

Data Structure and Algorithms Design

Vincent Chau (周)

Summary

- Divide and Conquer √
- Dynamic programming √
- Greedy Algorithm √
- Binary Search Tree
- Branch and Bound

Tree structure

Linear Data Structure

Array

21	14	42	8	30	10	11	1

Linked list

Binary Tree Concept

• Each node has at most two children

```
Structure node{
   key: int;
   left: *node;
   right: *node;
   parent: *node;
}
```


Binary Search Tree

Properties

- All numbers are:
 - smaller than key at the left sub-BST
 - larger than key at the right sub-BST


```
Infix(2)
    Infix(NULL)
    print(2)
    Infix(7)
```



```
Infix(tree):
if tree≠NULL
    Infix(tree.left);
    print(tree.key);
    Infix(tree.right);
end if
```



```
Infix(tree):
if tree≠NULL
    Infix(tree.left);
    print(tree.key);
    Infix(tree.right);
end if
```



```
Infix(tree):
if tree≠NULL
    Infix(tree.left);
    print(tree.key);
    Infix(tree.right);
end if
```



```
Infix(2)
    Infix(NULL)
    print(2)
    Infix(7)
        Infix(5)
            Infix(5)
                Infix(NULL)
                print(5)
                Infix(NULL)
            print(5)
            Infix(NULL)
        print(7)
        Infix(8)
            Infix(NULL)
            print(8)
            Infix(NULL)
```

```
Infix(tree):
if tree≠NULL
    Infix(tree.left);
    print(tree.key);
    Infix(tree.right);
end if
```


Requests in BST

Search (recursive)

```
search(tree,k):
if tree = NULL or k = tree.key
  return tree
end if
if k < tree.key</pre>
  search(tree.left,k);
 else
  search(tree.right,k);
end if
```


Search (iterative)

```
search(tree,k):
while tree ≠ NULL and k ≠ tree.key
   if k < tree.key</pre>
      tree := tree.left
    else
      tree := tree.right
   end if
end while
return tree
                                       \begin{array}{c|c} 2 & 4 & 13 \end{array}
```



```
minimum(tree):
while tree.left ≠ NULL
  | tree := tree.left
end while
return tree.key
```

Minimum

Maximum

```
minimum(tree):
while tree.right ≠ NULL
  | tree := tree.right
end while
return tree.key
```


Successor and Predecessor

 Successor of a node x is the node with the smallest key such that it is larger than x.key

Successor of 51 is

Successor of 93 is

 Predecessor of a node x is the node with the largest key such that it is smaller than x.key

Predecessor of 51 is

Predecessor of 93 is

Successor

Cases

• The minimum of the right sub-tree (if there is one)

Successor

Cases

- The minimum of the right sub-tree (if there is one)
- The first ancestor of x such that its left child is an ancestor of x

Ancestor of 69: 51, 22, 75

```
successor(tree):
if tree.right ≠ NULL
    return minimum(tree)
end if
y := x.parent
while y ≠ NULL and x = y.right
    x := y
    y := y.parent
end while
return y
symmetric for predecessor
```


Insertion and deletion

Insertion Two ways

- Insert at the root
 - Modify the structure of the BST
- Insert at the leave
 - Modify the height of the BST

Insertion at the leave

```
Insert(tree, z)
y := NULL
x := T.root
while x \neq NULL
  y := x
  if z.key < x.key</pre>
    x := x.left
  else
   x := x.right
  end if
end while
z.parent := y
if y = NULL
    T.root := z
  else
    if z.key < y.key</pre>
        y.left := z
      else
        y.right := z
    end if
end if
```

Insert(tree, 13)

Search where to insert

Insert node

Insert_root(tree, 8)

12>8

Pseudo code

```
Insert_root(tree, x)
node root;
node L,R;
root.key := x
cut(x, tree, L, R);
root.left := L;
root.right := R;
return root;
```

```
cut(x, tree, L, R)
 if tree = NULL
    L := NULL, R := NULL;
  else
    if x < tree.key</pre>
       R := tree;
       cut(x, tree.left, L, R.left)
     else
       L := tree;
       cut(x, tree.right, L.right, R)
 end if
```


