1. Modular arithmetic.

A. Ushakov

MA503, September 1, 2021

Contents

- Division with a remainder.
- Division is correctly defined.
- Divisibility.
- Properties of divisibility.
- Greatest common divisor.
- Euclidean algorithm.
- Bezout's identity.
- Integral linear combinations of a and b.
- Prime numbers.
- Properties of prime numbers.
- Prime power factorization.
- Fundamental theorem of arithmetic.
- Linear Diophantine equations. Examples.
- Least common multiple.
- Congruence modulo n. Properties.
- Congruence class.
- Arithmetic of congruences.

Integer numbers

Natural numbers are numbers used in counting. The set of all natural numbers is

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}.$$

The set of integer numbers consists of natural numbers, negative natural numbers and zero

$$\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$$

We will work with two binary operations on \mathbb{Z} :

- addition,
- multiplication.

The set \mathbb{Z} is naturally ordered, for $a, b \in \mathbb{Z}$:

$$a < b \Leftrightarrow b - a \in \mathbb{N}$$
.

Properties of integers

Properties of integers, for every $a,b,c\in\mathbb{Z}$	
(1) Associativity of addition	a + (b+c) = (a+b) + c
(2) Associativity of multiplication	a(bc) = (ab)c;
(3) Commutativity of addition	a+b=b+a;
(4) Commutativity of multiplication	ab = ba;
(5) Distributivity	a(b+c)=ab+ac;
(6) Properties of 0	$0+a=a,\ 0\cdot a=0;$
(7) Properties of 1	$1 \cdot a = a;$
(8) Properties of negation	-(-a) = a, $a(-b) = -(ab)$, $(-a)(-b) = ab$;
(9) No zero divisors	ab = 0 implies $a = 0$ or $b = 0$.
Properties of $\mathbb N$	
(10) Induction principle	$P(1) \land \forall i, \ P(i) \rightarrow P(i+1) \text{ implies } \forall i, \ P(i).$
(11) Well-ordering principle	Every nonempty subset of $\mathbb N$ has the least element.

Based on these axioms we build up divisibility theory for integers.

Division with a remainder

Let $a, b \in \mathbb{Z}$ and $b \neq 0$.

Definition

To divide a by b means to find $q, r \in \mathbb{Z}$ such that

$$a = b \cdot q + r \text{ and } 0 \le r < |b|. \tag{1}$$

We call q the **quotient** and r the **remainder** of division.

• Dividing 7 by 3 we get the quotient 2 and the remainder 1 because

$$7 = 3 \cdot 2 + 1$$
 and $0 \le 1 < |3|$.

• Dividing -7 by 3 we get the quotient -3 and the remainder 2 because

$$-7 = 3 \cdot (-3) + 2$$
 and $0 \le 2 < |3|$.

(Remember that the remainder must be non-negative!)

ullet Dividing -7 by -3 we get the quotient 3 and the remainder 2 because

$$-7 = (-3) \cdot 3 + 2$$
 and $0 \le 2 < |-3|$.

Division by 0 makes no sense!

Division is possible!

Theorem

For any $a,b\in\mathbb{Z}$ with $b\neq 0$ there exists a unique pair $q,r\in\mathbb{Z}$ such that:

$$a = b \cdot q + r$$
 and $0 \le r < b$.

Proof. Assuming $a \ge 0$ and $b \ge 0$ (other cases are similar).

Existence:

- Define a "set of potential remainders" $S = \{a qb \mid q \in \mathbb{Z} \text{ and } a qb \geq 0\} \subseteq \mathbb{N} \cup \{0\}.$
- $a \in S \Rightarrow S \neq \emptyset \Rightarrow S$ contains the least element r.
- $r \in S$ \Rightarrow r = a qb for some $q \in \mathbb{Z}$ \Rightarrow a = qb + r.
- If $r \ge b$, then $r b = a (q + 1)b \ge 0$ belongs to S and is smaller than r. That contradicts our choice of r.
- Hence, r < b and (q, r) is a required pair.

Division is possible!

Theorem

For any $a,b\in\mathbb{Z}$ with $b\neq 0$ there exists a unique pair $q,r\in\mathbb{Z}$ such that:

$$a = b \cdot q + r$$
 and $0 \le r < b$.

Proof. Assuming $a \ge 0$ and $b \ge 0$ (other cases are similar).

