বুসামূল ৩ম অধ্যাম

পদার্থেব গঠন

Prepared by: SAJJAD HOSSAIN

١	
_	

মৌল	প্রোটন সংখ্যা	নিউট্রন সংখ্যা	নিউক্লিয়াসের ভর
Q	9	10	_
R	_	16	5.1895×10 ⁻
			23 g

[এখানে O ও R প্রতীকী অর্থে]

[চউগ্রাম বোর্ড ২০২৪]

- (ক) ত্রয়ী সূত্রটি লিখ।
- (খ) তৃতীয় শক্তিস্তরে 'f' অরবিটাল থাকে না কেন? ব্যাখ্যা কর।
- (গ) প্রোটন ও নিউট্রনের প্রকৃত ভর ব্যবহার করে 'Q' মৌলটির 1টি অণুর ভর নির্ণয় কর।
- ্ঘ) গাণিতিক বিশ্লেষণের মাধ্যমে 'R' মৌলটি শনাক্ত করে এর সংকেত লেখ।

১ নং প্রশ্নের উত্তর

- (ক) ডোবেরাইনারের ত্রয়ীসূত্র হলো- "পারমাণবিক ভর অনুসারে তিনটি করে মৌলকে সাজালে দ্বিতীয় মৌলের পারমাণবিক ভর প্রথম ও তৃতীয় মৌলের পারমাণবিক ভরের যোগফলের অর্ধেক বা তার কাছাকাছি।"
- খে) ৩য় শক্তিস্তরে f অরবিটাল নেই। কারণ ৩য় শক্তিস্তরের জন্য $\mathbf{n}=3$ এবং $l=0,\ 1,\ 2$ । জানা আছে, l এর মান $0,\ 1$ ও 2 এর জন্য $\mathbf{s},\ \mathbf{p}$ ও \mathbf{d} অরবিটাল সম্ভব হয়। তাই ৩য় শক্তিস্তরে f অরবিটাল (orbital) নেই।
- (গ) উদ্দীপকের 'Q' মৌলের প্রোটন সংখ্যা 9। তাই মৌলটি ফ্লোরিন (F)। আমরা জানি,

একটি পরমাণুর ভর = প্রোটনের ভর + নিউট্রনের <mark>ভর</mark>

$$= (9 \times 1.673 \times 10^{-24}) + (10 \times 1.675 \times 10^{-24})$$

$$=3.1807 \times 10^{-23}$$
g

আবার, একটি ফ্লোরিন অণুতে দুইটি পরমাণু থাকে।

তাই, একটি অণুর ভর = 2 × পরমাণুর ভর

$$= 2 \times 3.1807 \times 10^{-23} g$$

$$=6.3614 \times 10^{-23}$$
g

অতএব, Q মৌলটি 1টি অণুর ভর $6.3614 \times 10^{-23}~g$ ।

(ঘ) দেওয়া আছে, R মৌলটির নিউক্লিয়াসের ভর $=5.1895 imes 10^{-23}~g$ - 23

নিউট্রন সংখ্যা = 16

ধরি, প্রোটন সংখ্যা = x

প্রশ্নমতে, প্রোটনের ভর + নিউট্রনের ভর = নিউক্লিয়াসের ভর

제,
$$(x \times 1.673 \times 10^{-24}) + (16 \times 1.675 \times 10^{-24}) = 5.1895 \times 10^{-23})$$

বা,
$$1.673 \times 10^{-24} \text{ x} = 5.1895 \times 10^{-23} - 2.68 \times 10^{-23}$$

ৰা,
$$x = \frac{2.5095 \times 10^{-23}}{1.673 \times 10^{-24}}$$

$$\therefore$$
 x = 15

সুতরাং, R মৌলটির প্রোটন সংখ্যা তথা পা; সংখ্যা 15। অর্থাৎ নির্ণেয় মৌলটি ফসফরাস যার সংকেত (P_4) ।

[সিলেট বোর্ড ২০২৪]

- (ক) পারমাণবিক সংখ্যা কাকে বলে?
- (খ) সোডিয়ামের ভরসংখ্যা 23 বলতে কী বুঝায়?
- (গ) চিত্র-১ এর সর্বশেষ শক্তিস্তরে বিদ্যমান একটি ইলেকট্রনের কৌণিক ভরবেগ নির্ণয় কর।
- (ঘ) চিত্র-১ ও চিত্র-২ এর কোন পরমাণু মডেলটি অধিক গ্রহণযোগ্য? যথাযথ যুক্তির মাধ্যমে বিশ্লেষণ কর।

২ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের একটি পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলে।
- (খ) কোনো প্রমাণুতে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফলকে ঐ পরমাণুর ভরসংখ্যা বলে। অর্থাৎ, ভরসংখ্যা হচ্ছে প্রোটন সংখ্যা ও নিউট্রন সংখ্যার সমষ্টি। সোডিয়াম (Na) এর ভরসংখ্যা 23 বলতে বুঝায়, Na পরমাণুর নিউক্রিয়াসে প্রোটন সংখ্যা 11 এবং নিউট্রন সংখ্যা (23 11)
 - =12, যাদের সমষ্টি (11+12)=23 হচ্ছে $\frac{23}{11}$ Na এর ভর সংখ্যা।
- (গ) উদ্দীপকের চিত্র-১ এ<mark>র সর্বশেষ শক্তিস্তর ৪</mark>র্থ শক্তিস্তর।

এ কক্ষপথের জন্য n = 4।

জানা আছে, ইলেকট্রনের <mark>কৌণিক ভরবেগ,</mark>

$$mvr = \frac{nh}{2\pi}$$

$$= \frac{4 \times 6.626 \times 10^{-34}}{2 \times 3.1416}$$

$$= 4.218 \times 10^{-34} \text{ J.s}$$

$$= 4.218 \times 10^{-34} \text{ J.s}$$

$$= 3.1416$$

$$mvr = ?$$

সুতরাং চিত্র-১ এর সর্বশেষ শক্তিস্তরে বিদ্যমান একটি ইলেক্ট্রনের কৌণিক ভরবেগ $4.218 \times 10^{-34}~\mathrm{J.s.}$

- (ঘ) উদ্দীপকের চিত্র-১ এর মডেলটি নীলস বোর পরমাণু মডেল এবং চিত্র-২ এর মডেলটি রাদারফোর্ড প্রমাণু মডেল। বোর পরমাণু মডেলটি অধিক গ্রহণযোগ্য। যথাযথ যুক্তির মাধ্যমে নিচে তা বিশ্লেষণ করা হলো-
 - ১. রাদারফোর্ড পরমাণু মডেল অনুসারে সৌরজগতে সূর্যকে কেন্দ্র গ্রহ-উপগ্রহণ্ডলো যেমন ঘুরছে, পরমাণুতে ইলেকট্রনগুলোও তেমন নিউক্লিয়াসকে কেন্দ্র করে ঘুরছে। এখানে ইলেকট্রনের শক্তিস্তরের আকার সম্পর্কে কোনো কথা বলা হয়নি কিন্তু বোরের পারমাণবিক মডেলে পরমাণুর শক্তিস্তরের আকার বৃত্তাকার বলা হয়েছে।
 - ২. রাদারফোর্ডের পরমাণু মডেলে পরমাণু শক্তি শোষণ করলে বা শক্তি বিকিরণ করলে পরমাণুর গঠনে কী ধরনের পরিবর্তন ঘটে সে কথা বলা হয়নি কিন্তু বোর পরমাণু মডেলে বলা হয়েছে পরমাণু শক্তি শোষণ করলে ইলেকট্রন নিম্ন শক্তিম্ভর' থেকে উচ্চ শক্তিস্তরে উঠে। আবার, পরমাণু শক্তি বিকিরণ করলে ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে নেমে আসে।
 - রাদারফোর্ডের পরমাণু মডেল অনুসারে কোনো মৌলের পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না কিন্তু বোরের পরমাণু মডেল অনুসারে এক ইলেকট্রনবিশিষ্ট পরমাণু হাইড্রোজেন (H) এর বর্ণালি ব্যাখ্যা করা যায়।

উপরিউক্ত বর্ণিত কারণে বলা যায় যে, রাদারফোর্ডের পরমাণু মডেলের তুলনায় বোরের পরমাণু মডেল অধিকতর উন্নত তথা উপযোগী।

বুসায়ৰ ৩্য অধ্যায়

পদার্থেব গঠন

Prepared by: SAJJAD HOSSAIN

೦.

[এখানে, $h = 6.626 \times 10^{-34} \text{m}^2 \text{kg/s}]$

[দিনাজপুর বোর্ড ২০২৪]

- (ক) ওয়াশিং সোডা কাকে বলে?
- (খ) Rb কে ক্ষার ধাতু বলা হয় কেন?
- (গ) 'B' মডেলের সর্বশেষ শক্তিস্তরে ইলেকট্রনের কৌণিক ভরবেগ নির্ণয় কর।
- (ঘ) 'A' ও 'B' মডেলটির কোনটি অধিক উপযোগী? বিশ্লেষণ কর।

৩ নং প্রশ্নের উত্তর

- (ক) সোডিয়াম কার্বনেট (Na_2CO_3) এর 1 অণুর সাথে 10 অণু পানি রাসায়নিকভাবে যুক্ত হলে তাকে ওয়াশিং সোডা বলে ।
- (খ) Rb কে ক্ষারধাতু বলা হয়। কারণ এটি গ্রুপ-1 এ অবস্থিত মৌল এবং পানির সাথে বিক্রিয়া করে তীব্র ক্ষার (RbOH) তৈরি করে।

বিক্রিয়া : $2Rb + 2H_2O \rightarrow 2RbOH + H_2(g)$

(গ) উদ্দীপকের B মডেলের সর্বশেষ শক্তিস্তরের ইলেক্ট্রনের কৌণিক ভরবেগ নির্ণয:

জানা আছে, ইলেকট্রনের কৌণিক ভরবেগ,

$$mvr=rac{nh}{2\pi}$$

$$=rac{2 imes 6.626 imes 10^{-34}}{2 imes 3.1416} = 2.1091 imes 10^{-34} m^2 \ kg/s \ kg/s \ children \ each of the second matter $mvr=?$$$

সুতরাং B মডেলের সর্বশেষ শক্তিস্তরে ইলেকট্রনের কৌণিক ভরবেগ $2.1091 imes 10^{-34} \ m^2 \ kg/s$ ।

(ঘ) উদ্দীপকের A মডেলটি রাদারফোর্ড পরমাণু মডেল এবং B মডেলটি নীলস বোর পরমাণু মডেল।

উক্ত মডেল দুটির মধ্যে বোরের পরমাণু মডেল অধিকতর উপযোগী। নিচে তা বিশ্লেষণ করা হলো:

- ১. রাদারফোর্ড পরমাণু মডেল অনুসারে সৌরজগতে সূর্যকে কেন্দ্র গ্রহ-উপগ্রহণ্ডলো যেমন ঘুরছে, পরমাণুতে ইলেক্ট্রনণ্ডলোও তেমন নিউক্লিয়াসকে কেন্দ্র করে ঘুরছে। এখানে ইলেক্ট্রনের শক্তিস্তরের আকার সম্পর্কে কোনো কথা বলা হয়নি কিন্তু বোরের পারমাণবিক মডেলে পরমাণুর শক্তিস্তরের আকার বৃত্তাকার বলা হয়েছে।
- হ. রাদারফোর্ডের পরমাণু মডেলে পরমাণু শক্তি শোষণ করলে বা শক্তি বিকিরণ করলে পরমাণুর গঠনে কী ধরনের পরিবর্তন ঘটে সে কথা বলা হয়নি কিন্তু বোর পরমাণু মডেলে বলা হয়েছে পরমাণু শক্তি শোষণ করলে ইলেকট্রন নিম্ন শক্তিন্তর' থেকে উচ্চ শক্তিন্তরে উঠে। আবার, পরমাণু শক্তি বিকিরণ করলে ইলেকট্রন উচ্চ শক্তিন্তর থেকে নিম্ন শক্তিন্তরে নেমে আসে।

 রাদারফোর্ডের পরমাণু মডেল অনুসারে কোনো মৌলের পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না কিন্তু বোরের পরমাণু মডেল অনুসারে এক ইলেক্ট্রনবিশিষ্ট পরমাণু হাইড্রোজেন (H) এর বর্ণালি ব্যাখ্যা করা যায়।

উপরিউক্ত বর্ণিত কারণে বলা যায় যে, A মডেল তথা রাদারফোর্ডের পরমাণু মডেলের তুলনায় B মডেল তথা বোরের পরমাণু মডেল অধিকতর উন্নত তথা উপযোগী।

8. পটাশিয়ামের ইলেকট্রন বিন্যাস:

পদ্ধতি-1: $1s^2$ $2s^22p^6$ $3s^23p63d^1$ পদ্ধতি-2: $1s^2$ $2s^22p^6$ $3s^23p^6$ $4s^1$

[ময়মনসিংহ বোর্ড ২০২৪]

- (ক) মৌ<mark>ল কাকে বলে?</mark>
- (খ) নাইট্রোজেনের যোজনী ও যোজ্যতা ইলেকট্রন ভিন্ন কেন? ব্যাখ্যা
 কর।
- (গ) উদ্দীপকের মৌলটির যোজ্যতা ইলেকট্রনটির কৌণিক ভরবেগ নির্ণয় কর।
- (घ) উদ্দীপকের মৌলটির ইলেকট্রন বিন্যাসের কোন পদ্ধতিটি সঠিক বলে তুমি মনে কর? তোমার উত্তরের স্বপক্ষে যথাযথ যুক্তি উপস্থাপন কর।

৪ নং প্রশ্নের উত্তর

- (ক) যে পদার্থকে ভাঙলে সেই পদার্থ ছাড়া অন্য কোনো পদার্থ পাওয়া যায় না তাকে মৌল বা মৌলিক পদার্থ বলে।
- (খ) নাইট্রোজেন পরমাণুর যোজনী ও <mark>যোজ্যতা ইলে</mark>কট্রন ভিন্ন হয়। এর কারণ যোজনী হলো কোনো মৌল অপর মৌলের সাথে যুক্ত হওয়ার ক্ষমতা। কিন্তু যোজ্যতা ইলেকট্রন <mark>হলো মৌলের বহিঃস্বস্ত</mark>রের মোট ইলেকট্রন সংখ্যা।

N এর ইলেক্ট্রন বিন্যাস হচ্ছে,

 $N(7): 1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1.$

N এর বহিঃস্থ স্তরে ৩টি <mark>অযুগা ইলেকট্রন রয়েছে।</mark>

ফলে নাইট্রোজেন মৌলটি একযোজী কোনো মৌলের তিনটি পরমাণুর সাথে যুক্ত হওয়ার ক্ষমতা রাখে। সংজ্ঞানুসারে, নাইট্রোজেনের যোজনী তিন। অপরদিকে নাইট্রোজেনের সর্বশেষ শক্তিস্তরে মোট 5টি ইলেকট্রন থাকায় এর যোজ্যতা ইলেকট্রন 5। সুতরাং, দেখা যাচ্ছে, N এর যোজনী 3 এবং যোজ্যতা ইলেকট্রন 5, যা ভিন্ন।

(গ) উদ্দীপকের মৌলটি K(19)। K এর যোজ্যতা ইলেকট্রনটি ৪র্থ শক্তিস্তরে অবস্থিত। কক্ষপথের জন্য n=4।

জানা আছে, ইলেকট্রনের কৌণিক ভরবেগ,

$$mvr = \frac{nh}{2\pi}$$
 এখানে, $n = 4$ $h =$ প্রাংকের ধ্রুবক $= 4.218 \times 10^{-34} \, \mathrm{J.s}$ $\pi = 3.1416$ $mvr = ?$

সুতরাং উদ্দীপকের মৌলটির যোজ্যতা ইলেকট্রনটির কৌণিক ভরবেগ $4.218 \times 10^{-34}~J.s$ ।

(ঘ) উদ্দীপকের K(19) এর ইলেকট্রন বিন্যাসের পদ্ধতি-2 সঠিক বলে মনে করি।

নিচে উত্তরের সপক্ষে যথাযথ যুক্তি উপস্থাপন করা হলো-

K এর প্রদত্ত ইলেকট্রন বিন্যাস নিয়ে পাই,

পদ্ধতি-1: $1s^2$ $2s^22p^6$ $3s^23p63d^1$

বুসায়ৰ ৩য় অধ্যায়

পদার্থেব গঠন

Prepared by: SAJJAD HOSSAIN

পদ্ধতি-2: $1s^2$ $2s^22p^6$ $3s^23p^6$ $4s^1$ আউফবাউ নীতি অনুসারে, ইলেকট্রন প্রথমে নিমুশক্তির অরবিটালে এবং পরে উচ্চশক্তির অরবিটালে গমন করে। দুটি অরবিটালের মধ্যে কোনটি নিমুশক্তির আর কোনটি উচ্চশক্তির তা (n+l) এর মানের ওপর নির্ভর করে। যার (n+l) এর মান কম সেটি নিমুশক্তির অরবিটাল। 3d এবং 4s অরবিটালের জন্য (n+l) এর মান নিমুরূপ:

3d অরবিটালে :
$$n = 3$$
, $l = 2$: $n + l = 3 + 2 = 5$

4s অরবিটালে :
$$n = 4$$
, $l = 0$ \therefore $n + l = 4 + 0 = 4$

সুতরাং, 3d এর চেয়ে 4s অরবিটালের শক্তি কম (4s < 3d) হওয়ায় পটাসিয়ামের 19 তম ইলেক্ট্রন 3d অরবিটালে না গিয়ে 4s অরবিটালে স্থান গ্রহণ করে। ফলে K(19) এর ইলেক্ট্রন বিন্যাস দাঁড়ায়-

 $K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$

সুতরাং বলা যায়, 3d অপেক্ষা 4s অরবিটালের শক্তি কম হওয়ায় 19 তম ইলেকট্রনটি 3d তে প্রবেশ না করে 4s-এ প্রবেশ করে। উপরের আলোচনা থেকে বলা যায়, K মৌলটির ক্ষেত্রে পদ্ধতি-1 অপেক্ষা পদ্ধতি-2 এর ইলেকট্রন বিন্যাস সঠিক।

Œ.