- 1st case: z is a leaf node
 - delete directly

- 1st case: z is a leaf node
 - delete directly
- 2nd case: z only has one child
 - replace the node by its child

Deletion of a node z

- 1st case: z is a leaf node
 - delete directly
- 2nd case: z only has one child
 - replace the node by its child
- 3rd case: z has 2 children
 - find successor of z
 - remove successor of z from the tree
 - replace z by its successor

Deletion of a node z

- 1st case: z is a leaf node
 - delete directly
- 2nd case: z only has one child
 - replace the node by its child
- 3rd case: z has 2 children
 - find successor of z
 - remove successor of z from the tree
 - replace z by its successor

Successor of z has at most 1 child

Deletion of a node z pseudo-code

```
Delete(T, k):
    z:=search(T, k)
    if z ≠ NULL
         if z.left = NULL
             Subtree-Shift(T, z, z.right)
           else
             if z.right = NIL
                  Subtree-Shift(T, z, z.left)
           else
             y := Tree-Successor(z)
             if y.parent ≠ z
               Subtree-Shift(T, y, y.right)
               y.right := z.right
               y.right.parent := y
             end if
             Subtree-Shift(T, z, y)
             y.left := z.left
  end if
             y.left.parent := y
```

```
Subtree-Shift(T, u, v):
    if u.parent = NULL
        T.root := v
    else if u = u.parent.left
        u.parent.left := v
    else
        u.parent.right := v
    end if
    if v ≠ NULL
        v.parent := u.parent
    end if
```


Summary of Binary Search Tree

Comparison with others

algorithm	worst-case cost (after n inserts)		average-case cost (after n random inserts)		efficiently support
(data structure)	search	insert	search hit	insert	ordered operations?
sequential search (unordered linked list)	n	n	n/2	n	no
binary search (ordered array)	log(n)	n	log(n)	n/2	yes
binary tree search (BST)	n	n	1.39 log(n)	1.39 log(n)	yes

Branch & Bound

Branch & Bound

Minimization problem (maximization problem)

- Algorithm technique for discrete and combinatorial optimization problems to compute the optimal solution
- Enumeration of candidate solutions by means of state space search
- Construct a rooted tree
- Fix part of the decisions of a solution and evaluate lower (upper) bound
- If lower (upper) bound is too high (low), we do not need to explore this branch

$$x_i = \begin{cases} 1 & \text{if item i is chosen} \\ 0 & \text{otherwise} \end{cases}$$

item i	weight w _i	value v _i
1	9	9
2	10	9
3	7	6
4	22	12

$$x_i = \begin{cases} 1 \text{ if item i is chosen} \\ 0 \text{ otherwise} \end{cases}$$

Weight capacity K=25

item i	weight w _i	value v _i
1	9	9
2	10	9
3	7	6
4	22	12

infeasible solution

Fractional Knapsack problem is a upper bound

 $x_i = \begin{cases} 1 & \text{if item i is chosen} \\ 0 & \text{otherwise} \end{cases}$

item i	weight w _i	value v _i
1	9	9
2	10	9
3	7	6
4	22	12

Upper bound when $x_1 = 0$

 Use the greedy algorithm for the Fractional Knapsack Problem on items 2, 3, 4

item i	use weight	get value	quantity
1	0 (9)	0 (9)	0
2	10 (10)	9 (9)	1
3	7 (7)	6 (6)	1
4	8 (22)	~4.36 (12)	(25-(10+7))/22 ~0.36

Weight capacity K=25

item i	weight w _i	value v _i
1	9	9
2	10	9
3	7	6
4	22	12

Best solution in this branch may be as good as 9+6+4.36 = 19.36

$$x_i = \begin{cases} 1 \text{ if item i is chosen} \\ 0 \text{ otherwise} \end{cases}$$

item i	weight w _i	value v _i
1	9	9
2	10	9
3	7	6
4	22	12

Upper bound when $x_1 = 0$, $x_2 = 0$

• Use the greedy algorithm for the Fractional Knapsack Problem on items 2, 3, 4

item i	use weight	get value	quantity
1	0 (9)	0 (9)	0
2	0 (10)	0 (9)	1
3	7 (7)	6 (6)	1
4	18 (22)	~9.81 (12)	(25-7)/22 ~0.81

