Lidar를 사용한 Multiple Object Tracking

성균관대학교 기계공학부 차량시스템연구실

이주현 2018314852 엄동희 2018310465 김성준 2018310755

Table of Contents

- I. Introduction
- II. Method
 - Detection
 - 1. Data Processing
 - 2. Bounding Box
 - Tracking
 - 1. Data Association
 - 2. Point Tracking
 - 3. Box Tracking
- **Ⅲ**. Result
- IV. Discussion
- V. References

1. Introduction 연구 주제 선정

기존 정부과제

목표도심 주행 버스의 자율주행 기반기술 개발

주행가능영역 탐지를 위해 차량 전방의 물체 인식 및 추적 필요

1. Introduction 연구 주제 소개

MOT (Multi-Object Tracking)

: 차량 전후방의 움직이는 object에 대하여 탐지 및 추적을 수행

$$track = \begin{bmatrix} trackId \\ x \\ y \\ v_{_}x \\ v_{_}y \\ a_{_}x \\ a_{_}y \\ \psi \\ box\ data \end{bmatrix}$$

실제 주행 환경에서는 주변 사물을 인지하고 고려하여 주행해야 하므로 주행 차량 전후방의 object들의 상대적인 정보들을 실시간으로 정확하게 수집하는 것이 중요

1. Introduction 주차별 실습 진행 계획

LiDAR 데이터 전처리 구현 및 보완

- Bounding Box Upgrade
- Object tracker 설계
- 최종보고서 작성 및 연구 마무리

1주차

2주차

3주차

4주차

5주차

6주차

7주차

현 기술동향 파악 및 연구 방향 탐구 차량이 아닌 물체 제거 (rule-based filter) ex. Ground, 가로수, bush등등

Radar, Camera data에 tracker 적용 및 fusion

- Data Association 보완
- Box Tracker 개선

1. Introduction 각 팀원 별 역할 분담

팀원	역할
이주현	데이터 개발 환경 설정, Kalman filter, Bounding Box, 전체적인 코드 구현 및 디버깅, 속도벡터 plotting
엄동희	Sensor Fusion - Camera, Data association, Box Tracking, Point Tracking
김성준	Kalman filter, minimum rectangle algorithm 적용

1. Introduction 연구 주제 소개

Detection

- Data Processing
- Bounding Box

Tracking

- Data Association
- Point Tracking
- Box Tracking

자율 차량 센서

자율주행 센서 카메라-레이더-라이다 비교

	가능	장점	단점
카메라	-렌즈를 통해 시각적으로	-질감, 색상, 대비 정도 포착 가능	-날씨 등 외부 환경에 취약
	주변 사물, 상황 인식	-저렴한 가격	-장거리 측정 취약
레이더	-전자기파 송수신을 통한	-날씨 등 외부환경 영향 거의 없음	-표지판 인식 불가
	거리, 속도 측정	-사물 투과 측정 가능	-직선 거리만 측정 가능
라이다	-빛(레이저)으로 사물	-센서 중 가장 높은 해상도·정확도	-눈, 비 등 날씨에 민감
	원근감, 형태, 거리, 속도 인식	-3D 입체 지도 구현 가능	-비싼 가격

●자료 현대자동차, 현대모비스, 벨로다인, LG이노텍, 테슬라

- 카메라 : 객체 인식 알고리즘(YOLO)를 통한 <u>객체 판별</u>에 용이함
- 라이다 : 높은 해상도와 정확도 및 각 점으로의 거리 정보
- → 다양한 환경에서의 다중 객체 인식(MOT)을 위해서 센서 퓨전 (Sensor fusion)을 활용

센서 퓨전(Sensor Fusion)의 대표적인 방법

Early Fusion

Camera MOT

YOLO (실시간 객체 탐지 알고리즘)

- 가장 흔하게 사용되는 tracking 방식
- 딥러닝을 활용하여 object를 인지하고 deep sort를 활용해
- 다양한 모델에 따른 정확도와 연산 속도를 목적에 맞추어 적용 가능하다.
- 이미지 전체를 학습하기 때문에 Background에 의한 Error가 적다.

