Алгебра. Определения и доказательства 1

Арунова Анастасия

Содержание

1	Опр	ределения	4
	1.1	Дать определение фундаментальной системы решений (Φ CP) однородной СЛАУ	4
	1.2	Сформулируйте теорему о структуре общего решения однородной СЛАУ	4
	1.3	Сформулируйте теорему о структуре общего решения неоднородной системы линей-	
		ных алгебраических уравнений	4
	1.4	Что такое алгебраическая и тригонометрическая формы записи комплексного числа?	4
	1.5	Дайте определения модуля и аргумента комплексного числа. Что такое главное зна-	
		чение аргумента комплексного числа?	5
	1.6	Что происходит с аргументами и модулями комплексных чисел при умножении и	
		при делении?	5
	1.7	Что такое комплексное сопряжение? Как можно делить комплексные числа в алгеб-	
		раической форме?	5
	1.8	Выпишите формулу Муавра	6
	1.9	Как найти комплексные корни n -ой степени из комплексного числа? Сделайте эскиз,	
		на котором отметьте исходное число и все корни из него	6
	1.10	Сформулируйте основную теорему алгебры. Сформулируйте теорему Безу	7
	1.11	Выпишите формулу Эйлера. Выпишите выражения для синуса и косинуса через	
		экспоненту	7
	1.12	Выпишите формулы Виета для многочлена третьей степени	7
	1.13	Какие многочлены называются неприводимыми?	7
	1.14	Сформулируйте утверждение о разложении многочленов на неприводимые множи-	
		тели над полем комплексных чисел	7
	1.15	Сформулируйте утверждение о разложении многочленов на неприводимые множи-	
		тели над действительными числами.	8

 $\mathbf{2}$

1.16	Выпишите формулу для вычисления скалярного произведения в координатах, за-	
	данных в произвольном базисе	8
1.17	Дайте определение векторного произведения векторов в трехмерном пространстве	8
1.18	Сформулируйте три алгебраических свойства векторного произведения	8
1.19	Выпишите формулу для вычисления векторного произведения в координатах, задан-	
	ных в ортонормированном базисе	9
1.20	Сформулируйте критерий коллинеарности двух векторов с помощью векторного про-	
	изведения	9
1.21	Дайте определение смешанного произведения векторов. Как вычислить объем тет-	
	раэдра с помощью смешанного произведения?	9
1.22	Выпишите формулу для вычисления смешанного произведения в координатах, за-	
	данных в ортонормированном базисе	S
1.23	Сформулируйте критерий компланарности трех векторов с помощью смешанного	
	произведения	10
1.24	Дайте определение прямоугольной декартовой системы координат	10
1.25	Что такое уравнение поверхности и его геометрический образ?	10
1.26	Сформулируйте теорему о том, что задает любое линейное уравнение на координаты	
	точки в трехмерном пространстве.	10
1.27	Что такое нормаль плоскости?	11
1.28	Выпишите уравнение плоскости в отрезках. Каков геометрический смысл входящих	
	в него параметров?	11
1.29	Общие уравнения прямой. Векторное уравнение прямой. Параметрические и кано-	
	нические уравнения прямой	11
1.30	Сформулируйте критерий принадлежности двух прямых одной плоскости	12
		-1.0
, ,	казательства	13
2.1	Какие три условия достаточно наложить на функцию от столбцов матрицы, чтобы	4.0
	она обязательно была детерминантом?	13
2.2	Сформулировать и доказать критерий линейной зависимости	13
2.3	Сформулировать и доказать следствие теоремы о базисном миноре для квадратных	
_	матриц (критерий невырожденности).	14
2.4	Сформулируйте теорему о структуре общего решения неоднородной системы линей-	
	ных алгебраических уравнений и докажите её.	
2.5	Выпишите формулу Муавра и докажите её	15

2.6	Докажите, что если у многочлена с вещественными коэффициентами есть корень с	
	ненулевой мнимой частью, то число, комплексно сопряжённое к этому корню, также	
	будет корнем этого многочлена	16
2.7	Выпишите формулу для вычисления векторного произведения в правом ортонорми-	
	рованном базисе трехмерного пространства и приведите её вывод	16
2.8	Сформулируйте и докажите утверждение о связи объема параллелепипеда и сме-	
	шанного произведения	17
2.9	Сформулируйте и докажите критерий компланарности, использующий смешанное	
	произведение	17
2.10	Докажите теорему о том, что любое линейное уравнение на координаты точки в	
	трехмерном пространстве задает плоскость и что любая плоскость определяется ли-	
	нейным уравнением	18

1 Определения

1.1 Дать определение фундаментальной системы решений (Φ CP) однородной СЛАУ

Рассмотрим СЛАУ $Ax = 0, A \in M_{mn}(\mathbb{R})$

Определение. Любые n-r линейно независимых столбцов, являющиеся решениями однородной СЛАУ Ax=0, где n – число неизвестных, $r=\operatorname{Rg} A$, называют фундаментальной системой решений (ФСР).

