	LUNIV	
50		6
	OED A.O	

AEW T/F Ave Kludze (akk86) 2022

Name:	
Collaborators:	

1 Miscellaneous

Determine if the following statements are true(T) or false(F). Mark the correct answer. No justification needed.

- (a) $\boxed{T} \boxed{F} \lim_{\rho \to 0} \frac{\rho \sin(\varphi) \cos(\theta) \rho \sin(\varphi) \sin(\theta) \rho \cos(\varphi)}{\rho^2} \text{ in spherical coordinates does not exist.}$
- (b) T F If $\lim_{(x,y)\to(0,0)} f(x,y) = 0$, then $\lim_{x\to 0} f(x,0) = 0$.
- (c) T F If $\lim_{x\to 0} f(x,0) = 0$, and $\lim_{y\to 0} f(0,y) = 0$, then $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.
- (d) T F If $\lim_{(x,y)\to(a,b)} f(x,y) = L$ where $a,b \neq 0$, then $x = a + r\cos\theta$ and $y = b + r\sin\theta$

2 Chapter 13 VECTOR GEOMETRY

Determine if the following statements are true(T) or false(F). Mark the correct answer. No justification needed.

- (a) T F Suppose a vector v is defined as $v = \langle a_2 a_1, b_2 b_1 \rangle$, then the slope is given by $\frac{b_2 b_1}{a_2 a_1}$ where a and b are non-zero constants.
- (b) T | F | For any vectors u and v in \mathbb{R}^n , |u + v| = |u| + |v|.
- (c) T F For any vectors u and v in \mathbb{R}^n , $|u+v| \le |u| + |v|$.
- (d) TF For any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3, \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$.
- (e) T F For any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3, \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$

3 Chapter 14 CALCULUS OF VECTOR-VALUED FUNCTIONS

Determine if the following statements are true(T) or false(F). Mark the correct answer. No justification needed.

- (a) T F If there is no solution t to the equation $u_0 + t\mathbf{u} = v_0 + t\mathbf{v}$ then the lines given by $\{u_0 + t\mathbf{u} : t \in \mathbb{R}\}$ and $\{v_0 + t\mathbf{v} : t \in \mathbb{R}\}$ do not intersect.
- (b) T F For any line in \mathbb{R}^3 and a point not on that line, there is exactly one plane that is normal to the line and contains the point.
- (c) T|F| If |r(t)| = 1 for all t, then |r'(t)| is constant.

4 Chapter 15 DIFFERENTIATION IN SEVERAL VARIABLES

Determine if the following statements are true(T) or false(F). Mark the correct answer. No justification needed.

- (a) T F Suppose their exist an angle of inclination ψ and z = f(x, y), then $\psi = \tan^{-1} \left(\left\| \nabla f_{(a,b)} \right\| \sin \theta \right)$
- (b) T F If (x,y) is a local minimum of a function f then f is differentiable at (x,y) and $\nabla f(x,y) = 0$.
- (c) T F If x is a minimum of f given the constraints g(x) = h(x) = 0 then $\nabla f(x) = \lambda \nabla g(x)$ and $\nabla f(x) = \mu \nabla h(x)$ for some scalars λ and μ

- (d) $TF f_y(a,b) = \lim_{y \to b} \frac{f(a,y) f(a,b)}{y b}$
- (e) T | F | If $f(x, y) = \sin x + \sin y$ then $-\sqrt{2} \le D_{\mathfrak{u}} f(x, y) \le \sqrt{2}$ for all unit vectors \mathfrak{u} .
- (f) T F If $f_x(a, b)$ and $f_y(a, b)$ both exist then f is locally linear at (a, b)
- (g) T F For any unit vector \mathbf{u} and any point \mathbf{a} , $\mathrm{Df}_{-\mathbf{u}}(\mathbf{a}) = -\mathrm{Df}_{\mathbf{u}}(\mathbf{a})$.
- (h) Term Exists a function f with continuous second-order partial derivatives such that $f_x(x,y) = kx + y^2$ and $f_y(x,y) = x y^2$ for constant k.

