Name: GAGAN SAI

Register Number: 20MID0192 VIT - Vellore Titanic Ship Case Study: Perform Below Tasks to complete the assignment:-

- 1. Download the dataset: Dataset
- 2. Load the dataset.
- 3. Perform Below Visualizations. Univariate Analysis Bi Variate Analysis Multi Variate Analysis
- 4. Perform descriptive statistics on the dataset.
- 5. Handle the Missing values.
- 6. Find the outliers and replace the outliers
- 7. Check for Categorical columns and perform encoding.
- 8. Split the data into dependent and independent variables.
- 9. Scale the independent variables
- 10. Split the data into training and testing
- 1. Importing all the Libraries Required:

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import skew
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```

```
In [2]: # 2. Load the dataset
    Titanic = pd.read_csv('C:/Users/gagan/Downloads/titanic.csv')
    Titanic
```

Out[2]: survived pclass age sibsp parch fare embarked class who adult_male de sex 0 0 22.0 0 7.2500 S Third True N 3 male man 1 1 1 female 38.0 0 71.2833 C First woman False Third woman 2 1 3 female 26.0 0 0 7.9250 S False N 3 1 1 female 35.0 53.1000 S First woman False 0 S 4 3 male 35.0 0 0 8.0500 Third man True N 886 0 2 male 27.0 0 0 13.0000 S Second man True N S 887 1 female 19.0 0 30.0000 First woman False female 888 0 3 NaN 1 2 23.4500 S Third woman False Ν 889 1 male 26.0 0 30.0000 C First man True 0 890 3 male 32.0 0 7.7500 Q Third True N man

891 rows × 15 columns

n [3]:	Tit	anic.hea	d(15)										
t[3]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	de
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	Na
	1	1	1	female	38.0	1	0	71.2833	C	First	woman	False	
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	Na
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	Na
	5	0	3	male	NaN	0	0	8.4583	Q	Third	man	True	Na
	6	0	1	male	54.0	0	0	51.8625	S	First	man	True	
	7	0	3	male	2.0	3	1	21.0750	S	Third	child	False	Na
	8	1	3	female	27.0	0	2	11.1333	S	Third	woman	False	Na
	9	1	2	female	14.0	1	0	30.0708	С	Second	child	False	Na
	10	1	3	female	4.0	1	1	16.7000	S	Third	child	False	
	11	1	1	female	58.0	0	0	26.5500	S	First	woman	False	
	12	0	3	male	20.0	0	0	8.0500	S	Third	man	True	Na
	13	0	3	male	39.0	1	5	31.2750	S	Third	man	True	Na
	14	0	3	female	14.0	0	0	7.8542	S	Third	child	False	Na
													•

Column Names : survived, pclass, sex, age, sibsp, parch, fare, embarked, class, who, adult_male, deck, embark_town, alive, alone

```
int64 col = Titanic.select dtypes(include = 'int64')
In [5]:
        print("Integer Columns: ", int64 col.columns.to list())
        float64 col = Titanic.select dtypes(include = 'float64')
        print("Float Columns : ", float64 col.columns.to list())
        object col = Titanic.select dtypes(include = 'object')
        print("Object Columns : ", object_col.columns.to_list())
        numeric col = Titanic.select dtypes('number')
        print("Numeric Columns : ", numeric_col.columns.to_list())
        Integer Columns: ['survived', 'pclass', 'sibsp', 'parch']
        Float Columns : ['age', 'fare']
        Object Columns : ['sex', 'embarked', 'class', 'who', 'deck', 'embark_town', 'alive']
        Numeric Columns: ['survived', 'pclass', 'age', 'sibsp', 'parch', 'fare']
        Titanic.info()
In [6]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 15 columns):
         #
             Column
                          Non-Null Count Dtype
        ---
                          891 non-null
                                          int64
         0
             survived
                          891 non-null
                                          int64
         1
             pclass
         2
             sex
                          891 non-null
                                          object
         3
                          714 non-null
                                          float64
             age
         4
                          891 non-null
                                          int64
             sibsp
         5
                          891 non-null
                                          int64
             parch
         6
             fare
                          891 non-null
                                          float64
         7
             embarked
                          889 non-null
                                          object
         8
             class
                          891 non-null
                                          object
         9
             who
                          891 non-null
                                          object
         10
            adult male
                          891 non-null
                                          bool
         11
             deck
                          203 non-null
                                          object
             embark_town 889 non-null
         12
                                          object
                          891 non-null
         13
                                          object
             alive
         14 alone
                          891 non-null
                                          bool
        dtypes: bool(2), float64(2), int64(4), object(7)
        memory usage: 92.4+ KB
In [7]:
        for column in object col:
            value counts = Titanic[column].value counts(dropna = False).reset index()
            value_counts.columns = ['Value', 'Count']
            print(f"Value counts for column '{column}':\n{value_counts.to_string(index=False)}
```

