

Data Warehousing & OLAP Technologies

1. Objectives

- What is a data warehouse?
- Data warehouse design issues.
- General architecture of a data warehouse
- Introduction to Online Analytical Processing (OLAP) technology.
- Data warehousing and data mining relationship.

2. What is Data Warehouse?

2.1. Definitions

- Defined in many different ways, but not rigorously.
- A decision support database that is maintained separately from the organization's operational database
- Support information processing by providing a solid platform of consolidated, historical data for analysis.
- "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon
- Operational Data: Data used in day-to-day needs of company.
- Informational Data: Supports other functions such as planning and forecasting.
- Data mining tools often access data warehouses rather than operational data.
- Data warehousing: The process of constructing and using data warehouses.

2.2. Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales.
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing.
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.

2.3. Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - Relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

2.4. Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems.
 - o Operational database: current value data.
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - o Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element".

2.5. Data Warehouse—Non-Volatile

- A physically separate store of data transformed from the operational environment.
- Operational update of data does not occur in the data warehouse environment.
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - o Requires only two operations in data accessing:
 - Initial loading of data and access of data.

2.6. Data Warehouse vs. Heterogeneous DBMS

- Traditional heterogeneous DB integration:
 - Build wrappers/mediators on top of heterogeneous databases
 - Query driven approach
 - When a query is posed to a client site, a metadictionary is used to translate the query into queries appropriate for individual heterogeneous sites involved, and the results are integrated into a global answer set
 - Complex information filtering, compete for resources
- Data warehouse: update-driven, high performance
 - Information from heterogeneous sources is integrated in advance and stored in warehouses for direct query and analysis

2.7. Data Warehouse vs. Operational DBMS

- OLTP (on-line transaction processing)
 - o Major task of traditional relational DBMS
 - Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc.
- OLAP (on-line analytical processing)
 - o Major task of data warehouse system
 - o Data analysis and decision making
- Distinct features (OLTP vs. OLAP):
 - User and system orientation: customer vs. market
 - Data contents: current, detailed vs. historical, consolidated
 - Database design: ER + application vs. star + subject
 - o View: current, local vs. evolutionary, integrated

 Access patterns: update vs. read-only but complex queries

2.8. OLTP vs. OLAP

	OLTP	OLAP	
Users	Clerk, IT professional	Knowledge worker	
Function	Day to day operations	Decision support	
DB design	Application-oriented	Subject-oriented	
Data	Current, up-to-date Detailed, flat relational Isolated Historical, Summarized, multidimensional Integrated, consolidated		
Usage	Repetitive	Ad-hoc	
Access	Read/write, Index/hash on prim. Key	Lots of scans	
Unit of work	Short, simple transaction Complex query		
# records accessed	Tens	Millions	
#users	Thousands	Hundreds	
DB size	100MB-GB	100GB-TB	
Metric	Transaction throughput	Query throughput, response	

2.9. Why Separate Data Warehouse?

- High performance for both systems
 - o DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, and consolidation.
- Different functions and different data:
 - Missing data: Decision support requires historical data which operational DBs do not typically maintain
 - <u>Data consolidation</u>: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - <u>Data quality</u>: different sources typically use inconsistent data representations, codes and formats which have to be reconciled.

3. Multidimensional Data Model

3.1. Definitions

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube.
- This is not a 3-dimensional cube: it is n-dimensional cube.
- Dimensions of the cube are the equivalent of entities in a database, e.g., how the organization wants to keep records.
- Examples:
 - Product
 - Dates
 - Locations
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

• Cube: A lattice of cuboids

4. Conceptual Modeling of Data Warehousing

- Modeling data warehouses: dimensions & measures
 - o <u>Star schema</u>: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - <u>Fact constellations</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

4.1. Star Schema

4.2. Snowflake Schema

4.3. Fact Constellation

5. A Data Mining Query Language: DMQL

5.1. Definitions and syntax

- Similar to RDBMS, we need a DDL (data definition language) to define the tables in the conceptual model.
- Cube Definition (Fact Table)
 - Syntax: define cube <cube_name> [<dimension_list>]: <measure list>
 - Example

```
define cube sales_star [time, item, branch, location]:
    dollars_sold = sum(sales_in_dollars),
    avg_sales = avg(sales_in_dollars),
    units sold = count(*)
```

- Dimension Definition (Dimension Table)
 - Syntax:

```
define dimension < dimension_name>
as (<attribute_or_subdimension_list>)
```