1.2 Сформулируйте теорему о структуре общего решения однородной СЛАУ.

Теорема. Пусть Φ_1, \ldots, Φ_k – Φ CP однородной СЛАУ Ax = 0. Тогда любое решение этой СЛАУ можно представить в виде: $x = c_1 \Phi_1 + \ldots + c_k \Phi_k$, где c_1, \ldots, c_k – некоторые постоянные.

1.3 Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений.

Теорема. Пусть известно частное решение \widetilde{x} СЛАУ Ax = b.

Тогда любое решение этой СЛАУ может быть представлено в виде:

 $x=\widetilde{x}+c_1\Phi_1+\ldots+c_k\Phi_k$, где c_1,\ldots,c_k –некоторые постоянные, а Φ_1,\ldots,Φ_k – ФСР соответствующей однородной системы Ax=0.

1.4 Что такое алгебраическая и тригонометрическая формы записи комплексного числа?

Алгебраическая форма записи комплексного числа — это такая форма записи комплексных чисел, при которой комплексное число z, заданное парой вещественных чисел (x,y), записывается в виде:

$$z = x + iy$$

 $x = \operatorname{Re} z$ – вещественная часть комплексного числа.

 $y = {\rm Im}\,z$ — мнимая часть комплексного числа.

Тригонометрическая форма записи комплексного числа z:

$$z = r(\cos\varphi + i\sin\varphi)$$

$$r = \sqrt{x^2 + y^2} = |z|$$
 — модуль комплексного числа.

 $\varphi = \operatorname{Arg} z$ – аргумент комплексного числа (угол между r и положительным направлением Re).

1.5 Дайте определения модуля и аргумента комплексного числа. Что такое главное значение аргумента комплексного числа?

Пусть z — комплексное число. Его запись в алгебраической и тригонометрической формах соответственно:

$$z = x + iy = r(\cos\varphi + i\sin\varphi)$$

 $x = r\cos\varphi, \ y = r\sin\varphi$

 $r = \sqrt{x^2 + y^2} = |z|$ — модуль комплексного числа.

 $\varphi = \operatorname{Arg} z = \{ \arg z + 2\pi k | k \in \mathbb{Z} \}$ – аргумент комплексного числа (угол между r и положительным направлением Re).

Главное значение аргумента комплексного числа: $\arg z$, $\arg z \in [0; 2\pi)$ или $\arg z \in (-\pi; \pi]$

1.6 Что происходит с аргументами и модулями комплексных чисел при умножении и при делении?

Пусть z_1, z_2 – комплексные числа.

При умножении комплексных чисел их модули умножаются, аргументы складываются:

$$z = z_1 \cdot z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$$

При делении комплексных чисел их модули делятся, аргументы вычитаются:

$$z = \frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

1.7 Что такое комплексное сопряжение? Как можно делить комплексные числа в алгебраической форме?

Определение. Комплексно сопряжённым к числу z называется $\bar{z}: z=a+bi, \, \bar{z}=a-bi$ Сопряжение – отражение относительно вещественной оси.

$$z \cdot \bar{z} = (a+bi)(a-bi) = a^2 + b^2 = |z|^2$$

Деление комплексных чисел:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \bar{z}_2}{z_2 \cdot \bar{z}_2} = \frac{z_1 \cdot \bar{z}_2}{|z_2|^2}, \ z_2 \neq 0$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

1.8 Выпишите формулу Муавра.

Утверждение. Формула Муавра: $z^n = r^n(\cos n\varphi + i\sin n\varphi), n \in \mathbb{N}$

1.9 Как найти комплексные корни n-ой степени из комплексного числа? Сделайте эскиз, на котором отметьте исходное число и все корни из него.

