Clase 15 Regresión lineal simple

Diplomado en Análisis de Datos con R e Investigación reproducible para Biociencias.

Dr. José Gallardo Matus | https://genomics.pucv.cl/

Pontificia Universidad Católica de Valparaíso

13 October 2022

PLAN DE LA CLASE

1.- Introducción

- ¿Qué son los modelos lineales?
- ¿Qué es y para qué sirve una Regresión lineal?
- Correlación v/s causalidad.
- Ecuación de regresión lineal: betas.
- ► Interpretación Regresión lineal con R.
- Evaluación de supuestos.

2.- Práctica con R y Rstudio cloud

- Realizar análisis de regresión lineal.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato html.

MODELOS LINEALES

Los modelos lineales se usan para explicar, modelar o predecir la relación lineal de una variable respuesta Y con una o más P variables predictoras $X_1, X_2, ... X_P$.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon_i$$

Si p=1, regresión lineal simple.

Si = >1 regresión lineal múltiple.

Si p>1 y existe una variable categórica, se lama ancova.

ESTUDIO DE CASO: METILACIÓN GEN ASPA Y EDAD

Gen ASPA: Codifica la enzima Aspartoacilasa. Variable respuesta: Edad en años. Variable predictora: % de metilación gen ASPA.

```
## # A tibble: 6 x 3
##
    Sample ASPA
                 Age
##
    <chr> <dbl> <dbl>
## 1 1
          0.586 50.0
          0.731 34.8
## 2 2
          0.823 30.5
## 3 3
## 4 4
          0.710 35.8
## 5 5
          0.926 31.0
          0.524 52.6
## 6 6
```

Fuente: Adaptado de Huang et al. 2015

REGRESIÓN LINEAL SIMPLE

Herramienta estadística que permite determinar si existe una relación (asociación) entre una variable predictora (independiente) y la variable respuesta (dependiente).

REGRESIÓN LINEAL: PREDICCIÓN

Bajo ciertos supuestos, una regresión permite predecir el valor de una variable respuesta "y" a partir de una o más variables predictoras "x".

$$Y = a + \beta_1 X_1$$

Predicción de edad cuando la metilación es 0,5%, 1,0%, 1,5%.

```
## fit lwr upr
## 1 57.55590 55.68747 59.42433
## 2 14.74239 12.06592 17.41886
## 3 -28.07112 -34.92509 -21.21714
```

INFERENCIA Y CAUSALIDAD

¿Cómo probar que existe una relación causal entre X e Y?

- 1. Temporalidad: La causa X debe preceder al efecto Y.
- 2. Dirección: La relación va desde la causa X al efecto Y.
- 3. Asociación (regresión): Debe ser distinta de cero.

La asociación es lo único que puedo probar con un análisis de regresión.

ECUACIÓN DE REGRESIÓN LINEAL: BETAS

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

Betas miden la influencia del intercepto y la pendiente sobre la variable Y.

 $\beta_0 = \text{Intercepto} = \text{valor que toma "y" cuando x} = 0.$

 β_1 = Pendiente = Cambio promedio de "y" cuando "x" cambia en una unidad.

 $\epsilon=$ mide la variabilidad de la variable respuesta que no es explicada por la recta de regresión.

LINEA DE REGRESIÓN

Línea de regresión: Corresponde a los valores "ajustados" o estimados de "y" en función de "x". Se calcula con los estimadores de *mínimos cuadrados* de β_0 y β_1 .

RESIDUOS Y MÉTODOS DE MÍNIMOS CUADRADOS

COEFICIENTE DE DETERMINACIÓN

 R^2 mide la proporción de la variación muestral de "y" que es explicada por x (varía entre 0-1). Se calcula como el cuadrado del coeficiente de correlación de pearson.

