Word-Level Multi-Fix Rectifiability of Finite Field Arithmetic Circuits

Vikas Rao¹, Irina Ilioaea², Haden Ondricek¹, Priyank Kalla¹, and Florian Enescu³

¹Electrical & Computer Engineering, University of Utah
²Department of Mathematics, Louisiana State University Shreveport
³Mathematics & Statistics, Georgia State University

Outline

- Problem Description and Motivation
- Preliminaries
- Unified Framework
 - Mathematical Challenges
- Rectifiability Check
- Implementation
- Experimental Results
- Summary and Future work

Problem Description: Rectification

Problem Description: Rectification

- Applications:
 - Cryptography: RSA, Ellyptic Curve Cryptography (ECC)
 - Error Correcting Codes, Digital Signal Processing, RFID, etc.

- Applications:
 - Cryptography: RSA, Ellyptic Curve Cryptography (ECC)
 - Error Correcting Codes, Digital Signal Processing, RFID, etc.
 - Crypto-system bugs can leak secret keys [Biham. et al, Crypto'08]
 - RFID tag cloning could cause counterfeiting [Batina. et al, Security'09]

- Applications:
 - Cryptography: RSA, Ellyptic Curve Cryptography (ECC)
 - Error Correcting Codes, Digital Signal Processing, RFID, etc.
 - Crypto-system bugs can leak secret keys [Biham. et al, Crypto'08]
 - RFID tag cloning could cause counterfeiting [Batina. et al, Security'09]
 - Large datapath sizes (n) in ECC crypto systems
 - n = 163, 233, 283, 409, 571 (NIST standard)

- Applications:
 - Cryptography: RSA, Ellyptic Curve Cryptography (ECC)
 - Error Correcting Codes, Digital Signal Processing, RFID, etc.
 - Crypto-system bugs can leak secret keys [Biham. et al, Crypto'08]
 - RFID tag cloning could cause counterfeiting [Batina. et al, Security'09]
 - Large datapath sizes (n) in ECC crypto systems
 - *n* = 163, 233, 283, 409, 571 (NIST standard)
- Rectification Motivation:
 - Automated debugging
 - Synthesize sub-functions as opposed to complete redesign

- \bullet Fields set of elements over which operations $(+,\cdot,/)$ can be performed
 - ullet Ex. $\mathbb{R}, \mathbb{Q}, \mathbb{C}$

- Fields set of elements over which operations $(+,\cdot,/)$ can be performed
 - Ex. $\mathbb{R}, \mathbb{Q}, \mathbb{C}$
- Finite fields (Galois fields) Finite set of elements

- \bullet Fields set of elements over which operations $(+,\cdot,/)$ can be performed
 - Ex. ℝ, ℚ, ℂ
- Finite fields (Galois fields) Finite set of elements
 - Ex. \mathbb{F}_q , where $q = p^n$, p = prime, $n \in \mathbb{Z}_{\geq 1}$
 - With n = 1, and p = 2, $\mathbb{F}_2 = \mathbb{B} = \{0, 1\}$

- \bullet Fields set of elements over which operations $(+,\cdot,/)$ can be performed
 - Ex. ℝ, ℚ, ℂ
- Finite fields (Galois fields) Finite set of elements
 - Ex. \mathbb{F}_q , where $q = p^n$, p = prime, $n \in \mathbb{Z}_{\geq 1}$
 - With n = 1, and p = 2, $\mathbb{F}_2 = \mathbb{B} = \{0, 1\}$
 - On circuits, p = 2, n = data-operand width

- Fields set of elements over which operations $(+,\cdot,/)$ can be performed
 - Ex. $\mathbb{R}, \mathbb{Q}, \mathbb{C}$
- Finite fields (Galois fields) Finite set of elements
 - Ex. \mathbb{F}_q , where $q = p^n$, p = prime, $n \in \mathbb{Z}_{\geq 1}$
 - With n = 1, and p = 2, $\mathbb{F}_2 = \mathbb{B} = \{0, 1\}$
 - On circuits, p = 2, n = data-operand width
- Hardware cryptography extensively based on \mathbb{F}_{2^n} (we use \mathbb{F}_{2^n})

$$\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$$

- $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
 - $P_n(x) \in \mathbb{F}_2[x]$ irreducible polynomial of degree n

- $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
 - $P_n(x) \in \mathbb{F}_2[x]$ irreducible polynomial of degree n
 - Operations performed $\pmod{P_n(x)}$
 - Coefficients reduced (mod 2)

