Machine Learning 机器学习

Lecture2:线性回归

李洁 nijanice@163.com

学习任务的类型 Types of learning task

- Supervised learning
 - infer a function from labeled training data.
- Unsupervised learning
 - try to find hidden structure in unlabeled training data
 - clustering
- Reinforcement learning
 - To learn a policy of taking actions in a dynamic environment and acquire rewards

学习任务的类型 Types of learning task

Supervised Learning Unsupervised Learning

Discrete classification or clustering categorization Sontinuous dimensionality regression reduction

机器学习的一般过程 Machine Learning Process

 Basic assumption: there exist the same patterns across training and test data

监督学习 Supervised Learning

Given the training dataset of (data, label) pairs,

$$D = \{(x^{(i)}, y^{(i)})\}_{i=1,2,\dots,N}$$

$$x^{(i)} {=} \ (x_1^{(i)}, x_2^{(i)}, \dots x_n^{(i)})^T$$

 $y^{(i)}$ = output data(label) of i^{th} training example

$$y^{(i)} \approx f_{\theta}(x^{(i)})$$

- Function set $\{f_{\theta}(x^{(i)})\}\$ is called hypothesis space

线性模型 Linear Model

easily understood and implemented, efficient and scalable

- Linear regression
- Linear classification

线性模型举例 Linear model example

$$f_{\text{GL}}(\mathbf{x}) = 0.2 \cdot x_{\text{E}} + 0.5 \cdot x_{\text{R}} + 0.3 \cdot x_{\text{B}} + 1$$

周志华. "机器学习" (西瓜书)

线性模型举例 Linear model example

$$f_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n + \theta_0$$

$$f_{\text{FL}}(\mathbf{x}) = 0.2 \cdot x_{\text{A}} + 0.5 \cdot x_{\text{RR}} + 0.3 \cdot x_{\text{BB}} + 1$$

周志华. "机器学习" (西瓜书)

$$f_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n + \theta_0$$

sample x

features/variables: $x_1, x_2, ... x_n$

$$f_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n + \theta_0$$

sample x

features/variables: $x_1, x_2, ... x_n$

$$x = (x_1, x_2, \dots x_n)^T$$

Feature vector $(x_1, x_2, ... x_n)^T$

监督学习 Supervised Learning

Given the training dataset of (data, label) pairs,

$$D = \{(x^{(i)}, y^{(i)})\}_{i=1,2,\dots,N}$$

 $x^{(i)}$ = input data(features) of i^{th} training example $y^{(i)}$ = output data(label) of i^{th} training example

$$y^{(i)} \approx f_{\theta}(x^{(i)})$$

- Function set $\{f_{\theta}(x^{(i)})\}$ is called hypothesis space
- Learning is referred to as updating the parameter # to make the prediction closed to the corresponding label

监督学习 Supervised Learning

Given the training dataset of (data, label) pairs,

$$D = \{(x^{(i)}, y^{(i)})\}_{i=1,2,\dots,N}$$

$$x^{(i)} {=} \ (x_1^{(i)}, x_2^{(i)}, \dots x_n^{(i)})^T$$

 $y^{(i)}$ = output data(label) of i^{th} training example

$$y^{(i)} \approx f_{\theta}(x^{(i)})$$

- Function set $\{f_{\theta}(x^{(i)})\}\$ is called hypothesis space

Given the training dataset of (data, label) pairs,

$$D = \{(x^{(i)}, y^{(i)})\}_{i=1,2,\dots,N}$$

$$x^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots x_n^{(i)})^T$$

 $y^{(i)}$ = output data(label) of i^{th} training example

$$y^{(i)} \approx f_{\theta}(x^{(i)}) \Rightarrow f_{\theta}(x^{(i)}) = \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_n x_n^{(i)} + \theta_0$$

- Function set $\{f_{\theta}(x^{(i)})\}\$ is called hypothesis space
- Learning is referred to as updating the parameter θ to make the prediction closed to the corresponding label

