Problem 7

 \triangleright Decompose the vector $\mathbf{p} = (2, -3, 1)$ into components parallel and perpendicular to the vector $\mathbf{q} = (12, 3, 4)$.

Solution

The parallel component is

$$\mathbf{p}_1 = \frac{\mathbf{p} \cdot \mathbf{q}}{|\mathbf{q}|^2} \mathbf{q} = \frac{24 - 9 + 4}{12^2 + 3^2 + 4^2} (12, 3, 4) = \frac{19}{169} (12, 3, 4)$$

And the perpendicular component is

$$\mathbf{p}_2 = \mathbf{p} - \mathbf{p}_1 = (2, -3, 1) - \frac{19}{169}(12, 3, 4) = (\frac{110}{169}, -\frac{564}{169}, \frac{93}{169}).$$

Unit Vectors

A vector **v** of length 1 is called a unit vector.

The standard unit vectors are

$$\mathbf{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } \mathbf{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Any vector $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ can be written as a linear combination of the standard unit vectors as follows:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ v_2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ v_3 \end{bmatrix}$$
$$= v_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + v_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

Whenever $\mathbf{v} \neq \mathbf{0}$, its length $|\mathbf{v}|$ is not zero and

$$\left| \frac{1}{|\mathbf{v}|} \mathbf{v} \right| = \frac{1}{|\mathbf{v}|} |\mathbf{v}| = 1$$

That is, $\frac{\mathbf{v}}{|\mathbf{v}|}$ is a unit vector in the direction of \mathbf{v} , called the *direction* of the nonzero vector \mathbf{v} .

Projection

The vector projection of $\mathbf{u} = \overrightarrow{PQ}$ onto a nonzero vector $\mathbf{v} = \overrightarrow{PS}$ is the vector \overrightarrow{PR} determined by dropping a perpendicular from Q to the line PS.

The notation for this vector is

 $proj_{\mathbf{v}}\mathbf{u}$

(the vector projection of \mathbf{u} onto \mathbf{v}).

If the angle θ between \mathbf{u} and \mathbf{v} is acute, $proj_{\mathbf{v}}\mathbf{u}$ has length $|\mathbf{u}|\cos\theta$ and direction $\frac{\mathbf{v}}{|\mathbf{v}|}$. If θ is obtuse, $\cos\theta < 0$ and $proj_{\mathbf{v}}\mathbf{u}$ has length $-|\mathbf{u}|\cos\theta$ and direction $-\frac{\mathbf{v}}{|\mathbf{v}|}$.

Projection

In both cases,

$$proj_{\mathbf{v}}\mathbf{u} = (|\mathbf{u}|\cos\theta)\frac{\mathbf{v}}{|\mathbf{v}|}$$

$$|\mathbf{u}|\cos\theta = \frac{|\mathbf{u}||\mathbf{v}|\cos\theta}{|\mathbf{v}|} = \frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{v}|}$$

$$= \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}\right) \frac{\mathbf{v}}{|\mathbf{v}|}$$
$$= \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v}$$

The number $|\mathbf{u}| \cos \theta$ is called the *scalar component of* \mathbf{u} *in the direction of* \mathbf{v} .

Projection

> To summarize,

The vector projection of \mathbf{u} onto \mathbf{v} is the vector

$$proj_{\mathbf{v}}\mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right)\mathbf{v}$$

The scalar component of \mathbf{u} in the direction of \mathbf{v} is the scalar

$$|\mathbf{u}|\cos\theta = \frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{v}|} = \mathbf{u}\cdot\frac{\mathbf{v}}{|\mathbf{v}|}$$