Data, Types of Data and Data Collection using Sensors

Data Science

- Multi-disciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insight from structured and unstructured data
- · Central concept is gaining insight from data
- Machine learning uses data to extract knowledge

Data Science

- Multi-disciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insight from structured and unstructured data
- · Central concept is gaining insight from data
- Machine learning uses data to extract knowledge

Data Collection

- · Data manifests itself in many different forms
- Different forms of data require different ways to collect them and different storage solutions
- Collection of data may consists of sending out surveys, polls or doing other experiments
- Data based on the way it is collected:
 - Data that comes from surveys
 - · Usually textual form of data or mixed
 - Data in the form of signals (comes from sensors)
 - · Speech/Audio,
 - · Images and videos
 - · Temperature readings, Humidity
 - Seismic data
 - EEG (all bio-type signals) etc.
- According to the objective of the task, the way the data is collected will change

Types of Data: Based on Organization

- Unstructured data:
 - Rawest form of data
 - Example: Any type of files like texts, images, sounds or videos etc.
 - This type of data stored in a repository of files
 - Well organised directories on the computer hard drive
- Structured data:
 - It is a tabular data (rows and columns), which are very well defined
 - Stored in databases
 - Spreadsheets [Comma Separated Value (CSV) format]
 - Oracle
 - DB2
 - MySQL etc.

5

Types of Data: Based on Organization

- Semi-Structured data:
 - Anywhere between unstructured and structured data
 - A consistent format is defined, however there is no strict structure and parts of data may be incomplete or different type
 - Example: Data in the form of XML and JSON
 - Stored in document oriented databases

Types of Data: Based on Organization

Semi-Structured data:

```
- Anyw <?xml version="1.0" encoding="UTF-8"?>
                                                             ata
         <bookstore>

    A co

                                                            ot strict
  lete or
           <title lang="en">Everyday Italian</title>
  differ
            <author>Giada De Laurentiis
Exam
            <year>2005</year>
    • St
           <price>30.00</price>
           </book>
           <book category="children">
             <title lang="en">Harry Potter</title>
             <author>J K. Rowling</author>
             <year>2005</year>
             <price>29.99</price>
           </book>
           <book category="web">
             <title lang="en">XQuery Kick Start</title>
             <author>James McGovern</author>
             <author>Per Bothner</author>
             <author>Kurt Cagle</author>
```

Type of Data: Based on Variables (Value) found in Data

- · Mainly in Structured Data:
- Numerical data:
 - Data represented as numbers
 - Data in which information is measurable
 - This type of data is called quantitative data as its describes a quantity
 - Two types:
 - · Continuous valued data:
 - There is no limit on the range of the values
 - Example: Cost of the books, temperature etc.
 - · Discrete valued data:
 - There is a specific limit on the range of the values
 - Example: number of members of family, number of days in a month etc.

Type of Data: Based on Variables (Value) found in Data

- Categorical data:
 - Data that is not a number. It can be string of text or date
 - It describe an item or event to one of few different categories
 - Example: Ethnicity, gender, eye colour, etc.
 - This type of data is called qualitative data as its describes a quality
 - Three types values they hold:
 - · Ordinal values: Values that have a set order to them
 - Example: Severity of a alarm as "Critical", "Medium" and ""Low", Ranking of a race as "First", Second", Third" ...
 - Nominal values: Values that have no set order to them
 - Example: Values for the variables "Marital Status", "Country" etc.
 - · Binary values: Special type of categorical data
 - Have only two values "Yes" and "No" OR "True" and "False" OR "1" and "0"

Type of Data: Based on Variables (Value) found in Data

- Time series data:
 - It involve time and some kind of value
 - Example: Temperature at every hour
 - It is clearly structured and numeric in nature
 - Special case of numerical data
 - This type of data is important because of IoT and sensors
 - Data from sensors are almost always time-series in nature

Date/ Time	Temperature (C)/ Humidity (%)	Pressure (Pa)	Rain (inches)	Light intensity (lux)	Accelerations (g)	Force (N)	Moisture (%)
2017-09- 06 18:44:32	23.00,56.00	617.64	0.01	3	0.52,0.31,-0.80,0.00,0.00,0.00,31.36,-159.01	0.02	81.00
2017-09- 06 18:33:32	24.00,58.00	619.47	0.01	12	0.52,0.30,-0.79,0.00,0.00,0.00,31.45,-159.12	0.02	82.00
2017-09- 06 18:22:39	24.00,58.00	623.37	0.00	71	0.52,0.31,-0.80,0.00,0.00,0.00,31.35,-158.88	0.02	83.00
2017-09- 06 18:11:31	25.00,60.00	627.02	0.05	194	0.51,0.31,-0.80,0.00,0.00,0.00,30.80,-159.00	0,02	81.00

Data Collection from Sensors

 Sensors are the devices that respond to the environment around it and convert the physical parameters into a signal (e.g., optical, electrical, mechanical) suitable for processing

- **Example**: a temperature sensor outputs an electrical signal whose voltage or current can be used to identify the temperature around it
- Sensors can be an electrical/mechanical component, a module or a subsystem

11

Different Types of Sensors

- Acoustic, sound sensors (e.g., microphone)
- Visual sensors (e.g. cameras)
- Environmental sensors (e.g., temperature, humidity, pressure etc.)
- Chemical sensors (e.g., NOx sensors)
- Flow sensors (e.g., water flow sensors)
- Motion sensors (e.g., gyroscope)
- Proximity or presence sensor (e.g., Passive Infrared (PIR))
- Biosensors (e.g., glucose monitor)

Architecture and Features of LMS

 The LMS monitors a number of weather and soil parameters via sensors on deployment location

Temperature & Humidity (-40 C to +80 C & 0-100 %)

Barometric Pressure (300-1100 mb)

Rainfall Intensity (in mm)

Light Intensity (0 - 65535 Lux)

Soil movement (±2000°/sec rotational & ±16g gravitational acceleration)

Soil force (0-100N)

Soil moisture (0-100 %)

Source: Dr. Varun Dutt

17

Architecture and Features of LMS

 The LMS monitors a number of weather and soil parameters via sensors on deployment location

Architecture diagram of LMS

The LMS will alert people via traffic lights, SMSs, or smart-apps on mobile phones about the danger of impending landslides

Source: Dr. Varun Dutt

Architecture and Features of LMS

• The LMS monitors a number of weather and soil parameters via sensors on deployment location

Architecture diagram of LMS

Date/ Time	Temperature (C)/ Humidity (%)	Pressure (Pa)	Rain (inches)	Light intensity (lux)	Accelerations (g)	Force (N)	Moisture (%)
2017-09- 06 18:44:32	23.00,56.00	617.64	0.01	3	0.52,0.31,-0.80,0.00,0.00,0.00,31.36,-159.01	0,02	81.00
2017-09- 06 18:33:32	24.00,58.00	619.47	0.01	12	0.52,0.30,-0.79,0.00,0.00,0.00,31,45,-159.12	0.02	82.00
2017-09- 06 18:22:39	24.00,58.00	623.37	0.00	71	0.52,0.31,-0.80,0.00,0.00,0.00,31.35,-158.88	0.02	83.00
2017-09- 06 18:11:31	25.00,60.00	627.02	0.05	194	0.51,0.31,-0.80,0.00,0.00,0.00,30.80,-159.00	0,02	81.00

Source: Dr. Varun Dutt