Given the training dataset of (data, label) pairs,

$$D = \{(x^{(i)}, y^{(i)})\}_{i=1,2,\dots,N}$$

$$x^{(i)} {=} \ (x_1^{(i)}, x_2^{(i)}, \dots x_n^{(i)})^T$$

 $y^{(i)}$ = output data(label) of i^{th} training example

$$y \approx f_{\theta}(x)$$
 \Rightarrow $f_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n + \theta_0$

- Function set $\{f_{\theta}(x^{(i)})\}\$ is called hypothesis space
- Learning is referred to as updating the parameter θ to make the prediction closed to the corresponding label

$$f_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n + \theta_0$$

sample x

features/variables: $x_1, x_2, ... x_n$

$$f_{\theta}(x) = \theta_1 x + \theta_0$$

sample x

One feature/variable: x

$$f_{\theta}(x) = \theta_1 x + \theta_0$$

sample x

One feature/variable: x

Linear regression with one variable

(One-dimensional linear regression)

$$f_{\theta}(x) = \theta_1 x + \theta_0$$

sample x

One feature/variable: x

Linear regression with one variable

quadratic regression with one variable

(One-dimensional regression)

$$f_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + \theta_0$$

sample x

Two features/variables: x_1

Linear regression with two variable (two-dimensional linear regression)

$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$f(x)$$

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training set of housing prices (Portland, OR)	Size in feet ² (x)	Price (\$) in 1000's (y)
	2104	460
	1416	232
	1534	315
	852	178

Notation:

N= Number of training examples

x = "input" variable / features

y = "output" variable / "target" variable

How do we represent f?

How do we represent f?

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

Linear regression with one variable. Univariate(one variable) linear regression.

How do we represent f?

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_0, θ_1 : Parameters

Linear regression with one variable. Univariate(one variable) linear regression.

How do we represent f?

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_0, θ_1 : Parameters

How to choose θ_0, θ_1 ?

Linear regression with one variable. Univariate(one variable) linear regression.

Idea: Choose θ_0, θ_1 so that $f_{\theta}(x)$ is close to y for our training examples (x, y)

Iraining Set		
	Size in feet ² (x)	Price (\$) in 1000's (y)
	2104	460
	1416	232
	1534	315
	852	178

Hypothesis:

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0$$
, θ_1

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Hypothesis:

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0$$
, θ_1

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

Linear regression with one variable

Hypothesis:

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0$$
 , θ_1

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize
$$J(\theta_0, \theta_1)$$

Simplified

$$f_{\theta}(x) = \theta_1 x$$

$$\theta_1$$

$$J(\theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

Linear regression with one variable

Linear regression with one variable

 $f_{\theta}\left(x\right)$ (for fixed θ_{1} , this is a function of x)

$$f_{\theta}(x^i) = \theta_1 x^{(i)}$$

Linear regression with one variable

 $f_{\theta}\left(x\right)$ (for fixed θ_{1} , this is a function of x)

$$f_{\theta}(x^i) = \theta_1 x^{(i)}$$

Linear regression with one variable

 $f_{\theta}\left(x\right)$ (for fixed θ_{1} , this is a function of x)

$$f_{\theta}(x^i) = \theta_1 x^{(i)}$$

Linear regression with one variable

 $f_{\theta}\left(x\right)$ (for fixed θ_{1} , this is a function of x)

$$f_{\theta} \big(x^i \big) = \theta_1 x^{(i)}$$

Linear regression with one variable

 $f_{\theta}\left(x\right)$ (for fixed θ_{1} , this is a function of x)

$$f_{\theta} \left(x^i \right) = \theta_1 x^{(i)}$$

单变量线性回归 incor regression with one you

Linear regression with one variable

 $f_{\theta}\left(\mathbf{x}\right)$ (for fixed θ_{1} , this is a function of \mathbf{x})

$$f_{\theta}\left(x^{i}\right) = \theta_{1}x^{(i)}$$

Linear regression with one variable

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Linear regression with one variable

 $f_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0, \theta_1)$

(function of the parameter θ_0 , θ_1)

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Linear regression with one variable

