Boyer-Moore

Can we improve on the naïve algorithm?

```
P: word

T: There would have been a time for such a word

-----word

-----
```

u doesn't occur in P, so skip next two alignments

word skip!

word

Boyer-Moore

Learn from character comparisons to skip pointless alignments

1. When we hit a mismatch, move *P* along until the mismatch becomes a match

"Bad character rule"

2. When we move *P* along, make sure characters that matched in the last alignment also match in the next alignment

"Good suffix rule"

3. Try alignments in one direction, but do character comparisons in *opposite* direction

For longer skips

P: word

Boyer-Moore: Bad character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) *P* moves past mismatched character. (c) If there was no mismatch, don't skip

```
T: GCTTCTGCTACCTTTTGCGCGCGCGCGAA
Step 1:
                                          Case (a)
     T: GCTTCTGCTACCTTTTGCGCGCGCGCGAA
Step 2:
                                          Case (b)
        GCTTCTGCTACCTTTTGCGCGCGCGCGAA
Step 3:
      P:
                                          Case (c)
      T: GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
Step 4:
                      CCTTTTGC
(etc)
```

Boyer-Moore: Bad character rule

Up to step 3, we skipped 8 alignments

5 characters in T were never looked at

Boyer-Moore: Good suffix rule

Let t = substring matched by inner loop; skip until (a) there are no mismatches between P and t or (b) P moves past t

```
Step 1: T: CGTGCCTACTTACTTACTTACGCGAA

P: CTTACTTAC

Step 2: T: CGTGCCTACTTACTTACTTACGCGAA

P: CTTACTTAC

Step 3: T: CGTGCCTACTTACTTACTTACGCGAA

CTTACTTAC
```

Boyer-Moore: Good suffix rule

Let t = substring matched by inner loop; skip until (a) there are no mismatches between P and t or (b) P moves past t

Case (a) has two subcases according to whether *t* occurs *in its entirety* to the left within *P* (as in step 1), or a *prefix* of *P* matches a *suffix* of *t* (as in step 2)

Boyer-Moore: Putting it together

How to combine bad character and good suffix rules?

```
T: GTTATAGCTGATCGCGGCGTAGCGGCGAA
P:
```

bad char says skip 2, good suffix says skip 7

Take the maximum! (7)

Boyer-Moore: Putting it together

Use bad character or good suffix rule, whichever skips more

```
T: GTTATAGC TGATCGCGGCGTAGCGGCGAA
Step 1:
      P: G(T)A G C G G C G
                                         bc: 6, gs: 0 bad character
      T: GTTATAGCTGATCCCCGCGTAGCGGCGAA
Step 2:
                  GTAGCGGCG
                                         bc: 0, gs: 2 good suffix
      T: GTTATAGCTGATCGCGGCGTAGCGGCGAA
Step 3:
                     GTAGCGGCG
                                   bc: 2, gs: 7 good suffix
      T: GTTATAGCTGATCGCGGCGTAGCGGCGAA
Step 4:
                                 GTAGCGGCG
```

11 characters of *T* we ignored

Step 1: T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P: GTAGCGGCG

Step 2: T: GTTATAGCTGATCGCGGCGTAGCGGCGAA
P: GTAGCGGCG

Step 3: T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P: GTAGCGGCGTAGCGGCGAA

Step 4: T: GTTATAGCTGATCGCGGCGTAGCGGCGAA
P: GTAGCGGCGAA

Skipped 15 alignments

Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios! For bad character rule and P = TCGC:

		P				
		Т	C	G	С	
Σ	Α					
	C		I		-	
	G			-		
	Т	-				

Boyer-Moore: Preprocessing

Pre-calculate skips for all possible mismatch scenarios! For bad character rule and P = TCGC:

P						
		Т	С	G	С	
Σ	Α	0	1	2	3	
	С	0	-	0	-	T: AATCAATAGC P: TCGC
	G	0	1	-	0	P: UCGC
		-	0	1	2	

This can be constructed efficiently. See Gusfield 2.2.2.