Value counts for column 'sex':

```
Value Count
  male
          577
female
          314
Value counts for column 'embarked':
Value Count
    S
         644
    C
         168
          77
    Q
  NaN
           2
Value counts for column 'class':
 Value Count
 Third
          491
 First
          216
Second
          184
Value counts for column 'who':
Value Count
  man
         537
woman
         271
child
          83
Value counts for column 'deck':
Value Count
  NaN
         688
    C
          59
    В
          47
    D
          33
    Ε
          32
    Α
          15
    F
          13
    G
           4
Value counts for column 'embark town':
      Value Count
Southampton
               644
  Cherbourg
               168
 Queenstown
                77
        NaN
                 2
Value counts for column 'alive':
Value Count
   no
         549
  yes
         342
male count = Titanic[(Titanic['sex'] == 'male')].shape[0]
print("Total Male Count : ", male_count)
male_adult_count = Titanic[(Titanic['sex'] == 'male') & (Titanic['adult_male'] == True
print("Total Adult Male Count : ", male adult count)
male_survived = Titanic[(Titanic['sex'] == 'male') & (Titanic['survived'] == 1)].shape
print("Total male survived : ", male_survived)
adult_male_survived = Titanic[(Titanic['sex'] == 'male') & (Titanic['adult_male'] == 1
print("Adult Male Survived Count : ", adult_male_survived)
female count = Titanic[(Titanic['sex'] == 'female')].shape[0]
print("Total Female Count : ", female_count)
female_survived = Titanic[(Titanic['sex'] == 'female') & (Titanic['survived'] == 1)].s
print("Total Female Survived : ", female_survived)
```

```
print("Survival Percentage :")
         print("For Male : ", round((male_survived/male_count)*100),"%")
         print("For Female : ", round((female_survived/female_count)*100), "%")
         Total Male Count : 577
         Total Adult Male Count: 537
         Total male survived : 109
         Adult Male Survived Count: 88
         Total Female Count: 314
         Total Female Survived: 233
         Survival Percentage :
         For Male : 19 %
         For Female: 74 %
        male_survived_pclass = Titanic[Titanic['sex'] == 'male'].groupby('pclass')['survived']
 In [9]:
         print("Number of male survivors by Pclass:")
         print(male survived pclass)
         Number of male survivors by Pclass:
         pclass
         1
              45
              17
         2
         3
              47
         Name: survived, dtype: int64
In [10]: import seaborn as sns
         print(sns.__version__)
         0.12.2
```

3. Visualisation:

Univariate Analysis Bivariate Analysis Multivariate Analysis 3.1. Univariate Analysis:

```
In [11]:
         num plots = len(float64 col)
          num rows = 1
          num_cols = 2
          fig, axes = plt.subplots(num_rows, num_cols, figsize=(6, 6))
          axes = axes.flatten()
          for i, column in enumerate(float64 col):
              if i < num_rows * num_cols:</pre>
                  ax = axes[i]
                  sns.histplot(data=Titanic, x=column, bins=10, stat='count', ax=ax, kde =True)
                  ax.set xlabel(column)
                  ax.set_ylabel('Count')
                  ax.set title(f'Histogram of {column}')
                  skewness = skew(Titanic[column].dropna())
                  skewness_text = f'Skewness: {skewness:.2f}'
                  ax.text(0.05, 0.95, skewness text, transform=ax.transAxes, fontsize=10, vertice
              else:
                  break
          fig.tight_layout()
          plt.show()
```



```
num_plots = len(object_col)
In [12]:
          num_rows = 3
          num_cols = 3
          fig, axes = plt.subplots(num_rows, num_cols, figsize=(12, 12))
          axes = axes.flatten()
          for i, column in enumerate(object_col):
              if i < num_rows * num_cols:</pre>
                  ax = axes[i]
                  sns.histplot(data=Titanic, x=column, bins=10, stat='count', ax=ax)
                  ax.set_xlabel(column)
                  ax.set_ylabel('Count')
                  ax.set_title(f'Histogram of {column}')
              else:
                  break
          fig.tight_layout()
          plt.show()
```


3.2. Bivariate Analysis:

localhost:8888/nbconvert/html/ADS DA 2.ipynb?download=false

Survival by Gender, Age and Fare


```
In [16]: Titanic.age[Titanic.pclass == 1].plot(kind='kde')
   Titanic.age[Titanic.pclass == 2].plot(kind='kde')
   Titanic.age[Titanic.pclass == 3].plot(kind='kde')
   # plots an axis lable
   plt.xlabel("Age")
   plt.title("Age Distribution within classes")
# sets our legend for our graph.
   plt.legend(('1st Class', '2nd Class', '3rd Class'), loc='best')
```

Out[16]: <matplotlib.legend.Legend at 0x1a342b63370>

Age Distribution within classes

3.3. Multivariate Analysis:

Out[17]: Text(0.5, 1.0, 'Correlation between features')

In [18]: sns.pairplot(Titanic)

<_array_function__ internals>:180: RuntimeWarning: Converting input from bool to <cl
ass 'numpy.uint8'> for compatibility.

