Lecture 03 Representations - $T_o^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$$T_O^O = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Target $T_{Gripper}^{O} = T_{Jar}^{O}$

Course Logistics

- Everyone should be on Ed discussion board now.
- Everyone should be on Gradescope now.
- Quiz 1 posted today and was due before the lecture.
- Quiz 2 will be posted in the same way on 09/18.
- Project 0 will be posted on 09/13 (today) and will be due 09/20.
- Autograder will be made available for you to test and submit your code.
- Action items for you:
 - Announcements will move from Canvas to Ed discussion posts starting today. So make sure
 you are getting email notifications from Ed.

Why JavaScript?

ThreeJS

Why JavaScript?

Why JavaScript?

You can load a URDF of a famous robot!

Why JavaScript? More robot models!!

Robots that you can try to load URDFs off and work on your final project

How will the projects look like?

How will the projects look like?

Previously

Magnitude and Unit Vector

The magnitude of a vector is the square root of the sum of squares of its components

$$||a|| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

A unit vector has a magnitude of one. Normalization scales a vector to unit length.

$$\hat{a} = \frac{a}{||a||}$$

A vector can be multiplied by a scalar

$$sa = \begin{bmatrix} sa_x \\ sa_y \\ sa_z \end{bmatrix}$$

Cross Product

$$c_x = a_y b_z - a_z b_y$$

$$c_y = a_z b_x - a_x b_z$$

$$c_z = a_x b_y - a_y b_x$$

Results in new vector c orthogonal to both original vectors a and b

Length of vector c is equal to area of parallelogram formed by a and b

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$

Matrix-vector multiplication (two interpretations) 1) Row story: dot product of each matrix row $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} j \\ k \\ l \end{bmatrix} = \begin{bmatrix} aj + bk + cl \\ dj + ek + fl \\ gj + hk + il \end{bmatrix}$ 2) Column story: linear combination of matrix columns $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} j \\ k \\ l \end{bmatrix} \begin{bmatrix} aj + bk + cl \end{bmatrix} \begin{bmatrix} aj + bk + cl \end{bmatrix} \begin{bmatrix} a \\ l \end{bmatrix} \begin{bmatrix} aj \\ l] \begin{bmatrix} aj \\ l] [aj \\ l]$

Solving linear systems

What would be the direct way to solve for \mathbf{x} ? $A\mathbf{x} = \mathbf{b}$

562

 $\mathbf{x} = A^{-1}\mathbf{b}$

Can this always be done?

Invert A and multiply by b

No. But, we can approximate. How?

Pseudoinverse least-squares approximation $\mathbf{x} = A_{\mathrm{left}}^+ \mathbf{b}$

How to define a Link Geometry

Link Geometry

http://csc.lsu.edu/~kooima/courses/csc4356/

Link Geometry

i	x	y	Z
0	0.0	1.0	0.5
1	-0.5	0.5	0.5
2	-0.5	0.0	0.5
3	0.5	0.0	0.5
4	0.5	0.5	0.5
5	0.0	1.0	-0.5
6	-0.5	0.5	-0.5
7	-0.5	0.0	-0.5
8	0.5	0.0	-0.5
0	0.5	0 5	0.5

Each robot link has a geometry specified as 3D vertices. Vertices are connected into faces of the object's surface. Vertices are defined wrt. the frame of the robots' link.

http://csc.lsu.edu/~kooima/courses/csc4356/

As the link frame moves, the geometry moves with it.

http://csc.lsu.edu/~kooima/courses/csc4356/notes/04-transformation/transformation-composition-2.html

 Consider a link for a 2D robot with a box geometry of 4 vertices

- Consider a link for a 2D robot with a box geometry of 4 vertices
- Vectors express position of vertices with respect to joint (at origin)

$$\mathbf{p_i} = [X_i, Y_i]$$

 Consider a link for a 2D robot with a box geometry of 4 vertices

 Vectors express position of vertices with respect to joint (at origin)

 How to rotate link geometry based on movement of the joint?

