SECOND DEGRÉ

I. Fonction polynôme de degré 2

<u>Définition</u>: On appelle **fonction polynôme de degré 2** toute fonction f définie sur \mathbb{R} par une expression de la forme :

$$f(x) = ax^2 + bx + c$$

où les coefficients a, b et c sont des réels donnés avec $a \neq 0$.

Remarque:

Une fonction polynôme de degré 2 s'appelle également fonction trinôme du second degré ou par abus de langage "trinôme".

Exemples et contre-exemples :

- $-f(x) = 3x^2 7x + 3$
- $-g(x) = \frac{1}{2}x^2 5x + \frac{3}{5}$
- $-h(x) = 4 2x^2$
- -k(x) = (x-4)(5-2x) sont des fonctions polynômes de degré 2.
- -m(x) = 5x 3 est une fonction polynôme de degré 1 (fonction affine).
- $-n(x) = 5x^4 7x^3 + 3x 8$ est une fonction polynôme de degré 4.

II. Forme canonique d'une fonction polynôme de degré 2

Méthode : Déterminer la forme canonique d'une fonction polynôme de degré 2

Vidéo https://youtu.be/OQHf-hX9JhM

Soit la fonction f définie sur \mathbb{R} par : $f(x) = 2x^2 - 20x + 10$.

On veut exprimer la fonction f sous sa forme canonique :

$$f(x) = \bigcirc (x - \bigcirc)^2 + \bigcirc$$

où \bigcirc , \bigcirc et \bigcirc sont des nombres réels.

$$f(x) = 2x^{2} - 20x + 10$$

$$= 2[x^{2} - 10x] + 10$$

$$= 2[x^{2} - 10x + 25 - 25] + 10$$

$$= 2[(x - 5)^{2} - 25] + 10$$

$$= 2(x - 5)^{2} - 50 + 10$$

$$= 2(x - 5)^{2} - 40$$
car $x^{2} - 10x$ est le début du développement de $(x - 5)^{2}$ et $(x - 5)^{2} = x^{2} - 10x + 25$

$$f(x) = 2(x-5)^2 - 40$$
 est la forme canonique de f .

Propriété:

Toute fonction polynôme f de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ peut s'écrire sous la forme :

 $f(x) = a(x - \alpha)^2 + \beta$, où α et β sont deux nombres réels.

Cette dernière écriture s'appelle la **forme canonique** de f.

Démonstration :

Comme $a \neq 0$, on peut écrire pour tout réel x:

$$f(x) = ax^{2} + bx + c$$

$$= a\left[x^{2} + \frac{b}{a}x\right] + c$$

$$= a\left[x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a\frac{b^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}$$

$$= a(x - a)^{2} + \beta$$
avec $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{b^{2} - 4ac}{4a}$.

Remarque : Pour écrire un trinôme sous sa forme canonique, il est possible d'utiliser les deux dernières formules donnant α et β ... à condition de les connaître !

III. Variations et représentation graphique

 $\underline{\mathsf{Exemple}}$: Soit la fonction f donnée sous sa forme canonique par :

$$f(x) = 2(x - 1)^2 + 3$$

Alors: $f(x) \ge 3$ car $2(x-1)^2$ est positif.

Or f(1) = 3 donc pour tout x, $f(x) \ge f(1)$.

f admet donc un minimum en 1. Ce minimum est égal à 3.

Propriété:

Soit f une fonction polynôme de degré 2 définie par $f(x) = a(x - \alpha)^2 + \beta$, avec $a \neq 0$.

- Si a > 0, f admet un minimum pour $x = \alpha$. Ce minimum est égal à β .
- Si $\alpha < 0$, f admet un maximum pour $x = \alpha$. Ce maximum est égal à β .

Remarque:

Soit la fonction f définie sur \mathbb{R} par : $f(x) = ax^2 + bx + c$, avec $a \neq 0$.

On peut retenir que f admet un maximum (ou un minimum) pour $x = -\frac{b}{2a}$. (voir résultat de la démonstration dans II.)

