Clustering

Rahul Shome

slides by Jo Ciucă comp3670@anu.edu.au

Reference book: Bishop: "Pattern Recognition and Machine Learning" Chapter 9.1

Cross-validation Review

- Formally, we partition our dataset into two sets $\mathcal{D} = \mathcal{R} \cup \mathcal{V}$, such that they do not overlap, i.e., $\mathcal{R} \cap \mathcal{V} = \phi$
- We train on our model on \mathcal{R} (training set)
- We evaluate our model on V (validation set)
- We have *K* partitions. In each partition *k*:
 - The training set $\mathcal{R}^{(k)}$ produces a predictor $f^{(k)}$
 - $f^{(k)}$ is applied to the validation set $\mathcal{V}^{(k)}$ to compute the empirical risk $R(f^{(k)},\mathcal{V}^{(k)})$
- All the empirical risks are averaged to approximate the expected of

$$\mathbb{E}_{V}[R(f, \mathcal{V})] \approx \frac{1}{K} \sum_{k=1}^{K} R(f^{(k)}, \mathcal{V}^{(k)})$$

Cross-validation – key insights

- The training set is limited -- not producing the best $f^{(k)}$
- The validation set is limited producing an inaccurate estimation of $R(f^{(k)}, \mathcal{V}^{(k)})$
- After averaging, the results are stable and indicative
- An extreme: leave-one-out cross-validation, where the validation set only contains one example.
- A potential drawback computation cost
 - The training can be time-consuming
 - Difficult to evaluate many model hyperparameters.
- This problem can be solved by parallel computing, given enough computational resources

Outline

- Unsupervised learning
- Clustering
- K-means clustering
- Discussion

Supervised Learning

Input: Data X and label y

Goal: Learn how to map X

to y

Examples: Classification,

regression

Supervised Learning

Unsupervised Learning

Input: Data X and label y

Input: Just data X, no labels

Goal: Learn how to map X to y

Goal: Learn *underlying* structure of the data

Examples: Classification, regression

Examples: Clustering, Dimensionality reduction

Unsupervised Learning

- No labels/responses. Finding structure in data.
- Dimensionality Reduction.

Clustering

 $T: \mathbb{R}^d \to \{1, 2, \dots, K\}$

Subspace Learning $T: \mathbb{R}^d \to \mathbb{R}^m$, m < D

Uses of Unsupervised Learning

Data compression

Uses of Unsupervised Learning

- To improve classification/regression (semi-supervised learning).
- 1. From unlabeled data, learn a good feature $T: \mathbb{R}^d \to \mathbb{R}^m$.
- 2. To labeled data, apply a transformation $T: \mathbb{R}^d \to \mathbb{R}^m$.

$$(T(x_1), y_1), ..., (T(x_N), y_N)$$

3. Perform classification/regression on transformed low-dimensional data.

What is clustering?

What is Clustering?

- Unsupervised learning no information from teacher
- The process of partitioning a set of data into a set of meaningful (hopefully) sub-classes, called clusters
- Cluster:
 - collection of data points that are "similar" to one another and collectively should be treated as a group (it is not the group we learned in linear algebra)
 - as a collection, are sufficiently different from other groups

Basic Clustering Methodology

Hierarchical Algorithms

Cluster the clusters

Agglomerative: pairs of items/clusters are successively linked to produce larger clusters

Divisive (partitioning): items are initially placed in one cluster and then divided into separate groups

Flat Algorithms

Usually start with a random (partial) partitioning of points into groups

Refine Iteratively

K-Means

Hierarchical Agglomerative

- Based on some methods of representing hierarchy of data points
- One idea: hierarchical dendogram (connects points based on similarity)

Hierarchical Agglomerative

- Compute distance matrix
- Put each data point in its own cluster
- Find most similar pair of clusters
 - merge pairs of clusters (show merger in dendogram)
 - update distance matrix
 - repeat until all data points are in one cluster

K-Means

Clusters

What your brain sees

What your brain sees

What the machine sees

What the machine sees

What the machine sees

How to Specify a Cluster

• By listing all its elements

$$C_1 = \{1,3,4,7,8,11\}$$

 $C_2 = \{2,5,6,9,10\}$

How to Specify a Cluster

- Using a representative
 - a. A point in center of cluster (centroid)
 - b. A point in the training data (exemplar)

Each point x_i will be assigned the closest representative.

