Высшая школа экономики. Факультет математики Итоговая государственная аттестация

Образцы задач

1. Известно, что $\lim_{n\to\infty}a_n=A$. Найдите предел

$$\lim_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^n k^2 a_k$$

2. Исследовать на сходимость и равномерную сходимость ряд

$$\sum_{n=1}^{\infty} e^{-(nx)^2} \sin nx, \qquad x \in \mathbb{R}.$$

3. Найдите все функции $f: \mathbb{R} \to \mathbb{R}$, такие, что

$$|f(x) - f(y)| \le (x - y)^2$$

при всех $x, y \in \mathbb{R}$.

- 4. Найдите восьмую производную функции $f(x) = \sin(\sin(x))$ в точке x = 0.
- 5. Докажите, что

$$\sin x > x - \frac{x^3}{6}$$

при всех x > 0.

- 6. Рассмотрим отображение $\phi: \mathbb{R}^2 \to \mathbb{R}^2$, заданное формулой $\phi(x,y) = (x,y+x^2)$. Найдите образ вектора (1,2) при отображении первого дифференциала $d_{(1,1)}\phi: \mathbb{R}^2 \to \mathbb{R}^2$ отображения ϕ в точке (1,1).
- 7. Сходится ли ряд $-1 + \frac{3}{2} \frac{1}{3} + \frac{3}{4} \frac{1}{5} + \frac{3}{6} \dots \frac{1}{2n-1} + \frac{3}{2n} \dots$?
- 8. Равномерно ли сходится ряд $\sum_{n>0} \frac{x^n}{n}$ на отрезке [-1,0]?
- 9. Найдите радиус сходимости степенного ряда $\sum_{n\geq 0} \frac{x^{n^2}}{2^n}$.
- 10. Постройте график кривой, заданне, в полярных координатах уравнением $r=2\cos\phi+1$. Вычислите угол наклона касательных к оси абсцисс в точках пересечения с осью ординат и в особой точке кривой.
- 11. Найдите $\frac{\partial^{50} f}{\partial x^{24} \partial y^{26}}(0,0)$ для $f(x,y) = \sin(x^2 + y^2)$.
- 12. Пусть $U\subseteq\mathbb{R}^2$ открытое множество, $(x_0,y_0)\in U$, и пусть функция $F\in C^2(U)$ такова, что $F(x_0,y_0)=0$ и $F'_y(x_0,y_0)\neq 0$. Пусть y=f(x) функция, неявно заданная уравнением F(x,y)=0 в окрестности (x_0,y_0) . Выразите $f'(x_0)$ и $f''(x_0)$ через частные производные функции F.
- 13. Около прямоугольного параллелепипеда со сторонами 2a, 2b и 2c опишите эллипсоид $x^2/\alpha^2 + y^2/\beta^2 + z^2/\gamma^2 = 1$ наименьшего объема.

- 14. Найти радиус R сходимости степенного ряда $\sum (n2^n)^{-1}x^n$. Сходится ли этот ряд на промежут-ках (-R,0] и [0,R) равномерно?
- 15. Вычислить интеграл $\int_a^b \sqrt[3]{(b-x)(x-a)^2} dx$ при b > a.
- 16. Вычислить интеграл $\int_a^b \frac{1}{\sqrt[3]{(b-x)(x-a)^2}} dx$ при b>a.
- 17. Доказать, что ряд $\sum (p_n)^{-1}$ расходится $(p_n$ это n-е простое число).
- 18. Пусть функция $f: [0, +\infty) \to [0, +\infty)$ монотонная функция, и пусть интеграл $\int_0^{+\infty} f(x) dx$ сходится. Докажите, что $\lim_{x \to +\infty} \left(x f(x) \right) = 0$.
- 19. Найти площадь петли кривой $(x^2 + y^2)^2 = 2xy$, x > 0, y > 0.
- 20. Найти площадь петли кривой $(\frac{x^2}{a^2} + \frac{y^2}{b^2})^2 = x^2 y$.
- 21. Вычислите интеграл. Контур обходится один раз в положительном направлении (против часовой стрелки).

(a)
$$\int_{|z|=1} \frac{e^z \cos \pi z}{z^2 + 2z} dz;$$

(b)
$$\int_{|z|=1} \frac{\operatorname{tg} z}{ze^{1/(z+2)}} dz$$
;

(c)
$$\int_{|z|=1} \frac{\cos z}{z^3} dz;$$

(d)
$$\int_{|z|=2} \frac{e^{-1/z}}{z^2+1} dz$$
.