- Si a > 0:

x	$-\infty$ $-\frac{b}{2a}$	+∞
f	$f\left(-\frac{b}{2a}\right) \checkmark$	/

x	$-\infty$ $-\frac{b}{2a}$ $+\infty$
f	$f\left(-\frac{b}{2a}\right)$

Dans un repère orthogonal $(0; \vec{\imath}, \vec{j})$, la représentation graphique d'une fonction polynôme de degré 2 est une **parabole**.

Le point M de coordonnées $\left(-\frac{b}{2a}; f\left(-\frac{b}{2a}\right)\right)$ est le **sommet** de la parabole. Il correspond au maximum (ou au minimum) de la fonction f.

La parabole possède un **axe de symétrie**. Il s'agit de la droite d'équation $x = -\frac{b}{2a}$.

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Méthode: Représenter graphiquement une fonction polynôme de degré 2

Vidéo https://youtu.be/KK76UohzUW4

Représenter graphiquement la fonction f définie sur \mathbb{R} par $f(x) = -x^2 + 4x$.

Commençons par écrire la fonction f sous sa forme canonique :

$$f(x) = -x^{2} + 4x$$

$$= -(x^{2} - 4x)$$

$$= -(x^{2} - 4x + 4 - 4)$$

$$= -((x - 2)^{2} - 4)$$

$$= -(x - 2)^{2} + 4$$

f admet donc un maximum en 2 égal à $f(2) = -(2-2)^2 + 4 = 4$

Les variations de *f* sont donc données par le tableau suivant :

On obtient la courbe représentative de f ci-contre.

Méthode : Déterminer les caractéristiques d'une parabole

Vidéo https://youtu.be/7IOCVfUnoz0

Déterminer l'axe de symétrie et le sommet de la parabole d'équation $y = 2x^2 - 12x + 1$.

- La parabole possède un axe de symétrie d'équation $x=-\frac{b}{2a}$, soit $x=-\frac{-12}{2\times 2}=3$. La droite d'équation x=3 est donc axe de symétrie de la parabole d'équation $y=2x^2-12x+1$.

- Les coordonnées de son sommet sont : $\left(-\frac{b}{2a}; f\left(-\frac{b}{2a}\right)\right)$, soit :

 $(3; 2 \times 3^2 - 12 \times 3 + 1) = (3; -17)$

Le point de coordonnées (3; -17) est donc le sommet de la parabole.

a=2>0, ce sommet correspond à un minimum.

IV. Résolution d'une équation du second degré

<u>Définition</u>: Une **équation du second degré** est une équation de la forme $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \neq 0$. Une solution de cette équation s'appelle une **racine** du trinôme $ax^2 + bx + c$.

Exemple:

L'équation $3x^2 - 6x - 2 = 0$ est une équation du second degré.

<u>Définition</u>: On appelle **discriminant** du trinôme $ax^2 + bx + c$, le nombre réel, noté Δ , égal à $b^2 - 4ac$.

Propriété : Soit Δ le discriminant du trinôme $ax^2 + bx + c$.

- Si Δ < 0 : L'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle.
- Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ a une unique solution : $x_0 = \frac{-b}{2a}$.
- Si Δ > 0 : L'équation $ax^2 + bx + c = 0$ a deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Propriété démontrée dans le paragraphe II.

Méthode: Résoudre une équation du second degré

- Vidéo https://youtu.be/youUIZ-wsYk
- Vidéo https://youtu.be/RhHheS2Wpyk
- ► Vidéo https://youtu.be/v6fl2RqCCiE

Résoudre les équations suivantes :

a)
$$2x^2 - x - 6 = 0$$

a)
$$2x^2 - x - 6 = 0$$
 b) $2x^2 - 3x + \frac{9}{8} = 0$ c) $x^2 + 3x + 10 = 0$

c)
$$x^2 + 3x + 10 = 0$$

a) Calculons le discriminant de l'équation
$$2x^2 - x - 6 = 0$$
:

$$a = 2$$
, $b = -1$ et $c = -6$ donc $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{49}}{2 \times 2} = -\frac{3}{2}$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{49}}{2 \times 2} = 2$$

b) Calculons le discriminant de l'équation $2x^2 - 3x + \frac{9}{9} = 0$:

$$a = 2$$
, $b = -3$ et $c = \frac{9}{8}$ donc $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times \frac{9}{8} = 0$.

