# 《微分几何入门与广义相对论》 部分习题参考解答

by 薛定谔的大喵¹

2018年3月17日

 $<sup>^1</sup> wyj 1234@mail.ustc.edu.cn\\$ 

# 目录

| 第一部分 上册               | 3         |
|-----------------------|-----------|
| 第一章 拓扑空间简简介           | 4         |
| 第二章 流形和张量场            | 8         |
| 第三章 黎曼(内禀)曲率张量        | 26        |
| 第四章 李导数、Killing 场和超曲面 | 45        |
| 第五章 微分形式及其积分          | <b>54</b> |
| 第六章 狭义相对论             | 74        |
|                       |           |
| 第二部分 中册               | 75        |
| 附录 G 李群和李代数           | 76        |

第一部分

## 第一章 拓扑空间简简介

#### 习题

- 1. 试证  $A-B=A\cap (X-B)$ ,  $\forall A,B\subset X$ 。 证明  $x\in A-B\iff x\in A\wedge x\notin B\iff x\in A\cap (X-B)$ 。
- 2. 试证  $X-(B-A)=(X-B)\cup A$ ,  $\forall A,B\subset X$ 。 证明  $x\in X-(B-A)\iff x\notin B-A\iff x\notin B \ \forall x\in A\iff x\in (X-B)\cup A$ 。
- 3. 用"对"或"错"在下表中填空:

| $f \colon \mathbb{R} \to \mathbb{R}$ | 是一一的 |  |
|--------------------------------------|------|--|
| $f(x) = x^3$                         |      |  |
| $f(x) = x^2$                         |      |  |
| $f(x) = e^x$                         |      |  |
| $f(x) = \cos x$                      |      |  |
| $f(x) = 5, \forall x \in \mathbb{R}$ |      |  |

#### 解 如下表:

| $f\colon \mathbb{R} 	o \mathbb{R}$   | 是一一的 | 是到上的 |
|--------------------------------------|------|------|
| $f(x) = x^3$                         | 对    | 对    |
| $f(x) = x^2$                         | 错    | 错    |
| $f(x) = e^x$                         | 对    | 错    |
| $f(x) = \cos x$                      | 错    | 错    |
| $f(x) = 5, \forall x \in \mathbb{R}$ | 错    | 错    |

4. 判断下列说法的是非并简述理由:

- (a) 正切函数是由 ℝ 到 ℝ 的映射;
- (b) 对数函数是由 ℝ 到 ℝ 的映射;
- (c)  $(a,b] \subset \mathbb{R}$  用  $\mathcal{T}_u$  衡量是开集;
- (d)  $[a,b] \subset \mathbb{R}$  用  $\mathcal{T}_u$  衡量是闭集。
- 解 (a) 错,定义域不是 $\mathbb{R}$ ;
  - (b) 错, 定义域不是 ℝ;
  - (c) 错, 任意包含于 (a,b] 的开区间都不会含有 b, 故 (a,b] 不能写为开区间之并;
  - (d) 对, 其补集  $(-\infty, a) \cup (b, \infty)$  是开集。
- **5.** 举一反例证明命题"( $\mathbb{R}$ ,  $\mathcal{I}_u$ ) 的无限个开子集之交为开"不真。

证明 记 
$$O_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$$
,则  $\bigcap_{n=1}^{\infty} O_n = \{0\}$  为闭集。

6. 试证 §1.2 例 5 中定义的诱导拓扑满足定义 1 的 3 个条件。

证明 拓扑空间  $(X, \mathcal{D})$  的子集 A 上的诱导拓扑按照定义为

$$\mathscr{S} := \{ V \subset A \mid \exists O \in \mathscr{T}, \text{ s.t. } V = A \cap O \},$$

- (a)  $A, \emptyset \in \mathcal{S}$ : 取 O = X 即知  $A \in \mathcal{S}$ , 取  $O = \emptyset$  即知  $A \in \mathcal{S}$ ;
- (b) 有限文: 设  $V_i = A \cap O_i \in \mathcal{S}$ , 其中  $O_i \in \mathcal{T}$ ,  $i = 1, 2, \dots, n$ 。则

$$\bigcap_{i=1}^{n} V_i = A \cap \left(\bigcap_{i=1}^{n} O_i\right) \in \mathscr{S};$$

(c) 无限并:设  $V_{\alpha} = A \cap O_{\alpha} \in \mathcal{S}$ ,其中  $O_{\alpha} \in \mathcal{T}$ ,  $\alpha \in$ 某个指标集I。则

$$\bigcup_{\alpha \in I} V_{\alpha} = A \cap \left(\bigcup_{\alpha \in I} O_{\alpha}\right) \in \mathscr{S}.$$

- 7. 举例说明  $(\mathbb{R}^3, \mathcal{I}_u)$  中存在不开不闭的子集。
  - 解 令  $A = (0,1]^3$ ,任何包含于 A 的开球  $B_r(x_0,y_0,z_0)$  的 z 坐标的范围为开区间  $(z_0-r,z_0+r)\in(0,1]$ ,故 (x,y,1) 不能属于此开球,于是 A 不能由一族开球之并得到,故 A 不是开集。其补集中 (x,y,0) 不能属于开球,故补集不是开集,故 A 不是闭集。
- 8. 常值映射  $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$  是否连续? 为什么?
  - 解 连续。证明如下: 设  $f[X] = \{y\} \subset Y$ ,  $\forall O \in \mathcal{S}$ , 若  $y \in O$ , 则  $f^{-1}[O] = X \in \mathcal{T}$ ; 若  $y \notin O$ , 则  $f^{-1}[O] = \emptyset \in \mathcal{T}$ 。故 f 连续。
- 9. 设  $\mathcal{I}$  为集 X 上的离散拓扑, $\mathcal{I}$  为集 Y 上的凝聚拓扑,

- (a) 找出从  $(X, \mathcal{I})$  到  $(Y, \mathcal{I})$  的全部连续映射;
- (b) 找出从  $(Y, \mathcal{S})$  到  $(X, \mathcal{T})$  的全部连续映射。
- 解 (a) 设  $f: X \to Y$ , 则由于  $\mathscr{S} = \{Y, \varnothing\}$ , f 连续当且仅当  $f^{-1}[Y] = X \in \mathscr{T} \land f^{-1}[\varnothing] = \varnothing \in \mathscr{T}$ , 可是这是必然满足的,于是所有映射  $f: (X, \mathscr{T}) \to (Y, \mathscr{S})$  均连续。
  - (b) 设  $g: Y \to X$ ,则由于  $\mathscr{T} = 2^X$ , g 连续当且仅当  $\forall O \subset X$ ,  $g^{-1}[O] = X \lor g^{-1}[O] = \varnothing$ 。 假设存在  $x, y \in g[Y]$ ,  $x \neq y$ , 则取 O = x, 有  $g^{-1}[O] = g^{[} 1](x) \notin \mathscr{S}$ , 故 g 不 是连续的。于是连续映射 g 的像只能有一个,即为常值映射。又 8 中已证明常值映射为连续,故  $g: (Y, \mathscr{S}) \to (X, \mathscr{T})$  连续当且仅当其为常值映射。
- **10.** 试证明定义 3a 与 3b 的等价性。
  - 证明 (1) 3a 推导 3b。设  $f:(X,\mathcal{T})\to (Y,\mathcal{S})$  连续,按照定义 3a 即满足  $\forall O\in\mathcal{S}, f^{-1}[O]\in\mathcal{T}$ 。则  $\forall x\in X$ ,任取  $G'\in\mathcal{S}$  使得  $f(x)\in G'$ ,则只需取  $G=f^{-1}[G']$ ,即有  $G\in\mathcal{T}$  并且  $f[G]=G'\subset G'$ ,于是按照定义 3b,f 也连续。
    - (2) 3b 推导 3a。设  $f:(X,\mathcal{T})\to (Y,\mathcal{S})$  连续, 按照定义 3b 即满足  $\forall x\in X, \forall G'\in \mathcal{S}$  且  $f(x)\in G'$ ,  $\exists G\in \mathcal{T}$  使得  $f[G]\subset G'$ 。于是任取  $O\in \mathcal{S}$ ,令 x 跑遍  $f^{-1}[O]$ ,对每一个 x 存在  $G_x\in \mathcal{T}$  使得  $f[G_x]\subset O$ ,考虑  $G=\bigcup_{x\in f^{-1}[O]}G_x$ ,显然  $G\in \mathcal{T}$ 。由于  $x\in f^{-1}[O]$ , $x\in G_x$  因而  $x\in G$ ,于是  $f^{-1}[O]\subset G$ ;而  $\forall x\in G$ ,不妨设  $x\in G_{x_0}$ ,则由于  $f[G_{x_0}]\subset O$ ,知  $x\in f^{-1}[O]$ ,故又有  $G\subset f^{-1}[O]$ ,于是 G 正是  $f^{-1}[O]$ ,也就是  $f^{-1}[O]=G\in \mathcal{T}$ ,按照定义 3a,f 也是连续的。
- **11.** 试证任一开区间  $(a,b) \subset \mathbb{R}$  与  $\mathbb{R}$  同胚。

证明 只需找到一个同胚映射。函数  $f\colon (a,b)\to \mathbb{R}$  定义为  $f(x)=\tan\left(\pi\frac{x-a}{b-a}-\frac{\pi}{2}\right)$  即满足要求。

- **12.** 设  $X_1$  和  $X_2$  是  $\mathbb{R}$  的子集, $X_1 \equiv (1,2) \cup (2,3)$ , $X_2 \equiv (1,2) \cup [2,3)$ 。以  $\mathcal{I}_1$  和  $\mathcal{I}_2$  分别代表 由  $\mathbb{R}$  的通常拓扑在  $X_1$  和  $X_2$  上的诱导拓扑。拓扑空间  $(X_1,\mathcal{I}_1)$  和  $(X_2,\mathcal{I}_2)$  是否连通?
  - 解 (1)  $(X_1,\mathcal{I}_1)$  不连通。考虑  $O=(1,2)\subset X_1$ ,  $O=X_1\cap (1,2)\in \mathcal{I}_1$ ,故 O 为开集;而 X-O=(2,3) 同样为开集,于是 O 即开叉闭,故  $(X_1,\mathcal{I}_1)$  不连通。
    - (2)  $(X_2, \mathscr{T}_2)$  连通。假设  $\exists O \neq X_2, O \neq \emptyset, \ O \in \mathscr{T}$  且  $X O \in \mathscr{T}_2$ ,任取  $a \in O$ , $b \in X O$ ,不妨设 a < b,于是  $[a,b] \subset X_2$ ,记  $A = [a,b] \cap O$ , $B = [a,b] \cap (X O)$ , $c = \sup A$ ,我们来证明 O 和 X O 都是开集将导致  $c \notin A$  并且  $c \notin (X O)$ ,从而矛盾。
      - (a) 若  $c \in B$ , 由于 X O 是开集,且由于  $X_2 = (1,3) \in \mathcal{T}_u \implies \mathcal{T}_2 = \mathcal{T}_u \cap 2^{X_2}$ , X O 可以写作一系列开区间之并,于是  $B = (X O) \cap [a,b]$  是一系列形如 [a,y),(x,y) 或 (x,b] 的区间之并,现在  $c \neq a$ ,故包含 c 的区间属后两种,则一定存在  $d \in B$ ,使  $(d,c] \subset B$ ,

- i. 若 c = b, 则  $(d,b] \subset B$ ;
- ii. 若 a < c < b,则  $(d,b] = (d,c] \cup (c,b] \subset B$ ,

于是d是A的上界,然而却小于上确界c,矛盾。

(b) 若  $c \in A$ ,同(a)有 O 是开集将导致  $\exists e \in A$ ,使得  $[c,e) \subset A$ ,与 c 是 A 的上确界矛盾。

至此  $c \in A$  与  $c \in B$  均导致矛盾, 然而  $c \notin A \land c \notin B$  又与 A 和 B 的定义矛盾, 故 O 与 X = O 均为非空开集是不可能的。故  $X_2$ ,  $S_3$  连通。

**13.** 任意集合 X 配以离散拓扑  $\mathcal{I}$  所得的拓扑空间是否连通?

解 不连通。 $\forall O \in X, O \in \mathcal{T} \land X - O \in \mathcal{T} \Longrightarrow X$ 不连通。

- **14.** 设  $A \subset B$ ,试证
  - (a)  $\bar{A} \subset \bar{B}$ ; 提示:  $A \subset B$  表明  $\bar{B}$  是含 A 的闭集。
  - (b)  $i(A) \subset i(B)$ .
  - 证明 (a)  $A \subset B \subset \overline{B}$ , 根据闭包定义有  $\overline{A} \subset \overline{B}$ ;
    - (b)  $i(A) \subset A \subset B$ ,根据内部定义有  $i(A) \subset i(B)$ 。
- **15.** 试证  $x \in \bar{A} \iff x$  的任一邻域与 A 之交非空。对  $\implies$  证明的提示: 设  $O \in \mathcal{T}$  且  $O \cap A = \emptyset$ ,先证  $A \subset X O$ ,再证(利用闭包定义) $\bar{A} \subset X O$ 。
  - 证明 (1)  $\implies$ : 不妨设  $O \in X$  的开邻域。假设  $O \cap A = \emptyset$ , 于是  $\forall a \in A$ ,  $a \neq A$ , 于是  $a \in X O$ ,  $A \subset X O$ , 而 X O 为闭集, 于是  $\bar{A} \subset X O$ , 故知  $x \notin \bar{A}$ , 矛盾;
    - (2)  $\iff$ : 设  $\forall O \in \mathcal{T}$  使得  $x \in O$ , 都有  $O \cap A \neq \emptyset$ 。假设  $x \notin \overline{A}$ ,根据定义, $\exists B$  为 闭集, $A \subset B$  且  $x \notin B$ 。于是  $x \in X B \in \mathcal{T}$ ,于是 X B 是 x 的一个与 A 无 交的开邻域,矛盾。
- **16.** 试证 ℝ 不是紧致的。
  - 证明 记  $O_i = (i-1,i+1)$ ,显然  $\{O_i\}_{i \in \mathbb{Z}}$  是  $\mathbb{R}$  的开覆盖。现挑出其中任意  $n \wedge O_{i_k}$ ,  $k = 1,2,\cdots,n$ ,则  $\max_{k=1,2,\cdots,n} i_k + 1$  即为  $\bigcup_{k=1,2,\cdots,n} O_{i_k}$  的一个上界,故有限个元素不能覆盖  $\mathbb{R}$ ,于是  $\mathbb{R}$  不是紧致的。

## 第二章 流形和张量场

#### 习题

1. 试证 §2.1 例 2 定义的拓扑同胚映射  $\psi_i^\pm$  在  $O_i^\pm$  的所有交叠区域上满足相容性条件,从而证实  $S^1$  确是 1 维流形。

证明 首先, 易知  $O_i^+ \cap O_i^- = \emptyset$ , 故只需考虑  $O_1^+ \cap O_2^+$  及  $O_i^+ \cap O_i^-$ 。以

$$O_1^+ \cap O_2^+ = \{(x^1, x^2) \in S^1 \mid x^1 > 0, x^2 > 0\}$$

为例,根据定义,

$$\psi_2^+ \circ (\psi_1^+)^{-1}(t) = \psi_2^+((\sqrt{1-t^2},t)) = \sqrt{1-t^2},$$

这的确是  $C^{\infty}$  的函数。

**2.** 说明 n 维矢量空间可看作 n 维平庸流形。

证明 为 n 维矢量空间 V 任取拓扑,再取定一组基  $\mathcal{B}=\{e_i\}_{i=1}^n$  ,则在基  $\mathcal{B}$  下, $\forall v\in V$  ,v 可展开为

$$v = \sum_{i=1}^{n} v^{i} e_{i},$$

令映射  $\psi: V \to \mathbb{R}^n$  定义为:

$$\psi \colon v \mapsto (v^1, v^2, \cdots, v^n),$$

则取图册  $\{(V,\psi)\}$ , 即可令 V 成为 n 维平庸流形。

**3.** 设 X 和 Y 是拓扑空间, $f\colon X\to Y$  是同胚。若 X 还是个流形,试给 Y 定义一个微分结构 使  $f\colon X\to Y$  升格为微分同胚。

证明 记 X 的图册为  $\{(O_{\alpha}, \psi_{\alpha})\}$ , 对每个  $\alpha$ , 由于 f 是拓扑同胚,

$$O'_{\alpha} := f(O_{\alpha}) \in \mathscr{T}_Y,$$

在  $O'_{\alpha}$  上定义映射

$$\psi_{\alpha}' := \psi_{\alpha} \circ f^{-1},$$

则

$$\psi_{\alpha}' \circ f \circ \psi_{\alpha}^{-1} = \psi_{\alpha} \circ f^{-1} \circ f \circ \psi_{\alpha}^{-1}$$
$$= \operatorname{Id}_{V_{\alpha}} \in C^{\infty}(V_{\alpha}),$$

于是在给 Y 定义图册  $\{(O'_{\alpha}, \psi'_{\alpha})\}$  后, f 成为一个微分同胚。

**4.** 设 (x,y) 是  $\mathbb{R}^2$  的自然坐标,C(t) 是曲线,参数表达式为  $x=\cos t$ ,  $y=\sin t$ ,  $t\in(0,\pi)$ 。 若  $p=C(\pi/3)$ ,写出曲线在 p 的切矢在自然坐标基的分量,并画图表示出该曲线及该切矢。

解 记p点切矢为T,则

$$T_x = \frac{\mathrm{d}}{\mathrm{d}t} (x \circ C(t)) \bigg|_{t = \frac{\pi}{3}} = -\frac{\sqrt{3}}{2}$$

$$T_y = \frac{\mathrm{d}}{\mathrm{d}t} (y \circ C(t)) \bigg|_{t = \frac{\pi}{2}} = \frac{1}{2}$$

如下图:



图 2.1: 曲线 C(t) 及其在 p 点的切矢

**5.** 设曲线 C(t) 和  $C'(t) \equiv C(2t_0 - t)$  在  $C(t_0) = C'(t_0)$  点的切矢分别为 v 和 v', 试证 v + v' = 0。

证明 记  $t' = 2t_0 - t$ , 依定义,  $\forall f \in \mathcal{F}_M$ ,

$$\begin{split} v(f) &= \left. \frac{\mathrm{d}(f \circ C(t))}{\mathrm{d}t} \right|_{t=t_0}, \\ v'(f) &= \left. \frac{\mathrm{d}(f \circ C'(t))}{\mathrm{d}t} \right|_{t=t_0} \\ &= \left. \frac{\mathrm{d}(f \circ C(t'))}{\mathrm{d}t} \right|_{t=t_0} \\ &= \left. \frac{\mathrm{d}t'}{\mathrm{d}t} \right|_{t=t_0} \times \left. \frac{\mathrm{d}(f \circ C(t'))}{\mathrm{d}t'} \right|_{t=t_0, \beta \uparrow t' = 2t_0 - t = t_0} \\ &= -\left. \frac{\mathrm{d}(f \circ C(t'))}{\mathrm{d}t'} \right|_{t' = t_0} \\ &= -v(f) \end{split}$$

$$\therefore v' = -v, \quad v + v' = 0$$

**6.** 设 *O* 为坐标系  $\{x^{\mu}\}$  的坐标域, $p \in O$ , $v \in V_p$ , $v^{\mu}$  是 v 的坐标分量,把坐标  $x^{\mu}$  看作 O 上 的  $C^{\infty}$  函数,试证  $v^{\mu} = v(x^{\mu})$ 。提示:用  $v = v^{\nu}X_{\nu}$  两边作用于函数  $x^{\mu}$ 。

证明 由  $v = v^{\nu} X_{\nu}$ ,

$$v(x^{\mu}) = v^{\nu} X_{\nu}(x^{\mu}) = v^{\nu} \left. \frac{\partial x^{\mu}}{\partial x^{\nu}} \right|_{n} = v^{\nu} \delta^{\mu}_{\ \nu} = v^{\mu}.$$

7. 设 M 是二维流形, $(O, \psi)$  和  $(O', \psi')$  是 M 上的两个坐标系,坐标分别为  $\{x,y\}$  和  $\{x',y'\}$ ,在  $O\cap O'$  上的坐标变换为 x'=x,  $y'=y-\Omega x(\Omega=常数)$ ,试分别写出坐标基矢  $\partial/\partial x$ , $\partial/\partial y$  用坐标基矢  $\partial/\partial x'$ , $\partial/\partial y'$  的展开式。

解 坐标基矢逐点的变换关系为 
$$X_{\mu} = \frac{\partial x'^{\nu}}{\partial x^{\mu}}\Big|_{p} X_{\nu}$$
, 故 
$$\frac{\partial}{\partial x} = \frac{\partial x'}{\partial x} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial x} \frac{\partial}{\partial y'}$$
 
$$= \frac{\partial}{\partial x'} - \Omega \frac{\partial}{\partial y'};$$
 
$$\frac{\partial}{\partial y} = \frac{\partial x'}{\partial y} \frac{\partial}{\partial x'} + \frac{\partial y'}{\partial y} \frac{\partial}{\partial y'}$$
 
$$= \frac{\partial}{\partial x'}.$$

- 8. (a) 试证式 (2-2-9) 的 [u,v] 在每点满足矢量定义(§2.2 定义 2)的两个条件,从而的确是 矢量场。
  - (b) 设 u, v, w 为流形 M 上的光滑矢量场, 试证

$$[[u, v], w] + [[w, u], v] + [[v, w], u] = 0$$

(此式称为雅可比恒等式)。

证明 (a) (i) 线性性: 显然;

- (ii) 莱布尼兹律: 显然。证毕1。
- (b) 由定义, 逐次展开有:

$$\begin{split} & [[u,v],w] + [[w,u],v] + [[v,w],u] \\ & = [u,v] \circ w - w \circ [u,v] + [w,u] \circ v \\ & - v \circ [w,u] + [v,w] \circ u - u \circ [v,w] \\ & = u \circ v \circ w - v \circ u \circ w - w \circ u \circ v + w \circ v \circ u \\ & + w \circ u \circ v - u \circ w \circ v - v \circ w \circ u + v \circ u \circ w \\ & + v \circ w \circ u - w \circ v \circ u - u \circ v \circ w + u \circ w \circ v \\ & = 0. \end{split}$$

- 9. 设  $\{r,\phi\}$  为  $\mathbb{R}^n$  中某开集(坐标域)上的极坐标, $\{x,y\}$  为自然坐标,
  - (a) 写出极坐标系的坐标基矢  $\partial/\partial r$  和  $\partial/\partial\phi$  (作为坐标域上的矢量场) 用  $\partial/\partial x$  ,  $\partial/\partial y$  展开的表达式。
  - (b) 求矢量场  $[\partial/\partial r, \partial/\partial x]$  用  $\partial/\partial x, \partial/\partial y$  展开的表达式。
  - (c) 令  $\hat{e}_r \equiv \partial/\partial r$  ,  $\hat{e}_\phi = r^{-1} \partial/\partial \phi$  , 求  $[\hat{e}_r, \hat{e}_\phi]$  用  $\partial/\partial x$  ,  $\partial/\partial y$  展开的表达式。
  - 解 (a) 坐标变换为

$$\begin{cases} x = r\cos\phi, \\ y = r\sin\phi. \end{cases}$$

于是

$$\begin{split} \frac{\partial}{\partial r} &= \frac{\partial x}{\partial r} \frac{\partial}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial}{\partial y} \\ &= \cos \phi \frac{\partial}{\partial x} + \sin \phi \frac{\partial}{\partial y} \\ &= \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}, \\ \frac{\partial}{\partial \phi} &= \frac{\partial x}{\partial \phi} \frac{\partial}{\partial \phi} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial \phi} \\ &= -r \sin \phi \frac{\partial}{\partial x} + r \cos \phi \frac{\partial}{\partial y} \\ &= -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}. \end{split}$$

(b)  $\forall f \in \mathscr{F}_M$ ,

$$\begin{split} \left[\frac{\partial}{\partial r}, \frac{\partial}{\partial x}\right](f) &= \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right) \frac{\partial}{\partial x}(f) \\ &- \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right)(f) \\ &= \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial^2 F}{\partial x^2} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial^2 F}{\partial y \partial x} \\ &- \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial x}\right) - \frac{\partial}{\partial x} \left(\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial y}\right) \\ &= -\frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}}\right) \frac{\partial F}{\partial x} - \frac{\partial}{\partial x} \left(\frac{y}{\sqrt{x^2 + y^2}}\right) \frac{\partial F}{\partial y} \\ &= -\frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} \frac{\partial F}{\partial x} + \frac{xy}{(x^2 + y^2)^{\frac{3}{2}}} \frac{\partial F}{\partial y} \\ &= \left(-\frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} \frac{\partial}{\partial x} + \frac{xy}{(x^2 + y^2)^{\frac{3}{2}}} \frac{\partial}{\partial y}\right)(f), \end{split}$$

:. 在基  $\frac{\partial}{\partial x}$ ,  $\frac{\partial}{\partial y}$  下,

$$\left[\frac{\partial}{\partial r},\frac{\partial}{\partial x}\right] = -\frac{y^2}{(x^2+y^2)^{\frac{3}{2}}}\frac{\partial}{\partial x} + \frac{xy}{(x^2+y^2)^{\frac{3}{2}}}\frac{\partial}{\partial y}.$$

(c) 由 (a),

$$\begin{split} \hat{e}_r &= \frac{\partial}{\partial r} = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}, \\ \hat{e}_\phi &= \frac{1}{r} \frac{\partial}{\partial \phi} = -\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}, \end{split}$$

于是有  $\forall f \in \mathscr{F}_M$ ,

$$\begin{aligned} & [\hat{e}_r, \hat{e}_{\phi}](f) \\ & = \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right) \left(-\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right) (f) \\ & - \left(-\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right) \left(\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}\right) (f) \end{aligned}$$

$$= \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left( -\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial x} \right) + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left( \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial y} \right)$$

$$+ \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( -\frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial x} \right) + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial y} \right)$$

$$+ \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left( \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial x} \right) + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial y} \right)$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial x} \right) - \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial F}{\partial y} \right)$$

$$= -\frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left( \frac{y}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{xy}{x^2 + y^2} \frac{\partial^2 F}{\partial x^2}$$

$$+ \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial y} + \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{y^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$+ \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial y} + \frac{xy}{x^2 + y^2} \frac{\partial^2 F}{\partial y^2}$$

$$+ \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} + \frac{xy}{x^2 + y^2} \frac{\partial^2 F}{\partial x^2}$$

$$+ \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial y} + \frac{y^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{xy}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{xy}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^2 + y^2} \frac{\partial^2 F}{\partial y \partial x}$$

$$- \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y} \left( \frac{x}{\sqrt{x^2 + y^2}} \right) \frac{\partial F}{\partial x} - \frac{x^2}{x^$$

$$\frac{y}{x^2 + y^2} \frac{\partial F}{\partial x} - \frac{x}{x^2 + y^2} \frac{\partial F}{\partial y}$$

于是得到

$$[\hat{e}_r, \hat{e}_\phi] = \frac{y}{x^2 + y^2} \frac{\partial}{\partial x} - \frac{x}{x^2 + y^2} \frac{\partial}{\partial y}$$

**10.** 设 u, v 为 M 上的矢量场, 试证 [u,v] 在任何坐标基底的分量满足

$$[u,v]^{\mu} = v^{\nu} \partial v^{\mu}/\partial x^{\nu} - v^{\nu} \partial u^{\mu}/\partial x^{\nu}$$
. 提示: 用式 (2-2-3') 和 (2-2-3)

证明  $\forall f \in \mathscr{F}_M$ ,

$$\begin{split} [u,v](f) &= \left[ u^{\mu} \frac{\partial}{\partial x^{\mu}}, v^{\nu} \frac{\partial}{\partial x^{\nu}} \right] (f) \\ &= u^{\mu} \frac{\partial}{\partial x^{\mu}} \left( v^{\nu} \frac{\partial F}{\partial x^{\nu}} \right) - v^{\nu} \frac{\partial}{\partial x^{\nu}} \left( u^{\mu} \frac{\partial F}{\partial x^{\nu}} \right) \\ &= u^{\mu} \frac{\partial v^{\nu}}{\partial x^{\mu}} \frac{\partial F}{\partial x^{\nu}} - v^{\nu} \frac{\partial u^{\mu}}{\partial x^{\nu}} \frac{\partial F}{\partial x^{\mu}} \\ &= \left( u^{\nu} \frac{\partial v^{\mu}}{\partial x^{\nu}} - v^{\nu} \frac{\partial u^{\mu}}{\partial x^{\nu}} \right) \frac{\partial F}{\partial x^{\mu}} \end{split}$$

故

$$\begin{split} [u,v] &= \left( u^{\nu} \frac{\partial v^{\mu}}{\partial x^{\nu}} - v^{\nu} \frac{\partial u^{\mu}}{\partial x^{\nu}} \right) \frac{\partial}{\partial x^{\mu}}, \\ [u,v]^{\mu} &= \left( u^{\nu} \frac{\partial v^{\mu}}{\partial x^{\nu}} - v^{\nu} \frac{\partial u^{\mu}}{\partial x^{\nu}} \right). \end{split}$$

11. 设  $\{e_{\mu}\}$  为 V 的基底, $\{e^{\mu *}\}$  为其对偶基底, $v \in V$ , $\omega \in V^*$ ,试证

$$\omega = \omega(e_{\mu})e^{\mu*}, \quad v = e^{\mu*}(v)e_{\mu}.$$

证明 设  $\omega = \omega_{\mu} e^{\mu *}$ , 则

$$\omega(e_{\nu}) = \omega_{\mu} e^{\mu *}(e_{\nu})$$
$$= \omega_{\mu} \delta^{\mu}_{\nu}$$
$$= \omega_{\nu},$$

 $\therefore \omega = \omega(e_m u)e^{\mu *}$ . 同理设  $v = v^{\mu}e_{\mu}$ ,

$$e^{\nu*}(v) = v^{\mu}e^{\nu*}(e_{\mu})$$
$$= v^{\mu}\delta^{\nu}_{\mu}$$
$$= v^{\nu},$$

$$v = e^{\mu *} e_{\mu}$$
.