Camera – Lidar calibration

- Lidar의 Point Cloud(3D) 데이터를 Camera(2D) 데이터에 일치시키는 것
 - Camera 데이터의 렌즈에 의한 왜곡 보정
 - Camera와 Lidar의 좌표계 일치
- → 인식된 개체에 대한 정보를 얻어 이에 따른 알고리즘 설계 용이

- 3D 데이터를 처리하는 오픈소스 라이브러리
- C++, Python 개발환경 지원
- LiDAR Pointcloud 데이터 처리에 활용

2. Method

- 1. Data Set
- KITTI Data Set
 - → 수집 환경 : 독일
 - → 센서 종류 : Lidar , RGB camera 2개, Gray camera 2개, GPS → 시간이 동기화된 데이터이다.

2. Method

- 1. Data Set
- KITTI Data Set

KITTI 데이터 수집 환경

- 1. Data Processing
 - Ground Removal
- ⇒ RANSAC 알고리즘을 활용하여 바닥 제거
- ⇒ Open3d의 segment_plane 함수 활용

```
cur_plane_model, cur_inliers = xyz_o3d.segment_plane(distance_threshold=0.3, ransac_n=3, num_iterations=50)
```

Parameter	용도
distance_threshold	inlier로 간주되기 위한 최소 거리
ransac_n	plane을 추정하기 위해 사용되는 point의 수
num_iterations	RANSAC알고리즘 반복 횟수

⇒ 결과물로 plane model에 해당하는 equation을 ax+by+cz+d = 0의 형태로 얻을 수 있으며, 해당 plane의 inlier에 해당하는 점들을 구할 수 있다.

- 1. Data Processing
 - Ground Removal

- 1. Data Processing
- Voxel down sampling
 - ⇒ 일반적으로 많이 쓰이는 pointcloud 데이터 전처리 과정중 하나
 - ⇒ Voxel당 이를 대표하는 하나의 점으로 대체된다.
 - ⇒ Voxel의 크기를 키울 수록 연산량이 줄어 효율적이지만, 점이 해당 voxel을 대표하지 못하여 데이터가 변질될 우려가 있다.

Data Processing
 [Pointcloud Data Clustering]

- DBSCAN(Density-based spatial clustering of applications with noise)
 - → 밀도 기반 군집화
 - 거리 eps(epsilon) = 1.3
 - 점의 갯수 m(min Points) = 8

2. Bounding Box

- Convex Hull

2차원 평면상 여러개의 점의 일부를 이용한 볼록 다각형을 만들되 내부에 모든 점을 포함시키도록 하는 방법.

- Minimum rectangle algorithm

다각형의 한 변을 포함하는 직사각형 중 가장 작은 넓이를 가진 사각형을 찾는 알고리즘

2. Bounding Box

- Threshold
- Bounding box로 인식한 객체를 filtering 하기 위한 기준

No.	Threshold variable	Description
1	$T_{height_(min max)}$	min. and max. height of object
2	$T_{width_(min max)}$	min. and max. width of object
3	$T_{length_(min max)}$	min. and max. length of object
4 5	$T_{area_(min max)}$	min. and max. top-view area of object
6	$T_{ratio_(min max)}$	min. and max. ratio between length and width min. length of object for ratio check
7	$T_{ratiocheck_l_(min)}$	min. point count per bounding box volume.
1	$T_{pt_per_m3_(min)}$	min. point count per bounding box volume.

 $[\]Rightarrow T_{ratio}$ 와 $T_{area(volume)}$, $T_{pt_per_m3}$ 를 활용하였다.

