10-708	23/06/2020
Uz-review	(
i) worpy B.P. + Bethe approximation (UIA) ii) conjugate duality, marginal polytope, and polytope (UIb)	
1110-100PM BP	
(2)- why at factor graphs wardward.	
6)-what is notice of graph mslides?	
(x) wal and global consistency	
- define:-	
the ce G3, 815, SES3 as set of functions and separator sets.	NO C
- These sets of functions are locally consistent if the following paper	1100
hold:-	
$\sum_{x's} \tau_s(x's) = 1 \forall S \in S (normalisation)$	
Z $\tau_c(x_c') = \tau_s(x_s) \ \forall \ C \in G$, $S \in C$ (merginalise	1(an) (2)
x'c/x's=xs	
- not fully sure about these conditions	
(also) - relevity	
ons is the context west collibrated clique and segret beliefs give	
OSI) -> closely > - Essentially states that calibrated alique and sepset beliefs give - Essentially states that calibrated alique and sepset beliefs give - valid magnal probabilities valid magnal probabilities.	
(3) functions associated with segsets - poper maginals	
The same of the sa	
which are not in the sepset, obtain to(xs)	
(x) Global consistency -> u and is are valid marginals	

(x) bumple quoted by pathological case - see Jordan (2007) ch 17. · the situation amonts to a violation of the junction tree paperty (*) singlection of general rule that local existency => global consistency (X) Appax inf. asaltemative: -- For junction trees; local consistency is equivalent to glove consistency. - my not convert all GMS - junction trees? (to perform exact inferice) - tree night and comp compexity may still ne 100 high to be tractable (x) Belief propagation (nessage-uporate) equations - Apply standard nelley papagation/nessage passing to a loopy graph -more specifically, an MN/UGM with N nodes; pairuse potedials (0/52) An ambiguity (mild) -> slides specify powerse and simpleton (vedidia 2002, 2001) (vedidia 2001, 2002) specify that the singleton potentials are local politials. widere rodes - We nove: -(1)

Joint publishes district of painise MRF: $p(x_1, x_N) = \frac{1}{2} \prod_{i \neq j} (x_i, x_j) \prod_{i \neq j} (x_i)$ $p(x_1, x_N) = \frac{1}{2} \prod_{i \neq j} (x_i, x_j) \prod_{i \neq j} (x_i)$

Brupounes:- $M_{i\rightarrow j}(x_{j}) \propto \sum_{x_{i}} 4_{ij}(x_{i},x_{j}) 4_{i}(x_{i}) \prod_{\substack{R \in N(i) \setminus j \\ k \in N(i) \setminus j}} M_{R\rightarrow i}(x_{i}) \pmod{n}$ $= \alpha \sum_{x_{i}} 4_{ij}(x_{i},x_{j}) 4_{i}(x_{i}) \prod_{\substack{R \in N(i) \setminus j \\ k \in N(i) \setminus j}} M_{R\rightarrow i}(x_{i})$

(wellefs) vi(xi) of yi(xi) IT MR>i(xi) re N(i) = xyi(xi) TI MR->i(xi) · a-normalisation unstant · N(i)) - all nodes neighboring i, except j · MR7: - ressege that node it sends to node; · vi - velief (magnal posterior pabability at noce i) (x) · fig(xi,xi) -pairouse potential learner willy · (ti) - external evidence / road evidence for node i. (x) Note: - messages recursively computed from meaning messages 10 that rode [when The Re Nli)\j - nelicts computed from all mooning ressages (and potential) to that node (new T (notice no 1)) D: when pairwise MRF is singly connected i.e. no loops; the beliefs we exact; Blis exact when pairuse MRF is loopy; both exectness, unugue not guarateed. (*) Yediolia (2002):-- empirical study by Murphy, wess, Jordan (1997) - peal noted autome where messages continually avuilate with no wavegure to stable equilibrium (1988) - But loopy BP. also reformed well (ix. gave good appax.) in certain situations eg. two codes (neci snamon livrit petermence) or compute usion

(1) redidia (2001):INEQUELICAL clarification on what approximation B.P. represents on
Inequelical clarification on the properties of t

(x) Approximating intract distri (recep). (see yeardin 2002)

- ostà a 10 appax introclable disti P.