Boyer-Moore: Preprocessing

As with bad character rule, good suffix rule skips can be precalculated efficiently. See Gusfield 2.2.4 and 2.2.5.

For both tables, the calculations only consider *P*. No knowledge of *T* is required.

We'll return to preprocessing soon!

Boyer-Moore: Good suffix rule

We learned the weak good suffix rule; there is also a strong good suffix rule

Strong good suffix rule skips more than weak, at no additional penalty

Strong rule is needed for proof of Boyer-Moore's O(n + m) worst-case time. Gusfield discusses proof(s) in first several sections of ch. 3

Boyer-Moore: Worst case

Boyer-Moore, with refinements in Gusfield, is O(n + m) time Given n < m, can simplify to O(m)

Is this better than naïve?

For naïve, worst-case # char comparisons is n(m - n + 1)

Boyer-Moore: O(*m*), naïve: O(*nm*)

Reminder: |P| = n |T| = m

Boyer-Moore Algorithm

Figure: Boyer-Moore algorithm example

- Pattern can be shifted to the rightmost occurrence of the symbol t_{j+i} in the pattern.
- Can propose a shift to the left but it will not be executed due to the good suffix rule.

- Pattern can be shifted to the rightmost occurrence of the symbol t_{j+i} in the pattern.
- Can propose a shift to the left but it will not be executed due to the good suffix rule.
- In preprocessing, compute a function β that assigns the position of its last occurrence in p to each symbol from Σ (or the value 0, if the symbol does not occur in p).

Algorithm 4.4 Preprocessing for the bad character rule

Input: A pattern $p = p_1 \dots p_m$ over an alphabet Σ .

$$\begin{array}{l} \textbf{for all } a \in \Sigma \ \textbf{do} \ \beta(a) := 0 \\ \textbf{for } i := 1 \ \textbf{to} \ m \ \textbf{do} \ \beta(p_i) := i \end{array}$$

Output: The function β .

Figure: Preprocessing for the bad character rule

Algorithm 4.4 Preprocessing for the bad character rule

Input: A pattern $p = p_1 \dots p_m$ over an alphabet Σ .

for all
$$a \in \Sigma$$
 do $\beta(a) := 0$
for $i := 1$ to m do $\beta(p_i) := i$

Output: The function β .

Figure: Preprocessing for the bad character rule

• Running time: $O(m + |\Sigma|)$

• Pattern can be shifted to the next occurrence of the suffix $p_{i+1} \dots p_m$ in p.

• Pattern can be shifted to the next occurrence of the suffix $p_{i+1} \dots p_m$ in p.

Definition

Let s and t be two strings. We say that s is suffix similar to t, or $s \sim t$, if s is a suffix of t or t is a suffix of s.

• Pattern can be shifted to the next occurrence of the suffix $p_{i+1} \dots p_m$ in p.

Definition

Let s and t be two strings. We say that s is suffix similar to t, or $s \sim t$, if s is a suffix of t or t is a suffix of s.

• Good suffix rule: If $p_{i+1} \dots p_m = t_{j+i+1} \dots t_{j+m}$ and $p_i \neq t_{j+i}$, then shift the pattern for the next comparison to the right by $m - \gamma(i+1)$ positions, where

$$\gamma(i) = \max \left\{ 0 \le k < m | p_i \dots p_m \sim p_1 \dots p_k \right\}.$$

Figure: Good suffix rule cases

Algorithm 4.5 Preprocessing for the good suffix rule

Input: A pattern $p = p_1 \dots p_m$ over an alphabet Σ .

