Principles of Cyber-Physical Systems

Principles of Cyber-Physical Systems Rajeev Alur

The MIT Press Cambridge, Massachusetts London, England

© 2015 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email special_sales@mitpress.mit.edu.

This book was set using LATEX by the author. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Alur, Rajeev, 1966-

Principles of cyber-physical systems / Rajeev Alur.

p. cm

Includes bibliographical references and index.

ISBN: 978-0-262-02911-7 (hardcover: alk. paper)

- 1. Automatic control. 2. System design. 3. Embedded internet devices.
- 4. Internet of things. 5. Formal methods (Computer science). I. Title.

TJ213.A365 2015

006.2'2—dc23

2014039755

Contents

P	Preface							
1	Introduction							
	1.1	What	Is a Cyber-Physical System?	1				
	1.2		Features of Cyber-Physical Systems	2				
	1.3		riew of Topics	5				
	1.4		e to Course Organization	7				
2	Syn	chron	ous Model	13				
	2.1	React	ive Components	13				
		2.1.1	Variables, Valuations, and Expressions	13				
		2.1.2	Inputs, Outputs, and States	14				
		2.1.3	Initialization	15				
		2.1.4	Update	16				
		2.1.5	Executions	18				
		2.1.6	Extended-State Machines	19				
	2.2	Prope	erties of Components	21				
		2.2.1	Finite-State Components	21				
		2.2.2	Combinational Components	22				
		2.2.3	Event-Triggered Components*	24				
		2.2.4	Nondeterministic Components	26				
		2.2.5	Input-Enabled Components	29				
		2.2.6	Task Graphs and Await Dependencies	30				
	2.3 Composing Components							
		2.3.1	Block Diagrams	36				
		2.3.2	Input/Output Variable Renaming	38				
		2.3.3	Parallel Composition	38				
		2.3.4	Output Hiding	47				
	2.4	Synch	ronous Designs	49				
		2.4.1	Synchronous Circuits	50				
		2.4.2	Cruise Control System	54				
		2.4.3	Synchronous Networks*	58				
	Bibl	iograph	nic Notes	63				

viii Contents

3	Safe	ety Re	quirements				65
	3.1		Specifications				65
		3.1.1	Invariants of Transition Systems				65
		3.1.2	Role of Requirements in System Design				70
		3.1.3	Safety Monitors				75
	3.2	Verifyi	ing Invariants				78
		3.2.1	Proving Invariants				78
		3.2.2	Automated Invariant Verification *				85
		3.2.3	Simulation-Based Analysis				87
	3.3	Enume	erative Search *				90
	3.4	Symbo	olic Search				97
		3.4.1	Symbolic Transition Systems				98
		3.4.2	Symbolic Breadth-First Search				103
		3.4.3	Reduced Ordered Binary Decision Diagrams*				109
	Bibl	iograph	ic Notes				123
		0 1					
4	\mathbf{Asy}	nchror	nous Model				125
	4.1	Async	hronous Processes				
		4.1.1	States, Inputs, and Outputs				
		4.1.2	Input, Output, and Internal Actions				126
		4.1.3	Executions				131
		4.1.4	Extended-State Machines				132
		4.1.5	Operations on Processes				136
		4.1.6	Safety Requirements				141
	4.2	Async	hronous Design Primitives				142
		4.2.1	Blocking vs. Non-blocking Synchronization .				142
		4.2.2	Deadlocks				143
		4.2.3	Shared Memory				145
		4.2.4	Fairness Assumptions *				154
	4.3	Async	hronous Coordination Protocols				
		4.3.1	Leader Election				
		4.3.2	Reliable Transmission				167
		4.3.3	Wait-Free Consensus *				170
	Bibl	iograph	ic Notes				179
5	Live	nnoss F	Requirements				181
J	5.1		oral Logic				
	0.1		Linear Temporal Logic				182
		5.1.1	LTL Specifications				189
		5.1.2 $5.1.3$	LTL Specifications for Asynchronous Processe				193
		5.1.3 $5.1.4$	Beyond LTL*				193 197
	5.2		Checking				197
	5.4	5.2.1	Büchi Automata				200
		5.2.1 $5.2.2$	From LTL to Büchi Automata*				200
		5.2.2 $5.2.3$	Nested Depth-First Search*				
		5.2.4	Symbolic Repeatability Checking				210

Contents ix

	5.3	Provin	g Liveness *
		5.3.1	Eventuality Properties
		5.3.2	Conditional Response Properties
	Bibl	iograph	ic Notes
6	Dyr	namica	l Systems 231
	6.1	Contin	uous-Time Models
		6.1.1	Continuously Evolving Inputs and Outputs 231
		6.1.2	Models with Disturbance
		6.1.3	Composing Components
		6.1.4	Stability
	6.2	Linear	Systems
		6.2.1	Linearity
		6.2.2	Solutions of Linear Differential Equations
		6.2.3	Stability
	6.3	Design	ing Controllers
		6.3.1	Open-Loop vs. Feedback Controller 263
		6.3.2	Stabilizing Controller
		6.3.3	PID Controllers *
	6.4	Analys	sis Techniques *
		6.4.1	Numerical Simulation
		6.4.2	Barrier Certificates
	Bibl	iograph	ic Notes
7	Tin	ned Mo	$_{ m odel}$
	7.1	Timed	Processes
		7.1.1	Timing-Based Light Switch
		7.1.2	Buffer with a Bounded Delay
		7.1.3	Multiple Clocks
		7.1.4	Formal Model
		7.1.5	Timed Process Composition
		7.1.6	Modeling Imperfect Clocks *
	7.2	Timing	g-Based Protocols
		7.2.1	
		7.2.2	Audio Control Protocol*
		7.2.3	Dual Chamber Implantable Pacemaker
	7.3	Timed	Automata
		7.3.1	Model of Timed Automata
		7.3.2	Region Equivalence *
		7.3.2 7.3.3	Region Equivalence*

