

Introduction

- C++ 17
- OpenGL 4.5
- GLM 0.9.8.6 -> Maths
- GLAD 0.1.34 -> Loader OpenGL
- GLFW 3.3.2 -> Système de fenêtre et d'inputs
- Open Asset Import Library (Assimp) 5.0.1 -> Load mesh et animations
- Dear ImGui 1.79 -> Interface de l'éditeur
- IrrKlang: 1.6.0 -> Son
- Premake 0.5 -> Setup le projet

Table of contents

Démonstration Live

O 1 ECS

Généralités

CPU -> Beaucoup de puissance de calcul car évolution exponentiel

Généralités

- CPU -> Beaucoup de puissance de calcul car évolution exponentiel
- Accès mémoire -> Coûteux car évolution linéaire
- Solution -> Entity Component System pour compenser

Entity

- Tableau d'ID sur 32 Bits
 - 22 bits pour l'index -> position dans le tableau
 - 10 bits pour la génération -> la valeur dans le tableau
 - Génération -> Réutilisabilité des index du tableau si suppression, évite les conflits

Suppression de l'entité d'index 1, puis création d'une nouvelle entité qui prendra la place de l'ancienne en index 1

Component

- Listes d'éléments -> datas brutes
- Tableaux pour relier les entités à leurs données associées
- Tailles proportionnelles au nombre d'entité qui ont ce component

System

- Avoir un comportement -> modification des valeurs des components
- Pré-requis de 1 ou plusieurs component
- Liste des entités ayant les critères requis
- Vérification en cas d'ajout ou de suppression d'un component

System S Requiert CA(3) et CB(3) pour appliquer sur E(2)	Component A				2	ToEntityA			3	
	Component B	0	1	2	3		0	1	2	3
					2	· L			3	
		0	1	2	3		0	1	2	3

02 Rendering

Mesh Rendering

Lumières

Pipeline de Rendu

03

Animation

Animation

Animator : Component

Animations

CurrentAnimation

Animation

name
Channels
duration
loop

Channel

EntityId KeyFrames

Animation

Animator : System

Pour Chaque Channel de l'animation Courante :

- Calcul l'interpolation entre les 2 frames les plus proches de t
- Update de la position, rotation et/ou scale de l'entity correspondante

Skeletal Animation

Skeletal Animation

Entity

Bone

Entity Id

Offset Matrix

Skeletal Animation

Mesh Structure

Positions

Normals

Uvs

Weights

Bonelds

Bones Matrices

Shader

1 Physique

Références & Inspirations

Game Physics Cookbook

Discover over 100 easy-to-follow recipes to help you implement efficient game physics and collision detection in your games

Gabor Szauer

BIRMINGHAM - MUMBAI

Collisions et RigidBodies

PlayerControler

05 Conclusion

Améliorations & Ajouts

- Instanced Rendering
 Optimisation si plusieurs fois le même Mesh
- Animation transitions
 Pouvoir changer d'animation
- Animation Blending
 Transitions de l'animation soit plus fluide
- Et bien d'autres.

Merci de votre attention!

Avez-vous des questions?