12. 试证  $\omega'_{\mu}=\frac{\partial x^{\mu}}{\partial x'^{\nu}}\omega_{\mu}$  (定理 2-3-4)。

证明 由上题,

$$\omega'_{\nu} = \omega \left( \frac{\partial}{\partial x'^{\nu}} \right)$$
$$= \omega \left( \frac{\partial x^{\mu}}{\partial x'^{\nu}} \frac{\partial}{\partial x^{\mu}} \right)$$

$$\begin{split} &= \frac{\partial x^{\mu}}{\partial x'^{\nu}} \omega \left( \frac{\partial}{\partial x^{\mu}} \right) \\ &= \frac{\partial x^{\mu}}{\partial x'^{\nu}} \omega_{\mu}. \end{split}$$

**13.** 试证由式 (2-3-5) 定义的映射  $v \mapsto v^{**}$  是同构映射。提示: 可利用线性代数的结论,即同维 矢量空间之间的一一线性映射必到上。

证明 留作习题答案略,读者自证不难(逃  $-=\equiv \Sigma(((つ \cdot \omega \cdot)) つ)$ 

**14.** 设  $C_1^1T$  和  $(C_1^1T)'$  分别是 (2,1) 型张量 T 借两个基底  $\{e_{\mu}\}$  和  $\{e'_{\mu}\}$  定义的缩并,试证  $(C_1^1T)' = C_1^1T$ 。

证明 记基  $\{e'_{\mu}\}$  在基  $\{e_{\mu}\}$  下的展开式为  $e'_{\mu} = A^{\nu}_{\mu}e_{\nu}$  , 则

$$e'^{\mu*} = \left(\tilde{A}^{-1}\right)^{\mu}_{\mu} e^{\nu*},$$

于是  $\forall \omega \in V^*$ ,

$$\begin{split} \left(C_1^1 T\right)'(\omega) &= T(e'^{\mu*}, \omega; e'_{\mu}) \\ &= T\left(\left(\tilde{A}^{-1}\right)_{\nu}^{\ \mu} e^{\nu*}, \omega; A^{\sigma}_{\ \mu} e_{\sigma}\right) \\ &= \left(\tilde{A}^{-1}\right)_{\nu}^{\ \mu} A^{\sigma}_{\mu} T\left(e^{\nu*}, \omega; e_{\sigma}\right) \\ &= \left(\tilde{A}^{-1}\right)_{\nu}^{\ \mu} \left(\tilde{A}\right)_{\mu}^{\ \sigma} T(e^{\nu*}, \omega; e_{\sigma}) \\ &= \delta_{\nu}^{\ \sigma} T(e^{\nu*}, \omega; e_{\sigma}) \\ &= T(e^{\nu*}, \omega; e_{\nu}) \\ &= C_1^1 T(\omega). \end{split}$$

**15.** 设 g 为 V 的度规,试证  $g:V\to V^*$  是同构映射(可参见第 13 题的提示)。

证明 线性空间的同构映射指的是可逆线性映射。这里证一个更普遍的结论,首先我们定义 一个线性映射  $T: V \to W$  的 kernel 为

$$\ker T := \{ v \in V \mid T(v) = 0 \},\$$

我们有如下 claim:

claim T 是单射当且仅当  $\ker T = \{0\}$ 。

**proof** 若 T 是单射,由于  $\forall v \in V$ , $T(0 \cdot v) = 0$ T(v) = 0, ∴  $\ker T = \{0\}$ ;若  $\ker T = \{0\}$ ,假设存在  $u, v \in V$ ,使得 T(u) = T(v),则由于 T 是线性映射,T(u-v) = T(u) - T(v) = 0,于是  $u-v \in \ker T$ ,即 u=v,于是 T 是单射。

易证任取一组基  $e_i \in V$ , $T(e_i) \in W$  线性无关当且仅当  $\ker T = \{0\}$ ,若  $\dim V = \dim W$ ,则这告诉我们  $T(e_i)$  构成 W 的基,于是  $T(v^i e_i) = v^i T(e_i)$  将取遍整个 W。于是我们证明了,若  $\dim V = \dim W$ ,则线性映射  $T: V \to W$  为一一到上的(等价于可逆)当且仅当  $\ker T = \{0\}$ 。

对于度规 g, 由于非退化性, 知  $\ker g = \{0\}$ , 故 g 为线性同构。

16. 试证线长与曲线的参数化无关。

证明 设有重参数化 C'(t') = C(t), 线长为

$$l' = \int_{\alpha'}^{\beta'} \sqrt{g_{\mu\nu}} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t'} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}t'} \, \mathrm{d}t'$$

$$= \int_{\alpha}^{\beta} \sqrt{g_{\mu\nu}} \left( \frac{\mathrm{d}t}{\mathrm{d}t'} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t} \right) \left( \frac{\mathrm{d}t}{\mathrm{d}t'} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}t} \right) \left| \frac{\mathrm{d}t'}{\mathrm{d}t} \right| \, \mathrm{d}t$$

$$= \int_{\alpha}^{\beta} \sqrt{g_{\mu\nu}} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}t} \, \mathrm{d}t$$

$$= l$$

**17.** 设 (x,y) 是二维欧氏空间的笛卡尔坐标系, 试证由式 (2-5-14) 定义的  $\{x',y'\}$  也是笛卡尔系。

证明 式 (2-5-14) 为

$$\begin{cases} x' = x \cos \alpha + y \sin \alpha, \\ y' = -x \sin \alpha + y \cos \alpha. \end{cases}$$

其逆为:

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha, \\ y = x' \sin \alpha + y' \cos \alpha. \end{cases}$$

于是坐标基矢的变换为:

$$\begin{split} \frac{\partial}{\partial x'} &= \frac{\partial x}{\partial x'} \frac{\partial}{\partial x} + \frac{\partial y}{\partial x'} \frac{\partial}{\partial y} \\ &= \cos \alpha \frac{\partial}{\partial x} + \sin \alpha \frac{\partial}{\partial y}, \\ \frac{\partial}{\partial y'} &= \frac{\partial x}{\partial y'} \frac{\partial}{\partial x} + \frac{\partial y}{\partial y'} \frac{\partial}{\partial y} \\ &= -\sin \alpha \frac{\partial}{\partial x} + \cos \alpha \frac{\partial}{\partial y}. \end{split}$$

故

$$\delta\left(\frac{\partial}{\partial x'}, \frac{\partial}{\partial x'}\right) = \cos^2\alpha \,\,\delta\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right) + 2\cos\alpha\sin\alpha \,\,\delta\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$$

$$+ \sin^{2} \alpha \, \delta \left( \frac{\partial}{\partial y}, \frac{\partial}{\partial y} \right)$$

$$= 1;$$

$$\delta \left( \frac{\partial}{\partial y'}, \frac{\partial}{\partial y'} \right) = \sin^{2} \alpha \, \delta \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right) - 2 \cos \alpha \sin \alpha \, \delta \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)$$

$$+ \cos^{2} \alpha \, \delta \left( \frac{\partial}{\partial y}, \frac{\partial}{\partial y} \right)$$

$$= 1;$$

$$\delta \left( \frac{\partial}{\partial x'}, \frac{\partial}{\partial y'} \right) = \delta \left( \frac{\partial}{\partial y'}, \frac{\partial}{\partial x'} \right)$$

$$= -\cos \alpha \sin \alpha \, \delta \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right) + \cos 2\alpha \, \delta \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)$$

$$+ \cos \alpha \sin \alpha \, \delta \left( \frac{\partial}{\partial y}, \frac{\partial}{\partial y} \right)$$

$$= 0.$$

 $\therefore \{x', y'\}$  是笛卡尔系。

**18.** 设  $\{t, x\}$  是二维闵氏空间的洛伦兹坐标系, 试证由式 (2-5-20) 定义的  $\{t', x'\}$  也是洛伦兹系。

证明 式 (2-5-20) 为

$$\begin{cases} t' = t \cosh \lambda + x \sinh \lambda, \\ x' = t \sinh \lambda + x \cosh \lambda. \end{cases}$$

其逆为:

$$\begin{cases} t = t' \cosh \lambda - x' \sinh \lambda, \\ x = -t' \sinh \lambda + x' \cosh \lambda. \end{cases}$$

于是坐标基矢的变换为:

$$\begin{split} \frac{\partial}{\partial t'} &= \frac{\partial t}{\partial t'} \frac{\partial}{\partial t} + \frac{\partial x}{\partial t'} \frac{\partial}{\partial x} \\ &= \cosh \lambda \frac{\partial}{\partial t} - \sinh \lambda \frac{\partial}{\partial x}, \\ \frac{\partial}{\partial x'} &= \frac{\partial t}{\partial x'} \frac{\partial}{\partial t} + \frac{\partial x}{\partial x'} \frac{\partial}{\partial x} \\ &= -\sinh \lambda \frac{\partial}{\partial t} + \cosh \lambda \frac{\partial}{\partial x}. \end{split}$$

$$\begin{split} \eta\left(\frac{\partial}{\partial t'},\frac{\partial}{\partial t'}\right) &= \cosh^2\lambda\,\,\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial t}\right) - 2\cosh\lambda\sinh\lambda\,\,\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial x}\right) \\ &+ \sinh^2\lambda\,\,\eta\left(\frac{\partial}{\partial x},\frac{\partial}{\partial x}\right) \\ &= -1; \\ \eta\left(\frac{\partial}{\partial x'},\frac{\partial}{\partial x'}\right) &= \sinh^2\lambda\,\,\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial t}\right) - 2\cosh\lambda\sinh\lambda\,\,\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial x}\right) \\ &+ \cosh^2\lambda\,\,\eta\left(\frac{\partial}{\partial x},\frac{\partial}{\partial x}\right) \\ &= 1; \\ \eta\left(\frac{\partial}{\partial t'},\frac{\partial}{\partial x'}\right) &= \eta\left(\frac{\partial}{\partial x'},\frac{\partial}{\partial t'}\right) \\ &= -\cosh\lambda\sinh\lambda\,\,\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial t}\right) + \cosh2\lambda\,\,\eta\left(\frac{\partial}{\partial t},\frac{\partial}{\partial x}\right) \\ &- \cosh\lambda\sinh\lambda\,\,\eta\left(\frac{\partial}{\partial x},\frac{\partial}{\partial x}\right) \\ &= 0. \end{split}$$

 $\therefore \{t', x'\}$  是洛伦兹系。

- **19.** (a) 用张量变换律求出 3 维欧氏度规在球坐标系中的全部分量  $g'_{\mu\nu}$ 。
  - (b) 已知 4 维闵氏度规 g 在洛伦兹系中的线元表达式为  ${\rm d}s^2 = -{\rm d}t^2 + {\rm d}x^2 + {\rm d}y^2 + {\rm d}z^2$ ,求 g 及其逆  $g^{-1}$  在新坐标系  $\{t',x',y',z'\}$  的全部分量  $g'_{\mu\nu}$  以及  $g'^{\mu\nu}$ ,该新坐标系定义如下:

$$t' = t$$
,  $z' = z$ ,  $x' = (x^2 + y^2)^{1/2} \cos(\phi - \omega t)$ ,  $y' = (x^2 + y^2)^{1/2} \sin(\phi - \omega t)$ ,  $\omega =$   $\sharp \mathfrak{Y}$ ,

其中  $\phi$  满足  $\cos \phi = y(x^2+y^2)^{1/2}$ ,  $\sin \phi = x(x^2+y^2)^{1/2}$ 。提示: 先求  ${g'}_{\mu\nu}$  再求  ${g'}^{\mu\nu}$ 。

解 (a) 球坐标与笛卡尔系的变换关系为:

$$\begin{cases} x = r \sin \theta \cos \phi, \\ y = r \sin \theta \sin \phi, \\ z = r \cos \theta. \end{cases}$$

则

$$g'_{rr} = \frac{\partial x^{\mu}}{\partial r} \frac{\partial x^{\nu}}{\partial r} g_{\mu\nu}$$
$$= (\sin \theta \cos \phi)^{2} + (\sin \theta \sin \phi)^{2} + \cos^{2} \theta$$
$$= 1;$$

$$\begin{split} g'_{r\theta} &= \frac{\partial x^{\mu}}{\partial r} \frac{\partial x^{\nu}}{\partial \theta} g_{\mu\nu} \\ &= \sin \theta \cos \phi \cdot r \cos \theta \cos \phi + \sin \theta \sin \phi \cdot r \cos \theta \sin \phi - \cos \theta \cdot r \sin \theta \\ &= 0; \\ g'_{r\phi} &= \frac{\partial x^{\mu}}{\partial r} \frac{\partial x^{\nu}}{\partial \phi} g_{\mu\nu} \\ &= -\sin \theta \cos \phi \cdot r \sin \theta \sin \phi + \sin \theta \sin \phi \cdot r \sin \theta \cos \phi + 0 \\ &= 0; \\ g'_{\theta\theta} &= \frac{\partial x^{\mu}}{\partial \theta} \frac{\partial x^{\nu}}{\partial \theta} g_{\mu\nu} \\ &= (r \cos \theta \cos \phi)^2 + (r \cos \theta \sin \phi)^2 + (-r \sin \theta)^2 \\ &= r^2; \\ g'_{\theta\phi} &= \frac{\partial x^{\mu}}{\partial \theta} \frac{\partial x^{\nu}}{\partial \phi} g_{\mu\nu} \\ &= -r \cos \theta \cos \phi \cdot r \sin \theta \sin \phi + r \cos \theta \sin \phi \cdot r \sin \theta \cos \phi + 0 \\ &= 0; \\ g'_{\phi\phi} &= \frac{\partial x^{\mu}}{\partial \phi} \frac{\partial x^{\nu}}{\partial \phi} g_{\mu\nu} \\ &= (-r \sin \theta \sin \phi)^2 + (r \sin \theta \cos \phi)^2 + 0 \\ &= r^2 \sin^2 \theta. \end{split}$$

#### (b) 先求偏导数:

$$\sin \phi = \frac{x}{\sqrt{x^2 + y^2}}$$

$$\implies \cos \phi \, d\phi = \frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} \, dx - \frac{xy}{(x^2 + y^2)^{\frac{3}{2}}} \, dy$$

$$\implies \frac{y}{\sqrt{x^2 + y^2}} \, d\phi = \frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} \, dx - \frac{xy}{(x^2 + y^2)^{\frac{3}{2}}} \, dy$$

$$\implies \frac{\partial \phi}{\partial x} = \frac{y}{x^2 + y^2}, \quad \frac{\partial \phi}{\partial y} = -\frac{x}{x^2 + y^2}.$$

进而有:

$$\frac{\partial x'}{\partial t} = \omega \sqrt{x^2 + y^2} \sin(\phi - \omega t)$$

$$\begin{split} \frac{\partial x'}{\partial x} &= \frac{x}{\sqrt{x^2 + y^2}} \cos(\phi - \omega t) - \sqrt{x^2 + y^2} \sin(\phi - \omega t) \frac{\partial \phi}{\partial x} \\ &= \frac{x}{\sqrt{x^2 + y^2}} \cos(\phi - \omega t) - \frac{y}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) \\ &= \frac{x}{x^2 + y^2} (y \cos \omega t + x \sin \omega t) - \frac{y}{x^2 + y^2} (x \cos \omega t - y \sin \omega t) \\ &= \sin \omega t \\ \frac{\partial x'}{\partial y} &= \frac{y}{\sqrt{x^2 + y^2}} \cos(\phi - \omega t) - \sqrt{x^2 + y^2} \sin(\phi - \omega t) \frac{\partial \phi}{\partial y} \\ &= \frac{y}{\sqrt{x^2 + y^2}} \cos(\phi - \omega t) + \frac{x}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) \\ &= \frac{y}{x^2 + y^2} (y \cos \omega t + x \sin \omega t) + \frac{x}{x^2 + y^2} (x \cos \omega t - y \sin \omega t) \\ &= \cos \omega t \\ \frac{\partial y'}{\partial t} &= -\omega \sqrt{x^2 + y^2} \cos(\phi - \omega t) \\ &= \frac{x}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) + \sqrt{x^2 + y^2} \cos(\phi - \omega t) \frac{\partial \phi}{\partial x} \\ &= \frac{x}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) + \frac{y}{\sqrt{x^2 + y^2}} (y \cos \omega t + x \sin \omega t) \\ &= \cos \omega t \\ \frac{\partial y'}{\partial y} &= \frac{y}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) + \sqrt{x^2 + y^2} \cos(\phi - \omega t) \frac{\partial \phi}{\partial y} \\ &= \frac{y}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) - \frac{x}{\sqrt{x^2 + y^2}} \sin(\phi - \omega t) \\ &= \frac{y}{x^2 + y^2} (x \cos \omega t - y \sin \omega t) - \frac{x}{x^2 + y^2} (y \cos \omega t + x \sin \omega t) \end{split}$$

于是由张量变换律,

$$g'^{00} = \frac{\partial t'}{\partial x^{\mu}} \frac{\partial t'}{\partial x^{\nu}} g^{\mu\nu}$$

$$= -1^{2} + 0^{2} + 0^{2} + 0^{2}$$

$$= -1$$

$$g'^{01} = \frac{\partial t'}{\partial x^{\mu}} \frac{\partial x'}{\partial x^{\nu}} g^{\mu\nu}$$

$$= -1 \cdot \omega \sqrt{x^{2} + y^{2}} \sin(\phi - \omega t) + 0 + 0 + 0$$

$$= -\omega \sqrt{x^{2} + y^{2}} \sin(\phi - \omega t)$$

$$\begin{split} g'^{02} &= \frac{\partial t'}{\partial x^{\mu}} \frac{\partial y'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -1 \cdot \left( -\omega \sqrt{x^2 + y^2} \cos(\phi - \omega t) \right) + 0 + 0 + 0 \\ &= \omega \sqrt{x^2 + y^2} \cos(\phi - \omega t) \\ g'^{03} &= \frac{\partial t'}{\partial x^{\mu}} \frac{\partial z'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -0 + 0 + 0 + 0 \\ &= 0 \\ g'^{11} &= \frac{\partial x'}{\partial x^{\mu}} \frac{\partial x'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -\left( \omega \sqrt{x^2 + y^2} \sin(\phi - \omega t) \right)^2 + (\sin \omega t)^2 + (\cos \omega t)^2 + 0^2 \\ &= 1 - (x^2 + y^2) \omega^2 \sin^2(\phi - \omega t) \\ g'^{12} &= \frac{\partial x'}{\partial x^{\mu}} \frac{\partial y'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -\left( \omega \sqrt{x^2 + y^2} \sin(\phi - \omega t) \right) \cdot \left( -\omega \sqrt{x^2 + y^2} \cos(\phi - \omega t) \right) \\ &+ \sin \omega t \cdot \cos \omega t + \cos \omega t \cdot (-\sin \omega t) + 0 \\ &= (x^2 + y^2) \omega^2 \sin(\phi - \omega t) \cos(\phi - \omega t) \\ g'^{13} &= \frac{\partial x'}{\partial x^{\mu}} \frac{\partial z'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -0 + 0 + 0 + 0 \\ &= 0 \\ g'^{22} &= \frac{\partial y'}{\partial x^{\mu}} \frac{\partial y'}{\partial x^{\nu}} g^{\mu\nu} \\ &= 1 - (x^2 + y^2) \omega^2 \cos^2(\phi - \omega t) \\ g'^{23} &= \frac{\partial y'}{\partial x^{\mu}} \frac{\partial z'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -0 + 0 + 0 + 0 \\ &= 0 \\ g'^{33} &= \frac{\partial z'}{\partial x^{\mu}} \frac{\partial z'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -0 + 0 + 0 + 0 \\ &= 0 \\ g'^{33} &= \frac{\partial z'}{\partial x^{\mu}} \frac{\partial z'}{\partial x^{\nu}} g^{\mu\nu} \\ &= -0^2 + 0^2 + 0^2 + 1^2 \\ &= 1. \end{split}$$

于是  $g^{-1}$  在带撇坐标系下的分量矩阵为:

$$[g']^{-1} = \begin{pmatrix} -1 & -r\omega\sin\psi & r\omega\cos\psi & 0\\ -r\omega\sin\psi & 1 - r^2\omega^2\sin^2\psi & r^2\omega^2\sin\psi\cos\psi & 0\\ -r\omega\sin\psi & r^2\omega^2\cos\psi\sin\psi & 1 - r^2\omega^2\cos^2\psi & 0\\ 0 & 0 & 0 & 1 \end{pmatrix},$$

其中  $r = \sqrt{x^2 + y^2}$ ,  $\psi = \phi - \omega t$ 。其逆矩阵为

$$[g'] = \begin{pmatrix} r^2 \omega^2 - 1 & -r\omega \sin \psi & r\omega \cos \psi & 0 \\ -r\omega \sin \psi & 1 & 0 & 0 \\ r\omega \cos \psi & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

此即 g 在带撇坐标系下的分量  $g'_{uv}$  排成的矩阵。

**20.** 试证 3 维欧氏空间中球坐标基矢  $\partial/\partial r$  ,  $\partial/\partial \theta$  ,  $\partial/\partial \phi$  的长度依次为  $1, r, r \sin \theta$ 。 证明 由 19(a) 知,

$$\begin{split} \left\| \frac{\partial}{\partial r} \right\| &= \sqrt{|g'_{rr}|} = 1, \\ \left\| \frac{\partial}{\partial \theta} \right\| &= \sqrt{|g'_{\theta\theta}|} = r, \\ \left\| \frac{\partial}{\partial \phi} \right\| &= \sqrt{|g'_{\phi\phi}|} = r \sin \theta. \end{split}$$

**21.** 用抽象指标记号证明  $T'^{\mu}_{\ \nu}=rac{\partial x'^{\mu}}{\partial x^{
ho}}rac{\partial x^{\sigma}}{\partial x'^{
u}}T^{
ho}_{\ \sigma}$  。 证明

$$\begin{split} {T'}^{\mu}_{\ \nu} &= T^a_{\ b} \left( \mathrm{d} x'^{\mu} \right)_a \left( \frac{\partial}{\partial x'^{\nu}} \right)^b \\ &= T^a_{\ b} \frac{\partial x'^{\mu}}{\partial x^{\rho}} \left( \mathrm{d} x'^{\rho} \right)_a \frac{\partial x^{\sigma}}{\partial x'^{\nu}} \left( \frac{\partial}{\partial x'^{\sigma}} \right)^b \\ &= \frac{\partial x'^{\mu}}{\partial x^{\rho}} \frac{\partial x^{\sigma}}{\partial x'^{\nu}} T^{\rho}_{\ \sigma} \,. \end{split}$$

**22.** 以 g 和 g' 分别代表度规  $g_{ab}$  在坐标系  $\{x^{\mu}\}$  和  $\{x'^{\mu}\}$  的分量  $g_{\mu\nu}$  和  $g'_{\mu\nu}$  组成的两个  $n\times n$  矩阵的行列式,试证  $g'=|\partial x^{\rho}/\partial x'^{\sigma}|^2g$ ,其中  $|\partial x^{\rho}/\partial x'^{\sigma}|$  是坐标变换  $\{x^{\mu}\}\mapsto \{x'^{\mu}\}$  的雅可比行列式,即由  $\partial x^{\rho}/\partial x'^{\sigma}$  组成的  $n\times n$  行列式。注:本题表明度规的行列式在坐标变换下不是不变量。提示:取等式  $g'_{\rho\sigma}=(\partial x^{\mu}/\partial x'^{\rho})(\partial x^{\nu}/\partial x'^{\sigma})g_{\mu\nu}$  的行列式。

证明 ······梁爷爷你提示都把题写完了我还写啥 (ˇ•ω•ˇ)

- **23.** 设  $\{x^{\mu}\}$  是流形上的任一局域坐标系,试判断下列等式的是非:
  - (1)  $(\partial/\partial x^{\mu})^{a}(\partial/\partial x^{\nu})_{a} = g_{\mu\nu}$ ,  $\sharp \div (\partial/\partial x^{\mu})_{a} \equiv g_{ab}(\partial/\partial x^{\nu})^{a}$ ;
  - (2)  $(dx^{\mu})^{a} (dx^{\nu})_{a} = g^{\mu\nu}$ , 其中  $(dx^{\mu})^{a} \equiv g^{ab} (dx^{\mu})_{b}$ ;
  - (3)  $(\partial/\partial x^{\mu})_a = (\mathrm{d}x^{\mu})_a$ ;
  - (4)  $(\mathrm{d}x^{\mu})^a = (\partial/\partial x^{\mu})^a$ ;
  - (5)  $v^{\mu}\omega_{\mu} = v_{\mu}\omega^{\mu}$ ;
  - (6)  $g_{\mu\nu}T^{\nu\rho}S_{\rho}^{\ \sigma}=T_{\mu\rho}S^{\rho\sigma};$
  - $(7) v^a u^b = v^b u^a;$
  - (8)  $v^a u^b = u^b v^a$ .
  - 解(1)正确。这是标量等式。根据(0,2)型张量分量的定义即知正确。
    - (2) 正确。这是标量等式。根据 (2,0) 型张量分量的定义即知正确。
    - (3) 不正确。这是对偶矢量等式。对其验证只需作用在坐标基矢上:

$$\left( \frac{\partial}{\partial x^{\mu}} \right)_{a} \left( \frac{\partial}{\partial x^{\nu}} \right)^{a} = g_{\mu\nu};$$

$$(\mathrm{d}x^{\mu})_{a} \left( \frac{\partial}{\partial x^{\nu}} \right)^{a} = \delta_{\mu\nu},$$

故 metric dual of basis 等于 dual basis 的条件为该坐标系是局域的笛卡尔系。

(4) 不正确。这是矢量等式。对其验证只需用对偶坐标基矢作用:

$$\left( \mathrm{d} x^{\mu} \right)^a \left( \mathrm{d} x^{\nu} \right)_a = g^{\mu \nu};$$
 
$$\left( \frac{\partial}{\partial x^{\mu}} \right)^a \left( \mathrm{d} x^{\nu} \right)_a = \delta^{\mu \nu}.$$

故此式成立的条件为该坐标系为局域的笛卡尔系。或者可以这样得到:此式与(3)中的表达式互为 metric dual,故它们是等价的。

(5) 正确。这是数量等式。

$$v_{\mu}\omega^{\mu} = g_{\rho\mu}v^{\rho}g^{\sigma\mu}\omega_{\mu}$$
$$= v^{\rho}\omega_{\rho}.$$

(6) 正确。这是数量等式。

$$\begin{split} g_{\mu\nu} T^{\nu\rho} S_{\rho}^{\phantom{\rho}\sigma} &= g_{\mu\nu} g^{\nu\alpha} g^{\rho\beta} T_{\alpha\beta} g_{\rho\gamma} S^{\gamma\sigma} \\ &= \delta_{\mu}^{\phantom{\mu}\alpha} \delta_{\gamma}^{\phantom{\gamma}\beta} T_{\alpha\beta} S^{\gamma\sigma} \\ &= T_{\mu\beta} S^{\beta\sigma}. \end{split}$$

(7) 不正确。这是 (2,0) 型张量等式。对其验证只需作用在对偶坐标基矢上:

$$v^a u^b (\mathrm{d} x^\mu)_a (\mathrm{d} x^\nu)_b = v^\mu u^\nu;$$
  
$$v^b u^a (\mathrm{d} x^\mu)_a (\mathrm{d} x^\nu)_b = v^\nu u^\mu.$$

 $\therefore$  该式成立的条件是  $v^{\mu}u^{\nu}=u^{\mu}v^{\nu}$ ,  $\forall \mu, \nu$ , 这是不一定能满足的。

(8) 正确。这是 (2.0) 型张量等式,对其验证只需作用在对偶坐标基底上:

$$v^a u^b (\mathrm{d} x^\mu)_a (\mathrm{d} x^\nu)_b = v^\mu u^\nu;$$
  
$$u^b v^a (\mathrm{d} x^\mu)_a (\mathrm{d} x^\nu)_b = v^\mu u^\nu.$$

::该式恒成立。

**24.** 设  $T_{ab}$  是矢量空间 V 上的 (0,2) 型张量,试证  $T_{ab}\,v^av^b=0$ ,  $\forall v^a\in V \implies T_{ab}=T_{[ab]}$ 。 提示: 把  $v^a$  表为任意两个矢量  $u^a$  和  $w^a$  之和。

证明 做任意拆分  $v^a = u^a + w^a$ , 注意到  $T_{ab} u^a u^b = 0$  以及  $T_{ab} w^a w^b = 0$ , 有:

$$\begin{split} T_{ab} \, v^a v^b &= T_{ab} \, u^a u^b + T_{ab} \, w^a w^b + T_{ab} \, u^a w^b + T_{ab} \, w^a u^b \\ &= T_{ab} \, u^a w^b + T_{ab} \, w^a u^b \\ &= \left( T_{(ab)} \, u^a w^b + T_{(ab)} \, u^b w^a \right) + \left( T_{[ab]} \, u^a w^b + T_{[ab]} \, u^b w^a \right) \\ &= T_{(ab)} \, u^a w^b + T_{(ab)} \, u^b w^a \\ &= 0 \end{split}$$

于是

$$T_{(ab)} = 0, \quad T_{ab} = T_{[ab]}.$$

**25.** 试证  $T_{abcd} = T_{a[bc]d} = T_{ab[cd]} \implies T_{abcd} = T_{a[bcd]}$ 。

注(1)推广至一般的结论是

$$T_{\cdots a\cdots b\cdots c\cdots} = T_{\cdots [a\cdots b]\cdots c\cdots} = T_{\cdots a\cdots [b\cdots c]\cdots} \implies T_{\cdots a\cdots b\cdots c\cdots} = T_{\cdots [a\cdots b\cdots c]\cdots}.$$

上式的前提中只有两个等号,关键是  $T_{\cdots[a\cdots b]\cdots c\cdots}$  和  $T_{\cdots a\cdots[b\cdots c]\cdots}$  中的指标 b 都在方括号内。

(2) 把前提和结论中的方括号改为圆括号,则推广前后的命题仍成立。

= 0.