Example:

- Special Case (Shared Dimension Tables)
 - First time as "cube definition"
 - Syntax:

```
define dimension < dimension_name>
as < dimension_name_first_time>
in cube < cube_name_first_time>
```

Example:

define dimension item as item in cube sales

5.2. Defining a Star Schema in DMQL

```
define cube sales_star [time, item, branch, location]:
    dollars_sold = sum(sales_in_dollars),
    avg_sales = avg(sales_in_dollars),
    units_sold = count(*)
```

define dimension time **as** (time_key, day, day_of_week, month, quarter, year)

define dimension item **as** (item_key, item_name, brand, type, supplier_type)

define dimension branch **as** (branch_key, branch_name, branch_type)

define dimension location **as** (location_key, street, city, province_or_state, country)

5.3. Defining a Snowflake Schema in DMQL

```
define cube sales snowflake [time, item, branch, location]:
     dollars_sold = sum(sales_in_dollars),
     avg_sales = avg(sales_in_dollars),
     units_sold = count(*)
define dimension time as (
      time key,
      day,
      day_of_week,
      month,
      quarter,
      year
)
define dimension item as (
      item_key,
      item_name,
      brand, type,
      supplier(supplier_key, supplier_type)
 )
define dimension branch as (branch_key, branch_name,
branch_type)
define dimension location as (
      location_key,
      street.
      city(city_key, province_or_state, country)
 )
```

5.4. Defining a Fact Constellation in DMQL

```
define cube sales [time, item, branch, location]:
     dollars sold = sum(sales in dollars),
     avg_sales = avg(sales_in_dollars),
     units sold = count(*)
 define dimension time
 as (time_key, day, day_of_week, month, quarter, year)
 define dimension item
 as (item_key, item_name, brand, type, supplier_type)
 define dimension branch
 as (branch_key, branch_name, branch_type)
 define dimension location
 as (location_key, street, city, province_or_state, country)
 define cube shipping [time, item, shipper, from_location,
 to location]:
      dollar cost = sum(cost in dollars),
      unit shipped = count(*)
 define dimension time
 as time
 in cube sales
 define dimension item
 as item
 in cube sales
```

define dimension shipper

define dimension from_location **as** location **in cube** sales

define dimension to_location
as location
in cube sales

5.5. Measures: Three Categories

- A data cube function is a numerical function that can be evaluated at each point in the data cube space.
- Given a data point in the data cube space:

where vi is the value corresponding to dimension di.

We need to apply the aggregate measures to the dimonsion values v1, v2, ..., vn

• Distributive:

- If the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning.
- o Example: count(), sum(), min(), max().

• Algebraic:

- Use distributive aggregate functions.
- If it can be computed by an algebraic function with *M* arguments (where *M* is a bounded integer), each of which is obtained by applying a distributive aggregate function.

o Example: avg(), min_N(), standard_deviation().

• Holistic:

- If there is no constant bound on the storage size needed to describe a subaggregate.
- o E.g., median(), mode(), rank().

5.6. How to compute data cube measures?

- How do evaluate the dollars_sold and unit_sold in the star schema of the previous example?
- Assume that the relation database schema corresponding to our example is the following:

```
time (time_key, day, day_of_week, month, quarter, year)
item (item_key, item_name, brand, type, supplier(supplier_key,
supplier_type))
branch (branch_key, branch_name, branch_type)
location (location_key, street, city, province_or_state, country)
sales (time_key, item_key, branch_key, location_key,
number_of_unit_sold, price)
```

• Let us then compute the two measures we have in our data cube: dollars_sold and units_sold

- Relationship between "data cube" and "group by"?
 - The above query corresponds to the base cuboid.
 - By changing the group by clause in our query, we may generate other cuboids.
 - What is query for the 0-D cuboid or apex?