- 1. Construct the string matching automaton $M = (Q, \Sigma, q_0, \delta, F)$ for $p_m \dots p_2$.
- 2. Determine the sequence $q_0, q_{m-1}, \ldots, q_1$ of states M is traversing while reading the input $p_{m-1} \ldots p_1$.
- 3. Compute the function γ' :

for
$$i := 2$$
 to m do $\gamma'(i) := 0$
for $j := 1$ to $m - 1$ do $\gamma'(q_j) := j$

4. Compute the function γ'' :

for
$$i := 2$$
 to m do
if $i \leqslant q_1$ then
 $\gamma''(i) := m - q_1 + 1$
else
 $\gamma''(i) := 0$

5. Compute the function γ :

for
$$i := 2$$
 to m do $\gamma(i) := \max\{\gamma'(i), \gamma''(i)\}$

Output: The function γ .

Figure: Good suffix rule algorithm

Finite Automaton

Definition

A finite automaton is a quintuple $M = (Q, \Sigma, q_0, \delta, F)$, where

- Q is a finite set of states,
- \bullet Σ is an input alphabet,
- $q_0 \in Q$ is the initial state,
- ullet $F\subseteq Q$ is a set of accepting states, and
- $\delta: Q \times \Sigma \to Q$ is a transition function describing the transitions of the automaton from one state to another.

We define the extension $\hat{\delta}$ of the transition function to strings over Σ by $\hat{\delta}(q,\lambda)=q$ and $\hat{\delta}(q,xa)=\delta(\hat{\delta}(q,x),a)$ for all $q\in Q,\,a\in\Sigma$ and $x\in\Sigma^*$. Thus, $\hat{\delta}(q,x)$ is the state M reaches from the state q by reading x.

We say that the automaton M accepts the string $x \in \Sigma^*$, if $\hat{\delta}(q_0, x) \in F$.

String Matching Automata

Example

String matching automaton for p = aba

Figure: String matching automaton for p = aba

Algorithm for Constructing String Automaton

Definition

Let s, t be strings. If there exist some strings x, y, and z from Σ^* satisfying the conditions

- \bullet s = xy,
- 2 t = yz, and
- |y| is maximal with 1 and 2,

then $\overline{Ov}(s,t):=y$ is called the generalized overlap of s and t. We denote the length of $\overline{Ov}(s,t)$ by $\overline{ov}(s,t)$.

Algorithm for Constructing String Automaton

Definition

Let $p=p_1\dots p_m\in \Sigma^m$ for an arbitrary alphabet Σ . We define the string matching automaton for p as the finite automaton $M_p=(Q,\Sigma,q_0,\delta,F)$, where $Q=\{0,\dots,m\},\,q_0=0,\,F=\{m\}$, and the transition function δ is defined by

$$\delta(q,a) = \overline{ov}(p_1 \dots p_q a, p)$$
 for all $q \in Q$ and $a \in \Sigma$.

Algorithm for Constructing String Automaton

Algorithm 4.2 Construction of a string matching automaton

Input: A pattern $p = p_1 \dots p_m$ over an alphabet Σ .

```
\begin{aligned} & \textbf{for } q := 0 \textbf{ to } m \textbf{ do} \\ & \textbf{ for all } a \in \Sigma \textbf{ do} \\ & \{ \text{Compute } \delta(q, a) = \overline{ov}(p_1 \dots p_q a, p) \} \\ & k := \min\{m, q+1\} + 1 \\ & \textbf{ repeat} \\ & k := k-1 \\ & \textbf{ until } p_1 \dots p_k = p_{q-k+2} \dots p_q a \\ & \delta(q, a) := k \end{aligned}
```

Output: The string matching automaton $M_p = (\{0, ..., m\}, \Sigma, 0, \delta, \{m\}).$

Figure: Construction of a string matching automaton

- Running time: $O(\Sigma \cdot m^3)$
- Best running time up to date: $O(\Sigma \cdot m)$

String Matching with Finite Automata

Algorithm 4.3 String matching with finite automata

```
Input: A text t = t_1 \dots t_n \in \Sigma^n and a pattern p = p_1 \dots p_m \in \Sigma^m.
```

```
Compute the string matching automaton M_p = (Q, \Sigma, q_0, \delta, F) using Algorithm 4.2.
```

```
\begin{split} q &:= q_0 \\ I &:= \emptyset \\ \textbf{for } i &:= 1 \textbf{ to } n \textbf{ do} \\ q &:= \delta(q, t_i) \\ \textbf{if } q &\in F \textbf{ then} \\ I &:= I \cup \{i-m+1\} \end{split}
```

Output: The set I of those positions where p starts as a substring in t.

