→ sklean in Python

Read in auto data

```
import pandas as pd
import sklearn
```

df = pd.read_csv("https://raw.githubusercontent.com/RyanBanafshay/Machine_Learning_Portfolio/main/ML%20with%20sklearn/Auto.csv")
df.head()

1	name	origin	year	acceleration	weight	horsepower	displacement	cylinders	mpg	
	chevrolet chevelle malibu	1	70.0	12.0	3504	130	307.0	8	18.0	0
	buick skylark 320	1	70.0	11.5	3693	165	350.0	8	15.0	1
	plymouth satellite	1	70.0	11.0	3436	150	318.0	8	18.0	2
	amc rebel sst	1	70.0	12.0	3433	150	304.0	8	16.0	3
	ford torino	1	70.0	NaN	3449	140	302.0	8	17.0	4

Output the dimensions

▼ Data Exploration

```
print("MPG:\n\n",df['mpg'].describe())
print("\nWeight:\n\n",df['weight'].describe())
print("\nYear:\n\n",df['year'].describe())
     count 392.000000
             23.445918
    std
              7.805007
              9.000000
    min
    25%
             17.000000
             22.750000
            29.000000
    75%
    max
             46.600000
    Name: mpg, dtype: float64
    Weight:
     count
              392.000000
            2977.584184
    mean
             849.402560
           1613.000000
    25%
            2225,250000
    50%
             2803.500000
            3614.750000
             5140.000000
    max
    Name: weight, dtype: float64
    Year:
             390.000000
     count
             76.010256
    mean
              3.668093
    min
             70.000000
    25%
              73.000000
             76.000000
    75%
             79.000000
    max
             82.000000
    Name: year, dtype: float64
```

Year has two less fields than MPG and Weight. MPG and Weight also have a relative small standard deviation. Year has a smaller range.

```
df.dtypes
```

```
float64
                      int64
    cylinders
                    float64
    displacement
    horsepower
                      int64
     weight
                       int64
    acceleration
                     float64
    year
                     float64
    origin
    name
                     object
    dtype: object
df.cylinders = df.cylinders.astype('category').cat.codes
df = df.astype({"origin":'category'})
df.dtypes
                     float64
    mpg
    cylinders
                        int8
    displacement
                     float64
    horsepower
                       int64
                       int64
    weight
    acceleration
                     float64
    year
                     float64
    origin
                    category
                       object
    name
    dtype: object
```

Drop NA values from the data

```
df=df.dropna()
df.isna().sum()
    mpg
    cylinders
                     0
    displacement
    horsepower
                     0
    weight
                     0
    acceleration
                     0
    year
                     0
    origin
                     0
                     0
    name
    dtype: int64
```

→ Add Column

```
import numpy as np
avg = df.mpg.mean()
df['mpg_high'] = np.where(df.mpg > avg, 1, 0)
df = df.drop(columns=['name','mpg'])
print(df.head())
       cylinders displacement horsepower weight acceleration year origin \
                                                            12.0 70.0
11.5 70.0
                         307.0
    0
               4
                                       130
                                               3504
                                                                             1
                         350.0
                                        165
                                               3693
    1
               4
                                                                             1
                         318.0
                                               3436
                                                             11.0 70.0
    3
               4
                         304.0
                                       150
                                               3433
                                                             12.0 70.0
                                                                             1
                         454.0
                                       220
                                                              9.0 70.0
    6
                                               4354
                                                                             1
       mpg_high
              0
    1
              0
    2
              0
    3
              0
              0
    6
```

Graphing the data

```
import seaborn as sb
sb.catplot(x = 'mpg_high', kind = 'count', data = df)
```

<seaborn.axisgrid.FacetGrid at 0x7f7bfa5c6d90>

As we see from the visual representation, there seems to be very little difference in the data for mpg_high.

$$sb.relplot(x = 'horsepower', y = 'weight', data = df, hue = df.mpg_high)$$

Horsepower and Weight much higher foor the 0 mpg_high. We also see that the weight typically corresponds with a higher horsepower.

This boxplot shows us very similar results as the previous. There are a few outliers on mpg_high 1

Training the data

```
from sklearn.model_selection import train_test_split

X = df.iloc[:, 0:6]
y = df.iloc[:, 7]
```

Training size: (272, 6)
Testing size: (117, 6)

▼ Logistic Regression

```
from sklearn.linear_model import LogisticRegression
logReg = LogisticRegression(solver = 'lbfgs', max_iter=100000)
logReg.fit(X_train, y_train)
logReg.score(X_train, y_train)
0.9007352941176471
```