[এখানে , $h = 6.626 \times 10^{-34} \text{ m}^2 \text{kg/s}]$

[ঢাকা বোর্ড ২০২৩]

- (ক) ভরসংখ্যা কাকে বলে?
- (খ) নাইট্রোজেন পরমাণুর আসল পরিচয় তার পারমাণবিক সংখ্যা ব্যাখ্যা করো।
- (গ) A চিত্রের ক্ষেত্রে সর্বশেষ শক্তিস্তরের ইলেকট্রনের কৌণিক ভরবেগ
- (ঘ) A ও B মডেল দুটির মধ্যে তুলনামূলক আলোচনা করো।

৫ নং প্রশ্নের উত্তর

- (ক) কোনো পরমাণুতে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফলকে পরমাণুর ভরসংখ্যা বলে।
- (খ) কোনো মৌলের একটি পরমাণুর নিউক্লিয়াসে যতটি প্রোটন থাকে প্রোটনের সে সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলে। মৌলের ধর্ম এর পারমাণবিক সংখ্যার উপর নির্ভর করে। রাসায়নিক বিক্রিয়ার সময় পরমাণুর সর্ববহিস্থ শক্তিস্তরের ইলেকট্রনসমূহ অংশ্গ্রহণ করে এবং ইলেকট্রনের সংখ্যার পরিবর্তন ঘটে কিন্তু প্রোটন সংখ্যা বা পারমাণবিক সংখ্যার কোনো পরিবর্তন ঘটে না।

নাইট্রোজেনের পারমাণবিক সংখ্যা 7 অর্থাৎ নাইট্রোজেন পরমাণুর প্রোটন সংখ্যা 7। বিক্রিয়াকালে নাইট্রোজেনের ইলেকট্রন সংখ্যা পরিবর্তিত হলেও প্রোটন সংখ্যা 7, যা নাইট্রোজেনের ধর্মকে অক্ষর রাখে। তাই বলা যায় যে, নাইট্রোজেন পরমাণুর আসল পরিচয় তার পারমাণবিক সংখ্যা।

(গ) উদ্দীপকের A চিত্রের ক্ষেত্রে, সর্বশেষ শক্তিস্তরে n=2 । জানা আছে,

ইলেকট্রনের কৌণিক ভরবেগ,

$$mvr = \frac{nh}{2\pi}$$

এখানে,
$$h = 6.626 \times 10^{-34} \text{ m}^2$$

$$=rac{2 imes 6.626 imes 10^{-34}}{2 imes 3.1416}$$
 kg/s কৌণিক ভরবেগ $mvr=?$

kg/s

সুতরাং, A চিত্রের ক্ষেত্রে সর্বশেষ শক্তিভরের ইলেকট্রনের কৌণিক ভরবেগ $2.11 \times 10^{-34}~{
m m}^2~{
m kg/s}$

- (ঘ) উদ্দীপকের চিত্র-A এর মডেলটি বোর পরমাণু মডেল এবং চিত্র-B মডেলটি রাদারফোর্ড পরমাণু মডেল। পরমাণুর গঠন বর্ণনায় বোর পরমাণু মডেল বেশি সফল। নিচে তা তুলনামূলক বিশ্লেষণ করা হলো-
 - ১. রাদারফোর্ড পরমাণু মডেল অনুসারে সৌরজগতে সূর্যকে কেন্দ্র গ্রহ-উপগ্রহণ্ডলো যেমন ঘুরছে, পরমাণুতে ইলেকট্রনগুলোও তেমন নিউক্লিয়াসকে কেন্দ্র করে ঘুরছে। এখানে ইলেকট্রনের শক্তিস্তরের আকার সম্পর্কে কোনো কথা বলা হয়নি কিন্তু বোরের পারমাণবিক মডেলে পরমাণুর শক্তিস্তরের আকার বৃত্তাকার বলা হয়েছে।
 - হ. রাদারফোর্ডের পরমাণু মডেলে পরমাণু শক্তি শোষণ করলে বা শক্তি বিকিরণ করলে পরমাণুর গঠনে কী ধরনের পরিবর্তন ঘটে সে কথা বলা হয়নি কিন্তু বোর পরমাণু মডেলে বলা হয়েছে পরমাণু শক্তি শোষণ করলে ইলেকট্রন নিমু শক্তিম্ভর' থেকে উচ্চ শক্তিস্তরে উঠে। আবার, পরমাণু শক্তি বিকিরণ করলে ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিমু শক্তিস্তরে নেমে আসে।
 - রাদারফোর্ডের পরমাণু মডেল অনুসারে কোনো মৌলের পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না কিন্তু বোরের পরমাণু মডেল অনুসারে এক ইলেকট্রনবিশিষ্ট পরমাণু হাইড্রোজেন (H) এর বর্ণালি ব্যাখ্যা
 করা যায়।

উপরিউক্ত বর্ণিত কারণে ব<mark>লা যায় যে, রাদার</mark>ফোর্ডের পরমাণু মডেলের তুলনায় বোরের পরমাণু মডে<mark>ল</mark> অধিকতর উন্নত তথা উপযোগী।

৬.

[রাজশাহী বোর্ড ২০২৩]

- (ক) গাঠনিক সংকেত কাকে বলে?
- (খ) Mg কে মৃৎক্ষার ধাতু বলা হয় কেন?
- (গ) B মডেলের সর্বশেষ শক্তিস্তরে ঘূর্ণায়মান ইলেকট্রনের কৌণিক ভরবেগ নির্ণয় করো। $[h=6.626\times 10^{-34}~m^2 kg/s]$
- (ঘ) পরমাণুর গঠন ব্যাখ্যায় উদ্দীপকের কোন মডেলটি অধিক উপযোগী? বিশ্লেষণ করো।

৬ নং প্রশ্নের উত্তর

- (ক) একটি অণুতে মৌলের পরমাণুগুলো যেভাবে সাজানো থাকে, প্রতীক এবং বন্ধনের মাধ্যমে তা প্রকাশ করাকে গাঠনিক সংকেত বলে।
- (খ) পর্যায় সারণির ২নং গ্রুপের Be, Mg, Ca, Sr, Ba, Ra এই ৬টি ধাতুকে মৃৎক্ষার ধাতু বলা হয়। পৃথিবীর উপরিভাগের মাটির আবরণ হলো ভূ-তৃক। ভূ-তৃকে বিভিন্ন ধাতু যৌগরূপে বিদ্যমান। ম্যাগনেশিয়াম (Mg) কে মাটির নিচে যৌগ রূপে পাওয়া যায় বলেই Mg কে মৃৎক্ষার ধাতু বলে। যেমন, Mg মাটিতে MgO রূপে বিদ্যমান থাকে।
- (গ) উদ্দীপকের ${f B}$ মডেলের সর্বশেষ কক্ষপথ তৃতীয় কক্ষপথ। এখানে, ৩য় শক্তিস্তর অর্থাৎ, ${f n}=3$

www.schoolmathematics.com.bd

বুসামূল ৩ম অধ্যাম

পদার্থেব গঠন

Prepared by: SAJJAD HOSSAIN

জানা আছে, $mvr = \frac{nh}{2\pi}$ $= \frac{3 \times 6.626 \times 10^{-34}}{2 \times 3.1416}$ $= 3.164 \times 10^{-34}$ π $mvr = 3.164 \times 10^{-34}$ m^2kgs^{-1}

এখানে, প্লাংকের ধ্রুবক $h=6.626 \ \times \ 10^{-34}$ $m^2 kg s^{-1}$ কক্ষপথ সংখ্যা, n=3 $\pi=3.1416$ নির্ণয় করতে হবে, কৌণিক ভরবেগ, mvr=?

সুতরাং, B মডেলের সর্বশেষ শক্তিস্তরে ঘূর্ণায়মান ইলেকট্রনের ভরবেগ $3.164\times 10^{-34}\ m^2 kg s^{-1}$ ।

- (ঘ) উদ্দীপকের A মডেলটি রাদারফোর্ড পরমাণু মডেল ও B মডেলটি নীলস বোর প্রমাণু মডেল। প্রমাণুর গঠন ব্যাখ্যায় চিত্র B অর্থাৎ বোর প্রমাণু মডেল অধিকতর গ্রহণযোগ্য। নিচে যুক্তিসহ তা বিশ্লেষণ করা হলো-রাদারফোর্ডের পরমাণু মডেলে বলা হয়েছে "সৌরজগতের সূর্যকে কেন্দ্র করে গ্রহগুলোর ন্যায় নিউক্লিয়াসকে কেন্দ্র করে ইলেকট্রনগুলো ঘুরতে থাকে।" কিন্তু নিউক্লিয়াসকে কেন্দ্র করে কীভাবে ঘুরে সে সম্পর্কে রাদারফোর্ড মডেলে কিছু বলা হয়নি অর্থাৎ রাদারফোর্ডের মতবাদে ইলেকট্রনসমূহ যে কক্ষপথ বা শক্তিস্তর থাকবে তার কোনো ব্যাখ্যা দেওয়া হয়নি। অপরদিকে, বোরের পরমাণু মডেলে বলা হয়েছে যে, "<mark>পরমা</mark>ণুর নিউক্লিয়াসকে কেন্দ্র করে কতকগুলো বুত্তাকার স্থির <mark>কক্ষ</mark>পথে ইলেকট্রনগুলো ঘুরতে থাকে।" অর্থাৎ আবর্তনশীল ইলেকট্রনের ক<mark>ক্ষপ</mark>থের আকার ও আকৃতি সমন্ধে ধারণা বোরের পরমাণু মডেলে দেওয়া <mark>হয়েছে</mark>। রাদারফোর্ডের মতবাদে আরও বলা হয়েছে যে, প্রমাণুর কেন্দ্রস্থলে একটি ধনাতাক চার্জযুক্ত ভারী বস্তু বিদ্যমান। এ ভারী বস্তুকে পরমাণুর কেন্দ্র বা নিউক্লিয়াস বলা হয়। প্রমাণুর মোট আয়ত<mark>নের তুলনা</mark>য় নিউক্লিয়াসের আয়তন অতি নগণ্য। পরমাণু বিদ্যুৎ নিরপেক্ষ। রাদারফোর্ডের মডেলে হাইড্রোজেন বা অন্য কোনো মৌলের ক্ষেত্রে কীভাবে বর্ণালি সৃষ্টি হয় সে সম্পর্কে কোনো ধারণা দেওয়া হয়নি কিন্তু বোরের মডেলে বলা হয়েছে যে, একটি নির্দিষ্ট শক্তিস্তরে অবস্থানকালে ইলেক্ট্রনসমূহ শক্তি শোষণ অথবা বিকিরণ করে না। যখন কোনো ইলেকট্রন নিমুতর কক্ষপথ থেকে উচ্চতর কক্ষপথে স্থানান্তরিত হয় তখন নির্দিষ্ট পরিমাণ শক্তি শোষণ করে। আবার যখন উচ্চতর শক্তিস্তর থেকে নিমুতর শক্তিস্তরে স্থানান্তরিত হয় তখন শক্তি বিকিরণ করে। এ বিকীর্ণ শক্তি বর্ণালি হিসেবে দেখা দেয়। উপরের আলোচনা থেকে বলা যায়, পরমাণুর গঠন ব্যাখ্যায় উদ্দীপকের B মডেলটি তথা বোর পরমাণু মডেল অধিকতর গ্রহণযোগ্য।
- (i) 4f, 4p, 4d অরবিটাল,
 - (ii) একটি মৌলের নিউক্লিয়াসের প্রকৃত ভর 5.357×10^{-23} গ্রাম। এর নিউট্রন সংখ্যা 17।

[চট্টগ্রাম বোর্ড ২০২৩]

- (ক) হ্যালোজেন কাকে বলে?
- (খ) Ar এ স্থিতিশীলতা ব্যাখ্যা করো।
- (গ) দৃশ্য (ii) এর মৌলটি শনাক্ত করো।
- (ঘ) দৃশ্য-(i) এর শক্তির ক্রম বিশ্লেষণ করো।

৭ নং প্রশ্নের উত্তর

- কে) পর্যায় সারণির গ্রুপ-17 এর ৬টি মৌল ফ্লোরিন (F), ক্লোরিন (CI), ব্রোমিন (Br), আয়োডিন (l), অ্যাস্টাটিন (At) ও টেনেসিন (Ts) কে হ্যালোজেন (Halogen) বলে।
- (খ) Ar একটি স্থিতিশীল মৌল। কারণ, $_{18}{
 m Ar}$ এর $(1{
 m s}^2\ 2{
 m s}^2\ 2{
 m p}^6\ 3{
 m s}^2$ $3{
 m p}^6)$ সর্ববহিঃস্থ স্তরে ইলেকট্রন দ্বারা অষ্টক পূর্ণ থাকে, যা অত্যন্ত সুস্থিত। এ সুস্থিত ইলেকট্রন বিন্যাস ভাঙতে অনেক শক্তির প্রয়োজন। তাই Ar

স্বাভাবিক অবস্থায় কোনো মৌলের সাথে যুক্ত হয় না। অর্থাৎ বহিঃস্থ স্তরের সুবিন্যস্ত ইলেকট্রন বিন্যাসের কারণে Ar স্থিতিশীল হয়।

(গ) দৃশ্য (ii) এ দেওয়া আছে, নিউক্লিয়াসের প্রকৃত ভর= $5.357 \times 10^{-23}~{
m g}$ নিউট্রন সংখ্যা = 17

ধরি, প্রোটন সংখ্যা = x

প্রশ্নমতে, প্রোটনের ভর + নিউট্রনের ভর = নিউক্লিয়াসের ভর

বা, $(x \times 1.673 \times 10^{-24}) + (17 \times 1.675 \times 10^{-24}) = 5.357 \times 10^{-23}$

বা, $\mathbf{x} \times 1.673 \times 10^{-24} = 5.1895 \times 10^{-23} - 2.8475 \times 10^{-23}$

বা,
$$x = \frac{2.5095 \times 10^{-23}}{1.673 \times 10^{-24}} = 15$$

 \therefore x = 15

অর্থাৎ <mark>মৌলটির প্রোটন সং</mark>খ্যা তথা পারমাণবিক সংখ্যা 15। সুতরাং (ii) নং এর মৌলটি ফসফরাস (P)।

(ঘ) উদ্দীপকের দৃশ্য (i) এ 4f, 4p ও 4d অরবিটাল বিদ্যমান। নিচে এদের শক্তির ক্রম বিশ্লেষণ করা হলো-

আউফবাউ নীতি অনুসারে, "যে অরবিটালের শক্তি কম সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে এবং যে অরবিটালের শক্তি বেশি সেই অরবিটালে ইলেকট্রন পরে প্রবেশ করবে।" অরবিটালের মধ্যে কোনটির শক্তি কম আর কোনটির শক্তি বেশি তা অরবিটালের মধ্যে কোনটির মান (n) ও উপশক্তিস্তরের মান (l) এর যোগফলের উপর নির্ভর করে। যে অরবিটালের (n+l) এর মান কম সেই অরবিটালের শক্তি কম এবং সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে। অপরদিকে (n+l) এর মান যে অরবিটালের বেশি তার শক্তিও বেশি এবং সেই অরবিটালের হিলেকট্রন পরে প্রবেশ করবে।

 $4 {
m f}$ অরবিটালের ক্ষেত্রে, ${
m n} + l = 4 + 3 = 7$

৪ঢ় অরবিটালের ক্ষেত্রে, n + l = 4 + 1 = 5

৪ফ অরবিটালের ক্ষেত্রে, n + l = 4 + 2 = 6

যেহেতু 4f অরবিটালের (n+l) এর মান বেশি, এজন্য 4f অরবিটালের

শক্তি সবচেয়ে বেশি। অপরদিকে 4p অরবিটালের (n+l)

এর মান সবচেয়ে কম, তাই এর শক্তিও সবচেয়ে কম।

সুতরাং অরবিটালগুলোর শক্তির ক্রম:

$$4f > 4d > 4p$$

b.

[ঢাকা বোর্ড ২০২২]

- (ক) আইসোটোপ কাকে বলে?
- (খ) "পরমাণুর সমস্ত ভর নিউক্লিয়াসে কেন্দ্রীভূত" ব্যাখ্যা করো।
- (গ) উদ্দীপকের ১ম মৌলের আপেক্ষিক পারমাণবিক ভর 35.5 হলে এর 50টি প্রমাণুর ভর কত?
- (ঘ) 'Z' এর সর্বশেষ ইলেকট্রন 3d অরবিটালে প্রবেশ করলেও 'Y' এর ক্ষেত্রে তা হয় না" ইলেকট্রন বিন্যাসের এরূপ কারণ বিশ্লেষণ করো।

৮ নং প্রশ্নের উত্তর

৩্য অধ্যায়

পদার্থেব গঠন

Prepared by: SAJJAD HOSSAIN

বুসায়ুৰ

- (খ) পরমাণুর কেন্দ্রের নাম নিউক্লিয়াস। নিউক্লিয়াসের ভিতরে প্রোটন ও নিউট্রন এবং বাইরে ইলেকট্রন অবস্থান করে। যেহেতু আপেক্ষিকভাবে ইলেকট্রনের ভর শূন্য ধরা হয়, কাজেই নিউক্লিয়াসের ভিতরে অবস্থিত প্রোটন ও নিউট্রনের ভরই পরমাণুর ভর হিসাবে বিবেচনা করা হয়। অর্থাৎ পরমাণুর সমস্ত ভর নিউক্লিয়াসে কেন্দ্রীভূত।
- (গ) উদ্দীপকের ১ম মৌলটি $_{17}X$ । অর্থাৎ X মৌলটি ক্লোরিন (CI)। দেওয়া আছে, CI এর আপেক্ষিক পারমাণবিক ভর 35.5। পরীক্ষায় দেখা গেছে, কার্বন-12 আইসোটোপের পারমাণবিক ভরের $\frac{1}{12}$ অংশ হচ্ছে $1.66 \times 10^{-24}~{
 m g}$ ।
 - Arr 1টি ক্লোরিন পরমাণুর ভর = $35.5 imes 1.66 imes 10^{-24} ext{ g}$ = $5.893 imes 10^{-23} ext{ g}$
 - ightharpoonup 50 টি ক্লোরিন পরমাণুর ভর $= 50 imes 5.893 imes 10^{-23} {
 m ~g}$ $= 2.9465 imes 10^{-21} {
 m ~g}$

সুতরাং, উদ্দীপকের ১ম মৌলের 50টি পরমাণুর ভর $2.9465 imes 10^{-21}$ g।

(ঘ) উদ্দীপকের তথ্য মতে, $_{19}Y$ ও $_{21}Z$ মৌলদ্বয় যথাক্রমে পটাসিয়াম (K) ও স্ক্যানডিয়াম (Sc)। Sc(21) এর সর্বশেষ ইলেকট্রন 3d তে প্রবেশ করলেও K(19) এর সর্বশেষ ইলেকট্রন 3d তে প্রবেশ করে না। নিচে ইলেকট্রন বিন্যাসের সাহায্য এর কারণ বিশ্লেষণ করা হলো- আউফবাউ নীতি অনুসারে, ইলেকট্রন প্রথমে নিমুশক্তির অরবিটালে এবং পরে উচ্চশক্তির অরবিটালে গমন করে। দুটি অরবিটালের মধ্যে কোনটি নিমুশক্তির আর কোনটি উচ্চশক্তির তা (n+l) এর মানের ওপর নির্ভর করে। যার (n+l) এর মান কম সেটি নিমুশক্তির অরবিটালের জন্য (n+l) এর মান নিমুর্নপ:

$$4s$$
 অরবিটালে : $n = 4$, $l = 0$

$$n + l = 4 + 0 = 4$$

সুতরাং, 3d এর চেয়ে 4s অরবিটালের শক্তি কম (4s < 3d) হওয়ায় পটাসিয়ামের 19 তম ইলেকট্রন 3d অরবিটালে না গিয়ে 4s অরবিটালে স্থান গ্রহণ করে। ফলে K(19) এর ইলেকট্রন বিন্যাস দাঁড়ায়-

$$K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$$

সুতরাং বলা যায়, 3d অপেক্ষা 4s অরবিটালের শক্তি কম হওয়ায় 19 তম ইলেকট্রনটি 3d তে প্রবেশ না করে 4s-এ প্রবেশ করে।

অপরদিকে Sc(21) এর ক্ষেত্রে সর্বশেষ ইলেকট্রন হলো 21 তম ইলেকট্রন। তাই Sc এর ইলেকট্রন বিন্যাসের ক্ষেত্রে 4s কম শক্তির অরবিটাল ইলেকট্রন দ্বারা পূর্ণ $(4s^2)$ করে সর্বশেষ ইলেকট্রন (21 তম ইলেকট্রন) 3d অরবিটালে প্রবেশ করে।

$$Sc(21) = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$$

উপরের আলোচনা থেকে বলা যায়, 3d অরবিটালের শক্তি 4s অপেক্ষা বেশি হওয়ায় K এর সর্বশেষ ইলেকট্রন 3d তে না গিয়ে 4s এ যায় এবং 5c এর সর্বশেষ ইলেকট্রন 4s অরবিটাল পূর্ণ করে উচ্চ শক্তির 3d অরবিটালে প্রবেশ করে।

[দিনাজপুর বোর্ড ২০২২]

- (ক) অরবিটাল কী?
- (খ) নিশাদলকে উর্ধ্বপাতিত পদার্থ বলা হয় কেন? ব্যাখ্যা করো।
- (গ) উদ্দীপকের B চিত্রের মৌলটির একটি পরমাণুর ভর $11.719 \times 10^{-24} {
 m g}$ হলে এর আপেক্ষিক পারমাণবিক ভর নির্ণয় করো।
- (ঘ) পরমাণুটির গঠন ব্যাখ্যায় উদ্দীপকের কোন চিত্রটি অধিকতর গ্রহণযোগ্য? যুক্তিসহ বিশ্লেষণ করো।

৯ নং প্রশ্নের উত্তর

- (ক) পরমাণুতে বিদ্যমান প্রতিটি প্রধান শক্তিস্তর কতকগুলো উপশক্তিস্তরে বিভক্ত থাকে যাদেরকে অর্বিটাল বলে।
- (খ) যেসব কঠিন পদার্থকে উত্তপ্ত করলে তরলে পরিণত না হয়ে সরাসরি গ্যাসে পরিণত হয় তাদেরকে উর্ধ্বপাতিত পদার্থ বলে। নিশাদল (NH4CI) কে তাপ দিলে এটি কঠিন অবস্থা থেকে সরাসরি বাষ্পীয় অবস্থায় পরিণত হয়। এজন্য নিশাদলকে উর্ধ্বপাতিত পদার্থ বলা হয়।
- (গ) জানা আছে, কোনো মৌলের আপেক্ষিক পারমাণবিক ভর মৌলের একটি পরমাণুর ভর