CSCI 5551 - Fall 2023 - Section 002

- Consider a link for a 2D robot with a box geometry of 4 vertices
- Vectors express position of vertices with respect to joint (at origin)
- How to rotate link geometry based on movement of the joint?

$$x' = x \cdot \cos(\theta) - y \cdot \sin(\theta)$$
$$y' = x \cdot \sin(\theta) + y \cdot \cos(\theta)$$

2D Rotation Matrix

(counterclockwise)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Matrix multiply vector by 2D rotation matrix R
- Matrix parameterized by rotation angle θ
- Remember: this rotation is counterclockwise

Right-hand Rule

rotation occurs about axis from forward towards lateral, or the "curl" of the fingers

Coordinate conventions

threejs and KinEval (used in the browser)

ROS and most of robotics (used in URDF and rosbridge)

Checkpoint

What is the 2D matrix for a rotation by 0 degrees?

What is the 2D matrix for a rotation by 90 degrees?

Example

Note: one matrix multiply can transform all vertices

$$\begin{bmatrix} p'_{1x} & p'_{2x} & p'_{3x} & p'_{4x} \\ p'_{1y} & p'_{2y} & p'_{3y} & p'_{4y} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} p_{1x} & p_{2x} & p_{3x} & p_{4x} \\ p_{1y} & p_{2y} & p_{3y} & p_{4y} \end{bmatrix}$$

We can rotate. Can we also translate?

2D Translation

- Consider a link for a 2D robot with a box geometry of 4 vertices
- Vectors express position of vertices with respect to joint (at origin)
- How to translate link geometry to new location?

$$x' = x + d_x$$
$$y' = y + d_y$$

2D Translation Matrix

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} x+d_x \\ y+d_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Requires homogeneous coordinates
 - 3D vector of 2D position concatenated with a I
 - A plane at z=1 in a three dimensional space
- Matrix parameterized by horizontal and vertical displacement (d_x, d_y)

Checkpoint

What is the 2D matrix for a translation by [-1,2]?

Example

Rigid motions and Affine transforms

- Consider a link for a 2D robot with a box geometry of 4 vertices
- Vectors express position of vertices with respect to joint (at origin)
- How to both <u>rotate and translate</u> link geometry?
 - Rigid motion: rotate then translate
 - Affine transform: allows for rotation, translation, scaling, shearing, and reflection

Composition of Rotation and Translation

homogeneous rotation matrix

Example

Example

Homogeneous Transform: Composition of Rotation and Translation

Homogeneous Transform

defines SE(2): Special Euclidean Group 2

$$H = \begin{bmatrix} R_{00} & R_{01} & d_x \\ R_{10} & R_{11} & d_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{2 \times 2} & \mathbf{d}_{2 \times 1} \\ \mathbf{0}_{1 \times 2} & 1 \end{bmatrix}$$

Homogeneous Transform

defines SE(2): Special Euclidean Group 2

$$H = \begin{bmatrix} R_{00} & R_{01} & d_x \\ R_{10} & R_{11} & d_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{2\times2} & \mathbf{d}_{2\times1} \\ \mathbf{0}_{1\times2} & 1 \end{bmatrix}$$

$$H \in SE(2)$$

Homogeneous Transform

defines SE(2): Special Euclidean Group 2

$$H = \begin{bmatrix} R_{00} & R_{01} & d_x \\ R_{10} & R_{11} & d_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{2\times 2} & \mathbf{d}_{2\times 1} \\ \mathbf{0}_{1\times 2} & 1 \end{bmatrix}$$

$$H \in SE(2) \quad \mathbf{R}_{2\times 2} \in SO(2)$$

Homogeneous Transform

defines SE(2): Special Euclidean Group 2

$$H = \begin{bmatrix} R_{00} & R_{01} & d_x \\ R_{10} & R_{11} & d_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{2\times 2} & \mathbf{d}_{2\times 1} \\ \mathbf{0}_{1\times 2} & 1 \end{bmatrix}$$

$$H \in SE(2) \quad \mathbf{R}_{2\times 2} \in SO(2) \quad \mathbf{d}_{2\times 1} \in \Re^2$$

Example: Let's put an arm link on Boxy

robot frame

Transform the link frame and its vertices into the robot frame

$$p_{\rm robot} = T_{\rm link}^{\rm robot} p_{\rm link}$$

robot frame

Transform the link frame and its vertices into the robot frame

$$p_{\rm robot} = T_{\rm link}^{\rm robot} p_{\rm link}$$

Can we think about this frame relation in steps?