Formalising the Problem

Input. Training data $S_N = \{x_1, x_2, ..., x_N\}, x_n \in \mathbb{R}^d$. Integer K

Output. Clusters $C_1, C_2, ..., C_K \subset \{1, 2, ..., N\}$ such that every data point is in one and only one cluster.

Cluster representatives $\{\mu_1, ..., \mu_K\}$

Some clusters could be empty!

Training Loss

Optimizing both clusters and representatives.

$$\mathcal{L}(\mathbf{R}, \mathbf{M}; S_n) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

where

$$S_n = \{x_1, x_2, \dots, x_N\}, x_i \in \mathbb{R}^d$$

 $r_{nk} \in \{0,1\}$ denotes which of the K clusters data point x_n is assigned to. If x_n is assigned to cluster k then $r_{nk} = 1$, and $r_{nj} = 0$ if $j \neq k$.

$$\mathbf{R} = \{r_{nk}\} \in \{0,1\}^{n \times k}, n = 1, ..., N, k = 1, ..., K$$

$$\mathbf{M} = [\mu_1, ..., \mu_K]^{\mathrm{T}}$$

Goal: find values for R and M so as to minimize L.

Training Loss

Sum of squared distances to closest representative.

 $loss \approx 11 \times (1)^2 = 11$

assume length of each edge is about 1

Training Loss

Sum of squared distances to closest representative (cluster center).

 $loss \approx 9 \times (0.1)^2 = 0.09$

assume length of each edge is about 0.1

Optimization Algorithm

$$\mathcal{L}(\mathbf{R}, \mathbf{M}; \mathcal{S}_n) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mathbf{\mu}_k\|^2$$

Goal. Minimize $\mathcal{L}(x, y)$.

Coordinate Descent (Optimization).

Repeat until convergence:

- 1. Find optimal x while holding y constant.
- 2. Find optimal y while holding x constant.

Coordinate descent is an optimization algorithm that successively minimizes along coordinate directions to find the minimum of a function.

Optimization Algorithm

Repeat until convergence:

- Find best clusters given centres
- Find best centres given clusters

$$\mathcal{L}(\mathbf{R}, \mathbf{M}; \mathcal{S}_n) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Optimization Algorithm

- 1. Initialize centers $\mu_1, ..., \mu_K$ from the data.
- 2. Repeat until no further change in training loss:

a. For each
$$n \in \{1, ..., N\}$$
,
$$r_{nk} = \begin{cases} 1, if k = arg \min_{j} ||x_n - \mu_j||^2 \\ 0, otherwise. \end{cases}$$

We assign the n^{th} data point to the closest cluster centre.

$$\mu_j = \frac{\text{b. For each } j \in \{1, \dots, k\},}{\sum_n r_{nj} x_n}$$

We recompute cluster means.

Goal: group data in 2 clusters

1. Initialize centers from the data.

"Call centre": Each point calls to find $\|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2$

Step 1: Assign points to closest centroid.

Step 1: Assign points to closest centroid.

Step 1: Assign points to closest centroid.

Step 2: Compute cluster centres: $\mu_j = \frac{\sum_n r_{nj} x_n}{\sum_n r_{nj}}$

Repeat Step 1: Assign points to closest centroid.

Compute updated cluster centre.

Repeat until convergence.

Break time

Convergence

- Training loss always decreases in each step.
- K-Means is guaranteed to converge.
- Convergence usually fast (less than 10-20 iterations).
- Converges to local minimum, not necessarily global minimum.