- $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
 - $P_n(x) \in \mathbb{F}_2[x]$ irreducible polynomial of degree n
 - Operations performed $(\text{mod } P_n(x))$
 - Coefficients reduced (mod 2)
- Construct F₂³:
 - Use $P_3(x) = x^3 + x + 1$ or $P_3(x) = x^3 + x^2 + 1$

- $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
 - $P_n(x) \in \mathbb{F}_2[x]$ irreducible polynomial of degree n
 - Operations performed $(\text{mod } P_n(x))$
 - Coefficients reduced (mod 2)
- Construct F₂³:
 - Use $P_3(x) = x^3 + x + 1$ or $P_3(x) = x^3 + x^2 + 1$
 - Fields are isomorphic

- $\bullet \ \mathbb{F}_{2^n} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_n(x))$
 - $P_n(x) \in \mathbb{F}_2[x]$ irreducible polynomial of degree n
 - Operations performed $(\text{mod } P_n(x))$
 - Coefficients reduced (mod 2)
- Construct F₂³:
 - Use $P_3(x) = x^3 + x + 1$ or $P_3(x) = x^3 + x^2 + 1$
 - Fields are isomorphic
 - Root of one is not the same as the other

Problem Description: Field Containment

Field Containment

- Smallest k is LCM(n, m)
 - ullet $\mathbb{F}_{2^k}\supset \mathbb{F}_{2^n}$ and $\mathbb{F}_{2^k}\supset \mathbb{F}_{2^m}$
 - $\bullet \ \mathbb{F}_{2^k} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_k(x))$
 - $P_k(x)$ is a degree-k primitive polynomial; $P_k(\alpha) = 0$

- Smallest k is LCM(n, m)
 - ullet $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^n}$ and $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^m}$
 - $\bullet \ \mathbb{F}_{2^k} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_k(x))$
 - $P_k(x)$ is a degree-k primitive polynomial; $P_k(\alpha) = 0$
- What $P_K(x)$ should be used for constructing \mathbb{F}_{2^k}

- Smallest k is LCM(n, m)
 - ullet $\mathbb{F}_{2^k}\supset \mathbb{F}_{2^n}$ and $\mathbb{F}_{2^k}\supset \mathbb{F}_{2^m}$
 - $\bullet \ \mathbb{F}_{2^k} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_k(x))$
 - $P_k(x)$ is a degree-k primitive polynomial; $P_k(\alpha) = 0$
- What $P_K(x)$ should be used for constructing \mathbb{F}_{2^k}
- Mathematical challenge: Given $P_n(x)$ and $P_m(x)$, compute $P_k(x)$ such that $P_n(\gamma) = P_m(\beta) = P_k(\alpha) = 0$

- Smallest k is LCM(n, m)
 - ullet $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^n}$ and $\mathbb{F}_{2^k}\supset\mathbb{F}_{2^m}$
 - $\bullet \ \mathbb{F}_{2^k} = \mathbb{F}_2[x] \ (\mathsf{mod} \ P_k(x))$
 - $P_k(x)$ is a degree-k primitive polynomial; $P_k(\alpha) = 0$
- What $P_K(x)$ should be used for constructing \mathbb{F}_{2^k}
- Mathematical challenge: Given $P_n(x)$ and $P_m(x)$, compute $P_k(x)$ such that $P_n(\gamma) = P_m(\beta) = P_k(\alpha) = 0$
 - How are elements α , β , and γ related?

• Property of finite fields, for any element $\phi \in \mathbb{F}_q$, $\phi^{q-1} = 1$

• Property of finite fields, for any element $\phi \in \mathbb{F}_q$, $\phi^{q-1} = 1$

•
$$\gamma = \alpha^{(2^k - 1)/(2^n - 1)} = \alpha^{\lambda}$$

•
$$\beta = \alpha^{(2^k - 1)/(2^m - 1)} = \alpha^{\mu}$$

- Property of finite fields, for any element $\phi \in \mathbb{F}_q$, $\phi^{q-1} = 1$
 - $\gamma = \alpha^{(2^k 1)/(2^n 1)} = \alpha^{\lambda}$
 - $\beta = \alpha^{(2^k-1)/(2^m-1)} = \alpha^{\mu}$
- Univariate Polynomial Factorization (UPF)

