C.H. Dasso, G. Pollaro	ABDB	50 (1988)	341
CCDEF (Fortran, 458). CCDEF: a simplified coupled channel code for fusion cross sections including static nuclear deformations. J. Fernandez-Niello, C.H. Dasso, S. Landowne	ABFM	54 (1989)	409
GARDEL (Fortran, 4057). Microscopic inelastic form-factors for heavy-ion reactions. A. Etchegoyen, M.C. Etchegoyen	ABJE	55 (1989)	217

17.12. Pre-equilibrium decay

PREEQ (Fortran, 816). Program for spectra and cross-section calculations within the pre-equilibrium model of nuclear reactions. E. Betak	ABGO	9 (1975)	92
000A CORRECTION 16/5/75 (Fortran)		10 (1975)	71
EMPIRE (Fortran, 3615). A program for calculation of spectra and cross sections within the combined pre-equilibrium compound nucleus model of nuclear reactions. M. Herman, A. Marcinkowski, K. Stankiewicz	ACQQ	33 (1984)	373

17.13. Coulomb excitation, electron scattering

ITER (Fortran, 484). Calculation of electric quadrupole radial matrix elements for Coulomb excitation. M. Samuel, U. Smilansky	ABQC	2 (1971)	455
DXS1 (Fortran, 1172). Differential cross sections for electric quadrupole Coulomb excitation I. S.M. Lea, V. Joshi, A.B. Lopez-Cepero	ABQE	3 (1972)	118
AROSA-FOR-COULOMB-EXCITATION-I (Fortran, 1686). Quantum mechanical coupled channels code for Coulomb excitation. F. Rosel, J.X. Saladin, K. Alder. Subroutine required: ABOZ (§17.13)	ABOY	8 (1974)	35
AROSA-FOR-COULOMB-EXCITATION-II (Fortran, 751). Quantum mechanical coupled channels code for Coulomb excitation. F. Rosel, J.X. Saladin, K. Alder. Subroutine required: ABOY (§17.13)	ABOZ	8 (1974)	35
VPSPEC (Fortran, 180). Exact PWBA virtual photon spectrum for A(gammaV,D)R. L. Tiator, L.E. Wright	AAOQ	28 (1983)	265
SOVPS (Fortran, 1424). A program to calculate virtual photon spectrum in second order Born approximation. P. Durgapal, D.S. Onley	ABPN	32 (1984)	291
VPS (Fortran, 1825). Calculation of the virtual photon spectrum for a finite nucleus in distorted wave method. F. Zamani-Noor, D.S. Onley	ABBR	48 (1988)	241
RADTAIL (Fortran, 2968). The radiation tail accompanying elastic electron scattering from the atomic nucleus. I. Talwar, L.E. Wright	ABJV	55 (1989)	367
CEFEUSK (Fortran, 402). K-matrix calculation for general nonlocal potentials. J. Horacek, J. Bok	ABRP	59 (1990)	319

Nuclear physics — Coulomb excitation, electron scattering (continued)

DPDE (Fortran, 7339). PC-Fortran programs for muon reactivation calculations in muon-catalyzed fusion.
H.E. Rafelski, B. Muller

ABRQ 59 (1990) 521

17.14. Medium energy reactions

Other version: AAWC (§17.14)

ABCJ 8 (1974) 130

Other version: AAWD (§17.14)

ABIG 11 (1976) 95

PIPI (Fortran, 1684). PIPI: a momentum space optical potential code for pions. See erratum Comput. Phys. Commun. 13 (1977) 141. R.A. Eisenstein, F. Tabakin

ABIH 12 (1976) 237

PIRK 2 (Fortran, 822). A new version of PIRK (elastic pion-nucleus scattering) to handle differing proton and neutron radii. H.O. Funsten. Other version: ABCJ (§17.14)

AAWC 16 (1979) 389

DWPI 2 (Fortran, 1090). A new version of DWPI (inelastic pion-nucleus scattering) to incorporate microscopic form factors and differing proton and neutron radii. H.O. Funsten. Subroutine required: AAWC (§17.14). Other version: ABIG (§17.14)

AAWD 16 (1979) 395

LPOTT (Fortran, 6585). LPOTT: pion and kaon elastic scattering from spin 1/2 nuclei in momentum space. R.H. Landau

AAVL 28 (1982) 109

17.15. Spectroscopy – level scheme

RITZ COMBINATION PRINCIPLE (Fortran, 113). Program for fitting transition energies into a level scheme according to the combination principle. I.R. Williams

ABKD 1 (1970) 465

Other version: ABMZ (§17.15)

ABPG 11 (1976) 75

THDST (Fortran, 1805). A program for calculating gamma-gamma directional correlation coefficients and angular distribution coefficients for gamma rays of mixed multipolarities from partially aligned nuclei.

ABMZ 15 (1978) 107

R.J. Rouse Jr., G.L. Struble, R.G. Lanier, L.G. Mann, E.S. Macias. Other version: ABPG (§17.15)

ABGQ 15 (1978) 283

CARLA (Fortran, 1101). CARLA: a code to calculate the population of high spin states through compound nucleus reactions. C. Savelli, M. Morando

ABJM 55 (1989) 85

ACOEFF (Fortran, 1403). Perturbation functions: PAC probe nuclei, I=2, 5/2, and 3. G.L. Catchen

17.16. Theoretical methods – general

MIXING (Fortran, 646). Electromagnetic M1 reduced transition probabilities for pure and mixed Nilsson states in odd-A nuclei. E. Browne, F.R. Femenia

ABQB 2 (1971) 331

SCHROD (Fortran, 138). Numerical solution of the radial Schrodinger equation. F. Beleznay

ACQZ 3 (1972) 334

AROVMI (Fortran, 493). Energy level calculations with Arovmi model. S.M. Abecasis, F.R. Femenia

ABMC 4 (1972) 262

YUKAWA/RH**LP D JL 72 (Fortran, 433). Nearly exact calculation of the solution of the radial Schrodinger equation. L. Marquez

AAGN 5 (1973) 379

EXTARO (Fortran, 639). Energy-level calculations with the extended Arovmi model. S.M. Abecasis, F.R. Femenia. Subroutine required: ABOE (§17.20)

ABMG 7 (1974) 145

MIA (Fortran, 1360). MIA, a FORTRAN-IV program for making spin and parity assignments to high-lying single and coherent twin nuclear levels from (alpha, nucleon) angular distributions in on-resonance, compound-nuclear, channel-spin-1/2 reactions. E. Sheldon, D.R. Donati, H.R. Hiddleston

ABMI 8 (1974) 199

OSCI (Fortran, 613). Bound-states of one nucleon in a Woods-Saxon well from a variational method. J.M. Delbrouck-Habaru, D.M. Dubois

ABMJ 8 (1974) 396

DOMUS (Fortran, 2596). DOMUS: a program for the analysis of two-dimensional spectra. V.B. Zlokazov

ABAB 18 (1979) 281

FYPEDIFC (Fortran, 1359). Folded Yukawa-plus-exponential model PES for nuclei with different charge densities. D.N. Poenaru, M. Ivascu, D. Mazilu

ABQH 19 (1980) 205

HFNX (Fortran, 1085). Calculation of (n, gamma) cross-sections and astrophysical reaction rates by the nuclear statistical model. M.J. Harris

ABVV 21 (1981) 407

COMMUTE (Fortran, 5238). Manual for COMMUTE, a Fortran program for symbolic evaluation of commutators and correlation functions. H. De Raedt, J. Fivez, B. De Raedt

ACKS 23 (1981) 209

PCNUM (Fortran, 829). A program for the predictor-corrector Numerov method. W.E. Baylis, S.J. Peel

AARJ 25 (1982) 21

CASEIG (Fortran, 249). Computation of Casimir operator eigenvalues. A.K. Bose

AARX 28 (1983) 271

SU2DIMPH (Fortran, 1013). Model space dimensionalities for multiparticle fermion systems. J.P. Draayer, H.T. Valdes

AABN 36 (1985) 313

SCHROD (Fortran, 438). A program for the calculation of energy eigenvalues and eigenstates of a Schrodinger equation. V. Fack, G. Vanden Berghe

AADV 39 (1986) 187

Nuclear physics — Theoretical methods — general (continued)

RWSYST (Fortran, 1868). RWSYST: a filing system for coefficients and eigenvectors. S. Kossionides, L.D. Skouras	AAFC 39 (1986) 213
ICAR AND CONV (Fortran, 1883). Codes for the combinatorial calculation of few quasiparticle state densities in spherical and deformed nuclei. M. Herman, G. Reffo	AAXS 47 (1987) 103
GAMBLE AND GAMANA (Fortran, 4794). Simulation of nuclear quasicontinuum gamma-ray spectra. G.A. Leander	ABBF 47 (1987) 311
PHISYM (Reduce, 261). An algebraic program for the states associated with the U(5) include O(5) include O(3) chain of groups. C. Yannouleas, J.M. Pacheco	ABFN 52 (1988) 85
DIAGEN (Fortran, 574). DIAGEN: generator of inelastic nucleus-nucleus interaction diagrams. S.Yu. Shmakov, V.V. Uzhinskii, A.M. Zadorozhny	ABHP 54 (1989) 125
PHIMANIP (Reduce, 665). Algebraic manipulation of the states associated with the U(5) include O(5) include O(3) chain of groups: orthonormalization and matrix elements. C. Yannouleas, J.M. Pacheco. Subroutine required: ABFN (#17.16)	ABJA 54 (1989) 315
TBINT (Fortran, 1478). Evaluation of Hamiltonian two-body matrix elements. A. Etchegoyen, M.C. Etchegoyen, E.G. Vergini	ABJF 55 (1989) 227

