

Bases de de Datos 1

Alejandra Lliteras Prof. Titular

Federico Orlando Prof. Adjunto

TEMAS GENERALES

Bases de Datos 1

TEMAS Y SUBTEMAS

Álgebra Relacional (AR)

Conceptos Generales

Lenguaje de Consulta
Operaciones fundamentales
Operaciones adicionales

Lenguaje de Manipulación Operaciones de manipulación

- Lenguaje algebraico donde:
 - los cambios de estado se especifican mediante operaciones,
 - los operandos son relaciones y
 - el resultado es una nueva relación

- Lenguaje algebraico donde:
 - los cambios de estado se especifican mediante operaciones,
 - los operandos son relaciones y
 - el resultado es una nueva relación
- Proporciona una base teórica

Lenguaje de Consulta

Lenguaje de manipulación

- Lenguaje de Consulta
 - Operaciones fundamentales
 - Operaciones adicionales

Lenguaje de manipulación

- Lenguaje de Consulta
 - Operaciones fundamentales
 - Operaciones adicionales

- Lenguaje de manipulación
 - Operaciones de manipulación

Lenguaje de Consultas Operaciones Fundamentales

- Son suficientes para expresar cualquier consulta en álgebra relacional
 - Selección (σ)
 - Proyección (Π)
 - Producto Cartesiano (X)
 - Renombre (p)
 - De una relación
 - De atributos de una relación
 - Unión (∪)
 - Diferencia ()

Lenguaje de Consulta

Operaciones fundamentales

Selección (σ)

- Operación unaria ($\sigma_{condición}$ R)
- Requiere una condición booleana
 - Operaciones: and, or y not
- El resultado es una relación con un subconjunto "horizontal" de la relación dada

Selección (σ)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

E#	Nombre	Edad
320	José	34
322	Rosa	37

Proyección (II)

- Operación unaria ($\Pi_{ ext{lista_de_atributos}}$ R)
- Dada una lista de atributos produce un corte "vertical" de la relación
 - Los atributos de la lista se toman de izquierda a derecha.

■ Proyección (**II**)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Nombre	Edad
José	34
Rosa	37
María	25

Producto Cartesiano (X)

- Operación binaria (A X B)
- El resultado es una relación que incluye todas las tuplas posibles que se obtienen concatenando cada tupla de A con cada una de las tuplas de B
 - La concatenación de una tupla
 a=(a1, ..., am) y una tupla
 b=(bm+1, ..., bm+n), es una tupla
 t=(a1,..., am, bm+1, ..., bm+n)

Producto Cartesiano (X)

Ingenieros

E#	Nombre	D#
320	José	D1
322	Rosa	D3

Proyectos

Proyecto	Tiempo
RX338A	21
PY254Z	32

Ingenieros X Proyectos

E#	Nombre	D#	Proyecto	Tiempo
320	José	D1	RX338A	21
320	José	D1	PY254Z	32
322	Rosa	D3	RX338A	21
322	Rosa	D3	PY254Z	32

Producto Cartesiano (X)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros X Jefes

Ingenieros.E#	Ingenieros. Nombre	Ingenieros.Edad	Jefes.E#	Jefes. Nombre	Jefes.Edad
320	José	34	320	José	34
320	José	34	421	Jorge	48
322	Rosa	37	320	José	34
322	Rosa	37	421	Jorge	48
323	María	25	320	José	34
323	María	25	421	Jorge	48

Renombre de una relación (p)

• Operación unaria ($\mathbf{p}_{x}\mathbf{R}$)

El resultado es la relación R con nombre X

Renombre de una relación (p)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

PROFESIONALES

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Renombre de atributos de una relación (p)

• Operación unaria ($P_{x (lista_de_atributos)}R$)

 El resultado es la relación R con nombre X y atributos nombrados como se expresa en lista_de_atributos

Renombre de atributos de una relación (p)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

PROFESIONALES

E#	NombreProfesional	Edad
320	José	34
322	Rosa	37
323	María	25

Unión (U)

Operación binaria (A UB)

 El resultado es una relación en la que se agrega a la relación A los elementos (no repetidos) de la relación B

