

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по курсу

«Data Science»

Слушатель: Глазунов Игорь Владимирович

Цели и задачи работы.

- Цель прогнозирование отношения матрицанаполнитель в композиционном материале (в данной работе рассматривается базальтопластик);
- Задача №1 изучить теоретические вопросы работы и предоставленные таблицы с данными;
- Задача №2 построить лучшую модель данных для прогнозирования;
- Задача №3 обучить нейросеть которая способна прогнозировать отношение матрица-наполнитель с высокой вероятностью;
- Задача №4 написать пользовательское приложение для облегчения взаимодействия с моделью данных.

Актуальность работы.

- Работа позволяет на практике пройти все этапы работы с данными;
- Сами модели позволяют сократить количество реально проводимых испытаний и тем самым сэкономить время и другие ресурсы;
- Поиск и предсказание оптимальных параметров позволяет обнаружить новые направления исследований.

Начало работы:

✓ План работы:

- 1. Изучение теоретических основ и методов решения поставленной залачи:
- 2. Разведочный анализ предложенных данных;
- 3. Предобработка данных;
- 4. Разработка и обучение нескольких моделей для прогноза прочности при растяжении и модуля упругости при растяжении;
- 5. Разработка нейронной сети для рекомендации соотношения матрица-наполнитель;
- 6. Разработка пользовательского приложения на базе Flask;
- 7. Создание репозитория на Github.

✓ Методы применённые в ходе работы:

- Работа с дата фреймами при помощи pandas. Data Frame;
- Построение графиков при помощи seaborn, plotly, matplotlib.pyplot;
- Предобработка данных при помощи sklearn.preprocessing: Normalizer, LabelEncoder, MinMaxScaler, StandardScaler

Разведочный анализ предложенных данных

При загрузке и обработке датасетов, было произведено:

Объединение датасетов по методу INNER.

Изучение описательной статистики каждой переменной - среднее, медиана, стандартное отклонение, минимум, максимум, квартили.

Проверка данных и приведение их к удобному для работы виду (угол нашивки приведён к двоичному виду), Проверка на пропуски и дубликаты.

Построение гистограмм и «ящиков с усами». Удаление выбросов.

Разведочный анализ очищенного от выбросов объединённого датасета.:

Среднее, медианное значение было рассмотрено отдельно для каждой колонки. Были построены гистограммы распределения и Диаграммы «ящиков с усами» (боксплоты). Были выведены попарные графики рассеяния точек (матрицы диаграмм рассеяния) и графики квантильквантиль. Зависимости между колонками не выявлено.

В ходе разведочного анализа явной корреляции не было выявлено. Это иллюстрируют корреляционные матрица в виде тепловой карты для коэффициента ранговой корреляции Кендалла и коэффициента корреляции Пирсона.

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1023 entries, 0 to 1022 Data columns (total 11 columns): # Column Non-Null Count Dtype 0 Unnamed: 0 1023 non-null int64 1023 non-null Соотношение матрица-наполнитель float64 Плотность, кг/м3 1023 non-null float64 1023 non-null модуль упругости, ГПа float64 Количество отвердителя, м.% 1023 non-null float64 Содержание эпоксидных групп,%_2 1023 non-null float64 Температура вспышки, С 2 1023 non-null float64 Поверхностная плотность, г/м2 1023 non-null float64 8 Модуль упругости при растяжении, ГПа 1023 non-null float64 9 Прочность при растяжении, МПа 1023 non-null float64 10 Потребление смолы, г/м2 1023 non-null float64 dtvpes: float64(10), int64(1) memory usage: 88.0 KB <class 'pandas.core.frame.DataFrame'> RangeIndex: 1040 entries, 0 to 1039 Data columns (total 4 columns): # Column Non-Null Count Dtype 1040 non-null 0 Unnamed: 0 Угол нашивки, град 1040 non-null Шаг нашивки 1040 non-null float64 Плотность нашивки 1040 non-null float64 dtypes: float64(2), int64(2) memory usage: 32.6 KB

