Nom:			
Prénom:			
Groupe:	□ 1	□ 2	□ 3
que l'écra	,	e distano	ffraction à une fente. Si la taille de la fente est de 0.25 mm, ce de 1m de la fente et que le laser utilisé a une longueur z:
(a) (1 Po	int) La pos	sition du	maximum central (interférence constructive);
(b) (2 Po	ints) La po	sition d	u premier minimum (interférence destructrice);
(c) (2 Po	ints) La po	sition d	u deuxième minimum;
(d) (1 Po	int) La pos	sition du	troisième minimum;
(e) (1 Po	int) La tai	lle du ma	aximum central;
(f) (1 Po centra	,	stance ei	ntre deux minima consécutifs (du même côté du maximum
(g) (2 Po	ints) Un se	chéma de	e la situation.

2.

(5 points) Choix de réponse. Choisissez la (les) réponse(s) juste(s). Vous n'avez pas besoin de justifier votre réponse.	
(a) (1 Point) La lumière est une onde acquatique:	
□ Vrai;	
☐ Faux;	
☐ Il manque d'informations	
(b) (1 Point) La lumière est une onde longitudinale:	
□ Vrai;	
☐ Faux;	
\square Il manque d'informations	
(c) (1 Point) La polarisation représente une orientation préférentielle d'oscillation.	
□ Vrai;	
☐ Faux;	
\square Il manque d'informations	
(d) (1 Point) De la lumière non-polarisée peut être polarisée grâce à de la pen	sée
magique.	
□ Vrai;	
☐ Faux;	
\square Il manque d'informations	
(e) (1 Point) Le critère de Rayleigh permet d'estimer la résolution spatiale d'un	ар-
pareil.	
□ Vrai;	
☐ Faux;	
☐ Il manque d'informations	

$\Delta \phi = \phi_2 - \phi_1$	$\Delta\phi_{\text{tot}} = \Delta\phi_{\delta} + \Delta\phi_{r} + \Delta\phi_{0}$	$\delta = r_2 - r_1$	
$d\sin\theta=\delta$	an heta = y/L	$\Delta \phi_{\delta} = \left(\frac{r_2 - r_1}{\lambda}\right) (2\pi)$	
$m\lambda = \frac{yd}{L}$	$(m+1/2)\lambda = \frac{yd}{L}$	$\Delta\phi_{\delta}=rac{4\pi e n_p}{\lambda_0}$	
$\Delta \phi_{tot} = m(2\pi)$	$\Delta\phi_{\rm tot}=(m+1/2)(2\pi)$	$(1+x)^{\alpha}\approx 1+\alpha x$	
$\cos x \approx 1 - x^2/2 \approx 1$	$\sin x \approx x$	$\tan x \approx x$	
$a\sin\theta=M\lambda$	$\tan \theta = y/L$	$y_M = \frac{M\lambda L}{a}$	
$\theta_c = \frac{1.22\lambda}{D}$	$ an heta_p=n_2/n_1$	$I = I_0/2 I = I_0 \cos^2 \theta$	

Tabelle 1: Formules Utiles

Question	1	2	Total
Points	10	5	15
Points Boni	0	0	0
Obtenus			