MACM 300 Formal Languages and Automata

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Regular Languages

- The set of regular languages: each element is a regular language
- Each regular language is an example of a (formal) language, i.e. a set of strings

```
e.g. \{a^m b^n : m, n \text{ are +ve integers }\}
```

2/9/06 1

Formal Languages: Recap

- Symbols: a, b, c
- Alphabet : finite set of symbols $\Sigma = \{a, b\}$
- String: sequence of symbols bab
- Empty string: ε Define: $\Sigma^{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- Set of all strings: Σ^* cf. The Library of Babel, Jorge Luis Borges
- (Formal) Language: a set of strings

```
\{a^n b^n : n > 0\}
```

2/9/06

Regular Languages

- Defining the set of all regular languages:
 - The empty set and {a} for all a in Σ^ϵ are regular languages
 - If L_1 and L_2 and L are regular languages, then:

$$L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$$
 (concatenation)
 $L_1 \cup L_2$ (union)
 $L^* = \bigcup_{i=0}^{\infty} L^i$ (Kleene closure)

are also regular languages

- There are no other regular languages

2/9/06 2 2/9/06

Formal Grammars

- A formal grammar is a concise description of a formal language
- A formal grammar uses a specialized syntax
- For example, a **regular expression** is a concise description of a regular language

 $(a \cup b)*abb$: is the set of all strings over the alphabet $\{a, b\}$ which end in abb

2/9/06

Regular Expressions: Definition

- Every symbol of $\Sigma \cup \{ \epsilon \}$ is a regular expression
- The empty language ϕ is a regular expression
 - Note that $1*\phi = \phi$
- If r_1 and r_2 are regular expressions, so are
 - Concatenation: r₁ r₂
 - Alternation: $r_1 \cup r_2$
 - Repetition: r₁*
- Nothing else is.
 - But grouping re's is allowed: e.g. aa∪bc vs. ((aa)∪b)c

Regular Expressions: Examples

- Alphabet { 0, 1 }
- All strings that represent binary numbers divisible by 4 (but accept 0) $((0 \cup 1)*00)|0$
- All strings that do not contain "01" as a substring 1*0*

2/9/06

Finite Automata: Recap

- A set of states S
 - One start state q_0 , zero or more final states F
- An alphabet \sum of input symbols
- A transition function:
 - $-\delta$: $S \times \Sigma \Rightarrow S$
- Example: $\delta(1, a) = 2$

Finite Automata: Example

• What regular expression does this automaton accept?

Answer: $(0 \cup 1)*00$

2/9/06

NFAs

- NFA: like a DFA, except
 - A transition can lead to more than one state, that is, δ : S x $\Sigma \Rightarrow 2^S$
 - One state is chosen non-deterministically
 - Transitions can be labeled with ε , meaning states can be reached without reading any input, that is,

$$\delta: S \times \Sigma \cup \{ \epsilon \} \Rightarrow 2^{S}$$

Thompson's construction

- Converts regexps to NFA
- Six simple rules
 - Empty language
 - Symbols
 - Empty String
 - Alternation $(r_1 \text{ or } r_2)$
 - Concatenation (r_1 followed by r_2)
 - Repetition (r_1^*)

2/9/06

Thompson Rule 0

• For the empty language φ (optionally include a *sinkhole* state)

2/9/06

10

Thompson Rule 1

• For each symbol *x* of the alphabet, there is a NFA that accepts it (optionally include a *sinkhole* state)

13

Thompson Rule 2

• There is an NFA that accepts only ε

Thompson Rule 3

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts $r_1 \cup r_2$

2/9/06

15

Thompson Rule 4

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts r_1r_2

no longer final state after concatenation

Thompson Rule 5

• Given a NFA for r_1 , there is an NFA that accepts r_1^*

2/9/06 17

Example

- Set of all binary strings that are divisible by four (include 0 in this set)
- Defined by the regexp: $((0 \cup 1)*00) \cup 0$
- Apply Thompson's Rules to create an NFA

Basic Blocks 0 and 1

(this version does not report errors: no sinkholes)

2/9/06

18

(0|1)*00

2/9/06 22 2/9/06 24

NFA to DFA Conversion

- Subset construction
- Idea: subsets of set of all NFA states are *equivalent* and become one DFA state
- Algorithm simulates movement through NFA
- Key problem: how to treat ε-transitions?

NFA Simulation

- After computing the ε -closure move, we get a set of states
- On some input extend all these states to get a new set of states

 $\mathbf{DFAedge}(T,c) = \epsilon\text{-}\mathbf{closure}\left(\cup_{q \in T}\mathbf{move}(q,c)\right)$

27

2/9/06 25 2/9/06

ε-Closure

- Start state: q₀
- ε-closure(S): S is a set of states

```
\begin{split} & \textbf{initialize:} \ S \leftarrow \{q_0\} \\ & T \leftarrow S \\ & \textbf{repeat} \ T' \leftarrow T \\ & T \leftarrow T' \cup [\cup_{s \in T'} \mathbf{move}(s, \epsilon)] \\ & \textbf{until} \ T = T' \end{split}
```

NFA Simulation

• Start state: q₀

• Input: $c_1, ..., c_k$

 $T \leftarrow \epsilon$ -closure $(\{q_0\})$

for $i \leftarrow 1$ to k

 $T \leftarrow \mathbf{DFAedge}(T, c_i)$

Conversion from NFA to DFA

- Conversion method closely follows the NFA simulation algorithm
- Instead of simulating, we can collect those NFA states that behave identically on the same input
- Group this set of states to form one state in the DFA

