

Rational agents

Outline

- Rational agents and decision making
- Utility theory for decision making
 - Binary relations
 - Preferences
 - Utility
- Making decisions
- Example

Rational Agents

Let us recall the following agent property:

Rationality

 Agent's ability to act (i.e., make decision) in a way that maximizes some utility function

Rational Agents

• But what is a utility function?

• How can we use a utility function to make decisions?

Rational Agents

Before we analyze agents...

How do we (humans) make decisions?

- How do we (humans) make decisions?
- Example 1:
 - You won the lottery
 - You have the following decision to make. Either:
 - (Decision1) you receive your prize today (EUR 1,000,000.00)
 - (Decision2) you receive next month
- What is your decision?

Example 2:

- You have a plane ticket to Madeira (EUR 100)
- The flight is overbooked

- The airline must ask for people to volunteer not to fly 'in exchange for benefits'.
- You have the following decision to make. Either, you choose:
 - (Decision1) a rerouting option + EUR 100 in cash
 - (Decision2) to keep your plane ticket (not volunteer)
- What is your decision?

Example 3:

- You are planning a trip for your next vacation
- You have the following decisions:
 - (Decision1) Go to Hawaii (EUR 900)
 - (Decision2) Go to Cancun (EUR 500)
- What is your decision?

Hawaii

Cancun

- While the decision in Example 1 is straightforward
 - I want my money now!

- Decision in Example 2 and 3 depend on preferences. Hence, this can lead to different outcomes.
 - Many decisions are based on personal preferences!

Key questions:

- How can I tell an agent what are my "preferences"?
- Can I treat decision making algorithmically?

Outline

- Rational agents and decision making
- Utility theory for decision making
 - Binary relations
 - Preferences
 - Utility
- Making decisions
- Example

Bibliography

UTILITY THEORY FOR DECISION MAKING

PETER C. FISHBURN

Research Analysis Corporation

JOHN WILEY & SONS, INC

NEW YORK · LONDON · SYDNEY · TORONTO

Binary relations

lacktriangledown A binary relation R on a set of outcomes Y is a set of ordered pairs (x,y) with

$$x, y \in Y$$

We can also write this binary relation as follows:

xRy

Binary relations

- Examples of a binary relation
 - Let R_1 mean "is shorter than"
 - John (*x*) is 1.75m and Harry (*y*) is 1.85m
 - Then we can say that:

(xRy, not yRx)

Some binary relation properties

• Reflexive if xRx for every $x \in Y$

• Irreflexive if not xRx for every $x \in Y$

• Symmetric if $xRy \implies yRx$, for every $x,y \in Y$

• Asymmetric if $xRy \implies \text{not } yRx$, for every $x,y \in Y$

• Antisymmetric if $(xRy, yRx) \implies x = y$, for every $x, y \in Y$

Some binary relation properties

Transitive

if
$$(xRy, yRz) \implies xRz$$
, for every $x, y, z \in Y$

Negatively transitive

if (not
$$xRy$$
, not yRz) \Longrightarrow not xRz , for every $x, y, z \in Y$

- Connected or Complete if xRy or yRx(possibly both) for every $x,y \in Y$
- Weakly connected

if
$$x \neq y \implies (xRy \text{ or } yRx) \text{ throuhout } Y$$

Some binary relation properties

- Relation "is shorter than" is
 - Irreflexive

if not xRx for every $x \in Y$

informally: a person cannot be shorter than himself

Asymmetric

if
$$xRy \implies \text{not } yRx$$
, for every $x, y \in Y$

informally: if person 1 is shorter than person 2 then person 2 is not shorter than person 1

Transitive

if
$$(xRy, yRz) \implies xRz$$
, for every $x, y, z \in Y$

informally: if person 1 is shorter than person 2 and person 2 is shorter than person 3 then person 1 is shorter than person 3

Outline

- Rational agents and decision making
- Utility theory for decision making
 - Binary relations
 - Preferences
 - Utility
- Making decisions
- Example

Preferences

■ Strict preference is a binary relation on the set of outcomes, such that

$$x \succ y$$

denotes the proposition that x is preferred to y (or x is better than y)

We can also use the strict preference to express:

$$x \prec y$$

y is preferred to x (or y is better than x)

Preferences

We can also define indifference as the absence of preference

$$x \sim y \iff (\text{not } x \prec y, \text{ not } x \succ y)$$

the two outcome are indifferent

(or x is neither better nor worse than y)

