## Gas Density (at Real Gas Condition)

Gas density at real condition is computed thus:

$$\rho = \frac{2.70 P \gamma_g}{zT}$$

Note that density  $\rho$  is in lb<sub>m</sub>/ft<sup>3</sup>, T is in degree Rankine and P is in psi.

## **Bubble Point Pressure, P**<sub>b</sub>

Frequently, it is desired to determine bubble point pressure for an undersaturated reservoir, i.e. at what point will the undersaturated reservoir begin to liberate gas. The correlation below is applicable.

$$P_{\rm b} = (18 \times 10^{\rm yg}) \left(\frac{R_{sb}}{\gamma_{\rm g}}\right)^{0.83} - - - - - - - - - 2.32$$

Where  $y_g = 0.00091 T_F - 0.0125$  °API - - - - - - - - - 2.33

$$^{\circ}$$
API =  $\frac{141.5}{\gamma_{\circ}} - 131.5$ 

 $R_{sb}$  is the solution gas oil ratio at or above bubble point pressure.

Note: T<sub>F</sub> is temperature in degree Fahrenheit.

## Solution Gas-Oil Ratio, R<sub>s</sub>

The correlation to calculate  $R_s$  at pressures below or equal to the bubble point is presented below. There is no need for a correlation to calculate  $R_s$  at pressures above bubble point because Rs is constant at pressures above bubble point down to bubble point pressure.

$$R_s = \gamma_{\rm g} \left(\frac{\rm P}{18 \times 10^{\rm yg}}\right)^{1.204} - - - - - - - - 2.34$$

 $y_g$  is still as defined by equation 2.33

# Oil Formation Volume Factor, B<sub>o</sub>

Recall that the variation of Bo with pressure is divided into two regimes. See Figure 1



Figure 1: Variation of Bo with Reservoir Pressure

For pressures below or equal to bubble point, Standing's correlation for calculating Bo is herein presented:

$$B_o = 0.9759 + 0.00012F^{1.2} -------2.35$$

Note: T<sub>F</sub> is temperature in degree Fahrenheit.

For pressure above bubble point, the analytical equation applicable is given as:

$$B_o = B_{ob} \exp[c_o(P_b - P)] - - - - - - - - - - 2.37$$

 $B_{\rm ob}$  is the  $B_{\rm o}$  at bubble point and can be calculated using equation 2.35 and 2.36

### 4

### Stock Tank Oil Initially In-Place (STOIIP)

The Stock Tank Oil Initially In-Place (STOIIP) is computed thus:

Where:

STOIIP, N = Stock Tank Oil Initially in Place, STB

Area A = Drainage Area of the Reservoir, in Acres

Thickness h = productive oil zone thickness, in ft

Porosity  $\phi$  = formation porosity, in fraction – the fraction of the bulk reservoir made up of pore spaces.

Saturation  $S_{wi}$  = initial water saturation, in fraction

 $B_{oi}$  = Oil Formation Volume Factor at initial reservoir pressure, RB/STB.

7758 = conversion factor