2/9/06 29

ε -closure(q_0)

2/9/06 31

Example: subset construction

$move(\varepsilon$ -closure(q_0), 0)

2/9/06 30 2/9/06 32

ϵ -closure(move(ϵ -closure(q_0), 0))

ϵ -closure(move(ϵ -closure(q_0), 1))

 $move(\varepsilon$ -closure(q_0), 1)

2/9/06

2/9/06

34 2/

33

36

Minimization (I)

Minimization of DFAs

- Algorithm for minimizing the number of states in a DFA
- Step 1: partition states into 2 groups: accepting and non-accepting

Minimization of DFAs

- Step 2: in each group, find a sub-group of states having property P
- P: The states have transitions on each symbol (in the alphabet) to the *same* group

A, 0: blue A, 1: yellow E. 0: blue

E, 1: yellow

D, 0: yellow

D, 1: yellow 2/9/06

B, 0: blue

B, 1: yellow

C, 0: blue

C, 1: yellow

41

Minimization of DFAs

- Step 4: each group becomes a state in the minimized DFA
- Transitions to individual states are mapped to a single state representing the group of states

Minimization of DFAs

- Step 3: if a sub-group does not obey P split up the group into a separate group
- Go back to step 2. If no further sub-groups emerge then continue to step 4

A, 0: blue

A, 1: green

E, 0: blue

E, 1: green

D, 0: yellow

D, 1: green

B. 0: blue

B, 1: green

C, 0: blue

C, 1: green

42

NFA to DFA

- Subset construction converts NFA to DFA
- Complexity:
 - in programs we measure time complexity in number of steps
 - For FSAs, we measure complexity in terms of the number of states

NFA to DFA

- Problem: An *n* state NFA can sometimes become a 2^n state DFA, an exponential increase in complexity
 - Try the subset construction on NFA built for the regexp A*aAⁿ⁻¹ where A is the regexp (alb)
- Minimization can reduce the number of states
- But minimization requires determinization

45 2/9/06

NFA to DFA

NFA to DFA

NFA to DFA

 $2^5 = 32 \text{ states}$ 2/9/06 2/9/06

Equivalence of Regexps

•
$$(RS)T == R(ST)$$

•
$$(R|S) == (S|R)$$

•
$$R*R* == (R*)* == R*$$
 • $RR* == R*R$
== $RR*|\epsilon$ • $(RS)*R == R$

•
$$(R|S)T = RT|ST$$

•
$$(R|S)|T == R|(S|T) == RS | RT$$

•
$$RR^* == R^*R$$

•
$$(RS)*R == R(SR)*$$

•
$$R = R | R = R \epsilon = \epsilon R$$

2/9/06 49

Equivalence of Regexps

- 0(10)*1l(01)*
- (01)(01)*I(01)*
- $(01)(01)*|(01)(01)*|\epsilon$
- $(01)(01)*|\epsilon$
- (01)*

- (RS)*R == R(SR)*
- RS == (RS)
- $R^* == RR^* | \epsilon$
- R == R | R
- $R^* == RR^* | \epsilon$

NFA to RegExp

• A = a B

- $D = a B \mid \varepsilon$
- $B = b D \mid b C$
- C = a D

2/9/06 51

NFA to RegExp

- Three steps in the algorithm (apply in any order):
- 1. Substitution: for B = X pick every $A = B \mid T$ and replace to get $A = X \mid T$
- Factoring: $(R S) \mid (R T) = R (S \cup T)$ and $(R T) \mid (S T) = (R \cup S) T$
- 3. Arden's Rule: For any set of strings S and T, the equation $X = (S X) \mid T$ has $X = (S^*) T$ as a solution.

NFA to RegExp

•
$$A = a B$$

$$B = b D | b C$$

$$D = a B \mid \epsilon$$

$$C = a D$$

• Substitute:

$$A = a B$$

$$B = b D | b a D$$

$$D = a B \mid \varepsilon$$

• Factor:

$$A = a B$$

$$B = (b \cup b a) D$$

$$D = a B \mid \epsilon$$

• Substitute:

$$A = a (b \cup b a) D$$

$$D = a \; (b \, \cup \, b \; a) \; D \; I \; \epsilon$$

2/9/06 53

NFA to RegExp

$$A = a (b \cup b a) D$$

$$D = a (b \cup b a) D \mid \epsilon$$

• Factor:

$$A = (a b \cup a b a) D$$

$$D = (a b \cup a b a) D \mid \varepsilon$$

$$A = (a b \cup a b a) D$$

$$D = (a b \cup a b a)^* \epsilon$$

• Remove epsilon:

$$A = (a b \cup a b a) D$$

$$D = (a b \cup a b a)^*$$

• Substitute:

$$A = (a b \cup a b a)$$

$$(a b \cup a b a)^*$$

• Simplify:

$$A = (a b \cup a b a) +$$

Summary

- Recognition of a string in a regular language: is a string accepted by an NFA?
- Conversion of regular expressions to NFAs
- Determinization: converting NFA to DFA
- Converting an NFA into a regular expression
- Other useful *closure* properties: union, concatenation, Kleene closure, intersection

2/9/06 55