6. A Concept Hierarchy

- A concept hierarchy is an order relation between a set of attributes of a concept or dimension.
- It can be manually (users or experts) or automatically generated (statistical analysis).
- Multidimensional data is usually organized into dimension and each dimension is further defined into a lower level of abstractions defined by concept hierarchies.
- Example: Dimension (location)

• The order can be either partial or total:

Location dimension: Street <city<state<country

Time dimension: Day < {month<quarter; week} < year

Total order hierarchy

Partial order hierarchy

- Set-grouping hierarchy:
 - It is a concept hierarchy among groups of values.
 - Example: {1..10} < inexpensive

7. OLAP Operations in a Multidimensional Data

- Sales volume as a function of **product**, **time**, and **region**.
- Dimensions hierarchical concepts: Product, Location, Time

Region
$$\rightarrow$$
 Country \rightarrow City \rightarrow Office

• Sales volume as a function of **product**, **month**, and **region**.

region
Product

Month

• A Sample data cube:

• Cuboids of the sample cube:

• Querying a data cube

8. OLAP Operations

- Objectives:
 - OLAP is a powerful analysis tool:
 - Forecasting
 - Statistical computations,
 - aggregations,
 - etc.
- Roll up (drill-up): summarize data
 - It is performed by climbing up hierarchy of a dimension or by dimension reduction (reduce the cube by one or more dimensions).
 - The roll up operation in the example is based location (roll up on location) is equivalent to grouping the data by country.

- Drill down (roll down):
 - o It is the reverse of roll-up
 - It is performed by stepping down a concept hierarchy for a dimension or introducing new dimensions.
- Slice and Dice:
 - Project and Select operations
 - o Check the example.
- Pivot (rotate):
 - Re-orient the cube for an alternative presentation of the data
 - o Transform 3D view to series of 2D planes.
- Other operations
 - Drill across: involving (across) more than one fact table.
 - Drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

9. Starnet Query Model for Multidimensional Databases

- Each radial line represents a dimension
- Each abstraction level in a hierarchy concept is called a **footprint**
- Apply OLAP operations.

10. Data warehouse architecture

- The design of a successful DW requires the understanding and the analysis of business requirements:
 - Competitive advantage
 - Enhance business productivity
 - Cost reduction
- Four views regarding the design of a data warehouse:
 - o Top-down view:
 - allows selection of the relevant information necessary for the data warehouse. It covers the current and future business needs.
 - o Data source view:
 - This view exposes the information being captured, stored, and managed by operational systems.
 - Usually modeled by traditional data modeling techniques, e.g., ER model.
 - o Data warehouse view:
 - This view consists of fact tables and dimension tables.
 - o Business query view:
 - This view sees the perspectives of data in the warehouse from the view of end-user

10.1. DW Design Process

- Top-down, bottom-up approaches or a combination of both
- <u>Top-down</u>: Starts with overall design and planning (mature)
- <u>Bottom-up</u>: Starts with experiments and prototypes (rapid)
 - o From software engineering point of view
 - Waterfall: structured and systematic analysis at each step before proceeding to the next
 - Spiral: rapid generation of increasingly functional systems, short turn around time, quick turn around
- Typical data warehouse design process
 - Choose a business process to model, e.g., orders, invoices, etc.
 - Choose the <u>grain</u> (atomic level of data) of the business process
 - Choose the dimensions that will apply to each fact table record
 - Choose the measure that will populate each fact table record

• Multi-Tiered Architecture

10.2. Three Data Warehouse models

- Enterprise warehouse
 - Collect all of the information about subjects spanning the entire organization.

Data Mart

- a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart.

• Virtual warehouse

- o A set of views over operational databases
- Only some of the possible summary views may be materialized

• A Recommended Approach

- Build the data warehouse incrementally, data marts → data warehouse:
 - o Start with a data model
 - o Build each data mart in the organization in parallel
 - o Integrate the data marts

10.3. OLAP Server Architectures

- Relational OLAP (ROLAP)
 - Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middle ware to support missing pieces
 - Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
 - o greater scalability
- Multidimensional OLAP (MOLAP)
 - Array-based multidimensional storage engine (sparse matrix techniques)
 - o fast indexing to pre-computed summarized data
- Hybrid OLAP (HOLAP)
 - User flexibility, e.g., low level: relational, highlevel: array
 - o Specialized SQL servers
 - specialized support for SQL queries over star/snowflake schemas
 - How data is actually stored in ROLAP and MOLAB?
 - o Two methods:
 - Base cuboid data is stored in a `base fact table
 - Aggregate data:
 - ➤ Data can be stored in the base fact table (Summary Fact table), or
 - ▶ Data can be stored in a separate summary fact tables to store each level of abstraction.

11. Data Warehouse Implementation

- Objectives:
 - Monitoring: Sending data from sources
 - **Integrating:** Loading, cleansing,...
 - **Processing:** Efficient cube computation, and query processing in general, indexing, ...

