계량경제학 강의 3 확률분포이론 (1)

1. 균일분포

• 균일분포(uniform distribution)] 확률변수,X가 폐구간[a,b]에서 일정한 확률을 갖을 때 $X \sim U(a,b)$

라고 쓰고, 확률밀도함수는 다음과 같다.

1. 균일분포

[균일분포의 평균과 분산]

•
$$E(X) = \int_{a}^{b} \frac{f(x)}{f(x)} \frac{1}{x} dx$$

$$= \int_{a}^{b} \frac{1}{b-a} \frac{1}{2} dx$$

$$= \left(\frac{1}{b-a}\right) \left[\frac{1}{2}x^{2}\right]_{a}^{b} = \frac{a+b}{2}$$
• $Var(X)$

$$= \int_{a}^{b} \left(X - \frac{E(x)}{2}\right)^{2} f(a) dx$$

$$= \frac{(b-a)^{2}}{12}$$

• **정규분포(normal distribution)]** 확률변수 X가 정규분포를 따른다고 할 때, $X \sim N(\mu, \sigma^2)$

라고 쓰고, 확률밀도함수는 다음과 같다.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

(그래프)

[표준정규분포]

- $X \sim N(\mu, \sigma^2)$ 이면, $aX + b \sim N(a\mu + b, a^2\sigma^2)$
- $X \sim N(\mu, \sigma^2)$ 이면, $Z = \frac{X \mu}{\sigma} \sim N(0, 1)$ 이고, 이를 표준정규분포라고 한다.
- 표준정규분포의 확률밀도 함수는

$$\int f(z) z \frac{1}{2\pi} \exp \left(-\frac{z^2}{2}\right)$$

[표준정규분포의 평균과 분산]

•
$$E(X) = 0$$

$$\int_{-\infty}^{\infty} \alpha \cdot f(\alpha) d\alpha$$

•
$$Var(X) = \int_{-\infty}^{\infty} (x - f(x))^{T} f(x) dx$$

Standard Normal Distribution table

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952

예) A 반의 성적 $X \sim N(85,25)$ B 반의 성적 $Y \sim N(90,9)$

A반의 학생 C는 95점을 B반의 학생 D는 99점을 받았을 때 누가 더 좋은 성적을 받은 것일까?

$$(A)$$
, $C:95$ $Z_{c}=$ $D:99$ $Z_{o}=$

예) 인하대 학생들의 키 $X \sim N(172,16)$ 라고 할 때 평균주변의 95% 학생의 키는 얼마일까? $z=1.96 \rightarrow f(z)=0.975, (X-172)/16=1.96*(+-)(16)+172=203.36, 140.64$

예) 인하대 학생들의 키 $X \sim N(172,25)$ 라고 할 때 한명을 임의로 뽑았을 때 180cm 이상일 확률은?

(180-172)/25 = 0.32 = z, f(z) = 0.6255, 1-0.6255 = 0.3745

예) 인하대 학생들의 키 $X \sim N(172,16)$ 라고 할 때, 9명의 학생의 평균의 키가 174보다 클 확률은 얼마인가?

 $Xbar \sim N(,(^2)/n), Xbar \sim N(172,16/9). z=1.5, f(z) = 0.9332. 1-0.9332 = 0.0668.$