Homework 2

David Cardozo

February 19, 2015

1. Find the most general harmonic polynomial of the form $ax^3 + bx^2y + cxy^2 + dy^3$. Determine the conjugate harmonic function and the corresponding analytic function by integration and by the formal method.

In order to be harmonic, $u(x,y) = ax^3 + bx^2y + cxy^2 + dy^3$ has to satisfy $\nabla^2 u = 0$ so

$$u_{xx} + u_{yy} = (3a + c)x + (3d + b)y = 0.$$

Thus, 3a = -c and 3d = -b so

$$u(x,y) = ax^3 - 3axy^2 - 3dx^2y + dy^3.$$

To find the harmonic conjugate v(x, y), we need to look at the Cauchy-Riemann equations. By the Cauchy-Riemann equations,

$$u_x = 3ax^2 - 3ay^2 - 6dxy = v_y.$$

Then we can integrate with respect to y to find v(x, y).

$$v(x,y) = \int (3ax^2 - 3ay^2 - 6dxy)dy = 3ax^2y - ay^3 - 3dxy^2 + g(x)$$

Using the second Cauchy-Riemann, we have

$$v_x = 6axy - 3dy^2 + g'(x) = -u_y = 3dx^2 + 6axy - 3dy^2$$

so $g'(x) = 3dx^2$. Then $g(x) = dx^3 + C$ and

$$v(x,y) = 3ax^{2}y - ay^{3} - 3dxy^{2} + dx^{3} + C.$$

2. Show that an analytic function cannot have a constant absolute value without reducing to a constant.

1

Let f=u(x,y)+iv(x,y). Then the modulus of f is $|f|=\sqrt{u^2+v^2}$. If the modulus of f is constant, then $u^2+v^2=c$ for some constant c. If c=0,

then f = 0 which is constant. Suppose $c \neq 0$. By taking the derivative with respect to x and y, we have

$$0 = \frac{\partial}{\partial x}(u^2 + v^2)$$

$$= 2uu_x + 2vv_x$$

$$= uu_x + vv_x$$

$$0 = \frac{\partial}{\partial y}(u^2 + v^2)$$

$$= uu_y + vv_y$$

Since f is analytic, f satisfies the Cauchy-Riemann. That is, $u_x = v_y$ and $u_y = -v_x$.

$$uv_y + vv_x = 0 (1a)$$

$$-uv_x + vv_y = 0 (1b)$$

Setting eq. (1a) equal to eq. (1b), we have

$$v_x(u+v) + v_y(u-v) = 0.$$

Now, either v_x and v_y are zero, v_x and u-v are zero, v_y and u+v are zero, or u+v and u-v are zero. If $v_x=v_y=0$, then f is constant. If $v_x=0$ and u-v=0, then $u_y=0$ and u=v. Since u=v and $v_x=0$, then so does $u_x=0$ and it also follows that $v_y=0$; thus, f is a constant. By the same argument, f is a constant when $v_y=0$ and u+v=0. If u+v=0 and u-v=0, then $u=\pm v$ so u=v=0 and f is a constant.

3. Prove rigorously that the functions f(z) and $\overline{f(\bar{z})}$ are simultaneously analytic.

Let $g(z) = \overline{f(\overline{z})}$ and suppose f is analytic. Then g'(z) is

$$g'(z) = \lim_{\Delta z \to 0} \frac{g(z + \Delta z) - g(z)}{\frac{\Delta z}{f(\overline{z} + \overline{\Delta z}) - f(\overline{z})}}$$
$$= \lim_{\Delta z \to 0} \left[\frac{f(\overline{z} + \overline{\Delta z}) - f(\overline{z})}{\overline{\Delta z}} \right]$$

Since conjugation is continuous, we can move the limit inside the conjugation.

$$= \frac{\lim_{\Delta z \to 0} \frac{f(\bar{z} + \overline{\Delta z}) - f(\bar{z})}{\overline{\Delta z}}}{= \overline{f'(\bar{z})}}$$

Thus, g is differentiable with derivative $\overline{f'(\bar{z})}$. Suppose $\overline{f(\bar{z})}$ is analytic and let $\overline{g(\bar{z})} = f(z)$. Then by the same argument, f is differentiable with derivative $g'(\bar{z})$. Therefore, f(z) and $\overline{f(\bar{z})}$ are simultaneously analytic.

