Calculus I, Tutorial Problem Sheet, Week 5

Differentiable functions

Q1. Use the limit definition of the derivative to calculate the derivative of $f(x) = \sqrt{x}$.

Solution.
$$f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{\left(\sqrt{x+h} - \sqrt{x}\right)\left(\sqrt{x+h} + \sqrt{x}\right)}{h\left(\sqrt{x+h} + \sqrt{x}\right)}$$
$$= \lim_{h \to 0} \frac{h}{h\left(\sqrt{x+h} + \sqrt{x}\right)} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$$

Q2. Show that if g(x) is continuous at x=0 then $g(x)\tan x$ is differentiable at x=0.

Solution.

Let $f(x) = g(x) \tan x$ then we need to show that $\lim_{h\to 0} \frac{f(h)-f(0)}{h}$ exists.

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{g(h) \tan h - g(0) \tan 0}{h} = \lim_{h \to 0} \frac{g(h) \tan h}{h}$$

$$= \left(\lim_{h \to 0} g(h) \right) \left(\lim_{h \to 0} \frac{1}{\cos h} \right) \left(\lim_{h \to 0} \frac{\sin h}{h} \right) = g(0)(1)(1) = g(0)$$

where we have made use of the continuity of g(x) and $1/\cos x$ at x=0, along with one of our standard trigonometric results.

Hence $f(x) = g(x) \tan x$ is differentiable at x = 0 with f'(0) = g(0).

Q3. Use L'Hopital's rule to calculate the limit as $x \to 0$ of the following

(a)
$$\frac{1-\cos 2x}{x}$$
, (b) $\frac{x^2}{1-\cos 2x}$.

Solution.

(a) $f(x) = 1 - \cos(2x)$, g(x) = x, are differentiable and satisfy f(0) = g(0) = 0.

$$f'(x) = 2\sin(2x), \ f'(0) = 0, \ g'(x) = 1 \neq 0.$$

Therefore, by l'Hopital's rule, $\lim_{x\to 0} f(x)/g(x) = \lim_{x\to 0} f'(x)/g'(x) = f'(0)/g'(0) = 0/1 = 0$.

(b) $f(x) = x^2$, $g(x) = 1 - \cos(2x)$, are twice differentiable and satisfy f(0) = g(0) = 0.

$$f'(x) = 2x$$
, $f'(0) = 0$, $g'(x) = 2\sin(2x)$, $g'(0) = 0$.

 $f''(x)=2,\ g''(x)=4\cos(2x)\neq 0$ for x sufficiently close to x=0. Also, g''(0)=4.

Therefore, by l'Hopital's rule,

$$\lim_{x\to 0} f(x)/g(x) = \lim_{x\to 0} f'(x)/g'(x) = \lim_{x\to 0} f''(x)/g''(x) = f''(0)/g''(0) = \frac{1}{2}.$$

Q4. Assuming that y is a differentiable function of x and satisfies $xy+y^2-3x-3=0$, Calculate $\frac{dy}{dx}$ at the point (-1,1).

1

Solution. Differentiating the given expression, remembering that we have y a function of x, y + xy' + 2yy' - 3 = 0. At (x, y) = (-1, 1) this becomes 1 - y' + 2y' - 3 = 0 so y' = 2.

Extreme values

Q5. Find the global extreme values of $f(x) = \frac{1}{3}x^3 - 3x + |x^2 - 4|$ in [-2, 4].

Solution.

Note that $f(x) = \frac{x^3}{3} - 3x + |x^2 - 4|$ is differentiable everywhere except at $x = \pm 2$.

For
$$x \in (-2, 2)$$
, $f(x) = \frac{x^3}{3} - 3x + 4 - x^2$ with

$$f'(x) = x^2 - 3 - 2x = (x - 3)(x + 1) = 0$$
 iff $x = -1$. $f(-1) = \frac{17}{3}$.

For
$$x \in (2,4)$$
, then $f(x) = \frac{x^3}{3} - 3x + x^2 - 4$ with

$$f'(x) = x^2 - 3 + 2x = (x+3)(x-1) \neq 0.$$

Now
$$f(2) = -\frac{10}{3}$$
, $f(-2) = \frac{10}{3}$, $f(4) = \frac{64}{3}$.

The global maximum is $\frac{64}{3}$ and the global minimum is $-\frac{10}{3}$.

Q6. Either find the global maximum or justify that it does not exist for each of the following

(a)
$$f(x) = 1 - |1 - x^2|$$
 in $[0, \sqrt{2}]$, (b) $f(x) = x/(x^2 + 1)$ in $x \ge 0$,

(b)
$$f(x) = x/(x^2 + 1)$$
 in $x > 0$.

(c)
$$f(x) = x \cos(\frac{1}{x})/(x+1)$$
 in $x \ge 1$.

Solution.

(a)
$$f(x) = 1 - |1 - x^2|$$
 is differentiable in $(0, \sqrt{2})$ except at $x = 1$.

For
$$x \in (0,1)$$
, $f(x) = 1 - (1 - x^2) = x^2$, so $f'(x) = 2x \neq 0$.

For
$$x \in (1, \sqrt{2}), \ f(x) = 1 + (1 - x^2) = 2 - x^2, \ \text{so} \ f'(x) = -2x \neq 0.$$

$$f(1)=1,\ f(0)=0,\ f(\sqrt{2})=0,\$$
 hence the global maximum is $1.$

(b) For
$$x > 0$$
, $f'(x) = (1 - x^2)/(1 + x^2)^2 = 0$ iff $x = 1$.

$$f(1)=\frac{1}{2},\ f(0)=0,\ \lim_{x\to\infty}f(x)=0,\$$
 hence the global maximum is $\frac{1}{2}.$

(c) For
$$x \ge 1$$
, $f'(x) = \frac{\cos(\frac{1}{x})}{(1+x)^2} + \frac{\sin(\frac{1}{x})}{x(1+x)} > 0$, thus $f(x)$ is increasing for $x \ge 1$.

In fact
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \{x \cos(\frac{1}{x})/(x+1)\} = \lim_{u \to 0} \frac{\cos u}{1+u} = \cos 0 = 1.$$

There is no global maximum in $x \geq 1$.

Partial derivatives

Q7. Given the function $f(x,y) = \log(1+xy)$ calculate $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial u \partial x}$.

Solution.

$$\frac{\partial f}{\partial x} = \frac{y}{1+xy}, \qquad \frac{\partial f}{\partial y} = \frac{x}{1+xy}, \qquad \frac{\partial^2 f}{\partial x^2} = \frac{-y^2}{(1+xy)^2}, \qquad \frac{\partial^2 f}{\partial y^2} = \frac{-x^2}{(1+xy)^2}$$
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{1}{(1+xy)^2}$$

Q8. Show that, for any constants A and B, the function $f(x,y) = A\cos x \sinh y + B\sin x \cosh y$ satisfies the equation $f_{xx} + f_{yy} = 0$.

Solution.

$$\begin{split} f_x &= -A\sin x \sinh y + B\cos x \cosh y, & f_{xx} &= -A\cos x \sinh y - B\sin x \cosh y \\ f_y &= A\cos x \cosh y + B\sin x \sinh y, & f_{yy} &= A\cos x \sinh y + B\sin x \cosh y \\ Therefore & f_{xx} + f_{yy} &= 0. \end{split}$$