Uniqueness:

- Assume that (q_1, r_1) and (q_2, r_2) satisfy (1).
- On the way to contrary assume that $r_1 \neq r_2$, e.g., $r_1 > r_2$. Then

$$a = q_1b + r_1 = q_2b_2 + r_2.$$

Hence,

$$r_1 - r_2 = (q_2 - q_1)b$$
 and $0 < r_1 - r_2 < b$,

which is impossible (b does not divide any integer in the set $\{1, \ldots, b-1\}$).

• Thus, $r_1 = r_2$ and $q_1 = q_2$.

Divisibility

Let $a, b \in \mathbb{Z}$ and $b \neq 0$.

Definition (Divisibility)

We say that b divides a and write $b \mid a$ if a = bq for some $q \in \mathbb{Z}$.

- b is a divisor (factor) of a;
- a is a multiple of b.

Every nontrivial $n \in \mathbb{Z}$ has finitely many divisors.

For instance:

- 6 has divisors $\pm 1, \pm 2, \pm 3, \pm 6$.
- -21 has divisors $\pm 1, \pm 3, \pm 7, \pm 21$.

Divisibility properties-I (can be skipped)

Proposition (Transitivity)

For any $a, b, c \in \mathbb{Z}$ if $a \mid b$ and $b \mid c$, then $a \mid c$;

Proposition

For any $a, b, c, d \in \mathbb{Z}$ if $a \mid b$ and $c \mid d$, then $ac \mid bd$;

Proposition

If $m \neq 0$, then for any $a, b \in \mathbb{Z}$ ($a \mid b \Leftrightarrow am \mid bm$);

Proof for $a \mid b \Rightarrow am \mid bm$:

$$a \mid b \Rightarrow b = qa \Rightarrow bm = q \cdot am \Rightarrow am \mid bm$$

Proof for $a \mid b \Leftarrow am \mid bm$: (proving the contropositive statement):

$$a \nmid b \Rightarrow b = qa + r$$
, s.t. $0 < r < a$
 $\Rightarrow mb = qam + rm$, s.t. $0 < rm < am$
 $\Rightarrow am \nmid bm$.

Divisibility properties-II

Proposition

For any $a, b \in \mathbb{Z}$ if $a \mid b$ and $b \neq 0$, then $|a| \leq |b|$.

Every nontrivial multiple b of a satisfies $|a| \leq |b|$:

$$\ldots, -4a, -3a, -2a, -a, 0, a, 2a, 3a, 4a, \ldots$$

Proposition

Let $c \in \mathbb{Z}$, $a_1, \ldots, a_n \in \mathbb{Z}$, and $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}$. If $c \mid a_i$ for every $i = 1, \ldots, n$, then $c \mid (\alpha_1 a_1 + \ldots + \alpha_n a_n)$.

$$c \mid a_1$$
 $a_1 = q_1c$
 $\dots \Rightarrow \dots \Rightarrow \alpha_1a_1+\dots+\alpha_na_n = \alpha_1q_1c+\dots+\alpha_nq_nc = c(\alpha_1q_1+\dots+\alpha_nq_n)$
 $c \mid a_n$ $a_n = q_nc$

Greatest common divisor

Definition

d is a **common divisor** of a and b if $d \mid a$ and $d \mid b$.

Definition

d is the **greatest common divisor** of a and b if $d \mid a$ and $d \mid b$ and d is the greatest number with this property.

We can find gcd(a, b) using the definition for small a, b, namely, we can enumerate all divisors of a and b and choose the greatest common divisor.

- gcd(2,3) = 1,
- gcd(8, 12) = 4,
- gcd(-6, 12) = 6,
- $\gcd(-15, 120, 25) = 5,$
- gcd(0,0) is not defined because every nontrivial integer divides 0. (In some books gcd(0,0) = 0!)

For large a, b this approach is inefficient: it requires factorization of a and b which is computationally hard.

Euclidean algorithm

(Euclidean Lemma)

$$b = qa + r \Rightarrow \gcd(a, b) = \gcd(a, r).$$

d is a common divisor for $(a, b) \Leftrightarrow d$ is a common divisor for (a, b - qa).