 Es necesario que las relaciones A y B sean de «unión compatible»

Unión (U)

Operación binaria (A UB)

 El resultado es una relación en la que se agrega a la relación A los elementos (no repetidos) de la relación B

- Es necesario que las relaciones A y B sean de «unión compatible»
 - Relaciones con igual aridad (igual número de atributos)
 - El dominio del i-ésimo atributo de ambas relaciones debe ser el mismo (∀ i)

- Unión (∪)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros U Jefes

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25
421	Jorge	48

Diferencia (-)

Operación binaria (A - B)

 El resultado es una relación donde están los elementos que pertenecen a A y no pertenecen a B

- Es necesario que las relaciones A y B sean de «unión compatible»
 - Relaciones con igual aridad (igual número de atributos)
 - El dominio del i-ésimo atributo de ambas relaciones debe ser el mismo (∀ i)

Diferencia (-)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros - Jefes

E#	Nombre	Edad
322	Rosa	37
323	María	25

Lenguaje de Consultas Operaciones Adicionales No agregan potencia al álgebra, simplifican consultas.

 Son reescribibles en término de operaciones fundamentales

Álgebra Relacional

Lenguaje de Consulta

Operaciones adicionales

- Intersección ()
- Producto Theta $(|X|_{\theta})$
- Producto Natural (| X |)
- División (%)

Operación especial de Asignación ()

Álgebra Relacional

Lenguaje de Consulta

Operaciones adicionales

- Operación binaria (A B)
- El resultado es una relación con aquellas tuplas que pertenecen a ambas relaciones (al mismo tiempo)
- Es necesario que las relaciones A y B sean de «unión compatible»

 $R \cap S$ es equivalente a R-(R-S)

AR-Lenguaje de Consulta - Operaciones Adicionales

Intersección (∩)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros ∩ **Jefes**

E#	Nombre	Edad
320	José	34

Operación binaria (R | X | _θ S)

 Genera una nueva relación con las tuplas resultantes de aplicar una operación de selección con la condición indicada por θ sobre el resultado de un producto cartesiano

 La condición (θ) se indica como una expresión booleana de términos (se pueden usar conectores lógicos entre las condiciones)

Producto Theta (|X|_{\theta})

• $R |X|_{\theta} S$ es equivalente a $\sigma_{\theta}(RXS)$

Producto Theta (|X|_e)

AR-Lenguaje de Consulta - Operaciones Adicionales

Producto Theta(| X | θ)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros | X | Ingenieros.edad = Jefes.edad | Jefes

Ingenieros.E#	Ingenieros. Nombre	Ingenieros. Edad	Jefes.E#	Jefes. Nombre	Jefes.Edad
320	José	34	320	José	34

AR-Lenguaje de Consulta - Operaciones Adicionales

Producto Theta(| X | θ)

Ingenieros

E#	Nombre	Edad	
320	José	34	
322	Rosa	37	
323	María	25	

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros |X| _{Ingenieros.edad ≤ Jefes.edad} Jefes

Ingenieros.E#	Ingenieros. Nombre	Ingenieros. Edad	Jefes. E#	Jefes. Nombre	Jefes.Edad
320	José	34	320	José	34
320	José	34	421	Jorge	48
322	Rosa	37	421	Jorge	48
323	María	25	320	José	34
323	María	25	421	Jorge	48

Producto Theta(|X|_θ)

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros | X | Ingenieros.edad ≤ Jefes.edad and Ingenieros.E# ≠Jefes. E# Jefes

Ingenieros.E#	Ingenieros. Nombre	Ingenieros.Edad	Jefes.E#	Jefes. Nombre	Jefes.Edad
320	José	34	421	Jorge	48
322	Rosa	37	421	Jorge	48
323	María	25	320	José	34
323	María	25	421	Jorge	48

Operación binaria (R X S)

 Genera una nueva relación con las tuplas resultantes de aplicar una operación de selección con la condición indicada sobre el resultado de un producto cartesiano

 La condición se indica como una expresión booleana de términos (se pueden usar conectores lógicos entre las condiciones)

