

DATA STRUCTURES AND ALGORITHMS

GRAPHS

Definition

- A graph G consists of two sets
 - a finite, nonempty set of vertices V(G)
 - a finite, possible empty set of edges E(G)
 - G(V,E) represents a graph
- An undirected graph is one in which the pair of vertices in a edge is unordered, (v0, v1) = (v1,v0)
- A directed graph is one in which each edge is a directed pair of vertices, < v0, v1 > != < v1, v0 >

tail head

Examples for Graph

 G_1

complete graph

incomplete graph

$$\begin{array}{lll} V(G1) = & & & & & & & & & & & \\ V(G1) = & & & & & & & \\ V(G2) = & & & & & & \\ V(G2) = & & & & & \\ V(G3) = & & & & \\ V(G3) = & & & & \\ \end{array}$$

complete undirected graph: n(n-1)/2 edges complete directed graph: n(n-1) edges

Complete Graph

- A complete graph is a graph that has the maximum number of edges
 - for undirected graph with n vertices, the maximum number of edges is n(n-1)/2
 - for directed graph with n vertices, the maximum number of edges is n(n-1)
 - example: G1 is a complete graph

Adjacent and Incident

- If (v0, v1) is an edge in an undirected graph,
 - v0 and v1 are adjacent
 - The edge (v0, v1) is incident on vertices v0 and v1
- If <v0, v1> is an edge in a directed graph
 - v0 is adjacent to v1, and v1 is adjacent from v0
 - The edge < v0, v1 > is incident on <math>v0 and v1

(b) multiple occurrences of the same edge

Subgraph and Path

- A subgraph of G is a graph G' such that V(G') is a subset of V(G) and E(G') is a subset of E(G)
- A path from vertex vp to vertex vq in a graph G, is a sequence of vertices, vp, vi1, vi2, ..., vin, vq, such that (vp, vi1), (vi1, vi2), ..., (vin, vq) are edges in an undirected graph
- The length of a path is the number of edges on it

subgraphs of G1 and G3

(a) Some of the subgraph of G_1

subgraphs of G1 and G3 (contd.) 分開 (i) (iii) (iv) (ii) G_3 (b) Some of the subgraph of G₃

- A simple path is a path in which all vertices, except possibly the first and the last, are distinct
- A cycle is a simple path in which the first and the last vertices are the same
- In an undirected graph G, two vertices, v0 and v1, are connected if there is a path in G from v0 to v1
- An undirected graph is connected if, for every pair of distinct vertices vi, vj, there is a path from vi to vj

Connected

tree (acyclic graph)

bla

y

Connected Component

- A connected component of an undirected graph is a maximal connected subgraph.
- A tree is a graph that is connected and acyclic.
- A directed graph is strongly connected if there is a directed path from vi to vj and also from vj to vi.
- A strongly connected component is a maximal subgraph that is strongly connected.

A graph with two connected components

1

Strongly connected components of G3

not strongly connected

strongly connected component (maximal strongly connected subgraph)

Degree

- The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
 - o the in-degree of a vertex ν is the number of edges that have ν as the head
 - the out-degree of a vertex v is the number of edges that have vas the tail
 - if di is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$e = (\sum_{i=0}^{n-1} d_i)/2$$

undirected graph

directed graph in-degree out-degree

in:1, out: 1

in: 1, out: 2

in: 1, out: 0

 G_3

ADT for Graph

structure Graph is

functions: for all $graph \in Graph$, v, v_1 and $v_2 \in Vertices$

Graph Create()::=return an empty graph

Graph InsertVertex(graph, ν)::= return a graph with ν inserted. ν has no incident edge.

