<u>Proposition</u> 2.3. Let $^{\mathsf{T}}$ be a semigroup of contractions on a Banach space E with generator A . Then the following assertions are equivalent:

- (a) Each $i\alpha$, $\alpha\in\mathbb{R}$, is a pole of the resolvent R(.,A) such that the corresponding residue has finite rank.
- (b) dim Fix((λ $i\alpha$) $\hat{R}(\lambda,A)$) < ∞ for some (hence all) $\lambda \in \mathbb{C}$, Re(λ) > 0 and the canonical extensions $\hat{R}(\lambda,A)$ of $R(\lambda,A)$ to some ultrapower.

<u>Proof.</u> Let P_{α} be the residue of the resolvent R(.,A) in $i\alpha$. Then $P_{\alpha} = \lim_{\lambda \to i\alpha} (\lambda - i\alpha) R(\lambda,A)$ in the operator norm of L(E). Since the canonical map $(T \to \hat{T})$ is isometric and since \hat{E} is an ultrapower, we obtain

$$\hat{P}_{\alpha} = \lim_{\lambda \to i\alpha} (\lambda - i\alpha) \hat{R}(\lambda, A)$$

in $L(\hat{E})$ and rank $(P_{\alpha}) = rank(\hat{P}_{\alpha})$. Because of

$$\hat{P}_{\alpha}(\hat{E}) = Fix((\lambda - i\alpha)\hat{R}(\lambda))$$

one part of the corollary is proved. The other follows from Lemma 2.2.

- Remarks 2.4. (a) By the results in [Lin (1974)] a semigroup of contractions on a Banach space is uniformly ergodic if and only if 0 is a pole of the generator with order ≤ 1 . The residue of the resolvent in 0 and the associated ergodic projection are identical.
- (b) Let M be a W*-algebra with predual M_{\star} , U a free ultrafilter on N and \hat{M} (resp. $(M_{\star})^{\wedge}$) the ultrapower of M (resp. M_{\star}) with respect to U. Then it is easy to see that $c_{U}(M)$ is a two sided ideal in $\ell^{\infty}(M)$ hence \hat{M} is a C*-algebra, but in general not a W*-algebra. Note that the unit of \hat{M} is the canonical image of 1. For $\hat{x} \in \hat{M}$ and $\hat{\phi} \in (M_{\star})^{\wedge}$ let J: $(M_{\star})^{\wedge} + \hat{M}'$ be defined by

$$\langle \hat{\mathbf{x}}, \mathbf{J} \left(\hat{\boldsymbol{\phi}} \right) \rangle \; := \; \lim_{\boldsymbol{U}} \boldsymbol{\phi}_{\mathbf{n}} \left(\mathbf{x}_{\mathbf{n}} \right) \; , \; \; \left(\mathbf{x}_{\mathbf{n}} \right) \in \hat{\boldsymbol{\phi}} \; \; , \; \; \left(\boldsymbol{\phi}_{\mathbf{n}} \right) \in \hat{\boldsymbol{\phi}} \; \; .$$

J is well defined and is an isometric embedding. It turns out that $J((M_{\star})^{\wedge})$ is a translation invariant subspace of $(M')^{\wedge}$. Hence there exists a central projection $z(\hat{M}')'$ such that $J((M_{\star})^{\wedge}) = \hat{M}''z$ [Groh (1984), Proposition 2.27.