CC2-S1

2018-2019

- Correction - Analyse -

Exercice 1

1. Montrer que la fonction f définie sur $]0, +\infty[$ par

$$f(t) = \frac{\ln t}{t^2 + 1}$$

est intégrable sur $]0; +\infty[$, et que l'on a :

$$\int_{1}^{+\infty} f(t)dt = -\int_{0}^{1} f(t)dt$$

- f est continue sur $]0,+\infty[$ donc localement intégrable. En $0:f(t)\underset{t\to 0}{\sim}\ln(t)$. Par comparaison de fonctions de signe constant sur]0,1], la fonction ln étant intégrable sur]0,1], on a f intégrable sur]0,1].
- En $+\infty$: $\lim_{t\to +\infty} t^{\frac{3}{2}} f(t) = 0$, par croissances comparées. On en déduit que $f(t) = o_{t\to +\infty} \left(\frac{1}{t^{\frac{3}{2}}}\right)$, donc par comparaison à une intégrale de Riemann convergente, f est intégrable sur $[1, +\infty[$.
- Bilan : f est intégrable sur $]0, +\infty[$.

On pose $u = \frac{1}{t} = \varphi(t)$; la fonction φ est de classe C^1 , bijective de $[1, +\infty[$ dans]0, 1].

D'après le point précédent, $\int_{1}^{+\infty} f(t)dt$ converge. Le théorème de changement de variable donne :

$$\int_{1}^{+\infty} f(t)dt = \int_{1}^{0} \frac{\ln\left(\frac{1}{u}\right)}{\frac{1}{u^{2}} + 1} \times \frac{-1}{u^{2}} du = \int_{0}^{1} \frac{-\ln(u)}{1 + u^{2}} du$$

2. a désigne un réel strictement positif. Déduire de la question précédente que

$$\int_0^{+\infty} \frac{\ln t}{t^2 + a^2} \mathrm{d}t = \frac{\pi \ln a}{2a}$$

Soient ε et M deux réels strictement positifs. On considère l'intégrale $\int_{\varepsilon}^{M} \frac{\ln(t)}{t^2 + a^2} dt$.

On pose $u = \frac{t}{a} = \varphi(t)$; la fonction φ est de classe C^1 , bijective de $[\varepsilon, M]$ dans $\left[\frac{\varepsilon}{a}, \frac{M}{a}\right]$.

Le théorème de changement de variable donne :

$$\int_{\varepsilon}^{M} \frac{\ln(t)}{t^{2} + a^{2}} dt = \int_{\frac{\varepsilon}{a}}^{\frac{M}{a}} \frac{\ln(au)}{a^{2}(u^{2} + 1)} a du = \frac{1}{a} \int_{\frac{\varepsilon}{a}}^{\frac{M}{a}} \frac{\ln(a)}{1 + u^{2}} du + \frac{1}{a} \int_{\frac{\varepsilon}{a}}^{\frac{M}{a}} \frac{\ln(u)}{1 + u^{2}} du$$
$$= \frac{\ln(a)}{a} \left(\operatorname{Arctan}\left(\frac{M}{a}\right) - \operatorname{Arctan}\left(\frac{\varepsilon}{a}\right) \right) + \frac{1}{a} \int_{\frac{\varepsilon}{a}}^{\frac{M}{a}} \frac{\ln(u)}{1 + u^{2}} du$$

D'après la question précédente, on a : $\int_0^{+\infty} \frac{\ln(t)}{1+t^2} dt = \int_0^1 f(t) dt + \int_1^{+\infty} f(t) dt = 0,$ donc en faisant tendre ε vers 0 et M vers $+\infty$, on obtient

$$\int_0^{+\infty} \frac{\ln t}{t^2 + a^2} dt = \frac{\pi \ln a}{2a}$$

Spé PT Page 1 sur 4

Exercice 2

1. Montrer la convergence de l'intégrale

$$\int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt$$

- La fonction $f: t \mapsto \frac{\sin^2 t}{t^2}$ est continue sur $]0, +\infty[$ donc localement intégrable.
- En $0: f(t) \underset{t\to 0}{\sim} 1$ donc f se prolonge par continuité en 0 et $\int_0^1 f(t) dt$ converge.
- En $+\infty$: On a : $|f(t)| \leq \frac{1}{t^2}$, donc par comparaison à une intégrale de Riemann convergente, $\int_1^{\infty} f(t)dt$
- Bilan : $\int_{0}^{+\infty} f(t)dt$ converge.
- 2. En utilisant une intégration par parties et le changement de variable $t\mapsto 2t$, montrer que

$$\int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt = \int_0^{+\infty} \frac{\sin(t)}{t} dt$$

On énoncera soigneusement les théorèmes utilisés.