Figure: String matching with finite automata algorithm

Boyer-Moore Algorithm

Algorithm 4.6 Boyer–Moore algorithm

Input: A pattern $p = p_1 \dots p_m$ and a text $t = t_1 \dots t_n$ over an alphabet Σ .

- 1. Compute from p the function β for the bad character rule.
- 2. Compute from p the function γ for the good suffix rule.
- 3. Initialize the set I of positions, where p starts in t, by $I := \emptyset$.
- 4. Shift the pattern p along the text t from left to right:

```
\begin{split} j &:= 0 \\ \gamma(m+1) &:= m \; \{ \text{Good suffix rule not applicable for } p_m = t_{j+m} \} \\ \textbf{while } j &< n-m \; \textbf{do} \\ & \; \{ \text{Compare } p_1 \dots p_m \text{ and } t_{j+1} \dots t_{j+m} \text{ starting from the right} \} \\ i &:= m \\ \textbf{while } p_i = t_{j+i} \text{ and } i > 0 \; \textbf{do} \\ i &:= i-1 \\ \textbf{if } i &= 0 \; \textbf{then} \\ I &:= I \cup \{j\} \; \{ \text{The pattern } p \; \text{starts in } t \; \text{at position } j \} \\ & \; \{ \text{Compute the shift of the pattern according to the bad character rule and the good suffix rule} \} \\ j &:= j + \max\{i - \beta(t_{j+i}), m - \gamma(i+1) \} \end{split}
```

Output: The set I of all positions j in t where the pattern p starts.

Boyer-Moore: Best case

What's the best case?

```
P: bbbb
```

Every alignment yields immediate mismatch and bad character rule skips *n* alignments

How many character comparisons?

floor(m / n)

Naive vs Boyer-Moore

As m & n grow, # characters comparisons grows with...

P = n	T =m	Naïve matching	Boyer-Moore	
	Worst case	m·n	m	
	Best case	m	m/n	

Performance comparison

Simple Python implementations of naïve and Boyer-Moore:

	Naïve matching		Boyer-Moore		
	# character comparisons	wall clock time	# character comparisons	wall clock time	
P:"tomorrow"					17 matches
T : Shakespeare's complete works	5,906,125	2.90 s	785,855	1.54 s	T = 5.59 M
P: 50 nt string from Alu repeat* T: Human reference (hg19) chromosome 1	307,013,905	137 s	32,495,111	55 s	336 matches <i>T</i> = 249 M

^{*} GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

Boyer-Moore implementation

```
def boyer_moore(p, p_bm, t):
    """ Do Boyer-Moore matching
    i = 0
    occurrences = []
    while i < len(t) - len(p) + 1: # left to right
        shift = 1
        mismatched = False
        for j in range(len(p)-1, -1, -1): # right to left
            if p[j] != t[i+j]:
                skip_bc = p_bm.bad_character_rule(j, t[i+j])
                skip_gs = p_bm.good_suffix_rule(j)
                shift = max(shift, skip_bc, skip_gs)
                mismatched = True
                break
        if not mismatched:
            occurrences.append(i)
            skip_gs = p_bm.match_skip()
            shift = max(shift, skip gs)
        i += shift
    return occurrences
```

Preprocessing: Boyer-Moore

Preprocessing: Naïve algorithm

Preprocessing: Boyer-Moore

Preprocessing: trade one-time cost for reduced work overall via *reuse*

Boyer-Moore preprocesses *P* into lookup tables that are reused

reused for each alignment of P to T_1

If you later give me T_2 , I *reuse* the tables to match P to T_2

If you later give me T_3 , I *reuse* the tables to match P to T_3

•••

Cost of preprocessing is amortized over alignments & texts