Извлечение комплексных корней

Пусть дано комплексное число $w = \rho(\cos \psi + i \sin \psi)$ и число $n \in \mathbb{N}$. Нужно найти $\sqrt[n]{w}$ По формуле Муавра: $z^n = r^n(\cos n\varphi + i \sin n\varphi) = \rho(\cos \psi + \sin \psi)$

$$\begin{cases} \rho = r^n \\ \psi + 2\pi k = n\varphi, \ k \in \mathbb{Z} \end{cases} \Rightarrow \begin{cases} r = \sqrt[n]{\rho} \leftarrow \text{ арифметический корень из } \rho > 0 \\ \varphi = \frac{\psi + 2\pi k}{n}, \ k \in \mathbb{Z} \end{cases}$$

Достаточно рассмотреть только $k=0,1,2,\ldots,n-1$. Их ровно n штук. Тогда:

$$\sqrt[n]{w} = \left\{ \sqrt[n]{\rho} \cdot \left(\cos \left(\frac{\psi + 2\pi k}{n} \right) + i \sin \left(\frac{\psi + 2\pi k}{n} \right) \right) \mid k = \overline{0, n - 1} \right\}$$

Корни $\sqrt[n]{w}$ лежат в вершинах правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{\rho}$.

1.10 Сформулируйте основную теорему алгебры. Сформулируйте теорему Безу.

Теорема. Для любого многочлена $a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$, где $a_i \in \mathbb{C}$, $a_n \neq 0$, существует корень $z_0 \in \mathbb{C}$, т.е. решение уравнения $a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 = 0$

Теорема (Безу). Остаток от деления многочлена f(x) на x-c равен f(c).

1.11 Выпишите формулу Эйлера. Выпишите выражения для синуса и косинуса через экспоненту.

Утверждение. Формула Эйлера:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$
, Re $e^{i\varphi} = \cos \varphi$, Im $e^{i\varphi} = \sin \varphi$

1.12 Выпишите формулы Виета для многочлена третьей степени.

$$P_3(x) = ax^3 + bx^2 + cx + d, \ a \neq 0$$

Формулы Виета для $P_3(x)$:

$$\frac{b}{a} = -(c_1 + c_2 + c_3)$$

$$\frac{c}{a} = c_1c_2 + c_1c_3 + c_2c_3$$

$$\frac{d}{a} = -c_1c_2c_3$$

1.13 Какие многочлены называются неприводимыми?

Определение. Многочлен называется приводимым, если существует его нетривиальное разложение $f = g \cdot h$ и неприводимым в противном случае.

1.14 Сформулируйте утверждение о разложении многочленов на неприводимые множители над полем комплексных чисел.

Для любого непостоянного многочлена из $\mathbb{C}[x]$ существует разложение на неприводимые множители первой степени.

Неприводимым над \mathbb{C} являются только многочлены 1-ой степени: $z-z_1$.

Любой многочлен степени n>0 разлагается в произведение неприводимых многочленов. Комплексный многочлен степени n разлагается в произведение:

$$P_n(z) = a_n \cdot (z - z_1)^{\alpha_1} \cdot \ldots \cdot (z - z_k)^{\alpha_k}, \quad n = \alpha_1 + \ldots + \alpha_k$$

1.15 Сформулируйте утверждение о разложении многочленов на неприводимые множители над действительными числами.

Утверждение. Все многочлены 1-ой и все многочлены 2-ой степени с D < 0 являются неприводимыми над \mathbb{R} , а все остальные приводимы.

1.16 Выпишите формулу для вычисления скалярного произведения в координатах, заданных в произвольном базисе

Теорема. Пусть $\vec{a}=a_1\vec{e_1}+a_2\vec{e_2}+a_3\vec{e_3},\ \vec{b}=b_1\vec{e_1}+b_2\vec{e_2}+b_3\vec{e_3}$ – разложение векторов \vec{a} и \vec{b} по базису. Тогда их скалярное произведение может быть вычислено по формуле:

$$(\vec{a}, \vec{b}) = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} \cdot \begin{pmatrix} (\vec{e_1}, \vec{e_1}) & (\vec{e_1}, \vec{e_2}) & (\vec{e_1}, \vec{e_3}) \\ (\vec{e_2}, \vec{e_1}) & (\vec{e_2}, \vec{e_2}) & (\vec{e_2}, \vec{e_3}) \\ (\vec{e_3}, \vec{e_1}) & (\vec{e_3}, \vec{e_2}) & (\vec{e_3}, \vec{e_3}) \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Замечание. В случае ОНБ $\Gamma = E$, и $(\vec{a}, \vec{b}) = (a_1b_1 + a_2b_2 + a_3b_3)$.

1.17 Дайте определение векторного произведения векторов в трехмерном пространстве.

Определение. Вектор \vec{c} называют векторным произведением векторов \vec{a} и \vec{b} , если:

- 1) $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \varphi$, где φ угол между \vec{a} и \vec{b}
- 2) $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$
- 3) тройка $\vec{a},\,\vec{b},\,\vec{c}$ правая

1.18 Сформулируйте три алгебраических свойства векторного произведения.

