Integrals depending on parameters

Dr. Xuan Dieu Bui

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology

Integrals Depending on a Parameter

- Definite Integrals Depending on a Parameter
 - Continuity and taking limits under the integral sign
 - Differentiation under the Integral Sign
 - Integration under the Integral Sign
- Improper Integrals depending on a parameter
 - Uniform Convergence of Improper Integrals
 - Continuity and taking limits under the integral sign
 - Differentiation under the Integral Sign
 - Integration under the Integral Sign
- 3 Euler Integral
 - The Gamma Function
 - The Beta Function

Integrals depending on a parameter

- 1 Definite Integrals Depending on a Parameter
 - Continuity and taking limits under the integral sign
 - Differentiation under the Integral Sign
 - Integration under the Integral Sign
- 2 Improper Integrals depending on a parameter
 - Uniform Convergence of Improper Integrals
 - Continuity and taking limits under the integral sign
 - Differentiation under the Integral Sign
 - Integration under the Integral Sign
- 3 Euler Integral
 - The Gamma Function
 - The Beta Function

Definite Integrals Depending on a Parameter

Definition

Suppose that f(x, y) is a continuous function defined on $[a, b] \times [c, d]$ Then

$$I(y) = \int_{a}^{b} f(x, y) dx$$
 (1)

is a function defined on [c,d] and is called an *integral depending on a* parameter of the function f(x,y).

Continuity and taking limits under the integral sign

If function f(x, y) is defined and continuous on the rectangle $[a, b] \times [c, d]$ then the integral I(y) is continuous on [c, d], i.e.,

Continuity and taking limits under the integral sign

If function f(x, y) is defined and continuous on the rectangle $[a, b] \times [c, d]$ then the integral I(y) is continuous on [c, d], i.e.,

$$\lim_{y \to y_0} I(y) = \left[\lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx \right] = \int_a^b f(x, y_0) dx = I(y_0).$$

Example

Compute $\lim_{y\to 0} \int_{0}^{2} x^{2} \cos xy dx$.

Leibniz's Theorem

Suppose that

- i) f(x, y) is continuous on $[a, b] \times [c, d]$,
- ii) $f'_y(x, y)$ is continuous on $[a, b] \times [c, d]$.

Then the integral I(y) is differentiable on (c, d) and

$$I'(y) = \left(\int_{a}^{b} f(x, y) dx\right)'_{y}$$

Leibniz's Theorem

Suppose that

- i) f(x, y) is continuous on $[a, b] \times [c, d]$,
- ii) $f'_{\nu}(x,y)$ is continuous on $[a,b] \times [c,d]$.

Then the integral I(y) is differentiable on (c, d) and

$$I'(y) = \left(\int_a^b f(x,y)dx\right)'_V = \int_a^b f'_y(x,y)dx.$$

Example

Evaluate

- a) $I(y) = \int_{0}^{1} \arctan \frac{x}{y} dx$.
- b) $J(y) = \int_{0}^{1} \ln(x^2 + y^2) dx$.

Hint:

- a) S1. Check the conditions of the Leibniz' Theorem.
 - S2. Calculate $I'(y) = \frac{1}{2} \ln \frac{y^2}{1+y^2}$.
 - S3. $I(y) = \arctan \frac{1}{y} + \frac{1}{2}y \ln \frac{y^2}{1+y^2}$.
- b) S1. Check the conditions of the Leibniz' Theorem.
 - S2. Calculate $I'(y) = 2 \arctan \frac{1}{y}$.
 - S3. $I(y) = \ln(1+y^2) 2 + 2y$ arctan $\frac{1}{y}$.

Integration under the Integral Sign

If f(x,y) is defined and continuous on the rectangle $[a,b] \times [c,d]$, then

$$\int_{0}^{d} I(y)dy =$$

Integration under the Integral Sign

If f(x,y) is defined and continuous on the rectangle $[a,b] \times [c,d]$, then

$$\int_{c}^{d} I(y)dy = \left[\int_{c}^{d} dy \int_{a}^{b} f(x,y)dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy\right].$$

Example

By integrating under the integral sign, compute the integral

$$\int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x}, \ (0 < a < b).$$

Integrals depending on a parameter

- Definite Integrals Depending on a Parameter
 - Continuity and taking limits under the integral sign
 - Differentiation under the Integral Sign
 - Integration under the Integral Sign
- Improper Integrals depending on a parameter
 - Uniform Convergence of Improper Integrals
 - Continuity and taking limits under the integral sign
 - Differentiation under the Integral Sign
 - Integration under the Integral Sign
- 3 Euler Integral
 - The Gamma Function
 - The Beta Function

Consider the integral
$$I(y) = \int_{a}^{+\infty} f(x,y)dx$$
, $y \in [c,d]$.