#Объединим 2 датасета по индексу тип объединения INNER df_rw = df_X_nup_rnd.merge(df_X_bp_rnd, left_index = True, right_index = True, how = 'inner')

	0	1	2	3	4	5	6
Угол нашивки, град	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Шаг нашивки	4.000000	4.000000	4.000000	5.000000	5.000000	5.000000	5.000000
Плотность нашивки	57.000000	60.000000	70.000000	47.000000	57.000000	60.000000	70.000000
Соотношение матрица- наполнитель	1.857143	1.857143	1.857143	1.857143	2.771331	2.767918	2.569620
Количество отвердителя, м.%	30.000000	50.000000	49.900000	129.000000	111.860000	111.860000	111.860000
Содержание эпоксидных групп,%_2	22.267857	23.750000	33.000000	21.250000	22.267857	22.267857	22.267857
Температура вспышки, С_2	100.000000	284.615385	284.615385	300.000000	284.615385	284.615385	284.615385
Плотность, кг/м3	2030.000000	2030.000000	2030.000000	2030.000000	2030.000000	2000.000000	1910.000000
Поверхностная плотность, г/м2	210.000000	210.000000	210.000000	210.000000	210.000000	210.000000	210.000000
модуль упругости, ГПа	738.736842	738.736842	738.736842	738.736842	753.000000	748.000000	807.000000
Модуль упругости при растяжении, ГПа	70.000000	70.000000	70.000000	70.000000	70.000000	70.000000	70.000000
Прочность при растяжении, МПа	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000
Потребление смолы, г/ м2	220.000000	220.000000	220.000000	220.000000	220.000000	220.000000	220.000000

0.510846

dtype: float64

: # Среднее значение df.mean()

Плотность нашивки

Плотность, кг/м3

Соотношение матрица-наполнитель Количество отвердителя, м.%

Содержание эпоксидных групп,% 2

Поверхностная плотность, г/м2

Прочность при растяжении, МПа

Модуль упругости при растяжении, ГПа

Температура вспышки, С 2

модуль упругости, ГПа

Потребление смолы, г/м2

Угол нашивки

Шаг нашивки

™ Угол нашивки	1.000000	
Шаг нашивки	6.972862	
[™] Плотность нашивки	57.584225	
Соотношение матрица-наполнитель	2.907832	
Количество отвердителя, м.%	111.162090	
°° Содержание эпоксидных групп,%_2	22.177681	
Температура вспышки, С_2	286.220763	
Плотность, кг/м3	1977.321002	
⊸∞Поверхностная плотность, г/м2	457.732246	
модуль упругости, ГПа	736.178435	
[™] Модуль упругости при растяжении, ГПа	73.247594	
_» Прочность при растяжении, МПа	2455.974462	
Потребление смолы, г/м2	218.697660	
dtype: float64		

Предобработка данных:

✓ Нормализация данных:

- Нормализуем данные MinMaxScaler();
- Построим график плотности ядра;
- Проверим результат MinMaxScaler();
- Построим графики MinMaxScaler();
- Нормализуем данные с помощью Normalizer();
- Проверим результат Normalizer();
- Построим графики Normalizer();

✓ Стандартизация данных:

- Стандартизируем данные с помощью StandardScaler();
- Проверим результат StandardScaler();
- Построим графики StandardScaler();

Разработка и обучение моделей для прогноза прочности при растяжении:

- Разбиваем данные на тестовую и тренировочную выборки;
- Обучаем модель;
- Вычисляем коэффициент детерминации;
- Считаем MAE, MAPE, MSE, RMSE, test score train и test score test;
- Сравниваем с результатами модели, выдающей среднее значение;
- Построим графики для тестовых и прогнозных значений;
- Построим гистограмму распределения ошибки
- Использованные работы и их результаты описаны справа.

ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР мгту им. Н. Э. Баумана

Support Vector Regression Results Train:

метод опорных векторов;

Test score: 0.99

Support Vector Regression Results:

случайный лес;

дерево решений;

Лассо.

