FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Typografie a publikování - 2. projekt Sazba dokumentů a matematických výrazů

2017 Martin Omacht

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty (například rovnice ... nebo definice ... na straně ...).

Na titulní straně je využito sázení nadpisu podle optického středu s využitím zlatého řezu. Tento postup byl probírán na přednášce.

1 Matematický text

Nejprve se podíváme na sázení matematických symbolů a výrazů v plynulém textu. Pro množinu V označuje $\operatorname{card}(V)$ kardinalitu V. Pro množinu V reprezentuje V^* volný monoid generovaný množinou V s operací konkatenace. Prvek identity ve volném monoidu V^* značíme symbolem ε . Nechť $V^+ = V^* - \{\varepsilon\}$. Algebraicky je tedy V^* volná pologrupa generovaná množinou V s operací konkatenace. Konečnou neprázdnou množinu V nazvěme abeceda. Pro $\omega \in V^*$ označuje $|\omega|$ délku řetězce ω . Pro $W \subseteq V$ označuje $\operatorname{occur}(w,W)$ počet výskytů symbolů z W v řetězci w a $\operatorname{sym}(w,i)$ určuje i-tý symbol řetězce w; například $\operatorname{sym}(abcd,3) = c$.

Nyní zkusíme sazbu definic a vět s využitím balíku amsthm.

Definice 1.1. Bezkontextová gramatika je čtveřice G=(V,T,P,S), kde V je totální abeceda, $T\subseteq V$ je abeceda terminálů, $S\in (V-T)$ je startující symbol a P je konečná množina pravidel tvaru $q:A\to \alpha$, kde $A\in (V-T), \alpha\in V^*$ a q je návěští tohoto pravidla. Nechť N=V-T značí abecedu neterminálů. Pokud $q:A\to \alpha\in P, \gamma, \delta\in V^*, G$ provádí derivační krok z $\gamma A\delta$ do $\gamma \alpha\delta$ podle pravidla $q:A\to \alpha$, symbolicky píšeme $\gamma A\delta\Rightarrow \gamma\alpha\delta[q:A\to \alpha]$ nebo zjednodušeně $\gamma A\delta\Rightarrow \gamma\alpha\delta$. Standardním způsobem definujeme \Rightarrow^m , kde $m\geq 0$. Dále definujeme tranzitivní uzávěr \Rightarrow^+ a tranzitivně-reflexivní uzávěr \Rightarrow^* .

Algoritmus můžeme uvádět podobně jako definice textově, nebo využít pseudokódu vysázeného ve vhodném prostředí (například algorithm2e).

Algoritmus 1.1. Algoritmus pro ověření bezkontextovosti gramatiky. Mějme gramatiku G = (N, T, P, S).

- 1. Pro každé pravidlo $p \in P$ proveď test, zda p na levé straně obsahuje právě jeden symbol z N.
- 2. Pokud všechna pravidla splňují podmínku z kroku 1, tak je gramatika G bezkontextová.

Definice: Jazyk definovaný gramatikou ... definujeme jako

1.1 Podsekce obsahující větu

Definice: Nechť ... je libovolný jazyk. ... je bezkontextový jazyk, když a jen když ..., kde ... je libovolná bezkontextová gramatika.

Definice: Množinu ... nazýváme třídou bezkontextových jazyků.

Věta: Nechť Platí, že

Důkaz: Důkaz se provede pomocí Pumping lemma pro bezkontextové jazyky, kdy ukážeme, že není možné, aby platilo, což bude implikovat pravdivost věty