- Klaufiles austance between 2 pab distri. (Map) p(x)= 1 Tl falxa)

 $KL(Q|IP) = \sum_{X} Q(X) \log \left(\frac{Q(X)}{P(X)} \right)$

- Za(x) 109 Q(x) - ZQ(x) 109 P(x)

= -Ha(x)-Ea [10g P(x)]

- HQ(X) - EQ log I TT falxa)

= - Ha(x) - 10g(\frac{1}{2}) - \frac{1}{2} \text{Eq[10g fa(xa)]}
fact

=-HQ(X)- I ta[logfa(Xa)] + log Z

= F(P,Q) + log Z

· FIP,Q) = - HQ(X) - E FQ[10g fa(Xa)] - free energy

015 3): connect this with presentation in (b)

· F(P,Q) - free cology

· Ha(X) - expry

(x) FICE energy, entropy for tree structured G-MS - Tree structured G-MS have joint pab .: -Yediolia $\rho(x_1,...,x_g) = \nu(x) = \pi b_n(x_n)$ X-entire 11 vi(zi) (di-1) space of inputs (not abuse) (x) or in rediction's (2002) spec :-- trying to $b(\{x\}) = \prod_{i,j} b_{ij}(x_i,x_j)$ that tie-ups notatia should Tvi(xi) 21-1 red obscure (# Entropy and free energy: Have and Face: -Hane = Hp(X) = - 2 b(X) in b(X) $= -\frac{\sum_{i} \left(\frac{\pi_{\alpha} b_{\alpha}(x_{\alpha})}{\pi_{i} b_{i}(x_{i})(\alpha_{i}-1)} \right) \ln \left(\frac{\pi_{\alpha} b_{\alpha}(x_{\alpha})}{\pi_{i} b_{i}(x_{i})(\alpha_{i}-1)} \right)}{\pi_{i} b_{i}(x_{i})(\alpha_{i}-1)}$ $= -\frac{1}{2} \left(\frac{\sqrt{|a|ba(2a)}}{\sqrt{|a|bi(2a)(di-1)}} \right) \left\{ \frac{1}{2} \ln b(2a) - (di-1) \frac{1}{2} \ln bi(2a) \right\}$ $= -\frac{1}{x} \left(\frac{5}{2} \log(x_a) \ln b(x_a) - (di-1) \frac{7}{2} \left(\frac{1}{\nu_i(x_i)^{di-1}} \right) \ln \nu_i(x_i) \right)$ " otch (3) 6/SY -) come back to this (*) Note that: - There is a decomposition movistand of total entropy our a tree nov to to a fuction of utropy of getins balka) and bi(xi) -stockehone - But no explicit deir. Mi-(*) There are some notes in warninght & Jordon (2008) yeolidia (2001, 2002) well v, sorteg et al. (...) 100110 (1009) - labably elementary.

Fine =
$$-\frac{1}{\alpha} \sum_{\alpha} \frac{1}{2\alpha} \frac{p_{\alpha}(z_{\alpha})}{f_{\alpha}(z_{\alpha})} + \sum_{i} (1-d_{i}) \sum_{\beta} p_{i}(z_{i}) \ln b(z_{i})$$

(...)
$$\rho_{\mu}(x) := \prod_{s \in V} \mu_{s}(x_{s}) \prod_{s \in V} \frac{\mu_{st}(x_{s}, x_{t})}{\mu_{s}(x_{s}) \mu_{t}(x_{t})}$$

In (pst) :=
$$\sum_{(x_5,x_4)\in X_5} p_{54}(x_5,x_4) \log \frac{p_{54}(x_5,x_4)}{p_{5}(x_5)}$$
 $p_{54}(x_5,x_4) \log \frac{p_{54}(x_5,x_4)}{p_{5}(x_5)}$

- For tree-structured graphs; and A* can be expressed as explicit and essily computable fraction of mean parameters p.

(x) (a). with this in mind, He bette approx. to the entropy of an MRF with cycles is easily occaribed.

(4) 60: Il simply assumes that our our position (4.11) is approx. valid for graphs with cycles.

