1. **Demuestre:** Sea A una matriz inversible y c \neq 0, cA es una matriz inversible y (cA)⁻¹ = $\frac{1}{c}$ A⁻¹.

2. Demuestre: Sea A una matriz inversible de orden n, el SEL Ax = b tiene una solución única.

3. ¿Cuando serán iguales dos matrices?

4. Mencione 6 tipos de matrices.

- **5. Defina:** Suma de matrices.
 - 1. ¿Es posible sumar matrices de diferente tamaño?

6. Defina: Multiplicación matricial.

7. Sea **A** una matriz de m x n y **B** una matriz de n x p. Como hago para encontrar sólo una fila o una columna del producto **AB**.

8. Complete (Producto de matrices): Sean A, B y C matrices con tamaño tales que los productos matriciales dados están bien definidos y sea c un escalar. Entonces, valen las siguientes propiedades:

. . .

9. Propiedades de la potencia de matrices.

10. Defina: Matriz transpuesta.

11. Complete (Matriz transpuesta): Sean A y B matrices con tamaño tales que las operaciones dadas están bien definidos y sea c un escalar. Entonces, valen las siguientes propiedades:

. . .

12. Defina: Matriz simétrica.

- **13. Demuestre:** Sea A una matriz cuadrada.
 - 1. La matriz $\mathbf{B} = \mathbf{A}\mathbf{A}^{\mathsf{T}}$ es una matriz simétrica.
 - 2. La matriz $\mathbf{B} = \mathbf{A} + \mathbf{A}^{\mathsf{T}}$ es una matriz simétrica.

14. Defina: Matriz antisimétrica.

15. Demuestre: Sea **A** una matriz cuadrada. La matriz **A** – **A**^T es una matriz antisimétrica.

16. Defina: Traza:

- **17. Demuestre:** Sean **A** y **B** matrices de orden n y sea c un escalar. Entonces, valen las siguientes propiedades:
 - 1. tr(A + B) = tr(A) + tr(B)
 - 2. tr(cA) = ctr(A)
 - 3. tr(AT) = tr(A)
 - 4. tr(AB) = tr(BA)

18. Defina: Matriz inversa.

- 1. ¿Toda matriz no cuadrada tiene inversa?
- 2. ¿Toda matriz cuadrada tiene inversa?

19. Demuestre: Si **A** es una matriz inversible, entonces su inversa es única.

- **20. Demuestre:** Sean **A** y **B** dos matrices inversibles del mismo tamaño, entonces:
 - 1. AB es una matriz inversible.
 - 2. La inversa de AB es $B^{-1}A^{-1}$, es decir, $(AB)^{-1} = B^{-1}A^{-1}$.

21. Mencione: 4 propiedades de la matriz inversa.

22. Demuestre: Sea A una matriz inversible, entonces el SEL Ax = b tiene una solución **única** dada por:

 $x = A^{-1} b$

23. Defina: Matriz elemental.

24. Defina: Matrices equivalentes.

25. Demuestre: Una matriz cuadrada es inversible si y sólo si puede escribirse como el producto de matrices elementales.

- 26. Defina: Determinantes.
 - 1. Determinante matriz 2 x 2.
 - 2. Menor.
 - 3. Cofactor.
 - **4.** Determinante matriz $n \times n$.

- 27. Demuestre: Sea A una matriz cuadrada:
 - Si A tiene una fila o una columna de ceros, entonces det(A) = 0.
 - 2. $det(A) = det(A^T)$.
 - **3.** Si **A** una matriz triangular, entonces:

$$det(A) = a_{11} a_{22} \dots a_{nn}$$

28. Mencione las propiedades de las matrices asociadas con las operaciones elementales.

29. Demuestre: Una matriz cuadrada A es inversible si y sólo si det(A) ≠ 0.

30. Demuestre: Si una matriz cuadrada **A** es inversible entonces:

$$det(A^{-1}) = \frac{1}{det(A)}$$

31. Defina: Matriz adjunta.

32. Defina la "Regla de Cramer".

33. Sean **A** y **B** matrices de orden n. Demostrar que si **A** es inversible, entonces $det(A) = det(A^{-1}BA)$.

34. Demuestre, utilizando cofactores, que si A es una matriz cuadrada, entonces $det(A) = det(A^T)$.

35. Sea **A** una matriz de orden n, diferente de cero, que cumple $A^{10} = 0$. Explique por qué **A** es singular. Indique las propiedades que utiliza para responder.

36. ¿Qué es una matriz singular?

37. Demuestre que si A es una matriz antisimétrica de orden n, entonces $det(A) = (-1)^n det(A)$.

38. Demuestre que si **A** es una matriz antisimétrica de orden n impar, entonces **det(A) = 0**.

39. Demuestre que si **A** es una matriz no singular de orden n (n \geqslant 3), entonces **det**(Adj(A)) = $det(A)^{n-1}$.

40. La suma de dos matrices inversibles ¿Es inversibles? Explique por qué sí o por qué no. Muestre un ejemplo apropiado.