Soient $u: t \mapsto \sin^2(t)$ et $v: t \mapsto -\frac{1}{t}$; u est v sont de classe C^1 sur $]0, +\infty[$, $\lim_{t \to \infty} uv = 0$ et $\lim_{t \to \infty} uv = 0$.

Le théorème d'intégration parties donne $\int_0^{+\infty} f(t)dt$ et $\int_0^{+\infty} \frac{-2\sin(t)\cos(t)}{t}dt$ de même nature, donc convergentes d'après la question précédente, et par suit

$$\int_0^{+\infty} f(t) dt = \int_0^{+\infty} \frac{2\sin(t)\cos(t)}{t} dt = \int_0^{+\infty} \frac{\sin(2t)}{t} dt$$

On pose $u=2t=\varphi(t)$; φ est de classe C^1 , bijective de $]0,+\infty[$ dans lui même. Le résultat précédent donnant $\int_0^{+\infty} \frac{\sin(2t)}{t} \mathrm{d}t$ convergente, le théorème de changement de variable donne

$$\int_0^{+\infty} \frac{\sin(u)}{\frac{u}{2}} \frac{\mathrm{d}u}{2} \text{ convergente et égale à la précédente.}$$

Finalement,
$$\int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt = \int_0^{+\infty} \frac{\sin(t)}{t} dt$$
.

3. Montrer la convergence de l'intégrale $\int_0^{\frac{\pi}{2}} \frac{\sin^2(nt)}{t^2} dt$, pour tout $n \in \mathbb{N}$. On note I_n cette intégrale.

Soit
$$n \in \mathbb{N}$$
. On note $f_n : t \mapsto \frac{\sin^2(nt)}{t^2}$

 f_n est continue sur $\left[0,\frac{\pi}{2}\right]$ et $f_n(t) \underset{t\to 0}{\sim} n^2$ donc la fonction se prolonge par continuité en 0.

On en déduit que $\int_0^{\frac{\pi}{2}} f_n(t) dt$ est faussement impropre, donc qu'elle converge.

4. Montrer que

$$\lim_{n \to +\infty} \frac{I_n}{n} = \int_0^{+\infty} \frac{\sin(t)}{t} dt$$

Soit $n \in \mathbb{N}^*$. On pose $u = nt = \varphi(t)$; φ est de classe C^1 , bijective de $\left]0, \frac{\pi}{2}\right]$ dans $\left]0, \frac{n\pi}{2}\right]$ donc, compte tenu de la convergence établie précédemment, le théorème de changement de variable donne : $I_n = \int_0^{\frac{\pi}{2}} f_n(t) \mathrm{d}t = \int_0^{\frac{n\pi}{2}} \frac{\sin^2(u)}{\frac{u^2}{n^2}} \frac{\mathrm{d}u}{n} = n \int_0^{\frac{n\pi}{2}} \frac{\sin^2 u}{u^2} \mathrm{d}u.$

$$I_n = \int_0^{\frac{\pi}{2}} f_n(t) dt = \int_0^{\frac{n\pi}{2}} \frac{\sin^2(u)}{\frac{u^2}{n^2}} \frac{du}{n} = n \int_0^{\frac{n\pi}{2}} \frac{\sin^2 u}{u^2} du$$

Comme, d'après la question 2, $\lim_{n\to+\infty}\int_0^{\frac{n\pi}{2}}\frac{\sin^2 t}{t^2}dt=\int_0^{+\infty}\frac{\sin^2 t}{t^2}dt=\int_0^{+\infty}\frac{\sin(t)}{t}dt$, on a donc :

$$\lim_{n \to +\infty} \frac{I_n}{n} = \int_0^{+\infty} \frac{\sin(t)}{t} dt$$

Spé PT Page 2 sur 4 5. Montrer la convergence de l'intégrale $\int_0^{\frac{\pi}{2}} \frac{\sin^2(nt)}{\sin^2(t)} dt$, pour tout $n \in \mathbb{N}$. On note A_n cette intégrale.

Soit
$$n \in \mathbb{N}$$
. On note $g_n : t \mapsto \frac{\sin^2(nt)}{\sin^2(t)}$

$$g_n$$
 est continue sur $\left[0,\frac{\pi}{2}\right]$ et $g_n(t) \underset{t\to 0}{\sim} n^2$ donc la fonction se prolonge par continuité en 0.

On en déduit que
$$\int_0^{\frac{\pi}{2}} g_n(t) dt$$
 est faussement impropre, donc qu'elle converge.

6. Calculer A_0 et A_1

$$A_0 = 0; A_1 = \int_0^{\frac{\pi}{2}} \frac{\sin^2(t)}{\sin^2(t)} dt = \frac{\pi}{2}.$$

7. En admettant que pour tout $n \in \mathbb{N}$, on a : $\sin^2(nt) - 2\sin^2((n+1)t) + \sin^2((n+2)t) = 2\sin^2(t)\cos(2(n+1)t)$, montrer que $A_n - 2A_{n+1} + A_{n+2} = 0$.