证明 此命题等价于  $T_{a(bc)d} = T_{ab(cd)} = 0 \implies T_{a(bcd)} = 0$ 。反正只有四阶,不妨暴力展开 $\bigcirc$   $6T_{a(bcd)} = T_{abcd} + T_{abdc} + T_{acbd} + T_{acdb} + T_{adbc} + T_{adcb}$   $= T_{abcd} + T_{abdc} - T_{abcd} + T_{acdb} - T_{abdc} - T_{acdb}$   $= T_{abcd} - T_{abcd} - T_{abcd} - T_{acbd} + T_{abcd} + T_{acbd}$   $= T_{abcd} - T_{abcd} - T_{abcd} + T_{abcd} + T_{abcd} - T_{abcd}$ 

其中 = 表示根据  $T_{a(bc)d}=0$  交换指标次序, = 表示根据  $T_{ab(cd)}=0$  交换指标次序。

### 第三章 黎曼(内禀)曲率张量

#### 习题

- 1. 放弃  $\nabla_a$  定义中的无挠性条件 (e),
  - (1) 试证存在张量  $T_{ab}^c$  (叫挠率张量) 使

$$\nabla_a \nabla_b f - \nabla_b \nabla_a f = -T^c_{\ ab} \, \nabla_c f, \quad \forall f \in \mathscr{F}.$$

提示: 令  $\tilde{\nabla}_a$  为无挠算符,模仿定理 3-1-4 证明中的推导。

(2) 
$$\exists \exists \exists T^c_{ab} u^a v^b = u^a \nabla_a v^c - v^a \nabla_a u^c - [u, v]^c \quad \forall u^a, v^a \in \mathscr{F}(1, 0).$$

证明(1)去掉无挠性条件仍有  $\nabla_a\omega_b=\tilde{\nabla}_a\omega_b-C^c{}_{ab}\omega_c$  成立,于是令  $\omega_a=(\mathrm{d}f)_a=\nabla_af=\tilde{\nabla}_af$ ,得

$$\nabla_a \nabla_b f = \tilde{\nabla}_a \tilde{\nabla}_b f - C^c_{\ ab} \nabla_c f$$

交换指标 a,b 得

$$\nabla_b \nabla_a f = \tilde{\nabla}_b \tilde{\nabla}_a f - C^c_{\ ba} \nabla_c f$$

两式相减得

$$\nabla_a \nabla_b f - \nabla_b \nabla_a f = (C^c_{\ ba} - C^c_{\ ab}) \, \nabla_c f$$

于是得挠率张量  $T^c_{ab} = C^c_{ab} - C^c_{ba}$ 。

(2)

$$\begin{split} [u,v](f) &= u(v(f)) - v(u(f)) \\ &= u^b \nabla_b \left( v^a \nabla_a f \right) - v^a \nabla_a \left( u^b \nabla_b f \right) \\ &= u^b \left( \nabla_b v^a \right) \nabla_a f + u^b v^a \nabla_b \nabla_a f - v^a \left( \nabla_a u^b \right) \nabla_b f - v^a u^b \nabla_a \nabla_b f \\ &= \left( u^b \nabla_b v^a - v^b \nabla_b u^a \right) \nabla_a f - u^b v^a T^c_{\ ba} \nabla_c f \\ &= \left( u^a \nabla_a v^c - v^a \nabla_a u^c - T^c_{\ ab} u^a v^b \right) \nabla_c f \end{split}$$

故 
$$T^c_{\phantom{c}ab}\,u^av^b=u^a\nabla_av^c-v^a\nabla_au^c-\left[u,v\right]^c$$
。

**2.** 设  $v^a$  为矢量场, $v^{\mu}$  和  $v'^{\mu}$  为  $v^a$  在坐标系  $\{x^{\nu}\}$  和  $\{x'^{\nu}\}$  的分量, $A^{\nu}_{\mu} \equiv \partial v^{\nu}/\partial x^{\mu}$ , $A'^{\nu}_{\mu} \equiv \partial v'^{\nu}/\partial x'^{\mu}$ ,试证  $A^{\nu}_{\mu}$  和  $A'^{\nu}_{\mu}$  的关系一般而言不满足张量分量变换律。提示:利用  $v^{\nu}$  与  $v'^{\nu}$  之间的变换规律。

证明

$$\begin{split} {A'^{\nu}}_{\mu} &= \frac{\partial {v'^{\nu}}}{\partial {x'^{\mu}}} \\ &= \frac{\partial x^{\sigma}}{\partial {x'^{\mu}}} \frac{\partial}{\partial x^{\sigma}} \left( \frac{\partial {x'^{\nu}}}{\partial x^{\rho}} v^{\rho} \right) \\ &= \frac{\partial x^{\sigma}}{\partial {x'^{\mu}}} \frac{\partial^{2} {x'^{\nu}}}{\partial x^{\sigma} \partial x^{\rho}} v^{\rho} + \frac{\partial x^{\sigma}}{\partial {x'^{\mu}}} \frac{\partial {x'^{\nu}}}{\partial x^{\rho}} \frac{\partial v^{\rho}}{\partial x^{\sigma}} \\ &= \frac{\partial x^{\sigma}}{\partial {x'^{\mu}}} \frac{\partial^{2} {x'^{\nu}}}{\partial x^{\sigma} \partial x^{\rho}} v^{\rho} + \frac{\partial x^{\sigma}}{\partial {x'^{\mu}}} \frac{\partial {x'^{\nu}}}{\partial x^{\rho}} A^{\rho}{}_{\sigma}, \end{split}$$

可以看到相比于张量分量变换律多出了第一项。

3. 试证定理 3-1-7。

证明

$$\begin{split} \boldsymbol{v}^{\nu}_{\;\;;\mu} &= \nabla_{a} \boldsymbol{v}^{b} \left( \mathrm{d} \boldsymbol{x}^{\nu} \right)_{b} \left( \frac{\partial}{\partial \boldsymbol{x}^{\mu}} \right)^{a} \\ &= \left( \partial_{a} \boldsymbol{v}^{b} + \Gamma^{b}_{\;\;ac} \boldsymbol{v}^{c} \right) \left( \mathrm{d} \boldsymbol{x}^{\nu} \right)_{b} \left( \frac{\partial}{\partial \boldsymbol{x}^{\mu}} \right)^{a} \\ &= \boldsymbol{v}^{\nu}_{\;\;,\mu} + \Gamma^{\nu}_{\;\;\mu\sigma} \boldsymbol{v}^{\sigma}, \\ \boldsymbol{\omega}_{\nu;\mu} &= \nabla_{a} \boldsymbol{\omega}_{b} \left( \frac{\partial}{\partial \boldsymbol{x}^{\mu}} \right)^{a} \left( \frac{\partial}{\partial \boldsymbol{x}^{\nu}} \right)^{b} \\ &= \left( \partial_{a} \boldsymbol{\omega}_{b} - \Gamma^{c}_{\;\;ab} \boldsymbol{\omega}_{c} \right) \left( \frac{\partial}{\partial \boldsymbol{x}^{\mu}} \right)^{a} \left( \frac{\partial}{\partial \boldsymbol{x}^{\nu}} \right)^{b} \\ &= \boldsymbol{\omega}_{\nu,\mu} - \Gamma^{\sigma}_{\;\;\mu\nu} \boldsymbol{\omega}_{\sigma}. \end{split}$$

- 4. 用下式定义  $\Gamma^{\sigma}_{\mu\nu}$ :  $\left(\frac{\partial}{\partial x^{\nu}}\right)^{b} \nabla_{b} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} = \Gamma^{\sigma}_{\mu\nu} \left(\frac{\partial}{\partial x^{\sigma}}\right)^{a}$ , 试证
  - (a)  $\Gamma^{\sigma}_{\ \mu\nu} = \Gamma^{\sigma}_{\ \nu\mu}$  (提示: 利用  $\nabla_a$  的无挠性和坐标基矢间的对易性。);
  - (b)  $v^{\nu}_{;\mu} = v^{\nu}_{,\mu} + \Gamma^{\nu}_{\mu\beta} v^{\beta}$  (注: 这其实是克氏符的等价定义。)。

证明 (a) 交换指标  $\mu, \nu$  得

$$\left(\frac{\partial}{\partial x^{\mu}}\right)^{b} \nabla_{b} \left(\frac{\partial}{\partial x^{\nu}}\right)^{a} = \Gamma^{\sigma}_{\nu\mu} \left(\frac{\partial}{\partial x^{\sigma}}\right)^{a}$$

两式相减得:

$$\begin{split} \left(\Gamma^{\sigma}_{\ \mu\nu} - \Gamma^{\sigma}_{\ \nu\mu}\right) \left(\frac{\partial}{\partial x^{\sigma}}\right)^{a} &= \left(\frac{\partial}{\partial x^{\nu}}\right)^{b} \nabla_{b} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} - \left(\frac{\partial}{\partial x^{\mu}}\right)^{b} \nabla_{b} \left(\frac{\partial}{\partial x^{\nu}}\right)^{a} \\ &= \left[\frac{\partial}{\partial x^{\nu}}, \frac{\partial}{\partial x^{\mu}}\right]^{a} \\ &= 0, \end{split}$$

故 
$$\Gamma^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu}$$
。

(b) 由

$$\left(\frac{\partial}{\partial x^{\nu}}\right)^{b} \nabla_{b} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} = \Gamma^{\sigma}_{\mu\nu} \left(\frac{\partial}{\partial x^{\sigma}}\right)^{a}$$
$$\nabla_{b} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} = \Gamma^{\sigma}_{\mu\nu} \left(\mathrm{d}x^{\nu}\right)_{b} \left(\frac{\partial}{\partial x^{\sigma}}\right)^{a},$$

于是

知

$$\begin{split} \nabla_a v^b &= \nabla_a \left[ v^\mu \left( \frac{\partial}{\partial x^\mu} \right)^b \right] \\ &= (\mathrm{d} v^\mu)_a \left( \frac{\partial}{\partial x^\mu} \right)^b + v^\mu \nabla_a \left( \frac{\partial}{\partial x^\mu} \right)^b \\ &= \frac{\partial v^\mu}{\partial x^\nu} \left( \mathrm{d} x^\nu \right)_a \left( \frac{\partial}{\partial x^\mu} \right)^b + v^\mu \Gamma^\sigma_{\ \mu\nu} \left( \mathrm{d} x^\nu \right)_a \left( \frac{\partial}{\partial x^\sigma} \right)^b \\ &= \left( \frac{\partial v^\mu}{\partial x^\nu} + \Gamma^\mu_{\ \sigma\nu} v^\sigma \right) \left( \mathrm{d} x^\nu \right)_a \left( \frac{\partial}{\partial x^\mu} \right)^b \end{split}$$

于是  $\nabla_a v^b$  的分量  $v^{\nu}_{\;;\mu} = v^{\nu}_{\;,\mu} + \Gamma^{\nu}_{\;\mu\sigma} v^{\sigma}$ 。

#### 5. 判断是非:

(1) 
$$\nabla_a (\mathrm{d} x^\mu)_b = 0$$
;

$$(2)\ v^{\nu}{}_{;\mu} = \left(\nabla_a v^b\right) \left(\,\partial/\partial x^\mu\,\right)^a \left(\mathrm{d} x^\nu\right)_b;$$

(3) 
$$v^{\nu}_{,\mu} = (\partial_a v^b) (\partial/\partial x^\mu)^a (\mathrm{d}x^\nu)_b$$
;

(4) 
$$v^{\nu}_{;\mu} = \left(\partial/\partial x^{\mu}\right)^{a} \nabla_{a} v^{\nu}$$
;

$$(5) \ v^{\nu}_{\ ,\mu} = \left( \, \partial / \partial x^{\mu} \, \right)^a \nabla_a v^{\nu} \, .$$

解(1)错。

$$\nabla_a (\mathrm{d}x^\mu)_b = \partial_a (\mathrm{d}x^\mu)_b - \Gamma^c_{\ ab} (\mathrm{d}x^\mu)_c$$
$$= 0 - \Gamma^\mu_{\ \nu\rho} (\mathrm{d}x^\nu)_a (\mathrm{d}x^\rho)_b$$

不一定为零。

- (2) 根据定义知正确。
- (3) 根据定义知正确。
- (4) 不正确。(右边和  $\nabla_a$  的选择无关可直接判断)

$$\begin{split} \boldsymbol{v}^{\nu}_{\;\;;\mu} &= \left(\nabla_{a}\boldsymbol{v}^{b}\right)\left(\frac{\partial}{\partial x^{\mu}}\right)^{a}\left(\mathrm{d}\boldsymbol{x}^{\nu}\right)_{b} \\ &= \left[\nabla_{a}\boldsymbol{v}^{\rho}\left(\frac{\partial}{\partial x^{\rho}}\right)^{b}\right]\left(\frac{\partial}{\partial x^{\mu}}\right)^{a}\left(\mathrm{d}\boldsymbol{x}^{\nu}\right)_{b} \\ &= \left(\nabla_{a}\boldsymbol{v}^{\rho}\right)\left(\frac{\partial}{\partial x^{\mu}}\right)^{a}\left(\mathrm{d}\boldsymbol{x}^{\nu}\right)_{b} + \boldsymbol{v}^{\rho}\left[\nabla_{a}\left(\frac{\partial}{\partial x^{\rho}}\right)^{b}\right]\left(\frac{\partial}{\partial x^{\mu}}\right)^{a}\left(\mathrm{d}\boldsymbol{x}^{\nu}\right)_{b}, \end{split}$$

多出来的后一项类似 (1), 一般不为零。

(5) 正确,

$$\begin{split} \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} \nabla_{a} v^{\nu} &= \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} (\mathrm{d}v^{\nu})_{a} \\ &= \left(\frac{\partial}{\partial x^{\mu}}\right)^{a} \frac{\partial v^{\nu}}{\partial x^{\rho}} (\mathrm{d}x^{\rho})_{a} \\ &= \frac{\partial v^{\nu}}{\partial x^{\mu}} \\ &= v^{\nu}_{,\mu}. \end{split}$$

**6.** 设 C(t) 是  $\{x^{\mu}\}$  的坐标域内的曲线, $x^{\mu}(t)$  是 C(t) 在该系的参数表达式, $v^a$  是 C(t) 上的 矢量场,令  $Dv^{\mu}/dt \equiv (dx^{\mu})_a (\partial/\partial t)^b \nabla_b v^a$ ,试证

$$\mathrm{D} v^\mu/\,\mathrm{d} t \equiv \,\mathrm{d} v^\mu/\mathrm{d} t \,+\, \Gamma^\mu_{\ \nu\sigma} v^\sigma \,\,\mathrm{d} x^\nu(t)/\mathrm{d} t \;.$$

证明 由定理 3-2-1, 
$$\left(\frac{\partial}{\partial t}\right)^b \nabla_b v^a = \left(\frac{\partial}{\partial x^\mu}\right)^a \left(\frac{\mathrm{d} v^\mu}{\mathrm{d} t} + \Gamma^\mu_{\ \nu\sigma} \frac{\mathrm{d} x^\mu(t)}{\mathrm{d} t} v^\sigma\right), \ \ \mathcal{F} \not \in \frac{\mathrm{D} v^\mu}{\mathrm{d} t} \equiv \left(\mathrm{d} x^\mu\right)_a \left(\frac{\partial}{\partial t}\right)^b \nabla_b v^a$$
 
$$= \left(\mathrm{d} x^\mu\right)_a \left(\frac{\partial}{\partial x^\rho}\right)^a \left(\frac{\mathrm{d} v^\rho}{\mathrm{d} t} + \Gamma^\rho_{\ \nu\sigma} \frac{\mathrm{d} x^\rho(t)}{\mathrm{d} t} v^\sigma\right)$$
 
$$= \frac{\mathrm{d} v^\mu}{\mathrm{d} t} + \Gamma^\mu_{\ \nu\sigma} v^\sigma \frac{\mathrm{d} x^\mu(t)}{\mathrm{d} t}.$$

7. 求出 3 维欧氏空间中球坐标系的全部非零  $\Gamma^{\sigma}_{\mu\nu}$ 。

解 由第二章 19(a)知,球坐标系下欧氏度规分量  $g_{\mu\nu}$  排成的矩阵为:

$$[g] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$

取逆矩阵得  $g^{\mu\nu}$  排成的矩阵为:

$$[g]^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & \frac{1}{r^2 \sin^2 \theta} \end{pmatrix}$$

根据非对角元全为零, 观察克氏符分量表达式

$$\Gamma^{\sigma}_{\ \mu\nu} = \frac{1}{2} g^{\sigma\rho} \left( g_{\rho\mu,\nu} + g_{\nu\rho,\mu} - g_{\mu\nu,\rho} \right)$$

展开式中求和只有  $\rho = \sigma$  项才可能非零,于是

$$\Gamma^{\sigma}_{\phantom{\sigma}\mu\nu} = \frac{1}{2} g^{\sigma\sigma} \left( g_{\sigma\mu,\nu} + g_{\nu\sigma,\mu} - g_{\mu\nu,\sigma} \right)$$

 $(\sigma$  是给定某个具体指标,不求和,也不需要指标平衡) 若  $\sigma\mu\nu$  全不等,则括号内为零。于是那些可能非零的分量指标至少有两个相等:

$$\begin{split} \Gamma^{r}_{rr} &= \frac{1}{2}g^{rr} \left( g_{rr,r} + g_{rr,r} - g_{rr,r} \right) \\ &= \frac{1}{2} \cdot 1 \cdot (0 + 0 - 0) \\ &= 0 \\ \Gamma^{r}_{r\theta} &= \frac{1}{2}g^{rr} \left( g_{rr,\theta} + g_{\theta r,r} - g_{r\theta,r} \right) \\ &= \frac{1}{2} \cdot 1 \cdot (0 + 0 - 0) \\ &= 0 \\ \Gamma^{r}_{r\phi} &= \frac{1}{2}g^{rr} \left( g_{rr,\phi} + g_{\phi r,r} - g_{r\phi,r} \right) \\ &= \frac{1}{2} \cdot 1 \cdot (0 + 0 - 0) \\ &= 0 \\ \Gamma^{r}_{\theta\theta} &= \frac{1}{2}g^{rr} \left( g_{r\theta,\theta} + g_{\theta r,\theta} - g_{\theta\theta,r} \right) \\ &= \frac{1}{2} \cdot 1 \cdot (0 + 0 - 2r) \\ &= -r \end{split}$$

$$\begin{split} \Gamma^r{}_{\phi\phi} &= \frac{1}{2}g^{rr} \left(g_{r\phi,\phi} + g_{\phi r,\phi} - g_{\phi\phi,r}\right) \\ &= \frac{1}{2} \cdot 1 \cdot \left(0 + 0 - 2r \sin^2\theta\right) \\ &= -r \sin^2\theta \\ \Gamma^\theta{}_{rr} &= \frac{1}{2}g^{\theta\theta} \left(g_{\theta r,r} + g_{r\theta,r} - g_{rr,\theta}\right) \\ &= 0 \\ \Gamma^\theta{}_{r\theta} &= \frac{1}{2}g^{\theta\theta} \left(g_{\theta r,\theta} + g_{\theta\theta,r} - g_{r\theta,\theta}\right) \\ &= \frac{1}{2} \cdot \frac{1}{r^2} \cdot \left(0 + 2r - 0\right) \\ &= \frac{1}{r} \\ \Gamma^\theta{}_{\theta\theta} &= \frac{1}{2}g^{\theta\theta} \left(g_{\theta\theta,\theta} + g_{\theta\theta,\theta} - g_{\theta\theta,\theta}\right) \\ &= 0 \\ \Gamma^\theta{}_{\theta\phi} &= \frac{1}{2}g^{\theta\theta} \left(g_{\theta\theta,\phi} + g_{\phi\theta,\theta} - g_{\phi\phi,\theta}\right) \\ &= 1 \\ 2 \cdot \frac{1}{r^2} \left(0 + 0 - 2r^2 \cos\theta \sin\theta\right) \\ &= -\cos\theta \sin\theta \\ \Gamma^\phi{}_{rr} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi r,r} + g_{r\phi,r} - g_{rr,\phi}\right) \\ &= 0 \\ \Gamma^\phi{}_{r\phi} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi r,\phi} + g_{\phi\phi,r} - g_{r\phi,\phi}\right) \\ &= \frac{1}{r^2} \cdot \frac{1}{r^2 \sin^2\theta} \cdot \left(0 + 2r \sin^2\theta - 0\right) \\ &= \frac{1}{r} \\ \Gamma^\phi{}_{\theta\theta} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi\theta,\theta} + g_{\phi\phi,\theta} - g_{\theta\theta,\phi}\right) \\ &= 0 \\ \Gamma^\phi{}_{\theta\phi} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi\theta,\theta} + g_{\phi\phi,\theta} - g_{\theta\phi,\phi}\right) \\ &= 0 \\ \Gamma^\phi{}_{\theta\phi} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi\theta,\phi} + g_{\phi\phi,\theta} - g_{\theta\phi,\phi}\right) \\ &= 0 \\ \Gamma^\phi{}_{\theta\phi} &= \frac{1}{2}g^{\phi\phi} \left(g_{\phi\theta,\phi} + g_{\phi\phi,\theta} - g_{\theta\phi,\phi}\right) \\ &= 1 \\ 2 \cdot \frac{1}{r^2 \sin^2\theta} \cdot \left(0 + 2r^2 \cos\theta \sin\theta - 0\right) \\ &= \cot\theta \\ \end{split}$$

$$\Gamma^{\phi}_{\phi\phi} = \frac{1}{2} g^{\phi\phi} \left( g_{\phi\phi,\phi} + g_{\phi\phi,\phi} - g_{\phi\phi,\phi} \right)$$
$$= 0.$$

故所有非零分量为  $\Gamma^r_{\theta\theta} = -r$ ,  $\Gamma^r_{\phi\phi} = -r\sin^2\theta$ ,  $\Gamma^\theta_{r\theta} = \Gamma^\theta_{\theta r} = \frac{1}{r}$ ,  $\Gamma^\theta_{\phi\phi} = -\cos\theta\sin\theta$ ,  $\Gamma^\phi_{r\phi} = \Gamma^\phi_{\phi r} = \frac{1}{r}$ ,  $\Gamma^\phi_{\theta\phi} = \Gamma^\phi_{\phi\theta} = \cot\theta$ .

**8.** 设  $I \in \mathbb{R}$  的一个区间, $C: I \to M \in (M, \nabla_a)$  中的曲线,试证  $\forall s, t \in I$ ,平移映射  $\psi: V_{C(s)} \to V_{C(t)}$  (见图 3-2) 是同构映射。

证明 对每个  $v \in V_{C(s)}$ ,有唯一一个 C(t) 上的平移矢量场  $\bar{v}(t)$  满足  $\bar{v}(s) = v$ , $\psi(v) = v(t)$ 。 首先易验证  $\psi$  为线性映射,下面论证  $\ker \psi = \{0\}$ 。设  $\psi(v) = \bar{v}(t) = 0$ ,于是由正文 (3-2-5) 式:

$$\frac{\mathrm{d}\bar{v}^{\mu}}{\mathrm{d}t} + \Gamma^{\mu}{}_{\nu\sigma}T^{\nu}\bar{v}^{\sigma} = 0, \quad \mu = 1, \cdots, n$$

在 (s,t) 上此微分方程组的解被边界条件  $\bar{v}^{\mu}(t)=0$  唯一确定,而  $\bar{v}^{\mu}(t)\equiv 0$  是解,于是知  $v=\bar{v}(s)=0$ ,于是  $\ker\psi=\{0\}$ ,又  $\dim V_{C(s)}=\dim V_{C(t)}=n$ ,故线性映射  $\psi$ 是同构映射。

9. 试证定理 3-3-2、3-3-3 和 3-3-5。

证明 (1) 定理 3-3-2 如下:

定理 设曲线  $\gamma(t)$  的切矢  $T^a$  满足  $T^b\nabla_bT^a=\alpha T^a[\alpha\ 为\ \gamma(t)\ 上的函数]$ ,则存在 t'=t'(t) 使得  $\gamma'(t')[=\gamma(t)]$  为测地线。

证明如下: 写出分量形式为

$$\begin{split} T^b \nabla_b T^a &= \left(\frac{\mathrm{d} T^\mu}{\mathrm{d} t} + \Gamma^\mu_{\phantom{\mu}\nu\sigma} T^\nu T^\sigma\right) \left(\frac{\partial}{\partial x^\mu}\right)^a \\ &= \left(\frac{\mathrm{d}^2 x^\mu}{\mathrm{d} t^2} + \Gamma^\mu_{\phantom{\mu}\nu\sigma} \frac{\mathrm{d} x^\nu}{\mathrm{d} t} \frac{\mathrm{d} x^\sigma}{\mathrm{d} t}\right) \left(\frac{\partial}{\partial x^\mu}\right)^a \\ \alpha T^a &= T^\mu \left(\frac{\partial}{\partial x^\mu}\right)^a \\ &= \alpha \frac{\mathrm{d} x^\mu}{\mathrm{d} t} \left(\frac{\partial}{\partial x^\mu}\right)^a \\ \Longrightarrow \alpha \frac{\mathrm{d} x^\mu}{\mathrm{d} t} &= \frac{\mathrm{d}^2 x^\mu}{\mathrm{d} t^2} + \Gamma^\mu_{\phantom{\mu}\nu\sigma} \frac{\mathrm{d} x^\nu}{\mathrm{d} t} \frac{\mathrm{d} x^\sigma}{\mathrm{d} t} \end{split}$$

设有重参数化 t'=t'(t) 使得  $\gamma'(t')$  为测地线,则

$$\begin{split} \frac{\mathrm{d}^2 x^\mu}{\mathrm{d}t'^2} + \Gamma^\mu_{\phantom{\mu}\nu\sigma} \frac{\mathrm{d}x^\nu}{\mathrm{d}t'} \frac{\mathrm{d}x^\sigma}{\mathrm{d}t'} &= \frac{\mathrm{d}}{\mathrm{d}t'} \left( \frac{\mathrm{d}t}{\mathrm{d}t'} \frac{\mathrm{d}x^\mu}{\mathrm{d}t} \right) + \Gamma^\mu_{\phantom{\mu}\nu\sigma} \left( \frac{\mathrm{d}t}{\mathrm{d}t'} \frac{\mathrm{d}x^\nu}{\mathrm{d}t} \right) \left( \frac{\mathrm{d}t}{\mathrm{d}t'} \frac{\mathrm{d}x^\sigma}{\mathrm{d}t} \right) \\ &= \frac{\mathrm{d}^2t}{\mathrm{d}t'^2} \frac{\mathrm{d}x^\mu}{\mathrm{d}t} + \left( \frac{\mathrm{d}t}{\mathrm{d}t'} \right)^2 \frac{\mathrm{d}^2x^\mu}{\mathrm{d}t^2} + \left( \frac{\mathrm{d}t}{\mathrm{d}t'} \right)^2 \Gamma^\mu_{\phantom{\mu}\nu\sigma} \frac{\mathrm{d}x^\nu}{\mathrm{d}t} \frac{\mathrm{d}x^\sigma}{\mathrm{d}t} \end{split}$$

$$= \left[ \frac{\mathrm{d}^2 t}{\mathrm{d}t'^2} + \alpha \left( \frac{\mathrm{d}t}{\mathrm{d}t'} \right)^2 \right] \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t}$$
$$= 0$$

只要解微分方程 
$$\frac{\mathrm{d}^2 t}{\mathrm{d}t'^2} + \alpha \left(\frac{\mathrm{d}t}{\mathrm{d}t'}\right)^2 = 0$$
, 令  $\eta(t) = \frac{\mathrm{d}t'}{\mathrm{d}t}$ , 则 
$$\frac{1}{\eta} \frac{\mathrm{d}\eta}{\mathrm{d}t} + \alpha(t)\eta^2 = 0$$