x Contents

8	Rea	d-Time	e Scheduling	339
	8.1	Schedi	uling Concepts	. 339
		8.1.1	Scheduler Architecture	. 340
		8.1.2	Periodic Job Model	. 341
		8.1.3	Schedulability	. 345
		8.1.4	Alternative Job Models	. 350
	8.2	EDF S	Scheduling	. 352
		8.2.1	EDF for Periodic Job Model	. 352
		8.2.2	Optimality of EDF	. 356
		8.2.3	Utilization-Based Schedulability Test	. 358
	8.3	Fixed-	-Priority Scheduling	
		8.3.1	Deadline-Monotonic and Rate-Monotonic Policies	. 361
		8.3.2	Optimality of Deadline-Monotonic Policy*	. 365
		8.3.3	Schedulability Test for Rate-Monotonic Policy *	. 371
	Bibl	iograph	iic Notes	
9	Hyl	orid Sy	vstems	379
	9.1	Hybrid	d Dynamical Models	. 379
		9.1.1	Hybrid Processes	. 379
		9.1.2	Process Composition	. 386
		9.1.3	Zeno Behaviors	. 389
		9.1.4	Stability	. 393
	9.2	Design	ning Hybrid Systems	. 395
		9.2.1	Automated Guided Vehicle	. 395
		9.2.2	Obstacle Avoidance with Multi-robot Coordination	. 398
		9.2.3	Multi-hop Control Networks*	. 406
	9.3	Linear	Hybrid Automata*	. 413
		9.3.1	Example Pursuit Game	. 414
		9.3.2	Formal Model	. 417
		9.3.3	Symbolic Reachability Analysis	. 420
	Bibl	iograph	iic Notes	. 430
Bi	ibliog	graphy		431
In	dex			439

Preface

A cyber-physical system consists of computing devices communicating with one another and interacting with the physical world via sensors and actuators. Increasingly, such systems are everywhere, from smart buildings to medical devices to automobiles. The challenge of developing design and analysis tools to ensure reliability of such systems has attracted researchers from academia as well as industry over the past decade resulting in a vibrant and multi-disciplinary field of study.

The goal of this textbook is to provide an introduction to the principles of design, specification, modeling, and analysis of cyber-physical systems. These principles are drawn from a diverse set of sub-disciplines including model-based design, concurrency theory, distributed algorithms, formal methods for specification and verification, control theory, real-time systems, and hybrid systems. I have attempted to provide a coherent introduction to selected ideas from these different topics that are relevant to the design and analysis of cyber-physical systems. Throughout the textbook, mathematical concepts of modeling, specification, and analysis are illustrated by representative case studies from distributed algorithms, network protocols, control design, and robotics.

The textbook is self-contained, and is suitable for a semester-long course aimed at upper level undergraduate or first-year graduate students in computer science, computer engineering, or electrical engineering. Chapter 1 discusses alternatives for selection of topics for the organization of such a course.

My interest in cyber-physical systems is rooted in the fruitful research collaboration with Tom Henzinger on hybrid systems dating back to 1990s. Furthermore, the organization of this textbook is based on the unpublished manuscript titled Computer-Aided Verification coauthored by Tom and me. Some of the examples and figures in chapters 2 and 3 are copied from this manuscript with Tom's permission. Thus Tom's contribution to this textbook is invaluable and I am deeply grateful to him.

My understanding of cyber-physical systems and the contents of this book are greatly influenced by my interactions with faculty and students in PRECISE, a research center focused on cyber-physical systems in Penn Engineering. I am grateful to my colleagues Vijay Kumar, Insup Lee, Rahul Mangharam, George Pappas, Linh Phan, Oleg Sokolsky, and Ufuk Topcu for continued collaborations and support. I am also thankful to DARPA and NSF for providing sustained funding to my research projects in cyber-physical systems.

For the past five years, I have used drafts of this textbook in the course titled *Principles of Embedded Computation* aimed primarily at the Embedded Systems Masters program at Penn. Teaching this course on a regular basis has been a key motivating factor for finishing this book, and the feedback from students has significantly improved its contents. Thanks to all my students and also to

xii Preface

the wonderful teaching assistants: Sanjian Chen, Zhihao Jiang, Salar Moarref, Truong Nghiem, Nimit Singhania, and Rahul Vasist.

I have also been fortunate to receive feedback on drafts of this manuscript from researchers at other universities. In particular, chapters 6 and 9 are much improved based on the suggestions from Sriram Sankaranarayanan and Paulo Tabuada. Special thanks to Christos Stergiou for carefully proofreading a recent version and his help with Matlab simulations of the examples in chapter 9.

This is also an opportunity to thank my publisher, MIT Press, for supporting this project. In particular, Virginia Crossman, Marie Lufkin Lee, and Marc Lowenthal have offered help and encouragement throughout the process of publishing this book.

Writing a textbook takes many years, and would not have been possible without the support of my family. I am particularly grateful to my wife, Mona, for her friendship, love, and patience.

Rajeev Alur University of Pennsylvania Philadelphia, USA January 2015