দেওয়া আছে, B মৌলের একটি পরমাণুর ভর $11.719 \times 10^{-24}~g$ । পরীক্ষায় দেখা গেছে, কার্বন-12 আইসোটোপের পারমাণবিক ভরের $\frac{1}{12}$ অংশ হচ্ছে $1.66 \times 10^{-24}~g$ ।

$$Arr$$
 B মৌলের আপেক্ষিক পারমাণবিক ভর $=rac{11.719 imes 10^{-24}}{1.66 imes 10^{-24}}$

$$= 7.06$$

সুতরাং উদ্দীপকের B চিত্রের মৌলটির আপেক্ষিক পারমাণবিক ভর 7.06।

(ঘ) উদ্দীপকের A মডেলটি রাদারফোর্ড প্রমাণু মডেল ও B মডেলটি নীলস

বোর প্রমাণ মডেল। প্রমাণুর গঠন ব্যাখ্যায় চিত্র B অর্থাৎ বোর প্রমাণু মডেল অধিকতর গ্রহণযোগ্য। নিচে যুক্তিসহ বিশ্লেষণ করা হলো-রাদারফোর্ডের প্রমাণু মডেলে বলা হয়েছে "সৌরজগতের সূর্যকে কেন্দ্র করে গ্রহগুলোর ন্যায় নিউক্লিয়াসকে কেন্দ্র করে ইলেকট্রনগুলো ঘুরতে <mark>থাকে।" কিন্তু নিউক্লিয়াসকে কেন্দ্র করে কীভাবে ঘুরে সে সম্পর্কে</mark> রাদারফোর্ড মডেলে কিছু বলা হয়নি অর্থাৎ রাদারফোর্ডের মতবাদে ইলেক্ট্রনসমূহ যে কক্ষপথ বা শক্তিস্তর থাকবে তার কোনো ব্যাখ্যা দেওয়া হয়নি। অপরদিকে, বোরের পরমাণু মডেলে বলা হয়েছে যে, "পরমাণুর নিউক্লিয়াসকে কেন্দ্র করে কতকগুলো বৃত্তাকার স্থির কক্ষপথে ইলেকট্রনগুলো ঘুরতে থাকে।" অর্থাৎ আবর্তনশীল ইলেকট্রনের কক্ষপথের আকার ও আকৃতি সমন্ধে ধারণা বোরের পরমাণু মডেলে দেওয়া হয়েছে। রাদারফোর্ডের মতবাদে আরও বলা হয়েছে যে, পরমাণুর কেন্দ্রস্থলে একটি ধনাত্মক চার্জযুক্ত ভারী বস্তু বিদ্যমান। এ ভারী বস্তুকে পরমাণুর কেন্দ্র বা নিউক্লিয়াস বলা হয়। পরমাণুর মোট আয়তনের তুলনায় নিউক্লিয়াসের আয়তন অতি নগণ্য। পরমাণু বিদ্যুৎ নিরপেক্ষ। রাদারফোর্ডের মডেলে হাইড্রোজেন বা অন্য কোনো মৌলের ক্ষেত্রে কীভাবে বর্ণালি সৃষ্টি হয় সে সম্পর্কে কোনো ধারণা দেওয়া হয়নি কিন্তু বোরের মডেলে বলা হয়েছে ৩্য অধ্যায়

Prepared by: SAJJAD HOSSAIN

যে, একটি নির্দিষ্ট শক্তিস্তরে অবস্থানকালে ইলেকট্রনসমূহ শক্তি শোষণ অথবা বিকিরণ করে না। যখন কোনো ইলেকট্রন নিমূতর কক্ষপথ থেকে উচ্চতর কক্ষপথে স্থানান্তরিত হয় তখন নির্দিষ্ট পরিমাণ শক্তি শোষণ করে। আবার যখন উচ্চতর শক্তিস্তর থেকে নিমূতর শক্তিস্তরে স্থানান্তরিত হয় তখন শক্তি বিকিরণ করে। এ বিকীর্ণ শক্তি বর্ণালি হিসেবে দেখা দেয়। উপরের আলোচনা থেকে বলা যায়, পরমাণুর গঠন ব্যাখ্যায় উদ্দীপকের \mathbf{B} মডেলটি তথা বোর পরমাণু মডেল অধিকতর গ্রহণযোগ্য।

50.

[বি.দ্র. : D প্রতীকী অর্থে; কোন প্রতীক নয়।

[কুমিল্লা বোর্ড ২০২২]

- (ক) পাতন কাকে বলে?
- (খ) $CO_2(g)$ এবং $CH_4(g)$ এর মধ্যে কার ব্যাপন হার বেশি?
- (গ) উদ্দীপকের 'D' মৌলের শেষ কক্ষপথে ইলেকট্রনের <mark>কৌ</mark>ণিক ভরবেগ নির্ণয় করো।
- (ঘ) উদ্দীপকের 'D' মৌলের ইলেকট্রন বিন্যাস ন্যাস $2n^2$ সূত্র দ্বারা ব্যাখ্যা করা যায় না বিশ্লেষণ করো।

১০ নং প্রশ্নের উত্তর

- (ক) কোনো তরলকে তাপ প্রদানে বাম্পে পরিণ<mark>ত করে তাকে পুনরায়</mark> শীতলীকরণের মাধ্যমে তরলে পরিণত করার পদ্ধতিকে পাতন বলে।
- (খ) $CO_2(g)$ এবং $CH_4(g)$ এর মধ্যে $CH_4(g)$ এর ব্যাপন হার বেশি। কারণ গ্রাহামের ব্যাপন সূত্রানুসারে ব্যাপন হলো আণবিক ভরের বর্গমূলের ব্যান্তরানুপাতিক। অর্থাৎ যার আণবিক ভর যত কম হবে তার ব্যাপন হার তত বেশি হবে। CO_2 এর আণবিক ভর $(12+16\times 2)$ বা, 44 এবং CH_4 এর আণবিক ভর $(12+1\times 4)$ বা, 16। CH_4 এর আণবিক ভর কম হওয়ায় এর ব্যাপন হার বেশি হয়।
- (গ) উদ্দীপকের D মৌলটির 19টি প্রোটন এবং 21টি নিউট্রন আছে। সুতরাং মৌলটি পটাসিয়াম (K)। এর ইলেকট্রন বিন্যাস : $K(19)=1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^1$
 - ∴ সর্বশেষ ইলেকট্রনটি ৪র্থ কক্ষপথে প্রবেশ করে।
 বোর পরমাণু মডেল অনুসারে ইলেকট্রনের কৌণিক ভরবেগ,

$$mvr = n \frac{h}{2\pi}$$
 এখানে, $n = 4 \ (84)$ কক্ষপথ) $h = 6.626 \times 10^{-34}$ $m^2 kgs^{-1}$ $m^2 kgs^{-1}$ $\pi = 3.1416$ $mvr =$ কৌণিক ভরবেগ $=$?

সুতরাং উদ্দীপকের D মৌলের শেষ কক্ষপথের ইলেকট্রনের কৌণিক ভরবেগ $4.218 \times 10^{-34} \ m^2 kg s^{-1}$ ।

(ঘ) উদ্দীপকের D মৌলটি পটাসিয়াম (K) [গ থেকে পাই] |K| এর ইলেকট্রন বিন্যাস $2n^2$ সূত্র দ্বারা ব্যাখ্যা করা যায় না |K| নিচে তা ব্যাখ্যা করা হলো-পটাসিয়ামের ইলেকট্রন বিন্যাস :

$$K(19) = \frac{1s^2}{2} \frac{2s^2}{8} \frac{2p^6}{8} \frac{3s^2}{8} \frac{3p^6}{1} \frac{4s^1}{1}$$

ইলেকট্রন বিন্যাস থেকে দেখা যায়, K(19) এর ৩য় কক্ষপথে 8 (আট) টি ইলেকট্রন আছে। কিন্তু $2n^2$ সূত্র অনুসারে ৩য় কক্ষপথে $2.3^2=18$ টি ইলেকট্রন থাকার কথা। এক্ষেত্রে $2n^2$ নিয়মের ব্যতিক্রম দেখা যায়। কারণ K(19) এর 3d ও 4s অরবিটালের শক্তির মান.

$$3d$$
 এর জন্য $n+l=3+2=5$

৪৫ এর জন্য
$$n + l = 4 + 0 = 4$$

এক্ষেত্রে, 3d অপেক্ষা 4s অরবিটালে শক্তির মান কম হওয়ায় আউফবাউ নীতি অনুসারে, কম শক্তি সম্পন্ন 4s অরবিটাল আগে ইলেকট্রন দ্বারা পূর্ণ করবে। তারপর 3d অরবিটালে ইলেকট্রন প্রবেশ করবে। অর্থাৎ 3d অরবিটালে ইলেকট্রন প্রবেশ না করে 4s অরবিটালে ইলেকট্রন প্রবেশ করেছে। তাতে ৩য় শক্তিস্তরে $2n^2$ নিয়ম অনুসারে 18টি ইলেকট্রন পূর্ণ না করেই 8র্থ শক্তিস্তরে ইলেকট্রন প্রবেশ করে। অর্থাৎ K(19) এর ইলেকট্রন বিন্যাস $2n^2$ সূত্র দ্বারা ব্যাখ্যা করা যায় না।

۵۵. (i) ¹⁶X, ¹⁷X, ¹⁸X

'X' মৌলের আইসোটোপের শতকরা পরিমাণ যথাক্রমে 99.76%, 0.037% এবং 0.203%।

[এখানে, X, Y ও Z প্র<u>তীকী অর্থে;</u> কোনো মৌলের প্রতীক নয়] [চট্টগ্রাম বোর্ড ২০২২]

- (ক) মোলার দ্রবণ কাকে বলে?
- (খ) তৃতীয় প্রধান শক্তিস্তরে f অরবিটাল থাকে না কেন?
- (গ) উদ্দীপকের 'X' মৌলে<mark>র আপেক্ষিক পারমা</mark>ণবিক ভর নির্ণয় করো।
- (ঘ) উদ্দীপকের 'Y' ও 'Z' মৌল দুটির ইলেকট্রন বিন্যাস $2n^2$ সূত্র মেনে চলে কিনা? বিশ্লেষণ করো।

১১ নং প্রশ্নের উত্তর

- (ক) স্থির তাপমাত্রায় কোনো দ্রবণের প্রতি লিটারে এক মোল দ্রব দ্রবীভূত থাকলে তাকে মোলার দ্রবণ বলে।
- (খ) তৃতীয় প্রধান শক্তিস্তরে f অরবিটাল থাকে না। কারণ তৃতীয় শক্তিস্তরের জন্য প্রধান কোয়ান্টাম সংখ্যা (n) = 3 এবং সহকারী কোয়ান্টাম সংখ্যা (l) = 0, 1, 2। জানা আছে, l এর মান 0, 1, 2 এর জন্য s, p, d অরবিটাল সম্ভব হয়। এজন্য তৃতীয় প্রধান শক্তিস্তরে f অরবিটাল থাকে না।
- (গ) উদ্দীপকের X মৌলের ক্ষেত্রে দেওয়া আছে, $^{16}X = 99.76\%$, $^{17}X = 0.037\%$, $^{18}X = 0.203\%$
 - : X মৌলের আপেক্ষিক পারমাণবিক ভর

$$=\frac{99.76\times16}{100}+\frac{0.037\times17}{100}+\frac{0.204\times18}{100}$$

= 15.96 + 0.00629 + 0.0367216.003

সুতরাং, প্রদত্ত 'X' মৌলের আপেক্ষিক পারমাণবিক ভর 16.003।

(ঘ) উদ্দীপকের $_{19}Y$ ও $_{11}Z$ মৌল দুটি যথাক্রমে $_{19}K$ ও $_{11}Na$ । ইলেকট্রন বিন্যাসের ক্ষেত্রে $2n^2$ সূত্র Na মেনে চললেও $_{19}K$ মেনে চলে না । নিচে তা বিশ্লেষণ করা হলো-

জানা আছে, পরমাণুর যেকোনো কক্ষপথে $2n^2$ সংখ্যক ইলেকট্রন থাকতে পারে। সে হিসাবে,

১ম কক্ষপথে ইলেকট্রন থাকতে পারে $=2.1^2=2$

২য় কক্ষপথে ইলেকট্রন থাকতে পারে $=2.2^2=8$

বসায়ৰ

<u>৩্য অধ্যায়</u>

পদার্থেব গঠন

Prepared by: SAJJAD HOSSAIN

৩য় কক্ষপথে ইলেকট্রন থাকতে পারে $=2.3^2=18$

Na(11) ও K(19) এর ইলেকট্রন বিন্যাস:

$$Na(11) = \frac{1s^2}{2} \frac{2s^2}{8} \frac{2p^6}{1} \frac{3s^1}{1} \quad K(19) = \frac{1s^2}{2} \frac{2s^2}{8} \frac{2p^6}{8} \frac{3s^2}{8} \frac{3p^6}{8}$$

দেখা যাচেছ, Na(11) এর ইলেকট্রন বিন্যাসে ১ম কক্ষপথে ২টি, ২য় কক্ষপথে 8টি এবং ৩য় কক্ষপথে 1টি ইলেকট্রন আছে। অর্থাৎ ১ম কক্ষপথ পূর্ণ করে ২য় কক্ষপথ এবং ২য় কক্ষপথ পূর্ণ করে ৩য় কক্ষপথে $2n^2$ সূত্র মতে ইলেকট্রন প্রবেশ করেছে।

কিন্তু K(19) এর ইলেকট্রন বিন্যাস থেকে দেখা যাচ্ছে, ইলেকট্রন ৩য় কক্ষপথ পূর্ণ না করেই ৪র্থ কক্ষপথে গমন করেছে। ৩য় কক্ষপথে 18টি ইলেকট্রন থাকার কথা, এক্ষেত্রে মাত্র 8টি ইলেকট্রন রেখেই ৪র্থ কক্ষপথে আউফবাউ নীতি অনুসারে ইলেকট্রন প্রবেশ করেছে। কারণ ৩য় কক্ষপথের 3d অরবিটালের শক্তির তুলনায় ৪র্থ কক্ষপথের 4s অরবিটালের শক্তির মান (n+l) কম।

৩ফ এর ক্ষেত্রে,
$$(n+l)=3+2=5$$

4s এর ক্ষেত্রে, $(n-l)=4+0=4$

আউফবাউ নীতি অনুসারে ইলেকট্রন নিমুশক্তির 4s অরবিটাল আ<mark>গে</mark> পূর্ণ করবে তারপর 3d অরবিটালে গমন করবে। তাই এক্ষেত্রে $2n^2$ সূত্র মেনে চলে না।

১২. দৃশ্যকল্প-১ : ¹H, ²H এবং ³H হাইড্রোজেন মৌলের তিনটি আইসোটোপ। এদের মধ্যে প্রথম আইসোটোপটির প্রকৃতিতে প্রাপ্ত শতকরা পমাণ 99.98% এবং মৌলটির গড় আপেক্ষিক পারমাণবিক ভর 1.00025।

দৃশ্যকল্প-২ :

[ঢাকা বোর্ড ২০২১]

- (ক) ভ্যান্ডার ওলালস আর্কষণ বল কাকে বলে?
- (খ) যৌগের আপেক্ষিক আণবিক ভরের ব্যাখ্যা দাও।
- (গ) দৃশ্যকল্প–১ এর আলোকে মৌলটির ২য় এবং ৩য় আইসোটোপের প্রকৃতিতে প্রাপ্ত শতকরা পরিমাণ নির্ণয় করো।
- ইলেকট্রন বিন্যাসের ক্ষেত্রে প্রধান শক্তিস্তরের সাথে উপশক্তিস্তরের সম্পর্ক, দৃশ্যকল্প-২ এর আলোকে বিশ্লেষণ করো।

১২ নং প্রশ্নের উত্তর

- (ক) অপোলার সমযোজী অণুসমূহের আন্তঃআণবিক আকর্ষণ বলই ভ্যান্ডার ওয়ালস আকর্ষণ বল।
- (খ) কোনো মৌলিক বা যৌগিক পদার্থের অণুতে যে পরমাণুগুলো থাকে তাদের আপেক্ষিক পারমাণবিক ভর নিজ নিজ পরমাণু সংখ্যা দিয়ে গুণ করে যোগ করলে প্রাপ্ত যোগফলই হলো ঐ অণুর আপেক্ষিক আণবিক ভর। যেমন H_2O অণুতে উপস্থিত H এর আপেক্ষিক পারমাণবিক ভর 1.0 এবং পরমাণু সংখ্যা 2, O পরমাণুর আপেক্ষিক পারমাণবিক ভর 16 এবং পরমাণু সংখ্যা 1।
 - সুতরাং H_2O এর আপেক্ষিক আণবিক ভর =1 imes 2 + 16 = 18 ।
- (গ) উদ্দীপকের দৃশ্যকল্প-১ এ দেওয়া আছে,

'H আইসোটোপের শতকরা পরিমাণ = 99.98%।

সুতরাং ${}^2\mathrm{H}$ ও ${}^3\mathrm{H}$ আইসোটোপের প্রকৃতিতে প্রাপ্ত শতকরা পরিমাণ

$$=(100-99.98)\%=0.02\%$$

ধরি, 2H আইসোটোপের প্রকৃতিতে পরিমাণ = x%

এবং ³H আইসোটোপের প্রকৃতিতে পরিমাণ = (0.02 - x)%

আপেক্ষিক পারমাণবিক ভর

$$=\frac{(99.98\times1)+(x\times2)+(0.02-x)\times3}{100}$$

বা,
$$1.00025 = \frac{99.98 + 2x + 0.06 - 3x}{100}$$

বা, 100.025 = 100.04 − x

বা, x = 0.015%

$$= (0.02 - 0.015)\% = 0.005\%$$

(ঘ) কোনো একটি ইলেকট্রন যে নির্দিষ্ট ব্যাসার্ধের কতকগুলো অনুমোদিত বৃত্তাকার কক্ষপথে নিউক্লিয়াসের চারিদিকে পরিভ্রমণ করে তাকে প্রধান শক্তিস্তর কলে। প্রধান শক্তিস্তরকে n দ্বারা প্রকাশ করা হয়। আবার, ইলেকট্রনগুলো প্রধান শক্তিস্তরের যে উপশক্তিস্তরে পরিভ্রমণ করে তাকে সহকারী কোয়ান্টাম সংখ্যা বলে। একে l দ্বারা প্রকাশ করা হয়। l এর মান 0 থেকে (n – 1) পর্যন্ত হয়। উদ্দীপকে প্রধান শক্তিস্তর তিনটি। নিচে ইলেকট্রন বিন্যাসের ক্ষেত্রে প্রধান শক্তিস্তরের সাথে উপশক্তিস্তরের সম্পর্ক দশ্য-২ এর আলোকে ছকের মাধ্যমে বিশ্লেষণ করা হলো-

1 11	1 3 0 7 44 416 1161 7614 41 964 1 164 1 1 141 76 11				
শক্তিস্তর	শক্তিস্তর	<i>l</i> অনুযায়ী	অরবিটালের	অরবিটালে	শক্তিস্তরে
n	অনুযায়ী	অরবিটালের	প্রতীক	মোট	মোট
D, "	উপশক্তিস্তরে	নাম		ইলেকট্রন	ইলেকট্রন
2.49	<i>l</i> এর মান			সংখ্যা2(2 <i>l</i>	সংখ্যা
				+ 1)	$2n^2$
1	0	S	1s	2	2
2	0	S	2s	2	2 + 6 =
	1	p	2p	6	8
3	0	S	3s	2	2 + 6 +
	1	p	3p	6	10 = 18
	2	d	3d	10	, i

30.