解得

$$\eta(t) = \sqrt{2 \int \alpha(t) \, \mathrm{d}t + C_1}$$

积分即得重参数化

$$t'(t) = \int \sqrt{2 \int \alpha(t) dt + C_1} dt + C_2$$

其中积分均代表某个原函数, 而不是不定积分。

(2) 定理 3-3-3 如下:

定理 若 t 是某测地线的仿射参数,则该曲线的任一参数 t' 是仿射参数的充要条件为 t'=at+b (其中 a,b 为常数且  $a\neq 0$ )。

证明如下:完全类似(1),只是 $\alpha(t)=0$ ,于是微分方程为

$$\frac{\mathrm{d}^2 t}{\mathrm{d}t'^2} = 0,$$

解得 t' = at + b。

(3) 定理 3-3-5 如下:

定理 测地线的弧长参数必为仿射参数。

证明如下:设 t 为仿射参数,则  $T^b\nabla_bT^a=0$ ,于是

$$\begin{split} T^a \nabla_a \left( g_{bc} T^b T^c \right) &= g_{bc} T^a T^b \nabla_a T^c + g_{bc} T^a T^c \nabla_a T^b \\ &= 0. \end{split}$$

于是  $g_{ab}T^aT^b$  沿线为常数 T,弧长按定义与 t 的关系为  $\mathrm{d}l=\sqrt{|g_{ab}T^aT^b|}\,\mathrm{d}t=T\,\mathrm{d}t$ , 由定理 3-3-3 知 l 为仿射参数。

- **10.** (a) 写出球面度规  $ds^2 = R^2 \left( d\theta^2 + \sin^2 \theta \, d\phi^2 \right)$  (*R* 为常数)的测地线方程;
  - (b) 验证任一大圆弧(配以适当参数)满足测地线方程。提示: 选球面坐标系  $\{\theta, \phi\}$  使所 给大圆弧为赤道的一部分,并以  $\phi$  为仿射参数。

解(a) 首先求克氏符,度规分量 $g_{\mu\nu}$ 排成的矩阵为

$$[g] = \begin{pmatrix} R^2 & 0\\ 0 & R^2 \sin^2 \theta \end{pmatrix}$$

逆矩阵

$$[g]^{-1} = \begin{pmatrix} \frac{1}{R^2} & 0\\ 0 & \frac{1}{R^2 \sin^2 \theta} \end{pmatrix}$$

完全类似第7题,根据非对角元全为零,观察克氏符分量表达式

$$\Gamma^{\sigma}_{\ \mu\nu} = \frac{1}{2} g^{\sigma\rho} \left( g_{\rho\mu,\nu} + g_{\nu\rho,\mu} - g_{\mu\nu,\rho} \right)$$

展开式中求和只有  $\rho = \sigma$  项才可能非零,于是

$$\Gamma^{\sigma}_{\ \mu\nu} = \frac{1}{2} g^{\sigma\sigma} \left( g_{\sigma\mu,\nu} + g_{\nu\sigma,\mu} - g_{\mu\nu,\sigma} \right)$$

(σ 是给定某个具体指标, 不求和, 也不需要指标平衡)

$$\begin{split} \Gamma^{\theta}{}_{\theta\theta} &= \frac{1}{2} g^{\theta\theta} \left( g_{\theta\theta,\theta} + g_{\theta\theta,\theta} - g_{\theta\theta,\theta} \right) \\ &= 0 \\ \Gamma^{\theta}{}_{\theta\phi} &= \frac{1}{2} g^{\theta\theta} \left( g_{\theta\theta,\phi} + g_{\phi\theta,\theta} - g_{\theta\phi,\theta} \right) \\ &= 0 \\ \Gamma^{\theta}{}_{\phi\phi} &= \frac{1}{2} g^{\theta\theta} \left( g_{\theta\phi,\phi} + g_{\phi\theta,\phi} - g_{\phi\phi,\theta} \right) \\ &= \frac{1}{2} \cdot \frac{1}{R^2} \cdot \left( 0 + 0 - 2R^2 \sin\theta \cos\theta \right) \\ &= -\sin\theta \cos\theta \\ \Gamma^{\phi}{}_{\theta\theta} &= \frac{1}{2} g^{\phi\phi} \left( g_{\phi\theta,\theta} + g_{\theta\phi,\theta} - g_{\theta\theta,\phi} \right) \\ &= 0 \\ \Gamma^{\phi}{}_{\theta\phi} &= \frac{1}{2} g^{\phi\phi} \left( g_{\phi\theta,\phi} + g_{\phi\phi,\theta} - g_{\phi\phi,\phi} \right) \\ &= \cot\theta \\ \Gamma^{\phi}{}_{\phi\phi} &= \frac{1}{2} g^{\phi\phi} \left( g_{\phi\phi,\phi} + g_{\phi\phi,\phi} - g_{\phi\phi,\phi} \right) \\ &= \cot\theta \\ \Gamma^{\phi}{}_{\phi\phi} &= \frac{1}{2} g^{\phi\phi} \left( g_{\phi\phi,\phi} + g_{\phi\phi,\phi} - g_{\phi\phi,\phi} \right) \\ &= 0 \end{split}$$

代入测地线方程 
$$\begin{split} \frac{\mathrm{d}^2 x^\mu}{\mathrm{d}t^2} + \Gamma^\mu{}_{\nu\sigma} \frac{\mathrm{d}x^\nu}{\mathrm{d}t} \frac{\mathrm{d}x^\sigma}{\mathrm{d}t} &= 0, \\ \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} - \sin\theta \cos\theta \left(\frac{\mathrm{d}\phi}{\mathrm{d}t}\right)^2 &= 0 \\ \frac{\mathrm{d}^2 \phi}{\mathrm{d}t^2} + \cot\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} \frac{\mathrm{d}\phi}{\mathrm{d}t} &= 0 \end{split}$$

- (b) 由于测地线方程具有坐标系无关的形式  $T^b \nabla_b T^a = 0$ ,可选择球坐标系使得大圆弧落在赤道  $\theta = \frac{\pi}{2}$  上,于是  $\cos \theta = 0$ ,满足测地线方程。
- 11. 试证定理 3-4-2.

证明 在某坐标系下展开即得

$$\begin{split} \left[ \left( \nabla_a \nabla_b - \nabla_b \nabla_a \right) \omega_c \right] \big|_p &= \left[ \left( \nabla_a \nabla_b - \nabla_b \nabla_a \right) \omega_\mu \left( \mathrm{d} x^\mu \right)_c \right] \big|_p \\ &= \left[ \omega_\mu \left( \nabla_a \nabla_b - \nabla_b \nabla_a \right) \left( \mathrm{d} x^\mu \right)_c \right] \big|_p \quad \text{(由定理 3-4-1)} \\ &= \omega_\mu \big|_p \left[ \left( \nabla_a \nabla_b - \nabla_b \nabla_a \right) \left( \mathrm{d} x^\mu \right)_c \right] \big|_p \end{split}$$

可见只与 $\omega$ 在p点的值有关,证毕。

12. 试证式 (3-4-10)。

证明 首先,
$$R_{[abc]d} = g_{de} R_{[abc]}^{e} = 0$$
,而

$$\begin{split} R_{[abc]d} &= \frac{1}{6} \left( R_{abcd} + R_{cabd} + R_{bcad} - R_{acbd} - R_{bacd} - R_{cbad} \right) \\ &= \frac{1}{3} \left( R_{abcd} + R_{cabd} + R_{bcad} \right) \end{split}$$

于是

$$\begin{split} R_{[abc]d} + R_{[dab]c} + R_{[cda]b} + R_{[bcd]a} \\ &= \frac{1}{3} \left( R_{abcd} + R_{cabd} + R_{bcad} \right) + \frac{1}{3} \left( R_{dabc} + R_{bdac} + R_{abdc} \right) \\ &+ \frac{1}{3} \left( R_{cdab} + R_{acdb} + R_{dacb} \right) + \frac{1}{3} \left( R_{bcda} + R_{dbca} + R_{cdba} \right) \\ &= \frac{1}{3} \left( R_{abcd} - R_{acbd} + R_{bcad} - R_{dacb} + R_{bdac} - R_{abcd} \right. \\ &+ R_{cdab} - R_{acbd} + R_{dacb} - R_{bcad} + R_{bdac} - R_{cdab} ) \\ &= \frac{2}{3} \left( R_{bdac} - R_{acbd} \right) \\ &= 0 \end{split}$$

于是  $R_{bdac} - R_{acbd} = 0$ 。

- **13.** 求出球面度规(见题 10 )的黎曼张量在坐标系  $(\theta, \phi)$  的全部分量。
  - 解 由 10 得, 克氏符的全部非零分量为  $\Gamma^{\theta}_{\phi\phi} = -\sin\theta\cos\theta, \Gamma^{\phi}_{\phi\theta} = \Gamma^{\phi}_{\theta\phi} = \cot\theta$ , 由  $R_{\mu\nu\sigma}{}^{\rho} = \Gamma^{\rho}_{\mu\sigma,\nu} \Gamma^{\rho}_{\nu\sigma,\mu} + \Gamma^{\lambda}_{\sigma\mu}\Gamma^{\rho}_{\nu\lambda} \Gamma^{\lambda}_{\sigma\nu}\Gamma^{\rho}_{\mu\lambda}$  得, 非零分量或者满足  $\rho = \theta$  且  $\mu\nu\sigma$  中有两个为  $\phi$ , 或者满足  $\rho = \phi$  且  $\mu\nu\sigma$  中至少有一个为  $\theta$ , 且前两个指标反称, 前两个指标相同的分量为零, 并且前三个指标只需考虑偶排列, 奇排列只需对调前两个指标。

$$\begin{split} R_{\theta\phi\phi}{}^{\theta} &= \Gamma^{\theta}{}_{\theta\phi,\phi} - \Gamma^{\theta}{}_{\phi\phi,\theta} + \Gamma^{\theta}{}_{\phi\theta}\Gamma^{\theta}{}_{\phi\theta} - \Gamma^{\theta}{}_{\phi\phi}\Gamma^{\theta}{}_{\theta\theta} + \Gamma^{\phi}{}_{\phi\theta}\Gamma^{\theta}{}_{\phi\phi} - \Gamma^{\phi}{}_{\phi\phi}\Gamma^{\theta}{}_{\theta\phi} \\ &= 0 + \left(\cos^2\theta - \sin^2\theta\right) + 0 - 0 - \cos^2\theta - 0 \\ &= -\sin^2\theta \\ R_{\theta\phi\phi}{}^{\phi} &= \Gamma^{\phi}{}_{\theta\phi,\phi} - \Gamma^{\phi}{}_{\phi\phi,\theta} + \Gamma^{\theta}{}_{\phi\theta}\Gamma^{\phi}{}_{\phi\theta} - \Gamma^{\theta}{}_{\phi\phi}\Gamma^{\phi}{}_{\theta\theta} + \Gamma^{\phi}{}_{\phi\theta}\Gamma^{\phi}{}_{\phi\phi} - \Gamma^{\phi}{}_{\phi\phi}\Gamma^{\phi}{}_{\theta\phi} \\ &= 0 \\ R_{\phi\theta\theta}{}^{\phi} &= \Gamma^{\phi}{}_{\phi\theta,\theta} - \Gamma^{\phi}{}_{\theta\theta,\phi} + \Gamma^{\theta}{}_{\theta\phi}\Gamma^{\phi}{}_{\theta\theta} - \Gamma^{\theta}{}_{\theta\theta}\Gamma^{\phi}{}_{\phi\theta} + \Gamma^{\phi}{}_{\theta\phi}\Gamma^{\phi}{}_{\theta\phi} - \Gamma^{\phi}{}_{\theta\theta}\Gamma^{\phi}{}_{\phi\phi} \\ &= -\frac{1}{\sin^2\theta} - 0 + 0 - 0 + \cot^2\theta - 0 \end{split}$$

于是非零分量仅有  $R_{\theta\phi\phi}^{\phantom{\phi}\theta} = -R_{\phi\theta\phi}^{\phantom{\phi}\theta} = -\sin\theta, R_{\phi\theta\theta}^{\phantom{\phi}\phi} = -R_{\theta\phi\theta}^{\phantom{\phi}\phi} = -1.$  与愚蠢的人类相比,麦酱可以更快地计算(并且不会抄错分量②)。将以下函数定义写入一个 Mathematica 程序包文件 (.m) 或者放在笔记本文件的开头:

```
christoffelsymbol[g ,x ,i ,j ,k ]:=
  1/2
    Plus@@
      ((Inverse[g][[i,#]](D[g[[#,j]],x[[k]])+D[g[[k,#]],x[[j]])-
            D[g[[j,k]],x[[\#]]]))&)/@Range[Length[x]];
ChristoffelSymbol[g_{,x_{]}:=
  Table[christoffelsymbol[q,x,i,j,k],{i,1,Length[x]},
     {j,1,Length[x]},{k,1,Length[x]}];
riemanntensor[g_{x_i}, x_j, i_j, k_l] :=
  D[christoffelsymbol[g,x,l,i,k],x[[j]]]
   D[christoffelsymbol[g,x,l,j,k],x[[i]]]+
   Plus@@
     ((christoffelsymbol[q,x,\#,k,i] christoffelsymbol[q,x,l,j,\#]-
        christoffelsymbol[g,x,\#,k,j]
         christoffelsymbol[g,x,l,i,#])&)/@Range[Length[x]];
RiemannTensor[g_,x_]:=Table[riemanntensor[g,x,i,j,k,1],
   \{i,1,Length[x]\},\{j,1,Length[x]\},\{k,1,Length[x]\},\{1,1,Length[x]\}\};
```

#### 运行如图 3.1。

图 3.1: 将第 13 题扔给麦酱计算

**14.** 求度规  $ds^2 = \Omega^2(t,x) \left( -dt^2 + dx^2 \right)$  的黎曼张量在  $\{t,x\}$  系的全部分量(在结果中以  $\dot{\Omega}$  和  $\Omega'$  分别代表函数  $\Omega$  对 t 和 x 的偏导数)。

#### 解 先求克氏符。

$$\begin{split} \Gamma^t_{\ tt} &= \frac{1}{2} g^{tt} \left( g_{tt,t} + g_{tt,t} - g_{tt,t} \right) \\ &= \frac{\dot{\Omega}}{\Omega} \\ \Gamma^t_{\ tx} &= \frac{1}{2} g^{tt} \left( g_{tt,x} + g_{xt,t} - g_{tx,t} \right) \\ &= \frac{\Omega'}{\Omega} \\ \Gamma^t_{\ xx} &= \frac{1}{2} g^{tt} \left( g_{tx,x} + g_{xt,x} - g_{xx,t} \right) \\ &= \frac{\dot{\Omega}}{\Omega} \\ \Gamma^x_{\ tx} &= \frac{1}{2} g^{xx} \left( g_{xt,x} + g_{tx,t} - g_{tt,x} \right) \\ &= \frac{\Omega'}{\Omega} \\ \Gamma^x_{\ tx} &= \frac{1}{2} g^{xx} \left( g_{xt,x} + g_{xx,t} - g_{tx,x} \right) \\ &= \frac{\dot{\Omega}}{\Omega} \end{split}$$

$$\Gamma^{x}_{xx} = \frac{1}{2}g^{xx} \left( g_{xx,x} + g_{xx,x} - g_{xx,x} \right)$$
$$= \frac{\Omega'}{\Omega}$$

则

$$\begin{split} R_{txt}^{\ t} &= \Gamma^t_{tt,x} - \Gamma^t_{xt,t} + \Gamma^t_{tt} \Gamma^t_{xt} - \Gamma^t_{tx} \Gamma^t_{tt} + \Gamma^x_{tt} \Gamma^t_{xx} - \Gamma^x_{tx} \Gamma^t_{tx} \\ &= \frac{\Omega \dot{\Omega}' - \dot{\Omega} \Omega'}{\Omega^2} - \frac{\Omega \dot{\Omega}' - \dot{\Omega} \Omega'}{\Omega^2} + \frac{\dot{\Omega} \Omega'}{\Omega^2} - \frac{\dot{\Omega} \Omega'}{\Omega^2} + \frac{\dot{\Omega} \Omega'}{\Omega^2} - \frac{\dot{\Omega} \Omega'}{\Omega^2} \\ &= 0 \\ R_{txx}^{\ t} &= \Gamma^t_{tx,x} - \Gamma^t_{xx,t} + \Gamma^t_{xt} \Gamma^t_{xt} - \Gamma^t_{xx} \Gamma^t_{tt} + \Gamma^x_{xt} \Gamma^t_{xx} - \Gamma^x_{xx} \Gamma^t_{tx} \\ &= \frac{\Omega \Omega'' - \Omega'^2}{\Omega^2} - \frac{\Omega \ddot{\Omega} - \dot{\Omega}^2}{\Omega^2} + \frac{\Omega'^2}{\Omega^2} - \frac{\dot{\Omega}^2}{\Omega^2} + \frac{\dot{\Omega}^2}{\Omega^2} - \frac{\Omega'^2}{\Omega^2} \\ &= \frac{\Omega \left(\Omega''' - \ddot{\Omega}\right) + \dot{\Omega}^2 - \Omega'^2}{\Omega^2} \\ &= \frac{\Omega \left(\Omega''' - \ddot{\Omega}\right) + \dot{\Omega}^2 - \Omega'^2}{\Omega^2} \\ &= \frac{\Omega \Omega''' - \Omega'^2}{\Omega^2} - \frac{\Omega \ddot{\Omega} - \dot{\Omega}^2}{\Omega^2} + \frac{\dot{\Omega}^2}{\Omega^2} - \frac{\Omega'^2}{\Omega^2} + \frac{\Omega'^2}{\Omega^2} - \frac{\dot{\Omega}^2}{\Omega^2} \\ &= \frac{\Omega \Omega''' - \Omega'^2}{\Omega^2} - \frac{\Omega \ddot{\Omega} - \dot{\Omega}^2}{\Omega^2} + \frac{\dot{\Omega}^2}{\Omega^2} - \frac{\Omega'^2}{\Omega^2} + \frac{\Omega'^2}{\Omega^2} - \frac{\dot{\Omega}^2}{\Omega^2} \\ &= \frac{\Omega \left(\Omega'' - \ddot{\Omega}\right) + \dot{\Omega}^2 - \Omega'^2}{\Omega^2} \\ &= \frac{\Omega \left(\Omega'' - \ddot{\Omega}\right) + \dot{\Omega}^2 - \Omega'^2}{\Omega^2} \\ &= \frac{\Omega \dot{\Omega}' - \dot{\Omega}\Omega'}{\Omega^2} - \frac{\Omega \dot{\Omega}' - \dot{\Omega}\Omega'}{\Omega^2} + \frac{\Omega'\dot{\Omega}}{\Omega^2} - \frac{\Omega'\dot{\Omega}}{\Omega^2} + \frac{\Omega'\dot{\Omega}}{\Omega^2} - \frac{\Omega'\dot{\Omega}}{\Omega^2} \\ &= \frac{\Omega \dot{\Omega}' - \dot{\Omega}\Omega'}{\Omega^2} - \frac{\Omega \dot{\Omega}' - \dot{\Omega}\Omega'}{\Omega^2} + \frac{\Omega'\dot{\Omega}}{\Omega^2} - \frac{\Omega'\dot{\Omega}}{\Omega^2} + \frac{\Omega'\dot{\Omega}}{\Omega^2} - \frac{\Omega'\dot{\Omega}}{\Omega^2} \\ &= 0 \end{split}$$

故所有非零分量为 
$$R_{txx}^{\quad t} = -R_{xtx}^{\quad t} = R_{txt}^{\quad x} = -R_{xtt}^{\quad x} = \frac{\Omega\left(\Omega'' - \ddot{\Omega}\right) + \dot{\Omega}^2 - {\Omega'}^2}{\Omega^2}$$
。  
本题用上述 Mathematica 代码解决如图 3.2:

- **15.** 求度规  $\mathrm{d}s^2 = z^{-1/2} \left( -\,\mathrm{d}t^2 + \mathrm{d}z^2 \right) + z \left( \mathrm{d}x^2 + \mathrm{d}y^2 \right)$  的黎曼张量在  $\{t,x,y,z\}$  系的全部分量。
  - 解 先求克氏符分量。由度规分量的非对角元均为零,克氏符分量  $\Gamma^{\sigma}_{\mu\nu} = \frac{1}{2}g^{\sigma\sigma}\left(g_{\sigma\mu,\nu} + g_{\nu\sigma,\mu} g_{\mu\nu,\sigma}\right)$ 。 非零分量至少应该满足: $\sigma\mu\nu$  至少有两个相等; $\sigma\mu\nu$  中至少有一个为 z (否则导数项全为零)。进一步地,若两个相等,则第三个必为 z (否则导数项为零);若三个相等,则

图 3.2: 将第 14 题扔给麦酱

为 zzz。即,非零分量满足三个指标中一个为 z 其余两个相同。

$$\begin{split} \Gamma^{t}{}_{tz} &= \frac{1}{2}g^{tt}\left(g_{tt,z} + g_{zt,t} - g_{tz,t}\right) \\ &= -\frac{1}{4z} \\ \Gamma^{x}{}_{xz} &= \frac{1}{2}g^{xx}\left(g_{xx,z} + g_{zx,x} - g_{xz,x}\right) \\ &= \frac{1}{z} \\ \Gamma^{y}{}_{yz} &= \frac{1}{2}g^{yy}\left(g_{yy,z} + g_{zy,y} - g_{yz,y}\right) \\ &= \frac{1}{z} \\ \Gamma^{z}{}_{tt} &= \frac{1}{2}g^{zz}\left(g_{zt,t} + g_{tz,t} - g_{tt,z}\right) \\ &= -\frac{1}{4z} \\ \Gamma^{z}{}_{xx} &= \frac{1}{2}g^{zz}\left(g_{zx,x} + g_{xz,x} - g_{xx,z}\right) \\ &= -\frac{\sqrt{z}}{2} \\ \Gamma^{z}{}_{yy} &= \frac{1}{2}g^{zz}\left(g_{zy,y} + g_{yz,y} - g_{yy,z}\right) \\ &= -\frac{\sqrt{z}}{2} \\ \Gamma^{z}{}_{zz} &= \frac{1}{2}g^{zz}\left(g_{zz,z} + g_{zz,z} - g_{zz,z}\right) \\ &= -\frac{1}{4z} \end{split}$$

于是所有非零克氏符分量为  $\Gamma^t_{tz} = \Gamma^t_{zt} = -\frac{1}{4z}$ ,  $\Gamma^x_{xz} = \Gamma^x_{zx} = \Gamma^y_{yz} = \Gamma^y_{zy} = \frac{1}{z}$ ,

$$\begin{split} \Gamma^z_{\ tt} &= -\frac{1}{4z}, \ \Gamma^z_{\ xx} = \Gamma^z_{\ yy} = -\frac{\sqrt{z}}{2}, \ \Gamma^z_{\ zz} = -\frac{1}{4z}, \\ &\text{由黎曼曲率张量分量表达式} \ R_{\mu\nu\sigma}{}^\rho = \Gamma^\rho_{\ \sigma\mu,\nu} - \Gamma^\rho_{\ \nu\sigma,\mu} + \Gamma^\lambda_{\ \sigma\mu} \Gamma^\rho_{\ \nu\lambda} - \Gamma^\lambda_{\ \nu\sigma} \Gamma^\rho_{\ \mu\lambda}, \ \text{注意} \\ &\text{到上述克氏符非零项的规律,黎曼张量的非零分量至少应该满足} \ \mu \neq \nu \ \text{并且:} \end{split}$$

- 1.  $\rho$  不为 z 时,导数项非零的条件是  $\mu\nu$  中有一个为 z 另一个和  $\rho$  相同且  $\sigma=z$ ; 下 面分类讨论后两项。
  - (a)  $\mu\nu$  中有一个为 z 时,设  $\nu=z$ ,  $R_{\mu z\sigma}{}^{\rho}=\Gamma^{\rho}{}_{\sigma\mu,z}-\Gamma^{\rho}{}_{z\sigma,\mu}+\Gamma^{\lambda}{}_{\sigma\mu}\Gamma^{\rho}{}_{z\lambda}-\Gamma^{\lambda}{}_{z\sigma}\Gamma^{\rho}{}_{\mu\lambda}$ , 倒数第二项中  $\rho z\lambda$  的组合为满足克氏符非零项"一个为 z 其余两个相同"的特征,要求  $\lambda=\rho$ ; 最后一项中  $\lambda z\sigma$  的组合要求  $\lambda=\sigma$ ,于是  $R_{\mu z\sigma}{}^{\rho}=\Gamma^{\rho}{}_{\sigma\mu,z}+\Gamma^{\rho}{}_{\sigma\mu}\Gamma^{\rho}{}_{z\rho}-\Gamma^{\sigma}{}_{z\sigma}\Gamma^{\rho}{}_{\mu\sigma}$ ,第一项非零要求  $\mu=\rho$  且  $\sigma=z$ ,第二项非零要求  $\mu=\rho$  且  $\sigma=z$ ;最后一项非零要求  $\mu=\rho$  且  $\sigma=z$ ,于是非零项为  $R_{\rho zz}{}^{\rho}=\Gamma^{\rho}{}_{z\rho,z}+\Gamma^{\rho}{}_{z\rho}\Gamma^{\rho}{}_{z\rho}-\Gamma^{z}{}_{zz}\Gamma^{\rho}{}_{\rho z}$ 。
  - (b)  $\mu\nu$  均不为 z 时,求导项为零, $R_{\mu\nu\sigma}{}^{\rho} = \Gamma^{\lambda}{}_{\sigma\mu}\Gamma^{\rho}{}_{\nu\lambda} \Gamma^{\lambda}{}_{\nu\sigma}\Gamma^{\rho}{}_{\mu\lambda}$ ,第一项中  $\rho\nu\lambda$  的组合要求  $\lambda = z$  且  $\nu = \rho$ ,第二项中  $\rho\mu\lambda$  的组合要求  $\lambda = z$  且  $\mu = \rho$ ,于 是  $R_{\mu\nu\sigma}{}^{\rho} = \Gamma^{z}{}_{\sigma\mu}\Gamma^{\rho}{}_{\nu z} \Gamma^{z}{}_{\nu\sigma}\Gamma^{\rho}{}_{\mu z}$ , $\mu\nu$  中至少一个与  $\rho$  相同。不妨设  $\mu = \rho$ ,则  $R_{\rho\nu\sigma}{}^{\rho} = -\Gamma^{z}{}_{\nu\sigma}\Gamma^{\rho}{}_{\rho z}$ ,非零项为  $R_{\rho\nu\nu}{}^{\rho} = -\Gamma^{z}{}_{\nu\nu}\Gamma^{\rho}{}_{\rho z}$ 。
- 2.  $\rho$  为 z 时,则后两项中  $\lambda$  应分别取  $\nu$  和  $\mu$ ,即  $R_{\mu\nu\sigma}{}^z = \Gamma^z{}_{\sigma\mu,\nu} \Gamma^z{}_{\nu\sigma,\mu} + \Gamma^\nu{}_{\sigma\mu}\Gamma^z{}_{\nu\nu} \Gamma^\mu{}_{\nu\sigma}\Gamma^z{}_{\mu\mu}$ ,若  $\mu\nu$  均不为 z,则导数项为零,而后两项中  $\Gamma^\nu{}_{\sigma\mu}$  和  $\Gamma^\mu{}_{\nu\sigma}$  无论  $\sigma$  如何取都不能满足克氏符非零项 "一个为 z 其余两个相同"的特征,故  $\mu\nu$  中有一个为 z,考虑到指标  $\mu\nu$  反称只需计算偶排列,于是我们有  $\nu=z$ ,非零项为  $R_{\mu z\sigma}{}^z = \Gamma^z{}_{\sigma\mu,z} + \Gamma^z{}_{\sigma\mu}\Gamma^z{}_{zz} \Gamma^\mu{}_{z\sigma}\Gamma^z{}_{\mu\mu}$ ,又看出必须有  $\mu=\sigma$ ,于是非零项为  $R_{\mu z\mu}{}^z = \Gamma^z{}_{\mu\mu,z} + \Gamma^z{}_{\mu\mu}\Gamma^z{}_{zz} \Gamma^\mu{}_{z\mu}\Gamma^z{}_{\mu\mu}$ 。

综上, 可能非零项为

$$\begin{split} R_{\rho zz}{}^{\rho} &= \Gamma^{\rho}{}_{z\rho,z} + \Gamma^{\rho}{}_{z\rho} \Gamma^{\rho}{}_{z\rho} - \Gamma^{z}{}_{zz} \Gamma^{\rho}{}_{\rho z}, & \rho = t, x, y \\ R_{\rho \nu \nu}{}^{\rho} &= -\Gamma^{z}{}_{\nu \nu} \Gamma^{\rho}{}_{\rho z}, & \rho, \nu = t, x, y \\ R_{\mu z \mu}{}^{z} &= \Gamma^{z}{}_{\mu \mu, z} + \Gamma^{z}{}_{\mu \mu} \Gamma^{z}{}_{zz} - \Gamma^{\mu}{}_{z\mu} \Gamma^{z}{}_{\mu \mu}, & \mu = t, x, y. \end{split}$$