On a montré la convergence pour tout
$$n \in \mathbb{N}$$
 des intégrales $\int_0^{\frac{\pi}{2}} g_n(t) dt$; on peut donc utiliser la propriété de linéarité pour les intégrales généralisées. Pour tout $n \in \mathbb{N}$, on a :

linéarité pour les intégrales généralisées. Pour tout
$$n \in \mathbb{N}$$
, on a :
$$A_n - 2A_{n+1} + A_{n+2} = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nt) - 2\sin^2((n+1)t) + \sin^2((n+2)t)}{\sin^2(t)} dt = \int_0^{\frac{\pi}{2}} \frac{2\sin^2(t)\cos(2(n+1)t)}{\sin^2(t)} dt = \int_0^{$$

- 8. Déduire des deux questions précédentes l'expression de A_n en fonction de n, pour tout $n \in \mathbb{N}$. La suite (A_n) est une suite récurrente linéaire d'ordre 2, d'équation caractéristique : $r^2 - 2r + 1 = 0$. On en déduit qu'il existe deux réels a et b tels que pour tout $n \in \mathbb{N}$, $A_n = an + b$.
 - Les valeurs de A_0 et A_1 donnent : $\forall n \in \mathbb{N}, A_n = \frac{\pi n}{2}$
- **9.** Montrer la convergence de l'intégrale $\int_0^{\frac{\pi}{2}} \frac{\sin^2(nt)}{\tan^2(t)} dt$, pour tout $n \in \mathbb{N}$. On note B_n cette intégrale.

Soit
$$n \in \mathbb{N}$$
. On note $h_n : t \mapsto \frac{\sin^2(nt)}{\tan^2(t)}$

$$h_n$$
 est continue sur $\left]0, \frac{\pi}{2}\right[; h_n(t) \underset{t \to 0}{\sim} n^2$, et $\lim_{t \to \frac{\pi}{2}} h_n(t) = 0$ donc la h_n se prolonge par continuité en 0 et en $\frac{\pi}{2}$.

On en déduit que
$$\int_0^{\frac{\pi}{2}} h_n(t) dt$$
 est faussement impropre, donc qu'elle converge.

10. Montrer que pour tout $n \in \mathbb{N}^*$, $A_n - B_n = \frac{\pi}{4}$.

Soit
$$n \in \mathbb{N}^*$$
. Par linéarité des intégrales généralisées, on a

Soit
$$n \in \mathbb{N}^*$$
. Par linéarité des intégrales généralisées, on a :
$$A_n - B_n = \int_0^{\frac{\pi}{2}} \sin^2(nt) \left(\frac{1}{\sin^2(t)} - \frac{1}{\tan^2(t)} \right) dt = \int_0^{\frac{\pi}{2}} \sin^2(nt) \left(\frac{1 - \cos^2(t)}{\sin^2(t)} \right) dt = \int_0^{\frac{\pi}{2}} \sin^2(nt) dt = \int_0^{\frac{\pi}{2}} \left(\frac{1 - \cos(2nt)}{2} \right) dt = \frac{1}{2} \left[t - \frac{\sin(2nt)}{2n} \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

11. En utilisant le fait que pour tout $x \in \left[0, \frac{\pi}{2}\right], 0 \le \sin(x) \le x \le \tan(x)$, montrer que pour tout $n \in \mathbb{N}^*$:

$$B_n \le I_n \le A_n$$

En utilisant les inégalités de l'énoncé, la croissance de la fonction carré sur \mathbb{R}^+ et la décroissance de la fonction inverse sur \mathbb{R}_+^* , on a pour tout $n \in \mathbb{N}^*$ et $x \in \left[0, \frac{\pi}{2}\right]$:

 $h_n(x) \le f_n(x) \le g_n(x)$, d'où par positivité des intégrales généralisées, $B_n \le I_n \le A_n$.

12. Déduire de ce qui précède que

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$$

Pour
$$n \in \mathbb{N}^*$$
, l'encadrement précédent donne : $\frac{B_n}{n} \leq \frac{I_n}{n} \leq \frac{A_n}{n}$.

De plus, d'après la question **8**, pour $n \in \mathbb{N}^*$ $\frac{A_n}{n} = \frac{\pi}{2}$, puis d'après la question **10**, $\frac{B_n}{n} = \frac{A_n}{n} - \frac{\pi}{4n} \xrightarrow[n \to +\infty]{} \frac{\pi}{2}$

Ainsi, le théorème d'encadrement et la question 4 donnent :
$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}.$$

Spé PT Page 3 sur 4