ALGORITMA K-MEANS (TUGAS MACHINE LEARNING)

Oleh:

Rahmi Permata Hati 1717051080

Wulan Destyaningsih 1717051075

S1 ILMU KOMPUTER JURUSAN ILMU KOMPUTER

 ${\bf FAKULTAS\ MATEMATIKA\ DAN\ ILMU\ PENGETAHUAN\ ALAM}$

UNIVERSITAS LAMPUNG

2020

Algoritma K-Means

Id Buah	Diameter	Berat
1	7.0	165
2	7.1	170
3	6.5	180
4	6.6	195
5	6.8	200

Proses Iterasi ke 1

K = 2 (2 cluster)

Pilih 2 centroid cluster (random):

Pusat cluster 1: c1=(7.2, 160)

Pusat cluster 2: c2=(6.5, 190)

Jarak (Euclidean Distance)

Id Buah	Diameter	Berat	Jarak c1	Jarak c2
1	7.0	165	√25.04	√625.25
2	7.1	170	√100.01	√400.36
3	6.5	180	√400.49	√100
4	6.6	195	√1225.36	√25.01
5	6.8	200	√1600.16	√100.09

Pengelompokkan

Id Buah	Diameter	Berat	Keanggotaan
1	7.0	165	c1
2	7.1	170	c1
3	6.5	180	c2
4	6.6	195	c2
5	6.8	200	c2

Update Centroid c1

Id Buah	Diameter	Berat	Keanggotaan
1	7.0	165	c1
2	7.1	170	c1

centroid c1 =
$$\left(\frac{7.0+7.1}{2}, \frac{165+170}{2}\right)$$
 = $(7.05, 167.5)$

Pengelompokkan

Id Buah	Diameter	Berat	Keanggotaan
3	6.5	180	c2
4	6.6	195	c2
5	6.8	200	c2

centroid c2=
$$\left(\frac{6.5+6.6+6.8}{3}, \frac{180+195+200}{3}\right) = (6.63,191.67)$$

Selanjutnya: Hitung jarak ke centroid baru

Id Buah	Diameter	Berat
1	7.0	165
2	7.1	170
3	6.5	180
4	6.6	195
5	6.8	200

Proses Iterasi ke 2

K = 2 (2 cluster)

Centroid c1=(7.05, 167.5)

Centroid c2=(6.63, 191.67)

Jarak (Euclidean Distance)

Id Buah	Diameter	Berat	Jarak c1	Jarak c2
1	7.0	165	√6.2525	√711.4258
2	7.1	170	√6.2525	√469.8098
3	6.5	180	√156.5525	√136.2058
4	6.6	195	√756.4525	√11.0898
5	6.8	200	√1056.3125	√69.4178

Pengelompokkan

Id Buah	Diameter	Berat	Keanggotaan
1	7.0	165	c1
2	7.1	170	c1
3	6.5	180	c2
4	6.6	195	c2
5	6.8	200	c2

Update Centroid c1

Id Buah	Diameter	Berat	Keanggotaan
1	7.0	165	c1
2	7.1	170	c1

centroid
$$c1 = \left(\frac{7.0+7.1}{2}, \frac{165+170}{2}\right) = (7.05, 167.5)$$

Pengelompokkan

Id Buah	Diameter	Berat	Keanggotaan
3	6.5	180	c2
4	6.6	195	c2
5	6.8	200	c2

centroid c2=
$$\left(\frac{6.5+6.6+6.8}{3}, \frac{180+195+200}{3}\right) = (6.63,191.67)$$

Cek Centroid

- Centroid pada iterasi ke 1 sama dengan centroid pada iterasi ke 2 (tetap / tidak ada perubahan)
- Maka iterasi di hentikan dan proses clustering menghasilkan :
 - 1. Cluster 1 berisi (Id Buah 1 dan 2)
 - 2. Cluster 2 berisi (Id Buah 3, 4, dan 5)

Hasil Clustering

Kompleksitas waktu dari algoritma clustering K-Means, yaitu O(nKT). Kompleksitas ini merupakan kompleksitas linear dimana algoritma ini tumbuh selaras dengan pertumbuhan ukuran data.

n : Penentuan data masuk ke cluster mana

K : Merupakan proses perulangan untuk menentukan cluster center

T : Perulangan iterasi sampai mendapatkan konvergensinya