Weight capacity K=25

item i	weight w _i	value v _i
1	9	9
2	10	9
3	7	6
4	22	12

Best solution in this branch may be as good as 6+9.81 = 15.81

$$x_i = \begin{cases} 1 \text{ if item i is chosen} \\ 0 \text{ otherwise} \end{cases}$$

Weight capacity K=25

item i	weight w _i	value v _i
1	9	9
2	10	9
3	7	6
4	22	12

Any feasible solution has profit at most 15.81 < 18

東南大學南京 1902 南京

Knapsack problem

$$x_i = \begin{cases} 1 & \text{if item i is chosen} \\ 0 & \text{otherwise} \end{cases}$$

item i	weight w _i	value v _i
1	9	9
2	10	9
3	7	6
4	22	12

Branch & Bound

- Can define different order of decision
- Can design other bounds according to the problem

- In the worst case, we enumerate all solutions
- It depends on the current feasible solution

• Can be used for problems with more than 2 choices

Exercises

Binary Search Tree

 Insert the following elements in a Binary Search Tree in the given order and draw the tree

12, 80, 65, 23, 72, 70, insert_root(47), 11, 87, 61, 54, 19, 44, 3, 27

- What is the height of the constructed tree?
- What is the average time (average path from the root) for accessing each element of the tree?

Minimize maximum load on two processors

We consider the following scheduling problem. Given a set of n jobs. Each job i has processing time p_i , all available at the beginning.

The goal is to assign jobs on two processors such that the maximum load is minimized.

Example of 5 jobs with processing times $\{5,2,7,2,9\}$

maximum load=16

Design a Branch & Bound algorithm to solve this scheduling problem

Lower bound 1

Two lower bounds exist for this problem. The load of any solution should have at least the maximum processing time $\max p_i$

Example of 5 jobs with processing times $\{5,2,7,2,9\}$

processor 1 processor 2

The maximum processing time of the remaining jobs is 9. So any feasible solution should have a load at least

$$load(processor 1) + 9 = 16$$

$$load(processor 2) + 9 = 11$$

Any feasible solution should have at least the same cost as current solution

$$\max_{i} \{ load(processor i) \} = 7$$

Take the minimum

Take the maximum = 11

Lower bound 2

All processors has the same load (ideal situation)

$$\frac{1}{m} \sum_{i=1}^{n} p_i$$
 where m is the number of machines

Example of 5 jobs with processing times $\{5,2,7,2,9\}$

$$LB2 = \max \left\{ \frac{5+2+7+2+9}{2} = 12.5, \max_{i} \{ load(processor i) \} \right\}$$

Exercise Branch & Bound

Formal Lower bounds

$$\begin{split} LB1 &= \max \, \left\{ \, \min_i \left\{ \text{load(processor} \, i) + \max_i p_i \right\} \, , \, \, \max_i \{ \text{load(processor} \, i) \} \, \right\} \\ LB2 &= \max \, \left\{ \, \frac{1}{m} \sum_{i=1}^n p_i \, , \, \, \max_i \{ \text{load(processor} \, i) \} \, \right\} \end{split}$$

where $\max_{i} \{ load(processor i) \}$ is the load of the current solution

Exercise Branch & Bound

Formal Lower bounds

Use $LB = \max\{LB1, LB2\}$ for the design of a Branch & Bound algorithm

$$E = \{5,3,8,4\} \text{ and } m = 2$$

Start from the following feasible solution: $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

processor 1 processor 2

- 1. Complete the tree of the Branch & Bound, and find the optimal solution
- 2. Give the order of the nodes you explored

$$E = \{5,3,8,4\}$$