Для любых векторов $\vec{a}, \vec{b}, \vec{c}$ и любого действительного числа λ :

- 1) $\left[\vec{a}, \vec{b}\right] = -\left[\vec{b}, \vec{a}\right]$ (антикоммутативность)
- 2) $\left[\vec{a}+\vec{b},\vec{c}\right]=\left[\vec{a},\vec{c}\right]+\left[\vec{b},\vec{c}\right]$ (дистрибутивность)

- 3) $\left[\lambda \cdot \vec{a}, \vec{b}\right] = \lambda \cdot \left[\vec{a}, \vec{b}\right] = \left[\vec{a}, \lambda \cdot \vec{b}\right]$
- 4) $[\vec{a}, \vec{a}] = \vec{0}$ (следствие из первого свойства)
- 1.19 Выпишите формулу для вычисления векторного произведения в координатах, заданных в ортонормированном базисе.

Утверждение. Пусть $\vec{i},\,\vec{j},\,\vec{k}$ – правый ОНБ, $\vec{a}=a_x\vec{i}+a_y\vec{j}+a_z\vec{k},\,\vec{b}=b_x\vec{i}+b_y\vec{j}+b_z\vec{k}.$ Тогда:

$$\vec{a}_x \vec{b} = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{i}(a_y b_z - a_z b_y) + \vec{j}(a_z b_x - a_x b_z) + \vec{k}(a_x b_y - a_y b_x)$$

1.20 Сформулируйте критерий коллинеарности двух векторов с помощью векторного произведения

Утверждение. Векторы \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда $\vec{a} \times \vec{b} = \vec{0}$.

1.21 Дайте определение смешанного произведения векторов. Как вычислить объем тетраэдра с помощью смешанного произведения?

Определение. Смешанным произведением векторов $\vec{a}, \vec{b}, \vec{c}$ называют число $([\vec{a}, \vec{b}], \vec{c})$.

Следствие. Объем тетраэдра, построенного на векторах, построенного на векторах \vec{a} , \vec{b} , \vec{c} (они не компланарны) равен: $V_T = \frac{1}{6} |\langle \vec{a}, \vec{b}, \vec{c} \rangle|$.

1.22 Выпишите формулу для вычисления смешанного произведения в координатах, заданных в ортонормированном базисе.

Утверждение. Пусть $\vec{i}, \, \vec{j}, \, \vec{k}$ – правый ОНБ.

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$
$$\vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$$
$$\vec{c} = c_x \vec{i} + c_y \vec{j} + c_z \vec{k}$$

Тогда выполнено:

$$\langle \vec{a}, \vec{b}, \vec{c} \rangle = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

1.23 Сформулируйте критерий компланарности трех векторов с помощью смешанного произведения.

Следствие. Векторы \vec{a} , \vec{b} , \vec{c} компланарны тогда и только тогда, когда $\langle \vec{a}, \vec{b}, \vec{c} \rangle = 0$.

1.24 Дайте определение прямоугольной декартовой системы координат.

Определение. Прямоугольной декартовой системой координат называют пару, состоящую из точки O и ОНБ $\vec{i}, \vec{j}, \vec{k}$.

Точку О называют началом ПДСК. Прямые, содержащие векторы $\vec{i}, \vec{j}, \vec{k}$ задающие направления на этих прямых, называются, соответственно, осью абсцисс, осью ординат и осью аппликат.

1.25 Что такое уравнение поверхности и его геометрический образ?

Определение. Рассмотрим ПДСК O_{xyz} и некоторую поверхность S.

Уравнение F(x,y,z)=0 называют уравнением поверхности S, если этому уравнению удовлетворяют координаты любой точки, лежащей на поверхности, и не удовлетворяют координаты ни одной точки, не лежащей на поверхности.

При этом поверхность S называют геометрическим образом уравнения F(x, y, z) = 0.

1.26 Сформулируйте теорему о том, что задает любое линейное уравнение на координаты точки в трехмерном пространстве.

Теорема.

- 1) Любая плоскость в пространстве определяется уравнением Ax + By + Cz + D = 0, в котором A, B, C, D некоторые числа.
- 2) Любое уравнение Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 > 0$, определяет в пространстве плоскость.

1.27 Что такое нормаль плоскости?

Определение. Вектор $\vec{n} = (A, B, C)$ перпендикулярен плоскости Ax + By + Cz + D = 0 и называется ее нормальным вектором.

1.28 Выпишите уравнение плоскости в отрезках. Каков геометрический смысл входящих в него параметров?