▼ Decision Tree

```
from sklearn.tree import DecisionTreeClassifier
dTree = DecisionTreeClassifier()
dTree.fit(X train, y train)
     v DecisionTreeClassifier
     DecisionTreeClassifier()
predDT = dTree.predict(X_test)
accuracyDT = accuracy_score(y_test, predDT)
precisionDT = precision_score(y_test, predDT)
recallDT = recall_score(y_test, predDT)
f1DT = f1_score(y_test, predDT)
print("accuracy score: ", accuracyDT)
print("precision score: ", precisionDT)
print("recall score: ", recallDT)
print("f1 score: ", f1DT)
     accuracy score: 0.9316239316239316
     precision score: 0.9137931034482759
     recall score: 0.9464285714285714
    f1 score: 0.9298245614035087
```

Neural Network

```
from sklearn import preprocessing
  scaler = preprocessing.StandardScaler().fit(X_train)
  X train scaled = scaler.transform(X train)
  X_test_scaled = scaler.transform(X_test)
  from sklearn.neural_network import MLPClassifier
  nn1 = MLPClassifier(solver='lbfgs', hidden_layer_sizes=(5, 2), max_iter=500, random_state=1234)
  nn1.fit(X_train_scaled, y_train)
                                      MLPClassifier
       MLPClassifier(hidden_layer_sizes=(5, 2), max_iter=500, random_state=1234,
                     solver='lbfgs')
  prednn1 = nn1.predict(X_test_scaled)
  from sklearn.metrics import confusion matrix
  accuracynn1 = accuracy_score(y_test, prednn1)
  precisionnn1 = precision_score(y_test, prednn1)
  recallnn1 = recall_score(y_test, prednn1)
  flnn1 = f1_score(y_test, prednn1)
  print("accuracy score: ", accuracynn1)
  print("precision score: ", precisionnn1)
  print("recall score: ", recallnn1)
  print("f1 score: ", f1nn1)
  confusion_matrix(y_test, prednn1)
      accuracy score: 0.9230769230769231 precision score: 0.9122807017543859
       recall score: 0.9285714285714286
       f1 score: 0.9203539823008849
       array([[56, 5],
             [ 4, 52]])

    Second Neural Network

  nn2 = MLPClassifier(solver='lbfgs', hidden_layer_sizes=(4, 2), max_iter=500, random_state=1234)
  nn2.fit(X_train_scaled, y_train)
                                      MLPClassifier
       MLPClassifier(hidden_layer_sizes=(4, 2), max_iter=500, random_state=1234,
                     solver='lbfgs')
  prednn2 = nn2.predict(X_test_scaled)
  accuracynn2 = accuracy_score(y_test, prednn2)
  precisionnn2 = precision_score(y_test, prednn2)
  recallnn2 = recall_score(y_test, prednn2)
  flnn2 = f1_score(y_test, prednn2)
  print("accuracy score: ", accuracynn2)
  print("precision score: ", precisionnn2)
  print("recall score: ", recallnn2)
  print("f1 score: ", f1nn2)
  confusion_matrix(y_test, prednn2)
       accuracy score: 0.9145299145299145
       precision score: 0.9107142857142857
       recall score: 0.9107142857142857
```

f1 score: 0.9107142857142857

```
array([[56, 5], [5, 51]])
```

In the second model, I lowered the number of hidden layers. This was ineffective at increasing the accuracy. Overall performance of the second model was generally worse than the first. I am assuming that the difference in both these models are minimal and not really reflective of how effective they are because the data size is so small.

Analysis

The decision tree had the most accurate results, though not by such a signiciant amount that I would say its the best algorithm. They all performed well with the data. A real test to see which would be better would be to use a variety of different and larger data sets and compare them using that.

If we compare the different metrics by class, we see:

Decision Tree:

- Accuracy = 0.9316239316239316
- Precision = 0.9137931034482759
- Recall = 0.9464285714285714

NN1:

- Accuracy = 0.9230769230769231
- Precision score = 0.9122807017543859
- Recall score = 0.9285714285714286

NN2:

- Accuracy = 0.9145299145299145
- Precision = 0.9107142857142857
- Recall = 0.9107142857142857

What algorithm to use is dependent on the data. I think a big reason why decision tree preformed the best for this particular data is because decision trees are effective at handling non-linear datasets. Logisitc regression had the worst accuracy, and in that case it needs a linear dataset to be fully effective. The nueral network performed well but I think the main reason why it didn't prefer as well is because NN's are more suited for larger more complex datasets.

Honestly, I prefer using sklearn in python over R. Python was designed to be easy to use for programmers used to more convential programming languages such as Java or C++. Although R was convinent in how it was able to formulate results through internal functions, I never got used to the conventions of the language. Simple things like assigning variables felt more complicated than it needed to be. At a higher level, I would say both sklearn and R are very similar with no real preference one way or another. So the real defining reason why I prefer sklearn is simply that I find python a more familiar platform that has many similarity to Java and C++ with added conveniences.