

Deep Learning con Pytorch

Juan Pablo Morales @juanpamf

¿Por qué el Deep Learning es más poderoso que el ML tradicional?

Going deeper: Más capas

Hay razones por las cuáles con más capas obtenemos mayor performance?

Teorema de aproximación universal (Hornik et al. 1991)

- Toda función continua en $[0,1]^d$ es aproximable por una red de una capa suficientemente grande.
- Key Takeaway: Las redes de una capa son igual de "expresivas" que las redes profundas.

Capacidad y cantidad de neuronas

Profundidad y costo en parámetros (Telgarski et al. 2016)

- Existen funciones que pueden ser aproximadas por una red de k^3 capas que para ser aproximadas por redes de k capas necesitan al menos 2^k
- A mismo presupuesto en parámetros (optimización!) las redes profundas son altamente más expresivas.

Oscilaciones exponenciales

1 layer adicional = 2x oscilaciones

Profundidad 1 vs Profundidad 2

Los modelos profundos son más difíciles de optimizar

Deeper models are harder to optimize

Residual networks (He et al. 2016)

$$m(x) + x$$

Las innovaciones hacen posibles redes cada vez más profundas