Дано: точки $M_1(a,0,0), M_2(0,b,0), M_3(0,0,c) \in P (a,b,c \neq 0)$

Уравнение P, т.к. $\overrightarrow{M_1M_2} = (-a, b, 0), \overrightarrow{M_1M_3} = (-a, 0, c), \overrightarrow{M_1M} = (x-a, y, z),$ имеет вид:

$$\begin{vmatrix} x - a & y & z \\ -a & b & 0 \\ -a & 0 & -c \end{vmatrix} = 0$$

Раскрыв определитель, получаем: $(x-a)bc + yac + zab = 0 \Leftrightarrow \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$

1.29 Общие уравнения прямой. Векторное уравнение прямой. Параметрические и канонические уравнения прямой.

Рассмотрим плоскости $P_1: A_1x + B_1y + C_1z + D_1 = 0$ и $P_2: A_2x + B_2y + C_2z + D_2 = 0$. Если $P_1 \not \mid P_2$, то они пересекаются по некоторой прямой L. Если точка M принадлежит L, то ее координаты удовлетворяют обоим уравнениям плоскостей, т.е.

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$
 – общие уравнения прямой.

Специальные виды уравнения прямой

1) Векторное уравнение прямой Рассмотрим прямую L. Даны точка $M_0(x_0, y_0, z_0) \in L$ и вектор $\vec{s} \parallel L$, $\vec{s} = (l, m, n)$, $\vec{s} \neq \vec{0}$. Тогда если M(x, y, z) принадлежит L, то $\overrightarrow{MM_0} \parallel \vec{s}$.

Пусть $\vec{r} = \overrightarrow{OM}$, $\vec{r_0} = \overrightarrow{OM_0}$ — радиус-векторы точек M и M_0 , тогда $\overrightarrow{M_0M} = \vec{r} - \vec{r_0}$. Таким образом, $M(x,y,z) \in L \Leftrightarrow \vec{r} - \vec{r_0} \parallel \vec{s} \Leftrightarrow \exists t \in \mathbb{R} : \vec{r} - \vec{r_0} = t\vec{s}$

Получено векторное уравнение прямой с параметром t и направляющим вектором прямой \vec{s} .

2) Параметрические уравнения прямой

Запишем векторное уравнение в координатах: пусть $t \in \mathbb{R}, x_0, y_0, z_0, l, m, n$ — заданные числа. Тогда параметрические уравнения прямой имеют вид:

$$\begin{cases} x - x_0 = tl \\ y - y_0 = tm \\ z - z_0 = tn \end{cases}$$

3) Канонические уравнения прямой

Выразим t из параметрических уравнений:

$$t = \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$$

Замечание. Один или два знаменателя могут быть равны 0, тогда соответствующие числители тоже равны 0.

4) Уравнение прямой, проходящей через 2 точки

Даны точки $M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2) \in L$.

Тогда $\overrightarrow{M_1M_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$ – направляющий вектор L.

$$L: \frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

1.30 Сформулируйте критерий принадлежности двух прямых одной плоскости.

Пусть $\vec{s_1}=(l_1,m_1,n_1),$ $\vec{s_2}=(l_2,m_2,n_2)$ – направляющие векторы прямых. Обозначим за $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$ две точки на прямых L_1 и L_2 соответственно (точки из уравнений прямых).

 L_1 и L_2 в одной плоскости $\Leftrightarrow \vec{s_1}, \vec{s_2}$ и $\overrightarrow{M_1M_2} = (x_2-x_1, y_2-y_1, z_2-z_1)$ компланарны. Значит:

$$\langle \overrightarrow{M_1 M_2}, \vec{s_1}, \vec{s_2} \rangle = 0 \stackrel{\text{B OHB}}{\Leftrightarrow} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0$$

2 Доказательства

2.1 Какие три условия достаточно наложить на функцию от столбцов матрицы, чтобы она обязательно была детерминантом?

Утверждение. На функцию от столбцов матрицы достаточно наложить следующие три условия, чтобы она обязательно была детерминантом:

- 1) Функция должна быть полилинейна (линейна по столбцам)
- 2) Кососимметрична ($\det A = -\det A$, т.е. равна 0, если есть 2 одинаковых столбца)
- 3) Равна 1 на E_n

Доказательство. Докажем при n=2. Разложим столбцы:

$$\begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = a_{11} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \quad \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} = a_{12} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Определим, чему равна функция от матрицы:

$$f\left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}\right) \stackrel{\text{линейность}}{=} a_{11} f\left(\begin{pmatrix} 1 & a_{12} \\ 0 & a_{22} \end{pmatrix}\right) + a_{21} f\left(\begin{pmatrix} 0 & a_{12} \\ 1 & a_{22} \end{pmatrix}\right) =$$

$$= a_{11} a_{22} f\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) + a_{21} a_{12} f\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right) + a_{11} a_{12} f\left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}\right) + a_{21} a_{22} f\left(\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right) =$$

$$= (a_{11} a_{22} - a_{12} a_{21}) \cdot f\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = a_{11} a_{22} - a_{12} a_{21} = \det A$$

2.2 Сформулировать и доказать критерий линейной зависимости.

