(A)	ECCO 2018 Vic Remer
	Le cture 2
	Representation theory & reflection groups
	Recall
	DEFINITION: For a group G, a representation of G
	on a C-vector space V=C means a
	homomorphism
	G P GL(V) = GLn(C)
	EXAMPLES IN COMBINATORICS (they abound!)
	1) Permutation representations = those that factor
	$G \xrightarrow{\text{inclusion}} G_n \xrightarrow{\text{Pperm}} GL_n(\mathbb{C})$
	o permutation matrix
	eg. $G=(245)(13)$ P_{perm} $= G_{5}(0)$ $= G_{5}(0)$
	such as $G = \langle (1,2,,n) \rangle \subset G_n$ whose G-orbits were necklaces $\cong Z/hZL$
	G=GK[GR] C>GKR whose G-orbits were Feners in [HH1]11
	G= GV C) whose Gorbits were unlabeled graphs
	or the regular representation pres:
	G Cos Sigl in which prog(g) (h) = gh

2) 1-dimensional representations

$$G \longrightarrow GL_1(C) = C^{x}$$

such as the trivial representation

$$11 = 1_{G_{\alpha}}: G \longrightarrow C^{\times}$$

or the determinant representation

3 Symmetry groups of geometric objects $P \subset \mathbb{R}^n$ $G = Aut(P) := \{g \in GL_n(\mathbb{R}^n) : g(P) = P\}$

G=Aut (P) =
$$\langle c \rangle = 2/42/2$$

 $CQ(R) \subset GL_2(R)$
orthogonal
group $(CGL_2(Q))$

(3)

(4)	DEFINITION:	Say buo rep	resevitations	G P GL(V) G P' GL(V')
	are equir	alent if there is	a C-linear	isemorphism V ~ V
	for which	$\bigvee \xrightarrow{\rho(\mathfrak{h})} \bigvee$	for every ge	
		4 s/ (6) V'	i.e.	

QUESTION: Can we classify in any sense, all G-representations up to equivalence?

ANSWER: Yes, when G is finite (and working over C)

In fact, the indispensable tool here are the traces that we've already been using ...

DEF'N: Given a representation $G \xrightarrow{P} GL(V) = GL_n(C)$ its character χ_p is the (conjugacy) function $G \xrightarrow{\chi_p} C$ Class function $G \xrightarrow{\chi_p} C$ $g \mapsto \chi_p(g) := Trace(p(g))$ meaning $\chi_p(hgh^{-1}) = M(g)$ $\forall h, g \in G$ (4)

where $V = \bigoplus V_i$, and where each representation

G Pi > GL(Vi) is simple/irreducible,

meaning V_i has no G-stable subspaces, except 10% and Witself.

(3) In fact, the character χ_p of p determines it up to equivalence, because the irreducible characters $\{\chi_{pn},...,\chi_{pr}\}$ give a C-basis for the C-vector space of all class functions $G \xrightarrow{f} C$, and this basis is oxthonormal with respect to this positive definite Hermitian inner product on class functions: $\langle \chi_n, \chi_n \rangle_G := |G| \ \chi_1(g) \ \chi_2(g)$

(4) This means that when one decomposes

$$p = \bigoplus_{i=1}^{r} p_i^{\text{EDM}_i}$$
 with irreducibles $p_1, ..., p_r$ one can comparte the multiplicaties m_i from

$$\chi_{\rho} = \sum_{i=1}^{r} m_i \chi_{\rho_i}$$

$$\Rightarrow \langle \chi_{\rho_i} \chi_{\rho_i} \rangle = m_i$$

Also,
$$\langle \chi_{p}, \chi_{p} \rangle_{G} = \sum_{i=1}^{r} m_{i}^{2}$$
,

so χ_{p} imeducible $\Leftrightarrow \langle \chi_{p}, \chi_{p} \rangle_{G} = 1$

STANDARD EXAMPLES

- 1) 1-dimensional representations G P CX
 are the same as their own character: $\chi_p = p$ Hence they are always class functions
- (2) Permutation representations

have $X_p(\sigma) = \text{Trace}(\sigma) = \# \text{ of fixed points (1-cycles)}$

and
$$\langle \chi_p, \chi_1 \rangle_G = \frac{1}{|G|} \sum_{\sigma \in G} \chi_{\sigma}(g)$$

(3) The regular representation
$$G ext{Preg} G_{|G|} og G_{|G|}$$
 having $P_{\text{reg}}(g)(h) = gh$

has $Y_{\text{reg}}(g) = \text{Trace}(P_{\text{reg}}(g)) = \begin{cases} |G| & \text{if } g = e \\ & \text{o else} \end{cases}$
and hence $X_{\text{reg}}(g) = \frac{1}{2} = \frac{1}{$

and hence
$$\langle \chi_{reg}, \chi_{pi} \rangle_{G} = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_{reg}(g)} \chi_{pi}(g)$$

$$= \frac{1}{|G|} \overline{\chi_{reg}(e)} \chi_{pi}(e)$$

$$= \frac{1}{|G|} \cdot |G| \cdot \dim(V_i) = \dim(V_i)$$

COROLLARY: The regular representation preg of GI contains every irreducible pi with multiplicity dimo(Vi)

$$|G| = \sum_{i=1}^{r} dinj(V_i)^2$$

Who are the 3 irreducible representations?

Since $G = \langle (12), (23) \rangle$, its 1-dimensional characters X are determined by the values $X(s), X(t) \in C^{\times}$ and since $S^2 = t^2 = e$, these values are in 2 ± 1 ,

and since s,t are conjugate in Ez, they are both +1 or both-1.

This gives two 1-dimensional characters: $G_3 \xrightarrow{1 \to \infty} C$ $S, t \mapsto +1$ $G_3 \xrightarrow{sgn} C$ $S, t \mapsto -1$

Need one more inhaducible ρ , and $|G| = \sum_{i=1}^{3} dm_i |V_{ii}|^2$ $\Rightarrow 3! = 1^2 + 1^2 + (lmp)^2$ $\Rightarrow |dmp=2|$

(9) We claim the reflection representation
$$f = (33)$$
 G_3 $f = (33)$
 G_4 $f = (33)$

is irreducible, e.g.

by computing its character

 $f = (33)$
 $f = (33$

and checking
$$\{X_{ref}, X_{ref}\}_{G} = \frac{1}{3!} \underbrace{\sum_{\sigma \in G_3} X_{ref}(\sigma)}_{\{ref\}} X_{ref}(\sigma)$$

$$= \frac{1}{6} \left(2 \cdot 2 + 3 \cdot 00 + 2 \cdot (-1) \cdot (-1) \right)$$

$$= \frac{1}{6} \left(4 + 2 \right) = 1$$

$$= \frac{1}{6} \left(4 + 2 \right) = 1$$

CONCLUSION: The irreducible character table for & is

	e	(12) (13) (23)	(123)
1	1	1	1
sgn	1	-1	1
Pref	2	0	-1

(10	`
	•

EXAMPLE:

The permutation representation

must therefore be reducible

From its character values,

	[e	(13)	(123)
Xpenn	3	1	0

one sees that

and hence

One can see this directly from the geometry in \mathbb{R}^3 (\mathbb{C}^3):

Gs permutes coordinates here

Generalized m exercise 3