RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	10/578, 732
Source:	TEWP,
Date Processed by STIC:	05/18/2006

ENTERED

IFWP

RAW SEQUENCE LISTING DATE: 05/18/2006
PATENT APPLICATION: US/10/578,732 TIME: 10:29:36

Input Set : A:\80.US2.ST25.txt

Output Set: N:\CRF4\05182006\J578732.raw

```
3 <110> APPLICANT: Jung, Jae-Kyu
              Semple, Graeme
              Johnson, Benjamin R
     7 <120> TITLE OF INVENTION: 4-Oxo-4,5-dihydro-furan-2-carboxylic acid DERIVATIVES AND
METHODS
              OF TREATMENT OF METABOLIC-RELATED DISORDERS THEREOF
     10 <130> FILE REFERENCE: 80.US2.PCT
C--> 12 <140> CURRENT APPLICATION NUMBER: US/10/578,732
C--> 12 <141> CURRENT FILING DATE: 2006-05-10
     12 <150> PRIOR APPLICATION NUMBER: 60/524,269
     13 <151> PRIOR FILING DATE: 2003-11-21
     15 <160> NUMBER OF SEO ID NOS: 2
     17 <170> SOFTWARE: PatentIn version 3.2
     19 <210> SEO ID NO: 1
     20 <211> LENGTH: 1092
     21 <212> TYPE: DNA
     22 <213> ORGANISM: Homo sapien
     24 <400> SEQUENCE: 1
     25 atgaatcggc accatctgca ggatcacttt ctggaaatag acaagaagaa ctgctgtgtg
                                                                               60
     27 ttccqaqatg acttcattgt caaggtgttg ccgccggtgt tggggctgga gtttatcttc
                                                                              120
     29 gggcttctgg gcaatggcct tgccctgtgg attttctgtt tccacctcaa gtcctggaaa
                                                                              180
     31 tecageegga tttteetgtt caacetggea gtggetgaet ttetaetgat catetgeetg
                                                                              240
                                                                              300
     33 cccttcctga tggacaacta tgtgaggcgt tgggactgga agtttgggga catcccttgc
     35 cggctgatgc tcttcatgtt ggctatgaac cgccagggca gcatcatctt cctcacggtg
                                                                              360
     37 gtggcggtag acaggtattt ccgggtggtc catccccacc acgccctgaa caagatctcc
                                                                              420
    39 aatcggacag cagccatcat ctcttgcctt ctgtggggca tcactattgg cctgacagtc
                                                                              480
     41 cacctcctga agaagaagat gccgatccag aatggcggtg caaatttgtg cagcagcttc
                                                                              540
     43 agcatctgcc ataccttcca gtggcacgaa gccatgttcc tcctggagtt cttcctgccc
                                                                              600
     45 ctgggcatca tcctgttctg ctcagccaga attatctgga gcctgcggca gagacaaatg
                                                                              660
     47 gaccggcatg ccaagatcaa gagagccatc accttcatca tggtggtggc catcgtcttt
                                                                              720
                                                                              780
     49 gtcatctgct tectteccag egtggttgtg eggateegea tettetgget eetgeacaet
    51 tegggeacge agaattgtga agtgtacege teggtggace tggegttett tateactete
                                                                              840
                                                                              900
    53 agetteacet acatgaacag catgetggac ecegtggtgt actaettete cageecatee
                                                                              960
    55 tttcccaact tcttctccac tttgatcaac cgctgcctcc agaggaagat gacaggtgag
     57 ccagataata accgcagcac gagcgtcgag ctcacagggg accccaacaa aaccagaggc
                                                                             1020
     59 getecagagg egttaatgge eaacteeggt gageeatgga geceetetta tetgggeeea
                                                                             1080
     61 acctctcctt aa
                                                                             1092
     64 <210> SEQ ID NO: 2
     65 <211> LENGTH: 363
    66 <212> TYPE: PRT
    67 <213> ORGANISM: Homo sapien
     69 <400> SEQUENCE: 2
     71 Met Asn Arg His His Leu Gln Asp His Phe Leu Glu Ile Asp Lys Lys
                                            10
     72 1
                        5
                                                                 15
```

