## Университет ИТМО Физико-технический мегафакультет Физический факультет



| Группа М320                              | 05                 | К работе допущен |
|------------------------------------------|--------------------|------------------|
| Студент <u>Степан</u><br><u>Виктория</u> | юк Аврора, Тросько | Работа выполнена |
| Преподаватель                            | Шоев В.И.          | Отчет принят     |

# Рабочий протокол и отчет по лабораторной работе №4.07

Изучение дифракции Фраунгофера на одной и многих щелях

- 1. Цель работы.
  - 1. Изучение дифракции Фраунгофера на одной щели, на четырех щелях, на одномерной и двумерной дифракционных решетках.
  - 2. Исследование распределения интенсивности в дифракционной картин
- 2. Задачи, решаемые при выполнении работы.
  - 1. Получить картины дифракции Фраунгофера от различных объектов
  - 2. Определить размеры щели
  - 3. Определить ширину центрального дифракционного максимума
  - 4. Определить интенсивности порядков дифракции
  - 5. Объяснить изменение дифракционной картины при наклонном падении лучей
- 3. Объект исследования.

Щели и решетки, на которых проявляется дифракция Фраунгофера.

4. Метод экспериментального исследования.

Лабораторный эксперимент.

5. Рабочие формулы и исходные данные.

Исходные данные:

 $\lambda = 650 \text{ HM}$ 

L = 370 MM

 $E \perp$  плоскости лицевой панели

Рабочие формулы:

 $\theta_n = \arcsin \frac{m\lambda}{b}$  — формула угла дифракции,  $\lambda$  — длина волны света, b — ширина щели.

 $d' = d\cos\theta$  — формула периода решетки при наклонном падении луча, d — период решетки,  $\theta$  — угол падения луча.

$$\left\{egin{aligned} x_k = \pm rac{k\lambda}{d} L \ x_m = \pm rac{m\lambda}{d} L \end{aligned}
ight.$$
 формула главного минимума/максимума на экране,  $m=1,2,3,\ldots$  —

координаты главных минимумов для решетки, k=0,1,2,3,... - координаты главных максимумов для решетки, L – расстояние до щели.

6. Измерительные приборы.

| <b>№</b> | Наименование | Используемый | Погрешность |
|----------|--------------|--------------|-------------|
| п/п      |              | диапазон     | прибора     |

| 1 | Угломерная шкала | 0 ÷ 90°  | ±1°     |
|---|------------------|----------|---------|
| 2 | Фотоприемник     | 0 ÷ 100% | ±0,001% |

## 7. Схема установки



- 1. Блок осветителей;
- 2. Турель;
- 3. Защитный экран;
- 4. Поляризатор;
- 5. Двулучепреломляющий одноосный образец;
- 6. Блок для измерения угла Брюстера;
- 7. Анализатор;
- 8. Стойка;
- 9. Отсчетная вертикальная шкала;
- 10. Основание;
- 11. Электронный блок;
- 12. Индикатор измерений блока амперметра-вольтметра;
- 13. Индикатор режима измерений блока амперметра-вольтметра;
- 14. Индикаторы включенного источника;
- 15. Регулятор накала белого осветителя;

- 16. Кнопка переключения режима измерений блока амперметра-вольтметра;
- 17. Кнопка включения лазера;
- 18. Ручка установки относительной интенсивности «J/J0»;
- 19. Кнопка переключения фотоприемников;
- 20. Индикатор относительной интенсивности излучения;
- 21. Индикаторы включенного фотоприемника;
- 22. Кнопка «Сеть»;
- 23. Окно фотоприемников белого осветителя;
- 24. Окно фотоприемника лазерного излучения;
- 25. Кнопка включения лампы.