Definition

We say that the integral I(y) is

i) convergent at $y_0 \in [c,d]$ if $\int_{a}^{\infty} f(x,y_0)dx$ is convergent, i.e.,

Consider the integral $I(y) = \int_{-\infty}^{+\infty} f(x, y) dx$, $y \in [c, d]$.

Definition

We say that the integral I(y) is

i) convergent at $y_0 \in [c, d]$ if $\int_{-\infty}^{\infty} f(x, y_0) dx$ is convergent, i.e., $\forall \epsilon > 0, \exists b = b(\epsilon, y_0) > a \text{ (depending on } \epsilon \text{ and } y_0) \text{ such that }$

$$\left|I(y_0) - \int_a^A f(x, y_0) dx\right| = \left|\int_A^\infty f(x, y_0) dx\right| < \epsilon \text{ for all } A > b.$$

Consider the integral $I(y) = \int_{-\infty}^{+\infty} f(x,y)dx$, $y \in [c,d]$.

Definition

We say that the integral I(y) is

i) convergent at $y_0 \in [c, d]$ if $\int_{-\infty}^{\infty} f(x, y_0) dx$ is convergent, i.e., $\forall \epsilon > 0, \exists b = b(\epsilon, y_0) > a \text{ (depending on } \epsilon \text{ and } y_0) \text{ such that }$

$$\left|I(y_0)-\int_a^A f(x,y_0)dx\right|=\left|\int_A^\infty f(x,y_0)dx\right|<\epsilon \text{ for all }A>b.$$

ii) convergent on [c,d] if I(y) is convergent at any $y \in [c,d]$,

Consider the integral $I(y) = \int_{-\infty}^{+\infty} f(x,y)dx$, $y \in [c,d]$.

Definition

We say that the integral I(y) is

i) convergent at $y_0 \in [c, d]$ if $\int_{-\infty}^{\infty} f(x, y_0) dx$ is convergent, i.e., $\forall \epsilon > 0, \exists b = b(\epsilon, y_0) > a \text{ (depending on } \epsilon \text{ and } y_0) \text{ such that }$

$$\left|I(y_0)-\int_a^A f(x,y_0)dx\right|=\left|\int_A^\infty f(x,y_0)dx\right|<\epsilon \text{ for all }A>b.$$

- ii) convergent on [c, d] if I(y) is convergent at any $y \in [c, d]$,
- iii) uniformly convergent on [c, d] if

Consider the integral $I(y) = \int_{-\infty}^{+\infty} f(x,y)dx$, $y \in [c,d]$.

Definition

We say that the integral I(y) is

i) convergent at $y_0 \in [c, d]$ if $\int_{-\infty}^{\infty} f(x, y_0) dx$ is convergent, i.e., $\forall \epsilon > 0, \exists b = b(\epsilon, y_0) > a \text{ (depending on } \epsilon \text{ and } y_0) \text{ such that }$

$$\left|I(y_0) - \int_a^A f(x, y_0) dx\right| = \left|\int_A^\infty f(x, y_0) dx\right| < \epsilon \text{ for all } A > b.$$

- ii) convergent on [c,d] if I(y) is convergent at any $y \in [c,d]$,
- iii) uniformly convergent on [c,d] if $\forall \epsilon > 0, \exists b = b(\epsilon) > a$ such that

$$\left|\int_{A}^{\infty}f(x,y)dx\right|<\epsilon$$
 for all $A>b$ and $y\in[c,d]$.

Dr. Xuan Dieu Bui

Example

Show that the integral $I(y) = \int_{1}^{\infty} \sin(yx) dx$ is convergent if y = 0 and is divergent if $y \neq 0$.

Example

Show that the integral $I(y) = \int_{1}^{\infty} \sin(yx) dx$ is convergent if y = 0 and is divergent if $y \neq 0$.

