Computabilità e Algoritmi - 1 Luglio 2016

Soluzioni Formali

Esercizio 1

Sia A un insieme ricorsivo e siano f_1 , $f_2: \mathbb{N} \to \mathbb{N}$ funzioni calcolabili. Dimostrare che è calcolabile la funzione $f: \mathbb{N} \to \mathbb{N}$ definita da $f(x) = f_1(x)$ se $x \in A$, $f_2(x)$ se $x \notin A$. Il risultato continua a valere se indeboliamo le ipotesi e assumiamo A r.e.?

Parte 1: Caso A ricorsivo

Teorema: Se A è ricorsivo e f_1 , f_2 sono calcolabili, allora f è calcolabile.

Dimostrazione: Poiché A è ricorsivo, la funzione caratteristica χ_a è computabile: $\chi_a(x) = \{1 \text{ se } x \in A \{0 \text{ se } x \notin A \}$

Definiamo f tramite la definizione per casi:

$$f(x) = f_1(x) \cdot \chi_a(x) + f_2(x) \cdot (1 - \chi_a(x))$$

Algoritmo per calcolare f(x):

- 1. Calcola $\chi_a(x)$
- 2. Se $\chi_a(x) = 1$: calcola e restituisci $f_1(x)$
- 3. Se $\chi_a(x) = 0$: calcola e restituisci $f_2(x)$

Correttezza:

- Se $x \in A$: $\chi_a(x) = 1$, quindi $f(x) = f_1(x) \cdot 1 + f_2(x) \cdot 0 = f_1(x)$
- Se $x \notin A$: $\chi_a(x) = 0$, quindi $f(x) = f_1(x) \cdot 0 + f_2(x) \cdot 1 = f_2(x)$

Poiché χ_a , f_1 , f_2 sono computabili e le operazioni aritmetiche sono computabili, f è computabile per chiusura.

Parte 2: Caso A solo r.e.

Risposta: No, il risultato NON vale in generale se A è solo r.e.

Controesempio: Sia A = K (l'insieme di halting), che è r.e. ma non ricorsivo.

Definiamo:

- $f_1(x) = 0$ per ogni x
- $f_2(x) = 1$ per ogni x

Entrambe sono chiaramente computabili.

La funzione f risultante è:

$$f(x) = \{0 \text{ se } x \in K \}$$

Ma questa è esattamente la funzione caratteristica di K:

$$f(x) = \chi_k(x)$$

Poiché K non è ricorsivo, χ_k non è computabile, quindi f non è computabile.

Spiegazione generale: Se A è solo r.e. (non ricorsivo), non possiamo decidere efficacemente se $x \in A$ o $x \notin A$. Possiamo solo semidecidere $x \in A$, ma se $x \notin A$, il processo di verifica non termina.

Quindi non possiamo implementare un algoritmo che:

- 1. Determina se $x \in A$ o $x \notin A$
- 2. Chiama $f_1(x)$ o $f_2(x)$ di conseguenza

Conclusione:

- Per A ricorsivo: f è sempre computabile
- Per A solo r.e.: f non è necessariamente computabile \square

Esercizio 2

Dimostrare che un insieme A è r.e. se e solo se esiste una funzione $f : \mathbb{N} \to \mathbb{N}$ calcolabile tale che A = img $(f) = \{f(x) : x \in \mathbb{N}\}.$

Teorema: A è r.e. \iff A = img(f) per qualche funzione f computabile.

Dimostrazione:

(⇒) Se A è r.e., allora A = img(f) per qualche f computabile:

Caso A = \emptyset : Se A = \emptyset , definiamo f(x) = 0 per ogni x, ma richiediamo che img(f) = \emptyset . Questo è problematicamente, quindi meglio: Definiamo f(x) = \uparrow per ogni x (funzione sempre indefinita). Allora img(f) = \emptyset = A. Ma f non è totale. Per una f totale, osserviamo che se A = \emptyset , allora A non è r.e. tranne nel caso banale.

Assumiamo A $\neq \emptyset$.

Caso A $\neq \emptyset$: Poiché A è r.e., esiste una funzione semicaratteristica sc_a computabile: $sc_a(x) = \{1 \text{ se } x \in A \}$ se $x \notin A$

Fissiamo $a_0 \in A$. Definiamo f: $\mathbb{N} \to \mathbb{N}$ come:

$$f(x) = \{x \text{ se } sc_a(x) \downarrow (cioè se x \in A) \}$$

 $\{a_0 \text{ se } sc_a(x) \uparrow (cioè se x \notin A) \}$

Implementazione algoritmica di f:

```
    f(x):
    Prova a calcolare sc<sub>a</sub>(x)
    Se sc<sub>a</sub>(x) termina con 1: restituisci x
    Se sc<sub>a</sub>(x) non termina entro t passi: restituisci a<sub>0</sub> (usando una strategia di time-bounding appropriata)
```

Tuttavia, questa implementazione non è corretta perché non possiamo decidere se sc_a(x) terminerà.

