

FIGURE 1

Figure 2

<u>Gene</u>	<u>Strain</u>	<u>TATA_Box</u>	<u>Coding_Start</u>	<u>TATA_to_Start_(bp)</u>
81 Hypoth 03	A	AAGCTAGACT TTTAAT TGGG ATCCGGCGGG GCGGGCGCATG -----	-----	25
82	B	AAGCTAAACT TTTAAT TGGG ATCCGGCGAG CGGGCGCTG -----	-----	
83 Hypoth 02	A	CGAAAACTTTG ATTATA CGGG CGTGCTGCC CGGGGCCAT G-----	-----	26
84	B	CGAAAACTTTG ATTATA CGGG CGTACATTCC CGGGGCCAT G-----	-----	
85 ORF 02	A	AAGGCAAGGT AATAAT AGCC TGCGCTCTGT AACGGCCGTA TG-----	-----	27
96	B	AAGGCAAGGT AATAAT AGCC TGCGCTCCGT ACCTGCGTA TG-----	-----	
87 ORF 03	A	CATGGAACTA GATAAT AACCG GTTCCCGCGG ATCCCAGTCAGCA TG-----	-----	27
88	B	CATGGAACTA GATAAT AACCG GTTCCCGCGG GTACAAATGCA TG-----	-----	
89 PPI	A	ATACCGAGAA GTTATA GCAG GGTATGGAAAT GTGCGCGCG ATG-----	-----	28
90	B	AGCACGACAA GTTATA GCAG GGTACAAAGG AGCAGCGCAC ATG-----	-----	
91 GSAT	A	ATCCGGCCCTG ATTAAA TTAT GGGGGGAGCG GCCTGCTGCC GTG-----	-----	28
92	B	ATCCGGCCCTC ATTAAA TTAC GGGGGGTACA ACCTGCTGCC GTG-----	-----	
43 ORF 05	A	CCTTCATACA CATAAA TCCC GCTTGGATGT GCGGCTGCAG ATG-----	-----	28
94	B	ACTTCATACA CATAAA TCCC GCCTGAACGG TCGTCCGCGC ATG-----	-----	
95 deaminase	A	.GGCATATAC CATAAT ATGC CGGGCGGTGG CACCATGGCC GTT-----	-----	29
96	B	CCGCATATAC CATAAT ATGC CGGGCGGGGG CAGGCTGCC .GTG-----	-----	
97 RNA helic	A	TGTACGAAAC CATAAA ACAAC CAGGCCCGT CAGGCCCGCG CGTG-----	-----	29
98	B	GGGTAGAAAC CATAAA ACAAC CAGGCCCGCG CAGGCCCG.CG CGTG-----	-----	
99 ORF 06	A	..ACACGCAG TATAAA CGGG GGCCCCGGCG GCGCGTATCA CATG-----	-----	29
100	B	ATACACGTGG TATAAA CAGA GG.CCGGACG GCGCCGGACCA CATG-----	-----	
101 tRNA-tyr	A	GCGATAGTTA TTTAAA ACTA GGATGCCGAT CACGATCGT CCCA-----	-----	29
102	B	GCGATAGTTA TTTAAA ACTA GGATGCCGCG CACCGCTCGT CCCA-----	-----	
103 TBP	A	CCGGGCCCCG GTTAAA ATAG CG.CACGGGC GGATCTTGAC CAATG-----	-----	30
104	B	CCGGGCCCCCG GTTAAA ATAG AGTGCGGCG GGCACCGGAT CAATG-----	-----	
105 TIM	A	GCGTCGATAG ATTAAA TAGC CGCAGGGGGC CCCGTGGCGC GATCGCCCGT G-----	-----	36
106	B	GCGTCGATAG ATTAAA TAGC CGC.GGGGCC GCGGTGC... GATCGCCCGT G-----	-----	
107 Hypoth 01	A	ATTCAACTA CATAAA TGCC TAGTTACGCA GAAATAGCAA ACCACGTACT TCGACTAATG	-----	45
108	B	ACTTCAACTA CATAAA TGCC TAGCTACGCA GAAATATCAA ACAAAAGTACT TCGACTAATG	-----	
109 ORF 01	A	ACGGCAGGCT ATTATT ACCT TGCCCTTGCGT TGTA //..G CGGGGTGCGG CAGGGGATG	-----	52
110	B	ACGGCAGGCT ATTATT ACCT TGCCGTGTC. TACA //..G AGGGGGCCTG CGGGGAGTG	-----	
111 Methylase	A	CTACAAACGAT TTTAAG TGCG CGCCGGGCA GCCG.//..G ATGTGGGGCA GGCAACATG	-----	104
112	B	CTACAAAGAT TTTAAG ACAG CGCGGGGTGCC CGGG.//..T GGCACGGGGG CCTATCTTG	-----	
113 16S RNA	A	TCCGGCATGG TTTATA TGCC CATGGACGGG CCGATCCGAT CGTACGTGAC GC.//..AAT	-----	220
114	B	CCGGCGATGG TTTATA TGCC CATGGACAAG GCGATCCGAT CGTACGTGAC GC.//..AAT	-----	
Archaeal promoter consensus		YTTAWA		

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6