17.17. Oscillator brackets

BRODY-MOSHINSKY BRACKETS (Fortran, 579). Computation of Brody-Moshinsky brackets. A. Lejeune, J.P. Jeukenne. Subroutine required: ABMA (#4.1)	ABGC 2 (1971) 231
OSCILLATOR BRACKETS (Fortran, 412). Generalized transformation brackets for the harmonic oscillator functions. M. Sotona, M. Gmitro	ABGH 3 (1972) 53
TALMI (Fortran, 964). A Fortran program for the computation of the generalized Talmi coefficients. O. Zohni	ABGG 3 (1972) 61
000A CORRECTION 16/12/86 (Fortran). Unpublished correction	ABPE 10 (1975) 87
OSCILLATOR BRACKET (Fortran, 954). Calculations of harmonic oscillator brackets. D.H. Feng, T. Tamura	ABGR 16 (1979) 373
TAMOBR (Fortran, 609). Calculations of generalized harmonic oscillator brackets. J. Dobes	

17.18. Coefficients of fractional parentage - SU(3)

JJTCFP (Fortran, 714). Coefficients of fractional parentage in j-j coupling in the isospin representation. L.B. Hubbard	ABKB 1 (1970) 225
JNTJN (Fortran, 204). Allowed values of coupled angular momentum and i-spin for nucleons in a single shell in j-j coupling. L.B. Hubbard	ABKC 1 (1970) 453
1PSHELL SU3 FRACTIONAL PARENTAGE (Fortran, 1468). SU3 fractional parentage in the 1p-shell. J. Meyer, R.S. Nahabetian, J. Joseph, J. Lafoucriere	ABOL 2 (1971) 420
DATA FOR ABKG (Fortran, 7423). Reduced SU(3) CFP'S. D. Braunschweig	AAC* 14 (1978) 109
REDUCED SU(3) CFP'S (Fortran, 3655). Reduced SU(3) CFP'S. D. Braunschweig. Subroutine required (for data): AAC* (#17.18)	ABKG 14 (1978) 109
REDUCED SU(3) MATRIX ELEMENTS (Fortran, 907). II. Reduced SU(3) matrix elements. D. Braunschweig. Subroutines required: ABKG (#17.18), AAC* (#17.18)	ABKH 15 (1978) 259
GFPC1 (Fortran, 1579). Generalized fractional parentage coefficients for shell-model calculations. L.D. Skouras, S. Kossionides. Subroutine required: AAFC (#17.18)	AADX 39 (1986) 197
GFPCM (Fortran, 1156). Generalized fractional parentage coefficients for shell-model calculations. L.D. Skouras, S. Kossionides. Subroutine required: AAFC (#17.18)	AADY 39 (1986) 197
RWSYST (Fortran, 1868). RWSYST: a filing system for coefficients and eigenvectors. S. Kossionides, L.D. Skouras	AAFC 39 (1986) 213
ROTXSU3 (Fortran, 1380). Quantum rotor and its SU(3) realization. O. Castanos, J.P. Draayer, Y. Leschber	ABFO 52 (1988) 71

17.19. Shell model - one-body problem, spectra

BOUND (Fortran, 372). Nuclear bound state wave function subroutine. W.R. Smith	ACQA 1 (1969) 55
DEUT (Fortran, 968). Bound state solution of the two-nucleon Schroedinger equation with tensor forces. L. Lovitch, S. Rosati	ABGE 2 (1971) 353
0001 REMOVE NON-STANDARD FORTRAN (Fortran, 138). Bound state solution of the two-nucleon Schroedinger equation with tensor forces. L. Lovitch, S. Rosati	4 (1972) 140

Nuclear physics — Shell model — one-body problem, spectra (continued)

YUKAWA/RH**LP D JL 72 (Fortran, 433). Nearly exact calculation of the solution of the radial Schrodinger equation. L. Marquez	AAGN 5 (1973) 379
BSSW (Fortran, 300). Computation of S-state binding energy and wave functions in a Saxon-Woods potential. J. Cugnon	ABGL 6 (1973) 17
NILSSON ORBITS (Fortran, 827). Nilsson orbits for a particle in a Woods-Saxon potential with Y20 and Y40 deformations, and coupled to core rotational states. B. Hird. Subroutine required: ABMA (§4.1)	ABOV 6 (1973) 30
WSMCC (Fortran, 5695). Weizmann shell model computational code. R. Gross, Y. Accad. Subroutine required (for data): ABKB (§17.18)	ABGN 8 (1974) 101
OSCI (Fortran, 613). Bound-states of one nucleon in a Woods-Saxon well from a variational method. J.M. Delbrouck-Habaru, D.M. Dubois	ABMJ 8 (1974) 396
NUCLEAR POTENTIAL (Fortran, 1357). Solution of bound state problems in nuclear shell model with momentum dependent potentials. M.A.K. Lodhi, B.T. Waak	ACWK 10 (1975) 182
QUASI-BOUNDED STATE WAVEFUNCTIONS (Fortran, 628). Quasi-bound state wavefunctions. R.M. DeVries	ABMQ 11 (1976) 249
PSEUDO (Fortran, 2033). Resonant or bound state solution of the Schrodinger equation in deformed or spherical potential. A.T. Kruppa, Z. Papp	ACDZ 36 (1985) 59
RITSSCHIL (Fortran, 3400). RITSSCHIL: a new program for shell-model calculations. D. Zwarts	AADA 38 (1985) 365
ICAR AND CONV (Fortran, 1883). Codes for the combinatorial calculation of few quasiparticle state densities in spherical and deformed nuclei. M. Herman, G. Reffo	AAXS 47 (1987) 103
ROTXSU3 (Fortran, 1380). Quantum rotor and its SU(3) realization. O. Castanos, J.P. Draayer, Y. Leschber	ABFO 52 (1988) 71

17.20. Collective model

ENERGY LEVELS IN DAVYDOV MODEL (Fortran, 1326). Energy level calculations in Davyдов model. S.M. Abecasis, F.R. Femenia, E.S. Hernandez	ABOE 2 (1971) 33
MIXING (Fortran, 646). Electromagnetic M1 reduced transition probabilities for pure and mixed Nilsson states in odd-A nuclei. E. Browne, F.R. Femenia	ABQB 2 (1971) 331
NILSSON ORBITS (Fortran, 827). Nilsson orbits for a particle in a Woods-Saxon potential with Y20 and Y40 deformations, and coupled to core rotational states. B. Hird. Subroutine required: ABMA (§4.1)	ABOV 6 (1973) 30
DEFORMED QUASIPARTICLES (Fortran, 948). Deformed quasiparticle states in a Woods-Saxon potential and coupled to rotational states of the core. B. Hird, K.H. Huang. Subroutine required: ABMA (§4.1)	ABPF 10 (1975) 293
CORIOL (Fortran, 390). A computer program for calculation of the Coriolis effect in odd-A nuclei. R. Kaczarowski. Subroutine required: ACWH (§4.9)	ABQF 13 (1977) 63
LIQUID DROP DEFORMATION ENERGIES (Fortran, 462). Liquid drop model deformation energies of nuclei with axial symmetry and reflection asymmetry. D.N. Poenaru, M. Ivascu	ABQG 16 (1978) 85
ODDODDCORI (Fortran, 1204). A program for calculation of the Coriolis effect in odd-odd nuclei. Z. Hons, J. Kvasil. Subroutine required: ACWH (§4.9)	AARA 24 (1981) 161
INVAP (Fortran, 767). Initial values of parameters for variable moment of inertia models. G.S. Anagnosatos, K. Demakos, A. Vassiliou	ABQN 24 (1981) 197
NUDEN (Fortran, 15611). NUDENS: a Nilsson-Bardeen-Cooper-Schrieffer code at finite nuclear temperature. G. Maino, M. Vaccari, A. Ventura. Other version: AALW (§17.20)	ABQS 29 (1983) 375
CORIOP (Fortran, 1980). A program for calculation of the E1, E2 and M1 transition probabilities in odd-odd nuclei taking the Coriolis mixing into account. Z. Hons, J. Kvasil. Subroutine required: ACWH (§4.9)	ABQT 30 (1983) 59
PSEUDO (Fortran, 2033). Resonant or bound state solution of the Schrodinger equation in deformed or spherical potential. A.T. Kruppa, Z. Papp	ACDZ 36 (1985) 59
NUCPAR (Fortran, 2008). NUCPAR: a parity-dependent NBCS formalism at finite nuclear temperature. G. Maino, A. Ventura. Subroutine required (for data): ABQS (§17.20). Other version: ABQS (§17.20)	AALW 43 (1987) 303
WSBETA (Fortran, 4617). Single particle energies, wave functions, quadrupole moments, and g-factors in axially deformed Woods-Saxon potential with applications in the two-centre-type nuclear problems. S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, T.R. Werner	AAXX 46 (1987) 379
PARTICLE-VIBRATION COUPLING (Fortran, 1926). Particle-vibration coupling model for odd-A nuclei. R.D. Purrington	ABLP 58 (1990) 211

