MATH 525 Sections 1.12 and 1.10

September 8, 2020

September 8, 2020 1 / 6

Section 1.12 - Error-correcting codes

Definition

A code C corrects the error pattern e if for all $v \in C$,

$$d(v+e,v) < d(v+e,u), \ \forall u \in C, u \neq v.$$

Example

 $C = \{000, 111\}$ corrects the error patterns 100, 010, 001, 000, but not 110, 101, 011, 111.

Theorem

A code of distance d will correct all error patterns of weight $\leq \lfloor \frac{d-1}{2} \rfloor$. Moreover, there exists at least one error pattern of weight $1 + \lfloor \frac{d-1}{2} \rfloor$ which C will not correct.

Example

Let C be a code of distance d. In this example, we will find an error pattern of weight $1 + \lfloor \frac{d-1}{2} \rfloor$ that *C* does not correct:

Suppose d = 5 and let u and v be codewords in C such that:

Let e' = u + v and form e from e' be changing $\lfloor \frac{d-1}{2} \rfloor = 2$ of its ones into zeroes. Thus, $e = (0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1)$. It follows that $\operatorname{wt}(e) = \lfloor \frac{d+1}{2} \rfloor = 3$,

$$d(v+e,v) \geq d(v+e,u),$$

and C does not correct e.

Definition

A block code C is said to be a t-error-correcting code if C corrects all error patterns of weight up to t, but it does not correct at least one error pattern of weight t + 1.

> September 8, 2020 3/6

Remark: The IMLD table can be used to determine the error patterns that a code C will correct: In each error-pattern column of the IMLD table, every error pattern appears exactly once. An asterisk is placed beside an error pattern e in the column corresponding to a codeword v precisely when v is sent, e occurs, and C correctly decodes the received word w = v + e into v. Thus,

a particular error pattern e is corrected by C if and only if an asterisk is placed beside e in every column of the IMLD table.

Section 1.10 - Reliability of MLD

 $\theta_p(C, v) = \text{probability that if } v \text{ is sent over a BSC of reliability } p, \text{ then IMLD will}$ correctly conclude that v was sent.

To evaluate $\theta_p(C, v)$, we construct the set L(v) which consists of all words in K^n that are closer to v than to any other word in C. It follows that

$$\theta_p(C, v) = \sum_{w \in L(v)} \phi_p(v, w).$$

Example

Let $C = \{000, 111\}$. Calculate $\theta_p(C, 000)$. Start out by writing

$$L(000) = \{000, 100, 010, 001\}.$$

Remark: L(v) can be found from the IMLD table:

 $L(v) = \{ w \text{ is in the first column of the IMLD table } | w \text{ is decoded into } v \}.$

(see example on the next page.)

September 8, 2020 5 / 6

IMLD table for Example 1.9.4 - p. 15 of the textbook.

received	1			most likely
word				codeword
\overline{w}	0000 + w	1010 + w	0111 + w	v
0000	0000	1010	0111	0000
0001	0001	1011	0110	0000
0010	0010	1000	0101	
0011	0011	1001	0100	0111
0100	0100	1110	0011	0000
0101	0101	1111	0010	0111
0110	0110	1100	0001	0111
0111	0111	1101	0000	0111
1000	1000	0010	1111	
1001	1001	0011	1110	
1010	1010	0000	1101	1010
1011	1011	0001	1100	1010
1100	1100	0110	1011	
1101	1101	0111	1010	0111
1110	1110	0100	1001	1010
1111	1111	0101	1000	0111

 $L(0000) = \{0000, 0001, 0100\}.$