5 Chapter 16 MULTIPLE INTEGRATION

Determine if the following statements are true(T) or false(F). Mark the correct answer. No justification needed.

- (a) T F $\int_0^1 \int_0^x \sqrt{x+y^2} dy dx = \int_0^x \int_0^1 \sqrt{x+y^2} dx dy$
- (b) $\boxed{T} \boxed{F} \int_0^b \int_{x^2}^{a-x} f(x,y) dy dx = \int_0^{a-b} \int_0^{\sqrt{y}} f(x,y) dx dy + \int_{a-b}^a \int_0^{a-y} f(x,y) dx dy \text{ (assume } a > b)}$
- (c) TF If f(x,y) = g(x)h(y), then $\iint_D f(x,y)dA = \left(\iint_D g(x)dA\right)\left(\iint_D h(y)dA\right)$
- (e) $\boxed{T} \boxed{F} \int_{y=1}^{4} \int_{x=0}^{1} (x^2 + \sqrt{y}) \sin(x^2 y^2) dxdy \le 9$
- (f) $\boxed{T} \boxed{F} \int_{r=-1}^1 \int_{\theta=0}^1 e^{r^2+\theta^2} d\theta dr = \left[\int_{r=-1}^1 e^{r^2} dr \right] \left[\int_{\theta=0}^1 e^{\theta^2} d\theta \right]$
- (g) T F The integral $\int_{\varphi=0}^{\pi/2} \int_{\theta=0}^{\pi/2} \int_{\rho=0}^{1} \rho^2 \sin\theta d\rho d\theta d\phi$ gives the volume of 1/4 of a sphere.

6 Chapter 17 LINE AND SURFACE INTEGRALS

Determine if the following statements are true(T) or false(F). Mark the correct answer. No justification needed.

- (a) T|F|A surface integral is always a positive quantity.
- (b) T F If a particle travels in a closed loop then the total work done on the particle over the loop is zero
- (c) T F If there exists a closed curve C in D such that $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ then F is conservative on D.
- (d) $T F \int_{-C} f ds = \int_{C} f ds$
- (e) T F If S is the unit sphere $x^2 + y^2 + z^2 = 1$ and a, b, c are real numbers, then $\iint_S |ax + by + cz| dS \ge 0$
- (f) T If $F_Z(z) = P(X + Y \le z) = \int_{y=-\infty}^{+\infty} \int_{x=-\infty}^{z-y} f_{XY}(x,y) dxdy$, then $f_Z(z) = \int_{-\infty}^{+\infty} \left(\frac{\partial}{\partial z} \int_{-\infty}^{z-y} f_{XY}(x,y) dx \right) dy$ assume Z = X + Y and the region $D_z : x + y \le z$ is shaded.
- (g) TF If $S = \{(x, y, z) : f(x, y, z) = k\}$ is a level surface of a smooth function f with no critical points on S, then S must be orientable.

7 Chapter 18 FUNDAMENTAL THEOREMS OF VECTOR ANALYSIS

Determine if the following statements are true(T) or false(F). Mark the correct answer. No justification needed.

- (a) The flux of $F = \langle x, 0, 0 \rangle$ across a sphere of radius 1 at the origin is strictly less than its flux across a sphere of radius 2 at the origin, where both are outwardly oriented.
- (b) T F If S is be the unit sphere centered at the origin, oriented outwards with normal vector \mathbf{n} and the integral $I = \iint_S D_\mathbf{n} f dS$ where $D_\mathbf{n}$ is the directional derivative along \mathbf{n} , then $I = \iiint_E div(\nabla f) dV$ where E is a solid sphere (assume f is a continuous function).
- (c) T F If $\vec{F} = \left(x \frac{2}{3}x^3, \frac{-4}{3}y^3, \frac{-8}{3}z^3\right)$ and $\mathcal{J} = \iint_S \vec{F} \cdot \vec{n} dS$, then \mathcal{J} is maximized with surface S described as $1 = 2x^2 + 4y^2 + 8z^2$