Lecture 4b: The Master Theorem

A General Technique for solving Divide-and-Conquer Recurrences

Version of February 18, 2019

Outline

Introduction to Divide-and-Conquer Recurrences

The Master Theorem Statement

• Derivation of Master Theorem when $f(n) = \theta(n)$

Divide-and-Conquer

Already saw a few divide-and-conquer algorithms Cost satisfies T(n) = aT(n/b) + f(n)

Divide

Divide a given problem into a or more subproblems (ideally of approximately equal size n/b)

Conquer $a \cdot T(n/b)$

Solve each subproblem (directly if small enough or recursively)

Combine f(n)

Combine the solutions of the subproblems into a global solution

Divide-and-Conquer Examples

Four major examples so far

- Maximum Contiguous Subarray & Mergesort
 - Both satisfied T(n) = 2T(n/2) + O(n)
 - $T(n) = O(n \log n)$
- First version of Polynomial Multiplication
 - T(n) = 4T(n/2) + O(n)
 - $T(n) = O(n^2)$
- Karatsuba Multiplication
 - T(n) = 3T(n/2) + O(n)
 - $T(n) = O(n^{\log_2 3}) = O(n^{1.58...})$

Outline

Introduction to Divide-and-Conquer Recurrences

The Master Theorem Statement

• Derivation of Master Theorem when $f(n) = \theta(n)$

The Master Theorem

Main tool is the Master Theorem for solving recurrences of form

$$T(n) = aT(n/b) + f(n)$$

where

- $a \ge 1$ and b > 1 are constants and
- f(n) is a (asymptotically) positive function.
- Note: Initial conditions are T(1), T(2), ..., T(k) for some k. They don't contribute to asymptotic growth
- n/b could be either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$

The Master Theorem (for equalities)

$$T(n) = aT(n/b) + f(n),$$
 $c = \log_b a$

1. If
$$f(n) = \theta(n^{c-\epsilon})$$
 for some $\epsilon > 0$ => $\mathsf{T}(n) = \theta(n^c)$

2. If
$$f(n) = \theta(n^c)$$
 => $T(n) = \theta(n^c \log n)$

3. If $f(n) = \theta(n^{c+\epsilon})$ for some $\epsilon > 0$ and if $af(n/b) \le df(n)$ for some d < 1 and large enough n

$$\Rightarrow$$
 T(n) = $\theta(f(n))$

7

The Master Theorem (for inequalities)

$$T(n) \le aT(n/b) + f(n), \qquad c = \log_b a$$

1. If
$$f(n) = O(n^{c-\epsilon})$$
 for some $\epsilon > 0$ => $T(n) = O(n^c)$

2. If
$$f(n) = O(n^c)$$
 => $T(n) = O(n^c \log n)$

3. If $f(n) = O(n^{c+\epsilon})$ for some $\epsilon > 0$ and if $af(n/b) \le df(n)$ for some d < 1 and large enough n

$$\Rightarrow$$
 T(n) = O(f(n))

The Master Theorem when $f(n) = \theta(n)$

$$T(n) = aT(n/b) + f(n),$$
 $c = \log_b a$

Note: Inequality version of theorem also holds

- 1. If c > 1, then $T(n) = \theta(n^c)$
 - ightharpoonup If $T(n) = 4T(n/2) + \theta(n)$ then $T(n) = \theta(n^2)$
 - ightharpoonup If $T(n) = 3T(n/2) + \theta(n)$ then $T(n) = \theta(n^{\log_2 3}) = \theta(n^{1.58...})$
- 2. If c = 1, then $T(n) = \theta(n \log n)$
 - ightharpoonup If $T(n) = 2T(n/2) + \theta(n)$ then $T(n) = \theta(n \log n)$
- 3. If c < 1, then $T(n) = \theta(n)$
 - ightharpoonup If $T(n) = T(n/2) + \theta(n)$. then $T(n) = \theta(n)$

More Master Theorem(s)

There are many variations of the Master Theorem. Here's another...

- If T(n) = T(3n/4) + T(n/5) + n then $T(n) = \theta(n)$
- More generally, given constants $\alpha_i>0$ with $\sum_i \alpha_i<1$ If $T(n)=n+\sum_i T(\alpha_i n)$ then $T(n)=\theta(n)$

Outline

Introduction to Divide-and-Conquer Recurrences

The Master Theorem Statement

• Derivation of Master Theorem when $f(n) = \theta(n)$

The Master Theorem when f(n) = O(n)

$$T(n) \le aT(n/b) + kn$$
, $a \ge 1$ and $b > 1$ are constants, $c = \log_b a$

- 1. If c > 1, then $T(n) = O(n^c)$
- 2. If c = 1, then $T(n) = O(n \log n)$
- 3. If c < 1, then T(n) = O(n)

Have already worked through two examples of case 1 and one example of case 2. Will now see general proof.

