

SLIDER I

Engenharia de Software EDGE COMPUTING & COMPUTER SYSTEMS

00 - Aula Magna e Orientações

Prof. Airton Y. C. Toyofuku

profairton.toyofuku@fiap.com.br

Apresentação

Airton Toyofuku - Engenheiro, MBA, PMP®

- Gerente de Projetos, certificado pelo PMI®
- Engenheiro Eletrônico
 - FEI de São Bernardo do Campo
- Especialização em Sistemas de Controle e Automação
 - FEI de São Bernardo do Campo
- Especialização em Sistemas Digitais e Eletrônica Embarcada
 - SAE Brasil Sociedade de Engenheiros Automotivos
- MBA em Gestão de Projetos
 - Fundação Getúlio Vargas
- Mestrando em Ciência da Computação Aplicada
 - IPT Instituto de Pesquisas Tecnológicas do Estado de São Paulo
- Mais de 15 anos de experiencia com Sistemas Embarcados e IoT

Agenda

- → Apresentação;
- Objetivo do Curso;
- Conteúdo;
- Checkpoints;
- Avaliação;
- Cálculo de media anual;
- Critério de aprovação;
- ➤ Calendário do 1º Semestre;
- Bibliográfia Básica;

Objetivo do Curso

- Identificar e entender elementos de Sistemas Computacionais;
- Entender como os elementos de hardware e software interagem entre si;
- Aprender a aplicar microcontroladores, sensores e atuadores em soluções que necessitem da aplicação de Edge Computing para coleta de dados, processamento e sensoriamento remoto;
- Compreender o conceito de Internet das Coisas (IoT);

Conteúdo

1º Semestre – A parte Hard!

- ✓ Introdução a Computação;
- ✓ Diferença entre Microprocessadores, Microcontroladores e Processadores;
- Ecossistema Arduino Uno R3;
- ✓ Circuitos Digitais e Analógicos;
- Uso de sensores e atuadores;
- Recursos avançados de micrconcontroladores (Interrupções, Timers, Low Power, RTC, WDT);
- ✓ Comunicação entre Hardwares (USART, SPI, I2C);

2º Semestre – A parte Soft!

- ✓ Cloud Vs. Edge;
- ✓ Plataformas Back-End para IoT;
- ✓ Comunicação Cabeada e Wireless
- ✓ Protocolos de comunicação;
- ✓ Integrações entre os níveis de edge, cloud e dashboards;

Checkpoints

- O que?
 - São 3 PROJETOS baseados no conteúdo dado em sala de aula;
 - A MENOR das 3 notas é DESCARTADA;

Como?

O projeto será em GRUPO e é divide em duas etapas:

Documentação:

- Deve ser commitado no GitHub;
- Deve possuir um **README** descrevendo o projeto, suas dependências, como reproduzi-lo, link para a simulação, link para o video, e licença de uso;
- Deve possuir uma IMAGEM do circuito montado no simulador;
- Dev possuir o CÓDIGO FONTE do projeto;
- O video deve explicar como o projeto foi implementado, quais as dificuldades encontradas e como foram solucionadas;

Hands-on:

O grupo irá montar o projeto em sala de aula e demonstrar o funcionamento para o professor;

Quando?

- Os checkpoints serão divulgados com antecendência e a Documentação deve ser realizada fora do horário de aula;
- O Hands-On será realizado em sala de aula, na data marcada pelo professor;

E a avaliação?

- Será avalido pela clareza na documentação do projeto e pela implementação correta no hands-on.
- O estudante é livre para consultar exemplos e referencias, porém qualquer indicio de cola ou plágio resulta em uma nota

ZERO!