(The Euclidean algorithm to compute gcd(a, b))

Assuming $|b| \ge |a|$

$$b = q_1 \cdot a + r_1 \qquad \Rightarrow \gcd(a, b) = \gcd(a, r_1), \qquad \text{where } r_1 < |a| \le |b|$$
$$a = q_2 \cdot r_1 + r_2 \qquad = \gcd(r_2, r_1), \qquad \text{where } r_2 < r_1 < |a|$$

$$r_1 = q_3 \cdot r_2 + r_3$$
 = gcd(r_2 , r_3), where $r_3 < r_2 < r_1$

 $r_{k-2} = q_k \cdot r_{k-1} + r_k = 0$

$$= \gcd(r_{k-1}, 0) = r_{k-1}.$$

For instance,
$$8 = 1 \cdot 5 + 3$$
 \Rightarrow $gcd(8,5) = gcd(3,5)$
 $5 = 1 \cdot 3 + 2$ \Rightarrow $gcd(8,5) = gcd(3,2)$

$$3 = 1 \cdot 2 + 1$$
 = gcd(1, 2)

$$2 = 2 \cdot 1 + 0$$
 = gcd $(1, 0) = 1$.

The number of steps k is bounded by $2(\log_2(|a|) + \log_2(|b|))$.

3

Bezout's identity

Theorem (Bezout's identity)

For any $a, b \in \mathbb{Z}$ (not both trivial) $gcd(a, b) = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$!

In other words, gcd(a, b) can be expressed as an integral linear combination of a and b.

Example (Find coefficients α and β for a and b)

- a = 5 and b = 8;
- a = 10 and b = 17;
- a = 60 and b = 145.

Worked out example-I

Example

Using the Euclidean algorithm compute gcd(8,5):

$$8 = 1 \cdot 5 + 3$$
 \Rightarrow $gcd(8, 5) = gcd(3, 5)$
 $5 = 1 \cdot 3 + 2$ $= gcd(3, 2)$
 $3 = 1 \cdot 2 + 1$ $= gcd(1, 2)$
 $2 = 2 \cdot 1 + 0$ $= gcd(1, 0) = 1$

Finally, express 1 as an integral linear combination of 5 and 8:

$$1 = 1 \cdot 3 - 1 \cdot 2$$

= 1 \cdot 3 - 1 \cdot (5 - 1 \cdot 3) = (-1) \cdot 5 + 2 \cdot 3
= (-1) \cdot 5 + 2 \cdot (8 - 1 \cdot 5) = (-3) \cdot 5 + 2 \cdot 8.

Worked out example-II

Example

Using the Euclidean algorithm compute gcd(10, 17):

$$\begin{array}{lll} 17 = 1 \cdot 10 + 7 & \Rightarrow & \gcd(10, 17) = \gcd(10, 7) \\ 10 = 1 \cdot 7 + 3 & = \gcd(3, 7) \\ 7 = 2 \cdot 3 + 1 & = \gcd(3, 1) \\ 3 = 3 \cdot 1 + 0 & = \gcd(0, 1) = 1. \end{array}$$

Finally, we express 1 as an integral linear combination of 17 and 10:

$$1 = 1 \cdot 7 - 2 \cdot 3$$

$$= 1 \cdot 7 - 2 \cdot (10 - 1 \cdot 7) = (-2) \cdot 10 + 3 \cdot 7$$

$$= (-2) \cdot 10 + 3 \cdot (17 - 1 \cdot 10) = (-5) \cdot 10 + 3 \cdot 17.$$

Integral linear combinations of a and b

Let $a, b \in \mathbb{Z}$ (not both trivial).

Q. What numbers can be expressed as integral linear combinations of a, b?

For instance, if a = 5 and b = 8, then:

- 0 = 0.5 + 0.8
- $1 = -3 \cdot 5 + 2 \cdot 8$
- $-1 = 3 \cdot 5 + -2 \cdot 8$
- $2 = -6 \cdot 5 + 4 \cdot 8$
- $-2 = 6 \cdot 5 + -4 \cdot 8$
- $3 = -1 \cdot 5 + 1 \cdot 8$

Every integer can be expressed as an integral linear combination of 5 and 8!

On the other hand, any integral linear combination of a=4 and b=6 is even. Hence, we cannot express odd numbers as integral linear combinations of 4 and 6!

Integral linear combinations of a and b

Fix $a, b \in \mathbb{Z}$. Let $c \in \mathbb{Z}$.

Theorem (Only multiples of gcd(a, b) can be expressed as $\alpha a + \beta b$)

$$c = \alpha a + \beta b$$
 for some $\alpha, \beta \in \mathbb{Z}$ \Leftrightarrow $gcd(a, b) \mid c$.