মডেল-

[ময়মনসিংহ বোর্ড ২০২১]

- (ক) অরবিটাল কাকে বলে?
- (খ) ফ্রোরিন পরমাণু বিদ্যুৎ নিরপেক্ষ ব্যাখ্যা করো।
- (গ) মডেল ২ এর শেষ কক্ষপথে ইলেকট্রনের কৌণিক ভরবেগ নির্ণয় করো।
- (ঘ) মডেল-১ ও মডেল-২ এর মধ্যে কোনটি অধিকতর উপযোগী? -বিশ্লেষণ করো।

১৩ নং প্রশ্নের উত্তর

বুসায়ৰ ৩য় অধ্যায়

পদার্থের গঠন

Prepared by: SAJJAD HOSSAIN

- (ক) পরমাণুর প্রতিটি প্রধান শক্তিস্তর এক বা একাধিক উপশক্তিস্তর নিয়ে গঠিত; এ উপশক্তিস্তরগুলোকে অরবিটাল বলা হয়।
- (খ) স্বাভাবিক অবস্থায় পরমাণুতে প্রোটন ও ইলেকট্রন সংখ্যা সমান। পরমাণুতে যদি প্রোটন সংখ্যা অপেক্ষা ইলেকট্রন বেশি থাকে তবে এটি ঋণাত্মক চার্জ এবং ইলেকট্রন অপেক্ষা প্রোটন বেশি থাকলে ধনাত্মক চার্জযুক্ত হয়ে পড়ে। এক্ষেত্রে কেন্দ্রে অবস্থিত ধনাত্মক প্রোটনের সমান সংখ্যক ঋণাত্মক ইলেকট্রন নিউক্লিয়াসকে কেন্দ্র করে ঘুরে বলে পরমাণু বিদ্যুৎ নিরপেক্ষ। ফ্রোরিনের (9F) প্রোটন সংখ্যা প এবং ইলেকট্রন সংখ্যা প। যেহেতু প্রোটন সংখ্যা ও ইলেকট্রন সংখ্যা সমান, সেহেতু ফ্রোরিন (F) পরমাণু বিদ্যুৎ নিরপেক্ষ।
- (গ) উদ্দীপকের মডেল-২ হতে, শেষ কক্ষপথে প্রধান শক্তিস্তর, n=2। জানা আছে, ইলেকট্রনের কৌণিক ভরবেগ,

$$mvr = \frac{nh}{2\pi}$$

$$= \frac{2 \times 6.626 \times 10^{-34}}{2 \times 3.1416}$$

$$= 2.11 \times 10^{-34} \text{ m}^2$$
 kg/s
$$kg/s$$

$$mvr = \frac{nh}{2\pi}$$

$$= \frac{2 \times 6.626 \times 10^{-34}}{2 \times 3.1416}$$

$$= 6.626 \times 10^{-34} \text{ m}^2$$

$$kg/s$$

$$\pi = 3.1416$$

সুতরাং, নির্ণেয় কৌণিক ভরবেগ $2.11 imes 10^{-34}~\mathrm{m^2~kg/s}$ ।

- (ঘ) উদ্দীপকের মডেল-১ হলো রাদারফোর্ডের পরমাণু মডেল এবং মডেল-২ হলো বোরের পরমাণু মডেল। উক্ত মডেল দুটির মধ্যে বোরের পরমাণু মডেল অধিকতর উপযোগী। নিচে তা বিশ্লেষণ করা হলো:
 - ১. রাদারফোর্ড পরমাণু মডেল অনুসারে সৌরজগতে সূর্যকে কেন্দ্র গ্রহ-উপগ্রহণ্ডলো যেমন ঘুরছে, পরমাণুতে ইলেকট্রনগুলোও তেমন নিউক্লিয়াসকে কেন্দ্র করে ঘুরছে। এখানে ইলেকট্রনের শক্তিস্তরের আকার সম্পর্কে কোনো কথা বলা হয়নি কিন্তু বোরের পারমাণবিক মডেলে পরমাণুর শক্তিস্তরের আকার বৃত্তাকার বলা হয়েছে।
 - হ. রাদারফোর্ডের পরমাণু মডেলে পরমাণু শক্তি শোষণ করলে বা শক্তি বিকিরণ করলে পরমাণুর গঠনে কী ধরনের পরিবর্তন ঘটে সে কথা বলা হয়নি কিন্তু বোর পরমাণু মডেলে বলা হয়েছে পরমাণু শক্তি শোষণ করলে ইলেকট্রন নিম্ন শক্তিম্ভর' থেকে উচ্চ শক্তিস্তরে উঠে। আবার, পরমাণু শক্তি বিকিরণ করলে ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে নেমে আসে।
 - রাদারফোর্ডের পরমাণু মডেল অনুসারে কোনো মৌলের পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না কিন্তু বোরের পরমাণু মডেল অনুসারে এক ইলেকট্রনবিশিষ্ট পরমাণু হাইড্রোজেন (H) এর বর্ণালি ব্যাখ্যা করা যায়।

উপরিউক্ত বর্ণিত কারণে বলা যায় যে, রাদারফোর্ডের পরমাণু মডেলের তুলনায় বোরের পরমাণু মডেল অধিকতর উন্নত তথা উপযোগী।

১৪. রাদাফোর্ডের পরমাণু মডেল পরমাণু মডেল

[দিনাজপুর বোর্ড ২০২১]

- (ক) মৌলিক পদার্থ কাকে বলে?
- (খ) 2N ও N_2 বলতে কী বোঝায়? ব্যাখ্যা করো।
- (গ) উদ্দীপকের কোন মডেলকে সৌর মডেল বলা হয়? কারণসহ ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের মডেল দুইটির তুলনা করো।

১৪ নং প্রশ্নের উত্তর

- (ক) যে পদার্থকে ভাঙলে সেই পদার্থ ছাড়া অন্য কোনো পদার্থ পাওয়া যায় না তাকে মৌলিক পদার্থ (Na, H, O ইত্যাদি) বলে।
- (খ) 2N দ্বারা নাইট্রোজেনের দুটি বিচ্ছিন্ন পরমাণু বুঝায়, যা কোনো রাসায়নিক বন্ধনে অণু গঠন করেনি। N পরমাণুতে নাইট্রোজেনের ধর্ম বিদ্যমান।

 N2 হলো নাইট্রোজেনের একটি অণু, যা দুটি নাইট্রোজেন পরমাণু
 পরস্পরের সাথে রাসায়নিক বন্ধনের মাধ্যমে যুক্ত হয়ে গঠিত হয়েছে।
- (গ) উদ্দীপক প্রদন্ত রাদারফোর্ডের মডেলকে সৌর মডেল বলা হয়। এর কারণ নিচে ব্যাখ্যা করা হলো :
 রাদারফোর্ড তাঁর পরমাণু মডেলকে সৌরজগতের সাথে তুলনা করেছেন।
 তাঁর মতে সৌরজগতে সূর্যের চারদিকে ঘূর্ণায়মান গ্রহসমূহের মত পরমাণুর
 ইলেকট্রনগুলো এর কেন্দ্রস্থ নিউক্লিয়াসের চারদিকে সতত ঘূর্ণায়মান।
 ধনাত্মক আধানবিশিষ্ট নিউক্লিয়াস ও ঋণাত্মক চার্জবিশিষ্ট ইলেকট্রনসমূহের
 পারস্পরিক স্থির বৈদ্যুতিক আকর্ষণজনিত কেন্দ্রমুখী বল এবং ঘূর্ণায়মান
 ইলেকট্রনের কেন্দ্রাবিমুখী বল পরস্পর সমান।
 সৌরজগতের সাথে সাদৃশ্য রেখে মডেলটি কল্পনা করা হয়েছে বলে
- রাদারফোর্ডের পরমাণু মডেলকে সৌর মডেল বলা হয়।
 (ঘ) উদ্দীপকের মডেল দুটি হচ্ছে রাদারফোর্ড ও বোর পরমাণু মডেল। এদের
 মধ্যে তুলনা নিমুরূপ:

সাদৃশ্য:

- রাদারফোর্ডের মডেলে পরমাণুর গঠন সম্পর্কে প্রথমে ধারণা দেওয়া
 হয়। বোর মডেলটি রাদারফোর্ডের মডেলের উপর প্রতিষ্ঠিত। এ
 মডেল রাদারফোর্ডের পরমাণু মডেলের সীমাবদ্ধতা দূর করেছে।
- ২. রাদারফোর্ডের <mark>মডেলে বলা হয়েছে পরমাণুতে ইলেকট্রন</mark> নিউক্লিয়াসকে কেন্দ্র <mark>করে ঘূর্ণায়মান। বো</mark>র মডেলে তা স্বীকার করে নেওয়া হয়েছে।
- রাদারফোর্ডের মডেল অনুযায়ী পরমাণুর কেন্দ্র ধনাত্মক আধানযুক্ত।
 বোরের মডেলও একই কথা বলা হয়েছে।

বৈসাদৃশ্য:

- রাদারফোর্ডের মডেলে নিউক্লিয়াসের চতুর্দিকে ঘূর্ণায়মান ইলেকট্রনের কক্ষপথের আকার ও আকৃতি 'সম্পর্কে কোনো ধারণা দেওয়া হয়নি। বোর মডেলে বলা হয়়, ইলেকট্রনগুলো নির্দিষ্ট শক্তি সম্পন্ন কতকগুলো স্থায়ী গোলাকার কক্ষপথে আবর্তন করছে।
- রাদারফোর্ডের মডেলে বিভিন্ন, কক্ষপথে ইলেকট্রনের স্থানান্তর সম্পর্কে কোনো ধারণা দেওয়া হয় নি। কিন্তু বোর মডেলে বলা হয়েছে ইলেকট্রনসমূহ সবসময় নির্দিষ্ট শক্তির কক্ষপথে অবস্থান করে।
- রাদারফোর্ডের মডেলে রেখা বর্ণালির কোনো ধারণা দেওয়া হয়নি।
 বোরের মডেলে পরমাণুর রেখা বর্ণালির উৎপত্তি ব্যাখ্যা করা হয়েছে।

\$6.

 e^- এর ভার = $9.11 \times 10^{-31}~kg$ কক্ষপথের ব্যাসার্ধ = $3.6 \times 10^{-10}~m$ প্লাংকের ধ্রুবক = $6.626 \times 10^{-34}~m^2kg/s$

[কুমিল্লা বোর্ড ২০২১]

- (ক) ভরসংখ্যা কাকে বলে?
- (খ) '2d' অরবিটাল অসম্ভব কেন?

বুসামূল ৩ম অধ্যাম

পদাৰ্থেব গঠন

Prepared by: SAJJAD HOSSAIN

- (গ) উদ্দীপকের e^{-} . M শেলে কত বেগে ঘুরবে? নির্ণয় করো।
- (ঘ) পরমাণুর গঠন বর্ণনায় চিত্র ১ ও ২ এর মধ্যে কোনটি বেশি সফল? তুলনামূলক বিশ্লেষণ করো।

১৫ নং প্রশ্নের উত্তর

- (ক) কোনো পরমাণুতে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফলকে পরমাণুর ভরসংখ্যা বলে।
- খে) 2d অরবিটাল অসম্ভব। কারণ 2d অরবিটালের জন্য n=2 এবং l=0, 1 হতে হবে। জানা আছে, $l=0,\,1$ এর জন্য s ও p অরবিটাল সম্ভব। এজন্য 2d অরবিটাল অসম্ভব।
- (গ) উদ্দীপকের M শেল দ্বারা তৃতীয় কক্ষপথ বুঝায়। দেওয়া আছে.

$$n = 3$$

h = প্লাংকের ধ্রুবক $= 6.626 \times 10^{-34} \text{ m}^2\text{kg/s}$

m r = কক্ষপথের ব্যাসার্ধ $m = 3.6 imes 10^{-10} \ m$

 $m m = e^-$ এর ভার = $9.11 imes 10^{-31}
m \, kg$

 $\pi = 3.1416$

v = ইলেক্ট্রনের গতিবেগ = ?

জানা আছে.

$$\begin{split} mvr &= \frac{nh}{2\pi} \\ \hline \mbox{al}, \ v &= \frac{nh}{mr \times 2\pi} \\ &= \frac{3 \times 6.626 \times 10^{-34}}{9.11 \times 10^{-31} \times 3.6 \times 10^{-10} \times 2 \times 3.1416} \\ &= 9.647 \times 10^5 \ ms^{-1} \end{split}$$

- সুতরাং, উদ্দীপকের e^- , M শেলে $9.647 \times 10^5~ms^{-1}$ বেগে ঘুরবে। (ঘ) উদ্দীপকের চিত্র-১ এর মডেলটি বোর পরমাণু মডেল এবং চিত্র-২ মডেলটি রাদারফোর্ড পরমাণু মডেল। পরমাণুর গঠন বর্ণনায় বোর পরমাণু মডেল বেশি সফল। নিচে তা তুলনামূলক বিশ্লেষণ করা হলো-
 - ১. রাদারফোর্ড পরমাণু মডেল অনুসারে সৌরজগতে সূর্যকে কেন্দ্র করে গ্রহ-উপগ্রহণ্ডলো যেমন ঘুরছে, পরমাণুতে ইলেকট্রনগুলোও তেমন নিউক্লিয়াসকে কেন্দ্র করে ঘুরছে। এখানে ইলেকট্রনের শক্তিস্তরের আকার সম্পর্কে কোনো কথা বলা হয়নি কিন্তু বোরের পারমাণবিক মডেলে পরমাণুর শক্তিস্তরের আকার বৃত্তাকার বলা হয়েছে।
 - হ. রাদারফোর্ডের পরমাণু মডেলে পরমাণু শক্তি শোষণ করলে বা শক্তি বিকিরণ করলে পরমাণুর গঠনে কী ধরনের পরিবর্তন ঘটে সে কথা বলা হয়নি কিন্তু বোর পরমাণু মডেলে বলা হয়েছে পরমাণু শক্তি শোষণ করলে ইলেকট্রন নিম্ন শক্তিস্তর থেকে উচ্চ শক্তিস্তরে উঠে। আবার, পরমাণু শক্তি বিকিরণ করলে ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে নেমে আসে।
 - রাদারফোর্ডের পরমাণু মডেল অনুসারে কোনো মৌলের পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না কিন্তু বোরের পরমাণু মডেল অনুসারে এক ইলেকট্রনবিশিস্ট পরমাণু হাইড্রোজেন (H) এর বর্ণালি ব্যাখ্যা করা যায়।

উপরিউক্ত বর্ণিত কারণে বলা যায় যে, রাদারফোর্ডের পরমাণু মডেলের তুলনায় বোরের পরমাণু মডেল অধিকতর উন্নত তথা উপযোগী।

১৬. (i)

Y- আইসোটোপের পর্যাপ্ততার পরিমাণ

 32 Y = 95%, 33 Y = 0.75%, 34 Y = 4.25%

চিউগ্রাম বোর্ড ২০২১

- (ক) মৌলের প্রতীক কাকে বলে?
- (খ) Ar মৌল নিদ্রিয় গ্যাস কেন ? ব্যাখ্যা করো।
- (গ) উদ্দীপকের Y মৌলের গড় আপেক্ষিক পারমাণবিক ভর নির্ণয় করো।
- (ঘ) উদ্দীপকের X এ অবস্থিত মৌলসমূহের গুরুত্ব বিশ্লেষণ করো।

১৬ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের ইংরেজি বা ল্যাটিন নামের সংক্ষিপ্ত রূপকে মৌলের প্রতীক বলে।
- (খ) নিদ্রিয় মৌলগুলোর সর্বশেষ শক্তিস্তর অষ্টক পূর্ণ থাকায় এসব মৌল যথেষ্ট স্থিতিশীল থাকে। ফলে এসব মৌল সহজে কোনো বিক্রিয়ায় অংশগ্রহণ করে না।

আর্গনের (Ar) ইলেক্ট্রন বিন্যাস নিমুরূপ:

 $Ar(18) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6$

দেখা <mark>যাচ্ছে যে, Ar এ</mark>র সর্বশেষ শক্তিন্তর অষ্টক পূর্ণ। ফলে এটি ইলেকট্রন আদান-প্রদান বা শেয়ারের মাধ্যমে কোনো যৌগ গঠন করে না। তাই Ar মৌল নিষ্ক্রিয় গ্যাস।

(গ) দেওয়া আছে, $^{32}Y = 95\%$

$$^{33}Y = 0.75\%$$
 $^{34}Y = 4.25\%$

সুতরাং, 'Y' মৌলের আপেক্ষিক পারমাণবিক ভর

$$= \frac{(32 \times 95) + (33 \times 0.75) + (34 \times 4.25)}{100}$$
$$= 32.0925$$

সুতরাং, উদ্দীপকের Y মৌ<mark>লের</mark> আ<u>পেক্ষিক পারমাণবিক ভর 32.0925</u>।

- (ঘ) উদ্দীপক (ii) নং এর X এ অবস্থিত তেজব্রুয় আইসোটোপগুলো হচ্ছে যথাক্রমে টেকনেসিয়াম $^{99}{
 m Tc}$, কোবাল্ট $^{60}{
 m Co}$, ইউরেনিয়াম $^{92}{
 m U}$ । নিচে মৌলগুলোর গুরুত্ব বিশ্লেষণ করা হলো-
 - 99Tc আইসোটোপ: 99Tc আইসোটোপ ব্যবহার করে রোগাক্রান্ত স্থানের ছবি তোলা সম্ভব। ইঞ্জেকশনের মাধ্যমে 99Tc আইসোটোপ শরীরের ভিতর প্রবেশ করানো হয়। এই আইসোটোপ শরীরের নির্দিষ্ট স্থানে জমা হয়ে গামা রশ্মি বিকিরণ করে, তখন বাইরে থেকে গামা রশ্মি শনাক্তকরণ ক্যামেরা দিয়ে সেই স্থানের ছবি তোলা হয়।

⁶⁰Co **আইসোটোপ :** টিউমারের উপস্থিতি নির্ণয় ও নিরাময়ে তেজঞ্জিয় আইসোটোপ ⁶⁰Co ব্যবহার করা হয়। ⁶⁰Co থেকে নির্গত গামা রশ্মি ক্যান্সারের কোষকলাকে ধ্বংস করে।

238 U আইসোটোপ : স্বপ্নগতির নিউট্রন কণা দিয়ে ইউরেনিয়াম (U) কে আঘাত করে নিউক্লিয়ার ফিশন বিক্রিয়া ঘটানো হয়। এ বিক্রিয়ায় প্রায় 200 MeV শক্তি উৎপান হয়। এ শক্তি ব্যবহার করে পারমাণবিক চুল্লির সাহায্যে বিদ্যুৎ উৎপাদন করা হয়। পাবনা জেলার রূপপুরে এরকম একটি প্রজেক্ট থেকে বিদ্যুৎ উৎপাদন করা হবে। পৃথিবীর অনেক দেশে পারমাণবিক চুল্লির সাহায্যে বিদ্যুৎ উৎপাদন করা হয়।

উপরোক্ত ব্যবহার বিশেষণে এটা স্পষ্ট যে, চিকিৎসা ক্ষেত্রে ও মানবসভ্যতায় প্রদত্ত তেজস্ক্রিয় আইসোটোপসমূহের গুরুত্ব অপরিসীম।

١٩.

¹ H	₁ T	$_{1}D$	Li
(i)	(ii)	(iii)	(iv)

ত্য অধ্যায়

পদাৰ্থেব গঠন

Prepared by: SAJJAD HOSSAIN

[সিলেট বোর্ড ২০২১] ১৮.

(ক) যোজ্যতা ইলেকট্রন সংখ্যা কাকে বলে?