We could also use the Cauchy-Riemann equations. Let f(z) = u(x,y) + iv(x,y) where z = x + iy so $\bar{z} = x - iy$. Then $\overline{f(\bar{z})} = \alpha(x,y) - i\beta(x,y)$ where $\alpha(x,y) = u(x,-y)$ and $\beta(x,y) = v(x,-y)$. In order for both to be analytic, they both need to satisfy the Cauchy-Riemann equations. That is, $u_x = v_y$, $u_y = -v_x$, $\alpha_x = \beta_y$ and $\alpha_y = -\beta_x$.

$$u_x(x,y) = v_y(x,y)$$

$$u_y(x,y) = -v_x(x,y)$$

$$\alpha_x(x,y) = u_x(x,-y)$$

$$\alpha_y(x,y) = -u_y(x,-y)$$

$$-\beta_x(x,y) = v_x(x,-y)$$

$$\beta_y(x,y) = v_y(x,-y)$$

Suppose that $\overline{f(\overline{z})}$ satisfies the Cauchy-Riemann equations. Then $\alpha_x = u_x(x,-y) = v_y(x,-y) = \beta_y$ and $\alpha_y = -u_y(x,-y) = v_x(x,-y) = -\beta_x$. Therefore,

$$u_x(x, -y) = v_y(x, -y)$$

$$u_y(x, -y) = -v_x(x, -y)$$

which means $f(\bar{z})$ satisfies the Cauchy-Riemann equations. Now, recall that $|z|=|\bar{z}|$. Since $f(\bar{z})$ satisfies the Cauchy-Riemann equations, for an $\epsilon>0$ there exists a $\delta>0$ such that when $0<|\Delta z|<\delta,\,|f(\bar{z})-\bar{z}_0|=|f(z)-z_0|<\epsilon$. Thus, $\lim_{\Delta z\to 0}f(z)=z_0$ so f(z) is analytic if $f(\bar{z})$ is analytic.

4. Prove that the functions u(z) and $u(\bar{z})$ are simultaneously harmonic.

Since u is the real part of f(z), u(z) = u(x, y) where z = x + iy. Suppose u(z) is harmonic. Then u(z) satisfies Laplace equation.

$$\nabla^2 u(z) = u_{xx} + u_{yy} = 0$$

Now, $u(\bar{z}) = u(x, -y)$ where $\frac{\partial^2}{\partial x^2} u(\bar{z}) = u_{xx}$ and $\frac{\partial^2}{\partial y^2} u(\bar{z}) = u_{yy}$ so

$$\nabla^2 u(\bar{z}) = u_{xx} + u_{yy} = 0.$$

Since u(z) is harmonic, $u_{xx} + u_{yy} = 0$ so it follows that $u(\bar{z})$ is harmonic as well.

5. If Q is a polynomial with distinct roots $\alpha_1, \ldots, \alpha_n$, and if P is a polynomial of degree < n, show that

$$\frac{P(z)}{Q(z)} = \sum_{k=1}^{n} \frac{P(\alpha_k)}{Q'(\alpha_k)(z - \alpha_k)}.$$

Let's multiple by Q(z). We then have

$$P(z) = \sum_{k=1}^{n} \frac{P(\alpha_k)}{Q'(\alpha_k)(z - \alpha_k)} Q(z)$$

which are both polynomials of degree less than n and agreeing at $z = \alpha_k$.

6. Use the formula in the preceding exercise to prove that there exists a unique polynomial P or degree < n with given values c_k at the points α_k (Lagrange's interpolation polynomial).

Suppose that we are given $P(\alpha_k) = c_k \in \mathbb{C}$. In the same spirit of the above problem, we put:

$$Q(z) = (z - \alpha_1) \cdot \ldots \cdot (z - \alpha_n)$$

Since by hypothesis we know that $\deg P < n$, we can use the previous result:

$$\frac{P(z)}{Q(z)} = \sum_{k=1}^{n} \frac{P(\alpha_k)}{Q'(\alpha_k)(z - \alpha_k)} = \sum_{k=1}^{n} \frac{c_k}{Q'(\alpha_k)(z - \alpha_k)}$$

we conclude then:

$$P(z) = Q(z) \cdot \sum_{k=1}^{n} \frac{c_k}{Q'(\alpha_k)(z - \alpha_k)}$$
 (2)

$$= \sum_{k=1}^{n} \frac{c_k}{Q'(\alpha_k)} \cdot \left(\frac{Q(z)}{z - \alpha_k}\right) \tag{3}$$

Now if we suppose that P(z) is given explicitly as (3). So that:

$$P(\alpha_1) = \frac{c_1(\alpha_1 - \alpha_2) \dots (\alpha_1 - \alpha_n)}{(\alpha_1 - \alpha_2) \dots (\alpha_1 - \alpha_n)} = c_1$$

Similarly, $P(\alpha_k) = c_k$ for every k = 1, ..., n. We conclude that P(z) is uniquely determined by (3), that is:

$$P(z) = \sum_{k=1}^{n} c_k \prod_{j=1, j \neq k}^{n} \frac{z - \alpha_j}{\alpha_k - \alpha_j}$$

This is the famous Lagrange's interpolation polynomial.