Out[18]: <seaborn.axisgrid.PairGrid at 0x1a342e6ff10>

<__array_function__ internals>:180: RuntimeWarning: Converting input from bool to <cl
ass 'numpy.uint8'> for compatibility.

- 1. Peform Descriptive Statistics:
- 2. Mean, median, mode, variance, standard deviation, IQR
- 3. Describe().

```
In [19]: for column in float64_col:
    quantile = Titanic[column].quantile(q=[0.25, 0.75])
    print(f"Quantile values for column '{column}':")
    print(quantile)

q1 = quantile.iloc[0]
    q3 = quantile.iloc[1]
    IQR = q3 - q1

    print(f"Interquartile Range (IQR) for column '{column}': {IQR}")
    lower_extreme=quantile.iloc[1]-(1.5* IQR)
    print("Lower Extreme : ", lower_extreme)
    upper_extreme=quantile.iloc[0]+(1.5*IQR)
    print("Upper Extreme : ", upper_extreme,"\n")
```

```
for column in int64_col:
    quantile = Titanic[column].quantile(q=[0.25, 0.75])
    print(f"Quantile values for column '{column}':")
    print(quantile)

q1 = quantile.iloc[0]
    q3 = quantile.iloc[1]
    IQR = q3 - q1

print(f"Interquartile Range (IQR) for column '{column}': {IQR}")
    lower_extreme=quantile.iloc[1]-(1.5* IQR)
    print("Lower Extreme : ", lower_extreme)
    upper_extreme=quantile.iloc[0]+(1.5*IQR)
    print("Upper Extreme : ", upper_extreme,"\n")
```

```
Quantile values for column 'age':
         0.25
                 20.125
         0.75
                 38.000
         Name: age, dtype: float64
         Interquartile Range (IQR) for column 'age': 17.875
         Lower Extreme : 11.1875
         Upper Extreme: 46.9375
         Quantile values for column 'fare':
         0.25
                  7.9104
         0.75
                 31,0000
         Name: fare, dtype: float64
         Interquartile Range (IQR) for column 'fare': 23.0896
         Lower Extreme : -3.634399999999999
         Upper Extreme: 42.5448
         Quantile values for column 'survived':
         0.25
                 0.0
         0.75
                 1.0
         Name: survived, dtype: float64
         Interquartile Range (IQR) for column 'survived': 1.0
         Lower Extreme : -0.5
         Upper Extreme : 1.5
         Quantile values for column 'pclass':
         0.25
                 2.0
         0.75
                 3.0
         Name: pclass, dtype: float64
         Interquartile Range (IQR) for column 'pclass': 1.0
         Lower Extreme : 1.5
         Upper Extreme : 3.5
         Quantile values for column 'sibsp':
         0.25
                 0.0
         0.75
                 1.0
         Name: sibsp, dtype: float64
         Interquartile Range (IQR) for column 'sibsp': 1.0
         Lower Extreme : -0.5
         Upper Extreme : 1.5
         Quantile values for column 'parch':
         0.25
                 0.0
         0.75
                 0.0
         Name: parch, dtype: float64
         Interquartile Range (IQR) for column 'parch': 0.0
         Lower Extreme : 0.0
         Upper Extreme: 0.0
         print("Variance :\n\n", numeric_col.var())
In [20]:
         print("Mean : \n\n", numeric_col.mean())
          print("Median : \n\n", numeric col.median())
          print("Mode : \n\n", numeric_col.mode())
          print("Standard Deviation : \n\n", numeric_col.std())
```

Variance :

survived0.236772pclass0.699015age211.019125sibsp1.216043parch0.649728fare2469.436846

dtype: float64

Mean :

survived 0.383838 pclass 2.308642 age 29.699118 sibsp 0.523008 parch 0.381594 fare 32.204208

dtype: float64

Median :

survived 0.0000 pclass 3.0000 age 28.0000 sibsp 0.0000 parch 0.0000 fare 14.4542 dtype: float64

Mode :

survived pclass age sibsp parch fare 0 0 3 24.0 0 0 8.05

Standard Deviation :

survived 0.486592 pclass 0.836071 age 14.526497 sibsp 1.102743 parch 0.806057 fare 49.693429

dtype: float64

In [21]: numeric_col.describe()

