目录

1.	概划	<u>t</u>	2
2.	可抄	丸行节点 nodes	2
	2.1	bw_io_node 节点	2
			3
		2.1.1 发布的话题数据,30hz 频率	3
		2.1.2 节点参数	
		2.1.3 发布的 services 服务	4
	2.2	xiaoqiang teleop joy 节点	5
		2.2.0 发布的话题数据	5
		2.2.1 节点参数	5

ROS 驱动 bw_io 包配置手册

1. 概述

bw_io 包是蓝鲸机器人 IO 扩展板的 ros 驱动包,通过这个包可以获取和设置 IO 扩展板的端口状态,同时也支持将端口状态转换成 cmd_vel 话题进行移动车体控制。

2. 可执行节点 nodes

catkin_make 编译后会生成可执行节点 bw_io_node 和 xiaoqiang_teleop_joy,launch 文件夹中已经提供了一份可直接使用的 launch 文件 bw_io.launch。launch 文件夹中的 95-persistent-serial.rules 文件,可以作为串口模块的 usb 端口绑定配置的参考文件。

2.1 bw_io_node 节点

bw_io_node 节点是包主节点,这个节点通过串口与 IO 扩展板进行通信,获取扩展板端口信息后转换成 sensor_msgs/Joy 话题类型,同时提供 ros service 接口方便 ros 用户获取和设置端口状态。下文将详细介绍这个节点的 ROS 配置信息。

2.1.0 硬件连接

IO 扩展板和主机通过 USB 转 ttl 串口模块连接(对应"BW_IO 串口")。串口可以通过 udev 规则进行 USB 端口绑定,同时映射成 bw_io 设备。串口参数是波特率为 115200,8 个数据位,1 个停止位,无奇偶校验。IO 扩展板的接线图请参考上图。

2.1.1 发布的话题数据, 30hz 频率

/bw_io/joy (sensor_msgs/Joy)

IO 扩展板输入通道状态,其中 axes 的 0 号到 3 号成员分别对应 IO 扩展板 1 号到 4 号模拟输入通道的测量值。buttons 的 0 号到 10 号成员分别对应 IO 扩展板 1 号到 11 号数字输入通道测量值。

2.1.2 节点参数

~port (string)

串口设备名字,默认/dev/bw_io

~baud (int)

串口波特率,默认 115200

~k1 (double)

模拟输入通道 1 的测量值系数,默认值 2.0, y=k1*x-b1

~b1 (double)

模拟输入通道 1 的测量值截距,默认值 0.0, y=k1*x-b1

~mvalue1 (double)

模拟输入通道 1 的过滤阈值,[-mvalue1 mvalue1]范围内的值会被设为 0,默认值 0.01。

~k2 (double)

模拟输入通道 2 的测量值系数, 默认值 2.0, y=k2*x-b2

~b2 (double)

模拟输入通道 2 的测量值截距, 默认值 0.0, y=k2*x-b2

~mvalue2 (<u>double</u>)

模拟输入通道 2 的过滤阈值,[-mvalue2 mvalue2]范围内的值会被设为 0,默认值 0.01。

~k3 (double)

模拟输入通道 3 的测量值系数,默认值 2.0, y=k3*x-b3

~b3 (double)

模拟输入通道 3 的测量值截距,默认值 0.0, y=k3*x-b3

~mvalue3 (double)

模拟输入通道 3 的过滤阈值,[-mvalue3 mvalue3]范围内的值会被设为 0,默认值 0.01。

~k4 (double)

模拟输入通道 4 的测量值系数,默认值 2.0, y=k4*x-b4

~b4 (double)

模拟输入通道 4 的测量值截距,默认值 0.0, y=k4*x-b4

~mvalue4 (double)

模拟输入通道 4 的过滤阈值,[-mvalue4 mvalue4]范围内的值会被设为 0,默认值 0.01。

2.1.3 发布的 services 服务

/bw io/read pins (bw io/ReadPins)

获取 IO 扩展板输入输出通道状态

/bw io/set pins (bw io/SetPins)

设置 IO 扩展板输出通道状态,set_buttons 成员写入要设置的通道编号,取值可以是 1 到 10。buttons 成员要写入对应的输出状态,1 表示高电平,0 表示低电平。

2.2 xiaoqiang_teleop_joy 节点

这个节点通过订阅 bw_io_node 节点发出的话题/bw_io/joy,将对应通道的输入信息转换成速度指令后发布在 cmd_vel 话题。借助这个节点可以把 IO 扩展板变成遥控手柄。

2.2.0 发布的话题数据

/cmd_vel (geometry_msgs/Twist)

当 deadman 通道值为 1 时,才会发布,发布频率是 10hz。

2.2.1 节点参数

~axis linear (int)

直线速度对应的 axes 通道,默认为 1,即对应扩展板的模拟输入通道 1。

~axis_angular (int)

旋转速度对应的 axes 通道,默认为 2,即对应扩展板的模拟输入通道 2。

~axis deadman (int)

deadman 对应的 buttons 通道.默认为 1,即对应扩展板的数字输入通道 1。

~axis fastchange (int)

快速反向对应的 buttons 通道,默认为 2,即对应扩展板的数字输入通道 2。

~axis_forward (int)

前进方向对应的 buttons 通道,默认为 3,即对应扩展板的数字输入通道 3。

~axis backward (int)

后退方向对应的 buttons 通道,默认为 4,即对应扩展板的数字输入通道 4。

~axis up (int)

抬升控制对应的 buttons 通道,默认为 5,即对应扩展板的数字输入通道 5。

~axis down (int)

下降控制对应的 buttons 通道,默认为 6,即对应扩展板的数字输入通道 6。

~scale angular (double)

旋转速度通道输入值转换成旋转速度时乘以的系数,默认-0.8。

~scale_linear (<u>double</u>)

直线速度通道输入值转换成直线速度时乘以的系数,默认 0.2。

~enable_updown (bool)

是否使能升降控制功能,默认 false。