21-484 Notes JD Nir jnir@andrew.cmu.edu April 23, 2012

Wagner's Theorem: G is planar iff no K_5 or $K_{3,3}$ minor.

<u>Def:</u> (p. 252): A graph G is minimally nonembeddable in S_k if

- $\rightarrow G$ is not embeddable in S_k .
- \rightarrow removing any vertex or any edge or contracting any edge results in a graph embeddable in S_k .
- \rightarrow Wagner's Theorem: K_5 and $K_{3,3}$ are the only minimally nonembeddable graphs in S_0 .
- $\rightarrow G$ is either not planar or has a K_5 or $K_{3,3}$ minor.
- → Theorem (Seymor and Robertson, 1983-2004, graph minor theorem)

For any infinite set of graphs, there are two graphs such that one is a minor of the other.

Corollary: Every family of graphs closed under taking minors can be defined by a finite set of forbidden minors.

 \rightarrow Otherwise we have an infinite set of forbidden minors 4 the theorem above.

Corollary: (Cor 9.7) For all $k \geq 0$, the set of minimally nonembeddable graphs in S_k is finite.

Corollary 9.8 $\forall k \geq 0$ there is a finite set of graphs S such that G is embeddable in S_k iff it does not have an H minor for every H in S.

 \rightarrow For S_1 , the set of forbidden minors is of size at least 800.

Recall: For every planar G, $\delta(G) \leq 5$.

Corollary: If G is planar, then $\chi(G) \leq 6$.

<u>Proof:</u> Given a graph $G = G_n$ we can find a vertex of degree ≤ 5 , call it v_n and remove it to get G_{n-1} .

- $\rightarrow G_{n-1}$ is also planar, so we can repeat this process.
- \rightarrow Color the vertices in order. Notice that when coloring a vertex, it has at most 5 colored neighbors. So one of the 6 colors is available.

Theorem: Every planar graph is 5 colorable.

<u>Proof:</u> By induction on the number of vertices. If G has a vertex of degree ≤ 4 , remove it, color the resulting graph with 5 colors, and add it back.

- \rightarrow Since $\delta(G) \leq 5$, there is a vertex of degree 5. call it v.
- \rightarrow Draw G in the plane to get a plane graph and name the neighbors of v according to the order in which they appear in the plane graph.

- \rightarrow Color $G \setminus \{v\}$ with 5 colors.
- \rightarrow If 2 of the u_i 's are colored in the same color, we're done.
- \rightarrow Assume u_i is colored by color i.
- \rightarrow Let G_{13} be the graph spanned by vertices colored 1 or 3.

- \rightarrow If u_1 and u_3 are not in the same component, switch colors in the component containing u_3 .
- \rightarrow If u_1 and u_3 are in the same component, there is a u_1 – u_3 path in which all vertices are colored 1 or 3.
- \rightarrow Repeat for G_{24} . If they are in the same component there is a u_2 - u_4 path in which all vertices are colored 2 or 4. 4 planarity

