

수학 계산력 강화

(1)부등식의 증명

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2018-07-25
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 부등식의 증명에 이용되는 실수의 성질

두 실수 a, b에 대하여

- (1) $a > b \Leftrightarrow a b > 0$
- (2) a > 0, $b > 0 \Leftrightarrow a+b > 0$, ab > 0
- (3) $a^2 \ge 0$, $a^2 + b^2 \ge 0$
- (4) $a^2 + b^2 = 0 \Leftrightarrow a = 0, b = 0$
- (5) a > 0, b > 0일 때, $a > b \Leftrightarrow a^2 > b^2 \Leftrightarrow \sqrt{a} > \sqrt{b}$
- (6) $|a|^2 = a^2$, |ab| = |a||b|
- ☑ 다음 부등식의 관계에서 안에 알맞은 부등호를 써 넣으시오.
- **1.** a < b일 때, a+6 b+6
- **2.** a < b일 때, a-3 b-3
- **3.** a < b일 때,-a+5 -b+5
- **4.** a < b, c < 0일 때, -ac + 5 -bc + 5
- **5.** a < 0일 때, $\frac{1}{a} 6$ _ -6
- **6.** a < b < 0 \subseteq \subseteq $\frac{1}{a} 5$ \subseteq $\frac{1}{b} 5$
- 실수 a, b에 관한 조건이 주어질 때, <보기>에서 옳 은 것을 모두 골라라.
- 7. a < 0 < b일 때,

<보기>

8. a < b일 때

<보기>

- $\neg . \ a+1 < b+2$ $\bot . \ 2a < 3b$ $\sqsubset . \ a-5 < b-4$
- $a < \frac{a}{3} < \frac{b}{4} + 10$ a < a 5 > -b 6
- **9.** 0 < a < b일 때

<보기>

- \neg . 2a-1 < 2b-1
- -a+7 < -b+7
- $\Box \cdot \frac{a}{3} 1 > \frac{b}{3} 1$ $\Box \cdot \frac{1}{a} < \frac{1}{b}$
- \Box . $ab < b^2$
- $\exists . a^2 < ab$
- **10.** a < b < 0일 때,

< 보기>

- $\exists ab < b^2$
- $\ \ \, \bot$. a+b < 2b
- $\exists . \ 2-a > 2-b$ $\exists . \ \frac{a}{3}-1 > \frac{b}{3}-1$
- **11.** $ab > a^2$ 이고 a < 0일 때,

<보기>

- $\neg . \frac{a}{b} < 1$
- $\perp \frac{a}{4} < \frac{b}{4}$
- \Box . ac > bc
- $\exists . b-a < 0$
- \Box . 2-3a > 2-3b

02 / 두 수 또는 두 식의 대소 비교

두 실수 또는 두 식 A, B에 대하여

- (1) 차를 이용하는 방법

 - $A B < 0 \Leftrightarrow A < B$
- (2) 제곱의 차를 이용하는 방법: $A \ge 0$, $B \ge 0$ 일 때,
 - **1** $A^2 B^2 > 0 \Leftrightarrow A > B$ **2** $A^2 B^2 < 0 \Leftrightarrow A < B$
- (3) 비를 이용하는 방법: A>0, B>0일 때

☑ 다음 수들의 대소를 비교하여라.

- **12.** $A = 2^{50}$, $B = 6^{25}$
- **13.** $A = 3^{30}$, $B = 6^{15}$
- **14.** $A = 3^{400}$, $B = 2^{500}$
- **15.** $A = 3^{24}$, $B = 5^{18}$
- **16.** $A = 3^{30}$. $B = 6^{20}$
- **17.** $A = 2^{30}$, $B = 3^{20}$
- **18.** $A = 3\sqrt{2}$, $B = 2\sqrt{3}$
- **19.** $A = \sqrt{7} 1$, $B = \sqrt{8} 1$

20.
$$A = 3 + \sqrt{5}$$
, $B = \sqrt{8} + \sqrt{5}$

21. A=
$$\sqrt{5} + \sqrt{6}$$
, B= $\sqrt{3} + \sqrt{8}$

22.
$$A = -\sqrt{12} + \sqrt{8}$$
, $B = 3\sqrt{3} - 4\sqrt{2}$

23.
$$A = 3\sqrt{10} - 2$$
, $B = 4$

24.
$$A = \sqrt{2} + \sqrt{5}$$
, $B = 2 + \sqrt{3}$

25.
$$A = \sqrt{3} + \sqrt{7}$$
, $B = 2 + \sqrt{6}$

☑ 다음 세 수의 대소를 비교하여라.