Graph InsertEdge(graph, v1, v2)::= return a graph with new edge between v1 and v2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to it are removed

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) is removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE else return FALSE

List Adjacent(graph, v)::= return a list of all vertices that are adjacent to v

Graph Representations

- Adjacency Matrix
- Adjacency Lists
- Adjacency Multilists

Adjacency Matrix

- Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
- If the edge (vi, vj) is in E(G), adj_mat[i][j]=1
- If there is no such edge in E(G), adj_mat[i][j]=0
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Examples for Adjacency Matrix

symmetri

 $n^{2}/2$ directed: n²

undirected:

Merits of Adjacency Matrix

- From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex is
- For a digraph, the row sum is the out_degree, while the column sum is the in_degree

$$\sum_{j=0}^{n-1} adj_mat[i][j]$$

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{j=0}^{n-1} A[i,j]$

Data Structures for Adjacency Lists

Each row in adjacency matrix is represented as an adjacency list.

```
#define MAX_VERTICES 50
typedef struct node *node_pointer;
typedef struct node {
    int vertex;
    struct node *link;
};
node_pointer graph[MAX_VERTICES];
int n=0; /* vertices currently in use */
```


An undirected graph with n vertices and e edges ==> n head nodes and e list nodes

Interesting Operations

degree of a vertex in an undirected graph

of nodes in adjacency list

of edges in a graph

determined in O(n+e)

out-degree of a vertex in a directed graph

of nodes in its adjacency list

in-degree of a vertex in a directed graph

traverse the whole data structure

node[0] ... node[n-1]: starting point for vertices node[n]: n+2e+1 node[n+1] ... node[n+2e]: head node of edge

1		

[0]	9		[8]	23		[16]	2	
[1]	11	0	[9]	1	4	[17]	5	
[2]	13		[10]	2	5	[18]	4	
[3]	15	1	[11]	0		[19]	6	
[4]	17		[12]	3	6	[20]	5	
[5]	18	2	[13]	0		[21]	7	
[6]	20		[14]	3	7	[22]	6	
[7]	22	3	[15]	1				

Inverse adjacency list for G3

Determine in-degree of a vertex in a fast way.

Alternate node structure for adjacency lists

tail	head	column link for head	row link for tail

Orthogonal representation for graph G3

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Alternate order adjacency list for G1

Order is of no significance.

Adjacency Multilists

- An edge in an undirected graph is represented by two nodes in adjacency list representation.
- Adjacency Multilists

lists in which nodes may be shared among several lists. (an edge is shared by two different paths)

marked	vertex1	vertex2	path1	path2

Lists: vertex 0: M1->M2->M3, vertex 1: M1->M4->M5 vertex 2: M2->M4->M6, vertex 3: M3->M5->M6

six edges

Adjacency Multilists

```
typedef struct edge *edge_pointer;
typedef struct edge {
    short int marked;
    int vertex1, vertex2;
    edge_pointer path1, path2;
};
edge_pointer graph[MAX_VERTICES];
```

marked vertex1	vertex2	path1	path2
----------------	---------	-------	-------

Some Graph Operations

Traversal

Given G=(V,E) and vertex v, find all $w \in V$, such that w connects v.

Depth First Search (DFS) preorder tree traversal Breadth First Search (BFS) level order tree traversal

- Connected Components
- Spanning Trees

Graph G and its adjacency lists

depth first search: v0, v1, v3, v7, v4, v5, v2, v6

breadth first search: v0, v1, v2, v3, v4, v5, v6, v7

Depth First Search


```
#define TRUE 1
short int visited[MAX_VERTICES];

void dfs(int v)
{
   node_pointer w;
   visited[v]= TRUE;
   printf("%5d", v);
   for (w=graph[v]; w; w=w->link)
      if (!visited[w->vertex])
            dfs(w->vertex);
}
```

#define FALSE 0

Data structure adjacency list: O(e) adjacency matrix: O(n²)

Breadth First Search

Breadth First Search (Continued)

```
void bfs(int v)
{
  node_pointer w;
  queue_pointer front, rear;
  front = rear = NULL;
  printf("%5d", v);
  visited[v] = TRUE;
  addq(&front, &rear, v);
```

adjacency list: O(e)

adjacency matrix: O(n²)


```
while (front) {
  v= deleteq(&front);
  for (w=graph[v]; w; w=w->link)
   if (!visited[w->vertex]) {
     printf("%5d", w->vertex);
```

addq(&front, &rear, w->vertex);

visited[w->vertex] = TRUE;

