Hojas entregadas:

JUSTIFIQUE TODAS SUS AFIRMACIONES

- 1. (15 puntos) Sea $f(x) = e^x \operatorname{sen} (3 x)$.
 - (a) Calcular la derivada de f.
 - (b) Obtenga la ecuación de la recta tangente al gráfico de f en el punto (3,0).
- 2. (20 puntos) Calcule los siguientes límites:
 - (a) $\lim_{x \to \infty} x \sec(1/x)$ (b) $\lim_{x \to 0} \frac{\ln(x+1)}{x(2x+3)}$
- **3.** (35 puntos) Dada la función $f(x) = \frac{3x}{x^2 + 1}$:
 - (a) Determine su dominio y paridad o imparidad de la función, en caso de ser posible.
 - (b) Obtenga las rectas asíntotas horizontales y verticales, en caso de existir.
 - (c) Obtenga los puntos críticos de la función.
 - (d) Determine intervalos de crecimiento y decrecimiento de f.
 - (e) Determine máximos y mínimos locales de f.
 - (f) Determine intervalos de concavidad hacia arriba y hacia abajo.
 - (g) Obtenga los puntos de inflexión de f.
 - (h) Utilizando los resultados de los incisos anteriores, esboce el gráfico de la función f (Ayuda: $3\sqrt{3}/4 \sim 1.3$).
- **4.** (18 puntos) Sea $f(x) = \frac{\cos(\sqrt{x})}{\sqrt{x}}$.
 - (a) Calcule la integral indefinida de f, es decir, $\int \frac{\cos(\sqrt{x})}{\sqrt{x}} dx$.
 - (b) Obtenga la primitiva F de f tal que F(0) = 1.
- **5.** (12 puntos) Determine el área de la región encerrada por la gráfica de $f(x) = x^2 + 2$, el eje x y las rectas verticales x = -1 y x = 2.

1a	1b	2a	2b	3a	3b	3c	3d	3e	3f	3g	3h	4a	4b	5	ТОТ	Parc	NOTA	