又注意到 x 与 y 的对称性,只需计算 x 而不用计算 y、只需计算 xyyx 不用计算 yxxy。下面按以上规则计算可能的非零分量。

$$\begin{split} R_{txx}{}^t &= -\Gamma^z{}_{xx} \Gamma^t{}_{tz} \\ &= -\frac{1}{8\sqrt{z}} \\ R_{tzz}{}^t &= \Gamma^t{}_{zt,z} + \Gamma^t{}_{zt} \Gamma^t{}_{zt} - \Gamma^z{}_{zz} \Gamma^t{}_{tz} \\ &= \frac{1}{4z^2} + \frac{1}{16z^2} - \frac{1}{16z^2} \\ &= \frac{1}{4z^2} \end{split}$$

$$\begin{split} R_{xyy}{}^x &= -\Gamma^z{}_{yy} \Gamma^x{}_{xz} \\ &= \frac{1}{4\sqrt{z}} \\ R_{xzz}{}^x &= \Gamma^x{}_{zx,z} + \Gamma^x{}_{zx} \Gamma^x{}_{zx} - \Gamma^z{}_{zz} \Gamma^x{}_{xz} \\ &= -\frac{1}{2z^2} + \frac{1}{4z^2} + \frac{1}{8z^2} \\ &= -\frac{1}{8z^2} \\ R_{tzt}{}^z &= \Gamma^z{}_{tt,z} + \Gamma^z{}_{tt} \Gamma^z{}_{zz} - \Gamma^t{}_{zt} \Gamma^z{}_{tt} \\ &= \frac{1}{4z^2} + \frac{1}{16z^2} - \frac{1}{16z^2} \\ &= \frac{1}{4z^2} \\ R_{xzx}{}^z &= \Gamma^z{}_{xx,z} + \Gamma^z{}_{xx} \Gamma^z{}_{zz} - \Gamma^x{}_{zx} \Gamma^z{}_{xx} \\ &= -\frac{1}{4\sqrt{z}} + \frac{1}{8\sqrt{z}} + \frac{1}{4\sqrt{z}} \\ &= \frac{1}{8\sqrt{z}} \end{split}$$

于是所有非零分量为

$$\begin{split} R_{txx}^{\quad t} &= -R_{xtx}^{\quad t} = R_{tyy}^{\quad t} = -R_{yty}^{\quad t} = -\frac{1}{8\sqrt{z}} \\ R_{tzz}^{\quad t} &= -R_{ztz}^{\quad t} = \frac{1}{4z^2} \\ R_{xyy}^{\quad x} &= R_{yxx}^{\quad y} = \frac{1}{4\sqrt{z}} \\ R_{xzz}^{\quad x} &= -R_{zxz}^{\quad x} = R_{yzz}^{\quad y} = -R_{zyz}^{\quad y} = -\frac{1}{8z^2} \\ R_{tzt}^{\quad z} &= -R_{ztt}^{\quad z} = \frac{1}{4z^2} \\ R_{xzx}^{\quad z} &= -R_{zxx}^{\quad z} = \frac{1}{8\sqrt{z}} \end{split}$$

PS: 我第一遍手算的算了几个小时(论经常抄错指标的悲惨……)所以还是分析一番,分类讨论分量非零条件顺便化简的好……当然最省事的还是交给麦酱,秒出结果……

**16.** 设  $\alpha(z)$ ,  $\beta(z)$ ,  $\gamma(z)$  为任意函数,  $h = t + \alpha(z)x + \beta(z)y + \gamma(z)$ , 求度规

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + h^{2} dz^{2}$$

的黎曼张量在  $\{t, x, y, z\}$  系的全部分量。

解 首先求克氏符分量,由于度规分量矩阵的非对角元全为零, $\Gamma^{\sigma}_{\mu\nu} = \frac{1}{2}g^{\sigma\sigma}\left(g_{\sigma\mu,\nu} + g_{\nu\sigma,\mu} - g_{\mu\nu,\sigma}\right)$ ,

导数项非零要求  $\sigma\mu\nu$  中有两个取 z。

$$\begin{split} \Gamma^{t}{}_{zz} &= \frac{1}{2} g^{tt} \left( g_{tz,z} + g_{zt,z} - g_{zz,t} \right) \\ &= h \\ \Gamma^{x}{}_{zz} &= \frac{1}{2} g^{xx} \left( g_{xz,z} + g_{zx,z} - g_{zz,x} \right) \\ &= -h\alpha \\ \Gamma^{y}{}_{zz} &= \frac{1}{2} g^{yy} \left( g_{yz,z} + g_{zy,z} - g_{zz,y} \right) \\ &= -h\beta \\ \Gamma^{z}{}_{zt} &= \frac{1}{2} g^{zz} \left( g_{zz,t} + g_{tz,z} - g_{zt,z} \right) \\ &= \frac{1}{h} \\ \Gamma^{z}{}_{zx} &= \frac{1}{2} g^{zz} \left( g_{zz,x} + g_{xz,z} - g_{zx,z} \right) \\ &= \frac{\alpha}{h} \\ \Gamma^{z}{}_{zy} &= \frac{1}{2} g^{zz} \left( g_{zz,y} + g_{yz,z} - g_{zy,z} \right) \\ &= \frac{\beta}{h} \\ \Gamma^{z}{}_{zz} &= \frac{1}{2} g^{zz} \left( g_{zz,z} + g_{zz,z} - g_{zz,z} \right) \\ &= \frac{x\alpha' + y\beta' + \gamma'}{h} \end{split}$$

黎曼张量分量表达式为  $R_{\mu\nu\sigma}^{\phantom{\mu\nu\sigma}\rho} = \Gamma^{\rho}_{\phantom{\rho}\sigma\mu,\nu} - \Gamma^{\rho}_{\phantom{\rho}\nu\sigma,\mu} + \Gamma^{\lambda}_{\phantom{\lambda}\sigma\mu}\Gamma^{\rho}_{\phantom{\rho}\nu\lambda} - \Gamma^{\lambda}_{\phantom{\lambda}\nu\sigma}\Gamma^{\rho}_{\phantom{\rho}\mu\lambda}$ ,下面讨论分量非零条件。

- 1.  $\rho$  不取 z。后两项求和中  $\lambda=z$ ,且  $\mu\nu$  必有一取 z。由于前两个指标反称,设  $\nu$  取 z,则  $R_{\mu z \sigma}{}^{\rho} = \Gamma^{\rho}_{\sigma \mu, z} \Gamma^{\rho}_{z \sigma, \mu} + \Gamma^{z}_{\sigma \mu} \Gamma^{\rho}_{z z} \Gamma^{z}_{z \sigma} \Gamma^{\rho}_{\mu z}$ ,又可看出  $\sigma=z$ ,于是非零分量为  $R_{\mu z z}{}^{\rho} = -\Gamma^{\rho}_{z z, \mu} + \Gamma^{z}_{z \mu} \Gamma^{\rho}_{z z}$ 。
- $2. \rho$ 取z。
  - (a)  $\nu$  取 z。则  $R_{\mu z \sigma}{}^z = \Gamma^z{}_{\sigma \mu, z} \Gamma^z{}_{z \sigma, \mu} + \Gamma^\lambda{}_{\sigma \mu} \Gamma^z{}_{z \lambda} \Gamma^\lambda{}_{z \sigma} \Gamma^z{}_{\mu \lambda}$ ,倒数第二项中  $\lambda \sigma \mu$  的组合要求  $\lambda = z$ ,最后一项中  $z \mu \lambda$  的组合要求  $\lambda = z$ 。

i. 
$$\sigma=z$$
,  $\mathbb{M}$   $R_{\mu zz}{}^z=\Gamma^z_{\ z\mu,z}-\Gamma^z_{\ zz,\mu}+\Gamma^z_{\ z\mu}\Gamma^z_{\ zz}\Gamma^z_{\ \mu z};$ 
ii.  $\sigma\neq z$ ,  $\mathbb{M}$   $R_{\mu z\sigma}{}^z=\Gamma^z_{\ \sigma\mu,z}-\Gamma^z_{\ z\sigma,\mu}+\Gamma^z_{\ \sigma\mu}\Gamma^z_{\ zz}-\Gamma^z_{\ z\sigma}\Gamma^z_{\ \mu z}.$ 

(b) 
$$\mu\nu$$
 均不取  $z$ 。则  $R_{\mu\nu\sigma}{}^z = \Gamma^z_{\ \sigma\mu,\nu} - \Gamma^z_{\ \nu\sigma,\mu} + \Gamma^\lambda_{\ \sigma\mu} \Gamma^z_{\ \nu\lambda} - \Gamma^\lambda_{\ \nu\sigma} \Gamma^z_{\ \mu\lambda}$ ,后两项中  $\lambda$  均取  $z$ ,且  $\sigma = z$ 。则  $R_{\mu\nuz}{}^z = \Gamma^z_{\ z\mu,\nu} - \Gamma^z_{\ \nu z,\mu} + \Gamma^z_{\ z\mu} \Gamma^z_{\ \nu z} - \Gamma^z_{\ \nu z} \Gamma^z_{\ \mu z}$ 。

综上, 仅考虑哪些克氏符非零, 可以将可能的非零分量确定到如下四种情况:

$$\begin{split} R_{\mu zz}{}^{\rho} &= -\Gamma^{\rho}{}_{zz,\mu} + \Gamma^{z}{}_{z\mu}\Gamma^{\rho}{}_{zz}, & \mu, \rho = t, x, y \\ R_{\mu zz}{}^{z} &= \Gamma^{z}{}_{z\mu,z} - \Gamma^{z}{}_{zz,\mu}, & \mu = t, x, y \\ R_{\mu z\sigma}{}^{z} &= -\Gamma^{z}{}_{z\sigma,\mu} - \Gamma^{z}{}_{z\sigma}\Gamma^{z}{}_{\mu z}, & \mu, \sigma = t, x, y \\ R_{\mu\nu z}{}^{z} &= \Gamma^{z}{}_{z\mu,\nu} - \Gamma^{z}{}_{\nu z,\mu}, & \mu, \nu = t, x, y \end{split}$$

但是进一步考虑那些非零的克氏符分量的具体形式, 由于

$$\Gamma^{z}_{z\mu} = \frac{\frac{\partial h}{\partial x^{\mu}}}{h},$$

于是

$$\Gamma^z_{\ z\mu,\nu} = -\frac{\frac{\partial h}{\partial x^\mu}\frac{\partial h}{\partial x^\nu}}{h^2} = \Gamma^z_{\ z\nu,\mu} = \Gamma^z_{\ z\mu}\Gamma^z_{\ z\nu},$$

故第二三四种情况均为零, 还剩下

$$R_{\mu zz}^{\ \rho} = -\Gamma^{\rho}_{zz,\mu} + \Gamma^{z}_{z\mu}\Gamma^{\rho}_{zz}, \qquad \rho = t, x, y$$

而

$$\Gamma^{\rho}_{zz} = -g^{\rho\rho}h\frac{\partial h}{\partial x^{\rho}}$$

可以观察发现

$$\begin{split} \Gamma^{\rho}{}_{zz,\mu} &= -g^{\rho\rho} \frac{\partial h}{\partial x^{\rho}} \frac{\partial h}{\partial x^{\mu}} \\ &= \left( -g^{\rho\rho} h \frac{\partial h}{\partial x^{\mu}} \right) \left( \frac{\frac{\partial h}{\partial x^{\mu}}}{h} \right) \\ &= \Gamma^{z}{}_{z\mu} \Gamma^{\rho}{}_{zz} \end{split}$$

于是本题的黎曼张量的所有分量全为零。扔给麦酱验证如图 3.3

**17.** 试证 2 维广义黎曼空间的爱因斯坦张量为零。提示: 2 维广义黎曼空间的黎曼张量只有一个独立分量。

证明 记  $r \equiv R_{1212}$ ,则

$$R_{2112} = -r \\ R_{1221} = -r \\ R_{2121} = r$$

于是里奇张量  $R_{ac} := g^{bd} R_{abcd}$  的分量为

$$R_{11} = g^{22} R_{12 2}^{1}$$
$$= rg^{22}$$

图 3.3: Mathematica 验证第 16 题

$$\begin{split} R_{12} &= g^{21} R_{1221} \\ &= -r g^{21} \\ R_{22} &= g^{11} R_{2121} \\ &= r g^{11}, \end{split}$$

标量曲率

$$\begin{split} R &= g^{ac} R_{ac} \\ &= 2rg^{11}g^{22} - 2rg^{12}g^{21} \\ &= 2rg. \end{split}$$

其中  $g = \det[g]$  为度规分量矩阵的行列式。注意到,里奇张量分量排成的矩阵为

$$[R] = \begin{pmatrix} rg^{22} & -rg^{21} \\ -rg^{12} & rg^{11} \end{pmatrix}$$
$$= r([g]^{-1})^*$$
$$= rg[g],$$

其中  $A^*$  代表 A 的伴随矩阵。于是爱因斯坦张量  $G_{ab}=R_{ab}-\frac{1}{2}Rg_{ab}$  的分量矩阵为

$$[G] = [R] - \frac{1}{2}R[g]$$
$$= rg[g] - rg[g]$$
$$= 0.$$

# 第四章 李导数、Killing 场和超曲面

## 习题

- **1.** 试证由式 (4-1-1) 定义的  $(\phi_* v)^a$  满足 §2.2 定义 2 对矢量的两个要求,从而的确是  $\phi(p)$  点的矢量。
  - 证明 1.  $(\phi_*v)(f+g) = v(\phi^*(f+g)) = v(\phi^*f) + v(\phi^*g) = (\phi_*v)(f) + (\phi_*v)(g)$ ;
    - 2.  $(\phi_* v)(fg) = v(\phi^*(fg)) = v(\phi^*(f)\phi^*(g)) = \phi^*(f)|_p v(\phi^*g) + \phi^*(g)|_p v(\phi^*f) = f|_{\phi(p)}(\phi_* v)(g) + g|_{\phi(p)}(\phi_* v)(f)$ °
- 2. 试证定理 4-1-1、4-1-2 和 4-1-3.

证明 (1) 定理 4-1-1 如下:

Thm  $\phi_*: V_p \to V_{\phi(p)}$  是线性映射, 即

$$\phi_*(\alpha u^a + \beta v^a) = \alpha \phi_* u^a + \beta \phi_* v^a, \quad \forall u^a, v^a \in V_p, \quad \alpha, \beta \in \mathbb{R}.$$

**Prf**  $\forall f \in \mathscr{F}_N$ ,

$$[\phi_*(\alpha u + \beta v)](f) = (\alpha u + \beta v)(\phi^* f)$$

$$= \alpha u(\phi^* f) + \beta v(\phi^* f)$$

$$= \alpha (\phi_* u)(f) + \beta (\phi_* v)(f)$$

$$= (\alpha \phi_* u + \beta \phi_* v)(f)$$

(2) 定理 4-1-2 如下:

Thm 设 C(t) 是 M 中的曲线, $T^a$  为曲线在  $C(t_0)$  的切矢,则  $\phi_*T^a \in V_{\phi(C(t_0))}$  是曲线  $\phi(C(t))$  在  $\phi(C(t_0))$  点的切矢(曲线切矢的像是曲线像的切矢)。

**Prf**  $\forall f \in \mathscr{F}_N$ ,

$$(\phi_*T)(f) = T(\phi^*f)$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}((\phi^*f) \circ C(t))\Big|_{t_0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} (f \circ \phi \circ C(t)) \Big|_{t_0}$$
$$= T'(f),$$

其中  $T'^a$  是曲线  $\phi(C(t))$  在  $\phi(C(t_0))$  的切矢。于是  $T^a = T'^a$ 。

#### (3) 定理 4-1-3 如下:

Thm  $(\phi_*T)^{\mu_1\cdots\mu_k}_{\nu_1\cdots\nu_l}|_{\phi(p)} = T'^{\mu_1\cdots\mu_k}_{\nu_1\cdots\nu_l}|_p$ ,  $\forall T\in\mathscr{F}_M(k,l)$ , 式中左边是新点  $\phi(p)$  的新张量  $\phi_*T$  在老坐标系  $\{y^\mu\}$  的分量,右边是老点 p 的老张量 T 在新坐标系  $\{x'^\mu\}$  的分量。

Prf 由定理 4-1-2, 坐标基矢作为坐标线的切矢, 满足

$$\phi_* \left[ \left( \frac{\partial}{\partial x'^{\mu}} \right)^a \Big|_p \right] = \left( \frac{\partial}{\partial y^{\mu}} \right)^a \Big|_{\phi(p)},$$

于是  $\forall v^a \in V_{\phi(p)}$ ,

$$\phi_* \left[ \left( dx'^{\mu} \right)_a \Big|_p \right] v^a = \left( dx'^{\mu} \right)_a \Big|_p \left( \phi^* v \right)^a$$

$$= \left( \phi^* v \right) \left( x'^{\mu} \right)$$

$$= v \left( \phi_* x'^{\mu} \right)$$

$$= v \left( y^{\mu} \right)$$

$$= \left( dy^{\mu} \right)_a \Big|_{\phi(p)} v^a$$

故

$$\phi_* \left[ \left. \left( \mathrm{d} x'^{\mu} \right)_a \right|_p \right] = \left. \left( \mathrm{d} y^{\mu} \right)_a \right|_{\phi(p)},$$

于是对任意张量场  $T \in \mathcal{F}_M(k,l)$ ,

$$\begin{split} & (\phi_* T)^{\mu_1 \cdots \mu_k}_{\nu_1 \cdots \nu_l} \Big|_{\phi(p)} \\ &= (\phi_* T)^{a_1 \cdots a_k}_{b_1 \cdots b_l} \Big|_{\phi(p)} \left( \mathrm{d} y^{\mu_1} \right)_{a_1} \Big|_{\phi(p)} \cdots \left( \mathrm{d} y^{\mu_k} \right)_{a_k} \Big|_{\phi(p)} \left( \frac{\partial}{\partial y^{\nu_1}} \right)^{b_1} \Big|_{\phi(p)} \cdots \left( \frac{\partial}{\partial y^{\nu_l}} \right)^{b_l} \Big|_{\phi(p)} \\ &= T^{a_1 \cdots a_k}_{b_1 \cdots b_l} \Big|_p \left( \mathrm{d} x'^{\mu_1} \right)_{a_1} \Big|_p \cdots \left( \mathrm{d} x'^{\mu_k} \right)_{a_k} \Big|_p \left( \frac{\partial}{\partial x'^{\nu_1}} \right)^{b_1} \Big|_p \cdots \left( \frac{\partial}{\partial x'^{\nu_l}} \right)^{b_l} \Big|_p \\ &= T'^{\mu_1 \cdots \mu_k}_{\nu_1 \cdots \nu_l} \Big|_p. \end{split}$$

**3.** 设  $\phi: M \to N$  为光滑映射, $p \in M$ , $\{y^{\mu}\}$  是  $\phi(p)$  点某邻域上的坐标,试证

$$(\phi_* v)^a = v (\phi^* y^\mu) (\partial/\partial y^\mu)^a, \quad \forall v^a \in V_p.$$

证明

$$(\phi_* v)^a = (\phi_* v) (y^\mu) \left(\frac{\partial}{\partial y^\mu}\right)^a$$
$$= v (\phi^* y^\mu) \left(\frac{\partial}{\partial y^\mu}\right)^a$$

**4.** 设 M, N 是流形,  $\phi$ :  $M \to N$  是微分同胚,  $p \in M$ ,  $q \equiv \phi(p)$ , 试证推前映射  $\phi_* : V_p \to V_q$  是同构映射。

证明 由定理 4-1-1 知  $\phi_*$  为线性映射, 又知其有逆映射  $\phi^*$ , 故为线性同构。

- **5.** 设 M, N, Q 是流形,  $\phi$ :  $M \to N$  和  $\psi$ :  $N \to Q$  是光滑映射。
  - (a) 试证  $(\psi \circ \phi)^* f = (\phi^* \circ \psi^*) f$ ,  $\forall f \in \mathscr{F}_Q$ .
  - (b)  $\exists \text{til.} (\psi \circ \phi)_* v^a = \psi_* (\phi_* v^a), \quad \forall p \in M, v^a \in V_p \circ$
  - (c) 把  $(\psi \circ \phi)^*$  和  $\phi^* \circ \psi^*$  都看作由  $\mathscr{F}_Q(0,l)$  到  $\mathscr{F}_M(0,l)$  的映射, 试证

$$(\psi \circ \phi)^* = \phi^* \circ \psi^*.$$

证明 (a) 按照拉回映射的定义,

$$(\psi \circ \phi)^* f = f \circ \psi \circ \phi = (\phi^* \circ \psi^*) f.$$

(b) 按照推前映射的定义,  $\forall f \in \mathscr{F}_M$ ,

$$\begin{split} \left[ \left( \psi \circ \phi \right)_* v \right] (f) &= v \left[ \left( \psi \circ \phi \right)^* f \right] \\ &= v \left[ \phi^* \left( \psi^* f \right) \right] \\ &= \left( \phi^* v \right) \left( \psi^* f \right) \\ &= \left[ \psi^* \left( \phi^* v \right) \right] (f). \end{split}$$

(c)  $\forall p \in M, v_1, \dots, v_l \in V_p, T \in \mathscr{F}_O(0, l)$ ,

$$\begin{split} & \left[ (\psi \circ \phi)^* T \right]_{a_1 \cdots a_l} \Big|_p (v_1)^{a_1} \cdots (v_l)^{a_l} \\ &= T_{a_1 \cdots a_l} \Big|_{\psi(\phi(p))} \left[ (\psi \circ \phi)_* (v_1)^{a_1} \right] \cdots \left[ (\psi \circ \phi)_* (v_l)^{a_l} \right] \\ &= T_{a_1 \cdots a_l} \Big|_{\psi(\phi(p))} \psi_* \left[ \phi_* (v_1)^{a_1} \right] \cdots \psi_* \left[ \phi_* (v_l)^{a_l} \right] \\ &= (\psi^* T)_{a_1 \cdots a_l} \Big|_{\phi(p)} (\phi_* v_1)^{a_1} \cdots (\phi_* v_l)^{a_l} \\ &= \left[ (\phi^* \circ \psi^*) T \right]_{a_1 \cdots a_l} \Big|_p (v_1)^{a_1} \cdots (v_l)^{a_l} \end{split}$$

**6.** 设  $\phi: M \to N$  是微分同胚, $v^a$ , $u^a$  是 M 上的矢量场,试证  $\phi_*([v,u]^a) = [\phi_*v,\phi_*u]^a$ ,其中  $[v,u]^a$  代表对易子。

证明 首先验证一个等式:  $\forall v \in \mathscr{F}_M(1,0), f \in \mathscr{F}_N$ , 有  $v(\phi^*f) = \phi^*[(\phi_*v)f]$  (即把逐点定义的切矢的推前映射表述成场的形式)。 $\forall p \in M$ ,

$$\begin{split} \phi^* \left[ (\phi_* v) f \right] \big|_p &= (\phi_* v) f \big|_{\phi(p)} \\ &= (\phi_* v) \big|_{\phi(p)} (f) \\ &= v \big|_p (\phi^* f) \\ &= v (\phi^* f) \big|_p \,. \end{split}$$

 $\forall f \in \mathscr{F}_N, p \in M$ ,

$$\begin{split} \left. \left( \phi_* \left[ v, u \right] \right) \right|_{\phi(p)} (f) &= \left[ v, u \right] \right|_p \left( \phi^* f \right) \\ &= \left. v \right|_p \left[ u(\phi^* f) \right] - \left. u \right|_p \left[ v(\phi^* f) \right] \\ &= \left. v \right|_p \left\{ \phi^* \left[ (\phi_* u) \, f \right] \right\} - \left. u \right|_p \left\{ \phi^* \left[ (\phi_* v) \, f \right] \right\} \\ &= \left. \phi_* v \right|_{\phi(p)} \left[ (\phi_* u) \, f \right] - \left. \phi_* u \right|_{\phi(p)} \left[ (\phi_* v) \, f \right] \\ &= \left. \left[ \phi_* v, \phi_* u \right] \right|_{\phi(p)} (f). \end{split}$$

#### 7. 试证定理 4-2-4.

证明 定理 4-2-4 如下:

Thm 
$$\mathcal{L}_v\omega_a = v^b\nabla_b\omega_a + \omega_b\nabla_av^b$$
,  $\forall v^a \in \mathscr{F}(1,0), \omega \in \mathscr{F}(0,1)$ , 其中  $\nabla_a$  为任意无挠导数算符。

**Prf** 由于李导数与缩并可交换顺序,为利用定理 4-2-3,向李导数内插入  $u^a$ ,计算  $\mathcal{L}_{u}(\omega_a u^a)$ 。 $\forall u^a \in \mathscr{S}(1,0)$ ,利用与缩并交换及莱布尼兹律,

$$\begin{split} \mathcal{L}_{v}\left(\omega_{a}u^{a}\right) &= \omega_{a}\mathcal{L}_{v}u^{a} + u^{a}\mathcal{L}_{v}\omega_{a} \\ &= \omega_{a}\left[v,u\right]^{a} + u^{a}\mathcal{L}_{v}\omega_{a} \\ &= \omega_{a}\left(v^{b}\nabla_{b}u^{a} - u^{b}\nabla_{b}v^{a}\right) + u^{a}\mathcal{L}_{v}\omega_{a}, \end{split}$$

另一方面,根据  $\mathcal{L}_v(f) = v(f)$ ,有

$$\begin{split} \mathcal{L}_{v}\left(\omega_{a}u^{a}\right) &= v^{b}\nabla_{a}\left(\omega_{b}u^{a}\right) \\ &= v^{b}\omega_{a}\nabla_{b}u^{a} + v^{b}u^{a}\nabla_{b}\omega_{a}, \end{split}$$

于是

$$\begin{split} \underline{\omega_a v^b \nabla_b u^a} - \omega_a u^b \nabla_b v^a + u^a \mathcal{L}_v \omega_a &= \underline{v^b \omega_a \nabla_b u^a} + v^b u^a \nabla_b \omega_a, \\ u^a \mathcal{L}_v \omega_a &= \omega_{\not = b} u^{\not= a} \nabla_{\not= a} v^{\not= b} + v^b u^a \nabla_b \omega_a, \\ \mathcal{L}_v \omega_a &= \omega_b \nabla_a v^b + v^b \nabla_b \omega_a. \end{split}$$

8. 设  $v^a \in \mathscr{F}_M(1,0)$ ,  $\omega_a \in \mathscr{F}_M(0,1)$ , 试证对任一坐标系  $\{x^\mu\}$  有

$$(\mathcal{L}_v \omega)_{\mu} = v^{\nu} \partial \omega_{\mu} / \partial x^{\nu} + \omega_{\nu} \partial v^{\nu} / \partial x^{\mu} .$$

提示: 用式 (4-2-7) 并令其  $\nabla_a$  为  $\partial_a$ 。

证明 式 (4-2-7) 为 (也就是定理 4-2-4):

$$\mathcal{L}_v \omega_a = v^b \nabla_b \omega_a + \omega_b \nabla_a v^b, \quad \forall v^a \in \mathscr{F}(1,0), \omega \in \mathscr{F}(0,1)$$

于是

$$\begin{split} (\mathcal{L}_v \omega)_\mu &= \left(\frac{\partial}{\partial x^\mu}\right)^a \mathcal{L}_v \omega_a \\ &= \left(\frac{\partial}{\partial x^\mu}\right)^a \left(v^b \partial_b \omega_a + \omega_b \partial_a v^b\right) \\ &= v^\nu \frac{\partial \omega_\mu}{\partial x^\nu} + \omega_\nu \frac{\partial v^\nu}{\partial x^\mu}. \end{split}$$

9. 设  $u^a, v^a \in \mathscr{F}_M(1,0)$ , 则下式作用于任意张量场都成立

$$[\mathcal{L}_v, \mathcal{L}_u] = \mathcal{L}_{[v,u]} \quad (\sharp \oplus [\mathcal{L}_v, \mathcal{L}_u] \equiv \mathcal{L}_v \mathcal{L}_u - \mathcal{L}_u \mathcal{L}_v) \ .$$

试就作用对象为  $f \in \mathscr{F}_M$  和  $w^a \in \mathscr{F}_M(1,0)$  的情况给出证明。提示: 当作用对象为  $w^a$  时可用雅可比恒等式(第 2 章习题 8)。

证明 1. 作用于标量场:

$$\begin{split} \left[\mathcal{L}_{v}, \mathcal{L}_{u}\right](f) &= \mathcal{L}_{v}\left(\mathcal{L}_{u}f\right) - \mathcal{L}_{u}\left(\mathcal{L}_{v}f\right) \\ &= v(u(f)) - u(v(f)) \\ &= \left[v, u\right](f) \\ &= \mathcal{L}_{\left[v, u\right]}(f). \end{split}$$

2. 作用于矢量场:

$$\begin{split} \left[\mathcal{L}_{v},\mathcal{L}_{u}\right]w &= \mathcal{L}_{v}\left(\mathcal{L}_{u}w\right) - \mathcal{L}_{u}\left(\mathcal{L}_{v}w\right) \\ &= \left[v,\left[u,w\right]\right] - \left[u,\left[v,w\right]\right] \\ &= -\left(\left[u,\left[w,v\right]\right] + \left[w,\left[v,u\right]\right]\right) - \left[u,\left[v,w\right]\right] \\ &= \left[\left[v,u\right],w\right] \\ &= \mathcal{L}_{\left[v,u\right]}w. \end{split}$$