Nuclear physics (continued)**17.21. Cluster model**

FOURBODY (Fortran, 467). Rapid evaluation of four-body cluster contributions. G.P. Mueller Other version: AAOY (§17.21)	ABIA 2 (1971) 214
DFIDTH (Fortran, 269). Program package for calculating matrix elements of two-cluster structures in nuclei. R. Krivec, M.V. Mihailovic	AARQ 25 (1982) 237
STOKER (Fortran, 1000). Program package for calculating matrix elements of two-cluster structures in nuclei. R. Krivec, M.V. Mihailovic	AAOG 28 (1982) 153
PRO2C (Fortran, 2246). Program package for calculating matrix elements of two-cluster structures in nuclei. R. Krivec, M.V. Mihailovic. Subroutines required: AAOG (§17.21), AAOH (§17.21)	AAOH 28 (1982) 153
NUCADA (Fortran, 2979). NUCADA: two adaptations of the system NUCORE for nuclear structure calculations. C.A. Heras, S.M. Abecasis. Subroutine required: ACWH (§4.9). Other version: AARQ (§17.21)	AAOI 28 (1982) 153
	AAOY 29 (1983) 73

17.22. Hartree-Fock calculations

HARFOCK (Fortran, 662). Hartree-Fock nuclear calculations with gaussian potentials. J.F. Allard, A. Abzouzi, B. Houssais	ABGD 3 (1972) 22
PROJ (Fortran, 1098). A nuclear Hartree-Fock intrinsic wavefunction projection program. J.F. Allard, N. Boumahrat, B. Houssais, M. Hadj Hassan, M. Lambert	ABGI 4 (1972) 239

18. Optics

KRKRN (Fortran, 583). Kramers - Kronig analysis of reflection data. R. Klucker, U. Nielsen	ACKD 6 (1973) 187
COLOUR COORDINATE CALCULATIONS (Fortran, 383). Colour coordinate calculations. D.L. Bradley, R. Perrin	ACWA 9 (1975) 305
KRONIG (Fortran, 101). Numerical solution of Kramers-Kronig transforms by a Fourier method. S.J. Collocott	ACMN 13 (1977) 203
0001 TRAPZAL (Fortran, 15). Adaptation: numerical solution of the Kramers-Kronig transforms by trapezoidal summation as compared to a Fourier method. S.J. Collocott, G.J. Troup	17 (1979) 393
ELLIPS (Fortran, 1209). ELLIPS: a Fortran simulation of a polarization-modulation ellipsometer. V.M. Bermudez	ACXK 13 (1977) 207
FREINT (Fortran, 346). FREINT: an integration routine calculating Fresnel diffraction. W.J. Gruschel	ACUB 16 (1979) 175
000A CORRECTION 27/11/78 (Fortran). Unpublished correction	
SLAM (Fortran, 1121). SLAM: vectorized calculation of refraction and reflection for a Gaussian beam at a nonlinear interface in the presence of a diffusive Kerr-like nonlinearity. D.R. Andersen, R. Cuykendall, J.J. Regan	ABBT 48 (1988) 255

19. Plasma physics**19.1. Atomic and molecular processes**

HYDROGENIC RECOMBINATION COEFFS (Fortran, 306). A program to calculate radiative recombination coefficients of hydrogenic ions. D.R. Flower, M.J. Seaton	ACQD 1 (1969) 31
COLLRAD (Fortran, 1347). COLLRAD: a code for calculating the quasi-steady state population densities of excited states of hydrogen-like ions. G.J. Tallents	AAID 12 (1976) 205
AATWAB (Fortran, 2046). A program to calculate coronal emission line strengths. P.L. Dufton	ACXE 13 (1977) 25
TRIP 1 (Fortran, 1412). TRIP 1: a time-dependent recombination ionisation package. J. Magill. Subroutine required: ABUF (§4.14) or ABUJ (§4.14) or ABUK (§4.14)	ABUV 16 (1978) 129
REACS (Fortran, 923). Numerical modelling of a chemical plasma. I. REACS: a program to generate all reactions which take place in a plasma of given chemical content. S.A. Roberts. Subroutine required (for data): ACZF (§16.8)	ACZD 18 (1979) 353
PLASKEM (Fortran, 1789). Numerical modelling of a chemical plasma. II. PLASKEM: a program to predict the variation with time of the number densities of chemical species within a plasma. S.A. Roberts. Subroutines required (for data): ACWX (§15), ACZD (§19.1), ACZF (§16.8)	ACZE 18 (1979) 363
MFP (Fortran, 1477). MFP: a code for calculating equation of state and optical data for noble gases. R.R. Peterson, G.A. Moses	ABVK 20 (1980) 353

Plasma physics — Atomic and molecular processes (continued)

COLRAD (Fortran, 5417). COLRAD: a program to calculate population densities of the excited atomic levels of hydrogen-like ions in a plasma. N.N. Ljepojevic, R.J. Hutcheon, J. Payne
 POS (Fortran, 3141). POS - A 1d time-dependent H⁺ ion source code. A.H. Glasser, K. Smith
 IONMIX (Fortran, 5027). IONMIX: a code for computing the equation of state and radiative properties of LTE and non-LTE plasmas. J.J. MacFarlane

AATR 44 (1987) 157
 ABJU 55 (1989) 409
 ABJT 56 (1989) 259

19.2. Beams

No programs classified under this heading yet.

19.3. Collisionless plasmas

DELSOPHI (Fortran, 1630). DELSOPHI, a two-dimensional Poisson-solver program. J.P. Christiansen, R.W. Hockney. Subroutine required: ABUA (\$4.6)
 DELSQRZ (Fortran, 1131). Solution of Poisson's equation in cylindrical coordinates. M.H. Hughes. Subroutine required: ABUA (\$4.6)
 AXISYMM-SCALAR-HELMHOLTZ-FINTEL4 (Fortran, 3638). A finite element program package for axisymmetric scalar field problems. A. Konrad, P. Silvester. Subroutine required: ACSD (\$19.3). Other version: ACSC (\$19.3)
 AXISYMM-SCALAR-HELMHOLTZ-FINTEL6 (Fortran, 4188). A finite element program package for axisymmetric scalar field problems. A. Konrad, P. Silvester. Subroutine required: ACSD (\$19.3). Other version: ACSB (\$19.3)
 GENERATE (Fortran, 760). A finite element program package for axisymmetric scalar field problems. A. Konrad, P. Silvester. Other version: AABL (\$12)
 WATER BAG MODEL (Fortran, 1056). A numerical code for multiple water bag gravitational systems. S. Cuperman, A. Harten
 AXISYMM-VECTOR-HELMHOLTZ-FINTEL6 (Fortran, 4463). A finite element program package for axisymmetric vector field problems. A. Konrad, P. Silvester. Subroutines required: ACSC (\$19.3), ACSD (\$19.3), ACSF (\$19.3)
 VECTR-FINTEL6-BLK-DATA-GENERATOR (Fortran, 1629). A finite element program package for axisymmetric vector field problems. A. Konrad, P. Silvester
 P3M3DP (Fortran, 7964). P3M3DP: the three dimensional periodic particle-particle/particle-mesh program. J.W. Eastwood, R.W. Hockney, D.N. Lawrence. Subroutines required: ABUF (\$4.14) or ABUJ (\$4.14) or ABUK (\$4.14), ABUA (\$4.6)
 PHASE SPACE BOUNDARY INTEGRATION (Fortran, 1454). A numerical code for the phase-space boundary integration of water bag plasmas. S. Cuperman, M. Mond
 SHRD (Fortran, 702). Integration of Vlasov equation by quantum mechanical formalism. V.T. Nguyen, P. Bertrand, B. Izrar, E. Fijalkow, M.R. Feix
 TAYLOR-CHIRIKOV MAP PACKAGE (Fortran, 1260). Taylor-Chirikov map package: a package of programs for the calculation of ordered periodic orbits of area preserving twist maps. Q. Chen, B.D. Mestel
 VLFF (Fortran, 413). Integration of Vlasov equation by a fast Fourier Eulerian code. B. Izrar, A. Ghizzo, P. Bertrand, E. Fijalkow, M.R. Feix

ABUB 2 (1971) 139
 ABUC 2 (1971) 157
 ACSB 5 (1973) 437
 ACSC 5 (1973) 438
 ACSD 5 (1973) 438
 ACRU 8 (1974) 307
 ACSE 9 (1975) 193
 ACSF 9 (1975) 194
 ABVA 19 (1980) 215
 ABVU 21 (1981) 397
 ACCY 34 (1985) 295
 ABBW 51 (1988) 463
 ABHD 52 (1989) 375

19.4. Data interpretation

ABEL (Fortran, 437). Inversion of Abel's integral equation -application to plasma spectroscopy. C. Fleurier, J. Chapelle
 ABEL (Fortran, 174). Inversion of Abel's integral equation by a direct method. L.S. Fan, W. Squire
 AFER (Fortran, 914). Calculation of the energy response of a spectrometer. J. Lotrian, M. Leriche, J. Cariou
 ABEL (Fortran, 1615). ABEL: stable, high accuracy program for the inversion of Abel's integral equation. I. Beniaminy, M. Deutsch

AAAC 7 (1974) 200
 ABSC 10 (1975) 98
 ACXA 12 (1976) 231
 AAOK 27 (1982) 415

19.5. Discharges

SPARK71 (Fortran, 1074). The computation of the growth of a gaseous discharge in space-charge distorted fields. A.J. Davies, C.J. Evans. Other version: ABUU (\$19.5)
 DCANF (Fortran, 931). The computation of steady state arcs in nozzle flow. M.T.C. Fang, S.K. Chan, R.D. Wright

ABUD 3 (1972) 322
 ABUS 13 (1977) 363

Plasma physics — Discharges (continued)

