第2章 逻辑代数基础

第二讲:逻辑函数及其描述

第2章 逻辑代数基础

- ▶1 逻辑代数的基本知识
- >2 逻辑函数及其描述方法
- ▶3 逻辑函数的简化

ÞΑ

§ 2.2 逻辑函数及其表示方法

一、逻辑函数

如果以逻辑变量作为输入,以运算结果作为输出,当输入变量的取值确定之后,输出的取值 便随之而定。输出与输入之间的函数关系称为逻 辑函数。Y=F(A,B,C,...)

ŊΑ

二、逻辑函数表示方法

常用逻辑函数的表示方法有:逻辑真值表(真值表)、逻辑函数式(逻辑式或函数式)、逻辑图、波形图、卡诺图及硬件描述语言。它们之间可以相互转换。

例:一举重裁判电路

设*A、B、C*为1表示开关闭合,0表示开关断开; *Y*为1表示灯亮,为0表示灯暗。得到函数表示形式:

真值表

输	,	λ	输 出
A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

函数式

$$Y = AB'C + ABC' + ABC$$
$$= A(B+C)$$

逻辑图

波形图

$$Y = A(B+C)$$

真值表: 将输入、输出的所有可能状态一

一对应地列出。

Α	Υ
0	1
1	0

一输入变量, 二种组合

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

二输入变量,四种组合

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

三输入变量,八种组合

A	В	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1

A	В	C	D	Y
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

四输入变量, 16种 组合

n个变量可以有2ⁿ个组合,真值表一般按二进制的顺序,输出与输入状态——对应,列出所有可能的状态。

M

逻辑函数的标准形式

逻辑函数式: 把逻辑函数的输入、输出关系写成与、或、非等逻辑运算的组合式。也称为逻辑函数式,通常采用"与或"的形式。

例: F = ABC + ABC + ABC + ABC + ABC

最小项: 在 n 变量逻辑函数中,若 m 是包含 n 个因子的乘项积,而且这n个变量均以原变量或反变量的形式在 m 中出现一次,则称m 为该组变量的最小项。

上例中每一项都是最小项。

逻辑相邻: 若两个最小项只有一个变量以原、反区别,则称它们逻辑相邻。

例: \overline{ABC} 与 \overline{ABC} 逻辑相邻。

1、二变量的全部最小项

A B	最小项	编号
0 0	$\overline{\mathrm{A}}\overline{\mathrm{B}}$	m_0
0 1	$\bar{A} B$	\mathbf{m}_1
1 0	\overline{AB}	m ₂
1 1	AΒ	m ₃

3、四变量的全部最小项 编号为 mo~ m15 (略)

2、三变量的全部最小项

ABC	最小项	编号
0 0 0	$\bar{A}\bar{B}\bar{C}$	m_0
0 0 1	$\overline{A}\overline{B}C$	m 1
010	$\overline{A}B\overline{C}$	m_2
0 1 1	ĀBC	m_3
100	$A \overline{B} \overline{C}$	m 4
1 0 1	$A \overline{B} C$	m5
1 1 0	$AB\overline{C}$	m 6
1 1 1	ABC	m 7

最小项的性质:

A'B'CÈ部最小项的真值表 AB'C

A	В	C	m_0	m_1	$\overline{m_2}$	m_3	m_4	m_{5}	m_6	m_7
0	0	0	1.	0	0	0	0	0	0	0
0	0	1	0	1	8	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	Ø	0	0
1	0	0	0	0	0	0		0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

- ①任意一个最小项,只有一组变量取值使其值为1。
- ②任意两个不同的最小项的乘积必为0。
- ③全部最小项的和必为1。

ŊΑ

逻辑函数的最小项(SOP)表达式

任何一个逻辑函数都可以表示成唯一的一 组最小项之和, 称为标准与或表达式, 也称为 最小项表达式。

对于不是最小项表达式的与或表达式,可利用公式A+A'=1和A(B+C)=AB+AC来配项展开成最小项表达式。

M

对于不是最小项表达式的与或表达式,

可利用公式A+A'=1和A(B+C)=AB+AC 来配项展开成最小项表达式。

例2.5.6

$$Y = AB'C'D + A'CD + AC$$

$$= AB'C'D + A'(B' + B)CD + A(B' + B)C$$

$$= AB'C'D + A'B'CD + A'BCD + AB'C(D' + D) + ABC(D' + D)$$

$$= AB'C'D + A'B'CD + A'BCD + AB'CD' + AB'CD + ABCD' + ABCD$$

$$= m_3 + m_7 + m_9 + m_{10} + m_{11} + m_{14} + m_{15}$$

$$= \sum m(3,7,9,10,11,14,15)$$

M

如果列出了函数的真值表,则只要将函数值为1的那些最小项相加,便是函数的最小项表达式。

A B C	Y	最小项	$m_1 = A'B'C$
0 0 0	0	m_0	
0 0 1	1	m_1	$m_2 = A'BC'$
0 1 0	1	m_2	U.D.C.
0 1 1	1	m_3	$m_3 = A'BC$
1 0 0	0	m_4	
1 0 1	1	m_5	$\longrightarrow m_5 = AB'C$
1 1 0	0	m_6	
1 1 1	0	m_7	