Comme Δ = 0, l'équation possède une unique solution :

$$x_0 = -\frac{b}{2a} = -\frac{-3}{2 \times 2} = \frac{3}{4}$$

c) Calculons le discriminant de l'équation
$$x^2 + 3x + 10 = 0$$
:

$$a = 1$$
, $b = 3$ et $c = 10$ donc $\Delta = b^2 - 4ac = 3^2 - 4 \times 1 \times 10 = -31$.

Comme Δ < 0, l'équation ne possède pas de solution réelle.

Propriété : La somme S et le produit P des racines d'un polynôme du second degré de la forme $ax^2 + bx + c = 0$ sont donnés par : $S = -\frac{b}{a}$ et $P = \frac{c}{a}$.

Exercice: Démontrer ces deux formules.

V. Factorisation d'un trinôme

Démonstration:

Vidéo https://youtu.be/7VFpZ63Tgis

On a vu dans le chapitre "Second degré (partie 1)" que la fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ peut s'écrire sous sa forme canonique :

$$f(x) = a(x - \alpha)^2 + \beta$$
 avec $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{b^2 - 4ac}{4a}$.

Donc:

$$ax^2 + bx + c = 0$$
 peut s'écrire :

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$$

car a est non nul.

- Si Δ < 0 : Comme un carré ne peut être négatif $\left(\frac{\Delta}{4a^2} < 0\right)$, l'équation $ax^2 + bx + c = 0$ n'a pas de solution.
- Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ peut s'écrire : $\left(x + \frac{b}{2a}\right)^2 = 0$

L'équation n'a qu'une seule solution : $x_0 = -\frac{b}{2a}$

- Si $\Delta > 0$: L'équation $ax^2 + bx + c = 0$ est équivalente à :

$$x + \frac{b}{2a} = -\sqrt{\frac{\Delta}{4a^2}} \quad \text{ou} \quad x + \frac{b}{2a} = \sqrt{\frac{\Delta}{4a^2}}$$

$$x + \frac{b}{2a} = -\frac{\sqrt{\Delta}}{2a} \quad \text{ou} \quad x + \frac{b}{2a} = \frac{\sqrt{\Delta}}{2a}$$

$$x = -\frac{\sqrt{\Delta}}{2a} - \frac{b}{2a} \quad \text{ou} \quad x = \frac{\sqrt{\Delta}}{2a} - \frac{b}{2a}$$

$$x = \frac{-b - \sqrt{\Delta}}{2a} \quad \text{ou} \quad x = \frac{-b + \sqrt{\Delta}}{2a}$$

L'équation a deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ ou $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Propriété : Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

- Si Δ = 0 : Pour tout réel x, on a : $f(x) = a(x x_0)^2$.
- Si $\Delta > 0$: Pour tout réel x, on a : $f(x) = a(x x_1)(x x_2)$.

Remarque : Si Δ < 0, il n'existe pas de forme factorisée de f.

Méthode: Factoriser un trinôme

Vidéo https://youtu.be/eKrZK1lisc8

Factoriser les trinômes suivants : a) $4x^2 + 19x - 5$ b) $9x^2 - 6x + 1$

a) On cherche les racines du trinôme $4x^2 + 19x - 5$:

Calcul du discriminant : $\Delta = 19^2 - 4 \times 4 \times (-5) = 441$

Les racines sont :
$$x_1 = \frac{-19 - \sqrt{441}}{2 \times 4} = -5$$
 et $x_2 = \frac{-19 + \sqrt{441}}{2 \times 4} = \frac{1}{4}$

On a donc:

$$4x^{2} + 19x - 5 = 4(x - (-5))(x - \frac{1}{4})$$
$$= (x + 5)(4x - 1).$$

Une vérification à l'aide de la calculatrice n'est jamais inutile!

On peut lire une valeur approchée des racines sur l 🔊

b) On cherche les racines du trinôme $9x^2 - 6x + 1$:

Calcul du discriminant : $\Delta = (-6)^2 - 4 \times 9 \times 1 = 0$

La racine (double) est : $x_0 = -\frac{-6}{2 \times 9} = \frac{1}{2}$

On a donc:

$$9x^2 - 6x + 1 = 9\left(x - \frac{1}{3}\right)^2 = (3x - 1)^2.$$

Exercice d'approfondissement pour aller plus loin : Résoudre l'équation (E) :
$$\frac{x-2}{2x^2-3x-2} - \frac{x^2}{2x^2+13x+6} = 0$$

- On commence par factoriser les expressions $2x^2 - 3x - 2$ et $2x^2 + 13x + 6$.

