Project graded H/W 7 due Tues. 3/14

Final exam: Thurs. 3/23 8:30-11:30 Room 200-205 (See email)

Thm (Cardano & others, 1545):

$$x^3 + px + q = 0$$
 has solins

$$X = \frac{3\sqrt{-\frac{q_0}{2} + \sqrt{\frac{q_0^2}{4} + \frac{p_3}{27}}}}{A} + \frac{3\sqrt{-\frac{q_0}{2} - \sqrt{\frac{q_0^2}{4} + \frac{p_3}{27}}}}{B}$$

$$5.7, \quad AB = -P$$

$$A^3 = \frac{27}{1} (4,9), \quad B^3 = \frac{27}{17} (4,9^2)$$

Quartic: Solve resolvent cubic, then roots of guartic can be expressed as sums of square roots of these roots (see notes from last time)

Today: § 14.8: Galois 9ps./Q

Wed: § 14.9: Infinite exths

Fri: Review OR further topic (kummer extis or connections to modular forms)

Note: Galois gps. are canonically subgps. of symmetric gps. (up to conjugation) by viewing automorphisms as

permutations of the roots.

Def: $H_1, H_2 \leq S_n$ are <u>permutation</u> isomorphic if \exists bijection $\{1,...,n\} \xrightarrow{\varphi} \{1,...,n\}$ s.t. $\sigma \longmapsto \varphi \sigma \varphi^{-1}$ is an isom $H_1 \xrightarrow{\sim} H_2$.

Example: n=4.

a subgp. of Gal a({).

<(12)> and <(23)> are permutation isomorphic.

But <(12)) and <(12)(34)) are not perm. isom.

Prop: If H, Hz perm. isom., then 3 isom. H, ~> Hz s.t. every pair of elts has the same cycletype.

Let $f(x) \in \mathbb{R}[x]$, f sep, deg f = n. Then, $D \in \mathbb{Z}_{\neq 0}$. Let p: prime, $p \nmid D$. Let $\overline{f(x)} \in \mathbb{F}_p[x]$ be the reduction of f mod p. Then, \overline{f} sep. Thum (see Lang VIII, Thum 2.9): Gal $\overline{F_p(\overline{f})}$ is perm. isom. to

Let
$$f = \overline{f_1} - f_k \in \mathbb{F}_p[x]$$

irred. of
deg n;

$$E^{x}$$
: $f(x) = x^{2} - x - 1$, $D = 5864 = 14.121$

$$b = \int : \{(x) = (x_3 + x + 1)(x_3 + x_5 + 1)$$

Gal (f) contains a
$$(2,3)$$
-cycle $\sigma = (ab)(cde)$, $\sigma^3 = (ab)$ than sposition and a S-cycle. So Gal(f)=S₅.

Prop 42: For all $n \in \mathbb{Z}_{\geq 1}$, \exists infinitely many (primitive) polys. $f(x) \in \mathbb{Z}[x]$ s.t. $Gal_{\mathbb{Q}}(F) = Sn$

Pf sketch:

Fact: If $H \leq S_n$, H transitive, H contains 2-cycle, (n-1)-cycle, then $H = S_n$.

Let

f2(x) = (irred. deg. n) & F2[x]

 $f_3(x) = \begin{cases} (irred.deg.2)(irred.deg.n-2), & if n odd \\ x(irred.deg.2)(irred.deg.n-3), & if n even \end{cases}$

fs(x) = x (irred. deg. n-1)

By the Chinese Remainder Thm. (for polys.) I f(x) \in Z[x] s.t.

 $f(x) \equiv f_2(x) \mod 2 \iff transitive$

 $f(x) \equiv f_3(x) \mod 3 \leftarrow 2$ -cycle

 $f(x) \equiv f_5(x) \mod 5 \leftarrow (n-1) - cycle.$

Thus, $Gal(f) = S_h$.

Cor 41 is good for showing Gal (f) is large, not so good for showing it's small,

Def: Let $A \subseteq IN$, $B \subseteq A$. We say the density of B in A is $A \in [0,1]$ if

lim | B n {1, ..., N } | = x.

Let deg f:n, and let T be a cycle-type. Let A be the set of primes, and let B be the set of primes s.t. Gal F_p (F) is generated be an element of cycle type T.

Thm: The density of Bin A is

{\sigma \in Gal(f) | \sigma is cycle-typeT} = proportion of elts.

n!

cycle type T.

Pf: Special case of Chebotarev Density Thm.

So, reduce modulo first b primes where $b \ge n!$, and pretty good chance you have determined Gal (f).

Example: N=5.

Transitive subgps. of Ss (up to isom.):

		1				,		
#eltr. of each cycle type		1	2	(2,2)	3	(3,2)	4	5
Frobenius 9p*	75	1	0	0	0	0	6	4
	\mathcal{D}^{1o}	1	0	5	O	D	Ø	4
	Fz.	7	0	5	6	0	۵۱	4
		<u>1</u>	O	l s	۲٥	0	0	24
	5,	1	10	15	ૃ	20	30	۶۸

 $f(x) = x^{s} + 15x + 12$ $D = 2^{10}3^{4}5^{s} \rightarrow \text{not a square,}$ so Gal(f) $\neq A_{s}$ Gal(f) = F_{20} or S_{s}

Reduce modulo small rinesp $p \ge 7$: no 2-cycles or (3,2)-cycles, so Gal(E) is probably F_2 .

Pf uses a deg 15 resolvent poly.