Connected Components

```
void connected(void)
{
    for (i=0; i<n; i++) {
        if (!visited[i]) {
            dfs(i);
            printf("\n");
        }
    }
}</pre>
```

adjacency list: O(n+e) adjacency matrix: O(n²)

Spanning Trees

- When graph G is connected, a depth first or breadth first search starting at any vertex will visit all vertices in G
- A spanning tree is any tree that consists solely of edges in G and that includes all the vertices
- E(G): T (tree edges) + N (nontree edges)

where T: set of edges used during search N: set of remaining edges

 G_1

Possible spanning trees

Spanning Trees

- Either dfs or bfs can be used to create a spanning tree
 - When dfs is used, the resulting spanning tree is known as a depth first spanning tree
 - When bfs is used, the resulting spanning tree is known as a breadth first spanning tree
- While adding a nontree edge into any spanning tree, this will create a cycle

DFS Spanning

BFS Spanning

A spanning tree is a minimal subgraph, G', of G such that V(G')=V(G) and G'is connected.

Any connected graph with n vertices must have at least n-1 edges.

A biconnected graph is a connected graph that has no articulation points.

biconnected graph

biconnected components

If u is an ancestor of v then dfn(u) < dfn(v).

Vertax	0	1	2	3	4	5	6	7	8	9
dfn	4	3	2	0	1	5	6	7	9	8
low	4	0	0	0	0	5	5	5	9	8

• The root of a depth first spanning tree is an articulation point iff it has at least two children.

• Any other vertex u is an articulation point iff it has at least one child w such that we cannot reach an ancestor of u using a path that consists of

(1) only w (2) descendants of w (3) single back edge.

low(u)=min{dfn(u),
min{low(w)|w is a child of u},
min{dfn(w)|(u,w) is a back edge}

u: articulation point low(child) ≥ dfn(u)

				1	
vertex	dfn	low	child	low_child	low:dfn
0	4	4 (4,n,n)	null	null	null:4
1	3	0 (3,4,0)	0	4	4 ≥ 3 •
2	2	0 (2,0,n)	1	0	0 < 2
3	0	0 (0,0,n)	4,5	0,5	0,5 ≥ 0 •
4	1	0(1,0,n)	2	0	0 < 1
5	5	5 (5,5,n)	6	5	5 ≥ 5 •
6	6	5 (6,5,n)	7	5	5 < 6
7	7	5 (7,8,5)	8,9	9,8	9,8 ≥ 7 •
8	9	9 (9,n,n)	null	null	null, 9
9	8	8 (8,n,n)	null	null	null, 8

βια

Initializaiton of dfn and low

```
void init(void)
{
  int i;
  for (i = 0; i < n; i++) {
     visited[i] = FALSE;
     dfn[i] = low[i] = -1;
     }
     num = 0;
}</pre>
```


Determining dfn and low

```
void dfnlow(int u, int v)
                                   Initial call: dfn(x,-1)
/* compute dfn and low while performing a dfs search
  beginning at vertex u, v is the parent of u (if any) */
    node_pointer ptr;
    int w;
                                   low[u]=min\{dfn(u), ...\}
    dfn[u] = low[u] = num++;
    for (ptr = graph[u]; ptr; ptr = ptr ->link) {
       w = ptr ->vertex;
    y<sub>↑</sub> if (dfn[w] < 0) { /*w is an unvisited vertex */
        dfnlow(w, u);
        low[u] = MIN2(low[u], low[w]);
               low[u]=min{..., min{low(w)|w is a child of u}, ...}
dfn[w]≠0 非第一次,表示藉back edge
    else if (w != v)
        low[u] = MIN2(low[u], dfn[w]);
         low[u]=min\{...,min\{dfn(w)|(u,w) \text{ is a back edge}\}\
```