26.
$$A = 2^{40}$$
, $B = 5^{20}$, $C = 3^{30}$

27.
$$A = \sqrt{3} + \sqrt{6}$$
, $B = 2 + \sqrt{5}$, $C = 1 + 2\sqrt{2}$

28.
$$A = 2\sqrt{3} - 3$$
, $B = \sqrt{3} - 1$, $C = 2 - \sqrt{3}$

29.
$$A = 4$$
, $B = \sqrt{6} + \sqrt{7}$, $C = \sqrt{2} + \sqrt{11}$

30.
$$A = 2 + \sqrt{5}$$
, $B = 2 + \sqrt{7}$, $C = 3 + \sqrt{6}$

31.
$$A = \frac{2a}{1+2a}$$
, $B = \frac{2b}{1+2b}$

32.
$$A = \frac{a}{a+1}$$
, $B = \frac{b}{b+1}$

33.
$$A = \frac{a}{1+a}$$
, $B = \frac{b}{1+b}$

☑ x, y가 실수일 때, A, B의 대소를 비교하여라.

34.
$$A = x^2 + x$$
, $B = 3x - 1$

35.
$$A = 3x^2 - 2y^2$$
, $B = 2x^2 - 2xy - 3y^2$

36. A=
$$3x^2-5x$$
, B= $2x^2-3x-1$

37.
$$A = x^2 - 4xy - 6y^2$$
, $B = 2x^2 - 2y^2$

38.
$$A = x^2 + xy - 3y^2$$
, $B = 2x^2 - 3xy + 2y^2$

39.
$$A = 2x^2 + 3xy$$
, $B = 3x^2 + xy + y^2$

40. A=
$$2x^2 + 4y^2$$
, B= $x^2 + 2xy + 2y^2$

41. A=
$$xy+1$$
, B= $x+y$ (단, $x \le 1$, $y \le 1$)

03 / 절대부등식

- (1) 절대부등식: 문자를 포함한 부등식에서 그 문자에 어떤 실수를 대입해도 항상 성립하는 부등식을 절대부등식이라고 한다.
- (2) 여러 가지 절대부등식의 예
 - **1** a, b가 실수일 때, $a^2 \pm ab + b^2 \ge 0$ (단, 등호는 a = b = 0일 때 성립)
 - ② a, b, c가 실수일 때, $a^2 + b^2 + c^2 \ge ab + bc + ca$ (단, 등호는 a=b=c일 때 성립)
 - ③ a, b가 실수일 때, $|a|+|b| \ge |a+b|$ (단, 등호는 $ab \geq 0$ 일 때 성립)

 \blacksquare a, b가 실수일 때, 다음 부등식이 절대부등식이면 \bigcirc 표, 절대부등식이 아니면 ×표를 () 안에 써넣어라.

42.
$$|a|+2>0$$

43.
$$|a| \ge a$$

44.
$$(3a+2)^2 \ge 0$$

45.
$$2a^2 \ge 0$$

46.
$$a+2>0$$

47.
$$(a-1)^2+2>0$$

48.
$$-a^2 < 0$$

49.
$$2a^2 \ge 0$$

50.
$$a^2 + 6a + 7 \ge 0$$

51.
$$(\sqrt{a} - \sqrt{b})^2 \ge 0$$
 (단, $a \ge 0$, $b \ge 0$) ()

52.
$$(a-b)^3 \ge 0$$

53.
$$a^2 - a < a^2$$

54.
$$a^2 - 6a + 9 > 0$$

55.
$$(2a-3b+5)^2 \ge 0$$

56.
$$a^2 - 4a + 4 \ge 0$$
 ()

57.
$$a^2 - b \ge 0$$

58.
$$-(3a+1)^2 < 0$$
 ()

59.
$$|a-b|+1>0$$
 ()

60.
$$-a^2 + 2a - 2 \le 0$$
 ()

61.
$$a^2 + 2ab + b^2 \ge 0$$
 ()

☑ 다음은 실수 a, b에 대하여 주어진 부등식을 증명하 는 과정이다. (가)~(마)에 알맞은 내용을 넣어라.