Proof of Inequality Master Theorem when f(n) = O(n)

$$T(n) \le aT(n/b) + kn$$
, $a \ge 1$ and $b > 1$ are constants, $c = \log_b a$

$$T(n) \le a \, T\left(\frac{n}{h}\right) + kn$$
 Assume $n = b^h$

$$=a^2T\left(\frac{n}{h^2}\right)+\left(1+\frac{a}{h}\right)kn$$

 $\leq a \left[a T\left(\frac{n}{h^2}\right) + k \frac{n}{h} \right] + kn$

$$\leq a^2 \left[a T\left(\frac{n}{h^3}\right) + k \frac{n}{h^2} \right] + \left(1 + \frac{a}{h}\right) kn$$

$$= a^3 T\left(\frac{n}{b^3}\right) + \left(1 + \frac{a}{b} + \left(\frac{a}{b}\right)^2\right) kn$$

....

$$\leq a^h T\left(\frac{n}{b^h}\right) + \sum_{i=0}^{h-1} \left(\frac{a}{b}\right)^j kn$$

We now examine each of the three cases of c separately

$$c = \log_b a$$

Case 1: a > b (c > 1)

Assume $n = b^h$. Then

$$a^h = (b^{\log_b a})^h = b^{h\log_b a} = (b^h)^{\log_b a} = n^{\log_b a} = n^c$$

If a > b

$$\sum_{i=0}^{h-1} {a \choose b}^j = \frac{\left((a/b)^h - 1\right)}{a/b - 1} \le \frac{(a/b)^h}{a/b - 1} = \frac{n^{\log_b a}/n}{a/b - 1} = \frac{n^c/n}{a/b - 1} = \frac{n^{c-1}}{a/b - 1}$$

Recall that
$$T(n) \le a^h T\left(\frac{n}{b^h}\right) + \sum_{j=0}^{h-1} \left(\frac{a}{b}\right)^j kn$$
.

Hence

$$T(n) = O\left(n^{c} T(1) + \frac{n^{c-1}}{a/b-1}kn\right) = O(n^{c})$$

$$a^{h} \qquad T\left(\frac{n}{b^{h}}\right) \qquad \sum_{j=0}^{h-1} \left(\frac{a}{b}\right)^{j}$$

$$c = \log_b a$$

Case 1: a > b (c > 1)

Assume $n = b^h$. Then

$$a^h = (b^{\log_b a})^h = b^{h \log_b a} = (b^h)^{\log_b a} = n^{\log_b a} = n^c$$

If a > b

$$\sum_{i=0}^{h-1} {a \choose b}^j = \frac{\left((a/b)^h - 1\right)}{a/b - 1} \le \frac{(a/b)^h}{a/b - 1} = \frac{n^{\log_b a}/n}{a/b - 1} = \frac{n^c/n}{a/b - 1} = \frac{n^{c-1}}{a/b - 1}$$

Recall that
$$T(n) \le a^h T\left(\frac{n}{b^h}\right) + \sum_{j=0}^{h-1} \left(\frac{a}{b}\right)^j kn$$
.

Hence

$$T(n) = O\left(n^{c} T(1) + \frac{n^{c-1}}{a/b - 1} kn\right) = O(n^{c})$$

Example: If
$$T(n) \le 3T(\frac{n}{2}) + n$$
 then $a = 3$, $b = 2$
=> $T(n) = O(n^{\log_2 3}) = O(n^{1.58...})$

$$c = \log_b a$$

Case 2: a = b (c = 1)

Assume $n = b^h$. Then

$$a^h = (b^{\log_b a})^h = b^{h \log_b a} = (b^h)^{\log_b a} = n^{\log_b a} = n^c = n$$

If a = b

$$\sum_{j=0}^{h-1} \left(\frac{a}{b}\right)^j = \sum_{j=0}^{h-1} 1^j = h$$

Hence

$$T(n) \le a^h T\left(\frac{n}{b^h}\right) + \sum_{i=0}^{h-1} \left(\frac{a}{b}\right)^j kn = O(n+hn) = O(n\log n)$$

Example: If $T(n) \le 2T(\frac{n}{2}) + n$ then a = 2, b = 2=> $T(n) = O(n \log n)$

$$c = \log_b a$$

Case 3: $a < b \quad (c < 1)$

Assume $n = b^h$. Then

$$a^h = (b^{\log_b a})^h = b^{h\log_b a} = (b^h)^{\log_b a} = n^{\log_b a} = n^c = O(n)$$

If a < b

$$\sum_{j=0}^{h-1} \left(\frac{a}{b}\right)^j = \frac{\left((a/b)^h - 1\right)}{a/b - 1} = \frac{\left(1 - (a/b)^h\right)}{1 - a/b} = O(1)$$

Hence

$$T(n) \le a^h T\left(\frac{n}{b^h}\right) + \sum_{j=0}^{h-1} {a \choose b}^j kn = O(n^{\log_b a} + n) = O(n)$$

Example: If
$$T(n) \le 2T(\frac{n}{3}) + n$$
 then $a = 2$, $b = 3$
=> $T(n) = O(n)$

Sometimes known as *Decimation*

Reprise: Most Useful Master Theorem (for inequalities)

$$T(n) \le aT(n/b) + f(n), \qquad c = \log_b a$$

1. If
$$f(n) = O(n^{c-\epsilon})$$
 for some $\epsilon > 0$ then $T(n) = O(n^c)$

2. If
$$f(n) = O(n^c)$$

then
$$T(n) = O(n^c \log n)$$

3. If $f(n) = O(n^{c+\epsilon})$ for some $\epsilon > 0$ and if $af(n/b) \le df(n)$ for some d < 1 and large enough n

then
$$T(n) = O(f(n))$$