22. Вычислите несобственный интеграл.

(a)
$$\int_{-\infty}^{+\infty} \frac{x \cos x}{x^2 - 2x + 10} dx;$$

(b)
$$\int_0^{+\infty} \frac{x^2 \cos x}{(x^2+1)^2} dx;$$

(c)
$$\int_0^{+\infty} \frac{x \sin x}{1 + x^2 + x^4} dx;$$

(d)
$$I(\alpha) = \int_0^{+\infty} e^{-x^2/2} \cos \alpha x dx$$

- 23. Приведите пример последовательности неотрицательных ограниченных борелевских функций на [0,1], поточечно сходящейся к нулю, но не имеющей предела по норме пространства $L^1[0,1]$.
- 24. Приведите пример последовательности неотрицательных ограниченных борелевских функций на [0,1], сходящейся к нулю по норме пространства $L^1[0,1]$, но не имеющей поточечного предела ни в одной точке.
- 25. Вычислите интеграл $\iint\limits_{x^2+y^2\leq a^2}\cos(x^2+y^2)dxdy$, где a>0.

26. Решите дифференциальное уравнение

$$y'' + 3y' + 2y = \frac{1}{e^x + 1}$$

27. Решите дифференциальное уравнение

$$y' = \frac{y - 3x}{x + 3y} \ .$$

28. Найдите общее решение дифференциального уравнения

$$y'' + y = x \sin x .$$

29. Найдите общее решение системы

$$\begin{cases} \dot{x} = 5x + 3y, \\ \dot{y} = -3x - y, \end{cases}$$

и нарисуйте фазовый портрет.

- 30. Линейный оператор A в пространстве вещественных 2×2 матриц переводит произвольную матрицу B в ее коммутатор $\Lambda B B\Lambda$ с фиксированной диагональной матрицей $\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$. Вычислите экспоненту e^{tA} . Какому дифференциальному уравнению она удовлетворяет?
- 31. Колебания пружинного маятника единичной массы с коэффициентом жесткости пружины k^2 затухают благодаря трению, пропорциональному скорости маятника с коэффициентом пропорциональности μ . Маятник начинает движение с нулевой скоростью, отклонившись от положения равновесия на некоторое расстояние. При каких k и μ маятник не дойдет до положения равновесия ни разу за конечное время?
- 32. Вычислите амплитуду вынужденных колебаний (эквивалентно, колебаний в установившемся режиме) пружинного маятника массы m под действием внешней силы $F = \sin \omega t$, если коэффициент жесткости равен k^2 , а коэффициент трения равен a. Для какой частоты ω колебаний внешней силы амплитуда вынужденных колебаний максимальна?
- 33. Является ли подмножество в \mathbb{R}^2 , состоящее из точек с иррациональными координатами (a) открытым, (b) замкнутым, (c) связным, (d) линейно связным, (e) всюду плотным?
- 34. Докажите, что всякое открытое подмножество в \mathbb{R}^n можно представить в виде объединения счетного числа замкнутых множеств.
- 35. Какие из букв А, О, Т, К, В гомеоморфны? Гомотопически эквивалентны?
- 36. Пусть X хаусдорфово пространство, и пусть $K_1, K_2 \subset X$ его компактные подмножества. Докажите, что если $K_1 \cap K_2 = \varnothing$, то существуют такие открытые подмножества $U_1, U_2 \subset X$, что $U_1 \supset K_1, \ U_2 \supset K_2$ и $U_1 \cap U_2 = \varnothing$.
- 37. На каждой прямой $\ell \subset \mathbb{R}^n$ $(n \geqslant 2)$, проходящей через начало координат, выбрана точка $a(\ell)$ таким образом, что $a(\ell)$ непрерывно зависит от ℓ . Докажите, что хотя бы на одной прямой выбрано начало координат.
- 38. Покажите, что грассманиан двумерных подпространств в четырехмерном вещественном пространстве является гладким компактным четырехмерным многообразием. Сколько карт требуется для его описания?

.

