

Computação para Análise de Dados

Equipe:

Renan Beserra renan.beserra@ufrpe.br

Prof. Ermeson Andrade ermeson.andrade@ufrpe.br

CNN (Convolutional Neural Network)

Sumário

- Introdução ao CNN
- Vantagens e desvantagens
- Etapas do CNN
- Sobre o dataset CIFAR10
- Objetivo da implementação
- O que a implementação faz
- Implementação do CNN
- Exercício
- Referências

Introdução ao CNN

- As Redes Neurais Convolucionais (CNNs) são um tipo de arquitetura de rede neural projetada para processar dados com estrutura espacial, como imagens, sinais e séries temporais. Elas são amplamente utilizadas em tarefas como:
 - Classificação de imagens e sons;
 - Reconhecimento de objetos;
 - Detecção de anomalias;
 - Reconhecimento de padrões em sensores (loT, dispositivos de borda).

Introdução ao CNN

- As CNNs extraem, hierarquicamente, informações espaciais através de camadas de convolução, pooling e, posteriormente, camadas totalmente conectadas para realizar tarefas de classificação ou regressão.
- Na classificação de imagens, por exemplo, as CNNs podem ajudar a identificar a qual classe a imagem pertence.

Vantagens e desvantagens

Vantagens

- Captura padrões espaciais.
- Boa performance com muitos dados.
- Não requer pré-processamento manual de características.
- Excelente para tarefas de classificação e detecção em imagens.
- Aprende desde características simples (bordas) até complexas (objetos).

Vantagens e desvantagens

- Desvantagens
 - Pode ser difícil de interpretar.
 - Necessita de muitos dados para treinamento eficiente.
 - Requer grande poder de processamento, especialmente para redes profundas.
 - Requer conhecimentos em ajuste de hiperparâmetros (como tamanho dos filtros, número de camadas, número de epochs) para se obter bom desempenho.

Etapas do CNN

- 1. Entrada dos dados: carregar e pré-processar sensores e imagens (redimensionar, normalizar).
- 2. Camada Convolucional: detectar padrões locais ou aplicar filtros para extrair características.
- 3. Camada de Pooling: reduzir a dimensionalidade e evita overfitting.
- 4. Camada Fully Connected (densa): aprender combinações complexas ou classificar as características extraídas.
- 5. **Saída:** obter a previsão final, classificação ou regressão (ex: classe da imagem).

Etapas do CNN

Extração de Características

Mapas de Características

Classificação

-Totalmente Conectadas

> Distribuição de Probabilidade

Sobre o dataset CIFAR10

- O CIFAR10 é um conjunto de dados clássico para visão computacional que contém:
- 60.000 imagens coloridas (32x32 pixels);
- Divididas em 10 classes (avião, automóvel, pássaro, gato, veado, cachorro, sapo, cavalo, navio, caminhão);
- □ 50.000 imagens para treino e 10.000 para teste;
- É um benchmark comum para testar algoritmos de classificação de imagens.

Sobre o dataset CIFAR10

airplane	
automobile	
bird	
cat	
deer	
dog	
frog	
horse	
ship	
truck	

Objetivo da implementação

Treinar uma rede neural convolucional (CNN) para classificar imagens do dataset CIFAR10 em suas 10 categorias, demonstrando:

- Carregar e preparar dados de imagem;
- Implementar uma arquitetura CNN;
- □ Treinar e avaliar o modelo;
- Aplicar a predição no modelo.

O que a implementação faz

- Instalação e Carregamento de Pacotes;
- Preparação dos Dados;
- Definição da Arquitetura CNN;
- □ Treinamento do Modelo;
- Avaliação dos Resultados;
- Carregamento e Pré-processamento de Imagens;
- Carregamento do Modelo Treinado;
- Carregamento e Predição da Imagem;
- Visualização de Imagens com Predição.

Instalação dos pacotes e carregamento das bibliotetas

```
Instala os pacotes necessários
install.packages("torch")
install.packages("torchvision")
install.packages("luz")
install.packages("ggplot2")
# Carrega as bibliotecas
library(torch)
library(torchvision)
library(luz)
library(ggplot2)
```


Carregamento e preparação dos dados

Carregamento e preparação dos dados

```
# Baixa e carrega os conjuntos de treino

train_ds <- cifar10_dataset(
  root = "./data",
  train = TRUE,
  download = TRUE,
  transform = transform
)</pre>
```


Carregamento e preparação dos dados

```
# Baixa e carrega os conjuntos de teste

test_ds <- cifar10_dataset(
  root = "./data",
  train = FALSE,
  download = TRUE,
  transform = transform
)</pre>
```


Carregamento e preparação dos dados

Entrada

Cria dataloaders para alimentar os dados em batches durante o treino

train_dl <- dataloader(train_ds, batch_size = 128,
shuffle = TRUE)
test_dl <- dataloader(test ds, batch size = 128)</pre>

