Local Interpretability of Machine Learning Models

joint with Przemysław Biecek

Mateusz Staniak Wrocław, 18 IX 2018

Warsaw University of Technology

Introduction

Agenda

- 1. Interpretable Machine Learning (IML) / Explainable Artificial Intelligence (xAI): a new research area
- 2. Local Explanations of Machine Learning Models
- 3. LIME and live methodology
- 4. Break Down method
- 5. Examples & summary

IML: the what

- 1. Growing area of research
 - first work: PDP (Friedman), prediction decompositions (Robnik-Šikonja)
 - Breakthrough: LIME (2016)
- 2. Many faces:
 - · building explainable methods
 - · explaining black box models
 - knowledge extraction from complex models

IML: the why

DAVID LAZER AND RYAN KENNEDY OPINION 10.01.15 07:00 AM

WHAT WE CAN LEARN FROM THE EPIC FAILURE OF GOOGLE FLU TRENDS

Figure 1: Taken from https://www.wired.com/2015/10/can-learn-epic-failure-google-flu-trends/

IML: the why

Doctors fed it hypothetical scenarios, not real patient data By Angela Chen | @chengela | Jul 26, 2018, 4:29pm EDT

Figure 2: Taken from https://www.theverge.com/2018/7/26/17619382/ibms-watson-cancer-ai-healthcare-science

IML: areas of research

Problems & questions in IML

- How well does the model perform? (Model performance)
- Which variables are most important in the model? (Feature importance)
- What is the relationship between predictors and response?
 (Variable contribution / variable response)
- · What factors drive a particular prediction? (local explanations)

Types of explanations

- 1. Intrinsic vs post-hoc
- 2. Model-specific vs model-agnostic
- 3. Global vs local (with respect to predictors or observations)

Local Explanation

- 1. Goal: discover which factors drive the prediction for a single instance
- 2. Motivation:
 - · understanding the model
 - · model validation
 - most interesting explanation from end-user point of view
- 3. Two main approaches:
 - Local approximations
 - Feature contributions (prediction decomposition)

LIME & live

LIME methodology: basics

Figure 3: Intuition behind LIME methodology. Taken from [10]

LIME methodology: basics

- $x \in \mathbb{R}^d$ instance being explained
- $x' \in \{0,1\}^{d'}$ interpretable representation
- $g \in G$ a model that belongs to a class of interpretable models
- $\Omega(g)$ measure of complexity of g (penalty term)
- f(x) explained model
- $\pi_x(z)$ measure of closeness of z and x (kernel)
- $\mathcal{L}(f,g,\pi_{\mathsf{X}}(\mathsf{z}))$ measure of unfaithfulness of local approximation

LIME explanation $\xi(x)$ is obtained by

$$\xi(x) = \arg\min_{g \in G} \mathcal{L}(f, g, \pi_{x}(z)) + \Omega(g)$$

q

LIME methodology: details

- Sampling observations before fitting local model is called local exploration
- The interpretable representation in binary space is created before sampling
- Loss $\mathcal{L}(f, g, \pi_x(z))$ describes **local fidelity** of the explanation how well the simple model fits the complex model
- Interpretability of the resulting approximation is ensured via the penalty term $\Omega(g)$

LIME methodology: summary

Note that LIME

- · performs discretization of features before fitting local model
- depends on many hyper-parameters (local model, distance function, discretization, sampling method etc)
- is a special case of a more general framework called Shapley values[7]

In summary, LIME addresses

- understanding issue by approximating the complex model with an interpretable model,
- **trust** issue using accompanying sp-LIME algorithm, which picks representative instances and their explanations.

LIME methodology: example

Figure 4: Example LIME application: words importance in QA systems. Taken from *How much should you ask? On the question structure in QA systems*, https://arxiv.org/pdf/1809.03734.pdf

live: introduction

Why?

- · LIME for regression problems
- Model visualization in aid of LIME

How?

- Create dataset for local exploration by perturbing the explained instance
- · Use original variables as interpretable inputs
- · Provide optional variable selection
- Provide tools for model visualization
- · Focus on interpretable models easy to visualize

live: work flow

- Create dataset for local exploration: sample_locally2 function
- 2. Add black box model predictions: add_predictions2 function
- Fit local explanation model to the prediction: fit_explanation2 function
- 4. Visualize the result: **plot** function

live: more details

- Different methods of creating the new dataset are available, including by permuting each variable and by changing one feature per observations (the method does matter)
- We can control which variables are allowed to vary through fixed variables variable argument to sample locally (keeping date/factor/correlated variables unchanged)
- Black box model can be pre-trained or it can be trained using mlr, hyperparameters of both black box and explanation models can be set
- Variable selection is performed via LASSO regression

Break Down Plots

Break Down: basics

- · Method of prediction decomposition
- Computes variable contributions
- Related to Shapley values
- Exact for linear models, greedy algorithm for any model
- · Visualization method: waterfall plots AKA Break Down plots

Break Down for Linear Models

For linear regression, the difference between a particular prediction and an average prediction is given by

$$f(x^{new}) - \overline{f(x)} = (x_1^{new} - \overline{x}_1)\beta_1 + \dots + (x_p^{new} - \overline{x}_p)\beta_p$$

Model-agnostic Break Down

All the following definition are taken from [9].