SPARK2D (Fortran, 2253). Simulation of the growth of axially symmetric discharges between plane parallel electrodes. A.J. Davies, C.J. Evans, P.M. Woodison. Other version: ABUD (§19.5)	ABUU 14 (1978) 287
RADFL (Fortran, 1038). Radial radiative flux in cylindrically symmetric arcs. P.J. Shayler, M.T.C. Fang	ABUW 16 (1978) 139
ARCABL (Fortran, 1000). The computation of steady state arcs with mild nozzle-wall ablation. D.B. Newland, M.T.C. Fang	ACEC 28 (1983) 299
SIGDCS (Fortran, 1044). Scalar DC electrical conductivity of partially ionized gases. D.A. Erwin, J.A. Kunc	AALE 42 (1986) 119
SSARC (Fortran, 2607). The computation of self-similar arcs. J.F. Zhang, D.B. Newland, M.T.C. Fang	ABBI 47 (1987) 267
ALACANT (Fortran, 944). Modeling of glow discharge sputtering systems: computer program. I. Abril	ABFC 51 (1988) 413

19.6. Equilibrium and stability

DELSQPHI (Fortran, 1630). DELSQPHI, a two-dimensional Poisson-solver program. J.P. Christiansen, R.W. Hockney. Subroutine required: ABUA (§4.6)	ABUB 2 (1971) 139
DELSQRZ (Fortran, 1131). Solution of Poisson's equation in cylindrical coordinates. M.H. Hughes. Subroutine required: ABUA (§4.6)	ABUC 2 (1971) 157
THALIA (Fortran, 2636). THALIA - a one-dimensional magnetohydrodynamic stability program using the method of finite elements. K. Appert, D. Berger, R. Gruber, F. Troyon, K.V. Roberts. Subroutines required: ABUF (§4.14) or ABUJ (§4.14) or ABUK (§4.14), ACWC (§4.8)	ACWB 10 (1975) 11
2LDV103 (PL/I, 1506). Linear and nonlinear ideal MHD codes - V103. H.R. Hicks, J.W. Wooten	ABUQ 13 (1977) 117
N3DV103 (PL/I, 1497). Linear and nonlinear ideal MHD codes - V103. H.R. Hicks, J.W. Wooten	ABUR 13 (1977) 117
Other version: ABQI (§19.11)	ABUT 14 (1978) 423
HYMBLO (Fortran, 978). HYMNIABLOCK: eigenvalue solver for blocked matrices. R. Gruber	ABVI 20 (1980) 421
ERATO (Fortran, 7901). ERATO stability code. R. Gruber, F. Troyon, D. Berger, L.C. Bernard, S. Rousset, R. Schreiber, W. Kerner, W. Schneider, K.V. Roberts	ABVS 21 (1981) 323
RECT (Fortran, 543). Orthogonalization of discrete coordinates. C.W. Davies	AAQW 23 (1981) 427
VMOMS (Fortran, 2840). VMOMS: a computer code for finding moment solutions to the Grad-Shafranov equation. L.L. Lao, R.M. Wieland, W.A. Houlberg, S.P. Hirshman	ABSH 27 (1982) 129
000A CORRECTION 09/05/83 (Fortran)	30 (1983) 107
MAGCFA (Fortran, 2305). Numerical evaluation of magnetic coordinates for toroidal magnetic confinement devices. G. Kuo-Petravic	ACCO 33 (1984) 353
ODRIC (Fortran, 9719). ODRIC: a one-dimensional linear resistive MHD code in cylindrical geometry. A.A. Mirin, R.J. Bonugli, N.J. O'Neill, J. Killeen	AAFZ 41 (1986) 85
EIV (Fortran, 9469). EIV: axisymmetric plasma equilibrium code. D.E. Shumaker	AATQ 44 (1987) 177

19.7. Inertial confinement

MEDUSA (Fortran, 6316). MEDUSA - a one-dimensional laser fusion code. J.P. Christiansen, D.E.T.F. Ashby, K.V. Roberts. Subroutine required: ABUF (§4.14) or ABUJ (§4.14) or ABUK (§4.14)	ABUG 7 (1974) 271
000A CORRECTION 15/8/75 (Fortran)	10 (1975) 251
RAMSES (Fortran, 3798). RAMSES: a two-dimensional, PIC type laser pulse propagation code. H.D. Dudder, D.B. Henderson. Subroutine required: ABUF (§4.14) or ABUJ (§4.14) or ABUK (§4.14)	ABUL 10 (1975) 155
CASTOR 2 (Fortran, 13600). CASTOR 2: a two-dimensional laser target code. J.P. Christiansen, N.K. Winsor. Subroutines required: ABUF (§4.14) or ABUJ (§4.14) or ABUK (§4.14), ABUV (§19.1)	ABUY 17 (1979) 397
000A CORRECTION 10/03/81 (Fortran)	23 (1981) 109
HEATER (Fortran, 602). HEATER: a 2D laser propagation subroutine for underdense plasmas. J.N. McMullin, C.E. Capjack, C.R. James	ABSG 23 (1981) 31
FIRE (Fortran, 6071). FIRE: a code for computing the response of an inertial confinement fusion cavity gas to a target explosion. T.J. McCarville, R.R. Peterson, G.A. Moses. Subroutine required (for data): AAHO (§19.7)	AAHP 28 (1983) 367
MIXERG (Fortran, 2509). MIXERG: an equation of state and opacity computer code. R.R. Peterson, G.A. Moses	AAHO 28 (1983) 405
MF-FIRE (Fortran, 9545). MF-FIRE: a multifrequency radiative transfer hydrodynamics code. G.A. Moses, R.R. Peterson, T.J. McCarville. Subroutine required: AAHO (§19.7)	ACDV 36 (1985) 249
MULTI (Fortran, 14231). MULTI: a computer code for one-dimensional multigroup radiation hydrodynamics. R. Ramis, R. Schmalz, J. Meyer-ter-Vehn	ABBV 49 (1988) 475

Plasma physics (continued)**19.8. Kinetic models**

FIFPC (Fortran, 3936). FIFPC: a fast ion Fokker-Planck code. R.H. Fowler, J. Smith, J.A. Rome Other version: ABFI (\$19.8)	ABSD 13 (1977) 323
Other version: ABFI (\$19.8)	AAQU 24 (1981) 37
SIGV5D (Fortran, 731). SIGV5D, a routine to compute the reaction rates of interacting distribution functions. A.A. Mirin, M.G. McCoy	AAQV 24 (1981) 37
FPPAC88 (Fortran, 7268). FPPAC88: a two-dimensional multispecies nonlinear Fokker-Planck package. A.A. Mirin, M.G. McCoy, G.P. Tomaschke, J. Killeen. Other versions: AAQU (\$19.8), AAQV (\$19.8)	ABFG 51 (1988) 369
ELENDIF77 (Fortran, 3596). ELENDIF: a time-dependent Boltzmann solver for partially ionized plasmas. W.L. Morgan, B.M. Penetrante	ABFI 51 (1988) 373
	ABLX 58 (1990) 127

19.9. Magnetic confinement

GLOWCODE (Fortran, 2489). GLOWCODE: a one-dimensional code for the simulation of plasma afterglows. J.W. Long, A.A. Newton, M.C. Sexton. Subroutine required: ABUF (\$4.14) or ABUJ (\$4.14) or ABUK (\$4.14)	ABUP 12 (1976) 213
BWIRE (Fortran, 633). Magnetic field, vector potential and their derivatives due to currents in closed polygons of wire. D.K. Lee	AARP 25 (1982) 181
ZEROD (Fortran, 3460). ZEROD: a computer model for plasma-circuit coupling. J.W. Long, J.W. Johnston, A.A. Newton. Subroutine required: ABUF (\$4.14) or ABUJ (\$4.14) or ABUK (\$4.14)	ACDG 34 (1985) 231
TOPIC (Fortran, 1217). TOPIC: a tokamak plasma impurities code. T.A. Beu, F. Spineanu, M. Vlad, R.I. Campeanu, I.I. Popescu	ACDY 36 (1985) 161
TANDEM (Fortran, 1088). Magnetic configurations for axisymmetric tandem mirror devices. S. Cuperman, L. Ofman	AALK 42 (1986) 217
TUBE88 (Fortran, 14525). TUBE88, a code which computes magnetic field lines. A.A. Mirin, D.R. Martin, N.J. O'Neill	ABHJ 54 (1989) 183
CFRX (Fortran, 2626). CFRX, a one-and-a-quarter-dimensional transport code for field-reversed configuration studies. M.-Y. Hsiao, K.A. Werley, K.M. Ling	ABHZ 54 (1989) 329

19.10. Magnetohydrodynamics

ALFVEN (Fortran, 2463). ALFVEN: a two-dimensional code based on SHASTA, solving the radiative, diffusive MHD equations. W.J. Weber, J.P. Boris, J.H. Gardner	ABUX 16 (1979) 243
000A CORRECTION 26/09/80 (Fortran)	21 (1981) 437
PLASMA (Fortran, 1072). A program to solve rotating plasma problems. M. Bakker, M.S. van den Berg	ABVE 20 (1980) 429
ILUBCG2 (Fortran, 824). ILUBCG2: a preconditioned biconjugate gradient routine for the solution of linear asymmetric matrix equations arising from 9-point discretizations. A.E. Koniges, D.V. Anderson	AALX 43 (1987) 297

