31255402 鄭永洋 Beta distribution: Beta $(\theta | a, b) = \theta \cdot (1 - \theta)^{b-1} \cdot B(a, b)^{-1}$, where $B(a, b) = \frac{\gamma(a) \gamma(b)}{\gamma(a+b)}$ Beta-Binomial Conjugation: 1: kelihood (Binomia) prior (Beta distribution) $P(\theta|X) = \frac{\binom{N}{m} \theta \cdot (1-\theta)^{N-m} \cdot \theta^{a-1} \cdot (1-\theta)^{b-1} \cdot \frac{Y(a+b)}{Y(a)Y(b)}}{\binom{N}{m} \theta \cdot (1-\theta)^{N-m} \cdot \theta^{a-1} \cdot (1-\theta)^{b-1} \cdot \frac{Y(a+b)}{Y(a)Y(b)} d\theta}$ $= \frac{\theta^{\text{mfa-1}} \cdot (1-\theta)^{N-\text{mtb-1}}}{\int_{0}^{1} \theta^{\text{mfa-1}} \cdot (1-\theta)^{N-\text{mtb-1}} d\theta}$ Since $\int_0^1 Befa(\theta | mta, N-mtb) d\theta$ $= \int_0^1 \theta^{mta-1} \cdot C(1-\theta)^{N-mtb-1} \cdot B(mta, N-mtb) d\theta$

$$\int_{0}^{\infty} \theta^{m+1} \cdot (1-\theta)^{N-m+1} \cdot \int_{0}^{\infty} \theta$$

$$= \theta^{m+1} \cdot (1-\theta)^{N-m+1} \cdot \int_{0}^{\infty} \theta^{m+1} \cdot \int_{$$

Posterior

Therefore,

So o mta-1. CI-O) N-mtb-1 do = B (mta, N-mtb)

		31257402 鄭玉洋
poission distribu	ation:	
	Sit ti -no	
P(X= x1, x2,	$\varkappa_n \mid \theta \rangle := \frac{\sum_{i=1}^{h} \varkappa_i - n\theta}{\prod_{i=1}^{h} \varkappa_i !}$	
Gamma distribut	ion:	
g (8 la,b):	θ ^{α-1} e ^{-bθ} . b ^α ·γ(α) ⁻¹	
Gramma - Poission	Conjugation:	
	liketihood prior	
	θ 5 h χi e hθ α - t	
ρ(θ X) =	11/21 20 1 9 e 16 x(a)	
	$ \frac{\theta \stackrel{\sum_{i=1}^{n} x_{i} = n\theta}{\prod_{i=1}^{n} x_{i}} \theta^{a-1} \stackrel{=}{=} b\theta \cdot b \cdot x(a)}{\int_{0}^{1} \frac{\theta \stackrel{=}{=} n \cdot x_{i} = n\theta}{\prod_{i=1}^{n} x_{i}} \theta^{a-1} \stackrel{=}{=} b\theta \cdot b \cdot x(a)} $	and let $\sum_{i=1}^{n} x_i = S$
	Sta-l -cntb)0	
	So B e e ontb) & do	Since SigColsta, nutb) 20
	4-1 - (nth) 19 (sta) -1	$= \int_0^1 \frac{\text{sta-1}}{\theta} \cdot e^{-\text{Cntb}} \cdot \frac{\theta}{\theta} \cdot \frac{(\text{sta})}{\text{r(sta)}} de$
=	gsta-1 - cntb) b cntb) · r(sta)	
5	9(0 sta ntb)	Therefore,
	g(0 sta, ntb)	Lat. to the control of cota)
	n次结果 做幾次	Si Bstat eurobit do: (ntb) (sta)
	科 加.	