62. $a^2 + b^2 \ge ab$

63. $a^2 - ab + b^2 \ge 0$

64. $ a + b \ge a+b $
<증명>
$ a + b \ge 0, a+b \ge 0$ 이므로
$(a + b)^2$ $a+b ^2$ 임을 보이면 된다.
$(a + b)^2- a+b ^2$
$= a ^2 + 2 a b + b ^2 - (a+b)^2$
$= a^2 + 2 ab + b^2 - a^2 - 2ab - b^2$
$=2\left(\left ab\right -ab\right)$
ab □ ab이므로 2(ab -ab) □ 0이다.
$\therefore (a + b)^2 \square a+b ^2$
즉, $ a + b $ $ a+b $
단, 등호는 $ ab =ab$, 즉 $ab \ge 0$ 일 때, 성립한다.

65. 다음은 두 실수 a,b에 대하여 부등식 $|a+b| \le |a| + |b|$ 임을 증명하는 과정이다.

<증명>

[(가),[(나)]이므로 주어진 부등식의 양변을 제곱하여 $|a+b|^2 \le (|a|+|b|)^2$ 임을 증명하면 된다.

그런데
$$(a)$$
이므로 $2((a)-ab) \ge 0$

$$(\,|\,a\,|+\,|\,b\,|\,)^2 - |\,a+b\,|^{\,2} \geq 0\;(\,|\,a\,|+\,|\,b\,|\,)^2 \geq |\,a+b\,|^{\,2}$$

$$\therefore |a+b| \le |a| + |b|$$

- 여기서 등호는 (마)일 때 성립한다.
- ☑ a, b가 실수일 때, 다음 부등식이 성립함을 증명하여 라.

66.
$$a^2+a+1>0$$

67.
$$a^2 - 2ab + 2b^2 \ge 0$$

68.
$$4a^2 - 4ab + 2b^2 \ge 0$$

69.
$$a^2 + b^2 \ge ab$$

70.
$$a^2 + b^2 + c^2 \ge ab + bc + ca$$

71.
$$(a+b)^2 \ge 4ab$$

- **72.** $\sqrt{a} + \sqrt{b} \ge \sqrt{a+b}$ (단, $a \ge 0, b \ge 0$)
- **73.** $|a|+|b| \ge |a+b|$

정답 및 해설

- 1) <
- 2) <
- 3) >
- 4) <
- 5) <
- 6) <
- 7) ㄱ, ㄹ, ㅂ
- □ a < 0 < b일 때,
 </p>

L.c < 0이면 ac > bc이다.

 $\Box a = -1, b = 1$ 이면 a + 3 > b이다.

 $\Box .c > 0$ 이면 $\frac{a}{c} < \frac{b}{c}$ 이다.

- 8) ¬, ⊏, □
- $\Rightarrow a < b$ 일 때,

L. a = -3, b = -2이면 2a = 3b이다.

a = 125, b = 126이면 $\frac{a}{3} > \frac{b}{4} + 10$ 이다.

- 9) ㄱ, ㅁ, ㅂ
- 0 < a < b 일 때,
 </p>

$$\bot . -a + 7 > -b + 7 \ \Box . \frac{a}{3} - 1 < \frac{b}{3} - 1 \ \exists . \frac{1}{a} > \frac{1}{b}$$

- 10) ∟, ⊏
- ⇒ a < b < 0일 때,
 </p>

$$\neg .ab > b^2$$
 $= . \frac{a}{3} - 1 < \frac{b}{3} - 1$

- 11) ㄱ, ㄹ
- \Rightarrow a < 0일 때, $ab > a^2$ 의 양변을 a로 나누면 b < a이 다. 즉, *b* < *a* < 0이다.