## 8. Результаты прямых измерений и их обработки. Одна щель:







4 щели:







# Одномерная решетка:





Двумерная решетка:

0°





Отображение на миллиметровке:

| gua mento       |  |
|-----------------|--|
| 0 +             |  |
| 30°             |  |
| 60° 4 wenes     |  |
|                 |  |
| 30°             |  |
| ognomest. Joen. |  |
|                 |  |
| 60°             |  |
|                 |  |





Таблица 1:

| Минимумы | Линейное положение, мм | Угловые координаты θ,° |
|----------|------------------------|------------------------|
| $x_1$    | 6,5                    | 1,01°                  |
| $x_2$    | 13,5                   | 2,01°                  |
| $x_3$    | 21                     | 3,02°                  |

1. Определение ширины щели 
$$b$$
. 
$$b = \frac{2\lambda L}{\Delta x_0}$$
 
$$b = \frac{2\times 6.5\times 10^{-7}\times 0.37}{2\times 0.0065} = 0.037 \text{ мм}$$

2. Определение угловых координат.  $\theta = \arcsin\frac{m\lambda}{b}$ 

$$\theta = \arcsin \frac{m\lambda}{h}$$

Для первого минимума: 
$$\theta = arcsin \frac{6,5 \times 10^{-7}}{0,000037} = 1,01^{\circ}$$

Таблица 2:

| $L=370~\mathrm{MM}$                                        |       |      |       |
|------------------------------------------------------------|-------|------|-------|
| b = 0.037  MM                                              |       |      |       |
| Угол поворота щели α, °                                    | 0     | 30   | 60    |
| $x_1$ , MM                                                 | 6,5   | 8    | 1,1   |
| $x_2$ , MM                                                 | 13,5  | 1,5  | 2,3   |
| $x_3$ , MM                                                 | 21    | 2,4  | 3,4   |
| Относительная интенсивность центрального максимума $J/J_0$ | 0,077 | 0,07 | 0,065 |

9. Расчет результатов косвенных измерений.

Таблица 3:

|   | Угол поворота щели $lpha$ , $^\circ$ | $x_1$ , MM | d, мм |
|---|--------------------------------------|------------|-------|
| Γ | 0                                    | 10         | 0,024 |
|   | 30                                   | 12         | 0,017 |
| Ī | 60                                   | 17         | 0,007 |

1. Определение периода решетки.

$$d' = d\cos\theta$$
$$d' = \frac{\lambda L}{x}\cos\theta$$

Для угла поворота 0°:

$$d' = \frac{0,00065 \times 370}{10} = 0,024 \text{ MM}$$

В результате поворота щелей угол увеличивается, соответственно его косинус уменьшается, из-за чего линии на дифракционной картине становятся более продолжительными, а вместе с ними смещаются и максимумы/минимумы.

Таблица 4:

| α,° | $\Delta x_{ m \scriptscriptstyle SKCII}$ , мм | $\Delta x_{ m Teop}$ , мм |
|-----|-----------------------------------------------|---------------------------|
| 0   | 24                                            | 19,713                    |
| 30  | 27                                            | 22,763                    |
| 60  | 30                                            | 39,426                    |

1. Определение  $d_{\text{сред}}$ 

$$\Delta x = \frac{2\lambda L}{dN\cos\alpha}$$
 $d = \frac{\lambda L}{\Delta x N\cos\alpha}$ 
Для  $\alpha = 0^\circ$ :
 $d = \frac{2\times 0,00065\times 370}{24\times 4\cos0^\circ} = 0,005$  мм
 $d_{\rm cpeg} = 0,061$  мм

2. Определение  $\Delta x_{\text{теор}}$ 

$$\Delta x_{
m Teop} = rac{2\lambda L}{d_{
m cpeq}N\cos\alpha}$$
 Для  $\alpha=0^{\circ}$ :  $\Delta x_{
m Teop} = rac{2\times0,00065\times370}{0,061\times4\times\cos0^{\circ}} = 19,713$  мм

В дифракционной картине видно 3 вторичных минимума и 2 вторичных максимума. Возникают они в результате интерференции волн от 4 щелей.

