Prof. Marcelo de Souza

55MQU – Métodos Quantitativos Universidade do Estado de Santa Catarina

Pré-condições para aplicação do método Simplex

Função objetivo deve ser de maximização;

- Restrições devem ser equações com lado direito não negativo;
 - exceto restrições triviais (não-negatividade).

$$\sum_{\mathfrak{i}\in [\mathfrak{n}]}a_{\mathfrak{j}\mathfrak{i}}x_{\mathfrak{i}}=b_{\mathfrak{j}},\quad \forall \mathfrak{j}\in [\mathfrak{m}]$$

► Todas as variáveis são não negativas.

$$x_i \geqslant 0$$
, $\forall i \in [n]$

Transformações (função objetivo)

Função objetivo de minimização para maximização (e vice-versa)

ightharpoonup Multiplica por -1.

minimiza
$$z = 3x_1 - 2x_2 \iff \text{maximiza} \quad -z = -3x_1 + 2x_2$$

Transformações (restrições)

Desigualdades para equações com lado direito não negativo

- As restrições representam limites no uso de algum recurso por meio de inequações;
- ► A diferença entre o primeiro e segundo membros da inequação indica a quantidade de recurso sobrando ou excedente;
- Para transformar desigualdades em equações introduzimos variáveis de folga ou sobra;
- ightharpoonup Em caso de lado direito negativo, multiplicamos por -1.

Transformações (restrições)

Desigualdades para equações com lado direito não negativo

- As restrições representam limites no uso de algum recurso por meio de inequações;
- ► A diferença entre o primeiro e segundo membros da inequação indica a quantidade de recurso sobrando ou excedente;
- Para transformar desigualdades em equações introduzimos variáveis de folga ou sobra;
- ightharpoonup Em caso de lado direito negativo, multiplicamos por -1.

$$3x_1 + 2x_2 \le 16 \iff 3x_1 + 2x_2 + s_1 = 16, \quad s_1 \ge 0$$

Transformações (restrições)

Desigualdades para equações com lado direito não negativo

- As restrições representam limites no uso de algum recurso por meio de inequações;
- ► A diferença entre o primeiro e segundo membros da inequação indica a quantidade de recurso sobrando ou excedente;
- Para transformar desigualdades em equações introduzimos variáveis de folga ou sobra;
- ightharpoonup Em caso de lado direito negativo, multiplicamos por -1.

$$3x_1+2x_2\leqslant 16\quad\Longleftrightarrow\quad 3x_1+2x_2+s_1=16,\quad s_1\geqslant 0$$

$$x_1-2x_2\geqslant 6\quad\Longleftrightarrow\quad x_1-2x_2-S_1=6,\quad S_1\geqslant 0$$

Transformações (restrições)

Desigualdades para equações com lado direito não negativo

- As restrições representam limites no uso de algum recurso por meio de inequações;
- ► A diferença entre o primeiro e segundo membros da inequação indica a quantidade de recurso sobrando ou excedente;
- Para transformar desigualdades em equações introduzimos variáveis de folga ou sobra;
- ightharpoonup Em caso de lado direito negativo, multiplicamos por -1.

$$3x_1 + 2x_2 \le 16$$
 \iff $3x_1 + 2x_2 + s_1 = 16$, $s_1 \ge 0$
 $x_1 - 2x_2 \ge 6$ \iff $x_1 - 2x_2 - S_1 = 6$, $S_1 \ge 0$
 $2x_1 - x_2 \ge -8$ \iff $-2x_1 + x_2 + S_1 = 8$. $S_1 \ge 0$

Transformações (adicionais)

Restrição ≤ em ≥ (e vice-versa)

ightharpoonup Multiplica por -1.

$$3x_1 + 2x_2 \le 16 \iff -3x_1 - 2x_2 \ge -16$$

Variável irrestrita x_i em não negativa

▶ Introduz novas variáveis $x_i^+ \ge 0$ e $x_i^- \ge 0$, e define $x_i = x_i^+ - x_i^-$.

$$2x_1 + x_2 \leqslant 10, \quad x_1 \geqslant 0, x_2 \lessgtr 0 \quad \Longleftrightarrow \quad 2x_1 + x_2^+ - x_2^- \leqslant 10, \quad x_1, x_2 \geqslant 0.$$

Exemplo

Dado o modelo abaixo, apresente o modelo equivalente na forma normal.

