EMI接收机

EMI接收机用于测量EUT的辐射

检波器: QP、PK、RMS、AV

Frequency range	3dB Bandwidth
9kHz to 150kHz (Band A)	200Hz
150kHz to 30MHz (Band B)	9kHz
30MHz to 300MHz (Band C)	120kHz
300MHz to 1GHz (Band D)	120kHz
1GHz to 18GHz (Band E)	1MHz

CISPR 16-1-1提供了关于EMI接收机的数据

EMI接收机的框图

根据EMI接收机的框图可以看出,这是一台二次变频类型的接收机

窄带信号

3dB带宽小于接收机3dB带宽的信号 (要求信号的载波与接收机的接收频率相同)

一般是CW连续波、调制后且带宽小于接收机带宽的CW连续波信号

宽带信号

带宽大于接收机3dB带宽的信号

窄脉冲(冲激函数)、时钟信号(谐波分量大,频谱图为sinc函数的包络)、UWB脉冲(超宽带脉冲)

(这后面的图我没看懂,也不知道他在讲什么。好像也不是卷积效应)

检波器

接收机的检波器一般用来测量目标信号的功率或者电压

对于没有调制的信号(CW连续波),所有检波器必须输出相同的RMS值

$$V_{RMS} = \sqrt{rac{1}{T}\int_{0}^{T}A^{2}cos^{2}\left(\omega t
ight)\mathrm{d}t} = rac{A}{\sqrt{2}}$$

类型

Peak Detector(PK)

Quasi Peak Detector(QP)

Root Mean Square Detector(RMS)

Average Detector(AV)

Peak Detector

充电的时间常数极小

放电的时间常数非常长

显示的是与脉冲重复无关的峰值

显示出的最大幅度: PK>QP,RMS

峰值检波器电路

 R_d 用来提供极大的放电时间常数

充电特性

输出电压曲线

对于理想二极管,它没有内阻,所以电容两端的电压会瞬间充电到 V_{in} 对于真实的二极管,它有内阻 r ,充电时会有一段上升时间(忽略二极管压降)

真实的电路图

电容两端的电压 ($0 \le t \le au_{ ext{Pulse Width}}$):

$$v_C = V'rac{R}{R_r}\left(1-e^{-rac{t}{ au_C}}
ight)$$

V' 在第一个脉冲时等于 V_{in}

其中

$$au_C = rac{rRC}{R+r} pprox rC$$

当 $R\gg r$ 时约等于成立

放电特性

$$egin{cases} v_D = V'' e^{-rac{t}{ au_D}} \ au_D = RC \ V'' = v_C \left(t = au_{PW}
ight) \end{cases}$$

对于 CISPR 16-1-1标准

Peak Detector (C	CISPR 16-1-1)	$\frac{ au_D}{ au_C}$
Band A	9kHz to 150kHz	1.89×10^{4}
Band B	150kHz to 30MHz	1.25×10^{6}
Band C&D	30MHz to 1GHz	1.67×10^{7}
Band E	1GHz to 18GHz	1.34×10^{8}

Quasi Peak Detector

准峰值检波器一般用于 1GHz 以上的频率

充电速度快和相对长的放电时间常数

读数受到脉冲重复频率的影响

峰值检波器电路

输出电压的时域特征

其中

$$\text{Pulse Repetition Frequency} = \frac{1}{\tau_{PRI}}$$

(I大概是Interval的意思?)

输出电压的方程(与峰值检波器类似,只是充电电阻相比非常大):

以脉冲开始为原点算充电特性: $0 \leq t \leq au_{PW}$

$$egin{cases} v_C = V' rac{R_2}{R_1 + R_2} \left(1 - e^{-rac{t}{ au_C}}
ight) \ au_C = rac{R_1 R_2 C}{R_1 + R_2} \ V' = v_{in} \end{cases}$$

以脉冲结束为原点算放电特性: $0 \le t \le au_{PRI} - au_{PW}$

$$\left\{ egin{aligned} v_D &= V'' rac{R_2}{R_1 + R_2} \left(1 - e^{-rac{t}{ au_D}}
ight) \ au_D &= R_2 C \ V'' &= v_C \left(au_{PW}
ight) \end{aligned}
ight.$$

QP检波器的输出收到脉冲宽度和脉冲间隔的影响(PPT上的图还挺详细的,不写了)