" \Rightarrow " Suppose that $c = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$. We have

- $gcd(a, b) \mid a \Rightarrow a = q_1 gcd(a, b)$.
- $gcd(a, b) | b \Rightarrow b = q_2 gcd(a, b)$.
- $\bullet \ c = \alpha \mathbf{a} + \beta \mathbf{b} = \alpha \mathbf{q}_1 \gcd(\mathbf{a}, \mathbf{b}) + \beta \mathbf{q}_2 \gcd(\mathbf{a}, \mathbf{b}) = \gcd(\mathbf{a}, \mathbf{b})(\alpha \mathbf{q}_1 + \beta \mathbf{q}_2).$
- Therefore, $gcd(a, b) \mid c$.

" \Leftarrow " Suppose that $gcd(a, b) \mid c$.

- Then $c = q \gcd(a, b) \stackrel{\text{Bezout}}{=} q(\alpha a + \beta b) = q\alpha \cdot a + q\beta \cdot b$
- So, c is an integral linear combination of a and b.

Corollary

gcd(a,b) is the least positive integer of the form $\alpha a + \beta b$

Integers of the form $\alpha a + \beta b$ are multiples of gcd(a, b):

$$\dots$$
, $-2 \gcd(a, b)$, $-\gcd(a, b)$, 0, $\gcd(a, b)$, $2 \gcd(a, b)$, $3 \gcd(a, b)$, \dots

Integral linear combinations of a and b

Fix $a, b \in \mathbb{Z}$. Let $c \in \mathbb{Z}$.

Theorem (Only multiples of $\gcd(a,b)$ can be expressed as lpha a + eta b

$$c = \alpha a + \beta b$$
 for some $\alpha, \beta \in \mathbb{Z} \quad \Leftrightarrow \quad \gcd(a, b) \mid c$

" \Rightarrow " Suppose that $c = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$. We have

- $gcd(a, b) \mid a \Rightarrow a = q_1 gcd(a, b)$.
- $gcd(a, b) | b \Rightarrow b = q_2 gcd(a, b)$.
- $c = \alpha a + \beta b = \alpha q_1 \gcd(a, b) + \beta q_2 \gcd(a, b) = \gcd(a, b)(\alpha q_1 + \beta q_2).$
- Therefore, $gcd(a, b) \mid c$.
- " \Leftarrow " Suppose that $gcd(a, b) \mid c$.
 - Then $c = q \gcd(a, b) \stackrel{Bezout}{=} q(\alpha a + \beta b) = q\alpha \cdot a + q\beta \cdot b$
 - ullet So, c is an integral linear combination of a and b.

Corollary

gcd(a, b) is the least positive integer of the form $\alpha a + \beta b$.

Integers of the form $\alpha a + \beta b$ are multiples of gcd(a, b):

$$\ldots, -2\gcd(a,b), -\gcd(a,b), 0, \gcd(a,b), 2\gcd(a,b), 3\gcd(a,b), \ldots$$

Prime numbers

Definition

An integer n > 1 is called **prime** if 1 and n are its only divisors.

If n > 1 is not prime, then we say it is **composite**.

Prime numbers: $2, 3, 5, 7, 11, 13, 17, 19, \dots$

Definition

 $a, b \in \mathbb{Z}$ are called **coprime** if gcd(a, b) = 1.

Definition

 a_1, \ldots, a_n are pairwise coprime if $gcd(a_i, a_j) = 1$ whenever $i \neq j$.

For instance,

- 2, 3, 5, 7 are pairwise coprime.
- 6, 35, 11 are pairwise coprime.

Theorem

- a, b are coprime $\Leftrightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$.
- a, b are coprime $\iff 1=\gcd(a,b) \iff 1=lpha a+eta b$ for some $lpha,eta\in\mathbb{Z}$

Prime numbers

Definition

An integer n > 1 is called **prime** if 1 and n are its only divisors of n > 1 is not prime, then we say it is **composite**.

..., 2 is its print, that its ea, it is comp

Definition

 $a, b \in \mathbb{Z}$ are called **coprime** if gcd(a, b) = 1.

Definition

 a_1, \ldots, a_n are pairwise coprime if $gcd(a_i, a_j) = 1$ whenever $i \neq j$.

For instance,

- 2, 3, 5, 7 are pairwise coprime.
- 6, 35, 11 are pairwise coprime.

$\mathsf{T}\mathsf{heorem}$

- a, b are coprime \Leftrightarrow 1 = α a + β b for some $\alpha, \beta \in \mathbb{Z}$.
- a,b are coprime $\Leftrightarrow 1=\gcd(a,b) \Leftrightarrow 1=\alpha a+\beta b$ for some $\alpha,\beta\in\mathbb{Z}$.