$$Y = m_1 + m_2 + m_3 + m_5 = \sum m(1,2,3,5)$$

= $A'B'C + A'BC' + A'BC + AB'C$

卡诺图

卡诺图的构成: 将n个输入变量的全部最小项用小方块阵列图表示,并且将逻辑相临的最小项放在相临的几何位置上,所得到的阵列图就是n变量的卡诺图。

卡诺图的每一个方块(最小项)代表一种输入组合,并且把对应的输入组合注明在 阵列图的上方和左方。

编号为0010的 单元对应于最 小项: ABCD

函数取0、1 均可,称为 无所谓状态。

四变量卡诺图

	3 0	1
$\begin{bmatrix} \mathbf{A} \\ 0 \end{bmatrix}$	1	0
1	0	1

两变量卡诺图

B	C ₀₀	01	11	10
0	1	1	0	1
1	1	0	ф	1

三变量卡诺图

B	00	01	11	10
0	0	1	3	2
1	4	5	7	6

 $F(A,B,C)=\Sigma(1,2,4,7)$

1,2,4,7单元取 1,其它取0

CI AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

四变量卡诺图单 元格的编号

各种表示方法之间的相互转换

1、真值表→逻辑函数式

方法:将真值表中为1的项相加, 写成 "与或式"。

$$Y = A'BC + AB'C + ABC'$$

例2.5.1

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

þΑ

2、逻辑式→真值表

方法:将输入变量取值的所有 组合状态逐一带入逻辑式求函 数值,列成表即得真值表。

例2.5.2

$$Y = A + B'C + A'BC'$$

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

ŊΑ

3、逻辑式→逻辑图

<u>方法:用图形符号代替逻辑式中的运算符号,就</u>可以画出逻辑图.

例2.5.3
$$Y = (A + B'C)' + A'BC' + C$$

ÞΑ

4、逻辑图→逻辑式

方法:从输入端到输出端逐级写出每个图形符号对应的逻辑式,即得到对应的逻辑函数式.

$$Y = ((A+B)' + (A'+B')')' = (A+B)(A'+B') = AB' + A'B$$

Ŋ4

5、波形图→真值表

三、逻辑函数形式的变换

根据逻辑表达式,可以画出相应的逻辑图, 表达式的形式决定门电路的个数和种类。在用电 子器件组成实际的逻辑电路时,由于选择不同逻 辑功能类型的器件,因此需要将逻辑函数式变换 成相应的形式。

- 实现电路的与门少
- 下级或门输入端个数少

1、最简与或表达式

- •首先是式中乘积项最少
- •乘积项中含的变量最少

与门的输入端个数少

$$Y = A'BE' + A'B + AC' + AC'E + BC' + BC'D$$

= $A'B + AC' + BC'$
= $A'B + AC'$
= $B = A'B + AC'$

ŊΑ

2、最简与非-与非表达式

$$Y = A'B + AC'$$

= $((A'B + AC')')'$ ①在最简与或表达式
的基础上两次取反

②用摩根定律去掉内层的非号

ÞΑ

3、最简或与表达式

$$Y = A'B + AC'$$

①求出反函数的 最简与或表达式

$$Y' = (A'B + AC')' = (A'B)' \cdot (AC')'$$

= $(A + B') \cdot (A' + C)$
= $A'B' + AC + B'C$
= $A'B' + AC$

②利用反演规则写出函数的最简或与表达式

$$Y = (A'B' + AC)'$$

$$= (A'B')' \cdot (AC)'$$

$$= (A + B) \cdot (A' + C')$$

ŊΑ

4、最简或非-或非表达式

$$Y = A'B + AC'$$

 $= (A+B)(A'+C')$ ①求最简或与表达式
 $= (((A+B)(A'+C'))')'$ ②两次取反
 $= ((A+B)'+(A'+C')')'$ ③用摩根定律去
掉内部的非号

M

5、最简与或非表达式

方法一:

$$Y = A'B + AC'$$

= $((A+B)' + (A'+C')')'$
= $(A'B' + AC)'$
①求最简或非-或非表达式

②用摩根定律去掉内部非号。

方法二:

$$Y = A'B + AC'$$

①求出反函数的 最简与或表达式

$$Y' = (A + B') \cdot (A' + C)$$
$$= A'B' + AC + B'C$$
$$= A'B' + AC$$

$$Y = (A'B' + AC)'$$

②求反,得到最简与或