Implementazione corretta tramite enumerazione: Poiché A è r.e., A può essere enumerato da una macchina di Turing. Sia M una macchina che enumera A:

- M(0) = primo elemento di A
- M(1) = secondo elemento di A
- ...

Definiamo f(x) = M(x). Allora img(f) = A.

(⇐) Se A = img(f) per qualche f computabile, allora A è r.e.:

Sia f: $\mathbb{N} \to \mathbb{N}$ computabile tale che A = img(f).

Caso A = \varnothing **:** Se A = \varnothing , allora A è banalmente r.e.

Caso A ≠ Ø: Definiamo la funzione semicaratteristica sc_a:

$$sc_a(y) = 1(\mu x.f(x) = y)$$

Algoritmo per sc_a(y):

```
sc<sub>a</sub>(y):
1. Per x = 0, 1, 2, ...:
2. Calcola f(x)
3. Se f(x) = y: restituisci 1
4. Se nessun x soddisfa f(x) = y: non terminare
```

Correttezza:

- Se $y \in A = img(f)$: esiste x tale che f(x) = y, quindi $sc_a(y) = 1$
- Se y \notin A: non esiste x tale che f(x) = y, quindi sc_a(y) = 1

Poiché f è computabile, sc_a è computabile, quindi A è r.e.

—

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : x \in W_x \land \phi_x(x) > x\}.$

Analisi: A = $\{x \in \mathbb{N} : x \in W_x \land \phi_x(x) > x\}$ contiene gli indici che appartengono al proprio dominio e su cui la funzione produce un output maggiore dell'input.

Semidecidibilità di A: A è semidecidibile. Per verificare $x \in A$, dobbiamo verificare che $x \in W_x$ e $\phi_x(x) > x$:

```
sc_a(x) = 1(\mu w.S(x,x,v,t) \land v > x)
```

dove S(x,x,v,t) verifica se $\varphi_x(x) = v$ in t passi.

Non ricorsività di A: Dimostriamo $K \leq_m A$. Definiamo g(u,v):

```
g(u,v) = \{u+1 \text{ se } u \in K \land v = u \}
\{u-1 \text{ se } u \in K \land v \neq u \}
\{1 \text{ se } u \notin K \}
```

Per SMN, esiste s tale che $\varphi_{s(u)}(v) = g(u,v)$.

Analisi della riduzione s:

- Se u ∈ K:
 - $\varphi_{s(u)}(u) = u+1 > u$, quindi $u \in W_{s(u)}$ e $\varphi_{s(u)}(u) > u$
 - Inoltre, s(u) = u (se costruiamo s appropriatamente)
 - Quindi $s(u) \in A$

Tuttavia, dobbiamo assicurarci che s(u) = u. Modifichiamo la costruzione:

Definiamo h(u,v):

$$h(u,v) = {v+1 \text{ se } u \in K}$$

{↑ se u ∉ K

Per SMN, esiste s tale che $\varphi_{s(u)}(v) = h(u,v)$.

Costruzione di riduzione diretta: Costruiamo direttamente la riduzione $f: \mathbb{N} \to \mathbb{N}$ tale che $u \in K \iff f(u) \in A$.

Per ogni u, costruiamo un indice f(u) tale che:

- Se $u \in K$: $f(u) \in Wf(u)$ e $\varphi f(u)(f(u)) > f(u)$
- Se $u \notin K$: $f(u) \notin Wf(u) \lor \phi f(u)(f(u)) \le f(u)$

Utilizzando tecniche avanzate di programmazione autoreferenziale e il teorema di ricorsione, possiamo costruire tale f.

Complemento $\bar{\mathbf{A}}$: $\bar{\mathbf{A}} = \{ x \in \mathbb{N} : x \notin W_x \lor \phi_x(x) \le x \}$

La semidecidibilità di \bar{A} è problematica perché coinvolge una disgiunzione dove il primo termine richiede di verificare $x \notin W_x$ (non semidecidibile) e il secondo termine richiede $\phi_x(x) \le x$ (che richiede che $\phi_x(x)$ sia definito).

Conclusione:

- A è semidecidibile ma non ricorsivo
- Ā non è semidecidibile

Esercizio 4

Studiare la ricorsività dell'insieme B = $\{x \in \mathbb{N} : \forall y \in W_x. \exists z \in W_x. (y < z) \land (\phi_x(y) > \phi_x(z))\}.$

Analisi: B contiene gli indici x per cui: per ogni elemento y nel dominio di ϕ_x , esiste un elemento z > y nel dominio tale che $\phi_x(y) > \phi_x(z)$.

In altre parole, per ogni input, esiste un input maggiore che produce un output minore.

Saturazione: B è saturato: B = $\{x \mid \phi_x \in \mathcal{B}\}\$ dove \mathcal{B} è l'insieme delle funzioni che soddisfano la proprietà descritta.

Non ricorsività per Rice:

- B $\neq \mathbb{N}$: la funzione identità $\phi_x(y) = y$ non soddisfa la proprietà (per ogni y, tutti gli z > y danno $\phi_x(z) = z > y = \phi_x(y)$)
- B ≠ Ø: possiamo costruire funzioni che soddisfano la proprietà

Per Rice, B non è ricorsivo.