Biconnected components of a graph

```
P M Q
```

```
void bicon(int u, int v)
/* compute dfn and low, and output the edges of G by their
 biconnected components, v is the parent (if any) of the u
 (if any) in the resulting spanning tree. It is assumed that all
entries of dfn[] have been initialized to -1, num has been
initialized to 0, and the stack has been set to empty */
  node_pointer ptr;
  int w, x, y;
                                low[u]=min\{dfn(u), ...\}
  dfn[u] = low[u] = num ++;
  for (ptr = graph[u]; ptr; ptr = ptr->link) {
   w = ptr ->vertex;
                                (1) dfn[w]=-1 第一次
   if (v!= w && dfn[w] < dfn[u]) (2) dfn[w]!=-1非第一次,藉back
     add(&top, u, w); /* add edge to stack */
                                                                   edge
```



```
if(dfn[w] < 0) {/* w has not been visited */
                    bicon(w, u); low[u]=min\{..., min\{low(w)|w \text{ is a child of } u\},...\}
          low[u] = MIN2(low[u], low[w]);
     if (low[w] >= dfn[u] ){ articulation point
      printf("New biconnected component: ");
          do { /* delete edge from stack */
                  delete(&top, &x, &y);
                printf(" <%d, %d>", x, y);
          } while (!((x = = u) \&\& (y = = w)));
                      printf("\n");
 else if (w != v) low[u] = MIN2(low[u], dfn[w]);
low[u]=min\{..., ..., min\{dfn(w)|(u,w) \text{ is a back edge}\}\}
```


Y

Minimum Cost Spanning Tree

- The cost of a spanning tree of a weighted undirected graph is the sum of the costs of the edges in the spanning tree
- A minimum cost spanning tree is a spanning tree of least cost
- Three different algorithms can be used
 - Kruskal
 - Prim
 - Sollin

Select n-1 edges from a weighted graph of n vertices with minimum cost.

Greedy Strategy

- An optimal solution is constructed in stages
- At each stage, the best decision is made at this time
- Since this decision cannot be changed later, we make sure that the decision will result in a feasible solution
- Typically, the selection of an item at each stage is based on a least cost or a highest profit criterion

Kruskal's Idea

- Build a minimum cost spanning tree T by adding edges to T one at a time
- Select the edges for inclusion in T in nondecreasing order of the cost
- An edge is added to T if it does not form a cycle
- Since G is connected and has n > 0 vertices, exactly n-1 edges will be selected

Kruskal's Algorithm

```
BI
```

```
目標:取出n-1條edges
T= \{ \} ;
while (T contains less than n-1 edges
         && E is not empty) {
choose a least cost edge (v,w) from E; min heap construction time O(e)
delete (v,w) from E;
                               choose and delete O(log e)
if ((v,w) does not create a cycle in T)
     add (v,w) to T
                                 find find & union O(log e)
 else discard (v,w);
\{0,5\}, \{1,2,3,6\}, \{4\} + edge(3,6) X + edge(3,4) --> \{0,5\}, \{1,2,3,4,6\}
if (T contains fewer than n-1 edges)
  printf("No spanning tree\n");
```


Prim's Algorithm

(tree all the time vs. forest)

```
T=\{ \} ;
TV = \{0\};
while (T contains fewer than n-1 edges)
  let (u,v) be a least cost edge such
    that u \in TV and v \notin TV
  if (there is no such edge ) break;
  add v to TV;
  add (u,v) to T;
if (T contains fewer than n-1 edges)
  printf("No spanning tree\n");
```


Examples for Prim's Algorithm 18 10/ 10, 25

Determine the shortest paths from v0 to all the remaining vertices.

*Figure 6.29: Graph and shortest paths from v_0 (p.293)

ngth

(b)