Prime numbers

Definition

An integer n > 1 is called **prime** if 1 and n are its only divisors.

If n > 1 is not prime, then we say it is **composite**

Prime numbers: $2, 3, 5, 7, 11, 13, 17, 19, \dots$

Definition

 $a,b \in \mathbb{Z}$ are called **coprime** if gcd(a,b) = 1.

Definition

 a_1, \ldots, a_n are pairwise coprime if $gcd(a_i, a_j) = 1$ whenever $i \neq j$.

For instance

- 2, 3, 5, 7 are pairwise coprime.
- 6, 35, 11 are pairwise coprime.

Theorem

- a, b are coprime \Leftrightarrow $1 = \alpha \mathbf{a} + \beta \mathbf{b}$ for some $\alpha, \beta \in \mathbb{Z}$.
- a, b are coprime $\Leftrightarrow 1 = \gcd(a, b) \Leftrightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$.

Properties of prime numbers

Let a, b be coprime and $c \in \mathbb{Z}$.

Proposition

If a | bc, then a | c.

- a, b are coprime $\Rightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$.
- \bullet \Rightarrow $c = \alpha ac + \beta bc$ where both terms αac and βbc are divisible by a

Lemma

Assume p is prime and a, b $\in \mathbb{Z}$. Then either p | a or a and p are coprime;

When p is prime, gcd(a, p) = 1 or p.

Lemma

Assume p is prime and b, $c \in \mathbb{Z}$. If $p \mid bc$, then either $p \mid b$ or $p \mid c$.

If $p \nmid b$, then p and b are coprime and the Proposition above holds, then $p \mid c$.

Corollary

Let p be a prime. If $p \mid a_1 \dots a_n$, then $p \mid a_i$ for some $i = 1, \dots, n$.

Properties of prime numbers

Let a, b be coprime and $c \in \mathbb{Z}$.

Proposition

If a | bc, then a | c

- a, b are coprime $\Rightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$.
- $\Rightarrow c = \alpha ac + \beta bc$ where both terms αac and βbc are divisible by a

Lemma

Assume p is prime and a, b $\in \mathbb{Z}$. Then either p | a or a and p are coprime;

When p is prime, gcd(a, p) = 1 or p.

Lemma

Assume p is prime and b, $c \in \mathbb{Z}$. If $p \mid bc$, then either $p \mid b$ or $p \mid c$.

If $p \nmid b$, then p and b are coprime and the Proposition above holds, then $p \mid c$.

Corollary

Let p be a prime. If $p \mid a_1 \dots a_n$, then $p \mid a_i$ for some $i = 1, \dots, n$.

Properties of prime numbers

Let a, b be coprime and $c \in \mathbb{Z}$.

Proposition

If a | bc, then a | c.

- a, b are coprime $\Rightarrow 1 = \alpha a + \beta b$ for some $\alpha, \beta \in \mathbb{Z}$.
- $\Rightarrow c = \alpha ac + \beta bc$ where both terms αac and βbc are divisible by a

Lemma

Assume p is prime and a, b $\in \mathbb{Z}$. Then either p | a or a and p are coprime;

When p is prime, gcd(a, p) = 1 or p.

Lemma

Assume p is prime and b, $c \in \mathbb{Z}$. If $p \mid bc$, then either $p \mid b$ or $p \mid c$.

If $p \nmid b$, then p and b are coprime and the Proposition above holds, then $p \mid c$.

Corollary

Let p be a prime. If $p \mid a_1 \dots a_n$, then $p \mid a_i$ for some $i = 1, \dots, n$.

Prime power factorization

Definition

Suppose that $n = p_1^{r_1} \dots p_k^{r_k}$, where p_i are distinct primes and $r_i \in \mathbb{N}$. The product $p_1^{r_1} \dots p_k^{r_k}$ is called the **prime power factorization** of n.

- PPF(2) = 2,
- PPF(15) = $3 \cdot 5$,
- PPF(28) = $2^2 \cdot 7$,
- PPF(960) = $2^6 \cdot 3 \cdot 5$.

Lemma

For any n > 1 there exists a prime p such that $p \mid n$.

Induction on n. The statement holds for n=2,3. Assume it holds for any n< k, then for n=k we have:

- If k is prime, then $k \mid k$ and the lemma holds.
- If k is composite, then $k = k_1 k_2$ s.t. $1 < k_1, k_2 < k$. By induction assumption k_1 is divisible by some prime p and, hence, k is divisible by p.