линейная регрессия;

градиентный бустинг;

К-ближайших соседей;

многослойный перцептрон;

стохастический градиентный спуск;

SVR MAE: 78 SVR MAPE: 0.04 SVR MSE: 11671.63 SVR RMSE: 108.04 Test score: 0.95

Random Forest Regressor Results Train: Test score: 0.98

Random Forest Regressor Results:

RF MAE: 75 RF MAPE: 0.03 RF MSE: 9144.40 RF RMSE: 95.63 Test score: 0.96 Linear Regression Results Train: Test score: 0.97

Linear Regression Results:

lr MAE: 62 lr MAPE: 0.03 lr MSE: 6149.31 1r RMSE: 78.42 Test score: 0.97

GBR MAPE: 0.03 GBR MSE: 6580.70 GBR RMSE: 81.12 Test score: 0.97

Test score: 0.99

GBR MAE: 65

K Neighbors Regressor Results Train:

Gradient Boosting Regressor Results Train:

Gradient Boosting Regressor Results:

Test score: 0.94

K Neighbors Regressor Results:

KNN MAE: 102 KNN MAPE: 0.04 KNN_MSE: 16723.93 KNN RMSE: 129.32 Test score: 0.92

Decision Tree Regressor Results Train:

Test score: 1.00

Decision Tree Regressor Results:

DTR MSE: 17888.80 DTR MAPE: 0.05

DTR MAE: 105

DTR RMSE: 133.75 Test score: 0.92

Stochastic Gradient Descent Regressor Results Train:

Test score: 0.95

Stochastic Gradient Descent Regressor Results:

SGD MAE: 70 SGD MSE: 7929.30 SGD RMSE: 89.05 SGD MAPE: 0.03 Test score: 0.96

Multi-layer Perceptron regressor Results Train:

Test score: 0.96

Multi-layer Perceptron regressor Results:

SGD MAE: 67 SGD MAPE: 0.03 SGD_MSE: 7378.94 SGD RMSE: 85.90 Test score: 0.97

Lasso regressor Results Train:

Test score: 0.95

Lasso regressor Results:

SGD MAE: 69 SGD MAPE: 0.03 SGD MSE: 7750.18 SGD_RMSE: 88.04 Test score: 0.96

Регрессор MAE Test score 78.477914 Support Vector 0.945472 RandomForest 75.456863 0.957278 0.971271 2 Linear Regression 61.986894 GradientBoosting 65.018011 0.969256 KNeighbors 102.030259 0.921868 5 DecisionTree 104.624022 0.916426 SGD 69.976071 0.962955 7 67.113346 0.965526 8 69.475066 0.963792 Lasso

3500	
3000	
2500	
2000	
1500	

Количество наблюдений

Поиск гиперпараметров:

- Поиск гиперпараметров методом GridSearchCV с перекрёстной проверкой с количеством блоков 10;
- Выводим гиперпараметры для оптимальной модели;
- Подставляем оптимальные гиперпараметры в модель случайного леса;
- Обучаем модель;
- Оцениваем точность на тестовом наборе;
- Выводим наилучшее значение правильности перекрёстной проверки, наилучшие параметры, наилучшую модель по всем 9 методам;
- Проверяем правильность на тестовом наборе

