

Dados e Aprendizagem Automática

Quality Metrics and Model Validation

- A Machine Learning Algorithm (Decision Trees)
- Quality Metrics
- Model Validation
- Hands On

Decision Trees

A Machine Learning Algorithm

We will start with **Decision Trees**.

- A Decision Tree is a model that predicts the value of a target feature:
 - It is a hierarchical graph (a tree)
 - Each branch represents a selection among a set of alternatives
 - Each leaf node represents a class

Decision Tree Classifier

A **Decision Tree Classifier** is used for classification problems (the target feature is a class):

- Deciding if we should have lunch binary classification Yes/No
- Surviving the Titanic again, *binary classification* 1/0
- Classify a set of images *multiclass classification* oranges/apples/pears

Decision Tree Regressor

On the other side, a **Decision Tree Regressor** is used for regression problems (<u>the target feature is real/continuous</u>):

- Predict the traffic flow (km/h)
- Predict stock prices (€)

Decision Tree Classifier

Implementing a Decision Tree Classifier: Data Loading

Let's use the **Titanic dataset** and start by loading the dataset:

Implementing a Decision Tree Classifier: Defining X and y

We now need to define our input and our target features:

- X is typically used to identify the input
- **y** to identify the **target**

```
X = df.drop(['Survived'], axis=1)
                                              #input features - everything except the Survived feature
v = df['Survived'].to frame()
                                              #target feature
Χ
                                                                                                                                              У
                                                                                                                                                   Survived
    PassengerId Pclass
                                                                 Sex Age SibSp Parch
                                                                                                            Fare Cabin Embarked
                                                                                                  Ticket
                                                        Name
                                                                                                                                                         0
                                          Braund, Mr. Owen Harris
                                                                male 22.0
 0
                    3
                                                                                               A/5 21171
                                                                                                          7.2500
                                                                                                                  NaN
 1
                   1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
                                                                                     0
                                                                                                PC 17599 71.2833
                                                                                                                   C85
                                                                               1
                                            Heikkinen, Miss. Laina female 26.0
 2
             3
                    3
                                                                               0
                                                                                     0 STON/O2. 3101282
                                                                                                          7.9250
                                                                                                                  NaN
                                                                                                                                                3
 3
                           Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
                                                                                                  113803
                                                                               1
                                                                                     0
                                                                                                         53.1000
                                                                                                                  C123
                                                                                                                                                         0
                                                                                                                                                4
             5
                    3
                                          Allen, Mr. William Henry
                                                                male 35.0
                                                                                                          8.0500
 4
                                                                               0
                                                                                     0
                                                                                                  373450
                                                                                                                  NaN
                                                                                                                                             891 rows × 1 columns
891 rows × 11 columns
```

Implementing a Decision Tree Classifier: Train/Test split

Both the X and the y have 891 rows of data - that corresponds to the entire dataset.

Hence, our next step is to leave aside a small set of data to test/validate the model (25%), like this:

```
Amount of data for testing 25% Random seed

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=2021)

print("The shape of X %s. X_train has shape %s while X_test has shape %s" %(X.shape, X_train.shape, X_test.shape))

The shape of X (891, 11). X_train has shape (668, 11) while X_test has shape (223, 11)

print("The shape of y %s. y_train has shape %s while y_test has shape %s" %(y.shape, y_train.shape, y_test.shape))

The shape of y (891, 1). y_train has shape (668, 1) while y_test has shape (223, 1)
```

Hold-out Validation

In essence, what we have done means we will **validate the model on unseen data**, i.e., we use a "partitioning method" to split the training and the testing data **once**. This means we **hold-out a subset of data** for testing (80/20; 75/25; 65/35; ...).

Implementing a Decision Tree Classifier: Model Fitting

How can we now use a DT to **predict whether a passenger would survive the disaster**? We first **create an instance** of the classifier and then we use the **fit function**:

```
clf = DecisionTreeClassifier(random_state=2021)
clf.fit(X_train, y_train)
```

Implementing a Decision Tree Classifier: Model Fitting

Ups!