(*) Inis assumption yields the Bethe extrapy appaximation:-

(4.14) $-A^{*}(\tau) \approx H_{Bethe}(\tau) := \underbrace{\Sigma}_{SeV} H_{S}(\tau_{S}) - \underbrace{\Sigma}_{S, t \in E} I_{St}(\tau_{St})$

(*) Note that impains (4.11) and (4.14) -> replacement of exect maginals in with I for pseudomarginals

(1): Yedidia et al. used an alterative form of the Bette extropy approx (4.14)

(x) that is obtained by relation:-Isa (151) = H5 (15) + H2 (4) - H52 (151)

where Hise is the joint entropy defined by the pseudomagnal tist.

(x) This ad algebraic manipulation: -

(4.15) Hpethe $(\tau) = -\sum_{S \in V} (d_S - 1) H_S(\tau_S) + \sum_{(S, t) \in E} H_{St}(\tau_{St})$

where ols was parols to no. of reighbours of s. (degree).

(x) Beine appox to Gibbs free enegy

- For general graphs, including non-tree structured GMS; the Bethe approximation, not is the Bethe approximation of the fee energy (and whopy) uses the free-energy functional form which is derived for the-structured GMS

- We select: F(P,Q) = Fourthe Hpetne = - 2 5 ba(3a) in b(3a) + 2(di-1) 5 bi(2i) inbi(2i) where:-Frethe = $-\sum_{\alpha} \sum_{z=1}^{\infty} \frac{p_{\alpha}(z_{\alpha})}{f_{\alpha}(z_{\alpha})} + \sum_{i} (1-oli) \sum_{z=1}^{\infty} \ln p_{i}(z_{i}) = -\langle f_{\alpha}(z_{\alpha}) \rangle - H_{nethe}$ @ Equivalent to the Gibbs fee energy was factor graph is a tree word groups. Freine = Fir+Fiz+ ... + Fift + Figs - Fi - Fs ... - 2Fz-2F6 - F8 (x) in general; Hyerne & Hiree min Frence (bi(zi), ba(Za)) (x) constrained minimisation of Bethe fee energy 5.1. & vi(xi): 1 , 5 va(xo): 31 xol3; 6/2: - pefine a lograngion:-Xa13: 6(3:) L(bi(zi), ba(za), 1) = Frene + Z xi { \frac{1}{2}i bi(zi) - 1} $+\sum_{\alpha}\sum_{i\in N(\alpha)}\sum_{x_i}\sum_{\lambda}\lambda_{\alpha i}(x_i)\left\{\sum_{x_i}\sum_{x_i$

- objective frethe - enstrants: local consistency instrumts (normalisation; magnialisation).

3L = 0 => bi(zi) × exp (di-laen(i)) hai(zi)}

 $\frac{\partial L}{\partial h_0(x_0)} = 0 \Rightarrow h_0(x_0) \propto \exp\left(-\frac{\pi}{4}(x_0) + \frac{\pi}{2} \lambda_{0i}(x_i)\right)$

representation

```
- westify hai(zi) = log (Mi-)a(zi))
              = 109 T Mb-; (%;)
                 be N(i) la
- Get B.P. equations: - bills;) & file;) IT Marills;)
                                      ae N(i)
                       palsa) & falsa) IT IT Mczi (zi)
                                        ien(a) cen(i) la
0/56: Fill in gops of dein when you
      none time to conclude -> some resources ready for you at rand.
(x) some nighter
  Dey points from recolings:-
 redidia (2002, 2001): - fixed points of the Bralgorithm
                      correspond to stationary points of the Bette
                      fill begy
                  :- Bethe appax , for which energy and entropy
                     are apparinated by at most pairs of nodes
                     is the simplest form of the Kikuchi cluster varietional
                     retund. (a gual appoximation).
(x) generalised belief propagation algorithms minimise on arbitrary
                                                      kikuchi fle eergy
                                                           (approx)
     (GBP)
 (of which bette is one of them).
(*) 1015 viewpoint of greating tractable appar. to hibbs free energy
  also motivates the use variational pespective on the MF approx.
  to free elegy and exapty (fractions of one node beliefs)
(x) and therefore establishes a connection/vonicalismal pespective on
  MF and Bethe approximations.
```