

ESCUELA SUPERIOR POLITÉCNICA DEL LITROAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

Bombas Homólogas

Ing. Luis Zambrano Agosto 2021

Objetivo

Predecir el funcionamiento de una bomba geométricamente y dinámicamente similar (homóloga) a partir de los datos de otra de características conocidas y comparar los resultados teóricos con los obtenidos experimentalmente.

Procedimiento

TABLA DE DATOS:

ВОМ	BA N- 2 @300	0 RPM (MODI	ELO)	BOMBA N- 1 @2700 RPM (PROTOTIPO)				
Q (lt/s)	H _{adm} (m)	H _{des} (m)	F (N)	Q (lt/s)	H _{adm} (m)	H _{des} (m)	F (N)	

Cálculos experimentales

Cabezal total

$$H_t = H_{des} - H_{adm}$$

Potencia hidráulica

$$P_w = \dot{m}gH_t$$

Potencia mecánica

$$P_m = WT = \frac{2\pi NT}{60} = \frac{2\pi N(0.165F)}{60}$$

Cálculos experimentales

Eficencia total de la bomba

$$\eta = \frac{P_w}{P_m}$$

Tabla de resultados experimentales:

BOMBA N- 2 @3000 RPM (MODELO)			BOMBA N- 1 @2700 RPM (PROTOTIPO)				
Q	Ht	P _w	Efic. η	Q	Ht	P _w	Efic. η
(lt/s)	(m)	(W)	(%)	(lt/s)	(m)	(W)	(%)

Análisis dimensional

Por análisis dimensional se encuentra que existen cuatro grupos adimensionales que definen el comportamiento de una serie de bombas homologas:

- Grupo de Caudal (πQ) : $\pi Q = \frac{Q}{N \times D^3}$
- Grupo de Cabezal (πH) $\pi H = \frac{H \times g}{(N \times D)^2}$
- Grupo de Potencia (πP) $\pi P = \frac{P}{\rho \times N^3 \times D^5}$
- Eficiencia total $(\pi \eta)$: $\pi \eta = \frac{\pi Q \times \pi H}{\pi P}$

Cálculos estimados

Caudal

$$Q_1 = \left(\frac{N_1}{N_2}\right) \left(\frac{D}{d}\right)^3 Q_2$$

Cabezal total

$$H_{t1} = \left(\frac{N_1}{N_2}\right)^2 \left(\frac{D}{d}\right)^2 H_{t2}$$

Potencia hidráulica

$$P_{w1} = \left(\frac{N_1}{N_2}\right)^3 \left(\frac{D}{d}\right)^5 P_{w2}$$

Cálculos estimados

Eficiencia

$$\eta = \frac{Q_1 H_{t1}}{P_{w1}}$$

Tabla de resultados estimados:

BOMBA N- 1 @2700 RPM (PROTOTIPO)						
Q (lt/s)	H _t (m)	P _w (W)	Efic. η (%)			