Le discriminant de $2x^2 - 3x - 2$ est $\Delta = (-3)^2 - 4 \times 2 \times (-2) = 25$ et ses racines sont :

$$x_1 = \frac{3 - \sqrt{25}}{2 \times 2} = \frac{-1}{2}$$
 et $x_2 = \frac{3 + \sqrt{25}}{2 \times 2} = 2$

On a donc:
$$2x^2 - 3x - 2 = 2\left(x + \frac{1}{2}\right)(x - 2) = (2x + 1)(x - 2)$$
.

Le discriminant de $2x^2 + 13x + 6$ est $\Delta' = 13^2 - 4$ x 2 x 6 = 121 et ses racines sont :

$$x_1' = \frac{-13 - \sqrt{121}}{2 \times 2} = -6 \text{ et } x_2' = \frac{-13 + \sqrt{121}}{2 \times 2} = \frac{-1}{2}$$

On a donc:
$$2x^2 + 13x + 6 = 2(x+6)\left(x+\frac{1}{2}\right) = (x+6)(2x+1)$$
.

- L'équation (E) s'écrit alors :
$$\frac{x-2}{(2x+1)(x-2)} - \frac{x^2}{(x+6)(2x+1)} = 0$$

Les valeurs –6, $\frac{-1}{2}$ et 2 annulent les dénominateurs. On résout alors (E) sur $\mathbb{R}\setminus\left\{-6;-\frac{1}{2};2\right\}$:

(E) s'écrit :
$$\frac{1}{2x+1} - \frac{x^2}{(x+6)(2x+1)} = 0$$

$$\frac{x+6}{(2x+1)(x+6)} - \frac{x^2}{(x+6)(2x+1)} = 0$$

$$\frac{x+6-x^2}{(2x+1)(x+6)} = 0$$

$$x + 6 - x^2 = 0 \text{ car } x \neq -\frac{1}{2} \text{ et } x \neq -6.$$

Le discriminant de $-x^2 + x + 6$ est $\Delta'' = 1^2 - 4$ x (-1) x 6 = 25.

Les racines sont :
$$x_1'' = \frac{-1 - \sqrt{25}}{2 \times (-1)} = 3$$
 et $x_2'' = \frac{-1 + \sqrt{25}}{2 \times (-1)} = -2$

Les solutions de l'équation (E) sont : -2 et 3.

VI. Signe d'un trinôme

- Vidéo https://youtu.be/sFNW9KVsTMY
- Vidéo https://youtu.be/pT4xtl2Yq2Q
- Vidéo https://youtu.be/JCVotquzIIA

Remarque préliminaire :

Pour une fonction polynôme de degré 2 définie par $f(x) = ax^2 + bx + c$:

- si a > 0, sa représentation graphique est une parabole tournée vers le haut : \bigvee
- si a < 0, sa représentation graphique est une parabole tournée vers le bas : \bigcap

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Méthode: Résoudre une inéquation du second degré

Vidéo https://youtu.be/AEL4qKKNvp8

Résoudre l'inéquation : $x^2 + 3x - 5 < -x + 2$

On commence par rassembler tous les termes dans le membre de gauche afin de pouvoir étudier les signes des trinômes.

$$x^2 + 3x - 5 < -x + 2$$
 équivaut à $x^2 + 4x - 7 < 0$.

Le discriminant de $x^2 + 4x - 7$ est $\Delta = 4^2 - 4 \times 1 \times (-7) = 44$ et ses racines sont :

$$x_1 = \frac{-4 - \sqrt{44}}{2 \times 1} = -2 - \sqrt{11}$$
 et $x_2 = \frac{-4 + \sqrt{44}}{2 \times 1} = -2 + \sqrt{11}$

On obtient le tableau de signes :

x	-∞		$-2 - \sqrt{11}$		$-2 + \sqrt{11}$	+∞
f(x)		+	0	-	0	+

L'ensemble des solutions de l'inéquation $x^2 + 3x - 5 < -x + 2$ est donc $\left] -2 - \sqrt{11} \right]$; $-2 + \sqrt{11} \left[-2 + \sqrt{11} \right]$.