Утверждение. a_1, \ldots, a_s – линейно зависимы \Leftrightarrow хотя бы один из a_1, \ldots, a_s линейно выражается через другие.

Доказательство.

Необходимость.

Дано: $a_1, ..., a_s$ – л.з.

Доказать: найдутся выражаемые через другие.

По определению:

$$\exists \alpha_1, \ldots, \alpha_s \text{ (He BCe 0): } \alpha_1 a_1 + \ldots + \alpha_s a_s = 0$$

Пусть $\alpha_1 \neq 0$. Тогда:

$$a_1 = -\frac{\alpha_2}{\alpha_1}a_2 + \ldots + \left(-\frac{\alpha_s}{\alpha_1}\right)a_s$$

Достаточность.

Дано: один линейно выражается через другие.

Доказать: они линейно зависимы.

Пусть
$$a_1 = \beta_2 a_2 + \ldots + \beta_s a_s$$
. Тогда $\underbrace{1 \cdot a_1 - \beta_2 a_2 - \ldots - \beta_s a_s}_{\text{нетривиальная лин.комб.}} = 0 \Rightarrow$ по определению они л.з. \square

2.3 Сформулировать и доказать следствие теоремы о базисном миноре для квадратных матриц (критерий невырожденности).

Следствие. Рассмотрим квадратную матрицу $A \in M_n(\mathbb{R})$. Следующие три условия эквивалентны:

- (1) $\det A \neq 0$
- (2) $\operatorname{Rg} A = n$
- (3) все строки A линейно независимы

Доказательство.

 $1) (1) \Rightarrow (2)$

Пусть $\det A \neq 0 \Rightarrow$ в A есть минор порядка n, он $\neq 0 \Rightarrow$ по определению $\operatorname{Rg} A = n.$

 $2) (2) \Rightarrow (3)$

Пусть $\operatorname{Rg} A = n \Rightarrow$ все строки базисные \Rightarrow по первому пункту теоремы о базисном миноре (строки базисного минора л.н.з) они все л.н.з.

 $3) (3) \Rightarrow (1)$

Пусть строки A л.н.з. Предположим противное: $\det A = 0 \Rightarrow \operatorname{Rg} A < n \Rightarrow$ по второму пункту теоремы о базисном миноре (строки, не входящие в базисный минор являются лин. комб. базисных) по крайней мере одна из строк является линейной комбинацией остальных \Rightarrow по критерию л.з все строки л.з – \bot .

2.4 Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений и докажите её.

Теорема. Пусть известно частное решение \tilde{x} СЛАУ Ax=b. Тогда любое решение этой СЛАУ может быть представлено в виде:

$$x = \widetilde{x} + c_1 \Phi_1 + \ldots + c_k \Phi_k$$

где c_1, \ldots, c_k —некоторые постоянные, а Φ_1, \ldots, Φ_k — Φ CP соответствующей однородной системы Ax = 0.

Доказательство.

$$X_{\text{общ.неодн.}} = X_{\text{част.неодн.}} + X_{\text{общ.однород.}}$$

Пусть x^0 – произвольное решение СЛАУ $Ax = b \Rightarrow x^0 - \widetilde{x}$ – решение СЛАУ Ax = 0 (по свойствам решений СЛАУ).

 $K x^0 - \widetilde{x}$ применим теорему о структуре общего решения ОСЛАУ:

$$x^0 - \widetilde{x} = c_1 \Phi_1 + \ldots + c_k \Phi_k \Rightarrow x^0 = \widetilde{x} + c_1 \Phi_1 + \ldots + c_k \Phi_k$$

2.5 Выпишите формулу Муавра и докажите её.

Утверждение. Формула Муавра: $z^n = r^n(\cos n\phi + i\sin n\phi), n \in \mathbb{N}$

Доказательство. Применим принцип математической индукции.

1) n=2:

$$z^{2} = z \cdot z = r \cdot r \cdot (\cos(\varphi + \varphi) + i\sin(\varphi + \varphi)) = r^{2}(\cos 2\varphi + i\sin 2\varphi)$$

2) Предположим, что формула верна для всех $n \leq k$. Покажем, что из этого следует, что оно верно для всех n = k+1:

$$z^{k+1} = z^k \cdot z = r^k (\cos k\varphi + i\sin k\varphi) \cdot r(\cos \varphi + i\sin \varphi) = r^{k+1} (\cos(k\varphi + \varphi) + i\sin(k\varphi + \varphi)) = r^{k+1} (\cos((k+1)\varphi) + i\sin((k+1)\varphi))$$

Таким образом, формула верна $\forall n \in \mathbb{N}.$

2.6 Докажите, что если у многочлена с вещественными коэффициентами есть корень с ненулевой мнимой частью, то число, комплексно сопряжённое к этому корню, также будет корнем этого многочлена

Утверждение. Если $c \in \mathbb{C}$ – корень кратности k многочлена $P_n(x)$ с действительными коэффициентами, то \bar{c} тоже является корнем $P_n(x)$ кратности k.

