UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE CIÊNCIAS ECONÔMICAS DEPARTAMENTO DE ECONOMIA

THE ROLE OF INSTITUTIONS IN THE EMERGENCE OF COOPERATION

REIMPLEMENTING AXELROD'S METANORMS GAME IN OSTROM'S INSTITUTIONAL ANALYSIS AND DEVELOPMENT FRAMEWORK (IAD)

DANIEL VOIGT GODOY SABINO DA SILVA PÔRTO JÚNIOR

AGENDA

- INTRODUCTION
- PREVIOUS WORK
- THE PROPOSED MODEL
- SIMULATION
- RESULTS
- CONCLUSIONS

INTRODUCTION

INITIAL SITUATION

A population of defectors exploring a common-pool resource

CONDITIONS

- Agents socially organized in a scale-free network
- Rules in use: Axelrod's Metanorms Game (1986)
- Social learning by imitation/cultural dissemination
- Behavior innovation by random shocks in attributes

HYPOTHESIS

 The introduction of an institution, in a "culturalist" sense, enables cooperation by transforming the attributes of the population

- SOCIAL DILEMMAS
 - Tragedy of the Commons (Hardin, 1968)
 - Ostrom (1990) field experiments
- Institutional Analysis and Development Framework (IAD) –
 Ostrom (2005)

INSTITUTIONS

- Bowles (2004)
 - equilibrium of an underlying game
- Chang and Evans (2005)
 - Instruments to enable supra-individual goals
 - Culturalist vision
 - Internalization of institutional values conformism

CULTURE

- Set of individual attributes subjected to social influence, something that people learn from each other (Axelrod, 1997)
 - Model of Dissemination of Culture
- Reduced set of mental models shared by individuals (Ostrom, 2005)

- AXELROD'S METANORMS MODEL (1986)
 - Agent's attributes (3 bits = 0 to 7)
 - Boldness: propension to defect
 - Vengefulness: propension to punish
 - Generation: 4 rounds
 - Mutation: 1% chance in each bit
 - Social network: complete graph
 - Simulation: 20 agents, 100 generations, 5 times
 - Problem: There is no incentive to punish an observed defection since it has a cost
 - Solution: Second order punishment (to punish for not punishing na observed defection)

- MODIFIED VERSION OF AXELROD'S METANORMS MODEL (1986)
 - Model elements/dimensions
 - Agents
 - Agents are not omniscient (Mahmoud et al, 2012)
 - Population density
 - Common-pool resource
 - Geographic space
 - Social space
 - Two spaces of interaction: geographic (observation) and social (control) (Canova, 2011)
 - Metanorms Game
 - Cultural space
 - Learning by imitation/culture (Macy, 1991, Axelrod, 1997)
 - The role of institutions (Chang and Evans, 2005, Bowles, 2004)

• IAD FRAMEWORK (Ostrom, 2005) – Integrating elements

CULTURAL SPACE

- Cartesian Product: Boldness x Vengefulness
- Imitation (social learning)
 - Selection of "cultural models" for imitation/rejection

$$Vis_{AB} = \frac{P_B - P_A}{NDistGeo_{AB}}$$

Decision of imitate/reject

$$\frac{1}{1 + \exp(\beta(NDisCult_{ij} - 0.5))}$$

• Probability of "wrong" selection (ω = 10%)

- CULTURAL SPACE (continued)
 - Autonomous random movement Behavior innovation
 - Institution
 - "Culturalist" vision (Chang and Evans, 2005)
 - Characteristics
 - Origin (exogenous / endogenous)
 - Power/weight (w_{inst})
 - Range (r_{inst}) and Comprehensiveness/minimum weight $(w_{inst} r_{inst})$
 - Strenght of imitation (bias)
 - Multi-level selection (Bowles, 2004)
 - Institutional influence in agent's attributes

$$Prob(inst) = w_{inst} - r_{inst}NDistCult_{i inst}$$

CULTURAL SPACE (continued)

Green: Norm established

Red: Norm collapsed

A and C have no relationship between them but they are both neighbors or socially connected to **B**.

