Intelligent Systems

Tutorial: Week 3

Dr. Parham Moradi

Dr. Nameer Al Khafaf

- Exercise 1 perform core operations in GA step by step
- Objective function:

$$min: f(x) = (x - 11)^2, x \in [0, 15]$$

- Perform the following core steps with the given parameters:
 - 1. Initialize 6 individuals and evaluate each individual
 - 2. Perform crossover with specified crossover point
 - 3. Perform mutation with specified mutation point
 - 4. Perform selection
- The best individual (i.e., optimal solution x) and its fitness (i.e., f)

- Step 1 Initialization 6 individuals
 - \circ Finish the x values, fitness f in the table

Individual number	Individuals	x values	Fitness f
1	0100		
2	1110		
3	1000		
4	0010		
5	1100		
6	0001		

- Step 2 Perform one point crossover with the labelled data points
 - Finish offspring, x values

Individual number	Individuals	Crossover points	Offspring	x values
1	01 00	2	1100	
2	11 10	2		
3	1 000	1		
4	0 010	1		
5	110 0	3		
6	000 1	3		

- Step 3 Perform mutation
 - \circ Finish offspring generated from crossover operation, offspring after mutation, x values, fitness f with the new offspring

Individual number	Offspring	Mutation point	Offspring after mutation	x values	Fitness f
1	1100	No mutation	1100		
2	0110	2			
3	0000	No mutation			
4	1010	4			
5	0000	No mutation			
6	1101	No mutation			

Step 4 – Perform selection

Individual number	Offspring	x values	Fitness f	Probability
1	1100	12	1	
2	0010	2	81	
3	0000	0	121	
4	1011	11	0	
5	0000	0	121	
6	1101	13	4	

- Output the best individual and its objective function
- The optimal x and minimal f?

- Exercise 2 programming with GA
- Objective function:

min:
$$f(x) = (x - 0.5)^2, x \in [0, 2]$$

• Find the optimal solution x and the minimal f(x) with default parameters in GA

• The optimal solution of x and minimal f(x)?

- GA package in Matlab:
 - [x, fval] = ga(fun, nvars, A, b, Aeq, beq, lb, ub, nonlcon, options)
 - fun: objective function
 - *nvars*: the dimension (number of design variables) of fun
 - A and b: A=[] and b=[] if no linear inequalities exist
 - Aeq and beq: set Aeq=[] and beq=[] if no linear equalities exist
 - *Ib* and *ub*: range of decision variables, set Ib=[] and ub=[] if no bounds exist
 - nonlcon: nonlcon=[] if no nonlinear constraints exist

- Exercise 3 programming with GA
- Objective function:

min:
$$f(x_1, x_2) = x_1 \cos(2\pi x_2) + x_2 \sin(2\pi x_1), x_1 \in [-2, 2], x_2 \in [-2, 2]$$

- The optimal solution of x_1 , x_2 and minimal $f(x_1, x_2)$ using default parameters in GA?
- Show the update of the best fitness $f(x_1, x_2)$ in each generation with graph?

- Exercise 4 programming with GA
- Objective function:

$$min: f(x_1, x_2) = -3x_1^3 + 2x_2^3 + 2x_1^2 - 5x_2^2 + 2x_1x_2 + x_1 - 2x_2 + 10, x_1\epsilon[-3, 2], x_2\epsilon[-5, 3]$$

Constraints:

$$2x_1 + 3x_2 \le 8,$$

$$5x_1 - 2x_2 \le 2,$$

$$x_1 + x_2 \ge -6$$

• The optimal solution of x_1 , x_2 and minimal $f(x_1, x_2)$ using default parameters in GA?

Show the update of the best fitness $f(x_1, x_2)$ in each generation?