Resolução da Lista 3 de Mecânica Quântica I (F689, Turma B)

Pedro Rangel Caetano*

Universidade Estadual de Campinas, 10. semestre de 2017

Sumário

Exercício 1	2
Exercício 2	2
Exercício 3	2
Exercício 4	2
Exercício 5	

^{*}Email: p.r.caetano@gmail.com

(Bransdeen and Joachian, página 260) Seja o conjunto de operadores: são operadores lineares? e caso sejam são operadores hermitianos? $\hat{A}_1\Psi(x)=(\Psi(x))^2$ $\hat{A}_2\Psi(x)=\frac{d}{dx}\Psi(x)$ $\hat{A}_3\Psi(x)=\int_0^x \Psi(x')dx'$ $\hat{A}_4\Psi(x)=x^2\Psi(x)$ $\hat{A}_5\Psi(x)=\sin\Psi(x)$ $\hat{A}_6\Psi(x)=\frac{d^2}{dx^2}\Psi(x)$ $\hat{A}_7\Psi(x)=-i\hbar\frac{d}{dx}\Psi(x)$ $\hat{A}_8=\begin{pmatrix}1&1\\0&1\end{pmatrix}$ $\hat{A}_8=\begin{pmatrix}1&i\\-i&1\end{pmatrix}$ $\hat{L}=\hat{R}\times\hat{P}$, onde \hat{R} é o operador vetor posição e \hat{P} é o operador vetor momento

Mostre que a ação de dois operadores \hat{A} e \hat{B} pode ser representada em forma matricial da seguinte forma: $(AB)_{mn} = \sum_{p} A_{mp} B_{pn}$.

Seja o projetor $\hat{P}_n = |\varphi_n\rangle \langle \varphi_n|$, onde $|\varphi_n\rangle$ são os vetores normalizados de uma base no espaço de Hilbert.

- (**(**) Mostre que é um operador hermitiano.
- (B) O nome projetor vem do fato da propriedade $\hat{P}_n^2 = \hat{P}_n$. Mostre essa propriedade.
- (C) Calcule os autovalores e autovetores.

Um Hamiltoniano é dado por

$$H = c^2 \begin{pmatrix} m_{\mu} & m \\ m & m_{\tau} \end{pmatrix} \tag{1}$$

onde m, \mathfrak{m}_{μ} e \mathfrak{m}_{τ} são números reais e os vetores da base são dados por

$$|\nu_{\mu}\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |\nu_{\tau}\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (A) Ache os autovalores e autovetores deste Hamiltoniano.
- (B) Assuma que no instante t=0, o sistema está no estado $|\Psi(t=0)\rangle=|\nu_{\mu}\rangle$. Então o sistema no instante t estará no estado $|\Psi(t)\rangle$, determine este estado. Qual é a probabilidade de o sistema estar no estado $|\nu_{\tau}\rangle$ no instante t? Esta probabilidade está relacionado com o Prêmio Nobel de 2015, pela descoberta da oscilação dos neutrinos. Ciência Hoje de Dezembro de 2015: Metamorfose Fantasmagórica
- (C) A matrix H (1) é Hermitiana? Se sim use a propriedade que pode ser diagonalizada por uma matriz unitária escrita na forma:

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \tag{2}$$

Mostre que esta matriz é unitária: $U^{-1} = U^{\dagger}$. Diagonalize a matriz H por esta transformação unitária e ache o valor do ângulo θ que diagonaliza esta matriz H. Como podemos achar os autovetores de H usando este procedimento?

O Hamiltoniano de um sistema de três níveis é representado pela matriz

$$\hat{H} = \hbar \omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

e tem dois observáveis A e B representados por

$$\hat{A} = \lambda \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \tag{3}$$

e

$$\hat{\mathbf{B}} = \mu \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \tag{4}$$

onde ω , λ e μ são reais positivos.

- (A) Os operadores A e B são operadores lineares? São hermitianos?
- (B) Encontre os autovalores e autovetores normalizados de H, A e B.
- (C) Quais são os valores possíveis das quantidades H, A e B?
- (D) Ache os comutadores entre H, A e B.
- (E) Suponha que o sistema começa no estado

$$|\psi(\mathsf{t}=\mathsf{0})\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

que é um estado normalizado. Encontre os valores esperados de H, A e B em t.

(F) Qual é o estado $|\psi(t)\rangle$? Se você medir a energia no tempo t que valores você pode ter? Qual é a probabilidade de obter cada um desses valores?