There are infinitely many prime numbers.

Fundamental theorem of arithmetic

Theorem

Each integer n > 1 has a prime power factorization (PPF)

$$n=p_1^{r_1}\dots p_k^{r_k},$$

where p_i are distinct primes and $r_i \in \mathbb{N}$. This factorization is unique up to a permutation of factors.

Proof.

Existence of PPF(n)**.** Sufficient to express n as a product of prime numbers.

- If *n* is prime, then PPF(n) = n.
- Otherwise, $n = p_1 n_1$, for some prime p_1 and $1 < n_1 < n$. If n_1 is prime, then we are done
- Otherwise, $n = p_1p_2n_2$, for some prime p_2 and $1 < n_2 < n_1$. If n_2 is prime, then we are done
- etc.
- \bullet Eventually, we express n as a product of prime numbers.

Fundamental theorem of arithmetic

Theorem

Each integer n > 1 has a prime power factorization (PPF)

$$n=p_1^{r_1}\dots p_k^{r_k},$$

where p_i are distinct primes and $r_i \in \mathbb{N}$. This factorization is unique up to a permutation of factors.

Proof.

Uniqueness. Sufficient to prove that equal products of prime numbers

$$p_1 \dots p_s = q_1 \dots q_t$$

have the same factors (up to a permutation).

- p_1 is prime and divides $q_1 \dots q_t$, hence it divides some q_i (wma i=1). But q_1 is prime, which means that $p_1=q_1$. Remove p_1 and q_1 from LHS and RHS to get $p_2 \dots p_s=q_2 \dots q_t$.
- p_2 is prime and divides $q_2 \dots q_t$, Arguing as before $p_2 = q_j$ for some j (wma j = 2).
- Continue the same way and see that the factors on the left and on the right are the same

Linear Diophantine equations

A **Diophantine equation** is an equation where only integer solutions are allowed. An equation ax + by = c where $a, b, c \in \mathbb{Z}$ are fixed integers and x, y are unknowns is called a **linear Diophantine equation**.

Theorem

Let $d = \gcd(a, b)$. A Diophantine equation ax + by = c has a solution if and only if $d \mid c$ in which case there are infinitely many solutions described as follows:

$$\begin{cases} x = x_0 + \frac{b}{d}n, \\ y = y_0 - \frac{a}{d}n, \end{cases} \quad n \in \mathbb{Z},$$

where (x_0, y_0) is a particular solution.

The pairs (x, y) defined above are solutions because

$$ax_0 + by_0 = c$$
 \Rightarrow $a(x_0 + \frac{b}{d}n) + b(y_0 - \frac{a}{d}n) = c$.

Conversely, if (x, y) is a solution, then

$$ax + by = c \Rightarrow a(x - x_0) + b(y - y_0) = 0$$

$$\Rightarrow a(x - x_0) = b(y_0 - y)$$

$$\Rightarrow \frac{a}{d}(x - x_0) = \frac{b}{d}(y_0 - y) \qquad \text{where } \gcd(\frac{a}{d}, \frac{b}{d}) = 1$$

$$\Rightarrow \frac{b}{d} \mid x - x_0 \Rightarrow x = x_0 + \frac{b}{d}n$$

$$\Rightarrow y = y_0 - \frac{a}{d}n.$$

Linear Diophantine equations: examples

For instance, to solve a linear Diophantine 10x + 16y = 4

- Use Euclidean algorithm to find a particular solution $x_0 = -6$, $y_0 = 4$.
- Form a general solution

$$\begin{cases} x = -6 + 8n, \\ y = 4 - 5n, \end{cases} n \in \mathbb{Z},$$

Least common multiple

Definition

The **least common multiple** for a and b denoted by lcm(a, b) is the least positive integer m such that

$$a \mid m$$
 and $b \mid m$.

Let $a=p_1^{a_1}\dots p_m^{a_m}$ and $b=p_1^{b_1}\dots p_m^{b_m}$, where p_1,\dots,p_m are distinct primes and $a_1,\dots,a_m,b_1,\dots,b_m$ are non-negative integers. Then

$$ab = p_1^{a_1+b_1} \dots p_m^{a_m+b_m}$$
$$\gcd(a, b) = p_1^{\min(a_1, b_1)} \dots p_m^{\min(a_m, b_m)}$$
$$\operatorname{lcm}(a, b) = p_1^{\max(a_1, b_1)} \dots p_m^{\max(a_m, b_m)}.$$

Since $a + b = \min(a, b) + \max(a, b)$ for any $a, b \in \mathbb{Z}$, the following theorem holds.

