МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Вятский государственный университет» (ФГБОУ ВПО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Лабораторной работе $N \!\!\! \cdot \!\!\! 2$ по дисциплине	
«Исследование методов планирования и управления процессами в однопроцессорных системах при	
использовании дисциплин обслуживания процессов с относительными и абсолютными приоритетам»	
D HDT 91	, ,
Выполнил студент группы ИВТм-21/Шурупов М.А	1 ./

Проверил доцент кафедры ЭВМ ______/Исупов К.С./

Цель

Оценка и исследование дисциплин обслуживания потоков процессов при планировании их исполнения на основе приоритетных дисциплин с относительными и абсолютными приоритетами.

Исходные данные

Данные из таблиц 1-4 являются исходными данными для выполнения лабораторной работы.

Таблица 1 - Интенсивности поступления потоков обслуживаемых процессов

№ варианта	№ потока	тенсивность потока отражается потока	№ потока	Дитенсивность погока [2]	№ потока	тенсивность потока година	№ потока	Интенсивность потока	№ потока	Интенсивность потока
		[-/]		[-/ 9]		[-/]		[-/]		[-/ 0]
7	7	0,20	14	0,40	10	0,05	19	0,05	1	0,20

Таблица 2 - Параметры обслуживаемых процессов.

$\mathcal{N}_{ar{0}}$	Среднее количество	Среднее число операций обращения к файлам данных									
процесс	вычислительных операций,	при	при обслуживании процесса (N i j)								
a	выполняемых при обслуживаниях	Ном	Номера файлов, к которым выполняется обращение						1e		
	процесса [Мфлоп]	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
7	700	20	-	-	10	-	-	2	-	4	-
14	400		-	30	14	-	-	4	-	6	-
10	1000		30	_	-	-	20	6	-	8	-
19	900		80	-	30	-	-	8	-	-	4
1	100	20	10	-	-	-	-	4	2	-	-

Таблица 3 - Интенсивности поступления потоков обслуживаемых процессов

№ файлов данных	Объем данных, передаваемых	Средний объем данных,
	при выполнении одной	передаваемых при выполнении
	операции обращения к файлу	одной операции ввода/вывода G
	данных V FI [Мбайт]	FI [Кбайт]
F1	0,5	5
F2	1,0	8
F3	1,0	15
F4	1,5	6
F5	1,5	14
F6	2,0	18
F7	2,5	10
F8	3,0	15
F9	4,0	20
F10	0,5	5

Таблица 4 - Характеристики накопителей внешней памяти.

	Среднее время выполнения одной о	перации ввода/вывода данных [мкс/ оп.]					
№ файла данных	Тип накопителя ВЗУ, на котором размещены файлы данных						
	НМД 1	НМД 2					
F1	1,0	-					
F2	-	0,10					
F3	2,0	-					
F4	-	0,05					
F5	3,0	-					
F6	-	0,06					
F7	2,5	-					
F8	-	0,13					
F9	2,5	-					
F10	-	0,12					

Ход работы

Часть 1

истема рассматривается как один ресурс, обеспечивающий обслуживание группы M входных потоков процессов $Z_1, Z_2, Z_3, ..., Z$, которым присвоены относительные приоритеты 1, 2, 3, ..., M. Причём, процесс Z_p , поступивших в очередь O_p , будет принят к обслуживанию только при отсутствия в других очередях процессов с более высокими приоритетами. Процессы принимаются для обслуживания из каждой очереди O_p в порядку из поступления в очередь — локально применяется бесприоритетная дисциплина обслуживания

FIFO.

При использовании дисциплины FIFO в случае обслуживания нескольких потоков процессов времена ω_i ожидания процессов для обслуживания в системе одинаковы и определяются по выражению (1):

$$\omega_k = \sum_{i=1}^M \frac{\rho_j \vartheta_j (1 + v_i^2)}{2(1 - R_k)(1 - R_{k-1})} \tag{1}$$

где

M – количество процессов, поступающих на обслуживание в систему,

$$R = (\rho_1 + \rho_2 + \rho_3 + \dots + \rho_m),$$

 ρ_i - коэффициент загрузки ресурсов системы i – ым процессом.

Значение ρ_i определяется по выражению (2)

$$\rho_i = \lambda_i \vartheta_i \tag{2}$$

где λ_i – интенсивность i – потока процессов на обслуживание в систему;

$$\vartheta = \max(\vartheta_1, \vartheta_2, \vartheta_3, ..., \vartheta_k) \tag{3}$$

 ϑ_k – длительность обслуживания процесса в $k\text{-}\mathrm{om}$ ресурсе системы.