Repeat algorithm over many initial points and pick the configuration with the smallest training loss.

Exercise – k-means clustering

- Suppose we have 4 boxes of different sizes and want to divide them into 2 classes
- Each box represents one point with two attributes (w, h):

- Initial centers: suppose we choose points A and B as the initial centers, so c1 = (10, 10) and c2 = (20, 10)
- Object centre distance: calculate the Euclidean distance between cluster centres and the objects. For example, the distance of object C from the first center is:

$$\sqrt{(40-10)^2+(30-10)^2}=36.06$$

We obtain the following distance matrix:

Centre 1	0	10	36.06	50
Centre 2	10	0	28.28	43.43

 Object clustering: We assign each object to one of the clusters based on the minimum distance from the centre:

Centre 1
Centre 2

1	0	0	0
0	1	1	1

 Determine centres: Based on the group membership, we compute the new centers

•
$$c_1 = (10, 10), c_2 = \left(\frac{20 + 40 + 50}{3}, \frac{10 + 30 + 40}{3}\right) = (36.7, 26.7)$$

 Recompute the object-centre distances: We compute the distances of each data point from the new centres:

Centre 1	0	10	36.06	50
Centre 2	31.4	23.6	4.7	18.9

 Object clustering: We reassign the objects to the clusters based on the minimum distance from the centre:

Centre 1	1	1	0	0
Centre 2	0	0	1	1

Determine the new centres:

$$c_1 = \left(\frac{10 + 20}{2}, \frac{10 + 10}{2}\right) = (15, 10)$$

$$c_2 = \left(\frac{40 + 50}{2}, \frac{30 + 40}{2}\right) = (45, 35)$$

Recompute the object-centres distances:

 Centre 1
 5
 5
 32
 46.1

 Centre 2
 43
 35.4
 7.1
 7.1

Object clustering:

 Centre 1
 1
 1
 0
 0

 Centre 2
 0
 0
 1
 1

 The cluster membership did not change from one iteration to another and so the k-means computation terminates.

Evaluating K-Means

- Internal criteria: the residual sum of squares
- But doesn't evaluate the actual utility of the K-Means to an application
- Extrinsic criteria: evaluate with respect to a human-d

Extrinsic criterion: Purity

- If we have a set of truth class labels, we can use purity
- For each cluster k, find the class with the most members in the cluster
- Sum them and divide by the total number of points

$$Purity = \frac{1}{N} \sum_{k=1}^{K} \max_{j} |\mathcal{C}_k \cap c_j|$$

Example

Discussion

Initialization

- Empty clusters
 - Solution: pick data points to initialize clusters
- Bad local minima
 - Solution: Initialize many times and pick solution with smallest training loss
 - Pick good starting positions

Initialization

Problem. How to choose good starting positions? **Solution.** Place them far apart with high probability.

Number of Clusters

Number of Clusters

How do we choose k, the optimal number of clusters?

- Elbow method
 - Training Loss
 - Validation Loss

Check your understanding

- Clustering gives you an idea of how the data is distributed.
- You have 1000 data vectors that are very similar to each other (e.g., Eu distance less than 0.0001). We should divide them into a few clusters.
- When you use K-Means, you usually obtain a global minimum of the loss function
- When you use K-Means, you can never achieve global minimum of the loss function.
- The number of clusters is a parameter that can be optimized by K-Means.
- In K-fold cross validation, K is a hyperparameter.
- Clustering is just a different version of classification.

Check your understanding

- Clustering gives you an idea of how the data is distributed. Y
- You have 1000 data vectors that are very similar to each other (e.g., Eu distance less than 0.0001). We should divide them into a few clusters. N
- When you use K-Means, you usually obtain a global minimum of the loss function N
- When you use K-Means, you can never achieve global minimum of the loss function. N
- The number of clusters is a parameter that can be optimized by kmeans. N
- In K-fold cross validation, K is a hyperparameter.
- Clustering is just a different version of classification.