RAW SEQUENCE LISTING DATE: 05/18/2006
PATENT APPLICATION: US/10/578,732 TIME: 10:29:36

Input Set : A:\80.US2.ST25.txt

Output Set: N:\CRF4\05182006\J578732.raw

75 Asn Cys	Cys Val	Phe Arg	Asp .	Asp	Phe 25	Ile	Val	Lys	Val	Leu 30	Pro	Pro
79 Val Leu 80	Gly Leu 35	Glu Phe		Phe 40	Gly	Leu	Leu	Gly	Asn 45	Gly	Leu	Ala
83 Leu Trp		Cys Phe			Lys	Ser	Trp	Lys 60		Ser	Arg	Ile
87 Phe Leu	Phe Asn			Ala	Asp	Phe			Ile	Ile	Cys	
88 65 91 Pro Phe	Leu Met	_	Tyr	Val	Arg	_	75 Trp	Asp	Trp	Lys		80 Gly
92 95 Asp Ile	Pro Cys	85 Arg Leu	Met	Leu	Phe	90 Met	Leu	Ala	Met		95 Arg	Gln
96	100	D) T	ml	**- 7	105	77-	77-7	2	7	110	Dh.a	7
99 Gly Ser	11e 11e	Pne Leu	Thr	vai 120		Ата	vai	Asp	Arg	-	Pne	Arg
103 Val Va		o His Hi	s Ala			Lys	Ile	Ser			, Thr	Ala
104 13	0		135			_		140)			
107 Ala Il	e Ile Se:	r Cys Le	u Leu	Trp	Gly	' Ile			: Gly	Let	1 Thr	
108 145		15					155				_	160
111 His Le	u Leu Ly:		s Met	Pro	Ile			ı GIy	, GIŽ	/ Ala		
112 115 Cys Se	r Cor Dh	165	o Cva	uic	The	170		тт	uic	. Glv	175 . מוג	
115 Cys 5e	180		е суз	1115	185		GII.		, 1112	190		ricc
119 Phe Le			e Leu	Pro			Ile	· Ile	Let			Ser
120	195			200		-			205		_	
123 Ala Ar	g Ile Ile	e Trp Se	r Leu	Arg	Glr	Arg	Glr	Met	Asp	Arg	y His	Ala
124 21			215					220				
127 Lys Il	e Lys Ar	_		Phe	: Ile	Met			. Ala	ı Ile	e Val	
128 225 131 Val Il	e Cyc Ph	23 a Leu Pr		∵ v∍1	17 = 1	17 - 1	235		Δνο	, T]e	Dhe	240 Trn
131 Val 11	e cys rife	245	o ser	vai	vai	250	_	, 110	. ALG	,	255	
135 Leu Le	u His Th		y Thr	Gln	Asn			ı Val	. Tyr	Arc		
136	26		-		265				-	270		
139 Asp Le	u Ala Phe	e Phe Il	e Thr	Leu	Ser	Phe	Thr	Tyr	Met	Asr	ı Ser	Met
140	275			280					285			_
143 Leu As	_	l Val Ty	-		Ser	Ser	Pro			Pro) Asr	Phe
144 29		. Tla Ba	295				7	300		. Մեջ	. ~1.	. Cl.,
147 Phe Se 148 305	r Thr Lei	u lle As: 31		Cys	Let	GIN	315		мет	, Thi	GIY	320
151 Pro As	n Asn Asi			Ser	· Val	Glu			· Gls	, Asr	Pro	
151 F10 AS	L 11011 1101	325			- 41	330					335	
155 Lys Th	r Arg Gl		o Glu	Ala	Let			Asr	Ser	Gly	/ Glu	Pro
156	34				345					350		
159 Trp Se	r Pro Se	r Tyr Le	u Gly	Pro	Thr	Ser	Pro)				
160	355			360	+							

VERIFICATION SUMMARYDATE: 05/18/2006PATENT APPLICATION: US/10/578,732TIME: 10:29:37

Input Set : A:\80.US2.ST25.txt

Output Set: N:\CRF4\05182006\J578732.raw

L:12 M:270 C: Current Application Number differs, Replaced Current Application No

L:12 M:271 C: Current Filing Date differs, Replaced Current Filing Date