ALGORITMOS EVOLUTIVOS

DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 8 de junho de 2025

Departamento de Ciência da Computação

POPULAÇÃO

Uma população é um conjunto de indivíduos

Uma metaheurística evolutiva (ou evolucionária) otimiza uma população

O Cada indivíduo é dito ser uma diferente solução

Existe uma infinidade de metaheurísticas evolucionárias

O Cada uma tenta imitar um processo natural

METAHEURÍSTICAS EVOLUCIONÁRIAS

Metaheurística que trabalha com um conjunto de soluções

O População, indivíduos, ...

Aplicam um conjunto de operadores evolutivos na tentativa de melhorar as soluções atuais

- Seleção
- Cruzamento
- Mutação

Operadores evolutivos são aplicados de forma iterativa

O Cada iteração é chamada de uma geração

PROCESSO EVOLUTIVO

PROCESSO EVOLUTIVO

REPRESENTAÇÃO DE UMA SOLUÇÃO

No geral, uma solução contém n elementos

- Vértices
- Arestas
- Items
- $\circ \dots$

No contexto de metaheurísticas evolucionárias, cada solução é dita ser um indivíduo

Deseja-se sempre ter uma representação de tamanho linear em relação ao número de elementos

REPRESENTAÇÃO DE UMA SOLUÇÃO

CONSTRUÇÃO DA POPULAÇÃO INICIAL

Existem, no geral, 4 diferentes maneiras de criar a população inicial

- 1. Pseudo-aleatório
- 2. Quasi-aleatório
- 3. Diversificação
- 4. Heurísticas

Strategy	Diversity	Computational Cost	Quality of Initial Sol
Pseudo-random	++	+++	+
Quasi-random	+++	+++	+
Sequential diversification	++++	++	+
Parallel diversification	++++	+++	+
Heuristic	+	+	+++

SELEÇÃO - ROLETA

SELEÇÃO - TORNEIO

Chromosome #		C_1	C_2	C_3	(C_4	C_5	C_6	C_7
Fitness value		10	8		6	9	4 7		
Tournament size= 3						domly	3 chromo	somes are	e selected
	Chromosome #			C_2		C_6	C_7		
	Fitness value			1		4	7		
Chromosome with best Fitness is se							ss is selecte		
		Winner Chromosome #				C_7	,		
	Fitness value					7			

CRUZAMENTO

CROSSOVER POINT

ONE POINT CROSSOVER

0	0	1	1	1	1
1	0	0	1	0	0

TWO POINT CROSSOVER

CROSSOVER POINTS

0	0	0	1	0	0
1	0	1	1	1	1

UNIFORM CROSSOVER

0	0	0	1	0	0
1	0	1	1	1	1

MUTAÇÃO

MUTAÇÃO

DIFERENTES METAHEURÍSTICAS EVOLUTIVAS

https://github.com/fcampelo/EC-Bestiary

ALGORITMO GENÉTICO

EVOLUÇÃO DIFERENCIAL

ENXAME DE PARTÍCULAS