- Property of finite fields, for any element $\phi \in \mathbb{F}_q$, $\phi^{q-1} = 1$
 - $\gamma = \alpha^{(2^k 1)/(2^n 1)} = \alpha^{\lambda}$
 - $\beta = \alpha^{(2^k 1)/(2^m 1)} = \alpha^{\mu}$
- Univariate Polynomial Factorization (UPF)
 - Obtain UPFs of $P_n(x^{\lambda})$ and $P_m(x^{\mu})$ in $\mathbb{F}_2[x]$

• Property of finite fields, for any element $\phi \in \mathbb{F}_q$, $\phi^{q-1} = 1$

•
$$\gamma = \alpha^{(2^k - 1)/(2^n - 1)} = \alpha^{\lambda}$$

•
$$\beta = \alpha^{(2^k-1)/(2^m-1)} = \alpha^{\mu}$$

- Univariate Polynomial Factorization (UPF)
 - Obtain UPFs of $P_n(x^{\lambda})$ and $P_m(x^{\mu})$ in $\mathbb{F}_2[x]$
- Then, $\exists P_k(x) \in \mathbb{F}_2[x]$ as a common factor of $P_n(x^{\lambda})$ and $P_m(x^{\mu})$, such that:
 - $P_k(x)$ is a degree-k primitive polynomial in $\mathbb{F}_2[x]$ with $P_k(\alpha)=0$

Application: Word-level representation

Patch function modeled as a 2-bit-vector word (\emph{m} =2), $\emph{f}_{\emph{W}}$: $\emph{W} + \emph{r}_{3} + \beta \cdot \emph{rr}_{3}$

•
$$P_3(x) = x^3 + x + 1$$
, $P_2(x) = x^2 + x + 1$, $\gamma = \alpha^9$, $\beta = \alpha^{21}$

•
$$P_3(x) = x^3 + x + 1$$
, $P_2(x) = x^2 + x + 1$, $\gamma = \alpha^9$, $\beta = \alpha^{21}$

• Composite field: k = LCM(2,3) = 6

- $P_3(x) = x^3 + x + 1$, $P_2(x) = x^2 + x + 1$, $\gamma = \alpha^9$, $\beta = \alpha^{21}$
- Composite field: k = LCM(2,3) = 6
 - $UPF(P_3(x^9)) = (x^9)^3 + (x^9) + 1 = (x^6 + x^5 + x^2 + x + 1)(x^6 + x^5 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^4 + x^2 + x + 1)(x^3 + x + 1);$

- $P_3(x) = x^3 + x + 1$, $P_2(x) = x^2 + x + 1$, $\gamma = \alpha^9$, $\beta = \alpha^{21}$
- Composite field: k = LCM(2,3) = 6
 - $UPF(P_3(x^9)) = (x^9)^3 + (x^9) + 1 = (x^6 + x^5 + x^2 + x + 1)(x^6 + x^5 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^4 + x^2 + x + 1)(x^3 + x + 1);$
 - $UPF(P_2(x^{21})) = (x^{21})^2 + (x^{21}) + 1 = (x^6 + x^5 + x^2 + x + 1)(x^6 + x^5 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^5 + x^3 + x^2 + 1)(x^6 + x^5 + x^4 + x + 1)(x^6 + x^3 + 1);$

Circuit Polynomials and Setup

• Ring $R = \mathbb{F}_{2^k}[Z, A, B, \dots, W, r_3, rr_3, \dots, a_0, a_1, \dots, b_1, b_2]$

Circuit Polynomials and Setup

- Ring $R = \mathbb{F}_{2^k}[Z, A, B, \dots, W, r_3, rr_3, \dots, a_0, a_1, \dots, b_1, b_2]$
- Circuit polynomials under a term order >:

$$f_1: Z + z_0 + \gamma \cdot z_1 + \gamma^2 \cdot z_2;$$
 $f_{22}: rr_1 + rr_3 + rr_2;$
 $f_2: A + a_0 + \gamma \cdot a_1 + \gamma^2 \cdot a_2;$ $f_{23}: r_1 + r_2 + r_3;$
 $f_3: B + b_0 + \gamma \cdot b_1 + \gamma^2 \cdot b_2;$ $f_{26}: r_3 + r_4 + d_4;$
 $f_4: z_0 + d_0 + e_1;$ $f_{27}: rr_3 + rr_4 + b_2;$
 $f_5: z_1 + f_0 + rr_0;$...
... $f_{30}: rr_4 + a_2 + b_2 + a_2b_2;$
... $f_W: W + r_3 + \beta \cdot rr_3;$