- 39. Опишите касательное пространство к SO(3) в единичной матрице как подмножество пространства всех матриц 3×3 .
- 40. При каких c множество $\{(x,y,z)\in\mathbb{R}^3\mid x^2+x^3-y^2=c\}$ является гладким подмногообразием в \mathbb{R}^3 ?
- 41. Постройте бесконечно гладкую функцию на плоскости, обращающуся в ноль во всех точках луча $(0, y), y \le 0$ и ненулевую во всех других точках плоскости.
- 42. На многообразии $M=\mathbb{R}^3$ задана дифференциальная форма $\omega=2xdz\wedge dy+z^2dx\wedge dy$ (здесь (x,y,z) обычные евклидовы координаты в \mathbb{R}^3). Найдите ядро формы ω в каждой точке M. Напомним, что ядро состоит из тех касательных векторов v, для которых $\imath_v\omega=0$.
- 43. Проинтегрируйте форму $ydy \wedge dz$ по сфере $(x-1)^2 + y^2 + z^2 = r^2$.
- 44. Определим на \mathbb{R}^3 дифференциальную форму $\omega = 2xy^3zdx + 3x^2x^2zdy + xydz$. Вычислите значение ω на векторном поле $v = y\partial/\partial x + z\partial/\partial y$, а также найдите выражение для формы $\omega \wedge d\omega$.
- 45. Найдите жорданову нормальную форму оператора третьей производной на пространстве многочленов от одной переменной степени не выше n.
- 46. Докажите. что у любого набора попарно коммутирующих операторов в конечномерном векторном пространстве над алгебраически замкнутым полем есть общий собственный вектор.
- 47. Пусть v_1, \ldots, v_n набор элементов векторного пространства V, w_1, \ldots, w_n набор элементов двойственного пространства V^* . Известно, что определитель матрицы $A_{ij} = w_i(v_j)$ отличен от нуля. Покажите, что оба набора состоят из линейно независимых векторов.
- 48. Существует ли матрица, характеристический многочлен которой равен χ , а минимальный μ , где
 - (a) $\chi(\lambda) = (\lambda^6 1), \ \mu(\lambda) = (\lambda^3 1);$
 - (b) $\chi(\lambda) = (\lambda 1)^2 (\lambda 2)^3$, $\mu(\lambda) = (\lambda 1)(\lambda 2)$;
 - (c) $\chi(\lambda) = (\lambda 1)^5 (\lambda 2)^5$, $\mu(\lambda) = (\lambda 1)^2 (\lambda 2)^3$?

Если да, приведите пример такой матрицы. Если нет, докажите.

- 49. Докажите, что в евклидовом пространстве равенство ||x+y|| = ||x|| + ||y|| возможно лишь в случае, когда векторы x и y отличаются неотрицательным скалярным множителем.
- 50. Билинейная форма K на пространстве вещественных 2×2 матриц со следом 0 определяется формулой $K(A,B) = Tr \, ad_A ad_B$. Здесь ad_A оператор в пространстве матриц, переводящий матрицу B в AB BA, TrC след матрицы C. Вычислите ранг и сигнатуру формы K.
- 51. Пусть S линейный оператор в векторном пространстве V. Зададим на факторпространстве $V/\operatorname{Ker} S$ линейный оператор T правилом T([v]) = [S(v)], где [v] обозначает класс вектора по модулю $\operatorname{Ker} S$. Докажите, что это правило корректно и что равенство $S^n = 0$ равносильно равенству $T^{n-1} = 0$
- 52. Матрица линейного оператора F в некотором базисе e_1, \ldots, e_n представляет собою жорданову клетку. Докажите, что ненулевые F-инвариантные подпространства исчерпываются линейными оболочками первых k базисных векторов e_1, \ldots, e_k , где $1 \le k \le n$.
- 53. Докажите, что линейный оператор T в конечномерном векторном пространстве над алгебраически замкнутым полем K диагонализуем тогда и только тогда, когда для любого $\lambda \in K$ выполнено равенство $\mathrm{rk}(T-\lambda 1)=\mathrm{rk}(T-\lambda 1)^2$.