Длительность обслуживания процесса в k-ом ресурсе системы определяется по выражению 3

$$\vartheta_{pi} = \Theta_i / V_p \tag{4}$$

где

 V_p –производительность процессора,

 Θ_i —количество вычислительных операций, выполняемых при обслуживании i-го процесса в моделируемой системе. Аналогично определяются длительности обслуживания процесса ϑ_j в других j-ых функциональных модулях и подсистемах.

В таблицах 5-6 приведены результаты основных расчетов.

Таблица 5 - Результаты вычислений при $v_i=0.$

V_p	$\omega(1)$	$\omega(2)$	$\omega(3)$	$\omega(4)$	$\omega(5)$	u(1)	u(2)	u(3)	u(4)	u(5)
100000	435,148	443,395	449,708	451,133	454,729	$435,\!179$	878,605	1328,344	1779,507	2234,268
120000	301,872	306,625	310,25	311,066	313,123	301,898	608,549	918,825	1229,917	1543,066
140000	221,619	224,603	226,874	227,384	228,669	221,641	446,267	673,163	900,569	1129,26
160000	169,583	171,578	173,093	173,433	174,287	169,602	341,199	514,311	687,763	862,07
180000	133,934	135,332	136,393	136,63	137,228	133,951	269,3	405,71	542,358	679,603
200000	108,449	109,467	110,238	110,411	110,845	108,464	217,946	328,2	438,626	549,486
220000	89,602	90,366	90,944	91,073	91,398	89,616	179,996	270,954	362,041	453,454
240000	75,273	$75,\!86$	76,305	76,405	76,654	$75,\!285$	151,159	227,477	303,895	380,562
260000	64,125	64,587	64,936	65,014	65,21	$64,\!137$	128,736	193,684	258,71	323,932
280000	55,282	55,652	55,931	55,993	56,15	55,293	110,956	166,897	222,902	279,063
300000	48,15	48,45	48,677	48,727	48,854	48,16	96,62	145,307	194,045	242,91
320000	42,313	$42,\!561$	42,748	42,789	42,894	42,323	84,894	127,651	170,45	213,353
340000	37,478	37,684	37,839	37,874	37,961	37,487	75,179	113,028	150,911	188,881
360000	33,426	33,599	33,73	33,759	33,833	33,434	67,042	100,781	134,549	168,39
380000	29,997	30,145	30,256	30,281	30,343	30,005	60,158	90,422	120,711	151,062
400000	27,07	27,197	27,292	27,313	27,366	27,078	54,282	81,582	108,903	136,277
420000	24,552	24,661	24,743	24,761	24,807	$24,\!559$	49,227	73,978	98,746	123,561
440000	22,369	22,464	22,535	22,551	22,591	22,376	44,847	67,389	89,947	$112,\!546$
460000	20,465	20,548	20,61	20,624	20,659	20,471	41,026	61,643	82,274	102,94
480000	18,794	18,867	18,922	18,934	18,965	18,8	37,674	56,602	75,543	94,514
500000	17,319	17,384	17,433	17,444	17,471	17,326	34,716	52,155	69,605	87,082

Таблица 6 - Результаты вычислений при $v_i=1.$

V_p	$\omega(1)$	$\omega(2)$	$\omega(3)$	$\omega(4)$	$\omega(5)$	u(1)	u(2)	u(3)	u(4)	u(5)
100000	870,296	886,79	899,415	902,265	909,459	870,327	1757,148	$2656,\!594$	3558,89	$4468,\!38$
120000	603,744	613,25	620,5	622,133	626,247	603,77	1217,046	1837,572	2459,731	3086,003
140000	443,238	449,206	453,748	454,768	457,337	443,261	892,489	1346,259	1801,05	2258,409
160000	339,166	343,155	346,185	346,865	348,575	339,185	682,36	1028,564	1375,448	1724,043
180000	267,867	270,664	272,785	273,261	274,456	267,884	538,566	811,368	1084,646	1359,119
200000	216,897	218,933	220,476	220,822	221,689	216,913	435,862	656,353	877,19	1098,895
220000	179,203	180,731	181,888	182,147	182,797	179,217	359,963	541,865	724,026	906,837
240000	150,545	151,721	152,61	152,809	153,309	$150,\!558$	302,292	454,915	607,737	761,059
260000	128,25	129,174	129,872	130,028	130,42	128,262	257,447	387,331	517,372	647,804
280000	110,564	111,303	111,862	111,986	112,3	110,575	221,889	333,762	445,759	558,07
300000	96,299	96,9	97,353	97,455	97,709	96,309	193,219	290,583	388,048	485,768
320000	84,627	85,122	85,495	85,578	85,788	84,637	169,768	255,273	340,861	426,658
340000	74,955	75,367	75,678	75,748	75,922	74,964	150,341	226,028	301,785	377,716
360000	66,851	67,198	67,46	67,519	67,665	66,86	134,067	201,536	269,063	336,737
380000	59,994	60,289	60,512	60,561	60,686	60,002	120,299	180,819	241,389	302,082
400000	54,14	54,393	54,584	54,626	54,733	54,148	108,549	163,14	217,774	$272,\!515$
420000	49,103	49,322	49,486	49,523	49,615	49,11	98,439	147,933	197,463	247,085
440000	44,738	44,928	45,071	45,103	45,183	44,745	89,679	134,757	179,867	225,056
460000	40,929	41,096	41,221	41,249	41,319	40,936	82,039	123,266	164,522	205,847
480000	37,588	37,734	37,844	37,869	37,93	37,594	75,334	113,185	151,06	188,996
500000	34,639	34,768	34,866	34,887	34,942	34,645	69,42	104,292	139,185	174,133