Producto Natural (|X|)

R |X| S es equivalente a

Donde:

condición implica a todos los atributos de R que están en S y son iguales

lista elimina columnas repetidas (dejando una sola en el conjunto) y los atributos que no tienen en común R y S

Producto Natural (|X|)

Producto Natural (|X |)

Postulantes

Nombre	Edad	DNI
Paula	19	29235142
Martina	22	35215415
Joaquín	28	28152478

Administrativos

Nombre	Edad	Domicilio	DNI
Martina	22	1 y 50	35215415
Paula	19	8 y 49	29899632
Pablo	32	26 y 50	20125789

Postulantes | X | Administrativos

Nombre	Edad	DNI	Domicilio
Martina	22	35215415	1 y 50

- Operación binaria (R%S)
 - R dividendo
 - S divisor

 Los atributos del divisor S deben ser un subconjunto de los atributos de la relación R con igual dominio

- La relación resultante de la división,
 llamémosla T, posee tuplas t tal que:
 - Los valores de t deben aparecer en R en combinación con todas las tuplas de S

División (%)

• R%S es equivalente a:

$$\Pi_{\text{att(R)- att(S)}}$$
 R - $\Pi_{\text{att(R)- att(S)}}$ (($\Pi_{\text{att(R)- att(S)}}$ (R)x S) -R)

Donde:

att(R)- att(S) significan los atributos de la relación R menos los atributos de la relación S

División (%)

División (%)

R1

E#	Proyecto
320	RX338A
320	PY254Z
323	RX338A
323	PY254Z
323	NC168T
324	NC168T
324	KT556B

R2

Proyecto
RX338A
PY254Z

R1 % R2

E#
320
323

División (%)

Lugar_Trabajo

Nombre	Sucursal
Juan	Sucursal1
Pedro	Sucursal1
Juan	Sucursal2
María	Sucursal 1
Juan	Sucursal3

Sucursales_Vip

Sucursal
Sucursal1
Sucursal2

Lugar_Trabajo % Sucursales_Vip

Nombre Juan

División (%)

Lugar_Trabajo

Nombre	Sucursal	Color
Juan	Sucursal1	Rojo
Pedro	Sucursal1	Verde
Juan	Sucursal2	Azul
María	Sucursal 1	Rojo
Juan	Sucursal3	Violeta
Pedro	Sucursal1	Rojo
Pedro	Sucursal2	Azul
Juan	Sucursal1	Verde

Sucursales_Vip

Sucursal	Color
Sucursal1	Rojo
Sucursal2	Azul
Sucursal1	Verde

Lugar_Trabajo % Sucursales_Vip

Nombre	
Juan	
Pedro	

- Es una forma conveniente de expresar operaciones complejas
 - Modularidad

- El resultado de una operación se asigna temporalmente a una variable
 - La variable a la cual se asigna el resultado de una operación se puede usar en otras operaciones

Asignación (←)

- Asignación (←)
 - Ejemplo

Lugar_Trabajo

Nombre	Sucursal
Juan	Sucursal1
Pedro	Sucursal1
Juan	Sucursal2
María	Sucursal 1
Juan	Sucursal3

Sucursales_Vip

Sucursal	
Sucursal1	
Sucursal2	

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62

Empleados_Vip ← Lugar_Trabajo % Sucursales_Vip

Empleados_Vip |X| Empleado

Nombre	Domicilio
Juan	1 y 50

Nombre

Juan

AR- Lenguaje de Consulta - En general-

- Combinación de operaciones para formar consultas
 - Las operaciones se pueden usar
 - Aisladas o
 - Combinadas (expresiones)
 - Permiten resolver consultas complejas
 - Se usan paréntesis cuando es necesario agrupar operaciones
 - Notación lineal

Álgebra Relacional

Lenguaje de Manipulación de Datos Operaciones de manipulación Requieren de la operación de asignación

 Modifican la cantidad o los valores de las tuplas de una relación

Álgebra Relacional

Lenguaje de Manipulación de datos

Operaciones de manipulación

- Inserción (U)
- Eliminación ()
- Actualización (δ)

