Submit the following from the problem list: 2, 3, 5, 6, 8, 10, 11, 12, 13, 16, 23.

Submit two of the following: 19, 20, 21, 22, 24.

Problem 1. If p is a prime number, prove that the nonzero elements of \mathbb{Z}_p form a multiplicative group of order p-1. Show that this statement is false if p is not a prime.

Proof. Consider $\mathbb{Z}_4 \setminus \{0\} = \{1,2,3\}$. $2(2) = 0 \notin \mathbb{Z}_4 \setminus \{0\}$, so closure doesn't hold and it can't be a group under multiplication at all. Therefore, the statement is false if p is not prime. Now consider the statement for a prime p.

 $\mathbb{Z}_2 = \{0,1\}$ and so $\mathbb{Z}_2^* = \{1\}$ is clearly a group under multiplication of order 2-1=1. Now consider any prime p > 2, which must be odd. p = 2k+1 for some $k \in \mathbb{Z}^+$. **Observe.**

 $\langle 2 \rangle_p^* = \{2,4,\ldots,2k\} \sqcup \{2(2k),\ldots\}$. Well, since p = 2k+1, 2(2k) = 4k = 2k+2k = (2k+1)+(2k-1) = p+2k-1 = 2k-1 = p-2. So note that the elements following 2k must be odd since p is odd. Additionally, 2q(p-2) = -4q = p-4q for $q = 1,\ldots,k-1$ and finally note that 2(k-1)(p-2) = 2(k-1)p-2(k-1)(2) = p-2k = 1. Therefore,

 $\langle 2 \rangle_p^* = \{2, 4, \dots, 2k\} \sqcup \{2(2k), \dots\} = \{2, 4, \dots, 2k\} \sqcup \{p - 2, p - 4, \dots, p - 2k, \dots\} = \{2, 4, \dots, p - 1\} \sqcup \{p - 2, p - 4, \dots, 1, 2, \dots\}.$ and continuing in this fashion loops us back around to the evens.

So, $\langle 2 \rangle_p^* = (\mathcal{E}_p \setminus \{0\}) \sqcup (\mathcal{O}_p) = \mathbb{Z}_p^*$ must therefore be a cyclic multiplicative group of order p-1.

Problem 2.

- (a) Prove that the relation given by $a \sim b \iff a b \in \mathbb{Z}$ is an equivalence relation on the additive group \mathbb{O} .
- (b) Prove that \mathbb{Q}/\mathbb{Z} is an infinite abelian group.

Proof.

(a) For any $a, b, c \in (\mathbb{Q}, +)$,

$$[\mathbf{a} \sim \mathbf{a}]: \quad a - a = 0 \in \mathbb{Z} \implies a \sim a.$$

$$[\mathbf{a} \sim \mathbf{b} \implies \mathbf{b} \sim \mathbf{a}]: \quad a \sim b \implies a - b \in \mathbb{Z} \implies -(a - b) = b - a \in \mathbb{Z} \implies b \sim a.$$

$$[\mathbf{a} \sim \mathbf{b}, \mathbf{b} \sim \mathbf{c} \implies \mathbf{a} \sim \mathbf{c}]: \quad a \sim b, b \sim c \implies c \sim b \implies (a - b) - (c - b) = a - c \in \mathbb{Z} \implies a \sim c.$$

So \sim is an equivalence relation on $(\mathbb{Q}, +)$.

(b) $\mathbb{Q}/\mathbb{Z} = \{ [\frac{a}{b}] = \frac{a}{b} + \mathbb{Z} \mid a, b \in \mathbb{Z} \text{ and } b \nmid a \}$. Consider any $q_1, q_2 \in (0, 1)$. If $[q_1] = [q_2]$, then $[q_1] - [q_2] = \mathbb{Z}$ and so $q_1 - q_1 \in \mathbb{Z}$. Well, $q_1, q_2 \in (0, 1)$, so $q_1 - q_2 \in (-1, 1)$ and therefore $q_1 - q_2 = 0$. So $[q_1] = [q_2] \Longrightarrow q_1 = q_2$. On the other hand, $q_1 = q_2 \Longrightarrow [q_1] = [q_2]$ by definition. So then

$$q_1 = q_2 \iff [q_1] = [q_2], \forall q_1, q_2 \in (0,1).$$

Since the rationals are dense in \mathbb{R} , there are infinitely many distinct rationals in (0,1) and infinitely many distinct cosets of the form [q] where $q \in (0,1)$. Therefore, \mathbb{Q}/\mathbb{Z} is infinite. Lastly, since $(\mathbb{Q},+)$ is Abelian, so is \mathbb{Q}/\mathbb{Z} since $[q_1] + [q_2] = [q_1 + q_2] = [q_2 + q_1] = [q_2] + [q_1]$.