Графики зависимости при производительности процессора V_p , относительными приоритетами представлены на рисунках 1-4

Рисунок 1 - График зависимости $\omega(V_p)$ при $v_i=0$

Рисунок 2 - График зависимости $u(V_p)$ при $v_i=0$

Рисунок 3 - График зависимости $\omega(V_p)$ при $v_i=1$

Рисунок 4 - График зависимости $u(V_p)$ при $v_i=1$

Часть 2

Длительность ожидания процесса обслуживания в системе при применении дисциплин обслуживания с абсолютными приоритетами рассчитывается по выражению:

$$\omega_k = \frac{\vartheta_i R_{k-1}}{(1 - R_k)} + \sum_{i=1}^M \frac{\rho_j \vartheta_j (1 + v_i^2)}{2(1 - R_k)(1 - R_{k-1})}$$
(5)

Время обслуживания потока в системе вычисляется по формуле:

$$u_i = \sum_{j=1}^k \omega_j + \sum_{j=1}^k \vartheta_j \tag{6}$$

$$u_i = \sum_{i=1}^{M} u_j \tag{7}$$

где M — количество исполняемых в системе процессов,

k – количество ресурсов в системе, используемых при обслуживании процесса,

 ω_{j} – длительность ожидания i-го процесса обслуживания в j-ом ресурсе системы,

 ϑ_j – длительность обслуживания i-ro процесса в j-om ресурсе системы.

В таблицах 7-8 приведены результаты основных расчетов.

Таблица 7 - Результаты вычислений при $v_i=0$.

V_p	$\omega(1)$	$\omega(2)$	$\omega(3)$	$\omega(4)$	$\omega(5)$	u(1)	u(2)	u(3)	u(4)	u(5)
100000	435,148	639,238	1038,165	1089,638	1146,736	435,179	1074,448	2112,644	3202,313	4349,08
120000	301,872	442,198	717,505	752,84	791,396	301,898	744,122	1461,654	2214,519	3005,941
140000	221,619	323,985	525,354	551,101	578,862	221,641	545,648	1071,024	1622,147	2201,031
160000	169,583	247,539	401,2	420,791	441,724	169,602	417,16	818,379	1239,19	1680,934
180000	133,934	195,272	316,37	331,776	348,12	133,951	329,24	645,628	977,421	1325,559
200000	108,449	157,968	255,855	268,286	281,399	108,464	266,447	522,318	790,62	1072,034
220000	89,602	130,415	211,177	221,419	232,171	89,616	220,045	431,236	652,67	884,855
240000	75,273	109,489	177,257	185,84	194,816	$75,\!285$	184,788	362,057	547,911	742,74
260000	64,125	93,224	150,898	158,196	165,801	64,137	157,372	308,282	466,49	632,303
280000	55,282	80,331	130,01	136,29	142,817	$55,\!293$	135,635	265,656	401,957	544,785
300000	48,15	69,939	113,177	118,639	124,301	48,16	118,109	231,296	349,945	474,256
320000	42,313	61,44	99,413	104,207	109,165	42,323	103,773	203,196	307,412	416,586
340000	37,478	54,401	88,015	92,256	96,634	37,487	91,897	179,922	272,187	368,831
360000	33,426	48,506	78,471	82,25	86,144	33,434	81,949	160,429	242,688	328,84
380000	29,997	43,52	70,399	73,787	77,273	30,005	73,534	143,941	217,737	295,018
400000	27,07	39,265	63,512	66,567	69,705	27,078	66,351	129,87	196,445	266,158
420000	24,552	35,605	57,588	60,356	63,197	$24,\!559$	60,171	117,766	178,13	241,335
440000	22,369	32,434	52,455	54,976	57,56	22,376	54,817	107,279	162,262	219,829
460000	20,465	29,668	47,98	50,285	52,644	20,471	50,146	98,133	148,424	201,075
480000	18,794	27,241	44,054	46,169	48,333	18,8	46,048	90,108	136,283	184,623
500000	17,319	25,101	40,59	42,539	44,53	17,326	42,433	83,029	125,574	170,11