Vectors mA e mC: possible movements of **B** in the cultural space

PARAMETER SPACE

- 222 combinations of 6 parameters
- Identification: NN.WW.M.S.O.D
 - NN population density;
 - WW institution's weight (power);
 - M institution's minimum weight (difference between power and range);
 - S bias towards imitating institution;
 - O institution's origin, exogenous (X) or endogenous (E); and
 - D defection observation, geographic only(G) or including social connection (S).

- Attributes Plot: each line represents the population average of an attribute – boldness in black, vengefulness in red;
- Single Norm Plot: translates the attributes into 3 possible states norm established (1), norm collapsed (-1) and undefined (0);
- Average Norm Plot: averages single norm plots over different rounds of simulation.

Surface Plot: each cell is colored according to the corresponding value of the results obtained at the end of a round of simulations for a combination formed by the values in both axis.

Vertical Axis: NN.WW.G

Horizontal axis: M.S

Title: O

So, for the lower left corner, we have a value of zero (blue) which was the result obtained for the combination "20.5.0.0.X.G" (where X stands for "exogenous")

1ª SEQUENCE OF SIMULATIONS

- 222 combinations
- 10 simulations for each combinations
- 1,000 generations each time

Social norm collapses

- Low institutional weight (5%) and minimum weight ≤ 2%
- Medium institutional weight (20%) and minimum weight equals zero
- 72 combinations (collapse)
- 6 combinations (no institution)

12 combinations

- Endogenous Institutions
- Low population density (20%)
- 1,000 generations
- 10 simulations

Average Attributes Plots

Average Norm Plots

2º SEQUENCE OF SIMULATIONS

- 78 combinations
- 10 simulations for each combination
- 10,000 generations each time

Norm establishment

- Advantage: endogenous institutions
- Social control (odd lines)
- Imitation strength or bias (even columns)

12 combinations

- Endogenous Institutions
- Low population density (20%)
- 10,000 generations
- 10 simulations

Average Attributes Plots

Average Norm Plots

Norm establishment speed

- Medium and high populational densities: slow
- Low density: *catalyst*

Norm stability

- Exogenous: Unstable
- Medium and high population densities: Stable
- Low density: Fragile, dependent on the existence of social control

CONCLUSIONS

- The simulated results indicate:
 - a) Endogenous institutional arrangements are more effective.
 - b) When considering a **weak endogenous institution** with low or zero mininum weight, the results also show that:
 - The possibility of social control is sufficient for establishing a norm;
 - Medium or large communities are capable of establishing stable norms;
 - In small communities, the stability of a social norm is dependent on the existence of social control; and
 - Indifference to the institutional values is an obstacle.
 - These results are compatible with those found by Ostrom (1990) in her field experiments.

REFERENCES

- AXELROD, R. An evolutionary approach to norms. <u>American Political Science Review</u>. Vol.80, N.4, 1095-1111, 1986.
- AXELROD, R. The dissemination of culture: A model with local convergence and global polarization. <u>Journal of Conflict Resolution</u>. Vol. 41, N.2, p. 203-226, 1997.
- BOWLES, S. <u>Microeconomics: Behavior, Institutions and Evolution</u>. Princeton: Princeton University Press, 2004.
- CANOVA, G. A. <u>Jogos evolutivos: efeitos de difusão em redes complexas</u>.
 Monografia de conclusão de curso. Porto Alegre, UFRGS, 2011.
- CHANG, H.J.; EVANS, P. The role of institutions in economic change. In: Reimagining Growth. Londres: Zed Press, 2005.
- HARDIN, G.R. The tragedy of the commons. <u>Science</u>. Vol. 162, p. 1243-48, 1968.
- MACY, M.W. Chains of cooperation: Threshold effects in collective action. <u>American Sociology Review</u>. Vol. 56, n. 12, p.730-47, 1991.
- MAHMOUD, S.; GRIFFITHS, N.; KEPPENS, J.; LUCK, M. Overcoming omniscience for norm emergence in Axelrod's metanorm model. <u>Coordination</u>, <u>Organizations</u>, <u>Institutions</u>, and <u>Norms in Agent System VII</u>. Vol. 7254, 186-202, 2012.
- OSTROM, E. <u>Governing the Commons: The Evolution of Institutions for Collective Action</u>. Cambridge: Cambridge University Press, 1990.
- OSTROM, E. <u>Understanding Institutional Diversity</u>. Princeton: Princeton University Pressa, 2005.