19.11. Transport

SOUND ABSORPTION (Fortran, 320). A program for the extraction of bulk viscosities from sound absorption data. H. Moraal	ABSA 3 (1972) 1
BOLTZ (Fortran, 2857). BOLTZ: a code to solve the transport equation for electron distributions and then calculate transport coefficients and vibrational excitation rates in gases with applied fields. R.M. Thomson, K. Smith, A.R. Davies	ACWX 11 (1976) 369
Other version: ABQI (\$19.11)	ABUT 14 (1978) 423
ATHENE 1A (Fortran, 12570). ATHENE 1A: a one-dimensional fusion code. J.P. Christiansen, K.V. Roberts, V.A. Piotrowicz, J.W. Long, J.W. Johnston, A.A. Newton. Subroutine required: ABUF (\$4.14) or ABUJ (\$4.14) or ABUK (\$4.14). Other version: ABUT (\$19.11)	ABQI 23 (1981) 63
SEURAT (Fortran, 3630). SEURAT: a Monte Carlo algorithm for calculating neutral gas transport in non-circular axisymmetric toroidal plasmas. D.B. Heifetz, D.E. Post	ABSI 29 (1983) 287
HPLAS (Fortran, 9383). HPLAS: multigroup cross section and reaction rate processor for coupled H, H ₂ and H ₂ ⁺ transport applications in plasmas. B.R. Wienke, J.E. Morel, T.E. Cayton, R.B. Howell	ACDA 34 (1984) 87
FD, FDG, FDH (Fortran, 2119). Generalized Fermi-Dirac integrals - FD, FDG, FDH. L.W. Fullerton, G.A. Rinker	AADU 39 (1986) 181
STRIMP (Fortran, 1218). STRIMP: program for studying the impurity evolution in tokamak plasma. F. Spineanu, M. Vlad, I.I. Popescu	AAFS 41 (1986) 155
SIGDCS (Fortran, 1044). Scalar DC electrical conductivity of partially ionized gases. D.A. Erwin, J.A. Kunc	AALE 42 (1986) 119

Plasma physics — Transport (continued)

BALDUR (Fortran, 45271). BALDUR: a one-dimensional plasma transport code. C.E. Singer, D.E. Post, D.R. Mikkelsen, M.H. Redi, A. McKenney, A. Silverman, F.G.P. Seidl, P.H. Rutherford, R.J. Hawryluk, W.D. Langer, L. Foote, D.B. Heifetz, W.A. Houlberg, M.H. Hughes, R.V. Jensen, G. Lister, J. Ogden	ABBS 49 (1988) 399
POS (Fortran, 3141). POS - A 1d time-dependent H+ ion source code. A.H. Glasser, K. Smith	ABJU 55 (1989) 409
IONMIX (Fortran, 5027). IONMIX: a code for computing the equation of state and radiative properties of LTE and non-LTE plasmas. J.J. MacFarlane	ABJT 56 (1989) 259
ELENDIF77 (Fortran, 3596). ELENDIF: a time-dependent Boltzmann solver for partially ionized plasmas. W.L. Morgan, B.M. Penetrante	ABLX 58 (1990) 127

19.12. Space and astrophysical plasmas

IONMIX (Fortran, 5027). IONMIX: a code for computing the equation of state and radiative properties of LTE and non-LTE plasmas. J.J. MacFarlane	ABJT 56 (1989) 259
---	--------------------

19.13. Wave-plasma interactions

DRFT (Fortran, 543). Radiation potential of a point antenna immersed in drifting cold or hot (hydrodynamical) plasma. E. Fijalkow, G. Mourguès	ABUZ 18 (1979) 297
POTENT (Fortran, 433). The potential created by an alternating point charge in a Maxwellian magneto-plasma. J. Thiel, P. Dorio, C. Soubry	AAQP 23 (1981) 169

19.14. General plasma physics

No programs classified under this heading yet.

20. Programming and publication practice

OLYMPUS (Fortran, 2425). OLYMPUS – a standard control and utility package for initial-value Fortran programs. J.P. Christiansen, K.V. Roberts. Other versions: ABUJ (\$20), ABUK (\$20)	ABUF 7 (1974) 245
OLYMPUS FOR IBM 370/165 (Fortran, 2412). OLYMPUS and preprocessor package for an IBM 370/165. M.H. Hughes, K.V. Roberts, P.D. Roberts. Other versions: ABUF (\$20), ABUK (\$20)	ABUJ 9 (1975) 51
OLYMPUS FOR CDC 6500 (Fortran, Compass, 2170). OLYMPUS control and utility package for the CDC 6500. M.H. Hughes, K.V. Roberts, G.G. Lister. Other versions: ABUF (\$20), ABUJ (\$20)	ABUK 10 (1975) 167
COMPOS (Fortran, 5496). The OLYMPUS Fortran compositor. M.H. Hughes, K.V. Roberts. Subroutine required: ABUF (\$20) or ABUJ (\$20) or ABUK (\$20)	ACEA 29 (1983) 45
GENSIS (Fortran, 7759). The OLYMPUS Fortran generator. M.H. Hughes, K.V. Roberts. Subroutine required: ABUF (\$20) or ABUJ (\$20) or ABUK (\$20)	ACEB 29 (1983) 59

21. Radiation**21.1. Radiation physics**

SYNCHROTRON RADIATION (Fortran, 321). Spectral intensity, angular distribution and polarisation of synchrotron radiation from a monoenergetic electron. J. Lang	ACQR 1 (1970) 440
DOSEI (Fortran, 351). Gamma-radiation dosimetry for arbitrary source and target geometry. L.B. Hubbard	ACMG 2 (1971) 449
000A CORRECTION 05/03/73 (Fortran)	5 (1973) 395
0001 DOSEI IMPROVEMENTS (Fortran, 187). First collision gamma-ray dose. L.B. Hubbard	6 (1973) 240
MCS (Fortran, 867). Monte Carlo simulation of photons in two-layered media for density gauges. E.R. Christensen	AAUK 7 (1974) 185
BREMSSSTRAHLUNG INTENSITY (NR) (Fortran, 301). A program for calculating the angular distribution of nonrelativistic bremsstrahlung intensity. A. Banuelos, F. Rodriguez-Trelles	ACYJ 15 (1978) 125
0001 BREMSSSTRAHLUNG INTENSITY 2 (Fortran, 245). Extension to high frequencies of a program for calculating the angular distribution of nonrelativistic bremsstrahlung. A. Banuelos, F. Rodriguez-Trelles, L. Bilbao	17 (1979) 305
MUNIC ATOM CASCADE (Fortran, 2760). Muonic atom cascade program. V.R. Akylas, P. Vogel	AAMA 15 (1978) 291
RADFL (Fortran, 1038). Radial radiative flux in cylindrically symmetric arcs. P.J. Shayler, M.T.C. Fang	ABUW 16 (1978) 139
SNEX (Fortran, 434). SNEX: semianalytic solution of the one-dimensional discrete ordinates transport equation with diamond differenced angular fluxes. B.R. Wienke	AADK 38 (1985) 397

Radiation — Radiation physics (continued)

ESECT/EMAP (Fortran, 801). ESECT/EMAP: mapping algorithm for computing intersection volumes of overlaid meshes in cylindrical geometry. B.R. Wienke	AAFD 39 (1986) 259
SYNCHR88 (Fortran, 777). Synchrotron radiation flux at experimental stations. J.S. Reid	ABJB 54 (1989) 307
BREMPNT (Fortran, 323). Bremsstrahlung cross section for a point, spinless target. A. Minter, D.A. Jenkins	ABRV 59 (1990) 499

21.2. Radiative transfer

ABELA (Fortran, 413). Calculation of the radial distribution of emitters in a cylindrical source. R. Piessens	ABUE 5 (1973) 294
TRANSFER (Fortran, 1808). Numerical evaluation of the formal solution of radiative transfer problems in spherical geometries. D.G. Hummer, C.V. Kunasz, P.B. Kunasz	AAAB 6 (1973) 38
SLAB3 (Fortran, 3203). Transfer of line radiation in optically thick media allowing for transport of excitation energy: the resonant doublet. C.V. Kunasz, P.B. Kunasz	AAAH 10 (1975) 304
AFER (Fortran, 914). Calculation of the energy response of a spectrometer. J. Lotrian, M. Leriche, J. Cariou	ACXA 12 (1976) 231
MFP (Fortran, 1477). MFP: a code for calculating equation of state and optical data for noble gases. R.R. Peterson, G.A. Moses	ABVK 20 (1980) 353
PROFILE (Fortran, 1149). PROFILE: a code for evaluating line profile shapes for optically thick expanding plasmas. G.J. Tallents	AARK 25 (1982) 141
Other version: ABBQ (\$21.2)	AAEJ 28 (1983) 337
MAXWEL (Fortran, 914). MAXWEL: exact photon cross section processor for relativistic Maxwellian electrons. B.L. Lathrop, B.R. Wienke	ACCF 32 (1984) 309
SNEX (Fortran, 434). SNEX: semianalytic solution of the one-dimensional discrete ordinates transport equation with diamond differenced angular fluxes. B.R. Wienke	AADK 38 (1985) 397
CSDUST3 (Fortran, 3943). CSDUST3: a radiation transport code for a dusty medium with 1-D planar, spherical or cylindrical geometry. M.P. Egan, C.M. Leung, G.F. Spagna Jr. Other version: AAEJ (\$21.2)	ABBQ 48 (1988) 271