Таблица 8 - Результаты вычислений при $v_i=1.$

V_p	$\omega(1)$	$\omega(2)$	$\omega(3)$	$\omega(4)$	$\omega(5)$	u(1)	u(2)	u(3)	u(4)	u(5)
100000	870,296	1082,633	1487,873	1540,771	1601,466	870,327	1952,991	3440,894	4981,696	6583,193
120000	603,744	748,823	1027,756	1063,906	1104,519	603,77	1352,619	2380,401	3444,333	4548,878
140000	443,238	548,588	752,227	778,485	807,53	443,261	991,871	1744,12	2522,627	3330,18
160000	339,166	419,116	574,292	594,224	616,012	339,185	758,321	1332,632	1926,875	2542,907
180000	267,867	330,604	452,763	468,407	485,348	267,884	598,506	1051,286	1519,71	2005,076
200000	216,897	267,435	366,093	378,697	392,244	216,913	484,363	850,472	1229,184	$1621,\!443$
220000	179,203	220,781	302,121	312,492	323,57	179,217	400,012	702,148	1014,654	1338,238
240000	150,545	185,35	253,562	262,245	271,47	$150,\!558$	335,921	589,496	851,754	1123,237
260000	128,25	157,811	215,834	223,21	231,011	128,262	286,084	501,93	725,152	956,175
280000	110,564	135,982	185,941	192,283	198,967	110,575	246,568	432,52	624,814	823,792
300000	96,299	118,389	161,853	167,366	173,155	96,309	214,708	376,572	543,948	717,114
320000	84,627	104,001	142,16	146,996	152,059	84,637	188,647	330,817	477,823	629,891
340000	74,955	92,085	125,855	130,13	134,595	74,964	167,058	292,922	423,062	557,666
360000	66,851	82,106	112,201	116,009	119,977	$66,\!86$	148,974	261,184	377,202	497,187
380000	59,994	73,665	100,655	104,068	107,616	60,002	133,675	234,339	338,415	446,039
400000	54,14	66,462	90,804	93,88	97,072	54,148	120,617	211,429	305,316	402,396
420000	49,103	60,266	82,331	85,118	88,005	49,11	109,384	191,722	276,847	364,859
440000	44,738	54,897	74,991	77,527	80,151	44,745	99,649	174,647	252,181	332,34
460000	40,929	50,216	68,59	70,909	73,304	40,936	91,159	159,756	230,671	303,982
480000	37,588	46,108	62,975	65,103	67,298	37,594	83,709	146,691	211,8	279,105
500000	34,639	42,485	58,023	59,982	62,001	34,645	77,136	135,166	195,154	257,161

Графики зависимости при производительности процессора Vp, с относительными приоритетами представлена рисунках 5-8.

Рисунок 5 - График зависимости $\omega(V_p)$ при $v_i=0$

Рисунок 6 - График зависимости $u(V_p)$ при $v_i=0$

Рисунок 7 - График зависимости $\omega(V_p)$ при $v_i=1$

Рисунок 8 - График зависимости $u(V_p)$ при $v_i=1$

Вывод

В ходе выполнения лабораторной работы было проведено исследование характеристик дисциплин обслуживания очереди потоков процессов с относительными и абсолютными приоритетами, обрабатываемых в однопроцессорной системе.

Сравнивая полученные результаты с расчетом для бесприоритетных дисциплин, можно заметить, что при рассмотрении системы, как одноканальной СМО, время ожидания процессов в системе уменьшается на порядок, а в некоторых местах — заметно больше, что приблизило значения к полученным при более точном моделировании (с использованием модели трехкомпонентной СМО). Такой результат получен, так как время обслуживания с абсолютным приоритетом дополнительно тратится на распределение приоритета.