Álgebra Relacional

Lenguaje de Manipulación de datos

Operaciones de manipulación

 La o las tuplas a insertar deben ser compatibles con la relación

 \bullet R \leftarrow R U E

Donde

R es la relación en la que se insertarán los resultados de la expresión E

Inserción (U)

- Inserción (U)
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62

Empleado ← Empleado U {("Joaquín", "4 y 497")}

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497

- Inserción (U)
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62

Empleado ← Empleado U {("Joaquín", "4 y 497"), ("Martina", "1 y 32")}

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

- Inserción (U)
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62

Empleado \leftarrow Empleado U $(\Pi_{\text{nombre, domicilio}}$ Asistentes)

Asistentes

Nombre	Domicilio	DNI
Joaquín	4 y 497	1234536
Martina	1 y 32	2541258

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

 La o las tuplas a insertar deben ser compatibles con la relación

 \bullet R \leftarrow R U E

Donde

R es la relación en la que se insertarán los resultados de la expresión E

Eliminación (—)

- Eliminación ()
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

Empleado ← Empleado – {("Joaquín", "4 y 497"), ("Martina", "1 y 32")}

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62

- Eliminación ()
 - Ejemplo

Empleado

Nombre	Domicilio
Juan	1 y 50
Pedro	120 y 43
María	150 y 62
Joaquín	4 y 497
Martina	1 y 32

Algunos_empleados ←

nombre="Martina" o nombre = "Joaquín" (Empleado)

Empleado

Empleado

Algunos_empleados

Nombre	Domicilio	
Juan	1 y 50	
Pedro	120 y 43	
María	150 y 62	

 Permite actualizar un valor particular de una tupla

•
$$\delta_{\text{att}(R) \leftarrow E}$$
 (R)

Donde

R es la relación a la que se le modificará el atributo mencionado en att(R), como resultado de la expresión E

Actualización (δ)

- Actualización (δ)
 - Ejemplo

Empleado

Nombre	Domicilio	Salario
Juan	1 y 50	10200
Pedro	120 y 43	15000
María	150 y 62	22000

δ salario ← salario * 1.2 (Empleado)

Nombre	Domicilio	Salario
Juan	1 y 50	12240
Pedro	120 y 43	18000
María	150 y 62	26400

- Actualización (δ)
 - Ejemplo

Empleado

Nombre	Domicilio	Salario
Juan	1 y 50	10200
Pedro	120 y 43	15000
María	150 y 62	22000

Nombre	Domicilio	Salario
Juan	1 y 50	12240
Pedro	120 y 43	15000
María	150 y 62	22000

Ejercicio Práctico

INMUEBLE (<u>idInmueble</u>, nroCatastro, localidad, metros Cuadrados, tasacion Fiscal, id Propietario) PROPIETARIO (<u>idPropietario</u>, apellido, nombre, localidad, domicilio, dni) MULTA (idInmueble, <u>idMulta</u>, año Multa, monto Multa, descripcion Multa)

Hallar aquellos propietarios que solamente poseen propiedades en la localidad de "San Carlos de Bariloche". Listar su nombre, apellido, localidad donde vive y el dni.

trabajando...

INMUEBLE (idInmueble, nroCatastro, localidad, metros Cuadrados, tasacion Fiscal, id Propietario) PROPIETARIO (id Propietario, apellido, nombre, localidad, domicilio, dni) MULTA (idInmueble, idMulta, año Multa, monto Multa, descripcion Multa)

Hallar aquellos propietarios que solamente poseen propiedades en la localidad de "San Carlos de Bariloche". Listar su nombre, apellido, localidad donde vive y el dni.

Hallar propietarios que poseen propiedades en otro lugar que no sea la localidad de "San Carlos de Bariloche"

Hallar propietarios que poseen propiedades en la localidad de "San Carlos de Bariloche"

Hallar propietarios que poseen propiedades en la localidad de "San Carlos de Bariloche" y no tiene propiedades en otro lugar

De los propietarios solo de propiedades de San Carlos de Bariloche, hallo nombre, apellido, localidad donde vive y el dni

trabajando...