বুসায়ুৰ

- (খ) সোডিয়াম নমনীয় কেন? ব্যাখ্যা করো।
- (গ) উদ্দীপকের (i), (ii) ও (iii) পরস্পরের আইসোটোপ ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের (i) ও (iv) পরমাণুর মধ্যে কোনটির গঠন ব্যাখ্যায় বোরের পরমাণু মডেল সফল? যুক্তি দাও।

১৭ নং প্রশ্নের উত্তর

- (ক) কোনো মৌলের সর্বশেষ প্রধান শক্তিস্তরে মোট ইলেকট্রন সংখ্যাকে যোজ্যতা ইলেকট্রন সংখ্যা বলে।
- (খ) সোডিয়াম নমনীয়। কারণ পর্যায় সারণির একই পর্যায়ে ক্ষার ধাতুর পরমাণুর আকার তুলনামূলকভাবে বড় বলে ধাতব কখনে পরমাণুগুলো দূরে দূরে অবস্থান করে। ফলে এক্ষেত্রে ধাতব বন্ধন খুবই দুর্বল হয়। সাধারণত ধাতব বন্ধন শক্তির মান কম হয়। অর্থাৎ সোডিয়াম ধাতুর কেলাস আকৃতি বেশি মজবুত নয়। এ কারণে সোডিয়াম ধাতু নরম, যা সহজেই ছুরি দিয়ে কাটা যায়।
- (গ) উদ্দীপকের (i), (ii) ও (iii) নং পরমাণুসমূহ যথাক্রমে প্রোটিয়াম $\binom{1}{1}H$), টিট্রিয়াম $\binom{3}{1}T$) ও ডিউটেরিয়াম $\binom{2}{1}D$)। এ তিনটি হাইড্রোজেনের আইসোটোপ। নিচে তা ব্যাখ্যা করা হলো : যে সকল পরমাণুর প্রোটন সংখ্যা একই কিন্তু ভরসংখ্যা ভিন্ন তাদেরকে

যে সকল পরমাণুর প্রোটন সংখ্যা একই কিন্তু ভরসংখ্যা ভিন্ন তাদেরকে পরস্পরের আইসোটোপ বলে। প্রোটিয়াম, ডিউটেরিয়াম ও টিট্রিয়ামের প্রোটন সংখ্যা ও ভরসংখ্যা নিমুরূপ:

আইসোটোপ	ভরসংখ্যা	প্রোটন সংখ্যা
প্রোটিয়াম (1 H)	1/	1
ডিউটেরিয়াম $\left(\frac{2}{1}H\right)$	2	1
টিট্রিয়াম $\left(\frac{3}{1}\mathrm{T}\right)$	3	1

এখানে প্রোটিয়াম $\binom{1}{1}$ H), ডিউটেরিয়াম $\binom{2}{1}$ H) ও টিট্রিয়াম $\binom{3}{1}$ T) প্রতিটির ক্ষেত্রেই প্রোটন সংখ্যা একই তথা অভিন্ন কিন্তু ভরসংখ্যা ভিন্ন। এ কারণে প্রোটিয়াম, টিট্রিয়াম ও ডিউটেরিয়াম পরস্পরের আইসোটোপ।

(ঘ) উদ্দীপকের (i) ও (iv) নং পরমাণুদ্বর যথাক্রমে হাইড্রোজেন $\binom{1}{1}H$) ও লিথিয়াম ($_3Li$)। হাইড্রোজেন ও লিথিয়ামের পারমাণবিক সংখ্যা যথাক্রমে 1 ও 3। অর্থাৎ হাইড্রোজেন ও লিথিয়ামের ইলেকট্রন সংখ্যা 1 ও 3। এদের মধ্যে হাইড্রোজেনের গঠন ব্যাখ্যায় বোরের পরমাণু মডেল সফল। নিচে এর যুক্তি দেওয়া হলো-

হাইড্রোজেন (H) পরমাণুর নিউক্লিরাসে একটিমাত্র প্রোটন এবং ১ম শক্তিস্তরে একটিমাত্র ইলেকট্রন বিদ্যমান। বোর পরমাণু মডেল হতে জানা আছে, শুধু একটিমাত্র ইলেকট্রনবিশিষ্ট পরমাণু বা আয়ন এর ক্ষেত্রে বোর তত্ত্ব সম্পূর্ণভাবে প্রযোজ্য। হাইড্রোজেন পরমাণুর ১ম শক্তিস্তরের একটিমাত্র ইলেকট্রন তার কেন্দ্রের প্রোটনকে ঘিরে পরিভ্রমণ করতে থাকে। পরমাণুর এ অবস্থাকে স্থিতিশীল অবস্থা বা স্বাভাবিক অবস্থা বলে। বাইরের কোনো উৎস হতে হাইড্রোজেন পরমাণুতে শক্তি প্রয়োগ করা হলে ইলেকট্রন শক্তি শোষণ করে নিমুতর শক্তিস্তর হতে উচ্চতর শক্তিস্তরে গমন করে। আবার শক্তি বিকিরণ করে উচ্চ শক্তিস্তর হতে নিমু শক্তিস্তরে আগমন করে।

অপরদিকে, লিথিয়াম ($_3Li$) পরমাণুর ইলেকট্রন সংখ্যা 3, যা বোর তত্ত্ব ব্যাখ্যা করতে পারে না। কেননা, বোর তত্ত্বের সাহায্যে একাধিক ইলেকট্রনবিশিষ্ট পরমাণুর পারমাণবিক বর্ণালির ব্যাখ্যা করা যায় না।

b.

[যশোর বোর্ড ২০২১]

- (ক) আইসোটোপ কাকে বলে?
- (খ) সোডিয়াম এর ভরসংখ্যা 23 ব্যাখ্যা করো।
- (গ) উদ্দীপকের ২নং পরমাণু মডেলটির মতবাদগুলো লেখো।
- (ঘ) উদ্দীপকের ১নং পরমাণু মডেলটি গ্রহণযোগ্য নয় কেন? বিশ্লেষণ করো।

১৮ নং প্রশ্নের উত্তর

- (ক) <mark>যেসব মৌলের পরমাণুসমূহের পারমাণবিক সংখ্যা একই কিন্তু ভরসংখ্যা</mark> ভিন্ন তাদেরকে পরস্পরের আইসোটোপ বলে।
- (খ) কোনো পরমাণুতে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফলকে ঐ পরমাণুর ভরসংখ্যা বলে। অর্থাৎ, ভরসংখ্যা হচ্ছে প্রোটন সংখ্যা ও নিউট্রন সংখ্যার সমষ্টি। Na এর ভরসংখ্যা 23 বলতে বুঝার, Na পরমাণুর নিউক্রিয়াসে প্রোটন সংখ্যা 11 এবং নিউট্রন সংখ্যা (23 11) = 12, যাদের সমষ্টি (11 + 12) = 23 হচ্ছে সোডিয়াম 11 Na এর ভর

সংখ্যা।
(গ) উদ্দীপকের ২নং পরমাণু<mark>র মডেলটি নীলস ব</mark>োর পরমাণু মডেল। নিচে

মডেলটির মতবাদগুলো দে<mark>ওয়া হলো</mark>-বোর পরমাণু মডেলের মতবাদ :

- (a) শক্তিন্তর সম্পর্কিত স্বীকার্য: পরমাণুতে যে সকল ইলেকট্রন থাকে সেগুলো নিউক্লিয়াসকে কেন্দ্র করে ইচ্ছামত যেকোনো কক্ষপথে ঘুরতে পারে না। শুধু নির্দিষ্ট ব্যাসার্ধের কতকগুলো অনুমোদিত বৃত্তাকার কক্ষপথে ঘুরে। এ কক্ষপথগুলোকে প্রধান শক্তিন্তর বা অরবিট বলে। স্থির কক্ষপথে ঘুরার সময় ইলেকট্রনগুলো কোনোরূপ শক্তি শোষণ বা বিকিরণ করে না।
- (b) কৌণিক ভরবেগ সম্পর্কিত স্বীকার্য : প্রতিটি নির্দিষ্ট কক্ষপথ বা শক্তিস্তরে আবর্তনরত ইলেকট্রনের কৌণিক ভরবেগ নির্দিষ্ট এবং তা $\frac{h}{2\pi}$

এর পূর্ণ সংখ্যার গুণিতক হবে। অর্থাৎ $mvr=nrac{h}{2\pi}$

- (c) শক্তির বিকিরণ সম্পর্কিত স্বীকার্য: কোনো প্রধান শক্তিস্তরে ইলেকট্রন ঘুরার সময় ইলেকট্রনের কোনো শক্তি শোষিত বা বিকিরিত হয় না, তবে ইলেকট্রন যদি নিম্ন শক্তিস্তর থেকে উচ্চ শক্তিস্তরে যায় তখন শক্তি শোষিত হয়। আবার যদি ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে যায় তখন শক্তি বিকিরিত হয়।
- (ঘ) উদ্দীপকের ১নং পরমাণু মডেলটি রাদারফোর্ড পরমাণু মডেল। এ মডেলটি গ্রহণযোগ্য নয়। নিচে এর কারণ বিশেষণ করা হলো-
 - রাদারফোর্ড পরমাণু মডেলে চার্জহীন সূর্য এবং গ্রহগুলোর সাথে চার্জযুক্ত নিউক্লিয়াস ও ইলেকট্রনের তুলনা করা হয়েছে, বাস্তবে সৌরমন্ডলের গ্রহসমূহ সামগ্রিকভাবে চার্জবিহীন অথচ ইলেকট্রনসমূহ ঋণাত্মক চার্জযুক্ত।
 - ম্যাক্সওয়েলের তত্ত্বানুসারে কোনো চার্জযুক্ত বস্তু বা কণা কোনো বৃত্তাকার পথে ঘুরতে থাকলে তা ক্রমাগত শক্তি বিকিরণ করবে এবং তার আবর্তনচক্রও ধীরে ধীরে কমতে থাকবে। সুতরাং ইলেকট্রনসমূহ ক্রমশ শক্তি হারাতে হারাতে নিউক্লিয়াসে প্রবেশ করবে। অর্থাৎ রাদারফোর্ডের পরমাণু মডেল অনুসারে পরমাণু

বুসায়ৰ ৩য় অধ্যায়

পদার্থের গঠন

Prepared by: SAJJAD HOSSAIN

সম্পূর্ণভাবে একটি অস্থায়ী অবস্থা প্রাপ্ত হবে। অথচ পরমাণু হতে ক্রমাগত শক্তি বিকিরণ বা ইলেকট্রনের নিউক্রিয়াসে প্রবেশ কখনই ঘটে না।

- পরমাণুর বর্ণালি গঠনের কোনো সুষ্ঠু ব্যাখ্যা এ মডেল দিতে পারে না।
- 8. আবর্তনশীল ইলেকট্রনের কক্ষপথের আকার ও আকৃতি সম্বন্ধে কোনো ধারণা রাদারফোর্ডের মডেলে দেওয়া হয়নি।
- ৫. একাধিক ইলেকট্রনবিশিষ্ট পরমাণুতে ইলেকট্রনগুলো নিউক্লিয়াসকে কীভাবে পরিভ্রমণ করে তার কোনো উলেখ এ মডেলে নেই।

١۵.

[বরিশাল বোর্ড ২০১৯]

- (ক) পানিযোজন বিক্রিয়া কাকে বলে?
- (খ) আণবিক সংকেত জানার জন্য স্থুল সংকেত প্রয়োজন ব্যাখ্যা করো।
- (গ) 'X' মৌলের সাথে $3g\ H_2$ এর বিক্রিয়ায় লিমিটিং বিক্রিয়ক নির্ণয় করো।
- (ঘ) রসায়নের উন্নতিতে মডেল i ও ii এর কোনটি অধিক ভূমিকা রাখে? যুক্তিসহ মতামত দাও।

১৯ নং প্রশ্নের উত্তর

- (ক) আয়নিক যৌগ কেলাস গঠনের সময় এক বা একাধিক সংখ্যক পানির অণুর সাথে যুক্ত হয়, এই বিক্রিয়াকে পানিযোজন বিক্রিয়া বলে।
- (খ) আণবিক সংকেত জানার জন্য স্থূল সংকেত প্রয়োজন। কারণ, যৌগের আণবিক সংকেত তার স্থূল সংকেতের যেকোনো সরল, গুণিতক। কোনো কোনো ক্ষেত্রে যৌগের স্থূল সংকেত ও আণবিক সংকেত অভিন্ন। অর্থাৎ, যৌগের আণবিক সংকেত = (যৌগের স্থূল সংকেত) n;

যেখানে, $n=rac{$ ্যৌগের আণবিক ভর $rac{}{ar{z}}$ ূল সংকেতের আণবিক ভর

- (গ) উদ্দীপকের X মৌলের প্রোটন সংখ্যা =19 এবং নিউট্রন সংখ্যা =20
 - তর সংখ্যা = প্রোটন সংখ্যা + নিউট্রন সংখ্যা
 = 19 + 20
 = 39

সুতরাং, 19 পারমাণবিক সংখ্যাবিশিষ্ট এবং 39 ভরসংখ্যাবিশিষ্ট মৌলটি হলো পটাসিয়াম (K)।

পটাসিয়ামের সাথে H2 এর বিক্রিয়া নিম্নুরূপ-

$$2K + H_2 \longrightarrow 2KH$$

$$2 \times 39 \qquad 1 \times 2$$

$$= 78 \text{ g} \qquad = 2 \text{ g}$$

বিক্রিয়া থেকে, 78 g K বিক্রিয়া করে $= 2 \text{ g H}_2$ এর সাথে

Arr 20 g K " = $rac{2 imes 20}{78}$ g H₂ এর সাথে

= 0.513 g H₂ এর সাথে

দেখা যাচ্ছে যে, 20~g~K এর সাথে বিক্রিয়া করতে H_2 প্রয়োজন 0.513~g যা প্রদন্ত H_2 অপেক্ষা (3-0.513)=2.487~g কম । অর্থাৎ বিক্রিয়া করে K সম্পূর্ণ নিঃশেষ হয়ে যাবে । সুতরাং, K লিমিটিং বিক্রিয়ন ।

- (ঘ) উদ্দীপকের চিত্র (i) নং নীলস বোরের পরমাণু মডেল এবং চিত্র (ii) নং রাদারফোর্ডের পরমাণু মডেলকে নির্দেশ করে। মডেল (i) ও (ii) এর মধ্যে মডেল (i) তথা বোর মডেল এর ভূমিকা রসায়নের উন্নতিতে অনস্বীকার্য। নিচে বিষয়টি যুক্তিসহ বিশ্লেষণ করা হলো-
 - বোর মডেলটি রাদারফোর্ডের পরমাণু মডেলের সীমাবদ্ধতা দূর করেছে।
 - হ. রাদারফোর্ডের মডেলে নিউক্লিয়াসের চতুর্দিকে ঘূর্ণায়মান ইলেকট্রনের কক্ষপথের আকার ও আকৃতি সম্পর্কে কোনো ধারণা দেওয়া হয়নি। অন্যদিকে বোর মডেলে বলা হয়, ইলেকট্রনগুলো নির্দিষ্ট শক্তি সম্পন্ন কতকগুলো স্থায়ী গোলাকার কক্ষপথে আবর্তন করছে।
 - রাদারফোর্ডের মডেলে বিভিন্ন কক্ষপথে ইলেকট্রনের স্থানান্তর
 সম্পর্কে কোনো ধারণা দেওয়া হয়নি। কিন্তু বোর মডেলে বলা
 হয়েছে ইলেকট্রনসমূহ সবসময় নির্দিষ্ট শক্তির কক্ষপথে অবস্থান
 করে।
 - রাদারফোর্ডের মডেলে রেখা বর্ণালির কোনো ধারণা দেওয়া হয়নি।
 বোরের মডেলে পরমাণুর রেখা বর্ণালির উৎপত্তি ব্যাখ্যা করা হয়েছে।
 এ সকল কারণে বলা যায় য়, মডেল দুটির মধ্যে (i) নং মডেল তথা বোরের পরমাণু মডেলটি রসায়নের উয়তিতে অধিক ভূমিকা রাখে।
- ২০. A ও B দুইটি মৌল যাদের প্রোটন সংখ্যা যথাক্রমে 20 ও 9। [কুমিল্লা বোর্ড ২০১৯]
 - (ক) অরবিট কাকে বলে?
 - (খ) তেজস্ক্রিয়তা একটি নিউক্লিয় <mark>ঘটনা কেন?</mark> ব্যাখ্যা করো।
 - (গ) A মৌলের ই<mark>লেক্ট্রন বিন্যাস</mark> কেন $2n^2$ সূত্র অনুসরণ করে না?
 - (ঘ) A ও B দ্বারা গঠিত যৌগ কঠিন অবস্থায় তড়িৎ পরবহন না করলেও গলিত অবস্থায় করে – বিশ্লেষণ করো।

২০ নং প্রশ্নের উত্তর

- (ক) পরমাণুর যে সকল স্থির কক্ষপথে ইলেকট্রনগুলো নিউক্লিয়াসকে কেন্দ্র করে আবর্তন করে তাদেরকে অরবিট বলে।
- (খ) তেজন্ধ্রিয়াতা হলো কোনো পরমাণুর নিউক্লিয়াস থেকে স্বতঃস্ফূর্তভাবে বিভিন্ন রিশ্মি α , β , γ ইত্যাদি নির্গমনের ঘটনা। অপরদিকে উচ্চতর নিউক্লিয়াসকে নিউট্রন কণা দ্বারা আঘাত করে অপেক্ষাকৃত ক্ষুদ্র নিউক্লিয়াসে পরিণত করলে α , β , γ ইত্যাদি রিশ্মি নির্গমনের ঘটনা ঘটে। এ ঘটনাকে নিউক্লিয় ঘটনা বলা হয়। সুতরাং দেখা যাচ্ছে যে, তেজক্রিয়াতা একটি নিউক্লীয় ঘটনা।
- (গ) উদ্দীপকের A মৌলটির প্রোটন সংখ্যা 20 হওয়ায় এটি ক্যালসিয়াম (Ca)। এর ইলেকট্রন বিন্যাস $2n^2$ সূত্র অনুসরণ করে না। নিচে এর কারণ ব্যাখ্যা করা হলো- ক্যালসিয়াম (Ca) এর ইলেকট্রন বিন্যাস-

$$Ca(20) = \frac{1s^2}{2} \frac{2s^2}{8} \frac{2p^6}{8} \frac{3s^2}{8} \frac{3p^6}{2} \frac{4s^2}{2}$$

ইলেকট্রন বিন্যাস থেকে দেখা যায়, ৩য় শক্তিস্তরে মাত্র 8টি ইলেকট্রন বিদ্যমান। কিন্তু $2n^2$ সূত্র অনুসারে, ৩য় শক্তিস্তরে $2.3^2=18$ টি ইলেকট্রন থাকার কথা। তা পূরণ না করেই 8র্থ শক্তিস্তরে ইলেকট্রন প্রবেশ

Prepared by: SAJJAD HOSSAIN

করেছে। অর্থাৎ Ca ধাতুর ইলেকট্রন বিন্যাস $2n^2$ সূত্র অনুসরণ করে না। এর কারণ আউফবাউ নীতি দ্বারা ব্যাখ্যা করা যায়।

আউফবাউ নীতি অনুসারে, ইলেকট্রন প্রথমে নিমুশক্তির অরবিটালে এবং পরে উচ্চশক্তির অরবিটালে গমন করে। দুটি অরবিটালের মধ্যে কোনটি নিমুশক্তির আর কোনটি উচ্চশক্তির তা (n+l) এর মানের ওপর নির্ভর করে। যার (n+l) এর মান কম সেটি নিমুশক্তির অরবিটাল। 3d এবং 4s অরবিটালের জন্য (n+l) এর মান নিমুরূপ:

3d অরবিটালে:
$$n = 3$$
, $l = 2$

$$n + l = 3 + 2 = 5$$

$$n + l = 4 + 0 = 4$$

ক্যালসিয়ামের শেষ ইলেকট্রন 2টি ৩য় শক্তিস্তরে না গিয়ে 4s অর্থাৎ 8র্থ শক্তিস্তরে প্রবেশ করে। এ কারণেই মূলত Ca মৌলের ইলেকট্রন বিন্যাস $2n^2$ সূত্র অনুসরণ করে না।

(ঘ) উদ্দীপকের A ও B মৌল দুটির প্রোটন সংখ্যা 20 ও 9 হওয়ায় মৌলদ্বয় Ca ও F এবং এদের দ্বারা গঠিত যৌগ CaF_2 । CaF_2 যৌগটি কঠিন অবস্থায় বিদ্যাৎ পরিবহন না করলেও গলিত অবস্থায় করে। নিচে এর কারণ বিশ্লেষণ করা হলো-

CaF₂ আয়নিক যৌগ হওয়ায় কঠিন অবস্থায় এর ধনাত্মক ও <mark>ঋণাত্মক আয়নসমূহ কেলাস ল্যাটিসে নির্দিষ্ট স্থানে অবস্থান করে বলে এরা বিদ্যুৎ অপরিবাহী হয়। কিন্তু গলিত অবস্থায় আয়নসমূহ কেলাস ল্যাটিন থেকে মুক্ত হয়ে ইতঃস্তত পরিভ্রমণ করে।</mark>

 $CaF_2(s)+aq\longrightarrow Ca^{2+}$ $(aq)+2F^-$ (aq) এখন CaF_2 এর দ্রবণে দুটি ইলেকট্রোড প্রবেশ করালে ঋণাত্মক চার্জযুক্ত F^- আয়ন অ্যানোডের দিকে এবং ধনাত্মক চার্জযুক্ত Ca^{2+} আয়ন ক্যাথোডের দিকে আকষ্ট হয়।

চিত্র: CaF2 দ্রবণের তড়িৎ পরিবহন

 Ca^{2+} ক্যাথোডে পৌছার পর তা থেকে ইলেকট্রন গ্রহণ করে চার্জ নিরপেক্ষ Ca(s) ধাতুতে পরিণত হয়।

$$Ca^{2+}(aq) + 2e^{-} \longrightarrow Ca(s)$$

অপরদিকে F আয়ন অ্যানোডে পৌছে ইলেকট্রন দান করে F পরমাণু এবং দুটি F পরমাণু যুক্ত হয়ে $F_2(g)$ গ্যাসে পরিণত হয়।

$$2F^{-}(aq) - 2e^{-} \longrightarrow F_2(g)$$

এভাবে CaF_2 যৌগের গলিত অবস্থায় ইলেকট্রন আদান-প্রদানের মাধ্যমে তড়িং পরিবহন ঘটে থাকে।