**10.** 设  $F_{ab}$  是 4 维闵氏空间上的反称张量场,其在洛伦兹坐标系  $\{t,x,y,z\}$  的分量为  $F_{01}=-F_{13}=x\rho^{-1}$ ,  $F_{02}=-F_{23}=y\rho^{-1}$ ,  $F_{03}=F_{12}=0$ ,其中  $\rho\equiv (x^2+y^2)^{1/2}$ 。试证  $F_{ab}$  有旋转对称性,即  $\mathcal{L}_vF_{ab}=0$ ,其中  $v^a=-y\left(\partial/\partial x\right)^a+x\left(\partial/\partial y\right)^a$ 。

证明 由

$$\mathcal{L}_v F_{ab} = v^c \nabla_c F_{ab} + F_{ac} \nabla_b v^c + F_{cb} \nabla_a v^c,$$

取  $\nabla_a$  为  $\partial_a$ , 有

$$(\mathcal{L}_{v}F)_{\mu\nu} = v^{\sigma}\partial_{\sigma}F_{\mu\nu} + F_{\mu\sigma}\partial_{\nu}v^{\sigma} + F_{\sigma\nu}\partial_{\mu}v^{\sigma}$$

其中第一项求和只对  $\sigma=1,2$  取,第二三项求和只对  $\sigma=1,2$  且  $\sigma\neq\mu,\nu$  取,且  $\nu\neq1,2$  时第二项不存在, $\mu\neq1,2$  时第三项不存在。又易看出  $\mathcal{L}_{v}F_{ab}$  反称,于是

$$(\mathcal{L}_{v}F)_{01} = v^{1}\partial_{1}F_{01} + v^{2}\partial_{2}F_{01} + F_{02}\partial_{1}v^{2}$$

$$= -y \cdot \frac{y^{2}}{\rho^{3}} + x \cdot \left(-\frac{xy}{\rho^{3}}\right) + \frac{y}{\rho} \cdot (-1)$$

$$= 0$$

$$(\mathcal{L}_{v}F)_{02} = v^{1}\partial_{1}F_{02} + v^{2}\partial_{2}F_{02} + F_{01}\partial_{2}v^{1}$$

$$= -y \cdot \left(-\frac{xy}{\rho^{3}}\right) + x \cdot \frac{x^{2}}{\rho^{3}} + \frac{x}{\rho} \cdot (-1)$$

$$= 0$$

$$(\mathcal{L}_{v}F)_{03} = v^{1}\partial_{1}F_{03} + v^{2}\partial_{2}F_{03}$$

$$= 0$$

$$(\mathcal{L}_{v}F)_{12} = v^{1}\partial_{1}F_{12} + v^{2}\partial_{2}F_{12}$$

$$= 0$$

$$(\mathcal{L}_{v}F)_{13} = v^{1}\partial_{1}F_{13} + v^{2}\partial_{2}F_{13} + F_{23}\partial_{1}v^{2}$$

$$= -y \cdot \left(-\frac{y^{2}}{\rho^{3}}\right) + x \cdot \frac{xy}{\rho^{3}} - \frac{y}{\rho} \cdot 1$$

$$= 0$$

$$(\mathcal{L}_{v}F)_{23} = v^{1}\partial_{1}F_{23} + v^{2}\partial_{2}F_{23} + F_{13}\partial_{2}v^{1}$$

$$= -y \cdot \frac{xy}{\rho^{3}} + x \cdot \left(-\frac{x^{2}}{\rho^{3}}\right) - \frac{x}{\rho} \cdot (-1)$$

故  $\mathcal{L}_{v}F_{ab}=0$ 。

11. 设  $\xi^a$  是  $(M,g_{ab})$  中的 Killing 矢量场, $\nabla_a$  与  $g_{ab}$  相适配,试证  $\nabla_a\xi^a=0$ 。 证明 由 Killing 方程,

$$\nabla_a \xi^a = g^{ab} \nabla_a \xi_b$$
$$= g^{ab} \nabla_{(a} \xi_{b)}$$

**12.** 设  $\xi^a$  是  $(M, g_{ab})$  中的 Killing 矢量场, $\phi$ :  $M \to M$  是等度规映射,试证  $\phi_* \xi^a$  也是  $(M, g_{ab})$  中的 Killing 矢量场。提示:利用习题  $5(\mathbf{c})$  中的结论。

证明 记  $\xi^a$  的积分曲线为 C(t),它诱导出的单参微分同胚群为  $\{\psi_t\}$ ,则  $\phi_*\xi^a$  的积分曲线 是  $\phi\circ C(t)$ ,其诱导出的单参微分同胚群为  $\psi_t'=\phi\circ\psi_t\circ\phi^{-1}$ 。由定义,

$$\mathcal{L}_{\phi_* \xi} g_{ab} = \lim_{t \to 0} \frac{1}{t} \left( {\psi'_t}^* g_{ab} - g_{ab} \right)$$

$$= \lim_{t \to 0} \frac{1}{t} \left[ \left( \phi \circ \psi_t \circ \phi^{-1} \right)^* g_{ab} - g_{ab} \right]$$

$$= \lim_{t \to 0} \frac{1}{t} \left\{ \left[ \left( \psi_t \circ \phi^{-1} \right)^* \circ \phi^* \right] g_{ab} - g_{ab} \right\}$$

$$= \lim_{t \to 0} \frac{1}{t} \left[ \left( \phi^{-1} \circ \psi_t^* \right) g_{ab} - g_{ab} \right]$$

$$= 0$$

**13.** 设  $\xi^a$ ,  $\eta^a$  是  $(M, g_{ab})$  的 Killing 矢量场,试证其对易子  $[\xi, \eta]^a$  也是 Killing 矢量场。注:此 结论使得 M 上全体 Killing 矢量场的集合不但是矢量空间,而且是李代数(详见中册附录 G)。

证明 由第 9 题,知

$$\mathcal{L}_{[\xi,\eta]}g_{ab} = \mathcal{L}_{\xi}\mathcal{L}_{\eta}g_{ab} - \mathcal{L}_{\eta}\mathcal{L}_{\xi}g_{ab}$$
$$= 0.$$

- 14. 设  $\xi^a$  是广义黎曼空间  $(M,g_{ab})$  的 Killing 矢量场, $R_{abc}{}^d$  是  $g_{ab}$  的黎曼曲率张量。
  - (a) 试证  $\nabla_a \nabla_b \xi_c = -R_{bca}{}^d \xi_d$ 。注:此式对证明定理 4-3-4 有重要用处。提示:由  $R_{abc}{}^d$  的 定义以及 Killing 方程 (4-3-1) 可知  $\nabla_a \nabla_b \xi_c + \nabla_b \nabla_c \xi_a = R_{abc}{}^d \xi_d$ 。此式称为第一式。作 指标替换  $a \mapsto b$ , $b \mapsto c$ , $c \mapsto a$  得第二式,再替换一次得第三式。以第一、第二式之和 减第三式并利用 (3-4-7) 便得证。
  - (b) 利用 (a) 的结果证明  $\nabla^a \nabla_a \xi_c = -R_{cd} \xi^d$ , 其中  $R_{cd}$  是里奇张量。

证明 (a) 由黎曼张量的定义,

$$(\nabla_a \nabla_b - \nabla_b \nabla_a) \, \xi_c = R_{abc}{}^d \xi_d$$

由 Killing 方程,  $\nabla_a \xi_c = -\nabla_c \xi_a$ , 于是得

$$\nabla_a \nabla_b \xi_c + \nabla_b \nabla_c \xi_a = R_{abc}{}^d \xi_d \tag{4.1}$$

对指标 a,b,c 轮换, 得

$$\nabla_b \nabla_c \xi_a + \nabla_c \nabla_a \xi_b = R_{bca}{}^d \xi_d \tag{4.2}$$

$$\nabla_c \nabla_a \xi_b + \nabla_a \nabla_b \xi_c = R_{cab}^{\ \ d} \xi_d \tag{4.3}$$

$$(4.1) + (4.2) - (4.3) \ \mbox{得}$$
 
$$2\nabla_b \nabla_c \xi_a = \left( R_{abc}{}^d + R_{bca}{}^d - R_{cab}{}^d \right) \xi_d = -2R_{cab}{}^d \xi_d$$
 于是  $\nabla_a \nabla_b \xi_c = -R_{bca}{}^d \xi_d$ 。
(b) 由 (a), 
$$\nabla^a \nabla_a \xi_c = g^{ab} \nabla_b \nabla_a \xi_c = -g^{ab} R_{acb}{}^d \xi_d = -R_{cd} \xi^d.$$

**15.** 验证式 (4-3-3) 中的  $(\partial/\partial\eta)^a$  的确满足 Killing 方程 (4-3-1)。

证明 由 
$$\left(\frac{\partial}{\partial\eta}\right)^a = x \left(\frac{\partial}{\partial t}\right)^a + t \left(\frac{\partial}{\partial x}\right)^a$$
 升指标得 
$$\left(\frac{\partial}{\partial\eta}\right)_a = g_{ab} \left(\frac{\partial}{\partial\eta}\right)^b = -x \left(\mathrm{d}t\right)_a + t \left(\mathrm{d}x\right)_a,$$

于是

$$\partial_a \left( \frac{\partial}{\partial \eta} \right)_b = - \left( \mathrm{d} x \right)_a \left( \mathrm{d} t \right)_b + \left( \mathrm{d} t \right)_a \left( \mathrm{d} x \right)_b = \left( \mathrm{d} t \right)_{[a} \left( \mathrm{d} x \right)_{b]},$$

这是一个反称张量,故满足  $\nabla_{(a}(\partial/\partial\eta)_{b)}=0$ 。

**16.** 找出 2 维欧氏空间中由  $R^a = x (\partial/\partial y)^a - y (\partial/\partial x)^a$  生出的单参等度规群的任一元素  $\phi_\alpha$  诱导的坐标变换。

证明 积分曲线的参数式满足微分方程

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = R^x = -y, \\ \frac{\mathrm{d}y}{\mathrm{d}t} = R^y = x, \end{cases}$$

并有边界条件

$$\begin{cases} x(0) = x_p, \\ y(0) = y_p, \end{cases}$$

解得过 p 点的积分曲线的参数式为

$$\begin{cases} x(t) = x_p \cos t - y_p \sin t, \\ y(t) = x_p \sin t + y_p \cos t, \end{cases}$$

于是  $\phi_{\alpha}$  诱导的坐标变换为

$$\begin{cases} x' = x \cos \alpha - y \sin \alpha, \\ y' = x \sin \alpha + y \cos \alpha. \end{cases}$$

- **17.** 设时空  $(M, g_{ab})$  中的超曲面  $\phi[S]$  上每点都有类光切矢而无类时切矢("切矢"指切于  $\phi[S]$ ),试证它必为类光超曲面。提示:① 证明与类时矢量  $t^a$  正交的矢量必类空 [选正交归一基底  $\{(e_\mu)^a\}$  使  $(e_0)^a=t^a]$ ;② 证明类时超曲面上每点都有类时切矢;③ 由以上两点证明本命 题。
  - 证明 ① 设  $t^a$  为类时矢量,选一组正交归一基  $\{(e_\mu)^a\}$  使得  $(e_0)^a=t^a$ ,则  $g_{ab}$  在这组基下被对角化且  $g_{00}=g_{ab}(e_0)^a(e_0)^b<0$ ,由惯性定理知  $g_{11},g_{22},g_{33}>0$ 。设  $v^a$  与  $t^a$  正交,则

$$g_{ab}t^av^b = g_{00}v^0$$
$$= 0,$$

于是

$$g_{ab}v^{a}v^{b} = \sum_{i=1}^{3} g_{ii} (v^{i})^{2} > 0$$

- ② 根据定义,类时超曲面的每一点的法矢类空。在超曲面任意一点 p 的切空间  $W_p$  取一组正交基,则连同法矢一起得到 M 上 p 点切空间  $V_p$  的一组正交基,其中类 空法矢不属于  $W_p$ ,根据惯性定理这组基中有一个类时矢量,且它属于  $W_p$ 。
- ③ 若  $\phi[S]$  为类空超曲面,则其切矢与类时法矢正交,由 ① 知所有切矢类空,矛盾;若  $\phi[S]$  为类时超曲面,由 ② 知每一点都有类时切矢,矛盾。故  $\phi[S]$  为类光超曲面。

## 第五章 微分形式及其积分

### 习题

1. 在定理 5-1-3 中补证  $\{(e^1)_a \wedge (e^2)_b, (e^2)_a \wedge (e^3)_b, (e^3)_a \wedge (e^1)_b\}$  线性独立。 证明 设  $\alpha(e^1)_a \wedge (e^2)_b + \beta(e^2)_a \wedge (e^3)_b + \gamma(e^3)_a \wedge (e^1)_b = 0$ ,将  $\wedge$  展开,有  $\alpha(e^1)_a \wedge (e^2)_b + \beta(e^2)_a \wedge (e^3)_b + \gamma(e^3)_a \wedge (e^1)_b$   $= \alpha((e^1)_a (e^2)_b - (e^2)_a (e^1)_b) + \beta((e^2)_a (e^3)_b - (e^3)_a (e^2)_b)$   $+ \gamma((e^3)_a (e^1)_b - (e^1)_a (e^3)_b)$  = 0,

而  $\{(e^i)_a(e^j)_b\}$  是  $\mathscr{F}(0,2)$  的一组基, 故必有  $\alpha=\beta=\gamma=0$ 。

2. 设 V 为矢量空间, $\{(e^1)_a,(e^2)_a,(e^3)_a,(e^4)_a\}$  是  $V^*$  的基底,写出  $\omega_a \in \Lambda(1)$ , $\omega_{abc} \in \Lambda(3)$  和  $\omega_{abcd} \in \Lambda(4)$  在此基底的展开式,说明展开系数(如  $\omega_{12}$ )的定义。

$$\mathbf{ \textit{ \mathbf{ \textit{ \mu}}}} \quad 1. \ \, \omega_{a} = \omega_{1} \, \left(e^{1}\right)_{a} + \omega_{2} \, \left(e^{2}\right)_{a} + \omega_{3} \, \left(e^{3}\right)_{a} + \omega_{4} \, \left(e^{4}\right)_{a} \text{, } \ \, 其中 \, \, \omega_{\mu} = \omega_{a} \, \left(e_{\mu}\right)^{a} \text{.}$$

2. 
$$\omega_{abc} = \omega_{123} \ (e^1)_a \wedge (e^2)_b \wedge (e^3)_c + \omega_{124} \ (e^1)_a \wedge (e^2)_b \wedge (e^4)_c + \omega_{134} \ (e^1)_a \wedge (e^3)_b \wedge (e^4)_c + \omega_{234} \ (e^2)_a \wedge (e^3)_b \wedge (e^4)_c$$
, 其中  $\omega_{\mu\nu\sigma} = \omega_{abc} \ (e_\mu)^a \ (e_\nu)^b \ (e_\sigma)_c$ 。

3. 
$$\omega_{abcd} = \omega_{1234} \, (e^1)_a \wedge (e^2)_b \wedge (e^3)_c \wedge (e^4)_d$$
, 其中  $\omega_{1234} = \omega_{abcd} \, (e_1)^a \, (e_2)^b \, (e_3)^c \, (e_4)^d$ 。

**3.** 用数学归纳法证明  $(\omega^1)_{a_1} \wedge \cdots \wedge (\omega^l)_{a_l} = l! (\omega^1)_{[a_1} \cdots (\omega^l)_{a_l]}$ , 其中  $(\omega^1)_{a_1}, \cdots, (\omega^l)_{a_l}$  是任意对偶矢量。

证明 1. l=1 时 trivial; l=2 时, 按照定义,

综上所述,
$$\forall l \in \mathbb{N}^+$$
, $(\omega^1)_{a_1} \wedge \cdots \wedge (\omega^l)_{a_l} = l! (\omega^1)_{[a_1} \cdots (\omega^l)_{a_l]}$ 。

4. 试证定理 5-1-4。

证明 定理 5-1-4 为

Thm 读 
$$\omega_{a_1 \cdots a_l} = \sum_C \omega_{\mu_1 \cdots \mu_l} (\mathrm{d} x^{\mu_1})_{a_1} \wedge \cdots \wedge (\mathrm{d} x^{\mu_l})_{a_l}$$
,则 
$$(\mathrm{d} \omega)_{ba_1 \cdots a_l} = \sum_C \left(\mathrm{d} \omega_{\mu_1 \cdots \mu_l}\right)_b \wedge (\mathrm{d} x^{\mu_1})_{a_1} \wedge \cdots \wedge (\mathrm{d} x^{\mu_l})_{a_l}.$$

 $\mathbf{Prf}$  按照定义,将导数算符选为  $\partial_a$ ,有

$$\begin{aligned} (\mathrm{d}\omega)_{ba_{1}\cdots a_{l}} &= (l+1)\,\partial_{[b}\omega_{a_{1}\cdots a_{l}]} \\ &= (l+1)\sum_{C}\partial_{[b}\left(\omega_{\mu_{1}\cdots \mu_{l}}l!\,(\mathrm{d}x^{\mu_{1}})_{[a_{1}}\cdots(\mathrm{d}x^{\mu_{l}})_{a_{l}]]}\right) \\ &= (l+1)!\sum_{C}\left(\partial_{[b}\omega_{\mu_{1}\cdots \mu_{l}}\right)\left(\mathrm{d}x^{\mu_{1}}\right)_{a_{1}}\cdots\left(\mathrm{d}x^{\mu_{l}}\right)_{a_{l}]} \\ &= (l+1)!\sum_{C}\left(\mathrm{d}\omega_{\mu_{1}\cdots \mu_{l}}\right)_{[b}\left(\mathrm{d}x^{\mu_{1}}\right)_{a_{1}}\cdots\left(\mathrm{d}x^{\mu_{l}}\right)_{a_{l}]} \\ &= \sum_{C}\left(\mathrm{d}\omega_{\mu_{1}\cdots \mu_{l}}\right)_{b}\wedge\left(\mathrm{d}x^{\mu_{1}}\right)_{a_{1}}\wedge\cdots\wedge\left(\mathrm{d}x^{\mu_{l}}\right)_{a_{l}}. \end{aligned}$$

5. 设  $\omega$  是 1 形式场,u,v 是矢量场,试证 d $\omega$  (u,v) = u  $(\omega(v)) - v$   $(\omega(u)) - \omega$  ([u,v])。等式 左边代表 d $\omega$  对 u,v 的作用结果,即  $(\mathrm{d}\omega)_{ab}$   $u^av^b$ 。

证明

$$\begin{split} \mathrm{d}\boldsymbol{\omega}\left(u,v\right) &= u^{a}v^{b}\left(\nabla_{a}\omega_{b} - \nabla_{b}\omega_{a}\right) \\ &= u^{a}\nabla_{a}\left(v^{b}\omega_{b}\right) - u^{a}\omega_{b}\nabla_{a}v^{b} - v^{b}\nabla_{a}\left(u^{a}\omega_{a}\right) + v^{b}\omega_{a}\nabla_{b}u^{a} \\ &= u\left(\boldsymbol{\omega}(v)\right) - v\left(\boldsymbol{\omega}(u)\right) - \boldsymbol{\omega}\left(\left[u,v\right]\right). \end{split}$$

- **6.** 设  $v^b$  和  $\omega_{a_1...a_l}$  分别是流形 M 上的矢量场和 l 形式场, 试证
  - (a)  $\mathcal{L}_v \omega_{a_1 \cdots a_l} = d_{a_1} \left( v^b \omega_{ba_2 \cdots a_l} \right) + (d\omega)_{ba_1 \cdots a_l} v^b$ . 注: 令  $\mu_{a_2 \cdots a_l} \equiv v^b \omega_{ba_2 \cdots a_l}$ , 则  $d_{a_1} \mu_{a_2 \cdots a_l}$  是指  $(d\mu)_{a_1 a_2 \cdots a_l}$ 。
  - (b)  $\mathcal{L}_{n} d\omega = d\mathcal{L}_{n} \omega$  (这本身就是一个很有用的命题)。

提示:

- (1) 证 (a) 时可先证 l=2 时的特例,找到感觉后不难推广至一般情况。
- (2) 利用 (a) 的结果将使 (b) 的证明变得十分简单。

证明 (a) 对于 l=2 的情况,由式 (4-2-8),左边等于

$$\mathcal{L}_v\omega_{a_1a_2}=v^b\nabla_b\omega_{a_1a_2}+\omega_{a_1b}\nabla_{a_2}v^b+\omega_{ba_2}\nabla_{a_1}v^b$$

而右边第一项展开为

$$\begin{split} \mathbf{d}_{a_{1}}\left(v^{b}\omega_{ba_{2}}\right) &= 2\nabla_{\left[a_{1}\right.}\left(v^{b}\omega_{|b|a_{2}\right.}\right) \\ &= \nabla_{a_{1}}\left(v^{b}\omega_{ba_{2}}\right) - \nabla_{a_{2}}\left(v^{b}\omega_{ba_{1}}\right) \\ &= v^{b}\nabla_{a_{1}}\omega_{ba_{2}} + \omega_{ba_{2}}\nabla_{a_{1}}v^{b} - v^{b}\nabla_{a_{2}}\omega_{ba_{1}} - \omega_{ba_{1}}\nabla_{a_{2}}v^{b}, \end{split}$$

右边第二项为

$$\begin{split} (\mathrm{d}\omega)_{ba_{1}a_{2}}\,v^{b} &= 3v^{b}\nabla_{[b}\omega_{a_{1}a_{2}]} \\ &= \frac{1}{2}v^{b}\left(\nabla_{b}\omega_{a_{1}a_{2}} + \nabla_{a_{1}}\omega_{a_{2}b} + \nabla_{a_{2}}\omega_{ba_{1}} - \nabla_{b}\omega_{a_{2}a_{1}} - \nabla_{a_{1}}\omega_{ba_{2}} - \nabla_{a_{2}}\omega_{a_{1}b}\right) \\ &= v^{b}\left(\nabla_{b}\omega_{a_{1}a_{2}} + \nabla_{a_{1}}\omega_{a_{2}b} + \nabla_{a_{2}}\omega_{ba_{1}}\right) \end{split}$$

可以看到,红色项和蓝色项分别消去,余下的项与左边相等。 对于一般情况,左边为

$$\mathcal{L}_v \omega_{a_1 \cdots a_l} = v^b \nabla_b \omega_{a_1 \cdots a_l} + \sum_i \omega_{a_1 \cdots b \cdots a_l} \nabla_{a_i} v^b$$

右边第一项为

$$\begin{aligned} \mathbf{d}_{a_1} \left( v^b \omega_{ba_2 \cdots a_l} \right) &= l \nabla_{[a_1} \left( v^b \omega_{|b|a_2 \cdots a_l} \right) \\ &= \frac{1}{(l-1)!} \sum_{\pi} \delta_{\pi} \nabla_{a_{\pi_1}} \left( v^b \omega_{ba_{\pi_2} \cdots a_{\pi_l}} \right) \\ &= \frac{1}{(l-1)!} \sum_{i} \sum_{\sigma} (-1)^{i-1} \delta_{\sigma} \nabla_{a_i} \left( v^b \omega_{ba_{\sigma_1} \cdots a_{\sigma_l}} \right) \\ &= \sum_{i} (-1)^{i-1} \nabla_{a_i} \left( v^b \omega_{b[a_1 \cdots a_{i-1} a_{i+1} \cdots a_l]} \right) \\ &= \sum_{i} (-1)^{i-1} \nabla_{a_i} \left( v^b \omega_{[ba_1 \cdots a_{i-1} a_{i+1} \cdots a_l]} \right) \\ &= \sum_{i} \nabla_{a_i} \left( v^b \omega_{[a_1 \cdots a_{i-1} ba_{i+1} \cdots a_l]} \right) \\ &= \sum_{i} \nabla_{a_i} \left( v^b \omega_{a_1 \cdots b \cdots a_l} \right) \\ &= v^b \sum_{i} \nabla_{a_i} \omega_{a_1 \cdots b \cdots a_l} + \omega_{a_1 \cdots b \cdots a_l} \sum_{i} \nabla_{a_i} v^b \end{aligned}$$

其中 $\pi$ 是 $1,2,\cdots,l$ 的排列, $\sigma$ 是 $1,\cdots i-1,i+1,\cdots,l$ 的排列。而右边第二项为

$$(\mathrm{d}\omega)_{ba_1\cdots a_l} v^b = (l+1)v^b \nabla_{[b}\omega_{a_1\cdots a_l]}$$
$$= \frac{1}{l!}v^b \sum_{\pi} \delta_{\pi} \nabla_{\pi_1}\omega_{\pi_2\cdots \pi_{l+1}}$$

$$\begin{split} &= \frac{1}{l!} v^b \sum_{\sigma} \delta_{\sigma} \nabla_b \omega_{a_{\sigma_1} \cdots a_{\sigma_l}} + \frac{1}{l!} v^b \sum_i \sum_{\rho} -\delta_{\rho} \nabla_{a_i} \omega_{a_{\rho_1} \cdots b \cdots a_{\rho_{l-1}}} \\ &= v^b \nabla_b \omega_{[a_1 \cdots a_l]} - v^b \sum_i \nabla_{a_i} \omega_{[a_1 \cdots b \cdots a_l]} \\ &= v^b \nabla_b \omega_{a_1 \cdots a_l} - v^b \sum_i \nabla_{a_i} \omega_{a_1 \cdots b \cdots a_l} \end{split}$$

其中 $\pi$ 是b, $a_1$ ,··· $a_l$ </sub>的任意排序, $\sigma$ 是1,2,···,l 的排序, $\rho$ 是1,···,i-1,i+1,···,l 的排序。可以看到,蓝色的项相消,余下的和左边相等,证毕。

(b) 由 (a),

$$\mathcal{L}_{v} (d\omega)_{a_{1} \cdots a_{l+1}} = d_{a_{1}} \left( v^{b} (d\omega)_{ba_{2} \cdots a_{l+1}} \right) + (d(d\omega))_{ba_{1} \cdots a_{l+1}} v^{b}$$

$$= d_{a_{1}} \left( v^{b} (d\omega)_{ba_{2} \cdots a_{l+1}} \right),$$

$$d(\mathcal{L}_{v}\omega)_{a_{1} \cdots a_{l+1}} = d_{a_{1}} \left( d_{a_{2}} v^{b} \omega_{ba_{3} \cdots a_{l+1}} + (d\omega)_{ba_{2} \cdots a_{l+1}} v^{b} \right)$$

$$= d_{a_{1}} \left( (d\omega)_{ba_{2} \cdots a_{l+1}} v^{b} \right),$$

故

$$\mathcal{L}_v(\mathrm{d}\boldsymbol{\omega}) = \mathrm{d}(\mathcal{L}_v\boldsymbol{\omega}).$$

7. 设 O 是 n 维流形 M 上的坐标系  $\{x^{\mu}\}$  的坐标域(且 O 同胚于  $\mathbb{R}^n$ ), $\omega_a$  是 O 上的 1 形式 场,试证

$$\partial \omega_\mu/\partial x^\nu = \partial \omega_\nu/\partial x^\mu \ (\mu,\nu=1,\cdots n)$$
 当且仅当存在 $f\colon O \to \mathbb{R}$ 使 $\nabla_a f = \omega_a.$ 

提示: 仿照 §5.1 推论 5-1-6 的证明。

证明 设  $\omega_a = \omega_\mu \left( \mathrm{d} x^\mu \right)_a$ ,则

$$\begin{split} (\mathrm{d}\omega)_{ab} &= \left(\mathrm{d}\omega_{\mu}\right)_{a} \wedge (\mathrm{d}x^{\mu})_{b} \\ &= \frac{\partial \omega_{\mu}}{\partial x^{\nu}} \left(\mathrm{d}x^{\nu}\right)_{a} \wedge (\mathrm{d}x^{\mu})_{b} \\ &= \left(\frac{\partial \omega_{\mu}}{\partial x^{\nu}} - \frac{\partial \omega_{\nu}}{\partial x^{\mu}}\right) \left(\mathrm{d}x^{\nu}\right)_{a} \left(\mathrm{d}x^{\mu}\right)_{b}. \end{split}$$

1. 若  $\exists f$  s.t.  $\omega_a = \nabla_a f = (\mathrm{d} f)_a$ , 则  $\mathrm{d} \pmb{\omega} = \mathrm{d} (\mathrm{d} f) = 0$ , 于是知

$$\frac{\partial \omega_{\mu}}{\partial x^{\nu}} - \frac{\partial \omega_{\nu}}{\partial x^{\mu}} = 0.$$

2. 若  $\frac{\partial \omega_{\mu}}{\partial x^{\nu}} - \frac{\partial \omega_{\nu}}{\partial x^{\mu}} = 0$ , 则  $\mathrm{d}\boldsymbol{\omega} = 0$ ,  $\boldsymbol{\omega}$  是闭的,而 O 同胚于  $\mathbb{R}^{n}$ ,由于上同调群是拓扑不变量,故  $H^{1}(O) = 0$ ,O 上的闭形式必恰当,故  $\exists f \colon O \to \mathbb{R}^{n}$  s.t.  $\boldsymbol{\omega} = \mathrm{d}f$ .