- 54. В евклидовом пространстве \mathbb{R}^n найдите расстояние от начала координат до аффинной гиперплоскости, заданной уравнением $x_1 + 2x_2 + \cdots + nx_n = 1$.
- 55. Пусть V-n-мерное векторное пространство над \mathbb{R} , F квадратичная форма с положительным индексом инерции p и отрицательным индексом инерции q. Чему равна максимальная размерность такого подпространства $W \subseteq V$, что $F|_{W} = 0$?
- 56. Пусть в евклидовом пространстве V задан самосопряженный оператор A, у которого все корни характеристического многочлена меньше единицы. Докажите, что A переводит единичный шар с центром в нуле в себя.
- 57. Известно, что минимальный многочлен оператора A в конечномерном комплексном векторном пространстве V не имеет кратных корней. Докажите, что число инвариантных подпространств в V конечно тогда и только тогда, когда все собственные значения A различны.
- 58. Существует ли поле из 6 элементов?
- 59. Что можно сказать про группу, у которой нет нетривиальных собственных подгрупп?
- 60. Изоморфны ли группы $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\} \subset \mathbb{H}$ (где \mathbb{H} тело кватернионов) и группа диэдра D_4 (т.е. группа симметрий квадрата)?
- 61. Изоморфны ли группы S_3 и $SL_2(\mathbb{Z}_2)$?
- 62. Положим $U_n=\{z\in\mathbb{C}:z^n=1\}$ и $\mathbb{C}^\times=\mathbb{C}\backslash\{0\}$. Докажите, что группы \mathbb{C}^\times/U_n и \mathbb{C}^\times изоморфны.
- 63. Докажите, что симметрическая группа S_n порождается двумя элементами.
- 64. Разлагается ли группа $GL(2,\mathbb{R})$ в прямое произведение подгрупп $SL(2,\mathbb{R})$ и $D = \{\lambda E : \lambda \in \mathbb{R} \setminus \{0\}\}$? Аналогичный вопрос про группу $GL(3,\mathbb{R})$.
- 65. Докажите, что любая подгруппа конечно порожденной абелевой группы конечно порождена.
- 66. Докажите, что конечная абелева группа G порядка n является циклической тогда и только тогда, когда для любого d, делящего n, в G существует единственная подгруппа порядка d.
- 67. Пусть R евклидово кольцо, $u \in R \setminus \{0\}$ элемент наименьшей нормы. Докажите, что u обратим.
- 68. Пусть p простое число. Является ли подгруппа верхнетреугольных матриц с единицами на диагонали силовской в группе $GL(n, F_p)$?
- 69. Пусть конечная группа G имеет две факторгруппы F_1 и F_2 , порядки которых взаимно просты, причем $|G|=|F_1|\cdot |F_2|$. Докажите, что $G\cong F_1\times F_2$.
- 70. Приведите пример двух изоморфных, но не совпадающих подполей в С.
- 71. Является ли кольцо $\mathbb{Z}[\sqrt{5}]$ факториальным?
- 72. Некоторый оператор T на векторном пространстве удовлетворяет уравнению

$$T^2 - 5T + 6I = 0.$$

где I — тождественный оператор. Чему могут быть равны собственные значения оператора T?

73. Существует ли вещественная 3×3 матрица A, удовлетворяющая уравнению

$$A^2 + A + 7I = 0$$
?

Через I обозначена единичная 3×3 матрица.

74. Для вещественной 2×2 -матрицы $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ найдите собственные числа и собственные значения оператора M_A на пространстве 2×2 -матриц, действующего по формуле

$$M_A: X \mapsto AX$$
.

- 75. Докажите, что в n-мерном комплексном векторном пространстве всякий линейный оператор имеет инвариантное подпространство размерности n-1.
- 76. Группа действует с двумя орбитами на множестве из пяти элементов. При этом действие точное (то есть только единичный элемент группы действует как тождественное преобразование). Одна орбита состоит из двух элементов, а вторая из трёх. Найдите все такие группы с точностью до изоморфизма.
- 77. Изоморфны ли группы D_{mn} и $D_m \times \mathbb{Z}/n\mathbb{Z}$? (Здесь D_k группа симметрий правильного k-угольника.)
- 78. Может ли поле из 9 элементов быть подполем поля из 27 элементов?
- 79. Сколько существует k-мерных подпространств в n-мерном пространстве над полем F_q , содержащих заданную прямую?
- 80. Вычислите порядки групп $SL(n, F_q)$ и $PGL(n, F_q)$.
- 81. Матрица M размера $n \times n$ имеет ранг n-1. Найдите ранг матрицы алгебраических дополнений к элементам матрицы M.
- 82. Докажите равенства $\operatorname{Im} F^* = \operatorname{Ann} \operatorname{Ker} F$ и $\operatorname{Ker} F^* = \operatorname{Ann} \operatorname{Im} F$ для пары двойственных линейных отображений $F \colon V \to W$ и $F^* \colon W^* \to V^*$ между конечномерными векторными пространствами.
- 83. Докажите соотношения для обобщенных чисел сочетаний

a)
$$\binom{-a}{k} = (-1)^k \binom{a+k-1}{k}$$
, $\binom{a}{k} + \binom{a}{k-1} = \binom{a+1}{k}$.