• Cube Computation

- One approach extends SQL using compute cube operator
- A cube operator is the n-dimensional generalization of the group-by SQL clause.
- OLAP needs to compute the cuboid corresponding each input query.
- o Pre-computation: for fast response time, it seems a good idea to pre-compute data for all cuboids or at least a subset of cuboids since the number of cuboids is:

$$\text{number of cuboids} = \begin{cases} 2^n & \textit{If no hierarchy} \\ & \textit{if hierarchy and} \end{cases}$$

$$\prod_{i=1}^n (L_i + 1) & L_i \textit{ is number of levels} \\ & \textit{associated with } d \textit{ dim ension } i \end{cases}$$

11.1. Materialization of data cube

- Store in warehouse results useful for common queries
- Pre-compute some cuboids

- This is equivalent to the define new warehouse relations using SQL expressions
- Materialize <u>every</u> (cuboid) (full materialization), <u>none</u> (no materialization), or <u>some</u> (partial materialization)
- Selection of which cuboids to materialize
 - Based on size, sharing, access frequency, etc.
 - Define new warehouse relations using SQL expressions

11.2. Cube Operation

• Cube definition and computation in DMQL

define cube sales[item, city, year]: sum(sales_in_dollars)
compute cube sales

• Transform it into a SQL-like language (with a new operator cube by, introduced by Gray et al.'96)

```
SELECT item, city, year, SUM (amount) FROM SALES

CUBE BY item, city, year
```

• Need compute the following **Group-Bys**

```
(date, product, customer),
(date,product),(date, customer), (product,
customer),
(date), (product), (customer)
()
```


11.3. Cube Computation Methods

- ROLAP-based cubing
 - Sorting, hashing, and grouping operations are applied to the dimension attributes in order to reorder and cluster related tuples
 - Grouping is performed on some subaggregates as a "partial grouping step"
 - Aggregates may be computed from previously computed aggregates, rather than from the base fact table
- MOLAP Approach
 - Uses Array-based algorithm
 - The base cuboid is stored as multidimensional array.
 - Read in a number of cells to compute partial cuboids

11.4. Indexing OLAP Data: Bitmap Index

- Approach:
 - o Index on a particular column
 - Each value in the column has a bit vector: bit-op is fast
 - The length of the bit vector: # of records in the base table
 - The *i*-th bit is set if the *i*-th row of the base table has the value for the indexed column
 - o Not suitable for high cardinality domains

• Example:

Base Table:

Cust	Region	Type
C1	Asia	Retail
C2	Europe	Dealer
C3	Asia	Dealer
C4	America	Retail
C5	Europe	Dealer

Index on Region:

RecID	Asia	Europe	America
1	1	0	0
2	0	1	0
3	1	0	0
4	0	0	1
5	0	1	0

Index on Type:

RecID	Retail	Dealer
1	1	0
2	0	1
3	0	1
4	1	0
5	0	1

11.5. Indexing OLAP Data: Join Indices

• Join index:

where R (R-id,
$$\dots$$
) >< S (S-id, \dots)

- Traditional indices map the values to a list of record ids
- It materializes relational join in JI file and speeds up relational join a rather costly operation
- In data warehouses, join index relates the values of the <u>dimensions</u> of a star schema to <u>rows</u> in the fact table.
 - E.g. fact table: Sales and two dimensions city and product
 - A join index on *city* maintains for each distinct city a list of R-IDs of the tuples recording the Sales in the city
 - Join indices can span multiple dimensions

11.6. Efficient Processing OLAP Queries

- Determine which operations should be performed on the available cuboids:
 - transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g, dice = selection + projection
- Determine to which materialized cuboid(s) the relevant operations should be applied.
- Exploring indexing structures and compressed vs. dense array structures in MOLAP

11.7. Data Warehouse Usage

- Three kinds of data warehouse applications
 - Information processing
 - supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
 - Analytical processing
 - multidimensional analysis of data warehouse data
 - supports basic OLAP operations, slice-dice, drilling, pivoting
 - o Data mining
 - knowledge discovery from hidden patterns
 - supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools.
- Differences among the three tasks

11.8. Why online analytical mining?

- High quality of data in data warehouses
 - o DW contains integrated, consistent, cleaned data
- Available information processing structure surrounding data warehouses
 - ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools
- OLAP-based exploratory data analysis
 - o mining with drilling, dicing, pivoting, etc.
- On-line selection of data mining functions
 - o Integration and swapping of multiple mining functions, algorithms, and tasks.
- Architecture of OLAM

12. An OLAM Architecture