Example

- a) Evaluate $I(y) = \int_{0}^{+\infty} y e^{-yx} dx$ (y > 0).
- b) Prove that I(y) converges to 1 uniformly on $[y_0, +\infty)$ for all $y_0 > 0$.
- c) Explain why I(y) is not uniformly convergent on $(0, +\infty)$.

Theorem (Weierstrass Criterion)

lf

i)
$$|f(x,y)| \leq g(x) \forall (x,y) \in [a,+\infty) \times [c,d]$$
,

ii) The improper integral $\int_a^{+\infty} g(x) dx$ is convergent, then $I(y) = \int_a^{+\infty} f(x, y) dx$ is uniformly convergent on [c, d].

Example

Prove that

a)
$$I(y) = \int_{0}^{\infty} \frac{\cos \alpha x}{x^2 + 1}$$
 is uniformly convergent on \mathbb{R} .

Example

Prove that
$$\lim_{y \to 0^+} \left(\int_0^{+\infty} y e^{-yx} dx \right) \neq \int_0^{+\infty} \left(\lim_{y \to 0^+} y e^{-yx} \right) dx$$

Example

Prove that
$$\lim_{y \to 0^+} \left(\int_0^{+\infty} y e^{-yx} dx \right) \neq \int_0^{+\infty} \left(\lim_{y \to 0^+} y e^{-yx} \right) dx$$

Theorem (Continuity and taking limits under the integral sign)

If

- i) f(x, y) is continuous on $[a, +\infty) \times [c, d]$,
- ii) $I(y) = \int_{2}^{+\infty} f(x, y) dx$ is uniformly convergent on [c, d], then I(y) is continuous on [c, d], i.e.,

Dr. Xuan Dieu Bui

Example

Prove that
$$\lim_{y \to 0^+} \left(\int_0^{+\infty} y e^{-yx} dx \right) \neq \int_0^{+\infty} \left(\lim_{y \to 0^+} y e^{-yx} \right) dx$$

Theorem (Continuity and taking limits under the integral sign)

Ιf

- i) f(x,y) is continuous on $[a,+\infty)\times[c,d]$,
- ii) $I(y) = \int_{2}^{+\infty} f(x, y) dx$ is uniformly convergent on [c, d], then I(y) is continuous on [c, d], i.e.,

$$\lim_{y \to y_0} I(y) = \left| \lim_{y \to y_0} \int_{a}^{+\infty} f(x, y) dx = \int_{a}^{+\infty} \lim_{y \to y_0} f(x, y) dx \right| = \int_{a}^{+\infty} f(x, y_0) dx$$

Example

Evaluate
$$\int_{0}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x}$$
, $(\alpha, \beta > 0)$.

Example

Evaluate
$$\int_{0}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x}$$
, $(\alpha, \beta > 0)$.

Theorem (Differentiation under the Integral Sign)

lf

- i) f(x,y) and $f'_{y}(x,y)$ are continuous on $[a,+\infty)\times [c,d]$,
- ii) $I(y) = \int_{a}^{+\infty} f(x, y) dx$ is convergent on [c, d],
- iii) $\int_{a}^{+\infty} f_{y}'(x,y)dx$ is uniformly convergent on [c,d],

then I(y) is differentiable on [c,d] and $I'(y) = \int_a^{+\infty} f_y'(x,y) dx$.

Integration under the Integral Sign

Example

Evaluate
$$\int_{0}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x}$$
, $(\alpha, \beta > 0)$.

Integration under the Integral Sign

Example

Evaluate
$$\int_{0}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x}$$
, $(\alpha, \beta > 0)$.

Theorem (Integration under the Integral Sign)

lf

- i) f(x, y) is continuous on $[a, +\infty) \times [c, d]$,
- ii) $I(y) = \int_a^{+\infty} f(x,y) dx$ is uniformly continuous on [c,d],

then I(y) is integrable on [c,d] and

$$\int_{c}^{d} I(y) dy := \int_{c}^{d} \left(\int_{a}^{+\infty} f(x, y) dx \right) dy = \int_{a}^{+\infty} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Integration Techniques

Evaluate
$$I(y) = \int_{a}^{+\infty} f(x, y) dx$$
.

Differentiation under the Integral Sign

- **S1.** Evaluate I'(y) by differentiating $I'(y) = \int_{a}^{+\infty} f_{y}'(x,y) dx$.
- **S2.** Evaluate I(y) by integrating $I(y) = \int I'(y) dy + C$.
- **S3.** Evaluate $I(y_0)$ to find C.