২১. P, Q, R তিনটি মৌল যাদের নিউক্লিয়াসে প্রোটনের সংখ্যা যথাক্রমে 21, 29 এবং 18।

[দিনাজপুর বোর্ড ২০১৯]

- (ক) অষ্টক তত্ত্বটি লেখ।
- (খ) ক্যালসিয়ামকে মুৎক্ষার ধাতু বলা হয় কেন? ব্যাখ্যা করো।
- (গ) P মৌলের ইলেকট্রন বিন্যাসের মাধ্যমে পর্যায় সারণিতে এর অবস্থান নির্ণয় করো।
- (ঘ) Q এবং R উভয় মৌলের ইলেকট্রন বিন্যাস স্বাভাবিক নিয়ম মেনে চলে কি-না তা বিশ্লেষণ করো।

২১ নং প্রশ্নের উত্তর

- (ক) মৌলগুলোকে তাদের পারমাণবিক ভর অনুসারে সাজালে প্রতি অষ্টম মৌলসমূহের ধর্মের মিল দেখা যায়, যা পর্যায় সারণির 'অষ্টক তত্ত্ব' নামে পরিচিত।
- (খ) জানা আছে, যে সকল ধাতু মাটিতে যৌগ হিসেবে পাওয়া যায় এবং পানির সাথে বিক্রিয়া করে ক্ষার তৈরি করে তাকে মৃৎক্ষার ধাতু বলে। গ্রুপ-2 এর মৌলসমূহের এ ধরনের বৈশিষ্ট্য রয়েছে। ক্যালসিয়ামকে (Ca)-কে মৃৎক্ষার ধাতু বলা হয়; এর কারণ হলো এটি গ্রুপ-2 এর মৌল এবং এদের অক্সাইডসমূহ পানিতে ক্ষারীয় দ্রবণ তৈরি করে। এছাড়া মৌলটি বিভিন্ন যৌগ হিসেবে মাটিতে থাকে।

Ca + 2H₂O → Ca(OH)₂ + H₂(g)
$$\stackrel{\mathfrak{P}}{\longrightarrow}$$

(গ) উদ্দীপকের P মৌলের পারমাণবিক সংখ্যা 21 যা স্ক্যানডিয়াম মৌলের (Sc) এর পারমাণবিক সংখ্যাকে নির্দেশ করে। Sc-এর ইলেকট্রন বিন্যাস নিমুরূপ-

$$Sc(21) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$$

Sc এর সর্বশেষ শক্তিস্তর n=4 হওয়ায় এটি ৪র্থ পর্যায়ের মৌল। আবার এর সর্বশেষ শক্তিস্তরে s অরবিটাল এবং তার আগের শক্তিস্তরে d অরবিটাল আছে। এখানে d অরবিটালে 1টি এবং s অরবিটালে 2টি ইলেকট্রন থাকায় Sc এর গ্রুপ সংখ্যা হবে =1+2=3।

- : Sc এর অবস্থান ৪র্থ পর্যায় এবং 3 নং গ্রুপ।
- (ঘ) উদ্দীপকের Q ও R এর পারমাণবিক সংখ্যা 29 ও 18 যা যথাক্রমে কপার (Cu) ও আর্গনের (Ar) পারমাণবিক সংখ্যাকে নির্দেশ করে। Ar ও Cu এর মধ্যে Cu এর ইলেকট্রনবিন্যাস সাধারণ নিয়মে হয় না। নিচে তা বিশ্লেষণ করা হলো:

সাধারণ নিয়ম অনুসারে প্রমাণুতে ইলেক্ট্রন অরবিটালসমূহের শক্তির ক্রমানুসারে কম থেকে বেশি শক্তিসম্পন্ন অরবিটালে প্রবেশ করে। সাধারণ নিয়ম অনুসারে $_{29}$ Cu এর ইলেক্ট্রন বিন্যাস হয়,

 $_{29}Cu \rightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^9\ 4s^2$ কিন্তু গবেষণায় দেখা যায় যে, সমশক্তিসম্পন্ন অৱবিটালসমূহ অর্ধপূর্ণ বা সম্পূর্ণভাবে পূর্ণ হলে সে ইলেকট্রন বিন্যাস সুস্থিতি অর্জন করে।

চিত্র : অরবিটালসমূহের শক্তির ক্রম হয়।

অর্থাৎ np^3 , np^6 , nd^5 , nd^{10} , nf^7 ও nf^{14} বিন্যাস অধিক স্থায়ী হয়। এ কারণে $_{29}Cu$ মৌলের ইলেকট্রন বিন্যাস ব্যতিক্রম নিয়মে হয় ফলে, $_{29}Cu$ এর ইলেকট্রন বিন্যাস দাঁড়ায়,

 $_{29}\text{Cu}
ightarrow 1\text{s}^2\ 2\text{s}^2\ 2\text{p}^6\ 3\text{s}^2\ 3\text{p}^6\ 3\text{d}^{10}\ 4\text{s}^1$ ।

পক্ষান্তরে আর্গনের ইলেকট্রন বিন্যাস নিমুরূপ:

 $Ar(18) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6$

যা স্বাভাবিক ইলেকট্রন বিন্যাসের মত হয়েছে। অর্থাৎ আর্গনের ইলেকট্রন বিন্যাসের ক্ষেত্রে কোনো ব্যতিক্রম পরিলক্ষিত হয় না।

উপরের আলোচনা থেকে বলা যায় যে, Ar এর ইলেক্ট্রন বিন্যাস স্বাভাবিক নিয়মে হলেও Cu এর ইলেক্ট্রন বিন্যাস স্বাভাবিক নিয়ম মেনে চলে না।

বুসামূল ৩ম অধ্যাম

পদার্থের গঠন

Prepared by: SAJJAD HOSSAIN

২২.

`	'		
	মৌল	পর্যায়	গ্রুপ
	X	2	15
	Y	3	17

[X, Y কোনো মৌলের প্রতীক নয়, প্রতীকী অর্থে ব্যবহৃত।]

[দিনাজপুর বোর্ড ২০২৩]

- (ক) অরবিট কাকে বলে?
- (খ) 4d এবং 6s এর মধ্যে কোন অরবিটালে ইলেকট্রন আগে প্রবেশ করবে? ব্যাখ্যা করো।
- (গ) উদ্দীপকের "Y" মৌলটির একটি পরমাণুর ভর নির্ণয় করো।
- (ঘ) ' X_2 ' ও ' Y_2 ' গ্যাস দুইটির ব্যাপন হার এর তুলনা করো।

২২ নং প্রশ্নের উত্তর

- (ক) নিউক্লিয়াসের চারদিকে বৃত্তাকার যে স্থির কক্ষপথে ইলেকট্রনসমূহ আবর্তন করে তাকে অরবিট বলে।
- (খ) মৌলসমূহের ইলেকট্রন বিন্যাসের ক্ষেত্রে ইলেকট্রন আগে কম শক্তি সম্পন্ন অরবিটালে প্রবেশ করে এবং পরে শক্তির উচ্চক্রম অনুসারে বিভিন্ন অরবিটালে প্রবেশ করে। অরবিটালের শক্তি (n+l) এর মান দ্বারা নির্দারিত হয়। যেখানে n হলো প্রধান শক্তিস্তর ও l হলো উপশক্তিস্তর। একাধিক অরবিটালের শক্তি সমান হলে, যার n এর মান কম ইলেকট্রন আগে সেই অরবিটালে প্রবেশ করবে। উপস্তরগুলো s, p, d, f দ্বারা চিহ্নিত হয় যাদের l এর মান যথাক্রমে 0, 1, 2, 3। এখানে, 4d অরবিটালের ক্ষেত্রে n এর মান 4 ও l এর মান 2। সুতরাং, 4d অরবিটালের ক্ষেত্রে (n+l) এর মান (4+2) বা 6। আবার, 6s অরবিটালের ক্ষেত্রে n এর মান 6 ও 1 এর মান 10। সুতরাং, 11 এর মান 12 আবার, 13 আবার মান 14 অরবিটালের ক্ষেত্রে 14 এর মান 15 উভয় অরবিটালের শক্তি সমান, কিন্তু 14 অরবিটালে 15 এর মান 16 অরবিটালের শক্তি সমান, কিন্তু 14 অরবিটালে 15 এর মান কম বলে ইলেকট্রন আগে 14 অরবিটালে প্রবেশ করবে।
- (গ) উদ্দীপকের বর্ণিত তথ্যানুযায়ী "Y" মৌলটি <mark>৩য় পর্যায় ও গ্রুপ-1</mark>7 এর মৌল অর্থাৎ, মৌলটি CI। আমরা জানি,

ক্লোরিনের আপেক্ষিক পারমাণবিক ভর =35.5। ক্লোরিনের একটি পরমাণুর ভর = ?

: ক্লোরিনের আপেক্ষিক পারমাণবিক ভর

= মৌলের একটি পরমাণুর ভর একটি
কার্বন 12 আইসোটোপের পারমাণবিক ভরের $\frac{1}{12}$ অংশ

বা, মৌলের একটি পরমাণুর ভর

= ক্লোরিনের আ: পারমাণবিক ভর imes কার্বন 12 আইসোটোপের পারমাণবিক ভরের $\frac{1}{12}$ অংশ।

 $=35.5\times1.66\times10^{-24}$ g

 $= 5.893 \times 10^{-23} \text{ g}.$

(ঘ) উদ্দীপকের বর্ণিত তথ্যানুযায়ী X মৌলটি পর্যায়-2 গ্রুপ-15 এর মৌল N এবং Y মৌলটি হলো CI। এই মৌলদ্বয়ের পরমাণু দ্বারা গঠিত গ্যাসের অণুর আণবিক সংকেত যথাক্রমে N_2 ও CI। এদের ব্যাপনের হার নিম্নে বিশ্লেষণ করা হলো-

কোনো মাধ্যমে কঠিন, তরল বা গ্যাসীয় বস্তুর স্বতঃস্ফৃর্ত ও সমভাবে পরিব্যাপ্ত হওয়ার প্রক্রিয়াকে ব্যাপন বলে। যে গ্যাসের আনবিক ভর যত কম অর্থাৎ, যে গ্যাস যত বেশি হালকা সেটি ততো দ্রুত চারদিকে ছড়িয়ে পড়বে।

 Cl_2 গ্যাসের আনবিক ভর = (35.5×2) g/mol = 71 g/mol N_2 গ্যাসের আনবিক ভর = (14×2) g/mol = 28 g/mol অতএব, N_2 গ্যাসের আনবিক ভর, Cl_2 গ্যাসের আনবিক ভর অপেক্ষা কম। অর্থাৎ, N_2 গ্যাস, Cl_2 গ্যাস অপেক্ষা হালকা। তাই N_2 গ্যাসের কণাসমূহ Cl_2 গ্যাসের কণা অপেক্ষা স্বতঃস্কূর্তভাবে বেশি দ্রুত ছড়িয়ে পড়বে।

যেহেতু সমভাবে পরিব্যাপ্তি হওয়ার নামই ব্যাপন। তাই N_2 গ্যাসের ব্যাপন হার Cl_2 গ্যাসের ব্যাপন হার অপেক্ষা বেশি।

২৩.

[ময়মনসিংহ বোর্ড ২০২২]

- (ক) পাতন কাকে বলে?
- (খ) নিশাদল একটি উর্ধ্বপাতিত পদার্থ ব্যাখ্যা করো।
- (গ) উদ্দীপকের A ইলেকট্র<mark>নটির গতিবেগ নির্ণ</mark>য় করো।
- (ঘ) উদ্দীপকের বেলুনদ্বয় একইসাথে সমছিদ্র করলে কোন বেলুনটি প্রথমে বিস্ফোরিত হবে? গাণিতিকভাবে বিশ্লেষণ করো।

২৩ নং প্রশ্নের উত্তর

- (ক) তাপ প্রয়োগে তরলকে বা<mark>ল্পে রূপান্ত</mark>র ও <mark>বাল্প</mark>কে শীতলীকরণে ঘনীভূত করে একই তরল পদার্থে পরি<mark>ণ</mark>ত করার প্রক্রিয়াকে পাতন বলে।
- (খ) যেসব কঠিন পদার্থকে তাপ দিলে বা স্বাভাবিকভাবে উন্মুক্ত অবস্থায় রেখে দিলে তা সরাসরি কঠিন হতে গ্যাসীয় অবস্থায় পরিণত হয় তাদেরকে উর্ধ্বপাতিত পদার্থ বলে। নিশাদলকে তাপ দিলে বা স্বাভাবিকভাবে উন্মুক্ত অবস্থায় রেখে দিলে তা কঠিন থেকে তরলে পরিণত না হয়ে সরাসরি বাম্পে পরিণত হয়। এজন্য নিশাদলকে উর্ধ্বপাতিত পদার্থ বলা হয়।
- (গ) দেওয়া আছে, কক্ষপথে<mark>র</mark> ব্যাসার্ধ, $r=8.5\times 10^{-10}~m$. এবং n=4 আমরা জানি, e^- এর ভর, $m=9.11\times 10^{-31}~kg$ প্র্যাঙ্কের ধ্রুবক, $h=6.626\times 10^{-34}~m^2kg/s$ বোরের প্রমাণু মডেলে বর্ণিত উপাত্ত হতে আমরা জানি, কৌণিক ভরবেগ

$$mvr = \frac{nh}{2\pi}$$
; যেখানে, $v =$ ইলেকট্রনের বেগ। এখন

$$\begin{split} mvr &= \frac{nh}{2\pi} \, \text{T}, \, v = \frac{nh}{2\pi mr} \\ &= \frac{4 \times 6.626 \times 10^{-34}}{2 \times 3.1416 \times 9.11 \times 10^{-31} \times 8.5 \times 10^{-10}} \\ &= 5.447 \times 10^5 \, \text{ms}^{-1} \end{split}$$

(ঘ) উদ্দীপকের ১ম ও ২য় বেলুনে যথাক্রমে ইথেন ও ইথিন বিদ্যমান।
যেকোনো বেলুনের ভিতর চাপ প্রয়োগ করে গ্যাস ভর্তি করা হয়। তাই
বেলুনের ভিতরে বাতাসের চাপ বেলুনের বাইরের বাতাসের চাপের
তুলনায় বেশি হয়। এজন্য বেলুনের গায়ে ক্ষচটেপ জাতীয় কিছু না
লাগিয়ে ছিদ্র করলে বেলুন সশব্দে বিক্ষোরিত হয়। নিঃসরণের ধারণা দিয়ে
এটি ব্যাখ্যা করা যায়। তাই উদ্দীপকের সমআয়তনের বেলুনদ্বয়ে একই
সাথে সমছিদ্র করলে প্রথমে কোন বেলুন বিক্ষোরিত হবে তা নিঃসরণের
হারের উপর নির্ভর করবে। সক্ষ ছিদ্রপথে উচ্চচাপের স্থান থেকে কোনো

সূতরাং, উদ্দীপকের ${f A}$ ইলেকট্রনটির গতিবেগ $5.447 imes 10^5~{
m ms}^{-1}$ \perp

৩য় অধ্যায়

গ্যাস নিম্নচাপের স্থানের দিকে সজোরে বেরিয়ে আসার প্রক্রিয়াকে নিঃসরণ

 C_2H_6 এর আণবিক ভর, $M_1 = 12 \times 2 + 1 \times 6 = 24 + 6 = 30$

 C_2H_4 এর আণবিক ভর, $M_2 = 12 \times 2 + 1 \times 4 = 24 + 4 = 38$

g তাহলে. বা, $r_1 < r_2$

 $\mathbf{r}_1 = \mathbf{C}_2\mathbf{H}_6$ এর নিঃসরণ $m_1=C_2H_6$ এর আণবিক $r_2 = C_2 H_4$ এর নিঃসরণ

 $\mathbf{M}_2 = \mathbf{C}_2\mathbf{H}_4$ এর আণবিক

এখানে, ইথেনের আণবিক ভর (30) ইথিনের আণবিক ভর (28) এর তুলনায় বেশি হওয়ায় ইথেনের নিঃসরণ হার ইথিনের নিঃসরণ হারের তুলনায় কম হবে।

এজন্য উদ্দীপকের ২য় বেলুনটি প্রথমে বিস্ফোরিত হবে।

₹8.

[কুমিল্লা বোর্ড ২০২২; যশোর বোর্ড ২০২২]

- (ক) পাতন কাকে বলে?
- (খ) নিশাদল একটি উর্ধ্বপাতিত পদার্থ ব্যাখ্যা করো।
- (গ) দশ্যপট-১ এর 'A' ইলেক্ট্রনটির গতিবেগ নির্ণয় করো।
- (ঘ) উদ্দীপকের দশ্যপট-২ পদার্থটির শীতলীকরণ বক্ররেখা কেমন হবে? চিত্রসহ ব্যাখ্যা করো।

২৪ নং প্রশ্নের উত্তর

- (ক) তাপ প্রয়োগে তরলকে বাম্পে রূপান্তর ও বাষ্প্রকে শীতলকরণে ঘনীভূত করে একই তরল পদার্থে পরিণত করার প্রক্রিয়াকে পাতন বলে।
- (খ) যেসব কঠিন পদার্থকে তাপ দিলে বা স্বাভাবিকভাবে উন্মুক্ত অবস্থায় রেখে দিলে তা সরাসরি কঠিন হতে গ্যাসীয় অবস্থায় পরিণত হয় তাদেরকে উর্ধ্বপাতিত পদার্থ বলে। নিশাদলকে তাপ দিলে বা স্বাভাবিকভাবে উন্মুক্ত অবস্থায় রেখে দিলে তা কঠিন থেকে তরলে পরিণত না হয়ে সরাসরি বাম্পে পরিণত হয়। এজন্য নিশাদলকে উর্ধ্বপাতিত পদার্থ বলা হয়।
- (গ) দেওয়া আছে, কক্ষপথের ব্যাসার্ধ, $r = 8.5 \times 10^{-10} \ m$. এবং n = 4আমরা জানি, e^- এর ভর, $m = 9.11 \times 10^{-31} \text{ kg}$ প্লান্ধের ধ্রুবক, $h=6.626 \times 10^{-34} \ m^2 kg/s$ বোরের পরমাণু মডেলে বর্ণিত উপাত্ত হতে আমরা জানি, কৌণিক ভরবেগ $ext{mvr} = rac{ ext{nh}}{2\pi}$; যেখানে, $ext{v} =$ ইলেক্ট্রনের বেগ।

$$mvr = \frac{nh}{2\pi}$$
 $\forall t$, $v = \frac{nh}{2\pi mr}$

$$=\frac{4\times6.626\times10^{-34}}{2\times3.1416\times9.11\times10^{-31}\times8.5\times10^{-10}}\\=5.447\times10^{5}~\text{ms}^{-1}$$

সূতরাং, উদ্দীপকের ${f A}$ ইলেকট্রনটির গতিবেগ $5.447 imes 10^5~{
m ms}^{-1}$ ।

(ঘ) উদ্দীপকের দৃশ্যপট-২ এর পদার্থটির তাপীয় বক্ররেখা অনুযায়ী পদার্থটির ভৌ চ অবহু

অংশ	তাপমাত্রা	ভৌত অবস্থা
MN	– 20°C থেকে 0°C	কঠিন
NO	0°C (গলনাঙ্ক)	কঠিন + তরল
OP	0°C থেকে 90°C	তরল
PQ	90°C (স্ফুটনাঙ্ক)	তরল + বায়বীয়
QR	90°C থেকে	বায়বীয়
	130°C	lis.