Exemplo

Dado o modelo abaixo, apresente o modelo equivalente na forma normal.

Se o modelo de PL está na forma padrão:

- ▶ ele é representado por um conjunto de m equações em n variáveis;
- ightharpoonup sendo $\mathfrak{m} < \mathfrak{n}$ (regra geral);
 - ightharpoonup se $\mathfrak{m}=\mathfrak{n}$: o sistema possui uma única solução trivial;
 - **>** se m > n: existem pelo menos m n restrições redundantes.

Se o modelo de PL está na forma padrão:

- ▶ ele é representado por um conjunto de m equações em n variáveis;
- ightharpoonup sendo $\mathfrak{m} < \mathfrak{n}$ (regra geral);
 - ightharpoonup se $\mathfrak{m}=\mathfrak{n}$: o sistema possui uma única solução trivial;
 - **>** se $\mathfrak{m} > \mathfrak{n}$: existem pelo menos $\mathfrak{m} \mathfrak{n}$ restrições redundantes.

Ao igualar $\mathfrak n - \mathfrak m$ variáveis a zero e resolver as $\mathfrak m$ equações para as $\mathfrak m$ variáveis restantes, obtemos uma solução básica, que corresponde a um ponto extremo (viável ou inviável) e, portanto, a uma solução candidata a ótima.

Exemplo

Exemplo

Exemplo

O sistema possui:

- m = 2 equações $\{2x_1 + x_2 + s_1 = 4, x_1 + 2x_2 + s_2 = 5\};$
- $ightharpoonup n = 4 \text{ variáveis } \{x_1, x_2, s_1, s_2\}$

Exemplo

O sistema possui:

- m = 2 equações $\{2x_1 + x_2 + s_1 = 4, x_1 + 2x_2 + s_2 = 5\};$
- n = 4 variáveis $\{x_1, x_2, s_1, s_2\}$

Logo, zerando n-m=4-2=2 variáveis e determinando o valor das m=2 variáveis restantes, obtemos uma solução básica.

Exemplo

O sistema possui:

- m = 2 equações $\{2x_1 + x_2 + s_1 = 4, x_1 + 2x_2 + s_2 = 5\};$
- $ightharpoonup n = 4 \text{ variáveis } \{x_1, x_2, s_1, s_2\}$

Logo, zerando n-m=4-2=2 variáveis e determinando o valor das m=2 variáveis restantes, obtemos uma solução básica.

Exemplos:

$$x_1 = 0, x_2 = 0 \rightarrow s_1 = 4, s_2 = 5$$
 (A)

$$ightharpoonup s_1 = 0, \ s_2 = 0 \ \rightarrow \ x_1 = 1, \ x_2 = 2 \ (B)$$

$$x_1 = 0, \ s_1 = 0 \ \rightarrow \ x_2 = 4, \ s_2 = -3 \ (F)$$

Exemplo

Todas as soluções básicas

Variáveis não básicas	Variáveis básicas	Solução básica	Ponto	Viável	Valor
(x_1, x_2)	(s_1, s_2)	(4,5)	Α	Sim	0
$(\mathbf{x}_1, \mathbf{s}_1)$	(x_2, s_2)	(4, -3)	F	Não	_
(x_1, s_2)	(x_2, s_1)	(2,5,1,5)	В	Sim	7,5
$(\mathbf{x}_2, \mathbf{s}_1)$	(x_1, s_2)	(2,3)	D	Sim	4
(x_2, s_2)	(x_1, s_1)	(5, -6)	E	Não	_
(s_1, s_2)	(x_1, x_2)	(1,2)	С	Sim	8

A solução (1, 2) é a solução ótima, com valor 8.

Solução algébrica por busca exaustiva

- 1. Determina todas as soluções básicas do modelo;
 - ightharpoonup Zera $\mathfrak n-\mathfrak m$ variáveis (não básicas) e determina o valor para as $\mathfrak m$ variáveis restantes (básicas); repete para toda combinação possível.
- 2. Calcula o valor da função objetivo para cada solução básica viável e retorna a melhor.