Thus,

 \mathbb{Q}/\mathbb{Z} is an infinite Abelian group.

Problem 3. Let p be a prime number and let $Z(p^{\infty})$ be the following subset of the group \mathbb{Q}/\mathbb{Z} :

$$\mathbb{Z}(p^{\infty}) = \left\{ \left. \frac{a}{b} \in \mathbb{Q}/\mathbb{Z} \; \right| \; a,b \in \mathbb{Z}, \; b = p^i \; \text{for some} \; i \geq 0 \right\}.$$

Prove that $\mathbb{Z}(p^{\infty})$ is an infinite subgroup of \mathbb{Q}/\mathbb{Z} .

Proof. Clearly, $\mathbb{Z}(p^{\infty}) \subset \mathbb{Q}/\mathbb{Z}$. Consider some integers $i, j \geq 0$ and $a_i, a_j \in \mathbb{Z}$.

[Closure]:
$$\left[\frac{a_i}{p^i}\right] + \left[\frac{a_j}{p^i}\right] = \left[\frac{p^j(a_i) + p^i(a_j)}{p^{i+j}}\right] \in \mathbb{Z}(p^{\infty}).$$

[Inverses]:
$$[\frac{-a_i}{p^i}] + [\frac{a_i}{p^i}] = [0] \implies -[\frac{a_i}{p^i}] = [\frac{-a_i}{p^i}].$$

So $\mathbb{Z}(p^{\infty}) \leq \mathbb{Q}/\mathbb{Z}$. Now once more consider some integers $i, j \in \mathbb{Z}^+$ but set a = 1. Notice that $\frac{1}{p^i}, \frac{1}{p^j} \in (0, 1)$. **Observe.**

This result essentially follows from **Problem 2**. $\left[\frac{1}{p^i}\right] = \left[\frac{1}{p^j}\right] \implies \left[\frac{1}{p^i}\right] - \left[\frac{1}{p^j}\right] = \mathbb{Z} \implies \frac{1}{p^i} - \frac{1}{p^j} \in \mathbb{Z}$. Well, $\frac{1}{p^i}, \frac{1}{p^j} \in (0,1) \implies \frac{1}{p^i} - \frac{1}{p^j} \in (-1,1) \implies \frac{1}{p^i} - \frac{1}{p^j} = 0 \implies \frac{1}{p^i} = \frac{1}{p^i} \implies i = j$. On the other hand, $i = j \implies \frac{1}{p^i} = \frac{1}{p^j} \implies \left[\frac{1}{p^j}\right] = \left[\frac{1}{p^j}\right]$ by definition. So then,

$$i = j \iff \left[\frac{1}{p^i}\right] = \left[\frac{1}{p^j}\right], \, \forall i, j \in \mathbb{Z}^+.$$

There are infinitely many distinct positive integers so there must be infinitely many distinct cosets in $\mathbb{Z}(p^{\infty})$. Thus,

 $\mathbb{Z}(p^{\infty})$ is an infinite subgroup of \mathbb{Q}/\mathbb{Z} .

Problem 4. If G is a finite group of even order, prove that G has an element of order two.

Proof. If G is a finite group of even order, then |G| = 2k and $|G \setminus \{e\}| = 2k - 1$ for some $k \in \mathbb{Z}^+$. Suppose there doesn't exist an element of order 2 in G. Then, $\forall g \in G \setminus e, g \neq g^{-1}$. **Observe.**

If all non-identity elements are not equal to their inverse, then non-identity elements come two at a time. But then $|G \setminus \{e\}| = 2k - 1$ is even, a contradiction.

Thus,

If G is a finite group of even order, then it contains an element of order 2.

Problem 5. Let Q_8 be the multiplicative group generated by the complex matrices

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Observe that $A^4 = B^4 = I_2$ and $BA = AB^3$. Prove that Q_8 is a group of order 8.

Proof. Well, \Box

Problem 6. Let G be a group and let Aut(G) denote the set of all automorphisms of G.

- (a) Prove that Aut(G) is a group with composition of functions as the binary operation.
- (b) Prove that $\operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_2$, $\operatorname{Aut}(\mathbb{Z}_6) \cong \mathbb{Z}_2$, $\operatorname{Aut}(\mathbb{Z}_8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, $\operatorname{Aut}(\mathbb{Z}_p) \cong \mathbb{Z}_{p-1}$ (p prime).