Доказательство. $P_n(c) = a_n \cdot c^n + \ldots + a_1 \cdot c + a_0 = 0.$

Сопряжём обе части: $\bar{0}=\bar{a_n}\cdot\bar{c^n}+\ldots+\bar{a_1}\cdot\bar{c}+\bar{a_0}$. Откуда \bar{c} – тоже будет корнем:

$$0 = a_n \cdot \bar{c}^n + \ldots + a_1 \cdot \bar{c} + a_0 = a_n \cdot c^n + \ldots + a_1 \cdot c + a_0$$

Если c – корень кратности 1, то всё доказано. Если кратность > 1, то делим на x – \bar{c} , по теореме Безу остаток будет нулевым и к многочлену применяем ту же процедуру.

2.7 Выпишите формулу для вычисления векторного произведения в правом ортонормированном базисе трехмерного пространства и приведите её вывод.

Утверждение. Пусть $\vec{i},\,\vec{j},\,\vec{k}$ – правый ОНБ, $\vec{a}=a_x\vec{i}+a_y\vec{j}+a_z\vec{k},\,\vec{b}=b_x\vec{i}+b_y\vec{j}+b_z\vec{k}.$ Тогда:

$$\vec{a}_x \vec{b} = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{i}(a_y b_z - a_z b_y) + \vec{j}(a_z b_x - a_x b_z) + \vec{k}(a_x b_y - a_y b_x)$$

Доказательство. Т.к. $\vec{i},\,\vec{j},\,\vec{k}$ – ОНБ, то

$$\vec{i}\times\vec{i}=\vec{j}\times\vec{j}=\vec{k}\times\vec{k}=\vec{0}, \vec{i}\times\vec{j}=\vec{k}, \vec{j}\times\vec{i}=\vec{-k}, \vec{i}\times\vec{k}=\vec{-j}, \vec{k}\times\vec{i}=\vec{j}, \vec{j}\times\vec{k}=\vec{i}, \vec{k}\times\vec{j}=-\vec{i}$$

$$\vec{a} \times \vec{b} = (a_x \vec{i} + a_y \vec{j} + a_z \vec{k}) \times (b_x \vec{i} + b_y \vec{j} + b_z \vec{k}) =$$

$$= a_x b_y \ \vec{i} \times \vec{j} + a_x b_z \ \vec{i} \times \vec{k} + a_y b_x \ \vec{j} \times \vec{i} + a_y b_z \ \vec{j} \times \vec{k} + a_z b_x \ \vec{k} \times \vec{i} + a_z b_y \ \vec{k} \times \vec{j} =$$

$$= \vec{i} (a_y b_z - b_y a_z) + \vec{j} (a_z b_x - a_x b_z) + \vec{k} (a_x b_y - a_y b_x) = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

2.8 Сформулируйте и докажите утверждение о связи объема параллеление а и смешанного произведения.

Утверждение. Пусть V – объем параллелепипеда, построенного на векторах $\vec{a}, \, \vec{b}, \, \vec{c}$ (они не компланарны). Тогда

$$(\left[\vec{a}, \vec{b}\right], \vec{c}) = egin{cases} V, \ \text{если} \ \vec{a}, \vec{b}, \vec{c} - \text{правая тройка} \\ -V, \ \text{если} \ \vec{a}, \vec{b}, \vec{c} - \text{левая тройка} \end{cases}$$

Доказательство. Рассмотрим вектор $\vec{a} \times \vec{b}$. Тогда $|\vec{a} \times \vec{b}| = S$, где S – площадь параллелограмма, построенного на векторах \vec{a} и \vec{b} .

Обозначим за \vec{l} единичный орт, сонаправленный с $\vec{a} \times \vec{b}$, то есть $\vec{a} \times \vec{b} = S \cdot \vec{l}$.