Vietodo Simplex

Solução algébrica por busca exaustiva

- 1. Determina todas as soluções básicas do modelo;
 - Zera n m variáveis (não básicas) e determina o valor para as m variáveis restantes (básicas); repete para toda combinação possível.
- 2. Calcula o valor da função objetivo para cada solução básica viável e retorna a melhor.

Número total de soluções básicas é dado por

$$C_{\mathfrak{m}}^{\mathfrak{n}} = \frac{\mathfrak{n}!}{\mathfrak{m}!(\mathfrak{n} - \mathfrak{m})!}$$

Para n=20 e m=10 (PL pequeno): $C_{10}^{20}=184.756$ conjuntos de 10×10 equações!

Solução algébrica por busca exaustiva

- 1. Determina todas as soluções básicas do modelo;
 - ► Zera n − m variáveis (não básicas) e determina o valor para as m variáveis restantes (básicas); repete para toda combinação possível.
- 2. Calcula o valor da função objetivo para cada solução básica viável e retorna a melhor.

Número total de soluções básicas é dado por

$$C_{\mathfrak{m}}^{\mathfrak{n}} = \frac{\mathfrak{n}!}{\mathfrak{m}!(\mathfrak{n}-\mathfrak{m})!}$$

Para n=20 e m=10 (PL pequeno): $C_{10}^{20}=184.756$ conjuntos de 10×10 equações!

Método simplex propõe estratégias para avaliar somente parte das soluções básicas viáveis.

Natureza iterativa

Dado um programa linear na forma padrão:

- 1. Determina uma solução básica inicial;
- 2. Se a solução for ótima, retorna;
- 3. Caso contrário, determina a melhor solução básica adjacente;
- 4. Volta ao passo 2.

Natureza iterativa

Dado um programa linear na forma padrão:

- 1. Determina uma solução básica inicial;
- 2. Se a solução for ótima, retorna;
- 3. Caso contrário, determina a melhor solução básica adjacente;
- 4. Volta ao passo 2.

Solução básica inicial: geralmente $x_1 = 0$, $x_2 = 0$, com função objetivo z = 0.

Determinação da solução adjacente: seleciona a variável não básica que produz a maior taxa de melhoria na função objetivo.

Neste caso, uma variável sai da base para dar lugar à nova.

Visão geral

Inicia no ponto A:

- Solução básica inicial: $x_1 = 0$, $x_2 = 0$;
- ► Variáveis não básicas: (x₁, x₂);
- ▶ Variáveis básicas: (s₁, s₂);

Visão geral

Inicia no ponto A:

- Solução básica inicial: $x_1 = 0$, $x_2 = 0$;
- ▶ Variáveis não básicas: (x₁, x₂);
- ightharpoonup Variáveis básicas: (s_1, s_2) ;

Pela função objetivo ($z = 2x_1 + 3x_2$):

- ► Variável x₂ tem maior contribuição;
- Seleciona x₂ e aumenta o máximo possível;

Visão geral

Inicia no ponto A:

- Solução básica inicial: $x_1 = 0$, $x_2 = 0$;
- ▶ Variáveis não básicas: (x₁, x₂);
- \triangleright Variáveis básicas: (s_1, s_2) ;

Pela função objetivo ($z = 2x_1 + 3x_2$):

- ► Variável x₂ tem maior contribuição;
- Seleciona x₂ e aumenta o máximo possível;
- **>** ...

Detalhes:

- Seleciona uma variável por vez;
- Sempre faz o caminho "guloso";
- ► A próxima solução é sempre "vizinha".

Visão geral

Variáveis básicas e não básicas:

Ponto	Variáveis	Variáveis
extremo	básicas	não básicas
A B C	$s_1, s_2 s_1, x_2 x_1, x_2$	$x_1, x_2 \\ x_1, s_2 \\ s_1, s_2$

Passos:

- 1. x_2 entra na base; s_2 sai da base;
- 2. x_1 entra na base; s_1 sai da base.