Une vérification à l'aide de la calculatrice n'est jamais inutile ! On peut lire une valeur approchée des racines sur l'axe des abscisses.

Exercice d'approfondissement pour aller plus loin :

Résoudre l'inéquation
$$\frac{1}{x^2 - x - 6} \ge 2$$

$$\frac{1}{x^2 - x - 6} \ge 2 \text{ équivaut à } \frac{1}{x^2 - x - 6} - 2 \ge 0$$

$$\text{Soit : } \frac{1}{x^2 - x - 6} - \frac{2(x^2 - x - 6)}{x^2 - x - 6} \ge 0$$

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Soit encore :
$$\frac{-2x^2+2x+13}{x^2-x-6} \ge 0$$

- On commence par déterminer les racines du trinôme x^2-x-6 : Le discriminant est $\Delta = (-1)^2-4$ x 1 x (-6) = 25 et ses racines sont :

$$x_1 = \frac{1 - \sqrt{25}}{2 \times 1} = -2 \text{ et } x_2 = \frac{1 + \sqrt{25}}{2 \times 1} = 3$$

Les valeurs -2 et 3 annulent le dénominateur. On résout donc l'équation dans $\mathbb{R} \setminus \{-2; 3\}$.

- On détermine les racines du trinôme $-2x^2 + 2x + 13$:

Le discriminant est $\Delta' = 2^2 - 4 \times (-2) \times 13 = 108$ et ses racines sont :

$$x_1' = \frac{-2 - \sqrt{108}}{2 \times (-2)} = \frac{1 + 3\sqrt{3}}{2} \text{ et } x_2' = \frac{-2 + \sqrt{108}}{2 \times (-2)} = \frac{1 - 3\sqrt{3}}{2}$$

- On obtient le tableau de signe :

x	-8	$\frac{1-3\sqrt{3}}{2}$		-2		3	1-	$\frac{+3\sqrt{3}}{2}$		+∞
$-2x^2 + 2x + 13$	_	φ	+		+		+	φ	-	
$x^2 - x - 6$	+		+	φ	-	φ	+		+	
$\frac{-2x^2 + 2x + 13}{x^2 - x - 6}$	_	•	+		-		+	0	-	

L'ensemble des solutions de l'inéquation $\frac{1}{x^2-x-6} \ge 2$ est :

$$\left[\frac{1-3\sqrt{3}}{2}; -2\right[\cup]^3; \frac{1+3\sqrt{3}}{2}\right]$$

VII. Application : position relative de deux courbes

Méthode: Étudier la position de deux courbes

Vidéo https://youtu.be/EyxP5HlfyF4

Soit f et g deux fonctions définies sur \mathbb{R} par : $f(x) = -x^2 + 8x - 11$ et g(x) = x - 1. Étudier la position relative des courbes représentatives C_f et C_g .

On va étudier le signe de la différence f(x) - g(x):

$$f(x) - g(x) = -x^2 + 8x - 11 - x + 1 = -x^2 + 7x - 10.$$

Le discriminant du trinôme $-x^2 + 7x - 10$ est $\Delta = 7^2 - 4$ x (-1) x (-10) = 9 Le trinôme possède deux racines distinctes :

$$x_1 = \frac{-7 - \sqrt{9}}{2 \times (-1)} = 5 \text{ et } x_2 = \frac{-7 + \sqrt{9}}{2 \times (-1)} = 2$$

On dresse le tableau de signes du trinôme $-x^2 + 7x - 10$:

				70 1 7 1	
X	-∞	2	5		+∞
f(x) - g(x)	-	- 0	+ 0	-	

On conclut:

La courbe C_f est en-dessous de la courbe C_g pour tout x de $]-\infty$; 2] \cup [5; $+\infty$ [.

La courbe C_f est au-dessus de la courbe C_q pour tout x de [2;5].