 $f_{\theta}(x)$

 $J(\theta_0, \theta_1)$

(for fixed θ_0 , θ_1 , this is a function of x)

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

(function of the parameter θ_0 , θ_1)

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Linear regression with one variable

 $f_{\theta}(x)$

 $J(\theta_0, \theta_1)$

(for fixed θ_0 , θ_1 , this is a function of x)

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

(function of the parameter θ_0, θ_1)

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Linear regression with one variable

•Start with some θ_0, θ_1

•Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Hypothesis:

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$
Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
}


```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \begin{array}{c} \text{(simultaneously update} \\ j = 0 \text{ and } j = 1) \end{array} }
```

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \begin{array}{c} \text{(simultaneously update} \\ j = 0 \text{ and } j = 1) \end{array} }
```

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \begin{array}{c} \text{(simultaneously update} \\ j = 0 \text{ and } j = 1) \end{array} }
```

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$) }

Linear Regression Model

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Repeat until convergece

$$\theta_0 := \theta_0 - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

update θ_0 and θ_1 simultaneously

凸函数 Bowled shape Convex Function

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Unique Minimum

Different initial lead to the same optimum

(for fixed $\, \theta_0, \theta_1 \,$, this is a function of x)

(function of the parameters $heta_0, heta_1$)

 $f_{m{ heta}}\left(x
ight)$ (for fixed $\, heta_{0}, heta_{1}$, this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $f_{m{ heta}}\left(\mathbf{x}
ight)$ (for fixed $\, heta_{0}, heta_{1}$, this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $f_{m{ heta}}\left(x
ight)$ (for fixed $heta_{0}, heta_{1}$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameters θ_0,θ_1)

 $f_{m{ heta}}\left(x
ight)$ (for fixed $\, heta_{0}, heta_{1}$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameters θ_0,θ_1)

 $f_{m{ heta}}\left(x
ight)$ (for fixed $\, heta_{0}, heta_{1}$, this is a function of x)

$$J(\theta_0,\theta_1)$$
 (function of the parameters θ_0,θ_1)

 $f_{m{ heta}}\left(x
ight)$ (for fixed $\, heta_{0}, heta_{1}$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameters θ_0,θ_1)

 $f_{m{ heta}}\left(x
ight)$ (for fixed $heta_{0}, heta_{1}$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameters θ_0,θ_1)

 $f_{m{ heta}}\left(x
ight)$ (for fixed $heta_{0}, heta_{1}$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameters θ_0,θ_1)

- ullet Choose an initial value for heta
- ullet Update heta iteratively with the data
- · Until we research a minimum

- Choose a new initial value for heta
- ullet Update heta iteratively with the data
- · Until we research a minimum

- ullet Choose a new initial value for heta
- ullet Update heta iteratively with the data
- · Until we research a minimum

In linear regression, the loss function L is convex. Different initial lead to the same optimum.

批量梯度下降 Batch Gradient descent

"Batch": Each step of gradient descent uses all the training examples.

Repeat until convergence

$$\theta_0 := \theta_0 - a \frac{1}{N} \sum_{i = 1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - a \frac{1}{N} \sum_{i = 1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

随机梯度下降 Stochastic Gradient descent

"stochastic": Each step of gradient descent uses single training example.

Repeat until convergence

$$\theta_0 := \theta_0 - a \frac{1}{N} \sum_{i = 1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - a \frac{1}{N} \sum_{i = 1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Compare with BGD

- Faster learning
- Uncertainty or fluctuation in learning

小批量梯度下降 Mini-Batch Gradient descent

- A combination of batch GD and stochastic GD
- Split the whole dataset into K mini-batches

$$\{1, 2, 3, \ldots, K\}$$

For each mini-batch k, perform one-step BGD toward

$$J^{k}(\theta) := \frac{1}{2N_{k}} \sum_{i=1}^{N_{k}} (f_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

- Good learning stability (BGD)
- Good convergence rate (SGD)
- Update $heta_{
 m new} = heta_{
 m old} \eta rac{\partial J^{(k)}(heta)}{\partial heta}$ for each mini-batch

$$\theta_0 := \theta_0 - a \frac{1}{N_k} \sum_{i=1}^{N_k} (f_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - a \frac{1}{N_k} \sum_{i=1}^{N_k} (f_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

学习率选择 Choose learning rate

If a is too small, gradient descent can be slow.