 $\Box .2 - 3a < 2 - 3b$

12) A < B

$$\begin{array}{c} \Longrightarrow \ \, \frac{A}{B} = \frac{2^{50}}{6^{25}} = \left(\frac{2^2}{6}\right)^{25} = \left(\frac{4}{6}\right)^{25} = \left(\frac{2}{3}\right)^{25} < 1 \\ \therefore \ \, A < B \end{array}$$

13) A > B

$$\Rightarrow \frac{A}{B} = \frac{3^{30}}{6^{15}} = \left(\frac{3^2}{6}\right)^{15} = \left(\frac{9}{6}\right)^{25} = \left(\frac{3}{2}\right)^{15} > 1$$

$$\therefore A > B$$

14) A > B

$$\implies \frac{A}{B} = \frac{3^{400}}{2^{500}} = \left(\frac{3^4}{2^5}\right)^{100} = \left(\frac{81}{32}\right)^{100} > 1$$

$$\stackrel{\triangle}{\Rightarrow} \frac{A}{B} = \frac{3^{24}}{5^{18}} = \frac{(3^4)^6}{(5^2)^6} = \left(\frac{3^4}{5^2}\right)^6 = \left(\frac{81}{125}\right)^6 < 1$$
 이때, $A > 0$, $B > 0$ 이므로 $A < B$

16) A < B

$$Arr$$
 Arr Arr

17) A < B

$$Arr$$
 Arr Arr

- 18) A > B
- ⇒ A²=18, B²=12이므로 A² > B² 이때, A > 0, B > 0이므로 A > B
- 19) A < B

$$\Rightarrow (\sqrt{7} - 1) - (\sqrt{8} - 1) = \sqrt{7} - \sqrt{8} < 0$$

$$\therefore \sqrt{7} - 1 < \sqrt{8} - 1$$

20) A>B

$$\Rightarrow (3+\sqrt{5}) - (\sqrt{8}+\sqrt{5}) = 3 - \sqrt{8} = \sqrt{9} - \sqrt{8} > 0$$

$$\therefore 3+\sqrt{5} > \sqrt{8} + \sqrt{5}$$

21) A > B

다
$$A^2 = (\sqrt{5} + \sqrt{6})^2 = 11 + 2\sqrt{30}$$

 $B^2 = (\sqrt{3} + \sqrt{8})^2 = 11 + 2\sqrt{24}$
 $\sqrt{30} > \sqrt{24}$ 이므로 $A^2 > B^2$
이때, $A > 0$, $B > 0$ 이므로 $A > B$

22) A < B

$$\Rightarrow (-\sqrt{12} + \sqrt{8}) - (3\sqrt{3} - 4\sqrt{2})$$

$$= -2\sqrt{3} + 2\sqrt{2} - 3\sqrt{3} + 4\sqrt{2}$$

$$= 6\sqrt{2} - 5\sqrt{3} = \sqrt{72} - \sqrt{75} < 0$$

$$\therefore -\sqrt{12} + \sqrt{8} < 3\sqrt{3} - 4\sqrt{2}$$

23) A > B

$$\Rightarrow (3\sqrt{10} - 2) - 4 = 3\sqrt{10} - 6 = \sqrt{90} - \sqrt{36} > 0$$
$$\therefore 3\sqrt{10} - 2 > 4$$

24) A < B

25) A < B

$$\Rightarrow$$
 A²=($\sqrt{3}+\sqrt{7}$)²=10+2 $\sqrt{21}$
B²=(2+ $\sqrt{6}$)²=10+4 $\sqrt{6}$ =10+2 $\sqrt{24}$
 $\sqrt{24}$ > $\sqrt{21}$ 이므로 A²2
이때, A>0, B>0이므로 A

$$\Rightarrow \frac{A}{B} = \frac{2^{40}}{5^{20}} = \left(\frac{2^4}{5^2}\right)^{10} = \left(\frac{16}{25}\right)^{10} < 1 \qquad \therefore A < B$$

$$\frac{B}{C} = \frac{5^{20}}{3^{30}} = \left(\frac{5^2}{3^3}\right)^{10} = \left(\frac{25}{27}\right)^{100} < 1 \qquad \therefore B < C$$