Transformed frame for link wrt. robot

$$T_{\text{link}}^{\text{robot}} = \begin{bmatrix} R_{00} & R_{01} & d_x \\ R_{10} & R_{11} & d_y \\ 0 & 0 & 1 \end{bmatrix}$$

Transformed frame for link wrt. robot

Why not translate then rotate?

Can we compose multiple frame transforms?

Can we compose multiple frame transforms?

Consider the 3 frames of a planar 2-link robot

A point in frame 1 relates to a point in frame 0 by

$$p^0 = R_1^0 p^1 + d_1^0$$

and point in frame 2 relates to point in frame 1 by

$$p^1 = R_2^1 p^2 + d_2^1$$

By substitution of p^1 into the expression for p^0 , a point in frame 2 relates to a point in frame 0 by

$$p^{0} = R_{1}^{0}R_{2}^{1}p^{2} + R_{1}^{0}d_{2}^{1} + d_{1}^{0}$$

$$R_{2}^{0} \qquad d_{2}^{0}$$

$$\begin{bmatrix} R_1^0 & d_1^0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_2^1 & d_2^1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_1^0 R_2^1 & R_1^0 d_2^1 + d_1^0 \\ 0 & 1 \end{bmatrix}$$

Alternatively, relat transform from fra

$$p^0 = R_2^0 p^2 + a$$

where

$$R2^{0} = R1^{0}R2^{1}$$
$$d2^{0} = R1^{0}d2^{1}$$

Rtarget Current

Rotation Matrix that will take a point in current to the target frame

which can be observed by block multiplying transforms

Frame 0: *0*0*x*0*y*0

How do we extend this to 3D?

3D Translation and Rotation

$$D(d_x, d_y, d_z) egin{bmatrix} 1 & 0 & 0 & d_x \ 0 & 1 & 0 & d_y \ 0 & 0 & 1 & d_z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

2D rotation in 3D is rotation about Z axis

3D Translation and Rotation

$$\mathsf{R}_{\mathsf{z}}(\theta) \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathsf{R}_{\mathsf{y}}(\theta) \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Homogeneous Transform

Rotate about each axis in order $R = R_x(\Theta_x) R_y(\Theta_y) R_z(\Theta_z)$

$$\begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D(d_x, d_y, d_z) \quad R_x(\theta) \quad R_y(\theta) \quad R_z(\theta)$$

CSCI 5551 - Fall 2023 - Section 002

3D Homogeneous Transform

$$\begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= H_3 = \begin{bmatrix} R_{00} & R_{01} & R_{02} & d_x \\ R_{10} & R_{11} & R_{12} & d_y \\ R_{20} & R_{21} & R_{22} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{3\times3} & \mathbf{d}_{3\times1} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} \qquad \mathbf{R}_{3\times3} \in SO(3)$$

$$H_3 \in SE(3)$$

 $\mathbf{R}_{3\times 3} \in SO(3)$
 $\mathbf{d}_{3\times 1} \in \Re^3$

3D Homogeneous Transform

$$H_3 = \begin{bmatrix} R_{00} & R_{01} & R_{02} & d_x \\ R_{10} & R_{11} & R_{12} & d_y \\ R_{20} & R_{21} & R_{22} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{3\times3} & \mathbf{d}_{3\times1} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} \in SE(3)$$

if
$$T_1^0 \in SE(3)$$
 and $T_2^1 \in SE(3)$ then composition holds:

$$\begin{bmatrix} R_1^0 & d_1^0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_2^1 & d_2^1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_1^0 R_2^1 & R_1^0 d_2^1 + d_1^0 \\ 0 & 1 \end{bmatrix}$$

such that points in Frame 2 can be expressed in Frame 0 by:

$$p^0 = T_1^0 T_2^1 p^2$$

Next lecture: Representations II: Rotations & Quaternions

PR2 Fetches Sandwich from Subway 11 years ago!

Autonomous Subway sandwich delivery by a PR2 robot, from the University of Tokyo and TUM