Introduction to Statistics Theory (Fall 2018)

Final Exam

Name: _____

Results you may use directly:

•
$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i - \bar{x})x_i$$

•
$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x})y_i$$

• $var(X + Y) = var(X) + 2cov(X, Y) + var(Y)$
• In simple linear model,

•
$$var(X+Y) = var(X) + 2cov(X,Y) + var(Y)$$

$$var(\hat{eta}_1) = rac{\sigma^2}{S_{xx}}, \quad var(\hat{eta}_0) = \sigma^2(rac{ar{x}^2}{S_{xx}} + rac{1}{n}), \quad cov(\hat{eta}_1, \hat{eta}_0) = -rac{ar{x}}{S_{xx}}\sigma^2$$

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$. The least square estimators are

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}, \qquad \hat{\beta}_0 = \bar{Y} - \bar{x}\hat{\beta}_1.$$

Show the followings

(a)
$$\mathbb{E}\hat{\beta}_1 = \beta_1$$
 (10pt).

(b)
$$\mathbb{E}\hat{\beta}_0 = \beta_0$$
 (10pt).

$$E \beta_{0} = \beta_{0} \text{ (10pt)}.$$

$$= \sum_{i} \frac{(x_{i} - \overline{x})(x_{i} - \overline{y})}{S_{xx}}$$

$$= \sum_{i} \frac{(x_{i} - \overline{x})}{S_{xx}} (\beta_{0} + \beta_{1} x_{i})$$

$$= \sum_{i} \frac{(x_{i} - \overline{x})}{S_{xx}} (\beta_{1} + \beta_{1} x_{i})$$

$$= \sum_{i} \frac{(x_{i} - \overline{x})}{S_{xx}} (\beta_{1} + \beta_{1} x_{i})$$

$$= \sum_{i} \frac{(x_{i} - \overline{x})}{S_{xx}} (\beta_{1} + \beta_{1} x_{i})$$

(b),
$$E(\delta) = E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y} - \overline{x} - \beta_1)$$

$$= E(\overline{y}$$

2. Based on the conditions in problem 1, consider a summation $\hat{W} = \hat{\beta}_0 + \hat{\beta}_1$. Assuming that we know $\sigma^2 = 1$,

(a) Find the mean of \hat{W} (5pt).

(b) Find the variance of \hat{W} (5pt).

(c) Is W normally distributed? (2pt) Why or why not? (3pt)

(d) Construct a two-sided $(1 - \alpha)$ confidence interval for $\beta_0 + \beta_1$ (5pt).

$$= \left(\frac{\overline{x}^2}{S_{\infty}} + \frac{1}{h}\right) + \frac{1}{S_{\infty}} + 2\left(-\frac{\overline{x}}{S_{\infty}}\right)$$

$$= \frac{x^{2} + 1 - 2x}{5x} + \frac{1}{x} = \frac{(x-1)^{2}}{5x} + \frac{1}{x}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{(\chi - 1)^2}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{\chi^2 + 1}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{\chi^2 + 1}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{\chi^2 + 1}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{1}{4} = \frac{\chi^2 + 1}{5\chi} + \frac{1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{\chi^2 + 1}{4} = \frac{\chi^2 + 1}{5\chi} + \frac{\chi^2 + 1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{\chi^2 + 1}{4} = \frac{\chi^2 + 1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{\chi^2 + 1}{4} = \frac{\chi^2 + 1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{\chi^2 + 1}{4} = \frac{\chi^2 + 1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{\chi^2 + 1}{4} = \frac{\chi^2 + 1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{\chi^2 + 1}{4} = \frac{\chi^2 + 1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{\chi^2 + 1}{4} = \frac{\chi^2 + 1}{4}$$

$$= \frac{\chi^2 + 1 - 2\chi}{5\chi} + \frac{\chi^2 + 1}{4} = \frac{\chi^2 + 1}{4}$$

$$= \frac{\chi^2 + 1$$

Where
$$\pi = \sqrt{\frac{(\pi - 1)^2}{S_{xx}}} + \frac{1}{\eta}$$
.

3. Suppose that Y is a random sample of size 1 from a population with density function

$$f(y \mid \theta) = \theta y^{\theta-1}, \quad 0 \le y \le 1$$

where $\theta > 0$.

- (a) Find the most powerful test at significance α for $H_0: \theta=1$ vs $H_a: \theta=b$, where b>1 (15pt).
- (b) Is the derived test uniformly most powerful? (5 pt)

By Neyron-Peason
$$\frac{L(\theta,y)}{L(\theta,y)} = \frac{1}{b} \cdot y^{1-1}/y^{b-1}$$

$$= \frac{1}{b} \cdot y^{1-b} \leq k$$
give $1-b < 0 \Rightarrow y \geq k^*$

whe need $P(y \geq k^*) = \omega$.

$$\int_{k^*}^{\theta} y^{\theta-1} dy = y^{\theta} \Big|_{k^*}^{1} = 1-(k^*)^{\theta} = \omega$$

hinder $1+0$, $6=1 \Rightarrow k^* = 1-\omega$.

$$\Rightarrow 7+e \text{ rejection region } \int_{k^*}^{\infty} y^{\theta} = 1-\omega$$

(b) Since the rejection region does not vary in vith $1+0$.

$$\frac{1}{b} \cdot y^{\theta} = 1 - \omega$$

the transfer $1+0$ does not vary in vith $1+0$.

$$\frac{1}{b} \cdot y^{\theta} = 1 - \omega$$

The rejection region $1+0$ does not vary in vith $1+0$.

The rejection region does not vary in vith $1+0$.

The rejection region does not vary in vith $1+0$.

4. Assume
$$Y_1, \ldots Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2), \bar{Y} = \sum_{i=1}^n Y_i/n$$
.

(a) Show that
$$\bar{Y}$$
 is an unbiased estimator for μ (5pt).

(b) Show that
$$\bar{Y}$$
 is a minimum sufficient statistic for μ (10pt).

(c) Show that
$$\bar{Y}$$
 is a minimum variance unbiased estimator for μ (Spt).

(d) $E = \sum E X_i = M^n = M$.

(b) $L(Y_1 - Y_1) = \frac{1}{(y_1 - y_1)^2} = \frac{1$

5. Assume that
$$Y_1, \ldots, Y_n$$
 are iid with density function

$$f(y) = \frac{1}{\theta}, \qquad 0 < y < \theta$$

Consider the estimator $Y_{max} = \max\{Y_1, \dots, Y_n\}$ for the parameter θ .

- (a) Find out $P(Y_{max} \le k)$, where $0 \le k \le \theta$ (5pt).
- (b) Setting $k = \theta \epsilon$, prove or disprove that Y_{max} is a consistent estimator for θ (10pt).
- (c) Prove or disprove that $\frac{n}{(n+1)^2}Y_{max}$ is a consistent estimator for θ (5pt).

(a)
$$P(Y_{\text{hor}} \leq k) = P(Y_1 \leq k, ..., Y_n \leq k)$$

= $\left(\frac{k}{\theta}\right)^n$

(b)
$$P(\gamma_{mx} \leq (G - E)) = \left(\frac{G - E}{\Theta}\right)^n$$

$$\Rightarrow P(||y_{\text{max}} - \theta|| \ge \varepsilon) = (\frac{\theta - \varepsilon}{\theta})^h \Rightarrow 0$$

$$\frac{n}{(n+1)^2} \longrightarrow 0$$
 as $n \to \infty$