Таблица 5: Интенсивность центрального максимума на N щелях.

| N, кол — во щелей | $\frac{I_N}{J_0}$ |
|-------------------|-------------------|
| 1                 | 0,047             |
| 2                 | 0,188             |
| 3                 | 0,423             |
| 4                 | 0,752             |

1. Определение  $I_N$ 

$$I_N=N^2I_{\Phi}$$
  $I_N=N^2J_{max}$  Для  $N=2$ :  $I_2=4\times0.047J_0=0.188J_0$ 

## Таблица 6:

| α,° | Координата первого максимума <i>x</i> , мм | <i>d</i> , мм |
|-----|--------------------------------------------|---------------|
| 0   | 4                                          | 0,06          |
| 60  | 8                                          | 0,06          |

1. Определение d

$$d'=d\cos\alpha$$
  $d=\frac{m\lambda L}{x}$  Для  $\alpha=0^\circ$ :  $d_{0^\circ}=\frac{1\times0,00065\times370}{4}=0,06$  мм

Для 
$$\alpha=60^\circ$$
: 
$$d_{60^\circ}{}'=\frac{m\lambda L}{x_{60^\circ}}$$
 
$$d_{60^\circ}=\frac{m\lambda L}{x_{60^\circ}\cos 60^\circ}$$
 
$$d_{60^\circ}=\frac{1\times 0,00065\times 370}{8\cos 60^\circ}=0,06\text{ мм}$$

### Таблица 7:

| $d_{\scriptscriptstyle 1}$ , мм | $d_{2}$ , мм |  |
|---------------------------------|--------------|--|
| 0,07                            | 0,06         |  |

1. Определение  $d_1, d_2$ 

$$\begin{cases} x_{k_1} = k_1 \frac{\lambda}{d_1} L \\ x_{k_2} = k_2 \frac{\lambda}{d_2} L \\ d_1 = \frac{k_1 \lambda L}{x_{k_1}} \\ d_2 = \frac{k_2 \lambda L}{x_{k_2}} \\ d_1 = \frac{0,00065 \times 370}{3,5} = 0,07 \text{ MM} \\ d_1 = \frac{0,00065 \times 370}{4} = 0,06 \text{ MM} \end{cases}$$

Для одномерной дифракционной решетки картины при  $0^{\circ}$  и  $60^{\circ}$  отличаются. При  $60^{\circ}$ полосы становятся шире и дальше друг от друга, поскольку при уменьшении эффективного периода d' увеличивается расстояние между максимумами (из условия  $d \sin \theta = m\lambda$ ).

Для двумерной дифракционной решетки ситуация аналогичная, при  $60^{\circ}$  форма решетки точек растягивается вдоль направления наклона, так как он вызывает искажение проекции периодов  $d_1$  и  $d_2$ , что влияет на симметрию (так как точки смещаются).

- 10. Расчет погрешностей измерений.
  - 1. Погрешность ширины щели b

$$b = \frac{2\lambda L}{\Delta x_0}$$

$$\Delta_b = b \sqrt{\left(\frac{\Delta_{\lambda}}{\lambda}\right)^2 + \left(\frac{\Delta_L}{L}\right)^2 + \left(\frac{\Delta_{\Delta x_0}}{\Delta x_0}\right)^2}$$

$$\Delta_b = 0.037 \sqrt{\left(\frac{1}{650}\right)^2 + \left(\frac{1}{370}\right)^2 + \left(\frac{0.1}{2 \times 6.5}\right)^2} \approx 0.0003 \text{ mm}$$

2. Погрешность угловых координат минимумов

$$\theta = \arcsin \frac{m\lambda}{h}$$

$$\Delta_{\theta} = \sqrt{\left(\frac{\partial \theta}{\partial \lambda} \Delta_{\lambda}\right)^{2} + \left(\frac{\partial \theta}{\partial b} \Delta_{b}\right)^{2}} = \sqrt{\left(\frac{m\Delta_{\lambda}}{b\sqrt{1 - \left(\frac{\lambda}{b}\right)^{2}}}\right)^{2} + \left(\frac{m\lambda\Delta_{b}}{b^{2}\sqrt{1 - \left(\frac{\lambda}{b}\right)^{2}}}\right)^{2}}$$