- Indifference might arise in the following situations:
 - One might feel that there is no difference between the outcomes
 - One is uncertain about his preferences

Preferences

■ We can also define **preference-indifference** as the union of strict preference and indifference

$$x \leq y \iff (x \prec y \text{ or } x \sim y)$$

x is not better than y

Or

$$x \succeq y \iff (x \succ y \text{ or } x \sim y)$$

x is not worse than y

Properties of Preferences

- Strict preference
 - antisymmetric, transitive, and negatively transitive
- Indifference
 - reflexive, symmetric, and transitive
- Preference-indifference
 - complete and transitive

Rational preference

- A **rational preference** is a binary relation if:
 - complete and transitive
- The **preference-indifference** is complete and transitive
 - Hence a rational preference

Outline

- Rational agents and decision making
- Utility theory for decision making
 - Binary relations
 - Preferences
 - Utility
- Making decisions
- Example

Utility

- Why don't we use (or code) preferences in our agents?
 - From a computation perspective, they are cumbersome to maintain

- Recall that preferences express an ordering between outcomes
 - Thus, we can express the preferences with an order-preserving function

Utility

- Does this order-preserving function exist?
 - Yes, if the preferences are rational
 - When preferences are rational, we can sort all outcomes consistently

Utility

■ Theorem:

Let X be a set of possible outcomes, and \succeq a rational preference on X. Hence, there is a function $u: X \to \mathbb{R}$ such that $u(x) \geq u(y)$ if and only if $x \succeq y$, for all $x, y \in X$

We call u the utility function

Outline

- Rational agents and decision making
- Utility theory for decision making
 - Binary relations
 - Preferences
 - Utility
- Making decisions
- Example

- Agents can use utility to make decisions:
 - Let A be a **set of actions**
 - Given $a \in A$, let O(a) be an **outcome** when an agent selects action a
 - Hence, the **value of action** a is:

$$Q(a) \stackrel{\text{def}}{=} u(O(a))$$

So how can an agent make a decision?

$$\operatorname*{argmax}_{a \in A} Q(a)$$

$$\operatorname*{argmax}_{a \in A} u(O(a))$$

An agent selects an action with the maximum utility

Making Decisions Under Uncertainty

- So how can an agent make a decision?
 - Let O denote a finite set of outcomes
 - Given $o \in O$, let P(o|a) denote the **probability of outcome** o when an agent selects action a
 - Hence, the expected value of an action is

$$Q(a) = \mathbb{E}[u(o)|a] = \sum_{o \in O} u(o)P(o|a)$$

Making Decisions Under Uncertainty

So how can an agent make a decision?

$$\operatorname*{argmax}_{a \in A} Q(a)$$

$$\underset{a \in A}{\operatorname{argmax}} \sum_{o \in O} u(o) P(o|a)$$

An agent selects an action with the maximum expected utility

Outline

- Motivation making decisions
- Utility theory for decision making
 - Binary relations
 - Preferences
 - Utility
- Making decisions
- Example

Example: robot coffee machine

robot coffee machine

- *O* = {"coffee + mess", "coffee + no mess", "no coffee + no mess"}
 - set of outcomes
- *A* = {"get coffee", "do nothing"}
 - set of actions

robot coffee machine

P is the probability of an outcome

- P(o = ``coffee + mess'' | a = ``get coffee'') = 0.2
- P(o = ``coffee + no mess'' | a = ``get coffee'') = 0.8
- P(o = ``no coffee + no mess'' | a = ``get coffee'') = 0

- P(o = ``coffee + mess'' | a = ``do nothing'') = 0
- P(o = ``coffee + no mess'' | a = ``do nothing'') = 0
- P(o = ``no coffee + no mess'' | a = ``do nothing'') = 1.0

Decision Tree

robot coffee machine

Now let us assume a different utility function:

•
$$u(s = \text{``coffee} + \text{mess''}) = 5$$

•
$$u(s = \text{``coffee} + \text{no mess''}) = 10$$

•
$$u(s = \text{"no coffee} + \text{no mess"}) = 0$$

I love coffee!

Decision Tree

Final remarks

- We have only considered decision-making problems that has ONE agent
- What if our environment has two or more agents?
 - Two or more utility-maximizing agents whose actions can affect each other's utility
 - We need a decision-making framework: GAME THEORY!

Thank You

rui.prada@tecnico.ulisboa.pt