INMUEBLE (idInmueble, nroCatastro, localidad, metros Cuadrados, tasacion Fiscal, id Propietario) PROPIETARIO (id Propietario, apellido, nombre, localidad, domicilio, dni) MULTA (idInmueble, idMulta, año Multa, monto Multa, descripcion Multa)

Hallar aquellos propietarios que solamente poseen propiedades en la localidad de "San Carlos de Bariloche". Listar su nombre, apellido, localidad donde vive y el dni.

Hallar propietarios que poseen propiedades en otro lugar que no sea la localidad de "San Carlos de Bariloche"

Propietarios No Bariloche $\leftarrow \Pi_{\text{id Propietario}}$ ($\sigma_{\text{localidad} \neq \text{"San Carlos de Bariloche"}}$ (INMUEBLE))

Hallar propietarios que poseen propiedades en la localidad de "San Carlos de Bariloche"

Propietarios Bariloche $\leftarrow \Pi_{\text{idPropietario}}$ ($\sigma_{\text{localidad = "San Carlos de Bariloche"}}$ (INMUEBLE))

Hallar propietarios que poseen propiedades en la localidad de "San Carlos de Bariloche" y no tiene propiedades en otro lugar

PropietariosSOLOBariloche ← (**PropietariosBariloche** − **PropietariosNoBariloche**)

De los propietarios solo de propiedades de San Carlos de Bariloche, hallo nombre, apellido, localidad donde vive y el dni

 $\Pi_{\text{nombre,apellido,localidad,dni}}$ (PropietariosSOLOBariloche |X| PROPIETARIO)

Ejercicio Práctico

Ejercicio A

Lugar_trabajo (empleado, departamento)
Curso_departamento (departamento, curso)
Curso_realizado (empleado, curso)

a) ¿Quiénes son los empleados que han hecho todos los cursos, independientemente de qué departamento los exija?

Curso_realizado % Π_{curso} (Curso_departamento)

trabajando...

Ejercicio A

Lugar_trabajo (empleado, departamento)
Curso_departamento (departamento, curso)
Curso_realizado (empleado, curso)

a) ¿Quiénes son los empleados que han hecho todos los cursos, independientemente de qué departamento los exija?

Curso_realizado % Π_{curso} (Curso_departamento)

Ejercicio Práctico

Ejercicio B

Lugar_trabajo (empleado, departamento)
Curso_departamento (departamento, curso)
Curso_realizado (empleado, curso)

b) ¿Qué empleados hicieron todos los cursos requeridos por su departamento?

trabajando...

Ejercicio B

Lugar_trabajo (empleado, departamento)
Curso_departamento (departamento, curso)
Curso_realizado (empleado, curso)

b) ¿Qué empleados hicieron todos los cursos requeridos por su departamento?

Los empleados y los cursos que no hicieron:

Los empleados que hicieron todos los cursos exigidos por su departamento:

Ejercicio B

Lugar_trabajo (empleado, departamento)
Curso_departamento (departamento, curso)
Curso_realizado (empleado, curso)

b) ¿Qué empleados hicieron todos los cursos requeridos por su departamento?

os cursos que tienen que hacer los empleados:

$$A = \Pi_{empleado, curso}$$
 (Lugar_trabajo |X| Curso_departamento)

os empleados y los cursos que no hicieron:

os empleados que hicieron todos los cursos exigidos por su departamento:

$$\Pi_{\text{empleado}}$$
 (Lugar_trabajo) - Π_{empleado} (B)

Bibliografía de la clase

Bibliografía

- Codd, E. F. (1970). A relational model of data for large shared data banks.
 Communications of the ACM, 13(6), 377-387.
- Codd, E. F. (1979). Extending the database relational model to capture more meaning. ACM Transactions on Database Systems (TODS), 4(4), 397-434.
- Garcia-Molina, H. (2008). Database systems: the complete book. Pearson Education India.
- Korth, H. F., & Silberschatz, A. (1993). Fundamentos de Base de Datos. Segunda Edición en español.

Importante!

Los slides usados en las clases teóricas de esta materia, no son material de estudio por sí solos en ningun caso.