Sklearn decision trees **do not handle categorical data** (see issue #12866)! (https://github.com/scikit-learn/scikit-learn/pull/12866)

Implementing a Decision Tree Classifier: Model Fitting

We could use techniques such as **Label** or **One-Hot Encoding** to handle categorical data! For now, let's just **drop** those features:

```
X_train = X_train.drop(['Name', 'Sex', 'Age', 'Ticket', 'Cabin', 'Embarked'], axis=1)
X_test = X_test.drop(['Name', 'Sex', 'Age', 'Ticket', 'Cabin', 'Embarked'], axis=1)
clf.fit(X_train, y_train)
```

```
DecisionTreeClassifier

DecisionTreeClassifier(random_state=2021)
```

Implementing a Decision Tree Classifier: Predictions

With the model fitted, we can use the **predict function** to obtain the prediction of survival for each row/observation in the test set (0 - doesn't survive; 1 - survives):

```
predictions = clf.predict(X_test)
predictions
array([0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
       1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
      1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,
      0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,
      0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0,
      0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1,
      0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1,
      1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
      1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      1, 1, 0])
print(y_test.values.shape)
(223, 1)
```

We now have predictions for the test set (and <u>we know the actual survival value as it is stored in the **y_test** variable). How do we **evaluate** our classification model? There are some options...</u>

Quality Metrics

Quality Metrics and Model Evaluation

Why **quality metrics**? How else would we **quantify the model's performance**? Metrics are used to monitor and measure the performance of a model. Some metrics are Mean Absolute Error, Mean Squared Error, Accuracy, F1-Score, ... There are many!

However, **it depends on the problem in hands**. Is it a classification problem? Or a regression one? Or is it a time series?

Quality Metrics

Here are some basic functions/classes you'll need (somewhen) in the future:

```
sklearn.metrics.accuracy_score
sklearn.metrics.auc
sklearn.metrics.mean_absolute_error
sklearn.metrics.mean_squared_error
sklearn.metrics.root_mean_squared_error
sklearn.metrics.f1_score
sklearn.metrics.make_scorer
...
```

Imports

And here are (some of) the imports you may need:

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import confusion matrix
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy score
from sklearn.metrics import precision_score
from sklearn.metrics import roc auc score
from sklearn.metrics import roc_curve
from sklearn.metrics import f1 score
from sklearn.metrics import fbeta score
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import root_mean_squared_error
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model selection import cross val score
```

Quality Metrics

Some examples:

- Confusion Matrix
- Accuracy
- Precision
- Recall
- ROC
- AUC
- F1 Score
- Fβ Score
- MAE
- MSE
- RMSE

Classification Models: Confusion Matrix

A **confusion matrix** is a table that is used to describe the performance of a **classification model** on a set of test data for which the true values are, again, known.

Classification Models: Accuracy

Accuracy is simply calculated as the number of all correct predictions divided by the total number of observations.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Classification Models: Precision and Recall

Precision (aka Sensitivity) is a measure of **exactness**, determines the fraction of relevant items among the retrieved items.

$$Precision = \frac{TP}{TP + FP}$$

Recall (aka Specificity) is a measure of **completeness**, determines the fraction of relevant items that were obtained.

$$Recall = \frac{TP}{TP + FN}$$

Classification Models: Precision and Recall

Confusion Matrix-based Metrics

Obtaining the **confusion matrix** is as simple as:

```
confusion_matrix(y_test, predictions)
array([[96, 39],
      [43, 45]])
```

The same for the model's **accuracy**, **precision**, and **recall**:

```
accuracy_score(y_test, predictions)

0.6322869955156951

precision_score(y_test, predictions)

0.5357142857142857

recall_score(y_test, predictions)

0.5113636363636364
```

The **Receiver Operating Characteristics (ROC)** curve finds the performance of a classification model at different classification thresholds. Lowering the classification threshold classifies more items as positive, thus increasing both False Positives and True Positives.

The **Area Under the Curve (AUC)** measures the two-dimensional area underneath the ROC curve (think integral calculus). It measures how well predictions are ranked, rather than their absolute values, and ranges from 0 to 1. A model whose predictions are 100% wrong has an AUC of 0; one whose predictions are 100% correct has an AUC of 1.

ROC and AUC

As for the **ROC** and the **AUC**:

```
roc_auc_score(y_test, predictions)
```

0.6112373737373737

```
fpr, tpr, _ = roc_curve(y_test, predictions)

plt.clf()
plt.plot(fpr, tpr)
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.title('ROC curve')
plt.show()
```


F_1 and F_β Score

The $\mathbf{F_1}$ **Score** combines precision and recall into a single value for comparison purposes. Can be used to obtain a more balanced view of performance.

$$F_1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

The F_1 Score gives equal weight to precision and recall. Use F_{β} Score to weight recall by a factor of β . With $\beta=1$, F_1 and F_{β} are equivalent.

$$F_{\beta} = (1 + \beta^{2}) \cdot \frac{Precision \cdot Recall}{\beta^{2} \cdot Precision + Recall}$$

F_1 and F_{β} Score

As for the $\mathbf{F_1}$ and $\mathbf{F_\beta}$ Score:

0.5306603773584905

```
f1_score(y_test, predictions)
0.5232558139534884

fbeta_score(y_test, predictions, beta=0.5)
```

Decision Tree Regressor

Decision Tree Regressor

But let's say that we wanted to **predict the FARE** paid by those that went to the Titanic (maybe not a very good problem, but it serves its purpose)! For that, we would need a **Decision Tree Regressor**.

Implementing a Decision Tree Regressor

We first need to re-define our **input** (X) and our **target** (y) features:

```
X = df.drop(['Fare'], axis=1) #input features - everything except the Fare feature
y = df['Fare'].to_frame() #target feature
```

And to hold-out some data for testing (and again drop the categorical features):

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=2021)

X_train = X_train.drop(['Name', 'Sex', 'Age', 'Ticket', 'Cabin', 'Embarked'], axis=1)

X_test = X_test.drop(['Name', 'Sex', 'Age', 'Ticket', 'Cabin', 'Embarked'], axis=1)
```

Implementing a Decision Tree Regressor

Now, just **fit** and **predict** the **fare** paid by the people at the test set:

```
#Training, i.e., fitting the model (using the training data!!)
clf.fit(X train, y train)
         DecisionTreeRegressor
DecisionTreeRegressor(random_state=2021)
#obtaining predictions
predictions = clf.predict(X test)
predictions
array([ 18.7875, 7.8958, 10.5 , 27.9 , 34.375 , 24.15 ,
      211.5 , 7.7417, 12.35 , 7.2292, 7.2292, 52. ,
       15.5 , 18.7875, 13. , 8.6625, 8.05 , 52. ,
       8.6625, 35.5 , 76.2917, 15.5 , 7.6292, 8.4042,
       8.6625, 7.125, 7.775, 7.65, 93.5, 26.
       7.8792, 8.6625, 39.6875, 16.1 , 113.275 , 12.35 ,
```

We now have fare predictions for the test set (and we know the actual fare value as it is stored in the **y_test** variable). How do we **evaluate** our regression model?

Quality Metrics

Mean Absolute Error

Mean Absolute Error (**MAE**) measures the average magnitude of the errors in a set of predictions, without considering their direction.

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

Where **n** is the number of observations, and y_j and \hat{y}_j are the actual observation and the predicted value, respectively.

Mean Squared Error

Mean Squared Error (MSE) consists of the average of squared differences between the prediction and the actual observation, without considering their direction.

$$MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

Where **n** is the number of observations, and y_j and \hat{y}_j are the actual observation and the predicted value, respectively.

Root Mean Squared Error

Root Mean Squared Error (**RMSE**) consists of the of the average of squared differences between the prediction and the actual observation, without considering their direction.

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Where **n** is the number of observations, and y_j and \hat{y}_j are the actual observation and the predicted value, respectively.

Regression Quality Metrics

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j| \qquad MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2 \qquad RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Important notes:

- Three of the most common metrics used to measure accuracy for continuous variables
- All express average model prediction error (lower values are better)
- All range from 0 to ∞ and are indifferent to the direction of errors
- MAE and RMSE express the prediction error in units of the variable of interest
- MSE and RMSE, by squaring the error, gives a relatively high weight to large errors
- Hence, MSE and RMSE are more useful when large errors are particularly undesirable

Regression Quality Metrics

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j| \qquad MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2 \qquad RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

#	Error	Error	Error ²
1	1	1	1
2	-1	1	1
3	3	3	9
4	3	3	9

MAE	MSE	RMSE
2	5	2.24

#	Error	Error	Error ²
1	0	0	0
2	0	0	0
3	0	0	0
4	10	10	100

MAE	MSE	RMSE
2.5	25	5

Regression Quality Metrics

Obtaining the model's **MSE**, **MAE**, and **RMSE** is as simple as:

```
mean_absolute_error(y_test, predictions)

14.68592556053812

mean_squared_error(y_test, predictions)

1399.7722041242152

root_mean_squared_error(y_test, predictions)

37.41352969347072
```

For example, the RMSE tells us that our mean error is of 37.41\$

Model Evaluation

We must **confirm that the model actually achieves its intended purpose**! The goal is to check the accuracy/performance of the model based on data the model doesn't know.