27)
$$B > A > C$$

다
$$A^2 = (\sqrt{3} + \sqrt{6})^2 = 9 + 6\sqrt{2} = 9 + \sqrt{72}$$

 $B^2 = (2 + \sqrt{5})^2 = 9 + 4\sqrt{5} = 9 + \sqrt{80}$
 $C^2 = (1 + 2\sqrt{2})^2 - 9 + 4\sqrt{2} = 9 + \sqrt{32}$
 $\sqrt{80} > \sqrt{72} > \sqrt{32}$ 이므로 $B^2 > A^2 > C^2$
그런데 $A > 0$, $B > 0$, $C > 0$ 이므로 $B > A > C$

28) C < A < B

29) B > C > A

⇒
$$A^2 = 4^2 = 16 = 13 + 3 = 13 + 2\sqrt{\frac{9}{4}}$$

 $B^2 = (\sqrt{6} + \sqrt{7})^2 = 13 + 2\sqrt{42}$
 $C^2 = (\sqrt{2} + \sqrt{11})^2 = 13 + 2\sqrt{22}$
 $B^2 > C^2 > A^2 \circ | \overline{x}, A > 0, B > 0, C > 0 \circ | \underline{x} = 2$
 $A > C > A$

30) C > B > A

⇒
$$A^2 = (2 + \sqrt{5})^2 = 9 + 4\sqrt{5} = 9 + \sqrt{80}$$

 $B^2 = (2 + \sqrt{7})^2 = 11 + 4\sqrt{7} = 11 + \sqrt{112}$
 $C^2 = (3 + \sqrt{6})^2 + 15 + 6\sqrt{6} = 15 + \sqrt{216}$
 $C^2 > B^2 > A^2 \circ | \mathbb{Z}, \ A > 0, \ B > 0, \ C > 0 \circ | \mathbb{L} \mathbb{Z}$
 $C > B > A$

31) A > B

32)
$$A > B$$

33) A > B

34) $A \ge B$

$$\Rightarrow A - B = x^2 + x - (3x - 1)$$

$$= x^2 - 2x + 1$$

$$= (x - 1)^2 \ge 0$$

$$\therefore A \ge B$$

35) $A \ge B$

$$\Rightarrow A - B = (3x^2 - 2y^2) + (2x^2 - 2xy - 3y^2)$$

= $x^2 + 2xy + y^2 = (x + y)^2 \ge 0$
 $\therefore A \ge B$

36) $A \ge B$

$$\Rightarrow A - B = 3x^2 - 5x - (2x^2 - 3x - 1)$$

$$= x^2 - 2x + 1$$

$$= (x - 1)^2 \ge 0$$

$$\therefore A \ge B$$

37) $A \le B$

$$\Rightarrow A - B = (x^2 - 4xy - 6y^2) - (2x^2 - 2y^2)$$
$$= -x^2 - 4xy - 4y^2 = -(x + 2y)^2 \le 0$$
$$\therefore A \le B$$

38) $A \le B$

$$A - B = x^2 + xy - 3y^2 - (2x^2 - 3xy + 2y^2)$$

$$= -x^2 + 4xy - 5y^2$$

$$= -(x^2 - 4xy + 4y^2) - y^2$$

$$= -(x - 2y)^2 - y^2 \le 0$$

$$\therefore A \le B$$

39) A ≤ B

40) A ≥ B

$$\Rightarrow A - B = 2x^2 + 4y^2 - (x^2 + 2xy + 2y^2)$$

$$= x^{2} - 2xy + 2y^{2}$$

$$= (x - y)^{2} + y^{2} \ge 0 \quad (\because (x - y)^{2} \ge 0, \ y^{2} \ge 0)$$