22. Reactor systems

RETRANS (Fortran, 2316). RETRANS: a program for calculating reactivity transients. G. Kamelander	AADB 39 (1986) 105
DENTS (Fortran, 3534). DENTS: a Fortran program for analysing continuous neutron spectra. C.A. Ciarcia, W.A. Schier, G.P. Couchell, D.J. Pullen, R.S. Tanczyn, M.H. Haghghi, Q. Sharfuddin	AAFA 39 (1986) 233
GRENDAE (Fortran, 2865). GRENADE: a coarse-mesh reactor physics program to solve the static diffusion equation for neutrons. T.A. Beu, D.I. Simionovici, V.N. Anghel	AALJ 42 (1986) 197

23. Statistical physics and thermodynamics

ISING (Fortran, Compass, 776). A fast algorithm for investigations on the three-dimensional Ising model. See erratum Comput. Phys. Commun. 55 (1989) 251. M. Creutz, P. Mitra, K.J.M. Moriarty	ACCP 33 (1984) 361
MICROIS (Fortran, 442). Fortran code for the three-dimensional Ising model. M. Creutz, K.J.M. Moriarty. Other version: AALU (\$23)	AADW 39 (1986) 173
ISING (Fortran, 349). Vectorization of the three-dimensional Ising model program on the CDC CYBER 205. M. Creutz, K.J.M. Moriarty, M. O'Brien. Other version: AADW (\$23)	AALU 42 (1986) 191
KAPPA, KP (Fortran, 1159). High temperature expansion via Schwinger-Dyson equations: the planar rotator model on a triangular lattice. P. Butera, R. Cabassi, M. Comi, G. Marchesini	AATS 44 (1987) 143
GLASS (Fortran, 959). A fast vectorized program for the CDC CYBER 205 to simulate the Ising spin glass in three dimensions. G. Bhanot, R. Salvador, D. Duke, K.J.M. Moriarty	ABDA 49 (1988) 465
BCC64 (Fortran, 487). Fortran code for the three-dimensional Ising model on body-centered cubic and face-centered cubic lattices. J.-M. Drouffe, K.J.M. Moriarty	ABFY 52 (1989) 249
FCC64 (Fortran, 466). Fortran code for the three-dimensional Ising model on body-centered cubic and face-centered cubic lattices. J.-M. Drouffe, K.J.M. Moriarty	ABFZ 52 (1989) 249
MICRO (Fortran, 763). A fast vectorized program for the Cyber 205 to calculate the partition function of the 3-D Ising model. P.A. Carter	ABHR 54 (1989) 103
ISINGSIMULATOR (Fortran, 1009). A fast vectorized Fortran 77 program for the Monte Carlo simulation of the three dimensional Ising system. H.-O. Heuer	ABRG 58 (1990) 387

8
0

Computer Physics Communications Program Library

This international physics program library was set up at the Queen's University of Belfast in 1969 with the aid of a grant from the Science and Engineering Research Council, England. A description of the CPC Program Library Services is given in *Comput. Phys. Commun.* 42 (1986) xxv–xxvii.

The library contains all the programs whose descriptions are published in Computer Physics Communications.

Services offered

- A subscription scheme designed for laboratories and institutes that wish to receive regularly all programs contributed to the library.
- A service to scientists who require particular programs relevant to their research.
- An electronic mail information service.

Distribution

The program decks, including data for the test run, are distributed to a subscriber or to an individual as 80 character lines on half-inch 9-track magnetic tape in a tape code specified by the customer on a standard form. Individual programs can be supplied on floppy disc, by electronic mail, or as listings if specially requested. Order forms are printed on the following pages.

Subscriptions

The subscription scheme was started in 1970 and is organised on a per volume basis. A volume contains at least 80000 lines. So far 50 volumes have been distributed to subscribers and volumes 51, 52, 53 and 54 are announced for 1992.

Individual requests

One or several programs can be requested from the library. Every effort is made to provide a rapid service and all program copies are despatched by air-mail or by electronic mail.

Service charges

The library is self-supporting but not profit-making, and a charge is made for library services. The charges are given in the order forms.

Licensed programs

Persons ordering licensed programs should mail one signed copy of a program licence for that program to CPC with their program order (a blank licence which may be photocopied for such use is printed hereafter). If your institution requires a countersigned file copy of the licence for software files please indicate this on the form and a countersigned copy will be sent by return post. Subscribers to the whole library simply sign one copy as part of the subscription process.

Electronic mail information service

The current program index, either complete or specified sections and author indexes are available by electronic mail. Information on the service and a list of commands are obtained by sending the message: GET CPC INTRO CPCINDEX to (JANET) LISTRAL@UK.AC.RLIB or (EARN/BITNET) LISTRAL@UKACRL or LISTRAL@EARN-RELAY.AC.UK

Information

The library is well established and considerable experience has been accumulated in distributing programs to major computing installations all over the world. There are over 1200 programs in the library in most areas of physics. A program index is available and can be obtained on request. It will also be published in a forthcoming issue of Computer Physics Communications.

Further information on the services is available from:

Miss C. Jackson
CPC Program Library
Department of Applied Mathematics and Theoretical Physics
The Queen's University of Belfast
Belfast BT7 1NN
Northern Ireland
Electronic mail address: JANET CPC@UK.AC.QUB.AMV1
 EARN/BITNET CPC@AMV1.QUB.AC.UK or
 CPC%UK.AC.QUB.AMV1@UKACRL.BITNET

Standard CPC non-profit use licence *

Name of program:

Catalogue number:

Conditions of licence:

1. This licence entitles the licensee (one person) and his/her research group to use the program and share the source or executable code for academic or non-profit use within a research group or it entitles the licensee (one company, organization, or computing center) to install the program and allow access to the executable code to any number of users for academic or non-profit use. For programs covered by this licence, no users or site will redistribute the source code or executable code to a third party in original or modified form without written permission of the author.
2. Publications resulting from using this program will reference the article describing the program in Computer Physics Communications.
3. This licence does not allow any commercial (profit-making or proprietary) use or relicensing or redistributions. Persons interested in for-profit use should contact the author directly.

Name and address of licensee (personal user, research group leader, company, organization, or computing centre):

On behalf of myself or the above licensee, I agree to the conditions listed above for this licence.

Signed for licensee:

Print or type name of person signing:

Date:

Users requiring a countersigned copy of this licence should check this box and CPC Program Library will countersign and date the agreement below.

* To be completed when stated in the Program Summary.

1992

Application for a subscription to the CPC Program Library

Volumes 51, 52, 53 and 54

Please refer to the previous page for a short description of the library and services. Please indicate if back volumes are also required.

Name of person to whom the tapes should be sent:

Name of institute:

Address:

Type of computer:

Magnetic tape specifications

The library programs will be sent as 80 character lines on half-inch, 9-track magnetic tape without a header label. Please indicate the mode in which the tape should be written. Please specify the requirements if the alternatives given are impossible.

Density: 1600 characters per inch 6250 characters per inch

Number of lines per block (block length = $80n$ characters, $n \leq 48$):

Character code

The most common code on 9-track tape is EBCDIC. If this is unsuitable please define the code required.

Subscription charge

In 1992 the subscription is £240 per volume plus the cost of a tape and its postage.

All back volumes 1-50, can be obtained at the special price of £2100. Magnetic tapes and their postage are charged extra. The volumes are combined and distributed on a minimum number of 2400 ft. magnetic tapes.

Neither the Library nor the Author of any distributed program guarantees that it is free from error or meets its published specification and cannot be responsible for any loss or consequential damage as a result of using it.

The subscriber is asked to limit the distribution of programs in the Library to authorized users of the facilities provided by his institution.

Name of person authorising the subscription:

Address:

Signature:

Date:

Please return to:

Miss C. Jackson, CPC Program Library, Department of Applied Mathematics,
The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland.

1992

CPC Program Library – individual request order form

Please list the program(s) required. Kindly check whether any program calls other CPC Library subprograms since these should also be listed.

Catalogue number: Title: No. of lines:

Type of computer to be used: Total no. of lines:

Magnetic tape specifications

The library programs will be sent as 80 character lines on half-inch, 9-track magnetic tape without a header label. Please indicate the mode in which the tape should be written. Please specify the requirements if the alternatives given are impossible.

Density: 1600 characters per inch 6250 characters per inch

Number of lines per block (block length = $80n$ characters, $n \leq 48$):

Character code: The most common code on 9-track tape is EBCDIC. If this is unsuitable please define the code required.

Floppy disc

3.5 inch and 5.25 inch discs written using DOS software can be supplied. Please specify requirements.

Charge

In 1992 this is £16 per 1000 lines plus a basic charge of £25. For large orders distributed on high density magnetic tape the charge is £105 for the first 5000 lines and £15 per 5000 lines for the rest. This includes the cost of a tape (maximum length 600 ft. (180 m)) or floppy disc, handling and air-mail postage.

Electronic mail

The programs can be sent by electronic mail. If you require this service please give the network, network address and user identity. In 1992, the charge is £17 plus £16 per 1000 lines.

Program listings

If none of the above is suitable listings can be supplied. In 1992, the charge is £17 plus £2 per 1000 lines plus postage.

Method of ordering

If an official order from the requestor's institute is also enclosed the order will be dispatched immediately. Otherwise a proforma invoice will be issued and the programs dispatched when it is returned with the remittance. All payments should be made in sterling.

Neither the Library nor the Author of any distributed program guarantees that it is free from error or meets its published specification and cannot be responsible for any loss or consequential damage as a result of using it.

The requestor is asked to limit the distribution of program(s) to members of his group.

Signature:

Date:

Name:

Address:

Please return to:

Miss C. Jackson, CPC Program Library, Department of Applied Mathematics,
The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland.

