

Electromagnetismo (LFIS 211)

Licenciatura en Física mención Astronomía / Ciencias Atmosféricas / Computación Científica Profesor: J.R. Villanueva e-mail: jose.villanueva@uv.cl

Tarea 4

I. POTENCIAL ELECTROSTÁTICO; ECUACIONES DIFERENCIALES DE LA ELECTROSTÁTICA

- 1. Se tienen dos anillos finos de alambre de radio R, cuyos ejes coinciden. Sus cargas son iguales a q y -q. Calcular la diferencia de potencial entre sus centros, siendo la distancia entre ellos igual a a.
- 2. Encontrar el potencial en el centro de una semiesfera de radio R, cargada uniformemente con una densidad superficial de cargas σ constante.
- 3. Determinar la carga de una esfera conductora cuyo radio es de 5 cm, si la diferencia de potencial de dos puntos alejados de su superficie a 10 cm y 45 cm, es igual a 3 [V].
- 4. En una región del espacio se tiene el siguiente potencial eléctrico

$$\Phi(x, y, z) = (3x + \frac{y^2}{x} - 3yz + V_0) [V],$$

donde $V_0 = 35$, calcular

- (a) La fuerza que actúa sobre una carga puntual de 200 [μ C] localizada en el punto $A=(1,2,1)\,\mathrm{m}$.
- (b) El trabajo realizado por el campo eléctrico cuando desplazamos dicha carga del punto A al B=(-1,3,2) m.
- 5. El potencial de un campo dentro de una bola cargada depende única y exclusivamente de la distancia hasta su centro según la ley $\Phi = ar^2 + b$, donde a y b son constantes. Hallar la distribución de la carga volumétrica $\rho_q(r)$ dentro de la bola.
- 6. El espacio entre dos esferas concéntricas de radios R_1 y R_2 ($R_1 < R_2$) está repleto con una carga esférico-simétrica de densidad volumétrica $\rho_q = \rho_q(r)$, siendo r la distancia hasta el centro común de las dos esferas. Hallar el potencial eléctrico en cada punto del espacio, y de aqui determine el campo eléctrico. Resuelva exactamente los casos
 - (a) $\rho(r) = \rho_0 e^{r/R_1}$,
 - (b) $\rho(r) = \frac{k}{r^2}$,
 - (c) $\rho(r) = \rho_0 \cos\left(\pi \frac{r}{R_2}\right)$.
- 7. Entre los puntos $x_1 = -l$ y $x_2 = +l$ del eje X está distribuida uniformemente una carga con densidad lineal λ . Encuentre el potencial en cada punto del espacio.

- 8. Una lámina circular muy delgada de radio R que se encuentra en el vacío, se carga uniformemente, siendo su densidad superficial de carga σ . Determinar el potencial y el campo eléctrico en el eje de la lámina como función de la distancia z desde su centro. Analizar la expresión obtenida para $z \to 0$ y $z \gg R$.
- 9. Sobre un disco plano de radio R se distribuye una carga superficial que varía radialmente según $\sigma(r) = \sigma_0 (r/R)^2$ si r < R, y $\sigma(r) = 0$ para r > R, siendo r la distancia al centro del disco. Calcular el potencial y el campo eléctrico en el eje perpendicular al disco y que pasa por su centro.
- 10. Un cilindro de radio R y altura 2h posee en todo su volumen una carga homogénea de densidad volumétrica ρ_q . Determinar el potencial eléctrico en el eje de simetría tanto dentro como fuera del cilindro. Discuta el límite $R \to 0$ y $\pi \rho R^2 \to q$.
- 11. Determinar el campo eléctrico, cuyo potencial depende de las coordenadas x e y según la ley:
 - (a) $\Phi(x,y) = a(x^2 y^2);$
 - (b) $\Phi(x, y) = axy$,

donde a es una constante. Representar con ayuda del vector \vec{E} el aspecto aproximado de estos campos (en el plano x, y con a > 0).

- 12. El potencial de cierto campo eléctrico viene dado por $\Phi(x, y, z) = a(x^2 + y^2) + bz^2$, donde a y b son constantes. Hallar el módulo y la dirección del vector de campo eléctrico. ¿Qué forma tienen las superficies equipotenciales en los casos de i) a > 0, b > 0; ii) a > 0, b < 0?.
- 13. Se tiene un hilo recto y muy largo, cargado uniformemente con una densidad lineal de carga $\lambda = 0.4~[\mu \text{C/m}]$. Calcular la diferencia de potencial en los puntos 1 y 2 sabiendo que el punto 2 está al doble de distancia del hilo que el punto 1.
- 14. El potencial eléctrico en cierta zona del espacio depende de la coordenada x según la ley $\Phi(x) = -ax^3 + b$, donde a y b son constantes. Encontrar la distribución de carga volumétrica $\rho_a(x)$.
- 15. Se tiene una distribución de cargas dada por $\lambda = \lambda_0 (1 + \cos \phi)$.
 - (a) Calcular el potencial y el campo eléctrico en el origen de coordenadas.
 - (b) Determinar el trabajo necesario para trasladar una carga Q desde el infinito hasta el origen.
- 16. Sobre una circunferencia de radio R se distribuye una densidad lineal de carga $\lambda = \lambda_0 \sin^2 \phi$. Determine el potencial y el campo eléctrico sobre el eje z.
- 17. Una esfera conductora de radio R_2 , con carga neta q_0 , tiene una cavidad de radio $R_1(R_2 > R_1)$, donde se encuentra una distribución continua volumétrica uniforme ρ_0 y además una carga eléctrica puntual $-q_0$ en su centro. Calcule el potencial electrostático en todo el espacio mediante la resolución de las ecuaciones diferenciales pertinentes.
- 18. Resolviendo las ecuaciones diferenciales, determine el potencial eléctrico en todo el espacio de una distribución esférica (radio R) de cargas con densidad volumétrica $\rho(r) = \rho_0(r/R)$.
- 19. Considere una distribución de cargas $\rho = \rho_0$ uniformemente distribuida entre dos superficies cilíndricas infinitas de radios R_1 y R_2 ($R_2 > R_1$). Resuelva la ecuación de Poisson, junto con las condiciones de contorno apropiadas, para encontrar el potencial eléctrico y el campo eléctrico en todo el espacio.
- 20. Dada la configuración esférica mostrada en la figura 1, calcular el potencial electrostático en todo el espacio, mediante la resolución de las ecuaciones diferenciales.

FIG. 1: Esquema para el problema 20