- 1. What are the stages of the ML cycle? Which ones are iterative stages?
 - Pre-processing
 - Feature-Extraction
 - Feature Selection
 - Machine Learning or Model creation
 - Evaluation and Model Selection

All the stages are iterative, which means that you might come back to a previous stage in order to refine the process.

- 2. What are the different types of learning?
 - Supervised (Classification, Regression)
 - Unsupervised
- 3. How would you describe the overfitting and underfitting phenomenon?
 - Overfitting: Capturing noise in the data, because of a very complex model.
 - Underfitting: Unable to capture the patterns in the data, because of a very simple model.

2 Naive Bayes

2.1 Estimate probabities

- 1. $P(yes) = \frac{6}{10} = 0.6$
- 2. $P(red|yes) = \frac{3}{6} = 0.5$
- 3. $P(grandtourer|yes) = \frac{2}{6} = \frac{1}{3}$
- 4. $P(domestic|yes) = \frac{2}{6} = \frac{1}{3}$
- 5. $P(no) = \frac{4}{10} = 1 P(yes) = 0.4$
- 6. $P(red|no) = \frac{1}{4} = 0.25$
- 7. $P(grandtourer|no) = \frac{2}{4} = 0.5$
- 8. $P(domestic|no) = \frac{3}{4} = 0.75$

2.2 Inference

We are asked to calculate P(yes|red, gt, dom). Let's insert this in the formula given (equation 1) and ignore Z for the moment (which is why we repace "=" with " \propto ").

$$P(yes|red, gt, dom) \propto P(yes) \cdot P(red|yes) \cdot P(gt|yes) \cdot P(dom|yes)$$
 (1)

$$\propto 0.6 \cdot 0.5 \cdot \frac{1}{3} \cdot \frac{1}{3} \tag{2}$$

$$\propto \frac{1}{30}$$
 (3)

For the normalization Z, we now also use the formula given in the assignment (equation 2). Here we sum over all possible values of y given the same attributes X, i.e.

$$Z = \sum_{y \in \{yes, no\}} P(y) \cdot P(red|y) \cdot P(gt|y) \cdot P(dom|y)$$
 (4)

For y = yes we have done that already above. Now we still need to do it for y = no.

$$P(no|red, qt, dom) \propto P(no) \cdot P(red|no) \cdot P(qt|no) \cdot P(dom|no)$$
 (5)

$$\propto 0.4 \cdot 0.25 \cdot 0.5 \cdot 0.75 \tag{6}$$

$$\propto \frac{3}{80} \tag{7}$$

From here, we can already see that it is more likely that the car is not being stolen as $\frac{1}{30} < \frac{3}{80}$. Since we are asked to calculate the exact probability, we can now easily do so with the following formula:

$$P(yes|red, gt, dom) = \frac{\frac{1}{30}}{\frac{1}{30} + \frac{3}{80}}$$
 (8)

$$= \frac{8}{17} \approx 0.47. \tag{9}$$

So the probability that a car with the given attributes is stolen is approximately 0.47

2.3 Benefits and downsides

Benefits

- 1. Less parameters
- 2. It is fast

3. It is easy

Downsides

1. Conditional independence is a strong assumption that might not hold in practice.

2.4 Derivation of Naive Bayes

The Bayes theorem states as follows:

$$P(y|X) = \frac{P(y)P(X|y)}{P(X)} \tag{10}$$

The nominator is equivalent to P(y, X) and set P(X) = Z. This gives us

$$P(y|X) = \frac{1}{Z}P(y,X) \tag{11}$$

Using the following identity (chain rule of probabilities):

$$P(y, X) = P(y) \cdot P(x_1|y) \cdot P(x_2|y, x_1) \cdot P(x_3|y, x_1, x_2) \cdot \dots \cdot P(x_M|y, x_1, x_2, \dots, x_{M-1})$$

and the assumption of conditional independence

$$P(y,X) := P(y) \cdot P(x_1|y) \cdot P(x_2|y) \cdot P(x_3|y) \cdot \dots \cdot P(x_M|y)$$

$$:= P(y) \prod_{i=1}^{M} P(x_i|y)$$
(12)

we can obtain the formula for Naive bayes by plugging Equation 12 into Equation 11:

$$P(y|X) = \frac{1}{Z}P(y)\prod_{i=1}^{n}P(x_{i}|y)$$
(13)

3 Ranking Losses

1. We can reformulate this ranking problem as pairwise classification problem, where we create an auxiliary target y^* that compares two values x_1^* and x_2^* and whose output is computed as: $y^* = 1$ if the input x_2^* has a higher score than x_1^* , otherwise $y^* = 0$. We also create auxiliary predictions for the ML models $\hat{y}^* = \sigma(\hat{y}(x_2^*) - \hat{y}(x_1^*))$, where $\sigma(x) = \frac{1}{1 + e^{-x}}$.

Thus, we formulate the loss as a logistic loss using these new auxiliary targets:

$$\mathcal{L} = L(y^*, \hat{y}^*) = -y^* \cdot \log(\hat{y}^*) - (1 - y^*) \cdot \log(1 - \hat{y}^*)$$
(14)

x_1^*	x_2^*	y^*	\hat{y}_1^*	\hat{y}_2^*	$L(y^*, \hat{y}_1^*)$	$L(y^*, \hat{y}_2^*)$
x_1	x_2	1	$\sigma(3-1) = 0.88$	$\sigma(3-2) = 0.73$	0.05	0.14
\mathbf{x}_2	x_3	1	$\sigma(2-3) = 0.26$	$\sigma(7-3) = 0.98$	0.58	0.01
\mathbf{x}_1	x_3	1	$\sigma(2-1) = 0.73$	$\sigma(7-2) = 0.99$	0.14	0.01

We explain the first row in the table:

- $y(\mathbf{x}_2) = 2, y(\mathbf{x}_1) = 1$ (ground truth)
- If we set $x_1^* = \mathbf{x}_1, x_2^* = \mathbf{x}_2$ (arbitrary decision), then $y(x_2^*) > y(x_1^*)$, thus $y^* = 1$.
- $\hat{y}_1^*(\mathbf{x}_1, \mathbf{x}_2) = \sigma(\hat{y}_1(\mathbf{x}_2) \hat{y}_1(\mathbf{x}_1)) = \sigma(3-1)$
- $\hat{y}^*(\mathbf{x}_1, \mathbf{x}_2) = \sigma(\hat{y}_2(\mathbf{x}_2) \hat{y}_2(\mathbf{x}_1)) = \sigma(3-2)$
- 2. After the previous point, it is clear that the best one is the second model (total loss = 0.15). If we use the squared error (SE), the first model would look like the best (SE of model 1=2 vs SE of model 2=18), but it is not the case. Remember that we do not care about the real value but we care about the ranking of the predicted scores.