Remark: Remember to check the conditions.

Example

Evaluate $(a, b, \alpha, \beta > 0)$:

a)
$$\int_0^1 \frac{x^b - x^a}{\ln x} dx$$
.

c)
$$\int_0^{+\infty} \frac{e^{-\alpha x^2} - e^{-\beta x^2}}{x^2} dx$$
.

b)
$$\int_0^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx$$
.

d)
$$\int_0^{+\infty} \frac{dx}{(x^2+y)^{n+1}}$$
.

Integration Techniques

Evaluate $I(y) = \int_a^{+\infty} f(x, y) dx$.

Integration under the Integral Sign

- **S1.** Express $f(x,y) = \int_c^d F(x,y) dy$.
- **S2.** Change the order of integration:

$$\int_{a}^{+\infty} f(x,y)dx = \int_{a}^{+\infty} \left(\int_{c}^{d} F(x,y)dy\right) dx = \int_{c}^{d} \left(\int_{a}^{+\infty} F(x,y)dx\right) dy.$$

Remark: Remember to check the conditions.

Example

Evaluate $(a, b, \alpha, \beta > 0)$

a)
$$\int_0^1 \frac{x^b - x^a}{\ln x} dx$$
.

c)
$$\int_0^{+\infty} \frac{e^{-\alpha x^2} - e^{-\beta x^2}}{x^2} dx$$
.

b)
$$\int_0^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx.$$

d)
$$\int_0^{+\infty} e^{-ax} \frac{\sin bx - \sin cx}{x}$$
.

Integrals depending on a parameter

- Definite Integrals Depending on a Parameter
 - Continuity and taking limits under the integral sign
 - Differentiation under the Integral Sign
 - Integration under the Integral Sign
- Improper Integrals depending on a parameter
 - Uniform Convergence of Improper Integrals
 - Continuity and taking limits under the integral sign
 - Differentiation under the Integral Sign
 - Integration under the Integral Sign
- 3 Euler Integral
 - The Gamma Function
 - The Beta Function

$$\Gamma(p) = \int_{0}^{+\infty} x^{p-1} e^{-x} dx \text{ defined on } (0, +\infty).$$

Example

Evaluate $\Gamma(1)$, $\Gamma(\frac{1}{2})$.

a)
$$\Gamma(p+1) = p\Gamma(p)$$
.

$$\Gamma(p) = \int_{0}^{+\infty} x^{p-1} e^{-x} dx \text{ defined on } (0, +\infty).$$

Example

Evaluate $\Gamma(1)$, $\Gamma(\frac{1}{2})$.

a)
$$\Gamma(p+1) = p\Gamma(p)$$
.
If $\alpha \in (n, n+1]$, then $\Gamma(\alpha) = (\alpha-1)(\alpha-2)\dots(\alpha-n)\Gamma(\alpha-n)$.
Specially,
$$\begin{cases} \Gamma(1) = 1, \\ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \end{cases}$$
 therefore
$$\begin{cases} \Gamma(n) = (n-1)! \\ \Gamma\left(n+\frac{1}{2}\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}. \end{cases}$$

$$\Gamma(p) = \int_{0}^{+\infty} x^{p-1} e^{-x} dx \text{ defined on } (0, +\infty).$$

Example

Evaluate $\Gamma(1)$, $\Gamma(\frac{1}{2})$.

- a) $\Gamma(p+1) = p\Gamma(p)$. If $\alpha \in (n, n+1]$, then $\Gamma(\alpha) = (\alpha - 1)(\alpha - 2) \dots (\alpha - n)\Gamma(\alpha - n)$. Specially, $\begin{cases} \Gamma(1) = 1, \\ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \end{cases}$ therefore $\begin{cases} \Gamma(n) = (n-1)! \\ \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n-1)!!}{2n} \sqrt{\pi}. \end{cases}$
- b) Derivative of the Gamma function: $\Gamma^{(k)}(p) = \int_{0}^{+\infty} x^{p-1} (\ln x)^{k} e^{-x} dx.$

$$\Gamma(p) = \int_{0}^{+\infty} x^{p-1} e^{-x} dx \text{ defined on } (0, +\infty).$$

Example

Evaluate $\Gamma(1)$, $\Gamma(\frac{1}{2})$.