Program classification

The programs in the library are classified under the following headings:

- 1. *Astronomy and astrophysics*
 - 1.1 Cosmic rays
 - 1.2 Nuclear processes
 - 1.3 Radiative transfer
 - 1.4 Radio astronomy
 - 1.5 Relativity and gravitation
 - 1.6 Solar physics
 - 1.7 Stars and stellar systems
 - 1.8 Interstellar medium
- 2. *Atomic physics*
 - 2.1 Structure and properties
 - 2.2 Spectra
 - 2.3 Experimental analysis
 - 2.4 Electron scattering
 - 2.5 Photon interactions
 - 2.6 Other collision processes
 - 2.7 Wave functions and integrals
 - 2.8 Exotic atoms
 - 2.9 Theoretical methods
- 3. *Biology*
- 4. *Computational methods*
 - 4.1 Angular momentum coupling coefficients
 - 4.2 Other algebras and groups
 - 4.3 Differential equations
 - 4.4 Feynman diagrams
 - 4.5 Coulomb functions
 - 4.6 Fourier transforms
 - 4.7 Other functions
 - 4.8 Matrices
 - 4.9 Minimization and fitting
 - 4.10 Interpolation
 - 4.11 Quadratures
 - 4.12 Other numerical methods
- 4.13 Statistical methods
- 4.14 Utility
- 5. *Computer algebra*
- 6. *Computer languages, hardware and software*
 - 6.1 Hardware
 - 6.2 Languages
 - 6.3 Networks
 - 6.4 Neural networks
 - 6.5 Software
- 7. *Condensed matter and surface science*
 - 7.1 Defects
 - 7.2 Electron spectroscopies
 - 7.3 Electronic structure
 - 7.4 Experimental analysis
 - 7.5 Mossbauer spectra (see 17.3)
 - 7.6 Neutron scattering
 - 7.7 Other condensed matter physics inc. simulation of liquids and solids
 - 7.8 Structure and lattice dynamics
 - 7.9 Transport properties
 - 7.10 Collisions in solids
- 8. *Crystallography*
- 9. *Data bases, data compilation & information retrieval*
- 10. *Electrostatics and electromagnetics*
- 11. *Elementary particle physics*
 - 11.1 General, high energy physics and computing
 - 11.2 Phase space and event simulation
 - 11.3 Cascade and shower simulation

Program classification

- 11.4 Quantum electrodynamics (see also 4.4)
- 11.5 Quantum chromodynamics, lattice gauge theory
- 11.6 Phenomenological & empirical models and theories
- 11.7 Detector design and simulation
- 11.8 Detector control and data acquisition
- 11.9 Event reconstruction and data analysis (except data bases)
- 11.10 Accelerators and particle beams
- 11.11 Data structures and data base systems
- 12. *Gases and fluids*
- 13. *Geophysics*
- 14. *Graphics*
- 15. *Laser physics*
- 16. *Molecular physics*
 - 16.1 Structure and properties
 - 16.2 Spectra
 - 16.3 Molecular vibrations
 - 16.4 Experimental analysis
 - 16.5 Electron scattering
 - 16.6 Photon interactions
 - 16.7 Elastic scattering and energy transfer
 - 16.8 Rearrangement collisions, charge transfer and chemical reactions
 - 16.9 Classical methods
 - 16.10 Wave functions and integrals
 - 16.11 Polymers
- 17. *Nuclear physics*
 - 17.1 Apparatus design
 - 17.2 Energy loss
 - 17.3 Mossbauer spectra
 - 17.4 Experimental analysis – general
 - 17.5 Experimental analysis – particle detection
 - 17.6 Experimental analysis – activity detection
 - 17.7 Expeirmental analysis – fission, fusion, heavy-ion
- 17.8 Nuclear reaction – general
- 17.9 Optical models
- 17.10 Compound nucleus
- 17.11 Direct reactions
- 17.12 Pre-equilibrium decay
- 17.13 Coulomb excitation, electron scattering
- 17.14 Medium energy reactions
- 17.15 Spectroscopy – level scheme
- 17.16 Theoretical methods – general
- 17.17 Oscillator brackets
- 17.18 Coefficients of fractional parentage – SU(3)
- 17.19 Shell model – one-body problem, spectra
- 17.20 Collective model
- 17.21 Cluster model
- 17.22 Hartree–Fock calculations
- 18. *Optics*
- 19. *Plasma physics*
 - 19.1 Atomic and molecular processes
 - 19.2 Beams
 - 19.3 Collisionless plasmas
 - 19.4 Data interpretation
 - 19.5 Discharges
 - 19.6 Equilibrium and stability
 - 19.7 Inertial confinement
 - 19.8 Kinetic models
 - 19.9 Magnetic confinement
 - 19.10 Magnetohydrodynamics
 - 19.11 Transport
 - 19.12 Space and astrophysical plasmas
 - 19.13 Wave–plasma interactions
 - 19.14 General plasma physics
- 20. *Programming and publication practice*
- 21. *Radiation*
 - 21.1 Radiation physics
 - 21.2 Radiative transfer
- 22. *Reactor systems*
- 23. *Statistical physics & thermodynamics*

The current index or sections of the index are available from the Library. Sections can also be sent by electronic mail.

1992

PHYSICS and MATERIALS SCIENCE JOURNALS (Imprint North-Holland)

Applied Surface Science

Volumes 55-62 in 32 issues. Price: US \$ 1370.00 / Dfl. 2768.00

Chemical Physics

Volumes 158-166 in 27 issues. Price: US \$ 1840.00 / Dfl. 3717.00

Chemical Physics Letters

Volumes 186-197 in 72 issues. Price: US \$ 3012.00 / Dfl. 6084.00

Computer Physics Communications

Volumes 66-71 in 18 issues. Price: US \$ 1562.00 / Dfl. 3156.00

Fluid Dynamics Research

Volume 10 in 6 issues. Price: US \$ 243.00 / Dfl. 491.00

Journal of Crystal Growth

Volumes 114-123 in 40 issues. Price: US \$ 3545.00 / Dfl. 7160.00

Journal of Geometry and Physics

Volumes 9 and 10 in 8 issues. Price: US \$ 278.00/Dfl.562.00

Journal of Luminescence

Volumes 52-54 in 18 issues. Price: US \$ 648.00 / Dfl. 1308.00

Journal of Magnetism and Magnetic Materials

Volumes 103-113 in 33 issues. Price: US \$ 2456.00 / Dfl. 4961.00

Journal of Non-Crystalline Solids

Volumes 137-148 in 36 issues. Price: US \$ 2352.00 / Dfl. 4752.00

Journal of Nuclear Materials

Volumes 185-194 in 30 issues. Price: US \$ 2233.00 / Dfl. 4510.00

Materials Letters

Volumes 12-14 in 18 issues. Price: US \$ 544.00 / Dfl. 1098.00

Materials Science Reports

Volumes 8 and 9 in 16 issues. Price: US \$ 352.00 / Dfl. 712.00

Nuclear Instruments and Methods in Physics Research - Section A

Accelerators, Spectrometers, Detectors & Associated Equipment

Volumes 310-322 in 39 issues. Price: US \$ 3900.00 / Dfl. 7878.00

Nuclear Instruments and Methods in Physics Research - Section B

Beam Interactions with Materials and Atoms

Volumes 62-71 in 40 issues. Price: US \$ 3000.00 / Dfl. 6060.00

Reduced combined 1992 subscription price to Nuclear Instruments and Methods - A and B: US \$ 6331.00 / Dfl. 12,788.00

Nuclear Physics A

Volumes 536-550 in 60 issues. Price: US \$ 3832.00 / Dfl. 7740.00

Nuclear Physics B

Volumes 366-386 in 63 issues. Price: US \$ 5364.00 / Dfl. 10,836.00

Reduced combined 1992 subscription price to Nuclear Physics A+B: US \$ 6985.00 / Dfl. 14,110.00

Nuclear Physics B - Proceedings Supplements

Volumes 24-28 in 10 issues Price: US \$ 658.00 / Dfl. 1355.00

Reduced 1992 subscription price if combined with Nuclear Physics B or Nuclear Physics A and B: US \$ 547.00 / Dfl. 1105.00

Optical Materials

Volume 1 in 4 issues. Price: US \$ 164.00 / Dfl. 331.00

Optics Communications

Volumes 86-93 in 48 issues. Price: US \$ 1489.00 / Dfl. 3008.00

Physica A - Statistical and Theoretical Physics

Volumes 180-189 in 40 issues. Price US \$ 1837.00 / Dfl. 3710.00

Physica B - Condensed Matter Physics

Volumes 175-182 in 32 issues. Price: US \$ 1469.00 / Dfl. 2968.00

Physica C - Superconductivity

Volumes 185-201 in 68 issues. Price: US \$ 3122.00 / Dfl. 6307.00

Physica D - Nonlinear Phenomena

Volumes 53-60 in 18 issues. Price: US \$ 1496.00 / Dfl. 2968.00

Reduced rates are available for combined subscriptions to Physica; please contact the publisher for details.