Questões:

- ► Como decidir quem entra e quem sai?
- Como identificar a solução ótima?

Algoritmo

$$\begin{array}{ll} \text{maximiza} & z = 5x_1 + 4x_2 \\ \text{sujeito a} & 6x_1 + 4x_2 + s_1 = 24 \\ & x_1 + 2x_2 + s_2 = 6 \\ & -x_1 + x_2 + s_3 = 1 \\ & x_2 + s_4 = 2 \\ & x_1, x_2, s_1, s_2, s_3, s_4 \geqslant 0 \end{array}$$

Algoritmo

Base	z	x_1	x_2	s_1	s_2	s_3	S 4	Sol.
z	1	-5	-4	0	0	0	0	0
s ₁ s ₂ s ₃ s ₄	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
84	0	0	1	0	0	0	1	2

maximiza	$z = 5x_1 + 4x_2$
sujeito a	$6x_1 + 4x_2 + s_1 = 24$
	$x_1 + 2x_2 + s_2 = 6$
	$-x_1 + x_2 + s_3 = 1$
	$x_2 + s_4 = 2$
	$x_1, x_2, s_1, s_2, s_3, s_4 \geqslant 0$

Dada a solução básica inicial $(x_1,x_2)=(0,0)$, montamos a tabela simplex inicial com:

- todas variáveis do modelo (colunas);
- as variáveis da base (linhas);
- equações do modelo e seus coeficientes (linhas);
- valor de cada equação (última coluna).

Algoritmo

Base	z	χ_1	x_2	s_1	s_2	s_3	S 4	Sol.
z								
s ₁ s ₂ s ₃ s ₄	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
S 4	0	0	1	0	0	0	1	2

maximiza	$z = 5x_1 + 4x_2$
sujeito a	$6x_1 + 4x_2 + s_1 = 24$
	$x_1 + 2x_2 + s_2 = 6$
	$-x_1 + x_2 + s_3 = 1$
	$x_2 + s_4 = 2$
	x_1 , x_2 , s_1 , s_2 , s_3 , $s_4 \geqslant 0$

Informações:

- Variáveis não básicas: (x₁,x₂)
- ► Variáveis básicas: (s₁,s₂,s₃,s₄)
- lacksquare Solução básica: $x_1=0$, $x_2=0$, $s_1=24$, $s_2=6$, $s_3=1$, $s_4=2$. Função objetivo z=0.

Teste de otimalidade: solução é ótima se na linha z não há nenhum valor negativo.

▶ Se há valores negativos, mudar as variáveis correspondentes melhoram a solução!

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	S 4	Sol.
z	1	-5	-4	0	0	0	0	0
s ₁ s ₂ s ₃ s ₄	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
S 4	0	0	1	0	0	0	1	2

maximiza	$z = 5x_1 + 4x_2$
sujeito a	$6x_1 + 4x_2 + s_1 = 24$
	$x_1 + 2x_2 + s_2 = 6$
	$-x_1 + x_2 + s_3 = 1$
	$x_2 + s_4 = 2$
	x_1 , x_2 , s_1 , s_2 , s_3 , $s_4 \geqslant 0$

Solução não é ótima. Logo, seleciona uma variável para entrar na base e outra para sair.

Seleção de variável entrante: aquela com coeficiente mais negativo na linha z.

- Ou seja, a que mais contribui para a melhoria da função objetivo!
- A variável define a coluna pivô.

Algoritmo

Base	z	χ_1	x_2	s_1	s_2	s_3	S 4	Sol.
z	1	-5	-4	0	0	0	0	0
s_1	0	6	4	1	0	0	0	24 6 1
\mathbf{s}_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
S 4	0	0	1	0	0	0	1	2

maximiza	$z = 5x_1 + 4x_2$
sujeito a	$6x_1 + 4x_2 + s_1 = 24$
	$x_1 + 2x_2 + s_2 = 6$
	$-x_1 + x_2 + s_3 = 1$
	$x_2 + s_4 = 2$
	$x_1, x_2, s_1, s_2, s_3, s_4 \geqslant 0$

Variável x_1 tem o menor coeficiente (-5); x_1 entra na base e identificamos a coluna pivô.