উপরিউক্ত তথ্য থেকে আমরা পদার্থটির শীতলীকরণ বক্ররেখা অঙ্কন করলে পাই:

শীতলীকরণ বক্ররেখার ক্ষেত্রে, RO অংশে তাপমাত্রা 130°C থেকে ক্রমাগত শীতল হয়ে প<mark>দার্থটি</mark>র স্কু<u>টনাঙ্ক 90°C</u> এ উপনীত হলে পদার্থটি বায়বীয় থেকে তরলে পরিণত হতে শুরু করে। OP অংশের পরে পদার্থটির তাপমাত্রা কমতে শুরু করবে। এভাবে কমতে কমতে তাপমাত্রা পদার্থটির গলনাঙ্ক $0^{\circ}\mathrm{C}$ এ <mark>উপনীত হলে ON</mark> অংশে পদার্থটি কঠিন হতে শুরু করবে। সম্পূর্ণ পদার্থ <mark>কঠিন এ রূপান্তরিত</mark> হবার পরে NM অংশে পদার্থটি – 20°C পর্যন্ত আরো শীতল হতে থাকে।

সুতরাং বলা যায় যে, উদ্দীপকের দৃশ্যপট-২ এর পদার্থটি শীতলীকরণ বক্ররেখা তার তাপীয় বক্ররেখার <mark>অনুরূপ কিন্তু</mark> বিপরীত হবে।

২৫. A মৌলের তিনটি <mark>আইসোটোপের ক্ষেত্রে</mark> -

(1)				
আইসোটোপ	শতকরা পরিমাণ	ভরসংখ্যা		
A_1	78	44		
A_2	14	46		
A_3	08	53		

(ii)
$$5p < 6s < 4f < 5d$$

[কুমিল্লা বোর্ড ২০২১]

- (ক) তেজস্ক্রিয় আইসোটোপ কাকে বলে?
- (খ) Mg এর যোজনী 2 ব্যাখ্যা করো।
- (গ) (i) নং উদ্দীপক হতে A মৌলের গড় আপেক্ষিক পারমাণবিক ভর নির্ণয় করো।
- (ঘ) (ii) নং এর উপস্তরগুলোর শক্তির ক্রম প্রমাণুতে ইলেক্ট্রন বিন্যাসের নীতির প্রতিফলন – উক্তিটি মূল্যায়ন করো।

২৫ নং প্রশ্নের উত্তর

(ক) যেসব অস্থিত আইসোটোপের নিউক্লিয়াস স্বতঃস্কৃর্তভাবে ভেঙে গিয়ে আলফা (α) , বিটা (β) ও গামা (γ) ইত্যাদি রশ্মি নির্গত করার মাধ্যমে অন্য মৌলের আইসোটোপে পরিণত হয় তাদেরকে তেজস্ক্রিয় আইসোটোপ বলে।

বুসায়ৰ ৩য় অধ্যায়

পদার্থের গঠন

Prepared by: SAJJAD HOSSAIN

- (খ) কোনো মৌলের একটি পরমাণু যতগুলো H পরমাণু বা Cl পরমাণুর সাথে যুক্ত হতে পারে সেই সংখ্যাই হলো ঐ মৌলের যোজনী। যেমনঃ ম্যাগনেসিয়াম (Mg) এর একটি পরমাণু দুটি ক্লোরিন (Cl) পরমাণুর সাথে যুক্ত হয়ে ম্যাগনেসিয়াম ক্লোরাইড $(MgCl_2)$ গঠন করে। সুতরাং, সংজ্ঞানুসারে ম্যাগনেসিয়াম এর যোজনী 2।
 - ধাতব মৌলের ক্ষেত্রে সর্বশেষ কক্ষপথের ইলেকট্রন সংখ্যাকে ঐ মৌলের যোজনী বলে। Mg এর ইলেকট্রন বিন্যাস হতে পাই.

$$Mg(12) \longrightarrow \boxed{1s^2} \boxed{2s^2 2p^6} \boxed{3s^2}$$

ইলেকট্রন বিন্যাস হতে এটা স্পষ্ট যে, Mg এর সবশেষ ৩য় কক্ষপথের 3s অরবিটালে ইলেকট্রন সংখ্যা 2। যেহেতু, Mg মৌলটি ধাতৰি প্রকতির, কাজেই Mg এর যোজনী 2।

(গ) উদ্দীপকের (i) নং এ বর্ণিত D মৌলের আইসোটোপ $D_1,\,D_2$ এবং D_3 এর ক্ষেত্রে D_1 এর শতকরা পরিমাণ $=78\%,\,D_2$ এর শতকরা পরিমাণ =14% এবং D_3 এর শতকরা পরিমাণ =14%। আবার, D_1 এর ভরসংখ্যা $=44,\,D_2$ এর ভরসংখ্যা =46 এবং D_3 এর ভরসংখ্যা =53।

আমরা জানি.

যেকোনো মৌলের গড় আপেক্ষিক পরমাণবিক ভর

∑(মৌলের আইসোটোপের শতকরা পরিমাণ × আইসোটোপের ভরসংখ্যা)

$$=\frac{(78\times44)+(14\times46)+(8\times53)}{100}=45$$

সূতরাং, D মৌলের গড় আপেক্ষিক প্রমাণবিক ভর 45।

- (ঘ) উদ্দীপকে বর্ণিত (ii) নং এর উপশক্তিস্তরগুলোর শক্তির ক্রম বর্ণিত হয়েছে 5p < 6s < 4f < 5d
 - প্রদত্ত শক্তির ক্রম মূলত ইলেকট্রন বিন্যাসের নীতির প্রতিফলন। পরমাণুতে ইলেকট্রন বিন্যাসের আউফবাউ নীতি অনুসারে ইলেকট্রন প্রথমে সর্বনিমু শক্তির অরবিটালে প্রবেশ করে এবং পরে ক্রমান্বয়ে উচ্চশক্তির অরবিটালে প্রবেশ করে। অর্থাৎ, যে অরবিটালের শক্তি কম সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করে এবং যে অরবিটালের শক্তি অপেক্ষাকৃত বেশি তাতে ইলেকট্রন পরে প্রবেশ করে স্থিতিশীল ইলেকট্রন বিন্যাস গঠন করবে। অরবিটালের মধ্যে কোনটির শক্তি বেশি আর কোনটির শক্তি অপেক্ষাকৃত কম তা প্রধান কোয়ান্টাম সংখ্যা n এবং সহকারী কোয়ান্টাম সংখ্যা। এর যোগফল (n+l) এর উপর নির্ভর করে। যে অরবিটালের ক্ষেত্রে (n+l) এর মান বেশি সেই অরবিটালের শক্তি বেশি। কাজেই ইলেকট্রন প্রথমে নিমু শক্তিস্তরের উপস্তরগুলোতে এবং পরে উচ্চ শক্তিস্তরের উপস্তরগুলোতে প্রবেশ করে।

উদ্দীপকে বর্ণিত অরবিটালগুলোর ক্ষেত্রে (n+l) এর মান নিম্নে দেয়া হলো :

অরবিটালের	প্রধান	সহকারী	(n + l) এর মান
নাম	কোয়ান্টাম	কোয়ান্টাম	মান
	সংখ্যা (n)	সংখ্যা (<i>l</i>)	
5p	5	1	(5 + 1) = 0
			6
6s	6	0	(6 + 0) =
			6
4f	4	3	(4 + 3) =
			7

5d	5	2	(5 + 2) =
			7

(n+l) এর মান পর্যবেক্ষণে এটি স্পষ্ট যে, 5p ও 6s এর ক্ষেত্রে (n+l) এর মান সমান। আবার, 4f ও 5d এর ক্ষেত্রে (n+l) এর মান সমান।

আউফবাউ নীতি অনুসারে, দুটি অরবিটালের (n+l) এর মান সমান হলে এদের মধ্যে অপেক্ষাকৃত বৃহত্তর হ এর মান বিশিষ্ট অরবিটালের শক্তি বেশি হবে। কাজেই 5p<6s, 6s<4f এবং 4f<5d। সুতরাং উদ্দীপকের (ii) নং এ বর্ণিত অরবিটালগুলোর শক্তির ক্রম হলো 5p<6s<4f<5d।

২৬. কপারের দুটি আইসোটোপ ⁶³Cu, ⁶⁵Cu এবং আপেক্ষিক পারমাণবিক ভর 63.5।

[দিনাজপুর বোর্ড ২০২১]

- (ক) পরমাণু কাকে বলে?
- (খ) রোগ নির্ণয়ে আইসোটোপের ব্যবহার লেখো।
- (গ) উদ্দীপ<mark>কের আইসোটোপদ্বয়ের শ</mark>তকরা পরিমাণ নির্ণয় করো।
- (ঘ) উদ্দীপকের মৌলটির ইলেকট্রন বিন্যাস সাধারণ নিয়মের ব্যতিক্রম কী? – বিশ্লেষণ করো।

২৬ নং প্রশ্নের উত্তর

- (ক) মৌলিক পদার্থের বৈশিষ্ট্য রক্ষাকারী ক্ষুদ্রতম কণা যা ঐ মৌলের গুণাগুণ ধারণ করে এবং সরাসরি রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে তাকে পরমাণু বলে।
- (খ) আইসোটোপ ব্যবহার করে রোগাক্রান্ত স্থানের ছবি তোলা সম্ভব। এ পদ্ধতিতে ইঞ্জেকশনের মাধ্যমে তেজস্ক্রিয় আইসোটোপ টেকনিসিয়াম-99 (⁹⁹ Tc) কে শরীরের ভেতরে প্রবেশ করানো হয়। এই আইসোটোপ যখন শরীরের নির্দিষ্ট স্থানে জমা হয় তখন ঐ তেজস্ক্রিয় আইসোটোপ গামা রশ্মি বিকিরণ করে, তখন বাইরে থেকে গামা রশ্মি শনাক্তকরণ ক্যামেরা দিয়ে সেই স্থানের ছবি তোলা সম্ভব হয়। এই তেজস্ক্রিয় আইসোটোপ টেকনিশিয়াম-99 এর স্থায়িত্বকাল 6 ঘণ্টা। তাই সামান্য সময়েই এর তেজস্ক্রিয়তা শেষ হয়ে যায় বলে এটি অনেক নিরাপদ। টিউমারের উপস্থিতি নির্ণয় ও তা নিরাময়েও তেজস্ক্রিয় আইসোটোপ ব্যবহার করা হয়। ⁶⁰Co থেকে নির্গত গামা রশ্মি বিকিরিত হয় যা ক্যান্সার কোষকলাকে ধ্বংস করে। এছাড়াও রক্তের লিউকোমিয়া রোগের চিকিৎসায় ³²p এর ফসফেট ব্যবহৃত হয়। থাইরয়েড ক্যান্সার নিরাময়ে
- (গ) উদ্দীপকে বর্ণিত আইসোটোপদ্বয় কপারের (Cu)। এদের মধ্যে একটি ^{65}Cu এবং অপরটি ^{63}Cu । ^{63}Cu এর পারমাণবিক ভর 63 এবং ^{65}Cu এর পারমাণবিক ভর 65। মনে করি,

 63 Cu এর শতকরা পরিমাণ = x%

 $ightharpoonup ^{65} Cu$ এর শতকরা পরিমাণ = (100-x)% আমরা জানি,

যেকোনো মৌলের গড় আপেক্ষিক পারমাণবিক ভর

200

$$\therefore \frac{(63 \times x) + 65 \times (100 - x)}{100} = 63.5$$

৩য় অধ্যায় বসায়ৰ

পদার্থের গঠন

Prepared by: SAJJAD HOSSAIN

$$40, \quad 63x + 6500 - 65x = 6350$$

বা,
$$2x = 150$$

$$\therefore$$
 x = 75

$$ightharpoonup$$
 63 Cu এর শতকরা পরিমাণ $=75\%$

 $ightharpoonup ^{65}$ Cu এর শতকরা পরিমাণ = (100 - 75)% = 25%অর্থাৎ, প্রকৃতিতে প্রাপ্ত Cu মৌলের দুটি আইসোটোপ ⁶³Cu ও ⁶⁵Cu এর শতকরা পরিমাণ যথাক্রমে 75 ও 25।

(ঘ) উদ্দীপকে বর্ণিত মৌলটি হলো কপার, যার প্রতীক Cu। মৌলটির ইলেকট্রন বিন্যাস সাধারণ নিয়মের ব্যতিক্রম।

Cu এর ইলেক্ট্রন বিন্যাস হলো:

$$Cu(29) = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$$

[আউফবাউ নীতি অনুযায়ী ইলেকট্রন বিন্যাস]

 $Cu(29) = 1s^2 2s^2 2p^6 3s^2 3p^6 4d^9 4s^2$ প্রিকৃত ইলেক্ট্রন বিন্যাসা

 $Cu(29) = 1s^2 2s^2 2p^6 3s^2 3p^6 4d^{10} 4s^1$ প্রিকৃত ইলেকট্রন বিন্যাসী

d এর ইলেকট্রন ধারণ ক্ষসমতা 10, অর্থাৎ, $3d^{10}$ যেকোনো অরবিটাল পূর্ণ (সম্পূর্ণ) বা (অর্ধপূর্ণ) থাকলে তার স্থিতিশীলতা বেশি হয়। d অরবিটালের $3d^5$ এবং $3d^{10}$ ইলেকট্রন বিন্যাসটি অধিক সুস্থিত অর্থাৎ স্থিতিশীল। কিন্তু $3d^9$ -এ পূৰ্ণ $3d^{10}$ -এ অপেক্ষা 1টি ইলেক্<mark>ট্ৰন</mark> কম থাকায় তার স্থিতিশীলতা বিনষ্ট হয়। তাই স্থিতিশীলতা অর্জনের লক্ষে Cu এ $4s^2$ থেকে 1টি ইলেকট্রন $3d^9$ -এ প্রবেশ করে $3d^{10}$ ইলেকট্রন বিন্যাস অর্জন করে স্থিতিশীল হয়। এই কারণে Cu এর ইলেকট্রন বিন্যাসে ব্যতিক্রমতা পরিলক্ষিত হয়।

২৭. চিত্রের তথ্যসমূহ লক্ষ করো এবং সংশ্লিষ্ট প্রশ্লের উত্তর দাও:

[চট্টগ্রাম বোর্ড ২০২১]

- (ক) মৌল কাকে বলে?
- (খ) Mg এর পারমাণবিক সংখ্যা 12 কেন?
- (গ) উদ্দীপকের মডেলটির L চিহ্নিত কক্ষপথে ইলেক্ট্রনের কৌণিক ভরবেগ নির্ণয় করো।
- (ঘ) পরমাণুর গঠন ব্যাখ্যায় উদ্দীপকের মডেলটির গুরুত্ব বিশ্লেষণ করো।

২৭ নং প্রশ্নের উত্তর

- (क) य সকল পদার্থকে ভাঙলে সেই পদার্থ ছাড়া অন্য কোনো পদার্থ পাওয়া যায় না তাকে মৌলিক পদার্থ তথা মৌল বলে।
- (খ) কোনো মৌলের একটি পরমাণুর নিউক্রিয়াসে উপস্থিত প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলা হয়। ম্যাগনেসিয়াম (Mg) এর একটি পরমাণুর নিউক্লিয়াসে 12টি প্রোটন থাকে। তাই সংজ্ঞানুসারে, ম্যাগনেসিয়াম (Mg) এর পারমাণবিক সংখ্যা হলো 12।
- (গ) উদ্দীপকের চিত্রের ক্ষেত্রে, সর্বশেষ শক্তিস্তরে n=2। জানা আছে, ইলেকট্রনের কৌণিক ভরবেগ,

$$\begin{aligned} mvr &= \frac{nh}{2\pi} \\ &= \frac{2 \times 6.626 \times 10^{-34}}{2 \times 3.1416} \\ &= 2.11 \times 10^{-34} \, Js \end{aligned}$$

এখানে. প্রধান কোয়ান্টাম সংখ্যা. n=2প্লাঙ্কের ধ্রুবক, $h = 6.626 \times 10^{-34} \text{ Js}$ ইলেকট্রনের কৌণিক ভরবেগ, mvr = ?

সুতরাং, চিত্রের ক্ষেত্রে সর্বশেষ শক্তিভরের ইলেকট্রনের কৌণিক ভরবেগ $2.11 \times 10^{-34} \text{ Js} +$

- (ঘ) উদ্দীপকে উপস্থাপিত প্রমাণুর গঠন সম্পর্কিত মডেলটি 'বোর প্রমাণু মডেল' নামে গ এই মডেলের গুরুত্ব নিম্নে দেয়া হলো:
 - বোরের তত্ত্ব অনুযায়ী পরমাণুর স্থায়িত্ব ব্যাখ্যা করা যায়। এই তত্ত্ব অনুযায়ী কোনো নির্দিষ্ট স্থির কক্ষপথে আবর্তন করার সময় কোনো <mark>ইলেক্ট্র</mark>ন কর্তৃক শক্তি নির্গত বা শোষিত হয় না। আবার, ইলেক্ট্রন নিউক্লিয়াসের চতুর্দিকে অবিরত ঘূর্ণায়মান হওয়া সত্তেও নিউক্লিয়াসের উপর পতিত হয় না। কারণ, প্রথম শক্তিস্তরের নিচে <mark>আর কোনো নিমু শক্তিস্তর নেই। অর্থাৎ প্রথম শক্তিস্তরে</mark> <mark>আবর্তনশীল ইলেকট্রন এর শ</mark>ক্তি বিকিরণের কোনো সুযোগ নেই। তাই বোর মডেল স্থিতিশীল।
 - এ তত্ত্ব অনুযায়ী এক ইলেক্ট্রন বিশিষ্ট পরমাণু বা আয়ন যেমন-He⁺, Li²⁺, Be³⁺ এর <mark>বর্ণালির ব্যাখ্যা</mark> দেওয়া সম্ভব হয়।
 - iii. বোরের তত্ত্ব প্রয়োগ করে সুস্থিত কক্ষপথের ব্যাসার্ধ গণনা করা সম্ভব হয়। হা<mark>ইড্রোজেন পরমাণ</mark>র প্রথম কক্ষপথের, ব্যাসার্ধের গণনালব্ধ মান এবং পরীক্ষালব্ধ মান এক হয়। একে বোর ব্যাসার্ধ (a₀) বলে।

$$a_0 = 5.292 \times 10^{-11} \text{ m}.$$

- iv. প্রধান কোয়ান্টাম সং<mark>খ্</mark>যার (n) ধারণা এই মতবাদ থেকে পাওয়া যায়। যার সাহায্<mark>যে পরবর্তীকালে অ</mark>ন্যান্য কোয়ান্টাম সংখ্যা সম্পর্কে ধারণা করা যায়।
- এই তত্ত্ব থেকে বি<mark>ভিন্ন</mark> শক্তিস্তরে <mark>আবর্ত</mark>নকারী ইলেকট্রনের শক্তির পরিমাণ নির্ণয় <mark>করা</mark> সম্ভ<mark>ব হয়েছে।</mark> এক শক্তিস্তর থেকে অন্য শক্তিস্তরে একটি ইলেক্ট্রন স্থানান্তরিত হলে কী পরিমাণ শক্তি বিকিরিত বা শোষিত হবে তা গণনা করা সহজ হয়েছে এবং এর থেকে পার্<mark>মাণ</mark>বিক বর্ণালিতে দৃশ্যমান বিভিন্ন রেখার ব্যাখ্যা করা সহজতর হয়েছে।
- বোর তত্ত্বের সাহায্যে হাইড্রোজেন পরমাণুর কক্ষের ব্যাসার্ধ ও শক্তি নির্ণয় করা সম্ভব হয়েছে।

২৮.

চিত্র: পরমাণু মডেল

[যশোর বোর্ড ২০২১]

- (ক) পারমানবিক সংখ্যা কাকে বলে?
- (খ) 4s অপেক্ষা 3d অরবিটালের শক্তি বেশি ব্যাখ্যা করো।
- (গ) উদ্দীপকের চিত্রের মৌলের সর্বশেষ ইলেকট্রনের কৌণিক ভরবেগ নির্ণয় করো।
- (ঘ) কিছু সীমাবদ্ধতা থাকা সত্তেও উদ্দীপকের পরমাণু মডেলটি পরমাণু গঠন ব্যাখ্যায় অধিকতর গ্রহণযোগ্য – বিশ্লেষণ করো।

২৮ নং প্রশ্নের উত্তর

বুসামূল ৩ম অধ্যাম

পদাৰ্থেব গঠন

Prepared by: SAJJAD HOSSAIN

- (ক) কোনো পরমাণুর নিউক্লিয়াসে বিদ্যমান প্রোটন সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলা হয়।
- (খ) কোন অরবিটাল কম শক্তি সম্পন্ন এবং কোন অরবিটাল বেশি শক্তি সম্পন্ন তা (n + l) এর মান দ্বারা নির্ধারিত হয়। যার (n + l) এর মান কম সে কম শক্তি সম্পন্ন এবং যার (n + l) এর মান বেশি সে বেশি শক্তি সম্পন্ন। এখানে, n হলো শক্তিস্তর এবং l হলো সহকারী কোয়ান্টাম সংখ্যা।

সহকারী কোয়ান্টাম	0	1	2	3
সংখ্যা	4000	1000	-	
উপশক্তিস্তর সংখ্যা	S	p	d	f

4s এর ক্ষেত্রে, n + l = 4 + 0 = 4

3d এর ক্ষেত্রে, n + l = 3 + 2 = 5

এখানে 3d অরবিটালের ক্ষেত্র (n+l) এর মান 4s অরবিটালের ক্ষেত্রে (n+l) এর চেয়ে বেশি। তাই 4s অপেক্ষা 3d অরবিটালের শক্তি বেশি।

(গ) উদ্দীপক অনুযায়ী চিত্রে উল্লিখিত মৌলটির সর্বশেষ শক্তিস্তর হলো ৪র্থ শক্তিস্তর। এখন, চতুর্থ শক্তিস্তরের ক্ষেত্রে, প্রধান কোয়ান্টাম সংখ্যা n=4হবে।

বোরের পরমাণু মডেল হতে আমরা জানি, $mvr = \frac{nh}{2\pi}$ \Rightarrow mvr = $4 \times 6.626 \times 10^{-34}$

 2×3.1416

এখানে, প্রধান কোয়ান্টাম সংখ্যা, n=4প্লাঙ্কের ধ্রুবক.

