Versuchsbericht zu

W1 - Stirling-Motor

Gruppe 14Mo

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 14.05.2018 betreut von Torsten Stiehm

Inhaltsverzeichnis

1	Kurzfassung			3	
2	Methoden				
3	Ergebnisse und Diskussion				
	3.1	Beoba	chtung	3	
	3.2	Daten	analyse	3	
		3.2.1	Unsicherheiten	3	
		3.2.2	Bestimmung der Reibungsverluste	3	
		3.2.3	Bestimmung der Kühlleistung	4	
		3.2.4	Bestimmung der Heizleistung	5	
	3.3	Diskus	ssion	5	
4	Sch	lussfolg	gerung	5	

1 Kurzfassung

2 Methoden

3 Ergebnisse und Diskussion

3.1 Beobachtung

3.2 Datenanalyse

3.2.1 Unsicherheiten

Die Unsicherheiten wurden gemäß GUM ermittelt. Außerdem wurde für Unsicherheitsrechnungen die Python Bibliothek "uncertainties" verwendet.

Messzylinder Die Unsicherheit des Messzylinders wurde mit 0,04 mL abgeschätzt (dreieckige WDF).

Stoppuhr Die Stoppuhr zeigt Sekunden mit Zwei Nachkommastellen an, woraus eine Unsicherheit von 0,004 s folgt (rechteckige WDF), jedoch hat die Reaktionszeit einen größeren Einfluss, wesshalb eine Unsicherheit von 0,1 s angenommen wird.

Pipette Auf der Pipette, die zum Füllen des Reagenzglases m Zylinderkopf verwendet wurde, ist eine Unscherheit von 0,007 mL angegeben.

Thermometer Die Unsicherheit des Kühlwasserthermometers vom Typ K ist 1,5 °C in dem gemessenen Temperaturinterval. Da diese für das Messen von Temperaturdifferenzen kaum Einfluss hat, werden die Unsichereiten aufgrund der Schwankungen mit 0,05 °C abgeschätzt.

Motorfrequenz Die Unsicherheit der, durch FFT ermittelten, Frequenzen wurde mit 0,01 Hz abgeschätzt, da die Frequenz kaum schwankte und keine anderen Frequenzen im FFT auftraten.

3.2.2 Bestimmung der Reibungsverluste

Die Reibungsverluste lassen sich aus der Erwärmung des Kühlwassers beim Betrieb der Wärmepumpe bzw. Kältemaschine bei offenem Zylinderkopf bestimmen. Die zugeführte Wärmemenge ΔQ ist proportional zur Temperaturänderung ΔT :

$$\Delta Q = C_W \cdot \Delta T = c \cdot m \cdot \Delta T \tag{1}$$

Für Wasser beträgt die spezifische Wärme $c_{H_2O} = 4,185\,\mathrm{J/g/K}$. Die Masse m im System ist nicht direkt bestimmbar, der Durchfluss des Kühlwasser d = m/t hingegen schon. Somit lässt sich mit Gleichung (1) die an das Kühlwasser abgegebenen Leistung $\Delta Q/t$

ermitteln. Die gesuchte Reibungsarbeit pro Umlauf erhält man durch Division der Leistung durch die Frequenz des Motors. Es folgt:

$$W_R = c_{H_2O} \cdot \frac{d}{f} \cdot \Delta T \tag{2}$$

Der Durchfluss d ergibt sich indem man die geflossene Wassermenge v durch die gestoppte Zeit t dividiert und mit der Dichte ρ_{H_2O} multipliziert. Aus Tabelle 1 ergibt sich ein Mittelwert von (4.61 ± 0.13) mL/s und somit ein Durchfluss d = (4.61 ± 0.13) g/s.

Die Frequenz des Motors wurde mittels FFT auf (3.15 ± 0.01) Hz eingestellt (vgl. Abschnitt 2). Die Temperaturänderung des Kühlwassers ΔT betrug (0.50 ± 0.05) °C. Es folgt eine Reibungsarbeit pro Umlauf gemäß Gleichung (2) von $W_R = (2.76 \pm 0.29)$ J.

Tabelle 1: Gemessene Kühlwassermenge die durch den Striling-Motor in einer bestimmten Zeit fließt.

Wassermenge v in mL	Zeit t in s
$38,00 \pm 0,03$	$8,16 \pm 0,10$
$40,80 \pm 0,03$	$8,50 \pm 0,10$
$41,40 \pm 0,03$	$9,34 \pm 0,10$
$49,20 \pm 0,03$	$10,78 \pm 0,10$
$47,00 \pm 0,03$	$10,22 \pm 0,10$

3.2.3 Bestimmung der Kühlleistung

Abbildung 1: Gemessene Temperatur als Funktion der Zeit beim betreiben des Striling-Motors als Kältemaschine.

- 3.2.4 Bestimmung der Heizleistung
- 3.3 Diskussion
- 4 Schlussfolgerung