Compboost

Modular framework for component-wise boosting

Daniel Schalk, Janek Thomas, Bernd Bischl 10 July 2018

LMU Munich Working Group Computational Statistics

Table of Contents

Why Component-Wise Boosting

About Compboost

Small Usecase

Small Benchmark

Next Steps

Why Component-Wise Boosting

Why Component-Wise Boosting?

Why Component-Wise Boosting?

- Inherent (unbiased) feature selection [HHKS11].
- The resulting model is sparse since important effects are selected first and therefore it is able to learn in high-dimensional feature spaces $(p \gg n)$.
- The parameters are updated iteratively. Therefore, the whole trace of how the model evolves is available.

Available R Packages

Most popular package for model-based boosting is mboost [HBK $^+17$]:

- Large number of available base-learner and losses.
- Suited for more complex problems:
 - Functional data [BRG17]
 - GAMLSS models [MFH⁺12]
 - Survival analysis
- Extendible with custom base-learner and losses.

So, why another boosting implementation?

- Main algorithm is implemented in R which is not the best choice for expensive algorithms.
- Complex implementation:
 - Nested scopes
 - Mixture of different R class systems.

About Compboost

About Compboost

- With mboost as standard, we want to keep the modular principle of defining custom base-learner and losses.
- Completely written in C++ and exposed by Rcpp [Edd13, EF17] to obtain high performance and full memory control.
- R API is written with R6 to provide convenient wrapper.
- Major parts of the compboost functionality are unit tested against mboost to ensure correct use.

Compboost: Functionality

Main components:

- Base-learner and loss classes.
- Logger class for early stopping and logging mechanisms.

Possible extensions:

- Custom R or C++ base-learner.
- Custom R or C++ loss objects.
- Custom logging and stopping rules via custom losses.

Custom classes can be defined without recompiling the whole package, even when using C++ functions.

Small Usecase

Initializing Model

```
library(compboost)

data(PimaIndiansDiabetes, package = "mlbench")

cboost = Compboost$new(PimaIndiansDiabetes, "diabetes",
   loss = BinomialLoss$new())

cboost$addBaselearner("age", "spline", PSplineBlearner,
   degree = 3, n.knots = 10, penalty = 2, differences = 2)

cboost$addBaselearner("mass", "linear", PolynomialBlearner,
   degree = 1, intercept = TRUE)
```

Initializing Model

```
cboost$train(2000, trace = FALSE)
cboost
## Component-Wise Gradient Boosting
##
## Trained on PimaIndiansDiabetes with target diabetes
## Number of base-learners: 2
## Learning rate: 0.05
## Iterations: 2000
## Positive class: neg
## Offset: 0.3118
##
## BinomialLoss Loss:
##
##
     Loss function: L(y,x) = log(1 + exp(-2yf(x)))
##
##
```

Access Results

```
table(cboost$selected())
##
   age_spline mass_linear
##
         1511
                      489
head(cboost$risk())
## [1] 0.6582 0.6565 0.6549 0.6533 0.6518 0.6503
str(cboost$coef())
## List of 3
## $ age_spline : num [1:14, 1] 4.407 0.913 1.124 -1.044 0.126 ...
## $ mass_linear: num [1:2, 1] 3.0352 -0.0886
## $ offset : num 0.312
```

Plot Results

```
cboost$plot("age_spline", iters = c(100, 500, 1000, 2000))
```

Effect of age_spline

Additive contribution of predictor

Custom Poisson Loss: Definition

```
lossPoisson = function (truth, response) {
   return (-log(exp(response)^truth * exp(-exp(response)) / gamma(truth + 1)))
}
gradPoisson = function (truth, response) {
   return (exp(response) - truth)
}
constInitPoisson = function (truth) {
   return (log(mean.default(truth)))
}
# Define custom loss:
my.poisson.loss = CustomLoss$new(lossPoisson, gradPoisson, constInitPoisson)
```

Custom Poisson Loss: Train Model

```
data(VonBort, package = "vcd")
cboost = Compboost$new(VonBort, "deaths", loss = my.poisson.loss)
cboost$addBaselearner("year", "spline", PSplineBlearner)
cboost$train(100, trace = FALSE)
mod = mboost(deaths ~ bbs(year, lambda = 2), data = VonBort, family = Poisson(),
  control = boost control(mstop = 100, nu = 0.05))
head(cbind(
  compboost = as.numeric(cboost$coef()[[1]]),
  mboost = as.numeric(coef(mod)[[1]])))
##
        compboost mboost
## [1.] -1.2233 -1.2233
## [2,] -0.9133 -0.9133
## [3,] -0.6078 -0.6078
## [4.] -0.3389 -0.3389
## [5.] -0.1809 -0.1809
## [6,] -0.0788 -0.0788
```

Small Benchmark

Runtime Comparison Against Mboost

Memory Comparison Against Mboost

Next Steps

Next Steps

- Implementing more base-learner and loss functions.
- Support for multiclass classification.
- Parallel computations.
- Using sparse matrices to store, e.g., spline data matrices.

Where to Find

• Developed on GitHub:

www.github.com/schalkdaniel/compboost

Additional resources on the project page:

www.compboost.org

• Bug reports via the issue tracker.

Contributions are highly welcome!

References i

Sarah Brockhaus, David Rügamer, and Sonja Greven.

Boosting functional regression models with fdboost.

arXiv preprint arXiv:1705.10662, 2017.

Dirk Eddelbuettel.

Seamless R and C++ Integration with Rcpp.

Springer, New York, 2013. ISBN 978-1-4614-6867-7

Dirk Eddelbuettel and Romain François.

Exposing C++ functions and classes with rcpp modules.

Vignette included in R package Rcpp, URL http://CRAN.R-Project.org/package=Rcpp, 2017.

Torsten Hothorn, Peter Buehlmann, Thomas Kneib, Matthias Schmid, and Benjamin Hofner.

mboost: Model-Based Boosting, 2017.

R package version 2.9-0.

References ii

Benjamin Hofner, Torsten Hothorn, Thomas Kneib, and Matthias Schmid. A framework for unbiased model selection based on boosting. *Journal of Computational and Graphical Statistics*, 20(4):956–971, 2011.

Andreas Mayr, Nora Fenske, Benjamin Hofner, Thomas Kneib, and Matthias Schmid.

Generalized additive models for location, scale and shape for high dimensional data – a flexible approach based on boosting.

Journal of the Royal Statistical Society: Series C – Applied Statistics, 61(3):403–427, 2012.