Parametric statistical models

Parametric models

- ▶ A (statistical) model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is a family of probability distributions indexed by a set Θ (the parameter space).
- ▶ In a parametric (statistical) model, the distributions are indexed by a finite number of parameters (i.e., $\Theta \subseteq \mathbb{R}^k$ for some $k < \infty$).
- ► Examples:

3/11

- ▶ Bernoulli distributions on $\{0,1\}$
- $lackbox{ Poisson distributions on } \mathbb{Z}_+ = \{0,1,2,\dots\}$
- ightharpoonup Gaussian distributions on $\mathbb R$
- Multivariate Gaussian distributions on \mathbb{R}^d

Poisson distributions $Poi(\lambda)$ on \mathbb{Z}_+

- ▶ Indexed by positive scalar $\theta = \lambda > 0$ called the *rate parameter*.
- ▶ The distribution P_{λ} is supported (i.e., non-zero) on \mathbb{Z}_+ .

$$P_{\lambda}(x) = \frac{\exp(-\lambda)\lambda^x}{x!}$$
.

Gaussian distributions $N(\mu, \sigma^2)$ on $\mathbb R$

- ▶ Indexed by $\theta = (\mu, \sigma^2)$: $\mu \in \mathbb{R}$ is the *mean*, $\sigma^2 > 0$ is the *variance*.
- ▶ The distribution P_{μ,σ^2} has the probability density

$$\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

2 / 11

Model fitting (parameter estimation)

Example: MLE for $Poi(\lambda)$

- ▶ Suppose we have an observation x, and a parametric model \mathcal{P} with parameter space Θ .
- ▶ Model fitting (parameter estimation): pick some $P_{\theta} \in \mathcal{P}$ (i.e., some $\theta \in \Theta$) that best "fits" the observation x.
- ► A particular method: maximum likelihood estimator (MLE)
 - ▶ Likelihood of θ given observation x:

$$\mathcal{L}(\boldsymbol{\theta}; x) := P_{\boldsymbol{\theta}}(x)$$

(replace P_{θ} with its density if it has one).

- ▶ Choose $\theta \in \Theta$ with the highest likelihood.
- ▶ Equivalent to choosing $\theta \in \Theta$ with the highest *log-likelihood* $\log \mathcal{L}(\theta; x)$.

- ▶ Suppose we observe x = 4. What is the MLE for the Poisson rate parameter λ ?
- ▶ Log-likelihood of λ given x = 4:

$$\log \mathcal{L}(\lambda; 4) = \log \frac{\exp(-\lambda)\lambda^4}{4!} = -\lambda + 4\log \lambda - \log 4!$$

which (by calculus) is maximized at $\lambda = 4$.

▶ Indeed, for any given observation $x \in \mathbb{Z}_+$, the MLE for λ is x.

5 / 11

Models for i.i.d. samples

Example: MLE for $Poi(\lambda)$ (again)

- \blacktriangleright We often want a statistical model for an i.i.d. sample (say, of size n).
- ▶ **Technically**: $\mathcal{P}^n := \{P_{\theta}^n : \theta \in \Theta\}$, where P_{θ}^n is the *n*-fold product of P_{θ}^n .

If P_{θ} is a probability distribution on \mathcal{X} , then P_{θ}^{n} is the probability distribution on $\underbrace{\mathcal{X} \times \mathcal{X} \times \cdots \times \mathcal{X}}_{}$, where

$$n$$
 times

$$P_{\boldsymbol{\theta}}^{n}(x_1, x_2, \dots, x_n) = \prod_{i=1}^{n} P_{\boldsymbol{\theta}}(x_i).$$

▶ Whenever we think of a data set (e.g., $\{x_i\}_{i=1}^n$) as an i.i.d. sample, we shall implicitly "lift" our statistical models \mathcal{P} to their corresponding n-fold product form \mathcal{P}^n .

- ▶ Suppose we observe $\{x_i\}_{i=1}^n$ (regarded as an i.i.d. sample). What is the MLE for the Poisson rate parameter λ ?
- ▶ Log-likelihood of λ given $\{x_i\}_{i=1}^n$:

$$\log \mathcal{L}(\lambda; \{x_i\}_{i=1}^n) = \log \prod_{i=1}^n \frac{\exp(-\lambda)\lambda^{x_i}}{x_i!} = \sum_{i=1}^n -\lambda + x_i \log \lambda - \log x_i!$$

which (by calculus) is maximized at $\lambda = \frac{x_1 + x_2 + \dots + x_n}{n}$ (i.e., sample mean).

0 / 1

7 /

_

Example: MLE for $N(\mu, \sigma^2)$

Other approaches to parameter estimation

- ▶ Suppose we observe $\{x_i\}_{i=1}^n$ (regarded as an i.i.d. sample). What is the MLE for the Gaussian parameters (μ, σ^2) ?
- ▶ Log-likelihood of (μ, σ^2) given $\{x_i\}_{i=1}^n$:

$$\log \mathcal{L}((\mu, \sigma^2); \{x_i\}_{i=1}^n) = \log \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right).$$

- ▶ Lo and behold, MLE for μ is the sample mean, and MLE for σ^2 is the sample variance.
- ▶ Question: What could go wrong?

- ▶ MLE is a very powerful method, but not always the preferred choice.
- ► Some other methods:
 - ► Penalized maximum likelihood.
 - ► Method of moments.
 - ▶ Bayesian inference: don't select just a single $\theta \in \Theta$; rather, choose an entire distribution over Θ (called the *posterior distribution*).

9 / 11

10 / 1

Key takeaways

- 1. Concept of a statistical model and the "lifting" to a model for an i.i.d. sample.
- 2. Derivation of maximum likelihood estimator for some simple models.