	Регрессор	MAE	Test score
0	Support Vector	78.477914	0.945472
1	RandomForest	75.456863	0.957278
2	Linear Regression	61.986894	0.971271
3	GradientBoosting	65.018011	0.969256
4	KNeighbors	102.030259	0.921868
5	DecisionTree	104.624022	0.916426
6	SGD	69.976071	0.962955
7	MLP	67.113346	0.965526
8	Lasso	69.475066	0.963792
9	RandomForest_GridSearchCV	68.825594	0.963944
10	KNeighbors_GridSearchCV	99.281694	0.923491
11	DecisionTree_GridSearchCV	168.624997	0.778642

```
pipe = Pipeline([('preprocessing', StandardScaler()), ('regressor', SVR())])
param grid = [
{'regressor': [SVR()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None],
regressor_gamma': [0.001, 0.01, 0.1, 1, 10, 100],
 'regressor__C': [0.001, 0.01, 0.1, 1, 10, 100]},
{'regressor': [RandomForestRegressor(n estimators = 100)],
 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [LinearRegression()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
('regressor': [GradientBoostingRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [KNeighborsRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
 ['regressor': [DecisionTreeRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [SGDRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [MLPRegressor(random_state = 1, max_iter = 500)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
('regressor': [linear_model.Lasso(alpha = 0.1)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},]
grid = GridSearchCV(pipe, param grid, cv = 10)
grid.fit(x_train_1, np.ravel(y_train_1))
print("Наилучшие параметры:\n{}\n".format(grid.best_params_))
print("Наилучшее значение правильности перекрестной проверки: {:.2f}".format(grid.best score ))
print("Правильность на тестовом наборе: {:.2f}".format(grid.score(x test 1, y test 1)))
Наилучшие параметры:
{'preprocessing': MinMaxScaler(), 'regressor': Lasso(alpha=0.1)}
Наилучшее значение правильности перекрестной проверки: 0.97
Правильность на тестовом наборе: 0.97
print("Наилучшая модель:\n{}".format(grid.best_estimator_))
Наилучшая модель:
Pipeline(steps=[('preprocessing', MinMaxScaler()),
                ('regressor', Lasso(alpha=0.1))])
```

Лучший препроцессинг - MinMaxScaler. Лучшая модель - лассо регрессии.

Разработка и обучение моделей для прогноза модуль упругости при растяжении:

- Разбиваем данные на тестовую и тренировочную выборки;
- Обучаем модель;
- Вычисляем коэффициент детерминации;
- Считаем MAE, MAPE, MSE, RMSE, test score train и test score test;
- Сравниваем с результатами модели, выдающей среднее значение;
- Построим графики для тестовых и прогнозных значений;
- Построим гистограмму распределения ошибки
- Использованные работы и их результаты описаны справа.

ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР мгту им. н. э. Баумана Support Vector Regression Results Train: Test score: 0.90

Support Vector Regression Results:

SVR_MAE: 3 SVR_MAPE: 0.05 SVR_MSE: 16.94 SVR_RMSE: 4.12 Test score: -0.71 Random Forest Regressor Results Train: Test score: 0.38

Random Forest Regressor Results: RF MAE: 3

RF_MAE: 3 RF_MAPE: 0.04 RF_MSE: 10.49 RF_RMSE: 3.24 Test score: -0.06 Linear Regression Results Train: Test score: 0.02

Linear Regression Results: lr_MAE: 3

lr_MAE: 3 lr_MAPE: 0.04 lr_MSE: 10.17 lr_RMSE: 3.19 Test score: -0.03 Test score: 0.49
Gradient Boosting Regressor Results:
GBR_MAE: 3
GBR_MAPE: 0.04
GBR_MSE: 10.92
GBR_RMSE: 3.30
Test score: -0.10

Gradient Boosting Regressor Results Train:

МАТОП	OHOMILLIV	DAI/TOBOD:
мстод	опорных	векторов;

- случайный лес;
- линейная регрессия;
- градиентный бустинг;
- К-ближайших соседей;
- дерево решений;
- стохастический градиентный спуск;
- многослойный перцептрон;
- Лассо.

	Perpeccop	MAE	Test score
0	Support Vector	3.328027	-0.709412
1	RandomForest	2.654599	-0.058527
2	Linear Regression	2.612192	-0.026243
3	GradientBoosting	2.683693	-0.101453
4	KNeighbors	2.826817	-0.219121
5	DecisionTree	3.793327	-1.193823
6	SGD	2.622215	-0.059723
7	MLP	2.612881	-0.034282
8	Lasso	2.580193	-0.008879

Decision	Tree Regressor	Results Train
Test scor	e: 1.00	
Decision	Tree Regressor	Results:
DTR_MAE:	4	
DTR_MSE:	21.74	
DTR_RMSE:	4.66	
DTR MAPE:	0.05	
Test scor	e: -1.19	