		P	
			7
\overline{C}	NY	MIA	N(
]	[5]	[6]	
	250	+90 (14-α

Iteration	S	Vertex	LA	SF	DEN	CHI	BO	NY	MIA	NO
		Selected	[0]	[1]	[2]	[3]	[4]	[5]	[6]	
Initial			$+\infty$	$+\infty$	$+\infty$ (b)	1500	0	250	+\phi ((1 / ∞
1	{4} (a))5	$+\infty$	$+\infty$	$+\infty$	1250	0	250	1150	1650
2	{4,5} (e	6	$+\infty$	$+\infty$	$+\infty$	1250	0	250	1150	1650
3	$\{4,5,6\}$ (g)	3	$+\infty$	$+\infty$	2450	1250	0	250	1150	1650
4	$\{4,5,6,3\}$ (i)	7	3350	$+\infty$	2450	1250	0	250	1150	1650
5	{4,5,6,3,7}	2	3350	3250	2450	1250	0	250	1150	1650
6	{4,5,6,3,7,2}	1	3350	3250	2450	1250	0	250	1150	1650
7	{4,5,6,3,7,2,1}									

Data Structure for SSAD

```
#define MAX VERTICES 6
                         adjacency matrix
int cost[][MAX VERTICES]=
   {{ 0, 50, 10, 1000, 45, 1000},
   {1000, 0, 15, 1000, 10, 1000},
    { 20, 1000, 0, 15, 1000, 1000},
    {1000, 20, 1000, 0, 35, 1000},
    {1000, 1000, 30, 1000, 0, 1000},
    {1000, 1000, 1000, 3, 1000, 0}};
int distance[MAX VERTICES];
short int found{MAX VERTICES];
int n = MAX VERTICES;
```


Single Source All Destinations

```
void shortestpath(int v, int
 cost[][MAX ERXTICES], int distance[], int n,
  short int found[])
  int i, u, w;
  for (i=0; i<n; i++) {
                                 O(n)
    found[i] = FALSE;
    distance[i] = cost[v][i];
  found[v] = TRUE;
  distance[v] = 0;
```



```
for (i=0; i<n-2; i++) {determine n-1 paths from v
 u = choose(distance, n, found);
  found[u] = TRUE;
  for (w=0; w< n; w++)
    if (!found[w]) 與u相連的端點w
      if (distance[u]+cost[u][w]<distance[w])</pre>
        distance[w] = distance[u]+cost[u][w];
                  O(n^2)
```


All Pairs Shortest Paths

- Find the shortest paths between all pairs of vertices.
- Solution 1
 - Apply shortest path n times with each vertex as source. $O(n^3)$
- Solution 2
 - Represent the graph G by its cost adjacency matrix with cost[i][j]
 - If the edge <i,j> is not in G, the cost[i][j] is set to some sufficiently large number
 - A[i][j] is the cost of the shortest path form i to j, using only those intermediate vertices with an index <= k

- The cost of the shortest path from i to j is A^{n-1} [i][j], as no vertex in G has an index greater than n-1
- $\bar{A}^{l}[i][j]=cost[i][j]$
- Calculate the $A^0, A^1, A^2, ..., A^{n-1}$ from \bar{A}^1 iteratively
- $A[i][j]=min\{A[i][j],A[i][k]+A[k][j]\},k>=0$

7

Graph with negative cycle

$$\begin{bmatrix} 0 & 1 & \infty \\ -2 & 0 & 1 \\ \infty & \infty & 0 \end{bmatrix}$$

(a) Directed graph

The length of the shortest path from vertex 0 to vertex 2 is $-\infty$.

Algorithm for All Pairs Shortest Paths

```
void allcosts(int cost[][MAX VERTICES],
          int distance[][MAX VERTICES], int n)
  int i, j, k;
  for (i=0; i<n; i++)
    for (j=0; j<n; j++)
    distance[i][j] = cost[i][j];</pre>
  for (k=0; k< n; k++)
    for (i=0; i<n; i++)
      for (j=0; j<n; j++)
         if (distance[i][k]+distance[k][j]
             < distance[i][j])</pre>
            distance[i][j]=
                 distance[i][k]+distance[k][j];
```


(a)Digraph G

(b)Cost adjacency matrix for G

Transitive Closure

- (1) Require positive path (> 0) lengths.
- (2) Require nonnegative path (≥0) lengths.

transitive closure matrix reflexive transitive closure matrix

(a) Digraph G

(b) Adjacency matrix A for G

reflexive

(c) transitive closure matrix A+

There is a path of length ≥0

(d) reflexive transitive closure matrix A*

Thank You!