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	S 4	Sol.
z	1	-5	-4	0	0	0	0	0
s_1	0	6	4	1	0	0	0	24 6 1 2
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
S 4	0	0	1	0	0	0	1	2

Seleção de variável sainte: aquela cuja linha apresenta a menor razão não negativa.

► A variável define a linha pivô.

Razão não negativa =
$$\frac{\text{valor da solução}}{\text{valor na coluna pivô}}$$

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	S 4	Sol.
								0
s_1	0	6	4	1	0	0	0	24 6 1 2
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
S 4	0	0	1	0	0	0	1	2

Razão não negativa:

Linha s_1 : 24/6 = 4

Linha s_2 : 6/1 = 4

Linha s_3 : 1/-1 = -1 (negativa; descarta)

▶ Linha s_4 : $2/0 = \infty$ (descarta)

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	S 4	Sol.
z	1	-5	-4	0	0	0	0	0
s_1	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
S 4	0	0	1	0	0	0	1	2

maximiza	$z = 5x_1 + 4x_2$
sujeito a	$6x_1 + 4x_2 + s_1 = 24$
	$x_1 + 2x_2 + s_2 = 6$
	$-x_1 + x_2 + s_3 = 1$
	$x_2 + s_4 = 2$
	$x_1, x_2, s_1, s_2, s_3, s_4 \geqslant 0$

Razão não negativa:

► Linha s_1 : 24/6 = 4 ← menor valor não negativo!

▶ Linha s_2 : 6/1 = 4

Linha s_3 : 1/-1 = -1 (negativa; descarta)

▶ Linha s_4 : $2/0 = \infty$ (descarta)

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	S 4	Sol.
z	1	-5	-4	0	0	0	0	0
s_1	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
S 4	0	0	1	0	0	0	1	6 1 2

maximiza	$z = 5x_1 + 4x_2$
sujeito a	$6x_1 + 4x_2 + s_1 = 24$
	$x_1 + 2x_2 + s_2 = 6$
	$-x_1 + x_2 + s_3 = 1$
	$x_2 + s_4 = 2$
	x_1 , x_2 , s_1 , s_2 , s_3 , $s_4 \geqslant 0$

Informações:

- ightharpoonup Variável que entra na base: x_1 (terá seu valor aumentado);
- ightharpoonup Variável que sai da base: s_1 (terá seu valor zerado);
- ightharpoonup Coluna pivô: x_1 ;
- ► Linha pivô: *s*₁;
- ► Elemento pivô: 6 (interseção da coluna e linha pivôs).

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	S 4	Sol.
z	1	-5	-4	0	0	0	0	0
s ₁ s ₂ s ₃ s ₄	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
S 4	0	0	1	0	0	0	1	2

Base	z	χ_1	χ_2	s_1	s_2	s_3	s ₄	Sol.
z								
χ_1								
s_2								
s_3								
S4								

Algoritmo

Base	z	χ_1	x_2	s_1	s_2	s_3	s ₄	Sol.	Base $\begin{vmatrix} z & x_1 & x_2 & s_1 & s_2 & s_3 & s_4 \end{vmatrix}$ Sol.	
z	1	-5	-4	0	0	0	0	0	z	
s_1	0	6	4	1	0	0	0	24	x_1	
s_2	0	1	2	0	1	0	0	6	s_2	
s_3	0	-1	1	0	0	1	0	1	s ₃	
S 4	0	0	1	0	0	0	1	2	S ₄	

Troca de variáveis (tabela): operações de Gauss-Jordan

- ► Na linha pivô:
 - 1. Substitui a variável que sai da base pela variável que entra na base (coluna "Base");
 - 2. Calcula a nova linha pivô como

Nova linha pivô =
$$\frac{\text{linha pivô atual}}{\text{elemento pivô}}$$

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	S 4	Sol.	Base	z	χ_1	7
z	1	-5	-4	0	0	0	0	0	z			
s ₁ s ₂	0	6	4	1	0	0	0	24	χ_1	0	1	2,
s_2	0	1	2	0	1	0	0	6	s_2			
s_3	0	-1	1	0	0	1	0	1	s_3			
S ₄	0	0	1	0	0	0	1	2	S 4			

