PLP - 19 TOPIC 19—PROOF OF INDUCTION

Demirbaş & Rechnitzer

PROOF OF INDUCTION

WHY DOES INDUCTION WORK

THEOREM: MATHEMATICAL INDUCTION.

For all $n \in \mathbb{N}$ let P(n) be a statement. Then if

- P(1) is true, and
- $ullet P(k) \Longrightarrow P(k+1)$ is true for all $k \in \mathbb{N}$ then P(n) is true for all $n \in \mathbb{N}$.

We won't give a rigorous proof, but will give a "proof sketch"

A GOOD SET AND A BAD SET

Assume, P(1) is true, and $P(k) \implies P(k+1)$ is true.

Define two sets

- ullet Good set Let $G=\{n ext{ s.t. } P(n) ext{ is true}\}$. We know $1\in G$.
- Bad set Let $B = \{n \text{ s.t. } P(n) \text{ is false}\}$

Now either B=arnothing or B
eqarnothing .

- ullet If B
 eq arnothing , let q be the smallest element of B
- Then P(q) is first number that makes P(n) false.
- ullet We must have P(q-1) is true
- ullet But *by assumption* $P(q-1) \implies P(q)$, so P(q) is true.
- But then $q \notin B$.
- So there cannot be such an element q

So B=arnothing , so P(n) is true for all $n\in\mathbb{N}$

SNEAKY

We are doing two sneaky things here

- This is a proof by contradiction in disguise
- We are using the well ordering principle of $\mathbb N$

DEFINITION: (THE WELL ORDERING PRINCIPLE).

A set A is well ordered if every non-empty subset $B\subseteq A$ has a smallest element

Notice that $\mathbb N$ is well ordered, but $\mathbb Z,\mathbb Q,\mathbb R$ are not.