Out[21]: surviv

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

1. Handling Missing Values:

```
In [22]:
         null counts = Titanic.isnull().sum()
          total counts = Titanic.count()
          dict 1 = {'Total Count' : total counts, "Null Count" : null counts}
          null_table = pd.DataFrame(dict_1)
          null_table.index.name = "Column Names"
          print(null table)
                        Total Count Null Count
         Column Names
                                891
                                               0
         survived
                                891
                                               0
         pclass
         sex
                                891
                                               0
                                            177
                                714
         age
                                891
         sibsp
                                               0
                                               0
         parch
                                891
         fare
                                891
                                               0
         embarked
                                889
                                               2
                                891
                                               0
         class
                                               0
         who
                                891
         adult male
                                891
                                              0
         deck
                                203
                                            688
         embark_town
                                889
                                               2
                                               0
         alive
                                891
         alone
                                891
                                               0
         #For Embarked column:
In [23]:
          Titanic["embarked"] = Titanic["embarked"].fillna('C')
          #For Embark town column:
          Titanic["embark_town"] = Titanic["embark_town"].fillna('Cherbourg')
          #For Deck column:
          Titanic['deck'] = Titanic['deck'].fillna(Titanic['deck'].mode()[0])
          #For Age Column:
          Titanic['age'] = Titanic['age'].fillna(Titanic['age'].mean())
          null counts = Titanic.isnull().sum()
          total_counts = Titanic.count()
          dict_1 = {'Total Count' : total_counts, "Null Count" : null_counts}
          null table = pd.DataFrame(dict 1)
          null_table.index.name = "Column Names"
          print(null_table)
```

	Total Count	Null Count
Column Names		
survived	891	0
pclass	891	0
sex	891	0
age	891	0
sibsp	891	0
parch	891	0
fare	891	0
embarked	891	0
class	891	0
who	891	0
adult_male	891	0
deck	891	0
embark_town	891	0
alive	891	0
alone	891	0

- 1. Finding Outliers and Removing it:
 - A. Finding Outliers.
 - B. Removing It. 6.1. Finding Outliers

```
In [24]: fig, axes = plt.subplots(1, 2, figsize=(10, 6))

# Boxplot for 'age'
sns.boxplot(data=Titanic, x='age', ax=axes[0])
axes[0].set_title('Boxplot of Age')

# Boxplot for 'fare'
sns.boxplot(data=Titanic, x='fare', ax=axes[1])
axes[1].set_title('Boxplot of Fare')

# Adjust the spacing between subplots
plt.tight_layout()

# Show the plots
plt.show()
```


6.2. Removing(Handling) Outliers:

```
In [25]: #From the above plot, can see fare is the column that have outliers which are to be re
    #remaining numeric columns are not useful that much.
    Q1 = Titanic['fare'].quantile(0.25)
    Q3 = Titanic['fare'].quantile(0.75)
    IQR = Q3 - Q1
    whisker_width = 1.5
    lower_whisker = Q1 - (whisker_width*IQR)
    upper_whisker = Q3 + (whisker_width*IQR)
    Titanic['fare']=np.where(Titanic['fare']>upper_whisker,upper_whisker,np.where(Titanic['fare'])
```

After removing most of the outliers.

```
In [26]: # Boxplot for 'fare'
sns.boxplot(data=Titanic, x='fare')
Out[26]: <Axes: xlabel='fare'>
```


1. Check for Categorical columns and perform encoding:

```
In [27]:
          # Get the list of categorical columns
          categorical_columns = Titanic.select_dtypes(include=['object']).columns
          # Perform one-hot encoding
          Titanic_encoded = pd.get_dummies(Titanic, columns=categorical_columns, drop_first=True
          Titanic_encoded.head()
Out[27]:
             survived pclass
                                                  fare adult_male alone sex_male embarked_Q ... who_\
                            age sibsp parch
                             22.0
          0
                                                7.2500
                                                             True
                                                                   False
                          1 38.0
                                              65.6344
                                                             False
                                                                   False
                                                                                0
          2
                          3 26.0
                                                                                0
                   1
                                                7.9250
                                                             False
                                                                    True
                                                                                            0
          3
                          1 35.0
                                            0 53.1000
                                                             False
                                                                   False
                                                                                0
          4
                   0
                          3 35.0
                                      0
                                                8.0500
                                                                                1
                                                             True
                                                                    True
                                                                                            0
         5 rows × 24 columns
```

- 1. Split the data into dependent and independent variables.
- 2. Scale the independent variables:

```
In [28]: X = Titanic.drop('survived', axis=1)
y = Titanic['survived']
```

1. Split the data into training and testing:

```
In [29]: # Scale the independent variables
    scaler = StandardScaler()
    X_encoded = pd.get_dummies(X)

# Split the data into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X_encoded, y, test_size=0.2, rando
    X_scaled = scaler.fit_transform(X_train)
    # Scaling should be applied to only to the training data and not to the whole dataset
```