Для первого минимума: 
$$\Delta_{\theta} = \sqrt{(0,017)^2 + (0,46 \times 0,0003)^2} \approx 1^{\circ}$$

Для второго минимума:

$$\Delta_{\theta} = \sqrt{(0.034)^2 + (0.46 \times 0.0006)^2} \approx 2^{\circ}$$

Аналогично для третьего минимума:

$$\Delta_{\theta} \approx 3^{\circ}$$

3. Погрешность периода решетки d

$$d = \frac{\lambda L}{x \cos \alpha}$$

$$\Delta_d = d \sqrt{\left(\frac{\Delta_\lambda}{\lambda}\right)^2 + \left(\frac{\Delta_L}{L}\right)^2 + \left(\frac{\Delta_x}{x}\right)^2 + \left(\frac{\Delta_{\cos \alpha}}{\cos \alpha}\right)^2}$$

Для 
$$\alpha=0^\circ$$
: 
$$\Delta_d=0.024\sqrt{\left(\frac{1}{650}\right)^2+\left(\frac{1}{370}\right)^2+\left(\frac{0.1}{10}\right)^2+\left(\frac{\Delta_{cos\,1^\circ}}{\cos 0^\circ}\right)^2}\approx 0.00024~\mathrm{MM}$$
 Для  $\alpha=30^\circ$ : 
$$\Delta_d=0.024\sqrt{\left(\frac{1}{650}\right)^2+\left(\frac{1}{370}\right)^2+\left(\frac{0.1}{10}\right)^2+\left(\frac{\Delta_{cos\,1^\circ}}{\cos 30^\circ}\right)^2}\approx 0.00025~\mathrm{MM}$$
 Аналогично для  $\alpha=60^\circ$ : 
$$\Delta_d\approx 0.00034~\mathrm{MM}$$
 Погрешность относительной интенсивности  $\frac{J}{a}$ 

4. Погрешность относительной интенсивности  $\frac{J}{L}$ 

Погрешность относительной интеграция 1 щели: 
$$\Delta_{\frac{J}{J_0}} = 0.047 \times 0.00001 = 4.7 \times 10^{-7}$$
 Для 2 щелей: 
$$\Delta_{\frac{J}{J_0}} = 1.88 \times 10^{-6}$$
 Для 3 щелей: 
$$\Delta_{\frac{J}{J_0}} = 4.23 \times 10^{-6}$$
 Для 4 щелей: 
$$\Delta_{\frac{J}{J_0}} = 7.52 \times 10^{-6}$$

## 11. Графики.

**График 1:** Зависимость относительной интенсивность  $J/J_0$  от угла поворота  $\alpha$ . Зависимость Ј/Ј₀ от угла поворота α



### 12. Окончательные результаты.

Размеры щели:

$$b_{\alpha=0^{\circ}} = (0.037 \pm 0.0003) \text{ MM}$$

Ширина центрального дифракционного максимума:

$$\Delta x_{\text{reop}} = 24 \text{ MM}$$

13. Выводы и анализ результатов работы.

В ходе лабораторной работы изучены особенности дифракции Фраунгофера на одной щели, четырёх щелях, одномерной и двумерной решётках. Экспериментально определены ширина щели ( $b=0.037~{\rm MM}$ ), периоды решёток ( $d_1=0.06~{\rm MM}$  и  $d_2=0.07~{\rm MM}$ ), а также исследовано распределение интенсивности в дифракционных картинах. Установлено, что при наклонном падении лучей эффективный период решётки уменьшается ( $d'=d\cos\theta$ ), что приводит к увеличению расстояния между максимумами.

15. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).