84. Вычислите производящие функции для последовательностей

a)
$$1^2, 2^2, 3^2, \dots, k^2, \dots$$
 6) $n^2, (n+1)^2, (n+2)^2, \dots, (n+k)^2, \dots$

85. Докажите соотношения

a)
$$\sum_{k=0}^{n} \binom{a}{k} \binom{n}{k} = \binom{a+n}{n}, \qquad 6) \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} s^k = \frac{(1+\sqrt{s})^n + (1-\sqrt{s})^n}{2}.$$

- 86. Найдите производящую функцию чисел Фибоначчи. Выведите явную формулу для n-ого числа Фибоначчи.
- 87. Найдите производящую функцию последовательности, заданной начальными условиями $a_0 = 1$, $a_1 = 1$ и рекуррентным соотношением $a_n = 3a_{n-1} + 4a_{n-2}$ (n > 1).

- 88. Производящая функция последовательности (a_n) имеет вид $A(s) = \frac{1+4s-3s^2}{1-4s+3s^2}$. Начиная с какого номера n члены последовательности представляются как значения квазимногочлена? Укажите этот квазимногочлен.
- 89. Последовательности (a_n) и (b_n) заданы начальными условиями $a_0=5, \quad a_1=3, \ b_0=1, \quad b_1=4$ и рекуррентными соотношениями

$$a_n = 2a_{n-1} + 3a_{n-2};$$
 $b_n = 5b_{n-1} - 6b_{n-2}$ $(n > 1).$

Сравните числа a_n и b_n при достаточно больших n.

- 90. Случайные величины ξ и η таковы, что $\xi^2 + \eta^2 = 1$ и $D\xi > 0$, $D\eta > 0$. Могут ли величины ξ и η быть независимыми?
- 91. Пусть ξ_1, \ldots, ξ_n независимые и одинаково распределенные (с функцией распределения F) случайные величины. Через $\xi_{(k)}$ обозначаем k-е по порядку значение величин ξ_i , расположенных в порядке возрастания. Найдите распределения $\xi_{(1)}$ и $\xi_{(2)}$.
- 92. Из отрезка [-1,1] выбирается точка ξ следующим образом. Бросается монета, которая равновероятно падает «орлом» вверх, «решеткой» вверх, или становится на ребро. Если монета встала на ребро, то $\xi=0$. Если упала вверх «орлом», то ξ случайно выбирается из отрезка [-1,0]. Если упала вверх «решеткой», то ξ случайно выбирается из [0,1]. Найдите распределение ξ . Вычислите $E\xi$ и $D\xi$.
- 93. Величины ξ , η независимы и имеют нормальное распределение с параметрами 0 и 1. Найдите распределение случайного вектора $(3\xi + \eta, \xi 3\eta)$. Вычислите вероятность $P(|3\xi + \eta| > |\xi 3\eta|)$.
- 94. Последовательности случайных величин ξ_n и η_n сходятся по распределению к случайным величинам ξ и η соответственно. Покажите, что в общем случае нельзя утверждать, что $\xi_n + \eta_n$ сходится по распределению к $\xi + \eta$. Докажите, что $\xi_n + \eta_n$ сходится по распределению к $\xi + \eta$, если дополнительно известно, что величина η является константой.
- 95. Случайная величина ξ имеет распределение Коши, заданное плотностью

$$\varrho(x) = \frac{1}{\pi(1+x^2)}.$$

Найдите ее характеристическую функцию. Найдите характеристическую функцию и плотность величины $\frac{\xi_1+\ldots+\xi_n}{n}$, где ξ_i – последовательность независимых случайных величин, имеющих распределение Коши,

- 96. Рассмотрим множество всех нестрого убывающих последовательностей натуральных чисел. Является ли данное множество счетным, континуальным или оно имеет иную мощность?
- 97. Рассмотрим множество всех биекций из № в №. Является ли данное множество счетным, континуальным или оно имеет иную мощность?
- 98. Рассмотрим множество непрерывных функций из \mathbb{R} в \mathbb{R} . Является ли данное множество счетным, континуальным или оно имеет иную мощность?
- 99. Приведите к дизъюнктивной нормальной форме следующую формулу:

$$((p \leftrightarrow (p \land q)) \rightarrow ((r \land (p \land (r \rightarrow q))) \rightarrow q)).$$

100. Приведите к дизъюнктивной нормальной форме следующую формулу:

$$(((\neg p \to q) \to (\neg q \to p)) \lor ((r \to p) \to (p \lor q))).$$

_