$$\therefore A \ge B$$

- 41) $A \ge B$
- \Rightarrow A-B=xy+1-(x+y)=xy-x-y+1 $=(x-1)(y-1) \ge 0 \ (\because x-1 \le 0, y-1 \le 0)$ $\therefore A \ge B$
- 42) \bigcirc
- $\Rightarrow |a| > -2$
- 43) (
- 44) \bigcirc
- $\Rightarrow (3a+2)^2 \ge 0$
- 45) 🔾
- 46) ×
- $\Rightarrow a > -2$
- 47) 🔾
- $\Rightarrow (a-1)^2 \ge 0$ 이므로 $(a-1)^2 + 2 > 0$
- $\Rightarrow a^2 > 0$
- 49) 🔾
- $\Rightarrow a^2 > 0$
- 50) ×
- $\Rightarrow a = -2$ 일 때 $a^2 + 6a + 7 < 0$
- 51) 🔾
- $52) \times$
- $\Rightarrow a = 0$ 이고 b = 1일 때 $(a b)^3 < 0$
- 53) ×
- $\Rightarrow a \leq 0$ 인 경우 부등식이 성립하지 않는다.
- $54) \times$
- 55) 🔾
- 56) \bigcirc
- $\Rightarrow a^2 4a + 4 = (a-2)^2 \ge 0$
- \Rightarrow a=0이고 b=1일 때 $a^2-b<0$
- 58) ×
- $\Rightarrow a = -\frac{1}{3}$ 일 때, 부등식이 성립하지 않는다.

- 59) 🔾
- $|a-b| \ge 0$ 이므로 $|a-b|+1 \ge 1 > 0$
- 60) (
- 61) ()
- $\Rightarrow a^2 + 2ab + b^2 = (a+b)^2 \ge 0$
- 62) (가) $\frac{3}{4}b^2$ (나) a=b=0

$$\Rightarrow a^2 + b^2 - ab = \left(a^2 - ab + \frac{b^2}{4}\right) + \boxed{\frac{3}{4}b^2}$$
$$= \left(a - \frac{b}{2}\right)^2 + \boxed{\frac{3}{4}b^2}$$

$$a,\ b$$
가 실수이므로 $\left(a-rac{b}{2}
ight)^2 \geq 0,$ $\left[rac{3}{4}b^2
ight] \geq 0$

따라서 $a^2+b^2-ab \ge 0$ 이므로

 $a^2+b^2 \ge ab$ (단, 등호는 a=b=0 일 때 성립)

- 63) $\frac{b}{2}$, $\frac{b}{2}$, \geq
- $\Rightarrow a^2 ab + b^2 = a^2 ab + \left(\frac{b}{2}\right)^2 \left(\frac{b}{2}\right)^2 + b^2$ $=\left(a-\frac{b}{2}\right)^2+\frac{3}{4}b^2$
 - 그런데 $\left(a-\left[\frac{b}{2}\right]^2 \ge 0, \ \frac{3}{4}b^2 \ge 0$ 이므로
 - $\left(a \left[\frac{b}{2}\right]^2 + \frac{3}{4}b^2 \ge 0$
 - $\therefore a^2 ab + b^2 > 0$
 - 이때, 등호는 $a \frac{b}{2} = 0$, b = 0
 - 즉, a=b=0일 때 성립한다.
- 64) \geq , \geq , \geq , \geq
- \Rightarrow $|a|+|b|\geq 0$, $|a+b|\geq 0$ 이므로

 $(|a|+|b|)^2 \ge |a+b|^2$ 임을 보이면 된다.

- $(|a|+|b|)^2-|a+b|^2$
- $= |a|^2 + 2|a| |b| + |b|^2 (a+b)^2$
- $= a^{2} + 2|ab| + b^{2} a^{2} 2ab b^{2} = 2(|ab| ab)$

 $|ab| \ge |ab|$ 으로 $2(|ab|-ab) \ge 0$ 이다.

- $|(|a|+|b|)^2 \ge |a+b|^2$
- \leq , $|a|+|b| \geq |a+b|$
- 단, 등호는 |ab|=ab, 즉 $ab \ge 0$ 일 때 성립한다.
- 65) (7) $|a+b| \ge 0$ (4) $|a| + |b| \ge 0$
 - (다) |ab| (라) $|ab| \ge ab$ (마) |ab| = ab
- \Rightarrow (7) $|a+b| \geq 0$
 - (나) $|a| \ge 0$, $|b| \ge 0$ 에서 $|a| + |b| \ge 0$
 - (다) |a||b| = |ab|이므로 |ab|
 - (라) 모든 실수 x에 대하여 $|x| \ge x$ 이 성립하므 로 | ab | ≥ ab
 - (마) 등호는 |ab| = ab일 때 성립하므로 |ab| = ab

