ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 17 febbraio 2014

Esercizio A

$R_1 = 50 \Omega$	$R_{10}=1750~\Omega$
$R_3 = 270 \text{ k} \Omega$	$R_{11} = 100 \Omega$
$R_4 = 2 k\Omega$	$R_{12} = 900 \Omega$
$R_5 = 1 \text{ k}\Omega$	$C_1 = 1 \text{ nF}$
$R_6 = 50 \Omega$	$C_2 = 3.3 \ \mu F$
$R_7 = 450 \Omega$	C ₃ = 200 nF
$R_8 = 9 k \Omega$	$V_{\rm CC} = 15 \text{ V}$
$R_9 = 2 k\Omega$	

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$. Q_2 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 4 mA/V² e $V_T = 1$ V. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_2 in modo che, in condizioni di riposo, la tensione di uscita sia 8 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_2 = 727959.18 \,\Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 6.77$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 1328$ Hz; $f_{z2} = 107.18$ Hz; $f_{p2} = 120.26$ Hz; $f_{z3} = 884.2$ Hz; $f_{p3} = 4421$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A + \overline{D}}\right)\left(\overline{B}D + \overline{C} + \overline{E}\right) + \left(\overline{B + \overline{D}}\right)\left(AD + \overline{C}\right) + A\overline{C}D + \overline{A}\overline{E}$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 200 \Omega$	$R_5 = 1 \text{ k}\Omega$
$R_2 = 800 \Omega$	$V_A = 0.5 \text{ V}$
$R_3 = 1 \text{ k}\Omega$	C = 100 nF
$R_4 = 10 \text{ k}\Omega$	$V_{CC} = 5 \text{ V}$
$R_5 = 100 \Omega$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 5V$, Q_1 ha una $R_{on} = 0$ e $V_T = 1V$, Q_2 ha una $R_{on} = 0$ e $V_T = -1V$ e gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 17331 Hz)