Definition (Relaxed model prediction)

Let $f^{IndSet}(x^{new})$ denote an expected model prediction for x^{new} relaxed on the set of indexes $IndSet \subset \{1, ..., p\}$.

$$f^{lndSet}(x^{new}) = E[f(x)|x_{lndSet} = x_{lndSet}^{new}].$$
 (1)

Thus $f^{IndSet}(x^{new})$ is an expected value for model response conditioned on variables from set IndSet in such a a way, that $\forall_{i \in IndSet} x_i = x_i^{new}$. Estimate:

$$f^{lndSet}(x^{new}) = \frac{1}{n} \sum_{i=1}^{n} f(x_{-lndSet}^{i}, x_{lndSet}^{new}).$$
 (2)

Model-agnostic Break Down

Definition (Distance to relaxed model prediction)

Let us define the distance between model prediction and relaxed model prediction for a set of indexes IndSet.

$$d(x^{new}, IndSet) := |f^{IndSet}(x^{new}) - f(x^{new})|.$$
(3)

Definition (Added feature contribution)

For j-th feature we define its contribution relative to a set of indexes IndSet (added contribution) as

contribution^{IndSet}
$$(j) = f^{IndSet \cup \{j\}}(x^{new}) - f^{IndSet}(x^{new}).$$
 (4)

It is the change in model prediction for x^{new} after relaxation on j.

Break Down: illustration

Figure 5: Illustration of Break Down method[9]

Example

live: R package

- · R package live is available on CRAN
- · Wine quality data.

fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxide	total_sulfur_dioxide
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db1< th=""></db1<>
7.4	0.70	0.00	1.9	0.076	11	3
7.8	0.88	0.00	2.6	0.098	25	67
7.8	0.76	0.04	2.3	0.092	15	54
11.2	0.28	0.56	1.9	0.075	17	60
7.4	0.66	0.00	1.8	0.075	13	40
7.9	0.60	0.06	1.6	0.069	15	59

live: example

Variable	N	Estimate		р
fixed_acidity	500		0.10 (0.08, 0.12)	< 0.001
volatile_acidity	500		-1.47 (-1.64, -1.29)	< 0.001
citric_acid	500	į į	-0.54 (-0.64, -0.44)	< 0.001
residual_sugar	500		0.01 (-0.04, 0.06)	0.664
chlorides	500		1.12 (0.32, 1.91)	0.006
free_sulfur_dioxide	500	ļ •	-0.01 (-0.01, -0.00)	< 0.001
total_sulfur_dioxide	500	•	0.00 (-0.00, 0.00)	0.417
density	500	 ;	-27.45 (-41.49, -13.41)	< 0.001
pH	500		-0.29 (-0.42, -0.16)	< 0.001
sulphates	500	<u> </u>	1.19 (1.08, 1.30)	< 0.001
alcohol	500	į.	0.23 (0.21, 0.26)	<0.001

Figure 6: Forest plot[6] for the local linear model.

live: example

Figure 7: Waterfall plot for the local linear model.

Break Down: R package

```
Basic library: breakDown
broken(model, instance, ...)
As a part of DALEX package:
single_prediction(dalex_explainer, instance) or
prediction_breakdown(dalex_explainer, instance)
```

Break Down: example

Figure 8: Waterfall plot for wine data - model-agnostic Break Down.

Summary

live & Break Down: challenges

- · LIME & Break Down in high dimensional setting
- optimal way of generating fake dataset
- fit diagnostics for local and complex models
- detecting local interactions

IML: more

Software

- · DALEX: R package
- · iml: R package
- skater: Python library

Documentation

- DALEX docs: https://pbiecek.github.io/DALEX_docs/ (P. Biecek)
- Interpretable Machine Learning Book: https://christophm.github.io/interpretable-ml-book (Ch. Molnar)

Example open problems

- Interaction detection
- · Model-specific explanations (deep learning...)
- · Biased training

MI2DataLab

http://mi2.mini.pw.edu.pl/ https://github.com/mi2datalab

Acknowledgement

References i

ArXiv e-prints, Sept. 2018.

DALEX: explainers for complex predictive models.

ArXiv e-prints, June 2018.

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and Z. M. Jones.

mlr: Machine learning in r.

Journal of Machine Learning Research, 17(170):1–5, 2016.

References ii

P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis.

Modeling wine preferences by data mining from physicochemical properties.

Decis. Support Syst., 47(4):547–553, Nov. 2009.

N. Kennedy.

forestmodel: Forest Plots from Regression Models, 2018.

R package version 0.5.0.

S. Lundberg and S.-I. Lee.
A unified approach to interpreting model predictions.
ArXiv e-prints, May 2017.

References iii

C. Molnar.

Interpretable Machine Learning.

https://christophm.github.io/interpretable-ml-book/, 2018. https://christophm.github.io/interpretable-ml-book/.

M. Staniak and P. Biecek.

Explanations of model predictions with live and breakDown packages.

ArXiv e-prints, Apr. 2018.

M. Tulio Ribeiro, S. Singh, and C. Guestrin.

Model-Agnostic Interpretability of Machine Learning.

ArXiv e-prints, June 2016.