Circuit Polynomials and Setup

- Ring $R = \mathbb{F}_{2^k}[Z, A, B, \dots, W, r_3, rr_3, \dots, a_0, a_1, \dots, b_1, b_2]$
- Circuit polynomials under a term order >:

$$f_{1}: Z + z_{0} + \gamma \cdot z_{1} + \gamma^{2} \cdot z_{2}; \quad f_{22}: rr_{1} + rr_{3} + rr_{2};$$

$$f_{2}: A + a_{0} + \gamma \cdot a_{1} + \gamma^{2} \cdot a_{2}; \quad f_{23}: r_{1} + r_{2} + r_{3};$$

$$f_{3}: B + b_{0} + \gamma \cdot b_{1} + \gamma^{2} \cdot b_{2}; \quad f_{26}: r_{3} + r_{4} + d_{4};$$

$$f_{4}: z_{0} + d_{0} + e_{1}; \quad f_{27}: rr_{3} + rr_{4} + b_{2};$$

$$f_{5}: z_{1} + f_{0} + rr_{0}; \quad \dots$$

$$\dots \quad f_{30}: rr_{4} + a_{2} + b_{2} + a_{2}b_{2};$$

$$\dots \quad f_{W}: W + r_{3} + \beta \cdot rr_{3};$$

- $F = \{f_1, \ldots, f_{30}, f_W\}$
- $\bullet \ F_0 = \{a_0^2 a_0, \dots, z_2^2 z_2, A^8 A, \dots, Z^8 Z, W^4 W\}.$

MFR Contribution: Rectification Check

- Multi-fix rectification at target W
 - Construct the following polynomial sets:

$$\begin{aligned} F_I' &= \langle f_1, \dots, f_W = W + \delta[I], \dots, f_s \rangle, 1 \leq I \leq 2^m, \\ \textit{Where} \ (\delta[1], \dots, \delta[2^m]) &= (0, 1, \beta, \dots, \beta^{2^m-2}). \end{aligned}$$

MFR Contribution: Rectification Check

- Multi-fix rectification at target W
 - Construct the following polynomial sets:

$$F'_{I} = \langle f_{1}, \dots, f_{W} = W + \delta[I], \dots, f_{s} \rangle, 1 \leq I \leq 2^{m},$$

Where $(\delta[1], \dots, \delta[2^{m}]) = (0, 1, \beta, \dots, \beta^{2^{m}-2}).$

- Reduce the specification $f: Z + A \cdot B$ modulo these sets:
 - $f \xrightarrow{F_I', F_0}_+ rem_I, \forall 1 \leq I \leq 2^m$

MFR Contribution: Rectification Check

- Multi-fix rectification at target W
 - Construct the following polynomial sets:

$$F'_{I} = \langle f_{1}, \dots, f_{W} = W + \delta[I], \dots, f_{s} \rangle, 1 \leq I \leq 2^{m},$$

Where $(\delta[1], \dots, \delta[2^{m}]) = (0, 1, \beta, \dots, \beta^{2^{m}-2}).$

- Reduce the specification $f: Z + A \cdot B$ modulo these sets:
 - $f \xrightarrow{F_I', F_0}_+ rem_I, \forall 1 \leq I \leq 2^m$
- Multi-fix rectification exists at target W:

if and only if
$$\prod_{l=1}^{2^m} rem_l \xrightarrow{F_0} 0$$

19/28

MFR Application: Rectification Check

- Constructing the F_i':
 - F'_1 , where $F'_1[f_W] = W + \delta(1) = W$,
 - F_2^{\prime} , where $F_2^{\prime}[f_W] = W + \delta(2) = W + 1$,
 - F_3^7 , where $F_3^7[f_W] = W + \delta(3) = W + \beta$,
 - F_4' , where $F_4'[f_W] = W + \delta(4) = W + \beta^2$

MFR Application: Rectification Check

- Constructing the F_i':
 - F'_1 , where $F'_1[f_W] = W + \delta(1) = W$,
 - F_2^{\prime} , where $F_2^{\prime}[f_W] = W + \delta(2) = W + 1$,
 - F_3' , where $F_3'[f_W] = W + \delta(3) = W + \beta$,
 - F_{4}^{\prime} , where $F_{4}^{\prime}[f_{W}] = W + \delta(4) = W + \beta^{2}$
- Reducing the specification f : Z + A ⋅ B:
 - $rem_1 = f \xrightarrow{F_1' \cup F_0}_+ \alpha^{27}(a_2b_1b_2) + \alpha^{36}(a_2b_2)$
 - $rem_2 = f \frac{F_2' \cup F_0}{A_2} + \alpha^{27} (a_2b_1b_2 + a_2b_1) + \alpha^{36} (a_2b_2)$
 - $rem_3 = f \xrightarrow{F_3' \cup F_0} \alpha^{27} (a_2b_1b_2)$
 - $rem_4 = f \xrightarrow{F_4' \cup F_0} \alpha^{27} (a_2b_1b_2 + a_2b_1)$