Вычислим: $(\left[\vec{a}, \vec{b}\right], \vec{c}) = (S \cdot \vec{l}, \vec{c}) = S \cdot |\vec{l}| \cdot |\vec{c}| \cdot \cos \varphi = S \cdot |\vec{c}| \cdot \cos \varphi$, где φ – угол между \vec{c} и \vec{l}

Теперь рассмотрим два случая:

- 1) φ острый либо равен 0, если \vec{a} , \vec{b} , \vec{c} правая тройка $\Rightarrow \cos \varphi > 0 \Rightarrow |\vec{c}| \cdot \cos \varphi = h$ высоте параллелограмма.
- 2) φ тупой либо равен π , если \vec{a} , \vec{b} , \vec{c} левая тройка $\Rightarrow \cos \varphi < 0 \Rightarrow |\vec{c}| \cdot \cos \varphi = -h$. Таким образом,

$$(\left[\vec{a},\vec{b}\right],\vec{c})=egin{cases} Sh,\ ext{если}\ \vec{a},\vec{b},\vec{c}$$
— правая тройка $-Sh,\ ext{если}\ \vec{a},\vec{b},\vec{c}$ — левая тройка

2.9 Сформулируйте и докажите критерий компланарности, использующий смешанное произведение.

Утверждение. Векторы \vec{a} , \vec{b} , \vec{c} компланарны тогда и только тогда, когда $\langle \vec{a}, \vec{b}, \vec{c} \rangle = 0$.

Доказательство.

Необходимость.

Дано: \vec{a} , \vec{b} , \vec{c} компланарны.

Доказать: $\langle \vec{a}, \vec{b}, \vec{c} \rangle = 0$.

Если $\vec{a} \parallel \vec{b}$, то $\vec{a} \times \vec{b} = 0 \Rightarrow \langle \vec{a}, \vec{b}, \vec{c} \rangle = 0$.

Если $\vec{a} \not\parallel \vec{b}$, то $\vec{a} \times \vec{b} \perp \vec{c}$ (т.к. \vec{c} компланарен \vec{a} и \vec{b}) \Rightarrow ($[\vec{a}, \vec{b}], \vec{c}$) = 0 = $\langle \vec{a}, \vec{b}, \vec{c} \rangle$.

Достаточность.

Дано: $\langle \vec{a}, \vec{b}, \vec{c} \rangle = 0$.

Доказать: \vec{a} , \vec{b} , \vec{c} компланарны.

Тогда, если \vec{a} , \vec{b} , \vec{c} не компланарны, то параллелепипед, построенный на векторах \vec{a} , \vec{b} , \vec{c} имеет ненулевой объем $\Rightarrow \langle \vec{a}, \vec{b}, \vec{c} \rangle \neq 0$ — \bot . Значит, \vec{a} , \vec{b} , \vec{c} компланарны.

2.10 Докажите теорему о том, что любое линейное уравнение на координаты точки в трехмерном пространстве задает плоскость и что любая плоскость определяется линейным уравнением.

Теорема.

- 1) Любая плоскость в пространстве определяется уравнением Ax + By + Cz + D = 0, в котором A, B, C, D некоторые числа.
- 2) Любое уравнение Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 > 0$, определяет в пространстве плоскость.

Доказательство.

1) Рассмотрим плоскость π . Пусть точка $M_0(x_0, y_0, z_0)$ ей принадлежит. Рассмотрим $\vec{n} \perp \pi$. Пусть $\vec{n} = (A, B, C)$.

$$M(x, y, z) \in \pi \Leftrightarrow (\vec{n}, \overrightarrow{M_0M}) = 0 \Leftrightarrow A(x_0 - x) + B(y_0 - y) + C(z_0 - z) = 0$$

Т.е. Ax + By + Cz + D = 0, где $D = -Ax_0 - By_0 - Cz_0$. Таким образом, координаты точки M удовлетворяют уравнению Ax + By + Cz + D = 0.

2) Рассмотрим уравнение Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 > 0$. Оно имеет хотя бы одно решение (например, если $A \neq 0$, то $x_0 = -\frac{D}{A}, y_0 = z_0 = 0$). Обозначим за M_0 точку (x_0, y_0, z_0) . Пусть точка M(x, y, z) удовлетворяет уравнению Ax + By + Cz + D = 0. Вычтем из него равенство $Ax_0 + By_0 + Cz_0 + D = 0$:

$$A(x_0 - x) + B(y_0 - y) + C(z_0 - z) = 0 \Leftrightarrow (\vec{n}, \overrightarrow{M_0 M}) = 0$$
, где $\vec{n} = (A, B, C)$

 $(\vec{n}, \overrightarrow{M_0M}) = 0 \Leftrightarrow \vec{n} \perp \overrightarrow{M_0M} \Leftrightarrow$ точка M лежит в плоскости, проходящей через M_0 и перпендикулярной вектору $\vec{n} \Rightarrow$ уравнение Ax + By + Cz + D = 0 определяет плоскость.