2018-2 期中试题

一、基本计算题(每题6分,共60分)

- 1. 求微分方程 $yy'' + (y')^2 = 0$ 满足初始条件 $y(0) = 1, y'(0) = \frac{1}{2}$ 的特解.
- 2. 设 $y = e^x(C_1 \sin 2x + C_2 \cos 2x)$ 为某二阶常系数齐次微分方程的通解,求此微分方程.
- 3. 已知点 A(3,-3,1) 与点 B(3,-2,2). 若 $\overrightarrow{AM} = 3\overrightarrow{AB}$, 求矢量 \overrightarrow{OM} 的方向余弦.
- **4.** 判断直线 L_1 : $\frac{x+1}{2} = \frac{y-2}{-1} = \frac{z-4}{3}$ 与直线 L_2 : $\frac{x-1}{1} = \frac{y+3}{2} = \frac{z-6}{5}$ 是否共面.
- **5.** 讨论二重极限 $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x+y}$. 若极限存在求其值,若不存在说明理由.
- **6**. 已知平面曲线由方程 $x^2 + y^3 + \ln(x + y) 3 = 0$ 确定, 求点 x = 2, y = -1 处的法线方程.
- 7. 设 $\varphi(u,v)$ 有连续偏导数,方程 $\varphi(cx-az,cy-bz)=0$ 确定隐函数 z=z(x,y) .证明 $az_x+bz_y=c \, .$
- 8. 计算 $I = \int_0^2 dy \int_0^2 \max\{xy,1\} dx$.
- 9. 计算 $I = \iint_D \cos(x^2 + y^2) dx dy$,其中 $D = \{(x, y) | x^2 + y^2 \le 4, |x| \ge |y| \}$ (由 $x^2 + y^2 = 4$ 和 $y^2 = x^2$ 围成的包含 x 轴的区域).
- **10**. 计算 $I = \iiint_V \sqrt{x^2 + y^2} dx dy dz$, 其中区域 V 由曲面 $z = 0, z = 4 x^2 y^2$ 围成.

二、综合计算题(每题8分,共40分)

- 11. 求解微分方程 $y'' 3y' + 2y = e^{2x} + e^{3x}$.
- 12. 求函数 $u = 2x + y^2 z$ 在点 (1,-1,-1) 沿椭球面 $x^2 + 2y^2 + 3z^2 = 6$ 的外法线方向的方向导数.
- **13.** 求函数 u = x + 3z 在曲线 $\begin{cases} x + 2y 3z = 2 \\ x^2 + y^2 = 2 \end{cases}$ 上的最大值与最小值.
- 14 求积分 $I = \iiint_V x^2 dx dy dz$,其中区域 $V: x^2 + y^2 + z^2 \le 2z$.

15 设函数
$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, (x,y) \neq (0,0), \\ 0, \quad (x,y) = (0,0). \end{cases}$$

(1) 证明 f(x,y) 在 (0,0) 可微; (2) 求 $z_{xy}(0,0)$.