VIII. Fonction polynôme de degré 3

1) Exemples et contre-exemples

$$-f(x) = 4x^3 + 1$$

$$-g(x) = x^3 - 2$$

sont des fonctions polynômes de degré 3.

$$-f(x) = 1 + x^2 - 2x^3$$

$$-m(x) = -x + 4$$

est une fonction polynôme de degré 1 (fonction affine).

$$-n(x) = 2x^5 - x^3 + 5x - 1$$
 est une fonction polynôme de degré 5.

<u>Définition</u>: Les fonctions définies sur \mathbb{R} par $x \mapsto ax^3$ ou $x \mapsto ax^3 + b$ sont des **fonctions polynômes de degré 3**.

Les coefficients a et b sont des réels donnés avec $a \neq 0$.

2) Représentation graphique

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Propriétés:

Soit f une fonction polynôme de degré 3, telle que $f(x) = ax^3 + b$.

- Si a < 0: f est strictement croissante.
- Si a < 0: f est strictement décroissante.

3) Forme factorisée d'une fonction polynôme de degré 3

Exemple:

La fonction f définie par f(x) = 5(x-4)(x-1)(x+3) est une fonction polynôme de degré 3 sous sa forme factorisée.

Si on développe l'expression de f à l'aide d'un logiciel de calcul formel, on obtient bien l'expression de degré $3: f(x) = 5x^3 - 10x^2 - 55x + 60$

Développer(
$$5(x-4)(x-1)(x+3)$$
)

 \rightarrow 5 x³ - 10 x² - 55 x + 60

<u>Définition</u>: Les fonctions définies sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)(x - x_3)$ sont des fonctions polynômes de degré 3.

Les coefficients a, x_1 , x_2 et x_3 sont des réels avec $a \neq 0$.

En partant de l'expression développée précédente, on peut vérifier que 4, 1 et -3 sont des racines du polynôme f.

$$f(4) = 5 \times 4^{3} - 10 \times 4^{2} - 55 \times 4 + 60 = 320 - 160 - 220 + 60 = 0$$

$$f(1) = 5 \times 1^{3} - 10 \times 1^{2} - 55 \times 1 + 60 = 5 - 10 - 55 + 60 = 0$$

$$f(-3) = 5 \times (-3)^{3} - 10 \times (-3)^{2} - 55 \times (-3) + 60 = -135 - 90 + 165 + 60 = 0$$

4, 1 et -3, solutions de l'équation f(x) = 0, sont donc des racines de f.

<u>Propriété</u>: Soit la fonction f définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)(x - x_3)$. L'équation f(x) = 0 possède trois solutions (éventuellement égales) : $x = x_1$, $x = x_2$ et $x = x_3$ appelées les **racines** de la fonction polynôme f.

<u>Méthode</u>: Étudier le signe d'un polynôme de degré 3

Vidéo https://youtu.be/g0PfyqHSkBg

Étudier le signe de la fonction polynôme f définie sur $\mathbb R$ par :

$$f(x) = 2(x+1)(x-2)(x-5)$$

2 étant un nombre positif, le signe de 2(x+1)(x-2)(x-5) dépend du signe de chaque facteur : x+1, x-2 et x-5.

On étudie ainsi le signe de chaque facteur et on présente les résultats dans un tableau de signes.

$$x + 1 = 0$$
 ou $x - 2 = 0$ ou $x - 5 = 0$
 $x = -1$ $x = 2$ ou $x = 5$

-1, 2 et 5 sont donc les racines du polynôme f.

En appliquant la règle des signes dans le tableau suivant, on pourra en déduire le signe du produit f(x) = 2(x+1)(x-2)(x-5).

x	$-\infty$		-1		2		5		$+\infty$
x+1		_	0	+		+		+	
x-2		_		_	0	+		+	
x-5		_		_		_	0	+	
f(x)		_	0	+	0	_	0	+	

On en déduit que $f(x) \ge 0$ pour $x \in [-1; 2] \cup [5; +\infty[$ et

$$f(x) \le 0 \text{ pour } x \in]-\infty; -1] \cup [2;5].$$

La représentation de la fonction f à l'aide d'un logiciel permet de confirmer les résultats établis précédemment.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

<u>www.maths-et-tiques.fr/index.php/mentions-legales</u>