Theorem

$$ab = \gcd(a, b) \operatorname{lcm}(a, b).$$

One can use the formula above to efficiently compute lcm(a, b). For instance,

$$\mathsf{lcm}(60,45) = \frac{60 \cdot 45}{\mathsf{gcd}(60,45)}.$$

That reduces computing lcm to Euclidean algorithm That reduces computing lcm to Euclidean algori

A binary relation on \mathbb{Z} : congruence modulo n

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$.

Definition

a is congruent to b modulo n if a and b give the same remainder when divided by n.

(Notation for congruence)

- $a \equiv b \mod n$.
- \bullet $a \equiv_n b$.

For instance:

- $-4 \equiv_3 2 \equiv_3 8$ because when we divide -4, 2, or 8 by 3 we get the same remainder 2;
- $-1 \equiv_4 3 \equiv_4 11$. because when we divide -1, 3, or 11 by 4 we get the same remainder 3.

Congruences: properties

Proposition

$$a \equiv_n b \Leftrightarrow n \mid (b-a).$$

$$a \equiv_n b \quad \Rightarrow \quad a = q_1 n + r \text{ and } b = q_2 n + r \text{ for some } q_1, q_2, r \in \mathbb{Z}$$

$$\Rightarrow \quad b - a = n(q_2 - q_1) \quad \Rightarrow \quad n \mid b - a.$$
 $a \not\equiv_n b \quad \Rightarrow \quad a = q_1 n + r_1 \text{ and } b = q_2 n + r_2 \text{ for some } q_1, q_2, r_1 < r_2 \in \mathbb{Z}$

$$\Rightarrow \quad b - a = n(q_2 - q_1) + (r_2 - r_1) \quad \Rightarrow \quad n \nmid b - a.$$

Proposition

 \equiv_n is an equivalence relation on \mathbb{Z} .

- (R) $a \equiv_n a$ because $n \mid (a a)$.
- (S) $a \equiv_n b \Rightarrow n \mid (b-a) \Rightarrow n \mid (a-b) \Rightarrow b \equiv_n a$.
- $(\mathsf{T}) \begin{array}{c} \mathsf{a} \equiv_{\mathsf{n}} \mathsf{b} \\ \mathsf{b} \equiv_{\mathsf{n}} \mathsf{c} \end{array} \Rightarrow \begin{array}{c} \mathsf{n} \mid \mathsf{b} \mathsf{a} \\ \mathsf{n} \mid \mathsf{c} \mathsf{b} \end{array} \Rightarrow \mathsf{n} \mid (\mathsf{b} \mathsf{a}) + (\mathsf{c} \mathsf{b}) = \mathsf{c} \mathsf{a} \Rightarrow \mathsf{a} \equiv_{\mathsf{n}} \mathsf{c}.$

Definition

Denote by $[a]_n$ the equivalence class of a, called the **congruence class** of a modulo n.

Congruence class modulo n

By definition,

$$[a]_n = \{b \in \mathbb{Z} \mid b \equiv_n a\} = \{b \in \mathbb{Z} \mid n \mid b - a\}$$

$$= \{b \in \mathbb{Z} \mid b - a = qn \text{ for some } q \in \mathbb{Z} \}$$

$$= \{b \in \mathbb{Z} \mid b = a + qn \text{ for some } q \in \mathbb{Z} \}$$

$$= \{\dots, a - 2n, a - n, a, a + n, a + 2n, \dots\},$$

which is the set of all numbers b that give the same remainder as a when divided by n.

Proposition

There are exactly n distinct congruence classes modulo n:

$$[0]_n, [1]_n, \ldots, [n-1]_n.$$

Proof.

There are exactly n remainders of division by n: 0, 1, 2, ..., n-1.

By definition, $[a]_n$ is the set on numbers that are the same as a modulo n. So, we can think that $[a]_n$ is a number modulo n.