Physics Letters A

Volumes 160-171 in 72 issues. Price: US \$ 1848.00 / Dfl. 3732.00

Physics Letters B

Volumes 272-293 in 88 issues. Price US \$ 3387.00 / Dfl. 6842.00

Physics Reports

(including Computer Physics Reports)

Volumes 215-227 in 78 issues. Price: US \$ 2001.00 / Dfl. 4043.00

Reduced combined 1992 subscription price to Physics Letters A, Physics Letters B & Physics Reports: US \$ 6305.00 / Dfl. 12,737.00

Solar Energy Materials and Solar Cells

Volumes 25-27 in 12 issues. Price: US \$ 447.00 / Dfl. 903.00

Solid State Ionics

Volumes 51-58 in 32 issues. Price: US \$ 1202.00 / Dfl. 2528.00

Surface Science

(including Surface Science Letters)

Volumes 258-275 in 54 issues. Price: US \$ 4019.00 / Dfl. 8118.00

Surface Science Reports

Volume 15 in 8 issues. Price: US \$ 171.00 / Dfl. 346.00

Reduced combined 1992 subscription price to Surface Science (including Surface Science Letters), Applied Surface Science and Surface Science Reports: US \$ 5093.00 / Dfl. 10,287.00

Ultramicroscopy

Volumes 42-46 in 20 issues. Price: US \$ 894.00 / Dfl. 1805.00

The Dutch Guilder price (Dfl.) is definitive. The US \$ price is for your guidance only as same is subject to exchange rate fluctuations. Subscribers in Japan should add 25% surcharge on the postage, packing and handling charges for SAL delivery of issues. Journals are sent by Surface Mail to all countries except to the following where Air Delivery via SAL mail is ensured at no extra cost to the subscriber: Argentina, Australia/New Zealand, Brazil, Hong Kong, India, Israel, Malaysia, Mexico, Pakistan, P.R. China, Singapore, S. Africa, S. Korea, Taiwan, Thailand, USA & Canada. The quoted prices are excluding 6% BTW for subscribers in The Netherlands.

ELSEVIER SCIENCE PUBLISHERS

P.O. Box 103, 1000 AC Amsterdam, The Netherlands

Elsevier Science Publishers, Journal Information Center, PO Box 882,
Madison Square Station, New York, NY 10159, U.S.A.

404/jnlsc.chp

2 INDISPENSABLE INFORMATION SUPERCURRENTS

PHYSICA B - Condensed Matter

Editors:

U.S.A.: Z. Fisk, Los Alamos, NM
R.O.W.: F.R. de Boer, Amsterdam,
The Netherlands
R. Jochemsen, Leiden,
The Netherlands
G.H. Lander, Karlsruhe,
Germany

PHYSICA B publishes papers and review articles in the realm of physics of condensed matter. Both experimental and theoretical contributions are invited, although theoretical papers should preferably be related to experimental results. In addition, PHYSICA B has published and will present the following top-level conference proceedings:

Valence Fluctuations, Rio de Janeiro, Brazil, July 1990;
Low Temperature Physics (LT 19), Brighton, United Kingdom, August 1990;

Hydrogen in Semiconductors, Trieste, Italy, August 1990;
Methods of Analysis & Interpretation of Neutron Reflectivity Data, Argonne, IL, U.S.A., August 1990;
Neutron Scattering, Bombay, India, January 1991;
Analogy in Optics and Microelectronics, Eindhoven, The Netherlands, May 1991;
Superfluid ^3He in Rotation, Helsinki, Finland, June 1991;
Neutron Scattering, Oxford, United Kingdom, August 1991;
Research in High Magnetic Fields, Amsterdam, The Netherlands, August 1991;
Applications of High Magnetic Fields in Semiconductor Physics, Chiba, Japan, August 1992;
Low Temperature Physics (LT 20), Eugene, OR, U.S.A., August 1993

PHYSICA C - Superconductivity

Editors:

U.S.A.: M.B. Brodsky, Argonne, IL
G.W. Crabtree, Argonne, IL
B.D. Dunlap, Argonne, IL
R.O.W.: R.P. Giessen, Amsterdam, The Netherlands
S. Maekawa, Nagoya, Japan
Yu.A. Osipyan, Chernogolovka, Russia
H.R. Ott, Zurich, Switzerland
S. Tanaka, Tokyo, Japan

PHYSICA C serves as an exclusive, rapid channel (*publication within six to ten weeks is guaranteed*) for articles on superconductivity and related subjects. This includes theoretical papers on the

fundamental issues raised by high-T_c superconductivity, reports on measurements of a wide variety of physical properties of high-T_c superconductors, on new materials and new preparation techniques, on thin-film and device-oriented work and on theoretical results pertinent to such experiments. New results in the traditional areas of superconductivity as well as on novel phenomena will also be included.

In addition to regular articles, the *Interlaken*-, the *Stanford*- and the *Kanazawa*-proceedings have been published in PHYSICA C.

Please contact the Publisher at the address mentioned below for your complimentary sample copy of PHYSICA B or PHYSICA C.

North-Holland
(Elsevier Science Publishers)
P.O.Box 103
1000 AC Amsterdam
The Netherlands
Fax: +31 (20) 58.62.580

In the U.S.A./Canada:
Elsevier Science Publishing Co., Inc.
Journal Information Center
P.O.Box 882, Madison Square Station
New York, NY 10159-2101
Fax: (212) 633.3990

COMPUTER PHYSICS COMMUNICATIONS

INSTRUCTIONS TO AUTHORS *

(ABBREVIATED VERSION)

Two classes of papers are published by Computer Physics Communications:

- (i) Papers in the general area of computational physics and physical chemistry including research papers, notes, conference proceedings, review papers and feature articles.
- (ii) Write-ups describing programs to be held in the CPC Program Library[†] together with descriptions of new versions of existing programs and erratum notices.

Upon acceptance of an article, the author(s) will be asked to transfer copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information.

Computational physics papers

Papers for inclusion in CPC should not primarily be concerned with theoretical or experimental physics or with mathematics, computer science or information engineering but should be specifically relevant to computational physics and physical chemistry or to the computing needs of the physics and physical chemistry communities. Subject to this criterion CPC will publish descriptions of:

Numerical, computational and programming methods. Software, hardware and network techniques and facilities. Mathematical, graphical and other subroutine libraries used in physics and physical chemistry.

Programs in a particular field of physics or physical chemistry.

Methods or programs associated with the design, running or analysis of experiments.

Languages and system programs of particular importance to physicists or physical chemists,

together with comments on manufacturers' hardware and software and on previous publications in CPC.

Computer programs in physics

The programs described should be of use to other physicists and physical chemists or illustrate new programming techniques which are of importance to some branch of computational physics or physical chemistry. Since they are intended for general application within the physics or physical chemistry communities they should be well structured and should meet accepted scientific programming standards. They should be written either in USANSI Fortran 77, Algol 60, Pascal, C, or in some other language which has been adequately standardized and described in the literature and whose compiler is sufficiently widely available. Dialect statements and system or library subroutines which are restricted to a particular manufacturer or installation should be avoided if possible, or explained clearly.

Submission of manuscripts

All papers, program write-ups and erratum notices should be sent in triplicate to a Specialist Editor in the appropriate field. All manuscripts must be in English and should be typewritten double-spaced with wide margins on good quality A4 or $8\frac{1}{2} \times 11$ in.² (21.6×28 cm²) paper. Figures must be suitable for direct photographic reproduction. Sections should

* A more detailed version of the Instructions to Authors and Program Summary Forms are available from the Desk Editor and are printed in *Comput. Phys. Commun.* 62 (1991) ix–xviii.

[†] A description of the CPC Program Library is given in *Comput. Phys. Commun.* 42 (1986) xxv–xxvii. A complete Index of programs is available from the CPC Program library.

be decimaly numbered, and references indicated in the text consecutively by Arabic numerals in square brackets.

Programs

Usually, the manuscript for a program consists of the following:

- (i) Abstract.
- (ii) Program Summary *.
- (iii) Long Write-up – a detailed description of the program: problem, method of solution, program design (with a flow diagram), operating instructions, input data, output (including error diagnostics), and the input data and selected output of up to three test runs. References should include a definition of the programming language if other than, Fortran 77, Algol 60, Pascal or C, together with one copy each of:
- (iv) Program Listings – the complete output from a compile-load-go job which adequately tests the program by means of up to three test runs. Not more than three pages of selected test results should be indicated for photographic reproduction in the journal to provide a check for the user and the printing should be clear enough to allow good reproduction. The complete program file should include source code job control instructions, and test data and optionally documentation and/or one or more output lists. The preferred format has 80-character lines with column 73–80 reserved for line numbering. If the author does not have a line numbering scheme, these columns may be left blank and the program librarian will provide line numbers. After acceptance for publication the author will be asked to send this program file to the CPC Program Library.
- (v) Test Run Output – separate copies of the test results in a form suitable for direct reproduction in the journal or tables against which the output may be checked. Photographs of output from a high-quality printer or terminal are preferred.
- (vi) In exceptional circumstances, i.e. for very large program packages, a program manual which readers may order from the CPC Program Library in hard-copy format. However, it is usually more convenient if additional documentation describing the program is given in machine-readable form as part of the program!

New versions

The manuscript to describe briefly a new version of a published program consists of:

- (i) Abstract.
- (ii) New Version Summary *.
- (iii) Long Write-up,
together with one copy each of:
- (iv) Program Listings – see section on programs, item (iv).
- (v) Test Run Output.

Erratum notices

The manuscript to describe corrections to a published computational physics paper, program write-up and/or program consists of:

- (i) Summary of the information about the original paper *.
- (ii) Explanation of corrections and if the program itself has been modified: one copy each of:
- (iii) Listing of the correction file – this consecutively numbered file will later be required by the Program Library and consists of "new" statements plus comments to explain, by reference to line numbers, how to modify the program file or a new copy of the program, and Program Listings – see section on programs, item (iv).
- (iv) Test Run Output.

Proof correction

Corrections other than the printers' errors may be charged for.

3
0

