

Emulation of Aerospace Actuation Systems

Students | Jake Dorsett, Kori Eliaz, & Dylan Gaub Faculty Advisor | Dr. James Cale Engineer in Residence (EiR) | Matt Heath, Woodward Inc.

Colorado State University | Department of Electrical and Computer Engineering

Project Relevance

- → Woodward, Inc. is validating an electrical drive alternative to replace current thrust reverser actuation systems
- > Replacing hydraulically/pneumatically powered parts with electric drive systems can result in the following benefits:
- > Reduced weight
- → Reduced maintenance
- → Additional data analytics for real-time system prognostics
- → A controller hardware in the loop (CHIL) platform allows for verification of these claims without incurring excessive research/dev costs

Main Project Goals

- ☑ Create a modular CHIL system for use by current & future CSU project teams, specifically the EMTRAS project
- ✓ Determine analog & digital I/O requirements for the microcontroller and OPAL-RT interface
- ✓ Develop C code to run a closed-loop CHIL experiment on a real-time DC machine system model loaded onto the OPAL-RT
- ☑ Create a GUI in LabVIEW to view real-time outputs from the system under test

Stretch Goals

- ☑ Construct a 3D printed enclosure to neatly organize the physical HIL architecture
- ✓ Document all design steps and experimental results in detailed report packages
- ✓ Include system requirements flow-through and design information using the principles of model-based systems engineering (MBSE)
- [IN WORK] Design a PI control loop to generate/validate stable outputs from the OPAL-RT, then verify through unit testing

Budget

ltem	Cost (with S/H)	Order Date
BNC-miniBNC Connector	(\$7.63)	9/21/2021
TI Microcontroller (x2) & Dev Board (x1)	(\$515.23)	2/18/2022
DB9 Connectors & Fasteners	(\$15.05)	4/1/2022
E-Days Materials	(\$61.77)	4/11/2022
Total Starting Budget	\$600.00	
Total Expenses	(\$599.68)	
Total Ending Budget	\$0.32	

Physical HIL Architecture

Hardware Elements:

- → TITMS320F28379D Microcontroller & Dev Board
- → OPAL-RT 5620
- → NI cRIO Controller
- → 3D Printed Microcontroller Enclosure
- → DB9 Wire Harness

Constraints:

OPAL 5600 RT Machine	TI TMS320F28379D
• I/O: -30V to 30V	• 3.3V I/O design
• OPAL 5620 8 I/O Flat	• -0.3V min to 4.6V max (0-3.3
Carrier:	V nominal operating range)
o output: +/- 12VDC @ 1.2A	• -20mA to 20mA
(mezzanine A/B)	• 50 kHz synchronization rate
o output: +/- 18VDC @ 0.8A	 Requires code written in C
(mezzanine A/B)	(no object-oriented
o input: +/- 12VDC @ 6A;	functionality)
+/- 5VDC @ 3A	 Requires code to be written
• OPAL 5142 Digital I/O: 0-3 V	in the TI Code Composer
 Onboard XILINX Spartan 3A 	Studio IDE
FPGA: 3.3V (LVTTL)	
 12 nodes maximum 	
• Requires miniBNC connector	

Prototype Evolution:

Required/Acquired Skills

- Embedded Systems/Control Algorithms in C
- → MATLAB/Simulink
- → HIL Construction and Interfacing
- → LabVIEW GUI Design
- → System Modeling Using MBSE Practices
- → Defining/Testing GPIO Interfaces
- → 3D Printing

Software HIL Architecture

Inputs to OPAL-RT (0-3 V)

- → Duty Cycle [0 to 100% +/- 3%]
- → Load Torque [-0.2 Nm 0.2 Nm +/- 3%]

Outputs from OPAL-RT (0-3.3 V @ 20 mA)

- → Motor Speed [-600 to 600 rad/s +/- 3%]
- → Armature Current [-2.5 to 2.5 A +/- 3%]

Software Elements

→ µController Code, OPAL-RT Model, LabVIEW GUI

Fig. 6 – LabVIEW-Based CHIL GUI

Model-Based Systems Engineering

- > Team followed the MBSE process to create a verifiable and easily upgradable system
- → Defined a set of 25 functional/non-functional requirements according to INCOSE standard
- → Modeled various viewpoints of the system using Use Case Diagrams, Sequence Diagrams, & Internal Block Diagrams in Cameo Systems Modeler
- → Used Cameo Systems Modeler as central repository of system design information, accelerating project completion

Fig. 7 - Physical Hardware Interface Diagram

Documentation

- → HTML Export of Code Commentary
- → TI-OPAL Interface Definition
- → Systems Cameo Model
- → System Pinout Schematic
- Public GitHub Repository
- → Team Website

Team

B.S. Electrical Engineering Aerospace Concentration Team Role: Project Manager

B.S. Electrical Engineering Team Role: Hardware Lead

Dylan GaubB.S. Electrical Engineering Minor in Computer Science Team Role: Software Lead

Acknowledgements

- → Woodward, Inc.
- → Dr. James Cale
- Claudio Lima
- Chris Lute
- Matt Heath
- → Sarah Dorsett

Olivera Notaros

- → Alauna Sutton
- → Ethan Schultz
- → Jayesh Narsinghani