Definition

$$\mathbb{Z}_n = \{[0]_n, [1]_n, \ldots, [n-1]_n\}.$$

Congruence classes

For instance, there are exactly 5 classes modulo 5:

- $\bullet \ \ [0]_5 = \{\ldots, -10, -5, 0, 5, 10, \ldots\} = [5]_5 = [10]_5 = \ldots$
- $\bullet \ [1]_5 = \{\ldots, -9, -4, 1, 6, 11, \ldots\} = [6]_5 = [11]_5 = \ldots$
- $\bullet \ [2]_5 = \{\ldots, -8, -3, 2, 7, 12, \ldots\} = [7]_5 = [12]_5 = \ldots;$
- $[3]_5 = {\ldots, -7, -2, 3, 8, 13, \ldots} = [8]_5 = [13]_5 = \ldots;$
- $\bullet \ \ [4]_5=\{\ldots,-6,-1,4,9,14,\ldots\}=[9]_5=[14]_5=\ldots.$

Proposition

The least non-negative number in $[a]_n$ is the remainder of division of a by n.

 $[a]_n \in \mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$ and so $[a]_n = [r]_n$ for some $0 \le r < n$ which must be the remainder of division of a by n.

Arithmetic of congruences

Define binary operations + and \cdot on \mathbb{Z}_n as follows:

$$[a] + [b] = [a+b] \quad \textit{and} \quad [a] \cdot [b] = [ab].$$

For instance,
$$[2]_6 + [5]_6 = [7]_6$$

 $[4]_6 + [-7]_6 = [-3]_6$

$$[3]_6 \cdot [5]_6 = [15]_6$$

 $[4]_6 \cdot [-7]_6 = [-28]_6$.

Proposition

Operations + and \cdot on \mathbb{Z}_n are well defined.

$$[a_1] = [a_2]$$
 \Rightarrow $n \mid (a_2 - a_1)$
 $[b_1] = [b_2]$ \Rightarrow $n \mid (b_2 - b_1)$

But then

•
$$n \mid (a_2 - a_1) + (b_2 - b_1) = (a_2 + b_2) - (a_1 + b_1)$$

• Hence,
$$[a_1 + b_1] = [a_2 + b_2]$$
 and, so, $+$ is well defined.

Similarly,

• Hence, $[a_1b_1] = [a_2b_2]$ and, so, \cdot is well defined.

Arithmetic of congruences: properties

For every $[\underline{a}],[b],[c]\in\mathbb{Z}_n$

D ()	
Properties of $+_n$	
[0] is the trivial element	[0] + [a] = [a] + [0] = [a]
[-a] is the inverse of $[a]$	[a] + [-a] = [-a] + [a] = [0]
$+_n$ is associative	([a] + [b]) + [c] = [a] + ([b] + [c])
$+_n$ is commutative	[a] + [b] = [b] + [a]
Properties of ·n	
[1] is the unity	$[1]\cdot[a]=[a]\cdot[1]=[a]$
\cdot_n is associative	$([a] \cdot [b]) \cdot [c] = [a] \cdot ([b] \cdot [c])$
\cdot_n is commutative	$[a] \cdot [b] = [b] \cdot [a]$
distributivity	[a]([b] + [c]) = [a][b] + [a][c]

Applications

These formulas are very useful if we want to compute the remainder of division of some constant expression by n. For instance:

• To compute $r=(34\cdot 17)\%29$ we can compute the product and then divide by 29. But, to avoid long multiplication we can recall that the required r is the least non-negative number in $[34\cdot 17]_{29}$ and:

$$[34 \cdot 17] = [34] \cdot [17]$$
$$= [5] \cdot [-12]$$
$$= [-60]$$
$$= [27].$$

Hence, r = 27.

Remark. You do not have to put the square brackets. Instead you can use the congruence symbol.

Applications

• To compute $2^{100}\%7$ notice that $2^3 \equiv_7 1$ and hence:

$$\begin{aligned} 2^{100} &= 8^{33} \cdot 2 \\ &\equiv 1^{33} \cdot 2 \equiv 2. \end{aligned}$$

• We can use induction to prove that $7 \mid (5^{2n} + 3 \cdot 2^{5n-2})$ for every $n \in \mathbb{N}$. Also, we can show that $5^{2n} + 3 \cdot 2^{5n-2} \equiv_{7} 0$ directly as follows:

$$5^{2n} + 3 \cdot 2^{5n-2} = 25^{n} + 3 \cdot 8 \cdot 2^{5n-5}$$

$$\equiv_{7} 4^{n} + 3 \cdot 2^{5(n-1)}$$

$$= 4 \cdot 4^{n-1} + 3 \cdot 32^{n-1}$$

$$= 4 \cdot 4^{n-1} + 3 \cdot 4^{n-1} = 7 \cdot 4^{n-1} \equiv_{7} 0$$