K Neighbors Regressor Results Train:

K Neighbors Regressor Results:

Test score: 0.18

KNN MAE: 3

KNN_MAPE: 0.04 KNN_MSE: 12.08

KNN RMSE: 3.48

Stochastic Gradient Descent Regressor Results Train: Test score: -0.02 Stochastic Gradient Descent Regressor Results:

SGD_MAE: 3 SGD_MSE: 10.50 SGD_RMSE: 3.24 SGD_MAPE: 0.04 Test score: -0.06

Multi-layer Perceptron regressor Results Train:

Test score: 0.02

Multi-layer Perceptron regressor Results: SGD MAE: 3

SGD_MAPE: 0.04 SGD_MSE: 10.25 SGD_RMSE: 3.20 Test score: -0.03

Lasso regressor Results Train:

Test score: 0.00

Lasso regressor Results:

SGD_MAE: 3 SGD_MAPE: 0.04 SGD_MSE: 10.00 SGD_RMSE: 3.16 Test score: -0.01

Поиск гиперпараметров:

- Поиск гиперпараметров методом GridSearchCV с перекрёстной проверкой с количеством блоков 10;
- Выводим гиперпараметры для оптимальной модели;
- Подставляем оптимальные гиперпараметры в модель случайного леса;
- Обучаем модель;
- Оцениваем точность на тестовом наборе;
- Выводим наилучшее значение правильности перекрёстной проверки, наилучшие параметры, наилучшую модель по всем 9 методам;
- Проверяем правильность на тестовом наборе

	Регрессор	MAE	Test score
0	Support Vector	3.328027	-0.709412
1	RandomForest	2.654599	-0.058527
2	Linear Regression	2.612192	-0.026243
3	GradientBoosting	2.683693	-0.101453
4	KNeighbors	2.826817	-0.219121
5	DecisionTree	3.793327	-1.193823
6	SGD	2.622215	-0.059723
7	MLP	2.612881	-0.034282
8	Lasso	2.580193	-0.008879
9	$RandomForest_GridSearchCV$	2.613278	-0.035022
10	KNeighbors_GridSearchCV	2.792868	-0.014218
11	DecisionTree_GridSearchCV	2.600754	-0.005112

```
pipe2 = Pipeline([('preprocessing', StandardScaler()), ('regressor', SVR())])
{'regressor': [SVR()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None],
'regressor__gamma': [0.001, 0.01, 0.1, 1, 10, 100],
'regressor_C': [0.001, 0.01, 0.1, 1, 10, 100]},
{ 'regressor': [RandomForestRegressor(n_estimators=100)],
'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [LinearRegression()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
['regressor': [GradientBoostingRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
 'regressor': [KNeighborsRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [DecisionTreeRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [SGDRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [MLPRegressor(random_state=1, max_iter=500)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [linear model.Lasso(alpha=0.1)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},]
grid2 = GridSearchCV(pipe2, param grid2, cv=10)
grid2.fit(x_train_2, np.ravel(y_train_2))
print("Наилучшие параметры:\n{}\n".format(grid2.best_params_))
print("Наилучшее значение правильности перекрестной проверки: {:.2f}".format(grid2.best_score_))
print("Правильность на тестовом наборе: {:.2f}".format(grid2.score(x test 2, y test 2)))
Наилучшие параметры:
{'preprocessing': StandardScaler(), 'regressor': SVR(C=10, gamma=100), 'regressor C': 10, 'regressor gamma': 100}
Наилучшее значение правильности перекрестной проверки: -0.01
Правильность на тестовом наборе: -0.01
print("Наилучшая модель:\n{}".format(grid2.best_estimator_))
Pipeline(steps=[('preprocessing', StandardScaler()),
                ('regressor', SVR(C=10, gamma=100))])
```

Лучший препроцессинг - StandardScaler. Лучшая модель - Метод опорных векторов.