8. 设  $\{x, y, z\}$  和  $\{r, \theta, \phi\}$  分别为 3 维欧氏空间的笛卡尔坐标系和球坐标系,写出  $\mathrm{d}r \wedge \mathrm{d}\theta \wedge \mathrm{d}\phi$  用  $\mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z$  的表达式。

解 球坐标与笛卡尔系的变换关系为:

$$\begin{cases} x = r \sin \theta \cos \phi, \\ y = r \sin \theta \sin \phi, \\ z = r \cos \theta. \end{cases}$$

则

$$dx = \frac{\partial x}{\partial r} dr + \frac{\partial x}{\partial \theta} d\theta + \frac{\partial x}{\partial \phi} d\phi$$

$$= \sin \theta \cos \phi dr + r \cos \theta \cos \phi d\theta - r \sin \theta \sin \phi d\phi$$

$$dy = \frac{\partial y}{\partial r} dr + \frac{\partial y}{\partial \theta} d\theta + \frac{\partial y}{\partial \phi} d\phi$$

$$= \sin \theta \sin \phi dr + r \cos \theta \sin \phi d\theta + r \sin \theta \cos \phi d\phi$$

$$dz = \frac{\partial z}{\partial r} dr + \frac{\partial z}{\partial \theta} d\theta + \frac{\partial z}{\partial \phi} d\phi$$

$$= \cos \theta dr - r \sin \theta d\theta.$$

故

$$dx \wedge dy \wedge dz = \left(\frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta} \frac{\partial z}{\partial \phi} + \frac{\partial y}{\partial r} \frac{\partial z}{\partial \theta} \frac{\partial x}{\partial \phi} + \frac{\partial z}{\partial r} \frac{\partial x}{\partial \theta} \frac{\partial y}{\partial \phi} - \frac{\partial x}{\partial r} \frac{\partial z}{\partial \theta} \frac{\partial y}{\partial \phi} - \frac{\partial z}{\partial r} \frac{\partial z}{\partial \theta} \frac{\partial y}{\partial \phi} - \frac{\partial z}{\partial r} \frac{\partial z}{\partial \theta} \frac{\partial z}{\partial \phi} \right) dr \wedge d\theta \wedge d\phi$$

$$= \left(0 + r^2 \sin^3 \theta \sin^2 \phi + r^2 \cos^2 \theta \sin \theta \cos^2 \phi + r^2 \sin^3 \theta \cos^2 \phi + r^2 \cos^2 \theta \sin \theta \sin^2 \phi + 0\right) dr \wedge d\theta \wedge d\phi$$

$$= r^2 \sin \theta dr \wedge d\theta \wedge d\phi,$$

故

$$dr \wedge d\theta \wedge d\phi = \frac{1}{r^2 \sin \theta} dx \wedge dy \wedge dz$$
$$= \frac{1}{\sqrt{(x^2 + y^2 + z^2)(x^2 + y^2)}} dx \wedge dy \wedge dz.$$

9. 连通流形 M 配以洛伦兹号差的度规场  $g_{ab}$  叫**时空**(spacetime)。设  $F_{ab}$  是任意 4 维时空的 2 形式场(第 6 章将看到电磁场张量  $F_{ab}$  就是一个 2 形式场),试证

$$\frac{1}{2} \left( F_{ac} \, F_{b}{}^{c} + {}^{*}F_{ac} \, {}^{*}F_{b}{}^{c} \right) = F_{ac} \, F_{b}{}^{c} - \frac{1}{4} g_{ab} F_{cd} \, F^{cd},$$

其中  ${}^*F_{ac} \equiv ({}^*F)_{ac}$ ,  ${}^*F_b{}^c = g^{ac}{}^*F_{ba}$  (此式对研究电磁场很有帮助)。

证明 按照定义,

$$^*F_{ab} = \frac{1}{2} F^{cd} \varepsilon_{cdab}$$

故

$$\begin{split} {}^*F_{ac}\,{}^*F_b{}^c &= g^{cd}{}^*F_{ac}\,{}^*F_{bd} \\ &= \frac{1}{4}g^{cd}F^{ef}\varepsilon_{efac}F^{gh}\varepsilon_{ghbd} \\ &= \frac{1}{4}F^{ef}F^{gh}\varepsilon_{efac}\varepsilon_{ghb}{}^c \\ &= \frac{1}{4}g_{bd}F^{ef}F_{gh}\,\varepsilon^{cghd}\varepsilon_{cefa} \\ &= \frac{1}{4}g_{bd}F^{ef}F_{gh}\,(-6)\delta^{[g}_{e}\delta^{h}_{f}\delta^{d]}_{a} \\ &= -\frac{1}{4}g_{bd}F^{ef}F_{gh}\,\left(\delta^{g}_{e}\delta^{h}_{f}\delta^{d}_{a} + \delta^{d}_{e}\delta^{g}_{f}\delta^{h}_{a} + \delta^{h}_{e}\delta^{d}_{f}\delta^{g}_{a} \right) \\ &= -\delta^{g}_{e}\delta^{d}_{f}\delta^{h}_{a} - \delta^{h}_{e}\delta^{g}_{f}\delta^{d}_{a} - \delta^{d}_{e}\delta^{h}_{f}\delta^{g}_{a} \right) \\ &= \frac{1}{4}\left(-g_{ab}F^{ef}F_{ef} - F_{b}{}^{f}F_{fa} - F^{e}_{b}F_{ae} + F^{e}_{b}F_{ea} + g_{ba}F^{ef}F_{fe} + F_{b}{}^{f}F_{af} \right) \\ &= \frac{1}{4}\left(-2g_{ab}F^{cd}F_{cd} + 4F_{ac}F_{b}{}^{c}\right), \end{split}$$

于是

$$\begin{split} \frac{1}{2} \left( F_{ac} F_b{}^c + {}^*F_{ac} {}^*F_b{}^c \right) &= \frac{1}{2} \left( F_{ac} F_b{}^c - \frac{1}{2} g_{ab} F^{cd} F_{cd} + F_{ac} F_b{}^c \right) \\ &= F_{ac} F^{ac} - \frac{1}{4} g_{ab} F_{cd} F^{cd}. \end{split}$$

10. 试证  $\hat{\varepsilon}_{a_1\cdots a_{n-1}}\equiv \pm n^b \varepsilon_{ba_1\cdots a_{n-1}}$  是  $\partial N$  上与诱导度规场  $h_{ab}$  相适配的体元。

证明 需要证明的是

$$\hat{\varepsilon}^{a_1\cdots a_{n-1}}\hat{\varepsilon}_{a_1\cdots a_{n-1}} = (-1)^{\hat{s}} (n-1)!$$

根据定义展开:

$$\begin{split} \hat{\varepsilon}^{a_1 \cdots a_{n-1}} \hat{\varepsilon}_{a_1 \cdots a_{n-1}} &= h^{a_1 b_1} \cdots h^{a_{n-1} b_{n-1}} \hat{\varepsilon}_{b_1 \cdots b_{n-1}} \hat{\varepsilon}_{a_1 \cdots a_{n-1}} \\ &= h^{a_1 b_1} \cdots h^{a_{n-1} b_{n-1}} n^c \varepsilon_{c b_1 \cdots b_{n-1}} n^d \varepsilon_{d a_1 \cdots a_{n-1}} \end{split}$$

这里要明确一下  $h^{ab}$  的含义。本来  $h_{ab}\in \mathscr{F}_{\partial N}(0,2)$  作为诱导度规,是  $\partial N$  上的张量场,在每点的值是一个  $W_q$  到  $W_q^*$  的映射,而  $h^{ab}$  在每一点的值自然是其逆映射。然而,在上述计算中,第二行中把  $\hat{e}$  展开实际上是作为 N 上的 n-1 形式看待,它在 p 点的值是  $V_p$  上的张量,而两个不同矢量空间上的张量显然没有缩并这种操作,所以这里的  $h_{ab}$  是选读 4-4-3 中的  $\bar{h}_{ab}=g_{ab}\mp n_an_b\in \mathscr{F}_N0,2$ ,它作用在  $W_p$  中的元素的结

果与  $h_{ab}$  相同,而作用在补空间  $V_p-W_p$  中的元素结果为零,所以当我们把  $W_p$  视为  $V_p$  的子空间时,就用  $\bar{h}_{ab}$  来代替  $h_{ab}$  来计算。而  $h^{ab}$  就解释为  $g^{ac}g^{bd}\bar{h}_{cd}=g^{ab}\mp n^an^b$ ,事实上,这样理解的  $h^{ab}\colon \mathscr{F}_N(1,0)\to \mathscr{F}_N(0,1)$  和  $\bar{h}_{ab}\colon \mathscr{F}_N(1,0)\to \mathscr{F}_N(0,1)$  的复合为

$$\begin{split} \bar{\delta}^a{}_b &= \left(g^{ac} \mp n^a n^c\right) \left(g_{cb} \mp n_c n_b\right) \\ &= \delta^a{}_b \mp n^a n_b \mp n^a n_b \pm n^a n_b \\ &= \delta^a{}_b \mp n^a n_b, \end{split}$$

可以验证上面这个张量  $\bar{\delta}^a_b\colon \mathscr{S}_N(1,0)\to \mathscr{S}_N(0,1)$  在  $\mathscr{S}_{\partial N}(1,0)$  上的限制 (restriction) 就是  $\mathscr{S}_{\partial N}(1,0)$  上的恒等映射,而在  $\mathscr{S}_N(1,0)-\mathscr{S}_{\partial N}(1,0)$  上的限制为零,故用  $g^{ac}g^{bd}\bar{h}_{bd}$  代替  $h^{ab}$  是没有问题的。

于是

$$\begin{split} \hat{\varepsilon}^{a_1\cdots a_{n-1}} \hat{\varepsilon}_{a_1\cdots a_{n-1}} &= h^{a_1b_1}\cdots h^{a_{n-1}b_{n-1}} n^c \varepsilon_{cb_1\cdots b_{n-1}} n^d \varepsilon_{da_1\cdots a_{n-1}} \\ &= g^{a_1c_1} g^{b_1d_1} \cdots g^{a_{n-1}c_{n-1}} g^{b_{n-1}d_{n-1}} \left( g_{c_1d_1} \mp n_{c_1} n_{d_1} \right) \cdots \\ \left( g_{c_{n-1}d_{n-1}} \mp n_{c_{n-1}} n_{d_{n-1}} \right) n^c \varepsilon_{cb_1\cdots b_{n-1}} n^d \varepsilon_{da_1\cdots a_{n-1}}, \end{split}$$

将中间  $\left(g_{c_1d_1}\mp n_{c_1}n_{d_1}\right)\cdots\left(g_{c_{n-1}d_{n-1}}\mp n_{c_{n-1}}n_{d_{n-1}}\right)$  展开,可以证明含  $n_{c_i}n_{d_i}$  的项全为零,因为

$$\begin{split} \cdots g^{a_ic_i}g^{b_id_i}\cdots n_{c_i}n_{d_i}\cdots n^c\varepsilon_{c\cdots b_i\cdots}n^d\varepsilon_{d\cdots a_i\cdots} &= \cdots n^{a_i}n^d\varepsilon_{d\cdots a_i\cdots}n^{b_i}n^c\varepsilon_{c\cdots b_i\cdots} \\ &= \cdots n^{(a_i}n^d)\varepsilon_{d\cdots a_i\cdots}n^{(b_i}n^c)\varepsilon_{c\cdots b_i\cdots} \\ &= 0, \end{split}$$

则

$$\begin{split} \hat{\varepsilon}^{a_{1}\cdots a_{n-1}} \hat{\varepsilon}_{a_{1}\cdots a_{n-1}} \\ &= g^{a_{1}c_{1}} g^{b_{1}d_{1}} \cdots g^{a_{n-1}c_{n-1}} g^{b_{n-1}d_{n-1}} g_{c_{1}d_{1}} \cdots g_{c_{n-1}d_{n-1}} n^{c} \varepsilon_{cb_{1}\cdots b_{n-1}} n^{d} \varepsilon_{da_{1}\cdots a_{n-1}} \\ &= g^{a_{1}b_{1}} \cdots g^{a_{n-1}b_{n-1}} n^{c} \varepsilon_{cb_{1}\cdots b_{n-1}} n^{d} \varepsilon_{da_{1}\cdots a_{n-1}} \\ &= n_{c} n^{d} \varepsilon^{ca_{1}\cdots a_{n-1}} \varepsilon_{da_{1}\cdots a_{n-1}} \\ &= n_{c} n^{d} \left(-1\right)^{s} (n-1)! \delta^{c}_{d} \\ &= (-1)^{s} (n-1)! n_{c} n^{c}, \end{split}$$

在  $V_p$  中取正交归一基底  $\left\{e_{\mu}{}^{a}\right\}$  ,使得  $e_{0}{}^{a}=n^{a}$  , 易知

$$\hat{s} = \begin{cases} s, & \text{if} \quad n^a n_a = 1; \\ s-1, & \text{if} \quad n^a n_a = -1. \end{cases}$$

于是  $(-1)^s n^c n_c = (-1)^{\hat{s}}$ , 证毕。

11. 试证定理 5-6-1 和 5-6-2。

证明 1. 定理 5-6-1 如下

Thm \*\*
$$\boldsymbol{\omega} = (-1)^{s+l(n-l)} \boldsymbol{\omega}$$
.

Prf

$$\begin{split} ^{**}\omega_{a_{1}\cdots a_{l}} &= \frac{1}{(n-l)!}{}^{*}\omega_{b_{1}\cdots b_{n-l}}\varepsilon^{b_{1}\cdots b_{n-l}}{}_{a_{1}\cdots a_{l}} \\ &= \frac{1}{(n-l)!}\frac{1}{l!}\omega_{c_{1}\cdots c_{l}}\varepsilon^{c_{1}\cdots c_{l}}{}_{b_{1}\cdots b_{n-l}}\varepsilon^{b_{1}\cdots b_{n-l}}{}_{a_{1}\cdots a_{l}} \\ &= \frac{1}{(n-l)!}\frac{1}{l!}(-1)^{l(n-l)}\varepsilon^{b_{1}\cdots b_{n-l}c_{1}\cdots c_{l}}\varepsilon_{b_{1}\cdots b_{n-l}a_{1}\cdots a_{l}}\omega_{c_{1}\cdots c_{l}} \\ &= (-1)^{s+l(n-l)}\delta^{[c_{1}}{}_{a_{1}}\cdots\delta^{c_{l}]}{}_{a_{l}}\omega_{[c_{1}\cdots c_{l}]} \\ &= (-1)^{s+l(n-l)}\omega_{a_{1}\cdots a_{l}}. \end{split}$$

2. 定理 5-6-2 如下

Thm 设f和A是3维欧氏空间的函数和矢量场,则

$$\operatorname{grad} f = \operatorname{d} f$$
,  $\operatorname{curl} \mathbf{A} = \operatorname{d}^* \mathbf{A}$ ,  $\operatorname{div} \mathbf{A} = \operatorname{d}^* \mathbf{A}$ .

Prf

$$(\mathrm{d}f)^{a} = \frac{\partial f}{\partial x^{i}} (\mathrm{d}x^{i})^{a}$$

$$(*\mathrm{d}A)^{k} = \frac{1}{2} \varepsilon^{ijk} (\mathrm{d}A)_{ij}$$

$$= \varepsilon^{ijk} A_{[j,i]}$$

$$= \varepsilon^{ijk} A_{j,i}$$

$$^{*}\mathrm{d}(*\mathbf{A}) = \frac{1}{6} \varepsilon^{ijk} (\mathrm{d}(^{*}A))_{ijk}$$

$$= \frac{1}{2} \varepsilon^{ijk} (^{*}A)_{[jk,i]}$$

$$= \frac{1}{2} \varepsilon^{ijk} \partial_{i} (A^{l} \varepsilon_{ljk})$$

$$= \delta^{i}_{l} A^{l}_{,i}$$

$$= A^{i}_{,i}$$

- **12.** 设 x,y,z 是 3 维欧氏空间的笛卡尔坐标, 试证
  - (a)  $^* dx = dy \wedge dz$ ;
  - (b)  $*(dx \wedge dy \wedge dz) = 1$ .

证明 (a)

$$({}^*\mathrm{d} x)_{ab} = (\mathrm{d} x)^c (\mathrm{d} x)_c \wedge (\mathrm{d} y)_a \wedge (\mathrm{d} z)_b$$

$$= (\mathrm{d}x)^{c} ((\mathrm{d}x)_{c} (\mathrm{d}y)_{a} (\mathrm{d}z)_{b} - (\mathrm{d}x)_{c} (\mathrm{d}y)_{b} (\mathrm{d}z)_{a} + \cdots)$$

$$= (\mathrm{d}y)_{a} (\mathrm{d}z)_{b} - (\mathrm{d}y)_{b} (\mathrm{d}z)_{a}$$

$$= (\mathrm{d}y \wedge \mathrm{d}z)_{ab}.$$

(b)

$$^*(\mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z) = \frac{1}{6} (\mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z)^{abc} (\mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z)_{abc}$$
$$= 1.$$

**13.** 设  $\{r, \theta, \phi\}$  是 3 维欧氏空间的球坐标系,试证 \*dr =  $(r^2 \sin \theta) d\theta \wedge d\phi$ 。

证明 由第 2 章 19(a) 知

$$|g| = g_{rr}g_{\theta\theta}g_{\phi\phi} = r^4\sin^2\theta,$$

故体元在球坐标系下为

$$\varepsilon_{abc} = \sqrt{|g|} \left( \mathrm{d}r \right)_a \wedge (\mathrm{d}\theta)_b \wedge (\mathrm{d}\phi)_c = r^2 \sin\theta \left( \mathrm{d}r \right)_a \wedge (\mathrm{d}\theta)_b \wedge (\mathrm{d}\phi)_c$$

则

$$(*dr)_{ab} = (dr)^{c} \varepsilon_{cab}$$

$$= r^{2} \sin \theta (dr)^{c} ((dr)_{c} (d\theta)_{a} (d\phi)_{b} - (dr)_{c} (d\theta)_{b} (d\phi)_{a} + \cdots)$$

$$= r^{2} \sin \theta g_{rr} (d\theta \wedge d\phi)_{ab}$$

$$= r^{2} \sin \theta (d\theta \wedge d\phi)_{ab}.$$

**14.** 设  $\mathbf{A}, \mathbf{B}$  为  $\mathbb{R}^3$  上的矢量场, $\nabla$  为  $\mathbb{R}^3$  上与欧氏度规相适配的导数算符,试证

$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} + (\nabla \cdot \mathbf{B}) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} - (\nabla \cdot \mathbf{A}) \mathbf{B}.$$

证明

$$\begin{split} \varepsilon^{abc}\partial_a \left(\varepsilon_{deb}A^dB^e\right) &= -\varepsilon^{bac}\varepsilon_{bde}\partial_a \left(A^dB^e\right) \\ &= 2\delta^{[a}_{\phantom{[a}d}\delta^{c]}_{\phantom{c}e} \left(A^d\partial_a B^e + B^e\partial_a A^d\right) \\ &= A^a\partial_a B^c - A^c\partial_a B^a + B^c\partial_a A^a - B^a\partial_a A^c. \end{split}$$

- 15. 用微分形式证明 3 维欧氏空间场论中并不易证的下列熟知命题:
  - (a) 无旋矢量场必可表为梯度;
  - (b) 无散矢量场必可表为旋度(见 §5.6 末)。
  - 证明 (a) 设  $\nabla \times \mathbf{A} = 0$  ,则 \*d $\mathbf{A} = 0$ ,于是  $\mathbf{A}$  为闭形式,而  $\mathbb{R}^3$  单连通,故闭 1 形式必恰当,于是存在 f 使得  $\mathbf{A} = \mathrm{d}f$  ,即  $\mathbf{A} = \nabla f$ 。

- (b) 设  $\nabla \cdot \mathbf{B} = 0$ , 则 \*d(\* $\mathbf{B}$ ) = 0, 于是 \* $\mathbf{B}$  是闭 2 形式,在  $\mathbb{R}^3$  中必恰当,于是存在 1 形式  $\mathbf{C}$  使得 \* $\mathbf{B} = \mathrm{d}\mathbf{C}$ , 即  $\mathbf{B} = \mathrm{*d}\mathbf{C}$ , B =  $\nabla \times \mathbf{C}$ 。
- **16.** 设  $\nabla_a$  是广义黎曼空间  $(M,g_{ab})$  上的适配导数算符(即  $\nabla_a g_{bc} = 0$ ), $\varepsilon$  是适配体元(即  $\nabla_a \varepsilon_{b_1 \cdots b_n} = 0$ ), $v^a$  是 M 上的矢量场, $v_a \equiv g_{ab} v^b$  是  $v^a$  相应的 1 形式场,\*v 是  $v_a$  的对偶 形式场,试证  $(\nabla_a v^a) \varepsilon = \mathrm{d}^* v$ 。注:这个结论可做如下推广:设  $F_{a_1 \cdots a_k}$  是 k 形式场  $(k \leq n)$ ,简记作 F,把 k-1 形式场  $\nabla^{a_k} F_{a_1 \cdots a_k}$  记作  $\mathrm{div} F$ ,则 \* $(\mathrm{div} F) = \mathrm{d}^* F$ 。电磁场的麦氏方程 [式 (12-6-2)] 就是一例。

证明 由第 6 题 (a) 知,

$$(\mathbf{d}^*v)_{a_1\cdots a_n} = \mathbf{d}_{a_1} \left( v^b \varepsilon_{ba_2\cdots a_n} \right)$$

$$= \mathcal{L}_v \varepsilon_{a_1\cdots a_n}$$

$$= \underbrace{v^b \nabla_b \varepsilon_{a_1\cdots a_n}}_{i} + \sum_{i} \varepsilon_{a_1\cdots b\cdots a_n} \nabla_{a_i} v^b$$

设 n 形式  $\mathbf{d}^* \mathbf{v} = h \boldsymbol{\varepsilon}$  ,则  $(\mathbf{d}^* v)_{a_1 \cdots a_n} \boldsymbol{\varepsilon}^{a_1 \cdots a_n} = (-1)^s n! h$ ,另一方面,

$$\begin{split} \varepsilon^{a_1\cdots a_n} \sum_i \varepsilon_{a_1\cdots b\cdots a_n} \nabla_{a_i} v^b &= \sum_i \varepsilon^{a_1\cdots a_n} \varepsilon_{a_1\cdots b\cdots a_n} \nabla_{a_i} v^b \\ &= \sum_i (-1)^s (n-1)! \delta^{a_i}{}_b \nabla_{a_i} v^b \\ &= (-1)^s n! \nabla_b v^b, \end{split}$$

于是 
$$h = \nabla_b v^b$$
 , 即  $\mathrm{d}^* oldsymbol{v} = \left(\nabla_b v^b\right) oldsymbol{arepsilon}$ 。

**17.** 试证由式 (5-7-2) 定义的  $\Gamma^{\sigma}_{\mu\tau}$  正是 §3.1 定义的克氏符  $\Gamma^{c}_{ab}$  在式 (5-7-2) 涉及的坐标基底的分量。

证明 这个……和 第三章第 4 题 重了吧……

**18.** 用正交归一标架分别求第 3 章习题 14 ~ 16 所给度规的曲率张量的全部标架分量,并验证所得结果与用坐标基底法求得的曲率张量相同。为与  $R_{abc}{}^d$  的坐标分量  $R_{\mu\nu\sigma}{}^{\rho}$  区别,在求得  $R_{abc}{}^d$  的全部标架分量后宜改用符号  $R_{(\mu)(\nu)(\sigma)}{}^{(\rho)}$  代表标架分量。

#### 解 1. 第三章第 14 题:

Prob 求度规  $ds^2 = \Omega^2(t,x) \left( -dt^2 + dx^2 \right)$  的黎曼张量在  $\{t,x\}$  系的全部分量(在结果中以  $\dot{\Omega}$  和  $\Omega'$  分别代表函数  $\Omega$  对 t 和 x 的偏导数)。

Solv 用式 (5-7-20) 计算。

(a) 选取标架: 由于是洛伦兹度规,设有正交归一基底  $\{(e_u)^a\}$ ,

$$\begin{split} g_{ab} &= -\Omega^2(t,x) \left( \mathrm{d}t \right)_a \left( \mathrm{d}t \right)_b + \Omega^2(t,x) \left( \mathrm{d}x \right)_a \left( \mathrm{d}x \right)_b \\ &= \eta_{\mu\nu} \left( e^\mu \right)_a \left( e^\nu \right)_b \end{split}$$

$$= - (e^{0})_{a} (e^{0})_{b} + (e^{1})_{a} (e^{1})_{b},$$

最简单的选择是

$$\left(e^{0}\right)_{a}=\Omega(t,x)\left(\mathrm{d}t\right)_{a},\quad \left(e^{1}\right)_{a}=\Omega(t,x)\left(\mathrm{d}x\right)_{a},$$

于是

$$(e_0)^a = \frac{1}{\Omega} \left( \frac{\partial}{\partial t} \right)^a, \quad (e_1)^a = \frac{1}{\Omega} \left( \frac{\partial}{\partial x} \right)^a.$$

并有

$$\left(e_{0}\right)_{a}=\eta_{0\nu}\left(e^{\nu}\right)_{a}=-\Omega\left(\mathrm{d}t\right)_{a},\quad\left(e_{1}\right)_{a}=\eta_{1\nu}\left(e^{\nu}\right)_{a}=\Omega\left(\mathrm{d}x\right)_{a}$$

(b) 计算联络 1 形式: 由 (5-7-19):

$$\Lambda_{\mu\nu\rho} \equiv \left[ (e_{\nu})_{\lambda,\tau} - (e_{\nu})_{\tau,\lambda} \right] (e_{\mu})^{\lambda} (e_{\rho})^{\tau} ,$$

易知必有  $\lambda = \mu$ ,  $\tau = \rho$ , 由于  $\mu \rho$  反称, 只需取  $\mu = 0, \rho = 1$  的项计算:

$$\begin{split} &\Lambda_{001} = \left[ \left( e_0 \right)_{0,1} - \left( e_0 \right)_{1,0} \right] \left( e_0 \right)^0 \left( e_1 \right)^1 \\ &= \frac{1}{\Omega^2} \left( -\Omega' - 0 \right) \\ &= -\frac{\Omega'}{\Omega^2} \\ &\Lambda_{011} = \left[ \left( e_1 \right)_{0,1} - \left( e_1 \right)_{1,0} \right] \left( e_0 \right)^0 \left( e_1 \right)^1 \\ &= \frac{1}{\Omega^2} \left( 0 - \dot{\Omega} \right) \\ &= -\frac{\dot{\Omega}}{\Omega^2} \end{split}$$

故所有非零项:

$$\Lambda_{001} = -\Lambda_{100} = -\frac{\Omega'}{\Omega^2}, \quad \Lambda_{011} = -\Lambda_{110} = -\frac{\dot{\Omega}}{\Omega^2}$$

于是由式 (5-7-20):

$$\omega_{\mu\nu\rho} = \frac{1}{2} \left( \Lambda_{\mu\nu\rho} + \Lambda_{\rho\mu\nu} - \Lambda_{\nu\rho\mu} \right)$$

由  $\mu\nu$  反称, 只需取  $\mu=0, \nu=1$ :

$$\begin{split} \omega_{010} &= \frac{1}{2} \left( \Lambda_{010} + \Lambda_{001} - \Lambda_{100} \right) \\ &= -\frac{\Omega'}{\Omega^2} \end{split}$$

$$\omega_{011} = \frac{1}{2} \left( \Lambda_{011} + \Lambda_{101} - \Lambda_{110} \right)$$
$$= -\frac{\dot{\Omega}}{\Omega^2}$$

于是所有非零项为

$$\omega_{010} = -\omega_{100} = -\frac{\Omega'}{\Omega^2}, \quad \omega_{011} = -\omega_{101} = -\frac{\dot{\Omega}}{\Omega^2}$$

故

$$\omega_{00} = 0,$$
  $\omega_{01} = -\frac{\Omega'}{\Omega^2} dt - \frac{\dot{\Omega}}{\Omega^2} dx,$   $\omega_{10} = \frac{\Omega'}{\Omega^2} dt + \frac{\dot{\Omega}}{\Omega^2} dx,$   $\omega_{11} = 0.$ 

进而

$$\begin{split} \boldsymbol{\omega}_0^{\ 0} &= 0, & \boldsymbol{\omega}_0^{\ 1} &= -\frac{\Omega'}{\Omega^2} \, \mathrm{d}t - \frac{\dot{\Omega}}{\Omega^2} \, \mathrm{d}x \,, \\ \boldsymbol{\omega}_1^{\ 0} &= -\frac{\Omega'}{\Omega^2} \, \mathrm{d}t - \frac{\dot{\Omega}}{\Omega^2} \, \mathrm{d}x \,, & \boldsymbol{\omega}_1^{\ 1} &= 0. \end{split}$$

(c) 计算曲率 2 形式。用嘉当第二结构方程:

$$oldsymbol{R}_{\mu}^{\phantom{\mu}
u}=\mathrm{d}oldsymbol{\omega}_{\mu}^{\phantom{\mu}
u}+oldsymbol{\omega}_{\mu}^{\phantom{\mu}\lambda}\wedgeoldsymbol{\omega}_{\lambda}^{\phantom{\lambda}
u}$$