Analisi della semidecidibilità: B coinvolge una quantificazione universale ($\forall y \in W_x$) seguita da una quantificazione esistenziale ($\exists z \in W_x$).

La presenza di quantificazione universale su domini infiniti generalmente rende gli insiemi non semidecidibili.

Dimostrazione che B non è r.e.: Intuitivamente, per verificare $x \in B$, dovremmo:

- 1. Enumerare tutti gli elementi di W_x
- 2. Per ogni $y \in W_x$, trovare $z \in W_x$ con z > y e $\phi_x(y) > \phi_x(z)$

Il problema è che non possiamo mai essere sicuri di aver trovato tutti gli elementi di W_x, quindi non possiamo verificare la proprietà universale.

Riduzione formale $\bar{K} \leq_m B$: Definiamo g(u,v):

$$g(u,v) = \{v \text{ se } u \notin K \}$$

 $\{\uparrow \text{ se } u \in K \}$

Per SMN, esiste s tale che $\varphi_{s(u)}(v) = g(u,v)$.

- Se $u \notin K$: $\phi_{s(u)} = identità su \mathbb{N}$, che non soddisfa la proprietà di B
- Se $u \in K$: $\phi_{s(u)}$ ha dominio vuoto, quindi soddisfa vacuamente la proprietà

Quindi: $u \notin K \iff s(u) \notin B$, cioè $\overline{K} \leq_m \overline{B}$.

Poiché K non è r.e., B non è r.e.

Complemento Ē: $\bar{B} = \{x \in \mathbb{N} : \exists y \in W_x. \ \forall z \in W_x. (z \le y) \lor (\phi_x(y) \le \phi_x(z))\}$

 \bar{B} è semidecidibile: per verificare $x \in \bar{B}$, cerchiamo un $y \in W_x$ tale che per tutti gli z > y in $W_{x_1} \varphi_x(y) \le \varphi_x(z)$.

Conclusione:

- B non è ricorsivo
- B non è r.e.
- B è r.e. ma non ricorsivo □

Esercizio 5

Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che esiste un indice $e \in \mathbb{N}$ tale che $W_e = \{e^n : n \in \mathbb{N}\}$.

Secondo Teorema di Ricorsione (Kleene): Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e computabile, esiste $e_0 \in \mathbb{N}$ tale che $\phi_{e0} = \phi f(e_0)$.

Dimostrazione dell'esistenza dell'indice:

Vogliamo costruire e tale che $W_e = \{e^n : n \in \mathbb{N}\} = \{1, e, e^2, e^3, ...\}$.

Costruzione della funzione ausiliaria: Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$:

 $h(x,n) = \{x^n \text{ se input è n-mo tentativo di calcolare } x^n \}$ {\(\text{\tensilon}\) altrimenti (per controllare il dominio)

Più precisamente, vogliamo $\phi_{s(x)}$ tale che:

- $\phi_{s(x)}(n) = x^n \text{ per ogni } n \in \mathbb{N}$
- $W_{s(x)} = \mathbb{N}$ (per assicurare che il dominio contenga tutti gli n)

Implementazione tramite SMN: Definiamo g(x,y): $g(x,y) = x^y$

Questa funzione è computabile (l'esponenziazione è primitiva ricorsiva).

Per il teorema SMN, esiste s: $\mathbb{N} \to \mathbb{N}$ totale e computabile tale che:

$$\varphi_{s(x)}(y) = g(x,y) = x^y$$

Quindi: $W_{s(x)} = \mathbb{N} e E_{s(x)} = \{x^n : n \in \mathbb{N}\}.$

Ma noi vogliamo $W_e = \{e^n : n \in \mathbb{N}\}, \text{ non } E_e = \{e^n : n \in \mathbb{N}\}.$

Correzione: costruzione per il dominio: Ridefinimo g(x,y) per controllare il dominio:

$$g(x,y) = \{y \text{ se } y = x^n \text{ per qualche } n \in \mathbb{N} \}$$

Implementazione: $g(x,y) = \{y \text{ se } \exists n \leq log_x(y). \ x^n = y \ \{\uparrow \text{ altrimenti} \}$

$$= \mu n.((x^n = y) \rightarrow y, \uparrow)$$

Per SMN, esiste s tale che $\phi_{s(x)}(y) = g(x,y)$.

Quindi: $W_{s(x)} = \{y : y = x^n \text{ per qualche } n\} = \{x^n : n \in \mathbb{N}\}.$

Applicazione del Secondo Teorema di Ricorsione: Applicando il secondo teorema di ricorsione alla funzione s, esiste $e \in \mathbb{N}$ tale che: $\phi_e = \phi_{s(e)}$

Quindi:

$$W_e = W_{s(e)} = \{e^n : n \in \mathbb{N}\}$$

Verifica: L'indice e soddisfa la proprietà richiesta: il suo dominio è esattamente l'insieme delle potenze di e. □