 $h=6.626\times 10^{-34}~Js$ ইলেক্ট্রনের কৌণিক ভরবেগ,

mvr = ?

= $4.22 \times 10^{-34} \, \mathrm{Js} \, \mid$ অতএব, সর্বশেষ শক্তিস্তরের ইলেক্ট্রনের কৌণিক ভরবেগ $4.22 \times 10^{-34} \, \mathrm{Js}$ ।

- (ঘ) উদ্দীপকে উল্লিখিত পরমাণু মডেলটি হলো বোর পরমাণু মডেল। এই মডেলটিতে কিছু সীমাবদ্ধতা থাকা সত্ত্বেও পরমাণুর গঠনে মডেলটির গ্রহণযোগ্যতা ব্যাখ্যার জন্য প্রথমে এর সীমাবদ্ধতাগুলো জানতে হবে। এরপর, উক্ত সীমাবদ্ধতাগুলো থাকা সত্ত্বেও তা রাদারফোর্ডের মডেলের তুলনায় অধিকতর গ্রহণযোগ্য কিনা তা যাচাই করতে হবে। বোরের পরমাণু মডেলের সীমাবদ্ধতাসমূহ হলো-
 - বোরের পরমাণু মডেল এক ইলেকট্রনবিশিষ্ট হাইড্রোজেন পরমাণুর বর্ণালি ব্যাখ্যা করতে পারলেও একাধিক ইলেকট্রনবিশিষ্ট পরমাণুসমূহের বর্ণালি ব্যাখ্যা করতে পারে না।
 - ii. এক শক্তিন্তর হতে অপর শক্তিন্তরে ইলেকট্রনের স্থানান্তর ঘটলে, বোরের পরমাণু মডেল অনুসারে বর্ণালিতে একটি রেখা সৃষ্টি হওয়ার কথা। কিন্তু হাইড্রোজেন ও অন্যান্য পরমাণুসমূহের আয়নের রেখা- বর্ণালি অধিকতর সৃক্ষ যন্ত্র দ্বারা পরীক্ষণ করলে দেখা যায়, প্রতিটি রেখা আরো কয়েকটি সৃক্ষ রেখায় বিভক্ত থাকে। এটিকে বোরের পরমাণু মডেল ব্যাখ্যা করতে পারে না।
 - iii. বোর পরমাণু মডেল ইলেক্ট্রনের কণা ধর্মকে ব্যাখ্যা করতে পারলেও তরঙ্গ ধর্মকে ব্যাখ্যা করতে পারেনি।

রাদারফোর্ড ও বোর পরমাণু মডেল দুইটি নিয়ে তুলনা করলে দেখা যায়-

- উভয় মডেলে নিউক্লিয়াসের চারদিকে ইলেকট্রন ঘূর্ণায়মান তথা কক্ষপথের কথা বলা হয়েছে। কিন্তু বোর পরমাণু মডেলে কক্ষপথের সংখ্যা, কক্ষপথের আকারের ধারণা দেয়া হয়েছে।
- বোর পরমাণু মডেলে কক্ষপথের প্রধান শক্তিস্তর ও উপশক্তিস্তর সম্পর্কে ধারণা দেওয়া হয়েছে। কিন্তু রাদারফোর্ড তার মডেলে প্রধান শক্তিস্তর ও উপশক্তিস্তর সম্পর্কে কোনো ধারণা দেননি।

- iii. রাদারফোর্ড মডেলে বর্ণালির কোনো ধারণা দেয়া হয়নি। কিন্তু বোর পরমাণু মডেলে হাইড্রোজেনের বর্ণালির ব্যাখ্যাসহ ইলেকট্রন কক্ষপথ স্থানান্তরের সময় যে শক্তি বিকিরণ করে বা শোষণ করে তা বলা হয়েছে। এই বিকিরিত বা শোষিত শক্তির পরিমাণ hv, যেখানে, v হচ্ছে শোষিত বা বিকিরিত শক্তির কম্পাঙ্ক, h হচ্ছে পা ক্ক দ্রুবক।
- iv. বোর পরমাণু মডেলে প্রধান শক্তিস্তরের ইলেকট্রন এর কৌণিক ভরবেগ সম্পর্কে ধারণা দেওয়া হয়েছে। কিন্তু রাদারফোর্ড তার পরমাণু মডেলে এই সম্পর্কিত কোনো ধারণা দেননি।

উপর্যুক্ত আলোচনা থেকে বলা যায়, বোরের পরমাণু মডেলটি রাদারফোর্ডের পরমাণু মডেল অপেক্ষা অধিকতর গ্রহণযোগ্য।

২৯. প্রমাণুর গঠন সম্পর্কিত দুইটি বিশেষ ঘটনা ও সময় নিমুরূপ:

ঘটনা-১: ১৯১১ সালে ঘটনা-২: ১৯১৩ সালে

[রাজশাহী বোর্ড ২০২০]

- (ক) পর্যায় সারণি কাকে বলে?
- (খ) সকল খনিজ <mark>আ</mark>করিক নয় কেন? ব্যাখ্যা করো।
- (গ) রসায়নে ঘটনা-১ এর গুরুতু বর্ণনা করো।
- (ঘ) ঘটনা-২ মূ<mark>লত ঘটনা-১ এরই সংশোধিত</mark> রূপ বিশ্লেষণ করো।

২৯ নং প্রশ্নের উত্তর

- (ক) এ পর্যন্ত আবিষ্কৃত মৌলগুলোকে তাদের ধর্ম, বৈশিষ্ট্য ও ইলেকট্রন বিন্যাস অনুযায়ী সাজানোর জন্য যে ছক ব্যবহার করা হয়েছে তাকে পর্যায় সারণি বলে।
- (খ) ভূ-পৃষ্ঠে বা ভূ-গর্ভে কোনো কোনো শিলাস্থূপে প্রচুর পরিমাণে যেসব যৌগ অথবা, মুক্ত মৌল হিসেবে যেসব মূল্যবান ধাতু ও অধাতু পাওয়া যায় তাদেরকে খনিজ বলে। অপরদিকে, যেসব খনিজ থেকে লাভজনকভাবে ধাতু নিষ্কাশন করা হয় তাদেরকে আকরিক বলে। সংজ্ঞাগত বৈশিষ্ট্য থেকে বোঝা যায়, আকরিক হলো খনিজের একটি অংশ কাজেই সকল আকরিক খনিজ হলেও সকল খনিজ আকরিক নয়। উদাহরণ হিসেবে বলা যায়, ম্যাগনেটাইট (Fe₃O₄) ও আয়রন পাইরাইটস্ (Fe₃S₄) উভয়ই আয়রনের খনিজ হলেও ম্যাগনেটাইট হতে আয়রন নিষ্কাশন করা হয়। কিন্তু, আয়রন পাইরাইটস্ হতে আয়রন নিষ্কাশন করা হয়। ম্যাগনেটাইট আকরিক হলেও আয়রন পাইরাইটস আকরিক নয়।
- (গ) উদ্দীপকের ঘটনা-১ হচ্ছে, 1911 সালে রাদারফোর্ড কর্তৃক প্রদন্ত পরমাণু মডেল। এই মডেল পরমাণুর গঠন বর্ণনা ও পরমাণুর মধ্যে মৌলিক কণিকার অবস্থান সম্পর্কে যুগান্তকারী মতবাদ প্রস্তাব করে। তাই এই মডেলের গুরুত্ব অপরিসীম। নিম্নে রাদারফোর্ডের পরমাণু মডেলের গুরুত্ব বর্ণনা করা হলো
 - i. নিউক্লিয়াস আবিষ্কার : আলফা কণা বিচ্ছুরণ পরীক্ষার সিদ্ধান্তের উপর ভিত্তি করে রাদারফোর্ড আবিষ্কার করেন যে, পরমাণুর কেন্দ্রস্থলে একটি ধনাত্মক আধানবিশিষ্ট ভারী বস্তু বিদ্যমান। এই ভারী বস্তু পরমাণুর মোট আয়তনের তুলনায় নিউক্লিয়াসের আয়তন অতি নগণ্য। নিউক্লিয়াসে সমস্ত ধনাত্মক আধান ও প্রায় সমস্ত ভর কেন্দ্রীভূত থাকে। অর্থাৎ এই মডেলের মাধ্যমে পরমাণুর নিউক্লিয়াস সম্পর্কে ধারণা পাওয়া যায়।
 - ii. পরমাণুর চার্জ নিরপেক্ষতা : নিউক্লিয়াসের ধনাত্মক আধানযুক্ত কণার সমান সংখ্যক ঋণাত্মক আধানযুক্ত ইলেকট্রন পরমাণুর নিউক্লিয়াসকে পরিবেষ্টন করে রাখে। অর্থাৎ পরমাণু চার্জ নিরপেক্ষ; এ ধারণা রাদারফোর্ডের পরমাণু মডেল হতে জানা যায়।
 - iii. **নিউক্লিয়াসের বাইরে ইলেকট্রনের অবস্থান** : পরমাণুর ইলেকট্রনগুলো নিউক্লিয়াসের চারদিকে ঘুরছে। ধনাত্মক

www.schoolmathematics.com.bd

সৃজনশীল (সিকিউ) নোট ৩্য অধ্যায়

বুসামূল

পদাৰ্থেব গঠন

Prepared by: SAJJAD HOSSAIN

আধানবিশিষ্ট নিউক্লিয়াস ও ঋণাত্মক আধানবিশিষ্ট ইলেকট্রনসমূহের পারস্পরিক স্থির বৈদ্যুতিক আকর্ষণজনিত কেন্দ্রমুখী বল এবং ঘূর্ণায়মান ইলেকট্রনের কেন্দ্রবিমুখী বল পরস্পর সমান। কাজেই পরমাণুর নিউক্লিয়াসের চারিদিকে ইলেকট্রন ঘুরতে থাকে। এ ধারণা রাদারফোর্ডের পরমাণু মডেল হতে পাওয়া যায়।

- (ঘ) উদ্দীপকে ঘটনা-২ হচ্ছে 1913 সালে বিজ্ঞানী নীলস বোর কর্তৃক প্রদন্ত পরমাণুর গঠন সম্পর্কিত নতুন মডেল। এই মডেলটি প্রকৃতপক্ষে রাদারফোর্ড মডেলেরই সংশোধিত রূপ।
 - এই মডেল দ্বারা রাদারফোর্ডের মডেলের, সীমাবদ্ধতাকে দূর করা হয়েছে। রাদারফোর্ডের মডেলের অন্যতম সীমাবদ্ধতা হচ্ছে- (i) পরমাণুর স্থায়িত্ব এবং (ii) পারমাণবিক বর্ণালির উৎস।
 - i. প্রমাণুর স্থায়িত : ম্যাক্সওয়েল প্রদন্ত আলোকের তড়িৎচৌম্বকীয় তত্ত্ব অনুযায়ী ঘূর্ণায়মান ইলেকট্রন সর্বদাই শক্তি বিকিরণ করে। ফলে, ঘূর্ণায়মান ইলেকট্রন ক্রমশ শক্তি হারিয়ে নিউক্লিয়াসে পতিত হবে। অর্থাৎ, রাদারফোর্ডের পরমাণু মডেল কখনোই স্থায়ী হবে না।
 - এ সমস্যা দূরীকরণে বোর প্রস্তাব করেন যে, ইলেকট্রনসমূহ নিউক্লিয়াসের চারদিকে কতিপয় স্থির শক্তির বৃত্তাকার পথে আবর্তন করে। ইলেকট্রনের এই কক্ষপথগুলোতে বিচরণকালে ইলেকট্রন কোনো শক্তি শোষণ বা বিকিরণ করে না। ফলে, ইলেকট্রন কখনো নিউক্লিয়াসে পতিত হবে না।
 - ii. পারমাণবিক বর্ণালির উৎস : রাদারফোর্ড মডেল অনুযায়ী,
 নিউক্লিয়াসকে কেন্দ্র করে অবিরাম ঘূর্ণনের জন্য ইলেক্ট্রন
 নিরবচ্ছিন্নভাবে শক্তি বিকিরণ করবে। এর ফলে পরমাণু থেকে
 নিরবচ্ছিন্ন বর্ণালি পাওয়া উচিত। কিন্তু, বাস্তবে বিচ্ছিন্ন রেখা
 বর্ণালি পাওয়া যায়। বোরের মডেল অনুযায়ী, নিম্ন শক্তিস্তর থেকে
 উচ্চতর শক্তিস্তরে ইলেক্ট্রন যাওয়ার সময় ইলেক্ট্রন একটা
 নির্দিষ্ট পরিমাণ শক্তি শোষণ করে। আবার, উচ্চতর শক্তিস্তর
 থেকে নিম্নতর শক্তিস্তরে নেমে আসার সময় ইলেক্ট্রন নির্দিষ্ট
 পরিমাণ শক্তি বিকিরণ করে। এজন্য পরমাণু বিচ্ছিন্ন রেখা বর্ণালি
 সৃষ্টি করে।

সুতরাং বলা যায়, ঘটনা-২ (বোর পরমাণু মডেল) ঘটনা-১ (রাদারফোর্ড পরমাণু মডেল) এর সংশোধিত রূপ।

৩০. D মৌলের তিনটি আইসোটোপের ক্ষেত্রে –

(i)

(1)		A 1
আইসোটোপ	শতকরা পরিমাণ	ভরসংখ্যা
D_1	78	44
D_2	14	46
D_3	08	53

(ii) 5p < 6s < 4f < 5d

[ময়মনসিংহ বোর্ড ২০২১]

- (ক) অণু কাকে বলে?
- (খ) Na এর যোজনী 1 ব্যাখ্যা করো।
- (গ) উদ্দীপকের (i) নং হতে D মৌলের গড় আপেক্ষিক পারমাণবিক ভর নির্ণয় করো।
- (ঘ) (ii) নং এর উপস্তরগুলোর শক্তির ক্রম পরমাণুতে ইলেকট্রন বিন্যাসের প্রতিফলন – উক্তিটি মূল্যায়ন করো।

৩০ নং প্রশ্নের উত্তর

- (ক) এক বা একাধিক মৌলিক পদার্থ বা পদার্থসমূহের দুই বা দুইয়ের অধিক সংখ্যক পরমাণু পরস্পরের সাথে রাসায়নিক বন্ধন এর মাধ্যমে যুক্ত হয়ে যে কাঠামো গঠন করে তাকে অণু বলে।
- খে) কোনো মৌলের একটি পরমাণু যতগুলো ঐ পরমাণু বা Cl পরমাণুর সাথে যুক্ত হতে পারে সেই সংখ্যাই হলো ঐ মৌলের যোজনী বা যোজ্যতা। যোজনীর সংজ্ঞানুসারে, Na পরমাণুর যোজনী 1। কারণ এটি একটি Cl পরমাণুর সাথে যুক্ত হয়ে NaCl গঠন করে। আবার, Na পরমাণু H পরমাণুর সাথে যুক্ত হয়ে NaH গঠন করে। সুতরাং, সোডিয়াম (Na) এর যোজনী 1 (এক)। আবার, Na এর ইলেকট্রন বিন্যাস-

 $Na(11) - 1s^2 2s^2 2p^6 3s^1$

ইলেকট্রন বিন্যাস হতে এটা স্পষ্ট যে, N_a পরমাণুর সর্ববহিঃস্থ শক্তিস্তরের 3_s অরবিটালে মাত্র একটি ইলেকট্রন বিদ্যমান। যেহেতু, N_a ধাতু। তাই ধাতু পরমাণুর যোজনীর সংজ্ঞানুসারেও N_a এর যোজনী 1।

(গ) উদ্দীপকের (i) নং এ বর্ণিত D মৌলের আইসোটোপ $D_1,\,D_2$ এবং D_3 এর ক্ষেত্রে D_1 এর শতকরা পরিমাণ $=78\%,\,D_2$ এর শতকরা পরিমাণ =14% এবং D_3 এর শতকরা পরিমাণ =14%। আবার, D_1 এর ভরসংখ্যা $=44,\,D_2$ এর ভরসংখ্যা =46 এবং D_3 এর ভরসংখ্যা =53।

আমরা জানি.

যেকোনো মৌলের গড় আপেক্ষিক প্রমাণবিক ভর

 \sum (মৌলের আইসোটোপের শতকরা পরিমাণ imes আইসোটোপের ভরসংখ্যা)

$$=\frac{(78\times44)+(14\times46)+(8\times53)}{100}=45$$

সুতরাং, D মৌলের গড় আ<mark>পে</mark>ক্ষিক <mark>পরমাণবিক</mark> ভর 45।

(ঘ) উদ্দীপকে বর্ণিত (i) নং এর উপশক্তিস্তরগুলোর শক্তির ক্রম বর্ণিত হয়েছে 5p < 6s < 4f < 5d

প্রদান্ত শক্তির ক্রম মূলত ইলেকট্রন বিন্যাসের নীতির প্রতিফলন। পরমাণুতে ইলেকট্রন বিন্যাসের আউফবাউ নীতি অনুসারে ইলেকট্রন প্রথমে সর্বনিমু শক্তির অরবিটালে প্রবেশ করে এবং পরে ক্রমাম্বয়ে উচ্চশক্তির অরবিটালে প্রবেশ করে। অর্থাৎ, যে অরবিটালের শক্তি কম সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করে এবং যে অরবিটালের শক্তি অপেক্ষাকৃত বেশি তাতে ইলেকট্রন পরে প্রবেশ করে স্থিতিশীল ইলেকট্রন বিন্যাস গঠন করবে। অরবিটালের মধ্যে কোনটির শক্তি বেশি আর কোনটির শক্তি অপেক্ষাকৃত কম তা প্রধান কোয়ান্টাম সংখ্যা n এবং সহকারী কোয়ান্টাম সংখ্যা। এর যোগফল (n+l) এর উপর নির্ভর করে। যে অরবিটালের ক্ষেত্রে (n+l) এর মান বেশি সেই অরবিটালের শক্তি বেশি। কাজেই ইলেকট্রন প্রথমে নিমু শক্তিস্তরের উপস্তরগুলোতে এবং পরে উচ্চ শক্তিস্তরের উপস্তরগুলোতে প্রবেশ করে।

উদ্দীপকে বর্ণিত অরবিটালগুলোর ক্ষেত্রে (n+l) এর মান নিম্নে দেয়া হলো :

অরবিটালের নাম	প্রধান কোয়ান্টাম সংখ্যা (n)	সহকারী কোয়ান্টাম সংখ্যা ($m{l}$)	(n + <i>l</i>) এর মান
5p	5	1	(5 + 1) = 6
6s	6	0	(6 + 0) = 6
4f	4	3	(4 + 3) =

৩্য অধ্যায়

পদার্থের গঠন

Prepared by: SAJJAD HOSSAIN

			7
5d	5	2	(5 + 2) =
			7

বসায়ৰ

(n+l) এর মান পর্যবেক্ষণে এটি স্পষ্ট যে, 5p ও 6s এর ক্ষেত্রে (n+l) $\it l)$ এর মান সমান। আবার, $\it 4f$ ও $\it 5d$ এর ক্ষেত্রে $\it (n+\it l)$ এর মান সমান।

আউফবাউ নীতি অনুসারে, দুটি অরবিটালের (n+l) এর মান সমান হলে এদের মধ্যে অপেক্ষাকৃত বৃহত্তর হ এর মান বিশিষ্ট অরবিটালের শক্তি বেশি হবে। কাজেই $5p < 6s, \, 6s < 4f$ এবং 4f < 5d। সুতরাং উদ্দীপকের (ii) নং এ বর্ণিত অরবিটালগুলোর শক্তির ক্রম হলো 5p <6s < 4f < 5d