Checkpoints

- Como é dividida a avaliação do checkpoint?
 - Serão 10 pontos por checkpoint:
 - Documentação 5 pontos:
 - ✓ 1 ponto pela clareza e composição do **README**;
 - ✓ 1 ponto pela **Imagem** do circuito montado no simulador;
 - ✓ 1 ponto pelo circuito implementado no Simulador;
 - √ 1 ponto pela clareza e composição do Código Fonte;
 - ✓ 1 ponto pela clareza do Video explicativo;
 - Hands-ON 5 pontos:
 - √ 1 ponto pela organização na montagem do projeto;
 - ✓ 2 pontos pela arguição realizada pelo professor;
 - √ 3 pontos pela demonstração do projeto funcionando;

Avaliação

As notas semestrais na FIAP são compostas:

- 40% Project Checkpoint e Challenge&Feedback (2 Challenge Sprints + 2 Checkpoint);
- 60% Global Solution (solução de tarefas de Cases reais);

$$MS = (PCC&F \times 0.4 + GS \times 0.6)$$

EXEMPLO:

- ✓ Challenge Sprint 1 = 10;
- ✓ Challenge Sprint 2 = 10;
- ✓ Checkpoint 1 = 8;
- ✓ Checkpoint 2 = 9;
- ✓ Checkpoint 3 = 5 -> Descartada;
- ✓ Global Solution = 7;

$$PCC&F = (10+10+8+9)/4 = 9.25$$

 $GS = 7.0$

$$MS = (9.25 \times 0.4 + 7.0 \times 0.6) = 3.7 + 4.2 = 7.9$$

Cálculo de média anual

A média anual é ponderada, ou seja, os semestres possuem pesos diferentes:

- 40% da média do 1º Semestre;
- 60% da média do 2º Semestre;

$$MA = (MS1 \times 0.4 + MS2 \times 0.6)$$

EXEMPLO:

- ✓ MS1 = 8.0;
- ✓ MS2 = 7.0;

$$MA = (8.0 \times 0.4 + 7.0 \times 0.6) = 3.2 + 4.2 = 7.4$$

Critérios de aprovação

Média Anual	Situação
0 a 3.9	Reprovado
4.0 a 5.9	Exame
6.0 a 10	Aprovado

CASO O ALUNO FIQUE DE EXAME:

Nota para aprovação = (12 – Média Anual)

Calendário 1º Semestre

Aula	Data	Conteúdo	Observações
01	21 e 23 de Agosto	Aula 00 – Aula Magna e Orientações Aula 02 – Sistemas de Numeração	
02	28 e 30 de Agosto	Aula 03 – Lógica de Programação	Divulgação do CP1
03	04 e 06 de Setembro	Aula 04 – Tipos de Variáveis	
04	11 e 13 de Setembro	Aula 05 – Sinais Analógicos e Digitais	
05	18 e 20 de Setembro	Aula 06 – Funções e Sensores de Ambiente	
06	25 e 27 de Setembro	Entrega CP1	
07	02 e 04 de Outubro	Aula 07 – Atuadores	Divulgação do CP2
08	09 e 11 de Outubro	Aula 08 - Sistema de Clock, RTC e Watchdog	
09	16 e 18 de Outubro	Aula 09 - Padrões de Comunicação	
10	23 e 25 de Outubro	Aula 10 – Tipos de Memória	
11	30 de Outubro e 01 de Novembro	Entrega CP2	Divulgação do CP3
12	06 e 08 de Novembro	Entrega CP3	
13	13 de Novembro	KICK OFF da GS	
14			

Bibliográfia

Bibliografia				
Básica	TOCCI, Ronald J., WIDMER, Neal S., MOSS, Gregory L. Sistemas Digitais: princípios e aplicações. 11ª ED. São Paulo: Pearson, 2007. TANENBAUM, Andrew S. Organização estruturada de computadores. 6a Ed. São Paulo: Pearson, 2016. STALLINGS, William. Arquitetura e Organização de Computadores. 8ª Ed. 2010.			
Complementar	GIMENEZ, Salvador P. Microcontroladores 8051: teoria do Hardware e do Software: aplicações em controle digital: laboratório e simulação. São Paulo: Pearson, 2002. CAPRON, H. L.; JOHNSON, J. A. Introdução à Informática - 8ª Ed. São Paulo: Pearson, 2008. NILSSON, James W.; RIEDEL, Susan A. Circuitos Elétricos. 10ª ed. São Paulo: Pearson Education do Brasil, 2016.			

Copyright © 2023 Prof. Airton Y. C. Toyofuku

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito, do Professor (autor).