Problem 7. Let G be an infinite group that is isomorphic to each of its proper subgroups. Prove that $G \cong \mathbb{Z}$.

Problem 8. Let G be the multiplicative group of 2×2 invertible matrices with rational entries. Show that

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

have finite orders but AB has infinite order.

Problem 9. Let G be an abelian group containing elements a and b of orders m and n, respectively. Prove that G contains an element of order lcm(m,n).

Problem 10. Let H, K be subgroups of a group G. Prove that HK is a subgroup of G if and only if HK = KH.

Proof.

(⇒)
$$HK \le G$$
 ⇒ For all $hk \in HK$, $(hk)^{-1} = k^{-1}h^{-1} \in HK$. Therefore, $HK = \{hk \mid h \in H, k \in K\} = \{k^{-1}h^{-1} \mid k \in K, h \in H\} = KH$.

(\Leftarrow) Note $HK = KH \implies \forall hk \in HK, \exists (h_{k_1}, k_{h_1}) \in H \times K$, such that $hk = k_{h_1}h_{k_1} \in KH = HK$. The same logic holds for 'flipped' elements $kh \in KH = HK$. **Observe.**

[Closure]:
$$(h_1k_1)(h_2k_2) = (h_1k_1)(k_{h_2}h_{k_2}) = h_1(k_1k_{h_2})h_{k_2} = (k_1k_{h_2})h_1h_{k_1k_{h_2}}h_{k_2} \in KH = HK.$$

[Inverses]: For any
$$hk \in HK$$
, $(hk)^{-1} = k^{-1}h^{-1} \in KH = HK$.

So $HK \leq G$.

Thus,

$$HK \leq G \iff HK = KH$$
.

Problem 11. Let H, K be subgroups of finite index of a group G such that [G : H] and [G : K] are relatively prime. Prove that G = HK.

Proof. By Class notes - 08/29 we have that $|G| = [G:M]|M| \implies [G:M] = \frac{|G|}{|M|}$ for all $M \le G$. Therefore, we have that $[G:H] = \frac{|G|}{|H|} = n$, $[G:K] = \frac{|G|}{|K|} = m$ where gcd(m,n) = 1. Observe.

If *G* is finite, so are *H* and *K*. So, $|G| = |H|n = |K|m \implies |H| = \frac{m|K|}{n}$. Since $n \nmid m$, *n* must divide |K|. Similarly, $|G| = |H|n = |K|m \implies |H| = \frac{n|K|}{m}$. So *m* divides |H| by the same logic. Therefore, |K| = nx and |H| = my for some $x, y \in \mathbb{Z}^+$.

Problem 12. Let H, K, N be subgroups of G such that $H \subseteq N$. Prove that $HK \cap N = H(K \cap N)$.

Problem 13. Let H, K, N be subgroups of G such that $H \subseteq K$, $H \cap N = K \cap N$, HN = KN. Prove that H = K.

Problem 14. Let H be a subgroup of G. For $a \in G$, prove that aHa^{-1} is a subgroup of G that is isomorphic to H.

Problem 15. Let G be a finite group and H a subgroup of G of order n. If H is the only subgroup of G of order n, prove that H is normal in G.

Problem 16. If H is a cyclic normal subgroup of a group G, then every subgroup of H is normal in G.

Problem 17. What is $Z(S_n)$ for $n \ge 2$?

Problem 18. If H is a normal subgroup of G such that H and G/H are finitely generated, then G is finitely generated.

Problem 19. If N is a normal subgroup of G, [G:N] is finite, H is a subgroup of G, |H| is finite, and [G:N] and |H| are relatively prime, then H is a subgroup of N.

Problem 20. If N is a normal subgroup of G, |N| is finite, H is a subgroup of G, [G:H] is finite, and [G:H] and |N| are relatively prime, then N is a subgroup of H.

Problem 21. If G is a finite group and H, K are subgroups of G, then

$$[G:H\cap K]\leq [G:H][G:H].$$

Problem 22. If H, K, L are subgroups of a finite group G such that $H \subseteq K$, then

$$[K:H] \ge [L \cap K:L \cap H].$$

Problem 23. Let H, K be subgroups of a group G. Assume that $H \cup K$ is a subgroup of G. Prove that either $H \subseteq K$ or $K \subseteq H$.

Problem 24. Let G be an abelian group, H a subgroup of G such that G/H is an infinite cyclic group. Prove that $G \cong H \times G/H$.