Correction du DHC n°4

Exercice 1

1. Pour comparer deux fractions, on doit les écrire avec un dénominateur commun.

Or on remarque que 8+3+1=12, qui est un multiple de 3, donc 381 est un multiple de

3. Plus précisément, à l'aide de la calculatrice (ou non), on trouve que : $127 \times 3 = 381$.

On a donc que:

$$-\frac{100}{3} = \frac{-100}{3} = \frac{-12700}{381}$$

Comme
$$\frac{-12700}{381} < \frac{-6250}{381}$$
, alors on en conclut que : $-\frac{100}{3} < -\frac{6250}{381}$.

2. Pour déterminer la distance séparant les deux plongeurs, il faut calculer la différence entre les deux profondeurs. C'est à dire qu'on soustrait la plus petite longueur à la plus grande. On peut s'aider d'un schéma comme celui ci-contre. On calcule donc :

$$\frac{-6250}{381} - \frac{-100}{3} = \frac{-6250}{381} - \frac{-12700}{381} = \frac{-6250 - (-12700)}{381}$$

$$Or -6250 - (-12700) = -6250 + 12700 = 6450.$$

Donc
$$\frac{-6250 - (-12700)}{381} = \frac{6450}{381}$$
.

Enfin:

$$\frac{6450}{381} = \frac{2 \times 3 \times 3 \times 5 \times 5 \times 43}{3 \times 127} = \frac{2 \times 3 \times 3 \times 5 \times 43}{127} = \frac{2150}{127}$$

Commençons par donner des noms à chaque nombre manquant pour bien dire quel nombre on calcul à chaque étape :

$-\frac{1}{4}$	A	$\frac{-1}{6}$
$\frac{5}{-6}$	В	C
$-\frac{5}{3}$	D	E

Ensuite, on va donner des noms aux lignes et colonnes afin de bien expliquer les calculs :

C1	C2	C3
$-\frac{1}{4}$	A	$\frac{-1}{6}$
$\frac{5}{-6}$	В	C
$-\frac{5}{3}$	D	E

D2

Enfin, on nomme aussi les deux diagonales:

D1

$-\frac{1}{4}$	A	$\frac{-1}{6}$
$\frac{5}{-6}$	В	C
$-\frac{5}{3}$	D	E

$-\frac{1}{4}$	A	$\frac{-1}{6}$
$\frac{5}{-6}$	B	C
$-\frac{5}{3}$	D	E

Avant toute chose, puisque la somme des quotients de chaque ligne, colonne ou diagonale est la même, on va déterminer à quoi celle-ci est égale. On peut alors regarder la somme des nombres de la colonne C1:

$$-\frac{1}{4} + \frac{5}{-6} + -\frac{5}{3} = \frac{-1}{4} + \frac{-5}{6} + \frac{-5}{3} = \frac{-3}{12} + \frac{-10}{12} + \frac{-20}{12} = \frac{-3 + (-10) + (-20)}{12} = \frac{-33}{12} + \frac{-33}{12} = \frac{-3}{12} = \frac{-3}{12} + \frac{-33}{12} = \frac{-3}{12} = \frac{-3$$

Calcul de A: On s'intéresse à la ligne L1 puisqu'on connaît tous les nombres sauf A. On sait que $A + -\frac{1}{4} + \frac{-1}{6} = \frac{-33}{12}$ donc :

$$A = \frac{-33}{12} - (\frac{-1}{4} + \frac{-1}{6}) = \frac{-33}{12} - (\frac{-3}{12} + \frac{-2}{12}) = \frac{-33}{12} - \frac{-5}{12} = \frac{-33}{12} + \frac{5}{12} = \frac{-28}{12} + \frac{-2}{12} = \frac{-28}{12} = \frac{-28}{12} + \frac{-2}{12} = \frac{-28}{12} = \frac{-28}{12}$$

Calcul de B: On s'intéresse à la diagonale **D2** puisqu'on connaît tous les nombres sauf B. On sait que $B + \frac{-1}{6} + \frac{-5}{3}$ donc :

$$B = \frac{-33}{12} - \left(\frac{-1}{6} + \frac{-5}{3}\right) = \frac{-33}{12} - \left(\frac{-2}{12} + \frac{-20}{12}\right) = \frac{-33}{12} - \frac{-22}{12} = \frac{-33}{12} + \frac{22}{12} = \frac{-11}{12}$$

Calcul de C: On s'intéresse à la ligne L2 puisqu'on connaît tous les nombres sauf C. On sait que $C + \frac{-5}{6} + \frac{-11}{12}$ donc :

$$B = \frac{-33}{12} - \left(\frac{-5}{6} + \frac{-11}{12}\right) = \frac{-33}{12} - \left(\frac{-10}{12} + \frac{-11}{12}\right) = \frac{-33}{12} - \frac{-21}{12} = \frac{-33}{12} + \frac{21}{12} = \frac{-12}{12}$$

Calcul de D: On s'intéresse à la colonne **C2** puisqu'on connaît tous les nombres sauf D. On sait que $D + \frac{-28}{12} + \frac{-11}{12}$ donc :

$$B = \frac{-33}{12} - \left(\frac{-28}{12} + \frac{-11}{12}\right) = \frac{-33}{12} - \frac{-39}{12} = \frac{-33}{12} + \frac{39}{12} = \frac{6}{12}$$

Calcul de E: On s'intéresse à la ligne L3 puisqu'on connaît tous les nombres sauf E. On sait que $E + \frac{6}{12} + \frac{-5}{3}$ donc :

$$B = \frac{-33}{12} - (\frac{6}{12} + \frac{-5}{3}) = \frac{-33}{12} - (\frac{6}{12} + \frac{-20}{12}) = \frac{-33}{12} - \frac{-14}{12} = \frac{-33}{12} + \frac{14}{12} = \frac{-19}{12}$$

Finalement, après simplification des fractions, on obtient le carré magique suivant :

$-\frac{1}{4}$	$\frac{-7}{3}$	$\frac{-1}{6}$
$\frac{5}{-6}$	$\frac{-11}{12}$	-1
$-\frac{5}{3}$	$\frac{1}{2}$	$\frac{-19}{12}$

Il reste toujours à vérifier que les sommes des quotients de la colonne C3 et de la diagonale D1 sont bien égales à $\frac{-33}{12}$. Après vérification sur la calculatrice (ou à la main), on se rend compte que c'est bien le cas.