If a is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

To see if gradient descent is working, print out for each or every $J(\theta)$ several iterations. If $J(\theta)$ does not drop properly, adjust the learning rate!

To see if gradient descent is working, print out for each or every $J(\theta)$ several iterations. If $J(\theta)$ does not drop properly, adjust the learning rate!

多变量线性回归 Linear regression with multiple variable

Size (feet ²)	Price (\$1000)
2104	460
1416	232
1534	315
852	178

Size (feet²)	Number of bedroom s	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Linear regression with one variable

•Start with some θ_0, θ_1

•Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Hypothesis:

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$
Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

多变量线性回归

Linear regression with multiple variable

Hypothesis:
$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters: $\theta_0, \theta_1, \ldots, \theta_n$

Cost function:
$$J(\theta_0, \theta_1, ... \theta_n) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^2$$

Notation:

= number of features

 $x^{(i)}_{j}$ = input (features) of i^{th} training example. $x^{(i)}_{j}$ = value of feature j in i^{th} training example.

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$$

(simultaneously update for every $j = 0, \dots, n$)

多变量线性回归

Linear regression with multiple variable

Previously (n=1):

$$\theta_0 := \theta_0 - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\frac{\frac{\partial}{\partial \theta_0} J(\theta)}{\theta_0}$$

$$\theta_1 := \theta_1 - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

}

New algorithm $(n \ge 1)$:

Repeat
$$\{\theta_{j} := \theta_{j} - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

(simultaneously update $\, heta_{\,i}\,$ for

$$j=0,\ldots,n$$
)

$$\theta_0 := \theta_0 - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

. . .

多变量线性回归 Linear regression with multiple variable

Size (feet ²)	Price (\$1000)
2104	460
1416	232
1534	315
852	178

	Size (feet²)	Number of bedroom s		Age of home (years)	Price (\$1000)
	2104	5	1	45	460
	1416	3	2	40	232
İ	1534	3	2	30	315
Ī	852	2	1	36	178
ļ					

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

特征归一化 Feature Scaling

$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

E.g. $x_1 = \text{size } (0-2000 \text{ feet}^2)$

 x_2 = number of bedrooms (1-5)

特征归一化 Feature Scaling

Idea: Make sure features are on a similar scale.

$$x_1 = \frac{size(feet^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

特征归一化 Feature Scaling

Get every feature into approximately a similar scale.

Mean Normalization

Standardization

$$x' = \frac{x - mean(x)}{max(x) - min(x)}$$

$$x' = \frac{x - mean(x)}{max(x) - min(x)} \qquad \qquad x' = \frac{x - mean(x)}{std(x)} \qquad \qquad std(x) = \sqrt{\frac{\sum (x - mean(x))^2}{n}}$$

e.g. Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean.

E.g.
$$x_1=\frac{size-1000}{2000}$$

$$x_2=\frac{\#bedrooms-2}{4}$$

$$-0.5 < x_1 < 0.5, -0.5 < x_2 < 0.5$$

多变量线性回归

Linear regression with multiple variable

Previously (n=1):

$$\theta_0 := \theta_0 - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\frac{\frac{\partial}{\partial \theta_0} J(\theta)}{\theta_0}$$

$$\theta_1 := \theta_1 - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update $heta_0, heta_1$)

New algorithm $(n \ge 1)$:

Repeat
$$\{\theta_{j} := \theta_{j} - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

(simultaneously update $\, heta_{j}\,$ for

$$j=0,\ldots,n$$
)

$$\theta_0 := \theta_0 - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - a \frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

. . .