MFR Application: Rectification Check

- Constructing the F'₁:
 - F'_1 , where $F'_1[f_W] = W + \delta(1) = W$,
 - F_2^{\prime} , where $F_2^{\prime}[f_W] = W + \delta(2) = W + 1$,
 - F_3' , where $F_3'[f_W] = W + \delta(3) = W + \beta$,
 - F_{4}' , where $F_{4}'[f_{W}] = W + \delta(4) = W + \beta^{2}$
- Reducing the specification f : Z + A ⋅ B:

•
$$rem_1 = f \xrightarrow{F_1' \cup F_0}_+ \alpha^{27}(a_2b_1b_2) + \alpha^{36}(a_2b_2)$$

•
$$rem_2 = f \frac{F_2' \cup F_0}{A_2} + \alpha^{27} (a_2b_1b_2 + a_2b_1) + \alpha^{36} (a_2b_2)$$

•
$$rem_3 = f \xrightarrow{F_3' \cup F_0} \alpha^{27} (a_2b_1b_2)$$

•
$$rem_4 = f \xrightarrow{F'_4 \cup F_0} \alpha^{27} (a_2b_1b_2 + a_2b_1)$$

- $rem_1 \cdot rem_2 \cdot rem_3 \cdot rem_4 \xrightarrow{F_0}_+ 0$
- Target W with nets r₃ and rr₃ admits MFR

Implementation: Boolean Polynomials and ZDDs

- Boolean polynomials as unate cube sets
 - Monomial: a product of positive literals or a cube
 - Polynomial: set of such cubes

Implementation: Boolean Polynomials and ZDDs

- Boolean polynomials as unate cube sets
 - Monomial: a product of positive literals or a cube
 - Polynomial: set of such cubes
- ZDDs efficient for manipulating unate cube sets [Minato, DAC'93]

Implementation: Boolean Polynomials and ZDDs

- Boolean polynomials as unate cube sets
 - Monomial: a product of positive literals or a cube
 - Polynomial: set of such cubes
- ZDDs efficient for manipulating unate cube sets [Minato, DAC'93]
- $r_1 = yd + y + d$ as $\{yd, y, d\}$

Paths terminating in 1: yd, y, d.

Improved Reduction Using ZDDs

•
$$r_1 = yd + y + d$$
, $f_2 = y + xc + x + c$, $r_1 \xrightarrow{f_2}_+$

$$(yd + y + d) + (d + 1) \cdot (y + xc + x + c) \pmod{2}$$

$$= 2 \cdot (yd + y) + d + (d + 1) \cdot (xc + x + c) \pmod{2}$$

$$= d + (d + 1) \cdot (xc + x + c) \pmod{2}$$

• One step reduction: $else(r_1) + then(r_1) \cdot else(f_2)$ [Algorithm 6]

• Custom software:

- Custom software:
 - Reduction using ZDDs for remainder generation

- Custom software:
 - Reduction using ZDDs for remainder generation
 - Singular to compute $P_k(x)$ and model composite field

- Custom software:
 - Reduction using ZDDs for remainder generation
 - Singular to compute $P_k(x)$ and model composite field
 - Custom high level finite field engine

- Custom software:
 - Reduction using ZDDs for remainder generation
 - Singular to compute $P_k(x)$ and model composite field
 - Custom high level finite field engine
 - Bit-vector and coefficient computations
 - Rectification check

- Custom software:
 - Reduction using ZDDs for remainder generation
 - Singular to compute $P_k(x)$ and model composite field
 - Custom high level finite field engine
 - Bit-vector and coefficient computations
 - Rectification check
- Experiments performed on a 3.5GHz Intel(R) CoreTM i7-4770K
 Quad-Core CPU with 32 GB RAM

