Nov 11-15 Practice Problems

Things I learned in Organic Chemistry

Due dates:

- Quiz 7 due Friday (on last week's content)
- Graded Review 7 end of this week as usual
- Office hours Tuesday 5:30pm to 6:30pm in
 104 Pulp and Paper Building

Q1: Fill in all the associated Newman projections for butane. Ensure the correct projection matches with the associated potential energy. Draw the most stable conformation as a sawhorse diagram.

Q1: Fill in all the associated Newman projections for butane. Ensure the correct projection matches with the associated potential energy. Draw the most stable conformation as a sawhorse diagram.

Structure/conformation impacts function on larger scale.

Q2: Circle and name the functional groups in these molecules. Specify primary, unsubstituted, etc. Note all the grey circles are carbon.

Q2: Circle and name the functional groups in these molecules. Specify primary, unsubstituted, etc.

Q2: Circle and name the functional groups in these molecules. Specify primary, unsubstituted, etc.

Q3: Circle and name the functional groups in these molecules. Specify primary, unsubstituted, etc.

triglyceride

Naproxen (Brand name Aleve)

Q3: Circle and name the functional groups in these molecules. Specify primary, unsubstituted, etc.

Naproxen (Brand name Aleve)

Prof. Carolyn Bertozzi: Coined the term "bioorthogonal chemistry"

She is scientifically brilliant and soo cool

- Frequently voted (on twitter) for Nobel Prize and NOW is!!!!
- 2SLGBTQIA+
- Baker Family Director of Stanford ChEM-H
- Anne T. and Robert M. Bass Professor in the School of Humanities & Sciences
- Professor (by courtesy): Chemical and Systems Biology and or

Radiology

Stanford was smart and "stole" her on time ©

COMPANY	YEAR FOUNDED	FOCUS	BACKGROUND
Redwood Bioscience	2008	Antibody-drug conjugates	Sold in 2014 to Catalent Pharma Solutions
Enable Biosciences	2014	Rapid diagnostics	National Institutes of Health—funded biotech developing at-home diagnostics for diabetes and other diseases
Palleon Pharmaceuticals	2015	Immuno-oncology	Raised nearly \$48 million to develop glycoimmune checkpoint inhibitors
InterVenn Biosciences	2017	Glycoproteomic analysis	Raised \$9.4 million to use artificial intelligence for mass spectrometry for glycoproteomic analysis
Grace Science	2018	Rare-disease therapeutics	Drug development spin-off of a nonprofit devoted to researching NGLY1 deficiency
OliLux Biosciences	2019	Tuberculosis diagnostics	Developing trehalose-based rapid tuberculosis detection
Lycia Therapeutics	2019	Extracellular protein degradation	Backed by Versant Ventures to develop LYTACs technology

Editor-In-Chief (EIC)

ACS central science

Q4: Fill in the following for the pair of molecules. What kind of isomers are they?

Skeleton: OH

Molecular formula:

Q4: Fill in the following for the pair of molecules. What kind of isomers are they?

Skeleton: $O \longrightarrow OH$ Molecular formula: C_2H_6O C_2H_6O

Functional isomers!

Q5: Draw a corresponding isomer (as indicated) for each molecule below.

Enantiomer:

Positional:

Geometric:

Q5: Draw a corresponding isomer (as indicated) for each molecule below.

slido

Which of the following pairs are structural isomers?

Which of the following pairs are structural isomers?

A. 1

B. 2

C. 3

D. 4

E. Al

18

Q6: Name the following molecules using cis/trans or E/Z.

Q6: Name the following molecules using cis/trans or E/Z.

trans-hex-2-ene

(*E*)-hex-2-ene

(*E*)-1-bromo-1,2-dichloro-but-1-ene

trans/cis not possible here because the double bond is at the end of the carbon chain

PERIODIC TABLE OF ELEMENTS

Q7: Decide whether the bromoalkanes (a) CH₃CH₂CH(Br)CH₃ and (b) CH₃CH(Br)CH₃ are chiral.

Q7: Decide whether the bromoalkanes (a) CH₃CH₂CH(Br)CH₃ and (b) CH₃CH(Br)CH₃ are chiral.

CH₃CH₂CHBrCH₃

CH₃CHBrCH₃

Two methyl groups, so only 3 different groups, this is "achiral" (not chiral)

4 different groups, so chiral!

Q8: Indicate if the following molecules are R or S. Show your work!

Q8: Indicate if the following molecules are R or S. Show your work! NEW

slido

Which of the following is the Newman structure of the molecule below?

Answer: Which of the following is the Newman structure of the molecule below?

$$D. \quad D \quad \bigcup_{H_3C} CI CH_3$$

E. E
$$H_3C$$
 CH_3 H_3C CH_3