 $[\]Rightarrow$ T_{ratio} : 도로 양 끝의 나무와 풀들이 좁고 긴 형태의 cluster로 labeling된 것 제외

 $[\]Rightarrow$ T_{volume} : maximum volume 을 설정하여 그 이상의 volume을 가진 cluster 제외

 $[\]Rightarrow$ $T_{pt_per_m3_}$: bounding box안에 point들의 점유율이 일정 비율 이하일 경우 제외

- 3. Data Association
- Cost에 따른 동일 객체인식

$$cost = \alpha * (\Delta l * cos(\Delta \theta)) + \beta * \Delta volume + \gamma * \Delta distance$$

- ➤ 동일 객체는 size, volume, distance 정보를 통해 구별할 수 있음
- ➤ Detection 된 물체의 개수 M과 tracking 하는 물체의 개수 N을 활용하여 N*M의 행렬을 생성
- ➤ 행렬에 linear_sum_assignment를 사용하여 tracking에 대해 낮은 cost를 가지는 물체를 동일 물체로 인식

3. Data Association

- Cost에 따른 동일 객체인식

[필요 정보]

- t-1의 detection
- t-1의 prediction
- 시간 t의 일정 거리 내의 bounding box의 정보

- Size difference
- Angle difference
- Length difference

- 4. Point Tracking
- Kalman Filter (Position Tracking)
 - → 과거의 값, 현재의 값을 재귀적 연산을 통하여 최적 값을 추정하는 필터

5. Box Tracking

- Method
 - → Tracking하는 객체의 TrackID(고유 번호)에 따라 Best Bounding Box Rate와 width, height 저장.

3. Result

결과 영상

3. Result

결과 영상

AMLAB 기존의 연구

- LiDAR 데이터를 활용한 차량 전방의 Object Tracking
- 기본적인 Kalman Filter를 적용한 tracking과 Euclidean distance를 활용한 data association

- 최근 연구동향을 반영하여 새롭게 제시된 다음의 아이디어들을 코드로 직접 구현
- ⇒ Threshold를 활용하여 차량, 보행자 등 움직이는 물체에 대해서만 tracking을 수행하도록 filtering
- ⇒ Bounding box upgrade를 통해 차량의 heading값 고려
- ⇒ Data association 보완을 통해 tracking 성능 개선
- ⇒ 인식 개체의 최적의 인식상태 활용

4. Discussion

연구 결과

- Lidar의 Point Cloud 단일 데이터 사용

다양한 센서 퓨전 적용

- Lidar – Camera sensor fusion

> Sensor fusion을 통한 **Data association** 개선

4. Discussion

연구결과

- Constant Velocity case만 고려

$$F_{CV_k} = \begin{bmatrix} x_{posk} + v_k T \sin(\psi_k) \\ y_{posk} + v_k T \cos(\psi_k) \\ 0 \\ v_k \\ \dot{\psi}_k \end{bmatrix}$$

다양한 Motion Model을 적용

- Constant Turn-Rate Velocity

$$F_{CTRV_k} = \begin{bmatrix} x_{posk} + \frac{v_k}{\dot{\psi}_k}(-\sin(\psi_k) + \sin(T\psi_k + \psi_k)) \\ y_{posk} + \frac{v_k}{\dot{\psi}_k}(\cos(\psi_k) - \cos(T\psi_k + \psi_k)) \\ T\psi_k + \psi_k \\ v_k \\ \dot{\psi}_k \end{bmatrix}$$

- Random Motion

$$F_{RM_k} = \left[egin{array}{c} x_{posk} \ y_{posk} \ \psi_k \ v_k \ \dot{\psi}_k \end{array}
ight]$$

Reference

- 1. 김성준, 양동원, 정영현, 김수진, 윤주홍, 2014, [이동물체 탐지를 위한 레이다데이터 거리 도플러 클러스터링 기법], 국방과학연구소 국방무인기술센터
- 2. 김수진, 정영현, 강재웅, 윤주홍 , 2016, [표적의 형상정보를 활용한 다중표적 추 적 기법]
- 3. Himani S. Parekh, 2014, [A Survey on Object Detection and Tracking Methods], IJIRCCE
- 4. A.S. Abdul Rachman, [3D-Lidar Multi Object Tracking for Autonomous Driving], TuDelft