MFR Experiments: Mastrovito

n= Datapath Size, m= target word size, k= composite field size (degree of $P_k(X)$), AM = Maximum resident memory utilization in Mega Bytes, #G = Number of gates $\times 10^3$, #BO = Number of faulty outputs, PBS = Required time for PolyBori setup (ring declaration/poly collection/spec collection), VMS = Required time for verification, polynomial factorization and computing $P_k(X)$, and MFR setup, RC = Required time for MFR check, TE = Required time for total execution

n	m	k	AM	#G	#BO	PBS	VMS	RC	TE
16	5	80	100	0.8	6	0.04	0.06	0.12	0.22
32	5	160	120	2.8	8	0.13	0.12	0.4	0.65
163	5	815	550	69.8	6	6.04	3.36	11.9	21.3
233	2	466	750	119	3	13	1.2	0.01	14.2
283	2	566	1300	190	2	38	4.2	0.1	42.3
409	2	818	2400	384	2	190	5	0.1	195
571	2	1042	5000	827	5	2150	12	0.1	2162

MFR Experiments: Montgomery

n= Datapath Size, m= target word size, k= composite field size (degree of $P_k(X)$), AM = Maximum resident memory utilization in Mega Bytes, #G = Number of gates $\times 10^3$, #BO = Number of faulty outputs, PBS = Required time for PolyBori setup (ring declaration/poly collection/spec collection), VMS = Required time for verification, polynomial factorization and computing $P_k(X)$, and MFR setup, RC = Required time for MFR check, TE = Required time for total execution

n	m	k	AM	#G	#BO	PBS	VMS	RC	TE
16	5	80	100	0.9	16	0.04	0.56	35.6	36
32	5	160	120	2.8	32	0.13	0.57	27.6	28.3
163	5	815	550	57.5	128	5.2	6.8	262	274
233	2	466	750	112	233	11.5	3.5	360	375
283	2	566	1300	171	283	35	11	1503	1549
409	2	818	2400	340	409	134	10	4920	5064
571	2	1042	5000	663	12	1313	82	0.2	1395

MFR Experiments: Point Addition

n= Datapath Size, m= target word size, k= composite field size (degree of $P_k(X)$), AM = Maximum resident memory utilization in Mega Bytes, #G = Number of gates $\times 10^3$, #BO = Number of faulty outputs, PBS = Required time for PolyBori setup (ring declaration/poly collection/spec collection), VMS = Required time for verification, polynomial factorization and computing $P_k(X)$, and MFR setup, RC = Required time for MFR check, TE = Required time for total execution

n	m	k	AM	#G	#BO	PBS	VMS	RC	TE
16	5	80	100	0.9	7	0.06	0.11	1.73	1.9
32	5	160	120	2.9	13	0.18	0.8	134	135
163	5	815	550	71.6	22	15.7	4.7	15	35.4
233	2	466	750	122	233	19.2	2.15	0.15	21.5
283	2	566	1300	208	4	80.4	6.1	0.1	86.6
409	2	818	2400	368	409	220	10	2007	2237
571	2	1042	5000	813	5	2583	27	880	3490

- Algebraic approach for m-target MFR checking
 - Efficiency derived by interpreting targets as a bit-vector

- Algebraic approach for m-target MFR checking
 - Efficiency derived by interpreting targets as a bit-vector
- New mathematical insights for unified framework
 - Field incompatibility
 - Primitive polynomial computation

- Algebraic approach for m-target MFR checking
 - Efficiency derived by interpreting targets as a bit-vector
- New mathematical insights for unified framework
 - Field incompatibility
 - Primitive polynomial computation
- Computation of rectification function at the word-level
 - $W = a_2b_1b_2 + \beta \cdot a_2b_2$
 - $r_3 = (a_2 \wedge b_1 \wedge b_2), rr_3 = (a_2 \wedge b_2)$

- Algebraic approach for m-target MFR checking
 - Efficiency derived by interpreting targets as a bit-vector
- New mathematical insights for unified framework
 - Field incompatibility
 - Primitive polynomial computation
- Computation of rectification function at the word-level
 - $W = a_2b_1b_2 + \beta \cdot a_2b_2$
 - $r_3 = (a_2 \wedge b_1 \wedge b_2), rr_3 = (a_2 \wedge b_2)$
- Define and formulate existence of don't cares at the word-level

- Algebraic approach for m-target MFR checking
 - Efficiency derived by interpreting targets as a bit-vector
- New mathematical insights for unified framework
 - Field incompatibility
 - Primitive polynomial computation
- Computation of rectification function at the word-level
 - $W = a_2b_1b_2 + \beta \cdot a_2b_2$
 - $r_3 = (a_2 \wedge b_1 \wedge b_2), rr_3 = (a_2 \wedge b_2)$
- Define and formulate existence of don't cares at the word-level
- Extend the approach to integer arithmetic circuits

THANK YOU

Email: vikas.k.rao@utah.edu