- a) $\Gamma(p+1) = p\Gamma(p)$. If $\alpha \in (n, n+1]$, then $\Gamma(\alpha) = (\alpha - 1)(\alpha - 2) \dots (\alpha - n)\Gamma(\alpha - n)$. Specially, $\begin{cases} \Gamma(1) = 1, \\ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \end{cases}$ therefore $\begin{cases} \Gamma(n) = (n-1)! \\ \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n-1)!!}{2n} \sqrt{\pi}. \end{cases}$
- b) Derivative of the Gamma function: $\Gamma^{(k)}(p) = \int_0^{+\infty} x^{p-1} (\ln x)^k e^{-x} dx.$
- c) $\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi} \ \forall 0$

Form 1: $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$.

Form 2: B $(p,q) = \int_0^{+\infty} \frac{x^{p-1}}{(1+x)^{p+q}} dx$ (change of variable $x = \frac{t}{t+1}$).

Form 1: $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$.

Form 2: B $(p,q) = \int_0^{+\infty} \frac{x^{p-1}}{(1+x)^{p+q}} dx$ (change of variable $x = \frac{t}{t+1}$).

Properties

a) Symmetry: B(p,q) = B(q,p).

Form 1: $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$.

Form 2: B $(p,q) = \int_0^{+\infty} \frac{x^{p-1}}{(1+x)^{p+q}} dx$ (change of variable $x = \frac{t}{t+1}$).

Properties

a) Symmetry: B(p,q) = B(q,p).

b)
$$\begin{cases} \mathsf{B}(p,q) = \frac{p-1}{p+q-1} \, \mathsf{B}(p-1,q) \,, & \text{if } p > 1 \\ \mathsf{B}(p,q) = \frac{q-1}{p+q-1} \, \mathsf{B}(p,q-1) \,, & \text{if } q > 1. \end{cases}$$

Form 1: $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$.

Form 2: B(p,q) = $\int_0^{+\infty} \frac{x^{p-1}}{(1+x)^{p+q}} dx$ (change of variable $x = \frac{t}{t+1}$).

Properties

a) Symmetry: B(p,q) = B(q,p).

b)
$$\begin{cases} \mathsf{B}(p,q) = \frac{p-1}{p+q-1} \, \mathsf{B}(p-1,q) \,, & \text{if } p > 1 \\ \mathsf{B}(p,q) = \frac{q-1}{p+q-1} \, \mathsf{B}(p,q-1) \,, & \text{if } q > 1. \end{cases}$$

Specially, B (1,1) = 1 therefore B $(m,n) = \frac{(m-1)!(n-1)!}{(m+n-1)!}, \ \forall m,n \in \mathbb{N}.$

Example

Express $\int_0^{\frac{\pi}{2}} \sin^m t \cos^n t dt$ as the Beta function.

Hint: Let $\sin t = \sqrt{x}$ to conclude $\int_0^{\frac{\pi}{2}} \sin^m t \cos^n t dt = \frac{1}{2} B\left(\frac{m+1}{2}, \frac{n+1}{2}\right)$.

Euler Integral

The Trigonometric Form of the Beta Function

$$B(p,q) = 2 \int_{0}^{\frac{\pi}{2}} \sin^{2p-1} t \cos^{2q-1} t dt.$$

Euler Integral

The Trigonometric Form of the Beta Function

$$B(p,q) = 2 \int_{0}^{\frac{\pi}{2}} \sin^{2p-1} t \cos^{2q-1} t dt.$$

Relation between the Gamma and Beta functions

$$\mathsf{B}\left(p,q\right) = rac{\Gamma\left(p\right)\Gamma\left(q\right)}{\Gamma\left(p+q\right)}.$$

Example

- a) $\int_0^{\frac{\pi}{2}} \sin^6 x \cos^4 x dx$.
- b) $\int_0^a x^{2n} \sqrt{a^2 x^2} dx$ (a > 0).
- c) $\int_0^{+\infty} x^{10} e^{-x^2} dx$.

- d) $\int_0^{+\infty} \frac{\sqrt{x}}{(1+x^2)^2} dx$.
- e) $\int_0^{+\infty} \frac{1}{1 x^3} dx$.
- f) $\int_0^1 \frac{1}{\sqrt[n]{1-x^n}} dx$, $n \in \mathbb{N}^*$.