${ Sciences \ Physiques : DS \ n^{\circ} \ 3 }$

1	Équations	de	réaction

Ajuster les équations de réactions suivantes :

- 1. $CH_4 +O_2 \rightarrowCO_2 +H_2O$
- 2. $C_7H_{16} +O_2 \rightarrowCO_2 +H_2O$
- 3. $C_6H_2O +O_2 \rightarrowCO_2 +H_2O$

À chaque modèle sa formule $\mathbf{2}$

1.	\hat{A} partir de ces dessins de modèles, donner la formule des molécules suivantes.
3	Composition des molécules
1.	Donner la composition des molécules suivantes : (a) l'éthylène C_2H_4
	(b) le monoxyde d'azote NO
	(c) l'ozone O_3
	(d) l'eau oxygénée H_2O_2

4 La corrosion du fer

Au contact du dioxygène O_2 et en présence d'eau H_2O , le fer Fe se corrode en rouille Fe_2O_3 .
L'eau est indispensable pour ce processus, mais lors de cette transformation la quantité totale
d'eau reste la même. On propose une équation pour modéliser cette réaction : $4Fe+4O_2 ightarrow 0$
$2Fe_2O_3$.

1. Expliquer pourquoi l'eau n'est ni un réactif, ni un produit dans cette transformation.	
2. Compter le nombre d'atomes de fer dans les réactifs puis dans les produits de l'équation.	
3. Faire de même pour les atomes d'oxygène.	
	•
4. Indiquer à l'aide des réponses précédentes, si l'équation de réaction est équilibrée. Si ce n'es pas le cas, proposer une correction de l'équation.	;t
5 L'atome de Fer	
Le métal fer est un cristal, ce qui veut dire que ses atomes sont organisés selon une structur bien particulière appelée maille élémentaire. Sur l'Atomium à Bruxelles, chaque sphère de 18 r de diamètre représente un atome de fer agrandi 64 milliards de fois.	
1. Calculer le diamètre d'un atome de fer.	
	•
2. Combien d'électrons contient-il?	
3. Quel est le diamètre du noyau d'un atome de fer?	

6 Quelle représentation?

	Tous les atomes de ce bijou possèdent 78 protons. 33% d'entre eux possèdent 116 neutrons, $\%$ 117 neutrons, $\%$ 118 et 7% 120 neutrons.
1.	De quels atomes le bijou est-il composé?
2.	Comment appelle-t-on des atomes d'un même élément qui possèdent un nombre de neutrons différent ?
3.	Préciser, en le justifiant le nombre d'électrons de ces atomes.