Quiz, 10 questions

X Try again once you are ready.

Required to pass: 80% or higher

You can retake this quiz up to 3 times every 8 hours.

Back to Week 2

Retake

•		
1		

1/1 points

Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?

 $a^{[3]\{7\}(8)}$ $a^{[8]\{7\}(3)}$

 $a^{[8]\{3\}(7)}$

 $\bigcirc \quad a^{[3]\{8\}(7)}$

Correct

0/1 points

2.

Which of these statements about mini-batch gradient descent do you agree with?

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.

Training one epoch (one pass through the training set) using

mini-batch gradient descent is faster than training one epoch Optimization algorithms gradient descent.

6/10 points (60%)

Quiz, 10 questions	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).		
	This should not be selected		
	1/1 points		
	3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?		
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.		
	Un-selected is correct		
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.		
	Correct		
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.		
	Un-selected is correct		
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.		

Correct

Quiz, 10 questions

1/1 points

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

something is wrong.

	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
	If you're using mini-batch gradient descent, something is wrong But if you're using batch gradient descent, this looks acceptable
0	If you're using mini-batch gradient descent, this looks

acceptable. But if you're using batch gradient descent,

Quiz, 10 questions

0/1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=10$$
 , $v_2^{corrected}=7.5\,$

This should not be selected

$$igcup v_2 = 7.5$$
 , $v_2^{corrected} = 10$

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$igcup v_2=10$$
 , $v_2^{corrected}=10$

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

Optimization algorithms

6/10 points (60%)

Quiz, 10 questions

Correct

- $lpha = rac{1}{\sqrt{t}}\,lpha_0$ $lpha = 0.95^tlpha_0$

1/1 points

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = eta v_{t-1} + (1-eta) heta_t.$ The red line below was computed using eta = 0.9. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Optimization algorithms

6/10 points (60%)

Quiz, 10 questions

Increasing β will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing β will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

0/1 points

8.

Optimization algorithms

6/10 points (60%)

Quiz, 10 questions

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)

This should not be selected

- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

0/1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

C

6/10 points (60%)

Optimization algorithms				
Quiz, 10 questions	Try better random initialization for the weights			
This should be selected				
	Try initializing all the weights to zero			
Un-selected is correct				
	Try tuning the learning rate $lpha$			
Correct				
	Try mini-batch gradient descent			
Correct				
✓	1 / 1 points			
10. Which	of the following statements about Adam is False?			
	The learning rate hyperparameter α in Adam usually needs to be tuned.			
	Adam combines the advantages of RMSProp and momentum			
0	Adam should be used with batch gradient computations, not with mini-batches.			
Correct				
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$)			