测试装备

天线

天线的增益一般描述的是远场特性

但是EMI的测量一般在近场进行:

空间限制

设备发出的辐射信号较弱

辐射抗扰度测试需要强电磁场

对于EMI测试,我们一般在电场或者磁场测量接收到的电压,而不是发射和接收功率:

所以有一套全新的描述天线特性的参数:

Antenna Factor (AF)

Transmit Antenna Factor (TAF)

Antenna Factor

$$AF=rac{E}{V_L}m^{-1}=20log_{10}rac{E}{V_L}\mathrm{dB}/m$$

这个描述的是电场在**接收**天线的**负载**上产生单位电压的情况。很明显这边假设的是极化与天线是匹配的,并没有考虑极化损耗。天线系数越小,相同电场强度的情况下接

收到的电压越高。

Rod Antenna

$$AF$$
@20kHz = 75dB/ m

$$AF$$
@20MHz = 25dB/ m

如果电场强度为 1V/m 的话,天线接收到的电压为:

20kHz:

$$V = rac{E}{AF} = E \, (\mathrm{dB}) - AF \, (\mathrm{dB/m}) = rac{1}{10^{75/20}} = 0 - 75 = -75 \, (\mathrm{dBV}) = 0.17 mV$$

20MHz:

$$V = rac{E}{AF} = E \, (\mathrm{dB}) - AF \, (\mathrm{dB/m}) = rac{1}{10^{75/20}} = 0 - 25 = -25 \, (\mathrm{dBV}) = 56.23 mV$$

Transmit Antenna Factor

$$TAF = rac{E_{1m}}{V_t} m^{-1} = 20 log_{10} E_{1m} - 20 log_{10} V_t \left(\mathrm{dB}/m
ight)$$

其中 E_{1m} 是发射天线在1m处测量到的场强, V_t 是发射电压。TAF越大,产生的电场强度越大。

对于同一个天线, AF和TAF不一样

对数周期天线

对数周期天线可以在很宽的频率上产生强电场。

ATR 26M6G from ATR worldwide covers from 26MHz to 6GHz. (某种广告)

如果输入功率为10W,频率22MHz,1m处产生的场强为10V/m,可以计算得到:

假设是50欧负载,输入天线的电压为:

$$V=\sqrt{P imes Z_0}=22.360V$$

所以

$$TAF = rac{10}{22.360} = 0.45m^-1$$

用dB做法也可以:

$$22.360V = 26.989 \mathrm{dB}V = 146.989 \mathrm{dB}\mu V$$

$$10V/m = 20 {
m dB} V \cdot m^{-1} = 140 {
m dB} \mu V \cdot m^{-1}$$

$$TAF = -6.989 \mathrm{dB}/m$$

环形天线 (磁场天线)

感应电压(Induced Voltage):

$$V_i = -nrac{\mathrm{d}\Phi}{\mathrm{d}t} = 2\pi f nAB$$

n 为线圈匝数, f为频率, A 为线圈的截面积, B 为磁感应强度。

AF_H 和 AF_B

$$egin{aligned} AF_H &= rac{H}{V_L}S/m = rac{1}{2\pi f n A \mu_0} \ AF_B &= rac{B}{V_L} = rac{\mu H}{V_L} Tesla/V \ AF &= AF_H imes \eta_0 = rac{H}{V_L} imes rac{E}{H} = rac{E}{V_L} \ AF\left(\mathrm{dB}/m
ight) = AF_H\left(\mathrm{dB}S/m
ight) + 20log_{10}\left(\eta_0
ight) \end{aligned}$$

Antenna Example 1 作业形式

$$egin{align*} V_{in} = \sqrt{P imes Z_0} = 50V = 33.9794 \, (\mathrm{dB}V) \ E_{1m} = TAF \, (\mathrm{dB}/m) + V_{in} \, (\mathrm{dB}V) \ = 33.9794 - 4 = 29.9794 \, (\mathrm{dB}V/m) \ E_{3m} = E_{1m} \, (\mathrm{dB}V/m) - 20log_{10}(3m) + 20log_{10}(1m) = 20.436975 \, (\mathrm{dB}V/m) \ V_L = E_{3m} \, (\mathrm{dB}V/m) - AF \, (\mathrm{dB}/m) = 20.436975 - 23 = -2.5630 \, (\mathrm{dB}V) = 0.74V \ \end{array}$$