联络 1 形式的外微分计算如下

$$d\omega_0^0 = 0$$

$$d\omega_0^1 = \left(\frac{2\Omega'\dot{\Omega} - \Omega\dot{\Omega}'}{\Omega^3} dt + \frac{2\Omega'^2 - \Omega\Omega''}{\Omega^3} dx\right) \wedge dt$$

$$+ \left(\frac{2\dot{\Omega}^2 - \Omega\ddot{\Omega}}{\Omega^3} dt + \frac{2\dot{\Omega}\Omega' - \Omega\dot{\Omega}'}{\Omega^3} dx\right) \wedge dx$$

$$= \frac{2\left(\dot{\Omega}^2 - {\Omega'}^2\right) + \Omega\left(\Omega'' - \ddot{\Omega}\right)}{\Omega^3} dt \wedge dx$$

$$= \frac{2\left(\dot{\Omega}^2 - {\Omega'}^2\right) + \Omega\left(\Omega'' - \ddot{\Omega}\right)}{\Omega^5} e^0 \wedge e^1$$

$$d\omega_1^0 = d\omega_0^1$$

$$= \frac{2\left(\dot{\Omega}^2 - {\Omega'}^2\right) + \Omega\left(\Omega'' - \ddot{\Omega}\right)}{\Omega^5} e^0 \wedge e^1$$

$$d\omega_1^{-1} = 0.$$

于是

$$\begin{aligned} \boldsymbol{R}_0^{\ 0} &= \mathrm{d}\boldsymbol{\omega}_0^{\ 0} + \boldsymbol{\omega}_0^{\ 1} \wedge \boldsymbol{\omega}_1^{\ 0} \\ &= 0 \\ \boldsymbol{R}_0^{\ 1} &= \mathrm{d}\boldsymbol{\omega}_0^{\ 1} + 0 \\ &= \frac{2\left(\dot{\Omega}^2 - {\Omega'}^2\right) + \Omega\left({\Omega''} - \ddot{\Omega}\right)}{\Omega^5} \boldsymbol{e}^0 \wedge \boldsymbol{e}^1 \\ \boldsymbol{R}_1^{\ 0} &= \mathrm{d}\boldsymbol{\omega}_1^{\ 0} + 0 \\ &= \frac{2\left(\dot{\Omega}^2 - {\Omega'}^2\right) + \Omega\left({\Omega''} - \ddot{\Omega}\right)}{\Omega^5} \boldsymbol{e}^0 \wedge \boldsymbol{e}^1 \\ \boldsymbol{R}_1^{\ 1} &= \mathrm{d}\boldsymbol{\omega}_1^{\ 1} + \boldsymbol{\omega}_1^{\ 0} \wedge \boldsymbol{\omega}_0^{\ 1} \\ &= 0. \end{aligned}$$

于是黎曼张量的非零标架分量为

$$\begin{split} R_{(0)(1)(0)}^{\phantom{(0)}(1)} &= -R_{(1)(0)(0)}^{\phantom{(0)}(1)} = R_{(0)(1)(1)}^{\phantom{(0)}(0)} = -R_{(1)(0)(1)}^{\phantom{(0)}(0)} \\ &= \frac{2\left(\dot{\Omega}^2 - {\Omega'}^2\right) + \Omega\left(\Omega'' - \ddot{\Omega}\right)}{\Omega^5} \end{split}$$

验证 由

$$\begin{split} \left(e^{0}\right)_{a} &= \Omega(t,x) \left(\mathrm{d}t\right)_{a}, \quad \left(e^{1}\right)_{a} &= \Omega(t,x) \left(\mathrm{d}x\right)_{a}, \\ \left(e_{0}\right)^{a} &= \frac{1}{\Omega} \left(\frac{\partial}{\partial t}\right)^{a}, \quad \left(e_{1}\right)^{a} &= \frac{1}{\Omega} \left(\frac{\partial}{\partial x}\right)^{a} \end{split}$$

知

$$\begin{split} R_{abc}{}^{d} &= R_{(\mu)(\nu)(\sigma)}{}^{(\rho)} \left(e^{\mu}\right)_{a} \left(e^{\nu}\right)_{b} \left(e^{\sigma}\right)_{c} \left(e_{\rho}\right)^{d} \\ &= \Omega^{3} R_{(\mu)(\nu)(\sigma)}{}^{(\rho)} \left(\mathrm{d}x^{\mu}\right)_{a} \left(\mathrm{d}x^{\nu}\right)_{b} \left(\mathrm{d}x^{\sigma}\right)_{c} \left(\frac{\partial}{\partial x^{\rho}}\right)^{d} \end{split}$$

故应有

$$R_{\mu\nu\sigma}^{\quad \rho} = \Omega^3 R_{(\mu)(\nu)(\sigma)}^{\quad (\rho)}$$

与第三章求得的

$${R_{txx}}^t = -{R_{xtx}}^t = {R_{txt}}^x = -{R_{xtt}}^x = \frac{\Omega\left(\Omega'' - \ddot{\Omega}\right) + \dot{\Omega}^2 - {\Omega'}^2}{\Omega^2}$$

对比, 知两种方法是一致的。

#### 2. 第三章第 15 题:

**Prob** 求度规  $ds^2 = z^{-1/2} \left( -dt^2 + dz^2 \right) + z \left( dx^2 + dy^2 \right)$  的黎曼张量在  $\{t, x, y, z\}$  系的全部分量。

Solv (a) 选取标架。由于度规是洛伦兹的,设有正交归一基底  $\{(e_{\mu})^a\}$ ,

$$g_{ab} = \frac{1}{\sqrt{z}} \left( -\left( dt \right)_a \left( dt \right)_b + \left( dz \right)_a \left( dz \right)_b \right) + z \left( \left( dx \right)_a \left( dx \right)_b + \left( dy \right)_a \left( dy \right)_b \right)$$

$$= \eta_{\mu\nu} \left( e^{\mu} \right)_a \left( e^{\nu} \right)_b$$

$$= -\left( e^0 \right)_a \left( e^0 \right)_b + \left( e^1 \right)_a \left( e^1 \right)_b + \left( e^2 \right)_a \left( e^2 \right)_b + \left( e^3 \right)_a \left( e^3 \right)_b$$

最简单的选择是

$$(e^{0})_{a} = \frac{1}{\sqrt[4]{z}} (dt)_{a}$$

$$(e^{1})_{a} = \sqrt{z} (dx)_{a}$$

$$(e^{2})_{a} = \sqrt{z} (dy)_{a}$$

$$(e^{3})_{a} = \frac{1}{\sqrt[4]{z}} (dz)_{a}$$

于是标架基矢为

$$(e_0)^a = \sqrt[4]{z} \left(\frac{\partial}{\partial t}\right)^a$$
$$(e_1)^a = \frac{1}{\sqrt{z}} \left(\frac{\partial}{\partial x}\right)^a$$
$$(e_2)^a = \frac{1}{\sqrt{z}} \left(\frac{\partial}{\partial y}\right)^a$$
$$(e_3)^a = \sqrt[4]{z} \left(\frac{\partial}{\partial z}\right)^a$$

并有

$$(e_{0})_{a} = \eta_{0\nu} (e^{\nu})_{a}$$

$$= -\frac{1}{\sqrt[4]{z}} (dt)_{a}$$

$$(e_{1})_{a} = \eta_{1\nu} (e^{\nu})_{a}$$

$$= \sqrt{z} (dx)_{a}$$

$$(e_{2})_{a} = \eta_{2\nu} (e^{\nu})_{a}$$

$$= \sqrt{z} (dy)_{a}$$

$$(e_{3})_{a} = \eta_{3\nu} (e^{\nu})_{a}$$

$$= \frac{1}{\sqrt[4]{z}} (dz)_{a}$$

#### (b) 计算联络 1 形式。

$$\Lambda_{\mu\nu\rho} \equiv \left[ \left( e_{\nu} \right)_{\lambda,\tau} - \left( e_{\nu} \right)_{\tau,\lambda} \right] \left( e_{\mu} \right)^{\lambda} \left( e_{\rho} \right)^{\tau},$$

易知必有  $\lambda=\mu$ ,  $\tau=\rho$ 。求导仅对 z 求不为零,故  $\mu$ ,  $\rho$  至少有一个取 3 ,而其余两个相同。由于  $\mu\rho$  反称,只需取  $\mu<\rho$  的项计算:

$$\begin{split} \Lambda_{003} &= \sqrt{z} \left( \frac{1}{4} z^{-\frac{5}{4}} - 0 \right) \\ &= \frac{1}{4} z^{-\frac{3}{4}} \\ \Lambda_{113} &= \frac{1}{\sqrt[4]{z}} \left( \frac{1}{2\sqrt{z}} - 0 \right) \\ &= \frac{1}{2} z^{-\frac{3}{4}} \\ \Lambda_{223} &= \frac{1}{\sqrt[4]{z}} \left( \frac{1}{2\sqrt{z}} \right) \\ &= \frac{1}{2} z^{-\frac{3}{4}} \end{split}$$

故所有非零项为

$$\Lambda_{003} = -\Lambda_{300} = \frac{1}{4}z^{-\frac{3}{4}}, \quad \Lambda_{113} = -\Lambda_{311} = \Lambda_{223} = -\Lambda_{322} = \frac{1}{2}z^{-\frac{3}{4}}$$

于是由式 (5-7-20):

$$\omega_{\mu\nu\rho} = \frac{1}{2} \left( \Lambda_{\mu\nu\rho} + \Lambda_{\rho\mu\nu} - \Lambda_{\nu\rho\mu} \right)$$

同样  $\mu, \nu, \rho$  中有一个取 3, 另两个相同, 由于  $\mu\nu$  反称, 故  $\nu$  取 3 而  $\mu\rho$  相同:

$$\omega_{\mu 3\mu} = \frac{1}{2} \left( \Lambda_{\mu 3\mu} + \Lambda_{\mu \mu 3} - \Lambda_{3\mu \mu} \right)$$
$$= \Lambda_{\mu \mu 3}$$

故

$$\omega_{030} = -\omega_{300} = \frac{1}{4}z^{-\frac{3}{4}}, \quad \omega_{131} = -\omega_{311} = \omega_{232} = -\omega_{322} = \frac{1}{2}z^{-\frac{3}{4}}$$

于是

$$\omega_{03} = -\omega_{30} = \frac{1}{4}z^{-\frac{3}{4}}e^{0} = \frac{1}{4}z^{-1} dt$$

$$\omega_{13} = -\omega_{31} = \frac{1}{2}z^{-\frac{3}{4}}e^{1} = \frac{1}{2}z^{-\frac{1}{4}} dx$$

$$\omega_{23} = -\omega_{32} = \frac{1}{2}z^{-\frac{3}{4}}e^{2} = \frac{1}{2}z^{-\frac{1}{4}} dy$$

用  $\eta^{\mu\nu}$  升编号指标:

$$\omega_0^3 = \omega_3^0 = \frac{1}{4}z^{-\frac{3}{4}}e^0 = \frac{1}{4}z^{-1} dt$$

$$\omega_1^3 = -\omega_3^1 = \frac{1}{2}z^{-\frac{3}{4}}e^1 = \frac{1}{2}z^{-\frac{1}{4}} dx$$

$$\omega_2^3 = -\omega_3^2 = \frac{1}{2}z^{-\frac{3}{4}}e^2 = \frac{1}{2}z^{-\frac{1}{4}} dy$$

(c) 计算曲率 2 形式。首先计算联络 1 形式的外微分:

$$d\omega_0^{\ 3} = d\omega_3^{\ 0} = \frac{1}{4}z^{-2} dt \wedge dz = \frac{1}{4}z^{-\frac{3}{2}} e^0 \wedge e^3$$

$$d\omega_1^{\ 3} = -d\omega_3^{\ 1} = \frac{1}{8}z^{-\frac{5}{4}} dx \wedge dz = \frac{1}{8}z^{-\frac{3}{2}} e^1 \wedge e^3$$

$$d\omega_2^{\ 3} = -d\omega_3^{\ 2} = \frac{1}{8}z^{-\frac{5}{4}} dy \wedge dz = \frac{1}{8}z^{-\frac{3}{2}} e^2 \wedge e^3$$

于是由嘉当第二结构方程

$$oldsymbol{R}_{\mu}^{\phantom{\mu}
u}=\mathrm{d}oldsymbol{\omega}_{\mu}^{\phantom{\mu}
u}+oldsymbol{\omega}_{\mu}^{\phantom{\mu}\lambda}\wedgeoldsymbol{\omega}_{\lambda}^{\phantom{\lambda}
u}$$

 $\mu\nu$  中没有 3 时,第二项中  $\lambda$  为 3;有一个为 3 时,第二项中  $\lambda$  取 3 或不取 3 都为零:

$$\begin{split} & \boldsymbol{R}_0^{\ 1} = \boldsymbol{\omega}_0^{\ 3} \wedge \boldsymbol{\omega}_3^{\ 1} \\ & = -\frac{1}{8} z^{-\frac{3}{2}} \boldsymbol{e}^0 \wedge \boldsymbol{e}^1 \\ & \boldsymbol{R}_0^{\ 2} = \boldsymbol{\omega}_0^{\ 3} \wedge \boldsymbol{\omega}_3^{\ 2} \\ & = -\frac{1}{8} z^{-\frac{3}{2}} \boldsymbol{e}^0 \wedge \boldsymbol{e}^2 \\ & \boldsymbol{R}_0^{\ 3} = \mathrm{d} \boldsymbol{\omega}_0^{\ 3} \\ & = \frac{1}{4} z^{-\frac{3}{2}} \boldsymbol{e}^0 \wedge \boldsymbol{e}^3 \\ & \boldsymbol{R}_1^{\ 0} = \boldsymbol{\omega}_1^{\ 3} \wedge \boldsymbol{\omega}_3^{\ 0} \\ & = -\frac{1}{8} z^{-\frac{3}{2}} \boldsymbol{e}^0 \wedge \boldsymbol{e}^1 \\ & \boldsymbol{R}_1^{\ 2} = \boldsymbol{\omega}_1^{\ 3} \wedge \boldsymbol{\omega}_3^{\ 2} \\ & = -\frac{1}{4} z^{-\frac{3}{2}} \boldsymbol{e}^1 \wedge \boldsymbol{e}^2 \\ & \boldsymbol{R}_1^{\ 3} = \mathrm{d} \boldsymbol{\omega}_1^{\ 3} \\ & = \frac{1}{8} z^{-\frac{3}{2}} \boldsymbol{e}^1 \wedge \boldsymbol{e}^3 \\ & \boldsymbol{R}_2^{\ 0} = \boldsymbol{\omega}_2^{\ 3} \wedge \boldsymbol{\omega}_3^{\ 0} \\ & = -\frac{1}{8} z^{-\frac{3}{2}} \boldsymbol{e}^0 \wedge \boldsymbol{e}^2 \end{split}$$

$$R_{2}^{1} = \omega_{2}^{3} \wedge \omega_{3}^{1}$$

$$= \frac{1}{8}z^{-\frac{3}{2}}e^{1} \wedge e^{2}$$

$$R_{2}^{3} = d\omega_{2}^{3}$$

$$= \frac{1}{8}z^{-\frac{3}{2}}e^{2} \wedge e^{3}$$

$$R_{3}^{0} = d\omega_{3}^{0}$$

$$= \frac{1}{4}z^{-\frac{3}{2}}e^{0} \wedge e^{3}$$

$$R_{3}^{1} = d\omega_{3}^{1}$$

$$= -\frac{1}{8}z^{-\frac{3}{2}}e^{1} \wedge e^{3}$$

$$R_{3}^{2} = d\omega_{3}^{2}$$

$$= -\frac{1}{8}z^{-\frac{3}{2}}e^{2} \wedge e^{3}$$

$$R_{3}^{3} = \omega_{3}^{\lambda} \wedge \omega_{\lambda}^{3}$$

$$= 0$$

#### 于是所有非零的标架分量为

$$\begin{split} R_{(0)(1)(0)}^{\quad (1)} &= -R_{(1)(0)(0)}^{\quad (1)} = -\frac{1}{8}z^{-\frac{3}{2}} \\ R_{(0)(2)(0)}^{\quad (2)} &= -R_{(2)(0)(0)}^{\quad (2)} = -\frac{1}{8}z^{-\frac{3}{2}} \\ R_{(0)(3)(0)}^{\quad (3)} &= -R_{(3)(0)(0)}^{\quad (3)} = \frac{1}{4}z^{-\frac{3}{2}} \\ R_{(1)(0)(1)}^{\quad (0)} &= -R_{(0)(1)(1)}^{\quad (0)} = \frac{1}{8}z^{-\frac{3}{2}} \\ R_{(1)(2)(1)}^{\quad (2)} &= -R_{(2)(1)(1)}^{\quad (2)} = -\frac{1}{4}z^{-\frac{3}{2}} \\ R_{(1)(3)(1)}^{\quad (3)} &= -R_{(3)(1)(1)}^{\quad (3)} = \frac{1}{8}z^{-\frac{3}{2}} \\ R_{(2)(0)(2)}^{\quad (0)} &= -R_{(0)(2)(2)}^{\quad (0)} = \frac{1}{8}z^{-\frac{3}{2}} \\ R_{(2)(1)(2)}^{\quad (1)} &= -R_{(1)(2)(2)}^{\quad (1)} = -\frac{1}{8}z^{-\frac{3}{2}} \\ R_{(2)(3)(2)}^{\quad (3)} &= -R_{(3)(2)(2)}^{\quad (3)} = \frac{1}{8}z^{-\frac{3}{2}} \\ R_{(3)(0)(3)}^{\quad (0)} &= -R_{(0)(3)(3)}^{\quad (0)} &= -\frac{1}{4}z^{-\frac{3}{2}} \\ R_{(3)(1)(1)}^{\quad (3)} &= -R_{(1)(3)(1)}^{\quad (3)} &= \frac{1}{8}z^{-\frac{3}{2}} \\ R_{(3)(2)(3)}^{\quad (2)} &= -R_{(2)(3)(3)}^{\quad (2)} &= \frac{1}{8}z^{-\frac{3}{2}} \end{split}$$

验证 根据

$$(e^{0})_{a} = \frac{1}{\sqrt[4]{z}} (dt)_{a}$$
$$(e^{1})_{a} = \sqrt{z} (dx)_{a}$$
$$(e^{2})_{a} = \sqrt{z} (dy)_{a}$$
$$(e^{3})_{a} = \frac{1}{\sqrt[4]{z}} (dz)_{a}$$

和

$$(e_0)^a = \sqrt[4]{z} \left(\frac{\partial}{\partial t}\right)^a$$
$$(e_1)^a = \frac{1}{\sqrt{z}} \left(\frac{\partial}{\partial x}\right)^a$$
$$(e_2)^a = \frac{1}{\sqrt{z}} \left(\frac{\partial}{\partial y}\right)^a$$
$$(e_3)^a = \sqrt[4]{z} \left(\frac{\partial}{\partial z}\right)^a$$

#### ⋯⋯懒得验证了Ѿ

#### 3. 第三章第 16 题:

Prob 设  $\alpha(z)$ ,  $\beta(z)$ ,  $\gamma(z)$  为任意函数,  $h=t+\alpha(z)x+\beta(z)y+\gamma(z)$ , 求度规

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + h^{2} dz^{2}$$

的黎曼张量在  $\{t, x, y, z\}$  系的全部分量。

Solv (a) 选取标架。令

$$\begin{aligned} \left(e^{0}\right)_{a} &= \left(\mathrm{d}t\right)_{a} \\ \left(e^{1}\right)_{a} &= \left(\mathrm{d}x\right)_{a} \\ \left(e^{2}\right)_{a} &= \left(\mathrm{d}y\right)_{a} \\ \left(e^{3}\right)_{a} &= h\left(\mathrm{d}z\right)_{a} \end{aligned}$$

则标架基矢为

$$(e_0)^a = \left(\frac{\partial}{\partial t}\right)^a$$
$$(e_1)^a = \left(\frac{\partial}{\partial x}\right)^a$$
$$(e_2)^a = \left(\frac{\partial}{\partial y}\right)^a$$
$$(e_3)^a = \frac{1}{h}\left(\frac{\partial}{\partial z}\right)^a$$

并有

$$(e_{0})_{a} = \eta_{0\nu} (e^{\nu})_{a}$$

$$= - (dt)_{a}$$

$$(e_{1})_{a} = \eta_{1\nu} (e^{\nu})_{a}$$

$$= (dx)_{a}$$

$$(e_{2})_{a} = \eta_{2\nu} (e^{\nu})_{a}$$

$$= (dy)_{a}$$

$$(e_{3})_{a} = \eta_{3\nu} (e^{\nu})_{a}$$

$$= h (dz)_{a}$$

#### (b) 计算联络1形式。

$$\Lambda_{\mu\nu\rho} \equiv \left[ \left( e_{\nu} \right)_{\lambda,\tau} - \left( e_{\nu} \right)_{\tau,\lambda} \right] \left( e_{\mu} \right)^{\lambda} \left( e_{\rho} \right)^{\tau},$$

 $\lambda \tau$  必须取  $\mu \rho$  ; 为使导数项不为零,  $\nu$  必须为 3,  $\lambda \tau$  , 因而  $\mu \rho$  中有一个为 3。

$$\begin{split} \Lambda_{033} &= -\frac{1}{h} \frac{\partial h}{\partial t} \\ &= -\frac{1}{h} \\ \Lambda_{133} &= -\frac{1}{h} \frac{\partial h}{\partial x} \\ &= -\frac{\alpha}{h} \\ \Lambda_{233} &= -\frac{1}{h} \frac{\partial h}{\partial y} \\ &= -\frac{\beta}{h} \end{split}$$

所以所有非零项为

$$\begin{split} &\Lambda_{033} = -\Lambda_{330} = -\frac{1}{h} \\ &\Lambda_{133} = -\Lambda_{331} = -\frac{\alpha}{h} \\ &\Lambda_{233} = -\Lambda_{332} = -\frac{\beta}{h} \end{split}$$

由

$$\omega_{\mu\nu\rho} = \frac{1}{2} \left( \Lambda_{\mu\nu\rho} + \Lambda_{\rho\mu\nu} - \Lambda_{\nu\rho\mu} \right)$$

知

$$\omega_{\mu 33} = \Lambda_{\mu 33}$$

于是

$$\omega_{03} = -\omega_{30} = -\frac{1}{h}e^3 = -dz$$

$$\omega_{13} = -\omega_{31} = -\frac{\alpha}{h}e^3 = -\alpha dz$$

$$\omega_{23} = -\omega_{32} = -\frac{\beta}{h}e^3 = -\beta dz$$

升指标得

$$\omega_0^3 = \omega_3^0 = -\frac{1}{h}e^3 = -dz$$

$$\omega_1^3 = -\omega_3^1 = -\frac{\alpha}{h}e^3 = -\alpha dz$$

$$\omega_2^3 = -\omega_3^2 = -\frac{\beta}{h}e^3 = -\beta dz$$

(c) 求曲率 2 形式。先求联络 1 形式的外微分:

$$d\omega_0^3 = d\omega_3^0 = 0$$
$$d\omega_1^3 = -d\omega_3^1 = 0$$
$$d\omega_2^3 = d\omega_3^2 = 0$$

而所有的联络 1 形式正比于  $\mathrm{d}z$  ,它们的楔积全为零,故所有的曲率 2 形式为零。

验证 曲率为零的结果与第三章相同。

# 第六章 狭义相对论

## 习题

- **1.** 惯性观者 G 和 G' 相对速率为 u=0.6c,相遇时把时钟都调为零。用时空图讨论: (a) 在 G 所属的惯性参考系看来(以其同时观判断),当 G 钟读数为  $5\,\mu s$  时,G' 钟的读数是多少? (b) 当 G 钟读数为  $5\,\mu s$  时,他实际看见 G' 钟的读数是多少?
- **2.** 远方星体以 0.8c 的速率(匀速直线地)离开我们,我们测得它辐射来的闪光按 5 昼夜的周期变化。用时空图求星上观者测得的闪光周期。

第二部分 中册

## 附录 G 李群和李代数

### 习题

1. 验证由式 (G-1-1) 定义的  $I_g: G \to G$  确为自同构映射。

证明  $I_g$  定义为

$$I_g(h) := ghg^{-1}, \quad \forall g \in G,$$

首先验证它是同态:

$$I_g(h_1h_2) = gh_1g^{-1}gh_2g^{-1} = gh_1h_2g^{-1} = I_g(h_1h_2),$$

而

$$I_{g^{-1}}(I_g(h)) = g^{-1}(ghg^{-1})g = h$$

故  $I_g$  有逆映射  $I_{g-1}$ , 于是  $I_g$  是自同构映射。

2. 验证由式 (G-1-2) 定义的乘法满足群乘法的要求。

证明 1. 结合律:

$$((g_1, g_1')(g_2, g_2'))(g_3, g_3') = (g_1g_2g_3, g_1'g_2'g_3') = (g_1, g_1')((g_2, g_2')(g_3, g_3'))$$

2. 含幺:

$$(e, e')(g, g') = (g, g') = (g, g')$$

3. 有逆:

$$(g,g')(g^{-1},g'_1) = (e,e')$$

**3.** 验证由  $\S G.1$  定义 8 所定义的 A(G) 是群。

证明 1. 先验证复合确实是 A(G) 上的运算  $\circ$ :  $A(G) \times A(G) \to A(G)$ ,即  $\forall \mu, \nu \in A(G)$ ,验证  $\mu \circ \nu \in A(G)$ : 首先验证  $\mu \circ \nu$  是同态:

$$\mu \circ \nu(gh) = \mu(\nu(g)\nu(h)) = \mu \circ \nu(g)\mu \circ \nu(h),$$

再验证  $\mu \circ \nu$  一一到上 (有逆映射):

$$(\mu \circ \nu) \circ (\nu^{-1} \circ \mu^{-1}) = \mathrm{Id}_G,$$

故  $\mu \circ \nu$  有逆映射  $\nu^{-1} \circ \mu^{-1}$ ,于是  $\mu \circ \nu$  为同构映射,故复合是 A(G) 上的运算。 2. 验证  $\circ$  为群乘法:

(a) 结合律:

$$\mu \circ (\nu \circ \sigma) = \mu \circ \nu \circ \sigma = (\mu \circ \nu) \circ \sigma, \quad \forall \mu, \nu, \sigma \in A(G).$$

(b) 含幺: 易知  $\mathrm{Id}_G \in A(G)$ ,

$$\operatorname{Id}_G \circ \mu = \mu \circ \operatorname{Id}_G = \mu, \quad \forall \mu \in A(G)$$

(c) 有逆:  $\forall \mu \in A(G)$ ,  $\mu^{-1}$  也是自同构, 于是

$$\mu \circ \mu^{-1} = \mu^{-1} \circ \mu = \mathrm{Id}_G$$
.

**4.** 试证定理 G-1-2, 即  $A_I(G)$  是群 A(G) 的正规子群。

证明  $\forall \mu \in A(G), I_g \in A_I(G), h \in G$ ,

$$\mu \circ I_g \circ \mu^{-1}(h) = \mu \left( g(\mu^{-1}h)g^{-1} \right) = \mu(g)h\mu(g)^{-1} = I_{\mu(g)}(h).$$

**5.** 验证由 §G.1 定义 9 所定义的  $H \otimes_S K$  是群。

证明 1. 结合律:  $\forall h_1, h_2, h_3 \in H, k_1, k_2, k_3 \in K$ ,

$$\begin{split} \left((h_1,k_1)(h_2,k_2)\right)(h_3,k_3) &= \left(h_1\mu_{k_1}(h_2),k_1k_2\right)(h_3,k_3) \\ &= \left(h_1\mu_{k_1}(h_2)\mu_{k_1k_2}(h_3),k_1k_2k_3\right) \\ &= \left(h_1\mu_{k_1}(h_2)\mu_{k_1}\left(\mu_{k_2}(h_3)\right),k_1k_2k_3\right) \\ &= \left(h_1\mu_{k_1}(h_2\mu_{k_2}(h_3)),k_1k_2k_3\right) \\ &= \left(h_1,k_1\right)\left(h_2\mu_{k_2}(h_3),k_2k_3\right) \\ &= \left(h_1,k_1\right)\left(\left(h_2,k_2\right)(h_3,k_3)\right) \end{split}$$

2. 含幺:  $\forall h \in H, k \in K$ ,

$$(e_H, e_K)(h, k) = (h, k) = (h, k)(e_H, e_K)$$

3. 有逆:  $\forall h \in H, k \in K$ ,

$$(h,k)(h^{-1},k^{-1}) = (e_H,e_K) = (h^{-1},k^{-1})(h,k)$$

**6.** 设  $L_g\colon G\to G$  是由  $g\in G$  生成的左平移, $L_g^{-1}$  是  $L_g$  的逆映射,试证

$$L_{g^{-1}} = L_g^{-1}, \quad \forall g \in G.$$

证明  $\forall h \in G$ ,

$$L_{g^{-1}}(L_g(h)) = g^{-1}gh = h,$$

故 
$$L_{g^{-1}} \circ L_g = \mathrm{Id}_G$$
。

7.  $\forall g \in G$  定义右平移  $R_g \colon h \mapsto hg$ ,  $\forall h \in G$ , 试证  $R_{gh} = R_h \circ R_g \circ$  证明  $\forall g,h,k \in G$ ,

$$R_{gh}(k) = kgh = R_h \circ R_g(k)$$

8. 试证  $[\mathbf{v}, \mathbf{u}] := \mathbf{v} \times \mathbf{u}, \quad \forall \mathbf{v}, \mathbf{u} \in \mathbb{R}^3$  满足李括号的条件(见 §G.3 例 2 )。