Resolução da lista de exercícios de Sistemas Discretos Aluna: Anna Gabriele Marques de Oliveira

Questão 3:

a)
$$(A \cup B) \cap C = \{6\}$$

b)
$$B - C = \{0, 1, 2, 4, 5\}$$

c)
$$(B \cap C) - A = \{3\}$$

d)
$$(A \cap B) \cup (B \cap C) = \{1, 3, 4, 6\}$$

e)
$$(A \cup \emptyset) = \{1, 4, 6, 8, 10\}$$

f)
$$(B \cap \emptyset) = \emptyset$$

Questão 5:

a)
$$B \cap C = \{t\}$$

b)
$$A \cup C = \{p, q, r, s, t, u\}$$

c)
$$A \cap B \cap C = \emptyset$$

d)
$$B - C = \{r, v\}$$

e)
$$A \times B = \{(p,r),(q,r),(r,r),(s,r),(p,t),(q,t),(r,t),(s,t),(p,v),(q,v),(r,v),(s,v)\}$$

f)
$$A + B = \{p_A, q_A, r_A, s_A, r_B, t_B, v_B\}$$

g)
$$B + B = \{r_B, t_B, v_B\}$$

Questão 6:

a)
$$A \cup B = \{0, 1, 2, 3, 5\}$$

b)
$$B \cup C = \{0, 2, 3, 4, 5, 6, 8\}$$

c)
$$(A \cup B) \cup C = \{0, 1, 2, 3, 4, 5, 6, 8\}$$

d)
$$A \cup C = \{0, 1, 2, 3, 4, 6, 8\}$$

e)
$$B - D = \{0, 2, 3\}$$

f)
$$(A \cap C) \cup C = \{0, 2, 5, 7, 9\}$$

g)
$$A \cup D = \{0, 1, 2, 3, 5, 7, 9\}$$

Questão 10:
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Pela teoria básica de conjuntos temos por definição: $A \cap B = \{x \mid x \in A \land x \in B\}$. utilizando-se da definição, temos: $(A \cap B) \cap C = \{x \mid (x \in A \land x \in B) \land x \in C\}$.

Pela equivalência lógica, obtemos as seguintes proposições:

$$P = x \in A$$

$$Q = x \in B$$

$$R = x \in C$$

Dessa forma, a operação $(x \in A \land x \in B) \land x \in C$, pode ser representada utilizando o conceito lógico de conjunção: $(P \land Q) \land R$.

Logo, pela propiedade associativa das proposições: $(P \land Q) \land R = P \land (Q \land R)$, uma vez que, a ordem das proposições não altera o resultado.

Além disso, $P \wedge (Q \wedge R)$ é equivalente à: $x \in A \wedge (x \in B \wedge x \in C)$. Portanto, $(A \cap B) \cap C = A \cap (B \cap C)$

Questão 12:
$$A \cup (\sim A \cap B) = (A \cup B)$$

Pela teoria básica de conjuntos temos por definição: $A \cup B = \{x \mid x \in A \lor x \in B\}.$

Seja x
$$A \cup (\sim A \cap B)$$
:

Utilizando da definição de união temos:

$$x \in A \vee (\sim A \cap B).$$

Utilizando da definição de interseção temos:

$$x \in A \lor (x \in \sim A \land x \in B).$$

Utilizando a propiedade distributiva, temos:

$$x \in A \lor (x \in A \land x \in B) \longleftrightarrow (x \in A \lor x \in A) \land (x \in A \lor x \in B)$$

Pela definição de união:

$$(x \in A \lor x \in \sim A) \land (x \in A \lor x \in B) \longleftrightarrow (x \in A \cup x \in \sim A) \land (x \in A \cup x \in B)$$

Pela definição de interseção:

$$(x \in A \cup x \in A) \land (x \in A \cup x \in B) \longleftrightarrow (x \in A \cup x \in A) \cap (x \in A \cup x \in B)$$

Pela definição de conjunto universo:

$$(x \in A \cup x \in A) \cap x \in A \cup x \in B) \longleftrightarrow (x \in U \cap (x \in A \cup x \in B))$$

Como nós definimos que $x \in A \cup (\sim A \cap B)$ e, $A \cup (\sim A \cap B)$ está contido no conjunto universo, $x \in U$ não prova nada.

Assim, concluímos que: $x \in A \cup x \in B \longleftrightarrow x \in A \cup B$