Definição da Arquitetura CNN

```
# Cria uma rede neural

net <- nn_module(
    "CIFAR10_CNN",
    initialize = function() {</pre>
```


Definição da Arquitetura CNN

```
# 4 camadas convolucionais com ReLU
self$conv1 <- nn_conv2d(3, 32, kernel_size = 3, padding = 1)
self$conv2 <- nn_conv2d(32, 64, kernel_size = 3, padding = 1)
self$conv3 <- nn_conv2d(64, 128, kernel_size = 3, padding = 1)
self$conv4 <- nn_conv2d(128, 128, kernel_size = 3, padding = 1)</pre>
```


Definição da Arquitetura CNN

```
# Camadas de max pooling e Dropout para regularização
self$pool <- nn_max_pool2d(2)
self$dropout <- nn dropout(p = 0.5)</pre>
```


Definição da Arquitetura CNN

Entrada

Camadas fully connected (calcularemos o tamanho automaticamente)

self\$fc1 <- NULL
self\$fc2 <- nn linear(512, 10)</pre>

Definição da Arquitetura CNN

```
# Camada auxiliar para cálculo de dimensões
self$dim calculator <- nn sequential(</pre>
nn conv2d(3, 32, kernel size = 3, padding = 1),
nn relu(),
nn conv2d(32, 64, kernel size = 3, padding = 1),
nn relu(),
nn max pool2d(2),
nn conv2d(64, 128, kernel size = 3, padding = 1),
nn relu(),
nn\_conv2d(128, 128, kernel size = 3, padding = 1),
nn relu(),
nn max pool2d(2),
```


Definição da Arquitetura CNN

```
forward = function(x) {
# Calcular dimensões na primeira execução
if (is.null(self$fc1)) {
  test_output <- self$dim_calculator(x)
  input_size <- dim(test_output)[2]
  self$fc1 <- nn_linear(input_size, 512)$to(device = x$device)
}</pre>
```


□ Definição da Arquitetura CNN

```
x %>%
    # Bloco 1
    self$conv1() %>%
    nnf_relu() %>%
    self$conv2() %>%
    nnf_relu() %>%
    self$pool() %>%
```


Definição da Arquitetura CNN

```
# Bloco 2
self$conv3() %>%
nnf_relu() %>%
self$conv4() %>%
nnf_relu() %>%
self$pool() %>%
self$dropout() %>%
```


Definição da Arquitetura CNN

```
# Achatar para a camada linear
torch flatten(start dim = 2) %>%
# Classificador
self$fc1() %>%
nnf relu() %>%
self$dropout() %>%
self$fc2()
```


Treinamento do Modelo

```
fitted <- net %>%

# Configura o modelo com a função de perda de entropia cruzada, com o
otimizador Adam e com a métrica acurácia
setup(
   loss = nn_cross_entropy_loss(),
   optimizer = optim_adam,
   metrics = list(luz_metric_accuracy()) ) %>%
set_hparams() %>%
```


Treinamento do Modelo

- Treinamento do Modelo
 - Treinamento em progresso

```
Epoch 2/20
```

Saída

```
Epoch 1/20
Train metrics: Loss: 1.8113 - Acc: 0.3201
Valid metrics: Loss: 1.4293 - Acc: 0.4776
Epoch 20/20
Train metrics: Loss: 0.764 - Acc: 0.7285
Valid metrics: Loss: 0.7109 - Acc: 0.7526
```


Avaliação dos Resultados

Entrada

Mostra um gráfico com o progresso do treino plot(fitted)

Avaliação dos Resultados

Entrada

Avalia o modelo no conjunto de teste evaluation <- fitted %>% evaluate(data = test dl)

Progresso da avaliação

Avaliação dos Resultados

Entrada

Mostra todas as métricas disponíveis
print(evaluation)

Saída

A `luz_module_evaluation`

-Results-

loss: 0.7109

acc: 0.7526

Avaliação dos Resultados

Entrada

```
# Verifica a acurácia do teste
if (!is.null(evaluation$records$metrics$valid[[1]]$acc)) {
  test_acc <- evaluation$records$metrics$valid[[1]]$acc
  print(paste("Acurácia no teste:", round(test_acc * 100, 2), "%"))
} else {
  print("Não foi possível encontrar a métrica de acurácia")}</pre>
```

Saída

[1] "Acurácia no teste: 75.26 %"