Нейронная сеть для соотношения «матрицанаполнитель»:

✓ Первая модель:

- Сформируем входы и выход для модели.
- Разобьём выборки на обучающую и тестовую.
- Нормализуем данные.
- Создадим функцию для поиска наилучших параметров и слоёв.
- Построим модель, определим параметры, найдем оптимальные параметры посмотрим на результаты;
- Повторим все эти этапы до построения окончательной молели:
- Обучим нейросеть;
- Посмотрим на потери модели;
- Построим график потерь на тренировочной и тестовой выборках.
- Построим график результата работы модели.

5.1 Входы и выход для модели

```
# Сформируем входы и выход для модели
tv = df['Cooтнoшение матрица-наполнитель']
tr v = df.loc[:, df.columns != 'Соотношение матрица-наполнитель']
# Разбиваем выборки на обучающую и тестовую
x_train, x_test, y_train, y_test = train_test_split(tr_v, tv, test_size = 0.3, random_state = 14)
```

5.2 Нормализация данных.

```
# Нормализуем данные
                                                                                                 Trainable params: 11,023
                                                                                                 Non-trainable params: 0
x_train_n = tf.keras.layers.Normalization(axis =-1)
x train n.adapt(np.array(x train))
                                                                                                  Best: 0.004639 using {'batch_size': 50, 'epochs': 200}
                                                                                                  0.003077 (0.009231) with: {'batch size': 4, 'epochs': 10}
def create model(lyrs=[32], act='softmax', opt='SGD', dr=0.1):
                                                                                                  0.003077 (0.009231) with: {'batch_size': 4, 'epochs': 50}
                                                                                                  0.001538 (0.004615) with: {'batch size': 4, 'epochs': 100
    seed = 7
                                                                                                  Best: 0.004639 using {'opt': 'Adagrad'}
    np.random.seed(seed)
                                                                                                  0.001538 (0.004615) with: {'opt': 'SGD'}
    tf.random.set seed(seed)
                                                                                                  0.001538 (0.004615) with: {'opt': 'RMSprop'}
                                                                                                  0.004639 (0.009877) with: {'opt': 'Adagrad'}
    model = Sequential()
                                                                                                  0.001563 (0.004688) with: {'opt': 'Adadelta'}
    model.add(Dense(lyrs[0], input_dim=x_train.shape[1], activation=act))
                                                                                                  0.000000 (0.000000) with: {'opt': 'Adam'}
    for i in range(1,len(lyrs)):
                                                                                                  0.001538 (0.004615) with: {'opt': 'Nadam'}
        model.add(Dense(lyrs[i], activation=act))
                                                                                                  Best: 0.001538 using {'lyrs': [8]}
    model.add(Dropout(dr))
                                                                                                  0.001538 (0.004615) with: {'lyrs': [8]}
    model.add(Dense(3, activation='tanh')) # выходной слой
                                                                                                  0.001538 (0.004615) with: {'lyrs': [16, 4]}
                                                                                                  0.001538 (0.004615) with: {'lyrs': [32, 8, 3]}
    model.compile(loss='binary crossentropy', optimizer=opt, metrics=['mae', 'accuracy'])
                                                                                                  0.001538 (0.004615) with: {'lyrs': [12, 6, 3]}
                                                                                                  0.001538 (0.004615) with: {'lyrs': [64, 64, 3]}

    Ошибка на обучающей выборке
    Ошибка на тестовой выборке

                                                                                                  0.001538 (0.004615) with: {'lyrs': [128, 64, 16, 3]}
    return model
                                                                                                  Best: 0.003101 using {'dr': 0.2}
                                                                                                 0.001538 (0.004615) with: {'dr': 0.0}
                                                                                                 0.001538 (0.004615) with: {'dr':
                                                                                                 0.001538 (0.004615) with: {'dr': 0.05}
                                                                                                  0.001538 (0.004615) with: {'dr': 0.1}
                                                                                                  0.003101 (0.006202) with: {'dr': 0.2}
                       Q 0:
                                                                                                 0.001538 (0.004615) with: {'dr': 0.3}
                                                                                                  0.001538 (0.004615) with: {'dr': 0.5}
```

mae: 190.57%

Model: "sequential 195"

