Lecture 31 Analysis of Variance (ANOVA)

BIO210 Biostatistics

Xi Chen

Spring, 2022

School of Life Sciences
Southern University of Science and Technology

Compare More Than Two Means

More than two-samples

Intuitive way: compare all possible pairs using two-sample independent t test:

Samples 1 vs 2:
$$H_0: \mu_1 = \mu_2; \ H_1: \mu_1 \neq \mu_2$$

Samples 1 vs 3:
$$H_0: \mu_1 = \mu_3; \ H_1: \mu_1 \neq \mu_3$$

Samples 2 vs 3:
$$H_0: \mu_2 = \mu_3; \ H_1: \mu_2 \neq \mu_3$$

Good enough?

Compare More Than Two Means

What if we have 15 samples from 15 different populations?

- Intuitive way: compare all possible pairs using two-sample independent t test:
- Number of comparisons: ${15 \choose 2} = \frac{15 \times 14}{2} = 105$
- Significance level: $\alpha=0.05$
- When we set $\alpha=0.05$, we want to tolerate a 5% of chance of making a type I error. That is, the intended number of tests of making a type I error: ≈ 5
- Assume that the means are all the same, what is the probability of making a type I error in at least one test?

$$P(\text{reject }H_0 \text{ in at least one test }|H_0 \text{ is true})$$
 =1 $-P(\text{not rejecting }H_0 \text{ in all tests }|H_0 \text{ is true})$ =1 -0.95^{105} =0.995

Source of Variation - Total

Sample 1	Sample 2	Sample 3	
3	5	5	
2	3	6	
1	4	7	
$\bar{x}_1 = 2$	$\bar{x}_2 = 4$	$\bar{x}_3 = 6$	

sum of squares (SS): add up the squared distance between an observation and the mean:

$$\sum (X - \bar{X})^2$$

 SS_T : total sum of squares

The grand mean:
$$\bar{x} = \frac{3+2+1+5+3+4+5+6+7}{9} = 4$$

$$SS_T = (3-4)^2 + (2-4)^2 + (1-4)^2 + (5-4)^2 + (3-4)^2 + (4-4)^2 + (5-4)^2 + (6-4)^2 + (7-4)^2 = 30$$

What is d.f. ? $df_T = 9 - 1 = 8$

Source of Variation - Within Groups

Sample 1	Sample 2	Sample 3	
3	5	5	
2	3	6	
1	4	7	
$\bar{x}_1 = 2$	$\bar{x}_2 = 4$	$\bar{x}_3 = 6$	

sum of squares (SS): add up the squared distance between an observation and the mean:

$$\sum (X - \bar{X})^2$$

 SS_W : sum of squares within

$$SS_W = (3-2)^2 + (2-2)^2 + (1-2)^2 + (5-4)^2 + (3-4)^2 + (4-4)^2 + (5-6)^2 + (6-6)^2 + (7-6)^2$$

= $df_1 \cdot s_1^2 + df_2 \cdot s_2^2 + df_3 \cdot s_3^2$
= 6

What is d.f. ?
$$df_W = (3-1) + (3-1) + (3-1) = 6$$

Source of Variation - Between Groups

Sample 1	Sample 2	Sample 3	
3	5	5	
2	3	6	
1	4	7	
$\bar{x}_1 = 2$	$\bar{x}_2 = 4$	$\bar{x}_3 = 6$	

 SS_B : sum of squares between

$$SS_B = (2-4)^2 + (2-4)^2 + (2-4)^2 + (4-4)^2 + (4-4)^2 + (4-4)^2 + (6-4)^2 + (6-4)^2 + (6-4)^2 + (6-4)^2$$

$$= n_1 \cdot (\bar{x}_1 - \bar{x})^2 + n_2 \cdot (\bar{x}_2 - \bar{x})^2 + n_3 \cdot (\bar{x}_3 - \bar{x})^2$$

$$= 24$$

What is d.f. ? $df_B = 3 - 1 = 2$

Summary of The Source of Variation

Sample 1	Sample 2	Sample 3	
3	5	5	
2	3	6	
1	4	7	
$\bar{x}_1 = 2$	$\bar{x}_2 = 4$	$\bar{x}_3 = 6$	

Source of Variation	SS (sum of squares)	d.f.	MS (mean square)
Between	24	2	12
Within	6	6	1
Total	30	8	

Variance

Multiple Samples From Multiple Populations

$$\begin{array}{c|cccc} \text{Population 1} & \text{Sample 1} \; (n_1, \bar{x}_1, s_1^2) \\ \text{Population 2} & \text{Sample 2} \; (n_2, \bar{x}_2, s_2^2) \\ \text{Population 3} & \text{Sample 3} \; (n_3, \bar{x}_3, s_3^2) \\ & \vdots & & \vdots \\ \text{Population } k & \text{Sample } k \; (n_k, \bar{x}_k, s_k^2) \\ \end{array}$$

$$\bar{\bar{x}} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}}{\sum_{i=1}^{k} n_i} = \frac{\sum_{i=1}^{k} n_i \bar{x}_i}{n}$$

The ANOVA Table

Source of Variation	SS	d.f.	MS
Between	$SS_B = \sum_{i=1}^k n_i (\bar{x}_i - \bar{\bar{x}})^2$	k-1	$s_B^2 = \frac{SS_B}{k-1}$
Within	$SS_W = \sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2 = \sum_{i=1}^k df_i s_i^2$	n-k	$s_W^2 = \frac{SS_W}{n-k}$
Total	$SS_T = \sum_{i=1}^k \sum_{j=1}^{n_i} (x_{ij} - \bar{x})^2 = SS_B + SS_W$	n-1	

F-test

$$F = \frac{s_B^2}{s_W^2} \cdot \frac{\sigma_W^2}{\sigma_B^2}$$

$$\begin{cases} H_0: & \mu_1 = \mu_2 = \dots = \mu_k \\ H_1: & \mu_1 \neq \mu_2 \neq \dots \neq \mu_k \end{cases} \Leftrightarrow \begin{cases} H_0: & \text{Main var. is from } SS_W \\ H_1: & \text{Main var. is from } SS_B \end{cases} \Leftrightarrow \begin{cases} H_0: & \frac{\sigma_W^2}{\sigma_B^2} \geqslant 1 \\ & & H_1: \end{cases}$$

$$p$$
-value: $P(\mathsf{data}\,|\,H_0 \text{ is true}) = P\left(F = \frac{s_B^2}{s_W^2}\cdot\frac{\sigma_W^2}{\sigma_B^2}\right)$
$$= P\left(F_{k-1,n-k}\geqslant \frac{s_B^2}{s_W^2}\right)$$

Summary of an ANOVA result

Source of Variation	ss	d.f.	MS	F	p-value
Between	$SS_B = \sum_{i=1}^k n_i (\bar{x}_i - \bar{\bar{x}})^2$	k-1	$s_B^2 = \frac{SS_B}{k-1}$	-2	(2
Within	$SS_W = \sum_{i=1}^k df_i s_i^2$	n-k	$s_W^2 = \frac{SS_W}{n-k}$	$\frac{s_B^2}{s_W^2}$	$P\left(F\geqslant\frac{s_B^2}{s_W^2}\right)$
Total	$SS_T = SS_B + SS_W$	n-1			