Derivadas parciales en \mathbb{R}^2 y \mathbb{R}^n

Definición 1. Sea $U \subseteq \mathbb{R}^2$ un conjunto abierto $y : U \to \mathbb{R}$ una función $y (x_0, y_0) \in U$ un punto fijo. Las derivadas parciales de f, en punto (x_0, y_0) , se definen como:

1. parcial con respecto a la variable x.

$$\partial_x f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) = \lim_{s \to 0} \frac{f(x_0 + s, y_0) - f(x_0, y_0)}{s}$$

2. parcial con respecto a la variable y:

$$\partial_y f(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0, y_0 + t) - f(x_0, y_0)}{t}$$

siempre y cuando los límites existen.

Nota 1. Dependiendo de las variables independientes la notación de parciales puede cambiar. Por ejemplo, si tenemos una función $f(x_1, x_2)$, las parciales se denotan $\partial_{x_1} f$ y $\partial_{x_2} f$ o si es $f(r, \theta)$ tendríamos $\partial_r f$, $\partial_{\theta} f$.

Ejercicio 1. Sean $g, h : \mathbb{R} \to \mathbb{R}$ funciones de una variable, ambas diferenciables, y define f(x, y) = g(x)h(y). Fija un punto (x_0, y_0) . Demuestra que

$$\partial_x f(x_0, y_0) = g'(x_0)h(y_0), \quad \partial_y f(x_0, y_0) = g(x_0)h'(y_0).$$

Proof. Primero formamos el cociente diferencial para $\partial_x f(x_0, y_0)$:

$$\frac{f(x_0+t,y_0)-f(x_0,y_0)}{t} = \frac{g(x_0+t)h(y_0)-g(x_0)h(x_0)}{t}.$$

Factorizando $h(y_0)$ se sigue que

$$\frac{f(x_0 + t, y_0) - f(x_0, y_0)}{t} = \left(\frac{g(x_0 + t) - g(x_0)}{t}\right) h(y_0)$$

Reconocemos el cociente diferencial para g, así que al tomar límite cuando $t \to 0$ concluimos

$$\partial_x f(x_0, y_0) = g'(x_0)h(y_0)$$

La fórmula $\partial_y f(x_0, y_0) = g(x_0)h'(y_0)$ se prueba de manera similar.

Ejemplo 1. Usando el ejercicio anterior, si $f(x.y) = \cos(x) \sin(y)$ entonces

$$\partial_x f(x_0, y_0) = -\sin(x_0)\sin(y_0), \quad \partial_y f(x_0, y_0) = \cos(x_0)\cos(y_0)$$

Proposición 1. Sea f(x, y) una función de dos variables definida en un abierto de \mathbb{R}^2 y fija (x_0, y_0) un punto en dicho abierto. Supongamos que $\partial_x f(x_0, y_0)$ y $\partial_y f(x_0, y_0)$ existen. Define funciones de una variable

$$q(x) = f(x, y_0), \quad h(y) = f(x_0, y)$$

Usando la definición de derivada parcial y derivada usual, demuestra que $g'(x_0) = \partial_x(x_0, y_0)$ y $h'(y_0) = \partial_y f(x_0, y_0)$.

Es decir, este ejercicio muestra que para calcular las derivadas parciales simplemente se calcula la derivada uno dimensional, pensando las otras variables como constantes.

Proof. Primero, usamos la definición de g para formar su el cociente diferencial:

$$\frac{g(x_0+s)-g(x_0)}{s} = \frac{f(x_0+s,y_0)-f(x_0,y_0)}{s}$$

Tomando límite cuando $s \to 0$ vemos que el límite del cociente diferencial es el mismo que el que aparece en la definición de derivada parcial y concluimos

$$g'(x_0) = \partial_x f(x_0, y_0).$$

De manera similar,

$$\frac{h(y_0+t)-h(y_0)}{t} = \frac{f(x_0, y_0+t)-f(x_0, y_0)}{t}$$

y al tomar el límite cuando $t \to 0$ concluimos

$$h'(y_0) = \partial_y f(x_0, y_0).$$

Ejemplo 2. Sea $f(x,y) = e^{x^2y}$. Entonces

$$\partial_x f(x_0, y_0) = 2x_0 e^{x_0^2 y_0}, \quad \partial_y f(x_0, y_0) = e^{x_0^2 y_0}$$