自适应的学习率 Adaptive Learning Rates

Adagrad

Divide the learning rate of each parameter by the root mean square of its previous derivatives \uparrow

$$\theta^{(t+1)} := \theta^{(t)} - \frac{a}{\sqrt{\sum_{i=0}^{t} (g^{(i)})^2}} g^{(t)}$$

$$g^{(t)} = \frac{\partial J(\theta^{(t)})}{\partial \theta}$$

adapts the learning rate to the parameters, performing larger updates for infrequent and smaller updates for frequent parameters

梯度的限制

Limitation of gradient descent

The value of the parameter w

梯度下降优化算法 Gradient descent optimization algorithms

Momentum

helps accelerate SGD in the relevant direction and dampens oscillations

Adagrad

(Adaptive Gradient)
adapts the learning rate
to the parameters,
performing larger updates
for infrequent and smaller
updates for frequent
parameters

RMSProp

(Root Mean Square propagation) divides the learning rate by an exponentially decaying average of squared gradients

Adam

(Adaptive Moment Estimation)
stores an exponentially decaying average of past squared gradients like RMSprop, also keeps an exponentially decaying average of past gradients, similar to momentum

Polynomial feature

$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_2 x_1^3 + \theta_2 x_1^4 + \theta_2 x_1^5 + \cdots$$

$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_2 x_3 + \theta_2 x_4 + \theta_2 x_5 + \cdots$$

$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_2 x_1^3 + \theta_2 x_1^4 + \theta_2 x_1^5 + \cdots$$

$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_2 x_3 + \theta_2 x_4 + \theta_2 x_5 + \dots$$

✓ able to model all sorts of relationships
 X easy to overfit

最小二乘方线性回归 Least square linear regression

最小二乘方线性回归 Least square linear regression

Gradient Descent

Normal equation

$$\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$$

(for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

最小二乘法求解 Least square method

	Size (feet²)	Number of bedrooms	number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix}$$

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^{2} = \frac{1}{2} (X\theta - y)^{2} = \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$$

最小二乘法 Least square method

• Objective $\min_{\theta} J(\theta)$ $J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (f_{\theta}(x^{(i)}) - y^{(i)})^{2} = \frac{1}{2} (X\theta - y)^{2} = \frac{1}{2} (X\theta - y)^{T} (X\theta - y)$

Gradient

$$\frac{\partial J(\theta)}{\partial \theta} = \frac{1}{2} \frac{\partial}{\partial \theta} \left(\theta^T X^T X \theta - y^T X \theta - \theta^T X^T y + y^T y \right)$$
$$= \frac{1}{2} \frac{\partial}{\partial \theta} \left(\theta^T X^T X \theta - 2\theta^T X^T y + y^T y \right)$$
$$= X^T X \theta - X^T y$$

Solution

$$\frac{\partial J(\theta)}{\partial \theta} = 0 \Rightarrow X^T X \theta - X^T y = 0 \Rightarrow \theta = (X^T X)^{-1} X^T y$$

正规方程求解 Normal equation method

	Size (feet²)	Number of bedrooms	number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

最小二乘法 Least square method

	Size (feet²)	Number of bedrooms	number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$
 \leftarrow $O(\text{number of features})^3$

梯度下降 VS 最小二乘法 Gradient descent VS Least square method

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when the number of features is large.

Least square method

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if the number of features is very large (>10000).
- only applicable to linear models
- Sometimes cannot be directly calculated(if X^TX is non-invertible).

评价标准 Evaluation indices

MSE(Mean Squared Error) 均方误差

$$\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - f(x^{(i)}))^2$$

$$\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - f(x^{(i)}))^2 \qquad \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - f(x^{(i)}))^2}$$

MAE (Mean absolute Error) 平均绝对误差

$$\frac{1}{N} \sum_{i=1}^{N} \left| (y^{(i)} - f(x^{(i)}))^2 \right|$$

$$= 1 - \frac{\sum_{i=1}^{N} (y^{(i)} - f(x^{(i)}))^{2}}{\sum_{i=1}^{N} (y^{(i)} - \bar{y}))^{2}}$$

$$= 1 - \frac{MSE}{Var}$$

思考题

多变量线性回归相比单变量回归,采用标准的梯度下降求解会有什么问题及可能的解决方法?