Output Shape ______

(None, 128)

(None, 64)

(None, 16)

(None, 3)

(None, 3)

(None, 3)

1040

Layer (type)

dense 490 (Dense)

dense 491 (Dense)

dense 492 (Dense)

dense 493 (Dense)

dense_494 (Dense)

9/9 [============] - 0s 1ms/step - loss: -28.9481 - mae: 1.9057 - accuracy: 0.0000e+00

dropout_195 (Dropout)

Нейронная сеть для соотношения «матрицанаполнитель»:

✓ Вторая модель:

- Сформируем входы и выход для модели.
- Разобьём выборки на обучающую и тестовую.
- Нормализуем данные.
- Сконфигурируем модель, зададим слои, посмотрим на архитектуру модели.
- Обучим модель.
- Посмотрим на MAE, MAPE, Test score и на потери модели.
- Построим график потерь на тренировочной и тестовой выборках.
- Построим график результата работы модели.
- Оценим модель по MSE.

2080 dense_500 (Dense) (None, 32) 528 dense 501 (Dense) (None, 16) dense 502 (Dense) (None, 1) Total params: 49,754 Trainable params: 49,729

Non-trainable params: 25 Model Results: Model MAE: 1 Model MAPE: 0.37

Test score: 1.20

[1.2014341354370117, 1.0960994958877563]

D Q

Количество наблюдения

True Values

График потерь модели

Тестовые и прогнозные значения: Keras neuronet

Ошибка на обучающей выборк Ошибка на тестовой выборке

Вывод: Эта модель в отличие от первой, хотя бы работает. Она даёт высокий уровень ошибки, но не понятно, из-за чего так происходит. Скорее всего начальных данных было мало для получения хорошей модели, однако несмотря на слабую корреляцию данных модель способна делать предсказания, график справа показывает распределение предсказанных и настоящих значений, они довольно похожи.

```
# оценка модели MSE
model1.evaluate(x test, y test, verbose = 1)
9/9 [==========squared_error: 1.0961
```

Приложение:

✓ Пользовательское приложение

- Сохранил вторую модель нейронной сети для разработки веб-приложения для прогнозирования соотношения "матрицанаполнитель" в фреймворке Flask;
- При запуске приложения, пользователь переходит на: http://127.0.0.1:5000/;
- В открывшемся окне пользователю необходимо ввести в соответствующие ячейки требуемые значения и нажать на кнопку «Готово».
- На выходе пользователь получает результат прогноза для значения параметра «Соотношение «матрица наполнитель»».
- Приложение успешно работает
- ✓ Репозиторий на github.com
- https://github.com/IamGlazz/VKR_DPO
- https://colab.research.google.com/drive/1NL eeWBgoBLtHXUPzjtj2eGFPnxHF9dma?usp =sharing

	Готово		
		/	
Результат прогноза:		45.30	08903

Спасибо за внимание

Трудности и ошибки

- > Опечатки, описки, пропуски скобок.
- У Из-за этого модели не работали, я шёл разными путями: искал ошибки в написанном коде и пробовал другие формулы, поэтому в работе одни и те же задачи решены разными (иногда практически одинаковыми способами) вариантами.
- Большой стопор возник при переносе ноутбука с jupiter в colab, потому что часть графиков не отображалась и результат был всегда разный в процессе работы.
- Но когда все ошибки, которые я смог найти, были устранены оба ноутбука заработали (кроме одного графика, так он и не захотел отображаться в colab).

Заключение

- У Использованные при разработке моделей подходы не позволили получить сколько-нибудь достоверных прогнозов.
- **р** Применённые модели регрессии не показали высокой эффективности в прогнозировании свойств композитов.
- ▶ Невозможно определить из свойств материалов соотношение «матрица наполнитель»
- У Текущим набором алгоритмов задача эффективно не решается.

