α) Είναι: C:
$$16x^2 + 25y^2 = 400$$
 ή C: $\frac{x^2}{25} + \frac{y^2}{16} = 1$, οπότε:

 α^2 = 25 \Leftrightarrow α = 5, άρα (A'A) = 2α = 2·5 = 10 είναι το μήκος του μεγάλου άξονα.

Επίσης $β^2$ = 16 ⇔ β = 4, άρα (B'B) = 2β = 2·4 = 8 είναι το μήκος του μικρού άξονα.

Ακόμη: $\gamma^2 = \alpha^2 - \beta^2 = 25 - 16 = 9$, οπότε $\gamma = 3$.

Άρα $E'(-\gamma,0)$ και $E(\gamma,0)$ ή E'(-3,0) και E(3,0) είναι οι εστίες της έλλειψης.

β) Έχουμε Ε'(-3,0) και Ε(3,0).

Θέλουμε η Ε' να είναι εστία της ζητούμενης παραβολής, άρα $\frac{p}{2}$ = -3 \Leftrightarrow p = -6, άρα

C': $y^2 = 2px$ ή C': $y^2 = 2 \cdot (-6)x$ ή C': $y^2 = -12x$, είναι η ζητούμενη εξίσωση.