PRUEBAS DE HIPÓTESIS

Prueba de hipótesis del coeficiente de regresión y el intercepto Tipo de prueba: Prueba de t – student

La hipótesis nula en ambos casos es que los coeficiente (β_0) y (β_1) son iguales a 0.

$$H_0: \beta_0 = 0 \text{ y } H_0: \beta_1 = 0$$

Prueba de hipótesis del modelo completo Tipo de prueba:

Prueba de F.

La hipótesis nula es que los coeficientes son iguales a 0.

$$H_0: \beta_j = 0 ; j = 1, 2, ..., k$$

Un Beta significativo indica que X esta correlacionado con Y, pero no necesariamente es un indicador de causalidad.

REGRESIÓN LINEAL CON R: COEFICIENTES

```
reg <- Im(Age \sim ASPA, < data = age.aspa) summary(reg)
Call:
lm(formula = Age ~ ASPA, data = age.aspa)
Residuals:
     Min
              10 Median
                              30
                                     Max
 -10.4653 -3.1157 -0.0222 2.0904 10.1301
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
 (Intercept) 100.369 3.022 33.22 <2e-16 ***
ASPA -85.627 4.284 -19.99 <2e-16 ***
```

Residual standard error: 3.978 on 98 degrees of freedom Multiple R-squared: 0.803, Adjusted R-squared: 0.801 F-statistic: 399.5 on 1 and 98 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

REGRESIÓN LINEAL CON R: PRUEBA DE F

Anova de la regresión.

EXTRAER INFORMACIÓN DE LA REGRESIÓN LINEAL

```
summary(reg$residuals)
##
       Min. 1st Qu. Median
                                    Mean
                                          3rd Qu.
## -10.46534 -3.11570 -0.02219 0.00000
                                          2.09042
summary(reg)$sigma
## [1] 3.977514
summary(reg)$r.squared
## [1] 0.8030012
summary(reg)$adj.r.squared
```

[1] 0.800991

PREDICCIÓN LINEAL DE LA EDAD

Predicción de la Edad con 0,25 - 0,50 y 0,75% de metilación del gen ASPA

```
## fit lwr upr
## 1 78.96265 75.06294 82.86236
## 2 57.55590 55.68747 59.42433
## 3 36.14914 35.24935 37.04893
```

SUPUESTOS DE LA REGRESIÓN LINEAL SIMPLE

¿Cuales son los supuestos?
 Independencia.
 Linealidad entre variable independiente y dependiente.
 Homocedasticidad.
 Normalidad.

¿Por qué son importantes?
 Para validar el resultado obtenido.
 En caso de incumplimiento se pueden transformar datos o elaborar otros modelos (Regresión logística).

INDEPENDENCIA: MÉTODO GRÁFICO

H₀: Los residuos son independientes entre sí.

 H_A : Los residuos no son independientes entre sí (existe autocorrelación).

```
plot(reg$residuals)
abline(h=0, col="red")
```


LINEALIDAD: MÉTODO GRÁFICO

 $\mathbf{H_0}$: Hay relación lineal entre la variable regresora y la variable predictora.

 $\mathbf{H}_{\mathbf{A}}$: No hay relación lineal entre la variable regresora y la variable predictora.

HOMOGENEIDAD DE VARIANZAS: MÉTODO GRÁFICO

 H_0 : La varianza de los residuos es constante.

 H_A : La varianza de los residuos no es constante.

plot(reg, which=3)

NORMALIDAD: GRÁFICO DE CUANTILES

H₀: Los residuos tienen distribución normal.

H_A: Los residuos no tienen distribución normal.

qqPlot(reg) # library(car)

[1] 5 80

VALORES ATÍPICOS

Una observación se puede considerar influyente (valor atípico) si tiene un valor de distancia de Cook mayor a 1.

plot(reg, which=4)

PRÁCTICA ANÁLISIS DE DATOS

Guía de trabajo práctico disponible en Rstudio.cloud.

RESUMEN DE LA CLASE

- Elaborar hipótesis para una regresión lineal.
- ► Realizar análisis de regresión lineal simple.
- Interpretar coeficientes y realizar predicciones.
- Evaluar supuestos de los análisis de regresión.