Base	z	χ_1	χ_2	s_1	s_2	s_3	S 4	Sol.
z								
x_1 s_2	0	1	2/3	1/6	0	0	0	4
s ₂ s ₃								
84								

Atualização da linha pivô:

- Coluna *z*: 0/6 = 0
- Coluna x_1 : 6/6 = 1
- Coluna x_2 : 4/6 = 2/3
- Coluna s_1 : 1/6 = 1/6; coluna s_2 : 0/6 = 0; coluna s_3 : 0/6 = 0; coluna s_4 : 0/6 = 0
- ► Coluna "Sol.": 24/6 = 4

Algoritmo

Base	z	χ_1	x_2	s_1	s_2	s_3	s ₄	Sol.	Base	z	χ_1	χ_2	s_1	s_2	s_3	s ₄	Sol.
z	1	-5	-4	0	0	0	0	0	z								
s_1	0	6	4	1	0	0	0	24	χ_1	0	1	2/3	1/6	0	0	0	4
s_2	0	1	2	0	1	0	0	6	s_2								
s_3	0	-1	1	0	0	1	0	1	s_3								
s ₄	0	0	1	0	0	0	1	2	S 4								

Troca de variáveis (tabela): operações de Gauss-Jordan

Nas demais linhas:

Nova linha = linha atual - coeficiente na coluna pivô \times nova linha pivô

Algoritmo

Base	z	χ_1	χ_2	s_1	s_2	s_3	S ₄	Sol.
z	1	-5	-4	0	0	0	0	0
s ₁ s ₂ s ₃ s ₄	0	6	4	1	0	0	0	24
s_2	0	1	2	0	1	0	0	6
s_3	0	-1	1	0	0	1	0	1
S 4	0	0	1	0	0	0	1	2

	κ_1	x_2	s_1	s_2	s_3	S ₄	Sol.
$z \mid 1$	0	-2/3	5/6	0	0	0	20
$\begin{bmatrix} x_1 & 0 \\ s_2 & s_3 \end{bmatrix}$	1	2/3	1/6	0	0	0	4

Atualização da linha z:

- ► Coluna *z*: $1 (-5) \times 0 = 1$
- Coluna x_1 : $-5 (-5) \times 1 = 0$
- ► Coluna x_2 : $-4 (-5) \times 2/3 = -2/3$
- Coluna s_1 : $0 (-5) \times 1/6 = 5/6$; coluna s_2 : $0 (-5) \times 0 = 0$; coluna s_3 : $0 (-5) \times 0 = 0$; coluna s_4 : $0 (-5) \times 0 = 0$

► Coluna "Sol.": $0 - (-5) \times 4 = 20$

Algoritmo

Base	Z	χ_1	χ_2	s_1	s_2	S ₃	S4	Sol.
Z	1	-5	-4	0	0	0	0	0
s ₁	0	6	4	1	0	0	0	24
s_2	0	1	2	\bigcirc	1	0	0	6
S 3	0	-1	1	\bigcirc	\bigcirc	1	0	1
s ₁ s ₂ s ₃ s ₄	0	0	1	0	0	0	1	2

Base	z	χ_1	x_2	s_1	s_2	s_3	s ₄	Sol.
z	1	0	-2/3	5/6	0	0	0	20
χ_1	0	1	2/3	1/6 -1/6 1/6	0	0	0	4
s_2	0	0	4/3	-1/6	1	0	0	2
s_3	0	0	5/3	1/6	0	1	0	5
S ₄	0	0	1	0	0	0	1	2

Informações:

- ▶ Variáveis não básicas: (s₁,x₂)
- ightharpoonup Variáveis básicas: (x_1, s_2, s_3, s_4)
- lackbox Solução básica: $s_1=0$, $x_2=0$, $x_1=4$, $s_2=2$, $s_3=5$, $s_4=2$. Função objetivo z=20.

Solução é ótima? Não, pois há valores negativos na linha z.

► Repita o processo.