Until now, we have been using **hold-out validation**! But that's a very basic way to address the problem, right?

Do you see any problems with it?

- Hold-out Validation
- Cross Validation
- k-fold Cross Validation
- Leave-one-out Cross Validation
- •

Cross Validation

Cross validation is another model validation technique.

The goal is to have an accurate metric of how the model will perform in practice.

In essence, it consists in **dividing the dataset into k folds**. In each run of the model, **k-1 folds are used for training** and **1 fold** (the remaining) is used as **test**. Keep repeating the process until all folds have been used for testing.

The final error metric is based on the mean value of all error metrics:

$$E = \frac{1}{k} \sum_{i=1}^{k} E_i$$

Cross Validation

How many folds?

A greater number of folds will lead to a better error estimate of the model, a lower bias and less overfitting. However, it comes with a higher computational cost!

If we have a **large dataset**, a **smaller k** may be enough since we will have a larger amount of data for training.

If we have a small dataset, we may want to use leave-one-out cross validation to maximize the

amount of data for training...

In reality, **k depends on N**!

Rule of thumb -> k=10!

k-fold Cross Validation

Usually, **k=10**

Leave-one-out Cross Validation (k=N)

The special case of having **k=N**. Expensive ...

But a good approach when we have a small dataset.

```
Here are some basic functions/classes you'll need (somewhen) in the future:
    sklearn.model_selection.train_test_split
    sklearn.model_selection.Kfold
    sklearn.model_selection.LeaveOneOut
    sklearn.model_selection.StratifiedKFold
    sklearn.model_selection.GridSearchCV
    sklearn.model_selection.RandomizedSearchCV
...
```

Using the cross_val_score API:

```
111
Load CSV
1.1.1
df = pd.read_csv('titanic_dataset.csv')
#Let's start by creating our X (input data) and our y (target feature - the Survived feature)
X = df.drop(['Survived'], axis=1) #input features - everything except the Survived feature
y = df['Survived'].to frame()
                              #target feature
print("USING A DECISION TREE WITH cross_val_score (MEAN ACCURACY)...")
X = X.drop(['Name', 'Sex', 'Age', 'Ticket', 'Cabin', 'Embarked'], axis=1)
clf = DecisionTreeClassifier(criterion='gini', max_depth=10, random_state=2021)
                                                                                         10 folds!
scores = cross val score(clf, X, y, cv=10) ←
print(scores)
print("RESULT: %0.2f accuracy with a standard deviation of %0.2f" % (scores.mean(), scores.std()))
USING A DECISION TREE WITH cross_val_score (MEAN ACCURACY)...
[0.58888889 0.61797753 0.52808989 0.50561798 0.61797753 0.70786517
 0.70786517 0.70786517 0.59550562 0.74157303]
RESULT: 0.63 accuracy with a standard deviation of 0.08
```

Or iterating manually with K-fold:

```
print("USING A DECISION TREE WITH MANUAL ITERATION (KFold) and obtaining confusion matrix...")
from sklearn.model selection import KFold
clf = DecisionTreeClassifier(criterion='gini', max_depth=10, random_state=2021)
scores = []
kf = KFold(n splits=10)
for train, test in kf.split(X):
    clf.fit(X.loc[train,:], y.loc[train,:])
    score = clf.score(X.loc[test,:], y.loc[test,:])
    scores.append(score)
   y_predicted = clf.predict(X.loc[test,:])
    print("Confusion Matrix:")
    print(confusion_matrix(y.loc[test,:], y_predicted))
    print(score)
print("RESULT: %0.2f accuracy with a standard deviation of %0.2f" % (np.mean(scores), np.std(scores)))
USING A DECISION TREE WITH MANUAL ITERATION (KFold) and obtaining confusion matrix...
Confusion Matrix:
                                            Confusion Matrix:
[[45 6]
                                            [[41 15]
 [27 12]]
                                             [14 19]]
0.6333333333333333
                                            0.6741573033707865
Confusion Matrix:
                                            RESULT: 0.65 accuracy with a standard deviation of 0.06
```

Hands On