Nota 2. Para cada punto (x_0, y_0) , al calcular las parciales

$$\partial_x f(x_0, y_0), \quad \partial_u f(x_0, y_0)$$

obtenemos números reales. Pero, si pensamos a (x_0, y_0) variando en un dominio y lo denotamos (x, y) (notación de variable), obtenemos funciones

$$\partial_x f(x,y), \quad \partial_y f(x,y)$$

Note que en las expresiones anteriores las x que aparecen son distintas. La de la parcial indica con respecto a qué variable se diferencia y la otra indica en qué punto se está evaluando. Asi por ejemplo si $\partial_x f(x,y) = 6x - 2y$ entonces $\partial_x f(3,5) = 6(3) - 2(5) = 8$, sin embargo $\partial_3 f(x,y)$ o $\partial_3 f(3,5)$ no tienen sentido.

Ejemplo 3. Encuentra el dominio de definición de $\partial_x f(x,y)$ donde $f(x,y) = \log(4 - x^2 - y^2)$.

 ${\it Proof.}$ Diferenciando f(x,y), con respecto a xtomando ycomo constante tenemos

$$\partial_x f(x,y) = \frac{1}{4 - x^2 - y^2} (-2x)$$

donde se usa la regla de la cadena.

Para que lo anterior tenga sentido necesitamos que $4-x^2-y^2\neq 0$, nada más. \Box

Ejemplo 4. Considera la función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = \sqrt[3]{x} \sqrt[3]{y}$. Demuestra que $\partial_x f(0,0) = 0 = \partial_y f(0,0)$. Además, muestra que para toda $y_0 \neq 0$, $\partial_x f(0,y_0)$ no existe.

Proof. Para $\partial_x f(0,0)$, primero calculamos el cociente diferencial

$$\frac{f(0+s,0)-f(0,0)}{s} = \frac{\sqrt[3]{s}\sqrt[3]{0} - \sqrt[3]{0}\sqrt[3]{0}}{s} = \frac{0}{s} = 0$$

Tomando límite cuando $s \to 0$ concluimos que $\partial_x f(0,0) = 0$. De manera similar

$$\frac{f(0,0+t) - f(0,0)}{t} = \frac{\sqrt[3]{0}\sqrt[3]{t} - \sqrt[3]{0}\sqrt[3]{0}}{t} = \frac{0}{t} = 0$$

y al tomar límite cuanto $t \to 0$ se obtiene $\partial_y f(0,0) = 0$.

Ahora fijemos $y_0 \neq 0$. Al formar el cociente diferencial para $\partial_x f(0, y_0)$ obtenemos

$$\frac{f(0+s,y_0) - f(0,y_0)}{s} = \frac{\sqrt[3]{s}\sqrt[3]{y_0} - \sqrt[3]{0}\sqrt[3]{y_0}}{s} = \frac{\sqrt[3]{s}}{s}\sqrt[3]{y_0} = \frac{1}{s^{2/3}}\sqrt[3]{y_0}$$

Ya que

$$\lim_{s \to 0} \frac{1}{s^{2/3}} \sqrt[3]{y_0} = +\infty, \quad \text{si } y_0 > 0$$

у

$$\lim_{s \to 0} \frac{1}{s^{2/3}} \sqrt[3]{y_0} = -\infty, \quad \text{si } y_0 < 0$$

la derivada parcial $\partial_x f(0, y_0)$ no existe.

Definición 2. Sea f(p) una función de n-variables, $p = (p_1, \ldots, p_n)$, definida en un abierto en \mathbb{R}^n . Fija $j \in \{1, \ldots, n\}$. La derivada parcial de f, con respecto a la variable p_j (también llamada la j-ésima derivada parcial), valuada en p se define como

$$\partial_{p_j} f(p) = \lim_{h \to 0} \frac{f(p + he_j) - f(p)}{h}$$

donde $\{e_1,\ldots,e_1\}$ es la base canónica de \mathbb{R}^n .

Nota 3. Al igual que en el caso de dos variables, las derivadas parciales se obtienen diferenciando como en el caso de una variable, tratando a las otras como constantes.

Ejemplo 5. Considera la función $f(p) = \sum_{i=1}^{n} e^{p_i^2}$, donde $p = (p_1, \dots, p_n)$. Entonces

$$\partial_i f(p) = 2p_i e^{p_j^2}$$