Carregamento e Pré-processamento de Imagens

```
# Função para pré-processamento
preprocess image <- function(image path) {</pre>
  # Carrega a imagem
  img <- image read(image path)</pre>
  # Redimensiona para 32x32 (tamanho do CIFAR10)
  img <- image resize(img, "32x32!")</pre>
  \# Converte para array numérico (0-255) e depois normaliza (0-1)
  img array <- as.integer(img[[1]]) / 255</pre>
  # Reorganiza as dimensões para (C, H, W) - canais primeiro
  img array <- aperm(img array, c(3, 1, 2))</pre>
  # Converte para tensor torch
  img tensor <- torch tensor(img array, dtype = torch float32())</pre>
```


Carregamento e Pré-processamento de Imagens

```
# Aplica normalização (usando os mesmos parâmetros do treino)

transform_normalize(
    img_tensor,
    mean = c(0.4914, 0.4822, 0.4465),
    std = c(0.2470, 0.2435, 0.2616)
)
```


Carregamento do Modelo Treinado

Entrada

model <- fitted\$model</pre>

Carregamento e Predição da Imagem

Entrada

```
predict_image <- function(image_path) {
    # Classes do CIFAR10
    cifar10_classes <- c("avião", "automóvel", "pássaro", "gato",
    "veado", "cachorro", "sapo", "cavalo", "navio", "caminhão")
    # Pré-processa a imagem
    img_tensor <- preprocess_image(image_path)
    # Adiciona dimensão de batch (1, 3, 32, 32)
    img_tensor <- img_tensor$unsqueeze(1)</pre>
```


Carregamento e Predição da Imagem

Entrada

```
# Faz predição
model$eval()
with no grad({
output <- model(img tensor)</pre>
probs <- nnf softmax(output, dim = 2)</pre>
pred <- torch argmax(probs, dim = 2) })</pre>
# Retorna resultados
list(
  class = cifar10 classes[as.integer(pred) + 1],
  probability = as.numeric(torch max(probs)$item())
```


□ Visualização de Imagem com Predição

Entrada

```
# Substitua pelo caminho da sua imagem
resultado <- predict_image("caminho da sua
imagem\\predicao_cavalo_CIFAR10.jpg")
cat(sprintf("Predição: %s (%.2f%% de confiança)\n", resultado$class,
resultado$probability * 100))</pre>
```

Saída

Predição: cavalo (99.97% de confiança)

□ Visualização de Imagem com Predição

Entrada

```
# Visualizar a imagem
image <- image_read("caminho da sua
imagem\\predicao_cavalo_CIFAR10.jpg")
print(image)</pre>
```


O dataset MNIST é um grande banco de dados de dígitos manuscritos que é comumente usado para treinar vários sistemas de processamento de imagens. Ele tem um conjunto de treinamento de 60.000 imagens em tons de cinza 28x28 dos 10 dígitos e um conjunto de teste de 10.000 exemplos.

- Configuração Inicial:
 - Instalar os pacotes se necessário: install.packages("torch") install.packages("torchvision") install.packages("luz") install.packages("ggplot2")
- Carregue as bibliotecas;
- Configure as sementes para reprodutibilidade;

- □ Faça o pré-processamento dos dados:
 - Converta a imagem para tensor;
 - Normalize os valores com a média e o desvio padrão;
- Carregue o Dataset com mnist_dataset() para:
 - Conjunto de treino;
 - Conjunto de teste.
- Crie os DataLoaders com dataloader() para:
 - Conjunto de treino;
 - Conjunto de teste.

- Defina a Arquitetura CNN com nn_module:
 - 3 camadas convolucionais com nn_conv2d();
 - 1 camada de Pooling com nn_max_pool2d() e 2 de Dropout com nn_dropout2d();
 - 2 camadas Fully Connected com nn_linear;
 - □ Fluxo de Dados (forward):
 - Primeiro bloco convolucional com nnf_relu();
 - Segundo bloco convolucional com nnf_relu();
 - Preparação para camadas densas com torch_flatten;
 - Camadas fully connected com nnf_relu() e nnf_log_softmax().

- Configure o modelo com Luz (utilize o Otimizador Adam);
- □ Treine o modelo (determine 5 épocas);
- Mostre as métricas de treino e validação no gráfico;
- Avalie o conjunto de teste;
- Mostre a acurácia no teste;
- Carregamento e Pré-processamento de Imagens;
- Carregamento e Predição da Imagem;
- Visualização da Imagem com Predição.

Sugestões de exercícios:

- Treine com uma época abaixo e outra acima do que você inseriu no exercício. Depois compare os resultados.
- Faça predições com novas imagens com fundo branco e número preto. Depois verifique se a classificação foi realizada corretamente.

Referências

- Bird J., Faria D., Manso L., Ayrosa P., & Ekárt A.
 (2021). A study on CNN image classification of EEG signals represented in 2D and 3D. Journal Of Neural Engineering, 18(2), 026005.
- Gupta J., Pathak S., Kumar G. (2022). Deep Learning (CNN) and Transfer Learning: A Review. Journal of Physics: Conference Series, 2273, 012029.
- C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.