66)
$$a^2 + a + 1 = a^2 + a + \frac{1}{4} + \frac{3}{4} = \left(a + \frac{1}{2}\right)^2 + \frac{3}{4}$$
 이때, $\left(a + \frac{1}{2}\right)^2 \ge 0$ 이므로
$$\left(a + \frac{1}{2}\right)^2 + \frac{3}{4} > 0$$

$$\therefore a^2 + a + 1 > 0$$

67)
$$a^2 - 2ab + 2b^2 = (a - b)^2 + b^2$$

이때, $(a - b)^2 \ge 0$ 이고 $b^2 \ge 0$ 이므로
 $(a - b)^2 + b^2 \ge 0$
∴ $a^2 - 2ab + 2b^2 \ge 0$
(단, 등호는 $a = b = 0$ 일 때 성립

68)
$$4a^2 - 4ab + 2b^2 = 4a^2 - 4ab + b^2 + b^2$$

 $= (2a - b)^2 + b^2$
이때, $(2a - b)^2 \ge 0$ 이고 $b^2 \ge 0$ 이므로 $(2a - b)^2 + b^2 \ge 0$
∴ $4a^2 - 4ab + 2b^2 > 0$
(단, 등호는 $a = b = 0$ 일 때 성립)

69)
$$a^2 - ab + b^2 = a^2 - ab + \frac{1}{4}b^2 + \frac{3}{4}b^2$$

$$= \left(a - \frac{b}{2}\right)^2 + \frac{3}{4}b^2$$
 이때, $\left(a - \frac{b}{2}\right)^2 \ge 0$, $\frac{3}{4}b^2 \ge 0$ 이므로
$$\left(a - \frac{b}{2}\right)^2 + \frac{3}{4}b^2 \ge 0$$
 즉, $a^2 - ab + b^2 \ge 0$ 이므로
$$a^2 + b^2 \ge ab$$
 (단, 등호는 $a = b = 0$ 일 때 성립)

70)
$$a^2 + b^2 + c^2 - (ab + bc + ca)$$

$$= \frac{1}{2} \{ 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \}$$

$$= \frac{1}{2} \{ (a - b)^2 + (b - c)^2 + (c - a)^2 \} \ge 0$$

$$\therefore a^2 + b^2 + c^2 \ge ab + bc + ca$$

$$(\frac{c}{2}, \frac{c}{2}, \frac{c}{2}, a = b = c$$

71)
$$(a+b)^2 - 4ab = a^2 + 2ab + b^2 - 4ab$$

 $= a^2 - 2ab + b^2$
 $= (a-b)^2$
이때, $(a-b)^2 \ge 0$ 이므로 $(a+b)^2 - 4ab \ge 0$
∴ $(a+b)^2 \ge 4ab$ (단, 등호는 $a-b=0$, 즉 $a=b$
일 때 성립)

72)
$$(\sqrt{a} + \sqrt{b})^2 - (\sqrt{a+b})^2$$

 $= (a+2\sqrt{ab}+b) - (a+b)$
 $= 2\sqrt{ab} \ge 0$
 $\therefore (\sqrt{a} + \sqrt{b})^2 \ge (\sqrt{a+b})^2$

이때,
$$\sqrt{a}+\sqrt{b}\geq 0$$
, $\sqrt{a+b}\geq 0$ 이므로 $\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}$ (단, 등호는 $ab=0$ 일 때 성립)

73)
$$(|a|+|b|)^2 - |a+b|^2$$

 $= |a|^2 + 2|a| |b| + |b|^2 - (a+b)^2$
 $= a^2 + 2|ab| + b^2 - (a^2 + 2ab + b^2)$
 $= 2(|ab|-ab)$
이때, $|ab| \ge ab$ 이므로
 $2(|ab|-ab) \ge 0$
따라서 $(|a|+|b|)^2 \ge |a+b|^2$ 이고
 $|a|+|b| \ge 0$, $|a+b| \ge 0$ 이므로
 $|a|+|b| \ge |a+b|$
(단, 등호는 $|ab|=ab$, 즉 $ab \ge 0$ 일 때 성립)